Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear GABARITO da AP3 - Primeiro Semestre de 2013 Professores: Márcia Fampa & Mauro Rincon

(6.0)1. Seja

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ -1 & 0 & 2 \\ 1 & 2 & 8 \end{array}\right)$$

- (a) Encontre o determinante de A utilizando expansão por cofatores e explicitando os seus cálculos.
- (b) Prove que o núcleo de A, N(A) é um subespaço vetorial de \mathbb{R}^3 .
- (c) Encontre uma base para N(A), e determine sua dimensão.
- (d) Prove que a imagem de A^T , $I(A^T)$ é um subespaço vetorial de \mathbb{R}^3 .
- (e) Encontre uma base para $I(A^T)$, e determine sua dimensão.
- (f) Prove que os subespaços N(A) e $I(A^T)$ são ortogonais.

Solução

(a)

$$\det(A) = (-1)(-1)^3 \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} + 2(-1)^5 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 2 \times 1 = 0.$$

- (b) Sejam $x_1, x_2 \in N(A)$, logo $Ax_1 = 0$ e $Ax_2 = 0$. Seja $x = \alpha_1 x_1 + \alpha_2 x_2$, onde $\alpha_1, \alpha_2 \in \mathbb{R}$. Temos $Ax = A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 Ax_1 + \alpha_2 Ax_2 = 0 + 0 = 0$. Logo, $x \in N(A)$, o que prova que N(A) é subespaço vetorial de \mathbb{R}^3 .
- (c) Podemos encontrar uma base para N(A) colocando A em sua forma escada reduzida por linhas.

$$\begin{pmatrix}
1 & 1 & 3 \\
-1 & 0 & 2 \\
1 & 2 & 8
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 3 \\
0 & 1 & 5 \\
0 & 1 & 5
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 3 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & -2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{pmatrix}$$

Se $x \in N(A)$, da forma escada reduzida por linhas de A temos que

$$x_1 - 2x_3 = 0 x_2 + 5x_3 = 0$$

Logo, $x_1 = 2x_3$ e $x_2 = -5x_3$ Fazendo $x_3 = \alpha$, vemos que N(A) é formado por todos os vetores da forma $\alpha(2, -5, 1)$. Logo $\{(2, -5, 1)\}$ é uma base para N(A) e sua dimensão é igual a 1.

- (d) Sejam $y_1, y_2 \in I(A^T)$, logo, existem x_1 e x_2 , tais que $y_1 = Ax_1$ e $y_2 = Ax_2$. Seja $y = \alpha_1 y_1 + \alpha_2 y_2$, onde $\alpha_1, \alpha_2 \in \mathbb{R}$. Temos $y = \alpha_1 Ax_1 + \alpha_2 Ax_2 = A(\alpha_1 x_1 + \alpha_2 x_2) = Ax$, onde $x = \alpha_1 x_1 + \alpha_2 x_2$. Logo existe x tal que $y = A^T x$, provando que $y \in I(A^T)$. Logo $I(A^T)$ é um subespaço vetorial de \mathbb{R}^3 .
- (e) Podemos encontrar base para $I(A^T)$ também colocando A em sua forma escada reduzida por linhas.

$$\left(\begin{array}{rrr} 1 & 1 & 3 \\ -1 & 0 & 2 \\ 1 & 2 & 8 \end{array}\right) \sim \left(\begin{array}{rrr} 1 & 0 & -2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{array}\right)$$

As colunas de A^T geram o espaço $I(A^T)$, ou equivalentemente, as linhas de A geram $I(A^T)$. Desta forma, $\{(1,0,-2),(0,1,5)\}$ é uma base para $I(A^T)$ e sua dimensão é igual a 2.

(f) Os subespaços N(A) e $I(A^T)$ são ortogonais se $x^Ty=0$ para todo $x \in N(A)$ e $y \in I(A^T)$. Se $x \in N(A)$ e $y \in I(A^T)$ então existem os escalares α, β_1, β_2 , tais que $x = \alpha(2, -5, 1)$ e $y = \beta_1(1, 0, -2) + \beta_2(0, 1, 5)$. Logo, $x^Ty = \alpha\beta_1(2, -5, 1)^T(1, 0, -2) + \beta_2(0, 1, 5)$

 $\alpha\beta_2(2,-5,1)^T(0,1,5)=0.$ Portanto, N(A) e $I(A^T)$ são ortogonais.

(2.0) 2. Ache a dimensão e uma base para a solução geral
 ${\cal W}$ do sistema homogêneo

$$\begin{cases} x + 3y + 2z = 0 \\ 2x + 7y + 2z = 0 \\ x + y + 6z = 0 \\ y - 2z = 0 \end{cases}$$

Solução

Escalonando o sistema, obtemos

$$\begin{cases} x + 3y + 2z = 0 \\ 2x + 7y + 2z = 0 \\ x + y + 6z = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ y - 2z = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ -2y + 4z = 0 \\ y - 2z = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ y - 2z = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

$$\begin{cases} x + 3y + 2z = 0 \\ 0 = 0 \end{cases} \rightarrow$$

Como x=-8z e y=2z, o sistema tem uma variável livre, z, logo, $\dim W=1$ e uma base é dada por $\{(-8,2,1)\}$.

(2.0)3. Em cada item abaixo, determinar se os vetores dados geram \mathbb{R}^3 , justificando a resposta.

(a)
$$v_1 = (1, -1, 1), v_2 = (2, 1, 3), v_3 = (4, -1, 5).$$

Solução: Não, pois formando a matriz cujas colunas são os vetores dados e reduzindo-a a forma escalonada, temos:

$$\begin{pmatrix} 1 & 2 & 4 \\ -1 & 1 & -1 \\ 1 & 3 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 3 \\ 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Como o posto da matriz é 2 e a dimensão de \mathbb{R}^3 é 3, os vetores não geram o \mathbb{R}^3 .

(b)
$$v_1 = (3, 1, 4), v_2 = (2, -3, 5), v_3 = (5, -2, 9), v_4 = (6, 2, 1).$$

Solução: Sim, pois formando a matriz cujas colunas são os vetores dados e reduzindo-a a forma escalonada, temos:

$$\begin{pmatrix} 3 & 2 & 5 & 6 \\ 1 & -3 & -2 & 2 \\ 4 & 5 & 9 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & 2 \\ 3 & 2 & 5 & 6 \\ 4 & 5 & 9 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & 2 \\ 0 & 11 & 11 & 0 \\ 0 & 17 & 17 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -2 & 2 \\ 0 & 11 & 11 & 0 \\ 0 & 0 & 0 & -7 \end{pmatrix}$$

Como o posto da matriz é 3 e a dimensão de \mathbb{R}^3 também é, os vetores geram o \mathbb{R}^3 . Os vetores v_1 , v_2 e v_4 são L.I. e formam uma base para o \mathbb{R}^3 .