Measure Theory

Felix Chen

Contents

1	Mea	asure spaces
	1.1	The definition of measure and its properties
	1.2	Outer measure
	1.3	Measure extension

§1 Measure spaces

§1.1 The definition of measure and its properties

The concept of "measure" is frequently used in our everyday life: length, area, weight and even prophability. They all share a similarly: the measure of a whole is equal to the sum of the measure of each part.

In the language of mathematics, let $\mathscr E$ be a collection of sets, and there's a function $\mu:\mathscr E\to [0,\infty]$ which stands for the measure.

countable additivity: Let $A_1, A_2, \dots \in \mathscr{E}$ be pairwise disjoint sets, and $\sum_{i=1}^{\infty} A_i \in \mathscr{E}$, then

$$\mu\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition 1.1 (Measure). Suppose $\emptyset \in \mathscr{E}$, if a non-negative function

$$\mu:\mathscr{E}\to[0,\infty]$$

satisfies countable additivity, and $\mu(\emptyset) = 0$, then we say μ is a **measure** on \mathscr{E} .

If $\mu(A) < \infty$ for all $A \in \mathscr{E}$, we say μ is finite. (In practice we'll just simplify this to $\mu(X) < \infty$) If $\exists A_1, A_2, \dots \in \mathscr{E}$ are pairwise disjoint sets, s.t.

$$X = \sum_{n=1}^{\infty} A_n, \quad \mu(A_n) < \infty, \forall n.$$

Then we say μ is σ -finite.

There's a weaker version of countable additivity, that is **finite additivity**: If $A_1, \ldots, A_n \in \mathcal{E}$, pairwise disjoint, and $\sum A_i \in \mathcal{E}$,

$$\mu\left(\sum_{i=1}^{n} A_i\right) = \sum_{1=i}^{n} \mu(A_i),$$

then we say μ is finite additive.

Subtractivity: $\mu(B-A) = \mu(B) - \mu(A)$, where $A, B, B-A \in \mathcal{E}$, and $\mu(A) < \infty$.

Proposition 1.2

Measure satisfies finite additivity and subtractivity.

Example 1.3 (Counting measure)

Let $\mu(A) = \#A, \forall A \in \mathscr{T}_X$. Then μ is a measure.

Example 1.4 (Point measure)

Let (X, \mathcal{F}) be a measurable space, define $\delta_x(A) = \mathbf{I}_A(x)$. Then we can define a measure

$$\mu(A) = \sum_{i=1}^{n} p_i \delta_{x_i}(A)$$

Example 1.5 (Length)

Let $\mathscr{E} = \mathscr{Q}_{\mathbb{R}} = \{(a, b] : a, b \in \mathbb{R}\}, a \leq b$, then $\mu((a, b]) = b - a$ gives a measure.

Another classical example is the so-called "coin space":

Let $X = \{x = (x_1, x_2, \dots) : x_i \in [0, 1, \forall n]\}.$

$$C_{i_1,\ldots,i_n} := \{x : x_1 = i_1,\ldots,x_n = i_n\},\$$

Let

$$\mathcal{Q} = \{\emptyset, X\} \cup \{C_{i_1, \dots, i_n} : n \in \mathbb{N}, i_1, \dots, i_n \in \{0, 1\}\}$$

be a semi-ring. Then $\mu(C_{i_1,\ldots,i_n}) = \frac{1}{2^n}$ gives a measure.

We need to check the countable additivity, but actually this can be realized as a compact space and the C's are open sets, so in fact we only need to check finite additivity. (Or we can prove this explicitly)

Another more complex example: finite markov chain.

Proposition 1.6

Let $X = \mathbb{R}$, $\mathscr{E} = \mathscr{R}_{\mathbb{R}}$. $F : \mathbb{R} \to \mathbb{R}$ is non-decreasing, right continuous, then $\mu((a,b]) = F(b) - F(a)$ gives a measure on \mathscr{E} .

Proof. First $\mu(\emptyset) = 0$, suppose

$$\sum_{i=1}^{\infty} (a_i, b_i] = (a, b].$$

Since every partial sum has measure at most $F(b_{n+1}) - F(a_1) < F(b) - F(a)$,

$$\implies \sum_{i=1}^n \mu((a_i, b_i]) \le \mu((a, b]).$$

For the reversed inequality, first we prove that for intervals

$$\bigcup_{i=1}^{n} (c_i, d_i] \supseteq (a, b] \implies \sum_{i=1}^{n} \mu((c_i, d_i]) \ge \mu((a, b]).$$

This can be easily proved by induction, WLOG $b_{n+1} = \max_i b_i$.

