2020 北京东城初三一模

业 上	\\/
7t/T	
2XI	·—-
77 V	
~~	

______班级____

2020.5

表	1. 本试卷共 8 页, 共三流	首大题, 28 道小题, 满分 100 タ	分,考试时间 120 分钟。
生 須	2. 在试卷和答题卡上准确	角填写学校、班级、姓名和教育	了ID号。
矢	3. 试题答案一律填涂或=	· 书写在答题卡上,在试卷上作答	等无效。
	4. 在答题卡上,选择题、	作图题用 2B 铅笔作答,其他	试题用黑色字迹签字笔作答。
	5. 考试结束,将本试卷、	答题卡和草稿纸一并交回。	
第	1-8 题均有四个选项,符合	题意的选项只有一个.	
	年上半年北京市实现地区生 . 将数据 15212. 5 用科学记	, _ , _ , , , , , , , , , , , , , , , ,	长 6. 3%. 总体来看,经济保持平稳运行,高质量
A. 1.	52125 × 10 ⁵	B. 1.52125×10^4	
C. 0 .	152125×10^5	D. 152125×10^6	
2. 如图是	是某几何体的三视图,该几个	可体是	
A. 长	方体		
В. 正	方体		
C. 球			
D. 圆	柱		
3. 如图,	将一块含有 30° 角的直角	三角板的顶点放在直尺的一边。	上. 若∠1=48°, 则∠2 的度数是
A. 48	B. 78°		
C. 92	D. 102°		300
4. 将2a ²	-8分解因式,结果正确的	是	
A 20	$(a^2 - 4)$ B. $2(a - 2)^2$	$C \cdot 2(a+2)(a-2)$	$(0.2(a+2)^2)$

5. 点O,A,B,C在数轴上的位置如图所示,O为原点,AC = 1,OA = OB. 若点C所表示的数为a,则点B所表示的数为

- A. -(a + 1)
- B. -(a-1)
- C. a + 1
- D. a 1

6. 己知锐角 ∠AOB, 如图,

- (1) 在射线OA上取一点C. 以点O为圆心,OC长为半径作 \widehat{MN} . 交射线OB于点D,连接CD;
- (2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;

(3)作射线OP交CD于点Q.

根据以上作图过程及所作图形,下列结论中错误的是

- A. *CP*//*OB*
- B. CP = 2QC
- C. $\angle AOP = \angle BOP$
- D. $CD \perp OP$
- 7. 将 4 张长为a、宽为b(a > b)的长方形纸片按如图的方式拼成一个边长为(a + b)的正方形,图中空白部分的面积之和为 S_1 ,阴影部分的面积之和为 S_2 . 若 $S_1 = \frac{5}{3}S_2$,则a,b满足

- A. 2a = 5b
- B. 2a = 3b
- C. a = 3b
- D. a = 2b
- 8. 党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为 2020 年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.

人数年份地区	2017	2018	2019
东部	300	147	47
中部	1 112		181
西部	1 634	916	323

(以上数据来源于国家统计局)

根据统计图表提供的信息,下面推断不正确的是

- A. 2018 年中部地区农村贫困人口为 597 万人
- B. 2017-2019年,农村贫困人口数量都是东部最少
- C. 2016-2019年,农村贫困人口减少数量逐年增多
- D. 2017-2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低
- 二、填空题(本题共16分,每小题2分)
- 9. \overline{a} √2x − 1 在实数范围内有意义,则实数x的取值范围是 .
- 10. 随机从**1,2,3,4**中任取两个不同的数,分别记为a和b,则a + b > 4的概率是
- 12. 如果一个正n边形的每个内角为108°,那么这个正n边形的边数为______.
- 13. 《九章算术》中有这样一个题: "今有醇酒一斗,直钱五十;行酒一斗,直钱一十. 今将钱三十,得酒二斗. 问醇、行酒各得几何?" 其译文是:今有醇酒(优质酒))1 斗,价值 50 钱;行酒(劣质酒))1 斗,价值 10 钱. 现有 30 钱,买得 2 斗酒. 问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为_____

15. 甲、乙两队参加了"端午情,龙舟韵"赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:

