Claims

- A method for cryptographically converting a digital input block into a
 digital output block; said conversion comprising the step of merging a selected part M1 of
 said digital input block with a first key K1 and producing a data block B1 which non-linearly
 depends on said selected part M1 and said first key K1, and where a selected part of said
 digital output block is derived from said data block B1,
- characterised in that said merging step is performed by executing a non-linear function g for non-linearly merging said selected part M1 and said first key K1 in one, sequentially inseparable step.
- A method as claimed in claim 1, wherein said method comprises the steps of:
- splitting said digital input block into said selected part M1 and a second part M2 before executing said merging step;
- executing a non-linear function g¹ to merge said second block M2 with a second key K2 in one, sequentially inseparable step, producing a data block B2 as output; said non-linear function g¹ being the inverse of said non-linear function g; and
- forming combined data from data in said data block B1 and in said data block B2; said digital output block being derived from said combined data.
- 20 3. A method as claimed in claim 1, wherein said merging step comprises the steps of:
 - splitting said selected part M1 in a first plurality n of sub-blocks $m_0,...,m_{n-1}$ of substantially equal length;
- splitting said first key K1 in said first plurality n of sub-keys $k_0,...,k_{n-1}$, substan-25 tially having equal length, the sub-key k, corresponding to the sub-block m, for i=0 to n-1; and
 - separately processing each of said sub-blocks m, by executing for each of said sub-blocks m, a same non-linear function h for non-linearly merging a sub-block b, derived from said sub-block m, with said corresponding sub-key k, in one, sequentially inseparable

- step and producing said first plurality of output sub-blocks h(bi, ki); and
- combining sub-blocks t, derived from said first plurality of said output sub-blocks h(b,, k) to form said data block B1.
- 5 4. A method as claimed in claim 2 and 3, wherein said step of executing said non-linear function g⁻¹ comprises the steps of:
 - splitting said second part M2 in said first plurality n of sub-blocks m_n, \dots, m_{2n-1} , substantially having equal length;
 - splitting said key K2 in said first plurality n of sub-keys k_n, \ldots, k_{2n-1} , substantially having equal length, the sub-key k_i corresponding to the sub-block m_i , for i=n to 2n-1:
 - executing for each of said sub-blocks m_i a same non-linear function $h^{\text{-}1}$ for non-linearly merging a sub-block b_i derived from said sub-block m_i with said corresponding sub-key k_i and producing said first plurality of an output sub-block $h^{\text{-}1}(b_i, k_i)$; said function $h^{\text{-}1}$ being the inverse of said function h; and
 - combining sub-blocks t_i derived from said first plurality of output sub-blocks $h^{\cdot l}(b_i,\ k_i)$ to form said data block B2.
 - 5. A method as claimed in claim 3, wherein said sub-block b_i is derived from said sub-block m_i by bit-wise adding a constant p_i to said sub-block m_i, said constant p_i substantially having equal length as said sub-block m_i.
 - 6. A method as claimed in claim 3, characterised in that said function $h(b_i,k_i)$ is defined by:

$$\begin{array}{lll} 25 & h(b_i,k_i) = (b_i,k_i)^{-1}, & & \text{if } b_i \neq 0, \ k_i \neq 0, \ \text{and } b_i \neq k_i \\ & h(b_i,k_i) = (k_i)^{-2}, & & \text{if } b_i = 0 \\ & h(b_i,k_i) = (q_i)^{-2}, & & \text{if } k_i = 0 \\ & h(b_i,k_i) = 0, & & \text{if } b_i = k_i, \end{array}$$

- where the multiplication and inverse operations are predetermined Galois Field multiplication 30 and inverse operations.
 - 7. A method as claimed in claim 6, wherein deriving said sub-blocks t, from said output sub-blocks h(b_i, k_i) comprises bit-wise adding a constant d_i to said output sub-block h(b_i, k_i), said constant d_i substantially having equal length as said sub-block m_i.

