Reporte de Actividades - Enero 2019 - Octubre 2021

Jaime E. Forero Romero Profesor Asociado - Departamento de Física Universidad de los Andes

Octubre 7,2021

Índice

1.	Docencia	2
	1.1. Cursos dictados	2
	1.2. Evaluaciones de estudiantes	2
	1.3. Desarrollo de nuevos cursos	2
	1.4. Dirección de monografías de pregrado	3
2.	Investigación	4
	2.1. Refereed Papers	4
	2.2. Bibliometría	6
	2.3. Asesoría posgrado	8
	2.4. Asesoría de postdocs	8
	2.5. Financiación	9
	2.6. Visitas de investigación	9
	2.7. Colaboraciones Internacionales de Alto Impacto	9
3.	Aporte Institucional	11
	3.1. Comunidad Uniandes	11
	3.2. Comunidad Colombiana	11
	3.3. Comunidad Internacional	11
4.	Autoevaluación	11
5.	Plan 2022-2024	12

Logros principales

- Perfil consolidado dentro de Uniandes como docente en programación, cómputo e inteligencia artificial.
- Único profesor de la Facultad de Ciencias que hace parte del Centro de Investigación y Formación en Inteligencia Artificial de Uniandes.
- Autor de la mayor cantidad de publicaciones en la historia de la astronomía colombiana hasta la fecha.
- Perfil profesional de alto reconocimiento y visibilidad dentro de Colombia y América Latina.

1. Docencia

1.1. Cursos dictados

Curso	Semestre	Inscritos
Física II	2019-10	84
Métodos Computacionales (viejo pénsum)	2019-10	28
Métodos Computacionales (viejo pénsum)	2019-20	38
Herramientas Computacionales (viejo pénsum)	2019-20	42
Física II	2020-10	90
Introducción a la ciencia de datos	2020-10	15
Física I	2020-20	83
Métodos Computacionales I (nuevo pénsum)	2020-20	32
Física I	2021-10	75
Métodos Computacionales I (nuevo pénsum)	2021-10	41
Física I	2021-20	69
Métodos Computacionales II (nuevo pénsum)	2021-20	22

1.2. Evaluaciones de estudiantes

Semestre	Puntaje	Nivel
2019-10	4.2/5.0	promedio-bajo
2019-20	3.6/5.0	promedio-bajo
2020-10	sin nota	-
2020-20	3.8/5.0	promedio-bajo
2021-10	3.5/5.0	promedio-bajo

1.3. Desarrollo de nuevos cursos

 Construcción de un nueva electiva para pregrado avanzado y posgrado: Introducción a la ciencia de datos.

Programa:

https://github.com/ComputoCienciasUniandes/IntroDataScience/blob/master/programa/programa.pdf

Re-estructuración de la serie de cursos computacionales para la carrera de Física: Python Bootcamp (sin créditos, 16 horas, metodología flipped classroom), Métodos computacionales I (3 créditos, 16 semanas) y Métodos Computacionales II (2 créditos, 8 semanas).

Programas

Métodos Computacionales I: https://github.com/ComputoCienciasUniandes/MetComp1_202110/blob/main/programa/programa.pdf

Métodos Computacionales II: https://github.com/ComputoCienciasUniandes/MetComp2_202120/blob/main/programa/metodos_2.pdf

Lista de videos

Python Bootcamp: https://www.youtube.com/playlist?list=PLyCClGzMINigJq71burv1Ci4MVpm2J5se

1.4. Dirección de monografías de pregrado

- 5 Jose David Peñaranda Rivera, Detección de supercúmulos de galaxias a partir del flujo de velocidades a gran escala, 2021-10
- 4 Carlos Miguel Córdoba Caycedo, Análisis geométrico de vacíos cósmicos para la acotación de parámetros cosmológicos. 2020-20.
- 3 Diego Andrés Torres Guarín, Midiendo la complejidad de la red cósmica. 2020-20
- 2 Jairo Andrés Saavedra Alonso, Aprendizaje automatizado para clasificación y estimación de corrimiento al rojo de espectros astrofísicos . 2019-
- 1 Juan Sebastián Barbosa Coy, Orbits of black holes in galactic triaxial potentials, 2019-20. 20.

2. Investigación

2.1. Refereed Papers

En subrayado sencillo se encuentran estudiantes de pregrado de Uniandes, en subrayado doble se encuentran estudiantes de posgrado o postdocs bajo mi dirección.

