BAB 11: LISTRIK STATIS

(Soal dikerjakan dalam waktu 30 Menit) www.bimbinganalumniui.com

- 1. Muatan +q diletakkan 2 m dari muatan -Q, gaya listrik pada muatan -Q adalah F. Muatan lain +q diletakkan tepat di tengah kedua muatan tadi. Gaya listrik pada muatan -Q sekarang menjadi
 - (A) 5 F
 - (B) 2 F
 - (C) 1,5 F
 - (D) 1,25 F
 - (E) 0.5 F
- 2. Tiga muatan yang sama masing-masing +10 nC terletak di sudut-sudut sebuah bujur sangkar seperti pada gambar. Besar gaya pada muatan B adalah

- (A) 2×10^{-7} N
- (B) $\sqrt{2} \times 10^{-7} \text{N}$
- (C) $2 \times 10^{-3} \text{N}$
- (D) $\sqrt{2} \times 10^{-3} \text{N}$
- (E) $2\sqrt{2} \times 10^{-3} \text{N}$
- 3. Dua keeping logam yang sejajar dan jaraknya 0,5 cm satu dari yang lain diberi muatan listrik yang berlawanan (lihat gambar) hingga beda potensial 10⁴ V.

Bila muatan electron 1,6 x 10⁻¹⁹C, maka besar dan arah gaya Coulomb pada sebuah electron yang ada di antara kedua keeping adalah

- (A) 0,8 x 10⁻¹⁷N, ke atas (B) 0,8 x 10⁻¹⁷N, ke bawah
- (C) 3.2×10^{-13} N, ke atas
- (D) 3.2×10^{-13} N, ke bawah
- (E) 12.5×10^{-24} N, ke atas
- 4. Dua partikel bermuatan 8 C dan 4 C dipisahkan pada jarak x. Suatu ketika ada sejumlah muatan q berpindah dari partikel bermuatan 8C ke partikel bermuatan 4 C. Supaya gaya interaksi antara partikel itu maksimum maka nilai q haruslah ... C
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) 5

- 5. Dua buah benda bermuatan listrik, dengan massa m dan muatan q yang sama, digantungkan pada sebuah titik, masing-masing dengan seutas tali yang ringan dengan panjang yang sama seperti pada gambar. Tali membuat sudut30° dengan garis vertical. Jika jarak kedua benda itu adalah r, maka besar tegangan pada tali adalah
 - (A) $2 \text{ mg } q^2/r^2$ (B) 2 mg $\sqrt{2}$ q²/r² (C) mg $\sqrt{2}$
 - (D) 2 mg $\sqrt{3}$ /3 (E) $2 g^2 mg \sqrt{3} / 3 r$

- Kuat medan listrik di suatu titik sejauh r dari muatan titik q akan diperbesar menjadi 125 kali semula. Ini dapat dilakukan dengan cara:
 - (A) Memperbesar muatan menjadi 5 kali dan jarak 25 kali
 - (B) Memperkecil jarak menjadi 1/5 kali dan muatan 25 kali
 - (C) Memperkecil jarak menjadi 1/125 kali dan muatan 5 kali
 - (D) Memperbesar jarak menjadi 125kali
 - (E) Memperbesar muatan menjadi 5 kali dan jarak 1/5 kali
- masing-masing partikel bermuatan bermuatan q₁ dan q₂ yang tidak diketahui besar dan jenisnya terpisah sejauh d. Antar kedua muatan itu dan pada garis hubungnya terdapat titik P dan jarak 2/3 dari q₁. Jika kuat medan di titik P sama dengan nol, maka
 - (A) q₁ dan q₂ adalah muatan-muatan yang tidak sejenis
 - (B) potensial di titik P yang disebabkan oleh q₁ dan q₂ sama
 - (C) potensial di titik P sama dengan nol
 - (D) besar muatan $q_1 = 2$ kali besar muatan q_2
 - (E) besar muatan $q_1 = 4$ kali besar muatan q_2

Program Persiapan SBMPTN

www.bimbinganalumnivi.com

- 8. Potensial disuatu titik yang berjarak r dari muatan Q adalah 600 V. Intensitas medan di titik tersebut 400 N/C. Jika k= 9 x 10⁹ Nm²/C², maka besar muatan Q adalah
 - (A) $2,25 \times 10^{-9}$ C
 - (B) $4,4 \times 10^{-8}$ C
 - (C) 7×10^{-8} C
 - (D) 10^{-7} C
 - (E) 1.5×10^{-9} C
- 9. Kuat medan listrik akibat sebuah muatan q besarnya sebanding dengan besar q.

SEBAB

Kuat medan listrik akibat sebuah muatan q berbanding terbalik dengan kuadrat jarak terhadap muatan itu.

