KRIPTOGRAFI KLASIK

KULIAH KRIPTOGRAFI DAN KEAMANAN JARINGAN

OUTLINE

- Caesar cipher
- Affine cipher
- Playfair cipher
- Hill cipher
- Vigenère cipher
- Transposition technique

KONSEP PENYANDIAN KLASIK

- Plaintext dipandang sebagai sekuens dari elemen (misalnya berupa bit atau karakter)
- Substitution cipher: mengganti setiap elemen pada plaintext dengan elemen yang lain.
 - Contoh: penyandian Caesar
- Transposition (permutation) cipher: menyusun kembali urutan elemen-elemen pada plaintext.
 - Contoh: penyandian transposisi baris
- Product cipher (super enkripsi): menggunakan beberapa kali substitusi dan transposisi
 - Juga digunakan dalam kriptografi modern
 - Tujuan: meningkatkan tingkat keamanan

1. SUBSTITUTION CIPHER

 Penyandian ini memetakan setiap huruf plaintext ke satu atau lebih huruf lainnya.

• 2 tipe:

- monoalphabetic cipher: substitusi tetap ke setiap elemen di dalam alfabet
 - Contoh: Caesar cipher
- polyalphabetic cipher: setiap huruf plaintext dapat dipetakan ke huruf-huruf yang berbeda, tergantung pada kuncinya.
 - Contoh: Vigenere cipher, Vernam cipher, one-time pad

SHIFT CIPHER DAN CAESAR CIPHER

- Caesar cipher: mengganti setiap huruf pada alfabet dengan huruf ketiga berikutnya pada alfabet.
 - Contoh:

Secara matematis, petakan huruf ke angka:

Algoritma enkripsi:

$$C = E(3, p) = (p + 3) \mod 26$$

- Secara umum disebut sebagai shift cipher
 - Algoritma enkripsi: $C = E(k, p) = (p + k) \mod 26$
 - Algoritma dekripsi: p = D(k, C) = (C k) mod 26

Caesar wheel

Brute-force analysis dapat dilakukan dengan mudah:

- Algoritma enkripsi dan dekripsi diketahui.
- Hanya terdapat 25 kunci
- Bahasa dari plaintext diketahui
 - Perbaikan: penggunaan ZIP sebagai plaintext
- Perbaikan: suatu kunci (berupa kata) digunakan.
 - Bagaimana caranya?

1A. MONOALPHABETIC CIPHER

- Substitusi dengan huruf alfabet yang lain.
 - Shift cipher merupakan salah satu contoh dari monoalphabetic cipher
- Petakan setiap huruf plaintext ke huruf ciphertext yang sebenarnya merupakan alfabet dengan urutan random :

Plain letters: abcdefghijklmnopgrstuvwxyz

Cipher letters: DKVQFIBJWPESCXHTMYAUOLRGZN

- Akan terdapat 26! Kemungkinan kunci
- Masalah: karakteristik bahasa
- Dapat dipecahkan dengan analisis frekuensi:
 - Frekuensi huruf
 - Frekuensi bigram (kombinasi 2 huruf)

STATISTIK BAHASA DAN KRIPTOANALISIS

- Bahasa manusia tidak random.
- Huruf-huruf tidak digunakan dengan frekuensi yang sama.
- Dalam bahasa Inggris, E adalah huruf yang paling banyak dipakai, diikuti T, A, O, dst.
- Huruf-huruf lain seperti Z, J, K, Q, X jarang digunakan.
- Terdapat tabel frekuensi untuk huruf tunggal, ganda, dan triple dari berbagai macam bahasa

FREKUENSI HURUF BAHASA INGGRIS

- Statistik untuk huruf ganda dan triple (dari yang paling sering digunakan)
 - Huruf ganda :
 th he an in er re es on, ...
 - Triple letters:
 the and ent ion tio for nde, ...

