Exercises 2.5

Exercise 2.5.1

- a. Show that the logistic function σ satisfies the inequality $0 < \sigma'(x) \le \frac{1}{4}$, for all $x \in \mathbb{R}$.
- b. How does the inequality changes in the case of the functions σ_c ?

Exercise 2.5.2

Let S(x) and H(x) denote the bipolar step function and the Heaviside function, respectively. Show that:

- a. S(x) = 2H(x) 1
- b. $ReLU(x) = \frac{1}{2}x(S(x) + 1)$

Exercise 2.5.3

Show that the softplus function, sp(x), satisfies the following properties:

- a. $sp'(x) = \sigma(x)$, where $\frac{1}{1+e^-x}$
- b. Show that sp(x) is invertible with inverse $sp^{-}1(x) = \ln(e^{x} 1)$
- c. Use the softplus function to show teh formula $\sigma(x) = 1 \sigma(-x)$

Exercise 2.5.4

Show that $tanh(x) = 2\sigma(2x) - 1$

Exercise 2.5.5

Show that the softsign function, so(x), satisfies the following properties:

- a. Its sctrictly increasing;
- b. Its is onto (-1,1), with the inverse $so^{-1}(x) = \frac{1}{1-|x|}$, for |x| < 1.
- c. so(|x|) is subadditive, i.e., $so(|x+y|) \le so(|x|) + so(|y|)$.

Exercise 2.5.6

Show that the softmax function is invariant with respect to the addition of constant vectors $\mathbf{c} = (c_1 \dots c_n)^T$, i.e.,

$$softmax(y + c) = softmax(y).$$

This property is used in practice by replacing $\mathbf{c} = -\max_i y_i$, fact that leads to a more stable numerically variant of this function.

Exercise 2.5.7

Let $\rho: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\rho(y) \in \mathbb{R}^n$, with $\rho(y)_i = \frac{y_i}{A}$

Exercise 2.5.8 (cosine squasher)

Show that teh function