Monitoring COVID-19 Infections

By: Peter Bayerle, Samantha Solomon, & Sophia Sternberg

Introduction and motivation

This quarter we investigated methods of modeling the spread of COVID-19. We were interested in:

- 1. Modeling flow patterns of COVID-19 to see how the virus affects different demographic groups (project part 1)
- 2. Discovering fair ways to allocate resources to minimize spread of COVID-19 (project part 2)

Part 1

- Goal: model flow patterns of COVID-19 to see how the virus affects different demographic groups
- Approach: we used a modified version of the SIR equations to model the spread of COVID-19. Our model takes into account different social vulnerability and comorbidity risk compartments within the population

$$\frac{dS_{v,c}}{dt} = -\frac{\beta_{v,c} \cdot S_{v,c} \cdot I}{N}$$

$$\frac{dI_c}{dt} = -\sum_v \frac{dS_{v,c}}{dt} - \gamma \cdot I_c$$

$$\frac{dR}{dt} = \gamma \cdot I$$

Part 1 (cont.)

Part 2

- Goal: analyze precautionary response & budget allocation fairness on different populations
- Approach: we used minimization of MSE to find α_{own} We then implemented 4 policies to allocate the \$1,000,000 NPI budget.

$$\alpha = g(x) = \frac{1}{\log_2(2 \cdot 10^{-3}x + 2)}$$
 $x = g^{-1}(\alpha) = \frac{2^{1/\alpha} - 2}{2 \cdot 10^{-3}}$

Part 2 (cont.)

Summary: Process & Obstacles

- Visualized the dynamics of COVID-19 through the lens of Social Vulnerability & Comorbidity
- Expectations:
 - Infection Curve & Viral Load Density Curve flatten when Infection Rate decreased, i.e. "flatten the curve"
 - Varying effects of NPIs on α
- Obstacles:
 - Exploring "Individual Fairness" vs. "Group Fairness"
 - Measuring "Fairness" (Open-Ended)
 - Implementation & Interpretation of Results
 - Optimization
 - Grid Search
 - Node Breakdown

Flatten the Curve

Coordination

Use of Google Colab to simultaneously work on the project

- Scheduled meetings to discuss best ways to approach each part and to delegate tasks
- Open communication through group text message

Future Work

- Proof of concept use cases with previous outbreaks given a limited amount of data (e.g. SARS)
- A more positive outlook: Extrapolating programming tools used here for Marketing purposes (e.g. How long does it take for brand awareness to spread? Can a popular product be tracked in terms of 'uptick' in sales and consumer behavior?

References

- Visuals
 - Icon used from Google Colab
 - Icons for Slides and Docs (Google)

Monitoring COVID-19 Infections

Peter Bayerle, Samantha Solomon, & Sophia Sternberg PSTAT 197A

Introduction and Motivation

This quarter we investigated methods of modeling the spread of COVID-19. We were interested in:

- 1. Modeling flow patterns of COVID-19 to see how the virus affects different demographic groups (project part 1)
- 2. Discovering fair ways to allocate resources to minimize spread of COVID-19 (project part 2)

Part 1

Goal: model flow patterns of COVID-19 to see how the virus affects different demographic groups

Approach: we used a modified version of the SIR equations to model the spread of COVID-19. Our model takes into account different social vulnerability and comorbidity risk compartments within the population

Part 2

Goal: analyze precautionary response & budget allocation fairness on different populations

Approach: we used minimization of MSE to find α . We then implemented 4 policies to allocate the \$1,000,000 NPI budget.

$$\alpha = g(x) = \frac{1}{\log_2(2 \cdot 10^{-3}x + 2)}$$

$$x = g^{-1}(\alpha) = \frac{2^{1/\alpha} - 2}{2 \cdot 10^{-3}}$$

Summary

- * Visualized the dynamics of COVID-19 through the lens of Social Vulnerability & Comorbidity
- * Expectations:
 - Infection Curve & Viral Load Density Curve flatten when Infection Rate decreased, i.e. "flatten the curve"
 - Varying effects of NPIs on α
- * Obstacles:
 - Exploring "Individual Fairness" vs. "Group Fairness"
 - Measuring "Fairness" (Open-Ended)
 - Implementation & Interpretation of Results
 - Optimization
 - Grid Search
 - Node Breakdown

Coordination

- · Use of Google Colab to simultaneously work on the project colab
- · Scheduled meetings to discuss best ways to approach each part and to delegate tasks
- Open communication through group text message

References

Visuals

- · Icon used from Google Colab
- · Icons for Slides and Docs (Google)

- Populations over 100 days, Vulnerability = 0.8 £ 20000 20000 -
 - $\frac{dS_{v,c}}{dt} = -\frac{\beta_{v,c} \cdot S_{v,c} \cdot I}{N}$
- Proof of concept use cases with previous outbreaks given a limited amount of data (e.g. SARS)
- A more positive outlook: Extrapolating programming tools used here for Marketing purposes (e.g. How long does it take for brand awareness to spread? Can a popular product be tracked in terms of 'uptick' in sales and consumer behavior?

Future Work