## Sistemi informativi aziendali ERP e sistemi di data analysis

### **Data Warehousing**

Maurizio Pighin, Anna Marzona



### **Data warehouse**

- Bill Inmon (seconda metà anni '80)
  - "[...] collezione di dati, a supporto del processo decisionale manageriale orientata al soggetto, integrata, non volatile e dipendente dal tempo"
- IBM System Journal (primi anni '90)
  - "Un singolo, completo e consistente deposito di dati, ottenuti da diverse fonti e resi disponibili agli utenti finali, in maniera tale da poter essere immediatamente fruibili"

# Data warehouse e metodologia OLAP

- OLAP: On Line Analytical Processing
  - Identifica strumenti interattivi orientati a semplificare il processo decisionale aziendale
- Caratteristiche richieste ai sistemi per l'analisi dei dati (FASMI - OLAP Report 1995)
  - Velocità di risposta (Fast)
  - Analiticità (Analytical)
  - Condivisione delle informazioni (Shared)
  - Multidimensionalità (Multidimensional)
  - Informatività (Informational)

# Architettura dei sistemi di data warehousing

- Il sistema è costituito da basi di dati poste a livelli distinti, diverse per finalità, struttura e tipologia di dati contenuti
  - Sorgenti
    - basi di dati origine (operazionali o esterne)
  - Staging Area (opzionale)
    - area intermedia utilizzata come appoggio per le procedure di trasformazione dei dati
  - Data warehouse
    - base di dati centrale; contiene tutti i dati necessari all'analisi articolati su un modello unificato concettualmente multidimensionale
  - Data mart
    - basi di dati multidimensionali su cui si appoggia l'analisi

## Architettura dei sistemi di data warehousing

- Architetture a due livelli
  - Sorgenti, Data warehouse, Data mart
- Architetture a tre livelli
  - Comprendono anche l'area di trasformazione dei dati (staging area)
- Appartengono al sistema
  - Procedure per il trasferimento dei dati tra le diverse basi di dati
  - Strumenti per l'analisi dei dati

# Architettura dei sistemi di data warehousing

Sistemi informativi aziendali ERP e sistemi di data analysis Cap.12 - Data Warehousing Maurizio Pighin, Anna Marzona



## Modelli concettuali per il data warehouse: il DFM

- Il DFM (Dimensional Fact Model) descrive graficamente i fatti attorno a cui si struttura un data warehouse
  - Ogni fatto è rappresentato tramite uno schema di fatto
- Schema di fatto
  - Fatto
    - rettangolo contenente il nome del fatto e le sue misure
  - Dimensioni di base
    - circoletti etichettati collegati al fatto



# Modelli concettuali per il data warehouse: il DFM

- Le gerarchie dimensionali sono alberi con radice nelle dimensioni di base
  - Gli attributi dimensionali sono i nodi dell'albero
- DFM permette di rappresentare caratteristiche proprie dei sistemi multidimensionali
  - Opzionalità
  - Gerarchie condivise
  - Convergenze
  - Non aggregabilità

## Modelli concettuali per il data warehouse: il DFM



## Corrispondenze con il modello Entità-Relazione

Sistemi informativi aziendali ERP e sistemi di data analysis Cap.12 - Data Warehousing Maurizio Pighin, Anna Marzona





### Modelli logici per il data warehouse

#### ROLAP

- La struttura multidimensionale dei fatti viene realizzata su database relazionale
- Interrogazioni tramite query SQL standard
- Vantaggi
  - minima occupazione di spazio
  - elevata conoscenza degli strumenti relazionali da parte degli operatori
- Svantaggi
  - esecuzione di query poco efficiente
  - le soluzioni per il miglioramento della velocità di risposta (denormalizzazione, materializzazione delle viste) implicano un aumento della complessità e dell'occupazione di spazio

### Modelli logici per il data warehouse

#### MOLAP

- La struttura dei fatti viene realizzata su database multidimensionale, con accesso di tipo posizionale
- Interrogazioni ottimizzate tramite strumenti di query proprietari
- Vantaggi
  - elevata efficienza nell'esecuzione delle query complesse
  - stretta aderenza al modello concettuale
- Svantaggi
  - elevata occupazione di spazio (viene allocato lo spazio per ogni possibile ennupla dimensionale)
  - mancanza di standard, sia di rappresentazione dei dati che di interrogazione
  - scarsa familiarità con il modello da parte degli operatori

## Modelli logici per il data warehouse

#### HOLAP

- Soluzione intermedia che combina i vantaggi di MOLAP e ROLAP
- Data warehouse: realizzato su base relazionale
  - semplicità di sviluppo e di manutenzione delle procedure di popolamento dei fatti
  - scalabilità del sistema
- Data mart: realizzati su base multidimensionale
  - efficienza nelle interrogazioni
  - dimensioni contenute

