MASALALAR

Tekislikda affin koordinatalar sistemasi

- 1. Affin koordinatalar sistemasiga nisbatan uchlarining A(3;5), B(-4;6) va C(5;3;5) koordinatalari berilgan uchburchakni yasang.
- 2. Tomoni *a*=1 boʻlgan muntazam oltiburchak uchlarining koordinatalarini toping. Koordinatalar oʻqi qilib uning shunday ikki qoʻshni tomonlarini olingki, koordinatalar boshiga qarama-qarshi yotgan uchining koordinatalari musbat boʻlsin.
- 3. Agar to 'rtburchakning uchlari A(1,-3), B(8,0), C(4,8) va D(-3,5) nuqtalarda bo 'lsa, ABCD parallelogramm ekanligini ko 'rsating.
- 4. Agar to 'rtburchakning uchlari A(1,1), B(2,3), C(5,0) va D(7,-5) nuqtalarda bo 'lsa, ABCD trapetsiya ekanligini isbot qiling.
- 5. Quyidagi uchta A, B, C nuqtaning bir toʻgʻri chiziqda yotishini koʻrsating: a) A(2,1), B(0,5), C(4,-3)
 - b) A(-1,0), B(1,-2), C(3,-4)
 - 12. A(2,1), B(0,5), C(4,-3) nuqtalar berilgan. (AB,C), (BC,A), (AC,B) larni hisoblang.
- 13. Uchburchakning uchlari berilgan: A(3,-7), B(5,2), C(-1,0). Har bir tomonning oʻrta nuqtasining koordinatalarini toping.
- 14. Uchburchak tomonlarining oʻrtalari $M_1(3,-2), M_2(1,6), M_3(-4,2)$ nuktalarda boʻlsa, uning uchlarini aniqlang.
- 15. Parallelogrammning A(-3,5)vaB(1,7) qoʻshni uchlari hamda diagonallari kesishgan M(1,1) nuqta berilgan. Uning qolgan ikkita uchining koordinatalarini toping.
- 16. Uchlari A(3,1), B(-1,4), va C(1,1) nuqtalarda boʻlgan uchburchak medianalarining kesishish nuqtasini toping.
- 17. l toʻgʻri chiziqda $|A_1A_2| = |A_2A_3| = |A_3A_4| = |A_4A_5| = |A_5A_6|$ shartni qanoatlantiruvchi $A_1, A_2, A_3, A_4, A_5, A_6$ nuqtalar olingan. Agar $A_2(2,5)$ va $A_5(-1,7)$ boʻlsa, qolgan nuqtalarning koordinatalarini toping.

Fazoda affin koordinatalar sistemasi.

- 1. $\beta = \{0, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ sistemasida A(2,5,4); B(0,1,0); C(4,1,3); D(6,5,7) nuqtalar berilgan. *ABCD* figura parallelogramm ekanini isbot qiling.
- 2. $\overrightarrow{AB} = (-3,2,6)$ vektorning boshi A(-1,0,4) nuqtada joylashgan. Uning oxiri boʻlgan B nuqtaning koordinatalarini toping.
- 3. Uchlari A(2,0,-4); B(7,-15,16), C(-1,-1,11); D(-4,8,-1) nuqtalarda yotgan

to'rtburchak trapetsiya ekanligini isbotlang.

- 4. $M_1(7,9,-8)$; $M_2(-2,3,4)$; M(-5,1,8) nuqtalarning bir toʻgʻri chiziqda yotishini isbotlang.
- $5 \cdot \vec{a} = \{-2,1,5\}; \vec{b} = \{0,-2,6\}$ vektorlar berilgan. $\vec{a} + 2\vec{b}; 3\vec{a} 4\vec{b}; -7\vec{a} + 2\vec{b}$ vektorlarning koordinatalarini toping.
- 6. $M_1(1,-2,5)$; $M_2(4,-2,2)$ nuqtalar berilgan. $[\overline{M_1M_2}]$ kesmani $\lambda = 1:2$ nisbatda boʻluvchi M(x,y) nuqtani toping.
- 7. OABC tetraedrda $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ larni bazis vektorlar deb olib, ABC yoq medianalari kesishgan nuqtaning koordinatalarini toping.