11 Cosmic Velocity Field Reconstruction Using Artificial Intelligence.

Wu, Ziyong ; Zhang, Zhenyu ; Pan, Shuyang ; Miao, Haitao ; Luo, Xiaolin ; Wang, Xin ; Sabiu, Cristiano G; Forero-Romero, Jaime; Wang, Yang; Li, Xiao-Dong.

The Astrophysical Journal, Volume 913, Issue 1, id.2, 10 pp, May 2021

https://iopscience.iop.org/article/10.3847/1538-4357/abf3bb

10 Superclusters from velocity divergence fields.

Peñaranda-Rivera, J. D.; Paipa-León, D. L.; Hernández-Charpak, S. D.; Forero-Romero, J. E.

Monthly Notices of the Royal Astronomical Society: Letters, Volume 500, Issue 1, pp.L32-L36, January 2021

https://academic.oup.com/mnrasl/article-abstract/500/1/L32/5948101

9 Classifying image sequences of astronomical transients with deep neural networks.

Gómez, Catalina; Neira, Mauricio ; Hernández Hoyos, Marcela ; Arbeláez, Pablo ; Forero-Romero, Jaime E.

Monthly Notices of the Royal Astronomical Society, Volume 499, Issue 3, pp.3130-3138, December 2020

https://academic.oup.com/mnras/article-abstract/499/3/3130/5917433.

8 The cosmic web through the lens of graph entropy.

García-Alvarado, M. V.; Li, X.-D.; **Forero-Romero, J. E.** Monthly Notices of the Royal Astronomical Society: Letters, Volume 498, Issue 1, pp.L145-L149, November 2020 https://academic.oup.com/mnrasl/article-abstract/498/1/L145/5894926.

100p20,, academ2000cp, com, m11422, accepted accepted (100, 100, 1, 1110, 000 101

7 Cosmological parameter estimation from large-scale structure deep learning.

Pan, ShuYang ; Liu, MiaoXin ; Forero-Romero, Jaime ; Sabiu, Cristiano G. ; Li, Zhi-Gang ; Miao, HaiTao ; Li, Xiao-Dong

Science China Physics, Mechanics & Astronomy, Volume 63, Issue 11, article id.110412, September 2020

https://link.springer.com/article/10.1007%2Fs11433-020-1586-3.

6 MANTRA: A Machine-learning Reference Light-curve Data Set for Astronomical Transient Event Recognition,

Neira, Mauricio; Gómez, Catalina; <u>Suárez-Pérez, John F.</u>; Gómez, Diego A.; Reyes, Juan Pablo; Hoyos, Marcela Hernández; <u>Arbeláez, Pablo</u>; <u>Forero-Romero</u>, <u>Jaime E.</u>

The Astrophysical Journal Supplement Series, Volume 250, Issue 1, id.11, 13 pp., September 2020

https://iopscience.iop.org/article/10.3847/1538-4365/aba267.

5 Using the Mark Weighted Correlation Functions to Improve the Constraints on Cosmological Parameters.

Yang, Yizhao; Miao, Haitao; Ma, Qinglin; Liu, Miaoxin; Sabiu, Cristiano G. search by orcid; **Forero-Romero, Jaime**; Huang, Yuanzhu; Lai, Limin; Qian, Qiyue; Zheng, Yi; Li, Xiao-Dong

The Astrophysical Journal, Volume 900, Issue 1, id.6, September 2020

https://iopscience.iop.org/article/10.3847/1538-4357/aba35b.

4 Dark matter halo shapes in the Auriga simulations.

<u>Prada, Jesus</u>; **Forero-Romero, Jaime E.**; Grand, Robert J. J.; Pakmor, Rüdiger; Springel, Volker

Monthly Notices of the Royal Astronomical Society, Volume 490, Issue 4, p.4877-4888, December 2019

https://academic.oup.com/mnras/article-abstract/490/4/4877/5586599.

3 β -Skeleton analysis of the cosmic web.

Fang, Feng; **Forero-Romero, Jaime**; Rossi, Graziano; Li, Xiao-Dong; Feng, Long-Long Monthly Notices of the Royal Astronomical Society, Volume 485, Issue 4, p.5276-5284, June 2019

https://academic.oup.com/mnras/article-abstract/485/4/5276/5420836.

2 Correcting for fibre assignment incompleteness in the DESI Bright Galaxy Survey.

Smith, Alex; He, Jian-hua; Cole, Shaun; Stothert, Lee; Norberg, Peder; Baugh, Carlton; Bianchi, Davide; Wilson, Michael J.; Brooks, David; **Forero-Romero, Jaime E.**; Moustakas, John; Percival, Will J.; Tarle, Gregory; Wechsler, Risa H.

