Chapter 3: Expansion and Factorisation of Algebraic Expressions

At the end of this chapter, you will be able to:

☐ Identify quadratic expressions

☐ Add and subtract quadratic expressions

☐ Expand the product of algebraic expressions

☐ Expand and simplify quadratic expressions

☐ Expand and algebraic expression in two or more variables involving squares and cubes

☐ Factorise quadratic expressions

 \Box Factorise algebraic expressions in the form ab+ad+bc+bd

*please tick the checkboxes to monitor your progress!

3.1 Addition and subtraction of quadratic expressions

RECAP! Algebraic expression is an expression containing letters, numbers and/or operations.

Examples of algebraic expressions are: x+8, $\frac{3}{2}y-7$, $\frac{6-x}{2}$ and $x-3xy+\frac{4y}{3}-7$

A linear expression in one variable is an algebraic expression that contains only one variable term, with or without a constant term. x+8, 5x, $\frac{3}{2}y-7$ and $\frac{6-x}{2}$.

Linear Expressions

Recap of linear expressions

Which of the following are linear expressions? Give your reasons.

(a)
$$7 - 4x$$

(b)
$$\frac{5}{3}y + 8$$
 (c) $\frac{2-x}{9}$

(c)
$$\frac{2-x}{9}$$

(d)
$$4x + y - 8$$

(f)
$$2x - 3xy + 7$$
 (g) $x^2 - 5x + 6$

(g)
$$x^2 - 5x + 6$$

Quadratic Expressions

Quadratic expression

A quadratic expression in one variable x is of the form $ax^2 + bx + c$, where a, b and c are constants and $a \neq 0$.

If a = 0, then it becomes a linear expression.

^{*} An expression becomes a Quadratic expression when the highest power of the variable is 2.

Addition and Subtraction of quadratic expressions

Worked Example 1 (textbook 2A, pg 50)

Adding and subtracting algebraic terms

Without using a calculator, simplify the following.

(a)
$$5x^2 + (-11x^2)$$

(b)
$$-8x^2 + 4x^2$$

(c)
$$-2y^2 - 8y^2$$

(d)
$$-3y^2 - (-9y^2)$$

"Solution

(a)
$$5x^2 + (-11x^2) = 5x^2 - 11x^2$$

(a)
$$5x^2 + (-11x^2) = 5x^2 - 11x^2$$
 (b) $-8x^2 + 4x^2 = 4x^2 - 8x^2$
= $-6x^2$ = $-4x^2$

(c)
$$-2y^2 - 8y^2 = -10y^2$$

(c)
$$-2y^2 - 8y^2 = -10y^2$$
 (d) $-3y^2 - (-9y^2) = -3y^2 + 9y^2$
= $9y^2 - 3y^2$
= $6y^2$

TRAINING ARENA!

Practice Now 1 (textbook 2A, pg 50)

Without using a calculator, simplify the following.

(a)
$$x^2 + (-6x^2)$$

(c)
$$-13y^2 + 3y^2$$

(e)
$$-8w^2 - 4w^2$$

(g)
$$-x^2 - (-30x^2)$$

Adding and subtracting algebraic terms

Without using a calculator, simplify each of the following expressions.

(a)
$$-3x^2 + (-4x^2) + 2 - 8$$

(b)
$$-y^2 - 3xy - 5y^2 - (-4yx)$$

"Solution

(a)
$$-3x^2 + (-4x^2) + 2 - 8 = -7x^2 + (-6)$$

= $-7x^2 - 6$

(b)
$$-y^2 - 3xy - 5y^2 - (-4yx) = -y^2 - 5y^2 - 3xy - (-4xy)$$
 group like terms and change yx to xy
= $-6y^2 - 3xy + 4xy$
= $-6y^2 + xy$

TRAINING ARENA!

Practice Now 2 (textbook 2A, pg 50)

Without using a calculator, simplify the following.

