Лабораторная работа №4 «Численное интегрирование»

Николаева Ксения, 9 группа

Содержание

1	Постановка задачи и используемые ресурсы			
2	Теория и расчетные формулы 2.1 Составная квадратурная формула трапеций	2 2		
3	Результаты 3.1 Результаты вычислений по составным квадратурным формулам 3.2 Результаты вычислений по квадратурной формуле НАСТ			
4	Выводы			
5	Листинг программы с комментариями	6		

1 Постановка задачи и используемые ресурсы

Задание 1. Вычислить интеграл

$$\int_{2}^{9} \sqrt{\frac{9-2x}{2x-21}} dx \tag{1}$$

с точностью $\varepsilon=10^{-7},$ используя составные квадратурные формулы трапеций и Симпсона, и правило Рунге оценки погрешности.

Задание 2. Вычислить приближенное значение интеграла из задания 1, используя квадратурную формулу наивысшей алгебраической степени точности (HACT) с 5 узлами. Для реализации вычислений использовался язык программирования C++.

2 Теория и расчетные формулы

2.1 Составная квадратурная формула трапеций

Пусть отрезок [a,b], на котором вычисляется интеграл, разбит на N равных отрезков узлами $a=x_0,x_1,...x_N=b$, расстояние между двумя соседними узлами равно h=(b-a)/N. Тогда приближенное значение интеграла можно вычислить по формуле трапеций:

$$\int_{a}^{b} f(x)dx \approx Q_{h} = \frac{h}{2} \left[f(x_{0}) + 2 \sum_{i=1}^{N-1} f(x_{i}) + f(x_{N}) \right]$$
 (2)

Порядок точности формулы m=2.

2.2 Составная квадратурная формула Симпсона

Пусть отрезок [a,b], на котором вычисляется интеграл, разбит на N равных отрезков узлами $a=x_0,x_1,...x_N=b$, расстояние между двумя соседними узлами равно h=(b-a)/N. Пусть также возможно вычислить значение подынтегральной функции в точках $x_{i+1/2}=x_i+\frac{h}{2}, i=\overline{0,N-1}$. Тогда приближенное значение интеграла можно вычислить по формуле Симпсона:

$$\int_{a}^{b} f(x)dx \approx Q_{h} = \frac{h}{6} \sum_{i=0}^{N-1} \left[f(x_{i}) + 4f(x_{i+1/2}) + f(x_{i+1}) \right]$$
 (3)

Порядок точности формулы m = 4.

2.3 Правило Рунге

Обозначим приближенное значение определенного интеграла, вычисленное с помощью составных квадратурных формул как Q_h , где h=(b-a)/N – расстояние между двумя соседними узлами.

При уменьшении расстояния h вдвое, получим $Q_{h/2}$. Апостериорная оценка погрешности вычислений по правилу Рунге вычисляется следующим образом:

$$R_{h/2} = \frac{Q_{h/2} - Q_h}{2^m - 1} \tag{4}$$

Здесь m – порядок точности соответствующей квадратурной формулы.

2.4 Квадратурная формула наивысшей алгебраической степени точности

Формула НАСТ для вычисления приближенного значения определенного интеграла с весовой функцией $\rho(x)$ для количества узлов k в общем виде:

$$\int_{a}^{b} \rho(x)f(x)dx \approx \sum_{k=0}^{n} A_{k}f(x_{k})$$
(5)

где n = k - 1 – количество подотрезков [a, b].

Для вычисления приближенного значения необходимо знать A_k и x_k . Чтобы получившаяся формула имела наивысшую алгебраическую степень точности (2n+1), для нахождения КФ используется следующий алгоритм (для пределов интегрирования [-1,1]):

1. Вводится многочлен вида:

$$\omega_{n+1}(x) = x^{n+1} + a_0 x^n + \dots + a_n \tag{6}$$

2. Решается СЛАУ:

$$\int_{-1}^{1} \rho(x)\omega_{n+1}(x)x^{i}dx = 0, \quad i = 0, ..., n$$
(7)

Отсюда находятся коэффициенты многочлена из п.1

- 3. Многочлен из п.1 приравнивается к 0 и решается уравнение, откуда находятся x_k .
- 4. Коэффициенты A_k находятся по формуле:

$$A_k = \int_{-1}^{1} \rho(x) \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j} dx, \quad k = 0, ..., n$$
 (8)

Для перехода от стандартного отрезка [-1,1] к произвольному отрезку [a,b] используется подстановка:

$$x = \frac{b-a}{2}t + \frac{b+a}{2}, \quad dx = \frac{b-a}{2}dt$$
 (9)

