Thresholds

Jinyoung Park

Stanford University

SCMS
Combinatorics Seminar
July 2022

New result

Conjecture [Kahn-Kalai '06]; proved by P.-Pham ('22).

There exists a universal K>0 such that for every finite set X and increasing property $\mathcal{F}\subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F})\log|X|$$

- $p_c(\mathcal{F})$: threshold for \mathcal{F}
- $p_{E}(\mathcal{F})$: expectation threshold for \mathcal{F}

Basic definitions

* K_n : the complete graph on n vertices

• X: finite set; $2^X = \{\text{subsets of } X\}$

- X: finite set; $2^X = \{\text{subsets of } X\}$
- μ_p : p-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|} (1-p)^{|X\setminus A|} \quad A \subseteq X$$

• $X_p \sim \mu_p$ "p-random" subset of X

- X: finite set; $2^X = \{\text{subsets of } X\}$
- μ_p : p-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|} (1-p)^{|X\setminus A|} \quad A \subseteq X$$

- $X_p \sim \mu_p$ "p-random" subset of X
 - e.g.1. $X = {\binom{[n]}{2}} = E(K_n)$
 - $ightarrow X_p = G_{n,p}$ Erdős-Rényi random graph
 - e.g.2. $X = \{k \text{-clauses from } \{x_1, ..., x_n\} \}$
 - $\rightarrow X_p$: random CNF formula

- X: finite set; $2^X = \{\text{subsets of } X\}$
- μ_p : p-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|} (1-p)^{|X\setminus A|} \quad A \subseteq X$$

- $X_p \sim \mu_p$ "p-random" subset of X
 - e.g.1. $X = {\binom{[n]}{2}} = E(K_n)$

$$\rightarrow X_p = G_{n,p}$$
 Erdős-Rényi random graph

- e.g.2. $X = \{k \text{-clauses from } \{x_1, ..., x_n\} \}$
 - $\rightarrow X_p$: random CNF formula
- $\mathcal{F} \subseteq 2^X$ is an increasing property if

$$B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$$

- e.g.1. $\mathcal{F} = \{\text{connected}\}; \ \mathcal{F} = \{\text{contain a triangle}\}$
- e.g.2. $\mathcal{F} = \{\text{not satisfiable}\}$

Thresholds

Fact.

For any increasing property \mathcal{F} ($\neq \emptyset, 2^X$), $\mu_p(\mathcal{F})$ (= $\mathbb{P}(X_p \in \mathcal{F})$) is continuous and strictly increasing in p.

• $p_c(\mathcal{F})$ is called **the threshold** for \mathcal{F} .

Thresholds

Fact.

For any increasing property \mathcal{F} ($\neq \emptyset, 2^X$), $\mu_p(\mathcal{F})$ (= $\mathbb{P}(X_p \in \mathcal{F})$) is continuous and strictly increasing in p.

• $p_c(\mathcal{F})$ is called **the threshold** for \mathcal{F} .

• cf. Erdős-Rényi: $p_0 = p_0(n)$ is a threshold function for \mathcal{F}_n if

$$\mu_p(\mathcal{F}_n) o egin{cases} 0 & \text{if } p \ll p_0 & *p_c(\mathcal{F}_n) \text{ is always an Erdős-Rényi} \\ 1 & \text{if } p \gg p_0 & \text{threshold (Bollobás-Thomason '87)}. \end{cases}$$

The Kahn-Kalai Conjecture

"It would probably be more sensible to conjecture that it is **not** true."

- Kahn and Kalai (2006)

Question.

What drives $p_c(\mathcal{F})$?

