목성과 지구 태풍의 최대풍속 비교

고지혜, 김하연, 신지영

목차

I 태풍의 구조와 Carnot cycle

■ 목성 태풍의 열효율과 Vmax

Ⅲ 연구정리 및 고찰

- Carnot cycle의 적용
- Efficiency and Vmax 유도

태풍

rare South Atlantic tropical cyclone viewed from the International Space Station on March 26, 2004.

태풍의 구조

- Entropy influx
 - source : ocean

$$\dot{s}_{inflow} = rac{2\pi}{T_a} \int_{r_e}^{r_o} [C_k |V_a| (k_0^* - k_a)]
ho_a r dr$$

$$dS = \frac{\delta Q}{T}$$

• Entropy outflux
$$\dot{s}_{outflow} = \frac{2\pi}{T_o} \int_{r_a}^{r_o} [C_k |V_a| (k_0^* - k_a)] \rho_a r dr$$

$$|V|_{\max}^2 = \frac{C_k}{C_D} \frac{T_a - T_o}{T_o} (k_0^* - k_a)$$

목성 태풍의 열효율과 V_{max}

- 목성의 대기
- 목성의 열역학적 변수 유도
- 열역학적 효율성 도출
- 목성의 V_{max}

목성 대기의 연직구조

목성 대기의 연직구조

목성 대기의 접면 (T_a) = (T, P) : (294K, 10bar)

목성 대류권계면(T₀) = (T, P) : (? K, 0.5bar)

목성 대기의 연직구조

$$\frac{T_a - T_o}{T_a}$$

- 목표: To 구하기!
- 대기에서의 가정
- : 3개의 cloud layer
- : 물로 근사

지구에서 권계면의 온도

15km

220.25K

$$\Gamma_s = -\frac{dT}{dz} = \frac{g}{c_p} \frac{1 + \frac{l_v w_{sw}}{R}}{1 + \frac{l_v^2 w_{sw}}{c_p R_v T^2}}$$

1km

290.25K

0km 300K

$$\Gamma_d = -\frac{d\,T}{dz} = \frac{g}{c_{pd}} \qquad \text{9.75°C/km}$$

목성에서의 권계면의 온도

건조단열감률

$$arGamma_d = -rac{d\,T}{dz} = rac{g}{c_{pd}}$$

행성	중력
지구	9.8m/s
목성	26.2m/s

행성	건조공기의 정압비열
지구	1005J/kgK
목성	? J/kgK

행성	건조단열감률
지구	9.75°C/km
목성	? °C/km

정적비열, 정압비열

대기 성분	구성비(%)
수소(H_2)	89.8
헬륨(He)	10.2

For a monatomic gas

$$c_v = \frac{3}{2}R$$

$$c_p = \frac{5}{2}R$$

헬륨(He)

For a diatomic gas

$$c_v = \frac{5}{2}R$$

$$c_p = \frac{7}{2}R$$

수소(H_2)

기체상수

	기체상수
수소	4157.24
헬륨	2078.62

	정적비열	정압비열
수소	10393.09	14550.32
헬륨	3117.93	5196.54

4

목성의 건조공기에 대해

정적비열	정압비열
9651.02	13596.24

건조단열감률

$$arGamma_d = -rac{d \, T}{dz} = rac{g}{c_{pd}}$$

행성	중력
지구	9.8m/s
목성	26.2m/s

행성	건조공기의 정압비열
지구	1005J/kgK
목성	13596.24J/kgK

행성	건조단열감률
지구	9.75°C/km
목성	1.9°C/km

습윤단열감률

$$\Gamma_{s} = -\frac{dT}{dz} = \frac{g}{c_{p}} \frac{1 + \frac{l_{v}w_{sw}}{R}}{1 + \frac{l_{v}w_{sw}}{c_{p}R_{v}T^{2}}}$$

습윤단열감률의 열역학적 변수 구하기 (1)

목성의 얼음구름층

목성의 암모니아 고체구름층

$$\Gamma_{s} = -\frac{dT}{dz} = \frac{g}{c_{p}} \frac{1 + \frac{l_{s}w_{si}}{R}}{1 + \frac{l_{s}w_{si}}{c_{p}R_{v}T^{2}}}$$

