	over K .
	Suppose $a(x) \in K[x]$, $c \in K$, and $a(c+x)$ is irreducible over K . Assume instead that $a(x)$ is reducible over K , so there are nonconstant $b(x), q(x) \in K[x]$ with $a(x) = b(x)q(x)$. But as proven previously, $a(c+x) = b(c+x)q(c+x)$. By the previous part of the project $deg(b(c+x)) > 0$ and $deg(q(c+x)) > 0$ which contradicts that $a(c+x)$ is irreducible over K . Thus $a(x)$ is irreducible over K as well.
5.	Try this technique in $\mathbb{Q}[x]$ with $a(x) = 21 + 24x + 11x^2 + 4x^3 + x^4$ and $c = -1$. Why do we know that $a(-1+x)$ is irreducible over \mathbb{Q} ?
	$\begin{array}{lll} a(x) &=& 21+24(-1+x)+11(-1+x)^2+4(-1+x)^3+(-1+x)^4\\ &=& 21+(-24+24x)+11(1-2x+x^2)+4(-1+3x-3x^2+x^3)+(1-4x+6x^2-4x^3+x^4)\\ &=& (21-24+11-4+1)+(24-22+12-4)x+(11-12+6)x^2+(4-4)x^3+x^4\\ &=& 5+10x+5x^2+0x^3+x^4\\ \end{array}$ With the prime $p=5$, Eisenstein's Criterion tells us $a(-1+x)$ is irreducible over $\mathbb Q$, thus $\mathbf a(\mathbf x)$ is irreducible over \mathbb{Q}

4. Prove: If $a(x) \in K[x]$, $c \in K$, and a(c+x) is irreducible over K then a(x) is also irreducible

project 8.4

- 1. Prove (i) of Theorem 9.4.
- Suppose K is a field and E is an extension of K. Let $a(x) \in K[x]$ with deg(a(x)) = 1. Assume $c \in E$ with $a(c) = 0_E$ and we will show that $c \in K$. As deg(a(x)) = 1 we have $a(x) = a_0 + a_1 x$ for some $a_0, a_1 \in K$ and $a_1 \neq 0_K$. Since K is a field $a_1^{-1} \in K$ as well. By $a(c) = 0_E$, we have $0_E = a_0 + a_1 c$ so $a_1^{-1}(0_E) = a_1^{-1}a_0 + a_1^{-1}a_1 c$, or $0_E = a_1^{-1}a_0 + c$. Subtracting now tells us that $-a_1^{-1}a_0 = c$ and so $c \in K$ as we needed to show.

 $c \notin K$, so for a contradiction assume $c \in K$. Thus c is a root for a(x) in K so by Theorem

- 2. Prove (ii) of Theorem 9.4.
 - Suppose K is a field and E is an extension of K. Let $a(x) \in K[x]$, and there is $c \in E$ with $a(c) = 0_E$. Assume a(x) is irreducible over K and deg(a(x)) > 1. We want to show that
 - 8.15 we have b(x) = -c + x a factor of a(x) and $b(x) \in K[x]$. Thus there is some $q(x) \in K[x]$ with a(x) = (-c + x)q(x). Since deg(a(x)) > 1 we know deg(q(x)) > 0. Thus a(x) is factored
 - into nonconstant polynomials in K[x] contradicting that a(x) is irreducible. Hence $c \notin K$.
 - **3**. Let $p \in \mathbb{Z}$ be prime. Prove $\sqrt{p} \notin \mathbb{Q}$.
- Suppose $p \in \mathbb{Z}$ and p is prime. Let $c = \sqrt{p}$ which is in the extension field \mathbb{R} . Then we know c is a root of the polynomial $a(x) = -p + x^2$ in $\mathbb{Z}[x]$. However by Eisenstein's criterion a(x) is irreducible over \mathbb{O} , so as deg(a(x)) = 2 then by Theorem 8.22 we know $c \notin \mathbb{O}$.
- is irreducible over \mathbb{Q} , so as deg(a(x)) = 2 then by Theorem 8.22 we know $c \notin \mathbb{Q}$.
- **4.** Let $p \in \mathbb{Z}$ be prime. Prove $\sqrt[3]{p} \notin \mathbb{Q}$.
 - Suppose $p \in \mathbb{Z}$ and p is prime. Let $c = \sqrt[3]{p}$ which is in the extension field \mathbb{R} . Then we know c is a root of the polynomial $a(x) = -p + x^3$ in $\mathbb{Z}[x]$. However by Eisenstein's criterion a(x) is irreducible over \mathbb{Q} , so as deg(a(x)) = 3 then by Theorem 8.22 we know $c \notin \mathbb{Q}$.

 $a \in K$. Use Theorems 7.35 and 7.28 to prove that the function f_c defined in Theorem 9.5 is a homomorphism.

Suppose K is a field and E is an extension of K. Define $g: K \to E$ by g(a) = a for each

by an exercise in Chapter 4, we know f_c is a homomorphism.

8. Suppose K is a field and E is an extension of K. Define $g: K \to E$ by g(a) = a for each

 $a \in K$. Thus by the previous problem we know g is a homomorphism. Thus by Theorem 7.28 we can extend g to a homomorphism $\overline{g}: K[x] \to E[x]$. We also have the substitution function $h_c: E[x] \to E$ which is a homomorphism by Theorem 7.35. Now $f_c = h_c \circ \overline{g}$ and so

11. Prove that the field K(c), defined in the proof of Theorem 9.5, satisfies (iii) of the theorem. Don't forget that $K(c) = f_c(K[x])$; use it to help show an arbitrary $u \in K(c)$ is also in S.

Suppose we have a subfield S of E with $K \subseteq S \subseteq E$ and $c \in S$. Since S is a field we know $S \neq \{0_E\}$. To show that $K(c) \subseteq S$ assume we have $u \in K(c)$ with $u \neq 0_K$. Since $u \in K(c)$

and $K(c) = f_c(K[x])$ there is some polynomial $w(x) \in K[x]$ with $u = f_c(w(x))$. We can write $w(x) = w_0 + w_1 x + \dots + w_m x^m$ for some $w_i \in K$ and m > 0. By $K \subseteq S$ we have $w_i \in S$ for each i, so since S is closed under products $w_i c^i \in S$ for each i. Thus as S is closed under addition, $u = w(c) \in S$. Therefore $K(c) \subseteq S$ as needed.