

Centro de Enseñanza Técnica Industrial

Desarrollo de Software

Actividad 1 - Clase 1

Jesús Alberto Aréchiga Carrillo 22310439 6N

Profesor

Clara Margarita Fernández Riveron

mayo de 2025

Guadalajara, Jalisco

Introducción

Un vector aleatorio es una generalización de la variable aleatoria escalar que agrupa varias componentes estocásticas en un único objeto matemático, normalmente denotado como $X=(X1,X2,...,Xn)^T$. Cada componente X_i tiene su propia distribución marginal, pero lo esencial de un vector aleatorio radica en su distribución conjunta, la cual captura no solo el comportamiento individual de cada X_i sino también las dependencias y correlaciones entre ellas. El estudio de vectores aleatorios implica conceptos fundamentales como la función de densidad o función de distribución conjunta, el vector de medias (esperanza) y la matriz de covarianza, que permiten caracterizar de forma completa la estructura estadística y variar desde modelos multivariados sencillos hasta complejas aplicaciones en econometría, machine learning y procesamiento de señales.

Ejercicio:

Sea el vector aleatorio:

 $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ definido por la siguiente función de densidad conjunta:

$$f_{X_1,X_2}(X_1,X_2) = \begin{cases} 4X_1X_2, & si\ 0 < X_1 < 1, 0 < X_2 < 1 \\ 0, & en\ otro\ caso \end{cases}$$

- 1. Calcular el **vector de medias** $\mu = E[X]$
- 2. Calcular la matriz de covarianza $\Sigma = Cov(X)$

Realizar el programa en Python para su solución.

```
import sympy as sp

# Definir variables
x1, x2 = sp.symbols('x1 x2', real=True, positive=True)

# Densidad conjunta
f = 4*x1*x2

# Medias
E1 = sp.integrate(x1 * f, (x1, 0, 1), (x2, 0, 1))
E2 = sp.integrate(x2 * f, (x1, 0, 1), (x2, 0, 1))

# Segundos momentos
E11 = sp.integrate(x1**2 * f, (x1, 0, 1), (x2, 0, 1))
E22 = sp.integrate(x2**2 * f, (x1, 0, 1), (x2, 0, 1))
E12 = sp.integrate(x1*x2 * f, (x1, 0, 1), (x2, 0, 1))
# Varianzas y covarianza
```

```
Var1 = sp.simplify(E11 - E1**2)
Var2 = sp.simplify(E22 - E2**2)
Cov12 = sp.simplify(E12 - E1*E2)
# Mostrar resultados
print("E[X1] =", E1)
                            # 2/3
print("E[X2] =", E2)
print("Var(X1) =", Var1)
                           # 1/18
print("Var(X2) =", Var2) # 1/18
print("Cov(X1,X2) =", Cov12) # 0
# Vector de medias y matriz de covarianza
mu = sp.Matrix([E1, E2])
Sigma = sp.Matrix([[Var1, Cov12],
                   [Cov12, Var2]])
print("\nVector de medias μ:")
sp.pprint(mu)
print("\nMatriz de covarianza Σ:")
sp.pprint(Sigma)
E[X1] = 2/3
E[X2] = 2/3
Var(X1) = 1/18
Var(X2) = 1/18
Cov(X1,X2) = 0
Yector de medias μ:
 2/3
Matriz de covarianza Σ:
 1/18
       1/18
```

Conclusiones:

Los vectores aleatorios constituyen la base de la teoría de la probabilidad multivariante y ofrecen un marco riguroso para modelar fenómenos en los que múltiples variables interactúan de manera conjunta. Al estudiar el vector de medias y la matriz de covarianza, así como las posibles transformaciones lineales y no lineales, se obtiene una herramienta poderosa para analizar relaciones de dependencia, reducir dimensionalidad y realizar inferencias estadísticas más precisas. Su relevancia trasciende la teoría y se refleja en aplicaciones prácticas que van desde la valoración de carteras financieras hasta la clasificación en aprendizaje automático, donde entender y explotar la

estructura interna de los datos depende directamente de una adecuada formulación en términos de vectores aleatorios.