N86-28283 1 169

January-March 1986

13/52

VLBI Observations of 416 Extragalactic Radio Sources

D. D. Morabito, A. E. Niell¹, R. A. Preston, R. P. Linfield, A. E. Wehrle², and J. Faulkner³ Tracking Systems and Applications Sections

The Deep Space Network is establishing a high-accuracy VLBI celestial reference frame. This article presents VLBI results of observations of 416 radio sources with declinations north of -45 deg which have been conducted at frequencies of 2.3 GHz and 8.4 GHz. At 2.3 GHz, 323 of 391 radio sources observed were detected with a fringe spacing of 3 milliarcsec and a detection limit of ~0.1 Jy. At 8.4 GHz, 278 of 416 radio sources were detected with a fringe spacing of 1 milliarcsec and a detection limit of ~0.1 Jy. This survey was conducted primarily to determine the strength of compact components at 8.4 GHz for radio sources previously detected with VLBI at 2.3 GHz. Compact extragalactic radio sources with strong correlated flux densities at both frequencies are used to form a high-accuracy reference frame.

I. Introduction

Very Long Baseline Interferometry (VLBI) observations of 416 radio sources have been conducted at frequencies of 2.3 GHz and 8.4 GHz. The observations were performed on two intercontinental baselines composed of antennas of the NASA Deep Space Network (California-Spain and California-Australia). This survey was designed primarily to identify compact radio sources at 8.4 GHz. The observed sample was chosen mainly from sources which had already shown compact structure at 2.3 GHz on similiar VLBI baselines. Such compact sources are required for the VLBI reference frame used for planetary spacecraft navigation, geodesy, astrometry, and

remote clock synchronization. With observation at dual frequencies (e.g., 2.3 GHz and 8.4 GHz), charged particle effects can be virtually eliminated in these studies. The investigation of the nature of these compact objects can also be aided by this survey, which complements similar previous surveys at 2.3 GHz (Refs. 1, 2).

II. Observed Sample

A high density of suitable VLBI sources is necessary in the ecliptic region for differential VLBI measurements of spacecraft motion and planetary dynamics. Within ±10 deg of the ecliptic, all 101 sources from a 2.3 GHz ecliptic VLBI survey (Ref. 2) and a 2.3 GHz full-sky VLBI survey (Ref. 1) with 2.3 GHz correlated flux densities greater than 0.3 Jy were included in our observations.

For other VLBI studies in geodesy, astrometry and clock synchronization, a much broader sky distribution of compact

¹Current employer: Haystack Observatory, Westford, MA, 01886

²Current employer: Dept of Astronomy, UCLA, Los Angeles CA, 90024

³Current employer: Dept of Geophysics, USC, Los Angeles, CA, 90089

radio sources is required. For the region outside of the ±10 deg band of the ecliptic with declinations of less than -45 deg, 113 out of 135 sources in the 2.3 GHz full-sky survey (Ref. 1) with 2.3 GHz correlated flux densities greater than 0.3 Jy were included in our observations.

Also selected for observation were 202 additional sources, most of which had been previously observed in either the ecliptic or full-sky VLBI surveys but which had correlated flux densities at 2.3 GHz less than 0.3 Jy.

III. Observations and Data Reduction

The station and baseline characteristics are listed in Table 1. Nineteen observing sessions involving VLBI baselines consisting of station pairs listed in Table 1 were conducted from October 1981 to August 1984. Each source was observed for at least 3 minutes. Data were taken at 2.3 GHz and 8.4 GHz on alternating seconds for all experiments except one, which observed at 8.4 GHz only. Typical 8.4 GHz (u, v) points were $(2.3 \times 10^8 \lambda, 2.0 \times 10^8 \lambda)$ on the Goldstone-Madrid baseline where generally high declination sources were observed, and $(2.1 \times 10^8 \lambda, 2.1 \times 10^8 \lambda)$ on the Goldstone-Tidbinbilla baseline where generally low declination sources were observed. where the spatial frequency in the east-west direction is denoted by u and in the north-south direction is denoted by v. The interferometers were sensitive to compact components smaller than the minimum fringe spacing of ~3 milliarcsec at 2.3 GHz and ~1 milliarcsec at 8.4 GHz.

The Mark II VLBI recording system (Ref. 3) was used to record the data. Digital sampling and phase stability were controlled by a hydrogen maser or rubidium frequency standard at each station. System temperatures either were measured at both antennas and both frequencies for each observation or were estimated using appropriate temperature versus elevation angle curves along with measured zenith system temperatures and approximate knowledge of the total flux densities of the sources. Standard flux density calibration sources for 2.3 GHz (Ref. 4) and 8.4 GHz (Ref. 5) were observed during most observing sessions to determine antenna sensitivity (efficiency) for use in flux density calibration. When such observations were not performed, nominal antenna sensitivities were used in the calibration. Right circular polarization was used for the observations.

The data tapes were correlated on the California Institute of Technology/Jet Propulsion Laboratory Mark II VLBI processor. Correlated flux densities were calculated in the manner described in a previous report (Ref. 6). The 5- σ 2.3 GHz detection limit for most observations (\sim 60 sec coherent integrations) was \sim 0.1 Jy, although for longer integrations it reached \sim 0.05 Jy. The 5- σ detection limit at 8.4 GHz was

usually about ~ 0.15 Jy, although for longer observations it reached ~ 0.05 Jy. Random noise error was about ~ 0.02 Jy at 2.3 GHz and ~ 0.03 Jy at 8.4 GHz, but systematic errors in calibration of about 10 percent were the major sources of error for most observations. Because most sources have previously been detected at 2.3 GHz, positions accurate to 0.3 arcsec were available for 294 of the sources (Refs. 7-10), thus minimizing the search in delay and delay rate space. For previously unobserved sources, the search window was about ± 30 arcsec at 2.3 GHz.

IV. Results and Discussion

Column

The correlated flux densities at 2.3 GHz and 8.4 GHz for 416 extragalactic radio sources are presented in Fig. 1. Notes concerning the entries in that figure appear below:

Notes

1	Source name
2/3	J2000 position (2000.0 Barycenter Equatorial Coordinate System). Asterisked positions have
	typical uncertainties of 0.3 arcsec and are from Refs. 7-10. Other positions are from the literature,

4 Number of 2.3 GHz observations. If blank, there was only one observation.

and in most cases, errors are less than 30 arcsec.

- 5 Correlated flux density at 2.3 GHz (13.1 cm). If there was more than one observation, the value given is an average over all observations. If the value is preceded by a "<" sign, the object was not detected and the value given is the 5-σ upper limit to the correlated flux density. For sources with multiple observations and no detections, the lowest of the upper limits is given.
- 6 Lowest value for the 2.3 GHz correlated flux density for sources with multiple observations.
- 7 Highest value for the 2.3 GHz correlated flux density for sources with multiple observations.
- 8 Number of 8.4 GHz observations. If blank, there was only one observation.
- 9 Correlated flux density at 8.4 GHz (3.6 cm). If there was more than one observation, the value given is an average over all observations. If the value is preceded by a "<" sign, the object was not detected and the value given is the 5-σ upper limit to the correlated flux density. For sources with multiple observations and no detections, the lowest of the upper limits is given.

<u>Column</u> <u>Notes</u>

- Lowest value for the 8.4 GHz correlated flux density for sources with multiple observations.
- Highest value for the 8.4 GHz correlated flux density for sources with multiple observations.

At 2.3 GHz, 323 of 391 (83%) radio sources observed were detected with a fringe spacing of 3 milliarcsec and a detection limit of ~0.1 Jy. At 8.4 GHz, 278 of 416 (67%) radio sources were detected with a fringe spacing of 1 milliarcsec and a detection limit of ~0.1 Jy. Readily apparent is the higher percentage of objects detected at 2.3 GHz. The lower fraction of sources detected at 8.4 GHz is primarily due to the fact that the sources were originally selected for observation from low frequency surveys. Figure 2 is a sky plot of all 278 detected objects at 8.4 GHz. Figure 3 displays a histogram of the flux densities at both 2.3 GHz and 8.4 GHz. The

distributions of the flux densities for the two observing frequencies are very similar.

Evident in the large deviations between the low and high values of correlated flux density in Fig. 1 of the multiply observed sources is the high degree of variability. Source variability is due to (1) resolvable source structure observed at different inteferometer hour angles and (2) intrinsic changes in source strength. The difference between the high and low correlated flux densities for multiply observed sources compared to the measurement errors discussed in Section III gives a measure of source variability over the available observations.

Only seven of the sources previously detected at 2.3 GHz (Refs. 1, 2) were not detected at either frequency in this survey. Four of these sources (3C 2, 3C 66B, P 1317+019 and P 2145-17) were previously detected at 2.3 GHz with very weak flux densities (\sim 0.06 Jy) consistent with the detection threshold (\sim 0.1 Jy). The other three sources (P 0122-00, P 0922+005, and P 1143-245) were previously detected at higher flux densities.

Acknowledgments

We would like to thank L. Skjerve and the personnel of the Deep Space Network for performing the observations. We would also like to thank S. Kim, J. Kidder, R. Treuhaft, K. Liewer, J. Gunckel, and A. Louie for assistance in data processing.

References

- 1. Preston, R. A., Morabito, D. D., Williams, J. G., Faulkner, J., Jauncey, D. L., and Nicolson, G. D., "A VLBI Survey at 2.29 GHz," Astron. J. 90, 1599-1641, 1985.
- Wehrle, A. E., Morabito, D. D., and Preston, R. A., "Very Long Baseline Interferometry Observations of 257 Extragalactic Radio Sources in the Ecliptic Region," Astron. J. 89, 336-341, 1984.
- 3. Clark, B. G., "The NRAO Tape Recorder Interferometer System," *Proc. IEEE 61*, 1242-1248, 1973.
- 4. Klein, M. J., and Stelzried, C. T., "Calibration Radio Sources for Radio Astronomy: Precision Flux-Density Measurements at 2295 MHz," *Astron. J.* 81, 1078-1083, 1975.

- 5. Turegano, J. A., and Klein, M. J., "Calibration Radio Sources for Radio Astronomy: Precision Flux-Density Measurements at 8420 MHz," *Astron. Astrophys.* 86, 46-49, 1980.
- Preston, R. A., Morabito, D. D., Williams, J. G., Slade, M. A., Harris, A. W., Finley, S. G., Skjerve, L. J., Tanida, L., Spitzmesser, D. J., Johnson, B., Jauncey, D. L., Bailey, A., Denise, R., Dickenson, J., Livermore, R., Papij, A., Robinson, A., Taylor, C., Alcazar, F., Luaces, B., Munox, D., "Establishing a Celestial VLBI Reference Frame, I: Searching for VLBI Sources," The Deep Space Network Progress Report 42-46, Jet Propulsion Laboratory, Pasadena, Calif., pp. 46-56, May/June 1978.
- Morabito, D. D., Preston, R. A., Slade, M. A., and Jauncey, D. L., "Arcsecond Positions for Milliarcsecond VLBI Nuclei of Extragalactic Radio Sources, I: 546 Sources," Astron. J. 87, 517-527, 1982.
- 8. Morabito, D. D., Preston, R. A., Slade, M. A., Jauncey, D. L., and Nicolson, G. D., "Arcsecond Positions for Milliarcsecond VLBI Nuclei of Extragalactic Radio Sources, II: 207 Sources," *Astron. J.* 88, 1138-1145, 1983.
- Morabito, D. D., Wehrle, A. E., Preston, R. A., Linfield, R. P., Slade, M. A., Faulkner, J., and Jauncey, D. L., "Arcsecond Positions for Milliarcsecond VLBI Nuclei of Extragalactic Radio Sources, III: 74 Sources," Astron. J. 90, 590-594, 1985.
- Morabito, D. D., Preston, R. A., Linfield, R. P., Slade, M. A., and Jauncey, D. L.,
 "Arcsecond Positions for Milliarcsecond VLBI Nuclei of Extragalactic Radio Sources, IV: 17 Sources," Astron. J. (in preparation), 1986.

Table 1. Observed stations and baselines

Location	Designation	Diameter, m	Pagalina Irm	Length,	10 ⁶ λ
Location	Designation	Diameter, m	Baseline, km	2.3 GHz	8.4 GHz
Tidbinbilla, Australia	DSS 43	64			
			-10.6×10^3	77	295
Goldstone,	DSS 14	64)	•		
California	DSS 13	26			
			8.4×10^3	61	233
Madrid,	DSS 63	64)			
Spain	DSS 61	34)	ı		

