7	atm	e property of α -particles is that they produce a high density of ionisation of air at nospheric pressure. In this ionisation process, a neutral atom becomes an ion pair. The pair is a positively-charged particle and an electron.		
	(a)	State		
		(i)	what is meant by an α -particle,	
			[1]	
		(ii)	an approximate value for the range of $\alpha\mbox{-particles}$ in air at atmospheric pressure.	
			range =cm [1]	
	(b)		energy required to produce an ion pair in air at atmospheric pressure is 31 eV. α -particle has an initial kinetic energy of 8.5×10^{-13} J.	
		(i)	Show that 8.5×10^{-13} J is equivalent to 5.3 MeV.	
			[1]	
		(ii)	Calculate, to two significant figures, the number of ion pairs produced as the $\alpha\text{-particle}$ is stopped in air at atmospheric pressure.	
			number =[2]	

(iii)	Using your answer in (a)(ii) , estimate the average number of ion pairs produced per unit length of the track of the α -particle as it is brought to rest in air.
	number per unit length =[2]