1.

9	vames Saw
	Quiz 1: Digital Signal Processing
	D V(6) = 2,5(0) (217+t-1/4)
000	a) V(t)= IR {2,5e; b}
	$cos \emptyset = IR(e^{j\beta})$ so $7.5 cos (2\pi ft - 174) => 2.5 IR (e^{i(2\pi ft - 174)})$
200	since \$ 277 ft - 1/4 R(2,5 e i 6)
D	
	b) v(t) = IF { 2.5e i(b-1/2)} In(d) = IF (e)d) imaginary part of evlers
0	(05 (\$) = SIN (\$ + \$\frac{1}{2}\$) SINCE SIN U Q" \$\frac{1}{2}\$ phase shift of (e) \$\frac{1}{2}\$ V(t) = 2.5 cos (271 ft - \$\frac{1}{4}\$) => 2.5 sin (\$\frac{1}{2}\$ \tau ft - \$\frac{1}{4}\$ \tau ft \)
	= 7.5 sin (277 6 + 17/4) =. 7.5 IF (e) (277 6 - 174 + 277)
	= IF(2,5e)(0+ T/2))
>	

	Qv12 # 1 3) 0 - 2,56 volts	digitize in 256 stops
	a) 2,56 - 0.01 V =	10 mV
	b) 10055 (52.0) = 8	
ÍN N	c) 216 = 65536	
1001	7,56 = 3,906.1	0-5 V or 3,906.10 mV

```
Command Window
                                                     0
>> f = 10
f = 10
>> A = 2.5
A = 2.5000
>> DC = 2.5
DC = 2.5000
>> dt = 0.001
dt = 1.0000e-03
>> t = 0:dt:2;
>> s = A * sin(2*pi*f*t) + DC;
>> figure;
>> plot(t, s);
>> title('Signal s(t) = 2.5 sin(2\pi f t) + 2.5');
>> xlabel('Time (s)');
>> ylabel('Amplitude (V)');
>> grid on;
```


4 b & c)

(1.8488, -3.0605)

```
>> n = randn(size(t));
>> z = s + n;
>> figure;
>> plot(t, z);
>> title('Signal with Noise');
>> xlabel('Time (s)');
>> ylabel('Amplitude (V)');
>> grid on;
Figure 6
                                                         X
   Edit Tools
                            Signal with Noise
       8
    Amplitude (V)
      0
                    0.5
                                              1.5
                               Time (s)
```

```
Command Window
>> signal_power = mean(s.^2); % Power of the signal
>> noise_power = mean(n.^2); % Power of the noise
>> SNR = signal_power / noise_power;
>> disp(['Signal-to-Noise Ratio (SNR): ', num2str(SNR)]);
Signal-to-Noise Ratio (SNR): 9.674
>>
```

```
4e)
>> figure;
>> hist(z, 50); % 50 bins for the histogram
>> title('Histogram of Signal with Noise');
>> xlabel('Amplitude (V)');
>> ylabel('Frequency');
>>
 Figure 1
 File Edit Tools
                          Histogram of Signal with Noise
      100
      80
      60
    Frequency
      40
      20
       0
                                Amplitude (V)
(4.9917, 4.3237)
```

5) R(f)=jwt/(1+jwt)
a) $ R(f) = RR^*$
- [(wo)2
= (-JUT) (JUT) = (WT)2 1-JUT) (1+WT)2
- UT - UT
11160
b) unde top \$ +1 = \$ top - \$ botton
andle solar
× top = 90° = 1/2
bottom= tan (wt)
p = I - tan' (wt)
Y - 2 tan (WO)
o) 11 the objection
Tayn Hode Try
2) A(0,5kHz) = R=1, Q= 1000 SZ C= uF 0=R
(0,5kHz) = R=1, Q= 1000 D (= UF 0= R) F= 0.5kHz = 500 Hz W= 27
18(05) 1 - 3,14159 - 0.95
$ R(0.5) = \frac{3(14159)}{1+(3(14159))} = 0.95$
A(+) R(+) = 1.0.9529 = 0.9529

