Zadanie 5 Udowodnij poprawność algorytmu Boruvki (Sollina).

Przedstawmy ideę algorytmu Boruvki:

- 1. Tworzymy graf pomocniczy z samych superwierzchołków (na początku są to po prostu wierzchołki).
- 2. Dla każdego superwierzchołka dodajemy najlżejszą incydentną krawędź do grafu pomocniczego.
- 3. Superwierzchołki, między którymi istnieje teraz ścieżka łączymy w jeden superwierzchołek.
- 4. Powtarzamy, aż nie otrzymamy pojedynczego superwierzchołka.

Algorytm ma działać przy przy założeniu, że każda para krawędzi w grafie ma różną długość.

Udowodnimy, że algorytm jest poprawny.

Lemat 1. Algorytm znajduje drzewo rozpinające. Wystarczy, że pokażemy, że w każdej iteracji superwierzchołki są drzewami, wtedy w szczególności po zakończeniu algorytmu nasz ostatni superwierzchołek będzie drzewem zawierającym wszystkie wierzchołki, czyli drzewem rozpinającym.

Lemat 1.1 Algorytm nie tworzy cykli. Wystarczy pokazać, że w dowolnym kroku, żaden superwierzchołek nie ma cyklu.

Zaczynamy od grafu, w którym są superwierzchołki są pojedynczymi wierzchołkami, są to oczywiście grafy bez cyklu.

Załóżmy nie wprost, że w którejś iteracji algorytmu powstał cykl w jakimś superwierzchołku S. Rozważymy ta sytuację.

- Powiedzmy, że S powstał z superwierzchołków z poprzedniego kroku S_1 i S_2 i krawędzi do nich dołączonych odpowiednio e_1 i e_2 . Skoro e_1 zostało dołączone do S_1 , a nie e_2 to $c(e_1) < c(e_2)$, ale skoro e_2 została dołączona do S_2 , zamiast e_1 , to $c(e_2) < c(e_1)$ i otrzymujemy sprzeczność.
- Rozumowanie to można uogólnić. Powiedzmy, że S powstał z trzech lub więcej superwierzchołków $S_1, S_2, S_3, ...$ z poprzedniego kroku oraz krawędzi $e_1, e_2, e_3, ...$ do nich przyłączonych. W S Pojawił się jakiś cykl C, który musiał być złożony z jakichś superwierzchołków $S_1, S_2, S_3, ..., S_l$ i krawędzi $e_1, e_2, e_3, ..., e_l$ położonych na przemian.

Jak widać na powyższym rysunku skoro e_2 zostało dołączone do S_2 zamiast e_1 to $c(e_1) > c(e_2)$. Kontynuując to rozumowanie dla każdego wierzchołka otrzymujemy nierówność

$$c(e_1) > c(e_2) > \dots > c(e_{l-1}) > c(e_l) > c(e_1)$$

Z której wynikałoby, że $c(e_1) > c(e_1)$, więc mamy sprzeczność.

Lemat 1.2 W każdym kroku algorytmu superwierzchołki są spójne. Zaczynamy od pojedynczych wierzchołków, które są spójne. Później tworzymy kolejne łącząc krawędziami grafy spójne z czego na pewno otrzymamy graf spójny.

Z lematu 1.1 i lematu 1.2 wynika, że w każdym kroku superwierzchołki są spójnymi acyklicznymi grafami, czyli drzewami, a skoro ostatecznie otrzymamy jeden superwierzchołek, który zawiera wszystkie wierzchołki, to będzie on drzewem rozpinającym, co dowodzi prawdziwości lematu 1.

Chad lemat 2. Wynikowy superwierzchołek jest MST grafu. Pokażemy indukcyjnie, że w każdej iteracji powstały graf jest podgrafem jakiegoś MST.

Podstawa: W pierwszej iteracji superwierzchołki to po prostu pojedyncze wierzchołki, więc są one podgrafem każdego **MST**.

Krok: Załóżmy, że graf T_k był podgrafem jakiegoś \mathbf{MST} , nazwijmy je M. Oraz załóżmy nie wprost, że graf powstały w kolejnym kroku – T_{k+1} nie jest podgrafem M. Wtedy istnieje krawędź $e \in T_{k+1}$ i $e \notin M$, która została dodana w obecnym kroku. Dodajmy ją do M. Wtedy mamy w nim cykl. Skoro e łączyła jakieś superwierzchołki S_i, S_j , to znajdziemy inną krawędź $f \in M$, która łączy wierzchołki z superwierzchołka S_i z innymi, ale skoro nie została dołaczona do grafu T_{k+1} to z działania algorytmu wnioskujemy w(f) > w(e). Możemy teraz stworzyć nowe drzewo $N = M \setminus \{f\} \cup \{e\}$, które ma mniejszą wagę niż M, więc sprzeczność z tym , że M było \mathbf{MST} .