FIG._1C

FIG._1D

FIG._1E

FIG._1G

FIG._11

FIG._1F

FIG._1J

- 1

DMTO ·

Fig IP

6265840073

PS32

FIG IR

W97

FIGURE 18 3

.

TM for Mismatch and Perfect Matched HIV Sandwich

- -O- D761 Surface with D1095 (Mismatched) Target (0.5uM), Chip #2
- D761 Surface with D765 (Matched) Target (0.5uM), Chip #3
- D761 Surface with D765 (Matched) Target (0.5uM), Chip #4

Signal Replacement from Mismatched Target to Matched Targets (0.25uM)

J. J. J. C.

DNA
+ Primer 1 + Primer 2
PCR
Double-stranded DNA ~ 50 microliters
1 microliter PCR amplicon Primer 3 Primer 4 Primer 4
Assymetric PCR
Double-stranded DNA
Single-stranded DNA

Fig 28

Scheme I, General Formula of Asymmetric Disulfides as Insulators

Fig BAR

$$S-(CH_2)_{7_{-16}}(OCH_2CH_2)_{0_{-7}}OH$$
 R_1
 $S-(CH_2)_{0_{-4}}C-R_2$
 R_4

R₁, R₂ and R₃: H, CH₃, t-butyl, cycloalkyl, CH₂OH, CH₂NH₂, CONH₂, COOH, CH₂OPO₃², aromatic, adamantyl

34B

Fig \$184 8C

be C1 to C20 alkyl or aromatic derivatives, R' could be any C1 to C20 alkyl or aromatic derivatives, and R" could be any C1 to C20 alkyl or aromatic derivatives. B could any bases such as NaOH, KOH, LiOH, or MOR, here Mas a metal.

The detail invention was disclosed as the following examples. The new methods have been applied to the synthesis of H-phosphonate (Example 1), CPG (Example 2 and Example 3), and insulators (Example 4).

Example 3 compared the application of this invention to preparation of N150, which had been used to synthesize CPG with disulfide linkers. As the literature Method A, the synthesis of N150 form K136 will need four step transformations, however, N150 could be obtained in single step from K136 applying this invented Method B.

Example 1

Example 2

Example 4

FIG FALF NaOH/dioxane CTIOI NaOH/THF-MeOH CT102 3% TCA/CH2CI2 CT105

Insulator

For Capture Probes

PIGURE 14

Scheme I

FIGURE 19

3

·---

FIGURE 20 14

Scheme 1

Page 2 of 5

CMS Confidential and Proprietary

•

Scheme I, Introduction of Poly(allylamine) into DNA on Solid Phase

÷

Scheme II, Introduction of Ferrocenes After Hybrization

FIGURE 21,

FIGURE 23

Scheme I, Thiols Exchange Diagram

į

W150, n = 1, R = 4,5-dimethoxy-2-nitrobenzyl

C163, n = 2, R = 4,5-dimethoxy-2-nitrobenzyl

W155, n = 3, R = 4,5-dimethoxy-2-nitrobenzyl

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficien	cies were foun	a during scanning:	
□ Page(s)	of		were not present
for scanning.		(Document title)	
□ Page(s)	of		were not present
for scanning.		(Document title)	

Scanned copy is best available. Drawings