Deep Learning and Practice

#Lab01 Back Propagation 309505002 鄭紹文

1. Introduction

深度學習是機器學習的一大分支,如 fig.1 所示,其模仿人類的大腦神經網絡的運作方式,常見的深度學習架構,有多層感知器(Multilayer Perceptron)、深度神經網路 DNN (Deep Neural Network)、卷積神經網路 CNN(Convolutional Neural Network)、遞迴神經網路 RNN (Recurrent Neural Network)。

fig. 1

在各類網絡中,weight 的更新是不可或缺的,而這次 lab 的重點:「誤差反向傳播法」(Back Propagation)便是能以良好效率計算出權重參數梯度的方法。

fig. 2

此次 lab 要刻出一個含有 2 層隱藏層的網絡, input data 分別是隨機產生的 linear dataset (100 組)和 XOR dataset。

fig. 3

2. Experiment setups

A. Sigmoid functions

Sigmoid function 是神經網路常用的活化函數之一,用於將輸入值轉換為 0~1 (0%~100%)的值,可當作機率值來使用,同時亦可增加非線性,增加非線性讀原因在於若僅用線性,有時會限制,如 data 中簡單的 XOR 分類問題,若用單純的線性 model 會解不出來,而加上非線性可想像成把資料先做對折再切割分類,以此來完成無法利用一條線切割資料分部的問題。

Sigmoid function 常見形式: $y = \frac{1}{1+e^{-(ax+b)}}$

fig.4 中紅線部分即為 Sigmoid 函數,呈現 S 型,亦稱為 S function,同時可從中發現幾項性質:

- 其為函數值介於 0~1 之間的單調遞增函數。
- □ X 趨近於-∞時,函數值趨近於 0,反之趨近於 1。
- X=0 時,函數值為 0.5 且於(0, 0.5)處會有轉折。
 (將 x, -x 分別帶入後相加後即可找到中間點)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{d(1 + e^{-x})^{-1}}{dx}$$

$$= -(1 + e^{-x})^2 \frac{d}{dx} (1 + e^{-x})$$

$$= -(1 + e^{-x})(1 + e^{-x})(-e^{-x})$$

$$= \sigma(x)(1 - \sigma(x))$$

fig. 5

Sigmoid function 的微分為 fig.4 中藍線部分以及 fig.5 紅框處。

B. Neural Network

Neural Network 是模仿生物神經網路的結構和功能的數學模型或計算模型,也有人稱為 ANN(Artificial Neural Network)。神經元(Neuron)之間互相連結,由外部神經元接收信號,再層層傳導至其他神經元,最後作出反應的過程經過抽象化後,得到 fig.6 中類似結構,Input Layer 即為接收信號的神經元,Hidden Layer 即為隱藏層,Output Layer 則是做出反應的輸出層,各神經元傳導的力量大小,在神經網絡中抽象化成「權重」(Weight),也就是模型要求解的參數,當更新完成後,即可輸入信號,透過一層一層的傳導,推斷出最終結果。除了 Neural unit 和神經元連接的權重代表的結構(Architecture)外,用來定義神經元如何根據其他神經元的活動來改變自己的 activation function 以及指定網路中的權重如何隨著時間推進而調整 Learning Rate 亦是極為重要的一部分。

fig. 6

C. Backpropagation

Backpropagation是一種與最優化方法(如梯度下降法)結合使用,用來訓練人 工神經網絡的常見方法,其對網絡中所有權重計算損失函數的梯度,而梯度會反饋 給最優化方法,用來更新權值以最小化損失函數。

fig. 7

fig.7 為只有一個神經元時的 backpropagation 的反向傳播示意圖,其只能應對相對單純的線性問題;但藉由多個神經元進行階層化,如 fig.8,便能應對複雜的非線性問題。

