Agrégation Externe Séries formelles

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 124 Anneau des série formelles. Applications
- 190 Méthodes combinatoires, problèmes de dénombrement.

On pourra consulter les ouvrages suivants.

- J. Calais. Éléments de théorie des anneaux. Ellipses (2006).
- H. Cartan. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann (1961).
- S. Francinou, H. Gianella, S. Nicolas. Oraux X-ENS. Algèbre 2. Cassini (2009).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- R. P. Stanley. Enumerative combinatorics. Vol. 1. Cambridge University Press. (2012)
- P. TAUVEL. Mathématiques générales pour l'agrégation. Masson (1993).
- H. Wilf. Generatingfunctionology. S. R. C. Press. (2005).

^{1.} Le 25/11/2014

A [resp. K] désigne un anneau commutatif unitaire [resp. un corps commutatif].

Une série formelle à coefficients dans \mathbb{A} est une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{A} .

On note $S(X) = \sum_{n \in \mathbb{N}} a_n X^n$ (ou $S = \sum_{n \in \mathbb{N}} a_n X^n$) une telle série formelle et $\mathbb{A}[[X]]$ l'ensemble de ces séries formelles.

On dit que la série formelle $\sum_{n\in\mathbb{N}} a_n X^n$ est la série génératrice de la suite $(a_n)_{n\in\mathbb{N}}$.

On définit une addition, une multiplication externe et une multiplication interne sur $\mathbb{A}[[X]]$ par :

$$\sum_{n \in \mathbb{N}} a_n X^n + \sum_{n \in \mathbb{N}} b_n X^n = \sum_{n \in \mathbb{N}} (a_n + b_n) X^n$$
$$\lambda \sum_{n \in \mathbb{N}} a_n X^n = \sum_{n \in \mathbb{N}} \lambda a_n X^n$$
$$\left(\sum_{n \in \mathbb{N}} a_n X^n\right) \left(\sum_{n \in \mathbb{N}} b_n X^n\right) = \sum_{n \in \mathbb{N}} c_n X^n$$

où:

$$\forall n \in \mathbb{N}, \ c_n = \sum_{k=0}^n a_k b_{n-k}$$

 $\mathbb{A}[[X]]$ est une \mathbb{A} -algèbre commutative qui contient $\mathbb{A}[X]$ et \mathbb{A} comme sous-anneaux. La valuation d'une série formelle $S(X) = \sum_{n \in \mathbb{N}} a_n X^n$ est définie par :

$$val(S) = \begin{cases} +\infty & \text{si } S = 0\\ \min \{n \in \mathbb{N} \mid a_n \neq 0\} & \text{si } S \neq 0 \end{cases}$$

La dérivée de la série formelle $S=\sum\limits_{n\in\mathbb{N}}a_nX^n$ est la série formelle :

$$D(S) = \sum_{n \in \mathbb{N}} (n+1) a_{n+1} X^n$$

On note aussi S' pour D(S).

On peut itérer cet opérateur de dérivation, ce qui donne, pour tout entier $p \ge 1$, l'opérateur D^p défini par :

$$D^{p}\left(\sum_{n\in\mathbb{N}}a_{n}X^{n}\right)=\sum_{n\in\mathbb{N}}\left(n+p\right)\cdots\left(n+1\right)a_{n+p}X^{n}$$

– I – Généralités sur l'anneau $\mathbb{K}\left[[X]\right]$ des séries formelles à coefficients dans \mathbb{K}

- 1. Montrer que les assertions suivantes sont équivalentes :
 - (a) l'anneau $\mathbb{A}[[X]]$ est intègre;
 - (b) l'anneau A est intègre;
 - (c) pour toutes séries formelles S,T dans $\mathbb{A}\left[\left[X\right]\right]$, on a :

$$\operatorname{val}(ST) = \operatorname{val}(S) + \operatorname{val}(T)$$

En particulier $\mathbb{K}[X]$ est intègre.

2. Soient $S = \sum_{n \in \mathbb{N}} a_n X^n$ et $T = \sum_{n \in \mathbb{N}} b_n X^n$ deux séries formelles avec val(T) = 0 (soit $b_0 \neq 0$). Montrer que, pour tout entier naturel n, il existe un unique couple $(Q_n, R_n) \in \mathbb{K}_n[X] \times \mathbb{K}[[X]]$

tel que $S = TQ_n + X^{n+1}R_n$.

Dans le cas où S et T sont des polynômes, avec $T(0) \neq 0$, on retrouve le théorème de division suivant les puissances croissantes dans $\mathbb{K}[X]$.

