Homework 7

21-651 General Topology Name: Shashank Singh

Email: sss1@andrew.cmu.edu Due: Friday, December 7, 2012

Problem 1

Suppose that $(C_b(X,Y),d_{\infty})$ is complete, and let $\{y_n\}_{n=1}^{\infty}$ be a Cauchy sequence in (Y,d_Y) . Consider the sequence of constant functions in $C_b(X,Y)$ defined for each $n \in \mathbb{N}$ by $f_n = y_n \forall x \in X$ $(f_n \in C_b(X,Y))$ because any constant function is clearly continuous and bounded). Then, for any $i,j \in \mathbb{N}$, $d_{\infty}(f_i,f_j) = d_Y(y_i,y_j)$, so that, since $\{y_n\}_{n=1}^{\infty}$ is a Cauchy sequence in (Y,d_Y) , $\{f_n\}_{n=1}^{\infty}$ must be a Cauchy sequence in $(C_b(X,Y),d_{\infty})$, and, since the latter is complete, $\{f_n\}_{n=1}^{\infty}$ converges to some $f \in (C_b(X,Y),d_{\infty})$.

If f were not constant (say, $f(x) \neq f(y)$, for some $x, y \in X$, then, for $\epsilon = \frac{1}{2}d_Y(f(x), f(y))$, no constant f_i could have both $d_{\infty}(f(x), f_i(x)) < \epsilon$ and $d_{\infty}(f(y), f_i(y)) < \epsilon$, contradicting the fact that $f_i \to f$ with respect to d_{∞} as $i \to \infty$. Thus, we can pick $y \in Y$ with $f(x) = y \ \forall x \in X$, and it follows from the fact that $d_{\infty}(f, f_i) = d_Y(y, y_i)$ for each $i \in \mathbb{N}$ that $y_i \to y$ as $i \to \infty$. Therefore, (Y, d_Y) is complete.

Suppose, on the other hand, that (Y, d_Y) is complete, and let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $(C(X,Y), d_{\infty})$. Since (Y, d_Y) is complete for any $x \in X$, $f_i(x) \to f(x)$, for some $f(x) \in Y$. It remains only to show that f is continuous and bounded, so that $f \in C_b(X,Y)$. Given $\varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $d_{\infty}(f, f_n) < \varepsilon/3$. Thus, for any $x \in X$, since f_n is continuous, $\exists \delta > 0$ such that, $f(B_X(x,\delta)) \subseteq B_Y(f(x),\varepsilon/3)$. Then, for any $y \in B_X(x,\delta)$, by the Triangle Inequality,

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

so that f is continuous. Finally, if $M_n > 0$ bounds f_n , then $M_n + \varepsilon/3$ clearly bounds f.

Problem 2

Let (X, τ) be a locally compact Hausdorff space, and let $U_1, U_2, \ldots \in \tau$ be a sequence of sets dense in X. Let $U := \bigcap_{n=1}^{\infty} U_n$. Let $V \in \tau$. Since U_1 is dense in X, $\exists x_1 \in V \cap U$. By Lemma 155, since $\{x_1\}$ is trivially compact, $\exists W_1 \in \tau$ with $\{x_1\} \subseteq W \subseteq \overline{W_1} \subseteq V \cap U$. Similarly, by picking $x_n \in W_{n-1} \cap U_n$, we can recursively find, $\forall n \in \mathbb{N}$, some nonempty $W_n \in \tau$ with $\overline{W} \subseteq W_{n-1} \cap U_n$. $\overline{W_1} \supseteq \overline{W_2} \supseteq \ldots$ is a decreasing sequence of closed sets, the intersection $W := \bigcap_{n=1}^{\infty} \overline{W_n} \subseteq V \cap \bigcap_{n=1}^{\infty} U_n$ is nonempty. Thus, since every open set intersects U, U is dense in X, so (X, τ) is Baire.

Problem 3

(a) Let $f \in C([0,1])$, and let $\varepsilon > 0$. Since f is continuous and has a compact domain, by Theorem 216, f is uniformly continuous, so that $\exists \delta_n > 0$ such that, $\forall x, y \in [0,1]$ with $|x-y| < \delta$, $|f(x) - f(y)| < \frac{\varepsilon}{2}$. Let $g \in C([0,1])$ be defined $\forall x \in [0,1]$ by $g(x) = f(x) + \varepsilon \cos(ax)$, where $a := \max\left\{\frac{2\pi n}{\varepsilon}, \frac{2\pi}{\delta_n}\right\}$. Then, for $x \in [0,1]$, if x_2 is the second-nearest multiple of $\frac{\pi}{a}$ in [0,1] to x (if two such multiples are equidistant, pick either one; then $|x - x_2| < \frac{\pi}{a}$), by the geometry of the cosine curve, $|(\cos(ax) - \cos(ax_2)| \ge 1$. Then, since $|f(x) - f(x_2)| < \delta_n$ (by choice of a and a,

$$|g(x) - g(x_2)| = |\varepsilon(\cos(ax) - \cos(ax_2)) + f(x) - f(x_2)|$$

> $\varepsilon - \frac{\varepsilon}{2} = \varepsilon \ge \frac{n\pi}{a} = n|x - x_2|,$

and thus $g \notin X_n$. However, $d_{\infty}(f,g) < \varepsilon$.

