Master 1 MABS
UE Bioinformatique des séquences
novembre - décembre 2013

UN PEU DE VOCABULAIRE

Familles, domaines, motifs, pattern, etc...

- domaine protéique: unité structurale (et fonctionnelle) indépendante, évolutivement conservée (doigt de zinc, boucle,...)
- o motifs protéiques: plus courts
 - site de modification post-traductionnelle
 - site de liaison (ADN, métal,...)
 - site actif d'enzyme
- o famille protéique: ensemble de protéines évolutivement reliées par un ou plusieurs domaines protéiques communs

Domaine conservé

Exemple doigt de zinc

```
TYY1_HUMAN/383-407
                      YVCPF-DGCN---KKFAQSTNLKSHILT---H
YKQ8_CAEEL/78-102
                      YKCT---VCR---KDISSSESLRTHMFKQ-HH
BASO_HUMAN/719-742
                      FQCD---ICK---KTFKNACSVKIHHKN--MH
ZG29_XENLA/62-84
                      FVCT---VCG---KTYKYKHGLNTHLHS---H
P43_XENB0/106-130
                      LKCSV-PGCK---RSFRKKRALRIHVSE---H
IKAR_MOUSE/488-512
                      FECN---MCG---YHSQDRYEFSSHITRG-EH
Q92610/1043-1069
                      YTCG---YCTEDSPSKPRPSLLESHISL--MH
TRA1_CAEEL/306-331
                      YKCEF-ADCE---KAFSNASDRAKHQNR--TH
ZN10_HUMAN/383-405
                      YKCN---QCG---IIFSQNSPFIVHQIA---H
GLI1_XENLA/283-310
                      FVCHW-QDCSRELRPFKAQYMLVVHMRR---H
XFIN_XENLA/276-298
                      FRCS---ECS---RSFTHNSDLTAHMRK---H
TF3A_BUFAM/72-97
                      CKCET-ENCN---LAFTTASNMRLHFKR--AH
ZG58_XENLA/174-196
                      FVCT---ECN---LSFAGLANLRSHQHL---H
                      YRCSY-EDCQ---TVSPTWTALQTHLKK---H
P43 XENBO/163-187
TSH_DROME/354-378
                      FRCV---WCK---QSFPTLEALTTHMKDS-KH
ZN76_HUMAN/165-189
                      FRCGY-KGCG---RLYTTAHHLKVHERA---H
TF3A_BUFAM/219-244
                      YRCPR-ENCD---RTYTTKFNLKSHILT--FH
SUHW_DROAN/349-373
                      YACK---ICG---KDFTRSYHLKRHQKYS-SC
ZN76_HUMAN/285-309
                      YTCPE-PHCG---RGFTSATNYKNHVRI---H
SRYC_DROME/469-492
                      FKCN---YCP---RDFTNFPNWLKHTRR--RH
EVI1_HUMAN/761-784
                      YRCK---YCD---RSFSISSNLQRHVRN--IH
```

Extrait de Pfam, entrée zf-C2H2

Domaine conservé

• Exemple doigt de zinc

Motif Prosite:

C-x (2,4)-C-x (3)-[LIVMFYWC]-x (8)-H-x (3,5)-H

MOTIF (PATTERN)

```
GUN1_TRIRE/427-455 HWGQCGI---GYSGC--K-TCTSGTTCQYSNDYYSQCL
GUX1_TRIRE/481-509
                   HYGQCGGI---GYSGP--T-VCASGTTCQVLNPYYSQCL
GUX1_PHACH/484-512
                   OWGOCGGI---GYTGS--T-TCASPYTCHVLNPYYSOCY
GUX2_TRIRE/30-58
                    VWGQCGGQ---NWSGP--T-CCASGSTCVYSNDYYSQCL
GUN5_TRIRE/209-237
                   LYGOCGGA---GWTGP--T-TCOAPGTCKVONOWYSOCL
GUNF_FUSOX/21-49
                    IWGQCGGN---GWTGA--T-TCASGLKCEKINDWYYQCV
GUX3_AGABI/24-52
                    VWGQCGGN---GWTGP--T-TCASGSTCVKQNDFYSQCL
001763/473-500
                    --SOCGGL---GYAGP--TgVCPSPYTCOALNIYYSOCI
GUX1_PENJA/505-533
                   DWAQCCCN---CWTCP--T-TCVSPYTCTKQNDWYSQCL
GUXC_FUSOX/482-510
                   QWGQCGGQ---NYSGP--T-TCKSPFTCKKINDFYSQCQ
GUX1_HUMGR/493-521
                   RWQQCGGI---GFTGP--T-QCEEPYICTKLNDWYSQCL
GUX1_NEUCR/484-512
                   HWAQCGGI---GFSGP--T-TCPEPYTCAKDHDIYSQCV
Q9Y894/23-53
                    PWGQCGGP---GWTGPttT-CCVTGCTCPVTND-YSQCL
                   LYEUCGGI---GFDGV--T-CCSEGLMCMKMGPYYSUCR
PSBP_PORPU/26-54
GUNB_FUSUX/29-57
                    VWAQCGGQ---NWSGT--P-CCTSGNKCVKLNDFYSQCQ
PSBP_PORPU/69-97
                    PYGQCGGM---NYSGK--T-MCSPGFKCVELNEFFSQCD
GUNK_FUSGX/339-370
                   AYYOCGGSKSAYPNGN--L-ACATGSKCVKONEYYSOCV
PSBP_PORPU/128-156
                   EYAACGE---MFMGA -K-CCKFGLVCYETSGKWSUCR.
           Extrait de Prosite, entrée PS00562
C-G-G-x(4,7)-G-x(3)-C-x(5)-C-x(3,5)-[NHG]-x-[FYWM]-x(2)-Q-C
                                                   ___ pattern
     3000K30CX3K300000K300CX30000K3000KCX
```

LE PROFIL DE CONSERVATION ISSU DE L'ALIGNEMENT MULTIPLE

CLUSTAL FORMAT TOT T-COFFEE VETSION_3.13 [HCLP://www.tcoffee.org], CPC-1.70 Sec, SCORE-41, NSEQ-11, Len-302 tr|061464|061464_DROME METAANSG-----SKEPFKVEDVTRNIKKAVCA tr|Q28ZV7|Q28ZV7_DROPS MPNAMETTT----SKKPFKVKDVTRNIKKAVCA tr | Q66K97 | Q66K97_XENTR MQGALDYANALSPKSLIRSVTNVGTSLTRRVLFPPLPE-PPQRPFRVSNSDRSSKKGIVA unk|VIRT1655|Blast_submission MEVTGDAG-------VPESGEIR-----TLKPCLLRRNYSREOHGVAA Q96AQ7 | CIDEC_HUMAN MEYAMKSLSLLYPKSLSRHVSVRTSVVTQQLLSEPSPKAPRARPCRVSTADRSVRKGIMA sp|P56198|CIDEC_MOUSE MDVAMESLSLLVPRSLSRHVAVSTAVVTOOLUSKPSRETPRARPCRVSTADREVREGTMI tr|Q5XI33|Q5XI33_RAT MDYAMKSLSLLYPRSLSRHVAVSTAVVTOOLVSEPSRETPRARPCRVSTADRKVRKGIMA sp | 060543 | CIDEA_HUMAN MEAARDYAG - - - - ALIRPL/TFMGSO/TKRVLFTP - - - LMHPARPFRVSNHDRSSRRGVMA tr|A4FUX1|A4FUX1_BOVIN METARDCAG - - - - ALLRPLTFMGSQTKKVLFTP - - - FMHPARPFRVSNHDRSSRRGVMA sp|070303|CIDEB_MOUSE --- MEYLSAFNPNGLLRSVSTVSSELSRRVWNS---APPPORPFRVCDHKRTVRKGLTA sp|Q3T191|CIDEB_BOVIN ----MEYLSNLDPSSLLRSVSNMSADLGRKVWTS---APPRORPFRVCDNKRTTRKGL/TA tr | 061464 | 061464_DROME SSLEEIRSKVAEKFEKCDH-tr|Q28ZV7|Q28ZV7_DROPS ASLEEIRDKVAEKFGKCDH - - PTIHLD DGT IDDEEYFRTLDENTELVAVF tr | Q66K97 | Q66K97_XENTR * = résidu parfaitement conservé unk|VIRT1655|Blast_submission SCLEDLRSKACDILAIDKSLT VTLVLA DGT VDDDDYFLCLPSNTKFVALAS KEKWAY Q96AQ7 | CIDEC_HUMAN YSLEDLLLKVRDTLMLADK - - FFLVLE DGT VETEEYFOALAGDTVFMVLOX : = substitution conservative sp P56198 CIDEC MOUSE HSLEDLLNKVQDILKLKDK - FSLVLE DGT VETEEYFQALAKDTMFMVLL OKWKP tr|Q5XI33|Q5XI33_RAT HSLEDLLGKVODILKLKDK - FSLVLE DGT VETEEYFOALPRDTVFMVLOF SOKWKS . = substitution semi-conservative sp|060543|CIDEA HUMAN SSLQELISKTLDALVIATG - - VTLVLE DGT tr A4FUX1 A4FUX1_BOVIN SSLQELLSKTLDALVVASQ - - VTLVLE DGT VDTEEFFQTLGDNTHLMVLE sp|070303|CIDEB_MOUSE ASLOELLDKVLETLLLRG - - - LTLVLE DGT VDSEDFFOLLEDDTCLMVLE sp|Q3T191|CIDEB_BOVIN LTLVLE DGT VESEEFFQLLEDDTCLMVLEI QSWSP ATROELLDKALEALVLSG---1 * *** 11 111* * 1* 11 1 111 *. 1 1 tr|061464|061464_DROME tr|Q28ZV7|Q28ZV7_DROPS PTHYVTITTPHGSETVTGNGDISSGGVGGGVGGSCDGGDTTDANHSESAARIROLVGOLO tr | Q66K97 | Q66K97_XENTR unk|VIRT1655|Blast_submission NNSDGGTA - - - - - WISOESF - - - - - DVDETDSGAG - LKWKNVAROLK Q96AQ7 CIDEC_HUMAN PSEOGTRH-----SH-----K sp | P56198 | CIDEC_MOUSE PSEORKKR------K tr|Q5XI33|Q5XI33_RAT sp | 060543 | CIDEA_HUMAN Qu'est ce qu'il y a de tr A4FUX1 A4FUX1 BOVIN sp|070303|CIDEB_MOUSE si spécial ici ??? sp | Q3T191 | CIDEB_BOVIN RRSG--V-----KSYGLG-----K tr|061464|061464 DROME NNLCNVSVMNDADLDSLSNMDPNSLVD - - - - - ITGKEFMEQLKDAGRPLCAKRNAEDRL tr|Q28ZV7|Q28ZV7_DROPS NNLCNVSVMNDADLDSLSNMDPNSLVD-----ITGKEFMEQLKDAGRPLCAKRNAEDRL tr|Q66K97|Q66K97_XENTR

SITE ACTIF: CELL DEATH ACTIVATOR PROTEIN FAMILY

GHEKKGYFEDRGPSA

GHEGYGGRSRGGGYS

GHEFEGPKGCGALYI

GHELRGTTFMPALEC

Consensus 100%

GHE--G----G---

Consensus 60 %

$$GHE-x(2)-G-x(5)-[GA]$$

pattern

signature

profil

précision sensibilité

$$$$

```
<A en N terminal
x = n'importe quel AA
ST] (2) = Ser ou Thr 2 fois
x (0,1) 1 aa ou aucun
x (4,10) entre 4 et 10 aa quelconques
{V} tout sauf une Val</pre>
```

