

REINFORCEMENT LEARNING

Gergely Neu

Lecture 7: Basic RL algorithms

Basic RL algorithms

- 1. building blocks of RL methods
- 2. policy evaluation
 - Monte Carlo
 - temporal difference learning
- 3. policy evaluation and learning
 - SARSA
 - Q-learning

Basic RL algorithms

- 1. building blocks of RL methods
- 2. policy evaluation
 - Monte Carlo
 - temporal difference learning
- 3. policy evaluation and learning
 - SARSA
 - Q-learning

EPILOGUE

from
Dynamic Programming
to
Reinforcement Learning

Policy iteration:

 V_k

Policy iteration:

Policy iteration:

Policy iteration: Approximate policy iteration:

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

$$V_k$$
 $\pi_k = GV_k$
 V_k T_k
evaluate policy
 $V_{k+1} = V^{\pi_k}$

Approximate policy iteration:

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions ⇒ have to learn from sample access only
- State/action space can be large $\Rightarrow V^*$ and π^* cannot be stored in memory

Approximate policy iteration:

Fundamental RL tasks:

- Policy evaluation
- Policy improvement

Challenges in RL:

- Unknown transition and reward functions ⇒ have to learn from sample access only
- State/action space can be large $\Rightarrow V^*$ and π^* cannot be stored in memory

Approximate policy iteration:

LEVELS OF SAMPLE ACCESS

LEVELS OF SAMPLE ACCESS

LEVELS OF SAMPLE ACCESS

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

LEVELS OF SAMPLE ACCESS

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory

⇒ online RL

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory

⇒ online RL

Samples from full trajectories + reset action or save states

Generative model: Full sample access to $P(\cdot | x, a)$ for any (x, a)

 $\Rightarrow V^*$ and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

 $\Rightarrow V^*$ and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating V^* : linear function approximation

Define a set of d features:

$$\phi_i:X\to\mathbf{R}$$

Parametrize value functions as

$$V_{\theta}(x) = \theta^{\mathsf{T}} \phi(x)$$

• Learning $V^* \Leftrightarrow$ Learning a good θ_* $V_{\theta^*} \approx V^*$

 $\Rightarrow V^*$ and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating V^* : linear function approximation

- Define a set of d features: $\phi_i: X \to \mathbf{R}$
- Parametrize value functions as $V_{\theta}(x) = \theta^{T}\phi(x)$
- Learning $V^* \Leftrightarrow$ Learning a good θ_* $V_{\theta^*} \approx V^*$

Approximating π^* : parametrized policies

Define a set of d features:

$$\phi_i: X \times A \to \mathbf{R}$$

- Parametrize (stochastic) policies as $\pi_{\theta}(a|x) \propto \exp(\theta^{T}\phi(x))$
- Learning $\pi^* \Leftrightarrow$ Learning a good θ_* $\pi_{\theta^*} \approx \pi^*$

 $\Rightarrow V^*$ and π^* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate V^* and/or π^* in a computationally tractable way!

Approximating V^* : linear function approximation

Define a set of d features:

$$\phi_i: X \to \mathbf{R}$$

• Parametrize value functions as $V_{\theta}(x) = \theta^{T} \phi(x)$

Learning
$$V^* \Leftrightarrow \text{Learning a good } \theta_*$$

 $V_{\theta^*} \approx V^*$

Approximating π^* : parametrized policies

Define a set of d features:

$$\phi_i: X \times A \to \mathbf{R}$$

• Parametrize (stochastic) policies as $\pi_{\theta}(a|x) \propto \exp(\theta^{T}\phi(x))$

• Learning
$$\pi^* \Leftrightarrow$$
 Learning a good θ_* $\pi_{\theta^*} \approx \pi^*$

FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

STATE AGGREGATION

• Partition the state space X into d sets:

$$X = C_1 \cup C_2 \cup \cdots \cup C_d$$
 with $C_i \cap C_j = \emptyset$ when $i \neq j$

• Define feature i as $\phi_i(x) = \mathbf{1}\{x \in C_i\}$

STATE AGGREGATION

• Partition the state space X into d sets:

$$X = C_1 \cup C_2 \cup \cdots \cup C_d$$
 with $C_i \cap C_j = \emptyset$ when $i \neq j$

- Define feature i as $\phi_i(x) = \mathbf{1}\{x \in C_i\}$
- Parametrizes piecewise constant functions

