Q6 Batch Norm and SELU (4.5 Points)

Generate training and test datasets for a binary classification problem using Fashion-MNIST with class 1 being a combination of sneaker and pullover and class 0 being the combination of sandal and shirt categories.

- Train the model using Logistic regression (No Hidden Layers). Report train and test loss.
- Train a Neural Network with one hidden layer (100 neurons). Use Adam optimizer and Relu
 activation for hidden layer. First overfit a small sample to check errors and get idea of
 learning rate. Then train on complete dataset. Add regularization (dropout or weight
 decay)if needed.
- Now add another hidden layer (50 Neurons). Adjust the learning rate if you have to. Add regularization (dropout or weight decay) if needed.
- Now try adding Batch Normalization and compare the train and test loss: Is it converging
 faster than before? Does it produce a better model? How does it affect training speed? Do
 not use dropout with batch normalization.
- Try replacing Batch Normalization with SELU, and make the necessary adjustments to
 ensure the network self-normalizes (i.e., standardize the input features, use LeCun normal
 initialization, make sure the DNN contains only a sequence of dense layers). Compare the
 results with Batch Normalization. For SELU if you are using dropout then use alpha
 dropout. Alpha dropout make sure that network is self normalized.

Importing Libraries

```
if 'google.colab' in str(get_ipython()):
 print('Running on Colab')
else:
 print('Not running on Colab')
     Running on Colab
if 'google.colab' in str(get_ipython()):
  !pip install wandb --upgrade
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-whee</a>
    Collecting wandb
       Downloading wandb-0.13.4-py2.py3-none-any.whl (1.9 MB)
                                       1.9 MB 19.2 MB/s
    Collecting sentry-sdk>=1.0.0
       Downloading sentry_sdk-1.10.1-py2.py3-none-any.whl (166 kB)
                                           166 kB 74.2 MB/s
     Requirement already satisfied: protobuf!=4.0.*,!=4.21.0,<5,>=3.12.0 in /usr/local
     Requirement already satisfied: six>=1.13.0 in /usr/local/lib/python3.7/dist-packa
    Collecting pathtools
```

```
Downloading pathtools-0.1.2.tar.gz (11 kB)
     Requirement already satisfied: Click!=8.0.0,>=7.0 in /usr/local/lib/python3.7/dis
    Collecting GitPvthon>=1.0.0
      Downloading GitPython-3.1.29-py3-none-any.whl (182 kB)
                                      182 kB 60.8 MB/s
    Collecting shortuuid>=0.5.0
      Downloading shortuuid-1.0.9-py3-none-any.whl (9.4 kB)
     Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.7/dist-pac
     Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (
    Collecting setproctitle
      Downloading setproctitle-1.3.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_6
     Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packag
     Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.7/dis
    Collecting docker-pycreds>=0.4.0
      Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)
     Requirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.7/dist-p
    Collecting gitdb<5,>=4.0.1
      Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)
                                          | 63 kB 2.3 MB/s
     Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/pytho
    Collecting smmap<6,>=3.0.1
      Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
     Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-pack
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dis
     Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist
     Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/lo
    Collecting sentry-sdk>=1.0.0
      Downloading sentry_sdk-1.10.0-py2.py3-none-any.whl (166 kB)
                                  166 kB 65.7 MB/s
      Downloading sentry_sdk-1.9.10-py2.py3-none-any.whl (162 kB)
                                         162 kB 28.5 MB/s
      Downloading sentry_sdk-1.9.9-py2.py3-none-any.whl (162 kB)
                                      | 162 kB 81.1 MB/s
      Downloading sentry_sdk-1.9.8-py2.py3-none-any.whl (158 kB)
                                      158 kB 79.9 MB/s
      Downloading sentry_sdk-1.9.7-py2.py3-none-any.whl (157 kB)
                                         | 157 kB 77.2 MB/s
      Downloading sentry_sdk-1.9.6-py2.py3-none-any.whl (157 kB)
                                   157 kB 70.7 MB/s
      Downloading sentry sdk-1.9.5-py2.py3-none-any.whl (157 kB)
                                        157 kB 63.5 MB/s
      Downloading sentry_sdk-1.9.4-py2.py3-none-any.whl (157 kB)
                                       157 kB 73.7 MB/s
      Downloading sentry_sdk-1.9.3-py2.py3-none-any.whl (157 kB)
                                       157 kB 64.2 MB/s
      Downloading sentry_sdk-1.9.2-py2.py3-none-any.whl (157 kB)
# mount google drive
if 'google.colab' in str(get_ipython()):
   from google.colab import drive
   drive.mount('/content/drive')
```

```
# Importing the necessary libraries
import torch
```

