Calculus, Algebra, and Analysis for JMC

Marie Amellie, Frank Berkshire January 15, 2020

Contents

1	Group theory		2
	1.1	Binary operations and groups	2
		Consequences of the axioms of group	
2	Applied Mathematical Methods		7
	2.1	Differential Equations	7
		2.1.1 Definitions and examples	7
		2.1.2 First Order Differential Equations	
		2.1.3 'Special' Second Order Differential Equations	14
3	Line	ear Algebra	15
	3.1	System of linear equations	19
4	Ana	lvsis	20

Chapter 1

Group theory

Study of the simplest algebraic structure on a set.

1.1 Binary operations and groups

Definition 1. Set is a collection of distinct elements. Let G be a set. **Binary operation on G** is a function

$$*: G \times G \to G($$
Closure is included $)$

Example 2.

- $(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{R},\cdot)$
- $(\mathbb{N}, -)$ not a binary op. Not closed.
- $g, h \in G, g * h = h$
- Find a certain $c \in G$, define $g * h = c \forall g, h \in G$

Example 3. Cayley table: Draw a table of all the possible binary operations on a set. How many possible binary operations on a finite set with n elements? In general, there are ∞ -many biniary operations. In this case, there are n^{n^2} possible binary operations. In general, $g_i * g_j \neq g_j * g_i$ (Not commutative!)

Definition 4. A binary operation * on a set G is called associative if

$$(q*h)*k = q*(h*k) \forall q, h, k \in G$$

Example 5.

- + on $\mathbb{N}, \mathbb{Z}, \mathbb{R}$? Yes
- - on \mathbb{R} ? No
- $g * h = g^h$ on N? No

Definition 6. A binary operation is called commutative if

$$\forall g, h \in G, g * h = h * g$$

Example 7.

- +, · on $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$
- matrix multiplication $(AB \neq BA \text{ in general for } A, B \text{ in } M(\mathbb{R}^n))$
- let $g, h \in \mathbb{R}$, $g * h = 1 + g \cdot h$: commutative but not associative!

Definition 8. Let (G, *) be a set. An element e is called *left identity* (respectively *right identity*) if:

$$e*g=g(\text{resp. }g*e=g)\;\forall\;g\in G$$

Caution: There might be many left/right identities or none.

Example 9.

- 1. let (G, *) be a set with g * h := g. Find the left/right identities. ∞ -many (or equal to the number of elements) right identities since h satisfies definition $\forall h$. No left identities: wanted e * g = g = e by definition of * (unless only one element).
- 2. (G,*), g*h=1+gh. Ex: No right/left identities.

Idea: We want a good unique identity.

Theorem 10. let (G, *) be set, such that * has both a left identity e_1 and a right identity e_2 , then

$$e_1 = e_2 =: e$$
 and e is unique.

Proof.

 $\bullet \ e_1 = e_2$

$$\Rightarrow \left\{ \begin{array}{l} e_1 * g = g \Rightarrow e_1 * e_2 = e_2 \\ g * e_2 = g \Rightarrow e_1 * e_2 = e_1 \end{array} \right\} \forall g \in G \Rightarrow e_1 = e_2$$

• Unicity: Assume there exists another identity e'.

$$\Rightarrow e' * g = g * e' = g$$

$$e' * g = e' * e = e$$

$$g * e' = e * e' = e'$$

Therefore

$$e = e'$$

As soon as you get one left and one right identity, you have a unique identity e.

Definition 11. let (G,*) be a set. Let $g \in G$. An element $h \in G$ is called left (resp. right) inverse if

$$h * q = e \text{ (resp. } q * h = e)$$

<u>Caution</u>: Again inverses might not exist, there might be many, or *not* the same on both sides.

Example 12.

- (1) (\mathbb{N}, \cdot) 1 has an inverse, otherwise *no* inverse.
- (2) Find a binary operation on a set of 4 elements with left/right inverses not the same but identity e.

Theorem 13. Let (G, *) be a set with associative binary operation and identity e. Then if h_1 is left inverse, and h_2 is right inverse, then

$$h_1 = h_2 = g^{-1}$$
 and it is unique

Proof.