Monthly Notices of the Royal Astronomical Society, Volume 484, Issue 1, p.1285-1300, March 2019

https://academic.oup.com/mnras/article-abstract/484/1/1285/5281295.

1 Lyman α photons through rotating outflows.

Remolina-Gutiérrez, Maria Camila; Forero-Romero, Jaime E.

Monthly Notices of the Royal Astronomical Society, Volume 482, Issue 4, p.4553-4561, February 2019

https://academic.oup.com/mnras/article-abstract/482/4/4553/5173108.

2.2. Bibliometría

ID	Profesor	Citas	H-index	Años con Citaciones
1.	Andres Florez	182016	180	13
2.	Juan Carlos Sanabria	79297	127	11
3.	Yenny R Hernandez	8169	22	13
4.	Juan Gabriel Ramírez	1159	18	13
5.	Alejandra Valencia	974	16	16
6.	Marek Nowakowski	722	15	30
7.	Jaime E. Forero-Romero	1332	14	11
8.	Manu Forero Shelton	1209	13	19
9.	Neelima Kelkar	579	13	27
10.	Luis Quiroga	487	13	28
11.	Paula Giraldo-Gallo	476	13	8
12.	Chad Leidy	419	11	19
13.	Gabriel Tellez	339	10	23
14.	Juan Manuel Pedraza	727	9	15
16.	Mayerlin Nuñez Portela	165	8	9
17.	José Alejandro García Varela	141	8	17
15.	Alonso Botero	368	7	19
19.	Beatriz Eugenia Sabogal Martínez	119	7	17
18.	Edgar Patino	131	6	17
20.	Andrés F. Reyes-Lega	160	5	14
21.	Benjamin Oostra	33	3	13

Figura 1: El impacto de mi producción investigativa se clasifica en el **segundo cuartil de los profesores de planta del departamento de Física** en un ranking decreciente por H-index. En esta clasificación se toman en cuenta los resultados de perfiles públicos de Google Scholar para los últimos cinco años de citaciones solamente, esto con el interés de descontar el efecto de investigadores con más años de actividad y comparar con mejor paridad la productividad y el impacto reciente. Esta tabla se encuentra en: https://github.com/forero/gsc/blob/master/info/fisica_uniandes.md

ID	Nombre	Institucion	H- index	Citaciones	Años con Citaciones
1	Luis A Núñez	UIS	27	5355	30
2	José David Sanabria-Gómez	UIS	19	1645	20
3	Santiago Vargas Domínguez	OAN	16	685	14
4	Jaime E. Forero-Romero	Uniandes	14	1332	13
5	Fabio Duvan Lora Clavijo	UIS	13	395	11
6	Esteban Silva-Villa	UdeA	12	646	
7	Jorge Zuluaga	UdeA		410	21
8	Guillermo A González	UIS		238	21
9	Ignacio Ferrin	UdeA	8	261	43
10	José Alejandro García Varela	Uniandes	8	141	19
11	Juan Carlos Muñoz Cuartas	UdeA		315	
12	Rigoberto Angel Casas Miranda	UNAL		118	19
13	Beatriz Eugenia Sabogal Martínez	Uniandes		119	19
14	Camilo Delgado-Correal	UDistrital		362	
15	Giovanni Pinzón	OAN	6	141	12
16	Eduard Larrañaga	OAN		124	18
17	PABLO CUARTAS RESTREPO	UdeA	6	123	10
18	Jose Gregorio Portilla Barbosa	OAN		93	15
19	Leonardo CastaÑeda Colorado	OAN	4	137	17
20	Edwin Andres Quintero Salazar	UTP		79	13
21	Benjamin Calvo Mozo	OAN	4	57	8
22	Luz Ángela García	ECCI		46	8
23	Benjamin Oostra	Uniandes		33	15
24	Hernan Enrique Garrido Vertel	UniCordoba		26	
25	Germán Chaparro Molano	UdeA	3	26	
26	Mario-Armando Higuera- Garzón	OAN		21	24
27	Julian Rodriguez-Ferreira	UIS		21	6
28	Oscar Alberto Restrepo Gaitan	ECCI		16	10
29	Juan Manuel Tejeiro Sarmiento	OAN			12
30	Jose Robel Arenas Salazar	OAN			
31	Guillermo Leon Franco Alzate	OAN	0	0	0

Figura 2: El impacto de mi producción investigativa se clasifica en el cuartil superior de todos los investigadores colombianos en el área de astronomía y astrofísica en un ranking decreciente por H-index. En esta clasificación se toman en cuenta los resultados de perfiles públicos de Google Scholar para los últimos cinco años de citaciones solamente, esto con el interés de descontar el efecto de investigadores con más años de actividad y comparar con mejor paridad la productividad reciente. Esta tabla se encuentra en: https://github.com/ColombianAstronomy/ProductividadAstronomica/blob/master/google_scholar.md