(a)
$$-5x^2 + (-2x^2) + 3 - 7$$

(c)
$$-4y^2 - yx + 3y^2 - (-5xy)$$

(e)
$$10a^2 + (-12b^2) - 9 - (-3b^2) + 5 + (-6a^2)$$

3.2 Expansion of algebraic expressions of the form (a+b)(c+d)

A. Expansion of a(b+c)

The Distributive Law a(b+c) = ab + ac

This is called the Distributive Law because the first factor a is *distributed*, or multiplied separately, to each of the two terms, b and c, in the second factor (b + c). In particular,

Worked Example 3 (textbook 2A, pg 51)

Expanding expressions using Distributive Law

Expand each of the following expressions.

(a)
$$3(x+2)$$

(b)
$$-4(5x - y)$$

(c)
$$8 - a(-3b + 2c)$$

4

"Solution

(a)
$$3(x+2) = 3x + 6$$

(b)
$$-4(5x - y) = -20x + 4y$$
 Distributive Law: $-4 \times (-y) = +4y$

(c)
$$8 - a(-3b + 2c) = 8 + 3ab - 2ac$$

TRAINING ARENA!

Practice Now 3 (textbook 2A, pg 51)

Expand each of the following expressions simplify the following.

(a)
$$2(x+5)$$

(b)
$$-3(6x - y)$$

(c)
$$5-a(-2b+3c)$$

Worked Example 4 (textbook 2A, pg 52)

Simplifying algebraic expressions using Distributive Law

Simplify -4x(y + 2z) - 3x(5y - z).

*Solution

$$-4x(y+2z) - 3x(5y-z)$$

$$= -4xy - 8xz - 15xy + 3xz$$

$$= -4xy - 15xy - 8xz + 3xz$$

= -19xy - 5xz

Distributive Law group like terms

Big Ide

Equivalence

Using the Distributive Law to write -4x(y+2z) - 3x(5y-z) in its equivalent form helps us to simplify the expression here.

TRAINING ARENA!

Practice Now 4 (textbook 2A, pg 52)

Simplify each of the following expressions.

(a)
$$-3x(y+4z)-5x(2y-z)$$

(b)
$$2p(-4q-3r)-6q(3p+2r)$$

B. Expansion of
$$(a+b)(c+d)$$

We can use the rectangle to visualize the expansion of (a+b)(c+d).

	с	d
а	ac	ad
b	bc	bd

Attention

If a, b, c and d are positive, we can think of this expansion as finding the area of a rectangle of sides (a + b) and (c + d). However, the result is the same for all values of a, b, c and d.

$$(a+b)(c+d) = ac + ad + bc + bd$$

$$(a+b)(c+d) = ac + ad + bc + bd$$

Worked Example 5 (textbook 2A, pg 53)

Expanding expressions using Distributive Law

Expand each of the following expressions.

(a)
$$(a+b)(7x+5y)$$

(b)
$$(3a+1)(x-4y)$$

(c)
$$(x-6y)(3c+2d)$$

(d)
$$(8p-3q)(2r-5s)$$

*Solution

(a)
$$(a + b)(7x + 5y) = 7ax + 5ay + 7bx + 5by$$

(b)
$$(3a+1)(x-4y) = 3ax - 12ay + x - 4y$$

(c)
$$(x-6y)(3c+2d) = 3cx + 2dx - 18cy - 12dy$$

(d)
$$(8p - 3q)(2r - 5s) = 16pr - 40ps - 6qr + 15qs$$

Practice Now 5 (textbook 2A, pg 52)

Expand each of the following expressions.

(a)
$$(a+b)(8x+7y)$$

(c)
$$(5a+2)(x-2y)$$

(e)
$$(x-4y)(2c+3d)$$

(g)
$$(6p-5q)(3r-4s)$$

*(j)
$$(-4r-3s)(3-2t-5u)$$

Worked Example 6 (textbook 2A, pg 53)

Simplifying algebraic expressions using Distributive Law

Simplify the expression 2ac - (3a - b)(c + 4b).

