Lecture15: CMOS amplifiers (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Turning point

We have only 12 lectures ahead!

← Tsukuba Marathon 2011 turning point (from Wikimedia Commons)

Things to be covered...

We will cover:

- Ch. 17
- Ch. 4
- Ch. 5
- Ch. 8
- Ch. 16 (It depends on the lecture progress.)

Mon	Tue	Wed	Thu	Fri	Sat	Sun
L15(4.27)		L16(4.29)				
L17(5.4)		L18(5.6)				
L19(5.11)		L20(5.13)				
L21(5.18)		L22(5.20)				
		L23(5.27)				
L24(6.1)		L25(6.3)				
L26(6.8)		Final				

Impedances (1/3)

- A MOSFET with three terminals
 - Looking into the gate, we see the infinite impedance.
 - (Strictly valid at the low-frequency range)

Impedances (2/3)

- A MOSFET with three terminals
 - Looking into the drain, we see r_0 if the source is ac grounded.

Impedances (3/3)

- A MOSFET with three terminals
 - Looking into the source, we see $1/g_m$ if the gate is ac grounded and channel-length modulation is neglected.

Transistor turned off

- The example 17.5 shows an amplifier circuit.
 - But, the transistor is not turned on.
 - The circuit generates no output signal.

This is a solution.

- The example 16.7 shows a revised circuit.
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Simple biasing (1/2)

- A better way
 - The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/2)

- How to apply the small-signal input
 - Use a capacitor!

Source degeneration (1/2)

A resistor placed in series with the source terminal

Source degeneration (2/2)

- Now we have to find the source voltage.
 - (Saturation current of the MOSFET) = (Current flowing through R_S)
 - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

Biasing of PMOS devices

- Let's recall the problem18 of our mid-term exam.
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Read your textbook.

- You can find today's lecture contents in Sec. 17. 2.
 - Up to p. 759
- We will cover Sec. 17. 3 and Sec. 17. 4.
 - Common source
 - Up to p. 766