On the Subject of 27,644,437

A scientific calculator is recommended! Please use a scientific calculator! Use a scientific calculator!

The module contains:

- A circle of 13 white LEDs.
 - Ordered 0-12 clockwise from the top.
- A lower screen cycling through sets 0-12.
- An upper screen displaying a Base-36 number. (100000-ZZZZZZZ)

Partitions can be displayed in two ways:

- <u>Set Partition</u>: Shows which specific elements are in each subset: [[0], [2], [7], [1,8], [3,12], [5,10,11], [4,6,9]]
- <u>Integer Partition</u>: Shows how many elements are in each subset: [1, 1, 1, 2, 2, 3, 3]

Locate and submit the partition pointed to by Base-36 number in order to solve the module. Subsets are inputted in the order they were discovered using the **Instruction Table** on the next page.

Variables

The following is a list of variables that will appear regularly throughout the instructions. Each will always equal a numerical digit.

n	Element amount. Starts at 13, $n - r_1$ for each subset found.		
r	Subset length $r_1 = 1 = [x] r_2 = 2 = [x,x]$		
j	Amount of a specific subset. $\mathbf{j}_1 = 2 = [\mathbf{x}], [\mathbf{x}] \mathbf{j}_2 = 3 = [\mathbf{x}, \mathbf{x}], [\mathbf{x}, \mathbf{x}], [\mathbf{x}, \mathbf{x}]$		

Instruction Table

. 1.	Convert the base of the module's serial number, becoming the "Base Index". See Converting Bases on Page 3.	Perform the following operation: Base Index % 27,644,437	Locate the cell in Appendix B on page 5 that matches with the Base Index.
2.	Take the PTF and IPC of the cell found in Appendix B, then plug into the formula.	Base Index - ((PTF + 1) - 1) = Index A ₁	IPC)
3.	Locate <u>Subset N</u> , the subset with the smallest r that has not been affixed a value. *If multiple subsets of $r = 1$ exist $(j > 1)$, <u>Subset N merges them</u> $(r = j_1)$.	Use the current IPC and the SnC of the current Subset N. IPC (Intgr Partition Combos): n! / (r ₁ ! * r ₂ ! * r ₃ ! * j ₁ ! * j ₂ ! * j ₃ !) SnC (Subset N Combos): n! / (r! * (n - r)!)	CPSn (Combos per single value of Subset N): IPC / SnC = CPSn
4.	Find SnV; save it as a rounded down whole number AND its decimal form. Subset N Value(s): Index A1 / CPSn = SnV	Count up to the <u>SnV</u> th (whole) combination of Subset N. See Counting Subset Values on Page 3. Save <u>Subset N</u> as part of the final answer (if r = j ₁ , unmerge elements).	Remove <u>Subset N</u> 's r from the integer partition.
5.	Recalculate <u>IPC</u> with <u>Subset N</u> removed. $n = n - (Subset N's r)$ $j_1 = j_1 - 1, j != 0$	Separate two values of SnV: It's whole number form AND decimal form. (decimal(SnV) - whole(SnV)) * IPC = Index A ₁	Index A ₁ replaces Index A ₂

6.	If Index A ₂ = 0, continue from here. If not, repeat Steps 3-5 until it does.	If one subset is left, any unset elements may be added to it. This also applies if the rest of the subsets are subsets of $r = 1$. If multiple subsets are unset, use the first available combination for each subset in order of whichever subset would be Subset N next.	Once the correct partition is inputted, the module will solve.
----	---	---	--

Converting Bases

To convert from Base-36 to Base-10, take each letter's alphanumeric value and add 9 to it. Then starting from the leftmost number, multiply each number by 36^{n} . n in this case starts at 5, and decreases incrementally by one for the next number. Finally, add each product.

```
ABZ129 \Rightarrow 10, 11, 35, 1, 2, 9
(10 * 60,466,176) + (11 * 1,679,616) + (35 * 46,656) + (1 * 1,296) + (2 * 36) + (9 * 1) = 624,771,873
```

Counting Subset Values

For a subset of r = 2, its combinations are ordered like so. Subsets with a higher rare ordered similarly:

```
SnV = 0 1 2 3

[0, 1], [0, 2], [0, 3], [0, 4], ..., [0, 9], [0, 10], [0, 11], [0, 12]

SnV = 12 13 14

[1, 2], [1, 3], [1, 4], ..., [1, 9], [1, 10], [1, 11], [1, 12],

SnV = 23 24

[2, 3], [2, 4], ..., [2, 10], [2, 11, [2, 12], ...
```

If a subset of r = 2 is given the values [4, 9], later subsets can not use either of the elements, as they are already fixed to a subset. Select the next available element(s).

