Variable Elimination Examples

Jesse Hoey
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA, N2L3G1
jhoey@cs.uwaterloo.ca

If Jesse's alarm doesn't go off (A), Jesse probably won't get coffee (C); if Jesse doesn't get coffee, he's likely grumpy (G). If he is grumpy then it's possible that the lecture won't go smoothly L. If the lecture does not go smoothly then the students will likely be sad S.

 $\boxed{ \begin{array}{c} \overline{P(A=true)=0.3} \\ \hline P(C=true|A)=\frac{A-P(C=true|A)}{t-0.8} \\ \hline P(G=true|C)=\frac{C-P(G=true|C)}{t-1.0} \\ \hline P(L=true|G)=\frac{G-P(L=true|G)}{t-0.7} \\ \hline P(S=true|L)=\frac{L-P(S=true|L)}{t-0.9} \\ \hline P(S=true|L)=\frac{$

A=Jesse's alarm doesn't go off

C=Jesse doesn't get coffee

G=Jesse is grumpy

L=lecture doesn't go smoothly

S=students are sad

Query P(S=true)

Polytree (Fud Inference):

$$\begin{split} P(S=true) &= \sum_{A,C,G,L} P(S=true,A,C,G,L) & \text{ white problem of the problem of the problem} \\ &= \sum_{A,C,G,L} P(A)P(C|A)P(G|C)P(L|G)P(S=true|L) & \text{ chain the problem of the problem} \\ &= \sum_{A} P(A) \sum_{C} P(C|A) \sum_{G} P(G|C) \sum_{L} P(L|G)P(S=true|L) & \text{ distribute. The simple} \end{split}$$

Variable Elimination: Query: S, Evidence: ϕ A \longrightarrow C \longrightarrow G \longrightarrow L \longrightarrow S Ordering: L,G,C,A

 $P(S = true) = \sum_{A,C,G,L} f_0(A)f_1(C, A)f_2(G, C)f_3(L, G)f_4(L)$

	_				
- 1	5	`-	- 4	١.	

$f_0(A) = P(A) = \overline{\begin{array}{c c} A & f_0(A) \\ \hline A & f_0(A) \\ \hline t & 0.3 \\ \hline f & 0.7 \end{array}}$
$f_1(C,A) = P(C A) = \begin{cases} A & C & f_1(C,A) \\ t & t & 0.8 \\ 0.2 & 0.2 \end{cases}$ $f & t & 0.15 \\ f & f & 0.85 \end{cases}$
$f_2(G,C) = P(G C) = \begin{cases} \hline C & G & f_2(G,C) \\ t & t & 1.0 \\ f & t & 0.0 \\ \hline f & t & 0.2 \\ f & f & 0.8 \\ \end{bmatrix}$
$f_3(L,G) = P(L G) = \begin{array}{c cccc} \hline G & L & f_3(L,G) \\ \hline t & t & 0.7 \\ \hline f_3(L,G) & = f & 0.3 \\ f & t & 0.2 \\ \hline f & f & 0.8 \\ \hline \end{array}$
$f_4(L) = P(\underbrace{S = true}_{\text{Restricted}} L) = \underbrace{\frac{L}{t} f_4(L)}_{\text{f}}$

