MEXANİKLƏŞDİRMƏ

Azərbaycan Aqrar Elmi

(3) (2019)

Аграрная Наука Азербайджана

UOT 636.084

SƏYYAR YEMPAYLAYANIN BUNKERİNİN DOLMA PROSESİNİN TƏDQİQİ

Q.B.MƏMMƏDOV, İ.Ə.VƏLİYEV Azərbaycan Dövlət Aqrar Universiteti

Məqalədə heyvanlara yempaylamanın düzgün təşkili ilə əlaqədar olaraq səyyar yempaylayanın bunkerinin dolma prosesi tədqiq edilmişdir. Səyyar yempaylayanın bunkerinin yayıcı-kipləşdiricinin köməyi ilə yem qarışığı ilə doldurulma prosesi öyrənilən zaman optimallaşdırılma kriterisi verilmiş və optimallaşdırıma kriterilərinə daha çox təsir göstərən daha əhəmiyyətli faktorlar seçilmişdir. Aparılmış tədqiqatların nəticələri göstərmişdir ki, doldurulmanın bərabərliyi üçün optimal qiymətlər zonası X_1 faktorunun stabilləşdiyində və X_2 faktorunun 0,036 m/san —dən 0,044 m/san -yə qədər hüdudlarında, X_3 faktorunun stabilləşdiyində və X_2 faktorunun 0,036 m/san —dən 0,044 m/sam -ə qədər hüdudlarında, X_3 faktorunun 0,028-dən 0,044 m-ə qədər hüdudlarında olur. Nəticədə doldurma prosesinin enerji tutumluluğu üçün optimal qiymət zonası X_1 =-0,64 və X_2 faktorunun 0,044 m/san —dən 0,052 m/san-yə qədər hüdudlarında, X_3 faktorunun 0,060-dan 0,072 m-ə qədər hüdudlarında olur.

Açar sözlər: Yem, yempaylayan, səyyar yempaylayan, bunker, biter, dolma prosesi, yayıcı – kipləşdirici, optimallaşdırma, daraq.

espublikamızda maldarlığın daha da inkisaf etdirilməsi, bu sahədə damazlıq işinin keyfiyyətinin yüksəldilməsi və mövcud malın cins tərkibinin yaxşılaşdırılması istiqamətində dövlət tərəfindən çox ciddi tədbirlər görülməkdədir. Bu məqsədlə dövlət başçısının 21 avqust 2008-ci ildə imzaladığı "Kənd təsərrüfatı məhsulları istehsalının toxum, gübrə və damazlıq heyvanları ilə təmin edilməsinə əlavə dəstək verilməsi barədə" sərəncamdan sonra Avropanın inkişaf etmiş dövlətlərindən, Almaniyadan, Avstraliyadan yüksək məhsuldar cins heyvanlar alınıb gətirilməkdədir. Gətirilən heyvanlar yalnız südlük və südlük - ətlik iqamətli cinslərdir. Bu heyvanların gətirilməsində əsas məqsəd əhalinin südə olan tələbatını ödəməkdən ibarətdir [1, 2]. Cins inəklərin cinsi potensialından faydalanmaq üçün onların məhsuldarlığını dəstəkləmək, bunun üçün isə əsasən yemləməni düzgün təşkil etmək tələb olunur. Odur ki, yemləmənin düzgün təşkili üçün onun tədqiqinə ehtiyac duyulmuşdur. Bu məqsədlə iribuynuzlu qaramal fermasında yempaylama prosesi nəzəri tədqiq edilərək, səyyar yempaylayanın səmərəli işinə təsir edən faktorlar əsaslandırılaraq işçi hipotez olaraq eksperimentlər yayıcı-kipləşdirici qurğu işlənib hazırlanmış və onun konstruktiv yeniliyi ixtira sənədi ilə təsdiq edilmişdir[3, 4, 5]. İşlənib hazırlanmış qurğunun təsərrüfatda sınağı aparılmışdır.

