ELEMENTE DE CALCUL VECTORIAL

- morume scalaro: valore numerica - unitate de masura
- mărime vectoriala valoure numerilă — initate di măsură — directii } — sens } — orientare în spatui

1. ELEMENTELE UNUI VECTOR

 $\mp = modulul lui \overrightarrow{f}$ $|\overrightarrow{+}| = modulul lui \overrightarrow{f}$ $\overrightarrow{+} = vectoul \overrightarrow{f}$

- 2. OPERATII CU VECTORI
- 2.1. ÎNMULȚIREA VECTORILOR CU SCALARI

2.2. ADUNAREA VECTORILOR

Regula parablogramului

$$\vec{t}_{1} + \vec{t}_{2} = \vec{t}$$
 $\vec{t}_{1} + \vec{t}_{2} = \vec{t}$
 $\vec{t}_{2} + \vec{t}_{3} = \vec{t}_{4} + \vec{t}_{2} = \vec{t}_{4} + \vec{t}_{3} = \vec{t}_{4} + \vec{t}_{4} = \vec{t}_{4} + \vec{t}_{5} = \vec{t}_{4} + \vec{t}_{5} = \vec{t}_{4} + \vec{t}_{5} = \vec{t}_{4} + \vec{t}_{5} = \vec{t}_{$

Coma lui Bitagora

$$\mp = \sqrt{\mp_1^2 + \mp_2^2 + 2\mp_2^2}$$

teorema lui Pitagora generalizata

Regula poligonului

Regula paralelogramului (DEMONSTRATIE)

Fitzgora:
$$iP^{2} = CH^{2} + CO^{2}$$

$$\mp^{2} = (\mp_{1} + \mp_{2} \cos \alpha)^{2} + (\mp_{2} \sin \alpha)^{2}$$

$$\mp^{2} = \mp_{1}^{2} + 2 + \mp_{2} \cos \alpha + \pm_{2}^{2} \cos \alpha + \pm_{2}^{2} \sin^{2} \alpha$$

$$\mp^{2} = \mp_{1}^{2} + 2 + \mp_{2}^{2} \cos \alpha + \pm_{2}^{2} (\cos^{2} \alpha + \sin^{2} \alpha)$$

$$\Rightarrow \mp = \sqrt{\pm_{1}^{2} + \pm_{2}^{2} + 2 + \pm_{2}^{2} \cos \alpha}$$

APLICAȚIE NUMERICĂ

Fix
$$= 1$$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$

$$\overrightarrow{1} + \overrightarrow{1} = ?$$

Allati regultanta relor docio forte!

$\alpha = 180^{\circ}$

$$\mp = \sqrt{\pm_{1}^{2} + \pm_{2}^{2} + 2\pm_{1} \pm_{2}} \cdot \omega s d$$

$$\mp = \sqrt{1^{2} + 1^{2} + 2 \cdot 4 \cdot 4 \cdot \left(-\frac{\sqrt{2}}{2}\right)}$$

$$\mp = 0. \pm 6$$

2.3. SCADEREA VECTORILOR

$$\vec{D} = \vec{\overline{1}}_1 - \vec{\overline{1}}_2$$

$$\vec{D} = \vec{\overline{1}}_1 + (-\vec{\overline{1}}_2)$$

DEMONSTRATI'E

$$D = \sqrt{\mp_1^2 + (-\mp_2)^2 + 2 \cdot \mp_1 \cdot (-\mp_2) \cdot \cos \alpha}$$

$$D = \sqrt{\mp_1^2 + \mp_2^2 - 2 + \mp_2 \cos \alpha}$$

Observatie Vectorul D'are mereu sensul spre descăzut

2.4. DESCOMPUNEREA VECTORILOR

Mai sus veiterul v a fost denompus in componentele vi si v dupa directule occrecare (D) ni/(D2).

