Injectively Time-Changed Stationary Processes: A Spectral Analysis

BY STEPHEN CROWLEY
July 13, 2025

Table of contents

1	Introduction
2	Gain Function Representation
3	Fundamental Properties
4	Warping Function Analysis 3
5	Inversion Theory
6	Band-Limited Structure
7	Asymptotic Analysis
8	Conclusion

1 Introduction

This analysis concerns injectively time-changed stationary processes, which arise from spectral representations involving a warping function $\theta(t)$ applied to the oscillatory kernel.

Definition 1. An injectively time-changed stationary process is a stochastic process $\{X(t)\}_{t\in\mathbb{R}}$ admitting the spectral representation

$$X(t) = \int_{-1}^{1} e^{i\lambda\theta(t)} dZ(\lambda) \tag{1}$$

where $\theta: \mathbb{R} \to \mathbb{R}$ is strictly increasing, $\theta \in C^1(\mathbb{R})$, and $\{Z(\lambda)\}_{\lambda \in [-1,1]}$ is an orthogonal increment process with $E[|d Z(\lambda)|^2] = F(d \lambda)$ for some finite measure F on [-1,1].

2 Gain Function Representation

Proposition 2. [Evolutionary Spectral Form] The process X(t) admits the evolutionary spectral representation

$$X(t) = \int_{-1}^{1} A(t,\lambda) e^{i\lambda t} dZ(\lambda)$$
 (2)

where the gain function is

$$A(t,\lambda) = e^{i\lambda(\theta(t) - t)} \tag{3}$$

Proof. Direct substitution yields:

$$X(t) = \int_{-1}^{1} e^{i\lambda\theta(t)} dZ(\lambda)$$
 (4)

$$= \int_{-1}^{1} e^{i\lambda(\theta(t)-t)} e^{i\lambda t} dZ(\lambda)$$
 (5)

$$= \int_{-1}^{1} A(t,\lambda) e^{i\lambda t} dZ(\lambda)$$
 (6)

3 Fundamental Properties

Theorem 3. [Spectral Characteristics] Let X(t) be an injectively time-changed stationary process. Then:

- 1. X(t) is well-defined for all $t \in \mathbb{R}$
- 2. $E[|X(t)|^2] = \int_{-1}^1 F(d\lambda) < \infty$
- 3. The covariance function satisfies

$$Cov(X(s), X(t)) = \int_{-1}^{1} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$
 (7)

Proof. (1) Since θ is strictly increasing and continuous, $\theta(t)$ is well-defined for all t. The stochastic integral converges in L^2 by the isometry property:

$$E[|X(t)|^2] = E\left[\left|\int_{-1}^1 e^{i\lambda\theta(t)} dZ(\lambda)\right|^2\right] \tag{8}$$

$$= \int_{-1}^{1} |e^{i\lambda\theta(t)}|^2 F(d\lambda) = \int_{-1}^{1} F(d\lambda) < \infty$$
 (9)

- (2) Follows immediately from (1).
- (3) By orthogonality of the random measure increments:

$$\operatorname{Cov}(X(s), X(t)) = E\left[\int_{-1}^{1} e^{i\lambda\theta(s)} dZ(\lambda) \cdot \overline{\int_{-1}^{1} e^{i\mu\theta(t)} dZ(\mu)}\right]$$
(10)

$$= \int_{-1}^{1} e^{i\lambda\theta(s)} \overline{e^{i\lambda\theta(t)}} F(d\lambda) \tag{11}$$

$$= \int_{-1}^{1} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$
(12)

Theorem 4. [Non-Stationarity Condition] An injectively time-changed stationary process X(t) is stationary if and only if $\theta(t) = t + c$ for some constant $c \in \mathbb{R}$.

Proof. (\Leftarrow) If $\theta(t) = t + c$, then

$$\operatorname{Cov}(X(s), X(t)) = \int_{-1}^{1} e^{i\lambda c} e^{-i\lambda c} F(d\lambda) = \int_{-1}^{1} F(d\lambda)$$
(13)

which is independent of s and t, establishing stationarity.

 (\Rightarrow) Suppose X(t) is stationary. Then Cov(X(s), X(t)) depends only on t-s. From the covariance formula, this requires

$$\theta(s) - \theta(t) = g(s - t) \tag{14}$$

for some function g. Differentiating with respect to s:

$$\theta'(s) = g'(s-t) \tag{15}$$

Since the left side depends only on s and the right side on s-t, both must be constant. Thus $\theta'(t) = k$ for some constant k, implying $\theta(t) = k t + c$. For the covariance to depend only on the difference s-t, one requires k=1, yielding $\theta(t) = t + c$.