(1) SDURCE NAME	(2) RIGHT	(3) DECLINATION	(4) NUMBER	(5) 2.3 GHz C	(5) (4) (7) 3 GHz CORRELATED FLUX DENSITY	(7) DENBITY	(B) NUMBER	(9) 8.4 GHz Ci	(9) (10) (11) 8.4 GHz CORRELATED FLUX DENSITY	(11) X DENSITY
	ASCENSION (J2000) HR MN SEC	(J2000) DEG MN SEC	(2.3 OHz)	AVERAGE (JY)	LOH (YC)	H16H	(8. 4 GHz)	AVERAGE (JY)	LDW (YC)	HIGH (CY)
NRAD 5	6 13. 6 22.	23 34. 4 33.	m		0. 40	55 50	ო	0.31 0.14	0.18	0.41
0008-264 0011-046	0 10 33.99 0 11 1.22 0 13 54.12	17 24 19.0 * -26 12 33.2 * - 4 23 52.0 *	^	0 0 0 0 4 0 0 4 0	0. 43	0. 60	7	9 9 9 9 9 9 9 9 9 9 9 9	0.31	o. 73
P 0013-00 0016+73 P 0019+058 P 0022-423 P 0027+056	0 16 11.10 0 19 45.73 0 22 32.71 0 24 42.99 0 29 45.97	10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	OI ID	0.0000	6 0 0 0	0 0 0 0	u ii	0.0000 8.44.000 8.44.011	0.0 14.0 10.0	0. 42 0. 70
P 0030+19 0032+276 9C 0035+12 P 0035-02 P 0038-020	0 32 38 24 0 34 43.47 0 38 18.04 0 38 20.52 0 40 57.18	19 53 44.7 27 54 25.7 * 12 27 30.7 * - 2 7 40.3 * - 1 46 14.8		0.090.240.38			a	0.00 44.00 22.00 22.00 22.00	0.21	o. 31
P 0041+001 P 0047+023 0047-051 P 0048-09 0054-006	0 43 35.72 0 49 43.30 0 50 21.32 0 50 40.34 0 57 17.01	0 24 19.1 2 32 20.3 1 9 28 49.9 * * * 0 24 33.3 * * * * * * *	ଅଧ	> 0.00 20.00 20.00 20.00 20.00 20.00	0. 15 0. 77	0. 16 0. 90	ო ი	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0. 26 0. 60	0. 87 0. 87
P 0036-00 P 0104-408 0105-008 P 0106-01	0 39 9.39 1 6 45.11 1 8 27.01 1 8 38.84 1 10 50.04	0 6 1.6 * -40 34 20.1 = 0 37 20.6 1 34 59.2 * - 7 41 41.3 *	n 6	0.47 1.78 2.007 0.607	0.46	3.31	e 88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.21	1. 44
P 0111+021 P 0112-017 GC 0114+07 P 0113+02 GC 0116+08	1 13 43.18 1 15 17.12 1 17 26.18 1 18 18.53 1 19 1.23	22 16.5 7 42 17.9 2 38 4.9 **	n n	0.0.0.0 9.0.0.0 11.0.0.0	90.08	0 44	E.	0.31 0.73 0.12 0.05	0. 11	9.
P 0119+11 oc 0119+04 P 0122-00 0124+189 0131-001	1 21 41.65 1 25 56.95 1 26 54.97 1 34 12.64	111 49 49.6 22 23.3 - 0 5 58.3 19 12 31.0 3 45.9	3 01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0	1. 00	40 M	0	0.31	0. 66
0 55 0 0 136 + 176 0 0 137 + 0 12 0 0 144 + 20	1 36 58 59 1 39 41. 99 1 39 57. 33 1 46 58. 79 1 49 22. 48	47 51 29.1 17 53 7.2 * 1 31 46.4 * 21 10 24.1 * 5 55 52.1 *	=	0.0000 744 744	n 0	1. 03	::	00000	0. 16	0. 92
C 0147+18 0149+21 0150-334 0158+031 0159+034	1 49 49.76 1 52 18.05 1 53 10.11 2 0 40.81 2 1 51.51	18 57 19.5 * 22 7 7.6 * -33 10 25.9 * 3 22 49.7 *	****	0.000.000.000.0000.0000.0000.0000.0000.0000				0. 120. 680. 730. 11		

}																																					_
DENSI.	HIOH SY)	0.26		7						20.0	2. 55	•	3				0. 62	0			0.68	•			;	0.94									1. 91		0.45
FLUX	_ ^										_								_				_														
(Y) (11) 8.4 GHz CORRELATED FLUX DENSITY	(AC)	0.11		0. 19						0.94	1. 19						0. 16	-			0. 62	9				0.0									0.59		000
8. 4 0Hz	AVERAGE (JY)	0. 20		1. 55 0. 21		⊷ i		1. 35 0. 13	;	2.03			0. 19	< 0.16			_	< 0. 15	ic			< 0.07		0.140.07		000		0 0 0 0 0		o	o o	0.0			-	< 0.07	
NUMBER	(8. 4 OHz)	4 00	ı	19			CN.			13	14	•	3				œ	o	•		~	•	•		ı	15	OI						n		۰		14
(7) ENBITY	HIOH ()()	1. 10	<u>:</u>	1. 64			0. 93			1. 76	i. 30	:	:				0. 51	;	10.1		0. 28	, ,			,	1.13							c c	, ,	0. 58		97.
(3) (7) 3 GHz CORRELATED FLUX DENGITY	LOW (\chi	0.80	: :	0. 23 0.			0. 40			0. 74	0. 40	;					0. 43	6			0. 17	9	8		,	0.78 0.37	;						ć	1	0. 48		700
2.3 GHz CO	AVERAGE (JY)			0. 79 0. 18									0.12	< 0.09			o	< 0.09		Ö		0.0		0.24 0.33		0.0		0.09 1.44	0.21		o i	0 0 V			0.95		
NUMBER	(2. 3 GHz)	4 Œ	1	16			(Ni			13	14	Ç	2				ო	0	•		N	•	٠		ı	12	a						c	4	0		•
(3) DECLINATION	DEG MN SEC	11 34 44.4 *	<u> </u>	73 49 32.7 * 43 2 7.6 *	9	59 22	7. 7.	13 22 54.6 *	ì	28 48 8.9 *	36.38	10 21	24 5 34.9 *	41 43		1 2 2 2 3 6 2 4 2 5 2 4 3 6 4 6 4	47 39.	7 25 7.0	34.	37.	29 16.	16 28 32.4 *	3 -	24 44 32 0			4 12	- 1 33 17.2 - 1 46 35.9	35 23	19 31.	4 38	21 4 45.0 0 51 3.4	•	2	-36 5 2.0	33 33	1
RIGHT		3 46. 73	5 4.93	2 22 39.63	23 11. 42	24 28 52	28 50.03	2 31 45.90	5	37 52.41	38 38 95	34 51. 24	2 45 16 83	48 58. 11	94.40	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	59 27.06	3 1 49.93	20.00	8 26.32	9 3.64	18 57. 79	19 51. 27	3 25 4 35 3 25 35		34 13. 66 36 30. 11	37 55.68	3 39 1.70 -	40 53, 78	40 35.59	47 30.56	49 45.25		20.00	4 3 53.75	7 28.97	0
(1) SOURCE NAME		P 0201+113	DW 0202+31	0212+735 3C 66A	3C 66B	GC 0221+06	JW 0224+67	P 0229+13					UD 166 0242+238	P_0246+064	GC 0250+17)254+092	OD 094. 7	P 0259+07	400	0303+039	OE : 110	CTA 21	3C 84 P 0317+188	0322+245		P 0332-403	P 0335-122	P 0336-017 CTA 26	0338+074			6C 0346+20 0357+057	, de	0400-319	P 0402-362	0 0404+177	C147070 01

