1 Bifurcação

Ao longo de seção, f_{λ} representará uma família parametrizada de funções no parâmetro λ de modo que a função

$$G(x,\lambda) = f_{\lambda}(x)$$

definida num aberto de \mathbb{R}^2 seja de classe \mathcal{C}^{∞} nas variáveis $x \in \lambda$.

Teorema 1.1 (Função Implícita). Sejam $U \subset \mathbb{R}^2$ um aberto $e F : U \to \mathbb{R}$ uma função de classe C^k , $1 \le k \le \infty$. Suponha que

- 1. $F(x_0, y_0) = c$
- 2. $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$

Então existem uma vizinhança I de x_0 e uma função $f: I \to \mathbb{R}$ de classe \mathcal{C}^k tais que

- 1. $f(x_0) = y_0$
- 2. $F(x, f(x)) = c \text{ para todo } x \in I$

Teorema 1.2. Seja f_{λ} uma família parametrizada de funções. Suponha que

- 1. $f_{\lambda_0}(x_0) = x_0$
- 2. $f'_{\lambda_0}(x_0) \neq 1$

Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p: I \to J$ de classe C^{∞} tais que

- 1. $p(\lambda_0) = x_0$
- 2. $f_{\lambda}(p(\lambda)) = p(\lambda)$ para todo $\lambda \in I$

Além disso, f_{λ} não possui outros pontos fixos em J.

Demonstração. Seja $G(x,\lambda) = f_{\lambda}(x) - x$. Observe que x é ponto fixo de f_{λ} se e somente se $G(x,\lambda) = 0$.

Pelo Teorema da Função Implícita, como $G(x_0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial x}(x_0, \lambda_0) = f'_{\lambda_0}(x_0) - 1 \neq 0,$$

existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p:I\to J$ de classe \mathcal{C}^{∞} tal que $p(\lambda_0)=x_0$ e $G(p(\lambda),\lambda)=0$ para todo $\lambda\in I$.

Além disso, para cada $\lambda \in I$ está associado um único $x \in J$ e, portanto, $x \in J$ e $G(x,\lambda) = 0$ se e somente se $x = p(\lambda)$.

De acordo com o Teorema anterior, se x_0 é um ponto fixo hiperbólico de f_{λ_0} , então f_{λ} possui um único ponto fixo numa vizinhança de x_0 para cada λ numa vizinhança de λ_0 .

Utilizando a notação do Teorema anterior, considere a função $g_{\lambda}(x) = f_{\lambda}(x + p(\lambda)) - p(\lambda)$. Observe que $g_{\lambda}(0) = f(p(\lambda)) - p(\lambda) = 0$ para todo $\lambda \in I$, ou seja, 0 é ponto fixo de g_{λ} para todo $\lambda \in I$. Além disso, f_{λ} e g_{λ} são topologicamente conjugadas por $h_{\lambda}(x) = x - p(\lambda)$.

Teorema 1.3 (Bifurcação Tangente). Suponha que

- 1. $f_{\lambda_0}(0) = 0$
- 2. $f'_{\lambda_0}(0) = 1$
- 3. $f_{\lambda_0}''(0) \neq 0$
- 4. $\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda=\lambda_0}(0)\neq 0$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

- 1. $p(0) = \lambda_0$
- 2. $f_{p(x)}(x) = x$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Considere a função $G(x,\lambda) = f_{\lambda}(x) - x$. Observe que x é um ponto fixo de f_{λ} se e somente se $G(x,\lambda) = 0$.

Pelo Teorema da Função Implícita, como $G(0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial \lambda}(0,\lambda_0) = \frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0) \neq 0,$$

existem uma vizinhança I de 0 e uma função $p:I\to\mathbb{R}$ tais que $p(0)=\lambda_0$ e G(x,p(x))=0 para todo $x\in I$.

Além disso, pela Regra da Cadeia, é válido que

$$p'(0) = -\frac{\frac{\partial G}{\partial x}(0, \lambda_0)}{\frac{\partial G}{\partial \lambda}(0, \lambda_0)} = -\frac{f'_{\lambda_0}(0) - 1}{\frac{\partial f_{\lambda_0}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} = 0$$

e

$$p''(0) = -\frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0) \frac{\partial G}{\partial \lambda}(0, \lambda_0) - \frac{\partial G}{\partial x}(0, \lambda_0) \frac{\partial^2 G}{\partial x \partial \lambda}(0, \lambda_0)}{\left(\frac{\partial G}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{\frac{\partial^2 G}{\partial x^2}(x, \lambda_0)}{\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} \neq 0$$

