讲师: collen7788@126.com

Presentation 分组逐数

本章目标

- **1** 了解组函数。
- 2 描述组函数的用途
- 3 使用GROUP BY 子句数据分组
- 4 使用HAVING 子句过滤分组

什么是分组函数

❖分组函数作用于一组数据,并对一组数据返回一个值。

EMPLOYEES

DEPARTMENT_ID	SALARY
90	24000
90	17000
90	17000
60	9000
60	6000
60	4200
50	5800
50	3500
50	3100
50	2600
50	2500
80	10500
80	11000
80	8600
	7000
10	4400

表 EMPLOYEES 中的工资最大值

MAX(SALARY) 24000

20 rows selected.

常用的组函数

- ***AVG**
- **COUNT**
- **⋄** MAX
- **MIN**
- **SUM**

组函数语法

```
SELECT [column,] group function(column), ...

FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];
```

AVG(平均值)和 SUM (合计)函数

❖可以对数值型数据使用AVG 和 SUM 函数

```
SELECT AVG(sal), MAX(sal),
MIN(sal), SUM(sal)

FROM emp
WHERE deptno=10;
```

MIN(最小值)和 MAX(最大值)函数

```
SELECT MIN(hiredate), MAX(hiredate)
FROM emp;
```

COUNT(计数)函数

```
SELECT COUNT(*)
FROM emp
WHERE deptno = 10;
```


COUNT(计数)函数

❖COUNT(expr) 返回 expr不为空的记录总数

```
SELECT COUNT (comm)
FROM
       emp;
```

```
COUNT (COMM)
```

DISTINCT (distinct) 关键字

❖COUNT (DISTINCT expr) 返回 expr非空且不重复的记录总数

```
SELECT COUNT (DISTINCT deptno)
FROM emp;
```

```
COUNT (DISTINCTDEPTNO)
-----3
```

组函数与空值

❖组函数忽略空值。

```
SELECT AVG(comm)
FROM emp;
```


在组函数中使用NVL函数

❖NVL函数使分组函数无法忽略空值。

```
SELECT AVG(NVL(comm, 0))
FROM emp;
```

```
AVG(NVL(COMM,0))
-----
157.142857
```

分组数据

EMPLOYEES

DEPARTMENT_ID	SALARY
10	4400
20	13000
20	6000
50	5800
50	3500
50	3100
50	2500
50	2600
60	9000
60	6000
60	4200
80	10500
80	8600
80	11000
90	24000
90	17000

4400 9500 求出 EMPLOYEES 3500 表中各 部门的 平均工资 6400

DEPARTMENT_ID	AVG(SALARY)
10	4400
20	9500
50	3500
60	6400
80	10033.3333
90	19333.3333
110	10150
	7000

分组数据

❖分组数据: GROUP BY 子句语法

```
SELECT column, group_function(column)

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[ORDER BY column];
```

可以使用GROUP BY 子句将表中的数据分成若干组

GROUP BY 子句

❖在SELECT 列表中所有未包含在组函数中的列都 应该包含在 GROUP BY 子句中

```
SELECT deptno, AVG(sal)
FROM emp
GROUP BY deptno;
```

```
DEPTNO AVG(SAL)
------
30 1566.66667
20 2175
10 2916.66667
```

GROUP BY 子句

❖包含在 GROUP BY子句中的列不必包含在SELECT 列表中

```
SELECT AVG(sal)
FROM emp
GROUP BY deptno;
```

```
AVG (SAL)
-----
1566.66667
2175
2916.66667
```

使用多个列分组

EMPLOYEES

DEPARTMENT_ID	JOB_ID	SALARY
90	AD_PRES	24000
90	AD_VP	17000
90	AD_VP	17000
60	IT_PROG	9000
60	IT_PROG	6000
60	IT_PROG	4200
50	ST_MAN	5800
50	ST_CLERK	3500
50	ST_CLERK	3100
50	ST_CLERK	2600
50	ST_CLERK	2500
80	SA_MAN	10500
80	SA_REP	11000
80	SA_REP	8600
• • •		
20	MK_REP	6000

使用多个列 进行分组

DEPARTMENT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000
10		

13 rowe calacted

在GROUP BY 子句中包含多个列

```
SELECT
          deptno, job, sum(sal)
FROM
          emp
GROUP BY deptno, job ;
```

DEPTNO	JOB	SUM (SAL)
20	CLERK	1900
30	SALESMAN	5600
20	MANAGER	2975
30	CLERK	950
10	PRESIDENT	5000
30	MANAGER	2850
10	CLERK	1300
10	MANAGER	2450
20	ANALYST	6000

非法使用组函数

◆ 所用包含于SELECT 列表中,而未包含于组函数中的列都必须包含于 GROUP BY 子句中。

```
SELECT deptno, COUNT(ename)
FROM emp;
```

```
SELECT deptno, COUNT(ename)

*
ERROR at line 1:
ORA-00937: not a single-group group function
```

GROUP BY 子句中缺少列

过滤分组

EMPLOYEES

DEPARTMENT_ID	SALARY
90	24000
90	17000
90	17000
60	9000
60	6000
60	4200
50	5800
50	3500
50	3100
50	2600
50	2500
80	10500
80	11000
80	8600
•••	
20	6000
110	12000
110	8300

部门最高工资 比 10000 高的 部门

DEPARTMENT_ID	MAX(SALARY)
20	13000
80	11000
90	24000
110	12000

过滤分组: HAVING 子句

❖使用 HAVING 过滤分组

- 行已经被分组。
- 使用了组函数。
- 满足HAVING 子句中条件的分组将被显示

```
SELECT column, group_function

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];
```

HAVING 子句

```
SELECT deptno, MAX(sal)
FROM emp
GROUP BY deptno
HAVING MAX(sal)>1500;
```

DEPTNO	MAX (SAL)	
30	2850	
20	3000	
10	5000	

非法使用组函数

- ❖不能在 WHERE 子句中使用组函数(注意)。
- ❖可以在 HAVING 子句中使用组函数。

```
SELECT deptno, AVG(sal)
FROM emp
WHERE AVG(sal) > 8000
GROUP BY deptno;
```

```
WHERE AVG(sal) > 8000

*
ERROR at line 3:
ORA-00934: group function is not allowed here
```

WHERE 子句中不能使用组函数

嵌套组函数

❖显示平均工资的最大值

```
SELECT MAX(AVG(sal))
FROM emp
GROUP BY deptno;
```

```
MAX (AVG (SAL))
-----
2916.66667
```

GROUP BY语句的增强

❖问题:按照部门统计各部门不同工种的工资情况, 要求按如下格式输出

总结

❖通过本章学习,您已经学会:

- 使用组函数。
- 在查询中使用 GROUP BY 子句。
- 在查询中使用 HAVING 子句。

```
SELECT column, group_function(column)

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];
```

讲师: collen7788@126.com

Presentation

Thank you