Math Camp

Module #2: Vector spaces and linear maps

Part II: enacting violence

Remember: "The introduction of numbers as coordinates is an act of violence." still H. Weyl

Coordinates

Let V be a real vector space of dimension n, and let $A = \{a_1, ..., a_n\}$ be a basis for V.

•
$$v \in V \implies \exists ! \{\alpha_k^v\}_{i=k}^n \text{ s.t. } v = \sum_{k=1}^n \alpha_k^v a_k$$

• The scalars $\{\alpha_1^{\nu}, \dots, \alpha_n^{\nu}\}$ comprise the *coordinate representation* of ν with respect to the basis A

Dirac function: given two sets X and Y, $\delta: X \times Y \to \{0,1\}$ is defined by $\delta_{xy} = 1$ if and only if x = y.

• $X = Y = \mathbb{Z}$ is illustrative: $\delta_{ij} = 1 \Leftrightarrow i = j$

\mathbb{R}^n

- $x \in \mathbb{R}^n$ implies $x = (x_1, \dots, x_n)$ with $x_i \in \mathbb{R}$
- Always think of x as a column
- The *canonical basis* for \mathbb{R}^n is $\mathscr{E} = \{e_1, \dots, e_n\}$, where $e_j = (e_{1j}, \dots, e_{nj})$ and $e_{ij} = \delta_{ij}$.
- Let $\dim V = n$ with basis A. Define $\varphi : V \to \mathbb{R}^n$ by setting $\varphi(a_i) = e_i$.

- A real $m \times n$ matrix is a rectangular array of real numbers with m rows and n columns
- If $A \in \mathbb{R}^{m \times n}$ then $A = (a_{ij})$, where $i = 1, \dots, m$ and $j = 1, \dots, n$, i.e.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

• $\mathbb{R}^{m \times n}$ is a vector space with canonical basis $\{e^{ij}\}$ where

$$(e_{kl}^{ij}) = \delta_{(i,j)(k,l)}$$

Linear functionals

Let V be a real vector space

- A *linear functional* is a linear map from V to \mathbb{R}
- The *dual space* V^* of V is the vector space of linear functionals from V to $\mathbb R$
- Let dim V = n with basis $A = \{a_1, \dots, a_n\}$. Define $a_i^* : A \to \mathbb{R}$ on A by $a_i^*(a_j) = \delta_{ij}$, and extend linearly. Then A^* is a basis for V^* .
- The coordinate representation of $v^* \in V^*$ with respect to A^* is $(v^*(a_1), \dots, v^*(a_n)) \in \mathbb{R}^n$.

Inner products

An *inner product* on a real vector space V is a symmetric, positive definite, bilinear form, i.e. a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle \ge 0$ with equality only when v = 0 (positive definiteness)
- $\langle v, w \rangle = \langle w, v \rangle$ (symmetry)
- For any $v \in V$, the maps $\langle v, \cdot \rangle : V \to \mathbb{R}$ and $\langle \cdot, v \rangle : V \to \mathbb{R}$ are linear (bilinearity). Thus

$$\langle v, \alpha w_1 + \beta w_2 \rangle = \alpha \langle v, w_1 \rangle + \beta \langle v, w_2 \rangle$$
$$\langle \alpha w_1 + \beta w_2, v \rangle = \alpha \langle w_1, v \rangle + \beta \langle w_2, v \rangle$$

Inner products and linear functionals on \mathbb{R}^n

For $v, w \in \mathbb{R}^n$, define $\langle v, w \rangle = \sum_{i=1}^n v_i w_i$.

- If $v \in \mathbb{R}^n$ then $v^* = \langle \cdot, v \rangle \in (\mathbb{R}^n)^*$.
- If v^* in $(\mathbb{R}^n)^*$ then there exists $v \in \mathbb{R}^n$ such that $v^* = \langle \cdot, v \rangle$
- $\mathbb{R}^n \cong (\mathbb{R}^n)^*$ with the isomorphism given by $v \to \langle \cdot, v \rangle$
- The kernel of v^* is the subspace of \mathbb{R}^n orthogonal to v.
- Inner products impart geometry

Row vectors are linear functionals

Let $v \in \mathbb{R}^n$, viewed as a column vector. Then v^T is the corresponding row vector.

