PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B. Tech 5th Semester

Assignment Questions-I

Subject: (Design and Analysis of Algorithm) Code: (303105218)

Date: (10/06/2024) To be submitted by: 28th June 2024

1. Discuss the different types of algorithms and their classifications. Explain at least two design techniques with examples.

Ans: Types of Algorithms:

- 1. **Search Algorithms:** These are used to find an element within a data structure.
 - o Example: Binary Search, Linear Search
- 2. **Sorting Algorithms:** These arrange elements in a particular order (ascending or descending).
 - o Example: Quick Sort, Merge Sort, Bubble Sort
- 3. **Graph Algorithms:** These are used to solve problems related to graph theory.
 - Example: Dijkstra's Algorithm, Depth-First Search (DFS), Breadth-First Search (BFS)
- 4. **Dynamic Programming Algorithms:** These solve complex problems by breaking them down into simpler subproblems and storing the results of these subproblems.
 - o Example: Fibonacci Sequence, Knapsack Problem
- 5. **Greedy Algorithms:** These build up a solution piece by piece, always choosing the next piece that offers the most immediate benefit.
 - o Example: Prim's Algorithm, Kruskal's Algorithm

Classifications of Algorithms:

- 1. By Implementation:
 - o Recursive Algorithm
 - o Iterative Algorithm
- 2. By Design Paradigm:
 - o Divide and Conquer
 - o Dynamic Programming
 - o Greedy Algorithms
 - Backtracking
 - o Branch and Bound
- 3. By Problem Type:
 - o Sorting
 - Searching
 - String Matching
 - o Graph Problems

Design Techniques:

1. Divide and Conquer:

- o Example: Merge Sort
 - **Divide:** Split the array into two halves.
 - **Conquer:** Recursively sort the two halves.
 - **Combine:** Merge the sorted halves to produce the sorted array.
- Example: Binary Search
 - **Divide:** Check the middle element of the array.
 - **Conquer:** Recursively search the left or right half depending on the comparison.
 - **Combine:** Return the position of the element if found.

2. Dynamic Programming:

- o Example: Fibonacci Sequence
 - **Subproblems:** Break down the Fibonacci sequence calculation into subproblems of smaller Fibonacci numbers.
 - Memoization: Store the results of subproblems to avoid redundant calculations.
- o Example: Knapsack Problem
 - **Subproblems:** Calculate the maximum value that can be obtained for smaller weights.
 - **Memoization:** Use a table to store the results of subproblems to build the solution to the overall problem.
- 2. Explain the Big Oh, Big Omega, and Big Theta notations. Provide examples of each and discuss their significance in analyzing algorithms.

Ans: **Big Oh (O):** Describes an upper bound on the time complexity of an algorithm, meaning it provides a worst-case scenario.

- **Example:** O(n²) for Bubble Sort.
- **Significance:** Ensures that the algorithm will not take more time than the given upper bound.

Big Omega (Ω): Describes a lower bound on the time complexity of an algorithm, meaning it provides a best-case scenario.

- **Example:** $\Omega(n)$ for a Linear Search.
- **Significance:** Guarantees that the algorithm will take at least this much time.

Big Theta (Θ) : Describes a tight bound on the time complexity, meaning it provides both the upper and lower bounds.

- **Example:** $\Theta(n \log n)$ for Merge Sort.
- **Significance:** Gives an exact asymptotic behavior of the algorithm.

3. Describe the best-case, worst-case, and average-case scenarios for an algorithm. Illustrate these with the example of the Insertion Sort algorithm.

Ans: **Best-Case:** The minimum time required for the algorithm to complete.

• **Example:** Insertion Sort with already sorted array. Complexity: O(n).

Worst-Case: The maximum time required for the algorithm to complete.

• **Example:** Insertion Sort with a reverse sorted array. Complexity: $O(n^2)$.

Average-Case: The expected time required for the algorithm to complete over all inputs.

