reputation_analyses

Contents

5	Plo	ots	23
		4.3.3 Examining effect of age within public condition	21
		4.3.2 Examining effect of age within private condition	
		4.3.1 Examining interaction between condition and age	
	4.3	Confirmatory Analyses	
	4.2	Demographics	
	4.1	Summary	
4		ndy 4 - Who Sought Help Publicly versus Privately?	13
	3.3	Confirmatory Analyses	12
	3.2	Demographics	10
	3.1	Summary	
3		ndy 3 - Who Sought Help Publicly?	9
_	Q .		
	2.3	Confirmatory Analyses	7
	2.2	Demographics	6
	2.1	Summary	6
2	Stu	ndy 2 - Who Lied about their Successful Performance?	5
	1.3	Confirmatory Analyses	4
	1.2	Demographics	
	1.1	Summary	2
1	Stu	ndy 1 - Who Lied about their Poor Performance?	1

1 Study 1 - Who Lied about their Poor Performance?

```
# read in data
lap_data = read_csv("../data/study1_lying_about_poor_perf/data_study1.csv")
```

'summarise()' ungrouping output (override with '.groups' argument)

Table 1: Summary

AgeGroup	percent_intrinsic	number_intrinsic	percent_reputational	number_reputational	total_n
4-5	56.250	18	43.750	14	32
6-7	28.125	9	71.875	23	32
8-9	6.250	2	93.750	30	32

1.2 Demographics

Table 2: Gender Summary

AgeGroup	Sex	n	percentage
4-5	female	23	71.875
4-5	male	9	28.125
6-7	female	18	56.250
6-7	male	14	43.750
8-9	female	18	56.250
8-9	male	14	43.750

```
# age
# create dataframe with summary stats (mean and SD) for age of participants
lap_age_summary <- lap_data %>%
group_by(AgeGroup) %>%
summarise(mean_age = mean(Age_Ex),
SD_age = sd(Age_Ex))
```

'summarise()' ungrouping output (override with '.groups' argument)

Table 3: Age Summary

AgeGroup	mean_age	SD_age
4-5	4.923785	0.5643043
6-7	6.797309	0.5004998
8-9	8.789844	0.5637009

1.3 Confirmatory Analyses

```
# generates logistic regression model examining the effect of age (entered as a continuous
# predictor) on whether children identified the character with
# reputational or intrinsic concerns as the one who would lie about their poor performance
lap_logit_model = glm(WhoLied ~ Age_Ex,
                       data = lap_data,
                       family = binomial(link = "logit"))
# generates summary of logistic regression model
summary(lap_logit_model)
##
## Call:
## glm(formula = WhoLied ~ Age_Ex, family = binomial(link = "logit"),
      data = lap_data)
##
##
## Deviance Residuals:
      Min
                1Q
                     Median
                                   3Q
                                           Max
## -2.2412 -0.9495 0.4681
                              0.7751
                                        1.5501
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                           1.1025 -3.225 0.00126 **
## (Intercept) -3.5555
## Age_Ex
                 0.6770
                            0.1737
                                     3.898 9.69e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 117.623 on 95 degrees of freedom
## Residual deviance: 97.951 on 94 degrees of freedom
## ATC: 101.95
##
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for logistic regression model above
lap_wald_test = wald.test(b = coef(lap_logit_model),
                           Sigma = vcov(lap_logit_model),
                           Terms = 2,
                           verbose = TRUE)
# prints results of Wald chi-square test
print(lap_wald_test, digits = 5)
## Wald test:
## -----
##
## Coefficients:
## (Intercept)
                   Age_Ex
     -3.55555
                  0.67704
##
##
```

```
## Var-cov matrix of the coefficients:
##
               (Intercept) Age_Ex
## (Intercept) 1.215470
                           -0.186581
               -0.186581
                            0.030166
## Age_Ex
## Test-design matrix:
      (Intercept) Age_Ex
## L1
##
## Positions of tested coefficients in the vector of coefficients: 2
## HO: Age_Ex = 0
## Chi-squared test:
## X2 = 15.196, df = 1, P(> X2) = 9.6927e-05
# generates binomial tests for each age group that test whether children chose the
# reputational character more often than would be predicted by chance
lap_binomial_tests = lap_summary %>%
  group_by(AgeGroup) %>%
  do(test = tidy(binom.test(sum(.$number_reputational),
                       sum(.$total_n),
                       p = .5
                       conf.level = 0.95)))
# generates dataframe with results of binomial tests described above
lap_binomial_test_summary = lap_binomial_tests$test %>%
  bind rows %>%
  bind_cols(lap_binomial_tests[1], .)
# generates table of binomial test estimates
lap_binomial_test_summary %>%
  kable(caption = "Binomial Tests") %>%
  kable_styling(bootstrap_options = "striped",
                full_width = F,
                latex_options = c("hold_position", "scale_down"))
```

Table 4: Binomial Tests

AgeGroup	estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
4-5	0.43750	14	0.5966149	32	0.2636381	0.6233743	Exact binomial test	two.sided
6-7	0.71875	23	0.0200616	32	0.5325289	0.8625431	Exact binomial test	two.sided
8-9	0.93750	30	0.0000002	32	0.7919306	0.9923393	Exact binomial test	two.sided