Example 1. Containing a copy of H

 \asymp : same order

•
$$X = \binom{[n]}{2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

≍: same order

•
$$X = \binom{[n]}{2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

• Usual suspect: expectation calculation

$$\mathbb{E}[\# H' \text{s in } G_{n,p}] \asymp n^4 p^5 \to \begin{cases} 0 & \text{if} \quad p \ll n^{-4/5} \\ \infty & \text{if} \quad p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-4/5}$

•
$$X = \binom{[n]}{2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

Usual suspect: expectation calculation

$$\mathbb{E}[\# H' \text{s in } G_{n,p}] \asymp n^4 p^5 \to \begin{cases} 0 & \text{if} \quad p \ll n^{-4/5} \\ \infty & \text{if} \quad p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\approx n^{-4/5}$

- triv. $p_c(\mathcal{F}_H) \gtrsim n^{-4/5}$ $(: \mathbb{E}X \to 0 \Rightarrow X = 0 \text{ with high probability})$
- truth: $p_c(\mathcal{F}_H) \simeq n^{-4/5}$

Example 2. Containing a copy of K <

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F}_K : contain a copy of K

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of K?

Example 2. Containing a copy of K

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F}_K : contain a copy of K

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of K?

$$\mathbb{E}[\# \text{ K's in } G_{n,p}] \asymp n^5 p^6 \to \begin{cases} 0 & \text{if} \quad p \ll n^{-5/6} \\ \infty & \text{if} \quad p \gg n^{-5/6} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-5/6}$

• Q.
$$p_c(\mathcal{F}_K) \asymp n^{-5/6}$$
? (triv. $p_c(\mathcal{F}_K) \gtrsim n^{-5/6}$)

Example 2. Containing a copy of K

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F}_K : contain a copy of K

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of K?

$$\mathbb{E}[\# \text{ K's in } G_{n,p}] \asymp n^5 p^6 \to \begin{cases} 0 & \text{if} \quad p \ll n^{-5/6} \\ \infty & \text{if} \quad p \gg n^{-5/6} \end{cases}$$

"threshold for
$$\mathbb{E}$$
" $symp n^{-5/6}$

- Q. $p_c(\mathcal{F}_K) \asymp n^{-5/6}$? (triv. $p_c(\mathcal{F}_K) \gtrsim n^{-5/6}$)
- truth: $p_c(\mathcal{F}_K) \approx n^{-4/5}$

Erdős-Rényi ('60), Bollobás ('81)

(Rough:) For **fixed** graph K,

 $p_c(\mathcal{F}_K) symp "$ threshold for $\mathbb{E}"$ of the "densest" subgraph of K

Example 3. Containing a perfect matching

•
$$X = \binom{[n]}{2}$$
 (so $X_p = G_{n,p}$); \mathcal{F} : contain a perfect matching

Example 3.

What's the threshold for $G_{n,p}$ to contain a perfect matching? (2|n)

Example 3. Containing a perfect matching | | | | | |

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F} : contain a perfect matching

Example 3.

What's the threshold for $G_{n,p}$ to contain a perfect matching? (2|n)

$$\mathbb{E}[mu]$$
 Perfact matchings in $G_{n,p}] pprox \left(rac{np}{e}
ight)^{n/2}
ightarrow egin{cases} 0 & ext{if} & p \ll 1/n \ \infty & ext{if} & p \gg 1/n \end{cases}$

"threshold for \mathbb{E} " symp 1/n

• Q.
$$p_c(\mathcal{F}) \approx 1/n$$
? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$)

Example 3. Containing a perfect matching | | | ... |

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F} : contain a perfect matching

Example 3.

What's the threshold for $G_{n,p}$ to contain a perfect matching? (2|n)

$$\mathbb{E}[mu]$$
 Perfact matchings in $G_{n,p}] pprox \left(rac{np}{e}
ight)^{n/2}
ightarrow egin{dcases} 0 & ext{if} & p \ll 1/n \ \infty & ext{if} & p \gg 1/n \end{cases}$

"threshold for \mathbb{E} " symp 1/n

- Q. $p_c(\mathcal{F}) \approx 1/n$? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$)
- truth: $p_c(\mathcal{F}) \asymp \log n/n$

Example 3. Containing a perfect matching

• $X = \binom{[n]}{2}$ (so $X_p = G_{n,p}$); \mathcal{F} : contain a perfect matching

Example 3.

