

Современные нейросетевые технологии

Лекция 5. Свёрточные сети

Вопросы

- 1. Операции свертки 1D, 2D, 3D
- 2. Сверточные слои
- 3. Pooling слой

github.com/balezz/modern_dl Срок сдачи A4 – 01.10.2022 г.

Источники:

- dlcourse.ai
- cs231n.stanford.edu
- cs230.stanford.edu

НА ПРОШЛОМ ЗАНЯТИИ

Neural networks: without the brain stuff

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Cat image by CNX OpenStax is licensed under CC BY 4.0; changes made

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

1D CBEPTKA

		200		5	0 0	-		- 1		0 K					- 0		2	7	4	9 9		- 10			77			-	
W	0	1	0	5 5	3 3	, ,		2			0	1	1		- 8		3	g g		s 1 3r 8	1	1	1	S		<u>. </u>	,	9	
X	0	0	1	1	1	0	0	=>	0		0	0	1	1	1	0	0	=>	1		0	0	1	1	1	0	0	=>	1
1																													
		0	1	0								0	1	1			0.					1	1	1					
70	0	0	1	1	1	0	0	=>	1		0	0	1	1	1	0	0	=>	2		0	0	1	1	1	0	0	=>	2
- 33			0	1	0							5 8	0	1	1								1	1	1				
	0	0	1	1	1	0	0	=>	1		0	0	1	1	1	0	0	=>	2		0	0	1	1	1	0	0	=>	3
								,																3					
				0	1	0								0	1	1	11							1	1	1			
-13	0	0	1	1	1	0	0	=>	1		0	0	1	1	1	0	0	=>	1		0	0	1	1	1	0	0	=>	2
	1											5			- 8		(3)		V										
		(V)			0	1	0								0	1	1							V 60	1	1	1		
70	0	0	1	1	1	0	0	=>	0		0	0	1	1	1	0	0	=>	0		0	0	1	1	1	0	0	=>	1

$$c_i = \sum_{k=0}^{N_{out}} x_k w_{i-k}, \ i = 0, ..., N_{out}$$

2D CBEPTKA


```
[0,0,1 1,0,0,0]
[0,0,1 1,0,0,0]
[0,1,1 1,0,0,0]
[0,0 1,1,0 0,0]
[0,0 1,1,0 0,0]
[0,0 1,1,0 0,0]
```

```
0,0,0
1,1,1
0,0,0
```

```
0,1,0
0,1,0
0,1,0
```

```
[1., 3., 3., 0., 0.]
[1., 3., 3., 0., 0.]
[1., 3., 3., 0., 0.]
[0., 3., 3., 0., 0.]
```


Convolution Layer

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

activation maps 28

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

СВЕРТОЧНЫЕ СЛОИ

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

СВЕРТОЧНЫЕ СЛОИ

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 \Rightarrow zero pad with 1

F = 5 \Rightarrow zero pad with 2

F = 7 \Rightarrow zero pad with 3
```

СВЕРТОЧНЫЕ СЛОИ

Summary. To summarize, the Conv Layer.

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S.
 - the amount of zero padding P.

Common settings:

- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

СЖИМАЮЩИЕ СЛОИ

MAX POOLING

Single depth slice

			•	
x T	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like
 [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm