pyradi Documentation Release

pyradi team

CONTENTS

1	Introduction	3					
	1.1 Overview	3					
	1.2 Toolkit approach	3					
	1.3 Example application	4					
2	Planck and thermal radiation	7					
	2.1 Overview	7					
	2.2 Module classes	7					
	2.3 Module functions	8					
		13					
	3.1 Overview	13					
	3.2 Module functions	13					
4	Plotting utility	19					
	4.1 Overview	19					
	4.2 Module classes	19					
	4.3 Module functions	36					
5		39					
	5.1 Overview						
	5.2 Module functions	39					
6		41					
		41					
	6.2 Module functions	41					
7	Radiometric Lookup Functions 49						
	7.1 Overview	49					
	7.2 Module classes	49					
8		55					
	8.1 Overview	55					
	8.2 Module classes						
	8.3 Module functions	55					
9		59					
	9.1 Overview						
	9.2 Module classes	59					
10	Three-Dimensional Noise Calculation	61					
	10.1 Overview	61					
	10.2 Module functions	61					
11	Colour coordinates	65					
	11.1 Overview	65					

	11.2	Module functions	65	
12	12.1	detector modelling Overview Module functions		
13	Codi : 13.1	ng Guidelines Naming Rules	71 71	
14	Exan	nples of code use	73	
15	15 Indices and tables			
Bił	oliogra	aphy	77	
Py	ython Module Index			

The toolkit is available at

https://pypi.python.org/pypi/pyradi/ (pip installation package) https://github.com/NelisW/pyradi (latest version in the repository)

See docs at

http://nelisw.github.io/pyradi-docs/_build/html/index.html

IPython notebooks demonstrating the use of pyradi is available at https://github.com/NelisW/ComputationalRadiometry#computational-optical-radiometry-with-pyradi

CONTENTS 1

2 CONTENTS

INTRODUCTION

1.1 Overview

Electro-optical system design, data analysis and modelling involve a significant amount of calculation and processing. Many of these calculations are of a repetitive and general nature, suitable for including in a generic toolkit. The availability of such a toolkit facilitates and increases productivity during subsequent tool development: 'develop once and use many times'. The concept of an extendible toolkit lends itself naturally to the open-source philosophy, where the toolkit user-base develops the capability cooperatively, for mutual benefit. This paper covers the underlying philosophy to the toolkit development, brief descriptions and examples of the various tools and an overview of the electro-optical toolkit.

The pyradi toolbox can be applied towards many different applications. An example is included in the pyradi website (see the file exflamesensor.py). This example was first published in a SPIE conference paper [SPIE8543Pyradi].

1.2 Toolkit approach

The development of this toolkit is following the Unix philosophy for software development, summarised in the words of Doug McIlroy: 'Write programs that do one thing and do it well. Write programs to work together.' In broader terms the philosophy was stated by Eric Raymond, but only selected items shown here (http://en.wikipedia.org/wiki/Unix_philosophy):

- 1. Rule of Modularity: Write simple parts connected by clean interfaces.
- 2. Rule of Clarity: Clarity is better than cleverness.
- 3. Rule of Composition: Design programs to be connected to other programs.
- 4. Rule of Simplicity: Design for simplicity; add complexity only where you must.
- 5. Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing else will do.
- 6. Rule of Transparency: Design for visibility to make inspection and debugging easier.
- 7. Rule of Robustness: Robustness is the child of transparency and simplicity.
- 8. Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.
- 9. Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.
- 10. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
- 11. Rule of Optimisation: Prototype before polishing. Get it working before you optimise it.
- 12. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

1.3 Example application

A typical radiometry toolkit requirement (very much simplified) is the calculation of the detector current of an electro-optical sensor viewing a target object. The system can be conceptually modelled as shown in the figure below, comprising a radiating source with spectral radiance, an intervening medium (e.g. the atmosphere), a spectral filter, optics, a detector and an amplifier.

The amplifier output signal can be calculated in the following equation, by integrating over all wavelengths, over the full source area A_0 and over the optical aperture area A_1 ,

$$v = Z_t \int_{A_0} \int_{A_1} \frac{1}{r_{01}^2} \int_0^\infty \epsilon_{\lambda} L_{\lambda}(T, A_0) \tau_{a\lambda} \tau_{s\lambda}(A_1) \mathcal{R}_{\lambda} \ d\lambda \ d(\cos \theta_0 A_0) \ d(\cos \theta_1 A_1)$$

where v is the output signal voltage, r_{01} is the distance between elemental areas $d(\cos\theta_0A_0)$ and $d(\cos\theta_1A_1)$, ϵ_λ is the source spectral emissivity, $L_\lambda(T,A_0)$ is the Planck Law radiation at temperature T at location A_0 , $\tau_{a\lambda}$ is the atmospheric spectral transmittance, $\tau_{s\lambda}(A_1)$ is the sensor spectral transmittance at location A_1 , \mathcal{R}_λ is the spectral detector responsivity in [A/W], Z_t is the amplifier transimpedance gain in [V/A]. The spectral integral $\int_0^\infty d\lambda$ accounts for the total flux for all wavelengths, the spatial integral $\int_{A_0} d(\cos\theta_0A_0)$ accounts for flux over the total area of the source, and the spatial integral $\int_{A_1} d(\cos\theta_1A_1)$ accounts for the total area of the receiving area.

The top graphic in the following figure illustrates the reasoning behind the spectral integral as a product, followed by an integral (summation),

where the spectral variability of the source, medium and sensor parameters are multiplied as spectral variables and afterwards integrated over all wavelengths to yield the total in-band signal. The domain of spectral quantities can be stated in terms of a wavelength, wavenumber, or less often, temporal frequency.

Likewise, the source radiance is integrated over the two respective areas of the target A_0 , and the sensor aperture A_1 . Note that if the sensor field of view footprint at the source is smaller than the physical source area, only the flux emanating from the footprint area is integrated.

This example is a relatively complete worked example. The objective is to calculate the signal of a simple sensor, detecting the presence or absence of a flame in the sensor field of view. The sensor is pointed to an area just outside a furnace smokestack, against a clear sky background. The sensor must detect a change in signal, to indicate the presence or absence of a flame.

The sensor has an aperture area of $7.8 \times 10^{-3}~\text{m}^2$ and a field of view of $1 \times 10^{-4}~\text{sr}$. The sensor filter spectral transmittance is shown below. The InSb detector has a peak responsivity of 2.5 A/W and normalised spectral response shown below. The preamplifier transimpedance is 10000 V/A.

The flame area is $1~\mathrm{m}^2$, the flame temperature is 1000° C, and the emissivity is shown below. The emissivity is 0.1 over most of the spectral band, due to carbon particles in the flame. At 4.3 $\mu\mathrm{m}$ there is a strong emissivity rise due to the hot carbon dioxide CO_2 in the flame.

The distance between the flame and the sensor is 1000~m. The atmospheric properties are calculated with the Modtran Tropical climatic model. The path is oriented such that the sensor stares out to space, at a zenith angle of 88°. The spectral transmittance and path radiance along this path is shown in below.

The peak in the flame emissivity and the dip in atmospheric transmittance are both centered around the $4.3\mu m$ CO_2 band. The calculation of flux radiative transfer through the atmosphere must account for the strong spectral variation, by using a spectral integral.

The signal caused by the flame is given by the equation above, where the integrals over the surfaces of the flame and sensor are just their respective areas. The signal caused by the atmospheric path radiance is given by

$$v = Z_t \omega_{\text{optics}} A_{\text{optics}} \int_0^\infty L_{\text{path}\lambda} \tau_{s\lambda} \mathcal{R}_{\lambda} \ d\lambda,$$

where $\omega_{\rm optics}$ is the sensor field of view, $A_{\rm optics}$ is the optical aperture area, $L_{\rm path\lambda}$ is the spectral path radiance and the rest of the symbols are as defined above.

The pyradi code to model this sensor is available as exflamesensor.py. The output from this script is as follows:

```
Optics : area=0.0078 m^2 FOV=0.0001 [sr]
Amplifier: gain=10000.0 [V/A]
Detector : peak responsivity=2.5 [A/W]
Flame : temperature=1273.16 [K] area=1 [m^2] distance=1000 [m] fill=0.01 [-]
Flame : irradiance= 3.29e-04 [W/m^2] signal= 0.0641 [V]
Path : irradiance= 5.45e-05 [W/m^2] signal= 0.0106 [V]
```

It is clear that the flame signal is six times larger than the path radiance signal, even though the flame fills only 0.01 of the sensor field of view.

PLANCK AND THERMAL RADIATION

2.1 Overview

This module provides functions for Planck law exitance calculations, as well as temperature derivative calculations. The functions provide spectral exitance in $[W/(m^2.*)]$ or $[q/(s.m^2.*)]$, given the temperature and a vector of one of wavelength, wavenumbers or frequency (six combinations each for exitance and temperature derivative). The total exitance can also be calculated by using the Stefan-Boltzman equation, in $[W/m^2]$ or $[q/(s.m^2)]$. 'Exitance' is the CIE/ISO term for the older term 'emittance'.

The Planck and temperature-derivative Planck functions take the spectral variable (wavelength, wavenumber or frequency) and/or temperature as either a scalar, a single element list, a multi-element list or a numpy array.

Spectral values must be strictly scalar or shape (N,) or (N,1). Shape (1,N) will not work.

Temperature values must be strictly scalar, list[M], shape (M,), (M,1), or (1,M). Shape (Q,M) will not work.

If the spectral variable and temperature are both single numbers (scalars or lists with one element), the return value is a scalar. If either the temperature or the spectral variable are single-valued, the return value is a rank-1 vector. If both the temperature and spectral variable are multi-valued, the return value is a rank-2 array, with the spectral variable along axis=0.

This module uses the CODATA physical constants. For more details see http://physics.nist.gov/cuu/pdf/RevModPhysCODATA2010.pdf

See the __main__ function for testing and examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

2.2 Module classes

class pyradi.ryplanck.PlanckConstants

Precalculate the Planck function constants using the values in scipy.constants. Presumbly these constants are up to date and will be kept up to date.

This module uses the CODATA physical constants. For more details see http://physics.nist.gov/cuu/pdf/RevModPhysCODATA2010.pdf

Reference: http://docs.scipy.org/doc/scipy/reference/constants.html

printConstants()

Print Planck function constants.

Args:

None

Returns:

Print to stdout

Raises:

No exception is raised.

2.3 Module functions

```
pyradi.ryplanck.planck (spectral, temperature, type='el')

Planck law spectral exitance.
```

Calculates the Planck law spectral exitance from a surface at the stated temperature. Temperature can be a scalar, a list or an array. Exitance can be given in radiant or photon rate units, depending on user input in type.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): spectral vector.

temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]

type (string):

'e' signifies Radiant values in [W/m^2.*].

'q' signifies photon rate values [quanta/(s.m^2.*)].

'1' signifies wavelength spectral vector [micrometer].

'n' signifies wavenumber spectral vector [cm-1].

'f' signifies frequency spectral vector [Hz].
```

Returns:

```
(scalar, np.array[N,M]): spectral radiant exitance (not radiance) in units selected. For type = 'el' units will be [W/(m^2.um)]. For type = 'qf' units will be [q/(s.m^2.Hz)]. Other return types are similarly defined as above. Returns None on error.
```

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplanck (spectral, temperature, type='el')
Temperature derivative of Planck law exitance.
```

Calculates the temperature derivative for Planck law spectral exitance from a surface at the stated temperature. dM/dT can be given in radiant or photon rate units, depending on user input in type. Temperature can be a scalar, a list or an array.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): spectral vector in [micrometer], [cm-1] or [Hz]. temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K] type (string):

'e' signifies Radiant values in [W/(m^2.K)].

'q' signifies photon rate values [quanta/(s.m^2.K)].

'l' signifies wavelength spectral vector [micrometer].

'n' signifies wavenumber spectral vector [cm-1].

'f' signifies frequency spectral vector [Hz].
```

Returns:

```
\begin{split} &(scalar, np.array[N,M]); \ spectral\ radiant\ exitance\ (not\ radiance)\ in\ units\ selected. \\ &For\ type='el'\ units\ will\ be\ [W/(m2.um.K)] \\ &For\ type='qf'\ units\ will\ be\ [q/(s.m2.Hz.K)] \end{split}
```

```
Other return types are similarly defined as above.
```

Returns None on error.

Raises:

No exception is raised, returns None on error.

```
\verb"pyradi.ryplanck.stefanboltzman" (\textit{temperature}, \textit{type='e'})
```

Stefan-Boltzman wideband integrated exitance.

Calculates the total Planck law exitance, integrated over all wavelengths, from a surface at the stated temperature. Exitance can be given in radiant or photon rate units, depending on user input in type.

Args:

```
(scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K] type (string): 'e' for radiant or 'q' for photon rate exitance.
```

Returns:

```
(float): integrated radiant exitance in [W/m^2] or [q/(s.m^2)]. Returns a -1 if the type is not 'e' or 'q'
```

Raises:

No exception is raised.

