TOPOLOGY - HOMEWORK 02

Due: 2020 March 19th, 10:00AM

Question 1. Prove:

- (i) $card(\mathbf{Q}) = \aleph_0$, that is, \mathbf{Q} is countably infinite;
- (ii) the set of real numbers \mathbf{R} is uncountable.

Question 2. A real number $x \in \mathbf{R}$ is said to be algebraic if it satisfies some polynomial equation of positive degree

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

with $a_i \in \mathbf{Q}$ for all $0 \le i \le n-1$; otherwise, it is called transcendental. Assuming that each polynomial equation has only finitely many roots, show that the set $\mathcal{A} \subset \mathbf{R}$ of algebraic numbers is countable. Deduce that the set $\mathbf{R} - \mathcal{A}$ of transcendental numbers is uncountable.

Question 3. Let $X = \{0,1\}$. Let $X^{\mathbf{N}}$ be the set of all functions $f: \mathbf{N} \longrightarrow X$. We define the support of $f \in X^{\mathbf{N}}$ to be

$$supp(f) = f^{-1}(\{1\}).$$

Consider set

$$X_0^{\mathbf{N}} = \left\{ f \in X^{\mathbf{N}} : \operatorname{supp}(f) \text{ is a finite set} \right\}.$$

Is $X_0^{\mathbf{N}}$ countable or uncountable? Justify your answer.

Question 4. A pseudo-metric space is a pair (S, d), where S is a set and $d: S \times S \longrightarrow \mathbf{R}$ a function satisfying

- (1) $d(x,y) \ge 0$ for all $x,y \in S$, and d(x,x) = 0;
- (2) d(x,y) = d(y,x) for all $x, y \in S$;
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in S$.

Define a relation \sim on S by $x \sim y$ if and only if d(x,y) = 0. Prove that

- (i) \sim is an equivalence relation on S (and thus we denote by S^* the set of equivalence classes of S);
- (ii) for every $[x], [y] \in S^*$, the function

$$d^*([x],[y]) = d(x,y)$$

gives a well-defined metric on S^* .

Question 5. Let (S, d) be a metric space. Can one always define a metric d^{\natural} on the power set $\mathcal{P}(S)$ of S such that $d^{\natural}(\{x\}, \{y\}) = d(x, y)$ for every $x, y \in S$?