Chapter 8

Star Clusters in the Large Magellanic Cloud



http://www.seds.org/hst/ NGC1850.html

- Classification scheme developed before the physics
- Parameters that can be used to classify stars
  - Luminosity (Brightness)
  - Temperature (Color)
  - Spectra (Composition)
  - Mass
  - Age
- The Henry Draper Catalogue

The Harvard Computers of the Harvard College Observatory



http://cannon.sfsu.edu/%7Egmarcy/cswa/history/pick.html

- The Henry Draper Catalogue ...
  - HD numbers
  - Originally based on brightness, but switched to temperature
  - Spectral Types:



- Subdivisions in tenths: 0 → 9 (early → late, hot → cool) within a Spectral Type)
- The Sun is a G2 an early G-type star
  - G yellow start
    - Solar type spectra
    - Ca II (singly ionized) lines continue becoming stronger
    - Fe I, other *neutrals* metal lines become stronger

http://casswww.ucsd.edu/physics/ph7/Stars.html

Just in case

# O to G example



# G to M example



# The Formation of Spectral Lines

- Fundamental Question:
  - What causes the differences in the observed spectra?
    - Composition?
    - Temperature?
    - Both?
- Answer:
  - Temperature is the main factor



# The Formation of Spectral Lines

- Distribution of electrons in different atomic orbitals depends on temperature
- Electrons can jump up in energy by absorption of a photon OR collision with a particle! So KE of surrounding particles important.
- What is the probability of finding an electron in a particular orbital?
  - Answer with Statistical Mechanics...
  - Maxwell-Boltzmann (velocity) Distribution
    - Assumes thermal equilibrium
    - Number of gas particles per unit volume have a speed between v and v+dv

$$n_{v} dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{1}{2}mv^{2}kT} 4\pi v^{2} dv$$

#### Maxwell-Bolzmann Distribution

$$n_v dv = n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{1}{2}mv^2 kT} 4\pi v^2 dv$$

Most probable speed

$$v_{mp} = \sqrt{\frac{2kT}{m}} = 1.4\sqrt{kT/m}$$

• Root-mean-square

$$v_{rms} = \sqrt{\frac{3 kT}{m}} = 1.73 \sqrt{kT_{\frac{3}{2}}} m_4^5$$

• Average  $v_{avg} = \sqrt{\frac{8kT}{\pi m}} = 1.6\sqrt{kT} \sum_{k=0}^{\infty} \frac{3}{2}$ 

• Collisional energy causes
a distribution of electrons
among the atomic orbitals
(Kinetic Energy → Potential Energy)



#### **Boltzmann Factor**

- Fundamental idea used in all branches of physics
- The higher the energy of a state, the less likely it will be occupied

$$P_a \propto e^{\frac{-E_a}{kT}}$$

- For the Maxwell-Boltzmann distribution, the energy is Kinetic Energy

$$P_{v} \propto e^{-\frac{1}{2}mv^{2}kT}$$

- The "kT" term is associated with the thermal energy of the "gas" as a whole
- Ratio of Probabilities for two different states (and energies)

$$\frac{P_b}{P_a} = \frac{e^{\frac{-E_b}{kT}}}{e^{\frac{-E_a}{kT}}} = e^{\frac{-(E_b - E_a)}{kT}}$$

# Degeneracy Factor

- An energy (eigenvalue) is associated with each set of quantum number (eigenstate or eigenfunction)
- Degenerate States have different quantum numbers but the same energy
- Modify the Boltzmann factor

$$P_a \propto g_a e^{\frac{-E_a}{kT}}$$

- The probability of being in any of the  $g_a$  degenerate states with energy  $E_a$ 
  - $g_a$  is the <u>degeneracy</u> or <u>statistical weight</u> of state a

