EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 7 – DERS 2 3 Nisan 2025

Dr. Sibel ÇİMEN

Seçiciler-Çoğullayıcılar (Multiplexer-MUX)

n tane seçici uç ile 2ⁿ tane girişten bir tanesindeki lojik değeri çıkışa aktaran lojik devredir.

$$Z = m_0 \cdot I_0 + m_1 \cdot I_1 + \dots + m_{2^n - 1} \cdot I_{2^n - 1}$$

eğer $s_1s_0 = 00 \Rightarrow$ birinci giriş çıkışa verilir, eğer $s_1s_0 = 01 \Rightarrow$ ikinci giriş çıkışa verilir, eğer $s_1s_0 = 10 \Rightarrow$ üçüncü giriş çıkışa verilir, eğer $s_1s_0 = 11 \Rightarrow$ dördüncü giriş çıkışa

Seçiciler (Multiplexer-MUX)

2x1 MUX

$$Y = S' D0 + S D1$$

5	D1	DO	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Q
DO
D1

4x1 MUX Etkin Giriş Uçlu

EN'	S 1	50	У
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	X	X	0

Seçiciler (Multiplexer-MUX)

MUX Elemanı ile Boole Fonksiyonu Gerçekleme

Örnek: Aşağıdaki Boole fonksiyonunu a) 8x1 MUX elemanı ile b) 4x1 MUX ve minimum sayıda lojik kapı kullanarak

gerçekleyiniz.

$$f(x,y,z) = \Sigma m(1,2,6,7)$$

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Seçiciler (Multiplexer-MUX)

MUX Elemanı ile Boole Fonksiyonu Gerçekleme

Örnek: Aşağıdaki doğruluk tablosu verilen Boole fonksiyonunu 4x1 MUX ve minimum sayıda lojik kapı kullanarak gerçekleyiniz.

X	У	Z	С
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$C = X' Y' DO + X' Y D1 + X Y' D2 + X Y D3$$

= $X' Y' O + X' Y Z + X Y' Z + X Y 1$
= $X' Y Z + X Y' Z + X Y$
= $\Sigma m(3,5,6,7)$

Seçiciler (Multiplexer-MUX)

MUX Elemanı ile Boole Fonksiyonu Gerçekleme

Örnek: Aşağıdaki doğruluk tablosu verilen Boole fonksiyonunu 4x1 MUX ve minimum sayıda lojik kapı kullanarak gerçekleyiniz.

X	У	Z	5
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$S = X' Y' DO + X' Y D1 + X Y' D2 + X Y D3$$

= $X' Y' Z + X' Y Z' + X Y' Z' + X Y Z$
= $\Sigma m(1,2,4,7)$

Seçiciler (Multiplexer-MUX)

MUX Elemanı ile Boole Fonksiyonu Gerçekleme

Örnek:

2D3 1D3, when S1 S0 = 11 2D2 1D2, when S1 S0 = 10 2D1 1D1, when S1 S0 = 01 2D0 1D0, when S1 S0 = 00

Seçiciler (Multiplexer-MUX)

74153 İzin denetimli Çift 4x1 Veri Seçici / Çoğullayıcı (MUX)

	INPUTS						
SEL	ECT		DATA		DAIA -	STROBE	OUTPUT
В	Α	C0	C1	C2	C3	1	,
X	X	X	X	X	X	Н	L
L	L	L	X	X	X	L	L
L	L	н	X	×	X	L	Н
L	H	X	L	X	X	L	L
L	H	×	Н	X	X	L	н
H	L	×	X	L	X	L	L
H	L	X	X	H	X	L	н
H	Н	X	X	X	L	L	L
Н	H	X	×	X	H	L	Н

A ve B seçim uçları iki kısım için ortaktır.

Seçiciler (Multiplexer-MUX)

Örnek: Aynı doğruluk tablosundaki lojik fonksiyonu 4x1 MUX'un seçici uçlarına x1 ve x2 uygulayarak gerçekleyiniz.

x_1	x 2	x_3	x,	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
.1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	11 0

Seçiciler (Multiplexer-MUX)

Örnek: Doğruluk tablosu aşağıda verilen kombinezonsal devreyi, x₃ ve x₄ seçme girişleri olacak şekilde 4x1 çoğullayıcı (MUX) birimi kullanarak gerçekleyiniz.

giri	şler	seçme	girişleri	
x_1	x 2	x_3	x,	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1 1	0	1	0	1
i	0	1	1	1
1	1	0	0	0
l i	1	0	1	0
l î	1	1	0	11 0
i	1	1	1	0

x_3	x4	Z
0	0	$x_1 \cdot x_2$
0	1	$x_1 \oplus x_2$
1	0	\bar{x}_2
1	1	$\bar{x}_1 + \bar{x}_2$

Seçiciler (Multiplexer-MUX)

 $F(a,b,c,d) = \prod M(1, 3, 4, 6, 9, 11, 15)$ fonksiyonunun;

- a) 16x1 MUX kullanarak lojik devresini gerçekleyiniz.
- b) 8x1 MUX ve minimum sayıda lojik kapı kullanarak lojik devresini gerçekleyiniz. Devreyi Logisim programında kurunuz ve simülasyonlarını ödevde veriniz.
- c) 4x1 MUX ve minimum sayıda lojik kapı kullanarak lojik devresini gerçekleyiniz.
- d) 4x16 Decoder (Aktif-1 çıkışlı) ve minimum sayıda lojik kapı kullanarak gerçekleyiniz.
- e) 4x16 Decoder (Aktif-0 çıkışlı) ve minimum sayıda lojik kapı kullanarak gerçekleyiniz.

Dağıtıcı (DeMultiplexer-DEMUX)

3 bitlik bir ifade dört kullanıcıya aktarılacaktır; bu işlem her kullanıcının seçilmesi ve bilginin sadece bu kullanıcılara ulaştırılması şeklinde olacaktır. Bu devrenin DEMUX elemanları kullanılarak gerçekleştiriniz.

DEMUX elemanları ile Gerçeklenen Tasarım

 $s_1.s_2 = 00$ ise $E_2E_1E_0$ verisi 1.kullanıcıya, $s_1.s_2 = 01$ ise $E_2E_1E_0$ verisi 2.kullanıcıya, $s_1.s_2 = 10$ ise $E_2E_1E_0$ verisi 3.kullanıcıya, $s_1.s_2 = 11$ ise $E_2E_1E_0$ verisi 4.kullanıcıya gönderilir.

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.