

CS637A: Embedded and Cyber Physical Systems

Design and Deployment of Resilient Control Execution Patterns

A Prediction, Mitigation Approach

Ipsita Koley , Sunandan Adhikary , Arkaprava Sain, Soumyajit Dey (Presented in the Proceedings of ICCPS 2023)

Aravind Seshadri	Kapu Nirmal Joshua	Sumay Avi	Tanmay Purohit	Raghav Shukla
210180	210489	2110 <i>7</i> 1	211097	210800

Modern Cyber Physical System Architecture

Network connected CPS are designed as a closed loop systems

$$x_{k+1} = A x_k + B u_k + w_{k+1}$$

$$y_k = C x_k + v_k$$

$$y^{pred}_k = C(A x^{pred}_k + B u_k)$$

$$r_{k+1} = y_{k+1} - y^{pred}_{k+1}$$

$$x^{pred}_{k+1} = A x^{pred}_k + B u_k + L r_k$$

$$u_k = -K x^{pred}_k$$

$$e_k = x_k - x^{pred}_k$$

Where can an attack/hack occur in such a system?

Modern Cyber Physical System Architecture

Network connected CPS are designed as a closed loop systems

Where can an attack/hack occur in such a system?

The Network Layer (*u* and *y*)

Attacks occur through False Data Injection (FDI) in both u and y

"Secure" Cyber Physical System Architecture

Stealthy FDI Attacks - The Problem

A stealthy and successful FDI attack could still damage our CPS!

Control Execution Skips - A Potential Solution

In a **control execution skip** at iteration *k*:

- Block y_k from going to the estimator
 - 2. Stop u_k from being recalculated

Control execution skips can lead to degraded controller performance

How do we use this paradigm to increase resilience to stealthy FDI attacks?

Let 1 := control line is open And let 0 := control line is closed

Let 1 := control line is open And let 0 := control line is closed

Let 1 := control line is open
And let 0 := control line is closed

Let 1 := control line is open
And let 0 := control line is closed

At length periodic sequence such that:

1.
$$\pi[k] \in \{1,0\}^t$$

1.
$$\pi[k] = \pi[k+t] = \mathcal{S}[k \mod t]$$

is called as a control sequence of length t

Notation Used: 1^k O^l 1^{t-l-k}

Proposed Approach: Overview Of Underlying Ideas

approach

Formulate a constraint solving problem given specifications of CPS, initial conditions safe operating regions

Proposed Approach: Overview Of Underlying Ideas

Favorable Subpattern Synthesis

Feasibility of Aperiodic Control

Periodic control

Aperiodic Control

- Control Performance: In a window of t samples, to ensure the desired performance despite skipping, the control execution must maintain the minimum rate r_{\min}
 - \Rightarrow Controller must be executed [$t \times r_{\min}$] times.
 - $\therefore t l \ge \lceil t \times r_{\min} \rceil$

Attack Induced Estimation Error:

$$\Delta e_k = e_k^a - e_k$$
 $\Delta r_k = r_k^a - r_k$

$$e_k = x_k - \hat{x}_k$$
$$r = y_k - \hat{y}_k$$

Periodic Control (No skip)	Sole skip at (k+1) th step	Skipping from (k+1) to (k+l) steps	
$\Delta e_{k}^{p} = \sum_{i=0}^{k-1} A^{i} (B a_{k-1-i}^{u} - L \Delta r_{k-i})$	$\Delta e_{k+1}^{ap} = A \Delta e_k + B a_{k-1}^u$	$\Delta e_{k+l}^{ap} = A^l \Delta e_k + \sum_{i=0}^{l-1} A^i B a_{k-1}^u$	
$\Delta r_k = CA\Delta e_k + CBa_k^u + a_{k+1}^y$	$\Delta r_k = 0$	$\Delta r_{k+l} = 0$	

$$(\Delta e_0=0)$$

Applicability of Aperiodic Control

 Theorem: Assuming control performance criteria is satisfied, control execution skips for consecutive l sampling instances after k periodic control executions will be effective when:

$$\left\|\Delta e_{k+l}^p\right\| > \left\|\Delta e_{k+l}^{ap}\right\|$$

Algorithm to Calculate Advantage Matrix

What is the Advantage Matrix?

- D quantifies the benefit of utilizing $\rho[k][l] := 1^{k \cdot 0l} \cdot 1^{t-l-k}$ as the control sequence.
- It is only computed when there is lesser estimation error in aperiodic sequences.
- Time complexity of computation: $O(t^3)$
- $D[k][l] = \|\Delta e_{k+l}^p\| \|\Delta e_{k+l}^{ap}\|$ $= \|\sum_{i=0}^{l-1} L \Delta r_{k+l-i}\| \|\sum_{i=0}^{l-1} A^i B(a_{k+l-1-i}^u a_{k-1}^u)\|$

Optimal Resilient Attack Pattern Synthesis

M[i][j]: **Maximum advantage** value by considering skips till jth position for first i subpatterns P[i][j]: **Optimal t** length subpattern corresponding to M[i][j]

Some Notations

Let i^{th} subpattern list be $\rho[k][l]$ where: $\rho[k][l] = l^k O^{l-k} l^{t-l}$

We define end0[i]=l and end1[i]=k

Rate=
$$\frac{\sum_{i=1}^{t} pat[i]}{t}$$

Rate is the number of ones divided by total length of sequence

Case 1: *i=1*

P[1][j] = It if j<end0(1) or rate(pattern(1 to j)) < r_{min}

SubPatternList[1] otherwise

Case 2: i > 1 and j < end0(i)

M[i-1]	0.0	2	0.08	0.08	•••	0.08
M[i]	0.0	2	0.08	0.08	•••	0.08

For j<end0(i): No new subpattern with non trivial advantage

$$M[i][j] = M[i-1][j]$$
 $P[i][j] = P[i-1][j]$

Case 3 Part(i): i > 1 and $j \ge endO(i)$

Rate($SubPatternList(i)(1 to j) < r_{min}$

Consider $\rho(k, l)$ = 11000011 as the ith subpattern For j=6, we have rate=[110000]11 2/6=0.333 < \mathbf{r}_{min} =0.5

M[i-1]	
M[i]	

0	0.02	 0.08	0.08
0 <	0.02	 0.08	0.08

For j<end0(i)

$$M[i][j] = M[i-1][j]$$

Case 3 Part(ii): i>1 and j≥end0(i)

 $Rate(SubPatternList(i)) \ge \mathbf{r}_{min}$

$$\mathbf{M[i-1][j]} = \begin{cases} \mathbf{M[i-1][j]} & \text{if } M[i-1][j] > D[\text{end1}(i)][\text{end0}(i)] \\ \mathbf{D[\text{end1}[i]][\text{end0}[i]]} & \text{otherwise} \end{cases}$$

$$P[i][j] = \begin{cases} \mathbf{P[i-1][j]} & \text{if } M[i-1][j] > D[\text{end1}(i)][\text{end0}(i)] \\ \rho[\text{end1}[i]][\text{end0}[i]] & \text{otherwise} \end{cases}$$

Case 3 Part(iii) : i>1 and j>end0(i)

 $Rate(SubPatternList(i)) \ge \mathbf{r}_{min}$

Attack Library Synthesis

Attack Model

FDI in actuator and sensor signal

FDI in Consecutive samples:

Max damage
 Minimum time

Attack Vector Generation Strategy: Constraint Optimization Problem

CP:
$$\exists a[1], a[2], a[3], ..., a[t]$$

s.t. $x_0^a = x$; $\hat{x}_0^a = x$ where $x \in X_S$

Initial conditions

State space equations

$$u_{i-1}^{a} = -K\hat{x}_{i-1}^{a}; \ \tilde{u}_{i-1}^{a} = u_{i-1}^{a} + a_{i-1}^{u} \forall \ i \in [1, t]$$

$$x_{i}^{a} = Ax_{i-1}^{a} + B\tilde{u}_{i-1}^{a}; \ y_{i}^{a} = Cx_{i}^{a} + a_{i}^{y} \ \forall \ i \in [1, t]$$

$$r_{i-1}^{a} = y_{i}^{a} - C(A\hat{x}_{i-1}^{a} + Bu_{i-1}^{a}); \ \hat{x}_{i}^{a} = A\hat{x}_{i-1}^{a} + Bu_{i-1}^{a} + Lr_{i-1}^{a} \forall \ i \in [1, t]$$

