Maestría en Ciencias de la Computación

Asignatura: Metaheurísticas

Actividad No.9 Guía Taller No.4

Título: Solución de problemas mediante Recocido Simulado

Contenido:

- Métodos heurísticos de solución de problemas.
- Recocido Simulado

Objetivo: Implementar algoritmos de Recocido Simulado, en lenguajes de alto nivel, para la solución de problemas de competencia.

Qué Estudiar

- Métodos heurísticos. Algoritmo de Recocido Simulado.
- Funciones de prueba del *IEEE Congress on Evolutionary Computation* CEC 2015 "Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization"

Cómo Estudiar

- 1. Analice detalladamente las seis funciones definidas en el documento "Funciones de prueba.pdf".
- 2. Implemente dichas funciones.
- 3. Implemente el algoritmo de Recocido Simulado para la solución de los problemas de minimización de las funciones anteriores. Considere D = 10 y posteriormente D = 30 dimensiones.
- 4. Reporte los resultados obtenidos. Para ello, realice 20 ejecuciones independientes, con la siguiente configuración:
 - a. Considere un total de 500 evaluaciones de la función objetivo.
 - b. Muestre el mejor, peor, promedio, mediana y desviación estándar de los resultados en las 20 ejecuciones.
 - c. Muestre el mejor, peor, promedio, mediana y desviación estándar de los tiempos de ejecución (en segundos) en las 20 ejecuciones.
 - d. Muestre el mínimo, máximo, promedio, mediana y desviación estándar de la temperatura mínima alcanzada por el algoritmo en las 20 ejecuciones.
- 5. Reporte además, de forma independiente, para cada función y cada ejecución: mejor solución encontrada por el algoritmo, la temperatura a la que se encontró, el número de evaluaciones de la función objetivo a la que se encontró, y si fue conservada o no por el algoritmo (fue conservada si coincide con la solución devuelta, NO fue conservada si el algoritmo la desechó durante su ejecución).

Ejemplo de tabla de resultados, para los incisos b, c, d:

Función	Meior	Peor	Promedio	Mediana	Desviación	

					Estándar
f1					
• • •					
f6					
Promedios Globales	Avg(Mejor)	Avg(Peor)	Avg(Promedio)	Avg(Mediana)	Avg(Stdev)

Ejemplo de tabla de resultados, para el inciso e:

			· 1					
Ejecución	F1			 F6				
1	Valor de	Temperatura	Evaluación	Conservada	Valor de	Temperatura	Evaluación	Conservada
	la mejor	•			la mejor	•		
	solución				solución			
20								

Por dónde Estudiar

- o Burke & Kendall. Search Metodologies 2005. Capítulo 7
- Chen, Q., Liu, B., Zhang, Q., Liang, J. J., Suganthan, P. N., & Qu, B. Y. (2014). Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore, Tech. Rep.
- o Materiales en la red.