Микроэконометрика Модели с эндогенным переключением

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Мотивация

• Иногда исследователь наблюдает лишь одно из двух возможных состояний зависимой переменной.

- Иногда исследователь наблюдает лишь одно из двух возможных состояний зависимой переменной.
- Например, исследователь наблюдает либо зарплату индивида в состоянии, когда у него есть высшее образование, либо когда у него нет высшего образования.

- Иногда исследователь наблюдает лишь одно из двух возможных состояний зависимой переменной.
- Например, исследователь наблюдает либо зарплату индивида в состоянии, когда у него есть высшее образование, либо когда у него нет высшего образования.
- Механизм формирования зарплаты (отдача от стажа и т.д.) может варьироваться в зависимости от наличия у индивида высшего образования. При этом может различаться отдача как от наблюдаемых, так и от ненаблюдаемых характеристик.

- Иногда исследователь наблюдает лишь одно из двух возможных состояний зависимой переменной.
- Например, исследователь наблюдает либо зарплату индивида в состоянии, когда у него есть высшее образование, либо когда у него нет высшего образования.
- Механизм формирования зарплаты (отдача от стажа и т.д.) может варьироваться в зависимости от наличия у индивида высшего образования. При этом может различаться отдача как от наблюдаемых, так и от ненаблюдаемых характеристик.
- Идейно, эндогенное переключение проистекает из неслучайного отбора, поскольку имеется неслучайный отбор в те состояния (режимы), в которых наблюдается зависимая переменная.

- Иногда исследователь наблюдает лишь одно из двух возможных состояний зависимой переменной.
- Например, исследователь наблюдает либо зарплату индивида в состоянии, когда у него есть высшее образование, либо когда у него нет высшего образования.
- Механизм формирования зарплаты (отдача от стажа и т.д.) может варьироваться в зависимости от наличия у индивида высшего образования. При этом может различаться отдача как от наблюдаемых, так и от ненаблюдаемых характеристик.
- Идейно, эндогенное переключение проистекает из неслучайного отбора, поскольку имеется неслучайный отбор в те состояния (режимы), в которых наблюдается зависимая переменная.
- Например, неслучайный отбор в число тех, кто получил высшее образование, определяет переключение между двумя типами зарплаты: при условии наличия высшего образования и без него.

Формулировка

• Имеются два целевых уравнения и уравнение, задающее переключение между ними:

Целевое уравнение 1: $y_{1i}^* = x_i \beta_1 + \varepsilon_{1i}$

Целевое уравнение 0: $y_{0i}^* = x_i \beta_0 + \varepsilon_{0i}$

Уравнение переключения: $z_i^* = w_i \gamma + u_i$

Формулировка

• Имеются два целевых уравнения и уравнение, задающее переключение между ними:

Целевое уравнение 1:
$$y_{1i}^* = x_i\beta_1 + \varepsilon_{1i}$$

Целевое уравнение 0: $y_{0i}^* = x_i\beta_0 + \varepsilon_{0i}$
Уравнение переключения: $z_i^* = w_i\gamma + u_i$

• Наблюдаемое состояние целевого уравнения определяется эндогенным переключением, то есть зависит от z_i^* :

$$z_i = egin{cases} 1$$
, если $z_i^* \geq 0 \ 0$, в противном случае $y_i = egin{cases} y_{1i}^*$, если $z_i = 1 \ y_{0i}^*$, если $z_i = 0$

• Имеются два целевых уравнения и уравнение, задающее переключение между ними:

Целевое уравнение 1:
$$y_{1i}^* = x_i\beta_1 + \varepsilon_{1i}$$

Целевое уравнение 0: $y_{0i}^* = x_i\beta_0 + \varepsilon_{0i}$
Уравнение переключения: $z_i^* = w_i\gamma + u_i$

• Наблюдаемое состояние целевого уравнения определяется эндогенным переключением, то есть зависит от z_i^* :

$$z_i = egin{cases} 1$$
, если $z_i^* \geq 0 \ 0$, в противном случае $y_i = egin{cases} y_{1i}^*$, если $z_i = 1 \ y_{0i}^*$, если $z_i = 0$

• Например, y_{1i}^* и y_{0i}^* могут отражать зарплату индивида при условии наличия или отсутствия у него высшего образования соответственно, а $z_i=1$ в случаях, когда у индивида есть высшее образование. Различие в коэффициентах β_1 и β_0 отражает различную отдачу (влияние) от характеристик в зависимости от состояния. Например, отдача от стажа может быть выше для людей с высшим образованием.

