

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift ₁₀ DE 198 41 460 A 1

(2) Aktenzeichen: 198 41 460.9 Anmeldetag: 10. 9. 1998 (3) Offenlegungstag: 16. 3.2000

(51) Int. Cl.⁷: H 02 N 2/06 H 02 M 1/08 H 02 M 3/00

(71) Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

Hoffmann, Christian, 93057 Regensburg, DE; Freudenberg, Helmut, 93080 Pentling, DE; Gerken, Hartmut, 93152 Nittendorf, DE; Hecker, Martin, 93336 Altmannstein, DE; Pirkl, Richard, 93053 Regensburg, DE

(56) Entgegenhaltungen:

DE 196 52 801 C1 DE 196 52 807 A1 DE 196 32 872 A1

Wüstehube: "Schaltnetzteile" Expert-Verlag Gratenau, Reihe Kontakt +Studium Bd.33, 2.Aufl., 1982,

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Verfahren und Vorrichtung zum Ansteuern eines kapazitiven Stellglieds
- Ein kapazitives Stellglied (P1 bis Pn) wird über einen La-(57) dekondensator (C1), einen Umladekondensator (C2) und eine Umschwingspule (L) während eines Stellvorgangs aufgeladen, wobei der Ladekondensator (C1) vor dem Stellvorgang auf die Ausgangsspannung (USNT) einer Spannungsquelle (SNT) aufgeladen wird. Die Ausgangsspannung (U_{SNT}) der Spannungsquelle für die Aufladung des Ladekondensators (C1) wird durch zwei Regelschleifen geregelt, die eingangsseitig die Ladespannung (UC1) des Umladekondensators (C2) bzw. die von dem Stellglied (P1 bis Pn) aufgenommene Ladeenergie (E_{IST}) erfassen.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Ansteuerung eines kapazitiven Stellglieds, insbesondere eines piezoelektrisch betriebenen Kraftstoffeinspritzventils für eine Brennkraftmaschine, gemäß dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens gemäß dem Oberbegriff des Anspruchs 7.

Ein piezoelektrisches Stellglied besteht aus einer Vielzahl piezokeramischer Schichten, die stapelförmig übereinander angeordnet sind und einen sogenannten "Stack" bilden, der bei Anlegen einer elektrischen Spannung seine Abmessungen, insbesondere seine Länge, ändert oder bei mechanischem Druck oder Zug eine elektrische Spannung erzeugt.

Die elektrischen Eigenschaften eines derartigen Piezostacks ändern sich mit der Umgebungstemperatur, wobei die Kapazität und der Hub des Piezostacks mit steigender Umgebungstemperatur zunehmen. Bei den im Automobilbau zu berücksichtigenden Temperaturen von -40°C bis +150°C treten Kapazitätsänderungen bis zu einem Faktor 2 auf.

Wird ein Piezo-Stellglied in allen Betriebspunkten beispielsweise mit einer konstanten Spannung geladen, die bei niedrigen Temperaturen den benötigten Hub erbringt, so erhält man bei hohen Temperaturen einen deutlich größeren Hub als erforderlich, was bei Kraftstoffeinspritzventilen mit konstantem Kraftstoffdruck eine zu große Kraftstoffeinspritzmenge bedeutet. Da die Kapazität des Piezo-Stellglieds bei hohen Temperaturen ebenfalls größer ist, wird in diesem Fall sehr viel mehr Ladung und Energie verbraucht, als eigentlich erforderlich ist.

Untersuchungen haben gezeigt, daß die einem kapazitiven Stellglied zugeführte elektrische Energie ein wesentlich präziseres Maß für den Hub darstellt als die angelegte Spannung und das die Aufladung des Stellglieds mit einer konstanten elektrischen Energie einen wesentlichen konstanteren Hub des Stellglieds erbringt. Der Hub ändert sich bei einer bestimmten Temperatur etwa linear mit der angelegten Spannung. Ändert sich die Temperatur, so ändert sich auch der Hub bei gleichbleibender Spannung. Hingegen ändert sich der Hub proportional zum Quadrat der aufgebrachten 40 Energie, jedoch unabhängig von der Temperatur.

