In [38]: pip install keras

Requirement already satisfied: keras in d:\anaconda\lib\site-packages (2.8.0)N ote: you may need to restart the kernel to use updated packages.

WARNING: You are using pip version 22.0.3; however, version 22.0.4 is available.

You should consider upgrading via the 'D:\Anaconda\python.exe -m pip install --upgrade pip' command.

In [39]:

pip install tensorflow

Requirement already satisfied: tensorflow in d:\anaconda\lib\site-packages (2. 8.0)

Requirement already satisfied: typing-extensions>=3.6.6 in d:\anaconda\lib\sit e-packages (from tensorflow) (3.7.4.3)

Requirement already satisfied: tf-estimator-nightly==2.8.0.dev2021122109 in d:\anaconda\lib\site-packages (from tensorflow) (2.8.0.dev2021122109)

Requirement already satisfied: gast>=0.2.1 in d:\anaconda\lib\site-packages (f rom tensorflow) (0.5.3)

Requirement already satisfied: setuptools in d:\anaconda\lib\site-packages (fr om tensorflow) (60.8.2)

Requirement already satisfied: $google-pasta \ge 0.1.1$ in d:\anaconda\lib\site-pac kages (from tensorflow) (0.2.0)

Requirement already satisfied: flatbuffers>=1.12 in d:\anaconda\lib\site-packa ges (from tensorflow) (2.0)

Requirement already satisfied: six>=1.12.0 in d:\anaconda\lib\site-packages (f rom tensorflow) (1.15.0)

Requirement already satisfied: grpcio<2.0,>=1.24.3 in d:\anaconda\lib\site-pac kages (from tensorflow) (1.44.0)

Requirement already satisfied: h5py>=2.9.0 in d:\anaconda\lib\site-packages (f rom tensorflow) (2.10.0)

Requirement already satisfied: protobuf >= 3.9.2 in d:\anaconda\lib\site-package s (from tensorflow) (3.11.2)

Requirement already satisfied: termcolor>=1.1.0 in d:\anaconda\lib\site-packag es (from tensorflow) (1.1.0)

Requirement already satisfied: opt-einsum>=2.3.2 in d:\anaconda\lib\site-packa ges (from tensorflow) (3.3.0)

Requirement already satisfied: absl-py>=0.4.0 in d:\anaconda\lib\site-packages (from tensorflow) (1.0.0)

Requirement already satisfied: numpy>=1.20 in d:\anaconda\lib\site-packages (f rom tensorflow) (1.21.5)

Requirement already satisfied: libclang>=9.0.1 in d:\anaconda\lib\site-package s (from tensorflow) (13.0.0)

Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in d:\anac onda\lib\site-packages (from tensorflow) (0.24.0)

Requirement already satisfied: keras-preprocessing>=1.1.1 in d:\anaconda\lib\s ite-packages (from tensorflow) (1.1.2)

Requirement already satisfied: keras<2.9,>=2.8.0rc0 in d:\anaconda\lib\site-pa ckages (from tensorflow) (2.8.0)

Requirement already satisfied: wrapt>=1.11.0 in d:\anaconda\lib\site-packages (from tensorflow) (1.12.1)

Requirement already satisfied: tensorboard<2.9,>=2.8 in d:\anaconda\lib\site-p ackages (from tensorflow) (2.8.0)

Requirement already satisfied: astunparse>=1.6.0 in d:\anaconda\lib\site-packa ges (from tensorflow) (1.6.3)

Requirement already satisfied: wheel<1.0,>=0.23.0 in d:\anaconda\lib\site-pack ages (from astunparse>=1.6.0->tensorflow) (0.37.1)

Requirement already satisfied: markdown>=2.6.8 in d:\anaconda\lib\site-package s (from tensorboard<2.9,>=2.8->tensorflow) (3.3.6)

