Solución de Problemas de Programación Lineal Método Simplex

Luis Norberto Zúñiga Morales

25 de enero de 2023

Contenido

- Introducción
- Esencia del método símplex
- 3 Solución del ejemplo
- Conceptos clave de solución
- 5 Preparación del método símplex
- Álgebra del método símplex
- El Método Símplex en forma Tabular
- 8 Ejercicios

Introducción

Es momento de estudiar el **método símplex**, un procedimiento general para resolver problemas de programación lineal.

 Desarrollado en 1947 por George Dantzig, abrió el camino de la investigación de operaciones, junto con otros desarrollos.

Introducción

- Al ser independiente del campo de aplicación, se usa en forma rutinaria para resolver problemas grandes de programación lineal.
- Su resolución por medio de computadoras permite aplicarlo a problemas grandes.

Ejercicio

Investiguen sobre el mito de Dantzig.

 El método símplex es un procedimiento algebraico cuyos conceptos fundamentales son geométricos.

- El método símplex es un procedimiento algebraico cuyos conceptos fundamentales son geométricos.
- La comprensión de estos conceptos geométricos proporciona una fuerte intuición sobre su forma de operar.

- El método símplex es un procedimiento algebraico cuyos conceptos fundamentales son geométricos.
- La comprensión de estos conceptos geométricos proporciona una fuerte intuición sobre su forma de operar.
- Por lo tanto, vamos a enfocar, en primera instancia, el método desde un punto de vista geométrico con el ejemplo de la Wyndor Glass Co. de las clases anteriores.

Figura: Restricciones de frontera y soluciones en los vértices del problema de la Wyndor Glass Co.

- Cada frontera de restricción es una recta que marca el límite de lo que permite la restricción correspondiente.
- Los puntos de intersección son las soluciones en los vértices del problema.
- Los puntos que se encuentran en los vértices de la región factible son las soluciones factibles en los vértices (soluciones FEV).

- En este ejemplo, cada solución en un vértice se encuentra en la intersección de dos (n = 2) fronteras de decisión.
- En general, para un problema con n variables de decisión, cada solución FEV se encuentra en la intersección de n fronteras de restricción.
- Algunos pares de soluciones FEV comparten una frontera de restricción, otros no.

Definición

- En cualquier problema de programación lineal con n variables de decisión, dos soluciones FEV son adyacentes entre sí cuando comparten n – 1 fronteras de restricción.
- Dos soluciones FEV adyacentes están conectadas por un segmento de recta que se encuentran en estas mismas fronteras de restricción compartidas.
- Dicho segmento de recta recibe el nombre de arista de la región factible.

- Como en el ejemplo n = 2, dos de sus soluciones FEV son adyacentes si comparten una frontera de restricción.
- Por ejemplo, (0,0) y (0,6) son adyacentes porque comparten la frontera
 x₁ = 0.
- Entre esos puntos forman una arista. En total, el problema cuenta con cinco.

 De cada solución FEV salen dos aristas, por lo que cada solución FEV tiene dos soluciones FEV adyacentes.

Ejercicio

Realizar una tabla que muestre las soluciones FEV adyacentes para cada solución FEV del problema de la Wyndor Glass Co.

 De cada solución FEV salen dos aristas, por lo que cada solución FEV tiene dos soluciones FEV adyacentes.

Solución	FEV
FEV	Adyacentes
(0,0)	(0,6) y (4,0)
(0,6)	(2,6) y (0,0)
(2,6)	(4,3) y (0,6)
(4,3)	(4,0) y (2,6)
(4,0)	(0,0) y (4,3)

Una razón para analizar las soluciones FEV adyacentes es la siguiente propiedad general de las soluciones, que proporciona una manera muy útil de de verificar si una solución FEV es óptima.

Prueba de Optimalidad

Considere cualquier problema de programación lineal que posea al menos una solución óptima. Si una solución FEV no tiene soluciones FEV **adyacentes** que sean **mejores** (según el valor de Z, la función de costo), entonces ésa **debe** ser una solución **óptima**.

$$\max_{x_1, x_2} Z = 3x_1 + 5x_2$$
s. a. $x_1 \le 4$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1 > 0, x_2 > 0$$
(1)

En nuestro ejemplo, (2,6) debe ser una solución óptima porque su valor de Z = 36 es más grande que Z = 30 para (0,6) y Z = 27 para (4,3).

