1. Given that θ is small and measured in radians, use the small angle approximations to show that			
	$4\sin\frac{\theta}{2} + 3\cos^2\theta$	$\approx a + b\theta + c\theta^2$	
where a , b and c are integers t	to be found.		(3)

2.

Figure 1

Figure 1 shows a plot of part of the curve with equation $y = \cos x$ where x is measured in radians. Diagram 1, on the opposite page, is a copy of Figure 1.

(a) Use Diagram 1 to show why the equation

$$\cos x - 2x - \frac{1}{2} = 0$$

has only one real root, giving a reason for your answer.

(2)

(3)

Given that the root of the equation is α , and that α is small,

(b) use the small angle approximation for $\cos x$ to estimate the value of α to 3 decimal places.

3.	Some A lev	rel students were given the following	ng question.			
	Solve, for $-90^{\circ} < \theta < 90^{\circ}$, the equation					
		cos ($\theta = 2 \sin \theta$			
	The attempt	ts of two of the students are shown	below.			
		Student A	Student B			
		$\cos \theta = 2 \sin \theta$ $\tan \theta = 2$	$\cos \theta = 2 \sin \theta$ $\cos^2 \theta = 4 \sin^2 \theta$			
		θ = 63.4°	$1 - \sin^2 \theta = 4\sin^2 \theta$ $\sin^2 \theta = \frac{1}{5}$			
			$\sin\theta = \pm \frac{1}{\sqrt{5}}$			
			$\theta = \pm 26.6^{\circ}$			
	(a) Identify an error made by student A. (1)					
	Student B gives $\theta = -26.6^{\circ}$ as one of the answers to $\cos \theta = 2 \sin \theta$.					
	(b) (i) Exp	lain why this answer is incorrect.				
	(ii) Exp	lain how this incorrect answer aros	se.	(2)		
				(2)		

Given that x is an obtuse angle, use algebra to prove by contradiction that	
$\sin x - \cos x \geqslant 1$	
he student starts the proof with:	
Assume that $\sin x - \cos x < 1$ when x is an obtuse angle	
$\Rightarrow (\sin x - \cos x)^2 < 1$	
\Rightarrow	
he start of the student's proof is reprinted below.	
omplete the proof.	(3)
Assume that $\sin x - \cos x < 1$ when x is an obtuse angle	
$\Rightarrow (\sin x - \cos x)^2 < 1$	

5.	Given that	
	$\tan \theta^{\circ} = p$, where p is a constant, $p \neq \pm 1$	
	use standard trigonometric identities, to find in terms of p ,	
	(a) $\tan 2\theta^{\circ}$	(2)
	(b) $\cos \theta^{\circ}$	(2)
	(c) $\cot(\theta - 45)^{\circ}$	(2)
	Write each answer in its simplest form.	
_		
_		

6.	Given that	
	$2\cos(x+50)^\circ = \sin(x+40)^\circ$	
	(a) Show, without using a calculator, that	
	$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ}$	(4)
	(b) Hence solve, for $0 \le \theta < 360$,	
	$2\cos(2\theta + 50)^{\circ} = \sin(2\theta + 40)^{\circ}$	
	giving your answers to 1 decimal place.	(4)

7.	(a) Solve, for $-180^{\circ} \le \theta \le 180^{\circ}$, the equation	
	$5\sin 2\theta = 9\tan \theta$	
	giving your answers, where necessary, to one decimal place.	
	[Solutions based entirely on graphical or numerical methods are not acceptable.]	(6)
	(h) Deduce the qualitative relative relative to the expetion	,
	(b) Deduce the smallest positive solution to the equation	
	$5\sin(2x - 50^\circ) = 9\tan(x - 25^\circ)$	(2)
		(2)

8.	(i)	Without using a calculator, find the exact value of	
		$(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$	
		You must show each stage of your working.	(5)
	(ii)	(a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form	
		$k \sin^2 \theta - \sin \theta = 0$, stating the value of k .	(2)
		(b) Hence solve, for $0 \le \theta < 360^{\circ}$, the equation	
		$\cos 2\theta + \sin \theta = 1$	(4)
			_

9.	(a) Prove that	
	$\tan \theta + \cot \theta \equiv 2 \csc 2\theta, \qquad \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}$	
		(4)
	(b) Hence explain why the equation	
	$\tan\theta + \cot\theta = 1$	
	does not have any real solutions.	(1)
		(1)

(a)	Express $4\csc^2 2\theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.	(2)
(b)	Hence show that	,
	$4\csc^2 2\theta - \csc^2 \theta = \sec^2 \theta$	
		(4)
(c)	Hence or otherwise solve, for $0 < \theta < \pi$,	
()	$4\csc^2 2\theta - \csc^2 \theta = 4$	
	giving your answers in terms of π .	
	giving your answers in terms of π .	(3)

11. Show that		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{9}{28}$	
	n=2	(3)

In this question you should show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Given that $1 + \cos 2\theta + \sin 2\theta \neq 0$ prove that

$$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} \equiv \tan \theta$$

(4)

(b) Hence solve, for $0 < x < 180^{\circ}$

$$\frac{1-\cos 4x + \sin 4x}{1+\cos 4x + \sin 4x} = 3\sin 2x$$

giving your answers to one decimal place where appropriate.

