ЛЕКЦІЯ 3

Відношення
Операції над відношеннями
Операції об'єднання та перетину сімейств відношень
Додаткові операції над відношеннями
Обернене відношення
Композиція. Властивості композиції

Поняття відношення

Теорія відношень реалізує в математичних термінах на абстрактних множинах реальні зв'язки між реальними множинами.

Відношення між парою об'єктів називається бінарним.

Бінарне відношення використовується для того, щоб вказати вид зв'язку між парою об'єктів, розглянутих у певному порядку.

При цьому відношення дає критерій для відмінності одних упорядкованих пар від інших. Для відповідності такого критерія не існує. У цьому відмінність відношення від відповідності.

Приклад відповідності

Розглянемо 2 множини: $A = \{a | a - cmy \partial e \mu m \Phi IOT\}$

 $B = \left\{ b \middle| b - mapka \ moбiлкu \right\}$. Відповідність $q = \left\langle A, B, Q \right\rangle$ визначає пари $Q \subseteq A \times B$, але не існує загальної ознаки, за якою ці пари встановлюються.

Приклад відношення

Розглянемо 2 множини: $A = \{ 6ambko, mamu \}$ і $B = \{ cuh, douka \}$ Розглянемо бінарні відношення $R \subset A \times B$ і $S \subset A \times B$, задані предикатами

- 1. $R = \{(a,b) | "а має вищий зріст, ніж <math>b" \}$.
- 2. $S = \{(a,b) | \text{ "а старше, ніж b" } \}$.

$$R = \{(cuн, батько), (мати, дочка)\}$$

$$S = \{(батько, син), (мати, дочка)\}$$

Визначення відношення

Відношенням R множин X і Y називають довільну підмножину $X \times Y$.

Отже відношення R — це МНОЖИНа, елементами якої є упорядковані пари $(x,y) \in R$.

Множина R ϵ підмножиною декартового добутку $R \subset X \times Y$

Якщо $(x,y) \in R$, то елемент відношення можна записати як xRy. Говорять, що x і y перебувають у відношенні R, або просто, що x відноситься до y.

Якщо X=Y, то відношення є підмножиною $X\times X$. Таке відношення входить до класу **бінарних відношень** на X.

Приклад відношень

Приклад.

 $R = \{(2,24),(2,26),(3,24),(5,25)\}$

$$X=\{2,3\}, Y=\{3,4,5\}.$$
 $X\times Y=\{(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)\}.$
 $R\subseteq X\times Y$
 $R_1=\left\{(x,y)\middle|"x
 $R_1=\{(2,3),(2,4),(2,5),(3,4),(3,5)\}.$
 $R_2=\left\{(x,y)\middle|"x\geq y"\right\}$
 $R_2=\{(3,3)\}.$
 $R_3=\left\{(x,y)\middle|"x>y"\right\}$
 $R_3=\{\varnothing\}.$
 $R_4=\left\{(x,y)\middle|x+y=2n,\partial e\ n=\overline{1,4}\right\}$
 $R_4=\left\{(2,4)(3,5)\right\}.$
Приклад.
 $A=\{2,3,5,7\}; B=\{24,25,26\};$
 $A\times B=\{(2,24),(2,25),(2,26),(3,24),(3,25),(3,26),(5,24),(5,25),(5,26),(7,24),(7,25),(7,26)\}.$
 $R\subseteq A\times B, R=\left\{(a,b)\middle|"a\in д$ ільником b " $\left\{(x,y)\middle|x+y=2n,\partial e\ n=\overline{1,4}\right\}.$$

Такі неповні речення (предикати, твердження) можуть задавати критерій відношення:

- x відбувається раніше (або пізніше), ніж y, $x \prec y$
- X входить (або строго входить) в Y, $X \subseteq Y$, $X \subset Y$
- x паралельне (або перпендикулярне) до y, $x \parallel y$, $x \perp y$
- x дорівнює (або еквівалентне) $y, x = y, x \equiv y$
- x є братом y, "x брат y"
- x зв'язаний (електрично або у інший спосіб) з y і т. ін.

