UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA Microeconometria – 2015/3

LISTA DE EXERCÍCIOS

Autor: Paulo Ferreira Naibert Professor: Hudson Torrent

Porto Alegre 25/06/2020 Revisão: 30 de junho de 2020

1 Panel Data and FGLS

Questão 1: Estabeleça o modelo de equações lineares, definindo a notação matricial para dados em painel. Explique quais as hipóteses adequadas para a implementação do estimador GLS em um sistema de dados de painel. Explique como implementear esse estimador na prática (FGLS). Explique também como calular a matriz de covariância de $\hat{\beta}_{FGLS}$.

Modelo de equações lineares

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{u}_i,$$

com $i=1,\ldots,N$. Cada i tem G=T equações temporais. G=T para dados em painel, onde T é o número de equações temporais.

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$$

= $x_{i1}\beta_1 + \dots + x_{iK}\beta_K + u_{it}$

com
$$i = 1, ..., N$$
 e $t = 1, ..., T$.

Em notação matricial para um painel:

$$X_i = (x_{i1}, x_{i2}, \dots, x_{it})$$

Um exemplo de equação com intercepto mais 3 variáveis num intervalo de tempo com T=5:

$$\begin{bmatrix} y_{i1} \\ y_{i2} \\ y_{i3} \\ y_{i4} \\ y_{i5} \end{bmatrix} = \begin{bmatrix} 1 & x_{1i1} & x_{2i1} & x_{3i1} \\ 1 & x_{1i2} & x_{2i2} & x_{3i2} \\ 1 & x_{1i3} & x_{2i3} & x_{3i3} \\ 1 & x_{1i4} & x_{2i4} & x_{3i4} \\ 1 & x_{1i5} & x_{2i5} & x_{3i5} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix}$$

para i = 1, ..., N. Podemos generalizar o modelo acima para K variáveis e T períodos de tempo.

Hipóteses

Para implementarmos o estimador de GLS precisamos das seguintes hipótese:

1. $E(X_i \otimes \boldsymbol{u}_i) = 0$.

Para SGLS ser consistente, precisamos que u_i não seja correlacionada com nenhum elemento de X_i .

2. Ω é positiva definida (para ter inversa). $E(X_i'\Omega^{-1}X_i)$ é **não** singular (para ter invesa). Onde, Ω é a seguinte matriz **simétrica**, positiva-definida:

$$\Omega = E(\boldsymbol{u}_i \boldsymbol{u}_i').$$

Estimação

Agora, transformamos o sistema de equações ao realizarmos a pré-multiplicação do sistema por $\Omega^{-1/2}$:

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{u}_i$$

 $\boldsymbol{y}_i^* = X_i^* \boldsymbol{\beta} + \boldsymbol{u}_i^*$

Estimando a equação acima por SOLS:

$$\begin{split} \beta^{SOLS} &= \left(\sum_{i=1} X_i^{*'} X_i^*\right)^{-1} \left(\sum_{i=1} X_i^{*'} \boldsymbol{y}_i^*\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} \boldsymbol{y}_i\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1} \boldsymbol{y}_i\right) \end{split}$$

FSGLS: SGLS Factivel

Para obtermos β^{SGLS} precisamos conhecer Ω , o que não ocorre na prática. Então, precisamos estimar Ω com um estimador consistente. Para tanto usamos um procedimento de dois passos:

- 1. Estimar $y_i = X_i \beta + u_i$ via **SOLS** e guardar o resíduo estimado \hat{u}_i .
- 2. Estimar Ω com o seguinte estimador $\widehat{\Omega}$:

$$\widehat{\Omega} = N^{-1} \sum_{i=1}^{N} \boldsymbol{u}_i \boldsymbol{u}_i'$$

Com a estimativa $\widehat{\Omega}$ feita, podemos obter β^{FSGLS} pela fórmula do β^{SGLS} :

$$\beta^{FGLS} = \left[\sum_{i} X_{i}' \widehat{\Omega}^{-1} X_{i}\right]^{-1} \left[\sum_{i} X_{i}' \widehat{\Omega}^{-1} \boldsymbol{y}_{i}\right]$$

Empilhando as N observações:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) \boldsymbol{y} \right]$$

Reescrevendo a equação acima:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) (X\beta + u) \right]$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left\{ \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X\beta \right] + \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}$$

$$= \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Valor Esperado

$$E(\beta^{FGLS}) = \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Concluímos que, se $\widehat{\Omega} \xrightarrow{p} \Omega$, então, $\beta^{FSGLS} \xrightarrow{p} \beta$,

Variância

$$Var(\beta^{FGLS}) = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \left\{ \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}'$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u u' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right] \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1}$$

Tirando o valor Esperado e supondo que:

$$E(X_i\Omega^{-1}u_iu_i'X_i) = E(X_i\Omega^{-1})$$

temos:

$$E\left[X'\left(I_N\otimes\widehat{\Omega}^{-1}\right)uu'\left(I_N\otimes\widehat{\Omega}^{-1}\right)'X\right] = E(X'\Omega^{-1}X)$$

e temos:

$$Var(\beta^{FSGLS}) = \left[E(X'\Omega^{-1}X\right]^{-1}.$$

2 Endogeneity and GMM

Questão 2: Explique o problema de endogeneidade. Ressalte quais características um bom instrumento deve possuir. A partir da explicação, motive e estabeleça o estimador \mathbf{GMM} para dados em painel. Qual a variância assintótica desse estimador? Qual a escolha ótima de W? Indique quem é W a fim de que o estimador de \mathbf{GMM} coincida com o estimador de $\mathbf{Variáveis}$ Instrumentais.

Modelo

No seguinte modelo cross-section:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i \; ; \quad i = 1, \dots, N.$$
 (2.1)

A variável explicativa x_k é dita **endógena** se ela for correlacionada com erro. Se x_k for não correlacionada com o erro, então x_k é dita **exógena**.

