

PVsyst - Simulation report

Grid-Connected System

Project: WORLD BANK

Variant: New simulation variant Building system

System power: 27.68 kWp

World Bank - Nigeria

PVsyst V7.4.7

Project: WORLD BANK Variant: New simulation variant

VC0, Simulation date: 14/08/25 13:47 with V7.4.7

Project summary

Geographical Site Situation

World Bank Latitude 9.04 °N 7.52 °E Nigeria Longitude

Altitude 0 m Time zone UTC

Weather data

World Bank

Meteonorm 8.1 (2010-2021), Sat=100% - Synthetic

System summary

Grid-Connected System

Simulation for year no 10

PV Field Orientation

Tilt/Azimuth 10 / 180 ° **Building system**

Near Shadings

Linear shadings : Fast (table)

Seasonal modulation

User's needs

Daily household consumers

Project settings

Albedo

Average 11.0 kWh/Day

System information

P50 - P90 evaluation

PV Array Nb. of modules

Pnom total

Fixed plane

45 units

27.68 kWp

Nb. of units Pnom total

Pnom ratio

Inverters

1.5 units 22.50 kWac

1.230

Battery pack

Storage strategy: Self-consumption Nb. of units 10 units

Voltage 51 V 3120 Ah Capacity

Results summary

Produced Energy 39728 kWh/year **Used Energy** 4004 kWh/year

Specific production

1436 kWh/kWp/year Perf. Ratio PR

Solar Fraction SF

72.25 % 100.00 %

10

0.20

Table of contents

Project and results summary 2 General parameters, PV Array Characteristics, System losses 3 Near shading definition - Iso-shadings diagram _ 5 Detailed User's needs 6 7 Main results Loss diagram 8 9 Predef. graphs

PVsyst V7.4.7

Project: WORLD BANK

Variant: New simulation variant

VC0, Simulation date: 14/08/25 13:47 with V7.4.7

General parameters

Grid-Connected System Building system

PV Field Orientation

Orientation **Sheds configuration** Models used

Fixed plane Transposition Perez Tilt/Azimuth 10 / 180 ° Diffuse Perez, Meteonorm

Circumsolar separate

Horizon **Near Shadings** User's needs

Free Horizon Linear shadings : Fast (table) Daily household consumers

Seasonal modulation

Average 11.0 kWh/Day

Storage

Kind Self-consumption

Charging strategy Discharging strategy When excess solar power is available As soon as power is needed

PV Array Characteristics

PV module		Inverter	
Manufacturer	Jinkosolar	Manufacturer	VMC
Model	JKM-615N-66HL4M-BDV	Model	Sunvec 15KTLD3

(Original PVsyst database)

(Original PVsyst database) Unit Nom. Power 615 Wp Unit Nom. Power 15.0 kWac Number of PV modules 45 units Number of inverters 3 * MPPT 50% 1.5 units Nominal (STC) 27.68 kWp Total power 22.5 kWac Modules 3 string x 15 In series Operating voltage 160-950 V Max. power (=>25°C) 16.5 kWac At operating cond. (50°C)

25.67 kWp 1.23 Pnom ratio (DC:AC) **Pmpp** 568 V U mpp No power sharing between MPPTs 45 A

Total PV power

Nominal (STC) 28 kWp Total power 22.5 kWac Total 45 modules Nb. of inverters 2 units Module area 121 m² 0.5 unused

> Pnom ratio 1.23

Battery Storage

Battery

I mpp

Manufacturer BYD Model Battery Box Premium LVS 12.0

Battery pack

10 in parallel Nb. of units Voltage Discharging min. SOC 40.0 % Stored energy 95.8 kWh

Battery input charger

Generic Model 23.0 kWdc Max. charg. power Max./Euro effic. 97.0/95.0 %

Battery to Grid inverter

Model Generic 2.2 kWac Max. disch. power Max./Euro effic. 97.0/95.0 %

Battery Pack Characteristics

Total inverter power

51 V **Nominal Capacity** 3120 Ah (C10) Temperature Fixed 20 °C

PVsyst V7.4.7

VC0, Simulation date: 14/08/25 13:47

Variant: New simulation variant

Project: WORLD BANK

with V7.4.7 **Array losses**

Array Soiling Losses

Thermal Loss factor

DC wiring losses

Loss Fraction

3.0 % Module temperature according to irradiance Global array res.

Loss Fraction

1.5 % at STC

206 mΩ

Serie Diode Loss

LID - Light Induced Degradation

Module Quality Loss

Voltage drop Loss Fraction

Loss Fraction

0.7 V 0.1 % at STC Loss Fraction 2.0 % Loss Fraction

-0.8 %

Module mismatch losses 2.0 % at MPP Module average degradation

Year no

Uc (const)

Uv (wind)

10 0.4 %/year

29.0 W/m²K

 $0.0 \text{ W/m}^2\text{K/m/s}$

Loss factor Mismatch due to degradation

Imp RMS dispersion

0.4 %/year

Vmp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

Spectral correction

FirstSolar model

Precipitable water estimated from relative humidity

Coefficient Set	C0	C1	C2	C3	C4	C5
Monocrystalline Si	0.85914	-0.02088	-0.0058853	0.12029	0.026814	-0.001781

