MATH 302

RESSOURCES

TABLE OF INTEGRALS AND DERIVATIVES

Contents

Partial Fractions	
First Case	
Second Case	
Integration Formulas	
Basic Integration Formulas Table	
Integration by Parts	
Reduction Formulas	
Derivatives Formulas	
General Derivatives Rules	
Exponential and Logarithmic Functions	
Trigonometric Functions	

Created by: Pierre-Olivier Parisé Fall 2022

PARTIAL FRACTIONS

First Case

Each factor of the form $(ax + b)^k$ in the denominator gives rise to k $(k \in \mathbb{N})$ quotients of the form

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \ldots + \frac{A_k}{(ax+b)^k},$$

where $A_i \in \mathbb{R}$, for $i = 1, 2, \dots, k$.

Second Case

Each factor of the form $(ax^2 + bx + c)^k$ in the denominator give rise to a sum of k $(k \in \mathbb{N})$ quotients of the form

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k},$$

where $A_i, B_i \in \mathbb{R}$, for i = 1, 2, ..., k.

Basic Integration Formulas Table

Integrands	Integration	Integrands	Integration
$x^r, r \neq -1$	$\int x^r dx = \frac{x^{r+1}}{r+1} + C$	e^x	$\int e^x dx = e^x + C$
$\frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$	$a^x \ln a$	$\int a^x \ln a dx = a^x + C$
$\cos x$	$\int \cos x dx = \sin x + C$	$\frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{1-x^2}} dx = \operatorname{Arc}\cos x + C$
$-\sin x$	$\int -\sin x dx = \cos x$	$\frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \operatorname{Arc} \sin x + C$
$\sec^2 x$	$\int \sec^2 x dx = \tan x$	$\frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \operatorname{Arc} \tan x + C$
$-\csc^2 x$	$\int -\csc^2 x dx = \cot x$	$\begin{array}{c} -1 \\ 1+x^2 \end{array}$	$\int \frac{-1}{1+x^2} dx = \operatorname{Arc} \cot x + C$
$\sec x \tan x$	$\int \sec x \tan x dx = \sec x$	$\frac{1}{x\sqrt{x^2-1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \operatorname{Arc} \sec x + C$
$-\csc x \cot x$	$\int -\csc x \cot x dx = \cot x$	$\frac{-1}{x\sqrt{x^2-1}}$	$\int \frac{-1}{x\sqrt{x^2 - 1}} dx = \operatorname{Arc} \csc x + C$
$\tan x$	$\int \tan x dx = -\ln \cos x + C$	$\sec x$	$\int \sec x dx = \ln \sec x + \tan x + C$
$\cot x$	$\int \cot x dx = \ln \sin x + C$	$\csc x$	$\int \csc x dx = -\ln \csc x + \cot x + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du.$$

Reduction Formulas

(a)
$$\int \sin^n du = \frac{-\sin^{n-1} u \cos u}{n} + \frac{n-1}{n} \int \sin^{n-2} u \, du$$

(b)
$$\int \cos^n u \, du = \frac{\cos^{n-1} u \sin u}{n} + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

(c)
$$\int \sec^n u \, du = \frac{\sec^{n-2} u \tan u}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

(d)
$$\int \tan^n u = \frac{\tan^{n-1} u}{n-1} - \int \tan^{n-2} u \, du$$
.

General Derivatives Rules

$$1) \quad r \in \mathbb{R}, \ (x^r)' = rx^{r-1}$$

2)
$$(f_1(x) + f_2(x) + \ldots + f_k(x))' = f'_1(x) + f'_2(x) + \ldots + f'_k(x))$$

3) $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$

3)
$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

4)
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$
.

Exponential and Logarithmic Functions

Fonction	Dérivée	Fonction	Dérivée
a^x	$(\ln a)a^x$	$a^{f(x)}$	$f'(x)(\ln a)a^{f(x)}$
e^x	e^x	$e^{f(x)}$	$f'(x)e^{f(x)}$
$\ln x$	$\frac{1}{x}$	$\ln f(x)$	$\frac{f'(x)}{f(x)}$
$\log_a x$	$\frac{1}{(\ln a)x}$	$\log_a f(x)$	$\frac{f'(x)}{(\ln a)f(x)}$

Trigonometric Functions

Fonction	Dérivée	Fonction	Dérivée
$\sin x$	$\cos x$	$\sin\left(f(x)\right)$	$f'(x)\cos\left(f(x)\right)$
$\cos x$	$-\sin x$	$\cos\left(f(x)\right)$	$-f'(x)\sin\left(f(x)\right)$
$\tan x$	$\sec^2 x$	$\tan\left(f(x)\right)$	$f'(x)\sec^2(f(x))$
$\cot x$	$-\csc^2 x$	$\cot\left(f(x)\right)$	$-f'(x)\csc^2(f(x))$
$\sec x$	$\sec x \tan x$	$\sec(f(x))$	$f'(x) \sec(f(x)) \tan(f(x))$
$\csc x$	$-\csc x \cot x$	$\csc\left(f(x)\right)$	$-f'(x)\csc(f(x))\cot(f(x))$