

INTRODUCTION TO NUMERICAL SOLUTION OF FRACTIONAL SYSTEMS

Presented by: Mateo Restrepo S. Juan S. Cárdenas R. David Plazas E. Juan J. Jaramillo C.

Prof.: Samir Posada M.

Numerical Analyisis **EAFIT University** 2019

OUTLINE

1 INTRODUCTION

- 1.1 Fractional Derivatives
- 1.2 Caputo Definition
- 1.3 Riemann-Liouville Integral
- 1.4 The Tautochrone Problem

2 INTEGER ORDER METHODS

- 2.1 Fourth-Order Runge-Kutta Method (RK4)
- 2.2 Comparison Euler RK4
- 2.3 Systems of ODEs
- 2.4 Multi-Term ODEs

3 FRACTIONAL ORDER METHODS

- 3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)
- 3.2 Decomposition Method
- 3.3 Comparison ABM Decomposition
- 3.4 Systems of FDEs
- 3.5 Multi-Term FDEs

4 IMPROVEMENTS

- 4.1 Predicted ABM
- 4.2 Quadrature Decomposition
- 4.3 Polynomial Decomposition
- 4.4 Further Work
- 5 CONCLUSIONS

REFERENCES

1.1 Fractional Derivatives

Pros

- Generalization of ordinary derivatives.
- Nonlocal operators Memory and heritage.
- More accuracy and robustness.
- Unexplored areas and applications.

Cons

- There multiple fractional are derivatives definitions.
- The derivatives are not always in terms of elementary functions.
- Some definitions require strong conditions on the functions to differentiate.

1.2 Caputo Definition

The Caputo definition of fractional derivative is

$$\mathcal{D}_{\mathcal{C}}^{\alpha}y(t) = J^{m-\alpha}y^{(m)}(t) = \frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{y^{(m)}(\lambda)}{(t-\lambda)^{1-m+\alpha}} d\lambda \tag{1}$$

where $\alpha > 0$, $m = \lceil \alpha \rceil$, $\Gamma(\cdot)$ is the gamma function and $J^{m-\alpha}$ is the Riemann-Liouville integral. From now on, the Caputo-type fractional derivative will be denoted as

$$\mathcal{D}_C^{\alpha} y(t) = \frac{d^{\alpha}}{dt^{\alpha}} y(t) \tag{2}$$

For example

$$\begin{split} \frac{d^{0.5}}{dt^{0.5}}[t] &= \frac{1}{\Gamma(1-0.5)} \int_0^t \frac{d}{d\lambda}(\lambda) \cdot \frac{d\lambda}{(t-\lambda)^{1-0.5+1}} \\ &= \frac{1}{\sqrt{\pi}} \int_0^t \frac{d\lambda}{(t-\lambda)^{1/2}} \quad , \text{let } u = t-\lambda \to du = -d\lambda. \\ &= \frac{1}{\sqrt{\pi}} \int_0^t \frac{du}{u^{1/2}} \\ &= 2\sqrt{\frac{t}{\pi}} \end{split}$$

1.3 Riemann-Liouville Integral

The Riemann-Liouville integral of order α is defined as

$$J^{\alpha}y(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{y(\lambda)}{(t-\lambda)^{1-\alpha}} d\lambda$$
 (3)

Properties

$$J^{\alpha}\left[f(t) + g(t)\right] = J^{\alpha}f(t) + J^{\alpha}g(t) \tag{4}$$

$$J^{\alpha}J^{\beta}f(t) = J^{\alpha+\beta}f(t) \tag{5}$$

$$\frac{d^{\alpha}}{dt^{\alpha}} \left[J^{\alpha} y(t) \right] = y(t) \tag{6}$$

$$J^{\alpha} \left[\frac{d^{\alpha}}{dt^{\alpha}} y(t) \right] = y(t) - \sum_{r=0}^{m-1} \frac{y_r t^r}{r!}$$
 (7)

1.4 The Tautochrone Problem

It is desired to find a curve such that, if an object starts on any point along this curve, the time that it requires to slide down to the origin is the same.

- Tauto \rightarrow equal.
- Chrono \rightarrow time.
- Abel, XVIII century.

Assumptions:

- The object moves only by the force of gravity.
- It moves without friction.

Figure 1. Tautochrone problem.