- 3. Montrer qu'une série formelle est inversible si, et seulement si, val (S) = 0. Pour $S \in \mathbb{K}[[X]]$ inversible, on note S^{-1} ou $\frac{1}{S}$ l'inverse de S.
- 4. Montrer que, pour tout scalaire $\lambda \in \mathbb{K} \setminus \{0\}$, la série formelle $1 \lambda X$ est inversible d'inverse :

$$\frac{1}{1 - \lambda X} = \sum_{n \in \mathbb{N}} \lambda^n X^n$$

5. Montrer que, pour tous scalaires $\lambda \neq \mu$ dans $\mathbb{K} \setminus \{0\}$, la série formelle $(1 - \lambda X)(1 - \mu X)$ est inversible d'inverse :et :

$$\frac{1}{\left(1 - \lambda X\right)\left(1 - \mu X\right)} = \frac{1}{\lambda - \mu} \left(\frac{\lambda}{1 - \lambda X} - \frac{\mu}{1 - \mu X}\right)$$

6. Montrer que, pour tout entier $p \ge 1$, la série formelle $(1-X)^p$ est inversible d'inverse :

$$\frac{1}{(1-X)^p} = \sum_{n \in \mathbb{N}} \binom{n+p-1}{p-1} X^n$$

- 7. On suppose que le corps K est de caractéristique nulle. Soient S, T deux séries formelles dans $\mathbb{K}[X]$, la série T étant inversible.
 - (a) Montrer que S' = 0 si, et seulement si, $S \in \mathbb{K}$.
 - (b) Montrer que (ST)' = S'T + ST' et $\left(\frac{S}{T}\right)' = \frac{S'T ST'}{T^2}$.
 - (c) En supposant S également inversible, montrer que $\frac{S'}{S} = \frac{T'}{T}$ si, et seulement si, il existe un scalaire $\lambda \in \mathbb{K}$ tel que $S = \lambda T$.
- 8. Montrer que, pour tout entier $p\geq 1,$ la dérivée $p\text{-\`e}me$ de 1-X est :

$$D^{p}\left(\frac{1}{1-X}\right) = p! \frac{1}{(1-X)^{p+1}}$$

9. Montrer que les idéaux non réduit à $\{0\}$ de $\mathbb{K}[[X]]$ sont de la forme :

$$(X^n) = \{ S \in \mathbb{K} \left[[X] \right] \mid \text{val} \left(S \right) \ge n \}$$

Donc l'anneau $\mathbb{K}[X]$ est principal.

- 10. Quels sont les éléments irréductibles de $\mathbb{K}[X]$? Écrire la décomposition en facteurs irréductibles d'une série entière non nulle et non inversible.
- 11. Montrer que l'anneau $\mathbb{K}[X]$ est euclidien (donc principal) pour le stathme :

$$\operatorname{val}: S \in \mathbb{K}\left[\left[X\right]\right] \setminus \{0\} \mapsto \operatorname{val}\left(S\right)$$

3

- II - Séries formelles et dénombrement

1. Pour $n \geq 1$, on appelle dérangement de $I_n = \{1, 2, \dots, n\}$ toute permutation σ de I_n n'ayant aucun point fixe.

On note δ_n le nombre de dérangements de I_n en convenant que $\delta_0=1.$

(a) Montrer que:

$$\forall n \in \mathbb{N}, \ n! = \sum_{k=0}^{n} \binom{n}{k} \delta_k$$

(b) On désigne par $S = \sum_{n \in \mathbb{N}} \frac{\delta_n}{n!} X^n$ la série génératrice de la suite $\left(\frac{\delta_n}{n!}\right)_{n \in \mathbb{N}} \left(\frac{\delta_n}{n!}\right)$ est la proportion de dérangements dans S_n).

Montrer que $S\left(X\right)e^{X}=\frac{1}{1-X}$ et en déduire que :

$$\forall n \in \mathbb{N}, \ \delta_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$

- 2. Pour tout entier $n \geq 2$, on désigne par u_n le nombre de permutations de l'ensemble $I_n = \{1, \dots, n\}$ d'ordre au plus égal à 2 (les involutions de I_n). On note aussi $u_0 = u_1 = 1$
 - (a) Montrer que, pour $2 \le r \le n$, dans S_n il y a $\binom{n}{r}(r-1)! = \frac{n!}{r(n-r)!}$ cycles d'ordre r distincts.
 - (b) Calculer u_2 , u_3 et u_4 .
 - (c) Montrer que:

$$\forall n \ge 2, \ u_n = u_{n-1} + (n-1) u_{n-2}$$

(d) On désigne par $S = \sum_{n \in \mathbb{N}} \frac{u_n}{n!} X^n$ la série génératrice de la suite $\left(\frac{u_n}{n!}\right)_{n \in \mathbb{N}} \left(\frac{u_n}{n!}\right)$ est la proportion d'involutions dans S_n).

