6. Aplicações lineares de \mathbb{R}^n para \mathbb{R}^m

Definição

Sejam n e m números naturais. Uma aplicação linear (ou transformação linear) de \mathbb{R}^n para \mathbb{R}^m é uma aplicação $f:\mathbb{R}^n \to \mathbb{R}^m$ que verifica, para quaisquer $u,v\in\mathbb{R}^n$ e $\alpha\in\mathbb{R}$,

(i)
$$f(u+v) = f(u) + f(v)$$
,

[f preserva +]

(ii)
$$f(\alpha u) = \alpha f(u)$$
.

 $[f \text{ preserva } \cdot]$

EXEMPLO

▶ A aplicação identidade $id: \mathbb{R}^n \to \mathbb{R}^n$ é uma aplicação linear.

$$u \mapsto u$$

 $lackbox{ A aplicação nula }0:\mathbb{R}^n
ightarrow\mathbb{R}^m$ é uma aplicação linear. $u\mapsto 0_{\mathbb{R}^m}$

EXEMPLOS

1. A aplicação $f: \mathbb{R} \to \mathbb{R}$ é uma aplicação linear, $x \mapsto 2x$

enquanto que a aplicação $g: \mathbb{R} \to \mathbb{R}$ não o é. $x \mapsto 2x+1$

2. Considere as aplicações $f, g: \mathbb{R}^2 \to \mathbb{R}^3$ definidas, para cada $(x,y) \in \mathbb{R}^2$, por

$$f(a,b) = (3a+b,0,b-a)$$
$$g(a,b) = (a^2,0,a+b).$$

A aplicação f é linear mas g **não** o é.

3. Seja A uma matriz de ordem $m \times n$ sobre \mathbb{R} . A aplicação $f_A: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear. $x \mapsto Ax$

[Note-se que este exemplo mostra que, dada uma matriz, existe uma aplicação linear que lhe está associada.]

Determine se é linear a aplicação

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

definida, para cada $(a, b, c) \in \mathbb{R}^3$, por:

- a) f(a, b, c) = (b, 0).
- **b)** f(a, b, c) = (a + 1, b).
- c) f(a, b, c) = (ab, 0).
- **d)** f(a, b, c) = (|c|, 0).

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear. Então, para quaisquer $v, v_1, \ldots, v_k \in \mathbb{R}^n$ e $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$,

- (i) $f(0_{\mathbb{R}^n}) = 0_{\mathbb{R}^m}$. [f preserva o vetor nulo]
- (ii) f(-v) = -f(v). [f preserva os simétricos]
- (iii) $f(\alpha_1 v_1 + \dots + \alpha_k v_k) = \alpha_1 f(v_1) + \dots + \alpha_k f(v_k)$. [f preserva as combinações lineares]

Exercício

Verifique, usando o teorema anterior, que as aplicações seguintes não são lineares.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que f(a, b, c) = (3b, a + 2), para cada $(a, b, c) \in \mathbb{R}^3$.
- **b)** $g: \mathbb{R}^3 \to \mathbb{R}^4$ tal que g(a, b, c) = (b, a c, 1, c), para qualquer $(a, b, c) \in \mathbb{R}^3$.

DEFINIÇÃO

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear e seja $\{e_1, e_2, \dots, e_n\}$ a base canónica de \mathbb{R}^n . Como cada $f(e_j)$ pertence a \mathbb{R}^m , pode-se escrever

$$f(e_1) = (a_{11}, a_{21}, \dots, a_{m1})$$

$$f(e_2) = (a_{12}, a_{22}, \dots, a_{m2})$$

$$\vdots$$

$$f(e_n) = (a_{1n}, a_{2n}, \dots, a_{mn})$$

A matriz de ordem $m \times n$

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right]$$

cuja coluna j é $f(e_i)$, é chamada a matriz da aplicação linear f.

EXEMPLO

Consideremos a aplicação linear

$$f: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

 $(a, b, c) \mapsto (2a - b + 3c, a + 2c)$

A base canónica de \mathbb{R}^3 é $\{(1,0,0),(0,1,0),(0,0,1)\}$ e tem-se

$$f(1,0,0) = (2,1)$$

 $f(0,1,0) = (-1,0)$
 $f(0,0,1) = (3,2)$.

Deduz-se assim que a matriz da aplicação linear f é a seguinte matriz de ordem 2×3

$$A = \left[\begin{array}{rrr} 2 & -1 & 3 \\ 1 & 0 & 2 \end{array} \right].$$

EXEMPLO (CONTINUAÇÃO)

Note-se que, para cada $x = (a, b, c) \in \mathbb{R}^3$,

$$Ax = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2a - b + 3c \\ a + 2c \end{bmatrix} = f(x).$$

Ou seja, a matriz A define a aplicação f. Assim, A pode ser usada para determinar a imagem por f de qualquer elemento de \mathbb{R}^3 . Por exemplo,

$$f(2,3,-1) = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} = (-2,0).$$

TEOREMA

Dada uma aplicação linear $f: \mathbb{R}^n \to \mathbb{R}^m$, seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ a matriz de f. Então f(x) = Ax para todo o $x \in \mathbb{R}^n$ e A é a única matriz que permite definir f desta forma.

EXEMPLO

Seja $f: \mathbb{R}^2 \to \mathbb{R}^4$ uma aplicação linear e suponhamos que

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 3 & 1 \\ -1 & 2 \\ 0 & 1 \end{array} \right]$$

é a matriz de f. Pelo teorema anterior, A determina f. Tem-se, então,

$$f(x) = Ax = A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ 3a + b \\ -a + 2b \\ b \end{bmatrix}$$

donde se conclui que

$$f: \mathbb{R}^2 \to \mathbb{R}^4$$

$$(a,b) \mapsto (a,3a+b,-a+2b,b)$$

1. Seja $f:\mathbb{R}^3 \to \mathbb{R}^2$ a aplicação linear determinada pela matriz

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 0 & 2 & 3 \end{array} \right].$$

- a) Calcule f(1, -2, 3).
- **b)** Determine f(a, b, c) para qualquer $(a, b, c) \in \mathbb{R}^3$.
- 2. Considere a aplicação linear

$$f: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

 $(a,b,c) \mapsto (a+b,b+c)$

- a) Calcule f(1, 2, 3).
- **b)** Determine a matriz que representa f.

Sejam $f: \mathbb{R}^n \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^p$ aplicações lineares.

(i) A aplicação composta de g com f

$$g \circ f: \mathbb{R}^n \to \mathbb{R}^p$$

 $u \mapsto (g \circ f)(u) = g(f(u))$

ainda é uma aplicação linear.

- (ii) ► Se F é a matriz que representa a aplicação linear f e
 - ▶ G é a matriz que representa a aplicação linear g, então
 - ► GF é a matriz que define a aplicação linear g ∘ f.

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear e seja F a matriz de f.

- (i) A aplicação linear f é bijetiva se e só se a matriz F é invertível.
- (ii) Se f é bijetiva, então
 - existe a aplicação inversa de f

$$f^{-1}: \mathbb{R}^m \to \mathbb{R}^n$$

 $u' \mapsto f^{-1}(u') = u$

12/20

onde \underline{u} é o (único) elemento de \mathbb{R}^n tal que $f(\underline{u}) = \underline{u}'$, e

- ▶ f⁻¹ é uma aplicação linear bijetiva.
- (iii) Se f é bijetiva, então
 - ▶ F^{-1} é a matriz que define a aplicação linear f^{-1} .

Sejam $f: \mathbb{R}^n \to \mathbb{R}^m$ e $g: \mathbb{R}^n \to \mathbb{R}^m$ aplicações lineares.

(i) A aplicação soma de f e g

$$f + g: \mathbb{R}^n \to \mathbb{R}^m$$

 $u \mapsto (f + g)(u) = f(u) + g(u)$

também é uma aplicação linear.

- (ii) ► Se F é a matriz que representa a aplicação linear f e
 - ▶ G é a matriz que representa a aplicação linear g, então
 - F + G é a matriz que define a aplicação linear f + g.

