微机原理与接口技术

GPIO中断应用示例

华中科技大学 左冬红

GPIO结构框图

GPIOx_IO引脚输入时出现信号电平跳变,则可以产生中断

两个通道都可以产生中断,最后形成一个中断输出,类似INTC

GPIO中断相关寄存器

名称	偏移地	含义
	址	
GIER	0x11c	D ₃₁ =1使能中断信号ip2intc_irpt输出
IPIER	0x128	D ₀ =1使能通道GPIO中断;D ₁ =1使能通道GPIO2中断,
IPISR	0x120	读:获取通道中断状态,写:清除中断状态
		读:D ₀ =1GPIO产生了中断;D ₁ =1GPIO2产生了中断
		写:D ₀ =1清除GPIO中断状态;D ₁ =1清除GPIO2中断
		状态

应用示例1

GPIO 开关拨动产生中断

中断方式读取开关状态并输出到LED


```
gpio_0 GPIO通道 || IPIER || GIER |
                                        Xil Out32(addr,value)
开
放
      intc intr[0]
                 IER
                       MER
中
斱
                  MSR
      MicroBlaze
                  microblaze enable interrupts();
填中断向量表
MB-GCC attribute (interrupt handler)
```

10命令

GPIO工作方式

应用示例1-初始化程序

```
void main(void)
  Xil Out32(0x40000120,0x1);//写AXI GPIO 0 IPISR 清除中断
  Xil Out32(0x40000128,0x1);//写AXI GPIO 0 IPIER
  Xil Out32(0x4000011C,0x80000000);//写AXI GPIO 0 GIER
  Xil Out32(0x4120000c,0xffffffff);//写INTC IAR清除中断状态
  Xil Out32(0x41200008,0x1);//写INTC IER,使能intr[0]中新
  Xil Out32(0x4120001c,0x3);//写INTC MER,使能硬件中断irq输出
  microblaze enable interrupts();//使能微处理器中断
  Xil Out32(0x40000004,0xffff);//写GPIO TRI通道GPIO输入
  Xil Out32(0x400000C,0x0); //写GPIO2 TRI通道GPIO2输出
```

应用示例1-中断服务程序


```
void swHandler(void) __attribute__((interrupt_handler));

void swHandler(void)
{
   int sw;
   sw=Xil_In32(0x40000000);
   Xil_Out32(0x40000008,sw)
   Xil_Out32(0x40000120,0x1);
   Xil_Out32(0x4120000c,0x1);
}
```


小结

- GPIO产生中断的原因
 - · GPIO输入引脚电平跳变
- 中断程序设计
 - 初始化程序
 - GPIO中断开放
 - GPIO工作方式设置
 - INTC开中断
 - MicroBlaze开中新
 - 填写中断向量表
 - 中断服务程序
 - 中断事务处理
 - 清除中断
 - GPIO\INTC都需清除

下一讲:定时器中断