Homework 1. Solutions

1 Show that the condition of non-degeneracy for a symmetric matrix $||g_{ik}||$ follows from the condition that this matrix is positive-definite.

Solution Suppose det g = 0, i.e. g is degenerate matrix (rows and columns of the matrix are linear dependent). Then there exists non-zero vector $\mathbf{x} = (x^1, x^2)$ such that $g_{ik}x^k = 0$, hence $g_{ik}x^ix^k = 0$ for $\mathbf{x} \neq 0$. Contradiction to the condition of positive-definiteness.

2 Let (u,v) be local coordinates on 2-dimensional Riemannian manifold M. Let Riemannian metric be given in these local coordinates by the matrix

$$||g_{ik}|| = \begin{pmatrix} A(u,v) & B(u,v) \\ C(u,v) & D(u,v) \end{pmatrix},$$
(2)

where A(u,v), B(u,v), C(u,v), D(u,v) are smooth functions. Show that the following conditions are fulfilled:

- a) B(u, v) = C(u, v),
- b) $A(u, v)D(u, v) B(u, v)C(u, v) \neq 0$,
- c) A(u, v) > 0,
- d^*) A(u, v)D(u, v) B(u, v)C(u, v) > 0.
- e)* Show that conditions a), c) and d) are necessary and sufficient conditions for matrix $||g_{ik}||$ to define locally a Riemannian metric.

Solution

Consider Riemannian scalar product $G(\mathbf{X}, \mathbf{Y}) = g_{ik} X^i Y^k$.

- a) The condition that $G(\mathbf{X}, \mathbf{Y}) = G(\mathbf{Y}, \mathbf{X})$ means that $g_{ik} = g_{ki}$, i.e. B(u, v = C(u, v)).
- b) $\det G = A(u,v)D(u,v) B(u,v)C(u,v) = AD B^2 \neq 0$ since it is non-degenerate (see the solution of exercise 1)
- c) Consider quadratic form $G(\mathbf{x}, \mathbf{x}) = g_{ik}x^ix^k = Ax^2 + 2Bxy + Dy^2$. (We already know that B = C) Positive -definiteness means that $G(\mathbf{x}, \mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$. In particular if we put $\mathbf{x} = (1,0)$ we come to $G(\mathbf{x}, \mathbf{x}) = A > 0$. Thus A > 0.
 - d) Consider quadratic form $G(\mathbf{x}, \mathbf{x}) = g_{ik}x^ix^k = Ax^2 + 2Bxy + Dy^2$. We have an identity

$$G(\mathbf{x}, \mathbf{x}) = g_{ik}x^{i}x^{k} = Ax^{2} + 2Bxy + Dy^{2} = \frac{(Ax + By)^{2} + (AD - B^{2})y^{2}}{4}.$$
 (2)

We already know that A > 0 (take $\mathbf{x} = (x, 0)$). Now take $\mathbf{x} = (x, y)$: Ax + By = 0 (e.g. $\mathbf{x} = (-B, A)$) we come to $G(\mathbf{x}, \mathbf{x}) = \frac{(AD - B^2)y^2}{A} > 0$. Hence $(AD - B^2) = \det G > 0$ *.

- e) it follows from condition a) that matrix (1) is symmetric. It follows from condition (2) and equation (2) that $G(\mathbf{x}, \mathbf{x}) > 0$ for any non-zero vector \mathbf{x} .
- **3** Consider two-dimensional Riemannian manifold with Euclidean metric $G = dx^2 + dy^2$. How this metric will transform under arbitrary linear transformation $\begin{cases} x = ax' + by' \\ y = cx' + dy' \end{cases}$?

^{*} This special trick works good for dimension is n=2. We could notice that A and $AD-B^2$ are principal main minors of the matrix G. In the general case (if G is $n \times n$ symmetric matrix) using triangular transformations one can show that quadratic form $A(\mathbf{X}, \mathbf{X}) = a_{ik}x^ix^k$ (and respectively) is positive-definite if and only if all the leading principal minors Δ_k are positive (leading Principal minor Δ_k of the matrix A is a determinant of the matrix formed by first k columns and first k rows of the matrix A.). In this case matrix G_{ik} of bilinear form is transformed to unity matrix.

Solution: Perform straightforward calculations: dx = adx' + bdy' and dy = cdx' + dy'. Hence

$$G = dx^2 + dy^2 = (adx' + bdy')^2 + (cdx' + dy')^2 = (a^2 + c^2)(dx')^2 + 2(ab + cd)dx'dy' + (b^2 + d^2)(dy')^2.$$

In coordinates
$$(x,y)$$
 $||g_{ik}|| = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and in coordinates (x',y') $||g'_{ik}|| = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix}$.

