Integral Test

The ever under curve is y=f(x), which is an improper integral and the series may approximate this ever.

Area =
$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Subject to the conditions of the Integral Test, the series $\sum_{n=1}^{\infty} a_n$ and the integral $\int_{1}^{\infty} (x) dx$ both converge or both diverge.

In terms of rectangles, if we use in reid: (for Fig. or) $\int f(x) dx \leq \int \theta |k|$

Ex
$$\int_{n=2}^{\infty} \frac{1}{n \ln n}$$
 $\int_{1}^{\infty} (1x) = \frac{1}{x \ln x}$, is decreasing, since $\int_{1}^{\infty} (1x) = -\frac{1}{x^2 \ln x} (1 + \ln x) < 0$

$$f(x) = \frac{1}{x \ln x}$$
, is decreasing, since

$$f'(x) = -\frac{1}{x^2 h_1^2 x} (1 + \ln x) < 0$$

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \ln(\ln x) \Big|_{2}^{b} = \infty, so, by integral test, it diverges.$$

The p-Series

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} \tilde{x}^{p} dx = \frac{x^{p+1}}{1-p} \Big|_{1}^{b}, \quad \text{if } \underline{p>1}, \text{ it converges;}$$

$$\text{diverges otherwise.}$$

$$\text{Ex } \int_{1=1}^{\infty} \frac{1}{n}, \quad \text{Since } p=1, \quad \sum_{1}^{\infty} \text{ diverges}$$

$$E \times \int_{-1}^{\infty} \frac{1}{n}$$
 , Since $p=1$, $S = \frac{1}{n}$ diverges

Ex
$$\int_{n=1}^{\infty} \frac{1}{n^2+1} \int_{1}^{\infty} \frac{dx}{x^2+1} = \lim_{b \to \infty} Avctonx \Big|_{1}^{b} = \frac{\pi}{2} - \frac{\pi}{4} = \pi/4$$
it converges

$$\int_{1}^{\infty} \frac{1}{\sqrt{2k-1}} = \frac{1}{2} \int_{1}^{\infty} \frac{2dx}{\sqrt{2x-1}} = \frac{1}{2} \int_{1}^{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{2} \int_$$

Ex
$$\sum_{k=1}^{\infty} \frac{\frac{1}{4n^{k}k}}{1+k^{2}}$$

$$\int_{1}^{\infty} \frac{1}{1+x^{2}} dx = \int_{1}^{\infty} u \, du = \frac{1}{4}u^{2} = \lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{42n^{k}} x^{2} \right) \Big|_{1}^{n} = \frac{1}{2} \left[\left(\frac{1}{42n^{k}} (x^{2})^{2} - \frac{1}{4n^{k}} (x^{2})^{2} \right) \right]$$

$$u = \frac{1}{42n^{k}k}$$

$$x = \frac{1}{42n^{k}k}$$

$$x = \frac{1}{42n^{k}k}$$

$$\frac{1}{4n^{k}k} = \frac{1}{4n^{k}k}$$

$$\frac{1}{4n^{k}k} = \frac{1}{4n^{k}k}$$

$$\frac{1}{4n^{k}k^{2}} = \frac{1}{4n^{k}k}$$

$$\frac{1}{4n^{k}k^{2}} = \frac{1}{4n^{k}k^{2}}$$

Comparison Test

We have to have a nice collection of known convergent series to compare an unknown series to.

$$\sum_{n=1}^{\infty} \frac{1}{n!} \cdot \frac{1}{n!} \leq \frac{1}{2^n} \quad \text{for eal } n.$$

$$\int_{n=1}^{\infty} \frac{1}{2^n} \quad \text{convirues to zero, so does } \int_{n=1}^{\infty} \frac{1}{n!}$$

THEOREM —The Comparison Test Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n$$
 for all $n > N$.

- (a) If $\sum c_n$ converges, then $\sum a_n$ also converges.
- **(b)** If $\sum d_n$ diverges, then $\sum a_n$ also diverges.

Ex
$$\int_{n=2}^{\infty} \frac{1}{l_{mn}}$$
, we know that $\int_{n}^{\infty} \frac{1}{n}$ is divergent $\frac{1}{l_{mn}} \ge \frac{1}{n}$.

 $\int_{n=2}^{\infty} \frac{1}{l_{mn}}$ is divergent.

$$\int \frac{1}{n(n+1)}$$
, is it convergent? It is similar to $\int \frac{1}{n^2}$, is conv.

However,
$$\frac{1}{n^2} > \frac{1}{n(n+1)}$$
, therefore we need to apply the following second test.

Limit form (Asymptotic form) Comparison test

THEOREM —Limit Comparison Test Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

$$\frac{1/n^{2}}{n + n} = \lim_{n \to \infty} \frac{n^{2} + n}{n^{2}} = \lim_{n \to \infty} (1 + \frac{1}{n^{2}}) = 1$$

Ex
$$\int_{n=1}^{\infty} \frac{1}{n^{1/2} + 3n^{1/2} - 5}$$
 is it convergent or not?
In $\int_{n=1}^{\infty} \frac{1}{n^{1/2}}$, since $\rho = 1/2 < 1$, it is divergent.
We can compare with $\int_{n=1}^{\infty} \frac{1}{n^{1/2}}$.
 $\int_{n=10}^{\infty} \frac{0!n}{bn} = \frac{1/n!h}{n^{1/2} + 3n^{1/2} - 5} = \int_{n=10}^{\infty} (1 + \frac{3}{n^{1/6}} - \frac{5}{n^{1/6}}) = 1$

$$\therefore \int_{n=1}^{\infty} \frac{1}{n!^{2} + 3n!^{3} - 1}$$
 is divergent!