

# AGGDN: A Continuous Stochastic Predictive Model for Monitoring Sporadic Time Series on Graphs



Yucheng Xing<sup>1</sup>, Jacqueline Wu<sup>2</sup>, Yingru Liu<sup>1</sup>, Xuewen Yang<sup>1,3</sup>, Xin Wang<sup>1</sup>

<sup>1</sup> Stony Brook University, <sup>2</sup> New York University, <sup>3</sup> InnoPeak Technology Inc.

# Motivation

- Accurate prediction of the networked system states based on collected data is important for timely and effective control of the system;
- Challenges:
  - Spatial-temporal interactions among dynamic signals are difficult to capture;
  - The collected data could be sparse and irregular in both spatial and temporal domains due to constraints such as unreliable communications and device malfunctions;
  - The collected data are usually influenced by measurement noise and other process uncertainties within the system;

# Objective

- We propose a new continuous-time stochastic method to provide accurate and timely predictions of the system states based on sporadic observations with system uncertainties
  - Model spatial-temporal interaction of dynamic signals across graph;
  - Model underlying stochastic process with irregular data;
  - Capture complicated data distribution with process uncertainty and measurement noise;

# Methods

## Hybrid ODE-SDE Structure

- ODE Module
  - Encoding the stable parts of the signals and the topological information into the hidden features  $H_t$ ;
  - Providing an approximation of system states to modulate SDE;
- SDE Module
  - Embedding the system uncertainties into the stochastic latent states  $Z_t$ ;
  - Refining the coarse predictions from ODE to get the final accurate output;

# Component Details – dyn-ODE Module

- **Soft-masking mechanism:** Hidden features  $H_t$  is composed of two factors

$$H_t = \rho(H_{t,m}W_m + b_m) \odot H_{t,f}$$

- $H_{t,f}$ : the feature factor to extract the information of the system;
- $H_{t,m}$ : the masking factor to modulate the values in features
- **Dynamic Diffusion Convolution:** replace the fixed binary adjacency matrix A with  $W_A \odot A$ , where  $W_A$  is a learnable matrix capturing neighbor impact;
  - During the interval  $(t_{n-1}, t_n)$ , using Euler Method

$$H_{t,f} = H_{t-\delta t,f} + F_t (H_{t-\delta t,f}, W_A \odot A) \delta t$$

$$H_{t,m} = H_{t-\delta t,m} + F_m (H_{t-\delta t,m}, W_A \odot A) \delta t$$

-  $F_t(\cdot)$  and  $F_m(\cdot)$  are Dynamic Diffusion Convolution Networks (dynDCNs)

- At an observation time  $t_n$ 

$$H_{t_n,f} = G_t(H_{t_n - \delta t,f}, \mathcal{O}_{t_n}, W_A \odot A)$$

$$H_{t_n,m} = G_m(H_{t_n - \delta t,m}, \mathcal{O}_{t_n}, W_A \odot A)$$

-  $G_t(\cdot)$  and  $G_m(\cdot)$  are Dynamic Diffusion Convolution Gate Recurrent Units (dynDCGRUs)

# Component Details – SDE Module

- Computing the integration by Euler-Maruyama Method  $Z_t = Z_{t-\delta t} + \mu(Z_{t-\delta t}, H_{\leq t})\delta t + \sqrt{\delta t}\sigma(H_{\leq t})\epsilon_t$
- Component Details Output Module

$$\widehat{\mathcal{X}}_t = N_{\widehat{\mathcal{X}}}(H_t) + N_{\widehat{\mathcal{Y}}}^{(res)}(H_t, Z_t)$$

- $N_{\widehat{X}}(\cdot)$ : predict the smooth and stable trend of signals;
- $N_{\widehat{Y}}^{(res)}(\cdot)$ : estimate the residual stochastic variations;

# Output $\Delta t \qquad \Delta t \qquad \Delta$

# Training Details – Wasserstein Adversarial Training

- Simplified log-likelihood:

$$\mathcal{L}_{cond} = \mathbb{E}_{\{\mathcal{X}_{t_n}, \mathcal{M}_{t_n}\} \in \mathbb{D}} \sum_{n=1}^{N} \mathcal{M}_{t_n} \otimes \log P_{\mathcal{G}}(\mathcal{X}_{t_n} | Z_{t_n}, \mathcal{O}_{t_0:t_{n-1}}, A)$$

- Adversarial training loss:

$$\mathcal{L}_{adv} = \mathbb{E}_{\{\mathcal{X}_{t_n}, \mathcal{M}_{t_n}\} \in \mathbb{D}} \left[ \mathcal{F} \left( \{\mathcal{X}_{t_n} \odot \mathcal{M}_{t_n} \} \right) - \mathbb{E}_{\epsilon_t \in \mathcal{N}(0,1)} \mathcal{F} \left( \{\widehat{\mathcal{X}}_{t_n} \odot \mathcal{M}_{t_n} \} \right) \right]$$

