# ENSC 2113 Engineering Mechanics: Statics

Chapter 3:

Equilibrium of a Particle

(Section 3.1-3.3)

### Chapter 3 Outline:

- 3.1 Condition for the Equilibrium of a
- Particle
- 3.2 The Free-Body Diagram
- 3.3 Coplanar Force Systems
- 3.4 Three-Dimensional Force Systems



# Chapter 3 Objectives:

- To introduce the concept of the free-body diagram for a particle
- To show how to solve particle equilibrium
   problems using the equations of equilibrium



### **Introduction:**

**Equilibrium**: When an object remains at rest or at constant velocity if already in motion.



Newton's first law of motion requires the resultant force of a particle in equilibrium to be equal to zero.

$$\sum F = 0$$



Newton's second law of motion states that a particle subjected to an unbalanced force experiences an acceleration.

$$\sum F = m \alpha' = 0$$

However, in equilibrium, acceleration is zero.

## 3.1 Equilibrium of a particle:

**Particle**: Any object which may be modeled as a concentrated point or mass.

Size and shape do not influence applied forces.

Forces applied to a particle must be "concurrent", with *line of action* passing through a common point.



### Free-body diagram:

- A drawing that shows the particle as isolated and free from its surroundings
- Includes *all* forces acting on the particle



 Springs: The length of a spring will change in direct proportion to the force acting on it.



 Cables and Pulleys: All cables will be assumed to have negligible weight and cannot stretch. Cables can support tension only (pulling force). Cables have constant magnitude as they pass over pulleys.



• Smooth Contact: If an object rests on a smooth surface, the surface will exert a force on the object normal to the surface at the point of contact





### Procedure:

- Draw the Outlined Shape
  - Isolate the system by removing the supports and drawing the outlined shape
- Show All Forces
  - Active forces that set the particle in motion
  - Reactive forces that prevent motion
- Identify Each Force
  - Knowns
  - Unknowns



For some problems, multiple FBDs will be required to solve. FBD at C  $F_{CA}$ 



## **Equilibrium:**

### Equations in 2-D:

With two equations, two unknowns can be solved



# ENSC 2113 Engineering Mechanics: Statics

Chapter 3:

Equilibrium of a Particle

(Section 3.1-3.3)