Совместное распределение случайных ошибок

• Предположим, что совместное распределение случайных ошибок является многомерным нормальным.

Совместное распределение случайных ошибок

- Предположим, что совместное распределение случайных ошибок является многомерным нормальным.
- Совместное распределение случайных ошибок целевых уравнений ε_{1i} и ε_{0i} не идентифицируемо, поскольку мы наблюдаем значение целевой переменной лишь в одном из состояний.

Совместное распределение случайных ошибок

- Предположим, что совместное распределение случайных ошибок является многомерным нормальным.
- Совместное распределение случайных ошибок целевых уравнений ε_{1i} и ε_{0i} не идентифицируемо, поскольку мы наблюдаем значение целевой переменной лишь в одном из состояний.
- Однако, для оценивания параметров модели достаточно ввести допущение о совместном распределении этих случайных ошибок со случайной ошибкой уравнения переключения u_i :

$$(u_i,arepsilon_{ji})\sim\mathcal{N}\left(egin{bmatrix}0\0\end{bmatrix},egin{bmatrix}1&
ho_j\sigma_j\
ho_j&\sigma_j^2\end{bmatrix}
ight)$$
 , где $j\in\{0,1\}$

Совместное распределение случайных ошибок

- Предположим, что совместное распределение случайных ошибок является многомерным нормальным.
- Совместное распределение случайных ошибок целевых уравнений ε_{1i} и ε_{0i} не идентифицируемо, поскольку мы наблюдаем значение целевой переменной лишь в одном из состояний.
- Однако, для оценивания параметров модели достаточно ввести допущение о совместном распределении этих случайных ошибок со случайной ошибкой уравнения переключения u_i :

$$(u_i,arepsilon_{ji})\sim\mathcal{N}\left(egin{bmatrix}0\0\end{bmatrix},egin{bmatrix}1&
ho_j\sigma_j\
ho_j&\sigma_j^2\end{bmatrix}
ight)$$
 , где $j\in\{0,1\}$

• Дисперсия случайной ошибки σ_j^2 и ее корреляция со случайной ошибкой уравнения переключения ρ_j различаются в зависимости от состояния (режима) целевого уравнения, что, в частности, может быть обусловлено различием в отдаче (влиянии) от ненаблюдаемых характеристик (на целевой показатель).

Проблема оценивания

ullet Для краткости обозначим $ilde{z}_i = 2z_i - 1.$

Проблема оценивания

- ullet Для краткости обозначим $ilde{z}_i = 2z_i 1$.
- Поскольку y_i отражает лишь одно из наблюдаемых состояний, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{z_{i}i}^{*}|z_{i},w_{i},x_{i}\right)=x_{i}\beta_{z_{i}}+E\left(\varepsilon_{z_{i}i}|-\tilde{z}_{i}u_{i}\leq\tilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right),$$

Проблема оценивания

- Для краткости обозначим $\tilde{z}_i = 2z_i 1$.
- Поскольку y_i отражает лишь одно из наблюдаемых состояний, то:

 $E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{z_{i}i}^{*}|z_{i},w_{i},x_{i}\right)=x_{i}\beta_{z_{i}}+E\left(arepsilon_{z_{i}i}|- ilde{z}_{i}u_{i}\leq ilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right),$ где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{z_{i}i}|-\tilde{z}_{i}u_{i}\leq \tilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right)=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(\tilde{z}_{i}w_{i}\gamma\right)}=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\lambda_{i},$$

Проблема оценивания

- ullet Для краткости обозначим $ilde{z}_i=2z_i-1$.
- Поскольку y_i отражает лишь одно из наблюдаемых состояний, то:

 $E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{z_{i}i}^{*}|z_{i},w_{i},x_{i}\right)=x_{i}\beta_{z_{i}}+E\left(arepsilon_{z_{i}i}|- ilde{z}_{i}u_{i}\leq ilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right),$ где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{z_{i}i}|-\tilde{z}_{i}u_{i}\leq\tilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right)=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(\tilde{z}_{i}w_{i}\gamma\right)}=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\lambda_{i},$$

ullet В результате получаем регрессионные уравнения (где $j\in\{0,1\}$ и $z_i=j$):

$$y_{ji}^* = x_i \beta_j + \tilde{z}_i \rho_j \sigma_j \lambda_i + v_{ji},$$

Проблема оценивания

- Для краткости обозначим $\tilde{z}_i = 2z_i 1$.
- Поскольку y_i отражает лишь одно из наблюдаемых состояний, то:

 $E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{z_{i}i}^{*}|z_{i},w_{i},x_{i}\right)=x_{i}\beta_{z_{i}}+E\left(arepsilon_{z_{i}i}|- ilde{z}_{i}u_{i}\leq ilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right),$ где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{z_{i}i}|-\tilde{z}_{i}u_{i}\leq \tilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right)=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(\tilde{z}_{i}w_{i}\gamma\right)}=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\lambda_{i},$$

ullet В результате получаем регрессионные уравнения (где $j\in\{0,1\}$ и $z_i=j$):

$$y_{ji}^* = x_i \beta_j + \tilde{z}_i \rho_j \sigma_j \lambda_i + v_{ji}, \qquad v_{ji} = \varepsilon_{ji} - (2j-1)\rho_j \sigma_j \lambda_i \implies E(v_{ji}|x_i, w_i) = 0$$

Проблема оценивания

- ullet Для краткости обозначим $ilde{z}_i=2z_i-1$.
- Поскольку y_i отражает лишь одно из наблюдаемых состояний, то:

$$E\left(y_{i}|w_{i},x_{i}\right)=E\left(y_{z_{i}i}^{*}|z_{i},w_{i},x_{i}\right)=x_{i}\beta_{z_{i}}+E\left(arepsilon_{z_{i}i}|- ilde{z}_{i}u_{i}\leq ilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right),$$
 где по свойствам усеченного двумерного нормального распределения:

$$E\left(\varepsilon_{z_{i}i}|-\tilde{z}_{i}u_{i}\leq\tilde{z}_{i}w_{i}\gamma,w_{i},x_{i}\right)=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\frac{\phi\left(w_{i}\gamma\right)}{\Phi\left(\tilde{z}_{i}w_{i}\gamma\right)}=\tilde{z}_{i}\rho_{z_{i}}\sigma_{z_{i}}\lambda_{i},$$

ullet В результате получаем регрессионные уравнения (где $j\in\{0,1\}$ и $z_i=j$):

$$y_{ji}^* = x_i \beta_j + \tilde{z}_i \rho_j \sigma_j \lambda_i + v_{ji}, \qquad v_{ji} = \varepsilon_{ji} - (2j-1)\rho_j \sigma_j \lambda_i \implies E(v_{ji}|x_i, w_i) = 0$$

• Без учета λ_i при $\rho \neq 0$ и наличии корреляции между λ_i и x_i МНК оценки коэффициентов β_j окажутся несостоятельными вследствие проблемы пропущенной переменной.

Двухшаговая процедура

• Процедура оценивания аналогична двухшаговому методу Хекмана и производится по отдельности для каждого из целевых уравнений.

- Процедура оценивания аналогична двухшаговому методу Хекмана и производится по отдельности для каждого из целевых уравнений.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(\tilde{z_i} w_i \hat{\gamma} \right)$. Этот шаг совпадает для обоих уравнений.

- Процедура оценивания аналогична двухшаговому методу Хекмана и производится по отдельности для каждого из целевых уравнений.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(\tilde{z_i} w_i \hat{\gamma} \right)$. Этот шаг совпадает для обоих уравнений.
 - Второй шаг: В регрессионное уравнение для y_{ji}^* подставляется $\hat{\lambda_i}$ в качестве дополнительного регрессора с коэффициентом $\rho_j\sigma_j$. Затем β_j и $\rho_j\sigma_j$ оцениваются при помощи МНК по выборке из наблюдений, для которых $z_i=j$.

- Процедура оценивания аналогична двухшаговому методу Хекмана и производится по отдельности для каждого из целевых уравнений.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(\tilde{z_i} w_i \hat{\gamma} \right)$. Этот шаг совпадает для обоих уравнений.
 - Второй шаг: В регрессионное уравнение для y_{ji}^* подставляется $\hat{\lambda_i}$ в качестве дополнительного регрессора с коэффициентом $\rho_j\sigma_j$. Затем β_j и $\rho_j\sigma_j$ оцениваются при помощи МНК по выборке из наблюдений, для которых $z_i=j$.
- Оценивание параметров $\hat{\sigma}_j^2$ и $\hat{\rho}_j$, а также асимптотической ковариационной матрицы оценок коэффициентов (с учетом гетероскедастичности и оценок первого шага) осуществляется по аналогии с двухшаговой процедурой Хекмана.

