MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Analysis of combiner constructions). Let \mathbb{G} be a finite q-element group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Let \mathcal{A}_1 be a solver that finds the first bit of the discrete logarithm with probability ε_1 , i.e., $\Pr[x \leftarrow \mathbb{Z}_q : \mathcal{A}_1(g^x) = x_1] \ge \varepsilon_1$. Similarly, let \mathcal{A}_2 be a solver that finds the second bit of the discrete logarithm with probability ε_1 and so on. Now let \mathcal{B} be the combiner algorithm that combines the outputs of $\mathcal{A}_1, \ldots, \mathcal{A}_n$ for $n = \lceil \log_2 q \rceil$ to restore the entire discrete logarithm:

$$\mathcal{B}(y)$$

$$\begin{bmatrix} x_1 \leftarrow \mathcal{A}_1(y), \dots, x_n \leftarrow \mathcal{A}_n(y) \\ return \ x_n \dots x_1 \end{bmatrix}$$

The construction guarantees that \mathcal{B} succeeds in finding the discrete logarithm of y if all x_i are correct. Find a good lower bound on the advantage $\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{B}) = \Pr\left[x \leftarrow \mathbb{Z}_q : \mathcal{B}(g^x) = x\right]$.

Solution.