Mai sus veiterul $\overrightarrow{\dagger}$ a fost denompus în componentele $\overrightarrow{\dagger}_{x}$ și $\overrightarrow{\dagger}_{y}$ după două directii perpendiculare. $\overrightarrow{\mp} = \overrightarrow{\dagger}_{x} + \overrightarrow{\dagger}_{y}$

ડ્ાં

$$\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos c$$

$$\vec{a} \cdot \vec{b} = a \cdot (b \cos c)$$

Observația 1. $\alpha = 0^{\circ} \Rightarrow \vec{a} \cdot \vec{b} = a \cdot b \cdot \alpha \cdot \vec{b}^{\circ}$ $\vec{a} \cdot \vec{b} = a \cdot b$ produs realor maxim

Observation 2. $c = 90^{\circ} \Rightarrow \vec{a} \cdot \vec{b} = a \cdot b \cdot c \vec{a} \cdot 90^{\circ}$ $\vec{a} \cdot \vec{b} = 0$ produs scalar nul $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$

Produsul realor este o mossero a cât de mult un victor porticipă la translatea in directe celulalt vector.

 $\iint_{\mathbb{Z}} = b \cdot h = a \cdot (b \cdot sincc)$

 $\vec{a} \times \vec{k} = \vec{w}$

• modulul lui 🔻

W=a.(b.seno) = A

• dvietia lui 🔻

₩±ã ₩±B ₩±B

• sensul lui ₹ : sens dot de regula beerghielu

Observation 1 $d=0^{\circ} \Rightarrow \vec{a} \times \vec{b} = \vec{0}$ produs victorial mul

Observation $\alpha = 90^\circ \Rightarrow |\overrightarrow{w}| = a \cdot b \cdot \sin \delta \circ$ $|\overrightarrow{w}| = a \cdot b \cdot \cos \delta \circ$ produs vectorial maxim

Produsul vectorial este o másura a cât de mult un vector participo, la protatia celuilalt vector.

MISCARE SI REPAUS SISTEME DE REFERINTA. DEPLASARE. VECTORUL DE POZITIE, VITEZA, ACCELERAȚIE

minare mecanica = procesul care consta in modificarea positivi unos corpuri fata de alte corpuri fata de alte corpuri

vorp de referenta (0) = vorpul en report u vare se determina positio alter vorp punit material (P) = modelul unui vorp ale varui dimensiumi geometrice se pot neglija fiind varacterizat doar prin masa sa

sistem de referența = un sistem care include are de coordonate, un reper si un instrument de mosurare a timpulu

· sistem de referents unidemensional (1D)

= vorsor (vector unitate)

n = vector de positie x = roordonate de positie

$$|\vec{n} = X \cdot \vec{l}|$$

$$|\vec{n}| = X$$

$$|\vec{h}| = x \cdot \vec{l} + \mu \cdot \vec{j}$$

$$|\vec{h}| = \sqrt{x^2 + \mu^2}$$

• sistem de referenta tridimensional (3D)

$$|\vec{n}| = |\vec{x}| + |\vec{y}| + |$$

Daca reordonatele de positie se schimba in temp, atence:
$$\vec{\mathcal{R}}(t) = x(t) \cdot \vec{\mathcal{L}} + y(t) \cdot \vec{\mathcal{J}} + f(t) \cdot \vec{k}$$

$$\vec{r}_i$$
 - vectorul de positie initial \vec{r}_j - vectorul de positie final $\Delta \hat{r}$ - vectorul deplasare

$$\vec{v} = \frac{\Delta r}{\Delta t}$$
 $\vec{v} = \text{vectorul viteza medie}$
 $\vec{\Delta r} = \text{vectorul deplasare}$
 $\Delta t = \text{timpul missarie}$

$$\Delta t \Rightarrow 0 \Rightarrow \vec{v} = \text{vitorul vitoza instantance}$$
 temp de missare foorte reint

$$\vec{a} = \frac{\vec{\Delta v}}{\Delta t}$$

$$\vec{a} = \frac{\vec{v}(t+\Delta t) - \vec{v}(t)}{\Delta t}$$

 \vec{a} = vectoral accelerate medic $\vec{\Delta v}$ = vectoral variation vitiges Δt = tempal