Aus der vorveröffentlichten deutschen Patentanmeldung 196 44 521.3 ist ein Verfahren bekannt, bei dem das Piezo-Stellglied mit einer vorgegebenen elektrischen Energie aufgeladen wird, um unabhängig von der Temperatur einen 45 möglichst konstanten Hub zu erreichen. Hierbei wird während der Stellvorgänge jeweils der elektrische Strom durch das Piezo-Stellglied sowie die über dem Piezo-Stellglied abfallende Spannung gemessen, um daraus die dem Piezo-Stellglied zugeführte elektrische Energie zu berechnen und 50 den Stellvorgang beim Erreichen der vorgegebenen Energie zu beenden. Nachteilig hierbei ist jedoch die aufwendige Energiemessung an dem Piezo-Stellglied sowie die Tatsache, daß die Regelung nur von einem Stellvorgang zum nächsten funktioniert.

Ein weiteres derartiges Verfahren zur Aufladung des Piezo-Stellglieds mit einer konstanten Energie ist aus der vorveröffentlichten deutschen Patentanmeldung 196 52 801 bekannt. Hierbei wird das Piezo-Stellglied über einen Ladekondensator, einen Umladekondensator und eine Umschwingspule aufgeladen, wobei die zu Beginn eines Stellvorgangs über den Kondensatoren anliegende Ladespannung und die während eines Stellvorgangs über dem Stellglied abfallende Stellgliedspannung gemessen wird. Aus den Meßwerten von Stellgliedspannung und Ladespannung wird dann aus einem Kennlinienfeld die temperaturabhängige Kapazität des Stellglieds ermittelt. Anschließend wird dann aus einem zweiten Kennlinienfeld aus der Stellglied-

kapazität und der Ladespannung die Ladeenergie berechnet und mit einem vorgegebenen Sollwert verglichen. Bei einer Abweichung der Ladeenergie von dem vorgegebenen Sollwert wird die Ladespannung beim nächsten Stellvorgang entsprechend nachgeregelt. Nachteilig hierbei ist, daß die Regelung der Ladespannung nur von einem Stellvorgang zum nächsten Stellvorgang erfolgt, nicht aber während eines Stellvorgangs. Bei einem piezoelektrisch betriebenen Kraftstoffeinspritzventil ist die Regelung deshalb nur drehzahlsynchron möglich, wobei die Regeldynamik von der Drehzahl und der Anzahl der Einspritzvorgänge abhängt. Ein weiterer Nachteil ist darin zu sehen, daß zum Umsetzen der gemessenen Stellgliedspannung in die Ladeenergie eine Kennlinie erforderlich ist. Schließlich wird die Endstufe nur aus der aufwendigen und komplizierten Ladeenergieerfassung geregelt.

Schließlich ist aus der älteren deutschen Patentanmeldung 197 23 932.3 ein weiteres Verfahren bekannt, bei dem die Aufladung des kapazitiven Stellglieds mit einer konstanten Energie erfolgt. Hierbei wird zum einen die Spannung über dem Umladekondensator gemessen, um die Ladespannung auf einen konstanten Sollwert einregeln zu können. Zum anderen wird die von dem Stellglied bei einem Stellvorgang aufgenommene elektrische Energie gemessen, um den Sollwert der Ladespannung so zu regeln, daß die Abweichung der während eines Stellvorgangs tatsächlich aufgenommenen Energie von dem vorgegebenen Sollwert der Energie minimal wird. Nachteilig hierbei ist jedoch, daß die Regelung diskontinuierlich erfolgt, da die Meßwerte abgetastet werden.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren bzw. eine Vorrichtung zum Ansteuern eines kapazitiven Stellglieds zu schaffen, wobei die Aufladung des Stellglieds mit einer konstanten Energie erfolgt, die unabhängig von der Frequenz der Stellvorgänge geregelt wird.

Die Aufgabe wird, ausgehend von dem bekannten Verfahren gemäß dem Oberbegriff des Anspruchs 1, durch die kennzeichnenden Merkmale des Anspruchs sowie – hinsichtlich der Vorrichtung zur Durchführung des Verfahrens – durch die Merkmale des Anspruchs 7 gelöst.

Die Erfindung schließt die technische Lehre ein, zur Regelung der Ladeenergie für das kapazitive Stellglied zwei Regelkreise vorzusehen, wobei der erste Regelkreis eingangsseitig die über dem Umladekondensator abfallende Spannung mißt und die Ladespannung auf den Sollwert einregelt, während der Sollwert der Ladespannung durch den zweiten Regelkreis vorgegeben wird.

Der Regelkreis für die Ladespannung ist vorzugsweise wesentlich schneller als der Regelkreis für die Ladeenergie, der nur parametrische Abweichungen der Schaltung und der Eigenschaften des Stellglieds berücksichtigen muß.