Тогда интеграл принимает вид:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{b+a}{2}\right) dt$$
 (10)

3 Результаты

3.1 Результаты вычислений по составным квадратурным формулам

Таблица 1: Результаты вычислений по составным квадратурным формулам

		'		7 4 31 1 1 3	
	ΚФ	Число разбиений	Шаг	Приближенное значение	Оценка погрешност:
		N=2	h = 1.5	$Q_h = 3.2320508$	-
	Трапеций	4N = 8	h/2 = 0.75	$Q_{h/2} = 3.1652187$	$R_{h/2} = -0.0222774$
		8N = 16	h/4 = 0.375	$Q_{h/4} = 3.1475782$	$R_{h/4} = -0.0058802$
		16N = 32	h/8 = 0.1875	$Q_{h/8} = 3.1430944$	$R_{h/8} = -0.0014946$
		32N = 64	h/16 = 0.09375	$Q_{h/16} = 3.1419684$	$R_{h/16} = -0.0003753$
		64N = 128	h/32 = 0.046875	$Q_{h/32} = 3.1416866$	$R_{h/32} = -0.0000939$
		128N = 256	h/64 = 0.0234375	$Q_{h/64} = 3.1416161$	$R_{h/64} = -0.0000235$
		256N = 512	h/128 = 0.0117188	$Q_{h/128} = 3.1415985$	$R_{h/128} = -0.0000059$
		512N = 1024	h/256 = 0.0058594	$Q_{h/256} = 3.1415941$	$R_{h/256} = -0.0000015$
		1024N = 2048	h/512 = 0.0029297	$Q_{h/1024} = 3.1415930$	$R_{h/1024} = -0.0000000$
		2048N = 4096	h/1024 = 0.0014648	$Q_{h/1024} = 3.1415927$	$R_{h/1024} = -0.000000$
		N=2	h = 1.5	$Q_h = 3.1429414$	-
	Симпсона	4N = 8	h/2 = 0.75	$Q_{h/2} = 3.1416980$	$R_{h/2} = -0.0000829$
		8N = 16	h/4 = 0.375	$Q_{h/4} = 3.1415998$	$R_{h/4} = -0.0000065$
		16N = 32	h/8 = 0.1875	$Q_{h/8} = 3.1415931$	$R_{h/8} = -0.0000004$
		32N = 64	h/16 = 0.09375	$Q_{h/16} = 3.1415927$	$R_{h/16} = -0.00000000$

Точное значение интеграла, полученное аналитически: $I=\pi=3.1415926.$

3.2 Результаты вычислений по квадратурной формуле НАСТ

Для квадратурной формулы НАСТ с 5 узлами были использованы следующие веса и узлы:

k	x_k	A_k
0	-0.906180	0.236927
1	-0.538469	0.478629
2	0.000000	0.568889
3	0.538469	0.478629
4	0.906180	0.236927

Приближенное значение интеграла, вычисленное с помощью КФ НАСТ с 5 узлами: Q=3.1415905.

Абсолютная погрешность: |I - Q| = 0.0000021.

4 Выводы

- 1. Использование составных квадратурных формул трапеций и Симпсона в сочетании с правилом Рунге для достижения заданной точности является эффективным способом вычисления приближенного значения определенного интеграла.
- 2. Для достижения заданной точности $\varepsilon=10^{-7}$ при использовании формулы трапеций потребовалось 16384 разбиений, в то время как при использовании формулы

Симпсона было достаточно 512 разбиений. Это демонстрирует превосходство формулы Симпсона в эффективности, что объясняется более высоким порядком точности (m=4 для формулы Симпсона против m=2 для формулы трапеций).

- 3. Квадратурная формула наивысшей алгебраической степени точности (HACT) с 5 узлами демонстрирует высокую точность, обеспечивая погрешность порядка 10^{-7} без необходимости разбиения отрезка интегрирования на мелкие части. Это связано с тем, что формула HACT оптимально выбирает как узлы, так и веса интегрирования.
- 4. При решении практических задач численного интегрирования рекомендуется:
 - Для интегралов с гладкими подынтегральными функциями на небольших отрезках использовать КФ НАСТ
 - При необходимости интегрирования на большом отрезке или для функций с особенностями использовать составные квадратурные формулы, предпочтительно формулу Симпсона как более эффективную

Таким образом, при выборе метода численного интегрирования следует учитывать требуемую точность, характер подынтегральной функции и вычислительные ресурсы.

