Modelos Estatísticos e Classificadores Baseados na Teoria de Decisão Bayesiana

André E. Lazzaretti
UTFPR/CPGEI

Teoria de Decisão Bayesiana

Problema: Classificar salmão e badejo para separação automática em um esteira.

Alternativa 1: somente $P(\omega_i)$ – probabilidade *a priori* **Problema**: Para um peixe faz sentido, mas podemos sempre cometer o mesmo erro para muitas amostras.

Alternativa 2: regra de Bayes, combinando $P(\omega_i)$ e $p(\mathbf{x}/\omega_i)$

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

Teoria de Decisão Bayesiana

Problema: Classificar salmão e badejo para separação automática em um esteira.

Alternativa 1: somente $P(\omega_i)$

Problema: Para um peixe faz sentido, mas podemos sempre cometer o mesmo erro para muitas amostras.

Alternativa 2: regra de Bayes, combinando $P(\omega_i)$ e $p(\mathbf{x}/\omega_i)$

Superfície de decisão: $P(\omega_i|\mathbf{x}) - P(\omega_j|\mathbf{x}) = 0$

Abordagem desta Aula

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

- 1) $P(\omega_i)$ e $p(\mathbf{x}/\omega_i)$ são completamente conhecidas
- Classificador Bayesiano e Classificadores baseados em distâncias
- 2) $p(\mathbf{x}|\omega_i)$ é conhecida, mas os parâmetros são desconhecidos (abordagem paramétrica) \rightarrow definição dos parâmetros
- MLE, MAP, Inferência Bayesiana, Combinação linear de PDFs
- 3) $p(\mathbf{x}/\omega_i)$ é estimada de forma não-paramétrica
- k-NN e Janelas de Parzen
- 4) $p(\mathbf{x}|\omega_i)$ é estimada com modelos alternativos, levando em conta a independência/dependência das entradas
- Naive Bayes e Redes Bayesianas

 Considerando que p(x|ω) é uma distribuição Gaussiana multivariada, pode-se derivar o classificador Bayesiano para classes normalmente distribuídas:

$$p(x|\omega_i) = \frac{1}{(2\pi)^{l/2}|\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1}(x - \mu_i)\right)$$

Para tanto, será considerada seguinte função:

$$g_{i}(\mathbf{x}) = \ln(p(\mathbf{x}|\omega_{i})P(\omega_{i})) = \ln p(\mathbf{x}|\omega_{i}) + \ln P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) + \ln P(\omega_{i}) + c_{i}$$

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^{T} \Sigma_{i}^{-1}\mathbf{x} + \frac{1}{2}\mathbf{x}^{T} \Sigma_{i}^{-1}\boldsymbol{\mu}_{i} - \frac{1}{2}\boldsymbol{\mu}_{i}^{T} \Sigma_{i}^{-1}\boldsymbol{\mu}_{i} + \frac{1}{2}\boldsymbol{\mu}_{i}^{T} \Sigma_{i}^{-1}\mathbf{x} + \ln P(\omega_{i})$$

$$-(l/2) \ln 2\pi - (1/2) \ln |\Sigma_{i}|$$
Por classe!

• Na fronteira de decisão entre a classe i e j:

$$g_i(\mathbf{x}) - g_j(\mathbf{x}) = 0$$

• No caso em que $\Sigma_i = \Sigma = \sigma^2 I$ e $P(\omega_i) = P(\omega_i)$, o termo quadrático $(\mathbf{x}^T \Sigma_i^{-1} \mathbf{x})$ é o mesmo para todas as classes, as constantes e $P(\omega)$ também ser anulam:

$$-\frac{1}{2}\mathbf{x}^{T}\Sigma^{-1}\mathbf{x} + \frac{1}{2}\mathbf{x}^{T}\Sigma^{-1}\boldsymbol{\mu}_{i} - \frac{1}{2}\boldsymbol{\mu}_{i}^{T}\Sigma^{-1}\boldsymbol{\mu}_{i} + \frac{1}{2}\boldsymbol{\mu}_{i}^{T}\Sigma^{-1}\mathbf{x} =$$

$$-\frac{1}{2}\mathbf{x}^{T}\Sigma^{-1}\mathbf{x} + \frac{1}{2}\mathbf{x}^{T}\Sigma^{-1}\boldsymbol{\mu}_{j} - \frac{1}{2}\boldsymbol{\mu}_{j}^{T}\Sigma^{-1}\boldsymbol{\mu}_{j} + \frac{1}{2}\boldsymbol{\mu}_{j}^{T}\Sigma^{-1}\mathbf{x}$$

$$(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{T}\mathbf{x} - \frac{1}{2}(\boldsymbol{\mu}_{i}^{T}\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}^{T}\boldsymbol{\mu}_{j}) = 0$$