fig. 8

backpropagation 中 chain rule 是一個很重要的環節。

$$\begin{split} \frac{\partial L(\theta)}{\partial w_1} &= \frac{\partial y}{\partial w_1} \frac{\partial L(\theta)}{\partial y} \\ &= \frac{\partial x''}{\partial w_1} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y} \\ &= \frac{\partial z}{\partial w_1} \frac{\partial x''}{\partial z} \frac{\partial y}{\partial x''} \frac{\partial L(\theta)}{\partial y} \\ &= \frac{\partial x'}{\partial w_1} \frac{\partial z}{\partial x'} \frac{\partial z}{\partial z''} \frac{\partial z}{\partial x''} \frac{\partial z}{\partial y} \frac{\partial L(\theta)}{\partial y} \end{split}$$

fig. 9

fig.9 顯示 weight wl 如何影響 loss 值,並利用該值乘上 learning rate 來更新 wl 參數,使 loss 值越變越小。

fig. 10

fig.10 為整體架構樣貌,以及其權重如何進行更新,較為細部部分可見 fig.11。

fig. 11

3. Results of your testing

A. Screenshot and comparison figure

For data type one : Linear datasets

```
**----Preduction Result-----**
[[8.01623989e-08 1.13711433e-09 1.89564746e-10 9.99999994e-01
                                                        1.41668620e-09]
                                                       [9.9999999e-01 9.9999999e-01 1.03421634e-10 4.09696597e-10
                                                        9.99984309e-01]
                                                       [1.08622441e-10 1.11432757e-10 2.29911038e-10 9.99999992e-01
                                                       [9.9999999e-01 9.98260830e-01 9.9999997e-01 9.9999999e-01
                                                        9.99999257e-01]
                                                       [5.51052534e-09 8.83217362e-11 1.56963099e-10 9.99999999e-01
                                                        2.88489140e-05]
                                                       [9.9999998e-01 1.32937581e-08 9.99999881e-01 9.9999999e-01
                                                        9.9999999e-01]
epoch 10000 Loss: 1.4783568846517297e-05
                                                       [9.99999931e-01 7.76613733e-11 6.25366730e-09 9.96000688e-01
epoch 15000 Loss: 8.895744082853413e-06
                                                        5.26685771e-101
                                                       [9.99999999e-01 9.99999992e-01 3.82630590e-07 1.12388543e-10
epoch 20000 Loss: 6.2462125512593106e-06
                                                        2.11259599e-10]
epoch 25000 Loss: 4.763673286753503e-06
                                                       [9.9999999e-01 5.27587609e-09 2.27716762e-09 9.99994983e-01
                                                        5.28365757e-10]
epoch 30000 Loss: 3.824956784116845e-06
                                                       [4.69353651e-03 7.65896804e-08 1.67987756e-06 9.99999099e-01
epoch 35000 Loss: 3.1810573196805137e-06
                                                        2.43882493e-09]
                                                       [9.9999996e-01 4.54359556e-09 2.09381460e-09 9.99386168e-01
epoch 40000 Loss: 2.713882963605246e-06
                                                        9.99999998e-01]
epoch 45000 Loss: 2.360539467041129e-06
                                                       [4.13441399e-04 9.99999998e-01 9.99999995e-01 9.99999998e-01
                                                        1.25228352e-10]
epoch 50000 Loss: 2.0845879377594596e-06
                                                       [1.12872876e-10 9.99552348e-01 1.93223442e-10 1.03009132e-09
                                                        9.99999998e-01]
epoch 55000 Loss: 1.8635201890220776e-06
                                                       [9.99997432e-01 1.60243859e-09 1.80263744e-10 5.81067488e-07
epoch 60000 Loss: 1.6827134612324597e-06
                                                        9.99999992e-011
                                                       [7.48360805e-10 9.9999999e-01 9.99999966e-01 9.9999998e-01
epoch 65000 Loss: 1.5322721585088239e-06
                                                        3.09796945e-101
epoch 70000 Loss: 1.4052700924326744e-06
                                                       [5.63345302e-04 4.78190137e-03 9.99784745e-01 7.75563728e-10
                                                        9.9999999e-011
epoch 75000 Loss: 1.2967201650007672e-06
                                                       [1.52898626e-10 9.9999999e-01 2.59981467e-09 9.99738562e-01
epoch 80000 Loss: 1.2029437464434612e-06
                                                        9.99999896e-01]
                                                       [4.68269031e-09 9.99999756e-01 7.61764829e-11 8.62491811e-11
epoch 85000 Loss: 1.121170269345594e-06
                                                        9.99999893e-01]
                                                       [2.41802654e-06 9.9999999e-01 9.94740165e-01 3.12837145e-10
epoch 90000 Loss: 1.0492748533369948e-06
                                                        9.99999997e-01]
epoch 95000 Loss: 9.856016028551594e-07
                                                       [1.84441252e-10 9.99999994e-01 9.9999998e-01 3.49220249e-04
epoch 100000 Loss: 9.288417089377365e-07 1.19464543e-10]]
```


