1. Установка

1.1. Ubuntu

Для установки в OS Ubuntu (и других Linux), использовать утилиту make. Запуск make без параметров скомпилирует код и соберёт программу в папку \$HOME/bin.

make install скопирует программу в пользовательскую директорию \$HOME/bin (\$HOME/bin) если \$HOME/bin прописан в \$PATH, программу можно будет запускать из любого места, в противном случае запускать только из директории где находится сборка с указанием директории (к примеру ./bindrsspectrum если запускать из той же директории где находитесь)

При сборке новой версии или изменении кода make install повторно

make debug Сборка отладочной версии. Использовать только при отладке кода.

1.2. Возможные проблемы

Используются заголовочные файлы стандартной библиотеки, поэтому в этой части проблем не должно быть, если используется GCC 4.7 и выше.

Также используются библиотеки ROOT. При установке может жаловаться на отсутствие некоторых рутовых библиотек, установка оных решает проблему.

Также можно поправить мэйкфайл, где используется **ROOTLIBS** = \$ (shell root-config --glibs). В данном случае прописываются все стандартные рутовые библиотеки. Закомментировав эту строчку (# перед строкой), и раскомментировав следующую, **(#ROOTLIBS** -L/usr/lib/x86 64-linux-qnu -lCore -lRIO -lHist -lGpad -lTree -lm -ldl) Включаются только необходимые библиотеки.

По умолчанию в коде заголовочные файлы рута прописаны как #include <root/TFile.h>, чтобы использовать запись типа #include <TFile.h> добавить в мэйкфайле -DDEBROOT в COM FLAGS. Также возможны другие проблемы как непосредственно с ROOT, так и другие (наверное только с рут) но это уже выходит за рамки данного руководства.

2. Использование

Параметры запуска 2.1.

Запуск программы (имя программы может быть дргое) drsspectrum input file

где input file, файл данных, который нужно обработать. Либо

drsspectrum input_file noise_min noise_max signal_min signal_max.

где noise_min noise_max signal_min signal_max, локализация шума и сигнала.

Перечень параметров и краткое описание можно получить запустив программу с опцией -h или --help

- -d, --only-detect Вычислить noise_min noise max signal_min signal_max и выйти. Тут вроде всё понятно. Если нужно только узнать локализацию сигнала и шума.
- -m, --channel-mode <channels> Выбрать рабочие каналы из используемых [4ch 3ch 2ch 1ch]. Записывать десятичное число. Пример: -m 4 для 3 канала (0b0100) По умолчанию используется режим 0b0001, то есть первый канал. Обращаю внимание, что здесь говорится об используемых каналах. То есть если используются 2, к примеру 3й и 4й, то для третьего 0b0001 для четвёртого соответственно 0b0010 (2). Ну и для обоих 0b0011 (3).
- -r, --without-root-app Запустить без root application. То есть не выводить гистограммы на экран, а выполнить программу и выйти.
- -a, --a-factor <factor> установить множитель. По умолчанию 1-b, --b-shift <shift> установить сдвиг. По умолчанию 0
- **-o, --out-png** Вывести гистограммы в png. Гистограммы будут выведены в директорию res, в директории с данными.
- -k, --amplitude Запустить в амплитудном режиме.
- -n, --outdir <dir> Имя новой output директории. Новая директория будет в директории res.
- -s, --safety Безопасный режим. Если во время набора менялось число каналов, в этом случае в обычном режиме программа даст ошибку. В безопасном режиме программа работает медленнее, так как используются все каналы, и идёт пересчёт событий. Поэтому если количество каналов не менялось во время набора лучше использовать режим по умолчанию.
- -c, --max-num <num> установить максимальное число возможных каналов. По умолчанию 4. Это для случаев если каналов у девайса больше 4х. Используется только в безопасном режиме, так как в обычном идёт автоматический расчёт числа каналов.

-v, --volt-mode Изменить volt mode. По умолчанию диапазон от -0,5 до 0,5 V, изменить на 0 - 1 V. В целом эта опция ничего не делает, только меняет вид графика среднего сигнала.

-e, --online <sec> Использовать режим "онлайн". Набор данных с обновлением гистограмм. <sec> выставляет частоту обновления в секундах. Минимум одна секунда. Возможны проблемы в отображении гистограмм. Если гистограммы не отображаются (пустой canvas), можно пересобрать программу изменив makefile. Снимите комментарий со строчки #USETHREADAPP = -DUSETHREADAPP и пересоберите, запустив make clean make. Здесь используется «костыль», работа которого не до конца изучена, и

Здесь используется «костыль», работа которого не до конца изучена, и возможны выбросы, но на тестах проблем не возникало.

2.2. Использование скриптов

Параметры можно использовать совместно, например -r -s -o, будет значить «запустить без root application в безопасном режиме, гистограммы сохранить в png в папку res». Если вас не устраивают параметры по умолчанию или лень каждый раз вводить параметры для однообразной задачи можно написать скрипт, который изменит поведение по умолчанию программы, и запускать уже скрипт.

Пример для скрипта из примера выше: script.sh #!/bin/bash ./bindrsspetrum \$1 -r -s -o

Затем выполнить **chmod** +x **script.sh** чтоб файл стал исполняемым и запускать его как обычную программу из терминала.

Здесь \$1 первый аргумент при запуске скрипта, для передачи его в нашу программу. Соответственно запуск программы происходит как ./script.sh namefile

Можно разместить скрипт в пользовательскую папку \$HOME/bin (если папка прописана в переменной окружения), и запускать без указания директории из любого места.

3. Прочее

Возможны проблемы при обработке файлов в режиме autodetect. Кускоффский код расчётов я пока оставил как есть, а он иногда творит чудеса. В этом случае можно ввести границы шума и сигналов самостоятельно в виде drsspectrum input_ file noise_min noise_max signal_min signal_max. Также иногда полезно вводить эти параметры и в обычных случаях, посмотрев вид среднего сигнала на гистограммах. Чтоб вывести гистограммы запустите программу с параметром - ОПока границы задаются одинаковыми для всех каналов.