# Digital Signatures and Primality Testing

# Schedule for today

#### Recap

#### **Digital Signatures**

- 1. The RSA-FDH signature scheme
- 2. Proving RSA-FDH secure

#### **Primality Testing**

- 1. Prime numbers and the prime number theorem
- 2. Trial division
- 3. The Fermat test and Carmichael numbers
- 4. Miller-Rabin test
- 5. The AKS test

# What we did last time



## Question 1

RSA-OAEP only allows us to encrypt a message m substantially shorter than  $\log_2 N$ . Why is this unavoidable if we want IND-CPA security and correctness?

## Question 2

In the EUF-CMA security game, what if the attacker can come up with a fresh  $\sigma'$  on a message m that it has not seen before?

## Question 3

Could an attack where an attacker finds a new  $\sigma'$  for a previously queried m work for RSA-FDH?

# Digital Signatures using RSA: RSA-FDH

Signing key: secret *d* 

Verification key N, e

Cryptographic hash  $H: \{0,1\}^* \to Z_N^*$ 





Verify  $m, \sigma$ :

Check that  $H(m) = \sigma^e \mod N$ 

Any RSA instance for encryption can also be used for signing!

## **EUF-CMA** security

Recap from Problem Sheet 5: the Random Oracle Model



## Looking at EUF-CMA



## What we prove

Assuming *H* is a random oracle. Then given the RSA problem is hard (Problem Sheet 6), RSA-FDH is EUF-CMA secure.

RSA Challenger

 $(pk, sk) \leftarrow KG()$  $c \in Z_N^*$ 

Win if Enc(m, pk) = c

m



# Proof

Blackboard ©

# Primality testing

# How many prime numbers are there?

Let  $\pi(x) = |\{p \text{ prime } | p < x\}. \text{ Then } \pi(x) \approx x/\ln(x)$ 

| $\boldsymbol{x}$ | x/ln(x) | $\pi(x)$ |
|------------------|---------|----------|
| $10^3$           | 145     | 168      |
| 10 <sup>4</sup>  | 1,086   | 1,229    |
| 10 <sup>5</sup>  | 8,686   | 9,592    |
| 10 <sup>6</sup>  | 72,382  | 78,498   |
| 107              | 620,420 | 664,579  |

# How many prime numbers are there?

Let  $\pi(x) = |\{p \text{ prime } | p \le x\}$ . Then  $\pi(x) \approx x/\ln(x)$ 

Assuming the primes are equally distributed in interval,  $Pr[p \ prime] \approx 1/\ln p$ 

# How to check that p is prime?

Idea 1: p prime iff only divisible by 1 and p

Trial-division by all numbers  $k \in \{1, ..., \sqrt{p}\}$ 

Why is  $\sqrt{p}$  sufficient?

#### Runtime estimate

- 1. Assume trial division by k each is one unit of time
- 2.  $\sqrt{2^{1024}} = 2^{512}$  units of time needed
- 3. To break AES-128, we only need  $2^{128}$  operations...

## But!

Trial division is efficient for small numbers and to eradicate non-prime candidates early!

#### Any random number is divisible

- 1. by 2 with probability  $\frac{1}{2}$
- 2. by 3 with probability 1/3
- 3. by 5 with probability 1/5
- 4. ...

A random number is divisible by 2, 3 or 5 with probability 0.73

Use to sieve before using "the big guns"

## Fermat's Test: idea

#### Fermat's little theorem

For any prime p,

$$a^{p-1} = 1 \bmod p$$

More generally:  $a^{\phi(n)} = 1 \mod n$  for  $a \in Z_N^*$ 

Hope: if n not prime, then  $\phi(n) \neq n-1$  and very often  $a^{n-1} \neq 1 \bmod n$ 

## Fermat's Test

#### The algorithm for input n

- 1. For  $i \in \{1, ..., k\}$ :
  - 1. Pick  $a \in \{2, ..., n-1\}$  uniformly at random
  - 2. Compute  $b = a^{n-1} \mod n$
  - 3. If  $b \neq 1$  then output "Not prime"
- 2. Output "Probably prime"

How to choose k?

