Алгебра.

1 Лекция (02.09.19).

Пусть V — векторное пространство над полем k.

Определение 1.1. Представлением группы G называется векторное пространство над полем \mathbbm{k} и гомоморфизм $\rho: G \to GL(V)$.

Для любого $g \in G$ определим $\rho_q = \rho(g)$.

Пример 1.1. Пусть G действует на множестве X. Хотим построить представление. Это можно делать двумя способами: тупым и геометрическим.

 $\overline{\text{Тупой способ}}$ таков: «натянем» на X векторное пространство и назовем его V. $\overline{\text{Каждому действию группы сопоставим перестановку базисных векторов.$

<u>Геометрический</u> хитрее: пусть V — пространство \Bbbk — значных функций (очевидно, что оно векторное). Пусть $f \in V, g \in G$, тогда $\rho_q(f(x)) = f(g^{-1}x)$.

Доказательство. Покажем, что такая конструкция нам подходит. Действительно, $\rho_{g_1}\rho_{g_2}(f(x))=\rho_{g_2}(f(g_1^{-1}x))=f(g_2^{-1}g_1^{-1}x)=\rho_{g_1g_2}(f(x)).$ Таким образом, ρ — действительно гомоморфизм, потому что уважает действие группы.

Определение 1.2. Естественным образом определяется *подпредставление*. Это такое подпространство $W \subset V$, что для любого $g \in G$ выполнено $\rho_g(W) \subset W$, другими словами, оно *инвариантню* относительно гомоморфизма.

Пример 1.2. В условиях предыдущего примера в качестве W подойдет множество финитных функций (лишь в конечном числе точек отличны от 0).

Пример 1.3. Пусть теперь X = G (действие группы — правый сдвиг). Пространство финитных функций обозначается k[G], а представление, которое ниже построим, — *регулярным*.

Пусть

$$\delta_{g'}(g) = \begin{cases} 0, & g \neq g' \\ 1, & g = g' \end{cases}$$

— базис векторного пространства $\Bbbk[G]$. Определим гомоморфизм представления $\rho_g(\delta_{g'}) = \delta_{gg'}$.

Это один из важных примеров, которые не просто иллюстрируют что-то, но и встречаются потом, поэтому стоит запомнить.

Пример 1.4. Еще одним естественным подпредставлением является подпространство (в $\mathbb{k}[G]$) функций с суммой значений по всем аргументам 0.

Определение 1.3. Представления группы G

$$\rho_1: G \to GL(V_1),$$

$$\rho_2: G \to GL(V_2)$$

называются изоморфными (эквивалентными), если существует такой изоморфизм $\tau: V_1 \to V_2$, что $\rho_2(g) \circ \tau = \tau \circ \rho_1(g)$.

Предложение 1.1. Все представления размерности n соответствуют в точности всем гомоморфизмам $G \to GL_n$ с точностью до сопряжения (выбора базиса).

Доказательство. Это очевидно из определения.

Вопрос. В ближайшее время мы будем отвечать все время на один и тот же вопрос: сколько и какие представления есть у группы G?

 \Box

Определение 1.4. Для представлений естественным образом определена *прямая сумма*:

$$\rho_1: G \to GL(V_1),$$

$$\rho_2: G \to GL(V_2)$$

тогда

$$\rho_1 \oplus \rho_2 : G \to GL(V_1 \oplus V_2).$$

Определение 1.5. Проектором pr_W называется эндоморфизм, проецирующий все пространство на какое-то дополнение к W вдоль W.

Определение 1.6. Дополнительным подпространством к $W \subset V$ называется пространство W', являющееся аннулятором некоторого эндоморфизма $pr: V \to V$ такого, что $pr(V) \subset W$ и $pr(W) = \mathrm{id}_W$.

Теорема Машке. Пусть G — конечная группа, char $\mathbb{k} = 0$, $\rho : G \to GL(V)$ — представление, $W \subset V$ — подпредставление. Тогда существует подпредставление W', являющееся дополнительным к W.

Доказательство. Хоть какое-то дополнение к W существует (как дополнение до базиса), рассмотрим такое W''. Рассмотрим соответствующий проектор $pr_{W''}$ и определим

$$pr := \frac{1}{|G|} \sum_{g \in G} \rho_g^{-1} \circ pr_{W''} \circ \rho_g.$$

Заметим, что $pr=pr_{W'}$ для некоторого W' дополняющего W, поскольку $pr(V)\subset W$ и $pr(W)=Id_W$.