Montrer que S' = (1 + X) S et en déduire que $S = e^X e^{\frac{X^2}{2}}$, puis que :

$$\forall n \in \mathbb{N}, \ u_n = \sum_{p+2q=n} \frac{n!}{2^q p! q!}$$

- (e) Déterminer le nombre v_n d'involutions de I_n sans point fixe, en convenant que $v_0 = 1$ et en remarquant que $v_1 = 0$.
- (f) Déterminer le nombre w_n d'involutions de I_n ayant un unique point fixe, en convenant que $w_0 = 0$ et en remarquant que $w_1 = 1$.
- 3. Pour tout couple (p,n) d'entiers naturels non nuls, on désigne par $u_{p,n}$ le nombre d'applications surjectives de l'ensemble $I_p = \{1, \cdots, p\}$ sur l'ensemble $I_n = \{1, \cdots, n\}$, en convenant que $u_{p,0} = 0$ pour tout entier naturel non nul p.

4

(a) Montrer que :

$$\forall p \ge n \ge 1, \ n^p = \sum_{k=0}^n \binom{n}{k} u_{p,k}$$

(b) Pour $p \ge 1$ fixé, on désigne par $S_p = \sum_{n \in \mathbb{N}} \frac{u_{p,n}}{n!} X^n$ la série génératrice de la suite $\left(\frac{u_{p,n}}{n!}\right)_{n \in \mathbb{N}}$. Montrer que $S_p(X) e^X = \sum_{n \in \mathbb{N}} \frac{n^p}{n!} X^n$ et en déduire que :

$$\forall p \ge n \ge 1, \ u_{p,n} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^p$$

- III - Fractions rationnelles et séries formelles à coefficients dans $\mathbb K$

1. Soit:

$$Q(X) = 1 + \alpha_1 X + \dots + \alpha_r X^r = \prod_{k=1}^{p} (1 - \gamma_k X)^{m_k}$$

un polynôme de degré $r \geq 1$ dans $\mathbb{K}[X]$ (donc $\alpha_r \neq 0$) supposé scindé de racines non nulles $\left(\frac{1}{\gamma_k}\right)_{1 \leq k \leq r}$ deux à deux distinctes de multiplicités respectives $(m_k)_{1 \leq k \leq r}$.

Montrer que, pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{K} , les assertions suivantes sont équivalentes :

(a) il existe un polynôme $P \in \mathbb{K}[X]$ de degré au plus égal à r-1 tel que :

$$\sum_{n \in \mathbb{N}} u_n X^n = \frac{P(X)}{Q(X)}$$

dans $\mathbb{K}[[X]]$;

(b) pour tout $n \in \mathbb{N}$, on a :

$$u_{n+r} + \alpha_1 u_{n+r-1} + \dots + \alpha_r u_n = 0$$

(le polynôme Q est le polynôme caractéristique de cette relation de récurrence);

(c) pour tout $n \in \mathbb{N}$, on a :

$$u_n = \sum_{k=1}^{p} P_k(n) \, \gamma_k^n$$

où, pour tout k compris entre 1 et p, P_k est un polynôme de degré au plus égal à $m_k - 1$.

- 2. Soient r un entier naturel non nul et $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Montrer que les assertions suivantes sont équivalentes :
 - (a) il existe un polynôme $P\in\mathbb{K}\left[X\right]$ de degré au plus égal à r-1 tel que :

$$\sum_{n \in \mathbb{N}} u_n X^n = \frac{P(X)}{(1 - X)^r}$$

dans $\mathbb{K}\left[\left[X\right]\right]$;

(b) pour tout $n \in \mathbb{N}$, on a :

$$\sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} u_{n+k} = 0$$

(c) il existe un polynôme $R \in \mathbb{K}[X]$ de degré au plus égal à r-1 tel que $u_n = R(n)$ pour tout $n \in \mathbb{N}$.

5

3. Suite de Fibonacci.

On désigne par $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci définie par :

$$\begin{cases} F_0 = 0, \ F_1 = 1 \\ \forall n \in \mathbb{N}, \ F_{n+2} = F_{n+1} + F_n \end{cases}$$

et par F(X) sa série génératrice dans $\mathbb{R}[[X]]$.

(a) Montrer que:

$$F(X) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \alpha_1 X} - \frac{1}{1 - \alpha_2 X} \right)$$

οù

$$\alpha_1 = \frac{1+\sqrt{5}}{2}, \ \alpha_2 = \frac{1-\sqrt{5}}{2}$$

(b) En déduire que :

$$\forall n \in \mathbb{N}, \ F_n = \frac{1}{\sqrt{5}}(\alpha_1^n - \alpha_2^n)$$

4. Question de monnaie.

De combien de manières différentes peut-on payer la somme de 10,01 euros avec des pièces de 1, 2 et 5 centimes?