300

174

- ③在47.8秒时,两队所走路程相等;
- ④从出发到13.7秒的时间段内,甲队的速度比乙队的慢。

三、解答题(本题共 68 分, 第 17-22 题, 每小题 5 分, 第 23-26 题, 每小题 6 分, 第 27-28 题, 每小题 7 分)解答应写出文字说明、演算步骤或证明过程。

17. 计算:
$$\left|-\sqrt{3}\right| - (3-\pi)^0 + 2\cos 60^\circ + (\frac{1}{2})^{-1}$$

18. 解不等式组:
$$\begin{cases} 2x - 6 < 3x \\ \frac{x+2}{5} - \frac{x-1}{4} \ge 0 \end{cases}$$

19. 观察下列分式方程的求解过程。指出其中错误的步骤,说明错误的原因,并直接给出正确结果.

解分式方程:
$$1 - \frac{x-3}{2x+2} = \frac{3x}{x+1}$$

解: 去分母, 得
$$2x + 2 - (x - 3) = 3x$$
 ……步骤 1

移项,得
$$2x - x - 3x = 2 - 3$$
 ·······步骤 3

合并同类项,得
$$-2x = -1$$
 ······步骤 4

解得
$$x = \frac{1}{2}$$
步骤 5

所以,原分式方程的解为 $x = \frac{1}{2}$ ···········步骤 6

- 20. 已知关于x的方程 $ax^2 + 2x 3 = 0$ 有两个不相等的实数根.
 - (1) 求a的取值范围;
 - (2) 若此方程的一个实数根为1,求a的值及方程的另一个实数根.
- 21. 如图,在菱形ABCD中, $BE \perp CD$ 于点E, $DF \perp BC$ 于点F.
 - (1) 求证: BF = DE;
 - (2) 分别延长BE和AD,交于点G,若 $\angle A=45\,^{\circ}$,求 $\frac{DG}{AD}$ 的值。

- 22. 如图,一次函数 $y = kx + b(k \neq 0)$ 图象比反比例函数 $y = \frac{m}{x} (m \neq 0, x > 0)$ 的图象在第一象限内交于点A, B, 且该一次函数的图象与y轴正半轴交于点C, 过A, B分别作y轴的垂线,垂足分别为D, E。已知A(1,4), $\frac{CD}{CE} = \frac{1}{4}$
 - (1) 求m的值和一次函数的解析式;
 - (2) 若点M为反比例函数图象在A,B之间的动点,作射线OM交直线AB于点N,当MN长度最大时,直接写出点M的 坐标.

- 23. 如图,直线l与 \odot O相离, $OA \perp l$ 于点A,与 \odot O相交于点P,OA = 5,C是直线l上一点,连接CP并延长,交 \odot O于点B,且AB = AC.
 - (1) 求证: AB是○ O的切线;
 - (2) $若tan \angle ACB = \frac{1}{2}$,求线段BP的长

- 24. 人口数据又称为人口统计数据,是指国家和地区的相关人口管理部门通过户口登记、人口普查等方式统计得出的相关数据汇总. 人口数据对国家和地区的人口状况、管理以及各项方针政策的制定都具有重要的意义. 下面是关于人口数据的部分信息.
 - a. 2018年中国大陆(不含港澳台)31个地区人口数量(单位:千万人)的频数分布直方图

(数据分成6组:0 \le x<2,2 \le x<4,4 \le x<6,6 \le x<8,8 \le x<10,10 \le x \le 12):

- b. 人口数量在 $2 \le x < 4$ 这一组的是:
- 2.2 2.4 2.5 2.5 2.6 2.7 3.1 3.6 3.7 3.8 3.9 3.9
- c. 2018年中国大陆(不含港澳台)31个地区人口数量(单位:千万人)、出生率(单位:%₀)、死亡率(单位:%₀。) 的散点图:

d. 下表是我国三次人口普查中年龄结构构成情况:

	0~14岁人口比例	15~59岁人口比例	60岁以上人口比例	
第二次人口普查	40.4%	54.1%	5.5%	
第五次人口普查	22.89%	66.78%	10.33%	
第六次人口普查	16.6%	70.14%	13.26%	
カハ (人人口 自旦	10.070	70.1470	13.2070	

e. 世界各国的人口出生率差别很大,出生率可分为五等,最高> $50\%_0$,最低< $20\%_0$. 2018 年我国人口出生率降低至 $10.94\%_0$,比 2017 年下降1.43个千分点.

