16 Greedy Algorithms

Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step. For many optimization problems, using dynamic programming to determine the best choices is overkill; simpler, more efficient algorithms will do. A *greedy algorithm* always makes the choice that looks best at the moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution. This chapter explores optimization problems for which greedy algorithms provide optimal solutions. Before reading this chapter, you should read about dynamic programming in Chapter 15, particularly Section 15.3.

Greedy algorithms do not always yield optimal solutions, but for many problems they do. We shall first examine, in Section 16.1, a simple but nontrivial problem, the activity-selection problem, for which a greedy algorithm efficiently computes an optimal solution. We shall arrive at the greedy algorithm by first considering a dynamic-programming approach and then showing that we can always make greedy choices to arrive at an optimal solution. Section 16.2 reviews the basic elements of the greedy approach, giving a direct approach for proving greedy algorithms correct. Section 16.3 presents an important application of greedy techniques: designing data-compression (Huffman) codes. In Section 16.4, we investigate some of the theory underlying combinatorial structures called "matroids," for which a greedy algorithm always produces an optimal solution. Finally, Section 16.5 applies matroids to solve a problem of scheduling unit-time tasks with deadlines and penalties.

The greedy method is quite powerful and works well for a wide range of problems. Later chapters will present many algorithms that we can view as applications of the greedy method, including minimum-spanning-tree algorithms (Chapter 23), Dijkstra's algorithm for shortest paths from a single source (Chapter 24), and Chvátal's greedy set-covering heuristic (Chapter 35). Minimum-spanning-tree algorithms furnish a classic example of the greedy method. Although you can read this chapter and Chapter 23 independently of each other, you might find it useful to read them together.

16.1 An activity-selection problem

Our first example is the problem of scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities. Suppose we have a set $S = \{a_1, a_2, \ldots, a_n\}$ of n proposed *activities* that wish to use a resource, such as a lecture hall, which can serve only one activity at a time. Each activity a_i has a *start time* s_i and a *finish time* f_i , where $0 \le s_i < f_i < \infty$. If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$. Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. That is, a_i and a_j are compatible if $s_i \ge f_j$ or $s_j \ge f_i$. In the *activity-selection problem*, we wish to select a maximum-size subset of mutually compatible activities. We assume that the activities are sorted in monotonically increasing order of finish time:

$$f_1 \le f_2 \le f_3 \le \dots \le f_{n-1} \le f_n$$
 (16.1)

(We shall see later the advantage that this assumption provides.) For example, consider the following set S of activities:

For this example, the subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities. It is not a maximum subset, however, since the subset $\{a_1, a_4, a_8, a_{11}\}$ is larger. In fact, $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities; another largest subset is $\{a_2, a_4, a_9, a_{11}\}$.

We shall solve this problem in several steps. We start by thinking about a dynamic-programming solution, in which we consider several choices when determining which subproblems to use in an optimal solution. We shall then observe that we need to consider only one choice—the greedy choice—and that when we make the greedy choice, only one subproblem remains. Based on these observations, we shall develop a recursive greedy algorithm to solve the activity-scheduling problem. We shall complete the process of developing a greedy solution by converting the recursive algorithm to an iterative one. Although the steps we shall go through in this section are slightly more involved than is typical when developing a greedy algorithms, they illustrate the relationship between greedy algorithms and dynamic programming.

The optimal substructure of the activity-selection problem

We can easily verify that the activity-selection problem exhibits optimal substructure. Let us denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_j starts. Suppose that we wish to find a maximum set of mutually compatible activities in S_{ij} , and suppose further that such a maximum set is A_{ij} , which includes some activity a_k . By including a_k in an optimal solution, we are left with two subproblems: finding mutually compatible activities in the set S_{ik} (activities that start after activity a_i finishes and that finish before activity a_k starts) and finding mutually compatible activities in the set S_{kj} (activities that start after activity a_k finishes and that finish before activity a_j starts). Let $A_{ik} = A_{ij} \cap S_{ik}$ and $A_{kj} = A_{ij} \cap S_{kj}$, so that A_{ik} contains the activities in A_{ij} that finish before a_k starts and A_{kj} contains the activities in A_{ij} that start after a_k finishes. Thus, we have $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, and so the maximum-size set A_{ij} of mutually compatible activities in S_{ij} consists of $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$ activities.