Company Comp	(1) SOURCE NAME	(2) RIGHT	(3) DECLINATION	(4) NUMBER	(5) 2.3 GHz CC	(5) (6) (7) 3 GHz CORRELATED FLUX DENSITY	(7) DENSITY	(8) NUMBER OF OBS	(9) 8. 4 GHz CO	9) (10) (11) 4 GHz CORRELATED FLUX DENSITY	(11) DENSITY
1		(J2000) HR MN SEC	(J2000) DEG MN SEC	_e m	AVERAGE (JY)		HIOH (%)	(B. 4 OHz)	AVERAGE (JY)	(AC)	HIGH ()()
4 26 36.66 5 18 18.9 ** 2 0 32 0.51 0.53 0.52<	0,,00,	12 43. 13 40. 16 36. 23 15. 26 54.	12 14. 31 20 33. 20 33. 27 48.	o -	0.01 0.01 0.44 0.07 0.17	1.63	00 01	o -	00040	1. 03	69 69
4 37 1.46 -18 44 48.5 * 7 0.74 0.37 0.80 7 0.80 7 0.44 0.15 0.15 0.40 0.77 0.80 0.77 0.9		26 36 36 33 36 33 36 33 36 33 36 35 35 35 35 35 35 35 35 35 35 35 35 35	18 18. 24 37. 36 19. 21 34.	O P				а <i>ь</i>	00000		0. 26
4 39 22 90	0434-188 0438-43 0446+11 0446+20 0451-28	37 1. 40 17. 49 7. 53 14.	44 48. 33 8. 44 54. 7 36.	N 0 N	00000			N 4 01	00000		0.00
6 5 1 45.26 13 56 7.7 ** 0.13 0.41 0.43 2 0.007 0.28 5 2 15.48 6 6.5 ** 2 0.42 0.41 0.43 2 0.016 0.28 5 2 40.68 6 7.5 ** 0.077 0.27 0.24 0.24 0.49 0.49 9 2 2.1.20 2.3 0.24 0.27 0.34 2 0.06 0.49 9 2 2.4 2 0.06 0.27 0.24 0.45 0.49 0.49 0.49 9 2 2.1 2.3 0.25 0.06 0.27 0.24 0.49 3 0.21 0.49 9 2 3.4 3 0.25 0.06 0.37 0.24 0.49 3 0.21 0.21 0.21 0.21 0.24 0.49 0.24 0.25 0.24 0.49 3 0.	0452+23 0454+06 454+844 0456+060 0458-02	35 22. 37 22. 38 42. 1 12.	23 10 19. 84 32 6. 6 88 3. 19 14.	71 2	00004			17	00000		0. 63
9 5 2.23.17 4 59 42.2 ** 2 0.30 0.27 0.34 2 0.50 0.49 5 7 6.41 23 113.7 4 0.05 0.24 0.45 2 0.06 0.21 0.22 0.24 0.45 3 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.24 0.45 3 0.21	0458+138 C 0459+06 C 133 500+060 D 003	4 4 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4	36 7. 16 29. 3 33.	u	00000			(N	00000		0. 3 4
2 5 12 41, 01 15 17 23.4 ** 3 0.66 0.37 0.81 2 0.20 0.14 9 13 46.81 -21 39 16.2 ** 0.31 0.31 0.67 0.67 0.16 9 16 46.81 10 57 57.8 < 0.10	0502+049 0504+23 509+173 506+056 0507+17	10 23.	55 42. 51 42. 61 35. 0 41.	a	00000	0.27	0 0 4 4 8	a m	00000		0. 51 0. 81
5 21 9.88 16 38 22.1 * 0.34 5 22 57.97 -36 27 30.7 * 0.85 5 30 7.92 -25 3 29.5 * 6 1.15 0.66 1.53 6 1.06 0.13 1 5 38 50.36 -44 5 9.0 4 0.39 0.17 0.25 3 0.31 0. 5 47 34.12 27 21 57.0 * 3 0.21 0.17 0.25 3 0.31 0. 5 5 5 30.81 39 48 49.2 9 2.03 1.68 2.33 9 2.09 1. 5 5 5 5 5 6 17 42 20.9 * 2 0.34 0.32 0.35 2 0.24 0.22	0509+152 0511-220 514+109 515+067 515+144	12 41. 13 49. 16 46. 17 51.	17 23. 39 16. 37 37. 28 24.	m	00000		0 BB .	CI	00000		0. 26
5 47 34, 12 27 21 37.0 * 3 0.21 0.17 0.25 3 0.31 0.31 5 35 30.81 39 48 49.2 9 2.03 1.68 2.33 9 2.09 1. 5 37 4.56 24 13 53.7 * 3 0.23 0.17 0.34 3 0.20 0.20 5 59 32.02 23 53 54.0 * 3 0.24 0.25 0.25 3 0.33 6 3 9.16 17 42 20.9 * 2 0.34 0.32 0.35 2 0.24 0.	c 138 0521-36 528-250 0528+134 0537-441	21 22 30 30 37 36 36 36	82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4		_		4	000-14	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1. 66 3. 94
	544+273 A 193 554+242 556+238 600+177	35 36. 37 36. 37 32. 3 4. 9 32.	21 57. 48 49. 13 53. 53 54.	ო 				୯ ୦ - ୯ ୯ ୯ ୯			0.0.0.0 6.4.6.6.0 6.4.6.60

