Computational Photography

Matthias Zwicker, Siavash Bigdeli University of Bern Fall 2014

Project 6

- Light Fields
- Ray Space Analysis
- View Reconstruction
- Autostereoscopic image

 Get light field data: <u>http://graphics.ucsd.edu/datasets/lfarchiv</u> e/lfs.shtml

- Visualize ray space
- Analyze images

Camera view

Ray space, "epipolar plane image", EPI

- Visualize power spectrum in Fourier space
- Analyze images

EPI

Fourier space

• Linear interpolation in ray space

Linear Interpolation, k=2

- Sampling leads to replication of spectra
- Reconstruction is multiplication with filter spectrum
- Overlap with non-central replicas is aliasing

Aliasing appears as double edges

 Sheared reconstruction filter to match depth of scene allows lower sampling rate

Higher sampling rate isotropic reconstruction filter, aliasing

Lower sampling rate, optimal reconstruction filter, no aliasing

 Shearing reconstruction filter equivalent to shearing signal before filtering

- Input
- Reconstruction: filtering across images
 - Shear determines which depth is aligned with filter

- Shearing in Ray Space: Shear EPIs
- Determine shearing angle in EPIs

Filter EPIs with gaussian Filter

Linear Interpolation, k=2

Sheared Interpolation, k=2

sheared interpolated image

Autostereoscopic image

Autostereoscopic image

Light Field

Blue: camera rays, red: lenticular rays

1. Questions?