Более того, $\rho_g^{-1}\circ pr_{W''}\circ \rho_g=pr$, поскольку конструкция ивариантна. Таким образом, $\rho_g(W')\subset W'$ (ведь W' — аннулятор обеих частей), и W' — подпредставление.

2 Лекция (09.09.19).

Определение 2.1. Представление (V, ρ) называется *приводимым*, если у него существует нетривиальное подпредставление.

Определение 2.2. Представление (V, ρ) называется *разложимым*, если $V = W_1 \oplus W_2$.

Замечание 2.1. Из неприводимости следует неразложимость, но из неразложимости неприводимость следует в случае, когда группа и представление удовлетворяют условиям теоремы Машке (то есть G конечна и char k=0).

Определение 2.3. Пусть $(V_1, \rho_1), (V_2, \rho_2)$ — представления. Линейное отображение $\varphi: V_1 \to V_2$ называется гомоморфизмом представлений, если оно уважает их гомоморфизмы: $\varphi \circ \rho_1(g) = \rho_2(g) \circ \varphi$.

Замечание 2.2. Ядро и образ при гомоморфизмах представлений — подпредставления

Обозначение 2.1. $\operatorname{Hom}_G((V_1, \rho_1), (V_2, \rho_2))$ — векторное пространство гомоморфизмов представлений.

Лемма Шура. Пусть $\mathbb{k} = \bar{\mathbb{k}}, \ (V_1, \rho_1)$ и (V_2, ρ_2) — конечномерные неприводимые представления. Тогда

- (1) если $V_1 \not\simeq V_2$, то $\operatorname{Hom}_G(V_1, V_2) = \varnothing$;
- (2) $V_1 \simeq V_2$, to dim $\text{Hom}_G(V_1, V_2) = 1$;
- (2') или, что эквивалентно, любой гомоморфизм есть умножение на скаляр.

Доказательство. (1) Пусть φ — гомоморфизм представлений. Тогда в силу замечания 2.2. из неприводимости представлений следует, что имеется две возможности:

- $\ker(\varphi) = 0$, тогда $\operatorname{im}(\varphi) = V_2$ и φ изоморфизм, противоречие.
- $\ker(\varphi) = V_1$, что и требовалось.
- (2) Предположим теперь, что представления эквивалентны. Будем считать, что они совпадают. Рассмотрим какой-то собственное число λ такого гомоморфизма (оно есть в силу конечности). Существует такой ненулевой вектор v, что $\varphi(v) = \lambda v$. Тогда посмотрим на гомоморфизм ($\varphi \lambda \cdot \mathrm{id}$). Его ядро непусто, а значит совпадает с V_1 .

Следствие 2.1. Пусть $\Bbbk=\overline{\Bbbk}$. Предположим, нашлось два разложения на подпредставления $V=V_1^{n_1}\oplus\dots V_m^{n_m}=V_1^{n_1'}\oplus\dots V_m^{n_m'}$. Тогда $n_i=n_i'$.

 \mathcal{A} оказательство. $\operatorname{Hom}_G(V_i,V) = \bigoplus_j \operatorname{Hom}(V_i,V_j)^{n_j}$. Следовательно,

$$\dim \operatorname{Hom}_G(V_i, V) = \sum_j \dim \operatorname{Hom}(V_i, V_j)^{n_j} = n_i = n_i'.$$

П

Выберем базис в V и V'. Теперь $\rho_g = (r_{ij}(g))$ и $\rho'_g = (r'_{ij}(g))$ (тут мы каждому элементу сопоставляем матрицу, соответствующую автоморфизму пространства). Пусть $h = (x_{ij})$ — гомоморфизм векторных пространств. Построим по нему гомоморфизм представлений $\varphi = (y_{ij})$ следующим образом:

$$\varphi = \frac{1}{|G|} \sum_{g,i,i'} \rho'_{g^{-1}} h \rho_g,$$

$$y_{i',i} = \frac{1}{|G|} \sum_{g,j,j'} r'_{i'j'}(g^{-1}) x_{j'j} r_{ji}(g).$$

Эта штука инвариантна относительно сопряжения, а потому является гомоморфизмом представлений

Предложение 2.1. (1) Если представления не изоморфны, то φ тожественно нулевое.

