 from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets 2.1.1 The gaussian distribution The gaussian distribution (also known as Normal distribution) is caracterized by two parameters: The mean (μ) is the expected value of the distribution. The standard deviation (σ) represents how dispersed are the possible values. The probability density function (pdf) of a given Gaussian distribution is defined as: 	
ASSIGNMENT 1: Computing and plotting gaussians $ \text{Complete the following function in order to plot a gaussian pdf with } \mu=2 \text{ and } \sigma=1. $ Evaluate this gaussian pdf in the interval $x\in[-5,5]$, generating 100 samples between those values. Hint: use the $p.linspace()$ function, which returns evenly spaced numbers over a specified interval. The	$N(x \mu,\sigma^2)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2\sigma^2}(x-\mu)^2}$ e constant np.pi can be also useful, as well as np.sqrt() and np.exp().
<pre>def evaluate_gaussian(mu, sigma, X): """Evaluates a gaussian distribution between in the given points Args: mu: mean of the distribution sigma: standard deviation of the distributionxXXX X: points where the function is going to be evaluated """ variance = sigma * sigma # Get the variance from the given standar deviation coef = 1 / np.sqrt(2 * np.pi * variance)</pre>	
exponente = -1* ((X - mu) ** 2) /2*variance res = coef * np.exp(exponente) # Implement the gaussian distribution computation return res # An np.array containing the evaluation of the gaussian pdf at each point # RUN # Gaussian parameters (mean and standard deviation) mu = 2 sigma = 1 # Create the array of values where the gaussian distribution is going to be evaluated	in X
<pre>min_interval=-5 max_interval=5 n_samples=100 X = np.linspace(min_interval, max_interval , num= n_samples) # Call the function and plot the results res = evaluate_gaussian(mu, sigma, X) plt.plot(X, res, 'r') # Show the results plt.show() # Try what happens if you remove this line;)</pre> 0.40	
0.35 - 0.30 - 0.25 - 0.20 - 0.15 -	
0.10 - 0.05 - 0.004 -2 0 2 4	
0.40 - 0.35 - 0.30 - 0.25 - 0.20 - 0.	
0.15 - 0.10 - 0.05 - 0.004 -2 0 2 4	
Sampling from a distribution Sampling from a random distribution consists of generating a set of values that follows that random probability. This is of special interest because use of sampling in particle filters. **ASSIGNMENT 2: Sampling from gaussians** Use the function randn() in the random module of numpy.	
This module contains functions to do sampling for a variety of random distributions. You can find additional do Sample a gaussian distribution with $\mu=2$ and $\sigma=2$. Then plot the resulting values along the x axis. Example of a possible result def gen_samples(n, mu, sigma): """Generate n samples of a gaussian distribution Args:	cumentation here: Link
<pre>mu: mean of the distribution sigma: standard deviation of the distribution Returns: array of samples """ # randn -> Genera una lista de tamaño n con intervalo [0-1] # En samples a cada elemento de esa lista le ajustamos la desviación multiplicando p samples = sigma * np.random.randn(n) + mu # Este ejemplo tambien sirve> samples = np.random.normal(loc=mu,scale=sigma,size= return samples</pre>	
<pre># RUN # RUN num = 100 mu = 2 sigma = 2 plt.scatter(gen_samples(num, mu, sigma), np.zeros(num)) 5]: <matplotlib.collections.pathcollection 0x7e80157b8920="" at=""></matplotlib.collections.pathcollection></pre>	
0.02 -	
-0.02 - -0.04 - -2 -1 0 1 2 3 4 5 6	
