Cálculo 1

Lista de Aplicações – Semana 04

Temas abordados: Limites envolvendo o infinito; Assíntotas

Seções do livro: 2.4

- 1) Duas partículas carregadas com cargas de módulos q_1 e q_2 interagem com uma força eletrostática. Segundo a Lei de Coulomb, o módulo dessa força, em Newtons, é modelado pela função $F:(0,\infty)\longrightarrow (0,\infty)$ dada por $F(x)=\frac{Kq_1q_2}{x^2}$, onde K>0 é uma constante que depende do meio e x é a distância, em metros, entre as partículas. Suponha que, em unidades físicas apropriadas, $Kq_1q_2=10$ e resolva os itens a seguir.
 - (a) Encontre $\delta > 0$ suficientemente pequeno tal que se $0 < x < \delta$, então a força entre as partículas tem módulo maior que $10^7 \mathrm{N}$ (dez milhões de Newtons).
 - (b) Encontre M > 0 suficientemente grande tal que se x > M, então a força entre as partículas tem módulo menor que 10^{-6} N (um milhonésimo de Newton).
 - (c) Determine $\lim_{x\to 0^+} F(x)$ e $\lim_{x\to\infty} F(x)$.
 - (d) Faça um esboço do gráfico de ${\cal F}$.
- 2) A figura abaixo ilustra um corpo de massa m>0 pendurado no teto de um trem bala por um fio inextensível de comprimento L>0. Quando o trem possui aceleração a o pêndulo se encontra inclinado, fazendo um ângulo θ com a vertical. Pode-se provar que, se g é a aceleração da gravidade local, então $a(\theta)=g\operatorname{tg}(\theta)$. Como $\theta\in(-\pi/2,\pi/2)$, temos que $\theta(a)=\operatorname{arctg}(a/g)$, onde a função arctg: $\mathbb{R}\longrightarrow(-\pi/2,\pi/2)$ é a função inversa da tangente. Supondo que g=10 m/s², resolva os itens seguintes.
 - (a) Sabendo que $\operatorname{tg}(\theta) = \operatorname{sen}(\theta)/\cos(\theta)$, encontre

$$\lim_{\theta \to -\pi/2^+} a(\theta) \in \lim_{\theta \to \pi/2^-} a(\theta).$$

- θ L m
- (b) Se a aceleração do trem tomar valores cada vez maiores, o ângulo $\theta(a)$ se aproxima de que valor? E se $a \to -\infty$, então $\theta(a)$ tende para algum número?
- (c) Faça um esboço dos gráficos de $a(\theta)$ e $\theta(a)$, com suas assíntotas.
- 3) Considerando a função $q(x) = \frac{\sqrt{x^2 + 1}}{2 x}$, definida para $x \neq 2$, resolva os itens abaixo.
 - (a) Calcule os limites no infinito da função q e, em seguida, determine a(s) assíntota(s) horizontal(is) do gráfico da função q, se esta(s) existir(em).
 - (b) Calcule os limites laterais de q no ponto x = 2 e, em seguida, determine a(s) assíntota(s) vertical(is) do gráfico da função q, se esta(s) existir(em).
 - (c) Faça um esboço do gráfico de q.

- 4) Para cada a>1, o número positivo $\ln a$ pode ser caracterizado como a área da região limitada pelo eixo Ox, pelas retas verticais x=1 e x=a e pelo gráfico da função g(t)=1/t. Por exemplo, o número $\ln 4$ é a área da região compreendida entre o gráfico da função g e as retas g=0, g=1 e g=10. Na figura foram destacados ainda três retângulos de base unitária cujas alturas são g(2), g(3) e g(4).
 - (a) Determine as áreas A_1 , A_2 e A_3 dos retângulos indicados, e faça sua soma.

- (d) Sabendo que para todo x>0 tem-se $e^x>\ln x$, investigue a existência de $\lim_{x\to\infty}e^x$.
- (e) Lembre que $e^{-x}=1/e^x$ e calcule $\lim_{x\to\infty}e^{-x}$. Esboce o gráfico das funções e^x , e^{-x} e $\ln x$.
- 5) Suponha que, em um ambiente com capacidade de sustentar um número limitado de indivíduos, a população após t anos, P(t), seja modelada pela função $P(t) = \frac{1100}{1+9\,E(t)}$, em que $E(t)=3^{-t}$ é uma função exponencial, o tempo $t\geq 0$ é medido em anos e t=0 corresponde à população inicial P(0). O gráfico da função E(t), ilustrado na figura abaixo, pode ser útil no estudo do comportamento de P(t). A partir dessas informações, julgue a veracidade dos itens a seguir, justificando suas respostas.
 - (a) A população inicial é superior a 100 indivíduos.
 - (b) A função f(t) = 1 + 9 E(t) é tal que $f(t_1) < f(t_2)$ E sempre que $t_1 < t_2$.

- (c) P(t) é uma função decrescente da variável t.
- (d) Após três anos, a população será superior a 800.
- (e) Existem valores de t>0 para os quais a população apresenta um número superior a 1100 indivíduos.

Gabarito

- 1. (a) $\delta \le 10^{-3}$
 - (b) $M \ge 10^{7/2}$
 - (c) $+\infty$ e 0, respectivamente
- 2. (a) $-\infty$ e $+\infty$, respectivamente
 - (b) $\lim_{a \to +\infty} \theta(a) = \pi/2 e \lim_{a \to -\infty} \theta(a) = -\pi/2$
- 3. (a) $\lim_{t\to -\infty}q(t)=1$ e $\lim_{t\to +\infty}q(t)=-1$. As retas y=1 e y=-1 são assíntotas horizontais
 - (b) $\lim_{t\to 2^-}q(t)=+\infty$ e $\lim_{t\to 2^+}q(t)=-\infty$. A reta x=2 é uma assíntota vertical
- 4. (a) $A_1 = 1/2$, $A_2 = 1/3$, $A_3 = 1/4$
 - (b)
 - (c)
 - (d) $\lim_{x \to \infty} e^x = +\infty$
 - (e) $\lim_{x \to \infty} e^{-x} = 0$
- 5. (a) Correto.
 - (b) Errado.
 - (c) Errado.
 - (d) Correto.
 - (e) Errado.