"Exploring Raspberry Pi is THE book to go to if you are interested in learning about the impressive physical computing capabilities of the Raspberry Pi platform. Derek Molloy imparts the electronics, programming, and embedded Linux skills that are vital to today's innovators in building the next generation of Internet of Things applications."

—Eben Upton, Co-creator of the Raspberry Pi

DEREK MOLLOY

EXPLORING

RASPBERRY PI

INTERFACING TO THE REAL WORLD WITH EMBEDDED LINUX®

Exploring Raspberry Pi®

Interfacing to the Real World with Embedded Linux®

Derek Molloy

WILEY

Exploring Raspberry Pi®

Published by John Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-18868-1 ISBN: 978-1-119-18870-4 (ebk) ISBN: 978-1-119-18869-8 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. If improperly wired, circuits described in this work may possibly cause damage to the device or physical injury. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016933853

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Raspberry Pi is a registered trademark of Raspberry Pi Foundation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

To Sally, Daragh, Eoghan, Aidan, and Sarah
(still in order of age, not preference!)

About the Author

Dr. Derek Molloy is a senior lecturer in the School of Electronic Engineering, Faculty of Engineering and Computing, Dublin City University, Ireland. He lectures at undergraduate and postgraduate levels in object-oriented programming with embedded systems, digital and analog electronics, and the Internet of Things. His research contributions have largely been in the fields of computer and machine vision, 3D graphics/visualization, and e-Learning.

Derek produces a popular YouTube video series that has introduced millions of people to embedded Linux and digital electronics topics. In 2013, he launched a personal web/blog site that is visited by thousands of people every day, and which integrates his YouTube videos with support materials, source code, and user discussion. In 2015, he published a book on the BeagleBone platform, *Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux*, which has been very well received.

Derek has received several awards for teaching and learning. He was the winner of the 2012 Irish Learning Technology Association (ILTA) national award for Innovation in Teaching and Learning. The award recognizes his learning-by-doing approach to undergraduate engineering education, which utilizes electronic kits and online video content. In 2012, as a result of fervent nominations from his students and peers, he was also awarded the Dublin City University President's Award for Excellence in Teaching and Learning.

You can learn more about Derek, his work, and his other publications at his personal website: www.derekmolloy.ie.

About the Technical Editor

Dr. Tom Betka came to the world of embedded systems development by way of a previous career in the aviation industry, and then as a physician practicing clinical medicine for well over a decade. During this time his love of computers and software development evolved toward the field of embedded systems, and his training in computer science culminated in a second undergraduate-level degree. After leaving clinical medicine, Dr. Betka began working in the world of software development and has served as a subject-matter expert in both medicine and embedded systems for various companies in the industry. His recent work has included projects at the NASA Kennedy Space Center and the Sierra Nevada Corporation. Tom's first love is the C-family of programming languages and using these languages to program 8-bit microcontrollers. As a Linux user for the past decade, he has also been working with the BeagleBone, BeagleBone Black, and Raspberry Pi devices for the last several years as well. His hobbies include advanced mathematics, aviation, high-powered model rocketry, and robotics. Also, he can often be found building prototype devices in his home-based machine shop. In a previous life, Tom worked for several years as a professional drummer—and was one of the first in his area to embrace the use of electronic percussion devices in live music scenarios.

