

PHYSICAL CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Redox Reaction

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

OXIDATION NUMBER

- 1. In [Ni(CO)₄], the oxidation state of Ni is:
 - (1) 4
- (2) 0
- (3) 2
- (4) 8

RR0001

- 2. The oxidation number of nitrogen in NH₂OH is:
 - (1) 0
- (2) + 1
- (3) -1
- (4) -2

RR0002

- 3. Of the following elements, which one has the same oxidation state in all of its compounds?
 - (1) Hydrogen
- (2) Fluorine
- (3) Carbon
- (4) Oxygen

RR0003

- 4. Oxidation number of fluorine in OF, is:
 - (1) + 1
- (2) + 2
- (3) -1
- (4) -2

RR0004

- **5**. The oxidation number of C in CH₄, CH₃Cl, CH2Cl2, CHCl3 and CCl4 are respectively:
 - (1) +4, +2, 0, -2, -4
- (2) +2, +4, 0, -4, -2
- (3) -4, -2, 0, +2, +4
- (4) -2, -4, 0, +4, +2

RR0005

- **6**. Phosphorus has the oxidation state of +3 in :
 - (1) Ortho phosphoric acid
 - (2) Phosphorus acid
 - (3) Meta phosphoric acid
 - (4) Pyrophosphoric acid

RR0006

- **7**. Oxidation state of oxygen in hydrogen peroxide is
 - (1) -1
- (2) + 1
- (3) 0
- (4) -2

RR0007

- 8. Which one of the following statements is not correct?
 - (1) Oxidation state of S in $(NH_4)_2S_2O_8$ is +6
 - (2) Oxidation number of Os in OsO₄ is +8
 - (3) Oxidation state of S in H_2SO_5 is +8
 - (4) Oxidation number of O in KO_2 is $-\frac{1}{2}$

RR0009

- 9. Which of the following shows highest oxidation number in combined state:
 - (1) Os
- (2) Ru
- (3) Both (1) and (2)
- (4) None

RR0010

Build Up Your Understanding

- **10**. Oxidation number of sodium sodium amalgam(Na-Hg) is:
 - (1) + 2
- (2) + 1
- (3) -3
- (4) Zero

RR0011

- 11. Oxidation number of C in HNC is:
 - (1) + 2
- (2) -3
- (3) + 3
- (4) Zero

RR0013

- **12**. Oxidation number of Fe in Fe_{0.94} O is:
 - (1)200
- (2) 200/94
- (3) 94/200
- (4) None

RR0014

- Oxidation number of carbon in carbon suboxide (C_3O_2) is:
 - (1) $\frac{+2}{3}$ (2) $\frac{+4}{3}$ (3) +4
- (4) $\frac{-4}{3}$

RR0015

- 14. Oxidation number of sulphur in Na₂S₂O₃ would be :-
 - (1) + 2
- (2) + 4
- (3) -2
- (4) 0

RR0016

- **15**. Two oxidation states for chlorine are found in the compound:
 - (1) CaOCl₂ (2) KCl
- (3) KClO₃ (4) Cl₂O₇

RR0017

- **16**. -1/3 oxidation state of nitrogen will be obtained in case of:
 - (1) Ammonia (NH₃)
 - (2) Hydrazoic acid (N₃H)
 - (3) Nitric oxide (NO)
 - (4) Nitrous oxide (N2O)

RR0019

- **17**. Compound YBa₂Cu₃O₇ is a super conductor. The O.N. of the copper in the compound will be:[O.No. of Y = +3]
 - (1) + 7/3
- (2) zero
- (3) + 2
- (4) + 1**RR0021**
- **18**. The oxidation state of iodine in $H_4IO_6^-$ is :-
 - (1) + 7
- (2) -1
- (3) + 5
- (4) + 1**RR0022**
- 19. Amongst the following, identify the species with an atom in + 6 oxidation state:-
 - (1) MnO₄
- (2) $Cr(CN)_6^{3-}$
- (3) NiF_6^{2-}
- (4) CrO₂Cl₂

- **20**. The oxidation state of + 1 for phosphorous is found in:-
 - (1) Phosphorous acid (H₃PO₃)
 - (2) Orthophosphoric acid (H₃PO₄)
 - (3) Hypo phosphorous acid (H₃PO₉)
 - (4) Hypo phosphoric acid $(H_4P_2O_6)$

RR0024

- In which of the following compounds iron has 21. lowest oxidation state:-
 - (1) FeSO₄(NH₄)₂SO₄.6H₂O
 - (2) K₄[Fe(CN)₆]
 - (3) [Fe(CO)₅]
 - (4) $Fe_{0.94}O$

RR0025

- 22. Select the compound in which the oxidation number of oxygen is -1:-
 - (1) H₂O
- $(2) O_{2}F_{2}$
- (3) Na₂O
- (4) BaO₂

RR0026

- **23**. Match List - I (compound) with list - II (Oxidation state of N) and select the correct answer using the codes given below the list:-
 - List I
- List-II
- (A) KNO₃
- (a) -1/3
- (B) HNO₂
- (b) -3
- (C) NH₄Cl
- (c) 0
- (D) NaN₃
- (d) + 3
- (e) + 5

Codes are:-

- C D В Α (1)е d b a
- (2)b d е а
- (3)d е a С
- (4)h
- d

RR0027

- 24. In which of the following pair, oxidation number of Fe is same :-
 - (1) K₃[Fe(CN)₆], Fe₂O₃
 - (2) Fe(CO)₅, Fe₂O₃
 - (3) Fe₂O₃, FeO
 - $(4)Fe_2(SO_4)_3, K_4[Fe(CN)_6]$

RR0028

- In the conversion of Br₂ to BrO₃, the oxidation state of bromine changes from :-
 - (1) 0 to 5
- (2) 1 to 5
- (3) 0 to -3
- (4) 2 to 5

RR0029

- **26**. The sum of oxidation states of sulphur in H₂S₂O₈ is :-
 - (1) + 2
- (2) + 6
- (3) + 7
- (4) + 12

RR0030

- In which of the following compounds of Cr, the oxidation number of Cr is not +6:-
 - (1) CrO₃
- (2) CrO_oCl_o
- (3) Cr₂O₃
- $(4) K_2 Cr_2 O_7$
- RR0031

- Oxidation state of cobalt in [Co(NH₃)₄ (H₂O)Cl]SO₄ **28**.
 - (1) 0
- (2) + 4
- (3) -2
- (4) + 3

RR0032

- **29**. Oxidation number of carbon in graphite is :-
 - (1) Zero
- (2) + 1
- (3) + 4
 - (4) + 2

RR0033

- **30**. Oxidation number of 'N' in N₃H (hydrazoic acid) is :-
 - $(1)-\frac{1}{3}$
- (2) -3
- (3) + 3

RR0034

- 31. Which of the following doesn't have +5 oxidation state of phosphorus?
 - (1) Phosphorus acid (H₃PO₃)
 - (2) Orthophosphoric acid (H₃PO₄)
 - (3) Meta phosphoric acid (HPO₃)
 - (4) Pyro phosphoric acid (H₄P₂O₇)

RR0035

- **32**. The oxidation number of arsenic atom in H₃AsO₄ is
 - (1) -1
- (2) -3
- (3) + 3
- (4) + 5

RR0036

- **33**. In substance Mg(HXO₃), the oxidation number of X is :-
 - (1) 0
- (2) + 2
- (3) + 3
- (4) + 4

RR0037

- 34. The oxidation number of phosphorus in PH₄⁺, PO_2^{3-} , PO_4^{3-} and PO_3^{3-} are respectively :-
 - (1) -3, +1, +3, +5
- (2) -3, +3, +5, +1
- (3) +3, -3, +5, +1
- (4) -3, +1, +5, +3

RR0040

- **35**. Which of the following compounds are arranged in increasing oxidation number of S:-
 - (1) H₂SO₃, H₂S, H₂SO₄, H₂S₂O₃
 - (2) H₂S₂O₃, H₂SO₃, H₂S, H₂SO₄
 - (3) H₂S, H₂SO₃, H₂SO₄, H₂S₂O₃
 - (4) H₂S, H₂S₂O₃, H₂SO₃, H₂SO₄