• No caso que $\Sigma_i = \Sigma = \sigma^2 I$ e $P(\omega_i) = P(\omega_i)$:

$$\mu_{1} = \begin{bmatrix} 3 & 2 \end{bmatrix}^{T} \qquad \mu_{2} = \begin{bmatrix} 7 & 4 \end{bmatrix}^{T} \qquad \mu_{3} = \begin{bmatrix} 2 & 5 \end{bmatrix}^{T}$$

$$\Sigma_{1} = \begin{bmatrix} 2 & 2 \end{bmatrix} \qquad \Sigma_{1} = \begin{bmatrix} 2 & 2 \end{bmatrix} \qquad \Sigma_{1} = \begin{bmatrix} 2 & 2 \end{bmatrix}$$

$$0.00 \\ 0$$

• No caso que $\Sigma_i \neq \Sigma_j$ (não diagonal) e $P(\omega_j) = P(\omega_i)$:

Exemplo no Matlab

• Em um problema com duas classes (bidimensional), os vetores de característica em cada classe são normalmente distribuídos de acordo com os parâmetros apresentados abaixo. Assuma que $P(\omega_1)=P(\omega_2)$ e projete um classificador Bayesiano que minimize o erro de classificação. Qual o erro percentual de classificação? Repita os experimentos para μ_2 = [3.0, 3.0]^T.

$$p(\boldsymbol{x}|\omega_1) = \frac{1}{\left(\sqrt{2\pi\sigma_1^2}\right)^2} \exp\left(-\frac{1}{2\sigma_1^2}(\boldsymbol{x} - \boldsymbol{\mu}_1)^T(\boldsymbol{x} - \boldsymbol{\mu}_1)\right)$$

$$p(\boldsymbol{x}|\omega_2) = \frac{1}{\left(\sqrt{2\pi\sigma_2^2}\right)^2} \exp\left(-\frac{1}{2\sigma_2^2}(\boldsymbol{x} - \boldsymbol{\mu}_2)^T(\boldsymbol{x} - \boldsymbol{\mu}_2)\right)$$

$$\mu_1 = [1, 1]^T$$
, $\mu_2 = [1.5, 1.5]^T$, $\sigma_1^2 = \sigma_2^2 = 0.2$

```
close all; clc; clear; rand('seed',0); randn('seed',0);
mu1 = [1, 1].';
mu2 = [1.5, 1.5].';
sigmasSquared = 0.2;
d = size(mu1, 1);
nFeats = 10000;
X1 = mvnrnd( mu1, sigmasSquared*eye(d), nFeats );
X2 = mvnrnd( mu2, sigmasSquared*eye(d), nFeats );
h1 = plot(X1(:,1), X1(:,2), '.b'); hold on;
h2 = plot(X2(:,1), X2(:,2), '.r'); hold on;
legend( [h1,h2], {'classe 1', 'classe 2'} );
mean diff = mu1 - mu2;
X = [X1; X2];
labels = [ ones(nFeats,1); 2*ones(nFeats,1) ];
rhs = 0.5 * (dot(mu1, mu1) - dot(mu2, mu2));
lhs = mean diff' * X';
class decision = (lhs - rhs) > 0;
choosen class = zeros(2*nFeats,1);
choosen class(find(class decision==1)) = 1;
choosen class(find(class decision~=1)) = 2;
P correct = sum(choosen class == labels)/(2*nFeats);
P = 1 - P = 1
```