Mounted at /content/drive

```
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F

from torch.optim.lr_scheduler import ReduceLROnPlateau, ExponentialLR, CyclicLR, OneCycleL
import numpy as np
import random

from datetime import datetime
from pathlib import Path
import sys
from types import SimpleNamespace
import wandb
```

▼ Initializing Wandb

```
wandb.login()

ERROR:wandb.jupyter:Failed to detect the name of this notebook, you can set it manual
wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc
True

wandb.init(name = "Hw5_FASHION_MNIST.ipynb", project = 'Deep_Learning_Class_UTD')

wandb: Currently logged in as: pranavshekhar2. Use `wandb login --relogin` to force r
Tracking run with wandb version 0.13.4
Run data is saved locally in /content/wandb/run-20221028_214025-23f1zng3
Syncing run Hw5_FASHION_MNIST.ipynb to Weights & Biases (docs)

wandb: Currently logged in output
Weights & Biases (docs)
```

Q6 Batch Norm and SELU (4.5 Points)

Generate training and test datasets for a binary classification problem using Fashion-MNIST with class 1 being a combination of sneaker and pullover and class 0 being the combination of sandal and shirt categories.

- Train the model using Logistic regression (No Hidden Layers). Report train and test loss.
- Train a Neural Network with one hidden layer (100 neurons). Use Adam optimizer and Relu
 activation for hidden layer. First overfit a small sample to check errors and get idea of
 learning rate. Then train on complete dataset. Add regularization (dropout or weight
 decay)if needed.

- Now add another hidden layer (50 Neurons). Adjust the learning rate if you have to. Add regularization (dropout or weight decay) if needed.
- Now try adding Batch Normalization and compare the train and test loss: Is it converging
 faster than before? Does it produce a better model? How does it affect training speed? Do
 not use dropout with batch normalization.
- Try replacing Batch Normalization with SELU, and make the necessary adjustments to
 ensure the network self-normalizes (i.e., standardize the input features, use LeCun normal
 initialization, make sure the DNN contains only a sequence of dense layers). Compare the
 results with Batch Normalization. For SELU if you are using dropout then use alpha

dranaut Alpha dranaut make cure that network is self normalized

```
# This is the path where we will downlaod and save data
if 'google.colab' in str(get_ipython()):
    data_folder = Path('/content/drive/MyDrive/Deep_Learning_UTD/Dataset')
    model_folder = Path('/content/drive/MyDrive/Deep_Learning_UTD/Model')
else:
    data_folder = Path('/home/harpreet/Insync/google_drive_shaannoor/data/datasets')
```

▼ Train and Test Dataset - FASHION_MNIST

```
# Transform to convert images to pytorch tensors
trans1 = transforms.ToTensor()
# Transform to normalize the data
# The mean and std are based on train subset which we will create below
trans2 = transforms.Normalize((0.2857,), (0.3528))
trans = transforms.Compose([trans1, trans2])
# Download the training_validation data (we will create two subsets - trainset and valset
train_val_set = torchvision.datasets.FashionMNIST(root = data_folder,
                                             train = True,
                                             transform = trans,
                                             download = True)
# Download the testing data
testset = torchvision.datasets.FashionMNIST(root = data folder,
                                            train = False,
                                            transform = trans,
                                            download = True)
def split_dataset(base_dataset, fraction, seed):
    split_a_size = int(fraction * len(base_dataset))
    split_b_size = len(base_dataset) - split_a_size
    return torch.utils.data.random_split(base_dataset, [split_a_size, split_b_size], gener
    )
trainset, validset = split dataset(train val set, 0.8,10)
```