Figura 3: En toda la historia de la astronomía colombiana se han publicado 310 papers. El top 5 de autores se presenta en la imagen (obtenida desde http://adsabs.harvard.edu/) junto al número total de publicaciones que se han hecho desde instituciones colombianas por los autores listados. Desde que soy profesor de Uniandes en el 2012 he logrado publicar 28 papers, un número mayor que cualquier otro investigador en la historia del país. J. Zuluaga es profesor en la UdeA desde el 2008. W. Gieren fue profesor en Uniandes en la década de los 80. S. Vargas-Dominguez (egresado Uniandes, antiguo postdoc del grupo de astronomía de Uniandes) es profesor en el Observatorio Astronómico Nacional desde el 2015. G. González es profesor en la UIS desde el 2006. Esta tabla se puede acceder desde: https://github.com/ColombianAstronomy/ProductividadAstronomica/blob/master/ads_institutions.md

2.3. Asesoría posgrado

Doctorado:

- 1 John Fredy Suárez. Examen de conocimientos aprobado en 2019-10. Co-autor en un paper ya publicado. Primer autor en un paper aceptado en Septiembre 2021. Fecha esperada de graduación: Diciembre 2021.
- 3 Yeimy Camargo. Estudiante de doctorado en la Universidad Nacional de Colombia Sede Bogotá. Fecha esperada de graduación: Diciembre 2021.

Maestría:

3 Felipe Gómez, Beta-Voids: Un Identificador de Vacíos Cosmológicos en la Estructura de Gran Escala para Catálogos de Galaxias Basado en el Grafo Beta-Skeleton, Diciembre 2019.

2.4. Asesoría de postdocs

 David Sierra-Porta. 2020-2021. Como resultado principal tenemos una publicación envíada en Septiembre 2020 a una revista de primer cuartil.

2.5. Financiación

Durante el 2019 terminamos el siguiente proyecto de COLCIENCIAS

N^o	Fecha	Duración	Institución	Proyecto	Monto
1	1.10.2016	36 meses	COLCIENCIAS	Simulaciones y Observa- ciones del Universo a Gran	200 Millones COP
				Escala	

Durante el 2019 terminamos el siguiente proyecto interdisciplinario de vicerrectoría de investigaciones de Uniandes

N^o	Fecha	Duración	Institución	Proyecto	Monto
2	1.10.2017	24 meses	Uniandes	Spatio-Temporal	84 Millones COP
				Transient Object Lo-	
				calization in Astronomical	
				Image Sequences Using	
				Machine Learning	

Durante el 2019 continuamos con la ejecución del siguiente proyecto de la Unión Europea (la ejecución se pausó durante el 2020 y 2021, y cerrará en el 2022)

$\overline{\mathrm{N}^o}$	Fecha	Duración	Institución	Proyecto		Monto
2	1.03.2017	48 meses	Unión Europea	Latin-America	n Ga-	1.4 Millones EURO
				laxy	Formation	
				Network	https:	
				//www.lacega	l.com/	

2.6. Visitas de investigación

Date	Duration	Country	City	Institute
Junio 2019	4 sema-	UK	Durham	Institute for Computational Cosmology
	nas			
Julio 2019	4 sema-	Alemania	Munich	Max Planck Institute for Astrophysics
	nas			

2.7. Colaboraciones Internacionales de Alto Impacto

Dark Energy Spectroscopic Instrument (DESI).

Proyecto de última generación de cosmología observacional. El proyecto tiene un costo de hardware de 50 millones de dólares. Se esperaba que empezara a tomar datos en el 2020, pero debido a la pandemia el experimento empezó en el 2021 y tomará datos hasta el 2026. El proyecto es liderado por Lawrence Berkeley National Laboratory (Berkeley Lab). La colaboración incluye cerca de 465 investigadores de 70 instituciones diferentes en todo el mundo. Uniandes hace parte formal de la colaboración desde el 2014 a través de mis contactos desde la época en la que fuí postdoc en Berkeley. Es la primera vez que Colombia hace parte de un proyecto internacional de frontera en cosmología observacional.

