Neural networks

Victor Kitov

November-December 2015.

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Invariances
- Case study: ZIP codes recognition

History

 Neural networks originally appeared as an attempt to model human brain

- Human brain consists of multiple interconnected neuron cells
 - cerebral cortex (the largest part) is estimated to contain 15-33 billion neurons
 - communication is performed by sending electrical and electro-chemical signals
 - signals are transmitted through axons long thin parts of neurons.

Table of Contents

- 2 Definition
- Output generation

Definition

- acyclic directed graph
- verticals called neurons
- edges correspond to certain weighs

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Definition

- Each neuron j is associated a non-linear transformation φ .
- For multilayer perceptron class neural networks φ belongs to a class of activation functions.
- Most common activation functions:
 - sigmoidal: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
 - hyperbolic tangent: $tangh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$

Activation functions

Activation functions are smooth approximations of step functions:

 $\sigma(ax)$ limits to 0/1-step function as $a o \infty$

tangh(ax) limits to -1/1-step function as $a \to \infty$

Definition details

- Label each neuron with integer i.
- Denote: I_i input to neuron i, O_i output of neuron i
- Output of neuron i: $O_i = A(I_i)$, where A is activation function.
- Input to neuron $i: I_i = \sum_{k \in inc(i)} w_{ki}O_k + w_{k0}$,
 - w_{k0} is the bias term
 - inc(i) is a set of neurons with outgoing edges to neuron i.
 - further we will assume that at each layer there is a vertex with constant output $O_{const} \equiv 1$, so we can simplify notation

$$I_i = \sum_{k \in inc(i)} w_{ki} O_k$$

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Neural network optimization
- 6 Invariances
- Case study: ZIP codes recognition

Output generation

 Forward propagation is a process of successive calculations of neuron outputs for given features.

Output generation

- Output layer transformations
 - regression: $\varphi(I) = I$
 - classification:
 - 2 classes: sigmoid, indicating target class probability

$$\varphi(I) = \frac{1}{1 + \mathrm{e}^{-I}}$$

multiple classes: softmax, indicating probabilities of each class:

$$\varphi(I_i) = \frac{e^{O_i}}{\sum_{k \in O_i} e^{O_k}}, i \in OL$$

where OL denotes neuron indices at output layer.

Generalizations

- ullet each neuron j may have custom non-linear transformation $arphi_j$
- weights may be constrained:
 - non-negative
 - equal weights
 - etc.
- layer skips are possible

Not considered here: RBF-networks, recurrent networks.

Number of layers selection

- Number of layers usually denotes all layers except input layer (hidden layers+output layer)
- We will consider only continuous activation functions.
- Classification:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
 - therefore it can approximate almost all sets with well defined volume (Borel measurable)

Number of layers selection

- Regression
 - single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as sum of indicators of various polyhedra)

Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and wide range of activation functions (excluding polynomial).

- In practice often it is more convenient to use more layers with fewer amount of neurons
 - model becomes more interpretable and tunable

Neural network architecture selection

- Network architecture selection:
 - increasing complexity (control by validation error)
 - decresing complexity ("optimal brain damage")
 - may be used for feature selection

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Meural network optimization
- 6 Invariances
- Case study: ZIP codes recognition

Weight space symmetries

- Consider a neural network with 1 hidden layer
 - with tangh(x) activation functions
 - consisting of M neurons

Weight space symmetries

- The following transformations in weight space lead to neural networks with equivalent outputs:
 - for any neuron in hidden layer: simultaneous change of sign of input and output weights
 - 2^M possible equivalent transformations of such kind
 - for any pair of neurons in the hidden layer: interchange of input weights between the neurons and simultaneous interchange of output weights
 - this is equivalent to reordering of neurons in the hidden layer, so there are M! such orderings
 - $2^{M}M!$ equivalent transformations exist in total.
 - For neural network with K hidden layers, consisting of M_k , k = 1, 2, ...K neurons each, we obtain $\prod_{k=1}^K 2^{M_k} M_k!$ equivalent neural networks.
 - In general case these are the only symmetries existing in the weights space.

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- 5 Neural network optimization
- 6 Invariances
- Case study: ZIP codes recognition

Network optimization

- Regression (y denotes true value and \hat{y} its prediction)
 - single output:

•
$$\frac{1}{N}\sum_{n=1}^{N}(\widehat{y}_n(x_n)-y_n)^2 o \min_w$$

K outputs

•
$$rac{1}{NK}\sum_{n=1}^{N}\sum_{k=1}^{K}(\widehat{y}_{nk}(x_n)-y_{nk})^2
ightarrow ext{min}_w$$

- Classification
 - two class $(y \in \{0, 1\})$ denotes true class, and p is the probability of class 1):

•
$$\prod_{n=1}^{N} \rho(x_n)^{y_n} (1 - \rho(x_n))^{1-y_n} \to \max_w$$
 equivalent to $\sum_{n=1}^{N} y_n \ln \rho(x_n) + (1-y_n) \ln(1-\rho(x_n)) \to \max_w$

- *C* classes $(y_{nc} = \mathcal{I}\{y_n = c\}, p_c(x_n)$ estimated probability of class *c*):
 - $\prod_{n=1}^{N}\prod_{c=1}^{C}\rho_c(x_n)^{y_{nc}} \to \max_w$ equivalent to $\sum_{n=1}^{N}\sum_{c=1}^{C}y_{nc}\ln\rho_c(x_n) \to \max_w$

