Day 1 - 10 July 2012

Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let G be the point of intersection of the lines G and G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G are the point of the lines G and G are the point of the lines G and G are the point of the lines G and G are the point of the lines G are the lines G and G are the lines G and G are the lines G are the lines G are the lines G are the lines G

(The excircle of ABC opposite the vertex A is the circle that is tangent to the line segment BC, to the ray AB beyond B, and to the ray AC beyond C.)

Proposed by Evangelos Psychas, Greece

2 Let $n \ge 3$ be an integer, and let a_2, a_3, \ldots, a_n be positive real numbers such that $a_2 a_3 \cdots a_n = 1$. Prove that

$$(1+a_2)^2(1+a_3)^3\cdots(1+a_n)^n > n^n.$$

Proposed by Angelo Di Pasquale, Australia

[3] The *liar's guessing game* is a game played between two players A and B. The rules of the game depend on two positive integers k and n which are known to both players.

At the start of the game A chooses integers x and N with $1 \le x \le N$. Player A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and asking A whether x belongs to S. Player B may ask as many questions as he wishes. After each question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any k+1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:

1. If $n \geq 2^k$, then B can guarantee a win. 2. For all sufficiently large k, there exists an integer $n \geq (1.99)^k$ such that B cannot guarantee a win.

Proposed by David Arthur, Canada

IMO 2012

4 Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that, for all integers a, b, c that satisfy a + b + c = 0, the following equality holds:

$$f(a)^{2} + f(b)^{2} + f(c)^{2} = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).$$

(Here \mathbb{Z} denotes the set of integers.)

Proposed by Liam Baker, South Africa

5 Let ABC be a triangle with $\angle BCA = 90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment CD. Let K be the point on the segment AX such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC. Let M be the point of intersection of AL and BK.

Show that MK = ML.

Proposed by Josef Tkadlec, Czech Republic

 $\boxed{6}$ Find all positive integers n for which there exist non-negative integers a_1, a_2, \ldots, a_n such that

$$\frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \dots + \frac{1}{2^{a_n}} = \frac{1}{3^{a_1}} + \frac{2}{3^{a_2}} + \dots + \frac{n}{3^{a_n}} = 1.$$

Proposed by Dusan Djukic, Serbia