Click for GIF

1.4 The Tautochrone Problem

Using the energy conservation law,

$$mgy = \frac{1}{2}m\left(\frac{d\sigma}{dt}\right)^{2} + mg\hat{y}$$

$$\vdots$$

$$\frac{d^{0.5}}{dy^{0.5}}\sigma(y) = \frac{\sqrt{2g}}{\Gamma\left(\frac{1}{2}\right)}T$$

Through some analytical procedures, we obtain

$$x = \frac{gT^2}{\pi^2}[t + \sin(t)]$$
$$y = \frac{gT^2}{\pi^2}[1 - \cos(t)]$$

Figure 2. Tautochrone curve.

The following initial value problem (IVP) will be treated:

$$\begin{cases} y' = f(t, y) \\ y(0) = y_0, & t \in [0, T] \end{cases}$$
 (8)

Example:

$$\begin{cases} y' - y = 0 \\ y(0) = -3 \end{cases} \tag{9}$$

$$y(t) = -3e^{-t} \tag{10}$$

Figure 3. Solution for problem 9.

2.1 Fourth-Order Runge-Kutta Method (RK4)

- Improved Euler with more accuracy.
- 4^{th} order \rightarrow optimal.

This method approximates the solution to the IVP as follows:

$$y_{i+1} = y_i + h\left(\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}\right)$$
 (11)

where

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + h/2, y_i + hk_1/2)$$

$$k_3 = f(t_i + h/2, y_i + hk_2/2)$$

$$k_4 = f(t_i + h, y_i + hk_3)$$

The algorithm works as

$$y = runge_kutta(f, y0, T, N)$$

2.2 Comparison Euler - RK4

Example: approximate a solution to the IVP

$$\begin{cases} y' = 10e^{-\frac{(t-2)^2}{2}} \left(10\cos(10t) - (t-2)\sin(10t)\right) \\ y(0) = 0 \end{cases}$$
 (12)

$$y(t) = 10e^{-\frac{(t-2)^2}{2}}\sin(10t)$$
 (13)

2.2 Comparison Euler - RK4

Example: approximate a solution to the IVP

$$\begin{cases} y' = 10e^{-\frac{(t-2)^2}{2}} \left(10\cos(10t) - (t-2)\sin(10t)\right) \\ y(0) = 0 \end{cases}$$
 (12)

$$y(t) = 10e^{-\frac{(t-2)^2}{2}}\sin(10t)$$
 (13)

2.2 Comparison Euler - RK4

Example: approximate a solution to the IVP

$$\begin{cases} y' = 10e^{-\frac{(t-2)^2}{2}} \left(10\cos(10t) - (t-2)\sin(10t)\right) \\ y(0) = 0 \end{cases}$$
 (12)

$$y(t) = 10e^{-\frac{(t-2)^2}{2}}\sin(10t)$$
 (13)

2.2 Comparison Euler - RK4

Example: approximate a solution to the IVP

$$\begin{cases} y' = 10e^{-\frac{(t-2)^2}{2}} \left(10\cos(10t) - (t-2)\sin(10t)\right) \\ y(0) = 0 \end{cases}$$
 (12)

$$y(t) = 10e^{-\frac{(t-2)^2}{2}}\sin(10t)$$
 (13)

2.3 Systems of ODEs

Consider the system of ordinary differential equations

$$\begin{cases} y'_1 = f_1(t, y_1, y_2, \dots, y_n) & y_1(0) = y_1 \\ y'_2 = f_2(t, y_1, y_2, \dots, y_n) & y_2(0) = y_2 \\ \vdots \\ y'_n = f_n(t, y_1, y_2, \dots, y_n) & y_n(0) = y_n \end{cases}$$
(14)

which can be synthesized as

$$\begin{cases} \mathbf{y}' = F(t, \mathbf{y}) \\ \mathbf{y}(0) = \mathbf{y}_0 \end{cases} \tag{15}$$

For example, the Lotka-Volterra equations (predator-prey model) is a system of ODEs as follows:

$$\begin{cases} y_1' = \alpha y_1 - \beta y_1 y_2 \\ y_2' = \delta y_1 y_2 - \gamma y_2 \end{cases}$$
 (16)

where y_1 represents the number of preys and y_2 is the amount of predators.

2.3 Systems of ODEs

Figure 4. Phase portrait of Lotka-Volterra equations.