For data type two: **XOR datasets**

```
**----Preduction Result----**
                                         [[0.0010625]
                                          [0.99846005]
                                          [0.00172944]
                                          [0.99845367]
                                          [0.00262537]
                                          [0.99834703]
epoch 10000 Loss: 0.00010023974959776331
                                          [0.00350959]
epoch 15000 Loss: 6.351244294467604e-05
epoch 20000 Loss: 4.623399176118488e-05
                                          [0.99803413]
epoch 25000 Loss: 3.624023744702336e-05
                                          [0.00403401]
epoch 30000 Loss: 2.9744407812458264e-05
                                          [0.99401899]
epoch 35000 Loss: 2.519157451459388e-05
                                          [0.00400774]
epoch 40000 Loss: 2.1827469379777687e-05
                                          [0.00352625]
epoch 45000 Loss: 1.9242584049847364e-05
                                          [0.99364381]
epoch 50000 Loss: 1.7195667568856203e-05
                                          [0.00284402]
epoch 55000 Loss: 1.5535487152962514e-05
epoch 60000 Loss: 1.4162489226198131e-05
                                          [0.99942972]
epoch 65000 Loss: 1.30084969859355e-05
                                          [0.00218038]
epoch 70000 Loss: 1.2025271833984456e-05
                                          [0.9997104]
epoch 75000 Loss: 1.1177733377094332e-05
                                          [0.00163965]
epoch 80000 Loss: 1.0439766869901044e-05
                                          [0.99977253]
epoch 85000 Loss: 9.791535869887348e-06
                                          [0.0012371
epoch 90000 Loss: 9.217705729841147e-06
epoch 95000 Loss: 8.706237306850793e-06
                                          [0.99979084]]
epoch 100000 Loss: 8.247548374402405e-06
```


B. Show the accuracy of prediction

For data type one : Linear datasets For data type two: **XOR datasets** #predict y v.s label def classify_correct(self, pred_y, label_y): correct num = 0 fail_pos = []
print("**----start to classify...---**") for i in tqdm(range(len(pred_y))): if(pred_y[i] > 0.5): pred_y[i] = 1 $pred_y[i] = 0$ if(pred_y[i] == label_y[i]): correct_num = correct_num + 1 correct num = correct num fail_pos.append(i) sleep(0.01) print("**----Classification Result----**") print("PASS: {} || FAIL: {} ".format(correct_num, len(pred_y)-correct_num))
if (len(pred_y)-correct_num)==0: print("FAIL position : NONE") print("FAIL position : {}".format(fail_pos)) print("Accuracy : ", correct_num/len(pred_y))
print("**----**") **----Classification Result----** **----Classification Result----** PASS : 100 || FAIL: 0 PASS : 21 || FAIL: 0 FAIL position : NONE FAIL position : NONE Accuracy : 1.0 Accuracy: 1.0