Bunun üçün yemin verilməsi, xırdalanması, qarışdırılması, yüklənməsi və dozalaşdırılması proseslərinin tədqiqində respublikada iri buynuzlu qaramalın rasionunda daha çox işlənən silos və küləşdən də istifadə edilmişdir.

Burada yemlərin doza ilə verilməsində yem paylayanın əsas işçi orqanın tədqiqinə ehtiyac duyuldu-

ğundan eksperimental yayıcı-kipləşdirici yem paylayanın bunkerinin dolma prosesi öyrənilmişdir. Belə ki, səyyar yempaylayanın dozalaşdırıcı tərtibatı ilə yemin qarışıqlarının bərabər qaydada dozalaşdırılmasını təmin etmək üçün onun yem ayıran orqanına yem layı sabit hündürlükdə və sıxlıqda verilməlidir.

Nəzəri və eksperimental tədqiqatlar göstərir ki[4, 5], qeyd olunan tələblərə cavab verən yem layının formalaşdırılması qapalı həcmdə bunkerdə yalnız uzununa və eninə yemin bərabər paylanmasına imkan yaradan xüsusi tərtibatın köməyi ilə mümkündür.

Ancaq bunkerdə yem monolitinin keyfiyyətli formalaşması (H=const və ρ =const) yalnız yayıcı-kipləşdirici tərtibatın düzgün seçilmiş konstruktiv rejim parametrləri şəraitində mümkündür. Səyyar yempaylayanın bunkerinin yayıcı-kipləşdiricinin köməyi ilə yem qarışığı ilə doldurulma prosesi öyrənilən zaman optimallaşdırılma kriterisi olaraq aşağıdakılar seçilmişdir:

- $-Y_1$, (δ_3) , %- bunkerin yemlə qeyri-bərabər dolması;
- Y_2 , (λ), yem qarışığının kipləşmə dərəcəsi (ölçüsüz kəmiyyət);
- Y_3 , (N_3) , kWsaat/ton yempaylayanın bunkerinin doldurulma prosesinin enerji tutumu.

Aparılmış axtarış səciyyəli təcrübələr və həmçinin aprior ranjirovka əsasında [6, 7] ümumi faktorlar yığını arasından qəbul olunmuş optimallaşdırma kriterilərinə Y_1 , (X_i) , Y_2 , (X_i) , Y_3 , (X_i) daha çox təsir göstərən daha əhəmiyyətli faktorlar seçilmişdir.

Bu zaman şərtlər müəyyən edilmişdir ki, bunların qiymətləri minimuma və yaxud maksimuma can

atırlar. Asılılıqları açmaq lazım gəlir ki, bunların ümumi görünüşü aşağıdakı kimidir:

 $Y_1(X_i) \rightarrow \min;$

 $Y_2(X_i) \rightarrow \max;$

 $Y_3(X_i) \rightarrow \min$.

Faktorlar olaraq aşağıdakılar qəbul edilmişdir:

 X_1 (ω_d , san⁻¹) – daraqların çarxqol-sürgüqol mexanizminin bucaq sürəti;

 X_2 (v_0 , m/san) — yayıcı-kipləşdiricinin platformasının səyyar yempaylayanının bunkeri boyunca hərəkət sürəti;

 X_3 (l_b , m) — daraq barmaqları arasındakı məsafə. Faktorların səviyyəsi və intervalları cədvəl 1-də verilmişdir.

Cədvəl 1 $Y_{1:3}=f(X_1;\,X_2;\,X_3)$ ightarrowmin (max) asılılıqları üçün faktorlar variasiyalarının səviyyələri

		Faktorlar					
		Daraqla					
		birlikdə	Platformanın	Darağın			
No	Səviyyələr	çarxqol-	boyunca	barmaq-			
JNΩ	Səviyyələl	sürgüqol	hərəkət	lararası			
		mexanizminin	sürəti, X_2 , v_0 ,	məsafəsi,			
		bucaq sürəti,	m/san	X_3, l_b, m			
		X_1,ω_d , san ⁻¹					
1	Yuxarı səviyyə (+)	10,0	0,06	0,10			
2	Əsas səviyyə (0)	8,0	0,04	0,06			
3	Aşağı səviyyə (-)	6,0	0,02	0,02			
4	Variasiya etmə	2,0	0,02	0,04			
	intervalı						

Tədqiqatlar standart çoxfaktorlu eksperiment matrisi üzrə aparılmışdır (cədvəl 2). Burada həmçinin 15 təcrübə üzrə nəticələr də əks olunmuşdur.