• $h_1 = h_2$ $h_1 * g = e, g * h_2 = e$. Therefore $h_2 = e * h_2 = (h_1 * g) * h_2 = h_1 * (g * h_2) = e = h_1$

• unicity: Assume $\exists g'^{-1}$ another inverse.

$$g'^{-1} = e * g'^{-1} = (g^{-1} * g) * g'^{-1} = g^{-1} * (g * g'^{-1}) = g^{-1} * e = g^{-1}$$

(Group) Definition 14. A set (G, *) wth binary operation * is called a *group* if:

- (1) * is associative
- (2) $\exists e \in G$ an identity $\forall g \in G$
- (3) All elements $g \in G$ have an inverse g^{-1}

Attention: The identity and inverses are unique by our previous results.

Example 15.

- $(\mathbb{Z},+),(\mathbb{Z}_n,+)$ are groups.
- $(\mathbb{N}, +)$ not a group \Rightarrow no inverses.
- (\mathbb{C},\cdot) not a group (0 has no multiplicative inverse), but (\mathbb{C}^*,\cdot) is. $(\mathbb{C}^* = \mathbb{C}\setminus\{0\})$
- $(G = \{e\}, *)$ with e * e = e is a group called the *trivial group*.
- Empty set \varnothing is not a group (No identity element.)

Definition 16. Let G be a group. It is called <u>finite</u> if it has finitely many elements.

Notation: |G| = n (number of elements) If $|G| = \infty$, the G is called an infinite group.

Example 17.

- the trivial group is finite, |G| = 1
- let $G = \{1, -1, i, -i\} \subset \mathbb{C}$, with $* = \cdot$. Is it a group? Yes. Check associativity, identity, and inverses.

(Abelian Group) Definition 18. A group is called *Abelian* if * is commutative.

Example 19.

- previous example, tryial group, $(\mathbb{Z}, +), (\mathbb{C}^*, \cdot)$
- let $GL(\mathbb{R}^n)$ be the set of all invertible $n \times n$ matrices, * = matrix multiplication. It is associative: (AB)C = A(BC); It has identity: I_n . It has inverses: yes since we asked for it. So this is a group of matrices. But this is not Abelian since $AB \neq BA$.
- let G be the set of *invertible* functions with $* = \circ$, the composition of functions. Identity is F(x) = x; they are associative, invertible, but not Abelian.

1.2 Consequences of the axioms of group

Chapter 2

Applied Mathematical Methods

2.1 Differential Equations

2.1.1 Definitions and examples

Definition 20. An ordinary differential equation (ODE) for y(x) is an equation involving derivatives of y.

$$f(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}, \dots, \frac{\mathrm{d}^ny}{\mathrm{d}x^n}) = 0$$
 (2.1)

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = F(x, y, \frac{\mathrm{d} y}{\mathrm{d} x}, \dots, \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}})$$

and we seek a solution (or solutions) for y(x) satisfying the equations. (If there are more independent variables then we have a partial differential equation (PDE).)

Definition 21.

Order is the order of the highest derivative present.

Degree is the power of the highest derivative when fractional powers have been removed.

Linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivative in each term of equation (2.1).

Example 22.

(a) Particle moving along a line with a given force $\to x(t)$ position as function of time t.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = f\left(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}\right)$$

e.g.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x - 2k \frac{\mathrm{d}x}{\mathrm{d}t}$$

The first term is regarding the restoring force, while the second term is regarding the damping/friction. The function is of order 2, degree 1, and linear.

(b) Radius of curvature of a curve

It can be shown that

$$R(x,y) = \frac{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{\frac{3}{2}}}{\frac{\mathrm{d}^2y}{\mathrm{d}x^2}}$$

The function is of order 2 and degree 2.

(c) Simple growth and decay

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = kQ$$

The function is of order 1, degree 1, and linear. e.g.

- (1) k > 0. Q as the quantity of money, and $k = (1 + \frac{r}{100})$, and r being the rate of interest.
- (2) k < 0. Q as the amount of radioactive material, and k as the decay rate.

