# CS 325: PROJECT 1

GROUP 29: JACOB MASTEL, YASH NAIK, CERA OLSON

Date: 26 April 2015.



FIGURE 1. Average Run Time for All 4 Algorithms

### 1. Algorithm 1: Enumeration

1.1. **Theoretical Run-Time Analysis.** Enumeration has a running time of  $O(n^3)$ . Because of the 3 loops, each run n times gives the algorithm a running time of n \* n \* n.

# $1.1.1.\ Pseudocode.$

```
for i = 1 to n
for j = i to n
for k = i to j
sum += a_k
if sum > ans then ans = sum
return ans
```



FIGURE 2. Algorithm 1 Run Time

# 1.2. Experimental Analysis.

| n    | $\operatorname{Time}$ |
|------|-----------------------|
| 100  | 0.029255198           |
| 200  | 0.178765495           |
| 300  | 0.541698859           |
| 400  | 1.337829466           |
| 500  | 2.473190885           |
| 600  | 4.287970855           |
| 700  | 7.054050103           |
| 800  | 10.06102867           |
| 900  | 15.23538047           |
| 1000 | 20.64124558           |
| 1100 | 26.77310262           |
| 1200 | 31.31654893           |
| 1300 | 39.63601268           |
| 1400 | 49.22060823           |
| 1500 | 60.55456953           |
| 1600 | 73.94340321           |
| 1700 | 84.80297324           |
| 1800 | 99.51908661           |
| 1900 | 117.1002546           |
| 2000 | 136.9574863           |



FIGURE 3. Average Run Time for All 4 Algorithms

### 1.3. Extrapolation and Interpretation.

- 1.3.1. For each algorithm use the experimental data to estimate a function that models the relationship between running times and input sizes (n). Discuss any discrepancies between the experimental and theoretical running times.
- 1.3.2. For each algorithm, what is the size of the biggest instance that you can solve with your algorithm in one hour?

## 2. Algorithm 2: Better Enumeration

2.1. **Theoretical Run-Time Analysis.** Because of the reduced number of loops, 2 loops running n times, the running time id  $O(n^2)$ . This algorithm runs very similarly to the first Algorithm, but it instead skips recalculating the sum each time through. This saves time and makes for a more efficient running time.

### $2.1.1.\ Pseudocode.$

```
for i = 1 to n
for j = i to n
sum += a_j
if sum > ans then ans = sum
return ans
```



FIGURE 4. Algorithm 2 Run Time

# 2.2. Experimental Analysis.

| n     | Time        |
|-------|-------------|
| 100   | 0.000691457 |
| 200   | 0.002523139 |
| 300   | 0.005414918 |
| 400   | 0.009347594 |
| 500   | 0.017913874 |
| 600   | 0.032127009 |
| 700   | 0.03163984  |
| 800   | 0.037066278 |
| 900   | 0.076525134 |
| 1000  | 0.058382396 |
| 2000  | 0.277541148 |
| 3000  | 0.756019462 |
| 4000  | 1.17740895  |
| 5000  | 1.81821447  |
| 6000  | 2.809200957 |
| 7000  | 3.774356505 |
| 8000  | 4.120086395 |
| 9000  | 5.538109223 |
| 10000 | 6.983674863 |
| 20000 | 28.4940567  |
| 30000 | 67.27082063 |
|       | ·           |

### 2.3. Extrapolation and Interpretation.

- 2.3.1. For each algorithm use the experimental data to estimate a function that models the relationship between running times and input sizes (n). Discuss any discrepancies between the experimental and theoretical running times.
- 2.3.2. For each algorithm, what is the size of the biggest instance that you can solve with your algorithm in one hour?