Die zur Regelung der Ladeenergie vorgesehene Messung der bei einem Stellvorgang tatsächlich aufgenommenen Ladeenergie kann auf verschiedene Arten erfolgen, wobei einige Verfahren zur Bestimmung der Ladeenergie in den vorstehend genannten Patentanmeldungen bereits beschrieben sind, auf die diesbezüglich verwiesen wird.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:

Fig. 1 als bevorzugtes Ausführungsbeispiel der Erfindung eine Vorrichtung zur Ansteuerung von mehreren Piezo-Stellgliedern als Blockschaltbild,

Fig. 2 ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Schaltung zur Ansteuerung von Piezo-Stellgliedern sowie

3

Fig. 3 zwei Kennlinienfelder zur Berechnung der Ladeenergie aus den Meßwerten der Stellgliedspannung und der Ladespannung bei der in Fig. 2 dargestellten Schaltung.

Das erfindungsgemäße Verfahren wird nachfolgend anhand der in Fig. 1 dargestellten Schaltung zum Ansteuern mehrerer kapazitiver Stellglieder P1 bis Pn erläutert, wobei die Stellglieder P1 bis Pn zur Betätigung von hier nicht dargestellten Kraftstoffeinspritzventilen einer Brennkraftmaschine bestimmt sind und durch ein Steuergerät ST angesteuert werden.

Zur Verdeutlichung der Funktion der einzelnen Bauelemente wird nachfolgend zunächst der strukturelle Aufbau der Schaltung erläutert, um anschließend den Betrieb der Schaltung erläutern zu können.

Zwischen dem Pluspol +U_{SNT} und dem Minuspol GND 15 einer geregelten Spannungsquelle SNT, vorzugsweise eines Schaltnetzteils, ist über eine Diode D1 ein Ladekondensator C1 angeschlossen. Parallel zu dem Ladekondensator C1 ist eine Reihenschaltung aus einem Ladeschalter Ta, zwei weiteren Dioden D2 und D3 sowie einem mit dem Minuspol 20 GND verbundenen Entladeschalter Tb angeordnet.

Zwischen dem Verbindungspunkt der beiden Dioden D2 und D3 und dem Masseanschluß GND liegt eine Reihenschaltung aus einem Umladekondensator C2, einer Umschwingspule L, einem ersten Stellglied P1 und einem ersten, gesteuerten Auswahlschalter T1.

Für jedes weitere Stellglied P2 bis Pn ist eine Reihenschaltung aus diesem Stellglied und einem weiteren Auswahlschalter T2 bis Tn der Reihenschaltung aus dem ersten Stellglied P1 und dem ersten Auswahlschalter T1 parallel 30 geschaltet.

Die Auswahlschalter T1 bis Tn, der Entladeschalter Tb und der nachstehend erwähnte Bypaßschalter Tc sind in diesem Ausführungsbeispiel als N-Power-MOSFET-Schalter ausgeführt, die üblicherweise Inversdioden enthalten. Der 35 Ladeschalter Ta ist in diesem Ausführungsbeispiel ein P-Power-MOSFET-Schalter.

Außerdem ist ein bereits erwähnter Bypaßschalter Tc vorgesehen, dessen Drainanschluß mit dem Verbindungspunkt zwischen der Umschwingspule L und den Stellgliedern P1 40 bis Pn verbunden ist, und dessen Sourceanschluß mit dem Sourceanschluß mindestens des Auswahlschalters T1 verbunden ist.

Der parallel zu den Stellgliedern P1 bis Pn angeordnete Bypaßschalter Tc wird von dem Steuergerät ST angesteuert, 45 wenn die Stellgliedspannung einen vorgegebenen Grenzwert überschreitet oder wenn ein in der Brennkraftmaschine bis hin zu den Leistungsendstufen der Einspritzventile auftretender Fehler erkannt wird, und entlädt die kapazitiven Stellglieder P1 bis Pn kurzschlußartig über die Inversdioden 50 der Auswahlschalter T1 bis Tn. Der Bypaßschalter Tc wird auch zum Aufladen des Entladekondensators C2 vor der ersten Stellgliedbetätigung oder zu dessen Nachladen zwischen zwei zeitlich auseinanderliegenden Stellgliedbetätigungen benötigt.

