Cap. 1. Conceitos básicos de Geometria Analítica em \mathbb{R}^n (Resumo)

1 O conjunto \mathbb{R}^n

Seja $n \geq 1$ um número natural. Indicamos por \mathbb{R}^n o conjunto dos n-uplos ordenados de números reais:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

Em particular:

- \mathbb{R}^1 identifica-se ao conjunto \mathbb{R} dos números reais.
- Os elementos de \mathbb{R}^2 são os pares ordenados (x,y) de números reais x,y.
- \bullet Os elementos de \mathbb{R}^3 são os ternos ordenados (x,y,z) de números reais x,y,z.

Os números reais $x_1, x_2, \dots x_n$ são as **componentes** do elemento $(x_1, x_2, \dots x_n)$ de \mathbb{R}^n . Vamos também usar às vezes a notação em coluna e escrever

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

em vez de (x_1, \dots, x_n) . Dois elementos $(x_1, x_2, \dots x_n)$ e $(y_1, y_2, \dots y_n)$ de \mathbb{R}^n são iguais se têm as mesmas componentes (na mesma ordem), isto é se, para cada $i \in \{1, \dots, n\}$, tem-se $x_i = y_i$.

Os elementos de \mathbb{R}^n são chamados *pontos* ou *vetores* de \mathbb{R}^n e podem ser representados gemetricamente por pontos ou segmentos orientados (setas). O elemento $(0,\ldots,0)$ é chamado *origem* ou *vetor nulo* de \mathbb{R}^n e é denotado por $\vec{0}$ ou \mathcal{O} .

Soma de vetores. A soma de dois elementos $\mathbf{x} = (x_1, \dots, x_n)$ e $\mathbf{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n é o elemento de \mathbb{R}^n dado por

$$\underbrace{\mathbf{x} + \mathbf{y}}_{\text{notação}} = (x_1 + y_1, \dots, x_n + y_n).$$

Multiplicação escalar. O produto de um elemento $\mathbf{x} = (x_1, \dots, x_n)$ de \mathbb{R}^n por um número real $\lambda \in \mathbb{R}$ é o elemento de \mathbb{R}^n dado por

$$\underline{\lambda} \cdot \mathbf{x} = (\lambda x_1, \dots, \lambda x_n).$$

Muitas vezes, escreveremos $\lambda \mathbf{x}$ em vez de $\lambda \cdot \mathbf{x}$.

Observações.

• A soma é uma operação comutativa e associativa: para $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ tem-se

$$x + y = y + x$$
 e $(x + y) + z = x + (y + z)$.

• Também tem-se, para $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ e $\alpha, \beta \in \mathbb{R}$

$$\mathbf{x} + \vec{0} = \mathbf{x} \quad 0 \cdot \mathbf{x} = \vec{0} \quad 1 \cdot \mathbf{x} = \mathbf{x} \quad \mathbf{x} + (-1) \cdot \mathbf{x} = \vec{0}$$

 $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x} \quad \alpha \mathbf{x} + \beta \mathbf{x} = (\alpha + \beta) \mathbf{x} \quad \alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}.$

Simétrico. O simétrico de $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ é o elemento de \mathbb{R}^n dado por

$$\mathbf{x} = (-1) \cdot \mathbf{x} = (-x_1, ..., -x_n).$$

notação

Diferença. A diferença de dois elementos $\mathbf{x} = (x_1, \dots, x_n)$ e $\mathbf{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n é o elemento de \mathbb{R}^n dado por

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-1) \cdot \mathbf{y} = (x_1 - y_1, \dots, x_n - y_n).$$

 $Observação.\;$ Dados dois pontos Ae B de $\mathbb{R}^n,$ a diferença B-Aserá muitas vezes indicada por \overrightarrow{AB}

$$\overrightarrow{AB} = B - A$$

e representada por um segmento orientado de A para B. Observe-se que, denotando a origem por \mathcal{O} , tem-se, para todo o $M \in \mathbb{R}^n$, $M = M - \mathcal{O} = \overrightarrow{\mathcal{O}M}$.

