MATSim User Meeting in Japan Nov.21, 2024

Evaluating Transport and Land Use Impacts of Automated Vehicles in a Japanese Regional Area using Microsimulation

LUO Lichen

Urban Transportation Research Unit the University of Tokyo

Background: Automated vehicle (AV) expected to be operated in near future.

Definition/hypothesis of AV: "...entire dynamic driving task <u>without any</u> expectation that a user will respond to a request (SAE, 2021)."

Main feature of AV: Human will cede controllability of vehicles to the robotics.

Implications (assumed) of AV, for example:

Good:

- 1. No driving burden;
- 2. Availability for those unable to drive;
- 3. ..

Not so good:

- 1. Induce more travel;
- 2. Trigger urban sprawl;
- 3. ...

Image of Automated Vehicles made by H. Miller in 1957 (Anderson et al., 2014)

Research rationale: how could residential location be impacted?

Feedback cycle between land use and transport systems (adapted from Bierlaire et al., 2015)

Research objective

- To quantify the <u>impacts of privately owned automated vehicles (PAVs) on residential location</u> in Gunma Prefecture Japan.
- To achieve this objective, a <u>Land Use Travel Integrated (LUTI) model system</u> considering various scenarios of PAV adoption and different policy interventions was adopted.

Research scope

- Only fully automated private vehicles (PAV) are considered
- Not predicted time for AV introduction/commercialization.
- Not considered Connected Vehicle Technology.
- Not considered ridesharing service is not assumed allowed.

A utility-based measure of accessibility (Geurs & van Wee, 2004) calculated expected utility from the top level of DAS model (Dong et al., 2006).

$$A_n = \frac{1}{\mu} \ln \left(\sum_{i \in C_n} e^{\mu V_{in}} \right)$$

Where,

n: individual; C_n : choice set of travel schedule; μ : scale parameter; V_{in} : systematic component of utility of alternative i for n.

Ben-Akiva, M. E., & Bowman, J. L. (1998b). Integration of an activity-based model system and a residential location model. Urban Studies, 35(7), 1131-1153.

Bowman, J. L., & Ben-Akiva, M. E. (2001). Activity-based disaggregate travel demand model system with activity schedules. Transportation Research A: Policy and Practice, 35, 1–28.

Bradley, M. A., Bowman, J. L., & Griesenbeck, B. (2010). SACSIM: An applied activity-based model system with fine-level spatial and temporal resolution. Journal of Choice Modelling, 3(1), 5-31.

Dong, X., Ben-Akiva, M. E., Bowman, J. L., & Walker, J. L. (2006). Moving from trip-based to activity-based measures of accessibility. Transportation Research Part A: Policy and Practice, 40(2), 163-180.

Gaurs, K. T., & Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: review and research directions. Journal of Transport Geography, 12(2), 127-140.

Horni, A., Nagel, K., & Axhausen, K. W. (2016). The Multi-Agent Transport Simulation MATSim. Ubiquity Press, London.

Study Region: Gunma Prefecture & Ashikaga City from Tochigi Prefecture (Gunma PT Area).

Spatial Distribution of Number of Employees by Mesh Cells in Study Region (Map source from Openstreetmap)

Research Data:

Initial travel demand

2015 Gunma Person Trip Survey (PT data = 平成27年 度群馬県パーソントリップ調査.)

Effective #N: 16,425 households with 33,300

persons; (1.6% of the total population)

Land use data (Spatial resolution = 1km mesh)

Mesh level analysis of (地域メッシュ統計):

- Japanese National Census 2015 (国勢調査)
- Economy Census 2016 (経済センサス 活動調査)

Network data: bounding box covering Gunma

- Network data extracted from OpenStreetMap.
- No network pruning applied.

