Advanced Game Engine Creation

Lecture 2 Maths for 3D Worlds

Objectives

Last week we:

- introduced the module
- quickly reviewed C++
- introduced OpenGL and its incorporation into the SDL framework
- using OpenGL functions to display triangles and 3D shapes
 In this lecture, we will
- review 3D points and vectors
- look at vector operations addition, subtraction, scalar multiplication
- discuss C++ operator overloading
- create a 3D vector struct with overloaded operators
- introduce matrices
 - multiplying vectors by matrices
 - multiplying matrices together

Why maths?

 game world is represented in 3D space by models made up of triangles made up of vertices

Every frame:

3D viewing is like taking a picture with a camera

Camera

- use user input, physics,
 AI, animation to update position of game objects
- render view of 3D game world as a 2D picture

3D scene

Last week – the teapot scene

- how can we:
 - display teapots in different positions?
 - rotate and scale them?
 - render the solid teapot so it doesn't look flat?

The secret of 3D rendering

- we keep only one copy of each model
 - Ideally centred on the origin
- each model is scaled, rotated and placed into position every frame
 - then rendered and discarded
 - multiple times to display multiple objects
- start afresh next frame

Right-handed 3D coordinates

the positive z axis comes out of the screen/paper

Figure A-6

Coordinate representation for a point \mathbf{P} at position (x, y, z) in a standard right-handed Cartesian reference system.

3D Space

We need two elements available in our 3D space

Points

- These are used to define positions
 - An object is located at a point
 - A vertex is located at a point

- These are used to define directions
 - A viewer is looking in a certain direction
 - A projectile is moving in a certain direction

Representation of points

- the location of a point in 3D space can be represented by 3 floating point numbers
 - (x, y, z) where x, y and z are floats
 - (0.0, 0.0, 0.0) the origin
 - represented by (0.0f, 0.0f, 0.0f) in an OpenGL program
 - (3.2, 0.6, 4.5)

- A vector refers to a quantity that possesses both magnitude and direction
 - 45 mph north-east
 - 4 km/h towards the pub
- while a scalar just has magnitude
 - I have driven 18 miles
 - I'm 4 km from the pub
- don't confuse vector the mathematical construct with vector the C++ container

- We graphically specify a vector by a directed line segment, where the length denotes its magnitude and the aim denotes its direction
- Note that where we draw a vector is immaterial as changing its location does not change its magnitude or direction
- we use unit vectors (a vector of length 1) if we are only interested in the direction
 - the direction an object is pointing at
 - the direction of a vector perpendicular to a surface (for lighting)

- Computers cannot work with vectors geometrically, therefore we need to represent them numerically
- So, in our 3D space we
 - Define some point as the origin (0, 0, 0)
 - Assume basis vectors for this 3D space
 - Translate all vectors so that their tails are at this origin
 - This is called standard position
 - We can now represent a vector as the coordinates of its head $\mathbf{v} = (x, y, z)$
- Our vector is now defined relative to our 3D coordinate system with origin at (0, 0, 0)

Vectors and Points

- Both vectors and points can be described by coordinates (x, y, z) relative to a frame.
- However, they are not the same
- A point represents a location in 3D-space, whereas a vector represents a magnitude and direction

Vector magnitude

- the magnitude of a vector is simply its length
- can calculate from its [x,y,z] representation using Pythagoras theorem
- if vector $\boldsymbol{v} = (x, y, z)$
- then the magnitude of v is $\|v\| = \sqrt{(x^2 + y^2 + z^2)}$
- Note that magnitude is a scalar value

Unit vectors

- a unit vector \hat{v} has magnitude 1
 - denotes direction only
 - use when we don't care about the magnitude
 - direction a character is facing
- We can normalise a vector (calculate its unit vector) by dividing each of its components by its magnitude
- for vector $\mathbf{v} = (x, y, z)$ with magnitude $||\mathbf{v}|| = \sqrt{(x^2 + y^2 + z^2)}$
- the unit vector is $\hat{v} = (x/||v|| y/||v||, z/||v||)$

Worked example

- calculate the magnitude of the vector (3, 5, 4)
- calculate the unit vector corresponding to the vector (3, 5, 4)

- Given points P and Q, we can easily find the vector that lies between them
- The vector is Q P

- Note the direction of (Q P) is from P to Q
- when P is the origin (0,0,0), the point Q has the same coordinates as the vector between P and Q

Worked example

calculate the vector PQ between the points

$$P = (3, 6, -2)$$
 and $Q = (-4, 2, 0)$

Vector addition

- Let $a = (a_x, a_y, a_z)$ and $b = (b_x, b_y, b_z)$
- Then $a + b = (a_x + b_x, a_y + b_y, a_z + b_z)$
- multiple forces acting on an object
- a translation of a position a by a vector b

Worked example

calculate the new position of a point (-4, 6, 0)
 translated by the vector (2, 3, 4)

We can multiply vectors by scalars

- If we multiply a vector v by a scalar t we get a vector tv which is
 - Parallel to v
 - t times the length of v
- Let t be a scalar, and let $v = (v, v_v, v_z)$
- Then $tv = (tv_x, tv_y, tv_z)$

Worked examples

- multiply the vector (-8, 3, 2) by the scalar 2.5
- multiply the vector (-8, 3, 2) by the scalar -1
 - what is the effect of this operation?

A Vector3D struct or class

- its is a good idea to write a Vector3D struct or class which includes common vector operations
 - struct has public members by default, otherwise same as class
- for example, simple linear motion entails the addition of two vectors every frame

```
position.x += velocity.x;
position.y += velocity.y;
position.z += velocity.z;
```

- it would be neater to be able to write position = position + velocity;
- or even position += velocity;
- where position and velocity are both Vector3D instances

Overloading operators

- we can overload (write new versions of) operators in C++
 - similar to overloading functions
 - most languages don't allow you to do this (why not?)

```
Vector3D operator+( const Vector3D b) {
  Vector3D result;
  result.x = x + b.x;
  result.y = y + b.y;
  result.z = z + b.z;
  return result;
usage: position = position + velocity;
where position and velocity are both instances of
Vector3D
```



```
Vector3D& operator += (const Vector3D b) {
    x = x + b.x;
    y = y + b.y;
    z = z + b.z;
    return *this;
}
```

usage position += velocity;

The need for matrices

- it is very useful to represent transformations using matrices
 - rotations about an axis, translations, scaling
- we can combine individual transformations by multiplying them together
- we can then use the final transformation matrix
 M to transform all the vertices of a game object
 - simply multiply each vertex by M
- we will cover transformations in more detail next week
- this week we will just look at the mechanics of matrix multiplication

Multiplying a vector by a matrix

- we shall use the M.v notation
- M is a matrix and <u>v</u> is a vector which represents the coordinates of a point
 - This means that the matrix M premultiplies the vector <u>v</u>

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

Worked example

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 0 * -1 + 3 * 3 \\ 0 * 2 + -2 * -1 + 1 * 3 \\ 2 * 2 + -1 * -1 + -1 * 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2+0+9 \\ 0+2+3 \\ 4+1-3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 2 \end{bmatrix}$$

Multiplying two matrices

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x & p & s \\ y & q & t \\ z & r & u \end{bmatrix} =$$

$$\begin{bmatrix} ax + by + cz & ap + bq + cr & as + bt + cu \\ dx + ey + fz & dp + eq + fr & ds + et + fu \\ gx + hy + iz & gp + hq + ir & gs + ht + iu \end{bmatrix}$$

Worked example – multiplying two matrices

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 4 \\ 3 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2+6+3 & -1+2+0 & 4+0-3 \\ 0-3+2 & 0-1+0 & 0+0-2 \\ 0+6-2 & 0+2+0 & 0+0+2 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 1 & 1 \\ -1 & -1 & -2 \\ 4 & 2 & 2 \end{bmatrix}$$

Some more useful 3D maths yet to cover

- vector dot and cross products
- calculating the direction of a vector from its [x, y, z] representation
- using matrices to represent transformations (next week)

Summary

Today we have

- reviewed 3D points and vectors
- looked at vector operations addition, subtraction, scalar multiplication
- discussed C++ operator overloading
- created a 3D vector struct with overloaded operators
- introduced matrices
 - multiplying vectors by matrices
 - multiplying matrices together

Practical

- Pen and paper calculations
- implement and test a C++ Vector3 struct

Further work

Google for vector and matrix calculators and animations!

