

Visualización de Información y Analítica Visual

Hernán Valdivieso López (<u>hfvaldivieso@uc.cl</u>)

Resumen clase 5

Teoría del color

Modelos de color

- Método para expresar el color de un objeto usando algún tipo de anotación numérica.
- Algunos modelos que veremos son RGB, CMYK y HSL.

Modelos de color basado en propiedades

Es más intuitivo para nuestra percepción y es usado fuertemente por artistas y diseñadores.

- Matiz (hue) captura la tonalidad del color. Normalmente conocemos como colores puros, dejando de lado la mezcla del blanco y del negro.
- Saturación (saturation) especifica la intensidad del color. Qué tan "vivo" o "puro" está.
- Luminosidad (*lightness*) especifica la cantidad de luz que recibe el color.
 Análogo a una linterna.

Fuente: HSL

Psicología y percepción del color

COLORES FAVORITOS ENTRE HOMBRES Y MUJERES

11%

Brown 4%

Proyección cartográfica

- Pasar de 3D a 2D no se logra perfectamente. Se debe ceder en algún punto
- Es una decisión de diseño a considerar en tipos de visualizaciones geográficas

Proyección Mercator Trazado rutas

Proyección PetersMantener áreas

Proyección Acimutal Escala de distancias

Proyección cartográfica

Hay muchos tipos de proyecciones: List of map projections - Wikipedia

Visualización datos geográficos

 El canal de "posición" no puede ser directamente codificado con otros atributos

Mapa de puntos

Mapa de clusters

Mapa de calor Heatmap

Visualización datos geográficos

 El canal de "posición" no puede ser directamente codificado con otros atributos

Cartograma

Mapa de grilla grid map

Visualización en texto

Text Visualization Browser

Nube de palabras

WordWanderer

Por tiempo

Clase 6: Streamlit

Temas de la clase - Streamlit

- 1. ¿Qué es *Streamlit*?
- 2. Funciones básicas/Demo.
- 3. Ejemplos aplicados

¿Qué es Streamlit?

¿Qué es Streamlit?

- *Streamlit* es una librería open-source de Python, que nos permite crear aplicaciones web.
- Utilizada popularmente para *machine learning* y *data science*.
 - Puedes entrenar un modelo y dejarlo disponible para su uso.
- Su ventaja es que no es necesario aprender tecnologías web (JavaScript) para hacer visualizaciones interactivas.
- Tiene compatibilidad con Altair, Matplotlib, plotly, folium*, entre otros.
- Documentación: <u>Streamlit documentation</u>
- Excelente tutorial: <u>30 days of Streamlit</u>.

¿Cómo disponibilizo mi dashboard?

- Se puede desplegar aplicaciones de forma gratuita en: <u>Streamlit Share</u>.
- Basta con conectar un repositorio de GitHub.
- Importante 1: si se usa librerías adicionales a *Streamlit*, se debe incluir un archivo requirements.txt.

Funciones básicas

Dashboard de ejemplo: Airbnb

- Aprendemos diferentes componentes que aplicaremos para construir el siguiente dashboard https://demo-vis-y-ml.streamlit.app/
- Empezaremos desde la siguiente <u>plantilla</u>.
- La solución final se puede encontrar <u>aquí</u>.

Airbnb

Este dashboard muestra información sobre diferentes Airbnb en 10 ciudades.

Ver datos

Cantidad mínima de camas

							16
	anfitrión/a	tiempo_respuesta	es_superhost	ciudad	pais	latitud	longitu
284	360,021,647	dentro de una hora	No	Istanbul	Turkey	41.017	28.95
460	14,875,223	dentro de una hora	No	Istanbul	Turkey	41.0372	28.98
544	118,021,719	dentro de una hora	No	Sydney	Australia	-33.8667	150.93
561	153,721	dentro de una hora	Si	Rio de Janeiro	Brazil	-22.9643	-43.17
1,599	6,114,680	dentro de algunas horas	No	Rome	Italy	41.8975	12.46
1,691	225,319,445	dentro de una hora	No	Sydney	Australia	-33.8191	150.98
2,238	15,488,907	dentro de una hora	No	Rio de Janeiro	Brazil	-22.9979	-43.41
2,283	85,893,416	dentro de una hora	No	Istanbul	Turkey	41.0362	28.98
2,365	57,213,517	dentro de algunos días o más	No	Hong Kong	China	22.3147	114.17
2,399	146,317,254	dentro de algunos días o más	No	Rome	Italy	41.8978	12.49

Filtrar por país

Selecciona un pais

Todos

✓

Mapa de todos los Airbnb

Elementos para incluir textos en diferentes formatos → <u>Text elements - Streamlit Docs</u>

Título de nuestra app

```
st.title('This is a title')
st.title('_Streamlit_ is :blue[cool] :sunglasses:')
```


Elementos para incluir textos en diferentes formatos → <u>Text elements - Streamlit Docs</u>

Markdown

```
st.markdown("*Streamlit* is **really** ***cool***.")
st.markdown('''
    :red[Streamlit] :orange[can] :green[write] :blue[text] :violet[in]
    :gray[pretty] :rainbow[colors] and :blue-background[highlight] text.
    ''')
```

Streamlit is really cool.

