Modelo de Optimización para Localización de Almacenes Preposicionados e Inventario Humanitario

Yulissa del Rocío Hernández Vázquez

Licenciatura en Matemáticas Aplicadas – FCFM UNACH

Asesor: Yofre Hernán García Gómez

Octubre 2025

Contenido

- Introducción
- Marco Teórico: Problema de Localización
- Modelo de Inventarios EOQ Estocástico
- Función Objetivo Integrada
- Métricas de Desempeño
- Aplicación en Chiapas
- Escenarios Evaluados
- Conclusiones

Introducción

La alta recurrencia de inundaciones y deslizamientos en **Chiapas** afecta comunidades vulnerables. Este estudio busca optimizar la respuesta humanitaria mediante la planificación previa, la ubicación estratégica de almacenes y la gestión eficiente de recursos.

Objetivo Principal

Desarrollar un modelo matemático integrado para optimizar la logística humanitaria, determinando la ubicación estratégica de almacenes, niveles de inventario y asignación de recursos que minimicen los costos operativos durante emergencias.

Marco Teórico: Problema de Localización

Formulación Matemática

Conjuntos:

- I: Localidades candidatas para almacenes
- J: Localidades demandantes (inundables)
- P: Productos humanitarios

Variables de Decisión:

- $Y_i = 1$ si se instala almacén en $i \in I$, 0 en otro caso
- ullet $Y_{ij}=1$ si localidad j es asignada a almacén i, 0 en otro caso

Parámetros Clave:

- w_i : Peso posicional (aptitud logística)
- c_{ij} : Costo de transporte
- f_i : Costo fijo de establecimiento

Restricciones de Localización-Asignación

Restricciones del Modelo

Asignación Única:

$$\sum_{i \in I} Y_{ij} = 1 \quad \forall j \in J$$

Factibilidad:

$$Y_{ij} \le Y_i \quad \forall i \in I, j \in J$$

Número de Almacenes:

$$\sum_{i \in I} Y_i = A$$

Donde A es el número máximo de almacenes a instalar

Modelo de Inventarios EOQ con demanda Estocástica

Cantidad Económica de Pedido:

$$Q^* = \sqrt{\frac{2DS}{H}}$$

Componentes:

- D: Demanda anual del producto
- S: Costo de ordenar por pedido
- H: Costo de mantener inventario

Adaptación para Contexto Humanitario

- Demanda estocástica por incertidumbre en afectación
- Horizonte temporal ajustado a emergencias
- Múltiples productos con características diferentes

Inventario de Seguridad y Punto de Reorden

Inventario de Seguridad:

$$SS = Z_{\alpha} \cdot \sigma_{d} \cdot \sqrt{L}$$

Punto de Reorden:

$$R = d \cdot L + SS$$

donde:

- Z_{α} : Valor Z para nivel de servicio α (95%)
- ullet σ_d : Desviación estándar de demanda diaria
- L: Tiempo de entrega en días
- d: Demanda diaria promedio

Función de Pérdida Normal

Para estimar el riesgo de escasez, usamos la función de pérdida asociada a la distribución normal:

$$E[Z] = \phi(Z) - Z(1 - \Phi(Z))$$

Aplicación en Fill Rate:

- Fill Rate = Proporción de demanda satisfecha
- Relación directa con nivel de servicio
- Base para cálculo de costos por escasez

Función Objetivo

Minimización de Costos Totales

$$\min Z = \sum_{i \in I} f_i Y_i + \sum_{i \in I} \sum_{j \in J} w_i c_{ij} Y_{ij} + \sum_{i \in I} \sum_{p \in P} TC_{ip}$$

Esta función minimiza el **costo total del sistema logístico humanitario**, combinando decisiones de **localización**, **transporte e inventario**.

Componentes del Costo de Inventario

$$TC_{ip} = \frac{C_{i}^{op}D_{j}^{p}}{Q_{ij}^{p}} + C_{i}^{sp}\left(\frac{Q_{ij}^{p}}{2} + SS\right) + C_{i}^{p}D_{j}^{p} + \frac{D_{j}^{p}}{Q_{ij}^{p}}(C_{i}^{f} + \sigma_{d}E[Z]B)$$

- Costo de pedido o preparación: se reduce al aumentar la cantidad pedida.
- Costo de mantenimiento o almacenamiento: considerando el inventario promedio y la seguridad SS.
- Costo de adquisición: asociado a la demanda esperada D_j^p del producto p.
- Costo esperado de faltante: incorpora la variabilidad de la demanda σ_d y el costo unitario de escasez B.

