STAT 6543 Exam

Santanu Mukherjee , zes254 07/16/2022

R Markdown

I True (T) or False (F). (20 Points)

Q1

For these problems, if false, briefly justify your answer. Each problem worth 2 points.

1 **F** In general the more flexible a method is, the lower its RMSE of the test data will be.

Reason

As the model becomes flexible, initially the test RMSE will decrease, but in the long run as flexibility increases, the test RMSE will increase.

2 ___**T**_ When we fit the linear regression model, the collinearity between predictors will improve the coefficient estimates.

Reason

A collinearity is a special case when two or more variables are correlated. Then these variables will have an influence on the coefficients of the estimates that is being generated by the model. As such it is wiser to remove collinearity while building the model so that model performance can be interpreted properly.

3 __F_ All types of statistical models discussed in this course are beneficial from data pre-processing.

Reason

Although majority of models benefit from data pre-processing, not all models benefit from data pre-processing. For example, if the predictors are mostly binary variables, data pre-processing will accomplish very little.

4 __T_ One advantage of Principal component analysis (PCA) is that it is a data reduction technique which creates uncorrelated components.

Reason

A commonly used data reduction technique is PCA which seeks to find linear combinations of the predictors, known as principal components (PCs), which capture the most possible variance. The first PC is defined as the linear combination of the predictors that captures the most variability of all possible linear combinations. Then, subsequent PCs are derived such that these linear combinations capture the most remaining variability while also being uncorrelated with all previous PCs.

 $5 \, _T$ The bias-variance trade-off means that as a method gets more flexible the bias will decrease and the variance will increase but expected RMSE of the testing data may go up or down.

Reason

As model becomes more flexible, bias will decrease and variance will increase. There will be areas of under fitting and there will be areas of overfitting and accordingly the testing error may go up and down.

6 __T_ The trade-off between prediction accuracy and interpretability means that a predictive model that is most powerful is usually the least interpretable.

Reason

The predictive models that are most powerful are usually the least interpretable. The perceived improvement in interpretability gained by manual categorization is usually offset by a significant loss in performance.

7 __F_ When the sample size n is extremely large, and the number of predictors p is small, we do not expect the performance of a flexible statistical learning method to be better than an inflexible method.

Reason

In this scenario, a flexible method will fit the data closer and with the large sample size, would perform better than an inflexible approach.

8 __T_ Elastic net, OLS, Ridge regression, Lasso regression can all be used and implemented in situations where the number of predictors is larger than the sample size.

Reason

These are examples of multiple linear regression and here number of predictors can be larger than the sample size. Here shrinkage methods are employed to shrink the coefficients of predictors towards 0. Although shrinkage introduce bias, it can significantly reduce variance. The shrinkage also potentially reduces test error.

9 __F_ The bootstrap is a widely applicable and extremely powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator. Each "bootstrap set" is created by sampling without replacement, and the size is smaller than our original dataset.

Reason

Bootstrap set is created by resampling WITH replacement.

10 **F** The last name of the instructor of this course is Min.

Reason

The name of the instructor is Min Wang, where Min is the first name and Wang is the last name.

II Free Response Questions (40 Points)

Problem 1 (a)

Problem 1 (Total: 10 Points) You think of some real-life applications for statistical learning and predictive modelling.

a. Describe a real-life application in which classification might be useful. Describe the response, as well as the predictors. Is the goal of this application inference or prediction? Clearly explain your answer. (5 Points)

Answer 1 (a)

One example of classification problem is to predict whether an email is a *Spam* or not. If it is a *Spam*, it needs to be moved to a Spam folder. The response variable is binary let's say (y): *Spam* or not

The predictors are simple sequence of words, lets say (X).

The goal of the application is prediction.

Problem 1 (b)

b. Describe a real-life application in which regression might be useful. Describe the response, as well as the predictors. Is the goal of this application inference or prediction? Clearly explain your answer. (5 Points)

Answer 1 (b)

In today's environment where the inflation is high and gas prices are rising because of war and supply chain problems, there is no better real life example of a regression problem than to predict the total cost of driving from city A to city B. We can think of a linear regression model, where the regression equation is

Total Cost (y) = β_0 + $\beta_1 x_{miles}$ + $\beta_2 x_{gas-price}$ + ϵ ,

y is the response variable

 x_{miles} , $x_{gas-price}$ are the predictors

 β_1 , β_2 are the co-efficients

 β_0 is the Intercept

Problem 2 (a)

Problem 2 (Total: 10 Points) During the class time, we learned k-fold cross-validation.

a. (5 points) Explain how k-fold cross-validation is implemented.

Answer 2 (a)

k-fold cross validation is one of the resampling techniques that are used for model performance and optimization. In this method, the samples are randomly partitioned into k sets ("folds") of roughly equal size. A model is fit using all the k-1 samples except the first subset (called the first fold). The held-out samples are predicted by this model and used to estimate performance measures. The first subset is returned to the training set and procedure repeats with the second subset held out, and so on. The k resampled estimates of performance are summarized (usually with mean and standard error) and used to understand the relationship between the tuning parameter(s) and model utility.

A special case where k is the number of samples is Leave-One-Out-Cross-Validation(LOOCV). In this case, since only one sample is held-out at a time, the final performance is calculated from the k individual held-out predictions. Additionally, repeated k-fold cross-validation replicates the procedure multiple times. For example, if 10-fold cross-validation was repeated five times, 50 different held-out sets would be used to estimate model efficacy.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the difference in size between the training set and the resampling subsets gets smaller. As this difference decreases, the bias of the technique becomes smaller (i.e., the bias is smaller for k = 10 than k = 5). In this context, the bias is the difference between the estimated and true values of performance.

Problem 2 (b)

b. (5 points) What are the advantages and disadvantages of k-fold cross-validation relative to the bootstrap sample.

Answer 2 (b)

Advantages:

- 1. In k-fold Cross-validation, bias is reduced as gives us an idea about how the model will perform on an unknown dataset.
- 2. k-fold Cross-validation helps to determine a more accurate estimate of model prediction performance than **Bootstrap**
- 3. k-fold Cross-validation as low bias compared to Bootstrap

Disadvantages:

- 1. In k-fold cross-validation, there is higher uncertainty in error rates compared to **Bootstrap**
- 2. k-fold cross-validation is computational heavy compared to **Bootstrap** as in **Bootstrap** not all samples are picked.

