Veri İletişimi Data Communications

Suat ÖZDEMİR
Gazi Üniversitesi
Bilgisayar Mühendisliği Bölümü

Sayısal şevirme

- Bilginin iki nokta arasında iletilmesi için analog veya sayısal sinyale çevrilmesi gerekir.
- Sayısal sayısal çevirmede sayısal veri sayısal sinyale dönüştürülür.
- Analog sayısal çevirmede analog veri sayısal sinyale dönüştürülür.
- Çevirme işleminden elde edilen sinyal paralel veya seri olarak iki nokta arasında iletilir.

Sayısal şevirme

- **Line coding** sayısal veriyi sayısal sinyale dönüştürme işlemidir.
- Veri iletişiminde amaç, veri parçalarının iletilmesidir. En küçük parça bit olarak adlandırılır.
- Şekilde *r* bir sinyal parçasıyla taşınan veri parçasının sayısını göstermektedir.

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $(r = \frac{1}{2})$

d. Four data elements per three signal elements $(r = \frac{4}{3})$

Sayısal şevirme

- Data rate, bir saniyede iletilen bit sayısını gösterir (bps, bit/s).
- Signal rate, bir saniyede iletilen sinyal sayısını gösterir (baud).
- Data rate genellikle bit rate olarak ifade edilir.
- Signal rate ise baud rate, pulse rate ya da modulation rate olarak ifade edilir.
- Amaç baud rate düşürülürken bit rate değerini artırmaktır.
- Bandwidth, sinyali taşımak için gereken frekans bant genişliğini gösterir.
- Sinyaldeki değişim sayısını artırırken daha geniş frekans bandı kullanılır.

Sinyal iletiminde sorunlar

- Sinyal kodlamada uzun 1 ve 0 serilerinin alıcıda doğru çözülmesi zordur. Önlem alınması gerekir.
- Bir sayısal sinyal belirli bir süre sabit kalırsa DC bileşen oluşur ve düşük frekansları geçirmeyen sistemler için problem oluşur. (Telefon hattı 200Hz altını geçirmez)
- İki sistemde (alıcı ve verici) bit aralığının aynı olması gerekir.
- Self-synchronizing sayısal sinyalin zamanlama bilgisini içinde bulundurmasıdır.

a. Sent

b. Received

Sayısal sinyal kodlama teknikleri

5 temel grupta toplanır

Unipolar (non-return-to-zero)

- Bit 1 pozitif gerilim ve bit 0 negatif gerilim veya 0 V ile tanımlar.
- Sinyal bitin ortasında 0'a dönmediği için non-return-to-zero denilmektedir.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

Polar (non-return-to-zero)

- İki seviyeli sinyal kullanılır. NRZ-Level ve NRZ-Invert olarak iki türdür.
- NRZ-L kodlamada bit 0 pozitif gerilim ve bit 1 negatif gerilim ile tanımlar.
- NRZ-I da gerilim seviyesindeki değişim bit 1 ve değişmeme bit 0 dır.
- Uzun 1 ve 0 serilerinin algılanması zordur (NRZ-L da daha fazla).
- Senkronizasyon problemi her ikisinde vardır (NRZ-L da daha fazla)

Polar (Biphase: Manchester ve Differential Manchester)

- Manchester'da, sinyal bit 1 ve bit 0 için belirli işaretlere sahiptir.
- Differential Manchester'da bit 0 için bit başında değişim olur, bit 1 için değişim olmaz.
- Her ikisinde de bitin ortasında seviye değiştirilir. (senkronizasyon sağlanır)

Polar (Biphase: Manchester ve Differential Manchester)

- Manchester ve Differential Manchester kodlamalarda DC bileşen yoktur. Her bit hem pozitif hem de negatif gerilime sahiptir.
- Signal rate NRZ kodlamaya göre iki kat olur.
 (Bant genişliği iki kat olur)

Bipolar (AMI – Alternate Mark Inversion ve Pseudoternary)

- AMI kodlamada, bit 0 için seviye 0 dır, bit 1 için pozitif ve negatif arasında sürekli değişir.
- Pseudoternary kodlamada, bit 1 için seviye 0 dır, bit 0 için pozitif ve negatif arasında sürekli değişir.
- Bipolar kodlamada DC bileşen yoktur. Sürekli pozitif ve negatif arasında değişim yapılır.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Multilevel (2B1Q, 8B6T, 4D-PAM5)

- Kodlamada temel amaç veri hızını artırmak ve bant genişliğini azaltmaktır.
- m veri parçası sayısını, n sinyal parçası sayısını göstersin.
- Binary veri için 1 ve 0 olduğundan m adet veriyi 2^m farklı sinyalle gösterebiliriz.
- Her sinyalde L seviye olursa Lⁿ adet farklı sinyal elde edilir.

Multilevel (2B1Q, 8B6T, 4D-PAM5)

- 2^m = Lⁿ olursa her veri için bir sinyal kullanabiliriz.
- 2^m < Lⁿ olursa tüm veriler sinyallerin bir kısmıyla ifade edilebilir.
- 2^m > Lⁿ olursa tüm veriler elde edilen sinyallerle ifade edilemez.
- Bu şekildeki kodlama mBnL olarak adlandırılır.
- Burada, m binary verinin uzunluğunu, B binary veriyi, n sinyal uzunluğunu ve L sinyal seviye sayısını gösterir.
- L=2 ise B (binary), L=3 ise T (ternary), L=4 ise Q (quaternary) kullanılır.
- İlk ikisi (mB) veriyi, son ikisi (nL) sinyali gösterir.

Multilevel (2B1Q)

- 2B1Q(two-binaryone-quaternary), kodlamada bir sinyal ile kodlanan veri boyutu 2 bit ve sinyaldeki toplam seviye sayısı 4 tür.
- 2B1Q, DSL(digital subscriber line) teknolojisinde kullanılır.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Previous level: Previous level: positive

	Pobler	negative
Next bits	Next level	Next level
00	+1	-1
01	+3	-3
10	-1	+1
11	-3	+3

negative

Transition table

Multilevel (8B6T)

- 8B6T(eight-binary-six-ternary), kodlamada 8-bit data 3 seviyeli sinyalle gösterilir.
- $2^8 = 256$ farklı veri ve $3^6 = 729$ farklı sinyal kullanılır.
- Sinyallerin bir kısmı senkronizasyon ve hata denetimi için kullanılır.
- Her bit grubu için kullanılacak sinyal grubu sabittir.

8B6T, 10Base-4T ağlarda kullanılır.

Multilevel (4D-PAM5)

- 4D-PAM5 (four-dimensional five-level pulse-amplitude-modulation), kodlamada 4D verinin 4 kablo ile iletildiğini gösterir.
- 5 farklı sinyal seviyesi (-2,-1,0,1,2) kullanılır.
- Bir sinyal elemanıyla 8 bit gönderilir.
- Sinyal 4 parçayla gösterilir her parçası bir kablodan iletilir.
- 4D-PAM5 kodlama Gigabit LAN ağlarda kullanılır.

Multiline İletişim (MLT-3)

- NRZ-I ve Differential Manchester datayı kodlarken iki geçiş kuralı uygular.
- MLT-3 (Multiline Transmission, Three Level) kodlama, iki seviyeden fazla seviyeye sahip veri için kullanılır MLT-3 üç seviyeli (+V 0 -V) geçiş kuralı kullanılır.
- Daha az değişim olduğu için ortalama bant genişliği 1/3 oranındadır. (BW = 1/3 Bit rate)
 - Uzun 1 serilerinde ¼ e kadar düşer
- Bir sonraki bit 0 ise geçiş olmaz.
- Bir sonraki bit 1 ise ve şimdiki seviye 0 değilse, bir sonraki seviye 0 olur.
- Bir sonraki bit 1 ise şimdiki seviye 0 ise, bir sonraki seviye
 0 olmayan son seviyenin tersi olur.