ORIGINAL PAGE IS OF POOR QUALITY

(11) DENSITY	HIOH ()()	13	•	. 15				66.6		8,8			60	4.88		529					89	59	0		73
UX DE	Ϊ́	 i 0	•	0 0		0	00	00	_	o c	-		∓i	00	Ö	-i c	, o	o				- i	o		4
(9) (10) (11) 8.4 GHz CORRELATED FLUX DENSITY	() () () () ()	0.63		0. 24 0. 14				0.0 8.0 8.0 8.0 8.0		0.00 0.00			0. 28	0. 24 0. 30	0.33	0.74		0.18			1.08	0. 22	0.40		0
(9) B. 4 GHz (AVERAGE (JY)	0.070.91			0.27 0.38 0.38			0.36 0.63			1. 18	0.74		0.31 6.44	0.36		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			0. 27 0. 27 0. 15	1. 0.0 0.0	o	0. 160. 40	0.25 0.14 0.13	(
(8) NUMBER OF OBS	(8. 4 OHz)	4 0	ı	OI OI		21 (N N	ოფ	4	OI C	4		n d	16 3 d	ო	4 1	. m m	4	ო		00	•	CN .	N	0
(7) X DENSITY	HIQH (\C)	0 0		0. 48 0. 31				0. 48 0. 76		0 0 0 0 0 0				9 9 9 8 4 9 8 0 0			0.00		0.64		1. 11	0.33	0.40	35 0	
(5) (6) (7) 3 GHz CDRRELATED FLUX DENSITY	₹ (.)	0.10		0.47				0. 43 0. 31		0.0				0.0 64			0.32	_	0.34		0. 72	0.08	0. 31	o. 23	
(5) 2.3 GHz CDRF	AVERAGE (JY)	0. 10		0.47	0.0 0.4 0.4	0.5		0.0 6.0 8.0			0. 70 23			1. 0. 20 1. 60			0.0 833		0.49	, o,		. o . 4		0 0 0 8 4 8 8 4 8	
(4) NUMBER OF OBS	(2. 3 OHz)	OI O	ı	OI OI		OI (ni ni	ო •0	∢ (n m	•	ı	n 4	. E 91	ო	4 N	. m m	4	m		00	•	a	a	œ
DECLINATION	(J2000) DEG MN SEC	24 29 23.2 -15 42 40.7 26 4 36.9 *	2 25.6 18 43.9	56 48. 59 57.	21 21 51.1 * -34 59 41.8 * -30 44 19.5 *	10 (40)	, 4 , 4	25 54 56 .96	-11 41 11.2 +	9 4 2 4 2 9	17 42 18.6 * - 6 26 59.7 *	37 3.	o đ	4 =	4 9	٥ ج	33 13 19.6 * 9 56 34.6 *	18 9 49.3 *	21 6 50.6 *	31 11. 38 4.	42 22 45.4	3 D-	23 23 25.5 24 10 59.7 *	24 54 23.0 * 70 53 41.7 * 18 35 39.4 *	6 29
(2) RIGHT ABCENSION	(J2000) HR MN SEC	6 4 55.27 6 9 40.95 6 13 50.12	2.6	24 19. 32 43.	6 45 24 09 6 44 25 25 6 48 14 07	53	14 24.	7 25 17.07 7 25 50.65	8	3. 6. 3. 6. 5. 5.	7 38 7.38 7 38 57.26	8	4 1 10 0			8 % 8 %	7 51 53.66			8 14 43.68				8 37 40.23 8 41 24.44 8 42 5.19	54 48
(1) SDURCE NAME		P 0601+24 P 0607-15 0610+260	0615+82 P 0618+23	0H 335 0629+160	3C 166 P 0642-349 P 0646-306	7E-0650-37	065/+1/2 01 318	P 0722+145 DW 0723-00	P 0727-11	0C 0733+30	P 0735+17 P 0736-06		OI 363 82 0738+27		OC 0743+25	B2 0745+24 P 0748+126			GC 0802+21	P 0805-07 0811+131	0. 425	P 0823+033	0827+235 B2 0827+24	GC 0834+25 4C 71.07 GC 0839+18	

(11) DENSITY	HIOH ()	1. 43	0.00 0.33 31	0.48	1. 47		1. 59	0. 65 0. 73 1. 42	16. 31	0. 29
(9) (11) B. 4 GHz CORRELATED FLUX DENSITY	(AC)	44	0 0 0 2 2 2 2 3 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0. 27 0. 23	0. 9 6	0. 20	1. 12 0. 75	0. 42 0. 17 0. 63	7. 10.	60.0
(9) B. 4 GHz C	AVERAGE (JY)	0.30 0.10 0.97 0.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 9.00 0.03 0.03 0.03		0.000 448 446 7000 644 64		0000 0000 0000 0000 0000 0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000 42000 42000
(8) NUMBER	(8. 4 GHz)	0	ଅ ହା ଅ	4 U	m r	4	o- m	r 6r	ю	o-
(7) DENSITY	HIGH (CV)	1. 83	0. 17 0. 37 0. 32	0. 34 0. 31	0. 86 0. 65	GE .0	0.91	0. 68 0. 90 0. 90	1. 02	0. 70
(5) (6) (7) 3 CHz CORRELATED FLUX DENSITY	(AC)	0.63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 0 . 0 . 30 . 30	0.61	0. 18	0.49	0. 47 0. 36 0. 73	0.87	0. 19
(5) 2.3 GHz COR	AVERAGE (JY)	0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0	00000 00033 0034 0034	00 00 80 04 40 184	0.0.0.0 7.0.0.0 8.4.1.0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0.1.0.0 0.0.1.0.0 0.0.37	0. 1. 0. 0. 84. 0. 83. 83.	C 0.09 C 0.13 C 0.94 C 0.94	0.000 0.000 0.000 0.000
(4) NUMBER	(2. 3 GHz)	o -	m ni m	4 M	6 7	4	ው ማ	r 60 r	n	0
(3) DECLINATION	(J2000) DEG MN SEC	2 45 58 5 4 0 20 27 1 4 39 2 19 7 4 -20 34 50 9 4 -11 39 25 9 4	11 45 32.0 * 17 43 31.1 * 25 15 16.1 13 56 29.8 * 24 49 16.4 *	23 1 16.4 * 20 37 48.0 * 18 53 34.9 * 19 12 20.4 * -37 44 15.0 *	-29 34 2.6 * -15 41 6.7 * 6 10 17.1 * 29 49 49.0 * 12 3 31.6 *	6 55 36.2 * 71 43 35.8 * -19 9 35.7 * 5 42.6 70 11 45.8 *	1 33 35,7 * 16 28 2,4 * -44 49 7,4 14 62 27,3 * - 5 53 41,0	26 10 19.5 * -18 37 17.8 * - 4 47 4.6 -14 49 27.3 38 15 18.9 *	10 23 30.3 * 4 55 27.7 * -24 47 32.7 * -38 12 11.2 * 35 1 7.3 *	- 7 24 38.6 * - 0 24 22.8 * * - 8 41 3.3 * * 9 14 11.6
(2) RIGHT	ASCENSION (J2000)	9 14 37.94 9 25 10.06 9 27 3.01 9 27 51.80 9 33 34.46	9 41 13.55 9 54 56.82 9 56 49.86 10 7 41.48 10 13 53.45	10 14 47. 07 10 16 44. 28 10 22 55. 13 10 24 44. 80 10 36 53. 50	10 37 16.05 10 39 6.71 10 41 17.19 10 42 36.49 10 42 44.57	10 44 55.91 10 48 27.62 10 48 6.63 10 49 32.94 10 36 53.62	10 58 29.61 11 7 15.04 11 7 8.70 11 13 58.68 11 21 25.39	11 25 53.68 11 27 4.42 11 29 35.41 11 30 7.06 11 30 53.28	11 33 0.42 11 45 21.24 11 46 8.10 11 47 1.47	11 47 51.40 11 50 43.97 11 52 17.20 11 53 13.05
(1) SOURCE NAME		P 0912+029 P 0922+005 4C 39.25 P 0925-203 P 0931-114	MC 0938+119 AD 0952+17 DK 290 GC 1004+14 1011+250	P 1012+232 GC 1013+20 P 1020+191 GC 1022+19 P 1034-374	P 1034-293 P 1036-154 DL 064.5 1039+300 3C 245	P 1042+071 1044+71 P 1045-18 P 1046+05C 1053+70	P 1055+01 QC 1104+16 P 1104-445 QC 1111+14 P 1118-05	P 1123+26 P 1124-186 P 1127-045 P 1127-14 OC 1128+38	P 1130+10C P 1142+052 P 1143-245 P 1144-379 1144+352	DM-076 P 1148-00 P 1149-084 P 1150+09