Hence, obviously $Q(t) = Q_0 e^{kt}$ where $Q_0 = Q(0)$ at t = 0.

(d) Population dynamics

P(t) as population over time and F(t) as food over time, with

$$\frac{\mathrm{d}P}{\mathrm{d}t} = aP(a > 0) \tag{2.2}$$

$$\frac{\mathrm{d}F}{\mathrm{d}t} = c(c > 0)$$

These two equations form a linear system, with both being of order 1, degree 1.

So $P(t) = P_0 e^{at}$, $F(t) = ct + F_0$. Misery! Population outgrows food supply.

Pierre Verhulst (1845) replaced a in equation (2.2) with (a-bP) so that growth decreases as P increases:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = aP - bP^2 \tag{2.3}$$

This is in fact a *logistic ODE*, with order 1, degree 1, and nonlinear.

<u>Note</u>: Equation (2.3) is *separable*. Alternatively we can note that equation (2.3) is an example of a *Bernoulli differential equation*

$$\frac{\mathrm{d}y}{\mathrm{d}x} + F(x)y = H(x)y^n \tag{2.4}$$

with $n \neq 0, 1$ Substitution on $z(x) = (y(x))^{1-n} \Rightarrow$ a linear equation for $z(x) \rightarrow$ solution. (See below)

(e) Predator-Prey System

x(t) as prey and y(t) as predators, we have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax - bxy, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -cy + \hat{d}xy \tag{2.5}$$

Note: Equation (2.5) is separable when written in principle

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \Rightarrow y(x) \Rightarrow x(t), y(t)$$

This is of order 1, degree 1, and a nonlinear system.

(f) Combat Model System

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ay, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -bx \tag{2.6}$$

This is of order 1, degree 1, and linear system.

Note: Again equation (2.6) is separable when written as $\frac{dy}{dx} = \frac{bx}{ay} \Rightarrow y(x) \Rightarrow x(t), y(t)$

In general the solution of a differential equation of order n contains a number n of arbitrary constants. This general solution can be specialised to a particular solution by assigning definite values to these constants.

Example 23.

(a) Family or parabolae $y = Cx^2$ as constant C takes different values.

On a particular curve of the family $\frac{\mathrm{d}y}{\mathrm{d}x}=2Cx$. By substitution, eliminate $C\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{2y}{x}$. This is a geometrical statement about slopes.

Note: 1st order differential equation \leftrightarrow 1 arbitrary constant in general solution.

(b)
$$x = A \sin \omega t + B \cos \omega t$$

$$\frac{dx}{dt} = A\omega \cos \omega t - B\omega \sin \omega t$$

$$\frac{d^2x}{dt^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$$
 $\Rightarrow \frac{d^2x}{dt^2} + \omega^2 x = 0$

<u>Note</u>: 2nd order differential equation \leftrightarrow 2 arbitrary constants in general solution.

Of course it's the reverse of this process we normally want to perform in order to get the general solution. We then often need a particular solution — which satisfie certain other conditions — boundary or initial condition. These allow us to find the arbitrary constants in the solutions.

2.1.2 First Order Differential Equations

Properties and approaches

There are essentially 4 types we can solve analytically:

- separable
- homogeneous
- linear
- *exact* (in Chapter "Partial Differentiation and Multivariable Calculus" later)

Let's look at them one by one:

(a) Separable

$$\frac{\mathrm{d}y}{\mathrm{d}x} = G(x) \cdot H(y)$$

Solve by rearrangement and integration

$$\int^{y} \frac{\mathrm{d}y}{H(y)} = \int^{x} G(x) \mathrm{d}x$$

E.g.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy^2 e^{-x}$$

$$\int \frac{1}{y^2} \mathrm{d}y = \int x e^{-x} \mathrm{d}x$$

$$-\frac{1}{y} = -xe^{-x} - e^{-x} + C$$

Or singular solution y = 0.