2 Retas e Planos de \mathbb{R}^n

Vetores paralelos. Dois vetores v, w de \mathbb{R}^n são paralelos se um dos vetores for múltiplo escalar do outro, isto é, se existir um número real α tal que

$$v = \alpha w$$
 ou $w = \alpha v$.

Observações.

- Com esta definição, o vetor nulo $\vec{0}$ é paralelo a todo o vetor $v \in \mathbb{R}^n$ pois $\vec{0} = 0v$.
- Se v, w forem <u>não nulos</u> tem-se:

 $v \in w$ são parelelos \Leftrightarrow existe um número real $\alpha \neq 0$ tal que $v = \alpha w$ \Leftrightarrow existe um número real $\beta \neq 0$ tal que $w = \beta v$.

Combinação linear de vetores. Sejam $u, w_1, \ldots, w_k \in \mathbb{R}^n$. Diz-se que o vetor u é combinação linear (CL) dos vetores $w_1, \ldots w_k$ se existirem $\alpha_1, \ldots \alpha_k \in \mathbb{R}$ tais que

$$u = \alpha_1 w_1 + \cdots + \alpha_k w_k$$
.

Exemplos.

• Todo o vetor $(x,y) \in \mathbb{R}^2$ é combinação linear de $e_1 = (1,0)$ e $e_2 = (0,1)$ pois

$$(x,y) = x(1,0) + y(0,1) = xe_1 + ye_2.$$

• Todo o vetor $(x, y, z) \in \mathbb{R}^3$ é combinação linear de $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$ pois

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe_1 + ye_2 + ze_3.$$

Escreva a generalização a \mathbb{R}^n !

• (Ver Ficha 1, Ex.2) Em \mathbb{R}^2 , o vetor (0,1) é CL de v=(1,2) e w=(-3,1) pois existem $\alpha,\beta\in\mathbb{R}$ tais que $(0,1)=\alpha v+\beta w$. Explicitamente $(0,1)=\frac{3}{7}v+\frac{1}{7}w$.

O conjunto de todas as combinações lineares dos vetores w_1, \dots, w_k é

$$\underbrace{\langle w_1, \cdots, w_k \rangle}_{\text{notação}} = \{ \alpha_1 w_1 + \cdots + \alpha_k w_k \text{ com } \alpha_1, \cdots, \alpha_k \in \mathbb{R} \}$$

Em particular, se $w \in \mathbb{R}^n$, $\langle w \rangle = \{ \alpha w : \alpha \in \mathbb{R} \}$.

Observação. Se v e w são dois vetores não nulos e paralelos, tem-se $\langle v, w \rangle = \langle v \rangle = \langle w \rangle$.

Retas. Sejam $v=(v_1,\cdots,v_n)\neq \vec{0}$ um vetor <u>não nulo</u> de \mathbb{R}^n e $A=(a_1,...,a_n)\in \mathbb{R}^n$. A **reta** de \mathbb{R}^n que passa pelo ponto A e que é dirigida pelo vetor v é dada pelo conjunto

$$\mathcal{R} = \{ A + tv : t \in \mathbb{R} \}$$

ainda denotado por

$$\mathcal{R} = A + \langle v \rangle.$$

Para $M = (x_1, ..., x_n) \in \mathbb{R}^n$, tem-se

 $M \in \mathcal{R}$ se só se existe $t \in \mathbb{R}$ tal que M = A + tv.

Chamamos equações paramétricas da reta \mathcal{R} ao sistema

$$\begin{cases} x_1 = a_1 + tv_1 \\ \vdots \\ x_n = a_n + tv_n \end{cases} (t \in \mathbb{R})$$

Observações.