Multiline İletişim (MLT-3)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Typical case

b. Worse case

c. Transition states

Line coding yöntemleri özet

Kategori	Şema	Bant genişliği	Karakteristik	
Unipolar	NRZ	BW = N/2	 Maliyeti yüksektir Uzun 1 ve 0 larda senkronizasyon yoktur DC bileşen vardır 	
	NRZ-L BW = N/2		 Uzun 1 ve 0 larda senkronizasyon yoktur DC bileşen vardır 	
Polar	NRZ-I	BW = N/2	 Uzun 0 larda senkronizasyon yoktur DC bileşen vardır 	
	Biphase	BW = N	 Yüksek bant genişliği gerektirir Senkronizasyon vardır DC bileşen yoktur 	
Bipolar AMI		BW = N/2	Uzun 0 lar için senkronizasyon yokturDC bileşen yoktur	
	2B1Q	BW = N/4	Uzun aynı bit çiftleri için senkronizasyon yoktur	
Multilevel	8B6T	BW = 3N/4	Senkronizasyon vardır DC bileşen yoktur	
	4D-PAM5	BW = N/8	Senkronizasyon vardır DC bileşen yoktur	
Multiline MLT-3 BW		BW = N/3	Uzun 0 lar için senkronizasyon yoktur	

Blok kodlama

 Senkronizasyonu daha iyi yapmak ve hata denetimi yapmak için ekstra bitlere ihtiyaç olur.

Blok kodlama

- Block coding, m adet biti n adet bit haline çevirir (mB/nB).
 Burada (n > m).
- "/" işareti blok kodlamayı, multilevel kodlamadan ayırır (8B6T).
- m-bit grup n-bit grup yerine yerleştirilir.
- 4B/5B de orijinal bitler 4-bit gruplara ayrılır ve her 4-bit yerine 5-bit yazılır.

 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Division of a stream into m-bit groups

Combining *n*-bit groups into a stream

Blok kodlama (4B/5B)

- 4B/5B (four binary/five binary) kodlama NRZ-I ile birlikte kullanılır.
- NRZ-I kodlama uzun 0 larda senkronizasyon problemi vardır.
- NRZ-I kodlamadan önce uzun 0 olmayacak şekilde değişiklik gerekir.
- Alıcı önce NRZ-I ile bitleri elde eder daha sonra fazlalık olan 1-bit atılır.
- 4B/5B kodları ikiden fazla 0'ı art arda bulundurmaz. Tüm gruplar içinde art arda üçten fazla 0 olmaz.
- Eklenen 1 bit %25 fazla trafik gerektirir. DC bileşen hala vardır.

4B/5B Kodları

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11 010		
1101	11011		
1110	11100		
1111	11101		

Blok kodlama (4B/5B)

 Örnek: 1 Mbps hızda veri göndermek istiyoruz. 4B/5B ve NRZ-I ile Manchester kullanıldığında gereken minimum bant genişliği nedir ?

4B/5B bit rate değerini 1.25 Mbps olarak artırır.

NRZ-I kodlama N/2 bant genişliği gerektirdiğinden 625 kHz gerekir.

Manchester kodlama 1.25 MHz bant genişliği gerektirir. NRZ-I da DC bileşen vardır, Manchester'da DC bileşen yoktur.

Blok kodlama (8B/10B)

- 8B/10B (eight binary/ten binary) kodlama 8-bit yerine 10-bit kullanır.
- Bir tane 5B/6B ile (soldaki 5 bit için) bir tane 3B/4B (sağdaki 3 bit için) vardır.
- Disparity controller hata denetimi yapar. $2^{10} 2^8 = 768$ fazla grup oluşur.

25

Scrambling

- Biphase yöntemi kısa mesafede iki istasyon arasında (LAN içinde) uygundur ancak geniş bant genişliği gerektirdiği için uzun mesafede uygun değildir.
- Blok kodlama ve NRZ nin birlikte kullanımı da uzun mesafede DC bileşen olduğu için uygun değildir.
- Bipolar AMI kodlama dar bant genişliği gerektirir ve DC bileşen yoktur. Ancak uzun 0 larda senkronizasyon yoktur.
- Belirli sayıdaki 0 serisi farklı bir seriyle değiştirilir.

