CS2073: Comp. Prog. w Eng. App.

W12: Intro to Data Science (MITRE GenAl Project)

Hamidreza Moradi

Agenda

- Introduction into data science
- Python programming language
- Machine Learning algorithms
- K-means algorithm
- Python code to train a K-means model

MITRE

- Gives students access to AI training, tools, and big data.
 - One session about machine-learning / data science
 - A homework (in-class assignment) in python

Data Scientists are in high demand

Paid well

https://www.burtchworks.com/wp-content/uploads/2018/05/Burtch-Works-Study DS-2018.pdf

Data Scientist Job Demand

http://blog.indeed.com/

Why the demand is increasing?

- Increase in the amount of data and computation power
- The need to clean, process, analyze, and generate meaningful insight from existing data.

e.g., Google Flu Trends:

Detecting outbreaks two weeks ahead of CDC data

New models are estimating which cities are most at risk for spread of disease.

More Examples

- Recommender systems → NetFlix, Amazon, YouTube.
- Real-time Monitoring → Smart Home, Internet of Things.
- Consumer Satisfaction → Social Media Data (Facebook, Twitter)

Data Science Definition

Data Science is the science which:

Uses: computer science, statistics and machine learning, and visualization

To: collect, clean, integrate, analyze, and visualize the data

With the goal of: Extracting knowledge and insights.

Data Scientists Skills

General Skills

https://www.kdnuggets.com/2018/11/most-demand-skills-data-scientists.html

Python language of preference for Data Scientist

- Invented in early 90s by Guido van Rossum
- Open source
- Considered a scripting language
 - No compilation needed
 - Scripts are evaluated by the interpreter, line by line

Variables and objects

- Variables are created the first time it is assigned a value
 - No need to declare type
 - Types are associated at initialization
 - x = 5
 - x = [1, 3, 5]
 - x = 'python'
 - Assignment creates *references*, not *copies*

```
X = [1, 3, 5]

Y = X

X[0] = 2

Print (Y) # Y is [2, 3, 5]
```

Formatting

- Instead of curly braces to delimit blocks of code, Python uses indentation.
 - Incorrect indentation causes error.
- Comments start with #
- Colons start a new block in many constructs, e.g. function definitions, if-elif clause, for, while

Modules

- Certain features of Python are not loaded by default
 - In order to use these features, you'll need to import the modules.
- E.g. import matplotlib.pyplot as plt import numpy as np

Stages of a Data Science Task

Data Scientists Roll, data and Al

https://towardsdatascience.com/role-of-data-science-in-artificial-intelligence-950efedd2579

Machine Learning

- The science of getting computers to accomplish a task without being explicitly programmed about how to do the task.
- It applies algorithms that can learn from data to make decisions.
 - Example applications: self-driving cars, face recognition software, voice recognition, autonomous drones, detect credit card frauds, etc.

Machine Learning Types

- Supervised Learning
 - Classification: determining what category something belongs to, after seeing a number of examples of things belonging to several categories.
 - Regression: learn a function that describes the relationship between inputs and outputs and predicting how the output change with change in inputs.
- Unsupervised Learning
 - Finding patterns in data without explicit labels in the training examples

K-Means Clustering

- Algorithm to group objects (data points) based on similarity of attributes/features into k groups.
- If you have label for the data, it will be considered classification algorithm.
 - Cyber security: Detecting suspicious activities (potential cyber attacks) recorded in log files.
 - <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
 - Banking: Identifying fraudulent credit card transactions, risky loan applications, etc.
 - Many more..

- Astronomy
 - SkyCat: Clustered sky objects into stars, galaxies, quasars, etc based on radiation emitted in different spectrum bands.

- Image Segmentation
 - Finding "objects" in images to focus on.

- Image Classification
 - distinguishing different "objects" in images/video.

