## Advanced Bayesian Computing: Prereqs Review

Andrew J. Holbrook

**UCLA Biostatistics 285** 

Spring 2021

## Bayesian inference

We observe data  $y_1, \ldots, y_N \stackrel{iid}{\sim} p(y_n|\theta)$  and assume  $\theta \sim p(\theta)$ . Here,

- ▶  $p(y|\theta) = \prod_{n=1}^{N} p(y_n|\theta)$  is the *likelihood*,
- $ightharpoonup p(\theta)$  is the *prior*,

and the goal of Bayesian inference is to obtain the posterior

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\theta)p(\theta)d\theta}.$$

2

## Bayesian inference

We're usually interested in computing another integral

$$\mathbb{E}_{\boldsymbol{\theta}|\mathbf{y}}f(\boldsymbol{\theta}) = \int_{\Theta} f(\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta},$$

so we do what statisticians have been doing forever. We collect samples and rely on the law of large numbers. Suppose  $\theta_1,\ldots,\theta_S \stackrel{iid}{\sim} p(\theta|\mathbf{y}) \; (\mathbb{E}_{\theta|\mathbf{y}}|\theta|<\infty)$  and  $f(\cdot)$  a.s. continuous, then

▶ (WLLN) 
$$\sum_{s=1}^{S} f(\theta_s)/S \stackrel{P}{\longrightarrow} \mathbb{E}_{\theta|y} f(\theta)$$

▶ (SLLN) 
$$\sum_{s=1}^{S} f(\theta_s)/S \xrightarrow{a.s.} \mathbb{E}_{\theta|y} f(\theta)$$

But where do we find our samples?

## Generating (pseudo) random variables

We want to sample  $Y \sim F(y)$ , where  $F(\cdot)$  is the (monotonically increasing) c.d.f.

## Claim 1

Assume we can generate  $U \sim U(0,1)$  and compute  $F^{-1}(\cdot)$ . Then

$$F^{-1}(U) \sim F(y)$$
.

Proof.

$$\Pr(F^{-1}(U) < y) = \Pr(U < F(y)) = F(y).$$

## Exponential random variables

Ingredients for  $Y \sim \exp(\lambda)$ :

1. 
$$p(Y|\lambda) = \lambda \exp(-\lambda Y)$$

2. 
$$F(y|\lambda) = \Pr(Y < y|\lambda) = \int_0^y \lambda \exp(-\lambda Y) = 1 - \exp(-\lambda Y)$$

3. 
$$F^{-1}(u) = -\lambda^{-1}\log(1-u)$$

Easy but extremely limited!

## Part 1. Monte Carlo

#### Rejection sampling

We want to sample from generic  $p(\theta)$  but only know  $p^*(\theta) \propto p(\theta)$ . We can easily sample from  $q(\theta)$  and know a number M > 0 s.t.  $p^*(\theta) < Mq(\theta)$ .

Algorithm for generating  $heta \sim p( heta)$ :

- 1. Draw  $oldsymbol{ heta}^* \sim q(oldsymbol{ heta})$  and  $U \sim U(0,1)$
- 2.  $\theta \leftarrow \theta^*$  if  $U < \frac{p*(\theta)}{Mq(\theta)}$

The tighter the envelope  $Mq(\theta)$ , the better. Suppose  $q(\theta) = p(\theta) = c^*p^*(\theta)$ . Then

$$\mathsf{Pr}(\mathsf{Accept}) = \frac{1}{c^* M} \,,$$

and expected number of iterations for one sample is  $c^*M$ .

Validity of rejection sampling

Validity of rejection sampling (continued)

## Importance sampling

We wish to know  $\mathbb{E}f(\theta) = \int f(\theta)p(\theta)d\theta$ . We can evaluate  $p^*(\theta) \propto p(\theta)$  and can sample from  $q(\theta)$  easily.

Algorithm for generating estimator  $\widehat{\mathbb{E}f(\theta)}$ :

- 1. Draw  $heta_1, \dots, heta_{\mathcal{S}} \sim q( heta)$
- 2. Calculate  $w_k = \frac{w(\theta_k)}{\sum_{s=1}^S w(\theta_s)}$ ,  $w(\theta_s) = \frac{p^*(\theta_s)}{q(\theta_s)}$  for  $k = 1, \dots, S$ .
- 3. Return  $\sum_{s=1}^{S} w_s f(\theta_s)$

## Validity of importance sampling

By the LLN,

$$\frac{1}{S} \sum_{s=1}^{S} w(\theta_s) f(\theta_s) \xrightarrow{a.s.} \int w(\theta) f(\theta) q(\theta) d\theta \quad \text{and} \quad \frac{1}{S} \sum_{s=1}^{S} w(\theta_s) \xrightarrow{a.s.} \int w(\theta) q(\theta) d\theta.$$