Графік відношення подільності

 $R \subset N \times N$

$$R = \{(n,m) |$$
" n ділиться націло на m " $\}$

Графік відношення рівності

 $D \subset R \times R$

R— множина дійсних чисел

Графік відношення нерівності

 $D \subset R \times R$

R— множина дійсних чисел

Область визначення й множина значень

Область визначення відношення R на X і Y — це множина всіх $x \in X$ таких, що для деяких $y \in Y$ маємо $(x,y) \in R$.

Інакше кажучи, область визначення R це множина всіх перших координат упорядкованих пар з R.

Множина значень відношення R на X і Y — це множина всіх $y \in Y$ таких, що для деяких $x \in X$ маємо $(x,y) \in R$.

Інакше кажучи, множина значень R — це множина всіх других координат упорядкованих пар з R.

Приклад

Нехай $R = X \times Y$.

Область визначення — множина X Множина значень — множина Y.

Способи задавання бінарних відношень

1. Задавання явно або предикатом

Бінарне відношення можна задати:

А. Явно, перерахувавши всі пари, які до нього входять (якщо відношення складається з скінченної кількості пар)

Б. Предикатом, вказавши загальну властивість пар, що належать цьому відношенню (згадайте способи задавання множин).

Приклад явного задавання.

Нехай дана множина $X=\left\{\,p,r,s,q\,
ight\}$.

Задамо відношення $R\subseteq X\times X$ перерахуванням пар

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}$$

Приклад задавання предикатом.

Нехай дано N – множина натуральних чисел.

Задамо відношення, вказавши загальну властивість пар, що належать відношенню:

$$R_1 = \{(n,m) \in N \times N | n \ \varepsilon \ \text{дільником} \ m \}$$

2. Задавання графом

Спосіб задавання бінарного відношення за допомогою графа.

Нехай
$$R \subset X \times X$$
. $X = \{x_1, ..., x_i, ..., x_j, ..., x_n\}$

- 1. Елементи множини X— точки на площині (їх називають вершинами графа).
- 2. Точки x_i, x_j з'єднані стрілкою o від x_i до x_j тоді й тільки тоді, коли $\left(x_i, x_i\right) \in R$.
- 3. Якщо одночасно $\left(x_i, x_j\right) \in R$ та $\left(x_j, x_i\right) \in R$ то точки x_i і x_j з'єднують двома лінями зі стрілками: \longleftrightarrow , або лінією без стрілок: —.
- 4. Якщо $\left(x_{j},x_{j}\right)\in R$, то в точці x_{j} зображують петлю.

Приклад задавання відношення графом

На рисунку зображено граф бінарного відношення

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}.$$

3. Задавання за допомогою булевих матриць

Нехай $R\subseteq X imes Y$, де

$$X = \left\{ x_1, x_2, x_3, ..., x_i, ..., x_n \right\}; \ Y = \left\{ y_1, y_2, y_3, ..., y_j, ..., y_m \right\}.$$

Тоді відношення R у вигляді матриці – це таблиця з n рядками і m стовпцями.

$$|X|=n$$
, $|Y|=m$

- 1. В перший стовпець виписані елементи множини X,
- 2. В перший рядок виписані елементи множини Y.
- 3. На перетині рядка елемента x_i й стовпця елемента y_j записують 1, якщо пари $\left(x_i,y_j\right)\in R$, і 0 якщо $\left(x_i,y_j\right)\not\in R$.