Problem 3

Problem 3 (Total: 10 Points)

What are the advantages and disadvantages of a very flexible (versus a less flexible) approach for regression? Under what circumstances might a more flexible approach be preferred to a less flexible approach? When might a less flexible approach be preferred?

Answer 3

Flexible method advantages:

- 1. As model becomes more flexible, bias decreases (less assumptions about the functional form of f)
- 2. Flexible model do help capture non-linear relationships or relationships between interaction variables
- 3. They capture complex variable interactions
- 4. Flexible models require less assumptions
- 5. Often outperform less flexible methods in prediction accuracy

Flexible method disadvantages:

- 1. It is evident from the biased-variance trade off graph that variance increases as model becomes more flexible (easier to overfit)
- 2. Flexible models require tuning
- 3. For these models, training times increase (cross-validation or equivalent is necessary to mitigate high variance & tune hyper parameters)
- 4. These models require more variables and observations to work optimally
- 5. It is often less interpretable

The circumstances WHEN a more flexible approach is preferred to a less flexible approach

- 1. Their exists non-linear relationships and / or interaction variables are related
- 2. The primary objective is to have more predictive power and accuracy
- 3. There is sufficient computational power and tools for variance-controlling measures (e.g. cross-validation)
- 4. The number of variables in large
- 5. The amount of observations (data) is large

The circumstances WHEN a less flexible approach is preferred

- 1. The objective is to interpret the model
- 2. There is less computational power requirement
- 3. There are assumptions like linearity, specific variables are more important than others etc.
- 4. There is requirement of rationale as to why an observation has a particular prediction

Problem 4 (a)

Problem 4 (Total: 10 Points)

In this class, we discussed the bias-variance trade-off. Answer the following questions.

a. Provide a sketch of typical (squared) bias, variance, training error, test error curves, on a single plot, as we go from less flexible statistical learning methods towards more flexible approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should represent the values for each curve. There should be four curves. Make sure to label each one.

Answer 4 (a)

Sketch with the five curves

Problem 4 (b)

b. Briefly explain why each of the four curves has the shape displayed in part (a)

Answer 4 (b)

Bias is the error introduced when the complexity of a problem is not sufficiently modeled by the simplicity of the chosen method (e.g. linear regression for non-linear relationships). As model flexibility increases (linear->trees->boosting, decreasing K in KNN, etc.), bias decreases monotonically, because less assumptions are being made about the data structure and its relationship with the response.

Variance refers to the amount by which our predictions would change if the training data were changed, and can be thought of as the error introduced when a model is overfit to the training data. As model flexibility increases, variance increases monotonically, because the method becomes more specified (and then overspecified) to the nuances of the training data, to the point where \hat{f} doesn't generalize to new data.

Training Error decreases monotonically as flexibility increases. More flexible methods are generally higher variance, and can learn more complex relationships more completely, but also run the risk of overfitting, which is seen where the training error and test error diverge. Think of a decision tree, where the number of terminal nodes = the number of training observations (this model will have 0 training error and a high test error).

Test Error decreases, levels-out then increases. The minima is the point of optimal bias-variance trade off, where $E[(Y-\hat{Y})^2] = [Bias(\hat{f}(X))]^2 + Var(\hat{f}(X)) + V$

Irreducible Error refers to the error introduced by inherent uncertainty/noise in the system being approximated. It is constant and > 0 regardless of the flexibility of the model, because ϵ may contain unmeasured variables not in X that could be used to predict y, and because ϵ may contain unmeasurable variation in y that could not be accounted for in X even if we wanted to. This means that it doesn't matter how closely \hat{f} models the 'true' function f, there will still be an (unknown) minimum error of $Var(\epsilon)>0$.

III Coding Questions (40 Points)

Problem 5 (Total: 16 Points) Suppose we are interested in examining the relationship between the response variable sales and the amount of money spent advertising on the TV, radio, and newspapers (i.e, there are three predictors: TV, radio, and newspapers). We fit a multiple linear regression with four predictors (TV, radio, newspaper, and the TV and radio interaction term, denoted by TV:radio (TV:radio)) and obtain the following results:

Problem 5 (a)

a. (4 points) Provide an appropriate interpretation for the coefficient 1.91e-02.

Answer 5 (a)

Here sales is the response variable and there are 4 predictors (TV, radio, newspaper, and the TV and radio interaction term, denoted by TV:radio (TV:radio)). So, for a given amount of TV, radio and newspaper advertising, spending an additional \$ 1 on TV advertising will result in an increase in sales (response variable) by approximately 1.91e-02 units.

Problem 5 (b)

b. (4 points) True or false: Since the coefficient for the TV and radio interaction term "TV:radio (TV:radio)" is quite small, there is very little evidence that this interaction term is important in predicting the response variable "sales". Justify your answer.

Answer 5 (b)

Answer = False

Here are few things to consider:

Although the coefficient of the interaction term "TV:radio (TV:radio)" is quite small, the t-test performed to identify whether interaction exists has shown us that the p-value is extremely low, which suggests that the interaction term is significant and so it is very important to keep this interaction term in the model.

So, this interaction term is important in predicting the response variable "sales".

Problem 5 (c)

c. (4 points) Suppose that the company has two options to split \$12,000 for the three types of advertising: (i) invest equally \$4,000 for each type of advertising, (ii)invest \$6,000 for TV, \$3,000 for radio, and \$3,000 for newspapers. Which option should be recommended for the company. Justify your answer.

Answer 5 (c)

Based on 1. the p-values and their significance (importance) in prediction AND 2. the coefficients of the predictors AND 3. the importance and significance of the interaction term "TV:radio (TV:radio)" in model prediction

it is recommended that option (ii)invest \$6,000 for TV, \$3,000 for radio, and \$3,000 for newspapers is better.

This is because TV and radio (separately and together) are more significant and can provide more sales and so their share of advertisement together (\$ 6000 + \$ 3000 = \$ 9000) is more in **option (ii)** than \$ 4000 + \$ 4000 = \$ 8000 in **option (i)**.

Problem 5 (d)

d. (4 points) Based on this model fit, which predictors are important in predicting the sales? In other words, explain what conclusions you can draw based on the p-values. Your explanation should be phrased in terms of sales, TV, radio, newspaper, and TV:radio (TV:radio), rather than in terms of the coefficients of the linear model.

Answer 5 (d)

Based on the p-values provided, it is clear that 1. newspaper is not significant and so not important for predicting the sales. 2. We also see that the p-values for TV and the interaction term "TV:radio (TV:radio)" are very small compared to the p-value for radio (which is also significant). 3. As the p-value of the interaction term is very small, this suggests that the interaction term is significant and so it is very important to keep this interaction term in the model. 4. This also proves that the model is not additive and the interaction term "TV:radio (TV:radio)" will play a significant role in prediction.

