Exercice 1

On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(x,y) = (x+y,xy)

- a) Montrer que f est de classe C^{∞} . Calculer la différentielle de f en (x,y). Déterminer l'ensemble S des points $(x,y) \in \mathbb{R}^2$ en lesquels $\mathrm{d} f_{(x,y)}$ est inversible.
- b) Calculer $f(\mathbb{R}^2)$. L'application f est-elle un difféomorphisme de \mathbb{R}^2 sur $f(\mathbb{R}^2)$? L'application f est-elle un difféomorphisme de S sur f(S)? Trouver un ouvert connexe maximal U de \mathbb{R}^2 tel que f soit un difféomorphisme de U sur f(S).

Exercice 2

a) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^{∞} . Montrer qu'il existe des fonctions $g_i: \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} $(1 \leq i \leq n)$ telles que $\forall x \in \mathbb{R}^n$

$$f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$$

On souhaite remplacer \mathbb{R}^n par un ouvert U de \mathbb{R}^n , donner des hypothèses sur U pour lesquelles le résultat est toujours valable;

b) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^{∞} telle que f(0) = 0 et $\mathrm{d}f(0) = 0$. Montrer qu'il existe des fonctions $h_{ij}: \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} $(1 \le i, j \le n)$ telles que $\forall x \in \mathbb{R}^n$,

$$f(x) = \sum_{i,j} x_i x_j h_{i,j}(x)$$

c) Montrer que $I = \{ f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}), \quad f(0) = 0 \}$ est un idéal maximal de $C^{\infty}(\mathbb{R}^n, \mathbb{R})$ de type fini, principal pour n = 1.

Exercice 3 On munit l'espace \mathbb{R}^n d'une norme quelconque et on note B_r la boule de centre 0 et de rayon r. Soit f un C^1 difféomorphisme entre deux ouverts U et V de \mathbb{R}^n contenant l'origine. On supposera pour simplifier que f(0) = 0.

a) Soit $\epsilon \in]0,1[$ fixé. Montrer qu'il existe R>0 tel que pour tout $x\in B_R$,

$$\| df(0)^{-1}(f(x)) - x \| \le \epsilon \|x\|$$

b) Montrer qu'il existe R' > 0 tel que, pour $0 \leqslant r \leqslant R'$,

$$(1 - \epsilon) df(0)(B_r) \subset f(B_r) \subset (1 + \epsilon) df(0)(B_r)$$

Indication : Pour la première inclusion, observer que $f(B_R)$ est un voisinage de 0.

c) Soit λ la mesure de Lebesgue sur \mathbb{R}^n dont on admet qu'elle satisfait la relation $\lambda(AX) = |det(A)|\lambda(X)$ pour tout ensemble Lebesgue-mesurable X et toute application linéaire $A \in \mathcal{L}(\mathbb{R}^n)$. Montrer alors que :

$$|\det df(0)| = \lim_{r \to 0} \frac{\lambda(f(B_r))}{\lambda(B_r)}$$