

MATEMÁTICAS

MATEMÁTICA DISCRETA

Taller

Alexander Mendoza 25 de agosto de 2023

- 1. Sean A, B y C conjuntos. Demuestre que la contención de conjuntos es transitiva, es decir, si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$.
 - a) Demuéstrelo de forma directa.

Demostración. Sea $a \in A$, luego $a \in B$ debido a que $A \subseteq B$, de esto concluímos que $a \in C$ ya que $B \in C$, y por lo tanto $A \subseteq C$.

b) Demuéstrelo por contradicción.

Demostración. Supongamos que $A \not\subseteq C$, entonces existe $a \in A$ tal que $a \not\in C$, pero como $A \subseteq B$, entonces $a \in B$ y como $B \subseteq C$, entonces $a \in C$. Con esto llegamos a una contradicción y por lo tanto $A \subseteq C$.

c) Demuéstrelo por contrarrecíproco.

Demostración. Queremos demostrar que si $A \nsubseteq C$, entonces $A \nsubseteq B$ o $B \nsubseteq C$. Ahora supongamos que $A \subseteq B$ y $B \subseteq C$, luego sea $a \in A$, como $A \subseteq B$, entonces $a \in B$ y como $B \subseteq C$, $a \in C$, lo que implica que $A \subseteq C$ lo cual es una contradicción. Por lo tanto $A \nsubseteq B$ o $B \nsubseteq C$.

2. Sean $a, b \in \mathbb{R}$. Emplee la demostración por casos para probar que: |a+b| = |a| + |b| si y solo si $ab \ge 0$.

Demostración.

Empecemos demostrando que |a+b|=|a|+|b| implica $ab\geq 0$. Supongamos que |a+b|=|a|+|b|.

Ahora supongamos que a es negativo y b es positivo. En este caso, |a| = -a y |b| = b, lo que implica que |a| + |b| > |a + b|. Lo que contradice |a + b| = |a| + |b|, por lo tanto a no puede ser negativo si b es positivo. De manera similar se puede verificar para el caso en el que b es negativo y a es positivo.

Si a = b = 0 es trivial que |a + b| = |a| + |b|.

Si a = 0, entonces |0 + b| = |b| = |0| + |b|

Del resultado anterior concluimos que como $a \ge 0$ y $b \ge 0$ y por lo tanto $ab \ge 0$.

Demostremos ahora el recíproco. Supongamos que $ab \ge 0$.

Sabemos que para que $ab \ge 0$ se cumpla, $a \ge 0$ y $b \ge 0$. Consideremos los siguientes casos para demostrar que |a+b| = |a| + |b| se cumple.

Caso 1. Si a = b = 0 es trivial que |a + b| = |a| + |b|.

Caso 2. Si a = 0 y b > 0, entonces |0 + b| = |b| = |0| + |b|. Se puede verificar de manera similar para el caso en el que b = 0 y a > 0.

Caso 3. Si a > 0 y b > 0, entonces |a| = a y |b| = b, luego |a+b| = |a| + |b|

3. Use inducción matemática para demostrar que:

 $a) \ \ \tfrac{1\cdot 3\cdot 5\cdot \ldots\cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots\cdot (2n)} \leq \tfrac{1}{\sqrt{n+1}} \ \mathrm{para} \ n \geq 1.$

Demostración.

Tenemos que demostrar que $\frac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots \cdot (2n)} \leq \frac{1}{\sqrt{n+1}}$ para $n\geq 1$. Consideraremos el caso base n=1.

$$\frac{1}{2} \le \frac{1}{\sqrt{2}}$$

 $Paso\ inductivo.$ Supongamos que $\frac{1\cdot 3\cdot 5\dots (2n-1)}{2\cdot 4\cdot 6\cdot \dots \cdot (2n)} \leq \frac{1}{\sqrt{n+1}}$. Luego sea

$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \le \frac{1}{\sqrt{n+1}}$$
$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{n+1}} \cdot \frac{2n+1}{2n+2}$$

Sabemos que si $a \le b$, entonces $ac \le bc$ para cualquier $c \ge 0$. Si n = 0, entonces $\frac{2n+1}{2n+2} = \frac{1}{2} > 0$, por lo tanto $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{1}{2} \le \frac{1}{\sqrt{n+1}} \cdot \frac{1}{2}$. Luego si n > 0, entonces $\frac{2n+1}{2n+2} > 0$, por lo tanto $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{2n+1}{2n+2} \le \frac{1}{\sqrt{n+1}} \cdot \frac{2n+1}{2n+2}$

b) $2^{2n+1} - 9n^2 + 3n - 2$ es divisible por 54.

