Drought forecasting exercise

Jordan Richards

2023-01-28

Dataset

- Exercise developed by Chris Wikle and Dan Pagendam (2019).
- ► The data consists of:
 - monthly 33 x 84 grids (2 degree x 2 degree) of sea surface temperature (SST) anomaly (2772 pixels).
 - monthly rainfall anomaly in mm for the Murray Darling Basin (MDB).
- Obtained from two sources:
 - http://www.bom.gov.au/climate/change/
 - http://iridl.ldeo.columbia.edu/
- We will use a type of recurrent NN(LSTM) model to obtain 3-month-out forecasts of rainfall anomaly using SST grids as a predictor.

Required packages

```
We will be using some functions and the images from Dan's github
directory, https://github.com/dpagendam/deepLearningRshort
#remotes::install_qithub("dpaqendam/deepLearningRshort")
library(keras)
library(raster)
## Loading required package: sp
library(deepLearningRshort)
data(drought)
```

Visualise SST

Strategy

- We could apply a CNN layer recurrently to extract both sequential and spatial information from the SST grids, but this will require lots of processing power and parameters
- ▶ Instead, we treat the SST as a multivariate time series and use regular RNNs. However, we have 2772 locations, so we first reduce the dimensionality using EOFs (PCA)

Data manipulation

```
batchSize <- 32
forecastMonthsAhead <- 3
timestepsPerSample <- 24
trainingInds <- 1:1300
validationInds <- 1301:1434
# We consider only 1434 months</pre>
```

We will project the 2772 pixels onto 100 EOFs.

```
numComponents <- 100
EOFList <- rasterToEOFs(anomalyRasterList[trainingInds],
numComponents = numComponents, plot = FALSE)
v.train <- EOFList[["rasterEOFs"]][["v.dim.red"]]</pre>
```

Plot EOFs

Plot EOFs

Plot EOFs

Plot EOFs

100th EOF

Reconstructing SST

```
validationSample <- 1434
X <- EOFList$rasterEOFs$EOFs</p>
r1 <- anomalyRasterList[[validationSample]]
validPixels <- EOFList[["raster.validPixels"]]</pre>
Y <- getValues(r1)
Y <- Y[validPixels]
lm1 \leftarrow lm(Y \sim X)
intercept <- coefficients(lm1)[1]</pre>
alpha <- coefficients(lm1)[1]</pre>
beta <- coefficients(lm1)[2:(numComponents + 1)]</pre>
r2 <- alpha + EOFsToRaster(X, matrix(beta, nrow = 1),
       c(33, 84), validPixels)[[1]]
extent(r2) <- extent(r1)</pre>
```

Reconstructing SST

Dimension reduction for validation data

Here we project the validation data SST anomaly grids onto the same EOFs generated from the training data. You can think of v.validation as a multivariate time series of coefficients that we can use to reconstruct SST anomaly from the EOFs.

Dimension reduction for validation data

Data wrangling

All predictors combined together

```
v.combined <- rbind(v.train, v.validation)</pre>
```

and normalised

```
v.scaling.train <- scaleCols.pos(</pre>
  v.combined[trainingInds, ])
v.train.scaled <- v.scaling.train[["X.scaled"]]</pre>
v.scaling.validation <- scaleCols.pos(</pre>
  v.combined[validationInds, ],
              colMaxsX = v.scaling.train[["colMaxsX"]],
              colMinsX = v.scaling.train[["colMinsX"]])
v.validation.scaled <- v.scaling.validation[["X.scaled"]]
v.scaled <- rbind(v.train.scaled, v.validation.scaled)
```

Formatting data for an RNN

##

##

##

##

```
numDims <- ncol(v.scaled)</pre>
tensorData <- tensorfyData.rnn(v.scaled,</pre>
              forecastMonthsAhead,
              timestepsPerSample, indicesX = 1:numDims,
              indicesY = 1:numComponents,
              indicesTrain = trainingInds,
              indicesTest = validationInds)
str(tensorData)
## List of 8
    $ X.train.rnn : num [1:1273, 1:24, 1:100] 0.268 0.246
##
## $ Y.train.rnn : num [1:1273, 1:100] 0.396 0.323 0.363
## $ X.test.rnn : num [1:107, 1:24, 1:100] 0.597 0.602
```

\$ Y.test.rnn : num [1:107, 1:100] 0.58 0.654 0.7 0. \$ x.train.tsInds: int [1:1273] 24 25 26 27 28 29 30 31

