Data Torturers Midterm Project

Petfinder Adoption Speed

Alexis Kaldany, Sahara Ensley, Yixi Liang, Kaiyuan Liang

About the Dataset

1. This dataset is intended to predict factors influences adoption speed of pets.

```
(source:kaggle)
```

2. 14933 observations and 24 variables

```
"Name"
                                      "Age"
    "Type"
                                                      "Breed1"
    "Breed2"
                     "Gender"
                                      "Color1"
                                                      "Color2"
    "Color3"
                     "MaturitySize"
                                     "FurLength"
                                                      "Vaccinated"
    "Dewormed"
                     "Sterilized"
                                      "Health"
                                                      "Quantity"
    "Fee"
                     "State"
                                      "RescuerID"
                                                      "VideoAmt"
[21] "Description"
                     "PetID"
                                      "PhotoAmt"
                                                      "AdoptionSpeed"
```

EDA Preparation

- 1. Convert "Type", "MaturitySize", "FurLength", "Vaccinated", "Gender" into categorical type
- 2. Subset the data with only one animal per profile(quantity=1)
- 3. Subset the necessary columns for EDA: 'Type', 'Age', 'Gender', 'MaturitySize', 'FurLength', 'Vaccinated', 'PhotoAmt', 'AdoptionSpeed'.
- 4. Graph used:
 - a. Histogram
 - b. QQ plot
 - c. Scatter plot
 - d. Box-plot
 - e. Pie-Plot

About the variables

- 1. 'Type': the type of animals
- 2. 'Age' : age of animals in month
- 3. 'Gender': gender of animals
- 4. 'MaturitySize': the size of animals
- 5. 'FurLength': the fur length of animals
- 6. 'Vaccinated': the status of vaccination
- 7. 'PhotoAmt': the total number of photos uploaded for animals
- 8. 'AdoptionSpeed' : a categorical value to predict the adoption speed of animals. The lower of values, the faster speed of animal adoption speed.

AdoptionSpeed

ASnum: We transformed AdoptionSpeed to numerical variable

Age (in months)

PhotoAmt

There are five categorical variables:

- 1. Type
- 2. Gender
- 3. MaturitySize
- 4. FurLength
- 5. Vaccinated

(Categorical) Independent Variables EDA

- 1. Animal Type
- 2. Gender
- 3. Size
- 4. Fur Length
- 5. Vaccination Status

SMART: What categorical physical characteristics impact adoption speed?

Assumption Test: Homogeneity of Variance

H0: The variance is the same between the groups

H1: The variance is not the same between the groups

Type

data: ASnum ~ Type

BP = 33, df = 1, p-value = 9e-09

Gender

data: ASnum ~ Gender

BP = 8, df = 1, p-value = 0.004

Fur Length

data: ASnum ~ Fur Length

BP = 7, df = 2, p-value = 0.02

Size data: ASnum ~ MaturitySize BP = 21, df = 3, p-value = 9e-05

Vaccination

data: ASnum ~ Vaccinated

BP = 51, df = 2, p-value = 9e-12

Do dogs get adopted quicker than cats?


```
Welch Two Sample t-test

data: dogs$ASnum and cats$ASnum

t = 10, df = 8280, p-value <2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

4.16 6.30

sample estimates:
mean of x mean of y

28.7 23.5
```

Do male animals get adopted quicker than female animals?


```
Welch Two Sample t-test
```

```
data: male$ASnum and female$ASnum
t = -5, df = 8297, p-value = 4e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -3.88 -1.72
```

sample estimates: mean of x mean of y 24.9 27.7

Does size impact adoption speed?


```
Analysis of Variance Table

Response: ASnum

Df Sum Sq Mean Sq F value Pr(>F)

MaturitySize 3 53971 17990 28.1 <2e-16 ***

Residuals 8481 5419810 639

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
$MaturitySize
diff lwr upr p adj
2-1 5.631 3.91 7.35 0.000 *
3-1 0.683 -2.12 3.49 0.923
4-1 2.702 -9.66 15.07 0.943
3-2 -4.947 -7.47 -2.43 0.000 *
4-2 -2.929 -15.23 9.38 0.928
4-3 2.019 -10.48 14.52 0.976
```

Does Fur Length impact adoption speed?


```
Analysis of Variance Table

Response: ASnum

Df Sum Sq Mean Sq F value Pr(>F)

FurLength 2 31520 15760 24.6 2.3e-11 ***

Residuals 8482 5442260 642

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
$FurLength
diff lwr upr p adj
2-1 -2.71 -4.08 -1.34 0.000*
3-1 -6.70 -9.27 -4.13 0.000*
3-2 -3.99 -6.64 -1.34 0.001*
```

Does Vaccination Status impact adoption speed?


```
Analysis of Variance Table

Response: ASnum

Df Sum Sq Mean Sq F value Pr(>F)

Vaccinated 2 60442 30221 47.4 <2e-16 ***

Residuals 8482 5413338 638

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
$Vaccinated

diff lwr upr p adj

2-1 -4.92 -6.31 -3.537 0.000*

3-1 -1.75 -3.85 0.352 0.125

3-2 3.17 1.10 5.249 0.001*
```

Linear Modeling and Feature Selection

- 1. Age (in months)
- 2. PhotoAmt (number of photos)
- 3. VideoAmt (number of videos)

SMART: What numerical variables influence adoption speed?

