Tutorial T7

- T7.1 Let us consider the crystal oscillator in figure, where $L_1 = 4.4$ mH, C_1 = 3.6 fF, R_1 = 30 Ω , C = 1 pF, R $\rightarrow \infty$, V_t = 0.5V, K = $\frac{1}{2}\mu C_{OX}\left(\frac{W}{L}\right)=2~\mu A/V^2$ and Z₁ represents the equivalent impedance of an XTAL.
- a) Derive the expression for $Z(\omega)$ as a function of the circuit parameters.
- b) Evaluate oscillation frequency when the XTAL is connected in parallel to the previously evaluated impedance.
- c) What is the minimum I_{bias} to guarantee start-up of the oscillation?

[Sol. a)
$$Z(j\omega)=\frac{2}{j\omega C}-\frac{g_m}{\omega^2C^2}$$
; b) f_{osc} = 40MHz; c) I_{bias} = 0.45 μ A]

Let us consider the oscillator in the figure, where $V_{dd} = V_{ss} =$ T7.2 1.25V, $V_t = 0.5$ V, $K = \frac{1}{2}\mu C_{OX}\left(\frac{W}{L}\right) = 10 \ mA/V^2$, L = 4nH, $C_1 = \frac{1}{2}\mu C_{OX}\left(\frac{W}{L}\right) = 10 \ mA/V^2$

- b) Assuming full-switching of the differential stage, evaluate the oscillation amplitude at the output node, Vout.
- c) Plot V_{out} and V_x over one period and check the operating region of the transistors.

[Sol. a) $f_{osc} = 3.56 \text{ GHz}$, $|LG(f_{osc})| = g_m(R_1 | |R_2|/2 = 2.58 > 1; b) |V_{out}| = 1.27V; c) <math>V_{out} = 1.25V + 1.27V \cdot \cos(\omega_{osc}t)$, $V_x = 1.27 \text{V} \cdot \cos(\omega_{osc} t)$

- Let us consider the circuit in figure, where $V_t = 0.5V$, $\frac{1}{2}\mu C_{OX} =$ T7.3 0.1mA/V^2 and $\gamma/\alpha = 2/3$.
 - a) Evaluate the resonant frequency of the differential load and find the values of $(W/L)_1$ and $(W/L)_2$ to obtain: (i) differential gain at resonance $(V_{out}^+ - V_{out}^-)/(V_{in}^+ - V_{in}^-)$ equal to 5dB and (ii) a -3dB bandwidth of the gain equal to 270MHz.

- b) Considering both transistor and resistor noise, evaluate the output noise voltage spectral density at resonance.
- c) Is there any limit on the choice of $(W/L)_2$? If so, explain why.

[Sol. a)
$$f_0 = 3.56$$
GHz, $g_{m1} = 6$ mS, $(W/L)_1 = 90$, $g_{m2} = 2.9$ mS, $(W/L)_2 = 41$; b) $S_{V_{out}}^{(SSB)}(f_0) = (6.1$ nV/VHz)²; c) $(W/L)_{2,max} = 205$, to prevent oscillation.]