CIS 575. Introduction to Algorithm Analysis Remarks on Assignment #1, Spring 2014

Question 1 The body of FINDLAST(A, n, x) can be written:

```
 \begin{aligned} & \textbf{if} \ A[n] = x \\ & \textbf{return} \ \mathbf{n} \\ & \textbf{else} \\ & \textbf{return} \ \mathbf{FINDLAST}(A, n-1, x) \end{aligned}
```

Question 2 We shall prove that for all $n \geq 0$, FINDLAST meets its specification¹, and shall do so by induction in n. The base case is when n = 0 in which case the precondition does not hold so the specification is vacuously fulfilled.

We now consider the case where $n \geq 1$, assume that x occurs in A[1..n], and split into two cases:

- if A[n] = x, then we return n which satisfies the postcondition since $1 \le n \le n$ and A[n] = x and x does not occur in the empty A[n+1..n].
- If $A[n] \neq x$, we infer that x occurs in A[1..n-1]; hence the precondition holds for the recursive call FINDLAST(A, n-1, x) and we can inductively assume that the postcondition holds. That is, the call returns p with $1 \leq p \leq n-1$ such that A[p] = x and x does not occur in A[p+1..n-1]. But this implies $1 \leq p \leq n$ and A[p] = x and that x does not occur in A[p+1..n], which amounts to the desired postcondition.

Question 3 The body of FINDLAST(A, n, x) can be written:

```
p \leftarrow n

while A[p] \neq x

p \leftarrow p - 1

return p
```

Question 4 As invariant for the while loop, we shall use:

```
1 \le p \le n and x occurs in A[1..p] and x does not occur in A[p+1..n].
```

That this invariant is properly **initialized** follows trivially from the precondition of FINDLAST, and the assignment before the while loop, since A[n+1..n] is empty.

To show that the invariant is **maintained**, we observe that if $A[p] \neq x$ then the invariant implies that x occurs in A[1..p-1], and thus $1 \leq p-1$, and that x does not occur in A[p..n].

To show that the while loop **terminates**, note that each iteration will decrease p which cannot go on forever since the invariant ensures $1 \le p$.

Finally, to show **correctness**, observe that at loop exit we have A[p] = x which together with the loop invariant yields the desired postcondition.

¹It is OK to consider only $n \ge 1$.