Direct Memory Access (DMA) Project 3

Prepared for

CSE 410 Advanced Topics in Embedded System Design

By

Steven Collins (sac9)

Table of Contents

Section 1: Division of Work	2
Section 2: Program Overview	3
→ Program Overview	
→ Program Summary	3
→ High Level Flowchart	
Section 3: Subroutine Descriptions	5
→ determine_keypad_button	5
Section 4: Subroutine Flowcharts	6
→ determine keypad button Flowchart	6
Section 5: Hypothesis	

Section 1: Division of Work

I, Steven Collins, wrote the entirety of the dma project. Some subroutines were used from CSE 379, on which my partner Frank Peretti and I worked together to implement.

Section 2: Program Overview

→ Program Overview

- ◆ Run Program
- ♦ Dma begins
- ◆ Pause program shortly after seeing white light, and watch dma continue to completion while the program is paused

→ Program Summary

This direct memory access program causes the RGB LED to alternate red and blue. Once the dma completes (16 bytes), it is rerun by a timer interrupt. If the dma is in process and the program is paused, the dma continues to completion despite the processor being paused.

→ High Level Flowchart

An overview of the entire program

Section 3: Subroutine Descriptions

Description of each subroutine's functionality, the arguments it passes through, and what the return values in each register are.

→ dma module init

- ◆ Functionality:
 - This subroutine configures module initializations: enables clock, controller, and sets the base address of channel control.
- ♦ Arguments:
 - There are no argument registers for the functionality of this subroutine.
- ◆ Return registers:
 - There are no return registers for the functionality of this subroutine.

→ dma configure channel

- ◆ Functionality:
 - This subroutine configures the channel structure: channel attributes and word structure
- ◆ Arguments:
 - There are no argument registers for the functionality of this subroutine.
- ◆ Return registers:
 - There are no return registers for the functionality of this subroutine.

•

→ Timer0A_Handler

- ◆ Functionality:
 - This subroutine is called every .25 seconds. It sets the xfersize and xfermode of the dma channel structure, and then triggers the dma channel enable
- ◆ Arguments:
 - There are no argument registers for the functionality of this subroutine.
- ♦ Return registers:
 - There are no return registers for the functionality of this subroutine.

Section 4: Subroutine Flowcharts

→ dma_module_init Flowchart

→ dma_configure_channel Flowchart

→ Timer0A_Handler Flowchart

