Classifying All Data

First Stage Classifier

This random forest model classifies the shape of the data based on x to y ratio, number of squares, fractal dimension and density skewness.

Using this model, we have obtained a set of labeled data which can now be used to train a model which predicts shape based on parameter values.

Second Stage Classifier

This random forest model classifies the shape based on parameter values. I tried this treating the parameters as factors and as numeric variables.

Treating params as **factors**:

Confusion Matrix and Statistics

Reference

Prediction	comet	compact	fan	other	stream
comet	392	0	0	11	23
compact	0	270	0	11	0
fan	4	0	253	9	12
other	2	0	6	542	18
stream	1	0	0	49	558

Overall Statistics

Accuracy: 0.9324

95% CI: (0.921, 0.9427)

No Information Rate : 0.2878 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.913

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: comet Cl	ass: compact	Class: fan	Class: other	Class: stream
Sensitivity	0.9825	1.0000	0.9768	0.8714	0.9133
Specificity	0.9807	0.9942	0.9869	0.9831	0.9677
Pos Pred Value	0.9202	0.9609	0.9101	0.9542	0.9178
Neg Pred Value	0.9960	1.0000	0.9968	0.9498	0.9659
Prevalence	0.1846	0.1249	0.1199	0.2878	0.2827
Detection Rate	0.1814	0.1249	0.1171	0.2508	0.2582
Detection Prevalence	0.1971	0.1300	0.1286	0.2628	0.2814
Balanced Accuracy	0.9816	0.9971	0.9818	0.9272	0.9405

Treating params as **numeric**:

.metric <chr></chr>	.estimator <chr></chr>	.config <chr></chr>
	multiclass hand_till	Preprocessor1_Model1 Preprocessor1_Model1

Confusion Matrix and Statistics Reference Prediction comet compact fan other stream comet 396 0 0 13 5 0 270 0 0 compact 2 0 259 fan 16 0 13 other 0 0 533 1 0 0 55 583 stream Overall Statistics Accuracy: 0.9445 95% CI: (0.934, 0.9537) No Information Rate: 0.2878 P-Value [Acc > NIR] : < 2.2e-16 Kappa: 0.9285 Mcnemar's Test P-Value : NA Statistics by Class: Class: comet Class: compact Class: fan Class: other Class: stream Sensitivity 0.9925 1.0000 1.0000 0.8569 0.9542 Specificity 0.9881 0.9974 0.9869 0.9916 0.9639 Pos Pred Value 0.9496 0.9818 0.9120 0.9762 0.9124 Neg Pred Value 0.9983 1.0000 1.0000 0.9449 0.9816 Prevalence 0.1846 0.1249 0.1199 0.2878 0.2827 Detection Rate 0.2466 0.2698 0.1832 0.1249 0.1199 Detection Prevalence 0.1930 0.1273 0.1314 0.2527 0.2957 Balanced Accuracy 0.9903 0.9987 0.9934 0.9242 0.9590

The performance is quite good overal, though it is important to note that these metrics only capture one layer of predictive accuracy, as we are using predicted labels as our ground truth for this model. We see that in each case, the poorest performance is in the *other* and *stream* classes.