Loan Application

age	ed	employ	address	income	debtinc	creddebt	othdebt	default
41	3	17	12	176	9.3	11.359	5.009	1
27	1	10	6	31	17.3	1.362	4.001	0
40	1	15	14	55	5.5	0.856	2.169	0
41	1	15	14	120	2.9	2.659	0.821	0
24	2	2	0	28	17.3	1.787	3.057	1
41	2	5	5	25	10.2	0.393	2.157	0
39	1	20	9	67	30.6	3.834	16.668	0
43	1	12	11	38	3.6	0.129	1.239	0
24	1	3	4	19	24.4	1.358	3.278	1
36	1	0	13	25	19.7	2.778	2.147	0

Possibility of moving to a new brand

		tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
ariable	0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
Val	1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
ategorica	3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
Š	4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Recommend a drug

Drug	K	Na	Cholesterol	BP	Sex	Age
drugY	0.031	0.793	HIGH	HIGH	F	23
drugC	0.056	0.739	HIGH	LOW	М	47
drugC	0.069	0.697	HIGH	LOW	М	47
drugX	0.072	0.564	HIGH	NORMAL	F	28
drugY	0.031	0.559	HIGH	LOW	F	61
drugX	0.079	0.677	HIGH	NORMAL	F	22
drugY	0.049	0.79	HIGH	NORMAL	F	49
drugC	0.069	0.767	HIGH	LOW	M	41
drugY	0.051	0.777	HIGH	NORMAL	M	60
drugY	0.027	0.526	NORMAL	LOW	M	43

Services to provide

	X: Independent variable					Y: De	pend	lent va	riable						
-	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat				
0	2	44	1	9	64	4	5	0	0	2	1				
1	3	33	1	7	136	5	5	0	0	6	4				
2	3	52	1	24	116	1	29	0	1	2	3	1	Val	ue	Label
3	2	33	0	12	33	2	0	0	1	1	1		11		Davis Comiles
4	2	30	1	9	30	1	2	0	0	4	3		1		Basic Service
5	2	39	0	17	78	2	16	0	1	1	3	1	~ 2		E-Service
6	3	22	1	2	19	2	4	0	1	5	2				n!
7	2	35	0	5	76	2	10	0	0	3	4		3		Plus Service
8	3	50	1	7	166	4	31	0	0	5	?		4		Total Service

Basic Idea

- Given k, the k-means algorithm consists of four steps:
 - Select initial k centroids (cluster centers) at random.
 - Assign each data point to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the data points assigned to it.
 - Repeat previous 2 steps until stopping criterion is met.

Calculating the distance of each point from the centers and assigning it to the closer cluser

Take the average of points in each group and considering as the new center

Repeating the process with new centers and assigning each point to the closest cluster

After couple of iteration the changes in the cluster centers become negligible

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

Different algorithms and Clustering

Datasets

- Exploratory Analysis
- •General Machine Learning
- Deep Learning
- •Natural Language Processing
- •Cloud-Based Machine Learning
- •Time Series Analysis
- •Recommender Systems
- Specific Industries
- Streaming Data
- •Web Scraping
- Current Events

Textbooks

Sample Dataset: Mines vs. Rocks

- This is the data set used by Gorman and Sejnowski in their study of the classification of sonar signals.
- Goal: train a model to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