	Qv12 #1
D 6)) 2.5 kHZ = 0.25 = 2.5 kHZ
) 5 kHZ = 0.5 = 5 kHZ
DCD) 10 KHS = 15 = [SKHS]
D 9)	10 kHz - 2 = 0 kHz

	7) S(s(6)]=s(t-T/2)
5	7-11
	2 (4) = 5 2 lm (5/4 + p
	T. (((+ - ±))
	S=(t-1/2)=5(t-1/2)
	Zsin(zTTft-zTTFT) = Zsin(zTTft-TT)
	Esin(CIII O all and
154	sine sink-TT)=-sin(x)
5	STE SINE 3 - 2 SIN (STIFE)
D	
	5)
	1 - 12 (2003)
	£ 3[3603]
	2
	() s(t) + S[s(t)]
N	Zsin (211ft) Zsin (271ft)
- 13	
	s(t) + S[s(t)] = 0
Land 18	

N	8) XCn] = [000 200,0]
5	
D	a) y [n] = S(x[n]) = -x [n-1]
D	y(n) = -x(n-1)
D	
D	since $X(3) = 2$ X[n-1] = 2 when $n = 4$
D	
D	1(4) = -2
D	[-/[n] = [000-2,0]
	b) y[n] =] (x[n]) = (x[n])
D	
D	X(2)=5
7	4(B) = (x[3]) = 9
D	[7[n]=[0004,,0]]
D_	
DO	The system in ig) is linear
2	The system in b) is non-linear
5	

```
9) even it t(p)= t(-f) all t
                                                                 old if fets = - FC+9) gilt
            · (0) (171ft)
· e - (4/2)2
           · at2 + 5t+C
               · cos (277ft) = cos (-277ft)
                                                                                                                                 4 = (0) (TITE +)
           cos zitt : even
                                                                 e^{(-\frac{1}{2})^2} = e^{(-\frac{1}{2})} = e^{(-\frac{1}{2})}
              e((t/g)2); even
· 6-96
                                           e-act) => eat
                      since -f(t) = ext and since
 · qt + st+C
                                                         al-t) + b(-t)+ (=) at -bt+c
                                                                       - F(-t) = ut2 - b++
                                                                          t(f) \( \dagger \) \( \dagger \dagger \) \( \dagger \dag
                                                9t3+5t+c & neither
```

Qu12 #1
-00
$F(\alpha x(t)) = \alpha F(x(t))$
$F(axte) = \propto \int_{\infty}^{\infty} x(t)e^{-3tT} dt$
F(ax(t))= dX(f) homogenous
> b) F(x,(e)+x,(e)) = F(x,(e)) + F(x,(e))
$F\{x,(t)+x,(t)\} = \int x_1(t)e^{-32\pi t}dt + \int x_2(t)e^{-32\pi t}dt$
> [F(x,4) + x2(6)) = X(4) + X2(4)
= (x(v)e = imfv - Jm + 10 d)
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) = e^{-\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)} $
F (x(e-fo)) = 6-7 suppos X(t)

	7.00
11) F(6) = 5 F(6) E(t-to) 26	- 4519 70
a) C C C - 2 TFt	
σο f (t-t) = 2πft dt	
V(t) (v = t - to t = v + to	
du=dt	32
Stane 120460+63 go	
-00	B. C. Chi
= 5 f(u)e - ins f(u+b)	THE PERSON NAMED IN
00 27 FU . 2015 1	
= 5° f (6) e - 27) f v (e-27) f + v) du	
$= e^{-2\pi i J + 4\omega}$	2137
b) 1e-120146 = 1	
b) e = 1	
F { 8 (6-60) =	
17 (000 0771	100
phase e-junfto = - ZITfto	
1	
phase (F{8 (t-to)}) = -zTifto	
praje (7 (0 to 5,7))	

