Esercizi TDI - Foglio 2

Davide Peccioli

4 aprile 2025

1 Esercizio 1

Prove that the map

$$\omega^{\omega} \to 2^{\omega}, \quad x \mapsto \underbrace{0 \dots 0}_{x(0)} 1 \underbrace{0 \dots 0}_{x(1)} 1 \underbrace{0 \dots 0}_{x(2)} 1 \dots$$

is a (topological) embedding, and argue that this provides an alternative proof of the fact that

$$\{x \in 2^{\omega} \mid x(n) = 1 \text{ for infinitely many } n \in \omega\}$$

is a dense Polish subspace of 2^{ω} . In contrast, show that 2^{ω} cannot be embedded as a dense subset in ω^{ω} .

[Hint. Use compactness.]

1.1 Soluzione

1.1.1 Prima parte

Sia $f:\omega^{\omega}\to 2^{\omega}$ la funzione descritta e sia, per ogni $s\in\omega^{<\omega}$:

$$\mathbf{N}_s \coloneqq \left\{ x \in \omega^\omega \mid x \upharpoonright s = s \right\}$$

Si costruisce quindi l' ω -schema associato ad f:

$$S := \{B_s \mid s \in \omega^{<\omega}\}$$
$$B_s := f(\mathbf{N}_s)$$

Si applica il lemma 1.3.9.

- L'insieme B_s è aperto in 2^{ω} , per definizione di topologia prodotto (sono insiemi con un numero finito di componenti fissate).
- Sia $s \in \omega^{<\omega}$ e siano $x, y \in \omega, x \neq y$. Se per assurdo $B_{s \cap x} \cap B_{s \cap y} \neq \emptyset$, ovvero

$$f(\mathbf{N}_{s^{\frown}x}) \cap f(\mathbf{N}_{s^{\frown}y}) \neq \emptyset,$$

allora esistono $a \in N_{s \cap x}$, $b \in N_{s \cap y}$ tali che f(a) = f(b). Siccome f è iniettiva a = b, ma $N_{s \cap x} \cap N_{s \cap y} = \emptyset$. Assurdo.

Per il punto (c) si ha che f è una immersione topologica.

1.1.2 Seconda parte

Sia

$$A \coloneqq \left\{ x \in 2^\omega \mid x(n) = 1 \text{ per un numero infinito di } n \in \omega \right\}$$

Si ha che $A=f(\omega^\omega)$. Infatti, l'inclusione " \supseteq " è ovvia. Per il viceversa, si definisce per ogni $y\in A$, l'insieme

$$Z_y := \big\{ n \in \omega \mid y(n) = 1 \big\} \subseteq \omega$$

Si ordina Z_y in maniera crescente, $Z_y := (y_i)_{i \in \omega}$.

Posto $x \in \omega^{\omega}$ tale:

$$x(i) := \begin{cases} y_0 & i = 0 \\ y_i - y_{i-1} - 1 & i > 0 \end{cases}$$

vale che y = f(x).

Questo dimostra che A è un sottospazio polacco di 2^{ω} , poiché omeomorfo a ω^{ω} spazio polacco.

Inoltre, sia $y \in 2^{\omega}$, e sia, per ogni $n \in \omega$:

$$x_n(i) := \begin{cases} y(i) & i \le n \\ 1 & i > n \end{cases}$$

Allora $x_n \in A$ e $x_n \to y$, in quanto, considerata la distanza su 2^{ω} :

$$d(\eta,\tau) \coloneqq \begin{cases} 0 & \eta = \tau \\ 2^{-(n+1)} & \eta \neq \tau \text{ e } n \text{ è il più piccolo t.c. } \eta(n) \neq \tau(n) \end{cases}$$

per ogni $\varepsilon > 0$ esiste $N \in \omega$, $N := \lceil -\ln_2(\varepsilon) - 1 \rceil$ tale che per ogni n > N: $d(x_n, y) < \varepsilon$. Quindi A è denso in 2^{ω} , per la caratterizzazione della chiusura per successioni.

1.1.3 Terza parte

Lo spazio ω^{ω} è metrizzabile, e pertanto T2.

Si supponga che per assurdo esista $\iota: 2^{\omega} \to \omega^{\omega}$ immersione topologica tale che $\iota(2^{\omega}) \eqqcolon X$ sia denso in ω^{ω} .

Siccome 2^{ω} è compatto, allora X è compatto, ed inoltre $\operatorname{Cl}(X) = \omega^{\omega}$. Ma in uno spazio di Hausdorff i compatti sono chiusi, e pertanto

$$X = \operatorname{Cl}(X) = \omega^{\omega}$$

Questo è un assurdo, poiché ω^{ω} non è compatto.

2 Esercizio 2

A set $A \subseteq \omega^{\omega}$ is **bounded** if there is $z \in \omega^{\omega}$ such that for all $x \in A$ we have $x(n) \leq z(n)$ for all $n \in \omega$. Prove that the following conditions are equivalent for an arbitrary $F \subseteq \omega^{\omega}$:

- a. F is compact;
- b. F is closed and bounded;
- c. F = [T] with T a finitely branching tree (i.e. every node in T has only finitely many successors).

Conclude that $A \subseteq \omega^{\omega}$ is contained in a compact set (equivalently, has compact closure) if and only A is bounded, and therefore ω^{ω} is not locally compact.

2.1 Soluzione

Sia, per ogni $s \in \omega^{<\omega}$: $\mathbf{N}_s := \{x \in \omega^\omega \mid x \upharpoonright s = s\}$.

2.1.1 a. implica b.

Siccome ω^{ω} è metrizzabile è uno spazio T2. Se F è compatto allora è chiuso. Resta da dimostrare che F sia limitato.

Per ogni $x \in F$ e per ogni $n \in \omega$ si consideri l'aperto

$$U_{x,n} := \{ y \in F \mid y \upharpoonright n = x \upharpoonright n \}$$

Si ottiene quindi $U_x := F \cap \bigcup_{n \in \omega} U_{x,n}$ aperto in F, e pertanto $\{U_x\}_{x \in F}$ è un ricoprimento aperto di F.

Dal momento che F è compatto, esiste $\{x_1, \ldots, x_m\} \subseteq F$ tali che

$$\bigcup_{i=1,\dots,m} U_{x_i} = F$$

e pertanto è sufficiente porre $z \in \omega^{\omega}$:

$$z(\eta) \coloneqq \max\{x_i(\eta)\}$$

per ottenere la tesi.

2.1.2 b. implica a.

Siccome F è limitato, esiste $z \in \omega^{\omega}$ tale che per ogni $x \in F$ e per ogni $n \in \omega$ si ha

$$x(n) \le z(n)$$

Si consideri quindi, per ogni $n \in \omega$: $A_n \subseteq \omega$, $A_n := z(n) + 1 = \{0, 1, 2, \dots, z(n)\}$. Questo è compatto in quanto finito con la topologia discreta.

Per il Teorema di Tychonoff $A := \prod_{n \in \omega} A_n$ è compatto. Inoltre

$$F \subseteq A$$

in quanto, se $x \in F$ allora per ogni $n \in \omega$: x(n) < z(n) + 1 i.e. $x(n) \in (z(n) + 1) = A_n$ e pertanto $x \in A$.

Quindi F è chiuso dentro A compatto, quindi F è compatto.

2.1.3 b. implica c.

Per la proposizione 1.3.3 esiste un albero potato T_F tale che $F = [T_F]$, con

$$T_F := \{x \upharpoonright n \mid x \in F \land n \in \omega\}$$

Resta da dimostrare che T_F sia a ramificazione finita. Se per assurdo esistesse $s \in T_F$ tale che, per ogni $i \in \omega$:

$$s^{\frown}i \in T_F$$

Pertanto, per ogni $i \in \omega$, esiste $x_i \in F$ tale che $x_i \upharpoonright \mathrm{lh}(s) + 1 = s \urcorner i$ ed in particolar modo, per ogni $i \in \omega$ vale che $x_i \left(\mathrm{lh}(s) + 2 \right) = i$. Per ogni $z \in \omega^\omega$, quindi, esiste $n \coloneqq \mathrm{lh}(s) + 2$ ed esiste $x \in F$, $x \coloneqq x_{i_0}$ con $i_0 = z(n) + 1$ tale per cui

$$z(n) \le x(n) = x_{i_0}(n) = i_0 = z(n) + 1.$$

Assurdo poiché F è limitato.

2.1.4 c. implica b.

Sia T un albero a ramificazione finita, ovvero tale che per ogni $s \in T$:

$$R_s \coloneqq \{n \in \omega \mid s \cap n \in T\} \subseteq \omega$$

è un insieme finito, con

$$F = [T] = \{ x \in \omega^{\omega} \mid \forall n \in \omega \ (x \upharpoonright n \in T) \}$$

Per la proposizione 1.3.3 F è chiuso, e pertanto resta da dimostrare che F sia limitato.

• Per ogni $n \in \omega$, $T_n \coloneqq \big\{ t \in T \mid \mathrm{lh}(t) = n \big\}$ è finito.

Per induzione, $T_0 = \{\emptyset\}$. Se T_n è finito, allora

$$T_{n+1} = \left\{ t \in T \mid \exists s \in T_n \land \exists m \in \omega \ (s \cap m = t) \right\}$$

ovvero

$$T_{n+1} = \bigcup_{s \in T_n} \bigcup_{m \in R_s} \{s^{\smallfrown} m\}$$

unione finita di singoletti, e pertanto finito.

• Si definisce $z \in \omega^{\omega}$ come segue:

$$\forall n \in \omega : \quad z(n) \coloneqq 1 + \max_{s \in T_n} \max R_s$$

• Claim: $z \cos i$ definito è tale che, per ogni $x \in F$ e per ogni $n \in \omega$: $z(n) \ge x(n)$.

Infatti, se per assurdo esistesse $\widetilde{x} \in F$ e $\widetilde{n} \in \omega$ tali che $\widetilde{x}(\widetilde{n}) > z(\widetilde{n})$, allora $\widetilde{x} \upharpoonright \widetilde{n} + 1 \in T$ poiché F = [T], ed in particolar modo,

$$(\widetilde{x} \upharpoonright \widetilde{n} + 1) \in T_{\widetilde{n}+1}$$

Pertanto $\widetilde{x}(\widetilde{n}) \in R_{\widetilde{x} \upharpoonright \widetilde{n}} \in \widetilde{x} \upharpoonright \widetilde{n} \in T_{\widetilde{n}}$. Quindi $z(\widetilde{n}) \geq 1 + \widetilde{x}(\widetilde{n})$. Assurdo.

2.1.5 Locale compattezza

Sia $A \subseteq \omega^{\omega}$.

- Se esiste $C \subseteq \omega^{\omega}$ compatto e tale che $A \subseteq C$, allora C è limitato e quindi A è limitato.
- Se A è limitato e $z \in \omega^{\omega}$ ne è testimone, allora sia $(a_n)_{n \in \omega} \subseteq A$ una successione convergente ad a.

Allora per ogni $n \in \omega$, $a \in N_{a \upharpoonright n+1}$, e quindi esiste $N \in \omega$ tale che $a_N \in N_{a \upharpoonright n+1}$ e pertanto

$$a(n) = a_N(n) \le z(n)$$

dove l'ultima disuguaglianza vale perché $a_N \in A$ limitato.

Per la caratterizzazione della chiusura in termini di successioni, si è dimostrato che Cl(A) è limitato (e ovviamente chiuso), quindi compatto, e

$$A \subseteq \operatorname{Cl}(A)$$

3 Esercizio 3

A subset of a topological space is σ -compact (or K_{σ}) if it can be written as a countable union of compact spaces. (For example, finitedimensional Euclidean spaces \mathbb{R}^n are σ -compact.) A set $A \subseteq \omega^{\omega}$ is eventually bounded if there is $z \in \omega^{\omega}$ such that for all $x \in A$ there is $n \in \omega$ for which $x(m) \leq z(m)$ for all $m \geq n$. Prove that the following conditions are equivalent for an arbitrary $A \subseteq \omega^{\omega}$:

- a. A is contained in a σ -compact set;
- b. A is eventually bounded.

Conclude that $F \subseteq \omega^{\omega}$ is a σ -compact set if and only if it is F_{σ} and eventually bounded, and that ω^{ω} is not σ -compact. Provide an explicit example of a subset of the Baire space which is σ -compact but not compact. Argue that ω^{ω} cannot be embedded as an F_{σ} (so neither closed) set into a σ -compact Polish space like \mathbb{R}^n .

3.1 Soluzione

3.1.1 b. implica a.

Sia A definitivamente limitato, e sia $z \in \omega^{\omega}$ testimone. Si ponga, per ogni $n \in \omega$

$$A_n := \left\{ x \in A \mid \forall i \in \omega \ \left(x(i) \le \max \left\{ n, z(i) \right\} \right) \right\} \subseteq A$$

Si noti che A_n è limitato, poiché posto $y_n(i) := \max\{n, z(i)\}, y_n \in \omega^{\omega}$.

Sia ora $x_0 \in A$. Allora esiste $n_0 \in \omega$ tale che, per ogni $m \geq n_0$: $x(m) \leq z(m)$. Sia quindi $N := \max_{m < n_0} x(m)$. Allora

$$\forall i \in \omega \quad x(i) \le \max\{N, z(i)\}$$

e pertanto $x(i) \leq y_N(i)$ e $x \in A_N$.

Segue che $A = \bigcup_{n \in \omega} A_n$. Siccome ciascun A_n è **limitato**, allora esiste $K_n \supseteq A_n$ compatto (per l'esercizio precedente), e quindi

$$A\subseteq\bigcup_{n\in\omega}K_n$$

3.1.2 a. implica b.

