

### Motivación

En un mundo donde la tecnología y la innovación están en constante evolución, la industria de los videojuegos emerge como uno de los sectores más dinámicos y prometedores.

Según el informe Gaming & Esports Report 2023 de YouGov, el 31% de la población mundial juega activamente en diversas plataformas semanalmente





### Objetivo de Estudio

La expansión de los videojuegos genera la interrogante de ¿qué hace que un juego sea exitoso en un mercado tan diverso y competitivo?

El estudio del comportamiento de plataformas como Steam proporciona información sobre las tendencias y las estrategias que pueden llevar a un juego al éxito en este entorno digital en constante expansión.

# Preguntas y problemas abordados

¿Qué es lo que hace que un juego sea bueno?

¿Cuál es el atributo más importante que define a un juego bueno?

¿Hay algún patrón que identifique a los mejores juegos?

Hay algún género que sea más exitoso que otros, hay una trama en común en los juegos exitosos?

¿Hay algún/os atributo/s que permita/n predecir si un juego será exitoso o no?



### Información de los Datos



### Indie

### English

### Windows

Género de juego más popular

98,11% de los juegos del dataset están en inglés

99,98% de los juegos corren en Windows

## Single Player



Categoría más popular con 25.678 menciones

### RPG

Género con mejor rating promedio



### Massively Multiplayer

Género con peor rating promedio

### Experimentos Realizados

- Experimento Preliminar Hito 2: Clustering
- Experimentos Hito 3:
  - 1. Exploracion de Clusters
  - 2. Clasificación: Labels manuales
  - 3. Regresión y Clasificación del Rating en base a descripciones o Keyphrases de los juegos



### Experimento Preliminar





### Experimento Preliminar





### Experimento Preliminar



#### Exploración de Clusters





#### Exploración de Clusters





#### Exploración de Clusters



¿Juegos Open World tienen más rating?

#### Exploración de Clusters





#### Regresiones:

El objetivo <mark>(output)</mark> era obtener el rating en base a las <mark>descripciones</mark> o Keyphrases de un videojuego (input).

Se experimentó con diversos modelos, diversas formas de vectorizar los textos y variando el input (keyphrases con KeyBert o descripción completa).

Finalmente los mejores resultados se obtuvieron con el modelo <mark>Ridge Regression</mark>, con TF-IDF y usando la detailed description como input.





#### Regresiones:

| Model | MSE    | MAE   | R2      |
|-------|--------|-------|---------|
| Dummy | 286.36 | 14.00 | -0.0011 |
| Ridge | 241.65 | 12.54 | 0.1551  |
| LR    | 295.50 | 13.62 | -0.0330 |
| RF    | 280.80 | 13.42 | 0.0183  |
| GB    | 261.07 | 13.29 | 0.0872  |
| SVR   | 281.04 | 13.30 | 0.0174  |

| Glove2Vec Vectorization with detailed_description |        |       |         |  |  |  |
|---------------------------------------------------|--------|-------|---------|--|--|--|
| Model                                             | MSE    | MAE   | R2      |  |  |  |
| Dummy                                             | 286.36 | 14.00 | -0.0011 |  |  |  |
| Ridge                                             | 263.21 | 13.20 | 0.0797  |  |  |  |
| Lasso                                             | 275.78 | 13.7  | 0.0358  |  |  |  |
| LR                                                | 265.23 | 13.23 | 0.0727  |  |  |  |
| RF                                                | 289.01 | 13.78 | -0.0100 |  |  |  |
| GB                                                | 265.41 | 13.14 | 0.0720  |  |  |  |
| SVR                                               | 280.55 | 13.34 | 0.0191  |  |  |  |

