Project Document

Project Title:

Revolutionizing Liver Care: Predicting Liver Cirrhosis using Advanced Machine Learning Techniques

1. Introduction

This project aims to empower early detection of liver cirrhosis by utilizing machine learning. By analyzing patient data, it predicts cirrhosis risk—enabling timely intervention and improved patient care.

2. Data Pipeline & Preparation

- **Data collection & cleaning**: Collected dataset, handled missing values, and performed exploratory data analysis (EDA).
- **Encoding & splitting**: Categorical data was encoded; dataset divided into training and test sets for model evaluation.

3. Machine Learning Models

Tested multiple algorithms:

- Random Forest
- Support Vector Classifier (SVC)
- Logistic Regression
- XGBoost
- K-Nearest Neighbors (KNN)

After assessment, KNN emerged as the best-performing model.

4. Evaluation Metrics

Models were evaluated using:

- Accuracy
- Precision
- Recall
- F1-score

Confusion matrices

These helped identify the most effective algorithm for prediction.

5. Deployment

- Built a **Flask web app** so users can input data and receive predictions easily.
- Includes interactive confusion matrix visualizations and performance metrics for end-users.

6. Summary of Key Outcomes

- Best model: KNN, based on comprehensive comparison.
- Interactive tool: A deployable application that supports prediction and performance analysis.
- Supports early detection efforts, scalable for future improvements.

7. Technologies Used

- **Backend**: Python, Flask
- ML & Analysis: Scikit-learn (for KNN, Random Forest, SVC, Logistic Regression), XGBoost
- Visualization: Libraries for plotting confusion matrices and performance graphs

8. Usage Instructions

- 1. Clone the repo.
- 2. Install requirements (e.g., pip install -r requirements.txt).
- 3. Run the Flask app: python app.py.
- 4. Use the web interface to input patient data and receive **cirrhosis** predictions.

9. Future Improvements

- Increase dataset size and diversity.
- Hyperparameter tuning for further accuracy.
- Add advanced algorithms or ensemble models.
- Implement user authentication, logging, and analytics in the web app.
- Consider packaging as a container (e.g., Docker) for easy deployment.

10. Contributors

• K Mayuri