### 3. Algorithm 3: Divide and Conquer

- 3.1. **Theoretical Run-Time Analysis.** The original problem size is a power of 2, so all sub sizes are integers. So the run time method of the program will be O(nlgn). T(n) = 2T(n/2) + O(n)
- 3.1.1. Psuedocode. The Max-SubArray is the initial call function, the base case is low=high. If a cross occurs then cross-SubArray is called. Cross-SubArray(low, mid, high, A) //Sub-Array for A[i.mid] left-sum = [Infinity] for i = mid to low sum= sum + A[i] if sum; left-sum left-sum=sum max-left=i
- //Sub-Array for A[mid+1.high] right-sum = [Infinity] for j = mid+1 to high sum= sum + A[j] if sum; right-sum right-sum max-right=j return(max-left, max-right, left-sum+right-sum) //Initial call Max-SubArray



FIGURE 5. Average Run Time for All 4 Algorithms

Max-SubArray(low, high, A) For i to array-size If high==low Return (A[low]) Else mid= [low + high)/2] (Low-low, Low-high, Low-sum)= Max-SubArray (A, low, mid) (Right-low, Right-high, Right-sum)= Max-SubArray (A, mid+1, high) (Cross-low, Cross-high, Cross-sum)= Cross-SubArray(low, mid, high, A) If left-sum;= right-sum and left-sum;= cross-sum Return(left-low, left-high, left-sum) ElseIf right-sum;= left-sum and right-sum;= cross-sum Return (right-low, right-high, right-sum) ElseReturn (cross-low, cross-high, cross-sum)

# 3.2. **Proof of Correctness.** MaxSubarray(A, n) will return the sum of the maximum subarray of an array A of size n.

Proof: Base Case:- If n = 0. Then max = current = 0. Then subarray wont be possible and the max will be zero for array of zero elements. Case n=1: If n=1 meaning that there is one single element then if the value is positive it will be considered as array and max value will be assigned with the value of the array element. Inductive hypothesis:-Considering array contain more elements say n. The method will find the sum of the whole array and save it in a variable max. and then it will divide the array in such a way that all the possible combinations of the array will be find and computed such that every loop execution the sum is compared with the max value if sum is greater then the value will be stored. So while n¿1 (meaning that more than one element in the array) the array will recursively divided and computes sum for all possible subarrays and compares with the max which will ultimately considered as the maximum value of a subarray.



FIGURE 6. Algorithm 3 Run Time

# 3.3. Experimental Analysis.

| $\operatorname{Time}$ |
|-----------------------|
| 0.000513281           |
| 0.004811525           |
| 0.010599179           |
| 0.015096591           |
| 0.020326933           |
| 0.041936171           |
| 0.039872297           |
| 0.047068976           |
| 0.042948396           |
| 0.050002995           |
| 0.054033207           |
| 0.127373954           |
| 0.194761927           |
| 0.254894853           |
| 0.31652922            |
| 0.411895206           |
| 0.450825678           |
| 0.538815784           |
| 0.589621596           |
| 0.64801116            |
|                       |



FIGURE 7. Average Run Time for All 4 Algorithms

## 3.4. Extrapolation and Interpretation.

- 3.4.1. For each algorithm use the experimental data to estimate a function that models the relationship between running times and input sizes (n). Discuss any discrepancies between the experimental and theoretical running times.
- 3.4.2. For each algorithm, what is the size of the biggest instance that you can solve with your algorithm in one hour?

## 4. Algorithm 4: Linear-Time

## 4.1. Theoretical Run-Time Analysis.

### 4.1.1. Pseudocode.



FIGURE 8. Algorithm 4 Run Time

# $4.2. \ \textbf{Experimental Analysis.}$

| n      | Time        |
|--------|-------------|
| 100    | 0.00014592  |
| 1000   | 0.000610561 |
| 2000   | 0.001227777 |
| 3000   | 0.00182733  |
| 4000   | 0.002412802 |
| 5000   | 0.002993667 |
| 6000   | 0.003615748 |
| 7000   | 0.004194308 |
| 8000   | 0.004854277 |
| 9000   | 0.005397254 |
| 10000  | 0.005966598 |
| 20000  | 0.011977484 |
| 30000  | 0.018128915 |
| 40000  | 0.034239523 |
| 50000  | 0.043462445 |
| 60000  | 0.037134118 |
| 70000  | 0.041755435 |
| 80000  | 0.061413183 |
| 90000  | 0.053687095 |
| 100000 | 0.061596479 |

# 4.3. Extrapolation and Interpretation.

- 4.3.1. For each algorithm use the experimental data to estimate a function that models the relationship between running times and input sizes (n). Discuss any discrepancies between the experimental and theoretical running times.
- 4.3.2. For each algorithm, what is the size of the biggest instance that you can solve with your algorithm in one hour?

