Exercice 1 - Convolution et support compact.

- a) Soient $f \in L^1_{loc}(\mathbb{R})$ et $g \in \mathscr{C}^1(\mathbb{R})$ avec g à support compact. Montrer que la fonction f * g est dérivable et de dérivée (f * g)' = f * g'.
- **b)** Soient $f \in \mathscr{C}^0(\mathbb{R})$ et φ continue, positive, à support compact et dont l'intégrale sur \mathbb{R} vaut 1. On pose $\varphi_n(x) = n\varphi(nx)$. Montrer que $(\varphi_n * f)(x) \xrightarrow[n \to +\infty]{} f(x)$.

Commentaires. Comme pour le théorème 3.57, la démonstration de la question **a** repose sur l'utilisation du théorème de convergence dominée de Lebesgue. Observez cependant que la domination donnée dans la preuve du théorème 3.57 n'est pas suffisante ici puisque f n'est que localement intégrable. Pour l'affiner, on utilise la compacité du support de g. Pour la question **b**, on adapte la preuve du théorème 3.63 en découpant l'intégrale en deux parties : la première partie (autour de g) exploite la continuité de g; la seconde se majore grâce aux propriétés de g, (pour g grand).

Corrigé.

a) Formons le taux d'accroissement

$$R_h(x) = \frac{1}{h}((f * g)(x + h) - (f * g)(x)) = \int_{\mathbb{R}} \frac{1}{h} f(t) \left(g(x + h - t) - g(x - t)\right) dt.$$

Pour tout x et tout $h \neq 0$, la fonction $t \mapsto h^{-1}f(t)\left(g(x+h-t)-g(x-t)\right)$ est mesurable. De plus,

$$h^{-1}f(t)(g(x+h-t)-g(x-t)) \xrightarrow[h\to 0]{} f(t)g'(x-t).$$

Il reste à vérifier l'hypothèse de domination pour pouvoir utiliser le théorème de convergence dominée. Soient a, b tels que Supp $g \subset [a, b]$ et K = [a-1, b+1]. Se restreindre à $|h| \le 1$ assure que le support des fonctions $g_{h,x}: t \mapsto g(x+h-t)$ reste inclus dans le compact x-K qui ne dépend pas de h. Vérifions alors que, pour tout $h \in]-1, 1[\setminus \{0\},$

$$|h|^{-1}|f(t)(g(x+h-t)-g(x-t))| \le |f(t)| \|g'\|_{\infty} \mathbf{1}_{K}(x-t).$$
(*)

Si $x - t \notin K$ alors $x - t \notin \text{Supp } g$ et $x - t + h \notin \text{Supp } g$, donc

$$|h|^{-1} |f(t) (g(x+h-t) - g(x-t))| = 0 = |f(t)| ||g'||_{\infty} \mathbf{1}_{K}(x-t).$$

Si $x-t \in K$ alors $\mathbf{1}_K(x-t)=1$ et grâce à l'inégalité des accroissements finis, on a

$$|h|^{-1} |f(t)(g(x+h-t)-g(x-t))| \le |f(t)| ||g'||_{\infty} = |f(t)| ||g'||_{\infty} \mathbf{1}_{K}(x-t).$$

Ainsi on dispose de (*) pour tout $h \in]-1,1[\setminus \{0\}$. Comme f est continue, $t \mapsto |f(t)| \|g'\|_{\infty} \mathbf{1}_{\mathrm{K}}(x-t)$ est intégrable et indépendante de h. Ainsi, le théorème de convergence dominé de Lebesgue [RUD, 1.34] assure que

$$R_h(x) \xrightarrow[h \to 0]{} \int_{\mathbb{R}} f(t)g'(x-t) dt = (f * g')(x),$$

autrement dit, f * g est dérivable en x et de dérivée (f * g')(x).

b) La suite $(\varphi_n)_{n\in\mathbb{N}^*}$ est une identité approchée. Comme φ_n est d'intégrale 1, on a

$$(\varphi_n * f)(x) - f(x) = \int_{\mathbb{R}} \varphi_n(t) (f(x - t) - f(x)) dt.$$

Soit $\varepsilon > 0$; la continuité de f en x permet de choisir η tel que

$$|f(x-t)-f(x)|<\varepsilon$$
 pour $|t|\leqslant \eta$.