Scrambling (B8ZS – Bipolar with 8-zero substitution)

- 8 artarda gelen 0 seviye gerilim yerine 000VB0VB yerleştirilir.
- V, AMI kodlamada bir önceki gerilim seviyesinin aynısını gösterir.
- B, bipolar bir önceki gerilim seviyesinin tersini gösterir.

a. Previous level is positive.

b. Previous level is negative.

Scrambling (HDB3 – High-density bipolar 3-zero)

- 4 artarda sıfır gerilim seviyesi 000V veya B00V ile değiştirilir.
- Son substitution' dan sonra eğer sıfırdan farklı pulse sayısı tek ise, 000V işareti kullanılır. Böylece sıfırdan farklı pulse sayısı çift olur.
- Son substitution' dan sonra eğer sıfırdan farklı pulse sayısı çift ise, B00V işareti kullanılır. Böylece sıfırdan farklı pulse sayısı çift olur.

Analog sayısal çevirme

- Bazı uygulamalarda analog sinyal vardır (mikrofon veya kamera üretir).
- Analog sinyal sayısal dataya çevirilir ardından sayısal sinyale dönüştürülür.
- Pulse code modulation (PCM) En yaygın kullanılan analog sinyal-sayısal data dönüştürme yöntemidir.

Analog sayısal çevirme

- Analog sayısal çevirmenin 3 aşaması vardır
 - Örnekleme (Sampling)
 - Sayısallaştırma (Quantization)
 - Orijinal sinyali tekrar oluşturma

Örnekleme - Sampling

- Her T_s aralığında analog sinyal örneklenir (sampling rate, sampling frequency).
- Üç farklı örnekleme yapılır. Sample and hold (flat-top) yaygın kullanılır.

Sampling rate

 Nyquist teoremine göre örnekleme frekansı (sampling rate) en yüksek frekansın en az iki katı olmalıdır.

Sampling rate

- Örnekleme frekansı düşükse saat ters dönüyor gibi görünür.
- Bir filmde saniyede 24 frame geçer. 12'den az örnekleme undersampling'tir.

b. Oversampling (above Nyquist rate): $T_s = \frac{1}{4}T$

Samples show clock is moving backward. (12-9-6-3-12)

c. Undersampling (below Nyquist rate): $T_s = \frac{3}{4}T$

Sayısallaştırma – Quantization

 Örneklenen değerler analogtur. Minimum ve maksimum arası L seviyeye bölünür. İki seviye arasındaki fark

$$\Delta = (V_{max} - V_{min})/L$$
 olur.

Örnekte,
 Vmax = +20 V,
 Vmin = -20 V,
 L = 8

Orijinal sinyali tekrar oluşturmak

 Bit dizisi tekrar analog sinyali oluşturmak için kullanılır.

Delta modülasyonu

- Delta modülasyonu PCM'den daha basittir.
- Örneklenen değer bir öncekinden büyükse artış, küçükse azalış gerçekleştirilir.

İletişim modları

Paralel ve seri iletişim yapılır.

Paralel iletişim

- Aynı anda n bit gönderilir.
- Maliyet yüksektir, hızlıdır. Kısa mesafelerde kullanılır.

Seri iletişim

- Aynı anda 1 bit gönderilir.
- Maliyet düşüktür, yavaştır. Uzun mesafelerde kullanılır.

Seri iletişim - asenkron

- Bilgi gruplar halinde gönderilir. Bir grupta genellikle 8 bit olur.
- Bir grubun geldiğini alıcıya start biti, bittiğini stop biti gösterir.
- Byte seviyesinde asenkrondur, ama bit seviyesinde senkron yapmak gerekir.
- Keyboard, mouse örnektir.

Seri iletişim - senkron

- Start ve stop biti olmadan bitler artarda gönderilir.
- Bitleri gruplara ayırmak ve zamanlama işlemleri alıcı tarafından yapılır.
- Asenkrona göre daha hızlıdır.

Seri İletişim –Isochronous (i-senkron)

- Gerçek zamanlı video ve audio uygulamalarında frame'ler arasında bekleme istenmez.
- Senkron ve asenkron iletişimin özelliklerini alır
- Frameler arasında bit yoktur, başlangıç ve bitiş frame'i vardır
- Isochronous iletişim sabit hızda verinin iletimini sağlar.