

Data Science Project

Group Members

O1 Hoàng Hà Đăng

O2 Nguyễn Anh Quân

Bi12-077

Bi12-365

Phạm Xuân Trung

Table of contents

Business Understanding	Define the problem and objectives of the project to address specific business needs.		
Data Collection & Understanding	Gather relevant data and assess its quality and suitability for analysis.		
Data Preparation	Clean, transform, and preprocess the data to make it suitable for modeling.		
Model Building	Develop predictive or analytical models to extract insights or make predictions.		
Model Evaluation & Selection	Assess model performance and select the best-performing model.		
Deployment & Conclusion	Summarize findings, difficulties and future work with the business problem.		

Business Understanding

A. What is cross-selling?

- A sale technique
- The company offers additional products or services to customers who have already purchased
- Increase sales and revenue

B. The problem

- Our client, an insurance provider, offers health insurance policies
- The company wants to expand their offerings to include vehicle insurance
- => Develop a solution to cross-sell car insurance for revenue & costumer happiness boosting using health insurance data

C. Non-data science approach

- Traditional Advertising
- Telemarketing, in-person sales meetings
- Refferal program

=> Cost great amount of time, money and labor

D. Data science approach

- Agile, modern, and cost-effective solution
- Using Python and necessary libraries

E. Objective

- Build a prediction model to classify the response and find potential customers
- Handle issues related to the dataset
- Give the insurance company concrete insights to help them improve their consumer and marketing targeting methods.

02

Data Collection & Understanding

A. Data collection

- The data contains costumer information
- Professional data collection may have a huge impact on the quality of expected outputs
- In this scenario, first party data and third-party sources (credit bureaus, government agencies, and public records)

1st vs. 2nd vs. 3rd party data

Marin

First-party data is data a company collects directly from its customers

Second-party data is similar to first-party data, except the original company is sharing its data directly with a second-party Third-party data is data that is collected from customers by a company that isn't directly involved in the transaction

B. The Data set

- "Health Insurance Cross Sell Prediction"
 from Kaggle
- Health insurance owners data to forecast the personal interest in vehicle insurance
- 381109 records and 12 features

C. Data description

Variable	Definition	Data Type	
Id	Unique ID for the customer	Qualitative	
Gender	Gender of the customer	Qualitative	
Age	Age of the customer	Quantitative	
Driving_License	O : Customer does not have DL, 1 : Customer already has DL	Qualitative	
Region_Code	Unique code for the region of the customer	Qualitative	
Previously_Insured	1 : Customer already has Vehicle Insurance, 0 : Customer doesn't have Vehicle Insurance	Qualitative	
Vehicle_Age	Represents the age of the customer's vehicle, typically categorized into groups like "1-2 Years," "< 1 Year," etc.	Qualitative	

C. Data description

Variable	Definition	Data Туре
Vehicle_Damage	1: Customer got his/her vehicle damaged in the past. 0: Customer didn't get his/her vehicle damaged in the past.	Qualitative
Annual_Premium	The amount customer needs to pay as premium in the year (rupees)	Quantitativ e
Policy_Sales_Channel	Anonymized Code for the channel of outreaching to the customer ie. Different Agents, Over Mail, Over Phone, In Person, etc.	Qualitative
Vintage	Number of Days, Customer has been associated with the company	Quantitativ e
Response (target value)	1: Customer is interested, 0: Customer is not interested	Qualitative

 The data contains no missing values or duplicated values

Respone

- 87.7% of customers are not interested in purchasing car insurance
- Large ratio between the major class (not interested) and the minor class (interested)

=> The data set is imbalanced

Gender

Driving license

- Everyone must obtain a driving license before purchasing vehicle insurance
- No effect on predicting
- Should be dropped

Age

- The population is relatively young
- Decline with age, fewest in 80+ range
- No outliers

Annual Premium

Lots of outliers in the variable

Age

- People aged 30 to 50 are more likely to purchase insurance
- These customers may own modern and luxury vehicles