Cədvəl 2 $Y_{1-3}=f(X_1;X_2;X_3)$ \to min (max) asılılıqlarının öyrənilməsi üzrə planlaşdırma matrisi və eksperimentlərin nəticələri

	V	v	V. 1.	Optimallaşdırma kriteriləri			
No	$X_1,\omega_d,$ san-1	X_2 , v_0 ,m/san	$X_3, l_b,$ m	Y_1 ,	V 1	$Y_3, N,$	
	San	00,111/8411	111	δ ,%	Y_2 , λ	kWsaat/ton	
1	-1	-1	1	9,4	1,20	0,16	
2	1	-1	-1	9,8	1,30	0,17	
3	-1	1	-1	10,4	1,35	0,14	
4	1	1	1	7,5	1,50	0,20	
5	-1	-1	-1	7,9	1,20	0,15	
6	1	-1	1	10,2	1,80	0,16	
7	-1	1	1	7,9	1,60	0,17	
8	1	1	-1	11,0	1,55	0,21	
9	-1,215	0	0	8,7	1,50	0,15	
10	1,215	0	0	9,2	1,80	0,16	
11	0	-1,215	0	6,7	1,45	0,15	
12	0	1,215	0	8,1	1,65	0,17	
13	0	0	-1,215	7,0	1,60	0,13	
14	0	0	1,215	7,2	1,90	0,16	
15	0	0	0	5,0	2,00	0,13	

 $Y_{1-3}=f(X_1; X_2; X_3) \rightarrow \min (\max)$ asılılıqlarının reqressiya analiz nəticələri cədvəl 3–5 –də verilmişdir.

Cədvəl 3 $Y_1 = f(X_1; X_2; X_3) \rightarrow$ min asılılığının reqressiya təhlili

		Təhlil addımı								
		1	2	3	4	5	6	7		
	a_0	5,80299	5,80299	5,80299	5,80299	5,80299	5,80299	6,80299		
	a_1	0,32025	0,32025	0,32025	0,32025	-	-	-		
	a ₂	0,10966	-	-	-	-	-	-		
E	<i>a</i> ₃	0,35216	0,35216	0,35216	0,35216	-	-	-		
Modelin əmsalları	a ₁₂	0,31250	0,31250	0,31250	-	-	-	-		
elin əı	a ₁₃	0,26250	0,26250	-	-	-	-	-		
Мод	a ₂₃	0,98750	0,98750	0,98750	0,98750	0,98750	0,98750	0,98750		
	a ₁₁	1,95331	1,95331	1,95331	1,95331	1,95331	1,95331	1,95331		
	a ₂₂	0,90334	0,90334	0,90334	0,90334	0,90334	0,90334	0,90334		
	a ₃₃	0,70011	0,70011	0,70011	0,70011	0,70011	0,70011	-		
Standart yana çıxma		2,8338	2,9655	3,5167	4,29800	5,4212	6,7795	8,9173		
R- korrelyasiya		0,96088	0,95902	0,94003	0,94003	0,92371	0,90359	0,87098		
F-kr	iteri	6,0173	7,6373	8,3159	8,6796	8,7206	8,8975	8,6421		

