데이터베이스

# 데이터베이스의 기본

### 목차

- 데이터베이스 & DBMS
- 데이터베이스 용어
- 대표 필드 타입
- NULL의 의미
- 데이터베이스 관계
- 데이터베이스 키
- 추가 Q&A

### 데이터베이스 & DBMS



### 데이터베이스 용어



# 데이터베이스용어 Domain의 예시

| Attribute                                            | Domain Name                                                  | Meaning                                                                                                                                                                  | Domain Definition                                                                                                                                                                        |
|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| branchNo<br>street<br>city<br>postcode<br>sex<br>DOB | StreetNames<br>CityNames<br>Postcodes<br>Sex<br>DatesOfBirth | The set of all street names in Britain The set of all city names in Britain The set of all postcodes in Britain The sex of a person Possible values of staff birth dates | character: size 4, range B001–B999<br>character: size 25<br>character: size 15<br>character: size 8<br>character: size 1, value M or F<br>date, range from 1-Jan-20,<br>format dd-mmm-yy |
| salary                                               | Salaries                                                     | Possible values of staff salaries                                                                                                                                        | monetary: 7 digits, range<br>6000.00-40000.00                                                                                                                                            |

# 데이터베이스 용어 동의어의 차이

| Entity Modelling           | Normalisation | RDBMS           |
|----------------------------|---------------|-----------------|
| Entity                     | Relation      | Table           |
| Entity Occurrence          | Tuple         | Row or Record   |
| Attribute                  | Domain        | Column or Field |
| Organisational Information | Model Data    | Data            |

 Table 3.1
 Alternative terminology for relational model terms.

| Formal terms | Alternative 1 | Alternative 2 |
|--------------|---------------|---------------|
| Relation     | Table         | File          |
| Tuple        | Row           | Record        |
| Attribute    | Column        | Field         |

# 대표 필드 타입 숫자 타입(MySQL 기준)

| 데이터 형식                            | 바이트수 | 숫자 범위                                      | 설명                                                                                                    |
|-----------------------------------|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|
| BIT(N)                            | N/8  |                                            | 1~64bit를 표현, b'0000' 형식으로 표현                                                                          |
| TINYINT                           | 1    | -128~127                                   | 2^8 정수                                                                                                |
| ★SMALLINT                         | 2    | -32,768~32,767                             | 2^16 정수                                                                                               |
| MEDIUMINT                         | 3    | -8,388,608~8,388,607                       | 2 <sup>^</sup> 24 정수                                                                                  |
| *INT<br>INTEGER                   | 4    | 약-21억~+21억                                 | 2^32 정수                                                                                               |
| ★BIGINT                           | 8    | 약-900경~+900경                               | 2^64 정수                                                                                               |
| ★FLOAT                            | 4    | -3.40E+38~-1.17E-38                        | 소수점 아래 7자리까지 표현                                                                                       |
| DOUBLE<br>REAL                    | 8    | -1,22E-308~1,79E+308                       | 소수점 이래 15자리까지 표현                                                                                      |
| ★DECIMAL(m.[d])<br>NUMERIC(m.[d]) | 5~17 | -10 <sup>38</sup> +1 ~+10 <sup>38</sup> -1 | 전체 자릿수(m)와 소수점 이하 자릿수(d)를 가진 숫자형<br>예) decimal(5,2)는 전체 자릿수를 5자리로<br>하되, 그 중 소수점 이하를 2자리로 하겠다<br>는 의미 |

# 대표 필드 타입 날짜 타입(MySQL 기준)

| 데이터 형식            | 바이트수 | 설명                                                                                                                                |                                           |
|-------------------|------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| ★DATE             | 3    | 날짜는 1001-01-01 ~ 9999-12-31까지 저장되며 날짜 형식만 사용<br>"YYYY-MM-DD" 형식으로 사용됨.                                                            | <b>DATE</b> -YYYY-MM-DD                   |
| TIME              | 3    | -838:59:59.000000 ~ 838:59:59.000000까지 저장되며, 'HH:MM:SS' 형식으로 사용                                                                   |                                           |
| <b>★</b> DATETIME | 8    | 날짜는 1001-01-01 00:00:00 ~ 9999-12-31 23:59:59까지 저장되며 형식은<br>YYYY-MM-DD HH:MM:SS' 형식으로 사용                                          | <b>DATETIME</b> -YYYY-MM-DD HH:MM:SS      |
| TIMESTAMP         | 4    | 날짜는 1001-01-01 00:00:00 ~ 9999-12-31 23:59:59까지 저장되며 형식은 "YYYY-MM-DD HH:MM:SS" 형식으로 사용. time_zone 시스템 변수와 관련이 있으며 UTC 시간대 변환하여 저장 | TIMESTAMP -YYYY-MM-DD HH:MM:SS - TimeZone |
| YEAR              | 1    | 1901 ~ 2155까지 저장. 'YYYY' 형식으로 사용                                                                                                  |                                           |