What's the threshold for $G_{n,p}$ to contain a perfect matching? (2|n)

$$\mathbb{E}[mu]$$
 Perfact matchings in $G_{n,p}] pprox \left(rac{np}{e}
ight)^{n/2}
ightarrow egin{cases} 0 & ext{if} & p \ll 1/n \ \infty & ext{if} & p \gg 1/n \end{cases}$

"threshold for \mathbb{E} " symp 1/n

- Q. $p_c(\mathcal{F}) \approx 1/n$? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$)
- truth: $p_c(\mathcal{F}) \asymp \log n/n$ \leftarrow another trivial lower bound

Fact. $p \ll \log n/n \Rightarrow G_{n,p}$ has an isolated vertex w.h.p.

- Now, $X = \binom{[n]}{r}$
- $X_p = \text{random } r\text{-uniform hypergraph } \mathcal{H}^r_{n,p}$

Example 3'. (Shamir's Problem ('80s))

For $r \geq 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

- Now, $X = \binom{[n]}{r}$
- $X_p = \text{random } r\text{-uniform hypergraph } \mathcal{H}^r_{n,p}$

Example 3'. (Shamir's Problem ('80s))

For $r \geq 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder

- Now, $X = \binom{[n]}{r}$
- $X_p = \text{random } r\text{-uniform hypergraph } \mathcal{H}^r_{n,p}$

Example 3'. (Shamir's Problem ('80s))

For $r \geq 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

- cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder
- e.g. r = 3:
 - ullet \mathbb{E} [# perfect matchings in $\mathcal{H}^r_{n,p}] symp \left(n^2p\right)^{n/3} o$ "threshold for \mathbb{E} " $symp n^{-2}$
 - Lower bound from coupon-collector:

$$p_c(\mathcal{F}) \gtrsim \log n/n^2$$

- Now, $X = \binom{[n]}{r}$
- $X_p = \text{random } r\text{-uniform hypergraph } \mathcal{H}^r_{n,p}$

Example 3'. (Shamir's Problem ('80s))

For $r \geq 3$, what's the threshold for $\mathcal{H}^r_{n,p}$ to contain a perfect matching? (r|n)

- cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder
- e.g. r = 3:
 - ullet \mathbb{E} [# perfect matchings in $\mathcal{H}^r_{n,p}] symp \left(n^2p
 ight)^{n/3} o$ "threshold for \mathbb{E} " $symp n^{-2}$
 - Lower bound from coupon-collector:

$$p_c(\mathcal{F}) \gtrsim \log n/n^2$$

• $p_c(\mathcal{F}) \asymp \log n/n^2$ (Johansson-Kahn-Vu '08)

* $\log n$ gap again

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior ($\log n$ gap)

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior ($\log n$ gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$p_{\mathsf{E}} \asymp n^{-(r-1)} \xrightarrow{\mathsf{KKC}} p_c \lesssim \log n/n^{r-1}$$

- We have some **trivial lower bounds** on p_c :
 - Ex 1, 2 (contain H/K): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$p_{\mathsf{E}} \asymp n^{-(r-1)} \xrightarrow{\mathsf{KKC}} p_c \lesssim \log n/n^{r-1}$$

threshold for bounded degree spanning trees ("tree conjecture";
 Montgomery '19)

• For abstract \mathcal{F} , it's unclear whose expectation we want to compute, so need a careful definition for the "threshold for \mathbb{E} ."

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \mathcal{G} \subseteq 2^X$ such that

- ① " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \mathcal{G} \subseteq 2^X$ such that

- ① " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset

e.g. in Ex 2,
$$X = {[n] \choose 2}$$
, \mathcal{F} : contain a copy of K

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \ \mathcal{G} \subseteq 2^X$ such that

- ① " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset

e.g. in Ex 2,
$$X = {\binom{[n]}{2}}$$
, \mathcal{F} : contain a copy of K

$$ightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 ext{ for } q \lesssim n^{-5/6}$$

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \ \mathcal{G} \subseteq 2^X$ such that

- ① " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset

e.g. in Ex 2,
$$X = {\binom{[n]}{2}}$$
, \mathcal{F} : contain a copy of K

$$ightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 ext{ for } q \lesssim n^{-5/6}
ightarrow n^{-5/6} \lesssim p_c(\mathcal{F})$$