=> Expensive repair and maintenance

Correlation Matrix

- Only shows linear relationships between variables
- Does not identify strongly correlated pairs of variables
- Dropping features based on correlation
 matrix analysis is not recommended

- 0.6

- 0.4

- 0.2

- 0.0

03

Data Preparation

A. Handling duplicated & missing values

- No duplicated and missing values
- Skip this part

B. Feature eliminating

ID

Driving license

C. Outlier detection

- An outlier is a data point that differs significantly from other observations
- The interquartile range (IQR) is often used to find outliers in data
- Below Q1 1.5 IQR or above Q3 + 1.5 IQR

D. Categorical Value Encoder

- Convert categorical data into a numerical format
- Using Ordinal Encoder

E. Train-Test Splitting

 The dataset is split into a training set (80%) and a test set (20%)

F. Imbalance data handling

- Random Oversampling using Random Over Sampler method
- Randomly duplicating instances of the minority class until a more balanced distribution is achieved
- New training set with an equal number of examples from both classes

G. Standardization

- Transform the data so that it has a mean of 0 and a standard deviation of 1
- Prevent features with larger magnitudes from dominating the learning process

Standardization:

$$z = \frac{x-\mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Model Building

A. Model training

- Logistic Regression
- Random Forest (50 trees)
- XGB Classifier
- Gradient Boosting Classifier
- Gaussian Naive Bayes

B. Feature importance

Logistic Regression

Random Forest

XGB Classifier

B. Feature importance

Gradient Boosting Classifier

Gaussian Naive Bayes

Model Evaluation & Selection

A. Model Evaluation

K-fold Cross-validation

Stratified K-fold cross validation

• K = 10

A. Model Evaluation

	Logistic Regression	Random Forest	XGB Classifier	Gradient Boosting Classifier	Gaussian Naïve Bayes
Precision	24.8%	27.2%	28.7%	27.8%	24.8%
Recall	97.6%	93.7%	90.1%	92.8%	97.6%
AUC_score	78.4%	79.6%	79.6%	79.8%	78.4%
Precision with Kfold	70.5%	73.4%	75.3%	73.6%	70.5%
Recall with Kfold	97.6%	94%	94.2%	92.8%	97.7%
AUC_score with Kfold	82%	85.4%	87.3%	85.7%	82.5%

B. Model Selection

 The scores of XGB Classifier and Random Forest are better than others

XGB Classifier will be selected to be deployed

B. Model Selection

 The scores of XGB Classifier and Random Forest are better than others

XGB Classifier will be selected to be deployed

C. Model Deployment

- Simple deployment using pickle to store the model
- The users enter the information, the function preprocesses the data and predicts using the saved model and return the output

O6 Conclusion

A. Solution

- Machine learning models to classify and predict the potential customers
- Handling imbalanced data, using proper metrics

B. Limitations & Future Works

- Imbalanced dataset limitations affecting precision scores
- Simple deployment

B. Limitations & Future Works

- Collecting larger, more diverse data set
- Build a web or professional GUI for model deployment

References

- Su Hyun AN, Seong Hee YEO, Minsoo KANG, "A Study on a car Insurance purchase Prediction
 Using Two-Class Logistic Regression and Two-Class Boosted Decision Tree",

 Korean Journal of Artificial Intelligence, 2021
- Kamakura, W. A, "Cross-selling: Offering the right product to the right customer at the right time". *Journal of Relationship Marketing, 2008.*
- Marryville University, "Predictive Analytics in Insurance: Types, Tools, and the Future". 2020
- Kamakura, W. A., Kossar, B. S., & Wedel, M. "Identifying innovators for the cross-selling of new products", *Management Science*, 2004.
- Sotiris Kotsiantis. et al, "Handling imbalanced datasets: A review", GESTS International
 Transactions on Computer Science and Engineering, Vol.30, 2006

Thanks!

Do you have any questions?