

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB203T- Probability and Stochastic Processes

Module – V Tutorial Sheet - 13

		Tutorial Sheet - 13					
Sl.No.		Questions	Answer				
	Part – B						
1	If $R(\tau) = e^{-2\lambda \tau }$ if	is the autocorrelation function Of a random	(i) $S_{XX}(\omega) = \frac{4\lambda}{4\lambda^2 + \omega^2}$				
	process $X(t)$, Obtain the spectral density of $X(t)$.		$4\lambda^2 + \omega^2$				
2	The Power spec	etral density of a WSS process is given by	(i) $\frac{2b}{a\pi\tau^2}\sin^2\frac{a\tau}{2}$				
	$\left \frac{b}{a}(a- \omega) \right $		$a\pi \tau^2$ 2				
	$S(\omega) = \begin{cases} a^{(-1)} \end{cases}$	$; w \le a$ $; w \ge a$					
	[0	$; w \ge a$					
	Find the autocor	relation function of the process.					
3	The power spec	trum of a WSS process $X = \{X(t)\}$ is given	$R(\tau) = \frac{1}{2} \left(u(\tau) \tau e^{\tau} + u(\tau) \tau e^{-\tau} + 2e^{- \tau } \right)$				
	$\mathbf{b}_{\mathbf{v}} = \mathbf{c}(\mathbf{a}) = 1$	Find auto correlation function and	B (0) =0.25				
	$\int \frac{dy}{(1+\omega)} = \frac{1}{(1+\omega)^2}$	$\frac{1}{2}$. Find auto correlation function and	R(0) = 0.25				
	average power o						
4		ctral density of a zero mean WSS Process					
•							
	X(t) is given by	$S(\omega) = \begin{cases} k & ; & w < \omega_0 \\ 0 & ; & otherwise \end{cases}$					
		(, , , , , , , , , , , , , , , , , , ,					
		σ					
	Where k is a c	onstant. Show that $X(t)$ and $X\left(t + \frac{\pi}{100}\right)$ are					
	uncorrelated.						
Part-C							
5	A random Proce	ess is given by $X(t) = A\cos\beta t + B\sin\beta t$, where	$R(\tau) = \sigma^2 \cos \omega_0 \tau.$				
	A and B						
1		· · · · · · · · · · · · · · · · · · ·	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				

5	A random Process is given by $X(t) = A\cos\beta t + B\sin\beta t$, where	$R(\tau) = \sigma^2 \cos \omega_0 \tau.$
	A and B are independent RV's such that,	$S_{XX}(\omega) = \pi \sigma^2 [\delta(\omega + \beta) + \delta(\omega - \beta)]$
	$E(A) = E(B) = 0$; $E(A^2) = E(B^2) = \sigma^2$. Find the (i) auto	
	correlation function of X(t) and hence find its Power	
	Spectral density of the Processes.	
6	$\{X(t)\}\$ is a stationary random process with Power spectral	$S_{XX}(\omega) = \frac{A^2}{4} \left[S_{XX}(\omega - \omega_0) + S_{XX}(\omega + \omega_0) \right]$
	density $S(\omega)$ and $Y(t)$ is another independent random	$4 \begin{bmatrix} S_{XX}(\omega) - G_{XX}(\omega - \omega_0) + S_{XX}(\omega + \omega_0) \end{bmatrix}$
	process $Y(t) = A\cos(\omega_0 t + \theta)$ where θ is a random variable	
	uniformly distributed over $(-\pi,\pi)$. Find the PSD of $\{Z(t)\}$	
	where $Z(t) = X(t)Y(t)$.	
7	Find the mean square value of the process whose power	$R(\tau) = \frac{7}{20}e^{-3 \tau } - \frac{2}{20}e^{-2 \tau }$
1		1 30 20

	enactral dancity is as given below	$\omega^2 + 2$
spectral density is as given be	spectral density is as given below	$S_{XX}(\omega) = \frac{1}{\omega^4 + 13\omega^2 + 36}$

$$R(0) = \frac{2}{15}$$