STATE AGGREGATION EXAMPLE: "PROST" FEATURES FOR ATARI GAMES

High-dimensional observations: 192×160 pixels

STATE AGGREGATION EXAMPLE: "PROST" FEATURES FOR ATARI GAMES

STATE AGGREGATION EXAMPLE: "PROST" FEATURES FOR ATARI GAMES

Strictly generalizes the basic setting: for each state $x \in X$, introduce a feature ϕ_x as $\phi_x(x') = \mathbf{1}\{x = x'\}$

Strictly generalizes the basic setting: for each state $x \in X$, introduce a feature ϕ_x as $\phi_x(x') = \mathbf{1}\{x = x'\}$

Every function can be represented by these features: $V(\mathbf{x}) = \sum_{x'} V(x') \phi_{x'}(\mathbf{x})$

Strictly generalizes the basic setting: for each state $x \in X$, introduce a feature ϕ_x as $\phi_x(x') = \mathbf{1}\{x = x'\}$

Every function can be represented by these features: $V(\mathbf{x}) = \sum_{x'} V(x') \phi_{x'}(\mathbf{x})$

Only makes sense when X is finite and small Value function \approx lookup table

Strictly generalizes the basic setting: for each state $x \in X$, introduce a feature ϕ_x as $\phi_x(x') = \mathbf{1}\{x = x'\}$

Every function can be represented by these features: $V(\mathbf{x}) = \sum_{x'} V(x') \phi_{x'}(\mathbf{x})$

Only makes sense when X is finite and small Value function \approx lookup table

Basic RL algorithms

- 1. building blocks of RL methods
- 2. policy evaluation
 - Monte Carlo
 - temporal difference learning
- 3. policy evaluation and learning
 - SARSA
 - Q-learning

METHODS FOR POLICY EVALUATION

Observe:

Policy evaluation = estimating V^{π} : $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

$$V^{\pi}(x) = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) \mid x_{0} = x\right]$$

Observe:

Policy evaluation = estimating V^{π} : $V^{\pi}(x) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) | x_{0} = x]$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \operatorname{avg} \left(R_{1:N}(x) \right)$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \operatorname{avg}(R_{1:N}(x))$

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \operatorname{avg} \left(R_{1:N}(x) \right)$

Collection of discounted returns $\sum_{t=0}^{T'} \gamma^t r_t$ after first visit to x

Idea:

approximate $\mathbf{E}_{\pi}[\cdot]$ by sample averages!

- Simulate N trajectories using policy π
- For every state x that appears in the trajectories, let $\hat{V}_N(x) = \operatorname{avg} \left(R_{1:N}(x) \right)$

Average of i.i.d. random variables:

$$\lim_{N\to\infty} \hat{V}_N = V^{\pi}$$

Collection of discounted returns $\sum_{t=0}^{T'} \gamma^t r_t$ after first visit to x

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation

Input:

N trajectories $\sim \pi$, feature map $\phi: X \to \mathbb{R}^{d}$ **Output:**

$$\widehat{V}_N = \arg\min_{\theta \in \mathbb{R}^d} \mathbf{E}_x \left[\sum_{i=1}^N (\theta^{\mathsf{T}} \phi(x) - R_i(x))^2 \right]$$

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation

Input:

N trajectories $\sim \pi$, feature map $\phi: X \to \mathbb{R}^d$ **Output:**

$$\widehat{V}_N = \arg\min_{\theta \in \mathbb{R}^d} \mathbf{E}_x \left[\sum_{i=1}^N (\theta^{\mathsf{T}} \phi(x) - R_i(x))^2 \right]$$

Least-squares fit of discounted returns

Recovers the previous definition:

$$\arg\min_{v} \sum_{i} (v(x) - R_{i}(x))^{2} = \arg(R_{1:N}(x))$$

MDP formulation:

- State description:
- current sum of player (12-21)
- dealer's showing card (1-10)
- presence of usable ace
- Actions:
- hit
- stick
- Rewards:
- lose: -1
- draw: 0
- win: 1
- Transition dynamics:
- random initial state
- dealer hits below 17
- infinite deck

In each episode:

- Start with 2 cards
- Observe 1 showing card of dealer
- Decide to either hit (draw another card) or stick
- Episode ends when you stick or go bust (sum over 21)
- Outcome:
 - Dealer's sum < your sum ⇒ win
 - Dealer's sum = your sum ⇒ draw
 - Dealer's sum > your sum ⇒ lose