2.4 Multi-Term ODEs

In case of higher order ODEs, they can be transformed into a sytem of first order ODEs, using phase variables x_i . Suppose we have an equation as the following:

$$\begin{cases} y^{(n)} = f(t, y, y', ..., y^{(n-1)}) \\ y(0) = y_0, ..., y^{(n-1)}(0) = y_{(n-1)}, \ t \in [0, T] \end{cases}$$
(18)

with the following substitution

$$\begin{cases} x_{1} = y \\ x_{2} = y' \\ \vdots \\ x_{n} = y^{(n-1)} \end{cases} \longrightarrow \begin{cases} x'_{1} = x_{2} \\ x'_{2} = x_{3} \\ \vdots \\ x'_{n-1} = x_{n} \\ x'_{n} = f(t, x_{1}, x_{2}, ..., x_{n-1}, x_{n}) \end{cases}$$
(19)

$$x_1(0) = y_0, \ldots, x_{n-1}(0) = y_{(n-1)}$$

2.4 Multi-Term ODEs

Example: consider the Duffing oscillator (Click for GIF)

$$y'' + \delta y' + \alpha y + \beta y^3 = \gamma \cos(\omega t)$$
 (20)

the equivalent system of first order ODEs is

$$\begin{cases} x_1 = y \\ x_2 = y' \end{cases} \longrightarrow \begin{cases} x_1' = x_2 \\ x_2' = -\delta x_2 - \alpha x_1 - \beta x_1^3 + \gamma \cos(\omega t) \end{cases}$$
 (21)

$$\delta = 0.3, \, \alpha = -1, \, \beta = 1, \gamma = 0.37, \, \omega = 1.2$$
 and initial conditions $x_1(0) = 1, \, x_2(0) = 0$.

Consider the fractional IVP

$$\begin{cases} \frac{d^{\alpha}}{dt^{\alpha}} y(t) = f(t, y) \\ y(0) = y_0, \dots, y^{(m-1)}(0) = y_{(m-1)} & \alpha \in \mathbb{R}^+ \quad t \in [0, T] \end{cases}$$
 (22)

where $m = \lceil \alpha \rceil$.

Example

$$\frac{d^{0.5}}{dt^{0.5}}y(t) = 2\sqrt{\frac{y}{\pi}}$$
 (23)

whose solution is

$$y(t) = t \tag{24}$$

3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)

Using quadrature theory, the solution can be approximated as

$$y_{h}(t_{n+1}) = \sum_{k=0}^{\lfloor \alpha \rfloor - 1} \frac{t_{n+1}^{k}}{k!} y_{0}^{(k)} + \frac{h^{\alpha}}{\Gamma(\alpha + 2)} f(t_{n+1}, y_{h}^{p}(t_{n+1})) + \frac{h^{\alpha}}{\Gamma(\alpha + 2)} \sum_{j=0}^{n} a_{j,n+1} f(t_{j}, y_{h}(t_{j}))$$
(25)

- \triangleright $y_h^p(t_{n+1})$ is a predicted value.
- $ightharpoonup a_{i,n+1}$ is a quadrature coefficient.

The algorithm works as

$$y = abm(f, alpha, y0, T, N)$$

- f is the right-hand side of the differential equation.
- alpha is the order of the differential equation.
- v0 is the initial conditions.
- T is the simulation time.
- N is the number of partitions on the interval [0, T].

3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (26)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(27)

3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (26)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(27)

3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (26)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(27)

3.1 Adams-Bashforth-Moulton Predictor-Corrector (ABM)

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (26)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(27)

3.2 Decomposition Method

Based on decomposing f as follows

$$f(t,\mathbf{y}) = g(t) + \mathbf{A}\mathbf{y} + h(t,\mathbf{y}) \tag{28}$$

Applying the inverse operation to the Caputo fractional derivative

$$\mathbf{y}(t) = \sum_{r=0}^{m-1} \frac{\mathbf{y}_r t^r}{r!} + J^{\alpha} g(t) + J^{\alpha} \mathbf{A} \mathbf{y} + J^{\alpha} h(t, \mathbf{y})$$
 (29)

and supposing a solution in series, we obtain the recursive scheme

$$\mathbf{x}_{0} = \sum_{r=0}^{m-1} \frac{\mathbf{y}_{r} t^{r}}{r!} + J^{\alpha} g(t)$$

$$\mathbf{x}_{k+1} = J^{\alpha} \mathbf{A} \mathbf{x}_{k} + J^{\alpha} \tilde{h}_{k} \left(t, \sum_{r=0}^{k} \mathbf{x}_{j}(t) \right)$$
(30)