Teorema 1.4 (Bifurcação com Duplicação de Período). Suponha que

1. $f_{\lambda_0}(0) = 0$ para todo λ numa vizinhança de λ_0

2.
$$f'_{\lambda_0}(0) = -1$$

3.
$$\frac{\partial (f_{\lambda}^2)'}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$$

4.
$$S_{f_{\lambda_0}}(0) \neq 0$$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

1.
$$p(0) = \lambda_0$$

2.
$$f_{p(x)}(x) \neq x \text{ para todo } x \in I$$

3.
$$f_{p(x)}^2(x) = x \text{ para todo } x \in I$$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Seja $G(x,\lambda)=f_{\lambda}^2(x)-x$. Sendo $G(0,\lambda)=0$ para todo λ numa vizinhança de λ_0 , temos que

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = 0$$

e, portanto, não podemos utilizar o Teorema da Função Implícita diretamente. Seja

$$H(x,\lambda) = \begin{cases} \frac{G(x,\lambda)}{x} & \text{se } x \neq 0\\ \\ \frac{\partial G}{\partial x}(0,\lambda) & \text{se } x = 0 \end{cases}$$

Desse modo, H é de classe \mathcal{C}^{∞} e são válidas as igualdades

(I)
$$H(0, \lambda_0) = \frac{\partial G}{\partial x}(0, \lambda_0) = (f_{\lambda_0}^2)'(0) - 1 = f_{\lambda_0}'(f_{\lambda_0}(0))f_{\lambda_0}'(0) - 1 = 0$$

(II)
$$\frac{\partial H}{\partial \lambda}(0,\lambda_0) = \frac{\partial}{\partial \lambda} \left(\frac{\partial G}{\partial x}(0,\lambda) \right) |_{\lambda=\lambda_0} = \frac{\partial}{\partial \lambda} ((f_{\lambda}^2)'(0)-1) |_{\lambda=\lambda_0} = \frac{\partial (f_{\lambda}^2)'}{\partial \lambda} |_{\lambda=\lambda_0}(0) \neq 0$$

(III)
$$\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$$

(IV)
$$\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{3} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$$

Para provar as igualdades (III) e (IV), observe que podemos escrever

$$G(x,\lambda_0) = G(0,\lambda_0) + x \frac{\partial G}{\partial x}(0,\lambda_0) + \frac{x^2}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0) + \frac{x^3}{6} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0) + \cdots$$

para todo x numa vizinhança de 0. Desse modo, para $x \neq 0$ nessa vizinhança, podemos escrever

$$H(x,\lambda_0) = \frac{\partial G}{\partial x}(0,\lambda_0) + \frac{x}{2}\frac{\partial^2 G}{\partial x^2}(0,\lambda_0) + \frac{x^2}{6}\frac{\partial^3 G}{\partial x^3}(0,\lambda_0) + \cdots$$
$$= H(0,\lambda_0) + x\frac{\partial H}{\partial x}(0,\lambda_0) + \frac{x^2}{2}\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) + \cdots$$

e, portanto, igualando as séries termo a termo concluímos que $\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$ e $\frac{1}{2} \frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{6} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$

Pelas igualdades (I) e (II), e pelo Teorema da Função Implícita, existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que $p(0) = \lambda_0$ e H(x, p(x)) = 0 para todo $x \in I$. Em particular, se $x \neq 0$,

$$0 = \frac{G(x, p(x))}{r} = \frac{f_{p(x)}^{2}(x) - x}{r}$$

ou seja, $f_{p(x)}^2(x) = x$ para todo $x \in I$. Além disso, pelo Teorema 1.2, f_{λ} possui um único ponto fixo numa vizinhança de 0 e, portanto, podemos considerar que $f_{p(x)}(x) \neq x$ para todo $x \in I$, $x \neq 0$.

Como

$$\frac{\partial^2 G}{\partial x^2}(0,\lambda_0) = (f_{\lambda_0})''(x)|_{x=0}
= [f'_{\lambda_0}(f_{\lambda_0}(x))f'_{\lambda_0}(x)]'|_{x=0}
= [f''_{\lambda_0}(f_{\lambda_0}(x))(f'_{\lambda_0}(x))^2 + f'_{\lambda_0}(f_{\lambda_0}(x))f''_{\lambda_0}(x)]|_{x=0}
= f''_{\lambda_0}(f_{\lambda_0}(0)) - f''_{\lambda_0}(0) = 0$$

temos que

$$p'(0) = -\frac{\frac{\partial H}{\partial x}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{1}{2} \frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = 0$$

