

Run on:	March 1, 2001, 16:16:52 ; Search time 91.75 Seconds (without alignments) 21.119 Million cell updates/sec									
Copyright (C) 1993 - 2000 Compugen Ltd.										
OM protein - protein search, using sw model										
Perfect score: 342	US-09-331-631A-7_COPY_81_140									
Sequence: 1 LQRYQOCGRCQEQQQQR.....HENYHNKKNRSEEEEGQQR	60									
Scoring table: BLOSUM62										
Gapop 10.0 , Gapext 0.5										
Searched: 88757 seqs, 32294092 residues										
Total number of hits satisfying chosen parameters: 88757										
Minimum DB seq length: 0										
Maximum DB seq length: 200000000										
Post-processing: Minimum Match 0%										
Maximum Match 100%										
Listing first 45 summaries										
Database : SwissProt_39,*										
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.										
3. SUMMARIES										
Result No.	Score	Query	Length	DB ID	Description	RESULT 1	VCLLA_GOSHI	RPT;	605 AA.	ALIGNMENTS
1	133	38.9	605	1 VCLLA_GOSHI	ID: VCLLA_GOSHI STANDARD;	1	1	RA	SEQUENCE FROM N.A.	
2	132	38.6	588	1 VCLLB_GOSHI	ID: P09799; STANDARD;	2	1	AC	Chian C.A., Borroto K., Kamalay J.A., Dure L. III;	
3	93	27.2	708	1 GBF_DICDI	DT: 01-MAR-1989 (Rel. 10. Created)	3	1	CC	"Developmental biochemistry of cottonseed embryogenesis and germination. XIX. Sequences and genomic organization of the alpha	
4	90.5	26.5	285	1 INVO_CANFA	CC: DT: 01-MAR-1989 (Rel. 10. Last sequence update)	4	1	CC	VICILIN GC72-A PRECURSOR (ALPHA-GLOBULIN A).	
5	90.5	26.5	395	1 SRY_MOUSE	DE: 15-JUL-1999 (Rel. 38. Last annotation update)	5	1	CC	Gossypium hirsutum (Upland cotton).	
6	90	26.3	905	1 SNF5_YEAST	DT: VICILIN GC72-A PRECURSOR (ALPHA-GLOBULIN A).	6	1	CC	Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Malvales; Malvaceae; Gossypium.	
7	87	25.4	482	1 U2R2_HUMAN	DE: Plant Mol. Biol. 9:533-546(1987).	7	1	CC	[1]	
8	87	25.4	1154	1 WCL1_NEUCR	DP: SEQUENCE FROM N.A.	8	1	CC	SEQUENCE FROM N.A.	
9	86	25.1	251	1 LP61_EIMCR	RA: Chian C.A., Borroto K., Kamalay J.A., Dure L. III;	9	1	CC	RA: Chian C.A., Borroto K., Kamalay J.A., Dure L. III;	
10	86	25.1	2124	1 Y192_HUMAN	RT: "Developmental biochemistry of cottonseed embryogenesis and germination. XIX. Sequences and genomic organization of the alpha	10	1	CC	RT: "Developmental biochemistry of cottonseed embryogenesis and germination. XIX. Sequences and genomic organization of the alpha	
11	85	24.9	1403	1 PRO_DRONE	RT: globulin (vicilin) genes of cottonseed.;"	11	1	CC	RT: globulin (vicilin) genes of cottonseed.;"	
12	84.5	24.7	648	1 KAPC_DICDI	RL: PLANT MOLECULAR BIOLOGY 9:533-546(1987).	12	1	CC	RL: PLANT MOLECULAR BIOLOGY 9:533-546(1987).	
13	84	24.6	527	1 RBFL_CANAL	RP: FUNCTION: SEED STORAGE PROTEIN.	13	1	CC	RP: FUNCTION: SEED STORAGE PROTEIN.	
14	83.5	24.4	544	1 INVO_AOTTR	CC: BODIES	14	1	CC	CC: BODIES	
15	83.5	24.4	919	1 ANDR_HUMAN	-1- SIMILARITY: TO OTHER 75 SEED STORAGE PROTEINS (PHASEOLIN, VICILIN, CONVICILIN, CONGLYCININ, ETC.).	15	1	CC	-1- SIMILARITY: TO OTHER 75 SEED STORAGE PROTEINS (PHASEOLIN, VICILIN, CONVICILIN, CONGLYCININ, ETC.).	
16	83	24.3	1090	1 NITA_NEUCR	CC: This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL Outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).	16	1	CC	CC: This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL Outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch).	
17	82.5	24.1	467	1 INVOMOUSE	CC: DR: EMBL: M19378; AAA33069.1; -.	17	1	CC	CC: DR: EMBL: M19378; AAA33069.1; -.	
18	82	24	1905	1 TAGB_DICDI	CC: DR: PIR: S06598; S06398.	18	1	CC	CC: DR: PIR: S06598; S06398.	
19	81	23.7	339	1 TFD2_HUMAN	CC: DR: HSSP: P50477; ICAX.	19	1	CC	CC: DR: HSSP: P50477; ICAX.	
20	81	23.7	758	1 YM38_YEAST	CC: DR: INTERPRO: IPR001113; -.	20	1	CC	CC: DR: INTERPRO: IPR001113; -.	
21	81	23.7	816	1 HUNB_DRON	CC: DR: PF00546; Seeds7; 1.	21	1	CC	CC: DR: PF00546; Seeds7; 1.	
22	81	23.7	1130	1 REPT_MOUSE	CC: DR: SIGNAL 1; 23	22	1	CC	CC: DR: SIGNAL 1; 23	
23	80.5	23.5	445	1 OC3N_MOUSE	CC: FT: CHAIN 24	23	1	CC	CC: FT: CHAIN 24	
24	80	23.5	445	1 OC3N_RAT	CC: SQ: SEQUENCE 605 AA; 71049 MW; C9DB9371C976953B CRC64;	24	1	CC	CC: SQ: SEQUENCE 605 AA; 71049 MW; C9DB9371C976953B CRC64;	
25	80	23.4	479	1 U2R1_HUMAN	CC: Query Match 38.9%; Score 133; DB 1; Length 605; Best Local Similarity 43.3%; Pred. No. 5.5e-06; Matches 26; Conservative 14; Mismatches 18; Indels 2; Gaps 2;	25	1	CC	CC: Query Match 38.9%; Score 133; DB 1; Length 605; Best Local Similarity 43.3%; Pred. No. 5.5e-06; Matches 26; Conservative 14; Mismatches 18; Indels 2; Gaps 2;	
26	80	23.4	540	1 PNR_DROME	CC: QY 3 ROYQOCGRCQEQOGQREGQQCQRCWKEQE-RGEHTH-YHHKKKNFSEEEEGQQR 60	26	1	CC	CC: QY 3 ROYQOCGRCQEQOGQREGQQCQRCWKEQE-RGEHTH-YHHKKKNFSEEEEGQQR 60	
27	80	23.4	1023	1 CLOC_DROME	CC: Db 120 KQFKCQQRCQWQPERKQOCVKCREQYQEDPWKGGERENKWRREEEESDEGQQQR 179	27	1	CC	CC: Db 120 KQFKCQQRCQWQPERKQOCVKCREQYQEDPWKGGERENKWRREEEESDEGQQQR 179	
28	79.5	23.2	1898	1 TRHY_HUMAN	CC: LEG3_PEA	28	1	CC	CC: LEG3_PEA	
29	79.5	23.2	47	1 AGRP_LUCY	CC: P56568 luffa cylindrica	29	1	CC	CC: P56568 luffa cylindrica	
30	79.5	23.2	585	1 INVO_HUMAN	CC: P07476 hom sapien	30	1	CC	CC: P07476 hom sapien	
31	79.5	23.2	911	1 ANDR_PANTR	CC: P07775 pan troglodytes	31	1	CC	CC: P07775 pan troglodytes	
32	79	23.1	338	1 LEG3_PEA	CC: P14594 pisum sativum	32	1	CC	CC: P14594 pisum sativum	
33	79	23.1	438	1 YOCLB_GOSHI	CC: Q09360 caenorhabditis	33	1	CC	CC: Q09360 caenorhabditis	