Thinking about it (1) Having completed the code above, you will be able to answer the following questions: • Which value do the samples concentrate around? Why? Se concentrá alrededor de la media que es 2, esto es debido a que se trata de una distribución normal, • Why we observe less samples the further they are from that value?? Por que esos ejemplos se alejan de la media lo cual es menos probable y por ende hay menos muestra	
Indeed, if we keep sampling the distribution and build an histogram of the obtained samples, the resulting hist ASSIGNMENT 3: Building an histogram of samples For checking this, we ask you to: 1. Create a large sample vector, i.e. size 1000. 2. Then, complete the function hist_slice(), which takes an array of samples and an integer n. This	togram will be similar to its respective gaussian given a large enough number of samples.
3. To show the results of the exercise we will employ the use of Jupyter widgets. You can find more info above Play around with different parameters of the <pre>plt.hist()</pre> function from matplotlib. The bars of the histogram should be normalized by the total area. (HINT: Set the optional density and start of the histogram should be normalized by the total area.	out them here [link], but for the time being use the commented call to interact.
<pre>"""Plot histogram for the first n values in samples""" X = np.linspace(-5., 8., 100) plt.plot(X, evaluate_gaussian(2, 2, X), 'r') plt.hist(samples[:n], bins=40, edgecolor="black", density=True, stacked=True) plt.xlabel("Samples for N = %d" % (n)) plt.show() 7]: # RUN random.seed(0) samples = gen_samples(1000, 2, 2) n = 100</pre>	
0.35 - 0.30 - 0.25 -	
0.20 - 0.15 - 0.10 - 0.05 - 0.0	
0.00 -4 -2 0 2 4 6 8 Samples for N = 100 B]: # RUN interact (hist_slice, samples=fixed(samples), n=(100, 1000, 100)) interactive(children=(IntSlider(value=500, description='n', max=1000, min=100, step=100), B]: <functionmainhist_slice(samples, n)=""></functionmainhist_slice(samples,>	Output()), _dom_clas
2.1.2 Properties of the Gaussian distribution Once we have acquired a certain amount of familiarity with the gaussian distribution, we can go along some of the scipy import stats from scipy import signal Central limit theorem	if its principal properties, which are the main reason of this distribution's wide usage in robotics.
<pre><iframe "="" "<="" height="315" src="https://www.youtube.com/embed/dlbkaurTAUg?autoplay </center></pre></td><td>Demonstrating the Central Limit Theorem</td></tr><tr><td>ASSIGNMENT 4: Verifying the control " td="" width="560"><td></td></iframe></pre>	
 Inside the function, plot the corresponding histogram. Finally, check that the resulting figure has the shape of a gaussian. def plot_sum(v_length, N): #create the vector for storing the sums 	which results from the sum of \mathbb{N} randomly generated vectors using an uniform distribution $[0,1)$. Each random vector should have the same length (for example $v_{n} = 100$).
<pre>sum_samples = np.zeros(v_length) # Generate N vectors of samples and sum them within sum_samples for i in range(0, N): sum_samples += random.rand(v_length) # Plot the resultant histogram plt.hist(sum_samples, bins=25, density=True, stacked=True, edgecolor='black')</pre>	
<pre># RUN v_length = 1000 N = 10 plot_sum(v_length, N)</pre> 0.5 -	
0.4 - 0.3 - 0.2 - 0.1 -	
Now play a bit with the number of randomly generated vectors interact (plot_sum, v_length=fixed(v_length), N=(0, 25, 1))	
<pre>interactive(children=(IntSlider(value=12, description='N', max=25), Output()), _dom_classe 3]: <functionmainplot_sum(v_length, n)=""> Product of gaussians' pdfs The weighted sum of two gaussians' pdfs, results in a random variable which is the product of both. This product of the product of both. This product of the product of both. This product of the product of both.</functionmainplot_sum(v_length,></pre>	