Endogeneidade surge, normalmente, de três maneiras diferentes:

- 1. Variável Omitida;
- 2. Simultaneidade;
- 3. Erro de Medida.

No modelo (2.1) vamos supor:

- x_1 é exógena.
- x_2 é endógena.

Hipóteses

Assim, precisamos encontrar um instrumento z_i para x_2 , uma vez que queremos estimar β_0 , β_1 e β_2 de maneira consistente. Para z_i ser um bom instrumento precisamos que z tenha:

- 1. $Cov(z, \varepsilon) = 0 \implies z$ é exógena em (2.1).
- 2. $Cov(z, x_2) \neq 0 \implies$ correlação com x_2 após controlar para outras vaariáveis.

Estimação

Indo para o problema de dados de painel, temos:

$$\mathbf{y}_i = X_i \mathbf{\beta} + \mathbf{u}_i \; ; \quad i = 1, \dots, N. \tag{2.2}$$

onde y_i é um vetor $T \times 1$, X_i é uma matriz $T \times K$, β é o vetor de coeficientes $K \times 1$, u_i é o vetor de erros $T \times 1$.

Se é verdade que há endogeneidade em (2.2), então:

$$E(X_i'\boldsymbol{u}_i) \neq 0$$

Definimos Z_i como uma matriz $T \times L$ com $L \geq K$ de variáveis exógenas (incluindo o instrumento). Queremos acabar com a endogeneidade, ou seja:

$$E(Z_i' u_i) = 0$$

Supondo L = K (apenas substituímos a variável endógena por um instrumento).

$$E[Z'_{i}(\mathbf{y}_{i} - X_{i}\boldsymbol{\beta})] = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) - E(Z'_{i}X_{i})\boldsymbol{\beta} = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) = E(Z'_{i}X_{i})\boldsymbol{\beta}$$

$$\boldsymbol{\beta} = \left[E(Z'_{i}X_{i})\right]^{-1} \left[E(Z'_{i}\mathbf{y}_{i})\right]$$

Se Usarmos estimadores amostrais:

$$\hat{\boldsymbol{\beta}} = \left[N^{-1} \sum_{i=1}^{N} Z_i' X_i \right]^{-1} \left[N^{-1} \sum_{i=1}^{N} Z_i' \boldsymbol{y}_i \right]$$
$$\hat{\boldsymbol{\beta}} = (Z'X)^{-1} (Z'\boldsymbol{y})$$

Se L > K, vamos considerar:

$$\min_{\boldsymbol{\beta}} E(Z_i \boldsymbol{u}_i)^2$$

onde:

$$E(Z_i u_i)^2 = E[(Z_i u_i)'(Z_i u_i)] = (Z' y - Z' X \beta)'(Z' y - Z' X \beta)$$

= $y' Z Z' y - y' Z Z' X \beta - \beta' X' Z Z' y + \beta' X' Z Z' X \beta$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$-2\mathbf{y}'ZZ'X + 2\boldsymbol{\beta}'X'ZZ'X = 0$$
$$\boldsymbol{\beta}'X'ZZ'X = \mathbf{y}'ZZ'X$$
$$\boldsymbol{\beta}' = (\mathbf{y}'ZZ'X)(X'ZZ'X)^{-1}$$
$$\boldsymbol{\beta} = (X'ZZ'X)^{-1}(X'ZZ'\mathbf{y})$$

Um estimador mais eficiente pode ser encontrado fazendo:

$$\operatorname{Min}_{\boldsymbol{\beta}} E[(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})'W(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})].$$

Escolhendo \widehat{W} , a priori, temos:

$$\underset{\boldsymbol{\beta}}{\operatorname{Min}} \left\{ \boldsymbol{y}' Z \widehat{W} Z' \boldsymbol{y} - \boldsymbol{y}' Z \widehat{W} Z' X \boldsymbol{\beta} - \boldsymbol{\beta}' X' Z \widehat{W} Z' \boldsymbol{y} + \boldsymbol{\beta}' X' Z \widehat{W} Z' X \boldsymbol{\beta} \right\}$$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$\begin{aligned} -2 \mathbf{y}' Z \widehat{W} Z' X + 2 \boldsymbol{\beta}' X' Z \widehat{W} Z' X &= 0 \\ \boldsymbol{\beta}' X' Z \widehat{W} Z' X &= \mathbf{y}' Z \widehat{W} Z' X \\ \boldsymbol{\beta}' &= (\mathbf{y}' Z \widehat{W} Z' X) (X' Z \widehat{W} Z' X)^{-1} \\ \boxed{\boldsymbol{\beta}^{GMM} &= (X' Z \widehat{W}' Z' X)^{-1} (X' Z \widehat{W}' Z' \mathbf{y})} \end{aligned}$$

Valor Esperado

$$E(\boldsymbol{\beta}^{GMM}) = \boldsymbol{\beta} + E[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u})]$$

Variância

$$Var(\boldsymbol{\beta}^{GMM}) = E\left\{ \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right] \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right]' \right\}$$
$$= E\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'Z'\boldsymbol{u}\boldsymbol{u}'Z\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1} \right\}.$$

Definindo $\Delta = E(Z'uu'Z)$ com $\Delta = W^{-1}$:

$$\begin{split} Var(\pmb{\beta}^{GMM}) &= E\left\{(X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'W^{-1}\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1}\right\} \\ &= E\left\{(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'X)(X'Z\widehat{W}Z'X)^{-1}\right\}. \\ \\ \boxed{Var(\pmb{\beta}^{GMM}) = E\left[(X'Z\widehat{W}Z'X)^{-1}\right]}. \end{split}$$

Se tivéssemos definido $W=(Z'Z)^{-1},$ teríamos $\beta^{2SLS}.$

3 Random Effects (RE, EA)

Questão 3: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Efeitos Aleatórios** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo, enfatizando as característica do estimador GLS. Como podemos fazer inferência nesse caso?