Our idea is to extend each $(a_i, b_i]$ a little bit to apply above inequality.

For all $\varepsilon > 0$, take $\delta_i > 0$ s.t.

$$\tilde{b}_i := b_i + \delta_i, \quad F(\tilde{b}_i) - F(b_i) \le \frac{\varepsilon}{2}.$$

Hence for all $\delta > 0$, $\bigcup_{i=1}^{\infty} (a_i, \tilde{b}_i) \supseteq [a+\delta, b]$, by compactness exists a finite open cover.

$$F(b) - F(a+\delta) \le \sum_{i=1}^{n} \left(F(\tilde{b}_i) - F(a_i) \right) \le \varepsilon + \sum_{i=1}^{\infty} (F(b) - F(a)).$$

Let $\varepsilon, \delta \to 0$ to conclude.

Definition 1.7 (Measure space). A triple (X, \mathcal{F}, μ) is called a **measure space**, if (X, \mathcal{F}) is a measurable space and μ is a measure on \mathcal{F} .

If $N \in \mathcal{F}$ s.t. $\mu(N) = 0$, we say N is a **null set**.

A probability space is a measure space (X, \mathcal{F}, P) with P(X) = 1.

Example 1.8 (Discrete measure)

If X is countable, $p: X \to [0, \infty], \mu(A) := \sum_{x \in A} p(x)$ is a measure.

There are other important properties which we think a sensible measure would have:

- Monotonicity: If $A, B \in \mathcal{E}$, $A \subset B$, then $\mu(A) \leq \mu(B)$.
- Countable subadditivity: $A_1, A_2, \dots \in \mathcal{E}$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mu(A_i).$$

• Lower continuity: $A_1, A_2, \dots \in \mathscr{E}$ and $A_n \uparrow A \in \mathscr{E}$.

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

• Similarly there's upper continuity (which requires $\mu(A_1) < \infty$).

Theorem 1.9

The measure on a semi-ring has all the above properties.

Proof. In fact,

- Finite additivity \implies monotonicity, subtractivity;
- Countable additivity \implies subadditivity, upper and lower continuity.

Here we only prove the subadditivity, since others are trivial. Let $A_1, A_2, \dots \in \mathcal{Q}$, and $\bigcup_{i=1}^{\infty} A_i \in \mathcal{Q}$.

$$B_n := A_n \setminus \bigcup_{i=1}^{n-1} A_i \in r(\mathcal{Q}) \implies B_n = \sum_{k=1}^{k_n} C_{n,k}, \quad C_{n,k} \in \mathcal{Q}.$$

$$A_n \backslash B_n \in r(\mathcal{Q}) \implies A_n \backslash B_n = \sum_{l=1}^{l_n} D_{n,l}, \quad D_{n,l} \in \mathcal{Q}.$$

Thus by countable additivity,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{n=1}^{\infty} \mu(B_n) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{k_n} \mu(C_{n,k})\right)$$
$$\leq \sum_{n=1}^{\infty} \left(\sum_{k=1}^{k_n} \mu(C_{n,k}) + \sum_{l=1}^{l_n} \mu(D_{n,l})\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Using similar technique we can deduce the upper and lower continuity.

Theorem 1.10

Let μ be a set function on a ring with finite additivity, then $1 \iff 2 \iff 3 \implies 4 \implies 5$.

- μ is countablely additive;
- μ is countablely subadditive;
- μ is lower continuous;
- μ is upper continuous;
- μ is continuous at \emptyset .

§1.2 Outer measure

Once we construct a measure on a semi-ring, we want to extend it to a σ -algebra. Since we can't directly do this, we shall relax some of our restrictions, say reduce countable additivity to subadditivity.

Definition 1.11 (Outer measure). Let $\tau: \mathcal{T} \to [0, \infty]$ satisfying:

- $\tau(\emptyset) = 0;$
- If $A \subset B \subset X$, then $\tau(A) \leq \tau(B)$;
- (Countable subadditivity) $\forall A_1, A_2, \dots \in \mathcal{T}$, we have

$$\tau\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\tau(A_n).$$

We call τ an **outer measure** on X.

It's easier to extend a measure on semi-ring to an outer measure:

Theorem 1.12

Let μ be a non-negative set function on a collection \mathscr{E} , where $\emptyset \in \mathscr{E}$ and $\mu(\emptyset) = 0$. Let

$$\tau(A) := \inf \left\{ \sum_{n=1}^{\infty} \mu(B_n) : B_n \in \mathscr{E}, \bigcup_{n=1}^{\infty} B_n \supseteq A \right\}, \quad \forall A \in \mathscr{T}.$$

By convention, $\inf \emptyset = \infty$. (μ need not be a measure!)

Then τ is called the outer measure generated by μ .

Proof. Clearly $\tau(\emptyset) = 0$, and $\tau(A) \leq \tau(B)$ for $A \subset B$.

$$\bigcup_{n=1}^{\infty} B_n \supseteq B \implies \bigcup_{n=1}^{\infty} B_n \supseteq A.$$

For all $A_1, A_2, \dots \in \mathcal{T}$, WLOG $\tau(A_n) < \infty$. Take $B_{n,k}$ s.t. $\bigcup_{k=1}^{\infty} B_{n,k} \supseteq A_n$, such that

$$\sum_{k=1}^{\infty} \mu(B_{n,k}) < \tau(A_n) + \frac{\varepsilon}{2^n}.$$

Therefore

$$\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} B_{n,k} \supseteq A_n,$$

$$\tau\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu(B_{n,k}) + \varepsilon \le \sum_{n=1}^{\infty} \tau(A_n) + \varepsilon.$$

Example 1.13

Let $\mathscr{E} = \{X,\emptyset\}, \ \mu(X) = 1, \ \mu(\emptyset) = 0.$ Then $\tau(A) = 1, \ \forall A \neq \emptyset$.

Example 1.14

Let $X = \{a, b, c\}$, $\mathscr{E} = \{\emptyset, \{a\}, \{a, b\}, \{c\}\}\}$. $\mu(A) = \#A$ for $A \in \mathscr{E}$.

Here something strange happens: $\tau(\{b\}) = 2$ instead of 1, and $\tau(\{b,c\}) = 3$ instead of 2.

In the above example, we found the set $\{b\}$ somehow behaves badly: if we divide $\{a,b\}$ to $\{a\} + \{b\}$, the outer measure is not the sum of two smaller measure.

Hence we want to get rid of this kind of inconsistency to get a proper measure:

Definition 1.15 (Measurable sets). Let τ be an outer measure, if a set A satisfies Caratheodory condition:

$$\tau(D) = \tau(D \cap A) + \tau(D \cap A^c), \quad \forall D \in \mathscr{T},$$

we say A is **measurable**.

Remark 1.16 — Inorder to prove A measurable, we only need to check

$$\tau(D) \ge \tau(D \cap A) + \tau(D \cap A^c), \quad \forall D \in \mathscr{T}.$$

Let \mathscr{F}_{τ} be the collection of all the τ measurable sets,

Definition 1.17 (Complete measure space). Let (X, \mathcal{F}, μ) be a measure space, if for all null set A, and $\forall B \subset A, B \in \mathcal{F} \implies \mu(B) = 0$, we say (X, \mathcal{F}, μ) is **complete**.

Theorem 1.18 (Caratheodory's theorem)

Let τ be an outer measure, then $\mathscr{F} := \mathscr{F}_{\tau}$ is a σ -algebra, and (X, \mathscr{F}, τ) is a complete measure space.

Proof. First we prove \mathscr{F} is an algebra:

Note $\emptyset \in \mathscr{F}$, and \mathscr{F} is closed under completements.

For measurable sets A_1, A_2 ,

$$\tau(D) = \tau(D \cap A_1) + \tau(D \cap A_1^c) = \tau(D \cap A_1 \cap A_2) + \tau(D \cap (A_1) \cap A_2^c) + \tau(D \cap A_1^c) = \tau(D \cap (A_1 \cap A_2)) + \tau(D \cap (A_1 \cap A_2)^c).$$

So $A_1 \cap A_2$ is measurable.

Secondly, we prove \mathscr{F} is a σ -algebra.