Requirement already satisfied: werkzeug>=0.11.15 in d:\anaconda\lib\site-packa

```
ges (from tensorboard<2.9,>=2.8->tensorflow) (1.0.1)
Requirement already satisfied: requests<3,>=2.21.0 in d:\anaconda\lib\site-pac
kages (from tensorboard<2.9,>=2.8->tensorflow) (2.25.1)
Requirement already satisfied: google-auth<3,>=1.6.3 in d:\anaconda\lib\site-p
ackages (from tensorboard<2.9,>=2.8->tensorflow) (2.6.2)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in d:\ana
conda\lib\site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.6.1)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in d:\anaconda\li
b\site-packages (from tensorboard<2.9,>=2.8->tensorflow) (1.8.1)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in d:\anacond
a\lib\site-packages (from tensorboard<2.9,>=2.8->tensorflow) (0.4.6)
Requirement already satisfied: pyasn1-modules>=0.2.1 in d:\anaconda\lib\site-p
ackages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (0.2.
Requirement already satisfied: cachetools<6.0,>=2.0.0 in d:\anaconda\lib\site-
packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (5.0.
0)
Requirement already satisfied: rsa<5,>=3.1.4 in d:\anaconda\lib\site-packages
(from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow) (4.8)
Requirement already satisfied: requests-oauthlib>=0.7.0 in d:\anaconda\lib\sit
e-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tens
orflow) (1.3.1)
Requirement already satisfied: importlib-metadata>=4.4 in d:\anaconda\lib\site
-packages (from markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow) (4.11.3)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in d:\anaconda\lib\site-p
ackages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (1.26.4)
Requirement already satisfied: idna<3,>=2.5 in d:\anaconda\lib\site-packages
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda\lib\site-pack
ages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (2020.12.5)
Requirement already satisfied: chardet<5,>=3.0.2 in d:\anaconda\lib\site-packa
qes (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow) (4.0.0)
Requirement already satisfied: zipp>=0.5 in d:\anaconda\lib\site-packages (fro
m importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow)
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in d:\anaconda\lib\site-pa
ckages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=
2.8->tensorflow) (0.4.8)
Requirement already satisfied: oauthlib>=3.0.0 in d:\anaconda\lib\site-package
s (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboar
d<2.9,>=2.8->tensorflow) (3.2.0)
WARNING: You are using pip version 22.0.3; however, version 22.0.4 is availabl
You should consider upgrading via the 'D:\Anaconda\python.exe -m pip install
--upgrade pip' command.
```

In [40]:

pip install StandardScaler

Requirement already satisfied: StandardScaler in d:\anaconda\lib\site-packages (0.5)

Requirement already satisfied: dask in d:\anaconda\lib\site-packages (from StandardScaler) (2021.4.0)

Requirement already satisfied: scikit-learn in d:\anaconda\lib\site-packages (from StandardScaler) (1.0.2)

Requirement already satisfied: numpy in d:\anaconda\lib\site-packages (from St andardScaler) (1.21.5)

Requirement already satisfied: pandas in d:\anaconda\lib\site-packages (from S tandardScaler) (1.2.4)

Requirement already satisfied: $scikit-elm in d:\anaconda\lib\site-packages (from StandardScaler) (0.21a0)$

Requirement already satisfied: cloudpickle>=1.1.1 in d:\anaconda\lib\site-pack ages (from dask->StandardScaler) (1.6.0)

Requirement already satisfied: partd>=0.3.10 in d:\anaconda\lib\site-packages

```
(from dask->StandardScaler) (1.2.0)
```

Requirement already satisfied: toolz>=0.8.2 in d:\anaconda\lib\site-packages (from dask->StandardScaler) (0.11.1)

Requirement already satisfied: fsspec>=0.6.0 in d:\anaconda\lib\site-packages (from dask->StandardScaler) (0.9.0)

Requirement already satisfied: pyyaml in d:\anaconda\lib\site-packages (from d ask->StandardScaler) (5.4.1)

Requirement already satisfied: pytz>=2017.3 in d:\anaconda\lib\site-packages (from pandas->StandardScaler) (2021.1)

Requirement already satisfied: python-dateutil>=2.7.3 in d:\anaconda\lib\site-packages (from pandas->StandardScaler) (2.8.1)

