

Tarea 2: Transformadas Integrales

Camargo Badillo Luis Mauricio

11 de febrero de 2024

Ecuaciones Diferenciales II
Oscar Gabriel Caballero Martínez
Grupo 2602
Matemáticas Aplicadas y Computación

1. Tabla de Transformadas Integrales

Se solicitó la tabla disponible en el artículo de Wikipedia en español sobre las transformadas integrales, pero con la notación utilizada en clase y reemplazando el núcleo integral por la expresión de la integral completa:

Nombre	Notación	Transformada	Inversa
Fourier	${\cal F}$	$\int_{-\infty}^{\infty} \frac{e^{-ist}}{\sqrt{2\pi}} f(t)dt$	$\int_{-\infty}^{\infty} \frac{e^{ist}}{\sqrt{2\pi}} f(t) \ dt$
Hartley	Н	$\int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} f(t) dt$	$\int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} f(t) dt$
Mellin	\mathcal{M}	$\int_0^\infty t^{s-1} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{t^{-s}}{2\pi i} f(t) \ dt$
Laplace Bilateral	\mathcal{B}	$\int_{-\infty}^{\infty} e^{-st} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{e^{st}}{2\pi i} f(t) \ dt$
Laplace	${\cal L}$	$\int_0^\infty e^{-st} f(t) \ dt$	$\int_{c-i\infty}^{c+i\infty} \frac{e^{st}}{2\pi i} f(t) \ dt$
Hankel	-	$\int_0^\infty t J_v(st) f(t) \ dt$	$\int_0^\infty s J_v(st) f(t) \ dt$
Abel	-	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} f(t) \ dt$	$\int_{t}^{\infty} \frac{-1}{\pi \sqrt{s^2 - t^2}} \frac{d}{ds} f(t) \ dt$
Lorentz	_	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} f(t) \ dt$	$\int_{t}^{\infty} \frac{-1}{\pi \sqrt{s^2 - t^2}} \frac{d}{ds} f(t) \ dt$
Hilbert	${\cal H}$	$\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} f(t) \ dt$	$\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} f(t) \ dt$

2. Transformadas integrales de f(t) = t + c

Además de la anterior tabla, también se solicitó la obtención de todas las transformadas integrales contenidas en ella de la función f(t)=t+c.

Recordemos que en clase se demostró que toda transformada integral es lineal. Es decir, dada

la forma general de una transformada integral $T\{f(t)\}$:

$$T\{t+c\} = \int_{a}^{b} K(t,s)(t+c) dt$$

$$= \int_{a}^{b} K(t,s)t + K(t,s)c dt$$

$$= \int_{a}^{b} K(t,s)t dt + \int_{a}^{b} K(t,s)c dt$$

$$= \int_{a}^{b} K(t,s)t dt + c \int_{a}^{b} K(t,s) dt$$

$$= T\{t\} + cT\{1\}$$

Sabiendo eso, es sumamente sencillo expresar las transformadas integrales de la función f(t)=t+c):

Nombre	Transformada t+c	
Fourier ${\cal F}$	$\int_{-\infty}^{\infty} \frac{e^{-ist}}{\sqrt{2\pi}} t dt + c \int_{-\infty}^{\infty} \frac{e^{-ist}}{\sqrt{2\pi}} dt$	
Hartley ${\cal H}$	$\int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} t \ dt + c \int_{-\infty}^{\infty} \frac{\cos(st) + \sin(st)}{\sqrt{2\pi}} \ dt$	
Mellin ${\cal M}$	$\int_0^\infty t^{s-1}t \ dt + c \int_0^\infty t^{s-1} \ dt$	
Laplace Bilateral ${\cal B}$	$\int_{-\infty}^{\infty} e^{-st}t \ dt + c \int_{-\infty}^{\infty} e^{-st} \ dt$	
Laplace ${\cal L}$	$\int_0^\infty e^{-st}t \ dt + c \int_0^\infty e^{-st} \ dt$	
Hankel	$\int_0^\infty t J_v(st)t \ dt + c \int_0^\infty t J_v(st) \ dt$	
Abel	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} t \ dt + c \int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} \ dt$	
Lorentz	$\int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} t \ dt + c \int_{s}^{\infty} \frac{2t}{\sqrt{t^2 - s^2}} \ dt$	
Hilbert ${\cal H}$	$\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} t \ dt + c \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{1}{s-t} \ dt$	