If we want the particular solution which passes through x = 1, y = 1, then of course we need

$$C = -1 + 2e^{-1}$$
 and $\frac{1}{y} = (x+1)e^{-x} + 1 - 2e^{-1}$

(b) Homogeneous

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right)$$

Substitution $\frac{y}{x} = u(x)$, i.e. a new dependent variable,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u + x \frac{\mathrm{d}u}{\mathrm{d}x} (= f(u)) \quad (Remember!)$$

$$f(u) - u = \frac{x \mathrm{d}u}{\mathrm{d}x}$$

$$\int \frac{\mathrm{d}u}{f(u) - u} = \int \frac{\mathrm{d}x}{x}$$

$$\vdots$$

E.g.

(i)
$$x^{2} \frac{dy}{dx} + xy - y^{2} = 0$$

$$\frac{dy}{dx} = \left(\frac{y}{x}\right)^{2} - \frac{y}{x}$$

$$\frac{du}{dx} = \frac{u^{2} - 2u}{x}$$

$$\vdots$$

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y-3}{x-y+1}$$

This does not look homogeneous as it stands, but can be made so by substituting x = 1 + X, y = 2 + Y, and the expression becomes

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{X+Y}{X-Y} = \frac{1+\left(\frac{Y}{X}\right)}{1-\left(\frac{Y}{Y}\right)}$$

Then let $\frac{Y}{X} = u(X)$.

$$\Rightarrow \int \left(\frac{1-u}{1+u^2}\right) du = \int \frac{dX}{X}$$

Eventually, the equation becomes

$$\tan^{-1}\frac{Y}{X} - \frac{1}{2}\ln\left(1 + \frac{Y^2}{X^2}\right) = \ln X + C$$
$$\tan^{-1}\left(\frac{y-2}{x-1}\right) - \frac{1}{2}\ln\left[(x-1)^2 + (y-2)^2\right] = C$$

Note: If we have e.g. $\frac{dy}{dx} = \frac{x+y-3}{2(x+y)-7}$, then substitute v(x) = x+y will work!

(c) Linear

$$\frac{\mathrm{d}y}{\mathrm{d}x} + F(x)y = G(x)$$

1st power only for y and $\frac{dy}{dx}$. We apply an integrating factor R(x):

$$R(x) = \exp\left[\int^x F(x) dx\right]$$

This allows us to form the expression

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[y \exp\left(\int_{-\infty}^{x} F(x) \mathrm{d}x \right) \right] = G(x) \exp\left(\int_{-\infty}^{x} F(x) \mathrm{d}x \right)$$

and then integrate...

E.g.

$$(x+2)\frac{dy}{dx} - 4y = (x+2)^{6}$$
$$\frac{dy}{dx} - \frac{4}{x+2} = (x+2)^{5}$$
$$\Rightarrow F(x) = -\frac{4}{x+2}, G(x) = (x+2)^{5}$$

Therefore,

$$R(x) = \exp\left[-\int^x \left(\frac{4}{x+2}\right) dx\right] = \dots = K(x+2)^{-4}$$

Subsequently, take K = 1 W.L.O.G.:

$$(x+2)^{-4} \frac{\mathrm{d}y}{\mathrm{d}x} - 4(x+2)^{-5}y = \frac{\mathrm{d}}{\mathrm{d}x} \left[y(x+2)^{-4} \right] = x+2$$

As such,

$$y(x+2)^{-4} = \frac{1}{2}x^2 + 2x + C$$
 (Put C at the right time!)
$$y(x) = \left(\frac{1}{2}x^{2+2x+C}\right)(x+2)^4$$
 (So e.g. $y(0) = 8 \Rightarrow C = \frac{1}{2}$)

Novelties!

- (i) Bernoulli equation (See Equation(2.4)) A nonlinear equation rendered linear by a substitution $u = y^{1-n}$...
- (ii) E.g.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x + e^y}$$

It is <u>nonlinear</u> for y(x) but <u>linear</u> for x(y):

$$\frac{\mathrm{d}x}{\mathrm{d}y} - x = e^y \Rightarrow \dots$$

2.1.3 'Special' Second Order Differential Equations

Definition 24. General Explicit form is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right)$$

(a) $y, \frac{dy}{dx}$ missing, i.e.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(x)$$

Just integrate twice!

