Name	PDF	CDF	E(X)	V(X)	Parameters
Uniform	$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$ Example: A bus is going to arrive a	$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$ t the bus stop sometime within the next 30			a, b endpoints rrival time X is equally likely.
Exponential	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$F(x) = \begin{cases} 0 & x < 0\\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	λ = average rate of events per time unit
	Example: On average, 5 busses stop at the bus stop per hour. X is the time you have to wait until the next bus arrives. Note: Like the discrete waiting time distribution (Geometric), the Exponential has the "Lack-of-Memory" property.				
Gamma	$f(x) = \begin{cases} \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)} & x > 0\\ 0 & \text{otherwise} \end{cases}$	F(x) = (incomplete gamma function)	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$	λ = average rate of events per time unit k = number of events to wait for
	Example: On average, 5 busses stop at the bus stop per hour. X is the time you have to wait until the third bus arrives.				
Normal	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\Phi(x)$ - Standardize your random variable and then use the table or your calculator to find specific values.	μ	σ^2	$\mu = \text{mean}$ $\sigma^2 = \text{variance}$
	Example: Normal distributions are most often used to measure quantities like heights, weights, etc. They arise when we take averages of any kind of random variable (CLT).				