The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the \$\ell^{\infty}\$ norm, if \$a_2\$ is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 761 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined by the algorithm:

Compute_a_2(n)

$$ext{Output} = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Compute_f(n)

$$k = 2$$

For m=1 to n:

$$k = k + 1$$

Output = sum

Let's analyze the behavior of f(n):

$$f(n) = 72^{-10^{24}} + \sum_{j=3}^{n+2} \left[\left(rac{1}{2}
ight)^j - 72^{-j\cdot 10^{24}}
ight]$$

Ignoring the extremely small terms involving powers of 72 (which are negligible for any practical n), we get:

$$f(n)pprox \sum_{j=3}^{n+2}\left(rac{1}{2}
ight)^j = rac{1}{4} - rac{1}{2^{n+2}}$$

Then:

$$a_2(n) = 2f(n) + rac{1}{2} + 0.25^n pprox 1 - rac{1}{2^{n+1}} + rac{1}{4^n}$$

As $n o \infty$, the terms $rac{1}{2^{n+1}}$ and $rac{1}{4^n}$ vanish, so:

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + \delta$$

where:

$$\delta = 2 \left[72^{-10^{24}} - \sum_{j=3}^{\infty} 72^{-j \cdot 10^{24}}
ight] > 0$$

Thus, $a_2>1$, but δ is extremely small.

Step 2. The Optimization Problem

We have:

- Dosage rates: $a_1 = 1$, $a_2 > 1$
- Treatment times: x_1, x_2
- Total dosage constraint:

$$x_1 + a_2 x_2 = 1$$

· Objective: Minimize total time

$$T = x_1 + x_2$$

From the constraint:

$$x_1 = 1 - a_2 x_2$$

Substitute into the objective:

$$T = (1 - a_2 x_2) + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2>1$, the coefficient $(1-a_2)<0$, so T decreases as x_2 increases.

To ensure $x_1 \geq 0$, we require:

$$x_2 \leq \frac{1}{a_2}$$

Thus, the optimal solution is:

$$x_1 = 0, \quad x_2 = rac{1}{a_2}$$

Total time:

$$T = \frac{1}{a_2}$$

Step 3. Approximating the Optimal to Two Decimal Places

We know:

$$a_2=1+\delta, \quad \delta>0$$

Then:

$$x_2 = \frac{1}{a_2} = \frac{1}{1+\delta} = 1 - \delta + \delta^2 - \cdots$$

Since δ is extremely small (on the order of $10^{-1.857 \times 10^{24}}$), we have:

$$x_2pprox 1$$

To two decimal places:

$$x_2 = 1.00$$

Also, since $x_1=0$, we have:

$$(x_1,x_2)=(0,1.00)$$

This is within the required ℓ^∞ norm accuracy of 0.01.

Final Answer

$$\boxed{0}$$
 and $\boxed{1.00}$