AC P09801;
 DT 01-MAR-1989 (Rel. 10, Created)
 DT 01-MAR-1989 (Rel. 10, Last sequence update)
 DT 15-JUL-1999 (Rel. 38, Last annotation update)
 DE VICKLIN C72 PRECURSOR (ALPHAGLOBULIN B).
 OS Gossypium hirsutum (Upland cotton).
 OC Eukaryota; Viridiplantae; Embryophyta; Tracheophyta; Spermatophyta;
 OC Magnoliopsida; eudicotyledons; core eudicots; Rosidae; eurosids II;
 OC Malvales; Malvaceae; Gossypium.
 [1]
 SEQUENCE FROM N A.
 Chian C.A., Pyle J.B., Legocki A.B., Dure L. III;
 RT "Developmental biochemistry of cottonseed embryogenesis and
 germination. XVIII. cDNA and amino acid sequences of the members of
 the storage protein families.";
 RL Plant Mol. Biol. 7:475-489(1986).
 CC -!- FUNCTION: SEED STORAGE PROTEIN.
 CC -!- SUBCELLULAR LOCATION: COTYLEDONARY MEMBRANE-BOUND VACUOLAR PROTEIN
 BODIES.
 -!- SIMILARITY: TO OTHER 7S SEED STORAGE PROTEINS (PHASEOLIN, VICILIN,
 CONVICILIN, CONGLYCLININ, ETC.).