根据以上信息,回答下列问题:

- (1)2018年北京人口为 2.2 千万人。我国大陆(不含港澳台)地区中,人口数量从低到高排列,北京排在第____位。
- (3)下列说法中合理的是。
 - ①我国人口基数较大,即使是人口出生率和增长率都缓慢增长的前提下,人口总数仍然是在不断攀升的, 所以我国计划生育的基本国策是不变的;
 - ②随着我国老龄化越来越严重,所以出台了"二孩政策",目的是为了缓解老龄化的压力.
- 25. 如图,P是线段AB上的一点,AB = 6cm,O是AB外一定点. 连接OP,将OP绕点O顺时针旋转120° 得OQ,连接PQ,AQ.

小明根据学习函数的经验,对线段AP,PQ,AQ的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:

(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,PQ,AQ的长度(单位:cm)的几组值。如下表:

	位置 1	位置 2	位置 3	位置 4	位置 5	位置 6	位置 7
AP	0.00	1.00	2.00	3.00	4.00	5.00	6.00
PQ	4.00	2.31	0.84	1.43	3.07	4.77	6.49
AQ	4.00	3.08	2.23	1.57	1.40	1.85	2.63

长度都是这个自变量的函数;

(2)在同一平面直角坐标系x0y中, 画出(1)中所确定的函数的图象;

(3)结合函数图象,解决问题: $\exists AQ = PQ$ 时,线段AP的长度约为_____cm

- 26. 在平面直角坐标系x0y中,横、纵坐标都是整数的点叫做整点. 直线y = ax与抛物线 $y = ax^2 2ax 1$ ($a \neq 0$) 围成的封闭区域(不包含边界)为W.
 - (1) 求抛物线顶点坐标(用含α的式子表示);
 - (2) 当 $a = \frac{1}{2}$, 与出区域W内的所有整点坐标;
 - (3) 若区域W内有3个整点,求a的取值范围.

- 27. 如图,在正方形ABCD中,AB = 3, $M \\ ECD$ 边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF = DM,连接EF,AF.
 - (1)依题意补全图 1;
 - (2)若DM = 1,求线段EF的长;
 - (3) 当点M在CD边上运动时. 能使 \triangle AEF为等腰三角形,直接写出此时 $tan \angle DAM$ 的值.

- 28. 在 \triangle ABC中,CD是 \triangle ABC的中线,如果 \widehat{CD} 上的所有点都在 \triangle ABC的内部或边上,则称 \widehat{CD} 为 \triangle ABC的中线弧.
 - (1) 在 $Rt \triangle ABC$ 中, $\angle ACB = 90$ °, AC = 1.D是AB的中点.
 - ①如图 1,若 $\angle A = 45$ °, 画出 $\triangle ABC$ 的一条中线弧 \widehat{CD} ,直接写出 $\triangle ABC$ 的中线弧 \widehat{CD} 所在圆的半径r的最小值;
 - ②如图 2,若 $\angle A = 60^{\circ}$,求出 $\triangle ABC$ 的最长的中线弧 \widehat{CD} 的弧长l.

(2) 在平面直角坐标系中,已知点A(2,2), B(4,0), C(0,0),在 $\triangle ABC$ 中,D是AB的中点. 求 $\triangle ABC$ 的中线弧 \widehat{CD} 所在圆的圆心P的纵坐标t的取值范围.

2020 北京东城初三一模数学

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	В	D	D	С	В	A	С	С

- 二、 填空题(本题共16分,每小题2分)
- 9. $x \ge \frac{1}{2}$ 10. $\frac{2}{3}$ 11. -5 12. 5

13.
$$\begin{cases} 50x + 10y = 30, \\ x + y = 2. \end{cases}$$
 14. $\frac{\sqrt{3}}{5}$ 15. $3 \oplus$ 16. 5

- 三. 解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题每小题7分)
- 17. 解: 原式= $\sqrt{3}$ –1+1+2

$$=\sqrt{3}+2$$
.

18. 解:

由①得, x>-6. ----2分

由②得, *x*≤13_. -----4 分

- ∴不等式的解集为 $-6 < x \le 13$. -----5 分
- 19. 解:错误的步骤是:第一步、第二步、第三步、第六步,理由略. ______4分 正确的结果是x=1.
- 20. 解: (1) :关于 x 的方程 $ax^2+2x-3=0$ 有两个不相等的实数根,

∴△>0, 且 *a*≠0.

