Master of Aerospace Engineering - Research Project

HALE AEROECODESIGN

S2 Project Report – 26/06/2020

Víctor Manuel GUADAÑO MARTÍN

Tutors: J. Morlier & E. Duriez

OUTLINE

- STATE OF THE ART
- GOAL OF THE PROJECT
- MILESTONES OF THE PROJECT
- RESULTS
- CONCLUSIONS
- FUTURE WORK

STATE OF THE ART

- HALE ➤ High-Altitude Long Endurance Drone
 - Atmospheric satellites or atmosats
 - Services conventionally provided by space satellites
 - Environment-friendly > Powered by solar energy
 - CO₂ emissions ➤ Manufacturing and materials

Fig. 1: Airbus-built HALE Zephyr

- MD0
 Multidisciplinary Design Optimization
 - Optimum for the interaction of disciplines
 - OpenAeroStruct (based on OpenMDAO) ➤ Aerostructural optimization

GOAL OF THE PROJECT

- Refine a modified version of OpenAeroStruct presented in [1]
- CO₂ footprint optimization of a HALE
- Compromise solution between:
 - Convergence of the optimization > Efficiency
 - Complexity of the model > Realistic
- Validation with Facebook's single-boom HALE [2]

Fig. 2: Optimal HALE wing structure [1]

Fig. 3: Facebook's single-boom HALE [2]

- [1] E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.
- [2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization Part I: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

MILESTONES OF THE PROJECT

ADD A CONSTRAINT ON THE WING SURFACE

• Reduce <u>snowball effect</u> > Prevent the optimization from diverging

Maximum wing surface threshold ➤ 200 m²

TURN MATERIAL FUNCTION INTO OPENMDAO COMPONENTS

- Component > The most efficient way for gradient-based optimization
- Replace the existing function by the component
- Access to material properties database and interpolate:
 - Young's modulus (E)
- Failure strength

• Shear modulus (G)

- CO₂ emissions
- Get to know the OpenMDAO methodology

ADD ENGINES AS POINT MASSES

- Two symmetrical engines
 Two symmetrical point masses
- New design variable
 Engine spanwise location
- Same propulsion density as FB single-boom HALE [2]

$$d_{prop} = \frac{M_{prop}}{P_{prop}}$$

where d_{prop} is the propulsion density, M_{prop} is the propulsion mass, and P_{prop} is the power needed for propulsion

Reduce the bending moment on the wing due to lift

Fig. 4: Bending moment distribution along semi-span

[2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization Part I: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

RESULTS

Table 1: Final design variable values for validation case

Variable	Units	HALE of [1]	FB HALE [2]	Results w/o engines	Results w/ engines
Span	m	97.5	-	93.5	70.2
Root chord	m	1.4	-	1.4	1.4
Taper ratio	-	0.32	-	0.33	0.30
Total mass	kg	378	320	435	362
Wing surface	m ²	86.6	71.8	83.4	61.3
Aspect ratio	-	94	29	105	80
C^L cruise	-	1.31	1.33	1.56	1.77
$(C_L^{3/2}/C_D)^{cruise}$	-	44.1	40.1	57.8	72.1
y _{engine} /(b/2)	-	0	0.46	0	0.79

^[1] E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.

^[2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization Part I: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

RESULTS

Table 2: Performance values of the optimization for validation case

Performance	Units	HALE of [1]	Results w/o engines	Results w/ engines
Cases	-	24	24	24
Convergences	-	7	12	11
Time	h	2	3	4

^[1] E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.

CONCLUSIONS

- Without engines > Better convergence and same results as in [1]
- With engines

 Worse convergence than without engines but better results
- Same differences with respect to [2] as in [1]
 Very high aspect ratio
- Need for 1-cosine gust and more complex buckling model

- [1] E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.
- [2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization Part I: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

FUTURE WORK

"True optimization is the revolutionary contribution of modern research to decision processes"

George Dantzig

THANKS FOR YOUR ATTENTION!

ANY QUESTION?