Esta prueba de optimalidad se usa en el método símplex para determinar cuando se ha llegado a una solución óptima.

En resumen...

Las restricciones forman regiones delimitadas que pueden ser vistas como figuras, para el caso de n = 2, polígonos. Los vértices son de interés ya que nos fijaremos en ellos para determinar la solución óptima.

Solución del ejemplo

¿Cómo se ve el método símplex desde el punto de vista geométrico? Vamos a utilizar el ejemplo de la Wyndor Glass Co.

- **Paso inicial**: Se elige (0,0) como la solución FEV inicial para examinarla. (*Fácil de calcular*.)
- Prueba de optimalidad: Se concluye que (0,0) no es una solución óptima. (Las soluciones FEV adyacentes son mejores.)
- Iteración: Se mueve a una solución FEV adyacente mejor.
 - Entre las dos aristas adyacentes de (0,0) se desplaza a lo largo de aquella que aumenta el valor de $Z = 3x_1 + 5x_2$, que sería x_2 .
 - Se avanza en esa dirección hasta llegar a la primera frontera de restricción $(2x_2 = 12)$.
 - Se obtiene el nuevo vértice (el punto (0,6)).
- Se repite la prueba de optimalidad, y el proceso hasta llegar a la solución óptima.

Solución del ejemplo

Figura: ¿Cómo se vería todo el proceso para nuestro problema prototipo?

Concepto de solución # 1

El método símplex analiza solo las soluciones FEV. Para cualquier problema con al menos una solución óptima, la ubicación de una de ellas sólo requiere encontrar una mejor solución FEV.

- La pregunta que surge es ¿siempre existe una solución óptima?¹
- Además, esto reduce el espacio de búsqueda, ya que el número de soluciones factibles es infinito. Simplifica las cosas.

Concepto de solución # 2

El método símplex es un algoritmo iterativo, perfecto para programar.

Concepto de solución #3

Siempre que sea posible, se elige el origen como la solución FEV inicial.

Concepto de solución # 4

- Dada una solución FEV, es más rápido reunir información sobre sus soluciones FEV adyacentes que sobre otras soluciones FEV.
- Cada vez que el método símplex realiza una iteración para moverse de la solución FEV actual a una mejor, siempre se escoge una solución FEV adyacente a la actual.
- Toda la trayectoria que sigue hasta alcanzar una solución óptima es a lo largo de las aristas de la región factible.

Concepto de solución # 5

- Después de identificar la solución FEV actual, el método símplex examina cada una de las aristas de la región factible que salen de esta solución.
- Estas aristas conducen a una solución FEV adyacente en el otro punto extremo, pero sin obtener la solución FEV adyacente.
- Es decir, solo identifica la tasa de mejoramiento de Z que se obtendría al moverse por esa arista.
- Obviamente, se mueve por aquella cuya tasa sea positiva y la más grande.
- La iteración termina cuando se obtiene primero la solución FEV al final de esta arista y después de reetiqueta esta solución como la actual para pasar a la prueba de optimalidad y (si aplica) a la siguiente iteración.

Concepto de solución #6

- La prueba de optimalidad consiste sólo en verificar si alguna de las aristas conduce a una tasa positiva de mejoramiento de Z.
- Si ninguna lo hace, la solución FEV actual es óptima.

- El procedimiento algebraico se basa en la solución de sistemas de ecuaciones.
- Por lo tanto, debemos convertir las restricciones funcionales de desigualdades en restricciones de igualdad equivalentes.
- Las restricciones de no negatividad no se modifican.

- Debemos modificar el problema a uno con restricciones de igualdad.
- Ya sabemos como transformarlo: agregamos variables de holgura.

