目次

第0章	Web ふろく:基本的な関数とそのグラフ	1
0.1	基本的な 1 変数関数とそのグラフ	1
	0.1.1 分数関数のグラフ	1
	$0.1.2 y = \sqrt[n]{x} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	0.1.3 連立方程式の解とグラフの交点	10
0.2	2 変数関数のグラフ	14
	0.2.1 3D グラフにチャレンジ	14
	0.2.2 接平面	19
	0.2.3 等高線	20
	0.2.4 等高線と無差別曲線	20
	0.2.5 3D グラフのための表計算ソフトにおける複合参照	21
	0.2.6 等高線と予算線の図解	24

基本的な関数とそのグラフ

0.1 基本的な1変数関数とそのグラフ

0.1.1 分数関数のグラフ

POINT

- 反比例は最も基本的な分数関数
- $y = \frac{k}{x}$, k は定数
- 図 1 は、内側から k = 1, 4, 8 の反比例のグラフ
- k > 0 ならばグラフは第 1 象限と第 3 象限に表れる
- グラフは y = x に関して対称
- x 軸と y 軸が漸近線:限りなく近づくが交差はしない

図1 双曲線のグラフ

基礎問題

問 0.1 次の関数について、指定された x の値に対応する y の値を計算し、表を完成させなさい。次にその表のデータをもとに $x \ge 0$ の範囲で曲線のグラフを描きなさい。

$$y = \frac{16}{x}$$

x	1	2	4	8	16
y					

標準問題

問 0.2 次の関数について、指定された x の値に対応する y の値を計算し、表を完成させなさい。次にその表のデータをもとに $x \ge 0$ の範囲で曲線のグラフを描きなさい。

$$y = \frac{10}{1 + 0.5x}$$

x	0	0.5	1	2	3	4	6	8
y								

度の ちょっとメモ 関数 $V=\frac{A}{1+kD}$ を双曲線形割引関数という。これに対して, $V=Ae^{-kD}$ を指数型割引関数という。ここで,A:報酬額,D:遅延(時間),k:割引率,V:現在価値である。この関数は行動経済学において「時間非整合性」の知見を生み出した。

問 0.3 $D \ge 0$ に対して、 $\frac{A}{1+kD} \ge Ae^{-kD}$ を示しなさい。

例題 0.1 定数 k>0 に対し、関数 $y=\frac{kx}{x-k}$ を考える。このとき次の問に答えなさい。

- (1) x > k に対し、y > k であることを示しなさい。
- (2) xy 平面にグラフを描きなさい.

解答

$$y = \frac{kx}{x - k}$$
$$= \frac{k(x - k) + k^2}{x - k}$$
$$= k + \frac{k^2}{x - k}.$$

の変形から, y>k であり, グラフは $y=\frac{k^2}{x}$ を x 軸方向にも, y 軸方向にも k だけ 平行移動したものであることが分かる.

級

0.1.2 $y = \sqrt[n]{x}$

POINT

$$\left(a^{\frac{1}{n}}\right)^n = a^{\frac{1}{n} \cdot n} = a^1 = a \Longleftrightarrow a^{\frac{1}{n}} = \sqrt[n]{a} \tag{1}$$

関係式 $\left(a^{\frac{1}{n}}\right)^n=a$ から,方程式 $x^n=a$,の解 x を求めればそれが, $x=a^{\frac{1}{n}}$ であることを (1) 式は 意味している。 $y=x^n$ のグラフを描く.

 $y=x^n$ のグラフを n の偶奇に分けて描くことで,a>0 なら $x^n=a$ は必ず解を持つことが分かる.解は,n が偶数の時はふたつ,n が奇数の場合はひとつ.いずれも x>0 の範囲にある解を,累乗根といい,根号 $^{1)}$ を用いて $\sqrt[n]{a}$ と書く.

 $^{^{(1)}}n=2$ のときだけ、特例として $\sqrt[2]{a}=\sqrt{a}$ と書く.

