17

(1)

グラフより、横軸より上のとき、速度は正、

横軸より下のとき、速度は負となる。

また、傾きが正のとき、加速度は正、

傾きが負のとき、加速度は負となる。

	2秒	5秒	7秒	10 秒	12 秒
速度	正	正	0	負	負
加速度	0	負	負	0	正

(2)

3~9秒の加速度 a_{39} は、

$$a_{39} = \frac{-4-8}{9-3} = -2 \, m/_{S^2}$$

11~13秒の加速度 a1113は、

$$a_{1113} = \frac{0 - (-4)}{13 - 11} = 2 \frac{m}{S^2}$$

よって、3~9秒の加速度と11~13秒の加速度の大きさは等しい。

(3)

0~3秒、3~7秒、7~9秒、9~11秒、11~13秒に分けて考える。

$$x = \frac{1}{2}at^2 + v_0t$$
 より、 (等加速度運動の基本関係式)

0~3秒は、

$$a=0$$
 $m/_{S^2}$, $t=3s$, $v_0=8$ $m/_{S}$ を代入して、 $x_{03}=\frac{1}{2}\cdot 0\cdot 3^2+8\cdot 3$ $=24m$

3~7秒は、

$$a=-2 \frac{m}{S^2}$$
 , $t=4s$, $v_0=8 \frac{m}{S}$ を代入して、 $x_{37}=\frac{1}{2}\cdot(-2)\cdot 4^2+8\cdot 4$ $=16m$

7~9秒は、

$$a=-2 \frac{m}{S^2}$$
 , $t=2s$, $v_0=0 \frac{m}{S}$ を代入して、 $x_{79}=\frac{1}{2}\cdot(-2)\cdot 2^2+0\cdot 2$ $=-4m$

9~11秒は、

$$a=0\,{}^m/_{S^2}$$
 , $t=2s$, $v_0=-4\,{}^m/_{S}$ を代入して、 $x_{911}=\frac{1}{2}\cdot 0\cdot 2^2+(-4)\cdot 2$ $=-8m$

11~13秒は、

$$a=2^m/_{S^2}$$
 , $t=2s$, $v_0=-4^m/_{S}$ を代入して、 $x_{1113}=\frac{1}{2}\cdot 2\cdot 2^2+(-4)\cdot 2$ $=-4m$

よって、運動距離xは、

$$x = |x_{03}| + |x_{37}| + |x_{79}| + |x_{911}| + |x_{1113}| = 56m$$

(別解)

運動距離は、縦軸、横軸、速度と時間の関係グラフに囲まれた部分の面積と等しいので、

$$x_{07} = \frac{(3+7)\times 8}{2} = 40m$$
 (台形の面積の公式) $x_{713} = \frac{(6+2)\times 4}{2} = 16m$ (台形の面積の公式) $x = |x_{07}| + |x_{713}| = 56m$

(4)

(1),(2)より、

$$0 \sim 3$$
秒は $0^{m}/_{s^{2}}$, $3 \sim 9$ 秒は $-2^{m}/_{s^{2}}$, $9 \sim 11$ 秒は $0^{m}/_{s^{2}}$, $11 \sim 13$ 秒は $2^{m}/_{s^{2}}$ のグラフを描けばよい。
(グラフは解答参照)