Stealthiness condition, Safety envelope, Signal ranges

$$f(r_{i-1}^a) < Th; |y_i^a|, |a_i^y| < Y; |u_i^a|, |\tilde{u}_i^y|, |a_i^u| < U \quad \forall i \in [1, t]$$
$$x_i^a \in X_S \ \forall i \in [1, t-1]; \ x_t^a \in X_S$$

FDI Attack Prediction

• **Goal**: Given the values of Sensor Data in presence of attack vectors (y^a) and residual (r^a) for a number of previous timesteps (d-past), We need to predict the attack vectors for a future timeframe (d_{future}).

Implementation

- The GRU Predictor outputs the values of system outputs without the sensor attack (ỹ^a = y^a - a^y) and residual (r^a) for future timesteps.
- Using these values, we will calculate the attack vector values for the sensor and actuator for these future timesteps.

Model Specifications and Training

 The predictor is designed with 4 layers of neural networks consisting of 2 layers of Gated Recurrent Units (GRU) followed by 2 layers of fully connected layers.

Model Accuracy

- Length of attack vectors Lies in the range of 5 11
- d_{past} chosen as 3 and d_{future} chosen as 8
- For evaluation, the predicted outputs (predicted future attack vectors) are compared against the generated test data (future attack vectors in the attack library) to find the accuracy.

Training and Validation Loss Percentages.

MLP Classifier

 Given a prediction of the most probable FDI attack vectors for future iterations, we need to deploy an optimal attack-resilient pattern to incapacitate it.

Labeling and Training

- We partition the library of attack vectors A_{lib} into a finite number of clusters, to use as training data.
- Formally, two attack vectors ai and aj will be placed in the same cluster C_k if the optimal attack-resilient control execution patterns returned by our proposed DP-based method for ai and aj are same.
- We then use this dataset to train a multi-layer perceptron (MLP)based classifier that can map a predicted attack vector in runtime to a certain cluster and deploy the control execution skip pattern which labels that cluster.

Results on the TTC Benchmark

Control Input 11001111

Control Input 10000011111

Control Input 11000011

Attack vector takes the system outside safety region Control skip pattern improves resilience for countermeasures

Results on other benchmarks

Systems	Order	r _{min}	Initial State	Attack Length	Control Patterns	Advantages
TTC	2	0.51	[0.65,0.78]	10	10 ⁵ 1 ⁴ , 10 ⁴ 1 ⁵ , 101 ⁸	15.43, 12.01, 5.43
ESP	2	0.45	[-1.96,-3.93]	3	100	2.43
Fuel Injection	3	0.5	[-0.08,-0.53,-1.77]	5	140, 1 ³ 0², 10²1²	6.12, 4.45, 2.28
Suspension Control	4	0.52	[-1.64,21.89,47.19,71.12]	7	1010 ² 1 ² , 101 ⁵ , 1 ² 0 ³ 1 ² , 10 ³ 1 ³	938.76, 879.87, 720.83, 661.78
4-Car Platoon	8	0.5	[-0.55, 1.47, -5.29, -0.26, -1.84, -1.39, 4.47, 3.75]	26	7501378, 7401379, 73013710 _,	281.59, 255.03, 231.67, 209.67

Limitations

Attacker Dynamically changes his attack patterns by learning the deployed execution sequence

Attack library limited to one type of attack:

Replay attack: Replays valid communication data from the past

Delayed Data injection

Contributions

Implemented the algorithms provided in the paper (only existing implementation)

Obtained similar results (graphs) provided in the paper – improved resilience!

Researched and found potential failures for the algorithms in the paper

CS637A: Embedded and Cyber Physical Systems

Thank You

Any Questions?

Aravind	Seshadri
210	0180