Data Analysis

Objectives

My goal is to identify how do annual members and casual riders use Cyclistic bikes differently? These are my initial insights that may be helpful. All the queries results are stored in Excel_Tableau.Xlsx for Tableau Dashboard.

Subscribers Demographic

First, I will Identify what is the dominant gender for Subscribers. Note that for all the data results after querying, I put it to Excel_Tableau.csv' to visualize in Tableau.

```
/*DATA ANALYSIS */

--What is the dominant gender for the subscribers. Data are in Trips_2013_2019

SELECT Gender,

COUNT (Gender) AS Gender_count

FROM Trips_2013_2019

GROUP BY Gender
```

We would have

Gender	Gender_count
NULL	4874464
Male	12201381
Female	4096615

But since our focus is to find whether male or female proportion, we can drop the nulls values and get the male and female proportion.

Gender	Gender_count	Proportion
Male	12201381	74.86%
Female	4096615	25.14%

Next, I want to explore the age group and median age of the subscribers.

```
/* What is the most popular age group? I create an extra age group column
      < 18
      18-35
      35-45
      45-60
      60 +
--Create a temp table holding Trips_2013_2019
SELECT Birth_Year INTO #Age_group
FROM Trips_2013_2019
WHERE Birth_Year is not null
--Add the age group column
ALTER TABLE #Age_group
ADD Age_Group nvarchar(50),
      Age smallint
--Get the Age from the BirthYear Column
UPDATE #Age_group
SET Age = 2024 - Birth_Year
--Create an age group columns based on the Age column
UPDATE #Age_group
SET Age_Group = CASE
    WHEN Age < 18 THEN '<18'
    WHEN Age BETWEEN 18 AND 34 THEN '18-34'
   WHEN Age BETWEEN 35 AND 44 THEN '35-44'
   WHEN Age BETWEEN 45 AND 59 THEN '45-59'
    ELSE '60+'
END;
```

Since there are some users errors when typing the answer, I consider filter out any users > 100 years old.

```
--Identify the Age Group for the subscribers

SELECT Age_Group, COUNT(Age_Group) AS _Count

FROM #Age_group

WHERE AGE < 100

GROUP BY Age_Group
```

The results

Age_Group	_Count	Percentage
60+	1665366	10.20%
<18	58	0.00%
35-44	6967496	42.70%
18-34	4004723	24.54%
45-59	3681584	22.56%

Now I compute the average age

```
--Compute the median Age for subcribers

SELECT AVG(Age) as Avg_Age

FROM #Age_group

WHERE Age <= 100

--Drop temp table after use

DROP TABLE #Age_group
```


Our Average subscriber age is 42.

Trips duration

```
/* Find the Trips duration for each customer types */
--Run the #Duration 2020 2023 temp table
SELECT Start_Time, Stop_Time,
    CASE
        WHEN User_Type = 'casual' THEN 'Customer'
        ELSE 'Subscriber'
    END AS User_Type2
INTO #Duration_2020_2023
FROM Trips_2020_2023;
--Compute the average trips duration with Trips_2013_2019 union #Duration_2020_2023
    User_Type2,
    AVG(CAST(Trip_Duration AS FLOAT)) AS Avg_Trip_Duration
FROM
SELECT DATEDIFF(SECOND, Start_Time, Stop_Time) AS Trip_Duration, User_Type2
FROM #Duration_2020_2023
UNION ALL
SELECT Trip_Duration, User_Type
FROM [dbo].[Trips_2013_2019]
) AS Combined
GROUP BY User_Type2
--Drop temp table after use
DROP TABLE #Duration_2020_2023
```

The results

Most popular Bike types

In this part, I aim to identify which type of bike is most popular among casual and member users.

```
--What are the popular Bike Types by User_Type?

SELECT

User_Type,
Ride_Type,
COUNT(Ride_Type) as Total

FROM [dbo].[Trips_2020_2023]

WHERE User_Type is not null

GROUP BY User_Type, Ride_Type
ORDER BY 1, 3 DESC
```

The results

1			Total
l ' :	casual	electric_bike	3516342
2	casual	classic_bike	3046316
3	casual	docked_bike	1714133
4	member	classic_bike	5572553
5	member	electric_bike	4854703
6	member	docked_bike	1820293

Time period difference

Firstly, I aim to identify the Starting hours for the user's type.

```
--What are the popular starting time and stop time for user type
--Rerun the temp table
SELECT Start_Time,
    CASE
        WHEN User_Type = 'casual' THEN 'Customer'
        ELSE 'Subscriber'
    END AS User_Type2
INTO #TempTrips_2020_2023
FROM Trips_2020_2023;
--I layered the subqueries and aggregate the hour count by users type
SELECT
       User_Type,
       Starting_Hr,
       COUNT (Starting_Hr) as Count_hour
FROM (
       SELECT
              DATEPART(HOUR, Start_Time) AS Starting_Hr,
               User_Type
       FROM
              (SELECT Start_Time, User_Type
              FROM [dbo].[Trips_2013_2019]
              UNION ALL
              SELECT*
              FROM #TempTrips_2020_2023)
              AS Combined2
              ) AS Combined3
GROUP BY User_Type, Starting_Hr
ORDER BY 1, 2,3 DESC
```

The results: I would have a list of hour and their counts with user types that I can later use for visualization.

133 % ▼ ◀				
⊞ R	Results			
	User_Type	Starting_Hr	Count_hour	
1	Customer	0	209580	
2	Customer	1	139088	
3	Customer	2	86791	
4	Customer	3	48485	
5	Customer	4	33738	
6	Customer	5	51814	
7	Customer	6	122217	
8	Customer	7	228137	
9	Customer	8	339608	
10	Customer	9	428576	
11	Customer	10	621107	
12	Customer	11	831680	
13	Customer	12	979548	
14	Customer	13	1050957	
15	Customer	14	1099388	
16	Customer	15	1157149	
17	Customer	16	1211452	
18	Customer	17	1261673	
19	Customer	18	1081092	
20	Customer	19	819131	
21	Customer	20	588388	
22	Customer	21	469670	
23	Customer	22	415110	
24	Customer	23	304512	
25	Subscriber	0	215558	
26	Subscriber	1	130029	
27	Subscriber	2	75482	
28	Subscriber	3	46908	
29	Subscriber	4	60892	
30	Subscriber	5	268340	
31	Subscriber	6	869272	
32	Subscriber	7	1805737	
33	Subscriber	8	2257113	

Next, I want to explore the patterns for day of the week and whether there are differences between weekend and weekday.

```
--Explore weekday and weekend patterns
--Which is the most popular day for the user type
SELECT
       User_Type,
       Date_name,
       COUNT (Date_name) as Count_day
FROM
       (SELECT
              User_Type,
              DATENAME(dw, Start_Time) as Date_name
       FROM
              (SELECT Start_Time, User_Type
              FROM [dbo].[Trips_2013_2019]
              UNION ALL
              SELECT*
              FROM #TempTrips_2020_2023)
              AS Combined2
              ) AS Combined3
GROUP BY User_Type, Date_name
ORDER BY 1 ,3 DESC
```

The results

Finally, I want to identify busiest month of the year.

```
--Identify the busiest month of each year
SELECT
       User_Type,
       Year_,
       Month_,
       COUNT(Month_) as Month_Count
FROM
       (SELECT
              User_Type,
              DATEPART(yy, Start_Time) AS Year_,
              DATEPART(m, Start_Time) AS Month_
       FROM
              (SELECT Start_Time, User_Type
              FROM [dbo].[Trips_2013_2019]
              UNION ALL
              SELECT*
              FROM #TempTrips_2020_2023)
              AS Combined2
              ) AS Combined3
WHERE Year_ NOT IN (2013, 2024) -- As 2013 and 2024 don't have adequate months
GROUP BY User_Type, Year_, Month_
ORDER BY 1, 2, 3 ASC
```

The results: I would have a list of year and month count for each user types

Most popular stations

In the final part, I will explore which starting and ending stations are busiest for casual and annual member customers. Due to incomplete data, I will use from 2020-2023 for the most updated Stations.

```
-- Find the most popular starting point for Casual members
SELECT
       From_Station_Name,
       Start_cnt,
       latitude,
       longitude
FROM
SELECT
       From_Station_Name,
       COUNT(From_Station_Name) as Start_cnt
FROM [dbo].[Trips_2020_2023]
WHERE User_Type = 'casual'
GROUP BY From Station Name
) AS Combined INNER JOIN [dbo].[Station_name] ON
       Combined.From_Station_Name = Station_name.name
ORDER BY Start_cnt DESC
```

The results: we would have a table with starting station name, count of rides, latitude and longitude for casual members. This can be used for visualization later.

Now repeat to find the ending station for causal members and repeat for Subscriber members

```
-- Find the most popular ending point for Casual members
SELECT
       To_Station_Name,
       To_cnt,
       latitude,
       longitude
FROM
SELECT
       To Station Name,
       COUNT(To Station Name) as To cnt
FROM [dbo].[Trips_2020_2023]
WHERE User_Type = 'casual'
GROUP BY To_Station_Name
) AS Combined INNER JOIN [dbo].[Station name] ON
       Combined.To_Station_Name = Station_name.name
ORDER BY To_cnt DESC
-- Find the most popular starting point for Subscriber members
SELECT
       From_Station_Name, Start_cnt, latitude, longitude
FROM
SELECT
       From Station Name,
       COUNT(From_Station_Name) as Start_cnt
FROM [dbo].[Trips_2020_2023]
WHERE User_Type = 'member'
GROUP BY From_Station_Name
) AS Combined INNER JOIN [dbo].[Station_name] ON
       Combined.From_Station_Name = Station_name.name
ORDER BY Start cnt DESC
       -- Find the most popular ending point for Subscriber members
SELECT
       To_Station_Name, To_cnt, latitude, longitude
FROM
SELECT
       To Station Name,
       COUNT(To_Station_Name) as To_cnt
FROM [dbo].[Trips_2020_2023]
WHERE User Type = 'member'
GROUP BY To_Station_Name
) AS Combined INNER JOIN [dbo].[Station_name] ON
       Combined.To_Station_Name = Station_name.name
ORDER BY To_cnt DESC
```