In conclusion, based on p-values we can say that TV, radio and interaction term "TV:radio (TV:radio)" are very important predictors in predicting the sales based on this model.

Problem 6 (a)

Problem 6 (Total: 24 Points) we will predict the number of applications received using the other variables in the College data set available in the R package ISLR, which can be accessed as follows.

library(ISLR)
data(College)
#data basic information
head(College)

##	Private	Apps	Accept Er	roll	Top10p	perc T	op25pe	erc
## Abilene Christian University	Yes	1660	1232	721		23		52
## Adelphi University	Yes	2186	1924	512		16		29
## Adrian College	Yes	1428	1097	336		22		50
## Agnes Scott College	Yes	417	349	137		60		89
## Alaska Pacific University	Yes	193	146	55		16		44
## Albertson College	Yes	587	479	158		38		62
##	F.Under	grad A	O.Undergra	d Out	tstate	Room.	Board	Books
## Abilene Christian University		2885	53	37	7440		3300	450
## Adelphi University	2	2683	122	27	12280		6450	750
## Adrian College	:	1036	9	9	11250		3750	400
## Agnes Scott College		510	6	3	12960		5450	450
## Alaska Pacific University		249	86	59	7560		4120	800
## Albertson College		678	4	1	13500		3335	500
##	Persona:	l PhD	Terminal	S.F.F	Ratio p	erc.a	lumni	Expend
## Abilene Christian University	2200	70	78		18.1		12	7041
## Adelphi University	1500	29	30		12.2		16	10527
## Adrian College	116	5 53	66		12.9		30	8735
## Agnes Scott College	87	5 92	97		7.7		37	19016
## Alaska Pacific University	1500	76	72		11.9		2	10922
## Albertson College	67	5 67	73		9.4		11	9727
##	Grad.Ra	te						
## Abilene Christian University	•	50						
## Adelphi University	!	56						
## Adrian College	!	54						
## Agnes Scott College	!	59						
## Alaska Pacific University	:	15						
## Albertson College		55						

```
dim(College)
```

```
## [1] 777 18
```

a. Appropriately split the data set into a training set (80%) and a test set (20%). [4 points]

Answer 6 (a)

Based on the question, randomly selected 80% of the observations for the training set and 20% for the test set.

```
college <- College
attach(college)

set.seed(1)
split <- sample(1:nrow(college), 0.8 * nrow(college))

train <- college[split,]
test <- college[-split,]

train_percent = round(nrow(train) *100 / nrow(college),0)
test_percent = round(100 - train_percent,0)

print(paste("The training data set percent is ",train_percent,"%"))</pre>
```

```
## [1] "The training data set percent is 80 %"
```

```
print(paste("The test data set percent is ",test_percent,"%"))
```

```
## [1] "The test data set percent is 20 %"
```

Problem 6 (b)

b. Fit a linear model using least squares on the training set, and report the test error obtained. [5 points]

Answer 6 (b)

```
lm_model <- lm(Apps ~ ., data = train)
summary(lm_model)</pre>
```

```
##
## Call:
## lm(formula = Apps ~ ., data = train)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -5555.2 -404.6
                     19.9
                            310.3 7577.7
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -630.58238 435.56266 -1.448 0.148209
## PrivateYes -388.97393 148.87623 -2.613 0.009206 **
                 1.69123
## Accept
                            0.04433 38.153 < 2e-16 ***
## Enroll
                -1.21543
                            0.20873 -5.823 9.41e-09 ***
## Top10perc
                50.45622
                            5.88174 8.578 < 2e-16 ***
## Top25perc
               -13.62655
                            4.67321 -2.916 0.003679 **
                 0.08271
                            0.03632 2.277 0.023111 *
## F.Undergrad
## P.Undergrad
                 0.06555
                            0.03367 1.947 0.052008 .
## Outstate
                -0.07562
                            0.01987 -3.805 0.000156 ***
## Room.Board
                            0.05130 2.760 0.005947 **
                 0.14161
## Books
                 0.21161
                            0.25184
                                     0.840 0.401102
## Personal
                 0.01873
                            0.06604
                                     0.284 0.776803
## PhD
                -9.72551
                            4.91228 -1.980 0.048176 *
## Terminal
                -0.48690
                            5.43302 -0.090 0.928620
## S.F.Ratio
                18.26146
                           13.83984
                                    1.319 0.187508
## perc.alumni
               1.39008
                            4.39572 0.316 0.751934
## Expend
                 0.05764
                            0.01254
                                     4.595 5.26e-06 ***
## Grad.Rate
                 5.89480
                            3.11185
                                     1.894 0.058662 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 993.8 on 603 degrees of freedom
## Multiple R-squared: 0.9347, Adjusted R-squared: 0.9328
## F-statistic: 507.5 on 17 and 603 DF, p-value: < 2.2e-16
```

```
pred_ols <- predict(lm_model, test)
ols_mse <- mean((pred_ols - test$Apps)^2)
print(paste("The MSE as the test error metric is ", round(ols_mse,0)))</pre>
```

```
## [1] "The MSE as the test error metric is 1567324"
```

Problem 6 (c)

c. Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report the test error obtained. [5 points]

Answer 6 (c)

I first create train.matrix and test.matrix, which are train & test datasets.

```
train.matrix <- model.matrix(Apps~., data=train)
test.matrix <- model.matrix(Apps~., data=test)
grid = 10^seq(5,-2, length=100)
set.seed(3)
collegeridge <- cv.glmnet(train.matrix, train$Apps, alpha=0, lambda=grid)
bestLambda.ridge <- collegeridge$lambda.min</pre>
print(paste("The chosen value of lambda is ", bestLambda.ridge))
```

```
## [1] "The chosen value of lambda is 0.01"
```

I am here testing varying values of λ (from 0.01 to 100) using 5-fold cross-validation.