#DataLoaders

```
# Initializing the batch size
batch_size = 256
# Creating data loader for train set
train_loader = torch.utils.data.DataLoader(dataset= trainset,
                                           batch_size = batch_size,
                                            shuffle = True)
valid_loader = torch.utils.data.DataLoader(dataset = validset,
                                           batch size = batch size,
                                            shuffle = False)
# Creating data loader for test set
test_loader = torch.utils.data.DataLoader(dataset = testset,
                                          batch_size = batch_size,
                                           shuffle = False)
#Checking the mapping of the labels
train_val_set.data
train_val_set.class_to_idx
     {'T-shirt/top': 0,
      'Trouser': 1,
      'Pullover': 2,
      'Dress': 3,
      'Coat': 4,
      'Sandal': 5,
      'Shirt': 6,
      'Sneaker': 7,
      'Bag': 8,
      'Ankle boot': 9}
#Creating a subset of data consisting of class 1 and class 0
from torch.utils.data.dataset import Subset
#Sneaker and Pullover - Class1
train idx 1 = np.where((train val set.targets==7) | (train val set.targets==2))[0]
train subset 1 = Subset(train val set, train idx 1)
#Sandal and Shirt - Class 0
train_idx_2 = np.where((train_val_set.targets==5) | (train_val_set.targets==6))[0]
train_subset_2 = Subset(train_val_set,train_idx_2)
#Sneaker and Pullover - Class 1 - Creating labels for Class 1 Group
train subset 1.dataset.data[train subset 1.indices].shape
```

```
labels_subset_1 = [1]*(train_subset_1.dataset.data[train_subset_1.indices].shape[0]) #Labe
train_val_set.targets[train_subset_1.indices]
     tensor([2, 7, 2, ..., 2, 7, 2])
#Sandal and Shirt - Class 0 - Creating labels for Class 0 Group
train_subset_2.dataset.data[train_subset_2.indices].shape
labels_subset_2 = [0]*(train_subset_2.dataset.data[train_subset_2.indices].shape[0])
train_val_set.targets[train_subset_2.indices]
     tensor([5, 5, 5, ..., 6, 5, 5])
train_data1 = []
for i in range(len(train_subset_1)):
   train_data1.append([train_subset_1[i], labels_subset_1[i]])
train_data2 = []
for j in range(len(train_subset_2)):
   train_data2.append([train_subset_2[j], labels_subset_2[j]])
#Combined Dataset
train_data1.extend(train_data2)
```

Class for Model

```
class FashionMNIST_NN(nn.Module):
 def __init__(self, input_dim, output_dim, h_sizes, dprob, non_linearity, batch_norm):
   super().__init__()
   self.input_dim = input_dim
   self.h_sizes = h_sizes # list of hidden sizes
   self.non_linearity = non_linearity
   self.batch_norm = batch_norm
   self.dprob = dprob # list of dropout probabilities
   self.output_dim = output_dim
   # Initialize hidden layers
   model layers = [nn.Flatten()]
   # hidden layers
   for i, hidden size in enumerate(self.h sizes):
     model_layers.append(nn.Linear(input_dim, hidden_size))
     model_layers.append(self.non_linearity)
     model_layers.append(nn.Dropout(p=dprob[i]))
     if self.batch_norm:
        model_layers.append(nn.BatchNorm1d(hidden_size, momentum=0.9))
```

```
input_dim = hidden_size
    # output layer
    model_layers.append(nn.Linear(self.h_sizes[-1], self.output_dim))
    self.module_list = nn.ModuleList(model_layers)
  def forward(self, x):
    for layer in self.module_list:
      x = layer(x)
    # we are not using softmax function in the forward passs
    # nn.crossentropy loss (which we will use to define our loss) combines nn.LogSoftmax(
    return x
def train(train loader, loss function, model, optimizer, grad clipping, max norm, log batc
  # Training Loop
  # initilalize variables as global
  # these counts will be updated every epoch
  global batch_ct_train
  # Initialize train_loss at the he start of the epoch
  running_train_loss = 0
  running_train_correct = 0
  # put the model in training mode
  model.train()
  # Iterate on batches from the dataset using train_loader
  for input_, targets in train_loader:
    # move inputs and outputs to GPUs
    input_ = input_.to(device)
    targets = targets.to(device)
    # Step 1: Forward Pass: Compute model's predictions
    output = model(input )
    # Step 2: Compute loss
    loss = loss function(output, targets)
    # Correct prediction
    y pred = torch.argmax(output, dim = 1)
    correct = torch.sum(y_pred == targets)
    batch ct train += 1
    # Step 3: Backward pass -Compute the gradients
    optimizer.zero grad()
```

```
loss.backward()
    # Gradient Clipping
    if grad_clipping:
      nn.utils.clip_grad_norm_(model.parameters(), max_norm=max_norm, norm_type=2)
    # Step 4: Update the parameters
    optimizer.step()
    # Add train loss of a batch
    running_train_loss += loss.item()
    # Add Corect counts of a batch
    running_train_correct += correct
    # log batch loss and accuracy
    if log_batch:
      if ((batch_ct_train + 1) % log_interval) == 0:
        wandb.log({f"Train Batch Loss :": loss})
        wandb.log({f"Train Batch Acc :": correct/len(targets)})
  # Calculate mean train loss for the whole dataset for a particular epoch
  train_loss = running_train_loss/len(train_loader)
  # Calculate accuracy for the whole dataset for a particular epoch
  train_acc = running_train_correct/len(train_loader.dataset)
  return train_loss, train_acc
def validate(valid loader, loss function, model, log batch, log interval):
  # initilalize variables as global
  # these counts will be updated every epoch
  global batch_ct_valid
  # Validation/Test loop
  # Initialize valid_loss at the he strat of the epoch
  running_val_loss = 0
  running val correct = 0
  # put the model in evaluation mode
  model.eval()
  with torch.no_grad():
    for input_,targets in valid_loader:
      # move inputs and outputs to GPUs
      input_ = input_.to(device)
      targets = targets.to(device)
      # Step 1: Forward Pass: Compute model's predictions
      output = model(input )
```

```
# Step 2: Compute loss
      loss = loss function(output, targets)
      # Correct Predictions
      y_pred = torch.argmax(output, dim = 1)
      correct = torch.sum(y_pred == targets)
      batch_ct_valid += 1
      # Add val loss of a batch
      running val loss += loss.item()
      # Add correct count for each batch
      running val correct += correct
      # log batch loss and accuracy
      if log_batch:
        if ((batch_ct_valid + 1) % log_interval) == 0:
          wandb.log({f"Valid Batch Loss :": loss})
          wandb.log({f"Valid Batch Accuracy :": correct/len(targets)})
    # Calculate mean val loss for the whole dataset for a particular epoch
    val_loss = running_val_loss/len(valid_loader)
    # Calculate accuracy for the whole dataset for a particular epoch
    val_acc = running_val_correct/len(valid_loader.dataset)
    # scheduler step
    # scheduler.step(valid_loss)
    # scheduler.step()
  return val_loss, val_acc
def train_loop(train_loader, valid_loader, model, optimizer, loss_function, epochs, device
               file_model):
  .. .. ..
  Function for training the model and plotting the graph for train & validation loss vs ep
  Input: iterator for train dataset, initial weights and bias, epochs, learning rate, batc
  Output: final weights, bias and train loss and validation loss for each epoch.
  # Create lists to store train and val loss at each epoch
  train loss history = []
  valid_loss_history = []
  train_acc_history = []
  valid_acc_history = []
  # initialize variables for early stopping
  delta = 0
  best score = None
  valid loss min = np.Inf
```

```
counter_early_stop=0
early stop=False
# Iterate for the given number of epochs
# Step 5: Repeat steps 1 - 4
for epoch in range(epochs):
 t0 = datetime.now()
 # Get train loss and accuracy for one epoch
 train loss, train acc = train(train loader, loss function, model, optimizer,
                                wandb.config.grad_clipping, wandb.config.max_norm,
                                wandb.config.log_batch, wandb.config.log_interval)
 valid_loss, valid_acc = validate(valid_loader, loss_function, model, wandb.config.lo
 dt = datetime.now() - t0
 # Save history of the Losses and accuracy
 train_loss_history.append(train_loss)
 train_acc_history.append(train_acc)
 valid_loss_history.append(valid_loss)
 valid_acc_history.append(valid_acc)
 # Log the train and valid loss to wandb
 wandb.log({f"Train Loss :": train_loss, "epoch": epoch})
 wandb.log({f"Train Acc :": train_acc, "epoch": epoch})
 wandb.log({f"Valid Loss :": valid_loss, "epoch": epoch})
 wandb.log({f"Valid Acc :": valid_acc, "epoch": epoch})
 if early_stopping:
    score = -valid_loss
    if best score is None:
      best score=score
      print(f'Validation loss has decreased ({valid_loss_min:.6f} --> {valid_loss:.6f}).
      torch.save(model.state dict(), file model)
      valid_loss_min = valid_loss
    elif score < best_score + delta:</pre>
      counter early stop += 1
      print(f'Early stoping counter: {counter_early_stop} out of {patience}')
      if counter_early_stop > patience:
        early_stop = True
    else:
      best score = score
      print(f'Validation loss has decreased ({valid_loss_min:.6f} --> {valid_loss:.6f}).
      torch.save(model.state_dict(), file_model)
      counter early stop=0
      valid_loss_min = valid_loss
    if early_stop:
```

```
print('Early Stopping')
        break
   else:
      score = -valid loss
      if best_score is None:
        best_score=score
        print(f'Validation loss has decreased ({valid_loss_min:.6f} --> {valid_loss:.6f}).
        torch.save(model.state_dict(), file_model)
        valid_loss_min = valid_loss
      elif score < best score + delta:
        print(f'Validation loss has not decreased ({valid_loss_min:.6f} --> {valid_loss:.6
      else:
        best score = score
        print(f'Validation loss has decreased ({valid_loss_min:.6f} --> {valid_loss:.6f}).
        torch.save(model.state_dict(), file_model)
        valid_loss_min = valid_loss
   # Print the train loss and accuracy for given number of epochs, batch size and number
   print(f'Epoch : {epoch+1} / {epochs}')
   print(f'Time to complete {epoch+1} is {dt}')
   # print(f'Learning rate: {scheduler. last lr[0]}')
   print(f'Train Loss: {train_loss : .4f} | Train Accuracy: {train_acc * 100 : .4f}%')
   print(f'Valid Loss: {valid_loss : .4f} | Valid Accuracy: {valid_acc * 100 : .4f}%')
   print()
   torch.cuda.empty_cache()
 return train_loss_history, train_acc_history, valid_loss_history, valid_acc_history
def get_acc_pred(data_loader, model, device):
  .....
 Function to get predictions and accuracy for a given data using estimated model
 Input: Data iterator, Final estimated weoights, bias
 Output: Prections and Accuracy for given dataset
  .....
 # Array to store predicted labels
 predictions = torch.Tensor() # empty tensor
 predictions = predictions.to(device) # move predictions to GPU
 # Array to store actual labels
 y = torch.Tensor() # empty tensor
 y = y.to(device)
 # put the model in evaluation mode
 model.eval()
 # Iterate over batches from data iterator
 with torch.no_grad():
   for input, targets in data loader:
```

```
# move inputs and outputs to GPUs
    input_ = input_.to(device)
    targets = targets.to(device)
    # Calculated the predicted labels
    output = model(input_)
    # Choose the label with maximum probability
    prediction = torch.argmax(output, dim = 1)
    # Add the predicted labels to the array
    predictions = torch.cat((predictions, prediction))
    # Add the actual labels to the array
    y = torch.cat((y, targets))
# Check for complete dataset if actual and predicted labels are same or not
# Calculate accuracy
acc = (predictions == y).float().mean()
# Return tuple containing predictions and accuracy
return predictions, acc
```