C. Learning curve (loss, epoch curve)

For data type one : Linear datasets For data type two : XOR datasets

```
def plot_loss(self, loss, x , y):
    plt.title('Loss' , fontsize = 18)
    plt.plot(loss)

pred_y = self.forward(x)
    print("**----Preduction Result----**")
    if(len(pred_y) == 100):
        print(np.reshape(pred_y, (len(pred_y)//5, 5), order='F'))
    else:
        print(pred_y)
    print("**------**")
    self.classify_correct(pred_y, y)

plt.xlabel("# of epoch (*" + str(num_to_show) + ")")
    plt.show()

return pred_y
```


4. Discussion

A. Try different learning rate

(以 data type two:XOR datasets 為例)

Learning rates = 100	Learning rates = 10	Learning rates = 0.001
start training epoch 10000 Loss: 0.5238095238095238 epoch 15000 Loss: 0.5238095238095238 epoch 20000 Loss: 0.5238095238095238 epoch 25000 Loss: 0.5238095238095238 epoch 30000 Loss: 0.5238095238095238 epoch 35000 Loss: 0.5238095238095238 epoch 45000 Loss: 0.5238095238095238 epoch 45000 Loss: 0.5238095238095238 epoch 55000 Loss: 0.5238095238095238 epoch 55000 Loss: 0.5238095238095238 epoch 65000 Loss: 0.5238095238095238 epoch 65000 Loss: 0.5238095238095238 epoch 70000 Loss: 0.5238095238095238 epoch 75000 Loss: 0.5238095238095238 epoch 75000 Loss: 0.5238095238095238 epoch 75000 Loss: 0.5238095238095238 epoch 85000 Loss: 0.5238095238095238 epoch 85000 Loss: 0.5238095238095238 epoch 95000 Loss: 0.5238095238095238 epoch 95000 Loss: 0.5238095238095238 epoch 95000 Loss: 0.5238095238095238 epoch 100000 Loss: 0.5238095238095238	start training epoch 10000 Loss: 0.5238095238095127 epoch 15000 Loss: 0.5238095238095127 epoch 20000 Loss: 0.5238095238095127 epoch 25000 Loss: 0.5238095238095127 epoch 30000 Loss: 0.5238095238095127 epoch 35000 Loss: 0.5238095238095127 epoch 40000 Loss: 0.5238095238095127 epoch 45000 Loss: 0.5238095238095127 epoch 50000 Loss: 0.5238095238095127 epoch 55000 Loss: 0.5238095238095127 epoch 65000 Loss: 0.5238095238095127 epoch 65000 Loss: 0.5238095238095127 epoch 70000 Loss: 0.5238095238095127 epoch 75000 Loss: 0.5238095238095127 epoch 75000 Loss: 0.5238095238095127 epoch 80000 Loss: 0.5238095238095127 epoch 95000 Loss: 0.5238095238095127 epoch 95000 Loss: 0.5238095238095127 epoch 95000 Loss: 0.5238095238095127 epoch 95000 Loss: 0.5238095238095127 epoch 100000 Loss: 0.5238095238095127 epoch 100000 Loss: 0.5238095238095127 epoch 100000 Loss: 0.5238095238095127 Excution time: 8.007854 sec	start training epoch 10000 Loss: 0.22229534659329925 epoch 15000 Loss: 0.19667173596489973 epoch 20000 Loss: 0.16152915661929287 epoch 25000 Loss: 0.16152915661929287 epoch 30000 Loss: 0.10103429076031449 epoch 35000 Loss: 0.08410671026625714 epoch 40000 Loss: 0.0718515673310085 epoch 45000 Loss: 0.06255432926850044 epoch 50000 Loss: 0.06255432926850044 epoch 50000 Loss: 0.04920662107335479 epoch 60000 Loss: 0.04920662107335479 epoch 65000 Loss: 0.039634028655887096 epoch 70000 Loss: 0.035597980832132746 epoch 75000 Loss: 0.031891645715476154 epoch 80000 Loss: 0.02846220256819143 epoch 85000 Loss: 0.022388087431977483 epoch 95000 Loss: 0.01975517469573477 epoch 100000 Loss: 0.01739945065622362 Excution time: 8.051087 sec
Classification Result PASS : 10 FAIL : 11 FAIL position : [0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19] Accuracy : 0.47619047619047616	**Classification Result** PASS: 10 FAIL: 11 FAIL position: [0, 2, 4, 6, 8, 10, 11, 13, 15, 17, 19] Accuracy: 0.47619047619047616 ****	**Classification Result** PASS : 21 FAIL : 0 FAIL position : NONE Accuracy : 1.0 ****

learning rate 可以想像成在山谷中要找到最低點,每一次所跨出的步長,若太大的話容易像左下圖,發生震盪不容易找到最低點,而若設定太小則易發生右下圖得情況,除了訓練時間可能會很慢以外也可能發生在一定 epoch 內走不出局部低點的問題。

由上方表格可以發現,當 learning rate 越小時(0.001),收斂速度會較慢 $(data\ 2\ \text{\it Ef}\ 21\ \text{\it all}\ 2\ \text{\it Ef}\ 21\ \text{\it epoch}\ 3\ \text{\it$

B. Try different numbers of hidden units

(以 data type two:XOR datasets 為例)

Hidden units = 5 00	Hidden units = 20	Hidden units = 1
start training epoch 10000 Loss: 0.23814085912398816 epoch 15000 Loss: 0.23812740487688192 epoch 20000 Loss: 0.23812026738543549 epoch 25000 Loss: 0.23811579381906375 epoch 30000 Loss: 0.23811271335148312 epoch 35000 Loss: 0.2381104617085584 epoch 40000 Loss: 0.23810874696250903 epoch 45000 Loss: 0.23810740075808254 epoch 50000 Loss: 0.23810542933958004 epoch 65000 Loss: 0.23810468700820403 epoch 65000 Loss: 0.23810468700820403 epoch 65000 Loss: 0.2381046870820403 epoch 65000 Loss: 0.2381035156346661 epoch 75000 Loss: 0.23810304414048758 epoch 80000 Loss: 0.2381026292776718 epoch 85000 Loss: 0.2381013076149513 epoch 95000 Loss: 0.2381013307747547 epoch 100000 Loss: 0.23810136266358806 Excution time: 413.772991 sec	start training epoch 10000 Loss: 0.012584445916039164 epoch 15000 Loss: 0.004848684282595373 epoch 20000 Loss: 0.0026006987350890437 epoch 25000 Loss: 0.0016808279761453358 epoch 30000 Loss: 0.0012089894753325296 epoch 35000 Loss: 0.000930046399784224 epoch 40000 Loss: 0.00097487546731802588 epoch 45000 Loss: 0.0006227688254981072 epoch 50000 Loss: 0.0005307678966885006 epoch 55000 Loss: 0.0004609790895600618 epoch 60000 Loss: 0.000460276882473033708 epoch 70000 Loss: 0.00032702112514954143 epoch 75000 Loss: 0.00029734782747260075 epoch 80000 Loss: 0.00027233419530383885 epoch 85000 Loss: 0.00025098811932832755 epoch 90000 Loss: 0.0002165472058886178 epoch 100000 Loss: 0.00020247603357239933 Excution time: 7.988529 sec	start training epoch 10000 Loss: 0.2494557150215167 epoch 15000 Loss: 0.2494525531203861 epoch 20000 Loss: 0.24944737968977493 epoch 30000 Loss: 0.24944737968977493 epoch 35000 Loss: 0.2494452755125287 epoch 35000 Loss: 0.24944343626646528 epoch 40000 Loss: 0.24944182423145628 epoch 45000 Loss: 0.24944040583152066 epoch 55000 Loss: 0.24943915152245172 epoch 55000 Loss: 0.24943915152245172 epoch 65000 Loss: 0.2494303551645216 epoch 60000 Loss: 0.24943703541983922 epoch 65000 Loss: 0.24943613183635108 epoch 70000 Loss: 0.2494353079699784 epoch 75000 Loss: 0.249438454924747405 epoch 80000 Loss: 0.24943313780054384 epoch 90000 Loss: 0.24943133742657378 Excution time: 3.879416 sec
**** PASS: 16 FAIL: 5 FAIL position: [1, 3, 5, 7, 9] Accuracy: 0.7619047619047619 ****	**Classification Result** PASS : 21 FAIL : 0 FAIL position : NONE Accuracy : 1.0 ****	**Classification Result** PASS : 11 FAIL : 10 FAIL position : [1, 3, 5, 7, 9, 12, 14, 16, 18, 20] Accuracy : 0.5238095238095238 ***

