I. Partial orders

Definition (Partial order)

Given a set X, a relation \sqsubseteq is a *partial order* if it is:

- reflexive: $\forall x \in X, x \sqsubseteq x$
- antisymmetric: $\forall x, y \in X, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$
- transitive: $\forall x, y, z \in X, x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$

 (X, \sqsubseteq) is a partially ordered set (poset).

If we drop antisymmetry, we get a **preorder**.

Example (Partial orders)

- (\mathbb{Z}, \leq) is completely ordered
- (\mathcal{P},\subseteq) is not completely ordered

Example (Preorders)

• $(\mathcal{P},\sqsubseteq)$ where $a\sqsubseteq b \Leftrightarrow |a|\leq |b|$

Definition ((Least) Upper bounds)

- c is an upper bound of a and b if $a \sqsubseteq c$ and $b \sqsubseteq c$.
- c is a least upper bound (lub or join) of a and b if
 - c is an upper bound of a and b
 - for every upper bound d of a and b, $c \sqsubseteq d$.

Prop (Unicity of least upper bound)

If it exists, the lub of a and b is **unique**, and denoted as $a \sqcup b$.

Similarly, we define the greatest lower bound (glb, meet) $a \sqcap b$.

Note: not all posets have lubs and glbs.

E.g. $a \sqcup b$ is not defined on $(\{a, b\}, =)$.

Definition (Chains)

 $C \subseteq X$ is a *chain* in (X, \sqsubseteq) if it is totally ordered by $\sqsubseteq : \forall x, y \in C, (x \sqsubseteq y) \lor (y \sqsubseteq x)$.

Definition (Complete partial orders (CPO))

A poset (X, \sqsubseteq) is a *complete* partial order (CPO) if every chain C (including \emptyset) has a least upper bound $\sqcup C$.

A CPO has a **least element** $\sqcup \emptyset$ denoted \bot .

Example (CPO)

- (\mathbb{N}, \leq) is not complete but $(\mathbb{N} \cup \{\infty\}, \leq)$ is complete.
- $(\{x \in \mathbb{Q} \mid 0 \le x \le 1\}, \le)$ is not complete but
- $(\{x \in \mathbb{R} \mid 0 \le x \le 1\}, \le)$ is complete
- $(\mathcal{P}(Y),\subseteq)$ is complete for any Y
- (X, \sqsubseteq) is complete if X is finite

II. Lattices

Definition (Lattice)

A *lattice* $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset with

- a lub $a \sqcup b$ for every pair of elements a and b
- a glb $a \sqcap b$ for every pair of elements a and b

Example (Lattice)

- integers $(\mathbb{Z}, \leq, \max, \min)$
- integer intervals $(\{[a,b] \mid a,b \in \mathbb{Z}, a \leq b\} \cup \{\emptyset\}, \subseteq, \cup, \cap)$
- divisibility $(\mathbb{N}^*, |, \text{lcm}, \text{gcd})$

If we drop one condition, we have a (join or meet) semilattice.

Definition (Complete lattice)

A complete lattice $(X, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ is a poset with:

- a lub $\sqcup S$ for every set $S \subseteq X$
- a glb $\sqcap S$ for every set $S \subseteq X$
- a least element \perp
- a greatest element \top

Remarks:

- 1 implies 2 as $\sqcap S = \sqcup \{y \mid \forall x \in S, y \sqsubseteq x\}$ (and vice-versa)
- 1 and 2 imply 3 and 4
- a complete lattice is also a CPO

Example (Complete lattice)

- powersets $(\mathcal{P}(S,\subseteq,\cup,\cap,\emptyset,S))$
- real segment [0,1]: $([0,1], \leq, \max, \min, 0, 1)$
- integer intervals with finite and infinite bounds

$$(\{[a,b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}\} \cup \{\emptyset\}, \subseteq, \cup, \cap, \emptyset, [-\infty, +\infty])$$

III. Functions and fixpoints

Definition (Functions)

 $\begin{array}{l} \text{A function } f: \left(X_1, \sqsubseteq, \sqcup_1, \bot_1\right) \to \left(X_2, \sqsubseteq, \sqcup_2, \bot_2\right) \text{ is:} \\ \bullet \ \textit{monotonic} \text{ if } \forall x, x', x \sqsubseteq, x' \Rightarrow f(x) \sqsubseteq f(x') \end{array}$

- strict if $f(\perp_1) = \perp_2$
- continuous between CPO if $\forall C \text{ chain} \subseteq X_1, \{f(c) \mid c \in C\}$ is a chain in X_2 and $f(\sqcup_1 C) =$ $\sqcup_2 \{ f(c) \mid c \in C \}$
- a (complete) \sqcup -morphism between (complete) lattices if $\forall S \subseteq X_1, f(\sqcup_1 S) = \sqcup_2 \{f(s) \mid s \in S\}$
- extensive if $X_1 = X_2$ and $\forall x, x \sqsubseteq f(x)$
- reductive if $X_1 = X_2$ and $\forall x, f(x) \sqsubseteq x$

Prop (Continuity implies monotony)

Any continuous function is monotonic.