Logistic Regression

```
class LogisticRegression(torch.nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogisticRegression, self).__init__()
        self.linear = torch.nn.Linear(input_dim, output_dim)
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

epochs = 200
input_dim = 3*32*32 # Two inputs x1 and x2
output_dim = 1 # Single binary output
learning_rate = 0.01

model = LogisticRegression(input_dim,output_dim)

criterion = torch.nn.BCELoss()

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

→ One Hidden Layer

```
hyperparameters1 = SimpleNamespace(
    epochs = 20,
    input dim = 28*28,
    output dim = 10,
    h_sizes = [100] , # 1 Hidden Layer of 100 Neurons
    dprob = [0],
    non_linearity = nn.ReLU(),
    batch norm = False,
    batch_size=25,
    learning rate=0.07,
    dataset="FASHION_MNIST",
    architecture="MLP",
    log_interval = 1,
    log_batch = True,
    file_model = model_folder/'exp1_overfit_mnist.pt',
    grad_clipping = False, # DO NOT CHANGE hyperparameters below this
    early stopping = False,
    max_norm = 1,
    momentum = 0,
    patience = 3,
    # scheduler_factor = 0.5,
    # scheduler_patience = 0,
    weight decay = 0.00
    )
wandb.config = hyperparameters1
wandb.config
     namespace(architecture='MLP', batch_norm=False, batch_size=25,
     dataset='FASHION_MNIST', dprob=[0], early_stopping=False, epochs=20,
     file_model=PosixPath('/content/drive/MyDrive/Deep_Learning_UTD/Model/exp1_overfit_mni
      grad_clipping=False, h_sizes=[100], input_dim=784, learning_rate=0.07,
     log_batch=True, log_interval=1, max_norm=1, momentum=0, non_linearity=ReLU(),
     output_dim=10, patience=3, weight_decay=0.0)
# Fix seed value
SEED = 2344
random.seed(SEED)
np.random.seed(SEED)
torch.manual seed(SEED)
torch.cuda.manual seed(SEED)
torch.backends.cudnn.deterministic = True
# Data Loader
train_loader = torch.utils.data.DataLoader(trainset, batch_size=wandb.config.batch_size, s
valid loader = torch.utils.data.DataLoader(validset, batch size=wandb.config.batch size, s
# test_loader = torch.utils.data.DataLoader(testset, batch_size=wandb.config.batch_size,
# device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
```

```
wandb.config.device = device
```

```
model = FashionMNIST NN(wandb.config.input dim, wandb.config.output dim, wandb.config.h si
                          wandb.config.dprob, wandb.config.non linearity, wandb.config.bat
# Initialize weights from normal distribution with mean 0 and standard deviation 0.01
def init_weights(layer):
  if type(layer) == nn.Linear:
    torch.nn.init.kaiming_normal_(layer.weight, mean = 0, std = 0.01)
    # torch.nn.init.normal_(layer.weight, mean = 0, std = 0.001)
    torch.nn.init.zeros_(layer.bias)
model.to(wandb.config.device)
# model.apply(init_weights)
# loss_function
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),
                            lr = wandb.config.learning_rate,
                            weight_decay = wandb.config.weight_decay)
# scheduler = ReduceLROnPlateau(optimizer, mode='min', factor= wandb.config.scheduler_fact
                               patience=wandb.config.scheduler_patience, verbose=True)
#
#scheduler = StepLR(optimizer, gamma=0.4,step_size=1, verbose=True)
# See live graphs in the notebook.
#%%wandb
batch_ct_train, batch_ct_valid = 0, 0
train_loss_history, train_acc_history, valid_loss_history, valid_acc_history = train_loop(
```

```
Validation loss has decreased (inf --> 2.400696). Saving Model...

Epoch: 1 / 20

Time to complete 1 is 0:00:13.682159

Train Loss: 2.6776 | Train Accuracy: 23.7604%

Valid Loss: 2.4007 | Valid Accuracy: 11.1750%

Validation loss has decreased (2.400696 --> 2.399744). Saving model...

