PROJET

EXPLORATION DE SÉQUENCES DE PARCOURS DE SOINS

2024 / 2025

Présenté par : Florian, Tom, Raphaël, Bastien et Valentin

Contexte du projet

 Analyse de séquence temporelles (Score ALS FRS-R,...) pour le suivi de patients atteints de la maladie de SLA

Objectifs du projet

- Développement d'un outil d'analyse pour regrouper les patients aux trajectoires similaires.
- Proposer différentes mesures de similarités et algorithmes de clustering
- Créer une interface interactive et intuitive pour une utilisation par des professionnels du domaine de la santé

- Données irrégulières et complexes.
- Visualisation claire pour les professionnels de la santé. (regroupement des patients et analyse des distances)
- Intégration de plusieurs algorithmes de clustering et des mesures de similarités

Problématiques

ÉTAT DE L'ART

État de l'art

État de l'art - Série temporelles

- Définition : une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps.
- Caractéristiques :
 - Souvent multivariées (plusieurs indicateurs en un temps donné)
 - Irrégularité des intervalles de temps
 - Bruit (prendre en compte les erreurs de mesure qui peut compliquer l'analyse des séries)
- Domaines d'application :
 - Finance (prévisions des cours de la bourse), Santé (suivi de différents indicateur) et en Météorologie (prévisions météo)
- Pratiques actuelles :
 - Méthodes statistiques comme ARIMA qui est une référence (prédiction de données évoluant dans le temps)
 - Sktime (bibliothèque python pour l'analyse de données temporelles)
 - TimeScaleDB (extension de PostgreSQL pour les séries temporelles)

État de l'art - Calcul de similarité

- Définition : Le calcul de similarité est une méthode qui consiste à mesurer le degré de ressemblance entre deux séries temporelles
- Domaine d'application :
 - Finance (détection de fraude), Santé (suivi de patients)
- Pratiques actuelles :
 - coefficient de corrélation (Pearson)
 - distance (Fréchet, DTW, LCSS, Soft-DTW)
 - structure (SAX)

État de l'art - Clustering

■ Définition : Le clustering est une méthode ayant pour but de diviser un ensemble de données en différents sous-ensembles homogènes, c'est-à-dire partageant des caractéristiques communes. (CNIL)

■ Domaine d'application :

Analyse de données médicales, analyse de clientèle dans le commerce

Pratiques actuelles :

- K-Means, DBSCAN, Mean-shift, Ward, Agglomerative clustering

État de l'art - Types de clustering

- Clustering hiérarchique : regroupe les données en un arbres en divisant/fusionnant au fur et à mesure les clusters
 - <u>Avantages</u>: visualisation claire via un dendrogramme, pas besoin de spécifier le nombre de clusters
 - Inconvénients: complexité en $O(n^3)$ \rightarrow lent pour de grands jeux de données
- Clustering par Centroïdes (K-Means...): Créer k clusters autour de centres en cherchant à minimiser les distances
 - <u>Avantages</u> : Simple, rapide et applicable à de grands jeux de données
 - Inconvénients : on doit spécifier le nombre de clusters à l'avance,
- Clustering par Densité (DBSCAN): Regroupements de points en fonction de leur densité de voisinage
 - Avantages : pas besoin de spécifier le nombre de clusters, robuste aux valeurs aberrantes
 - <u>Inconvénients</u>: peut ne pas bien s'appliquer à tous les domaines

- Comparer des séquences temporelles irrégulières
- Regrouper les patients ayant des trajectoires similaires
- Visualiser ces résultats de manière interactive
- Gérer des données temporelles complexes

Cahier des charges - Besoins utilisateur

STRUCTURE DES TABLES

- On utilise les données du projet Optimedias
- Optimisation de la base en utilisant TimeScaleDB (partitionnement avec des hypertables)
- Interpolation des scores ALS FRS-R pour gérer les données manquantes
- Filtrage des patients avec moins de 5 rendez-vous
- Harmonisation des dates (fusion de deux champs)
- Utilisation de Seaborn et panda pour toute les visualisation et manipulation sur les données

Données

- Utilisation de diverses mesures de similarités :
 - Dynamic Time Warping (DTW)
 - Longuest Common Subsequence (LCSS)
 - Soft-DTW
- Utilisation de threads pour diminuer le temps de calcul

Calculs de similarités

distance matrix time series time series 2 (b)

CALCUL DE SIMILARITÉ -DTW

CALCUL DE SIMILARITÉ -DTW

		0	1	2	3	4	5	6	7
Y []	x[]—	ø	M	z	J	A	w	X	U
o o	Ø	0	0	0	0	0	0	0	0
1	х	0	0	0	0	0	0	1	1
2	М	0	1 -	1	1	1	1	1	1
3	J	0	1	1	2	2	2	2	2
4	Υ	0	1	1	2 •	2	2	2	2
5	A	0	1	1	2	3 _	3 —	-3	3
6	U	0	1	1	2	3	3	3	4
7	z	0	1	2	2	3	3	3	4

CALCUL DE SIMILARITÉ -LCSS

Algorithmes Utilisés Visualisation des Clusters KMeans, K-Medoids, Ward UMAP

Clustering

K-Means

Elbow Method

K-Medoids

Ward

VISUALISATION DIFFERENTES METHODES

- Technologies : React, Tailwind CSS, Axios
 - Sélection de patients
 - Affichage des courbes des patients
 - Visualisation des clusters

Frontend

- Utilisation de patterns :
 - Singleton (connexion à la bdd)
 - Strategy (pour le choix des algos de clustering et de calculs de similarités)

Design Patterns

Cahier des charges

DEMONSTRATION

COMPARAISON ◀

CLUSTERING ◀

ACCUEIL

À PROPOS

DOCUMENTATION

Analyse de série temporelles sur données de SLA

K

Visualisation des clusters avec K-Means et UMAP

- Temps de calcul raisonnable, voire assez rapide selon la puissance de la machine
- Qualité des groupes à approfondir mais semble pertinents
- Outil interactif et facile d'utilisation
- Et il faut également prendre en compte l'avis du médecin qui a mesuré le score ALS FRS-R (optimiste ou pessimiste)

Résultat

- Projet très ambitieux mais très formateur et intéressant
- Perspectives
 - ajout de DBSCAN
 - validation par des professionnel de la santé
 - Ajouter plus de variable pour rendre le calcul de similarité plus précis

Conclusion