Credits

Senior Acquisitions Editor

Aaron Black

Project Editor

Adaobi Obi Tulton

Technical Editor

Tom Betka

Production Editor

Barath Kumar Rajasekaran

Copy Editors

Keith Cline

Marylouise Wiack

Production Manager

Kathleen Wisor

Manager of Content Development

and Assembly

Mary Beth Wakefield

Marketing Manager

Carrie Sherrill

Professional Technology &

Strategy Director

Barry Pruett

Business Manager

Amy Knies

Executive Editor

Jody Lefevere

Project Coordinator, Cover

Brent Savage

Proofreader

Nancy Bell

Indexer

Nancy Guenther

Cover Designer

Wiley

Cover Image

Courtesy of Derek Molloy

Acknowledgments

Many thanks to everyone at Wiley Publishing once again for their outstanding work on this project: to Jim Minatel for encouraging me to take this book concept forward and for yet again supporting the realization of a book that engages in deeper learning; to Aaron Black and Jody Lefevere, for guiding the project forward, and for their support and help throughout the development of this book; to Jennifer Lynn, for keeping me on schedule and for always being available to answer my questions; to Adaobi Obi Tulton, the project editor, for driving this project to completion in the most efficient way possible—it was a real pleasure to work with such an accomplished and adept editor once again; to Keith Cline and Marylouise Wiack the copy editors, for translating this book into readable U.S. English; to Barath Kumar Rajasekaran, the production editor, and Nancy Bell, the proofreader, for bringing everything together to create a final, polished product.

Sincere thanks to Tom Betka, the technical editor, for the incredible amount of work and personal time he selflessly put into ensuring that the content in this book can be utilized seamlessly by readers. Following the publication of my book on the BeagleBone, Tom of this own volition provided valuable comment and feedback via the book website that further strengthened the title. I immediately thought of Tom when I took on this project, and I was delighted when he agreed to take on the role of technical editor. Tom is a scholar, a polymath, and indeed an inspiration, who was always available when I needed to talk through technical issues. This book has benefited hugely from his technical knowledge, world experience, and immense capabilities—I believe there could be no better technical editor for this topic!

Thanks to the thousands of people who take the time to comment on my YouTube videos, blog, and website articles. I truly appreciate all of the feedback,

advice, and comments—it has really helped in the development of the topics in my books.

The School of Electronic Engineering, Dublin City University, is a great place to work, largely because of its esprit de corps, and its commitment to rigorous, innovative, and accessible engineering education. Thanks again to all of my colleagues in the School for supporting, encouraging, and tolerating me in the development of this book. Thanks in particular must go to Noel Murphy and Conor Brennan for sharing the workload of the School Executive with me while I was so absorbed in the writing of this book. Thanks again to (my brother) David Molloy for his expert software advice and support. Thanks to Jennifer Bruton for her meticulous and expert review of circuits, software, and content that is used in this book. Thanks also to Martin Collier, Pascal Landais, Michele Pringle, Robert Sadleir, Ronan Scaife, and John Whelan for their ongoing expertise, support, and advice.

The biggest Thank You must of course go to my own family. This book was written over six months, predominantly at night and on weekends. Thanks to my wife Sally and our children Daragh, Eoghan, Aidan, and Sarah for putting up with me (again) while I was writing this book. Thank you Mam, Dad, David, and Catriona for your continued lifelong inspiration, support, and encouragement. Finally, thank you to my extended family for graciously excusing my absence at family events for another six months—I definitely have no excuses now (unless I write another book!).

Contents at a Glance

Introduction	1	κix
Part I	Raspberry Pi Basics	1
Chapter 1	Raspberry Pi Hardware	3
Chapter 2	Raspberry Pi Software	23
Chapter 3	Exploring Embedded Linux Systems	55
Chapter 4	Interfacing Electronics	113
Chapter 5	Programming on the Raspberry Pi	159
Part II	Interfacing, Controlling, and Communicating	217
Chapter 6	Interfacing to the Raspberry Pi Input/Outputs	219
Chapter 7	Cross-Compilation and the Eclipse IDE	275
Chapter 8	Interfacing to the Raspberry Pi Buses	309
Chapter 9	Enhancing the Input/Output Interfaces on the RPi	363
Chapter 10	Interacting with the Physical Environment	405
Chapter 11	Real-Time Interfacing Using the Arduino	453
Part III	Advanced Interfacing and Interaction	481
Chapter 12	The Internet of Things	483
Chapter 13	Wireless Communication and Control	535

x Contents at a Glance

Chapter 14	Raspberry Pi with a Rich User Interface	577
Chapter 15	Images, Video, and Audio	615
Chapter 16	Kernel Programming	647
Index		677

