NT Final

ROHAN GOYAL

November 24, 2020

Time: 180 minutes

§1 Problem Set

Problem 1.1. The sequence of positive integers a_1, a_2, \cdots has the property that $gcd(a_m, a_n) > 1$ if and only if |m - n| = 1. Find the sum of the k smallest possible values of a_l when (k, l) =

- a) (2,1)
- b) (7,3)
- c) (20, 2020)

Problem 1.2. How many ordered pairs of positive integers (x,y) satisfy $y \cdot x^y = y^k$ when k =

- a) 4
- b) 2020
- c) 105106

Problem 1.3. The sequence of nonnegative integers F_0, F_1, F_2, \ldots is defined recursively as $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$. Let d be the largest positive integer such that, for all integers $n \ge 0$, d divides $F_{n+2k} - F_n$. Compute the remainder when d is divided by m for (k, m) =

- a) (2,4)
- b) (63, 11)
- c) (2020, 1001)

Problem 1.4. What is the largest integer $n \le k$ such that for all integers k > 1, k >

- a) (4, 10)
- b) (8,100)
- c) (4,2020)

§2 Answers and Solutions

§2.1 Problem 1.1

1.1 Notice that $a_1 > 1$ as $gcd(a_1, a_2) > 1$. Now, let the set of primes be $\{p_1, p_2, \dots\}$. We can set $a_1 = p_1$ and $a_i = p_{i-1}p_i$ and this clearly works. So, for a_1 the minimum two possible values are 2, 3 which sum to 5.

For, i > 1 a_i must have at least two prime divisors as $\exists p \neq q$ such that $p|a_{i-1}, a_i|$ and $q|a_i, a_{i+1}$.

Now, we claim that any number which has at least two different prime factors can be a_i . For this, let us say we want $a_i = n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. And let the set of primes be $\{q_1, q_2, \cdots q_i, p_1, p_2, \cdots p_k, q_{i+2}q_{i+3} \cdots\}$ and let

$$a_{j} = \begin{cases} q_{j}q_{j+1} & \text{if } j < i-1 \text{ or } j > i+1 \\ q_{i-1}p_{1} & \text{if } j = i-1 \\ p_{k}q_{i+2} & \text{if } j = i+1 \\ n & \text{if } j = i \end{cases}$$

$$(1)$$

Now, we can find the smallest 20 values which are not primes or prime-powers. These are

$$\{6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40\}$$

The smallest 7 sum to 95 and all 20 sum to 501.

- a) 5
- b) 95
- c) 501

§2.2 Problem 1.2

1.2 Notice that no value of y can have multiple solutions. So, we just want to find y such that $\exists x \in \mathbb{N}$ such that $x^y = y^{k-1}$ or all y such that y^{k-1} is a y^{th} power. Observe that any y such that y|k-1 works. In fact, now if y is not a perfect power itself, we must have that y|k-1. Now, if y is a perfect power say $y=z^t$. We have $z^t|t(k-1)$. Now, you can argue via size that z|k-1. So, now in our options, we have the greatest prime power dividing k-1 as 2 and all factors of k-1 are odd so t>2. So, if $t\geq 3$, we must have $p^{t-2}|t$ which is only possible for (t,p)=(3,3) but for p=3 we have maximum power in all k-1 as 1 so we must have had 9|3 which is impossible. So, only y that are factors of k-1 work. We can calculate by the formula for number of factors discussed earlier. $4-1=3=3^1$ so there are 2 factors. $2020-1=2019=3^1673^1$ so there are (1+1)(1+1)=4 factors. $105106-1=105105=3^15^17^211^113^1$ so there are (1+1)(1+1)(2+1)(1+1)=48 factors.

- a) 2
- b) 4
- c) 48

§2.3 Problem 1.3

1.3 Observe that $d|F_{n+2k} - F_n$ and $d|F_{n+2k+1} - F_{n+1} \implies d|F_{n+2k-1} - F_{n-1}|$ and $d|F_{n+2k+2} - F_{n+2}|$ so we have

$$d = \gcd(F_{2k} + F_0, F_{2k+1} - F_1)$$

$$= \gcd(F_{2k} + F_0, F_{2k-1} - F_1)$$

$$= \gcd(F_{2k-2} + F_2, F_{2k-1} - F_1)$$

$$= \gcd(F_{2k-2} + F_2, F_{2k-3} - F_3)$$

$$\vdots$$

$$= \gcd(F_{2k-k} + F_k, F_k + 1 - F_{k-1})$$

$$= \gcd(2F_k, F_k)$$

$$= F_k$$

So, we want $F_k \pmod{m}$. So, $F_2 \pmod{4} = 1$. Observe that $\langle F_i \rangle \pmod{11}$ has period 10 so we have $F_{63} \equiv F_3 \equiv 2 \pmod{11}$. Similarly, 7 has period 16 and 13 has period 28. So, we get that

$$F_{2020} \equiv F_0 \equiv 0 \pmod{11}$$

 $F_{2020} \equiv F_4 \equiv 3 \pmod{7}$
 $F_{2020} \equiv F_4 \equiv 3 \pmod{13}$

Now, by CRT, we get that $F_{2020} \equiv 913 \pmod{1001}$

- a) 1
- b) 2
- c) 913

§2.4 Problem 1.4

1.4 Observe that 4,8 are both powers of 2. So, consider their binary representations. Now, if their base-a representation had a any digit other than 0,1 then it would add an extra 1 in their base 2 representations. So, the numbers must only have 0s and 1s in base a representations. So, we consider the largest numbers < k with all 1s in their base a representation. Observe that switching a 0 in the representation with a 1 is possible and only benefits us. So, we check these values and they work. So, a) is 4+1, b) 64+8+1 and c) is 1024+256+64+16+4+1.

- a) 5
- b) 73
- c) 1365