Video 34: Proof of GM theorem

Scribe: Arghya Sarkar bs2021

August 2022

Introduction

This lecture contains a proof of GM theorem stated earlier.

Theorem 1 (Gauss-Markov theorem). Assume the setup for linear regression. Assume X^TX is non-singular. Then for all $\vec{\mathbf{c}}$, $\vec{\mathbf{c}}'\hat{\vec{\beta}}$ is the 'unique' best linear unbiased estimator (BLUE) of $\vec{\mathbf{c}}'\vec{\beta}$.

Here by 'unique' we mean if $\vec{l'}\vec{y}$ is also a BLUE then $\mathbb{P}_{\vec{\beta}}(\vec{l'}\vec{y} = \vec{\mathbf{c'}}\hat{\vec{\beta}}) = 1$ for all $\vec{\beta}$

Proof. We already showed, $\mathbb{E}\hat{\vec{\beta}} = \vec{\beta}$, this implies, $\mathbb{E}[\vec{c'}\hat{\vec{\beta}}] = \vec{c'}\vec{\beta}$. So $\vec{c'}\hat{\vec{\beta}}$ is an unbiased estimator of $\vec{c'}\vec{\beta}$. Suppose $\vec{a'}\vec{y}$ is another unbiased estimator of $\vec{c'}\vec{\beta}$. So

$$\mathbb{E}[\vec{a'}\vec{y}] = \vec{c'}\vec{\beta} \implies \vec{a'}X\vec{\beta} = \vec{c'}\vec{\beta} \qquad \forall \vec{\beta}$$

Which means

$$\vec{a'}X = \vec{c'} \tag{1}$$

We will need this property later. Now note we can write $\vec{a'}\vec{y}$ as,

$$\vec{a'}\vec{y} = \vec{\mathbf{c}'}\hat{\vec{\beta}} + (\vec{a'}\vec{y} - \vec{\mathbf{c}'}\hat{\vec{\beta}})$$

This implies, $\operatorname{Var}[\vec{a'}\vec{y}] = \operatorname{Var}(\vec{\mathbf{c'}}\hat{\vec{\beta}}) + \operatorname{Var}(\vec{a'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}}) + \operatorname{Cov}(\vec{\mathbf{c'}}\hat{\vec{\beta}}, \vec{a'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}})$. We will show that $\operatorname{Cov}(\vec{\mathbf{c'}}\hat{\vec{\beta}}, \vec{a'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}}) = 0$. If we can do that then we will get $\operatorname{Var}[\vec{a'}\vec{y}] = \operatorname{Var}(\vec{\mathbf{c'}}\hat{\vec{\beta}}) + \operatorname{Var}(\vec{a'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}}) \Longrightarrow \operatorname{Var}[\vec{a'}\vec{y}] \ge \operatorname{Var}(\vec{\mathbf{c'}}\hat{\vec{\beta}})$. Which means $\vec{\mathbf{c'}}\hat{\vec{\beta}}$ has lowest varience among all unbiased linear estimators of $\vec{\mathbf{c'}}\vec{\beta}$, i.e. $\vec{\mathbf{c'}}\hat{\vec{\beta}}$ is a BLUE of $\vec{c'}\vec{\beta}$.

So it is enough to show,

$$Cov(\vec{\mathbf{c}'}\hat{\vec{\beta}}, \vec{a'}\vec{y} - \vec{\mathbf{c}'}\hat{\vec{\beta}}) = 0$$
 (2)

. Since X^TX is nonsingular. $\hat{\vec{\beta}} = (X^TX)^{-1}X^T\vec{y}$. So

$$\begin{aligned} \operatorname{Cov}(\vec{\mathbf{c}'}\hat{\vec{\beta}}, \vec{a'}\vec{y} - \vec{\mathbf{c}'}\hat{\vec{\beta}}) &= \operatorname{Cov}(\vec{\mathbf{c}'}(X^TX)^{-1}X^T\vec{y}, (\vec{a'} - \vec{\mathbf{c}'}(X^TX)^{-1}X^T)\vec{y}) \\ &= (\vec{a'} - \vec{\mathbf{c}'}(X^TX)^{-1}X^T)\operatorname{Var}(\vec{y})X(X^TX)^{-1}\vec{\mathbf{c}} \\ &= (\vec{a'} - \vec{\mathbf{c}'}(X^TX)^{-1}X^T)\sigma^2IX(X^TX)^{-1}\vec{\mathbf{c}} \\ &= \sigma^2((\vec{a'} - \vec{\mathbf{c}'}(X^TX)^{-1}X^T)X(X^TX)^{-1}\vec{\mathbf{c}}) \\ &= \sigma^2(\vec{a'}X(X^TX)^{-1}\vec{\mathbf{c}} - \vec{\mathbf{c}'}(X^TX)^{-1}\vec{\mathbf{c}}) \\ &= \sigma^2(\vec{a'}X - \vec{\mathbf{c}'})(X^TX)^{-1}\vec{\mathbf{c}} = 0 \end{aligned}$$

In the last line we used (1). Now since we proved (2) we conclude $\hat{\vec{\beta}}$ is a BLUE of $\vec{\beta}$.

For 'uniqueness' part, note if $\vec{l'}\vec{y}$ is another BLUE of $\vec{\mathbf{c'}}\vec{\beta} \quad \forall \vec{\beta}$. Then we know, $\operatorname{Var}[\vec{l'}\vec{y}] = \operatorname{Var}(\vec{\mathbf{c'}}\hat{\vec{\beta}}) + \operatorname{Var}(\vec{l'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}})$. But $\vec{l'}\vec{y}$ and $\vec{\mathbf{c'}}\hat{\vec{\beta}}$ are both BLUE of $\vec{\mathbf{c'}}\vec{\beta}$ so $\operatorname{Var}[\vec{l'}\vec{y}] = \operatorname{Var}(\vec{\mathbf{c'}}\hat{\vec{\beta}})$. So

$$Var(\vec{l'}\vec{y} - \vec{\mathbf{c}'}\hat{\vec{\beta}}) = 0 \qquad \forall \vec{\beta}$$

Which implies

$$(\vec{l'}\vec{y} - \vec{\mathbf{c'}}\hat{\vec{\beta}}) = \text{Constant}$$
 with probability 1

But note both $\vec{l}'\vec{y}$ and $\vec{\mathbf{c}}'\hat{\vec{\beta}}$ are linear function of y so the constant need to be zero

So $\vec{l'}\vec{y} = \vec{\mathbf{c}'}\hat{\vec{\beta}}$ with probability 1.

This completes the proof.