# 대표 필드 타입 문자 타입(MySQL 기준)

| 데이          | 이터 형식      | 바이트 수         | 설명                                                                     |          |                      |  |
|-------------|------------|---------------|------------------------------------------------------------------------|----------|----------------------|--|
| ★CHAR(n)    |            | 1~255         | 고정길이 문자형, n을 1부터 255까지 지정.<br>character의 약자<br>그냥 CHAR만 쓰면 CHAR(1)과 동일 |          | CHAR<br>- 형태, 길이 고정  |  |
| ★VAF        | RCHAR(n)   | 1~65535       | 가변길이 문자형, n을 사용하면 1부터 65535<br>까지 지정, Variable character의 약자           | 길이 선언    | - 검색속도 빠름<br>VARCHAR |  |
| BIN         | IARY(n)    | 1~255         | 고정길이의 이진 데이터 값                                                         |          | - 형태, 길이 가변          |  |
| VARE        | BINARY(n)  | 1~255         | 가변길이의 이진 데이터 값                                                         |          | - 검색속도 느림            |  |
|             | TINYTEXT   | 1~255         | 255 크기의 TEXT 데이터 값                                                     |          |                      |  |
|             | TEXT       | 1~65535       | N 크기의 TEXT 데이터 값                                                       |          | TEXT                 |  |
| TEXT 형식     | MEDIUMTEXT | 1~16777215    | 16777215 크기의 TEXT 데이터 값                                                |          | - 문자열                |  |
|             | ★LONGTEXT  | 1~4294967295  | 최대 4GB 크기의 TEXT 데이터 값                                                  | 3 510151 | DI OD                |  |
|             | TINYBLOB   | 1~255         | 255 크기의 BLOB 데이터 값                                                     | 큰 데이터    | BLOB<br>- 이미지, 영상    |  |
| DI OD #III  | BLOB       | 1~65535       | N 크기의 BLOB 데이터 값                                                       |          | 1 1 1,7 0 0          |  |
| BLOB 형식     | MEDIUMBLOB | 1~16777215    | 16777215 크기의 BLOB 데이터 값                                                |          |                      |  |
|             | *LONGBLOB  | 1~4294967295  | 최대 4GB 크기의 BLOB 데이터 값                                                  |          | ENUM                 |  |
| ENUM(값들···) |            | 1 또는 2        | 최대 65535개의 열거형 데이터 값                                                   | 트리 가이 지금 | - 단일 선택              |  |
| SET(값들···)  |            | 1, 2, 3, 4, 8 | 최대 64개의 서로 다른 데이터 값                                                    | 특정 값의 집합 | SET                  |  |
|             |            |               |                                                                        |          | - 복수 선택              |  |

# NULL Database vs Programming Language

| 구분 | 데이터베이스                                     | 프로그래밍 언어            |
|----|--------------------------------------------|---------------------|
| 구분 | 처리 결과 (표시어)                                | 데이터 값               |
| 의미 | - 값 없음 (누락된 데이터)<br>- 알 수 없는 데이터 (unknown) | 값 없음 (변수 값 할당되지 않음) |
| 비교 | IS NULL, IS NOT NULL, IF NULL              | ==                  |

# 데이터베이스 관계 Database Relationship







#### 1:N



#### N:M



#### 연결 테이블 (매핑 테이블)



# 데이터베이스 키 키간의 관계



### 데이터베이스 키 슈퍼키 (Super Key)

| 이메일           | 이름  | 주민등록번호          | 나이 | 성별 |
|---------------|-----|-----------------|----|----|
| asdf@asdf.com | 김ㅇㅇ | 111111-xxxxxxxx | 32 | 남  |
| qwer@qwer.com | 김ㅇㅇ | 222222-xxxxxxx  | 41 | 여  |
| zxcv@zxcv.com | 나ㅇㅇ | 333333-xxxxxxxx | 32 | 남  |

슈퍼키 (Super Key): 각 row를 유일하게 식별할 수 있는 속성들의 집합

- 유일성: key값으로 특정 row만을 찾아낼 수 있어야함



# 데이터베이스 키 후보키 (Candidate Key)

| 이메일           | 이름  | 주민등록번호          | 나이 | 성별 |
|---------------|-----|-----------------|----|----|
| asdf@asdf.com | 김ㅇㅇ | 111111-xxxxxxxx | 32 | 남  |
| qwer@qwer.com | 김ㅇㅇ | 222222-xxxxxxx  | 41 | 여  |
| zxcv@zxcv.com | 나ㅇㅇ | 333333-xxxxxxxx | 32 | 남  |

