ROBEM I Assume $(X_n : n \ge 0)$ is an irreducible Markov chain on E. Prove that $(X_n : n \ge 0)$ is recurrent (or transient) $\iff \forall i \in E$,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}\right)=1(\text{ or }0).$$

SOUTHON. Only need to prove " \Longrightarrow ".

First we assume $(X_n : n \in \mathbb{N})$ is recurrent, we should prove $\mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$. Let $\tau_1 = \inf\{n > 0 : X_n = i\}$, and for $n \in \mathbb{N}^+$, we let $\tau_{n+1} = \inf\{n > \tau_n : X_n = i\}$. Since i is recurrent and (X_n) is irreducible, we know that $\tau_1 < \infty, a.s.$. Then $(X_{\tau_1+n} : n \in \mathbb{N})$ is a Markov chain with the same transition matrix as (X_n) . So we get that $\tau_2 - \tau_1 < \infty, a.s.$. So $\tau_2 < \infty$, a.s.. Use MI, we can easily get that $\forall n \in \mathbb{N}^+, \tau_n < \infty, a.s.$. Easy to get that $\tau_{n+1} > \tau_n$ and $\tau_1 > 0$, so $\tau_n \geq n$. So $\tau_n < \infty \implies \exists k \geq n, X_k = i$. So $\forall n \in \mathbb{N}, \mathbb{P}(\bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$. Thus, $\mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{X_k = i\}) = 1$.

Second we assume $(X_n:n\in\mathbb{N})$ is transient, we should prove that $\mathbb{P}(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\})=0$. Write $A=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{X_k=i\}$. We define τ_n as above. Easy to know $\forall \omega\in A, \forall n\in\mathbb{N}^+, \tau_n<\infty$. And easy to know that $\tau_{n+1}-\tau_n\mid_{\tau_n<\infty}$ has the same distribution for every n. And since (X_n) is transient, we know (X_{τ_k+n}) is transient for every $k\in\mathbb{N}^+$. So we know $\mathbb{P}(\tau_{n+1}-\tau_n<\infty\mid\tau_n<\infty)<1$. Then $\mathbb{P}(A)=\mathbb{P}(\forall n,\tau_n<\infty)\leq\mathbb{P}(\forall n,\tau_{n+1}-\tau_n<\infty)\leq\prod_{n=1}^{\infty}\mathbb{P}(\tau_{n+1}-\tau_n<\infty\mid\tau_n<\infty)=\prod_{n=1}^{\infty}\mathbb{P}(\tau_2-\tau_1<\infty\mid\tau_1<\infty)=0$.

ROBEM II Assume $(X_n : n \ge 0)$ is Markov chain on E, where E is finite. Prove that $\exists x \in E, x$ is recurrent.

SOLTON. Easily $\sum_{i\in E}\sum_{n=1}^{\infty}p_{ki}(n)=\sum_{n\in\mathbb{N}^+}\sum_{i\in E}p_{ki}(n)=\sum_{n\in\mathbb{N}^+}1=+\infty$. Since E is finite, we obtain that there is at least one i such that $\sum_{n\in\mathbb{N}^+}p_{ki}(n)=\infty$, then p_{ki}^* . Then i is recurrent. \square

ROBEM III Assume $(X_n : n \ge 0)$ is Markov chain on \mathbb{Z} . Prove it is transient $\iff \forall \mu_0$ is primitive distribution, $\lim_{n\to\infty} |X_n| \stackrel{\text{a.s.}}{=} \infty$.

SOUTION. Only need to prove that $\forall k \in \mathbb{N}$, $\liminf_{n \to \infty} |X_n| > k, a.s.$. Consider the event $\liminf_{n \to \infty} |X_n| \le k$, it means $\forall n \in \mathbb{N}, \exists t \ge n, X_t \in [-k, k]$. So we only need to prove $\mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t \in [-k, k]\}\right) = 0$. It is sufficient to prove that $\mathbb{P}\left(\bigcup_{u \in [-k, k]} \bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$. Since (X_n) is transient, it has been proved that $\mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$. So $\mathbb{P}\left(\bigcup_{u \in [-k, k]} \bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0 \le \sum_{u \in [-k, k]} \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{t=n}^{\infty} \{X_t = u\}\right) = 0$.

ROBIEM IV Assume $\{a_i : i \geq 1\} \subset (0,1)$. Consider $E := \mathbb{N}$, P is a transition matrix on E, where $p_{ij} = a_i \mathbb{1}_{\{j=0\}} + (1-a_i) \mathbb{1}_{\{j=i+1\}}$. Prove:

- 1. P is irreducible.
- 2. P is recurrent $\iff \sum_i a_i = \infty$.
- 3. *P* is ergodic $\iff \sum_{k=1}^{\infty} \prod_{i=1}^{k-1} (1 a_i) < \infty$.

