4 ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ.

1. ОБЩИЕ СВЕДЕНИЯ.

В нормах радиационной безопасности НРБ-99 установлены:

1. Три категории облучаемых лиц:

категория A — персонал (профессиональные работники);

категория E — профессиональные работники, не связанные с использованием источников ионизирующих излучений, но рабочие места которых расположены в зонах воздействия радиоактивных излучений;

категория B — население области, края, республики, страны.

- 2. Три группы критических органов:
 - 1-я группа все тело, половые органы, костный мозг;
 - 2-я группа мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт (ЖКТ), легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к 1-й и 3-й группам
 - 3-я группа кожный покров, костная ткань, кисти, предплечья, стопы.
- 3. Основные дозовые пределы, допустимые для лиц категорий A, E и B.

Основные дозовые пределы – предельно допустимые дозы (ПДД) облучения (для категории A) и пределы дозы (ПД) (для категории B) за календарный год. ПДД и ПД измеряются в миллизивертах в год (M36/200). ПДД и ПД не включают в себя дозы естественного фона и дозы облучения, получаемые при медицинском обследовании и лечении (см. табл. 4.1.)

1 иолици 4.1 Основные возовые превелы, мэв/гов					
Категория облучаемых					
лиц	Группа критических органов				
	1-я	2-я	3-я		
A	20	150	500		
В	1	15	50		

Таблица 4.1.. Основные дозовые пределы, мЗв/год

Примечание. Дозы облучения для персонала категории E не должны превышать $\frac{1}{4}$ значений для персонала категории A.

ПДД – наибольшее значение индивидуальной эквивалентной дозы облучения за календарный год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

ПД – основной дозовый предел, при котором равномерное облучение в течение 70 лет не вызовет изменений здоровья, обнаруживаемых современными методами.

2. МЕТОДИКА ОЦЕНКИ.

При проведении радиационного контроля и оценке соответствия параметров радиационной обстановки нормативам должны соблюдаться следующие соотношения:

$$H \le \Pi \coprod \coprod$$
, (4.1.)

где H– максимальная эквивалентная доза излучения на данный критический орган, м3e/20d:

$$H = D \cdot k. \tag{4.2.}$$

где D — поглощенная доза излучения, м36/200; k — коэффициент качества излучения (безразмерный коэффициент, на который следует умножить поглощенную дозу рассматриваемого излучения для получения эквивалентной дозы этого излучения);

Для категории B

 $H \le \Pi Д$, (4.3.)

где H рассчитывают по формуле (4.2.)

Значения коэффициента к приведены ниже.

Вид излучения к

Рентгеновское и γ -	1
излучение	1
Электроны и позитроны, β –	1
излучение	1
Протоны с энергией < 10	10
МэВ	10
Нейтроны с энергией < 0,02	3
МэВ	5
Нейтроны с энергией 0,1	10
10 МэВ	10
A — излучение с энергией $<$	20
10 МэВ	20
Тяжелые ядра отдачи	20

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ.

- 3.1. Выбрать вариант (табл. 4.2.).
- 3.2. Ознакомиться с методикой.
- 3.3. В соответствии с категорией облучаемых лиц, группой критических органов и режимов работы определить основные дозовые пределы (ПДД и ПД).
 - 3.4. По формуле (4.2.) определить максимальную эквивалентную дозу излучения.
- 3.5. С помощью формул (4.1.) и (4.3.) сделать вывод о соответствии радиационной обстановки нормам радиационной безопасности.
 - 3.6. Подписать отчет и сдать преподавателю.

4. *Таблица 4.2.* ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ ПО ТЕМЕ «ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ

Вариант	Категория	Облучение		
	облучаемых лиц	Группа критических органов	Вид излучения до	Поглощенная доза, мЗв/год
1.	2.	3.	4.	5.
01	A	Все тело	α — излучение с энергией < 10 M э B	1
02	A	Все тело	α — излучение с энергией < 10 M э B	2

03	A	Щитовидная железа	β – излучение	75
04	A	Печень, почки	Протоны с энергией < 10 МэВ	10
05	A	Легкие	Протоны с энергией < 10 <i>МэВ</i>	20
6	A	Голени и стопы	Нейтроны с энергией $0,1 \dots 10$ $M \ni B$	15

Продолжение табл. 4.2.

