Design of MOSFET Differential Amplifiers

Wadhwani Electronics Lab

Department of Electrical Engineering Indian Institute of Technology Bombay

Jan 2019

- * In this experiment, we wish to design and test Simple Current Mirror.
- * We will also design and test MOSFET Differential Amplifiers with resistive and active loads.(Using ALD1106 and ALD1107).
- * This experiment mainly aims at understanding the internal working of OPAMP.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 2/3

Pre Lab Work

- 1 Read up on differential amplifiers. Familiarize yourself with the terms "Common Mode Gain" and common mode rejection ratio (CMRR).
- 2 Design the circuits to be used in each of the three parts of the experiment.
- 3 Draw the small signal model of differential amplifier with active load.
- 4 All the tasks listed under Pre Lab work must be included in your post lab report.
- 5 Simulate all your designs in NGSPICE for better understanding.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay

Simple Current Mirror

Current sources are extensively designed and used to bias different kinds of circuits. An ideal current source supplies a constant current irrespective of the voltage supplied across it. In this experiment, we study following current source which is designed using MOSFETs.

Figure: 1

$$I_{ref} = \frac{V_{DD} - V_{GS}}{R}$$

If sizes(W/L) of both transistors are equal(They are indeed equal in ALD1106 IC), then same current I_{ref} is replicated to I_{out} . Therefore, $I_{out} = I_{ref}$

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 4/

Differential amplifier with resistive load

Figure 2 shows a Differential Amplifier which you have already studied in class. Analyze the circuit and find the expression for differential as well as common-modegain. Write the derivation in postlab report.

Figure: 2

Theory and Design Procedure

Small signal model of the above circuit is as follows:

Figure 3: Small signal model of MOS Differential Amplifier

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 6/3

Part 1- Simple MOSFET Differential Amplifier

In this part, we will use the same circuit as shown in Figure 2. Instead of current source, use current mirror as given in Figure 1 (Precaution: Set the supply voltages properly before connecting them to the circuit. The maximum supply the device can tolerate is roughly -5.5V - 5.5V)

- 1 Assemble the circuit, to get I_{out} of 1mA. Calculate the value of Kn or Kp with the help of the values tabulated in the datasheet.
- 2 For supply voltages $V_{DD} = 4.5V$ and $V_{SS} = -4.5V$, find the value of R_D required for a gain of 7. Will the output voltage swing be symmetric?
- 3 Wire up your circuit and apply a 50 mV peak, 1 kHz sine wave to (i) v_{in1} and (ii) v_{in2} .While applying a signal to one input, keep the other input grounded. Ensure that there is no distortion in the output. Measure the differential voltage gain A_d in each case. (How will you observe differential signals on the DSO?)
- 4 Find out the maximum symmetrical output swing of your circuit at 1 kHz.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 7/1

Part 1 - Simple MOSFET Differential Amplifier

- 5 Repeat step 3 for frequencies 10 kHz, 100 kHz and 500 kHz and 1 MHz.
- 6 Now short both the input terminals and apply a common-mode signal. Measure the common- mode voltage gain Ac at the above frequencies. Calculate the CMRR (in dB) for each frequency.
- 7 Measure the input offset voltage of your differential amplifier (you may neglect the effects of input bias current).
- 8 Compare your results (differential gain, CMRR, offset voltage) with two other groups and tabulate them.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 8/

Part 2 - Differential Amplifier with Active Load

We will now replace the two drain resistors R_D in Figure 2 by a PMOS current mirror, as in Figure 4, and take a single-ended output.

Why do we use this configuration over resistive load? Mention reasons in postlab report.

Figure 4: Differential Amplifier with Active Load

Wadhwani Electronics Lab

Part 2 - Differential Amplifier with Active Load

- 1 Use supply voltages $V_{DD}=4.5V$ and $V_{SS}=-4.5V$, find the expression for gain, find the value of I_{SS} required for a gain of 50. (Hint: This time, the drain-source resistance r_o of the transistors need to be considered. Given the channel length modulation parameter λ for the NMOS and PMOS are approximately 0.036).
- 2 Use an appropriately designed current mirror for I_{SS} . (Keep the value of I_{SS} less than 100uA).
- 3 You may have to vary the potentiometer in current mirror to adjust the I_{SS} which in turn adjusts the gain of the amplifier.
- 4 Wire up your circuit and apply a 20 mV peak, 1 kHz sine wave to (i) v_{in1} and (ii) v_{in2} . Measure A_d in each case.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 10/1

Part 2 - Differential Amplifier with Active Load

- 5 Report the dependence of Gain on *I_{SS}*. Mention all the challenges you face in designing and explain why?.
- 6 Find out the maximum symmetrical output swing of your circuit at 1 kHz.
- 7 Repeat step 3 for frequencies 10 kHz, 100 kHz and 500 kHz and 1 MHz.
- 8 Measure the common-mode voltage gain Ac and the CMRR (in dB) at the above frequencies.
- 9 Measure the input offset voltage of your differential amplifier.
- 10 Compare your results with two other groups and tabulate them.

Wadhwani Electronics Lab Dept. of EE, IIT Bombay 11/1: