

# Reinforcement Learning

Instructor: Hongfei Xue

Email: hongfei.xue@charlotte.edu

Class Meeting: Mon & Wed, 4:00 PM - 5:15 PM, CHHS 376



# Fancy Applications of RL



Play Dota



Chip Design







AlphaGo

**Nuclear Fusion** 

AWS Deep Racer

# Playing Games: Atari



# Playing Games: Hide and Seek



# Reinforcement Learning

- Learning algorithms differ in the information available to learner
  - Supervised: correct outputs
  - Unsupervised: no feedback, must construct measure of good output
  - Reinforcement learning
- More realistic learning scenario:
  - Continuous stream of input information, and actions
  - Effects of action depend on state of the world
  - Obtain reward that depends on world state and actions
    - not correct response, just some feedback

# Reinforcement Learning



Reinforcement Learning in Dog Training





environment



(current) state





reward

(here: -1)

# Formulating Reinforcement Learning

- World described by a discrete, finite set of states and actions
- At every time step t, we are in a state  $s_t$ , and we:
  - ightharpoonup Take an action  $a_t$  (possibly null action)
  - ightharpoonup Receive some reward  $r_{t+1}$
  - ▶ Move into a new state  $s_{t+1}$
- An RL agent may include one or more of these components:
  - Policy  $\pi$ : agent's behaviour function
  - Value function: how good is each state and/or action
  - Model: agent's representation of the environment

## Policy

- A policy is the agent's behaviour.
- It's a selection of which action to take, based on the current state
- Deterministic policy:  $a = \pi(s)$
- Stochastic policy:  $\pi(a|s) = P[a_t = a|s_t = s]$

#### Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- Our aim will be to maximize the value function (the total reward we receive over time): find the policy with the highest expected reward
- By following a policy  $\pi$ , the value function is defined as:

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

- $\gamma$  is called a discount rate, and it is always  $0 \le \gamma \le 1$
- If  $\gamma$  close to 1, rewards further in the future count more, and we say that the agent is "farsighted"
- ullet  $\gamma$  is less than 1 because there is usually a time limit to the sequence of actions needed to solve a task (we prefer rewards sooner rather than later)

#### Model

 The model describes the environment by a distribution over rewards and state transitions:

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

 We assume the Markov property: the future depends on the past only through the current state



# Maze Example



- $\bullet$  Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

# Maze Example



• Arrows represent policy  $\pi(s)$  for each state s

# Maze Example



• Numbers represent value  $V^{\pi}(s)$  of each state s

### Example: Tic-Tac-Toe

- Consider the game tic-tac-toe:
  - reward: win/lose/tie the game (+1/-1/0) [only at final move in given game]
  - state: positions of X's and O's on the board
  - policy: mapping from states to actions
    - based on rules of game: choice of one open position
  - value function: prediction of reward in future, based on current state
- In tic-tac-toe, since state space is tractable, can use a table to represent value function

#### RL & Tic-Tac-Toe

• Each board position (taking into account symmetry) has some probability

| State         | Probability of a win (Computer plays "o") |
|---------------|-------------------------------------------|
| × 0           | 0.5                                       |
| 00<br>x       | 0.5                                       |
| O<br>  x O    | 1.0                                       |
| * O           | 0.0                                       |
| 0<br>0 ×<br>× | 0.5                                       |
| etc           |                                           |

- Simple learning process:
  - start with all values = 0.5
  - policy: choose move with highest probability of winning given current legal moves from current state
  - update entries in table based on outcome of each game
  - After many games value function will represent true probability of winning from each state
- Can try alternative policy: sometimes select moves randomly (exploration)

#### **Basic Problems**

• Markov Decision Problem (MDP): tuple  $(S, A, P, \gamma)$  where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

- Standard MDP problems:
  - 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return



#### **Basic Problems**

• Markov Decision Problem (MDP): tuple  $(S, A, P, \gamma)$  where P is

$$P(s_{t+1} = s', r_{t+1} = r' | s_t = s, a_t = a)$$

- Standard MDP problems:
  - 1. Planning: given complete Markov decision problem as input, compute policy with optimal expected return
  - 2. Learning: We don't know which states are good or what the actions do. We must try out the actions and states to learn what to do



## Exploration vs. Exploitation

- If we knew how the world works (embodied in P), then the policy should be deterministic
  - just select optimal action in each state
- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment
- Without losing too much reward along the way
- Since we do not have complete knowledge of the world, taking what appears to be the optimal action may prevent us from finding better states/actions
- Interesting trade-off:
  - immediate reward (exploitation) vs. gaining knowledge that might enable higher future reward (exploration)

# Examples

- Restaurant Selection
  - Exploitation: Go to your favourite restaurant
  - Exploration: Try a new restaurant
- Online Banner Advertisements
  - **Exploitation**: Show the most successful advert
  - Exploration: Show a different advert
- Oil Drilling
  - Exploitation: Drill at the best known location
  - ► Exploration: Drill at a new location
- Game Playing
  - Exploitation: Play the move you believe is best
  - Exploration: Play an experimental move

# Questions?

