CS596 IoT Syllabus

Introduction to Internet of Things

Silicon Valley University

Vicky HSU vickyhsu@picomo.com

Gartner:

"World will need 300,000 IOT developers by year 2017. Anything we buy that costs over \$100 will be IoT enabled by 2018"

Class

- Credit: 3
 - Lecture/Discussion Hours: 3
- Class:
 - 15 weeks,
 - 13 Lectures
 - 2 Tests (Mid Term 10/31, Final 12/19)
 - 1 Project or 1 Report
 - · Hands-on Demo Project
 - Experience in Linux, C/Java or similar Computer Language useful
- References
 - More Info on Class Web

Audience:

 Seniors or Graduate Student in Computer Engineering and Computer Science

Scope:

- An overall picture and technologies introductions of Internet of Things with entry —level hands-on project demo.
- Intensive readings of extra curriculum materials are required for project research & homework.

Level:

- Introductory/intermediate level
- Primary initial course in IoT.
- Fundamentals and the framework in IoT technologies.

Class Communications and Lectures

- Additional class communication is highly Internet Based: web site and email etc...
 - You're "required" to sign up the website and mailing list.
- Course Web Site and group email:
 - Provide your email address to SVU Admin Office to be included in the updated class roster
 - Class Web Site TBD
- Lecture Notes and Homeworks are posted on class web.

Grading (% subject to change)

	ATTENDANCE	
	/CLASS PARTICIPATION	10 %
	HOMEWORK	15 %
	QUIZZES	15 %
	MID EXAM	20 %
	IOT PROJECT	15 %
	IOT REPORT	20 %
	FINAL EXAM	20 %
•		
		115 %

RANGE OF NORMALIZED GRADES:

From	То	Rank
_	59.9	F
60.0	62.0	D-
62.1	67.9	D
68.0	69.9	D+
70.0	72.0	C-
72.1	77.9	С
78.0	79.9	C+
0.08	82.0	B-
82.1	87.9	В
88.0	89.9	B+
90.0	92.0	A-
92.1	97.9	Α
98.0	100.0	A+

IoT Hardware/Design Proejct

- You can choose Hardware or Design Project
 - Hardware Project: Must present with IoT Hardware Implementation and code projects
 - Design Project: Must provide business model, application user cases and GUI layout.
- Hardware protype/demo project:
 - Pick a Hardware and Design/Implement an IoT Project
 - · Arduino is best for beginner, and sensor focused project
 - · Rasberry Pi 2 is more suitable for advanced programmer with Python skills
 - Intel Galileo or Beaglebone are other options
 - 6 Students per Group
 - Must present the hardware/firmware demo per group and a report per student
- Design Project:
 - 1~2 students per team. Must be in sufficient details for system implementation. → must be close to market and product specification documents.
- Final Demo scheduled for the last week before final exam
- Project Draft due three weeks before final exam (11/28).
- Project Report deadline before final exam (turn in paper report during final exam, send an electronic copy by the same time)

Misc.

- Make-up Work:
 - If you do not have Project turned in, you get zero points, period.
 - No Make-up test is allowed for mid-term and final exam. Unless you're seriously ill with doctor's proof.
 - Extra work/credit allowed for term project before final exam.
- Quiz on Homework/Assigned Readings:
 - There maybe unannounced short quiz on the required readings or homeworks at the beginning of class each week.

Connected World examples

- Wireless Sensor Networks
- Internet-connected wearables
- Low power embedded systems
- RFID enabled tracking
- Use of mobile phones to interact with the real world
- Devices that connect via Bluetooth enabled mobile phones to the
- Internet
- Smart Homes
- Connected Cars
- etc.

Class Outline

- Introduction/IoT Overview (9/12)
 - 1. Definition
 - 2. History
 - 3. Eco-System
 - 4. Market Trend
 - 5. Framework
- 2. IoT Application Overview (9/19)
 - 1. Connected Car
 - 2. Home Automation /Smart Home / Smart Building
 - 3. Healthcare
 - 4. Smart City
 - 5. Smart Grid
 - 6. Transportation / Asset Management

- 3. IoT Standards (9/26)
 - 1. Comprehensive Consortium
 - AllJoyn/AllSeen
 - 2. Industrial Internet Consortium
 - 3. OIC (Open Internet Consortium)
 - 4. Thread
 - 5. HomeKit
 - 2. Smart Object ID / Labeling
 - 1. GS1 Oliot (Open Language of IoT)

- 4. IoT Architecture (& Project Discussion) (10/3)
 - 1. Architecture Model
 - 1. Device
 - 2. Gateway
 - 3. Cloud
 - 4. Software
 - 5. Application
 - 2. Sensor Network
 - 3. Cloud Computing
 - 4. Fog Computing
 - 5. Addressability (Auto-ID Lab)

- 5. IoT Sensor Technologies
 - Sensor
 - 2. Actuator
 - 3. MEMS
 - 4. Properties
- 6. IoT Connectivities/Networks
 - 1. RFIC
 - 2. Bluetooth (802.15.4)
 - 3. ZigBee
 - 4. Z-Wave
 - 5. WiFi
 - 6. NFC
 - 7. Network/Connectivity Design Issues/Concerns
 - 1. Delay
 - 2. Scalability
 - Interoperability

- 7. IoT Hardwares / Embedded Design
 - 1. Open Source Hardware
 - 1. Arduino
 - 2. Raspberry Pi
 - 3. Beaglebone
 - 4. Intel Galileo
 - 2. Electronics 101
 - 1. Electronic Circuit
 - 2. Schematic
 - 3. PCB
 - 4. EDA: Fritzing
 - 5. Industrial Design
 - 3. Electronics Shops
 - 1. SparkFun Electronics
 - 2. Adafruit Industries, Unique & fun DIY electronics and kits
- 👢 Mid-Term (

- IoT Protocols/Security
 - 1. Protocols
 - 1. http
 - 2. uPnP
 - 3. CoAP
 - 4. MQTT
 - 5. XMPP
 - 2. Security
- 10. IoT Softwares/Platforms
 - 1. IoT Web Services
 - 1. SOAP
 - 2. REST
 - 3. XML
 - 4. JSON
 - 2. API
 - 3. IoT OS
 - 4. Embedded System Design

- 11. IoT Design, UX and Interface / Vertical Market Case Study (Select 1 or 2)
 - 1. Memory
 - 2. Security
 - 3. Privacy
 - 4. UI/UX
 - 5. Connected Device Experience
 - 6. Power consumption/Battery life
 - 7. Software updates
 - 8. Recovering from network failures & other failures
 - 9. Connectivity and communications
 - 10.Device Management
 - 11. Data collection, analysis, and actuation
 - 12.Scalability

- 12. IoT and Big Data / Machine Learning / Drone
 - 1. Big Data
 - 2. Machine Learning
 - 3. Drone / Robotics
- 13. SDN Networks / IPv6
 - 1. SDN and IoT
 - 2. IPv6
- 14. Project Demo / Report
- 15. Final (12/19)