蓝牙辅助配网方案

针对 WiFi & BLE 双模组设备,通过 BLE 的通信完成对设备 WiFi 连接的 SSID 及 密码的配置。

修改记录

版本	变更	时间	修改人
V0. 1	初始版本:定义 App 和设备主流程及配网数据格式	2018. 07. 02	王路 萧琒
V0. 2	流程增加 App 到云端的请求; BLE 设备 Notify 状态; 数据结构调整及补充	2018. 07. 03	左罗
V0. 3	补充 BSSID 字段约定	2019. 04. 10	左罗
V0. 4	新增蓝牙广播发现类型区分; App 发送数据增加绑定用的 AppToken; 设备 Notify 增加上报 Token 状态的 code	2019. 06. 10	左罗

1. BLE 辅助配网流程

蓝牙辅助配网流程

2. BLE 辅助配网数据格式

按照流程, 蓝牙辅助配网设计的 App 和设备交互流程有 4 处:

- 发现流程: 蓝牙广播;
- App 发送数据;
- BLE 接收到数据反馈;
- BLE Notify 上报连接状态等;

2.1 发现流程: 蓝牙广播格式

2019.06.10 新增

设备发现流程中,蓝牙广播自己时要区分出设备是处于蓝牙辅助配网状态,和普通蓝牙设备广播信息做区分。因为 App 端需要判断设备是普通蓝牙设备需要直接绑定还是 combo 设备需要走蓝牙辅助配网流程。

区分方法,根据广播字段里的 subType 区分:

其中 SubType 类型如下:

SubType	类型说明		
0x00	基本类型		
0x01	阿里 Beacon		
0x02	蓝牙辅助 WiFi 网络配置		

2.2 App 发送数据及设备响应

BLE 辅助配网数据封装在 Breeze 蓝牙数据里面。依赖 Breeze AES 加密传输协议。

指令类型是扩展指令 0x0D 和 0x0E。

OxOD: 扩展指令, 用于手机 App 获取蓝牙设备版本信息及设备签名认证等,

下行, PayLoad 按照 TLV 的格式封装

OxOE:扩展指令,用于蓝牙设备上报查询,与 OxOD 的匹配,用于上行,

PayLoad 按照 TLV 的格式封装

扩展指令 Payload 按照 TLV 格式封装, 其中 BLE 辅助配网的扩展指令 TYPE 是 0x06。

0x0D 指令详细的 Value 如下:

СТуре	CLen	CValue	Usage	Description
0x01	1~64	Value of ssid	必选。 Configure SSID	采用 UTF8 编码
0x02	1~32	Value of password	必选。 Configure PASSWORD	采用 UTF8 编码
0x03	6	Value of BSSID	可选。 Configure BSSID	HEX
0x04	16	Value of AppToken	可选。 绑定相 关 AppToken	HEX, e.g. A58A171F1DFA7197BB71FCC726397782

- 2019.04.10 补充,BSSID 存在获取失败的场景,例如,App 没有开启 WiFi Info capability,或者手机开启了热点,需要利用蓝牙辅助配网配到这个手机 热点上,iOS 无法自身的 mac。 BSSID 获取失败的场景下,默认传递 BSSID 为『000000000000』(因设备端目前实现此字段为必选)。
- 2019.06.10, 补充 AppToken,用于设备联网成功后上报。 采用完整 Token 方式。

• 2019.07.02, AppToken,约定 App 和设备上报云端都做 upperCase,大写字母转换。

若 TLV 完整数据过长, 需要 BreezeSDK 进行拆包。

0x0E 指令的详细 Value 如下:

СТуре	CLen	CValue	Usage	Description
0x01	1	Value of Code	响应 Code	不为空。 0x01 为 success 0x02 为 Fail
0x02	1~64	Value of Message	响应 Message	可为空,采用 UTF8 编码

2.3 BLE 设备 Notify 连接状态

设备获取 SSID 及 PWD 后进行连接 AP, 有可能有连接 AP 成功/失败、连接云端成功/失败等状态, 需要反馈给 APp。

反馈通道通过 BLE 的 Notify 机制。 (目前 Breeze 没有自由特殊指令的 Notify, 姜剑 考虑扩展。) 暂定使用 0x01 通用上报, Payload 采用 TLV 格式。

0x01 指令的详细 Value 如下:

СТуре	CLen	CValue	Usage	Description
0x01	1	Value of Status	状态码	不为空 0x01 为连接上 AP 0x02 为连接 AP 失败; 0x03 上报 Token 完成
0x02	0~64	Value of Message	状态码消息	状态码对应的消息: 0x01: 为空; 0x02, 具体失败消息, UTF8 编码; 0x03, 为空

• 2019.06.10, 补充状态码 0x03, 设备上报 Token 后的反馈。