The usual cut-and-paste argument shows that the optimal solution A_{ij} must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} . If we could find a set A'_{kj} of mutually compatible activities in S_{kj} where $|A'_{kj}| > |A_{kj}|$, then we could use A'_{kj} , rather than A_{kj} , in a solution to the subproblem for S_{ij} . We would have constructed a set of $|A_{ik}| + |A'_{kj}| + 1 > |A_{ik}| + |A_{kj}| + 1 = |A_{ij}|$ mutually compatible activities, which contradicts the assumption that A_{ij} is an optimal solution. A symmetric argument applies to the activities in S_{ik} .

This way of characterizing optimal substructure suggests that we might solve the activity-selection problem by dynamic programming. If we denote the size of an optimal solution for the set S_{ij} by c[i, j], then we would have the recurrence

$$c[i, j] = c[i, k] + c[k, j] + 1$$
.

Of course, if we did not know that an optimal solution for the set S_{ij} includes activity a_k , we would have to examine all activities in S_{ij} to find which one to choose, so that

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$
 (16.2)

We could then develop a recursive algorithm and memoize it, or we could work bottom-up and fill in table entries as we go along. But we would be overlooking another important characteristic of the activity-selection problem that we can use to great advantage.

Making the greedy choice

What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems? That could save us from having to consider all the choices inherent in recurrence (16.2). In fact, for the activity-selection problem, we need consider only one choice: the greedy choice.

What do we mean by the greedy choice for the activity-selection problem? Intuition suggests that we should choose an activity that leaves the resource available for as many other activities as possible. Now, of the activities we end up choosing, one of them must be the first one to finish. Our intuition tells us, therefore, to choose the activity in S with the earliest finish time, since that would leave the resource available for as many of the activities that follow it as possible. (If more than one activity in S has the earliest finish time, then we can choose any such activity.) In other words, since the activities are sorted in monotonically increasing order by finish time, the greedy choice is activity a_1 . Choosing the first activity to finish is not the only way to think of making a greedy choice for this problem; Exercise 16.1-3 asks you to explore other possibilities.

If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after a_1 finishes. Why don't we have to consider activities that finish before a_1 starts? We have that $s_1 < f_1$, and f_1 is the earliest finish time of any activity, and therefore no activity can have a finish time less than or equal to s_1 . Thus, all activities that are compatible with activity a_1 must start after a_1 finishes.

Furthermore, we have already established that the activity-selection problem exhibits optimal substructure. Let $S_k = \{a_i \in S : s_i \geq f_k\}$ be the set of activities that start after activity a_k finishes. If we make the greedy choice of activity a_1 , then S_1 remains as the only subproblem to solve. Optimal substructure tells us that if a_1 is in the optimal solution, then an optimal solution to the original problem consists of activity a_1 and all the activities in an optimal solution to the subproblem S_1 .

One big question remains: is our intuition correct? Is the greedy choice—in which we choose the first activity to finish—always part of some optimal solution? The following theorem shows that it is.

¹We sometimes refer to the sets S_k as subproblems rather than as just sets of activities. It will always be clear from the context whether we are referring to S_k as a set of activities or as a subproblem whose input is that set.

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof Let A_k be a maximum-size subset of mutually compatible activities in S_k , and let a_j be the activity in A_k with the earliest finish time. If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k . If $a_j \neq a_m$, let the set $A'_k = A_k - \{a_j\} \cup \{a_m\}$ be A_k but substituting a_m for a_j . The activities in A'_k are disjoint, which follows because the activities in A_k are disjoint, a_j is the first activity in A_k to finish, and $f_m \leq f_j$. Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Thus, we see that although we might be able to solve the activity-selection problem with dynamic programming, we don't need to. (Besides, we have not yet examined whether the activity-selection problem even has overlapping subproblems.) Instead, we can repeatedly choose the activity that finishes first, keep only the activities compatible with this activity, and repeat until no activities remain. Moreover, because we always choose the activity with the earliest finish time, the finish times of the activities we choose must strictly increase. We can consider each activity just once overall, in monotonically increasing order of finish times.

An algorithm to solve the activity-selection problem does not need to work bottom-up, like a table-based dynamic-programming algorithm. Instead, it can work top-down, choosing an activity to put into the optimal solution and then solving the subproblem of choosing activities from those that are compatible with those already chosen. Greedy algorithms typically have this top-down design: make a choice and then solve a subproblem, rather than the bottom-up technique of solving subproblems before making a choice.

