Algorithmic Approaches for Biological Data, Lecture #18

Katherine St. John

City University of New York American Museum of Natural History

13 April 2016

Outline

Outline

- Comparing & Aligning Sequences
- Longest Common Substrings

Outline

- Comparing & Aligning Sequences
- Longest Common Substrings
- Dynamic Programming Example: Manhattan Tourist Problem

• How do you compare two sequences?

- How do you compare two sequences?
- Hamming Distance: count the pairwise differences:

A C G T C C T C
A C G C C T A C

• Where do the differences come from?

- Where do the differences come from?
- If point mutations, Hamming Distance captures this well.

- Where do the differences come from?
- If point mutations, Hamming Distance captures this well.
- What if the changes come from insertions or deletions into the sequence?

- Where do the differences come from?
- If point mutations, Hamming Distance captures this well.
- What if the changes come from insertions or deletions into the sequence?
- Then would expect missing sections (gaps) and should align the sequences.

• Where are the similarities?

- Where are the similarities?
- What is the longest common subsequence (gaps allowed)?

- Where are the similarities?
- What is the longest common subsequence (gaps allowed)?
- Easy to identify on the aligned sequence.

- Where are the similarities?
- What is the longest common subsequence (gaps allowed)?
- Easy to identify on the aligned sequence.

In Pairs

- Given the sequences: ТАТАТАТААААА АТGATGAAAAAAA
 - What is the Hamming distance of the sequences?
 - Can you lower the distance by allowing gaps?
- Given the sequences: ATGCAAATTCAGTTCCGTGGACTACATGGTCTACTTTCAG TGCAAAATTCAGTTCCGTGGACTACATGGGTCTACTTCAG
 - What is the Hamming distance of the sequences?
 - Can you lower the distance by allowing gaps?
- What parts can you automate of this process? Sketch an algorithm.
- Manhattan Tourist Problem (next slide and handout).

In Pairs: Manhattan Tourist Problem

 In hurry, and want to visit as many landmarks as possible.

In Pairs: Manhattan Tourist Problem

- In hurry, and want to visit as many landmarks as possible.
- Can only walk south and east.

K. St. John (CUNY & AMNH)

In Pairs: Manhattan Tourist Problem

- In hurry, and want to visit as many landmarks as possible.
- Can only walk south and east.
- What's the best route?

• Both questions have an interesting property:

- Both questions have an interesting property:
 - ▶ When searching for the optimal answer, the same subproblems occur multiple times.

- Both questions have an interesting property:
 - When searching for the optimal answer, the same subproblems occur multiple times.
- Instead of re-computing each time, store in a table to be re-used later.

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:
- The optimal number will be the best of: arriving from 42 & Lex or from 43 & Third.

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:
- The optimal number will be the best of: arriving from 42 & Lex or from 43 & Third.
 - ► From 42 & Lex, add 1 (Chrysler Building) to best from either 42 & Park or 43 & Lex.

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:
- The optimal number will be the best of: arriving from 42 & Lex or from 43 & Third.
 - ► From 42 & Lex, add 1 (Chrysler Building) to best from either 42 & Park or 43 & Lex.
 - From 43 & Third, choose to best from either 43 & Lex and 45 & Third.

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:
- The optimal number will be the best of: arriving from 42 & Lex or from 43 & Third.
 - ► From 42 & Lex, add 1 (Chrysler Building) to best from either 42 & Park or 43 & Lex.
 - From 43 & Third, choose to best from either 43 & Lex and 45 & Third.
- 43 & Lex is used in both options

 store it's value in a table so it only has to be computed once.

- Instead, store computations in a table to be re-used:
- For example, for the tourists: working backwards:
- The optimal number will be the best of: arriving from 42 & Lex or from 43 & Third.
 - ► From 42 & Lex, add 1 (Chrysler Building) to best from either 42 & Park or 43 & Lex.
 - From 43 & Third, choose to best from either 43 & Lex and 45 & Third.
- 43 & Lex is used in both options— store it's value in a table so it only has to be computed once.
- The approach of computing answers to the subproblems for later use in the optimization is called dynamic programming. (Much more on this next time.)

Recap

 Using sqlitebrowser in lab today (SQL & Databases).

Recap

- Using sqlitebrowser in lab today (SQL & Databases).
- Email lab reports to kstjohn@amnh.org

Recap

- Using sqlitebrowser in lab today (SQL & Databases).
- Email lab reports to kstjohn@amnh.org
- Challenges available at rosalind.info