• Se $v \neq \vec{0}$, $\langle v \rangle$ é a reta dirigida pelo vetor v que passa pela origem $\mathcal{O} = (0, ..., 0)$ de \mathbb{R}^n . A reta $A + \langle v \rangle$ é a imagem da reta $\langle v \rangle$ pela translação:

$$\begin{array}{rcl}
\mathbb{R}^n & \to & \mathbb{R}^n \\
u & \mapsto & u + A = u + \overrightarrow{\mathcal{O}A}
\end{array}$$

• Sejam $A \in B$ dois pontos distintos de \mathbb{R}^n . A reta que passa por $A \in B$ é a reta $A + \langle \overrightarrow{AB} \rangle$.

Planos. Sejam $v = (v_1, \dots, v_n)$ e $w = (w_1, \dots, w_n)$ dois vetores $\underline{n}\underline{\tilde{a}o}$ paralelos (e portanto $\underline{n}\underline{\tilde{a}o}$ nulos) de \mathbb{R}^n e seja $A = (a_1, ..., a_n) \in \mathbb{R}^n$. O **plano** de \mathbb{R}^n que passa pelo ponto A e que é dirigido pelos vetores v e w é dado pelo conjunto

$$\mathcal{P} = \{A + tv + sw : t, s \in \mathbb{R}\} = A + \langle v, w \rangle.$$

Para $M = (x_1, ..., x_n) \in \mathbb{R}^n$, tem-se

 $M \in \mathcal{R}$ se e só se existem $t, s \in \mathbb{R}$ tais que M = A + tv + sw.

Chamamos equações paramétricas do plano \mathcal{P} ao sistema

$$\begin{cases} x_1 = a_1 + tv_1 + sw_1 \\ \vdots \\ x_n = a_n + tv_n + sw_n \end{cases} (t, s \in \mathbb{R})$$

Observações.

• Se $v, w \in \mathbb{R}^n$ não são paralelos, $\langle v, w \rangle$ é o plano dirigido pelos vetores v e w que passa pela origem \mathcal{O} de \mathbb{R}^n . O plano $A + \langle v, w \rangle$ é a imagem do plano $\langle v, w \rangle$ pela translação:

$$\mathbb{R}^n \to \mathbb{R}^n
 u \mapsto u + A = u + \overrightarrow{\mathcal{O}A}$$

• Sejam A, B e C três pontos de \mathbb{R}^n tais que \overrightarrow{AB} e \overrightarrow{AC} são não paralelos $(A, B \in C \text{ são ditos não alinhados})$. O plano que passa por A, B e C é o plano $A + \langle \overrightarrow{AB}, \overrightarrow{AC} \rangle$.

Equação cartesiana.

Em \mathbb{R}^2 , a eliminação do parâmetro nas equações paramétricas de uma reta $\mathcal{R} = A + \langle v \rangle$ permite determinar uma **equação cartesiana** da reta da forma

$$ax + by = c$$
 (onde $a, b, c \in \mathbb{R}$)

o que corresponde a uma descrição do conjunto ${\mathcal R}$ da seguinte forma

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : ax + by = c\}.$$

Da mesma forma, em \mathbb{R}^3 , a eliminação dos parâmetros nas equações paramétricas de um plano $\mathcal{P} = A + \langle v, w \rangle$ conduz a uma **equação cartesiana** do plano da forma

$$ax + by + cz = d$$
 (onde $a, b, c, d \in \mathbb{R}$)

correspondendo a uma descrição do conjunto \mathcal{P} da seguinte forma

$$\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = d\}.$$

Observações.

- O produto escalar, desenvolvido na próxima seção, vai permitir interpretar geometricamente essas equações.
- Em \mathbb{R}^3 , uma reta pode ser caracterizada através de um sistema de duas equações cartesianas de planos. Isto corresponde a descrever a reta como interseção de dois planos de \mathbb{R}^3 .

