Felhasználói felület kialakítása Microsoft Kinect 3D érzékelő segítségével

Önálló laboratórium 2. beszámoló Pál Gábor

Konzulens: Dr. Vajda Ferenc

Eddig elért eredmények

- Kinect platform és programozási környezet megismerése
- Különböző eszközök és függvénykönyvtárak áttekintése
- OpenNI + NITE + Avin2 SensorKinect
- MiddlePoint, HandSlider

Kinect

- 2010 Q3-tól elérhető
- IR Depth: monokróm CMOS,
 11 bites mélységi adatok
- Color sensor: VGA, 30 FPS
- Látószög: x: 43°, y: 57° IR Emitter
- Motor: ±27°
- Fogyasztás: 12 watt

OpenNI 2.0 (NITE 2.0)

- Refaktorált kód
- "Áthelyezett" osztályok
- Közvetlenül elérhető middleware komponensek
- Nem sok módosítás…
- Cserébe: Kinect támogatás csak Windows felett
- De: OpenNI2-FreenectDriver

Kineticspace

- Kinect kalibrálásához
- Mozdulatsorok gyakorlásához
- Összetettebb mozdulatsorok felvételéhez

Reaction game

- NiHandTracker (OpenNI példaprogram)
- Jó és rossz pontok elkapása
- Statisztika készítése a reakcióidőről

Osztálydiagram

Reaction game

Draw game

- Reaction game-hez hasonló adatszerkezetek
- Alakzatok rajzolása a képernyőre
- Több kéz támogatása
- Kinect motor és LED használata

Osztálydiagram

Draw game

Alakzat felismerési lehetőségek

- Draw game jelenleg nem tudja
- Felhasználási lehetőségek:
 - Matematikai alakzatok rajzolása
 - Gyerekeknél új alakzatok tanulása
 - Billentyűzettel nem leírható karakterek bevitele
 - Billentyűzet sniffelés megkerülése
 - Új jelszókezelési algoritmusok
- PCL???

További lehetőségek

- Új algoritmusok kidolgozása
- Új hardverek vizsgálata
 - PrimeSense Sensor
 - Asus Xtion PRO
- Leap motion

Github elérhetőség

• https://github.com/palgabor/Onlab--Kinect-

Köszönöm a figyelmet! Kérdések???