- (b) Let $U \subseteq C([0,1])$ be open and nonempty, and let $f \in U$. Since $B(f,\varepsilon) \subseteq U$ for some $\varepsilon > 0$, we can construct $g \in U$ in terms of f as in part (a), with $g \notin X_{2n}$, $d_{\infty}(f,g) < \varepsilon$. Then, by the construction of g, for any $h \in B(g,\varepsilon/2)$, $h \notin X_n$ (as h oscillates with frequency at least that of g and amplitude at least half that of g). Thus, $B(g,\varepsilon/2) \cap U$ is a nonempty open subset of U that does not intersect X_n .
- (c) Note first that, by a result of Problem 1, since \mathbb{R} is a complete metric space, C([0,1]) is also complete $(C([0,1]) = C_b([0,1], \mathbb{R})$, as continuous functions on compact domains are bounded). Then, by the Baire Category Theorem, C([0,1]) is a Baire space.

Let τ be the topology induced by d_{∞} on C([0,1]). In part (b), we showed that, \forall nonempty $U \in \tau, n \in \mathbb{N}$, \exists a nonempty open set $V_{U,n} \subseteq U$ $V_{U,n}$ such that $V_{U,n} \cap X_n = \emptyset$. For each $n \in \mathbb{N}$, let $W_n := \bigcup_{U \in \tau} V_{U,n}$, so that, as a union of open sets, each W_n is open. Then, the intersection $W := \bigcap_{n \in \mathbb{N}} W_n$ is a G_{δ} set. By construction, any open set has non-empty intersection with each W_n , so that each W_n is dense in C([0,1]). Since C([0,1]) is a Baire space, V is dense in C([0,1]).

It remains then only to show that any $f \in V$ is nowhere differentiable. Note that, by construction of V, $\forall n \in \mathbb{N}$, $V \cap X_n = \emptyset$, so that it suffices to show that, if f is differentiable at some point x, then $f \in X_n$ for some $n \in \mathbb{N}$. If f is differentiable at x, then

$$\exists D := \lim_{y \to x} \frac{f(x) - f(y)}{|x - y|} \in \mathbb{R},$$

Thus, $\exists \delta > 0$ such that $\left| \frac{|f(x) - f(y)|}{|x - y|} - D \right| < \varepsilon$ on $B(x, \delta)$, and, on the compact set $[0, 1] \setminus B(x, \delta)$, $\frac{|f(x) - f(y)|}{|x - y|}$ is bounded, since it is continuous. Thus, some $n \in \mathbb{N}$ bounds f, so $f \in X_n$.

Problem 4

- (a) If $x \in E$, then $f(x) = f(x) + L(d(x,x))^{\alpha} \in \{f(y) + L(d(x,y))^{\alpha} : y \in E\}$, so that, since h(x) is an infimum, $h(x) \le f(x)$. $\forall y \in E$, since $|f(x) f(y)| \le L(d(x,y))^{\alpha}$, $f(x) \le f(y) + L(d(x,y))^{\alpha}$, so that, taking the infimum over $y \in E$, $f(x) \le h(x)$.
- (b) It follows immediately from part (a) that $\inf_{x\in X}h(x)\leq \int_{y\in E}f(y). \ \forall \varepsilon>0, x\in X, \text{ since } h(x)$ is an infimum, $\exists y\in E \text{ such that } f(y)\leq f(y)+L(d(x,y))^{\alpha}\leq h(x)+\varepsilon.$ Thus, $\forall x\in X, \inf_{y\in E}f(y)\leq h(x), \text{ so, taking the infimum over } x\in X, \inf_{y\in E}f(y)\leq \inf_{x\in X}h(x).$
- (c) By definition of h, $\forall \varepsilon > 0, x, y \in X$, $\exists v, w \in E$ such that $|f(v) + L(d(v, x))^{\alpha} h(x)|, |f(w) + L(d(w, y))^{\alpha} h(y)| < \varepsilon$. Since $v, w \in E$, $|f(v) f(w)| \leq L(d(v, w))^{\alpha}$. By the Triangle Inequality,

$$|h(x) - h(y)| \le |f(v) + L(d(v,x))^{\alpha} - h(x)| + |f(v) - f(w)| + |f(w) + L(d(w,y))^{\alpha} - h(y)|$$

$$< L(d(v,w))^{\alpha} + 2\varepsilon \le L(d(x,y))^{\alpha} + 2\varepsilon$$

Taking $\varepsilon \to 0$ gives $|h(x) - h(y)| \le L(d(x,y))^{\alpha}$.

