STAT 330 Notes

Thomas Liu

November 28, 2024

Contents

1	Uni	variate Random Variables	5
	1.1	Probability	5
		1.1.1 Sample Space	5
		1.1.2 Sigma Algebra	5
		1.1.3 Probability Set Function	5
		1.1.4 Properties	5
		1.1.5 Conditional Probability	6
		1.1.6 Independent Events	6
	1.2	Random Variables	6
		1.2.1 Cumulative Distribution Function	6
		1.2.2 Properties for CDF	7
	1.3	Discrete Random Variables	7
		1.3.1 Probability Function	7
		1.3.2 Properties of PF	7
	1.4	Continuous Random Variables	7
		1.4.1 PDF	7
		1.4.2 Properties	8
		1.4.3 Gamma Function	8
		1.4.4 Properties of Gamma Function	8
	1.5	Location and Scale Parameters	8
		1.5.1 Location Parameter	8
		1.5.2 Scale Parameter	8
	1.6	Functions of Random Variables	9
		1.6.1 Probability Integral Transformation	9
		1.6.2 One-to-One Transformation of Random Variable	S
	1.7	Expectation	ç
			10
			10
			10
	1.8		10
	1.0		10 10

		1.8.2 Chebyshev's Inequality
	1.9	Moment Generating Function
		1.9.1 Moment Generating Function of Linear Function
		1.9.2 Moments from Moment Generating Function
		1.9.3 Uniqueness of Moment Generating Function
2	Join	t Distributions 1
	2.1	Definition of Joint Distribution (Bivariate)
		2.1.1 Properties of F
	2.2	Joint Random Variables
		2.2.1 Joint Discrete Random Variables
		2.2.2 Joint Continuous Random Variables
	2.3	Marginal Distributions
		2.3.1 X and Y Discrete
		2.3.2 X and Y Continuous
	2.4	Independent Random Variables
		2.4.1 Independence
		2.4.2 Factorization Theorem for Independence
	2.5	Conditional Distributions
		2.5.1 Discrete Case
		2.5.2 Continuous Case
		2.5.3 Theorem
	2.6	Expectation of Joint Random Variables
		2.6.1 Joint Expectation
		2.6.2 Linearity of Expectation in Bivariate Case
		2.6.3 Covariance
		2.6.4 Variance of Linear Combination
	2.7	Correlation
		2.7.1 Definition
	2.8	Conditional Expectation
		2.8.1 Linearity
	2.9	Joint Moment Generating Function
		2.9.1 Joint Moments and Marginal MGF
		2.9.2 Independence and Joint MGF
	2.10	Multinomial Distribution
		2.10.1 Properties of Multinomial Distribution
	2.11	Bivariate Normal Distribution
		2.11.1 Properties of Bivariate Normal Distribution
3	Fun	ctions of Two or More Random Variables 2
	3.1	One-to-One Transformation
		3.1.1 Jacobian of a Bivariate One-To-One Transformation
		3.1.2 Change of Variables

	3.2	Moment Generating Function Method
		3.2.1 Properties
		3.2.2 Gaussian Distribution
		3.2.3 Snedecor's F Distribution
4	Lim	niting or Asymptotic Distributions 23
	4.1	Convergence in Distribution
		4.1.1 Definition
		4.1.2 Taylor Series with Remainder
	4.2	Convergence in Probability
		4.2.1 Degenrate Distribution
		4.2.2 Convergence in Probability
		4.2.3 Relationship Between the Two Convergences
	4.3	Weak Law of Large Numbers (WLLN)
		4.3.1 Theorem
	4.4	MGF Technique For Limiting Distributions
		4.4.1 Theorem
		4.4.2 Central Limit Theorem (CLT)
	4.5	Limit Theorems
		4.5.1 Delta Method
5	Ma	ximum Likelihood Estimation (One Parameter) 26
	5.1	Terminology
		5.1.1 Statistic
		5.1.2 Estimator/Estimate
	5.2	Maximum Likelihood Estimation
		5.2.1 Likelihood and Log-Likelihood Function
		5.2.2 Maximum Likelihood Estimate
	5.3	Score and Information Function
		5.3.1 Score Function
		5.3.2 Information Function
		5.3.3 Expected Information
		5.3.4 Invariance properties of MLE
	5.4	Relative Likelihood and Likelihood Region/Interval
		5.4.1 Relative Likelihood
		5.4.2 Likelihood Region/Interval
	5.5	Asymptotic Properties and Limiting Distribution of MLE
		5.5.1 Asymptotic Variance of MLE
	5.6	Confidence Interval
	0.0	5.6.1 Interval Estimators
		5.6.2 Pivotal Quantity
		5.6.3 Asymptotic Confidence Interval
		5.6.4 Ruilding Confidence Interval

		5.6.5 Pivotal Quantity in Location and Scale Families	30				
		5.6.6 Asymptotic Pivotal Quantities and Confidence Intervals	30				
	5.7	Confidence Interval VS Likelihood Interval	31				
6	Maximum Likelihood Estimation (Multi-Parameters)						
	6.1	Definition	31				
		6.1.1 Multiparamter Score Function	32				
		6.1.2 Observed and Expected/Fisher Information	32				
	6.2	MLE and Positive Definite Observed Information	32				
	6.3	Asymptotic Properties of MLE	33				
	6.4	Asymptotic Variance of MLE	33				
	6.5		33				
7	Hyl	pothesis Testing	34				
	7.1	Ingredients of Test of Hypothesis	34				
	7.2		34				
			35				

1 Univariate Random Variables

1.1 Probability

1.1.1 Sample Space

sample space (S) is a set of all distinct outcomes for random experiment, with property that in a single trial, one and only one of these outcome occurs

1.1.2 Sigma Algebra

a collection of subsets of set S is called σ algebra or σ field, denoted by \mathcal{B} , it satisfies following properties:

- $\emptyset \in \mathcal{B}$ and $S \in \mathcal{B}$
- \mathcal{B} is closed under complementation
- ullet is closed under countable union

The pair (S, \mathcal{B}) is called measurable space. Define a probability measure on this space

1.1.3 Probability Set Function

A probability set function is a function P with domain \mathcal{B} that satisfies following axioms:

- $P(A) \geq 0$ for all $A \in \mathcal{B}$
- P(S) = 1
- if $A_1, A_2, \dots \in \mathcal{B}$ are mutually exclusive events, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

We call (S, \mathcal{B}, P) a probability space, the three conditions are called Kolmogorove axioms of probability

When writing P(x), we must define $P(x) = P(\{x\})$ to show it is a function on set

1.1.4 Properties

- $P(\emptyset) = 0$
- P(A) < 1
- P(A') = 1 P(A)
- if $A, B \in \mathcal{B}$, then $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- if $A \subset B$, then $P(A) \leq P(B)$
- Boole's inequality: if A_1, A_2, \cdots is a sequence of events

$$P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)$$

• Bonferroni's inequality: if A_1, A_2, \dots, A_k are events

$$P(\bigcap_{i=1}^{k} A_i) \ge 1 - \sum_{i=1}^{k} P(A_i^c)$$

• Continuity Property: if $A_1 \subseteq A_2 \subseteq \cdots$ is sequence of nested sets where $A = \bigcup_{i=1}^{\infty} A_i$

$$\lim_{n \to \infty} P(\bigcup_{i=1}^{n} A_i) = P(A)$$

1.1.5 Conditional Probability

conditional probability of event A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) > 0$$