Tekislikda affin va dekart koordinatalar sistemasini almashtirish

- 4. $\beta = \{O, \vec{e_1}, \vec{e_2}\}$ affin reperga nisbatan A(2,1) va $B(-\frac{3}{2},3)$ berilgan. Koordinatalar boshi O'(0,1) nuqtada boʻlgan shunday $\beta' = \{O', \vec{e_1}, \vec{e_2}\}$ affin reperni topingki, unda A(1,0)va B(0,1) boʻlsin.
- 5. $\beta = \{O, \vec{e_1}, \vec{e_2}\}$ affin reperda A, B nuqtalar mos ravishda (1,1) va (2,2) koordinatalarga ega. A va B nuqtalar (1,1) va (1,-2) koordinatalarga ega boʻladigan $\beta' = \{O', \vec{e_1}, \vec{e_2}\}$ affin reper mavjudmi?
- 6. $\vec{e_1}(1,1)$, $\vec{e_2}(-3,1)$, O'(0,1) bo'lsa, $\beta = \{O,\vec{e_1},\vec{e_2}\}$ va $\beta' = \{O',\vec{e_1},\vec{e_2}\}$ affin reperlarda bir xil koordinatalarga ega bo'lgan nuqtani toping.
- 7. Agar koordinatalarni almashtirish formulalari quyidagicha boʻlsa, yangi koordinata vektorlarini va yangi koordinatalar boshining eski reperga nisbatan koordinatalarini toping:

a)
$$\begin{cases} x = x - y + 3 \\ y = -3y - 2 \end{cases}$$
b)
$$\begin{cases} x = 3x - y \\ y = 2x + 1 \end{cases}$$
c)
$$\begin{cases} x = y + 1 \\ y = x + 2y + 3 \end{cases}$$
e)
$$\begin{cases} x = x - 3y + 4 \\ y = 3x + \sqrt{2}y - 1 \end{cases}$$
d)
$$\begin{cases} x = x + 2y + 1 \\ y = x + y - 6 \end{cases}$$

9. Koordinatalarni almashtirish formulasi quyidagicha

$$\begin{cases} x = \frac{1}{2}x - \frac{\sqrt{3}}{2}y \\ y = \frac{\sqrt{3}}{2}x + \frac{1}{2}y \end{cases}$$

bo'lsa, koordinata o'qlari qanday burchakka burilgan?

- 10. $\beta = \{0, \vec{i}, \vec{j}\}$ dekart reperga nisbatan $A(\sqrt{8}, -\frac{1}{2})$ va M(x, y) nuqtalar berilgan. Koordinata oʻqlari koordinatalar burchagi bissektrisalari bilan almashtirilganda, shu nuqtalarning koordinatalarini toping.
- 11. $\beta = \{O, \vec{i}, \vec{j}\}$ dekart reperda F figura xy + 3x 2y 6 = 0 tenglama bilan berilgan. Koordinatalar boshi O(2, -3) nuqtaga koʻchirilgandan keyin F figuraning tenglamasi qanday boʻladi?

Fazoda affin va dekart koordinatalar sistemasini almashtirish

- 1. $\beta = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ sistemaga nisbatan $\vec{e}_1(1,0,0)$, $\vec{e}_2(0,1,0)$, $\vec{e}_3(0,0,1)$, O(1,-3,5) lar berilgan β dan $\beta = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ ga o'tishdagi koordinatalarni almashtirish formulalarni yozing. β da berilgan M(1,1,3) nuqtaning β dagi koordinatalarni toping.
- 2. M nuqta $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ M(0,1,-3) koʻrinishda, $\beta' = \{O', \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ da esa M(2,-3,5) koʻrinishda berilgan boʻlsa, koordinatalar boshi koʻchirilgan O' nuqtaning β dagi koordinatalarini toping.
- 3. Biror $\beta = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ sistemaga nisbatan $\vec{e}_1(1, -3, -1); \vec{e}_2(0, 5, 1); \vec{e}_3(0, 0, 3)$ vektorlar berilgan. $\vec{e}_1, \vec{e}_2, \vec{e}_3$ lar bazis boʻla olishini koʻrsating va $\beta = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ dan $\beta = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ ga oʻtishdagi koordinatalarni almashtirish formulalarini yozing va M(3, 1, -4) ning β dagi koordinatalarini toping.
- 4. $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ da $\vec{e_1}(1,0,2); \vec{e_2}(1,0,-2); \vec{e_3}(1,1,1)$ vektorlar berilgan. $\vec{e_1}, \vec{e_2}, \vec{e_3}$ sistema bazis ekanligini koʻrsating va $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ dagi oʻtishdagi koordinatalarni almashtirish formulalarini yozib M(3,1,-4) ning β dagi $\vec{e_1}, \vec{e_2}, \vec{e_3}$ larning koordinatalarini toping.
- 5. \overrightarrow{OABC} tetraedr berilgan, $\overrightarrow{OA} = \overrightarrow{e_1}$, $\overrightarrow{OB} = \overrightarrow{e_2}$, $\overrightarrow{OC} = \overrightarrow{e_3}$ deb olib, $\beta = \{O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ affin sistemasidan O = A, $\overrightarrow{e_1} = \overrightarrow{AO}$, $\overrightarrow{e_2} = \overrightarrow{AB}$, $\overrightarrow{e_3} = \overrightarrow{AC}$ boʻlgan $\beta = \{O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ sistemaga oʻtishdagi koordinatalarni almashtirish formulalarini yozing.
- 6. $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ sistemadan $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ sistemaga o'tishdagi ixtiyoriy nuqtaning bu ikki sistemaga nisbatan koordinatalari orasidagi bog'lanish ushbu x = x 2y + 3z 4, y = 5x y z, z = z + 1 formulalar bilan berilgan. O nuqtaning va $\vec{e_1}, \vec{e_2}, \vec{e_3}$ vektorlarning β dagi koordinatalarini toping.
- 7. $\beta = \{O, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ da $\vec{e_1}(-1, 1, 0); \vec{e_2}(2, -1, 0); \vec{e_3}(0, 0, 5); O'(5, 0, -2)$ lar berilgan. β dan

