S10

March 22, 2023

1 38C

1.1 1.

```
[2]: def kennitala(string):
         string = list(map(int, ' '.join(str(string)).split()))
         calc = [3,2,7,6,5,4,3,2]
         sum = 0
         for i in range(8):
             sum += string[i]*calc[i]
         randomnumb = sum%11
         if randomnumb==0:
             return string[8] == 0
         if randomnumb == 1:
             return False
         else:
             randomnumb1 = 11-randomnumb
             return randomnumb1 == string[8]
     print(kennitala("999999999"))
     print(kennitala("2411932769"))
```

True True

1.2 2.

Exam number	Identity number
0176	2903993279
0542	1206972699
0970	2605973109
1419	1210012330
4854	2308984059
5469	1603903879
6324	1309932659
6558	1601013180
7923	2006002580
8003	1703012420
8148	2012012410
9058	0704012830
9576	0403983099
9595	2304003180
9706	0706012300
	0176 0542 0970 1419 4854 5469 6324 6558 7923 8003 8148 9058 9576 9595

1.3 3.

The identity number 0704012830 is incorrect and is associated with the name Elias Ari Heimisson

1.4 4.

```
def checkidentity(checklist):
           for k in checklist:
               day = int(str(k)[:2])
               month = int(str(k)[2:4])
               year = int(str(k)[4:6])
               if checkdate(day, month, year):
                   if year<23:</pre>
                       year = str(k)[4:6]
                       print(f"{day}. {months[month-1]} 20{year}")
                   else:
                       year = str(k)[4:6]
                       print(f"{day}. {months[month-1]} 19{year}")
               else:
                   print("This date of birth is not valid")
       checkidentity(IdNumber)
       print("My identity number is 241193-2769.", end=" ")
       checkidentity([2411932769])
      29. mars 1999
      12. júní 1997
      26. maí 1997
      12. október 2001
      23. ágúst 1998
      16. mars 1990
      13. september 1993
      16. janúar 2001
      This date of birth is not valid
      17. mars 2001
      20. desember 2001
      7. apríl 2001
      4. mars 1998
      This date of birth is not valid
      7. júní 2001
      My identity number is 241193-2769. 24. nóvember 1993
      \mathbf{2}
         D.
      2.1 1.
[126]: NameExam = dict(zip(Name, ExamNumber))
```

2.2 2.

Name	Exam number
Anton Ingi Þórsson	4854
Ágúst Guðni Ingason	6558
Birta Lárusdóttir	970
Elías Ari Heimisson	9058
Erla Ýr Guðnadóttir	1419
Eydís Þorsteinsdóttir	8003
Íris María Birgisdóttir	5469
Ívar Sigurðsson	6324
Jónas Valdimarsson	9706
Kristín Fjóludóttir	542
Mark Johnson	9576
Signý Guðrún Pálsdóttir	8148
Sigrún Jónsdóttir	176
Steinunn Guðlaug Gunnarsdóttir	7923
Víðir Kristjánsson	9595

2.3 3.

```
[42]: P = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

nrp = {}
for i in range(len(P)):
    nrp[P[i]] = i+1

def prime_lookup(num, nrp):
    if num > 99:
        return f"{num} er of stór"
    elif num in nrp:
        return f"{num} er {nrp[num]}. prímtalan"
    else:
        return f"{num} er ekki prímtala"

print(prime_lookup(13, nrp))
```

```
print(prime_lookup(16, nrp))
print(prime_lookup(103, nrp))
```

```
13 er 6. prímtalan
16 er ekki prímtala
103 er of stór
```

3 VV3. Fall Rosenbrocks

3.1 1.

```
[206]: def rosen(x,y):
    return (1-x)**2+100*(y-x**2)**2

print(round(rosen(-1.2,1),1))
```

24.2

3.2 2.

```
[199]: import matplotlib.pyplot as plt

plt.figure(figsize=(10,6))
    xlist = np.linspace(-2.0, 2.0, 500)
    ylist = np.linspace(-1.0, 3.0, 500)
    z = np.array([[rosen(xi,yj) for xi in xlist] for yj in ylist])
    levels = np.append([0.2], np.arange(2,50,4)**2)
    c =plt.contour(xlist,ylist, z, levels=levels, colors='darkblue')

plt.clabel(c, fmt="%.0f")
    plt.grid(True)
    plt.show()
```


4 VV6. Hlutapróf 2 vorið 2021

4.1 1.

```
[169]: def derivative(x, y):
    df_dx = 2*x*y + 2*y**2 - 3*y
    df_dy = x**2 + 4*x*y - 3*x
    return (df_dx, df_dy)

derivative(1,1)
```

[169]: (1, 2)

4.2 2.

```
[202]: print(np.dot(np.array(derivative(1,1)), np.array([-1,-1])))
print("Ég er fæddur 24. Nóv 1993 og ætla að nota 2,4 og 9,3.")
print(np.dot(np.array(derivative(2,4)), np.array([9,3])))
```

-3 Ég er fæddur 24. Nóv 1993 og ætla að nota 2,4 og 9,3. 414

4.3 3.

```
[205]: def calc(x,y):
    return x**2*y+2*x*y**2-3*x*y+4

plt.figure(figsize=(10,6))
xlist = np.linspace(0, 3.0, 500)
ylist = np.linspace(0, 2.0, 500)
z = np.array([[calc(xi,yj) for xi in xlist] for yj in ylist])
# levels = np.append([0.2], np.arange(2,50,4)**2)
c = plt.contour(xlist,ylist, z, 12, colors='darkblue')

plt.clabel(c, fmt="%.0f")
plt.grid(True)
plt.show()
```