MONTE CARLO EXAMPLE: BLACKJACK

MDP formulation:

- State description:
- current sum of player (12-21)
- dealer's showing card (1-10)
- presence of usable ace
- Actions:
- hit
- stick
- Rewards:
- lose: -1
- draw: 0
- win: 1
- Transition dynamics:
- random initial state
- dealer hits below 17
- infinite deck

In each episode:

- Start with 2 cards
- Observe 1 showing card of dealer
- Decide to either hit (draw another card) or stick
- Episode ends when you stick or go bust (sum over 21)
- Outcome

Transition function P is complicated to represent \mathfrak{S}

BUT

sample episodes are easy to generate! ©

⇒ win

→ draw

⇒ lose

MONTE CARLO EXAMPLE: BLACKJACK

MONTE CARLO EXAMPLE: BLACKJACK

Value of policy that always hits below 20

MONTE CARLO POLICY ITERATION FOR BLACKJACK

PROPERTIES OF MONTE CARLO

© Value estimates converge to true values ©

 \odot Doesn't need prior knowledge of P or $r \odot$

PROPERTIES OF MONTE CARLO

© Value estimates converge to true values ©

 \odot Doesn't need prior knowledge of P or r \odot

☼ Doesn't make use of the Bellman equations ☼

Basic RL algorithms

- 1. building blocks of RL methods
- 2. policy evaluation
 - Monte Carlo
 - temporal difference learning
- 3. policy evaluation and learning
 - SARSA
 - Q-learning

A BETTER OBJECTIVE?

Idea: construct an objective that uses the Bellman equations

$$V^{\pi} \approx T^{\pi}V^{\pi}$$

A BETTER OBJECTIVE?

Idea: construct an objective that uses the Bellman equations

$$V^{\pi} \approx T^{\pi}V^{\pi}$$

The Bellman error

$$\Delta_V(x) = T^{\pi}V(x) - V(x)$$

A BETTER OBJECTIVE?

Idea: construct an objective that uses the Bellman equations

$$V^{\pi} \approx T^{\pi}V^{\pi}$$

The Bellman error
$$\Delta_V(x) = T^{\pi}V(x) - V(x)$$

Idea: use stochastic approximation to find \hat{V} such that $\mathbf{E}_{x \sim \mu}[\Delta_{\hat{V}}(x)] \approx 0$

TEMPORAL DIFFERENCE LEARNING

Input: arbitrary function $\hat{V}_0: X \to \mathbf{R}$ For t = 0,1,..., $\delta_t = r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)$ $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

TEMPORAL DIFFERENCE LEARNING

Input: arbitrary function $\hat{V}_0: X \to \mathbf{R}$ For t = 0,1,..., $\delta_t = r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)$ $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

$$\delta_t$$
 = "what I saw" - "what I expected to see" "target" - "current prediction" "temporal difference"

THE CONVERGENCE OF TD(0)

Sequence of estimates $(\hat{V}_1, \hat{V}_2, ...)$ is a dynamical system

Converges to equilibrium if step-sizes satisfy

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

Equilibrium:

$$\mathbf{E}[\delta_t] = \mathbf{E}[r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)] = 0$$

THE CONVERGENCE OF TD(0)

Sequence of estimates $(\hat{V}_1, \hat{V}_2, ...)$ is a dynamical system

Converges to equilibrium if step-sizes satisfy

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

Equilibrium:

$$\mathbf{E}[\delta_t] = \mathbf{E}[r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)] = 0$$

$$\mathbf{E}[\Delta_{\widehat{V}}(x)] = 0$$

THE CONVERGENCE OF TD(0)

Sequence of estimates $(\hat{V}_1, \hat{V}_2, ...)$ is a dynamical system

Converges to equilibrium if step-sizes satisfy

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

Equilibrium:

$$\mathbf{E}[\delta_t] = \mathbf{E}[r_t + \gamma \hat{V}_t(x_{t+1}) - \hat{V}_t(x_t)] = 0$$

$$\mathbf{E}[\Delta_{\widehat{V}}(x)] = 0$$

Intuition: for small stepsizes, \hat{V}_t tracks the path of the ODE

$$\frac{\mathrm{d}\tilde{V}(t)}{\mathrm{d}t} = (T^{\pi} - I)\tilde{V}(t)$$

which is globally asymptotically stable with equilibrium $V^{\pi} = T^{\pi}V^{\pi}$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector

Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by TD(0):

TD(0) with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0,1,...$$
,
$$\delta_t = r_t + \gamma \theta_t^{\mathsf{T}} \phi(x_{t+1}) - \theta_t^{\mathsf{T}} \phi(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \phi(x_t)$$

TD(0) WITH LINEAR FUNCTION APPROXIMATION

Let $\phi: X \to \mathbf{R}^d$ be a feature vector

Approximating $V^{\pi}(x) \approx \theta^{\top} \phi(x)$ by TD(0):

TD(0) with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$

For
$$t = 0,1,...$$
,
$$\delta_t = r_t + \gamma \theta_t^{\mathsf{T}} \phi(x_{t+1}) - \theta_t^{\mathsf{T}} \phi(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \phi(x_t)$$

This still converges!!!

to the projection of V^{π} to the span of the features

TD(0) VS. SGD FOR LINEAR REGRESSION

Linear least-squares regression:

- Data set: $(\phi_t, y_t)_{t=1}^n$ drawn from distribution \mathcal{D} with feature vectors $\phi_t \in \mathbb{R}^d$, and outputs y_t
- Goal: find θ^* minimizing $L(\theta) = \mathbb{E}_{\phi, y \sim \mathcal{D}}[\ell(\theta; \phi, y)] = \mathbb{E}_{\phi, y \sim \mathcal{D}}[(\phi^{\mathsf{T}}\theta y)^2]$

TD(0) VS. SGD FOR LINEAR REGRESSION

Linear least-squares regression:

- Data set: $(\phi_t, y_t)_{t=1}^n$ drawn from distribution \mathcal{D} with feature vectors $\phi_t \in \mathbb{R}^d$, and outputs y_t
- Goal: find θ^* minimizing $L(\theta) = \mathbb{E}_{\phi, y \sim \mathcal{D}}[\ell(\theta; \phi, y)] = \mathbb{E}_{\phi, y \sim \mathcal{D}}[(\phi^{\mathsf{T}}\theta y)^2]$

SGD for linear regression

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$ For t = 0,1,...,

$$\theta_{t+1} = \theta_t + \alpha_t \nabla \ell(\theta_t; \phi_t, y_t)$$

= $\theta_t + \alpha_t (\phi_t^{\mathsf{T}} \theta_t - y_t) \phi_t$

TD(0) VS. SGD FOR LINEAR REGRESSION

Linear least-squares regression:

- Data set: $(\phi_t, y_t)_{t=1}^n$ drawn from distribution \mathcal{D} with feature vectors $\phi_t \in \mathbb{R}^d$, and outputs y_t
- Goal: find θ^* minimizing

$$L(\theta) = \mathbb{E}_{\phi, y \sim \mathcal{D}}[\ell(\theta; \phi, y)] = \mathbb{E}_{\phi, y \sim \mathcal{D}}[(\phi^{\mathsf{T}}\theta - y)^2]$$

SGD for linear regression

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\theta_{t+1} = \theta_t + \alpha_t \nabla \ell(\theta_t; \phi_t, y_t)$$

= $\theta_t + \alpha_t (\phi_t^{\mathsf{T}} \theta_t - y_t) \phi_t$

$$\delta_t = (\phi_t^{\mathsf{T}} \theta_t - y_t) =$$
 "prediction error"

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \to R$ be a parametric class of functions (e.g., deep neural network)

Approximating $V^{\pi}(x) \approx V_{\theta}(x)$ by TD(0):

TD(0) with general FA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\delta_t = r_t + \gamma V_{\theta_t}(x_{t+1}) - V_{\theta_t}(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_{\theta} V_{\theta_t}(x_t)$$

TD(0) WITH NONLINEAR FUNCTION APPROXIMATION

Let $V_{\theta}: X \to R$ be a p functions (e.g., deep

Not much is known about convergence 😊

Approximating $V^{\pi}(x) \approx V_{\theta}(x)$ by TD(0):

TD(0) with general FA

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$ For t = 0,1,...,

$$\delta_t = r_t + \gamma V_{\theta_t}(x_{t+1}) - V_{\theta_t}(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_{\theta} V_{\theta_t}(x_t)$$

PROPERTIES OF TD(0)

© Value estimates converge to true values ©

 \odot Doesn't need prior knowledge of P or r \odot

© Based on the concept of Bellman error ©

PROPERTIES OF TD(0)

- © Value estimates converge to true values ©
 - \odot Doesn't need prior knowledge of P or r \odot
 - Based on the concept of Bellman error

= "bootstrapping"

PROPERTIES OF TD(0)

○ Value estimates converge to true values ○

+ new problem: updates propagate very slowly!

Based on the concept of Bellman error

= "bootstrapping"

EXAMPLE

BETWEEN MONTE CARLO AND TD(0): $TD(\lambda)$

Idea: propagate the updates δ_t to all previous states on the trajectory

BETWEEN MONTE CARLO AND TD(0): $TD(\lambda)$

Idea: propagate the updates δ_t to all previous states on the trajectory

• Update in x_t : $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$

BETWEEN MONTE CARLO AND TD(0): $TD(\lambda)$

Idea: propagate the updates δ_t to all previous states on the trajectory

- Update in x_t : $\hat{V}_{t+1}(x_t) = \hat{V}_t(x_t) + \alpha_t \delta_t$
- Update in x_{t-1} : $\hat{V}_{t+1}(x_{t-1}) = \hat{V}_t(x_{t-1}) + \alpha_t \gamma \lambda \delta_t$
- Update in x_{t-2} : $\hat{V}_{t+1}(x_{t-2}) = \hat{V}_t(x_{t-2}) + \alpha_t (\gamma \lambda)^2 \delta_t$
- . . .
- Update in x_{t-k} : $\hat{V}_{t+1}(x_{t-k}) = \hat{V}_t(x_{t-k}) + \alpha_t (\gamma \lambda)^k \delta_t$

$$\lambda \in [0,1]$$

TD(\(\lambda\)) WITH FUNCTION APPROXIMATION

TD(0) with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$ For t = 0,1,...,

$$\delta_t = r_t + \gamma \theta_t^{\mathsf{T}} \phi(x_{t+1}) - \theta_t^{\mathsf{T}} \phi(x_t)$$
$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \phi(x_t)$$

TD(\(\lambda\)) WITH FUNCTION APPROXIMATION

Input: arbitrary param. vector $\theta_0 \in \mathbb{R}^d$ For t = 0,1,..., $z_t = \gamma \lambda z_{t-1} + \phi(x_t)$ $\delta_t = r_t + \gamma \theta_t^{\mathsf{T}} \phi(x_{t+1}) - \theta_t^{\mathsf{T}} \phi(x_t)$ $\theta_{t+1} = \theta_t + \alpha_t \delta_t z_t$

TD(\(\lambda\)) WITH FUNCTION APPROXIMATION

$TD(\lambda)$ with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\begin{aligned} \mathbf{z}_t &= \gamma \lambda \mathbf{z}_{t-1} + \phi(\mathbf{x}_t) \\ \delta_t &= r_t + \gamma \theta_t^{\mathsf{T}} \phi(\mathbf{x}_{t+1}) - \theta_t^{\mathsf{T}} \phi(\mathbf{x}_t) \\ \theta_{t+1} &= \theta_t + \alpha_t \delta_t \mathbf{z}_t \end{aligned}$$

 z_t : "eligibility trace"

TD(\(\alpha\)) WITH FUNCTION APPROXIMATION

$TD(\lambda)$ with LFA

Input: arbitrary param. vector $\theta_0 \in \mathbf{R}^d$

For
$$t = 0, 1, ...,$$

$$\begin{aligned} \mathbf{z}_t &= \gamma \lambda \mathbf{z}_{t-1} + \boldsymbol{\phi}(\mathbf{x}_t) \\ \delta_t &= r_t + \gamma \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{t+1}) - \boldsymbol{\theta}_t^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_t) \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \alpha_t \delta_t \mathbf{z}_t \end{aligned}$$

 z_t : "eligibility trace"

Equilibrium:

$$\mathbf{E}[\delta_t z_t] = 0$$

WHAT IS THE RIGHT CHOICE OF λ ?

WHAT IS THE RIGHT CHOICE OF λ ?

WHAT IS THE RIGHT CHOICE OF λ ?

