紧算子的谱理论 *L¹G₁O* 2024年3月27日

目录

- •回顾: 谱和 Riesz-Fredholm 理论
- 紧算子谱的分布
- 紧算子的不变子空间
- 紧算子的构造

注:这份笔记以张恭庆《泛函分析讲义》**CH2**§6、**CH4**§1,2,3 为骨架,整理了其中结论和证明概要,并力所能及地添加了一些具体例子和相关内容。

UCAS 1 回顾

1 回顾

1.1 谱

闭线性算子: $T:\mathcal{X}\to\mathcal{Y}$ 为线性算子,且由 $x_n\in D(T), x_n\to x, Tx_n\to y$ 能推出 $x\in D(T)$ 且 y=Tx.

E.g. C[0,1] 上的算子 $T = \frac{d}{dt}$, $D(T) = C^1[0,1]$.

设 \mathcal{X} 为 B 空间, $A: \mathcal{X} \to \mathcal{X}$ 为闭线性算子。 A 的预解集为

$$\rho(A) = \{\lambda \in \mathbb{C} \mid (\lambda I - A)^{-1} \in \mathcal{L}(\mathcal{X})\}$$

A 的谱集为:

$$\sigma(A) = \mathbb{C} \backslash \rho(A)$$

点谱, $(\lambda I-A)^{-1}$ 不存在 连续谱, $(\lambda I-A)^{-1}$ 存在, $R(\lambda I-A)\neq \mathcal{X}$, $\overline{R(\lambda I-A)}=\mathcal{X}$ 剩余谱, $(\lambda I-A)^{-1}$ 存在, $\overline{R(\lambda I-A)}\neq \mathcal{X}$ dim $\mathcal{X}<\infty$ 时, $\sigma(A)\equiv\sigma_p(A)$ 。当 dim $\mathcal{X}=\infty$ 时,以上情况都可能发生。

 $\textit{E.g.1} \ \ \ \mathop{\boxtimes}\limits^{\text{\rm th}} \mathcal{X} = L^2[0,1], \\ A = -\frac{\mathrm{d}^2}{\mathrm{d}t^2}, \\ D(A) = \{u \in C^2[0,1] \mid u(0) = u(1), u'(0) = u'(1)\}. \ \ \bigcup \\ \sigma(A) = \sigma_p(A) = \{(2n\pi)^2 \mid n \in \mathbb{Z}_{\geq 0}\}.$

$$E.g.2$$
 设 $\mathcal{X} = C[0,1], A: u(t) \to t \cdot u(t), 则 $\sigma(A) = \sigma_r(A) = [0,1].$$

E.g.3 设
$$\mathcal{X} = L^2[0,1], A: u(t) \to t \cdot u(t), 则 \sigma(A) = \sigma_c(A) = [0,1].$$

E.g.4 考虑
$$l^2$$
 上的右推移算子 A , 则 $\sigma_p(A) = \emptyset$, $\sigma_c(A) = \{|\lambda| = 1\}$, $\sigma_r(A) = \{|\lambda| < 1\}$.

E.g.5 考虑
$$l^2$$
 上的左推移算子 A , 则 $\sigma_r(A)=\emptyset, \sigma_c(A)=\{|\lambda|=1\}, \sigma_p(A)=\{|\lambda|<1\}.$

$$E.g.6$$
 考虑双边 l^2 空间上的右推移算子 A , 则 $\sigma(A) = \sigma_c(A) = \{|\lambda| = 1\}$

若X为B空间, $A \in \mathcal{L}(X)$,则

$$\sigma(A) \neq \emptyset \;,\; r_{\sigma}(A) = \sup\{|\lambda| \mid \lambda \in \sigma(A)\} = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$$

