

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

SET B

OFFLINE MODE

Academic Year: 2021-2022 (EVEN)

Test: CLAT- 1 Date: 07-04-2022 Course Code & Title: 18ECC201J - Analog Electronic Circuits **Duration:** 60 minutes Year & Sem: II / IV Max. Marks: 25

C		42	1 ~ 4 2 ~ ~ ~	Matrix:	
Course	\mathcal{A}	rucu	iauon	Matrix:	

	18ECC201J - Analog Electronic Circuits	Program Outcomes (POs)														
			Graduate Attributes PSC						PSO							
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1 :	Analyze bipolar amplifier circuits and their frequency response.	1	2	3	-	-	- 1	-	ı	- 1	- 1	ı	- 1	- 1	-	-
CO-2 :	Develop MOSFET amplifier circuits and their frequency response.	1	2	3	-	-	1	-	1	1	1	1	1	- 1	-	-
CO-3 :	Compile various negative feedback amplifier and oscillator circuits.	1	-	3	-	-	-	-	-	-	-	-	-	1	-	-
CO-4 :	Demonstrate the different classes of power amplifiers according to their performance characteristics.	1	2	3	-	-	- 1	- 1	- 1	- 1	1	- 1	1	- 1	-	-
CO-5	Construct the basic circuit building blocks that are used in the design of IC amplifiers, namely current mirrors and sources.	1	2	3	-	-	- 1	-	1	- 1	-	1	-	1	-	-
	Organize analog electronic circuits using discrete components to measure various analog circuits' performance.	1	-	3	-	-	- 1	-	- 1	2	1	- 1	1	3	1	-

Part - A $(5 \times 1 = 5 \text{ Marks})$ **Instructions: Answer any 5**

Q. No	Question	Mar	BL	CO	PO	PI
		ks				Code
1	b. that I _C flows into transistor while I _E flows out it	1	1	1	1	
2	d. 0.002 mA	1	3	1	2	
3	d. Cascode	1	1	1	1	
4	a. Saturation point and Cutoff point	1	2	1	1	
5	c Stray	1	3	1	2	

Part - B

	$(2 \times 10 = 20 \text{ Marks})$					
	Instructions: Answer any TWO					
6.	For the circuit given below with transistor parameters					
	$I_{CEQ} = 2.79 \text{ mA}, \beta = 180 \text{ and } r_0 = \infty,$					
	a. Determine the Q point values. (4)	5	3	1	3	
	b. Find the small signal parameters and voltage gain incluing the source resistance (R _S). (6)	5	2	1	2	
	$V^{+} = +5 \text{ V}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$ $R_{C} = \begin{cases} R_{C} = 1 \text{ k}\Omega \end{cases}$					

	6. Q point values (2 leg, Vcaq) (a) Given Leg = 2.7mA, B= 180 . 4 %= 20 Year = Vec. Te (Re +Re) 5 = 3.0646 = 1.394V. (a) point = (2.79mAg 1.394V) B small signal parameters. 9m = Lea : 2.79 = 102.3mN/V Vy 0.026 Ny = BV7 = 180×0.026 = 1.67 ks. Dea 2.79 Q : Rylley lib 1) = Ny + (HB) Re = 1.67 + 18.1 = 19.77 ks. = 1.2× 19.77 = 1.131k2 1.2+ 19.77 - Ay = - B. Re Ny + ((HB) Re Q+Ri (: Ay = -7.89)					
7.a	Draw the Darlington amplifier and derive the expression for the current gain and input resistance. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	5	2	1	3	

	INPUT RESISTANCE $R_{i} = \frac{V_{i}}{T_{i}}$ $V_{i} = V_{i}, + V_{i}$ $V_{i} = \frac{T_{i}}{T_{i}}$ $V_{i} = \frac{T_{i}}{T_{i}} + \frac{T_{i}}{T_{i}} \cdot V_{i}$ $= \frac{T_{i}}{T_{i}} + \frac{T_{i}}{T_{i}} \cdot V_{i}$ $= \frac{T_{i}}{T_{i}} \cdot V_{i} \cdot T_{i}$ $= \frac{T_{i}}{T_{i}} \cdot$	5	3	1	3	
7.b.	Determine the value of input resistance for the given circuit. Assume $\beta = 100$; $I_{C1} = I_{C2} = 4$ mA.					

8.a.	Why common collector configuration is otherwise called as Emitter Follower? Common-collector transistor amplifiers are so-called because the input and output voltage points share the collector lead of the transistor in common with each other, not considering any power supplies. The common-collector amplifier is also known as an emitter-follower. (2)	2	2	1	2	
8.b.	Derive the output resistance for a common collector configuration with necessary diagram # Output Impedance (Ro) The independent voltage source is set to zero ($V_3=0$). A test vorage V_n is applied to the olp terminals and the resulting test current is T_n $R_n = V_n$ $R_n = V_n$ $R_n = V_n$ $R_n = V_n + V_n$	8	3	1	3	

In = $V_{R_{E}}$ + $\frac{1}{20}$ +

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Course Coordinator