

Преподаватели:

Спасёнов Алексей Программист-исследователь, Отдел Data Science

Некрасов Евгений Старший программист-исследователь, Отдел Data Science

Андрей Шестаков Руководитель группы, Отдел Data Science

Вадим Журавлёв Программист-исследователь, Группа персонализации

Артем Зраев Программист-исследователь, Отдел Data Science

Георгий Господинов Программист-исследователь, Группа персонализации

Что будет в курсе:

Name 4	HR Information Contact			
	Position	Salary	Office	♦ Extn. ♦
Airi Satou	Accountant	\$162,700	Tokyo	5407
Angelica Ramos	Chief Executive Officer (CEO)	\$1,200,000	London	5797
Ashton Cox	Junior Technical Author	\$86,000	San Francisco	1562
Bradley Greer	Software Engineer	\$132,000	London	2558
Brenden Wagner	Software Engineer	\$206,850	San Francisco	1314
Brielle Williamson	Integration Specialist	\$372,000	New York	4804
Bruno Nash	Software Engineer	\$163,500	London	6222
Caesar Vance	Pre-Sales Support	\$106,450	New York	8330
Cara Stevens	Sales Assistant	\$145,600	New York	3990
Cedric Kelly	Senior Javascript Developer	\$433,060	Edinburgh	6224
Name	Position	Salary	Office	Extn.

Содержание курса

- 1. Введение в анализ данных и машинное обучение
- 2. Задачи классификации и регрессии
- 3. Оценка качества моделей и работа с признаками
- 4. Обучение без учителя
- 5. Ансамбли моделей
- 6. Анализ социальных сетей
- 7. Работа с текстовыми данными
- 8. Рекомендательные системы
- 9. Семинар. Создание ML-пайплайна
- 10. Нейронные сети
- 11. Защита проекта

Введение в машинное обучение. Лекция 1

Выполнение заданий:

1) Отправляем решения на

a.spasenov@corp.mail.ru

e.nekrasov@corp.mail.ru

2) В теме письма добавляем:

[TSMLintro]

Например:

[TSMLintro] Contest 1

Введение в машинное обучение. Лекция 1

Содержание лекции

- 1. Основный понятия
- 2. Основные типы задач
- 3. Примеры прикладных задач
- 4. Знакомство с библиотеками:
 - 1. Numpy
 - 2. Matplotlib
 - 3. Pandas
- 5. Практика: анализ банковских данных

Рекомендуемая литература

- Christopher M.Bishop. Pattern recognition and Machine Learning
- Kevin P. Murphy. Machine Learning. A Probabilistic Perspective
- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning

Технострим Mail.ru Group:

- 1. Введение в анализ данных
- Data Mining
- 3. Методы обработки больших объёмов данных

Машинное обучение (Machine Learning)

Обширный подраздел прикладной математики, находящийся на стыке математической статистики, оптимизации, искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться по эмпирическим (прецедентным) данным.

Анализ данных (Data Mining)

Процесс извлечения знаний из различных источников данных, таких как базы данных, текст, картинки, видео и т.д. Полученные знания должны быть достоверными, полезными и интерпретируемыми.

Cross Industry Standard Process for Data Mining

Постановка задачи

- 1) Предсказание оттока клиентов с сайта
- 2) Распознавание марки и модели автомобилей по изображениям
- 3) Информационный поиск, анализ текстов
- 4) Кредитный скоринг
- 5) Социологические исследования
- 6) Медицинская диагностика

. . .

Признаки (Features)

D — множество объектов (Data set)

 $d \in D$ – обучающий объект

 $\phi_i: D o F_i$ - признак

Виды признаков:

1) Бинарные $|F_j| = \{true, false\}$

2) Номинальные | Categorical $|F_j|$ – конечно

3) Порядковые Ordinal F_j – конечно упорядочено

4) Количественные | Numerical | $F_j = \mathbb{R}$

Пример:

Задача: Необходимо спрогнозировать стоимость дома

Признаки, характеризующие стоимость жилья:

Бинарные	Номинальные	Порядковые	Количественные
Наличие отсутствие газа (электричества) Наличие отсутствие подвального помещения	Регион расположения	Число владельцев Число комнат Число этажей	Удалённость от общественного транспорта Удалённость от водоёма

Подготовка данных (Data Preparation)

- 1) Удаление шума
- 2) Заполнение отсутствующих значений
- 3) Трансформация значений
- 4) Выбор факторов
- 5) Использование априорных знаний

Создание модели (Modeling)

В зависимости от постановки задачи выбираются различные подходы к построению модели, описывающей свойства исследуемых объектов

Основные типы задач

1)Обучение с учителем (supervised learning)

Каждый прецедент представляет собой пару «объект, ответ». Требуется найти функциональную зависимость ответов от описаний объектов и построить алгоритм, принимающий на входе описание объекта и выдающий на выходе ответ.

2)Обучение без учителя (unsupervised learning)

Ответы не задаются, и требуется искать зависимости между объектами

3) Частичное обучение (semi-supervised learning)

Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов.

4)Обучение с подкреплением (reinforcement learning)

Роль объектов играют пары «ситуация, принятое решение», ответами являются значения функционала качества, характеризующего правильность принятых решений (реакцию среды).

. . .

Пример обучение без учителя

Поиск документов (статей, сайтов т.д.) имеющих похожую тематику

Пример обучение без учителя

Поиск музыки одинакового жанра

Пример обучение без учителя

Уровень заработка

Регионы сейсмической активности

Обучение с учителем (обучения по прецедентам)

Модель

Семейство параметрических функций вида

$$H = \{h(x, \Theta) \colon \mathcal{X} \times \Theta \to Y\}$$

Алгоритм обучения

Выбор наилучших параметров 9

$$A(X,Y):(X\times Y)^N\to\Theta$$

В итоге:

$$h^*(x) = h(x, \Theta^*)$$

Обучение с учителем (обучения по прецедентам)

Задачи классификации (classification)

- $F_j = \{true, false\}$ классификация на 2 класса
- $F_j = \{1, ..., M\}$ классификация на M непересекающихся классов
- $F_j = \{0,1\}^M$ классификация на M классов, которые могут пересекаться

Задача восстановления регрессии (regression)

• $F_j = \mathbb{R}$ или $F_j = \mathbb{R}^M$ (ответом является действительное число или числовой вектор)

Задача ранжирования (learning to rank)

• F_j - конечно упорядочено (ответы надо получить сразу на множестве объектов, после чего отсортировать их по значениям ответов)

Обучение с учителем (обучения по прецедентам)

Этап обучения (train)

Необходимо учитывать представительность выборки

Этап применения (test)

Обучение с учителем (обучения по прецедентам)

Пример задачи классификации

Пациент здоров или болен? (бинарная классификация)

Обучение с учителем (обучения по прецедентам)

Пример задачи классификации

Какая марка автомобиля? (классификация на M непересекающихся классов)

Обучение с учителем (обучения по прецедентам)

Пример задачи классификации

Что представлено на изображении? (классификация на M классов, которые могут пересекаться)

Обучение с учителем (обучения по прецедентам)

Пример задачи классификации

Психитипирование личности (BIG5, MBTI) (классификация на M классов, которые могут пересекаться)

Обучение с учителем (обучения по прецедентам)

Пример задачи восстановления регрессии

Предстаказание стоимости валют

Обучение с учителем (обучения по прецедентам)

Пример: задачи ранжирования

Обучение с подкреплением (reinforcement learning)

Пример: игры atari

Обучение с подкреплением (reinforcement learning)

Пример: создание чатбота

Инструменты

Инструменты

Спасёнов Алексей

a.spasenov@corp.mail.ru