1 An online expectation minimization algorithm

Define $\mu = \alpha \exp(f)$, $\nu = \beta \exp(g)$, $x = (\mu, \nu)$. We will change variables without warning in the following. Define the Bregman divergence

$$D_{\alpha}(\mu, \mu_{0}) = \langle \alpha, \exp(f_{0} - f) - 1 - (f_{0} - f) \rangle$$

$$D_{\beta}(\nu, \nu_{0}) = \langle \beta, \exp(g_{0} - g) - 1 - (g_{0} - g) \rangle$$

$$D_{\alpha,\beta}(x, x_{0}) = D_{\alpha}(\mu, \mu_{0}) + D_{\beta}(\nu, \nu_{0})$$

We want to solve the objective

$$\min_{x} \mathcal{F}(x) \triangleq \mathrm{KL}(\alpha, \mu) + \mathrm{KL}(\beta, \nu) + \langle \mu \otimes \nu, \exp(-C) \rangle - 1$$

Define the prox objective

$$\mathcal{L}(x, x_t) = 2\mathcal{F}(x_t) + \langle \nabla \mathcal{F}(x_t), x - x_t \rangle + D_{\alpha, \beta}(x, x_t)$$
$$= \mathbb{E}_{\hat{\alpha} \sim \alpha, \hat{\beta} \sim \alpha} \Big[2F(x_t) + \langle \nabla \mathcal{F}(x_t), x - x_t \rangle + D_{\hat{\alpha}, \hat{\beta}}(x, x_t) \Big]$$

The Sinkhorn iterations then rewrites as

$$x_{t+1} = \operatorname*{argmin}_{x} \mathbb{E}_{\hat{\alpha}, \hat{\beta}} \mathcal{L}_{\hat{\alpha}, \hat{\beta}}(x, x_{t})$$

and online Sinkhorn

$$x_{t+1} = (1 - \eta_t)x_t + \eta_t \operatorname*{argmin}_{x} \mathcal{L}_{\hat{\alpha}_t, \hat{\beta}_t}(x, x_t)$$

Probably useless?

2 Variable mirror descent point of view

Consider the objective

$$\max_{f,g} \mathcal{F}(f,g) = \langle \alpha, f \rangle + \langle g, \beta, - \rangle \langle \alpha \otimes \beta, \exp(f \oplus g - C) \rangle + 1$$

The gradient reads

$$\nabla \mathcal{F}(f,g) = \left(\alpha \left(1 - \exp(f - T_{\beta}(g))\right), \beta \left(1 - \exp(g - T_{\alpha}(f))\right)\right) \in \mathcal{M}^{+}(\mathcal{X}^{2})$$

Using the local Bregman divergence

$$\omega_t(f,g) = \langle \alpha, \exp(f_t - f) \rangle + \langle \beta, \exp(g_t - g) \rangle,$$

online Sinkhorn iterations rewrites as

$$\nabla \omega_t(f_{t+1}, g_{t+1}) = \nabla \omega_t(f_t, g_t) + \eta_t \tilde{\nabla} \mathcal{F}(f_t, g_t),$$

where

$$\tilde{\nabla} \mathcal{F}(f,g) = \left(\hat{\alpha}_t \left(1 - \exp(f - T_\beta(g))\right), \hat{\beta}_t \left(1 - \exp(g - T_\alpha(f))\right)\right) \in \mathcal{M}^+(\mathcal{X}^2)$$

is an unbiased estimate of $\nabla \mathcal{F}(f,g)$.

3 An EM point of view

The simultaneous Sinkhorn updates can be rewritten as

$$f_t, g_t = \operatorname*{argmax}_{f,g} Q_t^{\star}((f,g), (f_t, g_t)) \triangleq \mathbb{E}_{Y \sim \beta} \left[\mathbb{E}_{X \sim \alpha} \left[f(X) - e^{f(X) + g_t(Y) - C(X,Y)} \right] \right] + \mathbb{E}_{X \sim \alpha} \left[\mathbb{E}_{Y \sim \beta} \left[g(Y) - e^{f_t(X) + g(Y) - C(X,Y)} \right] \right].$$

This is similar to the EM algorithm: the first expectation is on data, the second on hidden random variables. We now define the approximate functions

$$Q_{t}((f,g),(f_{t},g_{t})) = \mathbb{E}_{Y \sim \hat{\beta}_{t}} \left[\mathbb{E}_{X \sim \alpha} \left[f(X) - e^{f(X) + g_{t}(Y) - C(X,Y)} \right] \right]$$

$$+ \mathbb{E}_{X \sim \hat{\alpha}_{t}} \left[\mathbb{E}_{Y \sim \beta} \left[g(Y) - e^{f_{t}(X) + g(Y) - C(X,Y)} \right] \right]$$

$$= \mathbb{E}_{X \sim \alpha} [f(X)] + \mathbb{E}_{X \sim \alpha} \left[\sum_{i=n_{t}}^{n_{t+1}} b_{i} e^{f(X) + g_{t}(y_{i}) - C(X,y_{i})} \right]$$

$$+ \mathbb{E}_{Y \sim \beta} [g(Y)] + \mathbb{E}_{Y \sim \beta} \left[\sum_{i=n_{t}}^{n_{t+1}} a_{i} e^{g(Y) + f_{t}(x_{i}) - C(x_{i},Y)} \right]$$