Cədvəl 4 $Y_2=f(X_1;X_2;X_3) o$ max asıhlığının reqressiya təhlili

			Təhlil addımı							
		1	2	3	4					
	a_0	1,91826	1,91826	1,91826	1,91826					
	a_1	0,10632	0,10632	0,10632	0,10632					
arı	a_2	0,06784	0,06784	0,06784	-					
sall	a_3	0,09719	0,09719	0,09719	0,09719					
Modelin əmsalları	a_{12}	-0,07500	-0,07500	-0,07500	-0,07500					
	a_{13}	0,02500	-	-	-					
ode	a_{23}	-0,03750	-0,03750	-	-					
Ĭ	a_{11}	-0,16355	-0,16355	-0,16355	-0,16355					
	a_{22}	-0,23129	-0,23129	-0,23129	-0,23129					
	a_{33}	-0,09581	-0,09581	-0,09581	-0,09581					
Standart yana		0,096602	0,101600	0,112850	0,163260					
çıxma										
R-korrelyasiya		0,93971	0,93649	0,92919	0,89575					
F-kriteri		3,7756	4,7536	5,5299	4,6397					

Addımlı analiz metodu ilə statistiki əhəmiyyətsiz əmsallar kənarlaşdırılmış və yayıcı-kipləşdirici tərtibatın köməyi ilə KTU-10 səyyar yempaylayanının bunkerinin yem qarışığı ilə doldurulma prosesinin asağıdakı riyazi modelləri qurulmuşdur.

Modelin verilənləri kodlaşmış şəkildə aşağıdakı kimidir:

$$Y_1 = 5,803 - 0,987X_2X_3 + 1,953X_1^2 + 0,903X_2^2 + 0,700X_3^2 \rightarrow min;$$
 (1)

$$Y_2 = 1,918 + 0,106X_1 + 0,067X_2 + 0,097X_3 - 0,075X_1X_2 - (2)$$

-0,163 $X_1^2 - 0,231X_2^2 - 0,095X_3^2 \rightarrow \text{max};$

$$Y_3 = 0.134 + 0.012X_1 + 0.010X_2 + 0.005X_3 + 0.010X_1X_2 - 0.008X_1X_3 + (3) + 0.013X_1^2 + 0.017X_2^2 + 0.006X_3^2 \rightarrow min;$$

Cədvəl 5 $Y_3=f(X_1; X_2; X_3) \rightarrow$ min asılılığının reqressiya təhlili

		Təhlil addımı					
		1	2	3			
	a_0	0,13408	0,13408	0,13408			
	a_1	0,01207	0,01207	0,01207			
Modelin əmsalları	a_2	0,00952	0,00952	0,00952			
sall	a ₃	0,00515	0,00515	-			
uie .	<i>a</i> ₁₂	0,01000	0,01000	0,01000			
Į.	<i>a</i> 13	-0,00750	-0,00750	-0,00750			
[age]	a23	0,00250	-	-			
M	<i>a</i> ₁₁	0,01327	0,01327	0,01327			
	a22	0,01666	0,01666	0,01666			
	<i>a</i> 33	0,00649	0,00649	0,00649			
Standart yana çıxma		0,000551	0,000601	0,000551			
R-korrelyasiya		0,95923	0,95544	0,95923			
F-kriteri		5,7589	6,9840	5,7589			

Verilmiş reqressiya tənliklərinin həlli nəticəsində parametrlərin optimal qiymətləri müəyyən edilmişdir. Onlar aşağıdakı hüdudlar daxilindədirlər:

-daraqların fırlanmasının bucaq sürəti ω_d =8,0...8,6 san⁻¹;

-yayıcı-kipləşdiricinin platformasının boyuna hərəkət sürəti *v*₀=0,004...0,042 m/san;

-daraq barmaqları arasındakı məsafə l_b =0,06...0,08 m.

Parametrlərin bu qiymətlərində kriterilərin optimal qiymətləri aşağıdakı kimidir:

 δ =5,8%; λ =1,96...2,0;

N=0,134 kWsaat/ton.

