2. Princife du maximum (suite): $\frac{1}{2} = \frac{1}{2} = \frac{1}$ D'après ce qui précède, U=+1 pws-1 on-1 puis +1. Z'existence étant admise, supposons qu'en est dans le second cas, à savin une structure $\gamma-\gamma+$ (c'est ce qu'en attend 5i 90>0. et go>o) i notons $t \in [0,t]$ le temps de commutation, en a u(t) = -1, $t \in [0, t]$ = i $q(t) - q(0) = \int_{0}^{t} (-1) ds = -t$, is $i = q(t) = -t + q_0, t \in [0, t]$

De même,

$$q(t) - q(0) = \int_{0}^{\infty} q(s) ds$$
 $q(t) - q(0) = \int_{0}^{\infty} q(s) ds$
 $q(t) - q(0) = \int_{0}^{\infty} q(s) ds$
 $q(t) = -\frac{1}{2}t^{2} + q_{0}t$
 $= -\frac{1}{2}(t) + \frac{1}{2}q_{0}^{2} + q_{0}^{2} +$

= $9(t) = -\frac{1}{2}q(t) + \frac{1}{2}q_0 + q_0$ is (q(t), q(t)) = la panabole d'équation: $X_1 = \frac{1}{2} X_2^2 + ct$

Rq: on a, le long de l'arc y- (u=-1), $q(t)+\frac{1}{2}q^{2}(t)=q_{0}+\frac{1}{2}q_{0}^{2}=cte$ (intégrale première) 2 and $t \in [t, tf]$, u(t) = t1, et on a (incomu!) $q[tf] - q[t] = \int_{t}^{t} (t1) ds = tf - t = q(t) = t - tf$ $q(t;f)-q(t) = \int_{t}^{t} (s-tf) ds = \left[\frac{1}{2}s^{2}-tf,s\right]_{t}^{t} = \frac{1}{2}t^{2}-tf-\frac{1}{2}t^{2}+tf,t$ $q(s) =)q(t) = +\frac{1}{2}t^{2}-tf,t+\frac{1}{2}t^{2} = \frac{1}{2}(t-tf)^{2}-\frac{1}{2}q^{2}(t)$ ce deuxième anc y+ (u=+1) pancount qd t ∈ [t, tf] la parabole $x_1 = +\frac{1}{2}x_2^2$ (= la parabole d'axe le sym. (0x1) et de convexité tournée veus x1 > 0 r panant par (0,0)). Reste à calculer, pour déterminer complètement la solution, les valeurs de t (temps de commutation / switch) et tf. En particulier, $x(t) \in T_+$ donc $x_{1}(\bar{t}) = \frac{1}{2}x_{2}^{2}(\bar{t}) = -\frac{1}{2}x_{2}^{2}(\bar{t}) + q_{0} + \frac{1}{2}q_{0}^{2} = \frac{1}{2}x_{2}^{2}(\bar{t})$ $x_{1}(t)$ $= x_{2}(t) = y_{0} + x_{1}(y_{0})$

Rq: on Gestate que, nécessaipement, si la structure est 7-8+ (u=-1 puis +1), alors 90+192>>0 1 × < 10 > - 1 1 2 $q_0=-\frac{1}{2}q_0^2$ $q_0=-\frac{1}{2}q_0^2$ (ie x = - 2 x 2) $=) = q_0 = \sqrt{q_0 + \frac{1}{\lambda}q_0}$

Rq: on drit avoir E>,0, ce qui implique 90+190220 ie $q_0 > - \sqrt{q_0 + \frac{1}{2}q_0^2}$; or $q_0 = -\sqrt{q_0 + \frac{1}{2}q_0^2} =$ $q_0 < 0$ is $90 = 90 + \frac{1}{5}95 = 90 = \frac{1}{9}95$ d'april ve qui précède, on a donc (90,90) dans le zone délimitée par 290 > - 293 > et T+ (f. demin ci-avant). _____ (vur y+ vur y-Finalement, diterminans tf z t(zo): q(t)=t-tf=-t+qo = = $2 + -9 = 9 + 2 \sqrt{9 + 29}$

Jan symittie, on voit qu'il existe (géométriquement) une seule façon de relien un pt (90,90) tq on a une structure 7+7- à l'origine à l'aide d'un arre de parabole $x_1 = +\frac{1}{2}x_2^2 + \text{te}(-x_1 - \frac{1}{2}x_2^2 = 9 - \frac{1}{2}9^2)$ puis d'un arc de x,=- = x2 ([]). Ayant admis l'existence de solution, on en déduit donc l'unicité : voir le dessin de la synthèse. On a un femilletage du plan par des courbes brisées" formées par (en sénéval) deux avos de paraboles.

En particulier, l'ensembles les conditions initiales ne donnant pas lieu à commutation (Fit u = +1, Sit u=-1, t \in [o,tf]) est [t] U[(ens. d'intérieur vide et de mesure nulle).

l'Ag: i) on obtient ains: la synthère,
is le contrôle en bourle

fermis" ("feedback");

(I = U(21) = U(9,9)

"broule fermie" en fonction de l'état on sait déterminer la commande optimale 1 plus fort que de calculer ruhe lui de commande pour une condition initiale particulière: u(t)) ii) on a ru $tf = +q_0 + 2\sqrt{q_0 + \frac{1}{2}q_0^2}$ qd la structure donné on vierifie de même que est y-y+y= $-(q_0,q_0)$ $tf = -q_0 + 2\sqrt{-q_0 + \frac{1}{2}q_0^2}$ dans le cas y+y= \Rightarrow on définit ainsi tf $(q_0,q_0)=x_0\mapsto tf(q_0,q_0)$

Cette Gonetin, la fonction valour " du problème (= la fonction qui associe à la condition initiale le ant optimel), est continue, mais pas de classe 61. Elle vérifie l'EDP de Hamilton-Jacobi-Bellman (HJB) en un sens faible" (solution de "viscosité"). iii) Considérans le problème supristique consistant à partir de l'origine (0,0) et à Nallier en temps minimal une condition finale antitume (9f,9f):

(9年,9年) S((0,0), + +) = sphine $= \left\{ \left(94,94 \right) \in \mathbb{R}^2 \mid \text{temps} \right.$ $= \left. \left(94,94 \right) \in \mathbb{R}^2 \mid \text{temps} \right.$ $= \left. \left(94,94 \right) \in \mathbb{R}^2 \mid \text{temps} \right.$ $= \left. \left(94,94 \right) \in \mathbb{R}^2 \mid \text{temps} \right.$ $= \left. \left(94,94 \right) \in \mathbb{R}^2 \mid \text{temps} \right.$ Exo: verifier que la sthère est donnée pan deux ans de panabeles. On constate que, Effso, on a des sinqueanités sur la sphère (‡ sphères de petit hayon en géométrie niemannienne).