

University of Engineering & Management, Kolkata

Subject Name: Computer Organization & Architecture Laboratory

Subject Code: PCCCS492

ASSIGNMENT – 3

3.1. TITLE: Design of a 4-bit Arithmetic Circuit and verify the truth table.

3.2. APPARATUS REQUIRED:

- a. Logic trainer kit
- b. Breadboard
- c. Single strand wires
- d. Integrated circuit's (IC 4008 (4-Bit Binary Full Adder), IC 4539 (4:1 Multiplexer), IC 4069 (Inverter))

3.3. THEORY:

3.3.1. Arithmetic circuits can perform seven different arithmetic operations using a single composite circuit.

It uses a full adder (FA) to perform these operations. A multiplexer (MUX) is used to provide different inputs to the circuit in order to obtain different arithmetic operations as outputs.

3.3.2. 4-bit Arithmetic Circuit:

Consider the following 4-bit Arithmetic circuit with inputs A and B. It can perform seven different arithmetic operations by varying the inputs of the multiplexer and the carry (C_{in}). To design this circuit we require 4 Multiplexer (4:1), 4 Full adder (or a ripple carry adder circuit), 5 NOT Gate (Inverter).

3.3.3. Truth Table for the above Arithmetic Circuit:

SO	S1	Cin	MUX Output	Full Adder Output	Mode
0	0	0	В	D=A+B	Add
0	0	1	В	D=A+B+1	Add with carry
0	1	0	$\overline{\mathrm{B}}$	$D=A+\overline{B}+0=A-B-1$	Subtract with borrow
0	1	1	B	$D=A+\overline{B}+1 = A-B-1+1 = A-B$	Subtract
1	0	0	0	D=A	Transfer
1	0	1	0	D=A+1	Increment
1	1	0	1	D=A-1+0=A-1	Decrement
1	1	1	1	D=A-1+1=A	Transfer

3.4. PIN DIAGRAM:

IC 4008:

IC 4539:

IC 4069:

3.5. PROCEDURE:

- I. Place the breadboard gently on the observation table.
- II. Fix the IC which is under observation between the half shadow line of breadboard, so there is no shortage of voltage.
- III. Connect the wire to the main voltage source (V_{DD}) whose other end is connected to last pin of the IC (marked as V_{DD}).
- IV. Connect the ground of IC (marked as GND) to the ground terminal provided on the digital lab kit.

- V. Connect the input pins of ICs to the input switches on digital lab kit by using connecting wires.
- VI. Connect output pins to the led on digital lab kit.
- VII. Switch on the power supply.
- VIII. If LED glows red then output is true (logic 1), if it glows green output is false (logic 0).

3.6. RESULT:

A 4-bit Arithmetic Circuit was designed and its truth table was verified.

3.7. PRECAUTIONS:

- All connections should be made neat and tight.
- Digital lab kits and ICs should be handled with utmost care.
- While making connections main voltage should be kept switched off.
- Never touch live and naked wires.

3.8. CONCLUSION: