Kojarzenia raz jeszcze

- 1. Zauważyć, że jeżeli w grafie dwudzielnym G = (S, T, E), gdzie |S| = |T| = n nie ma zbiorów blokujących mocy < n to graf spełnia warunek Halla $|G[A]| \ge |A|$ dla każdego $A \subseteq S$.
- 2. Dana jest szachownica $m \times n$, w której niektóre pola są zakazane (na przykładzie zaznaczane krzyżykami). Zadanie polega na umieszczeniu maksymalnej liczby niezależnych pionków na pozostałych polach; pionki są niezależne jeśli żadne dwa nie stoją w tej samej kolumnie i tym samym wierszu. Zauważyć, że jest to inna wersja zagadnienia kojarzenia w grafie dwudzielnym. W związku z tym dla danego ustawienia etykietowanie (poszukujące lepszego ustawienia) wygląda następująco (dlaczego?):
 - (a) Nadajemy etykiete (–) wierszom bez pionków;
 - (b) dla danego wiersza i z etykietą nadajemy etykietę (i) tym kolumnom, które na przecięciu z tym wierszem mają dopuszczalne pole wolne;
 - (c) dla danej kolumny j z etykietą nadajemy etykietę (j) tym wierszom. które na przecięciu mają pionek; wracamy do (b).

Przykładowy zestaw do ćwiczeń:

\bigcirc	×	×					1
	×	×	×	×	\bigcirc	×	2
	0	×	×				3
×		X	X	×		×	4
		X	X	×	×	×	5
1	2	3	4	5	6	7	•

3. Wąskie gardło. Dla danej macierzy $(a_{ij})_{1 \leq i,j \leq n}$ szukamy takiej permutacji σ , która maksymalizuje wielkość

$$v(\sigma) = \min_{k \le n} a_{k\sigma(k)}.$$

Taki problem powstaje, gdy mamy n pracowników i taśmę produkcyjną złożóną z n stanowisk pracy. Pracownik i osiąga wydajność a_{ij} pracując na stanowisku j. Zauważmy, że taka optymalna permutacja maksymalizuje wydajność taśmy.

Dla danej permutacji σ rozważamy szachownicę $n \times n$. Pole (i, j) uznajemy za dopuszczalne gdy $a_{ij} > v(\sigma)$ i niedopuszczalne w przeciwnym razie. Zauważyć, że σ nie jest optymalna tylko wtedy gdy na tej szachownicy można ustawić n niezależnych pionków.

4. Zoptymalizować prace 6 pracowników przy podanej poniżej tabeli wydajności rozpoczynając od przypadkowej permutacji.

3	2	6	0	1
2	3	8	3	1
1	1	5	0	9
5	4	8	8	3
6	9	5	2	4
2	3	6	7	1
	3 2 1 5 6 2	3 2 2 3 1 1 5 4 6 9 2 3	3 2 6 2 3 8 1 1 5 5 4 8 6 9 5 2 3 6	3 2 6 0 2 3 8 3 1 1 5 0 5 4 8 8 6 9 5 2 2 3 6 7

Nieskończone twierdzenia Ramseya

- 5. Wykazać, że każdy ciąg $x_n \in \mathbb{R}$ zawiera podciąg stały, podciąg rosnący lub podciąg malejący.
- **6.** Wykazać, że dla dowolnej skończonej rodziny różnowartościowych funkcji $g_i : \mathbb{R} \to \mathbb{R}$ istnieje nieskończony zbiór $A \subseteq \mathbb{R}$, na którym wszystkie te funkcje są monotoniczne.
- 7. Wykazać, że każdy nieskończony zbiór częściowo uporządkowany zawiera nieskończony łańcuch lub nieskończony antyłańcuch.
- 8. Niech $\mathbb{N} \times \mathbb{N}$ będzie częściowo uporządkowany 'po osiach', czyli $(n_1, n_2) \leq (k_1, k_2)$ gdy $n_1 \leqslant k_1$ i $n_2 \leqslant k_2$. Udowodnić, że każdy nieskończony $A \subseteq \mathbb{N} \times \mathbb{N}$ zawiera nieskończony łańcuch w porządku \leq .
- 9. Uogólnić poprzednie zadanie na przypadek $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$.
- 10. Niech $A \subseteq \mathbb{N}$ będą zbiorami takimi że $|A_n \triangle A_k| \geqslant 7$ dla $n \neq k$. Udowodnić, że istnieje ciąg $n_1 < n_2 < \ldots$, taki że
 - (i) $|A_{n_i} \setminus A_{n_i}| \ge 4$ dla wszystkich i > j, lub
 - (ii) $|A_{n_i} \setminus A_{n_j}| \ge 4$ dla wszystkich i < j.

SKOŃCZONE TWIERDZENIA RAMSEYA

- 11. Krawędzie grafu pełnego K_6 pokolorowano dwoma kolorami. Udowodnić, że graf zawiera jednokolorowy trójkąt. Pokazać na przykładzie, że taki fakt nie zachodzi dla grafu K_5 . W oznaczeniach z wykładu oznacza to, że R(3,3)=6.
- 12. Krawędzie grafu K_{17} pokolorowano trzema kolorami. Udowodnić, że graf zawiera jednokolorowy trójkąt. Sprawdzić, że liczba 16 jest tutaj za mała. W analogicznej notacji (dla trzech kolorów) zadanie oznacza, że R(3,3,3)=17. Jak twierdzi WIKIPEDIA, nie wiadomo czy R(3,3,4)=30 czy też 31. Może nam się uda:-)
- 13. Jak wiemy z wykładu, $R(n,n) \leq \binom{2n-2}{n-1}$. Znaleźć oszacowanie na R(n,n,n); na przykład zauważyć, że dla N = R(n,n) zachodzi $R(n,n,n) \leq R(N,N)$.
- 14. Udowodnić, że dla każdego $r \in \mathbb{N}$ istnieje S(r) (liczba Schura), to jest taka liczba naturalna, że dla dowolnego kolorowania elementów z $A = \{1, 2, \dots, S(r)\}$ istnieją trzy elementy $x, y, z \in A$ tego samego koloru, spełniające równanie x + y = z.
 - WSKAZÓWKA: W razie trudności patrz 3.1 w tym opracowaniu.
- 15. Przy okazji rozważania grafów pełnych: Udowodnić Lemat 7.7 (z wykładu o drzewach), który dowodzi twierdzenia Caley'a o ilości drzew rozpinających w grafie K_n .