- 1) Faça um programa que leia dois números inteiros e escreva se os números são iguais ou diferentes.
- 2) Faça um programa que leia três números inteiros. Escreva se o terceiro número equivale à soma dos dois primeiros números informados.
- 3) Faça um programa que leia um número inteiro e escreva se o número é par ou ímpar.
- 4) Faça um programa que leia um número inteiro e escreva se este número é positivo, negativo ou zero.
- 5) Faça um programa que leia três números inteiros, representando horas, minutos e segundos. Escreva na tela se eles representam um horário válido ou não. Para isso, a hora deve ser um número de 0 a 23, o minuto deve ser um número de 0 a 59 e o segundo deve ser um número de 0 a 59.
- 6) Faça um programa que leia um número inteiro, representando um ano, escreva se este ano lido é um ano bissexto ou não.
- 7) Faça um programa que leia um número decimal, representando a altura de uma pessoa em metros, e diga a sua estatura (Anão menor que 1,50m; Estatura Média menor que 1,65m; Alto maior ou igual a 1,65m).
- 8) Faça um programa que leia dois números inteiros e escreva o maior dos dois números lidos.
- 9) Faça um programa que leia três números inteiros e escreva o maior dos três números lidos.
- 10) Faça um programa que leia um número inteiro e escreva quantos dígitos o número informado tem. Se o número informado tem mais de três dígitos informar: O número ... tem quatro ou mais dígitos. Utilizar o comando if de forma aninhada e operadores lógicos para descobrir a quantidade de dígitos do número informado.
- 11) Faça um programa que leia dois números decimais, representando as coordenadas X e Y de um ponto P, e escreva a qual quadrante pertence o ponto P.
- 12) Faça um programa que leia um número decimal, representando uma temperatura em graus Celsius, e escreva uma mensagem relativa ao estado da temperatura:

Temp < 0 – Congelante

Temp < 10 - Muito frio

Temp < 20 - Frio

Temp < 30 - Normal

Temp < 40 - Quente

Temp >= 40 - Muito quente

- 13) Faça um programa que leia três números decimais, representando o tamanho dos lados de um triângulo, ao final escrever o tipo de triângulo: equilátero, isósceles ou escaleno.
- 14) Faça um programa que leia três números decimais, representando o tamanho dos lados de um triângulo, ao final escrever se os lados formam um triângulo retângulo ($a^2=b^2+c^2$), obtusângulo ($a^2>b^2+c^2$) ou acutângulo ($a^2<b^2+c^2$).
- 15) Faça um programa para ler um caractere qualquer, informar se o caractere lido é uma vogal, uma consoante, um dígito numérico ou um caractere especial.
- 16) Faça um programa para ler um caractere representado a média final de um aluno. Escrever a descrição do caractere lido:

A – Excelente

B – Muito Bom

C – Bom

D - Regular

E – Fraco

F - Ruim

- 17) Faça um programa que leia um número inteiro entre 1 e 7, representando o dia da semana. Escrever o dia da semana por extenso, de acordo com a seguinte notação:
 - 1 Domingo
 - 2 Segunda-feira
 - 3 Terça-feira
 - 4 Quarta-feira
 - 5 Quinta-feira
 - 6 Sexta-feira
 - 7 Sábado
- 18) Faça um programa que leia um número inteiro entre 1 e 12, representando o número de um mês, escreva o nome do mês por extenso e o número de dias do mês informado (desconsidere anos bissextos). Se o número lido não estiver entre 1 e 12 escreva: número do mês informado é inválido.
- 19) Faça um programa que apresente uma lista dos planetas com os respectivos números de identificação e solicite ao usuário informar o número do planeta desejado (de acordo com a tabela abaixo) e, então, escreva: A distância do Sol até é de ... milhões de km. Caso o usuário escolha um número que não é válido, escreva: Erro! O número ... não está associado a nenhum planeta.

Distância dos planetas do sistema solar ao Sol		
Planeta		Distância média até o Sol
		(em milhões de quilômetros)
1.	Mercúrio	59
2.	Vênus	108
3.	Terra	150
4.	Marte	228
5.	Júpiter	750
6.	Saturno	1431
7.	Netuno	2877
8.	Urano	4509
9.	Plutão	5916

20) Faça um programa que leia a hora (hora e minuto) de entrada num estacionamento e a hora (hora e minuto) de saída, calcula e escreva o valor a pagar pelo tempo de permanência no estacionamento. Considere que, sempre que o tempo for superior a uma hora, o valor calculado será arredondando a hora para cima. Assim, se o cliente permanecer por uma hora e um minuto no estacionamento, ele pagará por duas horas. Um cliente nunca ficará mais do que 23h59 no estacionamento, porém poderá entrar num dia e sair no dia seguinte.

Tabela de Preços Estacionamento		
Tempo de	Valor a Pagar (R\$)	
Permanência		
Até 5min	Isento	
Até 30min	R\$ 4,00	
Até 1h	R\$ 7,00	
Até 2h	R\$ 12,00	
De 3h até 16h	R\$ 2,50 a mais por hora	
De 17h até 23h59	Preço único R\$ 50,00	