What test shows: if  $a^{n-1} \neq 1 \mod n$  then n not prime

What it doesn't show: *n* is prime

# Example

```
n = 17:
```

- $3^{16} = 43046721 = 1 \mod 17$
- $2^{16} = 65536 = 1 \mod 17$

n = 16:

•  $2^{15} = 32768 = 0 \mod 16$ 

# More examples

```
n = 561 = 3 \cdot 11 \cdot 17:
```

- $5^{560} = 1 \mod 561$
- $17^{560} = 1 \mod 561$
- $235^{560} = 1 \mod 561$

## Carmichael Numbers

A composite n such that  $\forall a \in \mathbb{Z}_n^*$ :  $a^{n-1} = 1 \mod n$ 

#### Examples:

- 561
- 1105
- 1729
- 2465
- •

Theorem (Erdos): There are infinitely many Carmichael numbers 😊

# Fixing Fermat's Test

Testing that  $a^{n-1} = 1 \mod n$  is necessary, but not sufficient

Additional idea: roots of unity

$$x^{2} - 1 = 0 \mod n \leftrightarrow (x + 1)(x - 1) = 0 \mod n$$

If n is prime then  $\pm 1$  are only roots of  $1 \mod n$ 

# Fixing Fermat's Test

If n is odd, then  $n-1=2^sd$  where d is odd

Consider  $a^d \mod n$ ,  $a^{2d} \mod n$ , ...,  $a^{2^s d} \mod n$  for  $a \in \mathbb{Z}_n^*$ , then

- either  $a^d = 1 \mod n$
- or  $a^{2^i d} = -1 \mod n$

i.e. it cannot be that  $a^{2^jd} \notin \{-1,1\} \mod n$  but  $a^{2^{j+1}d} = 1 \mod n$ 

## Miller-Rabin Test

#### The algorithm for input n

- 1. Let  $n-1=2^sd$  where d is odd
- 2. For  $i \in \{1, ..., k\}$ :
  - 1. Pick  $a \in \{2, ..., n-1\}$  uniformly at random
  - 2. Compute  $b = a^d \mod n$
  - 3. If  $b \notin \{-1,1\}$ 
    - 1. Set  $i \leftarrow 1$
    - 2. While i < s and  $b \neq -1$ 
      - 1.  $b \leftarrow b^2 \mod n$
      - 2. If b = 1 return "Composite"
      - 3.  $i \leftarrow i + 1$
    - 3. If  $b \neq -1$  return "Composite"
- 3. Output "Probably prime"

## Can we fool Miller-Rabin?

**Short answer: No!** 

### Less short answer

For every composite n there exist more than 2 roots of unity, which the test may choose!

### Full answer

If n is composite, then  $\geq 3/4$  of all a will make the test detect a composite! (e.g. <a href="https://shoup.net/ntb/ntb-v2.pdf">https://shoup.net/ntb/ntb-v2.pdf</a> Theorem 10.3)

# Certificates of primality

Trial division: none

Fermat: well, Carmichael numbers...

Miller-Rabin: if  $a_i$  truly random, then yes\*!

\*repeating the test k times gives failure  $\frac{1}{2^{2k}}$ 

# Deterministic Poly-Time test of Primality

Long-standing open question: can we get exact primality test in polynomial time?

## Agrawal, Kayal, Saxena 2002: YES!

Their approach:  $n \ge 2$  is prime iff  $(X - a)^n = X^n - a \mod n$  for some integer a coprime to n

Their algorithm is accurate, but in practice slower than Miller-Rabin.

# Summary

1. RSA-FDH is EUF-CMA secure

2. The Fermat primality test can be fooled

3. Miller-Rabin is more reliable