• Ratio of probabilities between states with two different energies

$$\frac{P_b}{P_a} = \frac{g_b}{g_a} e^{\frac{-\left(E_b - E_a\right)}{kT}}$$

### Degeneracy Factor

- Details of quantum mechanics determines the energies and quantum numbers...
- Visit the following site on the next page and browse...
- Quantum numbers for Hydrogen  $\{n, l, m_{l}, m_{s}\}$ 
  - Table 8.2

|       | n                                | l                            | $m_l^{}$                      | $m_{_S}$                        |                                   |
|-------|----------------------------------|------------------------------|-------------------------------|---------------------------------|-----------------------------------|
| State | Principal<br>quantum<br>number n | Orbital<br>quantum<br>number | Magnetic<br>quantum<br>number | Spin<br>quantum<br>number       | Maximum<br>number<br>of electrons |
| 1s    | 1                                | 0                            | 0                             | $+\frac{1}{2}, -\frac{1}{2}$    | 2                                 |
| 2s    | 2                                | 0                            | 0                             | $+\frac{1}{2}, -\frac{1}{2}$    | 2 [ _                             |
| 2р    | 2                                | 1                            | -1,0,+1                       | $+\frac{1}{2}, -\frac{1}{2}$    | 6 } 8                             |
| 3s    | 3                                | 0                            | 0                             | $+\frac{1}{2}, -\frac{1}{2}$    | 2 ]                               |
| 3р    | 3                                | 1                            | -1,0,+1                       | $+\frac{1}{2}, -\frac{1}{2}$    | 6 } 18                            |
| 3d    | 3                                | 2                            | -2,-1,0,1,2                   | $+\frac{1}{2}$ , $-\frac{1}{2}$ | $10 \qquad = 2n^2$                |

# **Boltzmann Equation**

• Number of atoms in a particular state a

$$N_a = NP_a$$

N = total number of atoms

 $N_a$  = number of atoms in state a

 $P_{a}$  = probability of being in state a

$$\Rightarrow \frac{N_b}{N_a} = \frac{g_b}{g_a} e^{\frac{-\left(E_b - E_a\right)}{kT}}$$

Hydrogen Atom Examples

# Hydrogen Atom

- Balmer series absorption spectra is an upward transition from n = 2
- Observation: this series has a peak absorption spectrum at ~9520 K.



# Hydrogen Atom Populations

- We just saw that not many Hydrogen atoms are in the n=1 state at 9520 K!
  - Shouldn't the intensity keep growing as the temperature increases since there is a higher probability for an H atom to be in the n=2 state?!?!



#### **Partition Function**

- We also have to figure in all states that have a significant population  $_{-E}$
- For one state we have:  $P_1 \propto g_1 e^{\frac{-E_1}{kT}}$
- Ratio between two states:  $\frac{P_2}{P_1} = \frac{g_2 e^{\frac{-E_2}{kT}}}{g_1 e^{\frac{-E_1}{kT}}} = \frac{g_2}{g_1} e^{\frac{-(E_2 E_1)}{kT}}$
- Ratio of state 2 to all other states with reference to the ground state:

$$\frac{P_{2}}{P_{all}} = \frac{g_{b}e^{\frac{-(E_{2}-E_{1})}{kT}}}{\frac{-(E_{1}-E_{1})}{kT} + g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}} + g_{3}e^{\frac{-(E_{3}-E_{1})}{kT}} + \cdots} = \frac{g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}}}{Z}$$

#### Partition Function

This tell us how many states are accessible or available at a given temperature (thermal energy)

apperature (thermal energy)
$$Z = g_{1}e^{\frac{-(E_{1}-E_{1})}{kT}} + g_{2}e^{\frac{-(E_{2}-E_{1})}{kT}} + g_{3}e^{\frac{-(E_{3}-E_{1})}{kT}} + \cdots$$

$$= g_{1} + \sum_{i} g_{i}e^{\frac{-(E_{i}-E_{1})}{kT}}$$

- The higher the temperature, the more states that are available
- At zero K, everything will be in the ground state
  - Bose-Einstein Condensates

