Due on July 16, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

1

(i) Not convex. Consider p=3 we have $f(x)=x^3$ and $f''(x)=6x\leq 0$ when $x\leq 0$.

(ii) Convex. $f''(x) = x^{-2} \ge 0$

(iii) Convex. $f''(x) = \alpha^2 e^{\alpha x} \ge 0$

(iv) Convex. $f''(x) = \frac{1}{(1-x)} \ge 0$ when $x \in (0,1)$

 $\mathbf{2}$

(i) Convex.

Take $x, y \in C$.

Consider $||(1-\lambda)x + \lambda y||_2 \stackrel{Cauchy-Schwarz}{\leq} ||(1-\lambda)x||_2 + ||\lambda y||_2 = (1-\lambda)||x||_2 + \lambda||y||_2 \leq 1.$

(ii) Not convex. Consider $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\lambda = \frac{1}{2}$.

Clearly $||(1 - \lambda)x + \lambda y||_2 = \frac{\sqrt{2}}{2} \neq 1$.

(iii) Not convex. Consider $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, y = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and $\lambda = \frac{1}{2}$.

Clearly $||(1-\lambda)x + \lambda y||_{\infty} = ||\begin{pmatrix} 0\\0 \end{pmatrix}||_{\infty} = 0 \neq 1.$

(iv) Convex. Similar to (i).

3

(i) We have

 $\nabla f(x,y) = \begin{pmatrix} 4x^3 - 1\\ 4y^3 - 1 \end{pmatrix}$

and

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x^2 & 0\\ 0 & 12y^2 \end{pmatrix}$$

which is positive semi-definite everywhere implies the function is convex thus coercive.

4

$$T_C(\begin{pmatrix} 1 & 1 \end{pmatrix}^\top) = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \le 1, x_2 \le 1 \right\}$$

$$N_C(\begin{pmatrix} 1 & 1 \end{pmatrix}^{\top}) = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \ge 1, x_2 \ge 1 \right\}$$

Exercise 2

(A)

In steepest descent method, we have $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$. We can approximate $f(x^{(k+1)})$ with its second order Taylor expansion around $x^{(k)}$.

$$\begin{split} f(x^{(k+1)}) &\approx f(x^{(k)}) + \nabla f(x^{(k)})^\top (x^{(k+1)} - x^{(k)}) + \frac{1}{2} (x^{(k+1)} - x^{(k)})^\top \nabla^2 f(x^{(k)}) (x^{(k+1)} - x^{(k)}) \\ &= f(x^{(k)}) - \alpha \nabla f(x^{(k)})^\top \nabla f(x^{(k)}) + \frac{\alpha^2}{2} \nabla f(x^{(k)})^\top \nabla^2 f(x^{(k)}) \nabla f(x^{(k)}) =: g(\alpha) \end{split}$$

We can find the optimal α by solving $\frac{dg}{d\alpha} = 0$.

$$\frac{dg}{d\alpha} = -\nabla f(x^{(k)})^{\top} \nabla f(x^{(k)}) + \alpha \nabla f(x^{(k)})^{\top} \nabla^2 f(x^{(k)}) \nabla f(x^{(k)}) = 0$$
$$\nabla f(x^{(k)})^{\top} \nabla f(x^{(k)}) = \nabla f(x^{(k)})^{\top} (\alpha \nabla^2 f(x^{(k)})) \nabla f(x^{(k)})$$

By choosing $\alpha = (\nabla^2 f(x^{(k)}))^{-1}$, we can cancel the affect of rescaling of the Hessian matrix. Thus we arrive at the Newton's method: $x^{(k+1)} = x^{(k)} - (\nabla^2 f(x^{(k)}))^{-1} \nabla f(x^{(k)})$.