2 Study 2 - Who Lied about their Successful Performance?

```
# read in data
las_data = read_csv("../data/study2_lying_about_good_perf/data_study2.csv")
```

'summarise()' ungrouping output (override with '.groups' argument)

Table 5: Summary

AgeGroup	percent_intrinsic	number_intrinsic	percent_reputational	number_reputational	total_n
4-5	53.125	17	46.875	15	32
6-7	56.250	18	43.750	14	32
8-9	84.375	27	15.625	5	32

2.2 Demographics

```
# gender

# creates dataframe with percentage breakdown for gender of participants
las_gender_summary = las_data %>%
    group_by(AgeGroup, Sex) %>%
```

Table 6: Gender Summary

AgeGroup	Sex	n	percentage
4-5	female	11	34.375
4-5	male	21	65.625
6-7	female	13	40.625
6-7	male	19	59.375
8-9	female	15	46.875
8-9	male	17	53.125

'summarise()' ungrouping output (override with '.groups' argument)

Table 7: Age Summary

AgeGroup	mean_age	SD_age
4-5	5.021441	0.6068109
6-7	6.804774	0.5926409
8-9	8.940365	0.5656366

2.3 Confirmatory Analyses

```
# generates logistic regression model examining the effect of age (entered as a continuous
# predictor) on whether children identified the character with
# reputational or intrinsic concerns as the one who would lie about their poor performance
las_logit_model = glm(WhoLied ~ Age_Ex,
                       data = las_data,
                      family = binomial(link = "logit"))
 # generates summary of logistic regression model
summary(las_logit_model)
##
## Call:
## glm(formula = WhoLied ~ Age_Ex, family = binomial(link = "logit"),
##
      data = las_data)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  ЗQ
                                          Max
## -1.4064 -0.8961 -0.6351
                             1.1468
                                       1.9561
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.2042
                        0.9533 2.312 0.02077 *
                           0.1409 -2.951 0.00316 **
## Age_Ex
               -0.4157
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 124.80 on 95 degrees of freedom
##
## Residual deviance: 115.03 on 94 degrees of freedom
## AIC: 119.03
##
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for logistic regression model described above
las_wald_test = wald.test(b = coef(las_logit_model),
                          Sigma = vcov(las_logit_model),
                          Terms = 2,
                          verbose = TRUE)
# prints results of Wald chi-square test
print(las_wald_test, digits = 5)
## Wald test:
## -----
##
## Coefficients:
## (Intercept)
                   Age_Ex
##
       2.20417
                 -0.41573
##
## Var-cov matrix of the coefficients:
##
               (Intercept) Age_Ex
```

```
## (Intercept) 0.90886
                           -0.13050
## Age_Ex
               -0.13050
                            0.01984
##
## Test-design matrix:
##
      (Intercept) Age_Ex
## L1
                0
## Positions of tested coefficients in the vector of coefficients: 2
## HO: Age_Ex = 0
## Chi-squared test:
## X2 = 8.7111, df = 1, P(> X2) = 0.0031627
# generates binomial tests for each age group that test whether children chose the
# reputational character more often than would be predicted by chance
las_binomial_tests = las_summary %>%
  group_by(AgeGroup) %>%
  do(test = tidy(binom.test(sum(.$number_reputational),
                       sum(.$total_n),
                       p = .5,
                       conf.level = 0.95)))
# generates dataframe with results of binomial tests described above
las_binomial_test_summary = las_binomial_tests$test %>%
  bind rows %>%
  bind_cols(las_binomial_tests[1], .)
# generates table of binomial test estimates
las_binomial_test_summary %>%
  kable(caption = "Binomial Tests") %>%
  kable_styling(bootstrap_options = "striped",
                full_width = F,
                latex_options = c("hold_position", "scale_down"))
```

Table 8: Binomial Tests

AgeGroup	estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
4-5	0.46875	15	0.8600501	32	0.2909398	0.6525632	Exact binomial test	two.sided
6-7	0.43750	14	0.5966149	32	0.2636381	0.6233743	Exact binomial test	two.sided
8-9	0.15625	5	0.0001131	32	0.0527506	0.3278788	Exact binomial test	two.sided

3 Study 3 - Who Sought Help Publicly?

```
# read in data
psh_data = read_csv("../data/study3_public_help_seeking/data_study3.csv")

# data cleaning
psh_data = psh_data %>%
mutate(Script = as.factor(Script)) %>%
```

```
# generates table with percentage breakdown of children who identified either the
# reputational or intrinsic character as the one who publicly sought help
psh_summary = psh_data %>%
    group_by(AgeGroup) %>%
    summarise(percent_intrinsic = (sum(WhoAsked == "Intrinsic")/length(Sub_ID))*100,
        number_intrinsic = (sum(WhoAsked == "Intrinsic")),
        percent_reputational = (sum(WhoAsked == "Reputational")/length(Sub_ID))*100,
        number_reputational = (sum(WhoAsked == "Reputational")),
        total_n = (sum(WhoAsked == "Intrinsic"|WhoAsked == "Reputational")))
```

'summarise()' ungrouping output (override with '.groups' argument)

Table 9: Summary

AgeGroup	percent_intrinsic	number_intrinsic	percent_reputational	number_reputational	total_n
4-5	59.375	19	40.625	13	32
6-7	68.750	22	31.250	10	32
8-9	81.250	26	18.750	6	32

3.2 Demographics

```
# gender
# creates dataframe with percentage breakdown for gender of participants
psh_gender_summary = psh_data %>%
```

'summarise()' regrouping output by 'AgeGroup' (override with '.groups' argument)

Table 10: Gender Summary

AgeGroup	Sex	n	percentage
4-5	female	21	65.625
4-5	male	11	34.375
6-7	female	18	56.250
6-7	male	14	43.750
8-9	female	15	46.875
8-9	male	17	53.125

'summarise()' ungrouping output (override with '.groups' argument)

Table 11: Age Summary

AgeGroup	mean_age	SD_age
4-5	4.951910	0.6556260
6-7	6.818924	0.6134484
8-9	8.961806	0.5731432

3.3 Confirmatory Analyses

```
# generates logistic regression model examining the effect of age (entered as a continuous
# predictor) on whether children identified the character with
# reputational or intrinsic concerns as the one who would publicly seek help
psh_logit_model = glm(WhoAsked ~ Age_Ex,
                              data = psh_data,
                              family = binomial(link = "logit"))
# generates summary of logistic regression model
summary(psh_logit_model)
##
## Call:
## glm(formula = WhoAsked ~ Age Ex, family = binomial(link = "logit"),
      data = psh_data)
##
##
## Deviance Residuals:
     Min
             1Q Median
                               3Q
                                     Max
## -1.159 -0.902 -0.656 1.250
                                    1.945
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                           0.9222
                                   1.312
## (Intercept) 1.2103
                                            0.1894
## Age_Ex
               -0.3043
                            0.1363 -2.232
                                            0.0256 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 117.62 on 95 degrees of freedom
## Residual deviance: 112.29 on 94 degrees of freedom
## ATC: 116.29
##
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for logistic regression model described above
psh_wald_test = wald.test(b = coef(psh_logit_model),
                                  Sigma = vcov(psh_logit_model), Terms = 2,
                                  verbose = TRUE)
 # prints results of Wald chi-square test
print(psh_wald_test, digits = 4)
## Wald test:
## -----
##
## Coefficients:
## (Intercept)
                   Age_Ex
       1.2103
##
                  -0.3043
##
## Var-cov matrix of the coefficients:
```

```
(Intercept) Age_Ex
## (Intercept) 0.85045
                           -0.12180
## Age_Ex
               -0.12180
                            0.01859
##
## Test-design matrix:
      (Intercept) Age_Ex
##
## L1
                0
##
## Positions of tested coefficients in the vector of coefficients: 2
##
## HO:
      Age_Ex = 0
## Chi-squared test:
## X2 = 4.982, df = 1, P(> X2) = 0.02562
# generates binomial tests for each age group that test whether children chose the
# reputational character more often than would be predicted by chance
psh_binomial_tests = psh_summary %>%
  group_by(AgeGroup) %>%
  do(test = tidy(binom.test(sum(.$number_reputational),
                       sum(.$total_n),
                       p = .5,
                       conf.level = 0.95)))
# generates dataframe with results of binomial tests described above
psh_binomial_test_summary = psh_binomial_tests$test %>%
  bind rows %>%
  bind_cols(psh_binomial_tests[1], .)
# generates table of binomial test estimates
psh_binomial_test_summary %>%
  kable(caption = "Binomial Tests") %>%
  kable_styling(bootstrap_options = "striped",
                full_width = F,
                latex_options = c("hold_position", "scale_down"))
```

Table 12: Binomial Tests

AgeGroup	estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
4-5	0.40625	13	0.3770856	32	0.2369841	0.5935508	Exact binomial test	two.sided
6-7	0.31250	10	0.0501025	32	0.1611847	0.5000776	Exact binomial test	two.sided
8-9	0.18750	6	0.0005351	32	0.0720762	0.3643923	Exact binomial test	two.sided

4 Study 4 - Who Sought Help Publicly versus Privately?

```
# read in data
pvp_data = read_csv("../data/study4_public_vs_private/data_study4.csv")
```

```
# data cleaning
pvp_data = pvp_data %>%
  mutate(Sex = as.factor(Sex)) %>%
  mutate(Condition = ifelse(Condition == "1",
                            "private",
                            "public"),
         Sex = ifelse(Sex == "0",
                      "female",
                      "male").
         SoughtHelp = ifelse(SoughtHelp == "0",
                             "Reputational",
                             "Intrinsic")) %>% # recode data
  mutate(AgeGroup = ifelse((Age_Yrs == 4|Age_Yrs == 5), "4-5",
                           ifelse((Age_Yrs == 6|Age_Yrs == 7), "6-7",
                           ifelse((Age_Yrs == 8|Age_Yrs ==9), "8-9", NA)))) %>%
   mutate(AgeGroup = as.factor(AgeGroup)) %>%
   mutate(SoughtHelp = as.factor(as.character(SoughtHelp)),
           Condition = as.factor(as.character(Condition)))
# create dataframe with data from private condition ONLY
study4_private_data = pvp_data %>%
 filter(Condition == "private")
# create dataframe with data from public condition ONLY
study4_public_data = pvp_data %>%
```

filter(Condition == "public")

```
# generates table with percentage breakdown of children who identified either the
# reputational or intrinsic character as the one who sought help
pvp_summary = pvp_data %>%
  group_by(Condition, AgeGroup) %>%
  summarise(percent_intrinsic = (sum(SoughtHelp == "Intrinsic")/length(Sub_ID))*100,
            number_intrinsic = (sum(SoughtHelp == "Intrinsic")),
            percent_reputational = (sum(SoughtHelp == "Reputational")/length(Sub_ID))*100,
            number_reputational = (sum(SoughtHelp == "Reputational")),
            total_n = (sum(SoughtHelp == "Intrinsic"|SoughtHelp == "Reputational")))
## 'summarise()' regrouping output by 'Condition' (override with '.groups' argument)
# generates table
pvp_summary %>%
  kable(caption = "Summary") %>%
  kable_styling(bootstrap_options = "striped",
                full_width = F,
                latex_options = c("hold_position", "scale_down"))
```

Table 13: Summary

Condition	AgeGroup	percent_intrinsic	number_intrinsic	percent_reputational	number_reputational	total_n
private	4-5	65.625	21	34.375	11	32
private	6-7	28.125	9	71.875	23	32
private	8-9	40.625	13	59.375	19	32
public	4-5	34.375	11	65.625	21	32
public	6-7	46.875	15	53.125	17	32
public	8-9	71.875	23	28.125	9	32

4.2 Demographics

Table 14: Gender Summary

latex_options = "hold_position")

Condition	AgeGroup	Sex	n	percentage
private	4-5	female	18	56.250
private	4-5	male	14	43.750
private	6-7	female	23	71.875
private	6-7	male	9	28.125
private	8-9	female	17	53.125
private	8-9	male	15	46.875
public	4-5	female	15	46.875
public	4-5	male	17	53.125
public	6-7	female	16	50.000
public	6-7	male	16	50.000
public	8-9	female	15	46.875
public	8-9	male	17	53.125

```
# age

# creates dataframe with summary stats (mean and SD) for age of participants
pvp_age_summary <- pvp_data %>%
    group_by(Condition, AgeGroup) %>%
```

Table 15: Age Summary

Condition	AgeGroup	mean_age	SD_age
private	4-5	4.983246	0.6207233
private	6-7	6.967187	0.6035094
private	8-9	8.960851	0.5645325
public	4-5	4.803385	0.5404293
public	6-7	6.744010	0.5703226
public	8-9	8.974306	0.6322552