1.1.6 Independent Events

two events A and B are independent if

$$P(A \cap B) = P(A)P(B)$$

1.2 Random Variables

random variable X is a function from sample space S to real numbers \mathbb{R}

$$X:S\to\mathbb{R}$$

such that $P(X \leq x)$ is defined for all $x \in \mathbb{R}$

1.2.1 Cumulative Distribution Function

cumulative distribution function (CDF) of random variable X is defined as

$$F_X(x) = P(X \le x) \quad x \in \mathbb{R}$$

It is defined for all real numbers

1.2.2 Properties for CDF

• F is non-decreasing function

$$F(x_1) \leq F(x_2)$$

for all $x_1 < x_2$

- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$
- F is right-continuous function

$$\lim_{x \to a^+} F(x) = F(a)$$

• for all a < b

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

• for all b

$$P(X = b) = F(b) - \lim_{a \to b^{-}} F(a)$$

1.3 Discrete Random Variables

random variable X defined on sample space S is discrete random variable if there is a countable subset $A \subset \mathbb{R}$ such that $P(X \in A) = 1$

1.3.1 Probability Function

if X is discrete random variable, then probability function (PF) of X is

$$f(x) = P(X = x)$$

= $F(x) - \lim_{\epsilon \to 0} F(x - \epsilon) \quad x \in \mathbb{R}$

set $A = \{x : f(x) > 0\}$ is called support set of X

1.3.2 Properties of PF

- $f(x) \ge 0$ for $x \in \mathbb{R}$
- $\bullet \ \sum_{x \in A} f(x) = 1$

1.4 Continuous Random Variables

X is random variable with CFD F. If F is continuous function for $x \in \mathbb{R}$ and F is differentiable except possibly coutably many points, then X is continuous random variable

1.4.1 PDF

PDF of X is f(x) = F'(x) if F is differentiable at x

1.4.2 Properties

- $f(x) \ge 0$ for $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x)dx = \lim_{x \to \infty} F(x) \lim_{x \to -\infty} F(x) = 1$
- $f(x) = \lim_{h \to 0} \frac{F(x+h) F(x)}{h} = \lim_{h \to 0} \frac{P(x \le X \le x + h)}{h}$ if limit exists
- $F(x) = \int_{-\infty}^{x} f(t)dt, x \in \mathbb{R}$
- $P(a < X \le b) = P(X \le b) P(X \le a) = F(b) F(a) = \int_a^b f(x) dx$
- $P(X = b) = F(b) \lim_{a \to b^{-}} F(a) = F(b) F(b) = 0$

1.4.3 Gamma Function

gamma function defined as

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

1.4.4 Properties of Gamma Function

- $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1), \alpha > 1$
- $\Gamma(n) = (n-1)!, n = 1, 2, \cdots$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

1.5 Location and Scale Parameters

1.5.1 Location Parameter

Suppose X is continuous random variable with PDF $f(x;\theta)$ where θ is parameter of distribution. Let $F_0(x) = F(x;\theta = 0)$ and $f_0(x) = f(x;\theta = 0)$. Parameter θ is called location parameter of distribution if

$$F(x;\theta) = F_0(x-\theta) \quad \theta \in \mathbb{R}$$

or

$$f(x;\theta) = f_0(x-\theta) \quad \theta \in \mathbb{R}$$

1.5.2 Scale Parameter

Let $F_1(x) = F(x; \theta = 1)$ and $f_1(x) = f(x; \theta = 1)$. Parameter θ is called scale parameter of distribution if

$$F(x;\theta) = F_1(\frac{x}{\theta}) \quad \theta > 0$$

or

$$f(x;\theta) = \frac{1}{\theta} f_1(\frac{x}{\theta}) \quad \theta > 0$$

1.6 Functions of Random Variables

Theorem

If $Z \sim N(0,1)$ then $Z^2 \sim \chi^2(1)$

1.6.1 Probability Integral Transformation

If X is continuous random variable with cumulative distribution function F then random variable

$$Y = F(X) = \int_{-\infty}^{X} f(t)dt$$

has Uniform(0,1) distribution

Theorem

Suppose F is cdf for continuous random variable. If $U \sim \text{Uniform}(0,1)$ then random variable $X = F^{-1}(U)$ also has cdf F

1.6.2 One-to-One Transformation of Random Variable

Suppose X is continuous random variable with pdf f and support set $A = \{x : f(x) > 0\}$. Let Y = h(x) where h is real-valued function. Let $B = \{y : g(y) > 0\}$ be support set of random variable Y. If h is one-to-one function from A to B and $\frac{d}{dx}h(x)$ is continuous for $x \in A$, then pdf of Y is

$$g(y) = f(h^{-1}(y)) \left| \frac{d}{dy} h^{-1}(y) \right| \quad y \in B$$

1.7 Expectation

suppose h(x) is real-valued function

If X is discrete random variable with probability function f(x), then expectation of h(X) is

$$E[h(X)] = \sum_{x \in A} h(x)f(x)$$

provided the sum converges absolutely

$$E(|h(X)|) = \sum_{x \in A} |h(x)| f(x) \le \infty$$

If X is continuous random variable with pdf f(x), then expectation of h(X) is

$$E[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)dx$$

provided the integral converges absolutely

$$E(|h(X)|) = \int_{-\infty}^{\infty} |h(x)| f(x) dx \le \infty$$

If $E(|h(X)|) = \infty$ then we say E[h(X)] does not exist E[h(X)] is also called expected value of random variable h(X)

1.7.1 Expectation is Linear Operator

$$E(aX + b) = aE(X) + b$$

$$E(ag(X) + bh(X)) = aE[g(X)] + bE[h(X)]$$

1.7.2 Special Expectations

• mean of random variable

$$E(X) = \mu$$

• kth moment (about the origin) of random variable

$$E(X^k)$$

• kth moment about the mean of random variable

$$E[(X-\mu)^k]$$

• kth factorial moment of random variable

$$E(X^{(k)}) = E[X(X-1)\cdots(X-k+1)]$$

• variance of random variable

$$Var(X) = E[(X - \mu)^2] = \sigma^2 \quad \mu = E(X)$$

1.7.3 Properties of Variance

$$\sigma^2 = Var(X)$$

$$= E(X^2) - \mu^2$$

$$= E[X(X-1)] + \mu - \mu^2$$

$$Var(aX + b) = a^2 Var(X)$$

and

$$E(X^2) = \sigma^2 + \mu^2$$

1.8 Inequalities

1.8.1 Markov's Inequality

$$P(|X| \ge c) \le \frac{E(|X|^k)}{c^k} \quad \forall k, c > 0$$

1.8.2 Chebyshev's Inequality

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2} \quad \forall k > 0$$

1.9 Moment Generating Function

If X is random variable, then $M(t) = E(e^{tX})$ is called moment generating function (MGF) of X if expectation exists for all $t \in (-h, h)$ for some h > 0

1.9.1 Moment Generating Function of Linear Function

Suppose random variable X has mgf $M_X(t)$ defined for $t \in (-h, h)$ for some h > 0. Let Y = aX + b where $a, b \in \mathbb{R}$ and $a \neq 0$. Then mgf of Y is

$$M_Y(t) = e^{bt} M_X(at) \quad |t| < \frac{h}{|a|}$$

1.9.2 Moments from Moment Generating Function

Suppose random variable X has mgf M(t) defined for $t \in (-h, h)$ for some h > 0. Then M(0) = 1 and

$$M^{(k)}(0) = E(X^k)$$
 $k = 1, 2, \cdots$

where

$$M^{(k)}(t) = \frac{d^k}{dt^k}M(t)$$

is kth derivative of M(t)

