Variational Autoencoder

Jia-Wei Liao

Department of Applied Mathematics National Yang Ming Chiao Tung University

March 27, 2021

Jia-Wei Liao (NYCU) VAE March 27, 2021 1 / 24

Outline

Prereguisite knowledge

2 Manifold structure

Unsupervised Learning

Jia-Wei Liao (NYCU)

2 / 24

Neural Network (NN)

Question: Why a neural net can approximate functions?

¹Lu et al., The Expressive power of Neural Networks: A View from the Width, NIPS 2017

Neural Network (NN)

Question: Why a neural net can approximate functions? ¹

Theorem (Universal Approximation Theorem With ReLU Network)

For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\varepsilon > 0$, there exist a fully-connected ReLU network $\mathcal Q$ with width $\leq n+4$ and depth $\leq 4n+1$ such that the function $F_{\mathcal Q}$ represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_{\mathcal{Q}}| dx < \varepsilon$$

¹Lu et al., The Expressive power of Neural Networks: A View from the Width, NIPS 2017

Convolutional Neural Network (CNN)

4 / 24

Manifold structure

Manifold

Let Σ be a topological space, covered by a set of open sets $\Sigma \subset \bigcup_{\alpha} U_{\alpha}$. For each open set U_{α} , there is a homeomorphism $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$, the pair $(U_{\alpha}, \varphi_{\alpha})$ form a chart. The union of charts form an atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then the chart transition map is given by

$$\varphi_{\alpha\beta}:\varphi_{\alpha}\left(U_{\alpha}\cap U_{\beta}\right) o \varphi_{\beta}\left(U_{\alpha}\cap U_{\beta}\right)$$
,

where $\varphi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$.

5 / 24

Manifold structure

Manifold

Let Σ be a topological space, covered by a set of open sets $\Sigma \subset \bigcup_{\alpha} U_{\alpha}$. For each open set U_{α} , there is a homeomorphism $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$, the pair $(U_{\alpha}, \varphi_{\alpha})$ form a chart. The union of charts form an atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then the chart transition map is given by

$$\varphi_{\alpha\beta}:\varphi_{\alpha}\left(U_{\alpha}\cap U_{\beta}\right) o \varphi_{\beta}\left(U_{\alpha}\cap U_{\beta}\right)$$
,

where $\varphi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$.

Manifold assumption

Natural high dimensional data concentrates close to a non-linear low-dimensional manifold.

4 D > 4 A > 4 B > 4 B > B = 900

Manifold structure

- $oldsymbol{\cdot}$ $\mathcal X$ is the ambient space, $\mathcal F$ is latent space.
- \bullet Σ is a low-dimensional manifold.
- φ_{α} is encoding map, and φ_{α}^{-1} is decoding map.
- $x \in \Sigma$ is a sample, and $\varphi_{\alpha}(x)$ is the code of x.

PCA vs Autoencoder

 $\mathcal{L} = \|Input - Output\|_2$

Autoencoder

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

- A probabilistic generative model with latent variables that is built on top of end-to-end trainable neural networks.
- By approximation theorey, assume that

$$p(z) = \mathcal{N}(z; 0, I)$$

 $p(x|z) = \mathcal{N}(z; \mu(z), \Sigma(z))$

Approximation theory

Our goal is to find the probability distribution function that has maximal differential entropy. The problem is

$$\arg\max_{p(x)} H[p(x)]$$

subject to

$$\begin{cases} \int_{x \in X} p(x)dx = 1 \\ E(X) = \mu \end{cases},$$

$$E[(X - \mu)^2] = \sigma^2$$

where
$$H[p(x)] = -\int_{x \in X} p(x) \log p(x) dx$$
. ²

 $^{{}^{2}}H[p(x)]$ is expectation of the entropy.

Approximation theory

This constrained optimization problem can be solved by setting up a Lagrangian functional

$$\mathcal{L}(p, \lambda_1, \lambda_2, \lambda_3) = -\int_{x \in X} p(x) \log p(x) dx$$

$$+ \lambda_1 \left(\int_{x \in X} p(x) dx - 1 \right)$$

$$+ \lambda_2 \left(\int_{x \in X} x p(x) dx - \mu \right)$$

$$+ \lambda_3 \left(\int_{x \in X} (x - \mu)^2 p(x) dx - \sigma^2 \right)$$

We set the functional derivative w.r.t. p(x) to 0

$$\frac{\delta}{\delta v(x)}\mathcal{L} = -\log p(x) - 1 + \lambda_1 + \lambda_2 + \lambda_3(x - \mu)^2 = 0.$$

 ✓ □ ► ✓ ② ► ✓ ③ ► ✓ ③ ► ✓ □ ►
 □ ► ✓ ○ ○

 Jia-Wei Liao (NYCU)
 VAE
 March 27, 2021
 12 / 24

Approximation theory

Then we have

$$p(x) = \exp \left(\lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2 - 1\right),\,$$

and take

$$\lambda_1 = 1 - \log \sigma \sqrt{2\pi}$$
, $\lambda_2 = 0$, $\lambda_3 = -\frac{1}{2\sigma^2}$.

Therefore, we can get

$$p(x) = \mathcal{N}\left(x; \mu, \sigma^2\right).$$

That is, the normal distribution has the maximum entropy. So, when we do not know the true distribution, we can assume the normal distribution.

