Title

D. Zack Garza

Contents

Contents

1	1 Lecture 8: Riemann-Roch Spaces (Part 2)															3									
	1.1	Proof o	of Upper	В	ounc	ł.																			3
		1.1.1	Step 1																						3
		1.1.2	Step 2																						4
		1.1.3	Step 3																						4
		1.1.4	Step 4																						5
	1.2	Genus																							5

Contents 2

1 | Lecture 8: Riemann-Roch Spaces (Part 2)

Recall the proposition we ended with last time:

Proposition 1.0.1(?).

There exists a $\delta = \delta(K/k) \in \mathbb{Z}$ such that for all $A \in \text{Div } K$, we have

$$\deg A - \ell(A) \le \delta.$$

Exercise 1.0.2(?): This proposition is enough to show the existence of rational functions whose polar divisor has as its support any finite subset $S \subset \Sigma(K/k)$.

Most of the lecture will be the proof of this statement.

1.1 Proof of Upper Bound

Rewriting [@lemma:divisor_order_to_subspaces] yields

$$A_2, A_2 \in \text{Div } K, A_1 \le A_2 \implies \deg A_1 - \ell(A_1) \le \deg A_2 - \ell(A_2).$$

??

1.1.1 Step 1

Choose an $x \in K \setminus k$ and set $B := (x)_{-}$.

Claim: There exists a $C \ge 0$ such that for all $n \ge 0$,

$$\ell(nB+C) \ge (n+1) \deg B$$
.

So we give ourselves a certain effective divisor: the divisor of poles of an arbitrary nonconstant element. We can then get a preliminary asymptotic lower bound, not on the same Riemann-Roch space, but on a new one after augmenting the space by some fixed effective divisor C.

Proof(?).

Since K/k(x) has finite degree, let u_1, \dots, u_d be a basis for K consisting of finitely many rational functions. Note that d = [K : k(x)], and is also equal to deg B since B was a divisor of poles. Noting that the divisor groups are free commutative groups, so taking any finite number of elements in $\bigoplus \mathbb{Z}$, we can find an element that is less than or equal to all of them.

Thus we can choose a $C \geq 0$ such that

$$(u_i) \ge -C$$
 $\forall 1 \le i \le d.$

Since the u_i are k(x)-linearly independent in K, the functions $\{x^i u_j \mid 0 \le i \le n, 1 \le j \le d\}$ are k-linearly independent, since any k-linear relation would immediately yield a k(x)-linear relation among the u_i .

Exercise 1.1.1(?): If $f_i \in \mathcal{L}(D_i)$, so the poles of f are no worse than D_i , then the poles of f_1f_2 are bounded by $D_1 + D_2$ and thus $f_1f_2 \in \mathcal{L}(D_1 + D_2)$. Now we can note that there are $(n+1)d = \deg B$ many elements here, and moreover, these all

Now we can note that there are $(n+1)d = \deg B$ many elements here, and moreover, these all lie in $\mathcal{L}(nB+C)$ since each $(u_j) \geq -C$ and $(x) \geq -B$ and $i \leq n$. From this we can conclude

$$\ell(nB+c) \ge (n+1)d = (n+1)\deg B.$$

1.1.2 Step 2

We'll now show that throwing in the fixed divisor C can't increase the Riemann-Roch space that much, and in fact

$$\ell(nB+C) \le \ell(nB) + \deg C$$
,

and so we get a bound

$$\ell(nB) \ge \ell(nB + C) - \deg C$$

$$\ge (n+1) \deg B - \deg C$$

$$= \deg(nB) + ([K : k(x)] - \deg C)$$

$$:= \deg(nB) \pm \gamma,$$

which shows that

$$\forall n \ge 0, \ \deg(nB) - \ell(nB) \le \gamma. \tag{1}$$

A problem here is that γ depends upon everything that we've done so far, and this inequality only holds for multiples of a fixed divisor (an infinite ray emanating from B).

1.1.3 Step 3

Claim: For all $A \in \text{Div } K$, there exist $A_1, D \in \text{Div } K$ and $n \geq 0$ such that $A \leq A_1, A_1 \sim D$, and $D \leq nB$. I.e. although it can't literally be true that $A \leq nB$, it will be up to linear equivalence.