Requirement already satisfied: scipy in d:\anaconda\lib\site-packages (from sc ikit-elm->StandardScaler) (1.6.2)

Requirement already satisfied: joblib>=0.11 in d:\anaconda\lib\site-packages (from scikit-learn->StandardScaler) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in d:\anaconda\lib\site-pa ckages (from scikit-learn->StandardScaler) (2.1.0)

Requirement already satisfied: locket in d:\anaconda\lib\site-packages\locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask->StandardScaler) (0.2.1)

Requirement already satisfied: six>=1.5 in d:\anaconda\lib\site-packages (from python-dateutil>=2.7.3->pandas->StandardScaler) (1.15.0)

WARNING: You are using pip version 22.0.3; however, version 22.0.4 is available.

You should consider upgrading via the 'D:\Anaconda\python.exe -m pip install --upgrade pip' command.

In [1]:

import libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion matrix

0

0

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.svm import SVC

In [2]:

Out[2]:

41998

reading train dataset

mnist_train=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\train.csv")
mnist_train

label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 ... pixel774 pixel

0

0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0
•••											
41995	0	0	0	0	0	0	0	0	0	0	0
41996	1	0	0	0	0	0	0	0	0	0	0
41997	7	0	0	0	0	0	0	0	0	0	0

3 of 12 02-04-2022, 19:42

0

label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 ... pixel774 pixel

```
41999
                    9
                           0
                                  0
                                         0
                                                0
                                                        0
                                                               0
                                                                      0
                                                                             0
                                                                                    0 ...
                                                                                                 0
In [3]:
           ### reading test dataset
          mnist test=pd.read csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\test.csv")
          mnist test
Out[3]:
                 pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 ... pixel774
              0
                            0
                     0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                     0 ...
                                                                                                  0
              1
                     0
                            0
                                   0
                                          0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                                  0
                                                  0
                                                                                     0
              2
                     0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                     0 ...
                                                                                                  0
              3
                            0
                                   0
                                                                0
                                                                       0
                                                                              0
                                                                                                  0
                     0
                                          0
                                                  0
                                                         0
                                                                                     0 ...
                            0
                                   0
                                                                0
                                                                       0
                                                                              0
              4
                     0
                                          0
                                                  0
                                                         0
                                                                                     0 ...
                                                                                                  0
                                                                              0
          27995
                     0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                                                 0
                                                                                     0 ...
          27996
                     0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                     0 ...
                                                                                                 0
          27997
                            0
                                   0
                                          0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                                  0
                     0
                                                  0
                                                                                     0 ...
          27998
                     0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                     0 ...
                                                                                                  0
                                                                                     0 ...
          27999
                     0
                            0
                                   0
                                          0
                                                  0
                                                         0
                                                                0
                                                                       0
                                                                              0
                                                                                                 0
         28000 rows × 784 columns
In [4]:
           ### print the dimension or shape of test data
          mnist test.shape
Out[4]: (28000, 784)
In [5]:
           ### print the dimension or shape of train data
          mnist_train.shape
Out[5]: (42000, 785)
In [6]:
          mnist train.head()
Out[6]:
                          pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 ... pixel774 pixel775
             label pixel0
          0
                1
                       0
                              0
                                     0
                                            0
                                                   0
                                                           0
                                                                  0
                                                                         0
                                                                                                      0
                                                                                0
                                                                                            0
          1
                0
                       0
                              0
                                     0
                                            0
                                                   0
                                                           0
                                                                  0
                                                                         0
                                                                                                      0
                                                                                0
                                                                                            0
          2
                1
                       0
                              0
                                     0
                                            0
                                                   0
                                                           0
                                                                  0
                                                                         0
                                                                                0
                                                                                            0
                                                                                                      0
          3
                              0
                                     0
                                            0
                                                   0
                4
                       0
                                                           0
                                                                  0
                                                                         0
                                                                                0
                                                                                                      0
```

```
label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 ... pixel774 pixel775
                                             0
                                                    0
                                                                  0
                                                                                                     0
                        0
                               0
                                      0
                                                           0
                                                                         0
                                                                                0 ...
                                                                                            0
 In [7]:
           mnist test.head()
              pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 ... pixel774 pixel775
           0
                  0
                         0
                                0
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                                                                                             0
                                                                                                      0
           1
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                                 0
                                                                                             0
                                                                                                      0
           2
                         0
                                0
                                       0
                                              0
                                                     0
                                                                   0
                                                                          0
                                                                                 0
                                                                                             0
           3
                  0
                         0
                                0
                                       0
                                              0
                                                     0
                                                                   0
                                                                          0
                                                                                 0
                                                                                             0
                                                                                                      0
                                              0
                                                            0
                                                                          0
                                                                                                      0
                  0
                         0
                                0
                                       0
                                                     0
                                                                   0
                                                                                 0
                                                                                             0
          5 rows × 784 columns
 In [8]:
            ### there are no missing values in the dataset
           mnist train.isnull().sum()
 Out[8]: label
                         0
          pixel0
                         0
          pixel1
                         0
          pixel2
                         0
          pixel3
                         0
          pixel779
                         0
          pixel780
                         0
          pixel781
                         0
          pixel782
                         0
           pixel783
                         0
           Length: 785, dtype: int64
 In [9]:
           mnist_test.isnull().sum()
 Out[9]: pixel0
                         0
          pixel1
                         0
          pixel2
                         0
          pixel3
                         0
          pixel4
                         0
          pixel779
                         0
          pixel780
                         0
          pixel781
                         0
           pixel782
                         0
           pixel783
           Length: 784, dtype: int64
In [10]:
           mnist train.describe()
Out[10]:
                         label
                                pixel0
                                        pixel1
                                                pixel2
                                                        pixel3
                                                                pixel4
                                                                        pixel5
                                                                                pixel6
                                                                                        pixel7
                                                                                                 pixel8
           count 42000.00000 42000.0 42000.0 42000.0 42000.0 42000.0 42000.0 42000.0 42000.0
                                                                                               42000.0
```