Classificadores de Distância Mínima

• No caso que $\Sigma_i = \Sigma = \sigma^2 I$ e $P(\omega_i) = P(\omega_i)$, a classificação se torna (menor distância):

$$d_{\epsilon} = \|\boldsymbol{x} - \boldsymbol{\mu}_i\|$$

• No caso que Σ é nãodiagonal e $P(\omega_i) = P(\omega_i)$, a classificação se torna (menor distância):

$$d_m = \left((\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) \right)^{1/2}$$

Classificadores de Distância Mínima

 Utilize o classificador Bayesiano para classificar [1,0; 2,2]^T, sendo que as classes são definidas por:

$$\Sigma = \begin{bmatrix} 1.1 & 0.3 \\ 0.3 & 1.9 \end{bmatrix} \qquad \boldsymbol{\mu}_1 = [0, 0]^T, \boldsymbol{\mu}_2 = [3, 3]^T$$

$$d_m^2(\boldsymbol{\mu}_1, \boldsymbol{x}) = (\boldsymbol{x} - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_1)$$

$$= [1.0, 2.2] \begin{bmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{bmatrix} \begin{bmatrix} 1.0 \\ 2.2 \end{bmatrix} = 2.952$$

$$d_m^2(\boldsymbol{\mu}_2, \boldsymbol{x}) = [-2.0, -0.8] \begin{bmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{bmatrix} \begin{bmatrix} -2.0 \\ -0.8 \end{bmatrix} = 3.672$$

Estimativa para PDFs Desconhecidas

- Até o momento, consideramos que as PDFs são conhecidas previamentes;
- No entanto, esse não é o caso na maioria das situação práticas;
- Existem várias abordagens para esses casos:
 - Se conhece o tipo da pdf e se desconhece os parâmetros associados;
 - Pode-se conhecer algum parâmetro e se desconhecer o tipo da pdf → não será abordado aqui!

- Estimativa paramétrica (Gaussiana): assumese uma pdf para $p(\mathbf{X}|\omega_i)$ ou $p(\mathbf{X}|\omega_i;\boldsymbol{\theta})$ ou $p(\mathbf{X}|\boldsymbol{\theta})$ e estima-se os parâmetros $\boldsymbol{\theta}$ a partir dos dados;
- Ideia Geral (estimativa de parâmetros):

$$p(\boldsymbol{\theta}|X) = \frac{p(\boldsymbol{\theta})p(X|\boldsymbol{\theta})}{p(X)} \quad \Longrightarrow \quad$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

Assumindo que os dados de uma classe não afetam a estimativa de parâmetros das demais, i.e. removendo ω_{i}

• Estimativa paramétrica (Gaussiana): assumese uma pdf para $p(\mathbf{X}|\mathbf{\theta}_i)$ e estima-se os parâmetros $\mathbf{\theta}_i$ a partir dos dados;

Ideia Geral (estimativa de parâmetros):

$$p(\boldsymbol{\theta}|X) = \frac{p(\boldsymbol{\theta})p(X|\boldsymbol{\theta})}{p(X)}$$
 Foco Inicial do MLE

• Formulação Geral (assume-se independência!):

$$p(X|\boldsymbol{\theta}) = p(x_1, x_2, ..., x_N|\boldsymbol{\theta}) = \prod_{k=1}^{N} p(x_k|\boldsymbol{\theta})$$

Estimativa:

$$\widehat{\boldsymbol{\theta}} = \frac{max}{\boldsymbol{\theta}} \left[\prod_{k=1}^{N} p(\boldsymbol{x}_k | \boldsymbol{\theta}) \right]$$

Interpretação MLE

We have n=3 data points $y_1 = 1$, $y_2 = 0.5$, $y_3 = 1.5$, which are independent and Gaussian with **unknown** mean θ and variance 1: with likelihood $P(y_1y_2y_3|\theta) = P(y_1|\theta) P(y_1|\theta) P(y_3|\theta)$. Consider two guesses of θ , 1 and 2.5. Which has higher likelihood?

Finding the θ that maximizes the likelihood is equivalent to moving the Gaussian until the product of 3 green bars (likelihood) is maximized.