Таку таблицю називають булевою матрицею відношення

Приклад задавання відношення матрицею

Нехай дана множина $X = \{p,q,r,s\}$ і відношення $R_1 \subset X \times X$, задане перерахуванням

$$R_1 = \{(p,r),(s,q),(r,p),(p,p),(s,r),(p,s)\}$$

Булева матриця даного відношення має вигляд:

R_1	p	q	r	S
р	1	0	1	1
q	0	0	0	0
r	1	0	0	0
S	0	1	1	0

$$X = \{p,q,r,s\}, Y = \{a,b,c,d\} R_2 \subset X \times Y$$
$$R_2 = \{(p,a),(s,b),(r,d),(q,d),(r,a)\}$$

R_2	а	b	С	d
р	1	0	0	0
q	0	0	0	τ
r	1	0	0	1
S	0	1	0	0

Зріз (перетин) відношення R через елемент

 Hexa й $R\subseteq X imes Y$, де

$$X = \left\{ x_1, x_2, x_3, ..., x_i, ..., x_n \right\}; \ Y = \left\{ y_1, y_2, y_3, ..., y_j, ..., y_m \right\}.$$

R - довільне бінарне відношення між елементами множин X і Y. Розглянемо довільний елемент x_i множини X

Множину тих елементів, з якими елемент x_i перебуває у відношенні R, називають зрізом (перетином) відношення R через елемент x_i і позначають $R(x_i)$.

Якщо бінарне відношення R представлене за допомогою графа, то $R(x_i)$ складається з тих вершин множини Y, у які з вершини x_i йде стрілка.

Відношення через елемент – це множина, яка може містити кілька елементів, один елемент і жодного елемента (бути порожньою).

Приклад задавання зрізу відношення R через елемент x_i

Нехай дані множини $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ та відношення $R \subset X \times Y$, яке задане графом.

Зріз відношення R через елемент x_1 :

$$y_1 R(x_1) = \{y_1, y_2, y_3, y_6\}$$

Зріз відношення R через x_2 :

$$R(x_2) = \{\varnothing\}$$

Зріз відношення R через x_3 :

$$R(x_3) = y_3$$

Зріз відношення R через x_4 :

$$R(x_4) = \{y_1, y_4\}$$

Операції над відношеннями

Оскільки бінарні відношення представляють множини (пар), то до них застосовні поняття рівності, включення, а також операції об'єднання, перетину і доповнення.

Для двох бінарних відношень R і S визначимо такі операції:

Включення $R \subset S$ розуміють таким чином, що будь-яка впорядкована пара елементів, яка належить відношенню R, належить і відношенню S.

Приклад включення.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S = X \times Y,$$

 $S = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c)\},$
 $R = \{(1,a),(2,a),(3,a)\},$
 $R \subset S$ оскільки $(1,a) \in R$ i $(1,a) \in S$, $(2,a) \in R$ i $(2,a) \in S$,
 $(3,a) \in R$ i $(3,a) \in S$

Рівність R = S означає, що відношення R і S складаються з тих самих упорядкованих пар.

Приклади рівності.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S \subset X \times Y,$$
 $S = \{(1,a),(2,a),(3,a)\},$
 $R = \{(1,a),(2,a),(3,a)\},$
 $R = S$ оскільки $(1,a) \in R$ і $(1,a) \in S$, $(2,a) \in R$ і $(2,a) \in S$, $(3,a) \in R$ і $(3,a) \in S$, а також $|R| = |S|$.

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$$
 $|R| = |S|, R \subset X \times Y, S \subset X \times Y$ $S = \{(Iван, Mарія), (Петро, Оксана), (Василь, Світлана)\},$ $R = \{(Iван, Mарія), (Петро, Оксана), (Василь, Світлана)\}.$ Тоді $R = S$

Об'єднання $R \cup S$ відношень R і S складається з упорядкованих пар, що належать хоча б одному із цих відношень.

Приклади об'єднання.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S \subset X \times Y, S \in \{(1,a),(1,b),(1,c)\}, S = \{(1,a),(2,a),(3,a)\}, R = \{(1,a),(1,b),(1,c),(2,a),(3,a)\}$$
 $X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$
 $S = \{(Iван, Марія), (Петро, Оксана)\}, R = \{(Iван, Марія), (Василь, Світлана)\}.$
Тоді
 $R \cup S = \{(Iван, Марія), (Петро, Оксана), (Василь, Світлана)\}$

Перетин $R \cap S$ відношень R і S є новим відношенням, що складається з упорядкованих, які належать одночасно обом відношенням.

