CS4487 - Machine Learning

Lecture 2a - Bayes Classifier

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Bayes Classification and Generative Models
- 2. Parameter Estimation
- 3. Bayesian Decision Rule

Classification Examples

- Given an email, predict whether it is spam or not spam.
 - Email 1:

There was a guy at the gas station who told me that if I knew Mandarin and Python I could get a job with the FBI.

Email 2:

A home based business opportunity is knocking at your door. Donit be rude and let this chance go by. You can earn a great income and find your financial life transformed. Learn more Here. To Your Success. Work From Home Finder Experts

Classification Examples

• Given the petal length and sepal width, predict the type of iris flower.

In [3]: irisfig

Out[3]:

General Classification Problem

- Observation x (i.e., features)
 - typically a real vector, $\mathbf{x} \in \mathbb{R}^d$.
 - **Example**: a 2-dim vector containing the petal length and sepal width.

$$\circ \mathbf{x} = \begin{bmatrix} \text{petal length} \\ \text{sepal width} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Class v
 - takes values from a set of possible class labels \mathcal{Y} .
 - **Example:** $\mathcal{Y} = \{\text{"versicolor", "virginica"}\}$.
 - or equivalently as numbers, $\mathcal{Y} = \{1, 2\}.$
- **Goal**: given an observed features **x**, predict its class *y*.

Probabilistic model

- One type of classifier is to model the data.
- Model *how* the data is generated using probability distributions.
 - called a generative model.
- Generative model
 - 1) The world has objects of various classes.
 - 2) The observer measures features/observations from the objects.
 - 3) Each class of objects has a particular distribution of features.

Class model

- possible classes are \mathcal{Y}
 - for example, $\mathcal{Y} = \{\text{"versicolor", "virginica"}\}$.
 - \circ or more generally, $\mathcal{Y} = \{1, 2\}.$
- in the world, the frequency that class y occurs is given by the probability distribution p(y).
 - p(y) is called the **prior distribution**.
- Example:
 - p(y = 1) = 0.4
 - p(y = 2) = 0.6
 - "In the world of iris flowers, there are 40% that are Class 1 (versicolor) and 60% that are Class 2 (virginica)"

Learn from our data

- $p(y = 1) = \frac{\text{number of examples of Class 1}}{\text{total number of examples}}$
- analogous for Class 2

```
In [4]:     N1 = count_nonzero(y==1) # number of Class 1 examples
     N2 = count_nonzero(y==2) # number of Class 2 examples
     N = len(y) # total
     py = [double(N1)/N, double(N2)/N] # note: avoids integer division!
     print(py)
[0.5, 0.5]
```

Observation model

- we measure/observe feature vector x
 - the value of the features depend on the class.
- the observation is drawn according to the distribution $p(\mathbf{x}|\mathbf{y})$.
 - p(x|y) is called the class conditional distribution
 - "probability of observing a particular feature vector x given the object is class y"
 - o can "smooth out the samples" or "fill-in" values between samples.

Learn from the data

histograms for feature "petal length" for each class

In [6]:

ccdhist

Out[6]:

- Problem: looks a little bit noisy.
- **Solution:** assume a probability model for the class conditional p(x|y)

Gaussian distribution (normal distribution)

• Each class is modeled as a separate Gaussian distribution of the feature value $p(x|y=c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{1}{2\sigma_c^2}(x-\mu_c)^2}$

$$p(x|y=c) = \frac{1}{\sqrt{2\pi\sigma_c^2}}e^{-\frac{1}{2\sigma_c^2}(x-\mu_c)^2}$$

• Each class has its own mean and variance parameters (μ_c, σ_c^2) .

In [8]: gfig

Out[8]:

Gaussian: $\mu = 2.3$; $\sigma = 1.5$

Learn the parameters from data.

- Maximum likelihood estimation (MLE)
 - set the parameters (μ, σ²) to maximize the likelihood (probability) of the samples for that class.
 Let {x_i, y_i}^N_{i=1} be the data for one class:

$$(\mu, \sigma^2) = \underset{\mu, \sigma^2}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(\mathbf{x}_i | y_i)$$

- Solution:

 - sample mean: $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$ sample variance: $\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} \mu)^{2}$

In [11]: gcd

Out[11]:

Bayesian Decision Rule

- The Bayesian decision rule (BDR) makes the optimal decisions on problems involving probability (uncertainty).
 - minimizes the probability of making a prediction error.
- Bayes Classifier
 - Given observation x, pick the class c with the *largest posterior probability*, p(y = c|x).
 - Example:
 - if p(y = 1|x) > p(y = 2|x), then choose Class 1
 - if p(y = 1|x) < p(y = 2|x), then choose Class 2
- Problem: we don't have p(y|x)!
 - we only have p(y) and p(x|y).

Bayes' Rule

• The posterior probability can be calculated using Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

■ The denominator is the probability of *x*:

$$\circ \ p(x) = \sum_{y \in \mathcal{Y}} p(x|y) p(y)$$

■ The denominator makes p(y|x) sum to 1.

• Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x|y=1)p(y=1) + p(x|y=2)p(y=2)}$$

• Example:

In [13]: iris1dpost

Out[13]:

- The decision boundary is where the two posterior probabilites are equal
 - p(y = 1|x) = p(y = 2|x)

In [15]: iris1dpost2

Out[15]:

Bayes rule revisited

- Bayes' rule: $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$
- Note that the denominator is the same for each class *y*.
 - hence, we can compare just the numerators p(x|y)p(y).
 - This also called the joint likelihood of the observation and class
 - o p(x, y) = p(x|y)p(y)

Example:

- BDR using joint likelihoods:
 - if p(x|y=1)p(y=1) > p(x|y=2)p(y=2), then choose Class 1
 - o otherwise, choose Class 2

In [17]: iris1djoint

Out[17]:

- Can also apply a monotonic increasing function (like log) and do the comparison.
 - Using log likelihoods:
 - $\circ \log p(x|y=1) + \log p(y=1) > \log p(x|y=2) + \log p(y=2)$
 - This is more numerically stable when the likelihoods are small.

In [19]: iris1dLL

Out[19]:

Bayes Classifier Summary

• Training:

- 1. Collect training data from each class.
- 2. For each class c, estimate the class conditional densities p(x|y=c):
 - A. select a form of the distribution (e.g. Gaussian).
 - B. estimate its parameters with MLE.
- 3. Estimate the class priors p(y) using MLE.

• Classification:

- 1. Given a new sample x^* , calculate the likelihood $p(x^*|y=c)$ for each class c.
- 2. Pick the class c with largest posterior probability p(y = c|x).
 - (equivalently, use p(x|y=c)p(y=c) or $\log p(x|y=c) + \log p(y=c)$)