Searchable types

d-predicate $X = \Sigma p : (X \rightarrow \mathcal{U}_0)$, everywhere-decidable p

A type *X*: *U* is **searchable** if, given any decidable predicate

$$(p,d): \Sigma p: X \to U, (\Pi x: X, p(x) + \neg p(x)),$$

we can find some x : X such that,

$$(\Sigma x_0 : X, p(x_0)) \Rightarrow p(x).$$

```
predicate : (X : u \ ) \rightarrow (u_0 \ ) \sqcup u \ 

searchable : u \ \rightarrow (u_0 \ ) \sqcup u \ 

decidable : u \ \rightarrow u \ 

decidable X = X + \neg X

everywhere-decidable : \{X : u \} \rightarrow \text{predicate } X \rightarrow u \ 

everywhere-decidable \{u\} \ \{X\} \ p = \Pi \ x : X \ , \text{ decidable } (p \ x)

d-predicate : u \ \rightarrow (u_0 \ ) \sqcup u \
```

What types are(n't) searchable?

- Any finite type, e.g. $2 = \{0,1\}$, is trivially searchable.
- The natural numbers are **not** constructively searchable.

```
\mathbb{N}\text{-searchable-implies-LPO} : searchable \mathbb{N} \rightarrow LPO
```

- Martín Escardó's "seemingly impossible searchable program" (defined in Agda and formalised in Haskell) tells us that $N \rightarrow 2$ is searchable.
- In fact, searchable types are intuitively closed under countable products (**Tychonoff theorem**).
 - This says if we have types $T: N \to U$, all of which are searchable, then $\Pi T: U$ is also searchable.

Classical logic in current Tychonoff proof

- Haskell's meta-theory relies on a Brouwerian continuity principal supposing that all defined functions are continuous.
- Agda's termination checker cannot use such a principal: we either require explicit continuity, or we turn the termination checker off.
- Martín's Agda proof that $N \rightarrow 2$ is searchable uses an *explicit* modulus of uniform continuity for the searched predicate this is **safe**.
- However, his proof that searchable types are closed under countable products requires the Agda termination checker to be turned off this is **unsafe**.

Explicit modulus of continuity

- Martín's Agda proof that $N \rightarrow 2$ is searchable uses an *explicit* modulus of uniform continuity for the searched predicate this is **safe**.
- This modulus of continuity is defined as the δ : N for $p:(N \to 2) \to U$ such that,

$$\Pi \alpha, \beta : (N \to 2), (x = \delta y) \Rightarrow (p(\alpha) \Rightarrow p(\beta)).$$

Uniform notion of uniform continuity

- To give a constructive formulation of Tychonoff, we need to give an *explicit modulus of uniform continuity*, but for a wide variety of types; including for infinite collections (Π -types) of those such types.
- For this purpose, we define closeness functions

$$c: X \times X \to N \infty$$
,

using the type of extended naturals N_{∞} .

Extended naturals

• N_{∞} is the type of decreasing binary sequences – this encodes the natural numbers extended with a point at infinity.

- For any n : N we have $n \uparrow : N_{\infty}$, e.g. $5 \uparrow = 111110000000000 ...$
- Finally, there is an order relation $\leq : N_{\infty} \to N_{\infty} \to U$.

Closeness functions

• A closeness function $c: X \times X \to N_{\infty}$ is defined by properties:

```
record is-clofun \{X: \mathcal{U}^-\} (c: X \times X \to \mathbb{N}^{\infty}): \mathcal{U}^- where field equal-inf-close: (x: X) \to c \ (x, x) \equiv \infty inf-close-equal: (xy: X) \to c \ (x, y) \equiv \infty \to x \equiv y symmetricity: (xy: X) \to c \ (x, y) \equiv c \ (y, x) ultrametric: (xyz: X) \to \min \ (c(x, y)) \ (c(y, z)) \leqslant c(x, z)
```

- Two elements x, y : X of a type with closeness function $c: X \times X \to N_{\infty}$ are δ -close, for $\delta: N$ if and only if, $\delta \uparrow \leq c(x, y)$.
- Those elements are instead ∞ -close if and only if, $\infty \leq c(x, y)$.