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \ \mathcal{G} \subseteq 2^X$ such that

- " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ ($\mathcal{F} \subseteq \langle \mathcal{G} \rangle$)

the upset generated by \mathcal{G}

e.g. in Ex 2,
$$X = {\binom{[n]}{2}}$$
, \mathcal{F} : contain a copy of K

• $\mathcal{G}_1 = \{\text{all (labeled) copies of } K \bigcirc s \}$

$$ightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 \text{ for } q \lesssim n^{-5/6}
ightarrow n^{-5/6} \lesssim p_c(\mathcal{F})$$

• $\mathcal{G}_2 = \{ \text{all (labeled) copies of } H \circlearrowleft s \}$ $\to \sum_{S \in \mathcal{G}_2} q^{|S|} \le 1/2 \text{ for } q \lesssim n^{-4/5}$

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \ \mathcal{G} \subseteq 2^X$ such that

e.g. in Ex 2,
$$X = {[n] \choose 2}$$
, \mathcal{F} : contain a copy of K

- $\mathcal{G}_1 = \{\text{all (labeled) copies of } K \bigcirc s \}$
 - $ightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \leq 1/2 ext{ for } q \lesssim n^{-5/6}
 ightarrow n^{-5/6} \lesssim p_c(\mathcal{F})$
- $G_2 = \{\text{all (labeled) copies of } H \circlearrowleft s\}$

$$ightarrow \sum_{S \in \mathcal{G}_2} q^{|S|} \le 1/2 ext{ for } q \lesssim n^{-4/5} \quad
ightarrow n^{-4/5} \lesssim p_c(\mathcal{F})$$

$p_{E}(\mathcal{F})$: the expectation threshold

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \mathcal{G} \subseteq 2^X$ such that

- ① " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $(\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$ the upset

generated by \mathcal{G}

• $p_{\mathsf{E}}(\mathcal{F}) := \max\{q : \exists \mathcal{G}\} \rightarrow \text{a trivial lower bound on } p_c(\mathcal{F})$

$p_{E}(\mathcal{F})$: the expectation threshold

Observation

$$p_c(\mathcal{F}) \geq q$$
 if $\exists \mathcal{G} \subseteq 2^X$ such that

generated by G

• $p_{E}(\mathcal{F}) := \max\{q : \exists \mathcal{G}\} \rightarrow \text{a trivial lower bound on } p_{c}(\mathcal{F})$

The Kahn-Kalai Conjecture ('06)

There exists a universal K>0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) p_{\scriptscriptstyle{\mathsf{C}}}(\mathcal{F}) \leq K p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \log |X|$$

Results and Proof Sketch

- $p_{\scriptscriptstyle \rm F}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - ullet skip def: roughly, replace cover ${\cal G}$ by "fractional cover"

- $p_{\scriptscriptstyle \rm F}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - ullet skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \leq p_{\scriptscriptstyle{\mathsf{C}}}(\mathcal{F})$

- $p_{\scriptscriptstyle E}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - ullet skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_c(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19).

There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}^*(\mathcal{F}) \log \ell(\mathcal{F}).$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

- $p_{\scriptscriptstyle \rm F}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - ullet skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_c(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19).

There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}^*(\mathcal{F}) \log \ell(\mathcal{F}).$$

- * $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}
 - Weaker than KKC, but in all known applications, $p_{\scriptscriptstyle E}(\mathcal{F}) \asymp p_{\scriptscriptstyle E}^*(\mathcal{F})$
 - Proof inspired by Alweiss-Lovett-Wu-Zhang

"Erdős-Rado Sunflower Conjecture"

$$p_{\scriptscriptstyle E}(\mathcal{F})$$
 vs. $p_{\scriptscriptstyle E}^*(\mathcal{F})$

FKNP (19') $p_c(\mathcal{F}) \leq \mathit{Kp}_E^*(\mathcal{F}) \log \ell(\mathcal{F})$

ullet Recall. In all known applications, $p_{\scriptscriptstyle{
m E}}(\mathcal{F})symp p_{\scriptscriptstyle{
m E}}^*(\mathcal{F})$

$$p_{\scriptscriptstyle E}(\mathcal{F})$$
 vs. $p_{\scriptscriptstyle E}^*(\mathcal{F})$

