社会規範の ゲーム理論的定式化

目次

- Elsterの思想[1][2][3][4]
 - 「社会規範」とは
 - 「社会規範」と「合理性」
- 社会規範の例
 - ゴミを川に捨ててはいけない規範
 - 待ち行列の場所の売買を禁ずる規範
- 社会規範の定式化[7]
- 社会規範のゲーム理論的定式化
- 手続き的効用
- 定理の導出

Elsterの思想 ―「社会規範」とは―

Definition 1(社会規範, Elster)[1][2][3][4]

社会規範(social norm)は,

- ●「~しろ」または「~するな」と規定するもの. ***(*1)
- 他の人々に広く共有されているもの. ・・・(*2)

つまり、「広く共有された行為の基準」といえる!

さらに複雑な形のもの

「もし他人がXしたときにXするのが よいならば、Xしろ!Jetc. 同調圧力

条件付の形のもの

「他人がYしたら、Xしろ! Jetc.

「親切にされたら親切にしろ!」

最単純な形のもの

「*X*しろ!」or「*X*するな!」

- 「人肉を食うな!」
- 「葬式では黒い服を着ろ!」

この最単純な形の社会規範をゲーム理論的に定式化する!

Elsterの思想 ―「社会規範」と「合理性」―

社会規範

「*X*しろ!」or「*X*するな!」(最単純型)

- 非結果志向・・・(*3)
- 得られる結果とは関係なく、行為を 規定する。
- 力により「押す(push)」.

合理性

「もしYを達成したいならば、Xしろ!」

- 結果志向
- 得られる結果に基づいて、行為を規 定する.
- 将来の報酬により「引っ張る(pull)」.

社会規範の例①: ゴミを川に捨ててはいけない規範

ゴミのポイ捨て問題は、次のようなゲームの構造となっている.

C:ゴミを川に捨てない

o.			
フロ	ノー	-ヤ	<i>7</i> —

1 2	С	D
С	0,0	-3,1
D	1, -3	-2, -2

社会規範によれば,

- C:適切!
- · D:不適切!

社会規範の例②:

待ち行列の場所の売買を禁ずる規範

社会規範(最単純形)の定式化

Krupka and Weber[7]は、「社会規範は結果とは無関係に行為を規定する」という Elsterの思想をふまえて、最単純の形の社会規範を行為に対して「その行為の適切さ」を定める関数Nとして定式化した.

- 行為aが適切なら「正」
- 行為aが不適切なら「負」

Example 1:ゴミを川に捨ててはいけない規範

```
社会規範によれば,

• C:適切!

• D:不適切!

• N(C) = +1

• N(D) = -1
```

Example 2: 待ち行列の場所の売買を禁ずる規範

```
社会規範によれば、 各行為の「適切さ」の度合いは、 \begin{cases} \cdot S: \overline{\Lambda}: \overline{\Lambda}:
```

複数人意思決定状況への拡張

Krupka and Weber[7]は、いわゆる「一人意思決定状況」における社会規範を定式化したものだった。

そこで、本研究では「複数人意思決定状況」における社会規範を定式化するため、 社会規範をゲーム理論的に定式化することを目標とする.

ゲーム理論における社会規範

Definition 2(標準形ゲーム)

標準形ゲームとは, G = (I, S, u)である.

- I = {1, ..., n}はプレーヤーの集合.
- $S = S_1 \times \cdots \times S_n$ で、 S_i はプレーヤーiの戦略の集合.
- $u = (u_1, ..., u_n)$ で、 u_i はプレーヤーiの効用関数.

各プレイヤーの戦略集合「全体」の上に 社会規範を定めたい!

「広く共有されている!」

Definition 1(社会規範, Elster)[1][2][3][4]

社会規範(social norm)は,

- 「~しろ」または「~するな」と規定するもの. ・・・(*1)
- 他の人々に広く共有されているもの. •••(*2)

「行為の基準」が広く共有されている

「行為」も広く共有されていなければならない

「広く共有されている!」

各プレーヤーの戦略集合間に同質性を持たせるために、戦略の「全体集合」のようなものを考えたい!