Cədvəl 6 $Y = f(X_1; X_2; X_3) \rightarrow \min(\max) \text{ asılılıqlarının regressiva təhlilinin nəticələri}$

		I 1-J (21)	, 21 <u>2</u> , 213	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(IIIaA) as	miquari	mi reqr	coorju c	/ * * * * * * * * * * * * * * * * * * *	1 110 61 601	U1 1	
Kr	<i>a</i> ₀	a_1	a_2	<i>a</i> ₃	a ₁₂	a13	a23	a ₁₁	a22	a33	Adekvatlı	q barədə
											nəti	cə
											F_{hes}	$F_{c \ni d}$
Y_1	5,803	-	-	-	-	-	-0,9533	1,9533	0,9033	0,7001	8,8975	5,96
Y_2	1,918	0,106	0,068	0,097	-0,075	-	-	-0,164	-0,231	-0,096	5,530	3,79
<i>Y</i> ₃	0,134	0,012	0,010	0,005	0,010	-0,008	-	0,013	0,017	0,006	6,984	3,58

Səyyar yempaylayanın bunkerinin doldurulma prosesində bu faktorların hər birinin təsiri dərəcəsini təhlil etmək üçün cavab funksiyaların (optimallaşdırma kriterilərinin

 $-Y_i$) səthləri qrafiki olaraq qurulmuşdur (şək.1, şək.2, şək.3).

Bu qrafiklərin köməyi ilə X_1 ; X_2 və X_3 -ün Y_1 ; Y_2 və Y_3 -ə təsir dərəcəsini əyani şəkildə izləmək mümkündür.

Bu modellərin adekvatlığı $F_{hes} > F_{cod}$ bərabərsizliyi ilə təsdiq olunur (cədvəl 6).

Belə ki, $Y_1=f(X_1; X_2; X_3)$ \rightarrow min üçün Fişer kriterisinin hesabat qiyməti $F_{hes}=8,897$ cədvəl qiymətindən $F_{cəd}=5,960$ böyük alınmışdır. Bu zaman korrelyasiya əmsalı 0,903 və standart yana çıxma isə 6,779 təşkil etmişlər.

 $Y_2=f(X_1; X_2; X_3)$ \rightarrow max asılılığı üçün bərabərsizlik $F_{hes}>F_{c>d}=5,53>3,79$ şəklində, standart yana çıxmanın $\delta=0,112$ qiymətində korrelyasiya isə $R_2=0,929$ olmuşdur.

 $Y_3=f(X_1; X_2; X_3)$ \rightarrow min asılılığı üçün bərabərsizlik $F_{hes}>F_{cəd}=6,98>3,58,$ $R_3=0,959$ və $\delta=0,00055,$ etibarlılıq ehtimalı isə P=0,95 (cədvəl 4.6 və cədvəl 4.7) olmuşdur.

faktorlarının X_1 ; X_2 ; X_3 kodlaşmış qiymətlərindən natural ω_d , san⁻¹; v_0 , m/san; l_b , m qiymətlərinə keçdikdə səyyar **KTU-10** yempaylayanın bunkerinin yem qarışığı doldurulma prosesinin kodu açılmış şəkildə riyazi modeli aşağıdakı kimi olur:

$$\delta = 39,282 - 7,813\omega_d - 106,6\upsilon_0 - 3,133l_b - 1234,0\upsilon_0 l_b + (4) + 0,488\omega_d^2 + 2258,3\upsilon_0^2 + 437,57l_b^2 \rightarrow \min;$$

$$\lambda = 5,576 - 0,678\omega_d - 57,8\nu_0 - 4,775l_b - 1,875\omega_d\nu_0 - (5)$$

$$-0.041\omega_d^2 - 578.240\upsilon_0^2 - 59.883l_b^2 \rightarrow \text{max};$$

$$N = 0.488 - 0.059\omega_d - 3.9\nu_0 + 1.2l_b + 0.125\omega_d\nu_0 - 0.1\omega_d l_b + (6) + 0.0034\omega_d^2 + 42.5\nu_0^2 + 4.375l_b^2 \rightarrow \min.$$

 $Y_1 \rightarrow$ min; $Y_2 \rightarrow$ max və $Y_3 \rightarrow$ min olduqları hal üçün faktorların birgə optimal variantını müəyyən etmək məqsədi ilə onların ekstremal qiymətləri sahəsi verilmişdir (cədvəl 7).