| TF-IDF Vectorization with filter_description |        |       |         |  |  |
|----------------------------------------------|--------|-------|---------|--|--|
| Model                                        | MSE    | MAE   | R2      |  |  |
| Dummy                                        | 286.36 | 14.00 | -0.0011 |  |  |
| Ridge                                        | 243.15 | 12.50 | 0.1499  |  |  |
| Lasso                                        | 286.36 | 14    | -0.0011 |  |  |
| LR                                           | 300.34 | 13.72 | -0.0500 |  |  |
| RF                                           | 286.52 | 13.66 | -0.0016 |  |  |
| GB                                           | 262.82 | 13.28 | 0.0811  |  |  |
| SVR                                          | 282.83 | 13.36 | 0.0112  |  |  |

| Glove2 | Glove2Vec Vectorization with filter_description |       |         |  |  |  |  |
|--------|-------------------------------------------------|-------|---------|--|--|--|--|
| Model  | MSE                                             | MAE   | R2      |  |  |  |  |
| Dummy  | 286.36                                          | 14.00 | -0.0011 |  |  |  |  |
| Ridge  | 265.46                                          | 13.23 | 0.0719  |  |  |  |  |
| Lasso  | 277.21                                          | 13.72 | 0.0308  |  |  |  |  |
| LR     | 268.07                                          | 13.26 | 0.0628  |  |  |  |  |
| RF     | 282.24                                          | 13.61 | 0.0132  |  |  |  |  |
| GB     | 268.33                                          | 13.25 | 0.0619  |  |  |  |  |
| SVR    | 279.40                                          | 13.30 | 0.0231  |  |  |  |  |

| TF-IDF Vectorization with top_keyphrases |        |       |         |  |  |  |
|------------------------------------------|--------|-------|---------|--|--|--|
| 1odel                                    | MSE    | MAE   | R2      |  |  |  |
| ummy                                     | 286.36 | 14.00 | -0.0011 |  |  |  |
| idge                                     | 298.75 | 13.78 | -0.0444 |  |  |  |
| asso                                     | 286.36 | 14    | -0.0011 |  |  |  |
| R                                        | 647.86 | 20.25 | -1.2649 |  |  |  |
| F                                        | 321.23 | 13.88 | -0.1230 |  |  |  |
| В                                        | 285.30 | 13.88 | 0.0025  |  |  |  |
| VR                                       | 291.08 | 13.53 | -0.0176 |  |  |  |
|                                          |        |       |         |  |  |  |

| Glove 2Vec Vectorization with top_keyphrases |        |       |         |  |  |  |
|----------------------------------------------|--------|-------|---------|--|--|--|
| Model                                        | MSE    | MAE   | R2      |  |  |  |
| Dummy                                        | 286.36 | 14.00 | -0.0011 |  |  |  |
| Ridge                                        | 284.58 | 13.76 | 0.0051  |  |  |  |
| Lasso                                        | 282.21 | 13.84 | 0.0133  |  |  |  |
| LR                                           | 284.77 | 13.76 | 0.0044  |  |  |  |
| RF                                           | 313.07 | 14.47 | -0.0945 |  |  |  |
| GB                                           | 291.85 | 14.01 | -0.0203 |  |  |  |
| SVR                                          | 286.38 | 13.40 | -0.0012 |  |  |  |

#### Clasificadores:

El objetivo (output) era obtener <mark>clases del rating</mark> en base a las descripciones o Keyphrases de un videojuego (input).

Se usan clasificadores para ver si se puede "predecir" el rating de una forma distinta que sea <mark>más efectiva</mark> a los modelos de regresión.

Se crearon labels en base al rating <mark>(malo, bueno, regular, etc)</mark> y se entrenan distintos clasificadores.



