Lista 3 - Produto de vetores

Professora Marielle Ap. Silva

Exercícios de 1 a 21 - Produto Escalar

Exercício 1. Dados os vetores $\vec{u} = (1, a, -2a - 1), \vec{v} = (a, a - 1, 1)$ e $\vec{w} = (a, -1, 1)$, determinar a de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot \vec{w}$.

Exercício 2. Determinar o valor de n para que o vetor $\vec{v} = \left(n, \frac{2}{5}, \frac{4}{5}\right)$ seja unitário.

Exercício 3. Dados os pontos A = (1,0,-1), B = (4,2,1) e C = (1,2,0), determinar o valor de m para que $|\vec{v}| = 7$, sendo $\vec{v} = m\overrightarrow{AC} + \overrightarrow{BC}$.

Exercício 4. Calcular o perímetro do triângulo de vértices A = (0, 1, 2), B = (-1, 0, -1) e C = (2, -1, 0).

Exercício 5. Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 10 cm. Calcular o produto escalar dos vetores \overrightarrow{AB} e \overrightarrow{AC} .

Exercício 6. Determinar os ângulos do triângulo de vértices A = (2, 1, 3), B = (1, 0, -1) e C = (-1, 2, 1).

Exercício 7. Dados os vetores $\vec{a} = (2, 1, \alpha), \vec{b} = (\alpha + 2, -5, 2)$ e $\vec{c} = (2\alpha, 8, \alpha)$, determinar o valor de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} - \vec{a}$.

Exercício 8. Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (1, -1, 2)$, tal que $\vec{v} \cdot \vec{u} = -18$.

Exercício 9. Prove que os pontos (5,1,5), B=(4,3,2) e C=(-3,-2,1) são vértices de um triângulo retângulo.

Exercício 10. Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 5\vec{j} - 4\vec{k}$ e $\vec{b} = (\alpha + 1)\vec{i} + 2\vec{j} + 4\vec{k}$ sejam ortogonais?

Exercício 11. Os ângulos diretores de um vetor podem ser $\frac{\pi}{4}$, $\frac{\pi}{3}$ e $\frac{\pi}{2}$?

Exercício 12. Determinar o vetor \vec{v} , sabendo que $|\vec{v}| = 5$, \vec{v} é ortogonal ao eixo z, $\vec{v} \cdot \vec{w} = 6$ e $\vec{w} = 2\vec{j} + 3\vec{k}$.

Exercício 13. Determine um vetor de módulo 5 paralelo ao vetor $\vec{v} = (1, -1, 2)$.

Exercício 14. O vetor \vec{v} é ortogonal aos vetores $\vec{u} = (2, -1, 3)$ e $\vec{w} = (1, 0, -2)$ e forma ângulo agudo com o vetor \vec{j} . Calcule \vec{v} , sabendo que $|\vec{v}| = 3\sqrt{6}$.

Exercício 15. Determine a projeção do vetor $\vec{u}=(1,2,-3)$ na direção de $\vec{v}=(2,1,-2)$.

Exercício 16. Qual o comprimento do vetor projeção de $\vec{u} = (3, 5, 2)$ sobre o eixo dos x?

Exercício 17. Mostre que se \vec{u} e \vec{v} são vetores tais que $\vec{u} + \vec{v}$ é ortogonal a $\vec{u} - \vec{v}$, então $|\vec{u}| = |\vec{v}|$.

Exercício 18. Mostre que se \vec{u} for ortogonal a \vec{v} e \vec{w} , \vec{u} também será ortogonal a $\vec{v} + \vec{w}$.

Exercício 19. Calcule o módulo dos vetores $\vec{u} + \vec{v}$ e $\vec{u} - \vec{v}$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é de $\frac{\pi}{3}$.

Exercício 20. Sabendo que $|\vec{u}| = 2$, $|\vec{v}| = 3$ e que \vec{u} e \vec{v} formam um ângulo de $\frac{3\pi}{4}$ rad, determinar $|(2\vec{u} - \vec{v}) \cdot (\vec{u} - 2\vec{v})|$.

Exercício 21. Determine $\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$, sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $|\vec{u}| = 2$, $|\vec{v}| = 3$ e $|\vec{w}| = \sqrt{5}$.

Exercícios de 22 a 32 - Produto Vetorial

Exercício 22. Dados os vetores $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$ e $\vec{w} = (-1, 2, 2)$, calcule:

- a) $\vec{w} \times \vec{u}$
- b) $\vec{v} \times (\vec{w} \vec{u})$
- c) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v})$
- d) $(\vec{u} \times \vec{v}) \cdot (\vec{u} \times \vec{v})$
- e) $(\vec{u} \times \vec{v}) \times \vec{w}$

Exercício 23. Determinar um vetor simultaneamente ortogonal aos vetores $2\vec{a} + \vec{b}$ e $\vec{b} - \vec{a}$, sendo $\vec{a} = (3, -1, -2)$ e $\vec{b} = (1, 0, -3)$.

Exercício 24. Determinar o valor de m para que o vetor $\vec{w} = (1, 2, m)$ seja simultaneamente ortogonal aos vetores $\vec{v}_1 = (2, -1, 0)$ e $\vec{v}_2 = (1, -2, -1)$.

Exercício 25. Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{v}_1 = (1, 1, 0)$ e $\vec{v}_2 = (2, -1, 3)$. Nas mesmas condições, determinar um vetor de módulo 5.

