Homicides by US Police: A Data Driven Analysis

0

Presented by:

Josh Hankel, Roopkanwal, Matthew Leech, Andy Armstrong, Lola Oye Balogun

#### Matters of Discussion



THE BIG QUESTIONS



CRISP METHODOLOGY



**VISUALIZATIONS** 



CONCLUSION & RECOMMENDATIONS

## The Big Questions

Predict likelihood if victims are armed, fleeing from police, where they live, and their reported threat level

The role of mental health on victims of US police shootings

Forecast the shooting trend

Cities and States that had the highest number of shooting instances

Public perspective on the current police shootings through text analysis +

O

+

C

# Impacts of the big questions on the society

 To understand what things are common amongst police shooting victims

## CRISP Methodology

#### **Business Understanding**

• What are we trying to achieve?

#### **Data Understanding**

• What are we working with?

#### **Data Preparation**

• How are we going to work with it?

#### Modelling

• What insights have we found?

#### **Evaluation**

• Do our insights answer the Questions?

#### Deployment

Conclusions







## Desired outputs and objectives

Goal: to understand what factors are most prevalent in the US police shootings

Methodology: use machine learning techniques, data analysis, statistical analysis and data visualization to find patterns and outliers in the data

Success: finding significant information, patterns, and outliers from the dataset



## Assessing the current situation

Inventory of Resources: People involved, software used, virtual environments

**Assumptions and Constraints** 

+

## **Data Dictionary**

| Term        | Definition                               | Term             | Definition                                   |
|-------------|------------------------------------------|------------------|----------------------------------------------|
| CSV         | Comma-separated                          | Record           | A record is another                          |
|             | values file type                         |                  | word for a row in a                          |
|             |                                          |                  | table                                        |
| ETL Process | Extract, Transform,                      | Integer          | A datatype that                              |
|             | Load process part of                     |                  | represents whole                             |
|             | the data preparation                     |                  | numbers                                      |
|             | stage                                    | -1               |                                              |
| Dataset     | A collection of data and                 | Float            | A datatype that                              |
|             | information                              |                  | represents numbers                           |
|             |                                          |                  | that contain decimals                        |
| Python      | A programming                            | Mean             | A statistical method                         |
|             | language used for                        |                  | meaning average                              |
| Datations   | computing  A kind of data item that      | Benchmark        | A statement                                  |
| Datatype    |                                          | Benchmark        | A statement or value                         |
|             | is defined by the values                 |                  | that other things are                        |
| Chaire a    | 11 0011 10110                            | Correlation      | compared to                                  |
| String      | A datatype that is<br>meant for word and | Correlation      | A relationship or connection between         |
|             | meant for word and<br>text values        |                  |                                              |
| Null Values | A term to describe                       | Machine Learning | two or more things                           |
| Null values |                                          | Machine Learning | An application of<br>Artificial Intelligence |
|             | missing values in data                   |                  | that allows the system                       |
|             |                                          |                  | to automatically learn                       |
|             |                                          |                  | and improve                                  |
| Coerce      | Takes values that are                    | Association Rule | A machine learning                           |
| Coerce      | not allowed for the                      | Mining           | technique that finds                         |
|             | datatype and sets them                   | IVIIIIIII        | correlation between                          |
|             | as 'NaN'                                 |                  | two or more items                            |
| Boolean     | A datatype that allows                   | Mixtend          | A Python library that is                     |
| Doorean     | only 1/0 values                          | Macerce          | used for day to day                          |
|             | 2,0 10.025                               |                  | science tasks                                |
| Lift        | A statistical term that                  | Apriori          | An algorithm used in                         |
|             | means the ratio of                       | ~~~~             | finding frequent item                        |
|             | target response divided                  |                  | sets for the purpose of                      |
|             | by the average                           |                  | association rule mining                      |
|             | response                                 |                  |                                              |
| Clustering  | A machine learning                       | SciKit/Sk-learn  | A Python library that is                     |
|             | method that divides                      |                  | used in Machine                              |
|             | and groups like data                     |                  | Learning                                     |

+

0

## Data Understanding

### Describing the Data

CSV and XLSX files used

~5000 records and 15 columns in CSV

Data gathered from public databases and from 100 largest police departments in US

#### Data Exploration

For the CSV file, contains Boolean values, integer (float and integer), and object (strings)

Each column contains ~5000 values

```
RangeIndex: 4895 entries, 0 to 4894
Data columns (total 16 columns):
    Column
                              Non-Null Count
                                             Dtype
    id
                                             int64
0
                              4895 non-null
                                             object
                              4895 non-null
    name
    date
                             4895 non-null
                                             object
                                             object
    manner_of_death
                             4895 non-null
                                             object
    armed
                             4895 non-null
                                             float64
                              4895 non-null
    age
                                             object
    gender
                             4895 non-null
                                             object
    race
                             4895 non-null
    city
                             4895 non-null
                                             object
    state
                                             object
                             4895 non-null
                                              object
    Country
                              4895 non-null
                                              bool
 11
    signs_of_mental_illness
                             4895 non-null
    threat level
                                              object
                              4895 non-null
13
    flee
                             4895 non-null
                                             object
                                              bool
    body camera
                             4895 non-null
    arms_category
                                             object
                          4895 non-null
dtypes: bool(2), float64(1), int64(1), object(12)
memory usage: 545.1+ KB
```