			Descriptive summary				
Level	Variables	Data Type	Mean	Median	Min.	Max.	Standard Error
	Has < 20 household	Binary		True:	16.0%; Fals	se: 84.0%	
	member whose age is > 65	Binary		True:	33.5%; Fals	se: 66.5%	
Household	#Household member	Continuous	2.41	2	1	9	1.20
(Total #households =	Bike ownership	Continuous	0.55	0	0	10	0.86
16,425)	Car ownership	Continuous	1.80	2	0	12	0.88
	Home location	Coordinates			-		
	Work or School Location	Coordinates			-		
	Holds license or not	Binary	True: 84.4%; False: 15.6%				
	Car availability by individual	Categorical	Always available: 78.5%; Shared with other house members: 4.8%; Not available: 16.7%				
	Age	Continuous	49.00	50	7	100	19.95
ndividual	Gender	Binary		Female	e: 51.3%; M	ale: 48.7%	
Total #individuals = 33,300)	Job type	Categorical	Tertiary sector: 38.9%; Secondary sector: 17.4%; Primary sector: 1.8%; Student: 10.1%; Other: 0.6%; Homemaker: 12.8%; Unemployed (excluding students): 18.4%				lomemaker:
	Type of employment (among employees)	Categorical	time wo	ne worker: 59 rker: 21.5%; E rker: 7.3%; Fa	oard memb	pers: 3.9%; S	elf-employed
	#Trips in the day	Continuous	1.02	1	0	13	0.84

Notes: Temporary worker refers to paid employee who are hired through dispatched labor; Family worker refers to employee who are hired in a family business either paid or unpaid.

Summary to the Demographic Attributes in the Effective PT Data Sample.

Land use data: UFAA and DAA

Two concepts from Location Optimization Plan (立地適正化計画) are used to define "center area".

- Urban Function Attraction Area (UFAA, 都市機能誘導区域).
- Dwelling Attraction Area (DAA, 居住誘導区域).

Illustration of Location Optimization Plan and Purposes of UFAA and DAA (Murayama et al., 2015)

Distribution of DAA & UFAA in Gunma PT region

MATSim as Travel Supply Model: settings

MATSim (Horni et al., 2016) employed as the travel supply model.

MATSim settings:

MATSim Iterative Loop (Horni et al., 2016).

- #Iterations = 30.
- Share of replanning strategy:
 - MNL Selector (SelectExpBeta) 40%.
 - Reroute Mutator 60% (switched off in the final 10% of simulations).
- Road capacity was scaled down:
 - o By 0.0166 to match the sample/population ratio (= 1.66%).
 - By 0.66 to reflect the delay effects from such as intersections.

MATSim as Travel Supply Model: validation (travel time)

Comparison between MATSim and Google Distance Matrix API.

5,000 pairs of randomly sampled 1km mesh centroid pairs are set as the origin and destination.

Time Points	Slope	R Square
5:00	1.0319	0.990
8:00	0.9622	0.993
13:00	1.0114	0.992
17:30	0.968	0.993
21:00	1.0297	0.991

12500

10000

7500

5000

12500

10000

7500

5000

MATSim as Travel Supply Model: validation (travel distance)

Comparison between MATSim and Google Distance Matrix API.

• 5,000 pairs of randomly sampled 1km mesh centroid pairs are set as the origin and destination.

Summary of MATSim Model Validation: Travel Distance.

DAS as Travel Demand Model: introduction

An activity-based travel demand model based on Daily Activity Schedule model (DAS model. Bowman & Ben-Akiva, 2001).

- Solid arrows: conditioned by the models pre-defined over them.
- <u>Dashed arrows:</u> dependent to the expected maximum utility from lower models.

Adopted DAS-type Travel Demand Model Structure

DAS as Travel Demand Model: estimation results (example of mode-destination model)

The DAS model was calibrated on 80% of Gunma PT survey data with Maximum Likelihood.

Variable	Variable#	Car I	Oriver	Bicycle		Walk		Car Passenger	
Variable	variable#	Coef.	T value	Coef.	T value	Coef.	T value	Coef.	T value
Alternative-specific constant	#4-1				0.94	2.35	19.62	-3.34	-19.28
Age∈ [6, 35]	#4-2			0.60	6.32		-0.44		-0.34
Male	#4-3	Base all	ternative	0.28	3.28	0.19	1.92	-0.94	-5.50
Is not primary tour	#4-4				-0.37	1.23	7.03	0.90	2.87
Has stop in the day	#4-5			-0.73	-6.79	-1.27	-8.32		0.02
Travel time (hour)	#4-6	-5.86	-98.00	-6.70	-35.78	-14.44	-31.41	-8.57	-15.81
#Employees of tertiary sector/size variable	#4-7	0.026	45.72	0.026	45.72	0.026	45.72	0.026	45.72
#Employees of primary and secondary sector/size variable	#4-8	0.027	62.55	0.027	62.55	0.027	62.55	0.027	62.55
Is the same city as origin's	#4-9	0.86	35.66	0.86	35.66	0.86	35.66	0.86	35.66
Size variable: #Offices	-	1.00	-	1.00	-	1.00	-	1.00	-
#Observations	13,206								
Initial likelihood	-82,169.8	8							
Final likelihood	-57,839.2	0							
Adjusted rho squared	0.296								