		 ·		· · · · · · · · · · · · · · · · · · ·		·			
(11) DENSITY HIGH (JY)	6.	9	3. 3. 3. 39 2. 21	0. 78 2. 02	0. 43 0. 71 1. 12	1. 03	0.31	0. 29	0. 86 1. 99
(9) (10) (11) 8. 4 GHz CORRELATED FLUX DENSITY AVERAGE LOW HIGH (JY) (JY) (JY)	0.25	ci 4.	0.85 0.42	0. 62	0.31 0.31 0.80		0. 27	22 25	0 0 3 3 5 6 6 8 9 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
(9) 8. 4 GHz CDI AVERAGE (JY)	0, 13 0, 07 0, 05 0, 06 0, 07	4.0.0 > 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.23 0.33 0.23 0.28	00004	00000 00000 00000	0.1.0 0.1.0 0.1.0.0 0.1.10 0.1.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.27 0.13 0.25 0.25 1.14
(8) NUMBER OF OBS (8, 4 OHz)	0 0	00	400 11	Oi as	26.23	01	U 4	ო	11
(7) DENSITY HIGH (JY)	0.88	69 .	0. 56 4. 88 1. 24	0.71	0.32 0.59 0.50	0. 66	1. 31	0. 64	0. 70 2. 19
(5) (6) (7) 3 GHz CORRELATED FLUX DENSITY AVERAGE LDW HIGH (JY) (JY) (JY)	.0 4	1.01	0. 1. 843 0. 30 92	0. 51	0 0 0 3 8 9 8 8 9	4 4	0	o O	0. 1. 40. 0. 40. 0.
(5) 2. 3 GHz COR AVERAGE (JY)	000	1.0.0.0.0 6.4.0.0.0.0 4.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.0.0.0 4.0.44 6.0.44		0.00 0.03 0.03 0.03 0.03 0.03	0.00	0.2.4 0.098 1.027	0 0 0 36 36	0.35 0.03 0.04 1.74
(4) NUMBER OF OBS (2. 3 OHz)	œ	81	40 11	OI ID	11 G 12 G	10	41	m	110
(3) DECLINATION (J2000) (DEG MN SEC	1 0 29 45: 8 1 1 5: 20 3 1 7: 20 8 1 7: 20 20 3 1 8 1 5: 20 3 1 7:	2 3 9.8 + 12 23 28.1 + -11 39 10.0 + -10 23 28.7 + - 7 30 46.5 +	-25 47 49.5 * -10 33 13.1 * -4 24 50.2 * -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-17 47 35.4 * 66 22.55.6 * -44 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.40.3 * -1.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 1	-17 44 1.3 * -15 27 28.3 * 19 19 7.4 -1 30 23.6 * 28 27 14.6	-7 52 25.9 * -23 16 48.8 - 9 56 27.2 54 23 14.7 * - 6 43 56.2 *	10 43 29.1 + -18 1 35.0 + -15 48 44.9 + 23 21 3.2 + -16 29 1.5 +	-16 20 24.5 * 24 35 7.4 10 29 39.2 -16 32 29.9 *
(2) RIGHT ASCENSION (JZOOO) HR MN SEC	12 20 11.85 12 20 11.85 12 24 52.43 12 26 16.33 12 28 19.84	12 29 6.64 12 30 49.43 12 30 35.56 12 39 43.06 12 46 4.23	12 46 46.81 12 56 11.17 13 5 32.62 13 10 28.74 13 12 50.92	16 8. 20 26. 35 36. 36 7. 37 39.	13 43 37. 42 13 43 45. 96 13 44 8. 67 13 32 56. 35 13 34 6. 98	13 57 6.03 13 57 11.20 14 4 46.00 14 7 0.41	14 8 36.43 14 9 10.30 14 15 20.66 14 19 46.59 14 21 7.80	14 30 9.73 14 32 57.69 14 33 21.48 14 36 40.98 14 45 53.37	14 48 15 05 14 55 43 13 15 4 24 98 15 7 4 75
(1) SDURCE NAME	1215-002 P 1217+02 P 1222+037 P 1223-074 P 1225-083	3C 273 3C 274 P 1228-113 P 1237-10 ON-073	P 1244-255 3C 279 P 1302-102 B2 1308+32 P 1310-041		P 1340-17 0C 1342+662 0C 1342+663 P 1349-439 P 1351-018	P 1354-174 OP-192 P 1354+19 P 1402-012 OG 208	P 1406-076 P 1406-230 P 1412-096 GC 1418+54 P 1418-064	P 1427+109 06-151 P 1430-155 P 1434+235 P 1443-162	P 1445-16 P 1452-167 P 1455+24 OR 103 P 1504-167