Ridge Regression - Lambda Selection (Using 5-Fold Cross-Validation)

[1] "The Ridge test MSE is 1567246"

Problem 6 (d)

d. Fit an ENET model on the training set with tuning parameters chosen by cross validation. Report the test error obtained, along with the number of non-zero coefficient estimates. [5 points]

Answer 6 (d)

```
## Elasticnet
##
## 621 samples
   17 predictor
##
## Pre-processing: centered (17), scaled (17)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 560, 558, 558, 561, 559, 559, ...
## Resampling results across tuning parameters:
##
##
     lambda
                  fraction
                              RMSE
                                        Rsquared
                                                   MAE
##
     0.000000000
                  0.05000000
                             3295.055 0.8898515
                                                   2199.9802
##
     0.000000000
                 0.07368421
                             3126.611 0.8898515
                                                   2084.1658
     0.000000000
                  0.09736842
                             2959.652 0.8898515 1968.7338
##
##
     0.000000000
                  0.12105263
                             2794.449
                                       0.8898515
                                                  1853.5201
##
     0.000000000
                  0.14473684
                             2631.340
                                       0.8898515
                                                  1738.7323
##
     0.000000000
                  0.16842105
                             2470.752 0.8898515 1624.2334
##
     0.000000000
                  0.19210526
                             2313.234 0.8898515 1510.2070
##
     0.000000000
                  0.21578947
                             2159.494 0.8898515 1396.9843
                                                  1284.6008
##
     0.000000000
                  0.23947368
                             2010.463 0.8898515
##
     0.000000000
                  0.26315789
                             1867.375 0.8898515
                                                  1175.3663
##
     0.000000000
                  0.28684211 1731.881 0.8898515 1070.9617
##
     0.000000000
                  0.31052632 1606.187 0.8898515
                                                    972.2609
                 0.33421053 1493.330 0.8899543
##
     0.000000000
                                                    879.1495
##
     0.000000000
                  0.35789474
                             1397.024 0.8909323
                                                    796.3299
##
     0.000000000
                  0.38157895
                             1308.740
                                       0.8975258
                                                    726.2647
##
     0.000000000
                  0.40526316
                             1231.253 0.9053769
                                                    665.5190
##
     0.000000000
                  0.42894737 1172.034 0.9112180
                                                    621.4351
##
     0.000000000
                  0.45263158 1130.395 0.9154296
                                                    597.3770
##
     0.000000000
                  0.47631579
                             1103.255 0.9184347
                                                    593.2234
##
     0.000000000
                  0.50000000
                             1089.366 0.9205100
                                                    601.2019
##
     0.005263158
                 0.05000000
                             3320.021 0.8898515
                                                   2217.2113
##
     0.005263158
                 0.07368421
                             3163.118
                                       0.8898515
                                                   2109.5212
##
     0.005263158
                 0.09736842
                             3007.450 0.8898515
                                                   2002.1197
##
     0.005263158
                 0.12105263
                             2853.224 0.8898515
                                                   1894.9286
##
     0.005263158
                 0.14473684
                             2700.692 0.8898515 1788.0774
##
     0.005263158
                 0.16842105
                             2550.164
                                       0.8898515
                                                   1681.5170
##
     0.005263158
                 0.19210526
                             2402.033 0.8898515
                                                   1575.2119
##
     0.005263158
                 0.21578947
                             2256.791 0.8898515 1469.5518
```

##	0.005263158	0.23947368	2115.069	0.8898515	1364.4223
##	0.005263158	0.26315789	1977.683	0.8898515	1260.4307
##	0.005263158	0.28684211	1845.696	0.8898515	1159.4279
##	0.005263158	0.31052632	1720.504	0.8898515	1062.8311
##	0.005263158	0.33421053	1603.937	0.8898515	971.2192
##	0.005263158	0.35789474	1498.459	0.8898912	884.2910
##	0.005263158	0.38157895	1407.764	0.8905059	806.5372
##	0.005263158	0.40526316	1324.966	0.8956883	739.5436
##	0.005263158	0.42894737	1249.601	0.9033953	680.3581
##	0.005263158	0.45263158	1189.666	0.9094385	633.6580
##	0.005263158	0.47631579	1145.296	0.9138259	604.2262
##	0.005263158	0.50000000	1114.971	0.9171527	592.3275
##	0.010526316	0.05000000	3339.009	0.8898515	2230.3552
##	0.010526316	0.07368421	3190.899	0.8898515	2128.8643
##	0.010526316	0.09736842	3043.856	0.8898515	2027.5850
##	0.010526316	0.12105263	2898.044	0.8898515	1926.5732
##	0.010526316	0.14473684	2753.660	0.8898515	1825.7586
##	0.010526316	0.16842105	2610.949	0.8898515	1725.2670
##	0.010526316	0.19210526	2470.208	0.8898515	1624.9702
##	0.010526316	0.21578947	2331.807	0.8898515	1525.0053
##	0.010526316	0.23947368	2196.213	0.8898515	1425.7656
##	0.010526316	0.26315789	2064.012	0.8898515	1326.9133
##	0.010526316	0.28684211	1935.958	0.8898515	1229.6572
##	0.010526316	0.31052632	1813.021	0.8898515	1135.2732
##	0.010526316	0.33421053	1696.454	0.8898515	1045.2102
##	0.010526316	0.35789474	1587.877	0.8898515	959.4126
##	0.010526316	0.38157895	1489.418	0.8898723	878.0460
##	0.010526316	0.40526316	1404.778	0.8903996	805.4427
##	0.010526316	0.42894737	1326.811	0.8951967	742.2203
##	0.010526316	0.45263158	1255.971	0.9026120	685.9438
##	0.010526316	0.47631579	1197.380	0.9085301	639.6723
##	0.010526316	0.50000000	1153.356	0.9128850	608.5860
##	0.015789474	0.05000000	3353.744	0.8898515	2240.6302
##	0.015789474	0.07368421	3212.467	0.8898515	2143.9862
##	0.015789474	0.09736842	3072.135	0.8898515	2047.4948
##	0.015789474	0.12105263	2932.882	0.8898515	1951.3129
##	0.015789474	0.14473684	2794.874	0.8898515	1855.2417
##	0.015789474	0.16842105	2658.306	0.8898515	1759.4808
##	0.015789474	0.19210526	2523.419	0.8898515	1663.9187