(B)

Step 0 Let
$$x^{(0)} := \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{split} d^{(0)} &= r^{(0)} = -\nabla f(x^{(0)}) \\ &= -b - Qx^{(0)} \\ &= -\begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 & 3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ \tau_0 &= \frac{\langle r^{(0)}, r^{(0)} \rangle}{\langle d^{(0)}, Qd^{(0)} \rangle} \\ &= \frac{1}{2} \end{split}$$

Step 1

$$x^{(1)} = x^{(0)} + \tau_0 d^{(0)}$$

$$= \binom{0}{0} + \frac{1}{2} \binom{-1}{1}$$

$$= \binom{-\frac{1}{2}}{\frac{1}{2}}$$

$$r^{(1)} = r^{(0)} + \tau_0 Q d^{(0)}$$

$$= \binom{-1}{1} + \frac{1}{2} \binom{4}{3} \binom{3}{6} \binom{-1}{1}$$

$$= \binom{\frac{3}{2}}{-\frac{5}{2}}$$

$$\beta_1 = \frac{\langle r^{(1)}, r^{(1)} \rangle}{\langle r^{(0)}, r^{(0)} \rangle}$$

$$= \frac{17}{4}$$

$$d^{(1)} = -r^{(1)} + \beta_1 d^{(0)}$$

$$= \binom{\frac{11}{4}}{-\frac{7}{4}}$$

Exercise 3

See Appendix A: Handwritten Solution for Exercise 3

Exercise 4

(A)

The optimality condition is

$$\nabla f(x^*) + \lambda^* \nabla g(x^*) + \langle \mu^*, \nabla h(x^*) \rangle = 0$$

$$\Rightarrow -(\alpha + x^*)^{-1} + \lambda^* x^* - \mu^* = 0$$

$$x^* \ge 0$$

$$\mu^* \ge 0$$

$$\langle \mu^*, x^* \rangle = 0$$

where $f(x) = \sum_{i=1}^{n} -\log(\alpha + x_i)$, $g(x) = \sum_{i=1}^{n} x_i - 1$ and h(x) = -x. Note $(v^{-1})_i = \frac{1}{v_i}$ for $v \in \mathbb{R}^n$.

(B)

In each time step k, we first compute a point $\tilde{x}^{(k)} = x^{(k)} - \alpha \nabla f(x^{(k)})$. Then we project $\tilde{x}^{(k)}$ onto the feasible set $C = \{x \in \mathbb{R}^n \mid \alpha^\top x = \beta\}$. We know that C is a hyperplane and the projection has closed form:

$$\hat{x}^{(k)} = \operatorname{proj}_{C}(\tilde{x}^{(k)}) = \tilde{x}^{(k)} - \frac{\alpha^{\top} \tilde{x}^{(k)} - \beta}{\|\alpha\|_{2}^{2}} \alpha$$

Then we can update compute the next time step by

$$x^{(k+1)} = x^{(k)} + \tau_k(\hat{x}^{(k)} - x^{(k)})$$

with τ_k that satisfies the Armijo condition.

Appendix A: Handwritten Solution for Exercise 3

- 0	derivates	
9	Se, and	Toum mode
9	da2 = 1	5-5
9	120	3=3
9	$\frac{dx_1}{dx_2} = 1$	24= Sir (52)
	0x4 = (05(x)	ab = xisc (25)
9	dre	27 5 242
-	J25 = 24	20 2 2 20132
	5x6 = x1	29 > Efinites) +23e x x2
	924	
	8x6 =x2	$\alpha_1 \Rightarrow 1$
	251	$\alpha_3 = 1$
-	826 =21	$x_{H} = \cos(x_{2})(x_{2})$
7	UX2	as significant + sinitalia,
. 9	12 = 2c 3cc	26 => 2122 +xxxi
	JXB	$\frac{x_i}{x_i} = \frac{x_i}{x_i} \frac{(x_i x_i)(x_i)}{(x_i x_i)(x_i)}$
	dx8 - ~ @	
	$\frac{\partial x_8}{\partial 7} = x_3^2$	$2q \Rightarrow 2x + 2x$
	J218 = 27	29 = 28 + 29
	123	3
	dag = 1	
0	Jas	
	029 - 1.	
	324	
and the same	0,50	Construction (Value (III))

