Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19 Kryptographie Moderne Verfahren

Überblick

- Moderne Blockchiffren
- Asymmetrische Verschlüsselungsverfahren
 - Diffie-Hellman-Schlüsseltausch
 - RSA-Algorithmus
 - Elliptische Kurven
- Details: siehe Literatur, z.B.
 - D. Wätjen. Kryptographie: Grundlagen, Algorithmen, Protokolle, Spektrum Akademischer Verlag, 2. Aufl. 2008
 - C. Paar, J. Pelzl und B. Preneel. *Understanding Cryptography: A Textbook for Students and Practitioners*, Springer, 2010

Moderne Blockchiffren

- sind symmetrische Verfahren
- die Klartexte blockweise verschlüsseln

DES

- Data Encryption Standard (DES)
- 1973-77: Entwicklung und Veröffentlichung
- seither extrem weit verbreitet
- nicht mehr sicher
 - 1994 erstmals gebrochen (50 Tage auf 12 Rechnern)
 - 1998 mit Spezialchip der Electronic Frontier Foundation (EFF) weniger als 3 Tage Rechenzeit
 - 1999 DES-Challenge: 22:15h auf 100.000 PCs verteilt und EFF-Rechner
- die Variante 3DES ("Triple DES") gilt noch als sicher

AES

- Advanced Encryption Standard (AES)
- 1997: Ausschreibung eines Entwicklungswettbewerbs
- 2000/2001 AES wird Standard
 - mit Algorithmus Rijndael
 - nach den belgischen Entwicklern J. Daemen und V. Rijmen
- sicherer und effizienter als 3DES
 - ca. 3x schneller als DES
 - ca. 9x schneller als 3DES

AES – Struktur

- Verschlüsselung in mehreren Runden
- Vier Basisoperationen
 - diese werden in jeder Runde kombiniert
- für jede Runde ein separater Rundenschlüssel
 - "Key Schedule"
 - generiert aus dem Chiffrier-Schlüssel (128-256 Bit)
 11-15 Rundenschlüssel (je 128 Bit)
- Zahl der Runden r abhängig von Blockgröße n und Schlüssellänge k:

r	n = 128	n = 192	n = 256
k = 128	10	12	14
k = 192	12	12	14
k = 256	14	14	14

AES – Basisoperationen

AES – Rundenstruktur

AES – Anwendung

- verwendet z.B. in folgenden Protokollen
 - SSH (Secure Shell)
 - TLS (Transport Layer Security)
 - IPSec (Internet Protocoll Security)
- WPA2 (Wi-Fi Protected Access 2) Verschlüsselung im WLAN

Rückblick – Symmetrische Kryptosysteme (1)

- Eigenschaften symmetrischer Verschlüsselungsverfahren
 - Wer verschlüsseln kann, kann auch entschlüsseln
 - Je zwei Partner müssen einen gemeinsamen geheimen Schlüssel austauschen

Rückblick – Symmetrische Kryptosysteme (2)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Bewertung

- Austausch geheimer Schlüssel
 - Sicherer Kanal notwendig
 - Oft aber offener Kanal (z.B. Bote oder Funkverbindung)
- Schlüsselmanagement
 - Vielzahl von Schlüsseln erforderlich
 - Schwierigkeit
 - Wenn Sender und Empfänger noch nicht miteinander zu tun hatten
 - Wenn an mehrere Empfänger gleichzeitig eine Nachricht versendet werden soll
- Authentizität ist nicht gewährleistet (identische Schlüssel der Kommunikationspartner)
- Lösung: Asymmetrische Kryptosysteme

Diffie-Hellman-Schlüsseltausch

- erstes System mit öffentlichem Schlüssel
- Diffie und Hellman 1976
- bereits 1975 von Ellis, Cocks, Williamson am britischen GCHQ entdeckt, aber geheim gehalten
- löst das Problem des Schlüsselaustauschs über einen unsicheren Kanal

- verwendet z.B. in folgenden Protokollen
 - SSH (Secure Shell)
 - TLS (Transport Layer Security)
 - IPSec (Internet Protocol Security)

Prinzip – Schlüsselaustausch

Kapitel 5.2: Kryptographie – Moderne Verfahren

Prinzip – Schlüsselaustausch

Kapitel 5.2: Kryptographie – Moderne Verfahren

Vorgehensweise

- 1. Alice verschließt Koffer mit Botschaft mit einem Vorhängeschloss, zu dem nur sie einen Schlüssel hat
- Senden des verschlossenen Koffers an Bob
- Bob bringt zweites Vorhängeschloss an und sendet Koffer wieder zurück
- Alice entfernt eigenes Vorhängeschloss und sendet Koffer zurück
- Bob entfernt eigenes Vorhängeschloss und entnimmt die Botschaft