(2) Если они равны, то $\varphi = \lambda \cdot id = \frac{\operatorname{tr} h}{\dim V} id$.

Доказательство. Первое очевидно следует из леммы Шура.

Второе тоже очевидно, но не настолько сильно. Нужно еще вспомнить, что след инвариантен относительно сопряжения и tr $\varphi={\rm tr}\ h.$

Следствие 2.2. (1) Если представления не изоморфны, то для любых i, j, i', j'

$$\frac{1}{|G|} \sum_{q} r'_{i'j'}(g^{-1}) r_{ji}(g) = 0.$$

(2) Если же V = V', то

$$\frac{1}{|G|} \sum_{g} r'_{i'j'}(g^{-1}) r_{ji}(g) = \begin{cases} \frac{1}{\dim V}, \text{ если } i = i', j = j'; \\ 0, \text{ иначе.} \end{cases}$$

 $\begin{subarray}{ll} \mathcal{Q} показательство. Первый случай понятен, там матрица <math>\ensuremath{arphi}$ по жизни нулевая. Во втором случае будем действовать чуть аккуратнее.

$$\frac{1}{|G|} \sum_{g,j,j'} r'_{i'j'}(g^{-1}) x_{j'j} r_{ji}(g) = \delta_{ii'} \lambda = \delta_{ii'} \frac{tr(h)}{\dim V} = \sum_{g,j,j'} \delta_{ii'} \delta_{jj'} x_{jj'}.$$

Теперь осталось приравнять коэффициенты при $x_{jj'}$.

Определение 2.4. Функция $\mathcal{X}_{(V,\rho)}(g) = tr(\rho_g)$ называется xapaктepom. Определение 2.5. Скалярным произведением \mathbb{k} -функций, определенных на

П

 \Box

 $(f_1, f_2) = \frac{1}{|G|} \sum f_1(g^{-1}) f_2(g)$

Теорема 2.1. Пусть $\mathbb{k} = \bar{\mathbb{k}}$, (V_1, ρ_1) , (V_2, ρ_2) — неприводимые представления конечной группы G. Тогда $(\mathcal{X}_{V_1}, \mathcal{X}_{V_2}) = 0$ в случае, когда представления не эквивалентны, и 1, когда они равны.

Доказательство. Это прямое применение формул из следствия 2.2.

Следствие 2.3. Число неприводимых представлений не больше количества классов сопряженности.

Доказательство. Нетрудно заметить, что характеры у сопряженных элементов совпадают. Соответственно, характер представления определяется на каждом классе сопряженности любым его представителем. Тогда попарно перпендикулярных характеров не может быть больше количества классов сопряженности.

3 Лекция (16.09.19).

группе, называется

Из теоремы 2.1. можно достать еще много полезных следствий.

Следствие 3.1. Пусть $(V, \rho) = (V_1, \rho_1)^{n_1} \oplus \ldots \oplus (V_m, \rho_m)^{n_m}$ — разложение в сумму неприводимых. Тогда $(\mathcal{X}_V, \mathcal{X}_{V_i}) = n_i$.

Следствие 3.2. $\mathcal{X}_V = \mathcal{X}_{V'} \Longleftrightarrow (V, \rho) \simeq (V', \rho')$ для конечных представлений.

Доказательство. Для неприводимых представлений это очевидно сразу же после теоремы 2.1. Иначе нужно каждое из представлений разложить в прямую сумму неприводимых и воспользоваться следствием 3.1. □

Следствие 3.3. $(\mathcal{X}_V, \mathcal{X}_V) = 1 \Longleftrightarrow V$ — неприводимо.

Доказательство. $(V,\rho)=(V_1,\rho_1)^{n_1}\oplus\ldots\oplus(V_m,\rho_m)^{n_m}$. Тогда $(\mathcal{X}_V,\mathcal{X}_V)=n_1^2+\ldots+n_m^2$.