Epoch: 2 / 20

Time to complete 2 is 0:00:13.766537

Train Loss: 2.8962 | Train Accuracy: 12.6042%

Valid Loss: 2.3997 | Valid Accuracy: 11.3500%

Validation loss has decreased (2.399744 --> 2.296860). Saving model...
```

```
Epoch : 3 / 20
    Time to complete 3 is 0:00:13.968270
     Train Loss: 2.6764 | Train Accuracy: 12.2667%
    Valid Loss: 2.2969 | Valid Accuracy: 10.8417%
    Validation loss has decreased (2.296860 --> 2.292094). Saving model...
    Epoch: 4 / 20
    Time to complete 4 is 0:00:13.827049
    Train Loss: 2.3503 | Train Accuracy: 10.7208%
    Valid Loss: 2.2921 | Valid Accuracy: 11.1250%
    Validation loss has not decreased (2.292094 --> 2.376915). Not Saving Model...
    Epoch : 5 / 20
    Time to complete 5 is 0:00:16.397947
    Train Loss: 2.3709 | Train Accuracy:
                                           10.6208%
    Valid Loss: 2.3769 | Valid Accuracy: 11.3500%
    Validation loss has not decreased (2.292094 --> 2.317251). Not Saving Model...
    Epoch: 6 / 20
    Time to complete 6 is 0:00:14.738176
    Train Loss: 2.3280 | Train Accuracy: 11.2979%
    Valid Loss: 2.3173 | Valid Accuracy: 10.5917%
    Validation loss has decreased (2.292094 --> 2.282408). Saving model...
    Epoch: 7 / 20
    Time to complete 7 is 0:00:14.257567
    Train Loss: 2.3039 | Train Accuracy: 11.6854%
    Valid Loss: 2.2824 | Valid Accuracy: 11.3500%
    Validation loss has not decreased (2.282408 --> 2.301172). Not Saving Model...
    Epoch: 8 / 20
    Time to complete 8 is 0:00:14.579827
    Train Loss: 2.2998 | Train Accuracy: 10.9000%
    Valid Loss: 2.3012 | Valid Accuracy: 10.6000%
    Validation loss has not decreased (2.282408 --> 2.311997). Not Saving Model...
    Epoch : 9 / 20
    Time to complete 9 is 0:00:14.404734
    Train Loss: 2.2988 | Train Accuracy: 10.3146%
    Valid Loss: 2.3120 | Valid Accuracy: 10.7417%
    Validation loss has not decreased (2.282408 --> 2.321152). Not Saving Model...
     Epoch : 10 / 20
    Time to complete 10 is 0:00:15.625823
     Train Loss: 2.2987 | Train Accuracy: 10.6187%
hyperparameters2 = SimpleNamespace(
   epochs = 20,
   input_dim = 28*28,
   output_dim = 10,
   h_sizes = [100 ,50] , # 2 Hidden Layer of 100,50 Neurons
   dprob = [0]*2,
   non_linearity = nn.ReLU(),
   batch norm = False,
   batch size=25,
   learning_rate=0.07,
   dataset="FASHION_MNIST",
   architecture="MLP",
```

```
log interval = 1,
    log batch = True,
    file model = model folder/'exp1 overfit mnist.pt',
    grad_clipping = False, # DO NOT CHANGE hyperparameters below this
    early_stopping = False,
    max_norm = 1,
    momentum = 0,
    patience = 3,
    # scheduler_factor = 0.5,
    # scheduler_patience = 0,
    weight_decay = 0.00
wandb.config = hyperparameters2
wandb.config
# Fix seed value
SEED = 2344
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual seed(SEED)
torch.backends.cudnn.deterministic = True
# Data Loader
train_loader = torch.utils.data.DataLoader(trainset, batch_size=wandb.config.batch_size, s
valid_loader = torch.utils.data.DataLoader(validset, batch_size=wandb.config.batch_size, s
# test_loader = torch.utils.data.DataLoader(testset, batch_size=wandb.config.batch_size,
# device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
wandb.config.device = device
model2 = FashionMNIST NN(wandb.config.input dim, wandb.config.output dim, wandb.config.h s
                          wandb.config.dprob, wandb.config.non linearity, wandb.config.bat
# Initialize weights from normal distribution with mean 0 and standard deviation 0.01
def init weights(layer):
  if type(layer) == nn.Linear:
    torch.nn.init.kaiming_normal_(layer.weight, mean = 0, std = 0.01)
    # torch.nn.init.normal_(layer.weight, mean = 0, std = 0.001)
    torch.nn.init.zeros_(layer.bias)
model2.to(wandb.config.device)
# model.apply(init_weights)
# loss function
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model2.parameters(),
                            lr = wandb.config.learning_rate,
                            weight_decay = wandb.config.weight_decay)
```

Colab paid products - Cancel contracts here

✓ 4m 49s completed at 4:52 PM