Yang Zhao Hongyu Li Massimo Franceschetti Bruno Clerckx

Overview

What does this paper investigate?

The capability of Diagonal (D)- and Beyond Diagonal (BD)-Reconfigurable Intelligent Surface (RIS) to redistribute the singular values of MIMO channels.

How does it differ from previous work?

It derives analytical singular value bounds for specific channel conditions. And proposes a novel BD-RIS optimization framework for general problems.

What are the benefits?

BD-RIS improves the dynamic range of individual channel singular values and the trade-off in manipulating them. This boosts channel power gain and capacity.

BD-RIS model

Consider an $N_{
m T} imes N_{
m S} imes N_{
m R}$ setup with BD-RIS divided into G groups of L elements each. Define $N=\min(N_{\mathrm{T}},N_{\mathrm{R}})$ and $\mathbf{H}_{\mathrm{B/F}}\stackrel{\mathrm{svd}}{=} \mathbf{U}_{\mathrm{B/F}}\mathbf{\Sigma}_{\mathrm{B/F}}\mathbf{V}_{\mathrm{B/F}}^{\mathsf{H}}$.

$$oldsymbol{\Theta} = \mathrm{diag}(oldsymbol{\Theta}_1, \dots, oldsymbol{\Theta}_G), \quad oldsymbol{\Theta}_g^{\mathsf{H}} oldsymbol{\Theta}_g = \mathbf{I}_L \ orall g, \quad \mathbf{H} = oldsymbol{\mathbf{H}}_D + \sum_g \quad oldsymbol{\mathbf{H}}_{B,g} oldsymbol{\Theta}_g \mathbf{H}_{F,g}$$

backward-forward:

intra-group, multiplicative

- Branch matching: Pairing and combining the entries of $\mathbf{H}_{\mathrm{B},q}$ and $\mathbf{H}_{\mathrm{F},q}$ through unitary transformation Θ_q .
- Mode alignment: Aligning and ordering the singular vectors of $\{H_q\}$ with those of \mathbf{H}_{D} through unitary transformations $\{\mathbf{\Theta}_{q}\}$.

Example 1: SISO channel gain maximization

SISO mode alignment reduces to phase matching and any L (incl. D-RIS) suffices by

$$\mathbf{\Theta}_g^{\mathsf{SISO}} = \frac{h_{\mathrm{D}}}{|h_{\mathrm{D}}|} \mathbf{V}_{\mathrm{B},g} \mathbf{U}_{\mathrm{F},g}^{\mathsf{H}} \, \forall g,$$

where $\mathbf{V}_{\mathrm{B},g} = \left[\mathbf{h}_{\mathrm{B},g}/\|\mathbf{h}_{\mathrm{B},g}\|, \mathbf{N}_{\mathrm{B},g}\right]$, $\mathbf{U}_{\mathrm{F},g} = \left[\mathbf{h}_{\mathrm{F},g}/\|\mathbf{h}_{\mathrm{F},g}\|, \mathbf{N}_{\mathrm{F},g}\right]$, and $\mathbf{N}_{\mathrm{B},g}, \mathbf{N}_{\mathrm{F},g}$ are orthonormal bases of null spaces of $\mathbf{h}_{\mathrm{B},g}, \mathbf{h}_{\mathrm{F},g}$. The channel gain is a function of L

$$\max_{\mathbf{\Theta}_{BD}} |h| = |h_{D}| + \sum_{q} \sum_{l} |h_{B,q,\pi_{B,q}(l)}| |h_{F,q,\pi_{F,q}(l)}|,$$

which generalizes $\max_{\mathbf{\Theta}_{\mathrm{D}}}|h|=|h_{\mathrm{D}}|+\sum_{n=1}^{N_{\mathrm{S}}}|h_{\mathrm{B},n}||h_{\mathrm{F},n}|$ using permutations $\pi_{\mathrm{B},q},\pi_{\mathrm{F},q}$ that pair the l-th strongest backward and forward branches.

Example 2: $2 \times 2 \times 2$ shaping

D-RIS and fully-connected BD-RIS can be modeled by 2 and 4 angular parameters:

$$\mathbf{\Theta}_{\mathrm{D}} = \mathrm{diag}(e^{\jmath\theta_{1}}, e^{\jmath\theta_{2}}), \quad \mathbf{\Theta}_{\mathrm{BD}} = e^{\jmath\phi} \begin{bmatrix} e^{\jmath\alpha}\cos\psi & e^{\jmath\beta}\sin\psi \\ -e^{-\jmath\beta}\sin\psi & e^{-\jmath\alpha}\cos\psi \end{bmatrix}.$$

Assume the BD-RIS is symmetric (i.e., $\beta=\pi/2$) and the direct channel is negligible (i.e., $sv(e^{j\phi}\mathbf{A}) = sv(\mathbf{A})$). For one channel realization, we can reveal channel singular values achieved by D- and BD-RIS by grid search over (θ_1, θ_2) and (α, ψ) .

Here, both singular values are manipulated up to $\pm 9\%$ by D-RIS and $\pm 42\%$ by symmetric fully-connected BD-RIS, using 2 and 3 circuit components respectively.

