# Домашняя работа

### 1. Описание данных и выбор регрессоров

Целью данной работы является исследование факторов, влияющих на размер заработной платы. Анализ проведен по данным РМЭЗ за 2013 г. (репрезентативная выборка по индивидам, волна 22).

В нашем наборе данных представлено 16087 наблюдений по 857 переменным. Зависимой переменной по условиям задания является среднемесячная зарплата в тыс. руб. (wage), на основе переменной rj13.2.

Ниже перечислены переменные, отобранные в качестве регрессоров, и приведены коды переменных, лежащих в основе выбранных регрессоров:

- Возраст (age). Рассчитывался как разница между 2013 (год проведения опроса) и датой рождения индивида (rh6);
- Пол (sex). Фиктивная переменная на основе rh5: для индивидов мужского пола принимает значение 1, для индивидов женского пола -0.
- Образование (lower, mid, midspecial, high). 4 фиктивных переменных на основе r\_diplom: lower принимает значение 1 при наличии незаконченного среднего образования, mid законченного среднего образования, midspecial законченного среднего специального образования, higher законченного высшего образования и выше.
- Владение иностранным языком, помимо языков бывших республик СССР (lang). Фиктивная переменная на основе rj260: принимает значение 1 при владении респондентом иностранным языком.
- Рост в сантиметрах (height). Переменная rm2.

Переменная lang выбрана для проверки гипотезы о влиянии знания иностранного языка на размер среднемесячной зарплаты. Предполагается положительное влияние, так как специалист со знанием иностранного языка является более квалифицированным и востребованным на рынке труда.

Переменная height выбрана для проверки гипотезы о наличии дискриминации в отношении работников с более низким ростом. Предполагается положительное влияние роста на размер среднемесячной зарплаты вследствие наличия определенных психологических эффектов — более высокие работники воспринимаются как более уверенные в себе, к их мнению могут чаще прислушиваться и так далее.

Ниже приведена таблица с описательными статистиками всех отобранных переменных, включая фиктивные.

|                      | $\min$ | max | mean     | median | se     | n     |
|----------------------|--------|-----|----------|--------|--------|-------|
| wage                 | 0      | 300 | 19.7912  | 16     | 0.2044 | 6080  |
| age                  | 0      | 100 | 40.0691  | 40     | 0.1774 | 16087 |
| sex                  | 0      | 1   | 0.4317   | 0      | 0.0039 | 16087 |
| lower                | 0      | 1   | 0.2029   | 0      | 0.0034 | 13595 |
| $\operatorname{mid}$ | 0      | 1   | 0.3227   | 0      | 0.0040 | 13595 |
| midspecial           | 0      | 1   | 0.2359   | 0      | 0.0036 | 13595 |
| high                 | 0      | 1   | 0.2360   | 0      | 0.0036 | 13595 |
| lang                 | 0      | 1   | 0.1836   | 0      | 0.0033 | 13595 |
| height               | 41     | 203 | 160.0321 | 165    | 0.1778 | 15724 |

Таблица 1: Описательные статистики.

## 2. Гистограммы

На рис. 1 и 2 представлены гистограммы дохода и возраста. Следует отметить, что в модель попадет только 6080 из 16087 наблюдений, так как число индивидов, указавших свой среднемесячный доход (6080), меньше общего числа наблюдений и является наименьшим по сравнению с другими регрессорами.



Рис. 1: Гистограмма дохода.

По гистограмме можно определить, что большинство индивидов получают среднемесячную зарплату менее 65 тыс. руб., и лишь немногие — выше 100 тыс. руб.



Рис. 2: Гистограмма возраста.

На гистограмме видны демографические ямы 1941–1944 гг. (ВОВ), а также 1992 и 1998 года.

### 3. Оценка модели

Предположим, что зависимость выглядит следующим образом:

$$wage_i = \beta_0 + \beta_1 age_i + \beta_2 sex_i + \beta_3 mid_i + \beta_4 midspecial_i + \beta_5 high_i + \beta_6 lang_i + \beta_7 height_i + \varepsilon_i.$$

Оценим нашу модель:

$$\widehat{wage}_i = \widehat{\beta}_0 + \widehat{\beta}_1 age_i + \widehat{\beta}_2 sex_i + \widehat{\beta}_3 mid_i + \widehat{\beta}_4 midspecial_i + \widehat{\beta}_5 high_i + \widehat{\beta}_6 lang_i + \widehat{\beta}_7 height_i.$$

Ниже представлены результаты оценки модели.

Таблица 2: Первоначальные оценки параметров модели.

|                      | Estimate | Std. Error | t value | $\Pr(> \mathrm{t} )$ |
|----------------------|----------|------------|---------|----------------------|
| (Intercept)          | -19.0898 | 4.9997     | -3.8182 | 0.0001               |
| age                  | -0.0382  | 0.0158     | -2.4245 | 0.0154               |
| sex                  | 5.9574   | 0.5357     | 11.1216 | 0.0000               |
| $\operatorname{mid}$ | 2.1278   | 0.7375     | 2.8852  | 0.0039               |
| midspecial           | 4.0665   | 0.7568     | 5.3732  | 0.0000               |
| high                 | 9.3803   | 0.7699     | 12.1837 | 0.0000               |
| lang                 | 4.7962   | 0.5305     | 9.0404  | 0.0000               |
| height               | 0.1895   | 0.0297     | 6.3880  | 0.0000               |

Все переменные (age, sex, mid, midspecial, high, lang, height) оказались значимыми на 5% уровне значимости. При этом коэффициент перед всеми регрессорами, за исключением возраста, положителен. Это означает, что:

- Образование положительно влияет на уровень среднемесячного дохода, при этом (при прочих равных):
  - Наличие законченного среднего образования приводит к росту дохода на 2.1 тыс. руб. в месяц;
  - Наличие законченного среднего специального образования приводит к росту дохода на 4.1 тыс. руб. в месяц;
  - Наличие законченного высшего образования приводит к росту дохода на 9.4 тыс. руб. в месяц;
- Знание иностранного языка позволяет при прочих равных получать ежемесячно на 4.8 тыс. руб. больше;
- Можно говорить о наличии половой дискриминации, так как при прочих равных мужчина получает на 6 тыс. руб. в месяц больше женщины;
- Присутствует и дискриминация по росту: независимо от пола индивид, который на 1 см выше, имеет среднемесячный доход на 190 руб. больше;
- Чем старше индивид, тем меньше его среднемесячный доход. Взросление на год приводит к падению дохода в среднем на 38 руб. в месяц.

Таким образом, можно сказать, что гипотеза о влиянии двух выбранных регрессоров не отвергается, и они были выбраны корректно.

### 4. Робастные ошибки

Оценим нашу модель, используя робастные ошибки:

Таблица 3: Оценки параметров при использовании робастных ошибок.

|                      | Estimate | Std. Error | t value | $\Pr(> \mathrm{t} )$ |
|----------------------|----------|------------|---------|----------------------|
| (Intercept)          | -19.0898 | 4.7286     | -4.0371 | 0.0001               |
| age                  | -0.0382  | 0.0141     | -2.7112 | 0.0067               |
| sex                  | 5.9574   | 0.5573     | 10.6897 | 0.0000               |
| $\operatorname{mid}$ | 2.1278   | 0.4897     | 4.3447  | 0.0000               |
| midspecial           | 4.0665   | 0.5290     | 7.6876  | 0.0000               |
| high                 | 9.3803   | 0.5971     | 15.7109 | 0.0000               |
| lang                 | 4.7962   | 0.6280     | 7.6369  | 0.0000               |
| height               | 0.1895   | 0.0287     | 6.6126  | 0.0000               |

Мы видим, что оценки параметров не поменялись. Все переменные (age, sex, mid, midspecial, high, lang, height) остались значимы (на 5% уровне значимости), регрессор age теперь значим, как и остальные, на 1% уровне значимости. Ниже представлена таблица изменений в оценках параметров.

Таблица 4: Различия в оценках параметров.

|                      | Estimate | Std. Error | t value | $\Pr(> \mathrm{t} )$ |
|----------------------|----------|------------|---------|----------------------|
| (Intercept)          | 0.0000   | -0.2711    | -0.2189 | -0.0001              |
| age                  | 0.0000   | -0.0017    | -0.2867 | -0.0086              |
| sex                  | 0.0000   | 0.0216     | -0.4319 | 0.0000               |
| $\operatorname{mid}$ | 0.0000   | -0.2477    | 1.4595  | -0.0039              |
| midspecial           | 0.0000   | -0.2278    | 2.3144  | 0.0000               |
| high                 | 0.0000   | -0.1729    | 3.5272  | 0.0000               |
| lang                 | 0.0000   | 0.0975     | -1.4036 | 0.0000               |
| height               | 0.0000   | -0.0010    | 0.2245  | 0.0000               |

Применение робастных ошибок привело к снижению (а не повышению) стандартных ошибок у всех регрессоров, кроме sex и lang. Почему это произошло?