##	0.015789474	0.21578947	2390.505	0.8898515	1568.5635
##	0.015789474	0.23947368	2259.928	0.8898515	1473.7708
##	0.015789474	0.26315789	2132.139	0.8898515	1379.4075
##	0.015789474	0.28684211	2007.708	0.8898515	1285.7109
##	0.015789474	0.31052632	1887.355	0.8898515	1194.0304
##	0.015789474	0.33421053	1772.001	0.8898515	1105.2421
##	0.015789474	0.35789474	1662.822	0.8898515	1020.7741
##	0.015789474	0.38157895	1561.315	0.8898515	939.8285
##	0.015789474	0.40526316	1469.424	0.8898810	863.5905
##	0.015789474	0.42894737	1390.836	0.8905178	796.0698
##	0.015789474	0.45263158	1317.935	0.8956044	736.9430
##	0.015789474	0.47631579	1252.376	0.9027433	683.8981
##	0.015789474	0.50000000	1197.557	0.9083188	639.5964
##	0.021052632	0.05000000	3365.150	0.8898515	2248.7244
##	0.021052632	0.07368421	3229.166	0.8898515	2155.8947
##	0.021052632	0.09736842	3094.035	0.8898515	2063.1876
##	0.021052632	0.12105263	2959.873	0.8898515	1970.7936
##	0.021052632	0.14473684	2826.820	0.8898515	1878.4714
##	0.021052632	0.16842105	2695.042	0.8898515	1786.4300
##	0.021052632	0.19210526	2564.737	0.8898515	1694.6102
##	0.021052632	0.21578947	2436.148	0.8898515	1602.9413
##	0.021052632	0.23947368	2309.571	0.8898515	1511.6138
##	0.021052632	0.26315789	2185.368	0.8898515	1420.8955
##	0.021052632	0.28684211	2063.991	0.8898515	1330.5061
##	0.021052632	0.31052632	1946.006	0.8898515	1241.2944
##	0.021052632	0.33421053	1832.123	0.8898515	1154.2092
##	0.021052632	0.35789474	1723.243	0.8898515	1070.2816
##	0.021052632	0.38157895	1620.506	0.8898515	990.5796
##	0.021052632	0.40526316	1525.339	0.8898515	913.9580
##	0.021052632	0.42894737	1439.849	0.8899217	842.5662
##	0.021052632	0.45263158	1368.422	0.8909875	780.3396
##	0.021052632	0.47631579	1302.833	0.8967428	725.6854
##	0.021052632	0.50000000	1243.323	0.9033984	675.8191
##	0.026315789	0.05000000	3374.525	0.8898515	2255.4147
##	0.026315789	0.07368421	3242.895	0.8898515	2165.7356
##	0.026315789	0.09736842	3112.047	0.8898515	2076.1721
##	0.026315789	0.12105263	2982.083	0.8898515	1986.8887
##	0.026315789	0.14473684	2853.124	0.8898515	1897.6867
##	0.026315789	0.16842105	2725.313	0.8898515	1808.7079

##	0.026315789	0.19210526	2598.821	0.8898515	1719.9752
##	0.026315789	0.21578947	2473.853	0.8898515	1631.3932
##	0.026315789	0.23947368	2350.657	0.8898515	1543.0097
##	0.026315789	0.26315789	2229.537	0.8898515	1455.2013
##	0.026315789	0.28684211	2110.862	0.8898515	1367.7267
##	0.026315789	0.31052632	1995.092	0.8898515	1280.8531
##	0.026315789	0.33421053	1882.801	0.8898515	1195.6280
##	0.026315789	0.35789474	1774.705	0.8898515	1112.7073
##	0.026315789	0.38157895	1671.705	0.8898515	1033.4398
##	0.026315789	0.40526316	1574.927	0.8898515	957.8318
##	0.026315789	0.42894737	1486.540	0.8898273	885.3985
##	0.026315789	0.45263158	1410.931	0.8899694	819.4690
##	0.026315789	0.47631579	1348.540	0.8920273	763.0910
##	0.026315789	0.50000000	1288.062	0.8982504	711.8656
##	0.031578947	0.05000000	3382.544	0.8898515	2261.1361
##	0.031578947	0.07368421	3254.642	0.8898515	2174.1518
##	0.031578947	0.09736842	3127.464	0.8898515	2087.2828
##	0.031578947	0.12105263	3001.101	0.8898515	2000.6499
##	0.031578947	0.14473684	2875.661	0.8898515	1914.1313
##	0.031578947	0.16842105	2751.269	0.8898515	1827.7764
##	0.031578947	0.19210526	2628.075	0.8898515	1741.6742
##	0.031578947	0.21578947	2506.257	0.8898515	1655.7298
##	0.031578947	0.23947368	2386.027	0.8898515	1569.9418
##	0.031578947	0.26315789	2267.644	0.8898515	1484.5495
##	0.031578947	0.28684211	2151.421	0.8898515	1399.6562
##	0.031578947	0.31052632	2037.743	0.8898515	1315.0903
##	0.031578947	0.33421053	1927.086	0.8898515	1231.6144
##	0.031578947	0.35789474	1820.036	0.8898515	1149.9979
##	0.031578947	0.38157895	1717.330	0.8898515	1071.1036
##	0.031578947	0.40526316	1620.366	0.8898357	996.3020
##	0.031578947	0.42894737	1531.587	0.8897892	924.4171
##	0.031578947	0.45263158	1452.795	0.8897198	856.7212
##	0.031578947	0.47631579	1387.751	0.8900456	796.9711
##	0.031578947	0.50000000	1329.506	0.8935569	744.9194
##	0.036842105	0.05000000	3389.486	0.8898515	2266.0878
##	0.036842105	0.07368421	3264.813	0.8898515	2181.4356
##	0.036842105	0.09736842	3140.816	0.8898515	2096.8980
##	0.036842105	0.12105263	3017.579	0.8898515	2012.5584
##	0.036842105	0.14473684	2895.197	0.8898515	1928.3697