*Solution

$$2ac - (3a - b)(c + 4b)$$

= $2ac - (3ac + 12ab - bc - 4b^2)$ Distributive Law
= $2ac - 3ac - 12ab + bc + 4b^2$ $-(x + y) = -x - y$ and $-(x - y) = -x + y$
= $4b^2 - ac - 12ab + bc$

TRAINING ARENA!

Practice Now 6 (textbook 2A, pg 53)

Simplify each of the following expressions.

(a)
$$2ac - (3a+b)(c-4d)$$

(b)
$$2x(3y-4z)-(3x+y)(y-3z)$$

(c)
$$(3p-q)(2r+s)-(p-2q)(5r-4s)$$

(d) (h+6k)(2m-h)+(3h-2m)(2k+h)

Marked Assignment:

Workbook 2A

Worksheet 3A (p.33-34): Q1(a), 1(g), 2(a), 2(e)

Worksheet 3B (p. 35-36): Q1(h), 2(c), 2(d), 3(a), 3(h)

9

3.3 Expansion of quadratic expressions

A. Expansion of quadratic expressions of the form px(qx+r)

e.g.
$$2(x+3) = 2x+6$$

Method 1: Distributive Law

$$2(x+3) = 2(x) + 2(3)$$
$$= 2x+6$$

Method 2: Multiplication frame

$$\begin{array}{c|cccc} X & x & +3 \\ \hline 2 & 2x & +6 \end{array}$$

Worked Example 7 (textbook 2A, pg 56)

Expanding expressions of the form px(qx + r) using Distributive Law

Without using algebra discs or multiplication frames, expand each of the following expressions.

(a)
$$-7x(4x+3)$$

(b)
$$-3y(10-9y)$$

*Solution

(a)
$$-7x(4x+3) = -28x^2 - 21x$$

(a)
$$-7x(4x+3) = -28x^2 - 21x$$
 (b) $-3y(10-9y) = -30y + 27y^2$
= $27y^2 - 30y$

10

TRAINING ARENA!

Practice Now 7 (textbook 2A, pg 56)

Expand each of the following expressions.

(a)
$$4x(2x+3)$$

(d)
$$-n(12n-29)$$

Worked Example 8 (textbook 2A, pg 56)

Simplifying expressions of the form px(qx + r)

Simplify x(2x-1) - 2(x+5).

"Solution

$$x(2x-1) - 2(x+5) = 2x^2 - x - 2x - 10$$
 Distributive Law
= $2x^2 - 3x - 10$

TRAINING ARENA!

Practice Now 8 (textbook 2A, pg 57)

Simplify each of the following expressions.

(a)
$$x(7x-4)-3(x+2)$$

Worked Example 9 (textbook 2A, pg 57)

Expanding and simplifying algebraic expressions involving squares and cubes

(a) Expand $ab(ac + b^2)$.

(b) Simplify x(xy + y) - y(xy + x).

*Solution

(a) $ab(ac + b^2) = a^2bc + ab^3$

Distributive Law

(a) $a \times a = a^2$ $b \times b^2 = b \times b \times b$ $=b^3$

11

TRAINING ARENA!

Practice Now 9 (textbook 2A, pg 57)

Expand each of the following expressions.

(a) Expand
$$xy(yz+x^2-xy)$$
.

B. Expansion of quadratic expressions of the form (px+q)(rx+s)

e.g.
$$(x+2)(x+3)$$

Method 1: Distributive Law

$$(x+2)(x+3) = x(x) + x(3) + 2(x) + 2(3)$$

$$= x^2 + 3x + 2x + 6$$

$$= x^2 + 5x + 6$$

Method 2: Multiplication frame

$$\begin{array}{c|cccc} X & x & +2 \\ \hline x & x^2 & +2x \\ \hline +3 & +3x & +6 \end{array}$$

Worked Example 10 (textbook 2A, pg 59)

Expanding quadratic expressions using multiplication frame

Without using algebra discs, expand (3x + 4)(7 - 8x) using a multiplication frame.