- **36**. Iodine shows the highest oxidation state in the compound :-
 - (1) KI
- (2) KI₂
- (3) IF_E
- (4) KIO₄ RR0042
- **37**. The sum of the oxidation states of all the carbon atoms present in the compound C₆H₅CHO is:
 - (1) -4
- (2) 3
- (3) + 5
- (4) 4/7

APPLICATIONS OF REDOX REACTIONS

- A reducing agent is a substance which can: **38**.
 - (1) Accept electrons
- (2) Donate electrons
- (3) Accept protons
- (4) Donate protons
 - **RR0045**
- The reaction H_2S + H_2O_2 \rightarrow S + $2H_2O$ **39**. manifests:
 - (1) Oxidising action of H₂O₂
 - (2) Reducing nature of H₂O₂
 - (3) Acidic nature of H_2O_2
 - (4) Alkaline nature of H₂O₃

RR0046

- 40. If an element is in its lowest oxidation state, under proper conditions it can act as:
 - (1) Reducing agent
 - (2) An oxidising agent
 - (3) Oxidising as well as reducing agent
 - (4) Neither oxidising nor reducing agent

RR0047

41. In a reaction of

 H_2O (steam) + C (red hot) \rightarrow CO + H_2

- (1) H₂O is the reducing agent
- (2) H₂O is the oxidising agent
- (3) carbon is the oxidising agent
- (4) oxidation-reduction does not occur

RR0048

- **42**. The compound that can work both as an oxidising as well as reducing agent is:
 - (1) KMnO₄
- $(2) H_{2}O_{2}$
- (3) $Fe_2(SO_4)_3$
- (4) K₂Cr₂O₇

RR0049

- 43. HNO, acts as an oxidant with which one of the following reagent:-
 - (1) $KMnO_4$ (2) H_2S
- (3) K₂Cr₂O₇ (4) Br₂

RR0051

- **44.** In which of the following reaction H₂O₂ acts as reducing agent :-
 - (1) $2\text{FeCl}_2 + 2\text{HCl} + \text{H}_2\text{O}_2 \rightarrow 2\text{FeCl}_3 + 2\text{H}_2\text{O}$
 - (2) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$
 - (3) $2HI + H_2O_2 \rightarrow 2H_2O + I_2$
 - (4) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O_3$

RR0052

- **45.** When H₂ reacts with Na, it acts as :-
 - (1) Oxidising agent
 - (2) Reducing agent
 - (3) Both
 - (4) Cannot be predicted

RR0054

- **46**. In the course of a chemical reaction an oxidant –
 - (1) Loses electron
 - (2) Gains electron
 - (3) Both loses and gain electrons
 - (4) Electron change does not occur

RR0056

47. In the reaction:-

> $C + 4HNO_3 \rightarrow CO_2 + 2H_2O + 4NO_2$ HNO₃ acts as :-

- (1) An oxidising agent
- (2) An acid
- (3) A reducing agent
- (4) A base

RR0057

- **48**. A compound contains atoms A, B and C. The oxidation number of A is +2, of B is +5 and of C is -2. The possible formula of the compound is:
 - (1) ABC₂
- (2) $B_{2}(AC_{3})_{2}$
- (3) $A_3(BC_4)_2$
- $(4) A_3(B_4C)_2$

RR0058

- **49**. Equivalent weight of N_2 in the change $N_2 \rightarrow NH_3$
 - (1) $\frac{28}{6}$ (2) 28 (3) $\frac{28}{2}$ (4) $\frac{28}{3}$

RR0059

- Equivalent weight of NH₃ in the change **50**. $N_2 \rightarrow NH_3$ is:
 - (1) $\frac{17}{6}$ (2) 17 (3) $\frac{17}{2}$ (4) $\frac{17}{3}$

- In the reaction, $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$, the **51**. eq. wt. of Na₂S₂O₃ is equal to its:
 - (1) Mol. wt.
- (2) Mol. wt./2
- (3) 2 x Mol. wt.
- (4) Mol. wt./6

RR0061

- **52**. In the reaction, VO + Fe₂O₃ \rightarrow FeO + V₂O₅, the eq. wt. of V_2O_5 is equal to its:
 - (1) Mol. wt.
- (2) Mol. wt./8
- (3) Mol .wt./6
- (4) Mol. wt./2

