ANALYSE SPATIALE

MINI PROJET

LAGHRISSI ANAS

16/12/2015

EXERCICE 1

Calculer les paramètres de position de ce nuage de points : du cenroide, barycentre, Ma.

Point i	X	Υ	Pi
1	10	40	500
2	60	10	200
3	70	50	100
4	80	30	100
5	90	40	100

a. Le point moyen pondéré ou barycentre GZ

$$XG = \Sigma pixi * 1/\Sigma pi$$
 , $\Sigma pi = P$
 $YG = \Sigma pixi * 1/\Sigma pi$

b. Le centroïde : centre de gravité

$$XG = 1/N \Sigma xi$$
;

$$YG = 1/N \Sigma yi$$

C. Le point de distance minimale Ma

Min= ($\Sigma d1j$, $\Sigma 2j$, $\Sigma 3j$, $\Sigma 4j$, $\Sigma 5j$) avec j=1...5.

distance	1	2	3	4	5
Σd1j	0	58.30	60.83	22.36	22.36
Σd2j	58.30	0	41.23	28.28	42.42
Σd3j	60.83	41.23	0	22.36	22.36
Σd4j	21.36	28.28	22.36	0	14.14
Σd5j	22.36	42.42	22.36	14.14	0

D'après le tableau des distances le point de distance minimale

Ma =14.14

EXERCICE 2

Analysez cette distribution

ni	K(ni)	ni* K(ni)	(ni-D)²	ki(ni-D)²
0	25	0	1.148	28.7
1	15	15	0.0051	0.0765
2	8	16	0.862	6.896
3	5	15	3.719	18.595
4	1	4	8.576	8.576
5	2	10	15.433	30.866
Total	56	60		93.709

Variance
$$V=1/k*(\Sigma \text{ ki (ni-D)}^2=1.673$$

Densité D=
$$1/k*(\Sigma ni* K (ni))=15/14$$

Puisque l'indice de concentration est supérieur à 1 donc la distribution est concentrée.

On va poser une hypothèse nulle car une distribution concentrée peut être aléatoire donc pour vérifier cette hypothèse nulle on procédera un test statistique chi-2.

ni	Ki (ob)	ki (th)	(Ki (ob)- ki (th))²/ ki (th)
0	25	19.20	1.752
1	15	20.53	1.489
2	8	10.99	0.813
3	5	3.92	0.297
4	1	1.04	0.005
5	2	0.22	14.40
Total	65		18.756

χ2ob=18.756

Le degré de liberté N-1=6-1=5 avec risque d'erreur aléatoire est 5%

D'après le tableau de chi-2 qui correspond (5,5%) en déduit le chi2 théorique

Conclusion : puisque $\chi 2ob > \chi 2th$ la distribution n'est pas concentré et que l'hypothèse que la distribution est aléatoire ne peut pas être rejeté.

EXERCICE 3

Analysé la distribution par la méthode du voisin le plus proche

ni	Χ	Υ
1	1.5	7
2	1	7
3	1.5	6.8
4	0.5	5.8
5	2.2	7.5
6	0.3	7
7	0.6	4.8
8	1.8	4.1
9	2.1	5.2
10	4.3	5.8
11	1.6	7.2
12	3.1	6.4
13	0.7	2.9
14	0.1	2.6

15	1.5	4.4
16	3.1	5.3
17	5.2	6.2
18	5.1	7.9
19	1.7	1
20	24	1.8
21	4.2	5
22	7	6.1
23	6.8	3.8
24	7.2	0.3

a. Calcule des distances au plus proche voisin.

ni	Dis min
1	0.2
2	0.5
3	0.2
4	1
5	0.7
6	0.7
7	1
8	0.4
9	1
10	1.8
11	0.2
12	1.1
13	0.7
14	0.7
15	0.4
16	1
17	1
18	1.7
19	1.1
20	1.1
21	0.8
22	1.8
23	2.3

24 3.5

Le calcul de la distance moyenne observée Dio= $(\Sigma \text{ Dis min})/N=0.99$

b. Calcul de la distance théorique moyenne.

On a la surface S=64 km² et l'effective N=24

C. Calcul de l'indice R

L'indice est supérieur à 1 donc la distribution observé est plus régulier

Test statistique

Z=Dio-Dith/ET=0.08

Z loi normal =0.5319

Conclusion : Contrairement à ce que laisserait penser la première impression visuelle, la distribution est plutôt dispersée. Mais son caractère aléatoire ne peut être rejeté.