Let $A_1, A_2, \dots \in \mathscr{F}$,

$$B_n := A_n \setminus \bigcup_{i=1}^{n-1} A_i \in \mathscr{F},$$

Then B_i pairwise disjoint and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$. Let $B_f = \bigcup_{i=1}^{\infty} B_i$.

It's sufficient to prove

$$\tau(D) \ge \tau(D \cap B_f) + \tau(D \cap B_f^c).$$

Let $D_n = \sum_{i=1}^n B_i \cap D$, $D_f = D \cap B_f$, $D_\infty = D \setminus D_f$.

Since B_i are measurable,

$$\tau(D) = \tau(D_n) + \tau(D \setminus D_n) \ge \tau(D_n) + \tau(D_\infty) = \sum_{i=1}^n \tau(D \cap B_i) + \tau(D_\infty).$$

Now we take $n \to \infty$,

$$\tau(D) \ge \sum_{i=1}^{\infty} \tau(D \cap B_i) + \tau(D_{\infty}) \ge \tau \left(D \cap \sum_{i=1}^{\infty} B_i\right) + \tau(D_{\infty}).$$

Where the last step follows from countable subadditivity.

This implies B_f measurable $\implies \mathscr{F}$ is a σ -algebra.

Next we prove $\tau | \mathscr{F}$ is a measure: Just let $D = \sum_{i=1}^{\infty} B_i$ in the previous equation.

Last we prove (X, \mathcal{F}, τ) is complete:

If
$$\tau(A) = 0$$
, $\tau(D) \ge \tau(D \cap A^c) = \tau(D \cap A) + \tau(D \cap A^c)$. Thus $A \in \mathscr{F}$.

§1.3 Measure extension

Definition 1.19 (Measure extension). Let μ , ν be measures on \mathscr{E} and $\overline{\mathscr{E}}$, and $\mathscr{E} \subset \overline{\mathscr{E}}$. If

$$\nu(A) = \mu(A), \quad \forall A \in \mathscr{E},$$

we say ν is a extension of μ on $\overline{\mathscr{E}}$.

If we start from a measure μ on \mathcal{E} , ideally, μ can generate an outer measure τ , and we can take \mathscr{F}_{τ} to construct a measure space.

However, things could go wrong:

Example 1.20

Let $X = \{a, b, c\}, \mathcal{E} = \{\emptyset, \{a, b\}, \{b, c\}, X\}$ with

$$\mu(\emptyset) = 0, \mu(\{a, b\}) = 1, \mu(\{b, c\}) = 1, \mu(X) = 2.$$

Then μ is a measure on \mathcal{E} , and the outer measure

$$\tau(\emptyset) = 0.$$

Observe that $\mathscr{F}_{\tau} = \{\emptyset, X\}$, so in this case $\tau|_{\mathscr{F}}$ is the trivial measure.

Example 1.21

Let $X = \mathbb{R}$, $\mathscr{E} = \{(a, b] : a < b, a, b \in \mathbb{R}\}$. Let $\mu(\emptyset) = 0$, and $\mu(A) = \infty$ for $A \neq \emptyset$.

Then μ can be extend to the Borel σ -algebra on \mathbb{R} with $\mu_{\alpha} = \sum_{q \in \mathbb{Q}} \alpha \delta_q$, $\forall \alpha \geq 0$. So the extension is not unique.

Therefore in order to get a "proper" extension, we must put some requirements on both the starting collection and the set function μ .

Proposition 1.22

Let \mathscr{P} be a π system. If two measures μ, ν on $\sigma(\mathscr{P})$ satisfying

$$\mu|_{\mathscr{P}} = \nu|_{\mathscr{P}}, \quad \mu|_{\mathscr{P}} \text{ is } \sigma\text{-finite},$$

Then $\mu = \nu$.

Proof. Let $A_1, A_2, \dots \in \mathscr{P}$ s.t. $X = \sum_{n=1}^{\infty} A_n$ and $\mu(A_n) < \infty$.

Fix n, let $B = A_n$, we want to prove that

$$\mu(B \cap A) = \nu(B \cap A), \quad \forall A \in \sigma(\mathscr{P}).$$

Let $B \in \mathscr{P}$ with $\mu(B) < \infty$,

$$\mathscr{L}:=\{A\in\sigma(\mathscr{P}):\mu(A\cap B)=\nu(A\cap B)\}.$$

We'll prove \mathcal{L} is a λ system, so that $\mathcal{L} \supseteq \sigma(\mathscr{P})$.