RR0062

53. Molecular weight of KBrO₃ is M. What is its equivalent weight, if the reaction is:

$$BrO_3^- \rightarrow Br^-$$
 (acidic medium)

- (2) M/4
- (3) M/6
- (4) 6M

- **54**. In the reaction : $A^{-n_2} + xe^- \rightarrow A^{-n_1}$, here x will be
 - $(1) n_1 + n_2$
- (2) $n_2 n_1$
- (3) $n_1 n_2$
- $(4) n_1 n_2$

RR0065

55. What would be the equivalent weight of the reductant in the reaction :

$$[Fe(CN)_6]^{-3} + H_2O_2 + 2OH^- \rightarrow 2[Fe(CN)_6]^4 + 2H_2O + O_2$$

- [Given : Fe = 56, C = 12, N = 14, O = 16, H = 1]
- (1) 17
- (2) 212
- (3) 34
- (4) 32

RR0066

- **56.** Equivalent weight of FeC_2O_4 in the change : $FeC_2O_4 \rightarrow Fe^{3+} + CO_2 \text{ is :}$
 - (1) M/3
- (2) M/6
- (3) M/2
- (4) M/1

RR0068

- **57.** The number of mole of oxalate ions oxidised by one mole of MnO_4^- is :
 - (1) 1/5
- (2) 2/5
- (3) 5/2
- (4) 5

RR0070

- **58.** In a reaction 4 mole of electrons are transferred to one mole of HNO_3 when it acts as an oxidant. The possible reduction product is :
 - $(1) (1/2) \text{ mole } N_2$
- (2) (1/2) mole N₂O
- (3) 1 mole of NO₂
- (4) 1 mole NH₃

RR0072

- **59.** The equivalent weight of MnSO₄ is half of its molecular weight when it is converted to :-
 - (1) Mn₂O₃
- (2) MnO₂
- (3) MnO₄
- (4) MnO_4^{-2}

RR0073

- **60**. In the following change, $3Fe+4H_2O \rightarrow Fe_3O_4+4H_2$ If the atomic weight of iron is 56, then its equivalent weight will be:-
 - (1)42
- (2) 21
- (3)63
- (4)84

RR0074

61. $Cr_2O_7^{-2} + I^- + H^+ \rightarrow Cr^{+3} + I_2 + H_2O$

The equivalent weight of the reductant in the above equation is :- (At. wt. of Cr=52, I=127)

- (1) 26
- (2) 127
- (3) 63.5
- (4) 10.4 **RR0075**
- **62.** How many moles of KMnO₄ are reduced by 1 mole of ferrous oxalate in acidic medium:-
 - (1) $\frac{1}{5}$
- (2) $\frac{5}{3}$
 - (3) $\frac{1}{3}$
- (4) $\frac{3}{5}$

RR0076

REDOX REACTIONS

- **63.** Which one of the following is a redox reaction?
 - (1) $H_2 + Br_2 \rightarrow 2HBr$
 - (2) $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$
 - (3) HCl + AgNO₃ → AgCl + HNO₃
 - (4) NaOH + HCl \rightarrow NaCl + H₂O

RR0078

- **64.** Which of the following is not a redox change?
 - (1) $2H_2S + SO_2 \rightarrow 2H_2O + 3S$
 - (2) $2BaO + O_2 \rightarrow 2BaO_2$
 - (3) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (4) $2KClO_3 \rightarrow 2KCl + 3O_2$

RR0079

- **65**. In the reaction, $Cl_2 + OH^- \rightarrow Cl^- + ClO_4^- + H_2O$, chlorine is :
 - (1) Oxidised
 - (2) Reduced
 - (3) Oxidised as well as reduced
 - (4) Neither oxidised nor reduced

RR0081

- **66.** Which is a redox reaction :
 - (1) $2CuI_0 \rightarrow CuI + I_0$
 - (2) NaCl + AgNO₃ → AgCl + NaNO₃
 - (3) $NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O$
 - (4) $Cr_2(SO_4)_3 + 6KOH \rightarrow 2Cr(OH)_3 + 3K_2SO_4$

RR0082

- **67.** Which of the following example does not represent disproportionation -
 - (1) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$
 - (2) $2H_2O_2 \rightarrow 2H_2O + O_2$
 - (3) $4KClO_3 \rightarrow 3KClO_4 + KCl$
 - (4) $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$

