

Introduction to Deep Learning (I2DL)

Exercise 4: Simple Classifier

Today's Outline

- The Pillars of Deep Learning
- Exercise 4: Simple Classifier → Binary Prediction
 - Housing Dataset
 - Training loop: Forward & Backward pass
- Backpropagation

The Pillars of Deep Learning

I2DI: Prof. Cremers

The Pillars of Deep Learning

Data Dataset Dataloader

Model Network Loss/Objective

The Pillars of Deep Learning

Exercise 3: Dataset and Dataloader

The Pillars of Deep Learning

Exercise 4: Simple Classifier

Exercise 5: Simple Network

Exercise 6: Hyperparameter Tuning

Model Network Loss/Objective

Goal: Exercise 4

- Goal: Training process
- Skip: Model Pillar
- Simplified Model: Classifier which is a 1-Layer Neural Network

Goals: Exercises 5++

- Ex 3 + 4: Dataloading and Trainings process
- Ex 5++: Expand the exercises to more interesting model architectures

Exercise 4: Simple Classifier

Housing Dataset

- Housing Dataset: Data of ~1400 houses including 81 features like Neighborhood, GrLivArea, YearBuilt, etc.
- Simplified model: 1 input feature to predict house price label ("expensive" vs "low-prized")

housing_train

ld	Neighborhood	BldgType	HouseStyle	YearBuilt	YearRemodAdd	RoofStyle	CentralAir	GrLivArea	FullBath	HalfBath	Fireplaces	PoolArea	Fence	SalePrice
1	CollgCr	1Fam	2Story	2003	2003	Gable	Υ	1710	2	1	0	0	NA	208500
2	Veenker	1Fam	1Story	1976	1976	Gable	Υ	1262	2	0	1	0	NA	181500
3	CollgCr	1Fam	2Story	2001	2002	Gable	Υ	1786	2	1	1	0	NA	223500
4	Crawfor	1Fam	2Story	1915	1970	Gable	Υ	1717	1	0	1	0	NA	140000
5	NoRidge	1Fam	2Story	2000	2000	Gable	Υ	2198	2	1	1	0	NA	250000
6	Mitchel	1Fam	1.5Fin	1993	1995	Gable	Υ	1362	1	1	0	0	MnPrv	143000
7	Somerst	1Fam	1Story	2004	2005	Gable	Υ	1694	2	0	1	0	NA	307000
8	NWAmes	1Fam	2Story	1973	1973	Gable	Υ	2090	2	1	2	0	NA	200000

Exercise 4 - Classifying House Prices

 $\begin{array}{c} \mathsf{ML}\,\mathsf{Model}\,M\\ M(\mathbf{x}) = \mathbf{y} \end{array}$

Expensive y = 1

 $\begin{array}{c} \mathsf{ML}\,\mathsf{Model}\,M\\ M(\mathbf{x}) = \mathbf{y} \end{array}$

Low-priced y = 0

3rd Pillar of Deep Learning

Model Data Training Model Data **Validation** Loss **Function** Data Very

simple

model

Exercise 03

Backpropagation

Backpropagation: Overview

Forward pass

Backpropagation: Loss Function

Forward pass

Backward pass

Binary Cross Entropy Loss: $L(y,\hat{y}) = -\left(y \cdot \log(\hat{y}) + (1-y) \cdot \log(1-\hat{y})\right)$

Backpropagation: Update Step

Forward pass

Optimization with gradient descent: $\theta_{t+1} = \theta_t - \lambda \cdot \nabla_{\theta} \mathbf{L}$

Backpropagation: Summary

- Input: $X \in \mathbb{R}^{N \times D + 1}$ representing our data with N samples and D+1 feature dimensions
- Output: Binary labels given by $y \in \mathbb{R}^{N \times 1}$
- Model: Classifier of the form $y = \sigma(X \cdot w)$
- Sigmoid function: $\sigma:\mathbb{R} \to [0,1]$ with $\sigma(t)=\frac{1}{1+e^{-t}}$

• Weights of the Classifier: $w = (w_1, w_2, \dots, w_{D+1}) \top \in \mathbb{R}^{D+1}$

Backpropagation: Example

Backpropagation

Forward pass

Backward pass

Sample $x=(x_1,x_2,\ldots,x_{D+1})$

Forward Pass

Classifier Model $y = \sigma(X \cdot w)$

(Single sample)

Input Data X

(Single sample -> N samples)

$$X \in \mathbb{R}^{N \times D + 1}$$

$$X = egin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D+1} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D+1} \end{pmatrix}$$

Forward Pass

Sample $x_i = (x_{i1}, x_{i2}, \dots, x_{i,D+1})$

(N samples)

Forward Pass

Backward Pass

Sample
$$x=(x_1,x_2,\ldots,x_{D+1})$$

Backward Pass

Backward Pass

- Backward Pass: Derivative of function with respect to weights $w=(w_1,w_2,\ldots,w_{D+1})$ of our Classifier
- Attention: Make sure you understand the dimensions here
- Step 1: Forward + Backward Pass for one sample
- Step 2: Forward + Backward Pass for N samples

Overview Exercise 4

- Two Notebooks
 - Optional: Preprocessing
 - Logistic regression model

Fixed Deadline: Wednesday 15:59

- Submission
 - Several implementation tasks in the notebook
 - Submission file creation in Notebook

See you next week @