4.3 Confirmatory Analyses

4.3.1 Examining interaction between condition and age

```
##
## Call:
## glm(formula = SoughtHelp ~ Age_Ex * factor(Condition), family = "binomial",
       data = recoded_pvp_data)
## Deviance Residuals:
      Min 10 Median
                                  30
                                          Max
## -1.6204 -1.1233 0.8024 1.0568
                                       1.6831
##
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
                                         0.8786 -1.732 0.083190 .
## (Intercept)
                             -1.5221
## Age_Ex
                              0.2497
                                         0.1237 2.018 0.043544 *
                              4.0909
                                                  3.291 0.000998 ***
## factor(Condition)1
                                         1.2431
## Age_Ex:factor(Condition)1 -0.6325
                                         0.1762 -3.589 0.000332 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 265.84 on 191 degrees of freedom
## Residual deviance: 250.57 on 188 degrees of freedom
## AIC: 258.57
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for main effect of age
pvp_wald_test_age_main_effect = wald.test(b=coef(pvp_logit_model),
                                                 Sigma = vcov(pvp_logit_model),
                                                 Terms = 2,
                                                 verbose = TRUE)
# prints output of Wald test described above
print(pvp_wald_test_age_main_effect, digits = 5)
## Wald test:
## -----
## Coefficients:
##
                 (Intercept)
                                                             factor(Condition)1
                                               Age_Ex
##
                   -1.52213
                                              0.24972
                                                                        4.09091
## Age_Ex:factor(Condition)1
##
                   -0.63248
##
## Var-cov matrix of the coefficients:
                             (Intercept) Age_Ex
                                                  factor(Condition)1
## (Intercept)
                             0.771922 -0.105553 -0.771922
                                         0.015307 0.105553
## Age_Ex
                            -0.105553
## factor(Condition)1
                            -0.771922
                                         0.105553 1.545229
## Age_Ex:factor(Condition)1 0.105553
                                       -0.015307 -0.212544
##
                            Age_Ex:factor(Condition)1
## (Intercept)
                            0.105553
## Age Ex
                            -0.015307
## factor(Condition)1
                            -0.212544
```

```
## Age_Ex:factor(Condition)1 0.031057
##
## Test-design matrix:
      (Intercept) Age_Ex factor(Condition)1 Age_Ex:factor(Condition)1
## L1
               0
##
## Positions of tested coefficients in the vector of coefficients: 2
## HO: Age_Ex = 0
##
## Chi-squared test:
## X2 = 4.0742, df = 1, P(> X2) = 0.043544
# computes Wald chi-square value for main effect of Condition
pvp_wald_test_condition_main_effect <- wald.test(b=coef(pvp_logit_model),</pre>
                                                 Sigma = vcov(pvp_logit_model),
                                                 Terms = 3.
                                                 verbose = TRUE)
 # prints Wald test described above
print(pvp_wald_test_condition_main_effect, digits = 5)
## Wald test:
## -----
##
## Coefficients:
##
                 (Intercept)
                                                Age_Ex
                                                              factor(Condition)1
##
                    -1.52213
                                               0.24972
                                                                          4.09091
## Age_Ex:factor(Condition)1
##
## Var-cov matrix of the coefficients:
                            (Intercept) Age_Ex
                                                   factor(Condition)1
## (Intercept)
                             0.771922 -0.105553 -0.771922
                                         0.015307 0.105553
## Age_Ex
                             -0.105553
## factor(Condition)1
                             -0.771922
                                         0.105553 1.545229
                                        -0.015307 -0.212544
## Age_Ex:factor(Condition)1 0.105553
##
                             Age_Ex:factor(Condition)1
## (Intercept)
                             0.105553
## Age_Ex
                             -0.015307
## factor(Condition)1
                             -0.212544
## Age_Ex:factor(Condition)1 0.031057
## Test-design matrix:
      (Intercept) Age_Ex factor(Condition)1 Age_Ex:factor(Condition)1
## L1
                Ω
                       Λ
                                          1
##
## Positions of tested coefficients in the vector of coefficients: 3
## HO: factor(Condition)1 = 0
## Chi-squared test:
## X2 = 10.83, df = 1, P(> X2) = 0.00099844
```

```
# computes Wald chi-square value for interaction between age and condition
pvp_wald_test_interaction = wald.test(b = coef(pvp_logit_model),
                                                    Sigma = vcov(pvp logit model),
                                                    Terms = 4,
                                                    verbose = TRUE)
# prints Wald test described above
print(pvp_wald_test_interaction, digits = 5)
## Wald test:
## -----
##
## Coefficients:
                                                            factor(Condition)1
##
                 (Intercept)
                                               Age_Ex
                                              0.24972
                                                                        4.09091
                   -1.52213
## Age_Ex:factor(Condition)1
                   -0.63248
##
## Var-cov matrix of the coefficients:
##
                            (Intercept) Age_Ex factor(Condition)1
## (Intercept)
                            0.771922 -0.105553 -0.771922
                            -0.105553 0.015307 0.105553
## Age Ex
## factor(Condition)1
                            -0.771922 0.105553 1.545229
## Age_Ex:factor(Condition)1 0.105553 -0.015307 -0.212544
##
                            Age_Ex:factor(Condition)1
## (Intercept)
                            0.105553
## Age_Ex
                            -0.015307
## factor(Condition)1
                            -0.212544
## Age_Ex:factor(Condition)1 0.031057
## Test-design matrix:
      (Intercept) Age_Ex factor(Condition)1 Age_Ex:factor(Condition)1
## L1
                     0
                                         0
               0
## Positions of tested coefficients in the vector of coefficients: 4
## HO: Age_Ex:factor(Condition)1 = 0
##
## Chi-squared test:
## X2 = 12.881, df = 1, P(> X2) = 0.00033199
```

4.3.2 Examining effect of age within private condition

```
##
## Call:
## glm(formula = SoughtHelp ~ Age_Ex, family = binomial(link = "logit"),
      data = study4_private_data)
## Deviance Residuals:
      Min 10 Median
                                  30
                                          Max
## -1.6063 -1.1476 0.8633 1.0384
                                       1.3959
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5221
                           0.8786 -1.732
                                            0.0832 .
## Age_Ex
                0.2497
                           0.1237 2.018 0.0435 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 132.04 on 95 degrees of freedom
## Residual deviance: 127.80 on 94 degrees of freedom
## AIC: 131.8
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for logistic regression model described above
study4_private_wald_test = wald.test(b = coef(study4_private_logit_model),
                                    Sigma = vcov(study4_private_logit_model),
                                    Terms = 2,
                                    verbose = TRUE)
# prints results of Wald chi-square test
print(study4_private_wald_test, digits = 5)
## Wald test:
## -----
## Coefficients:
## (Intercept)
                   Age_Ex
     -1.52213
                  0.24972
##
##
## Var-cov matrix of the coefficients:
              (Intercept) Age_Ex
## (Intercept) 0.771922 -0.105553
## Age_Ex
              -0.105553
                           0.015307
##
## Test-design matrix:
      (Intercept) Age_Ex
## L1
               Ω
## Positions of tested coefficients in the vector of coefficients: 2
## HO: Age_Ex = 0
## Chi-squared test:
```

```
## X2 = 4.0742, df = 1, P(> X2) = 0.043544
```

```
# generates binomial tests for each age group that test whether children chose the
# reputational character more often than would be predicted by chance
study4_private_binomial_tests = pvp_summary %>%
  filter(Condition == "private") %>%
  group_by(AgeGroup) %>%
  do(test = tidy(binom.test(sum(.$number_reputational),
                       sum(.$total_n),
                       p = .5,
                       conf.level = 0.95)))
# generates dataframe with results of binomial tests described above
study4_private_binomial_test_summary = study4_private_binomial_tests$test %>%
  bind rows %>%
  bind_cols(study4_private_binomial_tests[1], .)
# generates table of binomial test estimates
study4_private_binomial_test_summary %>%
  kable(caption = "Binomial Tests") %>%
  kable_styling(bootstrap_options = "striped",
                full_width = F,
                latex_options = c("hold_position", "scale_down"))
```