Pre-Medical

- **68.** The decomposition of $KClO_3$ to KCl and O_2 on heating is an example of :
 - (1) Intermolecular redox change
 - (2) Intramolecular redox change
 - (3) Disproportionation or auto redox change
 - (4) Comproportionation

RR0084

- **69.** Which of the following change represents a disproportionation reaction (s):
 - (1) $Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$
 - (2) $Cu_{9}O + 2H^{+} \rightarrow Cu + Cu^{2+} + H_{9}O$
 - (3) $2HCuCl_2 \xrightarrow{\text{dilution with}} Cu + Cu^{2+} + 4Cl^{-} + 2H^{+}$
 - (4) All of the above

RR0085

- **70.** How many electrons should X_2H_4 liberate so that in the new compound X shows oxidation number of $-\frac{1}{2}$ (E.N. X > H)
 - $(1)\ 10$
- (2) 4
- (3) 3
- (4) 2

RR0087

- **71.** Which one of the following is not a redox reaction:-
 - (1) $CaCO_3 \rightarrow CaO + CO_2$
 - (2) $2H_2 + O_2 \rightarrow 2H_2O$
 - (3) Na + H₂O \rightarrow NaOH + $\frac{1}{2}$ H₂
 - (4) $\operatorname{MnCl}_3 \to \operatorname{MnCl}_2 + \frac{1}{2}\operatorname{Cl}_2$

RR0088

72. In the reaction -

$$MnO_4^- + SO_3^{2-} + H^+ \rightarrow SO_4^{-2} + Mn^{+2} + H_2O$$

- (1) MnO₄ and H⁺ both are reduced
- (2) MnO_4^- is reduced and H^+ is oxidised
- (3) MnO₄ is reduced and SO₃²⁻ is oxidised
- (4) MnO_4^- is oxidised and SO_3^{2-} is reduced

RR0089

- **73**. $I_2 + KI \rightarrow KI_3$
 - In the above reaction:-
 - (1) Only oxidation taken place
 - (2) Only reduction takes place
 - (3) Both the above
 - (4) Neither oxidation nor reduction

RR0090

- **74.** Which of the following reaction represents the oxidising behaviour of H_2SO_4 :-
 - (1) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$
 - (2) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
 - (3) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$
 - (4) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$

RR0091

- 75. Select the example of disproportionation reaction
 - (1) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$
 - (2) $NH_4NO_3 \rightarrow N_2O + 2H_2O$
 - (3) $4H_3PO_3 \rightarrow PH_3 + 3H_3PO_4$
 - (4) AgCl + $2NH_3 \rightarrow Ag(NH_3)_2Cl$

RR0092

- **76**. Which of the following reaction involves oxidation & reduction:
 - (1) NaBr + HCl \rightarrow NaCl + HBr
 - (2) $HBr + AgNO_3 \rightarrow AgBr + HNO_3$
 - (3) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
 - (4) $H_2 + Br_2 \rightarrow 2HBr$

RR0093

- **77.** The reaction
 - $2K_2MnO_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$ is an example of
 - (1) Redox
 - (2) Reduction only
 - (3) Neutralization
 - (4) Disproportionation

RR0094

- **78.** Which of the following reaction involves neither oxidation nor reduction:
 - (1) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$
- (2) $Cr \rightarrow CrCl_3$
- (3) Na \rightarrow Na⁺
- $(4) 2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$

RR0095

- **79.** $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
 - Zn undergoes –
 - (1) Reduction
 - (2) Oxidation
 - (3) Both oxidation and reduction
 - (4) Neither oxidation nor reduction

RR0096

BALANCING OF REDOX REACTIONS

80. Balance the following given half reaction for the unbalanced whole reaction:

$$CrO_4^{2-} \rightarrow CrO_2^{-} + OH^{-}$$
 is :