Code IUPAC pour les nucléotides

<u>Code</u>	<u>Description</u>
Α	Adénine
С	Cytosine
G	Guanine
Т	Thymine
U	Uracile
R	Purine (A ou G)
Y	Pyrimidine (C, T, ou U)
M	C ou A
K	T, U, ou G
W	T, U, ou A
S	C ou G
В	C, T, U, ou G (pas A)
D	A, T, U, ou G (pas C)
Н	A, T, U, or C (pas G)
V	A, C, or G (pas T, pas U)
N	Toutes les bases (A, C, G, T, ou U)

Alignement

Matrice de position

A 4 1 0 1 0 1

1 2 3 4 5 6

AGGTCC

C 0 0 0 1 1 1

AGGATG

G 0 3 3 0 2 1

AGGCGT

T 0 0 1 2 1 1

Matrice de fréquences

	1	2	3	4	5	6
Α	1	0.25	0	0.25	0	0.25
С	0	0	0	0.25	0.25	0.25
G	0	0.75	0.75	0	0.50	0.25
T	0	0	0.25	0.50	0.25	0.25

 $\log \left[\frac{f_b}{p_b} \right]$

Matrice de

fréquences

Matrice de poids de position (Position Weight Matrix ou Position Specific Scoring Matrix PSSM)

	1	2	3	4	5	6
Α	1.2	0	-1.6	0	-1.6	0
С	-1.6	-1.6	-1.6	0	0	0
G	-1.6	0.96	0.96	-1.6	0.59	0
Т	-1.6	-1.6	0	0.59	0	0

Soumission d'une séquence d'intérêt dans les bases de données du type PFAM

CGTATGTAAGGTGTACGTAG

Pour trouver si la séquence contient un motif, les bases de données appliquent sur les séquences soumises les matrices qu'elles ont correspondant toutes à des motifs décrits, et notamment la matrice ci-dessous.

	1	2	3	4	5	6
Α	1.2	0	-1.6	0	-1.6	0
С	-1.6	-1.6	-1.6	0	0	0
G	-1.6	0.96	0.96	-1.6	0.59	0
Т	-1.6	-1.6	0	0.59	0	0

Calcul de score par fenêtre glissante

CGTATGTAAGGTGTAG

CGTATGTAAGGTGTAG

	1	2	3	4	5	6
Α	1.2	0	-1.6	0	-1.6	0
С	-1.6	-1.6	-1.6	0	0	0
G	-1.6	0.96	0.96	-1.6	0.59	0
Т	-1.6	-1.6	0	0.59	0	0

Score = -4.21

CGTATGTAAGGTGTACGTAG

	1	2	3	4	5	6
Α	1.2	0	-1.6	0	-1.6	0
С	-1.6	-1.6	-1.6	0	0	0
G	-1.6	0.96	0.96	-1.6	0.59	0
Т	-1.6	-1.6	0	0.59	0	0

Score = 0.56

C G T A T G T A A G G T G T A C G T A G

	1	2	3	4	5	6
Α	1.2	0	-1.6	0	-1.6	0
С	-1.6	-1.6	-1.6	0	0	0
G	-1.6	0.96	0.96	-1.6	0.59	0
T	-1.6	-1.6	0	0.59	0	0

Score = 4.3

Si dans la base de données interrogée, le seuil minimal de détection de motif est par exemple S = 4 alors seule la séquence AGGTGT sera considérée comme pattern

Exemple: recherche de motif sur une SÉQUENCE VEM-1 DE *CAENORHABDITIS ELEGANS*

Vema (Mammalian ventral midline antigen) related protein 1, isoform a

UniProtKB/Swiss-Prot: Q9TY05

GenPept Graphics

>gi|75024827|sp|Q9TY05|Q9TY05 CAEEL Vema (Mammalian ventral midline antigen) related protein 1, isoform a MYTVSVTFLHKSFFTMDLSSWFEFTMYDAVFLVVVLGFFFYWLTRSEQPLPAPPKELAPLPMSDMTVEEL RKYDGVKNEHILFGLNGTIYDVTRGKGFYGPGKAYGTLAGHDATRALGTMDQNAVSSEWDDHTGISADEQ

ETANEWETQFKFKYLTVGRLVKNSSEKADYGNRKSFVRGAESLDSIINGGDEGTKKDN

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT

Pfam 27.0 (March 2013, 14831 families)

The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). More...