Contents

Introduction	n	XIX
Part I	Raspberry Pi Basics	1
Chapter 1	Raspberry Pi Hardware	3
	Introduction to the Platform	3
	Who Should Use the RPi	5
	When to Use the RPi	5
	When to Not Use the RPi	6
	RPi Documentation	7
	The RPi Hardware	8
	Raspberry Pi Versions	9
	The Raspberry Pi Hardware	10
	Raspberry Pi Accessories	12
	Important Accessories	13
	Recommended Accessories	14
	Optional Accessories	16
	HATs	19
	How to Destroy Your RPi!	20
	Summary	21
	Support	21
Chapter 2	Raspberry Pi Software	23
	Linux on the Raspberry Pi	24
	Linux Distributions for the RPi	24
	Create a Linux SD Card Image for the RPi	25
	Connecting to a Network	26
	Regular Ethernet	27
	Ethernet Crossover Cable	29
	Communicating with the RPi	31

	Serial Connection with the USB-to-TTL 3.3V Cable Connecting through Secure Shell (SSH) Transferring Files Using PuTTY/psftp over SSH Controlling the Raspberry Pi Basic Linux Commands Basic File Editing What Time Is It? Package Management Configuring the Raspberry Pi	31 33 35 36 36 41 43 44
	The Raspberry Pi Configuration Tool Updating the RPi Software Video Output Interacting with the Onboard LEDs Shutdown and Reboot Summary	46 48 49 50 53
Chapter 3	Exploring Embedded Linux Introducing Embedded Linux Advantages and Disadvantages of Embedded Linux Is Linux Open Source and Free? Booting the Raspberry Pi Managing Linux Systems The Super User System Administration Linux Commands Linux Processes Other Linux Topics Using Git for Version Control A Practice-Based Introduction Git Branching Common Git Commands Using Desktop Virtualization Code for This Book Summary Further Reading Bibliography	55 56 57 58 58 69 70 89 96 99 101 105 107 108 110 111 111
Chapter 4	Interfacing Electronics Analyzing Your Circuits Digital Multimeter Oscilloscopes Basic Circuit Principles Voltage, Current, Resistance, and Ohm's Law Voltage Division Current Division Implementing RPi Circuits on a Breadboard	113 114 114 115 117 117 119 120

		Contents	xiii
	Digital Multimeters (DMMs) and Breadboards	123	
	Example Circuit: Voltage Regulation	124	
	Discrete Components	126	
	Diodes	126	
	Light-Emitting Diodes (LEDs)	128	
	Smoothing and Decoupling Capacitors	130	
	Transistors	132	
	Optocouplers/Opto-isolators	138	
	Switches and Buttons	140	
	Logic Gates	143	
	Analog-to-Digital Conversion	150	
	Sampling Rate	151	
	Quantization	151	
	Operational Amplifiers	152	
	Concluding Advice	155	
	Summary Fronth on Boarding	156	
	Further Reading	157	
Chapter 5	Programming on the Raspberry Pi	159	
	Introduction	160	
	Performance of Languages on the RPi	160	
	Setting the RPi CPU Frequency	165	
	A First Circuit for Physical Computing	166	
	Scripting Languages	168	
	Scripting Language Options	168	
	Bash	169	
	Lua	171	
	Perl	173	
	Python Dynamically Compiled Languages	173 176	
	Dynamically Compiled Languages	176 176	
	JavaScript and Node.js on the RPi Java on the RPi	178	
	C and C++ on the RPi	180	
	C and C++ Language Overview	182	
	LED Control in C	194	
	The C of C++	196	
	Overview of Object-Oriented Programming	199	
	Object-Oriented LED Control in C++	203	
	Interfacing to the Linux OS	206	
	Glibc and Syscall	206	
	Improving the Performance of Python	208	
	Cython	208	
	Extending Python with C/C++	211	
	Summary	215	
	Further Reading	216	
	Bibliography	216	

Part II	Interfacing, Controlling, and Communicating	217
Chapter 6	Interfacing to the Raspberry Pi Input/Outputs	219
	Introduction	220
	General-Purpose Input/Outputs	221
	GPIO Digital Output	222
	GPIO Digital Input	225
	Internal Pull-Up and Pull-Down Resistors	226
	Interfacing to Powered DC Circuits	227
	C++ Control of GPIOs Using sysfs	229
	More C++ Programming	237
	An Enhanced GPIO Class	242
	Memory-Based GPIO Control	245
	GPIO Control Using devmem2	246
	GPIO Control Using C and /dev/mem	248
	Changing the Internal Resistor Configuration	250
	WiringPi	252
	Installing wiringPi	252
	The gpio Command	253
	Programming with wiringPi	254
	Toggling an LED Using wiringPi	255
	Button Press—LED Response	257
	Communicating to One-Wire Sensors	260
	PWM and General-Purpose Clocks	263
	GPIOs and Permissions	270
	Writing udev Rules	270
	Permissions and wiringPi	272
	Summary	273
Chapter 7	Cross-Compilation and the Eclipse IDE	275
	Setting Up a Cross-Compilation Toolchain	276
	The Linaro Toolchain for Raspbian	277
	Debian Cross-Toolchains	279
	Cross-Compilation Using Eclipse	282
	Installing Eclipse on Desktop Linux	282
	Configuring Eclipse for Cross-Compilation	283
	Remote System Explorer	286
	Integrating GitHub into Eclipse	289
	Remote Debugging	289
	Automatic Documentation (Doxygen)	294
	Building Linux	297
	Downloading the Kernel Source	298
	Building the Linux Kernel	299
	Deploying the Linux Kernel	303
	Building a Linux Distribution (Advanced)	305
	Summary	307
	Further Reading	308

ΧV

Chapter 8	Interfacing to the Raspberry Pi Buses	309
	Introduction to Bus Communication	310
	I ² C	310
	I ² C Hardware	311
	An I ² C Test Circuit	315
	Using Linux I2C-Tools	318
	I ² C Communication in C	325
	Wrapping I ² C Devices with C++ Classes	328
	SPI	330
	SPI Hardware	330
	SPI on the RPi	332
	A First SPI Application (74HC595)	334
	Bidirectional SPI Communication in C/C++	339
	Multiple SPI Slave Devices on the RPi	346
	UART	347
	The RPi UART	348
	UART Examples in C	352
	UART Applications - GPS	357
	Logic-Level Translation	359
	Summary	361
	Further Reading	361
Chapter 9	Enhancing the Input/Output Interfaces on the RPi	363
	Introduction	364
	Analog-to-Digital Conversion	364
	SPI Analog-to-Digital Converters (ADCs)	365
	ADC Application: An Analog Light Meter	368
	Testing the SPI ADC Performance	370
	The C Library for BCM2835 (Advanced)	373
	Digital-to-Analog Conversion	376
	An I ² C Digital-to-Analog Converter	376
	An SPI Digital-to-Analog Converter	379
	Adding PWM Outputs to the RPi	381
	Extending the RPi GPIOs	387
	The MCP23017 and the I ² C Bus	389
	The MCP23S17 and the SPI Bus	393
	A C++ Class for the MCP23x17 Devices	394
	Adding UARTs to the RPi	397
	Summary	403
Chapter 10	Interacting with the Physical Environment	405
•	Interfacing to Actuators	406
	DC Motors	407
	Stepper Motors	414
	Relays	418
	Interfacing to Analog Sensors	420
	Linear Analog Sensors	422

	Nonlinear Analog Sensors	423
	Analog Sensor Signal Conditioning	428
	Interfacing to an Analog Accelerometer	431
	Interfacing to Local Displays	433
	MAX7219 Display Modules	433
	Character LCD Modules	436
	OLED Dot-Matrix Display	440
	Building C/C++ Libraries	444
	Makefiles	444
	CMake	446
	Summary	452
Chapter 11	Real-Time Interfacing Using the Arduino	453
	The Arduino	454
	An Arduino Serial Slave	457
	A UART Echo Test Example	457
	UART Command Control of an Arduino	461
	An Arduino I ² C Slave	464
	An I ² C Test Circuit	464
	I ² C Register Echo Example	465
	I ² C Temperature Sensor Example	467
	I ² C Temperature Sensor with a Warning LED	469
	Arduino Slave Communication Using C/C++	471
	An I ² C Ultrasonic Sensor Application	473
	An Arduino SPI Slave	476
	Programming the Arduino from the RPi Command Line	478
	Summary	480
Part III	Advanced Interfacing and Interaction	481
Chapter 12	The Internet of Things	483
	The Internet of Things (IoT)	484
	The RPi as an IoT Sensor	485
	The RPi as a Sensor Web Server	487
	Nginx	488
	GNU Cgicc Applications (Advanced)	494
	A C/C++ Web Client	498
	Network Communications Primer	499
	A C/C++ Web Client	500
	Secure Communication Using OpenSSL	502
	The RPi as a "Thing"	503
	ThingSpeak The Linear Cong Cale dular	504
	The Linux Cron Scheduler	506 510
	Sending E-mail from the RPi	510 512
	If This Then That (IFTTT)	512 513
	Large-Scale IoT Frameworks	513
	MO Tolomotry Transport (MOTT)	E14
	MQ Telemetry Transport (MQTT) IBM Bluemix Internet of Things	514 515

		Contents	xvii
	A IDM I TAKOTTAL I CALLED III I E	F10	
	An IBM IoT MQTT Node.js Publish Example	518	
	An IBM IoT MQTT C++ Publish Example	520	
	Visualize Data Using IBM Quickstart	521 522	
	The C++ Client/Server	523 526	
	IoT Device Management	526	
	Remote Monitoring of the RPi	527	
	RPi Watchdog Timers Static IP Addresses	528 520	
		529 520	
	Power over Ethernet (PoE) Summary	530 533	
Chantou 12			
Chapter 13	Wireless Communication and Control Introduction to Wireless Communications	535	
	Bluetooth Communications	536 537	
	Installing a Bluetooth Adapter	537 542	
	Android App Development with Bluetooth Wi-Fi Communications	543 544	
	Installing a Wi-Fi Adapter The NodeMCU Wi-Fi Slave Processor	544 547	
		559	
	ZigBee Communications Introduction to XBee Devices	559	
		561	
	XBee Configuration	563	
	An XBee AT Mode Example An XBee API Mode Example	568	
	Near Field Communication	572	
	Summary	575	
Chapter 14	Raspberry Pi with a Rich User Interface	577	
Chapter 14	Rich UI RPi Architectures	578	
	The RPi as a General-Purpose Computer	579	
	RPi with an LCD Touchscreen	582	
	Virtual Network Computing (VNC)	583	
	Fat-Client Applications	585	
	Rich UI Application Development	586	
	Introduction to GTK+ on the RPi	586	
	Introduction to Qt on the RPi	590	
	Qt Primer	592	
	Qt Concepts	592	
	Qt Development Tools	596	
	A First Qt Creator Example	597	
	A Qt Weather GUI Application	598	
	Remote UI Application Development	602	
	Fat-Client Qt GUI Application	603	
	Multithreaded Server Applications	606	
	The Multithreaded Weather Server	609	
	Summary	612	
	Further Reading	613	

Chapter 15	Images, Video, and Audio	615
	Capturing Images and Video	616
	The RPi Camera	616
	USB Webcams	619
	Video4Linux2 (V4L2)	621
	Streaming Video	627
	Image Processing and Computer Vision	628
	Image Processing with OpenCV	628
	Computer Vision with OpenCV	631
	Boost	633
	Raspberry Pi Audio	634
	Core Audio Software Tools	635
	Audio Devices for the RPi	635
	Text-to-Speech	643
	Summary Firstless Boodings	644
	Further Reading	645
Chapter 16	Kernel Programming	647
	Introduction	648
	Why Write Kernel Modules?	648
	Loadable Kernel Module (LKM) Basics	649
	A First LKM Example	650
	The LKM Makefile	652
	Building the LKM on a Linux Desktop Machine	653
	Building the LKM on the RPi	654
	Testing the First LKM Example	657
	An Embedded LKM Example	659
	Interrupt Service Routines (ISRs)	661
	Performance	665
	Enhanced Button GPIO Driver LKM	665
	The kobject Interface	666
	Enhanced LED GPIO Driver LKM Kernel Threads	673
	Conclusions	674 675
		676
	Summary	0/0
Index		677

Introduction

The core idea behind the Raspberry Pi (RPi) project was the development of a small and affordable computing platform that could be used to stimulate the interest of children in core information and communications technology (ICT) education. The rapid evolution of low-cost system on a chip (SoC) devices for mobile applications made it possible to widely deliver the affordable RPi platform in early 2012. The impact was immediate; by February 2015, more than five million Raspberry Pi boards were sold. Given the proliferation of smartphones, the idea of holding in one hand computers that are capable of performing billions of instructions per second is easy to take for granted, but the fact that you can modify the hardware and software of such small yet powerful devices and adapt them to suit your own needs and create your own inventions is nothing short of amazing. Even better, you can now purchase a Raspberry Pi Zero for as little as \$5 (the price of a large cup of coffee)!

The Raspberry Pi boards on their own are too complex to be used by a general audience; it is the ability of the boards to run embedded Linux in particular that makes the resulting platform accessible, adaptable, and powerful. Together, Linux and embedded systems enable ease of development for devices that can meet future challenges in smart buildings, the Internet of Things (IoT), robotics, smart energy, smart cities, human-computer interaction (HCI), cyber-physical systems, 3D printing, advanced vehicular systems, and many, many more applications.

The integration of high-level Linux software and low-level electronics represents a paradigm shift in embedded systems development. It is revolutionary that you can build a low-level electronics circuit and then install a Linux web server, using only a few short commands, so that the circuit can be controlled over the Internet. You can easily use the Raspberry Pi as a general-purpose Linux computer, but it is vastly more challenging and interesting to get underneath

the hood and fully interface it to electronic circuits of your own design—and that is where this book comes in!

This book should have widespread appeal for inventors, makers, students, entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring the power of embedded Linux to their products, inventions, creations, or projects and truly understand the RPi platform in detail. This is not a recipe book; with few exceptions, everything demonstrated here is explained at a level that will enable you to design, build, and debug your own extensions of the concepts presented. Nor does this book include any grand design project for which you must purchase a prescribed set of components and peripherals to achieve a very specific outcome. Rather, this book is about providing you with enough background knowledge and "under-the-hood" technical details to enable and motivate your own explorations.

I strongly believe in learning by doing, so I present low-cost, widely available hardware examples so that you can follow along. Using these hands-on examples, I describe what each step means in detail, so that when you substitute your own hardware components, modules, and peripherals you will be able to adapt the content in this book to suit your needs. As for that grand design project, that is up to you and your imagination!

In late 2014, I released a well-received book on the BeagleBone platform titled *Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux*. Given the focus of this book on embedded Linux and the emphasis on introducing the core principles, there are some similarities between the introductory content in that book and this book. However, this book has been written from first principles purely for the RPi platform, focusing on its strengths and addressing several of its weaknesses. I also took the opportunity to extend the coverage of the material to cover topics such as Linux kernel development, the Arduino as a service processor, Wi-Fi sensor nodes, XBee communication, MQTT messaging, the Internet of Things (IoT), platform as a service (PaaS), and much more. If you have a copy of *Exploring BeagleBone*, you should visit this book's website (www.exploringrpi.com) to compare the content in both books before you make your purchasing decision.

When writing this book, I had the following aims and objectives:

- To explain embedded Linux and its interaction with electronic circuits—taking you through the topics and challenges on the popular RPi platform.
- To provide in-depth information and instruction on the Linux, electronics, and programming skills that are required to master a pretty wide and comprehensive variety of topics in this domain.
- To create a collection of practical Hello World hardware and software examples on each and every topic in the book, from low-level interfacing, general-purpose input/outputs (GPIOs), buses, bus-attached analog-to-digital converters (ADCs), and universal asynchronous receiver/transmitters (UARTs) to high-level libraries such as OpenCV and the Qt Framework.

- The book also covers more advanced topics such as low-level register manipulation and Linux loadable kernel module (LKM) development.
- To enhance and extend the interfacing capability of the RPi platform by developing frameworks for connecting it to circuits (e.g., SPI-based ADCs), to service processors (e.g., Arduino and NodeMCU), and to cloud-based IoT platforms and services.
- To ensure that each circuit and segment of code has a broad pedagogical reach and is specifically designed to work on the Raspberry Pi. Every single circuit and code example in this book was built and tested on the RPi platform (most on multiple board versions).
- To use the Hello World examples to build a library of code that you can use and adapt for your own Raspberry Pi projects.
- To make all the code available on GitHub in an easy-to-use form.
- To support this book with strong digital content, such as the videos on the DerekMolloyDCU YouTube channel, and the www.exploringrpi.com custom website that was developed specifically to support this book.
- To ensure that by the end of this book you have everything you need to imagine, create, and build *advanced* Raspberry Pi projects.

How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex. After all, Raspberry Pi boards are complex devices! However, everything that you need to master them is present in this book within three major parts:

- Part I: Raspberry Pi Basics
- Part II: Interfacing, Controlling, and Communicating
- Part III: Advanced Interfacing and Interaction

In the first part of the book, I introduce the hardware and software of the RPi platforms in Chapters 1 and 2, and subsequently provide three primer chapters:

- Chapter 3, "Exploring Embedded Linux Systems"
- Chapter 4, "Interfacing Electronics"
- Chapter 5, "Programming on the Raspberry Pi"

If you are a Linux expert, electronics wizard, and/or software guru, feel free to skip these primers. However, for everyone else, I have put in place a concise but detailed set of materials to ensure that you gain all the knowledge required to effectively and safely interface to the Raspberry Pi. The remaining chapters refer to these primers often.

The second part of the book, Chapters 6–11, provides detailed information on interfacing to the Raspberry Pi GPIOs, buses (I²C, SPI), UART devices, and USB peripherals. You learn how to configure a cross-compilation environment so that you can build large-scale software applications for the Raspberry Pi. Part II also describes how to combine hardware and software to provide the Raspberry Pi with the capability to interact effectively with its physical environment. In addition, Chapter 11, "Real-Time Interfacing Using the Arduino," shows you how to use the Arduino as a slave processor with the Raspberry Pi, which helps you to overcome some of the real-time constraints of working with embedded Linux.

The third and final part of the book, Chapters 12–16, describes how to use the Raspberry Pi for advanced interfacing and interaction applications such as IoT; wireless communication and control, rich user interfaces; images, video, and audio; and Linux kernel programming. Along the way, you encounter many technologies, including TCP/IP, ThingSpeak, IBM Bluemix, MQTT, Cgicc, Power over Ethernet (PoE), Wi-Fi, NodeMCUs, Bluetooth, NFC/RFID, ZigBee, XBee, cron, Nginx, PHP, e-mail, IFTTT, GPS, VNC, GTK+, Qt, XML, JSON, multithreading, client/server programming, V4L2, video streaming, OpenCV, Boost, USB audio, Bluetooth A2DP, text-to-speech, LKMs, kobjects, and kthreads!

Conventions Used in This Book

This book is filled with source code examples and snippets that you can use to build your own applications. Code and commands are shown as follows:

```
This is what source code looks like.
```

When presenting work performed in a Linux terminal, it is often necessary to display both input and output in a single example. A bold type is used to distinguish the user input from the output. For example:

```
pi@erpi ~ $ ping www.raspberrypi.org
PING lb.raspberrypi.org (93.93.128.211) 56(84) bytes of data.
64 bytes from 93.93.128.211: icmp_seq=1 ttl=53 time=23.1 ms
64 bytes from 93.93.128.211: icmp_seq=2 ttl=53 time=22.6 ms
...
```

The \$ prompt indicates that a regular Linux user is executing a command, and a # prompt indicates that a Linux superuser is executing a command. The ellipsis symbol (. . .) is used whenever code or output not vital to understanding a topic has been cut. Editing the output like this enables you to focus on only the most useful information. In addition, an arrow symbol on a line entry indicates that the command spans multiple lines in the book but should be entered on a single line. For example:

```
pi@erpi /tmp $ echo "this is a long command that spans two lines in the → book but must be entered on a single line" >> test.txt
```

You are encouraged to repeat the steps in this book yourself, whereupon you will see the full output. In addition, the full source code for all examples is provided along with the book using a GitHub repository.

