PUBG Finish Placement Prediction

PlayerUnknown's BattleGrounds (PUBG) has enjoyed massive popularity. With over 50 million copies sold, it's the fifth best selling game of all time, and has millions of active monthly players.

```
In [ ]: #EE 660 Project
        # Created by Binh Phan
        # For autoreloading modules
        %load ext autoreload
        %autoreload 2
        # # For notebook plotting
        # %matplotlib inline
        #Standard Libraries
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
        import os
        print(os.listdir("../input"))
        # Visualization
        import scipy
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy.cluster import hierarchy as hc
        #Machine Learning
        import sklearn
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.neural network import MLPRegressor
        from sklearn.decomposition import PCA
        # import tensorflow as tf
        # from keras.models import Sequential
        # from keras.layers import Dense, Dropout, BatchNormalization
        # from keras.callbacks import EarlyStopping
        # from keras import optimizers
        # from keras import regularizers
        import xgboost as xgb
        # import lightgbm as lgb
In [ ]: train = pd.read_csv('../input/train_V2.csv')
In [ ]: train.head()
In [ ]: # Remove Id, which is not a useful feature
        train.drop(columns=['Id'], inplace=True)
```

```
In [ ]: train.isna().any()
In [ ]: train[train['winPlacePerc'].isnull()]
In [ ]:
        train = train.dropna()
        train.isna().any()
In [ ]: train.info()
In [ ]: train.shape
In [ ]: print('There are {} different Match types in the dataset.'.format(train['match
        Type'].nunique()))
        # One hot encode matchType
        train = pd.get dummies(train, columns=['matchType'])
        # Take a Look at the encoding
        matchType encoding = train.filter(regex='matchType')
        matchType encoding.head()
In [ ]: # Turn groupId and match Id into categorical types
        train['groupId'] = train['groupId'].astype('category')
        train['matchId'] = train['matchId'].astype('category')
        # Get category coding for groupId and matchID
        train['groupId cat'] = train['groupId'].cat.codes
        train['matchId cat'] = train['matchId'].cat.codes
        # Get rid of old columns
        train.drop(columns=['groupId', 'matchId'], inplace=True)
        # Lets take a look at our newly created features
        train[['groupId cat', 'matchId cat']].head()
```

Exploratory Data Analysis

```
In [ ]: # Take sample for debugging and exploration
    sample = 50000
    df_sample = train.sample(sample)

# Split sample into training data and target variable
    df = df_sample.drop(columns = ['winPlacePerc']) #all columns except target
    y = df_sample['winPlacePerc'] # Only target variable
```

