Review for Final – E.K 8/10/21

Data Structures

1. Give one advantage of a Linked List, as compared to an array.

Ans. Linked List has much faster Insert and Remove operations than an Array - O(1) for Linked List and O(n) for Arrays.

Another one – Linked List allows more flexible memory management than an Array. It does not require large contiguous memory blocks, and needs no preallocation.

2. Data Structures – Hashing 1

Insert the following sequence of numbers 23, 46, 12, 21, 75, 5, 3 into a hash table of size 9 using h(x) = x%9 as a hash function. % means Mod. Use Chaining with Linked List to avoid collision. Ans.

0	1	2	3	4	5	6	7	8	
	46		12,21, 75,3		23,5				

Suppose that we store n keys in a hash table of size $m = n^2$ using a hash function h randomly chosen from a universal class of hash functions. Then, the probability is less than 1/2 that there are any collisions.

3. Data Structures – BST, Red-Back tree and Heaps

- Focus more on Red-Black Tree and Heaps

Graphs – Basics, DFS, BFS, MST and Shortest paths

- Focus more on DFS / BFS and Shortest paths
- Sample questions / problems as covered in class and in labs
- More problems from these materials

Hard Problems

4. Suppose A and B, and that A -> B (A is Reduceable to B in Poly time). Circle one answer for each statement below.

If A is NP-Complete and B is in NP then B is NP-Complete.

True False

If B is P then A is P.

True False

If B is NP-hard then A is NP-hard.

True False

Reduction -1

5. 3-CNF to Clique - To be done in the Class

Figure 34.14 The graph G derived from the 3-CNF formula $\phi = C_1 \wedge C_2 \wedge C_3$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee x_2 \vee x_3)$, and $C_3 = (x_1 \vee x_2 \vee x_3)$, in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.

Function using 3-CNF is

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Conditions to form the graph:

- v_i^r and v_i^s are in different triples, that is, r ≠ s, and
- their corresponding literals are consistent, that is, l_i^r is not the negation of l_i^s.

Proof:

We must show that this transformation of ϕ into G is a reduction. First, suppose that ϕ has a satisfying assignment. Then each clause C_r contains at least one literal l_i^r that is assigned 1, and each such literal corresponds to a vertex v_i^r . Picking one such "true" literal from each clause yields a set V' of k vertices. We claim that V' is a clique. For any two vertices v_i^r , $v_j^s \in V'$, where $r \neq s$, both corresponding literals l_i^r and l_i^s map to 1 by the given satisfying assignment, and thus the literals

cannot be complements. Thus, by the construction of G, the edge (v_i^r, v_j^s) belongs to E.

Conversely, suppose that G has a clique V' of size k. No edges in G connect vertices in the same triple, and so V' contains exactly one vertex per triple. We can assign 1 to each literal l_i^r such that $v_i^r \in V'$ without fear of assigning 1 to both a literal and its complement, since G contains no edges between inconsistent literals. Each clause is satisfied, and so ϕ is satisfied. (Any variables that do not correspond to a vertex in the clique may be set arbitrarily.)

Reduction -2

6. Clique to Vertex Cover - To be done in the Class

(Next Page)

Clique →

Vertex Cover

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G = (V, E) with clique $V' = \{u, v, x, y\}$. (b) The graph \overline{G} produced by the reduction algorithm that has vertex cover $V - V' = \{w, z\}$.

Clique → Vertex

Cover: Problem

Suppose that G has a clique $V' \subseteq V$ with |V'| = k. We claim that V - V' is a vertex cover in G. Let (u, v) be any edge in E. Then, $(u, v) \not\in E$, which implies that at least one of u or v does not belong to V', since every pair of vertices in V' is connected by an edge of E. Equivalently, at least one of u or v is in V - V', which means that edge (u, v) is covered by V - V'. Since (u, v) was chosen arbitrarily from E, every edge of E is covered by a vertex in V - V'. Hence, the set V - V', which has size |V| - k, forms a vertex cover for G.

Clique → Vertex

Cover: Solution

Suppose that \underline{G} has a clique $V' \subseteq V$ with |V'| = k. We claim that V - V' is a vertex cover in \overline{G} . Let (u, v) be any edge in \overline{E} . Then, $(u, v) \not\in E$, which implies that at least one of u or v does not belong to V', since every pair of vertices in V' is connected by an edge of E. Equivalently, at least one of u or v is in V - V', which means that edge (u, v) is covered by V - V'. Since (u, v) was chosen arbitrarily from \overline{E} , every edge of \overline{E} is covered by a vertex in V - V'. Hence, the set V - V', which has size |V| - k, forms a vertex cover for \overline{G} .

Clique → Vertex

Cover: Soln. - Converse

Conversely, suppose that \overline{G} has a vertex cover $V' \subseteq V$, where |V'| = |V| - k. Then, for all $u, v \in V$, if $(u, v) \in \overline{E}$, then $u \in V'$ or $v \in V'$ or both. The contrapositive of this implication is that for all $u, v \in V$, if $u \notin V'$ and $v \notin V'$, then $(u, v) \in E$. In other words, V - V' is a clique, and it has size |V| - |V'| = k.

Dynamic Programming

7.

a. Consider the unweighted directed graph shown below. Does this graph has optimal substructure to find the longest simple path, say between q and r or q and t? Explain your answer. Can you use Dynamic Programming for this problem. Explain why or why not.

Ans.

No, this graph does not have optimal substructure. Consider path $q \to r \to t$, which is a longest simple path from q to t. Is $q \to r$ a longest simple path from q to r? No, for the path $q \to s \to t \to r$ is a simple path that is longer. Is $r \to t$ a longest simple path from r to t? No again, for the path $r \to q \to s \to t$ is a simple path that is longer.

Since the graph does not have optimal substructure, we cannot use Dynamic Programming for this problem.