Table 16: Binomial Tests

AgeGroup	estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
4-5	0.34375	11	0.1101842	32	0.1857191	0.5319310	Exact binomial test	two.sided
6-7	0.71875	23	0.0200616	32	0.5325289	0.8625431	Exact binomial test	two.sided
8-9	0.59375	19	0.3770856	32	0.4064492	0.7630159	Exact binomial test	two.sided

4.3.3 Examining effect of age within public condition

```
# generates logistic regression model examining the effect of age (entered as a continuous
# predictor) on whether children identified the character with
# reputational or intrinsic concerns as the one who would publicly seek help
study4_public_logit_model = glm(SoughtHelp ~ Age_Ex,
                                 data = study4_public_data,
                                 family = binomial(link = "logit"))
# generates summary of logistic regression model
summary(study4_public_logit_model)
##
## Call:
## glm(formula = SoughtHelp ~ Age_Ex, family = binomial(link = "logit"),
       data = study4_public_data)
##
##
## Deviance Residuals:
     Min
##
           1Q Median
                               3Q
                                      Max
```

```
## -1.620 -1.075 -0.717 1.078
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                2.5688
                            0.8794
                                     2.921 0.00349 **
               -0.3828
                            0.1255 -3.050 0.00229 **
## Age Ex
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 133.04 on 95 degrees of freedom
## Residual deviance: 122.77 on 94 degrees of freedom
## AIC: 126.77
##
## Number of Fisher Scoring iterations: 4
# computes Wald chi-square value for logistic regression model described above
study4_public_wald_test = wald.test(b=coef(study4_public_logit_model),
                                     Sigma = vcov(study4_public_logit_model),
                                     Terms = 2,
                                     verbose = TRUE)
 # prints results of Wald chi-square test
print(study4_public_wald_test, digits = 5)
## Wald test:
## -----
##
## Coefficients:
## (Intercept)
                    Age_Ex
                 -0.38276
       2.56878
##
##
## Var-cov matrix of the coefficients:
               (Intercept) Age_Ex
## (Intercept) 0.77331
                           -0.10699
                            0.01575
## Age_Ex
              -0.10699
##
## Test-design matrix:
      (Intercept) Age_Ex
##
## L1
                0
##
## Positions of tested coefficients in the vector of coefficients: 2
##
## HO: Age_Ex = 0
##
## Chi-squared test:
## X2 = 9.3018, df = 1, P(> X2) = 0.0022893
# generates binomial tests for each age group that test whether children chose the
# reputational character more often than would be predicted by chance
study4_public_binomial_tests = pvp_summary %>%
  filter(Condition == "public") %>%
```

Table 17: Binomial Tests

AgeGroup	estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
4-5	0.65625	21	0.1101842	32	0.4680690	0.8142809	Exact binomial test	two.sided
6-7	0.53125	17	0.8600501	32	0.3474368	0.7090602	Exact binomial test	two.sided
8-9	0.28125	9	0.0200616	32	0.1374569	0.4674711	Exact binomial test	two.sided