- Total objective:

$$G_* = arg \min_{\mathcal{G}} (\lambda \mathcal{L}_{adv} - \mathcal{L}_{cond})$$
$$F_* = arg \max_{\mathcal{F}} \mathcal{L}_{adv}$$

# Results

### Performance Comparison

During experiments, we assume only partial of data are available due to occlusions:

- $p_t$ : ratio of the frames within the data sequence are observable;
- $p_a$ : ratio of the nodes available within each observable frame:

| Datasets                                                       | IEEE33-Nodes                   |                                                  |                                | METR-LA                 |                          |                     | PEMS-BAY                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|-------------------------|--------------------------|---------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | $\overline{\text{MAE}}$        | RMSE                                             | MAPE                           | $\overline{\text{MAE}}$ | RMSE                     | MAPE                | $\overline{\mathrm{MAE}}$         | RMSE                                | MAPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Discrete                                                       |                                |                                                  |                                |                         |                          |                     |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STGCN<br>Graph-GRU                                             | $0.0812 \\ 0.0349$             | $0.1273 \\ 0.0643$                               |                                |                         |                          | $37.58\% \ 33.45\%$ |                                   |                                     | 49.63% $41.17%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Continuous                                                     |                                |                                                  |                                |                         |                          |                     |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Graph-ODE-RNN<br>Graph-GRU-ODE                                 |                                |                                                  | $8.36\% \\ 8.49\%$             | $0.1918 \\ 0.1947$      | $0.4217 \\ 0.4322$       | $32.73\% \ 32.90\%$ | $0.1774 \\ 0.1726$                |                                     | $37.34\% \\ 37.44\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ours                                                           |                                |                                                  |                                |                         |                          |                     |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40053                                                          | 0.0040                         | 0.0457                                           | 7 03%                          | 0 1612                  | 0.3480                   | <b>30.41</b> %      | 0.1489                            | 0.2739                              | 35.32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                |                                |                                                  |                                |                         |                          |                     |                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>able 1.</b> Perform                                         | nance c                        | of differ                                        | ent mo                         | dels on                 | variou                   | ıs datas            | ets $(p_t)$                       | = 0.5, p                            | $\rho_s = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                | nance c                        | of differ<br>EE33-No                             | ent mo                         | dels on                 | variou                   | ıs datas            | ets $(p_t)$                       |                                     | $\rho_s = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>able 1.</b> Perform                                         | nance o                        | of differ<br>EE33-No                             | ent mo                         | dels on                 | variou                   | s datas             | ets $(p_t)$                       | =0.5, p EMS-BA                      | $\rho_s = 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pable 1. Perform                                               | IEE MAE                        | of differ<br>EE33-No<br>RMSE<br>0.1598           | ent mo                         | $\frac{1}{\text{MAE}}$  | variou<br>METR-L<br>RMSE | s datas             | $\frac{\text{P}}{\text{MAE}}$     | = 0.5, p EMS-BA RMSE $0.5084$       | $\rho_s = 0.8$ $\frac{\text{AY}}{\text{MAPE}}$ $53.15\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Datasets  Discrete  STGCN                                      | IEE MAE                        | of differ<br>EE33-No<br>RMSE<br>0.1598           | ent mo                         | $\frac{1}{\text{MAE}}$  | variou<br>METR-L<br>RMSE | A MAPE 39.64%       | $\frac{\text{P}}{\text{MAE}}$     | = 0.5, p EMS-BA RMSE $0.5084$       | $\rho_s = 0.8$ $\overline{\text{MAPE}}$ $53.15\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Datasets  Discrete  STGCN Graph-GRU                            | 1EE<br>MAE<br>0.0925<br>0.0522 | of differ<br>EE33-No<br>RMSE<br>0.1598<br>0.1068 | ent modes  MAPE  19.52% 12.39% | 0.2497<br>0.2195        | 0.4681<br>0.4460         | 39.64%<br>35.96%    | ets $(p_t)$ P  MAE  0.2826 0.2219 | = 0.5, p EMS-BA RMSE  0.5084 0.4345 | $\rho_s = 0.8$ AY  MAPE $53.15\%$ $44.78\%$ $40.65\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Datasets  Discrete  STGCN Graph-GRU  Continuous  Graph-ODE-RNN | 1EE<br>MAE<br>0.0925<br>0.0522 | of differ<br>EE33-No<br>RMSE<br>0.1598<br>0.1068 | ent modes  MAPE  19.52% 12.39% | 0.2497<br>0.2195        | 0.4681<br>0.4460         | 39.64%<br>35.96%    | ets $(p_t)$ P  MAE  0.2826 0.2219 | = 0.5, p EMS-BA RMSE  0.5084 0.4345 | $ ho_s = 0.8$ |

# Quantitative Study



# Qualitative Study