Senza perdita di generalità si dimostra che se A è σ -compatto, allora A è definitivamente limitato (in quanto se C è definitivamente limitato allora anche $B \subseteq C$ lo è).

Sia quindi

$$A = \bigcup_{n \in \omega} K_n$$

e K_n compatto per ogni $n \in \omega$. Allora, per l'esercizio precedente, K_n è chiuso e limitato. Sia quindi y_n un testimone della limitatezza di K_n .

Si definisce quindi $z \in \omega^{\omega}$: per ogni $i \in \omega$:

$$z(i) := \max \{y_0(i), \dots, y_i(i)\}$$

Allora, per ogni $x \in A$ esiste $N \in \omega$ tale che $x \in K_N$: pertanto, per ogni m > N:

$$x(m) \le y_N(m) \le \max \{y_0(m), \dots, y_N(m)\}$$

 $\le \max \{y_0(m), \dots, y_N(m), \dots, y_m(m)\} = z(m).$

3.1.3 Caratterizzazione dei σ -compatti

Se $F \subseteq \omega^{\omega}$ è σ -compatto allora:

- \bullet è F_{σ} in quanto unione numerabile di compatti, che per la caratterizzazione dell'esercizio precedente sono chiusi;
- \bullet è definitivamente limitato per la dimostrazione (3.1.2).

Se $F \subseteq \omega^{\omega}$ è un insieme F_{σ} e definitivamente limitato, allora è contenuto in un insieme σ -compatto K. Si scrivano:

$$F := \bigcup_{n \in \omega} C_n, \qquad K := \bigcup_{m \in \omega} K_m$$

con C_n chiusi e K_m compatti. Allora

$$F = F \cap K = \bigcup_{n,m \in \omega} (C_n \cap K_m)$$

dove $(C_n \cap K_m) \subseteq K_m$ è un chiuso in un compatto, e quindi compatto e pertanto F è σ -compatto.

Inoltre, se ω^{ω} fosse σ -compatto, allora dovrebbe essere definitivamente limitato. Ma per ogni $z \in \omega^{\omega}$ esiste $z' \in \omega^{\omega}$ tale che per ogni $n \in \omega$ esiste $m \geq n$ per cui z'(m) > z(m): è sufficiente porre, per ogni $i \in \omega$: z'(i) = z(i) + 1.

3.1.4 Insieme σ -compatto ma non compatto

Per il Teorema di Tychonoff, per ogni $n \in \omega$ gli insiemi

$$C_n := \prod_{m \in \omega} \{0, 1, 2, \dots, n\}$$

sono compatti, e pertanto $C := \bigcup_{n \in \omega} C_n$ è σ -compatto.

Per ogni $z \in \omega^{\omega}$, si ponga N := z(0). Allora esiste $x \in C_{N+1}$ tale che x(0) = N + 1, e quindi x(0) > z(0). Pertanto C non è limitato, e quindi non è compatto.

3.1.5 Immersione di ω^{ω}

Siano per assurdo X uno spazio polacco σ -compatto (ovvero $X = \bigcup_{m \in \omega} K_m$ con K_m compatti) ed ι una immersione:

$$\iota:\omega^\omega\to X$$

tale per cui $\iota(\omega^{\omega})$ sia un insieme \mathbf{F}_{σ} di X.

Allora esistono $C_n \subseteq X$ chiusi tali che

$$\iota(\omega^{\omega}) = \bigcup_{n \in \omega} C_n.$$

Inoltre si ha

$$\iota(\omega^{\omega}) = \left(\bigcup_{n \in \omega} C_n\right) \cap \left(\bigcup_{m \in \omega} K_m\right) = \bigcup_{n, m \in \omega} C_n \cap K_m$$

e pertanto

$$\omega^{\omega} = \bigcup_{n,m \in \omega} \iota^{-1}(C_n \cap K_m).$$

Ma $C_n \cap K_m \subseteq K_m$ sono compatti in quanto chiusi di un compatto, e siccome ι è un omeomorfismo con la sua immagine, $\iota^{-1}(C_n \cap K_m)$ sono compatti.

Quindi ω^{ω} è σ -compatto. Assurdo.

4 Esercizio 4

Show that for every nonempty Polish space X there is a continuous open surjection $f:\omega^{\omega}\to X$.

[Hint. First show that if X is a second countable metric space, then for every open U and every $\varepsilon \in \mathbb{R}^+$ there is a countable covering $(U_n)_{n \in \omega}$ of U such that $\operatorname{Cl}(U_n) \subseteq U$ and diam $(U_n) < \varepsilon$, for all $n \in \omega$. Use this to build an appropriate ω -scheme inducing the function f.]