Следствие 3.4. Пусть $\{V_i\}_{i\in\mathbb{N}}$ — все неприводимые представления. Тогда

$$\sum (\dim V_i)^2 = |G|.$$

Доказательство. Рассмотрим регулярное представление $\Bbbk[G]$ с гомоморфизмом $\rho_g(f(x)) = f(g^{-1}x)$. На базисных функциях $\rho_g\rho_{g'} = \delta_{gg'}$. Заметим, что

$$\mathcal{X}_{\Bbbk[G]}(g) = egin{cases} |G|, \ \mathrm{ec}$$
ли $g=1 \ 0, \ \mathrm{uhave} \end{cases},$

потому что g=1 действует тождественно, а любой другой элемент переставляет базисные элементы так, что ни один элемент не стоит на месте (то есть след — сумма нулей).

Пусть $\mathbb{k}[G] = V_1^{n_1} \oplus \ldots \oplus V_m^{n_m}$. По следствию 3.3.

$$n_i = (\mathcal{X}_{\Bbbk[G]}, \mathcal{X}_{V_i}) = \frac{1}{|G|} \sum_{g \in G} \mathcal{X}_{\Bbbk[G]}(g) \mathcal{X}_{V_i}(g^{-1}) = \mathcal{X}_{V_i}(1) = \dim V_i.$$

Лемма 3.1. $f \in \mathbb{k}[G/\sim]$ (класс эквивалентности = класс сопряженности), (V,ρ) — неприводимое представление. Определим опрератор $\rho_{f^*}:V\to V$ так:

$$\rho_{f^*} = \sum_g f(g^{-1})\rho_g.$$

Тогда

- (1) $\rho_{f^*} \in \operatorname{Hom}_G(V, V)$.
- **(2)** Если (V, ρ) неприводимо, то $\rho_{f^*} = \frac{|G|}{\dim V} (\mathcal{X}_V, f)$ id.

Доказательство. (1) Нужно доказать, что это отображение уважает гомоморфизм. Напишем: $\rho_{g'}\rho_{f^*}\rho_{g'^{-1}}=\sum_q f(g^{-1})\rho_{g'gg'^{-1}}=\sum_q f((g'^{-1}gg')^{-1})\rho_g=\rho_{f^*}.$

(2) Мы помним про <u>лемму Шура</u>, а значит, нужно лишь убедиться, что коэффициент нужный. Итак,

$$C = \frac{tr\rho_{f^*}}{\dim V} = \frac{\sum_g f(g^{-1})tr\rho_g}{\dim V} = \frac{|G|(f, \mathcal{X}_V)}{\dim V}.$$

Замечание 3.1. Стоит всюду держать в голове, что хоть мы этого и не пишем, но все эти утверждения верны не всегда, а только в условиях леммы Шура, то есть нам всюду нужна алгебраическая замкнутость k и конечность всех представлений.

Теорема 3.1. Число неприводимых представлений равно количеству классов сопряженности (все это в условиях предыдущего замечания).

Доказательство. Докажем, что $\mathcal{X}_{V_1}, \dots, \mathcal{X}_{V_m}$ образуют базис по $\Bbbk[G/\sim]$. Предположим, что нашелся вектор не из их линейной комбинации f такой, что $(f, \mathcal{X}_{V_i}) = 0$. Докажем, что f = 0. Пусть это не так.

Рассмотрим регулярное представление $V = \mathbb{k}[G]$. Тогда

$$\rho_{f^*}\delta_1 = \sum_g f(g^{-1})\rho_g \delta_1 = \sum_g f(g^{-1})\delta_g \neq 0.$$

С другой стороны, это толжно быть 0 по лемме 3.1.

Определение 3.1. *Изотопической компонентой* называется сумма всех изоморфных неприводимых подпредставлений в разложении V.

Следствие 3.5. Пусть (V_i, ρ_i) — неприводимое представление, (V, ρ) — какоето представление. Тогда $pr_i = \frac{\dim V_i}{|G|} \rho_{\mathcal{X}_{V_i}^*} = \frac{\dim V_i}{|G|} \sum_g \mathcal{X}_{V_i}(g^{-1}) \rho_g$ — проектор на изотопическую компоненту.