5 Листинг программы с комментариями

```
#include <iostream>
#include <cmath>
#include <iomanip>
#include <limits>
#include <algorithm>
using namespace std;
#define M_PI 3.14159265358979323846
// f(x) = sqrt((9-2x)/(2x-21))
double f(double x) {
    return sqrt((9 - 2 * x) / (2 * x - 21));
}
// КФ трапеций
double trapezoidalRule(double a, double b, int n) {
    double h = (b - a) / n;
    double sum = 0.5 * (f(a) + f(b));
    for (int i = 1; i < n; i++) {
        double x = a + i * h;
        sum += f(x);
    }
    return h * sum;
}
// КФ Симпсона
double simpsonRule(double a, double b, int n) {
    double h = (b - a) / n;
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        double x0 = a + i * h;
        double x1 = a + (i + 1) * h;
        double xm = (x0 + x1) / 2.0;
        sum += f(x0) + 4 * f(xm) + f(x1);
    }
    return (h / 6.0) * sum;
}
// Метод численного интегрирования с использованием правила Рунге
double rungeIntegration(double a, double b, double eps, int m, bool useTrapezoidal) {
    int n = 2; // Начальное количество разбиений
    int k = 0; // Счетчик итераций
```

```
double h = (b - a) / n; // Начальный шаг
   // Вычисляем первое приближение интеграла
   double Q_h = useTrapezoidal ? trapezoidalRule(a, b, n) : simpsonRule(a, b, n);
   cout << "N=" << n << ", h=" << h << ", Q_h=" << setprecision(7) << fixed << Q_h << \epsilon
   double Q_h_div_2, R_h_div_2;
   do {
       n *= 2;
       k++;
       h /= 2;
       // Вычисляем следующее приближение интеграла с шагом h/2
       Q_h_div_2 = useTrapezoidal ? trapezoidalRule(a, b, n) : simpsonRule(a, b, n);
       // Оценка погрешности по правилу Рунге
       R_h_{div_2} = (Q_h_{div_2} - Q_h) / (pow(2, m) - 1);
       cout << n << "N=" << 2 * n << ", h/" << pow(2, k) << "=" << h << ", Q_h/2^" << 1
          << ", R_h/2^{-} << k << "=" << R_h_div_2 << endl;
       Q_h = Q_h_{div_2};
   } while (fabs(R_h_div_2) > eps);
   return Q_h_div_2;
}
// Вычисление интеграла с помощью КФ НАСТ с 5 узлами
double gaussLegendreIntegration(double a, double b) {
   // Узлы КФ НАСТ (корни многочлена Лежандра) на отрезке [-1, 1]
   // Beca KΦ HACT
   double sum = 0.0;
   // Вычисление интеграла
   double mid = (b + a) / 2.0;
   double half_length = (b - a) / 2.0;
   for (int i = 0; i < 5; i++) {
       // Преобразование координаты от [-1, 1] к [a, b]
       double x = mid + half_length * x_k[i];
       sum += A_k[i] * f(x);
   }
   return half_length * sum;
}
```

```
int main() {
    setlocale(LC_ALL, "ru");
    double a = 6.0;
    double b = 9.0;
    double eps = 1e-7;
    double exact_value = M_PI;
    << "Численное интегрирование интеграла << ((9-2x)/(2x-21)) от " << а << " до '
    cout << "Требуемая точность: " << eps << endl;
    cout << "Точное значение интеграла: " << setprecision(7) << fixed << exact_value <<
    cout << "Квадратурная формула трапеций:" << endl;
    double trap_result = rungeIntegration(a, b, eps, 2, true);
    cout << "Итоговое значение (КФ трапеций): " << trap_result << endl;
    cout << "Абсолютная погрешность: " << fabs(trap_result - exact_value) << endl << end
    	ext{cout} << 	ext{"Квадратурная формула Симпсона:"} << endl;
    double simpson_result = rungeIntegration(a, b, eps, 4, false);
    << "Итоговое значение (КФ Симпсона): " << simpson_result << endl;
    cout << "Абсолютная погрешность: " << fabs(simpson_result - exact_value) << endl <<
    cout << "Квадратурная формула HACT с 5 узлами:" << endl;
    double gauss_result = gaussLegendreIntegration(a, b);
    << "Значение интеграла (КФ HACT): " << setprecision(7) << fixed << gauss_result
    cout << "Абсолютная погрешность: " << fabs(gauss_result - exact_value) << endl;
   return 0;
}
```