

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Números e Funções Reais — Avaliação Final Prof. Adriano Barbosa

PROFMAT	20/07/2018
---------	------------

1		
2		
3		
4		
5		
6		
Nota		

Aluno(a):....

Para as questões de 1 a 6 escolha e resolva apenas o exercício A ou B de cada uma delas.

- 1A. Prove que $f: \mathbb{R} \to (-1,1), \, f(x) = \frac{x}{\sqrt{1+x^2}}$ é uma bijeção.
- 1B. Sejam X e Y conjuntos arbitrários e $f: X \to Y$ uma função. Prove que, se $A, B \subset X$ então
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subset f(A) \cap f(B)$
- 2A. Prove que se a, b, c e d são números racionais tais que $a\sqrt{2} + b\sqrt{3} = c\sqrt{2} + d\sqrt{3}$ então a = c e b = d.
- 2B. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função crescente tal que, para todo x racional, vale f(x) = ax + b (com $a, b \in \mathbb{R}$ constantes). Prove que se tem f(x) = ax + b também se x for irracional.
- 3A. A imagem de uma função $f: \mathbb{R} \to \mathbb{R}$ é o conjunto $f(\mathbb{R})$ cujos elementos são os números f(x), onde x é qualquer número real. Determine as imagens das funções $f: \mathbb{R} \to \mathbb{R}$, f(x) = rx + s e $g: \mathbb{R} \to \mathbb{R}$, $g(x) = ax^2 + bx + c$. Discuta as possibilidades e justifique suas afirmações.
- 3B. Considere as seguintes possibilidades a respeito das funções afins $f, g : \mathbb{R} \to \mathbb{R}$, em que f(x) = ax + b e g(x) = cx + d.
 - A) f(x) = g(x) para todo $x \in \mathbb{R}$.
 - B) $f(x) \neq g(x)$ seja qual for $x \in \mathbb{R}$.
 - C) Existe um único $x \in \mathbb{R}$ tal que f(x) = g(x).

Com essas informações,

- (a) Exprima cada uma das possibilidades acima por meio de relações entre os coeficientes a,b,c e d
- (b) Interprete geometricamente cada uma dessas 3 possibilidades usando os gráficos de f e q.
- 4A. A população de uma cultura de bactérias, num ambiente controlado, é estimada pela área que ocupa sobre uma superfície plana e tem taxa de crescimento diária proporcional a seu tamanho. Se, decorridos 20 dias, a população duplicou, então ela ficou 50% maior
 - (a) antes de 10 dias.
 - (b) ao completar 10 dias.
 - (c) após 10 dias.

Escolha a resposta certa e justifique sua opção.

4B. Calcule as seguintes expressões:

(a)
$$\log_n \left[\log_n \left(\sqrt[n]{\sqrt[n]{\sqrt[n]{n}}} \right) \right]$$

- (b) $x^{\log a/\log x}$, onde a>0, x>0 e a base dos logaritmos é fixada arbitratiamente.
- 5A. Resolva a equação

$$\operatorname{arctg}\left(\frac{1+x}{2}\right) + \operatorname{arctg}\left(\frac{1-x}{2}\right) = \frac{\pi}{4}.$$

- 5B. (a) Encontre uma expressão para sen (3x) como um polinômio de coeficientes inteiros em termos de sen (x).
 - (b) Mostre que sen (10°) é raiz de um polinômio com coeficientes inteiros.

- 6A. Um professor propôs a seguinte questão: "Dada a sequência $1,4,9,16,\ldots$, determine o quinto termo". Um aluno achou um resultado diferente de 25, que era a resposta esperada pelo professor. Ele obteve um polinômio P(x) satisfazendo cinco condições: P(1) = 1, P(2) = 4, P(3) = 9, P(4) = 16 e $P(5) \neq 25$. Encontre um polinômio P(x) satisfazendo as condições acima e tal que P(5) = 36.
- 6B. (a) Seja $p(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0$ um polinômio com coeficientes inteiros. Se a fração irredutível $\frac{a}{b}$, com a, b inteiros e $b \neq 0$, é raiz de p(X), mostre que a é divisor de a_0 e b é dividor de a_n .
 - (b) Encontre todas as raízes reais do polinômio $p(X) = 2X^4 + X^3 7X^2 3X + 3$.

Boa Prova!