1.9.3 Uniqueness of Moment Generating Function

Suppose random variable X has mgf $M_X(t)$ and random variable Y has mgf $M_Y(t)$. Also $M_X(t) = M_Y(t)$ for all $t \in (-h, h)$ for some h > 0. Then X and Y have same distribution

$$P(X \le s) = F_X(s) = F_Y(s) = P(Y \le s) \quad \forall s \in \mathbb{R}$$

2 Joint Distributions

2.1 Definition of Joint Distribution (Bivariate)

Suppose X and Y are random variables defined on a sample space S. Then (X,Y) forms a random vector (bivariate) where the joint cdf of X and Y given by

$$F(x,y) = P(X \le x, Y \le y) = P([X \le x] \cap [Y \le y]), (x,y) \in \mathbb{R}^2$$

2.1.1 Properties of F

- F is non-decreasing in x for fixed y
- F is non-decreasing in y for fixed x
- $\lim_{x\to-\infty} F(x,y) = 0$ and $\lim_{y\to-\infty} F(x,y) = 0$
- $\lim_{(x,y)\to(-\infty,-\infty)} F(x,y) = 0$ and $\lim_{(x,y)\to(\infty,\infty)} F(x,y) = 1$
- $\lim_{x\to\infty} F(x,y) = F_Y(y)$ and $\lim_{y\to\infty} F(x,y) = F_X(x)$ where $F_X(x)$ and $F_Y(y)$ are cdf of random variables X and Y

2.2 Joint Random Variables

2.2.1 Joint Discrete Random Variables

Suppose X and Y are two discrete random variables. The joint pmf of X and Y is defined as

$$f(x,y) = P(\{w \in S, X(w) = x, Y(w) = y\})$$

= $P(X = x, Y = y)$ $\forall (x,y) \in \mathbb{R}^2$

The set $A = \{(x, y) : f(x, y) > 0\}$ is support set of (X, Y)

- $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$
- $\sum_{(x,y)\in A} \sum_{f(x,y)=1} f(x,y) = 1$
- For all sets $B \subset \mathbb{R}^2$, $P[(X,Y) \in B] = \sum_{(x,y) \in B} f(x,y)$

2.2.2 Joint Continuous Random Variables

Two random variables X and Y are said to be jointly continuous if there exists a function f(x,y) such that the joint cdf of X and Y is given by

$$F(X,Y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t_1, t_2) dt_2 dt_1 \quad \forall (x, y) \in \mathbb{R}^2$$

The function f(x, y) is called joint density function of X and Y. It follows the definition above when second order partial derivative exists

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

f(x,y) = 0 when $\frac{\partial^2}{\partial x \partial y} F(x,y)$ doesn't exist

• $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$
- For all sets $B \subset \mathbb{R}^2$

$$P[(X,Y) \in B] = \int_{(x,y)\in B} \int f(x,y)dxdy$$

2.3 Marginal Distributions

2.3.1 X and Y Discrete

Suppose X and Y are both discrete random variables with joint pmf f(x,y). The marginal pmf of X and Y are

$$f_X(x) = P(X = x) = \sum_{y \in Supp(Y)} f(x, y) \quad x \in \mathbb{R}$$

$$f_Y(y) = P(Y = y) = \sum_{x \in Supp(X)} f(x, y) \quad y \in \mathbb{R}$$

2.3.2 X and Y Continuous

Suppose X and Y are both continuous random variables with joint pdf f(x, y). The marginal pdf of X and Y are

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad x \in \mathbb{R}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad y \in \mathbb{R}$$

2.4 Independent Random Variables

2.4.1 Independence

Two r.v. X and Y with joint cdf F(x,y) are independent iff

$$F(x,y) = F_X(x)F_Y(y) \quad \forall x, y \in \mathbb{R}$$

You can replace F with f, X and Y are independent iff

$$f(x,y) = f_X(x)f_Y(y) \quad \forall (x,y) \in Supp(X,Y)$$

2.4.2 Factorization Theorem for Independence

Suppose X and Y are random variables with joint pf/pdf f(x,y), and marginal pf/pdf $f_X(x)$ and $f_Y(y)$. Suppose

- $A = \{(x, y) : f(x, y) > 0\}$ is support set of (X, Y)
- $A_X = \{x : f_X(x) > 0\}$ is support set of X

• $A_Y = \{y : f_Y(y) > 0\}$ is support set of Y

Then X and Y are independent r.v. iff $A = A_X \times A_Y$ and there exist non-negative functions g(x) and h(y) st

$$f(x,y) = g(x)h(y)$$

for all $(x,y) \in A_X \times A_Y$

2.5 Conditional Distributions

Let X and Y be both discrete with joint pmf f(x,y) = P(X = x, Y = y), then conditional probability function of X given Y = y, for $P(Y = y) \neq 0$, is defined as

$$f(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x,y)}{f_Y(y)}$$

For continuous X and Y, notince P(Y = y) = 0, $\forall y \in \mathbb{R}$. So we define conditional pdf of X given Y = y as

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Conditional Distribution Properties

2.5.1 Discrete Case

- $\sum_{x} f(x|y) = 1$
- $F(x|y) = \sum_{w:w \le x} f(w|y)$
- $\bullet \ f(x|y) = F(x|y) F(x^-|y)$

2.5.2 Continuous Case

- $\int_x f(x|y)dx = 1$
- $F(x|y) = \int_{-\infty}^{x} f(t|y)dt$
- $f(x|y) = \frac{\partial}{\partial x} F(x|y)$

2.5.3 Theorem

Product Rule:

Suppose X and Y are random variables with joint pdf f(x, y) and marginal pdf $f_X(x)$ and $f_Y(y)$, and conditional pdf f(x|y) and f(y|x). Then

$$f(x,y) = f_X(x|y)f_Y(y) = f_Y(y|x)f_X(x)$$

Independence:

X and Y are independent iff $f(x|y) = f_X(x)$ and $f(y|x) = f_Y(y)$

2.6 Expectation of Joint Random Variables

2.6.1 Joint Expectation

Suppose X and Y are random variables with joint pf f(x,y) and support A. Also, suppose h(x,y) is a real-valued function. Then

$$X\&Y \text{ discrete}: E[h(X,Y)] = \underset{(x,y) \in A}{\sum} h(x,y) f(x,y)$$

$$X\&Y$$
 continuous : $E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y)dxdy$

provided the joint sum/integral converges absolutely

2.6.2 Linearity of Expectation in Bivariate Case

Suppose X and Y are random variables with joint pmf/pdf f(x, y), $a_i, b_i, i = 1, \dots, n$ are constants, and $g_i(x, y)$, $i = 1, \dots, n$ are real-valued functions. Then

$$E[\sum_{i=1}^{n} (a_i g_i(X, Y) + b_i)] = \sum_{i=1}^{n} (a_i E[g_i(X, Y)]) + \sum_{i=1}^{n} b_i$$

provided $E[g_i(X,Y)]$ exist for all $i=1,\cdots,n$

2.6.3 Covariance

No linear relationship between X and $Y \iff Cov(X,Y) = 0$ If two random variables are independent, then Cov(X,Y) = 0, but not the other way around The covariance of random variables X and Y is defined as

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

where $\mu_X = E(X)$ and $\mu_Y = E(Y)$ By definition, Cov(X, X) = Var(X)

2.6.4 Variance of Linear Combination

Theorem 1

Suppose X and Y are random variables and a, b, c are real constants. Then

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y) + 2ab\ Cov(X, Y)$$

Theorem 2

Suppose X_1, X_2, \dots, X_n are random variables with $Var(X_i) = \sigma_i^2$, and a_1, a_2, \dots, a_n are real constants. Then

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_i a_j Cov(X_i, X_j)$$
$$= \sum_{i=1}^{n} a_i^2 \sigma_i^2 + \sum_{i \neq j} \sum_{j=i+1}^{n} a_i a_j Cov(X_i, X_j)$$

If X_1, X_2, \dots, X_n are independent, then $Cov(X_i, X_j) = 0$ for all $i \neq j$, and

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$

2.7 Correlation

Covariance is a real number depends on units of measurement of X and Y. The informative part of covariance is its sign, unless it is put into context.