社会規範のゲーム理論的定式化

社会規範のゲーム理論的定式化

Definition 3(本研究で扱う標準形ゲーム)

本研究で扱う標準形ゲームを, $G = (I, \Lambda, u)$ と定める.

- I = {1, ..., n}はプレーヤーの集合.
- Λは, I内で「共有されている行為のラベル」の集合
 - プレーヤーのi戦略集合 S_i は, $S_i \subset \Lambda$ となるように定義される.
 - \blacksquare $S = S_1 \times \cdots \times S_n$ とおく.
- $u = (u_1, ..., u_n)$ で、 $u_i: S \to \mathbb{R}$ はプレーヤーiの効用関数.

Definition 4(ゲーム*G*上の社会規範)

 $G = (I, \Lambda, u)$ 上の社会規範とは、次の関数Nである.

 $N:\Lambda \to \mathbb{R}$

ここで, $N(\lambda_i) \in \mathbb{R}$ は、行為のラベル λ_i の「社会的な適切さ」を表す.

手続き的効用

Definition 3(手続き的効用)[5][6]・・・(*4)

人々は、もたらされる結果(what)だけでなく、その結果に至るまでの状況や過程(how)にも価値を置く.

もたらされる結果(outcome)ではなく、結果に至るまでの状況(condition) や過程(process)から得る効用のことを、手続き的効用(procedural utility)という.

手続き的効用の効果

Frey, Benz, & Stutzer (2004)[5]によれば,

- 望ましくない結果は、その手続きが「良い」なら受諾されるであろう。
- 望ましい結果は、その手続きが「悪い」ならば全体として満足なものにはならないであろう。

つまり、人々は「結果」から得る効用と「過程」から得る効用のバランスを考慮しているのである.

手続き的効用の例①: ゴミを川に捨ててはいけない規範

1 2	С	D
С	0,0	-3,1
D	1, -3	-2, -2

各行為の「適切さ」は,

$$N(C) = +1$$

 $N(D) = -1$

物質的利得: $\pi_i(s_1, s_2)$

「過程」から得る効用

行為の適切さ $N(s_i)$ に応じた効用

- Cをとることによる効用: $\gamma_i \times (+1)$
- Dをとることによる不効用: $\gamma_i \times (-1)$

1 2	С	D
С	$0 + \gamma_1$, $0 + \gamma_2$	$-3+\gamma_1$, $1-\gamma_2$
D	$1-\gamma_1, -3+\gamma_2$	$-2-\gamma_1,-2-\gamma_2$

 $\gamma_1, \gamma_2 \ge \frac{1}{2}$ のとき, (C, C)がNash均衡となる.

手続き的効用の例②: 行列の場所の売買

1 2	В	NB
S (5,5	1,2
NS	2,1	2,2

各行為の「適切さ」は,

$$\begin{cases} N(S) = -1 \\ N(NS) = +1 \end{cases} \begin{cases} N(B) = -1 \\ N(NB) = +1 \end{cases}$$

「結果」から得る効用

物質的利得: $\pi_i(s_1, s_2)$

「過程」から得る効用

行為の適切さ $N(s_i)$ に応じた効用

- NSをとることによる効用:γ₁×(+1)
- Sをとることによる不効用:γ₁×(-1)
- ・ *NBをと*ることによる効用:γ₂×(+1)
- Bをとることによる不効用:γ₂ × (-1)

1	7	В	NB
	S	$5-\gamma_1, 5-\gamma_2$	$1-\gamma_1, 2+\gamma_2$
	NS	$2+\gamma_1$, $1-\gamma_2$	$2+\gamma_1, 2+\gamma_2$

 $\gamma_1, \gamma_2 > \frac{3}{2}$ のとき、(NS, NB) のみがNash均衡となる.