Modelo

O modelo linear de **efeitos não observados**:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{3.1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a ser estimado. Para a análise de **Efeitos Aleatórios**, (**EA**) ou (**RE**), supomos que os regressões x_{it} são não correlacionados com c_i , mas fazemos hipóteses mais restritas que o **POLS**; pois assim exploramos a presença de **correlação serial** do erro composto por GLS e garantimos a consitência do estimador de FGLS.

Podemos reescrever (3.1) como:

$$y_{it} = \boldsymbol{x}_{it}\boldsymbol{\beta} + v_{it}, \tag{3.2}$$

onde $t=1,\ldots,T,\,i=1,\ldots,N$ e $v_{it}=c_i+u_{it}$ é o erro composto.

Agora, vamos empilhar os t's e reescrever (3.2) como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{v}_i, \tag{3.3}$$

onde $i = 1, \dots, N$ e $v_i = c_i \mathbf{1}_T + u_i$

Hipóteses de $\widehat{\boldsymbol{\beta}}^{RE}$

As Hipóteses que usamos para $\hat{\beta}^{RE}$ são:

- 1. Usamos o modelo correto e c_i não é endógeno.
 - a) $E(u_{it} | x_{i1}, \dots, x_{iT}, c_i) = 0, i = 1, \dots, N.$
 - b) $E(c_{it} | x_{i1}, \dots, x_{iT}) = E(c_i) = 0, i = 1, \dots, N.$
- 2. Posto completo de $E(X_i'\Omega^{-1}X_i)$.

Definindo a matriz $T \times T$, $\Omega \equiv E(v_i v_i')$, queremos que $E(X_i \Omega^{-1} X_i)$ tenha posto completo (posto = K).

A matriz Ω é simétrica $\Omega' = \Omega$ e positiva definida $\det(\Omega) > 0$. Assim podemos achar $\Omega^{1/2}$ e $\Omega^{-1/2}$ com $\Omega = \Omega^{1/2}\Omega^{1/2}$ e $\Omega^{-1} = \Omega^{-1/2}\Omega^{-1/2}$.

Estimação

Premultiplicando (3.3) port $\Omega^{-1/2}$ do dois lados, temos:

$$\Omega^{-1/2} \mathbf{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \mathbf{v}_i$$

$$\mathbf{y}_i^* = X_i^* \boldsymbol{\beta} + \mathbf{v}_i^*, \tag{3.4}$$

Estimando o modelo acima por POLS:

$$\boldsymbol{\beta}^{POLS} = \left(\sum_{i=1}^{N} X_i^{*'} X_i^*\right)^{-1} \left(\sum_{i=1}^{N} X_i^{*'} \boldsymbol{y}_i^*\right)$$

$$= \left(\sum_{i=1}^{N} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \Omega^{-1} \boldsymbol{y}_i\right)$$

$$= \left(X' (I_N \otimes \Omega^{-1}) X\right)^{-1} \left(X' (I_N \otimes \Omega^{-1}) \boldsymbol{y}\right). \tag{3.5}$$

O problema, agora, é estimar Ω . Supondo:

- $E(u_{it}u_{it}) = \sigma_u^2$;
- $E(u_{it}u_{is}) = 0.$

Como $\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = E[(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)']$, temos que:

$$E(v_{it}v_{it}) = E(c_i^2 + 2c_iu_{it} + u_{it}^2) = \sigma_c^2 + \sigma_u^2$$

$$E(v_{it}v_{is}) = E[(c_i + u_{it})(c_i + u_{is})] = E(c_i^2 + c_iu_{is} + u_{it}c_i + u_{it}u_{is}) = \sigma_c^2$$

Assim.

$$\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$$

onde $\sigma_u^2 I_T$ é uma matriz diagonal, e $\sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$ é uma matriz com todos os elementos iguais a σ_c^2 . Agora, rodando POLS em (3.3) e guardando os resíduos, temos:

$$\hat{v}_{it}^{POLS} = \hat{y}_{it}^{POLS} - \boldsymbol{x}_{it} \hat{\boldsymbol{\beta}}^{POLS}$$

e conseguimos estimar σ_v^2 e σ_c^2 por estimadores amostrais:

• como $\sigma_v^2 = E(v_{it}^2)$:

$$\hat{\sigma}_v^2 = (NT - K)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{it}^2$$

• como $\sigma_c^2 = E(v_{it}v_{is})$:

$$\hat{\sigma}_c^2 = \left[N \frac{T(T-1)}{2} - K \right]^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \sum_{c=t+1}^{T} \hat{v}_{it} \hat{v}_{is}$$

- N indivíduos;
- T elementos da diagonal principal de Ω
- $\frac{T(T-1)}{2}$ elementos da matriz triangular superior dos elementos fora da diagonal.
- \bullet K regressores.

