Introduction to AI: Part II

Alessandra Russo, Mark Law

{a.russo, mark.law}@imperial.ac.uk

Assignment Project Exam Help

A brief history

20th century	Understanding computation. Several models of computation (e.g. Turing machine)
1950	First applications of computers were AI programs > Program that learns to play checkers Assigning Theorist that discovers propositional logic > Perceptron (first work on formal neurons), by Rosenblatt
1970 - 80	Complett psiwlette representations (McCharty and Hayes) > How to represent the knowledge needed to solve a problem. > Wat Charlet and Hayes) answer geographical questions.
1970 - 88	Domain specific expert systems Formal language for AI reasoning (Prolog)
1990 - 2000	Sub-disciplines of AI (e.g. perception, probabilistic and decision-theoretic, reasoning, planning).
2000 -	Machine learning, vision, robotics,

Intelligent Agent

Reasoning and Planning

Exogenous Events

Learning new knowledge

Prior Knowledge

Domain model

WeChat: cstutorcs

```
possible(pickup, T) :-
       not holdsAt(holdingObject, T),
      holdsAt(at(loc1), T).
possible(putdown, T) :-
       holdsAt(holdingObject, T),
       holdsAt(at(loc5), T).
possible (move (L1, L2), T) :-
      holdsAt(at(L1), T),
       connected(L1, L2).
initiates (pickup, holdingObject, T).
terminates (putdown, holdingObject, T).
initiates (move (L1, L2), at (L2), T).
terminates (move (L1, L2), at (L1), T).
```

Learned knowledge

```
r1:0.7 : succeeds (pickup, T).
    r2:0.9 : succeeds (move (L1, L2), T) :-
                  holdsAt(at(L1), T),
                  connected(L1, L2),
+
                  L2 != loc3.
    r3:0.9 : succeeds (putdown, T) :-
                  not happened (move (loc2, loc3), T-2).
    r4:0.1 : succeeds (putdown, T) :-
                  happened (move (loc2, loc3), T-2).
```

Past experience

Execution traces

```
holdsAt(at(loc1), 0).
do(pickup, 0).
holdsAt(at(loc1), 1).
holdsAt(holdingObj, 1).
do (move (loc1, loc3), 1).
holdsAt(holdingObj, 2).
do (move (loc3, loc5), 2).
holdsAt(at(loc5), 3).
holdsAt(holdingObj, 3).
do (putdown, 3).
```


Prior Knowledge

Domain model

WeChat: cstutorcs

```
possible(pickup, T) :-
       not holdsAt(holdingObject, T),
      holdsAt(at(loc1), T).
possible (putdown, T) :-
       holdsAt(holdingObject, T),
       holdsAt(at(loc5), T).
possible (move (L1, L2), T) :-
      holdsAt(at(L1), T),
       connected(L1, L2).
initiates (pickup, holdingObject, T).
terminates (putdown, holdingObject, T).
initiates (move (L1, L2), at (L2), T).
terminates (move (L1, L2), at (L1), T).
```

Learned knowledge

```
r1:0.7 : succeeds (pickup, T).
    r2:0.9 : succeeds (move (L1, L2), T) :-
                  holdsAt(at(L1), T),
                  connected(L1, L2),
+
                  L2 != loc3.
    r3:0.9 : succeeds (putdown, T) :-
                  not happened (move (loc2, loc3), T-2).
    r4:0.1 : succeeds (putdown, T) :-
                  happened (move (loc2, loc3), T-2).
```

Past experience

Execution traces

```
holdsAt(at(loc1), 0).
do(pickup, 0).
holdsAt(at(loc1), 1).
holdsAt(holdingObj, 1).
do (move (loc1, loc3), 1).
holdsAt(holdingObj, 2).
do (move (loc3, loc5), 2).
holdsAt(at(loc5), 3).
holdsAt(holdingObj, 3).
do (putdown, 3).
```

Course: C231 Introduction to AI

Reasoning and learning through human-robot dialogue

Dizuu.com

Machine learning has recently been able to support highly accurate NLP

SyntaxNet (from Google)

Ssignment Project Exam Holprom Stanford)

tps://tutorcs.com But, limited in extracting common-

VeChat: csense and domain expert knowledge,

Symbolic reasoning and symbolic learning support deeper semantic understanding

https://ldrv.ms/v/s!Aq-g0J2JpSjPox7CC5YSCvXLYNgl

Representation in problem solving

- > Representation schema: form of knowledge used in an agent
- > Representation: internal representation of knowledge
- Knowledge base: representation of all the knowledge that is stored in an agent

How should a representation be?