1.2 Riesz-Fredholm 理论

若 $A \in \mathcal{K}(\mathcal{X})$ (紧算子已要求 \mathcal{X} 为 B 空间), T = I - A, 则有

$$(1) N(T) = \{\theta\} \iff R(T) = \mathcal{X}$$

$$(2)\,\sigma(T)=\sigma(T^*),\dim N(T)=\dim(T^*)<\infty$$

(3)
$$R(T) = N(T^*)^{\perp}, R(T^*) = ^{\perp} N(T)$$

$$(*)\operatorname{codim} R(T) = \dim N(T)$$

Remark.Fredholm alternative theorem 是上面理论的直接推论。

1.3 $\sigma(T) \stackrel{?}{=} \sigma(T^*)$

在上次研讨过程中,大家一致认为" 若 $A \in \mathcal{L}(\mathcal{X})$,则 $\sigma(A) = \sigma(A^*)$ "这一结论应该改成 $\sigma(A) = \overline{\sigma(A^*)}$,认为两个集合间元素应该是共轭关系。其实结论并没有错误,只是我们有概念上的细微混淆。

设 \mathcal{X}, \mathcal{Y} 为 \mathbf{B}^* 空间,算子 $T^*: \mathcal{Y}^* \to \mathcal{X}^*$ 称为是算子 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 的共轭算子,如果

$$f(Tx) = (T^*f)x \qquad (\forall f \in \mathcal{Y}^*, \forall x \in \mathcal{X})$$

所以由 f 的线性性得到 (I* 也记作 I)

$$f[(\lambda I-A)x]=\lambda f(x)-f(Ax)=[(\lambda I-A)^*f](x)=[(\lambda I-A^*)f](x)$$

得到 $(\lambda I - A)^* = \lambda I - A^*$, 故 $\sigma(T) = \sigma(T^*)$.

而对于 Hilbert 空间 \mathcal{H} , $A \in \mathcal{L}(\mathcal{H})$, 其共轭算子由下式定义:

$$(Ax,y) = (x,A^*y) \qquad (\forall x,y \in \mathcal{H})$$

此时由内积的半双线性性得到 $\sigma(A) = \overline{\sigma(A^*)}$.

两种定义的细微不同,是我们产生疑问的原因。

2 紧算子谱的分布

Thm. 设 $A \in \mathcal{K}(\mathcal{X})$,则

- (1) 0 ∈ $\sigma(A)$, 除非 dim $\mathcal{X} < \infty$;
- (2) $\sigma(A)\setminus\{0\} = \sigma_p(A)\setminus\{0\};$
- (3) $\sigma_p(A)$ 至多以 0 为聚点.

证明. (1) $(\dim \mathcal{X} = \infty)$ 否则 $0 \in \rho(A), A^{-1} \in \mathcal{L}(\mathcal{X})$,则由 $R(A) = \mathcal{X}$ 或者 $I = A^{-1}A$ 紧都可导出矛盾.

- $(2) 由 N(T) = \{\theta\} \iff R(T) = \mathcal{X} \ \text{可知除去可能的 0 外,} \ \sigma_r(A) = \sigma_c(A) = 0.$
- (3) 假若由一列 $\lambda_n \in \sigma_p(A) \setminus \{0\}$ 且 $\lambda_n \to \lambda \neq 0$,则取 $x_n \in N(\lambda_n I A) \setminus \{\theta\}. \{x_1, \cdots, x_n\}$ 线性无关. 令 $E_n = \operatorname{span}\{x_1, \cdots, x_n\}$,则由 E_n E_{n+1} 和 Riesz 引理可知

$$\exists y_{n+1} \in E_{n+1}, \|y_{n+1}\| = 1, \operatorname{dist}(y_{n+1}, E_n) \geq \frac{1}{2}$$

且

$$\left|\left|\frac{1}{\lambda_{n+p}}Ay_{n+p}-\frac{1}{\lambda_n}Ay_n\right|\right|=\left|\left|y_{n+p}-\underbrace{\left(y_{n+p}-\frac{1}{\lambda_{n+p}}Ay_{n+p}+\frac{1}{\lambda_n}Ay_n\right)}_{\in E_{n+p-1}}\right|\right|\geq \frac{1}{2} \quad \forall n,p\in\mathbb{N}$$

便与 A 紧性矛盾.