Fonte: Aulas Prof Nando de Freitas

 Normalmente se utiliza uma função logarítimica (preserva o máximo e evita produtos entre probabilidades):

$$L(\boldsymbol{\theta}) = \boldsymbol{log} \prod_{k=1}^{N} p(\boldsymbol{x}_k | \boldsymbol{\theta})$$
$$\frac{\partial L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \boldsymbol{0}$$

Exemplo

 Considere N experimentos independentes seguindo distribuição de Bernoulli. Será solicitado a cada indivíduo da população (χ) se ele vai votar para os democratas ou republicanos na próxima eleição presidencial. Estime p usando ML.

$$\mathcal{X} = \left\{ x_i = \begin{vmatrix} Democratic \\ Republican \end{vmatrix}, i = 1...N \right\}$$

(when p is 0.5) Bernoulli (pmf): $f(k;p) = \begin{cases} p & \text{if } k=1,\\ 1-p & \text{if } k=0. \end{cases}$ $f(k;p) = \begin{cases} p & \text{if } k=1,\\ 1-p & \text{if } k=0. \end{cases}$

$$f(k;p)=egin{cases} p& ext{if }k=1,\ 1-p& ext{if }k=0. \end{cases}$$
 $f(k;p)=p^k(1-p)^{1-k}& ext{for }k\in\{0,1\}.$

Solução: $L(\theta) = \log \prod_{i=1}^{N} p(x_i|\theta) = \sum_{i=1}^{N} \log(p(x_i|\theta))$

$$= \sum_{i=1}^{n_d} log[p(x_i = Demo|\theta)] + \sum_{i=1}^{N-n_d} log[p(x_i = Repub|\theta)]$$

 $pmf(k;\theta) = \theta^k + (1-\theta)^{1-k}$ para $k \in \{Demo, Repub\}$

$$\mathsf{L}(\theta) = \sum_{i=1}^{n_d} log\theta + \sum_{i=1}^{N-n_d} log(1-\theta) = n_d log\theta + (N-n_d) log(1-\theta)$$

$$\frac{\partial L}{\partial \theta} = \frac{n_d}{\theta} - \frac{N - n_d}{1 - \theta} = 0$$

$$\hat{\theta}_{ML} = \frac{n_d}{N}$$

Caso Gaussiano

Caso Gaussiano 1-D:

$$m_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$S_{ML} = \frac{1}{N} \sum_{i=1}^{N} (x_i - m_{ML})(x_i - m_{ML})^T$$

• Exercício da Lista!

```
close all; clc; clear; rand('seed',0); randn('seed',0);
mu1 = [1, 1].';
mu2 = [1.5, 1.5].';
sigmasSquared = 0.2;
d = size(mu1,1);
nFeats = 10000;
X1 = mvnrnd( mul, sigmasSquared*eye(d), nFeats );
X2 = mvnrnd( mu2, sigmasSquared*eye(d), nFeats );
mu1 ML = (1/nFeats)*sum(X1)';
mu2 ML = (1/nFeats)*sum(X2)';
h1 = plot(X1(:,1), X1(:,2), '.b'); hold on;
h2 = plot(X2(:,1), X2(:,2), '.r'); hold on;
legend( [h1,h2], {'classe 1', 'classe 2'} );
mean diff = mu1 ML - mu2 ML;
X = [X1; X2];
labels = [ ones(nFeats,1); 2*ones(nFeats,1) ];
rhs = 0.5 * (dot(mu1 ML, mu1 ML) - dot(mu2 ML, mu2 ML));
lhs = mean diff' * X';
class decision = (lhs - rhs) > 0;
choosen class = zeros(2*nFeats,1);
choosen class(find(class decision==1)) = 1;
choosen class(find(class decision~=1)) = 2;
P correct = sum(choosen class == labels)/(2*nFeats);
P error = 1 - P correct;
```

Maximum a Posteriori Estimation (MAP)

- No MLE, θ_i representava o vetor de parâmetros desconhecidos.
- No caso do MAP, considera-se que esse vetor tem uma característica aleatória, ou seja, tem uma determinada pdf a priori e queremos estabelecer sua nova distribuição, à luz dos dados:

$$p(\boldsymbol{\theta}|X) = \frac{p(\boldsymbol{\theta})p(X|\boldsymbol{\theta})}{p(X)}$$

