Introducción a la virtualización

Alberto Molina Coballes <alberto.molina@hispalinux.es> José Domingo Muñoz Rodríguez <josedom24@gmail.com> IES Gonzalo Nazareno, Dos Hermanas (Sevilla)

Contenidos

- Introducción
- Definiciones previas
- Usos de Máquinas Virtuales
- Técnicas de virtualización
- Xen 3.0
- Vmware Server 1.0

Virtualización

- OBJETIVO: Aumentar el tiempo de procesamiento de un equipo. Actualmente alrededor de un 70% del tiempo se desaprovecha.
- MÉTODO: Instalar varios sistemas operativos en una misma máquina real para que funcionen como máquinas virtuales.

Máquina virtual (MV)

 Según la wikipedia: "Una máquina virtual es un entorno que aparentemente es hardware para el sistema operativo huésped, pero que realmente está simulado en un entorno de software por el sistema operativo anfitrión."

Usos de MV

- Herramienta didáctica
- Servidores dedicados virtuales
- Aislamiento e independencia de servicios y contenidos.
- Laboratorio de pruebas
- Mantenimiento de sistemas antiguos
- ...

Ventajas

- Seguridad
- Fácil migración
- Ahorro de costes
- Aprovechamiento de recursos
- ...

Técnicas de virtualización

- Existen diversas técnicas, pero las principales son:
 - Virtualización completa
 - Para-virtualización

Virtualización completa

 Ejecuta el S.O. huésped en un contenedor sobre el S.O. anfitrión.

- Permite ejecutar varios S.O. sin realizar modificaciones en ellos.
- El S.O. huésped es una aplicación del S.O. anfitrión
- No puede alcanzar el rendimiento de una máquina real.

Virtualización completa

Figure 1. Virtual Machine Architecture

Application 1	Application 2				
Guest Operating System Guest Operating System					
Virtualization Software Layer					
Host Operating System					
x86/x64 Hardware					

Source: Novell, Inc. December 2005

Para-virtualización

 Hypervisor: Capa entre el hardware y los S.O. que hace de árbitro para el acceso a los recursos (como un "mini-SO")

- Rendimiento del huésped muy cercano al de un S.O. real
- Es necesario modificar el S.O. huésped (el núcleo).

Para-virtualización

Figure 2. Hypervisor-based VM Architecture

Application 1

Application 2

Guest Operating System

Guest Operating System

Hypervisor Integrated with Host Operating System

x86/x64 Hardware

Source: Novell, Inc. December 2005

Comparativa de MMV

Nombre	Creador	Procesador anfitrión	SO anfitrión	SO huésped	Técnica	Licencia
QEMU	Paul Brook	x86	Linux, NetBSD, Ms Windows	Linux, *BSD y Ms Windows	Virtualización completa	GPL
Virtual PC 2004	Microsoft	x86	Ms Windows	Ms Windows	Virtualización completa	Freeware
VMware ESX Server 3.0	VMware	x86, x86_64	ninguno (instalación directa)	Ms Windows, Linux, FreeBSD y Netware	Paravirtualización	Comercial
VMware Server 1.0	VMware	x86, x86_64	Ms Windows, Linux	Ms Windows, Linux, FreeBSD, Netware y Solaris	Virtualización completa	Freeware
VMware Workstation 5.5	VMware	x86, x86_64	Ms Windows, Linux	Ms Windows, Linux, FreeBSD, Netware y Solaris	Virtualización completa	Comercial
Xen 3.0	Universidad de Cambridge	x86 y x86_64	Linux y *BSD	Linux, *BSD y Ms Windows (Intel VT)	Paravirtualización	GPL

Xen 3.0

- Desarrollado por la Universidad de Cambridge y software libre (GPL).
- Utiliza la "para-virtualización"
- Última versión 3.0.2
- Principal alternativa a VMware
- Es necesario modificar los S.O. anfitrión (host) y huésped (guest).

Xen 3.0

- Alto rendimiento.
- Portabilidad de MV trivial.
- Recolocación en vivo de máquinas virtuales.
- Escalabilidad (Hasta 100 MV).
- Hardware soportado:
 - Arquitecturas x86 (x86_32, x86_64)
 - Arquitecturas SMP
 - Intel VT (para S.O. sin modificar)

Xen 3.0

- El S.O. anfitrión se denomina Dom0
- El S.O. huésped DomU
- Los dispositivos disponibles por un DomU son:
 - Disco duro (partición real o fichero)
 - Memoria RAM (parte asignada)
 - Dispositivos de E/S
 - Interfaz de red (virtual)

VMware Server 1.0

- Utiliza la virtualización completa
- Freeware. Números de serie disponibles previo registro en www.vmware.com
- Muy parecido a VMware Workstation
- No hay que modificar ningún S.O.

VMware Server 1.0

- Los dispositivos disponibles por el S.O. huésped son:
 - Disco duro (virtual)
 - Memoria RAM
 - Dispositivos de E/S
 - Disquetera y lectores ópticos
 - Interfaz de red (virtual)
 - Tarjeta gráfica (virtual) <----