Anstelle des Bypaßschalters Tc kann auch eine Diode oder eine Zenerdiode mit gleicher Polung wie die Inversdiode des Bypaßschalters Tc vorgesehen ein, wobei dann aber die Aufladung des Entladekondensators C2 über eine Stellgliedbetätigung vorgenommen werden muß, was bei einem Kraftstoffeinspritzventil vorzugsweise ohne Kraftstoffdruck erfolgt.

Die Schalter Ta, Tb, Tc und T1 bis Tn werden von dem Steuergerät ST in Abhängigkeit von Steuersignalen st angesteuert, wobei die Steuersignale st von einem Motorsteuergerät erzeugt werden, das zur Vereinfachung nicht dargestellt ist. Der Ladekondensator C1 kann als Ausgangskondensator des Schaltnetzteils SNT ausgeführt sein. 4

Weiterhin ist eine als Sample-and-Hold-Schaltung ausgeführte Meßschaltung S&H vorgesehen, die eingangsseitig zum einen mit dem Verbindungspunkt des Umladekondensators C2 mit der Umschwingspule L und zum anderen mit dem Verbindungspunkt zwischen dem Umladekondensator C2 und der Diode D2 verbunden ist. Die Meßschaltung S&H erfaßt also die über dem Umladekondensator C2 abfallende Spannung.

Ferner weist die Schaltung einen Addierer A auf, der eingangsseitig zum einen mit dem Ausgang der Meßschaltung S&H und zum anderen mit dem Verbindungspunkt der Diode D1 und des Ladekondensators C1 verbunden ist, so daß am Ausgang des Addierers A die gesamte Ladespannung $U_{\rm IST} = U_{\rm C1} + U_{\rm C2}$ erscheint.

Ausgangsseitig ist der Addierer A mit einem Subtrahierer S1 verbunden, der die Differenz zwischen der gemessenen Ladespannung $U_{\rm IST} = U_{\rm C1} + U_{\rm C2}$ und einem vorgegebenen Sollwert $U_{\rm SOLL}$ berechnet und die Ausgangsspannung $U_{\rm SNT}$ des Schaltnetzteils SNT in Abhängigkeit von der Soll-Ist-Abweichung ΔU regelt, wie später eingehend erläutert wird.

Darüber hinaus verfügt die dargestellte Schaltung über eine Strommeßeinheit M, die in der Masseleitung zwischen dem Bypaßschalter Tc und dem Entladeschalter Tb angeordnet ist und somit die bei einem Stellvorgang eines der Stellglieder P1 bis Pn den über das jeweilige Stellglied fließenden elektrischen Strom I_P mißt, was erforderlich, ist um die während eines Stellvorgangs von dem jeweiligen Stellglied aufgenommene elektrische Energie berechnen zu können, wie weiter unten noch eingehend erläutert wird.

Zur Berechnung des dem Subtrahierer S1 zugeführten Sollwerts U_{SOLL} weist die Schaltung einen weiteren Subtrahierer S2 auf, der die Differenz zwischen den von dem Steuergerät ST gemessenen Energie $E_{\rm IST}$ und einem vorgegeben Sollwert E_{SOLL} für die Energie berechnet und die Soll-Ist-Abweichung ΔE der Energie einem Regler R zuführt, der den Sollwert U_{SOLL} der Ladespannung regelt.

Nachstehend wird nun das Ansteuerverfahren für diese Schaltung beschrieben. Während des Betriebs der Schaltung ist der Ladekondensator C1 auf die Ausgangsspannung +U_{SNT} aufgeladen, wobei die Ausgangsspannung +U_{SNT} vorgegeben wird, wie weiter unten eingehend erläutert wird.

Bei Betriebsbeginn wird der Ladekondensator C1 über die Diode D1 aufgeladen, wobei der Umladekondensator C2 und die Umschwingspule L stromlos sind. Damit auch der Umladekondensator C2 aufgeladen wird, werden zunächst der Ladeschalter Ta und der Bypaßschalter Tc leitend gesteuert. Dadurch entlädt sich der Ladekondensator C1 über die Diode D2, den Umladekondensator C2, die Umschwingspule L und den Bypaßschalter Tc. Anschließend werden der Ladeschalter Ta und der Bypaßschalter Tc wieder nichtleitend gesteuert und nun der Entladeschalter Tb leitend gesteuert. Dadurch fließt ein Strom in Gegenrichtung durch die Umschwingspule L, den Umladekondensator C2, den Entladeschalter Tb und die Inversdiode des Bypaßschalters Tc, wodurch C2 aufgeladen und so gepolt wird, daß nach einem oder mehreren Lade- und Entladezyklen an der Reihenschaltung des Ladekondensators C1 und des Umladekondensators C2 die Ladespannung $U_{IST} = U_{C1} + U_{C2}$ anliegt.

