

MBR y HDD

Interfaces Físicas de HDD (disco Duros)

- Existen varios tipos de conectores físicos para discos duros HDD y SSD, dependiendo de la tecnología utilizada y la generación del dispositivo.
- A continuación, te explico los principales conectores, sus características y cómo se utilizan en los discos HDD y SSD:
- Conectores de Discos HDD (Discos Duros Mecánicos)
 - Conector SATA (Serial ATA)
 - Conector SCSI (Small Computer System Interface)
 - Conector SAS (Serial Attached SCSI)

http://www.scsi.solutions/index.php?page=scsi-es

SCSI Connectors

DB-25, Male External

DB-25. Female External

╸ ╸ ╸ ╸ ╸

High-Density, 50-pin, Female External

Low-Density, 50-pin, Male External

[[(......

High-Density, 50-pin, Male External

•••••

Low-Density, 50-pin, Male Internal

High-Density, 68-pin, Male External

Low-Density, 50-pin, Female Internal

High-Density, 68-pin, Female External

https://www.sabrepc.com/blog/Computer-Hardware/difference-between-sata-and-sas

Interfaces Físicas de SSD (disco Duros)

- · Conectores de Discos SSD (Unidades de Estado Sólido)
 - Conector SATA (Serial ATA).
 - Conector M.2
 - Conector PCIe (PCI Express).
 - Conector U.2.

https://www.rockpapershotgun.com/how-to-install-an-ssd-hdd

https://hardzone.es/2019/09/22/sata-vs-u-2-ssd-caracteristicas/

Estructura Física interna de un HDD

- Un disco duro HDD (Hard Disk Drive) es un dispositivo de almacenamiento que utiliza componentes mecánicos y electromagnéticos para leer y escribir datos en platos giratorios.
- Su estructura interna es:
 - Platos (Platters).
 - Cabezal de Lectura/Escritura (Read/Write Head
 - El brazo actuador (actuator Arm)
 - Eje y Motor del Husillo (Spindle and Spindle Motor)
 - Pistas (track).

Estructura Lógica de un HDD.

- En un disco duro (HDD hay algunos conceptos básicos de la organización y almacenamiento de datos en el dispositivo.
- Los más importantes son:
 - Sector (sector).
 - Bloque (Blok)
 - Cilindros (Cylinder).
 - Cluster (cluster).
- Estos conceptos son fundamentales en el análisis forense digital, ya que entender la estructura de almacenamiento ayuda a los investigadores a extraer y recuperar datos de manera precisa.

MBR

- El Master Boot Record (MBR) es una sección especial de un disco duro (HDD) que contiene información crucial para el proceso de arranque de un sistema operativo.
- Está ubicado en el primer sector del disco (sector 0, pista 0, cilindro 0) y su tamaño es de 512 bytes.
- Es vital en sistemas con esquemas de particionamiento tradicionales y en sistemas de archivos más antiguos.
- Las funciones y estructura del MBR son las siguientes:
 - Código de arranque.
 - Tabla de particiones.
 - Firma de arranque.
- Esencial para sistemas basados en BIOS, ya que contiene las instrucciones necesarias para que el sistema sepa desde dónde cargar el sistema operativo.
- Sin un MBR válido, el equipo no podrá arrancar, generando errores como "Sistema operativo no encontrado" o "Error en el disco".

https://es.easeus.com/gestionar-disco/mbr.html

Sistema de ficheros

- Los sistemas de ficheros (o sistemas de archivos) son estructuras lógicas que utilizan los sistemas operativos para organizar, almacenar y gestionar archivos en un dispositivo de almacenamiento.
- Cada sistema de ficheros define cómo se estructuran los datos y metadatos en el almacenamiento, cómo se nombran los archivos, y cómo se organizan y acceden.
- Algunas de las Principales Funciones de un Sistema de Ficheros son
 - Organización.
 - Gestión de almacenamiento
 - Seguridad y permisos
 - Integridad de los datos
- Ejemplos de Sistemas de Ficheros Comunes
 - NTFS.
 - FAT (32, 16, 12)
 - EXT
 - exFAT

Features	NTFS	FAT32	FAT16	FAT12
Max Partition Size	2TB	32GB	4GB	16MB
Max File Size	16TB	4GB	2GB	Less than 16MB
Cluster Size	4KB	4KB to 32KB	2KB to 64KB	0.5KB to 4KB
Fault Tolerance	Auto Repair	No	No	No
Compression	Yes	No	No	No
Security	Local and Network	Only Network	Only Network	Only Network
Compatibility	Windows 10/8/7/XP/Vista/2000	Windows ME/2000/XP/7/8.1	Windows ME/2000/XP/7/8.1	Windows ME/2000/XP/7/8.1

http://windowsbulletin.com/es/c%C3%B3mo-convertir-fat32-a-ntfs/

Tabla FAT

- La Tabla de Asignación de Archivos o FAT (File Allocation Table) es un sistema de archivos desarrollado originalmente por Microsoft.
- Es simple, eficiente y ampliamente compatible, por lo que sigue siendo muy utilizado en medios portátiles.
- La estructura del sistema FAT se divide en varias secciones:
 - Sector de Arranque
 - Tabla FAT
 - · Cada entrada en la tabla FAT representa un cluster.
 - Si está libre o en uso.
 - Si es el final de un archivo.
 - Si está dañado.
 - Si es parte de un archivo.
 - Directorio Raíz.
 - Área de Datos.
- En el análisis forense, es útil porque:
 - Facilita la recuperación de archivos eliminados.
 - Los metadatos y entradas en la FAT.

THE BRIDGE