##	0.036842105	0.16842105	2773.784	0.8898515	1844.2887
##	0.036842105	0.19210526	2653.470	0.8898515	1760.4592
##	0.036842105	0.21578947	2534.414	0.8898515	1676.7996
##	0.036842105	0.23947368	2416.802	0.8898515	1593.2747
##	0.036842105	0.26315789	2300.858	0.8898515	1510.0003
##	0.036842105	0.28684211	2186.854	0.8898515	1427.3045
##	0.036842105	0.31052632	2075.119	0.8898515	1344.8616
##	0.036842105	0.33421053	1966.055	0.8898515	1263.0587
##	0.036842105	0.35789474	1860.161	0.8898515	1182.8132
##	0.036842105	0.38157895	1758.167	0.8898475	1104.7221
##	0.036842105	0.40526316	1662.447	0.8898038	1030.4106
##	0.036842105	0.42894737	1574.058	0.8897151	959.6958
##	0.036842105	0.45263158	1493.483	0.8896209	891.6250
##	0.036842105	0.47631579	1423.327	0.8896517	829.0404
##	0.036842105	0.50000000	1365.501	0.8906481	774.8292
##	0.042105263	0.05000000	3395.302	0.8898515	2270.2531
##	0.042105263	0.07368421	3273.336	0.8898515	2187.5611
##	0.042105263	0.09736842	3152.008	0.8898515	2104.9837
##	0.042105263	0.12105263	3031.395	0.8898515	2022.5759
##	0.042105263	0.14473684	2911.582	0.8898515	1940.3471
##	0.042105263	0.16842105	2792.673	0.8898515	1858.1860
##	0.042105263	0.19210526	2674.788	0.8898515	1776.2633
##	0.042105263	0.21578947	2558.067	0.8898515	1694.5285
##	0.042105263	0.23947368	2442.678	0.8898515	1612.9227
##	0.042105263	0.26315789	2328.820	0.8898515	1531.4683
##	0.042105263	0.28684211	2216.733	0.8898515	1450.5773
##	0.042105263	0.31052632	2106.707	0.8898515	1369.9999
##	0.042105263	0.33421053	1999.095	0.8898515	1289.7836
##	0.042105263	0.35789474	1894.327	0.8898515	1210.8355
##	0.042105263	0.38157895	1793.922	0.8898229	1133.8521
##	0.042105263	0.40526316	1699.927	0.8897423	1059.9748
##	0.042105263	0.42894737	1611.838	0.8896301	989.9434
##	0.042105263	0.45263158	1529.874	0.8895238	922.1291
##	0.042105263	0.47631579	1456.665	0.8894707	858.5587
##	0.042105263	0.50000000	1395.807	0.8897208	801.8025
##	0.047368421	0.05000000	3399.751	0.8898515	2273.4624
##	0.047368421	0.07368421	3279.855	0.8898515	2192.2811
##	0.047368421	0.09736842	3160.570	0.8898515	2111.2126
##	0.047368421	0.12105263	3041.964	0.8898515	2030.2972

##	0.047368421	0.14473684	2924.121	0.8898515	1949.5792
##	0.047368421	0.16842105	2807.134	0.8898515	1868.9074
##	0.047368421	0.19210526	2691.115	0.8898515	1788.4527
##	0.047368421	0.21578947	2576.194	0.8898515	1708.1959
##	0.047368421	0.23947368	2462.524	0.8898515	1628.0705
##	0.047368421	0.26315789	2350.290	0.8898515	1548.0623
##	0.047368421	0.28684211	2239.710	0.8898515	1468.5258
##	0.047368421	0.31052632	2131.048	0.8898515	1389.3984
##	0.047368421	0.33421053	2024.623	0.8898515	1310.5136
##	0.047368421	0.35789474	1921.145	0.8898398	1232.6790
##	0.047368421	0.38157895	1823.140	0.8897740	1156.8752
##	0.047368421	0.40526316	1730.322	0.8896629	1083.5028
##	0.047368421	0.42894737	1642.250	0.8895415	1013.6064
##	0.047368421	0.45263158	1559.584	0.8894242	946.4384
##	0.047368421	0.47631579	1485.105	0.8893495	882.9539
##	0.047368421	0.50000000	1421.068	0.8893970	824.3211
##	0.052631579	0.05000000	3401.806	0.8898515	2274.8974
##	0.052631579	0.07368421	3282.869	0.8898515	2194.3918
##	0.052631579	0.09736842	3164.531	0.8898515	2113.9985
##	0.052631579	0.12105263	3046.859	0.8898515	2033.7548
##	0.052631579	0.14473684	2929.934	0.8898515	1953.7118
##	0.052631579	0.16842105	2813.846	0.8898515	1873.7079
##	0.052631579	0.19210526	2698.704	0.8898515	1793.9143
##	0.052631579	0.21578947	2584.632	0.8898515	1714.3237
##	0.052631579	0.23947368	2471.780	0.8898515	1634.8629
##	0.052631579	0.26315789	2360.324	0.8898515	1555.5084
##	0.052631579	0.28684211	2250.475	0.8898515	1476.5846
##	0.052631579	0.31052632	2142.484	0.8898515	1398.0966
##	0.052631579	0.33421053	2036.657	0.8898515	1319.8315
##	0.052631579	0.35789474	1934.836	0.8898126	1242.7771
##	0.052631579	0.38157895	1838.399	0.8897047	1167.6200
##	0.052631579	0.40526316	1746.197	0.8895794	1094.5418
##	0.052631579	0.42894737	1658.189	0.8894510	1024.6741
##	0.052631579	0.45263158	1575.263	0.8893234	957.8045
##	0.052631579	0.47631579	1500.330	0.8892266	894.3013
##	0.052631579	0.50000000	1434.879	0.8892291	834.9677
##	0.057894737	0.05000000	3402.492	0.8898515	2275.3626
##	0.057894737	0.07368421	3283.877	0.8898515	2195.0755
##	0.057894737	0.09736842	3165.856	0.8898515	2114.9008

##	0.057894737	0.12105263	3048.497	0.8898515	2034.8733
##	0.057894737	0.14473684	2931.879	0.8898515	1955.0480
##	0.057894737	0.16842105	2816.094	0.8898515	1875.2603
##	0.057894737	0.19210526	2701.246	0.8898515	1795.6791
##	0.057894737	0.21578947	2587.461	0.8898515	1716.3032
##	0.057894737	0.23947368	2474.885	0.8898515	1637.0573
##	0.057894737	0.26315789	2363.691	0.8898515	1557.9148
##	0.057894737	0.28684211	2254.088	0.8898515	1479.1874
##	0.057894737	0.31052632	2146.325	0.8898515	1400.9067
##	0.057894737	0.33421053	2041.024	0.8898388	1322.9226
##	0.057894737	0.35789474	1941.040	0.8897521	1246.3448
##	0.057894737	0.38157895	1845.228	0.8896274	1171.4567
##	0.057894737	0.40526316	1753.104	0.8894948	1098.4566
##	0.057894737	0.42894737	1665.111	0.8893605	1028.5873
##	0.057894737	0.45263158	1582.159	0.8892181	961.7905
##	0.057894737	0.47631579	1506.956	0.8891040	898.2001
##	0.057894737	0.50000000	1441.113	0.8890914	838.6644
##	0.063157895	0.05000000	3402.971	0.8898515	2275.6841
##	0.063157895	0.07368421	3284.579	0.8898515	2195.5483
##	0.063157895	0.09736842	3166.779	0.8898515	2115.5249
##	0.063157895	0.12105263	3049.639	0.8898515	2035.6464
##	0.063157895	0.14473684	2933.237	0.8898515	1955.9718
##	0.063157895	0.16842105	2817.663	0.8898515	1876.3331
##	0.063157895	0.19210526	2703.022	0.8898515	1796.8989
##	0.063157895	0.21578947	2589.437	0.8898515	1717.6720
##	0.063157895	0.23947368	2477.055	0.8898515	1638.5742
##	0.063157895	0.26315789	2366.047	0.8898515	1559.5773
##	0.063157895	0.28684211	2256.618	0.8898515	1480.9827
##	0.063157895	0.31052632	2149.015	0.8898515	1402.8433
##	0.063157895	0.33421053	2045.122	0.8898044	1325.2768
##	0.063157895	0.35789474	1946.077	0.8896851	1248.9417
##	0.063157895	0.38157895	1850.571	0.8895489	1174.2054
##	0.063157895	0.40526316	1758.503	0.8894099	1101.2686
##	0.063157895	0.42894737	1670.520	0.8892706	1031.3955
##	0.063157895	0.45263158	1587.719	0.8891130	964.6828
##	0.063157895	0.47631579	1512.182	0.8889830	900.9719
##	0.063157895	0.50000000	1446.104	0.8889188	841.3198
##	0.068421053	0.05000000	3403.332	0.8898515	2275.9264
##	0.068421053	0.07368421	3285.108	0.8898515	2195.9045