Un press release reciente de Berkeley Lab dice¹:

"DESI is the most ambitious of a new generation of instruments aimed at better understanding the cosmos – in particular, its dark energy component," said

¹https://newscenter.lbl.gov/2021/05/17/start-of-dark-energy-survey/

project co-spokesperson Nathalie Palanque-Delabrouille, a cosmologist at France's Alternative Energies and Atomic Energy Commission (CEA). She said the scientific program – including her own interest in quasars – will allow researchers to address with precision two primary questions: what is dark energy; and the degree to which gravity follows the laws of general relativity, which form the basis of our understanding of the cosmos.

• Latinamerican Chinese European Galaxy Formation Network (LACEGAL).

Red de investigación en Formación de Galaxias financiada por la Unión Europea con el programa Horizon 2020 bajo el esquema MSCA-RISE - Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE). El projecto tiene un financiamiento por un monto total de 1.4 Millones de Euro y se implementará durante el período 2017-2022. Esta fue **primera vez que alguien en toda Uniandes** logró participar en una convocatoria ganadora de intercambios de este monto de la Unión Europea.

Esta es una breve descripción tomada de la página de LACEGAL²:

Spectacular breakthroughs in astronomy have been driven by a combination of observational advances and groundbreaking computer simulations. Simulations are now accepted as being essential for the interpretation and exploitation of data. Europe is a world leader in this area. Our aim is to build on the highly successful FP7 LACEGAL IRSES to avoid fragmentation of expertise and concentration of supercomputer resources in a few groups. The expansion of LACEGAL will build new research collaborations between Europe and the main centres in Latin America and China, and enhance those established under IRSES. The bulk of exchanges will be undertaken by Early Stage Researchers, who will gain access to unique training in high performance computing, equipping them with skills which are much sought after in academia and industry. We also plan network-wide workshops to share knowledge and provide specialized training, disseminating project results and expertise beyond the membership of LACEGAL.

²https://www.lacegal.com/about

3. Aporte Institucional

3.1. Comunidad Uniandes

- Desde 2018-10 hasta 2020-10. Representante en el comité de asuntos disciplinarios de la Facultad de Ciencias.
- Desde 2016-10 hasta la fecha. Coordinador de los cursos computacionales de la carrera de Física.
- Desde el 2018-10 hasta la fecha. Miembro del comité de pregrado del Departamento de Física.
- Desde el 2020-20 hasta la fecha. Único profesor de la Facultad de Ciencias que hace parte del Centro de Investigación y Formación en Inteligencia Artificial de Uniandes.
- Desde el 2021-20 hasta la fecha. Miembro del comité de innovación y extensión del Departamento de Física.
- Desde el 2021-20 hasta la fecha. Miembro del comité de posgrado del departamento de Física.

3.2. Comunidad Colombiana

Desde el 2019-10 miembro del comité científico de la Comunidad de astrónomos de Colombia (AstroCO). AstroCO es un nodo asociado a la Academia Colombiana de Ciencias Exactas, Físicas y Naturales (ACCEFYN), que une, en su actividad científica a los astrónomos, astrofísicos, cosmólogos y egresados de áreas afines de todo el país.

URL: https://accefyn.com/microsites/nodos/astroco/

3.3. Comunidad Internacional

Como evaluador:

■ Durante el 2020 y 2021 evaluador de propuestas de observación del Hubble Space Telescope.

Como organizador:

Desde Julio 2015 hasta Octubre 2020. Coordinador de la Oficina Regional de Astronomía para el Desarrollo. Esta Oficina es una red colaboración entre Colombia, Venezuela, Ecuador, Perú y Chile con el patrocinio de la Unión Astronómica Internacional.

URL: http://andean.astro4dev.org/

Como miembro de un comité:

 Representante de Colombia en el Scientific Organizing Committee de la Reunión Latinoamericana de Astronomía hecha en Chile a finales del 2019.

URL: https://www.iau.org/science/meetings/past/general_assemblies/2311/.

4. Autoevaluación

Docencia: Satisfactorio

■ Investigación: Excelente

■ Aporte Institucional: Excelente

5. Plan 2022-2024

Docencia

- Diseñar nuevos cursos de ciencia de datos, machine learning e inteligencia artificial que puedan ser ofrecidos a través de educación continua.
- Diseñar nuevos cursos de astronomía para ser ofrecidos a través de educación continua.

Investigación

- Consolidar una alta producción académica a través de los resultados de DESI.
- Conseguir proyectos de financiación con fuentes externas a Uniandes.

Aporte Institucional

- Ayudar a diseñar procesos y herramientas para uso de analítica en toma de decisiones dentro del Departamento de Física, Facultad de Ciencias y la Universidad.
- Ayudar a crear vínculos con el sector privado a través de la oferta de servicios relacionados con Inteligencia Artificial, Machine Learning y Analítica de Datos.