МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 1.2

по дисциплине: Дискретная математика тема: «Нормальные формы Кантора»

Выполнил: ст. группы ПВ-202 Аладиб язан Проверил: Рязанов Юрий Дмитриевич Бондаренко Татьяна

Владимировна

Лабораторная работа № 1.2 «Нормальные формы Кантора»

Цель работы:

изучить способы получения различных нормальных форм Кантора множества, заданного произвольным теоретико-множественным выражением.

Задания к работе:

- 1. Представить множество, заданное исходным выражением (см. табл. 1), в нормальной форме Кантора.
- 2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.
- 3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.
- 4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Задание варианта № 14:

```
(D \cup C - B \Delta (B \cup A) \Delta C) \cap A
```

1. Представить множество, заданное исходным выражением (см. табл. 1), в нормальной форме Кантора.

```
\begin{array}{l} (D \cup C - B \triangle (B \cup A) \triangle C) \cap A = \\ (D \cup C - B \triangle A - B \triangle B \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \triangle A - B \triangle B \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A - B \triangle B \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{B} \triangle B \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{B} \triangle B \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{A} \triangle C) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{C} \cup C \cap \overline{A}) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{C} \cup C \cap \overline{A}) \cap A = \\ (D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{A} \cap A = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{A} \cap A = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap A \cap \overline{A} \cap A = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup B \cap \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{A} \cup \emptyset = \\ D \cup C \cap \overline{B} \cap \overline{A} \cup B \cap \overline{
```

2. Получить совершенную нормальную форму Кантора множества, заданного исходным выражением.

 $(D \cup C - B \Delta (B \cup A) \Delta C) \cap A =$

 $\overline{A} \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cup \emptyset - \emptyset \Delta (\emptyset \cup \emptyset) \Delta \emptyset) \cap \emptyset) \cup$ $\overline{A} \cap \overline{B} \cap \overline{C} \cap D \cap ((U \cup \emptyset - \emptyset \Delta (\emptyset \cup \emptyset) \Delta \emptyset) \cap \emptyset) \cup$ $\overline{A} \cap \overline{B} \cap C \cap \overline{D} \cap ((\emptyset \cup U - \emptyset \Delta (\emptyset \cup \emptyset) \Delta U) \cap \emptyset) \cup$ $\overline{A} \cap \overline{B} \cap C \cap D \cap ((U \cup U - \emptyset \Delta (\emptyset \cup \emptyset) \Delta U) \cap \emptyset) \cup$ $\overline{A} \cap B \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cup \emptyset - U \Delta (U \cup \emptyset) \Delta \emptyset) \cap \emptyset) \cup$ $\overline{A} \cap B \cap \overline{C} \cap D \cap ((U \cup \emptyset - U \Delta (U \cup \emptyset) \Delta \emptyset) \cap \emptyset) \cup$ $\overline{A} \cap B \cap C \cap \overline{D} \cap ((\emptyset \cup U - U \Delta (U \cup \emptyset) \Delta U) \cap \emptyset) \cup$ $\overline{A} \cap B \cap C \cap D \cap ((U \cup U - U \Delta (U \cup \emptyset) \Delta U) \cap \emptyset) \cup$ $A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cup \emptyset - \emptyset \Delta (\emptyset \cup U) \Delta \emptyset) \cap U) \cup$ $A \cap \overline{B} \cap \overline{C} \cap D \cap ((U \cup \emptyset - \emptyset \Delta (\emptyset \cup U) \Delta \emptyset) \cap U) \cup$ $A \cap \overline{B} \cap C \cap \overline{D} \cap ((\emptyset \cup U - \emptyset \Delta (\emptyset \cup U) \Delta U) \cap U) \cup$ $A \cap \overline{B} \cap C \cap D \cap ((U \cup U - \emptyset \Delta (\emptyset \cup U) \Delta U) \cap U) \cup$ $A \cap B \cap \overline{C} \cap \overline{D} \cap ((\emptyset \cup \emptyset - U \Delta (U \cup U) \Delta \emptyset) \cap U) \cup$ $A \cap B \cap \overline{C} \cap D \cap ((U \cup \emptyset - U \Delta (U \cup U) \Delta \emptyset) \cap U) \cup$ $A \cap B \cap C \cap \overline{D} \cap ((\emptyset \cup U - U \Delta (U \cup U) \Delta U) \cap U) \cup$ $A \cap B \cap C \cap D \cap ((U \cup U - U \Delta (U \cup U) \Delta U) \cap U) =$

