

Our course agenda

- Introduction and overview
- NumPy: Basic data handling with Numpy arrays
- Pandas
 - Exploratory data analysis
 - Data consolidation
 - Data cleaning
- Data visualization using Matplotlib and Seaborn
- Interacting with APIs
- Interacting with SQL databases
- Version Control with Git and GitHub
- Advanced Python

Python foundations

Data types

Operators

Functions

Control flow and iterators

Programming concepts & paradigms

See also Precourse Programming

Tooling

Installation

Visual Studio Code

Jupyter Notebooks

Packages

Virtual Environments

Git and Github

Python

Python Visualization Landscape

Matplotlib, Seaborn and Pandas

Library	Description	Key Features
Matplotlib	Core plotting library	Low-level control of all aspects of a visualization
Seaborn	Statistical visualization library built on top off Matplotlib	 <u>User-friendly functions</u> <u>Complex visualizations and statistical plotting made easy</u> Works naturally with DataFrames and Series Improved aesthetics compared to Matplotlib Interoperable with Matplotlib
Pandas	Data analysis library with <u>basic visualization</u> <u>functionalities</u>	 Convenient plot methods for Pandas Series and Dataframes Plot methods for grouped data Interoperable with Matplotlib

Matplotlib: Figure, Axes, and Axis

Note: one figure can contain multiple axes

Two Matplotlib Interfaces

```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
y = x**2
```

Explicit "Axes" Interface

```
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Title')
ax.set_xlabel('X-Axis')
ax.set_ylabel('Y-Axis')
ax.grid()
```

- Better for complex figures
- More explicit and readable
- Order of execution does not matter

Implicit "Pyplot" Interface

```
plt.plot(x,y)
plt.title('Title')
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
plt.grid()
```

- Wrapper around the explicit interface
- Convenient for simple plots due to shorter code
- State-based / Matlab-like

Seaborn

Advantages of Seaborn

Seaborn is a Python data visualization library based on <u>matplotlib</u>. It provides a high-level interface for drawing attractive and informative statistical graphics.

- **▶** High-level interface:
 - Common plots are easily accessible
 - Few code lines for complex plots
- Statistical Plotting
 - Estimation and plotting of regression lines
 - Heatmaps, violin plots, ...
- Works well with Pandas DataFrames and Series
- Better Default Aesthetics
- Comes with built-in datasets

Fixed visual properties vs. data mapping

survived

pclass

Figure-level vs. axes-level plotting

Axes Level Plots: Examples

····x='age'

Figure Level Plot: Example 1

sns.displot(data=df, x='age', col='sex', kind='hist')

Figure Level Plot: Example 2

Combining Seaborn's axes level plots into 1 figure

Figure-level properties

Axes-level properties

Plot methods of DataFrames and Series

- Plot methods directly operating on Pandas DataFrame or Pandas Series
- Types: line, bar, hist, box, kde, area, pie, scatter, hexbin

Plot methods of DataFrames and Series

- Plot methods directly operating on grouped data
- Produces a figure containing <u>subplots for each</u> <u>individual group</u>

More resources

Packages Overview

- https://matplotlib.org/stable/tutorials/index
- https://seaborn.pydata.org/tutorial.html
- https://pandas.pydata.org/docs/user_guide/visualization.html

Colors

- https://matplotlib.org/stable/tutorials/colors/colors.html
- https://matplotlib.org/stable/tutorials/colors/colormaps.html
- https://seaborn.pydata.org/tutorial/color_palettes.html