TO put covariance into context, and to quantitatively measure the strength of a linear relationship, use correlation coefficient

2.7.1 Definition

The correlation coefficient of random variables X and Y is defined as

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

where $\sigma_X = \sqrt{Var(X)}$ and $\sigma_Y = \sqrt{Var(Y)}$

- $-1 < \rho(X, Y) < 1$
- $\rho(X,Y) = 1$ if Y = aX + b for some a > 0
- $\rho(X,Y) = -1$ if Y = aX + b for some a < 0

2.8 Conditional Expectation

Let g be a real-valued function. The conditional expectation of g(Y)|X=x is given by

$$E[g(Y)|X=x] = \sum_{y \in Supp(Y)} g(y)f(y|x) \text{ discrete}$$

$$= \int_{-\infty}^{\infty} g(y)f(y|x)dy \text{ continuous}$$

The conditional expectation of h(X)|Y=y, for a real-valued function h, is defined in a similar manner

Based on definition above,

$$Var(Y|X = x) = E[(Y - E(Y|X = x))^{2}|X = x]$$
$$= E(Y^{2}|X = x) - [E(Y|X = x)]^{2}$$

is the conditional variance

2.8.1 Linearity

The linearity of the expected value applies to conditional expectation as well

- X and Y are two random variables with conditional distribution f(y|x)
- a_i and b_i are real constants for $i = 1, \dots, n$
- $g_i(y)$, $i = 1, \dots, n$ are real-valued functions

then

$$E[\sum_{i=1}^{n} (a_i g_i(Y) + b_i) | X = x] = \sum_{i=1}^{n} (a_i E[g_i(Y) | X = x]) + \sum_{i=1}^{n} b_i$$

provided $E[g_i(Y)|X=x]$ exists for all $i=1,\dots,n$ If X and Y are independent, then $E(g_i(Y)|X=x)=E(g_i(Y))$

Properties

Suppose X and Y are random variables then

$$E(E[g(Y)|x]) = E[g(Y)]$$

$$Var(Y) = E[Var(Y|X)] + Var[E(Y|X)]$$

2.9 Joint Moment Generating Function

The joint moment generating function of random variables X and Y is defined as

$$M(t_1, t_2) = E(e^{t_1 X + t_2 Y})$$

if this expectation exists for all $(t_1, t_2) \in (-h_1, h_1) \times (-h_2, h_2)$ for some $h_1, h_2 > 0$ More generally, if X_1, X_2, \dots, X_n are random variables then

$$M(t_1, t_2, \dots, t_n) = E(e^{t_1 X_1 + t_2 X_2 + \dots + t_n X_n}) = E[exp \sum_{i=1}^n t_i X_i]$$

is called the joint mgf of X_1, X_2, \dots, X_n if this expectation exists for all $t_i \in \times (-h_i, h_i)$ for some $h_i > 0, i = 1, \dots, n$

2.9.1 Joint Moments and Marginal MGF

Given the joint moment generating function $M(t_1, t_2)$, the joint moments of X and Y are

$$E(X^{j}Y^{k}) = \frac{\partial^{j+k}}{\partial t_{1}^{j}\partial t_{2}^{k}} M(t_{1}, t_{2})|_{(t_{1}, t_{2}) = (0, 0)}$$

If $M(t_1, t_2)$ exists for all $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ for some $h_1, h_2 > 0$, then the marginal mgf of X and Y are

$$M_X(t_1) = E(e^{t_1 X}) = M(t_1, 0)$$

$$M_Y(t_2) = E(e^{t_2Y}) = M(0, t_2)$$

2.9.2 Independence and Joint MGF

Suppose X and Y are random variables with joint mgf $M(t_1, t_2)$ which exists for all $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ for some $h_1, h_2 > 0$. Then X and Y are independent iff

$$M(t_1, t_2) = M_X(t_1)M_Y(t_2)$$

for all $t_1 \in (-h_1, h_1)$ and $t_2 \in (-h_2, h_2)$ where

- $M_X(t_1) = M(t_1, 0)$
- $M_Y(t_2) = M(0, t_2)$

2.10 Multinomial Distribution

Suppose (X_1, X_2, \dots, X_k) are discrete random variables with joint p.f.

$$f(x_1, \dots, x_k) = \frac{n!}{x_1! x_2! \dots x_{k+1}!} p_1^{x_1} \dots p_{k+1}^{x_{k+1}}$$

 $x_i = 0, \dots, n, i = 1, \dots, k+1, \text{ and } x_{k+1} = n - \sum_{i=1}^k x_i$ $0 < p_i < 1, i = 1, \dots, k+1, \text{ and } p_{k+1} = 1 - \sum_{i=1}^k p_i$

Under these conditions, (X_1, X_2, \dots, X_k) have a multinomial distribution, $(X_1, \dots, X_k) \sim MULT(n, p_1, \dots, p_k)$

2.10.1 Properties of Multinomial Distribution

Suppose $(X_1, X_2, \dots, X_k) \sim MULT(n, p_1, \dots, p_k)$, then

• For all $(t_1, \dots, t_k) \in \mathbb{R}^k$, the random variable (X_1, \dots, X_k) has joint mgf

$$M(t_1, \dots, t_k) = E(e^{t_1 X_1 + \dots + t_k X_k})$$

= $(p_1 e^{t_1} + \dots + p_k e^{t_k} + p_{k+1})^n$

• Any set of X_1, \dots, X_{k+1} also has a multinomial distribution. In particular, $X_i \sim BIN(n, p_i)$, $i = 1, \dots, k+1$

- If $T = X_i + X_j$, $i \neq j$, then $T \sim BIN(n, p_i + p_j)$
- $Cov(X_i, X_j) = -np_i p_j, i \neq j$
- the conditional distribution of any subset of (X_1, \dots, X_{k+1}) given the rest of coordinates is a multinomial distribution. In particular, the conditional p.f. of X_i given $X_j = x_j$, $i \neq j$, is

$$X_i|X_j = x_j \sim BIN(n - x_j, \frac{p_i}{1 - p_j})$$

• The conditional distribution of X_i given $T = X_i + X_j = t, i \neq j$, is

$$X_i|X_i + X_j = t \sim BIN(t, \frac{p_i}{p_i + p_j})$$

2.11 Bivariate Normal Distribution

Let X_1 and X_2 be random variables with joint pdf

$$f(x_1, x_2) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right\}$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left\{-\frac{1}{2(1 - \rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2}\right]\right\}$$

where $(x_1, x_2) \in \mathbb{R}^2$ and

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

and Σ is an nonsignular matrix. Then $X=(X_1,X_2)^T$ is said to have a bivariate normal distribution. Write is as $X\sim BVN(\mu,\Sigma)$

- $\mu = \begin{bmatrix} \mu_1 & \mu_2 \end{bmatrix}^T$ is called the mean vector
- Σ is called the variance-covariance matrix, or simply the covariance matrix