基礎問題

問 0.4 次の式で表される関数について、まず指定された x の値に対応する y の値を計算し、表を完成させなさい。次にその表のデータをもとに曲線のグラフを描きなさい。

$$y = x^2$$

x	-3	-2	-1	0	1	2	3
y							

問 0.5 次の式で表される関数について、まず指定された x の値に対応する y の値を計算し、表を完成させなさい。次にその表のデータをもとに $x \ge 0$ の範囲で曲線のグラフを描きなさい。

$$y = \sqrt{x}$$
 $\forall x : \sqrt{a^2} = a$

x	0	$\frac{1}{9}$	$\frac{1}{4}$	1	4	9
y						

ちょっとメモ

知っていて損はないし、日本の伝統芸なので、おぼえよう:

 $\sqrt{2}$: 1.41421356 (ひとよひとよにひとみごろ)

 $\sqrt{3}$: 1.7320508 (ひとなみにおごれや)

 $\sqrt{5}$: 2.2360679 (ふじさんろくおうむなく)

POINT

- 逆関数の微分: $(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$
- 逆関数 $y = f^{-1}(x)$ のグラフ:y = f(x) のグラフを 45 度線で折り返す

応用問題

例題 0.2 $x \ge 0$ とする. $g(x) = \sqrt{x}$ は, $f(x) = x^2$ の逆関数であることから,逆関数の微分公式を用いて, $\left(\sqrt{x}\right)'$ を求めなさい.

解答 f'(x) = 2x だから,

$$(\sqrt{x})' = g'(x) = (f^{-1})'(x) = \frac{1}{f'(g(x))}$$

= $\frac{1}{f'(\sqrt{x})} = \frac{1}{2\sqrt{x}}$.

紁

問 0.6 $g(x) = \log x$ は、 $f(x) = e^x$ の逆関数であることを利用し、 $\left(\log x\right)'$ を求めなさい。

問 0.7 反比例のグラフが y=x に関して対称になるのはなぜなのか、説明しなさい。

0.1.3 連立方程式の解とグラフの交点

- グラフの交点 ← 連立方程式の解
- グラフが交わらない ⇐⇒ 連立方程式の解なし

基礎問題

間 0.8 次の式で表される関数について, グラフを描 きなさい.また,交点の座標を,図の範囲内で求めなさい.

① $y = x^2 - 2x$ ② y = 2x - 4 ③ $y = \frac{8}{x} - 4$

標準問題

問 0.9 次の式で表される3つの関数について、指定されたxの値に対応するyの値を計算し、表を完成させなさい。次にその表のデータをもとに $x \ge 0$ の範囲で曲 線のグラフを同じ x-y 平面上に描きなさい.また直線 ① と曲線 ② の $x \ge 0$ での交 点を求めなさい。 ① $y=\frac{1}{2}x$ ② $y=\frac{2}{x}$ ③ $y=\frac{1}{2}x+\frac{2}{x}$

x		$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
1)						
2)						
3)						

例題 0.3 次の連立方程式の解を求めなさい。また図に示して、解の位置を確認しなさい。

$$\begin{cases} y = \frac{3}{x} & \cdots \\ x + y = 4 & \cdots 2 \end{cases}$$

解答 ①を②に代入する:

$$x+\frac{3}{x}=4$$
 $x^2+3=4x$ …両辺に x をかけた
 $x^2-4x+3=0$ …左辺を因数分解した
 $(x-1)(x-3)=0$
 $x=1,3$

①に x = 1,3 を代入しそれぞれ計算する:(x,y) = (1,3),(3,1). 図は以下の通り.

