

TUTORIAL SHEET for Modulue 3

- 1. Find the relative maxima and minima of the following functions (a) f(x,y) = $xy + \frac{9}{x} + \frac{3}{y}$
 - (b) $f(x,y) = x^2 + y^2 + xy + \frac{1}{x} + \frac{1}{y}$ (c) $f(x,y) = x^2 + \frac{2}{x^2y} + y^2$
- 2. Find the relative and absolute maxima and minima of the following functions in the given domain. (a) $f(x,y) = x^2 - y^2 - 2y, x^2 + y^2 \le 1$
 - (b) $f(x,y) = xy, x^2 + y^2 \le 1$
 - (c) $f(x,y) = x + y, 4x^2 + 9y^2 \le 36$

 - (d) $f(x,y) = 4x^2 + y^2 2x + 1, 2x^2 + y^2 \le 1$ (e) $f(x,y) = x^2 + y^2 x y + 1, 0 \le x \le 2, 0 \le y \le 2$
 - (f) $f(x,y) = x^3 + y^3 xy$ over the triangular region bounded by the lines x = 0, y = 0, and y = 2x
- 3. Using the Lagrange method of multipliers, solve the following problems.
 - (a) Find the smallest and the largest values of xy on the line segment x + 2y = $2, x \ge 0, y \ge 0$
 - (b) Find the smallest and the largest values of x + 2y on the circle $x^2 + y^2 = 1$
 - (c) Find the points on the curve $x^2 + xy + y^2 = 16$ which are nearest and farthest form the origin.
 - (d) Find the triangle whose perimeter is constant and has largest area.
 - (e) Find the extreme value of xyz when x + y + z = a, a > 0.
 - (f) Find the extreme value of $a^3x^2 + b^3y^2 + c^3z^2$ such that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, where

4. Expand $f(x,y) = \sin(x+2y)$ in Taylor's series upto third degree terms about (1,3). Hence, approximate f(0.99,3.01)

Finding Quadratic and Cubic Approximations

In Exercises 1–10, use Taylor's formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin.

1.
$$f(x, y) = xe^{y}$$

$$2. f(x,y) = e^x \cos y$$

$$3. \ f(x,y) = y \sin x$$

4.
$$f(x, y) = \sin x \cos y$$

6)

Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.

Use Taylor's formula to find a quadratic approximation of $e^x \sin y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.