Purdue University West Lafaywtte CS 182

Assignment 6 Model Solutions

Due: Thursday, July 27, 2017, upload before 11:30pm

1) (20 pts.): Which of these relations on the set of all people are equivalence relations? Determine the properties of an equivalence relation that the others lack.

- 1. $\{(a,b) \mid a \text{ and } b \text{ are the same age}\}$
- 2. $\{(a,b) \mid a \text{ and } b \text{ have the same parents}\}$
- 3. $\{(a,b) \mid a \text{ and } b \text{ share a common parent}\}$
- 4. $\{(a,b) \mid a \text{ and } b \text{ have met}\}$

Graded by: Sneha Balasubramanian

Solution:

(1) $\{(a,b) \mid a \text{ and } b \text{ are the same age}\}$

This relation is

Reflexive

Symmetric: if a is same age as b, b is also same age as a.

Transitive: if a is as old as b and b is as old as c, then a is as old as c.

Thus, it is an equivalence relation.

(2) $\{(a,b) \mid a \text{ and } b \text{ have the same parents}\}$

This relation is

Reflexive

Symmetric: if a has same parents as b, b also has same parents as a.

Transitive: if a has same parents as b and b has same parents as c, then a has same parents as c.

Thus, it is an equivalence relation.

(3) $\{(a,b) \mid a \text{ and } b \text{ share a common parent}\}$

This relation is

Reflexive

Symmetric: if a has common parents as b, b also has common parents as a.

Not Transitive: if a has common parents as b and b has common parents as c, then a does not necessarily need to have common parents as c.

Thus, it is not an equivalence relation.

(4) $\{(a,b) \mid a \text{ and } b \text{ have met}\}$

This relation is

Reflexive

Symmetric: if a has met b, b also has met a.

Not Transitive: if a has met b and b has met c, then a does not necessarily need to have met c.

Thus, it is not an equivalence relation.

2) (10 pts.): Which of these relations on the set of all people are partial orderings?

Determine the properties of a partial ordering that the others lack.

Graded by: Ramya Vulimiri

1. $\{(a,b) \mid a \text{ is no shorter than } b\}$

Solution

This is not a poset as it is not anti-symmetric. Consider that we have a person a and a person b and $a \neq b$, then the order pairs (a, b) and (b, a) can exist in the relation because we can have a and b be the same height.

2. $\{(a,b) \mid a \text{ and } b \text{ do not have a common friend}\}$

Solution:

This is not a poset as it is not reflexive, anti-symmetric or transitive. (a, a) does not belong to the relation since it doesn't make sense to not have common friends with yourself(not reflexive). Consider that we have a person a and a person b, then the order pairs (a, b) and (b, a) can exist in the relation because they don't have common friends but $a \neq b$ (not anti-symmetric). If (a, b) and (b, c) belong to the relation, it doesn't necessarily imply that a and c do not have common friends and that (a, c) belongs to the relation(not transitive).

Solution 3) (10 points) Graded by Rashmi Soni

Solve
$$a_n = 7a_{n-1} - 12a_{n-2}$$
 with $a_0 = 4$ and $a_1 = 9$

The characteristic equation of the recurrence relation is

$$r^2 - 7r + 12 = 0$$

$$(r-4)(r-3) = 0$$

$$r = 4.3$$

Thus, the roots of the characteristic equation are $r_1=4$ and $r_2=3$. Hence the sequence $\{a_n\}$ is a solution to the recurrence relation if and only if

$$a_n = \alpha_1(r_1)^n + \alpha_2(r_2)^n$$

Substitute the values of r_1 and r_2 :

$$a_n = \alpha_1 4^n + \alpha_2 3^n \dots eq (1)$$

Now, from the given initial conditions:

Put n=0 in eq(1), we get

$$a_0 = \alpha_1 4^0 + \alpha_2 3^0$$

$$4 = \alpha_1 + \alpha_2 \dots eq (2)$$

Now, put n=1 in eq(1), we get

$$a_1 = \alpha_1 4^1 + \alpha_2 3^1$$

$$9 = 4\alpha_1 + 3\alpha_2 \dots eq (3)$$

So, multiplying eq(2) by 4 and then subtracting from eq(3), we get

$$\alpha_2 = 7$$

Thus,
$$\alpha_1 = -3$$

Substituting in eq(1), we get

$$a_n = (-3)4^n + 7.3^n$$

Solution 4) (10 points) Graded by Rashmi Soni

Finding sum-of-products expansions of the following Boolean functions :

a)
$$F(x,y,z) = x + y + z$$

Creating table for F(x,y,z) for all possible values of the variables x,y,z:

X	у	\mathbf{z}	x+y+z
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	<mark>1</mark>
0	0	0	0

Thus, the sum-of-products expansions for F(x,y,z) is the sum of the minterms corresponding to the rows of this table that give the value of 1 for the function. Thus,

$$F(x,y,z) = xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}y\overline{z}$$

b)
$$F(x,y,z) = (x + z)y$$

Creating table for F(x,y,z) for all possible values of the variables x,y,z:

X	У	Z	x+z	(x + z)y
1	1	1	1	<mark>1</mark>
1	1	0	1	<mark>1</mark>
1	0	1	1	0
1	0	0	1	0
0	1	1	1	1
0	1	0	0	0
0	0	1	1	0
0	0	0	0	0
1	l .	ı	ı	1

Thus, the sum-of-products expansions for F(x,y,z) is the sum of the minterms corresponding to the rows of this table that give the value of 1 for the function. Thus,

$$F(x, y, z) = xyz + xy\overline{z} + \overline{x}yz$$

c)
$$F(x,y,z) = x$$

Creating table for F(x,y,z) for all possible values of the variables x,y,z:

X	У	Z	х
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Thus, the sum-of-products expansions for F(x,y,z) is the sum of the minterms corresponding to the rows of this table that give the value of 1 for the function. Thus,

$$F(x, y, z) = xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z}$$

d)
$$F(x,y,z) = x\overline{y}$$

Creating table for F(x,y,z) for all possible values of the variables x,y,z:

х	у	\mathbf{z}	\overline{y}	$x\overline{y}$
1	1	1	0	0
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	0	0
0	1	0	0	0
0	0	1	1	0
0	0	0	1	0

Thus, the sum-of-products expansions for F(x,y,z) is the sum of the minterms corresponding to the rows of this table that give the value of 1 for the function. Thus,

$$F(x, y, z) = x\overline{y}z + x\overline{y}\overline{z}$$

5) (10 pts.) Which is more likely: rolling a total of 8 when 2 dice are thrown or rolling a total of 8 when 3 dice are thrown?

Graded by: Ramya Vulimiri

Solution: Let us calculate the probability for each case. For two dice, a total of 8 can be reached in 5 cases: (6, 2), (5, 3), (4, 4), (3, 5), (2, 6), so the probability here is $\frac{5}{6^2} = \frac{5}{36}$.

For three dice, a total of 8 can be reached in 21 cases: 6 permutations each of (5, 2, 1), (4, 3, 1), and 3 permutations each of (1, 1, 6), (2, 2, 4), (3, 3, 2). The probability here is $\frac{21}{6^3} = \frac{21}{216}$.

 $\frac{5}{36}>\frac{21}{216}\implies$ it is more likely to get 8 with two dice.