```
pyradi.ryplanck.planckel (spectral, temperature)
```

Planck function in wavelength for radiant exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavelength vector in [um] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

```
(scalar, np.array[N,M]): spectral radiant exitance in W/(m^2.um)
```

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.plancken (spectral, temperature)
```

Planck function in wavenumber for radiant exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavenumber vector in [cm^-1] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

```
(scalar, np.array[N,M]): spectral\ radiant\ exitance\ in\ W/(m^2.cm^-1)
```

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.planckef (spectral, temperature)
```

Planck function in frequency for radiant exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): frequency vector in [Hz] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

```
(scalar, np.array[N,M]): spectral radiant exitance in W/(m^2.Hz)
```

Raises:

2.3. Module functions 9

```
No exception is raised, returns None on error.
```

```
pyradi.ryplanck.planckql (spectral, temperature)
```

Planck function in wavelength domain for photon rate exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavelength vector in [um] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in q/(s.m^2.um)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.planckqn (spectral, temperature)
```

Planck function in wavenumber domain for photon rate exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavenumber vector in [cm^-1] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in q/(s.m^2.cm^-1)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.planckqf (spectral, temperature)
```

Planck function in frequency domain for photon rate exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): frequency vector in [Hz] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in q/(s.m^2.Hz)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplnckel(spectral, temperature)
```

Temperature derivative of Planck function in wavelength domain for radiant exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavelength vector in [um] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in W/(K.m^2.um)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplncken(spectral, temperature)
```

Temperature derivative of Planck function in wavenumber domain for radiance exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavenumber vector in [cm^-1] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

(scalar, np.array[N,M]): spectral radiant exitance in W/(K.m^2.cm^-1)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplnckef (spectral, temperature)
```

Temperature derivative of Planck function in frequency domain for radiant exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): frequency vector in [Hz] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance/K in W/(K.m^2.Hz)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplnckql(spectral, temperature)
```

Temperature derivative of Planck function in wavenumber domain for radiance exitance.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavelength vector in [um] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in q/(K.s.m^2.um)

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplnckqn(spectral, temperature)
```

Temperature derivative of Planck function in wavenumber domain for photon rate.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): wavenumber vector in [cm^-1] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

```
(scalar, np.array[N,M]): spectral radiant exitance in q/(s.m^2.cm^-1)
```

Raises:

No exception is raised, returns None on error.

```
pyradi.ryplanck.dplnckqf (spectral, temperature)
```

Temperature derivative of Planck function in frequency domain for photon rate.

Args:

```
spectral (scalar, np.array (N,) or (N,1)): frequency vector in [Hz] temperature (scalar, list[M], np.array (M,), (M,1) or (1,M)): Temperature in [K]
```

Returns:

(scalar, np.array[N,M]): spectral radiant exitance in q/(K.s.m^2.Hz)

Raises:

No exception is raised, returns None on error.

2.3. Module functions 11

FILE READING/WRITING UTILITY

3.1 Overview

This module provides functions for file input/output. These are all wrapper functions, based on existing functions in other Python classes. Functions are provided to save a two-dimensional array to a text file, load selected columns of data from a text file, load a column header line, compact strings to include only legal filename characters, and a function from the Python Cookbook to recursively match filename patterns.

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

3.2 Module functions

Save a numpy array to a file, included header lines.

This function saves a two-dimensional array to a text file, with an optional user-defined header. This functionality will be part of numpy 1.7, when released.

Args:

```
filename (string): name of the output ASCII flatfile.
dataArray (np.array[N,M]): a two-dimensional array.
header (string): the optional header.
comment (string): the symbol used to comment out lines, default value is None.
delimiter (string): delimiter used to separate columns, default is whitespace.
```

Returns:

Nothing.

Raises:

No exception is raised.

```
pyradi.ryfiles. \textbf{loadColumnTextFile} (\textit{filename, loadCol}=[1], comment=None, normal-ize=0, skiprows=0, delimiter=None, abscissaScale=1, ordinateScale=1, abscissaOut=None, returnAbscissa=False)
```

Load selected column data from a text file, processing as specified.

This function loads column data from a text file, scaling and interpolating the read-in data, according to user specification. The first 0'th column has special significance: it is considered the abscissa (x-values) of the data set, while the remaining columns are any number of ordinate (y-value) vectors. The user passes a list of

columns to be read (default is [1]) - only these columns are read, processed and returned when the function exits. The user also passes an abscissa vector to which the input data is interpolated and then subsequently amplitude scaled or normalised.

Note: leave only single separators (e.g. spaces) between columns! Also watch out for a single space at the start of line.

Args:

filename (string): name of the input ASCII flatfile.

loadCol ([int]): the M =len([]) column(s) to be loaded as the ordinate, default value is column 1 comment (string): string, the symbol used to comment out lines, default value is None normalize (int): integer, flag to indicate if data must be normalized.

skiprows (int): integer, the number of rows to be skipped at the start of the file (e.g. headers) delimiter (string): string, the delimiter used to separate columns, default is whitespace. abscissaScale (float): scale by which abscissa (column 0) must be multiplied ordinateScale (float): scale by which ordinate (column >0) must be multiplied abscissaOut (np.array[N,] or [N,1]): abscissa vector on which output variables are interpolated. returnAbscissa (bool): return the abscissa vector as second item in return tuple.

Returns:

ordinatesOut (np.array[N,M]): The interpolated, M columns of N rows, processed array. abscissaOut (np.array[N,M]): The ascissa where the ordinates are interpolated

Raises:

No exception is raised.

```
pyradi.ryfiles.loadHeaderTextFile (filename, loadCol=[1], comment=None)
Loads column header data in the first string of a text file.
```

loads column header data from a file, from the first row. Headers must be delimited by commas. The function [LoadColumnTextFile] provides more comprehensive capabilties.

Args:

```
filename (string): the name of the input ASCII flatfile.

loadCol ([int]): list of numbers, the column headers to be loaded, default value is column 1 comment (string): the symbol to comment out lines
```

Returns:

[string]: a list with selected column header entries

Raises:

No exception is raised.

```
pyradi.ryfiles.cleanFilename (sourcestring, removestring=u' %:/,.\\[]')
Clean a string by removing selected characters.
```

Creates a legal and 'clean' source string from a string by removing some clutter and characters not allowed in filenames. A default set is given but the user can override the default string.

Args:

```
sourcestring (string): the string to be cleaned. removestring (string): remove all these characters from the string (optional).
```

Returns:

```
(string): A cleaned-up string.
```

Raises:

No exception is raised.

```
pyradi.ryfiles.listFiles (root, patterns=u'*', recurse=1, return_folders=0, useRegex=False)
Lists the files/directories meeting specific requirement
```

Returns a list of file paths to files in a file system, searching a directory structure along the specified path, looking for files that matches the glob pattern. If specified, the search will continue into sub-directories. A list of matching names is returned. The function supports a local or network reachable filesystem, but not URLs.

Args:

```
root (string): directory root from where the search must take place patterns (string): glob/regex pattern for filename matching recurse (unt): flag to indicate if subdirectories must also be searched (optional) return_folders (int): flag to indicate if folder names must also be returned (optional) useRegex (bool): flag to indicate if patterns are regular expression strings (optional)
```

Returns:

A list with matching file/directory names

Raises:

No exception is raised.

```
pyradi.ryfiles.readRawFrames (fname, rows, cols, vartype, loadFrames=[])

Loading multi-frame two-dimensional arrays from a raw data file of known data type.
```

The file must consist of multiple frames, all with the same number of rows and columns. Frames of different data types can be read, according to the user specification. The user can specify which frames must be loaded (if not the whole file).

Args:

```
fname (string): filename

rows (int): number of rows in each frame

cols (int): number of columns in each frame

vartype (np.dtype): numpy data type of data to be read

int8, int16, int32, int64

uint8, uint16, uint32, uint64

float16, float32, float64

loadFrames ([int]): optional list of frames to load, zero-based, empty list (default) loads all frames
```

Returns:

```
frames (int): number of frames in the returned data set,
0 if error occurred
rawShaped (np.ndarray): vartype numpy array of dimensions (frames,rows,cols),
None if error occurred
```

Raises:

No exception is raised.

```
\verb"pyradi.ryfiles.rawFrameToImageFile" (image, filename)
```

Writes a single raw image frame to image file. The file type must be given, e.g. png or jpg. The image need not be scaled beforehand, it is done prior to writing out the image. Could be one of BMP, JPG, JPEG, PNG, PPM, TIFF, XBM, XPM) but the file types available depends on the QT imsave plugin in use.

Args:

```
image (np.ndarray): two-dimensional array representing an image filename (string): name of file to be written to, with extension
```

3.2. Module functions 15

Nothing

Raises:

No exception is raised.

```
pyradi.ryfiles.arrayToLaTex(filename, arr, header=None, leftCol=None, format-
string=u'%1.4e',filemode=u'wt')
```

Write a numpy array to latex table format in output file.

The table can contain only the array data (no top header or left column side-header), or you can add either or both of the top row or side column headers. Leave 'header' or 'leftcol' as None is you don't want these.

The output format of the array data can be specified, i.e. scientific notation or fixed decimal point.

Args:

```
fname (string): text writing output path and filename arr (np.array[N,M]): array with table data header (string): column header in final latex format (optional) leftCol ([string]): left column each row, in final latex format (optional) formatstring (string): output format precision for array data (see np.savetxt) (optional) filemode (string): file open mode (a=append, w=new file) (optional)
```

Returns:

None, writes a file to disk

Raises:

No exception is raised.

```
pyradi.ryfiles.epsLaTexFigure (filename, epsname, caption, scale, filemode=u'a')
```

Write the LaTeX code to include an eps graphic as a latex figure. The text is added to an existing file.

Args:

```
fname (string): text writing output path and filename.

epsname (string): filename/path to eps file (relative to where the LaTeX document is built).

caption (string): figure caption

scale (double): figure scale to textwidth [0..1]

filemode (string): file open mode (a=append, w=new file) (optional)
```

Returns:

None, writes a file to disk

Raises:

No exception is raised.

```
\verb"pyradi.ryfiles.read2DLookupTable" (\textit{filename})
```

Read a 2D lookup table and extract the data.

The table has the following format:

```
line 1: xlabel ylabel title line 2: 0 (vector of y (col) abscissa) lines 3 and following: (element of x (row) abscissa), followed by table data.
```

From line/row 3 onwards the first element is the x abscissa value followed by the row of data, one point for each y abscissa value.

The file format can depicted as follows:

```
x-name y-name ordinates-name
0 y1 y2 y3 y4
x1 v11 v12 v13 v14
x2 v21 v22 v23 v24
x3 v31 v32 v33 v34
x4 v41 v42 v43 v44
x5 v51 v52 v53 v54
x6 v61 v62 v63 v64
```

This function reads the file and returns the individual data items.

Args:

```
fname (string): input path and filename
```

Returns:

```
xVec ((np.array[N])): x abscissae
yVec ((np.array[M])): y abscissae
data ((np.array[N,M])): data corresponding the x,y
xlabel (string): x abscissa label
ylabel (string): y abscissa label
title (string): dataset title
```

Raises:

No exception is raised.

```
pyradi.ryfiles.downloadFileUrl(url, saveFilename=None)
Download a file, given a URL.
```

The URL is used to download a file, to the saveFilename specified. If no saveFilename is given, the base-name of the URL is used. Before doownloading, first test to see if the file already exists.

Args:

```
url (string): the url to be accessed.
saveFilename (string): path to where the file must be saved (optional).
```

Returns:

```
(string): Filename saved, or None if failed.
```

Raises:

Exceptions are handled internally and signaled by return value.

```
pyradi.ryfiles.unzipGZipfile (zipfilename, saveFilename=None)
Unzip a file that was compressed using the gzip format.
```

The zipfilename is used to open a file, to the saveFilename specified. If no saveFilename is given, the basename of the zipfilename is used, but with the file extension removed.

Args:

```
zipfilename (string): the zipfilename to be decompressed.
saveFilename (string): to where the file must be saved (optional).
```

Returns:

```
(string): Filename saved, or None if failed.
```

Raises:

3.2. Module functions 17

Exceptions are handled internally and signaled by return value.

```
pyradi.ryfiles.untarTarfile(tarfilename, saveDirname=None)
```

Untar a tar archive, and save all files to the specified directory.

The tarfilename is used to open a file, extraxting to the saveDirname specified. If no saveDirname is given, the local directory '.' is used.

Args:

```
tarfilename (string): the name of the tar archive.
saveDirname (string): to where the files must be extracted
```

Returns:

```
([string]): list of filenames saved, or None if failed.
```

Raises:

Exceptions are handled internally and signaled by return value.

```
pyradi.ryfiles.downloadUntar (tgzFilename, url, destinationDir=None, tarFilename=None)

Download and untar a compressed tar archive, and save all files to the specified directory.
```

The tarfilename is used to open the tar file, extracting to the destinationDir specified. If no destinationDir is given, the local directory '.' is used. Before downloading, a check is done to determine if the file was already downloaded and exists in the local file system.

Args:

```
tgzFilename (string): the name of the tar archive file url (string): url where to look for the file (not including the filename) destinationDir (string): to where the files must be extracted (optional) tarFilename (string): downloaded tar filename (optional)
```

Returns:

```
([string]): list of filenames saved, or None if failed.
```

Raises:

Exceptions are handled internally and signaled by return value.

PLOTTING UTILITY

4.1 Overview

This module provides functions for plotting cartesian and polar plots. This class provides a basic plotting capability, with a minimum number of lines. These are all wrapper functions, based on existing functions in other Python classes. Provision is made for combinations of linear and log scales, as well as polar plots for two-dimensional graphs. The Plotter class can save files to disk in a number of formats.

For more examples of use see: https://github.com/NelisW/ComputationalRadiometry

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

4.2 Module classes

```
class pyradi.ryplot.Plotter (fignumber=0, subpltnrow=1, subpltncol=1, figuretitle=None, fig-size=(9,9))
```

Encapsulates a plotting environment, optimized for compact code.

This class provides a wrapper around Matplotlib to provide a plotting environment specialised towards typical pyradi visualisation. These functions were developed to provide sophisticated plots by entering the various plot options on a few lines, instead of typing many commands.

Provision is made for plots containing subplots (i.e., multiple plots on the same figure), linear scale and log scale plots, images, and cartesian, 3-D and polar plots.

```
buildPlotCol (plotCol=None, n=None)
```

Set a sequence of default colour styles of appropriate length.