从而对于无穷维 B 空间上的紧算子 A,其谱只有以下情形:

- $\sigma(A) = \{0\}$
- $\sigma(A) = \{0, \lambda_1, \cdots, \lambda_n\}$
- $\sigma(A) = \{0, \lambda_1, \dots, \lambda_n, \dots\}, \not\equiv \lambda_n \to 0$

E.g.1 ℓ^2 空间上,令 $Ax = A(x_n)_{n=1}^{\infty} = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \cdots)$,则有

$$\forall \lambda \neq 0, Ax = \lambda x \Longrightarrow x = 0 \Longrightarrow \lambda \not\in A$$
 的正则值

实际上 $\lambda = 0 \in \sigma_r(A)$.

E.g.2 定义在 C[0,1] 上的 Volterra 算子 $V:f(t)\to\int_0^t f(x)\mathrm{d}x$ 是单射且是紧算子, $r_\sigma(V)=\lim_{n\to\infty}(1/n!)^{1/n}=0$. 故而 $\sigma_p(V)=\emptyset,\sigma(V)=\{0\}$

E.g.3 设 (α_n) 收敛到 0,且 $T\in \ell^2:(u_n)\to (\alpha_1u_1,\alpha_2u_2,\cdots).T$ 是有穷秩算子的逼近,从而是紧的. $\sigma(T)=(\alpha_n)\cup\{0\}$

E.g.4

Remark. 一般算子的谱集很复杂。可参考汪林《泛函分析中的反例》中的一例:

5. 任给复平面上的紧集 C, 可构造算子 T, 使 T 的全体特征值就是 C.

我们首先指出, 若 T 是具有对角线 $\{\alpha_n\}$ 的对角算子, 则 T 具有逆算子的充要条件是存在有界数列 $\{\beta_n\}$, 使 $\alpha_n\beta_n=1$ $(n=1,2,\cdots)$. 即 T 具有逆算子的充要条件是存在正数 δ , 使对任何正整数 n 都有 $|\alpha_n| \ge \delta$. 由此推知, $T-\lambda I$ 具有逆算子的充要条件是存在正数 η , 使对任何正整数 n, 都有 $|\alpha_n-\lambda| \ge \eta$, 即 $\lambda \notin \overline{\{\alpha_n\}}$.

事实上, 若 $\{\beta_n\}$ 是有界数列, 使 $\alpha_n\beta_n=1,n=1,2,\cdots$, 则具有对角线 $\{\beta_n\}$ 的对角算子S是T的逆算子. 反之, 若T具有逆算子 T^{-1} , 则 $T^{-1}(\alpha_n\varphi_n)=\varphi_n$, 其中 $\{\varphi_n\}$ 是可分 Hilbert 空间的完全的就范直交系. 于是, $T^{-1}\varphi_n=\frac{\varphi_n}{\alpha_n}$. 由于 $\|T^{-1}\varphi_n\| \leq \|T^{-1}\|$, 因而若令 $\beta_n=\frac{1}{\alpha_n}$, 则 $\{\beta_n\}$ 是有界数列, 且 $\alpha_n\beta_n=1,n=1,2,\cdots$. 今设T0分复平面上的任一紧集,则T0有界且可分,从而存在有界数列T1,使T1,使T2,以T3。以T3。以T4。则对角算子,则据上面证明的结论,入为T3 的特征值的充要条件是T3。

图 1: CH13 第 5 例

3 紧算子的不变子空间

若 \mathcal{X} 为一 B 空间, $M \subset \mathcal{X}$ 对于 $A \in \mathcal{L}(\mathcal{X})$ 满足 $A(M) \subset M$,则称为 A 的不变子空间. **Thm.** 若 dim $\mathcal{X} \geq 2$,则 $\forall A \in \mathcal{K}(\mathcal{X})$,A 有非平凡的闭不变子空间.