Exemplo

 Considere N experimentos independentes seguindo distribuição de Bernoulli. Será solicitado a cada indivíduo da população (χ) se ele vai votar para os democratas ou republicanos na próxima eleição presidencial. Estime p usando MAP.

$$\mathcal{X} = \left\{ x_i = \begin{vmatrix} Democratic \\ Republican \end{vmatrix}, i = 1...N \right\}$$

(when p is 0.5) Bernoulli (pmf): $f(k;p) = \begin{cases} p & \text{if } k=1,\\ 1-p & \text{if } k=0. \end{cases}$ $f(k;p) = \begin{cases} p & \text{if } k=1,\\ 1-p & \text{if } k=0. \end{cases}$

$$f(k;p)=egin{cases} p& ext{if }k=1,\ 1-p& ext{if }k=0. \end{cases}$$
 $f(k;p)=p^k(1-p)^{1-k}& ext{for }k\in\{0,1\}.$

Exemplo cont.

• Beta (pdf) a priori:

$$rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}\,x^{lpha-1}(1-x)^{eta-1}$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x.$$

Estimativa é dada por:

$$\hat{\boldsymbol{\theta}}_{MAP}: \frac{\partial}{\partial \boldsymbol{\theta}} p(\boldsymbol{\theta}|X) = 0 \quad \text{or} \quad \frac{\partial}{\partial \boldsymbol{\theta}} (p(\boldsymbol{\theta})p(X|\boldsymbol{\theta})) = 0$$

$$L(\theta) = \log \prod_{i=1}^{N} p(x_i|\theta) p(\theta) = \sum_{i=1}^{N} \log (p(x_i|\theta)) p(\theta)$$

$$= \sum_{i=1}^{n_d} log[p(x_i = Demo|\theta)] + \sum_{i=1}^{N-n_d} log[p(x_i = Repub|\theta)] + log(p(\theta))$$

 $pmf(k;\theta) = \theta^k + (1-\theta)^{1-k}$ para $k \in \{Demo, Repub\}$

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$L(\theta) = \sum_{i=1}^{n_d} log\theta + \sum_{i=1}^{N-n_d} log(1-\theta) + \log(p(\theta))$$

$$= n_d log\theta + (N - n_d) log(1 - \theta) + (\alpha - 1) log\theta + (\beta - 1) log(1 - \theta)$$

$$\frac{\partial L}{\partial \theta} = \frac{n_d}{\theta} - \frac{N - n_d}{1 - \theta} + \frac{\alpha - 1}{\theta} - \frac{\beta - 1}{1 - \theta} = 0$$

$$\hat{\theta}_{MAP} = \frac{n_d + \alpha - 1}{N + \alpha + \beta - 2}$$

MAP e MLE

• Uma vez que os parâmetros estejam determinados (θ_{MAP} e θ_{ML}), pode-se realizar a classificação de um novo exemplo \widetilde{x} de acordo com a probabilidade a posteriori de cada classe e a teoria de decisão Bayesiana:

$$P(\omega_i | \widetilde{\mathbf{x}}) = p(\widetilde{\mathbf{x}} | \omega_i; \boldsymbol{\theta}_{ML}) P(\omega_i)$$

$$P(\omega_i | \widetilde{\mathbf{x}}) = p(\widetilde{\mathbf{x}} | \omega_i; \boldsymbol{\theta}_{MAP}) P(\omega_i)$$

If
$$P(\omega_1|\widetilde{x}) > P(\omega_2|\widetilde{x})$$
, \widetilde{x} is classified to ω_1

If
$$P(\omega_1|\widetilde{x}) < P(\omega_2|\widetilde{x})$$
, \widetilde{x} is classified to ω_2

Inferência Bayesiana

- Tanto ML quanto MAP retornam apenas um único valor (maximização de uma função) para o conjunto de parâmetros Θ;
- Já na inferência Bayesiana, calcula-se a distribuição de probabilidade completa p(Θ|X);
- Denominador não pode ser desprezado agora:

$$p(\boldsymbol{\theta}|X) = \frac{p(X|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(X)} = \frac{p(X|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(X|\boldsymbol{\theta})p(\boldsymbol{\theta}) d\boldsymbol{\theta}}$$

 Sugestão de leitura: ML, MAP, and Bayesian — The Holy Trinity of Parameter Estimation and Data Prediction. Autor: Avinash Kak.

