11.10 注释

张志聪

2025年4月30日

1

说明 1. 通过命题 11.10.6, 推导出以下命题 (同济大学高等数学-定积分的换元法, 即黎曼积分的换元法):

假设函数 f(x) 在区间 [a,b] 上连续, 函数 $x = \varphi(t)$ 满足条件:

- (1) $\varphi(\alpha) = a, \varphi(\beta) = b$;
- (2) $\varphi(t)$ 在 $[\alpha, \beta]$ (或 $[\beta, \alpha]$)上具有连续导数,且其值域 $R_{\varphi}=[a,b]$,则有

$$\int_{[a,b]} f(x)dx = \int_{[\alpha,\beta]} f[\varphi(t)]\varphi'(t)dt$$

这里对 φ 的前置条件是不全的,以下条件是必须的:

- (1) φ 是可导的;
- (2) φ 是单调的;

证明:

以 φ 单调递增为例, $\varphi=[\alpha,\beta]\to[a,b]$,又因为 f 在 [a,b] 上是连续的, 所以 f 是 [a,b] 上黎曼可积的函数,利用命题 11.10.6 可知,

$$\int_{[a,b]} f = \int_{[\alpha,\beta]} f \circ \varphi d\varphi$$
$$= \int_{[\alpha,\beta]} f[\varphi(t)] \varphi'(t) dt$$