 $\mathsf{FKNP}\ (19')\ p_c(\mathcal{F}) \leq \mathit{Kp}_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \log \ell(\mathcal{F})$

ullet Recall. In all known applications, $p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) symp p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F})$

Conjecture (Talagrand '10) $p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) symp p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F})$

There exists a universal K such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \leq Kp_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F})$$

$$p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F})$$
 vs. $p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F})$

 $\mathsf{FKNP}\ (19')\ p_c(\mathcal{F}) \leq \mathit{Kp}_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \log \ell(\mathcal{F})$

ullet Recall. In all known applications, $ho_{f E}({\cal F}) symp
ho_{f E}^*({\cal F})$

Conjecture (Talagrand '10) $p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \asymp p_{\scriptscriptstyle{\mathsf{F}}}^*(\mathcal{F})$

There exists a universal K such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \leq \mathit{Kp}_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F})$$

- Implies equivalence of KKC and fractional KKC
 - the most likely way to prove KKC?

ullet Recall. In all known applications, $ho_{\scriptscriptstyle{
m E}}({\cal F}) symp
ho_{\scriptscriptstyle{
m E}}^*({\cal F})$

Conjecture (Talagrand '10) $p_{\scriptscriptstyle\mathsf{E}}(\mathcal{F})symp p_{\scriptscriptstyle\mathsf{E}}^*(\mathcal{F})$

There exists a universal K such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) p_{\scriptscriptstyle{\mathsf{E}}}^*(\mathcal{F}) \leq Kp_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F})$$

- Implies equivalence of KKC and fractional KKC
 - the most likely way to prove KKC?
- Even simple instances of the conjecture are not easy to establish;
 Talagrand suggested two test cases, proved by (respectively)
 DeMarco-Kahn ('15) and Frankston-Kahn-P. ('21)

New result

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)

There exists a universal K>0 such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$$

- * $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}
 - Proofs inspired by ALWZ (sunflower) and FKNP (fractional Kahn-Kalai) but implementation very different

New result

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)

There exists a universal K>0 such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$$

- * $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}
 - Proofs inspired by ALWZ (sunflower) and FKNP (fractional Kahn-Kalai) but implementation very different
 - Reformulation think: $\mathcal{H} = \{\text{minimal elements of } \mathcal{F}\}$

Theorem (P.-Pham '22)

 $\exists L>0 \text{ such that } \forall \ell\text{-bdd } \mathcal{H}\text{, if } p>p_{\mathrm{E}}\big(\langle\mathcal{H}\rangle\big)\text{, then, with } m=Lp\log\ell|X|\text{,}$

$$\mathbb{P}(X_m \in \langle \mathcal{H} \rangle) = 1 - o_\ell(1)$$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}\rangle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}\rangle)=1-o_\ell(1)$$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- Choose $W(=X_m)$ little by little: $W=W_1\sqcup W_2\sqcup\ldots$
- At the end, want $W \supseteq S \in \mathcal{H}$ whp.

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- Choose $W(=X_m)$ little by little: $W=W_1\sqcup W_2\sqcup \ldots$
- At the end, want $W \supseteq S \in \mathcal{H}$ whp.
- ullet Run algorithm: no assumption o two possible outputs

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- Choose $W(=X_m)$ little by little: $W=W_1\sqcup W_2\sqcup \ldots$
- At the end, want $W \supseteq S \in \mathcal{H}$ whp.
- ullet Run algorithm: no assumption o two possible outputs
- (Recall) $p > p_{\mathsf{E}}(\langle \mathcal{H} \rangle)$ means:

 $\langle \mathcal{H} \rangle$ does not admit a *p*-cheap cover.