Тензорное произведение представлений. Пусть (V_1, ρ_1) и (V_2, ρ_2) — представления G. Тогда

$$\rho_1 \otimes \rho_2 : G \to GL(V_1 \otimes V_2)$$
$$(\rho_1 \otimes \rho_2)_g = \rho_{1g} \otimes \rho_{2g}.$$

Двойственное представление. $(V, \rho), V^* \ni f$

$$\rho_g f(v) = f(g^{-1}v).$$

4 Лекция (23.09.19).

Другое доказательство теоремы Машке. Только для поля \mathbb{C} .

Доказательство. **Лемма 4.1.** На V существует G-инвариантное скалярное произведение: $(\rho_g v, \rho_g u) = (v, u)$.

Доказательство. Пусть $\langle u,v\rangle$ — какое-то скалярное произведение. Тогда $(u,v)=\sum\limits_{g\in G}\langle \rho_g u,\rho_g v\rangle$ (G конечна).

Рассмотрим ортогональное дополнение W до V относительно этого скалярного произведения. Заметим, что скалярное произведение инвариантно и относительно него тоже. \Box

Следствие 4.1. Пусть V — конечномерное комплексное представление $|G| < \infty$. Тогда $\mathcal{X}_V(g^{-1}) = \overline{\mathcal{X}_V(g)}$.

Доказательство. Из конечности G следует, что для некоторого n $g^n=1$. Тогда собственные значения ρ_g — корни из 1. А для них выполнено $\varepsilon^{-1}=\overline{\varepsilon}$.

П

Теорема 4.1. char $\mathbb{k} = 0$, $|G| < \infty$. Тогда dim $\operatorname{Hom}_G(V, V') = (\mathcal{X}_V, \mathcal{X}_{V'})$.

Доказательство. Рассмотрим пространство $\operatorname{Hom}_{\mathbb{k}}(V,V')$. Определим действие G на этом пространстве. $\rho_g(h)(v) = \rho_g(h(\rho_{g^{-1}}(v)))$. Мы знаем, что $\operatorname{Hom}_{\mathbb{k}}(V,V') = V^* \otimes V'$. А еще $\mathcal{X}_{\operatorname{Hom}_{\mathbb{k}}(V,V')}(g) = \mathcal{X}_V(g^{-1})\mathcal{X}_{V'}(g)$.

Доказательство теоремы следует из следующей леммы.

Лемма 4.2. Пусть W — любое представление группы. Тогда

$$\dim W^G = \frac{1}{|G|} \sum_{g} tr \rho_g = \frac{1}{|G|} \sum_{g} \mathcal{X}_W(g),$$

где $W^G = \{w \in W \mid \forall g \in G, \, \rho_g(w) = w\}$ — подпространство неподвижных векторов относительно всех элементов группы.

Доказательство. Рассмотрим оператор $A=\dfrac{\sum\limits_{g\in G}\rho_g}{|G|}$. Заметим, что $\mathrm{im} H=W^G$ и A сохраняет W^G . Тогда $trA=\mathrm{dim}\,W^G$.

Чтобы закончить доказательство теоремы, положим $W = \operatorname{Hom}_{\mathbb{k}}(V, V')$. Осталось понять, что $W^G = \operatorname{Hom}_G(V, V')$, а это так по определению.

5 Лекция (30.09.19).

Тут нам напомнили, что такое модуль.

Теорема 5.1. Пусть $\bar{\mathbb{k}} = \mathbb{k}, |G| < \infty, \text{ а } V_1, \dots, V_n$ — все неприводимые представления. Тогда

$$\varphi : \mathbb{k}[G] \simeq End_{\mathbb{k}}(V_1) \times \cdots \times End_{\mathbb{k}}(V_n)$$
$$\varphi(g) := (\rho_1(g), \dots, \rho_n(g))$$

— изоморфизм.

Доказательство. Инъективность. Пусть $\varphi(f) = \varphi(\sum a_g g) = 0$. f действует нулем на любом неприводимом представлении, значит, на регулярном тоже. f = 0. Сюръективность. Следует из равенства размерностей.

Тут нам доказали несколько простых утверждений про алгебраические числа. Замечание 5.1. x — целое алгебраическое тогда и только тогда, когда $\mathbb{Z}[x]$ — конечно порожедн.

Докажательство. Докажем в нетривиальную сторону. Пускай e_1,\dots,e_n — образующие. Тогда $xe_i=\sum_j a_{ij}e_j$.