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

DR EMBL; T00315; -.
 DR DICTYPB; DB0246; GBPA.
 DR KW Transcription regulation; Activator; DNA-binding; Nuclear protein;
 DR REPEAT.
 FT REPEAT 339 368 1.
 FT DOMAIN 481 510 2.
 FT DOMAIN 11 21 POLY-SER.
 FT DOMAIN 115 263 GLN-RICH.
 FT DOMAIN 270 292 POLY-ASN.
 FT DOMAIN 549 557 POLY ASN.
 SQ SEQUENCE 588 AA; 69729 MW; 63E699B29AB8ADEF CRC64;

Query Match 38.6%; Score 132; DB 1; Length 588;
 Best Local Similarity 35.8%; Pred. No. 6; 7e-06; Indels 22; Gaps 3;
 Matches 29; Conservative 11; Mismatches 19; Indels 22; Gaps 3;

QY 2 ORQYQOCQGRCQEQQQCQREQQCQRCWEOYKED-----ERGEHENYHN 46
 Db 121 ORQFQECQQCHQHQORPERKQOCRCREERYQENPWRERREREEEEEEFGEGEQSHN 180

QY 47 ---HKK---NRSEEEEGOOR 60
 Db 181 PFHFRRSFOSRFREHGNFR 201

RESULT 4
 INVO_CANFA ID INVO_CANFA STANDARD; PRT; 285 AA.
 AC P18171;
 DT 01-NOV-1990 (Rel. 16, Created)
 DT 01-NOV-1990 (Rel. 16, Last sequence update)
 DT 01-FEB-1996 (Rel. 33, Last annotation update)
 DE INVOLUCRIN.
 GN IVL.
 OS Canis familiaris (Dog).
 OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 RN [1] Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.
 SEQUENCE FROM N A.
 RX MEDLINE=90348475; PubMed=2385171;
 RA Tseng H., Green H.;
 RT "The involucrin genes of pig and dog: comparison of their segments of repeats with those of prosimians and higher primates.";
 RL Mol. Biol. Evol. 7:293-302(1990).
 CC -!- FUNCTION: INVOLUCRIN IS A KERATINOCTYE PROTEIN THAT FIRST APPEARS IN THE CELL CYTOSOL, BUT ULTIMATELY BECOMES CROSS-LINKED TO MEMBRANE PROTEINS BY TRANSGLUTAMINASE. ALL THAT RESULTS IN THE FORMATION OF AN INSOLUBLE ENVELOPE BENEATH THE PLASMA MEMBRANE.
 CC -!- TISSUE SPECIFICITY: PRESENT IN KERATINOCTYES OF EPIDERMIS AND OTHER STRATIFIED SQUAMOUS EPITHELIUM.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (see <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

DR EMBL; M3442; AAA30853.1; -.

RESULT 3
 GBF_DICDI ID GBF_DICDI STANDARD; PRT; 708 AA.
 AC P36417;
 DT 01-JUN-1994 (Rel. 29, Created)
 DT 01-JUN-1994 (Rel. 29, Last sequence update)
 DT 01-NOV-1997 (Rel. 35, Last annotation update)
 DE G-BOX BINDING FACTOR (GBF).
 GN GBFA.
 OS Dictyostelium discoideum (Slime mold).
 RN [1] Eukaryota; Dictyosteliida; Dictyostelium.
 SEQUENCE FROM N A., AND PARTIAL SEQUENCE.
 RC STRAIN=AX3;
 RX MEDLINE=91170994; PubMed=812561;
 RA Schnitzler G.R., Fischer W.H., Firtel R.A.;
 RT "Cloning and characterization of the G-box binding factor, an essential component of the developmental switch between early and late development in Dictyostelium.";

Query Match 26.5%; Score 90.5; DB 1; Length 285;
 Best local Similarity 31.7%; Pred. No. 0.031; 18; Indels 5; Gaps 2;
 Matches 19; Conservative 18; Mismatches 18; Indexes 5; Gaps 2;
 SEQUENCE 285 AA; 33384 MW; DCE1BD88B9248BEA CRC64;

Qy 6 OOCQGRQEQCQQGQREQQQCQ--RKQWQEYKQERGEREHENYHNHK--KNRSEEECQQR 60
Db 73 QOCEPQEQEQQQKQEQSEQEQLHLQCLEHQEQESQDQKLYPEQCLEQDQEQQESQDQ 132

RESULT 5

SRY_MOUSE STANDARD PRT; 395 AA.

ID SRY_MOUSE PRT; 395 AA.

