

Além disso, extende (A2) para uma união infinita Obs.: Nem sempre optomos pelo evento mais provoval, princi-palmente quando os eventos mão são eticamente hentros. Por isso, comporar eventos deve relevar consequências que dependam ma Sur ocorrência ou não. Temos que (A1) - (A4) não definem uma dist. de probabi-lidade (Kraft, Pratt, 1 Seiden berg (1959)). Seign X v.a. com $0 \le X \le 1$. Dizemos que $X \sim Unif [0,1]$ se $\forall 9, T_2 \subseteq [0,1], \{X \in T_1\} \le \{X \in T_2\} \Longrightarrow \lambda(T_1) \le \lambda(T_2)$. (A5) Existe X~Unif[0,1]. Construção da distribuição de probabilidade Suponha (A1)-(A5) e defina $G(a,b) = {X \in (a,b)}$. Em Particular $G(a_1,b_1) \lesssim G(a_2,b_2) \Leftrightarrow b_1-a_1 \leq b_2-a_2$. Teorema: Tome $A \in \mathbb{Z}$. Existe um único $a * \in [0,1]$ tal que $A \sim G[0,a*]$.

Dem : $U(A) := \{a: G[0,a] \gtrsim A\}$. Note que $J \in U(A)$ Seize $a^* = inf U(A)$. Emparticular, $G[O, a^*] = \bigcap_{i=1}^{\infty} G[O, a_i]$, a: \ a*. Por (A4) G[0, a*] \ A = a* \ U(A). Se $a^* = 0$, $A \lesssim G[0,0] \sim \phi \Rightarrow G[0,0] \sim A$. a*>0. Se a; 7 a*, G[0, a*) = U;=1 G[0,a;] e G[0,a*] ≤ A e Concluímos a prova.