Forma original del modelo

Forma aumentada del modelo

$$\max_{x_1, x_2} \quad Z = 3x_1 + 5x_2
s. a. \quad x_1 \le 4
2x_2 \le 12
3x_1 + 2x_2 \le 18
x_1 \ge 0, x_2 \ge 0$$

$$\max_{x_1, x_2} \quad Z = 3x_1 + 5x_2$$
s. a.
$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_i > 0$$

Noten que:

- Ambas formas representan el mismo problema.
- La nueva forma es más conveniente
- Como no contribuyen en la función objetivo, su coeficiente $c_i = 0$:

$$Z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5$$

Más notas:

- Una solución aumentada es una solución de las variables originales que se aumentó con los valores correspondientes de holgura.
- E.g., si se aumenta la solución (3,2), la solución aumentada correspondiente es (3,2,1,8,5).
- Es decir, incluye los valores de las variables de holgura $x_3 = 1, x_4 = 8$ y $x_5 = 5$.
- Al final, solo agarramos los valores de las variables de interés.

- Una solución básica es una solución en un vértice aumentada.
- Una solución básica factible (BF) es una solución FEV aumentada.

Una propiedad importante de estos sistemas de ecuaciones es el concepto de grados de libertad. Al añadir las variables de holgura, el sistema se modifica de la siguiente manera:

Número de variables — número de ecuaciones = 5 - 3 = 2

Es decir, se puede elegir dos variables cualesquiera e igualarlas a un valor arbitrario para resolver las tres ecuaciones del sistema.

Por lo tanto, en una solución básica:

- Cada variable se designa como básica o no básica.
- 2 El número de variables básicas es igual al número de restricciones funcionales.
- 4 Los valores de las variables básicas se obtienen como la solución simultánea del sistema de ecuaciones (aka. la base).
- Si las variables básicas satisfacen las restricciones de no negatividad, la solución básica es una solución BF.

Paso inicial:

• Se elige el origen como punto inicial, lo cual vuelve a x_1 y x_2 las variables *no básicas*, i.e., **las variables que se vuelven cero**. Dado $x_1 = x_2 = 0$

$$x_1$$
 + x_3 = 4 $\Rightarrow x_3 = 4$
 $2x_2$ + x_4 = 12 $\Rightarrow x_4 = 12$
 $3x_1 + 2x_2$ + $x_5 = 18$ $\Rightarrow x_5 = 18$

• La solución **BF inicial** es (0,0,4,12,18).

Prueba de optimalidad:

La función objetivo es

$$Z = 3x_1 + 5x_2$$

por lo que al evaluar (0,0,4,12,18) en ella se obtiene Z=0.

- La tasa de mejoramiento (3 y 5) son positivas.
- Por lo tanto, (0,0,4,12,18) no es óptima (se puede mejorar el resultado).

Iteración #1:Determinación de la dirección de movimiento

- Cuando aumenta el valor de una variable no básica (iguales a cero) se realiza una acción equivalente a moverse a lo largo de una arista que sale de la solución FEV actual.
- ¿Qué variable básica debe aumentar su valor?

	$Z = 3x_1 + 5x_2$
¿Aumenta x ₁ ?	Tasa de mejoramiento $Z = 3$
¿Aumenta x ₂ ?	Tasa de mejoramiento $Z = 5$

- Como 5>3, se elige x_2 para aumentar su valor.
- Esto implica que x₂ es la variable entrante para la siguiente iteración.

Iteración #1:Determinación de dónde detenerse

- \bullet ¿Cuanto debe aumentar el valor de la variable básica entrante x_2 ?
- Como se mantiene $x_1 = 0$,

$$x_1$$
 + x_3 = 4 $\Rightarrow x_3 = 4$
 $2x_2$ + x_4 = 12 $\Rightarrow x_4 = 12 - 2x_2$
 $3x_1 + 2x_2$ + $x_5 = 18$ $\Rightarrow x_5 = 18 - 2x_2$

 El otro requisito que debemos mantener es que todas las variables sean no negativas, por lo que hay vigilar cuánto puede crecer x₂ para que no viole dicha restricción,

Ejercicio

Determinen los valores que x_3 , x_4 y x_5 pueden adoptar manteniendo la restricción de no negatividad.

Iteración #1:Determinación de dónde detenerse

Solución

$$x_3 = 4 \ge 0 \Rightarrow$$
 no hay cota superior sobre x_2

$$x_4 = 12 - 2x_2 \ge 0 \Rightarrow x_2 \le 6 \leftarrow \text{mínimo}$$

$$x_5 = 18 - 2x_2 \ge 0 \Rightarrow x_2 \le 9$$

- Por lo tanto, x₂ puede crecer hasta 6, punto en el que x₄ ha llegado a 0.
- Si excedemos esa cantidad, x₄ adquiere un valor negativo, lo que viola la factibilidad.