Problem 5

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined $\forall x, y \in \mathbb{R}^2$ by

$$f(x,y) := \begin{bmatrix} \frac{x^4}{3}\sin(xy) - \frac{7x - y}{8} + x \\ \frac{y^2\cos(y)}{8} + \frac{e^x}{24}. \end{bmatrix}.$$

Note that any fixed point of f is a solution to the given system. Since f is continuous, by Brouwer's Fixed Point Theorem, to show that f has a fixed point, it suffices to show that $f(\overline{B(0,1)}) \subseteq \overline{B(0,1)}$. It is apparent that, $\forall (x,y) \in [0,1]^2$, $|f_1(x,y)| \leq \frac{7}{12}$, and $f_2(x,y) \leq \frac{1}{4}$. Thus, $f(x,y) \in B(0,1)$, since

$$||f(x,y)|| \le \sqrt{\left(\frac{7}{12}\right)^2 + \left(\frac{1}{4}\right)^2} = \frac{58}{144} < 1.$$

Problem 6

Since K is continuous and has compact domain, |K| is bounded by some $M \in \mathbb{R}$. Then, $\forall T f \in \mathcal{F}, x \in [0,1]$,

$$|Tf(x)| = \left| \int_0^1 K(x - y)f(y) \, dy \right| \le \int_0^1 |K(x - y)||f(y)| \, dy \le \int_0^1 M \, dy = M,$$

so that \mathcal{F} is pointwise bounded.

Since K is continuous and has compact domain, K is uniformly continuous, so, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that, $\forall x_1, x_2$ with $|x_1 - x_2| < \delta$, $|K(x_1) - K(x_2)| < \frac{\varepsilon}{2}$. Then, $\forall T f \in \mathcal{F}, x_1, x_2 \in [0, 1]$, by the Triangle Inequality and since $|f| \leq 1$ on [0, 1],

$$|Tf(x_1) - Tf(x_2)| = \left| \int_0^1 K(x_1 - y)f(y) \, dy - \int_0^1 K(x_1 - y)f(y) \, dy \right|$$

$$= \left| \int_0^1 (K(x_1 - y) - K(x_2 - y))f(y) \, dy \right|$$

$$\leq \int_0^1 |(K(x_1 - y) - K(x_2 - y))| |f(y)| \, dy \leq \int_0^1 \frac{\varepsilon}{2} \, dy < \varepsilon.$$

Thus, \mathcal{F} is equicontinuous.

Since [0,1] is separable and compact, by the Ascoli-Arzelà Theorem, $\mathcal F$ is sequentially compact.

Problem 7

Let $\mathcal{F} := \{f_n : n \in \mathbb{N}\}$, so that, by the Ascoli-Arzelà Theorem, since [0,1] is separable and compact, to show that every sequence in \mathcal{F} has a convergent subsequence, it suffices to show that \mathcal{F} is pointwise bounded and equicontinuous.

We show inductively that each f_n is in $C([0,1],\mathbb{R})$, that \mathcal{F} is pointwise bounded by 1, and that, for any $\varepsilon > 0$, for $\delta = \frac{\varepsilon}{2}$, $\forall x, y \in [0,1]$, $y \in B(x,\delta)$ implies $f(y) \in B(f(x),\varepsilon)$ (implying in turn that \mathcal{F} is equicontinuous). f_0 is clearly continuous and bounded by 1 on [0,1], and f_0 satisfies the equicontinuity requirement, since it is differentiable on [0,1] with derivative bounded by 2. Suppose, as an inductive hypothesis, that, for some $n \in \mathbb{N}$, f_n is in $C([0,1],\mathbb{R})$ and is bounded by 1 on [0,1]. Then, $\forall x \in [0,1]$,

$$f_{n+1}(x) = \int_0^x (f_n(s))^{1/3} ds \le \int_0^x 1 ds = x \le 1,$$

so that f_{n+1} is bounded by 1 on [0,1], and, by the Fundamental Theorem of Calculus, f_{n+1} is in $C([0,1],\mathbb{R})$. Also by the Fundamental Theorem of Calculus, $\forall x \in [0,1]$, f_{n+1} is differentiable at x with $f'(x) = (f_n(x))^{1/3} \le 1$, so that f_{n+1} satisfies the equicontinuity requirement.