3 Produto escalar em \mathbb{R}^n

Dados dois vectores $u = (u_1, \dots u_n)$ e $v = (v_1, \dots, v_n)$ em \mathbb{R}^n , o **produto** escalar (ou **produto** interno) de u e v é o número real dado por

$$\underbrace{(u|v) = u \cdot v}_{\text{notações}} = u_1 v_1 + \dots + u_n v_n.$$

O produto escalar tem as seguintes propriedades: dados $u, v, w \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$, tem-se

- (a) (u|v) = (v|u)
- (b) (u|v+w) = (u|v) + (u|w) e (u+v|w) = (u|w) + (v|w)
- (c) $(\lambda u|v) = \lambda(u|v)$ e $(u|\lambda v) = \lambda(u|v)$
- (d) $(u|u) \ge 0$ e (u|u) = 0 sse $u = \vec{0}$.

A norma de um vector $v = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ é definida por

$$||v|| = \sqrt{(v|v)} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Observações.

- A norma de um vector de \mathbb{R}^1 , isto é, de um número real x, é o valor absoluto (modulo) |x| deste número.
- Para $v \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$, tem-se $\|\lambda v\| = |\lambda| \|v\|$ e $\|v\| = 0$ sse $v = \vec{0}$.
- Geometricamente, a norma de um vetor v de \mathbb{R}^n é o comprimento deste vetor, isto é, a distância do ponto v à origem \mathcal{O} .

A distância entre dois pontos $A, B \in \mathbb{R}^n$ é dada por

$$\underbrace{d(A,B)}_{\text{notação}} = \|\overrightarrow{AB}\| = \|B - A\|.$$

Circunferências e esferas. Dados $r \ge 0$ um número real e $A = (a_1, ..., a_n)$ um ponto de \mathbb{R}^n , a esfera de \mathbb{R}^n de centro A e de raio r é o conjunto

$$\{M = (x_1, ..., x_n) \in \mathbb{R}^n : d(A, M) = r\}.$$

Como $d(A,M)=r\Leftrightarrow \|\overrightarrow{AM}\|^2=r^2$, a equação cartesiana deste conjunto escreve-se

$$(x_1 - a_1)^2 + \dots + (x_n - a_n)^2 = r^2.$$

Se n=2, usa-se a palavra **circunferência** em vez de esfera. Nota-se que a circunferência $\mathcal C$ de $\mathbb R^2$ de centro (a,b) e de raio r>0, isto é, de equação cartesiana

$$(x-a)^2 + (y-b)^2 = r^2,$$

pode também ser descrita através de equações paramétricas:

$$\begin{cases} x = a + r\cos t \\ y = b + r\sin t \end{cases} (t \in \mathbb{R}).$$

Isto é, $C = \{(a + r\cos t, b + r\sin t) : t \in \mathbb{R}\}$. Como as funções cos e sen são 2π -periódicas, o parâmetro pode ser tomado em qualquer intervalo de

comprimento 2π .

Desigualdade de Cauchy-Schwarz. Para quaisquer $u, v \in \mathbb{R}^n$, tem-se

$$|(u|v)| \le ||u|| \cdot ||v||.$$

Vale a igualdade se e só se u e v são paralelos (isto é, um dos vectores é múltiplo escalar do outro).

Observação. Da desigualdade de Cauchy-Scwarz pode-se deduzir a desigualdade triangular:

$$||u + v|| \le ||u|| + ||v||$$
 $(u, v \in \mathbb{R}^n).$

Ângulos. Para dois vectores $u \neq \vec{0}$ e $v \neq \vec{0}$, temos, pela desigualde de Cauchy-Schwarz:

$$-1 \le \frac{(u|v)}{\|u\| \cdot \|v\|} \le 1.$$

O **ângulo** entre dois vectores $u \neq \vec{0}$ e $v \neq \vec{0}$ de \mathbb{R}^n é o único número real $\angle(u,v) \in [0,\pi]$ tal que

$$\cos \angle(u, v) = \frac{(u|v)}{\|u\| \cdot \|v\|}.$$

Observações. Para dois vectores não nulos $u, v \in \mathbb{R}^n$, temos

- $\angle(u,v) = \angle(v,u)$ (é um ângulo não orientado).
- $(u|v) = ||u|| \cdot ||v|| \cdot \cos \angle (u,v)$.
- $u \in v$ são paralelos sse $\angle(u, v) = 0$ ou $\angle(u, v) = \pi$.
- (u|v) = 0 sse $\angle(u,v) = \frac{\pi}{2}$

Dizemos que os vectores $u, v \in \mathbb{R}^n$ são **ortogonais** se (u|v) = 0.

