CS11-737 Multilingual NLP

Streaming Speech Translation

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University

Language Technologies Institute

Simultaneous Speech-to-text Translation

 Read the audio signals of speech in one language, and translate to the text in another language while speaker speaks (SiST).

Wide Applications of SST

Foreign Media

Tourism

Global Conferences

International Trade

Traditional Cascaded SiST System

- Drawbacks:

- 1. Computationally inefficient
- 2. Error propagation:

Wrong/error transcript recognition $\rightarrow \square$ Wrong translation

End-to-end SiST

- Goal: End2end streaming ST needs to balance the latency and quality, and generate translations based on the partial speech chunk with a single model.
- Predecessor's method: Wait-K

Challenges for SiST

Low latency is required for better user experience. —> Translate as early as possible.

...

More context is required to improve speech translation.

-> Wait as long as possible.

Simple Approach: Wait-K with Fixed Stride

1 Listen to streaming speech with a fixed stride after K steps.

2 Do listen and write iteratively till the end.

MoSST: Key Insight

Motivation: How to find *proper moments* to generate partial sentence translation given a streaming speech input?

Solution: Introduce a monotonic segmentation module.

MoSST Overview

Monotonic Segmentation while Listening

MoSST: Training Strategies

- Full-sentence training without Wait-K is ok!
- To alleviate the data scarcity problem:
 - Pre-trained Acoustic Model
 - Multi-task Training

MoSST Adaptively decide when to Generate Translation

Adaptive Decision vs Pre-fixed Decision

Experimental Setups

1. Datasets

MuST-C, En?De/Fr

Accuracy • BLEU

 Differentiable Average Lagging

Latency

Average Proportion

Average Lagging

3. Model

Module	Ba 2 kbaetrics
Acoustic Encoder	Wav2vec 2
MSM	FC
Semantic	Transformer
Encoder	Encoder
Decoder	Transformer
Decode!	Decoder

MoSST works much better

MoSST achieves best translation accuracy with the same lagging.

MoSST Is Better Than SimulST (Ma et al., 2020b)

MoSST achieves best translation accuracy with the same lagging.

MoSST Is Better Than SimulSpeech (Ren et al., 2020)

MoSST Is Superior to Cascaded SiST

MoSST also works for Offline ST

Model	EN->DE	EN->FR
Transformer ST Fairseq (Wang et al., 2020)	22.7	32.9
Transformer ST ESPnet (Inaguma et al., 2020)	22.9	32.8
Transformer ST NeurST (Zhao et al., 2021)	22.8	33.3
AFS ST (Zhang et al., 2020)	22.4	31.6
STAST (Liu et al., 2020)	23.1	_
Dual-Decoder Transformer (BL) (Le et al., 2020)	23.6	33.5
Wav2Vec2 + Transformer (Han et al., 2021)	22.3	34.3
W-Transf (Ye et al., 2021)	23.6	34.6
RealTrans (Zhang et al., 2021)	22.99	_
MoSST	24.9	35.3

(under the constrained setting)

Simultaneous Training (prefix-to-prefix) Is Not Necessary for SiST

ConvTransformer with offline ASR pre-training

Fixed Strides: Bigger Stride, Higher Latency

Adaptive Decision Is Better Than Pre-fix Decison

Monotonic Segmentation (MSM) is Important!

Case Study

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
En (Source)	Ιf	you	have	somethi ng	to	give	,	give	it	now	•			
De (Target)	Wenn	Sie	etwas	zu	geben	haben	,	geben	Sie	es	jetzt	•		
ASR	Ιf	you	have	somethi ng	to	give	and	give	it	now	•			
Cascades				Wenn	Sie	etwas	zu	geben	haben	und	es	jetzt	geben	•
Mosst				Wenn	Sie	etwas	geben	,	geben	Sie	es	jetzt	•	

Pause in source speech matters!

Takeaways

- End-to-end SiST is a more challenging area that requires balancing accuracy and latency.
- To segment audio waveform into acoustic units, MoSST introduces a new monotonic segmentation module, based on which the adaptive decision strategy can dynamically decide when to translate in streaming scenarios.
- MoSST can significantly outperform SOTA baselines both for streaming and non-streaming ST.

Language in 10