4.1 Soluzione

4.1.1 Claim

Se X è uno spazio metrico secondo numerabile, allora per ogni $U \subseteq X$ aperto e per ogni $\varepsilon \in \mathbb{R}^+$, esiste un ricoprimento aperto numerabile $(U_n)_{n \in \omega}$ di U tale che $\mathrm{Cl}(U_n) \subseteq U$ e $\mathrm{diam}(U_n) < \varepsilon$, per ogni $n \in \omega$.

4.1.2 Dimostrazione del claim

Sia (X,d) lo spazio metrico in considerazione. Si denotino con

$$B_d(x,r) := \left\{ y \in X \mid d(x,y) < r \right\}.$$

Siccome X è secondo numerabile allora X è separabile, e pertanto $U \subseteq X$ è separabile. Sia quindi C sottoinsieme denso di U, numerabile. Allora, per ogni $c \in C$ esiste $0 < r_c < \varepsilon$ tale che $B_d(c, r_c) \subseteq U$, poiché U aperto e quindi intorno di ogni suo punto. In particolare, si richiede che

$$r_c := \sup \left\{ r \in \left(0, \frac{\varepsilon}{2}\right) \mid B_d(c, r) \subseteq U \right\}.$$

Si consideri quindi:

$$\mathcal{B}_U \coloneqq \left\{ B_d\left(c, \frac{r_c}{2}\right) \mid c \in C \right\}$$

- Si ha, per ogni $c \in C$, che $B_d\left(c, \frac{r_c}{2}\right)$ è aperto e diam $\left(B_d\left(c, \frac{r_c}{2}\right)\right) < \varepsilon$.
- Sia ora $c \in C$ fissato, e sia $(x_n)_{n \in \omega} \subseteq B_d\left(c, \frac{r_c}{2}\right)$ successione convergente a x. Allora, siccome $d(x, x_n) < \frac{r_c}{2}$ definitivamente:

$$d(x,c) \le d(x,x_n) + d(x_n,c)$$

$$< \frac{r_c}{2} + \frac{r_c}{2} < r_c$$

e pertanto $x \in U$. Quindi, per la caratterizzazione della chiusura per successioni,

$$\operatorname{cl}\left(B_d\left(c,\frac{r_c}{2}\right)\right) \subseteq U.$$

• Infine, si ha che l'unione $\bigcup \mathcal{B}_U = U$. Infatti, se $y \in U \setminus C$ allora esiste $\delta < \frac{\varepsilon}{2}$ tale che $B_d(y,\delta) \subseteq U$. In particolare, esiste $c \in B_d(y,\delta/2) \cap C$ (poiché C è denso in U). Si ha quindi che $y \in B_d(c,\delta/2) \subseteq U$: infatti, se per assurdo esistesse $x \in B_d(c,\delta/2) \setminus U$ allora

$$d(x,y) \le d(x,c) + d(c,y)$$
$$< \frac{\delta}{2} + \frac{\delta}{2} < \delta$$

e pertanto $x \in B_d(y, \delta) \subseteq U$. Assurdo.

Dunque $\delta/2 < \varepsilon/2$ e $B_d(c, \delta/2) \subseteq U$, e dunque $r_c \ge \delta/2$ per massimalità. Pertanto

$$B_d(c, r_c) \supseteq B_d(c, \delta/2) \ni y$$
,

e quindi $y \in \bigcup \mathcal{B}_U$.

In conclusione \mathcal{B}_U è il ricoprimento aperto numerabile cercato.

4.1.3 Dimostrazione dell'esercizio

Sia d una metrica completa fissata su X spazio polacco.

Si costruisce per induzione su lh(s) un ω -schema \mathcal{S} su (X,d). Sia $B_{\langle \rangle} = X$.

Sia ora $s \in \omega^{<\omega}$ tale per cui B_s è definito. Sia $(U_n)_{n \in \omega}$ il ricoprimento aperto numerabile di B_s del claim. Questo è tale che:

- $\bullet \bigcup_{n \in \omega} U_n = B_s$
- gli U_n sono aperti, per ogni $n \in \omega$;
- $U_n \subseteq \mathrm{Cl}(U_n) \subseteq B_s$;
- diam $(U_n) \le 2^{-\ln(s)}$;
- senza perdità di generalità, e possibile supporre che ciascun $U_n \neq \emptyset$ (si sostituisce nel ricoprimento a ciascun $U_n = \emptyset$ il primo $U_m \neq \emptyset$).

Si pone quindi, per ogni $a \in \omega$: $B_{s \frown a} := U_a$.