### 5. Appendices

```
5.1. Code.
```

```
\mathbf{def} algorithm1(A):
        \max = 0
         for i in range (0, len(A)):
                  for j in range(i, len(A)):
                           partial = 0
                           for k in range (i, j+1):
                                    partial += A[k]
                           if partial > max:
                                    \max = partial
         return max
\mathbf{def} algorithm 2 (A):
        \max = 0
         for i in range (0, len(A)):
                  sum = 0
                  for j in range(i, len(A)):
                           sum = sum + A[j]
                           if \max \le sum:
                                    \max = \sup
         return max
def algorithm3(A):
         if len(A) < 1:
                  return 0
        m = len(A) / 2
        lmax = s = 0
         for i in range ( len (A)/2, -1, -1 ):
                  s += A[i]
                  if \ s \ > \ lmax:
                           lmax = s
```

```
rmax = s = 0
        for i in range (len (A)/2+1, len (A)):
                 s += A[i]
                 if s > rmax:
                          rmax = s
        return max(
                 algorithm 3 (A[:len(A)/2]),
                 algorithm 3 (A[(len(A)/2)+1:]),
                 lmax + rmax
        )
\mathbf{def} algorithm4(A):
        m1 = m2 = 0
        for x in A:
                 m1 = \max(0, m1 + x)
                 m2 = max(m2, m1)
        return m2
\# Algorithm Tests
# Needed Python libraries
import csv
import sys
import random
from timeit import Timer
from multiprocessing import Process
# Import our algorithms
from algorithm1 import *
from algorithm2 import *
from algorithm3 import *
from algorithm4 import *
\# \ Global \ \ Variables
max\_time = 2*60 \# 2 minutes
```

```
\min_{\text{num}} = -99
max_num = 99
def run_test(Alg):
        f_name = "alg_res \{0\}.csv".format(Alg)
        with open(f_name, 'wb') as csvfile:
                 writer = csv.writer(csvfile)
                for n in range (100, 100001, 100):
                         # build a random array of len n
                         A = []
                         for _ in range(n):
                                 A. append (random.randint (min_num, max_num))
                         # determine which algorithm to call
                         # run each set 3 times
                         if Alg = 1:
                                 t = Timer(lambda: algorithm1(A)).timeit(number=
                         elif Alg = 2:
                                 t = Timer(lambda: algorithm2(A)).timeit(number=
                         elif Alg == 3:
                                 t = Timer(lambda: algorithm3(A)).timeit(number=
                         elif Alg == 4:
                                 t = Timer(lambda: algorithm4(A)).timeit(number=
                         writer.writerow([n, t])
                         # see if we've gone beyond our max time.
                         # if we have, break the loop
                         if t >= max_time:
                                 break;
                print 'Algorithm_{0}_finished'.format(Alg)
def random_tests():
        jobs = []
        for i in range (1,5):
                p = Process(target=run_test, args=(i,))
                jobs.append(p)
                p.start()
```

```
for p in jobs:
                   p.join()
def print_fail(alg, a, expected, returned):
         print "Algorithm [0] failed test [1]". format (alg, a)
         print "\squareExpected:\square{0}".format(expected)
         print "__Returned:_{{0}}".format(returned)
# Test each of the algorithms against known arrays and their answers
def validate_algorithms():
         a = \{ \}
         a \left[ "a1" \right] = \left[ 1 \; , \; 4 \; , \; -9 \; , \; 8 \; , \; 1 \; , \; 3 \; , \; 3 \; , \; 1 \; , \; -1 \; , \; -4 \; , \; -6 \; , \; 2 \; , \; 8 \; , \; 19 \; , \; -10 \; , \; -11 \right]
         a["a1\_sub"] = [8, 1, 3, 3, 1, -1, -4, -6, 2, 8, 19]
         a["a1_ans"] = 34
         a["a2"] = [2, 9, 8, 6, 5, -11, 9, -11, 7, 5, -1, -8, -3, 7, -2]
         a["a2\_sub"] = [2, 9, 8, 6, 5]
         a["a2_ans"] = 30
         a["a3"] = [10, -11, -1, -9, 33, -45, 23, 24, -1, -7, -8, 19]
         a["a3\_sub"] = [23, 24, -1, -7, -8, 19]
         a["a3\_ans"] = 50
         a["a4"] = [31, -41, 59, 26, -53, 58, 97, -93, -23, 84]
         a["a4\_sub"] = [59, 26, -53, 58, 97]
         a["a4_ans"] = 187
         a["a5"] = [3, 2, 1, 1, -8, 1, 1, 2, 3]
         a["a5\_sub"] = [3, 2, 1, 1]
         a["a5_ans"] = 7
         a["a6"] = [12, 99, 99, -99, -27, 0, 0, 0, -3, 10]
         a["a6\_sub"] = [12, 99, 99]
         a["a6_ans"] = 210
         a["a7"] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
         a["a7\_sub"] = [4, -1, 2, 1]
         a["a7_ans"] = 6
```

