姓名: SOLUTION

OLUTION___ 葉均承 應數一線性代數

學號: ______ 考試日期: 2024/09/25

1. 請框出答案. 2. 不可使用手機、計算器,禁止作弊!

1. (40 points) Let $\vec{u} = [2, 3, 1], \vec{v} = [1, 2, 3]$. Compute the indicated quantity (量), if it is defined.

$$\|\vec{v} - 2\vec{u}\| = \underline{\|[-3, -4, 1]\|} = \sqrt{26}$$

2. (30 points) Prove or disprove that every vector of nonzero magnitude in \mathbb{R}^n is nonzero.

Solution:

This statement is True!

Let $\vec{v} = [v_1, v_2, ..., v_n]$ be a nonzero vector in \mathbb{R}^n .

Since \vec{v} is not zero, at least one v_i is not zero.

Then each $v_i^2 \ge 0$ and the sum $v_1^2 + v_2^2 + \dots + v_n^2 > 0$.

So the length of \vec{v} is

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} > 0,$$

which means the vector is not zero.

3. (30 points) Prove or disprove that there are exactly two unit vectors perpendicular (垂直) to any given nonzero vectors in \mathbb{R}^n .

Solution:

The statement is False!

For n = 3, $\vec{e}_1 = [1, 0, 0]$ is perpendicular to every vector in $S = sp(\vec{e}_2, \vec{e}_3) = sp([0, 1, 0], [0, 0, 1])$.