AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

Claims 1-28. (Cancelled)

 (Currently Amended) Compounds having an anti-parasitic, in particular antimalarial, activity characterized in that they correspond to general formula (I)

$$X-(NH)_n$$
 $-C$
 $-N$
 $-Y$
 R_2
 (1)

in which

either X represents a group of formula (II)

$$N \sim R'_1$$
 $| | | -Z - (NH)_n - C - N - R'_3 \quad (II)$

where Z is a $-(CH_2)_m$ group, with m = 8 to 21,

n = 0 or 1

and $Y = R_3$,

R₁ and R'₁, identical to or different from one another, being chosen from H, alkyl, OH, O-alkyl, O-aryl, O-CO-alkyl, O-CO-aryl, OSO₂-alkyl, OSO₂-aryl, OSO₂- heterocycle,

VIAL et al.

Appl. No. 10/521,329 Attv. Ref.: 1721-83

Amendment

December 23, 2008

O-CO-O(or S or NH)-alkyl, O-CO-O(or S or NH)-aryl, PO(O-alkyl or O-aryl)2, CO-O-

CH2-aryl, cycloalkyl,

R₂ and R'₂, identical to or different from one another, being chosen from H. alkyl.

CO-O-CH2-aryl, CO-O-alkyl, cycloalkyl,

R₃ and R'₃, identical to or different from one another, representing H, alkyl, CO-

O-aryl, COO-CH(R)-O-CO-alkyl, PO(O-alkyl or O-aryl or ONa)2, CO-O-CH(R)-aryl,

R being H or alkyl,

[[or]]and

R₁ and R₂, and/or R'₁ and R'₂, or R₂ and R₃ and/or R'₂ and R'₃, together form a

mono heterocycle with the nitrogen atom or atoms to which they are respectively

attached, or also,

R₂ and R₃ and/or R'₂ and R'₃ can be the same substituent, double-bonded to the

nitrogen, cyclized with, respectively, R₁ or R'₁ in order to form a heterocycle, if

appropriate substituted by $R_{\text{a}}\text{,}$ which is chosen from H, alkyl, alkyl substituted by 1, 2 or

3 halogen atoms, aryl, CO-O-alkyl (or aryl), -CO-OH, -CO-NH2, -CN, -CO-NH-alkyl (or

aryl), -CO-N-(alkyl)2, nitrogenated and/or oxygenated -CO-heterocycle, NH(H or alkyl),

N(alkyl)₂, nitrogenated and/or oxygenated heterocycle, -O-alkyl (or aryl), -O-CH₂-aryl,

 $CH_2N[H,\,(H,\,alkyl),\,(dialkyl),\,aryl],\,nitrogenated\,\,and/or\,\,oxygenated\,\,-CH_2-heterocycle,$

CH2-CO-OH,

- 4 -

1419026

or X = R₄ and Y represents a group of formula (III)

$$\begin{array}{c|c} & N \\ N \\ \parallel \\ -Z - N - C - (NH)_n - R'_4 \text{ (III.)} \end{array}$$

with n and Z as defined above.

R₄-and R'_{1,7}-identical-to-or-different from one another, being chosen from H, alkyl, OH, O alkyl, O anyl, OCO alkyl, OCO aryl, OSO₂-alkyl, OSO₂-aryl, OSO₂-heterocyle, OCO O(or S or NH) alkyl, OCO O(or S or NH) aryl, PO(O alkyl or O aryl)₂, CO OCH₂-aryl, cycloalkyl,

R₄ and R'₄ represent an H, alkyl or aryl, which can be substituted by OH, O alkyl,
O aryl, NH (H or alkyl), nitrogenated or oxygenated heterocycle, and

R₂-and-R'_{2r}-identical to or differenct from one another, being chosen-from H, alkyl, CO-O-CH₂-aryl, CO-O-alkyl, cycloalkyl, or

 R_4 -and R_4 -and/or R_1 -and $R_{1\pm}$ -together form $a = (CH_2)_p$ group, p being an integer from 1 to 5, one or several hydrogen atoms being optionally changed for a lower alkyl and R_2 -and R_2 -representing H, or R_4 and R_2 and/or R_4 and R_2 -together from a = (CH2)p group, one or several H being optionally changed for a lower alkyl, R_4 and R_4 -representing [f, H, I] and the pharmacologically acceptable salts of these compounds.

with the proviso that n is not zero when Z is (CH₂)_m and m=10, and both oxadiazoles are substituted by Me(CH₂)₈, and

with the proviso that said compounds are not 1,8-bis [3- (5-amino-1,2,4 triazolvl)octane; 1,12-Bis(2-amino-3,4,5,6-tetrahydropyrimidyl)dodecane diacetate; 1,12-Bis(2amino-3,4,5,6-tetrahydropyrimidyl)dodecane dihydroiodide or tetrapyrimidinyl
derivatives linked by a group Z=(CH₂)₁₀.