Ainsi, φ_n étant positive, on a

$$\left|\left(\varphi_{n}*f\right)(x)-f(x)\right|\leqslant\int_{|t|\leqslant n}\varphi_{n}(t)\left|f(x-t)-f(x)\right|\,\mathrm{d}t\,+\int_{|t|>n}\varphi_{n}(t)\left|f(x-t)-f(x)\right|\,\mathrm{d}t.$$

Étudions chacun des termes de la somme. Pour le premier terme, on a

$$\int_{|t| \leq \eta} \varphi_n(t) |f(x-t) - f(x)| dt \leq \varepsilon \int_{|t| \leq \eta} \varphi_n(t) dt \leq \varepsilon.$$

Pour le second terme, on considère a>0 tel que Supp $\varphi\subset [-a\,,a\,]$. Pour $n\geqslant a\eta^{-1}$ et $|t|>\eta$, on a |nt|>a et donc $nt\notin \operatorname{Supp}\varphi$. On en déduit que $\varphi_n(t)=n\varphi(nt)=0$ pour tout $|t|>\eta$. Ainsi, pour $n\geqslant a\eta^{-1}$, le second terme est nul. Finalement

$$\forall n \geqslant a\eta^{-1}, \qquad |(\varphi_n * f)(x) - f(x)| \leqslant \varepsilon,$$

ce qui permet de conclure.

Exercice 2 – Translatées et dimension finie. Pour $k \in \mathbb{N} \cup \{+\infty\}$, on désigne par \mathscr{C}^k l'espace vectoriel des fonctions k fois continûment dérivables de \mathbb{R} dans \mathbb{C} .

- a) Soit $f \in \mathscr{C}^{\infty}$; on note $\mathcal{D}_f = \text{vect}(f^{(k)}, k \ge 0)$ le sous-espace de \mathscr{C}^{∞} engendré par les dérivées successives de la fonction f. Pour quelles fonctions f, \mathcal{D}_f est-il de dimension finie?
- **b)** Soit E un sous-espace vectoriel de dimension finie n de \mathscr{C}^0 . Notons, pour $x \in \mathbb{R}$, δ_x la forme linéaire sur E définie par $\delta_x(f) = f(x)$. Montrer qu'il existe une base de E* de la forme $(\delta_{x_1}, \ldots, \delta_{x_n})$. Montrer que si (f_1, \ldots, f_n) est une base de E alors $\det((f_i(x_j))_{ij}) \neq 0$.
- c) Pour $f \in \mathscr{C}^0$ et $\tau \in \mathbb{R}$, on définit la translatée f_{τ} par $f_{\tau}(x) = f(x \tau)$. Considérons \mathcal{T}_f le sous-espace de \mathscr{C}^0 engendré par les f_{τ} pour $\tau \in \mathbb{R}$

$$\mathcal{T}_f = \text{vect}(f_\tau, \quad \tau \in \mathbb{R}).$$

Soit f une fonction telle que $\dim(\mathcal{T}_f) = n$. Montrer qu'il existe $(\tau_1, \ldots, \tau_n) \in \mathbb{R}^n$ et une famille (a_1, \ldots, a_n) de fonctions telles que :

$$\forall \tau \in \mathbb{R}, \qquad f_{\tau} = \sum_{i=1}^{n} a_i(\tau) f_{\tau_i}.$$
 (*)

- **d)** Soit $k \in \mathbb{N} \cup \{+\infty\}$. On suppose que $f \in \mathscr{C}^k$ et que $\dim(\mathcal{T}_f) < +\infty$. Montrer que les a_i de la question **c** sont des fonctions de classe \mathscr{C}^k .
- **e)** On suppose que $f \in \mathscr{C}^0$ et que $\dim(\mathcal{T}_f) < +\infty$. En utilisant un argument de convolution, montrer que les fonctions a_i de la question \mathbf{c} sont \mathscr{C}^{∞} .
- **f)** En déduire que si dim $(\mathcal{T}_f) < +\infty$, f est \mathscr{C}^{∞} . Quelles sont les fonctions f telles que dim $(\mathcal{T}_f) < +\infty$?

Commentaires. Cet exercice mélange des arguments d'algèbre linéaire et d'analyse fonctionnelle pour étudier des sous-espaces de fonctions continues vérifiant des conditions de natures algébrique et différentielle. Le principal outil est la structure de l'espace des solutions d'une équation différentielle linéaire à coefficients constants (voir [RDO4, 5.2.3]). Pour exploiter cette propriété, on démontre que les opérateurs de dérivation et de convolution commutent avec la translation.