5 Plots

```
# data wrangling for predicted probability plot (Studies 1 & 2)
df.lap_logit_model = ggpredict(model = lap_logit_model,
                               terms = "Age_Ex [all]") %>%
 rename_all(function(x) paste0("lap_", x)) %>%
 mutate(id = 1:n()) %>%
 select(-lap_group)
df.las_logit_model = ggpredict(model = las_logit_model,
                               terms = "Age_Ex [all]") %>%
 rename_all(function(x) paste0("las_", x)) %>%
 mutate(id = 1:n()) \%>\%
  select(-las_group)
df.combined_model = df.lap_logit_model %>%
  left_join(df.las_logit_model, by = "id") %>%
  pivot_longer(cols = -id,
               names_to = c("study", "value_type"),
               names_sep = "_",
               values_to = "value") %>%
  pivot_wider(names_from = "value_type",
              values_from = "value") %>%
  mutate(study = ifelse(study == "lap",
                        "Lying about Performance",
```

```
"Downplaying Success")) %>%
  mutate(study = factor(study,
                        levels = c("Lying about Performance",
                                          "Downplaying Success")))
# for individual data points (lying about poor performance)
df.lap_data = lap_data %>%
 rename_all(function(x) paste0("lap_", x)) %>%
  rename(Sub_ID = lap_Sub_ID,
         lap_AgeEx = lap_Age_Ex) %>%
  select(c(Sub_ID, lap_AgeEx, lap_WhoLied)) %>%
  mutate(lap_WhoLied = ifelse(lap_WhoLied == "Intrinsic", 0, 1))
# for individual data points (lying about good performance)
df.las_data = las_data %>%
  rename_all(function(x) paste0("las_", x)) %>%
  rename(Sub_ID = las_Sub_ID,
         las_AgeEx = las_Age_Ex) %>%
  select(c(Sub_ID, las_AgeEx, las_WhoLied)) %>%
  mutate(las_WhoLied = ifelse(las_WhoLied == "Intrinsic", 0, 1))
# combined df with individual data (studies 1 & 2)
df.combined_lap_las = df.lap_data %>%
  left join(df.las data, by = "Sub ID") %>%
  pivot_longer(cols = -Sub_ID,
               names_to = c("study", "value_type"),
               names_sep = "_",
               values_to = "value") %>%
  pivot_wider(names_from = "value_type",
              values_from = "value") %>%
  mutate(study = ifelse(study == "lap",
                        "Lying about Performance",
                        "Downplaying Success")) %>%
  mutate(study = factor(study,
                        levels = c("Lying about Performance",
                                   "Downplaying Success")))
# text labels for plot
text_reputational = textGrob("Chose Student with\n Reputational Concerns",
                              gp=gpar(fontsize=9,
                                      fontface="bold"))
text intrinsic = textGrob("Chose Student with\nIntrinsic Concerns",
                           gp=gpar(fontsize=9,
                                   fontface="bold"))
# generate plot
df.combined_model %>%
  ggplot(mapping = aes(x = x,
                       y = predicted,
                       group = study,
                       color = study,
                       fill = study)) +
  geom_ribbon(data = df.combined_model,
```

```
mapping = aes(ymin = conf.low,
                          ymax = conf.high),
            linetype = 0,
            alpha = 0.3) +
geom_line(na.rm = TRUE) +
geom_point(data = df.combined_lap_las,
           mapping = aes(x = AgeEx,
                         y = WhoLied,
                         color = study)) +
scale_x_continuous(breaks = seq(4, 10, by = 1),
                   expand = c(.01, .01)) +
coord_cartesian(xlim = c(4, 10),
                ylim = c(0, 1),
                clip = "off") +
annotation_custom(text_reputational,
                  xmin=11.25,
                  xmax=11.25,
                  ymin=1,
                  ymax=1) +
annotation_custom(text_intrinsic,
                  xmin=11.25,
                  xmax=11.25,
                  ymin=0,
                  ymax=0) +
scale_y_continuous(breaks = seq(0, 1.00, by = .25),
                   expand = c(.01, .01)) +
scale_color_brewer(palette = "Set1") +
scale_fill_brewer(palette = "Set1") +
theme(text = element_text(size = 15,
                          family = "Times New Roman",
                          color = "black")) +
labs(x = "Age (Continous)",
     y = "Predicted Probability of Choosing Student \n with Reputational Motives",
     fill = element_blank(),
     color = element_blank()) +
theme_bw()
```



```
# generate plot
df.psh_logit_model %>%
  ggplot(mapping = aes(x = x,
                       y = predicted)) +
  geom_ribbon(data = df.psh_logit_model,
              mapping = aes(ymin = conf.low,
                            ymax = conf.high),
              linetype = 0,
              alpha = 0.3) +
  geom_line(na.rm = TRUE) +
  geom_point(data = df.psh_data,
             mapping = aes(x = Age_Ex,
                           y = WhoAsked,
                           color = as.factor(WhoAsked_label))) +
  annotation_custom(text_reputational,
                    xmin=10.95,
                    xmax = 10.95,
                    ymin=1,
                    ymax=1) +
  annotation_custom(text_intrinsic,
                    xmin=10.95,
                    xmax = 10.95,
                    ymin=0,
                    ymax=0) +
  scale_x_continuous(breaks = seq(4, 10, by = 1),
                     expand = c(.01, .01)) +
  scale_y_continuous(breaks = seq(0, 1.00, by = .25),
                     expand = c(.01, .01)) +
  scale_color_brewer(palette = "Set1") +
  labs(x = "Age (Continous)",
       y = "Predicted Probability of Choosing Student \n with Reputational Motives",
       fill = element_blank(),
       color = element_blank()) +
  theme(text = element_text(size = 15,
                            family = "Times New Roman",
                            color = "black")) +
  coord_cartesian(xlim = c(4, 10),
                  ylim = c(0, 1),
                  clip = "off") +
  theme_bw()
```



```
# data wrangling for predicted probability plot (Study 4)
df.pvp_logit_model = ggpredict(model = pvp_logit_model,
                               terms = c("Age_Ex [all]", "Condition"))
# creating data frame for plot
df.pvp logit plot = df.pvp logit model %>%
 rename(condition = group) %>%
 mutate(condition = ifelse(condition == "0",
                            "Private Condition",
                            "Public Condition")) %>%
 mutate(condition = factor(condition, levels = c("Private Condition",
                                                  "Public Condition")))
# formatting data for individual data points
df.pvp_data = pvp_data %>%
  select(c(Sub_ID, Age_Ex, SoughtHelp, Condition)) %>%
  rename(condition = Condition) %>%
  mutate(condition = ifelse(condition == "private",
                            "Private Condition",
                            "Public Condition")) %>%
  mutate(SoughtHelp = ifelse(SoughtHelp == "Intrinsic", 0, 1))
```

```
group = condition,
                     color = condition,
                     fill = condition)) +
geom_ribbon(data = df.pvp_logit_plot,
            mapping = aes(ymin = conf.low,
                          ymax = conf.high),
            linetype = 0,
            alpha = 0.3) +
geom_line(na.rm = TRUE) +
scale_color_brewer(palette = "Set1") +
scale_fill_brewer(palette = "Set1") +
geom_point(data = df.pvp_data,
           mapping = aes(x = Age_Ex,
                         y = SoughtHelp,
                         color = condition)) +
scale_x_continuous(breaks = seq(4, 10, by = 1),
                   expand = c(.01, .01)) +
coord_cartesian(xlim = c(4, 10),
                ylim = c(0, 1),
                clip = "off") +
annotation_custom(text_reputational,
                  xmin=11,
                  xmax=11,
                  ymin=1,
                  ymax=1) +
annotation_custom(text_intrinsic,
                  xmin=11,
                  xmax=11,
                  ymin=0,
                  ymax=0) +
scale_y_continuous(breaks = seq(0, 1.00, by = .25),
                   expand = c(.01, .01)) +
theme(text = element_text(size = 15,
                          family = "Times New Roman",
                          color = "black")) +
labs(x = "Age (Continous)",
    y = "Predicted Probability of Choosing Student \n with Reputational Motives",
    fill = element_blank(),
    color = element blank()) +
theme_bw()
```