KRIPTOANALISIS UNTUK MONOALPHABETIC CIPHER

- Monoalphabetic substitution tidak mengubah frekuensi relatif dari huruf-huruf
- Untuk melakukan serangan:
 - Hitung frekuensi huruf pada ciphertext
 - Bandingkan distribusi ini dengan distribusi yang sudah diketahui

CONTOH KRIPTOANALISIS

Ciphertext yang diberikan:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Hitung frekuensi relatif huruf pada ciphertext

P	13.33	H 5.83	F 3.33	B 1.6	7 C 0.00
Z	11.67	D 5.00	W 3.3	3 G 1.6	7 K 0.00
S	8.33	E 5.00	Q 2.5	0 Y 1.6	7 L 0.00
U	8.33	V 4.17	T 2.5	8.0 I O.	N 0.00
0	7.50	X 4.17	A 1.6	7 J 0.8	3 R 0.00
M	6.67				

- Tebakan {P, Z} = {e, t}
- Dari huruf ganda, ZW memiliki frekuensi tertinggi, maka dapat ditebak ZW = th sehingga ZWP = the
- Dengan trial and error, diperoleh:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

PERBAIKAN UNTUK MONOALPHABETIC CIPHER

- Penyandian substitusi homofon: 1 huruf dapat diganti dengan sejumlah cipher, dipakai secara bergantian.
- Untuk meningkatkan efisiensi:
 - Multiple letter encryption, misal: playfair cipher

CIPHER SUBSTITUSI HOMOFONIK (HOMOPHONIC SUBSTITUTION CIPHER)

- Merupakan perbaikan dari penyandian monoalfabetik
- Setiap huruf plainteks dipetakan ke dalam salah satu huruf atau pasangan huruf ciphertext yang mungkin.
- Tujuan: menyembunyikan hubungan statistik antara plainteks dengan cipherteks
- Fungsi ciphering memetakan satu-ke-banyak (one-to-many).

```
Misal: huruf E \rightarrow AB, TQ, YT, UX (homofon)
huruf B \rightarrow EK, MF, KY (homofon)
```

 Contoh: Sebuah teks dengan frekuensi kemunculan huruf sbb:

 Huruf E muncul 13 % → dikodekan dengan 13 huruf homofon

Hanne													
Huruf													
Plainteks	Pilihan untuk unit cipherteks												
A	BU	CP	AV	AH	BT	BS	CQ						
В	AT												
C	DL	BK	ΑU										
D	BV	DY	DM	ΑI									
E	DK	CO	AW	BL	AA	CR	BM	CS	AF	AG	BO	BN	BE
F	BW	CM	CN										
G	DN	$_{\mathrm{BJ}}$											
Н	AS	CL	CK										
I	DJ	BI	AX	CJ	AB	BP	CU	CT					
J	BX												
K	DI												
L	AR	BH	CI	AJ									
M	DH	BG	AY										
N	BY	DG	DF	CH	AC	BR	DU	DT					
O	DZ	BF	DX	AK	CG	BQ	DR						
P	BZ	DE	ΑZ										
Q	DD												
R	AQ	DC	DQ	AL	CE	CF	CV	DS					
S	AP	AN	AO	CD	DW	DV							
T	CB	DB	DP	CC	AD	CY	CW	CX	AE				
U	CA	AM	BA										
V	BB												
W	CZ												
X	BD												
Y	DO	DA											
Z	BC												

- Unit ciphertext mana yang dipilih di antara semua homofon ditentukan secara acak.
- Contoh:

Plainteks: KRIPTO

Cipherteks: DI CE AX AZ CC DX

- Enkripsi: satu-ke-banyak
- Dekripsi: satu-ke-satu
- Dekripsi menggunakan tabel homofon yang sama.

AFFINE CIPHER

- Merupakan bentuk khusus dari substitution cipher
- Menggunakan affine function:

$$f(x) = (ax + b) \mod 26$$
, di mana a, $b \in Z_{26}$

Catatan: jika a = 1, akan menjadi shift cipher

- Agar dekripsi bisa dilakukan, f(x) harus merupakan fungsi injektif. Ini dipenuhi jika a relatif prima terhadap 26.
- Affine cipher:
 - Enkripsi: C = E(P) = (aP + b) mod 26, di mana a, b ∈ Z₂₆, dan fpb(a, 26) = 1
 - P adalah urutan huruf plaintext pada alfabet, C adalah urutan dari huruf ciphertext di alfabet.
 - Dekripsi: $P = E(C) = a^{-1} (C b) \mod 26$
 - a-1 adalah invers perkalian dari a pada operasi (mod 26).