Correlation Plot

Single Variable Numerical Models

ASnum ~ Age			ASnum ~ PhotoAmt				ASnum ~ VideoAmt				
Characteristic	Beta	95% CI ⁷	p-value	Characteristic	Beta	95% CI ⁷	p-value	Characteristic	Beta	95% CI ⁷	p-value
(Intercept)	26	25, 27	<0.001	(Intercept)	24	23, 25	<0.001	(Intercept)	26	26, 27	<0.001
Age	0.05	0.02, 0.08	<0.001	PhotoAmt	0.73	0.56, 0.89	<0.001	VideoAmt	1.7	0.05, 3.4	0.044
¹ CI = Confidence Interval			¹ CI = Confidence Interval			¹ CI = Confidence Interval					

Conclusion: Age and number of photos both impact adoption speed, number of videos does not.

SMART: What combination of categorical and numerical variables result in the best predictive model?

To the right: A full regression of all variables, categorical and numerical.

Characteristic	Beta	95% CI ⁷	p-value			
(Intercept)	22	20, 24	<0.001			
Age	0.06	0.03, 0.10	<0.001			
Gender						
1	_	_				
2	2.9	1.8, 4.0	<0.001			
MaturitySize						
1	_	_				
2	5.0	3.7, 6.3	<0.001			
3	-0.02	-2.2, 2.1	>0.9			
4	5.6	-3.7, 15	0.2			
FurLength						
1	_	_				
2	-3.0	-4.1, -1.8	< 0.001			
3	-7.8	-10.0, -5.6	<0.001			
Vaccinated						
1	_	_				
2	-5.0	-6.2, -3.8	<0.001			
3	-0.45	-2.2, 1.3	0.6			
VideoAmt	0.08	-1.6, 1.7	>0.9			
PhotoAmt	0.72	0.55, 0.89	<0.001			
¹ CI = Confidence Interval						

Using Feature Selection to find Best Model

Age, Gender 2, MaturitySize2, MaturitySize3, FurLength2, Furlength3, Vaccinated2, and PhotoAmt

Feature Selection Forward

Age, Gender 2, MaturitySize2, MaturitySize3, FurLength2, Furlength3, Vaccinated2, and PhotoAmt

Feature Selection Backwards

Age, Gender 2, MaturitySize2, MaturitySize3, FurLength2, Furlength3, Vaccinated2, and PhotoAmt

Feature Selection Sequential

Gender 2, Maturity Size 2, Fur Length 2, Fur Length 3, Vaccinated 2, Photo Amt

Comparing Two Recommended Models

Characteristic	Beta	95% CI ⁷	p-value		
(Intercept)	21	19, 23	<0.001		
Age	0.08	0.04, 0.12	<0.001		
Gender					
1	_	_			
2	2.9	1.8, 4.1	< 0.001		
MaturitySize					
1	_	_			
2	5.2	3.8, 6.7	< 0.001		
3	1.1	-1.2, 3.5	0.3		
FurLength					
1	_	_			
2	-2.8	-4.0, -1.6	< 0.001		
3	-6.1	-8.5, -3.6	<0.001		
Vaccinated					
1	_	_			
2	-4.6	-5.8, -3.4	<0.001		
PhotoAmt	0.78	0.61, 1.0	<0.001		
⁷ CI = Confidence Interval					

Characteristic	Beta	95% CI ⁷	p-value		
(Intercept)	23	21, 25	<0.001		
Gender					
1	_	_			
2	3.0	1.7, 4.2	<0.001		
MaturitySize					
1	_	_			
2	4.9	3.5, 6.4	<0.001		
FurLength					
1	_	_			
2	-2.8	-4.1, -1.5	<0.001		
3	-5.6	-8.4, -2.9	<0.001		
Vaccinated					
1	_	_			
2	-5.7	-6.9, -4.5	<0.001		
PhotoAmt	0.72	0.54, 0.89	<0.001		
¹ CI = Confidence Interval					

Left Model: Recommended model from exhaustive, forward, and backwards methods. Adjusted R-squared: 0.037

Right Model: Recommended by sequential method.

Adjusted R-squared: 0.0343

Conclusion to SMART Question 4:

Best model: ASnum ~
Age + Gender 2 + MaturitySize2 +
MaturitySize3 + FurLength2 +
Furlength3 + Vaccinated2 +
PhotoAmt

Conclusion

- 1.Do dogs get adopted faster than cats?
 - dogs get adopted slower than cats
- 2. Do physical attributes affect adoption speed?
 - Gender, Size, Furlength, Vaccination does impact the adoption speed
- 3. What numerical variables influence adoption speed?
 - Age and PhotoAmt are the only two numerical variables which alone can be considered statistically significant
- 4. What combination of categorical and numerical variables result in the best predictive model?
 - ASnum ~Age + Gender 2 + MaturitySize2 + MaturitySize3 + FurLength2 + Furlength3
 + Vaccinated2 + PhotoAmt

Conclusion

Strength

- Large sample size(n=14933 observations), more accurate finding
- Our best model include Age, Gender 2, MaturitySize 2, MaturitySize 3 +
 FurLength 2, Furlength 3, Vaccinated 2, PhotoAmt allow us to accurately
 predict the adoption speed and improve internal validity

limitation

- The difference in variance does not allow us to draw causal relationship, so we can claim that there is association between predictors and outcomes.
- There might be unidentified confounders exists in causal pathway that interacts with outcome measure. Future study should explore other factors that may impact adoption speed.