(4)

13. (a) Solve, for $-180^{\circ} \leqslant x < 180^{\circ}$, the equation				
$3\sin^2 x + \sin x + 8 = 9\cos^2 x$				
giving your answers to 2 decimal places.	(6)			
(h) II 6. 14h	(0)			
(b) Hence find the smallest positive solution of the equation				
$3\sin^2(2\theta - 30^\circ) + \sin(2\theta - 30^\circ) + 8 = 9\cos^2(2\theta - 30^\circ)$				
giving your answer to 2 decimal places.	(2)			
	(2)			

4	In this question you must show a	all stages of you	r working.		
Solutions relying entirely on calculator technology are not acceptable.					
(a) Show that					
	$\csc\theta - \sin\theta \equiv \cos\theta \cot\theta$	$\theta \neq (180n)^{\circ}$	$n \in \mathbb{Z}$	(3)	
(b) Hence, or oth	herwise, solve for $0 < x < 180^{\circ}$				
	$\csc x - \sin x = \cos x$	$x\cot(3x-50^\circ)$			
				(5)	

15. (a) Prove	
$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} \equiv 2 \cot 2\theta \qquad \theta \neq (90n)^{\circ}, n \in \mathbb{Z}$	(4)
(b) Hence solve, for $90^{\circ} < \theta < 180^{\circ}$, the equation	
$\frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4$	
giving any solutions to one decimal place.	(3)

16					
	In this question you must show all stages of your working.				
	Solutions relying entirely on calculator technology are not acceptable.				
	(a) Show that				
	$\cos 3A \equiv 4\cos^3 A - 3\cos A$				
		(4)			
	(b) Hence solve, for $-90^{\circ} \leqslant x \leqslant 180^{\circ}$, the equation				
	$1 - \cos 3x = \sin^2 x$				
		(4)			
		(-)			

17				
In this question you must show all stages of your working.				
Solutions relying entirely on calculator technology are not acceptable	•			
(a) Given that				
$2\sin(x - 60^{\circ}) = \cos(x - 30^{\circ})$				
show that				
$\tan x = 3\sqrt{3}$	(4)			
(b) Hence or otherwise solve, for $0 \le \theta < 180^{\circ}$,			
$2\sin 2\theta = \cos(2\theta + 30^\circ)$				
giving your answers to one decimal place.	(4)			

1	O
1	o

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Show that the equation

$$2\tan\theta (8\cos\theta + 23\sin^2\theta) = 8\sin2\theta (1 + \tan^2\theta)$$

may be written as

$$\sin 2\theta (A\cos^2\theta + B\cos\theta + C) = 0$$

where A, B and C are constants to be found.

(3)

(b) Hence, solve for $360^{\circ} \leqslant x \leqslant 540^{\circ}$

$$2\tan x (8\cos x + 23\sin^2 x) = 8\sin 2x (1 + \tan^2 x)$$
 $x \in \mathbb{R}$ $x \neq 450^{\circ}$

(4)

$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A}, \qquad A \neq \frac{(2n+1)\pi}{4}, n \in \mathbb{Z}$	
	(5)
(b) Hence solve, for $0 \le \theta \le 2\pi$,	
$\sec 2\theta + \tan 2\theta = \frac{1}{2}$	
Give your answers to 3 decimal places.	
	(4)

$2 \cot 2x + \tan x \equiv \cot x$ $x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$	
2 , =	
	(4)
	()
(b) Hence, or otherwise, solve, for $-\pi \leqslant x < \pi$,	
$6\cot 2x + 3\tan x = \csc^2 x - 2$	
Give your answers to 3 decimal places.	
Give your unswers to 5 decimal places.	
(Solutions based entirely on graphical or numerical methods are not acceptable.)	(6)
	(6)

21. (a) Prove that	
$\sin 2x - \tan x \equiv \tan x \cos 2x, \qquad x \neq (2n+1)90^{\circ}, \qquad n \in \mathbb{Z}$	(4)
(b) Given that $x \neq 90^{\circ}$ and $x \neq 270^{\circ}$, solve, for $0 \leqslant x < 360^{\circ}$,	
$\sin 2x - \tan x = 3 \tan x \sin x$	
Give your answers in degrees to one decimal place where appropriate.	
(Solutions based entirely on graphical or numerical methods are not acceptable.)	(5)