終

問 0.10 次の連立方程式の解を求めなさい。また図に示して、解の位置を確認しなさい。

(1)
$$\begin{cases} y = \frac{16}{x} & \cdots \\ x+y = 10 & \cdots 2 \end{cases}$$

(2)
$$\begin{cases} y = \frac{16}{x} & \cdots \\ x+y = 8 & \cdots \end{cases}$$

0.2 2 変数関数のグラフ

0.2.1 3D グラフにチャレンジ

関数
$$f(x) = x^3 - 6x^2 + 9x - 2$$

代入
$$f(1) = 1^3 - 6 \times 1^2 + 9 \times 1 - 2 = 2$$

グラフ
$$y = f(x)$$

1 変数の関数 y = f(x) のグラフは点 (x, f(x)) 全体の集合であるから、それは xy 平面に おいて1つの曲線を作る.

関数
$$f(x,y) = 2x^2 + 2xy + y^2 - 6x - 4y$$

代入
$$f(3,2) = 2 \times 3^2 + 2 \times 3 \times 2 + 2^2 - 6 \times 3 - 4 \times 2 = 8$$

グラフ
$$z = f(x,y)$$

2 変数の関数 z = f(x,y) のグラフは点 (x,y,f(x,y)) 全体の集合であるから、それは xyz空間において1つの曲面を作る。曲面のグラフを描く場合には、曲線に比べるとシステマ ティックな工夫が必要となる. そのひとつの手だてがカットである.

基礎問題

問 0.11 次の関数について、以下の問に答えなさい。

$$f(x,y) = x^2 + y^2$$

(1) z = f(x,0) のグラフを次図に描きなさい.

(2) z = f(x,1) のグラフを次図に描きなさい.

(3) z = f(0,y) のグラフを次図に描きなさい.

(4) z = f(1, y) のグラフを次図に描きなさい.

標準問題

例題 0.4 関数 f(x,y) = xy のグラフを描きなさい.

解答

- 関数 $z = x^2 + y^2$ を x 軸に平行にカットした図.
- ⑥→①の順に手前に積み重ねていくと 3D グラフが完成
- ① ウエディングケーキ ② ご入刀でございます

③ おめでとうございます

④ すてきなおふたりの♡

⑤ ツーショット写真をお撮り下さい ⑥ それでは盛大な拍手を ♡♡

終

y軸に平行にカットしても同様の構成が可能. 試してほしい.

例題 0.5 関数 f(x,y) = xy について答えなさい.

- (1) z = f(x,3) のグラフを描きなさい.
- (2) z = f(3, y) のグラフを描きなさい.
- (3) z = f(x,y) のグラフを描きなさい.

解答 下図は、曲面から $x \ge 3, y \le 3$ の領域をくり抜いたようすを示している。切断面には、z=3x, z=3y を示す直線が見て取れる。

終

問 0.12 次の関数のグラフを描きなさい。表計算ソフトを使ってもよい。

- (1) $f(x,y) = x^2 y^2$
- (2) $f(x,y) = x^{\frac{1}{2}}y^{\frac{1}{2}}$
- (3) $f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$
- $(4) f(x,y) = \log x + \log y$
- $(5) f(x,y) = e^{x-y}$

0.2.2 接平面

POINT

曲面 z = f(x,y) の (\bar{x},\bar{y}) における接平面の式は

$$z = f(\bar{x}, \bar{y}) + \frac{\partial f}{\partial x}(\bar{x}, \bar{y})(x - \bar{x}) + \frac{\partial f}{\partial y}(\bar{x}, \bar{y})(y - \bar{y}).$$

例題

例題 0.6 xyz 空間内の曲面 $z=f(x,y)=x^{\frac{1}{2}}y^{\frac{1}{2}}$ の (x,y)=(1,1) における接平面の式を求めなさい.

解答

$$f(1,1) = 1,$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{2} x^{-\frac{1}{2}} y^{\frac{1}{2}} \Longrightarrow \frac{\partial f}{\partial x}(1,1) = \frac{1}{2},$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{1}{2}x^{\frac{1}{2}}y^{-\frac{1}{2}} \Longrightarrow \frac{\partial f}{\partial y}(1,1) = \frac{1}{2},$$

であるので、求める接平面の式は

$$z = 1 + \frac{1}{2}(x - 1) + \frac{1}{2}(y - 1)$$

とかける.