社会規範と手続き的効用

以上の議論(*1~4)をふまえて、「過程」と「結果」の両方を考慮した、新たな効用関数を定める.

ただし, $\gamma_i > 0$ はプレーヤーiが規範を気にかける程度.

「物質的利得ゲーム」と「規範レベルのゲーム」

Definition 5 (物質的利得ゲーム)

物質的利得ゲームとは, $G_{\pi}=(I,\Lambda,\pi)$ である.

- $I = \{1, ..., n\}$ はプレーヤーの集合.
- Λは, I内で「共有されている行為のラベル」の集合.
 - プレーヤーのi戦略集合 S_i は, $S_i \subset \Lambda$ となるように定義される.
- $\pi = (\pi_1, ..., \pi_n)$ で、 $\pi_i: S \to \mathbb{R}$ はプレーヤーiの物質的利得関数.

Definition 6(規範レベルのゲーム)

規範レベルのゲームとは, $G_N = (I, \Lambda, u)$ である.

- $I = \{1, ..., n\}$ はプレーヤーの集合.
- Λは, I内で「共有されている行為のラベル」の集合.
 - プレーヤーのi戦略集合 S_i は, $S_i \subset \Lambda$ となるように定義される.
 - $S = S_1 \times \cdots \times S_n$ とおく.
- $u=(u_1,...,u_n)$ で, $u_i(s)=\pi_i(s)+\gamma_iN(s_i)$ はプレーヤーiの効用関数.
 - $\pi_i: S \to \mathbb{R}$ はプレーヤーiの物質的利得関数.
 - N: A → Rは社会規範。

2人対称ゲームの特性①

Theorem 1

2人対称物質的利得ゲーム $G_{\pi}=(I=\{1,2\},\Lambda,\pi=(\pi_1,\pi_2))$ について、任意の対角線部分の結果は、ある社会規範Nが存在して、規範レベルのゲーム G_N におけるNash均衡とすることができる.

1 2	a_1	a_2	2	a_3	•••	a_K
a_1						
a_2						
a_3						
:					×	
a_K						

物質的利得ゲーム G_{π} の対角線部分に Pareto効率な結果が存在する場合, その結果は社会規範により必ず達成できる

2人対称ゲームの特性②

Theorem 2

次のような 2×2 対称物質的利得ゲーム G_{π} の任意の非対角線部分の結果は、

$$\frac{d-b}{\gamma_1} > \frac{c-a}{\gamma_2} \vee \frac{d-b}{\gamma_2} > \frac{c-a}{\gamma_1}$$

のとき、いかなる社会規範Nによっても規範レベルのゲーム G_N のNash均衡とすることができない.

1 2	A	В
A	a, a	b,c
В	c,b	d, d

Example.

1 2	A	В
A	10,10	-10,20
В	20, -10	1,1

$$(\gamma_1 = \gamma_2 = 1)$$

非対角線部分の結果への着目

次のような2×2対称ゲームを考える.

1 2	С	D
С	3,3	0,7
D	7,0	2,2

このゲームを次のようなルールで2回繰り返す場合を考える.

- ① 1回目は、各プレーヤーは、互いに独立して自分の戦略を選択する.
- ② 2回目は、各プレーヤーは、1回目で各プレーヤーがとった戦略と得られた利得を知った上で、 互いに独立して自分の戦略を選択する。
- ③ 繰り返しゲームにおける各プレーヤーの利得は, 1回目と2回目のゲームの利得の合計とする.
- ④ 各プレーヤーは、ゲームが2回で終了することを知っている。