(1)
$$CrO_4^{-2} + 2H_2O + 3e^- \rightarrow CrO_2^- + 4OH^-$$

(2)
$$2CrO_{4}^{-2} + 8H_{9}O \rightarrow CrO_{9}^{-} + 4H_{9}O + 8OH^{-}$$

(3)
$$CrO_4^{-2} + H_2O \rightarrow CrO_2^{-1} + H_2O + OH^{-1}$$

(4)
$$3CrO_a^{-2} + 4H_2O + 6e^- \rightarrow 2CrO_2^{-1} + 8OH^-$$

81. Choose the set of coefficients that correctly balances the following equation:

edianece ine renewing equation.											
x C	$r_2O_7^{2-}$ +	уН ⁺ +	$z e^{-} \rightarrow e^{-}$	a Cr ⁺³ + +	- bH ₂ O						
	X	y	Z	a	b						
(1)	2	14	6	2	7						
(2)	1	14	6	2	7						
(3)	2	7	6	2	7						
(4)	2	7	6	1	7						

RR0098

82. In the reaction:

 $MnO_4^- + xH^+ + ne^- \rightarrow Mn^{2+} + yH_2O$ What is the value of n:

(1)5

(2) 8

(3)6

(4) 3**RR0099**

83. The number of electrons required to balance charge in the following equation -

 $MnO_4^- + 2H_2O \longrightarrow MnO_2 + 4OH^-$ is (2) 4(4) 2

(1) 5

(3) 3

RR0100

- $2KMnO_4 + 5H_2S + 6H^+ \rightarrow 2Mn^{2+} + 2K^+ + 5S + 8H_2O.$ **84**. In the above reaction, how many electrons would be involved in the oxidation of 1 mole of reductant? (1) Two (3) Ten (2) Five (4) One
 - RR0102
- **85**. The value of n in:

 $MnO_4^- + 8 H^+ + ne^- \rightarrow Mn^{2+} + 4 H_2O$ is

(1)5

(2) 4

(3) 3

(4) 2

RR0103

For the redox reaction **86**.

> $Zn + NO_3^- \rightarrow Zn^{2+} + NH_4^+$ in basic medium, coefficients of Zn, NO₃ and OH in the balanced equation respectively are:

(1) 4, 1, 7

(2) 7, 4, 1

(3) 4, 1, 10

(4) 1, 4, 10

RR0105

In the balanced equation-

 $[Zn + H^{+} + NO_{3}^{-} \rightarrow NH_{4}^{+} + Zn^{+2} + H_{2}O]$ coefficient of NH4 is:-

(1) 4

(2) 3

(3) 2

 $(4)\ 1$ **RR0106**

88. In the balanced equation

> $MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 + H_2O$, the moles of CO, formed are :-

(1) 2

(4) 10

RR0107

89. In the following reaction the value of 'X' is $H_2O + SO_3^{2-} \rightarrow SO_4^{2-} + 2H^+ + X$ (1) $4e^-$ (2) $3e^-$ (3) $2e^-$

(4) 1e⁻ RR0108

90. The number of electrons required to balance the following equation are:

 $NO_3^- + 4H^+ \rightarrow 2H_2O + NO$

(1) 2 on right side

(2) 3 on left side

(3) 3 on right side

(4) 5 on left side

RR0109

EXERCISE-I (Conceptual Questions)

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	2	3	3	2	1	3	3	4	1	2	2	1	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	1	4	3	3	4	1	1	1	4	3	4	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	4	3	4	4	4	1	2	1	1	2	2	2	2	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	1	3	1	4	1	3	3	3	1	1	3	2	2	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	4	1	3	3	1	1	2	4	3	1	3	3	4	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	1	1	2	1	2	1	3	1	1	3	4	4	3	2

AIPMT/NEET

Chemistry: Redox Reaction

EXERCISE-II (Previous Year Questions)

AIPMT 2009

- 1. Oxidation numbers of P in PO_4^{3-} , of S in SO_4^{2-} and that of Cr in $Cr_2O_7^{2-}$ are respectively:-
 - (1) -3, +6 and +6
- (2) +5, +6 and +6
- (3) + 3, +6 and +5
- (4) +5, +3 and +6
 - RR0111

AIPMT Pre. 2012

- **2.** When Cl₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from:
 - (1) Zero to -1 and zero to +3
 - (2) Zero to +1 and zero to -3
 - (3) Zero to +1 and zero to -5
 - (4) Zero to -1 and zero to +5

