Laboratorio di Calcolo Numerico Risoluzione di sistemi di equazioni lineari Condizionamento Fattorizzazione LU Stabilità

Ángeles Martínez Calomardo http://www.math.unipd.it/~acalomar/DIDATTICA/ angeles.martinez@unipd.it

> Laurea in Informatica A.A. 2018–2019

Matrici

- Le variabili per Matlab/Octave hanno una struttura di tipo matriciale.
 - Gli scalari sono considerati matrici 1×1 .
 - ▶ I vettori riga sono matrici $1 \times n$.
 - ▶ I vettori colonna sono matrici $n \times 1$.
- Per definire una **matrice** se ne possono innanzitutto assegnare direttamente gli elementi riga a riga. Ad esempio digitando

```
>> A = [1 2 3; 4 5 6; 7 8 9]
```

si produce

Notiamo che i punto e virgola separano righe diverse.

Matrici

• L'elemento in riga i e colonna j di A si accede con A(i,j). Per la matrice A dell'esempio precedente

```
>> A(2,3)
ans = 6
```

Esercizio

Costruire una matrice 2×3 con i primi sei numeri interi come coefficienti. Azzerare gli elementi A(1,1) e A(2,2).

Soluzione.

```
>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

>> A(1,1) = 0;
>> A(2,2) = 0;
>> A

A =

0 2 3
4 0 6
```

Estrarre parti di una matrice

Si può fare tramite l'uso del carattere due punti : Ad esempio, per individuare la seconda riga di A, basta scrivere

```
>> A(2,:)
```

Per individuare la terza colonna di A si scrive invece

```
>> A(:,3)
```

 Per estrarre una intera sottomatrice da una matrice assegnata, basta specificare un insieme di righe e colonne. Esempio:

Matrici

Matlab allarga una matrice quanto basta per sistemare un elemento dato.

```
>> A=[1 1 1; -2 3 1; 4 -6 7]
A =
  \begin{array}{ccccc}
1 & 1 & 1 \\
-2 & 3 & 1 \\
4 & -6 & 7
\end{array}
>> A(5,5)=2
A =
  >> A = A (1:3,1:3)
>> A(3,6)=9
```

Comandi predefiniti che operano su matrici

Comandi che generano matrici:

```
rand(m,n) matrice m \times n con coefficienti random.

eye(n) matrice identità di ordine n.

ones(n) matrice di ordine n con coefficienti tutti uguali ad 1.

zeros(n) matrice di ordine n con coefficienti tutti uguali a 0.
```

Altri comandi importanti che operano con matrici:

```
inv(A) calcola l'inversa della matrice A;

[n,m] = size(A) restituisce il numero di righe e di colonne di A;

det(A) calcola il determinante di A.

eig(A) calcola gli autovalori di A.
```

Esercizio

Creare una matrice quadrata A di ordine 4 con tutti gli elementi uguali a 1 e calcolarne il determinante.

Che cosa succede se proviamo a calcolare l'inversa di A?

Comandi predefiniti che operano su matrici

Soluzione dell'esercizio

```
\gg A = ones(4)
A =
>> det(A)
ans = 0
\gg inv(A)
warning: inverse: matrix singular to machine precision, rcond = 0
ans =
   Inf
        Inf Inf
                   Inf
   Inf
       Inf Inf
                     Inf
   Inf
         Inf Inf
                     Inf
   Inf
         Inf Inf
                     Inf
```

Operazioni tra matrici

• Essendo A,B,C matrici con coefficienti reali ed s uno scalare, si definiscono le operazioni:

```
C = s*A prodotto di una matrice per uno scalare.

C = A' trasposizione di una matrice.

C = A+B somma di due matrici di dimensione m \times n.

C = A-B sottrazione di due matrici m \times n.

C = A*B prodotto di A (m righe e n colonne) per B (n righe e p colonne).

C = A \cdot *B c_{ij} = a_{ij} \cdot b_{ij} (prodotto di due matrici componente a componente).
```

• Esempio:

```
>> A = [2 -1; 3 4; -2 7]
A =
2 -1
3 4
-2 7

>> B = A'
B =
2 3 -2
-1 4 7
```