461.92
$$R_v = \frac{R^*}{M_v}$$
 489.09 J/kgK

3945.22
$$R = \frac{R^*}{M}$$
 3945.22 J/kgK

습윤단열감률의 열역학적 변수 구하기 (2)

 $l_s = C_p \ \Delta T + l_v + l_f$

목성의 얼음구름층

목성의 암모니아 고체구름층

I_v(H2O)	2264.76kJ/kg	I_f(H2O)	334kJ/kg	Tv-Tf	100K	Cpw	4.186kJ/kg.K	I_s(H2O)	3017.76kJ/kg
I_v(NH3)	1369kJ/kg	I_f(NH3)	332.17kJ/kg	Tv-Tf	44K	Cpam	2.18kJ/kg.K	I_s(NH3)	1797kJ/kg

성분	승화잠열(l_s)
Water	3018kJ/kg
ammonia	1797kJ/kg

1797kJ/kg

습윤단열감률의 열역학적 변수 구하기 (3)

water

ammonia

$$e_{si} = 6.11 \exp(22.49 - \frac{6142}{T}) \qquad \qquad e_{si} = 60.76 \exp(17.8931 - \frac{3496.93}{T})$$

274.73K

P = 9.5bar

	e_ si
Water 층	6.98

	w_si
Water 층	0.006278

$$\Gamma_S$$
 = 1.94°C/km

습윤단열감률의 열역학적 변수 구하기 (3)

$$\epsilon = rac{M_v}{M_d} \stackrel{w_{si} = rac{\epsilon e_{si}}{p}}{\longrightarrow}$$

	Epsilon
Water 층	8.54
Ammonia 층	8.07

water

ammonia

$$e_{si} = 6.11 \exp(22.49 - \frac{6142}{T}) \qquad e_{si} = 60.76 \exp(17.8931 - \frac{3496.93}{T})$$

	e_ si
Water 층	6.98

274.73K

P = 9.5bar

	w_si
Water 층	0.006278

177.92K

P=1bar

열역학적 변수를 이용해 습윤단열감률 구하기

$$\Gamma_s = -\frac{dT}{dz} = \frac{g}{c_p} \frac{1 + \frac{l_s w_{si}}{R}}{1 + \frac{l_s^2 w_{si}}{c_p R_v T^2}}$$

물의 습윤단열감률 Γ_s = 1.94 $^{\circ}$ C/km

암모니아의 습윤단열감률 Γ_s = 2℃/km

Carnot efficiency 出교

	T_a	T_o
지구	300	220.25
목성	294	118

Classical Carnot efficiency

$$\frac{T_a - T_o}{T_o}$$

0.27

Thermodynamic efficiency
$$T_a-T$$

0.36

태풍에서의 최대속력을 구해보자

$$|V|_{\max}^2 = \frac{C_k}{C_D} \frac{T_a - T_o}{T_o} (k_0^* - k_a)$$

태풍에서의 최대속력을 구해보자

$$k_0^* - k_a = L_v(q_0^* - q_a)$$
 $k_0^* - k_a = \frac{\epsilon L_v}{p}(e^* - e_a)$

$$k_0^*-k_a\simeq \frac{\epsilon L_v e^*}{p}(1-H_a)$$
 지구 : 22.39 kJ/kgK 목성 : 31.11 kJ/kgK 0.6이라 하자

$$\ln \frac{e_{sw}}{e_{s0}} = \frac{l_v}{R_v T_0} - \frac{l_v}{R_v T}$$
 지구 $e^* = 6.11 \exp(19.83 - \frac{5417}{T})$ 35.99mb 목성 $e^* = 6.11 \exp(22.49 - \frac{6142}{T})$ 30.23mb

태풍에서의 최대속력을 구해보자

지구 : 22.39 목성 : 31.11
$$V \mid_{\max}^2 = \frac{C_k}{C_D} \frac{T_a - T_o}{T_o} (k_0^* - k_a)$$
 지구 : 0.27

목성: 0.60

V^2는 목성이 46.4, 지구는 8.11에 비례하고 V는 목성이 6.81, 지구가 2.85에 비례한다.