A recursive greedy algorithm

Now that we have seen how to bypass the dynamic-programming approach and instead use a top-down, greedy algorithm, we can write a straightforward, recursive procedure to solve the activity-selection problem. The procedure RECURSIVE-ACTIVITY-SELECTOR takes the start and finish times of the activities, represented as arrays s and f, the index k that defines the subproblem S_k it is to solve, and

²Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather than subscripts.

the size n of the original problem. It returns a maximum-size set of mutually compatible activities in S_k . We assume that the n input activities are already ordered by monotonically increasing finish time, according to equation (16.1). If not, we can sort them into this order in $O(n \lg n)$ time, breaking ties arbitrarily. In order to start, we add the fictitious activity a_0 with $f_0 = 0$, so that subproblem S_0 is the entire set of activities S. The initial call, which solves the entire problem, is RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n).

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish m = m + 1
```

4 if m ≤ n
 5 return {a_m} ∪ RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)
 6 else return Ø

Figure 16.1 shows the operation of the algorithm. In a given recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n), the **while** loop of lines 2–3 looks for the first activity in S_k to finish. The loop examines $a_{k+1}, a_{k+2}, \ldots, a_n$, until it finds the first activity a_m that is compatible with a_k ; such an activity has $s_m \geq f_k$. If the loop terminates because it finds such an activity, line 5 returns the union of $\{a_m\}$ and the maximum-size subset of S_m returned by the recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n). Alternatively, the loop may terminate because m > n, in which case we have examined all activities in S_k without finding one that is compatible with a_k . In this case, $S_k = \emptyset$, and so the procedure returns \emptyset in line 6.

Assuming that the activities have already been sorted by finish times, the running time of the call Recursive-Activity-Selector(s, f, 0, n) is $\Theta(n)$, which we can see as follows. Over all recursive calls, each activity is examined exactly once in the **while** loop test of line 2. In particular, activity a_i is examined in the last call made in which k < i.

An iterative greedy algorithm

We easily can convert our recursive procedure to an iterative one. The procedure RECURSIVE-ACTIVITY-SELECTOR is almost "tail recursive" (see Problem 7-4): it ends with a recursive call to itself followed by a union operation. It is usually a straightforward task to transform a tail-recursive procedure to an iterative form; in fact, some compilers for certain programming languages perform this task automatically. As written, RECURSIVE-ACTIVITY-SELECTOR works for subproblems S_k , i.e., subproblems that consist of the last activities to finish.

Figure 16.1 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities given earlier. Activities considered in each recursive call appear between horizontal lines. The fictitious activity a_0 finishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11), selects activity a_1 . In each recursive call, the activities that have already been selected are shaded, and the activity shown in white is being considered. If the starting time of an activity occurs before the finish time of the most recently added activity (the arrow between them points left), it is rejected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call, RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11), returns \emptyset . The resulting set of selected activities is $\{a_1, a_4, a_8, a_{11}\}$.

The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the procedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activities are ordered by monotonically increasing finish time. It collects selected activities into a set *A* and returns this set when it is done.

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

The procedure works as follows. The variable k indexes the most recent addition to A, corresponding to the activity a_k in the recursive version. Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is,

$$f_k = \max\{f_i : a_i \in A\} \ . \tag{16.3}$$

Lines 2–3 select activity a_1 , initialize A to contain just this activity, and initialize k to index this activity. The **for** loop of lines 4–7 finds the earliest activity in S_k to finish. The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is the earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by equation (16.3) to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A. If activity a_m is compatible, then lines 6–7 add activity a_m to A and set k to m. The set A returned by the call Greedy-Activity-Selector (s, f) is precisely the set returned by the call Recursive-Activity-Selector (s, f).

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n activities in $\Theta(n)$ time, assuming that the activities were already sorted initially by their finish times.

Exercises

16.1-1

Give a dynamic-programming algorithm for the activity-selection problem, based on recurrence (16.2). Have your algorithm compute the sizes c[i, j] as defined above and also produce the maximum-size subset of mutually compatible activities.

Assume that the inputs have been sorted as in equation (16.1). Compare the running time of your solution to the running time of GREEDY-ACTIVITY-SELECTOR.

16.1-2

Suppose that instead of always selecting the first activity to finish, we instead select the last activity to start that is compatible with all previously selected activities. Describe how this approach is a greedy algorithm, and prove that it yields an optimal solution.