Basic RL algorithms

- 1. building blocks of RL methods
- 2. policy evaluation
 - Monte Carlo
 - temporal difference learning
- 3. policy evaluation and learning
 - SARSA
 - Q-learning

FROM POLICY EVALUATION POLICY IMPROVEMENT

FROM POLICY EVALUATION POLICY IMPROVEMENT

Idea: Let's try to improve the policy on the fly, based on the current value estimates!

Idea: Let's try to improve the policy on the fly, based on the current value estimates!

Changes to the TD recipe:

- Estimate the Q-function instead of V
- Compute ε -greedy policy w.r.t. \widehat{Q}_t :

$$\pi_t(x) = \begin{cases} \arg\max \hat{Q}_t(x, a), & \text{w.p. } 1 - \varepsilon \\ \text{uniform random action,} & \text{w.p. } \varepsilon \end{cases}$$

Idea: Let's try to improve the policy on the fly, based on the current value estimates!

Changes to the TD recipe:

- Estimate the Q-function instead of V
- Compute ε -greedy policy w.r.t. \widehat{Q}_t :

$$\pi_t(x) = \begin{cases} \arg\max \hat{Q}_t(x, a), & \text{w.p. } 1 - \varepsilon \\ \text{uniform random action,} & \text{w.p. } \varepsilon \end{cases}$$

Optimize the Bellman error

$$\Delta_t = \mathbf{E} [r_t + \gamma \hat{Q}_t(x_{t+1}, \pi_t(x_{t+1}))] - \hat{Q}_t(x_t, a_t)$$

Idea: Let's try to improve the policy on the fly, based on the current value estimates!

Changes to the TD recipe:

Estimate the Q-function instead of V

• Compute ε -greedy policy v $\pi_t(x) = \begin{cases} \arg\max \hat{Q}_t(x) \\ \text{uniform rand} \end{cases}$ Drifting target policy!

Optimize the Bellman error

$$\Delta_t = \mathbf{E} [r_t + \gamma \hat{Q}_t(x_{t+1}, \pi_t(x_{t+1}))] - \hat{Q}_t(x_t, a_t)$$

SARSA

Input: arbitrary $\widehat{Q}_0: X \times A \to \mathbf{R}$

For t = 0, 1, ...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , a'_{t+1}
- Compute

$$\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \mathbf{a}'_{t+1}) - \hat{Q}_t(x_t, a_t)$$
$$\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$$

SARSA

Input: arbitrary $\widehat{Q}_0: X \times A \to \mathbf{R}$

For
$$t = 0, 1, ...,$$

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe $r_t, x_{t+1}, a'_{t+1} = a'_{t+1} \sim \pi_t$
- Compute

$$\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \mathbf{a}'_{t+1}) - \hat{Q}_t(x_t, a_t)$$
$$\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$$

SARSA

Input: arbitrary $\widehat{Q}_0: X \times A \to \mathbf{R}$

For
$$t = 0, 1, ...,$$

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe r_t , x_{t+1} , a'_{t+1} $a'_{t+1} \sim \pi_t$
- Compute

$$\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \mathbf{a}'_{t+1}) - \hat{Q}_t(x_t, a_t)$$
$$\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$$

SARSA =
$$(s_t, a_t, r_t, s_{t+1}, a'_{t+1})$$

SARSA ~ XARXA

Input: arbitrary $\widehat{Q}_0: X \times A \to \mathbf{R}$

For t = 0,1,...,

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. \hat{Q}_t
- Observe $r_t, x_{t+1}, \overline{a'_{t+1}} a'_{t+1} \sim \pi_t$
- Compute

$$\delta_t = r_t + \gamma \hat{Q}_t(x_{t+1}, \mathbf{a}'_{t+1}) - \hat{Q}_t(x_t, a_t)$$
$$\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$$

SARSA =
$$(s_t, a_t, r_t, s_{t+1}, a'_{t+1})$$

TRACKING A DRIFTING POLICY

Bellman error "optimized" by SARSA:

$$\Delta_t = \mathbf{E}[r_t + \gamma \hat{Q}_t(x_{t+1}, \pi_t(x_{t+1}))] - \hat{Q}_t(x_t, a_t)$$

TRACKING A DRIFTING POLICY

Bellman error "optimized" by SARSA:

 $\Delta_t = \mathbf{E}[r_t + \gamma \hat{Q}_t(x_{t+1}, \pi_t(x_{t+1}))] - \hat{Q}_t(x_t, a_t)$