CIPHER SUBSTITUSI POLIGRAM (POLYGRAM SUBSTITUTION CIPHER)

- Blok huruf plainteks disubstitusi dengan blok cipherteks.
- Misalnya AS diganti dengan RT, BY diganti dengan SL
- Jika unit huruf plainteks/cipherteks panjangnya 2 huruf, maka ia disebut digram (bigram), jika 3 huruf disebut ternarigram, dst
- Tujuannya: distribusi kemunculan poligram menjadi *flat* (datar), dan hal ini menyulitkan analisis frekuensi.
- Contoh: Playfair

PLAYFAIR CIPHER

- Termasuk ke dalam polygram cipher.
- Ditemukan oleh Sir Charles Wheatstone namun dipromosikan oleh Baron Lyon Playfair pada tahun 1854.
- Cipher ini mengenkripsi pasangan huruf (digram atau digraf), bukan huruf tunggal seperti pada cipher klasik lainnya.
- Tujuannya adalah untuk membuat analisis frekuensi menjadi sangat sulit sebab frekuensi kemunculan huruf-huruf di dalam cipherteks menjadi datar (flat).
- Kunci kriptografinya 25 buah huruf yang disusun di dalam bujursangkat 5x5
- Jumlah kemungkinan kunci:

25!=15.511.210.043.330.985.984.000.000

•	Plaintext dienkripsi 2 huruf sekali waktu
	dengan aturan:

M	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I/J	K
L	Р	Q	S	T
U	V	W	Χ	Z

- Plaintext yang berulang dipisahkan dengan suatu huruf, misal: x
 - balloon → balxloon
- Jika jumlah huruf ganjil, tambahkan huruf khusus, misal huruf x, di akhir
- 2 huruf pada baris yang sama diganti dengan huruf berikutnya ar → RM
- 2 huruf pada kolom yang sama diganti dengan huruf di bawahnya
 mu > CM
- Jika tidak, suatu huruf diganti dengan huruf yang ada pada barisnya dan pada kolum yang sama dengan huruf pasangannya

hs \rightarrow BP, ea \rightarrow IM atau JM

• Kelemahan: masih menggunakan plaintext.

Jumlah kemungkinan kunci:

25!=15.511.210.043.330.985.984.000.000

 Susunan kunci di dalam bujursangkar dapat diperluas dengan menambahkan kolom keenam dan baris keenam.

S	Т	А	N	D	S
E	R	С	Н	В	E
K	F	G	I/J	L	K
M	0	Р	Q	U	M
V	M	X	Y	Z	V
S	Τ	A	N	D	

Baris ke-6 = baris ke-1

Kolom ke-6 = kolom ke-1

Contoh:

Plainteks: GOOD BROOMS SWEEP CLEAN

→ Tidak ada huruf J, maka langsung tulis pesan dalam pasangan huruf:

GO OD BR OX OM SZ SW EZ EP CL EA NX

Contoh: Kunci (yang sudah diperluas) ditulis kembali sebagai berikut:

S	Т	А	N	D	S
E	R	С	Н	В	E
K	F	G	I	L	K
M	0	Р	Q	U	М
V	M	Χ	Y	Z	V
S	Т	A	N	D	

Plainteks (dalam pasangan huruf):

Cipherteks:

FP UT EC PW PO DV TV BV CM BG CS YA

Enkripsi od menjadi **ut** ditunjukkan pada bujursangkar di bawah ini:

S	Т	А	N	D	S
E	R	\cup	Н	В	E
K	F	U	I	L	K
M	0	Р	Q	ט	М
V	M	Χ	Y	Z	V
S	Т	А	N	D	

titik sudut ke-4

- Karena ada 26 huruf abjad, maka terdapat 26 x 26 = 677 bigram, sehingga identifikasi bigram individual lebih sukar.
- Sayangnya ukuran poligram di dalam Playfair cipher tidak cukup besar, hanya dua huruf sehingga Playfair cipher tidak aman.
- Meskipun Playfair cipher sulit dipecahkan dengan analisis frekuensi relatif huruf-huruf, namun ia dapat dipecahkan dengan analisis frekuensi pasangan huruf.
- Dalam Bahasa Inggris, kita bisa mendapatkan frekuensi kemunculan pasangan huruf, misalnya pasangan huruf TH dan HE paling sering muncul.
- Dengan menggunakan tabel frekuensi kemunculan pasangan huruf di dalam Bahasa Inggris dan cipherteks yang cukup banyak, Playfair cipher dapat dipecahkan.