			1	
07	A	Кожный покров	Нейтроны с энергией 0,110 <i>МэВ</i>	20
08	Б	Все тело	γ - излучение	1
09	A	Все тело	γ - излучение	2
10	Б	Все тело	Рентгеновское излучение	3
11	A	Органы пищеварения	Рентгеновское излучение	10
12	A	Органы пищеварения	Нейтроны с энергией < 0.02 $M \ni B$	1
13	A	Легкие	Нейтроны с энергией < 0.02 $M \ni B$	2
14	A	Легкие	Нейтроны с энергией < 0.02 $M \ni B$	3
15	A	Легкие	Нейтроны с энергией < 0.02 $M \ni B$	4
16	A	Все тело	Нейтроны с энергией $0,1 \dots 10$ $M \ni B$	2
17	A	Все тело	Нейтроны с энергией $0,1 \dots 10$ $M \ni B$	3
18	A	Костная ткань	Протоны с энергией < 10 МэВ	20
19	A	Мышцы	Протоны с энергией < 10 МэВ	10
20	A	Легкие	eta — излучение	100
21	A	Кисти рук	β — излучение	200
22	A	Кожный покров	α – излучение	20
23	A	Печень, почки	α – излучение	10
24	Б	Все тело	γ - излучение	2
25	Б	Все тело	γ - излучение	4
26	Б	Все тело	Нейтроны с энергией < 0,02 МэВ	1

27	Б	Легкие	Нейтроны с энергией < 0.02 $M \ni B$	2
28	Б	Легкие	Нейтроны с энергией < 0.02 $M \ni B$	1
29	Б	Органы пищеварения	Рентгеновское излучение	5
30	Б	Органы пищеварения	Рентгеновское излучение	10

5. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ «ОЦЕНКА РАДИАЦИОННОЙ ОБСТАНОВКИ»

1. Исходные данные:

Вариант	Категория облучаемых лиц	Облучение		
		Группа критических органов	Вид излучения	Поглощенная доза, мЗв/год
№	Б	Органы пищеварения	Рентгеновское излучение	10

- 2. Цель работы: оценить радиационную обстановку согласно данным варианта на соответствие нормам радиационной безопасности.
- 3. Ход работы:

В нормах радиационной безопасности НРБ-99 установлены:

- 1. три категории облучаемых лиц: категория A персонал (профессиональные работники); **категория** $\mathbf{\it E}$ профессиональные работники, не связанные с использованием источников ионизирующих излучений, но рабочие места которых расположены в зонах воздействия радиоактивных излучений; категория B население области, края, республики, страны.
- 2. три группы критических органов: 1-я группа все тело, половые органы, костный мозг; 2-я группа мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт (ЖКТ), легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к 1-й и 3-й группам; 3-я группа кожный покров, костная ткань, кисти, предплечья, стопы.
- 3. основные дозовые пределы, допустимые для лиц категорий A, E и B.

Основные дозовые пределы — предельно допустимые дозы (ПДД) облучения (для категории A) и пределы дозы (ПД) (для категории B) за календарный год. ПДД и ПД измеряются в миллизивертах в год (M36/200). ПДД и ПД не включают в себя дозы естественного фона и дозы облучения, получаемые при медицинском обследовании и лечении (см. табл. 4.1.)

При проведении радиационного контроля и оценке соответствия параметров радиационной обстановки нормативам должны соблюдаться следующие соотношения:

 $H \le \Pi Д Д$,

где H – максимальная эквивалентная доза излучения на данный критический орган, M36/200.

 $H = D \cdot k$, $H = 10 \cdot 1 = 10 \text{ m3e/20d}$,

где D — поглощенная доза излучения, $м3в/го\partial$; k — коэффициент качества излучения (безразмерный коэффициент, на который следует умножить поглощенную дозу рассматриваемого излучения для получения эквивалентной дозы этого излучения);

По данным варианта (табл. 4.2.) для группы критических органов - «пищеварение» и категории облученных лиц - «А» нахожу основной дозовый предел из табл. 4.1.

Таблица 4.1. Основные дозовые пределы, мЗв/год

Категория облучаемых лиц	Группа критических органов		
	1-я	2-я	3-я
A	20	150	500
В	1	15	50

 Π ДД = 150 M3e/го ∂ ,

Дозы облучения для персонала категории E не должны превышать $\frac{1}{4}$ значений для персонала категории E, следовательно:

150 / 4 = 37,5м3в/год

Сравним рассчитанную максимальную эквивалентную дозу на органы пищеварения при рентгеновском излучении с ПДД на данный критический орган:

10<37,5

Вывод: В результате расчета определили, что максимальная эквивалентная доза на органы пищеварения при рентгеновском излучении не превышает установленную ПДД на данный критический орган, следовательно, радиационная обстановка соответствует нормам радиационной безопасности.

ЛИТЕРАТУРА

- 1. Безопасность жизнедеятельности / С.В. Белов, А.В. Ильницкая, А.Ф. Козьяков и др.; Под общ. Ред. С.В. Белова. М.: Высшая школа, 1999. 448 с.
- 2. Козлов В.Ф. Справочник по радиационной безопасности. 4-е изд., перераб. И доп. М.: Энергоатомиздат, 1991. 352 с.
- 3. Охрана окружающей среды / С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др.; Под ред. С.В. Белова. 2-е изд., испр. и доп. М.: Высшая школа, 1991. 319 с.