即 $2^2-4a\cdot(-3)>0$,且 $a\neq 0$.

 $\therefore a > -\frac{1}{3} \coprod a \neq 0.$

(2) 将x=1代入方程 $ax^2+2x-3=0$,

解得a=1.

将a=1代入方程 $ax^2+2x-3=0$,

解方程得 $x_1 = 1, x_2 = -3$.

: 方程的另一个根为x = -3. —————————————————————5 分

21.

- 解: (1) 证明: : 四边形 ABCD 为菱形,
 - ∴ CB=CD.

又∵ BE⊥CD于点 E, DF⊥BC于点 F,

- ∴ ∠BEC=∠DFC=90°.
- ∴ ∠*C*=∠*C*,
- ∴ △BEC≌△DFC.
- ∴ EC=FC.
- ∴ BF=DE. ----2分

- ∵∠*A*=45°,
- ∴△DEG和△BEC都是等腰直角三角形.
- ::四边形 ABCD 是菱形,

$$\therefore \frac{DG}{AD} = \frac{DG}{BC} = \frac{DE}{CE}.$$

可求出 CE = a, $DE = (\sqrt{2} - 1)a$.

$$\therefore \frac{DG}{AD} = \sqrt{2} - 1.$$

22. 解: (1) 将点 A (4, 1) 代入 $y = \frac{m}{x}$,

得 m=4 .

∴ 反比例函数解析式为 $y = \frac{4}{x}$.

$$\therefore \angle CEB = \angle CDA = 90^{\circ}$$
.

 \therefore \triangle CDA \hookrightarrow \triangle CEB.

$$\therefore \frac{CD}{CE} = \frac{AD}{BE}.$$

$$\because \frac{CD}{CE} = \frac{1}{4},$$

$$X_B = 4.$$

$$\therefore y_{\mathcal{B}} = \frac{4}{x} = 1.$$

∴B (4, 1).

将 A(1, 4) , B(4, 1) 代入 y=kx+b,

得,
$$\begin{cases} k+b=4, \\ 4k+b=1. \end{cases}$$

解得, k=-1, b=5.

(2) 当 MN 长度最大时, 点 M 的坐标为 (2, 2). ······5 分

23. 解: (1) 证明: 如图,连结OB,则OP = OB.

$$\therefore \angle OBP = \angle OPB = \angle CPA$$
.

$$\therefore AB = AC$$
,

 $\therefore \angle ACB = \angle ABC$.

而 $OA \perp l$,即 $\angle OAC = 90^{\circ}$.

 $\therefore \angle ACB + \angle CPA = 90^{\circ}$.

即 $\angle ABP$ + $\angle OBP$ = 90°.

 $\therefore \angle ABO = 90^{\circ}$,

- $(2) : \tan \angle ACB = \frac{1}{2},$
 - ∴ 在Rt△ACP中,设 AP=x, AC=2x.
 - $\therefore OA = 5$,
 - $\therefore OP = 5 x$.
 - $\therefore OB = 5 x$.
 - $\therefore AB = AC$,
 - $\therefore AB = 2x$.
 - $\therefore \angle ABO = 90^{\circ}$,

由勾股定理,得 $OB^2 + AB^2 = OA^2$.

 $\mathbb{P} (5-x)^2 + (2x)^2 = 5^2.$

解得 x=2.

∴ *AP*=2.

 $\therefore OB = OP = 3$.

 $\therefore AB = AC = 4$.

