An Example Latex File: The Success of Whole Cell Models of Ca^{2+} Signaling

Regenerative Ca^{2+} release from the endoplasmic reticulum (ER), a continuous membrane-delimited intracellular compartment, plays an important role in Ca^{2+} signaling [1, 2]. In most cell types the ER has integrative and regenerative properties analogous to the excitable membranes of neurons [3, 4, 5]. For example, agonist-induced Ca^{2+} signaling in pituitary gonadotrophs is initiated by metabotropic receptors of the plasma membrane that stimulate the production of the intracellular messenger, inositol 1,4,5-trisphosphate (IP₃) [6]. IP₃ in turn promotes Ca^{2+} release from intracellular stores by binding and activating IP₃R receptor Ca^{2+} channels (IP₃Rs) located on the ER membrane. In rat basophilic leukemia cells, an experimental model for mucosal mast cells, cross-linking the high-affinity immunoglobulin E receptor with multivalent antigen leads to tyrosine kinase-dependent activation of PLC_{γ}, production of IP₃, release of intracellular Ca^{2+} stores, and a sustained phase of Ca^{2+} influx—events that culminate in the secretion of histamine, serotonin, and other mediators of inflammation [7, 8].

Figure 1: Schematic diagram of a whole cell model of Ca^{2+} handling. Ca^{2+} enters the cytosol from the ER via a passive leak and the IP_3R , which is activated by both Ca^{2+} and IP_3 on a fast time scale and inhibited by Ca^{2+} on a slow time scale, all at the cytoplasmic face. The ER is refilled by a SERCA-type Ca^{2+} -ATPase pump. Reproduced with permission from Jafri and Keizer, 1994.

Whole cell models of intracellular Ca^{2+} signaling have played a role in understanding the dynamics of Ca^{2+} responses of gonadotrophs, RBL cells, and other cell types (reviewed in [9, 10, 4, 5]). While such models can be diagrammed as in Fig. 1, they are in reality systems of nonlinear ODEs. For example, a whole cell model of IP_3 -mediated Ca^{2+} responses might take the following form,

$$\frac{d[\operatorname{Ca}^{2+}]}{dt} = \underbrace{j_{rel} - j_{up}}_{j_{er}} + \underbrace{j_{in} - j_{out}}_{j_{pm}} \qquad \frac{d[\operatorname{Ca}^{2+}]_{er}}{dt} = -\alpha_{er}j_{er}$$
(1)

$$\frac{dw}{dt} = \left[w_{\infty} \left([\operatorname{Ca}^{2+}], [\operatorname{IP}_{3}] \right) - w \right] / \tau \left([\operatorname{Ca}^{2+}], [\operatorname{IP}_{3}] \right)$$
 (2)

$$j_{rel} = (v_{leak} + v_{ip}f_o) \left([Ca^{2+}]_{er} - [Ca^{2+}] \right) \qquad j_{up} = \frac{v_p [Ca^{2+}]^2}{[Ca^{2+}]^2 + k_p^2}$$
 (3)

In these equations, w is a Hodgkin-Huxley-like gating variable representing the fraction of IP₃Rs not inactivated and f_o , the open fraction (or open probability) of the IP₃Rs, is a function of w, [Ca²⁺], and [IP₃].

Whole cell models of Ca^{2+} handling are biophysically realistic to the extent that they include details of molecular mechanism. For example, sigmoidal kinetics of the SERCA-type Ca^{2+} -ATPase [11] have been used in Eqs. 1–3 and the parameter α_{er} accounts for an ER/cytosol volume ratio of $\sim 1/6$. One of the keys to biophysical realism of whole cell models is the functional form for the open probability of the IP_3R and the equation for IP_3R kinetics. Indeed, when I present Eq. 2, I have in mind the Li-Rinzel reduction of the DeYoung-Keizer model [12] in which the IP_3R is viewed as a collection of n independent subunits, each of which has one binding site for IP_3 and two binding sites for Ca^{2+} [12]. Thus, three processes (IP_3 -potentiation, Ca^{2+} -activation, and Ca^{2+} -inactivation) produce eight possible states for each IP_3R subunit (see Fig. 3). With parameters chosen to fit binding data and the 'bell-shaped' steady-state open probability curve of the IP_3R as a function of $\operatorname{[Ca}^{2+}]$ measured in planar lipid bilayer experiments [13], whole cell models of Ca^{2+} handling can exhibit Ca^{2+} oscillations for superthreshold $\operatorname{[IP}_3$].