由上述表格可發現,當 hidden units 太少時會導致 model 收斂不了,縱使運算時間超快,但結果其低,換言之 model 架構過於簡單,無法有效處理目前的 data,而當 hidden units 增加到足夠數目時就可以成功預測(如 20 個),但是若加上過多(重點在於過多)hidden units 則會導致計算時間大幅增加,準確率也未必提高,甚至可能出錯。

C. Try without activation functions

Without activation function	Hidden units = 20
epoch 0 Loss: 1.6918311398259622e+18	start training
/usr/local/lib/python3.6/dist-package	epoch 0 Loss: 807.0965701699397 epoch 10000 Loss: 771.1266129789688
epoch 10000 Loss: nan epoch 15000 Loss: nan epoch 20000 Loss: nan epoch 25000 Loss: nan epoch 30000 Loss: nan epoch 35000 Loss: nan epoch 40000 Loss: nan epoch 45000 Loss: nan epoch 55000 Loss: nan epoch 55000 Loss: nan epoch 65000 Loss: nan epoch 65000 Loss: nan epoch 65000 Loss: nan	epoch 15000 Loss: 754.8161759347219 epoch 20000 Loss: 739.4104449808763 epoch 25000 Loss: 724.7883644652427 epoch 30000 Loss: 710.8509482942698 epoch 35000 Loss: 697.5165730693136 epoch 40000 Loss: 684.7174276862689 epoch 45000 Loss: 672.3967968549001 epoch 50000 Loss: 660.5069559472137 epoch 55000 Loss: 649.0075207658482 epoch 60000 Loss: 637.864140505057 epoch 65000 Loss: 627.0474528813511 epoch 70000 Loss: 616.5322418552552 epoch 75000 Loss: 606.2967535672524
epoch 75000 Loss: nan epoch 80000 Loss: nan	epoch 80000 Loss: 596.3221370364865
epoch 85000 Loss: nan epoch 90000 Loss: nan epoch 95000 Loss: nan epoch 100000 Loss: nan	epoch 85000 Loss: 586.5919841242384 epoch 90000 Loss: 577.091949123377 epoch 95000 Loss: 567.809432699817 epoch 100000 Loss: 558.7333181983595
Excution time: 3.353512 sec	Excution time: 4.068676 sec

類神經網絡中如果把 sigmoid function 去掉,意即不使用任何 activation functions,則在類神經網絡中便失去了非線性的效果,輸出的結果就都是之前 layer 輸入的線性組合作為這一層的輸出,換言之就是一班矩陣相乘的運算,輸 出和輸入依然保持線性相關,做深度類神經網路便失去意義,也會導致有些分類 問題會無法達成。由上方表格可以發現,如果把 sigmoid function 拿掉並搭配原本的 learning rate,則會使得 W 更新時變動數值過大(因為沒 sigmoid 把 model out 限制在 $0\sim1$),導致整個 model 參數直接 overflow,基本上 train 不起來。若把 learning rate 調小(右側:learning rate 調成 0.0000001),此時便能 train 出 model,然而因為沒有 sigmoid 來導入非線性,在解 XOR 問題時沒辦法只用線性 model 來分割 data,因此導致最後 performance 很差。