### Verifying the Quality

- 1 Data is clean
- 2 Data types needed to be changed for future modelling
- The below picture shows any null values in our data

# %% checking number of rows with null values

0

+

### **Explore Relationships**

1

Correlation seen between age and signs of mental illness



#### +

#### 0

## Data Preparation

#### Selecting the Data

 Main dataset retrieved from Kaggle; an opensource

• All data served a purpose

Some information used as is

 Some data needed to be changed and prepared for data modelling

 Data types also needed to be changed and formatted for visuals and text analysis

#### Cleaning and Formatting the Data

• Created new columns for association mining rules and cluster analysis

• Transformed categorical columns to Boolean array using one hot encoding

Converted date to datetime format

#### Integrating the Data

 Our original datasets were in .CSV and .XLSX files, so integration between platforms was easy

 Creation of a new dataset allows us to keep original data





## **Association Mining Rules**

Machine Learning Technique

Uses frequent itemsets to find the most common attributes in the dataset

Apriori algorithm is used to understand correlations

Correlation between the attributes "Guns, Threat Level: Attack, White, Black, and Not Fleeing

## **Association Mining Rules**

| antecedents                      | consequents                      | antecedent<br>support | consequent<br>support | support  | confidence | lift     |
|----------------------------------|----------------------------------|-----------------------|-----------------------|----------|------------|----------|
| (arms_category_Guns)             | (threat_level_attack)            | 0.564658              | 0.645557              | 0.450868 | 0.798480   | 1.236887 |
| <pre>(threat_level_attack)</pre> | (arms_category_Guns)             | 0.645557              | 0.564658              | 0.450868 | 0.698418   | 1.236887 |
| (race_White)                     | (flee_Not fleeing)               | 0.505822              | 0.627783              | 0.338509 | 0.669225   | 1.066012 |
| (race_White)                     | <pre>(threat_level_attack)</pre> | 0.505822              | 0.645557              | 0.335036 | 0.662359   | 1.026027 |
| (flee_Not fleeing)               | <pre>(threat_level_attack)</pre> | 0.627783              | 0.645557              | 0.410010 | 0.653108   | 1.011697 |
| <pre>(threat_level_attack)</pre> | (flee_Not fleeing)               | 0.645557              | 0.627783              | 0.410010 | 0.635127   | 1.011697 |
| (arms_category_Guns)             | (flee_Not fleeing)               | 0.564658              | 0.627783              | 0.352400 | 0.624096   | 0.994125 |

Scenario 1

| antecedents | consequents | antecedent<br>support | consequent<br>support | support  | confidence | lift     |
|-------------|-------------|-----------------------|-----------------------|----------|------------|----------|
| (Black)     | (Guns)      | 0.265169              | 0.564658              | 0.156486 | 0.590139   | 1.045126 |
| (White)     | (Guns)      | 0.505822              | 0.564658              | 0.297242 | 0.587641   | 1.040703 |

Scenario 2

## Clustering

Machine Learning Technique

Uses the SciKit/SKlearn Python library

Hierarchical clustering method to group like patterns in our data

Divide in East and West Coast



## Unstructured Text Analysis

Using machine learning to determine sentiment (Positive, Neutral, Negative)

Uses Azure Machine Learning add in for Excel

Able to generate sentiment from 2000 tweets in seconds

## Unstructured Text Analysis



| Row<br>Labels  | Number of<br>Tweets | Percentage of<br>Sentiment | Average Score of Sentiment |
|----------------|---------------------|----------------------------|----------------------------|
| Negative       | 1269                | 62.92%                     | 20.73%                     |
| Neutral        | 190                 | 9.42%                      | 51.89%                     |
| Positive       | 558                 | 27.66%                     | 71.80%                     |
| Grand<br>Total | 2017                | 100.00%                    | 37.79%                     |

+

0

## Evaluation



## **Shootings Forecast**



## **US Shootings Report**



## Mental Illness Report



## Report



## Report





#### **Police Shootings**

4.90K















#### +

### Conclusion & Insights

Association Rule Mining shows high likelihood of being white, being black, having a gun, being aggressive, and not fleeing were reported together in victims.

Clustering allowed helped to see distinct groups of east and west coast where shooting occurred, specifically in the east coast.

The creation of powerful visuals made in Power BI show important trends in race, gender, age, location, and many others.

Black population has the highest rate of killings per capita, victims who are armed are much more likely to be engaged by a police officer and when armed they were likely to have guns.

The number of shootings seems to be decreasing, while the population is increasing.

#### Recommendations

- A model of policing that focuses on respect, neutrality and transparency should be implemented to address biases
- Training and retraining of the police force in the area of deescalation and mental health training
- Measures to get guns out of the hands of criminals
- More community Policing to change public sentiment

## Questions