Die gemessene Ladespannung U_{IST} = U_{C1} + U_{C2} wird über die Meßschaltung S&H und den Addierer A einem Eingang des Subtrahierers S1 zugeführt, der die Differenz ΔU zwischen einem Sollwert U_{SOLL} der Ladespannung und der tatsächlich gemessenen Ladespannung U_{IST} berechnet und diesen Differenzwert ΔU dem Schaltnetzteil SNT als Regelgröße zuführt. Falls die gemessene Ladespannung U_{IST} von dem Sollwert U_{SOLL} der Ladespannung nach unten abweicht, so erhöht das Schaltnetzteil SNT die Ausgangsspannung U_{SNT}. Falls die gemessene Ladespannung U_{IST} dage-

gen größer ist als der Sollwert U_{SOLL} der Ladespannung, so wird die Ausgangsspannung U_{SNT} des Schaltnetzteils SNT entsprechend verringert. Die Ladespannung UC1 + UC2 wird also in einer Regelschleife geregelt, wobei am Eingang der Regelschleife die Spannung $U_{IST} = U_{C1} + U_{C2}$ über dem Ladekondensator C1 und dem Umladekondensator C2 gemes-

Während des Betriebs wird ein Stellglied P durch Leitendschalten des Ladeschalters Ta und eines der ausgewählten Auswahlschalter T1 bis Tn geladen, die Ladung auf dem 10 Stellglied P durch Sperren des Auswahlschalters und vorzugsweises Leitendschalten des Bypaßschalters Tc gehalten und das Stellglied P durch Sperren des Bypaßschalters Tc und Leitendschalten des Entladeschalters Tb entladen.

Im folgenden wird nun erläutert, wie der Sollwert U_{SOLL} 15 für die Ladespannung festgelegt wird, wozu eine weitere Regelschleife vorgesehen ist. Hierzu berechnet das Steuergerät ST aus der an dem jeweiligen Stellglied P1 bis Pn abgegriffenen Stellgliedspannung UP und dem von der Strommeßeinheit M gemessenen elektrischen Strom IP die wäh- 20 rend eines Stellvorgangs von dem Stellglied aufgenommene elektrische Energie E_{IST}. Hierzu werden die Momentanwerte der Stellgliedspannung UP und des elektrischen Stroms I_P während des Stellvorgangs laufend miteinander elektrische Leistung zu berechnen. Die auf diese Weise berechnete Stellgliedleistung wird während der Dauer eines Stellvorgangs aufintegriert, um die von dem Stellglied während eines Stellvorgangs aufgenommene elektrische Energie E_{IST} zu ermitteln. Der Schaltungsaufbau zur Berechnung der 30 Energie aus Strom und Spannung ist detailliert in der eingangs genannten deutschen Patentanmeldung 196 44 521.3 erläutert und braucht deshalb nicht näher beschrieben zu werden. Der auf diese Weise ermittelte Energiewert E_{IST} wird dann dem Subtrahierer S2 zugeführt, der die Differenz 35 ΔE zwischen dem von extern vorgegebenen Sollwert E_{SOLL} für die Energie und dem gemessenen Energiewert E_{IST} berechnet und die Soll-Ist-Abweichung ΔE dem Regler R zuführt, der in Abhängigkeit von der Soll-Ist-Abweichung ΔE den Sollwert U_{SOLL} für die Ladespannung festlegt. Die weitere Regelschleife erfaßt also eingangsseitig die von dem jeweiligen Stellglied während eines Stellvorgangs aufgenommene elektrische Energie EIST und regelt ausgangsseitig den Sollwert U_{SOLL} für die Ladespannung als Eingangsgröße für die andere Regelschleife.

Erfindungsgemäß weist die Regelung also zwei Regelschleifen auf, wobei die eine Regelschleife die Ladespannung auf dem vorgegebenen Sollwert U_{SOLL} konstant hält, während die andere Regelschleife die von dem Stellglied aufgenommene elektrische Energie $E_{\rm IST}$ erfaßt und den Soll- 50 wert USOLL der Ladespannung entsprechend nachregelt.

