PLSC 502 – Autumn 2016 Measures of Association: Binary Variables

November 1, 2016

Binary Variables

- Ambiguous level of measurement...
- Related to proportions... For $Y \in \{0,1\}$:

$$\cdot E(Y) \equiv \sum Y/N = \hat{\pi}$$

- · Same as $Pr(Y_i = 1)$
- · Variance is $\hat{\pi}(1-\hat{\pi})$
- Also potentially interval ration (as a "count")

Differences of Proportions

We know that for two estimates $\hat{\pi}_1$ and $\hat{\pi}_2$, based on samples of size N_1 and N_1 ,

$$z = \frac{\hat{\pi}_1 - \hat{\pi}_2}{\hat{\sigma}_{\pi_1 - \pi_2}}$$

where

$$\hat{\sigma}_{\pi_1 - \pi_2} = \sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{N_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{N_2}}$$

We can think about this as samples of Y drawn from (say) X=0 and X=1:

$$\hat{\sigma}_{\pi_{Y|X=0}-\pi_{Y|X=1}} = \sqrt{\frac{\hat{\pi}_{Y|X=0}(1-\hat{\pi}_{Y|X=0})}{N_{X=0}} + \frac{\hat{\pi}_{Y|X=1}(1-\hat{\pi}_{Y|X=1})}{N_{X=1}}}$$

Chi-Square

We also know that:

$$W = \sum_{k_X k_Y} \frac{(N_{XY} - E_{XY})^2}{E_{XY}}$$

and that:

$$W \sim \chi_1^2$$

when both X and Y are binary.

```
In fact, z^2 = W...
> T <- table(Y,X)
> T
   X
Y 0 1
 0 5 3
 1 4 8
> chisq.test(T,correct=FALSE)
Pearson's Chi-squared test
data: T
X-squared = 1.65, df = 1, p-value = 0.2
> p1<-4/9
> p2<-8/11
> p <- 12/20
> se <- sqrt(((p*(1-p)*(1/9+1/11))))
> Z <- (p1-p2) / se
> Z
[1] -1.2845
> Z^2
[1] 1.6498
```

χ^2 Is *Not* A Measure Of Association

```
> chisq.test(T, correct=FALSE)
Pearson's Chi-squared test
data: T
X-squared = 1.65, df = 1, p-value = 0.199
> X <- rep(X,times=10)
> Y <- rep(Y,times=10)
> T10 <- table(X,Y)
> T10
X 0 1
 0 50 40
  1 30 80
> chisq.test(T10,correct=FALSE)
Pearson's Chi-squared test
      T10
data:
X-squared = 16.5, df = 1, p-value = 0.0000487
```

"Contingency Tables"

Contingency table:

	X = 0	X = 1	
Y = 0	N ₀₀	N ₁₀	<i>N</i> _{•0}
Y = 1	N_{01}	N_{11}	$N_{ullet 1}$
	N ₀ •	N_{1ullet}	Ν

Q: How much more or less likely is
$$Y = 1|X = 1$$
 than $Y = 1|X = 0$?

Odds

Recall that the *odds* of Y = 1 | X = 1 are:

$$O_{Y=1|X=1} = \frac{\Pr(Y=1|X=1)}{\Pr(Y=0|X=1)}$$

$$= \frac{\hat{\pi}_{Y=1|X=1}}{\hat{\pi}_{Y=0|X=1}}$$

$$= \frac{N_{11}/N_{1\bullet}}{N_{10}/N_{1\bullet}}$$

$$= \frac{N_{11}}{N_{10}}$$

And similarly:

$$O_{Y=1|X=0}=rac{N_{01}}{N_{00}}$$

Odds Ratio

The *odds ratio* is then:

$$OR = \frac{O_{Y=1|X=1}}{O_{Y=1|X=0}}$$
$$= \frac{N_{11}/N_{10}}{N_{01}/N_{00}}$$

Odds Ratio Facts...

- OR expresses the *relative* odds of an event (Y = 1) under one condition (X = 1) versus another (X = 0).
- $OR \in [0, \infty)$
- Interpretation:
 - · $OR = 1 \leftrightarrow$ no association
 - \cdot $\mathit{OR} > 1 \ \leftrightarrow \ \mathsf{positive}$ association
 - \cdot OR $< 1 \leftrightarrow$ negative association
- The "inverse odds ratio" $(O_{Y=0|X=1}/O_{Y=0|X=0})$ is simply the reciprocal of OR.