Por fim,

$$\frac{\partial^{3} G}{\partial x^{3}}(0,\lambda_{0}) = [f_{\lambda_{0}}''(f_{\lambda_{0}}(x))(f_{\lambda_{0}}'(x))^{2} + f_{\lambda_{0}}'(f_{\lambda_{0}}(x))f_{\lambda_{0}}''(x)]'|_{x=0}$$

$$= [f_{\lambda_{0}}'''(f_{\lambda_{0}}(x))(f_{\lambda_{0}}'(x))^{3} + 2f_{\lambda_{0}}''(f_{\lambda_{0}}(x))f_{\lambda_{0}}''(x)f_{\lambda_{0}}'(x) + f_{\lambda_{0}}''(f_{\lambda_{0}}(x))f_{\lambda_{0}}''(x)f_{\lambda_{0}}''(x)$$

$$+ f_{\lambda_{0}}'(f_{\lambda_{0}}(x))f_{\lambda_{0}}'''(x)]|_{x=0}$$

$$= f_{\lambda_{0}}'''(0)(f_{\lambda_{0}}'(0))^{3} + 2(f_{\lambda_{0}}''(0))^{2}f_{\lambda_{0}}'(0) + (f_{\lambda_{0}}''(0))^{2}f_{\lambda_{0}}'(0) + f_{\lambda_{0}}'(0)f_{\lambda_{0}}'''(0)$$

$$= -2f_{\lambda_{0}}'''(0) - 3(f_{\lambda_{0}}''(0))^{2}$$

$$= 2f_{\lambda_{0}}'''(0) - 3\left(\frac{f_{\lambda_{0}}''(0)}{f_{\lambda_{0}}'(0)}\right)^{2} = 2S_{f_{\lambda_{0}}}(0)$$

e, portanto,

$$p''(0) = -\frac{\frac{\partial^2 H}{\partial x^2}(0, \lambda_0)\frac{\partial H}{\partial \lambda}(0, \lambda_0)}{\left(\frac{\partial H}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{1}{3}\frac{\frac{\partial^3 G}{\partial x^3}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{2}{3}\frac{S_{f_{\lambda_0}}(0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} \neq 0.$$

2 Estabilidade Estrutural

Definição 2.1. Sejam $f, g: D \to \mathbb{R}$ funções de classe \mathcal{C}^k . A \mathcal{C}^k -distância entre f e g é definida por

$$d_k(f,g) = \sup_{x \in D} \left\{ |f(x) - g(x)|, |f^{(2)}(x) - g^{(2)}(x)|, \dots, |f^{(k)}(x) - g^{(k)}(x)| \right\}$$

Definição 2.2. Seja $f: D \to \mathbb{R}$. Dizemos que $f \in \mathcal{C}^k$ -estável se existe $\varepsilon > 0$ tal que $d_k(f,g) < \varepsilon$ implica que f e g são topologicamente conjugadas.

Exemplo 2.3. Seja $L: \mathbb{R} \to \mathbb{R}$ a função definida por $L(x) = \frac{x}{2}$. Se g é uma função derivável com $d_1(L,g) < \frac{1}{2}$, vamos mostrar que L e g são topologicamente conjugadas.

Inicialmente, g possui pelo menos 1 ponto fixo. Como $\left|\frac{x}{2} - g(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que $-\frac{1}{2} < \frac{x}{2} - g(x) < \frac{1}{2}$ e, portanto, $-\frac{1}{2} - \frac{x}{2} < g(x) - x < \frac{1}{2} - \frac{x}{2}$. Definindo h(x) = g(x) - x, temos que 0 < h(-1) < 1 e -1 < h(1) < 0. Pelo Teorema do Valor Intermediário, existe $x_0 \in (-1, 1)$ tal que $h(x_0) = 0$ e, portanto, $g(x_0) = x_0$.

Além disso, g possui no máximo 1 ponto fixo. Como $\left|\frac{1}{2} - g'(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que 0 < g'(x) < 1. De acordo com o Teorema do Valor Médio, se g possui 2 pontos fixos, então existe x_0 tal que $g'(x_0) = 1$, o que é um absurdo.

Seja $J = [-10, -5) \cup (5, 10]$. Observe que se $x \in \mathbb{R} - \{0\}$, então existe um único $n_x \in \mathbb{Z}$ tal que $L^{n_x}(x) \in J$. Analogamente, se $x \in \mathbb{R}$ e x não é ponto fixo de g, então existe um único n_x tal que $g^{n_x}(x) \in [-10, g(-10)) \cup (g(10), 10]$.

Seja h uma função tal que $h|_{[-10,-5]}$ é um homeomorfismo crescente entre [-10,-5] e [-10,g(-10)] e $h|_{[5,10]}$ é um homeomorfismo crescente entre [5,10] e [g(10),10].