Operazioni tra matrici: esempi

Riportiamo un esempio di somma, prodotto, e prodotto componente a componente di due matrici.

```
>> A = \begin{bmatrix} 4 & -1 & 0; & -1 & 4 & -1; & 0 & -1 & 4 \end{bmatrix};
>> B = \begin{bmatrix} 1 & 2 & 3; & -4 & -5 & -6; & 0 & 1 & 2 \end{bmatrix};
```

Il carattere; usato alla fine di qualunque istruzione sopprime l'output a video.

```
>> C = A+B

C =

5    1    3

-5    -1    -7

0    0    6

>> C = A*B

C =

8    13    18

-17    -23    -29

4    9    14

>> C = A.*B

C =

4    -2    0

4    -20    6

0    -1    8
```

Estrazione di diagonali da una matrice

Comando diag

Il comando diag estrae diagonali da una matrice e le restituisce in un vettore.

```
Esempi: Data la matrice A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 7 \\ 3 & 3 & 4 & 8 \\ 0 & -1 & 2 & 3 \end{pmatrix},
```

```
>> diag(A)
ans =

1
3
4
3
```

```
>> diag (A, -1)
ans =

2
3
2
```

```
>> diag(A,2)
ans =

3
7
```

Estrazione della parte triangolare inferiore (tril) e superiore (triu)

```
>> tril(A)
ans =
\gg tril (A, -1)
ans =
>> triu(A)
ans =
```

Costruzione di una matrice diagonale

Comando diag

A partire da un vettore

```
>> v=[ -1 -2 5 9];

>> D=diag(v)

D =

Diagonal Matrix

-1 0 0 0

0 -2 0 0

0 0 0 5 0

0 0 0 9

>> w=[-1 -2 -3];
```

Si può scegliere su quale diagonale posizionare il vettore w, anche se in questo caso la matrice risultante non è più una matrice diagonale:

```
>> D =diag(w,-1)
D =

0 0 0 0 0
-1 0 0 0
0 0-2 0 0
0 0 0 -3 0
```

Costruzione di una matrice diagonale

Comando diag

ullet A partire dagli elementi diagonali di una matrice A data

```
>> A =

1  2  3  4
2  3  5  7
3  3  4  8
0  -1  2  3

>> diag(diag(A))
ans =

Diagonal Matrix

1  0  0  0
0  3  0  0
0  0  4  0
0  0  0  3
```

Norme vettoriali

Dato un vettore $x \in \mathbb{R}^n$ le principali norme vettoriali sono:

1.
$$||x||_1 = \sum_{i=1}^n |x_i|$$
 (norma 1)

2.
$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$
 (norma 2 o euclidea)

3.
$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$
 (norma infinito)

In Matlab queste norme si calcolano con il comando norm:

```
norm(x)
norm(x,1)
norma 1 del vettore x
norm(x,inf)
norma infinito del vettore x
```

Norme matriciali

- Analogamente per calcolare in Matlab/Octave la norma di una matrice A si usa il comando norm(A).
- Se nessun ulteriore parametro viene specificato tale comando restituisce la norma 2 della matrice ovvero:

$$||A||_2 = \sqrt{\rho(A^T A)}$$

dove $\rho(A)$ è il raggio spettrale della matrice A. Altre possibilità sono:

- ▶ norma 1 $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$, in Matlab/Octave norm(A,1);
- ▶ norma infinito $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$, in Matlab/Octave norm(A,inf);
- norma di Frobenius $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$, in Matlab/Octave norm(A, 'fro');

Norme matriciali

Esempi

```
>>> A = [5 -4 2; 1 7 -6; 1 1 9]
A =
   5 -4 2
   >> norm (A, 1)
ans = 17
>> norm(A, inf)
ans = 14
>> norm(A, 'fro')
ans = 14.6287388383278
>>> norm(A)
ans = 12.0560586095913
```

Soluzione di un sistema lineare

Il sistema lineare Ax = b si risolve in Matlab/Octave con il comando $A \setminus b$. Se A è una matrice quadrata invertibile generale, l'operatore \setminus restituisce la soluzione $x = A^{-1}b$ calcolata con il metodo di eliminazione di Gauss con pivoting.

```
\Rightarrow A=[10 -7 0; -3 2 6; 5 -1 5]
A =
>> b = [7; 4; 6]
b =
>> x=A \setminus b
x =
```

Condizionamento dei sistemi lineari

Consideriamo il sistema di equazioni lineari Ax = b, con $A \in \mathbb{R}^{n \times n}$ e $b \in \mathbb{R}^n$.