HILL CIPHER

- Menggunakan matriks K berukuran m x m.
- Mengambil m huruf sekali waktu untuk dienkripsi.
- C = E(K, P) = PK mod 26
 - C: ciphertext
 - P: plaintext sebanyak m huruf
 - K: matriks kunci berukuran m x m
- Misal:
 - Plaintext: 'paymoremoney'
 - K = 17 17 5 21 18 21 2 2 19
 - P = (15 0 24)
 - Untuk 3 huruf pertama:
 C = PK mod 26 = (303 303 531) mod 26 = (17 17 11) = RRL
 - C = RRLMWBKASPDH
- Algoritma dekripsi: P = D(K, C) = CK⁻¹ mod 26

LATIHAN

- Tentukan ciphertext dari 'hari kemerdekaan indonesia' menggunakan metode Caesar cipher dengan kata kunci "security".
- 2. Bangunlah penyandian affine dan lakukan enkripsi untuk kata "enkripsi".
- Buatlah matriks Playfair dengan kunci 'largest'. Enkripsi pesan 'The enemy must be stopped at all cost' dengan matriks tersebut.
- 4. Enkripsi pesan 'meet me at the usual place' dengan algoritma Hill cipher menggunakan key: 9 4

1B. CIPHER ABJAD-MAJEMUK (POLYALPABETIC SUBSTITUTION CIPHER)

- Cipher abjad-tunggal: satu kunci untuk semua huruf plainteks
- Cipher abjad-majemuk: setiap huruf menggunakan kunci berbeda

 Setiap huruf plaintext memiliki beberapa huruf ciphertext.
- Cipher abjad-majemuk dibuat dari sejumlah cipher abjad-tunggal, masing-masing dengan kunci yang berbeda.
- Sekuens dari monoalphabetic ciphers $(M_1, M_2, M_3, ..., M_k)$ digunakan bergantian untuk mengenkripsi.
- Kunci menentukan sekuens mana yang digunakan.
- Contoh: Vigenere cipher, Vernam cipher, one-time pad
- Kriptoanalisis lebih sulit karena distribusi frekuensi tidak tergambarkan.

• Plainteks:

$$P = p_1 p_2 \dots p_m p_{m+1} \dots p_{2m} \dots$$

Cipherteks:

$$E_k(P) = f_1(p_1) f_2(p_2) \dots f_m(p_m) f_{m+1}(p_{m+1}) \dots f_{2m}(p_{2m}) \dots$$

• Untuk m = 1, cipher-nya ekivalen dengan cipher abjad-tunggal.

Contoh: (spasi dibuang)

P: KRIPTOGRAFIKLASIKDENGANCIPHERALFABETMAJEMUK

K: LAMPIONLAMPIONLAMPIONLAMPIONLAMPIONL

C: VRUEBCTCARXSZNDIWSMBTLNOXXVRCAXUIPREMMYMAHV

Perhitungan:

$$(K + L) \mod 26 = (10 + 11) \mod 26 = 21 = V$$

 $(R + A) \mod 26 = (17 + 0) \mod 26 = 17 = R$
 $(I + M) \mod 26 = (8 + 12) \mod 26 = 20 = U$

dst

Contoh 2: (dengan spasi)

P: SHE SELLS SEA SHELLS BY THE SEASHORE

K: KEY KEYKE YKE YKEYKE YK EYK EYKEYKEY

C: CLC CIJVW QOE QRIJVW ZI XFO WCKWFYVC

VIGÈNERE CIPHER

Termasuk ke dalam cipher abjad-majemuk (polyalpa substitution cipher).

- Dipublikasikan oleh diplomat (sekaligus seorang kriptologis) Perancis, Blaise de Vigènere pada abad 16 (tahun 1586).
- Tetapi sebenarnya Giovan Batista Belaso telah menggambarkannya pertama kali pada tahun 1553 seperti ditulis di dalam bukunya La Cifra del Sig. Giovan Batista Belaso
- Algoritma tersebut baru dikenal luas 200 tahun kemudian yang oleh penemunya cipher tersebut kemudian dinamakan Vigènere Cipher

- Cipher ini berhasil dipecahkan oleh Babbage dan Kasiski pada pertengahan Abad 19.
- Vigènere Cipher digunakan oleh Tentara Konfiderasi (Confederate Army) pada Perang Sipil Amerika (American Civil war).
- Perang Sipil terjadi setelah Vigènere Cipher berhasil dipecahkan.