Therefore,

$$\sum_{s=1}^{S} w_s f(\theta_s) = \frac{\frac{1}{S} \sum_{s=1}^{S} w(\theta_s) f(\theta_s)}{\frac{1}{S} \sum_{s=1}^{S} w(\theta_s)} \xrightarrow{a.s.} \frac{\int w(\theta) f(\theta) q(\theta) d\theta}{\int w(\theta) q(\theta) d\theta}$$
$$= \frac{\int f(\theta) p^*(\theta) d\theta}{\int p^*(\theta) d\theta} = \int f(\theta) p(\theta) d\theta = \mathbb{E}f(\theta).$$

#### Variance of IS estimator

An estimator for the variance of  $\widehat{\mathbb{E}f(\theta)} = \sum_{s=1}^{S} w_s f(\theta_s)$  is

$$\widehat{\mathsf{Var}}\left(\widehat{\mathbb{E}f(\theta)}\right) pprox \sum_{s=1}^{S} w_s^2 (f(\theta_s) - \widehat{\mathbb{E}f(\theta)})^2$$
.

The variance can be large if even a single  $w_s$  is large.

Question: is it better to use a t-distribution to sample a normal or vice-versa?

# Part 2. Discrete time, discrete space, time-homogeneous Markov chains

#### The setup

Our Markov chain is a discrete time stochastic process  $\{m{ heta}^{(s)}, s \in \mathbb{N}\}$  satisfying

$$\Pr(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)},\boldsymbol{\theta}^{(s-2)},\ldots,\boldsymbol{\theta}^{(1)},\boldsymbol{\theta}^{(0)}) = \Pr(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)}).$$

#### Ingredients:

- 1. The state space S is a finite or countable set.
- 2. Initial distribution  $\{p_i^{(0)}\}_{i\in\mathcal{S}}$ , satisfying

2.1 
$$p_i^{(0)} = \Pr(\theta^{(0)} = i)$$

$$2.2 p_i^{(0)} \geq 0$$

2.3 
$$\sum_{i \in S} p_i^{(0)} = 1$$

3. Transition probabilities  $\{q_{ij}\}_{i,j\in\mathcal{S}}$ 

3.1 
$$q_{ii} = \Pr(\theta^{(s)} = i | \theta^{(s-1)} = i)$$

3.2 
$$q_{ij} \geq 0$$

3.3 
$$\sum_{j\in\mathcal{S}}q_{ij}=1$$

#### Finite state space

When  $S = \{1, ..., M\}$ , then we can write state probabilities as row-vectors:

$$\mathsf{p}^{(s)} = \left(\mathsf{Pr}(\boldsymbol{\theta}^{(s)} = 1), \mathsf{Pr}(\boldsymbol{\theta}^{(s)} = 2), \dots, \mathsf{Pr}(\boldsymbol{\theta}^{(s)} = M)\right)$$

Similarly, the transition probabilities  $q_{ij}$  form the matrix

$$Q = \begin{bmatrix} q_{11} & q_{12} & \dots & q_{1M} \\ q_{21} & q_{22} & \dots & q_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ q_{M1} & q_{M2} & \dots & q_{MM} \end{bmatrix}$$

and

$$p^{(\mathfrak{s})} = p^{(\mathfrak{s}-1)}Q = p^{(\mathfrak{s}-2)}Q^2 = \dots = p^{(0)}Q^{\mathfrak{s}}\,.$$

#### Perron-Frobenius theorem

Let A be a square matrix, satisfying  $A \ge 0$  and  $A^k > 0$  for some k.

- 1. There exists a real eigenvalue  $\lambda_{PF} > 0$  with associated positive left/right eigenvectors.
- 2. For any other eigenvalue  $\lambda$  of A,  $|\lambda| < |\lambda_{PF}|$
- 3.  $\lambda_{PF}$  has multiplicity 1 and corresponds to  $1 \times 1$  Jordan block.

Let A be a square matrix with non-negative values.

- 1. There exists a real eigenvalue  $\lambda_{PF} \geq 0$  with associated non-negative left/right eigenvectors (not necessarily unique or positive).
- 2. For any other eigenvalue  $\lambda$  of A,  $|\lambda| < |\lambda_{PF}|$

#### Transition matrix

Assume that our transition matrix satisfies  $Q^k > 0$  for some k. We know:

- ▶ Q > 0
- ▶ If  $\mathbb{1} = (1, ..., 1)$ , then  $\mathbb{Q}\mathbb{1}^T = \mathbb{1}^T$ , so 1 is an eigenvalue with right eigenvector  $\mathbb{1}^T$ .
- $\blacktriangleright$  But the eigenvalues of Q satisfy  $|\lambda| \leq 1$  (Gershgorin circle theorem) .

Therefore  $\lambda_{PF}=1$  and there exists a positive left eigenvector  $\pi$  for which

$$\pi \mathsf{Q} = \pi$$
 and  $\pi \mathbb{1}^T = 1$  (Why?)

We call such a  $\pi$  the stationary distribution.

#### Stationary distributions

Because all other eigenvalues are bounded below 1, they die away, and

$$\lim_{s \longrightarrow \infty} \mathsf{Q}^s = \mathbb{1}^T \pi = \left( \begin{array}{c} -\pi - \\ \vdots \\ -\pi - \end{array} \right)$$

On the other hand, even without the regularity assumption  $(Q^k > 0)$ , any limiting distribution is a stationary distribution. Take p an arbitrary limiting distribution:

$$\begin{array}{ll} \text{(assume)} & \lim\limits_{s \longrightarrow \infty} Q^s = \mathbb{1}^T p \\ \text{(then)} & \lim\limits_{s \longrightarrow \infty} Q^s Q = \mathbb{1}^T p Q \\ \text{(but)} & \lim\limits_{s \longrightarrow \infty} Q^{s+1} = \mathbb{1}^T p \\ & \Longrightarrow p Q = p \end{array}$$

#### Law of large numbers

Consider a Markov chain with finite state space and regular transition matrix. If a function  $f(\cdot)$  is bounded on S, then

$$\frac{1}{S}\sum_{s=0}^{S}f(\theta^{(s)})\stackrel{a.s.}{\longrightarrow} \mathbb{E}_{\pi}f(\theta)=\sum_{i\in\mathcal{S}}f(i)\pi_{i}.$$

This result holds irrespective of initial state  $p^{(0)}$ .

#### The punchline

- We construct Markov chains so that they have a specific stationary distribution  $\pi$  (e.g., the posterior).
- lacktriangle By simulating the Markovian dynamics, we may obtain an *empirical* estimate of  $\mathbb{E}_{\pi}f( heta)$  .

#### Detailed balance

Satisfying the *detailed balance* equations

$$\pi_i Q_{ij} = \pi_j Q_{ji}$$

is sufficient (assuming regularity, of course) for guaranteeing that  $\pi$  is the invariant distribution of the Markov chain:

$$\sum_i \pi_i \mathsf{Q}_{ij} = \sum_i \pi_j \mathsf{Q}_{ji} = \pi_j \sum_i \mathsf{Q}_{ji} = \pi_j$$

We say:

- ▶ The Markov chain is reversible with respect to  $\pi$  or
- ightharpoonup the Markov chain satisfies detailed balance with respect to  $\pi$ .

#### Two concepts

A chain is *irreducible* if for any two states i and j, there exists a k such that  $(Q^k)_{ij} > 0$ . Intuitively, this means the transition graph is connected.



Andrieu et al. 2003

The *period* of a state i is the *gcd* of the times at which it is possible to move from i to i. A Markov chain is *aperiodic* if the period of all states is 1.

## Existence and uniqueness of stationary distribution

Finite state space:

Irreducibility + Aperiodicity ← Regular ← Ergodic

Countable state space:

 $Irreducibility + Aperiodicity + Positive \ recurrence \iff Ergodic$ 

A state is *positive recurrent* if the expected time to return is finite. A chain is positive recurrent if all states are positive recurrent.

# Part 3. Discrete time, continuous space, time-homogeneous Markov chains

#### Analogies: the Markov property

The Markov property

$$\Pr(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)},\dots,\boldsymbol{\theta}^{(1)},\boldsymbol{\theta}^{(0)}) = \Pr(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)})$$

now becomes

$$\Pr(\boldsymbol{\theta}^{(s)} \in A | \boldsymbol{\theta}^{(s-1)}, \dots, \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(0)}) = \Pr(\boldsymbol{\theta}^{(s)} \in A | \boldsymbol{\theta}^{(s-1)}) \,.$$

## Analogies: transition kernel

The previous fact that

$$(p^{(s)})_j = (p^{(0)}Q^s)_j = \sum_{i_0, i_1, \dots, i_{s-2}, i_{s-1}} p_{i_0}^{(0)}Q_{i_0i_1} \dots Q_{i_{s-2}i_{s-1}}Q_{i_{s-1}j}$$

becomes

$$\begin{split} & \mathsf{Pr}(\boldsymbol{\theta}^{(s)} \in A) = \int_{A} p_{s}(\boldsymbol{\theta}^{(s)}) \mathrm{d}\boldsymbol{\theta}^{(s)} = \\ & \int_{A} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} q(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)}) \ldots q(\boldsymbol{\theta}^{(1)}|\boldsymbol{\theta}^{(0)}) p_{0}(\boldsymbol{\theta}^{(0)}) \, \mathrm{d}\boldsymbol{\theta}^{(0)} \ldots \mathrm{d}\boldsymbol{\theta}^{(s-1)} \mathrm{d}\boldsymbol{\theta}^{(s)} \,, \end{split}$$

i.e., we replace the transition matrix with the integral kernel

$$\int p_{s-1}(\boldsymbol{\theta}^{(s-1)})q(\boldsymbol{\theta}^{(s)}|\boldsymbol{\theta}^{(s-1)})\mathrm{d}\boldsymbol{\theta}^{(s-1)}=p_s(\boldsymbol{\theta}^{(s)}).$$

#### Analogies: stationary distributions

The definition of a stationary distribution

$$\pi Q = \pi$$

becomes

$$\pi(\boldsymbol{ heta}^{(s)}) = \int q(\boldsymbol{ heta}^{(s)}|\boldsymbol{ heta}^{(s-1)})\pi(\boldsymbol{ heta}^{(s-1)})\mathsf{d}\boldsymbol{ heta}^{(s-1)}\,,$$

i.e.,  $\pi(\cdot)$  is an eigenfunction of the transition kernel with eigenvalue 1.