#### Clasificación: Ridge Regression Classifier

|                      | precision | recall | f1-score | support |
|----------------------|-----------|--------|----------|---------|
| Bueno                | 0.49      | 0.52   | 0.51     | 2181    |
| Malo                 | 0.40      | 0.09   | 0.15     | 632     |
| Muy Bueno            | 0.40      | 0.03   | 0.06     | 749     |
| Muy Malo             | 0.00      | 0.00   | 0.00     | 139     |
| Regular              | 0.34      | 0.61   | 0.44     | 1490    |
| 25.454 Sec. 20.04555 |           |        | (2007)   |         |
| accuracy             |           |        | 0.41     | 5191    |
| macro avg            | 0.33      | 0.25   | 0.23     | 5191    |
| weighted avg         | 0.41      | 0.41   | 0.37     | 5191    |

|           |       |      |           |          |         | -      |
|-----------|-------|------|-----------|----------|---------|--------|
| Bueno     | 1144  | 23   | 32        | 0        | 982     | - 1000 |
| Malo      | 153   | 58   | 0         | 0        | 421     | - 750  |
| Muy Bueno | 476   | 12   | 25        | 0        | 236     | - 500  |
| Muy Malo  | 32    | 10   | 0         | 0        | 97      | - 250  |
| Regular   | 532   | 41   | 5         | 0        | 912     | 0      |
|           | Bueno | Malo | Muy Bueno | Muy Malo | Regular |        |



#### Clasificación: Decision Tree

| Accuracy of D | ecision Tree | Classifi | er: 0.33230 | 059140820651 |
|---------------|--------------|----------|-------------|--------------|
| Classificatio | n Report:    |          |             |              |
|               | precision    | recall   | f1-score    | support      |
| Bueno         | 0.43         | 0.46     | 0.45        | 2181         |
| Malo          | 0.17         | 0.17     | 0.17        | 632          |
| Muy Bueno     | 0.20         | 0.17     | 0.18        | 616          |
| Muy Malo      | 0.14         | 0.10     | 0.12        | 272          |
| Regular       | 0.32         | 0.32     | 0.32        | 1490         |
| accuracy      |              |          | 0.33        | 5191         |
| macro avg     | 0.25         | 0.24     | 0.25        | 5191         |
| weighted avg  | 0.32         | 0.33     | 0.33        | 5191         |

| Durana    |       | 2.42 | 22.       | 22       | (12.22) | - 1000    |
|-----------|-------|------|-----------|----------|---------|-----------|
| Bueno     | 1005  | 240  | 234       | 77       | 625     | - 800     |
| Malo      | 258   | 107  | 40        | 30       | 197     | 500000000 |
| Muy Bueno | 307   | 56   | 103       | 8        | 142     | - 600     |
| Muy Malo  | 107   | 45   | 14        | 28       | 78      | - 400     |
| Regular   | 640   | 178  | 132       | 58       | 482     | - 200     |
|           | Bueno | Malo | Muy Bueno | Muy Malo | Regular |           |

#### Clasificación: KNN

| Accuracy of k |           |        | 4292043922 | 173     |
|---------------|-----------|--------|------------|---------|
|               | precision | recall | f1-score   | support |
| Bueno         | 0.48      | 0.01   | 0.03       | 2181    |
| Malo          | 0.37      | 0.01   | 0.02       | 632     |
| Muy Bueno     | 0.77      | 0.02   | 0.03       | 616     |
| Muy Malo      | 0.00      | 0.00   | 0.00       | 272     |
| Regular       | 0.29      | 0.99   | 0.45       | 1490    |
| accuracy      |           |        | 0.29       | 5191    |
| macro avg     | 0.38      | 0.21   | 0.11       | 5191    |
| weighted avg  | 0.42      | 0.29   | 0.15       | 5191    |

| Bueno     | 32    | 1    | 2         | 0        | 2146    | - 2000 |
|-----------|-------|------|-----------|----------|---------|--------|
| Malo      | 5     | 7    | 0         | 0        | 620     | - 1500 |
| Muy Bueno | 15    | 1    | 10        | 0        | 590     | - 1000 |
| Muy Malo  | 2     | 3    | 0         | 0        | 267     | - 500  |
| Regular   | 13    | 7    | 1         | 0        | 1469    | 0      |
|           | Bueno | Malo | Muy Bueno | Muy Malo | Regular | 0      |