Proof.

Let $x, x' \in X_1$ such that $x \sqsubseteq x'$. Then $\{x, x'\}$ is a chain.

By continuity of f, $\{f(x), f(x')\}$ is a chain and $f(\sqcup_1 \{x, x'\}) = \sqcup_2 \{f(x), f(x')\}$. And $f(\sqcup_1 \{x, x'\}) = f(x \sqcup_1 x') = f(x')$ because $x \sqsubseteq x'$.

 $\mathrm{And} \mathrel{\sqcup_2} \{f(x), f(x')\} = f(x) \mathrel{\sqcup_2} f(x').$

So we have $f(x') = f(x) \sqcup_2 f(x')$. By definition of the lub, $f(x) \sqsubseteq f(x) \sqcup_2 f(x')$, i.e. $f(x) \sqsubseteq f(x')$.

Definition (Fixpoints)

Given $f:(X,\subseteq)\to (X,\subseteq):$

- x is a fixpoint of f if f(x) = x
- x is a *pre*-fixpoint of f if $x \sqsubseteq f(x)$
- x is a *post*-fixpoint of f if $f(x) \sqsubseteq x$

We may have several fixpoints (or none):

- $\operatorname{fp}(f) \stackrel{\text{def}}{=} \{x \in X \mid f(x) = x\}$
- least fixpoint greather than x: $\mathrm{lfp}_{x(f)} = \min_{\square} \{y \in \mathrm{fp}(f) \mid x \sqsubseteq y\}$ if it exists
- least fixpoint: $lfp(f) = lfp_{\perp}(f)$
- same definitions for greatest fixpoint $gfp_x(f)$, gfp(f)

Fixpoints can be used to express solutions of mutually recursive equation systems.

Theorem (Tarski's theorem)

If $f: X \to X$ is monotonic in a complete lattice X, then fp(f) is a complete lattice.

Theorem (Kleene fixpoint theorem)

If $f: X \to X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathrm{lfp}_a f$ exists.

Remark: in practice, we are often interested in applying the theorem with $a = \bot$.

Definition (Well-ordered set)

 (S, \sqsubseteq) is a well-ordered set if:

- \sqsubseteq is a total order on S
- every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\cap X \in X$

Definition (Ordinals)

Ordinals are $0,1,2,...,\omega,\omega+1,...,2\omega,2\omega+1,...$ where ω is a limit. Well-ordered sets are ordinals up to order-isomorphism.

Intuitively, ordinals provide a way to keep iterating after infinity.

Theorem (Constructive Tarski theorem)

If $f: X \to X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then f(a) = f(a) for some ordinal δ .

Definition (Ascending chain condition (ACC))

An ascending chain C in (X, \sqsubseteq) is a \subseteq uence $c_i \in X$ such that $i \leq j \Rightarrow c_i \sqsubseteq c_j$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain C, $\exists i, \forall j \geq i, c_i = c_j$.

Similarly, we can define a descending chain condition (DCC).

Theorem (Kleene finite fixpoint theorem)

If $f:X\to X$ is monotonic in an ACC poset X and $a\sqsubseteq f(a)$ then $\mathrm{lfp}_a f$ exists.

Comparison of fixpoint theorems				
theorem	function	domain	fixpoint	method
Tarski	monotonic	complete lattice	$\mathrm{fp}(f)$	meet of post- fixpoints
Kleene	continuous	СРО	$\mathrm{lfp}_a(f)$	countable iterations
constructive Tarski	monotonic	СРО	$\mathrm{lfp}_a(f)$	transfinite iterations
ACC Kleene	monotonic	ACC poset	$\mathrm{lfp}_a(f)$	finite iterations

IV. Galois connections

Definition (Galois connection)

Given two posets (C, \leq) and (A, \sqsubseteq) , the pair $(\alpha : C \to A, \gamma : A \to C)$ is a *Galois connection* iff:

$$\forall a \in A, \forall c \in C, \alpha(c) \sqsubseteq a \Leftrightarrow c \le \gamma(a)$$

which is noted $(C, \leq) \stackrel{\gamma}{\underset{\alpha}{\leftrightarrows}} (A, \sqsubseteq)$.

We say that:

- A is the abstract domain and α is the abstraction.
- C is the concrete domain and γ is the concretization.

Example (Galois connection)

Abstract domain of intervals of integers \mathbb{Z} represented as pair of bounds (a,b).