Diffie-Hellman-Schlüsseltausch

Kapitel 5.2: Kryptographie – Moderne Verfahren

Wähle zwei öffentliche Zahlen

- eine Primzahl p
- und eine ganze Zahl $g \in \{2, 3, ..., p 2\}$
- 1. Alice wählt zufällig eine Zahl $x_A \in \{2, 3, ..., p-2\}$

$$y_A = g^{x_A} \mod p$$

 x_A bleibt geheim, y_A wird an Bob gesendet

Bob wählt zufällig eine Zahl $x_B \in \{2, 3, ..., p-2\}$

$$y_B = g^{x_B} \mod p$$

 x_B bleibt geheim, y_B wird an Alice gesendet

3. Alice rechnet

$$k_{AB} = y_B^{x_A} \mod p = (g^{x_B} \mod p)^{x_A} \mod p = g^{x_B x_A} \mod p$$

4. Bob rechnet

$$k_{AB} = y_A^{x_B} \mod p = (g^{x_A} \mod p)^{x_B} \mod p = g^{x_A x_B} \mod p$$

Der zum Nachrichtenaustausch verwendete Schlüssel ist k_{AB}

Diffie-Hellman – Sicherheit

Kapitel 5.2: Kryptographie - Moderne Verfahren

g sollte eine primitive Wurzel modulo p sein

- muss also die Ordnung p-1 haben, d.h.
- $g^{p-1} = 1 \mod p$ und $g^a \neq 1 \mod p$ für alle a
- d.h., g ist ein erzeugendes Element, es entstehen alle Elemente des Körpers außer Null
- die Anzahl solcher Elemente ist $\phi(p-1)$
- g ist genau dann eine primitive Wurzel, wenn gilt $g^{\frac{p-1}{r}} \neq 1 \bmod p$ für jeden Primfaktor r von p-1

Erinnerung – Eulersche ϕ -Funktion

- Gibt die Anzahl der natürlichen Zahlen an
 - die kleiner als n sind
 - und keinen gemeinsamen Teiler mit n haben
 - $\phi(n) = |\{1 \le x \le n \mid ggT(x, n) = 1\}|$
- Berechnung $(p, q \text{ sind Primzahlen } p \neq q)$
 - $\phi(p) = p 1$ alle Zahlen von 1 bis p 1 sind zu p teilerfremd
 - $\phi(pq) = \phi(p)\phi(q) = (p-1)(q-1)$

 - $\phi(p^i q^j) = \phi(p^i)\phi(q^j) = p^{i-1}(p-1) q^{j-1}(q-1)$
- Beispiele
 - $\phi(5) = 4$
 - es gibt vier zu 5 teilerfremde Zahlen < 5, nämlich 1, 2, 3, 4
 - $\phi(15) = \phi(3 \cdot 5) = \phi(3)\phi(5) = 2 \cdot 4 = 8$
 - $\phi(27) = \phi(3^3) = 3^2 \cdot (3-1) = 9 \cdot 2 = 18$
 - die zu 27 teilerfremden Zahlen sind: 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26
 - $\phi(72) = \phi(2^3 \cdot 3^2) = 2^2 \cdot (2-1) \cdot 3^1 \cdot (3-1) = 4 \cdot 3 \cdot 1 \cdot 2 = 24$

Diffie-Hellman – Sicherheit

- g sollte eine primitive Wurzel modulo p sein
 - muss also die Ordnung p-1 haben, d.h.
 - $g^{p-1} = 1 \mod p$ und $g^a \neq 1 \mod p$ für alle a < p-1
 - d.h., g ist ein erzeugendes Element, es entstehen alle Elemente des Körpers außer Null
 - die Anzahl solcher Elemente ist $\phi(p-1)$
- p sollte eine sichere Primzahl sein
 - p = 2q + 1, wobei q ebenfalls prim
 - sonst gibt es Nachrichten, die durch das Verfahren überhaupt nicht verändert werden: $y_A = g^{x_A} \mod p = g$
- es gibt dann $\phi(p-1) = \phi(2q) = \phi(2)\phi(q) = q-1 = \frac{p-3}{2}$ Wurzeln
 - der Körper hat p Elemente \rightarrow Wahrscheinlichkeit, dass eine zufällige Zahl eine primitive Wurzel ist ca. 50%
- als sicher gelten heute Zahlen mit einer Länge ab 2000 Bit
 - p muss also größer als 2^{2000} sein \rightarrow ca. $10^{602} \rightarrow$ Primzahl mit 602 Dezimalstellen!

Diffie-Hellman – Beispiel

Kapitel 5.2: Kryptographie – Moderne Verfahren

Wähle zwei öffentliche Zahlen

- eine Primzahl $p = 23 = 2 \cdot 11 + 1$ \rightarrow sichere Primzahl, es gibt 10 prim. Wurzeln
- und eine ganze Zahl $g \in \{2, 3, ..., 21\}$: g = 5
- 5 ist eine primitive Wurzel, da
 - $5^{\frac{22}{2}} = 5^{11} = 22 \mod 23$ und $5^{\frac{22}{11}} = 5^2 = 25 = 2 \mod 23$
 - 5 fortlaufend mit sich selbst multipliziert erzeugt alle Zahlen von 1 bis 22
- 2 ist keine primitive Wurzel, da
 - $2^{\frac{22}{2}} = 2^{11} = 1 \mod 23$
 - 2 fortlaufend mit sich selbst multipliziert erzeugt nicht alle Zahlen von 1 bis 22: {2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1}

Diffie-Hellman – Beispiel

Kapitel 5.2: Kryptographie – Moderne Verfahren

- p = 23, g = 5
- 1. Alice wählt zufällig eine Zahl $x_A \in \{2, 3, ..., 21\} \rightarrow 3$ $y_A = 5^3 \mod 23 = 10$ 3 bleibt geheim, 10 wird an Bob gesendet
- 2. Bob wählt zufällig eine Zahl $x_B \in \{2, 3, ..., 21\} \rightarrow 5$ $y_B = 5^5 \mod 23 = 20$ 5 bleibt geheim, 20 wird an Alice gesendet
- Alice rechnet

$$k_{AB} = 20^3 \mod 23 = 19$$

Bob rechnet

$$k_{AB} = 10^5 \mod 23 = 19$$

Der zum Nachrichtenaustausch verwendete Schlüssel ist 19

Diffie-Hellman – Sicherheit

- Sicherheit basiert auf Verwendung einer Einwegfunktion
 - hier: diskrete Exponentiation ist einfach

$$y_A = g^{x_A} \mod p$$

- Umkehrung erfordert Berechnung des diskreten Logarithmus → sehr schwierig (zumindest glaubt man das ...)
- ein Weg, das Verfahren ohne diskreten Logarithmus zu brechen ist bisher nicht bekannt
- Einwegfunktionen
 - Injektive Funktion f: X→Y
 - y = f (x) ist für alle x∈X effizient berechenbar
 - x kann aus der Kenntnis von y nicht effizient berechnet werden
 - D.h. Umkehrfunktion x = f⁻¹(y) kann nur mit unrealistischem Aufwand ermittelt werden

Einwegfunktionen

- ob Einwegfunktionen überhaupt existieren ist unbekannt!
 - ein Beweis dafür würde den Beweis von P ≠ NP einschließen
 (→ Vorlesung Theoretische Informatik; umgekehrt gilt das nicht)
- Beispiele für Funktionen, die die Bedingung evtl. erfüllen
 - diskrete Exponentiation
 - (kryptographische) Hash-Funktionen
 - MD5 (Message Digest, 128 Bit Länge)
 - SHA-1 (Secure Hash Algorithm, 160 Bit Länge)
 - SHA-2/SHA-3 (224 bis 512 Bit)
 - typische Anwendung: Verschlüsselung von Passwörtern
 - MD5 und SHA-1 gelten nicht mehr als sicher
 - Primzahlen
 - Multiplikation ist einfach
 - Faktorisierung ist schwierig

Falltürfunktionen

- Spezialfall von Einwegfunktionen
- Unter Verwendung einer Zusatzinformation
 - (eines Schlüssels)
 - sind die Umkehrfunktionen effizient berechenbar

- Beispiel: Faktorisierung
 - einfach, wenn einer der beiden Faktoren bekannt
 - ullet \rightarrow RSA

RSA-Algorithmus

Kapitel 5.2: Kryptographie – Moderne Verfahren

RSA-Algorithmus

- 1978 von R. Rivest, A. Shamir und L. Adleman entwickelt
- Basiert auf der Annahme, dass
 - die Faktorisierung großer Zahlen (Zerlegung in Primfaktoren) sehr aufwändig ist
 - das Erzeugen einer solch großen Zahl durch die Multiplikation zweier Primzahlen sehr einfach ist

