Homework 14

Question 1.

应用题目中要求的几种方法,最大迭代次数 1000 次,学习率 $\eta = 0.01$,其他参数采取 Pytorch 中相应优化器的默认参数,实验结果如图1。

图 1. 收敛速度对比

Question 2.

在 RCD(1) 方法中,我们对每个坐标 i 维护一个自适应步长缩放因子 β_i ,其估计采用指数滑动平均方式,具体更新如下

(1)
$$\beta_i^{(t)} = \rho \cdot \beta_i^{(t-1)} + (1 - \rho) \cdot \left(\nabla_i f(w^{(t-1)}) \right)^2$$

其中 $\rho \in [0,1)$ 是滑动平均系数,这里取 $\rho = 0.9$; $\nabla_i f(w^{(t-1)})$ 表示在第 t-1 次迭代中,第 i 个分量的梯度; $\beta_i^{(t)}$ 表示当前估计的第 i 个分量的尺度。

最大迭代次数 1000 次,学习率 $\eta = 0.01$,其他参数采取 Pytorch 中相应优化器的默认参数,实验结果如图2。

图 2. 收敛速度对比

Question 3.

为引入 ADMM 结构, 我们将变量 w 分裂为两个变量 w 与 z, 得到等价问题

$$\min_{\boldsymbol{w}, \boldsymbol{z}} \quad \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \exp \left(-y_i \cdot \boldsymbol{x}_i^{\top} \boldsymbol{w} \right) \right)$$
s.t.
$$A_1 w + A_2 z = b,$$

$$A_1 = \begin{bmatrix} I_d \\ \mathbf{0}^{\top} \end{bmatrix} \in \mathbb{R}^{(d+1) \times d}, \ A_2 = \begin{bmatrix} -I_d \\ \mathbf{1}^{\top} \end{bmatrix} \in \mathbb{R}^{(d+1) \times d}, \ b = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} \in \mathbb{R}^{(d+1)}$$

每次迭代的具体更新方式,首先随机选取样本索引 $i_k \in \{1,2,\ldots,N\}$,然后根据以下公式依次更新

(2)
$$w^{k+1} = \arg\min_{w} \left\{ \nabla f_{i_k}(w^k)^{\top} (w - w^k) + \frac{\rho}{2} \left\| A_1 w + A_2 z^k - b + \frac{1}{\rho} u^k \right\|^2 + \frac{1}{2\eta_k} \left\| w - w^k \right\|^2 \right\}$$

(3)
$$z^{k+1} = \arg\min_{z} \left\{ I_{\{\mathbf{1}^{\top}z=1\}}(z) + \frac{\rho}{2} \left\| A_1 w^{k+1} + A_2 z - b + \frac{1}{\rho} u^k \right\|^2 \right\}$$

(4)
$$u^{k+1} = u^k + \rho \left(A_1 w^{k+1} + A_2 z^{k+1} - b \right)$$

参数选取上,惩罚参数 $\rho=0.1$,初始学习率 $\eta_0=0.1$, $\eta_k=\frac{\eta_0}{\sqrt{k+1}}$,最大迭代次数 10000 次,实验结果如图 ${f 3,4}$ 。

图 3. 约束残差 $||A_1w + A_2z - b||$

图 4. Logistice Loss (目标函数值)