证明. 不妨设 $\dim \mathcal{X} = \infty, \|A\| = 1, \sigma_p(A) \setminus \{0\} = \emptyset$ (否则 $0 \neq \lambda \in \sigma_p(A), N(\lambda I - A)$ 即为所求). 若 A 没有非平凡的闭不变子空间,则

$$\forall y \in \mathcal{X}\backslash\{0\}, \overline{L}_y \coloneqq \overline{\{P(A) \mid P \text{为任意多项式}\}} = \mathcal{X}$$

则存在 $x_0 \in \mathcal{X}$ 使得 $\|Ax_0\| > 1$, 得 $\|x_0\| > 1$, $C := \overline{AB(x_0,1)}$ 紧且不含 θ . 对于 $\forall y_0 \in C$, 存在 $T_{y_0} \in \{P(A)\}, \delta_{y_0} > 0$ 使得

$$\|T_{y_0}y-x_0\|<1\quad\forall y\in B(y_0,\delta_{y_0})$$

从而可取 C 的一有限覆盖 $C \subset \bigcup_{i=1}^{n} B(y_i, \delta_{y_i})$

简化这 n 个点对应的多项式记号 T_u 为 T_i , 则 $\forall y \in C$, 存在 $i_1(1 \le i_1 \le n)$ 使得

$$||T_{i_1}y - x_0|| < 1 \Longrightarrow T_{i_1}y \in B(x_0, 1), AT_{y_i}y \in C$$

迭代知 $\left\|\prod_{j=1}^{k+1}T_{i_j}(A^ky)-x_0\right\|<1$,从而得到

$$\begin{split} \|x_0\|-1 &\leq \bigg\|\prod_{j=1}^{k+1} T_{i_j}(A^ky)\bigg\| \underset{\mu=\max_{1\leq i\leq n} \|T_i\|>0}{\lesssim} \mu^{k+1}\|A^ky\| \\ &\Longrightarrow \frac{1}{\mu} = \lim_{k\to\infty} \frac{1}{\mu} \left(\frac{\|x_0\|-1}{\mu\|y\|}\right)^{\frac{1}{k}} \leq \lim_{k\to\infty} \left(\frac{\|A^ky\|}{\|y\|}\right)^{\frac{1}{k}} \leq \lim_{k\to\infty} \|A^k\|^{\frac{1}{k}} = 0 \end{split}$$

得到矛盾.

Remark.1 C.J.Read 的一系列工作表明每个无限维可分 Banach 空间 X 上都存在一个没有非平凡不变子空间的连续线性算子,只要 X 包含 ℓ_1 或者 c_0 作为它的补子空间。但考虑可分 Hilbert 空间或者自反 Banach 空间,这一问题还没解决¹。

Remark.2 (Lomonosov's Theorem)² The Lomonosov Theorem is a remarkable breakthrough on the invariant subspace problem. The full version of it, mentioned above, can be split into two parts:

- (i) If an operator commutes with a nonzero compact operator, then it has a nontrivial invariant subspace;
 - (ii) if it is nonscalar, then it has a nontrivial hyperinvariant subspace.

¹参考 arXiv:2203.14670v2 [math.FA] 一文的综述部分.

²Kubrusly, C.S. (2003). The Lomonosov Theorem. In: Hilbert Space Operators. Birkhäuser Boston.

4 紧算子的结构

Thm. 令 $A\in\mathcal{K}(\mathcal{X}), T=I-A$,则存在非负整数 p 使得 $\mathcal{X}=N(T^p)\oplus R(T^p)$,且 $T|_{R(T^p)}$ 为线性有界可逆算子.

证明. 使得 $\{\theta\}\subseteq N(T)\subseteq N(T^2)\subseteq \cdots$ 停止的最小整数 p 称为零链长,类似有像链长 q,我们有 $p=q<\infty$. 这只需要注意到

$$\forall k \in \mathbb{N}, T^k = I + \sum_{j=1}^k \binom{k}{j} (-A)^j = I +$$
 紧算子, 则有
$$\dim N(T^k) = \operatorname{codim} R(T^k)$$

从而可知

$$N(T^p)\cap R(T^p)=\{\theta\}, \mathcal{X}=N(T^p)\oplus R(T^p), T|_{R(T^p)}$$
可逆(逆算子定理)

Remark. 本节最后指出, 更精细的讨论可以参阅3: Ringrose, J.R. (1971). Compact non-self-adjoint operators.

³这本书在 Zlib 上可以下载到. 我略读了其中 CH4§2,§3 内容,重要的结论为 Thm.4.2.1,4.3.4,4.3.10. 但我感觉并没有太多"更精细"的地方,反而有些处理不如张恭庆一书上的简练直接.