Minimax Optimal Estimation of Stability Under Distribution Shift

Yuanzhe Ma, Columbia IEOR Joint work with Hongseok Namkoong (Columbia DRO) and Peter Glynn (Stanford MS&E)

Introduction

- Distribution shift (training \neq test distributions) often happens \rightarrow model performance drops
- · Evaluation of model robustness is important
- · Question: how to do it in an interpretable way?
- · Contributions:
 - 1. Developed an intuitive stability measure (for cost r.v.)
 - 2. Constructed an estimator that's minimax optimal: minimizes the worst-case risk
 - 3. Empirical results showing the utility of the stability measure

1

Formulation

- Setting: $R \sim P$ is cost, n i.i.d. data $R_i \stackrel{\text{iid}}{\sim} P$, y is a given threshold in the cost scale (e.g. $R_1 = 100, R_2 = 200, R_3 = 150, y = 400$)
- · Stability measure (larger means more stable):

$$I_{y}(P) := \inf_{Q} \left\{ D_{\mathrm{kl}} \left(Q \| P \right) : \mathbb{E}_{Q}[R] \ge y \right\}$$

· Duality result (Donsker and Varadhan, 1976):

$$I_{y}(P) = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda y - \log \mathbb{E}_{P}[e^{\lambda R}] \right\}$$

• Estimator using dual formulation (replace P with \widehat{P}_n):

$$\widehat{I}_n := \sup_{\lambda \in \mathbb{R}} \left\{ \lambda y - \log \mathbb{E}_{\widehat{P}_n}[e^{\lambda R}] \right\},$$

where \widehat{P}_n is the empirical distribution over the data R_1, \ldots, R_n

Theoretical Results

- Consider $Q = \{\text{RVs similar to Gamma}(\alpha, \sigma)\}$ with with $\alpha \in (\frac{1}{2}, 1)$, $\sigma = \inf\{\lambda : \mathbb{E}_P[e^{\lambda R}] = \infty\}$ for $P \in Q$
- · Minimax rates of convergence achieved by our estimator \widehat{l}_n

$$\begin{split} \inf_{I_n} \sup_{\mathbf{P} \in \mathcal{Q}} \mathbb{E}_{\mathbf{P}} \left| I_n - I_y(\mathbf{P}) \right| &\gtrsim n^{-\left(\frac{1}{2} \wedge \frac{\alpha}{\sigma y}\right)} \\ \sup_{\mathbf{P} \in \mathcal{Q}} \mathbb{E}_{\mathbf{P}} \left| \widehat{I}_n - I_y(\mathbf{P}) \right| &\lesssim n^{-\left(\frac{1}{2} \wedge \frac{\alpha}{\sigma y}\right)} \end{split}$$

- Whether e^{λ^*R} has a second moment: easy/ hard case, where λ^* is the optimal dual variable that grows with y
- Higher σ (lighter-tailed RV) or threshold y: harder, since extreme events are less likely to be observed, which relates to our I

Proof Idea

$$\begin{split} \inf_{I_n} \sup_{P \in \mathcal{Q}} \mathbb{E}_P \left| I_n - I_y(P) \right| &\gtrsim n^{-\left(\frac{1}{2} \wedge \frac{\alpha}{\sigma y}\right)} \\ \sup_{P \in \mathcal{Q}} \mathbb{E}_P \left| \widehat{I}_n - I_y(P) \right| &\lesssim n^{-\left(\frac{1}{2} \wedge \frac{\alpha}{\sigma y}\right)} \end{split}$$

- · Upper bound: Dudley's integral entropy bound
- Lower bound: Le Cam's method: constructed $P_1, P_2 \in \mathcal{Q}$ with small $\|P_1 P_2\|_{\mathrm{TV}}$ but large $|I_y(P_1) I_y(P_2)|$

4

Empirical Results

- Experiments on sequential decision-making and supervised learning frameworks
- Can differentiate between brittle vs. robust models, in contrast to typical average-case performance metrics

Conclusion and Future Directions

- Proposed an interpretable stability measure with a minimax estimator based on dual formulation
- · Future directions:
 - · Asymptotic results
 - · From one-dim to multi-dim
 - More general notions to quantify distribution shifts: Wasserstein distance/ likelihood ratio bound/ alignment of covariance matrices
 - · More structured distribution shifts, e.g. subpopulation shifts
 - Connections to large deviations theory/ estimation of rare event probabilities

Thank you!

Contact info: ym2865@columbia.edu

Paper link: https://arxiv.org/pdf/2212.06338.pdf

