Introduction to EEG

Kiel Open Science School, 25-27.02.2019

Wokshop: Fiedtrip Toolbox for EEG analysis

Content

What is EEG?

How we measure EEG?

Analysis of EEG

Rossion and Jacques, 2011, The Oxford handbook of ERP components

- EEG is the recording of the brain **electrical fields**
- The electrical fields are the result of electrochemical signals passing from one neuron to the next.
- When billions of these tiny signals are passed simultaneously in spatially extended and geometrically aligned neural populations, the electrical fields sum and become powerful enough to be measured from outside the head.

1

Neurons form synapses

Spruston, 2008, Nature Reviews Neuroscience

Synapses enable communication

Attwell and Gibb, 2005, Nature Reviews Neuroscience

Synapses can give rise to tiny electrical signals

Excitatory Postsynaptic Potential (**EPSP**)

(Tiny) electrical signals (EPSP) create (tiny) dipoles

Many (pyramidal) neurons
Spatially Aligned
Fire simultaneously

how when how when he was a second of the sec

Barrès et al, 2013, Neural Networks

Big dipole / strong electrical potential is picked up by EEG electrodes

Big dipoles can be parallel or vertical to skull surface

Skull

Gray matter

+ (c)

Tangential dipoles

Cohen, 2014, Analyzing neural time series data, MIT

Parallel (tangential) diapoles produce bipolar current distribution

Vertical (radial) diapoles

How we measure EEG?

1

EEG caps with electrodes

Electro-conductive Gel

Amplifiers

https://neupsykey.com/

EEG Signal

126 electrodes, 2 EOG, I reference electrode

128

Channels

(Electrodes)

Each recorded sample (time point)

		1	2	3	4	5	6	7	8	9	10	11	12	
	1	-9.1744	-5.6961	-4.7983	-5.7228	-6.3208	-6.4868	-7.4041	-9.3594	-11.8654	-14.4915	-16.0515	-14.3619	
	2	-5.8424	-3.2656	-3.5997	-5.1928	-5.6289	-5.2800	-5.9674	-8.0419	-10.4586	-12.4505	-13.4299	-12.1889	
	3	-5.5491	-0.8840	-0.6477	-3.5796	-5.7727	-6.1563	-6.4093	-7.6431	-9.5429	-11.5333	-12.6130	-10.9395	
	4	-2.8526	-0.4220	-1.2450	-3.6717	-5.0021	-5.0808	-5.4748	-6.9643	-9.2686	-11.8556	-13.4824	-12.1269	
	5	-4.4164	-0.4284	-0.4160	-2.8404	-4.2253	-4.0796	-4.4745	-6.5598	-9.4853	-11.8357	-12.4166	-10.3019	
	6	-8.2681	-2.7356	-1.2574	-3.4581	-5.6456	-6.1296	-6.1683	-7.3115	-9.7560	-12.4801	-13.5040	-10.8720	
	7	0.0220	1.8839	0.8914	-1.7719	-3.5884	-4.1561	-4.7955	-6.2719	-8.3072	-10.3041	-11.1894	-9.4201	
	8	-0.8983	1.9546	1.2250	-1.3400	-2.7698	-3.1547	-4.5516	-7.4070	-10.1665	-11.5418	-11.2330	-8.9451	
	9	-4.0097	1.1499	1.9375	-0.5840	-2.5538	-2.7340	-2.9587	-4.8097	-7.7836	-10.1130	-9.9910	-6.5945	
	10	-4.4037	2.2703	3.4066	-0.1104	-3.1334	-3.1973	-2.1369	-2.5109	-4.7361	-7.1836	-7.4323	-3.9133	
	11	1.0452	1.5673	0.3986	-1.5217	-2.8421	-3.7056	-4.8285	-6.1104	-7.2345	-8.4570	-9.4502	-8.3833	
	12	0.1077	1.6672	0.9668	-1.2106	-2.9092	-3.8064	-4.8635	-6.4273	-8.0625	-9.4186	-9.8851	-8.1461	
	12	-0.0741	2 6277	2 7950	1 5025	0.4624	-1 1921	-4.0730	-7 1205	_0.0100	-0.1922	_0.0177	-7.01/10	

Electrical Potential (μV) at a given electrode at a given sample

.. | .. | .. | last sample

EEG raw data: A table filled with electrical potential values (μ V) corresponding to nChannels (rows) X nRecorded Samples (columns)

Sampling rate How many samples we record per second. e.g. 1000Hz

Number of recorded samples =

1000 samples/second \times 60 min experiment = 3600000 samples

Number of channels = 128

=> EEG raw data is a table of 128 x 3600000 values

Preprocessing of raw data

Create trials of interest

Downsample

Filtering

Artifact rejection

Re-referencing

Interpolate bad electrodes

Analysis of clean data

Level: Single Subject

Event-Related Potentials (ERP)

Time-Frequency Analysis

•••

Level: Group

Repeat for all subjects

Average across subjects

Statistical Evaluation

Multiple-Comparison Problem

Cluster-based statistics

•••

Event-Related Potentials (ERP)

Rossion and Jacques, 2011, The Oxford handbook of ERP components

Time-Frequency Analysis

Herrmann et al., 2004, Neuroscience