

DEEP LEARNING

MODAL DECOMPOSITION

Reconstruction

Prediction

HOSVD

Pattern detection

Data Repairing

HODMD

Pattern detection

Autoencoders

Reconstruction

Superresolution

Full DL

Prediction

Hybrid

HODMD

ModelFLOWs

Superresolution

MODAL DECOMPOSITION

Pattern detection

Reconstruction

Prediction

HOSVD

Data Repairing

HODMD

Pattern detection

Autoencoders

DEEP LEARNING

Reconstruction

Superresolution

Full DL

Prediction

Hybrid

HODMD

ModelFLOWs

Superresolution

Motivation

International Journal of Heat and Fluid Flow 100 (2023) 109101

Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier.com/locate/ijhff

Álvaro Martínez-Sánchez ^{a,c}, Eneko Lazpita ^b, Adrián Corrochano ^b, Soledad Le Clainche ^b, Sergio Hoyas ^a, Ricardo Vinuesa ^{c,*}

- a Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia 46022, Spain
- ^b School of Aerospace Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- ^c FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

https://doi.org/10.1016/j.ijheatfluidflow.2022.109101

Pattern analysis in turbulent complex flows in urban environments using proper orthogonal decomposition (POD).

Methodology

HOSVD

$$M = U \Sigma V^T$$

Spatial dimension: $J \equiv N_u \times N_x \times N_y \times N_z$

Temporal dimension: N_t

Methodology

HOSVD

$$M = U \Sigma V^T$$

Spatial dimension: $J \equiv N_u \times N_x \times N_y \times N_z$

Temporal dimension: N_t

Rank: $r \leq \min(J, N_t)$

Methodology

HOSVD

Spatial dimension: $J \equiv N_u \times N_x \times N_y \times N_z$

Temporal dimension: N_t

Rank: $r \leq \min(J, N_t)$

Reduce data dimensionality: k

POD modes
Identify spatial patterns

Database & Data preparation

Database & Data preparation

Snapshots Tensor =
$$\{N_v, N_x, N_y, N_z, N_t\}$$

$$\begin{cases} - & N_v = 3 \\ - & N_x = 100 \\ - & N_y = 125 \\ - & N_z = 50 \\ - & N_t = 224 \end{cases}$$

Spatial dimension = 1875000

Temporal dimension = 224

Calibration

Spatial dimension = 1875000

Tolerance SVD: The energy amplitude where we cut the spectrum.

Values: 1e-2, 1e-3, 1e-4

Temporal dimension = 224

Calibration

Tolerance SVD:

Values: 1e-2, 1e-3, 1e-4

Mode energy decay spectrum

HOSVD

Results

Streamwise velocity patterns.

- 1st 10 most energetic modes.
- 3 different regimes
- Symmetry.
- Vortical structures.

Click here for more information

HOSVD

Results

Spanwise velocity patterns.

- 1st 10 most energetic modes.
- 3 different regimes
- Symmetry.
- Vortical structures.

Click here for more information


```
Thanks for
watching! Visit us
on:
http://modelflows.e
S
```