> ĀnBnĒnŪnøu $\overline{A} \cap \overline{B} \cap \overline{C} \cap D \cap U \cup$ $\overline{A} \cap \overline{B} \cap C \cap \overline{D} \cap U \cup$ $\overline{A} \cap \overline{B} \cap C \cap D \cap U \cup$ ĀnBnĒnĪnøu $\overline{A} \cap B \cap \overline{C} \cap D \cap U \cup$ $\overline{A} \cap B \cap C \cap \overline{D} \cap \emptyset \cup$ $\overline{A} \cap B \cap C \cap D \cap U \cup$ $A \cap \overline{B} \cap \overline{C} \cap \overline{D} \cap \emptyset \cup$ $A \cap \overline{B} \cap \overline{C} \cap D \cap U \cup$ $A \cap \overline{B} \cap C \cap \overline{D} \cap \emptyset \cup$ $A \cap \overline{B} \cap C \cap D \cap U \cup$ AnBncnbnøu AnBncnDnUu $A \cap B \cap C \cap \overline{D} \cap \emptyset \cup$ $A \cap B \cap C \cap D \cap U =$

 $\overline{A} \cap \overline{B} \cap \overline{C} \cap D \cup \overline{A} \cap \overline{B} \cap C \cap \overline{D} \cup \overline{A} \cap \overline{B} \cap C \cap D \cup \overline{A} \cap B \cap \overline{C} \cap D \cup \overline{A} \cap \overline{C} \cap D \cup \overline{C} \cap$

 $\bar{A} \cap B \cap C \cap D \cup$ $A \cap \bar{B} \cap \bar{C} \cap D \cup$ $A \cap \bar{B} \cap C \cap D \cup$ $A \cap B \cap \bar{C} \cap D \cup$ $A \cap B \cap C \cap D$

Полученная СНФК:

 $(\bar{A} \cap \bar{B} \cap \bar{C} \cap D) \cup (\bar{A} \cap \bar{B} \cap C \cap \bar{D}) \cup (\bar{A} \cap \bar{B} \cap C \cap D) \cup (\bar{A} \cap B \cap \bar{C} \cap D) \cup (\bar{A} \cap B \cap C \cap D) \cup (\bar{A} \cap B \cap \bar{C} \cap D) \cup (\bar{A} \cap B \cap C \cap D) \cup (\bar{A} \cap B \cap \bar{C} \cap D) \cup (\bar{A} \cap B \cap C \cap D) \cup (\bar{A} \cap B \cap C \cap D)$

3. Получить сокращенную нормальную форму Кантора множества, заданного исходным выражением.

Преобразуем (D U C – B Δ (B U A) Δ C) \cap A в сокращенную НФК. Каждую конституенту представим двоичным вектором:

$0001 \cup 0010 \cup 0011 \cup 0101 \cup 1001 \cup 0111 \cup 1011 \cup 1101 \cup 1111$

Номер группы									
0	1	2	3	4					
	0001+	0011+	0111 +	1111 +					
	0010 +	0101 +	1011 +						
		1001 +	1101 +						
	00-1 +	0-11 +	-111 +						
	0-01 +	-011 +	1-11 +						
	-001 +	01-1 +	11-1+						
	001-	-101 +							
		10-1 +							
		1-01 +							
	01 +	11 +							
	-0-1 +	-1-1 +							
	01 +	11+							
	1								

Сокращённая НФК: 001- ∪ ---1

4. Получить тупиковые нормальные формы Кантора множества, заданного исходным выражением. Выбрать минимальную нормальную форму Кантора.

Импликантная матрица Квайна

	Простые	Конституенты							
	импликанты	0001	0011	0101	1001	0111	1011	1101	1111
x1	001-		+						
х3	1	+	+	+	+	+	+	+	+

 $011- \cup --1 \Leftrightarrow \overline{A} \cap B \cap C \cup D$

тупиковых НФК являются минимальными НФК