AC Q05738; DT 01-JUN-1994 (Rel. 29, Created)
 01-FEB-1996 (Rel. 33, Last sequence update)
 01-NOV-1997 (Rel. 35, Last annotation update)

DE SPX-DETERMINING REGION Y PROTEIN (TESTIS-DETERMINING FACTOR).

GN SRY OR TDY OR TDF.

OS Mus musculus (Mouse).

OC Mammalia; Euteleostomi; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Euteorpha; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

RN [1] RP SEQUENCE FROM N.A.

RC STRAIN=129; TISSUE=SPLIEN;

RX MEDLINE=92390368; PubMed=1518820;
 RA Gubbay J., Vivian N., Economou A., Jackson D., Goodfellow P.;
 "Inverted repeat structure of the Sry locus in mice.";
 Proc. Natl. Acad. Sci. U.S.A. 89:7953-7957(1992).

RN [2]

RP SEQUENCE FROM N.A.

RC STRAIN=TORINO; TISSUE=LIVER;

RX MEDLINE=94282071; PubMed=8012385;
 RA Coward P., Nagai K., Chen D., Thomas H.D., Nagamine C.M., Lau Y.-F.C.;
 "Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6.Y(Dom sex reversal)." ;
 Natl. Genet. 6:245-250(1994);

RN [3]

RP SEQUENCE OF 1-124 FROM N.A.

RC STRAIN=129;

RX MEDLINE=90326154; PubMed=2374589;
 RA Gubbay J., Collignon J., Koopman P., Capel B., Economou A., Munsterberg A., Vivian N., Goodfellow P., Lovell-Badge R.;
 "A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes.";
 Nature 346:245-250(1990).

RN [4]

CC -!- FUNCTION: TRANSCRIPTIONAL ACTIVATOR WHICH REGULATES A GENETIC SWITCH IN MALE DEVELOPMENT. IT IS RESPONSIBLE FOR INITIATING MALE SEX DETERMINATION. SRY HMG BOX RECOGNIZES DNA BY PARTIAL INFERNCALATION IN THE MINOR GROOVE.

CC -!- DOMAIN: THE GLN- AND HIS-RICH DOMAIN MAY MEDIATE PROTEIN-PROTEIN INTERACTIONS.

CC -!- POLYMORPHISM: DIFFERENT ALLELES OCCUR IN STRAINS OF MUS MUSCULUS (MOLLOSSINUS OR DOMESTICUS) IN PARTICULAR THE POLY-GLN REGION IN 167-177 IS POLYMORPHIC WITH EITHER 11, 12 OR 13 GLN. THE NATURE OF THIS POLY-GLN TRACT COULD AFFECT THE PROTEIN'S FUNCTION BY DISTURBING ITS SECONDARY STRUCTURE, PERHAPS BY PREVENTING EFFICIENT CONTACT WITH ANOTHER PROTEIN.

CC -!- SIMILARITY: CONTAINS 1 HMG BOX.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.ebi.ac.uk/announce/>)

RESULT 6

SNP5_YEAST STANDARD PRT; 905 AA.

ID SNP5_YEAST PRT; 905 AA.

AC PI8480; DT 01-NOV-1990 (Rel. 16, Created)
 01-OCT-1994 (Rel. 30, Last sequence update)

DB 160 00000FYDHQQQQQQQQQQFHDDHHOOQFHDDHHHHHQEQFHDDHQ 219

Qy 58 QDR 60
Db 220 QQQ 222

Query Match 26.5%; Score 90.5; DB 1; Length 395;
Best local Similarity 28.6%; Pred. No. 0.041; 20; Mismatches 20; Indexes 5; Gaps 2;
Matches 18; Conservative 20; Mismatches 20; Indels 5; Gaps 2;
SEQUENCE FROM N.A.

RC STRAIN=MCY;

RX MEDLINE=91042489; PubMed=2233708;

RA Laurent B.C., Treitel M.A., Carlson M.;

RT "The SNP5 protein of *Saccharomyces cerevisiae* is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes.";

RT Mol. Cell. Biol. 10:5616-5625(1990).

RN [2]

RP SEQUENCE FROM N.A.

RC STRAIN=S288C;

RX MEDLINE=9438722; PubMed=8091861;

RA Holmstrom K., Brandt T., Kallesoe T.;

RT "The sequence of a 32,420 bp segment located on the right arm of chromosome II from *Saccharomyces cerevisiae*.";

RL Yeast 10:S47-S62(1994).

CC -!- FUNCTION: INVOLVED IN TRANSCRIPTIONAL ACTIVATION. THE SWI/SNF COMPLEX IS REQUIRED FOR THE INDUCED EXPRESSION OF A LARGE NUMBER OF GENES. THIS COMPLEX ALTERS CHROMATIN STRUCTURE TO FACILITATE BINDING OF GENE-SPECIFIC DEDICATED TRANSCRIPTION FACTORS.

