

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Introduction to ML Lecture 7: Dimension Reduction

Hamed Tabkhi

Department of Electrical and Computer Engineering, University of North Carolina Charlotte (UNCC)

htabkhiv@uncc.edu

Dimensionality Reduction

Why Dimensionality Reduction?

- It is so easy and convenient to collect data
- Data accumulates in an unprecedented speed
- Data preprocessing is an important part for effective machine learning and data mining
- Dimensionality reduction is an effective approach to downsizing data

Why Dimensionality Reduction?

- Visualization: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage and retrieval.
- Noise removal: positive effect on query accuracy.

Data Compression

Reduce data from 2D to 1D

Andrew N

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \longrightarrow z^{(1)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

 $x^{(m)} \longrightarrow z^{(m)}$

Andrew N

Reduce data from 3D to 2D

Easy to visualize

Andrew N

Why Dimensionality Reduction?

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Accuracy and efficiency degrade rapidly as the dimension increases.
- The intrinsic dimension may be small.
 - For example, the number of genes responsible for a certain type of disease may be small.

Curse of Dimensionality

If the number of features d is large, the number of samples n, may be too small for accurate parameter estimation.

Curse of Dimensionality

- Increasing the number of features will not always improve classification accuracy.
- In practice, the inclusion of more features might actually lead to worse performance.
- The number of training examples required increases exponentially with dimensionality d (i.e., kd).

Slide Credit: George Bebis

k: number of bins per feature

Gene Expression Microarray Analysis

- Task: To classify novel samples into known disease types (disease diagnosis)
- Challenge: thousands of genes, few samples
- Solution: to apply dimensionality reduction

Gene Sample	M23197_at	U66497_at	M92287_at	Class
Sample 1	261	88	4778	 ALL
Sample 2	101	74	2700	 ALL
Sample 3	1450	34	498	 AML
				 .

Expression Microarray Data Set

Other Types of High-Dimensional Data

Face images

Natural images

Other Types of High-Dimensional Data

BAIR:

UCF101:

Videos (action recognition)

Major Techniques of Dimensionality Reduction

- Feature selection
- Feature extraction (reduction)

Feature Selection (a very brief overview)

Definition

 A process that chooses an optimal subset of features according to an objective function

Objectives

- To reduce dimensionality and remove noise
- To improve mining performance
 - Speed of learning
 - Predictive accuracy
 - Simplicity and comprehensibility of mined results

Horse vs. Zebra

Features:

4-leg Shape Color

•

In the presence of millions of features/attributes/inputs/variables, select the most relevant ones.

Advantages: build better, faster, and easier to understand learning machines.

- Feature selection is an optimization problem.
 - Step 1: Search the space of possible feature subsets.
 - Step 2: Pick the subset that is optimal or near-optimal with respect to some objective function.

Search strategies

- Optimum
- Heuristic
- Randomized

Evaluation strategies

- Filter methods
- Wrapper methods

Case Study: Gender Classification

- Determine the gender of a subject from facial images.
 - Challenges: race, age, facial expression, hair style, etc.

Z. Sun, G. Bebis, X. Yuan, and S. Louis, "Genetic Feature Subset Selection for Gender Classification: A Comparison Study", IEEE Workshop on Applications of Computer Vision, pp. 165-170, Orlando, December 2002.

Feature Selection using Genetic Algorithms

 GAs provide a simple, general, and powerful framework for feature selection.

Feature Extraction (a very brief overview)

Feature Extraction (or Reduction)

- Feature extraction refers to the mapping of the original high-dimensional data onto a lowerdimensional space
- Given a set of data points of p variables $\{x_1, x_2, \dots, x_n\}$ Compute their low-dimensional representation:

$$x_i \in \mathbb{R}^d \to y_i \in \mathbb{R}^p \ (p << d)$$

Feature Reduction vs. Feature Selection

Feature extraction (or reduction):

finds a set of new features (i.e., through some mapping f()) from the existing features.

The mapping f()
$$\mathbf{x}_{1} \mid x_{2} \quad \text{could be linear}$$
or non-linear
$$\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{N} \end{bmatrix}$$

$$\xrightarrow{f(\mathbf{x})} \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ \vdots \\ y_{K} \end{bmatrix}$$

$$K << N$$

Feature selection: chooses a subset of the original features.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_{i_1} \\ x_{i_2} \\ \vdots \\ \vdots \\ x_{i_K} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_{i_1} \\ x_{i_2} \\ \vdots \\ \vdots \\ x_{i_K} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_{i_1} \\ x_{i_2} \\ \vdots \\ \vdots \\ x_{i_K} \end{bmatrix}$$

Feature Extraction (cont'd)

- From a mathematical point of view, finding an optimum mapping y=f(x) is equivalent to optimizing an objective function.
- Different methods use different objective functions, e.g.,
 - Information Loss: The goal is to represent the data as accurately as possible (i.e., no loss of information) in the lower-dimensional space.
 - Discriminatory Information: The goal is to enhance the classdiscriminatory information in the lower-dimensional space.

Feature Extraction (cont'd)

- Commonly used linear feature extraction methods:
 - Principal Components Analysis (PCA): Seeks a projection that preserves as much information in the data as possible.
 - Linear Discriminant Analysis (LDA): Seeks a projection that best discriminates the data.
- Some other interesting methods:
 - Retaining interesting directions (Projection Pursuit),
 - Making features as independent as possible (Independent Component Analysis or ICA),
 - Embedding to lower dimensional manifolds (Isomap, Locally Linear Embedding or LLE).

Principal Component Analysis (PCA)

What is Principal Component Analysis (PCA)

- Principal Component Analysis, or PCA, is a dimensionalityreduction method that is often used to reduce the dimensionality of large data sets.
- It transforms a large set of variables into a smaller one that still contains most of the information in the large set.
- The trick in dimensionality reduction is to trade a little accuracy for simplicity.
- The idea of PCA is simple reduce the number of variables of a data set, while preserving as much information as possible.

What are Principal Components?

"Principal components are new variables that are constructed as linear combinations or mixtures of the initial variables.

 the new variables (which we call principal components) are uncorrelated and most of the information within the initial variables is squeezed or compressed into the first components."

PCA tries to put maximum possible information in the first component, then maximum remaining information in the second and so on, until having something like shown in the scree plot below.

What are Principal Components

- Note: the principal components are less interpretable and don't have any real meaning since they are constructed as linear combinations of the initial variables.
- Organizing information in principal components this way, will reduce dimensionality without losing much information

- The larger the variance carried by a line, the more the information it has.
- As there are as many principal components as there are variables in the data, principal components are constructed in such a manner that the first principal component accounts for the largest possible variance in the data set, and so on.

