Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет»

ИССЛЕДОВАНИЕ ДИСКРЕТНОГО КАНАЛА С АМПЛИТУДНОЙ МАНИПУЛЯЦИЕЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению лабораторной работы №3 по дисциплине «Инфокоммуникационные системы и сети» для студентов дневного и заочного отделения по направлению 09.03.02 «Информационные системы и технологи», 09.03.03 «Прикладная информатика»

УДК 682.176

Методические указания к выполнению лабораторной работы №3 по дисциплине «Инфокоммуникационные системы и сети»/ Сост. Доц. Чернега В.С., ст. преп. Дрозин А.Ю. – Севастополь: Изд-во СевГУ, 2020. – 9 с.

Цель указаний: Углубить знания в области построения дискретных каналов, способов модуляции и демодуляции сигналов. Приобрести практические навыки в построении и исследовании схем преобразования сигналов в среде моделирования Proteus.

Методические указания предназначены для выполнения лабораторной работы №3 по дисциплине «Инфокоммуникационные системы и сети» для студентов дневной и заочной форм обучения.

Методические указания рассмотрены и утверждены на методическом семинаре и заседании кафедры «Информационные системы»

Рецензент доцент кафедры «Информационные системы»

к.т.н., доцент Кротов К.В.

СОДЕРЖАНИЕ

1	Основные теоретические положения	.4
2	Описание лабораторной установки.	.7
3	Программа работы	.8
4	Содержание отчета	.8
5	Контрольные вопросы	. 8

1 ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Аналоговые (непрерывные) каналы связи не позволяют непосредственно передавать дискретные сигналы в связи с тем, что обычно полоса пропускания канала связи и спектр сигналов данных не совпадают. Для переноса спектра сигнала в полосу пропускания канала используется модуляция, а для восстановления исходного сигнала на приемной стороне применяется демодуляция. Совокупность непрерывного канала и модулятора и демодулятора называется дискретным (цифровым) каналом связи (рисунок 1.1).

Рисунок 1.1 – Система передачи дискретных сигналов

Информационная последовательность от источника дискретных сообщений (ИДС) преобразуется с помощью модулятора (М) в непрерывные сигналы и после ограничения спектра полосовым фильтром (ПФ), передается по непрерывному каналу или линии связи (ЛС). Полосовой фильтр на приемной стороне служит для подавления помех вне полосы сигнала. Затем сигнал восстанавливается в демодуляторе и поступает получателю дискретных сообщений (ПДС).

В настоящее время в системах передачи данных используется амплитудная (АМ), частотная (ЧМ) и фазовая (ФМ) манипуляция либо комбинация этих способов, преимущественно АФМ. Немодулированные сигналы (импульсы постоянного тока) применяются лишь при передаче по физическим линиям электросвязи, так как полоса пропускания таких линий начинается с нуля.

Дискретный канал с амплитудной манипуляцией начал применяться на заре развития систем передачи данных. Основным преимуществом систем с АМ является простота построения, а недостатком — невысокая помехоустойчивость. Однако они применяются и в настоящее время на каналах с низким уровнем помех.

При амплитудной модуляции сигналу логической 1 соответствует отрезок гармонического колебания (несущей), а логическому 0 отсутствие колебание или колебание с меньшей амплитудой. Аналитически процесс модуляции реализуется перемножением несущего колебания с колебанием, отображающим информационную последовательность. На практике амплитудный модулятор представляет собой электронный ключ, управляемый информационными сигналами. При открытии ключа сигнал несущей поступает на его выход, а при закрытом состоянии ключа сигнал на выходе отсутствует.

Демодуляция AM сигнала осуществляется путем двухполупериодного выпрямления принятого сигнала и последующей фильтрации фильтром нижних частот.

Энергетический спектр AM сигнала $G(\omega)$ определяется на основании его корреляционной функции и имеет вид

$$G_{aM}(\omega) = \frac{U_m^2}{2} + \frac{U_m^2 \tau_0}{2} \frac{\sin^2[(\omega - \omega_0)\tau_0/2]}{[(\omega - \omega_0)\tau_0/2]^2}.$$

Из этой формулы следует, что спектр амплитудно-манипулированного сигнала располагается в области частоты вспомогательного (несущего) колебания и содержит несущую частоту и две боковые полосы: верхнюю и нижнюю. Форма боковых частот спектра манипулированного сигнала аналогична форме спектра модулирующих посылок. Спектр модулированного сигнала получается вдвое шире спектра сигнала данных.

На практике амплитудная модуляция применяется для реализации амплитудно-фазовой модуляции. При этом используются два амплитудных модулятора, на которые поступают несущие колебания одной и той же частоты, но сдвинутые по фазе на 90° т.е., находящихся в квадратуре. Затем оба модулированных колебания суммируются. Такой вид модуляции получил название квадратурная амплитудная модуляция (КАМ, англ. QAM). При изменении амплитуды модулирующих сигналов частота сигнала остается прежней, а фаза колебания меняется.

На рисунке 1.2 показана упрощенная структурная схема формирователя ОАМ-сигнала.

Рисунок 1.2 – Схема реализации квадратурной амплитудной манипуляции

Аналитически QAM-сигнал представляется в виде:

$$u_{KAM}(t) = U_m [A(t)\cos\omega_0 t + B(t)\sin\omega_0 t],$$

где A(t) и B(t) — модулирующие сигналы в квадратурном и синфазном каналах соответственно.

В передатчике, производящем модуляцию, одна из этих составляющих синфазна колебанию генератора несущей частоты, а вторая находится в квадратуре по

отношению к этому колебанию (отсюда — квадратурная модуляция). Синфазная составляющая обозначается зачастую как I (In Phase), а квадратурная — как Q (Ouadrature).

Для цифровой фазовой манипуляции характерно, что при модулировании синфазной и квадратурной составляющей несущего колебания используется одно и то же значение величины изменения амплитуды. Поэтому окончания векторов модулированного колебания образуют прямоугольную сетку на фазовой плоскости действительной $\text{Re}\{U_{\text{кам}}\}$ и мнимой составляющей вектора модулированного сигнала $\text{Im}\{U_{\text{кам}}\}$. Число узлов этой сетки определяется количеством позиций результирующего сигнала, т.е. типом используемого алгоритма QAM. Схема расположения узлов на фазовой плоскости модулированного QAM-колебания представляет другую форму изображения созвездия сигналов.

На первом этапе преобразования поток входных данных D{d₀, d₁, ... d_k}, поступающих от источника сигнала, преобразуется в последовательность групп битов M{m₀, m₁, ... m_j}. Число битов в этой группе равно $\log m$ _c, где m_c – количество позиций сигналов. Формирователь кодовых символов преобразует группу битов в пару кодовых символов a_j и b_j. Так, например, для алгоритма QAM-16 стандартом установлены значения a_j и b_j, принадлежащие множеству {1, 3, -1, -3}, а для QAM-64 a_j и b_j могут принимать значения {1, 3, 5, 7, -1, -3, -5, -7}.

Величины a_j и b_j и определяют соответственно значения реальной и мнимой координаты вектора модулированного колебания. Сформированные значения A $\{a_j\}$ и B $\{b_j\}$ используются для амплитудной модуляции синфазной I и квадратурной Q составляющих несущего колебания. На последнем этапе преобразования выполняется суммирование этих колебаний и формирование результирующего сигнала U. Сигнальные созвездия для QAM-16 и QAM-64 изображены на рисунке 1.3.

Рисунок 1.3 – Сигнальные созвездия QAM-16 и QAM-64

Другой разновидностью амплитудно-фазовой модуляции является АФМ с подавлением несущей и передачей одной боковой полосы. Такой способ в зарубежной литературе известен под названием **CAP**-модуляция (*Carrier less Amplitude modulation*). Известно, что несущая частота используется при

модуляции только для переноса спектра сигнала и не является информативной. Передача двух боковых полос модулированного сигнала является в информационном смысле избыточной. Поэтому передача на одной боковой позволяет более эффективно использовать мощность сигнала и полосу канала связи.

2 ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

В качестве лабораторной установки используется персональный компьютер с установленной программой моделирования электронных схем Proteus, работа с которым описана в первой лабораторной работе. Изображение исследуемой схемы дискретного канала с АМ, выполненной в основном окне системы Proteus показана на рисунке 2.1.

На передающей стороне функцию модулятора выполняет перемножитель сигналов (категория Laplace Primitives элемент OP:MULTIPLY), на входы которого подаются колебания несущей частоты и информационные сигналы. Фильтры передачи и приема в схеме отсутствуют. В качестве линии связи используется эквивалентная схема замещения симметричной проводной линии. Соединение модулятора с линией связи выполнено через согласующий трансформатор (TRAN 2P2S), осуществляющий гальваническую развязку линии связи с модулятором.

Демодулятор выполнен на основе двухполупериодной схеме выпрямителя и RC-фильтра нижних частот. Демодулятор также подключен через симметрирующий разделительный трансформатор.

Рисунок 2.1 – Схема дискретного канала с АМ

Демодулированный сигнал подается на вход порогового устройства (микросхема LP 239), на выходе которого формируются прямоугольные импульсы данных с краевыми искажениями. Ко входу осциллографа подключены характерные точки устройства.

3 ПРОГРАММА РАБОТЫ

- 1. Повторить теоретический материал, относящийся к вопросам модуляции и демодуляции сигналов и построении дискретных каналов (выполняется в процессе домашней подготовки).
- 2. Составить в рабочем окне симулятора схему дискретного канала, изображенную на рисунке 2.1.
- 3. Установить параметры генератора несущих сигналов: частота (10+i) к Γ ц, где i последняя цифра номера зачетной книжки, амплитуда 5 В.
- 4. Установить частоту информационных сигналов (1000 + 100i) Гц. Вид сигналов 1:1.
- 5. Запустить процесс моделирования, зарисовать осциллограммы в точках измерения и пояснить их характер.
- 6. Отключать по очереди конденсаторы фильтра нижних частот. Зарисовать вид сигнала на выходе приемного устройства и пояснить причину изменения их формы. Затем снова подключить оба конденсатора.
- 7. Меняя с помощью потенциометра RV2 пороговое напряжение от 0,75 до 2-х В. Измерить абсолютную и относительную величину краевых искажений.
- 8. Установить вид информационного сигнала 1:4 и измерить абсолютную и относительную величину краевых искажений. Зарисовать форму сигналов в контрольных точках.
 - 9. Сделать выводы по работе и оформить отчет.

4 СОДЕРЖАНИЕ ОТЧЕТА

- 1. Титульный лист.
- 2. Цель и программа работы.
- 3. Схемы дискретного канала с АМ.
- 4. Осциллограммы сигналов в характерных точках.
- 5. Результаты измерений краевых искажений.
- 6. Выводы

5 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называют дискретным каналом? Начертите его структурную схему.

- 2. Для чего при передаче дискретных сигналов по каналу связи нужны модулятор и демодулятор?
- 3. Нарисуйте временные диаграммы сигналов в канале связи при AM, ЧМ и ФМ.
- 4. Почему при перемножении сигналов сдвигается спектр результирующего колебания?
- 5. Какие частотные компоненты будут на выходе перемножителя при несущем гармоническом колебании 10000 Гц и прямоугольной последовательности вида 1:1 со скоростью модуляции 1000 бод?
- 6. Что такое «квадратурная амплитудная модуляция» и для чего она используется?
- 7. Нарисуйте временное представление сигналов на выходе 4-позиционного квадратурного модулятора при поступлении на его вход последовательности вида 11011000.
- 8. Что называют краевыми искажениями сигналов и как измерить их абсолютную и относительную величину на практике?
- 9. Покажите на схеме демодулятора процесс двухполупериодного выпрямления сигнала.
- 10. Почему при изменении положения регулятора RV2 изменяется величина краевых искажений?