In the Claims

 (currently amended) An electroluminescent device, comprising a 2H-benzotriazole compound, especially a-compound of the formula

$$\left[\begin{array}{c} X^2 \end{array}\right]_a^a \overbrace{Ar^1}_N N \left[Y^{\frac{1}{3}}\right]_b X^1$$
 (I)

where

a is 0, or 1,

b is 0, or 1,

X¹ is a group of formula

$$-N$$
 Ar^2
 X^3
, if b is 1, or Y^3 , if b is 0, wherein

c is 0, or 1

X² and X³ are independently of each other a group of formula

Ar¹, Ar², and Ar³ are independently of each other-aryl or heteroaryl, which can optionally be-substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted, Y^1 and Y^2 are independently of each other a divalent linking group, and Y^3 are independently of each other-aryl or heteroaryl, which can optionally be-substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.

2. (original) An electroluminescent device according to claim 1, comprising a 2H-benzotriazole compound of the formula

d, Ar¹, Ar², Ar³, Y¹ and Y² are defined as in claim 1,

 ${\rm Ar}^4$ stand for ${\rm C_6\text{-}C_{30}}$ aryl or a ${\rm C_2\text{-}C_{26}}$ heteroaryl, which can optionally be substituted, and

 Y^3 and $Y^{3'}$ are independently of each other C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.

3. (currently amended) An electroluminescent device according to claim 2, wherein

$$Ar^1$$
 N and Ar^2 N N

in formula II or III are independently of each other a group of formula

$$A^{21} \longrightarrow A^{21} \longrightarrow A^{11} \longrightarrow A^{12} \longrightarrow A^{14} \longrightarrow A^{12} \longrightarrow A^{13} \longrightarrow A^{14} \longrightarrow A^{15} \longrightarrow A$$

wherein

A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted

by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C₁-C₂₄alkylthio, -PR³² R³², C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by E, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, or

$$A^{31}$$
 A^{32}
 A^{31}
 A^{32}
 A^{34}
 A^{33}
 A^{34}
 A^{35}
 A^{35}
 A^{35}

A²² and A²³ or A¹¹ and A²³ are a group

two groups A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, which are neighbouring to each other, are a

$$A^{31}$$
 A^{32}
 A^{34}
 A^{33}
 A^{34}
 A^{35}
 A^{34}
 A^{35}

, wherein A³¹, A³², A³³, A³⁴, A³⁵, A³⁶ and A³⁷ are

independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by E, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C \equiv C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen;

wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

4. (currently amended) An electroluminescent device according to claim 2, wherein

$$-N$$
 Ar^3 and Ar^4 N $N-$

in formula IV are independently of each other a group

of formula

$$A^{41} \longrightarrow A^{41} \longrightarrow A^{51} \longrightarrow A^{51} \longrightarrow A^{51} \longrightarrow A^{52} \longrightarrow A^{53} \longrightarrow A^{54} \longrightarrow A^{52} \longrightarrow A^{53} \longrightarrow A^{54} \longrightarrow A^{57} \longrightarrow A^{58} \longrightarrow A^{59} \longrightarrow A$$

wherein

 A^{41} , A^{42} , A^{43} , A^{44} , A^{51} , A^{52} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} and A^{60} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, NR²⁵R²⁶, C_1 - C_2 -alkylthio, -PR³²R³², C_5 - C_{12} cycloalkoxy, C_5 -

 C_{12} cycloalkoxy which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, C_7 - C_{25} aralkyl, which is substituted by E, C_7 - C_{25} aralkoxy, C_7 - C_{25} aralkoxy which is substituted by E, or - C_7 - C_8 - C_7 - C_8 - $C_$

 A^{42} and A^{43} or A^{42} and A^{51} are a group

two groups A^{51} , A^{52} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} and A^{60} , which are neighbouring to each

other, are a group

, wherein A⁶¹, A⁶², A⁶³, A⁶⁴, A⁶⁵, A⁶⁶, A⁶⁷, A⁶⁸,

 A^{69} and A^{70} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_5 - C_{12} -cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C_5 - C_{12} -cycloalkoxy, C_5 - C_{12} -cycloalkoxy which is substituted by E, C_6 - C_2 -aryl, C_6 - C_2 -aryl which is substituted by E, C_2 - C_2 -alkenyl, C_2 - C_2 -beteroaryl which is substituted by E, C_2 - C_2 -alkenyl, C_2 - C_2 -alkoxy, C_1 - C_2 -alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 -aralkyl, C_7 - C_2 -aralkyl, which is substituted by E, C_7 - C_2 -aralkoxy which is substituted by E, or -CO- R^{28} ,

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C \equiv C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COOR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl; or C_1 - C_2 4alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, wherein one of the substituents A^{41} , A^{42} , A^{43} , A^{44} , A^{51} , A^{52} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} , A^{60} , A^{61} , A^{62} , A^{63} , A^{64} , A^{65} , A^{66} , A^{67} , A^{68} , A^{69} and A^{70} represents a single bond.

