9.1. Úvod

Pro vyhodnocování změny odporu u odporových senzorů neelektrických veličin (např. teploty) se často po U_Z ívá nevyvážený Wheatstoneův můstek. Výhodou tohoto řešení je, že základní hodnotě odporu senzoru, která odpovídá základní hodnotě měřené neelektrické veličiny (např. 0 °C u odporového teploměru), odpovídá nulová hodnota výstupního napětí.

Platí tedy, že výstupní napětí je úměrné změně odporu a tedy i změně velikosti měřené neelektrické veličiny. Totéž platí i o znaménku, např. kladným hodnotám teploty ve °C odpovídá kladné napětí a záporným hodnotám napětí záporné.

Nevýhodou tohoto řešení je, že závislost výstupního napětí rozváženého Wheatstoneova můstku není lineární. Velikost nelinearity závisí na způsobu napájení Wheatstoneova můstku (ze zdroje napětí, obr. 9.1, či ze zdroje proudu, obr. 9.2); u obvodu s operačním zesilovačem v zapojení na obr. 9.3 je teoreticky závislost výstupního napětí na ΔR lineární.

Vzhledem k náročnosti realizace přípravku je odporový teploměr nahrazen v této úloze sériovou kombinací rezistoru a potenciometru, jehož odpor je závislý na úhlu natočení α , přičemž základní hodnota odporu $R_0 = 1000 \Omega$ odpovídá nastavení $\alpha = 0^{\circ}$ s možností změny úhlu do 180° a simuluje úlohu odporového senzoru teploty Pt1000.

9.2. Domácí příprava

9.2.1. Odvoď te teoretický výsledný vztah pro výstupní napětí U_{BD} Wheatstoneova můstku napájeného ze zdroje napětí, obr. 9.1.

$$U_{BD} = U_{R_3} - U_{R_X} = U_{AC} \left(\frac{R_3}{R_3 + R_4} - \frac{R_X}{R_X + R_D} \right) = U_{AC} \left(\frac{1}{2} - \frac{R_0 \pm \Delta R}{2R_0 \pm \Delta R} \right) = \frac{U_{AC}(\mp \Delta R)}{2(2R_0 \pm \Delta R)}$$

9.2.2. Odvoď te teoretický výsledný vztah pro výstupní napětí U_{BD} Wheatstoneova můstku napájeného ze zdroje proudu, obr. 9.2.

$$I_{R_{N2}} = \frac{U_Z}{R_{N2}} = I \Rightarrow U_{AC} = I \cdot ((2R_0)||(2R_0 \pm \Delta R)) = I \cdot \frac{2R_0(2R_0 \pm \Delta R)}{4R_0 \pm \Delta R}$$

$$U_{BD} = U_{AC} \frac{\mp \Delta R}{2(2R_0 \pm \Delta R)} = I \cdot \frac{2R_0(2R_0 \pm \Delta R)}{4R_0 \pm \Delta R} \frac{\mp \Delta R}{2(2R_0 \pm \Delta R)} = \frac{U_Z}{R_{N2}} \cdot \frac{\mp R_0 \Delta R}{4R_0 \pm \Delta R}$$

9.2.3. Odvoď te teoretický výsledný vztah pro výstupní napětí U_2 tzv. "linearizovaného můstku", obr 9.3.

$$I_{R_D} = \frac{U_{R_0}}{R_0} = \frac{U_Z}{2R_0} = -I_{R_0 \pm \Delta R} = -\frac{U_2 - U_Z/2}{R_0 \pm \Delta R} \Rightarrow \frac{U_Z}{2R_0} = -\frac{U_2 - U_Z/2}{R_0 \pm \Delta R}$$
$$\frac{U_Z}{2} \frac{R_0 \pm \Delta R}{-R_0} = U_2 - \frac{U_Z}{2} \sim U_2 = \frac{U_Z}{2} \left(-1 + \frac{\mp \Delta R}{R_0}\right) + \frac{U_Z}{2} = \mp U_z \frac{\Delta R}{2R_0}$$