OUICK LINKS

ANALYZE YOUR PROTEIN SEQUENCE FOR PEAM MATCHES

SEQUENCE SEARCH

VIEW A PFAM FAMILY

VIEW A CLAN

VIEW A SEQUENCE

VIEW A STRUCTURE

KEYWORD SEARCH

JUMP TO

Paste your protein sequence here to find matching Pfam families.

This search will use and an E-value of 1.0. You can set your own search parameters and perform a range of other searches here

Exemple : recherche de motif sur une séquence vem-1 de *Caenorhabditis elegans*

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT

Show/hide alignment

Show

Sequence search results

Show the detailed description of this results page.

We found 2 Pfam-A matches to your search sequence (1 significant and 1 insignificant). You did not choose to search for Pfam-B matches.

Show the search options and sequence that you submitted.

Return to the search form to look for Pfam domains on a new sequence.

Significant Pfam-A Matches

Show or hide all alignments

Camilla	Description	Entry	Clan	Envelope		Alignr	nent	нми	И	нмм	Bit	E-value	Predicted	Show/hide
Family	· ·	type	Clan	Start	End	Start	End	From	То	length	score	E-value	active sites	alignment
Cyt-b5	Cytochrome b5-like Heme/Steroid binding	Domain						2				1.8e-11	n/a	Shw
				Entry			E	nvelo	pe	Al	ignme	ent	нмм	

Fallilly	Description	type	Ciaii	Start	End	Start	End	From	То
Cyt-b5	Cytochrome b5-like Heme/Steroid binding	Domain	n/a	64	161	65	160	2	75
#HMM #MATCH #PP #SEQ	ftleevskhnkekdlwvvirgkVYDlskflkdhpggase t ee++k++ k++ +++ ++g++YD+++ + ++ +g +a 689***********************9999999.9*	a++++aG+DaI	:+a+ :*****	******	*****	e+++ + 9999999	e++ ++	ky+ vG+ **9****9	1

Exemple: recherche de motif sur une séquence vem-1 de *Caenorhabditis elegans*

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT

Sequence search results

Show the detailed description of this results page.

We found 2 Pfam-A matches to your search sequence (1 significant and 1 insignificant). You did not choose to search for Pfam-B matches.

Show the search options and sequence that you submitted.

Return to the search form to look for Pfam domains on a new sequence.

Significant Pfam-A Matches

Show or hide all alignments.

Family	Description	Entry	Clan	Envelope Start End		Alignr	nent	нмм		нмм	Bit	E-value	Predicted active	Show/hide
	1		Claii	Start	End	Start	End	From	To	length	score	E-value	sites	alignment
Cyt-b5	Cytochrome b5-like Heme/Steroid binding	Domain	n/a	64	161	65	160	2	75	76	43.6	1.8e-11	n/a	Show

Insi ant Pfam-A Matches

Show all alignments.

Family	Description	Entry	Clan	Enve	lope	Alignr	nent	нмі	М	нмм	Bit	E value	Predicted	Show/hide alignment
ranniy		type	Ciaii	Start	End	Start	End	From	To	length	score	E-value	sites	alignment
Exo endo phos 2	Endonuclease-reverse transcriptase	Domain	CL0530	106	189	113	162	30	72	119	11.2	0.21	n/a	Show

Family: Cyt-b5 (PF00173)

Summary

Domain organisation

Clan

Alignments

HMM logo

Trees

Curation & n

Species

Interactions

Structures

Jump to... 4

enter ID/acc

Summary: Cytochrome b5-like Heme/Steroid binding domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

Wikipedia: Cytochrome b5

Pfam

InterPro

This is the Wikipedia entry entitled "Cytochrome b5 \(\text{G} \)". More...