Si è in questo modo definito un ω -schema su X che induce una funzione

$$f:D_{\mathcal{S}}\to X$$
.

Per il lemma 1.3.6, f è tale che

- a. f è continua per il punto (a);
- b. f è suriettiva per il punto (d);
- c. $D_{\mathcal{S}} = \omega^{\omega}$ per il punto (e);
- d. f è aperta per il punto (d).

5 Esercizio 5

Recall the notion of Cantor-Bendixson rank of a Polish space from Section 1.4 in the notes for the course. For each ordinal $\alpha < \omega_1$, provide an example of a Polish space X with Cantor-Bendixson rank α . (Optional: show that such an X can always be taken as a countable space, and that if α is a successor ordinal than X can be taken to be compact.)

[Hint. To geometrically visualize the problem it is easier to work in \mathbb{R}^2 . Use a construction by transfinite recursion over α . The cases $\alpha = 0, 1$ are easy. For $\alpha = 2$ consider $X = \{x\} \cup \{x_n \mid n \in \omega\}$ with $x_n \to x$ \$ and all x_n isolated. This suggest the strategy when $\alpha = \beta + 1$ is successor:

consider a sequence of spaces of Cantor-Bendixson rank β and construe them as a sequence of spaces accumulating towards a point. For limit cases, consider the (disjoint) sum of spaces with Cantor-Bendixson rank cofinal in α .

5.1 Osservazione

Per ogni spazio topologico X si ha che $x \notin X'$ se e solo se $\{x\} \cap X$ è un aperto di X.

5.2 Lemma

Sia α un ordinale limite, siano $(X_{\beta})_{\beta<\alpha}$ una famiglia di spazi polacchi e sia

$$X \coloneqq \coprod_{\beta < \alpha} X_{\beta}.$$

Allora, per ogni ordinale λ :

$$X^{(\lambda)} = \coprod_{\beta < \alpha} X_{\beta}^{(\lambda)}$$

5.2.1 Dimostrazione del lemma

Si ricorda la topologia dell'unione disgiunta: $U \subseteq \coprod_{\beta < \alpha} X_{\beta}$ è aperto se e solo se, detta

$$\varphi_{\beta_i}: X_{\beta_i} \to \coprod_{\beta < \alpha} X_\beta$$

l'iniezione canonica, per ogni $\beta_i<\alpha$ l'insieme $\varphi_{\beta_i}^{-1}\subseteq X_{\beta_i}$ è aperto.

Per induzione su λ .

- Caso base: $\lambda = 0$: banale.
- Caso base: $\lambda = 1$: bisogna dimostrare che

$$\left(\coprod_{\beta < \alpha} X_{\beta}\right)' = \coprod_{\beta < \alpha} X_{\beta}'$$

Sia $x \in \coprod_{\beta < \alpha} X_{\beta}$. Allora esiste un unico β_0 tale che $x \in X_{\beta_0}$.

Dunque, se $x \notin \left(\coprod_{\beta < \alpha} X_{\beta}\right)'$ allora:

- per ogni $\beta \neq \beta_0, x \notin X_\beta$ e quindi $x \notin X'_\beta \subseteq X_\beta$;
- per $\beta_0, \{x\} \subseteq X_{\beta_0}$ è aperto, e quindi $x \notin X'_{\beta_0}$;

pertanto $x \notin \coprod_{\beta < \alpha} X'_{\beta}$.

Viceversa, se $x \notin \coprod_{\beta < \alpha} X'_{\beta}$ significa che $\{x\} \subseteq X_{\beta_0}$ è aperto e pertanto per ogni $\beta < \alpha$ l'insieme $\varphi_{\beta}^{-1}(\{x\})$ è aperto (poiché uguale a \emptyset se $\beta \neq \beta_0$ e uguale a $\{x\}$ se $\beta = \beta_0$). Pertanto

 $\{x\} \subseteq \coprod_{\beta < \alpha} X_{\beta}$ è aperto, e dunque

$$x \notin \left(\coprod_{\beta < \alpha} X_{\beta}\right)'$$

• Ordinale successore: $\lambda = \gamma + 1$.

$$X^{(\lambda)} = \left(\coprod_{\beta < \alpha} X_{\beta} \right)^{(\lambda)} = \left(\left(\coprod_{\beta < \alpha} X_{\beta} \right)^{(\gamma)} \right)'$$

$$= \left(\coprod_{\beta < \alpha} X_{\beta}^{(\gamma)} \right)' = \coprod_{\beta < \alpha} (X_{\beta}^{(\gamma)})'$$

$$= \coprod_{\beta < \alpha} (X_{\beta}^{(\gamma+1)}) = \coprod_{\beta < \alpha} X_{\beta}^{(\lambda)}.$$