RSA-Algorithmus – Schlüsselgenerierung

- Auswahl zweier großer Primzahlen p und q
- 2. Berechnung des RSA-Moduls n

$$n = pq$$

- n sollte mindestens 500 (dezimale) Stellen haben
- Faktorisierung auch mit Super-Computer nicht effizient möglich
- Bei Kenntnis von p und q ist die Faktorisierung durch eine Division möglich
- 3. Berechnung der Eulerschen Funktion von *n*

$$\phi(n) = (p-1)(q-1)$$

RSA-Algorithmus – Schlüsselgenerierung

Kapitel 5.2: Kryptographie – Moderne Verfahren

Auswahl eines Verschlüsselungsexponenten c

• c ist kleiner als $\phi(n)$

$$1 < c < \phi(n)$$

 c hat keinen gemeinsamen Teiler mit der Eulerschen Funktion

$$ggT(c, \phi(n)) = 1$$

Zahlenpaar (c, n) bilden den öffentlichen Schlüssel

RSA-Algorithmus – Schlüsselgenerierung

Kapitel 5.2: Kryptographie – Moderne Verfahren

5. Berechnung des Entschlüsselungsexponenten d als modulare Inverse von c bzgl. $\phi(n)$

$$c \cdot d \mod \phi(n) = 1$$

- Mit erweitertem euklidischen Algorithmus oder Satz von Euler
- d ist der private Schlüssel

RSA-Algorithmus – Senden und Empfangen

- "Alice möchte Nachricht an Bob senden"
 - Nachschlagen des öffentlichen Schlüssels von Bob in Schlüsselverzeichnis

$$(n_{\text{Bob}}, c_{\text{Bob}})$$

- Aufteilung der Nachricht in Abschnitte x₁, x₂, x₃, ...
- Berechnung der verschlüsselten Abschnitte

$$y_i = x_i^{c_{\text{Bob}}} \mod n_{\text{Bob}}$$

- Übermittlung der y_i
- Entschlüsselung durch Bob unter Verwendung des nur ihm bekannten privaten Schlüssel d_{Bob}

$$x_i = y_i^{d_{\text{Bob}}} \mod n_{\text{Bob}}$$

RSA – Beweis

Kapitel 5.2: Kryptographie – Moderne Verfahren

Satz von Euler

$$a^{\phi(n)} \mod n = 1$$

wenn
$$ggT(a, n) = 1$$

RSA

$$x^{cd} \bmod n$$

$$cd \bmod \phi(n) = 1$$

$$\Rightarrow cd = 1 + k\phi(n)$$

$$x^{cd} \bmod n =$$

$$x^{1+k\phi(n)} \bmod n =$$

$$x x^{k\phi(n)} \bmod n =$$

$$x (x^{\phi(n)})^k \bmod n = x$$

Beispiel RSA-Algorithmus (1)

- Alice möchte an Bob eine verschlüsselte Nachricht senden
 - Nur die 26 lateinischen Buchstaben werden verwendet
 - Numerische Darstellung der Buchstaben
 - Jedem Buchstaben wird seine Position im Alphabet zugeordnet (A → 1, ..., Z → 26)
 - Aufteilung der Nachricht in Blöcke
 - Ein Block enthält ein Zeichen

Beispiel RSA-Algorithmus (2)

- Auswahl zweier Primzahlen
 - p = 5 und q = 11
- Berechnung des RSA-Moduls n
 - $n = 5 \cdot 11 = 55$
- 3. Berechnung der Eulerschen Funktion von n
 - $\phi(n) = (p-1)(q-1) = 4 \cdot 10 = 40$
- 4. Auswahl eines Verschlüsselungsexponenten c
 - z.B. c = 3, da größter gemeinsamer Teiler von c und $\phi(n) = 1$
- Berechnung des Entschlüsselungsexponenten d
 - mit $d = c^{-1} = c^{\phi(\phi(n))-1} \mod \phi(n)$
 - $d = 3^{\phi(40)-1} \mod 40 = 3^{15} \mod 40 = 27$
 - $\phi(40) = \phi(2^3 \cdot 5) = 2^2 \cdot 1 \cdot 4 = 16$

Beispiel RSA-Algorithmus (3)

Kapitel 5.2: Kryptographie – Moderne Verfahren

- Verschlüsselung des Textes CLEO
 - Bildung der numerischen Darstellung
 3, 12, 5, 15
 - Verschlüsselung mit öffentlichem Schlüssel c = 3

```
C: y_1 = 3^3 \mod 55 = 27

L: y_2 = 12^3 \mod 55 = 1728 \mod 55 = 23

E: y_3 = 5^3 \mod 55 = 125 \mod 55 = 15

O: y_4 = 15^3 \mod 55 = 3375 \mod 55 = 20
```

Die Zahlenfolge 27, 23, 15, 20 wird gesendet

Beispiel RSA-Algorithmus (4)

- Entschlüsselung (der Zahlenfolge 27, 23, 15, 20)
 - Empfänger verwendet seinen geheimen Schlüssel d = 27

$$x_1 = 27^{27} \mod 55 = 3 \implies C$$

 $x_2 = 23^{27} \mod 55 = 12 \implies L$
 $x_3 = 15^{27} \mod 55 = 5 \implies E$
 $x_4 = 20^{27} \mod 55 = 15 \implies O$

RSA – Anmerkungen

- ca. 1000x langsamer als gängige symmetrische Verschlüsselungsverfahren (z.B. AES, 3DES)
- daher: Anwendung als hybrides Verfahren
 - RSA zur Verschlüsselung eines gemeinsamen (symmetrischen) Schlüssels
 - Übertragung des verschlüsselten symmetrischen Schlüssels
 - eigentlicher Datenaustausch mit symmetrischem Verfahren
- Anwendungsbeispiele
 - Protokolle SSH, TLS (in https)
 - RFID-Chip in deutschem Reisepass

RSA Factoring Challenge

- Wettbewerb der Firma RSA Security
 - sollte Sicherheit der RSA-Verschlüsselung zeigen
 - gestartet 18.3.1991
 - eingestellt 2007

- gegeben: Zahl entstanden als Produkt aus genau zwei Primzahlen
- gesucht: die beiden Primfaktoren

RSA Factoring Challenge (Auszug)

RSA Zahl	#Stellen dezimal	#Stellen binär	Preisgeld	Datum Faktorisierung	Anmerkungen
RSA-100	100	330	\$1.000	1.4.1991	Lenstra, Uni Amsterdam, wenige Tage
RSA-110	110	364	\$4.429	14.4.1992	Lenstra, Uni Amsterdam, 1 Monat
RSA-155	155	512	\$9.383	22.8.1999	te Riele et al., CWI Amsterdam, 8000 MIPS-Jahre
RSA-576	174	576	\$10.000	3.12.2003	Franke et al., Uni Bonn
RSA-210	210	696	-	26.9.2013	Ryan Propper
RSA-220	220	729	-	13.5.2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé, P. Zimmermann, Australian National University, ca. 370 CPU-Jahre (Xeon E5-2650, 2GHz)
RSA-230	230	762	-	15.8.2018	Samuel S. Gross, Noblis Inc.
RSA-640	193	640	\$20.000	2.11.2005	Franke et al., Uni Bonn, 5 Monate auf 80 AMD Opteron 2,2 GHz
RSA-704	212	704	\$30.000	2.7.2012	S. Bai, E. Thomé, P. Zimmermann, Australian National University, ca. 14 Monate
RSA-768	232	768	\$50.000	12.12.2009	Kleinjung (Lausanne) et al. 2000 CPU-Jahre (single-core AMD Opteron 2,2 GHz) http://eprint.iacr.org/2010/006.pdf
RSA-1024	309	1024	\$100.000	-	ca. 1000x schwerer als RSA-768
RSA-1536	463	1536	\$150.000	-	
RSA-2048	617	2048	\$200.000	-	

 Verschlüsseln Sie folgende Nachricht mit dem RSA-Algorithmus:

- Verwenden Sie dabei
 - Kodierung

- p = 47, q = 79 und c = 37
- Zerlegung der Nachricht in vier Ziffern (= 2 Zeichen des Texts) lange Teilstücke

Angriffe auf Kryptosysteme (1)

Kapitel 5.2: Kryptographie – Moderne Verfahren

- Öffentliche Schlüssel
- Verwendung von zentralem System zur Schlüsselverwaltung "Key Server"

Anfällig gegen sog. "Man-in-the-Middle-Angriff"

Angriffe auf Kryptosysteme (2)

- Man-in-the-Middle-Angriff
 - Angreifer nistet sich im Key Server ein
 - Gibt bei der Anfrage nach einem öffentlichen Schlüssel seinen eigenen Schlüssel zurück
 - Gesendete Nachricht wird abgefangen
 - Wird mit dem eigenen Schlüssel entschlüsselt