Preprocessing

```
In [ ]: #Import data
        train = pd.read_csv('../input/train_V2.csv')
        train = train.sample(50000)
        X_test = pd.read_csv('../input/test_V2.csv')
        # Remove Id, which is not a useful feature
        train.drop(columns=['Id'], inplace=True)
        train = train.dropna()
        # One hot encode matchType
        train = pd.get_dummies(train, columns=['matchType'])
        X test = pd.get dummies(X test, columns=['matchType'])
        # Turn groupId and match Id into categorical types
        train['groupId'] = train['groupId'].astype('category')
        train['matchId'] = train['matchId'].astype('category')
        X test['groupId'] = X test['groupId'].astype('category')
        X_test['matchId'] = X_test['matchId'].astype('category')
        # Get category coding for groupId and matchID
        train['groupId_cat'] = train['groupId'].cat.codes
        train['matchId cat'] = train['matchId'].cat.codes
        X test['groupId cat'] = X test['groupId'].cat.codes
        X_test['matchId_cat'] = X_test['matchId'].cat.codes
        # Get rid of old columns
        train.drop(columns=['groupId', 'matchId'], inplace=True)
        X test.drop(columns=['groupId', 'matchId'], inplace=True)
        # Split train into features and target variable
        X train = train.drop(columns = ['winPlacePerc']) #all columns except target
        Y = train['winPlacePerc'] # Only target variable
        Y = Y.astype('float32')
        x train, x val, y train, y val = sklearn.model selection.train test split(X tr
        ain, Y, random state=0, test size=0.3)
        #Standard scaling train features to have 0 mean and 1 variance
        columns_to_scale = ['assists', 'boosts', 'damageDealt', 'DBNOs', 'headshotKill
        s', 'heals',
                'killPlace', 'killPoints', 'kills', 'killStreaks', 'longestKill',
               'matchDuration', 'maxPlace', 'numGroups', 'rankPoints', 'revives',
                'rideDistance', 'roadKills', 'swimDistance', 'teamKills',
                'vehicleDestroys', 'walkDistance', 'weaponsAcquired', 'winPoints']
        categorical = ['matchType_crashfpp', 'matchType_crashtpp', 'matchType_duo',
                'matchType_duo-fpp', 'matchType_flarefpp', 'matchType_flaretpp',
                'matchType normal-duo', 'matchType normal-duo-fpp',
                'matchType_normal-solo', 'matchType_normal-solo-fpp',
                'matchType_normal-squad', 'matchType_normal-squad-fpp',
                'matchType_solo', 'matchType_solo-fpp', 'matchType_squad',
                'matchType_squad-fpp', 'groupId_cat', 'matchId_cat']
        train scale = x train[columns to scale]
        train_categorical = x_train[categorical]
        val scale = x val[columns to scale]
        val categorical = x val[categorical]
        test_scale = X_test[columns_to_scale]
        test_categorical = X_test[categorical]
        # print(df scale.shape)
        # print(df_categorical.shape)
```

```
scaler = sklearn.preprocessing.StandardScaler()
scaler.fit(train_scale.values)
#Standard scaling train features to have 0 mean and 1 variance
train scale = pd.DataFrame(scaler.transform(train scale.values), index=train s
cale.index, columns=train_scale.columns)
# print(df_scale.shape)
x_train = pd.concat([train_scale, train_categorical],axis=1)
#Standard scaling val features with the same parameters in train data
val scale = pd.DataFrame(scaler.transform(val scale.values), index=val scale.i
ndex, columns=val_scale.columns)
# print(df scale.shape)
x_val = pd.concat([val_scale, val_categorical],axis=1)
#Standard scaling test features with the same parameters in train data
test scale = pd.DataFrame(scaler.transform(test scale.values), index=test scal
e.index, columns=test_scale.columns)
# print(df_scale.shape)
test_id = X_test.loc[:, ['Id']]
X test = pd.concat([test scale, test categorical],axis=1)
```

Reducing Memory

```
In [ ]: # Thanks and credited to https://www.kagqle.com/gemartin who created this wond
         erful mem reducer
         def reduce mem usage(df):
             """ iterate through all the columns of a dataframe and modify the data typ
         е
                 to reduce memory usage.
             start mem = df.memory usage().sum()
             print('Memory usage of dataframe is {:.2f} MB'.format(start mem))
             for col in df.columns:
                 col_type = df[col].dtype
                 if col type != object:
                     c min = df[col].min()
                     c_max = df[col].max()
                     if str(col type)[:3] == 'int':
                         if c min > np.iinfo(np.int8).min and c max < np.iinfo(np.int8)</pre>
         .max:
                              df[col] = df[col].astvpe(np.int8)
                         elif c min > np.iinfo(np.int16).min and c max < np.iinfo(np.in</pre>
         t16).max:
                             df[col] = df[col].astype(np.int16)
                         elif c min > np.iinfo(np.int32).min and c max < np.iinfo(np.in</pre>
         t32).max:
                              df[col] = df[col].astype(np.int32)
                         elif c min > np.iinfo(np.int64).min and c max < np.iinfo(np.in</pre>
         t64).max:
                             df[col] = df[col].astype(np.int64)
                     else:
                         if c min > np.finfo(np.float16).min and c max < np.finfo(np.fl</pre>
         oat16).max:
                             df[col] = df[col].astype(np.float16)
                         elif c min > np.finfo(np.float32).min and c max < np.finfo(np.</pre>
         float32).max:
                              df[col] = df[col].astype(np.float32)
                         else:
                              df[col] = df[col].astype(np.float64)
                 else:
                     df[col] = df[col].astype('category')
             end mem = df.memory usage().sum()
             print('Memory usage after optimization is: {:.2f} MB'.format(end mem))
             print('Decreased by {:.1f}%'.format(100 * (start mem - end mem) / start me
         m))
             return df
         x train = reduce mem usage(x train)
         x val = reduce mem usage(x val)
         X test = reduce mem usage(X test)
```