"Solution

Method 1:

Method 2:

Reflection

The region containing x^2 in the rectangular array is different for both methods. Does this affect the answer? Why or why not?

Practice Now 10 (textbook 2A, pg 59)

Expand each of the following expressions using a multiplication frame.

(a)
$$(4x+7)(3x+5)$$

=

×	4 <i>x</i>	+7
3 <i>x</i>		
+5		
		1

(b)
$$(9x-4)(x+6)$$

=

(c)
$$(3y+11)(2-7y)$$

=

Worked Example 11 (textbook 2A, pg 59)

Simplifying quadratic expressions

Simplify (2x - 3)(x + 5) - 2(4x + 1)(5 - 3x).

"Solution

×	x	+5	×	5	-3 <i>x</i>
2 <i>x</i>	$2x^2$	+10x	4x	20x	$-12x^{2}$
-3	-3 <i>x</i>	-15	+1	+5	-3 <i>x</i>

Big Idea

Equivalence

Writing (2x-3)(x+5) and (4x+1)(5-3x) in their equivalent expanded forms $2x^2+7x-15$ and $-12x^2+17x+5$ helps us to simplify the expression.

$$(2x-3)(x+5) - 2(4x+1)(5-3x) = 2x^2 + 10x - 3x - 15 - 2(-12x^2 + 20x - 3x + 5)$$

$$= 2x^2 + 7x - 15 - 2(-12x^2 + 17x + 5)$$

$$= 2x^2 + 7x - 15 + 24x^2 - 34x - 10 - (x-y) = -x + y;$$

$$- (x+y) = -x - y$$

$$= 26x^2 - 27x - 25$$

TRAINING ARENA!

Practice Now 11 (textbook 2A, pg 59)

Simplify each of the following expressions.

(a)
$$(3x-2)(x+4)-5x(x-3)$$

(b)
$$(5y-1)(y+6)+3(4y-5)(9-2y)$$

Worked Example 12 (textbook 2A, pg 60)

Expanding quadratic expressions in two variables

Expand (x + 2y)(x - 3y).

"Solution

Method 1:

$$(x + 2y)(x - 3y) = x^2 - 3xy + 2yx - 6y^2$$
 Distributive Law
= $x^2 - xy - 6y^2$

Method 2:

$$\begin{array}{c|cccc}
\times & x & -3y \\
\hline
x & x^2 & -3xy \\
+2y & +2yx & -6y^2
\end{array}$$

$$\therefore (x+2y)(x-3y) = x^2 - 3xy + 2yx - 6y^2$$
$$= x^2 - xy - 6y^2$$

Reflection

Which method do you prefer? Why?

TRAINING ARENA!

Practice Now 12 (textbook 2A, pg 60)

1. Expand (2x-7y)(5x+y).

2. Simplify (3w+5v)(2v-5w)-6w(w-2v).

Marked Assignment:

Workbook 2A

Worksheet 3C (p.37-40): Q2(a), 5(f), 7(d), 7(f)

3.4 Factorisation of quadratic expressions

A. Factorisation by extracting common factors

In Book 1, we have learnt how to **factorise** an algebraic expression of the form ab + ac by extracting the common factor a in both terms to obtain:

$$ab + ac = a(b + c)$$
.

Factorisation is the reverse of expansion:

Factorisation is the process of expressing an algebraic expression as the *product* of two or more factors.

Information

This diagram helps to depict the reverse process of expansion and factorisation.

When extracting negative common factors such as -1, we have to *change the sign* inside the brackets as shown below:

Recap!

Practice Now 13 (textbook 2A, pg 62)

Factorise each of the following expressions completely.

(a)
$$12x+8$$

(c)
$$-15x-25$$

(f)
$$-42xy - 12xz$$

(h)
$$-9z - 24bz - 15cz$$

Worked Example 14 (textbook 2A, pg 63)

Factorising expressions involving squares and cubes

Factorise each of the following expressions completely.