Neural network optimization

- Let W denote the total dimensionality of weights space
- Let $E(\hat{y}, y)$ denote the loss function of output
- We may optimize neural network using gradient descent:

```
while (stop criteria not met): w^{k+1} = w^k - \eta \nabla E(w^k)
```

- Standardization of features makes gradient descend converge faster
- Other optimization methods are more efficient (conjugate gradients)

Neural network optimization

• Direct $\nabla E(w)$ calculation, using

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w)}{\varepsilon} + O(\varepsilon)$$

or better

$$\frac{\partial E}{\partial w_i} = \frac{E(w + \varepsilon_i) - E(w - \varepsilon_i)}{\varepsilon} + O(\varepsilon^2)$$

has complexity $O(W^2)$ [W forward propagations to evaluate W derivatives]

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Multiple minima problem

- Neural network optimization function has multiple minima
- Solution: select lowest minimum from multiple optimizations with different starting values
- Robust solutions:
 - average outputs of neural networks obtained by using different starting values
 - average outputs of neural networks trained on different bootstrap subsamples

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Neural network optimization
- **6** Invariances
- Case study: ZIP codes recognition

Invariances

- It may happen that solution should not depend on certain kinds of transformations in the input space.
- Example: character recognition task
 - translation invariance
 - scale invariance
 - invariance to small rotations
 - invariance to small uniform noise

Invariances

- Approaches to build an invariant model:
 - augment training objects with their transformed copies according to given invariances
 - amount of possible transformations grows exponentially with the number of invariances
 - add regularization term to the target cost function, which penalizes changes in output after invariant transformations
 - see tangent propagation
 - extract features that are invariant to transformations
 - build the invariance properties into the structure of neural network
 - see convolutional neural networks

Augmentation of training samples

- generate a random set of invariant transformations
- 2 apply these transformations to training objects
- obtain new training objects

Tangent propagation

- Denote $s(x, \xi)$ be vector x after invariant transformation parametrized by ξ .
- Denote

$$\tau_n = \frac{\partial s(x_n, \xi)}{\partial \xi} \bigg|_{\xi=0}, \quad J_{ki} = \frac{\partial y_k}{\partial x_i}$$

- We want $\frac{\partial y_k}{\partial \xi}\Big|_{\xi=0}$ to be as small, as possible.
- Sensitivity of y_k to small invariant transformation:

$$\left. \frac{\partial y_k}{\partial \xi} \right|_{\xi=0} = \sum_{i=1}^D \frac{\partial y_k}{\partial x_i} \frac{\partial x_i}{\partial \xi} = \sum_{i=1}^D J_{ki} \tau_i$$

• Tangent propagation - modify target cost function:

$$\tilde{E} = E + \lambda \sum_{n} \sum_{k} \left(\sum_{i=1}^{D} J_{nki} \tau_{ni} \right)^{2}$$

Convolutional neural networks

- Convolutional neural network:
 - Used for image analysis
 - Consists of a set of convolutional layer / sub-sampling layer pairs and aggregating layer

Convolutional neural networks

Convolutional layer

- Convolutional layer consists of a number of feature maps
- Feature map has the same dimensionality as input layer
- Locality: each neuron in the feature map takes output from small neigborhood of input layer neurons
- Equivalence: the same transformation is applied by each neuron in the feature map
 - obtained by constraining sets of weights to each feature map layer neuron to be equal
 - similar to convolution with moving adaptive kernel
 - effectively it is feature extraction from a region

Neural networks - Victor Kitov Invariances

Convolutional neural networks

- Sub-sampling layer
 - Consists of a number of planes, each corresponding to respective feature map on the previous convolutional layer
 - Locality: Sub-sampling layer neurons take output from small neigborhood of respective feature map neurons
 - neigbourhoods are chosen to be contiguous and non-overlapping
 - Aggregation: input of each neuron i is: $w_{i0} + w_{i1}F$, where w_{i0} , w_{i1} are adjustable weights and F is aggregation function (sum or max of activations of respective feature map neurons)
 - Implements small translational invariance
- There may be a sequence of convolutional and sub-sampling layers
 - gradual dimensionality reduction

Table of Contents

- Introduction
- 2 Definition
- Output generation
- Weight space symmetries
- Meural network optimization
- **6** Invariances
- Case study: ZIP codes recognition

Case study (due to Hastie et al. The Elements of Statistical Learning)

ZIP code recognition task

Neural network structures

Net1: no hidden layer

Net2: 1 hidden layer, 12 hidden units fully connected

Net3: 2 hidden layers, locally connected

Net4: 2 hidden layers, locally connected with weight sharing

Net5: 2 hidden layers, locally connected, 2 levels of weight

sharing

Results

Addition

- Neural networks weights may be constrained to belong to mixture density
 - $\tilde{E} \leftarrow E P(w)$, where P(w) is the mixture probability of weights
 - · soft forcing of weights to group into similar clusters
- Neural networks may model not only real value outputs, but densities
 - each output frequency of histogram bin
 - each output either prior or mean or variance of mixture of parametrized density (normal, beta, etc.)

Conclusion

- Advantages of neural networks:
 - can model accurately complex non-linear relationships
 - easily parallelizable
- Disadvantages of neural networks:
 - hardly interpretable ("black-box" algorithm)
 - optimization requires skill
 - too many parameters
 - may converge slowly
 - may converge to inefficient local minimum far from global one