Cədvəl 7 $Y_{1-3}=f(X_1; X_2; X_3) \rightarrow \min(\max)$ asılılıqları üçün faktorların ekstremal qiymətləri sahəsi

Kriterilər $Y_1 \rightarrow \min$	X ₁ 0,00 0,00	X_2 0,00	X ₃ 0,00	<i>Y</i> ₁₋₃ 5,803
Y ₁ →min		0,00	0.00	5 902
	0.00		0,00	2,003
		-0,02	-0,02	5,803
	0,00	0,02	0,02	5,803
	0,00	0,00	-0,02	5,803
	0,00	0,00	0,02	5,803
	0,00	-0,02	0,00	5,803
	0,00	0,02	0,00	5,803
	0,00	-0,02	-0,04	5,804
	0,00	0,02	0,04	5,804
	-0,02	0,00	0,00	5,804
$Y_2 \rightarrow \max$	0,30	0,10	0,51	1,962
	0,30	0,10	0,50	1,962
	0,31	0,10	0,51	1,962
	0,30	0,09	0,51	1,962
	0,31	0,10	0,50	1,962
	0,30	0,10	0,52	1,962
	0,31	0,09	0,51	1,962
	0,30	0,09	0,50	1,962
	0,31	0,09	0,50	1,962
	0,29	0,10	0,51	1,962
<i>Y</i> ₃ →min	-0,64	-0,10	-0,76	0,128
	-0,64	-0,10	-0,78	0,128
	-0,62	-0,10	-0,76	0,128
	-0,64	-0,08	-0,76	0,128
	-0,64	-0,08	-0,78	0,128
	-0,62	-0,10	-0,74	0,128
	-0,62	-0,10	-0,78	0,128
	-0,66	-0,08	-0,78	0,128
	-0,64	-0,10	-0,74	0,128
	-0,64	-0,10	-0,80	0,128

Şək.1. $Y_1=f(X_1=0,00; X_2; X_3) \rightarrow min$ cavab funksiyasının səthi.

Şək.2. $Y_2=f(X_1=0,30; X_2; X_3) \rightarrow \max \text{ cavab funksiyasının səthi.}$

Doldurulmanın bərabərliyi üçün optimal qiymətlər zonası X_1 =0 (8 san⁻¹) faktorunun stabilləşdiyində və X_2 faktorunun (platformanın hərəkət sürəti) 0,036 m/san –dən 0,044 m/san -yə

qədər hüdudlarında, X_3 faktorunun (daraq barmaqları arası məsafə) 0,052-dən 0,068 m-ə qədər hüdudlarında olur.

Şək.3. $Y_3=f(X_1=-0.64; X_2; X_3) \rightarrow min cavab funksiyasının səthi.$

Kipləşmə dərəcəsi üçün optimal qiymət zonası X_1 =-1 (8,6 san⁻¹) faktorunun stabilləşdiyində və X_2 faktorunun (platformanın hərəkət sürəti) 0,036 m/san –dən 0,044 m/sam -ə qədər hüdudlarında, X_3 faktorunun (daraq barmaqları arası məsafə) 0,028-dən 0,044 m-ə qədər hüdudlarında olur.

Doldurma prosesinin enerji tutumluluğu üçün optimal qiymət zonası X_1 =-0,64 (6,76 san⁻¹) və X_2 faktorunun (platformanın hərəkət sürəti) 0,044 m/san –dən 0,052 m/san-yə qədər hüdudlarında, X_3 faktorunun (daraq barmaqları arası məsafə) 0,060-dan 0,072 m-ə qədər hüdudlarında olur.