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \implies v^T = (v_1, \dots, v_n)$$

- $v^T w = \sum_{i=1}^n v_i w_i = v_j w_j = \langle v, w \rangle$
- $v \in \mathbb{R}^n$ implies $v^T \in (\mathbb{R}^n)^*$

Linear maps are columns of linear functionals

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be any function.

•
$$f(x) = \begin{pmatrix} f^1(x) \\ \vdots \\ f^m(x) \end{pmatrix}$$
 where $f^i: \mathbb{R}^n \to \mathbb{R}$

- If f is linear then f^i is a linear functional
- If f is linear then f is a column vector of row vectors

Matrices are linear maps

Let $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_m\}$ be bases of V and W respectively. Let $T: V \to W$ be linear.

Define the $m \times n$ matrix $\beta(T)$ as follows: for $1 \le j \le n$, the j^{th} -column of $\beta(T)$ is the coordinate representation of $T(a_j) \in \mathbb{R}^m$ against the basis $B: T(a_j) = \sum_{i=1}^m \beta(T)_{ij} b_i$. Then

$$T(v) = T\left(\sum_{j=1}^{n} \alpha_j^{\nu} a_j\right) = \sum_{j=1}^{n} \alpha_j^{\nu} T(a_j)$$
$$= \sum_{j=1}^{n} \alpha_j^{\nu} \left(\sum_{i=1}^{m} \beta(T)_{ij} b_i\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \beta(T)_{ij} \alpha_j^{\nu}\right) b_i$$

Thus the coordinate representation of T(v) against B is $\beta(T)\alpha^{v}$.

Matrices as linear maps

Matrices are exactly linear maps represented against bases

Here φ_A and φ_B are the canonical isomorphisms and $\beta(T)\alpha^{\nu}$ is obtained by the matrix multiplication.

In particular, matrix multiplication is composition of linear maps.

The Transpose

Definition. The *transpose* A^T of an $m \times n$ matrix A is an $n \times m$ is given by $a_{ij}^T = a_{ji}$.

- If $v \in \mathbb{R}$ is viewed as a column matrix then v^T can be viewed as a row matrix
- Under matrix multiplication, a row vector is a linear functional.
- $\bullet \ \langle v, w \rangle = v^T w.$

The Transpose

If $S:V\to W$ then $S^*:W^*\to V^*$ is given by $S^*(w^*)(v)=w^*(S(v))$. The following diagram commutes:

Fixing bases, $\beta(S)^T = \beta(S^*)$.

The *determinant* is a map $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ that is magical:

- $\det(I_n) = 1$
- det(AB) = det(A) det(B)
- $\det(\alpha A) = \alpha^n \det(A)$

There are two very important points worth emphasizing

- the determinant is a polynomial of degree *n* in its entries
- because it is a polynomial in its entries, the determinant is computable

There are two ways to compute the determinant: geometrically, and using eigenvalues

Geometry.

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear function (square matrix) and let $S \subset \mathbb{R}^n$ be the unit cube, that is, $S = [0,1]^n$
- Because *T* is linear, the image of *S* under *T* is an m-dimensional parallelpiped, where *m* is the rank of *T*.
- The determinant of T is the signed volume of this parallelepiped.
- $det(T) = 0 \Leftrightarrow dim(ker(T)) > 0$

Eigenvalues.

- Recall that $\lambda \in \mathbb{R}$ is an eigenvalue of T provided there is $v \neq 0$ such that $T(v) = \lambda v$, or $(T \lambda I_n)(v) = 0$.
- Thus $\dim ker(T \lambda I_n) > 0$, whence $\phi_T(\lambda) \equiv \det(T \lambda I_n) = 0$
- $\phi_T(\lambda)$ is the *characteristic polynomial* of T
- The eigenvalues of T are the roots of this polynomial, and may be complex.

