(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-235253

(43)公開日 平成 4年(1992) 8月24日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FI	技術表示箇所
C 2 2 C 38/00	301 U	7217-4K		
C 2 1 D 8/02	A	8116-4K		
9/46	F	7356-4K		
	G	7356-4K		
C 2 2 C 38/38			\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	審査請求 未請求 請求項の数4(全 8 頁)
(21)出願番号	特願平2-418079		(71)出願人	川崎製鉄株式会社
(22)出類日	平成2年(1990)125	₹28日		兵庫県神戸市中央区北本町通1丁目1番8 号
			(72)発明者	登坂 章男 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内
			(72)発明者	加藤 俊之 千葉県千葉市川崎町 1 番地 川崎製鉄株式 会社技術研究本部内
			(74)代理人	弁理士 杉村 暁秀 (外5名)

(54) 【発明の名称】 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法

(57)【要約】

【構成】 重量割合で、C:0.10~0.20%、Si;0.20%以下、Mn:2.0~3.0%、Cr:0.20~1.00%、Nb:0.005~0.050%、B:0.003~0.0020%、Al:0.020~0.100%、P:0.020%以下、S:0.010%以下、N:0.0150%以下を含有し、残部は鉄及び不可避不純物の組成からなる高強度冷延鋼板、及び、上記成分組成にTi:0.050%以下を添加した高張力冷延鋼板、また、上記の各案材を用いて、加熱温度1200℃以上、仕上げ温度800℃以上、巻取温度750~550℃の条件で熱延し、その後、圧下率40%以上で冷延し、さらに、加熱速度5℃/秒以上で800~900℃の所定温度にて20~300秒の均熱を行い、冷却速度20℃/秒以上で450~300℃に急冷し、つづいて、5℃/秒以下で200℃以下まで徐冷する高強度冷延鋼板の製造方法。

【効果】 TS 100kg(/mm² 以上、YR 80 %以下で、良好な曲げ加工性、衝撃特性を得る。

【特許請求の範囲】

【請求項1】

C: 0.10wt%以上0.20wt%以下、

Si: 0.20wt%以下、

Mn: 2.0wt %以上3.5wt %以下、

Cr: 0.20wt%以上1.00wt%以下、

Nb: 0.005wt %以上0.050wt %以下、

B: 0.0003wt%以上0.0020wt%以下、

Al: 0.020wt %以上0.100wt %以下、

P:0.020wt %以下,

S:0.010wi %以下及び

N: 0.0150wi%以下

を含有し、残部は鉄及び不可避不純物の組成になり、残 留オーステナイトを5%以上15%以下で含むベイナイト 主体の組織を有し、TS 100kgf/m2 以上、降伏比80%以 下の特性を有することを特徴とする曲げ加工性、衝撃特 性の良好な超高張力冷延鋼板。

【請求項2】

C: 0.10wi%以上0.20wi%以下、

Si: 0.20wt%以下、

Mn: 2.0wt %以上3.5wt %以下、

Cr: 0.20wt%以上1.00wt%以下、

Ti: 0.050wt %以下、

Nb: 0.005wt %以上0.050wt %以下、

B: 0.0003wt%以上0.0020wt%以下、

Al: 0.020wt %以上0.100wt %以下、

P:0.020w1 %以下、

S:0.010wi %以下及び

N:0.0150wt%以下

を含有し、残部は鉄及び不可避不純物の組成になり、残 30 留オーステナイトを5%以上15%以下で含むペイナイト 主体の組織を有し、TS 100kgf/mm² 以上、降伏比80%以 下の特性を有することを特徴とする曲げ加工性、衝撃特 性の良好な超高張力冷延鋼板。

【請求項3】

C:0.10wt%以上0.20wt%以下、

Si: 0.20wt%以下。

Mn: 2.0wt %以上3.5wt %以下、

Cr: 0.20wt%以上1.00wt%以下、

Nb: 0.005wt %以上0.050wt %以下、

B:0.0003wi%以上0.0020wi%以下、

Al: 0.020wt %以上0.100wt %以下、

P:0.020wt %以下,

S:0.010wi %以下及び

N: 0.0150wt%以下

を含有し、残部は鉄及び不可避不純物の組成に調製した 鋼スラブを素材として、1200℃以上に加熱して熱間圧延 し、800 ℃以上の温度で仕上げ圧延を行った後、冷却 し、750 ℃以下550 ℃以上の所定温度でコイルに巻取

し、この冷間圧延に続いて、加熱速度5℃/秒以上の加 **熱速度で加熱し、800 ℃以上900 ℃以下の所定温度にて** 20秒以上300 秒以下の時間均熱する連続焼鈍を行った 後、20℃/秒以上の冷却速度で450℃以下300 ℃以上の 所定温度まで急冷し、つづいて、5℃/秒以下の冷却速 度で200 ℃以下の温度まで徐冷することを特徴とする曲 げ加工性、衝撃特性の良好な超高強度冷延網板の製造方 法。

2

【請求項4】

10 C:0.10w1%以上0.20w1%以下,

Si: 0.20mt%以下,

Mn: 2.0wt %以上3.5wt %以下、

Cr: 0.20wt%以上1.00wt%以下、

Ti: 0.050wt %以下

Nb: 0.005wt %以上0.050wt %以下、

B: 0.0003wt%以上0.0020wt%以下、

Ai: 0.020wt %以上0.100wt %以下、

P:0.020wt %以下、

S:0.010wt %以下及び

20 N: 0.0150wi%以下

を含有し、残部は鉄及び不可避不純物の組成に調製した 鋼スラブを素材として、1200℃以上に加熱して熱間圧延 し、800 ℃以上の温度で仕上げ圧延を行った後、冷却 し、750 ℃以下550 ℃以上の所定温度でコイルに巻取 り、その後、酸洗を行い、40%以上の圧下率で冷間圧延 し、この冷間圧延に続いて、加熱速度5℃/秒以上の加 熱速度で加熱し、800 ℃以上900 ℃以下の所定温度にて 20秒以上300 秒以下の時間均熱する連続焼鈍を行った 後、20℃/秒以上の冷却速度で450℃以下300 ℃以上の 所定温度まで急冷し、つづいて、5℃/秒以下の冷却速 度で200 ℃以下の温度まで徐冷することを特徴とする曲 げ加工性、衝撃特性の良好な超高強度冷延鋼板の製造方

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、自動車部品のうち、 比較的軽加工で、高い強度が要求されるドアインパクト ピーム、バンパー等に用いて好適なTS 100kgf/mm² 以 上、降伏比80%以下の曲げ加工性、衝撃特性の良好な超 40 高強度冷延鋼及びその製造方法に関するものである。

[0002]

【従来の技術】これまでの、超高強度冷延鋼板の製造方 法としては、たとえば、以下に示すような方法がある が、それぞれ問題点を有していた。

【0003】まず、引張強さ100kgf/mm2を超える冷延鋼 板の製造方法としては、特開昭62-13533 号公報に開示 されているような、いわゆる水焼入れ法を用い、より焼 入性の高い鋼に適用したものがある。しかし、この方法 は比較的安価に製造できるメリットはあるものの、急冷 り、その後、酸洗を行い、40%以上の圧下率で冷間圧延 50 するために、大きな歪の発生と、幅方向の材質の均一性

が劣るという問題があり、また、このような焼戻しマル テンサイト鋼は成形後に顕著に脆化するという問題があ った。

【0004】つぎに、特開昭51-86015号公報にはSiを多 重に添加した鋼板をパッチ焼鈍する方法が開示されてい るが、この場合、延性は優れるもののSiを含むことによ るスケールに起因する表面欠陥が顕著となり、ドアーイ ンパクトピームなどの強度部材では信頼性の低下につな がっていた。また、このような高Si鋼では、圧延加工性 の劣化に伴う形状の悪化も大きな問題となっており、さ らに、原因は明らかでないが、ある熱延条件でパンド組 織が発達すること、面内異方性が発達することなどから 曲げ加工性が劣化し、使用上好ましくない問題点を有し