Proposition 1: Degrees of Freedom (DoF)

In point-to-point MIMO, BD-RIS may achieve a larger or smaller DoF than D-RIS.

Proposition 2: Rank-deficient channels

If the minimum rank of backward and forward channels is k, then for D-RIS or BD-RIS of arbitrary number of elements, the n-th channel singular value is bounded by

$$\sigma_n(\mathbf{H}) \le \sigma_{n-k}(\mathbf{T}),$$
 $\sigma_n(\mathbf{H}) \ge \sigma_n(\mathbf{T}),$

where ${f T}$ is arbitrary auxiliary matrix satisfying

$$\mathbf{TT}^{\mathsf{H}} = \begin{cases} \mathbf{H}_{\mathrm{D}}(\mathbf{I} - \mathbf{V}_{\mathrm{F}}\mathbf{V}_{\mathrm{F}}^{\mathsf{H}})\mathbf{H}_{\mathrm{D}}^{\mathsf{H}}, & \textit{if} \ \mathrm{rank}(\mathbf{H}_{\mathrm{F}}) = k, \\ \mathbf{H}_{\mathrm{D}}^{\mathsf{H}}(\mathbf{I} - \mathbf{U}_{\mathrm{B}}\mathbf{U}_{\mathrm{B}}^{\mathsf{H}})\mathbf{H}_{\mathrm{D}}, & \textit{if} \ \mathrm{rank}(\mathbf{H}_{\mathrm{B}}) = k. \end{cases}$$

Corollary 2.1: Line-of-Sight (LoS) channel

If one of backward and forward channels is LoS, then a D-RIS or BD-RIS can only manipulate the channel singular values up to

$$\sigma_1(\mathbf{H}) \ge \sigma_1(\mathbf{T}) \ge \sigma_2(\mathbf{H}) \ge \ldots \ge \sigma_{N-1}(\mathbf{T}) \ge \sigma_N(\mathbf{H}) \ge \sigma_N(\mathbf{T}).$$

As $N_{\rm S} \to \infty$, N out of those 2N bounds can be simultaneously tight.

Proposition 3: Negligible direct channel

If the direct channel is negligible, then a fully-connected BD-RIS can manipulate the channel singular values up to

$$\operatorname{sv}(\mathbf{H}) = \operatorname{sv}(\mathbf{BF})$$

where **B** and **F** are arbitrary matrices with $sv(\mathbf{B}) = sv(\mathbf{H}_B)$ and $sv(\mathbf{F}) = sv(\mathbf{H}_F)$.

Corollary 3.3: Individual singular value

If the direct channel is negligible, then the n-th channel singular value is bounded

$$\max_{i+j=n+N_{\mathrm{S}}} \sigma_i(\mathbf{H}_{\mathrm{B}}) \sigma_j(\mathbf{H}_{\mathrm{F}}) \le \sigma_n(\mathbf{H}) \le \min_{i+j=n+1} \sigma_i(\mathbf{H}_{\mathrm{B}}) \sigma_j(\mathbf{H}_{\mathrm{F}}),$$

which are attained respectively at

$$oldsymbol{\Theta}_{ extsf{sv-}n extsf{-max}}^{ extsf{MIMO-ND}} = oldsymbol{\mathbf{V}}_{B} oldsymbol{\mathbf{P}} oldsymbol{\mathbf{U}}_{F}^{ extsf{H}}, \quad oldsymbol{\Theta}_{ extsf{sv-}n extsf{-min}}^{ extsf{MIMO-ND}} = oldsymbol{\mathbf{V}}_{B} oldsymbol{\mathbf{Q}} oldsymbol{\mathbf{U}}_{F}^{ extsf{H}},$$

where P, Q are permutation matrices of dimension N_S satisfying:

■ The (i, j)-th entry is 1, where

$$(i, j) = \begin{cases} \arg\min \sigma_i(\mathbf{H}_{\mathrm{B}})\sigma_j(\mathbf{H}_{\mathrm{F}}) & \text{for } \mathbf{P}, \\ i+j=n+1 \\ \arg\max \sigma_i(\mathbf{H}_{\mathrm{B}})\sigma_j(\mathbf{H}_{\mathrm{F}}) & \text{for } \mathbf{Q}, \\ i+j=n+N_{\mathrm{S}} \end{cases}$$

and ties may be broken arbitrarily;

 \blacksquare After deleting the i-th row and j-th column, the resulting submatrix Y is arbitrary permutation matrix of dimension $N_{
m S}-1$ satisfying

$$\sigma_{n-1}(\hat{\Sigma}_{\mathrm{B}}\mathbf{Y}\hat{\Sigma}_{\mathrm{F}}) \ge \min_{i+j=n+1} \sigma_{i}(\mathbf{H}_{\mathrm{B}})\sigma_{j}(\mathbf{H}_{\mathrm{F}})$$
 for \mathbf{P} ,

$$\sigma_{n+1}(\hat{\mathbf{\Sigma}}_{\mathrm{B}}\mathbf{Y}\hat{\mathbf{\Sigma}}_{\mathrm{F}}) \leq \max_{i+j=n+N_{\mathrm{S}}} \sigma_{i}(\mathbf{H}_{\mathrm{B}})\sigma_{j}(\mathbf{H}_{\mathrm{F}})$$
 for \mathbf{Q} ,

where $\hat{m{\Sigma}}_{
m B}, \hat{m{\Sigma}}_{
m F}$ are $m{\Sigma}_{
m B}, m{\Sigma}_{
m F}$ with both i-th row and j-th column deleted.