(a)
$$6x^2 + 15x$$

(b)
$$-a^3bc - a^2b^2$$

"Solution

(a)
$$6x^2 + 15x = 3x(2x + 5)$$

HCF of 6 and
$$15 = 3$$
;

HCF of
$$x^2$$
 and $x = x$

(b)
$$-a^3bc - a^2b^2 = -a^2b(ac + b)$$
 HCF of a^3 and $a^2 = a^2$;

HCF of
$$a^3$$
 and $a^2 = a^2$;
HCF of b and $b^2 = b$

TRAINING ARENA!

Practice Now 14A (textbook 2A, pg 63)

Factorise each of the following expressions completely.

(a)
$$10x^2 + 8x$$

(c)
$$-49b - 28b^2$$

(d)
$$2\pi r^2 + 2\pi rh$$

(e)
$$x^2yz^3 - yz^2$$

B. Factorisation of quadratic expressions of the form $x^2 + bx + c$

Using multiplication frame

We have learnt previously to use the multiplication frame to help us in the expansion of $(x+2)(x+3) = x^2 + 5x + 6$.

We now use the multiplication frame to work out the factorisation of $x^2 + 5x + 6$.

Step 1: Write the term x^2 and the constant term 6 in the multiplication frame as shown in (a)

Step 2: Fill in the sides with possible factors as shown in (b)

Factors of
$$x^2$$
 is

$$\begin{array}{c|cccc}
\times & x & +2 \\
\hline
x & x^2 & \\
+3 & +6 & \\
\end{array}$$

(b)

$$x^2 = x \times x$$
$$= -x \times -x$$

$$6 = 1 \times 6$$

$$= 2 \times 3$$

$$= -1 \times -6$$

$$= -2 \times -3$$

Choose the factors where the sum of it gives +5 since the coefficient of x is +5.

Step 3: Fill in the multiplication frame and check if the expansion is valid.

Since
$$+2 \times x = +2x$$
 and $+3 \times x = +3x$, we have $+2x+3x=+5x$.

We write the final answer $x^2 + 5x + 6 = (x+2)(x+3)$

$$x^2 + 5x + 6 = (x+2)(x+3)$$

$$x \mid x^2 \mid +2x$$

$$+3 + 3x + 6$$

Try it yourself! (Follow the steps and fill in the multiplication frame)

Q1. Let us try factorising the expression $x^2 - 5x + 6$.

Step 1: Write the term x^2 and the constant term -6 in the multiplication frame.

List down the factors of -6.

$$6 = 1 \times 6$$

$$= -1 \times -6$$

$$= 2 \times 3$$

$$= -2 \times -3$$

Choose the pair of factors whose sum is -5 (since coefficient of x is -5x).

Step 3: Fill in the remaining blanks

Since
$$-2 \times x = -2x$$
 and $-3 \times x = -3x$, we have $(-2x) + (-3x) = -5x$.

We write the final answer $x^2 - 5x + 6 =$

Q2. Factorise
$$x^2 + 5x - 6$$
.

Q3. Factorise $x^2 - 5x - 6$.

Practice Now 14B (textbook 2A, pg 68)

Factorise each of the following quadratic expressions expressions.

(a)
$$x^2 + 6x + 5$$

(c)
$$x^2 - x - 12$$

(e)
$$y^2 - 8y + 12$$

(g)
$$z^2 + 8z + 12$$

E. Factorisation of quadratic expressions of the form $ax^2 + bx + c$, where $a \ne 1$.

Factorise $2x^2 + 7x - 15$.

Step 1: Write the term $2x^2$ and the constant term -15 in the multiplication frame.

Step 2: Fill in the sides with possible factors and complete the frame.

*Notice that $2x^2 = 2x \times x$

$$-15 = 1 \times (-15)$$
 or $(-1) \times 15$
= $3 \times (-5)$ or $(-3) \times 5$

Practice Now 14C (textbook 2A, pg 71)

Factorise each of the following quadratic expressions expressions completely.