CC -!- SUBUNIT: COMPONENT OF THE SWI/SNF GLOBAL TRANSCRIPTION ACTIVATOR COMPLEX.

CC -!- SUBCELLULAR LOCATION: NUCLEAR.

PRO_DROME
ID PRO_DROME STANDARD; PRT; 1403 AA.
AC P29617;
DT 01-APR-1993 (Rel. 25; Created)
DT 01-FEB-1995 (Rel. 33; Last sequence update)
DT 30-MAY-2000 (Rel. 39; Last annotation update)
DE PROTEIN PROSPERO.
GN PRO.
OS Drosophila melanogaster (Fruit fly).
OC Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
PT Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
EC Phyoidea; Drosophilidae; Drosophila.
RN [1] SEQUENCE FROM N.A.
RP MEDLINE=92069760; PubMed=1720353;
RA Vaessin H., Grell E., Wolff E., Bier E., Jan L.Y., Jan Y.N.;
PT "Prospero" is expressed in neuronal precursors and encodes a nuclear
protein that is involved in the control of axonal outgrowth in
Drosophila".
RN [2] SEQUENCE FROM N.A.
RP MEDLINE=92171948; PubMed=1540176;
RA Matsuzaki F., Koizumi K., Hama C., Yoshioka T., Nabeshima Y.;
PT "Cloning of the Drosophila Prospero gene and its expression in
ganglion mother cells";
RL Biochem. Biophys. Res. Commun. 182:1326-1332(1992).
RN [3] SEQUENCE FROM N.A.
RP MEDLINE=93083413; PubMed=1842358;
RA Chu-Lagraff G., Wright D.M., McNeil L.K., Doe C.Q.;
PT "The prospero gene encodes a divergent homeodomain protein that
controls neuronal identity in Drosophila";
RL Development Suppl. 2:79-85(1991).
RN [4] SIMILARITY TO C_ELEGANS_CEH-25;
RP MEDLINE=94212446; PubMed=7909177;
RA Buerlein T.R.;
PT "A *Ceenorhabditis elegans* prospero homologue defines a novel domain.",
RL Trends Biochem. Sci. 19:70-71(1994).
CC -!- FUNCTION: INVOLVED IN THE CONTROL OF OTHER NEURONAL PRECURSOR
GENES AS WELL AS AXONAL OUTGROWTH AND PAYING-INDING OF NUMEROUS
CENTRAL AND PERIPHERAL NEURONS. IT IS PROBABLY GENERALLY REQUIRED
FOR PROPER NEURONAL DIFFERENTIATION OF MOST OR ALL NEURONS & THEIR
FOR THE SPECIFICATION OF IDENTITY. PROSPERO PROTEIN MAY REGULATE
TRANSCRIPTION BY BINDING TO DNA.
CC -!- SUBCELLULAR LOCATION: NUCLEAR.
CC -!- ALTERNATIVE PRODUCTS: 2 ISOFORMS; PROS-L (SHOWN HERE) AND PROS-S;
S; ARE PRODUCED BY ALTERNATIVE SPlicing. THEY HAVE DIFFERENT N-
TERMINAL AMINO ACIDS OF THE HOMEODOMAIN.
CC -!- TISSUE SPECIFICITY: NEURONAL PRECURSORS. EXPRESSED IN THE
DEVELOPING CNS, LENS-SECRETING CONE CELLS OF THE EYE, AND MIDGUT.
CC -!- DEVELOPMENTAL STAGE: EXPRESSED IN NEURONAL PRECURSORS EARLY DURING
FORMATION.
CC -!- SIMILARITY: BELONGS TO THE PROSPERO FAMILY OF HOMEBOX PROTEINS.
CC
This SWISS-PROT entry is copyright. It is produced through a collaboration
between the Swiss Institute of Bioinformatics and the EMBL outstation
the European Bioinformatics Institute. There are no restrictions on its
use by non-profit institutions as long as its content is in no way
modified and this statement is not removed. Usage by and for commercial
entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
or send an email to license@isb-sib.ch).