RR0114

- **3.** In which of the following compounds, nitrogen exhibits highest oxidation state?
 - (1) N_3H
- (2) NH₂OH
- (3) $N_{2}H_{4}$
- $(4) NH_3$

RR0115

AIPMT 2014

- **4.** The reaction of aqueous $KMnO_4$ with H_2O_2 in acidic conditions gives:-
 - (1) Mn^{4+} and O_2
- (2) Mn^{2+} and O_2
- (3) Mn^{2+} and O_3
- (4) Mn⁴⁺ and MnO₂

RR0119

RE-AIPMT 2015

- 5. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO₄ for complete oxidation?
 - (1) FeC₂O₄
- (2) $Fe(NO_2)_2$
- (3) FeSO₄
- $(4) \text{ FeSO}_3$

RR0121

NEET-II 2016

- **6.** Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
 - (1) $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O_3$
 - (2) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
 - (3) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
 - (4) $3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$

RR0124

NEET(UG) 2018

7. For the redox reaction

$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$$

the correct coefficients of the reactants for the balanced equation are

 $MnO_4^{-1}C_2O_4^{-2-}$ H^+

- (1) 16 5 2
- (2) 2 5 16
- (3) 2 16 5
- (4) 5 16 2

RR0125

NEET(UG) 2019

- **8.** Which of the following reactions are disproportionation reaction?
 - (a) $2Cu^+ \rightarrow Cu^{2+} + Cu^0$
 - (b) $3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$
 - (c) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$
 - (d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$ Select the **correct** option from the following :-
 - (1) (a) and (b) only
- (2) (a), (b) and (c)
- (3) (a), (c) and (d)
- (4) (a) and (d) only

RR0167

NEET (UG) 2020

9. What is the change in oxidation number of carbon in the following reaction?

$$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$$

- (1) 0 to -4
- (2) + 4 to + 4
- (3) 0 to +4
- (4) -4 to +4

RR0186

NEET(UG) 2021 (Paper-2)

10. The equivalent weight of the salt

$$KHC_2O_4.H_2C_2O_4.4H_2O$$

used as reducing agent is

- (1) $\frac{\text{Mol.wt}}{1}$
- $(2) \frac{\text{Mol.wt}}{2}$
- $(3) \quad \frac{\text{Mol.wf}}{3}$
- $(4) \frac{\text{Mol.wt}}{4}$

RR0188

NEET (UG) 2022

- 11. In the neutral or faintly alkaline medium, $KMnO_4$ oxidses iodide into iodate. The change in oxidation state of manganese in this reaction is from
 - (1) +6 to +4
- (2) +7 to +3
- (3) +6 to +5
- (4) + 7 to + 4

NEET (UG) 2022 (OVERSEAS)

- **12.** Identify the set from the following sets in which all species can exhibit disproportionation reactions.
 - (1) Cl_2 , ClO_2^- , ClO_3^- , S_8
 - (2) ClO₄, ClO⁻, ClO₂, F₂
 - (3) ClO₃, ClO₄, H₂O₂, ClO⁻
 - (4) ClO₂,ClO₃,ClO₄,Cl₂

RR0190

Re-NEET (UG) 2022

- **13.** Which of the following reactions is a decomposition redox reaction?
 - (1) 2 Pb(NO₃)₂(s) \rightarrow 2 PbO(s) + 4 NO₂(g) + O₂(g)
 - (2) $N_2(g) + O_2(g) \rightarrow 2 \text{ NO}(g)$
 - (3) $Cl_2(g) + 2OH^-(aq) \rightarrow ClO^-(aq) + Cl^-(aq) + 4H_2O(\ell)$
 - (4) $P_4(s) + 3OH^{-}(aq) + 3H_2O(\ell) \rightarrow PH_3(g) + 3H_2PO^{-}(aq)$

Pre-Medical

EXERCISE-III (Analytical Questions)

- In the reaction $CH_3OH \rightarrow HCOOH$, the number 1. of electrons that must be added to the right is :-
 - (1) 4
- (2) 3
- (3) 2
- $(4)\ 1$