Angriffe auf Kryptosysteme (3)

- Man-in-the-Middle-Angriff (Fortsetzung)
 - Nachricht wird mit öffentlichem Schlüssel des eigentlichen Empfängers neu verschlüsselt
 - Änderung der ursprünglichen Nachricht leicht möglich
 - Verschlüsselte Nachricht wird weitergesendet
 - Empfänger bemerkt den Angriff nicht
 - Annahme, dass Nachricht vom ursprünglichen Sender kommt
- Ansätze gegen Man-in-the-Middle-Angriff
 - Digitale Unterschriften
 - und das "Web of Trust"

Web of Trust (1)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Idee

 Echtheit von digitalen Schlüsseln wird durch ein Netz von gegenseitigen Bestätigungen gesichert

Zertifikat

- Digitale Signatur auf einen Schlüssel
- Abgabe durch eine Person, die auch am Web of Trust teilnimmt
- Wenn diese Person sich über die Identität des Schlüsselinhabers versichert hat

Web of Trust (2)

- Zertifizierungsstellen
 - Certification Authorities (CA)
 - Schlüssel können auch durch Signaturen entsprechender Zertifizierungsstellen beglaubigt werden
- Vertrauenswürdige Schlüsselquellen
 - Einrichtung dezentraler Sammelstellen für öffentliche Schlüssel (Key Server)
 - Sammlung von Schlüsseln vertrauenswürdiger Schlüsselquellen

Beispiel Web of Trust (1)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Alice

- erzeugt ein Schlüsselpaar (öffentlicher und privater Schlüssel)
- signiert das Schlüsselpaar
- schickt öffentlichen Schlüssel an Schlüsselserver

Bob

- möchte mit Alice verschlüsselt kommunizieren
- besorgt sich Alice Schlüssel von Schlüsselserver
- fragt Alice nach Details ihres öffentlichen Schlüssels
 - ID, Länge, Typ oder digitaler Fingerabdruck
 - Persönliche Kontakt (Treffen, Telefon, ...)

Beispiel Web of Trust (2)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Bob (Fortsetzung)

- vergleicht die Daten mit den denen des vom Schlüsselserver erhaltenen Schlüssel
- signiert den öffentlichen Schlüssel von Alice mit seinem privaten Schlüssel
 - falls Daten übereinstimmen
- schickt diese Signatur wieder an den Schlüsselserver

Karl

- möchte mit Alice verschlüsselt kommunizieren
- besorgt sich den öffentlichen Schlüssel von Alice
- stellt fest, dass Bob den Schlüssel bereits überprüft hat
- wenn Karl Bob vertraut, vertraut er dem Schlüssel von Alice
 - muss keine Prüfung von Alice durchführen

Digitale Unterschrift (1)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Sicherung der Authentizität

Verfahren:

- Berechnung eines Zwischenergebnisses s
 - aus der zu übermittelnden Botschaft x
 - unter Verwendung des eigenen privaten Schlüssels d_{Alice}

$$s = x^{d}$$
Alice mod n

- Verschlüsselung des Zwischenergebnisses s
 - mit dem öffentlichen Schlüssels des Kommunikationspartners c_{Bob}

$$y = s^{c_{Bob}} \mod n$$

Digitale Unterschrift (2)

Kapitel 5.2: Kryptographie – Moderne Verfahren

Sicherung der Authentizität

Verfahren (Fortsetzung):

- Nach Empfang der signierten Nachricht y
 - Anwendung des privaten Schlüssels
 - Resultat ist das Zwischenergebnis s

$$s = y^{d_{Bob}} \mod n$$

- Empfänger schlägt öffentlichen Schlüssel des Kommunikationspartners im Schlüsselverzeichnis nach
 - Anwendung auf das Zwischenergebnis s

```
x = s^{c}Alice mod n
```

- "Vernünftiges" Ergebnis
 - = sicher, dass die Nachricht vom richtigen Absender kommt
- in der Praxis:
 - erzeugen eines Hash-Werts (z.B. mit SHA-3)
 - signieren dieses Werts

Elliptische Kurven – Elliptic Curve Cryptography (ECC)

- Unabhängig voneinander entdeckt von N. Koblitz (1987) und V. Miller (1987)
- Public-Key Verfahren
- Mittlerweile als Standard etabliert (z.B. IPsec, TLS)
- Vorteil gegenüber RSA:
 - Als Angriffsmöglichkeit bleibt im Prinzip nur die Berechnung des diskreten Logarithmus
 - diese ist bei ECC weniger effizient als bei RSA
 - Daher höhere Sicherheit bereits bei kleinen Schlüssellängen 1024 Bit RSA ≈ 160 Bit ECC 3072 Bit RSA ≈ 256 Bit ECC

Elliptische Kurve – Definition

Kapitel 5.2: Kryptographie – Moderne Verfahren

Elliptische Kurve ≠ Ellipse!