2.11.1 Properties of Bivariate Normal Distribution

Suppose $X \sim BVN(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

• X has joint mgf

$$M(t_1, t_2) = E(e^{t_1 X_1 + t_2 X_2})$$

$$= \exp\left\{\mu^T \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \Sigma \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}\right\} \qquad \forall (t_1, t_2) \in \mathbb{R}^2$$

- $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$
- $Cov(X_1, X_2) = \rho \sigma_1 \sigma_2$ and $Corr(X_1, X_2) = \rho$ where $-1 \le \rho \le 1$
- X_1 and X_2 are independent iff $\rho = 0$
- if $c = \begin{bmatrix} c_1 & c_2 \end{bmatrix}^T$ is nonzero vector of constants, then

$$c^T X = \sum_{i=1}^{2} c_i X_i \sim N(c^T \mu, c^T \Sigma c)$$

- if A is a 2 × 2 nonsignular matrix and b is a 2 × 1 vector then $Y = AX + b \sim BVN(A\mu + b, A\Sigma A^T)$
- $X_2|X_1 = x_1 \sim N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 \mu_1), \sigma_2^2(1 \rho^2))$ and $X_1|X_2 = x_2 \sim N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 \mu_2), \sigma_1^2(1 \rho^2))$
- $(X \mu)^T \Sigma^{-1} (X \mu) \sim \chi^2(2)$

3 Functions of Two or More Random Variables

3.1 One-to-One Transformation

3.1.1 Jacobian of a Bivariate One-To-One Transformation

Consider the one-to-one transformation $S:(x,y)\to(u,v)$ mapping $(x,y)\in R_{XY}=supp((X,Y))$ onto $(u,v)\in R_{UV}=supp((U,V))$. We have

$$u = h_1(x, y)$$
 $v = h_2(x, y)$

Since S is one-to-one transformation, there exists a inverse transformation T defined by

$$x = w_1(u, v)$$
 $y = w_2(u, v)$

such that $T = S^{-1}: (u, v) \to (x, y)$ for all $(u, v) \in R_{UV}$. The Jacobian of transformation T is

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \left| \frac{\partial(u,v)}{\partial(x,y)} \right|^{-1}$$

where $\left|\frac{\partial(x,y)}{\partial(u,v)}\right|$ is the Jacobian of transformation S. Assume all functions are continuously differentiable

3.1.2 Change of Variables

Consider continuous random variables X and Y with joint pdf f(x, y). Define $U = h_1(X, Y)$ and $V = h_2(X, Y)$, where $S: (x, y) \to (u, v)$ is a one-to-one transformation

$$X = w_1(U, V) \quad Y = w_2(U, V)$$

The joint pdf of U and V is

$$g(u,v) = f(w_1(u,v), w_2(u,v)) \times |J| \quad \forall (u,v) \in supp[(U,V)]$$

where $|J| = \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$ is the Jacobian of transformation S^{-1}

3.2 Moment Generating Function Method

Suppose X_1, \dots, X_n are independent random variables and X_i has mgf $M_i(t)$ which exists for $t \in (-h, h)$ for some h > 0. The mgf of $Y = \sum_{i=1}^n X_i$ is

$$M_Y(t) = \prod_{i=1}^n M_i(t)$$

If X_i are independent random variables each with mgf M(t), then Y has mgf

$$M_Y(t) = [M(t)]^n$$

3.2.1 Properties

• If $X \sim GAM(\alpha, \beta)$, where α is positive integer, then

$$\frac{2X}{\beta} \sim \chi^2(2\alpha)$$

• If $X_i \sim GAM(\alpha_i, \beta)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim GAM(\sum_{i=1}^{n} \alpha_i, \beta)$$

• If $X_i \sim GAM(1, \beta) = EXP(\beta)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim GAM(n,\beta)$$

• If $X_i \sim GAM(\frac{k_i}{2}, 2) = \chi^2(k_i), i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim \chi^2(\sum_{i=1}^{n} k_i)$$

• If $X_i \sim N(\mu, \sigma^2)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

• If $X_i \sim POI(\mu_i)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim POII(\sum_{i=1}^{n} \mu_i)$$

• If $X_i \sim BIN(n_i, p)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim BIN(\sum_{i=1}^{n} n_i, p)$$

• If $X_i \sim NB(k_i, p)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} X_i \sim NB(\sum_{i=1}^{n} k_i, p)$$

3.2.2 Gaussian Distribution

If $X_i \sim N(\mu_i, \sigma_i^2)$, $i = 1, \dots, n$ independently, then

$$\sum_{i=1}^{n} a_i X_i \sim N(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2)$$

Assume $X_i \sim N(\mu, \sigma^2)$, $i = 1, \dots, n$ independently, and $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$, then

- $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
- \overline{X} and S^2 are independent

•
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$$

•
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

3.2.3 Snedecor's F Distribution

If $X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$ independently, then

$$U = \frac{X/n}{Y/m} \sim F_{n,m}$$

Suppose X_1, \dots, X_n is random sample from $N(\mu_1, \sigma_1^2)$ and Y_1, \dots, Y_m is random sample from $N(\mu_2, \sigma_2^2)$. Let $S_1^2 = \sum_{i=1}^n (X_i - \overline{X})^2/(n-1)$ and $S_2^2 = \sum_{i=1}^m (Y_i - \overline{Y})^2/(m-1)$, then

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n-1,m-1}$$

4 Limiting or Asymptotic Distributions

4.1 Convergence in Distribution

4.1.1 Definition

Let X_1, X_2, \cdots be a sequence of random variables such that X_n has the CDF $F_n(x)$, $n = 1, 2, \cdots$. Let X be a random variable with CDF F(x). We say X_n converges in distribution to a random variable X and write

$$X_n \stackrel{D}{\to} X$$

if

$$\lim_{n \to \infty} F_n(x) = F(x)$$

at all points x which F(x) is continuous. We call F the limiting distribution of X_n

Notes

 $X_n \stackrel{D}{\to} X$ means

$$P(X_n \le a) \approx P(X \le a)$$
 for large n

but does not mean $X_n \approx X$

4.1.2 Taylor Series with Remainder

Suppose $f:[a,b]\to\mathbb{R}$ is infinitely differentiable, and $c\in[a,b]$. Then $\forall x\in[a,b]$ and positive integer k,

$$f(x) = \sum_{i=1}^{k} \frac{f^{(i)}(c)}{i!} (x-c)^{i} + \frac{f^{(k+1)}(\zeta_{x})(x-c)^{k+1}}{(k+1)!}$$

where ζ_x is in the interval [c, x]

Two Equations

• If $b, c \in \mathbb{R}$ are constants and $\lim_{n\to\infty} \psi(n) = 0$, then

$$\lim_{n\to\infty}\left[1+\frac{b}{n}+\frac{\psi(n)}{n}\right]^{cn}=e^{bc}$$

• If $b, c \in \mathbb{R}$ are constants, then

$$\lim_{n\to\infty} \left[1+\frac{b}{n}\right]^{cn} = e^{bc}$$

4.2 Convergence in Probability

4.2.1 Degenrate Distribution

The function F(y) is the CDF of a degenerate distribution at y = c if

$$F(y) = \begin{cases} 0 & y < c \\ 1 & y \ge c \end{cases}$$

In other words, F(y) is the CDF of a discrete distribution where

$$P(Y = y) = \begin{cases} 1 & y = c \\ 0 & y \neq c \end{cases}$$

If y is degenerate at c, then E(Y) = c, Var(Y) = 0

4.2.2 Convergence in Probability

A sequence of random variables X_1, X_2, \cdots converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

or equivalently

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1$$

We show convergence in probability by

$$X_n \stackrel{P}{\to} X$$

4.2.3 Relationship Between the Two Convergences

Convergence in probability implies convergence in distribution,

$$X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{D}{\to} X$$

This shows that convergence in probability is a stronger form of convergence than convergence in distribution