• Ordinale limite λ :

$$X^{(\lambda)} = \bigcap_{\gamma < \lambda} X^{(\gamma)} = \bigcap_{\gamma < \lambda} \left(\coprod_{\beta < \alpha} X_{\beta} \right)^{(\gamma)}$$
$$= \bigcap_{\gamma < \lambda} \left(\coprod_{\beta < \alpha} X_{\beta}^{(\gamma)} \right) = \coprod_{\beta < \alpha} \bigcap_{\gamma < \lambda} X_{\beta}^{(\gamma)}$$
$$= \coprod_{\beta < \alpha} X_{\beta}^{(\lambda)}$$

5.3 Soluzione dell'esercizio

Si costruiscono, per ricorsione, spazi polacchi $X_{\alpha} \subseteq \mathbb{R}$ con rango di Cantor-Bendixson α e tali che $X_{\alpha}^{\infty} = \emptyset$.

Questo garantisce che ciascun X_{α} sia uno spazio polacco numerabile.

5.3.1 Caso base

Per $\alpha = 0$ deve valere che $X_0^{(0)} = X_0 = \emptyset$. Pertanto si pone $X_0 = \emptyset$.

Per $\alpha=1$ deve valere che $X_1^{(1)}=X_1'=\emptyset.$ Pertanto si pone $X_1=\omega\subseteq\mathbb{R}.$

5.3.2 Ordinale successore

Sia $\alpha = \beta + 1$ un ordinale successore, e sia $X_{\beta} \subseteq \mathbb{R}$ uno spazio polacco con rango di Cantor-Bendixson β e tale che $X_{\beta}^{\infty} = \emptyset$.

Sia $\{y_n \mid n \in \omega\} \subseteq \mathbb{R}$ una successione convergente ad $y \in \mathbb{R}$, composta da punti isolati tali che per ogni $n \in \omega$: $y_n < y$. Per ciascun $n \in \omega$ sia $U_n \subseteq \mathbb{R}$ un intervallo aperto tale che $y_n \subseteq U_n$ e che $\forall m \neq n$: $\mathrm{Cl}(U_n) \cap \mathrm{Cl}(U_m) = \emptyset$.

Sia ora, per ogni $n \in \omega$, $\Phi_n : \mathbb{R} \to U_n$ un omeomorfismo (è sufficiente considerare una contrazione dell'arco tangente). Siano X_n le immagini di X_β tramite Φ_n :

$$X_n := \Phi_n(X_\beta) \subseteq U_n$$
.

Si definisce $X_{\alpha} := \{y\} \cup \bigcup_{n \in \omega} X_n$. Questo è spazio polacco in quanto unione numerabile di spazi polacchi.

Per induzione su $\lambda < \alpha$:

$$X_{\alpha}^{(\lambda)} = \{y\} \cup \bigcup_{n \in \omega} X_n^{(\lambda)}$$

- Caso base: per $\lambda = 0$ è banale.
- Ordinale successore: sia $\lambda < \alpha, \, \lambda = \gamma + 1.$ Si dimostra che

$$\{y\} \cup \bigcup_{n \in \omega} (X_n^{(\gamma)})' = \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)}\right)'$$

Si consideri $x\notin \Big(\{y\}\cup \bigcup_{n\in\omega}X_n^{(\gamma)}\Big)',\,x\neq y.$

Allora $\{x\} \subseteq \{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)}$ è aperto: per ogni $n \in \omega$ si ha che $\{x\} \cap X_n^{(\gamma)}$ è aperto in $X_n^{(\gamma)}$ e quindi per ogni $n \in \omega$: $(x \notin X_n^{(\gamma)})'$, ovvero

$$x \notin \{y\} \cup \bigcup_{n \in \omega} \left(X_n^{(\gamma)}\right)'.$$

Se invece per assurdo $y \notin \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)}\right)'$ allora $\setminus \{y\} \subseteq \{y\} \bigcup_{n \in \omega} X_n^{(\gamma)}$ è aperto e quindi esiste $\varepsilon > 0$ tale che

$$(y - \varepsilon, y + \varepsilon) \cap \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)} \right) = \{y\}$$