References

Devleesschauwer, Brecht, Paul Torgerson, Johannes Charlier, Bruno Levecke, Nicolas Praet, Sophie Roelandt, Suzanne Smit, Pierre Dorny, Dirk Berkvens, and Niko Speybroeck. 2015. *Prevalence: Tools for Prevalence Assessment Studies*. https://CRAN.R-project.org/package=prevalence.

Henry, Lionel, and Hadley Wickham. 2020. Purr: Functional Programming Tools. https://CRAN.R-project.org/package=purr.

J, Lemon. 2006. "Plotrix: A Package in the Red Light District of R." R-News 6 (4): 8-12.

Lemon, Jim, Ben Bolker, Sander Oom, Eduardo Klein, Barry Rowlingson, Hadley Wickham, Anupam Tyagi, et al. 2020. *Plotrix: Various Plotting Functions.* https://CRAN.R-project.org/package=plotrix.

Lesnoff, Matthieu, and Renaud Lancelot. 2019. Aod: Analysis of Overdispersed Data. https://CRAN.R-project.org/package=aod.

Lüdecke, Daniel. 2018. "Ggeffects: Tidy Data Frames of Marginal Effects from Regression Models." *Journal of Open Source Software* 3 (26): 772. https://doi.org/10.21105/joss.00772.

——. 2020. Ggeffects: Create Tidy Data Frames of Marginal Effects for 'Ggplot' from Model Outputs. https://CRAN.R-project.org/package=ggeffects.

Müller, Kirill, and Hadley Wickham. 2020. *Tibble: Simple Data Frames*. https://CRAN.R-project.org/package=tibble.

Plummer, Martyn. 2019. Rjags: Bayesian Graphical Models Using Mcmc. https://CRAN.R-project.org/package=rjags.

Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006. "CODA: Convergence Diagnosis and Output Analysis for Mcmc." R News 6 (1): 7–11. https://journal.r-project.org/archive/.

Plummer, Martyn, Nicky Best, Kate Cowles, Karen Vines, Deepayan Sarkar, Douglas Bates, Russell Almond, and Arni Magnusson. 2019. *Coda: Output Analysis and Diagnostics for Mcmc.* https://CRAN.R-project.org/package=coda.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Robinson, David, and Alex Hayes. 2020. Broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom.

Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.

——. 2019a. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.

——. 2019b. Tidyverse: Easily Install and Load the 'Tidyverse'. https://CRAN.R-project.org/package=tidyverse.

——. 2020. Forcats: Tools for Working with Categorical Variables (Factors). https://CRAN.R-project.org/package=forcats.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. *Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*. https://CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2020. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, and Lionel Henry. 2020. Tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr.

Wickham, Hadley, Jim Hester, and Romain Francois. 2018. Readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.

Winston Chang. 2014. Extrafont: Tools for Using Fonts. https://CRAN.R-project.org/package=extrafont.

Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.

——. 2020. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-project.org/package=knitr.

Zhu, Hao. 2019. KableExtra: Construct Complex Table with 'Kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.