• **Example:** Insertion Sort for random order. Complexity: O(n²).

Insertion Sort Example:

Best-Case: The array is already sorted.

- Time Complexity: O(n) **Worst-Case:** The array is sorted in reverse order.
- Time Complexity: O(n²) **Average-Case:** The array elements are in random order.
- Time Complexity: O(n²)

4. Explain the importance of loop invariants in algorithm correctness. Prove the correctness of the Insertion Sort algorithm using a loop invariant.

Ans: **Loop Invariant:** A property that holds true before and after each iteration of a loop.

Correctness Proof using Insertion Sort:

- 1. **Initialization:** Before the first iteration, the subarray consists of just one element, which is trivially sorted.
- 2. **Maintenance:** If the subarray is sorted before an iteration, it remains sorted after the iteration
- 3. **Termination:** When the loop terminates, the subarray is the entire array, which is sorted.
- 5. Compare and contrast Bubble Sort, Selection Sort, and Insertion Sort in terms of their time complexity, space complexity, and practical usage scenarios. Provide a detailed analysis of each.

Ans: Bubble Sort:

• **Time Complexity:** O(n²)

• **Space Complexity:** O(1)

• Usage: Simple to implement but inefficient for large datasets.

Selection Sort:

• **Time Complexity:** O(n²)

• **Space Complexity:** O(1)

• Usage: Useful when memory write operations are costly.

Insertion Sort:

• Time Complexity: O(n) in best case, $O(n^2)$ in worst case

• Space Complexity: O(1)

• Usage: Efficient for small datasets or nearly sorted data.

6. Analyze the time complexity of the binary search algorithm using the divide-and-conquer approach. Provide a recurrence relation and solve it to find the complexity.

Ans: Binary Search Algorithm:

• Divide and Conquer Approach:

o **Divide:** Find the middle element.

o **Conquer:** Recursively search the left or right half.

o **Combine:** Return the position if found.

Recurrence Relation:

• T(n) = T(n/2) + O(1)

• Solving this recurrence gives: $T(n) = O(\log n)$

7. Describe the partitioning process in Quick Sort. Write down the recurrence relation for Quick Sort and use the Master Method to derive its average and worst-case time complexities.

Ans: Partitioning Process:

• Choose a pivot element and partition the array into two subarrays.

• Elements less than the pivot go to the left, and elements greater go to the right.

Recurrence Relation:

• T(n) = T(k) + T(n-k-1) + O(n)

Average and Worst-Case Time Complexities:

- Average Case: O(n log n) using Master Method.
- Worst Case: $O(n^2)$ when the pivot is the smallest or largest element.
- 8. Explain the merge process in Merge Sort. Derive the time complexity of Merge Sort using a recurrence relation and solve it.

Ans: Merge Process:

- Divide the array into two halves.
- Recursively sort the two halves.
- Merge the sorted halves.

Recurrence Relation:

- T(n) = 2T(n/2) + O(n)
- Solving this recurrence gives: $T(n) = O(n \log n)$
- 9. Describe Strassen's algorithm for matrix multiplication. Compare its time complexity with the conventional matrix multiplication algorithm.

Ans: Strassen's Algorithm:

- Uses divide-and-conquer to reduce the number of multiplications.
- Reduces complexity from O(n³) to O(n².81).

Comparison:

- Conventional algorithm: O(n³)
- Strassen's algorithm: O(n².81)
- 10. Using the divide-and-conquer approach, design an algorithm to find the maximum and minimum elements in an array. Provide the recurrence relation and derive its time complexity.

Ans: Divide-and-Conquer Algorithm:

- **Divide:** Split the array into two halves.
- Conquer: Recursively find the maximum and minimum of the two halves.
- **Combine:** Compare the results of the two halves to get the overall maximum and minimum.

Recurrence Relation:

- T(n) = 2T(n/2) + O(1)
 Solving this recurrence gives: T(n) = O(n)