	60 features / measurements																						
attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	attribu	Class
0.2166	0.1951	0.4947	0.4925	0.4041	0.2402	0.1392	0.1779	0.1946	0.1723	0.1522	0.0929	0.0179	0.0242	0.0083	0.0037	0.0095	0.0105	0.003	0.0132	0.0068	0.0108	0.009	Rock
0.5856	0.4993	0.2866	0.0601	0.1167	0.2737	0.2812	0.2078	0.066	0.0491	0.0345	0.0172	0.0287	0.0027	0.0208	0.0048	0.0199	0.0126	0.0022	0.0037	0.0034	0.0114	0.0077	Rock
0.2299	0.2789	0.3833	0.2933	0.1155	0.1705	0.1294	0.0909	0.08	0.0567	0.0198	0.0114	0.0151	0.0085	0.0178	0.0073	0.0079	0.0038	0.0116	0.0033	0.0039	0.0081	0.0053	Rock
0.2023	0.1794	0.0227	0.1313	0.1775	0.1549	0.1626	0.0708	0.0129	0.0795	0.0762	0.0117	0.0061	0.0257	0.0089	0.0262	0.0108	0.0138	0.0187	0.023	0.0057	0.0113	0.0131	Mine
0.182	0.1815	0.1593	0.0576	0.0954	0.1086	0.0812	0.0784	0.0487	0.0439	0.0586	0.037	0.0185	0.0302	0.0244	0.0232	0.0093	0.0159	0.0193	0.0032	0.0377	0.0126	0.0156	Mine
0.2633	0.3198	0.1933	0.0934	0.0443	0.078	0.0722	0.0405	0.0553	0.1081	0.1139	0.0767	0.0265	0.0215	0.0331	0.0111	0.0088	0.0158	0.0122	0.0038	0.0101	0.0228	0.0124	Mine
0.4029	0.3676	0.151	0.0745	0.1395	0.1552	0.0377	0.0636	0.0443	0.0264	0.0223	0.0187	0.0077	0.0137	0.0071	0.0082	0.0232	0.0198	0.0074	0.0035	0.01	0.0048	0.0019	Mine
0.4374	0.182	0.3376	0.6202	0.4448	0.1863	0.142	0.0589	0.0576	0.0672	0.0269	0.0245	0.019	0.0063	0.0321	0.0189	0.0137	0.0277	0.0152	0.0052	0.0121	0.0124	0.0055	Mine

Runtime Environments

- https://notebooks.azure.com/
- Sign in
 - Email: abc123@my.utsa.edu
- You will be redirected to UTSA login page
 - User: abc123

Scatter matrix of the data

• What the graph will tell us

Scatter matrix of the data

 Positive correlation between signals bounced off the object from different angles

Scatter matric of the data

• Normal distribution:

- The mean, mode and median are all equal.
- The curve is symmetric at the center (i.e. around the mean, μ).
- Exactly half of the values are to the left of center and exactly half the values are to the right.
- The total area under the curve is 1.

Correlation of the data

 Positive correlation between signals bounced off the object from different angles

	55	56	57	58	59	60
55	1.000000	0.515154	0.463659	0.430804	0.349449	-0.129341
56	0.515154	1.000000	0.509805	0.431295	0.287219	-0.000933
57	0.463659	0.509805	1.000000	0.550235	0.329827	-0.184191
58	0.430804	0.431295	0.550235	1.000000	0.642872	-0.130826
59	0.349449	0.287219	0.329827	0.642872	1.000000	-0.090055
60	-0.129341	-0.000933	-0.184191	-0.130826	-0.090055	1.000000

Correlation of the data

- Negative correlation between signals bounced off the object and its category
 - Stronger signals bounced off are for the category with the smaller number

	55	56	57	58	59	60
55	1.000000	0.515154	0.463659	0.430804	0.349449	-0.129341
56	0.515154	1.000000	0.509805	0.431295	0.287219	-0.000933
57	0.463659	0.509805	1.000000	0.550235	0.329827	-0.184191
58	0.430804	0.431295	0.550235	1.000000	0.642872	-0.130826
59	0.349449	0.287219	0.329827	0.642872	1.000000	-0.090055
60	-0.129341	-0.000933	-0.184191	-0.130826	-0.090055	1.000000

Train the model

- Steps
 - Split the data into training and testing sets
 - Standardize features
 - Select model
 - Train the model

Prediction Results

accuracy_score

fraction of samples predicted correctly

recall_score

fraction of positives events that you predicted correctly

precision_score

fraction of predicted positives events that are actually positive

f1_score

 harmonic mean of recall and precision, with a higher score as a better model

Confusio	on Matrix	Predicted					
Comusic	DITIVIALITY	Negative	Positive				
Actual	Negative	True Negative	False Positive				
Actual	Positive	False Negative	True Positive				

https://towardsdatascience.com/understanding-data-science-classification-metrics-in-scikit-learn-in-python-3bc336865019

In-class assignment W12 MITRE GenAl

• Download the code and upload it to Blackboard.

