

SIMULAREA EXAMENULUI DE EVALUARE NAȚIONALĂ PENTRU ELEVII CLASEI a VIII-a 16 februarie 2023 Matematică

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

Subjectul I (30 puncte)

	(= : T = = = =)	
1.	b)	5p
2.	(c)	5p
3.	a)	5p
4.	b)	5p
5.	d)	5p
6.	a)	5p

Subjectul II (30 puncte)

1.	b)	5p
2.	(a)	5p
3.	(c)	5p
4.	(c)	5p
5.	a)	5p
6.	d)	5p

Subjectul III (30 puncte)

1.	a) $190 - 24 = 166$ lei (s-ar strange dacă fiecare persoană ar da câte 32 de lei.	1p
	166 nu se împarte exact la 32, deci prețul obiectului nu poate fi 190 de lei.	1n
		1p
	b) Notăm cu x , prețul obiectului și cu y , numărul de persoane.	1p
	x = 32y + 24	
	x = 40y - 16	
	32y + 24 = 40y - 16	1p
	y = 5	
	x = 184, deci prețul obiectului este 184 de lei	1p

2.	$\mathbf{a} E(x) = x^3 + x^2 + 6x + 9 + x^2 - 4x + 4 + x^2 - 1 - 12$	1p
	$E(x) = x^3 + 3x^2 + 2x$	1p
	$E(x) = x(x^2 + 3x + 2)$	
	E(x) = x(x+1)(x+2)	1p
	b) $E(n) = n(n+1)(n+2)$,	
	Produsul a două numere naturale consecutive este divizibil cu 2,	1p
	Produsul a trei numere natuarle consecutive este divizibil cu 3.	4
	Deci $E(n)$: 6	1p
3.	a) $a = 3 \cdot 6\sqrt{3} + 2 \cdot 8\sqrt{3} - 4 \cdot 2\sqrt{3} - 2 \cdot 5\sqrt{3}$	1p
	$a = 18\sqrt{3} + 16\sqrt{3} - 8\sqrt{3} - 10\sqrt{3}$	_
	$a = 16\sqrt{3}$	1p
	b) $b = 5 \cdot 4\sqrt{3} + 2 \cdot 3\sqrt{3} - 2 \cdot 12\sqrt{3} = 2\sqrt{3}$	1p
	$M_a = \sqrt{a \cdot b} = 4\sqrt{6}$	1p
	$4\sqrt{6} \in (9;10) \Leftrightarrow 81 < 96 < 100$, adevărat	1p
4.	a) $AO = OC = 6$ cm (raze), $AC = 6$ cm $\Rightarrow \Delta AOC$ echilateral $\Rightarrow A = AOC$	1p
	$\angle ACB = \frac{1}{2} \widehat{AB} = \frac{180^{\circ}}{2} = 90^{\circ}$	
	$\angle ABC = \overset{2}{3}0^{0}$	1p
	b) $BC = 6\sqrt{3}$, $A_{\triangle ABC} = \frac{BC \cdot AC}{2} \Rightarrow A_{\triangle ABC} = 18\sqrt{3}$ cm	1p
	$CO \text{ mediană} \Rightarrow A_{\Delta BOC} = \frac{1}{3} \cdot A_{\Delta BAC} = 9\sqrt{3} \text{ cm}^2$	
	$A_{sector} = 12\pi \text{ cm}^2$	1p
	$A_{hasurata} = A_{sector} - A_{\Delta BOC} = 12\pi - 9\sqrt{3} = 3(4\pi - 3\sqrt{3}) \text{ cm}^2$	1p
5.	a) Dacă $AC \perp CE \Rightarrow \angle ACB = 30^{\circ}$	1
	$A_{\Delta BEC} = \frac{l^2 \sqrt{3}}{4} = 192\sqrt{3} \text{ m}^2$	
	4	1p
	$A_{ABCD} = L \cdot l$	
	$A_{gr\ddot{a}din\ddot{a}} = 448\sqrt{3} \text{ m}^2$	1p
	b) Construin $EM \perp BC \Rightarrow$ $AB = BP = AP$	1 n
	$\Delta ABP \sim \Delta EMP \Rightarrow \frac{AB}{EM} = \frac{BP}{PM} = \frac{AP}{EP}$	1p
	$EM = 24 \text{ m}; BM = \frac{16\sqrt{3}}{5} \text{ m}$	1p
	$\frac{16\sqrt{3}}{5} < 6$	1p
	5	
6.	a) Fie M mijlocul lui AB; O centru de greutate $\Rightarrow \frac{OM}{CM} = \frac{1}{3}$; $VP = 5$ cm, $VC = 15$ cm	
	$\Rightarrow \frac{VP}{VC} = \frac{1}{3}$	1 p
	Obţinem $\frac{OM}{CM} = \frac{VP}{VC}$; unghiul C este unghi comun (LUL) $\Rightarrow \triangle PCO \sim \triangle VCM$	1 p
	$\Rightarrow PO VM, \text{ dar } VM \subset (VAB) \Rightarrow PO (VAB)$	- P
	b) $\sin \sphericalangle (PO, VB) = \sin \sphericalangle (VM, VB) = \sin \sphericalangle (MVB); \triangle VAB \text{ isoscel} \Rightarrow \text{mediana } VM$	
	este și înalțime	2p
		1

	$\Rightarrow \triangle VMB \text{ dreptunghic în } M \Rightarrow \sin \sphericalangle (MVB) =$	=	cateta opusă	_	MB	$=\frac{A}{A}$	<u>B</u> _	9	=	3	1	1p	
		_	inotenuză	_	VR	$-\frac{1}{\nu}$	$_{'R}$ $-$	15	_	5			