

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-247859

(43)公開日 平成7年(1995)9月26日

(51)Int.Cl.⁶
F 02 B 75/02

識別記号 庁内整理番号
A

F I

技術表示箇所

審査請求 未請求 請求項の数4 書面 (全49頁)

(21)出願番号 特願平6-93972

(22)出願日 平成6年(1994)3月6日

(71)出願人 591047110

中田 治

岡山県倉敷市水島東弥生町2-5

(72)発明者 中田 治

岡山県倉敷市水島東弥生町2番5号

(54)【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー

(57)【要約】 (修正有)

【目的】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る。

【構成】 ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（出願日－平成5年12月31日提出の特許願、整理番号－K0012）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（出願日－平成6年2月8日提出の特許願、整理番号－K0013）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願第417964号）に、ピストンバルブ、ロータリーバルブ（平成3年特許願第356145号）を使用して、ミラーサイクルへの対応の方法（平成5年特許願第278793号と、平成5年特許願第354993号と、出願日－平成5年12月31日提出の特許願、整理番号－K0012と、出願日－平成6年2月8日提出の特許願、整理番号－K0013。）を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、燃焼効率は良くなるが、同じ排気量同じエンジンの回転数で、より、パワ

ー、トルクが上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る為に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る為に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る為に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁（ピストンバルブ）、気口（ロータリーバルブ）をつなげて1つにする（平成6年特許願第278793号と、平成5年特許願第354993号。）事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る為に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする（出願日－平成5年12月31日提出の特許願、整理

番号-K0012と、出願日-平成6年2月8日提出の特許願、整理番号-K0013。)事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる事に因り、同じ排気量、同じエンジンの回転数の時、より多くの、パワー、トルクが得られる。

【図面の簡単な説明】

【図1】過給機を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給機を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給機を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給機を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 水素器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給機
- 3 何も無い空間
- 4 排気管
- 5 吸気弁
- 6 圧縮行程に入っても下死点から、30°から90°開いている弁
- 7 排気弁
- 8 ブラグ
- 9 吸気用のロータリーバルブ
- 10 断面(内形)を、H型、にし、圧縮行程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ
- 11 ロータリーバルブの吸気口
- 12 圧縮行程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口
- 13 ロータリーバルブの排気口
- 14 燃焼室の吸気口
- 15 燃焼室の、圧縮行程に入っても下死点から、30°から90°開いている気口
- 16 燃焼室の排気口
- 17 ロータリーバルブの外枠
- 18 混合気専用の吸気弁
- 19 空気専用の吸気弁
- 20 1回目と2回目の排気を兼ねた排気弁
- 21 空気専用の吸気管
- 22 断面(内形)を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ
- 23 断面(内形)を、H型、にし、圧縮行程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ
- 24 ロータリーバルブの混合気専用の吸気口
- 25 ロータリーバルブの空気専用の吸気口
- 26 ロータリーバルブの2回目の排気口
- 27 燃焼室の混合気専用の吸気口
- 28 燃焼室の空気専用の吸気口
- 29 燃焼室の1回目と2回目の排気を兼ねた排気口

【図1】

【図2】

【図3】

【図4】

【手続補正書】

【提出日】平成6年3月14日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、

スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（出願日－平成5年12月31日提出の特許願、整理番号－K0012）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（出願日－平成6年2月8日提出の特許願、整理番号－K0013）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願第417964号）に、ピストンバルブ、ロータリーバルブ（平成3年特許願第356145号）を使用して、

ミラーサイクルへの対応の方法（平成5年特許願第278793号と、平成5年特許願第354993号と、出願日－平成5年12月31日提出の特許願、整理番号－K0012と、出願日－平成6年2月8日提出の特許願、整理番号－K0013。）を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、燃焼効率は良くなるが、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スパー

ー・チャージャーなどの、過給機を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁（ピストンバルブ）、気口（ロータリーバルブ）をつなげて1つにする（平成5年特許願第278793号と、平成5年特許願第354993号。）事により、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする（出願日－平成5年12月31日提出の特許願、整理番号－K0012と、出願日－平成6年2月8日提出の特許願、整理番号－K0013。）事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる事に因り、同じ排気量、同じエンジンの回転数の時、より多くの、パワー、トルクが得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少くなり、燃焼効率が良くなる。