Corrigé

a) Montrons que l'espace \mathcal{D}_f est de dimension finie si, et seulement si, il existe n nombres complexes (c_1, \ldots, c_n) tels que

$$f^{(n)} + c_1 f^{(n-1)} + \ldots + c_n f = 0.$$
 (**)

Commençons par démontrer le sens direct. Si $\dim(\mathcal{D}_f) = p < +\infty$, alors la famille $(f, f', \dots, f^{(p)})$ de \mathcal{D}_f est liée : il existe des nombres complexes λ_i tels que

$$\lambda_p f^{(p)} + \lambda_{p-1} f^{(p-1)} + \dots + \lambda_0 f = 0$$

Soit n le plus grand i tel que $\lambda_i \neq 0$. On obtient (**) en posant $c_i = \lambda_{n-i}/\lambda_n$.

Réciproquement, on suppose que f vérifie (**). Montrons que \mathcal{D}_f est engendré par $\mathcal{B} = \{f, \dots, f^{(n-1)}\}$. Raisonnons par récurrence sur $k \in \mathbb{N}$ pour montrer que $f^{(k)}$ s'écrit comme combinaison linéaire des éléments de \mathcal{B} . Cette propriété est vraie pour $k = 0, \dots, n-1$. On suppose que cette propriété est vraie jusqu'à un rang $k \ge n-1$. Alors l'expression (**) entraîne

$$f^{(k+1)} = (f^{(n)})^{(k+1-n)} = -c_1 f^{(k)} - \dots - c_n f^{k+1-n}.$$

Ceci permet de conclure grâce à l'hypothèse de récurrence.

Le théorème [RDO4, 5.2.3] affirme que les f vérifiant (**) sont exactement les fonctions qui s'écrivent sous la forme

$$\forall t \in \mathbb{R}, \qquad f(t) = \sum_{i=1}^n \mathbf{P}_i(t) \exp(\lambda_i t) \quad \text{avec } \mathbf{P}_i \in \mathbb{C}[\mathbf{X}] \text{ et } \lambda_i \in \mathbb{C}.$$

Ainsi ces fonctions sont exactement les fonctions f telles que $\dim(\mathcal{D}_f) < +\infty$.

b) D'après le théorème de la base incomplète, il suffit de montrer que la famille $(\delta_x)_{x\in\mathbb{R}}$ est une famille génératrice de E*. Utilisons pour cela un argument de dualité. Observons que l'orthogonal (dual) de la famille $(\delta_x)_{x\in\mathbb{R}}$ est réduit à 0. En effet, soit f telle que pour tout $x\in\mathbb{R}$, $\delta_x(f)=0$; alors $\delta_x(f)=f(x)$ pour tout $x\in\mathbb{R}$, donc f=0. Comme E est de dimension finie n, la proposition III de [RDO1, 9.3.6.3r] implique que la dimension de l'espace vectoriel engendré par $(\delta_x)_{x\in\mathbb{R}}$ est égale à n moins la dimension de son orthogonal. Ainsi il est de dimension n, et donc la famille est génératrice.

Soit à présent $\mathcal{B}=(g_1,\ldots,g_n)$ la base de E duale de $(\delta_{x_1},\ldots,\delta_{x_n})$. On considère $\mathcal{B}_1=(f_1,\ldots,f_n)$ une base quelconque de E. On note A la matrice de passage de \mathcal{B} à \mathcal{B}_1 qui est inversible. Comme \mathcal{B} est la base duale de $(\delta_{x_1},\ldots,\delta_{x_n})$, elle vérifie $g_j(x_i)=\delta_{ij}$, où δ_{ij} est le symbole de Kronecker. On a ainsi

$$f_i(x_j) = \sum_{k=1}^{n} a_{ik} g_k(x_j) = a_{ij},$$

de sorte que $\det(f_i(x_i)) = \det(A) \neq 0$.