	-								_	
(11) DENSITY	() ()	1. 93	1. 93	84	1.29	4 5 4 4 6 14	. 92 . 92	1. 66	0. 70	1. 07 0. 67 1. 68 0. 90 1. 74
FLUX	- 0		_	_	.			_		
(9) (10) (11) 8.4 GHz CORRELATED FLUX DENSITY	(\chi_{\(\)}	0. 41	1. 29	o. 33	0.38 6.24	6. 19.	0. 90	0. 94	0. 37	0. 31 0. 41 0. 60 0. 07 1. 58
(9) 8. 4 GHz (AVEKAGE (JY)	1. 36 0. 81 0. 0. 11 0. 13 49	1.65 < 0.15 < 0.21 1.07	0.0000 0.0039 0.00839	0.38 0.79 0.13 0.45	0.07 0.18 0.18 0.129	0.00000 0.0000 0.0000 0.0000 0.0000	0.35 0.25 1.28 0.17	^ ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 98.00 1.10 94.00 94.00
@ ჭ ხა	(8. 4 GHz)	0 0	n n	•0	o n	0 5 6 6	e e	o -	11 11	Ja 1 8 a
	(\ (\ (\	1. 31	1. 18	0. 47 0. 27	1.44	1. 45 1. 16 0. 80 0. 46	. 03	98 98	0. 0. 5. 0. 0. 50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(5) (5) (7) 3 GHz CORRELATED FLUX DENSITY	3 ()	1.00	0. 92	0.0. grun 4.10	0.88	0.00.0 48.88 44.88	0. 29		0. 26	0. 27 1. 61 0. 80 0. 18
(5) 2. 3 eHz COR	AVERAGE (JY)	1.0000 81.000 82.44.000	1. 09	0000 0 44000 0 4000 0 7000 0	1. 17 0. 11 0. 16		0. 1. 4. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.00	>> 00000 10000 10000	0 1 1 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ັຽພເ	(2. 3 GHz)	00 N	io di	4 M	00 N	11 01 01	93	,	10	G G I E
Z	(32000) (3 59.8 12 0.3 * 14 37.3 * 22 19.4 *	30 11.0 * 31 3.1 * 31 3.1 * 3.1 3.1 * 3.1 3.1 * 3.1 3.1 * 3.1 3.1 * 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	4 4 2 38.7 * * 23 47.7 4 7.2 47.7 47.7 47.7 47.7 47.7 47.	31 8.8 + 47 47 7.9 27 38.3 + 51 26.9 + 4	153 30.2 8 20.2 120 23.9 4 4 6 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 7.7 * 48 36.5 * 5 36.30.1 * 27 31.9	43 46.6 * * 15 17.9 * * 10 91.6 * * 54 21.3	28 53.5 ± 42 11.2 ± 4 49.5 ± 4	37 38 48 41 43 44 45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	DEC	1000	10.0 10.0 10.0	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4 4 8 6 9	-14 38 39 -23	# # # # # # # # # # # # # # # # # # #	4 . u 4 9	71- 00 03 04 113	7 th 6 to 6
RIGHT ASCENSION	(J2000) HR MN SEC	15 12 50.53 15 13 44.88 15 13 56.97 15 13 40.19 15 17 41.83	15 22 37, 73 15 31 26.31 15 34 52.53 15 38 15.98 15 50 35.29	15 34 2. 51 15 57 51. 43 15 38 21. 92 15 39 41. 42 16 4 1. 60	16 7 34.74 16 13 41.06 16 16 38.32 16 25 46.91 16 26 6.02	16 28 45.88 16 35 15.50 16 38 13.44 16 40 29.63 16 43 33.39	16 42 40.40 16 42 38.84 16 42 7.86 16 44 39.08 16 46 4.37	16 50 39. 52 16 58 9. 02 16 58 33. 42 17 0 53. 14 17 1 9. 23	17 9 34.36 17 11 19.96 17 21 9.36 17 27 27.64 17 33 2.70	17 39 57.13 17 40 36.98 17 43 58.85 17 48 32.88
(1) SDURCE NAME		P 1510-08 P 1511-100 P 1511-210 1511+238 P 1514-24	P 1519-273 1529-357 P 1532-01 P 1535-004 DW 1548-05	P 1550-269 DW 1555+00 P 1555-140 P 1556-245 P 1601-222	P 1604-333 DA 406 P 1614+26 P 1622-253 P 1622-29	P 1625-141 oc 1633+38 oc 1637+57 NRAD 512 OS-268	1640+254 3C 345 6C 1642+69 1642+257 P 1643-22	P 1647-296 OS 092 DW 1656+05 P 1657-261 P 1657-298	0T-111 1709+303 1719+35 6C 1726+45 NRAD 530	0T 465 GC 1739+52 P 1741-038 1749+701

(11) DENSITY	() ()	1. 22	0.34	1. 40	4 6 10	1. 33		1. 10	0. 46	0.91		1. 20	1. 53	6. 6.	0. 39	
D FLUX	چ رکن	23	10	o o	9	81		46	31	44		n C	33	38	24	
(1 CORRELA		0	o o			Ö		0	0	0		0	0	.	0 0	
(9) 8. 4 GHz ((YC)	0.39			0. 13 0. 86 78		0.00		οσ	< 0.13 0.74 0.17	0 0 27 0 0 10 0 10 0 13 0 13	0.66 0.10 1.46 0.17	0.090.710.710.910.19	0.0.00 0.0.00 0.0.00 0.0.00 0.0.00 0.0.00 0.0.00 0.0.00 0 0.0	0 0 0 31 0 0 10 0 14 0 0 44	
(8) NUMBER OF OBS	(a. 4 672)	16	CN I	•	Ç	ก		'n	4	4		4	15	02	d e	
(7) DENSITY	5	0. 78	0. 67	0. 77		1.28		0. 34 0. 49	0. 52	99 .0		0. 70	2. 07	1. 56	0. 63	i
ORRELA	(C C C C C C C C C C C C C C C C C C C	0.30	0.64			1.12		0. 28	0. 46	0.33		0 44	98	0. 75	0 0 4 & &	!
(5) 2. 3 GHz C	AVERAGE (JY)	0. 53 0. 43			0.00		0 0 0 0 0 0 0 0 1	900	o o	^ 0.07 0.04 0.42 0.43 0.43	0.043 0.043 0.040 0.07	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000.000	0.1.0 0.0.0 0.0.0 0.00 0.00 0.00 0.00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
(4) NUMBER OF OBS	K. 3. 6H2)	16	OI	^	9	ลูด		'nα	4	4		4	25	Ö,	d n	I
Z	DEG MN SEC	28 49 28.	56 51 1.5 * 68 9 25.4 *	6 57.		73 58 1.3	-31 11 38.0 * -23 27 9.4	48 57. 52 43.		36 25. 19 13. 7 46.	10 3 14.4 * 4 7 48.1 * -10 20 37.6 * 28 32 37.6	29 33 38.4 -11 6 23.0 5 35 22.6 * 30 12 36.3 -11 51 20.2	-18 21 22.8 * -12 7 9.1 * + 0 41 54.1 + + 37 43.4 *	-15 25 43.7 * 6 57 30.9 * -17 23 91.3 -13 4 23.2 -30 27 54.4 *	5 32 13.5 + 115 1 34.3 + 120 12 18.7 - 15 0 34.9 + 15	: : :
(2) RIGHT ASCENSION	HR MN SEC	4.0°	18 24 7.07 18 42 33.62	11 9.	19 11 35.08 19 23 32.21		19 45 59.36 19 49 24.10		11 15. 23 55.	20 27 4.17 20 38 37.10 20 40 8.76	20 49 45.87 20 50 6.29 21 10 0.97 21 14 40.27 21 14 38.30	21 15 29.42 21 19 40.17 21 23 44.49 21 23 44.46 21 27 30.49	21 29 21.41 21 31 35.29 21 34 10.41 21 36 38.58 21 42 36.91	21 46 22.96 21 48 5.95 21 48 36.32 21 49 28.41 21 51 55.55	21 51 37.83 21 54 7.11 21 54 10.04 21 56 35.20 21 58 5.36	i }
(1) SOURCE NAME		1803+78 3C 371	0C 1823+56 GC 1842+68	00-213	1909+269 0V-235	1928+73 P 1936-15	P 1942-313 P 1946-23	0V-198 2007+77	P 2008-159 DW 538	P 2024-217 3C 418 P 2037-253	oc 2047+09 P 2047+039 2107-105 P 2111-25 2112+283	B2 2113+29B 2116-113 0X 036 2121+299 P 2124-12	P 2126-185 P 2128-12 P 2131-021 P 2134+004 P 2140-048	0X-173 P 2145+06 P 2145-17 2146-133 P 2149-306	0X 082 2151-152 P 2151-153 P 2153-204 0X-192	