Where \tilde{h}_k is the Adomian polynomial

$$\tilde{h}_k\left(t, \sum_{r=0}^k \mathbf{x}_j(t)\right) = \frac{1}{k!} \left[\frac{d^k}{d\lambda^k} h\left(t, \sum_{j=0}^k \lambda^j \mathbf{x}_j(t)\right) \bigg|_{\lambda=0} \right]$$
(31)

3.2 Decomposition Method

The algorithm works as

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (32)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(33)

3.2 Decomposition Method

The algorithm works as

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (32)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(33)

3.2 Decomposition Method

The algorithm works as

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (32)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(33)

3.2 Decomposition Method

The algorithm works as

Example

Give an approximate solution to

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
 (32)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(33)

3.3 Comparison ABM - Decomposition

$$\begin{cases} \frac{d^{1.25}}{dt^{1.25}}y(t) = -y(t) \\ y'(0) = 0, \ y(0) = 1 \end{cases}$$
(34)

$$y(t) = E_{1.25, 1}(-t^{1.25}) = \sum_{k=0}^{\infty} \frac{(-1)^k t^{1.25k}}{\Gamma(1.25k+1)}$$
(35)

3.4 Systems of FDEs

Consider the system of ordinary fractional differential equations

$$\begin{cases} \frac{d^{\alpha_{1}}}{dt^{\alpha_{1}}}y_{1} = f_{1}(t, y_{1}, y_{2}, \dots, y_{n}) & y_{1}(0) = y_{1} \\ \frac{d^{\alpha_{2}}}{dt^{\alpha_{2}}}y_{2} = f_{2}(t, y_{1}, y_{2}, \dots, y_{n}) & y_{2}(0) = y_{2} \\ \vdots & & \vdots \\ \frac{d^{\alpha_{n}}}{dt^{\alpha_{n}}}y_{n} = f_{n}(t, y_{1}, y_{2}, \dots, y_{n}) & y_{n}(0) = y_{n} \\ \alpha_{j} \in \mathbb{R}^{+}, \ t \in [0, T] \end{cases}$$
(36)

which can be synthesized as

$$\begin{cases}
\frac{d^{\alpha}}{dt^{\alpha}}\mathbf{y} = F(t, \mathbf{y}) \\
\mathbf{y}(0) = \mathbf{y}_{0}, \ \alpha \in (\mathbb{R}^{+})^{n \times 1}, \ t \in [0, T]
\end{cases}$$
(37)

3.5 Multi-Term FDEs

Suppose we have the multi-term fractional differential equation

$$\begin{cases}
\frac{d^{\alpha_n}}{dt^{\alpha_n}}y(t) = f\left(t, y, \frac{d^{\alpha_1}}{dt^{\alpha_1}}y, \frac{d^{\alpha_2}}{dt^{\alpha_2}}y, \dots, \frac{d^{\alpha_n}}{dt^{\alpha_n}}y\right) \\
y(0) = y_0, \dots, y^{(m-1)}(0) = y_{(m-1)}
\end{cases}$$
(38)

where $m = [\alpha_n]$ and $0 < \alpha_1 < \alpha_2 < \ldots < \alpha_n$. We select new orders $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_n$ such that

- (a) $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_n$ must be rational numbers.
- (b) $\lceil \alpha_n \rceil = \lceil \tilde{\alpha}_n \rceil$
- (c) $gcd(1, \tilde{\alpha}_1, \dots, \tilde{\alpha}_n)$ should be as large as possible,
- (d) $|\alpha_i \tilde{\alpha}_i|$ should be as small as possible for all j

3.5 Multi-Term FDEs

We build the approximated system of FDEs with

$$\gamma := \gcd\left(1, \tilde{\alpha}_{1}, \dots, \tilde{\alpha}_{n}\right)$$

$$\tilde{N} := \frac{\tilde{\alpha}_{n}}{\gamma}$$

$$\begin{cases} \frac{d^{\gamma}}{dt^{\gamma}} x_{0} = x_{1} \\ \frac{d^{\gamma}}{dt^{\gamma}} x_{1} = x_{2} \\ \vdots \\ \frac{d^{\gamma}}{dt^{\gamma}} x_{\tilde{N}-2} = x_{\tilde{N}-1} \\ \frac{d^{\gamma}}{dt^{\gamma}} x_{\tilde{N}-1} = f\left(t, x_{0}, x_{\tilde{\alpha}_{1}/\gamma}, \dots, x_{\tilde{\alpha}_{n-1}/\gamma}\right) \end{cases}$$

$$x_{j}(0) = \begin{cases} y_{(j\gamma)} & \text{for } j\gamma \in \mathbb{N}_{0} \\ 0 & \text{else} \end{cases}$$

$$(40)$$
Create Transform | Vigilada Mineducación

3.5 Multi-Term FDEs

Example: Bagley-Torvik Equation (Click for GIF)

$$\begin{cases} ay'' + b\frac{d^{3/2}}{dt^{3/2}}y + cy = g(t) \\ y(0) = y_0, \ y'(0) = y_1 \end{cases}$$
(41)