Agora que temos $\hat{\sigma}_v^2$ e $\hat{\sigma}_c^2$ podemos achar $\hat{\sigma}_u^2$ pela equação $\hat{\sigma}_u^2 = \hat{\sigma}_v^2 - \hat{\sigma}_c^2$. Dessa forma achamos os T^2 elementos de $\hat{\Omega}$, e podemos escrever:

$$\widehat{\Omega} = \widehat{\sigma}_u^2 I_T + \widehat{\sigma}_c^2 \mathbf{1}_T \mathbf{1}_T'$$

Com $\widehat{\Omega}$ estimado, reescrevemos (3.5) como:

$$\boldsymbol{\beta}^{RE} = \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{y} \right]. \tag{3.6}$$

Valor Esperado

$$E(\boldsymbol{\beta}^{RE}) = \boldsymbol{\beta} + \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{v} \right].$$

Variância

$$Var(\boldsymbol{\beta}^{RE}) = E\left\{ \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1})\boldsymbol{v}\boldsymbol{v}'(I_N \otimes \widehat{\Omega}^{-1})'X \right] \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right] \right\},$$
como $E(\boldsymbol{v}_i\boldsymbol{v}_i') = \Omega,$

$$Var(\boldsymbol{\beta}^{RE}) = E\left[X'(I_N \otimes \widehat{\Omega}^{-1})X\right].$$

4 Fixed Effects (EF, FE)

Questão 4: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Efeitos Fixos** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo. Como podemos fazer inferência nesse caso? Como podemos fazer inferência robusta nesse caso?

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{4.1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a não observado. No caso da análise de **Efeitos Fixos (EF, FE)**, permitimos que esse componente c_i seja correlacionado com x_{it} . Assim, se decidíssemos estimar o modelo (4.1) por POLS, ignorando c_i , teríamos problemas de inconsistência devido a **endogeneidade**.

As T equações do modelo (4.1) podem ser reescritas como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + c_1 \mathbf{1}_T + \mathbf{u}_i, \tag{4.2}$$

com $v_i = c_i \mathbf{1}_T + u_i$ sendo os erros compostos.

Matriz M^0

Definimos a matriz M^0 como:

$$M^0 = I_T - T^{-1} \mathbf{1}_T \mathbf{1}_T' = I_T - \mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T'.$$

A matriz M^0 é idempotente e simétrica.

$$M^0 x = x - \overline{x} \mathbf{1}_T = \ddot{x}.$$

Podemos transformar o modelo (4.3) ao premultiplicarmos todo o modelo por M^0 .

$$M^0 y_i = M^0 X_i \beta + M^0 (c_1 \mathbf{1}_T) + M^0 u_i, \quad i = 1, \dots, N.$$

$$M^{0}(c_{1}\mathbf{1}_{T}) = (I_{T} - T^{-1}\mathbf{1}_{T}\mathbf{1}_{T}')c_{i}\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - T^{-1}c_{i}\mathbf{1}_{T}\mathbf{1}_{T}'\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - c_{i}\mathbf{1}_{T} \implies \boxed{M^{0}(c_{1}\mathbf{1}_{T}) = 0}$$

$$\ddot{\boldsymbol{y}}_i = \ddot{X}_i \boldsymbol{\beta} + \ddot{\boldsymbol{u}}_i, \quad i = 1, \dots, N.$$

$$(4.3)$$

Estimação POLS

Aplicando POLS no modelo (4.3)

$$\beta^{FE} = \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{X}_{i}\right]^{-1} \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{\boldsymbol{y}}_{i}\right]$$

$$(4.4)$$

Hipóteses

As Hipóteses que usamos para $\widehat{\boldsymbol{\beta}}^{FE}$ são:

FE.1: Exogeneidade Estrita: $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$, para $t = 1, \dots, T$ e $i = 1, \dots, N$.

FE.2: Posto completo de $E(X_i'\Omega^{-1}X_i)$ (para inverter a matriz). $posto[E(X_i'\Omega^{-1}X_i)] = K$.

FE.3: Homoscedasticidade: $E(u_i u_i' | X_i, c_i) = \sigma_u^2 I_T$.

Valor Esperado

Usando FE.1 e FE.2, apenas.

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{\boldsymbol{u}}_{i}\right)\right]$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[(\ddot{X}' \ddot{X})^{-1} (\ddot{X}' \ddot{\boldsymbol{u}})\right]$$

Sabendo que $\ddot{X} = (I_N \otimes M^0)X$ e $\ddot{\boldsymbol{u}} = (I_N \otimes M^0)\boldsymbol{u}$, definimos:

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$

Variância

Usamos a variância do estimador para inferência. Usando FE.1 e FE.2, apenas:

$$Var(\boldsymbol{\beta}^{FE}) = E\left[(\ddot{X}'\ddot{X})^{-1} (\ddot{X}'\ddot{\boldsymbol{u}}) (\ddot{\boldsymbol{u}}'\ddot{X}) (\ddot{X}'\ddot{X})^{-1} \right]$$

Pão:

$$E\left[(\ddot{X}'\ddot{X})^{-1} \right] = E\left\{ \left[X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \right\}$$
$$= E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\}$$

Recheio:

$$E\left[(\ddot{X}'\ddot{\boldsymbol{u}})(\ddot{\boldsymbol{u}}'\ddot{X})\right] = E\left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)(I_N \otimes M^0)X\right]$$
$$= E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X\right]$$

 $Var(\boldsymbol{\beta}^{FE}) = P$ ão Recheio Pão

$$Var(\boldsymbol{\beta}^{FE}) = E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\} E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X \right] E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\}$$

Variância sob Homocedasticidade

Usando FE.3, temos

Recheio':

$$E\left[X'(I_N \otimes M^0)\right] \sigma_u^2 I_{NT} E\left[(I_N \otimes M^0)X\right] = \sigma_u^2 E\left[X'(I_N \otimes M^0)X\right]$$

 $(I_N \otimes M^0)$ é uma matrix de dimensão $NT \times NT$, visto que I_N é $N \times N$ e M^0 é $T \times T$.

$$\begin{split} Var(\pmb{\beta}^{FE}) &= \text{P\~ao Recheio' P\~ao} \\ &= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}\sigma_u^2 E\left[X'(I_N \otimes M^0)X\right] E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\} \\ &= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}\sigma_u^2 I_{NT} \\ \hline \\ Var(\pmb{\beta}^{FE}) &= \sigma_u^2 \cdot E\left[X'(I_N \otimes M^0)X\right] \end{split}$$

5 First Difference (FD, PD)

Questão 5: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Primeira Diferença** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo. Como podemos fazer inferência nesse caso? Como podemos fazer inferência robusta nesse caso?