16.1-3

Not just any greedy approach to the activity-selection problem produces a maximum-size set of mutually compatible activities. Give an example to show that the approach of selecting the activity of least duration from among those that are compatible with previously selected activities does not work. Do the same for the approaches of always selecting the compatible activity that overlaps the fewest other remaining activities and always selecting the compatible remaining activity with the earliest start time.

16.1-4

Suppose that we have a set of activities to schedule among a large number of lecture halls, where any activity can take place in any lecture hall. We wish to schedule all the activities using as few lecture halls as possible. Give an efficient greedy algorithm to determine which activity should use which lecture hall.

(This problem is also known as the *interval-graph coloring problem*. We can create an interval graph whose vertices are the given activities and whose edges connect incompatible activities. The smallest number of colors required to color every vertex so that no two adjacent vertices have the same color corresponds to finding the fewest lecture halls needed to schedule all of the given activities.)

16.1-5

Consider a modification to the activity-selection problem in which each activity a_i has, in addition to a start and finish time, a value v_i . The objective is no longer to maximize the number of activities scheduled, but instead to maximize the total value of the activities scheduled. That is, we wish to choose a set A of compatible activities such that $\sum_{a_k \in A} v_k$ is maximized. Give a polynomial-time algorithm for this problem.

16.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence of choices. At each decision point, the algorithm makes choice that seems best at the moment. This heuristic strategy does not always produce an optimal solution, but as we saw in the activity-selection problem, sometimes it does. This section discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was a bit more involved than is typical. We went through the following steps:

- 1. Determine the optimal substructure of the problem.
- 2. Develop a recursive solution. (For the activity-selection problem, we formulated recurrence (16.2), but we bypassed developing a recursive algorithm based on this recurrence.)
- 3. Show that if we make the greedy choice, then only one subproblem remains.
- 4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur in either order.)
- 5. Develop a recursive algorithm that implements the greedy strategy.
- 6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming underpinnings of a greedy algorithm. For example, in the activity-selection problem, we first defined the subproblems S_{ij} , where both i and j varied. We then found that if we always made the greedy choice, we could restrict the subproblems to be of the form S_k .

Alternatively, we could have fashioned our optimal substructure with a greedy choice in mind, so that the choice leaves just one subproblem to solve. In the activity-selection problem, we could have started by dropping the second subscript and defining subproblems of the form S_k . Then, we could have proven that a greedy choice (the first activity a_m to finish in S_k), combined with an optimal solution to the remaining set S_m of compatible activities, yields an optimal solution to S_k . More generally, we design greedy algorithms according to the following sequence of steps:

- 1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- 2. Prove that there is always an optimal solution to the original problem that makes the greedy choice, so that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy choice, what remains is a subproblem with the property that if we combine an optimal solution to the subproblem with the greedy choice we have made, we arrive at an optimal solution to the original problem.

We shall use this more direct process in later sections of this chapter. Nevertheless, beneath every greedy algorithm, there is almost always a more cumbersome dynamic-programming solution.

How can we tell whether a greedy algorithm will solve a particular optimization problem? No way works all the time, but the greedy-choice property and optimal substructure are the two key ingredients. If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm for it.

Greedy-choice property

The first key ingredient is the *greedy-choice property*: we can assemble a globally optimal solution by making locally optimal (greedy) choices. In other words, when we are considering which choice to make, we make the choice that looks best in the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic programming, we make a choice at each step, but the choice usually depends on the solutions to subproblems. Consequently, we typically solve dynamic-programming problems in a bottom-up manner, progressing from smaller subproblems to larger subproblems. (Alternatively, we can solve them top down, but memoizing. Of course, even though the code works top down, we still must solve the subproblems before making a choice.) In a greedy algorithm, we make whatever choice seems best at the moment and then solve the subproblem that remains. The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to subproblems. Thus, unlike dynamic programming, which solves the subproblems before making the first choice, a greedy algorithm makes its first choice before solving any subproblems. A dynamic-programming algorithm proceeds bottom up, whereas a greedy strategy usually progresses in a top-down fashion, making one greedy choice after another, reducing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a globally optimal solution. Typically, as in the case of Theorem 16.1, the proof examines a globally optimal solution to some subproblem. It then shows how to modify the solution to substitute the greedy choice for some other choice, resulting in one similar, but smaller, subproblem.

