四川大学数字逻辑复习题(2019~2020-1)

课程号: 304131030 课程名称: 数字逻辑(双语) 任课教师: 潘薇吴志红卢晓春陈虎吕泽均熊伟袁学东兰时勇

Chapter 1

Digital Analog logic levels Digital Waveforms

P12 TRUE/FALSE QUIZ 1~9; SELF TEST 1~12

1. As the following waveform shows, it's period is () and frequency is ().

Chapter 2

Decimal Binary Octal **Hexadecimal** Conversion Binary Arthmetics **Signed Numbers**

Complement Codes Error Detection Codes

P58 TRUE/FALSE QUIZ 1~11; SELF TEST 1~20

1. Covert the following numbers to the indicated radix numbers.

a).
$$(1101011.1)_2 = ($$

$$)_{10} = ($$

b).
$$(1011101.0101)_2 = ($$

$$)_{16} = ($$

c).
$$(01000101.011000100101)_{BCD} = ($$

d).
$$(52.625)_{10} = ($$

2. Perform the following binary multiplications:

3. Convert each decimal number into its corresponding 2s complement code prior to performing the indicated operation.

4. The following is the operation of the complement, which is correct. (

ᆀ	
\\ <u>\</u>	
1	1
E	3

A	
В	
α	

11 10/10/1/10/11	\"/
original code	complement code
01110001	01111111
10011001	11100111
10010010	11101101
00110010	11001110

Gates: Inverter/AND/OR/NAND/NOR/E-OR/E-NOR... Truth Tables Logic Expressions

P100 TRUE/FALSE QUIZ 1~7, 9; SELF TEST 1~4, 9

1. An exclusive-NOR function f(A,B) is expressed as _____

Chapter 4

Boolean Algebra Logic Circuits Simplificaion Standard Forms SOP POS K-Map

P153 TRUE/FALSE QUIZ 1~10; SELF TEST 1~18

- 1. Demonstrate by means of truth tables the validity of $AB' + A'B = (A + B)(A' + B')_{\circ}$
- 2. Prove the identity of the following Bootlean equation, using algebraic manipulation: $AB + \overline{A}C + (\overline{B} + \overline{C})D = AB + \overline{A}C + D$.
- 3. Simplify the Boolean expressions to expessions containing a minimum number of literals: $F = A(C+BD)(A+BD)+B(\overline{C}+DE)+BC$, and implement it using logic gates.
- 4. A Karnaugh map is a diagram made up of squares that is to simplify Boolean equations. Each square represents a ______ or ___ from an equation.
- 5. _____is a term in a Boolean equation that represents a condition where an output variable is a logical 0 in the output function truth table
- 6 Simplify the following Boolean equations:
 - 1) $R \neq f(w,x,y,z) = \sum m(1,3,4,5,6,9,11,12,13,14)$
 - 2)/**T**/= a' bc+ad' +bcd'
 - 3)G = y'z + w'xy' + w'xy + xy'z
- 7. ApplyDeMorgan's theorems to the following: $\overline{(A + \overline{BC} + CD)} + \overline{BC}$
- 8. Write the Boolean expression for the logic gate in the figure.

- 9. Convert the following expression to standard SOP forms and develop its truth table: $\overline{A}(B + \overline{C}) + A(B \oplus C)$
- 10. Using Boolean algebra, simplify the following expression: $(B + BC)(B + \overline{B}C)(B + D)$
- 11. Use a Karnaugh map to reduce each expression.
 - a) $F(a,b,c,d)=\sum m(2,4,6,8,9,12,13,14,15)$
 - b) $F(x,y,z,w)=\sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$

Chapter 5

Combinatioonal Logic Circuits Analysis / Design Universal gates

P188 TRUE/FALSE QUIZ 1~10; SELF TEST 1~10

1. Implement F=AB+A(B+C)+B(B+C) using and only using 2 input AND and OR.

任课教师: 吴志红

- 2. Design a truth table to indicate a majority of three inputs is true, write down the simplified Boolean equation.
- 3. A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non-BCD code is entered, the output is to be true(logical 1). Please construct the truth table and write down the simplified Boolean equation.
- 4. Use AND gates, OR gate, and inverters as needed to implement the following logic expressions as stated
 - a) X = A(CD + B)
- b) $X = \overline{ABC} + B(EF + \overline{G})$
- 5. The standard AND-OR is a logical expression consisting of (
 - a) 与项相或
- b)最小项相或
- c)最大项相与
- d)或项相与

Chapter 6

Adders Comparators

Decoders

Encoders

MUX Parity Generators/Checkers

P246 | TRUE/FALSE QUIZ 1~10;

SELF TEST 1~12

- 1. If a 4-16 decoder with active-LOW outputs exhibits a LOW on the decimal 6 output, what are the inputs?
- 2. For each of the three full-adders in Figure, determine the outputs.

3. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output.

A_1	1010
A_2	1100
A_3	0101
A_4	1101
B_1	1001
B_2	1011
B_3	0000
B_4	0001

4. Use the decoder 74LS138 with active-LOW outputs to implement the function of a full-adder

课程名称:数字逻辑应用与设计 任课教师:吴志红 学号:

姓名:

d) both a) and b)

Chapter7

Latches/Flip Flops Edge-Triggered

P298 TRUE/FALSE QUIZ 1~7; SELF TEST\1~3, 5

Chapter 8

Counters Asynchronous/Synchronous

P353 TRUE/FALSE QUIZ 1~10; \ | SELF TEST 1~7, 9~11, 13,14

- 1. Assume the clock for a 3-bit binary counter is 512MHz. The output frequency of the third stage is ____MHz.
- 2. How many flip-flops does a modulus-8 ring counter require ?

Chapter 9

Registers Shift Serial/Parallel

P394 TRUE/FALSE QUIZ 1~10; SELF TEST 1~8

- 1. A register's function include (
 - a) data storage b) data movement
 - b) data movement c) neither a) not b)
- 2. To parallel load a byte of data into a shift register with a synchronous load, there must be (
 - a) one clock pulse b) one clock pulse for each I in the data
 - c) eight clock pulses d) one clock pulse for each 0 in the data
- 3. For the ring counter in Figure, show the waveforms for each flip-flop output with respect to the clock. Assume that FF0 is initially SET and that the rest are RESET. Show at least ten clock pulses.

4. For the 8-bit bidirectional register in Figure, determine the state of the register after each clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the decimal number seventy-six in binary, with the right-most position being the LSB. There is a LOW on the data-input line.

课程名称:数字逻辑应用与设计 任课教师:吴志红 学号: 姓名:

1. As the following waveform shows, it's period is (10ms) and frequency is (100Hz).

Chapter 2

1. Covert the following numbers to the indicated radix numbers.

a).
$$(1101011.1)_2 = (107.5)_{10} = (100000111.0101)_{BCD}$$

c).
$$(01000101.011000100101)_{BCD} = (45.625)_{10} = (101101.101)_{2} = (2D.A)_{16}$$

(d).
$$(52.625)_{10} = ($$
 $)_{2}=($ $)_{16}=($ $)_{BCD}$.

2. Perform the following binary multiplications:

3. Convert each decimal number into its corresponding 2s complement code prior to performing the indicated operation.

4. The following is the operation of the complement, which is correct. (

	original code	complement code
A	01110001	01111111
В	10011001	11100111
C	10010010	11101101
D	00110010	11001110

Chapter 3

1. An exclusive-NOR function f(A,B) is expressed as $\underline{A'B'+AB}$.

Chapter 4

- 1. Demonstrate by means of truth tables the validity of $AB' + A'B = (A + B)(A' + B')_{\circ}$
- 2. Prove the identity of the following Bootlean equation, using algebraic manipulation: $AB + \overline{AC} + (\overline{B} + \overline{C})D = AB + \overline{AC} + D_{\circ}$
- 3. Simplify the Boolean expressions to expessions containing a minimum number of literals: $F=A(C+BD)(\overline{A}+BD)+B(\overline{C}+DE)+BC$, and implement it using logic gates.
- 4. A Karnaugh map is a diagram made up of squares that is to simplify Boolean eqations. Each square represents a <u>minterm</u> or <u>maxterm</u> from an equation.
- 5. <u>Maxterm</u> is a term in a Boolean equation that represents a condition where an output variable is a logical 0 in the output function truth table.
- 6. Simplify the following Boolean equations:
- (1) $R = f(w,x,y,z) = \sum m(1,3,4,5,6,9,11,12,13,14)$
- (2) T = a'bc+ad'+bcd'
- (3) G = y'z + w'xy' + w'xy + xy'z

Answers:

$$(1) R = XY' + X'Z + XZ$$

(2)
$$T = a$$
'bc+ad

$$(3) G = w'x + y'z$$

7. ApplyDeMorgan's theorems to the following: $\overline{(A + \overline{BC} + CD)} + \overline{BC}$

$$= \overline{A}B\overline{C}(\overline{C} + \overline{D}) + BC = \overline{A}B\overline{C} + BC = \overline{A}B + BC$$

8. Write the Boolean expression for the logic gate in the figure.

$$X = \overline{\overline{AB}}$$

9. Convert the following expression to standard SOP forms and develop its truth table: $\overline{A}(B + \overline{C}) + A(B \oplus C)$ $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

A	В	C	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- 10. Using Boolean algebra, simplify the following expression: $(B+BC)(B+\overline{B}C)(B+D) = B$
- 11. Use a Karnaugh map to reduce each expression.
 - a) $F(a,b,c,d)=\sum m(2,4,6,8,9,12,13,14,15)$
 - b) $F(x,y,z,w)=\sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$

(a)				
cd ab	00	01	11	10
00				1
01	1			1
11	1	1	1	1
10	1	1		

F=ab+ac' +bd' +a' cd'

Chapter 5

- 1.Implement F=AB+A(B+C)+B(B+C) using and only using 2 input AND and OR.
- 2. Design a truth table to indicate a majority of three inputs is true, write down the simplified Boolean equation.