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{5.1}$$

para t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado, c_i , que não varia no tempo. Tratamos o componente não observado como parte do erro, não como parâmetro a ser estimado. Aqui permitimos que c_i seja correlacionado com x_{it} . Deste modo, não podemos ignorar a sua presença e estimar (5.1) por POLS, visto que isso resultaria num estimador inconsistente devido a **endogeneidade**.

Assim, transformamos o modelo para eliminar c_i e conseguirmos fazer uma estimação consistente de β . A trasnformação a ser feita é a primeira diferença. Para tanto, seguimos os seguintes passos:

• Reescrevemos (5.1) defasado:

$$y_{it-1} = x_{it-1}\beta + c_i + u_{it-1}$$
(5.2)

• Tiramos a diferença entre (5.2) e (5.1):

$$y_{it} - y_{it-1} = (\boldsymbol{x}_{it} - \boldsymbol{x}_{it-1})\boldsymbol{\beta} + c_i - c_i + u_{it} - u_{it-1}$$

$$\Delta y_{it} = \Delta \boldsymbol{x}_{it}\boldsymbol{\beta} + \Delta u_{it}.$$
 (5.3)

para t = 2, ..., T e i = 1, ..., N.

Reescrevendo (5.3) no formato matricial empilhando T:

$$\Delta \mathbf{y}_i = \Delta X_i \boldsymbol{\beta} + \mathbf{e}_i \tag{5.4}$$

 $com e_{it} = \Delta u_{it}$

- Δy_i vetor $(T-1) \times 1$
- ΔX_i matriz $(T-1) \times K$
- β vetor $K \times 1$
- e_i vetor $(T-1) \times 1$

Estimação POLS

O estimador $\hat{\beta}^{FD}$ é o POLS da regressão no modelo (5.4), assim:

$$\beta^{FD} = \left[\sum_{i=1}^{N} \Delta X_i' \Delta X_i\right]^{-1} \left[\sum_{i=1}^{N} \Delta X_i' \Delta y_i\right]$$
(5.5)

Hipóteses

As Hipóteses que usamos para $\widehat{\boldsymbol{\beta}}^{FD}$ são:

FD.1: Exogeneidade Estrita: $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$, para $t = 1, \dots, T$ e $i = 1, \dots, N$.

FD.2: Posto completo de $E(\Delta X_i' \Delta X_i)$ (para inverter a matriz). $posto[E(\Delta X_i' \Delta X_i)] = K$.

FD.3: Homoscedasticidade: $E(e_i e'_i | X_i, c_i) = \sigma_e^2 I_{T-1}$.

Valor Esperado

Usando apenas FD.1 e FD.2:

$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \Delta X_i' \Delta X_i\right)^{-1} \left(\sum_{i=1}^{N} \Delta X_i' \boldsymbol{e}_i\right)\right]$$
$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[\left(\Delta X' \Delta X\right)^{-1} (\Delta X' \boldsymbol{e}\right]$$

Variância

Usando apenas FD.1 e FD.2:

$$Var(\boldsymbol{\beta}^{FD}) = E\left[(\Delta X' \Delta X)^{-1} (\Delta X' \boldsymbol{e} \boldsymbol{e}' \Delta X) (\Delta X' \Delta X)^{-1} \right]$$

Variância sob Homocedasticidade

Usando FD.3, temos

$$Var(\boldsymbol{\beta}^{FD}) = \sigma_e^2 E \left[(\Delta X' \Delta X)^{-1} (\Delta X' \Delta X) (\Delta X' \Delta X)^{-1} \right]$$
$$Var(\boldsymbol{\beta}^{FD}) = \sigma_e^2 E \left[(\Delta X' \Delta X)^{-1} \right]$$

com

$$\sigma_e^2 = [N(T-1) - K]^{-1} \left[\sum_{i=1}^N \sum_{t=1}^T \hat{e}_{it}^2 \right],$$

que é a média de todos \hat{e}^2_{it} contando K regressores.

6 Exogeneidade Estrita e FDIV

Questão 6: Explique a hipótese de exogeneidade estrita dos regressores. Em seguida, argumente mostrando que a hipótese de exogeneidade estrita não se sustenta no seguinte modelo:

$$y_{it} = \mathbf{z}_{it}\mathbf{\gamma} + \rho y_{it-1} + c_i + u_{it}.$$

Explique detalhadamente como esse modelo pode ser estimado a partir da combinação entre Variáveis Instrumentais e método da Primeira Diferença.

Modelo

No seguinte modelo

$$y_{it} = \boldsymbol{x}_{it}\boldsymbol{\beta} + u_{it},$$

para t = 1, ..., T e i = 1, ..., N.

- y_{it} escalar;
- x_{it} vetor $1 \times K$;
- β vetor $K \times 1$;
- u_{it} escalar.

 $\{x_{it}\}$ é estritamente **exógeno** se valer:

$$E(u_{it} \mid \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}) = 0, \qquad t = 1, \dots, T$$

ou seja:

$$E(y_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}) = \boldsymbol{x}_{it}\boldsymbol{\beta}, \qquad t = 1, \dots, T$$

o que é equivalente a hipótese de que utilizamos o modelo linear correto.