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8
mean	4.456643	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
std	2.887730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
min	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25%	2.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50%	4.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
75%	7.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
max	9.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

In [11]:

mnist test.describe()

Out[11]:

	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	
count	28000.0	28000.0	28000.0	28000.0	28000.0	28000.0	28000.0	28000.0	28000.0	28000.0		28
mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
std	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
min	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
25%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
50%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
75%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
max	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

8 rows × 784 columns

```
In [12]: ### dimensions, shape
    print("Dimensions: ",mnist_train.shape,"\n")
    print(mnist_train.info())

Dimensions: (42000, 785)

    <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 42000 entries, 0 to 41999
        Columns: 785 entries, label to pixel783
        dtypes: int64(785)
        memory usage: 251.5 MB
        None

In [13]: print("Dimensions: ",mnist_test.shape,"\n")
        print(mnist_test.info())

        Dimensions: (28000, 784)

        <class 'pandas.core.frame.DataFrame'>
```

6 of 12 02-04-2022, 19:42

RangeIndex: 28000 entries, 0 to 27999 Columns: 784 entries, pixel0 to pixel783

dtypes: int64(784)

```
memory usage: 167.5 MB
In [14]:
          print(mnist train.columns)
          print(mnist test.columns)
         Index(['label', 'pixel0', 'pixel1', 'pixel2', 'pixel3', 'pixel4', 'pixel5',
                'pixel6', 'pixel7', 'pixel8',
                'pixel774', 'pixel775', 'pixel776', 'pixel777', 'pixel778', 'pixel779',
                'pixel780', 'pixel781', 'pixel782', 'pixel783'],
               dtype='object', length=785)
         Index(['pixel0', 'pixel1', 'pixel2', 'pixel3', 'pixel4', 'pixel5', 'pixel6',
                'pixel7', 'pixel8', 'pixel9',
                'pixel774', 'pixel775', 'pixel776', 'pixel777', 'pixel778', 'pixel779',
                'pixel780', 'pixel781', 'pixel782', 'pixel783'],
               dtype='object', length=784)
In [15]:
          order=list(np.sort(mnist train['label'].unique()))
          print (order)
         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```
In [16]:
    ### Visualizing the number of class and counts in the datasets
    sns.countplot(mnist_train['label'])
    plt.show()
```