【0005】さらに、特開昭62-182224 号公報には、 C. Si、Mnを含有する鋼板を用いて熱処理を行い、残留 オーステナイト、フェライト、ペイナイト、マルテンサ イトを含む複合組織とする方法が開示されているが、こ の場合、かなり特殊な熱処理条件となることや、溶接が 困難になるなどの問題があった。

【0006】また特開昭59-143027 号公報には、C, Mn およびPを含有する鋼板及びこれに添加元素を加えた鋼 板を用いて熱処理し、フェライト、ペイナイト、主体の 複合組織とする方法が開示されている。しかしながら、 この組成ではTS 100kgf/mº 以上とした場合、衝撃特性 に劣るという問題があった。この原因は必ずしも明確で ないが、原因の一つとして、冷却パターンが適切でない ため大きな内部応力が残存していると推定される。

[0007]

【発明が解決しようとする課題】この発明は、TS 100kg 30 [/mm² 以上、降伏比80%以下の超高強度冷延鋼板及びそ の製造方法において、前記した問題点を含めて以下に示 す項目について改善をはかろうとするものである。

[0008]

- ① 曲げ加工性
- ② 衝撃特性
- ③ 降伏比(低減)
- ④ 溶接性
- ⑤ 材質の均一性
- ⑥ 従来の連続焼炉で製造できること

【0009】ここに、①から⑤項までの特性は、自動車 の強度部材に要求される特性で、部材の信頼性を確保す る上で不可欠のものであり、⑥項については、新たな設 備投資を必要としないという経済的にも優れるものであ る.

[0010]

【課題を解決するための手段】この発明は、高強度、低 降伏比、高延性、及び曲げ加工性、衝撃特性が良好な、 特に大きな欠点のない材質パランスの良い冷延鋼板を得 るために、鋼の成分組成を限定し、特にC、Mn, Cr. N 50 させる。2.0 wt %未満では上記効果が不十分であり、3.

b. Bの成分を適正添加して、5%から15%の残留オー ステナイトを含む微細で均一なペイナイト組織とするも のであり、その製造においては、熱延、冷延、焼鈍条件 を適正化するものである。

【0011】すなわち、その要旨は、

C: 0.10wt%以上0.20wt%以下、

Si: 0.20wt%以下、

Mn: 2.0wt %以上3.5wt %以下、

Cr: 0.20w1%以上1.00wt%以下、

10 Nb: 0.005wt %以上0.050wt %以下、

B:0.0003w1%以上0.0020w1%以下、

AI: 0.020wi %以上0.100wt %以下、

P:0.020wt %以下,

S:0.010wl %以下及び

N:0.0150w1%以下

を含有し、残部は鉄及び不可避不純物の組成になり、残 留オーステナイトを5%以上15%以下で含むペイナイト 主体の組織を有し、TS 100kgf/mm² 以上、降伏比80%以 下の特性を有することを特徴とする曲げ加工性、衝撃特 性の良好な超高張力冷延鋼板であり、さらに上記成分組 成にTi:0.050wt%以下を添加するものであり、

【0012】また、上配各々の成分組成になる鋼スラブ を、1200℃以上に加熱して熱間圧延し、800 ℃以上の温 度で仕上げ圧延を行った後、冷却し、750 ℃以下550 ℃ 以上の所定温度でコイルに巻取り、その後、酸洗を行 い、40%以上の圧下率で冷間圧延し、この冷間圧延に統 いて、加熱速度5℃/秒以上の加熱速度で加熱し、800 ℃以上900 ℃以下の所定温度にて20秒以上300 秒以下の 時間均熱する連続焼鈍を行った後、20℃/秒以上の冷却 速度で450 ℃以下300℃以上の所定温度まで急冷し、つ づいて、5℃/秒以下の冷却速度で200℃以下の温度ま で徐冷することを特徴とする曲げ加工性、衝撃特性の良 好な超高強度冷延鋼板の製造方法である。

