ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 13 ABGABE: 30.1.2017

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Sei X ein zusammenhängender, nicht-kompakter, lokal-kompakter (3 Punkte) Hausdorffraum. Zeigen Sie, dass dann gilt $V(\mathcal{C}_0(X)) = 0$.

Aufgabe 2. Sei (4 Punkte)

$$A = \{ f \in \mathcal{C}([0,1], M_2(\mathbb{C})) \mid \exists x, y \in \mathbb{C} : f(0) = \operatorname{diag}(x,0), f(1) = \operatorname{diag}(y,y) \},\$$

als C*-Unteralgebra von $\mathcal{C}([0,1],M_2(\mathbb{C}))$. Berechnen Sie A^+ und zeigen Sie folgendes:

- (1) A enthält keine nicht-verschwindenden Projektionen.
- (2) $M_2(A)$ enthält nicht-triviale Projektionen.
- (3) Es gilt $V(A) \cong \mathbb{N}$ und

$$V(A^{+}) \cong \{(m, n) \in \mathbb{Z}^{2} \mid m, n \geq 0, m + n \text{ gerade } \},$$

wobei die Monoidstruktur auf der letzteren Menge von \mathbb{Z}^2 induziert sei.

Aufgabe 3. Sei A eine C*-Algebra und τ eine Spur auf A. Weiterhin sei die (4 Punkte) Abbildung $\tau_n: M_n(A) \longrightarrow \mathbb{C}$ definiert durch

$$\tau_n(a) = \sum_{i=1}^n \tau(a_{ii}), \quad \forall a = (a_{ij}) \in M_n(A).$$

Zeigen Sie folgende Aussagen:

- (1) $\frac{1}{n}\tau_n$ ist eine Spur auf $M_n(A)$ und setzt sich eindeutig auf A^+ fort.
- (2) τ induziert einen Homomorphismus $\tau_*: K_0(A) \to \mathbb{C}$ mit $\tau_*([p]-[q]) = \tau(p)-\tau(q)$ für alle $[p]-[q] \in K_0(A)$.

Aufgabe 4. Sei $J \subseteq A$ ein abgeschlossenes Ideal der C*-Algebra $A, j : J \longrightarrow A$ die (4 Punkte) Inklusion und $\varrho : A \to A/J$ die kanonische Projektion. Betrachten Sie die Sequenz

$$K_0(J) \xrightarrow{j_*} K_0(A) \xrightarrow{\varrho_*} K_0(A/J).$$

Zeigen Sie anhand von jeweils einem Beispiel, dass

- (1) j_* im allgemeinen nicht injektiv ist und
- (2) ϱ_* im allgemeinen nicht surjektiv ist.