Suppose $A_1, A_2 \in \mathcal{L}$ and $A_1 \supseteq A_2$, by $\mu(B) < \infty$,

$$\mu((A_1 - A_2)B) = \mu(A_1B) - \mu(A_2B) = \nu(A_1B - A_2B) = \nu((A_1 - A_2)B).$$

So $A_1 - A_2 \in \mathcal{L}$.

Let $A_1, A_2, \dots \in \mathcal{L}$ and $A_n \uparrow A$, then

$$\mu(AB) = \lim_{n \to \infty} \mu(A_n B) = \lim_{n \to \infty} \nu(A_n B) = \nu(AB).$$

Which implies $A \in \mathcal{L}$.

Hence $\sigma(\mathscr{P}) \subset \mathscr{L}$, i.e.

$$\mu(A \cap A_n) = \nu(A \cap A_n), \quad \forall A \in \sigma(\mathscr{P}).$$

Therefore

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A \cap A_n) = \sum_{n=1}^{\infty} \nu(A \cap A_n) = \nu(A), \quad \forall A \in \sigma(\mathscr{P}).$$

Example 1.23

In probability, let $\mathscr{E}_1, \mathscr{E}_2$ be collections of sets. We say they're independent if

$$P(AB) = P(A)P(B), \forall A \in \mathcal{E}_1, B \in \mathcal{E}_2.$$

By the previous theorem we can derive $\lambda(\mathscr{E}_1), \lambda(\mathscr{E}_2)$ are independent.

If A_1, A_2, \ldots satisfy

$$P(A_{i_1}\cdots A_{i_k})=P(A_{i_1})\cdots P(A_{i_k}),$$

we say they are independent.

Let $\{1, 2, \dots\} = I + J$, then the σ -algebra generated by

$$\mathscr{E}_1 = \{ A_\alpha \mid \alpha \in I \}, \quad \mathscr{E}_2 = \{ A_\alpha \mid \alpha \in J \}$$

are independent.

Theorem 1.24 (Measure extension theorem)

Let μ be a measure on a semi-ring \mathcal{Q} , τ is the outer measure generated by μ . We have

$$\sigma(\mathcal{Q}) \in \mathscr{F}_{\tau}, \quad \tau|_{\mathcal{Q}} = \mu.$$

Remark 1.25 — Any measure on a semi-ring \mathcal{Q} can extend to the $\sigma(\mathcal{Q})$, and if μ is σ -finite, the extension is unique.

Proof. For any $A \in \mathcal{Q}$, let $B_1 = A$, $B_n = \emptyset$, $n \ge 2$. Then $\tau(A) \le \sum \mu(B_n) = \mu(A)$. On the other hand, if $A_1, A_2, \dots \in \mathcal{Q}$ s.t. $\bigcup_{n=1}^{\infty} A_n \supseteq A$, then

$$\mu(A) = \mu\left(\bigcup_{n=1}^{\infty} \mu(AA_n)\right) \le \sum_{n=1}^{\infty} \mu(AA_n) \le \sum_{n=1}^{\infty} \mu(A_n).$$

Thus $\tau(A) = \mu(A)$, where we used the fact that μ is countable subadditive. Next we prove $A \in \mathscr{F}_{\tau}$. We need to show that

$$\tau(D) \ge \tau(D \cap A) + \tau(D \cap A^c).$$

WLOG $\tau(D) < \infty$. Take $B_1, B_2, \dots \in \mathcal{Q}$ s.t.

$$\bigcup_{n=1}^{\infty} B_n \supseteq D, \quad \sum_{n=1}^{\infty} \mu(B_n) < \tau(D) + \varepsilon.$$

Denote $\hat{D} := B_n \in \mathcal{Q}$ for a fixed n. Suppose $\hat{D} \cap A^c = \hat{D} \setminus A = \sum_{i=1}^n C_i$.

$$\mu(\hat{D}) = \mu(\hat{D} \cap A) + \sum_{i=1}^{n} \mu(C_i) \ge \tau(\hat{D} \cap A) + \tau(\hat{D} \cap A^c).$$

Apply this inequality to each B_n ,

$$\tau(D) + \varepsilon > \sum_{n=1}^{\infty} (\tau(B_n \cap A) + \tau(B_n \cap A^c)) \ge \tau(D \cap A) + \tau(D \cap A^c).$$

this implies $\tau(D) \geq \tau(D \cap A) + \tau(D \cap A^c) \implies A \in \mathscr{F}_{\tau}$.