D:\Anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [17]:
    ### Visualizing the number of class and counts in the datasets
    plt.plot(figure=(15,9))
    g=sns.countplot(mnist_train["label"],palette='icefire')
    plt.title("Number of digit classes")
    mnist_train.label.astype("category").value_counts()
```

D:\Anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass t he following variable as a keyword arg: x. From version 0.12, the only valid p

```
ositional argument will be `data`, and passing other arguments without an expl
         icit keyword will result in an error or misinterpretation.
           warnings.warn(
               4684
Out[17]: 1
          7
               4401
          3
               4351
          9
               4188
          2
               4177
          6
               4137
          0
               4132
          4
               4072
          8
               4063
          5
               3795
         Name: label, dtype: int64
                             Number of digit classes
```

```
Number of digit classes

4000 - 3000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000
```

```
In [18]:
          # average feature values
          round(mnist train.drop('label', axis=1).mean(), 2)
                      0.0
Out[18]: pixel0
                      0.0
         pixel1
         pixel2
                      0.0
         pixel3
                      0.0
         pixel4
                      0.0
         pixel779
                     0.0
                     0.0
         pixel780
         pixel781
                     0.0
         pixel782
                     0.0
         pixel783
                     0.0
         Length: 784, dtype: float64
In [19]:
          ### seperating x and y variables
          y=mnist train['label']
          У
                   1
Out[19]:
         0
                   0
         1
         2
                   1
         3
                   4
                   0
         4
```

. .

```
41995 0
41996 1
41997 7
41998 6
41999 9
```

```
In [36]:
```

```
### Plotting some samples as well as converting into matrix

four=mnist_train.iloc[3,1:]
four.shape
four=four.values.reshape(28,28)
plt.imshow(four,cmap="gray")
plt.title("Digit 4")
```

Out[36]: Text(0.5, 1.0, 'Digit 4')


```
seven=mnist_train.iloc[6,1:]
seven.shape
seven=seven.values.reshape(28,28)
plt.imshow(seven,cmap="gray")
plt.title("Digit 7")
```

Out[37]: Text(0.5, 1.0, 'Digit 7')


```
In [20]: ### dropping the variable 'label' from x variable
    x=mnist_train.drop(columns='label')
    x
```

Out[20]:		pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	pixel774	ріх
	0	0	0	0	0	0	0	0	0	0	0		0	
	1	0	0	0	0	0	0	0	0	0	0		0	
	2	0	0	0	0	0	0	0	0	0	0		0	
	3	0	0	0	0	0	0	0	0	0	0		0	
	4	0	0	0	0	0	0	0	0	0	0		0	
	•••													
	41995	0	0	0	0	0	0	0	0	0	0		0	
	41996	0	0	0	0	0	0	0	0	0	0		0	
	41997	0	0	0	0	0	0	0	0	0	0		0	
	41998	0	0	0	0	0	0	0	0	0	0		0	
	41999	0	0	0	0	0	0	0	0	0	0		0	

42000 rows × 784 columns

```
In [21]:
          print(mnist_train.shape)
         (42000, 785)
In [22]:
          ### Normalization
          x=x/2255.0
          mnist_test=mnist_test/255.0
          print("x", x.shape)
          print("mnist_test: ",mnist_test.shape)
         x (42000, 784)
         mnist test: (28000, 784)
In [23]:
          ### scaling the features
          from sklearn.preprocessing import scale
          x scaled=scale(x)
          x scaled
Out[23]: array([[0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., \ldots, 0., 0., 0.],
```

