Задача 5*. Рассматривается линейная регрессия $Y_t = \alpha + \beta t + \varepsilon_t$, в которой случайные ошибки $(\varepsilon_t)_{t=1}^{\infty}$ являются независимыми случайными величинами с нулевым математическим ожиданием и дисперсией σ^2 . Являются ли МНК-оценки $\hat{\alpha}_n$ и $\hat{\beta}_n$ состоятельными оценками неизвестных параметров α и β соответственно?

Решение. Запишем уравнение регрессии в матричной форме $Y = X\theta + \varepsilon$, где

$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & n \end{bmatrix}, \quad \theta := \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}.$$

Рассмотрим МНК-оценку $\hat{\theta}_n = (X^T X)^{-1} X^T Y$. Ясно, что первая и вторая координаты вектора $\hat{\theta}_n$ равны $\hat{\alpha}_n$ и $\hat{\beta}_n$ соответственно. Имеем:

$$\mathbb{E}\begin{bmatrix} \hat{\alpha}_n \\ \hat{\beta}_n \end{bmatrix} = \mathbb{E}[\hat{\theta}_n] = \mathbb{E}[(X^T X)^{-1} X^T Y] = (X^T X)^{-1} X^T \mathbb{E}[Y] =$$

$$= (X^T X)^{-1} X^T \mathbb{E}[X\theta + \varepsilon] = (X^T X)^{-1} X^T X \theta = \theta = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

Следовательно, $\mathbb{E} \big[\hat{\alpha}_n \big] = \alpha$ и $\mathbb{E} \Big[\hat{\beta}_n \big] = \beta$. Далее, используя свойства ковариационных матриц, а также формулы $(AB)^T = B^T A^T$ и $(A^{-1})^T = (A^T)^{-1}$, получаем, что

$$V\begin{bmatrix} \hat{\alpha}_{n} \\ \hat{\beta}_{n} \end{bmatrix} = V(\hat{\theta}_{n}) = V((X^{T}X)^{-1}X^{T}Y) =$$

$$= (X^{T}X)^{-1}X^{T} V(Y)((X^{T}X)^{-1}X^{T})^{T} =$$

$$= (X^{T}X)^{-1}X^{T} V(Y)(X^{T})^{T} ((X^{T}X)^{-1})^{T} =$$

$$= (X^{T}X)^{-1}X^{T} V(Y)X((X^{T}X)^{T})^{-1} =$$

$$= (X^{T}X)^{-1}X^{T} V(Y)X(X^{T}X)^{T})^{-1} =$$

$$= (X^{T}X)^{-1}X^{T} V(Y)X(X^{T}X)^{-1} =$$

$$= (X^{T}X)^{-1}X^{T} V(X\theta + \varepsilon)X(X^{T}X)^{-1} =$$

$$= (X^{T}X)^{-1}X^{T} V(\varepsilon)X(X^{T}X)^{-1} =$$

В нашем случае
$$X^TX = \begin{bmatrix} n & \sum_{t=1}^n t \\ \sum_{t=1}^n t & \sum_{t=1}^n t^2 \end{bmatrix}$$
. Стало быть,
$$(X^TX)^{-1} = \frac{1}{n\sum_{t=1}^n t^2 - \left(\sum_{t=1}^n t\right)^2} \begin{bmatrix} \sum_{t=1}^n t^2 & -\sum_{t=1}^n t \\ -\sum_{t=1}^n t & n \end{bmatrix}.$$

Значит,

$$D(\hat{\alpha}_n) = \sigma^2 \frac{\sum_{t=1}^n t^2}{n \sum_{t=1}^n t^2 - \left(\sum_{t=1}^n t\right)^2} \quad \text{if} \quad D(\hat{\beta}_n) = \sigma^2 \frac{n}{n \sum_{t=1}^n t^2 - \left(\sum_{t=1}^n t\right)^2}.$$

Покажем, что $D(\hat{\alpha}_n) \to 0$ и $D(\hat{\beta}_n) \to 0$ при $n \to \infty$. Для этого нам потребуются известные из школьного курса алгебры формулы

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$
 u $1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$.

Имеем:

$$\lim_{n\to\infty} D(\hat{\alpha}_n) = \sigma^2 \lim_{n\to\infty} \frac{\sum_{t=1}^n t^2}{n\sum_{t=1}^n t^2} - \left(\sum_{t=1}^n t\right)^2 = \frac{n(n+1)(2n+1)}{6}$$

$$= \sigma^2 \lim_{n\to\infty} \frac{\frac{n(n+1)(2n+1)}{6} - \left(\frac{n(n+1)}{2}\right)^2}{\frac{1}{6} \frac{1}{n} \frac{n+1}{n} \frac{2n+1}{n}} = \sigma^2 \lim_{n\to\infty} \frac{\frac{1}{6} \frac{1}{n} \frac{n+1}{n} \frac{2n+1}{n}}{\frac{1}{6} \frac{n+1}{n} \frac{2n+1}{n} - \frac{1}{4} \frac{(n+1)^2}{n^2}} = \sigma^2 \frac{\frac{1}{6} \times 0 \times 1 \times 2}{\frac{1}{6} \times 1 \times 2 - \frac{1}{4} \times 1} = 0;$$

$$\lim_{n\to\infty} D(\hat{\beta}_n) = \sigma^2 \lim_{n\to\infty} \frac{n}{n\sum_{t=1}^n t^2 - \left(\sum_{t=1}^n t\right)^2} = \sigma^2 \lim_{n\to\infty} \frac{n}{n\frac{n(n+1)(2n+1)}{6} - \left(\frac{n(n+1)}{2}\right)^2} = \sigma^2 \lim_{n\to\infty} \frac{1}{\frac{1}{6} \frac{n+1}{n} \frac{2n+1}{n} - \frac{1}{4} \frac{(n+1)^2}{n^2}} = \sigma^2 \lim_{n\to\infty} \frac{1}{\frac{1}{6} \frac{n+1}{n} \frac{2n+1}{n} - \frac{1}{4} \frac{(n+1)^2}{n^2}} = \sigma^2 \frac{0}{\frac{1}{6} \times 1 \times 2 - \frac{1}{4} \times 1} = 0.$$

Таким образом, мы показали, что $\mathbb{E}[\hat{\alpha}_n] = \alpha$, $\mathbb{E}[\hat{\beta}_n] = \beta$, $D(\hat{\alpha}_n) \to 0$, $D(\hat{\beta}_n) \to 0$ при $n \to \infty$. В силу достаточного условия состоятельности это означает, что $\hat{\alpha}_n$ и $\hat{\beta}_n$ являются состоятельными оценками параметров α и β соответственно. \square