The constructor provides a sequence with length 14 pre-defined plot styles. The user can define a new sequence if required. This function modulus-folds either sequence, in case longer sequences are required.

Colours can be one of the basic colours: ['b', 'g', 'r', 'c', 'm', 'y', 'k'] or it can be a gray shade float value between 0 and 1, such as '0.75', or it can be in hex format '#eeefff' or it can be one of the legal html colours. See http://html-color-codes.info/ and http://www.computerhope.com/htmcolor.htm.

Args:

```
plotCol ([strings]): User-supplied list
of plotting styles(can be empty []).
n (int): Length of required sequence.
```

Returns:

A list with sequence of plot styles, of required length.

Raises:

No exception is raised.

getPlot()

Returns a handle to the current figure

Args:

None

Returns:

A handle to the current figure.

Raises:

No exception is raised.

```
getSubPlot (subplotNum=1)
```

Returns a handle to the subplot, as requested per subplot number. Subplot numbers range from 1 upwards.

Args:

```
subplotNumer (int): number of the subplot
```

Returns:

A handle to the requested subplot or None if not found.

Raises:

No exception is raised.

```
labelSubplot (spax, ptitle=None, xlabel=None, ylabel=None, zlabel=None, titlefsize=10, labelf-
size=10)
```

Set the sub-figure title and axes labels (cartesian plots only).

Args:

```
spax (handle): subplot axis handle where labels must be drawn ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
zlabel (string): z axis label (optional)
titlefsize (float): title fontsize (optional)
labelfsize (float): x,y,z label fontsize (optional)
```

Returns:

None.

Raises:

No exception is raised.

logLog (plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None,
 label=[], legendAlpha=0.0, pltaxis=None, maxNX=10, maxNY=10, linestyle=None,
 powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, labelf size=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, draw Grid=True, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None,
 zorders=None, clip_on=True)

Plot data on logarithmic scales for abscissa and ordinates.

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be

plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes.

Args:

```
plotnum (int): subplot number, 1-based index
x (np.array[N,] or [N,1]): abscissa
y (np.array[N,] or [N,M]): ordinates - could be M columns
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
plotCol ([strings]): plot colour and line style, list with M entries, use default if []
(optional)
linewidths ([float]): plot line width in points, list with M entries, use default if None
(optional)
label ([strings]): legend label for ordinate, list with M entries (optional)
legendAlpha (float): transparency for legend box (optional)
pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. Let Matplotlib decide if None.
(optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
linestyle (string): linestyle for this plot (optional)
powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high]
(optional) (optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
labelfsize (int): label/legend font size, default 10pt (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
drawGrid (bool): draw the grid on the plot (optional)
vInvert (bool): invert the y-axis (optional)
xInvert (bool): invert the x-axis (optional)
xIsDate (bool): convert the datetime x-values to dates (optional)
xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional)
xtickRotation (float) x-axis tick label rotation angle (optional)
markers ([string]) markers to be used for plotting data points (optional)
markevery (int | (startind, stride)) subsample when using markers (optional)
zorders ([int]) list of zorder for drawing sequence, highest is last (optional)
clip on (bool) clips objects to drawing axes (optional)
```

Returns:

the axis object for the plot

Raises:

No exception is raised.

mesh3D (plotnum, xvals, yvals, zvals, ptitle=None, xlabel=None, ylabel=None, zlabel=None, rstride=1, cstride=1, linewidth=0, plotCol=None, edgeCol=None, pltaxis=None, maxNX=0, maxNY=0, maxNZ=0, xScientific=False, yScientific=False, zScientific=False, powerLimits=[-4, 2, -4, 2, -2, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, wire-frame=False, surface=True, cmap=<matplotlib.colors.LinearSegmentedColormap object at 0x0419E330>, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, drawGrid=True, xInvert=False, yInvert=False, zInvert=False, logScale=False, alpha=1, alphawire=1, azim=45, elev=30, zorders=None, clip_on=True)

4.2. Module classes 21

XY colour mesh plot for (xvals, yvals, zvals) input sets.

Given an existing figure, this function plots in a specified subplot position. Only one mesh is drawn at a time. Future meshes in the same subplot will cover any previous meshes.

The mesh grid is defined in (x,y), while the height of the mesh is the z value.

The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the mesh.

Use wireframe=True to obtain a wireframe plot.

Use surface=True to obtain a surface plot with fill colours.

Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale.

The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals, but z array must correspond to the (x,y) grid.

Args:

```
plotnum (int): subplot number, 1-based index
xvals (np.array[N,M]): array of x values, corresponding to (x,y) grid
yvals (np.array[N,M]): array of y values, corresponding to (x,y) grid
zvals (np.array[N,M]): array of z values, corresponding to (x,y) grid
ptitle (string): plot title (optional)
xlabel (string): x axis label (optional)
ylabel (string): y axis label (optional)
zlabel (string): z axis label (optional)
rstride (int): mesh line row (y axis) stride, every rstride value along y axis (optional)
cstride (int): mesh line column (x axis) stride, every cstride value along x axis (optional)
linewidth (float): mesh line width in points (optional)
plotCol ([strings]): fill colour, list with M=1 entries, use default if None (optional)
edgeCol ([strings]): mesh line colour, list with M=1 entries, use default if None
(optional)
pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. z scale is not settable. Let
Matplotlib decide if None (optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
maxNZ (int): draw maxNY+1 tick labels on z axis (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
zScientific (bool): use scientific notation on z-axis (optional)
powerLimits[float]: scientific tick label power limits [x-neg, x-pos, y-neg, y-pos, z-neg,
z-pos] (optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis, z-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis, z-axis tick font size, default 10pt (optional)
wireframe (bool): If True, do a wireframe plot, (optional)
surface (bool): If True, do a surface plot, (optional)
cmap (cm): color map for the mesh (optional)
cbarshow (bool): if true, the show a color bar (optional)
cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional)
cbarcustomticks zip([z values/float],[tick labels/string]): define custom colourbar ticks
locations for given z values(optional)
```

```
cbarfontsize (int): font size for color bar (optional)
drawGrid (bool): draw the grid on the plot (optional)
xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional)
yInvert (bool): invert the y-axis. Flip the y-axis left-right (optional)
zInvert (bool): invert the z-axis. Flip the z-axis up-down (optional)
logScale (bool): do Z values on log scale, recompute colourbar vals (optional)
alpha (float): surface transparency (optional)
alphawire (float): mesh transparency (optional)
azim (float): graph view azimuth angle [degrees] (optional)
elev (float): graph view evelation angle [degrees] (optional)
zorder ([int]) list of zorder for drawing sequence, highest is last (optional)
clip_on (bool) clips objects to drawing axes (optional)
```

the axis object for the plot

Raises:

No exception is raised.

```
meshContour (plotnum, xvals, yvals, zvals, levels=10, ptitle=None, xlabel=None, ylabel=None, shading='flat', plotCol=[], pltaxis=None, maxNX=0, maxNY=0, xScientific=False, yScientific=False, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, meshCmap=<matplotlib.colors.LinearSegmentedColormap object at 0x0419E330>, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, drawGrid=False, yInvert=False, xInvert=False, contour-Fill=True, contourLine=True, logScale=False, negativeSolid=False, zeroContourLine=None, contLabel=False, contFmt='%.2f', contCol='k', contFonSz=8, contLinWid=0.5, zorders=None, clip_on=True)
```

XY colour mesh countour plot for (xvals, yvals, zvals) input sets.

The data values must be given on a fixed mesh grid of three-dimensional (x,y,z) array input sets. The mesh grid is defined in (x,y), while the height of the mesh is the z value.

Given an existing figure, this function plots in a specified subplot position. Only one contour plot is drawn at a time. Future contours in the same subplot will cover any previous contours.

The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the contour mesh.

Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale.

The current version only saves png files, since there appears to be a problem saving eps files.

The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals.

Args:

```
plotnum (int): subplot number, 1-based index xvals (np.array[N,M]): array of x values yvals (np.array[N,M]): array of y values zvals (np.array[N,M]): values on a (x,y) grid levels (int or [float]): number of contour levels or a list of levels (optional) ptitle (string): plot title (optional) xlabel (string): x axis label (optional) ylabel (string): y axis label (optional) shading (string): not used currently (optional)
```

4.2. Module classes 23

```
plotCol ([strings]): plot colour and line style, list with M entries, use default if []
(optional)
pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. Let Matplotlib decide if None.
(optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high]
(optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
meshCmap (cm): colour map for the mesh (optional)
cbarshow (bool): if true, the show a colour bar (optional)
cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional)
cbarcustomticks zip([z values/float],[tick labels/string]) define custom colourbar ticks
locations for given z values(optional)
cbarfontsize (int): font size for colour bar (optional)
drawGrid (bool): draw the grid on the plot (optional)
yInvert (bool): invert the y-axis. Flip the y-axis up-down (optional)
xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional)
contourFill (bool): fill contours with colour (optional)
contourLine (bool): draw a series of contour lines (optional)
logScale (bool): do Z values on log scale, recompute colourbar values (optional)
negativeSolid (bool): draw negative contours in solid lines, dashed otherwise (optional)
zeroContourLine (double): draw a single contour at given value (optional)
contLabel (bool): label the contours with values (optional)
contFmt (string): contour label c-printf format (optional)
contCol (string): contour label colour, e.g., 'k' (optional)
contFonSz (float): contour label fontsize (optional)
contLinWid (float): contour line width in points (optional)
zorder ([int]) list of zorder for drawing sequence, highest is last (optional)
clip_on (bool) clips objects to drawing axes (optional)
```

the axis object for the plot

Raises:

No exception is raised.

```
myPlot (plotcommand, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, pltaxis=None, maxNX=0, maxNY=0, linestyle=None, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, labelfsize=10, drawGrid=True, xScientific=False, yScientific=False, yInvert=False, xInvert=False, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, zorders=None, clip_on=True)
```

Low level helper function to create a subplot and plot the data as required.

This function does the actual plotting, labelling etc. It uses the plotting function provided by its user functions.

```
lineStyles = { '': '_draw_nothing', ' ': '_draw_nothing', 'None': '_draw_nothing', '-': '_draw_dashed', '-:': '_draw_dashed', '-:': '_draw_solid', ':': '_draw_dotted'}
```

Args:

```
plotcommand: name of a MatplotLib plotting function
               plotnum (int): subplot number, 1-based index
               ptitle (string): plot title
               xlabel (string): x axis label
               ylabel (string): y axis label
               x (np.array[N,] or [N,1]): abscissa
               y (np.array[N,] or [N,M]): ordinates - could be M columns
               plotCol ([strings]): plot colour and line style, list with M entries, use default if []
               linewidths ([float]): plot line width in points, list with M entries, use default if None
               (optional)
               label ([strings]): legend label for ordinate, list with M entries
               legendAlpha (float): transparency for legend box
               pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. Let Matplotlib decide if None.
               maxNX (int): draw maxNX+1 tick labels on x axis
               maxNY (int): draw maxNY+1 tick labels on y axis
               linestyle (string): linestyle for this plot (optional)
               powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high]
               (optional)
              titlefsize (int): title font size, default 12pt (optional)
               xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
               xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
               labelfsize (int): label/legend font size, default 10pt (optional)
               drawGrid (bool): draw the grid on the plot (optional)
               xScientific (bool): use scientific notation on x axis (optional)
               yScientific (bool): use scientific notation on y axis (optional)
              yInvert (bool): invert the y-axis (optional)
               xInvert (bool): invert the x-axis (optional)
               xIsDate (bool): convert the datetime x-values to dates (optional)
               xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional)
               xtickRotation (float) x-axis tick label rotation angle (optional)
               markers ([string]) markers to be used for plotting data points (optional)
               markevery (int | (startind, stride)) subsample when using markers (optional)
               zorders ([int]) list of zorder for drawing sequence, highest is last (optional)
               clip_on (bool) clips objects to drawing axes (optional)
          Returns:
              the axis object for the plot
          Raises:
              No exception is raised.
nextPlotCol()
     Returns the next entry in a sequence of default plot line colour styles in circular list. One day I want
     to do this with a generator....
          Args:
```

4.2. Module classes 25

None Returns:

Raises:

The next plot colour in the sequence.

No exception is raised.

```
plot (plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True, xIs-Date=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, zorders=None, clip_on=True)
```

Cartesian plot on linear scales for abscissa and ordinates.

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes.

Args:

```
plotnum (int): subplot number, 1-based index
x (np.array[N,] or [N,1]): abscissa
y (np.array[N,] or [N,M]): ordinates - could be M columns
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
plotCol ([strings]): plot colour and line style, list with M entries, use default if []
(optional)
linewidths ([float]): plot line width in points, list with M entries, use default if None
(optional)
label ([strings]): legend label for ordinate, list with M entries (optional)
legendAlpha (float): transparency for legend box (optional)
pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. Let Matplotlib decide if None.
(optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
linestyle (string): linestyle for this plot (optional)
powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high]
(optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
labelfsize (int): label/legend font size, default 10pt (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
drawGrid (bool): draw the grid on the plot (optional)
yInvert (bool): invert the y-axis (optional)
xInvert (bool): invert the x-axis (optional)
xIsDate (bool): convert the datetime x-values to dates (optional)
xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional)
xtickRotation (float) x-axis tick label rotation angle (optional)
markers ([string]) markers to be used for plotting data points (optional)
markevery (int | (startind, stride)) subsample when using markers (optional)
zorders ([int]) list of zorder for drawing sequence, highest is last (optional)
clip_on (bool) clips objects to drawing axes (optional)
```

Returns:

the axis object for the plot

Raises:

No exception is raised.

```
plot3d (plotnum, x, y, z, ptitle=None, xlabel=None, ylabel=None, zlabel=None, plotCol=[], linewidths=None, pltaxis=None, label=None, legendAlpha=0.0, titlefsize=12, xylabelf-size=12, xInvert=False, yInvert=False, zInvert=False, scatter=False, markers=None, markevery=None, azim=45, elev=30, zorders=None, clip_on=True, edgeCol=None)
3D plot on linear scales for x y z input sets.
```

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail.