9.3. Úkol měření

- 9.3.1. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje napětí $U_{AC}=5$ V (obr. 9.1.). Můstek vyvažte odporovou dekádou R_D pro hodnotu $\alpha=0^\circ$ (tedy 1000 Ω) a změřte závislost R_D výstupního napětí U_{BD} na změně úhlu α , tj. na změně odporu ΔR .
- 9.3.2. Odporový snímač zapojte do Wheatstoneova můstku napájeného ze zdroje proudu I=5 mA. Zdroj proudu realizujte pomocí operačního zesilovače (obr. 9.2.). Můstek opět vyvažte odporovou dekádou R_D pro hodnotu $\alpha=0^\circ$ (tedy 1000 Ω) a změřte závislost f_{MP} výstupního napětí U_{BD} na změně úhlu α tj. na změně odporu ΔR (pro stejné hodnoty α jako v bodě 9.3.1).
- 9.3.3. Podle schématu na obr. 9.3. zapojte tzv. "linearizovaný můstek" (velikost napájecího napětí volte $U_Z=2,5$ V). Můstek vyvažte odporovou dekádou R_D pro hodnotu $\alpha=0$ ° (tedy 1000 Ω) a změřte závislost f_{LM} výstupního napětí U_2 na změně úhlu α tj. na změně odporu ΔR (pro stejné hodnoty úhlu α jako v předešlých bodech).
- 9.3.4. Do společného grafu vyneste odchylky hodnot naměřených dle bodů 9.3.1., 9.3.2. a 9.3.3. od lineárního průběhu. Směrnici přímky, od které budete určovat odchylky od linearity, stanovte z koncových bodů naměřené závislosti f_{LM} (ΔR) (tedy pro $\alpha = 0^{\circ}$ a $\alpha = 180^{\circ}$). Odchylky závislostí f_{MN} (ΔR), f_{MP} (ΔR) a f_{LM} (ΔR) od linearity určete jako odchylky těchto závislostí od přímky $U'_2 = f'_{LM}(\Delta R)$. To lze udělat proto, že pro měření dle bodů 9.3.1., 9.3.2. a 9.3.3. jsou v zadáních zvoleny hodnoty napájecích napětí (resp. proudu) tak, aby směrnice všech závislostí v počátku byly zhruba stejné.
- **9.3.5.** Pro linearizovaný můstek (bod měření 9.3.3.) určete hodnotu odporu přípravku při nastavení úhlu 180° a stanovte, jaké teplotě odpovídá tento odpor.

9.4. Schéma zapojení

Obr. 9.3. Schéma "linearizovaného můstku"

9.5. Poznámky k měření

- **9.5.1.** Při měření podle bodu 9.3.2. a 9.3.3. je nutné vztažnou svorku na přípravku s operačním zesilovačem spojit se záporným pólem zdroje vstupního napětí (ve schématech na obr. 9.2. a 9.3. toto spojení není nakresleno).
- **9.5.2.** Můstky vždy před vlastním měřením závislostí (9.3.1), (9.3.2.) a (9.3.3.) vyvážíte pomocí odporové dekády R_D pro úhel natočení snímače $\alpha = 0^{\circ}$. Vypočtete odchylky všech tří naměřených závislostí od lineárního průběhu (9.3.4.), tyto odchylky vynesete do grafu a porovnáte průběhy z hlediska linearity.
- 9.5.2.1. Aby odchylka od linearity způsobená nepřesným nastavováním úhlové hodnoty modelu teplotního odporového snímače nepřekryla nelinearitu můstků vyplývající z teoretických závislostí (9.2.1) a (9.2.2), nastavujte zvolené úhlové hodnoty s maximální pečlivostí.
- 9.5.3. Při odvozování výsledných vztahů vyjádřete napětí U_{BD} jako rozdíl napětí na dvojici sousedních odporů ve spodních ramenech můstku. Pro nalezení těchto napětí použijte v případě (9.2.1.) vztah pro napěťový dělič a v případě (9.2.2.) vztah pro proudový dělič. Při odvozování vztahu (9.2.3.) je třeba si uvědomit skutečnost, že v tomto zapojení není neinvertující vstup zesilovače na vztažnou svorku. To musíte vzít v úvahu při výpočtu proudů protékajících rezistory R_D a $R_0 \pm \Delta R$.
- **9.5.4.** Platinové odporové teploměry (jako je např. Pt1000) mají danou závislost odporu na teplotě přibližně polynomem $R_t = R_0(1 + \alpha t)$, kde R_0 je odpor snímače při 0 °C, $\alpha = 3.9 \ 10^{-3} \ {\rm K}^{-1}$ a t je teplota.

