Art Gallery Theorems and Algorithms

Daniel G. Aliaga

Computer Science Department Purdue University

Art Gallery

- Problem: determine the minimum number of guards sufficient to cover the interior of an n-wall art gallery
 - Victor Klee, 1973
 - Vasek Chvatal, 1975

Main reference for this material:

Art Gallery Theorems and Algorithms, Joseph O'Rourke, Oxford University Press, 1987

Contents

- Interior Visibility
 - Art Gallery Problem
 - Overview
 - Fisk's Proof
 - Reflex Vertices
 - Convex Partitioning
 - Orthogonal Polygons
 - Mobile Guards
 - Miscellaneous Shapes
 - Star, Spiral, Monotone
- Exterior Visibility
 - Fortress Problem
 - Prison Yard Problem
- Minimal Guards

Contents

■ Interior Visibility

- Art Gallery Problem
 - Overview
 - Fisk's Proof
 - Reflex Vertices
 - Convex Partitioning
 - Orthogonal Polygons
- Mobile Guards
- Miscellaneous Shapes
 - Star, Spiral, Monotone
- Exterior Visibility
 - Fortress Problem
 - Prison Yard Problem
- Minimal Guards

Definitions

- P is a simple polygon (i.e., does not cross over itself)
- Point $x \in P$ "covers" a point $y \in P$ if $xy \subseteq P$
- Let G(P) be the minimum number k of points of P, such that for any $y \in P$, some $x=x_1...x_k$ covers y
- Let g(n) be the max(G(P)) over all polygons of n vertices
 - Thus, g(n) guards are occasionally necessary and always sufficient

1. Can we just place one guard on every 3rd vertex?

1. Can we just place one guard on every 3rd vertex? - No!

 1. Can we just place one guard on every 3rd vertex? - No!

one of x_i is not visible

2. If guards placed so they can see all the walls, does that imply they can see all the interior?

□ No!

- 3. If we restrict guards to vertices, is $g_v(n) = g(n)$?
 - □ In general, yes, equal for g(n) = max(G(P))

Art Gallery

- Theorem: floor(n/3) guards are occasionally necessary and always sufficient to cover a polygon of n vertices
 - "Chvatal's Art Gallery Theorem"
 - "Watchman Theorem"

Fisk's Proof

- g(n) = floor(n/3)
 - Published in 1978 (three years are Chvatal's original proof, but it is much more compact)
- Necessity
 - □ g(n) ≥ floor(n/3) are sometimes necessary
- Sufficiency
 - □ g(n) ≤ floor(n/3) are always sufficient

Necessity: Base Cases

Necessity: Base Cases

n≥6

 $g(n) \ge floor(n/3)$

Sufficiency: Fisk's Proof

- Step 1 of 3
 - Triangulate the polygon P by adding only internal diagonals

Triangulation Theorem

 A polygon of n-vertices may be partitioned into n-2 triangles by the addition of n-3 internal diagonals

Sufficiency: Fisk's Proof

- Step 2 of 3
 - Perform a 3-coloring of the triangulation graph
 - Using three colors, no two adjacent nodes have same color

Four Color Theorem

- Problem stated in 1852 by Francis Guthrie and Augustus De Morgan
 - "Given a map on a flat plane, what is the minimum number of colors needed to color the different regions of the map in such a way that no two adjacent regions have the same color."

Four Color Theorem

- Several attempted proofs and algorithms
 - Kempe (1879), Tait (1880), Birkhoff (1922), ...
- Appel and Haken first complete proof (1976)
- Robertson, Sanders, Seymour, and Thomas
 - second more compact proof (1994)

Four Color Theorem

- The proof creates a large number of cases (~1700 for Appel-Haken and ~600 for Robertson et al.)
- A computer is used to rigorously check the cases
- Solution is (still) controversial because of the use of a computer

Sufficiency: Fisk's Proof

Step 3 of 3

- Note that one of three colors must be used no more than floor(1/3) of the time
 - Let a,b,c be # of nodes of each color
 - a ≤ b ≤ c and n = a + b + c
 - If a > n/3, then $(a+b+c) \ge n$
 - Thus a ≤ floor(n/3)
 - Since each triangle is a complete graph, each triangle has a node of color 'a'
 - Since each triangle is convex and the triangles partition all of P, at most 'a' guards are necessary!

Fisk's Proof

- Necessity
 - □ g(n) ≥ floor(n/3) are sometimes necessary
- Sufficiency
 - □ g(n) \le floor(n/3) are always sufficient
- Thus, g(n) = floor(n/3)
- O(nlogn) overall algorithm

 We wish to investigate the art gallery question as a function of r (the number of reflex vertices of a polygon)

- Necessity
 - How many reflex-vertex guards are necessary?

- Necessity
 - r guards are sometimes necessary
- Sufficiency
 - Place 1 guard at each reflex vertex
 - Proved via a convex partitioning of the polygon P
 - Any polygon P can be partitioned into at most r+1 convex pieces

- Necessity
 - r guards are sometimes necessary
- Sufficiency
 - Place 1 guard at each reflex vertex
- Theorem
 - □ r guards are occasionally necessary and always sufficient to see the interior of a n-gon of r ≥ 1 reflex vertices

Convex Partitioning

Naïve Algorithm (Chazelle 1980)

- Because at most two reflex vertices can be resolved by a single cut, the minimum number of pieces is m=ceil(r/2)+1
- This approach achieves no more than r+1≤2m in $O(rn)=O(n^2)$ time

Convex Partitioning

- A fast algorithm: O(n log log n)
 - Any triangulation can be divided into 2r+1 convex pieces by removing diagonals

Convex Partitioning

- Chazelle 1980
 - O(n³) optimal algorithm using dynamic programming
 - (description is 97 pages long)

Orthogonal Polygons

- Kahn, Klawe, Kleitman 1980
 - Floor(n/4) guards are occasionally necessary and always sufficient
 - Based on convex quadrilateralization
 - Any orthogonal polygon P is convexly quadrilaterizable (theorem)

Orthogonal Polygons

Necessity

 $g(n) \ge floor(n/4)$

Sufficiency

Four-colorable, and thus:

 $g(n) \le floor(n/4)$

Theorem: g(n)=floor(n/4)

Orthogonal Polygons

- In an orthogonal polygon
 - n vertices
 - \Box c interval vertices with $\pi/2$
 - \Box r interval vertices with $3\pi/2$
 - \square n = c + r
 - \square sum of internal angles $(n-2)\pi$
 - yields n=2r+4
- Theorem restated as g(n)=floor(r/2)+1

Quadrilateralization

- Sacks's Algorithm
 - □ O(nlogn)
- Lubiw's Algorithm
 - □ O(nlogn)

Mobile Guards

Theorem

Shape	Stationary	Mobile
General	floor(n/3)	floor(n/4)
Orthogonal	floor(n/4)	floor((3n+4)/16)

□ In general, only $\frac{3}{4}$ as many mobile guards are needed as stationary guards

Mobile Guards

General Polygons

Vertex guards
Edge guards
Diagonal guards

Mobile Guards

- Goal of the proof
 - Given a triangulation graph T
 - Vertex guard = node
 - Edge guard = adjacent arc
 - Diagonal guard = any arc
 - The analog of covering is domination
 - □ A collection of guards $C=\{g_1,...,g_k\}$ dominates triangulation graph T if every face has at least one of its three nodes in some $g_i \in C$.

Mobile Guards

Necessity

Polygon that requires floor(n/4) edge, diagonal (or line) guards

Sufficiency: a little more complicated...

Miscellaneous Shapes

- (General polygon, convex, orthogonal)
- Star, spiral, monotone

 A star polygon P is a polygon that may be covered by a single point guard

- Toussaint's Theorem
 - A star polygon P requires floor(n/3) vertex guards

- Toussaint's Theorem
 - A star polygon P requires floor(r/2)+1 reflex guards

- Toussaint's Theorem
 - A star polygon P requires at least floor(n/5) edge guards

- Toussaint's Theorem
 - For a star polygon P
 - Unrestricted patrol, one line guard is needed
 - Restricted to diagonal lines, two are needed

Spiral Polygon

 A spiral polygon is a polygon with at most one chain of reflex vertices

Monotone Polygon

 A polygon with no "doubling back" with respect to a line

Spiral and Monotone Polygons

- Aggarwal's Theorem
 - floor(n/3) vertex guards are needed
 - floor(r/2)+1 reflex-vertex guards are needed
 - floor((n+2)/5) diagonals guards are needed

Contents

- Interior Visibility
 - Art Gallery Problem
 - Overview
 - Fisk's Proof
 - Reflex Vertices
 - Convex Partitioning
 - Orthogonal Polygons
 - Mobile Guards
 - Miscellaneous Shapes
 - Star, Spiral, Monotone
- ⇒ Exterior Visibility
 - Fortress Problem
 - Prison Yard Problem
 - Minimal Guards

Exterior Visibility

- "Fortress Problem"
- "Prison Yard Problem

(independently stated by Derick Wood and Joseph Malkelvitch, early 1980s)

How many vertex guards are needed to see the exterior of a polygon P?

