Segmentation d'un site de e-commerce

Sommaire:

- Rappel de la problématique
- Analyse exploratoire et Feature Engineering
- Modélisations
 - Kmeans
 - DBScan
- Modèle retenu
- Maintenance et fréquence de mise à jour

Rappel de la problématique

Rappel de la problématique :

- Olist, marketplaces en ligne
- Segmentation de clients
- Comprendre les différents types d'utilisateurs, définir des profils
- Mise en place d'algorithmes non supervisés de clustering
 - Kmeans
 - Dbscan
 - Hierarchique

Descriptif du jeu de donnés:

Type, Montant, Plusieurs fois

Orders

Infos commande, date livraison

Catégories, Taille/poids, Description, Photos

Villes Etats

Products

Customers

Notes Commentaires

Villes Etats

Reviews

Sellers

o circi o

Latitude Longitude

Détails produit

- 5

Descriptif du jeu de donnés:

Analyse Exploratoire Feature Engineering

Analyse Exploratoire: Localisation

96 000 clients.

120 clients ont acheté de plusieurs lieux.

Analyse exploratoire : Catégories de produits

Réduction du nombre de catégories.

Regroupement par thème.

Aménagement maison
Electronique
Santé/ beauté
Sport
Mode
Jouet et bébés
Voiture
Construction
Culture/livres/multimedia
Nourriture/boisson
Autre

Analyse exploratoire : Catégories de produits

Réduction du nombre de catégories.

Regroupement par thème.

Aménagement maison Electronique Santé/ beauté Sport Mode Jouet et bébés Voiture Construction Culture/livres/multimedia Nourriture/boisson Autre

Analyse exploratoire: Dates de commande

Septembre à octobre : une seule année.

Croissance sur année 2017.

Pic en novembre.

Analyse exploratoire: Dates de commande

Pic de commandes le 24 Novembre. Commandes plus élevées sur la fin du mois : BlackFriday.

Un seul pic aussi élevé sur l'année.

Légère baisse en été.

Analyse exploratoire : Nombre de commandes

Majoritairement 1 seule commande par client

Parmi les clients à commandes multiples majoritairement 2 commandes

Délai entre commandes inférieur à 6 mois

1 produit par commande

Analyse exploratoire: Montant moyen

Détection d'outliers : au dessus de 5 000\$ pour une commande.

Distribution de la valeur moyenne des commandes < à 1000\$ par client

La majorité des paiements sont inférieurs à 200\$

Analyse exploratoire: Reviews

Avis plutôt positifs: 4 ou 5/5.

1/5 troisième note la plus présente avec 12%.

La plupart des clients ont 1 seule commande.

La distribution est presque identique.

Analyse exploratoire: Distances

Détection d'outliers : au dessus de 4 000 km

La majorité des distances sont inférieures à 1 000 km.

Analyse exploratoire: Paiements

Majoritairement 1 seul type de paiement: Credit Card

Environ la moitié des commandes sont payées en plusieurs fois sur un des types de paiement.

Majoritairement 1 commande par client: résultat presque identique

Feature Engineering:

- Rassembler les informations à l'échelle des clients en jouant avec les données
- Achat au black Friday ?
- Plusieurs commandes ? Délai entre commandes
- Paiement moyen
- Note moyenne
- Distance
- Paiements en plusieurs fois/types
- Types de paiement
- Catégories de produits

Feature Engineering:

- Binarisation
 - BlackFriday
 - Plusieurs commandes binarisé
 - Paiement en plusieurs fois : si 50%+ des commandes en plusieurs fois
- Type de paiement : compter le fois d'utilisation par moyen
- Compter nombre produit par catégorie
- MinMaxScaler
 - La plupart des valeurs sont entre o et 1
 - ▶ Réduire l'impact des variables paiement moyen et distance

Clustering KMeans

Kmeans KElbow method:

Somme des distances aux centroïdes.

Différence entre distance moyenne au même cluster et distance moyenne autre clusters avec rapport au max.

Compris entre -1 et 1, 1 étant le meilleur.

6 clusters

Analyse en composantes principales :

Au départ 25 features

87% de variance expliqué par les 4 premières composantes principales

Analyse en composantes principales :

24

Analyse en composantes principales :

Features non corrélées linéairement

PCA: Représentation des clusters

Quelques clusters bien définis mais un cluster qui a l'air de l'être un peu moins.

Possibilité d'entraînement du modèle après la PCA sur les 4 variables principales ?

Entraînement après réduction dimensionnelle:

Nouveau nombre de cluster : 5

meilleure silhouette: 0,562 vs 0,633

Après PCA: Représentation des clusters

Visualisation des cluster sur les trois axes principaux de la PCA

Clusters mieux séparés

Taille des clusters avant et après PCA:

Taille des clusters après pca

35000
25000
15000
0 1 2 3 4
KMean_pca

2 clusters principaux : 75% des points.