Die erfindungsgemäße Aufteilung der Regelung auf zwei Regelkreise bietet den Vorteil, daß die Regeldynamik nicht von der Schnelligkeit der aufwendigen Energiemessung abhängig ist. Ein weiterer Vorteil ist darin zu sehen, daß die 55 Ladeenergieerfassung gefiltert oder parametrisch beeinflußt werden kann, ohne direkt die Regeldynamik zu beeinflussen. Die Endstufenschaltung funktioniert hardwaremäßig autonom ohne die aufwendige Energiemessung und regelt auch ohne neu vorliegenden Ladeenergiewert (Totzeit) be- 60 reits nach, da eine kontinuierliche Regelung und keine abtastende Regelung vorliegt. Auch muß die Dimensionierung der Ladekondensatoren wegen des überlagerten Energieregelkreises nicht auf konstante Energieübertragung ausgelegt werden, sondern kann auf Wirkungsgrad und Spannungsfestigkeit der Bauteile optimiert werden. Ein Fertigungsabgleich der Ladeenergie in der Steuereinheit ist ohne zusätzlichen Aufwand möglich, wodurch der Einfluß der Bauteilstreuung verringert werden kann.

Fig. 2 zeigt ein anderes Ausführungsbeispiel einer erfindungsgemäßen Schaltung, die sich von der vorstehend beschriebenen Schaltung im wesentlichen dadurch unterscheidet, daß die Energiemessung ohne die Strommeßeinheit M erfolgt. Wegen der nahezu vollständigen Übereinstimmung dieser Schaltung mit der in Fig. 1 dargestellten Schaltung wird bezüglich des strukturellen Aufbaus und der Funktion der Schaltung auf die vorstehende Beschreibung verwiesen und nachfolgend nur die unterschiedliche Art der Energiemessung beschrieben, wobei auf die in Fig. 3 dargestellten Kennlinienfelder Bezug genommen wird.

Die Kennlinienfelder in Fig. 3 zeigen den Zusammenhang zwischen der temperaturabhängigen Stellgliedkapazität C_{P} der Ladespannung $U_{C} = U_{C1} + U_{C2}$, der Stellgliedspannung Up, und der von dem Stellglied aufgenommenen elektrischen Energie E. Das obere Diagramm zeigt über der temperaturabhängigen Stellgliedkapazität CP (T bzw. CP auf der Abszisse aufgetragen) die für verschiedene Ladespannungen U_C erreichbare Energie E im Stellglied, während das untere Diagramm ebenfalls über der temperaturabhängigen Stellgliedkapazität C_P auf der Abszisse die für diese Ladespannungen U_C erzielbare Stellgliedspannung U_P darstellt.

Es kann für jedes Stellglied P1 bis Pn ein eigenes Kennlimultipliziert, um die von dem Stellglied aufgenommene 25 nienfeld vorgesehen sein, es kann aber auch für alle Stellglieder P1 bis Pn oder für jede Stellgliedgruppe ein gemeinsames Kennlinienfeld vorgesehen sein.

Durch Betrachtung der Ladespannung UC und der damit erreichbaren Stellgliedspannung UP kann auf eine Strommessung, Multiplikation und Integration, wie oben beschrieben, verzichtet werden. Aufgrund des eindeutigen Zusammenhangs zwischen den genannten Größen kann auf annähernd konstante Energie geregelt werden. Ein Wert Ev, relativiert auf 100%Ev, ist in Fig. 3 als strichpunktierte Gerade e eingezeichnet.

Zur Energiebestimmung erfaßt das Steuergerät ST zum einen die Stellgliedspannung UP und zum anderen die Spannung U_C. Aus diesen Werten U_P, U_C wird dann aus dem unteren Kennlinienfeld in Fig. 3 zunächst die temperaturabhängige Stellgliedkapazität CP ermittelt, indem der Schnittpunkt B der strichpunktierten Geraden b mit der Kennlinie für die vorgegebene Ladespannung UC ermittelt wird. Anschließend wird im oberen Kennlinienfeld in Fig. 3 die zugehörige Energie E bestimmt, indem der Schnittpunkt C der strichpunktierten Geraden c mit der Kennlinie für die vorgegebene Ladespannung U_C ermittelt wird. Der Energiewert EIST ergibt sich dann direkt aus dem Schnittpunkt D der strichpunktierten Geraden d mit der Koordinatenachse.

Der auf diese Weise ermittelte Energiewert EIST wird dann dem Subtrahierer S2 zugeführt und in der vorstehend beschriebenen Weise zur Regelung des Sollwerts USOLL der Ladespannung verwendet.

Die Erfindung beschränkt sich in ihrer Ausführung nicht auf die vorstehend angegebenen bevorzugten Ausführungsbeispiele. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.

