Tutorial of ST5215

AY2020/2021 Semester 1

25 Aug 2020

Exercise 1 Suppose f and g are independent and identically distributed. Show that

$$E(f \mid f + g) = (f + g)/2$$
, a.s. (1)

Exercise 2 Suppose F(x) is a continuous CDF of P, where P is a probability measure on $(\mathcal{R}, \mathcal{B})$. Show that $\int F(x) dP(x) = 1/2$

Exercise 3 Suppose ν is a σ -finite measure on (Ω, \mathcal{F}) , f is a nonnegative measurable function and $\alpha > 0$. Show that

$$\int f^{\alpha} d\nu = \alpha \int_{0}^{\infty} t^{\alpha - 1} \nu(f > t) dt$$
 (2)

Exercise 4 Suppose ν and ϕ are finite measures on (Ω, \mathcal{F}) . Show that there exist two measures ϕ_c and ϕ_s such that

- (a) $\phi = \phi_c + \phi_s$,
- (b) $\phi_c \ll \nu$, and
- (c) there exists $N \in \mathcal{F}$ such that $\phi_s(N) = \nu(N^c) = 0$. (Note that in this case, we denote $\phi_s \perp \nu$ and say that ϕ_s and ν are singular with each other.)

(Hint: make use of $\frac{d\phi}{d(\phi+\nu)}$ by Radon-Nikodym theorem)

Remark. This result can be generalized to σ -finite measures, and is known as *Lebesgue decomposition*.