Algebra I

Nicholas Schwab

Sommersemester 2017

1 The Hilbert Basis- and Nullstellensatz

1.1 Noetherian Rings

Definition 1.1.1. Let R be a ring, and $f_1, \ldots, f_n \in R$, then

$$\langle f_1, \dots, f_n \rangle_R = \left\{ \sum_{i=1}^n \lambda_i f_i \middle| \lambda_i \in R \right\} = \bigcap_{\substack{I \subseteq R, \\ I \text{ ideal }, \\ f_i \in I \forall i}} I.$$

This is called the *ideal* generated by the f_i and the f_i are called a *basis* or *generators* of I.

Remark. If I is not necessarily finite,

$$\langle f_i \mid i \in I \rangle_R = \left\{ \sum_{i \in I} \lambda_i f_i \middle| \lambda_i = 0 \text{ for all but finitely many } i \right\} = \bigcap_{\substack{I \subseteq R, \\ I \text{ ideal }, \\ f_i \in I \forall i}} I.$$

Definition 1.1.2. Let k be a field, $I \subseteq k[T_1, \ldots, T_n]$ an ideal, l a field extension of k. $x \in l^n$ is a zero of I iff $f(x_1, \ldots, x_n) = 0$ for all $f \in I$.

Remark. x is a common zero of the $f_i \in k[X_1, \ldots, X_n]$ iff is a zero of the ideal generated by the f_i .

Proposition 1.1.1. For a ring R the following conditions are equivalent:

- a) Every ideal has a finite set of generators (i.e. is finitely generated).
- b) Every ascending chain $I_0 \subseteq I_1 \subseteq ...$ of ideals in R terminates after finitely many steps, i.e. there is some $n \in \mathbb{N}$ such that $I_k = I_n$ for all $k \ge n$.
- c) Every non-empty set \mathfrak{M} of ideals in R has an \subseteq -maximal element I.

Definition 1.1.3. A ring with these properties is called *Noetherian*.

Example. Fields and principal ideal domains are Noetherian.

Theorem 1.1.1 (Hilbert's Basissatz). If R is Noetherian, $R[T_1, \ldots, T_n]$ (with finite n!) is Noetherian.

Proof. The proof is recapitulated later on.

Corollary 1.1.1 (of the Basissatz). Every polynomial system of equations in finitely many variables over a field has finite subsystem with the same set of solutions.

Theorem 1.1.2 (Hilbert's Nullstellensatz). Let k be a algebraically closed field and $I \subseteq k[X_1, \ldots, X_n]$ a proper ideal. Then I has a zero $x \in k^n$.

Proof. This will be proofed in a few days.

1.2 Modules over rings

Definition 1.2.1. An R-Module (where R is a ring) is an abelian group (M, +) with an operation

$$\cdot: R \times M \longrightarrow M$$

$$(r, m) \longmapsto r \cdot m$$

such that

$$r \cdot (s \cdot m) = (r \cdot s) \cdot m$$
$$(r+s) \cdot m = r \cdot m + s \cdot m$$
$$r \cdot (m+n) = r \cdot m + r \cdot n$$
$$1 \cdot m = m.$$

A morphism of R-Modules is a map $M \xrightarrow{f} N$ which is a homomorphism of abelian groups compatible with \cdot . A submodule of M is a subgroup $X \subseteq M$ of (M, +) such that $R \cdot X \subseteq X$.

Example. The R-submodules of R are the ideals in R.

Proposition 1.2.1. If $N \subseteq M$ is a R-submodule of the R-module M the quotient group M/N has a unique structure of an R-submodule such that the projection $M \xrightarrow{\pi} M/N$ is a morphism of R-modules, and for arbitrary R-modules T the map

$$\operatorname{Hom}_R(M/N,T) \longrightarrow \{ \tau \in \operatorname{Hom}_R(M,T) | \tau|_N = 0 \}$$

 $t \longmapsto \tau = t \circ \pi$

is bijective, where t is surjective iff τ is and t is injective iff $\ker(\tau)$ equals N.

Remark. Two important corollaries are:

$$(M/L)/(N/L) \stackrel{\simeq}{\longleftarrow} M/N$$

for $M \supseteq N \supseteq L$ and, for submodules N and L of M

$$(N+L)/N \stackrel{\simeq}{\longleftarrow} L/(N\cap L)$$

where N + L denotes the submodule $\{l + n | l \in L, n \in N\}$ of M.

Definition 1.2.2. If M and N are R-modules, $M \oplus N = \{(m,n), | m \in M, n \in N\} = M \times N$ equipped with component-by-component addition and scalar multiplication. This can be generalized to finitely many summands.

Example. $R^n = \{(r_i)_{i=1}^n | r_i \in R\}$ is an R-module.

Definition 1.2.3. If M is an R-module and $m_1, \ldots, m_k \in M$, then the submodule generated by $\{m_i | 1 \leq i \leq k\}$ is

$$\left\{ \sum_{i=1}^{k} r_i \cdot m_i \middle| r_i \in R \right\} = \bigcap_{\substack{X \subseteq M \\ X \text{ module} \\ \text{all } m_i \in X}} X$$

As was the case for Definition 1.1.1, this can be generalized to infinitely many generators. M is finitely generated iff there are $(m_i)_{i=1}^k$, $k \in \mathbb{N}$, $m_i \in M$ such that the submodules of M generated by the m_i equals M.

Proposition 1.2.2. Let $N \subseteq M$ be an R-submodule

- a) If M is finitely generated, M/N is finitely generated.
- b) If N and M/N are finitely generated, M is finitely generated.

Corollary 1.2.1. $M \oplus N$ is finitely generated iff M and N are. (Note that: $M \simeq M \oplus \{0\}$ and $(M \oplus N)/M \simeq N$)

Proposition 1.2.3. Let M be an R-module. The following properties are equivalent:

- a) Every submodule $N \subseteq M$ of M is finitely generated.
- b) Every ascending sequence $N_0 \subseteq N_1 \subseteq \dots$ of submodules of N terminates.
- c) Every non-empty set \mathfrak{M} of R-submodules of M has a \subseteq -maximal element.
- *Proof.* **a**) \to **b**) Let $N_{\infty} = \bigcup_{i=0}^{\infty} N_i$, then this is a submodule, hence finitely generated by a). Let $n_1, \ldots, n_k, k \in \mathbb{N}$, generate N_{∞} and let j_i , for $1 \leq i \leq k$, be chosen such that $n_i \in N_{j_i}$ and let $l = \max\{j_i | 1 \leq i \leq k\}$, then $n_l = N_{\infty}$.
- $\mathbf{b}) \to \mathbf{c}$) From b) we conclude, that in the \subseteq -ordered set \mathfrak{M} every ascending chain has an upper bound in \mathfrak{M} , namely the ideal, that terminates the chain. Therefore by Zorn's Lemma there is \subseteq -maximal element in \mathfrak{M} .
- $\mathbf{c}) \to \mathbf{a}$) Let \mathfrak{M} be the set of finitely generated submodules of N. Since $\{0\} \subseteq N$ is a module, this set is not empty. Therefore there is a \subseteq -maximal submodule P in \mathfrak{M} generated by p_1, \ldots, p_n . Therefore there is no $f \in N \setminus P$ such that $\langle p_1, \ldots, p_n, f \rangle_R$ is a submodule of N since this would be a superset of P. Hence we have N = P is finitely generated.