Answer:

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3. A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non-BCD code is entered, the output is to be true(logical 1). Please construct the truth table and write down the simplified Boolean equation.

Answer:

1 Histori.							_
	hex	A_3	A_2	A_1	\mathbf{A}_0	Y	
	0	0	0	0	0	0	
	1	0	0	0	1	0	
	2	0	0	1	0	0	
	3	0	0	1	1	٥	
	4	0	1	0	0	0	f)
	5	0	1	0	1)	0	11 2// 1/10 1/10 1/10
	6	0	1	1		11 10	
	7	0	1	1	1 1		
	8	1	0		F-1 0 1	0	
	9	1	0 1				
	a	1 ,	\bigcirc \bigcirc \bigcirc \bigcirc		// // <mark>(0</mark>		
	b		0			V /\ <u>1</u> // {/	
		1 1	1		$\langle \rangle \rangle \rangle \langle 0 \rangle \rangle \rangle$	/ i /	Y // \
	d \	/ \				1 //1	V // '
	(e	1 1	/ \ <mark>1</mark>	' 1	0 // \	1 // //1	
	f]		1 ///	1 1	1	
							-
AB							
	00 01		10	/			
		1					
// // O1/ /	/ \ \ \ \ \	1					
		1	1				
10		1	1				

Y = AB + AC

4. Use AND gates, OR gate, and inverters as needed to implement the following logic expressions as stated.

a)
$$X = A(CD + B)$$

b)
$$X = \overline{ABC} + B(EF + \overline{G})$$

(a)

(b)

- 5. The standard AND-OR is a logical expression consisting of (B
 - a) 与项相或 b)最小项相或 c)最大项相与 d)或项相与

- 1. If a 4-16 decoder with active-LOW outputs exhibits a LOW on the decimal 6 output, what are the inputs?
- 2. For each of the three full-adders in Figure, determine the outputs.

- (a) The input bits are A = 1, B = 0, and Cin = 0. 1 + 0 + 0 = 1 with no carry, Therefore, $\sum = 1$ and Cout = 0.
- (b) The input bits are A = 1, B = 1, and Cin = 0. 1 + 1 + 0 = 0 with a carry of 1, Therefore, $\sum = 0$ and Cout = 1.
- (c) The input bits are A = 1, B = 0, and Cin = 1. 1 + 0 + 1 = 0 with a carry of 1, Therefore, $\sum 0$ and Cout = 1.
- 3. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel adder. Determine the resulting sequence of bits on each sum output.

$$A_1$$
 1010
 A_2 1100
 A_3 0101
 A_4 1101
 B_1 1001
 B_2 1011
 B_3 0000
 B_4 0001
 $\Sigma 1 = 0111; \Sigma 2 = 0011; \Sigma 3 = 1110; \Sigma 4 = 1110$

4. Use the decoder 74LS138 with active-LOW outputs to implement the function of a full-adder.

解: (1) 根据全加器的功能需求,列出真值表:

Inp	uts		Outp	uts
A	В	C _{in}	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(2) 根据真值表写出输出的逻辑函数 (最小项表达式):

$$\Sigma = \Sigma m(1,2,4,7) = = \overline{m_1} \bullet \overline{m_2} \bullet \overline{m_4} \bullet \overline{m_7}$$

$$C_{\text{out}} = \Sigma \mathbf{m}(3,5,6,7) = m_3 \bullet m_5 \bullet m_6 \bullet m_7$$

根据 3 线+8 线译码器 74LS138 输入输出的有效电平,结合译码器的输出对应最小项 $Y_i=m_i$, $i=0\sim7$,

再选用逻辑与非门实现电路设计如下:(5分)

- 1. A register's function include (
- d
- a) data storage b) data movement
 - b) data movement () neither a) not b)
- d) both a) and b)
- 2. To parallel load a byte of data into a shift register with a synchronous load, there must be (
 - a) one clock pulse b) one clock pulse for each I in the data
 - c) eight clock pulses (d) one clock pulse for each 0 in the data
 - 3. For the ring counter in Figure, show the waveforms for each flip-flop output with respect to the clock.

Assume that FF0 is initially SET and that the rest are RESET. Show at least ten clock pulses.

Answer:

4. For the 8-bit bidirectional register in Figure, determine the state of the register after each clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the decimal number seventy-six in binary, with the right-most position being the LSB. There is a LOW on the data-input line.

 Q_3