

now: multi-dim

and define $R_{gof}(h) = \frac{g \circ f(xo+h) - g \circ f(xo) - Ah}{|h|}$ WTS: $|R_{g\circ f}(h)| \rightarrow o$ as $|h| \rightarrow o$ Note: $R_{gof}(h) = \frac{g(f(xo) + Df(xo)h + (h|R_f(h)) - g(f(xo)) - Ah}{|h|}$ Set $k = Df(xo)h + |h|R_f(h)$ Note: for h small enough, $|k| \leq ||Df(xo)|| \cdot |h| + |h|}{(= uovot \cdot |h|)}$ $R_{gof}(h) = \frac{g(yo+k) - g(f(xo)) - Ah}{|h|}$ $= \frac{g(yo) + Dg(yo)k + |k|R_g(k) - g(f(xo)) - Ah}{|h|}$ $= \frac{Dg(yo)}{|h|} \frac{(Df(xo)h + |h|R_g(h)) + |k|R_g(k) - Ah}{|h|}$ So $|R_{gof}(h)| \leq ||Dg(yo)|| \cdot |R_f(h)| + \frac{|k|}{|h|}|R_g(h)|$ Using (4) and $|R_g||R_h| \rightarrow o$, we get $|R_{gof}(h)| \rightarrow o$ as $|h| \rightarrow o$

Taylor 5 formula

Recall (Binomial Thm) $(x_1 + x_2)^k = \sum_{a=0}^{k} {k \choose a} x_1^a x_2^{k-a}$ $= \sum_{a+b=k} \frac{k!}{a!b!} x_1^a x_2^b$

Using multi-index notation: $= \sum_{|\alpha|=k} \frac{|\alpha|}{|\alpha|} \chi^{\alpha}$

Lemma Multinomial Three

For any $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and $k \in \mathbb{N}$ $(x_1 + ... + x_n)^k = \sum_{|\alpha| = k} \frac{k!}{\alpha!} x^{\alpha}$ Proof sketch

 $\frac{k!}{\alpha!}$ = the # of ways to divide a set of size k into disjoint subsets of size $\alpha_1, \ldots, \alpha_n$

There are k! ways to order the set.

Sory the 1st a, go to the 1st subject, the 2nd az

to the 2nd subject,
etc.

And there are $\alpha! = \alpha! |\alpha! ... |\alpha_n!$ ways to get the same result.

Def A subset of IR is convex if it contains the whole line segment of any two points in it.

i.e. Yx, x 66 -> tx + (1-t) y 66 for all t=[0,1]

Taylor's Thm

Let $6 \subseteq \mathbb{R}^n$ be open and convex Let $f: 6 \to \mathbb{R}$ be C^{k+1} and $a \in 6$

 $\Rightarrow \forall x \in G,$ $f(x) = \sum_{|\alpha| \le k} \frac{1}{|\alpha|} \partial_{\alpha}^{\alpha} f(\alpha) (x-\alpha)^{\alpha} + R_{\alpha,k}(x)$

where $R_{a,k} = \sum_{|\alpha|=|\alpha|} \frac{\partial^{\alpha} f(c)}{\partial t} (x-a)^{\alpha}$ for some c on the line from α to x.