Odds Ratios Illustrated

```
> T
  0 5 3
  1 4 8
> OR \leftarrow (T[1,1])*T[2,2] / (T[1,2]*T[2,1])
> OR.
[1] 3.33333
> require(DescTools)
> OddsRatio(T)
[1] 3.33333
```

Association measure: ϕ

For the contingency table above,

$$\phi = \frac{N_{11}N_{00} - N_{10}N_{01}}{\sqrt{N_{1\bullet}N_{0\bullet}N_{\bullet 0}N_{\bullet 1}}}$$

Also,

$$\phi^2 = \frac{\chi^2}{N}$$
 so $|\phi| = \sqrt{\frac{\chi^2}{N}}$

A Few Things About ϕ

- A/K/A the "mean square contingency coefficient" or Matthews' Correlation Coefficient (MCC)
- $\phi \in [0,1]$ (but see below...)
- In general:
 - $\cdot \ \phi \in [0.7, 1.0] = a$ strong positive association
 - $\cdot \ \phi \in [0.4, 0.7] = a$ moderate positive association
 - $\cdot \ \phi \in [0.1, 0.4] = \mathsf{a}$ weak positive association
 - $\cdot \ \phi \in [-0.1, 0.1] = \mathsf{no} \ \mathsf{association}$
 - $\phi \in [-0.1, -0.4] = a$ weak negative association
 - $\cdot \ \phi \in [-0.4, -0.7] = a$ moderate negatie association
 - $\phi \in [-0.7, -1.0] = a$ strong negative association
- \bullet ϕ equals Pearson's correlation coefficient (r) applied to two binary variables.
- The equation above means that $\phi^2 \times N \sim \chi_1^2$, which can be used for hypothesis testing (e.g., for $H_0: \phi = 0$).

ϕ Examples...

```
> T
   Х
  0 5 3
  1 4 8
> require(psych)
> phi(T)
[1] 0.29
> cor(X,Y)
[1] 0.287213
```

ϕ Examples (continued)

```
> Tpos<-as.table(rbind(c(10,0),c(0,10)))
> phi(Tpos)
[1] 1
> Tneg<-as.table(rbind(c(0,10),c(10,0)))
> phi(Tneg)
[1] -1
> T0<-as.table(rbind(c(5,5),c(5,5)))
> phi(T0)
[1] 0
```

ϕ : Restricted Range

From the Stata manual (entry for tetrachoric):

from -1 to 1. To illustrate, consider the following set of tables for two binary variables, X and Z:

	Z = 0	Z = 1	
X = 0	20 - a	10 + a	30
X = 1	a	10-a	10
	20	20	40

For a equal to 0, 1, 2, 5, 8, 9, and 10, the Pearson and tetrachoric correlations for the above table are

a	0	1	2	5	8	9	10
Pearson	0.577	0.462	0.346	0	-0.346	-0.462	-0.577
Tetrachoric	1.000	0.792	0.607	0	-0.607	-0.792	-1.000

Tetachoric Correlation (r_{tet})

Setup:

- N observations, with
- *T_i* a *latent* trait for each observation;
- two raters, {1,2}, each of which
 - · observes a "noisy" version of T_i :

$$T_i^{*1} = T_i + e_{1i}$$

 $T_i^{*2} = T_i + e_{2i}$

- · and gives a binary rating to i; equals 0 if $T_i < \tau$, 1 if $T_i > \tau$. Call these X_{1i} and X_{2i} .
- Assume that $\{e_{1i}, e_{2i}\} \sim \Phi_2(0, 0, 1, 1, \rho)$ (bivariate normal)

Digression: Bivariate Normals

The Bivariate Normal is:

$$\Pr(X_1, X_2) = \frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-
ho^2}} \exp\left[\frac{-z}{2(1-
ho^2)}\right]$$

where

$$z = \left[\frac{(X_1 - \mu_{X_1})^2}{\sigma_{X_1}^2} + \frac{(X_2 - \mu_{X_2})^2}{\sigma_{X_2}^2} - \frac{2\rho(X_1 - \mu_{X_1})(X_2 - \mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}} \right]$$

and

$$\rho = \operatorname{corr}(X_1, X_2)$$

Bivariate Normals Illustrated

Back to Tetrachoric Correlation

Back to Tetrachoric Correlation

More Tetrachoric Correlation

Idea: Get as close to:

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	π_{00}	π_{10}
$X_2 = 1$	π_{01}	π_{11}

...using three parameters: τ_1 , τ_2 , and ρ .

r_{tet} Fun Facts

- $r_{tet} \in [-1, 1]$
- Assumes two continuous, Normal underlying (latent) variables...
- Fitted via ML, etc. but also has a simple approximate formula:

$$r_{tet} pprox rac{lpha - 1}{lpha + 1}$$

where

$$\alpha = (OR)^{\frac{\pi}{4}}$$

r_{tet}: An Example

```
> require(polycor)
> polychor(T)
[1] 0.439917
> # Compare:
>
> phi(T)
[1] 0.29
> # Approximate formula:
>
> alpha <- (OR)^(pi/4)
> rtet <- (alpha - 1) / (alpha + 1)
> rtet
[1] 0.440458
```

r_{tet} vs. ϕ : Symmetrical Marginals

r_{tet} vs. ϕ : Asymmetrical Marginals