Streamlit can write text in pretty colors and highlight text.

Elementos para incluir textos en diferentes formatos → <u>Text elements - Streamlit Docs</u>

Texto y más (método "mágico")

```
data = pd.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40],
})
st.write(1234)
st.write(data)
```


Elementos para incluir textos en diferentes formatos → <u>Text elements - Streamlit Docs</u>

Otros

```
st.text('This is some text.')
st.latex(r'''
    a + ar + a r^2 + a r^3 + \cdots + a r^{n-1} =
    \sum_{k=0}^{n-1} ar^k =
    a \left(\frac{1-r^{n}}{1-r}\right)
    ''')
```

This is some text.

$$a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \sum_{k=0}^{n-1} ar^k = a\left(rac{1-r^n}{1-r}
ight)$$

Código en Python

Pongamos título y veamos el dataset

Funciones básicas: Input

Elementos para incluir interactividad → <u>Input widgets - Streamlit Docs</u>

Selectores

```
option = st.selectbox(
    "How would you like to be contacted?",
    ["Email", "Home phone", "Mobile phone"])
st.write("You selected:", option)
```


Funciones básicas: Input

Elementos para incluir interactividad → <u>Input widgets - Streamlit Docs</u>

Botón

```
st.button("Reset", type="primary")
if st.button("Say hello"):
    st.write("Why hello there")
else:
    st.write("Goodbye")
```


Presionar Reset

Presionar Say hello

Funciones básicas: Input

Elementos para incluir interactividad → <u>Input widgets - Streamlit Docs</u>

Slider

```
age = st.slider("How old are you?", 0, 130, 25)
st.write("I'm ", age, "years old")
```


Código en Python

Vamos al código 🧖 🧖

Incluyamos un filtrador por camas y conectemos al dataset

Elementos para agregar visualizaciones → <u>Chart elements - Streamlit Docs</u>

Gráficos directos de streamlit

```
chart_data = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
st.line_chart(chart_data)
```


Elementos para agregar visualizaciones → Chart elements - Streamlit Docs

Mapa de puntos

st.map(df)

Elementos para agregar visualizaciones → Chart elements - Streamlit Docs

Gráficos de Altair

```
chart_data = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
c = alt.Chart(chart_data).mark_circle()
    .encode(x="a", y="b", size="c", color="c", tooltip=["a", "b", "c"])
```

st.altair_chart(c)

Elementos para agregar visualizaciones → <u>Streamlit-Folium</u>

Mapas de Folium

Funciones básicas: Layout

Elementos para definir el layout → <u>Layouts and Containers - Streamlit Docs</u>

Columnas

```
col1, col2 = st.columns([3, 1]) # Columna 1 es 3 veces más grande que columna 2 data = [-1.08, -1.20, 0.76, -0.80, -2.43, -1.10, 1.02, 0.42, -0.09, -0.53]
```

```
col1.line_chart(data)
```

col2.write(data)

Código en Python

Vamos al código 🧖 🧖

Agreguemos un mapa y gráficos al dashboard

Machine Learning y Streamlit

También podemos utilizar *Streamlit* como interfaz de nuestros modelos

- 1. Necesitamos incluir los *inputs* necesarios del modelo en el *dashboard*.
- 2. Tener un modelo entrenado y guardado
 - a. *joblib*, *pickle*, *keras* y *pytorch* tienen formas de lograr esto.
- 3. Procesar los *inputs* y solicitar al modelo el resultado.
- 4. Desplegar respuesta en la interfaz.

Código en Python

Cómo integrar ML

Ejemplos Aplicados

Ejemplos Aplicados

- Sophisticated Palette
- Streamlit theme for Plotly charts!
- JULO improves financial inclusion in Indonesia with Streamlit
- Wissam Siblini uses Streamlit for pathology detection in chest radiographs
- How Delta Dental uses Streamlit to make lightning-fast decisions

Taller evaluado

(Mapas y Texto)

Desarrollo en clases

Visualización de Información y Analítica Visual

Hernán Valdivieso López (<u>hfvaldivieso@uc.cl</u>)