Destination sampling settings:

Destination object:	1km mesh (3次メッシュ);
#Alternative sampled:	100 <u>(out of 2784)</u>
	Independent importance sampling with replacement;
Sampling method:	Sampling weight = $\exp(\frac{-2d}{mean(d)})$, d for distance.

Estimation Results of Mode-destination Model for Work-purpose Tours.

DAS as Travel Demand Model: validation results (examples)

The DAS model was validated on 20% of Gunma PT survey data not used in the estimation.

Validation Results of Primary Travel Mode of Tours

Validation Results of Home-Primary Destination Travel Distance of Tours

Scenario Settings

- Target year: 2040 (Litman, 2021).
- Population decreased to 82.45%.
 (NIPSSR, 2023 国立社会保障・人口問題研究所).

Scenario Population change	Population	PAV	PAV or HV	Value of time for A HVs (drivers) (Stee Kolarova et al., 2019	Road Capacity for	
	ownership	availability	Commuting- purpose tours and subtours	Other-purpose tours and subtours	AVs of HVs	
			Requiring			
Base			driving license &			
Scenario		100%	depending on	-	-	-
			vehicle			
			ownership			
	82.45% to					
Scenario 1	the current			75%	85%	1.0
Scenario 2		The same as of HV	Depending on vehicle	50%	70%	1.0
Scenario 3		ownership patterns	ownership	75%	85%	1.2
Scenario 4				50%	70%	1.2

Summary of Scenario Settings

Simulation Results: simulation flow

Simulation Running Flow for Generating 2040 Base data

Simulation Results: on transport

Findings:

- PAV dominate all Scenarios with taking around 86-89% modal share of trips.
- Travel distances significant increase, as a result of:
 - 1) PAV trips of existing car drivers.
 - 2) new PAV trips as a result of modal shift and induced demand from who cannot drive.
 - 3) PAV zero-occupancy trips.

		Base Scenario	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Measures			Value	Value	Value	Value
		Value	(% change against base)	(% change against base)	(% change against base)	(% change against base
#Persons who conducted at		22,333	22,289	22,360	22,317	22,426
least on	e tour	22,333	(+0.2%)	(+0.1%)	(-0.1%)	(+0.4%)
#Toı	ıre	26,566	26,560	26,850	26,685	26,805
#100	11.5	20,300	(-0.02%)	(+1.1%)	(+0.4%)	(+0.9%)
#Tri	ne	64,642	67,792	68,408	68,152	68,266
πιιι	μs	04,042	(+4.9%)	(+5.8%)	(+5.4%)	(+5.6%)
	PAV or Car (driver)	71.7%	86.4%	89.2%	87.0%	89.3%
Mode Share	Bicycle	7.5%	4.1%	3.2%	3.8%	3.1%
	Walk	9.9%	4.9%	3.9%	4.7%	3.9%
	Car (passenger)	10.9%	4.6%	3.6%	4.4%	3.6%
	by PAV or	3,401	4,679	5,541	4,815	5,676
	Car (driver)	3,401	(+37.5%)	(+62.9%)	(+41.6%)	(+66.9%)
Total distance	by Bicycle	136	74	61	74	58
Total distance traveled	by bicycle	130	(-45.6%)	(-55.1%)	(-45.6%)	(-57.3%)
(100km)	by Walk	79	43	33	40	34
(1001111)	by walk	7.9	(-45.6%)	(-58.2%)	(-49.4%)	(-57.0%)
	by Car	372	161	124	159	129
	(passenger)	372	(-56.7%)	(-66.7%)	(-57.3%)	(-65.3%)
	by PAV or	7,339	7,987	9,076	8,121	9,307
	Car (driver)	7,559	(+8.8%)	(+23.7%)	(+10.7%)	(+26.8%)
	by Bicycle	2,792	2,681	2,756	2,813	2,746
Average trip	by bloydic	2,102	(-4.0%)	(-1.3%)	(+0.8%)	(-1.6%)
distance (m)	by Walk	1,240	1,304	1,230	1,250	1,235
		1,210	(+5.2%)	(-0.8%)	(+0.8%)	(-0.4%)
	by Car	5,287	5,134	5,028	5,246	5,288
	(passenger)	0,20,	(+2.9%)	(-4.9%)	(-0.8%)	(+0.02%)