1 2	С	D		1 2	С	D
С	3,3	0,7		С	3,3	0,7
D	7,0	2,2		D	7,0	2,2
	1回日		•		2回日	

24

, 。	(CCCCC)	(CCDCC)	(CCCDC)	(CCCCD)	(CCDDC)	(CCCDD)	(CCDCD)	(CCDDD)	(CDCCC)	(CDDCC)	(CDCDC)	(CDCCD)	(CDDDC)	(CDCDD)	(CDDCD)	(CDDDD)	(DCCCC)	(DCDCC)	(DCCDC)	(DCCCD)	(DCDDC)	(DCCDD)	(DCDCD)	(DCDDD)	(DDCCC)	(DDDCC)	(DDCDC)	(DDCCD)	(DDDDC)	(DDCDD)	(DDDCD)	(DDDDD)
(CCCCC)	6,6	6,6	6.6	6.6	6.6	6.6	6,6	6.6	3.10	3,10	3.10	3,10	3.10	3,10	3,10	3,10	3,10	0,14	3.10	3.10	0.14	3.10	0,14	0,14	3.10	0,14	3,10	3,10	0,14	3.10	0,14	0,14
(CCDCC)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CCCDC)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CCCCD)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CCDDC)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CCCDD)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CCDCD)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CCDDD)	6,6	6,6	6,6	6,6	6,6	6,6	6,6	6,6	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CDCCC)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CDDCC)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CDCDC)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CDCCD)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CDDDC)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CDCDD)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14	3,10	0,14	3,10	3,10	0,14	3,10	0,14	0,14
(CDDCD)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(CDDDD)	10,3	10,3	10,3	10,3	10,3	10,3	10,3	10,3	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9	7,7	2,9	7,7	7,7	2,9	7,7	2,9	2,9
(DCCCC)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9
(DCDCC)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9
(DCCDC)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9
(DCCCD)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DCDDC)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9
(DCCDD)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DCDCD)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DCDDD)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2 5,5	9,2	4,4	9,2	4,4	4,4	4,4
(DDDCC)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	5,5 5,5	5,5	5,5	2,9	5,5 5,5	2,9	2,9	2,9	5,5	5,5	5,5	2,9	5,5	2,9	2,9	2,9
(DDCDC)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	5,5	5,5 5,5	5,5 5,5	2,9	5,5	2,9	2,9	2,9	5,5 5,5	5,5	5,5	2,9	5,5 5,5	2,9	2,9	2,9
(DDCCD)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DDDDC)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	5,5	5,5	5,5	2.9	5,5	2,9	2.9	2,9	5,5	5,5	5,5	2.9	5,5	2,9	2,9	2,9
(DDCDD)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DDDCD)	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	10,3	10,3	7,7	10,3	7,7	7,7	10,3	7,7	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4
(DDDDD)	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	14,0	14,0	9,2	14,0	9,2	9,2	14,0	9,2	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4	9,2	9,2	9,2	4,4	9,2	4,4	4,4	4,4

非対角線部分の結果への着目

Pareto効率を達成するために、次のいずれかを達成したい.

Case.2

これらを達成するためには、これまでの「最単純の形の社会規範」ではなく、 「条件付の形の社会規範」が必要となると考えられる.

今後の課題

課題①:条件付の形の社会規範の定式化

課題②: n人状況への拡張

参考文献

- 1. Elster, J. (1989a). *The cement of society: A survey of social order.* Cambridge University Press.
- 2. Elster, J. (1989b). "Social norms and economic theory." *The Journal of Economic Perspectives*, 99-117.
- 3. Elster, J. (1989c). *Nuts and bolts for the social sciences.* Cambridge University Press.
- 4. Elster, J. (2007). Explaining social behavior: More nuts and bolts for the social sciences. Cambridge University Press.
- 5. Frey, B. S., Benz, M., & Stutzer, A. (2004). "Introducing procedural utility: Not only what, but also how matters." *Journal of Institutional and Theoretical Economics (JITE)/Zeitschrift für die gesamte Staatswissenschaft*, 377-401.
- 6. Frey, B. S., & Stutzer, A. (2005). "Beyond outcomes: measuring procedural utility." Oxford Economic Papers, 57(1), 90-111.
- 7. Krupka, E. L., & Weber, R. A. (2013). "Identifying social norms using coordination games: Why does dictator game sharing vary?." *Journal of the European Economic Association*, 11(3), 495-524.