- 10. Kuat medan listrik yang ditimbulkan oleh muatan listrik pada sebuah titik bergantung pada
 - (1) Besarnya muatan
 - (2) Jaraknya dari muatan
 - (3) Jenis muatan
 - (4) Jenis medium antara muatan dan titik
- 11. Dua keeping penghantar seluas 1 m² diletakkan sejajar satu sama lain pada jarak 20 cm. Penghantar yang satu diberi potensial+40 volt dan penghantar yang lain -40 volt. Besar gaya yang dialami sebuah muatan q= 2 x 10⁻² C yang berada di antara kedua bidang tersebut adalah (dalam newton)
 - (A) 0
 - (B) 2
 - (C) 4
 - (D) 8
 - (E) 16
- 12. Sebuah benda bermassa 20 gram dan bermuatan $q=+0.5\mu C$ digantungkan pada seutas tali ringan yang massanya dapat diabaikan. Tepat di sebelah kanan benda pada jarak 15 cm diletakkan muatan q'=-1 μC yang menyebabkan posisi benda menjadi seperti pada gambar dibawah. Jika $1/4\pi\epsilon_0=9 \times 10^9 Nm^2/C^2$ dan g= 10 m/s^2 , tegangan pada tali dekat pada harga (dalam newton)

- 13. Sebuah electron, dengan massa 9,11 x 10⁻³¹ kg dan muatan listrik -1,6 x 10⁻¹⁹C, lepas dari katode menuju ke anode yang jaraknya 2 cm. Jika kecepatan awal electron 0 dan beda potensial antara anode dan katode 200 V, maka electron akan sampai di anode dengan kecepatan
 - (A) $2.3 \times 10^5 \text{ m/s}$
 - (B) $8.4 \times 10^6 \text{ m/s}$
 - (C) $2.3 \times 10^7 \text{ m/s}$
 - (D) $3 \times 10^7 \text{ m/s}$
 - (E) $2.4 \times 10^8 \text{ m/s}$
- 14. Proton yang bergerak dari keeping A dan B seperti pada gambar di bawah ini memperoleh kecepatan 2 x 10⁵ m/s. Jika antara dua keeping vakum, d= 1 cm, dan massa proton= 1,6 x 10⁻²⁷kg, muatan proton= 1,6 x 10⁻¹⁹C, maka beda potensial keeping sejajar tersebut adalah (dalam volt)

- 15. Jika dua kapasitor yang mempunyai kapasitansi sama dihubungkan pararel, maka kapasitansi total akan menjadi
 - (A) Dua kali kapasitansi salah satu kapasitor
 - (B) Setengah kali kapasitansi salah satu kapasitor
 - (C) Sama seperti kapasitor
 - (D) Satu setengah kali salah satu kapasitor
 - (E) Dua setengah kali salah satu kapasitor
- 16. Kapasitansi suatu keeping sejajar yang bermuatan adalah
 - (A) Bebanding lurus dengan besar muatannya
 - (B) Berbanding terbalik dengan beda potensial antara kedua kepingnya
 - (C) Makin besar apabila jarak antara dua keeping diperbesar
 - (D) Makin besar apabila luas kedua keeping diperbesar
 - (E) Tidak tergantung pada medium antara kedua keeping

- 17. Sebuah kapasitor dengan kapasitansi 10⁻⁵ F yang pernah dihubungkan untuk beberapa saat lamanya pada beda potensial 500 V, kedua ujungnya dihubungkan dengan ujung-ujung sebuah kapasitor lain dengan kapasitansi 4 x 10⁻⁵ F yang tidak bermuatan. Energy yang tersimpan di dalam kedua kapasitor adalah
 - (A) 0,25 J
 - (B) 0,50 J
 - (C) 1,00 J
 - (D) 1,25 J
 - (E) 1,50 J
- 18. Sebuah kapasitor dengan kapasitansi C_1 = $4\mu F$ diisi sehingga tegangan 20 volt. Kapasitor dilepas lalu dihubungkan pada kapasitor lain dengan kasitansi C_2 = $6\mu F$. Tegangan kapasitor menjadi
 - (A) 1 6/7 v
 - (B) 2 V
 - (C) 5 V
 - (D) 8 V
 - (E) 10 V
- 19. Dua buah keeping logam tipis yang diletakkan sejajar satu sama lain dihubungkan dengan sumber potensial listrik searah V volt. Dalam keadaan seperti ini kemudian di antara kedua keeping disisipkan bahan dielektrik, maka
 - (1) Medan listrik didalamnya berubah sedang beda potensialnya tetap
 - (2) Energy yang tersimpan tidak akan berubah
 - (3) Muatan listrik didalamnya bertambah
 - (4) Terjadi aliran listrik melewati bahan-bahan dielektrik tersebut
- 20. Tiga buah kapasitor yang masing-masing kapasitasnya 3 farad, 6 farad, dan 9 farad dihubungkan secara seri. Kedua ujung dari gabungan tersebut dihubungkan dengan sumber tegangan yang besarnya 220 volt. Tegangan antara ujung-ujung kapasitor yang 3 farad adalah
 - (A) 40 volt
 - (B) 60 volt
 - (C) 110 volt
 - (D) 120 volt
 - (E) 220 volt

21. Kapasitor $C_1=1~\mu F,~C_2=2\mu F,~C_3=3~\mu F$ dihubungkan seri dan diberi tegangan total sebesar E volt, maka

- (1) Masing-masing kapasitor akan mempunyai muatan listrik yang sama banyak
- (2) C₁ mengandung energy listrik terbanyak
- (3) Pada C₃ bekerja tegangan terkecil
- (4) C₁, C₂, dan C₃ bersama-sama membentuk sebuah kapasitor ekivalen dengan muatan sebesar (6/11)E mikrocoulomb