大学基础物理学

University Fundamental Physics

电子工程系@华东师范大学

李波

2019年

波动: 一定的扰动的传播称为波动

```
大板波(mechanical wave)
按波的性质 (electromagnetic wave)
```

```
按波线与振 { 横波 (transverse wave ) 动方向关系 { 纵波 (longitudinal wave )
```



```
平面波 (plane wave )
(高谐波 (simple harmonic wave )
复波 (compound wave )
             连续波 (continued wave )
脉冲波 (pulsating wave )
            { 行波(travelling wave)
驻波(standing wave)
```

波动: 一定的扰动的传播称为波动

振动是波动的基础,波动是振动的传播

机械扰动 ----- 机械波 (声波、水波等)

电场&磁场 ----- 电磁波 (无线电波、光波等)

机械振动— 机械波

"上游"的质元依次带动"下游"的 次带动"下游"的 质元振动。某时刻 其质元的振动状态 将在较晚的时刻于 "下游"某处出现。

机械波产生的条件

- 1) 波源:产生振动
- 2) 弹性媒质:无穷多质点通过相互之间的弹性力作用组合在一起的连续介质

按波线与振动方向关系

横波:质元的运动方向和扰动的传播方向垂直

纵波:质元的运动方向和扰动的传播方向在*一条直线上*

按波形是否传播: 行波 & 驻波

简谐波的波函数 & 波长

简谐运动传播时, 各质元做简谐运动, 位移随时间改变

各质元的初相位不同,简谐运动并不同步,在同一时刻,各质元的位移随位置的不同而不同

余弦波,单色波

横波,纵波

1. 一维平面简谐波的波函数

以机械波的横波为例,设平面波沿 x方向以速度 u 传播,媒质均匀、无限大,无吸收。

在 X = 0 处质元振动方程为

$$y(0,t) = A\cos\omega t$$

速度为 u

t1时刻刚开始运动,

$$y(x_1,t) = A\cos\omega t_1,$$

$$y(x_1,t) = A\cos\omega(t_2 - t_1)$$

$$t_1 = \frac{x_1}{u}$$

$$y(x,t) = A\cos\omega \left(t - \frac{x}{u}\right)$$
 — 波函数

$$y(x,t) = A\cos\omega(t-\frac{x}{u})$$
 (无吸收,故振幅 A不变)

上面波函数式中的 $\omega(t-\frac{x}{t})$ 为波的相位

在x处, 在时刻t的相

$$\varphi = \omega \, \left(\, t - \frac{x}{u} \right)$$

$$\frac{dx}{dt} = u$$

$$\frac{dx}{dt} = u \qquad \Rightarrow x = ut - \frac{\varphi u}{\omega} \qquad \Rightarrow x = ut - \frac{\varphi u}{\omega}$$

$$x = ut - \frac{\varphi u}{\omega}$$

扰动传播的速度,也就是振动的相 的传播速度,叫相速度

$$y(x,t) = A\cos\omega \left(t - \frac{x}{u}\right)$$

波函数中不同的x, 具有相同的ω, 因此, 波函数具有时间周期性。 (也就是固定x, 具有时间周期)

Transverse Wave

isvr

$$T = \frac{2\pi}{\omega}$$
 $v = \frac{1}{T} = \frac{\omega}{2\pi}$

波源、观测者均不动时

$$y(x,t) = A\cos\omega \left(t - \frac{x}{u}\right)$$

波函数中不同的t时刻,由于cos函数,因此,波函数具有空间周期性。也就是固定t,具有空间周期

$$y(x + \Delta x) = A\cos\omega\left(t - \frac{x + \Delta x}{u}\right) = A\cos\left[\omega\left(t - \frac{x}{u}\right) - \frac{\omega\Delta x}{u}\right]$$
 振动相同

$$\lambda = \frac{2\pi u}{\omega} = uT$$

波长:一个周期内 简谐扰动传播的距 离,一个周期相

传播的距离

(1) x 一定, $y \sim t$ 给出 x 点的振动方程。

(2) t-定, $y\sim x$ 给出 t 时刻空间各点位移分布。

波形曲线 y—x , 振动曲线 y—t 波形曲线上应标明 时刻 t 、传播方向振动曲线上应标明 哪个质元

要求掌握

- 1)由某时刻的波形曲线
 - →画出另一时刻的波形曲线
- 2)由某时刻的波形曲线
 - →确定某些质元的振动趋势
 - →画出这些质元的振动曲线
- 3)由某质元的振动曲线
 - →画出某时刻的波形曲线

$$\lambda = \frac{2\pi u}{\omega} = uT$$

$$k = \frac{2\pi}{\lambda}$$

2π的长度内, 含有多少"完整波"------波数

$$T = \frac{2\pi}{\omega}$$
 $v = \frac{1}{T} = \frac{\omega}{2\pi}$ $\lambda = \frac{2\pi u}{\omega} = uT$ $k = \frac{2\pi}{\lambda}$

$$y(x,t) = A\cos\omega(t-\frac{x}{u}) = A\cos(\omega t - kx) = A\cos 2\pi(\frac{t}{T} - \frac{x}{\lambda})$$

注: 如果沿x轴负向传播,负号改为正号

一个平面的质元同相的沿同一方向做简谐运动,则该平面为同相面(波面)。波动为平面简谐波。传播方向的直线叫波线。

波函数和一维的相同

波的几何描述

波线 (wave line) ——

表示波的传播方向的射线 (波射线)

波面 (wave surface) ——

媒质振动相位相同的点组成的面 (同相面)

平面波 (plane wave)

物体的弹性形变

固体、液体和气体,在外力下形状和体积发生变化,形变

撤销外力,形状复原,外力的限度叫做弹性限度,形变叫做弹性形变

- 1. 线变
- 2. 剪切形变
- 3. 体变

1: 线变 (等大小、反方向外力,长度变化)

F/S: 单位横截面积上所受的力, 称为"应力"

 $\Delta l/l_0$ 是相对伸长量,称为"线应变"。

应力和应变成正比: 胡克定律

$$\frac{F}{S} = E \frac{\Delta \ell}{\ell_0}$$
 E: 杨氏模量

$$\frac{F}{S} = E \frac{\Delta \ell}{\ell_{o}}$$

$$F = k\Delta \ell$$

外力不大时 S基本不变

$$k = \frac{ES}{l}$$

劲度系数

弹性势能

$$W_p = \frac{1}{2}k(\Delta l)^2 = \frac{1}{2}ESl(\frac{\Delta l}{l})^2$$

单位体积弹性势能

$$\omega_p = \frac{1}{2}E(\frac{\Delta l}{l})^2$$

纵波: 杨氏模量和线应变平方乘积的一半

2: 剪切形变 (等大小、反方向外力,形状变化)

F/S: 剪应力; $\varphi = \Delta d/D$ 剪应变

剪切模量

剪应力和剪应变正比 (胡克定律):

$$\frac{F}{S} = G\varphi = G\frac{\Delta d}{D}$$

剪切模量和应变平方乘积的一半

单位体积的弹性势能

$$\omega_p = \frac{1}{2}G\varphi^2 = \frac{1}{2}G(\frac{\Delta d}{D})^2$$

横波

3: 体变 (压强改变、体积改变)

 Δp 表示压强改变; $\Delta V/V$ 体积相对变化(体应变)

胡克定律
$$\Delta P = -K \frac{\Delta V}{V}$$
 $K:$ 体弹模量

$$\kappa = \frac{1}{K} = -\frac{1}{V} \frac{\Delta V}{\Delta P}$$

K: 压缩率

体弹模量和应变平方乘积的一半

单位体积内的弹性势能

$$\omega_{P} = \frac{1}{2}K(\frac{\Delta V}{V})^{2}$$

-维简谐波的动力学方程

以弹性细棒传播的纵波为例:

取棒中一小段原长为 Δx

设y表示各处质点相对平衡位的位移

在左端 \mathbf{x} 处, 应变为: $(\frac{\partial \mathbf{y}}{\partial x})_x$ 在右端 \mathbf{x} + $\Delta \mathbf{x}$ 处, 应变为: $(\frac{\partial \mathbf{y}}{\partial x})_{x+x}$

根据胡克定理:

左端受到左边材料的拉力为: $F_1 = EA \frac{\partial y}{\partial x} \Big|_{x}$ 右端受到右边材料的拉力为: $F_2 = EA \frac{\partial y}{\partial x} \Big|_{x}$

长 Δx 的棒受合外力为: $\vec{F} = \vec{F_1} + \vec{F_2}$

$$F = AE \frac{\partial y}{\partial x}\bigg|_{x+\Delta x} - AE \frac{\partial y}{\partial x}\bigg|_{x} = AE \frac{\partial^{2} y}{\partial x^{2}}\bigg|_{x} \Delta x + O(\Delta x)$$

$$F = m \frac{\partial^2 y}{\partial t^2} \bigg|_{x} = \rho A \Delta x \frac{\partial^2 y}{\partial t^2} \bigg|_{x}$$

$$AE \frac{\partial^2 y}{\partial x^2} \Delta x = \rho A \Delta x \frac{\partial^2 y}{\partial t^2}$$

$$AE \frac{\partial^2 y}{\partial x^2} \Delta x = \rho A \Delta x \frac{\partial^2 y}{\partial t^2}$$

化简得:
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 y}{\partial t^2}$$
 一维简谐波的动力学方程

与媒质的惯性和弹性有关

其中:
$$u^2 = \frac{E}{\rho}$$

波速:
$$u = \sqrt{\frac{E}{\rho}}$$

波动方程的解为

$$y = A\cos[\omega(t - \frac{x}{u}) + \varphi]$$

A、φ由初始条件和边界条件决定

$$y|_{t=0.x=0} = A\cos\varphi, \qquad \dot{y}|_{t=0.x=0} = -A\omega\sin\varphi$$

弹性介质中的波速

波速与介质有关,弹性模量, 密度的关系?

$$\frac{F}{S} = G \frac{dy}{dx} \Rightarrow F = SG \frac{dy}{dx}$$

$$a = \frac{F}{dm} = \frac{SG\frac{dy}{dx}}{\rho \cdot S \cdot udt} = \frac{Gdy}{\rho \cdot udxdt}$$

运动学
$$l = a(\Delta t)^2/2$$

$$a = 2l/(\Delta t)^2 = \frac{dy}{(dt)^2}$$

$$u = \sqrt{\frac{G}{\rho}}$$

波速 弾性模量 疏密

固体棒中的横波

$$u = \sqrt{\frac{G}{\rho}}$$

固体棒中的纵波

$$u = \sqrt{\frac{E}{\rho}}$$

弹性模量

支速 | 商

固体中可以传输 横波和纵波,液 体和气体中仅能 传播纵波(通过 体变模量)

$$u = \sqrt{\frac{K}{\rho}}$$

均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。										
	(λ, G)	(E, G)	(K, λ)	(K, G)	(λ, ν)	(G, ν)	(E, ν)	(K, ν)	(K, E)	(M, G)
K =	$\lambda + \frac{2G}{3}$	$\frac{EG}{3(3G-E)}$			$\frac{\lambda(1+\nu)}{3\nu}$	$\frac{2G(1+\nu)}{3(1-2\nu)}$	$\frac{E}{3(1-2\nu)}$			$M - \frac{4G}{3}$
E =	$\frac{G(3\lambda + 2G)}{\lambda + G}$		$\frac{9K(K-\lambda)}{3K-\lambda}$	$\frac{9KG}{3K+G}$	$\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$	$2G(1+\nu)$		$3K(1-2\nu)$		$\frac{G(3M-4G)}{M-G}$
$\lambda =$		$\frac{G(E-2G)}{3G-E}$		$K - \frac{2G}{3}$		$\frac{2G\nu}{1-2\nu}$	$\tfrac{E\nu}{(1+\nu)(1-2\nu)}$	$\frac{3K\nu}{1+\nu}$	$\frac{3K(3K-E)}{9K-E}$	M-2G
G =			$\frac{3(K-\lambda)}{2}$		$\frac{\lambda(1-2\nu)}{2\nu}$		$\frac{E}{2(1+\nu)}$	$\frac{3K(1-2\nu)}{2(1+\nu)}$	$\frac{3KE}{9K-E}$	
$\nu =$	$\frac{\lambda}{2(\lambda+G)}$	$\frac{E}{2G} - 1$	$\frac{\lambda}{3K-\lambda}$	$\tfrac{3K-2G}{2(3K+G)}$					$\frac{3K-E}{6K}$	$\frac{M-2G}{2M-2G}$
M =	$\lambda + 2G$	$\frac{G(4G-E)}{3G-E}$	$3K - 2\lambda$	$K + \frac{4G}{3}$	$\frac{\lambda(1-\nu)}{\nu}$	$\frac{2G(1-\nu)}{1-2\nu}$	$\tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}$	$\frac{3K(1-\nu)}{1+\nu}$	$\frac{3K(3K+E)}{9K-E}$	

$$u = \sqrt{\frac{G}{\rho}} \qquad u = \sqrt{\frac{E}{\rho}} \qquad u = \sqrt{\frac{K}{\rho}}$$

from 维基百科

G < E, 固体中 u_{横波} < u_{纵波}

由于纵波在地球内部传播速度大于横波,所以地震时,纵波总是先到达地表,而横波总落后一步。这样,发生较大的近震时,一般人们先感到上下颠簸,过数秒到十几秒后才感到有很强的水平晃动。这一点非常重要,因为纵波给我们一个警告,告诉我们造成建筑物破坏的横波马上要到了,快点作出防备。

波的能量

质元: 动能 + 势能

波动: 机械能量的传播

以纵波为例

设平面简谐波 $y(x,t) = A\cos(\omega t - kx + \varphi)$ 在密度为 ρ 的 弹性细棒中传播。

考察平衡位置在 $x-x+\triangle x$ 处,体积为 $\triangle V$ 的质元的能量

其速度:
$$v = \frac{\partial y}{\partial t} = -\omega A \sin(\omega t - kx + \varphi)$$

其动能:
$$\Delta W_k = \frac{1}{2} \Delta m (\frac{\partial y}{\partial t})^2 = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

设平面简谐波 $y(x,t) = A\cos(\omega t - kx + \varphi)$ 在密度为 ρ 的 弹性细棒中传播(纵波)。

考察平衡位置在 $x-x+\triangle x$ 处,体积为 $\triangle V$ 的质元的能量

其应变:
$$\frac{\partial y}{\partial x} = -kA\sin(\omega t - kx + \varphi)$$

其势能:
$$\Delta W_p = \frac{1}{2} ES(\frac{\partial y}{\partial x})^2 \Delta x = \frac{1}{2} E\Delta V k^2 A^2 \sin^2(\omega t - kx + \varphi)$$

$$u = \sqrt{E} / \rho$$

$$k = \omega / u$$

$$\Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi) = \Delta W_k$$

设平面简谐波 $y(x,t) = A\cos(\omega t - kx + \varphi)$ 在密度为 ρ 的 弹性介质中传播(横波)。

$$\frac{\partial y}{\partial x} = -kA\sin(\omega t - kx + \varphi)$$

其势能:
$$\Delta W_p = \frac{1}{2}GS(\frac{\partial y}{\partial x})^2 \Delta x = \frac{1}{2}G\Delta V k^2 A^2 \sin^2(\omega t - kx + \varphi)$$

$$\Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi) = \Delta W_k$$

$$u = \sqrt{G/\rho}$$
$$k = \omega/u$$

$$\Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi) = \Delta W_k$$

$$\Delta W = \Delta W_k + \Delta W_p = \Delta m \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$
$$= \frac{\Delta m \omega^2 A^2}{2} [1 - \cos 2(\omega t - kx + \varphi)]$$

每一质元Δ*m*的总能量是时间和位置的函数!——能量也以速度*u*随波一起传播

$$\Delta W = \Delta W_k + \Delta W_p = \Delta m \omega^2 A^2 \sin^2(\omega t - kx + \varphi) = \frac{\Delta m \omega^2 A^2}{2} [1 - \cos 2(\omega t - kx + \varphi)]$$

•固定**X**

 W_k 、 W_p 均随 t 周期性变化 $W_k = W_p$

• 固定t

 W_{k} 、 W_{p} 随x周期分布 $y=0 \rightarrow W_{k} W_{p}$ 最大 y最大 $\rightarrow W_{k} W_{p}$ 为 0

$$y(x,t) = A\cos[\omega t - kx + \varphi]$$

$$\Delta W_k = \Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

$$y = A\cos(\omega t - kx + \varphi)$$

质元Δ**m**的动能和势能同相变化,而且始终具有相同数值,质元在平衡位置时,具有最大能量;

例如:如图所示某t时刻

a、b两点处的质元

其速度:
$$(\frac{\partial y}{\partial t})_a = (\frac{\partial y}{\partial t})_b = 0$$

形变:
$$\left(\frac{\partial y}{\partial x}\right)_a = \left(\frac{\partial y}{\partial x}\right)_b = \mathbf{0}$$

$$\therefore W_k = W_p = 0$$

c、d两点处的质元处在平衡位置

$$\therefore W_k = W_p = W_{Max}$$

$$(\frac{\partial y}{\partial t})_c = (\frac{\partial y}{\partial t})_d = V_{Max}$$

$$(\frac{\partial y}{\partial x})_c = (\frac{\partial y}{\partial x})_d =$$
最大值

进一步理解波的能量 波是能量传播的一种形式。

体元 ΔV 中能量密度从0到 ρ $\omega^2 A^2$ 表明外部能量输入,当 ΔV 中能量密度从 ρ $\omega^2 A^2$ 减小到0表明向外输出能量。整个周期,介质不积累能量,而是传播能量

简谐振子 $\begin{cases}
E_k = \frac{1}{2}kA^2\sin^2(\omega t + \varphi) \\
E_p = \frac{1}{2}kA^2\cos^2(\omega t + \varphi) \\
E_{k\max} \Rightarrow E_{p\max} \quad 能量守恒
\end{cases}$

$$\Delta W_k = \Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

$$\Delta W_k = \Delta W_p = \frac{1}{2} \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

$$\Delta W = \Delta W_k + \Delta W_p = \rho \Delta V \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

▶能量密度: 媒质单位体积内的能量

$$w = \frac{\Delta W}{\Delta V} = \rho \omega^2 A^2 \sin^2(\omega t - kx + \varphi)$$

>平均能流密度: 一个周期内能量密度的平均值

$$\sin^2(\omega t - kx + \varphi)$$
 一个周期内的平均值为1/2

$$\overline{w} = \frac{1}{2}\rho\omega^2 A^2 = 2\pi^2\rho\nu^2 A^2$$

$$\Delta W_{\rm k} = \Delta W_{\rm p}$$
, $\Delta W_{\rm k} + \Delta W_{\rm p} \neq {\rm const.}$

每个质元都与周围媒质交换能量。

$$\overline{w} = \frac{1}{2}\rho\omega^2 A^2 = 2\pi^2\rho v^2 A^2$$

4. 波的强度

(单位时间通过垂直传播方向的单位截面上的能量)

$$dV = udtdS$$

$$dW = \overline{w}udtdS$$

$$I = \frac{dW}{dtdS} = \overline{w}u = \frac{1}{2}\rho\omega^2 A^2 u$$

$$\cdots$$
· 读强

利用
$$I = \overline{w}u = \frac{1}{2}\rho\omega^2 A^2 u$$
 和能量守恒,可以证明,

能量守恒可得一个周期内通过两个面的能量应该相等

$$I_1 S_1 T = I_2 S_2 T$$

$$\frac{1}{2}\rho\omega^{2}A_{1}^{2}uS_{1}T = \frac{1}{2}\rho\omega^{2}A_{2}^{2}uS_{2}T$$

平面波面积相等: $S_1 = S_2$

$$A_{\scriptscriptstyle 1} = A_{\scriptscriptstyle 2}$$

$$\frac{1}{2}\rho\omega^{2}A_{1}^{2}uS_{1}T = \frac{1}{2}\rho\omega^{2}A_{2}^{2}uS_{2}T$$

球面波:
$$S_1 = 4\pi r_1^2$$
 $S_2 = 4\pi r_2^2$

$$A_1^2 r_1^2 = A_2^2 r_2^2$$
 $A_1 r_1 = A_2 r_2$

球面波波函数:

$$y = \frac{A_1}{r} \cos \omega (t - \frac{r}{u})$$

惠更斯原理

前面讨论了波动的基本概念,接下来讨论传播特性有关的现象、原理和规律。由于某些原因,波在传播中,其传播方向、频率和振幅都有可能改变。惠更斯原理给出的方法(惠更斯作图法)是一种处理波传播方向的普遍方法。

1690年

1. 原理的叙述

媒质中任意波面上的各点,都可看作是发射子波(次级波)的波源(点源),其后的任一时刻,这些子波面的包络面(包迹)就是波在该时刻的新的波面。

2. 原理的应用

已知 t 时刻的波面 $\rightarrow t+\Delta t$ 时刻的波面,从而可进一步给出波的传播方向。

例如,均匀各向同性媒质内波的传播:

平面波

球面波

波的衍射(wave diffraction)

衍射: 波传播过程中, 当遇到障碍物时,

能绕过障碍物边缘而偏离直线传播的现象。

相对于波长而言,障碍物的线度越大衍射现象越不明显,障碍物的线度越小衍射现象越明显。

障碍物的线度大

障碍物的线度小

水波的衍射

波的反射和折射(reflection & refraction)

1.波的反射

作图法:

(1)画出入射波的波前AC

$$\mathbf{CP} = \mathbf{u}(\mathbf{t}_2 - \mathbf{t}_1)$$

(2)画子波的波面

$$AM=u(t_2-t_1)$$

波的折射: 用惠更斯作图法导出折射定律

作图法共分四步:

(1)画出入射波的波前AB

$$BC=u_1(t_2-t_1)$$

(2)画子波的波面

$$AD = u_2(t_2 - t_1)$$

- (3)画子波波面的包络面
- (4)画折射波的传播方向

$$\begin{array}{c|cccc}
N & N \\
A & B_1 & B_2 & B_3 & I \\
\hline
P & R & R
\end{array}$$

时刻 $t+\triangle t$

$$A_3B_3 = u_1\Delta t = AB_3 \sin i$$
 $AB = u_2\Delta t = AB_3 \sin r$

$$AB = u_2 \Delta t = AB_3 \sin r$$

所以
$$\frac{\sin i}{\sin r} = \frac{A_3 B_3}{AB} = \frac{u_1}{u_2}$$

$$\frac{\sin i}{\sin r} = \frac{u_1}{u_2} = \frac{n_2}{n_1} = \text{const.}$$

光波
$$u_1 = \frac{c}{n_1}, u_2 = \frac{c}{n_2}$$

得到

$$n_1 \sin i = n_2 \sin r$$

—— 折射定律

光密媒质 \rightarrow 光疏媒质时,折射角r>入射角i。

$$\sin i_{\rm C} = \frac{n_2}{n_1}$$

*i*c — 临界角

当入射i >临界角 i_c 时,将无折射光—全反射

全反射的一个重要应用是光导纤维(光纤),它是现代光通信技术的重要器件。