Running the iterations

$$f_t, g_t = \operatorname*{argmax}_{f,g} Q_t((f,g), (f_t, g_t))$$

amounts to set

$$f_t(\cdot) = -\log \sum_{i=n_t}^{n_{t+1}} b_i e^{g_t(y_i) - C(\cdot, y_i)} \quad g_t(\cdot) = -\log \sum_{i=n_t}^{n_{t+1}} a_i e^{f_t(x_i) - C(x_i, \cdot)},$$

which is the randomized Sinkhorn algorithm. Setting

$$\bar{Q}_t = (1 - \eta_t)\bar{Q}_{t-1} + \eta_t Q_t$$

and running the iterations

$$f_t, g_t = \operatorname*{argmin}_{f,g} \bar{Q}_t((f,g), (f_t, g_t))$$

gives online Sinkhorn:

$$f_t(\cdot) = -\log \sum_{i=1}^{n_{t+1}} e^{q_i - C(\cdot, y_i)} \quad g_t(\cdot) = -\log \sum_{i=1}^{n_{t+1}} e^{p_i - C(x_i, \cdot)},$$

with the update rule on q_i, p_i as: see paper. Every function Q_t is parametrized by $(p_i, q_i, x_i, y_i)_{i=(n_t, n_{t+1}]}$, and \bar{Q}_t by $(p_i, q_i, x_i, y_i)_{i=(0, n_{t+1}]}$. Thus the parametrization of f_t, g_t is encoded using an argmax trick, and we recover the structure of a stochastic expectation-maximization algorithm (less the probabilistic point of view).

4 Stochastic approximation

Online EM: in finite dimension: Olivier Cappé and Eric Moulines (2009). "Online EM Algorithm for Latent Data Models". In: *Journal of the Royal Statistical Society: Series B* 71.3, pp. 593–613

Applications + better explanation: Christophe Dupuy and Francis Bach (2017). "Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling". In: *Journal of Machine Learning Research*, p. 45

Random fixed point iterations: Ya. I. Alber et al. (2012). "Stochastic Approximation Method for Fixed Point Problems". In: *Applied Mathematics* 03.12, pp. 2123–2132

Non-asymptotic rates for SGD + Polyak-Ruppert averaging: Eric Moulines and Francis R. Bach (2011). "Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning". In: $Advances\ in\ Neural\ Information\ Processing\ Systems\ 24$. Ed. by J. Shawe-Taylor et al. Curran Associates, Inc., pp. 451–459

4.1 The Robbins Monroe-Algorithm

Overall, everything can be rewritten as looking for the zero of some function

Find
$$x^*$$
 such that $h(x) = 0$,

with access to an oracle $\hat{h}(x)$ s.t. $\mathbb{E}[\hat{h}(x)] = h(x)$ for all $x \in \mathcal{X}$. Then the algorithm

$$x_{n+1} = x_n - \eta_n h(x_n)$$

gives a sequence converging to x^* , provided that

$$\sum_{n} \eta_{n} = \infty, \qquad \sum_{n} \eta_{n}^{2} \leqslant \infty, \qquad h \text{ non decreasing} \qquad \mathbb{E}[h(x_{n})^{2} | \mathcal{F}_{n-1}] \leqslant \sigma^{2}$$

When looking for min f(x), we can use $h(x) = \nabla f(x)$. When looking for a fixed point equation

$$x = Tx$$

we may use h(x) = x - T(x), in which case the algorithm writes

$$x_{n+1} = (1 - \eta_n)x_n + \eta_n S(x_n),$$

where $\mathbb{E}[S(x_n)] = x - T(x)$, which is our case. In a Hilbert space, assuming T is contracting for the norm, i.e.

$$||Tx - Ty|| \le \kappa ||x - y||,$$

it is easy to obtain convergence of $\mathbb{E}[\|x_n - x^*\|^2]$ + rates on the mean-square convergence rate + almost sure convergence of the iterate (Alber et al., 2012).

Proof: basic inequality

Overall, all these references use at some point exhibits a sequence $(\delta_n)_n$ such that

$$\delta_{n+1} \leqslant (1 - \eta_n)\delta_n + C\gamma_n$$

with $\sum \eta_n = \infty$ and $\sum \gamma_n \leqslant \infty$. Typically $\gamma_n = \eta_n^2$. E.g. from SGD, setting $\delta_n = \mathbb{E}[||\theta_n - \theta||^2]$, we have, if objective is *L*-smooth and μ -strongly convex:

$$\delta_n \leqslant (1 - 2\mu\gamma_n + 2L^2\gamma_n^2)\delta_{n-1} + 2\sigma^2\gamma_n$$

Problem. We do not have access to such an equality:

- The contraction of the Sinkhorn operator is for a non-Euclidean distance
- Therefore we need to increase the sampling size with time

What we have at hand

$$0 \leqslant e_{t+1} \leqslant (1 - \tilde{\eta}_t)e_t + \tilde{\eta}_t(\|\varepsilon_{\hat{\beta}_t}\|_{\text{var}} + \|\iota_{\hat{\alpha}_t}\|_{\text{var}}).$$

with

$$\varepsilon_{\hat{\beta}}(\cdot) \triangleq f^{\star} - T_{\hat{\beta}}g^{\star}, \qquad \iota_{\hat{\alpha}}(\cdot) \triangleq g^{\star} - T_{\hat{\alpha}}f^{\star},$$

References

Alber, Ya. I., C. E. Chidume, and Jinlu Li (2012). "Stochastic Approximation Method for Fixed Point Problems". In: Applied Mathematics 03.12, pp. 2123–2132.

Cappé, Olivier and Eric Moulines (2009). "Online EM Algorithm for Latent Data Models". In: Journal of the Royal Statistical Society: Series B 71.3, pp. 593–613.

Dupuy, Christophe and Francis Bach (2017). "Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling". In: Journal of Machine Learning Research, p. 45.

Moulines, Eric and Francis R. Bach (2011). "Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning". In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates, Inc., pp. 451–459.