We can usually make the greedy choice more efficiently than when we have to consider a wider set of choices. For example, in the activity-selection problem, as-

suming that we had already sorted the activities in monotonically increasing order of finish times, we needed to examine each activity just once. By preprocessing the input or by using an appropriate data structure (often a priority queue), we often can make greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

A problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems. This property is a key ingredient of assessing the applicability of dynamic programming as well as greedy algorithms. As an example of optimal substructure, recall how we demonstrated in Section 16.1 that if an optimal solution to subproblem S_{ij} includes an activity a_k , then it must also contain optimal solutions to the subproblems S_{ik} and S_{kj} . Given this optimal substructure, we argued that if we knew which activity to use as a_k , we could construct an optimal solution to S_{ij} by selecting a_k along with all activities in optimal solutions to the subproblems S_{ik} and S_{kj} . Based on this observation of optimal substructure, we were able to devise the recurrence (16.2) that described the value of an optimal solution.

We usually use a more direct approach regarding optimal substructure when applying it to greedy algorithms. As mentioned above, we have the luxury of assuming that we arrived at a subproblem by having made the greedy choice in the original problem. All we really need to do is argue that an optimal solution to the subproblem, combined with the greedy choice already made, yields an optimal solution to the original problem. This scheme implicitly uses induction on the subproblems to prove that making the greedy choice at every step produces an optimal solution.

Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal substructure, you might be tempted to generate a dynamic-programming solution to a problem when a greedy solution suffices or, conversely, you might mistakenly think that a greedy solution works when in fact a dynamic-programming solution is required. To illustrate the subtleties between the two techniques, let us investigate two variants of a classical optimization problem.

The **0-1** knapsack problem is the following. A thief robbing a store finds n items. The ith item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take? (We call this the 0-1 knapsack problem because for each item, the thief must either

take it or leave it behind; he cannot take a fractional amount of an item or take an item more than once.)

In the *fractional knapsack problem*, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item. You can think of an item in the 0-1 knapsack problem as being like a gold ingot and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1 problem, consider the most valuable load that weighs at most W pounds. If we remove item j from this load, the remaining load must be the most valuable load weighing at most $W-w_j$ that the thief can take from the n-1 original items excluding j. For the comparable fractional problem, consider that if we remove a weight w of one item j from the optimal load, the remaining load must be the most valuable load weighing at most W-w that the thief can take from the n-1 original items plus w_j-w pounds of item j.

Although the problems are similar, we can solve the fractional knapsack problem by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To solve the fractional problem, we first compute the value per pound v_i/w_i for each item. Obeying a greedy strategy, the thief begins by taking as much as possible of the item with the greatest value per pound. If the supply of that item is exhausted and he can still carry more, he takes as much as possible of the item with the next greatest value per pound, and so forth, until he reaches his weight limit W. Thus, by sorting the items by value per pound, the greedy algorithm runs in $O(n \lg n)$ time. We leave the proof that the fractional knapsack problem has the greedy-choice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack problem, consider the problem instance illustrated in Figure 16.2(a). This example has 3 items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3 weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is 6 dollars per pound, which is greater than the value per pound of either item 2 (5 dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore, would take item 1 first. As you can see from the case analysis in Figure 16.2(b), however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Taking item 1 doesn't work in the 0-1 problem because the thief is unable to fill his knapsack to capacity, and the empty space lowers the effective value per pound of his load. In the 0-1 problem, when we consider whether to include an item in the knapsack, we must compare the solution to the subproblem that includes the item with the solution to the subproblem that excludes the item before we can make the

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

choice. The problem formulated in this way gives rise to many overlapping sub-problems—a hallmark of dynamic programming, and indeed, as Exercise 16.2-2 asks you to show, we can use dynamic programming to solve the 0-1 problem.

Exercises

16.2-1

Prove that the fractional knapsack problem has the greedy-choice property.