Составим матрицу
$$A=(x\delta_{ij}-a_{ij})$$
 . $A\begin{pmatrix}e_1\\\ldots\\e_n\end{pmatrix}=0$. Тогда $0=(AdjA)\cdot A\begin{pmatrix}e_1\\\ldots\\e_n\end{pmatrix}==(detA)E\begin{pmatrix}e_1\\\ldots\\e\end{pmatrix}$, где $AdjA$ — матрица, составленная из соответствующих ми-

 e_n / норов матрицы $A.\ 0 = det A \in \mathbb{Z}[x]$, но det A — многочлен от x, что и требовалось.

Следствие 5.1. Целые алгебраические числа образуют подкольцо.

 \mathcal{A} оказательство. То есть замкнуты относительно умножения и сложения. Пусть α, β — целые алгебраические. $Z[\alpha, \beta]$ конечо порожден. Тогда $Z[\alpha\beta], \mathbb{Z}[\alpha+\beta]$ тоже.

6 Лекция (07.10.19).

Теорема 6.1. $|G| < \infty, V$ — комплексное нетривиальное представление. Тогда $|G| \ \vdots \ \dim V$.

Доказательство. Пусть $C \subset G$ — класс сопряженности в G. $\mathcal{X}_V(C) := \mathcal{X}_V(g), g \in C$.

Лемма 6.1. $\frac{|C|}{\dim V} \mathcal{X}_V(C)$ — целое алгебраическое число.

 \mathcal{A} оказательство. $x:=\sum_{g\in C}g\in\mathbb{Z}[G], x$ действует на представление V умножением на число $\lambda\in\mathbb{C}$ (так как $\rho_x=\sum_{g\in C}\rho_g:V\to V$ — гомоморфизм представлений). С другой стороны, x — целое, так как $\mathbb{Z}[x]\subset\mathbb{Z}[G]$ — конечнопорожденная группа. Тогда $\rho_x^n+\ldots+a_0=0$.

$$ho_x^n=\lambda\cdot \mathrm{id}$$
. Тогда $\lambda=rac{tr
ho_x}{\dim V}=rac{|C|}{\dim V}\mathcal{X}_V(C)$ — алгебраическое.

 $\frac{|G|}{\dim V} = \sum_{g \in G} \mathcal{X}_V(g^{-1}) \frac{\mathcal{X}_V(g)}{\dim V} = \sum_C \mathcal{X}_V(C^{-1}) \cdot \frac{\mathcal{X}_V(C)|C|}{\dim V}, \text{ при этом каждое из сомножителей — целое алгебраическое число (первое как след матрицы, которая корень из единичной, второе по лемме), тогда и вся сумма является целым алгебраическим. <math display="block">\frac{|G|}{\dim V}$ еще и рационально, следовательно, оно целое.

 \Box

Индуцированные представления.

Пусть H — подгруппа G. Оператор $Ind_H^GV=\Bbbk[G] \bigotimes_{\Bbbk[H]} V$ сопоставляет пред-

ставления H — представлениям G

Замечание 6.1. $\mathrm{Hom}_B(Ind_A^BV,W)\simeq \mathrm{Hom}_A(V,W)=\mathrm{Hom}_A(V,Res_A^B(W))$ — естественный изоморфизм.

Структура Ind_H^GV :

Выберем представителя в каждом классе сопряженности G/H.

$$\mathbb{k}[G] = \bigoplus_{i} g_i \mathbb{k}[H]$$

$$\Bbbk[G] \bigotimes_{\Bbbk[H]} V = \bigoplus_{i} g_i \otimes V.$$

Как G действует на $\bigoplus_i g_i \otimes V$? $g \in G, \ gg_i = g_j h, \ h \in H. \ \text{Тогда} \ g(g_i \otimes v) = g_j \otimes h(v).$

7 Лекция (14.10.19).

Тут что-то происходило, нужно дописать.

Следствие 7.1. Характер индуцированного представления.