- Процедура оценивания аналогична двухшаговому методу Хекмана и производится по отдельности для каждого из целевых уравнений.
- Двухшаговая процедура оценивания:
 - Первый шаг: при помощи пробит модели оцениваются параметры γ . В силу инвариантности ММП оценок состоятельная оценка λ_i рассчитывается как $\hat{\lambda_i} = \lambda_i \left(\tilde{z_i} w_i \hat{\gamma} \right)$. Этот шаг совпадает для обоих уравнений.
 - Второй шаг: В регрессионное уравнение для y_{ji}^* подставляется $\hat{\lambda_i}$ в качестве дополнительного регрессора с коэффициентом $\rho_j\sigma_j$. Затем β_j и $\rho_j\sigma_j$ оцениваются при помощи МНК по выборке из наблюдений, для которых $z_i=j$.
- Оценивание параметров $\hat{\sigma}_j^2$ и $\hat{\rho}_j$, а также асимптотической ковариационной матрицы оценок коэффициентов (с учетом гетероскедастичности и оценок первого шага) осуществляется по аналогии с двухшаговой процедурой Хекмана.
- Эффективность оценок данного метода в существенной степени зависит от наличия ограничений исключения.

Метод максимального правдоподобия

• Функция правдоподобия:

$$L(\beta_1, \beta_0, \rho_1, \rho_0, \sigma_1, \sigma_0; y, z | X, W) = \prod_{i:z_i=1} f_{y_i|x_i, w_i}(y_i) P(z_i = 1 | y_i, x_i, w_i) \prod_{i:z_i=0} f_{y_i|x_i, w_i}(y_i) P(z_i = 0 | y_i, x_i, w_i) =$$

Метод максимального правдоподобия

• Функция правдоподобия:

$$L(\beta_{1}, \beta_{0}, \rho_{1}, \rho_{0}, \sigma_{1}, \sigma_{0}; y, z | X, W) =$$

$$= \prod_{i:z_{i}=1} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 1 | y_{i}, x_{i}, w_{i}) \prod_{i:z_{i}=0} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 0 | y_{i}, x_{i}, w_{i}) =$$

$$= \prod_{i=1}^{n} \frac{1}{\sigma_{z_{i}}} \phi\left(\frac{y_{i} - x_{i}\beta_{z_{i}}}{\sigma_{z_{i}}}\right) \Phi\left(\frac{\rho_{z_{i}}(y_{i} - x_{i}\beta_{z_{i}}) / \sigma_{z_{i}} + w_{i}\gamma}{\tilde{z}_{i}\sqrt{1 - \rho_{z_{i}}^{2}}}\right)$$

• Функция правдоподобия:

$$L(\beta_{1}, \beta_{0}, \rho_{1}, \rho_{0}, \sigma_{1}, \sigma_{0}; y, z | X, W) =$$

$$= \prod_{i:z_{i}=1} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 1 | y_{i}, x_{i}, w_{i}) \prod_{i:z_{i}=0} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 0 | y_{i}, x_{i}, w_{i}) =$$

$$= \prod_{i=1}^{n} \frac{1}{\sigma_{z_{i}}} \phi\left(\frac{y_{i} - x_{i}\beta_{z_{i}}}{\sigma_{z_{i}}}\right) \Phi\left(\frac{\rho_{z_{i}}(y_{i} - x_{i}\beta_{z_{i}}) / \sigma_{z_{i}} + w_{i}\gamma}{\tilde{z}_{i}\sqrt{1 - \rho_{z_{i}}^{2}}}\right)$$

• Преимущества и недостатки двухшаговой и ММП процедур оценивания аналогичны тем, что имеют место для модели с неслучайным отбором.