RESULT 12
KAPC_DICDI ID KAPC_DICDI STANDARD; PRT; 648 AA.
AC P34059;
DT 01-FEB-1994 (Rel. 28; Created)
DT 01-FEB-1994 (Rel. 28; Last sequence update)
DT 30-MAY-2000 (Rel. 39; Last annotation update)
DE CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT (EC 2.7.1.37).
GN PKAC OR PK2 OR FK3.
OS Dictyostelium discoideum (Slime mold);
OC Eukaryota; Dictyosteliida; Dictyostelium.
RN [1] SEQUENCE FROM N.A.
RP MEDLINE=91323730; PubMed=1864510;
RA Buerlein E., Anjard C., Scholder J.-C., Raymond C.D.;
PT "Isolation of two genes encoding putative protein kinases regulated
during dictyostelium development.",
RL Gene 102:57-65(1991).
RN [2] CHARACTERIZATION.
RP MEDLINE=93385080; PubMed=83373760;
RA Anjard C., Etchebehere L., Pinaud S., Veron M., Raymond C.D.;
PT "An unusual catalytic subunit for the cAMP-dependent protein kinase
of Dictyostelium discoideum.",
RL Biochemistry 32:9532-9538(1993).
RN [3] CHARACTERIZATION.
RC STRAIN=AX3;
RX MEDLINE=93066311; PubMed=1332055;
RA Mann S.K.O., Yamamoto W.M., Taylor S.S., Pirtei R.A.;

CC MEMBRANE PROTEINS BY TRANSGLUTAMINASE. ALL THAT RESULTS IN THE
FORMATION OF AN INSOLUBLE ENVELOPE BENEATH THE PLASMA MEMBRANE.
CC TISSUE-SPECIFICITY: PRESENT IN KERATINOCTYES OF EPIDERMIS AND
CC OTHER STRATIFIED SQUAMOUS EPITHELIUM.

CC This SWISS-PROT entry is copyright. It is produced through a collaboration
between the Swiss Institute of Bioinformatics and the EMBL outstation -
the European Bioinformatics Institute. There are no restrictions on its
use by non-profit institutions as long as its content is in no way
modified and this statement is not removed. Usage by and for commercial
entities requires a license agreement (see <http://www.isb-sib.ch/announce/>
or send an email to license@isb-sib.ch).

CC

EMBL; M25313; AAA35375.1; -.
HSSP; P80220; IDIP.
DR INTERPRO; IPR00354; -.
DR PFAM; PF0004; Involutin.
DR PROSINE; PR00795; INVOLUCRIN; 1.
DR KW Keratinocyte; Repeat.
SQ SEQUENCE 544 AA; 63927 MW; 2A02ABA5E1499F9D CRC64;

Query Match 24.4%; Score 83.5; DB 1; Length 544;
Best Local Similarity 34.8%; Pred. No. 0.25; Mismatches 21; Indels 11; Gaps 3;
Matches 23; Conservatism 11; MisMatches 21; Indels 11; Gaps 3;

Oy 4 QYQOCGCRQCQCGQ---REQQQCORKWQK-----EQEGER--HENYHNHKNRS 52
Db 157 EQEQGOKLCLEQEQEGHLELPQQEQGQIKLCLEQEQGQELPPQQEQGOKLHL 216
Oy 53 EEEEGQ 58
Db 217 EQEQGQ 222

RESULT 15

ANDR_HUMAN	STANDARD;	PRT;	919 AA.
ID	ANDR_HUMAN		
AC	P10275;		
DT	01-MAR-1989 (Rel. 10, Created)		
DT	01-APR-1990 (Rel. 14, Last sequence update)		
DT	01-OCT-2000 (Rel. 40, Last annotation update)		
DE	ANDROGEN RECEPTOR (DIHYDROTESTOSTERONE RECEPTOR).		
GN	AR OR NR3C4 OR DHTR.		
OS	Homo sapiens (Human).		
OC	Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;		
OC	Mammalia; Eutheria; Primates; Cetartiodactyla; Hominidae; Homo.		
RN	[1]		
RP	SEQUENCE FROM N.A.		
RX	MEDLINE=89112208; PubMed=3216866;		
RA	Lubahn D.B., Joseph D.R., Sar M., Tan J., Higgs H.N., Larson R.E., French F.S., Wilson E.M.; "The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate.", Mol. Endocrinol. 2:1265-1275(1988).		
RN	[2]		
RP	SEQUENCE FROM N.A.		
RX	MEDLINE=90083302; PubMed=2594783;		
RA	Wilson E.B., Brown T.R., Simental J.A., Higgs H.N., Migeon C.J., Wilson E.M., French F.S.; "Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity.", Proc. Natl. Acad. Sci. U.S.A. 86:9534-9538(1989).		
RN	[3]		
RP	SEQUENCE FROM N.A.		
RX	MEDLINE=90258935; PubMed=2342476;		
RA	Govindan M.V.; "Specific region in hormone binding domain is essential for hormone binding and trans-activation by human androgen receptor.", Mol. Endocrinol. 4:417-427(1990).		
RN	[4]		

RP SEQUENCE FROM N.A.