Combinação Linear de PDFs

 Uma forma alternativa ao apresentado até aqui é utilizar uma combinação linear de K PDFs para representar p(x):

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

$$\sum_{k=1}^{K} \pi_k = 1$$

Combinação Linear de PDFs

 No caso de uma combinação linear de Gaussianas (Mistura de Gaussianas), uma ideia seria aplicar o método MLE (por exemplo):

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- O problema é que a formulação acima resulta em um problema de otimização não-linear, por vezes, muito difícil de resolver.
- Existem alternativas...

Maximização da Expectativa (EM)

Mistura de Gaussianas

Maximização da Expectativa

EM
(Expectation
Maximization
Algorithm)

- 1. Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k , and evaluate the initial value of the log likelihood.
- 2. **E step**. Evaluate the responsibilities using the current parameter values

3. M step. Re-estimate the parameters using the current responsibilities

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^{\text{T}}$$

$$\pi_k^{\text{new}} = \frac{N_k}{N}$$

where

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}).$$

4. Evaluate the log likelihood — Sempre crescente

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

and check for convergence of either the parameters or the log likelihood. If the convergence criterion is not satisfied return to step 2.

Maximização da Expectativa (EM)

0.65

Estimando PDFs não-paramétricas

- Até então assumimos uma pdf e estimamos os parâmetros;
- Agora passaremos para uma abordagem nãoparamétrica: não estamos assumindo uma pdf prévia → histogramas;

$$\hat{p}(x) \equiv \hat{p}(\hat{x}) \approx \frac{1}{b} \frac{k_N}{N}$$

$$b_N \to 0$$

$$\hat{p}(x) \text{ converges } k_N \to \infty$$

$$\frac{k_N}{N} \to 0$$

Janelas de Parzen

• Suavizando (Gaussianas):

$$\hat{p}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{(2\pi)^{\frac{l}{2}} b^{l}} \exp\left(-\frac{(\mathbf{x} - \mathbf{x}_{i})^{T} (\mathbf{x} - \mathbf{x}_{i})}{2b^{2}}\right)$$

Janelas de Parzen

Exemplo:

b = 0.8 and 1,000 training samples

Estimativa K-Vizinhos Mais Próximos para PDF

- Janela de Parzen: o volume (h) era fixo e o número de pontos no interior do volume variava;
- K-vizinhos-mais-próximos: o volume é variável e o número de pontos é fixo. Portanto:

$$\hat{p}(\mathbf{x}) = \frac{k}{NV(\mathbf{x})}$$

$$V(x) = \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2} + 1)} R^d$$

- Não muito usual!
- Regra dos k vizinhos:
 - Identifique os k-vizinhos-mais-próximos do padrão a ser classificado;
 - Identifique a classe majoritária dentre os vizinhos selecionados e atribua a classe correspondente.

Classificador Naive Bayes

- Com o objetivo de ter uma boa estimativa das pdfs, o número de exemplos de treinamento deve ser grande o suficiente;
- Se N for o suficiente para um caso unidimensional, no caso l-dimensional seria necessário N^I
- Assume-se que as características são estatisticamente independentes:

MLE para cada distribuição 1-D (para cada l)
$$p(\boldsymbol{x}|\omega_i) = \prod_{j=1}^l p(x_j|\omega_i), \quad i=1,2,\ldots,M$$

$$\omega_m = \arg \max_{\omega_i} \prod_{j=1}^l p(x_j | \omega_i), \quad i = 1, 2, \dots, M$$

Referências

- Capt. 2 Livro Theodoridis (Pattern Recognition Fourth Edition e Pattern Recognition Matlab);
- Capt. 1 Livro Bishop somente para Misturas de Gaussianas;
- Avinash Kak (Purdue University). ML, MAP, and Bayesian — The Holy Trinity of Parameter Estimation and Data Prediction.
- Aulas Professor Nando de Freitas (UBC/Oxford ML 2013) – Aulas 1, 2, 3, 6 e 7.