D 15) E(t) = (1/2)(8(t-to)+a8(t+to))
10 19-00
) 15° a 8 (t-to)e 2+3 f, t
Justines 6
-80
-211)fobo
ae magle
D Magic
(ma)
D F(t)= 3[8(t-t)+8(t+t)]
D E(t)= 3[8(t-t)+8(t+t)]
00 3m:ft 0 00 110)ft 0
F-1(F(f)) = 2 5 ((f-fo)e 200 ft of + 5 8 (f+fo)e 2 f
(101) []
= (e ^{2π}) fot + e ^{-2π} s fot
7
b) F(F)=== (8(F-F0)-8(F+F0)
00
2; Jo(t-to)e 101+t - 2; (J(++to)e 12++t)
= 2 e 21 - 2 e - 2 e - 20 - 20 - 20 - 20 - 20 -
9 e - 2 e
= 25 = 75

	13)
D	
	a) A cos (RT Siot) } (M/A) COS(RT FA E)
	A cos (zT fest) = A (e reflect + e - reflect)
	$\frac{A}{A} \left(\cos \left(2 \pi f_A t \right) = \frac{M}{A} \left(\frac{1}{2} \left(e^{j 2 \pi f_A t} + e^{-j 2 \pi f_A t} \right) \right) = \frac{M}{A^2} \left(e^{j 2 \pi f_A t} + e^{-j 2 \pi f_A t} \right)$
	b) $\frac{A}{2} \left(e^{\int 2\pi f_0 t} + e^{\int 2\pi f_0 t} \right) \cdot \frac{M}{A2} \left(e^{\int 2\pi f_0 t} + e^{\int 2\pi f_0 t} \right)$
	M [(JETT FLOT) (e JETTAT + e - JETTAT)
9	M [12π t (FLo + FA) + e + e + e + e + e + e + e + e + e +
	M JITE (FLO+FA) , JITE (FLO+FA) + e + e
	4 Le Te
D	new frewencies
1	
1>1	· flotfa
DI	· fro-fA
DL	

OCTAVE CODE PROJECT

1a)


```
(19373, 0.026092)
>> fs = 20000; % Hz
>> t = 2; % 2 seconds
>> N = fs * t; % number of samples
>>
>> delta function = zeros(1,N);
>> delta function(1) = 1;
>> figure;
>> stem(0:N-1, delta_function);
>> xlabel('n');
>> ylabel('amplitude');
>> xlim([0 N-1]);
>> % 1a number of sampls should be 40000
>>
>>
>>
```

```
>>
>> % part b
>>
>> echo_interval = 0.25;
>> echo_sample = round(echo_interval * fs);
>>
>> echo function = zeros(1, N);
>> echo function(1) = 1;
>> for i = echo_samples+1:echo_sample:N
Display all 1854 possibilities? (y or n)
echo function(i) = 0.5;
error: 'echo samples' undefined near line 1, c
olumn 9
>>
>> for i = echo_sample+1:echo_sample:N
echo function(i) = 0.5;
end
>>
>> figure;
>> stem(0:N-1, echo function);
>> xlabel('n');
>> ylabel('amplitude');
>> xlim([0 N-1]);
>>
```



```
>> % part c
>>
>> amp decay = 0.5;
>> echo function = zeros(1, N);
>> echo function(1) = 1;
>>
>> for i = echo_sample+1:echo_sample:N
echo_function(i) = amp_decay^(i / echo_sample
) * 1;
end
>>
>> figure;
>> stem(0:N-1, echo_function);
>> xlabel('n');
>> ylabel('amplitude');
>> xlim([0 N-1]);
>>
```



```
>> % part d
>>
>> f = 1000; %frequency
>> t_sine = 0:1/fs:0.1;
>> sine_wave = sin(2 * pi * f * t_sine);
>> sine_wave = [sine_wave zeros(1, N - length
(sine_wave))];
>>
>> figure;
>> plot(t_sine, sine_wave(1:length(t_sine)));
>> xlabel('Time in seconds')
>> ylabel('amplitude');
>> |
```


(0.098433, -0.22992)

```
>>
>> %part e
>>
>> output_signal = conv(sine_wave, echo_function);
>>
>> volume = 0.4; reduce volume
error: 'reduce' undefined near line 1, column 15
>> volume = 0.4; %reduce volume
>>
>> output_signal = output_signal * volume;
>>
>> sound(output_signal, fs);
>> |
```