System losses

Unavailability of the system

Time fraction

7.3 days,

3 periods

AC wiring losses

Inv. output line up to injection point

Inverter voltage 380 Vac tri Loss Fraction 0.47 % at STC

Inverter: Sunvec 15KTLD3

Copper 2 x 3 x 10 mm² Wire section (2 Inv.) Average wires length 20 m

Variant: New simulation variant

PVsyst V7.4.7 VC0, Simulation date: 14/08/25 13:47 with V7.4.7

Variant: New simulation variant

PVsyst V7.4.7 VC0, Simulation date: 14/08/25 13:47 with V7.4.7

Detailed User's needs

Daily household consumers, Seasonal modulation, average = 11.0 kWh/day

Summer (Jun-Aug)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	4.0	2000
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Air conditioning	1	1000 tot	3.0	3000
Stand-by consumers			24.0	144
Total daily energy				12642

Autumn (Sep-Nov)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	5.0	2500
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10142

Winter (Dec-Feb)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	6.0	600
TV / PC / Mobile	2	100/app	6.0	1200
Domestic appliances	1	500/app	6.0	3000
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10942

Spring (Mar-May)

	Nb.	Power	Use	Energy
		W	Hour/day	Wh/day
Lamps (LED or fluo)	10	10/lamp	5.0	500
TV / PC / Mobile	2	100/app	5.0	1000
Domestic appliances	1	500/app	5.0	2500
Fridge / Deep-freeze	2		24	1598
Dish- & Cloth-washers	1		2	2000
Ventilation	1	100 tot	24.0	2400
Stand-by consumers			24.0	144
Total daily energy				10142

Variant: New simulation variant

PVsyst V7.4.7

VC0, Simulation date: 14/08/25 13:47 with V7.4.7

Main results

System Production

Produced Energy (P50) 39728 kWh/year Produced Energy (P90) 37020 kWh/year Produced Energy (P95) 36259 kWh/year

Specific production (P50) 1436 kWh/kWp/year Perf. Ratio PR Specific production (P90) 1338 kWh/kWp/year Solar Fraction SF

72.25 % 100.00 %

Specific production (P95) 1310 kWh/kWp/year

Battery aging (State of Wear)

99.6 % Cycles SOW Static SOW 90.0 % Battery lifetime 10.0 years

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_User	E_Solar	E_Grid	EFrGrid
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh
January	168.0	78.6	27.99	152.0	136.9	3201	339.2	339.2	2686	0.000
February	154.3	95.8	30.36	145.4	130.3	3004	306.4	306.4	2587	0.000
March	177.9	104.8	32.04	172.6	156.5	3583	314.4	314.4	3144	0.000
April	190.3	97.8	31.09	190.3	174.9	4021	304.3	304.3	3195	0.000
Мау	180.6	94.5	29.45	185.1	169.7	3937	314.4	314.4	3204	0.000
June	164.2	83.6	26.74	170.6	156.2	3669	379.3	379.3	3167	0.000
July	168.7	86.4	26.28	174.4	159.5	3759	391.9	391.9	3242	0.000
August	150.8	91.4	25.36	151.9	136.7	3235	391.9	391.9	2452	0.000
September	163.3	81.6	25.58	160.2	145.8	3434	304.3	304.3	3014	0.000
October	179.3	83.9	26.83	169.6	154.4	3635	314.4	314.4	3201	0.000
November	183.8	57.7	27.86	165.4	151.7	3550	304.3	304.3	3130	0.000
December	167.1	72.3	27.92	149.2	134.5	3153	339.2	339.2	2703	0.000
Year	2048.4	1028.5	28.11	1986.7	1806.9	42180	4004.0	4004.0	35724	0.000

Legends

GlobHor Global horizontal irradiation **EArray** Effective energy at the output of the array

DiffHor Horizontal diffuse irradiation E User Energy supplied to the user E_Solar T_Amb **Ambient Temperature** Energy from the sun E_Grid GlobInc Global incident in coll. plane Energy injected into grid GlobEff Effective Global, corr. for IAM and shadings **EFrGrid** Energy from the grid

Variant: New simulation variant

PVsyst V7.4.7 VC0, Simulation date: 14/08/25 13:47 with V7.4.7

Variant: New simulation variant

PVsyst V7.4.7
VC0, Simulation date:

Variant: New simulation variant

PVsyst V7.4.7

VC0, Simulation date: 14/08/25 13:47 with V7.4.7

P50 - P90 evaluation

Weather data Simulation and parameters uncertainties Source Meteonorm 8.1 (2010-2021), Sat=100% PV module modelling/parameters 1.0 % Inverter efficiency uncertainty 0.5 % Kind Monthly averages Synthetic - Multi-year average Soiling and mismatch uncertainties 1.0 % Year-to-year variability(Variance) 5.0 % Degradation uncertainty 1.0 % **Specified Deviation** 0.0 % Climate change Global variability (weather data + system) **Annual production probability** Variability (Quadratic sum) 5.3 % Variability 2.11 MWh 39.73 MWh P50 P90 37.02 MWh P95 36.26 MWh **Probability distribution** 0.50 0.45 P50 = 39.73 MWh 0.40 rid simul = 39.73 MWh 0.35 0.30 Probability 0.25 0.20 P90 = 37.02 MWh 0.15 P95 = 36.26 MWh 0.10 0.05 0.00 36 40 42 38 46 E_Grid system production MWh