Democracy

A State consists of three cities with populations 1.2 million people, 1.4 million people and 400,000 people. The House of Representatives consists of three representatives. Given proportional representation, City 1 should have d_1 = 3(1.2/3) = 1.2 representatives; City 2 should have d_2 = 1.4 representatives; and City 3 should have d_3 = 0.4 representatives. Since each city must receive an integral number of representatives, this is impossible.

The State has therefore decided to allocate x_i representatives to city i, where the allocation should minimize the maximum discrepancy between the <u>desired and actual number of representatives received by a city</u>. How many representatives should each city receive?

Duto
$$d$$
; desirable reps for city j .

Stages (ities $j \in \{0,1,2\}$)

State S ; representatives left to allocate

Actions a ; number to allocate to city j

Value Fonction

 $V_{j}(S_{j})$ min of max discrepancy by desired and allocated with S_{j} reps for cities J_{j} .

What $V_{0}(S_{j})$

We have $V_{2}(S_{2}) = |d_{2} - S_{1}|$ or min $|d_{2} - a|$
 $V_{3}(S_{3}) = \min_{0 \le a \le S_{2}} \{\max\{|f_{3} - a|, V_{3}, (S_{3} - a)\}\}$