MH1820 Introduction to Probability and Statistical Methods Tutorial 12 (Week 13) Solution

Problem 1 Let $X_1, \ldots, X_{10} \sim N(\mu, \sigma^2)$ be i.i.d, where μ and σ are both unknown. Consider a test for $H_0: \mu = 10$ against $H_1: \mu \neq 10$ based on the test statistic $T = \frac{\overline{X} - \mu}{s/\sqrt{n}}$, where s^2 is the sample variance. Suppose we reject H_0 if and only if $|T| \geq t_0$.

- (a) Find t_0 so that the size of the test is 0.05.
- (b) Using the t_0 from part (a), is H_0 rejected for the following observations?

$$23.3, 3.5, -1.0, 40.3, 34.5, 9.6, 23.4, 18.5, 0.7, 9.0.$$

Solution

(a) Here, we have n=10, a small sample size. Recall that $T=\frac{\overline{X}-\mu}{s/\sqrt{n}}\sim t(n-1)$, where t(n-1) is the t-distribution with n-1 degree of freedom.

We need to find t_0 so that

$$\mathbb{P}(|T| \ge t_0|H_0) = 0.05$$

$$\iff \mathbb{P}(T \ge t_0|H_0) + \mathbb{P}(T \le -t_0|H_0) = 0.05$$

$$\iff 2\mathbb{P}(T \ge t_0|H_0) = 0.05$$

$$\iff \mathbb{P}(T \ge t_0|H_0) = 0.025$$

$$\iff t_0 = t_{0.025}(n-1) = t_{0.025}(9) = 2.262.$$

(b) The sample mean and sample variance for the observations are

$$\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 16.18, \quad s = \sqrt{\frac{1}{9} \sum_{i=1}^{10} (x_i - \overline{x})^2} \approx 14.2.$$

Thus, $t = \frac{16.18 - 10}{14.2/\sqrt{10}} = 1.376$. Since $|t| \ge t_0 = 2.262$, we will not reject H_0 .

3.5, -1,

Problem 2 Let X_1, \ldots, X_{10} be an i.i.d sample drawn from $\text{Exp}(\theta)$ where $\theta \in (0, \infty)$ is an unknown parameter. Consider a test for $H_0: \theta = 1$ against $H_1: \theta = \frac{1}{2}$ based on the test statistic $T = \sum_{i=1}^n X_i$.

- (a) Find the observed value t_0 of T such that the p-value $\mathbb{P}(T \leq t_0 | H_0)$ is equal to 0.05.
- (b) Using the t_0 from part (a), consider that test that rejects H_0 if and only if $T \leq t_0$. What is the size and the power of the test?
- (c) Using the test from part (b), is H_0 rejected for the following observations?

$$0.1, 0.2, 0.1, 0.3, 0.5, 0.01, 1.2, 0.05, 0.001, 0.1$$

You may use the following online calculator for Gamma distribution (Notation: the shape parameter β on the website is our θ for Gamma distribution). https://homepage.divms.uiowa.edu/~mbognar/applets/gamma.html

Solution (a) We know that the $\text{Exp}(\theta)$ distribution is the same as $\text{Gamma}(1,\theta)$. The MGF of $X \sim \Gamma(\alpha,\theta)$ is $M_X(t) = (1-\theta t)^{\alpha}$. Since $X_i \sim \Gamma(1,\theta)$ are i.i.d, we have $M_T(t) = M_{X_1 + \dots + X_{10}}(t) = \prod_{i=1}^{10} (1-\theta t)^{-1} = (1-\theta t)^{-10}$, and so $T = \sum_{i=1}^{10} X_i \sim \Gamma(10,\theta)$.

Thus, under H_0 , we have $T \sim \text{Gamma}(10,1)$. By the requirement in the problem, we want $\mathbb{P}(T \leq t_0|H_0) = 0.05$ and hence $F(t_0) = 0.05$ where F is the CDF of Gamma(10,1). Using a calculator or software, we find $t_0 \approx 5.425$.

(b) The size of the test is

$$\mathbb{P}(H_0 \text{ is rejected } \mid H_0) = \mathbb{P}(T \leq t_0 | H_0) = 0.05.$$

Under H_1 we have $T \sim \text{Gamma}(10, 1/2)$ and hence the power is

$$P(H_0 \text{ is rejected}|H_1) = P(T \le 5.425|H_1) = G(5.424),$$

where G is the CDF of Gamma(10, 1/2). Using a calculator or software, we see that the power is ≈ 0.643 .

(c) For the given observations,

$$t = \sum_{i=1}^{10} x_i = 2.561 < 5.425.$$

Therefore, H_0 is rejected.

Problem 3 Let X_1, \ldots, X_5 be an i.i.d sample drawn from Bernoulli(p) where $p \in [0, 1]$ is an unknown parameter. Consider the test for $H_0: p = 0.2$ against $H_1: p = 0.5$ which rejects H_0 if and only if $\sum_{i=1}^{5} X_i > 2$.

- (a) Compute the probabilities for Type-I and Type-II Errors
- (b) Find the size and the power of the test.

Solution Set $Y = \sum_{i=1}^{5} X_i$. We have $Y \sim \text{Binomial}(5, p)$.

(a) First, we calculate the probability for a Type-I Error:

$$\alpha = \mathbb{P}(H_0 \text{ is rejected } | H_0)$$

$$= \mathbb{P}(Y > 2 | p = 0.2)$$

$$= 1 - \mathbb{P}(Y = 0 | p = 0.2) - \mathbb{P}(Y = 1 | p = 0.2) - \mathbb{P}(Y = 2 | p = 0.2)$$

$$= 1 - 0.8^5 - 5 \times 0.2 \times 0.8^4 - {5 \choose 2} \times 0.2^2 \times 0.8^3$$

$$= 0.05792.$$

The probability for a Type-II Error is

$$\beta = \mathbb{P}(H_0 \text{ is not rejected } | H_1)$$

$$= \mathbb{P}(Y \le 2 | p = 0.5)$$

$$= \mathbb{P}(Y = 0 | p = 0.5) + \mathbb{P}(Y = 1 | p = 0.5) + \mathbb{P}(Y = 2 | p = 0.5)$$

$$= 0.5^5 + 5 \times 0.5 \times 0.5^4 + {5 \choose 2} \times 0.5^2 \times 0.5^3$$

$$= 0.5.$$

(b) The size of the test is $\alpha = 0.05792$. The power of the test is $1 - \beta = 0.5$.

Answer Keys. Q1(a) $t_0 = 2.262$ Q1(b) Do not reject H_0 Q2(a) $t_0 \approx 5.425$ Q2(b) 0.643 Q2(c) Reject H_0 Q3(a) 0.05792, 0.5 Q3(b) 0.05792, 0.5