Circuitos Sequenciais

- Elementos de estado ou elementos de memória
- Exemplos de circuitos sequenciais:
 - Latch:
 - Latch Set-Reset
 - Latch tipo D
 - •
 - Flip-flop:
 - Flip-flop tipo D
 - Flip-flop tipo T
 - ...
 - Registrador:
 - Registrador de deslocamento (shift register)
 - Registrador contador
 - Conjunto de registradores
 - Memória

Contadores

Circuitos que contam de 1 em 1, de forma crescente ou decrescente

Aplicação de contadores:

- Contar o nº de ocorrências de determinados eventos
- Gerar intervalos de tempo para controle de operações
- Determinar o intervalo de tempo decorrido entre dois eventos específicos

Construídos com flip-flops

Podem ser:

Contador assíncrono:

- Circuito mais simples
- Sinal do clock é ligado diretamente apenas ao primeiro flip-flop do contador
- Novo valor do contador é produzido com atraso de propagação dos sinais

Contador síncrono:

- Sinal do clock é ligado diretamente a todos os flip-flops do contador
- Adequado para contadores de muitos bits

Contador Assíncrono Crescente Módulo 8

- Usa 3 flip-flops tipo T, sensíveis à transição de subida
- Conta de 0 a $7 \Rightarrow 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, ...$
- Conta número de ciclos do sinal clock

Contador Assíncrono Decrescente Módulo 8

- Usa 3 flip-flops tipo T, sensíveis à transição de subida
- Conta de 7 a 0 \Rightarrow 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, ...

Contador Assíncrono com RESET ou PRESET Assíncrono

Contador assíncrono crescente módulo 8 com RESET assíncrono:

Contador assíncrono decrescente módulo 8 com PRESET assíncrono:

Contador Assíncrono Crescente/Decrescente Módulo 8

- Usa 3 flip-flops tipo T, sensíveis à transição de subida
- Conta de 0 a 7 ou de 7 a 0
- Sinal de entrada $\overline{Up}/Down$:
 - Se $\overline{Up}/Down$ = 0, contar de forma crescente
 - Se $\overline{Up}/Down$ = 1, contar de forma decrescente
- Como construir?

Contador Assíncrono com Flip-flops Tipo D

- Usa 4 flip-flops tipo D, sensíveis à transição de subida
- Contador assíncrono crescente módulo 16

Contador Síncrono com Flip-flops Tipo T

- Contador síncrono crescente módulo 8
- Usa 3 flip-flops Tipo T, sensíveis à transição de subida
- Sinal Clock ligado diretamente a todos os flip-flops
- Sinal T dos flip-flops:

$$T_0 = 1$$

$$T_1 = Q_0$$

$$T_2 = Q_0 \bullet Q_1$$

$$T_3 = Q_0 \bullet Q_1 \bullet Q_2$$

$$\vdots$$

$$T_n = Q_0 \bullet Q_1 \bullet \dots \bullet Q_{n-1}$$

Contador Síncrono Crescente Módulo 16

• Usa 4 flip-flops Tipo T, sensíveis à transição de subida

Contador Síncrono Crescente Módulo 16 com Enable

- Usa 4 flip-flops Tipo T, sensíveis à transição de subida
- Sinal de entrada Enable:
 - Se Enable = 0, contagem desabilitada
 - Se Enable = 1, contagem habilitada

Contador Síncrono com Flip-flops Tipo D

- Usa 4 flip-flops tipo D, sensíveis à transição de subida
- Contador síncrono crescente módulo 16

Ciclo do clock	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

