Examen mathématiques de base 4

Exercice1

Soit f définie sur \mathbb{R}^2 par:

$$f(x,y) = xy(x+y-1)$$

- 1) Déterminer les $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.(1 pt)
- 2) Déterminer les points critiques de f.(2 pts:0,5 pour chaque point critique)
- 3) Indiquer la nature de ces points.(2 pts:0,5 pour la nature de chaque point critique)

Exercice2

Soit F la fonction définie sur \mathbb{R} par:

$$F(x) = \int_0^{+\infty} \cos(2xt)e^{-t^2}dt.$$

- 1) Montrer que F est continue sur \mathbb{R} .(1 pt)
- 2) Montrer que F est dérivable sur \mathbb{R} , et donner l'expression intégrale de la dérivée de F.(1pt)
- 3) En intégrant par partie, montrer que F'(x) = -2xF(x).(1 pt)
- 4) En résolvant l'equation différentielle F'(x)+2xF(x)=0, déterminer F(x) sachant que $F(0)=\frac{\sqrt{\pi}}{2}$.(2 pts: 1 pt pour la résolution et 1 pt pour la détermination de la constante k)

Exercice3

Soit:

$$(E): y'' + y = xe^{-x}$$

On désigne par (E_0) l'équation homogène associée à (E). On demande:

- 1) Ecrire l'équation (E_0) , puis son équation caractéristique.(1 pt)
- 2) Donner les racines complexes de l'équation caractéristique puis la solution général y_0 de

l'équation (E).(1 pt)

- 3) Déterminer une solution particulière $y_p=(ax+b)e^{-x}$ de l'équation (E).(1 pt)
- 4) Donner la solution y de (E) qui vérifie y(0) = 1 et y'(0) = 0.(1 pt)

Exercice4

Soit f la fonction définie sur $[1, +\infty[$ par :

$$f(x) = \frac{1}{\ln(\sqrt{x} + 1)}.$$

- 1) Calculer f'(x) et montrer que f est décroissante pour tout $x \ge 1$.(1 pt)
- 2) Calculer $\lim_{x \to +\infty} f(x)$.(1 pt)
- 3) En déduire la nature de $\sum\limits_{n=1}^{+\infty} (-1)^n f(n).(1 \text{ pt})$
- 4) Calculer $\lim_{n\to +\infty} n^{1/2} |f(n)|$, en déduire la nature de $\sum_{n=1}^{+\infty} |f(n)|$.(2 pt)
- 5) En déduire que $\sum\limits_{n=1}^{+\infty} (-1)^n f(n)$ est semi convergente.(1 pt)