5. (currently amended) An electroluminescent device according to claim 2, 3 or 4[[,]] wherein

Y³ and Y^{3'} are independently of each other a group of formula

wherein

 R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , and R^{87} are independently of each other H, C_1 - C_{24} alkyl, which is optionally substituted by E and/or interrupted by D, C_1 - C_{24} alkenyl, which is optionally substituted by E, C_5 - C_{12} cycloalkoxy, which is optionally substituted by E, C_6 - C_{18} aryl, which is optionally substituted by E, C_1 - C_2 4alkoxy, which is optionally substituted by E and/or interrupted by D, C_6 - C_{18} aryloxy, which is optionally substituted by E and/or interrupted by D, C_1 - C_2 4alkylselenium, which is optionally substituted by E and/or interrupted by D, C_1 - C_2 4alkylselenium, which is optionally substituted by E and/or interrupted by D, C_1 - C_2 4alkyltellurium, which is optionally substituted by E and/or interrupted by D, C_2 - C_2 6heteroaryl which is substituted by E, or C_6 - C_{18} 6aralkyl, which is optionally substituted by E, or two groups R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{67} , R^{58} , R^{58

R⁸⁵, R⁸⁶, and R⁸⁷, which are neighbouring to each other, are a group

or A^{91} A^{97} , wherein A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_2 -alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 -aralkyl, C_7 - C_2 -aralkyl, which is substituted by E, C_7 - C_2 -aralkoxy, C_7 - C_2 -aralkoxy which is substituted by E, or -CO- C_2 -aralkoxy which

 R^{68} , R^{69} , R^{78} , R^{79} , R^{88} and R^{89} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 R^{68} and R^{69} , R^{78} and R^{79} , and/or R^{88} and R^{89} form a ring, especially a five- or six-membered ring, or

 R^{68} and R^{70} , R^{69} and R^{73} , R^{77} and R^{78} and/or R^{84} and R^{89} are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C=C-; and E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl; or C_1 - C_2 4alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

6. (currently amended) An electroluminescent device according to <u>claim 1 any of claims 1 to 5</u>, wherein

Y¹ and Y² are independently of each other

n1, n2, n3, n4, n5, n6 and n7 are 1, 2, or 3, in particular 1[[,]]

 E^{1} is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl,

 R^6 and R^7 are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_2 -alkenyl, C_2 - C_2 -alkoxy, C_1 - C_2 -alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 -aralkyl, C_7 - C_2 -aralkyl, which is substituted by E, C_7 - C_2 -aralkoxy, C_7 - C_2 -aralkoxy which is substituted by E, or -CO- R^{28} ,

 R^8 is C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_2 -aralkyl, or R^9 and R^{10} form-a ring, especially a five- or six-membered ring,

 R^{14} and R^{15} are independently of each other H, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C≡C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular-

 R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl, or C_1 - C_2 4alkyl which is interrupted by $-O_7$,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by --O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₂₄alkyl.

7. (currently amended) An electroluminescent device according to claim 2, 3, or 5[[,]] wherein the 2H-benzotriazole compound is a compound of formula

$$A^{21} \xrightarrow{A^{21}} \xrightarrow{A^{21}} \xrightarrow{A^{21}} \xrightarrow{A^{21}} \xrightarrow{A^{15}} \xrightarrow{A^{16}} \xrightarrow{A^{15}} \xrightarrow{A^{18}} \xrightarrow{A^{15}} \xrightarrow{A^{15$$

A²¹, A²², A²³ and A²⁴ are independently of each other hydrogen, halogen, C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, especially-

 A^{22} and A^{23} or A^{11} and A^{23} are a group of formula , or

 A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} , and A^{18} are independently of each other H, CN, C_1 - C_{24} alkyl, C_1 - C_{24} alkylthio, C_6 - C_{18} aryl, -NR 25 R 26 , -CONR 25 R 26 , or -COOR 27 , or C_2 - C_{10} heteroaryl, wherein

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, R^{27} is C_1 - C_{24} alkyl, and

Y³ is a group of formula

$$R^{70}$$
 R^{71}
 R^{72}
 R^{76}
 R^{75}
 R^{75}
 R^{74}
 R^{75}
 R^{75}

R⁴¹ is hydrogen, C₁-C₂₄alkoxy, or OC₇-C₁₈aralkyl, R⁴² is hydrogen, or C₁-C₂₄alkyl,