Peso Posicional

Multicriterio para Selección

Componentes del Peso Posicional w_i :

- Accesibilidad por carretera
- Existencia de servicios básicos
- Infraestructura disponible

Objetivo:

Priorizar localidades con mayor capacidad logística y menor vulnerabilidad estructural

Métricas de Desempeño

Fill Rate del Sistema:

$$FR_{sistema} = \frac{\sum_{i \in I} \sum_{p \in P} D_{ip} \cdot FR_{ip}}{\sum_{i \in I} \sum_{p \in P} D_{ip}}$$

Costo Total por Persona Atendida:

$$Costo_{pe} = \frac{Costo_t}{Poblacion_a}$$

Tiempo Promedio de Respuesta:

$$T_{respuesta} = \frac{\sum_{i \in I} \sum_{j \in J} t_{ij} \cdot Y_{ij}}{\sum_{i \in I} \sum_{j \in J} Y_{ij}}$$

Donde:

• t_{ij} : tiempo de transporte (horas) desde el almacén i hasta la zona afectada j.

Aplicación en Chiapas

Características de Chiapas:

- Alta vulnerabilidad a inundaciones y deslizamientos
- Topografía compleja que afecta accesibilidad
- Población dispersa en comunidades rurales
- Recursos limitados para logística humanitaria

Productos Humanitarios Considerados:

- Agua potable (2 litros/persona/día)
- Alimentos no perecederos
- Kits de medicamentos básicos
- Ropa y cobijas
- Artículos de higiene personal

Cálculo del Peso Posicional — Caso Chiapas

El peso posicional w_j integra cinco dimensiones logísticas de relevancia humanitaria, cada una con ponderación del 20 %. Se normalizaron todas las variables en el rango [0,1]:

$$w_i = 0.20(Diconsa_i + AccesoVial_i + Escuelas_i + Servicios_i + Poblacion_i)$$

Top 5 localidades con mayor potencial logístico (Cacahoatán):

#	Localidad	Peso
1	Salvador Urbina	1.000
2	Faja de Oro	0.983
3	Cacahoatán	0.849
4	Rosario Ixtal	0.749
5	Mixcum	0.657

Escenarios Evaluados — Cacahoatán

Objetivo: Analizar la sensibilidad del modelo ante restricciones espaciales.

Escenario A: Sin radio de afectación

- Se evaluaron 2 almacenes candidatos.
- El modelo seleccionó 1 almacén óptimo que cubre las 4 localidades.
- Solución eficiente en costo y plena cobertura del territorio.

Indicador	Resultado
Cobertura	100 %
Población atendida	7,407 personas
Localidades cubiertas	4
Fill rate promedio	100 %
Costo total anual	\$195,459,693 MXN

Continuación Escenarios Evaluados — Cacahoatán

Escenario B: Con radio de afectación $r=5~\mathrm{km}$

- El almacén 1 queda dentro del radio de influencia del segundo.
- El modelo selecciona el almacén 2 como óptimo.
- Se mantiene cobertura total, pero con mayor eficiencia espacial.

La restricción geográfica redefine la ubicación óptima, evidenciando la importancia de integrar criterios espaciales en la localización humanitaria.

Análisis de Sensibilidad

Factor de Afectación:

- Escenario base: 30% de población afectada
- Análisis de sensibilidad: 20% 50%

Nivel de Servicio:

- Objetivo principal: 95% fill rate
- Variación: 90% 99%

Número de Almacenes:

- Rango evaluado: 1 4 almacenes
- Trade-off: Costo vs. Cobertura

Conclusiones

Hallazgos Principales

Efectividad del Modelo:

- Integración exitosa de localización e inventario
- Balance óptimo entre costos y nivel de servicio
- Aplicabilidad práctica en contextos reales

Contribuciones:

- Marco decisional para planificación pre-desastre
- Herramienta cuantitativa para agencias humanitarias
- Base metodológica replicable en otros municipios

"Chiapas y Veracruz enfrentan desastres distintos, pero comparten una misma esperanza: que la preparación salve más vidas que la reacción, porque entre montañas o planicies, el agua no distingue fronteras, pero la prevención sí puede marcar la diferencia."

Recomendaciones para Cacahoatán

- Implementar configuración de 2 almacenes
- Mantener inventarios según cálculo EOQ con demanda Estocástica
- Monitorear continuamente factores de riesgo

Referencias

- Barojas-Payán, E., D. Sánchez-Partida, et al. 2021. "Optimization Model to Locate Pre-Positioned Warehouses." In *Disaster Risk Reduction in Mexico*, edited by D. Sánchez-Partida, 169–98. Springer. https://doi.org/10.1007/978-3-030-67295-9_8.
- Esri México. 2024. "Visor de Infraestructura y Riesgos de Desastres." https://atlsrgochis.maps.arcgis.com/apps/webappviewer/index.html? id=e0e724ad2bb8423894b0cebd1f27a7d5.
- INEGI. 2024. "Bases de Datos y Visor Geoespacial." https://www.inegi.org.mx/app/mapa/denue/.
- Secretaría de Educación Pública (SEP). 2024. "Principales Cifras Del Sistema Educativo Nacional." https://www.planeacion.sep.gob.mx/principalescifras/.
- Taha, Hamdy A. 2016. *Operations Research: An Introduction*. 10th ed. Pearson.