Iteración #1:Determinación de dónde detenerse

- Estos cálculos reciben el nombre de prueba del cociente mínimo.
- El objetivo es determinar qué variable básica llega primero a cero cuando crece la variable entrante.
- La variable básica de la ecuación con el cociente mínimo es la que llega a cero primero cuando crece la variable básica entrante.
- Al llegar a cero primero, se convierte en variable no básica, es decir, es la variable básica saliente de la iteración actual (deja la base).
- De esta manera, x₄ es la variable básica que sale de la iteración 1 del ejemplo.

Iteración #1:Resolución de una nueva solución

 Al aumentar x₂ hasta 6, el procedimiento se mueve de la solución BF inicial hacia la nueva solución BF:

	Solución BF inicial	Nueva solución BF
Variables no básicas	$x_1 = 0, x_2 = 0$	$x_1 = 0, x_4 = 0$
Variables básicas	$x_3 = 4, x_4 = 12,$ $x_5 = 18$	$x_3 = ?, x_2 = 6,$ $x_5 = ?$

• El objetivo de este paso es convertir el sistema de ecuaciones en una forma más conveniente (eliminación gaussiana) para llevar a cabo la prueba de optimalidad y la siguiente iteración.

Iteración #1:Resolución de una nueva solución

 El nuevo sistema de ecuaciones completo, con las nuevas variables básicas (en negritas) se ve de la siguiente manera:

$$Z-3x_{1} -5x_{2} = 0$$

$$x_{1} + x_{3} = 4$$

$$2x_{2} + x_{4} = 12$$

$$3x_{1} +2x_{2} + x_{5} = 18$$

Es decir, x₂ sustituyó a x₄ como la variable básica en el sistema.

Pregunta

¿Qué implica que x2 sea una variable básica?

Iteración #1:Resolución de una nueva solución

Ejercicio

Resuelvan el sistema sabiendo que $x_1 = x_4 = 0$

$$Z-3x_1$$
 $-5x_2$ = 0
 x_1 + x_3 = 4
 $2x_2$ + x_4 = 12
 $3x_1$ + $2x_2$ + x_5 = 18

Tip: Utilicen el proceso de eliminación gaussiana. En particular, el patrón de coeficientes de la variable x_4 que salió es (0,0,1,0). Lleven los coeficientes de x_2 (-5,0,2,2) a esa misma forma.

Iteración #1:Resolución de una nueva solución

Solución

El nuevo sistema de ecuaciones que resulta es

$$Z-3x_1 + \frac{5}{2}x_4 = 30$$

$$x_1 + x_3 = 4$$

$$x_2 + \frac{1}{2}x_4 = 6$$

$$3x_1 - x_4 + x_5 = 6$$

sabiendo que $x_1 = x_4 = 0$, su solución es

$$(x_1, x_2, x_3, x_4, x_5) = (0, 6, 4, 0, 6)$$

donde se obtiene un valor de Z = 30.

Iteración #1:Resolución de una nueva solución

- El concepto clave del método de eliminación gaussiana es usar las operaciones algebraicas elementales para reducir el sistema de ecuaciones original a la forma apropiada.
- Cada variable básica se elimina de todas las ecuaciones menos de una, su ecuación, en la cual tiene coeficiente +1.

Iteración #1:Prueba de optimalidad de la nueva solución básica factible

La ecuación actual proporciona el valor de la función objetivo en términos nada más de las variables no básicas actuales

$$Z = 30 + 3x_1 - \frac{5}{2}x_4$$

Al aumentar el valor de cualquiera de estas variables no básicas (con el ajuste de los valores de las variables básicas para que cumplan no el sistema de ecuaciones) se realiza el traslado a una de las soluciones BF adyacentes.

Como x_1 tiene **coeficiente positivo**, si nos dirigimos por esa dirección, el valor de Z aumenta. **Tenemos que repetir el proceso**.