후보키 (Candidate Key): 각 row를 유일하게 식별할 수 있는 최소한의 속성의 집합

(슈퍼키(Super Key) 중 더이상 쪼갤 수 없는 슈퍼키(Super Key))

- 최소성: 모든 row를 유일하게 식별하는데 꼭 필요한 속성만으로 구성되어야함

- (이메일)

- (주민등록번호)

### 데이터베이스 키 기본키 (Primary Key) / 대체키 (Alternative Key)

| 이메일           | 이름  | 주민등록번호          | 나이 | 성별 |
|---------------|-----|-----------------|----|----|
| asdf@asdf.com | 김ㅇㅇ | 111111-xxxxxxxx | 32 | 남  |
| qwer@qwer.com | 김ㅇㅇ | 222222-xxxxxxx  | 41 | 여  |
| zxcv@zxcv.com | 나ㅇㅇ | 333333-xxxxxxxx | 32 | 남  |

기본키 (Primary Key): 후보키(Candidate Key) 중 선택한 주 키

- Table 당 1개만 지정
- Not Null, Unique

대체키 (Alternative Key): 기본키(Primary Key)로 지정되지 못한 나머지 키

후보키: (이메일), (주민등록번호)

기본키: (이메일) 로 선택 대체키: (주민등록번호)

### 데이터베이스 키 외래키 (Foreign Key)

| 이메일           | 이름  | 주민등록번호          | 나이 | 성별 |
|---------------|-----|-----------------|----|----|
| asdf@asdf.com | 김ㅇㅇ | 111111-xxxxxxxx | 32 | 남  |
| qwer@qwer.com | 김ㅇㅇ | 222222-xxxxxxx  | 41 | 여  |
| zxcv@zxcv.com | 나ㅇㅇ | 333333-xxxxxxxx | 32 | 남  |

#### 식별 관계

| <u>주문ID</u> | <u>이메일</u>    | 상품   | 가격     |
|-------------|---------------|------|--------|
| , 1         | asdf@asdf.com | 키보드A | 20,000 |
| 2           | asdf@asdf.com | 마우스A | 15,000 |
| 3           | qwer@qwer.com | 마우스A | 15,000 |

#### 비식별 관계

| <u>주문ID</u> | 이메일           | 상품   | 가격     |
|-------------|---------------|------|--------|
| 1           | asdf@asdf.com | 키보드A | 20,000 |
| 2           | asdf@asdf.com | 마우스A | 15,000 |
| 3           | null          | 마우스B | 16,000 |

외래키 (Foreign Key): 한 테이블의 Column이 다른 테이블의 기본키(Primary Key)를 참조하는데 사용되는 Column

- 식별관계: 외래키(FK)이자 기본키(PK)로 사용
- 비식별관계: 외래키(FK)를 일반속성으로 사용

### 추가 Q&A 자연키 (Natual Key) VS 인조키 (Artificial Key)

테이블의 레코드를 고유하게 식별하는데 사용되는 두가지 유형의 키

**자연키 (Natural Key):** 실제 데이터에서 파생되는 고유 식별자 (주민등록번호, 전화번호, 이메일···)

인조키 (Artificial Key): 데이터 설계자가 임의로 생성한 인위적인 식별자 (시리얼 넘버(AUTO\_INCREMENT 결과), UUID)

#### 추가 Q&A 슈퍼키의 유일성 VS 함수 종속의 결정자

관점 차이

슈퍼키의 유일성:하나 이상의 Attribute/Column/Field의 집합을 통해 Row/Record/Tuple을 유일하게 식별할 수 있다

- 목적: 데이터의 레코드를 유일하게 식별하기 위함
- 테이블의 레코드를 보았을 때, 특정 컬럼의 집합을 통해 테이블 내의 모든 레코드를 유일하게 식별할 수 있다

함수 종속의 결정자: 한 Attribute/Column/Field 값이 다른 Attribute/Column/Field 값을 결정한다

(결정자: 결정하는 컬럼. A->B에서 A는 결정자, B는 종속자)

- 목적: 데이터의 의미와 관계를 나타낸다
- 테이블의 컬럼들을 보았을 때, 한 컬럼값이 의미적으로 다른 컬럼값을 결정하는 관계를 나타낼 수 있다

### 추가 Q&A 기본키(PK) 고르는 기준

#### 복합키(Composite Key)로 이루어진 후보키(Candidate) 중에서 기준키(PK)를 고르는 기준?

- 중복도는 낮고, 선택도는 높아야한다 (RDBMS 특성 상 테이블 생성될 때 PK에 대한 Index 자동 생성함. 중복을 최소화하고, 쿼리 성능을 높이는 방향으로 골라야함)
- 자주 변경이 일어나지 않아야한다 (변경이 잦으면 외래키(FK)를 사용한 다른 테이블과의 일관성 유지하기 어려워짐)

데이터베이스

# 감사합니다