#### Analogies: detailed balance

Detailed balance equations

$$\pi_i Q_{ij} = \pi_j Q_{ji}$$

becomes (a.s.)

$$\pi(\boldsymbol{\theta})q(\boldsymbol{\theta}^*|\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}^*)q(\boldsymbol{\theta}|\boldsymbol{\theta}^*)$$
.

If the chain satisfies detailed balance with respect to  $\pi(\cdot)$ , then

$$\int \pi(oldsymbol{ heta}^*) q(oldsymbol{ heta}|oldsymbol{ heta}^*) \mathrm{d}oldsymbol{ heta}^* = \int \pi(oldsymbol{ heta}) q(oldsymbol{ heta}^*|oldsymbol{ heta}) \mathrm{d}oldsymbol{ heta}^* = \pi(oldsymbol{ heta})\,,$$

i.e.,  $\pi(\cdot)$  is a stationary distribution of the Markov chain.

#### Useful concepts

- ▶ An MC is p-*irreducible* if there is a positive probability of reaching any set A for which  $\int_A p(\theta) d\theta > 0$ , regardless of initial state.
- ► A chain is *periodic* if it returns to any set A at regular intervals (*gcd* of return times > 1). Otherwise it is *aperiodic*.

A sufficient condition for aperiodicity and p-irreducibility is that

$$\int_A q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(0)}) \mathrm{d}\boldsymbol{\theta} > 0 \,, \, \forall \boldsymbol{\theta}^{(0)} \quad \text{if} \quad \int_A p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} > 0 \,.$$

## Limiting distribution

If a chain has a stationary distribution  $\pi(\cdot)$  and is  $\pi$ -irreducible and aperiodic, then

- 1.  $\pi(\cdot)$  is the unique stationary distribution, and
- 2.  $\lim_{s\to\infty} \Pr(\boldsymbol{\theta}^{(s)} \in A|\boldsymbol{\theta}^{(0)} = \boldsymbol{\theta}^*) = \int_A \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$ ,

where we have asserted that the initial state has some value with probability  $1. \,$ 

#### Existence and uniqueness of stationary distribution

Finite state space:

 $Irreducibility + Aperiodicity \iff Regular \iff Ergodic$ 

Countable state space:

Irreducibility + Aperiodicity + Positive recurrence ← Ergodic

Continuous state space:

 $\pi$ -Irreducibility + Aperiodicity + Harris recurrence  $\iff$  Ergodic

A state is *Harris recurrent* if for any starting value and any set A with  $\int_A \pi(\theta) \mathrm{d}\theta > 0$ , the probability A is returned to infinitely often is 1.

## Consequences of ergodicity

For an ergodic chain with stationary distribution  $\pi(\cdot)$ ,

1. 
$$\lim_{s \to \infty} \Pr(\boldsymbol{\theta}^{(s)} \in A) = \int_A \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
, and

2. 
$$\frac{1}{S}\sum_{s=1}^{S} f(\theta^{(s)}) \stackrel{a.s.}{\longrightarrow} \mathbb{E}_{\pi} f(\theta)$$
,,

provided the expectation is finite.

#### In practice

Three things we can actually check:

1. Sufficient condition for  $\pi(\cdot)$  being a stationary distribution is reversibility / detailed balance:

$$\pi(\boldsymbol{\theta})q(\boldsymbol{\theta}^*|\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}^*)q(\boldsymbol{\theta}|\boldsymbol{\theta}^*)$$
.

2. Sufficient condition for aperiodicity and  $\pi$ -irreducibility is that

$$\int_A q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(0)}) \mathrm{d}\boldsymbol{\theta} > 0 \,, \ \forall \boldsymbol{\theta}^{(0)} \quad \text{if} \quad \int_A \pi(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} > 0 \,.$$

3. Sufficient condition for Harris recurrence is  $\pi$ -irreducibility and absolute continuity of  $q(\cdot|\theta^*)$  wrt  $\pi(\cdot)$ :

$$\int_A \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = 0 \quad \Longrightarrow \quad \int_A q(\boldsymbol{\theta}|\boldsymbol{\theta}^*) d\boldsymbol{\theta} .$$

## Part 4. Classical MCMC

#### Time for a $180^{\circ}$

So far: 
$$\mathcal{S} + q(\cdot, \cdot) \Longrightarrow \pi(\cdot)$$

Markov chain Monte Carlo: 
$$\mathcal{S} + \pi(\cdot) \Longrightarrow q(\cdot,\cdot)$$

#### In practice

Three things we can actually check:

1. Sufficient condition for  $\pi(\cdot)$  being a stationary distribution is reversibility / detailed balance:

$$\pi(\boldsymbol{\theta})q(\boldsymbol{\theta}^*|\boldsymbol{\theta}) = \pi(\boldsymbol{\theta}^*)q(\boldsymbol{\theta}|\boldsymbol{\theta}^*)$$
.