Sia $\delta x = e = \bar{x} - x$ l'errore sul risultato in seguito ad una perturbazione δb sul termine noto b (per semplicità, assumiamo $\delta A = 0 \in \mathbb{R}^{n \times n}$). Possiamo pensare dunque che il sistema che si risolve sia

$$A(x + \delta x) = b + \delta b \tag{1}$$

Da cui, poichè Ax = b si ha

$$A\delta x = \delta b; \qquad \delta x = A^{-1}\delta b \tag{2}$$

Rispetto ad una qualsiasi norma matriciale indotta da quella vettoriale, seguono le maggiorazioni

$$\|\delta x\| = \|A^{-1}\delta b\| \le \|A^{-1}\| \|\delta b\| \tag{3}$$

$$||b|| = ||Ax|| \le ||A|| ||x|| \Longrightarrow \frac{1}{||x||} \le \frac{||A||}{||b||}$$
 (4)

Condizionamento di un sistema lineare

Moltiplicando tra di loro la (3) e la (4), si ha infine

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta b\|}{\|b\|},\tag{5}$$

dove

$$\kappa(A) = ||A|| \, ||A^{-1}|| \,$$
 (6)

si chiama *numero di condizionamento* della matrice A.

Esso è sempre ≥ 1 , in quanto si ha:

$$1 = ||I|| = ||AA^{-1}|| \le ||A|| ||A^{-1}|| = \kappa(A)$$

Malcondizionamento

Considerando che

$$A(x + \delta x) = b + \delta b$$

si ha

$$A\bar{x} = b + \delta b \implies \delta b = A\bar{x} - b = -r$$

Vediamo dunque che la norma dell'errore relativo e quella del residuo relativo sono legate mediante la relazione:

$$\frac{\|x - \bar{x}\|}{\|x\|} \le K(A) \frac{\|r\|}{\|b\|}.$$

- Per valori molto grandi di $\kappa(A)$, diciamo per $\kappa(A) > 10^3$, l'errore relativo sulla soluzione può essere molto grande anche se è piccolo l'errore relativo sui dati.
- Vale a dire che *a residuo piccolo può non corrispondere un errore piccolo.* In questi casi si parla di *malcondizionamento* del sistema o della matrice.
- Numeri di condizionamento diversi si hanno in corrispondenza a scelte diverse della norma matriciale.

Numero di condizionamento in Matlab/Octave

Il numero di condizionamento di una matrice definito come $||A||_2 \cdot ||A^{-1}||_2$ si calcola in Matlab/Octave con il comando cond.

```
>> A = [4 -1 2; 1 3 1; 0 -3 5]
A =

4 -1 2
1 3 1
0 -3 5
>> cond(A)
ans = 2.4249
```

Specificando come secondo parametro del comando cond uno tra i seguenti valori: 1, inf, 'fro', si ottiene il numero di condizionamento in norma 1, infinito e di Frobenius, rispettivamente.

```
>> cond(A,1)
ans = 3.7183
>> cond(A,inf)
ans = 3.1549
>> cond(A,'fro')
ans = 3.8379
```

Matrici di Hilbert

- Una classe di matrici malcondizionate è fornita dalle matrici di Hilbert di ordine n i cui elementi sono $h_{ij} = \frac{1}{i+j-1}$.
- In Matlab/Octave tali matrici si creano tramite il comando hilb(n).

```
>> H = hilb(3)

H =

1.00000  0.50000  0.33333

0.50000  0.33333  0.25000

0.33333  0.25000  0.20000

>> cond(H)

ans = 524.06

>> H1 = hilb(10);

>> cond(H1)

ans = 1.6025e+13
```

 Più grande è il condizionamento, meno accurata potrebbe essere la soluzione del sistema lineare.

Matrici di Hilbert

Il seguente script (scripthilb.m) crea le matrici di Hilbert di ordine n, per n = 3, ..., 15 e ne calcola il numero di condizionamento.

