# Звіт з виконання лабораторної роботи 2 Варіант 1А (Генерація ПВЧ. Тест на простоту. Генерація простих чисел.)

 $\Phi$ І-42мн Бондар Петро  $\Phi$ І-42мн Кістаєв Матвій

January 5, 2025

## Огляд

### Підгрупа: 1А.

**Мета**: Дослідити криптографічно стійкі алгоритми генерації псевдо-випадкових послідовностей, тестів числа на простоту, а також алгоритмів генерації випадкового простого числа.

### Завдання (модифіковане):

- 1. Теоретично дослідити алгоритми перевірки числа на простоту, генерації псевдо-випадкових послідовностей та псевдо-випадкових простих чисел.
- 2. На основі попереднього аналізу обрати алгоритми для реалізації та порівняння.
- 3. Реалізувати бібліотеку із обраних алгоритмів на Python.
- 4. Провести теоретичне та практичне порівняння алгоритмів, що виконують однакові (схожі) задачі.

### Тести на простоту

Алгоритми перевірки числа на простоту поділяються на 3 типи:

- 1. Базуються на перевірці на складеність (ймовірнісні).
- 2. Точна перевірка на простоту (детермністичні).
- 3. Лише підтверджують простоту числа.

Детерміністичні тести (найбільш відомий – AKS) хоч і мають поліноміальну складність, проте, вона зазвичай є завеликою, щоб використовувати їх на практиці. Тому переважно використовують саме ймовірнісні тести, що базують на перевірці на складеність.

Найвідомішими такими тестами є:

- Ферма
- Соловея-Штрассена
- Міллера-Рабіна (було реалізовано)

Серед цих тестів найкращим є Міллера-Рабіна, оскільки він є ефективним з точки зору обчислень, ймовірність помилки (псевдопростоти за випадковою основою) не перевищує  $\frac{1}{4}$  для довільного складеного числа.

Як слідує із назви, підтверджуючі тести не є придатними для задачі перевірки заданого числа на простоту, оскільки вони можуть лише підтвердити, коли число є простим. Але вони використовуються для певних швидких генераторів випадкових простих чисел (буде далі).

Велика таблиця із порівнянням більшості найвідоміших тестів наведена нижче.

Table 1: Comprehensive Comparison between different primality tests.

