

Pareto Multi-Task Learning

Xi Lin¹, Hui-Ling Zhen¹, Zhenhua Li², Qingfu Zhang¹, Sam Kwong¹

¹City University of Hong Kong, ²Nanjing University of Aeronautics and Astronautics xi.lin@my.cityu.edu.hk

Problem Definition and Contribution

Goal:

To generate a set of widely distributed Pareto solutions with different optimal trade-offs among tasks for a multi-task learning (MTL) problem.

Then MTL practitioners can easily select their solutions with preferred trade-offs.

A MTL problem with m tasks is a multi-objective optimization problem:

$$\min_{\theta} \mathcal{L}(\theta) = (\mathcal{L}_1(\theta), \mathcal{L}_2(\theta), \cdots, \mathcal{L}_m(\theta))^{\mathrm{T}}.$$
 (1)

Traditional linear scalarization:

$$\min_{\theta} \mathcal{L}(\theta) = \sum_{i=1}^{m} \boldsymbol{w}_{i} \mathcal{L}_{i}(\theta). \tag{2}$$

where w_i is manually chosen by MTL practitioners.

However:

Motivation:

- Tasks would be conflicted with each other when the model capacity is limited and fixed, and there is no single best solution for all tasks.
- Exhaustive weights search is usually needed for finding the solution with particular trade-off that satisfies the practitioner's need.
- Linear scalarization with fixed weight can not handle concave Pareto front.
- Current adaptive-weight methods can not make different trade-offs among tasks (GradNorm, Uncertainty, MOO-MTL).

Main Contributions:

- **Decompose** a MTL problem into multiple constrained subproblems with different trade-off preferences.
- Reformulate each constrained subproblem as a linear scalarization with dynamically adaptive weights.
- Solve all constrained subproblems and obtain a set of Pareto solutions with different trade-offs for the MTL.

Pareto Multi-Task Learning

Pareto MTL Decomposition:

Pareto MTL decomposes a MTL problem with a set of unit preference vectors $\{u_1, ..., u_K\}$ into K subproblems:

$$\min_{\theta} \mathcal{L}(\theta) = (\mathcal{L}_1(\theta), \cdots, \mathcal{L}_m(\theta))^{\mathrm{T}}, s.t. \mathcal{L}(\theta) \in \Omega_k,$$
 (3)

where Ω_k is the attracted subregion with smallest acute angle to u_k :

$$\Omega_k = \{ \boldsymbol{v} \in R_+^m | \boldsymbol{u}_j^T \boldsymbol{v} \le \boldsymbol{u}_k^T \boldsymbol{v}, \forall j = 1, ..., K \}$$
(4)

and it can be further simplified as multiple constraints:

$$\mathcal{G}_j(\theta_t) = (\boldsymbol{u}_j - \boldsymbol{u}_k)^T \mathcal{L}(\theta_t) \le 0, \forall j = 1, ..., K.$$
(5)

Solving Each Subproblem: $\theta_{t+1} = \theta_t + \eta d_t$ with a valid direction to minimize all losses and activated constraints:

$$(d_t, \alpha_t) = \arg \min_{d \in \mathbb{R}^n, \alpha \in \mathbb{R}} \alpha + \frac{1}{2} ||d||^2$$

$$s.t. \quad \nabla \mathcal{L}_i(\theta_t)^T d \le \alpha, i = 1, ..., m.$$

$$\nabla \mathcal{G}_j(\theta_t)^T d \le \alpha, j \in I_{\epsilon}(\theta_t),$$

$$(6)$$

where $I_{\epsilon}(\theta) = \{j \in I | \mathcal{G}_{j}(\theta) \geq -\epsilon\}$ is the index set of activated constraints. Pareto MTL as Adaptive Linear Scalarization:

$$\mathcal{L}(\theta_t) = \sum_{i=1}^{m} \alpha_i \mathcal{L}_i(\theta_t), \text{ where } \alpha_i = \lambda_i + \sum_{j \in I_{\epsilon(\theta)}} \beta_j (\boldsymbol{u}_{ji} - \boldsymbol{u}_{ki}),$$
 (7)

where λ_i and β_j are obtained by solving the dual form of (6) with assigned reference vector \mathbf{u}_k at each step.

Pareto MTL obtains a set of restricted Pareto optimal solutions with different trade-offs among tasks by solving all subproblems.

Experimental Results

MultiMNIST, MultiFashionMNIST and Multi-(Fashion+MNIST):

Adaptive Weights for Different Algorithms:

More details, discussions, and experimental results can be founded in the paper and supplementary material:

Conclusion

Summary:

We proposed a novel Pareto Multi-Task Learning (Pareto MTL) algorithm to generate a set of well-distributed Pareto solutions with different trade-offs among tasks for a given multi-task learning (MTL) problem.

Code & Paper:

Key Reference:

Uncertainty: Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses forscene geometry and semantics. CVPR 2018 GradNorm: Chen et al. Gradnorm: Gradient normal-ization for adaptive loss balancing in deep multitask networks. ICML 2018 MOO MTL: Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. NeurIPS 2018