[0013]

【作用】まず、この発明の成分組成の限定理由について 述べる。

【0014】C:安価な強化成分である。0.10wt%未満 では、比較的低合金系であるために、フェライト変態を 抑えペイナイトの強度を挙げる効果が減少して髙強度が 得られなくなり、0.20wt%を超えると、スポット溶接 性、及び衝撃特性が劣化する。したがってその含有量は 0.10wt%以上0.20wt%以下とする。

【0015】Si:有力な強化成分であるが、0.20wt%を 超えると冷延性を阻害し、そのスケールのために表面性 状の劣化をもたらす。したがってその含有量の上限を0. 20vt %とする。

【0016】Mn:オーステナイト相を安定してフェライ ト変態を抑え、ペイナイト主体の組織とするとともに組 織を微細化し、強度、曲げ加工性、衝撃特性などを向上

ō

5WI %を超えて含有するとその効果が飽和し、コストア ップを招く、したがってその含有量は2.0wt %以上3.5w 1 %以下とする。

【0017】Cr:この発明において重要な成分の一つで ある。作用効果はMnと類似しており、オーステナイト相 の安定化のために添加される。そしてMnの作用効果を補 い、さらにその作用効果を向上する。特にMnより低温域 でのオーステナイト相の安定化に寄与すると考えられ る。この発明の目標とする5%から15%の残留オーステ ナイトを確保し、良好な加工性を得るためには、その含 有量は0.20wt%以上を必要とする。しかし1.00wt%を超 えて含有すると、熱延板が顕著に硬化し、冷間圧延に支 障をきたすこと、化成処理性が劣化すること、オーステ ナイト相の安定化傾向も飽和すること、及びコストアッ ブを招くことなどがある。したがってその含有量は0.20 wt%以上1.00wt%以下とする。

【0018】Ti: スラブの割れを回避するのに有効であ り、組織の均一化にも有効である。しかし、0.050wt % を超えて添加すると溶接性が劣化する。したがってその 含有量は0.050wt %以下とする。

【0019】Nb:この発明において重要な成分の一つで ある。組織を微細化するとともに均一化し、焼入れ性の 向上による高強度化に寄与する。0.005wl %未満ではそ の効果が不十分であり、0.050wt %を超えて添加しても その効果は飽和し、熱延、冷延が困難になる。したがっ てその含有量は0.005wt %以上0.050wt %以下とする。

【0020】B:この発明の重要な成分の一つである。 理由は必ずしも明白ではないが、Mn、Nbとの複合添加に より単独添加では決して得られない大きな強度上昇が得 られる。このような効果を得るためには0.0003wt %以上 30 を必要とする。しかし、0.0020wt%を超えて添加した場 合は、その効果が飽和するとともに、組織が組大化して 衝撃特性が劣化する。したがってその含有量は0.0003wt %以上0.0020m1%以下とする。

【0021】Al:鋼の脱酸成分として必要であるが、鋼 の清浄化、組織の細粒化効果もあわせ、0.02wt %未満で はその効果は不十分であり、0.100mt %を超えるとアル ミナクラスターの生成に起因する表面欠陥が顕著とな る。したがってその含有量は0.020wt %以上0.100wt % 以下とする。

【0022】P:偏折傾向が強く、特に高㎞鋼において は顕著となり、曲げ加工性、スポット溶接性の劣化をも たらす。これらの材質劣化を抑えるためには、その上限 を0.020wt %とする。なお、下限は特に限定するもので はないが、含有量は少ない方が材質上好ましく、反面含 有量を減少することはコストアップ要因であるので、実 用上はこれらを考慮して成分設計することがよい。

【0023】S: MnS として鋼中に存在し、その延伸さ れた形状から延性に対して極めて有客で、その程度は鋼 坂の強度の上昇と共に増大する。 $ext{TS100kg1/mg}$ ・以上の $ext{50}$ が、圧下率の増大は工程の阻害要因であるとともに、材

