EE 111: Tutorial 01

1. For the circuit shown in the figure 1 obtain the Thevenin equivalent source and resistance as seen across the terminals of the capacitor. From this obtain the expression for response V_0 , if a step input of 10 V is applied at t=0. Assume that the initial charge across the capacitor is zero. Using the above result derive and sketch the output voltage $V_0(t)$ when a square wave of 500Hz of levels +10V and -10V is applied to the circuit.

Figure 1:

- 2. In the circuit of figure 2, initially the capacitor has no charge. Switch S1 is closed at t=0 seconds with switch S2 kept open. Sketch the complete waveform of the current i and voltage across the capacitor Vc if the switch S2 is closed
 - (a) at t = 2 msec
 - (b) at the instant $V_c = 5V$.
- 3. If the interconnection in figure 3 is valid, find the total power developed in the circuit. If the interconnection is not valid, explain why?
- 4. (a) Find the voltage V_y in the circuit in figure 4.
 - (b) Show that the total power generated in the circuit equals the total power absorbed.
- 5. The currents i_a and i_b in the circuit in figure 5 are 4A and 2A respectively.

Figure 2: Figure

Figure 3:

Figure 4:

- (a) Find i_g .
- (b) Find the power dissipated in each resistor.
- (c) Find v_g .
- (d) Show that the power delivered by the current source is equal to the power absorbed by all the other elements.

Figure 5:

6. Find V_1 and V_g in the circuit shown in figure 6, when V_o equals 250mV. (Hint: Start at the right end of the circuit and work back toward V_g)

Figure 6:

- 7. The switch in the circuit in figure 7 has been open for a long time before closing at t = 0. Find $i_o(t)$ for $t \ge 0$.
- 8. The switch in the circuit shown in figure 8 has been in the OFF position for a long time. At t = 0, the switch moves instantaneously to the ON position. Find $V_o(t)$ for $t \ge 0$.
- 9. With the ac voltage source in the circuit shown in figure 9, operating at a frequency of f, it was found that $I = 1.0 \angle 0^0 A$. When the source frequency was doubled (2f), the current became $I = 0.707 \angle -45^0 A$. Find:
 - (a) The frequency f

Figure 7:

Figure 8:

- (b) The inductance L, and also the reactances, X_L and X_C at 2f.
- 10. A coil, having a resistance of 15 Ω and an inductance of 0.75 H, is connected in series with a capacitor (figure 10a). The circuit draws maximum current, when a voltage of 200 V at 50 Hz is applied. A second capacitor is then connected in parallel to the circuit (figure 10b). What should be its value, such that the combination acts like a non-inductive resistance, with the same voltage (200 V) at 100 Hz? Calculate also the current drawn by the two circuits.
- 11. The total voltage waveform shown in figure 11a is applied to the circuit of figure 11b. The initial current in the inductor is zero.
 - (a) Calculate $v_0(t)$
 - (b)Make a sketch of $v_0(t)$ versus t
 - (c) Find $i_0(t)$ at $t = 4\mu s$
- 12. The gap in the circuit seen in figure 12 will arc over whenever the

Figure 9:

Figure 10:

Figure 11:

voltage across the gap reaches 36KV. The initial current in the inductor

is zero. The value of β is adjusted so the thevenin resistance with respect to the terminals of the inductor is $-3k\Omega$.

- (a) What is the value of β ?
- (b) How many microseconds after the switch has been closed will the gap arc over?

Figure 12:

- 13. A balanced star connected load is supplied from a symmetrical 3 phase, 400 V, ABC system. The current in each phase phase is 30 A and lags $30\angle0^0$ behind the phase voltage. Find:
 - (a) The phase voltage
 - (b) Load impedance
 - (c) The total power
 - (d) Total reactive power
 - (e) The wattmeter readings (current coils are in phase A and C if two wattmeter method is used to measure the power drawn from the load. Draw the complete vector diagram.
- 14. A 3 phase, 400V delta connected system has the loads: Branch RY, 20kW at power factor lagging 1.0; branch YB, 30kVA at power factor 0.8 lagging; branch BR, 20kVA at power factor 0.6 leading. Find the line currents and readings on wattmeter whose current coils are in phases R and B.
- 15. Calculate the active and reactive current components in each phase of star connected 10000V, 3 phase generator supplying 5000kW at a power factor of 0.8. If the total current remains the same when the load power factor is raised to 0.9, find the new output.