Iteración #2: La solución óptima que resulta

- Como $Z = 30 + 3x_1 \frac{5}{2}x_4$, se puede aumentar el valor de x_1 , pero no el de x_4 . Por lo tanto, x_1 se vuelve variable básica entrante.
- ¿Cual se vuelve la variable básica que sale?

$$x_1$$
 + x_3 = 4 $\Rightarrow x_3 = 4 - x_1 \ge 0$
 x_2 + $\frac{1}{2}x_4$ = 6 $\Rightarrow x_2 = 6 \ge 0$
 $3x_1 - x_4$ + $x_5 = 6$ $\Rightarrow x_5 = 6 - 3x_1 \ge 0$

Ejercicio

Determinen los valores que x_2 , x_3 y x_5 pueden adoptar manteniendo la restricción de no negatividad.

Iteración #2: La solución óptima que resulta

Solución

$$x_3 = 4 - x_1 \ge 0 \Rightarrow x_1 \le 4$$

 $x_2 = 6 \ge 0 \Rightarrow \text{ no hay cota superior sobre } x_1$
 $x_5 = 6 - 3x_1 > 0 \Rightarrow x_1 < 2 \leftarrow \text{mínimo}$

- Por lo tanto, x₁ puede crecer hasta 2, punto en el que x₄ ha llegado a 0.
- Si excedemos esa cantidad, x_1 adquiere un valor negativo, lo que viola la factibilidad.
- Por lo tanto, x₅ es la variable básica que sale.

Iteración #2: La solución óptima que resulta

• El nuevo sistema de ecuaciones completo, con las nuevas variables básicas (en negritas) se ve de la siguiente manera:

$$Z-3x_1 + \frac{5}{2}x_4 = 30$$

$$x_1 + x_3 = 4$$

$$x_2 + \frac{1}{2}x_4 = 6$$

$$3x_1 - x_4 + x_5 = 6$$

• x_1 sustituyó a x_5 como la variable básica en el sistema. La variable x_4 se mantiene como la otra variable no básica del sistema.

Iteración #2: La solución óptima que resulta

Ejercicio

Resuelvan el sistema sabiendo que $x_4 = x_5 = 0$

$$Z-3x_1 + \frac{5}{2}x_4 = 30$$

$$x_1 + x_3 = 4$$

$$x_2 + \frac{1}{2}x_4 = 6$$

$$3x_1 - x_4 + x_5 = 6$$

Tip: Utilicen el proceso de eliminación gaussiana. En particular, el patrón de coeficientes de la variable x_5 que salió es (0,0,1,0). Lleven los coeficientes de x_1 (-3,1,0,3) a esa misma forma.

Iteración #2: La solución óptima que resulta

Solución

El nuevo sistema de ecuaciones que resulta es

$$Z - + \frac{3}{2}x_4 + x_5 = 36$$

$$x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 = 2$$

$$x_2 + \frac{1}{2}x_4 = 6$$

$$x_1 - \frac{1}{3}x_4 + \frac{1}{3}x_5 = 2$$

La solución del sistema es $(x_1, x_2, x_3, x_4, x_5) = (2, 6, 2, 0, 0)$ donde se obtiene un valor de Z = 36.

Iteración #2: Prueba de optimalidad

 La ecuación actual proporciona el valor de la función objetivo en términos de las variables no básicas actuales

$$Z = 36 - \frac{3}{2}x_3 - x_5$$

- Cuando se incrementa x_4 o x_5 , el valor de Z disminuirá ya que sus tasas son negativas.
- Por lo tanto, esta solución BF $(x_1, x_2, x_3, x_4, x_5) = (2, 6, 2, 0, 0)$ es la óptima, ya que ninguna de las adyacentes es mejor.
- Quitando las variables de holgura, la solución óptima es $x_1 = 2$, $x_2 = 6$ para obtener $Z = 3x_1 + 5x_2 = 36$.

Solución del ejemplo

Figura: Otro vistazo más al problema prototipo.

- La forma algebraica del método símplex nos ayuda a entender la lógica que fundamenta el algoritmo.
- Sin embargo, no es la más conveniente para realizar los cálculos necesarios.
- Introducimos ahora la forma tabular del método símplex, la cual registra únicamente la información esencial:
 - los coeficientes de las variables,
 - las constantes del lado derecho de las ecuaciones,
 - las variable básica que aparece en cada ecuación.