Note: The product of two gaussian random variables is not gaussian distribude! **ASSIGNMENT 5: Multiplying gaussians** Complete the following function to compute the product of two gaussians distributions. Draw the result and check that corresponds to the formula above playing with different distributions.	
0.4 - N(4,4) — Avg. = N(1.6,0.8) 0.2 - 0.1 -	
<pre>def gaussians_product(mu1, mu2, sig1, sig2, x): var1, var2 = sig1**2, sig2**2# Get the variances from the standar deviations X = np.arange(-12, 12, 1/x)</pre>	
<pre>x = np.arange(-12, 12, 1/x) pdf1 = stats.norm(loc=mu1, scale=sig1).pdf(X) pdf2 = stats.norm(loc=mu2, scale=sig2).pdf(X) plt.plot(X, pdf1, label='N({},{})'.format(mu1, var1)) plt.plot(X, pdf2, label='N({},{})'.format(mu2, var2)) # Get the parameters defining the gaussian distribution resulting from their product mu3 = (var2*mu1 +var1 * mu2)/(var1 + var2) var3 = (var1 *var2)/(var1 + var2) sig3 = np.sqrt(var3) c = stats.norm(loc=mu3, scale=sig3).pdf(X)</pre>	
<pre>plt.plot(X, c, label='Avg. = N({},{})'.format(mu3, var3)) plt.legend() 5]: mu1, sig1 = 1, 1 mu2, sig2 = 4, 2 x = 1000 gaussians_product(mu1, mu2, sig1, sig2, x)</pre>	
0.4 - N(4,4) — N(1.6,0.8) 0.3 - 0.2 -	
0.0 10 - 5 0 5 10	
	duct to normal random variables, the result is also a normal random variable. Concretely if $x\sim N(\mu,\sigma^2)$, then the linear transformation $y=ax+b$ results in $y\sim N(a\mu+b,a^2\sigma^2)$. distributions as long as we only use linear functions. Otherwise, if we are in need to apply a non-linear transformation (e.g. sine, cosine,), the resulting probability distribution will not correspond to any Gaussian pdf, causing additional complications in the
• Generate a number n_samples of random samples from the dist. $N(1,1)$. • Then transform it following the expression $y=a*x+b$ and plot the result for $a=b=2$. • Finally, draw on top the pdf of $N(4,4)$ and check that both are the same. 6]: def linear_transformation(n_samples, a, b): """Apply lineal transform. Generating n_samples samples from N(1,1)""" # Generates n_samples from N(1,1) mu = 1	
<pre>stdv = 1 var = 1 samples = stats.norm(loc=mu, scale=stdv).rvs(n_samples) samples_2 = samples * a + b # Apply the linear transformation to the samples # Plot histogram (blue bars) n, bins, patches = plt.hist(samples_2, bins=90, density=True, stacked=True) delta = 1/samples.size X = np.arange(bins[0], bins[-1], delta)</pre>	
<pre>A = stats.norm(loc=mu, scale=stdv).pdf(X) # Evaluate N(1,1) in X B = stats.norm(loc=a * mu + b, scale=a * stdv).pdf(X) # Evaluate the resultant distr # Show results plt.plot(X, A, color='green', label='N({},{})'.format(mu, var)) plt.plot(X, B, color='red', label='N({},{})'.format(a*mu+b, a*var*a)) plt.legend()</pre> 7]: # RUN n_samples = 3000	ibution in X
a = 2 b = 2 linear_transformation(n_samples, a, b) 0.40 -	
0.25 - 0.20 - 0.15 - 0.10 -	
Now play a bit with different values for a and b . Solution interact (linear_transformation, n_samples=fixed(n_samples), b=(-5, 5, 1), a=(1, 10, 1)) interactive (children=(IntSlider(value=5, description='a', max=10, min=1), IntSlider(value=5, description='a', max=10, min=1	=0, description='b',
$([z_0,z_1,\ldots,z_n])$, among others. In the specific case of Gaussian distributions they present certain key differences:	it an assortment of random distributions which can be dependant to each other. Some examples of these <i>multidimensional distributions</i> we will use in following exercises are: the pose of a robot $(x, y, θ)$, an observation from a series of range sensors