I numeri di condizionamento calcolati sono:

```
[N]
            3
                      [COND]
                                5.2406e+02
                      [COND]
    [N]
                                1.5514e+04
    [N]
            5
                      [COND]
                               4.7661e+05
            6
    [N]
                      [COND]
                                1.4951e+07
            7
    [N]
                      [COND]
                               4.7537e+08
            8
                      [COND]
                                1.5258e+10
    [N]
    [N]
            9
                      [COND]
                                4.9315e+11
    [N]
                      [COND]
                                1.6025e+13
           10
    [N]
                      [COND]
                                5.2260e+14
           11
    [N]
           12
                      [COND]
                               1.6776e + 16
    [N]
           13
                      [COND]
                               1.7590e + 18
                      [COND]
                                3.0821e+17
    [N]
           14
                                4.4333e+17
    [N]
           15
                      [COND]
>>
```

Esercizio

Si generi la matrice di Hilbert H di ordine 12 e si risolva il sistema lineare Hx = b, in cui b corrisponde alla soluzione vera $x = [1, \dots 1]^T$.

Si visualizzino il numero di condizionamento di H e l'errore e il residuo relativo.

Risoluzione esercizio

Riportiamo di seguito lo script (solhilb.m) che risolve l'esercizio.

Commenti all'esercizio

L'esecuzione dello script fornisce i seguenti risultati

Si osserva che:

- il residuo relativo è circa la precisione di macchina mentre l'errore relativo è $1.64 \cdot 10^{-1}$, maggiore di quindici ordini di grandezza rispetto al residuo.
- ciò non è sorprendente se si considera che il numero di condizionamento è molto grande.
- Matlab/Octave produce il messaggio di warning per indicare che la matrice è molto malcondizionata e quindi i risultati potrebbero non essere attendibili.

Matrice di Vandermonde

Un altro esempio di matrice malcondizionata è la matrice di Vandermonde di ordine n, definita a partire da un vettore $x = x_1, \dots, x_n$ come $V_{ij} = x_i^{j-1}$.

In Matlab/Octave tale matrice si crea con il comando vander(x). Il seguente script vandercond.m, dato il vettore x = 0: 1/(n-1): 1, crea le matrici vander(x) per n = 3, ..., 10 e ne calcola il numero di condizionamento. Inoltre, realizza un grafico semilogaritmico del condizionamento in funzione della dimensione della matrice.

```
vcond=zeros(10);
for n=3:10
    x=1:1/(n-1):2;
    A=vander(x)
    c=cond(A)
    vcond(n)=c;
pause;
end
semilogy(3:10,vcond(3:10),'r-');
```

Matrice di Vandermonde

Figura: Grafico in scala semilogaritmica del condizionamento della matrice di Vandermonde al crescere della dimensione n.

Fattorizzazione LU

In Matlab il comando lu calcola la fattorizzazione LU di A, ottenuta mediante eliminazione di Gauss con pivoting parziale per righe.

La sintassi è:

$$[L,U,P]=Iu(A)$$

con P matrice di permutazione tale che PA = LU.

Se il comando lu viene chiamato

$$[L,U]=Iu(A)$$

allora U è la matrice triangolare superiore ottenuta dal MEG e la matrice L è in realtà $P^{-1}L$.

Dalla fattorizzazione LU alla soluzione del sistema Ax = b

Data la matrice A se la sua fattorizzazione LU è stata ottenuta mediante eliminazione di Gauss con pivoting si ha:

$$PA = LU \Longrightarrow PAx = L\underbrace{Ux}_{y} = Pb \Longleftrightarrow \begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

Da un sistema siamo passati a dover risolvere due sistemi, ma più semplici perchè triangolari:

- 1. Ly = Pb si risolve mediante sostituzione in avanti
- 2. Ux = y si risolve mediante sostituzione all'indietro

Eliminazione di Gauss e Fattorizzazione LU

Sia $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ regolare

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Supponiamo che ad ogni passo k del processo di eliminazione, con $1 \le k \le n-1$, sia $a_{kk}^{(k-1)} \ne 0$ (elemento pivot). Poniamo $A^{(1)} = A$.

Al primo passo (per k=1): Si azzerano tutti gli elementi della 1^a colonna eccetto il primo.