Протестируем нашу модель на гетероскедастичность, используя тесты Уайта и Гольдфельда-Квандта:

Таблица 5: Тест Уайта

| Test statistic | df | P value |
|----------------|----|---------|
| 35.4171        | 7  | 0 * * * |

Таблица 6: Тест Гольдфельда-Квандта, переменная аде.

| Test statistic | df1  | df2  | P value |
|----------------|------|------|---------|
| 0.7408         | 2402 | 2401 | 1       |

Таблица 7: Тест Гольдфельда-Квандта, переменная height.

| Test statistic | df1  | df2  | P value |
|----------------|------|------|---------|
| 2.4586         | 2402 | 2401 | 0 * * * |

Тест Уайта показал наличие гетероскедастичности; тест Гольдфельда-Квандта не отверг гипотезу об условной гомоскедастичности в случае зависимости остатков от переменной age и показал наличие гетероскедастичности для случая зависимости остатков от переменной height.

#### Посмотрим на эту зависимость:



Рис. 3: Зависимость остатков от переменной height.

Из рис. З видно, что наибольшая дисперсия у остатков для тех наблюдений, значение переменной height которой близко к среднему значению. Это логично, ведь число индивидов и со слишком низким, и со слишком высоким ростом мало по сравнению с числом индивидов среднего роста. Следовательно, у индивидов среднего роста более высок разброс среднемесячной зарплаты. А отрицательная корреляция  $\varepsilon_i^2$  и  $(x_i - \bar{x})^2$  эквивалентна завышению стандартных ошибок, получаемых с помощью стандартного МНК, по сравнению с робастными ошибками.

### 5. Приложение. Использованные команды

### 5.0. Обработка данных

```
setwd("^{\sim}/Documents/Coursera/Econometrics/Homework")\\ data1 <- read.rlms("r22i\_os25a.sav")\\ rlms\_sav2rds("^{\sim}/Documents/Coursera/Econometrics/Homework")
```

#### 5.1. Описание данных и выбор регрессоров

```
library("memisc")
library("lmtest")
library("psych")
library("sandwich")
library("glmnet")
library("ggplot2")
library("car")
library("dplyr")
library("broom")
library("foreign")
library("vcd")
library("devtools")
library("hexbin")
library("pander")
library("sjPlot")
library("knitr")
library("rlms")
library("tikzsetup")
tikzsetup()
data < - \ readRDS("r22i \ os25a.Rds")
df <- select(data, rj13.2, rh6, rh5, r diplom, rj260, rm2)
df age <- 2013-df rh6
df\sim <-dfrj13.2 / 1000
df$sex <- as.integer(df$rh5=="МУЖСКОЙ")
df$lower <- as.integer(df$r diplom=="окончил 0 - 6 классов" |
                 df$r diplom=="незаконч среднее образование (7 - 8 кл)" |
                 df$r diplom=="незаконч среднее образование (7 - 8 \text{ кл}) + \text{что-то еще"})
df$mid <- as.integer(df$r diplom=="законч среднее образование")
df$midspecial <- as.integer(df$r diplom=="законч среднее специальное образование")
df$high <- as.integer(df$r diplom=="законч высшее образование и выше")
dflang <- as.integer(df$rj260=="\squarea")
dfheight <- dfrm2
d <- select(df, wage, age, sex, lower, mid, midspecial, high, lang, height)
table1 <- psych::describe(d)
table <- select(table1, min, max, mean, median, se, n)
panderOptions('digits', 6)
panderOptions('round', 4)
panderOptions('keep.trailing.zeros', TRUE)
table <- data.frame(table)
pander(table, split.table = Inf, caption = "Описательные статистики.")
```

### 5.2. Гистограммы

```
qplot(data=d, wage, xlab = "Зарплата, тыс. руб.", ylab = "Количество в выборке", binwidth = 5) + scale_x_continuous(breaks=seq(0,300,20)) qplot(data=d, age, xlab = "Возраст, лет", ylab = "Количество в выборке", binwidth = 1) + scale_x_continuous(breaks=seq(0,100,10)) + scale_y_continuous(breaks=seq(0,300,50))
```

#### 5.3. Оценка модели

```
model1 <- lm(data=d, wage~age+sex+mid+midspecial+high+lang+height)
table2 <- coeftest(model1)[1:8,]
table3 <- coeftest(model1, vcov. = vcovHC(model1))[1:8,]
pander(table2, caption = "Первоначальные оценки параметров модели.")
```

#### 5.4. Робастные ошибки