- * 8. A method as claimed in claim 7, wherein deriving said sub-blocks t_i from said output sub-blocks $h(b_i, k_i)$ further comprises raising $h(b_i, k_i) \oplus d_i$ to a power 2^i , using said predetermined Galois Field multiplication.
- 5 9. A method as claimed in claim 6, wherein deriving said sub-blocks t, from said output sub-blocks h(b_i, k_i) comprises raising said output sub-block h(b_i,k_i) to a power 2^t, using said predetermined Galois Field (GF) multiplication.
- 10. A method as claimed in claim 4, wherein said combined data is formed10 by:
- swapping the sub-blocks t_i and t_{2n-1}, for i = 0 to n-1; and
 concatenating the swapped sub-blocks.
 - 11. A method as claimed in claim 6, wherein said sub-block m, comprises eight data bits, and wherein said multiplying of two elements b and c of GF(2⁸) comprises executing a series of multiplications and additions in GF(2⁴).
 - 12. A method as claimed in claim 11, wherein said multiplying of said two elements b and c comprises:
 - representing b as $a_0+a_1.D$ and c as $a_2+a_3.D$, where a_0 , a_1 , a_2 and a_3 are elements of GF(2*), and where D is an element of GF(2*) defined as a root of an irreducible polynomial $k(x)=x^2+x+\beta$ over GF(2*), where β is an element of GF(2*); and
 - calculating $(a_0a_2 + a_1a_3\beta) + (a_1a_2 + a_0a_3 + a_1a_3).D.$
- 25 13. A method as claimed in claim 12, wherein β is a root of an irreducible polynomial h(x) = $x^4 + x^3 + x^2 + x + 1$ over GF(2).
- 14. A method as claimed in claim 6, wherein said sub-block m_i comprises eight data bits, and wherein calculating the inverse of an element b of GF(2⁸) comprises performing a series of calculations in GF(2⁴).
 - 15. A method as claimed in claim 14, wherein calculating the inverse of said element b comprises:
 - representing b as $a_0 + a_1.D$, where a_0 and a_1 are elements of $GF(2^4)$, and where

10

- . D is an element of GF(2⁸) defined as a root of an irreducible polynomial $k(x) = x^2 + x + \beta$ over GF(2⁴), where β is an element of GF(2⁴); and
 - calculating $(a_0^2 + a_0 a_1 + a_1^2 \beta)^{-1} ((a_0 + a_1) + a_1 D)$.
- 5 16. An apparatus for cryptographically converting a digital input block into a digital output block; said apparatus comprising:

first input means for obtaining said digital input block;

second input means for obtaining a first key K1;

cryptographic processing means for converting the digital input block into the digital output block; said conversion comprising merging a selected part M1 of said digital input block with said first key K1 and producing a data block B1 which non-linearly depends on said selected part M1 and said first key K1, and where a selected part of said digital output block is derived from said data block B1; and

output means for outputting said digital output block,

characterised in that said cryptographic processing means is arranged to perform said merging by executing a non-linear function g for non-linearly merging said selected part M1 and said first key K1 in one, sequentially inseparable step.

- 17. An apparatus as claimed in claim 16, wherein said apparatus comprises third input means for obtaining a second key K2, and wherein said conversion comprises:
- splitting said digital input block into said selected part M1 and a second part M2 before performing said merging;
- executing a non-linear function g⁻¹ to merge said second block M2 with said second key K2 in one, sequentially inseparable step, producing a data block B2 as output;
 said non-linear function g⁻¹ being the inverse of said non-linear function g; and
 - forming combined data from data in said data block B1 and in said data block B2; said digital output block being derived from said combined data.
- 18. An apparatus as claimed in claim 16, wherein said merging step com-30 prises the steps of:
 - splitting said selected part M1 in a first plurality n of sub-blocks $m_0,...,m_{n\cdot 1}$ of substantially equal length;
 - splitting said first key K1 in said first plurality n of sub-keys $k_0,...,k_{n-1}$, substantially having equal length, the sub-key k_i corresponding to the sub-block m_i , for i=0 to n-1;

and

- separately processing each of said sub-blocks m, by executing for each of said sub-blocks m, a same non-linear function h for non-linearly merging a sub-block b, derived from said sub-block m, with said corresponding sub-key k, in one, sequentially inseparable step and producing said first plurality of output sub-blocks h(b_i, k_i); and
 - combining sub-blocks t_i derived from said first plurality of said output sub-blocks $h(b_i,\,k_i)$ to form said data block B1.
 - 19. An apparatus as claimed in claim 18, characterised in that said function $h(b_i,k)$ is defined by:

$$h(b_i, k_i) = (b_i, k_i)^{-1},$$
 if $b_i \neq 0$, $k_i \neq 0$, and $b_i \neq k_i$

$$h(b_i, k_i) = (k_i)^{-2},$$
 if $b_i = 0$

$$h(b_i, k_i) = (b_i)^{-2},$$
 if $k_i = 0$

$$h(b_i, k_i) = 0, if b_i = k_i,$$

where the multiplication and inverse operations are predetermined Galois Field multiplication and inverse operations.

- 20. An apparatus as claimed in claim 19, wherein said sub-block m_i comprises eight data bits, and wherein said multiplying of two elements b and c of GF(2⁸) comprises:
- representing b as $a_0+a_1.D$ and c as $a_2+a_3.D$, where a_0 , a_1 , a_2 and a_3 are elements of GF(2⁴), and where D is an element of GF(2⁸) defined as a root of an irreducible polynomial $k(x)=x^2+x+\beta$ over GF(2⁴), where β is an element of GF(2⁴); and
- calculating $(a_0a_2 + a_1a_3\beta) + (a_1a_2 + a_0a_3 + a_1a_3).D$;

and wherein calculating the inverse of an element b of $GF(2^8)$ comprises calculating $(a_0^2 + 5 \quad a_0a_1 + a_1^2\beta)^{-1}((a_0 + a_1) + a_1D)$.