Chapter 5: Matrix Approach to Simple Linear Regression Analysis

Some basic notations
In regression analysis, one basic matrix is the vector \mathbf{Y} , consisting of the n observations on the response
variable:
Note that the transpose \mathbf{Y}' is the row vector:
Another basic matrix in regression analysis is the ${\bf X}$ matrix, which is defined as follows for simple linear
regression analysis:
The matrix \mathbf{X} consists of a column of Is and a column containing the n observations on the predictor
variable X. Note that the transpose of \mathbf{X}' is:
The X matrix is often referred to as the

Simple Linear Regression Model in Matrix Terms

We are now ready to develop simple linear regression in matrix terms. We begin with the normal error
egression model;
This implies:
Now we put above equations in the matrix form:

Chapter 5:	Matrizz	Annagah	+-	Cimple	I incon	Doggoodian	Anal	
Chapter 5:	maurix	Approach	ιo	Simple	Linear	negression	Anai	VSIS

3

_, and that the	Vith respect to the error terms, regression model assumes that,
	re independent normal random variables. The condition in matrix terms is:
for	The condition that the error terms have constant variance a σ^2 and that all covariances
nce-covariance	j are zero (since the ϵ_i are independent) is expressed in matrix terms through the varian
	rix of the error terms:
	Since this is a scalar matrix, it can be expressed in the following simple fashion:
	Since this is a scalar matrix, it can be expressed in the following simple fashion:
	Since this is a scalar matrix, it can be expressed in the following simple fashion: Thus, the normal error regression model in matrix terms is:
$^2\mathbf{I}$	

1.1 Least Squares Estimation of Regression Parameters

Recall Normal equations:

Normal equations in matrix terms are:

where ${\bf b}$ is the vector of the least squares regression coefficients:

$$\mathbf{b} = egin{bmatrix} b_0 \ b_1 \end{bmatrix}$$

Estimated Regression Coefficients

4. Find X'Y

To obtain the estimated regression coefficients from the normal equations by matrix methods, We multiply
both sides by the
Example 1. We shall USe matrix methods to obtain the estimated regression coefficients for the Toluca
Company example. The data On the Y and X variables Were given in http://users.stat.ufl.edu/ rran-
dles/sta 4210/R class notes/data/text datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 201% 20 Data% 20 Sets/CH01 TA01.tx datasets/Kutner Data/Chapter % 20% 20% 20% 20% 20% 20% 20% 20% 20% 2
1. Using these data, define the Y observations vector
2. Using these data, define the X matrix
3. Find $X'X$

5. Find $(X'X)^{-1}$

6. Find the \mathbf{b} , vector of regression coefficients

1.2 Fitted Values and Residuals

T3 * 1	T 7 1	
Fitted	Va	lues

Let the vector of the fitted values \hat{Y}_i be denoted by $\hat{\mathbf{Y}}$:
In matrix notation, we then have:
because,
because,
Example 2. For the Toluca Company example, obtain the vector of fitted values using the matrices in R .
Hat Matrix: We can express the matrix result for $\hat{\mathbf{Y}}$ as follows by using only \mathbf{X} and \mathbf{Y} matrices (no
need to find the matrix \mathbf{b})
Note 1. The matrix H is symmetric and has the special property (called idempotency):

Residuals
Let the vector of the residuals $e_i = Y_i - \hat{Y}_i$ be denoted by \mathbf{e}

In matrix notation, we then have:

Example 3. For the Toluca Company example, obtain the vector of the residuals by using these results and R

Variance-Covariance Matrix of Residuals: The residuals e_i , like the fitted values Y_i , can be expressed as linear combinations of the response variable observations Y_i

We thus have the important result:

Then, the variance-covariance matrix of the vector of residuals:

and is estimated by:

Note 2. The matrix I - H, like the matrix H, is symmetric and idempotent.

Short notes

Short notes

Short notes