Para o seguinte modelo:

$$y_{it} = \boldsymbol{z}_{it}\boldsymbol{\gamma} + \rho y_{it-1} + c_i + u_{it}.$$
, $t = 2, \dots, T$

é **impossível** termos exogeneidade estrita. Isso porque, nesse modelo, de efeitos não observados temos:

$$E(y_{it} | \mathbf{z}_{i1}, \dots, \mathbf{z}_{iT}, y_{it-1}, c_i) \neq 0.$$

Isso ocorre porque, y_{it} é afetado por y_{it-1} que contribui para y_{it} com, pelo menos, ρc_i .

$$y_{it} = z_{it} \gamma + \rho y_{it-1} + c_i + u_{it}$$

$$y_{it-1} = z_{it-1} \gamma + \rho y_{it-2} + c_i + u_{it-1}$$

$$\implies y_{it} = z_{it} \gamma + \rho (z_{it-1} \gamma + \rho y_{it-2} + c_i + u_{it-1}) + c_i + u_{it}.$$

Para eliminarmos este efeito, podemos tirar a primeira diferença do modelo:

$$y_{it} - y_{it-1} = (\mathbf{z}_{it} - \mathbf{z}_{it-1})\gamma + \rho(y_{it-1} - y_{it-2}) + (c_i - c_i) + (u_{it} - u_{it-1})$$

$$\Delta y_{it} = \Delta \mathbf{z}_{it}\gamma + \rho \Delta y_{it-1} + \Delta u_{it}, \qquad t = 3, \dots, T$$
(6.1)

Estimação

Não podemos estimar o modelo (6.1) por POLS, uma vez que $Cov(\Delta y_{it-1}, \Delta u_{it}) \neq 0$. Como saída, podemos estimar por P2SLS, usando instrumentos para Δy_{it-1} (alguns intrumentos para Δy_{it-1} são $y_{it-2}, y_{it-3}, \dots, y_{i1}$).

P2SLS

$$y_{it} = \boldsymbol{x}_{it}'\boldsymbol{\beta} + u_{it}$$

- i = 1, ..., N
- t = 1, ..., T
- y_{it} escalar;
- \boldsymbol{x}_{it} vetor $K \times 1$;
- β vetor $K \times 1$;
- u_{it} escalar.

$$\beta^{P2SLS} = (X'P_ZX)^{-1}(X'P_Z\boldsymbol{y})$$

com

$$P_Z = Z'(Z'Z)^{-1}Z$$

onde P_Z é a matriz de projeção em Z.

FDIV

$$y_{it} = \boldsymbol{x}'_{it}\boldsymbol{\beta} + c_i + u_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

$$\Delta y_{it} = \Delta \boldsymbol{x}'_{it}\boldsymbol{\beta} + \Delta u_{it}, \quad i = 1, \dots, N, \quad t = 2, \dots, T$$

Vamos supor $\Delta x'_{it}$ tem variável endógena $(y_{it}, \text{ no caso})$. \boldsymbol{w}_{it} é um vetor $1 \times L_t$ de instrumentos, onde $L_t \geq K$. Se os instrumentos forem diferentes:

$$W_i = diag(\boldsymbol{w}_{i2}', \boldsymbol{w}_{i3}', \dots, \boldsymbol{w}_{iT}')$$

onde W_i é uma matriz $(T-1) \times L$

$$L = L_2 + L_3 + \dots + L_T$$

Hipóteses

FDIV.1: $E(w_{it}\Delta u'_{it})$ para i = 1, ..., N, t = 2, ..., T.

FDIV.2: Posto $[E(W_i'W_i)] = L$

FDIV.3: Posto $[E(W_i'\Delta X_i)] = K$

Estimação FDIV

$$\boldsymbol{\beta}^{FDIV} = \left(\Delta X' P_W \Delta X\right)^{-1} \left(\Delta X' P_W \Delta \boldsymbol{y}\right)$$
$$P_W = W(W'W)^{-1} W'$$

Valor Esperado

$$E(\boldsymbol{\beta}^{FDIV}) = \beta + (\Delta X' P_W \Delta X)^{-1} (\Delta X' P_W \boldsymbol{e})$$

Variância

$$Var(\boldsymbol{\beta}^{FDIV}) = E\left\{ \left[E(\boldsymbol{\beta}^{FDIV}) - \beta \right] \left[E(\boldsymbol{\beta}^{FDIV}) - \beta \right]' \right\}$$

$$= E\left\{ \left[\Delta X' P_W \Delta X \right]^{-1} \left[\Delta X' P_W \boldsymbol{e} \right] \left[\Delta X' P_W \boldsymbol{e} \right]' \left[\Delta X' P_W \Delta X \right]^{-1} \right\}$$

$$= E\left[\left(\Delta X' P_W \Delta X \right)^{-1} \left(\Delta X' P_W \boldsymbol{e} \boldsymbol{e}' P_W \Delta X \right) \left(\Delta X' P_W \Delta X \right)^{-1} \right]$$

 $e_i = \Delta u_{it}$.

7 Latent Variables, Probit and Logit

Questão 7: Usando a motivação de uma variável latente, motive a construção do estimador LOGIT/PROBIT. Explique o procedimento de estimação de verossimilhança que caracteriza o estimador. Inclua em sua explicação o resultado da distribuição assintótica de $\sqrt{n}(\theta - \theta_0)$. Ressalte a forma mais simples da variância assintótica desse estimador, devido ao fato de ser um estimador de máxima verossimilhança.

Modelo

Suponha y^* não observável (latente) seguindo o seguinte modelo:

$$y_i^* = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i. \tag{7.1}$$

Defina y como:

$$y_i = \begin{cases} 1 \,, & y_i^* \ge 0 \\ 0 \,, & y_i^* < 0 \end{cases}$$

temos que:

$$P(y_i = 1|\mathbf{x}) = p(\mathbf{x})$$

$$P(y_i = 0|\mathbf{x}) = 1 - p(\mathbf{x}).$$

Além disso, pela definição de y_i , equação (7.1), temos:

$$P(y_i = 1 | \mathbf{x}) = P(y_i^* \ge 0 | \mathbf{x})$$
$$= P(\mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \ge 0 | \mathbf{x})$$
$$= P(\varepsilon_i \ge -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x}).$$

Agora, supondo que ε_i tem FDA, G, tal que G'=g é simétrica ao redor de zero:

$$P(y_i = 1 | \mathbf{x}) = 1 - P(\varepsilon_i < -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= 1 - G(-\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= G(\mathbf{x}_i' \boldsymbol{\beta}).$$

Se $G(\cdot)$ for uma distribuição:

Normal Padrão: $\hat{\beta}$ é o estimador probit.