Simulation Results Summary of Transport Evaluators

Simulation Results: on transport

Findings:

- Average speed in the central area reduced in all AV scenarios.
- Benefits from road capacity (Scenarios 3&4
 v.s 1&2) improved the average speeds by
 around 3 to 4%.
- PAV zero-occupancy trips account mostly for the increase of #trips
- 10% of the PAV trips in each AV scenario performed by those who cannot drive.

	Base Scenario	Scenario 1	Scenario 2	Scenario 3	Scenario 4	
Measures	Value	Value (% change against base)	Value (% change against base)	Value (% change against base)	Value (% change against base	
Average speed among DAA mesh cells in AM Peak time (km/h)	33.57	31.63 (-5.8%)	31.06 (-7.5%)	33.07 (-1.5%)	32.36 (-3.6%)	
%PAV Trips by persons unable to drive of total trips		10.4%	10.8%	10.7%	10.5%	
%Tour that PAV or Car (driver) availability reassigned through Intra- household sharing	1.1%	10.8%	10.4%	10.7%	10.3%	
%PAV zero-occupancy trips of total trips		4.8%	4.8%	4.9%	4.8%	
%Total distance traveled attributed to PAV zero-occupancy trips	-	5.4%	5.3%	5.6%	5.6%	

(Continued) Simulation Results Summary of Transport Evaluators

Simulation Results of Activity-based Accessibility (ABA)

Normalized	Descriptive summary									
ABA values against Base Scenario (min)	Mean (95% confidence level)	Median	Min.	Max.	Standard Deviation					
Scenario 1	2.48 (± 0.025)	2.26	-5.54	35.65	2.15					
Scenario 2	3.32 (± 0.033)	3.02	-2.46	40.24	2.79					
Scenario 3	2.58 (± 0.026)	2.36	-4.24	36.05	2.18					
Scenario 4	3.41 (± 0.034)	3.09	-2.91	40.81	2.85					

Descriptive Summary to ABA (normalized to minutes)

Findings:

- ABA is on average and by median increased by a 2-3 minutes in all Scenarios
- Level of ABA are highly dependent on each individual's demographic characteristics and residence location (see next page).

Distribution of Activity-based Accessibility under Automated Vehicle Scenarios

Simulation Results of Automated Vehicle Scenarios: Activity-based Accessibility analysis

By residence location:

Change Distribution of Activity-based Accessibility (not normalized) under Scenario 4 for a Representative Person

By employment status:

Change Distribution of Activity-based Accessibility under Scenario 4 by Employment Status

Specification of Residential Location Model

Residential location model specification (Ben-Akiva and Bowman, 1998) as an integrated model connected to an activity-based model system.

- specified as an MNL model in household level.
- the observed component of the utility of residential location I for household i is of two parts:

$$A^{w}_{i|l} = \frac{\sum_{w \in W_{i}} A_{w|l}}{W_{i}}$$

$$V_{il} = \beta X_{l} + \alpha A_{i|l}$$

$$A^{s}_{i|l} = \frac{\sum_{s \in S_{i}} A_{s|l}}{S_{i}}$$

$$\sum_{s \in S_{i}} A_{s|s}$$

Where,

- X_l , the attributes of l,
- A_{i|l}, Activity-based Accessibility value.
 - o three types of A_{ill} are included.

Where,

- $A^{w}_{i|l}$, $A^{s}_{i|l}$, $A^{u}_{i|l}$, the average Activity-based Accessibility for workers, students, and unemployed people in the household i, respectively.
- W_i , S_i , U_i , the number of workers, students, and unemployed people in the household i, respectively.

