MACHINE LEARNING Case STUDY

Giancarlo Pozzo

Process overview

Study data

- Check data is meaningful
- Clean
- Add features
- Remove features
- Deal with outliers

Learning

- Standardize features (remove the mean and scale to unit variance)
- Split data into train, cross validation and test subsets
- Fit logistic regression
- Measure model Performance

Improving the model

- Maximise F1 score over the regularisation parameter and threshold
- Performance
- Modify F1 score

Check and clean

Dates makes sense:

- Initial trans. time < transaction completed time
- First transaction date ≤ transaction completed time
- First transaction date < today

Converted all "objects" to numbers, eg:

- Mozilla/5.0 (Linux; Android 11; SM-M215F) Apple... → 27
- "IN" → 14, "SG" → 32, ... both in GeolpCountry and Alpha2Code (used same dictionary)

Replaced NaN with reasonable values:

- If there is no "FirstEmailDate" but there is "Email_Id", then substitute "FirstEmailDate" with "FirstTransactionDate"
- If there are no reasonable values, substitute with 0

Check and clean

Added 10 features, eg:

- Duration of transactions
- Number of transactions from IP
- Interactions: ("Duration of transactions") * ("UniquePaymentChannel")

Outliers with Tukey's method

- About 5% of outliers have "Flag 1", we keep them and use Winsorize method (set a border and put all outliers at the border)

First model

- Define the input (X) and output (Y) variables
- Scale the input variables so that the mean $\mu=0$ and variance $\sigma^2=1$
- Divide data in 60% train, 20% cross validation, 20% test
- Fit logistic regression with options
 - class_weight="balanced": since we have skewed data we weight more the less represented class, that is we adjust weights inversely proportional to class frequencies in the input data
 - penalty='l2', the default one
- Measure model performance on the test set using threshold = 0.5
 - Given x_{test} if the model predicts probability bigger than threshold 0.5, the prediction is $y_{pred}=1$
 - Then we check the prediction y_{pred} against y_{test}
 - Calculate

$$F1_{\text{score}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = 0.14$$

	Y_test = 1	Y_test = 0
Y_pred = 1	True positive 374 = 0.92%	False positive 4538 =11.21%
Y_pred = 0	False negative 105 = 0.26%	True negative 35461=87.61%

Improved Model 1

- Find regularisation C and thresholds T hyperparameters that maximise F1 score
 - Define a function of C and T that returns F1 score
 - Fit logistic regression with C over the training set
 - For x in the cross validation set and given the threshold T, predict y
 - Given the predicted y and the cross validation set, calculate F1 score
 - Maximise the F1 score function with bounds $0 < C < \inf$ and 0 < T < 1
- Measure the model performance with the found optimised hyperparameters

$$F1_{\text{score}}(C_{\text{opt}}, T_{\text{opt}}) = 2 \times \frac{\text{precision}_{\text{opt}} \times \text{recall}_{\text{opt}}}{\text{precision}_{\text{opt}} + \text{recall}_{\text{opt}}}$$

= 0.38

	Y_test = 1	Y_test = 0
Y_pred = 1	True positive 198 = 0.49%	False positive 371 =0.92%
Y_pred = 0	False negative 281 = 0.69%	True negative 39628=97.90%

Improved Model 2

- Tripled F1 score BUT we worry about the decrease of true positive cases
- Modify F1 score function:
 - more weight to recall = true_positive / actual_positive
 - less weight to precision = true_positive / actual_positive
- Maximise modified function and measure performance

$$F1_{\text{modified}}(C,T) = 2 \times \frac{\text{precision} \times \text{recall}^4}{\text{precision} + \text{recall}^4}$$

$$F1_{\text{score}}(C'_{\text{opt}}, T'_{\text{opt}}) = 0.24$$

	Y_test = 1	Y_test = 0
Y_pred = 1	True positive 330 = 0.81%	False positive 1999 =4.94%
Y_pred = 0	False negative 149 = 0.37%	True negative 38000=93.88%

Some possible next steps and algorithms

Improve features

- Convert all prices in one currency
- Add frequency of transactions for each user
- Add polynomial terms

Clustering

discover new structures and features in data

Gaussian mixture models

- Multivariate anomaly detection
- sklearn.mixture learn and estimate complex outliers

Suggests for data collection

In email, hash separately username and domain

SHANK YOU