Упражнение 2

1 Детерминирани крайни автомати

Крайният автомат представлява абстрактна машина снабдена с множество от състояния, азбука и правила за преход между състоянията с буквите от азбуката. Някои от състоянията на автомата са $\kappa paйнu$, а някои — при demep munupanume $\kappa paйнu$ автомати, точно едно — naчални. Работата на автомата при подадена дума на вход е да прочете думата и в процеса на което, да извърши зададените преходи спрямо снабдените му правила. След прочитането на подадената дума, автоматът има единствена функционалност да върне отговор da или ne на въпроса дали четенето е приключило в крайно състояние.

Дефиниция 1. Детерминиран краен автомат (ДКА) е наредена петорка $A = (Q, \Sigma, \delta, s, F)$, където

- -Q е *крайно* множество от **състояния**,
- Σ е азбука,
- $-s \in Q$ е началното състояние,
- $-F\subseteq Q$ е множеството от **крайни състояния** и
- $-\delta$, функцията на преходите, е функция от $Q \times \Sigma$ към Q.

Неформално, за една дума $w \in \Sigma^*$ казваме, че автоматът A разпознава w, ако четенето на w по автомата приключи в някое заключително състояние $q \in F$.

За да стигнем до формалната дефиниция на това, какво означава един автомат да разпознава дума w, трябва първо да дефинираме така наречената разширена функция на преходите $\hat{\delta}:Q\times\Sigma^*\to Q$. При аргументи състояние q и дума w, функцията $\hat{\delta}$ връща състоянието, в което ще попаднем, тръгвайки от q и четейки думата w. Дефиницията е с индукция по дължината на w.

База: $\hat{\delta}(q,\epsilon)=q$, за всяко $q\in Q$.

Стъпка: Сега да предположим, че w=ua за някои $u\in \Sigma^*$ и $a\in \Sigma.$ Тогава

$$\hat{\delta}(q,w) = \delta(\hat{\delta}(q,x),a).$$

Сега вече формално, казваме, че автоматът A разпознава думата w, ако просто $\hat{\delta}(s,w) \in F$.

С L(A) означаваме множеството от всички думи $w \in \Sigma^*$, които A разпознава. Тоест, $L(A) = \{w \in \Sigma^* \mid \hat{\delta}(s,w) \in F\}$.

Пример 1. Нека A е детерминираният краен автомат $(Q, \Sigma, \delta, s, F)$, където

$$Q = \{q_0, q_1\},\$$

$$\Sigma = \{a, b\},\$$

$$s = q_0,\$$

$$F = \{q_0\},\$$

и δ е функцията, представена чрез следната талбица.

\overline{q}	σ	$\delta(q,\sigma)$
q_0	a	q_0
q_0	b	q_1
q_1	a	q_1
q_1	b	q_0

Можем да онагледим вида на A чрез следната фигура.

Състоянието q_0 , бивайки крайно, е илюстрирано с двойно оградено кръгче.

Вече лесно се вижда, че $L(A) = \{w \in \{a,b\}^* \mid w$ има четен брой b-та $\}$.

Пример 2. Сега ще построим ДКА A, който разпознава езика $L=\{w\in\{a,b\}^*\mid w$ не съдържа три последователни b-та $\}$. Нека $A=(Q,\Sigma,\delta,s,F)$, където

$$Q = \{q_0, q_1, q_2, q_3\},\$$

$$\Sigma = \{a, b\},\$$

$$s = q_0,\$$

$$F = \{q_0, q_1, q_2\},\$$

и δ е функцията, представена чрез следната талбица.

q	σ	$\delta(q,\sigma)$
q_0	a	q_0
q_0	b	q_1
q_1	a	q_0
q_1	b	q_2
q_2	a	q_0
q_2	b	q_3
q_3	a	q_3
q_3	b	q_3

Можем да онагледим вида на A чрез следната фигура.

Можем да мислим за състоянието q_3 като за "мъртво състояние"— влезем ли веднъж в него в процеса на четене, не можем да излезем.

2 Задачи

Задача 1. Нека A е детерминиран краен автомат. Кога е изпълнено, че $\epsilon \in L(A)$? Докажете отговора си.

Задача 2. Постройте детерминирани крайни автомати разпознаващи всеки от следните езици.

- (a) $\{w \in \{a,b\}^* \mid \text{всяко } a \text{ в } w \text{ е последвано непосредствено от } b\}.$
- (б) $\{w \in \{a,b\}^* \mid w$ има abab като поддума $\}$.
- (в) $\{w \in \{a,b\}^* \mid w$ няма нито aa, нито bb като поддума $\}$.
- (Γ) $\{w \in \{a,b\}^* \mid w$ има нечетен брой a-та и четен брой b-та $\}$.
- $(д) \{w \in \{a,b\}^* \mid w \text{ има } ab \text{ и } ba \text{ като поддуми}\}.$

Задача 3. За всеки от дадените по-долу автомати посочете езиците, които разпознават.

Задача 4. Докажете, че за произволни думи w_1 и w_2 и произволно състояние $q,\ \hat{\delta}(q,w_1w_2)=\hat{\delta}(\hat{\delta}(q,w_1),w_2).$

3 Решения

Задача 1. Нека s е началното състояние на A, а F — множеството от крайните му състояния. Твърдим, че $\epsilon \in L(A) \iff s \in F$. Имаме $\epsilon \in L(A) \iff \hat{\delta}(s,\epsilon) \in F \iff s \in F$.

Задача 2.

Задача 3. (a) $a \circ \{ba\}^*$

(6) $\{a\}^* \circ \{b\}$

(B) $(\{a\} \circ \{ab\}^* \circ \{b\})^*$

(r) $(\{ab\}^* \circ \{ba\}^*)^*$.

Задача 4. Ще докажем твърдението с индукция по $|w_2|$.

База: Ако $w_2 = \epsilon$, то $\hat{\delta}(q, w_1 w_2) = \hat{\delta}(q, w_1) = \hat{\delta}\left(\hat{\delta}(q, w_1), \epsilon\right) = \hat{\delta}\left(\hat{\delta}(q, w_1), w_2\right)$. Стъпка: Ако $w_2 = ua$ за някои $u \in \Sigma^*$ и $a \in \Sigma$, то

 $\hat{\delta}(q, w_1 w_2) =$

 $\hat{\delta}(q, w_1ua) =$

 $\delta\left(\hat{\delta}(q,w_1u),a\right)\stackrel{\mathrm{M.\Pi}}{=}$

 $\delta\left(\hat{\delta}\left(\hat{\delta}(q,w_1), \boldsymbol{u}\right), a\right) \overset{\text{def.}\hat{\delta}}{=}$

 $\hat{\delta}\left(\hat{\delta}(q,w_1),ua\right) =$

 $\hat{\delta}(\hat{\delta}(q, w_1), w_2).$