

Vector representation • Each item is a vector - One component for each term - High dimensionality • Each user is a vector - Some combination of item vectors How to weigh term occurrences?

Count-based weighing

UFmGCOMPUTER SCIENCE

• Each item is a vector in $N^{|V|}$

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	157	73	0	0	0	1
BRUTUS	4	157	0	2	0	0
CAESAR	232	227	0	2	1	0
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	8	5	8
WORSER	2	0	1	1	1	5

How discriminative is a term?

TF-IDF

UFmGCOMPUTER SCIENCE

- Given a term *i* and an item *j*
 - $-TF_{ii}$: term frequency of i in j
 - $-IDF_i$: inverse document frequency of i

$$IDF_i = log \frac{n}{n_i}$$

- n: total number of items in the collection
- n_i : number of items where term i appears
- TF*IDF: weight given to each term

TF-IDF-based weighing

 $UF\underline{m}G$ COMPUTER

Each item is a vector in R^{|V|}

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	5.25	3.18	0.0	0.0	0.0	0.35
BRUTUS	1.21	6.10	0.0	1.0	0.0	0.0
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0
CALPURNIA	0.0	1.54	0.0	0.0	0.0	0.0
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0
MERCY	1.51	0.0	1.90	0.12	5.25	0.88
WORSER	1.37	0.0	0.11	4.15	0.25	1.95

Vector representation

UFmGCOMPUTER

- · Each item is a vector
 - One component for each term
 - High dimensionality
- · Each user is a vector
 - Some combination of item vectors

How to compute similarity?

Computing similarities

UFmGCOMPUTER

i₁: "social inequality raises"i₂: "rich-poor gap grows"

- Euclidean distance
 - Distance between vectors' endpoints
- Cosine
 - Angular distance between vectors

Which similarity?

Angle vs. distance

UFmGCOMPUTER

- · Thought experiment
 - Take a term vector i_1
 - Append i_1 to itself, forming i_2 (i.e., $i_2 = 2 i_1$)
- "Semantically", i_1 and i_2 are equivalent
 - The angle between the two vectors is 0...
 - High (actually, maximal) similarity
 - ... the Euclidean distance can be quite large
 - · Low similarity

From angles to cosines

UF MG
COMPUTER
SCIENCE

• Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

Cosine similarity

U F M G
COMPUTER
SCIENCE

$$sim(\vec{u}, \vec{v}) = cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \times |\vec{v}|} = \frac{\sum_{i=1}^{|v|} u_i^i v_i}{\sqrt{\sum_{i=1}^{|v|} u_i^2} \sqrt{\sum_{i=1}^{|v|} v_i^2}}$$

- u and v are term-weight vectors
 - $-u_i$ is the TF-IDF weight of term i in item u
 - $-v_i$ is the TF-IDF weight of term *i* in item v
 - -|u| and |v| are the lengths of u and v

Quick recap

U F M G

COMPUTER
SCIENCE

- We know how to represent items
 - Each item is a vector over terms
- We know how to compute vector similarities
 - Cosine of the angle between the vectors
- We can now produce recommendations
 - Rank items by their similarity to the user

How to represent the user?

Representing the user

UF MG
COMPUTER
SCIENCE

• User prototype $\vec{u} = 3\vec{i}_1 + 5\vec{i}_2 + 3\vec{i}_3$

Incremental updates

U F M G

COMPUTER
SCIENCE

- User has rated
 - i₁: ★★★ - i₂: ★★★★ - i₃: ★★★ - i₄: ★★★★
- User prototype

$$\vec{u} = 3\vec{i}_1 + 5\vec{i}_2 + 3\vec{i}_3 + 5\vec{i}_4$$

Relevance feedback

- The user marks items as relevant/nonrelevant
 - Relevant/nonrelevant can be viewed as classes
 - For each new item, the user decides which of these two classes is correct
- The system then uses these class assignments to build a better model of the user's need
 - ... in the hope of returning better items

Rocchio recommendation

U F M G
COMPUTER
SCIENCE

- Each item is a vector \vec{i}
 - One component for each term
- Each user is a vector \vec{u}

$$\vec{u} = \frac{1}{|R_u|} \sum_{j \in R_u} r_{uj} \vec{j} \qquad R_u \text{: items rated by user } u$$
$$r_{uj} \text{: rating of user } u \text{ to item } j$$

• Prediction score $sim(\vec{u}, \vec{i}) = cos(\vec{u}, \vec{i})$

Summary

U F M G
COMPUTER
SCIENCE

- Rocchio is a nearest centroid recommender
 - Items are matched against the user centroid(s)
 - Different items will use the same centroid(s)
- The former is an example of lazy, nearest neighbor content-based recommendation
 - Neighbors are chosen on-demand for each item
 - Different items will have different neighbors
 - More effective, but way less efficient