Patentansprüche

- 1. Verfahren zum Ansteuern mindestens eines kapazitiven Stellglieds (P1 bis Pn), insbesondere eines piezoelektrisch betriebenen Kraftstoffeinspritzventils einer Brennkraftmaschine, mit den folgenden Schritten:
 - Aufladen eines Ladekondensators (C1) über eine Spannungsquelle (SNT) mit einer vorgegebenen, steuerbaren Ausgangsspannung (USNT),
 - Messen der Ladespannung (UC2), die über ei-

ጸ

nem mit dem Ladekondensator (C1) in Reihe geschalteten Umladekondensator (C2) abfällt,

Regeln der Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) für die Aufladung des Ladekondensators (C1) in Abhängigkeit von der an dem Umladekondensator (C2) gemessenen Ladespannung (U_{C2}) in einer ersten Regelschleife,
 Entladen des Ladekondensators (C1) über den Umladekondensator (C2) und eine Umschwingspule (L) in das Stellglied (P1 bis Pn) während eines Stellvorgangs,

dadurch gekennzeichnet, daß zusätzlich in einer zweiten Regelschleife die während eines Stellvorgangs von dem Stellglied (P1 bis Pn) aufgenommene Ladeenergie (E_{IST}) ermittelt und die Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) für die Aufladung des Ladekondensators (C1) in Abhängigkeit von der ermittelten Ladeenergie (E_{IST}) geregelt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die über dem Ladekondensator (C1) abfallende Ladespannung (U_{C1}) und die über dem Umladekondensator (C2) abfallende Ladespannung (U_{C2}) zu der Gesamt-Ladespannung (U_{IST}) addiert werden und die Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) für die Aufladung des Ladekondensators (C1) in 25 Abhängigkeit von der Gesamt-Ladespannung (U_{IST}) geregelt wird.

Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Soll-Ist-Abweichung (ΔU) zwischen dem Meßwert (U_{IST}) der Gesamt-Ladespannung und einem vorgegebenen Sollwert (U_{SOLL}) der Gesamt-Ladespannung ermittelt und die Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) in Abhängigkeit von der Soll-Ist-Abweichung (ΔU) der Gesamt-Ladespannung geregelt wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Soll-Ist-Abweichung (ΔE) zwischen der gemessenen Ladeenergie ($E_{\rm IST}$) des Stellglieds (P1 bis Pn) und einem vorgegebenen Sollwert ($E_{\rm SOLL}$) der Ladeenergie berechnet und der Sollwert ($U_{\rm SOLL}$) der Gesamt-Ladespannung in Abhängigkeit von der Soll-Ist-Abweichung (ΔE) der Ladeenergie geregelt wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß während eines Stellvorgangs der durch das Stellglied (P1 bis Pn) fließende 45 Strom (I_P) und die über dem Stellglied (P1 bis Pn) abfallende Spannung (U_P) gemessen und daraus die von dem Stellglied (P1 bis Pn) während eines Stellvorgangs aufgenommene Ladeenergie (E_{IST}) berechnet wird.

6. Verfahren nach einem der Ansprüche 1 bis 4, da- 50 durch gekennzeichnet,

daß aus der Gesamt-Ladespannung ($U_{\rm IST}$) und der damit am Stellglied (P1 bis Pn) erreichten Stellgliedspannung ($U_{\rm P}$) die temperaturabhängige Kapazität ($C_{\rm P}$) des Stellglieds (P1 bis Pn) ermittelt wird,

daß aus der so ermittelten Kapazität (C_P) des Stellglieds (P1 bis Pn) und der Gesamt-Ladespannung (U_{IST}) die dem Stellglied (P1 bis Pn) während eines Stellvorgangs zugeführte Ladeenergie (E_{IST}) berechnet wird.

7. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, mit

 einer Spannungsquelle (SNT) mit einer steuerbaren Ausgangsspannung (U_{SNT}),

60

- einem Schaltnetzwerk zur Verbindung der 65 Spannungsquelle (SNT) mit dem Stellglied (P1 bis Pn) mit einem Ladekondensator (C1), einem Umladekondensator (C2), einer Umschwingspule (L) und steuerbaren Schaltelementen (Ta, Tb, Tc, T1 bis Tn),

- einem Steuergerät (ST) zur Ansteuerung der steuerbaren Schaltelemente (Ta, Tb, Tc, T1 bis Tn) des Schaltnetzwerks für einen Stellvorgang des Stellglieds (P1 bis Pn),

