SDE und Filtention Prob. (1) Existence and Uniqueness: O Consider: Xt/At = bet. Xt) + 6ct. Xt) Wt Where W+ is white noise write in Itô interpretation: 1Xt = b(t. Xt) 1t + o(t, Xt) 1 bt. (*) Thm. For Too. be...) : co. 77 x 12 - 2 and 6 c.,.): I.7] x 1/2 -> 1/2 messurable. 5t. i) 16ct.xx1 + 1 6ct.xx1 = 1+1x1 ii) 161t, x) - bit, gil + 161t, x) - 50t, gil = 1x-71 If Z is a r.v. intopt of For generated by Bt. St. ZEL' Thin: J. V. P: (#) with X = Z. has a strong Folktion Xt (i.e. X+ adapted to Je") AZ. given (Bt) in advance) st. i) Xt is t-corti i) It c for 1xt 1xt 1 < 00. iii) It's strongly unique. a pointwise)

FMK: Condition i) ensures Xt won't explore. While Condition ii) is for the unique 5. Intien. Pf: 1) unique: Imppose Xiction, X2 (t, w) are 5. Intions with initial Values Z. Z. rupuvivoly Ict N = bcs, X, (s)) - bcs, X, (s)) Y = 505, X, (5) - 505, X-15) => E 1x, (t.w) - X2 (t.w) = E (1 Z-Z+ for + S + y & B s 12) (E | Z - Z | + E c | * ") + E c | * ") E (| Z - \(\hat{\x}\) + (| + \(\hat{\x}\) \(\hat{\x}\) \(\hat{\x}\) \(\hat{\x}\) follows from Mölder. Itô isonetry. Set Z = 2. By Grownwall is inaghi. 2) Existence: By Picarl 301:

Set Y't = Xo. Yt = X.+ J. bus. Y. 1 As + J. 5 us. Ys. 1 Abs. Note: \[\begin{array}{c} \begin{array}{

⇒ inductively: E14 + - 1 + 1 = A, + 1/(km)! => (YCH) x is Carety in L'emxP) Refine the limit of Y'r is Xt. set k to in filmed seq. it's the solveion 3') Note Itô integral has - conti. modification B Wank Solution: Def: Wank Silveion for (x) is pair of process (CXI, BI). Nt) on (N. N. P). St. given only bit. Xt). 8 it. Xt). (+) holds. If b. o setisfies conditions of 1hm above Ther. I solution is weakly unique. Live. have some finite- limension list.) Pf: If (CXt. Bt), Nt), C(Xt. Bt). Nt) are two venk solutions. suppose Pt. Yt nre two strong solutions from Bt. Bt. respectively. E) Prove : Yt has some law as Yt. It's easy to see from licard sez: (Yth, Bt) ~ (Yer, Bt). 4k, set k-

RMK: 350E. St. Werk Solution exists but no strong Solution. e.j. kxt = Squ(Xt) &Bt. (Tanka Equation) (2) Filtering Problem: Consider: Axt = bct, xt)At + 6 ct, xt) Aut where X+ & 'R". b= 'R"" -> 'R". o: 'R"" -> 'R". Ut is p-lim BM inkept of X. Alst is Known) Assume b. 6 Satisfies Exist and Unique Than With Observation: NZt = Clt. Xx 1 At + yct. Xx) NVt. St. Zo = 0. Ut is r-lim Bm. intept of Ut. Xo.

C: 'R" → 'R". Y: 'R" → 'R" Satisfies E&U 1hm Q: What's the best estimate Xt of Xt bused on the observation Zt? Rmk: (Xt) should snoistg: i) st & Gt = oc Zs. Osset). ii) E | X+ - x+1 = inf [E | X+ - Y+1 | Y E k+] kt =: [Y:n > 12] Yt Gt. Yt Lops).

7	somm.	n	(<	8		1	SNI	b -	6	- 1	12	26	rn		X	6	L	c	P		A	u	t			
			V.																							
									1				100	1 3			100			1						1
			rij			1	ME					100				100	Mary Control					-				
		P	'n.	4	()	=		E	4	X	1)	n) .												10	1
										1	N		749	1		18										
	337	M_	f:		Jo		4	×	-	PN	()	()) >	-	0	100	33	1	Y	6	1	1				
				17							1		100					1000			1	-		4	Ec	X
								100					1000					1500					/			
		9		X	(t	-	1	PK	t	1	(+ ,)		E	-	Xz	1	9	1)						-	
					BO	0.00	N - 54	B		1			N	0	1		5)			3 11	1				
0 1	One 1	lim	ens	ion	13	Li	ne	ns		P	16	len	n :							1		20				
																-3	100	N.								
	Carsia	w	Y	on	e -	L	im	(1	in	in	1		51) r	te	-			K			14		1/a	-
	1 14	7	F	(+)	V	1	4		+	1	. 4	5 80	14	,	-	F	-		E	R						
	1xt		1		^ '	1		3		_			/	TY.			A	2	•	pl		4				
M. H	NZt	2	6	(t)	X	5 1	t		<i>t</i>	D	Lt.) /	V	t	WA	0	2.		<i>C</i> 1	K		2		= 0		
	Assni	1			TO BE	150						11.10														
	7137	T-Y-II	100	3 000		100	-				-															
			in)	X	•	~	/	p	1	mi	1-	1	ir	t.		11	N	pt		o f		u		/-	
			in)	D	ιt)	>	0			ta	113	1		10	The	100	-	44		13	4		90	- 17
											100							n	20							
	54.0		,	7	IA3	1.	-VA	h					Z		73			4	1		3	1.		0	1	
	Step			*		110	- 1		N						ns	- N	ur	~P	10	X	O)	+1	m	V T 4	3 .	
	Lemm.		Y		7.		_	1	r li	D)		de	15	< 1			T.		,	V				7		
	Limmi												-30													1
			~	N	11	ma	1	,	Li	It			A	5	-		Sn	۶.	Ł .		74	-1	N	-		
					1		-		-		1					1				L		1				

