

Fundamentos de Machine Learning aplicados a Geometalurgia

Instructor

Cristian Jeraldo Geometalurgia y Data Science

23 años en geología económica Consultor y Auditor geometalúrgico Data Scientist en geo-minero-metalurgia

Images created with Leonardo AI and Playground AI

https://www.asgeominspa.com/

https://www.linkedin.com/in/cristian-jeraldo-geometallurgist/

Participantes

Objetivos del Curso

Introducir al asistente en los fundamentos de machine learning, los que permitan desarrollar análisis y modelación de parámetros geometalúrgicos.

El curso es desarrollado en Jupyter Notebook, la más popular plataforma interactiva de código, incluyendo el uso de las librerías scikit-learn y Feature-engine.

Introducción

<u>https://chat.openai.com/chat</u> (natural language processing)

"Chat, genera una introducción breve para el curso de machine learning aplicado a geometalurgia"

<u>https://www.d-id.com/</u> (real-time face animation and text-to-speech)

5

Sesiones

13 al 15 de diciembre, 9:00 a 18:00 horas.

Evaluación:

Envío de notebooks desarrollados durante el curso.

Agenda

Machine Learning basis

Univariate Exploratory Data Analysis (EDA)

Data Preparation

Regression model (proxy) for geometallurgical parameter Ai

Geometalurgia

Disciplina que facilita la integración en minería y permite maximizar el valor de los minerales procesados mediante el estudio de su variabilidad. El producto de este trabajo colaborativo es la estimación de las variables clave de proceso en el modelo de bloques, así como el entendimiento de su relación con las variables primarias.

Cadena de Valor Geometalurgia: Proyecto

En este curso nos concentraremos en la definición de UGMs (EDA), así como en generar un modelo de regresión para un parámetro geometalúrgico.

Unidad Geometalúrgica (UGM)

Conformadas a partir de una o más unidades geológicas con similar respuesta metalúrgica, según resultados de test estándar de pequeña escala.

Las UGMs permiten estimar el modelo de bloques con aquellas variables clave de proceso, tales como capacidad del tratamiento, recuperación del elemento útil, consumo de insumos y calidad del producto.

Geometallurgical Unit

Machine Learning and Data Science

Machine learning is a type of artificial intelligence that allows software applications to become more accurate at predicting outcomes without being explicitly programmed to do so. Machine learning algorithms use historical data as input to predict new output values.

Data Science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge from data across a broad range of application domains.

Source: <a href="https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML#:~:text=Machine%20learning%20(ML)%20is%20a Source: https://en.wikipedia.org/wiki/Data_science

Structured Data **Unstructured Data** VS Cannot be displayed Can be displayed in rows, columns and in rows, columns and C C1 C2 relational databases relational databases D D1 D2 0,1,2, 3,4,5, 6,7,8, DAY Images, audio, video, Numbers, dates word processing files, 4,2025 YZ, D,E F+G-H, and strings e-mails, spreadsheets Estimated 20% of Estimated 80% of 20% 80% enterprise data (Gartner) enterprise data (Gartner) •• Requires less storage Requires more storage

BD sondajes, planta o muestras geometalúrgicas

Fotografías de sondajes, imágenes granulometría alimentación a planta

machine learning

deep learning

Why coding?

- Coding allows total flexibility: do what you want and what you need to do.
- Coding can enhance problem-solving skills.
- Coding is a universal language.
- Be part of a huge community.
- Coding can improve career prospects.

In this information era, coding has become the most important skill we need.

Target variable: abrasion index (Ai)

Mills

Liners

Steel balls

The abrasion index is used as an indicator of metal wear and crusher and mill liner life expectancy and ball consumption rates.

Target variable: abrasion index (Ai)

Test consist of a hardened Cr-Ni-Mo alloy steel paddle 7.62 x 2.54 x 0.64 cm with 2.5 of its length sitting inside a rotor, covered by a concentric steel drum. Feed material 1.6 kg -3/4 +1/2 inch fraction.

Rotor rotates at 632 rpm while the drum rotates in the same direction at 70 rpm. This process takes 15 minutes and it is repeated four times. The loss in mass (g) of the spindle gives the abrasion index.

Target variable: abrasion index (Ai)

Bond developed the following correlations based on the wear rate in pounds of metal wear/kWh of energy used in the comminution process.

Rods			0.35(Ai – 0.020) ^{0.2}
Liners	lb/kWh	=	0.035(Ai – 0.015) ^{0.3}
Balls	lb/kWh	=	0.35(Ai – 0.015) ^{0.33}
Liners	lb/kWh		0.026(Ai – 0.015) ^{0.3}
Balls	lb/kWh	=	0.05Ai ^{0.5}
Liners			0.005Ai ^{0.5}
Liners			(Ai + 0.22)/11
Roll shell	lb/kWh	=	(0.1Ai) ^{0.687}
	Liners Balls Liners Balls Liners Liners	Liners Ib/kWh Balls Ib/kWh Liners Ib/kWh Balls Ib/kWh Liners Ib/kWh Liners Ib/kWh	Liners Ib/kWh = Balls Ib/kWh = Liners Ib/kWh = Balls Ib/kWh = Liners Ib/kWh = Liners Ib/kWh =

https://www.911metallurgist.com/blog/table-of-bond-abrasion-index-for-varied-minerals-materials

Predictores: Qemscan

Método instrumental esencialmente no destructivo, basado en la identificación de fases/minerales a través de la combinación de imágenes de electrones captados punto a punto sobre una malla regular en la muestra.

(Qemscan Quantitative Evaluation of Materials by Scanning Electron Microscope)

Predictores: Qemscan

Respuesta a las señales de un haz incidente de electrones:

SC: Muestra

E: Haz de Electrones

BSE: Electrones

Retrodispersados

X: Rayos X

Predictores: Qemscan

BSE: La señal de electrones retrodispersados permite generar una imagen cualitativa en función de su diferente número atómico promedio.

X: La señal de rayos X permite obtener la composición química elemental de la muestra.