Zi	Pool	Eliminate	CPT	Meaning
L	f ₀ (A), f ₁ (C,A), f ₂ (G,C),f ₃ (L,G) f ₄ (L)	$f_5(G) = \sum_{L} f_3(L,G) f_4(L)$		$\begin{split} &= \left \sum_{A} f_0(A) \sum_{C} f_1(C,A) \sum_{G} f_2(G,C) \right \sum_{L} \left f_3(L,G) f_4(L) \right \\ &= \sum_{A} f_0(A) \sum_{C} f_1(C,A) \sum_{G} f_2(G,C) \left f_5(G) \right \end{split}$
G	fo(A), f1(C,A), f2(G,C), f5(G)	$f_6(c) = \sum_{G} f_2(G,c), f_3(G)$	$ = \underbrace{ \begin{array}{c} C & f_6(C) \\ = t & 1.0*0.72 + 0*0.42 = 0.72 \\ \underline{f} & 0.2*0.72 + 0.8*0.42 = 0.48 \end{array} }_{} $	$\begin{split} &= \left[\sum_{A} f_0(A) \sum_{C} f_1(C, A) \right]_{C} \underbrace{\int_{B} f_2(G, C) f_b(G)}_{G} \\ &= \sum_{A} f_0(A) \sum_{C} f_1(C, A) f_0(C) \end{split}$
С	fo(A), f,(C,A), & fo(C)	$f_7(A) = \sum_{c} f_1(c,A) f_6(c)$	$= \frac{A}{t} \frac{f_7(A)}{0.8*0.72 + 0.2*0.48 = 0.672} f \frac{0.15*0.72 + 0.85*0.48 = 0.516}{0.15*0.72 + 0.85*0.48 = 0.516}$	$= \underbrace{\sum_{A} f_{\theta}(A) \sum_{C} f_{1}(C, A) f_{\theta}(C)}_{A}$ $= \underbrace{\sum_{A} f_{\theta}(A) f_{7}(A)}_{T}$
A	f ₀ (A) f _₹ (A)	$f_{\beta}() = \sum_{A} f_{0}(A) f_{\beta}(A)$	0.3*0.672+0.7*0.516 = 0.563 Answer	
	Already normalished Since boares rolle. Not used			

=> P(S=False) = 0.437

Query P(S=true) & PCS=False) at the same time $A \longrightarrow C \longrightarrow G \longrightarrow L \longrightarrow S$

Factors

Same except	Foi	r	F4
$f_4(S, L) = P(S L) =$	t	$\frac{L}{f}$	f ₄ (S, L) 0.9 0.3
	<i>f</i>	t f	0.1

Zi	Pool	Eliminate	CPT	Meaning
L	f ₀ (A), f ₃ (C,A), f ₂ (G,C),f ₃ (L,G) f ₄ (S,L)	$f_s(G_{,s}) = \sum_L f_{s(L,G)} f_{s(s,L)}$		
G	fo(A), f,(C,A), f ₂ (G,C), f ₅ (G,S)	$f_{6}(c, s) = \sum_{G} f_{2}(G, c), f_{5}(G, s)$		
С	fo(A), f,(C,A), of	$f_7(A,S) = \sum_C f_1(C,A) f_6(C,S)$	•	
A	f _o (A) f ₇ (A,S)	$f_{g}(s) = \sum_{A} f_{o}(A) f_{g}(A,s)$	$ \begin{array}{ c c c c c }\hline S & f_8(S) \\ \hline : t & 0.3*0.672+0.7*0.516=0.563 \\ f & 0.3*0.328+0.7*0.484=0.437 \\\hline \end{array} $	

Answers Already Normalized

 $P(S = true | A = true) \propto \sum_{C,G,L} f_0(C) f_1(G,C) f_2(L,G) f_3(L)$

 $= \sum_{C} f_0(C) \sum_{G} f_1(G, C) \sum_{L} f_2(L, G) f_3(L)$ $= \sum_{C} f_0(C) \sum_{G} f_1(G, C) f_4(G)$

$$= \sum_{C} f_0(C) \sum_{C} f_1(G, C) f_4(G)$$

Ordering: L,G,C

tactors:
$f_0(C) = P(C A = true) = \frac{C f_0(C)}{t 0.8} = \frac{C f_0(C)}{t 0.2}$
$f_1(G,C) = P(G C) = \begin{cases} \hline C & G & f_1(G,C) \\ t & t & 1.0 \\ t & f & 0.0 \\ f & t & 0.2 \\ f & f & 0.8 \\ \hline \end{cases}$
$f_2(L,G) = P(L G) = \begin{bmatrix} \hline G & L & f_2(L,G) \\ t & t & 0.7 \\ t & f & 0.3 \\ f & t & 0.2 \\ \underline{f} & f & 0.8 \end{bmatrix}$
$f_3(L) = P(\mathbf{S} = true L) = \underbrace{\frac{L f_3(L)}{L 0.9}}_{f 0.3}$