Le numéro du cluster n'a pas d'importance.

Distribution du paiement moyen avant et après PCA:

Boxplots par cluster avant PCA:

Boxplot des variables ['delay', 'mean_payment_value', 'mean_review_score', 'distance_km'] avec les clusters de KMean_cluster

Plusieurs commandes cluster 4

Clusters 1 et 4 : paiement moyen plus élevé

Avis:

Cluster 3 très mécontent Cluster 2 plutôt insatisfait Cluster 1, 4 et 5 mélangés Cluster 0 satisfait

5.0

4.0

Boxplots par cluster après PCA:

Boxplot des variables ['delay', 'mean_payment_value', 'mean_review_score', 'distance_km'] avec les clusters de KMean_pca

Boxplots de la variable mean_payment_value en fonction des clusters

Clusters 2 et 4 : paiement moyen plus élevé 1 et 3 légèrement plus bas

Avis:
Clusters 1 et 2 plutôt insatisfaits
Cluster o mélangé
Clusters 3 et 4 satisfaits
Perte cluster 'très mécontents'

Plusieurs commandes avant et après PCA:

Majoritairement répartis dans un seul cluster à part quelques exceptions.

Top produit avant pca:

Home furniture : toujours elevé

2 clusters privilégiant aussi l'électronique

3 clusters avec la catégorie sport

4 clusters avec la catégorie fashion

Top produits après PCA:

On garde à peu près les mêmes distributions par cluster Home furniture : toujours elevé

2 clusters privilégiant aussi l'électronique

3 clusters avec la catégorie sport

3 clusters avec la catégorie fashion

Types de paiement avant PCA:

2 clusters uniquement Credit Card

2 clusters Credit Card & Boleto

1 cluster Credit Card & Voucher

Types de paiement après PCA:

2 clusters uniquement Credit Card

2 clusters Credit Card & Boleto

Perte du cluster 5 : Credit Card & Voucher

Types de paiement avant et après PCA:

Cluster 5 clients utilisant plusieurs types de paiement homogénéisé dans les autres clusters

Information perdue

Payement plusieurs fois avant et après PCA:

2 clusters qui paient uniquement en plusieurs fois

Clients qui paient en plusieurs fois repartis plus distinctement (3v4 clusters)

Achats pendant le BlackFriday avant et après PCA:

Le pic d'achats pendant le BlackFriday n'est pas impactant sur notre clustering : les gens sont repartis dans les différents clusters.

Clustering DBscan

Silhouette et représentation :

Meilleures silhouettes lors de l'entraînement après PCA

3 clusters + un cluster 'bruit'

Taille des clusters et boxplots :

Toujours 2 majoritaires

2 clusters avec plusieurs commandesAvis moins bien définis2 clusters avec paiement un peu plus élevés

Top produits

Home furniture toujours élevé

Plus qu'un seul cluster privilégiant aussi l'électronique

Types de paiement :

2 clusters uniquement Credit Card

2 clusters Credit Card & Boleto

Voucher légèrement plus élevés

Informations sur les paiements:

2 clusters paient en plusieurs fois

1 cluster + cluster 'bruit' (2 clusters) ont passé plusieurs commandes

Clustering hiérarchique

Silhouette et représentation :

Echantillonnage de 50% de la population

4 clusters

Visualisation des cluster sur les trois axes principaux de la PCA

Clusters moins bien définis

Modele retenu:

- kmeans après PCA
- Profils d'utilisateurs :

Le fidèle	Le déçu	L'exigeant	L'économe	Le satisfait
Montant moyen: 148\$ Distance: 560 km Plusieurs commandes Paye en plusieurs fois 4,1/5 5% des clients	Montant moyen: 130\$ Distance: 607 km Commande unique Paye en une fois 1,9/5 10% des clients	Montant moyen: 212\$ Distance: 700 km Commande unique Paye en plusieurs fois 1,8/5 10% des clients	Montant moyen: 116\$ Distance: 542 km Commande unique Paye en une fois 4,7/5 35% des clients	Montant moyen: 195\$ Distance: 634 km Commande unique Paye en plusieurs fois 4,7/5 40% des clients

Actions à entreprendre :

Fidéliser clients satisfaits

Rechercher l'explication des clients déçus : délai, commentaires, type de produits...

Clustering sur les axes principaux de la PCA : pertinence (enlever paiement en plusieurs fois ?) satisfaction, commandes multiples, paiements en plusieurs fois distance

Maintenance et fréquence de mise à jour

Kelbow method et distances:

Alternance entre 4 et 5 clusters

Shift au deuxième semestre et au mois de février

Pics aux mois de novembre et février

Maintenance Kmeans à 5 clusters :

Amélioration silhouette avec données

Baisse au mois de novembre

Amélioration deuxième semestre et en février

Proche de 1 Clusters stables

Chute en Novembre et février

Maintenance trimestrielle