# **Zigzag Array**



We say an array of n distinct integers,  $A = [a_0, a_1, \dots, a_{n-1}]$ , is zigzag if no three consecutive elements in the array are either increasing or decreasing.

In other words, if there are three elements  $a_i$ ,  $a_{i+1}$ ,  $a_{i+2}$  in the array such that  $a_i < a_{i+1} < a_{i+2}$  or  $a_i > a_{i+1} > a_{i+2}$ , the array is not zigzag.

For example:



Given A, find and print the minimum number of elements you must remove to make the given array zigzag.

#### **Input Format**

The first line contains n, denoting the number of elements.

The second line contains n space-separated integers describing the respective values of  $a_0, a_1, \ldots, a_{n-1}$ .

#### **Constraints**

- $1 \le n \le 100$
- $1 \le a_i \le 100$
- The elements of **A** are distinct.

### **Output Format**

Print the minimum number of elements you must remove to make the given array zigzag.

## Sample Input 0

```
6
4 2 6 3 10 1
```

#### Sample Output 0

0

#### **Explanation 0**

The array [4, 2, 6, 3, 10, 1] is already zigzag, so we return 0.

# Sample Input 1

```
5
5 2 3 6 1
```

## Sample Output 1

# **Explanation 1**

The array [5,2,3,6,1] is not zigzag because here  $a_1 < a_2 < a_3$  (2 < 3 < 6).

If we remove 6, the array becomes [5,2,3,1] which is zigzag. Because we only needed to remove one element, we return 1 as our answer.