Amplifier Tutorial Sheet

Q1. The two stage CE amplifier in the figure has feedback from the second stage

to the first stage. Obtain an expression for the AC voltage v_e at the emitter of transistor Q_1 , in terms of the external emitter resistance r_e , the feedback resistance r_f and v - out, the AC voltage across R_L . Such an amplifier has variable gain, if r_f is a variable resistor. What should be range of r_f , if the voltage gain of this amplifier is to be in the range 10 - 100.

Q2. Calculate the input impedance of the CC amplifier in the above circuit and

 $v_{out}/v_g,$ where v_{out} is the voltage across the 100Ω load resistor.

Q3. Calculat the input impedance, output impedance and the net voltage gain

 v_{out}/v_g for the CE-CC cascade amplifier. The output voltage v_{out} is the AC voltage across the load resistor 270 Ω .

Q4. Calculate the input impedance, output impedance and the ratio v_{out}/v_g , of

this CC amplifier with a Darlington pair, where v_{out} is the voltage across the load resistor R_L .

Q5. Analyse the large signal operation of the CC amplifier in the above figure and

obtain its AC output compliance.

Q6. Calculate the quiescent collector current for the push-pull amplifier in the above

circuit. What is the DC power dissipation? What is the maximum AC output power possible?