2. Sufficient condition for aperiodicity and  $\pi$ -irreducibility is that

$$\int_A q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(0)}) \mathrm{d}\boldsymbol{\theta} > 0 \,, \ \forall \boldsymbol{\theta}^{(0)} \quad \text{if} \quad \int_A \pi(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta} > 0 \,.$$

3. Sufficient condition for Harris recurrence is  $\pi$ -irreducibility and absolute continuity of  $q(\cdot|\theta^*)$  wrt  $\pi(\cdot)$ :

$$\int_A \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = 0 \quad \Longrightarrow \quad \int_A q(\boldsymbol{\theta}|\boldsymbol{\theta}^*) d\boldsymbol{\theta} .$$

### Markov chain Monte Carlo



#### Markov chain Monte Carlo



# The Metropolis algorithm

Our target stationary distribution is  $\pi(\theta) = p(\theta|y) \propto p^*(\theta|y)$ .

#### Inputs:

- $ightharpoonup p^*(\theta|y)$
- lacktriangle a proposal distribution  $h(m{ heta}^*|m{ heta})$  such that  $h(m{ heta}|m{ heta}^*)=h(m{ heta}^*|m{ heta})$
- $ightharpoonup heta^{(0)}$  (chosen or randomly generated however you want)

For 
$$s = 1, \ldots, S$$
,

- 1. Generate  $heta^* \sim h( heta| heta^{(s-1)})$  and  $U \sim Uni(0,1)$
- 2. Compute

$$a \leftarrow 1 \wedge \frac{p^*(\boldsymbol{\theta}^*|\mathsf{y})}{p^*(\boldsymbol{\theta}^{(s-1)}|\mathsf{y})} = 1 \wedge \frac{\pi(\boldsymbol{\theta}^*)}{\pi(\boldsymbol{\theta}^{(s-1)})}$$

3. IF 
$$U < a$$
:  $\theta^{(s)} \leftarrow \theta^*$ ; ELSE:  $\theta^{(s)} \leftarrow \theta^{(s-1)}$ 

# The Metropolis algorithm

The Metropolis algorithm generates Markov chains that are reversible wrt the target distribution  $\pi(\theta)$ :

$$\begin{split} \pi(\theta)q(\theta'|\theta) &= \pi(\theta)h(\theta'|\theta)a(\theta',\theta) \\ &= \pi(\theta)h(\theta'|\theta) \left(1 \wedge \frac{\pi(\theta')}{\pi(\theta)}\right) \\ &= h(\theta'|\theta) \left(\pi(\theta) \wedge \pi(\theta')\right) \\ &= h(\theta|\theta') \left(\pi(\theta') \wedge \pi(\theta)\right) \\ &= \pi(\theta')h(\theta|\theta') \left(1 \wedge \frac{\pi(\theta)}{\pi(\theta')}\right) \\ &= \pi(\theta')h(\theta|\theta')a(\theta,\theta') \\ &= \pi(\theta')q(\theta|\theta'). \end{split}$$

### The Metropolis algorithm

For unbounded targets (why?), the classic symmetric proposal is a Gaussian centered at the current state:

$$oldsymbol{ heta}^* \sim h(oldsymbol{ heta}^* | oldsymbol{ heta}^{(s-1)}) \equiv N_D(oldsymbol{ heta}^* | oldsymbol{ heta}^{(s-1)}, \Sigma)$$
.

# Metropolis-Hastings

Our target stationary distribution is  $\pi(\theta) = p(\theta|y) \propto p^*(\theta|y)$ .

#### Inputs:

- $ightharpoonup p^*(\theta|y)$
- lacktriangle a not-necessarily-symmetric proposal distribution  $h( heta^*| heta)$
- $ightharpoonup heta^{(0)}$  (chosen or randomly generated however you want)

For 
$$s = 1, \ldots, S$$
,

- 1. Generate  $m{ heta}^* \sim h(m{ heta}|m{ heta}^{(s-1)})$  and  $U \sim Uni(0,1)$
- 2. Compute

$$a \leftarrow 1 \land \frac{p^*(\boldsymbol{\theta}^*|\mathbf{y}) \, h(\boldsymbol{\theta}|\boldsymbol{\theta}^*)}{p^*(\boldsymbol{\theta}^{(s-1)}|\mathbf{y}) h(\boldsymbol{\theta}^*|\boldsymbol{\theta})} = 1 \land \frac{\pi(\boldsymbol{\theta}^*) h(\boldsymbol{\theta}|\boldsymbol{\theta}^*)}{\pi(\boldsymbol{\theta}^{(s-1)}) h(\boldsymbol{\theta}^*|\boldsymbol{\theta})}$$