Note that multiple 3D data sets can be plotted simultaneously by adding additional columns to the input coordinates of the (x,y,z) arrays, each set of columns representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines.

Args:

```
plotnum (int): subplot number, 1-based index
x (np.array[N,] or [N,M]) x coordinates of each line.
y (np.array[N,] or [N,M]) y coordinates of each line.
z (np.array[N,] or [N,M]) z coordinates of each line.
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
zlabel (string): z axis label (optional)
plotCol ([strings]): plot colour and line style, list with M entries, use default if None
(optional)
linewidths ([float]): plot line width in points, list with M entries, use default if None
(optional)
pltaxis ([xmin, xmax, ymin, ymax, zmin, zmax]) scale for x,y,z axes. Let Matplotlib
decide if None. (optional)
label ([strings]): legend label for ordinate, list with M entries (optional)
legendAlpha (float): transparency for legend box (optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x, y, z label font size, default 12pt (optional)
xInvert (bool): invert the x-axis (optional)
yInvert (bool): invert the y-axis (optional)
zInvert (bool): invert the z-axis (optional)
scatter (bool): draw only the points, no lines (optional)
markers ([string]): markers to be used for plotting data points (optional)
markevery (int | (startind, stride)): subsample when using markers (optional)
azim (float): graph view azimuth angle [degrees] (optional)
elev (float): graph view evelation angle [degrees] (optional)
zorder ([int]): list of zorder for drawing sequence, highest is last (optional)
clip_on (bool): clips objects to drawing axes (optional)
edgeCol ([int]): list of colour specs, value at [0] used for edge colour (optional).
```

Returns:

the axis object for the plot

Raises:

No exception is raised.

plotArray (plotnum, inarray, slicedim=0, labels=None, maxNX=0, maxNY=0, titlefsize=8, xylabelfsize=8, xytickfsize=8, selectCols=None, sepSpace=0.2, allPlotCol='r')

Creates a plot from an input array.

4.2. Module classes 27

Given an input array with m x n dimensions, this function creates a subplot for vectors [1-n]. Vector 0 serves as the x-axis for each subplot. The slice dimension can be in columns (0) or rows (1).

Args:

```
plotnum (int): The subplot number, 1-based index, according to Matplotlib conventions.
This value must always be given, even if only a single 1,1 subplot is used.
inarray (np.array): data series to be plotted. Data direction can be cols or rows. The
abscissa (x axis) values must be the first col/row, with ordinates in following cols/rows.
slicedim (int): slice along columns (0) or rows (1) (optional).
labels (list): a list of strings as labels for each subplot. x=labels[0], y=labels[1:]
(optional).
maxNX (int): draw maxNX+1 tick labels on x axis (optional).
maxNY (int): draw maxNY+1 tick labels on y axis (optional).
titlefsize (int): title font size, default 12pt (optional).
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional).
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional).
selectCols ([int]): select columns for plot. Col 0 corresponds to col 1 in input data
(because col 0 is abscissa), plot all if not given (optional).
sepSpace (float): vertical spacing between sub-plots in inches (optional).
allPlotCol (str): make all plot lines this colour (optional).
```

Returns:

Nothing

Raises:

No exception is raised.

polar (plotnum, theta, r, ptitle=None, plotCol=None, label=[], labelLocation=[-0.1, 0.1], highlightNegative=True, highlightCol='#ffff00', highlightWidth=4, legendAlpha=0.0, rscale=None, rgrid=[0, 5], thetagrid=[30], direction='counterclockwise', zerooffset=0, titlefsize=12, drawGrid=True, zorders=None, clip_on=True, markers=[], markevery=None) Create a subplot and plot the data in polar coordinates (linear radial orginates only).

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the radial values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The scale for the radial ordinates can be set with rscale. The number of radial grid circles can be set with rgrid - this provides a somewhat better control over the built-in radial grid in matplotlib. thetagrids defines the angular grid interval. The angular rotation direction can be set to be clockwise or counterclockwise. Likewise, the rotation offset where the plot zero angle must be, is set with *zerooffset*.

For some obscure reason Matplitlib version 1.13 does not plot negative values on the polar plot. We therefore force the plot by making the values positive and then highlight it as negative.

Args:

```
plotnum (int): subplot number, 1-based index theta (np.array[N,] or [N,1]): angular abscissa in radians r (np.array[N,] or [N,M]): radial ordinates - could be M columns ptitle (string): plot title (optional) plotCol ([strings]): plot colour and line style, list with M entries, use default if None (optional) label ([strings]): legend label, list with M entries (optional) labelLocation ([x,y]): where the legend should located (optional) highlightNegative (bool): indicate if negative data must be highlighted (optional) highlightCol (string): negative highlight colour string (optional)
```

```
highlightWidth (int): negative highlight line width(optional)
legendAlpha (float): transparency for legend box (optional)
rscale ([rmin, rmax]): radial plotting limits. use default setting if None. If rmin is
negative the zero is a circle and rmin is at the centre of the graph (optional)
rgrid ([rinc, numinc]): radial grid, use default is [0,5]. If rgrid is None don't show. If
rinc=0 then numinc is number of intervals. If rinc is not zero then rinc is the increment
and numinc is ignored (optional)
thetagrids (float): theta grid interval [degrees], if None don't show (optional)
direction (string): direction in increasing angle, 'counterclockwise' or 'clockwise'
(optional)
zerooffset (float): rotation offset where zero should be [rad]. Positive zero-offset
rotation is counterclockwise from 3'o'clock (optional)
titlefsize (int): title font size, default 12pt (optional)
drawGrid (bool): draw a grid on the graph (optional)
zorder ([int]) list of zorder for drawing sequence, highest is last (optional)
clip_on (bool) clips objects to drawing axes (optional)
markers ([string]) markers to be used for plotting data points (optional)
markevery (int | (startind, stride)) subsample when using markers (optional)
```

the axis object for the plot

Raises:

No exception is raised.

```
polar3d(plotnum, theta, radial, zvals, ptitle=None, xlabel=None, ylabel=None, zla-
bel=None, zscale=None, titlefsize=12, xylabelfsize=12, thetaStride=1, radialstride=1,
meshCmap=<matplotlib.colors.LinearSegmentedColormap object at 0x0419E330>,
linewidth=0.1, azim=45, elev=30, zorders=None, clip_on=True, facecolors=None,
alpha=1, edgeCol=None)
```

3D polar surface/mesh plot for (r, theta, zvals) input sets.

Given an existing figure, this function plots in a specified subplot position.

Only one mesh is drawn at a time. Future meshes in the same subplot will cover any previous meshes.

The data in zvals must be on a grid where the theta vector correspond to the number of rows in zvals and the radial vector corresponds to the number of columns in zvals.

The r and p vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals.

Args:

```
plotnum (int): subplot number, 1-based index
theta (np.array[N,M]): array of angular values [0..2pi] corresponding to (theta,rho) grid.
radial (np.array[N,M]): array of radial values corresponding to (theta,rho) grid.
zvals (np.array[N,M]): array of z values corresponding to (theta,rho) grid.
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
zlabel (string): z-axis label (optional)
zscale ([float]): z axis [min, max] in the plot.
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x, y, z label font size, default 12pt (optional)
thetaStride (int): theta stride in input data (optional)
radialstride (int): radial stride in input data (optional)
meshCmap (cm): color map for the mesh (optional)
```

4.2. Module classes 29

```
linewidth (float): width of the mesh lines azim (float): graph view azimuth angle [degrees] (optional) elev (float): graph view evelation angle [degrees] (optional) zorder ([int]) list of zorder for drawing sequence, highest is last (optional) clip_on (bool) clips objects to drawing axes (optional) facecolors ((np.array[N,M]): array of z value facecolours, corresponding to (theta,rho) grid.

alpha (float): facecolour surface transparency (optional) edgeCol ([int]): list of colour specs, value at [0] used for edge colour (optional).
```

the axis object for the plot

Raises:

No exception is raised.

```
polarMesh (plotnum, theta, radial, zvals, ptitle=None, shading='flat', radscale=None, titlefsize=12, meshCmap=<matplotlib.colors.LinearSegmentedColormap object at 0x0419E330>, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, rgrid=[0, 5], thetagrid=[30], drawGrid=False, thetagrid-fontsize=12, radialgridfontsize=12, direction='counterclockwise', zerooffset=0, logScale=False, plotCol=[], levels=10, contourFill=True, contourLine=True, zeroContourLine=None, negativeSolid=False, contLabel=False, contFmt='%.2f', contCol='k', contFonSz=8, contLinWid=0.5, zorders=None, clip_on=True)
```

Polar colour contour and filled contour plot for (theta, r, zvals) input sets.

The data values must be given on a fixed mesh grid of three-dimensional (theta,rho,z) array input sets (theta is angle, and rho is radial distance). The mesh grid is defined in (theta,rho), while the height of the mesh is the z value. The (theta,rho) arrays may have non-constant grid-intervals, i.e., they do not have to be on regular intervals.

Given an existing figure, this function plots in a specified subplot position. Only one contour plot is drawn at a time. Future contours in the same subplot will cover any previous contours.

The data set must have three two dimensional arrays, each for theta, rho, and z. The data in theta, rho, and z arrays must have matching data points. The theta and rho arrays each define the grid in terms of theta and rho values, i.e., the theta array contains the angular values for the data set, while the rho array contains the radial values. The z array contains the z values for the corresponding theta and rho values in the contour mesh.

Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale.

The current version only saves png files, since there appears to be a problem saving eps files.

Args:

```
plotnum (int): subplot number, 1-based index theta (np.array[N,M]) array of angular values [0..2pi] corresponding to (theta,rho) grid. radial (np.array[N,M]) array of radial values corresponding to (theta,rho) grid. zvals (np.array[N,M]) array of z values corresponding to (theta,rho) grid. ptitle (string): plot title (optional) shading (string): 'flat' | 'gouraud' (optional) radscale ([float]): inner and outer radial scale max in the plot. titlefsize (int): title font size, default 12pt (optional) meshCmap (cm): color map for the mesh (optional) cbarshow (bool): if true, the show a color bar cbarorientation (string): 'vertical' (right) or 'horizontal' (below) cbarcustomticks zip([tick locations/float],[tick labels/string]): locations in image grey levels
```

```
cbarfontsize (int): font size for color bar
              rgrid ([float]): radial grid - None, [number], [inc,max]
              thetagrid ([float]): angular grid - None, [inc]
              drawGrid (bool): draw the grid on the plot (optional)
              thetagridfontsize (float): font size for the angular grid
              radialgridfontsize (float): font size for the radial grid
              direction (string)= 'counterclockwise' or 'clockwise' (optional)
              zerooffset (float) = rotation offset where zero should be [rad] (optional)
              logScale (bool): do Z values on log scale, recompute colourbar vals
              plotCol ([strings]): plot colour and line style, list with M entries, use default if []
              levels (int or [float]): number of contour levels or a list of levels (optional)
              contourFill (bool): fill contours with colour (optional)
              contourLine (bool): draw a series of contour lines
              zeroContourLine (double): draw a contour at the stated value (optional)
              negativeSolid (bool): draw negative contours in solid lines, dashed otherwise (optional)
              contLabel (bool): label the contours with values (optional)
              contFmt (string): contour label c-printf format (optional)
              contCol (string): contour label colour, e.g., 'k' (optional)
              contFonSz (float): contour label fontsize (optional)
              contLinWid (float): contour line width in points (optional)
              zorder ([int]) list of zorder for drawing sequence, highest is last (optional)
              clip on (bool) clips objects to drawing axes (optional)
          Returns:
              the axis object for the plot
          Raises:
              No exception is raised.
resetPlotCol()
     Resets the plot colours to start at the beginning of the cycle.
              Args:
                 None
          Returns:
              None.
          Raises:
              No exception is raised.
                                    dpi=300,
                                                 bbox_inches='tight', pad_inches=0.1,
                                                                                               useTrue-
```

```
saveFig (filename='mpl.png',
          Type=True)
```

Save the plot to a disk file, using filename, dpi specification and bounding box limits.

One of matplotlib's design choices is a bounding box strategy which may result in a bounding box that is smaller than the size of all the objects on the page. It took a while to figure this out, but the current default values for bbox_inches and pad_inches seem to create meaningful bounding boxes. These are however larger than the true bounding box. You still need a tool such as epstools or Adobe Acrobat to trim eps files to the true bounding box.

The type of file written is picked up in the filename. Most backends support png, pdf, ps, eps and svg.

Args:

```
filename (string): output filename to write plot, file ext
dpi (int): the resolution of the graph in dots per inch
```

4.2. Module classes 31

```
bbox_inches: see matplotlib docs for more detail.

pad_inches: see matplotlib docs for more detail.

useTrueType: if True, truetype fonts are used in eps/pdf files, otherwise Type3
```

Nothing. Saves a file to disk.

Raises:

No exception is raised.

```
semilogX (plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, labelf-size=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, draw-Grid=True, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markev-ery=None, zorders=None, clip on=True)
```

Plot data on logarithmic scales for abscissa and linear scale for ordinates.

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes.