To see this, set $A_1 := \max(A, 0)$. Using the bound from eq. 1, for $n \gg 0$ we have

$$\ell(nB - A_1) \ge \ell(nB) - \deg A_1$$

$$\ge \deg(nB) - \gamma - \deg A_1$$

$$> 0.$$

and so there exists a $z \in \mathcal{L}(nB - A_1)^{\bullet}$, a nontrivial element in the linear system.

Remark 1.1.2: The first inequality is an application of our lemma because A_1 is effective, which was the point of this maneuver. I.e., in order to get from $nB - A_1$ to nB, we added A_1 , which can only increase the dimension of the space by at most deg A_1 . Finally, in the last inequality, we use the fact that B has positive degree since it's a divisor of poles of a nonconstant rational function, and the remaining terms don't depend on n, so we can make deg(nB) arbitrarily large.

So now set $D := A_1 - (z)$, then $A_1 \sim D$ and since it's in the linear system,

$$(z) \ge -(nB - A_1) = A_1 - nB$$

so $-(z) \leq nB - A_1$ and by adding A_1 to both sides, we obtain

$$0 = A_1 - (z) \le nB$$
.

What have we shown? For any divisor D, we can make it less than nB for some n, up to linear equivalence.

1.1.4 Step 4

Finally, for $A \in \text{Div } K$, choose A_1, D as in the previous step, so $A \leq A_1 \sim D \leq nB$. Then

$$\deg A - \ell(A) \leq \deg(A_1) - \ell(A) \qquad \text{using } A \leq A_1$$

$$= \deg(D) - \ell(D) \qquad \text{changing within linear equivalence class}$$

$$\leq \deg(nB) - \ell(nB)$$

$$\leq \gamma.$$

1.2 Genus

Definition 1.2.1 (Genus (Important!)) The **genus** of K/k is defined as

$$g \coloneqq \max_{A \in \text{Div } K} (\deg(A) - \ell(A) + 1).$$

1.2 Genus 5

This exists by the [@prop:deg_bounded_above], since this set is bounded above.

Exercise 1.2.2(?): Show that $g \ge 0$ always and

$$g(k(t)/k) = 0.$$

Remark 1.2.3: Note that if the +1 is mostly a correction factor to match up with the topological genus of $\mathbb{P}^1_{/\mathbb{C}}$. That the genus is non-negative should come from the lower bound we had from before. It turns out that over $k = \mathbb{C}$, this genus will agree on the nose with the topological genus of the corresponding compact Riemann surface.

Theorem 1.2.4 (Riemann's Inequality).

If K/k is a function field of genus g,

a. For all $A \in \text{Div } K$,

$$\ell(A) \ge \deg(A) + 1 - g.$$

b. There exists a $c = c(K) \in \mathbb{Z}$ such that for all $A \in \text{Div } K$,

$$deg(A) \ge c \implies \ell(A) = deg(A) - g + 1.$$

Remark 1.2.5: This says that the dimension of the linear system is very close to the degree of the corresponding divisor, and is only off by a constant factor g. Part (a) is literally just a rearrangement of the definition of the genus. Part (b) says that if you assume A has sufficiently large degree, this upper bound becomes an equality.

Proof (of b).

By the definition of g, since it is a maximum there exists an A_0 such that

$$q = \deg(A_0) - \ell(A_0) + 1.$$

Set $c := \deg(A_0) + g$. Then if $\deg(A) \ge c$, we have

$$\ell(A - A_0) \ge \deg(A - A_0) - g + 1$$
$$\ge c - \deg(A_0) - g + 1$$
$$= 1$$

so there exists a $z \in \mathcal{L}(A - A_0)^{\bullet}$ since the dimension is at least 1. Now set A' := A + (z), and note that $A' \ge A_0$. Thus

$$\deg(A) - \ell(A) = \deg(A') - \ell(A')$$

$$\geq \deg(A_0) - \ell(A_0)$$
 by the lemma
$$= g - 1.$$

By maximality of the genus, we have $\deg(A) - \ell(A) \leq g - 1$, which forces equality

1.2 Genus 6

Next up: how to we make this inequality into an equality? It turns out that there is some different divisor D' and we can subtract off $\ell(D')$, and that will be the Riemann-Roch theorem.

1.2 Genus