2-26-15

1 Functions, Function Notation, and the Graph of a Function (Section 2.4)

Function - a function is a set of ordered pairs (x, y) in which each first coordinate is paired with only one second coordinate

Vertical Line Test: - a nice, easy, graphical test to determine if a graph is a function. It says that a graph of an equation is a function if every vertical line intersects the graph in at most one point.

Graph That Passes the Vertical Line Test:

Graph That Fails the Vertical Line Test:

Domain - the set of numbers that you can input into your function

Note: Usually you need to be careful of two types of functions:

1. Finding the Domain of the Square Root Function: $f(x) = \sqrt{x}$

If you have a function of the form \sqrt{STUFF} you then solve the inequality

to find the domain of the function.

2. Finding the Domain of a Rational Function: $f(x) = \frac{P(x)}{R(x)}$

A rational function is of the form $f(x) = \frac{P(x)}{R(x)}$ where P(x) and R(x) are

polynomial. The domain of a rational function is all reals except for R(x)=0.

What this means is that to find the domain of a rational function you set the denominator equal to 0 and solve that. You then exclude those values from the domain of your function.

Note: Sometimes you might see a combination of both. For example, find the domain

of
$$f(x) = \frac{-1}{\sqrt{x+8}}$$
. We do this by solving $x+8>0$

Graphically, you can determine the domain by scanning along the x-axis and seeing what x-values the function is not defined for.

Range - the set of numbers that are output from a function. Often harder to determine than the domain, we can determine the range graphically by scanning along the y-axis and seeing what y-values the function is not defined for.

2 Analyzing the Graph of a Function (Section 2.5)

Even & Odd Functions

Even Function - a function is *even* if f(-x) = f(x) Even functions are always symmetric about the y-axis.

Odd Function - a function is *odd* if f(-x) = -f(x) Odd functions are always symmetric about the origin.

Increasing: A function f is increasing on an interval I if for any x_1, x_2 in I with $x_1 < x_2 \implies f(x_1) < f(x_2)$

Decreasing: A function f is decreasing on an interval I if for any x_1, x_2 in I with $x_1 < x_2 \implies f(x_1) > f(x_2)$

Constant: A function f is constant on an interval I if for all x_1, x_2 in $I \implies f(x_1) = f(x_2)$

3 The Toolbox Functions and Transformations (Section 3.1)

3.1 Transformations

Vertical Shifts: Let c > 0

1.
$$y = f(x) + c$$
 shifts $f(x)$ c units up

2.
$$y = f(x) - c$$
 shifts $f(x)$ c units down

Horizontal Shifts: Let c > 0

1.
$$y = f(x+c)$$
 shifts $f(x)$ c units left

2.
$$y = f(x - c)$$
 shifts $f(x)$ c units right

Reflections:

1.
$$y = -f(x)$$
 reflects $f(x)$ about the x-axis

2.
$$y = f(-x)$$
 reflects $f(x)$ about the y-axis

Vertical Stretch & Shrink:

Let
$$c > 0$$
. We consider $y = cf(x)$

1.
$$c>1$$
 \longrightarrow stretch $f(x)$ vertically by a factor of c

2.
$$0 < c < 1 \rightarrow \text{shrink } f(x)$$
 vertically by a factor of c

Horizontal Stretch & Shrink:

Let
$$c > 0$$
. We consider $y = f(cx)$

1.
$$c > 1$$
 \longrightarrow shrink $f(x)$ horizontally by a factor of c

2.
$$0 < c < 1 \rightarrow \text{stretch } f(x)$$
 horizontally by a factor of c

Order of Transformations:

- 1. Horizontal Shift
- 2. Stretch/Shrink
- 3. Reflections
- 4. Vertical Shift

Graphs of Common Functions with Their Domain and Range

Graph of Quadratic Function $y=x^2$

Domain: $(-\infty,\infty)$

Range $y \ge 0$

Graph of Cubic Function $\mathbf{y} = \mathbf{x}^3$

Domain: $(-\infty,\infty)$

Range $(-\infty,\infty)$

Graph of Absolute Value $\mathbf{y} = |\mathbf{x}|$

Domain: $(-\infty,\infty)$

Range $y \ge 0$

Graph of Square Root $y=\sqrt{x}=x^{1/2}$

Domain: $x \ge 0$

Range $y \ge 0$

Graph of Cubic Root Function $\mathbf{y} = \sqrt[3]{x} = \mathbf{x}^{1/3}$

Domain: $(-\infty, \infty)$

Range $(-\infty,\infty)$

Graph of the Reciprocal Function $y=rac{1}{x}$

Domain: $(-\infty,0)\cup(0,\infty)$

Range $(-\infty,0) \cup (0,\infty)$