Math 321 Lecture 28

Yuchong Pan

March 18, 2019

1 Inverse and Implicit Function Theorems

1.1 Differentiability

Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m, m, n \geq 1$.

Question: Where is f differentiable?

Definition 1. Say that **f** is **differentiable** at $\mathbf{x}_0 \in \mathbb{R}^n$ if there exists a linear transformation $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^m$ such that

can be represented as an $m \times n$ matrix

$$\frac{\left\| \underbrace{\mathbf{f}(\mathbf{x}_0)}_{\in\mathbb{R}^m} + \underbrace{\mathbf{h}}_{\in\mathbb{R}^m} - \underbrace{\mathbf{f}(\mathbf{x}_0)}_{\in\mathbb{R}^m} - \underbrace{\mathbf{A}}_{m \times n} \underbrace{\mathbf{h}}_{n \times 1} \right\|}{\|\mathbf{h}\|} \xrightarrow{\mathbf{h} \to \mathbf{0}} 0.$$
(*)

Call $A = \mathbf{f}'(\mathbf{x}_0)$, the "partial derivative of \mathbf{f} at \mathbf{x}_0 ".

Examples:

1. If m = n = 1, our standard definition of differentiability says that

$$f'(x) \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{ exists}$$

$$\Leftrightarrow \lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right) = 0$$

$$\Leftrightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h} = 0$$

$$\Leftrightarrow \lim_{h \to 0} \left| \frac{f(x_0 + h) - f(x_0) - f'(x_0)h}{h} \right| = 0 \quad \text{which agrees with Definition (*).}$$

2. **Observation:** If **A** exists, it is unique.

Suppose there exist $\mathbf{A}, \mathbf{B} : \mathbb{R}^n \to \mathbb{R}^m$ obeying (*).

$$\begin{split} \frac{\|(\mathbf{A} - B)\mathbf{h}\|}{\|\mathbf{h}\|} &= \frac{1}{\|\mathbf{h}\|} \left\| \mathbf{A}\mathbf{h} - \underbrace{(\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{f}(\mathbf{x}_0))}_{\|\mathbf{h}\|} + \underbrace{(\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{f}(\mathbf{x}_0))}_{\|\mathbf{h}\|} - \mathbf{B}\mathbf{h} \right\| \\ &\leq \frac{\|\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{f}(\mathbf{x}_0) - \mathbf{A}\mathbf{h}\|}{\|\mathbf{h}\|} + \frac{\|\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{f}(\mathbf{x}_0) - \mathbf{A}\mathbf{h}\|}{\|\mathbf{h}\|} \xrightarrow{\text{by } (*)}{\mathbf{h} \to \mathbf{0}} 0. \end{split}$$

Math 321 Lecture 28 Yuchong Pan

Hence:

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\|(\mathbf{A}-\mathbf{B})\mathbf{h}\|}{\|\mathbf{h}\|} = 0. \tag{**}$$

Conclusion: $\mathbf{A} = \mathbf{B}$. (If *not*, then there exists $\mathbf{v} \in \mathbb{R}^n$ such that $(\mathbf{A} - \mathbf{B})\mathbf{v} \neq \mathbf{0}$. Choose $\mathbf{h} = t\mathbf{v}, t \to 0$. Then,

$$\frac{\|(\mathbf{A} - \mathbf{B})\mathbf{h}\|}{\|\mathbf{h}\|} = \frac{\|(\mathbf{A} - \mathbf{B})\mathbf{v}\|}{\|\mathbf{v}\|} \neq \mathbf{0}, \text{ a contradiction.}$$

3. Exercises:

(a) Show that if $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{x}_0 , then for every $1 \leq j \leq n$,

$$\lim_{t \to 0} \frac{\mathbf{f}(\mathbf{x}_0 + t\mathbf{e}_j) - \mathbf{f}(\mathbf{x}_0)}{t} = \underbrace{\frac{\partial \mathbf{f}}{\partial \mathbf{x}_j}(\mathbf{x}_0)}_{m\text{-dimensional vectors}} \text{ exists,}$$

called the j^{th} partial derivative of f at x_0 , where

$$\mathbf{e}_{j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \to \text{the } j^{\text{th}} \text{ entry.}$$

(b) Show:

$$\underbrace{\mathbf{A}}_{m \times n} = \left(\frac{\partial \mathbf{f}}{\partial x_1} (\mathbf{x}_0) \quad \frac{\partial \mathbf{f}}{\partial x_2} (\mathbf{x}_0) \quad \dots \quad \frac{\partial \mathbf{f}}{\partial x_n} (\mathbf{x}_0) \right).$$

(c) However, the converse need not be true. Show that there exists $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}, n \geq 2$ such that all partial derivatives of \mathbf{f} exists at $\mathbf{0}$, but \mathbf{f} is not differentiable at $\mathbf{0}$.

1.2 Inverse Function Theorem

Theorem 1. Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$. Let $E \subseteq \mathbb{R}^n$ and $\mathbf{a} \in E$. Assume that $\mathbf{f} \in C^1(E)$ (i.e., $\underbrace{x}_{\in E} \mapsto \mathbf{f}'(x)$ is continuous) and $\underbrace{\mathbf{f}'(\mathbf{a})}_{\text{sufficient but not necessary, as the example } h$ shows

1. We can invert **f** locally: There exists $U \subseteq E \subseteq \mathbb{R}^n$, $\mathbf{b} \in V \subseteq \mathbb{R}^n$ and $\underbrace{g}_{=f^{-1}} : V \xrightarrow[\text{onto}]{1-1} U$ such that $f \circ g = \operatorname{id}$ and $g \circ f = \operatorname{id}$.

Math 321 Lecture 28 Yuchong Pan

$$\mathbf{g} \circ \mathbf{f}(\mathbf{u}) = \mathbf{u} \qquad \forall \mathbf{u} \in U,$$

$$\mathbf{f} \circ \mathbf{g}(\mathbf{v}) = \mathbf{v} \qquad \forall \mathbf{v} \in V.$$

2.
$$g \in C^1(V)$$
.

Example: Suppose n = 1. Then f'(a) invertible means that $f'(a) \neq 0$. Let $f(x) = x^2, x \in (-a, a)$. Then f'(0) = 0 and f is not invertible in any neighborhood of the origin.

Let $h(x) = x^3$. Then h'(0) = 0. However, h is invertible near 0.

Math 321 Lecture 28 Yuchong Pan