D. Gradient Problem

類神經網絡中 gradient 的問題是重要且常發生的,而此次 Lab 中 sigmoid function 就很容易出現梯度消失問題(Gradient Vanishing),在神經網絡反向傳播中,梯度從後往前傳時,梯度不斷減小,最後變為零,此時,淺層的神經網絡權重得不到更新,那麼前面隱藏層的學習速率低於後面隱藏層的學習速率,即隨著隱藏層數目的增加,分類準確率卻下降,此現象叫做梯度消失。

梯度消失導致後層的權重更新的快,靠近輸出層的權值更新相對正常,而前層網絡由於梯度傳遞不過去而無法更新,靠近輸入層的權值更新會變得很慢,導致靠近輸入層的隱藏層權值幾乎不變,接近於初始化的權值,在網絡很深時,學習的速度很慢甚至無法學習,可知網絡深度越深問題會越來越嚴重,可用其他activation function 替代、減少網絡深度、動態地改變 learning rate 等來解決。

5. Extra

B. Implement different activation functions

Activation func. : tanhlearning rate : 0.01

Activation func. : ReLu learning rate : 0.0015

For data type one: Linear datasets	For data type two: XOR datasets
start training epoch 0 Loss: 0.51 epoch 10000 Loss: 0.51 epoch 15000 Loss: 0.51 epoch 20000 Loss: 0.51 epoch 25000 Loss: 0.51 epoch 30000 Loss: 0.51 epoch 35000 Loss: 0.51 epoch 40000 Loss: 0.51 epoch 45000 Loss: 0.51 epoch 50000 Loss: 0.51 epoch 55000 Loss: 0.51 epoch 65000 Loss: 0.51 epoch 65000 Loss: 0.51 epoch 75000 Loss: 0.51 epoch 75000 Loss: 0.51 epoch 75000 Loss: 0.51 epoch 85000 Loss: 0.51 epoch 85000 Loss: 0.51 epoch 95000 Loss: 0.51 epoch 1000000 Loss: 0.51	start training epoch 0 Loss: 0.47619047619047616 epoch 10000 Loss: 0.47619047619047616 epoch 15000 Loss: 0.47619047619047616 epoch 20000 Loss: 0.47619047619047616 epoch 25000 Loss: 0.47619047619047616 epoch 30000 Loss: 0.47619047619047616 epoch 35000 Loss: 0.47619047619047616 epoch 40000 Loss: 0.47619047619047616 epoch 45000 Loss: 0.47619047619047616 epoch 50000 Loss: 0.47619047619047616 epoch 60000 Loss: 0.47619047619047616 epoch 65000 Loss: 0.47619047619047616 epoch 70000 Loss: 0.47619047619047616 epoch 75000 Loss: 0.47619047619047616 epoch 80000 Loss: 0.47619047619047616 epoch 85000 Loss: 0.47619047619047616 epoch 85000 Loss: 0.47619047619047616 epoch 90000 Loss: 0.47619047619047616 epoch 90000 Loss: 0.47619047619047616 epoch 95000 Loss: 0.47619047619047616 epoch 100000 Loss: 0.47619047619047616 epoch 100000 Loss: 0.47619047619047616
start to classify 100% **Classification Result** PASS: 49 FAIL: 51 FAIL position: [0, 1, 8, 10, 11, 13, 14, 16, 9, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 73, Accuracy: 0.49 ****	**start to classify** 100% 21/21 **Classification Result** PASS: 11 FAIL: 10 FAIL position: [1, 3, 5, 7, 9, 12, 14, 16, : Accuracy: 0.5238095238095238 ****

- Activation func. : leaky-relu
- learning rate: 0.01