Exercício 26. Sabendo que $|\vec{a}| = 3$, $|\vec{b}| = \sqrt{2}$ e que $\frac{\pi}{4}$ é o ângulo entre \vec{a} e \vec{b} , calcular $|\vec{a} \times \vec{b}|$.

Exercício 27. Se $|\vec{u} \times \vec{v}| = 3\sqrt{3}$, $|\vec{u}| = 3$ e $\frac{\pi}{3}$ é o ângulo entre os vetores \vec{u} e \vec{v} , determinar $|\vec{v}|$.

Exercício 28. Calcular a área do paralelogramo definido pelos vetores $\vec{u} = (3, 1, 2)$ e $\vec{v} = (4, -1, 0)$.

Exercício 29. Mostre que o quadrilátero cujos vértices são os pontos A = (1, -2, 3), B = (4, 3, -1), C = (5, 7, -3) e D = (2, 2, 1) é um paralelogramo e calcular sua área.

Exercício 30. Calcular a área do triângulo de vértices:

a)
$$A = (-1, 0, 2), B = (-4, 1, 1) \in C = (0, 1, 3)$$

b)
$$A = (1,0,1), B = (4,2,1) \in C = (1,2,0)$$

Exercício 31. Calcular a área do paralelogramo que tem um vértice no ponto A = (3, 2, 1) e uma diagonal de extremidades B = (1, 1, -1) e C = (0, 1, 2).

Exercício 32. Encontre o valor de x, sabendo que A=(x,1,1), B=(1,-1,0) e C=(2,1,-1) são vértices de um triângulo de área $\frac{\sqrt{29}}{2}$.

Exercícios de 33 a 37 - Produto Misto

Exercício 33. Verificar se são coplanares os seguintes pontos:

a)
$$A = (1, 1, 1), B = (-2, -1, -3), C = (0, 2, -2) \in D = (-1, 0, -2)$$
?

b)
$$A = (1,0,2), B = (-1,0,3), C = (2,4,1) \in D = (-1,-2,2)$$
?

c)
$$A = (2,1,3), B = (3,2,4), C = (-1,-1,-1) \in D = (0,1,-1)$$
?

Exercício 34. Para que valor de m os pontos A = (m, 1, 2), B = (2, -2, -3), C = (5, -1, 1) e B = (3, -2, -2) são colpanares?

Exercício 35. Determinar o valor de k para que os seguintes vetores sejam coplanares:

a)
$$\vec{a} = (2, -1, k), \vec{b} = (1, 0, 2) \in \vec{c} = (k, 3, k)$$
?

b)
$$\vec{a} = (2, 1, 0), \vec{b} = (1, 1, -3) \in \vec{c} = (k, 1, -k)$$
?

c)
$$\vec{a} = (2, k, 1), \vec{b} = (1, 2, k) \in \vec{c} = (3, 0, -3)$$
?

Exercício 36. Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores $\vec{u} = 2\vec{i} - \vec{j}$, $\vec{v} = 6\vec{i} + m\vec{j} - 2\vec{k}$ e $\vec{w} = -4\vec{i} + \vec{k}$ seja igual a 10.

Exercício 37. Calcular o volume do tetraedro ABCD, sendo dados:

a)
$$A = (1,0,0), B = (0,1,0), C = (0,0,1) \in D = (4,2,7)$$

b)
$$A = (-1, 3, 2), B = (0, 1, -1), C = (-2, 0, 1) \in D = (1, -2, 0)$$

Gabarito:

1.
$$a = 2$$

2.
$$\pm \frac{\sqrt{5}}{5}$$

3. 3 ou
$$-\frac{13}{5}$$

4.
$$2(\sqrt{11} + \sqrt{3})$$

6.
$$\arccos(\frac{10}{3\sqrt{28}}), \arccos(\frac{2\sqrt{6}}{9}), \arccos(\frac{2}{\sqrt{42}})$$

7.
$$3 \text{ ou } -6$$

8.
$$(-3, 3, -6)$$

10.
$$-3$$
 ou 2

- 11. Não
- 12. (4,3,0) ou (-4,3,0)
- 13. $(\pm \frac{5}{\sqrt{6}}, \pm \frac{5}{\sqrt{6}}, \pm \frac{10}{\sqrt{6}})$
- 14. (2,7,1)15. $\frac{10}{9}(2,1,-1)$
- 16. 3
- 19. $\sqrt{37} \text{ e } \sqrt{13}$
- 20. $26 + 15\sqrt{2}$
- 21. -9
- 22. a) (2,2,-1) b) (-1,-1,0) c) (-2,-2,2) d) 3 e) (4,-1,3)
- 23. x(3,7,1), sendo $x \in \mathbb{R}$
- 24. -5
- 25. $(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ ou $(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ e $5(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ ou $5(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$
- 26. 3
- 27. 2
- 28. $\sqrt{117}$
- 29. $\sqrt{89}$
- 30. a) $\sqrt{6}$ b) $\frac{7}{2}$
- 31. $\sqrt{74}$
- 32. 3 ou $\frac{1}{5}$
- b) Não c) Sim 33. a) Sim
- 34. m = 4
- 35. a) 6 b) $\frac{3}{2}$ c) 2 ou -3
- 36. 6 ou -4
- 37. a) 2 b) 4