Компьютерные сети.

Основные программные и аппаратные компоненты сети

Даже в результате достаточно поверхностного рассмотрения работы в сети становится ясно, что вычислительная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:

- компьютеров;
- коммуникационного оборудования;
- операционных систем;
- сетевых приложений.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ. В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.

Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях.

Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.

Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

Активное оборудование – усиливает сигнал, пассивное – нет.

Модель OSI.

В начале 80-х годов ряд международных организаций по стандартизации - ISO, ITU-Т и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (**Open System Interconnection, OSI**) или моделью OSI. Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI (рис. 1.25) средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.

Уровень	Наименование Функция
1 Физический	Собственно кабели или другой физический носитель
2 Канальный	Передача и прием пакетов
3 Сетевой	Маршрутизация и ведение учета
4 Транспортный	Обеспечение корректной сквозной пересылки данных
5 Сеансовый	Аутентификация и проверка полномочий
6 Представительны	ий Интерпретация и сжатие данных
7 Прикладной	Предоставление услуг на уровне конечного пользователя: почта,
реги	страция и т.д.

Устройства коммутации и маршрутизации.

Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Сетевая коммуникационная система — это кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов.

Устройства:

Маршрутизатор (router) — система, отвечающая за принятие решений о выборе одного из нескольких путей передачи сетевого трафика. Для выполнения этой задачи используются маршрутизируемые протоколы, содержащие информацию о сети и алгоритмы выбора наилучшего пути на основе нескольких критериев, называемых метрикой маршрутизации ("routing metrics"). В терминах ОSI маршрутизатор является промежуточной системой Сетевого уровня. Каждому маршрутизатору, использующему протокол OSPF, приписывается 32-разрядный номер (routing ID). Идентификатор маршрутизатора является уникальным в масштабе автономной системы (автономная система — группа маршрутизаторов (шлюзов) из одной административной области, взаимодействующих с использованием общего протокола Interior Gateway Protocol (IGP)).

Шлюз (gateway) - Оригинальный термин Internet сейчас для обозначения таких устройств используется термин маршрутизатор (router) или более точно маршрутизатор IP. В современном варианте термины "gateway" и "application gateway" используются для обозначения систем, выполняющих преобразование из одного естественного формата в другой. Примером шлюза может служить преобразователь X.400 - RFC 822 electronic mail.

Мост (bridge) — устройство, соединяющее две или несколько физических сетей и передающее пакеты из одной сети в другую. Мосты могут фильтровать пакеты, т.е. передавать в другие сегменты или сети только часть трафика, на основе информации канального уровня (МАС-адрес). Если адрес получателя присутствует в таблице адресов моста, кадр передается только в тот сегмент или сеть, где находится получатель. Похожими устройствами являются повторители (repeater), которые просто передают электрические сигналы из одного кабеля в другой и маршрутизаторы (router), которые принимают решение о передаче пакетов на основе различных критериев, основанных на информации сетевого уровня. В терминологии OSI мост является промежуточной системой на уровне канала передачи данных (Data Link Layer).

Повторитель (repeater) – устройство, которое передает электрические сигналы из одного кабеля в другой без маршрутизации или фильтрации пакетов. В терминах OSI репитер представляет собой промежуточное устройство Физического уровня.

Концентратор – это многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Автосегментация необходима для повышения надежности сети. Обработка коллизий и текущий контроль состояния каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Так как логика доступа к разделяемой среде существенно зависит от технологии, то для каждого типа технологии выпускаются свои модели — концентраторы Ethernet, концентраторы Token Ring, концентраторы FDDI, концентраторы VG-AnyLAN.

Трансивер – приемник-передатчик. Физическое устройство, которое соединяет интерфейс хоста с локальной сетью, такой как Ethernet. Трансиверы Ethernet содержат электронные устройства, передающие сигнал в кабель и определяющие коллизии.

Мультиплексор – Устройство, позволяющее передавать по одной линии несколько сигналов одновременно.