3. IF 
$$U < a$$
:  $\theta^{(s)} \leftarrow \theta^*$ ; ELSE:  $\theta^{(s)} \leftarrow \theta^{(s-1)}$ 

## Decomposing the parameter space

- ► Sometimes it is useful/easier to decompose the parameter space into several components.
- We want to use MH to sample from  $\pi(\theta) = \pi(\theta_1, \dots, \theta_D)$ .
- ► Keep all but one component  $\theta_d$  fixed and use a univariate proposal to update  $\theta_d$ .

# Decomposing the parameter space

To update the *d*th component within global MCMC iteration *s* with state  $(\theta_1^{(s)}, \dots, \theta_{d-1}^{(s)}, \theta_d^{(s-1)}, \dots, \theta_D^{(s-1)})$ .

1. Propose 
$$\theta_d^* \sim h_d(\theta_d^*|\theta_1^{(s)}, \dots, \theta_{d-1}^{(s)}, \theta_d^{(s-1)}, \dots, \theta_D^{(s-1)})$$

$$\equiv h_d(\boldsymbol{\theta}^*|\boldsymbol{\theta})$$

2. Accept with probability

$$1 \wedge \frac{\pi(\theta_1^{(s)}, \dots, \theta_{d-1}^{(s)}, \theta_d^*, \dots, \theta_D^{(s-1)}) h_d(\boldsymbol{\theta}|\boldsymbol{\theta}^*)}{\pi(\theta_1^{(s)}, \dots, \theta_{d-1}^{(s)}, \theta_d^{(s-1)}, \dots, \theta_D^{(s-1)}) h_d(\boldsymbol{\theta}^*|\boldsymbol{\theta})}$$

## Decomposing the parameter space

- ► We can decompose into blocks of components.
- ► We can use a random scan instead of sequential updates.
- ▶ If  $\pi(\theta)$  invariant to  $h_1$ ,  $h_2$ , then  $\pi(\theta)$  invariant to  $h_1 \circ h_2$ .



### Neat trick!

Suppose we divide heta into two components:  $heta=( heta_1, heta_2)$  and that

$$h_1(\boldsymbol{ heta}_1|\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta}_1|\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta})/\pi(\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta})/\int \pi(\boldsymbol{ heta}) \mathrm{d}\boldsymbol{ heta}_1$$

and analogous for  $h_2(\theta_2|\theta_1)$ . Then the MH acceptance criterion is  $\theta_1^{(s)}$ 

$$a = 1 \wedge \frac{\pi(\theta_1^*, \theta_2^{(s-1)})}{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})} \times \frac{\pi(\theta_1^{(s-1)} | \theta_2^{(s-1)})}{\pi(\theta_1^* | \theta_2^{(s-1)})}$$

$$= 1 \wedge \frac{\pi(\theta_1^*, \theta_2^{(s-1)})}{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})} \times \frac{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})}{\pi(\theta_1^*, \theta_2^{(s-1)})} \times \frac{\pi(\theta_2^{(s-1)})}{\pi(\theta_2^{(s-1)})} = 1$$

and similar for  $\theta_2^{(s)}$ . Thus, we can avoid wasted compute time on rejected proposals.

Neat trick!

But when can we use it?

Part 5. Introduction (?) to Bayesian inference

# Bayesian inference

We observe data  $y_1, \ldots, y_N \stackrel{iid}{\sim} p(y_n|\theta)$  and assume  $\theta \sim p(\theta)$ . Here,

- ▶  $p(y|\theta) = \prod_{n=1}^{N} p(y_n|\theta)$  is the *likelihood*,
- $ightharpoonup p(\theta)$  is the *prior*,

and the goal of Bayesian inference is to obtain the posterior

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\theta)p(\theta)d\theta}.$$

## Conjugate priors

- ► Conjugacy refers to the situation when the prior  $p(\theta)$  and posterior  $p(\theta|y)$  belong to the same distribution (albeit with "updated" parameters).
- When one combines a conjugate prior with a specific likelihood, one may obtain the posterior in closed form, no computations necessary!
- Unfortunately, conjugacy only works for a limited class of simple models.

## Exponential family distributions

- Exponential family distributions include the normal, beta, Bernoulli, gamma and Poisson distributions.
- ▶ If y follows an exponential family distribution, then

$$p(y|\theta) = h(y)g(\theta) \exp \left(\phi(\theta)^T s(y)\right).$$

▶ The joint distribution for independent  $y = (y_1, ..., y_N)$  is

$$p(y|\theta) = \left(\prod_{n=1}^{N} h(y_n)\right) g^{N}(\theta) \exp \left(\phi(\theta)^{T} \sum_{n=1}^{N} s(y_n)\right).$$

•  $\phi(\theta)$  is the *natural parameter* and  $t(y) = \sum_n s(y_n)$  is the *sufficient statistic*.