Let us keep the original orders $\tilde{\alpha}_1=3/2$ and $\tilde{\alpha}_2=2$ to satisfy condition (d). Note that $\gamma=\gcd(1,3/2,2)=1/2.$ Then $\tilde{N}=\frac{\dot{\tilde{\alpha}}_2}{\gamma}=4.$ Therefore, the approximated system is

$$\begin{cases} \frac{d^{1/2}}{dt^{1/2}} x_0 = x_1 & x_0(0) = y_0 \\ \frac{d^{1/2}}{dt^{1/2}} x_1 = x_2 & x_1(0) = 0 \\ \frac{d^{1/2}}{dt^{1/2}} x_2 = x_3 & x_2(0) = y_1 \\ \frac{d^{1/2}}{dt^{1/2}} x_3 = f(t, x_0, x_{1.5/0.5}) = \frac{g(t) - cx_0 - bx_3}{a} & x_3(0) = 0 \end{cases}$$

$$(42)$$

3.5 Multi-Term FDEs

Example: Bagley-Torvik Equation

In particular, for a = 1, b = c = -1, g(t) = t + 1, $y_0 = 1$ and $y_1 = 1$, the exact solution to this IVP is

$$y(t) = 1 + t \tag{43}$$

4.1 Predicted ABM

- + accuracy \implies + execution time.
- ABM converges \iff Predicted ABM converges.

The idea is to calculate different $y_h^p(t_{n+1})$ until a tolerance is reached, for each instant of time.

$$y = pabm(f, alpha, y0, T, N, nmax, tol)$$

For example, using the same Bagley-Torvik equation with larger time step, we have

Figure 5. Comparison between the original and predicted scheme.

4.2 Quadrature Decomposition

The idea was to partition the time interval and, on each point, find the polynomial using approximations to the Riemann-Liouville integral.

Example:

$$\begin{cases} x' = y & x(0) = 1 \\ y' = 2x - y & y(0) = -1 \end{cases}$$

4.3 Polynomial Decomposition

- Analytic solution.
- execution time.
- Useful for non-chaotic dynamic systems or chaotic systems for small time frames.

The main idea is based on the simple computation of

$$J^{\alpha}\left(t^{\beta}\right) = \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}t^{\alpha+\beta} \tag{45}$$

which can be extended to non-polynomial expressions using interpolation.

4.3 Polynomial Decomposition

Example:

$$\begin{cases} \frac{d^3}{dt^3}y(t) + \frac{d^{5/2}}{dt^{5/2}}y(t) + y^2(t) = t^4\\ y(0) = y'(0) = 0, \ y''(0) = 2 \end{cases}$$
(46)

The exact solution is $y(t) = t^2$. Using the procedure for multi-term FDEs, the solution can be approximated as shown in the figure.

4.3 Polynomial Decomposition

Example: Fractional Lotka-Volterra model

$$\begin{cases} \frac{d^{\alpha_1}}{dt^{\alpha_1}} x = \alpha x - \beta xy \\ \frac{d^{\alpha_2}}{dt^{\alpha_2}} y = \delta xy - \gamma y \end{cases}$$
(47)

Using params= [1, 1, 1, 1], c.i= [1, 0.5] and α = [0.5, 0.6]:

4.3 Polynomial Decomposition

Example: Financial System

$$\begin{cases} \frac{d^{\alpha_1}}{dt^{\alpha_1}}x = z + (y - a)x \\ \frac{d^{\alpha_2}}{dt^{\alpha_2}}y = 1 - by - x^2 \\ \frac{d^{\alpha_3}}{dt^{\alpha_3}}z = -x - cz \end{cases}$$
(48)

Using params= [3, 0.1, 1], c.i= [2, 3, 2] and $\alpha = [1, 1, 0.8]$, we obtain

4.4 Further Work

ABM with fixed memory.