We have $(\mathcal{P}(\mathbb{Z}),\subseteq) \stackrel{\gamma}{\leftrightarrows} (I,\sqsubseteq)$ with

- $I \stackrel{\text{def}}{=} (\mathbb{Z} \cup \{-\infty\}) \stackrel{\alpha}{\times} (\mathbb{Z} \cup \{+\infty\})$
- $(a,b) \sqsubseteq (a',b') \Leftrightarrow (a \ge a') \land (b \le b')$
- $\alpha(X) \stackrel{\text{def}}{=} (\min X, \max X)$
- $\gamma((a,b)) = [a,b]$

Prop (Properties of Galois connections)

- 1. $\gamma \circ \alpha$ is extensive
- 2. $\alpha \circ \gamma$ is reductive
- 3. α is monotonic
- 4. γ is monotonic
- 5. $\gamma \circ \alpha \circ \gamma = \gamma$
- 6. $\alpha \circ \gamma \circ \alpha = \alpha$
- 7. $\alpha \circ \gamma$ is idempotent
- 8. $\gamma \circ \alpha$ is idempotent

Proof.

1. Goal: $\forall c \in C, c \leq \gamma \circ \alpha(c)$.

Let $c \in C$, and consider $a = \alpha(c) \in A$. We have $\alpha(c) \sqsubseteq \alpha(c)$ which leads to $c \le \gamma(\alpha(c))$.

2. Goal: $\forall a \in A, \alpha \circ \gamma(a) \sqsubseteq a$.

Let $a \in A$ and consider $c = \gamma(a) \in C$. Same as above.

- 3. Let $c, c' \in C$ such that $c \leq c'$. Then $c' \leq \gamma \circ \alpha(c')$. Then, $c \leq \gamma \circ \alpha(c')$. Then, $\alpha(c) \sqsubseteq \alpha(c')$.
- 4. Same.
- 5. Let $a \in A$.
 - $\gamma \circ \alpha \circ \gamma(a) \leq \gamma(a) : \alpha \circ \gamma$ is reductive and γ is monotonic.
 - $\gamma \circ \alpha \circ \gamma(a) \ge \gamma(a) : \gamma \circ \alpha$ is extensive.
- 6. Same.
- 7. 8. Using above.

Prop (Galois connection characterization)

If the pair $(\alpha: C \to A, \gamma: A \to C)$ satisfies:

- 1. α is monotonic
- 2. γ is monotonic
- 3. $\gamma \circ \alpha$ is extensive
- 4. $\alpha \circ \gamma$ is reductive

then (α, γ) is a Galois connection.

Prop (Uniqueness of the adjoint)

Given $(C, \leq) \stackrel{\gamma}{\leftrightarrows} (A, \sqsubseteq)$, each adjoint can be uniquely defined in term of the other: 1. $\alpha(c) = \sqcap \{a \mid c \leq \gamma(a)\}$

- 2. $\gamma(a) = \vee \{c \mid \alpha(c) \sqsubseteq a\}$

Prop (Properties of Galois connections)

- 1. $\forall X \subseteq C$, if $\forall X$ exists, then $\alpha(\forall X) = \sqcup \{\alpha(x) \mid x \in X\}$
- 2. $\forall X \subseteq A$, if $\cap X$ exists, then $\gamma(\cap X) = \wedge \{\gamma(x) \mid x \in X\}$

Definition (Galois embeddings)

If $(C, \leq) \stackrel{'}{\leftrightarrows} (A, \sqsubseteq)$, the following properties are equivalent:

- 1. α is surjective
- 2. γ is injective
- 3. $\alpha \circ \gamma = id$

Such (α, γ) is called a *Galois embedding*, which is noted $(C, \leq) \stackrel{\gamma}{\stackrel{\smile}{=}} (A, \sqsubseteq)$.

Note: I used a non-standard notation for Galois embeddings. The proper notation would be the arrows of Galois connections with a doubled head for the arrow at the bottom (symbol not available in native Typst AFAIK).

Remark: a Galois connection can always be made into an embedding by quotienting A by the equivalence relation $a \equiv a' \Leftrightarrow \gamma(a) = \gamma(a')$.

Example (Galois embedding)

Using the previous example of Galois connection, but we add an extra element \perp : abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \bot .

We have $(\mathcal{P}(\mathbb{Z}),\subseteq)\stackrel{\gamma}{\underset{\alpha}{\rightleftharpoons}}(I',\sqsubseteq)$, using previous example: • $I'=I\cup\{\bot\}$

- $\bullet \ \forall x, \bot \sqsubseteq x$ $\bullet \ \gamma(\bot) = \emptyset$ $\bullet \ \alpha(\emptyset) = \bot$

Definition (Upper closures)

 $\rho: X \to X$ is an *upper closure* in the poset (X, \sqsubseteq) if it is:

- monotonic: $x \sqsubseteq x' \Rightarrow \rho(x) \sqsubseteq \rho(x')$
- extensive: $x \sqsubseteq \rho(x)$
- idempotent: $\rho \circ \rho = \rho$

Given $(C, \leq) \stackrel{\gamma}{\underset{\alpha}{\leftrightarrows}} (A, \sqsubseteq), \gamma \circ \alpha$ is an upper closure on (C, \leq) .