• The $mean$ (μ) now it contains a vector of n values $([\mu_1,\mu_2,\ldots,\mu_n]')$. Its dimensionality/shape is $(n\times 0)$. The n covariance (now referred as n is a full-blown matrix of shape n in the case being, now we need to the covariance (now referred as n is a full-blown matrix of shape n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the case being, now we need to the covariance n in the covaria	
In this exercise, we will take a look at how gaussians beheave when we sum 2 multidimensional random variations of 2 multidimensional gaussian RVs (X_1,X_2) , the resulting RV (X_3) also follows a gaussian	
ASSIGNMENT 7: Summing linear transformations 1. Generate and draw <code>n_samples</code> random samples from 2 different bidimensional dists. $N_1 = N(\mu_1, \Sigma_1)$ 2. Draw both ellipses associated with each distribution. Use <code>PlotEllipse()</code> from the utils library that co. 3. Sum both samples and draw the ellipse $x_3 \sim N(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$ WARN: When passing the mean to the <code>PlotEllipse()</code> function, it takes a vector (2×1) , whereas <code>multExample</code>	
<pre>Results for an example: n_samples = 500 mean1 = np.vstack([1, 0]) sigma1 = np.array([[3, 2], [2, 3]]) mean2 = np.vstack([2, 3]) sigma2 = np.array([[2, 0], [0, 1]])</pre>	Fig. 4. Distribution of the sum of true DVs (in blue and red)
<pre>def sum_of_rvs(mean1, sigma1, mean2, sigma2, n_samples): fig, ax = plt.subplots() # Build the normal distributions pdf1 = stats.multivariate_normal(mean=mean1.flatten(), cov=sigma1) # Hint: you have pdf2 = stats.multivariate_normal(mean=mean2.flatten(), cov= sigma2) # Generate n_samples from them rvs1 = pdf1.rvs(n_samples)</pre>	Fig. 1: Distribution of the sum of two RVs (in blue and red) to use .flatten()
<pre>rvs1 = pdf1.rvs(n_samples) rvs2 = pdf2.rvs(n_samples) # Draw samples as crosses plt.scatter(rvs1[:,0], rvs1[:,1], marker='+', label="N1") plt.scatter(rvs2[:,0], rvs2[:,1], marker='+', color='red', label="N2") # Draw ellipses mult = 2 PlotEllipse(fig, ax, mean1, sigma1, mult, color='blue') PlotEllipse(fig, ax, mean2, sigma2, mult, color='red')</pre>	
<pre># Compute and draw N1 + N2 rvs3 = rvs1 + rvs2 plt.scatter(rvs3[:,0],rvs3[:,1], marker='+',color='magenta', label="N1+N2") PlotEllipse(fig, ax, mean1 +mean2, sigma1+sigma2, mult, color='magenta') plt.legend() n_samples = 500 mean1 = np.vstack([1, 0]) sigma1 = np.array([[3, 2], [2, 3]]) mean2 = np.vstack([2, 3]) sigma2 = np.array([[2, 0], [0, 1]])</pre>	
sum_of_rvs(mean1, sigma1, mean2, sigma2, n_samples) 8 -	
Product of gaussian pdfs The product of two gaussian distributions ($pdfs$) is also a gaussian distribution. This distribution corresponds to Given two gaussian distributions $N_1 \sim N(\mu_1, \Sigma_1)$ and $N_2 \sim N(\mu_2, \Sigma_2)$, the resulting gaussian N_3 is defined to the following statement of the sum of the s	ed as:
ASSIGNMENT 8: Multiplying bidimensional distributions Given the two samples from the previous exercise, draw the ellipse (corresponding gaussian) that represents Example	$\Sigma_3=(\Sigma_1^{-1}+\Sigma_2^{-1})^{-1}$ $\mu_3=\Sigma_3\left(\Sigma_1^{-1}\mu_1+\Sigma_2^{-1}\mu_2\right)$ $N_3\sim N\left(\mu_3,\Sigma_3\right)$ their weighted mean.
<pre>def bidimensional_gaussians_product(mean1, sigma1, mean2, sigma2, n_samples): fig, ax = plt.subplots() # Build the normal distributions pdf1 = stats.multivariate_normal(mean1.flatten(), sigma1) pdf2 = stats.multivariate_normal(mean2.flatten(), sigma2)</pre>	Fig. 2: Product of two pdfs (in blue and green)
