Laurent series

Consider a function f(z) that is not analytic at the points z_0 , z_1 , z_2 , z_3 , ..., z_k . Then we expand the function f(z) at any point say z_0 in a series which contains both positive and negative powers of z- z_∞ . This series is called as the Laurent series of the f(z).

Consider power series of the form

$$\sum_{n=0}^{\infty} C_n (z - z_0)^n \quad - - - \longrightarrow (1)$$

$$\sum_{n=0}^{\infty} \frac{C_n}{(z-z_0)^n} \quad ---- \to (2)$$

Let radius of convergence of the series (1) is r_1 and this series converges to some analytic function $f_1(z)$

$$\therefore f_1(z) = \sum_{n=0}^{\infty} C_n (z-z_0)^n, |z-z_0| < r_1$$

Let $\xi = \frac{1}{z - z_0}$ then (2) $\Rightarrow \sum_{n=0}^{\infty} C_n \xi^n$ which is a power series in ξ and converges to some analytic

function $\phi(\xi)$ within its circle of convergence. Let its radius of convergence $\frac{1}{r_2}$.

$$\Rightarrow . f_2(z) = \sum_{n=0}^{\infty} \frac{C_n}{(z-z_0)^n} , |z-z_0| > r_2$$

Thus the region of convergence of the series (2) is the region exterior to the circle $|z-z_0| > r_2$. Let $r_1 < r_2$. Then the intersection of two regions of convergence is $r_1 > |z-z_0| > r_2$. Therefore the series of positive & negative powers of $(z-z_0)$ converges in $r_1 > |z-z_0| > r_2$ to analytic function $f_1(z) + f_2(z)$

i.e.
$$f(z) = f_1(z) + f_2(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n$$
, $r_1 > |z - z_0| > r_2$

This series is called as Laurent series.

Laurent Series:-

Let C_1 and C_2 denote the concentric circles $|z - z_0| = r_1$ and $|z - z_0| = r_2$ respectively with $r_1 < r_2$. Let f(z)be analytic in a region containing the circular annulus $r_1 < |z - z_0| < r_2$. Then f (z) be represented as convergent series of positive and negative powers of z -z₀ given by

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=0}^{\infty} \frac{b_n}{(z - z_0)^n}$$

Where
$$a_n = \frac{1}{2\pi i} \int_{c_2}^{\infty} \frac{f(z)dz}{(z-z_0)^{n+1}}$$
, $b_n = \frac{1}{2\pi i} \int_{c_1}^{\infty} \frac{f(z)dz}{(z-z_0)^{n-1}}$

Note:

- 1) The Coefficients of the positive powers of $z z_0$. In the Laurent series cannot be replaced by the derivative expressions $\frac{f^{(n)}(z_0)}{z}$, although they are identical in form as in Taylor Series, since f (z) is not analytic throughout the region inside c₂ & the Cauchy integral formula for derivatives cannot be used.
- 2) In the Laurent series let $r_1 \rightarrow 0$. Then f (z) is analytic in $|z z_0| < r_2$ except at z_0 .
 - ∴ The region of convergence is $0 < |z z_0| < r_2$. If f (z) is analytic at z_0 also then the Laurent Series is the same as Taylor Series.
- 3) In Laurent Series, let $r_2 \to \infty$, r then the region of convergence is $|z z_0| < r_1$.
- 4) Laurent Series expansion of f (z) in the annulus region $r_1\!>\!|z-z_0|\>>\!r_2\>\>\>\>\>$ is unique.

Example 1: Obtain the Laurent series expansion of the following series about the given point

$$f(z) = \frac{1}{z^2 - 3z + 2}$$

Solution:
$$f(z) = \frac{1}{(z-1)(z-2)} \Rightarrow \text{Singular points are } 1 \& 2$$

f (z) is analytic within the region |z| < 1, 1 < |z| < 2 & |z| > 2

$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = \frac{1}{-2(1-\frac{z}{2})} + \frac{1}{1-z} = -\frac{1}{2}(1-\frac{z}{2})^{-1} + (1-z)^{-1}$$

$$= \frac{-1}{2} \left[1 + \frac{z}{2} + \frac{z^{2}}{2} + \frac{z^{3}}{2} + \frac{z^{4}}{2} + \dots \right] + \left[1 + z + z^{2} + z^{3} + z^{4} + \dots \right] = \left[\frac{1}{2} + \frac{3z}{4} + \frac{7z^{2}}{8} + \frac{15z^{4}}{16} + \dots \right]$$

 \therefore f (z) has Taylor expansion in region | z | < 1

Outer radius =C2

Inner radius = C₁