Siano ora $y_{n_0}, y_{n_1}, y_{n_2} \in (y - \varepsilon, y + \varepsilon)$ (che esistono poiché $y_n \to y$), con $y_{n_0} < y_{n_1} < y_{n_2}$. Allora, siccome $U_{n_1} = (a, b)$ per certi $a, b \in \mathbb{R}$ tali che $y_{n_0} < a$ e $b < y_{n_1} < y$, si ha:

$$U_{n_1} \subseteq (y - \varepsilon, y).$$

Siccome $\lambda < \alpha$ ovvero $\gamma + 1 < \beta + 1$ allora $\gamma < \beta$ e pertanto, per ogni $n \in \omega$: $X_n^{(\gamma)} \neq \emptyset$. Quindi

$$\emptyset \neq \Phi_{n_1}(X_{\beta}^{(\gamma)}) = X_{n_1}^{(\gamma)} \subseteq U_{n_1} \subseteq (y - \varepsilon, y)$$

e pertanto

$$(y-\varepsilon,y+\varepsilon)\cap\left(\{y\}\cup\bigcup_{n\in\omega}X_n^{(\gamma)}\right)\supseteq\{y\}\cup\Phi_{n_1}(X_\beta^{(\gamma)})\supsetneq\{y\}$$

Assurdo. Quindi $y \in \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)}\right)'$

Viceversa, se $x \notin \{y\} \cup \bigcup_{n \in \omega} (X_n^{(\gamma)})'$ allora per ogni $n \in \omega$:

$$x \notin (X_n^{(\gamma)})'$$

e pertanto $\{x\}\subseteq X_n^{(\gamma)}$ è aperto. Ma $X_n^{(\gamma)}$ è aperto di $\{y\}\cup\bigcup_{n\in\omega}X_n^{(\gamma)}$ e quindi anche $\{x\}$ lo è:

$$x \notin \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\lambda)} \right)'$$
.

Si noti che per ogni $n \in \omega$ si ha che $X_n^{(\gamma)}$ è aperto di $\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)}$ poiché

$$X_n^{(\gamma)} = U_n \cap \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)} \right)$$

dove U_n è un aperto di \mathbb{R} .

Pertanto si ha che

$$X_{\alpha}^{(\lambda)} = \left(X_{\alpha}^{(\gamma)}\right)'$$
$$= \{y\} \cup \bigcup_{n \in \omega} (X_n^{\gamma})' = \{y\} \cup \bigcup_{n \in \omega} X_n^{(\lambda)}.$$

 \bullet Ordinale limite: sia $\lambda < \alpha$ un ordinale limite. Allora

$$\begin{split} X_{\alpha}^{(\lambda)} &= \bigcap_{\gamma < \lambda} X_{\alpha}^{(\gamma)} = \bigcap_{\gamma < \lambda} \left(\{y\} \cup \bigcup_{n \in \omega} X_n^{(\gamma)} \right) \\ &= \{y\} \cup \bigcap_{\gamma < \lambda} \bigcup_{n \in \omega} X_n^{(\gamma)} \\ &= \{y\} \cup \bigcup_{n \in \omega} \bigcap_{\gamma < \lambda} X_n^{(\gamma)} = \{y\} \cup \bigcup_{n \in \omega} X_n^{(\lambda)}. \end{split}$$

Pertanto $X_{\alpha}^{(\beta)} = \{y\}$ e $X_{\alpha}^{(\alpha)} = \emptyset$.

5.3.3 Ordinale limite

Sia $\alpha < \omega_1$ un ordinale limite, e sia per ogni $\beta < \alpha$: X_β uno spazio polacco con rango di Cantor-Bendixson β e tale che $X_\beta^\infty = \emptyset$.

Sia $(\beta_n)_{n\in\omega}$ una successione di ordinali cofinale in α . Senza perdita di generalità è possibile considerare ciascun X_{β_n} contenuto nell'intervallo $I_n := (n-1/2, n+1/2)$, per mezzo di un omeomorfismo $\mathbb{R} \to I_n$.

Allora si pone $X_{\alpha} := \coprod_{n < \omega} X_{\beta_n}, X_{\alpha} \subseteq \mathbb{R}$ è uno spazio polacco in quanto unione numerabile di spazi polacchi.

Inoltre $X_{\alpha}^{\infty} = \emptyset$ e X ha rango di Cantor-Bendixson α . Infatti, per ogni $\lambda < \alpha$ esiste $n_0 \in \omega$ tale che $\beta_{n_0} > \lambda$ per cofinalità di $(\beta_n)_{n \in \omega}$ e pertanto:

$$X_{\alpha}^{(\lambda)} = \coprod_{n < \omega} X_{\beta_n}^{(\lambda)} \supseteq X_{\beta_{n_0}}^{(\lambda)} \neq \emptyset$$

mentre

$$X_{\alpha}^{(\alpha)} = \coprod_{n < \omega} X_{\beta_n}^{(\alpha)} = \coprod_{n < \omega} \emptyset = \emptyset.$$