<pre>pdf2 = stats.multivariate_normal(mean2.flatten(), sigma2) # Generate n_samples rvs1 = pdf1.rvs(n_samples) rvs2 = pdf2.rvs(n_samples) # Draw the samples plt.scatter(rvs1[:,0], rvs1[:,1], marker='+', color='green') plt.scatter(rvs2[:,0], rvs2[:,1], marker='+', color='blue') # Calculate average of distributions invs1 = linalg.inv(sigma1) # Hint use linalg.inv</pre>	
<pre>invs1 = linalg.inv(sigma1) # Hint use linalg.inv invs2 = linalg.inv(sigma2) sigma3 = linalg.inv(invs1 + invs2) mean3 = sigma3@(invs1@mean1 +invs2@mean2) # Hint: use the @ operator @ -> Multiplica # Plot the ellipses mult = 2 PlotEllipse(fig, ax, mean1, sigma1, mult, color='green') PlotEllipse(fig, ax, mean2, sigma2, mult, color='blue') PlotEllipse(fig, ax, mean3, sigma3, mult*1.5, color='magenta')</pre>	dor de matrices
PlotEllipse(fig, ax, mean3, sigma3, mult*1.5, color='magenta') n_samples = 500 mean1 = np.vstack([1, 0]) sigma1 = np.array([[3, 2], [2, 3]]) mean2 = np.vstack([2, 3]) sigma2 = np.array([[2, 0], [0, 1]]) bidimensional_gaussians_product(mean1, sigma1, mean2, sigma2, n_samples)	
2 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
-2 - + + + + + + + + + + + + + + + + + +	
Linear transformation of normal RVs As we mentioned at the start of this unit, when we linearly transform a gaussian random variable, the result is ${\it ASSIGNMENT~9: Applying linear transformation~to~bidimensional~distribution}$ Using the previous samples x_1 , check that the transformation $x_5 = A*x_1 + b$ results in a normal dist. $N(A*x_1)$ Example	
Example of the result at scale=2.5 and the values given below: def bidimensional_linear_transform(mean1, sigma1, mean2, sigma2, n_samples): fig, ax = plt.subplots() # Define the linear transformation	Fig. 3: Linear transformation of RVs. Original samples (in blue) and results (in magenta)
<pre>A = np.array([[-1, 2], [2, 1.5]]) b = np.vstack([3, 0]) # Build distribution pdf1 = stats.multivariate_normal(mean1.flatten(), sigma1) # Draw samples from it rvs1 = pdf1.rvs(n_samples).T # Show the samples ax.set_xlim((-16, 20))</pre>	
<pre>ax.set_ylim((-11, 16)) ax.scatter(rvs1[0, :], rvs1[1, :], marker='+', label="x1") # Apply linear transformation transformacion lineal x5 = A@rvs1+b # Hint: use the @ operator # Show the new samples and its ellipse ax.scatter(x5[0,:], x5[1,:], marker='.', color='magenta', label='A*x1+b') PlotEllipse(fig, ax, A@mean1+b, A@sigma1@A.T, 2.5, color='magenta') ax.legend()</pre> 7]: n_samples = 500	
<pre>mean1 = np.vstack([1, 0]) sigma1 = np.array([[3, 2], [2, 3]]) mean2 = np.vstack([2, 3]) sigma2 = np.array([[2, 0], [0, 1]])</pre>	
bidimensional_linear_transform(mean1, sigma1, mean2, sigma2, n_samples) + x1 A*x1+b	

-10 -

2.1 Probability and Statistics Bases for Robotics

In the series of notebooks in this chapter we will overview the gaussian distribution, one of the most used probability distributions for modelling said uncertainty!

others.

In [1]: # IMPORTED LIBS

import numpy as np

from numpy import random

import matplotlib.pyplot as plt

The field of robotics has found great success using a probabilistic approach to handle uncertainty. In contrast to industrial robots (manipulators), which reside in controlled environments, mobile robots (the focus of this book) have to adapt to additional detrimental factors such as: dynamic environments, sensor disturbances, or unreliable motion systems, among

The core principle of this **probabilistic robotics** is to represent this uncertainty as probability distribution. In most cases we will use the observations from the environment (usually denoted as z_n), to estimate the most probable state (x_n) and how certain this prediction is (\sum_{x_n}).