Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ŞI DE NOTARE

Test 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3^2 = (a-1)(a+7) \Leftrightarrow a^2 + 6a - 16 = 0$	3p
	Cum a este număr real, $a > 1$, obținem $a = 2$	2 p
2.	$f(x) = g(x) \Leftrightarrow x^2 - 6 = -x - 3 \Leftrightarrow x^2 + x - 3 = 0$	3 p
	Cum $\Delta > 0$, suma absciselor punctelor de intersecție a graficelor funcțiilor f și g este -1	2 p
3.	$3^x \left(3^2 - 1\right) = 8 \Leftrightarrow 3^x = 1$	3p
	x = 0	2 p
4.	Mulțimea A are 8 elemente, deci sunt 8 cazuri posibile	2p
	$\frac{n(n-1)}{2} \le 3n \Leftrightarrow n(n-7) \le 0 \text{ si, cum } n \in A, \text{ obținem } n \in \{2,3,4,5,6,7\}, \text{ deci sunt 6 cazuri}$	2 p
	favorabile	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{8} = \frac{3}{4}$	1p
5.	$\frac{4}{m-2} = \frac{m}{2} \Rightarrow m^2 - 2m - 8 = 0$	2p
	m = -2 sau $m = 4$, care convin	3 p
6.	$\cos A = \frac{1}{2} \text{ si } BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A \text{, deci } BC = \sqrt{21}$	3p
	$P_{\Delta ABC} = AB + BC + AC = 9 + \sqrt{21}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{cases} -\binom{m^2 - 1}{4} + 4 = 1\\ -1 + 1 = 0 \Leftrightarrow \begin{cases} m^2 = 4\\ m = 2 \end{cases} \end{cases}$ $m = 2$	3p 2p
-		∠ p
b)	Matricea sistemului de ecuații este $A = \begin{pmatrix} m^2 - 1 & m & 4 \\ 1 & 1 & 1 \\ m & 3 & 1 \end{pmatrix}$ și $\det A = -(m+7)(m-2)$, pentru orice număr real m	3 p
	Sistemul de ecuații admite soluție unică \Leftrightarrow det $A \neq 0$, deci $m \in \mathbb{R} \setminus \{-7, 2\}$	2 p
c)	$m \in \mathbb{Z} \setminus \{-7, 2\} \Rightarrow \det A \neq 0$ și sistemul de ecuații are soluția unică $\left(\frac{1}{m+7}, -\frac{m+3}{m+7}, \frac{m+2}{m+7}\right)$	3p
	Cum $m \in \mathbb{Z} \setminus \{-7, 2\}$, numerele $\frac{1}{m+7}$, $-\frac{m+3}{m+7}$ și $\frac{m+2}{m+7}$ sunt întregi $\iff m = -8$ sau $m = -6$	2p

Probă scrisă la matematică M şt-nat

Barem de evaluare și de notare

2.a)	$x \circ y = 11xy + x + y + \frac{1}{11} - \frac{1}{11} = 11x\left(y + \frac{1}{11}\right) + \left(y + \frac{1}{11}\right) - \frac{1}{11} =$	3 p
	$= \left(y + \frac{1}{11}\right) (11x + 1) - \frac{1}{11} = 11\left(x + \frac{1}{11}\right) \left(y + \frac{1}{11}\right) - \frac{1}{11}, \text{ pentru orice numere reale } x \text{ și } y$	2 p
b)	$11\left(x + \frac{1}{11}\right)^2 - \frac{1}{11} = \frac{8}{11} \iff \left(x + \frac{1}{11}\right)^2 = \frac{9}{121}$	3p
	$x = -\frac{4}{11}$ sau $x = \frac{2}{11}$	2p
c)	$a = 11^{3} \cdot \left(1 - \frac{1}{11} + \frac{1}{11}\right) \cdot \left(1 - \frac{2}{11} + \frac{1}{11}\right) \cdot \left(1 - \frac{3}{11} + \frac{1}{11}\right) \cdot \left(1 - \frac{4}{11} + \frac{1}{11}\right) - \frac{1}{11} = 11^{3} \cdot 1 \cdot \frac{10}{11} \cdot \frac{9}{11} \cdot \frac{8}{11} - \frac{1}{11} = 720 - \frac{1}{11}$	3 p
	$719 < 720 - \frac{1}{11} < 720$, deci partea întreagă a numărului a este egală cu 719	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \left(\frac{2}{3}x^{\frac{3}{2}} - x\right)' =$	3p
	$= \frac{2}{3} \cdot \frac{3}{2} x^{\frac{1}{2}} - 1 = \sqrt{x} - 1, \ x \in (0, +\infty)$	2p
b)	$f'(1) = 0, f(1) = -\frac{1}{3}$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -\frac{1}{3}$	3 p
c)	$f'(1)=0$, $f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$	2p
	Pentru orice $x \in (0, +\infty)$, $f(x) \ge f(1) \Rightarrow \frac{2}{3}x\sqrt{x} - x \ge -\frac{1}{3}$, de unde obţinem $x(2\sqrt{x} - 3) \ge -1$	3 p
2.a)	$g(x) = x^3$, $x \in (-1, +\infty)$, deci $G(x) = \frac{x^4}{4} + c$, unde $c \in \mathbb{R}$	3p
	Cum $G(0) = 2020$, obținem $c = 2020$, deci $G(x) = \frac{x^4}{4} + 2020$	2p
b)	$\int_{0}^{1} f_{1}(x) dx = \int_{0}^{1} \frac{x}{x+1} dx = \int_{0}^{1} \left(1 - \frac{1}{x+1}\right) dx = \left(x - \ln(x+1)\right) \Big _{0}^{1} =$	3p
	$=1-\ln 2$	2p
c)	$f_n(x) = \frac{x^n}{x^n + 1} \le x^n$, pentru orice număr natural nenul n și orice $x \in [0,1]$	3 p
	$\int_{0}^{1} f_{n}(x) dx \leq \int_{0}^{1} x^{n} dx \text{ si, cum } \int_{0}^{1} x^{n} dx = \frac{1}{n+1}, \text{ obținem } \int_{0}^{1} f_{n}(x) dx \leq \frac{1}{n+1}, \text{ pentru orice număr natural nenul } n$	2p