Acceleration

Acceleration is the rate of change of velocity.

Either speed and/or direction of motion can change.

For 1D motion:

- object is slowing down
- OR speeding up
- OR changing direction between forward and backward OR North to East (2 Dimensions)

$$\vec{a} = \frac{\vec{\Delta v}}{\Delta t} = \frac{\vec{v_2} - \vec{v_1}}{\Delta t}$$
 Units: $\frac{m/s}{s} = \frac{m}{s^2}$

ACCELERATION PROBLEM:

What is the average acceleration of a train which changes its velocity from 95 km/h north to 22 km/h north in a time of 15 minutes?

Ans:
Let
$$N = +$$

 $V1=95 \text{ km/h [N]}$
 $V2=22 \text{ km/h [N]}$
 $\Delta t=15 \text{ min}=0.25 \text{ h}$

$$a = (v_2-v_1)$$
 Δt
 $a = (22-95) \text{ km/h}$
 0.25 h
 $a = -292 \text{ km/h}^2 [N]$

$$\overrightarrow{a}$$
=2.9 x 10 ² km/h² [S])

MOTION GRAPH COMPARISON

Imagine a car that is dripping oil at a constant rate moving in three different scenarios:

Constant velocity

Speeding up uniformly

Slowing down uniformly

ACCELERATION IS A VECTOR!

In 1D, use signs to account for direction.

Direction of Initial Velocity	Direction of Initial Acceleration	Change in Speed
East (+)	East (+)	+ (Speeds up)
East (+)	West (-)	- (Slows down)
West (-)	East (+)	- (Slows down)
West (-)	West (-)	+ ((Speeds up)

If the acceleration is in the same direction as the initial velocity the object speeds up!!!

ANALYZING D-T GRAPHS FOR UNIFORM ACCELERATION

When we have a curved d-t graph the velocity changes!

To find the instantaneous velocity at any moment we draw a tangent to the curve and take the slope of the tangent!