Observação. O vetor nulo $\vec{0}$ é ortogonal a qualquer vetor de \mathbb{R}^n . Dois vectores não nulos $u, v \in \mathbb{R}^n$ são ortogonais se e só se $\angle(u, v) = \frac{\pi}{2}$.

Hiperplanos de \mathbb{R}^n . Sejam $\mathbf{a} = (a_1, ..., a_n)$ um vetor <u>não nulo</u> de \mathbb{R}^n e $b \in \mathbb{R}$ um número real. Seja \mathcal{H}_b o subconjunto de \mathbb{R}^n definido pela equação cartesiana

$$a_1x_1 + \dots + a_nx_n = b,$$

isto é,
$$\mathcal{H}_b = \{(x_1, ..., x_n) \in \mathbb{R}^n : a_1 x_1 + \cdots + a_n x_n = b\}$$
.

Escrevendo $\mathbf{x} = (x_1, ..., x_n)$, tem-se $\mathcal{H}_b = {\mathbf{x} \in \mathbb{R}^n : (\mathbf{a}|\mathbf{x}) = b}$.

O conjunto \mathcal{H}_b não é vazio pois, como $\mathbf{a} \neq \vec{0}$, sempre existe um ponto $\mathbf{p} = (p_1, ..., p_n)$ pertencente a \mathcal{H}_b , isto é, verificando $a_1p_1 + \cdots + a_np_n = b$. Em particular, se b = 0 tem-se $(0, ..., 0) \in \mathcal{H}_0$.

Verifica-se que \mathcal{H}_b é uma reta se n=2 e é um plano se n=3. Veremos no Capítulo 2 que, em geral, \mathcal{H}_b é um objeto de \mathbb{R}^n de "dimensão" n-1 que chamaremos **hiperplano** de \mathbb{R}^n . O produto escalar permite dar a seguinte interpretação:

- Se b = 0, $\mathcal{H}_0 = \{ \mathbf{x} \in \mathbb{R}^n : (\mathbf{a}|\mathbf{x}) = 0 \}$ contém a origem de \mathbb{R}^n e é o conjunto de todos os vetores de \mathbb{R}^n que são ortogonais ao vetor \mathbf{a} . É chamado **hiperplano** de \mathbb{R}^n que passa pela origem e que é **perpendicular** (**normal**) ao vetor \mathbf{a} . Também diz-se que o vetor \mathbf{a} é **normal** ao hiperplano.
- Suponhamos agora $b \neq 0$ e seja $\mathbf{p} = (p_1, ..., p_n) \neq (0, ..., 0)$ um ponto pertencente a \mathcal{H}_b . Como $a_1p_1 + \cdots + a_np_n = b$ tem-se

$$a_{1}x_{1} + \cdots + a_{n}x_{n} = b$$

$$\Leftrightarrow a_{1}x_{1} + \cdots + a_{n}x_{n} = a_{1}p_{1} + \cdots + a_{n}p_{n}$$

$$\Leftrightarrow (\mathbf{a}|\mathbf{x}) = (\mathbf{a}|\mathbf{p})$$

$$\Leftrightarrow (\mathbf{a}|\mathbf{x} - \mathbf{p}) = 0$$

$$\Leftrightarrow \mathbf{x} - \mathbf{p} \in \mathcal{H}_{0}$$

$$\Leftrightarrow \mathbf{x} \in \mathbf{p} + \mathcal{H}_{0}$$

Isto significa que $\mathcal{H}_b = \mathbf{p} + \mathcal{H}_0$. É o conjunto de todos os $\mathbf{x} \in \mathbb{R}^n$ tais que $\mathbf{x} - \mathbf{p}$ é ortogonal ao vetor \mathbf{a} e a imagem de \mathcal{H}_0 pela translação