Baseline: Linear Regression

```
In []: # from sklearn.linear_model import LinearRegression
    reg = sklearn.linear_model.LinearRegression().fit(x_train, y_train)
    pred_train = reg.predict(x_train)
    pred_val = reg.predict(x_val)
    mae_train = sklearn.metrics.mean_absolute_error(pred_train, y_train)
    mae_val = sklearn.metrics.mean_absolute_error(pred_val, y_val)
    print('MAE train: ', mae_train)
    print('MAE val: ', mae_val)
```

Boosted Trees Regressor

```
In [ ]: trees = GradientBoostingRegressor()
In [ ]: trees.fit(x_train, y_train)
        pred train = trees.predict(x train)
        pred val = trees.predict(x val)
        mae train = sklearn.metrics.mean absolute error(pred train, y train)
        mae_val = sklearn.metrics.mean_absolute_error(pred_val, y_val)
        print('MAE train: ', mae_train)
        print('MAE val: ', mae_val)
In [ ]: rtrees = RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None
                   max features='auto', max leaf nodes=None,
                   min impurity decrease=0.0, min impurity split=None,
                   min samples leaf=1, min samples split=2,
                   min weight fraction leaf=0.0, n estimators=3, n jobs=None,
                   oob score=False, random state=None, verbose=0, warm start=False)
        rtrees.fit(x_train, y_train)
        y pred = rtrees.predict(x val)
        mae = sklearn.metrics.mean absolute error(y pred, y val)
        mae
```

Keras

```
In [ ]: # BATCH SIZE = 256
        # EPOCHS = 50
        # LEARNING RATE = 0.001
        # model = Sequential()
        # model.add(Dense(128, activation='relu', input_dim=x_train.shape[1], activity
         regularizer=regularizers.l1(0.01)))
        # # model.add(BatchNormalization())
        # # model.add(Dense(128, activation='relu'))
        # # model.add(BatchNormalization())
        # # model.add(Dense(64, activation='relu'))
        # # model.add(BatchNormalization())
        # # model.add(Dense(32, activation='relu'))
        # # model.add(BatchNormalization())
        # model.add(Dense(8, activation='relu'))
        # model.add(BatchNormalization())
        # model.add(Dense(1))
        # adam = optimizers.adam(lr=LEARNING RATE)
        # model.compile(loss='mse', optimizer=adam, metrics=['mae'])
In [ ]: # model.summary()
In [ ]: # history = model.fit(x=x_train, y=y_train, batch_size=BATCH_SIZE, epochs=20,
                               verbose=1, validation data=(x val,y val),
        #
                               shuffle=True)
In [ ]: # def plot loss accuracy(history):
              plt.figure(figsize=(10,10))
        #
              plt.plot(history.history['loss'])
        #
              plt.plot(history.history['val_loss'])
              plt.title('model loss')
        #
        #
              plt.ylabel('loss')
              plt.xlabel('epoch')
        #
              plt.legend(['train', 'test'], loc='upper right')
              plt.show()
        # plot_loss_accuracy(history)
In [ ]: | # X_test.shape
In [ ]: # prediction = model.predict(X_test, batch_size=128, verbose=1)
In [ ]: | # prediction = prediction.flatten()
In [ ]: # prediction.shape
In [ ]: | # pred_df = pd.DataFrame({'Id' : test_id['Id'], 'winPlacePerc' : prediction})
        # # Create submission file
        # pred_df.to_csv("submission.csv", index=False)
```