- Vigènere Cipher menggunakan Bujursangkar Vigènere untuk melakukan enkripsi.
- Setiap baris di dalam bujursangkar menyatakan huruf-huruf cipherteks yang diperoleh dengan Caesar Cipher.
- Kunci: $K = k_1 k_2 ... k_m$

 k_i untuk $1 \le i \le m$ menyatakan jumlah pergeseran pada huruf ke-*i*.

Karakter cipherteks: $c_i(p) = (p + k_i) \mod 26$ (*)

Plainteks

Α	В	С	D	Ε	F	G	Н	I	J	K	L	Μ	Ν	0	Ρ	Q	R	S	Τ	U	V	W	X	Y	Z
Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ
В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α
С	D	Ε	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В
D	Ε	F	G	Н		٦	K	L	М	Ν	0	Р	Q	R	S	Τ	J	V	W	Χ	Υ	Ζ	Α	В	С
Ε	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С	D
F	G	Н	1	J	Κ	L	М	Ν	0	Ρ	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε
G	Н		J	K	L	М	Ν	0	Р	Q	R	S	Т	J	V	W	Χ	Υ	Ζ	Α	В	C	D	Е	F
Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G
I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н
J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	
K	L	М	N	0	Р	Q	R	S	T	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н		J
L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	ı	J	K
M	Ν	0	Р	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	1	J	K	L
N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	ı	J	K	L	M
0	Р	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н		J	K	L	М	Ν
Р	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0
Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
R	S	Т	U	V	W	Х	Υ	Z	Α	В	С	D	E	F	G	Н	ı	J	K	L	M	N	0	Р	Q
S	Τ	U	V	W	Х	Υ	Ζ	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R
T	U	V	W	Х	Υ	Ζ	Α	В	С	D	E	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S
U	V	W	Х	Y	Z	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T
V	W	Х	Υ	Ζ	Α	В	С	D	E	F	G	H	ı	J	K	L	М	N	0	Р	Q	R	S	T	U
W	Χ	Υ	Z	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	T	U	V
X	Υ	Z	Α	В	С	D	E	F	G	Н	I.	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W
Y	Ζ	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ
Ζ	Α	В	С	D	E	F	G	Н		J	K	LL	М	N	0	Р	Q	R	S	Τ	U	V	W	Χ	Υ

Gambar 4.2 Bujursangkar Vigènere

- Jika panjang kunci lebih pendek daripada panjang plainteks, maka kunci diulang secara periodik.
- Misalkan panjang kunci = 20, maka 20 karakter pertama dienkripsi dengan persamaan (*), setiap karakter ke-i menggunakan kunci k_i .

Untuk 20 karakter berikutnya, kembali menggunakan pola enkripsi yang sama.

Contoh: kunci = sony

Plainteks: THISPLAINTEXT

Kunci: sonysonys

Contoh enkripsi:

D

С

Plainteks W 0 X Υ Ζ D Н 0 Q W Χ Ε G R W D Χ Α M Ν 0 Q U Υ В Ε G Н R С Η Μ 0 Q R S D G Н U W Ε D Н Κ M Ν 0 Q R S U W Χ В С D Н Κ Ν Ρ R S U W Χ Ζ С D G 0 Q S U W Χ Ε M D G Η Κ Μ Ν Q W Ε G Η W Χ Κ M Ν 0 Q S D G Н Р W Χ Υ G Н M 0 Q R Ζ В K Ν Q W Н 0 Q R S U ٧ W Χ Υ Ζ С D Ε G Κ M Α В Н Q R W D М S В С K Α Ν Q S U W Χ Ζ Α В D Ε F G K M 0 R С U F M Ρ Η Ν ٧ Ε S U W Χ Ζ D G Н M Q Α В Ν 0 U ٧ W Χ Α D F Н М Ν R U V W Χ Ε F G S В D Н Χ Ε G Н W Χ Ζ В D Ε F G Н Κ Μ R S Υ Ν Q U Χ Α Ε Н М R U ٧ G K K W D Н Μ 0 Q S В Ε K M Ν S U Χ В Η

Gambar 4.3 Enkripsi huruf T dengan kunci s

Κ

M

Ν

0

Q

Hasil enkripsi seluruhnya adalah sebagai berikut:

Plainteks : THISPLAINTEXT

Kunci : sonysonys

Cipherteks: LVVQHZNGFHRVL

• Pada dasarnya, setiap enkripsi huruf adalah *Caesar cipher* dengan kunci yang berbeda-beda.

$$(T+s) \mod 26 = L$$

$$(H + o) \mod 26 = V, dst$$

VIGENERE CIPHER TANPA MELIHAT TABEL

- $C = C_0, C_1, ..., C_{n-1} = E(K, P) = E[(k_0, k_1, ..., k_{m-1}), (p_0, p_1, ..., p_{n-1})]$ = $(p_0 + k_0) \mod 26,$
- Contoh:

Key : deceptivedeceptive

Plaintext: wearedescoveredsaveyourself

Ciphertext: ZICVTWQNGRVTWAVZHCQYGLMGJ

- Rumus enkripsi: $C_i = (p_i + k_{i \text{ mod } m}) \mod 26$
- Rumus dekripsi: $p_i = (C_i k_{i \text{ mod } m}) \mod 26$

- Huruf yang sama tidak selalu dienkripsi menjadi huruf cipheteks yang sama pula.
 - Contoh: huruf plainteks T dapat dienkripsi menjadi L atau H, dan huruf cipherteks V dapat merepresentasikan huruf plainteks H, I, dan X
- Hal di atas merupakan karakteristik dari cipher abjadmajemuk: setiap huruf cipherteks dapat memiliki kemungkinan banyak huruf plainteks.
 - Pada cipher substitusi sederhana, setiap huruf cipherteks selalu menggantikan huruf plainteks tertentu.

- Vigènere Cipher dapat mencegah frekuensi huruf-huruf di dalam cipherteks yang mempunyai pola tertentu yang sama seperti pada cipher abjad-tunggal.
- Jika periode kunci diketahui dan tidak terlalu panjang, maka kunci dapat ditentukan dengan menulis program komputer untuk melakukan exhaustive key search.

VARIAN VIGENERE CIPHER

1. Full Vigènere cipher

Setiap baris di dalam tabel tidak menyatakan pergeseran huruf, tetapi merupakan permutasi huruf-huruf alfabet.

Misalnya pada baris a susunan huruf-huruf alfabet adalah acak seperti di bawah ini:

2. Auto-Key Vigènere cipher

 Jika panjang kunci lebih kecil dari panjang plainteks, maka kunci disambung dengan plainteks tersebut.

Misalnya,

Pesan: NEGARA PENGHASIL MINYAK

Kunci: INDO

maka kunci tersebut disambung dengan plainteks semula sehingga panjang kunci menjadi sama dengan panjang plainteks:

• Plainteks : NEGARAPENGHASILMINYAK

• Kunci : Indonegarapenghasilmi

3. Running-Key Vigènere cipher

 Kunci adalah string yang sangat panjang yang diambil dari teks bermakna (misalnya naskah proklamasi, naskah Pembukaan UUD 1945, terjemahan ayat di dalam kitab suci, dan lain-lain).

Misalnya,

Pesan: NEGARA PENGHASIL MINYAK

Kunci: KEMANUSIAN YANG ADIL DAN BERADAB

Selanjutnya enkripsi dan dekripsi dilakukan seperti biasa.

VERNAM CIPHER DAN ONE-TIME PAD

- Vernam Chiper : $C_i = p_i XOR k_i$
 - Lebih cocok untuk data biner
- One-time pad vigenere cipher: penggunaan key sepanjang message, sehingga key tidak perlu diulang.
 - Tidak bisa dipecahkan (unconditionally secure encryption).
 - Kelemahan: tidak praktis, masalah distribusi key.

2. CIPHER TRANSPOSISI

- Cipherteks diperoleh dengan mengubah posisi huruf di dalam plainteks.
- Dengan kata lain, algoritma ini melakukan *transpose* terhadap rangkaian huruf di dalam plainteks.
- Nama lain untuk metode ini adalah permutasi, karena *transpose* setiap karakter di dalam teks sama dengan mempermutasikan karakter-karakter tersebut.

Contoh: Misalkan plainteks adalah

DEPARTEMEN ILMU KOMPUTER

Enkripsi:

DEPART

EMENIL

MUKOMP

UTERYZ

Cipherteks: (baca secara vertikal)

DEMUEMUTPEKEANORRIMYTLPZ

Dekripsi: Kelompokkan cipherteks sepanjang kunci.

