

SUPERVISED LEARNING IN R. REGRESSION

Categorical inputs

Nina Zumel and John Mount Win-Vector, LLC

Example: Effect of Diet on Weight Loss

> WtLoss24 ~ Diet + Age + BMI

Diet	Age	BMI	WtLoss24
Med	59	30.67	-6.7
Low-Carb	48	29.59	8.4
Low-Fat	52	32.9	6.3
Med	53	28.92	8.3
Low-Fat	47	30.20	6.3

model.matrix()

```
> model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)
```

- All numerical values
- Converts categorical variable with N levels into N 1 indicator variables

Indicator Variables to Represent Categories

Original Data

Diet	Age	
Med	59	
Low-Carb	48	
Low-Fat	52	
Med	53	
Low-Fat	47	

Model Matrix

(Intercept)	DietLow-Fat	DietMed	
1	0	1	***
1	0	0	
1	1	0	
1	0	1	
1	1	0	

reference level: "Low-Carb"

Interpreting the Indicator Variables

Linear Model:

```
WtLoss24 = \beta_0 + \beta_{DietLowFat} x_{DietLowFat} + \beta_{DietMed} x_{DietMed} + \beta_{Age} x_{Age} + \beta_{BMI} x_{BMI}
```


Issues with one-hot-encoding

- Too many levels can be a problem
 - Example: ZIP code (about 40,000 codes)
- Don't hash with geometric methods!

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

SUPERVISED LEARNING IN R. REGRESSION

Interactions

Nina Zumel and John Mount Win-Vector, LLC

Additive relationships

Example of an additive relationship:

```
> plant_height ~ bacteria + sun
```

- Change in height is the sum of the effects of bacteria and sunlight
 - Change in sunlight causes same change in height, independent of bacteria
 - Change in bacteria causes same change in height, independent of sunlight

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
> plant_height ~ bacteria + sun + bacteria:sun
```

- Change in height is more (or less) than the sum of the effects due to sun/bacteria
- At higher levels of sunlight, 1 unit change in bacteria causes more change in height

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
> plant_height ~ bacteria + sun + bacteria:sun
```

- sun: categorical {"sun", "shade"}
- In sun, 1 unit change in bacteria causes *m* units change in height
- In shade, 1 unit change in bacteria causes *n* units change in height

Like two separate models: one for sun, one for shade.

Example of no Interaction: Soybean Yield

> yield ~ Stress + SO2 + O3

Example of an Interaction: Alcohol Metabolism

> Metabol ~ Gastric + Sex

Expressing Interactions in Formulae

Interaction - Colon (:)

```
> y ~ a:b
```

Main effects and interaction - Asterisk (*)

```
> y ~ a*b
# Both mean the same
> y ~ a + b + a:b
```

Expressing the product of two variables - I

```
> y ~ I(a*b)
```


Finding the Correct Interaction Pattern

Formula	RMSE (cross validation)
Metabol ~ Gastric + Sex	1.46
Metabol ~ Gastric * Sex	1.48
Metabol ~ Gastric + Gastric:Sex	1.39

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

SUPERVISED LEARNING IN R. REGRESSION

Transforming the response before modeling

Nina Zumel and John Mount Win-Vector, LLC

The Log Transform for Monetary Data

- Monetary values: lognormally distributed
- Long tail, wide dynamic range (60-700K)

Lognormal Distributions

- mean > median (~ 50K vs 39K)
- Predicting the mean will overpredict typical values

Back to the Normal Distribution

For a Normal Distribution:

- mean = median (here: 4.53 vs 4.59)
- more reasonable dynamic range (1.8
 - 5.8)

The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) \sim x, data = train)
```


The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) \sim x, data = train)
```

2. Make the predictions in log space

```
> logpred <- predict(model, data = test)</pre>
```


The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) ~ x, data = train)
```

2. Make the predictions in log space

```
> logpred <- predict(model, data = test)
```

3. Transform the predictions to outcome space

```
> pred <- exp(logpred)</pre>
```


Predicting Log-transformed Outcomes: Multiplicative Error

$$log(a) + log(b) = log(ab)$$

$$log(a) - log(b) = log(a/b)$$

- Multiplicative error: pred/y
- Relative error: $(pred y)/y = \frac{pred}{y} 1$

Reducing multiplicative error reduces relative error.

Root Mean Squared Relative Error

RMS-relative error =
$$\sqrt{\frac{pred-y}{y}^2}$$

- Predicting log-outcome reduces RMS-relative error
- But the model will often have larger RMSE

Example: Model Income Directly

```
> modIncome <- lm(Income ~ AFQT + Educ, data = train)
```

- AFQT: Score on proficiency test 25 years before survey
- Educ: Years of education to time of survey
- Income: Income at time of survey

Model Performance

RMSE	RMS-relative error
36,819.39	3.295189

Model log(Income)

```
> modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)
```


Model Performance

RMSE	RMS-relative error
38,906.61	2.276865

Compare Errors

log (Income) model: smaller RMS-relative error, larger RMSE

Model	RMSE	RMS-relative error
On Income	36,819.39	3.295189
On log(Income)	38,906.61	2.276865

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

SUPERVISED LEARNING IN R. REGRESSION

Transforming inputs before modeling

Nina Zumel and John Mount Win-Vector LLC

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative
 - y approximately linear in f(x) rather than in x

Example: Predicting Anxiety

Transforming the hassles variable

Different possible fits

Which is best?

```
• anx ~ I(hassles^2)
```

- anx ~ I(hassles^3)
- anx ~ I(hassles^2) + I(hassles^3)
- anx ~ exp(hassles)
- ...

I (): treat an expression literally (not as an interaction)

Compare different models

Linear, Quadratic, and Cubic models

```
> mod_lin <- lm(anx ~ hassles, hassleframe)
> summary(mod_lin)$r.squared
[1] 0.5334847

> mod_quad <- lm(anx ~ I(hassles^2), hassleframe)
> summary(mod_quad)$r.squared
[1] 0.6241029

> mod_tritic <- lm(anx ~ I(hassles^3), hassleframe)
> summary(mod_tritic)$r.squared
[1] 0.6474421
```


Compare different models

Use cross-validation to evaluate the models

Model	RMSE
Linear (hassles)	7.69
Quadratic ($hassles^2$)	6.89
Cubic $(hassles^3)$	6.70

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!