Classification of Sleep Phases with EEG and Accelerometer Data using Wavelet Transforms Challenge Data – Dreem

Alex AUVOLAT

Febuary 24, 2016

Overview

1 Task Presentation

2 Feature Extraction

3 Classification Results

Section 1

Task Presentation

Dataset characteristics

- 31129 training points
- 30458 test points

Features:

- 15 seconds of EEG data, 250 Hz, 1 channel \rightarrow 3750 values
- \blacksquare 15 seconds of accelerometer data, 10 Hz, 3 channels \rightarrow 350 values

Signal categories

Class	Code	Description	Count
0		Wake	1342
1	N1	Light sleep ("somnolence")	428
2	N2	Intermediate sleep	15334
3	N3	Deep sleep	9640
4	REM	Paradoxical sleep	4385
		Total	31129

Typical EEG signal (REM sleep)

Typical ACC signal (N2 sleep)

Section 2

Feature Extraction

Wavelet transform

We first convolve the signal with a series of Ricker wavelets:

$$\psi_{\sigma}(t)=rac{2}{\sqrt{3\sigma}\pi^{rac{1}{4}}}\left(1-rac{t^2}{\sigma^2}
ight)e^{rac{-t^2}{2\sigma^2}}$$

The values of σ are spaced regularly on a logarithmic scale:

$$\sigma_i = 2^i$$

$$\sigma_0 = 1$$

$$\sigma_{10} = 1024$$

Wavelets

Wavelets, in the Fourier domain

Remarks

Convolution is equivalent to a multiplication in the Fourier domain, which has several implications:

- convolution can be done very quickly
- we can interpret the convolution by a wavelet as exacerbating certain frequency range while extinguishing others

Our signal (EEG), in the Fourier domain

Now, convolved with a high-frequency wavelet $(\sigma = 1)$

With a lower frequency ($\sigma = 4$)

With an even lower frequency ($\sigma = 16$)

Dimensionality reduction

- It is impossible to run a classifier on 11×3750 features for 30000 examples.
- We use a PCA to transform the 3750-dimensional signal into a 15-dimensional signal.
- For the EEG, we end with $15 \times 11 = 165$ features
- Similar processing for the accelerometer data.

Feature vectors

Section 3

Classification Results

Random Forest Classification

- Classification is done with a random forest.
- Parallel implementation provided by scikit-learn
- Tried using up to 128 trees to improve model performance (more trees improves the performance a little)

Random Forest vs. Linear Classifiers

Random forest classifiers worked much better than linear classifiers on this task:

- Linear classifiers are much slower to train
- The problem is not completely linearly separable in our feature space
- Error rate: 22% (linear classifier) vs. 15% (random forest)

Results

Remarks

- Tried many variants, validating them on a subset of the training set, for local validation
- Results on the public leaderboard were usually far worse than on the validation set
 - \rightarrow overfitting...
- The best score I got on the leaderboard was actually with one of the first variants I tried