Heterogeneous Recommendations: What You Might Like To Read After Watching Interstellar

Rachid Guerraoui, Anne-Marie Kermarrec, Tao Lin, Rhicheek Patra

EPFL, Switzerland

Outline

- Introduction
- X-Map
 - o X-Sim
 - \circ AlterEgo
 - Recommendation
- Experiments & Conclusion

Outline

- <u>Introduction</u>
- X-Map
 - o X-Sim
 - \circ AlterEgo
 - Recommendation
- Experiments & Conclusion

Personalization

Personalization services, mainly recommendations, are widely employed.

Movies **NETFLIX**

Music

Books

News

Personalization

Personalization services, mainly recommendations, are widely employed.

Movies

Music

Books

News

NETFLIX

CSt-fm

GOOGle news

NEWS

Most services are limited to personalization within a <u>single</u> domain

Heterogeneous recommendations

Heterogeneous recommendations

What if the companies want to venture across multiple domains?

Heterogeneous recommendations: Scenario

Heterogeneous recommendations: Scenario

Given that Alice liked Interstellar, which <u>books</u> would she like to <u>read</u>? Given that Daniel like The Forever War, which movies would he like to watch?

Quality

- Standard homogenous approaches do not work
- Preferences of users vary across domains
- Decrease in *Density* (user-item rating matrix) affects quality

■ *Density*: Fraction of actual interactions among all the possible user-item interactions

Quality

- Standard homogenous approaches do not work
- Preferences of users vary across domains
- Decrease in *Density* (user-item rating matrix) affects quality

■ Density: Fraction of actual interactions among all the possible user-item interactions

Density of domains in Amazon				
Books	Movies	Books + Movies		
0.0204%	0.0569%	0.0147%		

Privacy

- General concern in homogenous recommenders trivially extends to heterogeneous ones.
- Higher privacy concern in heterogeneous scenario due to an increase in the connections across domains.^[1]
- Straddlers, i.e., users who connect multiple domains, are at a higher privacy risk.

1. Ramakrishnan et al. "Privacy risks in recommender systems." IEEE Internet Computing 5.6 (2001): 54.

Scalability

- Increase in information → Increased computations → Requires better scalability
- Extend to multiple domains (movies, books, songs, electronics)
- Additional computational overhead due to privacy preservation techniques

Challenges for heterogeneous recommendations

Challenges for heterogeneous recommendations

How to design a heterogeneous recommender to address these challenges?

Challenges for heterogeneous recommendations

Outline

- Introduction
- X-Map
 - o X-Sim
 - \circ AlterEgo
 - Recommendation
- Experiments & Conclusion

X-Sim: Baseline Similarity Graph Construction

• We use adjusted-cosine similarity to build this graph

$$s_{ac}(i,j) = \frac{\sum_{u \in Y_i \cap Y_j} (r_{u,i} - \bar{r_u})(r_{u,j} - \bar{r_u})}{\sqrt{\sum_{u \in Y_i} (r_{u,i} - \bar{r_u})^2} \sqrt{\sum_{u \in Y_j} (r_{u,j} - \bar{r_u})^2}}$$

• Any two items are connected if they have common users

X-Sim: Baseline Similarity Graph Construction

• We use adjusted-cosine similarity to build this graph

$$s_{ac}(i,j) = \frac{\sum_{u \in Y_i \cap Y_j} (r_{u,i} - \bar{r_u})(r_{u,j} - \bar{r_u})}{\sqrt{\sum_{u \in Y_i} (r_{u,i} - \bar{r_u})^2} \sqrt{\sum_{u \in Y_j} (r_{u,j} - \bar{r_u})^2}}$$

- Any two items are connected if they have common users
- We extend the current similarities using *meta-paths*
 - Meta-paths connect heterogenous items e.g., movies, books, songs
- Meta-paths captures more heterogeneous similarities

X-Sim: Layer-based K-NN

- Multiple meta-paths are possible in a heterogeneous graph
- K-NN connections across layers

BB: (Bridge, Bridge) Layer

NB: (Non-bridge, Bridge) Layer

NN: (Non-bridge, Non-bridge) Layer

X-Sim: Layer-based K-NN

- Multiple meta-paths are possible in a heterogeneous graph
- K-NN connections across layers

BB: (Bridge, Bridge) Layer

NB: (Non-bridge, Bridge) Layer

NN: (Non-bridge, Non-bridge) Layer

X-Sim: Meta-path based similarities

- Weighted Significance (adjacent items): Mutually agreeing (like/dislike) users
 - Higher number of users implies more significance

$$S_{i,j} = \underbrace{\left|Y_{i \geq \bar{i}} \cap Y_{j \geq \bar{j}}\right|}_{Mutual\ like} + \underbrace{\left|Y_{i < \bar{i}} \cap Y_{j < \bar{j}}\right|}_{Mutual\ dislike}$$

Normalized weighted significance 0

$$\widehat{S}_{i,j} = \frac{S_{i,j}}{n(Y_i \cup Y_j)}$$

X-Sim: Meta-path based similarities

- Weighted Significance (adjacent items): Mutually agreeing (like/dislike) users
 - Higher number of users implies more significance

$$S_{i,j} = \underbrace{\left|Y_{i \geq \bar{i}} \cap Y_{j \geq \bar{j}}\right|}_{Mutual\ like} + \underbrace{\left|Y_{i < \bar{i}} \cap Y_{j < \bar{j}}\right|}_{Mutual\ dislike}$$