• Функция правдоподобия:

$$L(\beta_{1}, \beta_{0}, \rho_{1}, \rho_{0}, \sigma_{1}, \sigma_{0}; y, z | X, W) =$$

$$= \prod_{i:z_{i}=1} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 1 | y_{i}, x_{i}, w_{i}) \prod_{i:z_{i}=0} f_{y_{i}|x_{i},w_{i}}(y_{i})P(z_{i} = 0 | y_{i}, x_{i}, w_{i}) =$$

$$= \prod_{i=1}^{n} \frac{1}{\sigma_{z_{i}}} \phi\left(\frac{y_{i} - x_{i}\beta_{z_{i}}}{\sigma_{z_{i}}}\right) \Phi\left(\frac{\rho_{z_{i}}(y_{i} - x_{i}\beta_{z_{i}}) / \sigma_{z_{i}} + w_{i}\gamma}{\tilde{z}_{i}\sqrt{1 - \rho_{z_{i}}^{2}}}\right)$$

- Преимущества и недостатки двухшаговой и ММП процедур оценивания аналогичны тем, что имеют место для модели с неслучайным отбором.
- Для каждого из уравнений процедура тестирования наличия неслучайного отбора сводится к проверке гипотез $H_0: \rho_j \sigma_j = 0$ и $H_0: \rho_j = 0$ для двухшаговой процедуры и ММП соответственно. Уравнение, в котором данная нулевая гипотеза не отвергается, можно оценить при помощи обычного МНК.

Предельные эффекты

• Предельный эффект переменной x_{ik} на обычное математическое ожидание имеет такой же вид, как в случае с обычной линейной регрессией:

$$rac{\partial E\left(y_{jj}^{*}|x_{i}
ight)}{\partial x_{ik}}=eta_{jk},$$
 где $j\in\{0,1\}.$

• Предельный эффект переменной x_{ik} на обычное математическое ожидание имеет такой же вид, как в случае с обычной линейной регрессией:

$$rac{\partial \mathcal{E}\left(y_{ji}^{*}|x_{i}
ight)}{\partial x_{ik}}=eta_{jk},\,$$
где $j\in\{0,1\}.$

• Предельный эффект на условное математическое ожидание рассчитывается как:

$$\frac{\partial E\left(y_{ji}^{*}|z_{i},x_{i},w_{i}\right)}{\partial x_{ik}} = \beta_{jk} - \tilde{z}_{i}\gamma_{*}\rho_{j}\sigma_{j}\delta\left(\tilde{z}_{i}w_{i}\gamma\right),$$
$$\delta(a) = \lambda\left(a\right)\left(\lambda\left(a\right) + a\right),$$

где γ_* является коэффициентом при x_{ki} в уравнении отбора, если x_{ki} входит в w_i . В противном случае $\gamma_*=0$.

Средний эффект воздействия Формулировка

ullet Эффект воздействия z_i на целевую переменную i-го индивида определяется как:

$$\mathsf{TE}_i = y_{1i} - y_{0i}$$

Средний эффект воздействия Формулировка

ullet Эффект воздействия z_i на целевую переменную i-го индивида определяется как:

$$\mathsf{TE}_i = y_{1i} - y_{0i}$$

• Поскольку на практике мы наблюдаем либо y_{1i} , либо y_{0i} , то мы можем оценить лишь условный средний эффект воздействия:

$$\widehat{\mathsf{CATE}}_i = E(y_{1i}|x_i) - E(y_{0i}|x_i) = x_i\beta_1 - x_i\beta_0$$

Средний эффект воздействия

Формулировка

ullet Эффект воздействия z_i на целевую переменную i-го индивида определяется как:

$$\mathsf{TE}_i = y_{1i} - y_{0i}$$

• Поскольку на практике мы наблюдаем либо y_{1i} , либо y_{0i} , то мы можем оценить лишь условный средний эффект воздействия:

$$\widehat{\mathsf{CATE}}_i = E(y_{1i}|x_i) - E(y_{0i}|x_i) = x_i\beta_1 - x_i\beta_0$$

• Усредняя САТЕ можно получить оценку среднего эффекта воздействия:

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{CATE}}_{i} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \beta_{1} - x_{i} \beta_{0}$$

Средний эффект воздействия

Формулировка

ullet Эффект воздействия z_i на целевую переменную i-го индивида определяется как:

$$\mathsf{TE}_i = y_{1i} - y_{0i}$$

• Поскольку на практике мы наблюдаем либо y_{1i} , либо y_{0i} , то мы можем оценить лишь условный средний эффект воздействия:

$$\widehat{\mathsf{CATE}}_i = E(y_{1i}|x_i) - E(y_{0i}|x_i) = x_i\beta_1 - x_i\beta_0$$