Logística: $\hat{\beta}$ é o estimador **logit**.

Supondo $y_i | x \sim Bernoulli(p(x))$, sua fmp é dada por:

$$f(y_i \mid \boldsymbol{x}_i; \boldsymbol{\beta}) = [G(\boldsymbol{x}_i' \boldsymbol{\beta})]^{y_i} [1 - G(\boldsymbol{x}_i' \boldsymbol{\beta})]^{1-y_i}, \quad y = 0, 1.$$

Para estimarmos $\hat{\beta}$ por máxima verossimilhança, temos de encontrar $\beta \in B$, onde B é o espaço paramétrico, tal que β maximize o valor da distribuição conjunta de y, ou seja:

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} \prod_{i=1}^{N} f(y_i \,|\, \boldsymbol{x}_i; \boldsymbol{\beta}).$$

Tirando o logaritmo e dividindo tudo por N (podemos fazer isso pois são transformações monotônicas e não alteram o lugar onde β ótimo irá parar):

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ln \left[f(y_i \, | \, \boldsymbol{x}_i; \boldsymbol{\beta}) \right] \right\}.$$

Podemos definir $\ell_i(\boldsymbol{\beta}) = \ln[f(y_i \mid \boldsymbol{x}_i; \boldsymbol{\beta})]$ como sendo a verossimilhança condicional da observação i:

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ell_i(\boldsymbol{\beta}) \right\}.$$

Dessa forma, podemos ver que o problema acima é a analogia amostral de:

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} E\left[\ell_i(\boldsymbol{\beta})\right].$$

Definindo o vector score da observação i:

$$s_i(\boldsymbol{\beta}) = \left[\nabla_{\boldsymbol{\beta}} \ell_i(\boldsymbol{\beta})\right]' = \left[\frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_1}, \dots, \frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_K}\right]$$

Definindo a **Matriz Hessiana** da observação *i*:

$$H_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}} s_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}}^2 \ell_i(\boldsymbol{\beta})$$

Tendo essas definições, o **Teorema do Valor Médio** (TVM) nos diz que no intervalo [a, b], existe um número, c, tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

FAZER DESENHO

Trocando $f(\cdot)$ por $s_i(\cdot)$, a por β_0 , b por $\widehat{\beta}$ e c por $\overline{\beta}$, temos:

$$H_i(\bar{\beta}) = \frac{s_i(\hat{\beta}) - s_i(\beta_0)}{\hat{\beta} - \beta_0},$$

tirando médias dos dois lados:

$$N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) = \frac{1}{\hat{\beta} - \beta_0} N^{-1} \sum_{i=1}^{N} \left[s_i(\hat{\beta}) - s_i(\beta_0) \right]$$

Supondo que $\widehat{\boldsymbol{\beta}}$ maximiza $\ell(\boldsymbol{\beta} | \boldsymbol{y}, \boldsymbol{x})$, temos que: $N^{-1} \sum_{i=1}^{N} s_i(\widehat{\boldsymbol{\beta}}) = 0$. E podemos reescrever a equação anterior como:

$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 = (-1) \left[N^{-1} \sum_{i=1}^N H_i(\bar{\boldsymbol{\beta}}) \right]^{-1} N^{-1} \sum_{i=1}^N s_i(\boldsymbol{\beta}_0)$$

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = \left[-N^{-1} \sum_{i=1}^N H_i(\bar{\boldsymbol{\beta}}) \right]^{-1} \sqrt{N} \cdot N^{-1} \sum_{i=1}^N s_i(\boldsymbol{\beta}_0)$$

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = \left[-N^{-1} \sum_{i=1}^N H_i(\bar{\boldsymbol{\beta}}) \right]^{-1} N^{-1/2} \sum_{i=1}^N s_i(\boldsymbol{\beta}_0)$$

Onde

$$\left[-N^{-1}\sum_{i=1}^{N}H_i(\bar{\boldsymbol{\beta}})\right]^{-1} \stackrel{p}{\to} A_0^{-1}, \qquad N^{-1/2}\sum_{i=1}^{N}s_i(\boldsymbol{\beta}_0) \stackrel{d}{\to} N(0, B_0).$$

Assim, temos que:

$$\sqrt{N}(\widehat{\beta} - \beta_0) \to N(0, A_0^{-1} B_0 A_0^{-1})$$
.

A forma mais simples de achar $Var(\widehat{\beta})$ é:

$$Var(\widehat{\boldsymbol{\beta}}) = -E[H_i(\widehat{\boldsymbol{\beta}})]^{-1}.$$

8 ATT, ATE, Propensity Score

Questão 8: Explique como estimar o efeito médio do tratamente (τ_{ATE}) e o efeito médio do tratamento sobre o tratado (τ_{ATT}) , considerando a hipótese de Ignorabilidade do Tratamento condicional a um conjunto de covariáveis. Aborde o método *Propensity Score*. Discuta a importância do hipótese *Overlap* para a aplicabilidae desse estimador. Explique resumidamente como o *Propensity Score* pode ser estimado.