4.3 Weak Law of Large Numbers (WLLN)

4.3.1 Theorem

If X_1, \dots, X_n is a random sample from a distribution with finite mean μ and variance σ^2 , then the sequence of sample means converges in probability to μ , $\overline{X} \stackrel{P}{\to} \mu$

4.4 MGF Technique For Limiting Distributions

4.4.1 Theorem

Let Y_1, Y_2, \cdots be a sequence of random variables with respective MGFs $M_1(t), M_2(t), \cdots$ defined on a common neighborhood about 0. Then

$$Y_n \stackrel{D}{\to} Y$$

if and only if

$$\lim_{n \to \infty} M_n(t) = M(t) \quad t \in (-h, h)$$

where M(t) is the MGF of the limiting random variable Y

4.4.2 Central Limit Theorem (CLT)

Suppose X_1, X_2, \cdots is a sequence of independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{D}{\to} Z$$

where $\overline{X}_n = \sum_{i=1}^n X_i/n$ and $Z \sim N(0,1)$

4.5 Limit Theorems

• If $X_n \stackrel{D}{\to} a$ and g(x) is continuous at x = a, then

$$g(X_n) \stackrel{D}{\to} g(a)$$

• If $X_n \stackrel{D}{\to} a$ and $Y_n \stackrel{D}{\to} b$, and g(x,y) are continuous at (a,b) then

$$g(X_n, Y_n) \stackrel{D}{\to} g(a, b)$$

• (Slutsky's Theorem) If $X_n \xrightarrow{D} X$, $Y_n \xrightarrow{P} b$, and g(x,b) is continuous for all $x \in \text{support set of } X$, then

$$g(X_n, Y_n) \stackrel{D}{\to} g(X, b)$$

• If $X_n \stackrel{D}{\to} X$ and g(x) is continuous for all $x \in \text{support set of } X$, then

$$g(X_n) \stackrel{D}{\to} g(X)$$

4.5.1 Delta Method

Let X_1, X_2, \cdots be a sequence of random variables such that

$$n^b(X_n-a) \stackrel{D}{\to} X$$

for some b>0. Suppose the function g(x) is differentiable at a and $g'(a)\neq 0$. Then

$$n^b [g(X_n) - g(a)] \stackrel{D}{\to} g'(a)X$$

Corollary

Let X_1, X_2, \cdots be a sequence of IID random variables with mean μ and variance σ^2 . Suppose the function g(x) is differentiable at μ and $g'(\mu) \neq 0$, then

$$\sqrt{n} \left[g(\overline{X}_n) - g(\mu) \right] \stackrel{D}{\to} Z \sim N(0, [g'(\mu)]^2 \sigma^2)$$

5 Maximum Likelihood Estimation (One Parameter)

5.1 Terminology

5.1.1 Statistic

A statistic, $T = T(X) = T(X_1, \dots, X_n)$, is a function of data which does not depend on any unknown parameters. In other words, T(X) is calculated explicitly from realization of X_1, \dots, X_n

5.1.2 Estimator/Estimate

A statistic that is used to estimate an unknown parameter θ like $\tau(\theta)$ is called an estimator. If T(X) estimates $\tau(\theta)$, an observed value of the statistic $t = t(x) = t(x_1, \dots, x_n)$ is called an estimate of $\tau(\theta)$

Estimator Properties

• Unbiasedness: $E(\tilde{\theta}) = \theta$

• Small variability: $Var(\tilde{\theta})$ small

• Consistency: $\tilde{\theta} \stackrel{P}{\rightarrow} \theta$

5.2 Maximum Likelihood Estimation

Suppose X_1, \dots, X_n form a simple random sample (IID) from a discrete distribution with pf $f(x;\theta)$. The joint distribution of X_1, \dots, X_n is

$$P(X_1 = x_1, \dots, X_n = x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

If x_1, \dots, x_n is observed sample, then in discrete case:

$$L(\theta) = P(X_1 = x_1, \dots, X_n = x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

A natural estimate of θ then is the value which maximizeds the probability of the observed sample

$$\hat{\theta} = \arg\max_{\theta} L(\theta)$$

5.2.1 Likelihood and Log-Likelihood Function

Suppose $X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta)$, then the function:

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

is called the likelihood function of the parameter θ . The function

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$$

is called the loglikelihood function of the parameter θ

5.2.2 Maximum Likelihood Estimate

The value of θ that maximizes the likelihood function $L(\theta)$, or the log-likelihood function $l(\theta)$, is called the maximum likelihood (M.L.) estimate of θ and is denoted by $\hat{\theta}_{ML}$

$$\hat{\theta}_{ML} = arg \max_{\theta} L(\theta) = arg \max_{\theta} l(\theta)$$

The corresponding estimator to $\hat{\theta}_{ML}$ is the maximum likelihood estimator shown by $\tilde{\theta}_{ML}$

5.3 Score and Information Function

5.3.1 Score Function

The score function is defined as

$$S(\theta) = S(\theta; x) = \frac{d}{d\theta}l(\theta) = \frac{d}{d\theta}\log L(\theta) \quad \theta \in \Omega$$

Notice that to find the MLE, usually set score function equal to 0 and solve for θ

5.3.2 Information Function

Suppose that X_1, \dots, X_n are IID random variables with pf/pdf $f(x; \theta)$, and log-likelihood $l(\theta)$. The information function of θ , denoted $I(\theta)$, is a (random) function defined by

$$I(\theta) = I(\theta; X_1, \dots, X_n) = -\frac{d^2}{d\theta^2} l(\theta)$$

If X_1, \dots, X_n are replaced by realized values x_1, \dots, x_n , then the information function is a real valued function of θ . If $\hat{\theta}$ is MLE of θ , then $I(\hat{\theta})$ is called the observed information

5.3.3 Expected Information

The information function $I(\theta)$ measures the curvature of the log-likelihood function. However, it is a function of both θ and data $X = (X_1, \dots, X_n)$

If θ is scalar, then the expected information function is given by

$$J(\theta) = E[I(\theta; X)] = E[-\frac{d^2}{d\theta^2}l(\theta; X)]$$

5.3.4 Invariance properties of MLE

Suppose $\tau = h(\theta)$ is a one-to-one function of θ . Suppose that $\hat{\theta}$ is the ML estimator of θ . Then $\hat{\tau} = h(\hat{\theta})$ is the ML estimator of τ

$$MLE(h(\theta)) = h(MLE(\theta))$$

5.4 Relative Likelihood and Likelihood Region/Interval

5.4.1 Relative Likelihood

Suppose $X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta)$ where the likelihood function is $L(\theta)$ and the MLE of θ is $\hat{\theta}$. The relative likelihood function $R(\theta)$ is defined by

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})}$$

$$0 \le R(\theta) \le 1$$

5.4.2 Likelihood Region/Interval

The set of θ values for which $R(\theta) \ge p$ is called a 100p% likelihood region for θ . If the region is an interval of real values then it is called a 100p% likelihood interval (LI) for θ

- Commone value for p are 50%, 10%, 1%
- Given data, values inside the 10% LI are referred to as plausible and values outside this interval as implausible
- Values inside a 50% LI are very implausible
- Values outside a 1% LI are very implausible

