Фотоупругость

Теоретические сведения

Рассмотрим малый элемент, вырезанный из прозрачной пластинки, находящийся в напряжённом состоянии. Стороны элемента параллельны главным напряжениям, и главные напряжения — $\sigma_{\!\scriptscriptstyle \chi}$ и $\sigma_{\!\scriptscriptstyle \chi}$.

Т.к. колебание гармоническое, поперечные перемещения представим в виде:

$$S = a \cos pt$$

где $p \sim$ частоте колебания, t — время.

Простое колебание в плоскости AO разложим на сумму колебаний с амплитудами в плоскостях Ox, Oy:

$$OB = \alpha \cos \alpha$$
, $OC = \alpha \sin \alpha$.

Соответствующие перемещения:

$$x = a \cos \alpha \cos pt, y = a \sin \alpha \sin pt.$$

Пусть V_{x}, V_{y} — скорости света в плоскостях Ox, Oy, h — толщина пластинки.

Тогда время, необходимое для прохождения пластинки:

$$t_1 = \frac{h}{V_x}, \ t_2 = \frac{h}{V_y}.$$

Колебания после прохода через пластинку:

$$x_1 = a \cos \alpha \cos p(t - t_1), \ y_1 = a \sin \alpha \cos p(t - t_2).$$

(наблюдается сдвиг фаз $t_2 - t_1$)

Из опытов: разность скоростей света \sim разности напряжений. С учетом того, что изменение скорости света мало:

$$t_2 - t_1 = \frac{h}{V_x} - \frac{h}{V_y} \approx \frac{h(V_x - V_y)}{V^2} = k(\sigma_x - \sigma_y)^2,$$

где V — скорость света при напряжении, равном 0.

Измерение сдвига фаз выполняется, подвергнув колебания интерференции в той же плоскости. Для этого сзади пластинки помещается второй поляризатор (анализатор).

Амплитуды составляющих колебаний, прошедших через анализатор:

$$OB_1 = OB \sin \alpha = \frac{a}{2} \sin 2\alpha$$
, $OC_1 = OC \cos \alpha = \frac{a}{2} \sin 2\alpha$.

Равнодействующее колебание:

$$\frac{a}{2}\sin 2\alpha \left[\cos p(t-t_1) - \cos p(t-t_2)\right] = a\sin 2\alpha \sin \left(p\frac{t_1-t_2}{2}\right)\sin p\left(t-\frac{t_1-t_2}{2}\right)$$

Следовательно, интенсивность является функцией сдвига фаз (и функцией разности главных напряжений).

Если $\sigma_x = \sigma_y$, то $t_1 = t_2$ и амплитуда равнодействующего колебания равна 0, т.е. свет через пластинку не проходит; на экране за анализатором получится тёмное

пятно. Затемнения получаются также, если $p\frac{t_1-t_2}{2}=n\pi,\;n$ — целое. Наибольшая интенсивность будет при $p\frac{t_1-t_2}{2}=n\pi+\frac{\pi}{2}.$

Нагруженние осуществляется гирей 10 кг, т.е. на образец действует сила 100 кг. В центральной части полосы — состояние чистого изгиба, когда только $\sigma_{\!\scriptscriptstyle \chi} \neq 0$ и

$$\sigma_{x} = 2P(a_2 - a_1) \frac{y}{bh^3},$$

где P — полное усилие, h и b — ширина и толщина пластинки, a_1 и a_2 — расстояния между верхними и нижними опорами.

Максимальное напряжение на границе $y = \pm \frac{h}{2}$:

$$\sigma_{x} = \frac{3}{2}P(a_2 - a_1)\frac{1}{bh^2}.$$

Далее проводится рабочее испытание. Осуществляется изгиб той же полосы силой, приложенной в центре. Тогда

$$\sigma_{x} = 6P\left(\frac{a_2}{2} - x\right) \frac{1}{bh^2}.$$

Максимальные напряжения:

$$\sigma_x = 3P\left(\frac{a_2}{2} - x\right) \frac{1}{bh^2}.$$

Экспериментальные данные

 $a_1=140$ мм, $a_2=215$ мм, h=29.8 мм, b=5.7 мм, $P=10\cdot mg$. 1-й опыт (тарировочный)

т, г	Δy , mm
2000	8
2400	6
1500	11
1100	14

2-й опыт (основной)

x, mm	$\sigma_{\!\scriptscriptstyle \chi}, \Delta \sigma$
0	13/2
5	11/2
20	9/2
35	7/2
45	5/2
60	3/2
70	1/2

Расчёт

Цена полосы:
$$\Delta \sigma = 3P(a_2 - a_1) \frac{\Delta y}{bh^3} = 30mg(a_2 - a_1) \frac{\Delta y}{bh^3}$$
.

Из данных тарировочного опыта: $\overline{\Delta\sigma}=2.28~{\rm H/mm^2}.$ Погрешность: $0.1~{\rm H/mm^2},$ среднеквадратичная: $0.13~{\rm H/mm^2}.$

т, г	Δy , mm	$\Delta\sigma$, Н/мм 2
2000	8	2.34
2400	6	2.10
1500	11	2.41
1100	14	2.25

Из данных основного опыта находим экспериментальную зависимость $\sigma_{x}(x)$. Вычисляем теоретическую зависимость $\sigma_{x}(x)$.

(при
$$m = 2900$$
 г)

$$\sigma_{x}(x) = \frac{3Pa_{2}}{2bh^{2}} - \frac{3P}{bh^{2}}x$$
 \Rightarrow $\sigma_{x}(x) = 15.61 - 0.145x$

x, mm	Эксперимент: $\sigma_{\!\scriptscriptstyle \chi}$, H/мм 2	Теория: $\sigma_{\!\scriptscriptstyle \chi}$, H/мм 2
0	14.8	18.12
5	12.52	17.27
20	10.25	14.72
35	7.97	12.17
45	5.69	10.47
60	3.42	7.92
70	1.14	6.22

Сопоставляем на графике теоретическое и экспериментальное значения.