Elliptische Kurve: Alle Punkte (x, y), die folgende Gleichung erfüllen:

$$y^2 = x^3 + ax + b$$

mit a, b, x, y aus einem beliebigem Körper (mit mindestens 4 Elementen) und $4a^3 + 27b^2 \neq 0$

Beispiele (Plots über dem Körper der reellen Zahlen):

$$y^2 = x^3 - 3x + 3$$
 $y^2 = x^3 + 2x + 1$

$$y^2 = x^3 - 2x$$

Kryptographie: verwende endlichen Körper \mathbb{F}_q mit $q = p^i$ Elementen, p prim, $i \in \{1, 2, 3, ...\}$ $(i = 1 \rightarrow rechne modulo p)$

ECC – Womit wird gerechnet?

- Statt "normaler" Zahlen: verwende Punkte P = (x, y) aus \mathbb{F}_q , die die Gleichung erfülle, rechne mod Primzahl p
- → Definition einer kommutativen Gruppe (abgeschlossen, assoziativ, Neutralelement, Inverse)
- Operation "+": $P_3 = P_1 + P_2 = (x_1, y_1) + (x_2, y_2)$ (dieses Symbol ist willkürlich!), für die gilt:

$$x_3 = s^2 - x_1 - x_2 \mod p$$

 $y_3 = s(x_1 - x_3) - y_1 \mod p$

$$\mathsf{mit}\ s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \mathsf{mod}\ p & \mathsf{wenn}\ P_1 \neq P_2\ (\mathsf{Punktaddition}) \\ \frac{3x_1^2 + a}{2y_1} & \mathsf{mod}\ p & \mathsf{wenn}\ P_1 = P_2\ (\mathsf{Punktverdopplung}) \end{cases}$$

- **neutrales Element** σ mit $P + \sigma = \sigma + P = P$ (ein unendlich weit entfernter Punkt in Richtung der y-Achse)
- Inverse zu P = (x, y) ist -P = (x, -y)

ECC – Visualisierung Operation "+"

ECC – Welche Punkte liegen auf der Kurve?

Kapitel 5.2: Kryptographie – Moderne Verfahren

- In \mathbb{F}_p (p prim): Rechnung mod p!
- Einsetzen aller Punkte x in $y^2 = x^3 + ax + b$
- Gleichung ist erfüllt genau für die quadratischen Reste Rp
 - Das sind Zahlen $c = x^3 + ax + b$ für die gilt $c^{\frac{p-1}{2}} \mod p = 1$
- Für alle Elemente aus R_p : Berechnung der Quadratwurzel
- Berechnung der Wurzel ist einfach, wenn gilt $4 \mid (p+1)$
 - Für $y^2 \mod p = c$ lauten die Lösungen dann:
 - $y_1 = c^{\frac{p+1}{4}} \text{ und } y_2 = p y_1$
- In anderen Fällen: probabilistischer Algorithmus, siehe (Wätjen 2008, Algorithmus 9.1)
- Abschätzung Anzahl Elemente N der Kurve: $p+1-2\sqrt{p} \leq N \leq p+1+2\sqrt{p}$

eine Kurve besteht also aus ca. p Elementen

ECC – Beispiel: $y^2 = x^3 + 3x + 9$ über \mathbb{F}_{11}

Kapitel 5.2: Kryptographie – Moderne Verfahren

- Prüfe alle Zahlen $x \in \{0, 1, 2, ..., 10\}$ ob y^2 quadratische Reste (d.h. in R_{11}) sind
- Bestimme die Quadratwurzel

x	$y^2 = x^3 + 3x + 9 \mod 11$	y^2 in R_{11} ?	У
0	9	✓	3, 8
1	2	-	
2	1	✓	1, 10
3	1	✓	1, 10
4	8	-	
5	6	-	
6	1	✓	1, 10
7	10	-	
8	6	-	
9	6	-	
10	5	✓	4, 7