If SnV is too large a number to count quickly, refer to Appendix A on the next page for a strategy that resembles C# code.

Appendix A

```
int v = the # of already set elements;
int x = 0; int y = 0; int w = 0;
for (int i = 0; until Subset N is solved; i + 1) {
   x = value in cell[column r, row v];
   y + x;
   if(y > SnV) {
       SnV = SnV - (y - x);
       While avoiding already set elements:
           SubsetN[i] = value in cell[ row w, the leftmost column ];
       v = y + SubsetN[i] + 1
       r - 1; w = 0; 
   else if (y = SnV) {
       for (int i2 = 1; until Subset N is solved; i2++;) {
           SubsetN[i] = value in cell[ row w + i2, the leftmost column );
           i + 1; }
   w + 1;
```

If SnV becomes low enough, you may go back to counting Subset N incrementally.

	1	2	3	4	5	6	7	8	9,	10	11	12	13
0	1	12	66	220	495	792	924	792	495	220	66	12	1 '
1	1	11	55	165	330	462	462	330	165	55	11	1	
2	1	10	45	120	210	252	210	120	45	10	1		1
3	1	9	36	84	126	126	84	36	9	1		•	
4	1	8	28	56	70	56	28	8	1		1		
5	1	7	21	3 5 •	- 35	21	7	1		_			
6	1	6	15	20	15	6	1		_				
7	1	5	10	10	5	1							
8	1	4	6	4	1		_						
9	1	3	3	1									
10	1	2	1.		1								
11	1	1		•									
10	٦.												

Appendix B

In reading order, the list displays every possible integer partition that can be made in a list of 13 elements.

PTF = Partitions Thus Far (the index for each int. partition)

IPC = Integer Partition Combos (# of set partitions in an int. partition)

The Base Index matches with a cell if BOTH:

- Base Index is greater than the previous cell's PTF
- Base Index is <u>less than or equal</u> to the selected cell's PTF

Shade	~Amount	If a PTF surpasses a multiple(s) of one million partitions, the cell will be shaded for the
Light Gray	1,000,000	sake of convenience.
Dark Gray	2,000,000	Format of cells: $r_0, r_1, r_2,,$
Black	3,000,000	[IPC] PTF

13, [1] 0	12, 1, [13] 13	11, 2, [78] 91	11, 1, 1, [78] 169	10, 3, [286] 455
10, 2, 1,	10, 1, 1, 1,	9, 4,	9, 3, 1,	9, 2, 2,
[858]	[286]	[715]	[2860]	[2145]
1313	1599	2314	5174	7319
9, 2, 1, 1, [4290] 11609	9, 1, 1, 1, 1, [715] 12324	8, 5, [1287] 13611	8, 4, 1, [6435] 20046	8, 3, 2, [12870] 32916
8, 3, 1, 1,	8, 2, 2, 1,	8, 2, 1, 1, 1,	8, 1, 1, 1, 1, 1,	7, 6,
[12870]	[19305]	[12870]	[1287]	[1716]
45786	65091	77961	79248	80964
7, 5, 1, [10296] 91261	7, 4, 2,	7, 4, 1, 1,	7, 3, 3,	7, 3, 2, 1,
	[25740]	[25740]	[17160]	[102960]
	117001	142741	159901	262861

