Теория графов (связность)

Определения

Точки сочленения и блоки в связном графе

Точка сочленения - вершина $a \in V(G)$, если граф G - a несвязен (при удалении а увеличивается число компонентов связности).

Блок - любой максимальный по включению подграф графа G, не имеющий точек сочленения.

- В силу максимальности, блок графа G является индуцированным подграфом графа G на своем множестве вершин.
- Любой подграф без точек сочленения H графа G входит хотя бы в один блок (так как H можно дополнить до максимального подграфа без точек сочленения).

Рис. 1. Вершины $\{3, 5, 6, 10\}$ являются точками сочленения, (5, 10) - мост, $\{10, 11, 12\}$, $\{6, 7, 8, 9\}$, $\{1, 2, 3\}$, $\{3, 4, 5, 6\}$ - блоки

Блоки и точки сочленения несвязанного графа - это блоки и точки сочленения его компонентов.

Граф B(G), вершины которого соответствуют всем точкам сочленения $a_1,...,a_n$ графа G и всем его блокам $B_1,...,B_m$ (мы будем обозначать эти вершины так же, как и блоки). Вершины a_i и B_j будут смежны, если $a_i \in V(B_j)$. Других ребер в этом графе нет.

Дерево блоков и точек сочленения - граф B(G) графа G.

Крайник блок - блок, соответствующий висячей вершине дерева блоков и точек сочленения.

Внутренность $\operatorname{Int}(B)$ блока B - это множество всех его вершин, не являющихся точками сочленения графа G.

Теоремы и леммы

Лемма 1

Пусть B_1, B_2 - два разных блока графа G, причем $V(B_1) \cap V(B_2) \neq \emptyset$. Тогда $V(B_1) \cap V(B_2)$ состоит из точки сочленения а графа G, причем а - единственная точка сочленения, отделяющая B_1 и B_2 .

Лемма 2

Пусть B_1, B_2 - два разных блока графа G, а P - путь между ними в графе B(G). Тогда точки сочленения графа G, отделяющие B_1 от B_2 - это в точности те же точки сочленения, что лежат на пути P. Остальные точки сочленения не разделяют даже объединение блоков пути P.

Теорема 1

- 1. Дерево блоков и точек сочленения связного графа G это действительно дерево, все листья которого соответствуют блокам.
- 2. Точка сочленения а разделяет два блока B_1 и B_2 в графе G, если и только если а разделяет B_1 и B_2 в B(G).

Лемма 3

Пусть В - крайний блок связного графа G, а $G'=G-\mathrm{Int}(B)$. Тогда граф G' связен, а блоки G' - это все блоки G, кроме B.

Разрез графа G по точке сочленения а

Пусть $U_1,...,U_k$ - все компоненты связности графа G-a, а $G_i=G(U_i\cup\{a\})$. Разрежем граф G на графы $G_1,...,G_k$.

Лемма 4

- 1. Пусть $b \in U_i$. Тогда b разделяет вершины $x,y \in U_i$ в G_i , если и только если b разделяет их в G_i .
- 2. Все точки сочленения графов $G_1,...,G_k$ это в точности все точки сочленения G, кроме а.