(a)
$$2x^2 + 7x + 6$$

(c)
$$6y^2 - 11y + 4$$

(e)
$$-x^2 + 6y - 9$$

(g)
$$4x^2 - 6x - 4$$

Worked Example 16 (textbook 2A, pg 71)

Factorising quadratic expressions in two variables using multiplication frame Factorise $x^2 + 5xy - 6y^2$.

"Solution

Let us compare the factorisation of $x^2 + 5x - 6$ and the factorisation of $x^2 + 5xy - 6y^2$.

Factorisation of $x^2 + 5x - 6$:

since 6x - x = 5x

If you cannot factorise $x^2 + 5xy - 6y^2$ directly, you can factorise $x^2 + 5x - 6$ first and then add in the appropriate y and y^2 later.

Factorisation of $x^2 + 5xy - 6y^2$:

since
$$6xy - xy = 5xy$$

Practice Now 16 (textbook 2A, pg 72)

Factorise each of the following expressions completely.

(a)
$$x^2 + 2xy - 8y^2$$

(c)
$$6x^2 + 11xy + 5y^2$$

(e)
$$-a^2 + 5ab - 6b^2$$

Marked Assignment:

Workbook 2A

Worksheet 3D (p.41-44): Q1(f), 2(b), 4(b), 6

3.5 Factorisation of algebraic expressions into the form (a+b)(c+d)

A. Factorsiation into the form (a+b)(c+d).

How do we factorise ac+ad+bc+bd?

Method 1: Factorisation using multiplication frame

$$\therefore ac + ad + bc + bd = (a+b)(c+d)$$

Method 2: Factorisation by grouping

In the expansion of (a + b)(c + d), the intermediate step is a(c + d) + b(c + d):

$$(a+b)(c+d) = a(c+d) + b(c+d)$$
$$= ac + ad + bc + bd$$

To factorise an algebraic expression of the form ac + ad + bc + bd, we should group the four terms into two appropriate groups, where the two terms in each group have a common factor. Then, we can extract the common factor of each group:

$$ac + ad + bc + bd = (ac + ad) + (bc + bd)$$
 group the 4 terms into 2 groups
 $= a(c + d) + b(c + d)$ extract common factor from each group
 $= (a + b)(c + d)$ extract common factor $(c + d)$

This method is called factorisation by grouping because we group the four terms into two appropriate groups first.

Worked Example 17 (textbook 2A, pg 75)

Factorising algebraic expressions into the form (a + b)(c + d)

Factorise each of the following expressions completely.

(a)
$$ab + ad + 2bc + 2cd$$

(b)
$$12ax - 6by - 8bx + 9ay$$

*Solution

(a) Method 1:

$$\therefore ab + ad + 2bc + 2cd$$
$$= (a + 2c)(b + d)$$

Method 2:

$$ab + ad + 2bc + 2cd$$

= $(ab + ad) + (2bc + 2cd)$
= $a(b + d) + 2c(b + d)$

= (a+2c)(b+d)

group the 4 terms into 2 groups extract common factors from each group

extract common factor (b + d)

(a) Is there another way to

arrange the four terms? E.g. in Method 2, can we

arrange the terms as such: ab + 2bc + ad + 2cd?

Reflection

(b) Method 1(i):

Method 2(i):

$$12ax - 6by - 8bx + 9ay$$

= 6(2ax - by) - 8bx + 9ay

This arrangement of the four terms does not help.

$6 \times 4x \neq 12ax$

This arrangement of the four terms does not help.

Method 1(ii):

If we only extract 2b, $-4x \times 2b \neq -8bx$.

Hence, it is a good practice to always check by expansion.

$$\therefore 12ax - 6by - 8bx + 9ay = (4x + 3y)(3a - 2b)$$

Method 2(ii):

$$12ax - 6by - 8bx + 9ay$$

= $(12ax - 8bx) + (9ay - 6by)$

$$= 4x(3a - 2b) + 3y(3a - 2b)$$

$$=(3a-2b)(4x+3y)$$

group the 4 terms into 2 groups extract common factors from each group extract common factor

(3a - 2b)

Reflection

(b) Which method do you prefer? Why?

