

Trigonometry

jee LIVE daily 3.0

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Homework Question

$$= \frac{1}{8} \left(\frac{2 \sin 2 \pi (b) 3 \pi}{8} + 3 \left(\frac{2 \sin 2 \pi (b) \pi}{8} \right) \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi (b) 3 \pi}{8} + 3 \sin 3 \pi} + 3 \sin 3 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi}{8} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} + \frac{1}{2} \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left(\frac{3 \sin 2 \pi}{8} + 3 \sin 3 \pi} \right)$$

$$= \frac{1}{8} \left($$

Trigonometric Series of Sine & Cosine

Trigonometric Series of Sine and Cosine

$$\frac{\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \dots + \sin(\alpha + (n-1)\beta)}{\sin \frac{\beta}{2}} = \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \sin \left(\alpha + \frac{n-1}{2}\beta\right)$$

$$= \frac{2 \sin \beta \cdot 2}{2 \sin \beta \cdot 2} \left[\frac{\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + \beta)}{4 - - - + \sin (\alpha + (\alpha - 1) \beta)} \right]$$

$$= \left(\frac{1}{2 \sin \beta} \right) \left[\frac{1}{2 \sin \alpha \cdot 2 \sin \beta} + \frac{1}{2 \sin \alpha \cdot 2 \sin \beta} + \frac{1}{2 \sin \alpha \cdot 2 \sin \beta} + \frac{1}{2 \sin \alpha \cdot 2 \sin \beta} \right]$$

$$= \left(\frac{1}{2 \sin \beta} \right) \left[\frac{1}{2 \sin \beta} \left(\frac{\cos (\alpha - \beta) - \cos (\alpha + \beta)}{\cos \alpha \cdot 2} \right) + \frac{\cos (\alpha + \beta) - \cos (\alpha + \beta)}{2 \cos \alpha \cdot 2 \cos \alpha \cdot 2} \right]$$

$$= \left(\frac{1}{2 \sin \beta} \right) \left(\frac{\cos (\alpha - \beta) - \cos (\alpha + \beta)}{2 \cos \alpha \cdot 2} \right) + \frac{\cos (\alpha + \beta) - \cos (\alpha + \beta)}{2 \cos \alpha \cdot 2} \right)$$

$$+ \left(\cos\left(\alpha + \frac{3}{4}\right) - \cos\left(\alpha + \frac{5}{4}\right) \right)$$

$$+ \left(-\frac{1}{2} + \left(\cos\left(\alpha + \frac{3}{4}\right) - \cos\left(\alpha + \frac{1}{2}\right) \right) - \cos\left(\alpha + \frac{1}{2}\right) \right)$$

$$= \left(\frac{1}{2 \sin \beta} \right) \left(\cos\left(\alpha - \frac{1}{2}\right) - \cos\left(\alpha + \frac{1}{2}\right) \right)$$

$$= \frac{1}{2 \sin \beta} \left(\frac{2 \cos\left(\alpha + \frac{1}{2}\right) - \cos\left(\alpha + \frac{1}{2}\right) \cos\left(\alpha + \frac{1}{2}\right) \right)}{2 \sin\left(\alpha + \frac{1}{2}\right) \cos\left(\alpha + \frac{1}{2}\right) \cos\left(\alpha$$

$$=\frac{Sin\left(n\frac{s}{2}\right)}{Sin\left(\frac{s}{2}\right)}$$

$$\frac{Sin\left(n\frac{s}{2}\right)}{Sin\left(\frac{s}{2}\right)}$$

Trigonometric Series of Sine and Cosine

2

$$\cos\alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos\{\alpha + (n-1)\beta\} = \frac{\sin\frac{\pi}{2}}{\sin\frac{\beta}{2}} \cos\left(\alpha + \frac{n-1}{2}\beta\right)$$

- **A.** 1

- **B.** 2
- $=\frac{Sin(n+1)}{Sin(1+1)}\cdot Sin(1+1)$

The value of $\sin \frac{\pi}{18} + \sin \frac{2\pi}{18} + \sin \frac{3\pi}{18} + \dots + \sin \frac{35\pi}{18} =$

D. 4

- $= Sin\left(35 \frac{\pi}{36}\right) Sin\left(\frac{\pi}{18} + 34 \times \frac{\pi}{36}\right)$

The value of
$$\cos \frac{\pi}{7} + \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} + \cdots + \cos \frac{7\pi}{7} = \frac{1}{7} + \frac{1}{7$$

$$\frac{\left(\begin{array}{c} \chi_{0} \\ \chi_{1} \\ \chi_{2} \\ \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \chi_{4} \\ \chi_{5} \\ \chi_{5} \\ \chi_{7} \\ \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \chi_{4} \\ \chi_{5} \\ \chi_{$$

C. 0

$$\frac{Sin\left(\frac{1}{2}\frac{\pi}{1}\right)}{Sin\left(\frac{\pi}{1}\right)} \left(\frac{\pi}{1}\right)$$

D. 2

$$\frac{\pi}{14}$$
, $\frac{8\pi}{14}$ = $\frac{\pi}{14}$ = $\frac{\pi$

$$\frac{\cos\left(\frac{8\pi}{14}\right)}{\sin\left(\frac{\pi}{14}\right)}$$

$$= \cos\left(\frac{\pi}{2} + \frac{\pi}{14}\right)$$

$$= -\sin\left(\frac{\pi}{14}\right)$$

$$= -\sin\left(\frac{\pi}{14}\right)$$

$$= -\sin\left(\frac{\pi}{14}\right)$$

The value of
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{8\pi}{7}$$
 is