ii) By Izo Firmula: 1 Nt = 2 Nt 1 Nt + 2 . = Din 1t It & So Ns LN.) = 0 follows from Mt has indept increments. iii) LCN,t) = L(Z,t) is tivial. Conversely. We want to express Zo by Ne: Sot fess NNs = Sit fess NZs - Sit fors hers Xi Ar Nite : Ger XI = cor) + Sigurosites for Sime ger. .) & L'Eirs Sime XI & Lez, r). = f, to fess - Is for geress Ar) LZs - f, tomeworker = for fess ANS. By Volterra Integral Equation: ₩ L E L' [1, t]. I f & L' Co. t]. Ft. 55t foss - Ist fors garess der = hoss Set Liss = X [1, t, 7 (5). iv) Zt is Ganssian = Xt is Climit of ...) Step. 3: Construct BM by (No).

Rt = Dets A Ntimes. Ro = 0. (Rt) is 1- Kimensin BM. Pf: i) conti. ii) Octhogonal incrument iii) Ganssian follows from prop. of (No) iv) I c Rt) = D. I C Rt Rs) = mir [t.s]. Note that $lk^2 - 2kt kkt + kt$ $\Rightarrow \overline{L} \in k^2 = t$ 50 # (Ro Rs) = min It. 53. by ii). Note that L(N,t) = L(R,t). $\Rightarrow \hat{X}t = P_{L(R,t)}, X_t$ In Likiti Xt Can be Reserbed well: Lemma. Xt = It (Xt) + S, t & It (Xt Rs) & Rs. Pf: Suppose Xo = Colt) + S, quesike & Liket) (acts = Ecxis) = EcPkers, (xx) = E(Xx) combined with Xt - Xt I fess KRs = IE (X+ So fishks) = IE (So giss Kks So fishks) = IE () of fess gess) (by Its isomery) sut fis = X co.13 ... for giss No = Te (Xt Ro) Step. 4: Explicit formular for (Xt)

As in OPE. it's knop to obtain: Xt = e (X, +), e Cishus) generally. Xt = & St Fands Xr + St & Si FAn Ciss Lus if we start at time 1 = t. RME: IE (Xt) = IE (X.) e Fish Step. 5: SDE for Xx First we have : Xt = TECXt) + S, & TECX+ RS) LRs Note Rs = S. hers (Xr - Xr) Kr + Vs. Xr =: Xr - Xr => The Xx Rs > = S, S Gars The CXOXx > L1 By explicit formula of Xt:

\[\begin{align*} & \text{Explicit} & \text{formula} & \text{of } \text{Xt} & \\ & \text{Explicit} & \text{Exp where Sus = It ((Xr)), MSE of Xr. Second. claim: KS = 2 Feb Set, Git, Sit, + Git) (The Riceati Equation) Note: Set) = Tet) - Sit C & IE CXt Ki) J'As - IE (Xt) $T(t) = TE(Xt^2)$ Satisfies $\frac{RT}{Rt} = 2F(t)T(t) + C(t)$

Finally. We can obtain: $\angle \hat{X}_{\theta} = (F_{i+1} - \frac{\hat{G}_{i+1}^{2} \cdot S(t)}{D(t)}) \stackrel{\sim}{X}_{\theta} \wedge t + \frac{S(t)}{D^{2}(t)} \cdot G(t) \wedge Z_{t}.$ RMK: We can see how the error Set inflammes the estimate Xt. 8 Multi Limmsional Case: Them & Kalman - Brug Filter) Solution Xx = It (Xx 19x) of filtering problem: (LXt = Fit) Xt Lt + Cit) LNt. FE 1/2. CE 1/2. AZt = Get) Xt At + Deti AVt. GER MXh DER surisfier SDE: 1Xt = CF - 56 (DDT) 6) Xtlt + 56 (DDT) 12+ $\hat{X}_{i} = E(X_{i})$. where $\hat{S}_{i+j} = E(\hat{x}_{i} + \hat{x}_{i}) \hat{x}_{i} - \hat{x}_{i+j}$ Satisfies Riccati Equation: $\frac{2s}{2t} = fs - sf^{T} - s6^{T}c00^{T}s^{T}6s + cc^{T}. st.$ 500) = IE 60 X0 - IE (X0)) (X0- IE (X1)) . Under Condition: i) Det 2 mer De De is invertible. It i) (P&Dt) is bell on 4 bel t-intervals.