### Schemi multidimensionali su basi di dati relazionali

- Schema a stella
  - Tabella dei fatti
    - una tabella per ogni fatto
    - un campo per ogni misura ed una chiave esterna per ogni dimensione di base
  - Tabelle delle dimensioni
    - una per ogni dimensione di base
    - un campo per ogni attributo dimensionale della gerarchie che ha radice nella dimensione rappresentata (denormalizzazione completa)
  - Vantaggi
    - massima velocità nel reperimento delle informazioni
  - Svantaggi
    - ridondanza, spazio occupato, scarsa intuitività della struttura, elevata complessità di aggiornamento

### Schema a stella



Modello logico su schema a stella

# Schemi multidimensionali su basi di dati relazionali

- Schema a fiocco di neve
  - Riduce la denormalizzazione delle tabelle delle dimensioni esplicitando alcune gerarchie
  - Vantaggi
    - chiara separazione logica sui soggetti, migliori prestazioni nel caso di materializzazione di viste, minor sensibilità alle variazioni logiche delle gerarchie nel tempo
  - Svantaggi
    - velocità di risposta alle interrogazioni minore rispetto allo schema a stella
- Costellazione
  - Tabelle dimensionali condivise da più tabelle dei fatti
  - Approccio da seguire quando più fatti coinvolgono gli stessi soggetti

Sistemi informativi aziendali ERP e sistemi di data analysis Cap.12 - Data Warehousing Maurizio Pighin, Anna Marzona



e 17

### Costellazione di fatti



Costellazione tra Vendite e Reclami

## Il ciclo di vita dei sistemi di data warehousing

- La costruzione avviene con un approccio iterativo
  - Costruzione del primo ipercubo relativamente al fatto più significativo
  - Integrazione progressiva degli altri fatti
  - Rilascio di data mart
- Vantaggi
  - Primi risultati disponibili in breve tempo
  - Investimenti diluiti
  - Possibilità di tarare e di sviluppare il modello sulla base delle indicazioni emerse dall'uso effettivo



# Costruzione di un data mart

- Analisi delle sorgenti
  - Descrizione dei dati disponibili
  - Verifica della compatibilità con i requisiti dell'utente
  - Creazione schema concettuale unico ed uniforme
- Progettazione concettuale degli schemi di fatto
  - Identificazione di misure, dimensioni, gerarchie dimensionali, limiti di aggregabilità delle misure per ogni fatto
- Progettazione logica e ed implementazione fisica dei fatti nel data warehouse
  - Uso di schemi a stella o a fiocco di neve, costruzione di viste materializzate o di ipercubi ad alto livello di aggregazione
- Progettazione dell'alimentazione
  - Definizione delle procedure di popolamento del data warehouse a partire dalle sorgenti

- Fasi di popolamento
  - Estrazione
    - estrae dalle sorgenti i dati da portare sul data warehouse
  - Integrazione e trasformazione
    - riconduce i dati estratti al modello unificato definito per il data warehouse
  - Pulizia
    - aumenta la qualità dei dati, riconoscendo e risolvendo errori, incongruenze ed omissioni
  - Caricamento
    - popola il data warehouse con i dati estratti, trasformati e ripuliti

- Estrazione
  - Informazioni di base
    - quali informazioni devono essere acquisite (tabelle, campi)
    - come devono essere trattati gli eventi origine (es. aggregazione alla fonte o estrazione al dettaglio massimo)
  - Tipi di estrazione
    - statica: tratta tutti i dati presenti nelle sorgenti
    - incrementale: tratta i soli dati inseriti o alterati dalla data dell'ultimo popolamento del data warehouse, identificandoli tramite una delle seguenti metodologie
      - estrazione delegata alle applicazioni (necessita di staging area)
      - estrazione delegata a trigger (necessita di staging area)
      - estrazione pilotata da timestamp
      - estrazione statica con successiva selezione per confronto diretto

- Integrazione e trasformazione
  - Riporta i dati estratti al modello aziendale
  - Fasi di integrazione e trasformazione
    - riconciliazione dei dati provenienti da fonti diverse riferite allo stesso soggetto
    - riconoscimento di duplicati
    - trasformazione di dati continui utilizzati come dimensioni in parametrizzazioni discrete (es. creando fasce di valori per misure come il peso o le quantità per vendita)
    - standardizzazione
      - del formato
      - delle convenzioni
      - delle codifiche

- Pulizia
  - Innalzamento del livello di qualità dei dati
  - Non è necessariamente successiva alla integrazione
  - Tipologie di errori trattati
    - dati incompleti
    - dati errati o incomprensibili
    - dati inconsistenti
  - Strumenti utilizzati per il riconoscimento e la correzione
    - dizionari
    - regole
    - classificatori, predittori

- Caricamento
  - Caricamento vero e proprio dei dati sul data warehouse
  - Aggiornamento dall'esterno (dimensioni più esterne) all'interno (fatti), con applicazione delle politiche di aggiornamento agli elementi già esistenti
  - Aggiornamento dei fatti
    - inserimento dei fatti nuovi
    - eventuale sovrascrittura degli elementi modificati

