Rat in a mage

Count all the ways to reach the destination in a maze.

Enumeration backtracking

we have a 2D mage where O represents clear path (path which we can travel) and -1 represents blockage.

2	S _o	1	2	3		0	
0	0	O	0	0		7	
(0	-1	0	0		7	maze
2		0	0	0			
3	0	0	0	0]		
					J D		

Source - Starting point - maze [0][0]

Destination - Exit point - maze [n-1][n-1]

Source - maje [0] (0)

Destination - mage [3][3]

2	50	1	2 3	
0	0	Đ	0	
(0	-	0,00	Pink
2		0	0	1 000
3	0	0	0 0	
			N C	

Total paths = 4 To Green

yellow

Purple

Pink

200	S _o	1	2	3	
0	300	0 7	0	6	
(40	-1) 	04	
2	* -1 *	0	0	0	
3	0	0	, 0	0	
					JB

we can move in 2 directions Bottom

$$(0, 0)$$
 $\xrightarrow{\text{Right}}$ $(0, 1)$ $(2, 3+1)$

(2,0)
$$\xrightarrow{\text{Right}}$$
 (2,1) (2,1+1)

$$(1,2)$$
 \xrightarrow{left} $(1,1)$ $(i,j-1)$

$$(1,0) \xrightarrow{\text{Bottrm}} (2,0)$$

$$(2,10)$$

$$(2,10)$$

(0,3) Bottoms (1,3)
(
$$\hat{i},\hat{j}$$
) ($\hat{i}+1,\hat{j}$)
(\hat{i},\hat{j}) (\hat{i},\hat{j}) (\hat{i},\hat{j})

we need to take case of 2 things
1. Increment the count if path is

possible in bottom or right direction.

(i,j+1) (i+1,j)

Base case

- 1. Return if source is blocked

 if (mage Co) Co) = = -1)

 to return
- 2. If the distinction is blocked then return 0.

 If (mage [n-1] [n-1] = = -1)

Steps -

1. If current cell has a blockage then do not change.

if (mage [i] [i] = = -1)

continue

2. If we can more to mage [i][j]

from mage [i-1] [j] then increment

the count:

if (maze [i-1][j] 70)

2

maze [i] [j] = maze [i] [j]

+ maze [i-1][j]

3. If we can move to maze (i)(j)

from maze [i][j-1) then increment
the count.

if (mage [i] Cj-1] 7 0){

mage (i) Cj] = mage [i] Cj]+ mage [i] Cj-1]

J