Доказательство.
$$\mathcal{X}_{Ind_H^GV}(g) = \sum_{g_i^{-1}gg_i \in H} \mathcal{X}_V(g_i^{-1}gg_i) = \frac{1}{|H|} \sum_{g' \in G, g'^{-1}gg' \in H} \mathcal{X}_V(g'^{-1}gg')$$

Взаимность Фробениуса. $\mathbb{k} = \bar{\mathbb{k}}, \ (\mathcal{X}_{Ind_{G}^{G}V}, \mathcal{X}_{W}) = (\mathcal{X}_{V}, \mathcal{X}_{Res_{G}^{G}W}).$

Доказательство. Нужно приравнять характер размерности гомоморфизмов, а они равны по утверждению из предыдущей лекции.

8 Лекция (28.10.19).

k — поле, A — алгебра над k.

Определение 8.1. \mathcal{A} -модуль V разложим, если существуют такие \mathcal{A} -модули V_1 и V_2 , что $V \simeq V_1 \oplus V_2$.

Предложение 8.1. Пусть V — конечномерный неразложимый A-модуль.

- (1) $\theta \in \text{Hom}_{\mathcal{A}}(V, V)$ либо нильпотентен, либо изоморфизм.
- (2) Если $\theta_1, \dots, \theta_n \in \operatorname{Hom}_{\mathcal{A}}(V, V)$ нильпотентны, то $\theta_1 + \dots + \theta_n$ тоже.

Доказательство. (1) Пусть $f(x) \in \mathbb{k}[x]$ — минимальный многочлен θ .

Разложим $f(x) = x^n g(x)$, (g, x) = 1. Покажем, что либо n = 0, либо g = const. Имеем $1 = x^n h_1(x) + g(x) h_2(x)$. Подставим θ : $v = \theta^n (h_1(\theta)v) + g(\theta) h_2(\theta)v$. Заметим, что это верно для любого вектора $v \in V$. Первое слагаемое лежит в $\operatorname{im}(\theta^n)$, второе — в $\ker(\theta^n)$.

Таким образом, $V = \ker(\theta^n) \oplus \operatorname{im}(\theta^n)$. Теперь вспомним, что V неразложимо, следовательно, одно из слагаемых в прямой сумме тривиально. Если первое, то n = 0; если второе, то q = const.

(2) Индукция по n. База для n=1 очевидна.

Переход $n-1\to n$. Допустим противное: $\theta_1+\ldots+\theta_n=\theta$ — обратим. Тогда $(\theta^{-1}\theta_1+\ldots+\theta^{-1}\theta_{n-1})+\theta^{-1}\theta_n=1$. Это невозможно в силу следующей леммы.

Лемма 8.1. Пусть A, B — нильпотентные операторы. Тогда их сумма не может быть равна 1.

Доказательство. Предположим, что это так. Рассмотрим $v \in \ker A$ (такой есть). Тогда B(v) = v. Что невозможно, в силу нильпотентности B.

Теорема Крулля–Шмидта. Любой конечномерный *А*-модуль единственным образом с точностью до перестановки раскладывается в прямую сумму неразложимых.

Доказательство. Пусть есть два разложения:

$$V = V_1 \oplus \ldots \oplus V_m = V_1' \oplus \ldots \oplus V_n'$$

Определены канонические вложения и проекции:

$$\begin{split} i_s: V_s &\hookrightarrow V, i_s': V_s' \hookrightarrow V, p_s: V \twoheadrightarrow V_s, p_s': V \twoheadrightarrow V_s'. \\ \theta_s &= p_1 i_s' p_s' i_1, \ V_1 \xrightarrow{i_1} V \xrightarrow{p_s'} V_s' \xrightarrow{i_s'} V \xrightarrow{p_1} V_1. \end{split}$$

Очевидно, что
$$\sum\limits_{s=1}^n \theta_s = 1.$$

Тогда по предыдущему предложению некоторое θ_s — изоморфизм. Без ограничения общности s=1. Но тогда $V_1\simeq V_1'.$

ничения оощности s-1. По тогда $v_1=v_1$. Чтобы завершить доказательство, достаточно показать, что $M\bigoplus_{s>1}V_s\simeq\bigoplus_{s>1}V_s'=M'$.

$$\varphi: M \hookrightarrow M \oplus V_1 = V = M' \oplus V_1' \twoheadrightarrow M''.$$

Покажем, что эта композиция — изоморфизм. Предположим, $vin \ker \varphi$, то есть $p_1i_1'(v)=0$, но это изоморфизм. Таким образом, $\ker \varphi=0$.

12