

# About the Beamer class in presentation making A short story

E. Cominato 137396<sup>1</sup>

<sup>1</sup>Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli studi di Udine

Very Large Conference, April 2013

## **Definition 1 (Plant)**

A plant automaton is a tuple  $\mathcal{P} = (Q, \Sigma_c, \delta, q)$  where Q is a finite set of states,  $\Sigma_c$  is a set of controller commands,  $\delta: Q \times \Sigma_c \longmapsto 2^Q$  is the transition function and  $q_o \in Q$  is an initial state.

# **Definition 2 (Controllers)**

A controller (strategy) for a plant specified by  $\mathcal{P} = (Q, \Sigma_c, \delta, q)$  is a function  $C: Q^+ \longmapsto \Sigma_c$ . A simple controller is a controller that can be written as a function  $C: Q^+ \longmapsto \Sigma_c$ .

# **Definition 3 (Trajectories)**

Let  $\mathcal{P}$  ne a plant and let  $C: Q^+ \longmapsto \Sigma_c$  be a controller. An infinite sequence of states  $\alpha: q[0], q[1], \ldots$  such that  $q[0] = q_0$  is called a trajectory of  $\mathcal{P}$  if

$$q[i+1] \in \bigcup_{\sigma \in \Sigma_c} \delta(q[i], \sigma)$$

# **Definition 4 (Acceptance Condition)**

Let  $\mathcal{P} = (Q, \Sigma_c, \delta, q)$  be a plant. An acceptance condition for  $\mathcal{P}$  is

$$\Omega \in \{(F, \lozenge), (F, \square), (F, \lozenge \square), (F, \square \lozenge), (F, \mathcal{R}_n)\}$$

# **Definition 5 (Controller Synthesis Problem)**

For a plant  $\mathcal{P}$  and an acceptance condition  $\Omega$ , the problem  $\textbf{Synth}(\mathcal{P},\Omega)$  is: Find a controller C such that  $L_C(\mathcal{P}) \subseteq L(\mathcal{P},\Omega)$  ot otherwise show that such a controller does not exists.

# **Definition 6 (Controllable Predecessors)**

Let  $\mathcal{P} = (Q, \Sigma_c, \delta, q)$  be a plant. We define a function  $\pi : 2^Q \longmapsto 2^Q$ , mapping a set of states  $P \subseteq Q$  into the set of its Controllable predecessors, i.e., the set of states from which the controller can "force" the plant into P in one step:

$$\pi(P) = \{q : \exists \sigma \in \Sigma_c \cdot \delta(q, \sigma) \subseteq P\}$$

### Theorem 1

For every  $\Omega \in \{(F, \lozenge), (F, \square), (F, \lozenge \square), (F, \square \lozenge), (F, \mathcal{R}_1)\}$  the problem **Synth** $(\mathcal{P}, \Omega)$  is solvable. Moreover, if  $(\mathcal{P}, \Omega)$  is controllable then it is controllable by a simple controller.