You'll also find some additional styles in the text. For example:

- New terms and important words appear in *italics* when introduced.
- Keyboard strokes appear like this: Ctrl+C.
- All URLs in the book refer to HTTP/S addresses and appear like this: www.exploringrpi.com.
- A URL shortening service is used to create aliases for long URLs that are presented in the book. These aliases have the form tiny.cc/erpi102 (e.g., link two in Chapter 1). Should the link address change after this book is published, the alias will be updated.

There are several features used in this book to identify when content is of particular importance or when additional information is available:

WARNING This type of feature contains important information that can help you avoid damaging your Raspberry Pi board.

NOTE This type of feature contains useful additional information, such as links to digital resources and useful tips, which can make it easier to understand the task at hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

EXAMPLE: EXAMPLE TITLE

This type of feature typically provides an example use case, or an important task that you may need to refer to in the future.

What You'll Need

Ideally, you should have a Raspberry Pi board before you begin reading this book so that you can follow along with the numerous examples. If you have not already purchased a Raspberry Pi board, I recommend the Raspberry Pi 3 Model B. Although it is presently the most expensive board (\$35–\$40), it is also the most powerful. This board has a 64-bit quad-core processor, a wired network adapter, wireless Ethernet, and onboard Bluetooth; therefore, it has all the features required to run any example in this book. You can purchase a Raspberry

Pi board in the United States from online stores such as Adafruit Industries, Digi-Key, SparkFun, and Jameco Electronics. They are available internationally from stores such as Farnell, Radionics, and Watterott.

A full list of recommended and optional accessories for the Raspberry Pi is provided in Chapter 1. If you do not yet have a Raspberry Pi, you should read that chapter before purchasing one. In addition, the first page of each chapter contains a list of the electronics components and modules required if you want to follow along. The book website (www.exploringrpi.com) provides details about how to acquire these components.

I purposefully focus the examples in this book on the lowest-cost and most widely available components, breakout boards, and modules that I could identify that meet the needs of the examples. This should help you follow along with many examples, rather than focusing your budget on a small few. Indicative prices are listed throughout the book to give you a feel for the price of the components before you embark on a project. They are the actual prices for which I purchased the items on websites such as <code>ebay.com</code>, <code>amazon.com</code>, and <code>aliexpress.com</code>.

NOTE No products, vendors, or manufacturers listed in this book are the result of any type of placement deal. I have chosen and purchased all the products myself based on their price, functionality, and worldwide availability. Listed prices are indicative only and are subject to change. Please do your own research before purchasing any item that is listed in this book to ensure that it truly meets your needs.

Errata

We have worked really hard to ensure that this book is error free; however, it is always possible that some were overlooked. A full list of errata is available on each chapter's web page at the companion website (www.exploringrpi.com). If you find any errors in the text or in the source code examples, I would be grateful if you could please use the companion website to send them to me so that I can update the web page errata list and the source code examples in the code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringrpi.com. It is maintained by the book's author and contains videos, source code examples, and links to further reading. Each chapter has its own web page. In the unlikely event that the website is unavailable, you can find the code at www.wiley.com/go/exploringrpi.

I have provided all the source code through GitHub, which allows you to download the code to your Raspberry Pi with one command. You can also easily view the code online at tiny.cc/erpi001. Downloading the source code to your Raspberry Pi is as straightforward as typing the following at the Linux shell prompt:

```
pi@erpi ~ $ git clone https://github.com/derekmolloy/exploringrpi.git
```

If you have never used Git before, don't worry; it is explained in detail in Chapter 3.

Now, on with even more adventures!

Part

Raspberry Pi Basics

In This Part

Chapter 1: Raspberry Pi Hardware **Chapter 2:** Raspberry Pi Software

Chapter 3: Exploring Embedded Linux Systems

Chapter 4: Interfacing Electronics

Chapter 5: Programming on the Raspberry Pi