【図面の簡単な説明】

【図1】過給機を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給機を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給機を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給機を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 気化器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給機
- 3 何も無い空間
- 4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 プラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* *

【図4】

【手続補正書】

【提出日】平成6年4月9日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】4サイクルガソリンエンジンにロータリーバルブ（平成3年特許第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】6サイクルガソリンエンジン（平成2年特許第417964号）の、ミラーサイクルへの対応の方法（平成5年特許第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】6サイクルガソリンエンジン（平成2年特許第417964号）にロータリーバルブ（平成3年特許第356145号）を使用した時の、ミラーサイクルへの対応の方法（出願日一平成6年2月8日提出の特許願、整理番号-K0013）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、4サイクルガソリンエ

ンジン、6サイクルガソリンエンジン（平成2年特許願第417964号）に、ピストンバルブ、ロータリーバルブ（平成3年特許願第356145号）を使用して、ミラーサイクルへの対応の方法（平成5年特許願第278793号と、平成5年特許願第355469号と、出願日—平成6年2月8日提出の特許願、整理番号—K0013。）を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、燃焼効率は良くなるが、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバル

ブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いれば、同じ排気量、同じ回転数の時、パワートルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁（ピストンバルブ）、気口（ロータリーバルブ）をつなげて1つにする（平成5年特許願第278793号と、平成5年特許願第354993号。）事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする（平成5年特許願第355469号と、出願日—平成6年2月8日提出の特許願、整理番号—K0013。）事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジン、にロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されていので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバル

ブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる事に因り、同じ排気量、同じエンジンの回転数の時、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時に、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【図面の簡単な説明】

【図1】過給機を用いた4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給機を用いた4サイクルガソリンエンジンにロータリーバルブを使用した時のミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給機を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す横断面図である。

【図4】過給機を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 気化器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給機
- 3 何も無い空間

- 4 排気管
 - 5 吸気弁
 - 6 圧縮工程に入っても下死点から、30°から90°開いている弁
 - 7 排気弁
 - 8 ブラグ
 - 9 吸気用のロータリーバルブ
 - 10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ
 - 11 ロータリーバルブの吸気口
 - 12 圧縮工程に入っても下死点から30°から90°開いている、ロータリーバルブの気口
 - 13 ロータリーバルブの排気口
 - 14 燃焼室の吸気口
 - 15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口
 - 16 燃焼室の排気口
 - 17 ロータリーバルブの外枠
 - 18 混合気専用の吸気弁
 - 19 空気専用の吸気弁
 - 20 1回目と2回目の排気を兼ねた排気弁
 - 21 空気専用の吸気管
 - 22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ
 - 23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から30°から90°開いている気口のある部分と、1回目と3回目の排気口のある部分に分けたロータリーバルブ
 - 24 ロータリーバルブの混合気専用の吸気口
 - 25 ロータリーバルブの空気専用の吸気口
 - 26 ロータリーバルブの2回目の排気口
 - 27 燃焼室の混合気専用の吸気口
 - 28 燃焼室の空気専用の吸気口
 - 29 燃焼室の1回目と2回目の排気を兼ねた排気口
- 【手続補正3】
- 【補正対象書類名】図面
- 【補正対象項目名】全図
- 【補正方法】変更
- 【補正内容】

【図1】

【図2】

【図3】

* *

【図4】

【手続補正書】

【提出日】平成6年4月22日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーパルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンにピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、燃焼効率は良くなるが、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーパルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーの燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーパルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーパルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーパルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーな

どの、過給機を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【図面の簡単な説明】

【図1】過給機を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給機を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給機を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給機を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 気化器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給機
- 3 何も無い空間
- 4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 プラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】平成6年9月27日

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成5年特許

願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第35469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願第417964号）に、ピストンバルブ、ロータリーバルブ（平成3年特許願第356145号）を使用して、

ミラーサイクルへの対応の方法（平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。）を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、燃焼効率は良くなるが、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気

量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁（ピストンバルブ）、気口（ロータリーバルブ）をつなげて1つにする（平成5年特許願第278793号と、平成5年特許願第354993号。）事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする（平成5年特許願第355469号と、平成6年特許願第72380号。）事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエン

ジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 気化器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器
- 3 何も無い空間
- 4 排気管
- 5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 ブラグ

9 吸気用のロータリーバルブ

10 断面(内形)を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面(内形)を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面(内形)を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】平成6年10月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許第417964号）の、ミラーサイクルへの対応の方法（平成5年特許第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許第417964号）にロータリーバルブ（平成3年特許第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

- 1 気化器
- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器
- 3 何も無い空間
- 4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 プラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* *

【図4】

【手続補正書】

【提出日】平成6年11月13日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給機を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器

3 何も無い空間

4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 ブラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】平成6年12月31日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許第417964号）の、ミラーサイクルへの対応の方法（平成5年特許第35469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許第417964号）にロータリーバルブ（平成3年特許第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

- 2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器
 - 3 何も無い空間
 - 4 排気管
 - 5 吸気弁
 - 6 圧縮工程に入っても下死点から、30°から90°開いている弁
 - 7 排気弁
 - 8 ブラグ
 - 9 吸気用のロータリーバルブ
 - 10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ
 - 11 ロータリーバルブの吸気口
 - 12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口
 - 13 ロータリーバルブの排気口
 - 14 燃焼室の吸気口
 - 15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口
 - 16 燃焼室の排気口
 - 17 ロータリーバルブの外枠
 - 18 混合気専用の吸気弁
 - 19 空気専用の吸気弁
 - 20 1回目と2回目の排気を兼ねた排気弁
 - 21 空気専用の吸気管
 - 22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ
 - 23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ
 - 24 ロータリーバルブの混合気専用の吸気口
 - 25 ロータリーバルブの空気専用の吸気口
 - 26 ロータリーバルブの2回目の排気口
 - 27 燃焼室の混合気専用の吸気口
 - 28 燃焼室の空気専用の吸気口
 - 29 燃焼室の1回目と2回目の排気を兼ねた排気口
- 【手続補正2】
 【補正対象書類名】図面
 【補正対象項目名】全図
 【補正方法】変更
 【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】平成7年1月27日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げられないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器

3 何も無い空間

4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 ブラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

【図4】

【手続補正書】

【提出日】平成7年4月17日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得れないか、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、パワー、トルクを上げる事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器

3 何も無い空間

4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 プラグ

9 吸気用のロータリーバルブ

10 断面(内形)を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面(内形)を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面(内形)を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】 平成7年5月7日

【手続補正1】

【補正対象書類名】 明細書

【補正対象項目名】 全文

【補正方法】 変更

【補正内容】

【書類名】 明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の説明はされていなかった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得れないと、言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバル

ブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮行程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバル

ブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器

3 何も無い空間

4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 プラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

* * *

【図4】

【手続補正書】

【提出日】 平成7年6月5日

【手続補正1】

【補正対象書類名】 明細書

【補正対象項目名】 全文

【補正方法】 変更

【補正内容】

【書類名】 明細書

【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【特許請求の範囲】

【請求項1】 4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法（平成5年特許願第278793号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図1）

【請求項2】 4サイクルガソリンエンジンにロータリーバルブ（平成3年特許願第356145号）を使用し

た時の、ミラーサイクルへの対応の方法（平成5年特許願第354993号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図2）

【請求項3】 6サイクルガソリンエンジン（平成2年特許願第417964号）の、ミラーサイクルへの対応の方法（平成5年特許願第355469号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図3）

【請求項4】 6サイクルガソリンエンジン（平成2年特許願第417964号）にロータリーバルブ（平成3年特許願第356145号）を使用した時の、ミラーサイクルへの対応の方法（平成6年特許願第72380号）の時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。（図4）

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジン（平成2年特許願

第417964号)に、ピストンバルブ、ロータリーバルブ(平成3年特許願第356145号)を使用して、ミラーサイクルへの対応の方法(平成5年特許願第278793号と、平成5年特許願第354993号と、平成5年特許願第355469号と、平成6年特許願第72380号。)を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に関する。

【0002】

【従来の技術】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事の考えは無かった。

【0003】

【発明が解決しようとする課題】従来の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得れないと、と言う問題点があった。