5.5 Asymptotic Properties and Limiting Distribution of MLE

Suppose $X = (X_1, \dots, X_n)$ be a random sample from $f(x; \theta)$. Let $\tilde{\theta}_n = \tilde{\theta}_n(X_1, \dots, X_n)$ be the ML estimator of θ based on X. Then under certain (regularity) conditions:

• Consistency:

$$\tilde{\theta}_n \stackrel{P}{\to} \theta$$

• Asymptotic Normality:

$$\sqrt{J(\theta)}(\tilde{\theta}_n - \theta) \stackrel{D}{\to} Z \sim N(0, 1)$$

• Asymptotic Distribution of Relative Likelihood:

$$-2\log R(\theta) = 2[l(\tilde{\theta}_n; X) - l(\theta; X)] \xrightarrow{D} W \sim \chi^2(1)$$

where θ is the true but unknown value of the parameter

5.5.1 Asymptotic Variance of MLE

For large values of n, we have

$$Var(\tilde{\theta}_n) \approx [J(\theta)]^{-1}$$

$$[J(\tilde{\theta}_n)]^{1/2}(\tilde{\theta}_n - \theta) \stackrel{D}{\to} Z \sim N(0, 1)$$

Therefore, for sufficiently large n,

$$Var(\tilde{\theta}_n) \approx \frac{1}{J(\hat{\theta}_n)}$$

Since

$$\frac{I(\tilde{\theta}_n)}{J(\theta)} \stackrel{P}{\to} 1$$

then

$$[I(\tilde{\theta}_n)]^{1/2}(\tilde{\theta}_n - \theta) \stackrel{D}{\to} Z \sim N(0, 1)$$

Also,

$$Var(\tilde{\theta}_n) \approx \frac{1}{I(\tilde{\theta}_n)}$$

5.6 Confidence Interval

5.6.1 Interval Estimators

Suppose X is a random variable whose distribution depends on θ . Suppose that A(x) and B(x) are functions such that $A(x) \leq B(x)$ for all $x \in \text{support of } X$ and $\theta \in \Omega$. Let x be the observed data. Then (A(x), B(x)) is an interval estimate for θ . The interval (A(X), B(X)) is an interval estimator for θ

5.6.2 Pivotal Quantity

The random variable $Q(X;\theta)$, which is a function of the data X and unknown parameter θ , is called a pivotal quantity if the distribution of Q does not depend on θ

5.6.3 Asymptotic Confidence Interval

The random variable $Q(X;\theta)$ is called an asymptotic pivotal quantity if the limiting distribution of Q as $n \to \infty$ does not depend on θ

Based on asymptotic properties of MLE, both

$$Q_1 = \left[J(\tilde{\theta}_n) \right]^{1/2} (\tilde{\theta}_n - \theta) \stackrel{n \to \infty}{\sim} N(0, 1)$$

and

$$Q_1 = \left[I(\tilde{\theta}_n) \right]^{1/2} (\tilde{\theta}_n - \theta) \stackrel{n \to \infty}{\sim} N(0, 1)$$

are examples of asymptotic pivotal quantities, as they both have limiting N(0,1) distribution

5.6.4 Building Confidence Interval

Basic Idea: Since distribution of Q is known, we find q_1 and q_2 such that $P(q_1 \leq Q(X; \theta) \leq q_2) = 1 - \alpha$, and then solve the inequality for θ such that $P(A(X) \leq \theta \leq B(X)) = 1 - \alpha$. Sometimes, $1 - \alpha$ is shown by p. The random interval (A(X), B(X)) is called a $100(1 - \alpha)\%$ confidence interval for θ

5.6.5 Pivotal Quantity in Location and Scale Families

Let $X=(X_1,\cdots,X_n)$ be a random sample from $f(x;\theta)$ and let $\tilde{\theta}=\tilde{\theta}(X)$ be the MLE of parameter θ based on X

- if θ is location parameter then $Q = \tilde{\theta} \theta$ is a pivotal quantity
- if θ is scale parameter then $Q = \tilde{\theta}/\theta$ is a pivotal quantity

5.6.6 Asymptotic Pivotal Quantities and Confidence Intervals

When an exact pivotal quantity cannot be constructed, we can use the limiting distribution of the MLE to construct confidence intervalls

$$\sqrt{J(\tilde{\theta}_n)}(\tilde{\theta}_n - \theta) \stackrel{D}{\to} Z \sim N(0, 1)$$

Therefore,

$$P(-z^* \le \sqrt{J(\tilde{\theta}_n)}(\tilde{\theta}_n - \theta) \le z^*) = 1 - \alpha$$
$$P(\tilde{\theta}_n - z^* / \sqrt{J(\tilde{\theta}_n)} \le \theta \le \tilde{\theta}_n + z^* / \sqrt{J(\tilde{\theta}_n)}) = 1 - \alpha$$

Therefore, one asymptotic $100(1-\alpha)\%$ confidence interval for θ is

$$\hat{\theta}_n \pm z^* \frac{1}{\sqrt{J(\hat{\theta}_n)}}$$

where $P(-z^* \le Z \le z^*) = 1 - \alpha$ and $Z \sim N(0, 1)$

Similarly, since

$$\sqrt{I(\tilde{\theta}_n)}(\tilde{\theta}_n - \theta) \stackrel{D}{\to} Z \sim N(0, 1)$$

an asymptotic $100(1-\alpha)\%$ confidence interval for θ is

$$\hat{\theta}_n \pm z^* \frac{1}{\sqrt{I(\hat{\theta}_n)}}$$

where $P(-z^* \le Z \le z^*) = 1 - \alpha$ and $Z \sim N(0, 1)$

5.7 Confidence Interval VS Likelihood Interval

If a is a value such that $p=2P(Z\leq a)-1$ where $Z\sim N(0,1)$, then the likelihood interval $\{\theta:R(\theta)\geq e^{-a^2/2}\}$ is an approximate 100p% confidence interval for θ Recall that

$$-2\log R(\theta;X) \stackrel{D}{\to} \chi^2(1)$$

$$\begin{split} P[R(\theta;X) \geq p] &= P[-2\log R(\theta;X) \leq -2\log p] \\ &\approx P(W \leq -2\log p) \\ &= P(Z^2 \leq -2\log p) \\ &= P(-\sqrt{-2\log p} \leq Z \leq \sqrt{-2\log p}) \\ &= 2P(Z \leq \sqrt{-2\log p}) - 1 \end{split}$$

6 Maximum Likelihood Estimation (Multi-Parameters)

6.1 Definition

The likelihood function is a k-variate function, where $l(\theta_1, \dots, \theta_k) = \log L(\theta_1, \dots, \theta_k)$. We have

$$L(\theta_1, \cdots, \theta_k) = \prod_{i=1}^n f(x_i; \theta_1, \cdots, \theta_k)$$

Note that X may or may not be multivariate. Here, the focus is on number of parameters $\theta_1, \dots, \theta_k$

6.1.1 Multiparamter Score Function

Suppose $X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta)$ where $\theta = (\theta, \dots, \theta_k)^T$. The score vector is defined as

$$S(\theta) = S(\theta; x) = \begin{bmatrix} \frac{\partial l}{\partial \theta_1} & \cdots & \frac{\partial l}{\partial \theta_k} \end{bmatrix}^T \quad \theta \in \Omega$$

The maximum likelihood estimator of θ is

$$\hat{\theta} = (\hat{\theta}_1, \cdots, \hat{\theta}_k)^T = arg \max_{\theta} l(\theta_1, \cdots, \theta_k)$$

which is usually calculated by solving simultaneously k estimating equation $S(\theta) = 0$