- SOUTHON. 1. Easy to prove that $p_{i0}(1) > 0, \forall i \in \mathbb{N}$. And easily $p_{0i}(i) = \prod_{k=0}^{i-1} (1 a_k) > 0$. So P is irreducible.
 - 2. Since P is irreducible, we only need to consider $X_0 = 0$. Then $\{T_0 > n\} \stackrel{\text{a.s.}}{=} \{X_k = k, k = 0, \dots, n\}$. Then $\mathbb{P}_0(T_0 = \infty) = \mathbb{P}_0(\bigcap_n \{T_0 > n\}) = \lim_{n \to \infty} \mathbb{P}_0(X_k = k, k = 0, \dots, n) = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1 a_k) = \prod_{k=0}^{\infty} (1 a_k)$. Then $\mathbb{P}_0(T_0 = \infty) = 0 \iff \prod_{k=0}^{\infty} (1 a_k) = 0 \iff \sum_k a_k = \infty$.
- 3. Since $\mathbb{E}_0(T_0) = \sum_{n \in E} \mathbb{P}_0(T_0 > n) = \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1 a_k)$, then P is ergodic $\iff \mathbb{E}_0(T_0) < \infty$ $\iff \sum_{n=0}^{\infty} \prod_{k=0}^{n-1} (1 a_k) < \infty$.

ROBEM V Assume P is a transition matrix on E and P is irreducible, $j \in E$. Prove: P is recurrent $\iff 1$ is the minimum non-negative solution of

$$y_i = \sum_{k \neq j} p_{ik} y_k + p_{ij}, i \in E \setminus \{j\}$$
 (1)

SOUTON. " \Longrightarrow ": If P is recurrent, then the bounded solution of $z_i = \sum_{k \in E} p_{ik} z_k, i \in E \setminus \{j\}$ is constant. Easy to get that 1 is one of solution of Equation (1), now we will prove that 1 is the unique solution. Assume there is another solution, then $y_i - 1 = \sum_{k \neq j} p_{ik} (y_k - 1), \forall i \in E \setminus \{j\}$. Then we let $z_j = 0, z_i = y_i - 1, \forall i \neq j$, we find a non-constant solution, contradiction! So 1 is the unique solution and thus minimum solution.

"\(\iff \textit{": If \$P\$ is transient, then the bounded solution of \$z_i = \sum_{k \in E} p_{ik} z_k, i \in E \\ \{j\}\$ has non-constant solution. Without loss of generality, we can assume $z_j = 0, \forall i \in E, |z_i| \le 1, \exists i_0 \in E, z_{i_0} < 0$. Let $y_i = 1 + z_i, i \in E$, then $\{y_i : i \in E\}$ is the bounded solution of Equation (1). But $y_{i_0} < 1, y_i \ge 0, i \in E$. So 1 is not the minimum solution.

 $\mathbb{R}^{\text{OBEM VI Let }} \{a_k : k \geq 0\} \text{ satisfies } \sum_{k \geq 0} a_k = 1, a_k \geq 1, a_0 > 0, \ \mu := \sum_{k=1}^{\infty} k a_k > 1. \text{ Define}$ $p_{ij} = \begin{cases} a_j &, i = 0 \\ a_{j-i+1} &, i \geq 1 \land j \geq i-1. \text{ Prove: } P \text{ is transient.} \\ 0 &, \text{ otherwise} \end{cases}$

SOLION. First, we prove that P is irreducible: Since $\sum_{k=1}^{\infty} k a_k > 1$, then $\exists m, a_m > 0$. And $\forall i \geq 1, \ p_{i-1,i} = a_0 > 0$. Then $\forall i, j$, if i < j, then $p_{ij}(j-i) = a_0^{j-i} > 0$. If $i \geq j$, let $t \equiv i-j \pmod{m}$, $1 \leq t \leq m$, then $p_{ij}(t+1) = a_0^t a_m > 0$.

Let $\xi_n: n \in \mathbb{N}$ is a sequence of i.i.d r.v with $\mathbb{P}(\xi_0 = i) = a_i$. Since P is irreducible, we only consider the chain begin at 0. Let $X_0 = 0$, $X_{n+1} = X_n + \xi_n - \mathbb{1}_{X_n > 0}$. Then easily X_n is the Markov chain begin at 0 with transition matrix P. And $X_n = \sum_{k=0}^{n-1} \xi_k - \sum_{k=0}^{n-1} \mathbb{1}_{X_n > 0} \ge \sum_{k=0}^{n-1} (\xi_k - 1)$. So we obtain $\lim_{n \to \infty} \frac{X_n}{n} \ge \lim_{n \to \infty} \inf_{n \to \infty} \frac{\sum_{k=0}^{n-1} \xi_{k-1}}{n} = \mu - 1 > 0$. So $\lim_{n \to \infty} \inf_{n \to \infty} X_n = \infty$, so 0 is transient.