Let us reformulate the problem as

minimize
$$f(y)$$

subject to $Ax + b = y$,

where we introduced the new variable $y \in \mathbb{R}^m$ and the equality constraint Ax + b = y. The two problems are obviously equivalent. The Lagrangian of the reformulated problem is

$$L(x, y, \mu) = f(y) + \mu^{\top} (Ax + b - y)$$

where $\mu \in \mathbb{R}^m$. To find the dual function $G(\mu)$ we minimize $L(x, y, \mu)$ over x and y. Minimizing over x we see that $G(\mu) = -\infty$ unless $A^{\top}\mu = 0$, in which case we are left with

$$G(\mu) = b^{\top} \mu + \inf_{y} (f(y) - \mu^{\top} y) = b^{\top} \mu - \inf_{y} (\mu^{\top} y - f(y)) = b^{\top} \mu - f^{*}(\mu),$$

where f^* is the conjugate of f. It follows that the dual program can be expressed as

maximize
$$b^{\top}\mu - f^*(\mu)$$

subject to $A^{\top}\mu = 0$.

This formulation of the dual is much more useful than the dual of the original program.

Example 50.12. As a concrete example, consider the following unconstrained program:

minimize
$$f(x) = \log \left(\sum_{i=1}^{n} e^{(A^i)^{\top} x + b_i} \right)$$

where A^i is a column vector in \mathbb{R}^n . We reformulate the problem by introducing new variables and equality constraints as follows:

minimize
$$f(y) = \log \left(\sum_{i=1}^{n} e^{y_i} \right)$$

subject to $Ax + b = y$,

where A is the $n \times n$ matrix whose columns are the vectors A^i and $b = (b_1, \ldots, b_n)$. Since by Example 50.8(8), the conjugate of the log-sum-exp function $f(y) = \log \left(\sum_{i=1}^n e^{y_i}\right)$ is

$$f^*(\mu) = \begin{cases} \sum_{i=1}^n \mu_i \log \mu_i & \text{if } \mathbf{1}^\top \mu = 1 \text{ and } \mu \ge 0\\ \infty & \text{otherwise,} \end{cases}$$