c) Comme \mathcal{T}_f est un espace vectoriel de dimension finie engendré par les f_{τ} , le théorème de la base incomplète montre qu'il existe une base de cet espace de la forme $(f_{\tau_1}, \ldots, f_{\tau_n})$. Donc pour tout τ , il existe une unique famille $(a_i(\tau))_{1 \leq i \leq n}$, telle que

$$f_{\tau} = \sum_{i=1}^{n} a_i(\tau) f_{\tau_i}.$$

d) Il s'agit de montrer que les fonctions a_i ainsi définies ont la même régularité que f. Comme l'espace vectoriel \mathcal{T}_f est de dimension finie, on peut appliquer les résultats de la question \mathbf{b} , ce qui permet de définir une famille (x_1,\ldots,x_n) telle que la matrice $\mathbf{A}=(f_{\tau_i}(x_j))_{i,j}$ soit inversible. En évaluant f_{τ} aux points x_j , on a alors

$$\forall \tau \in \mathbb{R}, \qquad f_{\tau}(x_j) = \sum_{i=1}^{n} a_i(\tau) f_{\tau_i}(x_j).$$

Cette égalité signifie que $(a_1(\tau), \ldots, a_n(\tau))$ vérifie le système linéaire

$$\begin{bmatrix} f_{\tau_1}(x_1) & \cdots & f_{\tau_1}(x_n) \\ \vdots & & \vdots \\ f_{\tau_n}(x_1) & \cdots & f_{\tau_n}(x_n) \end{bmatrix} \begin{bmatrix} a_1(\tau) \\ \vdots \\ a_n(\tau) \end{bmatrix} = \begin{bmatrix} f(x_1 - \tau) \\ \vdots \\ f(x_n - \tau) \end{bmatrix}.$$

D'après la question **b**, on a $\det(A) \neq 0$. L'inversibilité de A permet de poser $B = A^{-1} = (b_{ij})_{i,j}$. En inversant le système linéaire précédent, on trouve

$$a_i(\tau) = \sum_{j=1}^n b_{ij} f(x_j - \tau),$$

ce qui montre que les a_i s'écrivent comme combinaisons linéaires des $\tau \mapsto f(x_i - \tau)$. Comme f est \mathscr{C}^k , pour tout i les fonctions $\tau \mapsto f(x_i - \tau)$ sont \mathscr{C}^k , ce qui montre que les a_i sont des fonctions \mathscr{C}^k .

e) Soit θ une fonction \mathscr{C}^{∞} à support compact positive dont l'intégrale sur \mathbb{R} vaut 1 (voir l'application 3.58 pour la construction d'une telle fonction). On construit à partir de θ une identité approchée $(\theta_k)_{k\in\mathbb{N}}$ comme à l'exemple 3.62. L'application f est continue donc localement intégrable. Ainsi, d'après la question \mathbf{a} de l'exercice 1, $\theta_k * f$ est bien définie et de classe \mathscr{C}^{∞} . Par ailleurs, la convolution commute avec les translations, autrement dit $(\theta_k * f)_{\tau} = (\theta_k * f_{\tau})$. En effet,

$$(\theta_k * f)_{\tau}(x) = \int_{\mathbb{R}} \theta_k(u) f((x - \tau) - u) du = \int_{\mathbb{R}} \theta_k(u) f_{\tau}(x - u) du = (\theta_k * f_{\tau})(x).$$

Gràce à la linéarité de la convolution, on peut alors calculer $(\theta_k * f)_\tau$:

$$(\theta_k * f)_{\tau} = \theta_k * f_{\tau} = \theta_k * \left(\sum_{i=1}^n a_i(\tau) f_{\tau_i}\right) = \sum_{i=1}^n a_i(\tau) (\theta_k * f_{\tau_i}) = \sum_{i=1}^n a_i(\tau) (\theta_k * f)_{\tau_i}.$$

L'espace vectoriel \mathcal{T}_{θ_k*f} est donc de dimension finie engendré par les $(\theta_k*f)_{\tau_i}$. La question \mathbf{b} de l'exercice 1 montre que la matrice $\mathbf{A}_k = [\theta_k*f_{\tau_i}(x_j)]_{i,j}$ tend vers la matrice inversible $[f_{\tau_i}(x_j)]_{i,j}$ lorsque k tend vers $+\infty$. La continuité du déterminant assure l'existence d'un k_0 tel que $\det(\mathbf{A}_k) = \det[\delta_{x_j}(\theta_k*f_{\tau_i})]_{i,j}$ est non nul, pour $k \geqslant k_0$. La linéarité des δ_{x_j} assure alors que les $\theta_{k_0}*f_{\tau_i}$ forment une famille libre et donc une base de $\mathcal{T}_{\theta_{k_0}*f}$. Par ailleurs, les coordonnées de $(\theta_{k_0}*f)_{\tau}$ dans cette base sont les $a_i(\tau)$. En appliquant la question \mathbf{d} à la fonction $\theta_{k_0}*f$, on obtient que les a_i sont de classe \mathscr{C}^{∞} .

