Corrigé-barème IE3

Ne pas hésiter à mettre des bonus pour tout commentaire intelligent ...

... ou des malus pour tout résultat manifestement aberrant sans commentaire.

Exercice 1 (2 pts) Mettre 0 a toute expression non homogène	
Expression correcte de $Z_R=R$, $Z_L=jL\omega$ et $Z_C=1/jC\omega$	0.5
Association correcte en parallèle $1/\underline{Z1}$ =(1/R)+ jC ω et en série (Z _{AD} =Z _L +Z1)	0.5
ω =2 π f	0.5
\underline{Z}_{AD} =jL2 π f +R/(1+ jRC2 π f)	0.5

	Exercice 2 (8 pts + 1pt bonus) (Dans toutes les AN accepter 2 ou 3c.s seulement)	
1.1	$I = E/(R_M + R_f)$	1
1pt	Mettre 0/1 si justification incomplète : pas de loi des mailles ou si les tensions	
	utilisées ne sont pas définies sur un schéma	
1.2	interprétation du texte : il faut U _{min} ≤U _M ≤U _{max}	0.25
2 pt	avec U _M =R _M I (définie sur schéma en conv. récepteur)	0.25
	Si L \uparrow , R _f \uparrow donc U _M \downarrow , donc il faut U _M = R _M E/(R _M +R _f) \geq U _{min}	0.25 +0.25
	Et $R_{fmax} = R_M[E/U_{min}-1]$	0.25
	Or $R_{fmax} = 2L_M \rho/S$ donc $L_M = SR_M(E/U_{min}-1)/(2*\rho)$ (Enlever 0,25 si facteur 2 oublié)	0.5
	A.N.: $(R_{fmax}=2,1\Omega \text{ pas demandée})$ $L_{M}=0,12 \text{ km}$ (accepter 0,24 km si facteur 2 oublié)	0.25
1.3	La source est idéale si I<8A. Or I est maximum si L minimum et Rf=0	0.5
1pt	Dans ce cas I=E/R _M = 5A (< 8 A alors ça marche)	0.5
2.1	F	
2 pt		
		0.5
	$R_{M} \to R_{M} \to R_{f} \to R_{f}$	
	Calcul du courant : $I=E/(2R_M+R_f)$	0.5
	Calcul de la tension aux bornes d'un appareil : $U_M = R_M E/(2R_M + R_f) = 107 \text{ V}$	0.5
	inférieur à U_{min} si longueur de fil égale à L_M donc disfonctionnement	0.5
2.2	E	
2pt		
		0.5
		0.5
	$R_{M} \rightarrow R_{f}$	
	Calcul du courant total (association simple série parallèle)	0.5
	$I=E/(R_M/2+R_f)=9.1 \text{ A}$ Mettre 0/0.5 si justification incomplète	0.5
	Calcul de la tension aux bornes des appareils :	0.5
	$R_{M} E/2(R_{M}/2+R_{f}) = 201 V < 210 V$	0.5
	En fait dans ce cas non seulement la ddp aux bornes des appareils est trop faible et	0.25
	en plus le courant total dépasse les 8 A.	0.25
2.3	Utilisation de deux alimentations et deux rallonges pour que la tension aux bornes	
bonus	de l'appareil soit juste égale à 210V et que le courant maximum dans chaque	1 bonus
	alimentation ne dépasse pas 8 A	
	Exercice 3 (10 pts)+Bonus: 1 (Dans toutes les AN accepter 2 ou 3c.s seulement)	1
1a	$u_D=0$, $i_D>0$	0.25
1a 0.5pt	On peut remplacer la diode par un fil	0.25
1b	$i_D=0 \Rightarrow u_D<0$	0.25
ΤN	ID-U -/ UD\U	0.23