RC TISSUE-PROSTATE;

RC MEDLINE=89017168; PubMed=3174628;

RA Chang C., Kokontis J., Liao S.; "Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors.", Proc. Natl. Acad. Sci. U.S.A. 85:7211-7215(1988).

RL RN [5]

RP SEQUENCE FROM N.A.

RC TISSUE-PROSTATE;

RC MEDLINE=89088909; PubMed=2911578;

RA Tilley W.D., Marcelli M., Wilson J.D., McPhaul M.J.; "Characterization and expression of a cDNA encoding the human androgen receptor.", Proc. Natl. Acad. Sci. U.S.A. 86:327-331(1989).

RL RN [6]

RP SEQUENCE FROM N.A.

RC TISSUE-PROSTATE;

RC MEDLINE=91155943; PubMed=2293020;

RA Marcelli M., Tilley W.D., Wilson C.M., Griffin J.E., Wilson J.D., McPhaul M.J.; "Definition of the human androgen receptor gene structure permits the identification of mutations that cause androgen resistance: premature termination of the receptor protein at amino acid residue 588 causes complete androgen resistance.", Mol. Endocrinol. 4:1105-1116(1990).

RL RN [7]

RP SEQUENCE OF 189-919 FROM N.A.

RX MEDLINE=8817811; PubMed=335326;

RA Chang C., Kokontis J., Liao S.; "Molecular cloning of human and rat complementary DNA encoding androgen receptors.", Science 240:324-326(1988).

RL RN [8]

RP SEQUENCE OF 468-919 FROM N.A.

RX MEDLINE=88240407; PubMed=3377788;

RA Trapman J., Klaassen P., Kuiper G.G.J.M., van der Korput J.A.G.M., Faber P.W., van Rooij H.C.J., Geurts van Kessel A., Voorthorst M.M., Mulder E., Brinkmann A.O.; "Cloning, structure and expression of a cDNA encoding the human androgen receptor.", Biochem. Biophys. Res. Commun. 153:241-248(1988).

RL RN [9]

RP POLYMORPHISM OF POLY-GLN REGION.

RX MEDLINE=92220629; PubMed=1561105;

RA Sleddens H.F., Oostra B.A., Brinkmann A.O., Trapman J.; "Trinucleotide repeat polymorphism in the androgen receptor gene (AR).", Nucleic Acids Res. 20:1427-1427(1992).

RL RN [10]

RP POLYMORPHISM OF POLY-GLI REGION.

RC TISSUE-BLOOD;

RA Lu J., Danielsen M.; "Submitted (FEB-1995) to the EMBL/GenBank/DBJ databases.", Submitted (FEB-1995) to the EMBL/GenBank/DBJ databases.

RL RN [11]

RP VARIANTS SBMA IN POLY-GLN REGION.

RX MEDLINE=91287825; PubMed=2062380;

RA La Spada A.R., Wilson E.M., Lubahn D.B., Harding A.E., Fischbeck K.H.; "Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.", Nature 352:77-79(1991).

RL RN [12]

RP REVIEW ON VARIANTS.

RX MEDLINE=95023089; PubMed=1937057;

RA Patterson M.N., Hughes L.A., Gottlieb B., Pinsky L.; "The androgen receptor gene mutations database.", Nucleic Acids Res. 22:3560-3562(1994).

RL RN [13]

RP REVIEW ON VARIANTS.

RX MEDLINE=97169385; PubMed=9016528;

RA Gottlieb B., Trifiro M., Lumbruso R., Vasiliou D.M., Pinsky L.; "The androgen receptor gene mutations database.", Nucleic Acids Res. 25:158-162(1997).