Deep Neural Network

```
In [ ]: # # Model parameters
        # BATCH SIZE = 512
        # STEPS = 40000
        # LEARNING RATE = 0.001
        # HIDDEN UNITS = [256, 128, 64, 32]
In [\ ]: \# feature_columns = [tf.feature_column.numeric_column(x) for x in x_train.colu
        mns]
        # train_fn = tf.estimator.inputs.pandas_input_fn(x_train, y_train, shuffle = T
        rue)
        # val fn = tf.estimator.inputs.pandas input fn(x val, y val, shuffle = False)
        # test_fn = tf.estimator.inputs.pandas_input_fn(X_test, None, shuffle = False)
In [ ]: # # optimizer = tf.train.AdamOptimizer(learning rate=LEARNING RATE)
        # optimizer = tf.train.ProximalAdagradOptimizer(learning_rate=0.1, l1_regulari
        zation strength=0.001, l2 regularization strength=0.001)
        # estimator = tf.estimator.DNNLinearCombinedRegressor(
              dnn feature columns=feature columns,
        #
              dnn hidden units=HIDDEN UNITS,
              dnn optimizer=optimizer)
        # train_spec = tf.estimator.TrainSpec(train_fn, max_steps=STEPS)
        # eval spec = tf.estimator.EvalSpec(val fn, steps=500, throttle secs=300)
In [ ]: # tf.estimator.train_and_evaluate(estimator, train_spec=train_spec, eval_spec=
        eval spec)
In [ ]: # prediction = estimator.predict(test fn)
In [ ]: # prediction_df = pd.DataFrame(prediction)
In [ ]: # prediction df.values.flatten()
In [ ]: | # pred_df = pd.DataFrame({'Id' : test_id['Id'], 'winPlacePerc' : prediction_d
        f.values.flatten()})
        # # Create submission file
        # pred df.to csv("submission.csv", index=False)
In [ ]: # def mae(labels, predictions):
              pred_values = predictions['predictions']
        #
        # #
                print type(pred values)
              return {'mae': tf.metrics.mean absolute error(labels, pred values)}
```

```
In [ ]: # DNN = tf.estimator.DNNRegressor(
              feature columns=feature columns,
         #
              hidden_units=[2048, 1024,256, 128, 64, 32,4,1],
         #
              dropout = 0.1,
              optimizer=tf.train.ProximalAdagradOptimizer(
         #
         #
                 learning_rate=0.1,
                 l1 regularization strength=0.001
               ))
        # DNN = tf.contrib.estimator.add_metrics(DNN, mae)
In [ ]: # DNN.train(train_fn)
In [ ]: # DNN.evaluate(val_fn)
In [ ]: # predictions = np.array([item['predictions'][0] for item in preds]).astype(n
         p.float64)
In [ ]:
        # yvalnp = np.array(y_val)
In [ ]: # type(yvalnp[0])
In [ ]: | # type(predictions)
In [ ]: # mae = sklearn.metrics.mean_absolute_error(yvalnp, predictions)
In [ ]:
        # mae
```

