

APLICAÇÕES DE INTELIGÊNCIA ARTIFICIAL APPLICATIONS OF ARTIFICIAL INTELLIGENCE

LECTURE 4: Model Performance Evaluation and Selection

Petia Georgieva (petia@ua.pt)

Outline

Model performance evaluation: perf. metrics

- Model selection: Bias vs. variance
- Learning curves
- K –fold Cross Validation

Performance Evaluation – Confusion Matrix

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Python: from sklearn.metrics import confusion_matrix

Performance metric - Accuracy

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	(TP)	(FN)
	Class=No	(FP)	(TN)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy - fraction of examples correctly classified.

1-Accuracy: Error rate (misclassification rate)

Limitation of Accuracy

- Consider binary classification (Unbalanced data set)
 - Class 0 has 9990 examples
 - Class 1 has 10 examples
- If model classify all examples as class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading metrics because model does not classify correctly any example of class 1
 - =>Use other performance metrics.
 - => Find a way to balance the data set

(re-sampling methods: oversampling, under-sampling)

Other Performance Metrics

<u>True Positive Rate (TPR)</u>, Sensitivity, Recall of all positive examples the fraction of correctly classified

$$TPR = \frac{TP}{TP + FN}$$

<u>True Negative Rate (TNR)</u>, Specificity of all negative examples the fraction of correctly classified

$$TNR = \frac{TN}{TN + FP}$$

False Positive Rate (FPR) - how often an actual negative instance will be classified as positive, i.e. "false alarm"

$$FPR = 1 - TNR = \frac{FP}{FP + TN}$$

Precision - the fraction of correctly classified positive samples from all classified as positive

$$Precision = \frac{TP}{TP + FP}$$

Combined performance metrics

F1 Score - weighted average of Precision and Recall F1=2*(Recall * Precision) / (Recall + Precision)

Balanced Accuracy = (Recall+Specificity)/2

Class Imbalance problem

Solution: Re-sampling methods (under-sampling, oversampling)

Definitions for Epoch /Batch Size / Iterations / Train step

One Epoch is when an ENTIRE dataset is passed through the model (e.g. forward and backward in a neural network) only ONCE. If data is too big to feed to the computer at once one epoch is divided in several smaller batches.

Batch Size: Total number of training examples present in a single batch.

Iterations is the number of batches needed to complete one epoch.

Example: Let's say we have 2000 training examples. We can divide the dataset of 2000 examples into batches of 500 then it will take 4 iterations to complete 1 epoch.

Training run/step - is one update of the model parameters. We update the parameters after one batch or after one epoch.

Deciding what to do next?

Suppose you have trained a ML model on some data. When you test the trained model on a new set of data, it makes unacceptably large errors. What should you do?

- -- Get more training examples?
- -- Try smaller sets of features (feature selection)?
- -- Try getting additional features (feature engineering)?
- -- Try using different/nonlinear kernels?
- -- Try other values of the hyper parameters (e.g. regul. parameter)?

Machine learning diagnostics = Model-centric approach

Run tests to gain insight what isn't working with the learning algorithm and how to improve its performance.

Diagnostics is time consuming, but can be a very good use of your time.

Simplest division: Train & Test subsets

- Training set (70%-80 %): used to train the model
- Test set (30%-20%) : used to test the trained model
- Optimize the model parameters with training data (minimize some cost/loss function J)

After the training stage is over (i.e. the cost function J converged)

- Compute the MSE on test data (for regression problems)

$$E_{test}(\theta) = \frac{1}{m_{test}} \left[\sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2} \right]$$

or

- Compute the model accuracy or some other metric from the confusion matrix, on test data (for classification problems)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Different Cost/Loss Functions

Training data MSE

- Linear Regression Cost Function with L2 Regularization (Ridge Regression)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Ridge Regression

- Logistic Regression Cost Function with L2 Regularization

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \left(\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

- Neural Network Cost Function (no regularization)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right]$$

3 way split: Train/Dev/Test Sets

Choose ML model: Logistic Regression, Neural Network (NN), etc. ? Choose model hyper-parameters:

- # of layers in NN?
- # of hidden units (neurons) in NN?
- Which activation functions in NN?
- What is the best learning rate?
- What is the best regularization parameter (λ)?
- What is the best polinomial degree?
-

Devide dataset in 3 sub-sets:

- Training set
- Cross Validation (CV) set = Development set = 'dev' set
- Test set

Traditional division for Small data set (up to 10000 examples):

Big data (1 million. examples): 98% - 1% - 1%

Model / hyper parameter selection

Step 1: Optimize parameters θ (to minimize some cost function J) using the same training set for all models. Compute some perf. metrics with the training data (i.e. error, accuracy) :

Training error =>
$$E_{train}(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \right]$$

Step 2: Test the optimized models from step 1 with the CV set and choose the model with the min CV error (or other performance metric with dev data):

Cross validation (CV)/dev error =>
$$E_{cv}(\theta) = \frac{1}{2m_{cv}} \left[\sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^2 \right]$$

Step 3: Retrain the best model from step 2 with both train and CV sets starting from the parameters got at step 2. Test the retrained model with test set and compute test data perf. metric (*the real model performance !!!*):

Test error =>
$$E_{test}(\theta) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2} \right]$$

Example: Select best λ

Best $\lambda = 3$

Training/Valid (Dev)/Test subsets

The most credible is the performance metric with test data, not used for training or validation of the model.

K –fold Cross Validation

- Divide data into Training and Test subsets.
- Divide Training data into K subsets (K-fold).
- Use K-1 subsets for training and the remaining subset for CV.
- The final validation error is the average CV error of K experiments.
- Choose the best model /hyper-parameter the one that minimise the average CV error.

Bias vs. Variance

An important concept in ML is the bias-variance tradeoff.

Models with **high bias** are not complex enough and **underfit** the training data.

Models with **high variance** are too complex and **overfit** the training data.

underfiting data

(very simple model)

(good model)

overfiting data
(very complex model)

Diagnosing Bias vs. Variance

How to diagnose if we have a high bias problem or high variance problem?

High Bias (underfiting) problem:

Training error (*Etrain*) and Validation/dev error (*Ecv*) are both high

High Variance (overfiting) problem:

Training error (*Etrain*) is low and Validation/dev error (*Ecv*) is much higher than *Etrain*

Learning Curves

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

If a learning algorithm is suffering from high bias, getting more training data will not help much

Learning Curves

If a learning algorithm is suffering from high variance, getting more training data is likely to help

Regularization and Learning Curves

Polynomial regression, $\lambda = 100$

Learning curve, $\lambda = 100$

Hints to improve ML model

Suppose you have learned a data model (hypothesis). However, when you test your hypothesis on a new set of data, you find that it makes unacceptably large errors in its prediction (regression or classification). What should you try next?

- -- Get more training examples fixes high variance
- -- Try smaller sets of features fixes high variance
- -- Try getting additional features fixes high bias
- -- Try adding polynomial features fixes high bias
- -- Try decreasing λ fixes high bias
- Try increasing λ fixes high variance

