

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2020I_EXA02

Profesor: Marco Teran
Name:
Deadline: 30 de abril de 2020

1. El sistema mostrado en la figura 1 esta formado por la conexión de dos sistemas en serie.

Fig. 1 – Diagrama de bloques en serie

Las respuestas al impulso están dadas:

$$\begin{split} h_{1}\left(t\right) &= e^{-2\left|t\right|}\left\{u\left(t+5\right) - u\left(t-5\right)\right\},\\ h_{2}\left(t\right) &= 2\left\{u\left(t+2\right) - u\left(t-2\right)\right\}. \end{split}$$

- (a) Dibuje las respuestas al impulso individuales $h_{1}\left(t\right)$ y $h_{2}\left(t\right)$.
- (b) Encuentre la respuesta al impulso total del sistema $h_{total}(t)$.
 - Intervalos de tiempo continuo t correctos
 - Limites de la integral de convolución correctos
 - Pasos claros, dibujos y respuesta final correcta

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería

Código: SA2020I_EXA02

	Profesor: Marco Teran
Name:	Deadline: 30 de abril de 2020

1. El sistema mostrado en la figura

Fig. 2 – Diagrama de bloques en paralelo

Las respuestas al impulso están dadas:

$$h_1[n] = 2e^n \{u[n+5] - u[n]\},$$

 $h_2[n] = 2e^{-n} \{u[n] - u[n-6]\}.$

- (a) Encuentre la respuesta al impulso h[n] total del sistema.
- (b) Dibuje la respuesta al impulso $h\left[n\right]$ total del sistema.
- (c) Cuales sería la salida si la entrada al sistema total es: $x \, [n] = u \, [n] u \, [n-5]$
 - Intervalos de tiempo discreto n correctos
 - Limites de la suma de convolución correctos
 - Pasos claros, dibujos y respuesta final correcta