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathsf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

• $W = W_1 \sqcup W_2 \sqcup \ldots$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}\rangle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}\rangle)=1-o_\ell(1)$$

$$\bullet \ \ W = W_1 \sqcup W_2 \sqcup \dots \ ; \quad \mathcal{H} = \mathcal{H}_0 \xrightarrow{\mathsf{update}} \mathcal{H}_1 \xrightarrow{\mathsf{update}} \dots$$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \dots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\mathsf{update}} \mathcal{H}_1 \xrightarrow{\mathsf{update}} \dots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \ldots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\text{update}} \mathcal{H}_1 \xrightarrow{\text{update}} \ldots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

X

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \dots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\mathsf{update}} \mathcal{H}_1 \xrightarrow{\mathsf{update}} \dots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

• When **terminates**, with $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \dots$ ("partial cover") either (1) \mathcal{U} covers \mathcal{H} ; or (2) $W \in \langle \mathcal{H} \rangle$

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathtt{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \ldots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\text{update}} \mathcal{H}_1 \xrightarrow{\text{update}} \ldots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

- When **terminates**, with $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \dots$ ("partial cover") either (1) \mathcal{U} covers \mathcal{H} ; or (2) $W \in \langle \mathcal{H} \rangle$
- ullet [Main Point] Typically, ${\cal U}$ is "p-cheap."

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \ldots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\text{update}} \mathcal{H}_1 \xrightarrow{\text{update}} \ldots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

- When **terminates**, with $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \dots$ ("partial cover") either (1) \mathcal{U} covers \mathcal{H} ; or (2) $W \in \langle \mathcal{H} \rangle$
- [Main Point] Typically, $\mathcal U$ is "p-cheap."

$$\exists L>0$$
 such that $orall \ell$ -bdd \mathcal{H} , if $p>p_{\mathbf{E}}(\langle\mathcal{H}
angle)$, then, with $m=Lp\log\ell|X|$,
$$\mathbb{P}(X_m\in\langle\mathcal{H}
angle)=1-o_\ell(1)$$

- $W = W_1 \sqcup W_2 \sqcup \dots$; $\mathcal{H} = \mathcal{H}_0 \xrightarrow{\text{update}} \mathcal{H}_1 \xrightarrow{\text{update}} \dots$
- At *i*th step: choose W_i of size $\approx Lp|X|$ at random \rightarrow Construct cover $\mathcal{U}_i = \mathcal{U}_i(W_i)$ of some $\mathcal{G}_i = \mathcal{G}_i(W_i) \subseteq \mathcal{H}_{i-1}$

- When **terminates**, with $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \dots$ ("partial cover") either (1) \mathcal{U} covers \mathcal{H} ; or (2) $W \in \langle \mathcal{H} \rangle$
- [Main Point] Typically, $\mathcal U$ is "p-cheap."

Open Questions

Gap between $p_{\scriptscriptstyle E}(\mathcal{F})$ and $p_c(\mathcal{F})$

Theorem (P.-Pham '22)

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) \; p_{\scriptscriptstyle{\mathsf{C}}}(\mathcal{F}) \lesssim p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \log \ell(\mathcal{F})$$

Question

What characterizes the gap between $p_{E}(\mathcal{F})$ and $p_{C}(\mathcal{F})$?

Gap between $p_{\scriptscriptstyle E}(\mathcal{F})$ and $p_{\scriptscriptstyle C}(\mathcal{F})$

Theorem (P.-Pham '22)

$$(p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \leq) p_c(\mathcal{F}) \lesssim p_{\scriptscriptstyle{\mathsf{E}}}(\mathcal{F}) \log \ell(\mathcal{F})$$

Question

What characterizes the gap between $p_{E}(\mathcal{F})$ and $p_{C}(\mathcal{F})$?

- In many cases the $\log \ell(\mathcal{F})$ gap is tight: e.g. perfect hypergraph matchings, spanning trees with bounded degree, Hamiltonian cycle, fixed subgraphs...
- There are some cases for which log ℓ(F) is not tight:
 e.g. clique factors, the k-th power of a Hamilton cycle, non-spanning large graphs... → good test cases!