##	0.068421053	0.09736842	3167.476	0.8898515	2115.9950
##	0.068421053	0.12105263	3050.501	0.8898515	2036.2288
##	0.068421053	0.14473684	2934.262	0.8898515	1956.6676
##	0.068421053	0.16842105	2818.848	0.8898515	1877.1410
##	0.068421053	0.19210526	2704.363	0.8898515	1797.8175
##	0.068421053	0.21578947	2590.932	0.8898515	1718.7029
##	0.068421053	0.23947368	2478.697	0.8898515	1639.7166
##	0.068421053	0.26315789	2367.830	0.8898515	1560.8288
##	0.068421053	0.28684211	2258.534	0.8898515	1482.3330
##	0.068421053	0.31052632	2151.225	0.8898443	1404.3427
##	0.068421053	0.33421053	2048.980	0.8897478	1327.1816
##	0.068421053	0.35789474	1950.453	0.8896129	1251.0120
##	0.068421053	0.38157895	1855.020	0.8894698	1176.3594
##	0.068421053	0.40526316	1762.999	0.8893253	1103.4596
##	0.068421053	0.42894737	1675.036	0.8891811	1033.5911
##	0.068421053	0.45263158	1592.405	0.8890079	966.9435
##	0.068421053	0.47631579	1516.594	0.8888559	903.1494
##	0.068421053	0.50000000	1450.585	0.8886571	843.6642
##	0.073684211	0.05000000	3403.551	0.8898515	2276.0713
##	0.073684211	0.07368421	3285.432	0.8898515	2196.1174
##	0.073684211	0.09736842	3167.901	0.8898515	2116.2759
##	0.073684211	0.12105263	3051.028	0.8898515	2036.5769
##	0.073684211	0.14473684	2934.889	0.8898515	1957.0835
##	0.073684211	0.16842105	2819.574	0.8898515	1877.6241
##	0.073684211	0.19210526	2705.187	0.8898515	1798.3667
##	0.073684211	0.21578947	2591.850	0.8898515	1719.3191
##	0.073684211	0.23947368	2479.707	0.8898515	1640.3996
##	0.073684211	0.26315789	2368.928	0.8898515	1561.5770
##	0.073684211	0.28684211	2259.717	0.8898515	1483.1406
##	0.073684211	0.31052632	2153.506	0.8898124	1405.4413
##	0.073684211	0.33421053	2052.116	0.8896853	1328.4764
##	0.073684211	0.35789474	1953.857	0.8895389	1252.4018
##	0.073684211	0.38157895	1858.473	0.8893896	1177.8035
##	0.073684211	0.40526316	1766.482	0.8892404	1104.9112
##	0.073684211	0.42894737	1678.615	0.8890852	1035.0785
##	0.073684211	0.45263158	1596.103	0.8889019	968.4705
##	0.073684211	0.47631579	1520.123	0.8886872	904.6952
##	0.073684211	0.50000000	1454.340	0.8883585	845.5632
##	0.078947368	0.05000000	3403.646	0.8898515	2276.1295

##	0.078947368	0.07368421	3285.570	0.8898515	2196.2029
##	0.078947368	0.09736842	3168.085	0.8898515	2116.3888
##	0.078947368	0.12105263	3051.256	0.8898515	2036.7169
##	0.078947368	0.14473684	2935.161	0.8898515	1957.2505
##	0.078947368	0.16842105	2819.890	0.8898515	1877.8179
##	0.078947368	0.19210526	2705.546	0.8898515	1798.5875
##	0.078947368	0.21578947	2592.252	0.8898515	1719.5676
##	0.078947368	0.23947368	2480.151	0.8898515	1640.6756
##	0.078947368	0.26315789	2369.413	0.8898515	1561.8792
##	0.078947368	0.28684211	2260.241	0.8898515	1483.4657
##	0.078947368	0.31052632	2155.572	0.8897598	1406.1001
##	0.078947368	0.33421053	2054.623	0.8896170	1329.2343
##	0.078947368	0.35789474	1956.398	0.8894636	1253.1952
##	0.078947368	0.38157895	1861.039	0.8893089	1178.6158
##	0.078947368	0.40526316	1769.063	0.8891555	1105.7265
##	0.078947368	0.42894737	1681.407	0.8889833	1035.9345
##	0.078947368	0.45263158	1598.845	0.8887832	969.3375
##	0.078947368	0.47631579	1522.999	0.8884270	905.8746
##	0.078947368	0.50000000	1457.330	0.8880913	847.0299
##	0.084210526	0.05000000	3403.557	0.8898515	2276.0626
##	0.084210526	0.07368421	3285.441	0.8898515	2196.1046
##	0.084210526	0.09736842	3167.915	0.8898515	2116.2589
##	0.084210526	0.12105263	3051.048	0.8898515	2036.5562
##	0.084210526	0.14473684	2934.915	0.8898515	1957.0582
##	0.084210526	0.16842105	2819.607	0.8898515	1877.5941
##	0.084210526	0.19210526	2705.229	0.8898515	1798.3337
##	0.084210526	0.21578947	2591.901	0.8898515	1719.2835
##	0.084210526	0.23947368	2479.769	0.8898515	1640.3611
##	0.084210526	0.26315789	2369.003	0.8898515	1561.5334
##	0.084210526	0.28684211	2260.257	0.8898352	1483.1962
##	0.084210526	0.31052632	2156.640	0.8897036	1406.0090
##	0.084210526	0.33421053	2055.957	0.8895475	1329.1703
##	0.084210526	0.35789474	1957.720	0.8893879	1253.1207
##	0.084210526	0.38157895	1862.352	0.8892284	1178.5161
##	0.084210526	0.40526316	1770.370	0.8890715	1105.6209
##	0.084210526	0.42894737	1682.943	0.8888811	1035.8570
##	0.084210526	0.45263158	1600.344	0.8886231	969.3005
##	0.084210526	0.47631579	1524.785	0.8881432	906.2959
##	0.084210526	0.50000000	1459.171	0.8878326	847.6247