, 1				
7, 3, 1, 1, 1, [34320] 297180	7, 2, 2, 2, [25740] 322920	7, 2, 2, 1, 1, [77220] 400140	7, 2, 1, 1, 1, 1, [25740] 425880	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
6, 6, 1, [6006] 433602	6, 5, 2, [36036] 469638	6, 5, 1, 1, [36036] 505674	6, 4, 3, [60060] 565734	6, 4, 2, 1, [180180] 745914
6, 4, 1, 1, 1, [60060] 805974	6, 3, 3, 1, [120120] 926094	6, 3, 2, 2, [180180] 1106274	6, 3, 2, 1, 1, [360360] 1466634	6, 3, 1, 1, 1, 1, [60060] 1526694
6, 2, 2, 2, 1, [180180] 1706874	6, 2, 2, 1, 1, 1, [180180] 1887054	6, 2, 1, 1, 1, 1, 1, [36036] 1923090	6, 1, 1, 1, 1, 1, 1, 1, [1716] 1924806	5, 5, 3, [36036] 1960842
5, 5, 2, 1, [108108] 2068950	5, 5, 1, 1, 1, [36036] 2104986	5, 4, 4, [45045] 2150031	5, 4, 3, 1, [360360] 2510391	5, 4, 2, 2, [270270] 2780661
5, 4, 2, 1, 1, [540540] 3321201	5, 4, 1, 1, 1, 1, [90090] 3411291	5, 3, 3, 2, [360360] 3771651	5, 3, 3, 1, 1, [360360] 4132011	5, 3, 2, 2, 1, [1081080] 5213091
5, 3, 2, 1, 1, 1, [720720] 5933811	5, 3, 1, 1, 1, 1, 1, [72072] 6005883	5, 2, 2, 2, 2, [135135] 6141018	5, 2, 2, 2, 1, 1, [540540] 6681558	5, 2, 2, 1, 1, 1, 1, [270270] 6951828
5, 2, 1, 1, 1, 1, 1, 1, [36036] 6987864	5, 1, 1, 1, 1, 1, 1, 1, 1, [1287] 6989151	4, 4, 4, 1, [75075] 7064226	4, 4, 3, 2, [450450] 7514676	4, 4, 3, 1, 1, [450450] 7965126
4, 4, 2, 2, 1, [675675] 8640801	4, 4, 2, 1, 1, 1, [450450] 9091251	4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4, 3, 3, 3, [200200] 9336496	4, 3, 3, 2, 1, [1801800] 11138296
4, 3, 3, 1, 1, 1, [600600] 11738896	4, 3, 2, 2, 2, [900900] 12639796	4, 3, 2, 2, 1, 1, [2702700] 15342496	4, 3, 2, 1, 1, 1, 1, [900900] 16243396	4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

,				
4, 2, 2, 2, 2, 1, [675675] 16979131	4, 2, 2, 2, 1, 1, 1, [900900] 17880031	4, 2, 2, 1, 1, 1, 1, 1, [270270] 18150301	4, 2, 1, 1, 1, 1, 1, 1, 1, [25740] 18176041	4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
3, 3, 3, 3, 1, [200200] 18376956	3, 3, 3, 2, 2, [600600] 18977556	3, 3, 3, 2, 1, 1, [1201200] 20178756	3, 3, 3, 1, 1, 1, 1, [200200] 20378956	3, 3, 2, 2, 2, 1, [1801800] 22180756
3, 3, 2, 2, 1, 1, 1, [1801800] 23982556	3, 3, 2, 1, 1, 1, 1, 1, [360360] 24342916	3, 3, 1, 1, 1, 1, 1, 1, 1, [17160] 24360076	3, 2, 2, 2, 2, 2, [270270] 24630346	3, 2, 2, 2, 2, 1, 1, [1351350] 25981696
3, 2, 2, 2, 1, 1, 1, 1, [900900] 26882596	3, 2, 2, 1, 1, 1, 1, 1, 1, [180180] 27062776	3, 2, 1, 1, 1, 1, 1, 1, 1, 1, [12870] 27075646	3, 1, 1, 1, 1, 1, 1, 1, 1, 1, [286] 27075932	2, 2, 2, 2, 2, 2, 1, [135135] 27211067
2, 2, 2, 2, 2, 1, 1, 1, [270270] 27481337	2, 2, 2, 2, 1, 1, 1, 1, 1, [135135] 27616472	2, 2, 2, 1, 1, 1, 1, 1, 1, 1, [25740] 27642212	2, 2, 1, 1, 1, 1, 1, 1, 1, 1, [2145] 27644357	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [78] 27644435
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				