Demostración.

Tenemos que demostrar que $54|2^{2n+1}-9n^2+3n-2$. Consideremos el caso base n=3.

$$2^{2n+1} - 9(3)^2 + 3 \cdot 3 - 2 = 54$$

54|54 por lo tanto la ecuación se cumple para el caso base.

Paso inductivo. Supongamos que $54|2^{2n+1}-9n^2+3n-2$. Consideremos ahora.

$$\begin{aligned} 2^{2(n+1)+1} - 9(n+1)^2 + 3(n+1) - 2 &= 2^{2n+1+2} - 9n^2 - 18n - 9 + 3n + 3 - 2 \\ &= 4 \cdot 2^{2n+1} - 9n^2 - 18n - 9 + 3n + 3 - 2 \\ &= (2^{2n+1} - 9n^2 + 3n - 2) + (3 \cdot 2^{2n+1} - 18n - 6) \\ &= (2^{2n+1} - 9n^2 + 3n - 2) + (6 \cdot 2^{2n} - 18n - 6) \\ &= (2^{2n+1} - 9n^2 + 3n - 2) + 6(2^{2n} - 3n - 1) \end{aligned}$$

Sabemos que $54|(2^{2n+1}-9n^2+3n-2)$, por lo cual para completar la demostración debemos mostrar que $9|2^{2n}-3n-1$.

Procederemos por inducción para demostrar $9|2^{2n}-3n-1$. Consideremeos primero el caso base n=3.

$$2^{2 \cdot 3} - 3 \cdot 3 - 1 = 54$$

 $9\vert 54$ por lo tanto la ecuación se cumple para el caso base.

Paso inductivo. Supongamos que $9|2^{2n} - 3n - 1$.

Consideremos ahora.

$$2^{2(n+1)} - 3(n+1) - 1 = 2^{2n+2} - 3n - 3 - 1$$

$$= 4 \cdot 2^{2n} - 3 - 1$$

$$= (2^{2n} - 1) + (3 \cdot 2^{2n} - 3)$$

$$= (2^{2n} - 1) + 3(2^{2n} - 1)$$

Sabemos que $9|2^{2n}-3n-1$, por lo cual para completar la demostración debemos mostrar que $3|2^{2n}-1$.

Procederemos por inducción para demostrar $3|2^{2n}-1$. Consideremeos primero el caso base n=3.

$$2^{2 \cdot 3} - 1 = 63$$

3|63 por lo tanto la ecuación se cumple para el caso base.

Paso inductivo. Supongamos que $3|2^{2n}-1$.

Consideremos ahora.

$$2^{2(n+1)} - 1 = 2^{2n+2} - 1$$
$$= 4 \cdot 2^{2n} - 1$$
$$= (2^{2n} - 1) + (3 \cdot 2^{2n})$$

Sabemos que $3|2^{2n}-1$ y además sabemos que $3|3\cdot 2^{2n}$. Por lo tanto $9|2^{2(n+1)}-3(n+1)-1$ y por lo tanto $54|2^{2(n+1)+1}-9(n+1)^2+3(n+1)$.

- 4. Sean A, B, C y D conjuntos. Demuestre que:
 - a) Si $A \subseteq B$, entonces $A \cup C \subseteq B \cup C$ para cualquier C.

Demostración. Sea $a \in A \cup C$. Luego por definición de unión, $a \in A$ o $a \in C$. Si $a \in C$, entonces $a \in B \cup C$ lo que implica $A \cup C \subseteq B \cup C$. Por otra parte si $a \in A$, como $A \subseteq B$, entonces $a \in B$, así $a \in B \cup C$ y por lo tanto $A \cup C \subseteq B \cup C$.

b) Si $A \subseteq B$, entonces $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Demostración. Sea $a \in \mathcal{P}(A)$, luego $a \subseteq A \subseteq B$ por transitividad tenemos que $a \subseteq B$ y por definición de conjunto de partes, $a \in \mathcal{P}(B)$. Por lo tanto $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

(C) $(A \cup (B \cap C)) = (A \cup B) \cap (A \cup C)$.

