

Electromagnetismo (LFIS 211)

Licenciatura en Física

Profesor: J. R. Villanueva Semestre I 2022

Nombre:					
Prueba 2: P1:	P2:	P3:	P4:	NF:	

- 1. Una carga puntual q está situada a una distancia a del centro de una esfera conductora de radio R conectada a tierra.
 - (a) Encuentre el potencial $\Phi(r,\theta)$ fuera de la esfera, ¿cuál es la fuerza entre la carga y la esfera?
 - (b) Encuentre la carga superficial inducida en la esfera, en función de θ . Integre esto para obtener la carga total inducida.
- 2. Entre las placas de un condensador plano de espesor 2d se introduce un dieléctrico no homogéneo de permitividad $\varepsilon_1 = 4\varepsilon_0/[1+(x/d)^2]$ según se indica en la FIG.1. Calcular
 - (a) la distribucion de los vectores \overrightarrow{D} , \overrightarrow{E} y \overrightarrow{P} cuando se aplica una diferencia de potencial V_0 entre las placas;
 - (b) las densidades de carga de polarización, σ_p , y ligada, ρ_p .
 - (c) la energía almacenada, y la fuerza entre las placas.

Figure 1: Esquema para el problema 4. Condensador plano de espesor 2d con dieléctrico de permitividad variable, $\varepsilon_1 = 4\varepsilon_0/[1 + (x/d)^2]$, conectado a una diferencia de potencial V_0

3. (a) Un alambre cilíndrico de radio a y longitud L, tiene una resistividad que varía de acuerdo a

$$\eta = \eta_0 \cos\left(\frac{\pi z}{4L}\right),\,$$

determine la resistencia del alambre.

- (b) Dos conductores cilíndricos de secciones idénticas, pero con diferentes resistividades, η_1 y η_2 , se juntan por los extremos. Hallar la carga en el límite de dichos conductores, si desde el conductor 1 hacia el 2 circula una corriente I.
- 4. En el circuito RC mostrado en la figura 2 calcule
 - (a) La carga del condensador cuando t = 0.
 - (b) El voltaje en el condensador para $t\to\infty$
 - (c) La corriente máxima que pasa por R_1 .
 - (d) La potencia máxima disispada por la resistencia R_3 .

Figure 2: Esquema para el problema 4