1) (10 points) Define the integral of a continuous function $f:\Omega\to\mathbb{C}$ along a piecewise-smooth path $\gamma:[a,b]\to\Omega.$

2) (10 points) Define what it means for a function to be analytic at $z_0 \in \mathbb{C}$.

3)	(15 points) phicity?	State	the Cauchy	-Riemann	equations.	When do	they en	sure hol	omor
4)	(15 points)	State	Cauchy's In	ntegral The	eorem.				

5) (25 points) Let z = x + iy and f(z) = u(z) + iv(z). Suppose $u(z) = 4xy^3 - 4x^3y$. Find a function v(z) that makes f(z) an entire function.

6) (25 points) Define for each $\alpha \in \mathbb{R}$ the quantity

$$I(\alpha) = \int_{-\infty}^{\infty} e^{-(x+i\alpha)^2} dx$$

Show that in fact $I(\alpha)$ is independent of α , and thus equal to $I(0) = \sqrt{\pi}$.

7) (20 points) Prove Liouville's theorem assuming Cauchy's inequality.

8) (30 points) Compute the following integral:

$$\int_{-\infty}^{\infty} \frac{\cos(\pi x)}{(x^2+4)^2} dx$$