終

問 0.13 xyz 空間内の曲面 z=f(x,y) の (x,y)=(1,1) における接平面の式を求めなさい.

(1)
$$z = x^2 + y^2$$

(2)
$$f(x,y) = x^2 - y^2$$

(3)
$$f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$$

$$(4) f(x,y) = \log x + \log y$$

$$(5) f(x,y) = e^{x-y}$$

0.2.3 等高線

POINT

- f(x,y) = -定値 となる, (x,y) の境界線が等高線
- グラフをスライスしたものになる

標準問題

問 0.14 次の等高線を第1象限に描きなさい.

$$(1) \ x^2 + y^2 = 4$$

(2)
$$x^{\frac{1}{2}}y^{\frac{1}{2}} = 1$$

$$(3) \ x^{\frac{1}{3}}y^{\frac{2}{3}} = 1$$

$$(4) \log x + \log y = 1$$

$$(5) xy = 4$$

0.2.4 等高線と無差別曲線

POINT

● 効用曲面の等高線 ⇔ 無差別曲線

効用曲面

無差別曲線

0.2.5 3D グラフのための表計算ソフトにおける複合参照

座標軸

	A	В	C	D	← 列番号
1		B1	C1	D1	→ x 座標
2	A2				
3	A3				
4	A4				
	.				-

 \uparrow \uparrow

行番号 y 座標

- x 座標は第1行のセル番号: B1, C1, D1, ... にオートフィルを使う等して入力
- y 座標は第1列のセル番号: A2, A3, A4, … にオートフィルを使う等して入力
- 必然的に A1 セルは空セルになる

関数値:相対参照から複合参照への道のり

分かりやすくするため、簡単な関数 z = xy を入力することにする.

	A	В	C	D	← 列番号
1		B1	C1	D1	← x 座標
2	A2	=A2*B1			
3	A3				
4	A4				

 \uparrow \uparrow

行番号 y 座標

これをこのまま縦方向にオートフィル (コピペ) すると、相対参照なので行番号が平行移動して次のようになる。

	A	В	C	D	← 列番号
1		B1	C1	D1	← x 座標
2	A2	=A2*B1			
3	A3	=A3*B2			
4	A4	=A4*B3			

 \uparrow \uparrow

行番号 y 座標

y 座標の行番号は平行移動してほしいが、x 座標の行番号は平行移動してほしくないので、 あらかじめ\$をつけることで、次のような結果になるようにする.

	A	В	\mathbf{C}	D	 ← 列番号
1		B1	C1	D1	 ← x 座標
2	A2	=A2*B\$1			
3	A3	=A3*B\$1			
4	A4	=A4*B\$1			
				•	,

 \uparrow \uparrow

行番号 y 座標

これをこのまま横方向にオートフィル (コピペ) すると、相対参照部分の列番号が平行移動して次のようになる。

	A	В	C	D	← 列番号
1		B1	C1	D1	← x 座標
2	A2	=A2*B\$1	=B2*C\$1	=C2*D\$1	
3	A3				
4	A4				

 \uparrow \uparrow

行番号 y 座標

こんどは x 座標の列番号は平行移動してほしいが、 y 座標の列番号は平行移動してほしくないので、あらかじめ\$をつけることで、次のような結果になるようにする。

	A	В	C	D	← 列番号
1		B1	C1	D1	← x 座標
2	A2	=\$A2*B\$1	=\$A2*C\$1	=\$A2*D\$1	
3	A3				
4	A4				
	·				•

 \uparrow \uparrow

行番号 y 座標

最終的なコピペの結果として、複合参照がうまく働いているのがよくわかる.

