マルチソース入力を用いた多言語文符号化器による感情分析

[S3-P09]

梶川怜恩,梶原智之(愛媛大学)

目的:多言語モデルにとって処理しやすい文に変換し、英語以外の性能を改善

課題:英語以外の言語において、多言語モデルの事前訓練データ量が少ない

事前訓練データの分布より

英語以外の言語の訓練データの量が少ない

また

文法構造が異なる言語間では多言語モデルの性能が低下する[1]

日本語のデータ割合は4.4%しかなく 英語と日本語は文法構造が大きく異なるため **日本語における多言語モデルの性能が課題となる**

任意の原文を多言語モデルが処理しやすい文に変換したい

[1] Pires et al. "How Multilingual is Multilingual BERT?" In Proc. of ACL, pp. 4996–5001, 2019.

提案手法:原文と機械翻訳による高頻度な表現を併用するマルチソース入力

(仮説)事前訓練のコーパス中に頻出する表現は高精度に解析可能になる

(提案手法)原文とより高頻度な表現を併用するマルチソース入力を多言語モデルに適用

機械翻訳によってテキストの個性が消え、一般的な表現になる[2]

→ 一般的な表現にすることで、コーパス中における高頻度な表現を獲得

機械翻訳に基づく2種類の方法で原文をより高頻度な単語に変換

1. 英語への機械翻訳

原文を日英翻訳し、マルチソース入力「"原文 [SEP] 英語訳"」 **事前訓練データにおいて、英語の表現は多く含まれる**ため、処理しやすい文に

2. 対象言語への折り返し翻訳

原文を折り返し翻訳し、マルチソース入力「"原文 [SEP] 言い換え"」 折り返し翻訳による**言い換え生成によって、高頻度な表現が増加**

[2] Ella Rabinovich et al. "Personalized Machine Translation: Preserving Original Author Traits" In Proc. of EACL, pp. 1074–1084, 2017.

評価実験:日本語の感情分析においてマルチソース入力の有効性を確認

WRIMEデータセット[3]を用いた日本語の感情極性分類(5段階評価)

訓練:30,000文 検証:2,500文 評価:2,500文 評価指標:QWK(正解ラベルとの一致率)

翻訳文との併用によって性能が改善

英語訳を英語モデルに入力するより 提案手法の方が性能が高い

多言語モデル	A.原文	B.英語訳	C.言い換え	A+B	A+C	A+B+C	英語モデル	В
DistillmBERT	0.418	0.391	0.383	0.424	0.420	<u>0.445</u>	DistillBERT	0.437
mBERT	0.423	0.363	0.410	<u>0.484</u>	0.459	0.466	BERT	0.497
XLM-R	0.534	0.467	0.450	0.546	0.536	0.549	RoBERTa	0.494
XLM-R (large)	0.591	0.487	0.465	0.597	0.596	0.598	RoBERTa (large)	0.530

[3] https://github.com/ids-cv/wrime

分析と展望:性能改善が機械翻訳による単語頻度の増加に起因するか調査

文ごとの平均単語頻度・未知語数を分析

Wikipediaを用いてmBERT tokenizerによる単語頻度を算出

- 1. 「**高頻度な表現は高精度に解析可能」は真か?** 高頻度な表現や未知語を含まない文はより高い性能
- → 多言語モデルは高頻度な表現に対して高性能を発揮
- 2. 「機械翻訳によって高頻度な表現になる」は真か? 翻訳文は平均単語頻度が上昇・未知語の減少を確認
- → 機械翻訳により高頻度な表現の変換に成功

〈今後の展望〉

様々な言語やタスクに対して汎用的な手法

言語 : 英語と文法構造が近い言語にも有効か? タスク: JGLUEなどのベンチマークによる調査

原文(検証データ	り(こ対	するmBERTの性能	
平均単語頻度の上位500件	0.358	未知語を含まない文	0.4

平均単語頻度の上位500件	0.358	未知語を含まない文	0.430
平均単語頻度の下位500件	-0.065	未知語を含む文	0.344

	1文あたりの平均単語頻度		未知語数	未知語を含まない文の割合
原文	1.6 M	-	724	0.840
英語訳	13.0 M	0.961	66	0.994
言い換え	2.7 M	0.773	70	0.998