Приклади перетину.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S \subset X \times Y, S \in \{(1,a),(1,b),(1,c)\}, S = \{(1,a),(2,a),(3,a)\}, R \cap S = \{(1,a)\}$$

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mapiя, Оксана, Світлана\}, R \subset X \times Y, S \subset X \times Y$$

$$S = \{(Iван, Mapiя), (Петро, Оксана), (Bасиль, Світлана)\}, R = \{(Iван, Mapiя), (Bасиль, Світлана)\}.$$
Тоді $R \cap S = \{(Iван, Mapiя), (Bасиль, Світлана)\}.$

Різниця R-S відношень R і S є множиною впорядкованих пар, що належать відношенню R і не належать відношенню S.

Приклади різниці.

$$X = \{1,2,3\}, Y = \{a,b,c\}, R \subset X \times Y, S \subset X \times Y,$$
 $S = \{(1,a),(1,b),(1,c)\},$
 $R = \{(1,a),(2,a),(3,a)\},$
 $R - S = \{(2,a),(3,a)\}$

$$X = \{Iван, Bасиль, Петро\}, Y = \{Mарія, Оксана, Світлана\}$$
 $R \subset X \times Y, S \subset X \times Y$
 $S = \{(Iван, Mарія), (Bасиль, Світлана)\},$
 $R = \{(Iван, Mарія), (Петро, Оксана), (Bасиль, Світлана)\}.$
Тоді $R - S = \{(Iветро, Оксана)\}$

Доповнення. Якщо R — бінарне відношення між елементами множин X і Y, то його **доповненням** \overline{R} (відносно $X \times Y$) називають різницю $(X \times Y) - R$

Приклади доповнення

$$X = \{1, 2, 3\}, Y = \{a, b, c\}, R \subset X \times Y,$$

$$X \times Y = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\},$$

$$R = \{(1, a), (2, a), (3, a)\}$$

$$\overline{R} = \{(1, b), (1, c), (2, b), (2, c), (3, b), (3, c)\},$$

$$X = \{Iван, Bасиль\}, Y = \{Mарія, Оксана\}$$
 $X \times Y = \{(Iван, Mарія), (Iван, Оксана), (Bасиль, Mарія), (Bасиль, Oксана)\}$
 $R = \{(Iван, Mарія), (Bасиль, Mарія)\},$
 $\overline{R} = \{(Iван, Oксана), (Bасиль, Oксана)\}.$

Операції об'єднання та перетину довільних сімейств відношень

Якщо $\left(R_i\right)_{i\in I}$ — сімейство відношень, то **об'єднання цього сімейства** є відношення $\bigcup_{i\in I}R_i$, що складається з упорядкованих пар, які належать хоча б одному з відношень R_i .

Перетин сімейства $\left(R_i\right)_{i\in I}$ — це відношення $\bigcap_{i\in I}R_i$, що складається з упорядкованих пар, які належать одночасно усім відношенням R_i .

Додаткові операції

Для відношень задають деякі додаткові операції, які пов'язані з їх специфічною структурою, яка проявляється в тому, що всі елементи відношень є упорядкованими парами. Розглянемо дві такі операції.

1. Обернене відношення

Якщо в кожній упорядкованій парі, яка належить відношенню R, поміняти місцями перший і другий компонент, то одержимо нове відношення, яке називають оберненим до відношення R і позначають через R^{-1} . Наприклад, для відношення R

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}$$

обернене відношення R^{-1} має вигляд:

$$R^{-1} = \{ (r, p), (q, s), (p, r), (p, p), (r, s), (s, p) \}$$

Представлення R^{-1} графом, матрицею та предикатом

Граф. Граф відношення R^{-1} одержують із графа відношення R шляхом переорієнтації всіх стрілок.

Матриця. Відношення R задане за допомогою булевої матриці перетворюємо у відношення R^{-1} міняючи місцями рядки і стовпці.