f) Soit f tel que dim $(\mathcal{T}_f) < +\infty$, montrons que f est \mathscr{C}^{∞} . En évaluant $f_{-\tau}$ en 0 et en utilisant la relation (*), on obtient

$$\forall \tau \in \mathbb{R}, \qquad f(\tau) = f_{-\tau}(0) = \sum_{i=1}^{n} a_i(-\tau) f_{\tau_i}(0) = \sum_{i=1}^{n} f(-\tau_i) a_i(-\tau).$$

Comme les fonctions a_i sont \mathscr{C}^{∞} , on en déduit que f l'est aussi. Observons que la dérivation commute avec la translation, c'est-à-dire que

$$\forall \tau \in \mathbb{R}, \qquad (f^{(k)})_{\tau} = (f_{\tau})^{(k)}.$$

Terminons en montrant l'équivalence

$$\dim(\mathcal{T}_f) < +\infty \iff \dim(\mathcal{D}_f) < +\infty \iff f(t) = \sum_{i=1}^n P_i(t) \exp(\lambda_i t).$$

La deuxième équivalence a fait l'objet de la question **a**. Montrons que si f vérifie $\dim(\mathcal{T}_f) < +\infty$ alors $\dim(\mathcal{D}_f) < +\infty$. En dérivant k fois la relation (*), on obtient :

$$\forall \, \tau \in \mathbb{R}, \qquad \left(f^{(k)}\right)_{-\tau} = (f_{-\tau})^{(k)} = \sum_{i=1}^n a_i (-\tau) f_{\tau_i}{}^{(k)} = \sum_{i=1}^n a_i (-\tau) \left(f^{(k)}\right)_{\tau_i}.$$

En évaluant $(f^{(k)})_{\tau}$ en 0, on a donc

$$\forall \tau \in \mathbb{R}, \qquad f^{(k)}(\tau) = (f^{(k)})_{-\tau}(0) = \sum_{i=1}^{n} f^{(k)}(-\tau_i) \, a_i(-\tau).$$

Ceci montre que toutes les dérivées de f sont dans l'espace engendré par les fonctions $\tau \mapsto a_i(-\tau)$, ce qui montre que $\dim(\mathcal{D}_f) < +\infty$.

Réciproquement, on suppose que $\dim(\mathcal{D}_f) < +\infty$, et on écrit f comme

$$f(t) = \sum_{i=1}^{n} P_i(t) \exp(\lambda_i t). \tag{***}$$

On constate que si $g, h \in \mathcal{C}^0$ et $\mu \in \mathbb{C}$, on a

$$\mathcal{T}_{g+h} \subset \mathcal{T}_g + \mathcal{T}_h$$
 et $\mathcal{T}_{\mu g} = \mathcal{T}_g$,

de sorte que si \mathcal{T}_g et \mathcal{T}_h sont de dimension finie, alors \mathcal{T}_{g+h} et $\mathcal{T}_{\mu g}$ le sont aussi. On définit, pour $n \in \mathbb{N}$ et $\lambda \in \mathbb{C}$, la fonction $f_{\lambda,n} \colon x \mapsto x^n \exp(\lambda x)$. La relation (***) implique qu'il suffit de montrer que $\mathcal{T}_{f_{\lambda,n}}$ est de dimension finie pour conclure. On observe alors que $\mathcal{T}_{f_{\lambda,n}}$ est engendré par les $f_{\lambda,k}$ pour $k=0,\ldots,n$. Finalement, on a l'équivalence escomptée.

Références

[RDO1] E. RAMIS, C. DESCHAMPS, et J. ODOUX. Cours de Mathématiques 1, Algèbre. Dunod, 1998.

[RDO4] E. RAMIS, C. DESCHAMPS, et J. ODOUX. Cours de Mathématiques 4, Séries et équations différentielles. Dunod, 1998.

[RUD] W. RUDIN. Analyse réelle et complexe. Dunod, 1987.