Corollary 3.4: Channel power gain

If the direct channel is negligible, then the channel power gain is bounded by

$$\sum_{n=1}^{N} \sigma_n^2(\mathbf{H}_{\rm B}) \sigma_{N_{\rm S}-n+1}^2(\mathbf{H}_{\rm F}) \le \|\mathbf{H}\|_{\rm F}^2 \le \sum_{n=1}^{N} \sigma_n^2(\mathbf{H}_{\rm B}) \sigma_n^2(\mathbf{H}_{\rm F}),$$

which are attained respectively at

$$\mathbf{\Theta}_{ extbf{P-max}}^{ extbf{MIMO-ND}} = \mathbf{V}_{ ext{B}}\mathbf{U}_{ ext{F}}^{ ext{H}}, \quad \mathbf{\Theta}_{ extbf{P-min}}^{ ext{MIMO-ND}} = \mathbf{V}_{ ext{B}}\mathbf{J}\mathbf{U}_{ ext{F}}^{ ext{H}},$$

where J is the backward identity matrix.

Corollary 3.5: Channel capacity at very low and high SNR

If the direct channel is negligible, then the channel capacity at very low and high SNR are approximately bounded from above by

$$C_{\rho_{\downarrow}} \lesssim \sigma_1^2(\mathbf{H}_{\mathrm{B}})\sigma_1^2(\mathbf{H}_{\mathrm{F}}),$$

$$C_{\rho_{\uparrow}} \lesssim N \log \frac{\rho}{N} + 2 \log \prod_{n=1}^{N} \sigma_n(\mathbf{H}_{\mathrm{B}})\sigma_n(\mathbf{H}_{\mathrm{F}}).$$

November 25 & 26, 2024

Their upper bounds can be attained at, for example, $\Theta_{P-max}^{MIMO-ND}$.

Algorithm 1: Group-wise geodesic optimization for BD-RIS

For BD-RIS optimization problem of the form

$$\max_{\mathbf{\Theta}} \quad f(\mathbf{\Theta})$$
s.t.
$$\mathbf{\Theta}_q^{\mathsf{H}} \mathbf{\Theta}_g = \mathbf{I}, \quad \forall g,$$

we propose a geodesic Riemannian Conjugate Gradient (RCG) algorithm below.

Compute the Euclidean gradient:

$$abla_{\mathrm{E},g}^{(r)} = \frac{\partial f(\mathbf{\Theta}_g^{(r)})}{\partial \mathbf{\Theta}_g^*};$$

Translate to the Riemannian gradient evaluated at the identity:

$$\tilde{\nabla}_{\mathrm{R},q}^{(r)} = \nabla_{\mathrm{E},q}^{(r)} \mathbf{\Theta}_g^{(r)\mathsf{H}} - \mathbf{\Theta}_g^{(r)} \nabla_{\mathrm{E},q}^{(r)\mathsf{H}};$$

Determine the conjugate direction:

$$\mathbf{D}_{g}^{(r)} = \tilde{\nabla}_{\mathrm{R},g}^{(r)} + \tilde{\gamma}_{g}^{(r)} \mathbf{D}_{g}^{(r-1)}, \quad \tilde{\gamma}_{g}^{(r)} = \frac{\mathrm{tr}\left((\tilde{\nabla}_{\mathrm{R},g}^{(r)} - \tilde{\nabla}_{\mathrm{R},g}^{(r-1)})\tilde{\nabla}_{\mathrm{R},g}^{(r)H}\right)}{\mathrm{tr}\left(\tilde{\nabla}_{\mathrm{R},g}^{(r-1)}\tilde{\nabla}_{\mathrm{R},g}^{(r-1)H}\right)};$$

Perform multiplicative update along geodesic:

$$\mathbf{\Theta}_g^{(r+1)} = \mathbf{G}_g^{(r)}(\mu) = \exp(\mu \mathbf{D}_g^{(r)}) \mathbf{\Theta}_g^{(r)},$$

where μ is refinable by the Armijo rule. To double the step size, one can simply square the rotation matrix instead of recomputing the matrix exponential.

Result 1: Algorithm evaluation

RCG path	$N_{ m S} = 16$			$N_{\rm S} = 256$		
	Objective	Iterations	Time [s]	Objective	Iterations	Time [s]
Geodesic	4.359×10^{-3}	11.59	1.839×10^{-2}	1.163×10^{-2}	25.58	3.461
Non-geodesic	4.329×10^{-3}	30.92	5.743×10^{-2}	1.116×10^{-2}	61.40	13.50

Result 2: Bounds and Pareto frontier of singular values

Result 3: Channel power gain and achievable rate

