Session 4 Sensors and Actuators

Common IoT system characteristics

- They can perceive one or more aspects of the world;
 i.e. they can hear, see, feel, smell or taste something.
- They can produce an action in the world; i.e. they can move, turn on, or activate something.
- They have a bit of 'intelligence', that uses sensed information to make decisions about when and how to produce an action.

Open-loop control system

Overview of Sensors

- A sensor is a device that detects and responds to some type of input from the physical environment.
- The specific input could be light, heat, motion, moisture, pressure, or any one of a great number of other environmental phenomena.
- The output is generally a signal that is converted to human-readable display at the sensor location or transmitted electronically over a network for reading or further processing.

smart phone sensors

Sensors in your smart phone

- A smart phone touch screen works through one of these sensor types:
 - capacitive
 - resistive
 - surface acoustic sensor.
- A typical smart phone contains many sensors of various types, and is generally internet capable. A few of the most common sensors include:
 - Magnetometer: Detects magnetic fields
 - Accelerometer: Detects the movement of the phone
 - **Gyroscope**: Detects a change in the phone's orientation

Actuators

• An actuator is a device that moves or controls some mechanism. An actuator turns a control signal into mechanical action such as an electric motor. Actuators may be based on hydraulic, pneumatic (thủy lực, khí nén), electric, thermal or mechanical means, but are increasingly being driven by software

Actuators in your house

- an actuator is a simple mechanism that moves or controls something – it makes things happen. We are surrounded by them in our daily lives, and would be a bit lost without them. Actuators operate in one of several ways. They are either:
 - Electrical
 - Pneumatic (uses air pressure)
 - Hydraulic (uses fluid pressure)
 - Mechanical
- Actuators take a source of power: electric current and convert the energy to create motion or control a system. Eg, they can make things move up or down, switch things on or off, or push or pull an object into a particular position - and they can do it all without human interference.

Sensors & Actuator examples

Interactions

- IoT solutions often involve machines talking to each other and making smart decisions based on software and/or machine learning.
- At other times, sensors and data analysis
 provide people with information to make good
 decisions and facilitate planning. The IoT can also
 increase the potential for collaboration by connecting
 remotely located people.
- These three different types of interactions are described by the following acronyms:
 - M2M: Machine to machine
 - M2P: Machine to people
 - **P2P**: People to people

Transducers

 Transducers: Materials or devices that have the property of converting one kind of energy into another.

Input and Output Transducers

PHYSICAL PHENOMENON	INPUT DEVICE	OUTPUT DEVICE
Temperature	Thermocouple Thermistor; Thermostat Resistive Temperature Detectors (RTDs)	Heater Fan Peltier pumps
Speed	Tacho-generator Reflective/Slotted Opto-coupler Doppler Effect Sensors	AC and DC Motors Stepper Motor Brake
Position	Potentiometer; Encoders Reflective/Slotted Opto-switch Linear Variable Differential Transformers (LVDTs)	Motor Solenoid Panel Meters

Input and Output Transducers (cont...)

PHYSICAL PHENOMENON	INPUT DEVICE	OUTPUT DEVICE
Sound	Carbon Microphone Piezo-electric Crystal	Bell Buzzer Loudspeaker
Force/Pressure	Strain Gauge Pressure Switch Load Cells	Lifts and Jacks Electromagnet Vibration
Light level	Light Dependant Resistors (LDRs) Photodiode Photo-transistor Solar Cell	Lights and Lamps LEDs and Displays Fibre Optics

Example: Water irrigation system

TinkerCad

 Tinkercad is an easy, browser-based 3D design and modeling tool for all. Tinkercad allows users to imagine anything and then design it in minutes.

www.tinkercad.com

Electronics Kits

- The Arduino Uno starter kit;
- Raspberry Pi (recommend the Pi 3 model B)
- Iduino's 37 in 1 Sensor Kit
- http://www.atdtech.com/index.php/vi/product/arduino-board
- https://youtu.be/RwH2CyXsE5c

ACTIVITY: Touchy-feely lamp

Practices

• Tinkercad® demo - sensor outputs