

Lokakarya Internet of Things

Membuat Server Internet of Things

Di dukung oleh:

Tentang Saya

- David Wahyu Pratomo
- Anggota KLAS Div. Pelatihan
- Kontak:

Whatsapp : **08993327750**

Telegram:@davidwah

email : davidwahyuyu@gmail.com

repo : **github.com/davidwah**

facebook : facebook.com/davidwahyuyu

Pembahasan

- Trend Revolusi industri 4.0
- Potensi Aplikasi IoT
- Contoh penggunaan teknologi IoT
- Komponen IoT
- Instalasi Server IoT
- Praktik dengan ESP8266

Trend Revolusi Industri 4.0

- Revolusi industri 4.0 memiliki ciri adanya transformasi digital yang merubah cara organisasi beroperasi dan bekerja.
- Transformasi digital ini didukung teknologi:
 - Cloud Computing,
 - Artificial Intelegence (AI),
 - Internet of Things,
 - Machine Learning.

Definisi Internet of Things

infrastruktur global untuk masyarakat, serta memungkinkan layanan lanjutan yang interkoneksi dan terus berkembang.

Potensi digitalisasi di berbagai sektor di Indonesia

Across key sectors, Indonesia could harness digitization to realize total productivity impact of USD 120 billion by 2025.

USD billion

Sector	Estimated 2025 GDP base impact	Operation optimization	Human health and productivity	Product and sales development
Manufacturing	34.4	29.4	3.0	2.0
Retail	24.5	12.5	6.7	5.3
Transport	15.5	13.6	1.9	0.0
Mining	14.8	14.0	0.5	0.3
Agriculture	11.0	10.6	0.3	0.0
Telecom and media	7.9	5.7	1.7	0.5
Healthcare	6.6	3 2.2	4.3	0.0
Public sector and utilities	4	.8 4.7	0.1	0.0
Financial] 1	1.8 1.1	0.1	0.6
Total	1	21.4 93.8	18.7	8.9

- Manufaktur
- Ritel
- Transportasi
- Tambang
- Pertanian
- Media dan Telekomunikasi
- Kesehatan
- Pelayanan Umum
- finansial

Source: Based on McKinsey Global Institute Study "Unlocking the potential of the Internet of Things," Team analysis adjusting figures for Indonesian context

Peringkat Segmentasi IoT

Indonesia's IoT Market in 2022

Komponen Penyusun IoT

Concept of IoT

Things:

Perangkat komputasi kecil untuk penginderaan dan aksi.

Cloud:

Server untuk komputasi dan penyimpanan

Intelegence:

Algoritma analisis data dan pengembilan keputusan dari data

(sumber: https://aws.amazon.com/iot/)

Contoh IoT - Smart Home

Pemain IoT

Instalasi Server

Node-RED

Node-RED is a programming tool for wiring together hardware devices, APIs and online services in new and interesting ways.

It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the palette that can be deployed to its runtime in a single-click.

Features

Get Started

Community

- Install Node.js
- Install npm
- Install Node-RED Ubuntu
- Install Node-RED Docker

Install Node.js

- curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -
- sudo apt-get install nodejs
- o node -v

```
dwp@project:~

File Edit View Search Terminal Help

dwp@project:~$ node -v

v10.16.3

dwp@project:~$
```

- Install npm
 - sudo apt-get install npm
 - o npm -v

```
dwp@project:~

File Edit View Search Terminal Help

dwp@project:~$ npm -v

6.9.0

dwp@project:~$ [
```

- Install Node-RED Ubuntu
 - sudo npm install -g --unsafe-perm node-red
- Menjalankan Node-RED
 - node-red

```
dwp@project:~

File Edit View Search Terminal Help

16 Sep 12:10:30 - [info] Server now running at http://127.0.0.1:1880/
16 Sep 12:10:30 - [info] Starting flows
16 Sep 12:10:30 - [info] Started flows
```


- Install Node-RED Docker
 - docker run -it -p 1880:1880 --name iot-klas davidwah/node-red-dwp

- Install paket dashboard
 - node-red-dashboard
 - \$ npm install node-red-dashboard

Praktik dengan Mikrokontrol

Mikrokontrol

Mikrokontrol ESP

Praktik dengan ESP8266

Komponen yang perlu disiapkan:

- Software Arduino IDE
- Library:
 - esp8266
 - PubSubClient

Praktik dengan ESP8266

Menambahkan paket **Board Manager ESP8266**

File -> Preferences -> Additional Board Manager URLs

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Menambahkan paket PubSubClient

Sketch -> Include Library -> Manage Libraries

Ketik pada kolompencarian PubSubClient (Nick O'Leary)

Praktik dengan ESP8266 dan DHT11

NodeMCU => DHT 11

- Pin VCC DHT11 ke Pin 5V
- Pin GND DHT11 ke Pin G (Ground)
- Pin Data DHT 11 ke Pin D1(Digital 1)

Kode program:

Wemos DHT11 MQTT

Praktik dengan ESP8266 dan DHT11

Praktik dengan ESP8266 dan DHT11

Praktik dengan ESP8266 dan Relay

NodeMCU => Relay

- Pin VCC relay ke 5V
- Pin GND Relay ke Pin G (Ground)
- Pin Data Relay ke pin D1 (Digital 1)

Kode program:

Wemos Relay MOTT

Praktik dengan ESP8266 dan Relay

