Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

7. Time series regression models

7.9 Matrix formulation

OTexts.org/fpp3/

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

$$\mathbf{y}_{t} = \beta_{0} + \beta_{1} \mathbf{x}_{1,t} + \beta_{2} \mathbf{x}_{2,t} + \cdots + \beta_{k} \mathbf{x}_{k,t} + \varepsilon_{t}.$$

Let
$$\mathbf{y} = (y_1, \dots, y_T)', \varepsilon = (\varepsilon_1, \dots, \varepsilon_T)', \beta = (\beta_0, \beta_1, \dots, \beta_k)'$$
 and

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Let
$$\mathbf{y} = (y_1, \dots, y_T)', \, \boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_T)', \, \boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)'$$
 and

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ \mathbf{1} & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & \vdots & & \vdots \\ \mathbf{1} & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

Then

$$y = X\beta + \varepsilon$$
.

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

If the errors are iid and normally distributed, then

$$\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

If the errors are iid and normally distributed, then

$$\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

If the errors are iid and normally distributed, then

$$\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when $(y - X\beta)'(y - X\beta)$ is minimized.

If the errors are iid and normally distributed, then

$$\mathbf{y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when $(y - X\beta)'(y - X\beta)$ is minimized.

Cross-validation

Fitted values

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

$$= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \mathbf{H}\mathbf{y} \qquad \text{where } \mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

Cross-validation

Fitted values

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

$$= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \mathbf{H}\mathbf{y} \qquad \text{where } \mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

LOO cross-validation MSE

$$CV = \frac{1}{T} \sum_{t=1}^{T} [e_t/(1-h_t)]^2$$

- \bullet e_t = residual at time t (from fitting model to all data)
- \blacksquare h_1, \ldots, h_T are the diagonals of H.

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X'y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X'y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

$$Var(y^*|X, x^*) = \sigma^2 [1 + x^*(X'X)^{-1}(x^*)']$$

6

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X'y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

Var(
$$y^*|X, x^*$$
) = $\sigma^2 [1 + x^*(X'X)^{-1}(x^*)']$

- This ignores any errors in \mathbf{x}^* .
- 95% prediction intervals assuming normal errors:

$$\hat{\mathbf{y}}^* \pm 1.96\sqrt{\mathsf{Var}(\mathbf{y}^*|\mathbf{X},\mathbf{x}^*)}$$
.