Cuadro: Tabla símplex inicial del problema de la Wyndor Glass Co. para la forma algebraica y tabular. La variable básica que aparece en cada ecuación se muestra en negritas

Forma algebraica	Forma tabular											
	Var.	Var. Ec. Coeficiente de:										
	básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	dcho.			
$Z - 3x_1 - 5x_2 = 0$	Z	(0)	1	-3	-5	0	0	0	0			
$X_1 + X_3 = 4$	<i>X</i> 3	(1)	0	1	0	1	0	0	4			
$2x_2 + x_4 = 12$	<i>X</i> ₄	(2)	0	0	2	0	1	0	12			
$3x_1 + 2x_2 + \mathbf{x_5} = 18$	<i>X</i> ₅	(3)	0	3	2	0	0	1	18			

Paso inicial.

- Se introducen las variables de holgura y se ajusta el problema a la forma apropiada para el símplex.
- Se seleccionan las variables de decisión como las variables no básicas iniciales.
- Las variables de holgura se eligen como las variables básicas iniciales.
- En el ejemplo: esta selección conduce a la tabla símplex inicial de la tabla anterior, por lo que la solución BF inicial es (0,0,4,12,18).

Cuadro: Paso inicial. Se introducen variables de holgura y se seleccionan las variables básicas y no básicas iniciales.

Var.	Ec.		Co	efici	ente	Lado	Cociente			
básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	derecho	Cociente	
Z	(0)	1	-3	-5	0	0	0	0		
<i>X</i> ₃	(1)	0	1	0	1	0	0	4		
<i>X</i> ₄	(2)	0	0	2	0	1	0	12		
<i>X</i> ₅	(3)	0	3	2	0	0	1	18		

Prueba de optimalidad.

- La solución BF es óptima si y sólo si todos los coeficientes del renglón 0 son no negativos.
- Si es así, el proceso se detiene; de otra manera, sigue una iteración para obtener la siguiente solución BF, que incluye cambiar una variable no básica a básica y viceversa.
- En el ejemplo: Ya que $Z = 3x_1 + 5x_2$ indica que al aumentar x_1 o x_2 el valor de Z aumenta, la solución BF no es la óptima. En la tabla tenemos la ecuación $Z 3x_1 5x_2$ o los coeficientes -3 y -5 del renglón 0.

Iteración.

- Paso 1:
 - Se determina la variable básica entrante con el coeficiente negativo que tiene el mayor valor absoluto de la ecuación (0).
 - Se pone un recuadro alrededor de la columna abajo de este coeficiente y se le da el nombre de columna pivote.
 - En el ejemplo: El coeficiente más negativo es -5 para x_2 (5>3), de manera que x_2 debe convertirse en variable básica.

Cuadro: Aplicación de la prueba del cociente mínimo para determinar la primera variable básica saliente en el problema.

Var.	Ec.		Со	efici	ente	de:		Lado	Cociente	
básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	X 3	X 4	X 5	derecho	Oociente	
Z	(0)	1	-3	-5	0	0	0	0		
<i>X</i> 3	(1)	0	1	0	1	0	0	4		
<i>X</i> ₄	(2)	0	0	2	0	1	0	12	$12/2 = 6 \leftarrow min$	
<i>X</i> ₅	(3)	0	3	2	0	0	1	18	18/2 = 9	

- Paso 2: Se determina la variable básica que sale con la prueba del cociente mínimo.
 - Elegir los coeficientes estrictamente positivos de la columna pivote.
 - ② Dividir el elemento del lado derecho del mismo renglón entre dicho coeficiente.
 - Identificar el renglón que tiene el menor de estos cocientes.
 - 4 La variable básica de ese renglón es la variable básica que sale.
- Poner un recuadro en ese renglón, el cual se llama renglón pivote.
- El número que se encuentra en ambos recuadros se llama número pivote.

Cuadro: Los cálculos de la prueba de cociente mínimo muestran que el renglón 2 es renglón pivote, mientras que x_4 es la variable básica que sale.

