1. Assume (α, β) is a 2D Gaussian r.v. (non-degenerated: neither α nor β is a constant). Find $\mathbf{E}(\alpha|\beta)$ and the best mean square linear estimator of α , given β .

Hint. The joint pdf of α and β is

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{q(x,y)}{2}\right\},\,$$

where $\sigma_{\alpha}, \sigma_{\beta}$ are standard deviations, $\rho = \mathbf{cov}(\alpha, \beta) / (\sigma_{\alpha}\sigma_{\beta})$ is the correlation and

$$\begin{split} q(x,y) &= \frac{1}{1-\rho^2} \left[\left(\frac{x-\mu_\alpha}{\sigma_\alpha} \right)^2 - 2\rho \left(\frac{x-\mu_\alpha}{\sigma_\alpha} \right) \left(\frac{y-\mu_\beta}{\sigma_\beta} \right) + \left(\frac{y-\mu_\beta}{\sigma_\beta} \right)^2 \right] \\ &= \frac{1}{1-\rho^2} \left[\left(\frac{x-\mu}{\sigma_\alpha} \right)^2 - 2\rho \left(\frac{x-\mu_\alpha}{\sigma_\alpha} \right) \left(\frac{y-\mu_\beta}{\sigma_\beta} \right) + \rho^2 \left(\frac{y-\mu_\beta}{\sigma_\beta} \right)^2 + \left(1-\rho^2 \right) \left(\frac{y-\mu_\beta}{\sigma_\beta} \right)^2 \right] \\ &= \frac{1}{1-\rho^2} \left[\left(\frac{x-\mu_\alpha}{\sigma_\alpha} - \rho \frac{y-\mu_\beta}{\sigma_\beta} \right)^2 + \left(1-\rho^2 \right) \left(\frac{y-\mu_\beta}{\sigma_\beta} \right)^2 \right] \\ &= \frac{1}{1-\rho^2} \left[\left(\frac{x-(\mu_\alpha+\rho y-\rho \mu_\beta)}{\sigma_\alpha} \right)^2 + \left(1-\rho^2 \right) \left(\frac{y-\mu_\beta}{\sigma_\beta} \right)^2 \right]. \end{split}$$

Note that for all $\sigma > 0$ and $m \in \mathbf{R}$,

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\} dx = m,$$
$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\} dx = 1.$$

2. Let \mathcal{M} be a linear subspace generated by $\{1, \beta_1, \dots, \beta_n\}$. Assume

$$\hat{\alpha} = m + c_1(\beta_1 - \mathbf{E}\beta_1) + \ldots + c_n(\beta_n - \mathbf{E}\beta_n)$$

is the best linear estimate of a r.v. α . Show that the mean square error

$$\mathcal{E} = \mathbf{E} \left[(\alpha - \hat{\alpha})^2 \right] = Var(\alpha) - \sum_{i,j} cov(\beta_i, \beta_j) c_i c_j.$$