

Low power flex sensor based on graphite granular system

General features

- Flex sensor
- Low power consumption
- Easy to use
- Thin
- Low-cost
- Portable
- Environment friendly

Description

This flex sensor is made from basic paper and graphite dropped by a pencil. By drawing with a pencil on a sheet of paper we rub off graphite particles which then stick to the paper fibers. Those particles form granular system. When the sensor is compressed the grains of graphite get closer to each other and thus quantum tunneling allow more electrons to travel from a grain to another. The overall electrical resistance of the sensor lowers when compressed and heightens when expanded. This sensor can be used as a flex sensor compressing and expending according to the direction of the flexion. It is a passive sensor; we only need to measure its electrical resistance. The relative resistance is around a few $M\Omega$ with an HB pencil, it therefore does not consume much power. It is low-cost and easy to make. It is thin and with the good integration can be easy to transport. Like paper and pencil, it is environment friendly.

Specifications

Type	Flex sensor		
Sensing principle	Granular system		
Sensing principle	sensor		
	Paper and		
Materials	graphite from		
	pencil		
Power supply	Passive (no power		
requirement	supply required)		
Nature of output	Analog resistivity		
signal			
Dimensions	15mm x 37mm		
Mounting	Glue or tape		

Standard use condition

	Unit Typical value	
Temperature	°C	20±5
Humidity	%	60±5
Air quality	%N2/O2	80/20

Flex Characteristics

The characteristics of the sensor were determined by measuring its resistance when bent by a servomotor. The measured values are according to the angle of bending as shown in the figure below.

By testing multiple times multiple angles at different moments, we get an overview of the analog response of the sensor to different flexion.

We highly recommend the use of only the <u>linear part</u> of the previous curves with a high density of points.

Resistance according to angle of flexion for 2H graphite

Type of pencil	Average resistance*	Min-Max resistance*	Sensitivity	Correlation score (R ²)
HB	160 MΩ	130-200 MΩ	1000 kΩ/°	0.90
2H	340 MΩ	310-370 MΩ	181 kΩ/°	0.41
2B	250 ΜΩ	230-280 ΜΩ	400 kΩ/°	0.39

^{*}in linear part

Example of integration

Below is an example of an integration circuit used to interface the flex sensor with an Arduino analog input pin. The operational amplifier will convert and amplify a current proportionally to the resistance of the flex sensor.

