	$\sigma_{1^{+}\alpha\beta}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	τ ₁ - α
$\sigma_{1}^{\sharp 1}\dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$ au_1^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1+k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2}\;(k^2+2k^4)(2r_3+r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	+ik o	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
16	5	ω	ω	ω	1	1	#	

 $\frac{\text{Unitarity conditions}}{r_5 < -2 r_3 \&\& t_1 < 0 \mid\mid t_1 > 0}$

(No massive particles)

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} + ^{\alpha}$	$\omega_{1^{-}}^{#2} + \alpha$	$\omega_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i kt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$+^{\alpha\beta} k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1^+\alpha\beta}^{\#2}f_{1^+\alpha\beta}^{\#1}$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$
$-\frac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	0	0	0	$\omega_{1^-lpha}^{*1}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{t_1}{3}$	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-lpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
$\frac{2k^2t_1}{3}$	0	$\frac{1}{3} i \sqrt{2} kt_1$	<u>ikt</u> 1 3	0	0	0	$f_{1^-\alpha}^{\#2}$