Cytochrome b5 Edit Wikipedia article

Cytochromes b₅ are ubiquitous electron transport hemoproteins found in animals, plants, fungi and purple phototrophic bacteria. The microsomal and mitochondrial variants are membrane-bound, while bacterial and those from erythrocytes and other animal tissues are water-soluble. The family of cytochrome b_5 -like proteins includes (besides cytochrome b_5 itself) hemoprotein domains covalently associated with other redox domains in flavocytochrome cytochrome b_2 (L-lactate dehydrogenase; EC 1.1.2.3 e), sulfite oxidase (EC 1.8.3.1 e), plant and fungal nitrate reductases (EC 1.7.1.1 e, EC 1.7.1.2 e, EC 1.7.1.3 e), and plant and fungal cytochrome b_5 /acyl lipid desaturase fusion proteins.

Contents [hide]

- 1 Structure
- 2 Cytochrome b_s in some biochemical reactions
- 3 See also
- 4 References
- 5 External links

Structure

3-D structures of a number of cytochrome b_5 and yeast flavocytochrome b_2 are known. The fold belongs to the $a+\beta$ class, with two hydrophobic cores on each side of a β -sheet. The larger hydrophobic core constitutes the heme-binding pocket, closed off on each side by a pair of helices connected by a turn. The smaller hydrophobic core may have only a structural role and is formed by spatially close N-terminal and C-terminal segments. The two histidine residues provide the fifth and sixth heme ligands, and the propionate edge of the heme group lies at the opening of the heme crevice. Two isomers of cytochrome b_5 , referred to as the A (major) and B (minor) forms, differ by a 180° rotation of the heme about an axis defined by the a- and y-meso carbons.

Cytochrome b_{ς} in some biochemical reactions

EC 1.6.2.2 $\ @$ cytochrome-b $_5$ reductase

 $NADH + H^{+} + 2$ ferricytochrome $b_{5} \rightarrow NAD^{+} + 2$ ferrocytochrome b_{5}

EC 1.10.2.1 L-ascorbate—cytochrome-b₅ reductase

Rat cytochrome b5 bound to heme

Identifiers	
Symbol	CYB5A
Alt. symbols	CYB5
Entrez	1528 🚱
HUGO	2570 🗗
OMIM	250790 🗗
PDB	1JEX ∰
RefSeq	NM_001914 🗗
UniProt	P00167 🗗
Other data	
Locus	Chr. 18 q23 🗗

Cytochrome b5		
Identifiers		
ymbol	Cyt_B5	
fam	PF00173 €	
nterPro	IPR001199 🗗	
ROSITE	PDOC00170 ∰	

Family: Cyt-b5 (PF00173)

Coading page components (1 remaining)...

60 architectures 1547 sequences 2 interactions

Summary

Domain organisation

Alignments

HMM logo

HMM logos are one way of visualising profile HMMs. They provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here &. More...

HMM logo

Trees

Curation & models

Species

Interactions

Structures

Jump to... 🌵

enter ID/acc Go

WEB LOGO ENTIER DE CYT-B5

Description de cyt-b5 dans la Conserved Domains Database du NCBI

PSSM

PSI-BLAST (Position-Specific Iterative)

- alignements multiples de hits ayant les meilleurs scores dans un blast classique
- génération d'un profil en calculant un score pour chacune des positions de l'alignement (PSSM)
- utilisation façon itérative de ce profil pour faire de nouvelles recherches et affinage à chaque itération

PHI-BLAST (Pattern Hit Initiated BLAST)

Pattern donné par l'utilisateur puis PSI-BLAST

<u>Intérêt</u> : recherche de familles de protéines détecter des membres que BLAST ne trouve pas

PSI-BLAST (Position-Specific Iterative)

PSSM (position specific score matrix) (matrice de poids de position)

PHI-BLAST (Pattern Hit Initiated)

PSSM (position specific score matrix) (matrice de poids de position)