Practical Deep Learning

shuchang.zhou@gmail.com Feb. 20, 2019

Syllabus

Week 1	Linear Classifications and Theory, Image Classification, Loss Functions and Optimization	张祥雨 (ImageNet 2015冠军获得者), 旷视科技研究员	第一节课 程介绍
Week 2	Neural Network Basics and Backpropagation	危夷晨, 旷视科技 研究员	上满三节
Week 3	Introduction to Deep Learning and Computer Vision	孙剑, 旷视科技首 席科学家, 前微软 研究院首席研究员	第三节是实验课
Week 4	Convolutional Neural Networks Architecture & Search	张祥雨, 旷视科技 研究员	上满三节
Week 5	Deep Learning Platform: from Theano to Tensorflow	贾开, 旷视科技研 究员	第三节是 实验课
Week 6	Neural Network Approximation: Pruning, Factorization	周舒畅, 旷视科技 研究员	上满三节

Syllabus cont.

Week 7	Morden Object Detection: SSD, Faster-RCNN, R-FCN	俞刚(COCO 2017&2018冠军队 队长), 旷视科技研 究员	第三节是 实验课
Week 8	Recurrent Neural Network (RNN) and LSTM	周昕宇, 旷视科技 研究员	上满三节
Week 9	Generative Models and GANs, Wasserstein Metrics	范浩强, 旷视科技 研究员	第三节是 实验课
Week 10	Deep Learning Meets Low-level Vision	范浩强, 旷视科技 研究员	上满三节
Week 11	Student Spotlight Talk	孙剑 + 教师团	上满三节

第一部分-导言与课程简介

- 内容简介
 - 计算机视觉发展历程
 - 深度神经网络与计算机视觉
 - 计算机视觉中的关键问题
 - 计算机视觉现实应用

第一部分-导言与课程简介

• 主讲人

孙剑,毕业于西安交通大学人工智能与机器人研究所,前微软亚研院首席研究员,现任北京旷视科技有限公司首席科学家、旷视研究院院长。主要研究方向为计算摄影学,人脸识别和基于深度学习的图像理解。自2002年以来在CVPR/ICCV/PAMI等顶级学术会议和期刊上发表学术论文100余篇,两次获CVPR最佳论文奖。入选《MIT技术评论》35岁以下年轻创新者。

第二部分-神经网络基础

• 主讲人

张祥雨,2017年博士毕业于西安交通大学。期间参加微软亚洲研究院联合培养博士生项目,师从孙剑博士和何恺明博士,研究方向包括深度卷积网络设计,深度模型的裁剪与加速等。曾在CVPR/ICCV/ECCV/NIPS/TPAMI等顶级会议/期刊上发表论文十余篇,获CVPR 2016 最佳论文奖,并多次获顶级视觉挑战竞赛 ImageNet/COCO 冠军。代表作包括 ResNet/ShuffleNet v1/v2 等。

第二部分-神经网络基础

• 主讲人

危夷晨,博士毕业于香港科技大学计算机系,师从权龙教授。前微软亚研院资深研究员,旷视上海研究院负责人。研究方向为计算机视觉和机器学习,包括基于图像的三维几何建模,物体识别,跟踪,姿态估计等。于CVPR/ECCV/ICCV等国际顶级会议和期刊上发表论文40余篇。ECCV 2018 3D Human Pose Estimation 第二名,COCO 2018 Pose Tracking Challenge冠军。

第二部分-神经网络基础

• 主讲人

贾开, 毕业于清华大学计算机系。自 2012 年, 先后在 Face++ 参与了线上 API 系统后端的设计和搭建, 人脸检测、属性、活体算法的研究, 深度学习框架的研发等。他构建的人脸检测系统在 FDDB、FG2015 等评测中取得当时的最优结果, 并被广泛部署于产品。从 2014 年起专注于旷视内部深度学习框架的研发, 从零开始设计和实现 MegBrain, 相对后来出现的各种开源框架, 在灵活性、效率、资源用量、可移植性、可扩展性等方面有独特的优势, 被广泛用于研究和产品。目前担任 Engine 团队的主任架构师。

第三部分-轻量化神经网络

• 主讲人

周舒畅, 博士毕业于中科院计算所, 主要研究方向为体系结构与视觉交叉, 任AAAI/IJCAI/IPDPS/TIP/JMLR审稿人, 获得NIPS 2017 Learning to Run Challenge第二名, NIST TRAIT 2016 OCR冠军。