연구 정리 및 고찰

- 연구 결과 및 의의
- 본 연구의 한계
- 이후 연구 진행에서의 제언
- 참고문헌

1. 목성에서의 태풍이 오래가는 이유(보통 100배 정도)

2. 목성의 태풍에서의 Vmax의 크기

$$\frac{T_a - T_o}{T_o} = 0.60$$

Thermodynamic
$$\frac{T_a - T_o}{T_a} = 1.49$$
 0.36

 C_k = exchange coefficient of heat and water

=> 목성에서 상수값이 달라진다.

 C_D = surface drag coefficient

- C_D 가 일정하다고 가정할 때의 $\dfrac{C_k}{C_D}$
- → Vmax가 클수록 커진다.
- ightarrow 목성에서 $\dfrac{C_k}{C_D}$ 이 더 크다.

- 바람과 닿는 바다 표면이 Rough할수록 C_D 값이 커진다.
- ightarrow 목성에서는 직접 바다와 닿지 않기에 C_D 가 작아진다.

출처: ftp://18.83.0.193/ftp/ftp/pub/emanuel/PAPERS/sens95.pdf, http://climate.ncsu.edu/sraman/publications/J6.pdf

- 1. 목성에서의 태풍이 오래가는 이유(보통 100배 정도)
- 2. 목성의 태풍에서의 Vmax의 크기

V max : 89.4m/s V max : ?m/s

출처: http://www.nasa.gov/centers/goddard/news/topstory/2008/jupiter_lrs.html

- 1. 목성에서의 태풍이 오래가는 이유(보통 100배 정도)
- 2. 목성의 태풍에서의 Vmax의 크기

V max : 89.4m/s V max : 213.62m/s

출처: http://www.nasa.gov/centers/goddard/news/topstory/2008/jupiter_lrs.html

본 연구의 한계

- 1. 목성에서의 정확한 연직 구조를 반영하지 않고 근사치를 이용했다.
- -> 암모니아 황화수소의 정확한 열역학적 변수를 구할 필요가 있다.
- 2. 정확한 Cd/Ck 비율은 모르고 상대적인 크기만을 이용했다.
- -> 정확한 Vmax의 크기를 구할 수 없었다.
- 3. 태풍의 규모에 대한 고려 없이 Vmax만을 추정했다.
- -> 태풍의 규모에는 속도뿐만 아니라 중심 기압이 포함된다.
- 4. 대기의 연직 규모가 불연속적으로 끊어져 있다는 것을 전제하고 계산을 진행했다.
- -> 실제로는 혼합이 된 **연속적인 구조**일 가능성이 높다.

이후 연구 진행에서의 제언

- 1. 암모니아 황화수소의 정확한 열역학적 변수를 구할 필요가 있다.
- -> 응결시의 잠열에 대한 정보가 더 필요하다.
- 2. 정확한 Cd/Ck 비율은 모르고 상대적인 크기만을 이용했다.
- -> 정확한 Vmax의 크기를 구하기 위해 Cd/Ck의 정보가 필요하다.
- 3. 태풍의 규모에 대한 고려 없이 Vmax만을 추정했다.
- -> 중심 기압에 대한 논의를 포함해서 태풍 규모에 대한 측정을 해야 한다.
- 4. 대기의 연직 규모가 불연속적으로 끊어져 있다는 것을 전제하고 계산을 진행했다.
- -> 목성 대기에 대한 연구를 더 진행하여 정확한 연직구조를 추정해야 한다..

참고문헌

- http://www.gfdl.noaa.gov/blog/isaac-held/2014/06/26/47-relative-humidity-over-the-oceans/(검색일: 2015.11.27)
- http://wind.mit.edu/~emanuel/Lorenz/Lorenz_Workshop_Talks/Soden.pdf
- ftp://18.83.0.193/ftp/ftp/pub/emanuel/PAPERS/sens95.pdf
- http://climate.ncsu.edu/sraman/publications/J6.pdf
- http://wind.mit.edu/~emanuel/geosys/node4.html
- Annu. Rev. Earth Planet. Sci. 2003. 31:75–104
- doi: 10.1146/annurev.earth.31.100901.141259
 Copyright°c 2003 by Annual Reviews. All rights reserved
 First published online as a Review in Advance on February 10, 2003
- Kerry Emanuel, TROPICAL CYCLONES-Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology
- John Lewis, Physics and chemistry of the solar system, 2012, p. 157

Thank You! Q & A