Practice Now 17 (textbook 2A, pg 75)

Factorise each of the following expressions completely.

(a)
$$ab + ac + 2bd + 2cd$$

(c)
$$6ax - 20by - 8bx + 15ay$$

Practice Now 18 (textbook 2A, pg 76)

Find the two factors of each of the following expressions.

(a)
$$6xy - 15x + 20 - 8y$$

(b)
$$6ab - 9ac + 21c - 14b$$

Practice Now 19 (textbook 2A, pg 77)

Factorise each of the following expressions fully.

(a)
$$x^2 + xy - 3x - 3y$$

(b)
$$15w^2 - 20w - 6wz + 8z$$

Marked Assignment:

Workbook 2A

Worksheet 3E (p.45-46): Q1(e), 2(d)

We have come to the end of this chapter! Let's see what you have learnt...

1. Addition and subtraction of like terms in x^2

To add or subtract like terms in x^2 , we add or subtract their coefficients in the same way we would add or subtract real numbers.

Real numbers	Terms in x ²
(-2) + (-3) = -5	$(-2x^2) + (-3x^2) = -5x^2$
5 + (-2) = 5 - 2 = 3	$5x^2 + (-2x^2) = 5x^2 - 2x^2 = 3x^2$
-2 + 5 = 5 - 2 = 3	$-2x^2 + 5x^2 = 5x^2 - 2x^2 = 3x^2$
2 - 5 = -3	$2x^2 - 5x^2 = -3x^2$
-5 - 2 = -7	$-5x^2 - 2x^2 = -7x^2$
5 - (-2) = 5 + 2 = 7	$5x^2 - (-2x^2) = 5x^2 + 2x^2 = 7x^2$

2. The Distributive Law for (a + b)(c + d)

$$(a+b)(c+d) = ac + ad + bc + bd$$

3. Expansion of quadratic expressions using multiplication frame

For example, to expand (3x + 4)(7 - 8x):

×	7 -8 <i>x</i>		×	7	-8 <i>x</i>
3 <i>x</i>	_	-	3 <i>x</i>	21 <i>x</i>	$-24x^{2}$
+4			+4		-32x

$$\therefore (3x+4)(7-8x) = 21x-24x^2+28-32x$$
$$= -24x^2-11x+28$$

• Expand (2x + 5)(3 - x) using a multiplication frame.

4. Factorisation of quadratic expressions using multiplication frame

For example, to factorise $2x^2 + 7x - 15$:

Method 1: Guess and Check

$$-15 = 1 \times (-15)$$
 or $(-1) \times 15$
= $3 \times (-5)$ or $(-3) \times 5$

×	x	3		×	x	+5		×	x	+5
2 <i>x</i>	2 <i>x</i> ²		guess	2 <i>x</i>	2 <i>x</i> ²		check	2 <i>x</i>	$2x^2$	+10x
?		-15		-3		-15		-3	-3x	-15

$$\therefore 2x^2 + 7x - 15 = (2x - 3)(x + 5)$$

Method 2: Use some reasoning

$$-30 = 1 \times (-30)$$
 or $(-1) \times 30$

$$= 2 \times (-15)$$
 or $(-2) \times 15$

$$= 3 \times (-10)$$
 or $(-3) \times 10 \longrightarrow (-3) + 10 = 7$ (coefficient of x term)

$$= 5 \times (-6)$$
 or $(-5) \times 6$

$$\therefore 2x^2 + 7x - 15 = (2x - 3)(x + 5)$$

• Factorise $15 + x - 2x^2$ using a multiplication frame.

5. Factorisation of algebraic expression into the form (a+b)(c+d)

Method 1: Multiplication frame

$$\therefore ac + ad + bc + bd = (a+b)(c+d)$$

Method 2: By grouping

$$ac + ad + bc + bd = (ac + ad) + (bc + bd)$$
$$= a(c+d) + b(c+d)$$
$$= (a+b)(c+d)$$