Land Price Hedonic Model:

Estimation results:

Dependent variable: natural log of land price (JPY per m squared)									
Data Source	Variable	Coefficient	T Value						
-	Intercept	7.83	27.52						
Housing and Land Census 2018 (Processed)	#Housing stock		-0.64						
	Tour-based Logsum of work-purpose	0.15	5.02						
DAS model	Tour-based Logsum of education-purpose	0.043	6.91						
	Tour-based Logsum of other-purpose	0.13	4.91						
	Is Takasaki City	0.30	6.37						
Boundary Data in	Is Maebashi City	0.21	4.37						
Economic Census	Is Ota City		-0.34						
Data 2016	Is Isesaki City		-0.89						
	Is Kiryu City	-0.11	-1.81						
	Ratio of agricultural use area	-0.48	-3.80						
Land Use Mesh Data	Ratio of forest area		-0.46						
Data	Ratio of freshwater use area		-0.15						
Land Use Subdivided Mesh Data of Urban Area	Ratio of industrial use area	-0.58	-2.27						
#Count	557								
Adjusted R squared	0.728								
F statistic	115.4								

Prediction Results of Land Price Model:

Predicted Land Price by Mesh Cell in Gunma PT Area

Estimation Results of Residential Location Model

- Same estimation data sample used in DAS model
- 13,140 households divided into five market segments
 - by the age of the household head and number of household members.

Findings:

- Expected coefficient signs of household average ABA and land price.
 - indicating the trade-off between the transportation and housing cost is captured.

Estimation Results of Residential Location Model

#Observations	2,630	2,554	2,578	2,192	3,186
Initial likelihood	-9,477.81	-9,128.47	-9,407.29	-7,953.38	-11,534.37
Final likelihood	-6,406.43	-6,142.27	-7,586.59	-6,335.93	-9,561.44
Adjusted rho squared	0.322	0.325	0.192	0.201	0.170

Market segments	Segm	ent #1	Segm	ent #2	Segm	ent #3	Segm	ent #4	Segm	ent #5
Age of the head of household	(6,	50]	(6,	50]	(50,	100]	(50	,65)	[65,	100]
#Household members	3 or	more	1 0	or 2	3 or	more	1 0	ir 2	1 0	or 2
Variable	Coef.	T Val.								
Household average ABA for workers	0.63	57.86	0.62	57.91	0.40	45.24	0.43	45.93	0.33	34.65
Household average ABA for students	0.060	8.35	0.12	6.36	0.026	2.47		0.60		0.98
Household average ABA for unemployed people	0.17	10.45	0.28	11.43	0.24	19.18	0.37	23.56	0.61	49.91
Land price (10,000 JPY per km²)	-1.24	-21.81	-0.74	-13.89	-0.84	-17.05	-0.82	-15.57	-0.73	-16.7.
Ratio of buildings use area	-1.17	-10.89	-1.21	-11.84	-0.56	-5.67	-0.75	-7.34	-0.58	-6.90
Ratio of agricultural use area	-2.09	-10.26	-1.77	-8.45	-0.92	-4.99	-1,25	-6.12	-0.85	-5.04
Ratio of freshwater area		-0.06		1,15	0.31	1.91		0.98	0.41	2.66
Ratio of forest use area	0.74	3.34	0.70	3.13	1.18	6.43	1.16	5.78	1.41	8.76
Is Takasaki city	0.73	5.86		0.038	0.42	3.91	0.30	2.51	0.64	6.57
Is Maebashi city	0.24	2.28		-0.42	0.26	2.93	0.29	2.98	0.73	9.14
Is Ota city	-0.73	-7.97	-0.59	-6.67	-0.48	-5.90	-0.40	-4.58	0.13	1.82
Is Isesaki city	-0.69	-7.39	-0.61	-6.60	-0.54	-6.26	-0.52	-5.61		-0.94
Is Kiryu city	-0.37	-3.15	-0.32	-2.67	-0.24	-2.54	-0.35	-3.21		-1.56
WEmployees of Primary and Secondary Sector	-0.10	-13,31	-0.054	-9.30	-0.065	-8.86	-0.067	-8.70	-0.023	-4.55
WEmployees of Tertiary Sector	-0.033	-9.08	-0.038	-11.87	-0.047	-11.42	-0.022	-6.97	-0.048	-47.8
Size variable: Housing stock	1.00	-	1.00	-	1.00	-	1.00	-	1.00	-