- 4 Consider two-dimensional Riemannian manifold with Riemannian metric $G = du^2 + 2bdudv + dv^2$, where b is a constant.
 - a) Show that $b^2 < 1$
- b) Find new coordinates x, y such that under a "triangular" linear transformation $\begin{cases} x = u + \beta v \\ y = \delta v \end{cases}$ metric G transforms to the Euclidean metric $dx^2 + dy^2$. (Find parameters β, δ of this linear transformation)
 - c) Write down the metric $G = du^2 + 2bdudv + dv^2$ in new coordinates r, θ where $\begin{cases} u = r\cos\theta \\ y = r\sin\theta \end{cases}$
 - a) Solution: Matrix of the metric $G\begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix}$ is positive definite, hence $detg=1-b^2>0$, i.e. $b^2<1$.

Another solution: for any non-zero vector \mathbf{x} , $G(\mathbf{x}, \mathbf{x}) > 0$. Consider $\mathbf{x} = (t, 1)$. Then for an arbitrary $t(t, 1) \neq 0$ and $G(\mathbf{x}, \mathbf{x}) = t^2 + 2bt + 1 > 0$. Hence polynomial $t^2 + 2bt + 1$ has no real roots, i.e. $b^2 < 1$.

One can see that the condition $b^2 < 1$ is not only necessary but it is sufficient condition for G to be a metric.

b) Solution.

Consider triangular transformation $\begin{cases} x = u + \beta v \\ y = \delta v \end{cases}$. Then

$$G = dx^{2} + dy^{2} = (du + \beta dv)^{2} + \delta^{2} dv^{2} = du^{2} + 2\beta dv + (\beta^{2} + \delta^{2})dv^{2} = du^{2} + 2bdudv + dv^{2}$$

if we put $\beta = b$ and $\delta = \sqrt{1 - b^2}$. ($b^2 < 1$ according 4a). We see that with linear triangular transformation metric $u^2 + 2bdudv + dv^2$ can be transformed to Pythagorean one.

c) Solution: If
$$\begin{cases} u = r \cos \theta \\ y = r \sin \theta \end{cases}$$
 then

 $G = du^2 + 2bdudv + dv^2 = (\cos\theta dr - r\sin\theta d\theta)^2 + 2b(\cos\theta dr - r\sin\theta d\theta)(\sin\theta dr + r\cos\theta d\theta) + (\sin\theta dr + r\cos\theta d\theta)^2 = 0$

 $(\cos^2\theta + 2b\sin\theta\cos\theta + \sin^2\theta)dr^2 + (-2r\cos\theta\sin\theta + 2br\cos^2\theta - 2br\sin^2\theta + 2r\cos\theta\sin\theta)drd\theta + (-2r\cos\theta\sin\theta + 2br\sin^2\theta +$

$$(r^2 \sin^2 \theta - 2br^2 \sin \theta \cos \theta + r^2 \cos^2 \theta)d\theta^2 =$$

$$(1 + b\sin 2\theta)dr^2 + 2br\cos 2\theta dr d\theta + r^2(1 - b\sin 2\theta)d\theta^2.$$

In the case b = 0 we come to standard Pythagorean metric in polar coordinates.

5 Let γ be a curve in Riemannian manifold given in local coordinates by parametric equation $x^i = x^i(t)$, $t_1 \le t \le t_2$. Show that the length of this curve

$$L = \int_{t_1}^{t_2} \sqrt{g_{ik}(x(t))\dot{x}^i(t)\dot{x}^k(t)} dt$$

does not change under arbitrary reparameterisation $t = t(\tau)$.

Solution: See the end of Subsection 1.3 of Lecture notes.

- **6** * Show that $G = dx^2 + dy^2 + cdz^2$ in \mathbf{R}^3 defines Riemannian metric iff c > 0.
- * Find null-vectors of pesudo-Riemannian metric G if c < 0.

It is symmetric matrix which is positive definite iff c > 0. If c < 0 condition of positive-definiteness is failed, but matrix G is still non-degenerate. Null-vector $\mathbf{X} = (x, y, z)$: $G_{ik}X^iX^k = x^2 + y^2 + cz^2 = 0$, i.e. vector \mathbf{X} belongs to the cone $x^2 + y^2 - cz^2 = 0$.