(Pada contoh ini, 24 / 6 = 4)

DEMU

EMUT

PEKE

ANOR

RIMY

TLPZ

Plainteks: (baca secara vertikal)

DEPARTEMEN ILMU KOMPUTER YZ

Teknik lain:

- Bagi menjadi blok-blok 8-huruf. Jika < 8, tambahkan huruf palsu.
- Ubah susunan hurufnya dengan cara tertentu.

Teknik lain: rail fence

Misalkan plainteks adalah

CRYPTOGRAPHY AND DATA SECURITY

Plainteks disusun menjadi 3 baris (k = 3) seperti di bawah ini:

maka cipherteksnya adalah

CTAAAEIRPORPYNDTSCRTYGHDAUY

Contoh lain:

- Plaintext ditulis secara diagonal .
- Contoh:

```
mematrhtgpry
etefeteoaat
```

- Cara lain: menulis pesan dalam baris-baris, kemudian dibaca dari kolom ke kolom, tetapi tidak terurut.
 - Urutan kolom menjadi key.

```
• Contoh: key : 4 3 1 2 5 6 7 plaintext: a t t a c k p o s t p o n e d un t i I t w o a m x y z
```

ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

 Untuk meningkatkan keamanan: dilakukan enkripsi secara berulang.

SUPER ENKRIPSI

- Menggabungkan cipher substitusi dengan cipher transposisi.
- Lebih sulit untuk dipecahkan daripada hanya substitusi atau transposisi
- Merupakan penghubung antara penyandian klasik dan modern.
- Contoh: Plainteks HELLO WORLD
- Akan dienkripsi dengan caesar cipher menjadi KHOOR ZRUOG Kemudian hasil enkripsi ini dienkripsi lagi dengan cipher transposisi (k = 4):
 - KHOO
 - RZRU
 - OGZZ

Cipherteks akhir adalah: KROHZGORZOUZ

STEGANOGRAFI KLASIK

- Metode untuk menyembunyikan keberadaan pesan.
- Contoh:
 - Menulis surat yang sebenarnya berisi pesan rahasia.
 - Huruf pertama dari kata-kata.
 - Subset dari kata-kata.
- Macam-macam teknik:
 - Character marking
 - Invisible ink
 - Typewriter correction ribbon
- Kelemahan:
 - Memerlukan usaha lebih besar
 - Ketika dapat dipecahkan, sistem menjadi tidak berguna
- Keuntungan:
 - Cocok untuk pihak yang merahasiakan komunikasinya

LATIHAN

- 1. Enkripsi kata 'kriptografi vs kriptoanalisis' dengan kata kunci 'enkripsi' menggunakan Vigenere chiper.
- Enkripsi pesan 'musuh sedang berada di timur sungai' dengan metode transposisi, yaitumenulis pesan dalam baris-baris, kemudian dibaca dari kolom ke kolom, tetapi tidak terurut, dengan kunci berturut-turut '432165' dan '246531'.

ROTOR

- Merupakan penyandian kompleks yang paling banyak digunakan sebelum adanya penyandian modern.
- Banyak digunakan dalam Perang Dunia 2.
- Menggunakan serangkaian silinder yang dapat diputar.
- Mengimplementasikan penyandian substitusi polialfabetik dengan periode K.
- Dengan 3 silinder, $K = 26^3 = 17,576$.
- Dengan 5 silinder, K = 26⁵ = 12 x 10⁶.

Figure 2.7 Three-Rotor Machine With Wiring Represented by Numbered Contacts

LEMBAR SETTING RAHASIA JERMAN

Geheim! Secret indeed! This is an example of the setting shee

heim!		Sonder-Maschinenschlüssel BGT															
Datum	Watersloge			Ringstellung				Strekerverbindungen									
31.	I	22.011	III	06	20	24	UA	P.F	RQ JM	80 7 B	NI	BY	BG	HL	TX	2	
29.	TV	I	V	11	17	12	CI	OK	PV	ZL	HX	LX	TD	QS DJ	NA	2	

Tanggal
Rotor yang mana yang digunakan (ada10 rotor)
Setting ring
SettingpPlugboard

ROTOR

MESIN ROTOR ENIGMA