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear e seja $\alpha \in \mathbb{R}$.

(i) A aplicação produto de α por f

$$\alpha f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{u} \mapsto (\alpha f)(\mathbf{u}) = \alpha f(\mathbf{u})$$

ainda é uma aplicação linear.

- (ii) ► Se F é a matriz que representa a aplicação linear f, então
 - αF é a matriz que define a aplicação linear αf .

Considere as aplicações lineares

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \mapsto (2x-y,3z,x+2z)$

е

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \mapsto (x,x+y,y+z)$.

Sem determinar a expressão analítica de h, indique a matriz da aplicação linear h para

- a) h = g + 4f.
- **b)** $h = g \circ f$.
- c) $h = f \circ g$.
- **d)** $h = g^{-1}$.

DEFINIÇÃO

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear.

- ▶ O núcleo de f é o conjunto $Nuc(f) = \{x \in \mathbb{R}^n \mid f(x) = 0_{\mathbb{R}^m}\}$, também denotado por Ker(f).
- ▶ A imagem de f é o conjunto $Im(f) = \{f(x) \in \mathbb{R}^m \mid x \in \mathbb{R}^n\}$. Ou seja, Im(f) é o contradomínio de f.

EXEMPLO

Consideremos a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(a, b, c) \mapsto (a, 2b)$.

José Carlos Costa DMA-UMinho 19 de dezembro de 2013

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear. Então,

- (i) Nuc(f) é um subespaço vetorial de \mathbb{R}^n .
- (ii) Im(f) é um subespaço vetorial de \mathbb{R}^m .

Demonstração: Para mostrar (i) consideremos a matriz A da aplicação linear f. Tem-se

$$Nuc(f) = \{x \in \mathbb{R}^n \mid f(x) = 0_{\mathbb{R}^m}\} = \{x \in \mathbb{R}^n \mid Ax = 0_{\mathbb{R}^m}\} = N(A).$$

Ou seja, Nuc(f) é o *núcleo* ou *espaço nulo* da matriz A e, portanto (ver p. 8 do cap. 4), é um subespaço de \mathbb{R}^n .

(ii) Exercício.

Definição

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear. Define-se

- ▶ a nulidade de f como sendo nul(f) = dim(Nuc(f)).
- ▶ a característica de f como sendo car(f) = dim(Im(f)).

TEOREMA

Se $f: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear, então

$$nul(f) + car(f) = n.$$

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear. Então,

- (i) f é uma aplicação injetiva se e só se $Nuc(f) = \{0_{\mathbb{R}^n}\};$
- (ii) f é uma aplicação sobrejetiva se e só se $Im(f) = \mathbb{R}^m$.

Demonstração: É claro que a afirmação (ii) é verdadeira. Provemos (i). Comecemos por supor que f é uma aplicação injetiva. Seja u um elemento arbitrário de Nuc(f). Então $f(u) = 0_{\mathbb{R}^m} = f(0_{\mathbb{R}^n})$ e como f é injetiva deduz-se que $u = 0_{\mathbb{R}^n}$. Conclui-se assim que $Nuc(f) = \{0_{\mathbb{R}^n}\}$. Reciprocamente, suponhamos que $Nuc(f) = \{0_{\mathbb{R}^n}\}$. Sejam $u, v \in \mathbb{R}^n$ tais que f(u) = f(v). Então

$$f(u-v)=f(u)-f(v)=0_{\mathbb{R}^m},$$

o que prova que $u-v\in Nuc(f)$. Como $Nuc(f)=\{0_{\mathbb{R}^n}\}$, deduz-se que $u-v=0_{\mathbb{R}^m}$, e consequentemente que u=v. Conclui-se assim que f é uma aplicação injetiva.

Indique se cada uma das aplicações lineares seguintes é injetiva, determinando o seu núcleo.

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x, y, z) \mapsto (2x, y + z, y - z)$$

$$g: \mathbb{R}^3 \rightarrow \mathbb{R}^4$$

 $(a,b,c) \mapsto (2a,b+c,0,a+b-c).$