

ChE352
Numerical Techniques for Chemical Engineers
Professor Stevenson

Lecture 5

Why is finding catalysts difficult?

- The Schrödinger equation lets us calculate energy barriers for any reaction
- But catalysts are still an open question Why?

$$\mathrm{N_2} + 3\,\mathrm{H_2} \longrightarrow 2\,\mathrm{NH_3} \quad \Delta H^\circ = -91.8\,\mathrm{kJ/mol}$$

How can we reason about speed?

- Each computer's speed is different
- Even on the same computer, timing will vary randomly
- There is a way to describe speed that avoids all of this...

How can we reason about speed?

- Each computer's speed is different
- Even on the same computer, timing will vary randomly
- There is a way to describe speed that avoids all of this...

Big-O notation

Big-O simplifies an expression by discarding everything but the largest term in the limit of large N, also dropping constant prefactors

Run time	Big-O	Description
t = N/2 + 999	?	?
$t = 3N^2 + 5N$?	?
$t = 7N^3 + 8N^2$?	?
$t = 2^N + N^{9999}$?	?

This gets rid of computer speed & noise

Big-O notation

Big-O simplifies an expression by discarding everything but the largest term in the limit of large N, also dropping constant prefactors

Run time	Big-O	Description
t = N/2 + 999	O(N)	Linear
$t = 3N^2 + 5N$	O(N ²)	Quadratic
$t = 7N^3 + 8N^2$	O(N ³)	Cubic
$t = 2^N + N^{9999}$	O(2 ^N)	Exponential

This gets rid of computer speed & noise

Big-O notation examples

O(N) algorithms act on each input a constant number of times

How might an O(N²) algorithm arise?

Big-O notation examples

O(N) algorithms act on each input a constant number of times
How might an O(N²) algorithm arise?

1	2	3	4	5	6
ONE	TWO	THREE	FOUR	FIVE	SIX
1x1 = 1	2 x 1 = 2	3 x 1 = 3	$4 \times 1 = 4$	5x1 = 5	6 x 1 = 6
1x2 = 2	2 x 2 = 4	3 x 2 = 6	4 x 2 = 8	5 x 2 = 10	6 x 2 = 12
1x3 = 3	2 x 3 = 6	$3 \times 3 = 9$	$4 \times 3 = 12$	5 x 3 = 15	6 x 3 = 18
1x4 = 4	2 x 4 = 8	3 x 4 = 12	$4 \times 4 = 16$	$5 \times 4 = 20$	$6 \times 4 = 24$
1x5 = 5	2 x 5 = 10	3 x 5 = 15	$4 \times 5 = 20$	5 x 5 = 25	6 x 5 = 30
1x6 = 6	2 x 6 = 12	3 x 6 = 18	4 x 6 = 24	5x6 = 30	6 x 6 = 36

Doing N*N things, like building an NxN matrix

Big-O notation examples

Doing N*N things, like building an NxN matrix

Big-O notation examples

How might an O(2^N), or worse, algorithm arise?

Big-O notation examples

How might an O(2^N), or worse, algorithm arise?

Trying every permutation (Traveling Salesman, Knapsack Problem, Schrödinger equation)

Constant factors

Big-O notation ignores constant factors:

If you wait an hour at every step,
your big-O stays the same!

Run time	Big-O		
t ∝ 1,000,000 N	O(N)		
$t \propto 1,000,000 \mathrm{N}^2$	$O(N^2)$		

(You should still try not to do this)

What is fast and what is slow?

Modern computer architecture from a speed perspective (really fast, fast, medium, slow)

Why is code slow?

- Big-O is too high (bad algorithm)
 - How would you find big-O?
- Too much input/output (especially files)
 - Why is I/O slower than calculations?
- Too much task switching
 - Not vectorized (needs more numpy)
- Convergence is poor (algorithm issue)

Why is code slow?

```
import timeit
def arithmetic answer():
   return 2 + 2
def file_answer():
   with open('data.txt', 'w') as f:
       f.write(f'{4}')
  with open('data.txt', 'r') as f:
       answer = int(f.read())
   return answer
```

What is "timeit"?

What do these two functions do?

Which one is faster?

Why is code slow?

import timeit

```
Try this code in
def arithmetic answer():
  return 2 + 2
                                            Colab
def file_answer():
  with open('data.txt', 'w') as f:
                                         What % of
      f.write(f'{4}')
                                      file time is the
  with open('data.txt', 'r') as f:
                                     file writing vs the
      answer = int(f.read())
                                        file reading?
  return answer
arithmetic time = timeit.timeit(arithmetic answer, number=1000)
file time = timeit.timeit(file answer, number=1000)
print(f'{arithmetic time=:.1e}, {file time=:.1e}')
```

Big-O for Getting Smaller

- Big-O also works for numbers getting smaller, such as error α α_n shrinking as n grows
 - $O(1/n + 1/n^2) = ?$

Big-O for Getting Smaller

- Big-O also works for numbers getting smaller, such as error α - α_n shrinking as n grows
 - $O(1/n + 1/n^2) = O(1/n)$ as $n \to \infty$

$$\left\{\alpha_{n}\right\}_{n=1}^{\infty}$$
 is $O\left(\frac{1}{n^{\beta}}\right) \longleftrightarrow \left[\left|\alpha-\alpha_{n}\right| \le \frac{K}{n^{\beta}}\right]$ For some K $\left(n \ large\right)$

Same idea if real-valued input h goes to zero:

$$\circ$$
 O(h² + h⁴) = ?

Big-O for Getting Smaller

• Big-O also works for numbers getting smaller, such as error α - α_n shrinking as n grows

○
$$O(1/n + 1/n^2) = O(1/n)$$
 as $n \to \infty$

$$\left\{\alpha_{n}\right\}_{n=1}^{\infty}$$
 is $O\left(\frac{1}{n^{\beta}}\right) \longleftrightarrow \left|\alpha-\alpha_{n}\right| \leq \frac{K}{n^{\beta}}$ For some K $\left(n \ large\right)$

- Same idea if real-valued input h goes to zero:
 - $O(h^2 + h^4) = O(h^2)$ as $h \to 0$

$$f(h)$$
 is $O(h^{\beta}) \leftrightarrow |f(h)-L| \leq Kh^{\beta}$ as $h \to 0$

For some K

Summary and Problems

 Open Python Numerical Methods, go to Chapter 8.4: Summary and Problems

https://pythonnumericalmethods.berkeley.edu/notebooks/chapter08.04-Summary-and-Problems.html

- Do the first three problems, starting with:
- How would you define the size of the following tasks?
 - Solving a jigsaw puzzle.
 - Passing a handout to a class.
 - Walking to class.
 - Finding a name in dictionary.