Exercise 2. Sketch the first five terms of the sequence $(2i)^n$, n = 1, 2, 3, ..., and describe the divergence of this sequence

This sequence doubles in magnitude and rotates 90° on each iteration, approaching $\pm \infty$ on both the real and imaginary axis.

Exercise 8. Use the Definition 2 to prove that $\lim_{z\to 1+i}(6z-4)=2+6i$

Proof. Let $\delta = \varepsilon/6$. We shall show that for all $\varepsilon > 0$

$$|(6z-4)-(2+6i)|<\varepsilon$$

whenever $0 < |z - (1+i)| < \delta$.

$$|(6z - 4) - (2 + 6i)| = |6z - 6 - 6i|$$

= $6|z - (1 + i)|$
 $< 6\delta$
 $\implies |z - (1 + i)| < \delta$

Exercise 11c. Find the following limit.

$$\lim_{z \to 3i} \frac{z^2 + 9}{z - 3i}$$

The function $\frac{z^2+9}{z-3i}$ is not continuous at z=3i as it is not defined there, however for $z\neq 3i$ we get

$$\frac{z^2+9}{z-3i} = \frac{(z+3i)(z-3i)}{z-3i} = z+3i,$$

which is continuous, so

$$\lim_{z \to 3i} \frac{z^2 + 9}{z - 3i} = \lim_{z \to 3i} z + 3i = 6i$$