鋼では、その含有量は0.010wt%以下とする必要がある が、望ましくは0.003wt %以下とすることが好ましい。 なお、Pと同様、下限は特に限定するものではないが、 含有量は少ない方が材質上好ましく、反面含有量を減少 することはコストアップ要因となるので、実用上はこれ らを考慮して成分設計することがよい。

【0024】N:ある程度の含有は不可避であるが、オ ーステナイト相安定化成分であるので、特に除去すべき 成分ではない。しかし、0.0150wt%を超えると熱延板と しての強度が大きくなりすぎ、冷間圧延に支障をきた す。したがってその含有量の上限を0.0150wt %以下とす

【0025】つぎに鋼組織の限定理由について述べる。 この発明の目的とする曲げ加工性、衝撃特性を良くする ためには、残留オーステナイトを5%以上15%以下を含 む微細で均一なペイナイト組織とする必要がある。

【0026】この発明鋼を用いて適当な熱処理を行え ば、均一なペイナイト組織を得ることができるが、この ようにペイナイト組織のみの場合曲げ加工性はよいが、 衝撃特性は必ずしも充分ではない。これに対し、均一被 細なペイナイト組織に残留オーステナイトを含む組織と することにより衝撃特性も向上する。この原因は必ずし も明確でないが、脆性亀裂の伝播に対して、残留オース テナイトがそのマルテンサイト変態を通して抵抗となる ためと推定される。残留オーステナイトが5%未満では その効果は不十分であり、15%を超えると、実用上長期 的な寸法変化などの問題が生ずる。

【0027】つぎに、製造条件の限定理由について述べ る。熟延、冷延後の焼鈍時に、充分な量の固溶Nbを確保 し、目的とする微細なペイナイト組織とするために、ス ラブ加熱温度は1200℃以上とする。

【0028】仕上圧延温度は低すぎる場合、焼入性向上 成分であるNb、Bを固溶状態で確保することができず材 質の劣化を招く。この発明鋼においては、800 ℃を境に して材質の劣化が顕著となるので下限値を800 ℃とす る。なお、上限値は特に限定するものではないが、熱延 工程の困難さが増大するので、950 でとすることが望ま

【0029】熱延後のコイル巻取り温度は、材質に及ぼ す影響は比較的小さいが、750 ℃を超える場合、スケー ルの厚みが顕著に増加し、酸洗性を低下させるばかりで なく、表面性状の劣化をも引き起こし、プレス成型後の 部品の表面欠陥にもつながる。一方550 ℃未満の場合、 熱延板が異常に硬化し、冷延性を大きく阻害する。した がってその温度の上限を750℃、下限を550℃とする。

【0030】熱延した後、酸洗に続く冷延における冷間 圧下率は、組織を細かくして微細かつ均一なペイナイト 組織を得るため、下限は40%を必要とする。なお、この 圧下率が高すぎることによる材質上のデメリットはない

質向上のメリットも少ない。したがって、実用上はこれらのことを加味して設定することがよい。

【0031】冷延後の焼鈍における加熱速度は、早くすることにより所期組織を均一化することができるので、高強度化することによる曲げ加工性、衝撃特性の劣化を防止するために有利である。この効果を得るために加熱速度の下限を5℃/秒とする。なお、上限については特に限定しないが、早くすることによる材質の劣化はない。

【0032】この焼鈍の均熱温度は重要な因子の一つで 10 あり、この温度が低すぎると組織が著しく不均一となり、曲げ加工性及び衝撃特性が顕著に劣化する。また、この温度が高すぎると均熱中に局部的に組織が粗大化し 不均一な組織となり、やはり曲げ加工性及び衝撃特性が 劣化する。したがって均熱温度の下限を800 ℃、好まし くは850 ℃とし、上限を900 ℃とする。