Per azzerare a_{21} si trasforma la 2^a riga di A nel seguente modo:

$$R_2 \leftarrow R_2 - (\ell_{21}R_1), \quad (2^a \text{ riga} - \text{moltiplicatore } \times 1^a \text{ riga}).$$

dove $\ell_{21} = \frac{a_{21}}{a_{11}}$.

Analogamente si possono azzerare tutti gli altri elementi della 1^a colonna:

$$\ell_{i1} = \frac{a_{i1}}{a_{11}} \implies R_i \leftarrow R_i - (\ell_{i1}R_1), \quad 2 \le i \le n$$

Eliminazione di Gauss e Fattorizzazione LU

Quindi, dopo il primo passo, la matrice $A^{(1)}$ è stata trasformata, mediante trasformazioni elementari (di Gauss) nella matrice:

$$A^{(2)} = \begin{pmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \dots & a_{1n}^{(2)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \dots & \dots & \dots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{pmatrix}$$

Per k=2, secondo passo. Escludendo la prima riga (rimasta inalterata) e la prima colonna di $A^{(2)}$, riapplichiamo il procedimento alla sua sottomatrice $n-1\times n-1$.

Proseguendo così, dopo n-1 passi si ottiene la matrice *triangolare superiore* $A^{(n)} = U$.

Gli elementi l_{ij} formeranno la matrice triangolare inferiore L, con $l_{ii} = 1, i = 1, \ldots, n$, tale che A = LU.

Algoritmo di eliminazione di Gauss

L'algoritmo del metodo di eliminazione di Gauss si può schematizzare come segue

```
for k=1,\ldots,n-1 do for i=k+1,\ldots,n do l_{ik}=\frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} for j=k,\ldots,n do a_{ij}^{(k)}=a_{ij}^{(k)}-l_{ik}a_{kj}^{(k)} end for end for
```

Esercizio

A partire dallo pseudocodice dell'Algoritmo precedente si scriva una function Matlab/Octave: function[L,U] = lugauss(A) che restituisce i due fattori triangolari L ed U.

Test della function lugauss

Esercizio

Si scriva uno script che definita la matrice

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

e il termine noto $b = (3 \ 4 \ 3)^T$, risolva il sistema Ax = b (soluzione vera $x = (1 \ 1 \ 1)^T$), richiamando la function lugauss e risolvendo i due sistemi triangolari usando il comando \ di Matlab/Octave .

Stabilità dell'algoritmo di eliminazione di Gauss

- La fattorizzazione LU non sempre è accurata a causa degli errori di arrotondamento: il fatto che al passo k l'elemento diagonale $a_{kk}^{(k-1)}$ (pivot) sia piccolo, pur non impedendo la conclusione del calcolo della fattorizzazione, come succederebbe nel caso si incontrasse un pivot nullo, può comunque comportare gravi perdite di accuratezza.
- L'uso della tecnica del pivoting migliora di molto l'accuratezza della fattorizzazione LU.
- Pivoting parziale: Scegliere come elemento pivot il massimo in modulo tra gli elementi nella sottocolonna k.

Questo garantisce che tutti i moltiplicatori siano in modulo ≤ 1 e impedisce di conseguenza la crescita eccessiva degli elementi nella matrice U nel caso generale.

Stabilità dell'algoritmo di eliminazione di Gauss

Esercizio proposto

Si risolva il sistema lineare Ax = b dove, fissato $\varepsilon = 10^{-14}$,

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 2 & 2 - \varepsilon & 4 \\ 1 & 9 & 4 \end{pmatrix}$$

e il termine noto $b=A\bar{x}$ si ottiene dopo aver imposto la soluzione vera pari a $\bar{x}=(1\ 1\ 1)^T$.

Una volta risolto il sistema e ricavata la soluzione approssimata x, si calcoli il residuo relativo $\frac{\|b-Ax\|}{\|b\|}$ e l'errore relativo $\frac{\|x-\bar{x}\|}{\|\bar{x}\|}$ commentando i risultati ottenuti.

Si ripetano gli stessi passi utilizzando poi la fattorizzazione LU con pivot fornita dalla function Matlab/Octave [L,U,P] = lu(A).