#### Clasificación: Naive Bayes

| Accuracy of N |           |      |          | 1067231747 |
|---------------|-----------|------|----------|------------|
| Classificatio | precision |      | f1-score | support    |
| Bueno         | 0.42      | 1.00 | 0.59     | 2181       |
| Malo          | 0.00      | 0.00 | 0.00     | 632        |
| Muy Bueno     | 1.00      | 0.00 | 0.00     | 616        |
| Muy Malo      | 0.00      | 0.00 | 0.00     | 272        |
| Regular       | 0.75      | 0.00 | 0.01     | 1490       |
| accuracy      |           |      | 0.42     | 5191       |
| macro avg     | 0.43      | 0.20 | 0.12     | 5191       |
| weighted avg  | 0.51      | 0.42 | 0.25     | 5191       |

| Bueno     | 2180  | 0    | 0         | 0        | 1       | - 2000 |
|-----------|-------|------|-----------|----------|---------|--------|
| Malo      | 631   | 0    | 0         | 0        | 1       | - 1500 |
| Muy Bueno | 615   | 0    | 1         | 0        | 0       | - 1000 |
| Muy Malo  | 272   | 0    | 0         | 0        | 0       | - 500  |
| Regular   | 1484  | 0    | 0         | 0        | 6       | 0      |
|           | Bueno | Malo | Muy Bueno | Muy Malo | Regular | 0      |

#### Clasificación: SVM

| Accuracy of S<br>Classification |           |        | 38162203814 | 43      |
|---------------------------------|-----------|--------|-------------|---------|
|                                 | precision | recall | f1-score    | support |
| Bueno                           | 0.46      | 0.80   | 0.58        | 2181    |
| Malo                            | 0.34      | 0.04   | 0.07        | 632     |
| Muy Bueno                       | 0.57      | 0.06   | 0.11        | 616     |
| Muy Malo                        | 0.25      | 0.00   | 0.01        | 272     |
| Regular                         | 0.35      | 0.29   | 0.32        | 1490    |
| accuracy                        |           |        | 0.43        | 5191    |
| macro avg                       | 0.39      | 0.24   | 0.22        | 5191    |
| weighted avg                    | 0.41      | 0.43   | 0.36        | 5191    |





### Ejemplo

"Una completa estafa", Skull Island Rise of Kong es aclamado como el peor juego del 2023 y fue desarrollado en Chile



Rating Prediction: 58.75415083780705 Real Rating Value: 39.49

Most negative coefficients:

| Coefficient | Feature Label (Words) |
|-------------|-----------------------|
| -21.1363    | various               |
| -18.575     | person                |
| -16.5263    | history               |
| -15.4461    | jungle                |
| -14.6015    | king                  |
| -12.2693    | waves                 |
| -10.8859    | fury                  |
| -10.817     | terrain               |
| -10.281     | heights               |
| -9.40571    | potential             |
| T           |                       |



### Futuras Direcciones

Tendencias temporales

Impacto de eventos relevantes (lanzamientos de consolas, plataformas, etc.)

eic.)

Regresiones

Buscar formas adicionales de optimizar el modelo de regresión (Ej: Regularizaciones) Análisis geográfico

Estudiar tendencias en distintas regiones geográficas: países o continentes.

Clasificación

Abordar el desafío del desequilibrio entre las clases mediante la implementación de técnicas de balanceo.

Clustering

Variar preprocesamiento para reducir dimensionalidad, estudiar más los atributos en los clusters encontrados.

Con clusters mejor construidos nombrar según rating y usar esas labels para clasificar.

### Conclusiones

- No se obtienen clusters claros separados por rating Se encuentra un indicio de un tipo de juego relacionado con alto rating.
- Regresiones obtienen predicciones aproximadas.
- Clasificación funciona aproximadamente.
- Las preguntas planteadas se contestan con baja certeza, más análisis es necesario.

### iMuchas Gracias!

Pd: si quieren hacer un juego exitoso no hagan un juego de un gorila en una isla.