【0033】上記温度における均熱時間は組織を均一化し、材質の安定化をはかるために20秒以上の均熱を必要とする。しかしながら、過剰に長い均熱時間では、局部的な組織の粗大化などにより曲げ加工性などが劣化する 20ことのほか、操業上も生産性を阻害するなどの問題が生ずることから上限は300 秒がよい。したがって、均熱時間は20秒以上300 秒以下とする。

【0034】焼鈍後は急冷する。その冷却速度は、冷却中のフェライト変態を抑制して均一な、残留オーステナイトを含むペイナイト組織とし、良好な強度特性を得た*

*ため20℃/秒以上で急冷する必要がある。上限は特に限定しないが、早くすることによって材質への影響はない。

【0035】この急冷の停止温度は、マルテンサイト変態を抑えること、ペイナイト(マルテンサイトを含む)の自己焼戻し効果を一部利用することなどによる曲げ加工性、衝撃特性の劣化を防止するため、300 ℃以上とする必要がある。一方、450 ℃を超える場合充分な高強度を得ることができない。したがって、急冷停止温度は450 ℃以下300 ℃以上する。

【0036】急冷停止後は徐冷するが、上記したマルテンサイト変態の抑制効果、自己焼戻し効果により、曲げ加工性、衝撃特性の劣化を防止するため、200 ℃以下までを、5℃/秒以下の速度で徐冷するものとする。なお、徐冷はより低温まで行ってもよいが、その限度は設備上の制約で決定されるもので200 ℃以下であれば材質に及ぼす悪影響はない。

[0037]

【実施例】実施例1

表1及び表2に示す成分組成の、この発明の適合鋼5種類(表1)及び比較網12種類(表2)を溶製して鋼スラブとし、これらの鋼スラブを素材として、表3に示す熱延、冷延条件で板厚0.8mmの冷延鋼板とし、表4に示す焼鈍条件で焼鈍した。

/_+0/1

[0038]

【表1】

表1

											(1)	1767
#Tio	С	Si	Жn	Cr	Ti	Nb	В	Al	Р	S	N	第考
1	Q 15	0. 10	2,5	0, 30	-	0, 010	0,0010	0. 040	0, 005	0.001	Ø 0010	港合綱
2	Q 10	0.05	3. 1	0. 50	-	Q 015	C. 0015	0. 020	0.005	0.003	0. 0020	"
3	Q. 15	0. 15	2, 1	0, 20	-	0.030	0, 0020	0.060	0.015	0.008	0,0090	<i>M</i>
4	Q. 18	0.05	27	0.80	_	0 015	0, 0015	0.030	0. 010	0.005	0. 0100	"
5	0, 15	Q 10	2.8	0, 20	Q 015	0, 020	0, 0015	0. 040	0.010	0.001	0, 0035	-

[0039]

40 【表2】

10

				· -		·					(wt %)	
₩No.	C	Si	Mn	Cr	47.	. B	; Al	P	S	1 1	備書	_ ţ
6	0.05	0.05	20	0. 25	0.015	0. 0015	0. 040	0, 005	0: 003	0.0040	比較學	-
. 7	Q 15	0.10	; 1.8	0. 30	0.020	0.0015	0. 045	0.008	0.005	0. 0040	,,	
: 8	2 15	0, 35	2,5	0.30	C. 020	0. 0015	0.050	0.003	0, 005	0.0020	19	
9	2 15	0, 10	2,5	0.30	ር 010	0.0010	0.039	0.004	0.015	0.0040	"	
[!] 10	Q. 15	0. 15	2,5	0, 30	0, 015	0. 0010	0, 040	0. 030	0.003	0.0040	.,	ı
, 11	0. 15	0, 05	2.5	0. 20	0,015	0.0010	0.040	0,004	0.002	0. 0200		
12	0. 15	O 10	2.5	a oi	0.010	Q. 0010	0. 041	0.005	0.001	0.0041	#	İ
13	0. 15	Q 10	2.5	1.50	0.010	0. 0010	0. 035	0, 005	0.001	0.0040	W	١
14	Q 15	0.07	2.6	0. 25	0.001	0.0020	0. 030	0. 005	0. 002	0.0020	"	
15	0, 15	0.10	2.4	0,30	0, 100	0, 0020	0. 045	0, 010	0, 002	Q. 0020	"	
16	0, 16	0. 10	3,0	0, 50	0.010	0. copi	0.040	0, 010	0.004	0. 0030	"	
17	0.17	Q 10	2.7	0. 50	0.015	0. 0030	0. 070	0. 010	0.002	0.0040	"	1

