Review of Functions

Dr. Nijat Aliyev

BHOS

Calculus

September 19, 2024

- **2.** The graphs of f and g are given.
 - (a) State the values of f(-4) and g(3).
 - (b) For what values of x is f(x) = g(x)?
 - (c) Estimate the solution of the equation f(x) = -1.
 - (d) On what interval is f decreasing?
 - (e) State the domain and range of f.
 - (f) State the domain and range of g.

- **2.** The graphs of f and g are given.
 - (a) State the values of f(-4) and g(3).
 - (b) For what values of x is f(x) = g(x)?
 - (c) Estimate the solution of the equation f(x) = -1.
 - (d) On what interval is f decreasing?
 - (e) State the domain and range of f.
 - (f) State the domain and range of g.

65–70 Determine whether f is even, odd, or neither. If you have a graphing calculator, use it to check your answer visually.

65.
$$f(x) = \frac{x}{x^2 + 1}$$

66.
$$f(x) = \frac{x^2}{x^4 + 1}$$

67.
$$f(x) = \frac{x}{x+1}$$

68.
$$f(x) = x |x|$$

69.
$$f(x) = 1 + 3x^2 - x^4$$

70.
$$f(x) = 1 + 3x^3 - x^5$$

65–70 Determine whether f is even, odd, or neither. If you have a graphing calculator, use it to check your answer visually.

65.
$$f(x) = \frac{x}{x^2 + 1}$$

66.
$$f(x) = \frac{x^2}{x^4 + 1}$$

67.
$$f(x) = \frac{x}{x+1}$$

68.
$$f(x) = x |x|$$

69.
$$f(x) = 1 + 3x^2 - x^4$$

70.
$$f(x) = 1 + 3x^3 - x^5$$

- **31–36** Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and their domains.
- **31.** $f(x) = x^2 1$, g(x) = 2x + 1
- **32.** f(x) = x 2, $g(x) = x^2 + 3x + 4$
- **33.** f(x) = 1 3x, $g(x) = \cos x$
- **34.** $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$
- **35.** $f(x) = x + \frac{1}{x}$, $g(x) = \frac{x+1}{x+2}$
- **36.** $f(x) = \frac{x}{1+x}$, $g(x) = \sin 2x$

- **31–36** Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and their domains.
- **31.** $f(x) = x^2 1$, g(x) = 2x + 1
- **32.** f(x) = x 2, $g(x) = x^2 + 3x + 4$
- **33.** f(x) = 1 3x, $g(x) = \cos x$
- **34.** $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$
- **35.** $f(x) = x + \frac{1}{x}$, $g(x) = \frac{x+1}{x+2}$
- **36.** $f(x) = \frac{x}{1+x}$, $g(x) = \sin 2x$

65.
$$f(x) = \frac{x}{x^2 + 1}$$
.

$$f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -\frac{x}{x^2 + 1} = -f(x).$$

So f is an odd function.

66.
$$f(x) = \frac{x^2}{x^4 + 1}$$
.

$$f(-x) = \frac{(-x)^2}{(-x)^4 + 1} = \frac{x^2}{x^4 + 1} = f(x).$$

So f is an even function.

65.
$$f(x) = \frac{x}{x^2 + 1}$$
.

$$f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -\frac{x}{x^2 + 1} = -f(x).$$

So f is an odd function.

66.
$$f(x) = \frac{x^2}{x^4 + 1}$$
.

$$f(-x) = \frac{(-x)^2}{(-x)^4 + 1} = \frac{x^2}{x^4 + 1} = f(x).$$

So f is an even function.

67.
$$f(x) = \frac{x}{x+1}$$
, so $f(-x) = \frac{-x}{-x+1} = \frac{x}{x-1}$.

Since this is neither f(x) nor -f(x), the function f is neither even nor odd.

68.
$$f(x) = x |x|$$
.

$$f(-x) = (-x) |-x| = (-x) |x| = -(x |x|)$$
$$= -f(x)$$

So f is an odd function.

67.
$$f(x) = \frac{x}{x+1}$$
, so $f(-x) = \frac{-x}{-x+1} = \frac{x}{x-1}$.

Since this is neither f(x) nor -f(x), the function f is neither even nor odd.

68.
$$f(x) = x |x|$$
.

$$f(-x) = (-x) |-x| = (-x) |x| = -(x |x|)$$
$$= -f(x)$$

So f is an odd function.

69.
$$f(x) = 1 + 3x^2 - x^4$$
.

$$f(-x) = 1 + 3(-x)^2 - (-x)^4 = 1 + 3x^2 - x^4 = f(x).$$

So f is an even function.

70.
$$f(x) = 1 + 3x^3 - x^5$$
, so
$$f(-x) = 1 + 3(-x)^3 - (-x)^5 = 1 + 3(-x^3) - (-x^5)$$
$$= 1 - 3x^3 + x^5$$

Since this is neither f(x) nor -f(x), the function f is neither even nor odd.

69.
$$f(x) = 1 + 3x^2 - x^4$$
.

$$f(-x) = 1 + 3(-x)^2 - (-x)^4 = 1 + 3x^2 - x^4 = f(x).$$

So f is an even function.

70.
$$f(x) = 1 + 3x^3 - x^5$$
, so
$$f(-x) = 1 + 3(-x)^3 - (-x)^5 = 1 + 3(-x^3) - (-x^5)$$
$$= 1 - 3x^3 + x^5$$

Since this is neither f(x) nor -f(x), the function f is neither even nor odd.