- $\phi_T(\lambda) \equiv \det(T \lambda I_n)$
- Every n × n matrix has exactly n eigenvalues corresponding to the n roots of the characteristic polynomial
- The determinant of T is equal to the product of the eigenvalues
- det(T) = 0 iff zero is an eigenvalue of T

Invertibility

Given sets X and Y, let $f: X \to Y$ be any map.

- f is *injective* if $f(x_1) = f(x_2)$ implies $x_1 = x_2$
- f is surjective provided that for any $y \in Y$ there is an $x \in X$ so that y = f(x)
- a function that is both surjective and injective is bijective
- Bijectivity is necessary and sufficient for invertibility of a linear map
- If dim V < ∞ then linear map from V to V is invertible if and only if its nullity is zero.

Invertibility

A matrix is invertible provided that the associated linear map is invertible

Theorem 3.2 A square matrix is invertible if and only if its determinant is non-zero

Why is this theorem so important?

Column and Row Space

Let $M \in \mathbb{R}^{m \times n}$, and denote by $\{M^i\}_{i=1}^m \subset \mathbb{R}^n$ the rows of M (but "written" as column vectors), and by $\{M_j\}_{j=1}^n \subset \mathbb{R}^m$ the columns of M.

- the row space of M is span $\left(\{M^i\}_{i=1}^m\right)$
- the column space of M is span $\left(\{M_j\}_{j=1}^n\right)$
- the columns of M span the range of the associated linear map
- the dimension of the column and row space are equal

Column and Row Space

Let $T: V \to W$ linear.

```
\begin{array}{ll} \dim \text{ of row space of } \beta(T) & = & \dim \text{ of column space of } \beta(T)^T \\ & = & \dim(T^*(W^*)) \\ & = & \dim(T(V)) \\ & = & \dim \text{ of column space of } \beta(T) \end{array}
```

Let V be a vector space with bases for $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_n\}$

- For v ∈ V, α^v and β^v are the coordinate representations of v against A and B
- $\beta(A,B)$ is the $n \times n$ matrix with columns as the coordinate representations of the elements of A against the basis B.
- $\beta^{\nu} = \beta(A,B)\alpha^{\nu}$

Two matrices P and Q are *similar* if there is S so that $Q = SPS^{-1}$

- Let V have bases A and B and let $T: V \to V$ be linear.
- Let M(T,A) and M(T,B) be the matrix representations of T against A and B. Then

$$M(T,B) = \beta(A,B)M(T,A)\beta(A,B)^{-1}.$$

Let M be a $n \times n$ representing $T : \mathbb{R}^n \to \mathbb{R}^n$ against the canonical basis.

- Suppose M has n linearly independent eigenvectors $\Xi = \{\xi_1, \dots, \xi_n\}$ and associated eigenvalues $\{\lambda_1, \dots, \lambda_n\}$.
- Let S be the matrix whose columns are the ξ_i
- Let Λ be the matrix representation of T against Ξ
- $M = S\Lambda S^{-1}$, so $\Lambda = S^{-1}MS$.
- Λ is a diagonal matrix, and the diagonal elements correspond to the eigenvalues of M.

The product $S\Lambda S^{-1}$ is an eigenvalue decomposition of M

- When an eigenvalue decomposition exists, the matrix is said to be diagonalizable, i.e. similar to a diagonal matrix
- Not all matrices are diagonalizable

Theorem 3.3 If $M \in \mathbb{R}^{n \times n}$ had n distinct eigenvalues then M is diagonalizable

Matrix Structure and Invariant Subspaces

We need 3 definitions:

- 1. A matrix M is upper triangular if $M_{ii} = 0$ whenever i > j
- 2. A complex matrix M is unitary if $M^*M = I_n = MM^*$, where M^* is the Hermitian (conjugate) transpose. A real matrix M is orthogonal if $M^TM = I_n = MM^T$
- 3. A matrix *M* is *block diagonal* if it can be written as as diagonal matrix of square matrices, i.e.