注:*印はこの発明の成分組成を外れるもの

[0040]

【表3】

	禁 延 集 华		冷线条件
スラブ加州道度 (C)	(C)	製取り温度(で)	冷間牙子學
220 ~ 1300	850 ± 50	550 ~ 600	50

[0041]

【表4】

77.00 A ST	(S)	均期 共開 (8)	(化)	急冷停止過度 (C)	(代学。)	學治終了温度 (C)
8	840 ~850	20 ~ 40	25	400 ~ 350	3	150

【0042】焼鈍をおえたこれらの鋼板について、引張特性、組織、曲げ加工性、衝撃特性を調査した。引張特性は、JIS5号試験片を用いて通常の手順で行い、曲げ加工性は、曲げ半径を変えて180°曲げを行い、割れ発生の臨界曲げ半径で評価し、衝撃特性は、絞り比1.8でコニカルカップに絞りぬき、-40℃でその頂部に10

kgのおもりを80cmの高さから落下衝突させて割れの発生の有無で判定した。

【0043】これらの調査結果を表5 (適合例) 及び表6 (比較例) に示す。

[0044]

【表る】

11

	40	3	引張特性				SICHOALIA				
新	160	YS (kgf/m²)	TS (logf:/mm²)	YR (¾)	EL (X)	西界曲げ 半径 (ma)	一+3°C	粗	株	その他	**
1	1	. 95	120	79	: 13	0.8	BH	ベイナ 残留 7	₹ F. (10%)		
2	2	100	141	71	12	0.8	飶	ベイナ 残留 7	₹ }. (12%)		合
3	3	80	104	π	17	0.8	朗	ベイナ	イト (6%)		i
4	4	103	l 38	75	13	0.8	良好	ベイナ 残留 7	1 F. (14%)		Ħ
5	5	93	120	78	15	0.8	飶	ベイナ 残留 7	イト、 (10%)		!

[0045]

【表 6】

	_!	5	1 35 40	性		THE STATE OF	哲學特性		}	600
於	No.	YS (kgf/mm²)	TS (kgf/mm²)	YR (%)	E 1 (%)	半ほ(1000)	<u> </u>	組織	その他	*
6	6	51	75	6.8	27	性者	esf Tea	ダゼトプライト 映音 7 (<1%)	į	
7	7	68	80	76	18	0.8	良好	설설수 (신청)		İ
8	8	110	122	90	14	1.5	色纤	ペイナイト 残留ァ (10%)	华度如四	HŁ.
9	8	95	119	80	12	2.4	不良	発音すべたる)		
10	10	94	118	80	15	1. 8	不良	ベイナイト 残留 (8%)		較
11	11	96	121	79	18	0.8	邸好	ベイナイト 美智ヶ (12%)	冷证规则	
12	12	90	104	87	14	0, 8	典纤	설설수가전상이	ļ	Ø
13	13	110	120	92	5	2, 4	不良	びけつけい べけけ 発電で (<1%)		İ
14	14	96	120	80	10	1. 9	不良	ペイナイト 残留す (10%)		
15	15	115	120	96	10	1. B	良好	ペイナイト 残留す (<1%)	冷延短難	
18	16	90	110	82	12	0.8	不良	公分トフュライト 発音 7 (5%)		
17	17	105	138	. 78	12	1. 5	不良	ながたマルチンまくと	冷促恶罪	.!