Test cases: gaps smaller than $\log \ell(\mathcal{F})_{\mathsf{Thm.}\ p_c(\mathcal{F}) \leq \mathsf{Kp}_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})}$

First successful test case

 \mathcal{F} : contain the square of a Hamilton cycle (HC^2)

Conjecture (Kühn-Osthus '12)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

• $p_{\mathsf{E}}(\mathcal{F})(\asymp p_{\mathsf{E}}^*(\mathcal{F})) \asymp n^{-1/2} \to \mathsf{no} \mathsf{gap!}$

Test cases: gaps smaller than $\log \ell(\mathcal{F})_{\mathsf{Thm.}\ p_c(\mathcal{F}) \leq \mathsf{Kp}_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})}$

First successful test case

 \mathcal{F} : contain the square of a Hamilton cycle (HC^2)

Conjecture (Kühn-Osthus '12)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

- $p_{\mathsf{E}}(\mathcal{F})(\asymp p_{\mathsf{E}}^*(\mathcal{F})) \asymp n^{-1/2} \quad \to \mathsf{no} \; \mathsf{gap!}$
 - Kühn-Osthus ('12) $p^* \lesssim n^{-1/2+o(1)}$
 - Nenadov-Škorić ('16) $p^* \lesssim n^{-1/2} \log^4 n$
 - Fischer-Škorić-Steger-Trujić ('18) $p^* \lesssim n^{-1/2} \log^3 n$
 - Montgomery $p^* \lesssim n^{-1/2} \log^2 n$
 - Frankston-Kahn-Narayanan-P. $p^* \lesssim n^{-1/2} \log n$

Test cases: gaps smaller than $\log \ell(\mathcal{F})_{\mathsf{Thm.}} \ \rho_c(\mathcal{F}) \leq \mathsf{Kp}_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$

First successful test case

 \mathcal{F} : contain the square of a Hamilton cycle (HC^2)

Conjecture (Kühn-Osthus '12)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

- $p_{\mathsf{E}}(\mathcal{F})(\asymp p_{\mathsf{E}}^*(\mathcal{F})) \asymp n^{-1/2} \to \mathsf{no} \ \mathsf{gap!}$ • Kühn-Osthus ('12) $p^* \lesssim n^{-1/2+o(1)}$
 - Nenadov-Škorić ('16) $p^* \lesssim n^{-1/2} \log^4 n$
 - Fischer-Škorić-Steger-Trujić ('18) $p^* \lesssim n^{-1/2} \log^3 n$
 - Montgomery $p^* \lesssim n^{-1/2} \log^2 n$
 - Frankston-Kahn-Narayanan-P. $p^* \lesssim n^{-1/2} \log n$

Kahn-Narayanan-P. ('20)

$$p_c(\mathcal{F}) \asymp n^{-1/2}$$

Good test cases: gaps smaller than $\log \ell(\mathcal{F})$

[Ex 1] \mathcal{F} : contain a **triangle-factor** (or a H-factor for fixed H)

Johansson-Kahn-Vu ('08)

$$p_c(\mathcal{F}) \asymp n^{-2/3} (\log n)^{1/3}$$

Good test cases: gaps smaller than $\log \ell(\mathcal{F})$

[Ex 1] \mathcal{F} : contain a **triangle-factor** (or a H-factor for fixed H)

Johansson-Kahn-Vu ('08)

$$p_c(\mathcal{F}) \asymp n^{-2/3} (\log n)^{1/3}$$

[Ex 2] Perfect matchings in the "k-out model"

Good test cases: gaps smaller than $\log \ell(\mathcal{F})$

[Ex 1] \mathcal{F} : contain a **triangle-factor** (or a H-factor for fixed H)

Johansson-Kahn-Vu ('08)

$$p_c(\mathcal{F}) \asymp n^{-2/3} (\log n)^{1/3}$$

[Ex 2] Perfect matchings in the "k-out model"

Frieze ('86)

$$\lim_{\substack{n \to \infty \\ n \text{ even}}} \mathbb{P}(G_{k\text{-Out}} \text{ has a perfect matching}) = \begin{cases} 0 & \text{if } k = 1 \\ 1 & \text{if } k \ge 2 \end{cases}$$

Thank you!