

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

Approcci di deep learning per la classificazione di Point Cloud di oggetti 3D

Giulia Scarpa (Matr. 26780A) Relatrice: Raffaella Lanzarotti

Introduzione

OBIETTIVO: Classificazione di oggetti 3D tramite tecniche di deep learning

Point cloud: punti nello spazio 3D, caratterizzati da coordinate (x, y, z) e da altre informazioni come colore o normali.

Tecniche di deep learning utilizzate:

- Graph Neural Networks (GNN)
- Point Cloud Neural Networks (PCNN)

Dataset

PartNet: dataset che contiene modelli 3D appartenenti a 24 categorie di oggetti.

In questo progetto abbiamo utilizzato 8 oggetti (Vase, Lamp, Knife, Bottle, Laptop, Faucet, Chair, Table) per un totale di 3985 elementi.

Elaborazione point cloud

1. Rototraslazione casuale

2. Normalizzazione

3. Farthest Point Sampling

Graph Neural Network (GNN)

(a) 2D Convolution on an image

(b) Graph Convolution

GNN: costruzione del grafo

1. Costruzione grafo: k-nearest neighbors (k-nn)

2. Fast Point Feature Histograms

Ispirati da: DUAN, Haojie, et al. Radiotherapy Sensitivity Prediction For Glioma Based On Graph Convolutional Networks.

Ispirati da: DUAN, Haojie, et al. Radiotherapy Sensitivity Prediction For Glioma Based On Graph Convolutional Networks.

Ispirati da: DUAN, Haojie, et al. Radiotherapy Sensitivity Prediction For Glioma Based On Graph Convolutional Networks.

Ispirati da: DUAN, Haojie, et al. Radiotherapy Sensitivity Prediction For Glioma Based On Graph Convolutional Networks.

DGCNN (Dynamic Graph CNN)

WANG, Yue, et al. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 2019.

Esperimenti

→ Nested 5-fold cross-validation

→ Ottimizzatore: Adam

→ Iperparametri: learning rate: 0.0001, weight decay: 10-4, epoche: 250, batch size: 32

→ Early stopping: patience = 15 epoche.

→ Loss: Cross Entropy

→ Metriche dei modelli: loss, accuracy, f1-score, auroc e auprc.

Risultati (1)

12	Confusion Matrix - GCNConv									
Vase -	361.0	20.0	10.0	36.0	9.0	10.0	42.0	12.0		
Lamp	46.0	352.0	8.0	17.0	4.0	16.0	47.0	10.0		
Knife -	9.0	9.0	410.0	2.0	12.0	8.0	40.0	10.0		
True Labels ptop Bottle	62.0	17.0	7.0	385.0	2.0	8.0	16.0	3.0		
True L Laptop	6.0	2.0	5.0	1.0	450.0	0.0	10.0	11.0		
Faucet	6.0	10.0	13.0	10.0	1.0	432.0	27.0	1.0		
Chair -	12.0	18.0	8.0	8.0	3.0	6.0	408.0	37.0		
- Table	18.0	9.0	15.0	3.0	25.0	0.0	71.0	359.0		
Vase Lamp Knife Bottle Laptop Faucet Chair Table Predicted Labels										

Vase	335.0	21.0	14.0	57.0	7.0	11.0	38.0	17.0
Lamp -	34.0	357.0	13.0	27.0	6.0	26.0	27.0	10.0
Knife -	12.0	9.0	408.0	3.0	11.0	21.0	20.0	16.0
True Labels ptop Bottle	68.0	17.0	4.0	388.0	1.0	8.0	10.0	4.0
2	7.0	1.0	8.0	2.0	438.0	1.0	4.0	24.0
Faucet	4.0	15.0	13.0	8.0	1.0	451.0	7.0	1.0
Chair -	23.0	22.0	19.0	8.0	4.0	13.0	357.0	54.0
Table -	12.0	8.0	21.0	4.0	15.0	0.0	51.0	389.0
Vase Lamp Knife Bottle Laptop Faucet Chair Ta Predicted Labels							Table	

Confusion Matrix - SAGEConv

Train Accuracy: 81.49%

Validation Accuracy: 77.62%

Test Accuracy: 80.25%

Train Accuracy: 80.24%

Validation Accuracy: 78.10%

Test Accuracy: 78.64%

Risultati (2)

Train Accuracy: 84.67%

Validation Accuracy: 72.60%

Test Accuracy: 74.93%

Risultati (3)

Confusion Matrix - DGCNN

Confusion Matrix - DGCNN									
Vase	458.0	9.0	3.0	26.0	0.0	1.0	0.0	3.0	
Lamp	22.0	444.0	6.0	8.0	0.0	14.0	2.0	4.0	
Knife -	1.0	1.0	498.0	0.0	0.0	0.0	0.0	0.0	
abels Bottle	6.0	0.0	0.0	494.0	0.0	0.0	0.0	0.0	
True Labels Laptop Bottle	0.0	0.0	0.0	0.0	485.0	0.0	0.0	0.0	
Faucet	3.0	10.0	4.0	0.0	0.0	483.0	0.0	0.0	
Chair	1.0	0.0	0.0	0.0	0.0	0.0	499.0	0.0	
Table -	1.0	2.0	0.0	1.0	0.0	1.0	1.0	494.0	
	Vase	Lamp	Knife	Bottle Predicte	Laptop d Labels	Faucet	Chair	Table	

Train Accuracy: 98.9%

Validation Accuracy: 95.36%

Test Accuracy: 95.13%

Train Accuracy: 99.71%

Validation Accuracy: 97.01%

Test Accuracy: 96.94%

Conclusioni e sviluppi futuri

- → PERFORMANCE: il modello DGCNN si è dimostrato la soluzione più promettente.
- → DIMENSIONALITÀ: raddoppiando il numero di punti campionati e il numero di vicini k, le prestazioni rimangono simili.
- → GRANULARITÀ: margini di miglioramento nel distinguere oggetti con forme simili.

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI INFORMATICA