Normalized weighted significance

$$\widehat{S}_{i,j} = \frac{S_{i,j}}{n(Y_i \cup Y_j)} \qquad \qquad \boxed{\mathbf{M_1}} \qquad \boxed{\mathbf{M_2}} \qquad \boxed{\mathbf{B_1}} \qquad \boxed{\mathbf{B_2}}$$

• Meta-path-based similarity: Baseline similarity weighted with significance

$$s_p = \frac{\sum_{t=1}^{t=k-1} S_{i_t, i_{t+1}} \cdot s_{ac}(i_t, i_{t+1})}{\sum_{t=1}^{t=k-1} S_{i_t, i_{t+1}}}$$

X-Sim: Path Certainty

- Path Certainty: Captures the importance of paths.
 - Longer paths are considered to be less important than shorter ones^[1]

X-Sim: Cross-domain similarities

- For any two items i and j, there are multiple meta-paths between them
 - \circ Each meta-path has similarity (s_{p}) and certainty (c_{p}) values

X-Sim: Cross-domain similarities

- For any two items i and j, there are multiple meta-paths between them
 - Each meta-path has similarity (s_p) and certainty (c_p) values

• X-Sim: Cross-domain similarities between two heterogeneous items i and j.

$$X-Sim(i,j) = \frac{\sum\limits_{p \in P(i,j)} c_p \cdot s_p}{\sum\limits_{p \in P(i,j)} c_p}$$

Outline

- Introduction
- X-Map
 - o X-Sim
 - \circ AlterEgo
 - Recommendation
- Experiments & Conclusion

AlterEgo generation

• Create an AlterEgo profile of the user in the target domain

Alice's AlterEgo profile (in target domain) mapped from her original profile (in source domain).

AlterEgo generation

• Create an AlterEgo profile of the user in the target domain

Alice's AlterEgo profile (in target domain) mapped from her original profile (in source domain).

AlterEgo generation (Private)

• Use probabilistic replacement (exponential mechanism for differential privacy^[2])

Alice's <u>private</u> AlterEgo profile (in target domain) mapped from her original profile (in source domain)

[2]. Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." Foundations and Trends® in Theoretical Computer Science 9.3–4 (2014): 211-407.

Outline

- Introduction
- X-Map
 - o X-Sim
 - o AlterEgo
 - $\circ \quad \underline{Recommendation}$
- Experiments & Conclusion

Recommendation: Algorithms

- Any homogenous algorithm can be applied due to AlterEgos in X-Map.
- X-Map currently supports:
 - User-based collaborative filtering
 - Item-based collaborative filtering
- Temporal dynamics
 - AlterEgos preserve the temporal pattern
 - Capturing preference change of users
 - More accurate recommendations^[3]

Recommendation: Privacy

- Within-domain privacy-preserving algorithms in X-Map
 - \circ ε -differential privacy based on recommendation-aware sensitivity.
 - Supports both user-based and item-based algorithms

Framework

Outline

- Introduction
- X-Map
 - o X-Sim
 - \circ AlterEgo
 - Recommendation
- Experiments & Conclusion

Experimental Setup

Datasets: Amazon movies and books

Domain	User	Items	Ratings
Movies	473,764	128,402	1,671,662
Books	725,846	403,234	2,708,839

Framework: Apache Spark

Metric: Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{t=1}^{n} \left| x_t - \hat{x}_t \right|$$

Quality: Accuracy comparison

Quality: Impact of training set

Quality: Impact of training set

Item-to-item similarities are more static than user-to-user similarities

Privacy

Item-based approach

User-based approach

Privacy

Item-based approach

- 1. Differential privacy: Lower ε leads to better privacy
- 2. Higher privacy leads to lower quality due to noise addition.

User-based approach

Temporality

Temporality

- AlterEgos preserve temporal behavior of users.
- A significantly higher value of α affects negatively due to users with small profiles.

Homogeneous scenario (Movielens)

D_1		D_2	
Genres	Movie counts	Genres	Movie counts
Drama	13344	Comedy	8374
Thriller	4178	Romance	4127
Action	3520	Crime	2939
Horror	2611	Documentary	2471
Adventure	2329	Sci-Fi	1743
Mystery	1514	Fantasy	1412
War	1194	Children	1139
Musical	1036	Animation	1027
Western	676	Film-Noir	330
Other	196	_	_

	NX-Map	X-Map	MLLIB-ALS
MAE	0.6027	0.6830	0.6729

Scalability

Scales sub-linearly with multiple machines

Summary

- X-Map: Heterogenous recommender that provides
 - Quality (X-Sim, Temporality)
 - o Privacy
 - Scalability
 - Prototype: http://x-map.work/

Summary

- X-Map: Heterogenous recommender that provides
 - Quality (X-Sim, Temporality)
 - o Privacy
 - Scalability
 - Prototype: http://x-map.work/

Quality: Impact of Sparsity

