MATH 15910 - Problem Set 3

Sohini Banerjee

October 18, 2023

1

We can show a < b implies $a \le b-1$ by proving the contrapositive. Negate $a \le b-1$, so take a > b-1. Assume for contradiction that a < b. This means that b-1 < a < b (transitivity for order), or that b < a+1 < b+1 (addition property for order). Since a is an integer, a+1 is also an integer, so there must be an integer between b and b+1. Denote this as integer x such that b < x < b+1, which is equivalent to b+(-b) < x+(-b) < b+1+(-b) (addition property for order), or b+(-b) < x+(-b) < b+(-b)+1 (commutativity for addition). This means (b+(-b)) < x+(-b) < (b+(-b))+1 (associativity for addition), so 0 < x+(-b) < 1 (additive inverse for addition). x+(-b) is an integer (addition is $\mathbb{Z} \times \mathbb{Z} \mapsto \mathbb{Z}$), so this means there must exist an integer between 0 and 1. This is a contradiction (by proposition shown in class that for any positive integer $n, n \ge 1$). Therefore, the contrapositive of if a < b, then $a \le b-1$ is true. Thus, if a < b, then $a \le b-1$

$\mathbf{2}$

2.1

If a > 0 and b < 0, then $a \cdot b < a \cdot 0$ (multiplicative property for order). This means $a \cdot b < 0$ (by proposition shown in class that $x \cdot 0 = 0$). Thus, if a > 0 and b < 0, then $a \cdot b < 0$.

2.2

If a<0 and b<0, then (-a)>0 and (-b)>0 (by proposition shown in class that x<0 if and only if (-x)>0). This means $(-a)\cdot(-b)>(-a)\cdot0$ (multiplicative property for order), or $(-a)\cdot(-b)>0$ (by proposition shown in class that $x\cdot0=0$). We know that (-b)=-(b) (by proposition shown in class that $x\cdot(-1)=(-x)$). This is equivalent to $-(-a)\cdot b>0$ (associativity for multiplication). We must show that -(-a)=a. We know that -a+(-(-a))=0 (additive inverse for addition), so a+(-a)+(-(-a))=a+0 (cancellation for addition). This means that 0+(-(-a))=a+0 (additive inverse for addition),

which means -(-a) = a (identity element for addition). Since -(-a) = a, we know that $-(-a) \cdot b > 0$ means $a \cdot b > 0$. Thus, if a < 0 and b < 0, then $a \cdot b > 0$.

3

3.1

Let a=1. We know that for all $a \in \mathbb{Z}$, there exists an element (-a) such that a+(-a)=0. We can write 1+1=0 as a+a=0, or a+(-a)=0 (additive inverse for addition). This means a+a=a+(-a), so (-a)+a+a=(-a)+a+(-a) (cancellation for addition). This means ((-a)+a)+a=((-a)+a)+(-a) (associativity for addition) and that 0+a=0+(-a) (additive inverse for addition). This is equivalent to a=(-a) (identity element for addition). If a>0, then (-a)<0 and if a<0, then (-a)>0 (by proposition shown in class). Since a=-a, an element cannot be both greater or less than 0, so a=0 (trichotomy for order). However, this is a contradiction because we assumed a=1. Thus, $1+1\neq 0$.

3.2

We must show that if a > b, then $a^2 > b^2$ and if $a^2 > b^2$, then a > b. Starting with the former, take a > b. Since a > 0 and b > 0, we know $a \cdot a > a \cdot b$ and $a \cdot b > b \cdot b$ (multiplicative property for order). Since $a \cdot a > a \cdot b$ and $a \cdot b > b \cdot b$, then $a \cdot a > b \cdot b$ (transitivity for order), so $a^2 > b^2$. For the latter, we can show that $a^2 > b^2$ implies a > b by proving the contrapositive. The negation of a > b has two cases. First, take a = b. Then, $a \cdot a = a \cdot b$ (multiplication is $\mathbb{Z} \times \mathbb{Z} \mapsto \mathbb{Z}$), or $a^2 = a \cdot b$. Similarly, $b \cdot a = b \cdot b$ (multiplication is $\mathbb{Z} \times \mathbb{Z} \mapsto \mathbb{Z}$), or $a \cdot b = b^2$. Since $a \cdot b = a^2$ and $a \cdot b = b^2$, then $a^2 = b^2$ (transitivity), so $a^2 > b^2$ is false. Second, take a < b. Then, $a \cdot a < a \cdot b$ (multiplicative property for order), or $a^2 < a \cdot b$. Similarly, $b \cdot a < b \cdot b$ (multiplicative property for order), or $a \cdot b < b^2$. Since $a^2 < a \cdot b$ and $a \cdot b < b^2$, then $a^2 < b^2$ (transitivity for order), so $a^2 > b^2$ is false. If a = b or a < b, then $a^2 > b^2$ is false, proving the contrapositive. Thus, we have shown that if a > b, then $a^2 > b^2$ and if $a^2 > b^2$, then a > b, so a > b if and only if $a^2 > b^2$.

4

4.1

Let $P(n) = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$. $P(1) = 1^2 = \frac{1(1+1)(2\cdot 1+1)}{6} = 1$. Thus, the base case n=1 is true. Assume P(n) is true for $n\epsilon\mathbb{Z}_+$, meaning $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$. We can add $(n+1)^2$ to both sides, giving us $\sum_{i=1}^n i^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$. So, $\sum_{i=1}^{n+1} i^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$. We can simplify the RHS as follows: $= \frac{n(n+1)(2n+1)+6(n+1)(n+1)}{6}$

```
=\frac{(n+1)(n(2n+1)+6(n+1))}{6}
=\frac{(n+1)(2n^2+n+6n+6)}{6}
=\frac{(n+1)(2n^2+4n+3n+6)}{6}
=\frac{(n+1)(2n(n+2)+3(n+2))}{6}
=\frac{(n+1)(n+2)(2n+3)}{6}
=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
```

This implies that P(n+1) is true. Thus, mathematical induction shows that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ holds for any $n\epsilon \mathbb{Z}_+$.

4.2

Let $P(n)=(1+a)^n\geq 1+n\cdot a.$ $P(1)=(1+a)^1\geq 1+1\cdot a,$ which is true because $1+a\geq 1+a.$ Thus, the base case n=1 is true. Assume P(n) is true for $n\epsilon\mathbb{Z}_+,$ meaning $P(n)=(1+a)^n\geq 1+n\cdot a.$ We must show that P(n+1) is also true. $P(n+1)=(1+a)^{n+1}\geq 1+(n+1)\cdot a.$ We can rewrite $(1+a)^{n+1}$ as $(1+a)^n(1+a).$ Using the assumption that P(n) is true, $(1+a)^n(1+a)\geq (1+n\cdot a)(1+a).$ $(1+n\cdot a)(1+a)=1+a+n\cdot a+n\cdot a^2=1+(n+1)\cdot a+n\cdot a^2\geq 1+(n+1)\cdot a.$ So, $(1+a)^n(1+a)\geq (1+n\cdot a)(1+a)\geq 1+(n+1)\cdot a.$ Thus, $(1+a)^{n+1}\geq 1+(n+1)\cdot a.$ Thus, mathematical induction shows that $(1+a)^n\geq 1+n\cdot a$ holds for any $n\epsilon\mathbb{Z}_+.$