WENTER

In The Drawings

Please replace informal drawings (FIGURES 1-14) with the proposed amended formal drawings (FIGURES 1-14).

In The Specification

At page 1, line 3 before "Background of Invention" insert the following substitute paragraphs:

-RELATED APPLICATION

The present application is a continuation of co-pending U.S. Patent Application Serial No. 09/351,418, titled MODIFICATION OF THE SHAPE/SURFACE FINISH OF BATTERY GRID WIRES TO IMPROVE PAST ADHESION, filed July 9, 1999, which is hereby incorporated by reference.

In The Claims

Please cancel Claims 1-38, without prejudice

Please add the following new Claims 39-114 as follows:

139

A method of making a battery comprising:

forming a strip of interconnected grids from a grid material, each interconnected grid including a network bordered by at least one frame element, one of the frame elements having a current collector, the network comprising a plurality of spaced apart grid elements, each grid element having opposed ends, each opposed end being joined to one of a plurality of nodes to define a plurality of open spaces in the network;

forming at least a portion of the grid elements at a position intermediate the opposed ends of the grid element such that a first transverse cross-section taken intermediate the opposed ends of the grid element differs from a second transverse cross-section taken at one of the opposed ends of the grid element;

applying paste to the strip; and

cutting the strip to form a plurality of plates.

Ло: 1

A3

2

1213

10

11

1	<i>4</i> 0.	The method of Claim 39 wherein forming at least a portion of the grid
2	elements com	pprises:
3		applying a torsional stress to the grid element at the position intermediate
4	the op	posed ends of the grid element thereby rotating the grid element.
1	41.	The method of Claim 39 wherein forming at least a portion of the grid
2	elements com	pprises:
3		applying a torsional stress to the grid wire element at the position
4	intern	nediate the opposed ends of the grid element thereby rotating the grid
5	eleme	nt.
1	42.	The method of Claim 39 wherein forming at least a portion of the grid
2	elements comprises:	
3		stamping the grid element at the position intermediate the opposed ends
4.	of the	grid element.
1	43.	The method of Claim 42 wherein the first transverse cross-section
2	substantially	has a shape selected from the group comprising diamond, oval, rhomboid,
3	hexagon, and	octagon.
1	44.	The method of Claim 43 wherein the network and each of the frames
2	define oppose	ed substantially planar surfaces, and each first transverse cross-section does
3	not extend be	yond the planar surfaces.
1	45.	The method of Claim 39 wherein the network and each of the frames
2	define oppose	ed substantially planar surfaces, and each second transverse cross-section
3	does not exte	nd beyond the planar surfaces.

1	46. The method of Claim 41 wherein forming the strip of interconnected
2	grids from a grid material comprises:
3	feeding a continuous strip of the grid material along a linear path aligned
4	with the longitudinal direction of the strip; and
5	punching grid material out of the strip to form the strip of interconnected
6	grids.
1	The method of Claim 46 wherein the continuous strip of the grid material
2	is formed by a continuous casting process.
1	48. The method of Claim 46 wherein the continuous strip of the grid material
2	is formed by a rolling process.
1	The method of Claim 41 wherein forming the strip of interconnected
2	grids from a grid material comprises:
3	feeding a continuous strip of the grid material along a linear path aligned
4	with the longitudinal direction of the strip
5	piercing apertures in the strip of grid material; and
6	laterally expanding the strip of grid material to form the strip of
7	interconnected grids.
1	70. The method of Claim 41 wherein forming the strip of interconnected
2	grids from a grid material comprises:
3	melting the grid material;
4	continuously casting the grid material to from a continuous web; and
5	rolling the web to form the strip of interconnected grids.
1	51. The method of Claim 41 wherein forming the strip of interconnected
2	grids from a grid material comprises:
3	melting the grid material; and
4	continuously casting the grid material to form the strip of interconnected
Š	grids.

1	52.	The method of Claim 41 further comprising forming at least a portion of
2	the nodes bef	ore applying paste to the strip.
1	53.	The method of Claim 39 wherein the grid element is a grid wire.
1	54.	The method of Claim 39 wherein the network is a web.
1	55.	The method of Claim 39 wherein forming the grid comprises deforming
2	the grid.	
1	56.	The method of Claim 39 further comprising installing at least one plate in
2	a container.	
1 .	57.	The method of Claim 39 further comprising providing acid in the battery.
1	58.	The method of Claim 39 wherein the collector comprises a lug.
1	<i>59</i> .	A method of making a battery of a type having plurality of grids
2	comprising:	
3		forming a strip of interconnected grids from a grid material, each
4	interce	onnected grid including a network bordered by at least one frame element,
5	one of	f the frame elements having a current collector, the network comprising a
6	plural	ity of spaced apart grid elements, each grid element having opposed ends,
7	each o	opposed end being joined to one of a plurality of nodes to define a plurality
8	of ope	en spaces in the network;
9		forming at least a portion of the grid elements at a position intermediate
10	, the op	posed ends of the grid element such that a first transverse cross-section
11.	taken	intermediate the opposed ends of the grid element differs from a second
12	transv	erse cross-section taken at one of the opposed ends of the grid element;
13	and	
14		cutting the strip to form a plurality of grids.

1	60.	The method	of Claim 59 wherein the step of forming at least a portion of
2	the grid elem	ents comprises	applying a torsional stress to the grid element at the
3	position inter	mediate the op	posed ends of the grid element thereby rotating the grid
4	element.	•	

- 1 61. The method of Claim 59 wherein the step of forming at least a portion of 2 the grid elements comprises stamping the grid element at the position intermediate the 3 opposed ends of the grid element.
- 1 62. The method of Claim 61 wherein the network and each of the frames
 2 define opposed substantially planar surfaces, and each first transverse cross-section does
 3 not extend beyond the planar surfaces.
- 1 63. The method of Claim 59 wherein the grid element is a grid wire.
- 1 64. The method of Claim 59 wherein the network is a web.
- 1 65. The method of Claim 59 further comprising the step of installing at least 2 one plate in a container.
- 1 66. The method of Claim 59 further comprising the step of providing acid in 2 the battery.
- 1 67. The method of Claim 59 wherein forming the grid comprises deforming 2 the grid.
- 1 68. The method of Claim 59 wherein the collector comprises a lug.

1	A method of making a battery of a type having a plurality of battery	
2	plates comprising:	
3	melting a grid material;	
4	continuous y casting the grid material to form a continuous strip;	•
5	rolling the strip;	
6	punching grid material out of the strip to form interconnected grids, each	ch
7	interconnected grid including a network bordered by a frame, the frame having	g a
8	current collector lug, the network comprising a plurality of spaced apart grid	
9	elements, each grid element having opposed ends, each opposed end being	
10	joined to one of a plurality of nodes to define a plurality of open spaces in the	
11	network;	
12	stamping at least aportion of the grid elements at a position intermedian	te
13	the opposed ends of the grid element such that a first transverse cross-section	
14	taken at the position intermediate the opposed ends of the grid element differs	
15	from a second transverse cross-section taken at one of the opposed ends of the	
16	grid element;	
17	applying paste to the strip; and	
18	cutting the strip to form the plurality of battery plates.	
1	70. The method of Claim 69 wherein the first transverse cross-section	
2	substantially has a shape selected from group comprising diamond, oval, rhomboid,	
3	hexagon, and octagon.	
1	71. The method of Claim 69 wherein the network and each of the frames	
2	define opposed substantially planar surfaces, and each first transverse cross-section do	es
3	not extend beyond the planar surfaces.	
1	72. The method of Claim 69 wherein the grid element is a grid wire.	
1	73. The method of Claim 69 wherein the network is a web.	

1	74.	The method of Claim 69 further comprising the step of installing at least
2	one plate in a	container.
1	75.	The method of Claim 69 further comprising the step of providing acid in
2	the battery.	
1	76.	The method of Claim 69 wherein forming the grid comprises deforming
2	the grid.	
1	77.	The method of Claim 69 wherein the collector comprises a lug.
1	As.	A method of forming a battery of a type having a positive plate
2	comprising:	
3		casting a material to form a continuous strip;
4		rolling the strip;
5		punching material out of the strip to form interconnected grids, each
6	interco	onnected grid including a network and a current collector, the network
7	compr	ising a plurality of spaced apart grid elements, each grid element having
8	oppose	ed ends, each opposed end being joined to one of a plurality of nodes to
9	define	a plurality of open spaces in the network;
10		stamping at least a portion of the grid elements at a position intermediate
11	the op	posed ends of the grid element such that a first transverse cross-section
12	taken a	at the position intermediate the opposed ends of the grid element differs
13	from a	second transverse cross-section taken at one of the opposed ends of the
14	grid el	ement;
15		applying paste to the strip; and
16		cutting the strip to form a plurality of positive plates.
1	79.	The method of Claim 78 wherein the first transverse cross-section
2	substantially h	as a shape selected from group comprising diamond, oval, rhomboid,
3	hexagon, and	octagon.

1	80.	The method of Claim 79 wherein the network and each of the frames
2	define oppose	ed substantially planar surfaces, and each first transverse cross-section does
3	not extend be	yond the planar surfaces.
	0.1	
1	81.	The method of Claim 78 wherein the grid element is a grid wire.
1 .	82.	The method of Claim 78 wherein the network is a web.
1	83.	The method of Claim 78 further comprising the step of installing at least
2	one plate in a	container.
1	84	The method of Claim 78 further comprising the step of providing acid in
2	the battery.	
1	85.	The method of Claim 78 wherein forming the grid comprises deforming
2	the grid.	
1	86.	The method of Claim 78 wherein the collector comprises a lug.
1	% 1.	A method of making grid for use in a battery comprising:
2		forming a preform grid, the preform grid including a network bordered
3	by at 1	least one frame element, one of the frame elements having a current
4	collec	tor, the network comprising a plurality of spaced apart grid elements, each
5	grid e	lement having opposed ends, each opposed end being joined to one of a
6	plural	ity of nodes to define a plurality of open spaces in the network; and
7		forming at least a portion of the grid elements of the preform grid at a
8	positio	on intermediate the opposed ends of the grid element such that a first
9	transv	erse cross-section taken at the position intermediate the opposed ends of
0	the gr	id element differs from a second transverse cross-section taken at one of
1	the op	posed ends of the grid element.

1	88.	The method of Claim 86 wherein the first transverse cross-section
2	substantially	has a shape selected from group comprising diamond, oval, rhomboid,
3	hexagon, and	l octagon.
1	89.	The method of Claim 86 wherein the network and each of the frames
2	define oppos	ed substantially planar surfaces, and each first transverse cross-section does
3	not extend be	eyond the planar surfaces.
1	90.	The method of Claim 87 wherein the grid element is a grid wire.
1	91.	The method of Claim 87 wherein the network is a web.
1	92.	The method of Claim 87 further comprising the step of installing at least
2	one plate in a	a container.
1	93.	The method of Claim 87 comprising the step of providing acid in the
2	battery.	
1	94.	The method of Claim 87 wherein forming the grid comprises deforming
2	the grid.	
1	95.	The method of Claim 87 wherein the collector comprises a lug.
1	96.	A grid for a battery comprising a network bordered by at least one frame
2	element, one	of the frame elements having a current collector,
3		the network comprising a plurality of spaced apart grid elements, each
4	grid e	element having opposed ends, each opposed end being joined to one of a
5	plural	lity of nodes to define a plurality of open spaces,
6		at least a portion of the grid elements having a first transverse cross-
7	sectio	n taken at a position intermediate the opposed ends of the gird element that
8	differ	s from a second transverse cross-section taken at one of the opposed ends

of the grid element.

9

- 1 97. The grid of Claim 96 wherein the second transverse cross-section is substantially rectangular.
- 1 98. The grid of Claim 96 wherein the first transverse cross-section is a 2 substantially rectangular cross-section rotated about 20 degrees to about 70 degrees in 3 relation to the second transverse cross-section.
- 1 99. The grid of Claim 96 wherein the first transverse cross-section is a 2 substantially rectangular cross-section rotated about 35 degrees to about 55 degrees in 3 relation to the second transverse cross-section.
- 1 100. The grid of Claim 96 wherein the first transverse cross-section 2 substantially has a shape selected from group consisting generally of diamond, oval, 3 rhomboid, hexagon, and octagon.
- 1 101. The grid of Claim 96 wherein the network provides a frame and each of 2 the frames define opposed substantially planar surfaces, such that each first transverse 3 cross-section does not extend beyond the planar surfaces.
- 1 102. The grid of Claim 101 wherein the first transverse cross-section is 2 substantially a diamond shape.
- 1 103. The grid of Claim 101 wherein the first transverse cross-section is 2 substantially a hexagon shape.
- 1 104. The grid of Claim 101 wherein the first transverse cross-section is 2 substantially an octagon shape.
- 1 105. The grid of Claim 101 wherein the first transverse cross-section is 2 substantially an oval shape.
- 1 106. The grid of Claim 101 wherein the first transverse cross-section is 2 substantially a rhomboid shape.

The grid of Claim 96 wherein the grid element is a grid wire.

The grid of Claim 96 wherein the network is a web.

1

1

107.

108.