Предикат. Нехай $R\subseteq X\times Y$ є відношенням на $X\times Y$. Тоді відношення R^{-1} на $Y\times X$ визначають у такий спосіб:

$$R^{-1} = \{(y,x) | (x,y) \in R\}.$$

Інакше кажучи, $\left(y,x\right)\in R^{-1}$ тоді й тільки тоді, коли $\left(x,y\right)\in R$ або, що рівнозначно, $yR^{-1}x$ тоді й тільки тоді, коли xRy.

Відношення R^{-1} називають **оберненим відношенням** до даного відношення R.

Приклад

Нехай
$$R=\{(1,r),(1,s),(3,s)\}$$
, тоді $R^{-1}=\{(r,1),(s,1),(s,3)\}$.

Нехай $R = \{(a,b) | b$ є чоловіком $a\}$, тоді $R^{-1} = \{(b,a) | a$ є дружиною $b\}$

Нехай

$$R = \{(a,b) | b \in \text{родичем } a\}, \text{ тоді } R = R^{-1}$$

Нехай

$$R$$
 — відношення $\left\{ \left(a,b
ight) \middle| a^2 + b^2 = 4
ight\}$, тоді також $R^{-1} = R$.

Теорема про двічі обернене відношення.

Обернене відношення від оберненого відношення дорівнює прямому відношенню, тобто $\left(R^{-1}\right)^{-1}=R$.

Доведення.

Нехай існують дві множини: X та Y.

На декартовому добутку цих множин задано відношення $R\subset X\times Y$.

Припустимо, що $(x,y) \in (R^{-1})^{-1}$. Тоді у відповідності з означенням оберненого відношення $(y,x) \in R^{-1}$.

Знову застосуємо означення оберненого відношення: $\left(x,y\right)\in R$.

Отже
$$(x,y) \in (R^{-1})^{-1} \Leftrightarrow (x,y) \in R$$

Композиція відношень (множення відношень)

Розглянемо 3 множини: X, Y та Z Нехай $R\subseteq X\times Y$ — відношення на $X\times Y$, а $S\subseteq Y\times Z$ — відношення на $Y\times Z$.

Композицією відношень S і R називають відношення $T\subseteq X\times Z$,

визначене в такий спосіб:

$$T=\{ig(x,zig)ig|$$
 існує такий елемент $y\in Y$, що $ig(x,yig)\in R$ і $ig(y,zig)\in S$ }.

Цю множину позначають $T = S \circ R$.

Приклад

Нехай
$$X=\left\{1,2,3\right\},\,Y=\left\{a,b\right\}$$
 і $Z=\left\{\alpha,\beta,\lambda,\mu\right\}$.

Також задані відношення

$$R \subset X \times Y$$
 ta $S \subset Y \times Z$

$$R = \{ig(1,aig), ig(2,big), ig(3,big)\},$$
 $S = \{ig(a,lphaig), ig(a,etaig), ig(b,\lambdaig), ig(b,\muig)\},$ Тоді $S \circ R = \{ig(1,lphaig), ig(1,etaig), ig(2,\lambdaig), ig(2,\muig), ig(3,\lambdaig), ig(3,\muig)\}$ оскільки

з
$$(1,a)\in R$$
 і $(a,\alpha)\in S$ випливає, що $(1,\alpha)\in S\circ R$,

з
$$(1,a)\in R$$
 і $(a,\beta)\in S$ випливає, що $(1,\beta)\in S\circ R$,

.

з
$$\left(3,b\right)\in R$$
 і $\left(b,\mu\right)\in S$ випливає, що $\left(3,\mu\right)\in S\circ R$.

Властивості композиції відношень

Розглянемо композиції відношень за умови, що X,Y і Z — множини і якщо

$$R\subseteq X imes Y$$
 , $S\subseteq Y imes Z$ і $T\subseteq Z imes D$ тоді

Асоціативність:
$$R \circ (S \circ T) = (R \circ S) \circ T$$
.

Обернена композиція:
$$\left(R\circ S\right)^{-1}=\left(S^{-1}\right)\circ\left(R^{-1}\right)$$