A.
$$\frac{1}{4}$$

B. $\frac{1}{2}$

$$\cos(\pi - \underline{s\pi}) + \cos(\pi - \underline{s\pi}) + \cos(\pi + \underline{\pi})$$

$$- \cos(\pi - \underline{s\pi}) + \cos(\pi - \underline{s\pi}) + \cos(\pi + \underline{\pi})$$

$$- \cos(\pi - \underline{s\pi}) + \cos(\pi - \underline{s\pi}) + \cos(\pi + \underline{\pi})$$

$$- \cos(\pi - \underline{s\pi}) + \cos(\pi - \underline{s\pi}) + \cos(\pi + \underline{\pi})$$

$$- \cos(\pi - \underline{s\pi}) + \cos(\pi - \underline{s\pi}) + \cos(\pi + \underline{\pi})$$

$$= -\frac{Sin(3\frac{\pi}{7})}{Sin(\frac{\pi}{7})} \cdot Gs(\frac{\pi}{7} + 2 \cdot \frac{\pi}{7})$$

$$= -\left(2\frac{Sin(3\frac{\pi}{7})}{Sin(\frac{\pi}{7})}\right)$$

$$= -\frac{Sin(3\frac{\pi}{7})}{Sin(\frac{\pi}{7})} \cdot Gs(\frac{\pi}{7} + 2 \cdot \frac{\pi}{7})$$

$$= -\frac{Sin(3\frac{\pi}{7})}{Sin(\frac{\pi}{7})} \cdot Gs(\frac{\pi}{7} + 2 \cdot \frac{\pi}{7})$$

Find the value of: $\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$

B. sec 10

C. cosec10 **D.** tan10 S= 2 Sin 2°+4 Sin 5°+6 Sin 6°+---- $= (2 \sin 2^{\circ} + 178 \sin 2^{\circ}) + (4 \sin 4^{\circ} + 176 \sin 176^{\circ})$

$$+ (65in6° + 1745in174°) + --- + (885in88° + 925in92°) + (905in93°)$$

lee

Product of Cosines

Product of Cosine

y jee

$$\frac{2}{2}\left(\frac{\sin 2\theta}{2^3}\right) \cos 2\theta$$

Sin 2 '9 24 Sin 0

Find the value of

$$64 \cos \frac{\pi}{65} \cdot \cos \frac{2\pi}{65} \cdot \cos \frac{4\pi}{65} \cdot \cos \frac{8\pi}{65} \cdot \cos \frac{16\pi}{65} \cdot \cos \frac{32\pi}{65}$$

$$\Theta = \pi$$

$$2\left(\frac{\pi}{65}\right)$$

jee

$$\frac{Sin\left(\frac{64\pi}{65}\right)}{Sin\left(\frac{\pi}{65}\right)} = \frac{Sin\left(\frac{\pi}{65}\right)}{Sin\left(\frac{\pi}{65}\right)} = \frac{1}{1}$$

Find the value of $\cos 2^3 \frac{\pi}{10} \cos 2^4 \frac{\pi}{10} \cos 2^5 \frac{\pi}{10} ... \cos 2^{10}$

Find the value of
$$\cos 2^3 \frac{1}{10} \cos 2^4 \frac{1}{10} \cos 2^5 \frac{1}{10} \dots \cos 2^{10} \frac{1}{10}$$

1/128

$$\mathbf{C.} \qquad \frac{1}{512} \sin \frac{\pi}{10}$$

D.
$$\frac{\sqrt{5}-1}{512}\sin\frac{3}{1}$$

$$\frac{\sin 2^8 \theta}{\sin 2^8 \theta} \rightarrow \frac{\sin (2^8 2^3 \frac{\pi}{10})}{\sin 2^8 \theta}$$

jee

$$\frac{\sin\left(2^{11}\frac{\pi}{10}\right)}{2^{8}\sin\left(\frac{8\pi}{10}\right)}$$

$$\frac{\sin\left(2048\frac{\pi}{10}\right)}{2^{8}\sin\left(\frac{8\pi}{10}\right)}$$

$$= \frac{\sin(204)\sqrt{11} + \frac{8\pi}{10}}{28 \sin(\frac{8\pi}{10})}$$

$$= \frac{\sin(8\pi)}{28 \sin(\frac{8\pi}{10})}$$

$$= \frac{3\sin(\frac{8\pi}{10})}{28 \sin(\frac{8\pi}{10})}$$

Find the **value of** $\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{7\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14}$

MW

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Starting on 12th May

Every Sunday |
11 am Onwards
Win Scholarships
worth 4 Cr+

Test Series

May 10 |
6:30 PM Onwards

Win Daily Amazon vouchers and Scholarship worth Rs 3 CR*

Enroll Now for FREE

Use Code - SAMEERLIVE

IIT JEE MEGA SUBSCRIPTION OFFER

For 2022 Aspirants

Buy 1 Year Unacademy Subscription and get additional

2 MONTHS FREE

For 2023 Aspirants

Buy 2 Year Unacademy Subscription and get additional

3 MONTHS FREE

Thank you

#JEE Live Daily

unacademy

Download Now!