Simplex convex polygon

- Arbitrary polygon
 - Three-color the resulting triangulation graph T (of n+2 nodes)

- Arbitrary polygon
 - $\hfill\Box$ If least frequently used color is red and v_{∞} is not red then,
 - floor((n+2)/3) vertex guards are needed

- Arbitrary polygon
 - $\hfill\Box$ If least frequently used color is red and v_{∞} is red then,
 - No guard can be placed at v_{∞} because it's not part of original polygon
 - Thus, place guards at second least frequently used color
 - $a \le b \le c \text{ and } a + b + c = n + 2$
 - $a \ge 1$ and $b + c \le n + 1$
 - b ≤ floor((n+1)/2)=ceil(n/2) vertex guards are needed

- Arbitrary polygon (Summary)
 - 1. Triangulate the convex hull of the polygon P
 - $lue{}$ 2. Add edges from all exterior vertices to new vertex v_{∞}
 - \square 3. Split a vertex x into x' and x"
 - $\,\square\,$ 4. Open-up the convex hull, straighten the lines to v_∞ , and form a triangulation graph T of (n+2) nodes
 - 5. Three-color graph T
 - 6. Use least or second least frequently used color
- At most ceil(n/2) vertex guards are needed

Orthogonal polygon

- Solution A
- Solution B

ceil(n/4)+1 vertex guards necessary

- Orthogonal polygon
 - Interior of new polygon P' coincides with the immediate exterior of P, except for Q which is exterior to both

- Orthogonal polygon
 - For P' of n+4 vertices, floor(r/2)+1 or floor((n+4)/4) vertex guards suffice to cover the interior
 - None of the new vertices of P' are reflex vertices
 - Need an additional one for Q
 - □ Thus, floor(n/4)+2 vertex guards are sufficient
 - For $n \mod 4=0$, ceil(n/4)+1

- Guards in the plane
 - Necessity

Guards in the plane

- Guards in the plane
 - New triangulated polygon P' of n+3 vertices
 - floor((n+3)/3) = ceil((n+1)/3) point guards

- Guards in the plane
 - More lengthy proof to remove "1/3 of a guard"
 - Add only 2 guards and 3-color triangulation
 - If even hull vertices, trivial
 - If odd hull vertices, need some extra work
 - Result: ceil(n/3) point guards are necessary to cover the exterior of a polygon P of n vertices
 - Nice duality with floor(n/3) for the interior

Prison Yard Problem

How many vertex guards are needed to simultaneously see the exterior and interior of polygon P?

Prison Yard Problem

- General Polygons
 - Worst-case is a convex polygon
 - ceil(n/2) vertex guards needed
 - Multiply-connected polygons
 - min(ceil(n/2), floor((n+ceil(h/2))/2), floor(2n/3))

Prison Yard Problem

Orthogonal Polygons

floor((7n/16)+5) vertex guards are needed

Fortress/Prison Yard Problem

Problem	Techniques	Guards	Time
Fortress			
General	Triangulation, 3-coloring	ceil(n/2)	O(T)
Orthogonal	L-shaped partition	ceil(n/4)+1	O(T)
Prison Yard			
General	Exterior	ceil(n/2)+r	O(T)
	Triangulation, 4-coloring	floor((n+ceil(h/2))/2)	O(n ²)
	Triangulation, 4-coloring	floor(2n/3)	O(n ²)
	Exterior, triangulation, 3-coloring	floor(2n/3+1)	O(T)
Orthogonal	Exterior, quad., 4-coloring	floor((7n/16)+5) O(T)	

Contents

- Interior Visibility
 - Art Gallery Problem
 - Overview
 - Fisk's Proof
 - Reflex Vertices
 - Convex Partitioning
 - Orthogonal Polygons
 - Mobile Guards
 - Miscellaneous Shapes
 - Star, Spiral, Monotone
- Exterior Visibility
 - Fortress Problem
 - Prison Yard Problem
- Minimal Guards

Minimal Guard Coverage

- Seek the placement of a minimal number of guards that cover a polygon P
 - □ In general, a NP-complete problem

Minimal Guard Coverage

Polygon	Cover		Partition	
	w. Steiner	w/o Steiner	w. Steiner	w/o Steiner
Simple Polygons	NP-hard	NP-complete	?	O(n ⁷ logn)
Polygons with Holes	NP-hard	NP-complete	NP-hard	NP-complete