Die Kurve enthält also insgesamt 11 Punkte: Die 10 aus der Tabelle und den Punkt *σ*

ECC-Diffie-Hellman

Kapitel 5.2: Kryptographie – Moderne Verfahren

Wähle öffentlich

- eine Primzahl p
- eine elliptische Kurve $E: y^2 = x^3 + ax + b$ mit N Elementen
- ullet ein primitives (= erzeugendes = hier beliebiges) Element $g=(x_g,\ y_g)\in E$
- 1. Alice wählt zufällig eine Zahl $x_A \in \{2, 3, ..., N-1\}$, addiere $g x_A$ mal:

$$y_A = g + g + \dots + g = x_A g \mod p$$

 x_A bleibt geheim, y_A wird an Bob gesendet

2. Bob wählt zufällig eine Zahl $x_B \in \{2, 3, ..., N-1\}$

$$y_B = g + g + \dots + g = x_B g \bmod p$$

 x_B bleibt geheim, y_B wird an Alice gesendet

3. Alice rechnet

$$k_{AB} = x_A y_B \mod p = x_A x_B g \mod p$$

4. Bob rechnet

$$k_{AB} = x_B y_A \mod p = x_B x_A g \mod p$$

Da in einer kommutativen Gruppe gerechnet wird, ist das Ergebnis identisch. Der zum Nachrichtenaustausch verwendete Schlüssel ist k_{AB}

ECC-Diffie-Hellman – Beispiel

Kapitel 5.2: Kryptographie – Moderne Verfahren

$$p = 11, y^2 = x^3 + 3x + 9, g = (0, 8)$$

- 1. Alice wählt zufällig eine Zahl $x_A \in \{2, 3, ..., 10\} \rightarrow 3$ $y_A = (0, 8) + (0, 8) + (0, 8) \mod 11 = (3,10) + (0,8) = (6,10)$
 - 3 bleibt geheim, (6, 10) wird an Bob gesendet
- 2. Bob wählt zufällig eine Zahl $x_B \in \{2, 3, ..., 10\} \rightarrow 2$ $y_B = (0, 8) + (0, 8) \mod 11 = (3, 10)$
 - 2 bleibt geheim, (3, 10) wird an Alice gesendet
- 3. Alice rechnet

$$k_{AB} = 3 \cdot (3, 10) \mod 11 = (2, 10)$$

4. Bob rechnet

$$k_{AB} = 2 \cdot (6, 10) \mod 11 = (2, 10)$$

Der zum Nachrichtenaustausch verwendete Schlüssel ist (2, 10)

ECC – Anmerkungen

- Um das Verfahren zu brechen, muss man x_A bzw. x_B bestimmen
 - Anschaulich sind dies die Anzahl der Sprünge auf der Kurve vom Startbis zum Endpunkt
 - Dies entspricht dem diskreten Logarithmus; die Formulierung mit "+" sieht nur ungewohnt aus
- Auf diese Weise lassen sich auch andere Verschlüsselungsverfahren auf elliptische Kurven umstellen: Rechne statt mit "normalen" Zahlen mit den Punkten der Kurve
- Die Sicherheit hängt auch von der verwendeten Kurve ab Beispiel: Curve 25519 (Bernstein, 2005)
 - verwendet für Diffie-Hellman
 - $p = 2^{255} 19$, $y^2 = x^3 + 486662x^2 + x$, g = (9, y)
 - (zu dieser Kurve existiert eine isomorphe Kurve als sog. *kurze Weierstraß-Gleichung*, die dann die Form $y^2 = x^3 + ax + b$ hat.)

Kurzfassung – Was sollte man derzeit verwenden?

- Hashing:
 - SHA-2 (als SHA-256, SHA-384 oder SHA-512)
 - Nachfolger SHA-3

- Symmetrische Verfahren:
 - AES-256,
 - Betriebsmodus GCA (Galois Counter Mode)

- Asymmetrische Verfahren
 - RSA mit 2048 Bit, für mittelfristige Sicherheit 3072 Bit
 - ECC mit 256 Bit (z.B. Curve 25519)

Die Zukunft

- Quantencomputer
 - alle aktuell verwendeten Public-Key Verfahren brechen zusammen
 - Shors-Algorithmus (1994): ermöglicht effiziente Primfaktorisierung und diskrete Logarithmen
 - betrifft in erster Linie Schlüsselaustausch und digitale Unterschriften
 - AES bleibt sicher
- Post-Quanten-Kryptographie erforderlich siehe z.B. https://pqcrypto.org/