##	0.089473684	0.05000000	3403.333	0.8898515	2275.9014
##	0.089473684	0.07368421	3285.113	0.8898515	2195.8674
##	0.089473684	0.09736842	3167.485	0.8898515	2115.9462
##	0.089473684	0.12105263	3050.516	0.8898515	2036.1692
##	0.089473684	0.14473684	2934.285	0.8898515	1956.5952
##	0.089473684	0.16842105	2818.881	0.8898515	1877.0557
##	0.089473684	0.19210526	2704.409	0.8898515	1797.7217
##	0.089473684	0.21578947	2590.992	0.8898515	1718.5982
##	0.089473684	0.23947368	2478.774	0.8898515	1639.6017
##	0.089473684	0.26315789	2367.926	0.8898515	1560.7001
##	0.089473684	0.28684211	2260.393	0.8897889	1482.5590
##	0.089473684	0.31052632	2157.118	0.8896408	1405.3776
##	0.089473684	0.33421053	2056.380	0.8894775	1328.4835
##	0.089473684	0.35789474	1958.097	0.8893124	1252.3793
##	0.089473684	0.38157895	1862.695	0.8891489	1177.7190
##	0.089473684	0.40526316	1770.780	0.8889807	1104.8284
##	0.089473684	0.42894737	1683.416	0.8887686	1035.0752
##	0.089473684	0.45263158	1600.944	0.8883775	968.7670
##	0.089473684	0.47631579	1525.645	0.8878934	906.0939
##	0.089473684	0.50000000	1460.139	0.8875717	847.4810
##	0.094736842	0.05000000	3403.012	0.8898515	2275.6750
##	0.094736842	0.07368421	3284.643	0.8898515	2195.5343
##	0.094736842	0.09736842	3166.868	0.8898515	2115.5067
##	0.094736842	0.12105263	3049.754	0.8898515	2035.6248
##	0.094736842	0.14473684	2933.381	0.8898515	1955.9445
##	0.094736842	0.16842105	2817.838	0.8898515	1876.2993
##	0.094736842	0.19210526	2703.231	0.8898515	1796.8617
##	0.094736842	0.21578947	2589.683	0.8898515	1717.6346
##	0.094736842	0.23947368	2477.340	0.8898515	1638.5336
##	0.094736842	0.26315789	2366.373	0.8898515	1559.5277
##	0.094736842	0.28684211	2259.995	0.8897391	1481.5586
##	0.094736842	0.31052632	2156.958	0.8895762	1404.3314
##	0.094736842	0.33421053	2056.136	0.8894065	1327.3558
##	0.094736842	0.35789474	1957.784	0.8892366	1251.1714
##	0.094736842	0.38157895	1862.327	0.8890695	1176.4404
##	0.094736842	0.40526316	1770.579	0.8888837	1103.5630
##	0.094736842	0.42894737	1683.160	0.8886271	1033.8142
##	0.094736842	0.45263158	1601.003	0.8881059	967.9491
##	0.094736842	0.47631579	1525.817	0.8876415	905.3897

```
0.094736842 0.50000000 1460.623 0.8872825
                                                 846.8614
##
    0.100000000 0.05000000
                           3402.626 0.8898515 2275.4080
##
    0.100000000 0.07368421 3284.077 0.8898515 2195.1414
##
    0.100000000 0.09736842 3166.124 0.8898515 2114.9882
##
    0.100000000
                0.12105263 3048.836 0.8898515
                                                2034.9823
##
    0.100000000 0.14473684 2932.291 0.8898515 1955.1769
##
    0.100000000 0.16842105 2816.580 0.8898515 1875.4075
##
    0.100000000 0.19210526 2701.809 0.8898515 1795.8477
##
    0.100000000 0.21578947 2588.102 0.8898515 1716.4979
##
    0.100000000 0.23947368 2475.606 0.8898515 1637.2735
##
    0.100000000
                 0.26315789 2364.989 0.8898318 1558.2464
##
    0.100000000 0.28684211 2259.406 0.8896825 1480.3550
##
    0.100000000 0.31052632 2156.352 0.8895099 1403.0372
##
    0.100000000 0.33421053 2055.428 0.8893344 1325.9529
##
    0.100000000 0.35789474 1956.989 0.8891603 1249.6785
##
    0.100000000 0.38157895 1861.465 0.8889901 1174.8678
##
    0.100000000 0.40526316 1769.837 0.8887767
                                                1101.9933
##
    0.100000000
                0.42894737 1682.388 0.8883970
                                                1032.3771
##
    0.100000000 0.45263158 1600.586 0.8878648
                                                 966.9248
##
    0.100000000 0.47631579 1525.530 0.8873860
                                                 904.3262
##
    0.100000000 0.50000000 1460.880 0.8869610
                                                 845.9827
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were fraction = 0.5 and lambda = 0.
```

```
# Test Error for Elastic net model
enet.pred = predict(enet.model, data=test)
MSE.enet.test <- mean((enet.pred - test$Apps)^2)
#RMSE.enet.test = sqrt(MSE.enet.test)
print(paste("The Elastic Net Model test MSE is ", round(MSE.enet.test,0)))</pre>
```

```
## [1] "The Elastic Net Model test MSE is 28056722"
```

Problem 6 (e)

e. Comment on the results obtained. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these three approaches? [5 points]

Answer 6 (e)

Comparison of Model Statistics

	OLS	Ridge	Elastic Net
MSE	1567324	1567246	28056722

We see that the test errors for OLS and Ridge are pretty close, however for ENET, the test error is a bit high. If we look at the R^2 , they are almost the same (> 0.9). So, based on the **MSE** data, we can say that the Ridge regression model has greater prediction accuracy as it has the lowest MSE.