We are interested in representations that are:

- Expressive enough to captures knowledge needed to solve a problem.
 Assignment Project Exam Help
- > Close to the problem that/need to be splve: declarative, compact and easy to maintain.

WeChat: cstutorcs

- > Amenable to efficient computations, and able to trade off accuracy and computation time.
- > Can be automatically acquired from people, past experience and data, i.e. learnable!

What should a solution be?

Given an informal description of a problem, what is a solution?

Typically four classes of solutions:

- > Optimal sortifiens. robot travelling minimal distance
- > Satisficing solutions: governough o deliver some items
- Approximately Wetchat solutions: gobot travelling distance that is close enough to the optimal distance.
- > Probable solutions: something that is likely to be a solution

From problem to representation

Given the type of solutions we want to compute, how do we represent the problem?

- > What level of abstraction of the present?
- What individuals https://tutorssncom/world we need to represent?
- How can an agent represent the knowledge?
- How can an agent acquire the information from data, sensing, experience, or other agents?

Choosing level of abstraction

Model the problem with multiple levels of abstraction.

Reasoning

Reasoning, process by which an agent manipulates information to search through the space of possibilities to determine how to complete its task.

- Offline computation by the case na hefere it has to act.
 It uses background knowledge and data.
 https://tutorcs.com

 Online computation: done by the agent between observing the
- > Online computation: done by the agent between observing the environment and a wing hathest wiresment. It uses both background knowledge and observations to decide what to do.

Three forms of reasoning:

Deductive Abductive Inductive

Different levels of complexity

Models of the environment:

- States
- Features
- Relational descriptions: individuals/objects and relations

Uncertainty: Assignment Project Exam Help

- Sensing uncertainty
- Effect uncertaint https://tutorcs.com

Preferences: WeChat: cstutorcs

> Trade-off between the desirability of various outcomes. Ordinal and cardinal preferences.

Number of agents:

- Single agent
- Multiple agents (adversarial versus cooperative agents).

Course: C231 Introduction to AI

Objectives

Modelling a problem

- Different representations and semantics (e.g. (non-)monotonicity and constraints)
- Different forms of reasoning. (e.g. deductive and abductive inference)
- > Abductive reasoning

Answer Set Programming Project Exam Help

- - Language and semantist (resg. //tont) decennoing ism, preferences)
 - Bottom-up reasoning
- > Some Typical AI Problems: cstutorcs
 - > Planning (e.g. abductive planning, Sat-Planning, ASP)
 - > Diagnosis
 - Problem solving in ASP.
- Sat Solving
 - How to define a SAT problem
 - > Algorithms
 - > Applications

Reading Material

- Prolog Programming for Artificial Intelligence, Ivan Bratko Pearson 2012.
- > Artificial Intelligence, Foundations of Computational Agents, David Poole and Agent Project Exam Help
- Answer Set Solver, Clingo. https://potassco.org
- Knowledge Representation, Reasoning, and the Design of Intelligent Agents – Michael Gelfond & Yulia Gelfond Kahl Januray 2014
- Some research papers

Slides and notes, complemented with information given during lectures and tutorials.

Course: C231 Introduction to AI

Main Topics

Keys aspects of AI and computational agents

Deductive, Abductive and Inductive Reasoning

Abductive Reasoning

Top-down approach

- » Agasignment Project Examittelp
- » Semantics, soundness and completeness properties
- » Reasoning the tentores . Comirected planning

Bottom-up approach

- » Weak constructs hat restutores explanation
- » Semantics, soundness and completeness properties

Answer Set Programming and Stable Model Semantics

- » Language, Syntax and Semantics
- » Non-deterministic rules, and optimisation statements

SAT Solving