R⁴³ is hydrogen, halogen, -CONR²⁵R²⁶, -COOR²⁷,

especially
$$\mathbb{R}^{110}$$
 , wherein

 E^{1} is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl,

R¹¹⁰ is H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or

R⁴⁴ is hydrogen, or C₁-C₂₄alkyl,

R⁴⁵ is hydrogen, or C₁-C₂₄alkyl,

A^{11'}, A^{12'}, A^{13'}, and A^{14'} are independently of each other H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

R⁶⁸ and R⁶⁹ are independently of each other C₁-C₂₄alkyl, especially C₄-C₁₂alkyl, especially hexyl, heptyl, 2-ethylhexyl, and octyl[[,]] which can be interrupted by one or two oxygen atoms,

R⁷⁰, R⁷¹, R⁷², R⁷³, R⁷⁴, R⁷⁵, R⁷⁶, R⁹⁰, R⁹¹, R⁹², and R⁹³ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and

R²⁷ is C₁-C₂₄alkyl.

8. (currently amended) An electroluminescent device according to claim 2, 3, or 6[[,]] wherein the 2H-benzotriazole compound is a compound of formula

$$\begin{bmatrix} A^{42} & A^{41} & A^{56} & A^{57} \\ A^{41} & A^{41} & A^{41} & A^{51} \\ A^{51} & A^{52} & A^{54} & A^{54} \\ A^{52} & A^{53} & A^{54} & A^{57} \\ A^{59} & A^{57} & A^{58} \\ A^{59} & A^{59} & A^{59} & A^{59} \\ A^{59} & A^{59} & A^{59} &$$

 A^{41} , A^{42} , A^{43} and A^{44} are independently of each other hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{18} aryl, -NR²⁵R²⁶, -CO NR²⁵R²⁶, or -COOR²⁷, or C_2 - C_{10} heteroaryl,

especially a group of formula or
$$\begin{bmatrix} [,] \end{bmatrix}$$
 or A^{42} and A^{43} are a group of formula , or

A⁵¹, A⁵², A⁵³, A⁵⁴, A⁵⁵, A⁵⁶, A⁵⁷, A⁵⁸, A⁵⁹ and A⁶⁰ are independently of each other H, CN, C₁-

 C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_6 - C_{18} aryl, -NR 25 R 26 , -CONR 25 R 26 , or -COOR 27 , or C_2 - C_{10} heteroaryl, wherein

E¹ is O, S, or -NR²⁵'-,

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, R^{27} is C_1 - C_{24} alkyl, and

Y¹ is a group of formula

 R^6 is C_1 - C_{24} alkoxy, or -O- C_7 - C_{25} aralkyl, R^7 is H, or C_1 - C_{24} alkyl, R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl[[,]] which can be interrupted by one or two oxygen atoms, and $R^{25'}$ is C_1 - C_{24} alkyl, or C_6 - C_{10} aryl.

9. (currently amended) An electroluminescent device according to claim 2, [[4]], 5 or 6[[,]] wherein the 2H-benzotriazole compound is a compound of formula

$$Y^3 - N$$
 N
 Y^2
 Y^3
 Y^3
 Y^3
 Y^4
 Y^3
 Y^4
 $Y^$

$$\mathbb{R}^9$$
 \mathbb{R}^{10} , or \mathbb{R}^{41}

Y³ is a group of formula

 R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{42} alkyl[[,]] which can be interrupted by one or two oxygen atoms,

 R^{25} is H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl,

R⁴¹ is C₁-C₂₄alkoxy, or C₇-C₁₅phenylalkoxy, and

 R^{44} is is H, or C_1 - C_{24} alkyl.

10. (currently amended) A 2H-benzotriazole compound of the formula

$$\left[\begin{array}{c} X^2 \end{array}\right]_a^a \stackrel{N}{=} N \stackrel{N}{\downarrow} N \left\{Y^{\frac{1}{J_b}} X^1\right\}_b$$
 (I),

a is 0, or 1,

b is 0, or 1,

X1 is a group of formula

$$-N$$
 Ar^2
 X^3
, if b is 1, or Y^3 , if b is 0, wherein

c is 0, or 1

 X^2 and X^3 are independently of each other a group of formula

Ar¹, Ar², and Ar³ are independently of each other-aryl or heteroaryl, which can optionally be-substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted, Y^1 and Y^2 are independently of each other a divalent linking group, and Y^3 are independently of each other-aryl or heteroaryl, which can optionally be-substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.