Validation of Residential Location Model

Network distance to the closest Dwelling Attraction Area (m)	Mean	Median	Standard Deviation
Observed	3,172	1,237	7,308
Simulated	2,265	1,222	5,425
Observed (data farther than 10,000m removed)	1,658	1,158	2,149
Simulated (data farther than 10,000m removed)	1,561	1,195	1,928

Network distance to the closest Urban Function Attraction Area (m)	Mean	Median	Standard Deviation
Observed	4,297	2,298	7,245
Simulated	3,458	2,170	5,567
Observed (data farther than 10,000m removed)	2,712	2,067	2,299
Simulated (data farther than 10,000m removed)	2,626	2,059	2,220

Validation Results of Network Distance to the Closest DAA (m).

Validation Results of Network Distance to the Closest UFAA (m).

Validation Results of Distribution of Distance to the Nearest DAA

Validation Results of Distribution of Distance to the Nearest UFAA

Findings: good reliability in predicting the median value of the distance to both the nearest UFAA and DAA.

Simulation Results on Residence Distribution

Residence Count Difference by Mesh Cell of **Scenario 1** against Base Scenario.

Residence Count Difference by Mesh Cell of **Scenario 2** against Base Scenario.

Findings: Moving trends from the center areas found in AV Scenarios against Base Scenario,

Simulation Results on Residence Distribution

Residence Count Difference by Mesh Cell of **Scenario 3** against Base Scenario.

Residence Count Difference by Mesh Cell of **Scenario 4** against Base Scenario.

Findings: Moving trends from the center areas found in AV Scenarios against Base Scenario,

Simulation Results: Land Use Evaluators

Findings:

- The median value to the residents' nearest DAA and UFAA escalate to up to 10.1% and 6.7%, respectively, under Scenario 4.
- As for the ratio of residents in DAA, all AV Scenarios decreases against Base Scenario, dropped at most to 34.2% from 31.0%.

Evaluation indicators	2015 PT Data	Base Scenario	Scenario 1	Scenario 2	Scenario 3	Scenario 4
	Value	Value (% change against PT)	Value (% change against Base)	Value (% change against Base)	Value (% change against Base)	Value (% change against Base)
Median value of network distance to the closest DAA (m)	1,243	1,396 (+12.3%)	1,470 (+5.3%)	1,539 (+10.2%)	1,485 (+6.4%)	1,537 (+10.1%)
Median value of network distance to the closest UFAA (m)	2,328	2,699 (+15.9%)	2,808 (+4.0%)	2,897 (+7.3%)	2,824 (+4.6%)	2,881 (+6.7%)
Ratio of household residing in DAA	40.2%	34.2%	32.0%	30.7%	32.0%	31.0%

Simulation Results Summary of Residential Location Model

Limitations and Future Works

- Focused on certain aspects of AVs only from the data with no AV operated,
 - o One of the very basic assumptions that travel impedance of AVs would decrease is being questioned by some scholars.
 - Stated Preference survey might be advised to conduct to better reflect the travel impedance reduction of AVs.
- Limitations in the current DAS model specification.
 - Individual specific time budget has not explicitly incorporated.
 - Logsum variable fail to reflect changes from time of day and other trip-based level choices.
- To incorporate more choice dimensions in the long term, including household transition choice, job location choice, development choice of housing or other facilities, etc. to obtain more reliable forecasts.
- To use tour-based travel demand data directly to avoid source of error during the tour and daily pattern identification processing.

Thank you

LUO Lichen

Urban Transportation Research Unit the University of Tokyo

Transportation Research Part A 190 (2024) 104281

Contents lists available at ScienceDirect

Transportation Research Part A

journal homepage: www.elsevier.com/locate/tra

Evaluating the impact of automated vehicles on residential location distribution using activity-based accessibility: A case study of Japanese regional areas

Lichen Luo a,*, Giancarlos Parady a, Kiyoshi Takami a

Luo, L., Parady, G., & Takami, K. (2024). Evaluating the impact of automated vehicles on residential location distribution using activity-based accessibility: A case study of Japanese regional areas. *Transportation Research Part A: Policy and Practice*, 190, 104281.

a Department of Urban Engineering, The University of Tokyo, 113-8656, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan