Neural Network

Outline

- Modeling one neuron
- Activation functions
- > Fully connected feed-forward network
- ➤ How to train a multi-layer network
- Representational power of NN

Biology

- Neurons respond slowly
 - -10^{-3} s compared to 10^{-9} s for electrical circuits
- The brain uses massively parallel computation
 - $-\approx 10^{11}$ neurons in the brain
 - $-\approx 10^4$ connections per neuron

教育先程 神经元 V

突触小体

突触

冲动在突触上的传递

Modeling one neuron

Single neuron as a linear classifier

- ➤ With an appropriate loss function on the neuron's output, a single neuron can be turned into a linear classifier.
- ➤ A single neuron can be used to implement a binary classifier (e.g. binary Softmax or binary SVM classifiers).

Single neuron as a linear classifier

Binary Softmax classifier

- Interpreting:
 - $ho \ \sigma(\sum_i w_i x_i + b)$ to be the probability of one of the classes $P(y_i = 1 \mid x_i; w)$
 - \triangleright The probability of the other class to be $P(y_i = 0 \mid x_i; w) = 1 P(y_i = 1 \mid x_i; w)$
- ➤ With this interpretation, we can formulate the cross-entropy loss, and optimizing it would lead to a binary Softmax classifier (also known as logistic regression)
- Alternatively, we could attach a max-margin hinge loss to the output of the neuron and train it to become a **binary Support Vector Machine**.

Outline

- Modeling one neuron
- Activation functions
- > Fully connected feed-forward network
- ➤ How to train a multi-layer network
- Representational power of NN

Activation Functions

- Neural networks are used to implement complex functions, and non-linear Activation Functions enable them to approximate arbitrarily complex functions.
- Without the non-linearity introduced by the Activation Function:
 - > a neuron is equivalent to a linear classifier
 - > a multi-layer neural network is equivalent to a single layer neural network

Perceptron

Linear separability

Multilayer Perceptron (MLP)

➤ A MLP with a single hidden layer

$$y = w_{2-1}(w_{1-11}x_1 + w_{1-21}x_2 + b_{1-1}) + w_{2-2}(w_{1-12}x_1 + w_{1-22}x_2 + b_{1-2}) + w_{2-3}(w_{1-13}x_1 + w_{1-23}x_2 + b_{1-3})$$

$$y = x_1(w_{2-1}w_{1-11} + w_{2-2}w_{1-12} + w_{2-3}w_{1-13}) + x_2(w_{2-1}w_{1-21} + w_{2-2}w_{1-22} + w_{2-3}w_{1-23}) + w_{2-1}b_{1-1} + w_{2-2}b_{1-2} + w_{2-3}b_{1-3}$$

Still a linear classifier

Some Activation Functions

logistic ("sigmoid")

$$f(z) = \frac{1}{1 + \exp(-z)}$$

tanh

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

hard tanh

HardTanh(x) =
$$\begin{cases} -1 & \text{if } x < -1 \\ x & \text{if } -1 <= x <= 1 \\ 1 & \text{if } x > 1 \end{cases}$$

(Rectified Linear Unit)
ReLU

$$ReLU(z) = max(z, 0)$$

Leaky ReLU / Parametric ReLU

tanh is just a rescaled and shifted sigmoid (2 × as steep, [-1,1]): tanh(z) = 2logistic(2z) - 1

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative "dead zone" that recent proposals mitigate

GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Swish arXiv:1710.05941swish(x) = $x \cdot logistic(\beta x)$

GELU arXiv:1606.08415 GELU(x) $= x \cdot P(X \le x) X \sim N(0.1)$

$$= x \cdot P(X \le x), X \sim N(0,1)$$

$$\approx x \cdot \text{logistic}(1.702x)$$

Activation Functions:

- $ightharpoonup \max(w_1^Tx+b_1,w_2^Tx+b_2)$
 - Does not have the basic form of dot product -> nonlinearity
 - Generalizes ReLU and Leaky ReLU
 - Linear Regime! Does not saturate! Does not die!
 - > Problem:
 - doubles the number of parameters/neuron

Activation Functions:

- > Swish: $f(x) = x * \sigma(\beta x) = x/(1 + \exp(-\beta x))$
- \triangleright Swish can be loosely viewed as a smooth function which nonlinearly interpolates between the linear function and the ReLU function. The degree of interpolation can be controlled by the model if β is set as a trainable parameter.
 - \triangleright If β = 0, Swish becomes the scaled linear function f(x) = x/2.
 - \triangleright If β = 1, Swish is equivalent to the Sigmoid-weighted Linear Unit (SiL) of Elfwing et al. (2017) that was proposed for reinforcement learning.
 - \triangleright As β \rightarrow ∞, the sigmoid component approaches a 0-1 function, Swish becomes like the ReLU function.

Outline

- Modeling one neuron
- Activation functions
- > Fully connected feed-forward network
- ➤ How to train a multi-layer network
- Representational power of NN

- ➤ Neurons between two adjacent layers are fully pairwise connected
- > But neurons within a single layer share no connections

This is a function.
Input vector, output vector

$$f\left(\begin{bmatrix} 1\\-1\end{bmatrix}\right) = \begin{bmatrix} 0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix} 0\\0\end{bmatrix}\right) = \begin{bmatrix} 0.51\\0.85\end{bmatrix}$$

Given network structure, we define a function set

Matrix Operation

Neural Network

$$y = f(x)$$
 Using parallel computing techniques to speed up matrix operation

Output Layer as a Multi-Class Classifier

Hidden Layers

 \mathcal{X}

Input

Layer

Feature extractor replacing feature engineering y_1 y_2 y_3 y_4 y_4 y_5 y_8 y_8 y_8 y_8 y_8

Output

Layer

= Multi-class

Classifier

Example Application

Need to decide the network structure to work well on your dataset.

"Deep" pipeline

- Learn a feature hierarchy
- Each layer extracts features from the output of previous layer
- All layers are trained jointly

Outline

- Modeling one neuron
- Activation functions
- > Fully connected feed-forward network
- ➤ How to train a multi-layer network
- Representational power of NN

How to train a multi-layer network?

We need to find the gradient of the error w. r.t. the parameters of each layer,

$$\frac{\partial e}{\partial w_k}$$
, to perform updates $w_k \leftarrow w_k - \eta \frac{\partial e}{\partial w_k}$

Computation graph

Chain Rule

Case 1
$$y = g(x)$$
 $z = h(y)$
$$\Delta x \to \Delta y \to \Delta z \qquad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta z \qquad \Delta z \qquad \frac{dz}{ds} = \frac{\partial z}{\partial x} \frac{dx}{ds} + \frac{\partial z}{\partial y} \frac{dy}{ds}$$

Chain rule

Let's start with k = 1

$$ightharpoonup e = l(f_1(x, w_1), y)$$

- \triangleright Example: $e = (y w_1^T x)^2$
- $h_1 = f_1(x, w_1) = w_1^T x$
- ho $e = l(h_1, y) = (y h_1)^2$

$$\frac{\partial h_1}{\partial w_1} = x$$

$$\frac{\partial e}{\partial h_1} = -2(y - h_1) = -2(y - w_1^T x)$$

Chain rule

W1
$$\frac{\partial h_1}{\partial w_1}$$
 h_1 $\frac{\partial h_2}{\partial w_2}$ h_2 h_2 h_3 h_4 h_4 h_5 h_6 h_8 h_8 h_9 h

$$ightharpoonup e = l(f_2(f_1(x, w_1), w_2), y)$$

$$\frac{\partial e}{\partial w_2} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial w_2} \qquad \qquad \frac{\partial e}{\partial w_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial w_1}$$

ightharpoonup Example: $e = -\log\left(\sigma\left(w_1^Tx\right)\right)$ (assume y = 1) $\sigma(x) = 1/(1 + e^{-x})$

$$h_{1} = f_{1}(x, w_{1}) = w_{1}^{T} x$$

$$h_{2} = f_{2}(h_{1}, w_{2}) = \sigma(h_{1})$$

$$e = l(h_{2}, 1) = -\log(h_{2})$$

$$\frac{\partial h_{1}}{\partial w_{1}} = x$$

$$\frac{\partial h_{2}}{\partial h_{1}} = \sigma'(h_{1}) = \sigma(h_{1})(1 - \sigma(h_{1}))$$

$$\frac{\partial e}{\partial h_{2}} = -\frac{1}{h_{2}}$$

$$\frac{\partial e}{\partial w_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial w_1} = -\frac{1}{\sigma(w_1^T x)} \sigma(w_1^T x) \left(1 - \sigma(w_1^T x)\right) x = \sigma(w_1^T x) x - x$$

Chain rule

General case:

Backpropagation summary

What about more general computation graphs?

A detailed example
$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

Source: Stanford 231n

Patterns in gradient flow

Add gate: "gradient distributor"

Multiply gate: "gradient switcher"

Max gate: "gradient router"

Source: Stanford 231n

Dealing with vectors

Matrix-vector multiplication

A vectorized example:

$$f(\mathbf{x}, W) = \sum_{i=1}^{n} (W \cdot \mathbf{x})_{i}^{2}$$

A vectorized example: $f(x, W) = \sum_{i=1}^{n} (W \cdot x)_{i}^{2}$

Feed-forward:

$$q = Wx = \begin{pmatrix} w_{11}x_1 + w_{12}x_2 \\ w_{21}x_1 + w_{22}x_2 \end{pmatrix} = \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$
$$f(q) = \sum_{i=1}^{2} q_i^2 = 0.116$$

A vectorized example: $f(x, W) = \sum_{i=1}^{n} (W \cdot x)_i^2$

Backward:

$$f(q) = \sum_{i=1}^{2} q_i^2 \longrightarrow \frac{\partial f}{\partial q_i} = 2q_i \longrightarrow \nabla_q f = 2q$$

A vectorized example: $f(x, W) = \sum_{i=1}^{n} (W \cdot x)_i^2$

Backward:

$$q = Wx = \begin{pmatrix} w_{11}x_1 + w_{12}x_2 \\ w_{21}x_1 + w_{22}x_2 \end{pmatrix} \implies \frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{12}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{11}} = x_1 \qquad \frac{\partial q}{\partial w_{12}} = x_2$$

$$\frac{\partial q}{\partial w_{12}} = x_1 \qquad \frac{\partial q}{\partial w_{22}} = x_2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

A vectorized example: $f(x, W) = \sum_{i=1}^{n} (W \cdot x)_i^2$

Backward:
$$q = Wx = \begin{pmatrix} w_{11}x_1 + w_{12}x_2 \\ w_{21}x_1 + w_{22}x_2 \end{pmatrix} \implies \begin{pmatrix} \frac{\partial q}{\partial x_1} = \begin{pmatrix} w_{11} \\ w_{21} \end{pmatrix} \\ \frac{\partial q}{\partial x_2} = \begin{pmatrix} w_{12} \\ w_{22} \end{pmatrix} \\ \frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} = \sum_k 2 q_k W_{ki} \implies \nabla_x f = W^T 2q \\ \begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W \\ \begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} \\ \begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$* \begin{pmatrix} 0.22 \\ 0.26 \\ 0.44 \\ 0.52 \end{pmatrix}$$

Outline

- Modeling one neuron
- Activation functions
- > Fully connected feed-forward network
- ➤ How to train a multi-layer network
- Representational power of NN

Representational power

- ➤ Neural Networks with fully-connected layers define a family of functions that are parameterized by the weights of the network.
- A Neural Network with at least one hidden layer are *universal* approximators, which means that it can approximate any continuous function.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

can be realized by a network with one hidden layer

(given enough hidden neurons)

Reference for the reason:
http://neuralnetworksanddeeplearning.com/chap4.html

Setting number of layers and their sizes

- Neural Networks with more neurons can express more complicated functions.
- But a model with high capacity fits the noise in the data instead of the (assumed) underlying relationship : overfitting.

> Use as bigger of a neural network, and use other regularization techniques to control overfitting.

Fat + Short vs. Thin + Tall

Thin + Tall vs. Fat + Short

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)	
1 X 2k	24.2			
2 X 2k	20.4	W	Why?	
3 X 2k	18.4	vviiy:		
4 X 2k	17.8			
5 X 2k	17.2	1 X 3772	22.5	
7 X 2k	17.1	1 X 4634	22.6	
		1 X 16k	22.1	

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler less gates needed

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.

Itay Safran, Ohad Shamir, "Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks", ICML, 2017

The Nature of Functions

Hrushikesh Mhaskar, Qianli Liao, Tomaso Poggio, When and Why Are Deep Networks Better Than Shallow Ones?, AAAI, 2017

Design the Network

Q: How many layers? How many neurons for each layer?

- Q: Can the structure be automatically determined?
- Q: Can we design the network structure?

Q&A