Args:

```
plotnum (int): subplot number, 1-based index
x (np.array[N,] or [N,1]): abscissa
y (np.array[N,] or [N,M]): ordinates - could be M columns
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
plotCol ([strings]): plot colour and line style, list with M entries, use default if []
(optional)
linewidths ([float]): plot line width in points, list with M entries, use default if None
(optional)
label ([strings]): legend label for ordinate, list with M entries (optional)
legendAlpha (float): transparency for legend box (optional)
pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None.
(optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
linestyle (string): linestyle for this plot (optional)
powerLimits[float]: scientific tick label notation power limits [x-low, x-high, y-low,
y-high] (optional) (optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
labelfsize (int): label/legend font size, default 10pt (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
drawGrid (bool): draw the grid on the plot (optional)
yInvert (bool): invert the y-axis (optional)
xInvert (bool): invert the x-axis (optional)
xIsDate (bool): convert the datetime x-values to dates (optional)
xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional)
```

```
xtickRotation (float) x-axis tick label rotation angle (optional) markers ([string]) markers to be used for plotting data points (optional) markevery (int | (startind, stride)) subsample when using markers (optional) zorders ([int]) list of zorder for drawing sequence, highest is last (optional) clip_on (bool) clips objects to drawing axes (optional)
```

the axis object for the plot

Raises:

No exception is raised.

```
semilogY (plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None,
    label=[], legendAlpha=0.0, pltaxis=None, maxNX=10, maxNY=10, linestyle=None,
    powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, labelf-
    size=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, draw-
    Grid=True, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markev-
    ery=None, zorders=None, clip on=True)
```

Plot data on linear scales for abscissa and logarithmic scale for ordinates.

Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes.

Args:

```
plotnum (int): subplot number, 1-based index
x (np.array[N,] or [N,1]): abscissa
y (np.array[N,] or [N,M]): ordinates - could be M columns
ptitle (string): plot title (optional)
xlabel (string): x-axis label (optional)
ylabel (string): y-axis label (optional)
plotCol ([strings]): plot colour and line style, list with M entries, use default if []
(optional)
linewidths ([float]): plot line width in points, list with M entries, use default if None
(optional)
label ([strings]): legend label for ordinate, list withM entries (optional)
legendAlpha (float): transparency for legend box (optional)
pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. Let Matplotlib decide if None.
(optional)
maxNX (int): draw maxNX+1 tick labels on x axis (optional)
maxNY (int): draw maxNY+1 tick labels on y axis (optional)
linestyle (string): linestyle for this plot (optional)
powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high]
(optional) (optional)
titlefsize (int): title font size, default 12pt (optional)
xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional)
labelfsize (int): label/legend font size, default 10pt (optional)
xScientific (bool): use scientific notation on x axis (optional)
yScientific (bool): use scientific notation on y axis (optional)
drawGrid (bool): draw the grid on the plot (optional)
yInvert (bool): invert the y-axis (optional)
xInvert (bool): invert the x-axis (optional)
```

4.2. Module classes 33

```
xIsDate (bool): convert the datetime x-values to dates (optional)
xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional)
xtickRotation (float) x-axis tick label rotation angle (optional)
markers ([string]) markers to be used for plotting data points (optional)
markevery (int | (startind, stride)) subsample when using markers (optional)
zorders ([int]) list of zorder for drawing sequence, highest is last (optional)
clip_on (bool) clips objects to drawing axes (optional)
```

the axis object for the plot

Raises:

No exception is raised.

Args:

```
plotnum (int): subplot number, 1-based index img (np.ndarray): numpy 2d array containing the image ptitle (string): plot title (optional) xlabel (string): x axis label (optional) ylabel (string): y axis label (optional) cmap: matplotlib colormap, default gray (optional) fsize (int): title font size, default 12pt (optional) cbarshow (bool): if true, the show a colour bar (optional) cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) cbarcustomticks zip([tick locations/float],[tick labels/string]): locations in image grey levels (optional) cbarfontsize (int): font size for colour bar (optional) titlefsize (int): title font size, default 12pt (optional) xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional)
```

Returns:

the axis object for the plot

Raises:

No exception is raised.

Filled marker user-settable values.

This class encapsulates a few variables describing a Filled marker. Default values are provided that can be overridden in user plots.

Values relevant to filled makers are as follows:

```
marker = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd'] fillstyle = ['full', 'left', 'right', 'bottom', 'top', 'none'] colour names = http://www.w3schools.com/html/html_colornames.asp
```

Build a list of markers at plot locations with the specified marker.

```
add (x, y, markerfacecolor=None, markerfacecoloralt=None, marker=None, markersize=None, fillstyle=None)
Add a marker to the list, overridding properties if necessary.
```

Specify location and any specific marker properties to be used. The location can be (xy,y) for cartesian plots or (theta,rad) for polars.

If no marker properties are specified, the current marker class properties will be used. If the current maker instance does not specify properties, the default marker properties will be used.

Args

```
x (float): the x/theta location for the marker
y (float): the y/radial location for the marker
markerfacecolor (colour): main colour for marker (optional)
markerfacecoloralt (colour): alterive colour for marker (optional)
markeredgecolor (colour): edge colour for marker (optional)
marker (string): string to specify the marker (optional)
markersize (int)): size of the marker (optional)
fillstyle (string): string to define fill style (optional)
```

Returns:

Nothing. Creates the figure for subequent use.

Raises:

No exception is raised.

plot (ax)

Plot the current list of markers on the given axes.

All the markers currently stored in the class will be drawn.

Args:

```
ax (axes): an axes handle for the plot
```

Returns:

Nothing. Creates the figure for subequent use.

Raises:

No exception is raised.

class pyradi.ryplot.ProcessImage

This class provides a functions to assist in the optimal display of images.

```
compressEqualizeImage (image, selectCompressSet=2, numCbarlevels=20, cbarfor-
mat='.3f')
```

Compress an image (and then inversely expand the color bar values), prior to histogram equalisation to ensure that the two keep in step, we store the compression function names as pairs, and invoke the compression function as follows: linear, log. sqrt. Note that the image is histogram equalised in all cases.

Args:

```
image (np.ndarray): the image to be processed selectCompressSet (int): compression selection [0,1,2] (optional) numCbarlevels (int): number of labels in the colourbar (optional) cbarformat (string): colourbar label format, e.g., '10.3f', '.5e' (optional)
```

Returns:

imgHEQ (np.ndarray): the equalised image array

4.2. Module classes 35

customticksz (zip(float, string)): colourbar levels and associated levels

Raises:

No exception is raised.

```
reprojectImageIntoPolar (data, origin=None, framesFirst=True)
```

Reprojects a 3D numpy array into a polar coordinate system, relative to some origin.

This function reprojects an image from cartesial to polar coordinates. The origin of the new coordinate system defaults to the center of the image, unless the user supplies a new origin.

The data format can be data.shape = (rows, cols, frames) or data.shape = (frames, rows, cols), the format of which is indicated by the framesFirst parameter.

Args:

```
data (np.array): 3-D array to which transformation must be applied. origin ((x-orig, y-orig)): data-coordinates of where origin should be placed framesFirst (bool): True if data.shape is (frames, rows, cols), False if data.shape is (rows, cols, frames)
```

Returns:

```
output (float np.array): transformed images/array data in the same sequence as input sequence. r_i (np.array[N,]): radial values for returned image. theta_i (np.array[M,]): angular values for returned image.
```

Raises:

No exception is raised.

original code by Joe Kington https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system

4.3 Module functions

```
pyradi.ryplot.savePlot(*args, **kwds)
```

Uses 'with' statement to create a plot and save to file on exit.

Use as follows:

```
x=np.linspace(-3,3,20)
with savePlot(1,saveName=['testwith.png','testwith.eps']) as p:
    p.plot(1,x,x*x)
```

where the savePlot parameters are exactly the same as Plotter, except that a new named parameter saveName is now present. If saveName is not None, the list of filenames is used to save files of the plot (any number of names/types)

Args:

```
fignumber (int): the plt figure number, must be supplied subpltnrow (int): subplot number of rows subpltncol (int): subplot number of columns figuretitle (string): the overall heading for the figure figsize ((w,h)): the figure size in inches saveName str or [str]: string or list of save filenames
```

Returns:

The plotting object, used to populate the plot (see example)

Raises:

No exception is raised.

```
pyradi.ryplot.cubehelixcmap(start=0.5, rot=-1.5, gamma=1.0, hue=1.2, reverse=False, nlev=256.0)
```

nlev=256.0)
A full implementation of Dave Green's "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in D.A. Green, 2011, BASI, 39, 289.

http://adsabs.harvard.edu/abs/2011arXiv1108.5083G http://www.astron-soc.in/bulletin/11June/289392011.pdf

User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples:

Default color map settings produce the standard "cubehelix".

Create color map in only blues by setting rot=0 and start=0.

Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True.

Args:

start: scalar, optional

Sets the starting position in the color space. 0=blue, 1=red,

2=green. Defaults to 0.5.

rot: scalar, optional

The number of rotations through the rainbow. Can be positive

or negative, indicating direction of rainbow. Negative values

correspond to Blue->Red direction. Defaults to -1.5

gamma: scalar, optional

The gamma correction for intensity. Defaults to 1.0

hue: scalar, optional

The hue intensity factor. Defaults to 1.2

reverse: boolean, optional

Set to True to reverse the color map. Will go from black to

white. Good for density plots where shade~density. Defaults to False

nevl: scalar, optional

Defines the number of discrete levels to render colors at.

Defaults to 256.

Returns:

matplotlib.colors.LinearSegmentedColormap object

Example: >>> import cubehelix >>> cx = cubehelix.cmap(start=0., rot=-0.5) >>> plot(x,cmap=cx)

Revisions 2014-04 (@jradavenport) Ported from IDL version

source https://github.com/jradavenport/cubehelix

Licence Copyright (c) 2014, James R. A. Davenport and contributors All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

4.3. Module functions

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

FIVE

SPHERICAL PLOTTING UTILITY

- **5.1 Overview**
- 5.2 Module functions

SIX

UTILITY FUNCTIONS

6.1 Overview

This module provides various utility functions for radiometry calculations. Functions are provided for a maximally flat spectral filter, a simple photon detector spectral response, effective value calculation, conversion of spectral domain variables between [um], [cm^-1] and [Hz], conversion of spectral density quantities between [um], [cm^-1] and [Hz] and spectral convolution.

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

6.2 Module functions

```
pyradi.ryutils.abshumidity(T, equationSelect=1)
```

Atmopsheric absolute humidity [g/m3] for temperature in [K] between 248 K and 342 K.

This function provides two similar equations, but with different constants.

Args:

```
temperature (np.array[N,] or [N,1]): in [K]. equationSelect (int): select the equation to be used.
```

Returns:

absolute humidity (np.array[N,] or [N,1]): abs humidity in [g/m3]

Raises:

No exception is raised.

```
pyradi.ryutils.sfilter(spectral, center, width, exponent=6, taupass=1.0, taustop=0.0, filter-
type='bandpass')
```

Calculate a symmetrical filter response of shape exp(-x^n)

Given a number of parameters, calculates maximally flat, symmetrical transmittance. The function parameters controls the width, pass-band and stop-band transmittance and sharpness of cutoff. This function is not meant to replace the use of properly measured filter responses, but rather serves as a starting point if no other information is available. This function does not calculate ripple in the pass-band or cut-off band.

Filter types supported include band pass, high (long) pass and low (short) pass filters. High pass filters have maximal transmittance for all spectral values higher than the central value. Low pass filters have maximal transmittance for all spectral values lower than the central value.

Args:

spectral (np.array[N,] or [N,1]): spectral vector in [um] or [cm-1].

```
center (float): central value for filter passband
width (float): proportional to width of filter passband
exponent (float): even integer, define the sharpness of cutoff.

If exponent=2 then gaussian
If exponent=infinity then square
taupass (float): the transmittance in the pass band (assumed constant)
taustop (float): peak transmittance in the stop band (assumed constant)
filtertype (string): filter type, one of 'bandpass', 'lowpass' or 'highpass'
```

transmittance (np.array[N,] or [N,1]): transmittances at "spectral" intervals.

Raises:

No exception is raised.

If an invalid filter type is specified, return None.

```
pyradi.ryutils.responsivity (wavelength, lwavepeak, cuton=1, cutoff=20, scaling=1.0) Calculate a photon detector wavelength spectral responsivity
```

Given a number of parameters, calculates a shape that is somewhat similar to a photon detector spectral response, on wavelength scale. The function parameters controls the cutoff wavelength and shape of the response. This function is not meant to replace the use of properly measured spectral responses, but rather serves as a starting point if no other information is available.

Args:

```
wavelength (np.array[N,] or [N,1]): vector in [um]. lwavepeak (float): approximate wavelength at peak response cutoff (float): cutoff strength beyond peak, 5 < \text{cutoff} < 50 cuton (float): cuton sharpness below peak, 0.5 < \text{cuton} < 5 scaling (float): scaling factor
```

Returns:

responsivity (np.array[N,] or [N,1]): responsivity at wavelength intervals.

Raises:

No exception is raised.

```
pyradi.ryutils.effectiveValue (spectraldomain, spectralToProcess, spectralBaseline)

Normalise a spectral quantity to a scalar, using a weighted mapping by another spectral quantity.
```

Effectivevalue = integral(spectralToProcess * spectralBaseline) / integral(spectralBaseline)

The data in spectralToProcess and spectralBaseline must both be sampled at the same domain values as specified in spectraldomain.

The integral is calculated with numpy/scipy trapz trapezoidal integration function.

Args:

```
inspectraldomain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber. spectralToProcess (np.array[N,] or [N,1]): spectral quantity to be normalised spectralBaseline (np.array[N,] or [N,1]): spectral serving as baseline for normalisation
```

Returns:

```
(float): effective value
Returns None if there is a problem
```

Raises:

No exception is raised.

```
pyradi.ryutils.convertSpectralDomain (inspectraldomain, type="')
```

Convert spectral domains, i.e. between wavelength [um], wavenummber [cm^-1] and frequency [Hz]

In string variable type, the 'from' domain and 'to' domains are indicated each with a single letter: 'f' for temporal frequency, 'l' for wavelength and 'n' for wavenumber The 'from' domain is the first letter and the 'to' domain the second letter.