XGBoost

Preprocessing

```
In [ ]: #Import data
        train = pd.read csv('../input/train V2.csv')
        train = train.sample(100000)
        X_test = pd.read_csv('.../input/test_V2.csv')
        # Remove Id, which is not a useful feature
        train.drop(columns=['Id'], inplace=True)
        train = train.dropna()
        # One hot encode matchType
        train = pd.get dummies(train, columns=['matchType'])
        X_test = pd.get_dummies(X_test, columns=['matchType'])
        # Turn groupId and match Id into categorical types
        train['groupId'] = train['groupId'].astype('category')
        train['matchId'] = train['matchId'].astype('category')
        X_test['groupId'] = X_test['groupId'].astype('category')
        X test['matchId'] = X test['matchId'].astype('category')
        # Get category coding for groupId and matchID
        train['groupId cat'] = train['groupId'].cat.codes
        train['matchId cat'] = train['matchId'].cat.codes
        X_test['groupId_cat'] = X_test['groupId'].cat.codes
        X test['matchId cat'] = X test['matchId'].cat.codes
        # Get rid of old columns
        train.drop(columns=['groupId', 'matchId'], inplace=True)
        X test.drop(columns=['groupId', 'matchId'], inplace=True)
        # Split train into features and target variable
        X train = train.drop(columns = ['winPlacePerc']) #all columns except target
        Y = train['winPlacePerc'] # Only target variable
        Y = Y.astype('float32')
        #Standard scaling train features to have 0 mean and 1 variance
        columns_to_scale = ['assists', 'boosts', 'damageDealt', 'DBNOs', 'headshotKill
        s', 'heals',
                'killPlace', 'killPoints', 'kills', 'killStreaks', 'longestKill',
                'matchDuration', 'maxPlace', 'numGroups', 'rankPoints', 'revives',
                'rideDistance', 'roadKills', 'swimDistance', 'teamKills',
                'vehicleDestroys', 'walkDistance', 'weaponsAcquired', 'winPoints']
        categorical = ['matchType_crashfpp', 'matchType_crashtpp', 'matchType_duo',
                'matchType_duo-fpp', 'matchType_flarefpp', 'matchType_flaretpp',
                'matchType_normal-duo', 'matchType_normal-duo-fpp',
                'matchType normal-solo', 'matchType normal-solo-fpp',
                'matchType normal-squad', 'matchType normal-squad-fpp',
                'matchType_solo', 'matchType_solo-fpp', 'matchType_squad',
                'matchType_squad-fpp', 'groupId_cat', 'matchId_cat']
        train scale = X train[columns to scale]
        train categorical = X train[categorical]
        test scale = X test[columns to scale]
        test categorical = X test[categorical]
        # print(df scale.shape)
        # print(df_categorical.shape)
        scaler = sklearn.preprocessing.StandardScaler()
        scaler.fit(train scale.values)
```

```
#Standard scaling train features to have 0 mean and 1 variance
train_scale = pd.DataFrame(scaler.transform(train_scale.values), index=train_s
cale.index, columns=train_scale.columns)
# print(df_scale.shape)
X_train = pd.concat([train_scale, train_categorical],axis=1)

#Standard scaling test features with the same parameters in train data
test_scale = pd.DataFrame(scaler.transform(test_scale.values), index=test_scal
e.index, columns=test_scale.columns)
# print(df_scale.shape)

test_id = X_test.loc[:, ['Id']]
X_test = pd.concat([test_scale, test_categorical],axis=1)
```

Reducing Memory

```
In [ ]: # Thanks and credited to https://www.kagqle.com/gemartin who created this wond
         erful mem reducer
         def reduce mem usage(df):
             """ iterate through all the columns of a dataframe and modify the data typ
         е
                 to reduce memory usage.
             start mem = df.memory usage().sum()
             print('Memory usage of dataframe is {:.2f} MB'.format(start mem))
             for col in df.columns:
                 col_type = df[col].dtype
                 if col type != object:
                     c min = df[col].min()
                     c_max = df[col].max()
                     if str(col type)[:3] == 'int':
                         if c min > np.iinfo(np.int8).min and c max < np.iinfo(np.int8)</pre>
         .max:
                              df[col] = df[col].astvpe(np.int8)
                         elif c min > np.iinfo(np.int16).min and c max < np.iinfo(np.in</pre>
         t16).max:
                             df[col] = df[col].astype(np.int16)
                         elif c min > np.iinfo(np.int32).min and c max < np.iinfo(np.in</pre>
         t32).max:
                              df[col] = df[col].astype(np.int32)
                         elif c min > np.iinfo(np.int64).min and c max < np.iinfo(np.in</pre>
         t64).max:
                             df[col] = df[col].astype(np.int64)
                     else:
                         if c min > np.finfo(np.float16).min and c max < np.finfo(np.fl</pre>
         oat16).max:
                             df[col] = df[col].astype(np.float16)
                         elif c min > np.finfo(np.float32).min and c max < np.finfo(np.</pre>
         float32).max:
                              df[col] = df[col].astype(np.float32)
                         else:
                              df[col] = df[col].astype(np.float64)
                 else:
                     df[col] = df[col].astype('category')
             end mem = df.memory usage().sum()
             print('Memory usage after optimization is: {:.2f} MB'.format(end mem))
             print('Decreased by {:.1f}%'.format(100 * (start mem - end mem) / start me
         m))
             return df
         X train = reduce mem usage(X train)
         X test = reduce mem usage(X test)
```

Cross-Validation

```
In [ ]: #Cross-validation
        params = {
            # Parameters that we are going to tune.
            'eta': 0.28, #Result of tuning with CV
            'max depth': 5, #Result of tuning with CV
            'subsample': 1, #Result of tuning with CV
            'lambda': 0.01, #Result of tuning with CV
            'colsample bytree': 0.5, #Result of tuning with CV
            # Other parameters
            'objective':'reg:linear',
            'eval metric': 'mae',
            'silent': 1
        }
        #Block of code used for hypertuning parameters. Adapt to each round of paramet
        er tuning.
        #Turn off CV in submission
        CV=False
        if CV:
            dtrain = xgb.DMatrix(X train,label=Y)
            gridsearch params = {
                'eta': [(eta) for eta in np.arange(.04, 0.3, .02)],
                'max_depth': [(max_depth) for max_depth in np.arange(1,6,1)],
                'min child weight': [(min child weight) for min child weight in np.ara
        nge(1,6,1)],
                'subsample': [(subsample) for subsample in np.arange(0,1.1,0.5)],
                'lambda': [(lambd) for lambd in np.geomspace(0.01,10,num=5)],
                'alpha': [(alpha) for alpha in np.geomspace(0.01,10,num=5)]
            }
            # Define initial best params and MAE
            min mae = float("Inf")
            best params = {}
            #searching for best eta
            for param in gridsearch params:
               ********.format(
                                        param))
               for i in gridsearch_params[param]:
                   print('now at ', i)
                   # Update our parameters
                   params[param] = i
                   # Run CV
                   cv_results = xgb.cv(
                       params,
                       dtrain,
                       num boost round=100,
                       nfold=3,
                       metrics={'mae'},
                       early_stopping_rounds=10
                     for result in cv_results:
                         print(cv results[result])
```

```
# Update best MAE
            mean_mae = cv_results['test-mae-mean'].min()
            boost_rounds = cv_results['test-mae-mean'].argmin()
            print("MAE {} for {} rounds".format(mean_mae, boost_rounds+1))
            if mean mae < min mae:</pre>
                min_mae = mean_mae
                print(set(gridsearch_params).intersection(set(params)))
                for k in set(gridsearch_params).intersection(set(params)):
                    best_params[k] = params[k]
            params.pop(param, None)
        if param in best_params:
            params[param] = best_params[param]
    print("Best params: {}, MAE: {}".format(best_params, min_mae))
else:
    #Print final params to use for the model
    params['silent'] = 0 #Turn on output
    print(params)
```

```
In [ ]: params
```

Training on all Data using params

```
In [ ]: #Import data
        train = pd.read_csv('../input/train_V2.csv')
        X test = pd.read csv('../input/test V2.csv')
        # Remove Id, which is not a useful feature
        train.drop(columns=['Id'], inplace=True)
        train = train.dropna()
        # One hot encode matchType
        train = pd.get dummies(train, columns=['matchType'])
        X test = pd.get dummies(X test, columns=['matchType'])
        # Turn groupId and match Id into categorical types
        train['groupId'] = train['groupId'].astype('category')
        train['matchId'] = train['matchId'].astype('category')
        X_test['groupId'] = X_test['groupId'].astype('category')
        X test['matchId'] = X test['matchId'].astype('category')
        # Get category coding for groupId and matchID
        train['groupId_cat'] = train['groupId'].cat.codes
        train['matchId_cat'] = train['matchId'].cat.codes
        X_test['groupId_cat'] = X_test['groupId'].cat.codes
        X test['matchId cat'] = X test['matchId'].cat.codes
        # Get rid of old columns
        train.drop(columns=['groupId', 'matchId'], inplace=True)
        X_test.drop(columns=['groupId', 'matchId'], inplace=True)
        # Split train into features and target variable
        X train = train.drop(columns = ['winPlacePerc']) #all columns except target
        Y = train['winPlacePerc'] # Only target variable
        Y = Y.astype('float32')
        #Standard scaling train features to have 0 mean and 1 variance
        columns_to_scale = ['assists', 'boosts', 'damageDealt', 'DBNOs', 'headshotKill
        s', 'heals',
                'killPlace', 'killPoints', 'kills', 'killStreaks', 'longestKill',
                'matchDuration', 'maxPlace', 'numGroups', 'rankPoints', 'revives',
                'rideDistance', 'roadKills', 'swimDistance', 'teamKills',
                'vehicleDestroys', 'walkDistance', 'weaponsAcquired', 'winPoints']
        categorical = ['matchType_crashfpp', 'matchType_crashtpp', 'matchType_duo',
                'matchType_duo-fpp', 'matchType_flarefpp', 'matchType_flaretpp',
                'matchType_normal-duo', 'matchType_normal-duo-fpp',
                'matchType_normal-solo', 'matchType_normal-solo-fpp',
                'matchType_normal-squad', 'matchType_normal-squad-fpp',
                'matchType_solo', 'matchType_solo-fpp', 'matchType_squad',
                'matchType_squad-fpp', 'groupId_cat', 'matchId_cat']
        train scale = X train[columns to scale]
        train_categorical = X_train[categorical]
        test_scale = X_test[columns_to_scale]
        test categorical = X test[categorical]
        # print(df scale.shape)
        # print(df categorical.shape)
        scaler = sklearn.preprocessing.StandardScaler()
        scaler.fit(train scale.values)
        #Standard scaling train features to have 0 mean and 1 variance
        train scale = pd.DataFrame(scaler.transform(train scale.values), index=train s
        cale.index, columns=train scale.columns)
```

12/2/2018

```
kernel
        # print(df_scale.shape)
        X_train = pd.concat([train_scale, train_categorical],axis=1)
        #Standard scaling test features with the same parameters in train data
        test_scale = pd.DataFrame(scaler.transform(test_scale.values), index=test_scal
        e.index, columns=test_scale.columns)
        # print(df_scale.shape)
        test_id = X_test.loc[:, ['Id']]
        X_test = pd.concat([test_scale, test_categorical],axis=1)
        X_train = reduce_mem_usage(X_train)
        X_test = reduce_mem_usage(X_test)
In [ ]: matrix_train = xgb.DMatrix(X_train,label=Y)
        model=xgb.train(params=params,
                        dtrain=matrix_train,num_boost_round=100)
In [ ]:
        prediction = model.predict(xgb.DMatrix(X_test), ntree_limit = model.best_ntree
        limit)
In [ ]: prediction = prediction.flatten()
```

```
In [ ]: df sub = pd.read csv("../input/sample submission V2.csv")
        df_test = pd.read_csv("../input/test_V2.csv")
        df sub['winPlacePerc'] = prediction
        # Restore some columns
        df_sub = df_sub.merge(df_test[["Id", "matchId", "groupId", "maxPlace", "numGro
        ups"]], on="Id", how="left")
        # Sort, rank, and assign adjusted ratio
        df_sub_group = df_sub.groupby(["matchId", "groupId"]).first().reset_index()
        df_sub_group["rank"] = df_sub_group.groupby(["matchId"])["winPlacePerc"].rank
        ()
        df sub group = df sub group.merge(
            df_sub_group.groupby("matchId")["rank"].max().to_frame("max_rank").reset_i
        ndex(),
            on="matchId", how="left")
        df_sub_group["adjusted_perc"] = (df_sub_group["rank"] - 1) / (df_sub_group["nu
        mGroups"] - 1)
        df_sub = df_sub.merge(df_sub_group[["adjusted_perc", "matchId", "groupId"]], o
        n=["matchId", "groupId"], how="left")
        df sub["winPlacePerc"] = df sub["adjusted perc"]
        # Deal with edge cases
        df_sub.loc[df_sub.maxPlace == 0, "winPlacePerc"] = 0
        df_sub.loc[df_sub.maxPlace == 1, "winPlacePerc"] = 1
        # Align with maxPlace
        # Credit: https://www.kagqle.com/anycode/simple-nn-baseline-4
        subset = df sub.loc[df sub.maxPlace > 1]
        gap = 1.0 / (subset.maxPlace.values - 1)
        new perc = np.around(subset.winPlacePerc.values / gap) * gap
        df sub.loc[df sub.maxPlace > 1, "winPlacePerc"] = new perc
        # Edge case
        df_sub.loc[(df_sub.maxPlace > 1) & (df_sub.numGroups == 1), "winPlacePerc"] =
        assert df sub["winPlacePerc"].isnull().sum() == 0
        df sub[["Id", "winPlacePerc"]].to csv("submission adjusted.csv", index=False)
In [ ]: # imp = pd.DataFrame(list(model.get fscore().items()), columns=['cols', 'im
        p'])
        # imp['imp'] = imp['imp'] / imp['imp'].sum()
```

```
In [ ]: # x traink = x train[imp['cols']]
         \# x \text{ valk} = x \text{ val}[imp['cols']]
In [ ]: | # model = XGBmodel(x_traink,x_valk,y_train,y_val,params)
In [ ]: # trees = GradientBoostingRegressor(alpha=0.9, criterion='friedman mse', init=
        None,
         #
                        learning_rate=1, loss='ls', max_depth=3, max_features=None,
         #
                        max leaf nodes=None, min impurity decrease=0.0,
         #
                        min impurity split=None, min samples leaf=1,
                        min_samples_split=2, min_weight_fraction_leaf=0.0,
                        n_estimators=1, presort='auto', random_state=None,
                        subsample=1.0, verbose=0, warm start=False)
         # trees.fit(x_traink, y_train)
         # y_pred = trees.predict(x_valk)
         # mae = sklearn.metrics.mean absolute error(y pred, y val)
         # mae
In [ ]: # m2 = RandomForestRegressor(n estimators=80, min samples leaf=3, max features
         ='sqrt',
                                      n jobs=-1
        # m2.fit(x_traink, y_train)
         # y_pred = m2.predict(x_valk)
         # mae = sklearn.metrics.mean absolute error(y pred, y val)
         # mae
```

LightGBM

```
In [ ]: | # pred_test_y = model.predict(X_test, num_iteration=model.best_iteration)
```

```
In [ ]: # df sub = pd.read csv("../input/sample submission V2.csv")
        # df_test = pd.read_csv("../input/test_V2.csv")
        # df sub['winPlacePerc'] = pred test y
        # # Restore some columns
        # df sub = df sub.merqe(df test[["Id", "matchId", "qroupId", "maxPlace", "numG
        roups"]], on="Id", how="left")
        # # Sort, rank, and assign adjusted ratio
        # df_sub_group = df_sub.groupby(["matchId", "groupId"]).first().reset_index()
        # df_sub_group["rank"] = df_sub_group.groupby(["matchId"])["winPlacePerc"].ran
        k()
        # df_sub_group = df_sub_group.merge(
              df_sub_group.groupby("matchId")["rank"].max().to_frame("max_rank").reset
         _index(),
              on="matchId", how="left")
        # df_sub_group["adjusted_perc"] = (df_sub_group["rank"] - 1) / (df_sub_group
        ["numGroups"] - 1)
        # df_sub = df_sub.merge(df_sub_group[["adjusted_perc", "matchId", "groupId"]],
         on=["matchId", "groupId"], how="left")
        # df sub["winPlacePerc"] = df sub["adjusted perc"]
        # # Deal with edge cases
        # df_sub.loc[df_sub.maxPlace == 0, "winPlacePerc"] = 0
        # df sub.loc[df sub.maxPlace == 1, "winPlacePerc"] = 1
        # # Align with maxPlace
        # # Credit: https://www.kaggle.com/anycode/simple-nn-baseline-4
        # subset = df sub.loc[df sub.maxPlace > 1]
        # gap = 1.0 / (subset.maxPlace.values - 1)
        # new perc = np.around(subset.winPlacePerc.values / gap) * gap
        # df sub.loc[df sub.maxPlace > 1, "winPlacePerc"] = new perc
        # # Edge case
        # df_sub.loc[(df_sub.maxPlace > 1) & (df_sub.numGroups == 1), "winPlacePerc"]
         = 0
        # assert df sub["winPlacePerc"].isnull().sum() == 0
        # df sub[["Id", "winPlacePerc"]].to csv("submission adjusted.csv", index=Fals
        e)
```