(b) $x, \frac{dy}{dx}$ missing, i.e.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = f(y)$$

Warning: Do not write $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{1}{\frac{\mathrm{d}^2 x}{\mathrm{d} y^2}}$

Chapter 3

Linear Algebra

Definition 25. A column vector (n-column vector) \mathbf{v}_n is a tuple of n real numbers written as a single column, with $a_1, a_2, a_3, \ldots, a_n \in \mathbb{R}$:

$$m{v}_n := egin{pmatrix} a_1 \ a_2 \ a_3 \ dots \ a_n \end{pmatrix}$$

Definition 26. \mathbb{R}^n is the set of all column vectors of height n whose entries are real numbers. In symbols:

$$\mathbb{R}^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_1, a_2, \dots, a_n \in \mathbb{R} \right\}$$

Example 27. \mathbb{R}^2 can be seen as Euclidean plane. \mathbb{R}^3 can be seen as Euclidean space.

Caution: Our vectors always "start" at the origin.

Definition 28. The *zero vector* $\mathbf{0}_n$ is the height *n*-column vector all of whose entries are 0.

Definition 29. The *standard basis vectors* in \mathbb{R}^n are the vectors

$$m{e}_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}, \quad m{e}_2 = egin{pmatrix} 0 \ 1 \ dots \ 0 \end{pmatrix}, & \ldots, & m{e}_n = egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix}$$

i.e. e_k is the vector with kth entry equal to 1 and all other entries equal to 0.

(Operations on column vectors) Definition 30. Let

$$m{v} = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}, \quad m{u} = egin{pmatrix} u_1 \ u_2 \ dots \ u_n \end{pmatrix}$$

be column vectors \mathbb{R}^n , and let λ be a (real or complex) number.

(1) Addition on vectors in \mathbb{R}^n is given by:

$$\begin{pmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \vdots \\ v_n + u_n \end{pmatrix}$$

 $+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ (binary operation). $(\mathbb{R}^n, +)$ is a group.

(2) **Scalar multiplication** λv on \mathbb{R}^n :

$$\begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{pmatrix}$$

 $s: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, so not binary operation.

(3) **Dot product** $v \cdot u$ is defined to be the number $v_1u_1 + v_2u_2 + \cdots + v_nu_n \cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, so not binary.

Example 31. Show that $(\mathbb{R}^n, +)$ is an Abelian group.

- Identity: $\mathbf{0}_n \ (v + \mathbf{0}_n = \boldsymbol{v})$
- \bullet - \boldsymbol{v} are inverses, where

$$-\boldsymbol{v} := \begin{pmatrix} -v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix}$$

- associativity: $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$.
- commutative: u + v = v + u

<u>Caution</u>: + only makes sense for vectors of the same size. e.g. $\boldsymbol{v} \cdot \boldsymbol{0}_n = 0 \in \mathbb{R}$.

Definition 32. let $v_1, v_2, v_3, \ldots, v_n \in \mathbb{R}^n, \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n \in \mathbb{R}$, then

$$\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \cdots + \lambda_n \boldsymbol{v}_n$$

is called a *linear combination* of $v_1, v_2, v_3, \ldots, v_n$.

Definition 33. The set of all linear combinations of a collection of vectors v_1, v_2, \ldots, v_n is called the **span** of the vectors v_1, v_2, \ldots, v_n . Notation:

$$\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\}:=\{\lambda_1\boldsymbol{v}_1+\lambda_2\boldsymbol{v}_2+\cdots+\lambda_n\boldsymbol{v}_n|\lambda_1,\ldots,\lambda_n\in\mathbb{R}\}$$

Example 34. compute the span of

 $ullet \ \{m{e}_1,m{e}_2\}, \ m{e}_1,m{e}_2 \in \mathbb{R}^2.$

$$\operatorname{span}\{\boldsymbol{e}_1,\boldsymbol{e}_2\} = \{\lambda_1\boldsymbol{e}_1 + \lambda_2\boldsymbol{e}_2 | \lambda_1, \lambda_2 \in \mathbb{R}\} = \{\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} | \lambda_1, \lambda_2 \in \mathbb{R}\}$$