Uniformly continuous predicates

• Recall Martín's modulus of uniform continuity on $N \to 2$ was defined as the δ : N for $p:(N \to 2) \to U$ such that,

$$\Pi \alpha, \beta : (N \to 2), (x = \delta y) \Rightarrow (p(\alpha) \Rightarrow p(\beta)).$$

• Using closeness functions $c: X \times X \to N_{\infty}$, we instead define the modulus of uniform continuity $\delta: N$ for $p: X \to U$ such that,

$$\Pi \alpha, \beta : (N \to 2), (\delta \uparrow \leqslant c(x, y)) \Rightarrow (p(\alpha) \Rightarrow p(\beta)).$$

```
_is-u-mod-of_on_ : \{X : \mathcal{U} \ '\} \to \mathbb{N} \to \mathsf{predicate} \ X \to (X \times X \to \mathbb{N}_{\infty}) \to \mathcal{U} \ '_is-u-mod-of_on_ \{\mathcal{U}\} \ \{X\} \ \delta \ \mathsf{p} \ \mathsf{c} = \Pi \ (x \ , \ y) \ : \ (X \times X) \ , \ ((\delta \ \uparrow) \leqslant \mathsf{c} \ (x \ , \ y) \to \mathsf{p} \ \mathsf{x} \to \mathsf{p} \ \mathsf{y}) u-continuous : \{X : \mathcal{U} \ '\} \to (X \times X \to \mathbb{N}_{\infty}) \to \mathsf{predicate} \ X \to \mathcal{U} \ 'u-continuous \{\mathcal{U}\} \ \{X\} \ \mathsf{c} \ \mathsf{p} = \Sigma \ \delta \ : \ \mathbb{N} \ , \ \delta \ \mathsf{is-u-mod-of} \ \mathsf{p} \ \mathsf{on} \ \mathsf{c}
```

Canonical closeness functions

• There is a closeness function $c_d: X \times X \to N_\infty$ for every discrete type X, where:

$$c_d(x, y) = \infty$$
 if $x = y$,
 $c_d(x, y) = 0 \uparrow$ otherwise.

Every predicate on discrete X is uniformly continuous on c_d with modulus 1.

• There is a closeness function $c:(N \to X) \times (N \to X) \to N_{\infty}$ for every sequence type of a discrete type X, where

$$c_{ds}(x,y)_n = 1$$
 if $x = ^n y$,
 $c_{ds}(x,y)_n = 0$ otherwise.

Every predicate on discretesequence $N \to X$ is uniformly continuous on c_{ds} if and only if it is uniformly continuous in the previous sense.

From searchable to continuously searchable

A type X:U with clofun $c:X\times X\to N_\infty$ is **continuously searchable** if, given any uniformly continuous decidable predicate

$$(p,d,\delta,\phi): \Sigma p: X \to U, (\Pi x: X, p(x) + \neg p(x)), (\Sigma \delta: N, \delta is-u-mod-of p on c)$$

we can find some x : X such that,

$$(\Sigma x_0 : X, p(x_0)) \Rightarrow p(x).$$

```
uc-d-predicate : (X : \mathcal{U} \ ) \rightarrow (X \times X \rightarrow \mathbb{N}_{\infty}) \rightarrow (\mathcal{U}_{0} \ ^{+}) \sqcup \mathcal{U} \ ^{+}

uc-d-predicate X c = \Sigma (p , d) : d-predicate X , u-continuous c p

c-searchable : (X : \mathcal{U} \ ) \rightarrow (X \times X \rightarrow \mathbb{N}_{\infty}) \rightarrow (\mathcal{U}_{0} \ ^{+}) \sqcup \mathcal{U} \ ^{+}

c-searchable X c = \Pi ((p , \_) , \_) : uc-d-predicate X c , \Sigma x_{0} : X , (\Sigma p \rightarrow p x_{0})
```

Continuously searchable types

- Every searchable type is trivially continuously searchable.
- Every continuously searchable discrete type is searchable.
- We will now prove that every discrete-sequence type $N \to X$ is continuously searchable using the discrete-sequence closeness function c_{ds} .
 - The proof is by induction on the modulus of uniform continuity δ of the predicate p being searched (i.e. using the same method as Escardó, as the two notions of uniform continuity are equivalent).
- Furthermore, we will safely formalise the Tychonoff theorem that states continuously searchable types are closed under countable products in Agda.

Splitting an infinite predicate in two

- Given a predicate *p* on an infinite sequence, we define:
 - $(p_t x) := \lambda x s. p(x :: x s)$, the **tail-predicate for p via x**, for any x : X,
 - $p_h := \lambda x$. $p(x :: \mathcal{E}xs \ x)$, the **head-predicate for** p, where $\mathcal{E}xs \ x : N \to X$ is the sequence satisfying the tail-predicate for p via x.
- So, we use the searcher for X to find an x : X satisfying the head-predicate for p, which in turn calls the searcher for $(N \to X)$ inductively to find some xs : X satisfying the tail-predicate for p via x.