http://itbookshub.com/

Digital Systems Solved MCQs

Part 2

MCQs

Multiple Choice Questions

Digital Systems Solved MCQs - Part 2

The gray code equivalent of (1011)2 is	
0	1101.
0	1010.
0	1110.
0	1111
	ich of the following decimal numbers has an exact representation oinary notation?
0	0.1
0	0.3
0	0.5
0	.07
Но	w many different Boolean functions of degree 4 are there ?
0	24
0	28
0	212
0	216
	d the two binary numbers 01101010, 00001000,10000001 and
0	10111
0	111110010
0	0101
0	None of Above

(2F	(2FAOC)16 is equivalent to	
0	(195 084) ₁₀	
O	(001011111010 0000 1100)2	
0	Both (A) and (B)	
О	None of these	
	ich one of the following is decimal value of a signed binary mber 1101010, if it is in 2 complement form ?	
0	- 42	
О	-22	
О	– 21	
О	-106	
0	A	
O	В	
О	C	
0	D	
In o	order to implement a n variable switching function, a MUX must	
O	2 ⁿ inputs	
О	2 ⁿ +1 inputs	
О	2 ⁿ⁻¹ inputs	
0	2 ⁿ -1 inputs	
The smallest integer than can be represented by an 8-bit number in 2's complement form is		
0	-256	
O	-128	

0	-127
0	0
	and G are Boolean functions of degree n. Then, which of the
TOI	lowing is true ?
0	A
О	В
\circ	C
0	D
Αla	atch is constructed using two cross-coupled
\circ	AND and OR gates
\circ	AND gates
\circ	NAND and NOR gates
0	NAND gates
The	e answer of the operation (10111)2*(1110)2 in hex equivalence is
\circ	150
O	241
O	142
0	101011110
Lo	gic gates with a set of input and outputs is arrangement of
\circ	Combinational circuit
0	Logic circuit
\circ	Design circuits
\circ	Register

How many 1's are present in the binary representation of $3 \times 512 + 7 \times 64 + 5 \times 8 + 3$	
C 8	
C 9	
C 10	
° 11	
The Gray code for decimal number 6 is equivalent to	
° 1100	
C 1001	
C 0101	
° 0110	
Binary number represented by the 0.1 decimal number is	
C 11010.01	
C 1011.11	
C .00011001	
C None of Above	
How many flip-flops are required to produce a divide-by-32 device?	
C 2	
C 5	
○ 6	
○ 4	
Match the following identities/laws to their corresponding name : (a) $x + x = x$ $x \cdot x = x$ i. Dominance (b) $x + 0 = x$ $x \cdot 1 = x$ ii. Absorption (c) $x + 1 = 1$	

```
x \cdot 0 = 0 iii. Idempotent
(d) x \cdot (x + y) = x iv. Identity
\circ
    a b c d
      iv i ii
      iii i ii
O iv
      iii ii i
○ iv
o iii iv ii i
The logic expression for the output of the circuit shown in the figure
is
A'C'+B'C'+CD
C AC'+BC'+C'D
ABC+C'D'
A'B'+B'C'+C'D'
The digital logic family which has the lowest propagation delay time
is
C ECL
○ TTL
CMOS
PMOS
12-bit 2's complement of -73.75 is
01001001.1100
11001001.1100
10110110.0100
10110110.1100
```

A binary ripple counter is required to count up to 16383. How many

flipflops are required ?	
0	16382
0	8191
0	512
0	14
Wh	at is decimal equivalent of BCD 11011.1100 ?
0	22.0
О	22.2
O	20.2
0	21.2
be	conpipeline syatem takes 50 ns process a task. The same task can processed in a six segment pipeline with a clock cycle of 10ns. eedup ratio of the pipeline for 100 tasks, is
0	2.76
О	3.76
О	4.76
0	5.76
8-b	it 1's complement form of –77.25 is
0	01001101.0100
O	01001101.0010
\circ	10110010.1011
0	10110010.1101
De	cimal Number represented by the .11100 binary number is
0	13.1875
\circ	10.625

0	0.875
О	0.03125
The output of a logic gate is 1 when all its inputs are at logic 0. the gate is either	
0	A NAND or an XOR
O	An OR or an XNOR
О	An AND or XOR
О	A NOR or an XNOR
Flo	ating point representation is used to store
0	Boolean values
O	Whole numbers
О	Real integers
0	Integers
Per	form Subtraction on binary numbers 1011 and 0110
O	10111
O	111110010
O	0101
0	None of Above
The primary quality of good working program in the earlier days of software development in the 1950s and 1960s were	
0	Maintainable
O	Readable
O	Fast
0	On budget and within time
The	e 2's complement of the number 1101101 is

0	0101110
0	0111110
0	0110010
0	0010011
AB	+(A+B)' is equivalent to
0	A?B
О	A+B
0	(A+B)A
0	(A+B)B
Th	e 2s compliment form (Use 6 bit word) of the number 1010 is
0	111100
О	110110
0	110111
0	1011
960	ge Shift Keying (PSK) Method is used to modulate digital signal at 00 bps using 16 level. Find the line signals and speed (i.e. edulation rate).
0	2400 bauds
O	1200 bauds
\circ	4800 bauds
0	9600 bauds
	e branch logic that provides making capabilities in the control unit
0	Controlled transfer
0	Conditional transfer
0	Unconditional transfer

In a	positive logic system, logic state 1 corresponds to
0	Positive voltage
\circ	Higher voltage level
\circ	Zero voltage level
0	Lower voltage level
Dat	a can be changed from special code to temporal code by using
О	Shift registers
\circ	Counters
\circ	Combinational circuits
\circ	A/D converters
Bin	ary number represented by the 255 decimal number is
0	100101
О	11111111
\circ	1111
\circ	101010101
The	highest noise margin is offered by
0	BICMOS
\circ	TTL
\circ	ECL
0	CMOS
The power dissipation of a flip-flop is 3 mW. The power dissipation of a digital system with 4 flip-flops is given by	
0	3 ⁴ mW
0	4 ³ mW
0	4/3 mW

0	12 mW
Wh	ich logic family dissipates the minimum power?
0	DTL
0	TTL
0	ECL
0	CMOS
What is the binary equivalent of the decimal number 368	
0	101110000
\circ	110110000
\circ	111010000
0	111100000
Binary number represented by the 37 decimal number is	
0	100101
О	11111111
0	1111
0	101010101
Lo	gic X-OR operation of (4ACO) _H & (B53F) _H results
0	AACB
\circ	0000
\circ	FFFF
0	ABCD
What is the transitive voltage for the voltage input of a CMOS operating from 10V supply ?	
0	1V

- 5V10V
- 20V

Which one of the following set of gates is best suited for parity checking and parity generation?

- C AND, OR, NOT
- O NAND, NOR
- © EX-OR, EX-NOR
- None of the above