	A	В	C	D	← 列番号
1		B1	C1	D1	← x 座標
2	A2	=\$A2*B\$1	=\$A2*C\$1	=\$A2*D\$1	
3	A3	=\$A3*B\$1	=\$A3*C\$1	=\$A3*D\$1	
4	A4	=\$A4*B\$1	=\$A4*C\$1	=\$A4*D\$1	

 \uparrow \uparrow

行番号 y 座標

エクセルで描いた z = xy の 3D グラフ

応用問題

問 0.15 関数 $u(x,y)=\frac{xy}{x+y}$ の無差別曲線を、x>0,y>0 の領域に描きなさい。 ヒントは例題 8.1.

0.2.6 等高線と予算線の図解

標準問題

例題 0.7 X-財を x 単位,Y-財を y 単位,手にした場合の,満足度 を表す **効用関数** が z=xy であるとする.満足度 z=3 の場合,(x,y) のペアが満たす曲線(無差別曲線)を描きなさい.

解答 満足度 z=3 の場合: $3=xy\Leftrightarrow y=\frac{3}{x}$ なので,例題 8.2 の図になる.

例題 0.8 次の連立方程式の解を求めなさい。次に、解の位置における f(x,y)、

$$\begin{cases} 0 = f(x,y) = xy - 3 & \cdots \\ 0 = g(x,y) = x + y - 4 & \cdots \end{cases}$$

$$g(x,y)$$
 の偏微分を求めなさい。
$$\begin{cases} 0 &= f(x,y) = xy - 3 & \cdots \\ 0 &= g(x,y) = x + y - 4 & \cdots \\ 0 &= 3x & \cdots \end{cases}$$
 解答 ① 式,② 式を変形すると,
$$\begin{cases} y &= \frac{3}{x} & \cdots \\ x + y &= 4 & \cdots \\ \end{cases}$$
 $(x,y) = (1,3), (3,1)$

$$\left\{ \begin{array}{lll} \frac{\partial f}{\partial x}(x,y) & = & y \\ \frac{\partial f}{\partial y}(x,y) & = & x \end{array} \right. \quad \left\{ \begin{array}{lll} \frac{\partial f}{\partial x}(1,3) & = & 3 \\ \frac{\partial f}{\partial y}(1,3) & = & 1 \end{array} \right. \quad \left\{ \begin{array}{lll} \frac{\partial f}{\partial x}(3,1) & = & 1 \\ \frac{\partial f}{\partial y}(3,1) & = & 3. \end{array} \right.$$

$$\left\{ \begin{array}{lll} \frac{\partial g}{\partial x}(x,y) & = & 1 \\ \frac{\partial g}{\partial y}(x,y) & = & 1 \end{array} \right. \quad \left\{ \begin{array}{lll} \frac{\partial g}{\partial x}(1,3) & = & 1 \\ \frac{\partial g}{\partial y}(1,3) & = & 1 \end{array} \right. \quad \left\{ \begin{array}{lll} \frac{\partial g}{\partial x}(3,1) & = & 1 \\ \frac{\partial g}{\partial y}(3,1) & = & 1. \end{array} \right.$$

問 0.16 次の連立方程式の解を求めなさい。次に、解の位置における f(x,y)、g(x,y)の偏微分を求めなさい。

(1)
$$\begin{cases} 0 = f(x,y) = xy - 16 & \cdots \\ 0 = g(x,y) = x + y - 10 & \cdots \end{cases}$$

(2)
$$\begin{cases} 0 = f(x,y) = xy - 16 & \cdots \\ 0 = g(x,y) = x + y - 8 & \cdots \\ 2 & & \end{cases}$$

(3)
$$\begin{cases} 0 = f(x,y) = x^2 + y^2 - 10 & \dots \\ 0 = g(x,y) = x + y - 4 & \dots \end{cases}$$

(4)
$$\begin{cases} 0 = f(x,y) = x^2 + y^2 - 8 & \dots \\ 0 = g(x,y) = x + y - 4 & \dots \\ \end{cases}$$