| Reference                    | Characteristics                                                                     | Pros                                                                            | cons                                                                                                                                                  | Time Complexity                 | Probability of error                                                                                       |
|------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------|
| Fermat [20]                  | - Randomized (Monto -Carlo) Compositeness test.                                     | - Very simple to implement Base for many tests.                                 | -Failure probability may<br>reach 1.<br>-Pseudoprime can pass the<br>test.                                                                            | $O(k \ log n)^3$                | - For Carmicheal numbers =1 For pseudoprimes $\approx 245 * 10^{-6}$ .                                     |
| Solovay<br>Strassen [24]     | - Randomized (Monto-Carlo) Compositeness test.                                      | - Pseudoprimes are successfully announced as composites.                        | - an Euler pseudoprime can pass the test. - Computation of Jacobi symbol adds more computation overhead.                                              | $O(k \ log n)^3$                | less than $\left(\frac{1}{2}\right)^k$ , where $k$ is the certainty value.                                 |
| Miller-<br>Rabin<br>[25, 25] | - Randomized (Monto-Carlo) Compositeness test.                                      | - Fast & efficient Euler Pseudoprimes are successfully announced as composites. | - Strong pseudoprimes can pass the test.                                                                                                              | $O(k \ log n)^3$                | less than $\left(\frac{1}{2}\right)^k$ , where $k$ is the certainty value.                                 |
| Lucas [30]                   | - Randomized (Las-Vegas) Approving primality test.                                  | - Valid for any generic, or special form numbers.                               | - Prime factors of $n-1$ are required to be already known Worst case scenario may take long time. (if $n$ is composite, this test may not terminate). | $O(p^2 \log_p n)$               | - 0 if the number is announced as a prime.                                                                 |
| Proth [27]                   | - Randomized<br>(Las-Vegas).<br>- Approving<br>primality test.                      | - Very fast and reliable test to decide about proth number.                     | - Working well only with proth numbers.                                                                                                               | $O((k \log k + \log n)\log n))$ | - 0 if the number is announced as a prime $\approx 0$ if the base $a$ covers 50% of the range $[2, n-1]$ . |
| Pocklington [31]             | <ul><li>Randomized<br/>(Las-Vegas).</li><li>Approving<br/>primality test.</li></ul> | - Very efficient if there is a factor $q > \sqrt{n-1}$ .                        | - Prime factors of $n-1$ are required to be already known.                                                                                            | $O(lnln \ n)$                   | - 0 if the number is announced as a prime.                                                                 |
| Lucas<br>Lehmer [34]         | - Deterministic.<br>- Compositeness<br>& Approving pri-<br>mality test.             | Testing Mersenne numbers accurately. Practical test to find massive primes.     | - Suffers slowness when numbers become huge Prime factors of n-1 are required to be already known.                                                    | $O(n^2 \ log n \ log log n)$    | - 0.                                                                                                       |
| Trivial Divison [3]          | - Deterministic.<br>- Compositeness<br>& Approving pri-<br>mality test.             | - Reliable and simple test for<br>numbers consist of 10 digits<br>or less.      | - Computational infeasible for large numbers (exponential increasing).                                                                                | $O(\sqrt{n})$                   | - 0.                                                                                                       |
| Pepin [32]                   | - Deterministic Compositeness & Approving primality test.                           | - Efficient test for Fermat form numbers.                                       | It is computational infeasible for large Fermat numbers. Since the base <i>a</i> is fixed, it works poorly with other formats.                        | $O(logn)^2$                     | - 0.                                                                                                       |
| AKS [35]                     | - Deterministic.<br>- Compositeness<br>& Approving pri-<br>mality test.             | - The only reliable deterministic test that works in polynomial time .          | - Slow for small and moderate numbers.                                                                                                                | $O(logn^6)$                     | - 0.                                                                                                       |
| Ballie-<br>PSW<br>[37, 38]   | - Huerestic.                                                                        | - None of the pseudoprime classes passes this test.                             | - No Mathematical approving.<br>- Considered as compositeness<br>test.                                                                                | $O(k \log n)^3$                 | - 0 for any $n < 2^{64}$ .                                                                                 |

Figure 1: Таблиця порівняння особливостей та складності алгоритмів перевірки числа на простоту. (Не наша, ref: https://arxiv.org/abs/2006.08444)

### Генератори псевдо-випадкових чисел

Криптографічно стійкі генератори псевдо-випадкових чисел мають задовільняти наступним вимогам:

- Проходити усі статистичні тести на випадковість.
- Бути стійким до атак з компрометацією внутрішнього стану (як forward, так і backward security).

Такі генератори часто використовують т.зв. додаткові джерела ентропії (наприклад звичайний, не стійкий, системний генератор), а також можуть мати секрет (ключ).

Для досягнення Backward security (тобто неможливість відворити попередні значення, навіть знаючи

поточне значення та внутрішній стан генератора) функція переходу в наступний стан використовує певний стійкий криптографічний примітив (наприклад геш-функції або блокового шифру) або односторонню функцію, що базується на складній обчислювальній задачі (наприклад функція Рабіна).

Ми досліджували генератори псевдо-випадкових чисел в лабораторній роботі в курсі асиметричної криптографії 1. (див. файл asym\_lab1.ipynb). Серед досліджених, найкращим виявився генератор Blum-Blum-Shub (BBS), який базується на функії Рабіна.

В цій лабораторній ми також реалізували генератор по схемі NIST – Hash\_DRGB, що використовує криптографічностійку геш-функцію – SHA256.



Figure 2: Порівняння часу роботи криптографічно стійких генераторів псевдовипадкових чисел BBS та  $SHA256\_DRBG$ .