#### Partition Function and Atoms

- We also have to handle ionization!
- Nomenclature: H I neutral hydrogen

H II – singly ionized hydrogen

He I – neutral Helium

He II – singly ionized Helium

He III – doubly ionized Helium

Ionization Energy for H I to H II

$$\chi_I = 13.6 \, eV$$

- Rather than  $n \rightarrow \infty$ , the atom will ionize before this happens

# Saha Equation

- Determines the ratio of ionized atoms
- Need partition functions since all the atoms are not in the same state
  - Z<sub>i</sub> is the initial stage of ionization
  - $-Z_{i+1}$  is the final stage of ionization
- Ratio of the number  $2\mathbb{Z}$  atom  $2\mathbb{Z}$  in  $n_e x^2 T$   $\frac{2}{N_i} = \frac{2\mathbb{Z}}{n_e Z_i} \left( \frac{2\mathbb{Z}}{n_e^2} \frac{1}{N_e^2} \right)^{\frac{2}{2}} e^{-\chi_i kT}$

$$P_e = n_e kT$$

- $-n_{e}$  is the electron density (an ideal gas of electrons)
  - Electron pressure
  - Electrons recombine with H II to give H I

# Ionized Hydrogen Atoms

- Fraction of hydrogen atoms that are ionized
- If we have H II, we can't have the Balmer series!



# H I n = 2 population

$$\frac{N_2}{N_{total}} = \left(\frac{N_2}{N_I}\right) \left(\frac{N_I}{N_I + N_{II}}\right)$$

Fraction of non-ionized hydrogen Atoms in the n = 2 state

Fraction of non-ionized hydrogen atoms

$$\frac{N_2}{N_{total}} = \left(\frac{N_2}{N_I}\right) \left(\frac{1}{1+N_{II}N_I}\right) \frac{1}{N_I \approx N_1 + N_2} \left(\frac{N_2}{N_1 + N_2}\right) \left(\frac{1}{1+N_{II}N_I}\right)$$

$$\frac{N_2}{N_{total}} = \left(\frac{N_2N_1}{1+N_2N_1}\right) \left(\frac{1}{1+N_{II}N_I}\right)$$

# H I n = 2 population

- Includes the Boltzmann factor, partition function and ionization
- Population peak at 9520 K, in agreement with observation of the Balmer series



# H I n = 2 population

$$\frac{N_2}{N_{total}} = \left(\frac{N_2}{N_I}\right) \left(\frac{N_I}{N_I + N_{II}}\right)$$

Fraction of non-ionized hydrogen Atoms in the n = 2 state

Fraction of non-ionized hydrogen atoms



# Example 8.3

- Degree of ionization in a stellar atmosphere of pure hydrogen for the temperature range of 5000-25000 K  $\frac{N_{II}}{N_{II}}$
- Given electron pressure  $P_e = 200 \frac{dyne}{cm^2}$
- Saha equation  $\frac{N_{II}}{N_{I}} = \frac{2kTZ_{II}}{P_{e}Z_{I}} \left( \frac{2\pi m_{e}kT}{h^{2}} \right)^{\frac{3}{2}} e^{-\chi_{i}kT}$
- Must determine the partition functions
  - Hydrogen ion is a proton, so  $Z_{\parallel} = 1$
  - Neutral hydrogen over this temp range

$$\Delta E = E_2 - E_I = 10.2 \text{ eV}$$

$$\Delta E \gg kT$$
, then  $e^{-\Delta E/kT} <<1$ 

$$\Rightarrow Z_{I} = g_{I} + \sum_{i} g_{i} e^{\frac{-(E_{i} - E_{1})}{kT}} g_{1} = 2$$

$$T := 5000K$$

$$k \cdot T = 0.43 \, eV$$

$$T := 25000K$$

$$k \cdot T = 2.15 \,\mathrm{eV}$$

# Example 8.3

Degree of Ionization

$$\frac{N_{II}}{N_{I}} = \frac{2kT(1)}{P_{e}(2)} \left( \frac{2\pi \ m_{e} kT}{h^{2}} \right)^{\frac{3}{2}} e^{-\chi_{i} kT}$$