Li and Rinzel derived a simplified version of the DeYoung-Keizer model IP₃R by noticing that the fast processes of IP₃-potentiation and Ca²⁺-activation are essentially at equilibrium with the slower process of Ca²⁺-inactivation [14, 15]. In this quasi-static limit, the functional forms of w_{∞} ([Ca²⁺], [IP₃]) and τ ([Ca²⁺], [IP₃]) in Eq. 2 are found and the fraction of open IP₃Rs is given by $f_o = m_{\infty}^n w^n$ where m_{∞} ([Ca²⁺], [IP₃]) is an instantaneously equilibrating activation gating variable.

References

- [1] MJ Berridge. Inositol trisphosphate and Ca^{2+} signaling. *Nature*, 361(6410):315-25, 1993.
- [2] MJ Berridge. Elementary and global aspects of Ca^{2+} signalling. J Physiol (London), 499(Pt 2):291–306, 1997.
- [3] MJ Berridge. Neuronal Ca^{2+} signaling. Neuron, 21(1):13–26, 1998.
- [4] YX Li, J Keizer, SS Stojilkovic, and J Rinzel. Ca^{2+} excitability of the ER membrane: an explanation for IP_3 -induced Ca^{2+} oscillations. Am J Physiol, 269(5 Pt 1):C1079–92, 1995.
- [5] J Keizer, YX Li, S Stojilkovic, and J Rinzel. IP_3 -induced Ca^{2+} excitability of the endoplasmic reticulum. *Mol Biol Cell*, 6(8):945–51, 1995.

- [6] YX Li, J Rinzel, J Keizer, and SS Stojilkovic. Ca²⁺ oscillations in pituitary gonadotrophs: comparison of experiment and theory. *Proc Natl Acad Sci USA*, 91(1):58–62, 1994.
- [7] BS Wilson, JR Pfeiffer, AJ Smith, JM Oliver, JA Oberdorf, and RJ Wojcikiewicz. Ca²⁺-dependent clustering of inositol 1,4,5-trisphosphate receptors. *Mol Biol Cell*, 9(6):1465–78, 1998.
- [8] GD Smith, J Wagner, and J Keizer. Validity of the rapid buffering approximation near a point source of Ca²⁺ ions. *Biophys J*, 70(6):2527–2539, 1996.
- [9] G Dupont, MJ Berridge, and A Goldbeter. Signal-induced Ca^{2+} oscillations: properties of a model based on Ca^{2+} -induced Ca^{2+} release. *Cell Calcium*, 12(2–3):73–85, 1991.
- [10] G Dupont and A Goldbeter. Oscillations and waves of cytosolic Ca²⁺: insights from theoretical models. *Bioessays*, 14(7):485–93, 1992.
- [11] J. Lytton, M. Westlin, S.E. Burk, G.E. Shull, and D.H. MacLennan. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. *J Biol Chem*, 267(20):14483–14489, Jul 1992.
- [12] GW De Young and J Keizer. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca²⁺ concentration. *Proc Natl Acad Sci USA*, 89(20):9895–9, 1992.
- [13] I Bezprozvanny, J Watras, and BE Ehrlich. Bell-shaped Ca^{2+} -response curves of $\operatorname{Ins}(1,4,5)\operatorname{P3-}$ and Ca^{2+} -gated channels from endoplasmic reticulum of cerebellum. *Nature*, 351(6329):751–4, 1991.
- [14] I Parker and I Ivorra. Inhibition by Ca²⁺ of inositol trisphosphate-mediated Ca²⁺ liberation: a possible mechanism for oscillatory release of Ca²⁺. *Proc Natl Acad Sci USA*, 87(1):260–4, 1990.
- [15] YX Li and J Rinzel. Equations for ${\rm IP_3R}$ -mediated ${\rm [Ca^{2+}]_i}$ oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol, 166(4):461–73, 1994.