```
[0., 0., 0., ..., 0., 0., 0.]
In [24]:
          ### train test split
          x train, x test, y train, y test=train test split(x scaled, y, test size=0.3, train
In [25]:
          x_train
Out[25]: array([[0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.]
                 [0., 0., 0., ..., 0., 0., 0.]
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.]])
In [26]:
          x test
Out[26]: array([[0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.]
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.],
                 [0., 0., 0., ..., 0., 0., 0.]])
In [27]:
          y_train
Out[27]: 2281
                   7
         15412
                   9
         24728
                   1
         5353
         21766
                   3
         38531
                  7
                  3
         13378
         23855
                  0
         38206
                  3
         25157
         Name: label, Length: 8400, dtype: int64
In [28]:
          y_test
Out[28]: 27084
                   7
         18640
                   3
         41477
                   9
         39744
                   8
         28354
                  6
         36651
                  7
                  9
         23060
         10399
                  1
         10740
         25674
                  1
         Name: label, Length: 12600, dtype: int64
```

```
In [29]:
          pip install SVM
         Requirement already satisfied: SVM in d:\anaconda\lib\site-packages (0.1.0)
         Requirement already satisfied: xmltodict in d:\anaconda\lib\site-packages (fro
         m SVM) (0.12.0)
         Requirement already satisfied: colorama in d:\anaconda\lib\site-packages (from
         SVM) (0.4.4)
         Requirement already satisfied: requests in d:\anaconda\lib\site-packages (from
         SVM) (2.25.1)
         Requirement already satisfied: urllib3<1.27,>=1.21.1 in d:\anaconda\lib\site-p
         ackages (from requests->SVM) (1.26.4)
         Requirement already satisfied: idna<3,>=2.5 in d:\anaconda\lib\site-packages
         (from requests->SVM) (2.10)
         Requirement already satisfied: chardet<5,>=3.0.2 in d:\anaconda\lib\site-packa
         ges (from requests->SVM) (4.0.0)
         Note: you may need to restart the kernel to use updated packages.
         WARNING: You are using pip version 22.0.3; however, version 22.0.4 is availabl
         You should consider upgrading via the 'D:\Anaconda\python.exe -m pip install
         --upgrade pip' command.
         Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda\lib\site-pack
         ages (from requests->SVM) (2020.12.5)
In [30]:
          model linear=SVC(kernel='linear')
          model linear.fit(x train,y train)
          #y pred=model linear.predict(x test)
Out[30]: SVC(kernel='linear')
In [31]:
          y pred=model_linear.predict(x_test)
          y_pred
Out[31]: array([7, 3, 9, ..., 1, 0, 1], dtype=int64)
In [32]:
          # confusion matrix and accuracy
          from sklearn import metrics
          from sklearn.metrics import confusion matrix
          # accuracy
          print("accuracy:", metrics.accuracy score(y true=y test, y pred=y pred), "\n"
          # cm
          print(metrics.confusion matrix(y true=y test, y pred=y pred))
         accuracy: 0.91333333333333333
         [[1160
                   0
                        0
                             1
                                  6
                                       6
                                           12
                                                 1
                                                      1
                                                            1]
              0 1389
                        3
                             4
                                  3
                                       0
                                           Ω
                                                            0]
                            38
                  11 1146
                                 11
                                       4
                                           10
                                                 12
                                                     17
                                                            21
              5
                       35 1204
                                 0
                                      51
                                            2
                                                     21
                                                           61
                            3 1132
              3
                   3
                       20
                                                 4
                                      1
                                            10
                                                      2
                                                           401
                                     997
                  17
                                                           7]
              9
                       10
                            67
                                  7
                                           14
                                                  2
                                                      19
                                 9
                                                 1
             15
                  2
                       15
                            0
                                      15 1160
                                                      2
                                                           0 ]
              5
                  12
                       18
                             9
                                 26
                                      2
                                            1 1212
                                                      3
                                                           421
          Γ
          Γ
              8
                  31
                       24
                            45
                                  8
                                       61
                                             9
                                                14 1002
                                                          151
              9
                  6
                        7
                            28
                                 56
                                      3
                                            0
                                                53
                                                      7 1106]]
```