#### Problem 8.7

• Evaluate the first three terms of the partition function for 10000K

$$\begin{aligned} & \text{Partition Function:} & \text{Counting the first ten states...} & \underline{\text{Energy:}} & E(n) := \frac{-13.6\text{eV}}{n^2} & \underline{\text{Degeneracy:}} & g(n) := 2 \cdot n^2 \\ & f_B(n,T) := \exp \bigg[ \frac{-(E(n) - E(1))}{k \cdot T} \bigg] & Z(T) := \sum_{n=1}^{10} \ \Big( g(n) \cdot f_B(n,T) \Big) & T := 0,500... \ 20000 \\ & Z(6000K) = 2.0000 & Z(10000K) = 2.0002 & Z(15000K) = 2.0292 \end{aligned}$$



#### Problem 8.8

- The partition function diverges at  $n \rightarrow \infty$ 
  - Why do we ignore large n?

$$\begin{aligned} &\text{Partition Function:} &\quad &\text{Counting the first 100 states...} &\quad &\underline{\text{Energy:}} &\quad &\underline{\text{E}(n)} := \frac{-13.6 eV}{n^2} &\quad &\underline{\text{Degeneracy:}} &\quad &g(n) := 2 \cdot n^2 \\ &f_B(n,T) := exp \Bigg[ \frac{-(E(n) - E(1))}{k \cdot T} \Bigg] &\quad &Z(T) := \sum_{n=1}^{100} \ \left( g(n) \cdot f_B(n,T) \right) &\quad &T := 0,500...\,20000 \end{aligned}$$

$$Z(6000K) = 2.0000$$
  $Z(10000K) = 2.0952$   $Z(15000K) = 20.2988$ 



#### Problem 8.8

Counting the first 1000 states... Energy:  $E(n) := \frac{-13.6 \text{eV}}{2}$ Partition Function:

<u>Degeneracy:</u>  $g(n) := 2 \cdot n^2$ 

$$f_B(n,T) := exp \left[ \frac{-(E(n) - E(1))}{k \cdot T} \right]$$
  $Z(T) := \sum_{n=1}^{1000} (g(n) \cdot f_B(n,T))$ 

$$Z(T) := \sum_{n=1}^{1000} \left( g(n) \cdot f_{\mathbf{B}}(n, T) \right)$$

T := 0,500..20000

$$Z(6000K) = 2.0025$$

$$Z(10000K) = 95.431$$

$$Z(10000K) = 95.4311$$
  $Z(15000K) = 1.7998 \times 10^4$ 



- Ionization
- Unphysical orbital size  $r_n = a_0 n^2$

# Example 8.4

- Surface of the Sun has 500,000 hydrogen atoms per calcium atom, but calcium absorption lines are much stronger than the Balmer series lines.
- The Boltzmann and Saha equations reveal that there are  $400 \times$  more Ca atoms in the ground electronic state than in the n=2 hydrogen state.
- Calcium is not more abundant
- Differences are due to sensitive temperature dependence



#### Mass-Luminosity Relation from Binary Systems



### Mass-Luminosity Relation

• Early theories had "early" O-type (bright, hot, massive) stars evolving to "old" M-type stars (dim, cool, less massive)







• Luminosity and Temperature rather than Magnitude and Color Index



Star Radius

 $T_e(\mathbf{K})$ 

# Spectroscopic "Parallax"

- Method to determine a stars distance
  - Determine the star's spectral class
  - Read the absolute magnitude from the H-R diagram
  - Compare to apparent magnitude to determine distance
  - Accurate to a factor of  $\pm 1$  magnitude
    - $10^{1/5} = 1.6$

- Stellar Evolution
  - Determined by mass
- http://instruct1.cit.cornell.edu/courses/astro101/java/evolve/evolve. htm
- http://cspar181.uah.edu/PHY106/QZ21-movie.html

- Stellar Evolution
  - Determined by mass
- http://instruct1.cit.cornell.edu/courses/astro101/java/evolve/evolve. htm
- http://cspar181.uah.edu/PHY106/QZ21-movie.html

- http://www.shep.net/resources/curricular/physics/Conf99/parallax.htm
- http://www.skyviewcafe.com/skyview.shtml
- http://jersey.uoregon.edu/vlab/
- http://jersey.uoregon.edu/vlab/elements/Elements.html
- http://jersey.uoregon.edu/vlab/EW2/EW.html
- http://jersey.uoregon.edu/vlab/prf/PRF\_plugin.html