\$ x.test.tsInds : int [1:107] 1324 1325 1326 1327 1328

\$ y.train.tsInds: int [1:1273] 27 28 29 30 31 32 33 34

\$ y.test.tsInds : int [1:107] 1327 1328 1329 1330 1331

Response data

```
Y.train.inds <- tensorData$y.train.tsInds
Y.valid.inds <- tensorData$y.test.tsInds
Y.train.rnn_MDB <- rainfallAnomaly[Y.train.inds, 3]
Y.valid.rnn_MDB <- rainfallAnomaly[Y.valid.inds, 3]
```

We will also normalise the response, but this is only because we will fit a Gaussian model

RNN tensors

```
We finally get
X.rnn.train <- tensorData[["X.train.rnn"]]</pre>
X.rnn.valid <- tensorData[["X.test.rnn"]]</pre>
dim(X.rnn.train)
## [1] 1273 24 100
length(Y.rnn.train)
## [1] 1273
```

Custom loss

```
Gaussian logLikelihood <- function(y true, y pred)
{
  K <- backend()</pre>
  # Extract the first and second columns of predictions
  mu <- (y_pred[,1])</pre>
  sigma <- K$exp(y_pred[,2])</pre>
#Extract first column of y_true to ensure same dimension
  v <- v true[,1]
  11 \leftarrow -0.5*((mu - y)/(sigma))^2 - K$log(sigma)
  11 \leftarrow 11 -0.5*K$log(2*pi)
  return( -(K$sum(11)))
```

Building an LSTM Model

Compile

Summary

summary(model)

Model training

Let's train the model with early stopping and a checkpoint

```
history <- model %>% fit(
  x = X.rnn.train, y = Y.rnn.train,
  batch size = batchSize, epochs = 200, shuffle = FALSE,
  validation_data = list(X.rnn.valid, Y.rnn.valid),
  callbacks = list(
  callback_early_stopping(monitor = "val_loss",
                          min_delta = 0, patience = 20),
  callback_model_checkpoint(filepath = "model_weights",
      verbose=0, monitor="val_loss",
      save_best_only = TRUE, save_weights_only = TRUE)))
#Then load the saved weights
model <- load model weights tf(model,
                               filepath="model weights")
```

- ► We can calculate the mean and standard deviations of the 3 month out (Gaussian) predictive distributions.
- ▶ Then create 50% and 95% prediction intervals.

```
lstmPredictions <- model %>% predict(X.rnn.valid)
mu <- Y.train.min +
  lstmPredictions[, 1]*(Y.train.max - Y.train.min)
sigma <- exp(lstmPredictions[, 2])*</pre>
  (Y.train.max - Y.train.min)
n <- length(mu)
upper95 \leftarrow mu + 1.96*sigma
lower95 <- mu - 1.96*sigma
upper50 \leftarrow mu + 0.674*sigma
lower50 \leftarrow mu - 0.674*sigma
```

Plot the true time series with 3-month-out forecast and 50% and 95% prediction intervals.

```
plot(rainfallAnomaly[Y.validation.inds, 3], ty = "1",
     xlab = "Time (months)".
     ylab = "MDB Rainfall Anomaly (mm)")
lines(mu, col = "blue")
polygon(x = c(1:n, rev(1:n), 1),
        y = c(lower95, rev(upper95), lower95[1]),
        col = fade("blue", 100), border = NA)
polygon(x = c(1:n, rev(1:n), 1),
        y = c(lower50, rev(upper50), lower50[1]),
        col = fade("blue", 100), border = NA)
```


Calculate what percentage of the time the true rainfall anomaly was within the 50% and 95% prediction intervals.

```
n <- (length(Y.valid.inds))
coverage50 <- length(
  which(rainfallAnomaly[Y.valid.inds, 3] > lower50
  & rainfallAnomaly[Y.valid.inds, 3] < upper50))/n
coverage95 <- length(
  which(rainfallAnomaly[Y.valid.inds, 3] > lower95
  & rainfallAnomaly[Y.valid.inds, 3] < upper95))/n
print(coverage50)</pre>
```

```
## [1] 0.5514019
print(coverage95)
```

```
## [1] 0.9626168
```

Extensions

- ► How does varying the number of units in the LSTM layer affect the predictions?
- ► How do the predictions change if you add three dense layers after the LSTM layer (instead of just 1)?
- How are the predictions if much fewer EOFs are used for prediction?
- How does fewer EOFs affect the number of parameters in the model?