• Усредняя САТЕ можно получить оценку среднего эффекта воздействия:

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{CATE}}_{i} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \beta_{1} - x_{i} \beta_{0}$$

• Наконец, можно также оценить эффект воздействия на подвергшихся воздействию:

$$\mathsf{ATET} = \mathsf{E}(y_{1i}|z_i = 1) - \mathsf{E}(y_{0i}|z_i = 1) = \frac{1}{n}\sum_{i=1}^n x_i\left(\beta_1 - \beta_0\right) + \left(\rho_1\sigma_1 - \rho_0\sigma_0\right)\frac{\phi\left(w_i\gamma\right)}{\Phi\left(w_i\gamma\right)}$$

Полупараметрическое оценивание

Краткие комментарии

• Полупараметрическое оценивание осуществляется по аналогии с моделью с неслучайным отбором.

Полупараметрическое оценивание

Краткие комментарии

- Полупараметрическое оценивание осуществляется по аналогии с моделью с неслучайным отбором.
- В частности, для оценивания можно применять метод Ньюи и метод Галланта и Нички.

Модель с эндогенным бинарным регрессором Формулировка

• На практике в исследованиях часто предполагается, что уравнения различаются лишь константами.

Модель с эндогенным бинарным регрессором Формулировка

- На практике в исследованиях часто предполагается, что уравнения различаются лишь константами.
- Это экивалентно существованию одного уравнения:

$$y_i = x_i \beta + \alpha z_i + \varepsilon_i$$

где эндогенность z_i учитывается за счет корреляции между u_i и ε_i .

Модель с эндогенным бинарным регрессором Формулировка

- На практике в исследованиях часто предполагается, что уравнения различаются лишь константами.
- Это экивалентно существованию одного уравнения:

$$y_i = x_i \beta + \alpha z_i + \varepsilon_i,$$

где эндогенность z_i учитывается за счет корреляции между u_i и ε_i .

• Оценивание таких моделей по аналогии осуществляется при помощи метода максимального правдоподобия или с помощью двухшаговой процедуры, а САТЕ, АТЕ и АТЕТ, как и сам эффект воздействия, будут совпадать с α .

- На практике в исследованиях часто предполагается, что уравнения различаются лишь константами.
- Это экивалентно существованию одного уравнения:

$$y_i = x_i \beta + \alpha z_i + \varepsilon_i,$$

где эндогенность z_i учитывается за счет корреляции между u_i и ε_i .

- Оценивание таких моделей по аналогии осуществляется при помощи метода максимального правдоподобия или с помощью двухшаговой процедуры, а САТЕ, АТЕ и АТЕТ, как и сам эффект воздействия, будут совпадать с α .
- Выбрать между данной моделью и моделью с эндогенным переключением можно при помощи LR теста, проверив гипотезу о том, что $\rho_0 = \rho_1$, $\sigma_0 = \sigma_1$, а также о том, что все коэффициенты β_1 и β_0 , за исключением константы, совпадают.

Неслучайный отбор и эндогенное переключение

 Для наглядности рассмотрим модель, в которой одновременно фигурируют и неслучайный отбор, и эндогенное переключение:

Целевое уравнение 1:
$$y_{1i}^* = x_i\beta_1 + \varepsilon_{1i}$$
 Целевое уравнение 0: $y_{0i}^* = x_i\beta_0 + \varepsilon_{0i}$ Уравнение отбора: $z_{0i}^* = w_{0i}\gamma + u_{0i}$ Уравнение переключения: $z_{1i}^* = w_{1i}\gamma + u_{1i}$ $z_{0i} = \begin{cases} 1, \text{ если } z_{0i}^* \geq 0 \\ 0, \text{ в противном случае} \end{cases}$ $z_{1i} = \begin{cases} 1, \text{ если } z_{1i}^* \geq 0 \\ 0, \text{ в противном случае} \end{cases}$ $y_i = \begin{cases} y_{0i}, \text{ если } z_{0i} = 1 \text{ и } z_{1i} = 0 \\ y_{1i}, \text{ если } z_{0i} = 1 \text{ и } z_{1i} = 1 \end{cases}$ не наблюдается, в противном случае