Var.	Ec.		Co	Lado				
básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	derecho
Z	(0)	1	-3	-5	0	0	0	0
<i>X</i> ₃	(1)	0	1	0	1	0	0	4
<i>X</i> ₄	(2)	0	0	2	0	1	0	12
<i>X</i> ₅	(3)	0	3	2	0	0	1	18

Iteración.

- Paso 3:
 - Se despeja la nueva solución BF mediante operaciones elementales con renglones para construir una nueva tabla símplex en la forma apropiada de eliminación Gaussiana.
 - Dicha tabla se construye abajo de la tabla actual.
 - Después, se regresa a la prueba de optimalidad.

Cuadro: Tabla símplex del problema después de divir el primer renglón pivote entre el primer npumero pivote.

Iteración	Var.	Ec.		Co	efici	ente	de:		Lado	
iteración	básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	derecho	
	Ζ	(0)	1	-3	-5	0	0	0	0	
0	<i>X</i> ₃	(1)	0	1	0	1	0	0	4	
U	<i>X</i> ₄	(2)	0	0	2	0	1	0	12	
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18	
	Ζ	(0)	1			•				
4	<i>X</i> ₃	(1)	0							
ı	<i>X</i> 5	(2)	0	0	1	0	1/2	0	6	
	<i>X</i> 5	(3)	0							

Cuadro: Primeras dos tablas del problema.

Iteración	Var.	Ec.		Co		Lado			
iteración	básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	derecho
	Ζ	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>X</i> ₄	(2)	0	0	2	0	1	0	12
	<i>X</i> 5	(3)	0	3	2	0	0	1	18
	Ζ	(0)	1	-3	0	0	5/2	0	30
4	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
1	<i>X</i> ₅	(2)	0	0	1	0	1/2	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6

Cuadro: Pasos 1 y 2 de la iteración 2 del problema. En este paso, x_1 entra a la base y x_5 es la variable que sale.

Iter.	Var.	Ec.		Co	efic	iente	de:		Lado	Cociente
itei.	básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	der.	Oooleitte
	Z	(0)	1	-3	-5	0	0	0	0	
0	<i>X</i> ₃	(1)	0	1	0	1	0	0	4	
	<i>X</i> ₄	(2)	0	0	2	0	1	0	12	
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18	•
	Ζ	(0)	1	-3	0	0	5/2	0	30	
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4	4/1 = 4
'	<i>X</i> ₅	(2)	0	0	1	0	1/2	0	6	
	<i>X</i> 5	(3)	0	3	0	0	-1	1	6	6/3 = 2 ←

Cuadro: Tabla símplex completa para el problema.

Iter.	Var.	Ec.		С	oefic	cient	e de:		Lado
itei.	básica	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	der.
	Ζ	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>X</i> ₄	(2)	0	0	2	0	1	0	12
	<i>X</i> 5	(3)	0	3	2	0	0	1	18
	Ζ	(0)	1	-3	0	0	5/2	0	30
1	<i>X</i> 3	(1)	0	1	0	1	0	0	4
	<i>X</i> ₅	(2)	0	0	1	0	1/2	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6
	Ζ	(0)	1	0	0	0	3/2	1	36
2	<i>X</i> ₃	(1)	0	0	0	1	1/3	-1/3	2
2	<i>X</i> 5	(2)	0	0	1	0	1/2	0	6
	<i>X</i> 5	(3)	0	1	0	0	-1/3	1/3	2

- Al hacer la prueba de optimalidad se encuentra que la solución es óptima por que no hay coeficientes negativos en el renglón 0, de manera que el proceso termina.
- Por lo tanto, la solución óptima del problema de la Wyndor Glass
 Co. es x₁ = 2 y x₂ = 6.

$$\max_{x_1, x_2, x_3} \quad Z = 4x_1 + 3x_2 + 6x_3$$
s. a.
$$3x_1 + x_2 + 3x_3 \le 30$$

$$2x_1 + 2x_2 + 3x_3 \le 40$$

$$x1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$\max_{x_1, x_2, x_3} \quad Z = 3x_1 + 5x_2 + 6x_3$$
s. a.
$$2x_1 + x_2 + x_3 \le 4$$

$$x_1 + 2x_2 + x_3 \le 4$$

$$x_1 + x_2 + 2x_3 \le 4$$

$$x_1 + x_2 + x_3 \le 3$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$