第1课 十进制与十六进制

十六进制

由于二进制存储信息位数较多,较冗长,因此往往用1位十六进制数来表示4位二进制数,有效地缩短信息的长度。

十六进制

表 1.2.2 进位制转换

十进制	二进制	十六进制
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	. 6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

十六进制

进制	基数	进位机制
二进制数	0, 1	逢2进1
十进制数	0至9,共10个	逢10进1
十六进制数	0至9, A, B, C, D, E, F, 共16个	逢16进1

十六进制

十进制转十六进制:

方法一: 先转二进制, 再转十六进制。

方法二:除16求余法,再逆序输出(除16取余数,直

到余数为0,将所得余数倒排序)。

十六进制

十六进制转十进制:

方法一: 先转二进制, 再转十进制。

方法二: 按权展开、逐项相加。

十六进制

python中的转换函数:

```
>>> hex(43)
'0x2b'
>>> 0x2b
43
>>> int('2b', 16)
43
>>>
```