Модем — устройство, используемое для преобразования последовательности цифровых данных из передающего DTE в сигнал, подходящий для передачи на значительное расстояние. В случае приема выполняется обратное преобразование и данные воспринимаются приемным DTE. (DTE — Data Terminal Equipment - терминальное оборудование)

Компенсатор – устройство, компенсирующее искажения, связанные с частотной зависимостью поглощения и задержки сигнала в линии. Эквалайзеры компенсируют амплитудные, частотные и фазовые искажения.

Сетевой адаптер — функцией сетевого адаптера является передача и прием сетевых сигналов из кабеля. Адаптер воспринимает команды и данные от сетевой операционной системы (ОС), преобразует эту информацию в один из стандартных форматов и передает ее в сеть через подключенный к адаптеру кабель.

Компоненты:

Основными компонентами сети являются.

- 1. Оборудование
 - Концентраторы
 - Сетевые адаптеры
- 2. Коммуникационные каналы
 - Кабели
 - Разъемы

Протоколы Ethernet, IP, TCP, UDP.

Стек протоколов ТСР/ІР -

Собирательное название для сетевых протоколов разных уровней, используемых в сетях.

В модели OSI данный стек занимает (реализует) все уровни и делится сам на 4 уровня: прикладной, транспортный, межсетевой, уровень доступа к сети (в OSI это уровни физический, канальный и частично сетевой). На стеке протоколов TCP/IP построено все взаимодействие пользователей в сети от программной оболочки до канального уровня модели OSI. По сути база, на которой завязано все взаимодействие. При этом стек независим от физической среды передачи данных.

Протокол ТСР

TCP это сокращение от Transmission Control Protocol.

Иногда ТСР также называют потоковым протоколом. TCP/IP включает много протоколов и множество путей для коммуникации. Наиболее часто используемые транспорты это ТСР и UDP. ТСР это протокол, основанный на соединении, вы должны соединиться с сервером, прежде чем сможете передавать данные. ТСР также гарантирует доставку и точность передачи данных. ТСР также гарантирует, что данные будут приняты в том же порядке, как и переданы. Большинство вещей, которые используют ТСР/IP - используют ТСР как транспорт.

ТСР соединения, подобны телефонному звонку для разговора.

Протокол UDP

UDP это сокращение от User Datagram Protocol.

UDP предназначен для датаграмм, и он не требует соединения. UDP позволяет посылать облегченные пакеты на узел без установки соединения. Для UDP пакетов не гарантируется доставка и последовательность доставки. При передаче UDP пакетов, они отсылаются в блоке. Поэтому вы не должны превышать максимальный размер пакета, указанный в вашем TCP/IP стеке.

Поэтому многие люди считают что UDP малоприменим. Но это не так, многие потоковые протоколы, такие как RealAudio, используют UDP.

IP адрес

IP-адрес представляет собой 32-битовое (по версии IPv4) или 128-битовое (по версии IPv6) двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. (или 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 0000010 00011110 — двоичная форма представления этого же адреса). Каждый хост в TCP/IP сети имеет свой уникальный адрес. Некоторые хосты могут иметь более одного адреса. Каждая секция представляет собой один байт 32-битного адреса. Машины, которые имеют более одного IP адреса, называются multi-homed.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (192.168.0.0/16, 172.16.0.0/12 или 10.0.0.0/8). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR – для Европы http://www.ripe.net/

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Прикладной	напр. HTTP, SMTP, SNMP, FTP, Telnet, scp, NFS, RTSP	
Представительный	напр. XML, XDR, ASN.1, SMB, AFP	

Сеансовый	напр. TLS, SSH, ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP
Транспортный	напр. TCP, UDP, RTP, SCTP, SPX, ATP, DCCP, BGP, GRE
Сетевой	напр. IP, ICMP, IGMP, CLNP, ARP, RARP, OSPF, RIP, IPX, DDP
Канальный	напр. Ethernet, Token ring, PPP, HDLC, X.25, Frame relay, ISDN, ATM, MPLS
Физический	напр. электричество, радио, лазер

<u>НЕПЛОХО ЕЩЕ ЗНАТЬ ПРО:</u>

- Архитектуру клиент-сервер.
 Что такое «служба» или «сервис».
- 3. Одноранговые и многоранговые сети.
- 4. Топология сетей: звезда, шина.
- 5. Домен, рабочая группа.
- 6. Сети: LAN, WAN.
- 7. Порт.