### Генератори простих чисел

Для генерації псевдо-випадкового простого числа завичай використовується два підходи:

- Генерування випадкових чисел та перевірка їх на простоту ймовірнісним тестом.
- Випадкова "побудова" доведено-простого числа, використовуючи підтверджуючий тест на простоту.

Для першого типу генераторів в лабораторній реалізовано генератор на основі тесту Міллера-Рабіна. Для другого — генератор Маурера на основі тесту Поклінгтона.

Генератор Маурера будує "майже випадкові" складені числа R та  $F,\ F>R,$  такі щоб виконувалась теорема:

**Теорема** (Поклінгтон). Якщо для N=2RF+1, із відомим розкладом  $F=\prod q_i^{\beta_i}>\sqrt{N}$ , для кожного  $q_i$  існує число  $a_i$  таке що виконуєтсья:

$$a_i^{N-1} \equiv 1 \; (\bmod N)$$

ma

$$\gcd(a_i^{(N-1)/q_i},\ N)=1$$

 $mo \partial i$  число N – npocme.

Алгоритм Маурера працює швидше та "надійніше" за випадковий перебір в поєднанні із тестом на простоту, проте він має дещо обмежений простір можливих згенерованих чисел, а також не повністю рівномірний розподіл на цьому просторі.

На практиці, алгоритм Маурера використовується для генерації простих чисел в таких криптосистемах, де прості числа є публічними параметрами (наприклад Ель-Гамаля). Для таких криптосистем, як RSA, використовується генерація перебором в поєднанні із тестом Міллера-Рабіна, оскільки від цих простих чисел залежить стійкість ключа.



Figure 3: Порівняння генераторів простих чисел:

- випадковий перебір + тест Міллера-Рабіна
- генератор Маурера

### Бібліотека

В Python-файлі optimus.py знаходяться імплементації всіх зазначених вище алгоритмів (та не тільки їх, а й інших теоретико-числових алгоритмів для криптографії).

В файлах rng\_test.py та primate.py знаходяться скрипти для перевірок часу роботи розглянутих алгоритмів, за допомогою них були згенеровані наведені вище графіки.

# Генератор ПВЧ для інтелектуальної картки, токена та смартфону.

Розглянути особливості побудови генератора простих чисел в умовах обмеження пам'яті та часу генерації.

Серед двох розглянутих генераторів,  $Hash_DRBG$  на основі rem-функції SHA-2 однозначно перемагає BBS в усіх сенсах:

- Швидше
- Не вимагає складних арифметичних операції над великими числами
- Не поступається в стійкості
- Використовує розповсюджений криптографічний примітив SHA-2

Функцію SHA-2 можна запрограмувати навіть на картоплі – схема Меркле-Дамгарда потребує 3 регістри, а стискаюча функція має наступний вигляд:



One iteration in a SHA-2 family compression function. The blue components perform the following operations:

$$\mathrm{Ch}(E,F,G)=(E\wedge F)\oplus (\lnot E\wedge G)$$
  $\mathrm{Ma}(A,B,C)=(A\wedge B)\oplus (A\wedge C)\oplus (B\wedge C)$   $\Sigma_0(A)=(A\ggg 2)\oplus (A\ggg 13)\oplus (A\ggg 22)$   $\Sigma_1(E)=(E\ggg 6)\oplus (E\ggg 11)\oplus (E\ggg 25)$  The bitwise rotation uses different constants for SHA-512. The given

numbers are for SHA-256.

The red  $\boxplus$  is addition modulo  $2^{32}$  for SHA-256, or  $2^{64}$  for SHA-512.

Figure 4: Схема стискаючої функції SHA-2.

А схема самого генератора виглядає наступним чином:



Figure 5: Схема генератора SHA256\_DRBG.

Тому генератор  $SHA256\_DRBG$  добре підійде для пристроїв з дуже обмеженими обчислювальними ресурсами.