Аппроксимация функций мощности $P_{\infty}(p)$ в задаче узлов на неравномерно взвешенных квадратных решетках с (1, 0)-окрестностью при различных значениях размеров решетки и параметров взвешивающего распределения

Рис.1. Графики аппроксимаций функции мощности (а) и кроссовер-функции (б) при различных значениях параметров взвешивающего распределения и размеров решеток

$$P_{\infty}(p|s) = F_{s}(p|s)F(p) ,$$

где p — относительная доля достижимых узлов перколяционной решетки; $F_s(p|s)$ — функция распределения случайной величины S, взвешивающей узлы перколяционной решетки; $F(p) = F_1(p)F_2(p)$ — асимметричная сигмоидная кроссовер-функция вида

$$F(p) = \frac{2/[1 + \exp(-(p - a_2)/s_2)] - 1}{1 + \exp(-(p - a_1)/s_1)},$$

где $s_1 = s_2 = 0.03$ – параметр масштаба, a_1, a_2 – сдвиговые параметры.

Объем кластеров узлов (число реализаций) n = 1000.

Таблица 1. Значения RSE аппроксимирующей модели $P_{\scriptscriptstyle\infty}(p)$

Число узлов N	N = 33	N = 65	N = 129	N = 257
$S \sim \mathbf{B}(1,1)$	0.00081	0.00029	0.00006	0.00015
$S \sim \mathbf{B}(1,2)$	0.00027	0.00022	0.00011	0.00057
S ~ B (2,1)	0.00018	0.00023	0.00008	0.00005

Таблица 2. Значения RSE аппроксимирующей модели $F_s(p)$

Число узлов N	N = 33	N = 65	N = 129	N = 257
$S \sim \mathbf{B}(1,1)$	0.00211	0.00076	0.00016	0.00038
$S \sim \mathbf{B}(1,2)$	0.00070	0.00059	0.00022	0.00131
$S \sim \mathbf{B}(2,1)$	0.00044	0.00061	0.00021	0.00012

Все реализации кластеров строились для квадратной решетки различных размеров (1,0) - окрестностью при критических значениях параметра $p \approx p_c$, соответствующих априорным оценкам порога перколяции с различными взвешивающими распределениями S:

- $S \sim \mathbf{B}(1,2), \ p_c = 0.3618$
- $S \sim \mathbf{B}(1,1), \ p_c = 0.5927$
- $S \sim \mathbf{B}(2,1), p_c = 0.7699$