

The matrix b is computed using the RHS of eq. B, with the first and last value also being 0 as this satisfies our boundary conditions. 2 boundary conds Un (1+ AO+ BO + U21 (A+B) (1-9) a boundary condi. =) U; can be calculated from the known initial conditions (x)00 = (0, r)U as =) the domain is divided into J points L-LP/bx PAG

	can be	aluei 1	ecome in me	found, nown and vector. find U;
	Cinalg. sol for X men us value of valued a	ed to	mis ve update D find	the U
=)	mis is of timesteps			ne desired
The	on in the	he he	he theta	scheme is

=> Thus if $\alpha(t)$ so solution is	
Stable,	
=) if $x(t) 20$ solution is unstable	
unstable	
diffusion term	
-> Do diffusion town in Guan bac	
=> The diffusion term will follow the same fourier analysis as in	
Same fourier analysis as in Morton and Mayers section 2.10, with an added E term.	
with an added & term.	
$h = 1 - 4(1-0) N \sin^2 \frac{1}{2} R D x$ (2.77)	acksquare
1+ 40 p sinze De men	
becomes=)	

	"gulana-95.jpeg"
which	shows pure advection with an
error	of Zero as the peak height is same as it travals upwind. The day conditions are the same as implemented for Question 4.
me	same as it travels upwind. The
bound	dary conditions are he same as
mose	implemented for Question 4.
# To 100	voluce he france up me file
as it	produce he figure, run me file