Zį	Pool	Eliminate	CPT	Meaning
L	f ₀ (c), f ₁ (e,c) f ₂ (L,e) f ₃ (L)	$f_4(G) = \sum_{L} f_2(L/G) f_3(L)$	$ \begin{array}{c c} G & f_4(G) \\ \hline : t & 0.7*0.9 + 0.3*0.3 = 0.72 \\ f & 0.2*0.9 + 0.8*0.3 = 0.42 \\ \hline \end{array} $	•••
G	fo(c), f ₁ (f,c) f ₄ (G)	$f_s(c) = \sum_{G} f_v(G,c) f_a(G)$		
С	fo(c), f _s (c)	$f_b(\cdot) = \sum_{c} f_0(c) f_s(c)$	= 0.8 * 0.72 + 0.2 * 0.48 = 0.672	

Already normalized (Bayes Rule not used)

: P(s=False) = 0328

Ordering: L,G, A

Factors:

$f_0(A) = P(A) = \underbrace{\frac{\overline{A f_0(A)}}{A f_0(A)}}_{f 0.7}$	
$f_1(A) = P(\mathbf{C = true} A) = \begin{bmatrix} A & f_1(A) \\ \hline A & f_1(A) \\ \hline t & 0.8 \\ \hline f & 0.15 \end{bmatrix}$	
$f_2(G) = P(G \mathbf{C} = \mathbf{true}) = \begin{bmatrix} G & f_2(G) \\ \hline G & f_2(G) \\ \hline t & 1.0 \\ \hline f & 0.0 \end{bmatrix}$	
$f_3(L,G) = P(L G) = \begin{cases} \hline G & L & f_3(L,G) \\ t & t & 0.7 \\ \hline t & t & 0.3 \\ f & t & 0.2 \\ \hline f & f & 0.8 \\ \hline \end{cases}$	
$f_4(L) = P(\mathbf{S} = true L) = \frac{\boxed{L f_4(L)}}{t 0.9}$ $\boxed{f 0.3}$	

Pool	Elininate	CPT
f ₆ (A) f ₇ (A) f ₂ (G) f ₃ (L,G) f ₄ (L)	$f_3(G) = \sum_L f_3(L,G) f_4(L)$	
f ₀ (A) f ₁ (A) f ₂ (G) f ₃ (G)	$f_{\delta}() = \sum_{G} f_{2}(G) f_{3}(G)$	= 1.0 * 0.72 + 0.0 * 0.42 = 0.72
f ₆ (A) f ₇ (A) ** f ₆ (1)	$f_{\varphi}() = \sum_{A} f_{\theta}(A) f_{\eta}(A)$	= 0.3 * 0.8 + 0.7 * 0.15 = 0.345
	f ₀ (A) f ₁ (A) f ₂ (G) f ₃ (L,G) f ₄ (L) f ₀ (A) f ₁ (A) f ₂ (G) f ₃ (G)	$\begin{array}{ll} f_{\delta}(A) & f_{\epsilon}(A) \\ f_{\epsilon}(G) & f_{\delta}(L,G) \\ f_{\alpha}(L) & \\ f_{\delta}(A) & f_{\epsilon}(A) \\ f_{\epsilon}(G) & f_{\delta}(G) \end{array}$ $\begin{array}{ll} f_{\delta}(G) & = \sum_{G} f_{\epsilon}(G) f_{\delta}(G) \\ f_{\delta}(G) & = \sum_{G} f_{\epsilon}(G) f_{\delta}(G) \end{array}$

Remaining Factors $f_6() \times f_7() = (0.72) \times (0.345) = 0.2484$ Unnormalized

0.2484 + 0.3144 = 0.44

P(C=False |S=true):

Ordering: L,G, A

Factors:

Some except...
$$f_1(A) = P(C = false|A) = \begin{bmatrix} \hline C & f_1(A) \\ t & 0.2 \\ \hline f & 0.85 \\ \hline \hline G & f_2(G) \\ f_2(G) = P(G|C = false) = \begin{bmatrix} t & 0.2 \\ \hline f & 0.8 \\ \hline \end{bmatrix}$$

Zį	Pool	Eliminate	CPT	
L	•••	···	•••	
G	•••			
A	•••	· · · · · · · · · · · · · · · · · · ·		
		result: 0.3144		