Note that the 'to' domain vector is a direct conversion of the 'from' domain to the 'to' domain (not interpolated or otherwise sampled.

Args:

```
inspectraldomain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber.
```

wavelength vector in [um]

frequency vector in [Hz]

wavenumber vector in [cm^-1]

type (string): specify from and to domains:

'lf' convert from wavelength to per frequency

'ln' convert from wavelength to per wavenumber

'fl' convert from frequency to per wavelength

'fn' convert from frequency to per wavenumber

'nl' convert from wavenumber to per wavelength

'nf' convert from wavenumber to per frequency

Returns:

[N,1]: outspectraldomain

Returns zero length array if type is illegal, i.e. not one of the expected values

Raises:

No exception is raised.

```
pyradi.ryutils.convertSpectralDensity (inspectraldomain, inspectralquantity, type='') Convert spectral density quantities, i.e. between W/(m^2.um), W/(m^2.cm^-1) and W/(m^2.Hz).
```

In string variable type, the 'from' domain and 'to' domains are indicated each with a single letter: 'f' for temporal frequency, 'w' for wavelength and 'n' for wavenumber The 'from' domain is the first letter and the 'to' domain the second letter.

The return values from this function are always positive, i.e. not mathematically correct, but positive in the sense of radiance density.

The spectral density quantity input is given as a two vectors: the domain value vector and the density quantity vector. The output of the function is also two vectors, i.e. the 'to' domain value vector and the 'to' spectral density. Note that the 'to' domain vector is a direct conversion of the 'from' domain to the 'to' domain (not interpolated or otherwise sampled).

Args:

inspectral domain (np.array[N,] or [N,1]): spectral domain in wavelength, frequency or wavenumber. inspectral quantity (np.array[N,] or [N,1]): spectral density in same domain as domain vector above.

wavelength vector in [um]

frequency vector in [Hz]

wavenumber vector in [cm^-1]

type (string): specify from and to domains:

'lf' convert from per wavelength interval density to per frequency interval density

'ln' convert from per wavelength interval density to per wavenumber interval density

'fl' convert from per frequency interval density to per wavelength interval density

'fn' convert from per frequency interval density to per wavenumber interval density

'nl' convert from per wavenumber interval density to per wavelength interval density

'nf' convert from per wavenumber interval density to per frequency interval density

6.2. Module functions 43

([N,1],[N,1]): outspectraldomain and outspectral quantity Returns zero length arrays is type is illegal, i.e. not one of the expected values

Raises:

No exception is raised.

pyradi.ryutils.convolve(inspectral, samplingresolution, inwinwidth, outwinwidth, window-type=<function bartlett at 0x03BB91B0>)

Convolve (non-circular) a spectral variable with a window function, given the input resolution and input and output window widths.

This function is normally used on wavenumber-domain spectral data. The spectral data is assumed sampled at samplingresolution wavenumber intervals. The inwinwidth and outwinwidth window function widths are full width half-max (FWHM) for the window functions for the inspectral and returned spectral variables, respectively. The Bartlett function is used as default, but the user can use a different function. The Bartlett function is a triangular function reaching zero at the ends. Window functio width is correct for Bartlett and only approximate for other window functions.

Args:

```
inspectral (np.array[N,] or [N,1]): vector in [cm-1]. samplingresolution (float): wavenumber interval between inspectral samples inwinwidth (float): FWHM window width of the input spectral vector outwinwidth (float): FWHM window width of the output spectral vector windowtype (function): name of a numpy/scipy function for the window function
```

Returns:

```
outspectral (np.array[N,]): input vector, filtered to new window width. windowfn (np.array[N,]): The window function used.
```

Raises:

No exception is raised.

pyradi.ryutils.rangeEquation (Intensity, Irradiance, rangeTab, tauTab, rangeGuess=1, n=2) Solve the range equation for arbitrary transmittance vs range.

This function solve for the range R in the range equation

$$E = \frac{I\tau_a(R)}{R^n}$$

where E is the threshold irradiance in [W/m2], and I is the intensity in [W/sr]. This range equation holds for the case where the target is smaller than the field of view.

The range R must be in [m], and $\tau_a(R)$ is calculated from a lookup table of atmospheric transmittance vs. range. The transmittance lookup table can be calculated from the simple Bouguer law, or it can have any abritrary shape, provided it decreases with increasing range. The user supplies the lookup table in the form of an array of range values and an associated array of transmittance values. The range values need not be on constant linear range increment.

The parameter n

- $\bullet n = 2$ (default value) the general case of a radiating source smaller than the field of view.
- •n=4 the special case of a laser rangefinder illuminating a target smaller than the field of view, viewed against the sky. In this case there is an R^2 attenuation from the laser to the source and another R^2 attenuation from the source to the receiver, hence R^4 overall.

If the range solution is doubtful (e.g. not a trustworthy solution) the returned value is made negative.

Args:

Intensity (float or np.array[N,] or [N,1]): in [W/sr].

```
Irradiance (float or np.array[N,] or [N,1]): in [W/m2].
rangeTab (np.array[N,] or [N,1]): range vector for tauTab lookup in [m]
tauTab (np.array[N,] or [N,1]): transmittance vector for lookup in [m]
rangeGuess (float): starting value range estimate in [m] (optional)
n (float): range power (2 or 4) (optional)
```

range (float or np.array[N,] or [N,1]): Solution to the range equation in [m]. Value is negative if calculated range exceeds the top value in range table, or if calculated range is too near the lower resolution limit.

Raises:

No exception is raised.

```
pyradi.ryutils._rangeEquationCalc(r, i, e, tauTable, n, rMax)
```

```
pyradi.ryutils.detectThresholdToNoise(pulseWidth, FAR)
```

Solve for threshold to noise ratio, given pulse width and FAR, for matched filter.

Using the theory of matched filter design, calculate the threshold to noise ratio, to achieve a required false alarm rate.

References:

"Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication.

18. (a) Hippenstiel, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002

Args:

```
pulseWidth (float): the signal pulse width in [s]. FAR (float): the false alarm rate in [alarms/s]
```

Returns:

range (float): threshold to noise ratio

Raises:

No exception is raised.

```
pyradi.ryutils.detectSignalToNoise(ThresholdToNoise, pD)
```

Solve for the signal to noise ratio, given the threshold to noise ratio and probability of detection.

Using the theory of matched filter design, calculate the signal to noise ratio, to achieve a required probability of detection.

References:

"Electro-optics handbook," Tech. Rep. EOH-11, RCA, 1974. RCA Technical Series Publication.

18. (a) Hippenstiel, Detection Theory: Applications and Digital Signal Pro-cessing, CRC Press, 2002

Args:

```
ThresholdToNoise (float): the threshold to noise ratio [-] pD (float): the probability of detection [-]
```

Returns:

```
range (float): signal to noise ratio
```

Raises:

No exception is raised.

6.2. Module functions 45

```
pyradi.ryutils.upMu (uprightMu=True, textcomp=False)
```

Returns a LaTeX micron symbol, either an upright version or the normal symbol.

The upright symbol requires that the siunitx LaTeX package be installed on the computer running the code. This function also changes the Matplotlib rcParams file.

Args:

```
uprightMu (bool): signals upright (True) or regular (False) symbol (optional). textcomp (bool): if True use the textcomp package, else use siunity package (optional).
```

Returns:

range (string): LaTeX code for the micro symbol.

Raises:

No exception is raised.

```
pyradi.ryutils.cart2polar(x, y)
```

Converts from cartesian to polar coordinates, given (x,y) to (r,theta).

Args:

```
x (float np.array): x values in array format.
y (float np.array): y values in array format.
```

Returns:

```
r (float np.array): radial component for given (x,y). theta (float np.array): angular component for given (x,y).
```

Raises:

No exception is raised.

original code by Joe Kington https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system

```
pyradi.ryutils.polar2cart (r, theta)
```

Converts from polar to cartesian coordinates, given (r,theta) to (x,y).

Args:

```
r (float np.array): radial values in array format.
theta (float np.array): angular values in array format.
```

Returns:

```
x (float np.array): x component for given (r, theta).
y (float np.array): y component for given (r, theta).
```

Raises:

No exception is raised.

original code by Joe Kington https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system

```
pyradi.ryutils.index_coords (data, origin=None, framesFirst=True)
```

Creates (x,y) zero-based coordinate arrrays for a numpy array indices, relative to some origin.

This function calculates two meshgrid arrays containing the coordinates of the input array. The origin of the new coordinate system defaults to the center of the image, unless the user supplies a new origin.

The data format can be data.shape = (rows, cols, frames) or data.shape = (frames, rows, cols), the format of which is indicated by the framesFirst parameter.

Args:

data (np.array): array for which coordinates must be calculated.

origin ((x-orig, y-orig)): data-coordinates of where origin should be framesFirst (bool): True if data.shape is (frames, rows, cols), False if data.shape is (rows, cols, frames)

Returns:

```
x (float np.array): x coordinates in array format. y (float np.array): y coordinates in array format.
```

Raises:

No exception is raised.

original code by Joe Kington https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system

```
pyradi.ryutils.framesFirst(imageSequence)
```

Image sequence with frames along axis=2 (last index), reordered such that frames are along axis=0 (first index).

Image sequences are stored in three-dimensional arrays, in rows, columns and frames. Not all libraries share the same sequencing, some store frames along axis=0 and others store frames along axis=2. This function reorders an image sequence with frames along axis=2 to an image sequence with frames along axis=0. The function uses np.transpose(imageSequence, (2,0,1))

Args

imageSequence (3-D np.array): image sequence in three-dimensional array, frames along axis=2

Returns:

```
((3-D np.array): reordered three-dimensional array (view or copy)
```

Raises:

No exception is raised.

```
pyradi.ryutils.framesLast(imageSequence)
```

Image sequence with frames along axis=0 (first index), reordered such that frames are along axis=2 (last index).

Image sequences are stored in three-dimensional arrays, in rows, columns and frames. Not all libraries share the same sequencing, some store frames along axis=0 and others store frames along axis=2. This function reorders an image sequence with frames along axis=0 to an image sequence with frames along axis=2. The function uses np.transpose(imageSequence, (1,2,0))

Args:

imageSequence (3-D np.array): image sequence in three-dimensional array, frames along axis=0

Returns:

```
((3-D np.array): reordered three-dimensional array (view or copy)
```

Raises:

No exception is raised.

6.2. Module functions 47

RADIOMETRIC LOOKUP FUNCTIONS

7.1 Overview

This class provides lookup functionality between source temperature, source radiance and sensor signal. In this class the sensor signal is called digital level, but it represents any atribrary sensor signal unit.

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

7.2 Module classes

Performs radiometric lookup capability between temperature and radiance, given camera spectral and calibration data.

Given spectral data and temperature this class calculates loopup tables and provide lookup functions operating on the tables.

The class provides two parallel functional capabilities:

- •given spectral data and no calibration data it calculates a simple radiance-based lookup between temperture and radiance, assuming Planck-law relationships.
- •given camera calibration data it relates between signal value, temperature and radiance. It accounts for the effect of hot optics that cause a lower asymptotic radiance level. The calibration mode supports linear interpolation between two calibration curves, to account for the instrument internal temperature. This mode requires the sigMin, sigMax, sigInc, and dicCaldat parameters.

By not passing the calibration parameters simply means that that part of the code is not executed and only the simple radiance-based lookup is available.

Five spectral vectors can be supplied: (1) emissivity, (2) atmospheric transmittance, (3) filter transmittance, (4) optics transmittance, and (5) sensor response. Two sets of calculations are performed, the first with all five spectral vectors, and the second without the filter, but all four remaining vectors. This option may be useful when compensating for neutral density filters, i.e., radiance before or after the filter (with/without). This option is relevant only in the functions LookupRadTemp, LookupTempRad, and PlotTempRadiance. In these three functions, the appropriate option can be selected by setting the withFilter=True function parameter.

Spectral data parameter may be either a filename (data read from file) or a numpy array np.array(:,1) with the data on (nuMin, nuMax,nuInc) scale. The data file must have two colums: first column is wavelength, and second column is the spectral value at this wavelength. Data read in from the file will be interpolated to (nuMin, nuMax,nuInc) scale. If the parameter is None, then unity spectral values will be used.

The camera calibration data set requires the following data:

- •sigMin, sigMax, sigInc: the parameters to define the signal magnitude vector.
- •dicCaldata: the dictionary containing the camera calibration data. The dictionary key is the instrument internal temperature [deg-C] (one or two values required). For each key, provide a numpy array where the *first column* is the calibration source temperature K, and the *second column* is the signal measured on the instrument and the *third column* is the radiance for this temperature (only after the tables have been calculated).
- •dicPower: the dictionary containing the camera calibration curve lower knee sharpness. The dictionary key is the instrument internal temperature (one or two values required).
- •dicFloor: the dictionary containing the camera calibration curve lower asymptotic signal value. The dictionary key is the instrument internal temperature (one or two values required).

Error handling is simply to test for certain conditions and then execute the task if conditions are met, otherwise do nothing.

Args:

```
specName (string): Name for this lookup data set, used in graphs.
nu (np.array(N,1)): wavenumber vector to be used in spectral calcs.
tmprLow (float): Lower temperature bound [K] for lookup tables.
tmprHi (float): Upper temperature bound [K] for lookup tables.
tmprInc (float): Increment temperature [K] for lookup tables.
sensorResp (string/np.array(N,1)): sensor/detector spectral filename or array data (optional).
opticsTau (string/np.array(N,1)): opticsTransmittance spectral filename or array data (optional).
filterTau ((string/np.array(N,1)): filter spectral filename or array data (optional).
atmoTau (string/np.array(N,1)): atmoTau spectral filename or array data (optional).
sourceEmis (string/np.array(N,1)): sourceEmis spectral filename or array data (optional).
sigMin (float): minimum signal value, typically 2**0 (optional).
sigMax (float): maximum signal value, typically 2**14 (optional).
sigInc(float): signal increment, typically 2**8 (optional).
dicCaldata (dict): calibration data for sensor.
dicPower (dict): cal curve lower asymptote knee sharpness parameter (optional).
dicFloor (dict): cal curve lower asymptote parameter (optional).
```

Returns:

Nothing, but init() loads data and calculates the tables on instantiation.

Raises:

No exception is raised.

CalculateDataTables()

Calculate the mapping functions between sensor signal, radiance and temperature.

Using the spectral curves and DL vs. temperature calibration inputs calculate the various mapping functions between digital level, radiance and temperature. Set up the various tables for later conversion.

The TableTempRad table has three columns: (1) temperature, (2) radiance with filter present and (3) radiance without filter.

Args:

None.

None. Side effect of all tables calculated.

Raises:

No exception is raised.

Info()

Write the calibration data file data to a string and return string.

Args:

None.

Returns:

(string) containing the key information for this class.

Raises:

No exception is raised.

LoadSpectrals()

Load the five required spectral parameters, interpolate on the fly to local spectrals.

If the spectral parameters are strings, the strings are used as filenames and the data loaded from file. If None, unity values are assumed. If not a string or None, the parameters are used as is, and must be numpy arrays with shape (N,1) where the N vector exactly matches to spectral samples

Args:

None.

Returns:

None. Side-effect of loaded spectrals.

Raises:

No exception is raised.

LookupDLRad (DL, Tint)

Calculate the radiance associated with a DL and Tint pair. Interpolate linearly on Tint radiance not temperature.

Args:

```
DL (float, np.array[N,]): scalar, list or array of sensor signal values. Tint (float): scalar, internal temperature of the sensor.
```

Returns:

(np.array[N,]) radiance W/(sr.m2) values associated with sensor signals.

Raises:

No exception is raised.

LookupDLRadHelper (DL, paraK)

Calculate the radiance associated with a DL and parametric pair. The parametric variable was calculated once and used for all DL values.

Args:

```
DL (float, np.array[N,]): scalar, list or array of sensor signal values. paraK (float): scalar, internal temperature parametric values.
```

Returns:

 $(np.array[N,]) \ radiance \ W/(sr.m2) \ values \ associated \ with \ sensor \ signals.$

7.2. Module classes 51

Raises:

No exception is raised.

LookupDLTemp (DL, Tint)

Calculate the temperature associated with a DL and Tint pair. Interpolate linearly on Tint temperature - actually we must interpolate linearly on radiance - to be done later.

Args:

```
DL (float, np.array[N,]): scalar, list or array of sensor signal values. Tint (float): scalar, internal temperature of the sensor.
```

Returns:

(np.array[N,]) temperature K values associated with sensor signals.

Raises:

No exception is raised.

LookupRadTemp (radiance, withFilter=True)

Calculate the temperature associated with a radiance value for the given spectral shapes (no calibration involved).

Args:

```
radiance (float, np.array[N,]): scalar, list or array of radiance W/(sr.m2) values. withFilter (boolean): use table with filter to do lookup, no filter if false (optional).
```

Returns:

(np.array[N,]) temperature K values associated with radiance values.

Raises:

No exception is raised.

LookupTempRad (temperature, withFilter=True)

Calculate the radiance associated with a temperature for the given spectral shapes (no calibration involved).

Args:

```
temperature(np.array[N,]) scalar, list or array of temperature K values. withFilter (boolean): use table with filter to do lookup, no filter if false (optional).
```

Returns:

radiance (float, np.array[N,]): radiance W/(sr.m2) associated with temperature values..

Raises:

No exception is raised.

PlotCalDLRadiance (savePath=None, saveExt=u'png')

Plot DL level versus radiance for both camera temperatures

The filename is constructed from the given object name, save path, and the word 'CaldlRadiance'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

PlotCalDLTemp (savePath=None, saveExt=u'png')

Plot digital level versus temperature for both camera temperatures

The filename is constructed from the given object name, save path, and the word 'CalDLTemp'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

PlotCalSpecRadiance (savePath=None, saveExt=u'png')

Plot spectral radiance data for the calibration temperatures.

The filename is constructed from the given object name, save path, and the word 'CalRadiance'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

PlotCalTempRadiance (savePath=None, saveExt=u'png')

Plot temperature versus radiance for both camera temperatures

The filename is constructed from the given object name, save path, and the word 'CalTempRadiance'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

PlotCalTintRad (savePath=None, saveExt=u'png')

Plot optics radiance versus instrument temperature

The filename is constructed from the given object name, save path, and the word 'CalInternal'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location

7.2. Module classes 53

from which the script is running.

Raises:

No exception is raised.

PlotSpectrals (savePath=None, saveExt=u'png')

Plot all spectral curve data to a single graph.

The filename is constructed from the given object name, save path, and the word 'spectrals'.

Args:

```
savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

PlotTempRadiance (withFilter=True, savePath=None, saveExt=u'png')

Plot temperature versus radiance for both camera temperatures

The filename is constructed from the given object name, save path, and the word 'TempRadiance'.

Args:

```
withFilter (boolean): use table with filter to do lookup, no filter if false (optional). savePath (string): Path to where the plots must be saved (optional). saveExt (string): Extension to save the plot as, default of 'png' (optional).
```

Returns:

None, the images are saved to a specified location or in the location from which the script is running.

Raises:

No exception is raised.

EIGHT

PTW FILE FUNCTIONS

8.1 Overview

This module provides functionality to read the contents of files in the PTW file format and convert the raw data to source radiance or source temperature (provided that the instrument calibration data is available).

Functions are provided to read the binary Agema/Cedip/FLIR Inc PTW format into data structures for further processing.

The following functions are available to read PTW files:

```
readPTWHeader(ptwfilename)
showHeader(header)
getPTWFrame (header, frameindex)
```

readPTWHeader(ptwfilename): Returns a class object defining all the header information in ptw file.

showHeader(header): Returns nothing. Prints the PTW header content to the screen.

getPTWFrame (header, frameindex): Return the raw DL levels of the frame defined by frameindex.

The authors wish to thank FLIR Advanced Thermal Solutions for the permission to publicly release our Python version of the ptw file reader. Please note that the copyright to the proprietary ptw file format remains the property of FLIR Inc.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

8.2 Module classes

```
class pyradi.ryptw.JadeCalibrationData (filename, datafileroot)
    Container to describe the calibration data of a Jade camera.
    Info()
        Write the calibration data file data to a string and return string.
class pyradi.ryptw.PTWFrameInfo
    Class to store the ptw file header information.
```

8.3 Module functions

```
pyradi.ryptw.readPTWHeader (ptwfilename)
Given a ptw filename, read the header and return the header to caller
Args:
```

filename (string) with full path to the ptw file.

Returns:

Header (class) containing all PTW header information.

Raises:

No exception is raised.

Reference: h_variables of the header and byte positions are obtained from DL002U-D Altair Reference Guide

```
pyradi.ryptw.showHeader(Header)
```

Utility function to print the PTW header information to stdout

Args:

header (class object) ptw file header structure

Returns:

None

Raises:

No exception is raised.

```
pyradi.ryptw.getPTWFrame (header, frameindex)
```

Retrieve a single PTW frame, given the header and frame index

This routine also stores the data array as part of the header. This may change - not really needed to have both a return value and header stored value for the DL valueheader. This for a historical reason due to the way GetPTWFrameFromFile was written

Args:

```
header (class object)
frameindex (integer): The frame to be extracted
```

Returns:

header.data (np.ndarray): requested frame DL values, dimensions (rows,cols)

Raises:

No exception is raised.

```
pyradi.ryptw.GetPTWFrameFromFile (header)
```

From the ptw file, load the frame specified in the header variable header.h_framepointer

Args:

header (class object) header of the ptw file, with framepointer set

Returns

header.data plus newly added information: requested frame DL values, dimensions (rows,cols)

Raises:

No exception is raised.

```
pyradi.ryptw.getPTWFrames (header, loadFrames=[])
```

Retrieve a number of PTW frames, given in a list of frameheader.

Args:

```
header (class object)
```

loadFrames ([int]): List of indices for frames to be extracted

Returns:

data (np.ndarray): requested image frame DL values, dimensions (frames,rows,cols)

Raises:

No exception is raised.

8.3. Module functions 57

NINE

MODTRAN UTILITY

9.1 Overview

This module provides MODTRAN tape7 file reading. Future development may include a class to write tape5 files, but that is a distant target at present.

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

9.2 Module classes

```
pyradi.rymodtran.fixHeaders(instr)
```

Modifies the column header string to be compatible with numpy column lookup.

Args:

list columns (string): column name.

Returns:

list columns (string): fixed column name.

Raises:

No exception is raised.

```
\verb"pyradi.rymodtran.loadtape7" (filename, colspec=[])
```

Read the Modtran tape7 file. This function was tested with Modtran5 files.

Args:

filename (string): name of the input ASCII flatfile.

colspec ([string]): list of column names required in the output the spectral transmittance data.

Returns:

np.array: an array with the selected columns. Col[0] is the wavenumber.

Raises:

No exception is raised.

This function reads in the tape7 file from MODerate spectral resolution atmospheric TRANsmission (MOD-TRAN) code, that is used to model the propagation of the electromagnetic radiation through the atmosphere. tape7 is a primary file that contains all the spectral results of the MODTRAN run. The header information in the tape7 file contains portions of the tape5 information that will be deleted. The header section in

tape7 is followed by a list of spectral points with corresponding transmissions. Each column has a different component of the transmission or radiance. For more detail, see the modtran documentation.

The user selects the appropriate columns by listing the column names, as listed below.

The format of the tape7 file changes for different IEMSCT values. For the most part the differences are hidden in the details. The various column headers used in the tape7 file are as follows:

IEMSCT = 0 has two column header lines. In order to select the column, you must concatenate the two column headers with an underscore in between. All columns are available with the following column names: ['FREQ_CM-1', 'COMBIN_TRANS', 'H2O_TRANS', 'UMIX_TRANS', 'O3 TRANS', 'TRACE TRANS', 'N2 CONT', 'H2O CONT', 'MOLEC SCAT', 'AER+CLD TRANS', 'HNO3 TRANS'. 'AER+CLD abTRNS', '-LOG COMBIN', 'CO2 TRANS', 'CO TRANS'. 'CH4_TRANS', 'N2O_TRANS', 'O2_TRANS', 'NH3_TRANS', 'NO_TRANS', 'NO2_TRANS', 'SO2_TRANS', 'CLOUD_TRANS', 'CFC11_TRANS', 'CFC12_TRANS', 'CFC13_TRANS', 'CFC14_TRANS', 'CFC22_TRANS', 'CFC113_TRANS', 'CFC114_TRANS', 'CFC115_TRANS', 'CLONO2_TRANS', 'HNO4_TRANS', 'CHCL2F_TRANS', 'CCL4_TRANS', 'N2O5_TRANS']

IEMSCT = 1 has single line column headers. A number of columns have headers, but with no column numeric data. In the following list the columns with header names ** are empty and hence not available: ['FREQ', 'TOT_TRANS', 'PTH_THRML', 'THRML_SCT', 'SURF_EMIS', SOL_SCAT, SING_SCAT, 'GRND_RFLT', DRCT_RFLT, 'TOTAL_RAD', REF_SOL, SOL@OBS, 'DEPTH', 'DIR_EM', TOA_SUN, 'BBODY_T[K]']. Hence, these columns do not have valid data: ['SOL_SCAT', 'SING_SCAT', 'DRCT_RFLT', 'REF_SOL', 'SOL@OBS', 'TOA_SUN']

IEMSCT = 2 has single line column headers. All the columns are available: ['FREQ', 'TOT_TRANS', 'PTH_THRML', 'THRML_SCT', 'SURF_EMIS', 'SOL_SCAT', 'SING_SCAT', 'GRND_RFLT', 'DRCT_RFLT', 'TOTAL_RAD', 'REF_SOL', 'SOL@OBS', 'DEPTH', 'DIR_EM', 'TOA_SUN', 'BBODY_T[K]']

IEMSCT = 3 has single line column headers. One of these seems to be two words, which, in this code must be concatenated with an underscore. There is also additional column (assumed to be depth in this code). The columns available are ['FREQ', 'TRANS', 'SOL_TR', 'SOLAR', 'DEPTH']

The tape7.scn file has missing columns, so this function does not work for tape7.scn files. If you need a tape7.scn file with all the columns populated you would have to use the regular tape7 file and convolve this to lower resolution.

```
pyradi.rymodtran.fixHeadersList(headcol)
```

Modifies the column headers to be compatible with numpy column lookup.

Args:

list columns ([string]): list of column names.

Returns:

list columns ([string]): fixed list of column names.

Raises:

No exception is raised.

THREE-DIMENSIONAL NOISE CALCULATION

10.1 Overview

This module provides a set of functions to aid in the calculation of 3D noise parameters from noise images. The functions are based on the work done by John D'Agostino and Curtis Webb. For details see "3-D Analysis Framwork and Measurement Methodology for Imaging System Nioise" p110-121 in "Infrared Imaging Systems: Design, Analysis, Modelling, and Testing II", Holst, G. C., ed., Volume 1488, SPIE (1991).

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

10.2 Module functions

```
pyradi.ry3dnoise.oprDT(imgSeq)
     Operator DT averages over frames for each pixel.
     Args:
          imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)
          numpy array of dimensions (1,rows,cols)
     Raises:
          No exception is raised.
pyradi.ry3dnoise.oprDV(imgSeq)
     Operator DV averages over rows for each pixel.
     Args:
          imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)
     Returns:
          numpy array of dimensions (frames,1,cols)
     Raises:
          No exception is raised.
pyradi.ry3dnoise.oprDH(imgSeq)
     Operator DH averages over columns for each pixel.
     Args:
          imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)
```

numpy array of dimensions (frames,rows,1)

Raises:

No exception is raised.