$$M = \begin{pmatrix} M_1 & 0 & 0 & \cdots & 0 \\ 0 & M_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & M_m \end{pmatrix} \equiv \bigoplus_{i=1}^m M_i \tag{1}$$

Definition Jordon block: a Jordan block, J, is as follows: for given λ in $\mathbb C$ or $\mathbb R$, and $n \in \mathbb N$, let

$$J(\lambda,n) = egin{pmatrix} \lambda & 1 & & & & \ & \lambda & 1 & & & \ & & \ddots & \ddots & & \ & & & \lambda & 1 & \ & & & & \lambda & \end{pmatrix}$$

If $\lambda = a + bi$ with $b \neq 0$, define

$$C(\lambda) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Theorem 3.4 Let $M \in \mathbb{R}^{n \times n}$ with eigenvalues $\{\lambda_1, \dots, \lambda_n\}$

 1. M is similar to a Jordon block diagonal matrix, i.e. a matrix of the form

$$igoplus_{k=1}^N J(\lambda_{m_k},n_k) = egin{pmatrix} J(\lambda_{m_1},n_1) & & & & & \ & J(\lambda_{m_2},n_2) & & & & \ & & \ddots & & \ & & J(\lambda_{m_N},n_N) \end{pmatrix}.$$

• Note that there may be multiple Jordon blocks associated to the same eigenvalue, which is the reason for the strange m_k subscript on the λ s.

Theorem 3.4 (continued)

• 2. If λ is not real and $J(\lambda,m)$ is an associated Jordon block then there is necessarily a Jordon block of the form $J(\overline{\lambda},m)$. Furthermore, the direct sum $J(\lambda,m)\oplus J(\overline{\lambda},m)$ can be replaced with a 2m block of the form

$$J^{\mathbb{R}}(\lambda,2m) = egin{pmatrix} C(\lambda) & I_2 & & & & & \\ & C(\lambda) & I_2 & & & & & \\ & & \ddots & \ddots & & & \\ & & & C(\lambda) & I_2 & & \\ & & & & C(\lambda) & \end{pmatrix}.$$

Theorem 3.5 Let $M \in \mathbb{R}^{n \times n}$ with eigenvalues $\{\lambda_1, \dots, \lambda_n\}$

- 1. $M = QTQ^*$ where T is upper triangular with the eigenvalues of M on the diagonal, and Q is unitary.
- 2. $M = ZT^{\mathbb{R}}Z^T$ where $T^{\mathbb{R}}$ is upper block triangular and Z is orthogonal. The diagonal elements of $T^{\mathbb{R}}$ correspond to the eigenvalues of M. The real eigenvalues of M correspond to 1×1 -blocks, and conjugate pairs of non-real eigenvalues of M $(\lambda, \bar{\lambda})$ correspond to 2×2 blocks of the form $C(\lambda)$.

Thus a Schur decomposition provides for a nested sequence of invariant subspaces together with a matrix representation that acts on these subspaces recursively.

Definiteness

Given a matrix $M \in \mathbb{R}^{n \times n}$, we may view M as a map from $\mathbb{R}^n \oplus \mathbb{R}^n$ to \mathbb{R} , by sending (v, w) to $w^T M v$

- for fixed w, the map $v \to w^T M v$ is a linear functional, and for fixed v, the map $w \to w^T M v$ is a linear functional
- *M* is a bilinear form

Definition Tensor: A multilinear form as a list with a multi-index

Definiteness

Some Definitions:

- A matrix M is symmetric if $M = M^T$.
- A matrix is *positive definite* if $v^T M v > 0$ for all non-zero $v \in \mathbb{R}^n$.
- A matrix is *positive semi-definite* if $v^T M v \ge 0$ for all non-zero $v \in \mathbb{R}^n$.

Theorem 3.4 If M is symmetric and positive semi-definite then the eigenvalues of M are real and non-negative.