

Master of Science in Analytics

Machine Learning in High Dimensions

Machine Learning 1

⟨₹⟩

High-dimensions; high problems

- How high is high?
 - Any time n is close to or smaller than count of features (p)
 - More common as time moves forward
- Simple Linear Regression fails
 - \circ Example case: n = 2 & p = 1
 - $\circ MSE_{Train} = 0; MSE_{Test} = ??$
 - All σ^2 -based techniques fail
 - C_p AIC, BIC
 - Adjusted R²

What could work

- Generally: fitting less flexible models
 - Any technique which (aggressively) avoids overfitting
 - Forward stepwise selection, ridge regression, the lasso, PCA
- Estimating test error
 - Directly: use validation set / cross validation
 - o Indirectly: make adjustment to training error, account for overfitting

Conceptual Example

Blood pressure

- Assume model is predicting blood pressure
- Features: height, weight, single-nucleotide polymorphism (SNP)
- SNP is a variation in a single nucleotide in a specific genomic position
- There could be ~ 500,000 SNPs

Task:

- Find the feature sets which predict high blood pressure
- May use (for example) forward stepwise selection to create model

If you find a solution, you may say

- Your model is one of possibly several to predict the outcome
- Your model should be validated on independent data sets