6.1.2 Observed and Expected/Fisher Information

Suppose $X_1, \dots, X_n \stackrel{iid}{\sim} f(x; \theta)$ where $\theta = (\theta_1, \dots, \theta_k)^T$

• the information matrix $I(\theta) = I(\theta; x)$ is a $k \times k$ symmetric matrix whose (i, j) entry is given by

$$-\frac{\partial^2}{\partial \theta_i \partial \theta_i} l(\theta)$$

 $I(\hat{\theta})$ is called the observed information matrix, where $\hat{\theta} = MLE(\theta)$

• The expected or Fisher information matrix $J(\theta)$ is a $k \times k$ symmetric matrix whose (i, j) entry is given by

$$E\left[-\frac{\partial^2}{\partial\theta_i\partial\theta_j}l(\theta)\right]$$

• The set of $\theta = (\theta_1, \dots, \theta_k)$ values for which $R(\theta) \ge p$ is called a 100p% likelihood region for θ , which is a region in the k-dimensional space \mathbb{R}^k

6.2 MLE and Positive Definite Observed Information

To make sure that the solution to the k simultaneous estimating equations $S(\theta) = 0$ is the MLE, the matrix of the second partial derivatives (aka the Hessian matrix H) must be negative definite when calculated at the MLE $\hat{\theta}$ for all non-zero vectors $a = (a_1, \dots, a_k)^T$

$$a^T H a|_{\theta = \hat{\theta}} < 0$$

This means that the observed information matrix must be positive definite

$$a^T I(\hat{\theta})a > 0$$

A sufficient condition for $I(\hat{\theta})$ to be positive definite is that $\det(I(\hat{\theta})) > 0$. Another sufficient conditions is that the all eigenvalues of $I(\hat{\theta})$ are positive

6.3 Asymptotic Properties of MLE

Suppose $X = (X_1, \dots, X_n)$ be a random sample from $f(x; \theta)$, where $\theta = (\theta_1, \dots, \theta_k)^T \in \Omega$ and the dimension of Ω is k. Let $\tilde{\theta}_n = \tilde{\theta}_n(X_1, \dots, X_n)$ be the MLE of θ based on X. Also 0_k be a $1 \times k$ vecotr of zeros and let I_k be the $k \times k$ identity matrix. Then under certain (regularity) conditions:

• Consistency:

$$\tilde{\theta}_n \stackrel{P}{\to} \theta$$

• Asymptotic Normality:

$$(\tilde{\theta}_n - \theta) [J(\theta)]^{1/2} \stackrel{D}{\to} Z \sim MVN(0_k, I_k)$$

• Asymptotic Distribution of Relative Likelihood:

$$-2\log R(\theta;X) = 2[l(\tilde{\theta}_n;X) - l(\theta;X)] \stackrel{D}{\to} W \sim \chi^2(k)$$

where θ is true but unknown value of the parameter vector

6.4 Asymptotic Variance of MLE

For large values of n, we have

 $Var(\tilde{\theta}_n) \approx [J(\theta)]^{-1} \to \text{inverse of the Fisher information matrix}$

For sufficiently large n,

$$Var(\tilde{\theta}_n) \approx [J(\tilde{\theta}_n)]^{-1}$$

6.5 Asymptotic Confidence Region for $\theta = (\theta_1, \dots, \theta_k)$

Recall that if $Y = (Y_1, \dots, Y_k)^T \sim MVN(\mu_k, \Sigma_{k \times k})$, then

$$(Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi^2(k)$$

Since

$$(\tilde{\theta} - \theta) [J(\theta)]^{1/2} \stackrel{D}{\to} Z \sim MVN(0_k, I_k)$$

then

$$(\tilde{\theta} - \theta)[J(\theta)](\tilde{\theta} - \theta)^T \stackrel{D}{\to} W \sim \chi^2(k)$$

Therefore, an approximate 100p% confidence region for θ is

- $\{\theta : (\hat{\theta}_n \theta)[J(\hat{\theta})](\hat{\theta}_n \theta)^T \le c\}$
- $\{\theta : (\hat{\theta}_n \theta)[I(\hat{\theta})](\hat{\theta}_n \theta)^T \le c\}$

in which c is such that $P(W \le c) = p$ where $W \sim \chi^2(k)$

7 Hypothesis Testing

7.1 Ingredients of Test of Hypothesis

Suppose based on a random sample $X_1, \dots, X_n \sim f(x; \theta)$, we are interested in testing

$$H_0: \theta \in \Omega_0 \quad vs \quad H_a: \theta \notin \Omega_0$$

- Discrepancy measure or test statistic: The idea is that the discrepency measure evaluates the consistency of the data with H_0 in some way. To interpret the output of the discrepancy measure, we must know its distribution under H_0 . The test statistic is a pivotal quantity, hence its distribution is known
- p-value: If under H_0 the observed test statistic is "extreme", we conclude that the data does not support H_0 . We measure this by p-value, which is the probability of observing the test statistic value we have observed or something more extreme under H_0
- Making a decision abunot H_0 : deciding whether or not to reject H_0

7.2 Likelihood Ratio Tests for Simple Hypotheses

As a starting point, we first focus on testing simple hypotheses $(H_0: \theta = \theta_0)$ which means that under H_0 the value of the scaler/vector parameter θ , hence the distribution, is fully specified (as opposed to cases like $H_0: \theta \geq 2$)

One popular method to propose a discrepancy measure and carry out the test is using the asymptotic property of the ML estimators. In particular, recall the asymptotic distribution of the likelihood ratio. Under $H_0: \theta = \theta_0$ we have

$$-2\log(R(\theta_0; X)) = -2\log\left[\frac{L(\theta_0; X)}{L(\tilde{\theta}; X)}\right] = 2\left[l(\tilde{\theta}; X) - l(\theta_0; X)\right]$$

in which $X=(X_1,\cdots,X_n)$ is a random sample and $\tilde{\theta}$ is the MLE of θ

 $\frac{L(\theta_0)}{L(\hat{\theta}_{ML})}$ close to 1 means no evidence against H_0 , close to 0 means there is evidence against H_0 Under regularity conditions (one of which being that the support of X does not depend on θ), we have

$$\Lambda(\theta_0) = -2\log[R(\theta_0; X)] \stackrel{D}{\to} W_k \sim \chi^2(k)$$

where k is the number of parameters in the model (under the general hypothesis) minus the number of parameters under H_0

$$k = dim(\Omega) - dim(\Omega_0)$$

Notice that large values of $\Lambda(\theta_0)$ imply lack of support for H_0 in the data The asymptotic p-value or the asymptotic significance level of the test is

$$p-value = SL \approx P(W_k \ge \lambda(\theta_0))$$

where $\lambda(\theta_0)$ is observed value $\Lambda(\theta_0)$ given the data

7.2.1 Steps of Likelihood Ration Test

- 1. Hypotheses: set up H_0 and H_a
- 2. MLE: find $\tilde{\theta}_{ML}$
- 3. Test statistic: calculate the discrepency measure

$$\lambda(\theta_0) = -2\log\left[\frac{L(\theta_0; X)}{L(\tilde{\theta}_{ML}; X)}\right]$$

4. Degrees of freedom: calculate the df of the χ^2 distribution

$$dim(\Omega) - dim(\Omega_0)$$

5. P-value: calculate

$$p-value = P(W_k > \lambda(\theta_0))$$

where $W_k \sim \chi^2(k)$

6. Interpretation: Interpret the p-value and draw conclusion