Given an upper closure ρ on (X, \sqsubseteq) , we have a Galois embedding $(X, \sqsubseteq) \stackrel{\mathrm{id}}{\leftarrow} (\rho(X), \sqsubseteq)$.

We can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of abstract representation
- the ability to have several distinct abstract representations for a single concrete object.

V. Operator approximations

Definition (Sound abstraction, exact abstraction)

Given a concrete (C, \leq) and an abstract (A, \sqsubseteq) poset and a monotonic concretization $\gamma: A \to C$:

- $a \in A$ is a sound abstraction of $c \in C$ if $c \le \gamma(a)$.
- $g: A \to A$ is a sound abstraction of $f: C \to C$ if $\forall a \in A, f \circ \gamma(a) \leq \gamma \circ g(a)$.
- $g:A \to A$ is an exact abstraction of $f:C \to C$ if $f\circ \gamma = \gamma \circ g$

Example (Sound abstraction, exact abstraction)

- [0, 10] is a sound abstraction of $\{0, 1, 2, 5\}$ in the integer interval domain
- $\lambda[a,b].[-\infty,+\infty]$ is a sound abstraction of $\lambda X.\{x+1\mid x\in X\}$
- $\lambda[a,b].[a+1,b+1]$ is an exact abstraction of $\lambda X.\{x+1\mid x\in X\}$

Prop (Best abstractions)

- Given $c \in C$, its best abstraction is $\alpha(c)$.
- Given $f: C \to C$, its best abstraction is $\alpha \circ f \circ \gamma$.

Prop (Composition of sound, best, exact abstractions)

If g and g' soundly abstract respectively f and f':

- 1. if f is monotonic, then $g \circ g'$ is a sound abstraction of $f \circ f'$.
- 2. if g and g' are exact abstractions of f and f' then $g \circ g'$ is an exact abstraction.
- 3. if g and g' are the best abstractions of f and f', then $g \circ g'$ is not always the best abstraction.

Proof.

1. $\forall a \in A, f' \circ \gamma(a) \leq \gamma \circ g'(a)$ by soudness of g', then $f \circ f' \circ \gamma(a) \leq f \circ \gamma \circ g'(a)$ by monotonicity of f, then $f \circ f' \circ \gamma(a) \leq \gamma \circ g \circ g'(a)$ by soundess of g, *i.e.* the soudness of $g \circ g'$.

2. $f \circ f' \circ \gamma = f \circ \gamma \circ g'$ because g' exactly abstract f', then $f \circ \gamma \circ g' = \gamma \circ g \circ g'$ because g exactly abstract f, *i.e.* $g \circ g'$ exactly abstract $f \circ f'$.

Example (Best abstractions composition counterexample)

Consider $(\mathcal{P}(\mathbb{Z}),\subseteq) \stackrel{'}{\leftrightarrows} (I,\sqsubseteq)$ where I is the set of intervals of integers mentioned before.

The functions

- $g([a,b]) = [a, \min(b,1)]$
- g'([a,b]) = [2a,2b]

are the best abstractions of

- $f(X) = \{x \in X \mid x \le 1\}$
- $f'(X) = \{2x \mid x \in X\}$

but $(g \circ g')([0,1]) = [0,1]$, whereas $(\alpha \circ f \circ f' \circ \gamma)([0,1]) = [0,0]$.

VI. Fixpoint approximations

Theorem (Fixpoint transfer)

If we have:

- a Galois connection $(C,\leq) \stackrel{\gamma}{\underset{\alpha}{\leftrightarrows}} (A,\sqsubseteq)$ between **CPOs monotonic** concrete and abstract functions $f:C\to C, f^\#:A\to A$
- a commutation condition $\alpha \circ f = f^{\#} \circ \alpha$
- a pre-fix point a of f and its abstraction $a^\#=\alpha(a)$

Then $\alpha(\operatorname{lfp}_a f) = \operatorname{lfp}_{a\#} f^{\#}$.

Theorem (Fixpoint approximation)

If we have:

- a complete lattice $(C, \leq, \vee, \wedge, \perp, \top)$
- a **monotonic** concrete function f
- a sound abstraction $f^\#:A\to A$ of f
- a **post-fixpoint** $a^{\#}$ of $f^{\#}$

Then $a^{\#}$ is a **sound abstraction of lfp** f: lfp $f \leq \gamma(a^{\#})$.

Please refer to the slides for the proofs.

Remark: other fixpoint transfer / approximation theorems can be constructed.