Seja $x \in \mathbb{R} - \{0\}$. Como $L^{n_x}(x) \in J$, temos que $h \circ L^{n_x}(x)$ está bem definido. Sendo g um homeomorfismo, $g^{-n_x} \circ h \circ L^{n_x}(x)$ também está bem definido. Defina $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$ para todo $x \in \mathbb{R} - \{0\}$. Observe que se $x \in J$, então $n_x = 0$ e, portanto, está bem definida em J. Por fim, defina h(0) como sendo o ponto fixo de g. Resta mostrar que $h \circ L(x) = g \circ h(x)$ para todo $x \in \mathbb{R}$.

Se $x \neq 0$, então $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$. Se y = L(x), então $y \neq 0$ e $L^{n_x-1}(y) = L^{n_x-1}(L(x)) = L^{n_x}(x) \in J$, ou seja, $n_y = n_x - 1$. Desse modo,

$$h \circ L(x) = h(y) = g^{-n_y} \circ h \circ L^{n_y}(y) = g \circ g^{-n_x} \circ h \circ L^{n_x}(x) = g \circ h(x)$$

e g(h(0)) = h(0) = h(L(0)).

Assim, $h \circ L = g \circ h$. Além disso, h é um homeomorfismo pois é composição de homeomorfismos. Desse modo, L e g são topologicamente conjugadas e L é \mathcal{C}^1 -estável.

Por fim, vamos estudar a estabilidade estrutural da função quadrática $F_{\mu}(x) = \mu x(1-x)$, para $\mu > 2 + \sqrt{5}$.

Relembrando, $F_{\mu}(1) = F_{\mu}(0) = 0$ e $F_{\mu}(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu-1}{\mu}$. Além disso, F_{μ} é estritamente crescente em $\left(-\infty, \frac{1}{2}\right)$ e estritamente decrescente em $\left(\frac{1}{2}, \infty\right)$ e, desse modo, $F_{\mu}^{-1}(1)$ possui dois elementos, pois $F_{\mu}\left(\frac{1}{2}\right) > 1$. Denotando por y_0 e y_1 tais elementos, com $y_0 < y_1$, temos que $|F'_{\mu}(x)| > 1$ para todo $x \in [0, y_0] \cup [y_1, 1]$.

Teorema 2.4. Se $\mu > 2 + \sqrt{5}$, então F_{μ} é C^2 -estável.

Demonstração. Vamos mostrar que existe $\varepsilon > 0$ tal que se g é de classe \mathcal{C}^2 e $d_2(F_\mu, g) < \varepsilon$, então F_μ e g são topologicamente conjugadas.

Seja $\varepsilon_1 > 0$ tal que $d_2(F_\mu, g) < \varepsilon_1$ implica que g'' < 0 e, portanto, que a concavidade de g é para baixo. Existe ε_1 com essa propriedade pois $F''_\mu = -2\mu$.

Seja $0 < \varepsilon_2 < \varepsilon_1$ tal que $d_2(F_\mu, g) < \varepsilon_2$ implica que g possui dois pontos fixos $\alpha < \beta$ com $g'(\alpha) > 1$ e $g'(\beta) < -1$. Existe ε_2 com essa propriedade pois F_μ possui os pontos fixos 0 e p_μ com $F'_\mu(0) > 1$ e $F'_\mu(p_\mu) < -1$.

Pelo Teorema do Valor Médio, temos que g possui um ponto crítico $c \in (\alpha, \beta)$. Sendo g'' < 0, o ponto crítico de g é único. Além disso, g é estritamente crescente em $(-\infty, c)$ e estritamente decrescente em (c, ∞) . Desse modo, existe $\alpha' \in (c, \infty)$ tal que $g(\alpha') = \alpha$.

Por fim, seja $0 < \varepsilon < \varepsilon_2$ tal que $d_2(F_\mu, g) < \varepsilon$ implica que $g^{-1}(\alpha')$ possui dois elementos a_0 e a_1 e que |g'(x)| > 1 para todo $x \in [\alpha, x_0] \cup [x_1, \beta]$.

Desse modo, se $d_2(F_\mu, g) < \varepsilon$, então a dinâmica de g em $[\alpha, \alpha']$ é igual a dinâmica de F_μ em [0, 1]. Em particular, é possível mostrar que g é topologicamente conjugada com a função σ de Σ_2 . Portanto, por transitividade, F_μ e g são topologicamente conjugadas. \square

Teorema 2.5 (Hartman). Seja p um ponto fixo hiperbólico de f e suponha que $f'(p) = \lambda \neq 0$. Então existem vizinhanças U de p e V de 0 e um homeomorfismo $h: U \to V$ que conjuga as funções $f|_{U}$ e $L(x) = \lambda x$, $x \in V$.