On-policy learning: target policy π_t = behavior policy π_t

TRACKING A DRIFTING POLICY

Bellman error "optimized" by SARSA:
$$\Delta_t = \mathbf{E} \big[r_t + \gamma \hat{Q}_t(x_{t+1}, \pi_t(x_{t+1})) \big] - \hat{Q}_t(x_t, a_t)$$

On-policy learning: target policy π_t = behavior policy π_t

Multiple challenges for analysis:

- Data distribution drifts as policy keeps changing
- The target function itself drifts as well!
- Behavior policy needs to be increasingly greedy to converge to optimum ($\varepsilon \to 0$ for large t)

Idea: Let's try to

- directly learn about Q^* , and
- improve the policy on the fly!

Idea: Let's try to

- directly learn about Q^* , and
- improve the policy on the fly!

Off-policy learning: target policy $\pi^* \neq$ behavior policy π_t

Idea: Let's try to

- directly learn about Q^* , and
- improve the policy on the fly!

Off-policy learning: target policy $\pi^* \neq$ behavior policy π_t

Bellman error "optimized" by Q-learning:

$$\Delta_t = \mathbf{E} \left[r_t + \gamma \max_{a} \hat{Q}_t(x_{t+1}, \mathbf{a}) \right] - \hat{Q}_t(x_t, a_t)$$

Q-learning

Input: arbitrary $\widehat{Q}_0: X \times A \to \mathbf{R}$

For
$$t = 0, 1, ...,$$

- Choose action $a_t \sim \varepsilon$ -greedy w.r.t. $\hat{Q_t}$
- Observe r_t , x_{t+1}
- Compute

$$\delta_t = r_t + \gamma \max_{a} \hat{Q}_t(x_{t+1}, a) - \hat{Q}_t(x_t, a_t)$$
$$\hat{Q}_{t+1}(x_t, a_t) = \hat{Q}_t(x_t, a_t) + \alpha_t \delta_t$$

ON-POLICY VS. OFF-POLICY

On-policy learning: target policy π_t = behavior policy π_t

Multiple challenges for analysis:

- Data distribution drifts as policy keeps changing
- The target function itself drifts as well!
- Behavior policy needs to be increasingly greedy to converge to optimum

ON-POLICY VS. OFF-POLICY

On-policy learning: target policy π_t = behavior policy π_t

Multiple challenges for analysis:

- Data distribution drifts as policy keeps changing
- The target function itself drifts as well! a little less
- Behavior policy needs to be increasingly greedy to converge to optimum – a little less

Off-policy learning: target policy $\pi^* \neq$ behavior policy π_t

EXAMPLE: Q-LEARNING VS. SARSA

The cliff-walking task:

EXAMPLE: Q-LEARNING VS. SARSA

The cliff-walking task:

safe path

optimal p

Q-learning

• Gathers less reward ⊗

SARSA

Gathers more reward ©

EXAMPLE: Q-LEARNING VS. SARSA

The cliff-walking task:

Sum of rewards during episode

-25
Q-learning

Q-learning

Episodes

Q-learning

- Gathers less reward ⊗
 - Learns the optimal policy ©©©

SARSA

- Gathers more reward ©
- Learns the longer path ⊗⊗⊗

 Both algorithms can be adapted to linear and nonlinear FA by using the update rule

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$$

• Ditto with eligibility traces: SARSA(λ), $Q(\lambda)$

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$$

- Ditto with eligibility traces: SARSA(λ), $Q(\lambda)$
- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$$

- Ditto with eligibility traces: SARSA(λ), $Q(\lambda)$
- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$$

- Ditto with eligibility traces: SARSA(λ), $Q(\lambda)$
- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
 - Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t \nabla_\theta Q_\theta(x_t, a_t)$$

- Ditto with eligibility traces: SARSA(λ), $Q(\lambda)$
- SARSA guarantees bounded error and tends to behave well in practice (may not find optimal policy though)
- Q-learning may diverge catastrophically
 - Proposed fixes: gradient TD algorithms, emphatic TD algorithms, double Q-learning, soft Q-learning, G-learning,...
 - Practical solution: tune it until it works

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

DIVERGENCE OF OFF-POLICY TD LEARNING

The "deadly triad":

- Function approximation
- Bootstrapping
- Off-policy learning

BUT

Divergence is typically not too extreme when behavior policy is close to evaluation policy and FA is linear

Next week: Batch RL and policy optimization