Maximal Likelihood

• To determine θ , we would intuitively hope to maximize the marginal distribution $p(x; \theta)$

$$p(x; \theta) = \int_{z \in Z} p(x|z; \theta) p(z) dz$$

 The marginal likelihood is composed of a sum over the marginal likelihoods of individual datapoints

$$\log p(x_1, \dots, x_N; \theta) = \log \prod_{i=1}^{N} p(x_i; \theta) = \sum_{i=1}^{N} \log p(x_i; \theta)$$

Jia-Wei Liao (NYCU) VAE

14 / 24

Maximal Likelihood

Since
$$\begin{split} & \int_{\boldsymbol{z} \in \boldsymbol{Z}} q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}') d\boldsymbol{z} = 1, \\ & \log p(\boldsymbol{x}; \boldsymbol{\theta}) = \int_{\boldsymbol{z} \in \boldsymbol{Z}} q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}') \log p(\boldsymbol{x}; \boldsymbol{\theta}) d\boldsymbol{z} \\ & = \int_{\boldsymbol{z} \in \boldsymbol{Z}} q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}') \log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})}{p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta})} d\boldsymbol{z} \\ & = \int_{\boldsymbol{z} \in \boldsymbol{Z}} q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}') \log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}')} \cdot \frac{q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}')}{p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta})} d\boldsymbol{z} \\ & = \int_{\boldsymbol{z} \in \boldsymbol{Z}} q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}') \log \frac{p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}')} d\boldsymbol{z} \end{split}$$

| 4 日 ト 4 回 ト 4 直 ト 4 直 ・ 夕 Q C・

+ $\int_{z \in \mathbb{Z}} q(z|x; \theta') \log \frac{q(z|x; \theta')}{n(z|x; \theta)} dz$

Maximal Likelihood

$$\log p(x; \theta) = \mathcal{L}(x, q, \theta) + \text{KL}(q(z|x; \theta') || p(z|x; \theta))$$

where

$$\mathcal{L}(x,q,\theta) = \int_{z \in \mathbb{Z}} q(z|x;\theta') \log \frac{p(x,z;\theta)}{q(z|x;\theta')} dz$$

$$KL(q(z|x;\theta') || p(z|x;\theta)) = \int_{z \in \mathbb{Z}} q(z|x;\theta') \log \frac{q(z|x;\theta')}{p(z|x;\theta)} dz$$

Note that

$$\mathrm{KL}(q(z|x;\theta')\|p(z|x;\theta)) \approx 0$$
 if and only if $p(z|x;\theta) \approx q(z|x;\theta')$

Variational lower bound

$$\mathcal{L}(x,q,\theta) = \int_{z \in \mathbb{Z}} q(z|x;\theta') \log \frac{p(x,z;\theta)}{q(z|x;\theta')} dz$$

$$= \int_{z \in \mathbb{Z}} q(z|x;\theta') \log \frac{p(x|z;\theta)p(z)}{q(z|x;\theta')} dz$$

$$= \int_{z \in \mathbb{Z}} q(z|x;\theta') \log \frac{p(z)}{q(z|x;\theta')} dz$$

$$+ \int_{z \in \mathbb{Z}} q(z|x;\theta') \log p(x|z;\theta) dz$$

$$= -\mathrm{KL}(q(z|x;\theta') || p(z)) + E_{z \sim q(z|x;\theta')} [\log p(x|z;\theta')]$$

Jia-Wei Liao (NYCU)

KL term

By previous assumption,

$$p(z) = \log \mathcal{N}(z; 0, I)$$
 and $q(z|x; \theta') = \mathcal{N}(z; \mu, \sigma^2)$

We can get

$$-KL(q||p) = \int_{z \in Z} q(z|x; \theta') \log \frac{p(z)}{q(z|x; \theta')} dz$$
$$= \int_{z \in Z} \mathcal{N}(z; \mu, \sigma^2) \left(\log \mathcal{N}(z; 0, I) - \log \mathcal{N}(z; \mu, \sigma^2) \right) dz$$

Note that

•
$$\int_{z \in Z} \mathcal{N}(z; \mu, \sigma^2) \log \mathcal{N}(z; 0, I) dz = -\frac{J}{2} \log 2\pi - \frac{1}{2} \sum_{j=1}^{J} (\mu_j^2 + \sigma_j^2)$$

KL term

Therefore,

$$-KL(q(z|x; \theta') || p(z)) = \frac{1}{2} \sum_{i=1}^{J} (\mu_j^2 + \sigma_j^2 - \log \sigma_j^2 - 1)$$

Expectation term

By Monte Carlo estimate,

$$E_{z \sim q(z|x;\theta')}[\log p(x|z;\theta')] \approx \frac{1}{K} \sum_{k=1}^{K} \log p(x|z^{(k)};\theta)$$

where $z \sim q(z|x; \theta')$.

Jia-Wei Liao (NYCU)

Reparameterization trick

$$z \sim q(z|x;\theta') \Longrightarrow \begin{cases} \text{auxiliary variable: } \varepsilon \sim p(\varepsilon) \\ \text{deterministic variable: } z = g(x,\varepsilon;\theta') \end{cases}$$

For example, we can take

$$p(\varepsilon) = \mathcal{N}(0, I)$$
 and $g(x, \varepsilon; \mu, \sigma) = \mu + \sigma \odot \varepsilon$,

then

$$E_{z \sim q(z|x;\theta')}[\log p(x|z;\theta')] \approx \frac{1}{K} \sum_{k=1}^{K} \log p(x|z^{(k)};\theta')$$

where $z^{(k)} = \mu^{(k)} + \sigma^{(k)} \odot \varepsilon^{(k)}$ and $\varepsilon^{(k)} \sim \mathcal{N}(0, I)$.

4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q ○

Reparameterization trick

Training VAE

- $p(x|z;\theta)$ and $q(z|x;\theta')$ are modeled by distinct neural networks.
- A by-product of this training process is a stochastic encoder

$$p(x|z;\theta) \approx q(z|x;\theta')$$

THE END

Thanks for listening!