9.3.1 při nastavení $U_{AC}=5$ V, $R_3=R_4=R_D=R_0=1$ k Ω a použití $R(\alpha)$ jako $R_X=R_0\pm\Delta R$ 9.3.2 zdroj proudu I=5 mA zajistíme použitím $U_z=5$ V a $R_N=1$ k Ω , neboť platí $I=U_Z/R_N$ 9.3.3 při nastavení $U_{AC}=2.5$ V, $R_D=R_0=1$ k Ω a použití $R(\alpha)$ jako $R_X=R_0\pm\Delta R$

T.9.1. Výsledky měření 9.3.1-3

, <i>j</i>				
α [°]	$U_{BD,MN}$ [mV]	$U_{BD,MP}$ [mV]	$U_{BD,LM}$ [mV]	
0	0	0	0	
15	57.52	63.12	63.87	
30	116.30	119.29	121.98	
45	172.68	179.20	185.60	
60	226.47	237.79	249.06	
75	288.19	295.31	313.07	
90	327.60	351.50	378.10	
105	385.21	406.52	446.92	
120	424.27	460.52	511.21	
135	460.57	508.68	564.85	
150	509.20	564.50	639.78	
165	546.09	614.64	704.06	
180	588.41	667.46	768.14	

9.3.4

ze vztahů z přípravy odvodíme velikosti ΔR pro jednotlivá α :

$$\pm \Delta R_{MN} = -\frac{4U_{BD}R_0}{2U_{BD} + U_{AC}} \qquad \pm \Delta R_{MP} = -\frac{4U_{BD}R_0}{U_{BD} + IR_0} \qquad \pm \Delta R_{LM} = -\frac{2U_2R_0}{U_Z}$$

T.9.2. Rozvážení pro jednotlivá α pro 9.3.1-3

	1	· ·	1
α [°]	$\Delta R_{MN} [\Omega]$	$\Delta R_{MP} [\Omega]$	$\Delta R_{LM} \left[\Omega \right]$
0	0	0	0
15	44.981	49.866	51.096
30	88.904	93.208	97.584
45	129.219	138.400	148.480
60	166.127	181.596	199.248
75	206.722	223.073	250.456
90	231.716	262.730	302.480
105	267.024	300.763	357.536
120	290.172	337.345	408.968
135	311.136	369.366	451.880
150	338.429	405.787	511.824
165	358.551	437.884	563.248
180	381.044	471.082	614.512

9.3.5

při odchylce $\alpha_R=180^\circ$ jsme na linearizovaném můstku naměřili $U_2=768.14$ mV, odchylky $\Delta R=614.512~\Omega$ jsme si určili v bodě 9.3.4, známe $R_0=1~\mathrm{k}\Omega$ a tak $R_t=R_0+\Delta R=1614.512~\Omega$

$$R_t = R_0(1 + \alpha t) \Rightarrow t = \frac{R_t/R_0 - 1}{\alpha} \xrightarrow{\alpha = 0.0039K^{-1}} t = 157.567 \text{ K}$$

tento výsledek samozřejmě neodpovídá skutečné teplotě při měření (teplota nad bodem mrazu)

9.6. Seznam použitých přístrojů a obvodvých prvků

zn	přístroj/prvek	specifikace
V1	voltmetr	Hp 34401A: $M = 1 \text{ V}$
G1	generátor	Agilent E3640A
G2	generátor	Tesla BK 125
R_0	rezistor	$R_0 = 1 \text{ k}\Omega; \text{ Ac}_R = \pm 0.1\%$
R_D	odporová dekáda	$M = 99999.9 \ \Omega; \ Ac_R = \pm 0.2\%$
R_X	odporový přípravek	nastavitelná odchylka $\alpha_R = 0 - 180$ [°]
OZ	operační zesilovač	OP07CP

9.7. Závěrečné vyhodnocení

Wheatstonův můstek je užitečný systém, který umožňuje meření malých změn odporu (desítky až stovky Ohmů), popřípadě měření odporů pokud bychom použili vyvážený můstek a sériově (možno i paralelně) připojovali měřený odpor (namísto ΔR);

po vynesení závislosti výstupního napětí U_{BD} do grafu se průbehy zdají být lineární (Graf 9.3), ale po vztažení k lineárnímu průběhu je vidět i kvadratická složka u f_{MN} a f_{MP} ; v bodě 9.3.5 jsme si ukázali analogický princip funkce odporových teploměrů,

kdy je změna odporu ΔR způsobená změnou teploty a ne změnou výchylky α_R $[^{\circ}]$