第四部分-物体检测与分割

• 主讲人

俞刚博士,现为旷视科技Research Leader、Detection 组负责人,2014年毕业于新加坡南洋理工大学。博士毕业后在南洋理工大学从事 research fellow的研发工作。2014年底加入旷视科技公司。主要研究方向集中在计算机视觉以及机器学习方面,包括物体检测,语义分割,行人姿态估计以及行人动作行为分析。自2010年以来,已经在顶级会议如CVPR, AAAI, ECCV以及顶级期刊如IEEE Transaction on Image Processing, IEEE Transaction on Multimedia等上面发表了学术论文二十余篇,同时著有书籍一本。俞刚博士带队参加2017 COCO+Places挑战赛获得检测第一名,人体姿态估计第一名;接着,带队参加2018 COCO+Mapillary挑战赛,获四项世界第一。

第五部分-低级视觉任务

• 主讲人

范浩强, 清华大学交叉信息学院毕业, 主要研究方向为3D人脸和活体检测, 在CVPR/ICCV/AAAI/ACMM等顶级学术会议上发表学术论文20篇。300 Faces in-the-Wild Challenge (ICCV 2013) /FDDB/LFW等多项挑战赛冠军。

Experiment Module

蒸馏实验

基于深度学习的人脸视频压缩

Imagenet分类挑战

头验	知识点	准度	九需头 验
SVHN 分类实验 3	CNN Basic	前期	上手实验,无
feature还原图像 9	CNN可逆性	前期	上手实验,无
图像对抗攻击 3	对抗攻击	前期	无

模型压缩,迁移学习

人脸5点landmark 对齐, Auto Encoder

CNN Basic

-4

中期

后期

后期

4-3-3-1

无

无

SVHN分类实验

实验	知识点	7
SVHN 分类实验 ③	CNN Basic	Ē
feature还原图像 9	CNN可逆性	Ē

AutoEncoder实验 2	Pool&Unpool结构、Unpool的三种变体(填0、重复)	中期	无
Triplet loss	度量学习	中期	无
Texture network	风格迁移,Gram matrix	后期	蒸馏实验

Experiment Module: past

This ECCV 2018 paper, provided here by the Computer Vision Foundation, is the author-created version.

The content of this paper is identical to the content of the officially published ECCV 2018

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/eccv

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

Shangbang Long^{1,2}[0000-0002-4089-5369], Jiaqiang Ruan^{1,2}, Wenjie Zhang¹, Xin He², Wenhao Wu², Cong Yao²[0000-0001-6564-4796]

¹Peking University, ²Megvii (Face++) Technology Inc. {longlongsb, jiaqiang.ruan, zhang_wen_jie}@pku.edu.cn, {hexin,wwh}@megvii.com, yaocong2010@gmail.com

Fig. 5. Framework of Post-processing Algorithm. Act(a) Centralizing: relocate a given point to the central axis; Act(b) Striding: a directional search towards the ends of text instances; Act(c) Sliding: a reconstruction by sliding a circle along the central axis.

Experiment 1: SVHN classification

Goal

- Learn to do control experiments
- Learn there are alternatives to Softmax/cross-entropy when training DNN

Finding alternative of Softmax 2

$$\operatorname{softmax}(x) = \frac{e^x}{\sum e^x}$$
 Which of below work as alternative to Softmax?
$$\operatorname{abs-max}(x) = \frac{|x|}{\sum |x|}$$

$$\operatorname{square-max}(x) = \frac{x^2}{\sum x^2}$$

$$\operatorname{plus-one-abs-max}(x) = \frac{1+|x|}{\sum 1+|x|}$$

$$\operatorname{non-negative-max}(x) = \frac{\max(0,x)}{\sum \max(0,x)}$$

Experiment 1: SVHN classification (cont.)

Regression v.s. classification

Instead of crossentropy

Pooling

Convolutional Neural Networks Applied to House Numbers Digit Classification https://www.computer.org/csdl/proceedings/icpr/2012/2216/00/06460867.pdf 1

We augmented the traditional ConvNet architecture by learning multi-stage features and by using Lp pooling and establish a new state-of-the-art of 95.10% accuracy on the SVHN dataset (48% error improvement)

Regularization

- Weight decay
 - Determine proper value of weight decay.
- Lp (L1, or even $\ell_{0.5}$)
- What if weight decay is set to a minus number?

Teaching Assistants

赵悦楷 1701111427 @pku.edu.cn

谢广增 smsxgz@pku.e hao.cheng du.cn

Thank you!

Valid until 2/27 and will update upon joining group