【0046】表6から明らかなように、比較例は、それ ぞれ、引張特性、曲げ加工性、衝撃特性などで劣ってい たり、製造工程における冷延が困難であったり、また、 後工程の化成処理不良を起こしたりしている。

【0047】これに対し、表5のこの発明の適合例は、 十分高い引張強度(TS)を有しながら良好な延性(EL)、曲 40 熱延、冷延及び焼鈍条件で板厚1.4 mmの鋼板を製造し、 げ加工性、さらに優れた衝撃特性を有している。

【0048】特に衝撃特性は、衝撃吸収能を要求される ドアーインパクトピームや、パンパー等に用いられるこ とを考えれば極めて重要な特性であることを考えると、 適合例は、これらの用途に用いて好適であるといえる。 * *【0049】なお、YRは連続焼鈍温度と関係があり、焼 鈍温度を高くするとYRも高くなることが判明した。

【0050】 実施例2

この発明に適合する表7に示す成分組成の鋼を溶製して 鋼スラブとし、この鋼スラブを素材として表8に示す各 実施例1と同じ条件で引張特性、曲げ加工性を調査し た。

[0051]

【表7】

C	Sì	*	Ĉ	M	8	P	S	A1	3
Q. 12	Q. 10	3.0	L25	0.020	a 0007	0 .010	0.007	0.040	g. 0040

【表8】

[0052]

村村	*	延 条	件	冷延条件		埝	æ	35	Æ		 ;
.%		轗	製り	(%)	加熱 過度 (℃/5)		连禁 等間 (S)	急(全) (七/s)	鑑	鉄油 (で)	備考
1	1250	950	600	50	7	850	50 :	30	100	5	通合例
2	1100	75Ô	570	55	8 :	840	30	25	430	3	比較例
3	1250	840	300	50	10	850	40	27	380	2	
4	1250	830	600	30	7	850	30 !	30	350	3	
5	1250	850	580	45	3	820	25 ¹	27	350	3	~
8	1250	830	580	50	10	750	25	29	400	5	•
7	1250	830	580	50	10	840	Š,	30	380 i	3	,
8	1200	900	550	45	10	820	25	iô	400	3	
9	1220	850	560	45	7	849	25	25	500	3	
10	1250	870	600	45	7	840	30	25	150	3	
11	1250	ണ	550	45	9	840	30	25	400	:Ô	

注: *甲はこの発明の製造条件を外れるもの。

【0053】この結果は表9に示す通りで、この発明の 製造条件の適合例は、目的とする引張特性、良好な曲げ 加工性が得られているが、この発明の製造条件を外れた 20 比較例は、それぞれ、引張特性、曲げ加工性が劣った*

*り、製造上の問題を有したりしている。 [0054] 【表9】

ななな	(kgt/mat)	TS (kg!/m')	YR	EL	その他	
.¥o	1361/ - /		(%)	(%)	₹ 07 ma	第 考
1	97	125 ,	78	17		進合例
2	90	105	88	17	無延の負荷大	比較的
3	90	120	75	19	無廷コイル形状不良、 冷延困難	~
4	90	120	75	· 5	延性劣化	~
5	70	110	64	7	延性劣化	•
8	70	128	55	3	延生劣化 曲疗加工主劣化	
7	85	105	18	12	コイルの長手方向の材質変動大	
8	80	95	B4	15	TS不足	**
9 ;	85	96	87	15	TS不足	*
10	90	t40	64	3	コイル形状不良、延生劣化	•
11	120	125	96	8	SYR	-

【0055】なお、この発明による鋼板を用いて実部品 後の形状精度が良好で、さらにはプレス型の損傷が小さ いなどの利点が確認された。

[0056]

【発明の効果】この発明は、成分組成を適正化するこ

と、及び熱延、冷延、焼鈍条件を適正化することにより (バンパー)への試用を試みたが、YSが低いため、成型 40 TS $100 kg f/m^2$ 以上、降伏比80%以下の曲げ加工性、衝 撃特性の良好な超高張力冷延鋼板を得るもので、この発 明によって得られる鋼板は、高強度で衝撃吸収能を必要 とするドアーインパクトピーム、バンパーなどの自動車 用強度部材に用いて好適である。