

GRAPHS

Graphs are represented as a set of vertices and a set of edges.

Sometimes they concretely model a network (roads, communication) but usually they represent abstract relationships (people/friendshipsArsspignenterintilPitoject Exam Help

GRAPHS

- Graphs model relationships.
- We often model problems as graphs and then design algorithms leveraging theory about graphs.
- Examples:
 - Friend Networks
 - Links on the web

Assignment Project Exam Help

https://tutorcs.com

EXAMPLE

Graph G = (V, E)

 $V = \{1, 2, 3, 4, 5\}$ (finite set of vertices)

 $E = \{(1, 2), (1, 3), (1, 4), (2, 4), (3, 5), (4, 5)\}$ (finite set of edges)

In general, V is a set and E is a set of pairs from V

b , a , d , c , b is a cycle but b , a , b and b , a , d , b , e are not cycles

CONNECTED

- Two vertices are connected if there is a (simple) path between them.
- Being connected is an equivalence relation (recall from CIT 592):
 - Reflexive: Every verte Assignment groupe etf. Exam Help
 - Symmetric: If there is a path totall v to totall v to totall v (only works in undirected graphs)

WeChat: cstutorcs

• Transitive: If there is a path from u to v and a path from v to w then the paths can be concatenated to make a path from u to w. If this path is not simple, we can remove cycles to make it simple.

GRAPHS: CONNECTED, ACYCLIC

- Connected components of a graph: equivalence classes of the "connected" relation

If only one equivalence class, the graph is connected.

Assignment Project Exam Help

- A graph is acyclic if it has no cycles.
- A connected, acyclic graph is called https://tutorcs.com

Examples:

WeChat: cstutorcs

- a) Connected graph
- b) Acyclic graph with 2 components
- c) Tree

NUMBER OF VERTICES AND EDGES

ullet Convention: Use n to denote the number of vertices and m to denote the number of edges in a graph.

m can be as low as 0 or as high as $\binom{n}{2}$