8.5 Ćwiczenia do samodzielnego rozwiązania

Ćwiczenie 8.1. Dla danych macierzy

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & 1 \\ 1 & 2 & 1 \end{bmatrix} C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

sprawdzić równości a) $A \cdot B = B \cdot A$, b) $A(B+C) = A \cdot B + A \cdot C$, c) $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.

Ćwiczenie 8.2. Pomnożyć następujące macierze.

a)
$$\begin{bmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 2 & 3 \\ 0 & 3 \end{bmatrix}.$$
Odp.
$$\begin{bmatrix} 1 & 3 \\ 0 & -6 \\ -1 & -18 \end{bmatrix}.$$
b)
$$\begin{bmatrix} 3 & 1 & 3 \\ 1 & 2 & 1 \\ 3 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 2 \\ 1 & 3 & 1 \end{bmatrix}.$$
Odp.
$$\begin{bmatrix} 8 & 19 & 8 \\ 6 & 8 & 6 \\ 8 & 19 & 8 \end{bmatrix}.$$
c)
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 3 & 1 \end{bmatrix}.$$
Odp.
$$\begin{bmatrix} 3 & 3 & 0 & 0 \\ 7 & 5 & 0 & 0 \\ 0 & 0 & 7 & 5 \\ 0 & 0 & 0 & -8 \end{bmatrix}.$$

Ćwiczenie 8.3. Obliczyć następujące wyznaczniki.

a)
$$\begin{vmatrix} 3 & 5 & 2 \\ 0 & 2 & 1 \\ 4 & 1 & 3 \end{vmatrix}$$
. Odp. 19. $\begin{vmatrix} 1 & 2 & 0 & 0 \\ -4 & 2 & 5 & 6 \end{vmatrix}$

b)
$$\begin{vmatrix} 1 & 2 & 0 & 0 \\ -4 & 2 & 5 & 6 \\ 5 & -1 & 0 & -3 \\ 3 & 5 & 2 & 1 \end{vmatrix}$$
. Odp. -2 .

Ćwiczenie 8.4. Wyznaczyć rząd następujących macierzy.

a)
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 2 & 1 & -1 & 1 & 3 \\ 4 & 2 & -2 & 2 & 6 \\ 3 & 2 & 0 & 2 & 5 \end{bmatrix}$$
 Odp. $R(A) = 2$.
b) $A = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 4 & 2 & 2 & 2 & 2 \end{bmatrix}$.

c)
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 3 & 2 \\ -1 & 1 \end{bmatrix}$$
. Odp. $R(A) = 2$.

8.5. ĆWICZENIA DO SAMODZIELNEGO ROZWIĄZANIA

97

Ćwiczenie 8.5. Dla jakich wartości parametru a rząd macierzy

$$\begin{bmatrix} 2 & 1 & 1 & 2 \\ 3 & a & 2 & 1 \\ 2 & 1 & 1 & 1 \\ 5 & 2 & 3 & 2 \end{bmatrix}$$

jest mniejszy od 4.

Odp.
$$a = 1$$
.

Ćwiczenie 8.6. Wyznaczyć macierz odwrotną do macierzy

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 4 & 2 & -1 \\ -2 & -1 & 1 \end{bmatrix}$$

oraz sprawdzić, że $A^{-1}A = I$.

Odp.
$$A^{-1} = \begin{bmatrix} 1 & -2 & -3 \\ -2 & 5 & 7 \\ 0 & 1 & 2 \end{bmatrix}$$
.