Demostración. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ es equivalente al conjunto $\{x | x \in A \lor (x \in B \land x \in C)\}$ lo cual es equivalente al conjunto $\{x | (x \in A \lor x \in B) \land (x \in A \lor x \in C)\}$ lo cual es equivalente a $(A \cup B) \cap (A \cup C)$

d) $A \subseteq B$ si y solo si $B^c \subseteq A^c$.

Demostración. Empecemos demostrando que si $A \subseteq B$, entonces $B^c \subset A^c$.

Sea $x \in B^c$, luego $x \notin B$ por definición de complemento, como $A \subseteq B$, entonces $x \notin A$, luego $x \in A^c$ y por lo tanto $B^c \subseteq A^c$.

Demostremos ahora que si $B^c \subseteq A^c$, entonces $A \subseteq B$.

Sea $x \in A$, luego $x \notin A^c$ por definición de complemento, como $B^c \subseteq A^c$, entonces $x \notin B^c$, nuevamente por definición de complemento, $x \in B$, lo que implica que $A \subseteq B$.

- e) $A \cup (B C) = (A \cup B) (C A)$.
- f) $A \times (B \cap C) = (A \times B) \cap (A \times C).$

Demostración. Demostremos primero que $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$.

Sea (x,y) in $A \times (B \cap C)$ por definición de producto cartesiano $x \in A$ y $y \in (B \cap C)$, luego tenemos $x \in A$, $y \in B$ y $y \in C$. Así, nuevamente por definición de producto cartesiano tenemos que $(x,y) \in A \times B$ y $(x,y) \in A \times C$, de esta manera $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$.

Demostremos ahora que $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

Supongamos $(x,y) \in (A \times B) \cap (A \times C)$. Entonces, $x \in A$, $y \in B$, $y \in C$. Como $y \in B$ y $y \in C$, $y \in B \cap C$. Por lo tanto, $(x,y) \in A \times (B \cap C)$. Y $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

- 5. Demuestre que:
 - a) $\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$.

Demostración. Demostremos primero que $\left(\bigcap_{i\in I} A_i\right)^c \subseteq \bigcup_{i\in I} A_i^c$. Sea $a \in \left(\bigcap_{i\in I} A_i\right)^c$, luego $a \notin \bigcap_{i\in I} A_i$, esto es $a \notin A_i$ para todo $i \in I$, por definición de unión concluímos que $a \in \bigcup_{i\in I} A_i^c$.

Demostremos ahora que $\bigcup_{i \in I} A_i^c \subseteq (\bigcap_{i \in I} A_i)^c$

- b) $M \cup (\bigcap_{A \in \mathcal{C}} A) = \bigcap_{A \in \mathcal{C}} (M \cup A)$.
- c) Si $B_n = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$, entonces $\bigcup_{n=2}^{\infty} B_n = (0, 1)$.
- 6. (3 puntos) Sea B un álgebra de Boole y $a,b,c\in B$. Demuestre las siguientes igualdades:
 - a) ab + bc + b'c = ab + c

Demostración.

$$ab + bc + b'c = ab + c(b + b')$$
 Propiedad distributiva
= $ab + c \cdot 1$ Def. complemento
= $ab + c$ Def. identidad

b)
$$a + a'b = a + b$$

c) a'b'c + a'bc + abc' = a'c + ab' **Demostración**.

$$a'b'c + a'bc + abc' = a'c(b'+b) + ab'$$
 Propiedad distributiva
$$= a'c \cdot 1 + ab'$$
 Def. complemento
$$= a'c + ab'$$
 Def. identidad

d) ab + (ac)' + ab'c(ab + c) = 1Demostraci'on.

$$ab + a' + c' + ab'c(ab) + ab'c = ab + ab'c + a' + c'$$

$$= a(b + b'c) + a' + c'$$

$$= a(b + c) + a' + c'$$

$$= ab + ac + a' + c'$$

$$= ab + (ac + a' + c')$$

$$= ab + 1$$

$$= 1$$