

Chapitre V – Les fonctions trigonométriques

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE	DES MATIÈRES		
I - Le	e cercle trigonométrique	1	
1.	Définition	1	
2.	2. Enroulement de la droite des réels autour du cercle trigonométrique 2		
3.	Le radian	3	
II - Ét 1. 2. 3. 4. 5.	tude des fonctions trigonométriques Formules de trigonométrie	4 4 5 6 7 8	

I - Le cercle trigonométrique

1. Définition

Dans tout le cours, le plan sera muni d'un repère orthonormé $(O, \overrightarrow{\imath}; \overrightarrow{\jmath})$. Il sera également muni d'un cercle \mathcal{C} appelé **cercle trigonométrique** de centre O et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (c'est le **sens direct**) :

À RETENIR : COSINUS ET SINUS 📍

Soit M un point quelconque situé sur le cercle $\mathcal C$ faisant un angle x avec l'axe des abscisses. Les coordonnées de M sont :

- L'abscisse de M appelée **cosinus** est notée cos(x).
- L'ordonnée de M appelée sinus est notée sin(x).
- Pour tout $x \in \mathbb{R}$, on a $-1 \le \cos(x) \le 1$ et $-1 \le \sin(x) \le 1$.

2. Enroulement de la droite des réels autour du cercle trigonométrique

Il est possible "d'enrouler" la droite des réels autour du cercle $\mathcal C$ dans le sens inverse des aiguilles d'une montre :

À LIRE : LONGUEUR D'ARCS DE CERCLE 59

L'enroulement de cette droite permet ainsi de mesurer des longueurs d'arcs sur le cercle $\mathcal C.$ Ainsi, la longueur d'un quart de cercle vaut $\frac{\pi}{2}$ (celle d'un demi-cercle vaut π et celle d'un cercle vaut 2π).

Ainsi, puisque l'on peut enrouler infiniment cette droite autour du cercle, les fonctions sinus et cosinus sont périodiques de période 2π .

À RETENIR : PÉRIODICITÉ 📍

Ainsi, pour tout x réel et k entier relatif :

$$--\cos(x)=\cos(x+2k\pi)$$

$$-\sin(x) = \sin(x + 2k\pi)$$

À LIRE 00

Concrètement, cela signifie que pour tout $x \in \mathbb{R}$, $\cos(x) = \cos(x+2\pi) = \cos(x+4\pi) = \ldots = \cos(x+2k\pi)$ et idem pour $\sin(x)$.

3. Le radian

À RETENIR : DÉFINITION 🕴

Le radian est une unité de mesure permettant de mesurer des angles orientés. La mesure en radians d'un angle vaut la longueur de l'arc de $\mathcal C$ que cet angle intercepte.

À LIRE 99

Cela veut simplement dire qu'un angle en radian n'est rien d'autre qu'une mesure de longueur d'arc du cercle trigonométrique.

Attention cependant, comme le radian est une unité de mesure d'angles orientés, mesurer $\frac{\pi}{2}$ ou $-\frac{\pi}{2}$ radians n'est pas la même chose car les angles ont **un sens**.

Si l'angle a une mesure positive, alors il est orienté dans le sens inverse des aiguilles d'une montre (le sens direct).

Si l'angle a une mesure négative, alors il est orienté dans le sens des aiguilles d'une montre (le sens indirect).

II - Étude des fonctions trigonométriques

1. Formules de trigonométrie

```
On a les relations suivantes pour tout x \in \mathbb{R}:
-\cos(-x) = \cos(x) \text{ (la fonction cosinus est paire)}
-\sin(-x) = -\sin(x) \text{ (la fonction sinus est impaire)}
-\cos(x+\pi) = -\cos(x)
-\sin(x+\pi) = -\sin(x)
-\cos(x-\pi) = -\cos(x)
-\sin(x-\pi) = \sin(x)
-\cos(\frac{\pi}{2}-x) = \sin(x)
-\cos(\frac{\pi}{2}-x) = \sin(x)
-\sin(\frac{\pi}{2}-x) = \cos(x)
-\cos(x+\frac{\pi}{2}) = -\sin(x)
-\sin(x+\frac{\pi}{2}) = \cos(x)
-\cos(x+y) = \cos(x) \times \cos(y) - \sin(x) \times \sin(y)
-\sin(x+y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)
-\sin(x+y) = \sin(x) \times \cos(y) + \cos(x) \times \sin(y)
-\cos(x)^2 + \sin(x)^2 = 1
```

À LIRE : RETROUVER LES FORMULES 99

Il n'est aucunement demandé de mémoriser ces formules (sauf les trois dernières). Cependant, il doit être possible de les retrouver à l'aide du cercle trigonométrique. Ainsi, prenons l'exemple de $\cos(x+\pi)$:

On remarque que l'ordonnée reste la même (le sinus est le même). Cependant, on a bien une abscisse opposée. On a retrouvé la formule $\cos(x+\pi)=-\cos(x)$.

2. Dérivée

À RETENIR : DÉRIVÉE D'UNE COMPOSÉE 📍

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

$$--\cos'(u(x)) = -u'(x)\sin(u(x))$$

$$--\sin'(u(x)) = u'(x)\cos(u(x))$$

À RETENIR : DÉRIVÉE 📍

Ainsi, si pour tout $x \in I$ on a u(x) = x, on trouve :

$$--\cos'(x) = -\sin(x)$$

$$-\sin'(x) = \cos(x)$$

3. Signe et variations

L'étude du signe des dérivées des fonctions trigonométriques permet d'obtenir les variations de celles-ci. Nous allons donc voir le signe et les variations de ces fonctions.

Veuillez noter que ce tableau est périodique de période 2π .

Ce tableau est également périodique de période 2π .

4. Valeurs remarquables

À RETENIR : VALEURS REMARQUABLES 📍

Voici un tableau regroupant quelques valeurs remarquables de sinus et de cosinus :

V aleur de x (à $2k\pi$ près, $k \in \mathbb{Z}$)	Valeur de cos(x)	Valeur de sin(x)
0	1	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	-1	0

5. Représentation graphique

À l'aide de toutes les informations et valeurs données précédemment, il est possible d'établir une représentation graphique de la fonction cosinus :

De même pour la fonction sinus :

On remarque sur ces graphiques plusieurs propriétés données : parité, signe, périodicité, etc...