- Aggiornamento delle dimensioni:
  - inserimento dei nuovi valori per le dimensioni
  - eventuale modifica dei valori presenti, secondo diverse strategie
    - non fare nulla (ogni fatto usa gli attributi dimensionali validi all'inserimento della dimensione)
    - sovrascrivere (ogni fatto usa gli attributi dimensionali validi adesso)
    - creare una nuova istanza da associare ai fatti che si verificano da oggi in avanti (ogni fatto usa gli attributi dimensionali validi all'epoca)
    - creare una nuova istanza con marcatori temporali (massima flessibilità)

### L'analisi OLAP

- Navigazione interattiva sui dati multidimensionali
- Esplorazione guidata da ipotesi
- Sessione di analisi complessa
  - Ciascun passo è conseguenza dei risultati ottenuti al passo precedente
  - Le interrogazioni operano per differenza rispetto all'interrogazione precedente
- Passo di navigazione
  - Applicazione di un operatore OLAP all'insieme di dati estratto al passo precedente
- Risultati presentati in forma tabellare o grafica

### **Operatori OLAP: Drill down**

- Dettaglia i dati
  - Scendendo lungo una gerarchia
  - Aggiungendo una dimensione di analisi



### **Operatori OLAP: Roll up**

- Sintetizza i dati
  - Percorrendo le gerarchie nella direzione di maggior aggregazione
  - Eliminando una delle dimensioni di analisi



### **Operatori OLAP: Slice**

 Fissa il valore di una delle dimensioni base per analizzare la porzione di dati filtrati così ottenuta



### **Operatori OLAP: Dice**

 Filtra i fatti elementari considerati nell'analisi fissando valori per coordinate dimensionali di qualsiasi livello



### **Operatori OLAP: Pivot**

| Prodotto        | Area/Anno | 2017 | 2018           |
|-----------------|-----------|------|----------------|
| Sedia Olga h.46 | Est       | 203  | 220            |
|                 | Ovest     | 64   | 64             |
|                 | 1         | ļ    |                |
|                 | _         |      |                |
| Prodotto        | Anno/Area | Est  | Ovest          |
| Sedia Olga h.46 | 2017      | 203  | 64             |
|                 | 2018      | 220  | 64             |
|                 |           |      | Asse rotazione |
|                 |           |      |                |

Pivoting tra le dimensioni Anno e Area

- Inverte la relazione tra le dimensioni, realizzando una rotazione del cubo nell'analisi
- Particolarmente utile nell'analisi di dati presentati in forma tabellare

## Aree di applicazione: Flusso attivo

### Analisi tipiche

 Mix di prodotti venduti, fatturato per cliente/area geografica/prodotto, efficienza della rete di distribuzione, rilevamento abbandoni silenziosi, puntualità del servizio al cliente

#### Eventi

Documenti del flusso attivo



Esempio di schema di fatto per analisi delle vendite

## **Aree di applicazione:** Flusso passivo

### Analisi tipiche

 Incidenza del costo degli articoli di acquisto, descrizione e confronto di fornitori alternativi, puntualità, ...

#### **Eventi**

**Fornitore**  Documenti **Tipologia** Acquisto del flusso passivo Articolo Giorno Mese Trimestre Quantità Anno **Importo Sconto** Classe N.Giorni merceologica

Tipo fornitore

Esempio di schema di fatto per analisi degli acquisti

## Aree di applicazione: Controllo gestione

### Analisi tipiche

 Costi/ricavi, marginalità per cliente/articolo, scostamento da budget, ...

#### Eventi

Fatture attive e passive,
budget, movimenti di
contabilità analitica e
ordinaria,
costi produttivi

Classe

merceologica



Esempio di schema di fatto per analisi di marginalità

Margine

Anno

## Aree di applicazione: Logistica

- Analisi tipiche
  - Attività sui depositi, rotazioni articoli, consumi
- Eventi
  - Movimenti di magazzino



Tipo

deposito

Esempio di schema di fatto per analisi sui movimenti logistici

# Aree di applicazione: Produzione

- Analisi tipiche
  - Costi e efficienza del processo produttivo
- Eventi
  - Ordini di produzione e di lavorazione, consuntivazione lavorazioni



Esempi di schemi di fatto per analisi di produzione con riferimento ai materiali ed alle lavorazioni

### Aree di applicazione: Qualità

### Analisi tipiche

 Difettosità degli articoli, puntualità e difettosità dei fornitori, puntualità aziendale, attuazione azioni correttive, efficacia azioni preventive, ...

#### Eventi

Rilevamento non conformità, class spedizioni, ingressi a magazzino, reclami, azioni correttive, ...



Esempio di schema di fatto per analisi delle non conformità

## Aree di applicazione: CRM

#### Analisi tipiche

 Efficacia di promozioni e di azioni di fidelizzazione, esito di campagne di telemarketing, prestazioni del servizio di assistenza ai clienti

#### Eventi

 Azioni commerciali,
vendite, chiamate di assistenza, ...



Esempio di schema di fatto per analisi sul servizio di assistenza clienti



### Aree di applicazione: Risorse umane

- Analisi tipiche
  - Presenze, retribuzioni, ...
- Eventi
  - Ingressi/Uscite, emissione cedolini di pagamento, ...



Esempio di schema di fatto per analisi delle presenze