– einer eingangsseitig mit dem Umladekondensator (C2) und ausgangsseitig mit der Spannungsquelle (SNT) verbundenen ersten Regelschleife zur Regelung der Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) für die Aufladung des Ladekondensators (C1) in Abhängigkeit von der Ladespannung (U_{C2}) an dem Umladekondensator (C2),

gekennzeichnet durch eine zweite Regelschleife zur Regelung der Ausgangsspannung (U_{SNT}) der Spannungsquelle (SNT) für die Aufladung des Ladekondensators (C1) in Abhängigkeit von der von dem Stellglied (P1 bis Pn) während eines Stellvorgangs aufgenommenen Ladeenergie ($E_{\rm IST}$).

8. Vorrichtung nach Anspruch 7, gekennzeichnet durch einen eingangsseitig mit dem Ladekondensator (C1) und dem Umladekondensator (C2) verbundenen Addierer (A) zur Berechnung der Gesamt-Ladespannung ($U_{\rm IST}$) aus der über dem Ladekondensator (C1) abfallenden Ladespannung ($U_{\rm C1}$) und der über dem Umladekondensator (C2) abfallenden Ladespannung ($U_{\rm C2}$).

9. Vorrichtung nach Anspruch 8, gekennzeichnet durch einen eingangsseitig mit dem Addierer (A) verbundenen ersten Subtrahierer (S1) zur Berechnung der Soll-Ist-Abweichung (\Delta U) zwischen der gemessenen Gesamt-Ladespannung (UIST) und einem vorgegebenen Sollwert (USOLL) für die Gesamt-Ladespannung. 10. Vorrichtung nach Anspruch 9, gekennzeichnet durch einen zweiten Subtrahierer (S2) zur Berechnung der Soll-Ist-Abweichung (ΔE) zwischen der während eines Stellvorgangs von dem Stellglied aufgenommenen Ladeenergie (EIST) und einem vorgegebenen Sollwert (E_{SOLI}) für die Ladeenergie, wobei zwischen dem zweiten Subtrahierer (S2) und dem ersten Subtrahierer (S1) ein Regler (R) angeordnet ist, der den Sollwert (U_{SOLL}) der Gesamt-Ladespannung in Abhängigkeit von der Soll-Ist-Abweichung (ΔE) der Ladeenergie bestimmt.

11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die beiden Regelschleifen unterschiedliche Zeitkonstanten aufweisen.

12. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Meßeinheit zur Messung der während eines Stellvorgangs von dem Stellglied (P1 bis Pn) aufgenommenen Ladeenergie mit einer mit dem Stellglied (P1 bis Pn) in Reihe geschalteten Strommeßeinheit (M) und eine parallel zum Stellglied (P1 bis Pn) geschaltete Spannungsmeßeinheit aufweist.

Hierzu 3 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 198 41 460 A1 H 02 N 2/06** 16. März 2000

Fig.3

Fuel injection valve control method for combustion engine

Patent number:

DE19841460

Also published as:

😭 FR2784204 (A

Publication date:

2000-03-16

Inventor:

HOFFMANN CHRISTIAN (DE): FREUDENBERG

HELMUT (DE); GERKEN HARTMUT (DE); HECKER

MARTIN (DE); PIRKL RICHARD (DE)

Applicant:

SIEMENS AG (DE)

Classification:

- international:

F02D41/20; H01L41/04; F02D41/20; H01L41/00; (IPC1-

7): H02N2/06; H02M1/08; H02M3/00

- european:

F02D41/20P; H01L41/04B Application number: DE19981041460 19980910

Priority number(s): DE19981041460 19980910

Report a data error he

Abstract of **DE19841460**

The method involves charging a charging capacitor via a voltage source (SNT) with a predetermined, controllable output voltage (USNT). The charging voltage (UC2) is measured over a charge reversal capacitor (C2), which is in series with the charging capacitor. The output voltage of the voltage source is controlled in a first control loop for the charging of the charging capacitor in dependence on the measure charging voltage at the charge reversal capacitor. The charging capacitor is dumped via the charge reversal capacitor and a coil during a control event. A second control loop determines the charging energing (EIST) absorbed by the control members (P1-Pn) during a control event. The output voltage of the voltage source is controlled for the charging of the charge capacitor dependent on the determined charging energy.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK USPTO,

Docket # 83-03P04867

Applic. # 0/ 56 7

Applicant: Aspel mayr, esal.

Lerner Greenberg Stemer LLP
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101