- $\beta' = \{O', \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ ga o'tishdagi koordinatalarni almashtirish formulalarni yozing va β' da berilgan va M(1, -3, 4) ning β dagi koordinatalarini toping.
- 8. $\beta = \{\vec{O}, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ dan $\beta = \{\vec{O}, \vec{e_1}, \vec{e_2}, \vec{e_3}\}$ ga oʻtishda $\vec{e_i}, i = 1, 2, 3$ lar β da quyidagicha berilgan boʻlsin: $\vec{e_1}(4, 3, -2); \vec{e_2}(0, 1, 5); \vec{e_3}(-1, 0, 5)$. A(-1, 0, 27) va B(1, 0, -1) nuqtalarning yangi sistemadagi koordinatalarini toping.
- 9. $\beta = \{O, \vec{i}, \vec{j}, \vec{k}\}$ ni Oy oʻq atrofida α burchakka soat strelkasiga teskari yoʻnalishda borib, $\beta' = \{O', \vec{i}, \vec{j}, \vec{k'}\}$ sistemaga oʻtilgan. Koordinatalarni almashtirish formulalarini yozing, $\alpha = 45^{\circ}$ boʻlganda $M(0,1,-\sqrt{2})$ uchun M ning β dagi koordinatalarini toping.
- 10. Toʻgʻri burchakli dekart koordinatalar sistemasini shunday almashtiringki, unda O = O', Oz = Oz' boʻlsin va [Ox'], [Oy'] nurlar esa (xOz), (yOz) koordinata burchaklarining bissektrisalaridan iborat boʻlib, yangi bazis sistemasining bazis vektorlari birlik vektorlar boʻlsin.
- 11. $\beta = \{O, \vec{i}, \vec{j}, \vec{k}\}$ ni Oz o'q atrofida soat strelkasiga teskari yo'nalishda α burchakka burishdan $\beta = \{O', \vec{i}, \vec{j}, \vec{k}\}$ sistema hosil bo'lgan. β dan β ga o'tishdagi koordinatalarni almashtirish formulalarini toping.
- 12. Toʻgʻri burchakli ABCD trapetsiya berilgan. Asoslari AD = 4, BC = 2 va D burchagi 45° ga teng. \overrightarrow{CD} vektorni bir oʻq deb, $\overrightarrow{AD}, \overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{AC}$ vektorlarning shu bir oʻqdagi proektsiyalarini toping.
- 13. \vec{a} vektor $o_{x va} o_y$ oʻqlari bilan mos ravishda $\alpha = \frac{\pi}{3}, \beta = \frac{2\pi}{3}$ li burchaklar tashkil etadi. Agar $|\vec{a}| = 2$ boʻlsa, uning koordinatalarini hisoblang.
- 14. Kesmaning uchlari M(3,-2) va N(10,-9) nuqtalarda yotadi. C nuqta kesmani $\lambda = \frac{2}{5}$ nisbatda boʻlsa, shu nuqtaning koordinatalarini toping.
- 15. B(-3,4) nuqta AC kesmani $\lambda = \frac{2}{3}$ nisbatda boʻlsa, A(1,2) ni bilgan holda C(x,y) ni koordinatalarini toping.
- 16. C(-5,4) nuqta AB kesmani $\lambda = \frac{3}{4}$ nisbatda, D(6,-5) nuqta esa $\mu = \frac{2}{3}$ boʻlsa, A va B nuqtalarning koordinatalari topilsin.