Department of Computer Science

CS 201 – Data Structures

Final Exam (Fall 2013)

Instructors: Adnan Waheed & Rabia Maqsood

December 12, 2013

Total Marks: 50	Time Allowed: 3 hours

Instructions:

- (1) Understanding the question is part of exam. NO QUERIES WILL BE ENTERTAINED.
- (2) Think very carefully before attempting any of the questions.
- (3) Provide answers in the given space.
- (4) Use back side of the paper if you need more space.
- (5) Use answer sheet for rough work only. No solutions will be checked on answer sheet.
- (6) Write neat & clean.
- (7) Use permanent ink pens only.
- (8) Poor programming approaches will decrease your marks.
- (9) Think about the boundary conditions.

Roll	No.	Name:	Section:
KUII	110	1\anic •	Scelon.

Question No.	1	2	3	4	5	6	7	8	Total
Marks	09	04	04	05	09	10	04	05	50

Question 1:	Marks 06+03 = 09				
Consider a class Stack, which has following impl	lemented member functions.				
void push(int a)					
int pop()					
bool isEmpty()					
bool isFull()					
void reset() // clears the stack.					
Queue ADT. You may not use any other of	(int b) and int dequeue() member functions of a data structure objects (including arrays and lists) may use additional temporary stack objects, if $(03 \times 02 = 06)$				
SOLUTION:					

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus $(1.5 \times 02 = 03)$ b. Analyze the running time of the queue operations.

Question 2:	Marks 04
	e sense that deleting x and then y from a binary and then x ? Argue why it is or give a counter

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 3:	Marks 04
Place the given 4 words in an array of size 4 collision, use linear probing.	using the hash function given below. In case of
DataSet = { float, int, char, break }	
	<u>, </u>
int HashFunction(char * word) {	
int length = strlen (word);	// returns the length of the word
int $val = 0$;	
for (int $i = 0$; $i < length$; $i+=2$)	
val = val + AlphabeticalOrder (W	/ord[i]) * 2;
// AlphabeticalOrder returns the number of t	the letter in the English i.e. A=1, B=2, and so on.
return val % maxsize; } //w	where maxsize is the number of words i.e. 4

Note: Show your solution at the back side of this paper. No marks will be given for direct answer.

Question 4:	Marks 05
	formance gains can be obtained if we modify the ted order. How does the professor's modification nsuccessful searches, insertions, and deletions?

a. Algorithm:

National University

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question 5:	Marks 02+07 = 09
C	

Write the selection sort algorithm and provide code for sorting a doubly linked list using selection sort. Few assumptions are to be considered:

- i. Values are already inserted in the list; do not write code for insertion.
- ii. We have two pointers in doubly linked list: head and tail.
- iii. Values at head and tail node are already sorted (head has minimum value and tail has maximum value). You have to sort the internal nodes only.

Note: You are required to change pointers for swapping operation. Do not swap the values of nodes.

1		
1		
ĺ		
1		
1		
1		
ĺ		
1		
1		
ĺ		
1		
ĺ		
1		
1		
1		
1		
1		
1		
1		
ĺ		
1		
1		
ĺ		
1		
1		

Question 6:	Marks $08+02=10$		
You are assigned the task of planning the se	eating arrangement for Annual Prize Distribution		
Ceremony at NUCES, FAST - Faisalabad Camp	ous, given a list of guests, V.		
	ere $T[u]$ for $u \in V$ is a list of guests that u knows. d to arrange the seating such that any guest at a		
table knows every other guest sitting at the sa	ame table either directly or through some other x knows y , and y knows z , then x , y , z can sit at		
a. Describe an efficient algorithm that, given <i>V</i> needed to achieve this requirement.	T and T , returns the minimum number of tables		
NOTE: Specify all helper functions which you r	nay use.		

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus b. Analyze the running time of your algorithm.

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Suppose that we have numbers between 1 and 100 in a binary search tree and want to search for the number 55. Four students proposed the following search order (for different random values).

Student 1: 9, 85, 47, 68, 43, 57, 55

Student 2: 10, 75, 64, 43, 60, 57, 55

Student 3: 90, 12, 68, 34, 62, 45, 55

Student 4: 79, 14, 72, 56, 16, 53, 55

Discuss the correctness of all the proposed solutions.

 Marks								 n 8:	Questi
choice	design	this	Discuss	a queue.	mplement		e circular good cho		