$$\frac{1}{\Gamma(1-\alpha)} \int_{t-T}^{t} \frac{y'(s)}{(t-s)^{\alpha}} ds$$

ABM with logarithmic memory.

$$w^{p\alpha} \int_0^t \frac{f(w^p x)}{(t-x)^{1-\alpha}} dx$$

Richardson extrapolation.

$$x_n = x(t_n) + \sum_{\mu=1}^{M_1} \gamma_{\mu} n^{-\lambda \mu}$$

Decomposition acceleration.

$$S_n^{(k)} = \frac{S_n^{(k-1)} S_{n+2}^{(k-1)} - \left(S_{n+1}^{(k-1)}\right)^2}{S_n^{(k-1)} + S_{n+2}^{(k-1)} - 2S_{n+1}^{(k-1)}}, \quad k \ge 1$$

5. CONCLUSIONS

- Fractional calculus ---> powerful tool to model real and chaotic systems.
- Both ABM and decomposition are useful but each with pros and cons.
- Both methods can be improved, as shown.
- A summary of some essential tools to study fractional systems was successfully constructed.

REFERENCES I

- W. Deng and C. Li. "Numerical schemes for fractional ordinary differential equations." in Numerical modelling. IntechOpen, 2012.
- ▶ R. Almeida, N. R. Bastos, and M. T. T. Monteiro, "Modeling some real phenomena by fractional differential equations," Mathematical Methods in the Applied Sciences, vol. 39, no. 16, pp. 4846-4855, 2016,
- ▶ P. J. Antsaklis and A. N. Michel, *Linear systems*. Springer Science & Business Media, 2006. p. 13.
- ▶ K. Diethelm and J. Ford, "Numerical solution of the bagley-torvik equation," BIT Numerical Mathematics, vol. 42, no. 3, pp. 490-507, 2002.
- ► R. Thomas, "Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos"." International Journal of Bifurcation and Chaos, vol. 9, no. 10, pp. 1889-1905, 1999.
- S. Momani and Z. Odibat. "Numerical approach to differential equations of fractional order." Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 96-110, 2007.
- ▶ W. F. Langford, "Numerical studies of torus bifurcations," in *Numerical Methods for Bifurcation* Problems. Springer, 1984, pp. 285–295.
- ▶ W.-C. Chen, "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1305-1314, 2008.

REFERENCES II

- ► M. Ishteva, "Properties and applications of the caputo fractional operator," Department of Mathematics. University of Karlsruhe. Karlsruhe. 2005.
- ► C. Yang, W. Xiang, and Q. Ji, "Generation of fractional-order chua's chaotic system and it's synchronization." in 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018, pp. 599-603.
- ▶ D. Rowell, "State-space representation of Iti systems," MIT, 2002.
- ▶ J. C. Sprott and K. E. Chlouverakis, "Labyrinth chaos," International Journal of Bifurcation and Chaos. vol. 17. no. 06. pp. 2097–2108. 2007.
- ▶ U. E. Kocamaz, A. Göksu, H. Taskın, and Y. Uvaroğlu, "Synchronization of chaos in nonlinear finance system by means of sliding mode and passive control methods: a comparative study." Information Technology and Control, vol. 44, no. 2, pp. 172-181, 2015.
- ► P. Dawkins. Euler's method. http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx.
- ▶ O. García Jaimes, J. A. Villegas Gutiérrez, J. I. Castaño Bedoya, and J. A. Sánchez Cano, Ecuaciones Diferenciales. Fondo Editorial Universidad EAFIT. 2016.
- ▶ J. Mathews and K. Fink, Numerical Methods Using MATLAB, ser. Featured Titles for Numerical Analysis Series. Pearson Prentice Hall. 2004. https://books.google.com.co/books? id=E5IRAAAAMAAJ.

REFERENCES III

- ► T. Kisela, "Fractional differential equations and their applications," Faculty Of Mechanical Engineering. Institute Of Mathemathics, 2008.
- ► K. Diethelm, N. J. Ford, and A. D. Freed, "A predictor-corrector approach for the numerical solution of fractional differential equations," Nonlinear Dynamics, vol. 29, no. 1-4, pp. 3-22, 2002.
- ▶ P. J. Torvik and R. L. Bagley, "On the appearance of the fractional derivative in the behavior of real materials," Journal of Applied Mechanics, vol. 51, no. 2, pp. 294-298, 1984.

