IF5181 Pengenalan Pola

Mining Data Sekuens

Masayu Leylia Khodra

Referensi

- Bab 8 & 9 dari Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
- https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-recur rent-neural-network-873c29da73c7

Mining Data Sekuens

Prediksi MakroNutrien Makanan

Gambar III.3. Spektrum NIR dari hasil scan menggunakan SCiO

"Month","Passengers"
"1949-01",112
"1949-02",118
"1949-03",132
"1949-04",129
"1949-05",121

Prediksi Jumlah Penumpang Pesawat

Mining Data Sekuens (lanj)

Contextual sequence data

- Treat
 recommendation
 as sequence
 classification.
- Input: sequence of user actions
- Output: next action

Mining Data Sekuens (lanj)

■ Google Translate

Mesin translasi menerima sekuens kata dan menghasilkan sekuens kata

Data Sekuens: the order matter

- Time-series data (numeric, equal time interval)
- Symbolic sequence data (nominal)
- Biological sequence data
- Natural language data (character order, word order, sentence order, paragraph order)
- ...

Time-series data

- In time-series data, sequence data consist of long sequences of numeric data, recorded at equal time intervals
- Data bulanan inflasi di Indonesia Januari 2009 sd April 2015 (Hidayat dkk., 2016)

Symbolic Sequence Data

Symbolic sequence data consist of long sequences of event or nominal data, which typically are not observed at equal time intervals.

Browsing history: < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

Sequence of books checked out at library: <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Kategori Persoalan Klasifikasi Data Sekuens

Many to One

Value sequence Model Class or Value

- Prediksi inflasi bulan berikutnya
- Prediksi jumlah penumpang bulan berikutnya
- Prediksi film berikutnya yang diklik
- Prediksi karakter atau kata berikutnya (model bahasa)

- Prediksi makronutrien dari spektrum gelombang
- Prediksi naik turunnya saham hari berikutnya
- Prediksi

Contoh: Prediksi Jumlah Penumpang

"Month","Passengers"
"1949-01",112
"1949-02",118
"1949-03",132
"1949-04",129
"1949-05",121

3 Feature Dataset:				
X1	X2	X3	Υ	
112	118	132	129	
118	132	129	121	
132	129	121	135	
129	121	135	148	
121	135	148	148	

FFNN vs RNN: 1 hidden layer 4 neuron, 1 output neuron

140

FFNN vs RNN: Sequential Data

- FFNN: there isn't any concept of order in time between the data
- RNN: there is order in time between the data. We will input **X1** first and then input **X2** to the result of **X1** computation. So in the same way, **X3** is computed with the result from **X2** computation stage.

Contoh 1: Predict Passengers (Hasil)

Contoh: Prediksi Cuaca dgn Simple Markov Model

- State 1: precipitation (rain, snow, hail, etc.)

- State 2: cloudy

- State 3: sunny

Transitions between states are described by transition matrix

$$A = \left\{ a_{ij} \right\} = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

This model can then be described by the following directed graph

Jika hari ini sunny, peluang besok sunny adalah:

P(sunny|model)

=P(sunny)*P(sunny|sunny)

Contoh: Prediksi Cuaca dgn Hidden Markov Model

Table 2.	Uniform	initial	state	distributio	n Π.

sunny	cloudy	rainy
π ₁ =0.33	$\pi_2 = 0.33$	$\pi_3 = 0.33$

Table 1. Transition probability matrix A.

		Weather current day (Time point t)		
		sunny	cloudy	rainy
Weather previous day (Time point $t-1$)	sunny	a ₁₁ =0.50	a ₁₂ =0.25	a ₁₃ =0.25
	cloudy	$a_{21}=0.30$	$a_{22}=0.40$	$a_{23}=0.30$
	rainy	$a_{31}=0.25$	a ₃₂ =0.25	a ₃₃ =0.50

Table 3. Observation probability matrix B.

		Humidity			
		dry	dryish	датр	soggy
	suony	b11=0.60	b ₁₂ =0.20	b ₁₃ =0.15	b ₁₄ =0.05
Weather	cloudy	b21=0.25	b22=0.25	b23=0.25	b24=0.25
	rainy	b ₃₁ =0.05	$b_{32}=0.10$	b33=0.35	b34=0.50

Prediksi cuaca berdasarkan observasi tentang humidity: dry, dryish, damp, soggy

Contoh: Prediksi POS Tagging

Input is a sequence of words, and output is the sequence of POS tag for each word.

Penutup

- Klasifikasi data sekuens dapat dipandang sebagai persoalan klasifikasi biasa dengan mentransformasi dataset.
- Algoritma pembelajaran khusus data sekuens: Simple Markov Model, HMM, RNN