# **Appendix for "Symmetric Variational Autoencoder and Connections to Adversarial Learning"**

#### 1 Model Architectures

Table 1: Architecture of the models for sVAE-r on MNIST. BN denotes batch normalization.

| Encoder X to z                                                                                       | Decoder z to X                                                                     | Discriminator                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input $28 \times 28$ Gray Image                                                                      | Input latent code z                                                                | Input two $28 \times 28$ Gray Image                                                                                                                               |
| $5 \times 5$ conv. 16 ReLU, stride 2, BN $5 \times 5$ conv. 32 ReLU, stride 2, BN MLP output 784, BN | MLP output 1024, BN MLP output 3136, BN $5 \times 5$ deconv. 64 ReLU, stride 2, BN | $5 \times 5$ conv. 32 ReLU, stride 2, BN $5 \times 5$ conv. 64 ReLU, stride 2, BN $5 \times 5$ conv. 128 ReLU, stride 2, BN input z through MLP output 1024, ReLU |
| MLP output dim of z                                                                                  | $5 \times 5$ deconv. 1 ReLU, stride 2, sigmoid                                     | MLP output 1                                                                                                                                                      |

Table 2: Architecture of the models for sVAE on CelebA. BN denotes batch normalization. lReLU denotes Leaky ReLU.

| Encoder X to z                                                                                                                                                                                                                    | Decoder z to X                                                                                                                                                                                                                 | Discriminator                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Image X concat with noise                                                                                                                                                                                                   | Input z concat with noise                                                                                                                                                                                                      | Input X                                                                                                                                                                                                                                                       |
| 4 × 4 conv. 32 lReLU, stride 2, BN 4 × 4 conv. 64 lReLU, stride 2, BN 4 × 4 conv. 128 lReLU, stride 2, BN 4 × 4 conv. 256 lReLU, stride 2, BN 4 × 4 conv. 512 lReLU, stride 2, BN MLP output 512, lReLU MLP output dim of z, tanh | concat random noise MLP output 1024, lReLU, BN MLP output 8192, lReLU, BN  5 × 5 deconv. 256 lReLU, stride 2, BN 5 × 5 deconv. 128 lReLU, stride 2, BN 5 × 5 deconv. 64 lReLU, stride 2, BN 5 × 5 deconv. 3 tanh, stride 2, BN | $5 \times 5$ conv. 64 ReLU, stride 2, BN<br>$5 \times 5$ conv. 128 ReLU, stride 2, BN<br>$5 \times 5$ conv. 256 ReLU, stride 2, BN<br>$5 \times 5$ conv. 512 ReLU, stride 2, BN<br>Input z through MLP, output 2046, ReLU<br>concat two features from X and z |

Table 3: Architecture of the models for sVAE-r on CIFAR. BN denotes batch normalization. lReLU denotes Leaky ReLU. Dim denotes the number of attributes.

| Encoder X to z                             | Decoder z to X                              | Discriminator                                          |
|--------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| Input Image X concat with noise            | Input z                                     | Input X                                                |
| $5 \times 5$ conv. 32 lReLU, stride 2, BN  | concat random noise                         | $5 \times 5$ conv. 64 ReLU, stride 2, BN               |
| $5 \times 5$ conv. 64 lReLU, stride 2, BN  |                                             | $5 \times 5$ conv. 128 ReLU, stride 2, BN              |
| $5 \times 5$ conv. 128 lReLU, stride 2, BN | MP output 8192, lReLU, BN                   | $5 \times 5$ conv. 256 ReLU, stride 2, BN              |
| $5 \times 5$ conv. 256 lReLU, stride 2, BN |                                             | $5 \times 5$ conv. 512 ReLU, stride 2, BN, avg pooling |
|                                            | $5 \times 5$ deconv. 256 ReLU, stride 2, BN | Input z through MLP, output 512, ReLU                  |
| MLP output 512, lReLU                      | $5 \times 5$ deconv. 128 ReLU, stride 2, BN | concat two features from X and z                       |
| MLP output dim of z, tanh                  | $5 \times 5$ deconv. 3 tanh, stride 2       | MLP output 1                                           |

# 2 More Result

## 2.1 CIFAR-10 result



Figure 1: sVAE CIFAR unsupervised generation results with  $\lambda=0.1$ .

## 2.2 CelebA result



Figure 2: sVAE CIFAR unsupervised reconstruction. First two rows are original images, and the last two rows are the reconstructions



Figure 3: sVAE-r CIFAR unsupervised reconstruction. First two rows are original images, and the last two rows are the reconstructions



Figure 4: sVAE-r CelebA generations results with different  $\lambda$ 



Figure 5: ALICE CelebA generations results with different  $\lambda$ 



Figure 6: ALICE CelebA reconstructions with different  $\lambda$ .



Figure 7: ALICE CelebA reconstructions with different  $\lambda$ .