Modelo

- $y_1 \rightarrow$ variável de interesse com tratamento
- $y_0 \rightarrow \text{variável de interesse sem tratamento}$

$$w = \begin{cases} 1 & \text{se tratam} \\ 0 & \text{se não tratam} \end{cases}$$

Idealmente, para isolarmos completamente o efeito de w = 1, gostaríamos de pode calcular:

$$N^{-1}\sum_{i=1}^{N} (y_{i1} - y_{i0}).$$

Ou seja, o efeito que o tratamento causa sobre um indivíduo com todo o resto permanecendo constante. Em outras palavras, queríamos que houvesse dois mundos paralelos observáveis onde seria possível observar o que acontece com y_i com e sem tratamento. Infelizmente, para ccada indivíduo i, observamos apenas y_{i1} ou y_{i0} , nunca ambos.

Antes de continuarmos, faremos as seguintes definições:

ATE: $E(y_1 - y_0)$

ATT: $E(y_1 - y_0 | w = 1)$ (ATE no tratado).

ATE e ATT condicional a variáveis x

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x})$$
$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1)$$

OBS:

$$E(y_1 - y_0) = E[E(y_1 - y_0 | w)]$$

$$E(y_1 - y_0 | w) = E(y_1 - y_0 | w = 0) \cdot P(w = 0) + E(y_1 - y_0 | w = 1) \cdot P(w = 1).$$

Métodos Assumindo Ignorabilidade do Tratamento

ATE.1: Ignorabilidade.

 $w \in (y_1, y_0)$ são independentes condicionais a x.

ATE.1': Ignorabilidade da Média.

- a) $E(y_0 | w, x) = E(y_0 | x)$
- b) $E(y_1 | w, x) = E(y_1 | x)$

Vamos definir

$$E(y_0 \mid \boldsymbol{x}) = \mu_0(\boldsymbol{x})$$

$$E(y_1 \mid \boldsymbol{x}) = \mu_1(\boldsymbol{x}).$$

Sob **ATE.1** e **ATE.1**':

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$

$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$

ATE.2: Overlap

Para todo
$$x$$
, $P(w = 1 | x) \in (0, 1)$, $p(x) = p(w = 1 | x)$.

 $p(\mathbf{x})$ é o *Propensity Score*, ele representa a probabilidade de y_i ser tratado dado o valor das covariáveis \mathbf{x} . Essa hipótese é importante visto que podemos expressar o ATE em função de $p(\mathbf{x})$.

Para o ATT vamos supor:

ATT.1': $E(y_0 | x, w) = E(y_0 | x)$

ATT.2: Overlap: Para todo x, P(w = 1|x) < 1.

Propensity Score

Como foi dito anteriormente, apenas observamos ou y_1 ou y_0 para a mesma pessoa, mas não ambos. Mais precisamente, junto com w, o resultado observado é:

$$y = wy_1 + (1 - w)y_0$$

como w é binário, $w^2 = w$, assim, temos:

$$wy = w^{2}y_{1} + (w - w^{2})y_{0} \implies \boxed{wy = wy_{1}}$$
$$(1 - w)y = (w - w^{2})y_{1} + (w^{2} - 2w + 1)y_{0} \implies \boxed{(1 - w)y = (1 - w)y_{0}}.$$

Fazemos isso para tentar isolar $\mu_0(\mathbf{x})$ e $\mu_1(\mathbf{x})$:

 $\mu_1(\boldsymbol{x})$

$$E(wy|\mathbf{x}) = E[E(wy_1|\mathbf{x}, w) | \mathbf{x}]$$

= $E[w\mu_1(\mathbf{x})|\mathbf{x}]$
= $\mu_1(\mathbf{x})E(w|\mathbf{x}).$

Como w é binaria: $E(w|\mathbf{x}) = P(w = 1|\mathbf{x}) = p(\mathbf{x})$. Assim:

$$E(wy|\mathbf{x}) = \mu_1(\mathbf{x})p(\mathbf{x})$$
$$\mu_1(\mathbf{x}) = \frac{E(wy|\mathbf{x})}{p(\mathbf{x})}$$

 $\mu_0(\boldsymbol{x})$

$$E[(1-w)y|\mathbf{x}] = E[E((1-w)y_0|\mathbf{x}, w)|\mathbf{x}]$$

$$= E[(1-w)\mu_0(\mathbf{x})|\mathbf{x}]$$

$$= \mu_0(\mathbf{x})E(w|\mathbf{x})$$

$$E[(1-w)y|\mathbf{x}] = \mu_0(\mathbf{x})[1-p(\mathbf{x})] \Longrightarrow$$

$$\mu_0(\mathbf{x}) = \frac{E[(1-w)y|\mathbf{x}]}{1-p(\mathbf{x})}$$

ATE:

$$\mu_1(\boldsymbol{x}) - \mu_0(\boldsymbol{x}) = E\left[\frac{[w - p(\boldsymbol{x})]y}{p(\boldsymbol{x})[1 - p(\boldsymbol{x})]}|\boldsymbol{x}\right]$$

$$\widehat{ATE} = N^{-1} \sum_{i=1}^{N} \frac{[w_i - p(\boldsymbol{x}_i)]y_i}{p(\boldsymbol{x}_i)[1 - p(\boldsymbol{x}_i)]}.$$

ATT:

$$E(y_1|\mathbf{x}, w = 1) - E(y_0|\mathbf{x}) = \frac{1}{\hat{P}(w = 1)} E\left[\frac{[w - \hat{p}(\mathbf{x})]y}{[1 - \hat{p}(\mathbf{x})]}|\mathbf{x}\right]$$

$$\hat{P}(w = 1) = N^{-1} \sum_{i=1}^{N} w_i$$

$$\widehat{ATT} = \frac{N}{\sum_{i=1}^{N} w_i} N^{-1} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(\mathbf{x}_i)]y_i}{[1 - \hat{p}(\mathbf{x}_i)]}$$

$$\widehat{ATT} = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(\mathbf{x}_i)]y_i}{[1 - \hat{p}(\mathbf{x}_i)]}.$$