Cognome, Nome, Matricola:	
---------------------------	--

REGOLE PER LO SVOLGIMENTO DELLA PROVA

Spegnere lo smartphone e posizionarlo frontalmente, schermo verso il basso. È vietata la consultazione di libri, appunti, e materiale online. Al termine della prova, consegnare al docente l'esercizio di progettazione in forma cartacea e caricare il file .sql sul portale Elearn.

Esercizio di progettazione

Lo scenario di un gioco online è un vasto mondo fantasy. I giocatori appartengono a una specie¹ e classe². Hanno punti vita, una somma di denaro, e una bisaccia portaoggetti. Una partita è composta da missioni aventi nome e difficoltà. Ogni missione è bloccata da altre. Nelle missioni, i giocatori incontrano personaggi non giocanti (NPC) che vendono oggetti in cambio di denaro; un NPC può anche acquistare oggetti dai giocatori. Quando ciò avviene, il database salva giocatore, NPC, oggetto, regione, e somma di denaro. L'obiettivo del gioco è completare tutte le missioni. I giocatori possono scambiare oggetti tra loro, e cambiano classe e/o specie acquistando oggetti speciali. Il database deve tenere traccia dello stato della partita in ogni momento: contenuto della bisaccia, punti vita, somma di denaro in possesso, missioni completate dal giocatore, scambi/acquisti con NPC, eccetera.

- 1. Tracciare il diagramma E-R usando la notazione di Chen.
- 2. Tradurre il diagramma E-R nel modello logico relazionale³. Racchiudere i costrutti da ristrutturare in riquadri tratteggiati e numerati, e disegnarne la versione ristrutturata. Elencare i vincoli di integrità referenziale con la notazione seguente, dove 'ref' corrisponde a 'references': TABELLA₁(Attributo/i) \xrightarrow{ref} TABELLA₂(Attributo/i)
- 3. Considerata la tavola dei volumi in Tabella 1, inserire una parte ridondante nel diagramma, mostrando che essa riduce il numero di accessi necessari alla seguente operazione:

Elencare lo stato di tutti i giocatori bloccati alla quarta missione.

Costrutto	Numero di istanze
Giocatore	1.000
Missione	10

Tabella 1: Tavola dei volumi

¹Come elfi, nani, umani e orchi

²Come guerrieri, maghi, e chierici

 $^{^{3}}$ Lo schema delle tabelle deve essere nella forma TABELLA(Attributo₁,...,Attributo_N), chiave primaria sottolineata. Indicare ogni ulteriore chiave sottolineandone gli attributi con un tratto diverso da quelli relativi alle altre.

Esercizio di programmazione

Si consideri la realtà medica descritta dalla base di dati relazionale definita dal seguente schema:

PAZIENTE(CodFiscale, Cognome, Nome, Sesso, DataNascita, Citta, Reddito)

MEDICO(Matricola, Cognome, Nome, Specializzazione, Parcella, Citta)

FARMACO(NomeCommerciale, PrincipioAttivo, Costo, Pezzi)

PATOLOGIA(Nome, ParteCorpo, SettoreMedico, Invalidita, PercEsenzione)

INDICAZIONE(Farmaco, Patologia, DoseGiornaliera, NumGiorni, AVita)

VISITA(Medico, Paziente, Data, Mutuata)

ESORDIO(Paziente, Patologia, DataEsordio, DataGuarigione, Gravita, Cronica)

TERAPIA(Paziente, Patologia, DataEsordio, Farmaco, DataInizioTerapia, DataFineTerapia, Posologia)

Risolvere il seguente esercizio utilizzando la sintassi MySQL.

Scrivere una query che, per ogni farmaco e anno, restituisca il numero di terapie eseguite con quel farmaco, la loro durata media, e la patologia trattata con il più alto valor medio di continuità, fra tutti i pazienti. La continuità con cui un paziente ha assunto un farmaco è massima quando il numero medio di giorni trascorsi senza assumere il farmaco fra una terapia e la successiva, basate su quel farmaco, è zero.