【0004】本発明は、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事を目的としている。

【0005】

【課題を解決するための手段】上記目的を達成する為に、本発明の、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。

【0006】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、4気筒以上の4サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0007】また、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、後記する理由に因り、6気筒以上の6サイクルガソリンエンジンで、燃焼効率を良くする事が出来る。

【0008】

【作用】上記の様に構成された、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの

対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いれば、同じ排気量、同じ回転数の時、パワー、トルクを上げる事が出来る。

【0009】また、4気筒以上の4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁(ピストンバルブ)、気口(ロータリーバルブ)をつなげて1つにする(平成5年特許願第278793号と、平成5年特許願第354993号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0010】また、6気筒以上の6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口、をつなげて1つにする(平成5年特許願第355469号と、平成6年特許願第72380号。)事に因り、ターボ・チャージャー、スーパー・チャージャーを使用した時の、燃焼効率が良くなる。

【0011】

【実施例】実施例について図面を参照して説明すると、図1においては、4サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0012】図2に示される実施例では、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0013】図3に示される実施例では、6サイクルガソリンエンジンの、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0014】図4に示される実施例では、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の方法の時、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いた事を示す、横断面図である。

【0015】

【発明の効果】本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。

【0016】4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時

に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる事に因り、同じ排気量、同じエンジンの回転数で、より多くの、パワー、トルクを得る事が出来る。

【0017】また、4サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、4気筒以上の4サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0018】さらに、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる時、圧縮工程に入っても下死点から、30°から90°開いている、弁、気口に付いている何も無い空間を、6気筒以上の6サイクルガソリンエンジンで、つなげて1つにする事に因り、混合気を過給する時の抵抗が少なくなり、燃焼効率が良くなる。

【0019】また、4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応を得る時、ターボ・チャージャー、スーパー・チャージャーなどの過給器を用いる事に因り、低回転では燃焼効率重視、高回転では、パワー、トルク重視のエンジンも出来る。

【図面の簡単な説明】

【図1】過給器を用いた、4サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図2】過給器を用いた、4サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【図3】過給器を用いた、6サイクルガソリンエンジンのミラーサイクルへの対応の実施例を示す、横断面図である。

【図4】過給器を用いた、6サイクルガソリンエンジンにロータリーバルブを使用した時の、ミラーサイクルへの対応の実施例を示す、横断面図である。

【符号の説明】

1 気化器

2 ターボ・チャージャー、スーパー・チャージャーなどの、過給器

3 何も無い空間

4 排気管

5 吸気弁

6 圧縮工程に入っても下死点から、30°から90°開いている弁

7 排気弁

8 ブラグ

9 吸気用のロータリーバルブ

10 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、排気口のある部分に分けた、ロータリーバルブ

11 ロータリーバルブの吸気口

12 圧縮工程に入っても下死点から、30°から90°開いている、ロータリーバルブの気口

13 ロータリーバルブの排気口

14 燃焼室の吸気口

15 燃焼室の、圧縮工程に入っても下死点から、30°から90°開いている気口

16 燃焼室の排気口

17 ロータリーバルブの外枠

18 混合気専用の吸気弁

19 空気専用の吸気弁

20 1回目と2回目の排気を兼ねた排気弁

21 空気専用の吸気管

22 断面（内形）を、H型、にし、混合気専用の吸気口のある部分と、空気専用の吸気口のある部分に分けた、ロータリーバルブ

23 断面（内形）を、H型、にし、圧縮工程に入っても下死点から、30°から90°開いている気口のある部分と、1回目と2回目の排気口のある部分に分けた、ロータリーバルブ

24 ロータリーバルブの混合気専用の吸気口

25 ロータリーバルブの空気専用の吸気口

26 ロータリーバルブの2回目の排気口

27 燃焼室の混合気専用の吸気口

28 燃焼室の空気専用の吸気口

29 燃焼室の1回目と2回目の排気を兼ねた排気口

【手続補正2】

【補正対象書類名】図面

【補正対象項目名】全図

【補正方法】変更

【補正内容】

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(54) 【発明の名称】 4サイクルガソリンエンジン、6サイクルガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用して、ミラーサイクルへの対応の方法を得る時に、ターボ・チャージャー、スーパー・チャージャーなどの、過給器を用いる。