```
pyradi.ry3dnoise.oprSDT(imgSeq)
```

Operator SDT first averages over frames for each pixel. The result is subtracted from all images.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

numpy array of dimensions (frames,rows,cols)

Raises:

No exception is raised.

```
pyradi.ry3dnoise.oprSDV(imgSeq)
```

Operator SDV first averages over rows for each pixel. The result is subtracted from all images.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns

numpy array of dimensions (frames,rows,cols)

Raises:

No exception is raised.

```
pyradi.ry3dnoise.oprSDH(imgSeq)
```

Operator SDH first averages over columns for each pixel. The result is subtracted from all images.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

numpy array of dimensions (frames,rows,cols)

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getS(imgSeq)
```

Average over all pixels.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): average of all pixels

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getNT(imgSeq)
```

Average for all pixels as a function of time/frames. Represents noise which consists of fluctuations in the temporal direction affecting the mean of each frame.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

noise (double): frame-to-frame intensity variation

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getNH (imgSeq)
```

Average for each row over all frames and cols. Represents variations in column averages that are fixed in time.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): fixed column noise

Raises:

No exception is raised.

```
\verb"pyradi.ry3dnoise.getNV" (imgSeq)"
```

Average for each column over all frames and rows. Represents variations in row averages that are fixed in time.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): fixed row noise

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getNVH(imgSeq)
```

Average over all frames, for each pixel. Represents non-uniformity spatial noise that does not change from frame-to-frame.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): fixed spatial noise

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getNTV(imgSeq)
```

Average for each row and frame over all columns. Represents variations in row averages that change from frame-to-frame.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): row temporal noise

Raises:

No exception is raised.

10.2. Module functions

```
pyradi.ry3dnoise.getNTH(imgSeq)
```

Average for each column and frame over all rows. Represents variations in column averages that change from frame-to-frame.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): column temporal noise

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getNTVH(imgSeq)
```

Noise for each row, frame & column. Represents random noise in the detector and electronics.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): temporal pixel noise

Raises:

No exception is raised.

```
pyradi.ry3dnoise.getTotal(imgSeq)
```

Total system noise.

Args:

imgSeq (np.ndarray): numpy array of dimensions (frames,rows,cols)

Returns:

noise (double): total system noise

Raises:

No exception is raised.

COLOUR COORDINATES

11.1 Overview

This module provides rudimentary colour coordinate processing. Calculate the CIE 1931 rgb chromaticity coordinates for an arbitrary spectrum.

See the __main__ function for examples of use.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

11.2 Module functions

pyradi.rychroma.chromaticityforSpectralL (spectral, radiance, xbar, ybar, zbar)
Calculate the CIE chromaticity coordinates for an arbitrary spectrum.

Given a spectral radiance vector and CIE tristimulus curves, calculate the CIE chromaticity coordinates. It is assumed that the radiance spectral density is given in the same units as the spectral vector (i.e. [1/um] or [1/cm-1], corresponding to [um] or [cm-1] respectively. It is furthermore accepted that the tristimulus curves are also sampled at the same spectral intervals as the radiance. See http://en.wikipedia.org/wiki/CIE_1931_color_space for more information on CIE tristimulus spectral curves.

Args:

```
spectral (np.array[N,] or [N,1]): spectral vector in [um] or [cm-1]. radiance (np.array[N,] or [N,1]): the spectral radiance (any units), (sampled at spectral). xbar (np.array[N,] or [N,1]): CIE x tristimulus spectral curve (sampled at spectral values). ybar (np.array[N,] or [N,1]): CIE y tristimulus spectral curve (sampled at spectral values). zbar (np.array[N,] or [N,1]): CIE z tristimulus spectral curve (sampled at spectral values).
```

Returns:

[x,y,Y]: color coordinates x, y, and Y.

Raises:

No exception is raised.

TWELVE

BULK DETECTOR MODELLING

12.1 Overview

This model was built to give the user a simple but reliable tool to simulate or to understand main parameters used to design a photovoltaic (PV) infrared photodetector. All the work done in this model was based in classical equations found in the literature.

See the __main__ function for examples of use.

The example suggested here uses InSb parameters found in the literature. For every compound or material, all the parameters, as well as the bandgap equation must be changed.

This code uses the scipy.constants physical constants. For more details see http://docs.scipy.org/doc/scipy/reference/constants.html

This code does not yet fully comply with the coding standards

References:

[1] Infrared Detectors and Systems, EL Dereniak & GD Boreman, Wiley [2] Infrared Detectors, A Rogalski (1st or 2nd Edition), CRC Press [3] Band Parameters for III-V Compound Semiconductors and their Alloys, I. Vurgaftmann, J. R. Meyer, and L. R. Ram-Mohan, Journal of Applied Physics 89 11, pp. 5815–5875, 2001.

This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, Cornelius J. Willers, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646

12.2 Module functions

```
pyradi.rydetector.JouleTeEv (EJ)
Convert energy in Joule to eV.

Args:
EJ: Energy in J

Returns:
EeV: Energy in eV

pyradi.rydetector.eVtoJoule (EeV)
Convert energy in eV to Joule.

Args:
E: Energy in eV

Returns:
EJ: Energy in J
```

```
pyradi.rydetector.FermiDirac(Ef, EJ, T)
```

Returns the Fermi-Dirac probability distribution, given the crystal's Fermi energy, the temperature and the energy where the distribution values is required.

Args:

Ef: Fermi energy in J EJ: Energy in J T: Temperature in K

Returns:

fermiD: the Fermi-Dirac distribution

```
pyradi.rydetector.Absorption (wavelength, Eg, tempDet, a0, a0p)
```

Calculate the spectral absorption coefficient for a semiconductor material with given material values.

The model used here is based on Equations 3.5, 3.6 in Dereniaks book.

Args:

wavelength: spectral variable [m]
Eg: bandgap energy [Ev]
tempDet: detector's temperature in [K]
a0: absorption coefficient [m-1] (Dereniak Eq 3.5 & 3.6)
a0p: absorption coefficient in [m-1] (Dereniak Eq 3.5 & 3.6)

Returns:

absorption: spectral absorption coefficient in [m-1]

```
pyradi.rydetector.AbsorptionFile (wavelength, filename)
```

Read the absorption coefficient from a data file and interpolate on the input spectral range.

The data file must have the wavelength in the first column and absorption coefficient in [m-1] in the second column.

Args:

wavelength: spectral variable [m] filename: file containing the data

Returns:

wavelength: values where absorption is defined absorption: spectral absorption coefficient in [m-1]

```
pyradi.rydetector.QuantumEfficiency (absorption, d1, d2, theta1, nFront, nMaterial)
```

Calculate the spectral quantum efficiency (QE) for a semiconductor material with given absorption and material values.

Args:

absorption: spectral absorption coefficient in [m-1] d1: depth where the detector depletion layer starts [m] d2: depth where the detector depletion layer ends [m] theta1: angle between the surface's normal and the radiation in radians nFront: index of refraction of the material in front of detector nMaterial: index of refraction of the detector material

Returns:

quantumEffic: spectral quantum efficiency

```
pyradi.rydetector.Responsivity(wavelength, quantumEffic)
```

Responsivity quantifies the amount of output seen per watt of radiant optical power input [1]. But, for

this application it is interesting to define spectral responsivity that is the output per watt of monochromatic radiation.

The model used here is based on Equations 7.114 in Dereniak's book.

```
Args:
```

```
wavelength: spectral variable [m] quantumEffic: spectral quantum efficiency
```

Returns:

```
responsivity in [A/W]
```

```
pyradi.rydetector.DStar(areaDet, deltaFreq, iNoise, responsivity)
```

The spectral D* is the signal-to-noise output when 1 W of monochromatic radiant flux is incident on 1 cm² detector area, within a noise-equivalent bandwidth of 1 Hz.

Args:

```
areaDet: detector's area in [m2] deltaFreq: measurement or desirable bandwidth - [Hz] iNoise: noise current [A] responsivity: spectral responsivity in [A/W]
```

Returns

```
detectivity [cm sqrt[Hz] / W] (note units)
```

```
pyradi.rydetector.NEP (iNoise, responsivity)
```

NEP is the radiant power incident on detector that yields SNR=1 [1].

Args:

```
iNoise: noise current [A] responsivity: spectral responsivity in [A/W]
```

Returns

spectral noise equivalent power [W]

This function calculates the reverse saturation current, by Equation 7.22 in Dereniak's book

Args:

```
mobE: electron mobility [m2/V.s] tauE: electron lifetime [s] mobH: hole mobility [m2/V.s] tauH: hole lifetime [s] me: electron effective mass [kg] mh: hole effective mass [kg] na: acceptor concentration [m-3] nd: donor concentration [m-3] Eg: energy bandgap in [Ev] tDetec: detector's temperature in [K] areaDet: detector's area [m2]
```

Returns:

```
I0: reverse sat current [A]
```

```
\verb|pyradi.rydetector.EgVarshni|| (E0, \textit{VarshniA}, \textit{VarshniB}, \textit{tempDet})|
```

This function calculates the bandgap at detector temperature, using the Varshni equation

Args:

12.2. Module functions

```
E0: band gap at room temperature [eV]
```

VarshniA: Varshni parameter VarshniB: Varshni parameter

tempDet: detector operating temperature [K]

Returns:

Eg: bandgap at stated temperature [eV]

```
pyradi.rydetector. IXV (V, IVbeta, tDetec, iPhoto, I0)
```

This function provides the diode curve for a given photocurrent.

The same function is also used to calculate the dark current, using IVbeta=1 and iPhoto=0

Args:

V: bias [V]

IVbeta: diode equation non linearity factor;

tDetec: detector's temperature [K]

iPhoto: photo-induced current, added to diode curve [A]

I0: reverse sat current [A]

Returns:

current from detector [A]

```
pyradi.rydetector.Noise(tempDet, IVbeta, Isat, iPhoto, vBias=0)
```

This function calculates the noise power spectral density produced in the diode: shot noise and thermal noise. The assumption is that all noise sources are white noise PSD.

Eq 5.143 plus thermal noise, see Eq 5.148

Args:

tempDet: detector's temperature [K] IVbeta: detector nonideal factor [-] Isat: reverse saturation current [A] iPhoto: photo current [A]

vBias: bias voltage on the detector [V]

Returns:

detector noise power spectral density [A/Hz1/2]

R0: dynamic resistance at zero bias.

Johnson noise only noise power spectral density [A/Hz1/2]

Shot noise only noise power spectral density [A/Hz1/2]

```
pyradi.rydetector.DstarSpectralFlatPhotonLim (Tdetec, Tenvironment, epsilon)
```

This function calculates the photon noise limited D^* of a detector with unlimited spectral response. This case does not apply to photon detectors. The absorption is assumed spectrally flat.

Args:

Tdetec: detector temperature [K]

Tenvironment: environment temperature [K]

epsilon: emissivity/absorption

Returns:

D* [cm sqrt[Hz] / W] (note units)

THIRTEEN

CODING GUIDELINES

Broadly speaking we adhere to the Google Python Style Guide, but not always. The style guide is available at http://google-styleguide.googlecode.com/svn/trunk/pyguide.html. This style is based on Python's PEP 8 http://www.python.org/dev/peps/pep-0008/.

13.1 Naming Rules

We deviate from PEP 8 / Google's naming rules as shown here. Essentially we avoid underscores inside names, and prefer to Capitalise words to highlight. The primary motivation is (in our opinion) improved readability: it better binds the words into a single entity. Underscores tend to break the name visually into separate sub-names.

Туре	Public	Internal	PEP 8	
Packages	lowerwordslater		lower_with_under	
Modules	lowerwordslater	_lowerwordslater	lower_with_under	
Classes	CapWordsLater	_CapWordsLater	CapWords	
Exceptions	CapWordsLater		CapWords	
Functions	lowerWords-	_lowerWordsLater()	lower_with_under())
	Later()			
Global/Class	CAPS_WITH_UN	DERAPS_WITH_UNDER	CAPS_WITH_UNI	DER
Constants				
Global/Class	lowerWords-	_lowerWordsLater	lower_with_under	
Variables	Later			
Instance Variables	lowerWords-	_lowerWordsLater (protected) or	lower_with_under	
	Later	lowerWordsLater (private)		
Method Names	lowerWords-	_lowerWordsLater() (protected) or	lower_with_under())
	Later()	lowerWordsLater() (private)		
Function/Method	lowerWords-		lower_with_under	
Parameters	Later			
Local Variables	lowerWords-		lower_with_under	
	Later			

FOURTEEN

EXAMPLES OF CODE USE

The respective python files all have examples of use and simple test code at the end of each of the files. Execute these python files as scripts to execute the example code, and observe the results.

FIFTEEN

INDICES AND TABLES

- genindex
- modindex
- search

[SPIE8543Pyradi] *Pyradi: an open-source toolkit for infrared calculation and data processing*, SPIE Proceedings Vol 8543, Security+Defence 2011, Technologies for Optical Countermeasures, Edinburgh, 24-27 September, C.J. Willers, M. S. Willers, R.A.T. Santos, P.J. van der Merwe, J.J. Calitz, A de Waal and A.E. Mudau.

78 Bibliography

PYTHON MODULE INDEX

р

```
pyradi,1
pyradi.ry3dnoise,61
pyradi.rychroma,65
pyradi.rydetector,67
pyradi.ryfiles,13
pyradi.rylookup,49
pyradi.rymodtran,59
pyradi.ryplanck,7
pyradi.ryplot,19
pyradi.ryptw,55
pyradi.ryutils,41
```