RN [14] VARIANT LNCAP ALA-877.
 RX MEDLINE=91083633; PubMed=2260966;
 RA Veldscholte J., Ris-Stalpers C., Kuiper G.G., Jenster G.,
 RA Berrevoets C., Claassen E., van Rooij H.C.J., Trapman J.,
 RA Brinkmann A.O., Mulder E.;
 RT "A mutation in the ligand binding domain of the androgen receptor of
 human LNCAP cells affects steroid binding characteristics and
 response to anti-androgens.";
 RL Biochem. Biophys. Res. Commun. 173:534-540(1990).
 RN [15] VARIANT CAIS MET-866.
 RX MEDLINE=91186983; PubMed=2082179;
 RA Brown T.R., Lubahn D.B., Wilson E.M., French F.S., Migeon C.J.,
 RA Corton J.L.;
 RT "Functional characterization of naturally occurring mutant androgen
 receptors from subjects with complete androgen insensitivity.";
 RT Mol. Endocrinol. 4:1759-1772(1990).
 RL RN [16] VARIANT CYS-774.
 RP MEDLINE=91310758; PubMed=1856263;
 RA Marcellini M., Tilley W.D., Zoppi S., Griffin J.E., Wilson J.D.,
 RA McPhaul M.J.;
 RT "Androgen resistance associated with a mutation of the androgen
 receptor at amino acid 772 (Arg-->Cys) results from a combination of
 decreased messenger ribonucleic acid levels and impairment of
 receptor function.";
 RL J. Clin. Endocrinol. Metab. 73:318-325(1991).
 RN [17] VARIANT CAIS ASN-695 AND HIS-695, AND SEQUENCE OF 629-723 FROM N.A.
 RX MEDLINE=92131007; PubMed=1775137;
 RA Ris-Stalpers C., Trifiro M.A., Kuiper G.G., Jenster G., Romalo G.,
 RA Sai T., Van Rooij H.C., Kaufman M., Rosenthal R.L., Liao S.;
 RT "Substitution of aspartic acid-686 by histidine or asparagine in the
 human androgen receptor leads to a functionally inactive protein with
 altered hormone-binding characteristics.";
 RT Mol. Endocrinol. 5:1562-1569(1991).
 RN [18] VARIANT CAIS AND PAIS.
 RX MEDLINE=93338440; PubMed=1307250;
 RA Batch J.A., Williams D.M., Davies H.R., Brown B.D., Evans B.A.J.,
 RA Hughes I.A., Patterson M.N.,
 RT "Androgen receptor gene mutations identified by SSCP in fourteen
 subjects with androgen insensitivity syndrome.";
 RL Hum. Mol. Genet. 1:497-503(1992).
 RN [19] VARIANT CATS VAL-787.
 RX MEDLINE=92235226; PubMed=1569163;
 RA Nakao R., Haji M., Yanase T., Ogo A., Takayanagi R., Katsube T.,
 RT "A single amino acid substitution (Met-786-->Val) in the steroid-
 binding domain of human androgen receptor leads to complete androgen
 RT insensitivity syndrome.";
 RL J. Clin. Endocrinol. Metab. 74:1152-1157(1992).
 RN [20] VARIANT LNCAP ALA-877.
 RP MEDLINE=9222955; PubMed=1562539;
 RA Veldscholte J., Berrevoets C.A., Ris-Stalpers C., Kuiper G.G.,
 RA Jenster G., Trapman J., Brinkmann A.O., Mulder E.;
 RT "the androgen receptor in LNCAP cells contains a mutation in the
 RT ligand binding domain which affects steroid binding characteristics
 and response to antiandrogens.";
 RL J. Steroid Biochem. Mol. Biol. 41:665-669(1992).
 RN [21] VARIANT MET-730.
 RX MEDLINE=92335289; PubMed=1631125;
 RA Newmark J.R., Hardy D.O., Tomb D.C., Carter B.S., Epstein J.L.,
 RA Isaacs W.B., Brown T.R., Barrack E.R.;
 RT "Androgen receptor gene mutations in human prostate cancer.";
 RL Proc. Natl. Acad. Sci. U.S.A. 89:6319-6323(1992).
 RN [22] VARIANT CATS VAL-754.
 RX MEDLINE=93372806; PubMed=8103398;

RN Lobaccaro J.-M., Lumbruso S., Ktari R., Dumas R., Sultan C.;
 RT "An exonic point mutation creates a Maelli site in the androgen
 receptor gene of a family with complete androgen insensitivity
 syndrome.";
 RL Hum. Mol. Genet. 2:1041-1043(1993).
 RN [23] VARIANT CAIS ARG-807.
 RP MEDLINE=94108430; PubMed=8281140;
 RA Akeyemo O., Kallio P.J., Palvimo J.J., Kontula K., Jaenne O.A.;
 RT "A single-base substitution in exon 6 of the androgen receptor gene
 causing complete androgen insensitivity: the mutated receptor fails
 to transactivate but binds to DNA in vitro.";
 RL Hum. Mol. Genet. 2:1809-1812(1993).
 RN [24] VARIANT PAIS VAL-743.
 RP MEDLINE=93315568; PubMed=8325932;
 RA Nakao R., Yanase T., Sakai Y., Haji M., Nawata H.;
 RT "A single amino acid substitution (Gly743 --> Val) in the steroid-
 binding domain of the human androgen receptor leads to Reifenstein
 Query Match 24.4%; Score 83.5; DB 1; Length 919;
 Best Local Similarity 32.3%; Pred. No. 0; 4; Matches 21; Conservative 17; Mismatches 16; Indels 11; Gaps 2;
 Matches 21; Conservative 17; Mismatches 16; Indels 11; Gaps 2;
 QY 1 LQRQYQCQRCQEQQQQRCQQQCRRKWCWQYKEBERGEHENYHKKKNSS-----EE 54
 ||| ||| :|||

Search completed: March 1, 2001, 16:16:54

Job time: 434 sec