ƏDƏBİYYAT

1. Abbasov S.A., Mehdiyev M.Ə., Ruşanov A.Ə., Turabov U.T., Nəcəfova G.K. Heyvandarlıq: Dərslik. Gəncə: ADAU nəşriyyatı, 2011, 147 s. 2. Balakişiyev M., Gözəlov Y. Heyvandarlığın müasir vəziyyəti və inkişaf perspektivləri / Respublika qəzeti. Bakı, 4 iyun 2013, s.6. 3. Велиев И.А., Багиев А.А., Нуриев М.Ю., Мехтиев А.М., Багиев С.А. Кормораздатчик: Авторское свидельтельство SU 1618357. Бюл.И.О. №1, 1987. 4. Велиев И.А. Исследование битерного устройства мобильного кормораздатчика // Аграрная наука, 2017, №7, с.21-24. 5. Мәттер Q.В., Vəliyev İ.Ә. Səyyar yempaylayanın bunkerinin dol-durulmasına enerji sərfinin əsaslandırılmasi // Аzərbaycan Aqrar Elmi, 2018, №1, s.191-196. 6. Гарри Смит, Норман Дрейлер. Прикладной регрессионный анализ. М.: Вильямс, 2016, 912 с. 7. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2 ч. ч.2: учебное пособие. М.: Оникс, Мир и образование, 2009, 448 с.

Исследование процесса заполнения бункера мобильного кормораздатчика

Г.Б. Мамедов, И.А.Велиев

В статье исследуется процесс заполнения мобильного кормораздатчика для правильной организации раздачи кормов животным. Во время изучения процесса заполнения бункера мобильного кормораздатчика смешанными кормами с помощью разравнивателя - уплотнителя был дан критерий оптимизации и были выбраны более важные факторы, влияющие на критерий оптимизации. Проведенные опыты показали, что зона оптимальных значений для равномерного заполнения наблюдается при стабилизации фактора X_1 и фактор X_2 находится в пределах от 0,036 м/сек до 0,044 м/сек, фактор X_3 бывает в пределах от 0,052 до 0,068 м. Зона оптимальных значений для степени уплотнения наблюдается при стабилизации фактора X_1 =1 и фактор X_2 находится в пределах от 0,036 м/сек до 0,044 м/сек, фактор X_3 бывает в пределах от 0,028 до 0,044 м. В итоге для энергоемкости процесса заполнения зона оптимальных значений X_1 =-0,64 и фактор X_2 находится в пределах от 0,036 м/сек до 0,044 м/сек, фактор X_3 бывает в пределах от 0,036 м/сек до 0,044 м/сек, фактор X_2 находится в пределах от 0,036 м/сек до 0,072 м.

Ключевые слова: Корм, кормораздатчик, мобильный кормораздатчик, бункер, процесс заполнения, разравниватель – уплотнитель, оптимизация, гребень.

Study of the process of filling the mobile feed bunker hopper

G.B.Mammadov, I.A.Valıyev

The article explores the process of filling a mobile feeder to properly organize the distribution of feed to animals. During the study of the process of filling the mobile feed feeder with mixed feeds with the help of a leveler - compactor, optimization criteria were given and more important factors influencing the optimization criteria were selected. Experiments have shown that the zone of optimal values for uniform filling is observed when factor X_1 stabilizes and factor X_2 is in the range of 0,036 m/s to 0.044 m/s, factor X_3 is in the range of 0,052 to 0,068 m. Zone of optimum values for the degree of compaction observed when the factor X_1 =1 stabilizes and the factor X_2 is in the range from 0,036 m/s to 0,044 m/s, the factor X_3 is in the range from 0,028 to 0,044 m. As a result, for the energy intensity of the filling process, the zone of optimal values X_1 = -0.64 and the factor X_2 ranges from 0,036 m/s to 0,044 m/s, factor X_3 actor is in the range from 0,060 to 0,072 m.

Key words: Food, feed dispenser, mobile feed dispenser, bunker, filling process, razravnivatel - compactor, optimization, comb.