burning embers plot preparation walk through

Evangeline Reynolds

Read in R script to prepare data and plot

source("burning_embers.R")

How should input data be organized?

Read in the data and prep

```
# prep_data transforms
# data from "wide" to "long" form
prep_data("raw_data/BE_Data_21MARCH.XLSX")
```

# /	A tibble: 32 x 3		
	reason_for_concern	risk_level	temp_diff
	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	Unique/Threatened Systems	0	-0.61
2	Unique/Threatened Systems	0	-0.3
3	Unique/Threatened Systems	1	-0.1
4	Unique/Threatened Systems	1	0.5
5	Unique/Threatened Systems	2	1
6	Unique/Threatened Systems	2	1.75
7	Unique/Threatened Systems	3	2.25
8	Unique/Threatened Systems	3	5
9	Extreme Weather Events	0	-0.61
10	Extreme Weather Events	0	-0.1
ш			

```
# prep_data transforms
# data from "wide" to "long" form
prep_data("raw_data/BE_Data_21MARCH.XLSX") ->
  our_prepped_data # save the result as object "our_prep
```

Plot the prepped data to check that risk levels are correctly mapped to temperatures.

# A tibble: 32 x 3					
reason_for_concern	risk_level	temp_diff			
<fct></fct>	<dbl></dbl>	<dbl></dbl>			
1 Unique/Threatened Systems	0	-0.61			
2 Unique/Threatened Systems	0	-0.3			
3 Unique/Threatened Systems	1	-0.1			
4 Unique/Threatened Systems	1	0.5			
5 Unique/Threatened Systems	2	1			
6 Unique/Threatened Systems	2	1.75			
7 Unique/Threatened Systems	3	2.25			
8 Unique/Threatened Systems	3	5			
9 Extreme Weather Events	0	-0.61			
10 Extreme Weather Events	0	-0.1			
# with 22 more rows					

our_prepped_data %>% # use prepped data
 plotting_raw_data() # in basic plotting function

Plot data with gradients

In between each defined point, we calculate the change in risk and temperature. Then color is mapped to the projected risk.

# A tibble: 32 x 3		
reason_for_concern	risk_level	temp_diff
<fct></fct>	<dbl></dbl>	<dbl></dbl>
1 Unique/Threatened Systems	0	-0.61
2 Unique/Threatened Systems	0	-0.3
3 Unique/Threatened Systems	1	-0.1
4 Unique/Threatened Systems	1	0.5
5 Unique/Threatened Systems	2	1
6 Unique/Threatened Systems	2	1.75
7 Unique/Threatened Systems	3	2.25
8 Unique/Threatened Systems	3	5
9 Extreme Weather Events	0	-0.61
10 Extreme Weather Events	0	-0.1
# with 22 more rows		

our_prepped_data %>% # use prepped data
plotting_burning_embers() # in burning embers plot func

our_prepped_data %>% # use prepped data
plotting_burning_embers() -> # in burning embers plot ful
 our_burning_embers_plot # save result as an object

Result

