Contents

LN 19	1
Prime Ideal]
Maximal Ideal	2
PID: principlae ideal domain	ę

LN 19

Prime Ideal

- Definition: Prime Ideal An ideal $I \subseteq R$, R is a ring is called prime if whenever $a, b \in I$ then $a \in I$ or $b \in I \forall a, b \in R$.
- Proposition For a commutative ring $R, I \subseteq R$ is a prime ideal iff $\frac{R}{I}$ is an integral domain (no-zero divisors)
 - Proof $* \Rightarrow$

Suppose that (a+I)(b+I)=0 ie $ab \in I$ but I is prime So $a \in I$ or $b \in I$ which means a+I=0 or b+I=0.

$$* \Leftarrow \text{if } ab \in I \text{ then } (a+I)(b+I) = 0 \text{ in } \frac{R}{I}$$
 TODO_{sc1}

• Example \mathbb{Z} as a ring - it has ideals $n\mathbb{Z}$ for $n \in \mathbb{Z}$ which ones are prime? $p\mathbb{Z}$ for p a prime are the prime ideals.

What is $\frac{\mathbb{Z}}{p\mathbb{Z}}$? By the "Proposition", this is an integral domain. This is a field!

- Fact Any finite itegral domain is a field.
 - Proof (By "Pigeon Hole Principle") Suppose that R is a finite integral domain and $a \in R, a \neq 0$. We need to find b such that ab = 1.
 - * Define: $F: R \to R, r \mapsto ar$.

* Claim: F is a 1-1. Suppose ar = as for some $r, s \in R$ then a(r-s) = 0But R is an integral domain. So either a = 0 or r - s = 1. But $a \neq 0$ so r = sR is finite so R is onto!

So for some $B \in R, ab = 1$.

So R is a field!

Maximal Ideal

- Definition: Maximal ideal We call an ideal $I \subseteq R$ maximal if $I \neq R$ but if $I \subseteq J \subseteq R$, J is an ideal, then I = J or J = R
- Proposition: For a commutative ring with 1, I is maximal iff $\frac{R}{I}$ is a field.
 - Proof
 - * \Leftarrow The only ideals in a field F are F and $\{0\}$. Because non-zero elements have multi-inverse TODO If a TODO
 - * \Rightarrow Suppose that $a+I \neq 0$ ie $a \notin I$ (I is maximal). Genereate the smallest ideal containing a and I.

$$\langle a,I\rangle=\{ra+rb:r\in R,b\in I\}\subset I.$$

So
$$R = \langle a, I \rangle$$
 so $1 = ra + rb$ for some $r \in R, b \in I$

This means
$$(r+I)(a+I) = 1+I$$
 in $\frac{R}{I}$

Si a + I has multiplicative inverse and $\frac{R}{I}$ is a field.

- ullet Carollary: If R is a commutative ring with 1 then any maximal ideal is prime
 - Proof If I is maximal then $\frac{R}{I}$ is a field hense an integral domain So I is prime.
- Example $\frac{\mathbb{Z}}{p\mathbb{Z}}$ is both a field and an integral domain for p a prime so $p\mathbb{Z}$ is both prime and maximal in \mathbb{Z} .

PID: principlae ideal domain

Notice in \mathbb{Z} , every idael is 1-generated - of the form $\langle n \rangle$ where $n \in \mathbb{Z}$. n = the smallest ideal TODO n, ie $n\mathbb{Z}$.

• Definition: PID

A integral domain M where all dieals are 1-generated is called a principle ideal domain. (PID).

TODO

- Example TODO
- Division algorithm If $f, g \in F[x]$ then there are unique $q, r \in F[x]$ such that g = fq + r with degree(r) < degree(f).
 - Long division algorithm $f = a_n x^n + ... + a_0 b = b_n x^m + ... + b_0$ TODO_{sc3}
 - Ideals in F[x] Suppose $I \subseteq F[x], I \neq \{0\}$ What does I look like? $I = \langle f \rangle$ the ideal generated by f. where f has the least degree among elements of I.
 - * Why? Suppose $g \in I$. Use the division algorithm to divide g by f, ie g = fq + r with degree(r) < degree(f)But notice $g \in I, fq \in I$ so r must be in I. So r = 0Which means, g = fq. So $g \in \langle f \rangle$