4 Warping Function Analysis

Definition 5. The warping deviation function is $\Delta(t) := \theta(t) - t$.

Proposition 6. [Deviation Dynamics] Let $\Delta(t) = \theta(t) - t$ where θ is strictly increasing. Then:

- 1. $\Delta'(t) = \theta'(t) 1$
- 2. The gain function becomes $A(t, \lambda) = e^{i\lambda\Delta(t)}$
- 3. The instantaneous frequency modulation is $\lambda \Delta'(t)$

Proof. (1) and (2) are immediate. For (3), the phase of the spectral component at frequency λ is $\lambda \theta(t)$. The instantaneous frequency is

$$\frac{d}{dt} \left[\lambda \, \theta(t) \right] = \lambda \, \theta'(t) = \lambda \, (1 + \Delta'(t)) = \lambda + \lambda \, \Delta'(t) \tag{16}$$

The modulation relative to the base frequency λ is $\lambda \Delta'(t)$.

5 Inversion Theory

Theorem 7. [Spectral Inversion] Let X(t) be an injectively time-changed stationary process with absolutely continuous spectral measure $F(d\lambda) = f(\lambda) d\lambda$. If θ is invertible with inverse ψ , then

$$f(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(\psi(u)) e^{-i\lambda u} \frac{du}{\psi'(u)}$$
(17)

Proof. Making the substitution $u = \theta(t)$, so $t = \psi(u)$ and $dt = \psi'(u) du$:

$$X(\psi(u)) = \int_{-1}^{1} e^{i\mu u} dZ(\mu)$$
 (18)

This is the spectral representation of a stationary process in the u-domain. The standard inversion formula for stationary processes gives:

$$f(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(\psi(u)) e^{-i\lambda u} \frac{du}{\psi'(u)}$$
(19)

where the factor $\frac{1}{\psi'(u)}$ accounts for the change of measure.

6 Band-Limited Structure

Theorem 8. [Oscillatory Characterization] An injectively time-changed stationary process X(t) with spectral support in [-1,1] exhibits oscillatory behavior in the sense of Priestley if and only if the spectral measure F concentrates mass away from $\lambda = 0$.

Proof. The process has the representation

$$X(t) = \int_{-1}^{1} e^{i\lambda\theta(t)} dZ(\lambda)$$
 (20)

Oscillatory behavior requires sustained periodic components. If F has significant mass at $\lambda = 0$, the corresponding component $e^{i \cdot 0 \cdot \theta(t)} = 1$ contributes a non-oscillatory constant term. Conversely, if F concentrates away from zero, all spectral components $e^{i\lambda\theta(t)}$ with $\lambda \neq 0$ exhibit oscillatory behavior modulated by the timechange $\theta(t)$.

Corollary 9. [Band-Limited Narrow-Band Property] If F is concentrated in an interval $[\lambda_0 - \epsilon, \lambda_0 + \epsilon]$ with $\lambda_0 \neq 0$ and small $\epsilon > 0$, then X(t) exhibits narrow-band oscillatory behavior around the carrier frequency λ_0 .

7 Asymptotic Analysis

Theorem 10. [Large Deviation Asymptotics] If $\Delta(t) = \theta(t) - t$ grows without bound as $|t| \to \infty$, then the process X(t) exhibits asymptotic phase decorrelation:

$$\lim_{|t-s|\to\infty} Cov(X(s), X(t)) = 0 \tag{21}$$

provided F has no point masses.

Proof. The covariance is

$$Cov(X(s), X(t)) = \int_{-1}^{1} e^{i\lambda(\theta(s) - \theta(t))} F(d\lambda)$$
(22)

If $|\theta(s) - \theta(t)| \to \infty$ as $|t - s| \to \infty$, then by the Riemann-Lebesgue lemma, the oscillatory integral converges to zero when F is absolutely continuous with respect to Lebesgue measure.

8 Conclusion

Injectively time-changed stationary processes provide a mathematically rigorous framework for analyzing non-stationary oscillatory phenomena through spectral methods. The warping function $\theta(t)$ induces a time-dependent modulation while preserving the fundamental spectral structure inherited from the underlying orthogonal increment process.