RR0127

- **2**. Which statement is wrong :-
 - (1) Oxidation number of oxygen is +1 in peroxides
 - (2) Oxidation number of oxygen is +2 in oxygen difluoride
 - (3) Oxidation number of oxygen is $-\frac{1}{2}$ in superoxides
 - (4) Oxidation number of oxygen is -2 in most of its compound

RR0128

- **3**. In the reaction 8Al + $3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe$, the number of electrons transferred from reductant to oxidant is :-
 - (1) 8
- (2) 4
- (3) 16
- (4) 24

RR0129

- 4. In which of the following reaction hydrogen is acting as an oxidising agent :-
 - (1) With iodine to give hydrogen iodide
 - (2) With lithium to give lithium hydride
 - (3) With nitrogen to give ammonia
 - (4) With sulphur to give hydrogen sulphide

RR0130

- **5**. Oxidation number of Xe in XeF_5^- is :
 - (1) + 1
- (2) + 2
- (3) + 3
- (4) + 4

RR0131

RR0132

Which is the best description of the behaviour of **6**. bromine in the reaction given below:-

$$H_2O + Br_2 \rightarrow HOBr + HBr$$

- (1) Both oxidized and reduced
- (2) Oxidized only
- (3) Reduced only
- (4) Proton acceptor only

Master Your Understanding

- 7. The correct order of acidic strength is -
 - (1) HClO₄ < HClO₃ < HClO₂ < HClO
 - (2) HClO₂ < HClO₃ < HClO₄ < HClO
 - (3) HClO₄ < HClO < HClO₂ < HClO₃
 - (4) HClO < HClO₂ < HClO₃ < HClO₄

RR0133

8. Consider the following reaction:

$$xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2} + H_2O_2$$

The values of x, y and z in the reaction are respectively:-

- (1) 5,2 and 16
- (2) 2,5 and 8
- (3) 2, 5 and 16
- (4) 5,2 and 8

RR0134

9. In which of the following reaction H₂O₂ acts as a reducing agent?

(a)
$$H_9O_9 + 2H^+ + 2e^- \rightarrow 2H_9O$$

(b)
$$H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$$

(c)
$$H_2O_2 + 2e^- \rightarrow 2OH^-$$

(d)
$$H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$$

- (3) (a), (b)
- (4) (c), (d)

RR0135

10. In the following reaction

$$2FeCl_3 + H_2S \longrightarrow 2FeCl_2 + 2HCl + S$$

- (1) FeCl₃ is oxidant
- (2) FeCl₃ & H₂S are oxidised
- (3) FeCl₃ is oxidised & H₂S is reduced
- (4) H₂S is oxidant

RR0137

11. In oxidation reduction reaction

$$\begin{aligned} &Cr_2O_7^{-2}+SO_3^{-2}+H^+\to Cr^{*3}+SO_4^{-2}+H_2O \text{ the}\\ &balance \ equation \ coefficient \ for \ &Cr_2O_7^{-2}, \ SO_3^{-2},\\ &H^+ \text{ are } :- \end{aligned}$$

- (1) 1, 3, 8
- (2) 16, 5, 2
- (3) 2, 16, 5
- (4) 5, 2, 16

12. Which of the following act both as oxidant & reductant:-

- (1) H_2S
- (2) SO₃
- (3) H_2O_2
- (4) F₂

RR0139

13. Oxidation number of chlorine in perchloric acid is:-

- (1) + 1
- (2) + 3
- (3) + 5
- (4) + 7

RR0141

14. Identify the reducing agent in the reaction.

$$3Fe_3O_4 + 8Al (s) \rightarrow 9Fe + 4Al_2O_3 (s)$$

- (1) Fe₃O₄
- (2) Al
- (3) Fe
- (4) Al₂O₃

RR0168

- **15.** Which of the following is a disproportionation reaction:
 - (1) $2KClO_3 \longrightarrow 2KCl + 3O_2$
 - (2) $CaCO_3 \longrightarrow CaO + CO_2$
 - (3) $2H_2O_2 \longrightarrow 2H_2O + O_2$
 - (4) $Fe^{+2} + MnO_4^- + 8H^+ \longrightarrow Fe^{+3} + Mn^{+2} + 4H_2O$

EXERCISE-III (Analytical Questions)													ANS\	NER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	1	1	4	2	4	1	4	3	2	1	1	3	4	2	3