# **Maximal Network Rank**

There is an infrastructure of n cities with some number of roads connecting these cities. Each roads[i] =  $[a_i, b_i]$  indicates that there is a bidirectional road between cities  $a_i$  and  $b_i$ .

The **network rank** of **two different cities** is defined as the total number of **directly** connected roads to **either** city. If a road is directly connected to both cities, it is only counted **once**.

The **maximal network rank** of the infrastructure is the **maximum network rank** of all pairs of different cities.

Given the integer n and the array roads, return the **maximal network rank** of the entire infrastructure.

### Example 1:



**Input:** n = 4, roads = [[0,1],[0,3],[1,2],[1,3]]

## Output: 4

**Explanation:** The network rank of cities 0 and 1 is 4 as there are 4 roads that are connected to either 0 or 1. The road between 0 and 1 is only counted once.

### Example 2:



**Input:** n = 5, roads = [[0,1],[0,3],[1,2],[1,3],[2,3],[2,4]]

Output: 5

**Explanation:** There are 5 roads that are connected to cities 1 or 2.

Example 3:

**Input:** n = 8, roads = [[0,1],[1,2],[2,3],[2,4],[5,6],[5,7]]

Output: 5

**Explanation:** The network rank of 2 and 5 is 5. Notice that all the cities do not have to be connected.

## **Constraints:**

- 2 <= n <= 100
- 0 <= roads.length <= n \* (n 1) / 2
- roads[i].length == 2
- 0 <= a<sub>i</sub>, b<sub>i</sub> <= n-1
- a<sub>i</sub>!= b<sub>i</sub>
- Each pair of cities has **at most one** road connecting them.