"Sparknotes" for $Linear\ Algebra$ by Peter Lax

Muthu Chidambaram

Last Updated: May 23, 2019

Contents

1	Fun	damenta	ıls																	
	1.1	Exercise	1																	
	1.2	Exercise	2																	
	1.3	Exercise																		
	1.4	Exercise	4																	
	1.5	Exercise	5																	
	1.6	Exercise	6																	
	1.7	Exercise																		
	1.8	Exercise	8																	
	1.9	Exercise																		
	1.10	Exercise	10)																
	1.11	Exercise	11	L																
	1.12	Exercise	12	2																
	1.13	Exercise	13	3																
	1.14	Exercise	14																	
	1.15	Exercise	15	5																
	1.16	Exercise	16	3																
	1.17	Exercise	17	7																
2	Dua	\mathbf{dity}																		
	2.1	Exercise	1																	
	2.2	Exercise	2																	
3	Line	ear Map	piı	ng	rs															
		Evercise	_		,															

Preface

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Linear Algebra* by Peter Lax. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes from mathematicians of past generations in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 Fundamentals

1.1 Exercise 1

 $x + z = x = x + z' \implies z = z'.$

1.2 Exercise 2

0x + x = (0+1)x = x.

1.3 Exercise 3

Coefficients can be represented as row vectors.

1.4 Exercise 4

Function can be represented as row vector by letting $a_i = f(s_i)$ for each $s_i \in S$.

1.5 Exercise 5

Follows from exercises 3 and 4.

1.6 Exercise 6

 $y_1 + z_1 + y_2 + z_2 = (y_1 + y_2) + (z_1 + z_2)$ and $k(y_1 + z_1) = ky_1 + kz_1$.

1.7 Exercise 7

 $a \in Y \cap Z \implies ka \in Y, ka \in Z \implies ka \in Y \cap Z.$

1.8 Exercise 8

k0 = 0, 0 + 0 = 0.

1.9 Exercise 9

If S contains x_i then it must contain kx_i .

1.10 Exercise 10

If $x_i = 0$, k_i can be anything.

1.11 Exercise 11

 $x = \sum_{i=1}^{m} \sum_{j=1}^{\dim Y_i} y_j^{(i)}.$

1.12 Exercise 12

Complete basis for W to U and V. Use W basis vectors and additional U and V basis vectors to get $\dim X = \dim U - \dim W + \dim V - \dim W + \dim W$.

1.13 Exercise 13

Send i^{th} basis vector to e_i , where e_i is vector of all zeroes except a one in the i^{th} place. Can permute mapping to get different isomorphisms.

1.14 Exercise 14

$$x_1 - x_2 + x_2 - x_3 = x_1 - x_3.$$

1.15 Exercise 15

$$x' = x + z_x, y' = y + z_y \implies x' + y' = x + y + (z_x + z_y).$$

1.16 Exercise 16

$$x \in X_1 \bigoplus X_2 \implies x = (x_1, x_2) = (x_1, 0) + (0, x_2).$$

1.17 Exercise 17

Construct a basis for X from Y: $y_1, ..., y_j, x_{j+1}, ..., x_n$. Then $X/Y = \text{span}\{x_{j+1}, ..., x_n\}$.

2 Duality

Theorem 1

$$x = \sum_{i=1}^{n} a_i x_i \implies k_i(x) = a_i.$$

2.1 Exercise 1

$$l_1, l_2 \in Y^{\perp} \implies l_1(y) + l_2(y) = 0 = (l_1 + l_2)(y).$$

2.2 Exercise 2

$$\forall \xi \in Y^{\perp \perp} \implies \forall l \in Y^{\perp}, \; \xi(l) = 0 = l(y) \; \forall y \in Y.$$

3 Linear Mappings

3.1 Exercise 1

(a)
$$x \in X \implies x = \sum_{i=1}^{n} k_i x_i \implies T(x) = \sum_{i=1}^{n} k_i T(x_i) \in U$$
.

(b)
$$T(x), T(y) \in U \implies T(x+y) \in U \implies x+y \in X$$
.

Theorem 1

$$x \in X, y \in N_T \implies T(x+y) = T(x) + T(y) = T(x).$$