 $\therefore CP = 2\sqrt{5}.$

过O作 $OD \perp PB$ 于D,

在 $\triangle ODP$ 和 $\triangle CAP$ 中,

- $\therefore \angle OPD = \angle CPA$, $\angle ODP = \angle CAP = 90^{\circ}$,
- $\therefore \triangle ODP \hookrightarrow \triangle CAP$.

$$\therefore \frac{PD}{PA} = \frac{OP}{CP} = \frac{OD}{CA}.$$

$$\therefore PD = \frac{OP \cdot PA}{CP} = \frac{3}{5}\sqrt{5}.$$

$$\therefore BP = 2PD = \frac{6}{5}\sqrt{5} . \qquad 6 \text{ }$$

- 24. 解:
- - (2)如图所示:

- (3) 线段 AP 的长度约为 3.07cm. _____6 分
- 26. **M**: (1) $y=ax^2-2ax-1=a(x-1)^2-a-1$.
 - ∴ 抛物线顶点坐标为(1, -a-1). _____2 分
 - (2) 当 $a=\frac{1}{2}$ 时,画出直线 $y=\frac{1}{2}x$ 和抛物线 $y=\frac{1}{2}x^2-x-1$ 围成的封闭区域 W.
 - ∴ 区域 V内的所有整点坐标分别为(1,0), (2,0), (1,-1), (3,1). _____4 分

(3) $\oplus a > 0$,

当 $=\frac{1}{2}$ 时,区域 W内的所有整点有 4 个,当 $a>\frac{1}{2}$ 时,区域 W内的所有整点多于 3 个,当 $\frac{1}{3}< a<\frac{1}{2}$ 时,区域 W内的所有整点有 4 个,当 $=\frac{1}{3}$ 时,区域 W内的所有整点有 3 个,当 $0< a<\frac{1}{3}$ 时,区域 W内的所有整点多于 3 个。

当-1 $\leq a \leq 0$ 时,区域 \mathbb{W} 内的所有整点有 0 个;当 $a \leq -\frac{3}{2}$ 时,区域 \mathbb{W} 内的所有整点多于 3 个.

∴ 区域 \mathbb{V} 内有 3 个整点,a 的取值范围是 $-\frac{3}{2} \le a < -1$.

27. 解: (1) 补全图形如图 1 所示.

- (2) 如图 2, 连接 BM.
- :点 D与点 E关于 AM所在的直线对称,
- ∴ AE=AD, ∠MAD=∠MAE.
- ::四边形 ABCD 是正方形,
- $\therefore AD = AB, \angle D = \angle ABF = 90^{\circ}$.

又:DM = BF,

图 1

- $\triangle ADM \cong \triangle ABF$.
- ∴ AF=AM, ∠FAB=∠MAD.
- ∴ ∠ FAB= ∠ MAE.
- $\therefore \angle FAB + \angle BAE = \angle BAE + \angle MAE$.
- ∴∠FAE=∠MAB.
- ∴ △ FAE≌ △ MAB (SAS).
- ∴ EF=BM.

- ::四边形 ABCD 是正方形,
- ∴ BC=CD=AB=3.

图 2

- ∵*DM*=1,
- ∴*CM*=2.
- ∴在 Rt \triangle *BCM*中,*BM*= $\sqrt{CM^2 + BC^2} = \sqrt{13}$ ·
- $\therefore EF = \sqrt{13}$.

-----5 ケ

(3) 当点 M在 CD 边上运动时, 若使△AEF 为等腰三角形,则

$$\tan \angle DAM=1$$
 或 $\frac{1}{2}$.

-----7分

28. (1) ①如图 (答案不唯一)

中线弧 CD 所在圆的半径 r 的最小值为 $\frac{1}{2}$.

-----2 分

②当中线弧CD所在圆与AC, AB都相切时,中线弧CD的弧长1最大.

如图,此时中线弧CD所在圆的圆心在BC上,半径为 $\frac{\sqrt{3}}{3}$.

(2) $\triangle ABC$ 的中弧线 CD 所在圆的圆心 P在 CD的垂直平分线上.

如图, 若中弧线 CD 在 CD 下方,

当中弧线 CD 所在圆与 BC 相切时,可得圆心 P 的坐标为 (0,5).

所以 $\triangle ABC$ 的中弧线CD所在圆的圆心P的纵坐标 $t \ge 5$.

如图, 若中弧线 CD 在 CD 上方,

当中弧线 CD 所在圆与 AC 相切时,可得圆心 P 的坐标为($\frac{5}{2}$, $-\frac{5}{2}$).

所以 $\triangle ABC$ 的中弧线CD所在圆的圆心P的纵坐标 $t \le -\frac{5}{2}$.

综上, $\triangle ABC$ 的中弧线CD 所在圆的圆心P的纵坐标t的取值范围为: $t \ge 5$ 或 $t \le -\frac{5}{2}$.

-----7 分