• span
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} \lambda_1\\2\lambda_2\\0 \end{pmatrix} | \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

Definition 35. let $v \in \mathbb{R}^n$. The *length* of v, a.k.a. the *norm* of v, is the non-negative real number ||v|| defined by

$$||oldsymbol{v}|| = \sqrt{oldsymbol{v} \cdot oldsymbol{v}}$$

<u>Note</u>: $||\mathbf{0}|| = 0$, and conversely if $\mathbf{v} \neq 0$ then $||\mathbf{v}|| > 0$. This definition agrees with out usual ideas about the length of a vector in \mathbb{R}^2 or \mathbb{R}^3 , which follows from Pythagoras' theorem.

Definition 36. A vector $\mathbf{v} \in \mathbb{R}^n$ is called a **unit vector** if $||\mathbf{v}|| = 1$.

Example 37.

- (1) Any non-zero vector \boldsymbol{v} can be made into a unit vector $u := \frac{\boldsymbol{v}}{||\boldsymbol{v}||}$. This process is called **normalizing**.
- (2) The standard basis vectors are unit vectors.

3.0.1 Basic Matrix Operations

Definition 38. An $n \times m$ -matrix is a rectangular grid of numbers called the *entries* of the matrix with n rows and m columns. A real matrix is onne whose entries are real numbers, and a complex matrix is one whose entries are complex numbers.

Notations: $M_{n \times m}(\mathbb{R}), M_{n,m}(\mathbb{R}), \operatorname{Mat}_{n \times m}(\mathbb{R}), \mathbb{R}^{n \times m}$.

Operations on matrices:

Definition 39. let $A = (a_{ij})$ and $B = (b_{ij})$ are $n \times m$ -matrix, $\lambda \in \mathbb{R}$. Then:

- (1) $A + B = n \times m$ -matrix $(a_{ij} + b_{ij})$. $+ : M_{n \times m}(\mathbb{R}) \times M_{n \times m}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$
- (2) $\lambda A = n \times m$ -matrix (λa_{ij})

Theorem 40. $(M_{n\times m}(\mathbb{R}),+)$ is an Abelian group.

Definition 41. The transpose A^T of an $n \times m$ -matrix (a_{ij}) is the $m \times n$ -matrix (a_{ij}) .

(Multiplying matrices with vectors) Definition 42. Let $A = (a_{ij})$ be an $n \times m$ -matrix, $v \in \mathbb{R}^m$. Then Av is the vector in \mathbb{R}^n with i-th row entry $\sum_{j=1}^m a_{ij}v_j$

Example 43. • Prove that for $A \in M_{n \times m}(\mathbb{R}), e_k \in \mathbb{R}^m, Ae_k = k$ -th column of A.

<u>Proof</u>: let $A = (a_{ij})$. By definition the *i*-th entry of Ae_k is

$$\sum_{i=1}^{m} a_{ij} (e_k)_j = a_{ik}$$

since $(e_k)_j = 0$ whenever $j \neq k$, 1 for j = k

- $\bullet \ \nu \cdot v = \nu^T v$
- Let I_n be the identity matrix. Show formally that $I_n \nu = \nu, \forall \nu \in \mathbb{R}^n$.
- let $\nu_1, \nu_2, \nu_3 \in \mathbb{R}^3$. Write the linear combination $3\nu_1 5\nu_2 + 7\nu_3$ as a multiplication of matrix $A \in M_{3\times 3}(\mathbb{R})$ with a vector $x \in \mathbb{R}^3$

3.1 System of linear equations

Definition 44. A linear equation in the variables $x_1, x_2, \ldots, x_n \in \mathbb{R}$ is an equation of the form:

$$\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n = c$$
, with $\lambda_1, \ldots, \lambda_n \subset Fixed$ real numbers

<u>Caution</u>: In particular, no powers/multiplications/function of one or more variables.

Definition 45. A system of linear equations is a simultaneous list of linear equations

Chapter 4 Analysis