

By Transparentor Thailand

Deep Reinforcement Learning for traffic lights timing to minimize Commuting Time

Transparency is an act of government sharing the nation their data. So, their citizens and different sectors of those governments can create solutions ,or business from that data which it would be hard/impossible before.

Study the international research

to solve this problem

If you ever come to Bangkok. You may have seen these things

Wasted time average

61 hours/year/person

Fuel lost/year

1810 million Baht

Total time value loss/year (Only people locate in Bangkok)

8,154 million Baht

Total value loss for traffic jam

9,964 million Baht

By person

Assume working 8 hr/day 300 Bath

Lost value 61 × 300 / 8 * 3,564,635 Baht

By the whole city

Fuel lost 0.025 litre/minute Latest fuel cost 28 Baht/litre Population in city 1782371.5

Reference:

http://inrix.com/resources/inrix-2016-global-traffic-scorecard https://www.quora.com/How-much-gas-does-a-car-burn-per-hour-while-idling https://www.edf.org/climate/reports/idling

Solutions

DQN + Simulation

why deep reinforcement learning?

- Can learns transition probability by trial-error
- Can handle unexpected situation

Datasets

Dataset	Source (Government Organization)
Traffic status	กรมการขนส่งทางบก (Department of Land Transportation)
	จส.100 (JS100)
	กระทรวงคมนาคม (Ministry of Transport)
Weather data	กรมอุตุนิยมวิทยา (The Meteorological Department)
Event data	Social Network
Date/Time	Local date/time

Use deep reinforcement learning to control lights timing

Input

waiting_time

Our DQN model just had been trained(simulation elapsed time)

in average waiting time compare to the fix time approach

The individual result may vary on many factors such as train time, random seed, distribution, fidelity of simulation, etc.

Conclusion

Minimize commuting time

Impacted field	Result
Logistic	Shipping faster
Individual	More free time to family
Environment	Less pollution
Emotional	People happier
Transportation	Ordering of traffic

Fast execution

Looking at whole system

github.com/wasdee /trafficLightDQN

Code - Result - Slides

Study about **index** that measure the congestion of traffic

Provided by iTIC and T-Square

Simple Simulation Design

