In [1]: import

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [2]:

df = pd.read_csv("mobile.csv")
df

Out[2]:

t[2]:		Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Price in INR
	0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro	₹5,649
	1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11,999
	2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999
	3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7,749
	4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999
	•••										
1	1831	Infinix Note 7 (Forest Green, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999
1	1832	Infinix Note 7 (Bolivia Blue, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Price in INR
1833	Infinix Note 7 (Aether Black, 64 GB)	4.3	25,582	4 GB RAM	64 GB ROM	48MP + 2MP + 2MP + Al Lens Camera	16MP Front Camera	5000 mAh	MediaTek Helio G70 Processor	₹14,999
1834	Infinix Zero 8i (Silver Diamond, 128 GB)	4.2	7,117	8 GB RAM	128 GB ROM	48MP + 8MP + 2MP + Al Lens Camera	16MP + 8MP Dual Front Camera	4500 mAh	MediaTek Helio G90T Processor	₹18,999
1835	Infinix S5 (Quetzal Cyan, 64 GB)	4.3	15,701	4 GB RAM	64 GB ROM	16MP + 5MP + 2MP + Low Light Sensor	32MP Front Camera	4000 mAh	Helio P22 (MTK6762) Processor	₹10,999

1836 rows × 11 columns

In [3]: | df.head()

Out[3]:

	Phone Name	Rating ?/5	Number of Ratings	RAM	ROM/Storage	Back/Rare Camera	Front Camera	Battery	Processor	Price in INR	Dat Scra _l
0	POCO C50 (Royal Blue, 32 GB)	4.2	33,561	2 GB RAM	32 GB ROM	8MP Dual Camera	5MP Front Camera	5000 mAh	Mediatek Helio A22 Processor, Upto 2.0 GHz Pro	₹5,649	2023
1	POCO M4 5G (Cool Blue, 64 GB)	4.2	77,128	4 GB RAM	64 GB ROM	50MP + 2MP	8MP Front Camera	5000 mAh	Mediatek Dimensity 700 Processor	₹11,999	2023
2	POCO C51 (Royal Blue, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	2023
3	POCO C55 (Cool Blue, 64 GB)	4.2	22,621	4 GB RAM	64 GB ROM	50MP Dual Rear Camera	5MP Front Camera	5000 mAh	Mediatek Helio G85 Processor	₹7,749	2023
4	POCO C51 (Power Black, 64 GB)	4.3	15,175	4 GB RAM	64 GB ROM	8MP Dual Rear Camera	5MP Front Camera	5000 mAh	Helio G36 Processor	₹6,999	2023

Data cleaning and pre processing

```
In [4]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1836 entries, 0 to 1835
        Data columns (total 11 columns):
             Column
                                Non-Null Count Dtype
                                -----
         0
             Phone Name
                                1836 non-null
                                               object
             Rating ?/5
                                1836 non-null
                                                float64
         1
         2
             Number of Ratings 1836 non-null
                                               object
         3
                                               object
                                1836 non-null
             ROM/Storage
                                1662 non-null
                                               object
         5
             Back/Rare Camera 1827 non-null
                                               object
         6
             Front Camera
                                1435 non-null
                                               object
         7
             Battery
                                1826 non-null
                                                object
         8
             Processor
                                1781 non-null
                                                object
             Price in INR
         9
                              1836 non-null
                                                object
         10 Date of Scraping 1836 non-null
                                                object
        dtypes: float64(1), object(10)
        memory usage: 157.9+ KB
In [5]:
         df.describe()
Out[5]:
                Rating ?/5
        count 1836.000000
        mean
                 4.210512
          std
                 0.543912
          min
                 0.000000
         25%
                 4.200000
         50%
                 4.300000
         75%
                 4.400000
                 4.800000
         max
In [6]:
         df.columns
Out[6]: Index(['Phone Name', 'Rating ?/5', 'Number of Ratings', 'RAM', 'ROM/Storage',
               'Back/Rare Camera', 'Front Camera', 'Battery', 'Processor',
               'Price in INR', 'Date of Scraping'],
              dtype='object')
```

EDA and VISUALIZATION

```
In [7]: sns.pairplot(df)
```

Out[7]: <seaborn.axisgrid.PairGrid at 0x1495a28ca00>


```
In [8]: sns.distplot(df["Rating ?/5"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Rating ?/5', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>


```
In [11]:     x = df1[['Rating ?/5','Rating ?/5']]
     y = df1['Rating ?/5']
```

split the data into training and test data

```
In [12]:
          x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [13]:
          lr = LinearRegression()
          lr.fit(x train, y train)
Out[13]: LinearRegression()
In [14]:
          lr.intercept
         -2.6645352591003757e-15
Out[14]:
In [15]:
           coeff = pd.DataFrame(lr.coef_, x.columns, columns =['Co-efficient'])
           coeff
Out[15]:
                    Co-efficient
          Rating ?/5
                           0.5
          Rating ?/5
                           0.5
In [16]:
           prediction = lr.predict(x_test)
          plt.scatter(y_test, prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x1495aed12e0>
```

```
4
          3
          2
          1
          0
In [17]:
          lr.score(x_test,y_test)
Out[17]: 1.0
In [18]:
          from sklearn.linear_model import Ridge,Lasso
In [19]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
```

```
rr.score(x_train,y_train)
```

```
Out[19]:
         0.9998643503417138
```

```
In [20]:
          rr.score(x_test,y_test)
```

Out[20]: 0.9998642822291992

```
In [21]:
          la = Lasso(alpha=10)
          la.fit(x_train,y_train)
```

Out[21]: Lasso(alpha=10)

```
In [22]:
          la.score(x_test,y_test)
```

-0.0005021207975841602 Out[22]:

```
In [23]:
          from sklearn.linear_model import ElasticNet
          en = ElasticNet()
          en.fit(x_train,y_train)
```

Out[23]: ElasticNet()

```
In [24]:
           print(en.coef_)
```

```
[0. 0.]
```

In [25]:

print(en.intercept_)

4.20739299610895

In [26]:

print(en.predict(x_test))

```
[4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
```

```
4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 4.207393
         4.207393 4.207393 4.207393 4.207393 4.207393 4.207393 ]
In [27]:
         print(en.score(x test,y test))
```

-0.0005021207975841602

Evaluation Metrics

```
In [28]: from sklearn import metrics
In [29]: print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
    Mean Absolute Error: 1.1767155106734871e-16
In [30]: print("Mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
    Mean Squared Error: 1.3601050090017446e-31
In [32]: print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction))
```

Root Mean Squared Error: 3.6879601529866676e-16