16.2-2

Give a dynamic-programming solution to the 0-1 knapsack problem that runs in $O(n \ W)$ time, where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack.

16.2-3

Suppose that in a 0-1 knapsack problem, the order of the items when sorted by increasing weight is the same as their order when sorted by decreasing value. Give an efficient algorithm to find an optimal solution to this variant of the knapsack problem, and argue that your algorithm is correct.

16.2-4

Professor Gekko has always dreamed of inline skating across North Dakota. He plans to cross the state on highway U.S. 2, which runs from Grand Forks, on the eastern border with Minnesota, to Williston, near the western border with Montana.

The professor can carry two liters of water, and he can skate *m* miles before running out of water. (Because North Dakota is relatively flat, the professor does not have to worry about drinking water at a greater rate on uphill sections than on flat or downhill sections.) The professor will start in Grand Forks with two full liters of water. His official North Dakota state map shows all the places along U.S. 2 at which he can refill his water and the distances between these locations.

The professor's goal is to minimize the number of water stops along his route across the state. Give an efficient method by which he can determine which water stops he should make. Prove that your strategy yields an optimal solution, and give its running time.

16.2-5

Describe an efficient algorithm that, given a set $\{x_1, x_2, \ldots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

16.2-6 ★

Show how to solve the fractional knapsack problem in O(n) time.

16.2-7

Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_i be the ith element of set A, and let b_i be the ith element of set B. You then receive a payoff of $\prod_{i=1}^{n} a_i^{b_i}$. Give an algorithm that will maximize your payoff. Prove that your algorithm maximizes the payoff, and state its running time.

16.3 Huffman codes

Huffman codes compress data very effectively: savings of 20% to 90% are typical, depending on the characteristics of the data being compressed. We consider the data to be a sequence of characters. Huffman's greedy algorithm uses a table giving how often each character occurs (i.e., its frequency) to build up an optimal way of representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly. We observe that the characters in the file occur with the frequencies given by Figure 16.3. That is, only 6 different characters appear, and the character a occurs 45,000 times.

We have many options for how to represent such a file of information. Here, we consider the problem of designing a *binary character code* (or *code* for short)

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the characters a–f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only 224,000 bits.

in which each character is represented by a unique binary string, which we call a *codeword*. If we use a *fixed-length code*, we need 3 bits to represent 6 characters: a = 000, b = 001, ..., f = 101. This method requires 300,000 bits to code the entire file. Can we do better?

A *variable-length code* can do considerably better than a fixed-length code, by giving frequent characters short codewords and infrequent characters long codewords. Figure 16.3 shows such a code; here the 1-bit string 0 represents a, and the 4-bit string 1100 represents f. This code requires

$$(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000$$
 bits

to represent the file, a savings of approximately 25%. In fact, this is an optimal character code for this file, as we shall see.

Prefix codes

We consider here only codes in which no codeword is also a prefix of some other codeword. Such codes are called *prefix codes*.³ Although we won't prove it here, a prefix code can always achieve the optimal data compression among any character code, and so we suffer no loss of generality by restricting our attention to prefix codes.

Encoding is always simple for any binary character code; we just concatenate the codewords representing each character of the file. For example, with the variable-length prefix code of Figure 16.3, we code the 3-character file abc as 0.101.100 = 0101100, where "·" denotes concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous. We can simply identify the initial codeword, translate it back to the original char-

³Perhaps "prefix-free codes" would be a better name, but the term "prefix codes" is standard in the literature.

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with a character and its frequency of occurrence. Each internal node is labeled with the sum of the frequencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000, ..., f = 101. (b) The tree corresponding to the optimal prefix code a = 0, b = 101, ..., f = 1100.

acter, and repeat the decoding process on the remainder of the encoded file. In our example, the string 001011101 parses uniquely as $0 \cdot 0 \cdot 101 \cdot 1101$, which decodes to aabe.

The decoding process needs a convenient representation for the prefix code so that we can easily pick off the initial codeword. A binary tree whose leaves are the given characters provides one such representation. We interpret the binary codeword for a character as the simple path from the root to that character, where 0 means "go to the left child" and 1 means "go to the right child." Figure 16.4 shows the trees for the two codes of our example. Note that these are not binary search trees, since the leaves need not appear in sorted order and internal nodes do not contain character keys.

An optimal code for a file is always represented by a *full* binary tree, in which every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full binary tree: it contains codewords beginning 10..., but none beginning 11.... Since we can now restrict our attention to full binary trees, we can say that if C is the alphabet from which the characters are drawn and all character frequencies are positive, then the tree for an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and exactly |C| - 1 internal nodes (see Exercise B.5-3).

Given a tree T corresponding to a prefix code, we can easily compute the number of bits required to encode a file. For each character c in the alphabet C, let the attribute c. freq denote the frequency of c in the file and let $d_T(c)$ denote the depth

of c's leaf in the tree. Note that $d_T(c)$ is also the length of the codeword for character c. The number of bits required to encode a file is thus

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c) , \qquad (16.4)$$

which we define as the *cost* of the tree T.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix code called a *Huffman code*. In line with our observations in Section 16.2, its proof of correctness relies on the greedy-choice property and optimal substructure. Rather than demonstrating that these properties hold and then developing pseudocode, we present the pseudocode first. Doing so will help clarify how the algorithm makes greedy choices.

In the pseudocode that follows, we assume that C is a set of n characters and that each character $c \in C$ is an object with an attribute c.freq giving its frequency. The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner. It begins with a set of |C| leaves and performs a sequence of |C|-1 "merging" operations to create the final tree. The algorithm uses a min-priority queue Q, keyed on the freq attribute, to identify the two least-frequent objects to merge together. When we merge two objects, the result is a new object whose frequency is the sum of the frequencies of the two objects that were merged.

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{EXTRACT-MIN}(Q)

6 z.right = y = \text{EXTRACT-MIN}(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```

For our example, Huffman's algorithm proceeds as shown in Figure 16.5. Since the alphabet contains 6 letters, the initial queue size is n = 6, and 5 merge steps build the tree. The final tree represents the optimal prefix code. The codeword for a letter is the sequence of edge labels on the simple path from the root to the letter.

Line 2 initializes the min-priority queue Q with the characters in C. The for loop in lines 3–8 repeatedly extracts the two nodes x and y of lowest frequency

Figure 16.5 The steps of Huffman's algorithm for the frequencies given in Figure 16.3. Each part shows the contents of the queue sorted into increasing order by frequency. At each step, the two trees with lowest frequencies are merged. Leaves are shown as rectangles containing a character and its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the edges connecting the root to the leaf for that letter. (a) The initial set of n = 6 nodes, one for each letter. (b)–(e) Intermediate stages. (f) The final tree.

from the queue, replacing them in the queue with a new node z representing their merger. The frequency of z is computed as the sum of the frequencies of x and y in line 7. The node z has x as its left child and y as its right child. (This order is arbitrary; switching the left and right child of any node yields a different code of the same cost.) After n-1 mergers, line 9 returns the one node left in the queue, which is the root of the code tree.

Although the algorithm would produce the same result if we were to excise the variables x and y—assigning directly to z. left and z. right in lines 5 and 6, and changing line 7 to z. freq = z. left. freq + z. right. freq—we shall use the node

names x and y in the proof of correctness. Therefore, we find it convenient to leave them in.

To analyze the running time of Huffman's algorithm, we assume that Q is implemented as a binary min-heap (see Chapter 6). For a set C of n characters, we can initialize Q in line 2 in O(n) time using the BUILD-MIN-HEAP procedure discussed in Section 6.3. The **for** loop in lines 3–8 executes exactly n-1 times, and since each heap operation requires time $O(\lg n)$, the loop contributes $O(n \lg n)$ to the running time. Thus, the total running time of HUFFMAN on a set of n characters is $O(n \lg n)$. We can reduce the running time to $O(n \lg \log n)$ by replacing the binary min-heap with a van Emde Boas tree (see Chapter 20).

Correctness of Huffman's algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that the problem of determining an optimal prefix code exhibits the greedy-choice and optimalsubstructure properties. The next lemma shows that the greedy-choice property holds.

Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal prefix code and modify it to make a tree representing another optimal prefix code such that the characters x and y appear as sibling leaves of maximum depth in the new tree. If we can construct such a tree, then the codewords for x and y will have the same length and differ only in the last bit.

Let a and b be two characters that are sibling leaves of maximum depth in T. Without loss of generality, we assume that $a.freq \le b.freq$ and $x.freq \le y.freq$. Since x.freq and y.freq are the two lowest leaf frequencies, in order, and a.freq and b.freq are two arbitrary frequencies, in order, we have $x.freq \le a.freq$ and $y.freq \le b.freq$.

In the remainder of the proof, it is possible that we could have x.freq = a.freq or y.freq = b.freq. However, if we had x.freq = b.freq, then we would also have a.freq = b.freq = x.freq = y.freq (see Exercise 16.3-1), and the lemma would be trivially true. Thus, we will assume that $x.freq \neq b.freq$, which means that $x \neq b$.

As Figure 16.6 shows, we exchange the positions in T of a and x to produce a tree T', and then we exchange the positions in T' of b and y to produce a tree T''

Figure 16.6 An illustration of the key step in the proof of Lemma 16.2. In the optimal tree T, leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the lowest frequencies; they appear in arbitrary positions in T. Assuming that $x \neq b$, swapping leaves a and x produces tree T', and then swapping leaves b and y produces tree b. Since each swap does not increase the cost, the resulting tree b are optimal tree.

in which x and y are sibling leaves of maximum depth. (Note that if x = b but $y \ne a$, then tree T'' does not have x and y as sibling leaves of maximum depth. Because we assume that $x \ne b$, this situation cannot occur.) By equation (16.4), the difference in cost between T and T' is

$$B(T) - B(T')$$

$$= \sum_{c \in C} c.freq \cdot d_T(c) - \sum_{c \in C} c.freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x))$$

$$\geq 0,$$

because both a.freq - x.freq and $d_T(a) - d_T(x)$ are nonnegative. More specifically, a.freq - x.freq is nonnegative because x is a minimum-frequency leaf, and $d_T(a) - d_T(x)$ is nonnegative because a is a leaf of maximum depth in T. Similarly, exchanging y and b does not increase the cost, and so B(T') - B(T'') is nonnegative. Therefore, $B(T'') \leq B(T)$, and since T is optimal, we have $B(T) \leq B(T'')$, which implies B(T'') = B(T). Thus, T'' is an optimal tree in which x and y appear as sibling leaves of maximum depth, from which the lemma follows.

Lemma 16.2 implies that the process of building up an optimal tree by mergers can, without loss of generality, begin with the greedy choice of merging together those two characters of lowest frequency. Why is this a greedy choice? We can view the cost of a single merger as being the sum of the frequencies of the two items being merged. Exercise 16.3-4 shows that the total cost of the tree constructed equals the sum of the costs of its mergers. Of all possible mergers at each step, HUFFMAN chooses the one that incurs the least cost.

The next lemma shows that the problem of constructing optimal prefix codes has the optimal-substructure property.

Lemma 16.3

Let C be a given alphabet with frequency $c.\mathit{freq}$ defined for each character $c \in C$. Let x and y be two characters in C with minimum frequency. Let C' be the alphabet C with the characters x and y removed and a new character z added, so that $C' = C - \{x,y\} \cup \{z\}$. Define f for C' as for C, except that $z.\mathit{freq} = x.\mathit{freq} + y.\mathit{freq}$. Let T' be any tree representing an optimal prefix code for the alphabet C'. Then the tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.

Proof We first show how to express the cost B(T) of tree T in terms of the cost B(T') of tree T', by considering the component costs in equation (16.4). For each character $c \in C - \{x, y\}$, we have that $d_T(c) = d_{T'}(c)$, and hence $c.freq \cdot d_T(c) = c.freq \cdot d_{T'}(c)$. Since $d_T(x) = d_T(y) = d_{T'}(z) + 1$, we have

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y) = (x.freq + y.freq)(d_{T'}(z) + 1)$$
$$= z.freq \cdot d_{T'}(z) + (x.freq + y.freq),$$

from which we conclude that

$$B(T) = B(T') + x.freq + y.freq$$

or, equivalently,

$$B(T') = B(T) - x.freq - y.freq$$
.

We now prove the lemma by contradiction. Suppose that T does not represent an optimal prefix code for C. Then there exists an optimal tree T'' such that B(T'') < B(T). Without loss of generality (by Lemma 16.2), T'' has x and y as siblings. Let T''' be the tree T'' with the common parent of x and y replaced by a leaf z with frequency z. freq = x. freq + y. freq. Then

$$B(T''') = B(T'') - x.freq - y.freq$$

$$< B(T) - x.freq - y.freq$$

$$= B(T'),$$

yielding a contradiction to the assumption that T' represents an optimal prefix code for C'. Thus, T must represent an optimal prefix code for the alphabet C.

Theorem 16.4

Procedure HUFFMAN produces an optimal prefix code.

Proof Immediate from Lemmas 16.2 and 16.3.

Exercises

16.3-1

Explain why, in the proof of Lemma 16.2, if x.freq = b.freq, then we must have a.freq = b.freq = x.freq = y.freq.

16.3-2

Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

16.3-3

What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are the first *n* Fibonacci numbers?

16.3-4

Prove that we can also express the total cost of a tree for a code as the sum, over all internal nodes, of the combined frequencies of the two children of the node.

16.3-5

Prove that if we order the characters in an alphabet so that their frequencies are monotonically decreasing, then there exists an optimal code whose codeword lengths are monotonically increasing.

16.3-6

Suppose we have an optimal prefix code on a set $C = \{0, 1, ..., n-1\}$ of characters and we wish to transmit this code using as few bits as possible. Show how to represent any optimal prefix code on C using only $2n - 1 + n \lceil \lg n \rceil$ bits. (*Hint:* Use 2n - 1 bits to specify the structure of the tree, as discovered by a walk of the tree.)

16.3-7

Generalize Huffman's algorithm to ternary codewords (i.e., codewords using the symbols 0, 1, and 2), and prove that it yields optimal ternary codes.

16.3-8

Suppose that a data file contains a sequence of 8-bit characters such that all 256 characters are about equally common: the maximum character frequency is less than twice the minimum character frequency. Prove that Huffman coding in this case is no more efficient than using an ordinary 8-bit fixed-length code.