$$\mathbb{R}^n \to \mathbb{R}^n \qquad u \mapsto u + \mathbf{p}$$

Dizemos que \mathcal{H}_b é o **hiperplano** de \mathbb{R}^n que passa pelo ponto \mathbf{p} e que é **perpendicular** (**normal**) ao vetor \mathbf{a} .

Projeção sobre um vetor. Seja $v \in \mathbb{R}^n$ um vetor não nulo. Vímos, no Ex.23 da Ficha 1, que todo o vetor $w \in \mathbb{R}^n$ escreve-se de maneira única como

$$w = \frac{(w|v)}{(v|v)}v + u \qquad \text{com } (u|v) = 0.$$

Chama-se **projeção** do vetor w sobre o vetor v ao vetor

$$\underbrace{pr_v(w) = w_v}_{\text{notações}} = \frac{(w|v)}{(v|v)}v$$

Se
$$w \neq \vec{0}$$
, tem-se $||pr_v(w)|| = \frac{|(w|v)|}{||v||} = ||w|| \cdot |\cos \angle(w, v)|$.

Distância entre um ponto e um hiperplano. Dados a um vetor não nulo de \mathbb{R}^n e $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$ dois pontos, a **distância** entre \mathbf{q} e o hiperplano \mathcal{H} de \mathbb{R}^n que passa pelo ponto \mathbf{p} e que é perpendicular ao vetor \mathbf{a} é dada por:

$$d(\mathbf{q}, \mathcal{H}) = \|pr_{\mathbf{a}}(\mathbf{q} - \mathbf{p})\| = \frac{|(\mathbf{a}|\mathbf{q} - \mathbf{p})|}{\|\mathbf{a}\|}$$

Pode se verificar que é a menor distância entre o ponto \mathbf{q} e um ponto de \mathcal{H} :

$$d(\mathbf{q}, \mathcal{H}) = \min\{d(\mathbf{q}, \mathbf{x}) : \mathbf{x} \in \mathcal{H}\}.$$

4 O produto vetorial em \mathbb{R}^3

Sejam $u = (u_1, u_2, u_3)$ e $v = (v_1, v_2, v_3)$ dois vectores de \mathbb{R}^3 . O **produto vetorial** (ou **produto externo**) de u e v é o vector

$$\underbrace{u \wedge v = u \times v}_{\text{notação}} = (u_2 v_3 - u_3 v_2, -u_1 v_3 + u_3 v_1, u_1 v_2 - u_2 v_1).$$

O produto vetorial tem as seguintes propriedades: dados $u,v,w\in\mathbb{R}^3$ e $\lambda\in\mathbb{R}$ tem-se

- (a) $u \wedge v = -v \wedge u$
- (b) $(\lambda u) \wedge v = \lambda(u \wedge v)$

(c)
$$u \wedge (v+w) = u \wedge v + u \wedge w$$

(d)
$$(u \wedge v|u) = (u \wedge v|v) = 0$$

- (e) (Identidade de Lagrange) $||u\wedge v||^2=||u||^2||v||^2-(u|v)^2$
- (f) $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \operatorname{sen} \angle(u, v)$.

Observações. Usando essas propriedades podemos estabelecer que:

- o vector $u \wedge v$ é ortogonal a u e a v e a qualquer vetor de $\langle u, v \rangle$.
- $u \in v$ são paralelos se e só se $u \wedge v = (0, 0, 0)$.
- se u e v não são paralelos, então $u \wedge v$ é um vetor normal ao plano $\langle u,v \rangle.$
- o comprimento do vector $u \wedge v$ é igual à área do paralelogramo determinado pelos vetores u e v.