<u>Ł</u>	T •		•	-	(N	œ	4	NO 0	^	œ	0
(11) X DENSI	H16H		45.	2. 91 0. 37	4. 22	o 38	1. 94	1. 32 1. 40 0. 50	2. 47	0. 78	0. 50
(4) (10) (11) 8.4 GHz CORRELATED FLUX DENSITY	HON ()		0. 133	1. 23 0. 10	1.81	0. 37	0.89	0. 0. 38 0. 0. 88 0. 28	0. 12	0 0	0.26
(9) 8. 4 GHz COF	AVERAGE (JY)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.130.0320.099	0. 23 0. 23 0. 23	9. 23 3. 11	0.75 0.38 0.19 < 0.07		 0.12 0.86 1.23 0.07 0.38 	0.15 0.77 0.07 0.14 0.29	0.000 844.000 10.000 10.000 10.000 10.000	
(8) NUMBER OF OBS	(B. 4 GHz)		50	. 00	10	O)	19	u 3 ti	24	n	16
(7) JX DENSITY	HIGH (JY)		6. 8.	1. 69 0. 15	0.84	0. 73	1. 69	0.26 0.87 1.26 1.09	6. 96	88 O	o. 63
(5) (5) (7) 3 GHz CDRRELATED FLUX DENSITY	#(\ (\ (\ (\)		0 9 9	1. 11 0. 15	0. 31	0. 71	0. 19	0.15 0.67 0.28 0.73	0.35	0.17	0. 35
(5) 2.3 OHz CDRF	AVERAGE (JY)	00000 0000 0000 0000	0.1.0.0.0 0.1.4.0.0.0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0. 37 1. 33 0. 15	0. 23 0. 61	0 0 4 0 0 72 0 0 72 0 0 7	- i	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 00000 3 4 8 4 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
(4) NUMBER OF OBS	(2. 3 OHz)		8	49 (3)	10	a	19	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4	n	16
(3) DECLINATION	(J2000) (DEG MN SEC	-20 5 25.7 - 4 9 15.3 -19 45 58.8 -16 32 33.0 -17 32 59.4	-20 17 33.1 42 16 40.0 * 17 25 48.1 * -18 35 38.7 -13 28 10.4 *	35 41. 35 37. 7 5.	-11 13 40.2 # - 4 57 1.0 #	- 8 32 53.4 * 69 46 28.2 * -16 59 2.1 * -14 42 27.8	43 30.	-14 33 22.7 * 28 28 35 37.4 * -12 6 51.332 35 52.2	21 7 4.4 * 16 8 53.4 0 59 11.4 2 4 4 5 23.6 * 18 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	42 2 52 9 4 2 4 3 11.7 4 4 3 11.7 4 4 3 11.7 4 4 5 4 8 .6 4 4 4 6 4 4 6 4 6 4 6 4 6 4 6 4 6 4	3 17 3 14 47 35 14 39 39.
(2) RIGHT	(J2000) HR MN SEC	21 58 50.12 21 59 23.31 22 0 7.78 22 0 54.41 22 1 39.20	22 2 17.13 22 2 43.32 22 3 26.90 22 6 10.39 22 11 24.13	22 12 5.94 22 18 52.07 22 23 41.16		22 29 40.01 22 30 36.45 22 32 22 36 22 32 22 36	32 36.	22 36 34. 11 22 36 22. 47 22 46 18. 23 22 48 0. 52 22 48 38. 68	22 49 0.47 22 53 57.75 22 54 7.21 22 54 9.34 22 55 4.28	26.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	23 31. 27 47. 34 56.
(1) SOURCE NAME		2156-203 2156-043 P 2157-200 2158-167 2158-177	2159-205 VRD 42.22.01 ec 2201+17 P 2203-18 P 2208-137	P 2209+236 P 2216-03 P 2220-163		P 2227-08 2229+69 P 2229-17 P 2230-149	CTA 102	P 2233-148 OC 2234+28 OY-172.6 P 2245-059 P 2245-328	0C 2246+20 3C 454.3 P 2251+006 0C 2251+24	9C 2253+41 P 2254+024 P 2254+07 P 2255-282 P 2303-052 P 2312-319 P 2314-116 9C 2318-087	2320-035 2320-035 2325-150 2332-049

(1) SOURCE NAME	•	(2) RIGHT		(3) DECLINATION	(4) NUMBER	(5) (6) 2.3 GHz CORRELATED FLUX	(6) ELATED FLUX	(7) DENSITY	(8) NUMBER	(9) 8.4 GHz COI	(9) (10) 8.4 GHz CORRELATED FLUX	(11) DENBITY
	A RI	ASCENBION (J2000) NN SEC		(J2000) DEG MN BEC	OF OBS (2. 3 OHz)	AVERAGE (JY)	HOH (AC)	HIQH (YC)	OF USS (8. 4 OHz)	AVERAGE (JY)	(AC)	H10H
, 2340-036	23 45	2 36. 60		2 25.9 *		0.09				< 0.05		
2345-16	23 ♣	3 2.61		1 12.0	m	2.23	2. <u>18</u>	2. 35	ო	0. 92	9 .0	1. 11
2349-01	23	1 56.19		9 14.1 #						< 0.07		
7349+280	23 33	1 57 66		30.2		< 0.09				< 0. 15		
P 2351-006	ň R	23 54 9.17		- 0 19 47.7		o. 34				< 0.11		
707-107	6	30 03		9		0.60				0.33		
3 2352-04	1 00 100 100 100 100 100 100 100 100 100	51.72				0.0				< 0.05		
117 1	Si Ci	9 46		0 8.1 4		0. 22				< 0. 13		
2254-11	6	7 29 76		5 16.4 4	N	1.01		1.04	CN.	0.83	0.53	0. 23
P 2355-106	3 3 3 3 3	58 10. 91	-10 20	8.8	m	0.93	0 0	0. 33	ო	0. 4.	0.36	o. 31
P 2357+00	23	59 58. 57		0 42 18.1		< 0.16				< 0.09		

Fig. 1 (contd)

Fig. 2. Sky plot of 278 detected objects at 8.4 GHz

Fig. 3. Correlated flux density histogram for 2.3 GHz and 8.4 GHz observations