a["a8"] = [-1, -3, -5]

```
a["a8_sub"] = []
        a["a8_ans"] = 0
        all_passed = True
        for i in range (1,9):
                a1 = algorithm1(a["a{0}".format(i)])
                a2 = algorithm2(a["a{0}".format(i)])
                a3 = algorithm 3 (a ["a {0}". format (i)])
                a4 = algorithm4(a["a{0}".format(i)])
                    a1 != a["a{0}_ans".format(i)]:
                         print_fail(1, i, a["a{0}_ans".format(i)], a1)
                         all_passed = False
                i f
                     a2 != a["a{0}_ans".format(i)]:
                         print_fail(2, i, a["a{0}_ans".format(i)], a2)
                         all_passed = False
                     a3 != a["a{0}_{-}ans".format(i)]:
                         print_fail(3, i, a["a{0}_ans".format(i)], a3)
                         all_passed = False
                   a4 != a["a{0}_ans".format(i)]:
                         print_fail(4, i, a["a{0}_ans".format(i)], a4)
                         all_passed = False
        if all_passed = True:
                print 'All_tests_passed!_:)'
def read_input():
        A = []
        with open ('MSS_Problems.txt', 'r') as f:
                for line in f:
                         arr = line.replace('[','').replace(']','').replace(',',',').
                         arr = arr.split(',')
                         arr = [int(a) for a in arr]
                         A. append (arr)
```

return A

```
def MSS_test():
        A = read_input()
        with open('MSS_Results.txt', 'w') as f:
                 for cnt, arr in enumerate(A):
                          f. write ('Array  \{0\} : \ '. format (cnt))
                          f. write ('____Algorithm_1: _{1} {0}\n'. format (algorithm1 (arr))
                          f.write('____Algorithm_2:_\{0\}\n'.format(algorithm2(arr))
                          f. write ('____Algorithm_3: \{0\} \setminus n'. format (algorithm3 (arr))
                          f. write ('____Algorithm_4: _{1}\{0\}\n'. format (algorithm4 (arr))
def print_help():
        print "Program_argument_error!"
        print "__Valid_arguments_include_time_test , _alg_test , _or_MSS_test"
if __name__ == "__main__":
         if len(sys.argv) < 2:
                 print_help()
                 sys.exit()
         if sys.argv[1] = "time_test":
                 random_tests()
         elif sys.argv[1] == "alg_test":
                 validate_algorithms()
         elif sys.argv[1] == "MSS_test":
                 MSS_test()
         else:
                 print_help()
```