0,5pt	On peut remplacer la diode par un circuit ouvert	0.25
1c	Cas a: loi des mailles => R_{Mi_D} =-E: impossible car I_D , R et E sont tous positifs	0.5
1pt	Cas b : loi des mailles => u _p =-E : possible car E>0	0.25
"-	(Si les arguments précédents sont dans les questions 1a et 1b mettre les pts !)	
	=> on est forcément dans le cas b : i _D =0, K fermé => circuit équivalent à fig 3bis	0.25
2a	Rédaction : Utilisation de la loi des mailles avec $u_L=Ldi/dt$ et $U_R=R_L$ i avec i, U_R et	0.5
1pt	U _L <u>définis sur le schéma</u> . <i>Mettre 0 si rédaction incomplète ou pas de schéma</i>	
	définissant les grandeurs.	
		0.5
2b	$E=R_Li(t)+Lrac{di(t)}{dt}$ ou di/dt+i/ $ au$ =0, $ au$ =L/R _L Explication de la méthode : i(t)=i_P (particuliere) +i_H (homogène associée)	0.25
1.5pt	i(t)=Kexp(-t/ τ)+E/R _L (τ =L/R _L)	0.25
1.5μι	condition initiale: courant continu dans la bobine i(0)=0 => K=-E/R _L	0.5
		0.25+0.25
	$i(t) = \frac{E}{R_L} (1 - \exp(-t/\tau))$	0.25
2c	(Non demandé : Temps caractéristique : τ=L/(R _L)= 2s Valeur maximale : E/R _L =10A)	
1pt +	Graphique avec noms des axes + valeur maximale asymptotique = E/R _L et i(0)=0	0.5
bonus	+allure correcte	
	Visualisation du temps caractéristique (à quelques τ l'asymptote est presque	Bonus 0.5
	atteinte). Pas d'échelle requise il s'agit d'un graphique qualitatif.	
	Si t->∞, on est en régime permanent, la bobine se comporte comme un fil: I=E/R _L	0.5
2d	i=u _R /R se visualise grâce à u _R (qu'on ne peut pas obtenir directement à cause des	0.5
1pt	masses).	
	Pt au dessus de E =>CH1 Pt au dessus de L =>CH2	0.25
	(masse commune, synchronisation sur CH1)	
	Menu Math : CH1-CH2 =>Tension proportionnelle à i(t)	0.25
	Mettre 0/1 si pb de masse, mais accepter un circuit avec R et L inversés (si les	
	branchements sont corrects).	
3a	Le courant dans le bobine étant continu, on a à t=0 un courant i(0)=10A qui passe	0.5
1.5pt	dans la bobine vers le bas. L'interrupteur étant ouvert, celui-ci passe donc	
	forcément dans la diode (i=i _D) et l'ampoule.	
	I(0) > 10A la lampe s'allume donc au moins à t=0	0.5
	(Accepter toute autre explication impliquant la continuité du courant dans la bobine,	
	comme : i diminue à partir de i(0+)=i(0-)=E/R donc une ddp négative apparait aux bornes	
	de la bobine. Et le courant peut passer dans la diode. Si cette ddp est suffisamment importante alors le courant peut dépasser Imin nécessaire à l'éclairage de la lampe.)	
	Et on a bien $i=i_D>0$, la diode est donc passante équivalente à un fil, c.a.d. $u_D=0$	
	Schéma (avec diode =fil car $i_D>0$ donc $u_D=0$)	
		0.5
3b	Noter la qualité et la fluidité du raisonnement : Il faut que soient identifiés ce	
2pt	qu'on cherche (t_0) , le moyen pour l'obtenir $(i(t_0)=I_{min})$ et la méthode : trouver	1
	l'expression de i en fct du temps -> résoudre une eq diff.	
	Noter ensuite la rédaction rigoureuse de chaque étape (obtention de l'eq diff,	1
	résolution, expression de t_0)	
	Eléments de réponse :	
	$-R_M i(t) = R_L i(t) + L \frac{di(t)}{dt} \text{ou} \text{di/dt+i/} \tau_1 = 0, \tau_1 = L/(R_L + R_M)$	
	$i(t)=i(0)\exp(-t/\tau)$ car i bobine continu	
	$E = \frac{(R_M + R_L)t}{t}$	
	Avec $I(0)=E/(R_L)$ ou $I(t)=\frac{1}{R_L}e^{-L}$	
	Avec i(0)=E/(R _L) ou $i(t) = \frac{E}{R_L} e^{-\frac{(R_M + R_L)t}{L}}$ On cherche le temps t_0 tel que i(t_0)=0.010 A. Soit t= τ_1 ln[i(0)/I _{min}] =6.9 s	
4		
4 bonus	On cherche le temps t_0 tel que $i(t_0)=0.010$ A. Soit $t=\tau_1 \ln[i(0)/I_{min}]=6.9$ s Eviter la formation d'un arc sur l'interrupteur (par exemple) ; Indiquer par un	0.5
	On cherche le temps t_0 tel que $i(t_0)=0.010$ A. Soit $t=\tau_1 \ln[i(0)/I_{min}]=6.9$ s	0.5
	On cherche le temps t_0 tel que $i(t_0)$ =0.010 A. Soit t= τ_1 ln[$i(0)$ / I_{min}] =6.9 s Eviter la formation d'un arc sur l'interrupteur (par exemple); Indiquer par un signal lumineux la coupure de l'alimentation E; Dans une voiture, allumer la	0.5