At last by Caratheodory's theorem, τ is a measure on $\mathscr{F}_{\tau} \supseteq \sigma(\mathscr{Q})$.

Theorem 1.26 (Equi-measure hull)

Let τ be the outer measure generated by μ ,

- $\forall A \in \mathscr{F}_{\tau}$, $\exists B \in \sigma(\mathscr{Q})$ s.t. $B \supset A$ and $\tau(A) = \tau(B)$;
- If μ is σ -finite, then $\tau(B \setminus A) = 0$.

Remark 1.27 — This theroem states that \mathscr{F}_{τ} is just $\sigma(\mathscr{Q})$ appended with null sets.

Proof. If $\tau(A) = \infty$, B = X suffices.

By definition, there exists $B_n = \bigcup_{k=1}^{k_n} B_{n,k} \supseteq A$ s.t. $\tau(B_n) < \tau(A) + \frac{1}{n}$. Let $B = \bigcap_{n=1}^{\infty} B_n$, we must have $\tau(B) = \tau(A)$.

Now for the second part, let $X = \sum_{n=1}^{\infty} A_n$, $A_n \in \mathcal{Q}$, $\mu(A_n) < \infty$. Since $A = \sum_{n=1}^{\infty} AA_n$, we have

$$AA_n \in \mathscr{F}_{\tau}, \quad \tau(AA_n) < \tau(A_n) = \mu(A_n) < \infty.$$

Let $B_n \in \sigma(\mathcal{Q})$ s.t. $B_n \supseteq AA_n$ and $\tau(B_n) = \tau(AA_n) < \infty$. Let $B := \bigcup_{n=1}^{\infty} B_n$ we have

$$\tau(B-A) = \tau\left(\bigcup_{n=1}^{\infty} (B_n - AA_n)\right) \le \sum_{n=1}^{\infty} \tau(B_n - AA_n) = 0.$$

Let $\mathcal{R}, \mathcal{A}, \mathcal{F}$ be the ring, algebra, σ -algebra generated by \mathcal{Q} , respectively. The outer measure τ restricts to a measure on each of these collections, denoted by μ_1, μ_2, μ_3 . Each μ_i can generate an outer measure τ_i , but actually they're all the same as our original τ , since τ_i are "build up" from τ , intuitively τ_i cannot be any better than τ . (The proof says exactly the same thing, so I'll omit it)

9

Proposition 1.28

Let μ be a measure on an algebra \mathscr{A} . τ is the outer measure generated by μ , for all $A \in \sigma(\mathscr{A})$, if $\tau(A) < \infty$, then $\forall \varepsilon > 0$, $\exists B \in \mathscr{A}$ s.t. $\tau(A\Delta B) < \varepsilon$.

Remark 1.29 — In practice we often replace τ with a σ -finite measure μ on $\sigma(\mathscr{A})$. (Here σ -finite is on \mathscr{A})

Proof. Choose $B_1, B_2, \dots \in \mathscr{A}$ s.t.

$$\hat{B} := \bigcup_{n=1}^{\infty} B_n \supseteq A, \quad \sum_{n=1}^{\infty} \mu(B_n) < \tau(A) + \frac{\varepsilon}{2}.$$

Let N be a sufficiently large number, $B := \bigcup_{n=1}^{N} B_n \in \mathcal{A}$,

$$\tau(A \backslash B) \le \tau\left(\bigcup_{n=N+1}^{\infty} B_n\right) \le \sum_{n=N+1}^{\infty} \tau(B_n) \le \frac{\varepsilon}{2}.$$

As $\tau(B \setminus A) \le \tau(\hat{B} \setminus A) < \frac{\varepsilon}{2}, \ \tau(A \Delta B) < \varepsilon$.

Example 1.30

Consider the Bernoulli test, recall $C_{i_1,...,i_n}$ we defined earlier. A measure(probability) μ is defined on the semi-ring $\{C_{i_1,...,i_n}\} \cup \{\emptyset, X\}$, then it can extend uniquely to the σ -algebra generated by it. This is how the probability of Bernoulli test comes from.