# Conjugate priors

Again, our likelihood is

$$p(\mathbf{y}|\boldsymbol{\theta}) \propto g^{N}(\boldsymbol{\theta}) \exp\left(\phi(\boldsymbol{\theta})^{T} t(\mathbf{y})\right)$$
,

and we specify  $oldsymbol{ heta}$  follows an exponential family distribution with prior

$$p(\boldsymbol{\theta}) \propto g(\boldsymbol{\theta})^{\eta} \exp\left(\phi(\boldsymbol{\theta})^{T} \nu\right)$$
.

It follows that

$$p(\boldsymbol{\theta}|\mathbf{y}) \propto \mathbf{g}^{N+\eta}(\boldsymbol{\theta}) \exp\left(\phi(\boldsymbol{\theta})^T (t(\mathbf{y}) + \nu)\right).$$

#### Beta-binomial model

$$\begin{split} \rho(y|\theta,N) &\propto \theta^y (1-\theta)^{N-y} \propto (1-\theta)^N \exp\left(y\log\left(\frac{\theta}{1-\theta}\right)\right) \\ \implies & g(\theta) = 1-\theta \quad \text{and} \quad \phi(\theta) = \log\left(\frac{\theta}{1-\theta}\right) \\ \implies & \rho(\theta) \propto (1-\theta)^\eta \exp\left(\nu\log\left(\frac{\theta}{1-\theta}\right)\right) \propto (1-\theta)^{\eta-\nu}\theta^\nu \\ \implies & \rho(\theta) \equiv \operatorname{beta}(\alpha = \nu+1, \, \beta = \eta - \nu + 1) \\ \implies & \rho(\theta|y) \propto (1-\theta)^{(\eta-\nu+N-y)}\theta^{\nu+y} \\ \implies & \rho(\theta|y) \equiv \operatorname{beta}(\alpha+y, \, \beta+N-y) \end{split}$$

 $\implies \mathbb{E}(\theta|\mathbf{y}) = (\alpha + \mathbf{y})/(\alpha + \beta + \mathbf{N})$ 

# Univariate normal, known variance

$$p(y|\theta, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{n} (y_n - \theta)^2\right) \propto \exp\left(-\frac{N\theta^2}{2\sigma^2} + \frac{\theta}{\sigma^2} \sum_{n} y_n\right)$$

$$\implies p(\theta) \propto \exp\left(-\frac{\theta^2}{2\tau_0^2} + \frac{\mu_0 \theta}{\tau_0^2}\right) \propto \exp\left(-\frac{1}{2\tau_0^2} (\theta - \mu_0)^2\right)$$

$$\implies p(\theta|y, \sigma^2) \propto \exp\left(-\frac{\theta^2}{2\tau_0^2} + \frac{\mu_0 \theta}{\tau_0^2}\right) \exp\left(-\frac{N\theta^2}{2\sigma^2} + \frac{\theta}{\sigma^2} \sum_{n} y_n\right)$$

$$\propto \exp\left(-\frac{1}{2} \left(\frac{1}{\tau_0^2} + \frac{N}{\sigma^2}\right) \theta^2 + \left(\frac{\mu_0}{\tau_0^2} + \frac{\sum_{n} y_n}{\sigma^2}\right) \theta\right)$$

$$\equiv N\left(\left(\frac{\mu_0}{\tau_0^2} + \frac{\sum_{n} y_n}{\sigma^2}\right) \left(\frac{1}{\tau_0^2} + \frac{N}{\sigma^2}\right)^{-1}, \left(\frac{1}{\tau_0^2} + \frac{N}{\sigma^2}\right)^{-1}\right)$$

# Univariate normal, known mean

$$p(y|\theta, \sigma^2) \propto (\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_n (y_n - \theta)^2\right)$$

$$\implies p(\sigma^2) \propto (\sigma^2)^{-\alpha - 1} \exp\left(-\frac{\beta}{\sigma^2}\right) \equiv \Gamma^{-1}(\alpha, \beta)$$

$$\implies p(\sigma^2|y, \theta) \propto (\sigma^2)^{-\alpha - N/2 - 1} \exp\left(-\frac{\beta}{\sigma^2} + \frac{\sum_n (y_n - \theta)^2}{2\sigma^2}\right)$$

$$\equiv \Gamma^{-1}\left(\alpha + \frac{N}{2}, \beta + \frac{\sum_n (y_n - \theta)^2}{2}\right)$$

## Limitations to conjugacy

- ► We rarely know the variance but not the mean (and vice-versa).
- We don't have the joint posterior for both mean and variance in closed form.
- ► All we know is the conditional posteriors for either parameter.
- It turns out, this kind of situation is rather common for Bayesian hierarchical models that arise out of pieced together exponential family distributions.

Part 6. Classical MCMC (again)

#### Neat trick!

Suppose we divide heta into two components:  $heta=( heta_1, heta_2)$  and that

$$h_1(\boldsymbol{ heta}_1|\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta}_1|\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta})/\pi(\boldsymbol{ heta}_2) = \pi(\boldsymbol{ heta})/\int \pi(\boldsymbol{ heta}) \mathrm{d}\boldsymbol{ heta}_1$$

and analogous for  $h_2(\theta_2|\theta_1)$ . Then the MH acceptance criterion is  $\theta_1^{(s)}$ 

$$a = 1 \wedge \frac{\pi(\theta_1^*, \theta_2^{(s-1)})}{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})} \times \frac{\pi(\theta_1^{(s-1)} | \theta_2^{(s-1)})}{\pi(\theta_1^* | \theta_2^{(s-1)})}$$

$$= 1 \wedge \frac{\pi(\theta_1^*, \theta_2^{(s-1)})}{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})} \times \frac{\pi(\theta_1^{(s-1)}, \theta_2^{(s-1)})}{\pi(\theta_1^*, \theta_2^{(s-1)})} \times \frac{\pi(\theta_2^{(s-1)})}{\pi(\theta_2^{(s-1)})} = 1$$

and similar for  $\theta_2^{(s)}$ . Thus, we can avoid wasted compute time on rejected proposals.

Neat trick!

But when can we use it?

## A Gibbs sampler

We assume our data  $y = (y_1, ..., y_N) \stackrel{iid}{\sim} N(\theta, \sigma^2)$  and priors

$$heta \sim \mathsf{N}(\mu_0, au_0^2) \quad \mathsf{and} \quad \sigma^2 \sim \mathsf{\Gamma}^{-1}(\alpha, \beta) \,.$$

We wish to generate samples from  $p(\theta, \sigma^2|y)$ . Initialize  $\theta^{(0)}$  and  $\sigma^{(0)}$ . For s = 1, ..., S,

1. Draw from  $p(\theta|y, \sigma^2)$  with  $\sigma^2 = \sigma^{2(s-1)}$ :

$$\theta^{(s)} \sim N\left(\left(\frac{\mu_0}{\tau_0^2} + \frac{\sum_n y_n}{\sigma^2}\right)\left(\frac{1}{\tau_0^2} + \frac{N}{\sigma^2}\right)^{-1}, \left(\frac{1}{\tau_0^2} + \frac{N}{\sigma^2}\right)^{-1}\right).$$

2. Draw from  $p(\sigma^2|y,\theta)$  with  $\theta = \theta^{(s)}$ :

$$\sigma^{2(s)} \sim \Gamma^{-1} \left( \alpha + \frac{N}{2}, \beta + \frac{\sum_{n} (y_n - \theta)^2}{2} \right)$$

No need for the accept/reject step!

# Another Gibbs sampler

We assume our data  $y_n \stackrel{ind}{\sim} N(\theta_n, \sigma^2)$ ,  $n = 1, \dots, N$ ,

$$\theta_n \overset{\textit{iid}}{\sim} \textit{N}(\theta_0, \tau_0^2) \quad \text{and} \quad \theta_0 \sim \textit{N}(0, 10) \,.$$

We wish to sample from  $p(\theta_0, \theta_1, \dots, \theta_N | y, \sigma^2, \tau^2)$ . After initialization, for  $s = 1, \dots, S$ :

1. Draw from  $p(\theta_0|y, \tau^2, \theta_1^{(s-1)}, \dots, \theta_N^{(s-1)})$ :

$$\theta_0^{(s)} \sim N\left(\left(\frac{\sum_n \theta_n^{(s-1)}}{\tau_0^2}\right) \left(\frac{N}{\tau_0^2} + \frac{1}{10}\right)^{-1}, \left(\frac{N}{\tau_0^2} + \frac{1}{10}\right)^{-1}\right)$$

2. For n = 1, ..., N, draw from  $p(\theta_n | y, \sigma^2, \tau^2, \theta_0^{(s)})$ :

$$\theta_1^{(s)} \sim N \left( \left( \frac{\theta_0^{(s)}}{\tau_0^2} + \frac{y_n}{\sigma^2} \right) \left( \frac{1}{\tau_0^2} + \frac{1}{\sigma^2} \right)^{-1}, \left( \frac{1}{\tau_0^2} + \frac{1}{\sigma^2} \right)^{-1} \right).$$

# Pros and cons of Gibbs sampling

#### Pros:

- No wasted compute time on rejected proposals.
- ► For big data, factorization helps
  - 1. data storage
  - 2. parallel computing.

#### Cons:

- ➤ You're only as strong as your weakest link. (But isn't this always true?)
- Coding by hand can be time intensive. (But isn't there software for that?)
- ► Conditional posteriors aren't always known. (But isn't there Metropolis-within-Gibbs for that?)