Неслучайный отбор и эндогенное переключение

 Для наглядности рассмотрим модель, в которой одновременно фигурируют и неслучайный отбор, и эндогенное переключение:

Целевое уравнение 1:
$$y_{1i}^* = x_i\beta_1 + \varepsilon_{1i}$$
 Целевое уравнение 0: $y_{0i}^* = x_i\beta_0 + \varepsilon_{0i}$ Уравнение отбора: $z_{0i}^* = w_{0i}\gamma + u_{0i}$ Уравнение переключения: $z_{1i}^* = w_{1i}\gamma + u_{1i}$ $z_{0i} = \begin{cases} 1, \text{ если } z_{0i}^* \geq 0 \\ 0, \text{ в противном случае} \end{cases}$ $z_{1i} = \begin{cases} 1, \text{ если } z_{1i}^* \geq 0 \\ 0, \text{ в противном случае} \end{cases}$ $y_i = \begin{cases} y_{0i}, \text{ если } z_{0i} = 1 \text{ и } z_{1i} = 0 \\ y_{1i}, \text{ если } z_{0i} = 1 \text{ и } z_{1i} = 1 \end{cases}$ не наблюдается, в противном случае

• Оценивание этой системы возможно с помощью метода максимального правдоподобия или двухшаговой процедуры.

Порядковый и мультиномиальный неслучайный отбор и эндогенное переключение

• Иногда целевых уравнений и латентных переменных может быть несколько:

$$y_{ji} = x_i \beta_j + \varepsilon_{ji}$$
 $z_{ji}^* = w_{ji} \gamma_j + u_{ji}$ $j \in \{0, ..., J-1\}$

• Порядковый и множественный отборы обычно выглядит как (соответственно):

$$y_i = \begin{cases} y_{0i}, \text{ если } z_{ji}^* < c_1 \\ y_{1i}, \text{ если } c_2 > z_{ji}^* \geq c_1 \\ \vdots \\ y_{(J-1)i}, \text{ если } z_{ji}^* \geq c_{J-1} \end{cases} \qquad y_i = \begin{cases} y_{0i}, \text{ если } z_{0i}^* \geq y_{1i} = z_{1i}^*, ..., z_{0i}^* \geq z_{(J-1)i}^* \\ y_{1i}, \text{ если } z_{1i}^* \geq z_{0i}^*, ..., z_{1i}^* \geq z_{(J-1)i}^* \\ \vdots \\ y_{(J-1)i}, \text{ если } z_{(J-1)i}^* \geq z_{0i}^*, ..., z_{(J-1)i}^* \geq z_{(J-2)i}^* \end{cases}$$
 Где $c_1 > c_2 > ... > c_{J-1}$.

Порядковый и мультиномиальный неслучайный отбор и эндогенное переключение

• Иногда целевых уравнений и латентных переменных может быть несколько:

$$y_{ji} = x_i \beta_j + \varepsilon_{ji}$$
 $z_{ji}^* = w_{ji} \gamma_j + u_{ji}$ $j \in \{0, ..., J-1\}$

• Порядковый и множественный отборы обычно выглядит как (соответственно):

$$y_i = \begin{cases} y_{0i}, \text{ если } z_{ji}^* < c_1 \\ y_{1i}, \text{ если } c_2 > z_{ji}^* \geq c_1 \\ \vdots \\ y_{(J-1)i}, \text{ если } z_{ji}^* \geq c_{J-1} \end{cases} \qquad y_i = \begin{cases} y_{0i}, \text{ если } z_{0i}^* \geq y_{1i} = z_{1i}^*, ..., z_{0i}^* \geq z_{(J-1)i}^* \\ y_{1i}, \text{ если } z_{1i}^* \geq z_{0i}^*, ..., z_{1i}^* \geq z_{(J-1)i}^* \\ \vdots \\ y_{(J-1)i}, \text{ если } z_{(J-1)i}^* \geq z_{0i}^*, ..., z_{(J-1)i}^* \geq z_{(J-2)i}^* \end{cases}$$
 Где $c_1 > c_2 > ... > c_{J-1}$.

• Например, порядковый отбор возникает, когда уравнения зарплаты y_{ji} различаются в зависимости от уровня образования (базовое, бакалавриат и магистратура), а множественный — когда в зависимости от типа (гуманитарное, техническое, медицинское).