 (Previously Presented) Compounds according to claim 29, characterized in that they correspond to formula (IV)

 (Previously Presented) Compounds according to claim 30, characterized in that they correspond to formula (V)

 (Previously Presented) Compounds according to claim 31, characterized in that R₁, R₁, R₂, R₃ and R₃ are independent of one another.

- 33. (Previously Presented) Compounds according to claim 32, characterized in that R₁ and(/or) R'₁ are as defined above, but do not represent a hydrogen atom, whilst R₃ and/or R'₃, R₂ and/or R'₂, represent a hydrogen atom, R₁, R₂ and R₃.
- 34. (Previously Presented) Compounds according to claim 33, characterized in that R_1 and/or R'_1 , and R_2 and/or R'_2 represent a hydrogen atom, whilst R_3 and/or R'_3 are as defined above, but different from a hydrogen atom.
- 35. (Previously Presented) Compounds according to claim 31, characterized in that
 - R₁ and R₂, and/or R'₁ and R'₂, or
 - R₂ and R₃, and/or R'₂ and R'₃, or
 - R₁, R₂ and R₃ and/or R'₁, R'₂ and R'₃ together form a heterocycle.
- 36. (Previously Presented) Compounds according to claim 35, characterized in that R₁ and R₂ as well as R'₁ and R'₂ form a heterocycle and correspond to formula (VI).

$$\begin{pmatrix} R_{1} & R_{1} \\ N & N \\ N & N \\ N_{2} - N - C - Z - C - N - R_{2} \\ R_{3} & R_{3} \end{pmatrix}$$
 (VI)

 (Previously Presented) Compounds according to claim 35, characterized in that they correspond to formula (VII)

38. (Previously Presented) Compounds according to claim 36, characterized in that formula (VI) R_1 and R_2 and/or R'_1 and R'_2 together form an –O-CO-, O-SO-, O-CS, S-CO or –S-CS group, and R_3 and/or R'_3 represent a hydrogen atom.

- 39. (Previously Presented) Compounds according to claim 36, characterized in that R_1 and R_2 , and/or R'_1 and R'_2 represent an optionally branched alkylene group and R_3 and/or R'_3 represent –CO-O-alkyl (or aryl), -CO-O-CH₂-aryl, CO-O-CH(alkyl)-O-CO-alkyl, PO(O-alkyl or -aryl)₂, alkyl or H.
- 40. (Currently Amended) Compounds according to claim 37, characterized in that R_1 and/or R'_1 represent a hydrogen atom, and R_2 and R_3 , and/or R'_2 and/or R'_3 represent a $-(CH_2)_{o^-}$ group, wherein p is an integer from 1 to 5.
- 41. (Currently Amended) Compounds according to claim 30, characterized in that R₂ and R₃ and/or R'₂ and R'₃ form a same substituent and form together with R₁ or respectively R'₁ a bis-oxadiazole of formula (VIIII[.]))

$$R_a$$
 N Z N R_a $(VIII)$

in which R_a is as defined above.

VIAL et al.

Appl. No. 10/521,329 Atty. Ref.: 1721-83

Amendment

December 23, 2008

Claims 42-52. (Cancelled)

53. (Previously Presented) Pharmaceutical compositions, characterized in that

they contain an effective quantity of at least one compound as defined in claim 29 in

association with an inert pharmaceutical vehicle.

54. (Previously Presented) Pharmaceutical compositions according to claim 53,

characterized in that they can be administered by oral route, by injectable route, or also

by rectal route.

55. (Currently Amended) Pharmaceutical [[C]]compositions according to claim

53 for the treatment of infectious diseases, in particular malaria.

Claims 56-57. (Cancelled)