Central Limit Theorem and Introduction to Inference

Sumanta Basu

Reading

- Reading: Textbook Sections 3.1, 4.1-4.2
- Recommended Exercise: 4.1, 4.5, 4.7, 4.9, 4.13

Prelim 1 will NOT include readings from Chapter 4 of textbook.

Central Limit Theorem (CLT)

Populations and samples

Goal: Draw scientific inference about a specific aspect of a target population from a *representative* sample

Example: 2012 Cherry Blossom 10-Mile Run

Target population: all runners who finished the run in 2012.

Research question: What is the average age of this population?

There were 16,924 people who finished... would be hard to ask them all!

Draw simple random sample (SRS).

Drawing sample

Options?

- before race starts, ask 50 people?
- send mass email with survey?
- give away energy bars to anyone who will answer your survey?
- be part of race and approach people you encounter along the way?
- stand by finish line for 30 minutes and ask whoever completes race during that time?

Drawing sample

None of those are good. Remember lectures on sampling!

None give a SRS.

Estimating mean age from sample

Let μ be the target population's mean age:

$$\mu = \frac{age_1 + age_2 + \dots + age_{16,924}}{16,924}$$

This is unknown!

But let's select a SRS of size 10:

$$\bar{x} = \frac{31 + 30 + 48 + 41 + 30 + 33 + 25 + 28 + 33 + 39}{10} = 33.8$$

Do we "trust" our answer?

Is $\bar{x} = 33.8$ the same thing as μ ?

The R in SRS is Random

When we draw an SRS, we are doing something random.

 $\bar{x} = 33.8$ is a **realization** of this random process!

Key idea: Imagine if we were to repeat this sampling process again and again.

SRS

Recall definition of SRS:

Choose n units from target population at random so that each possible subset of size n is equally likely to be chosen.

Image we repeated experiment:

- · draw 10 people
- calculate \bar{x}

We might get 34.0 and 29.3... different realizations of a random variable.

Sample mean from SRS

33.8, 34.0, 29.3 are *realizations* of a **random variable**, call it \bar{X}_{10} .

 $ar{X}_{10}$ in words - "draw a SRS of 10 people and average their ages"

Why is it a random variable?

- a random variable is a numerical summary of a random outcome.
- · "draw a SRS of 10 people" is a random experiment
- · "average their ages" sample mean of the ages of the random people drawn is a numerical summary

Sample mean as a random variable

We can write:

$$\bar{X}_{10} = \frac{X_1 + \dots + X_{10}}{10}$$

 X_i = age of the i th person drawn in SRS (also a random variable!)

Suppose my SRS gives

What is X_5 ?

Sample mean as a random variable

What is \bar{X}_{10} 's distribution?

If we had entire population of ages, we could simulate...

...actually in this case we do have the entire population's ages.

Population of ages

PMF of X_1 , a draw from population

Sample mean's distribution

By Monte Carlo simulation, we can get $ar{X}_{10}$'s distribution:

Comments

- when you compute a statistic from a sample using SRS, that is a realization of a random variable
- · Red shows the distribution of the statistic $ar{X}_{10}$
- this distribution is called the sampling distribution of the statistic
- could only simulate sampling distribution since we had entire population's data (not realistic)

Observations

- * sampling distribution of \bar{X}_{10} seems to be centered at population mean, μ (shown in black)
- · variance of $ar{X}_{10}$ is smaller than variance of population
- shape looks normal!!
- that's surprising since population distribution was not!

What we've observed

Let \bar{X}_n be the sample mean of a SRS of size n from a population with mean μ and standard deviation σ . Then, \bar{X}_n is a random variable with

$$E(\bar{X}_n) = \mu$$

and

$$SD(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

And what's more...

When n is "large enough", \bar{X}_n is approximately normal!!

 \bar{X}_n is approximately $N(\mu, \sigma/\sqrt{n})$

Central Limit Theorem

If X_1, \ldots, X_n are independent draws from a distribution with mean μ and standard deviation σ , then for large n, the sample mean \bar{X}_n is approximately normal with mean μ and standard deviation σ/\sqrt{n} :

$$\bar{X}_n \approx N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- · remarkable since individual X_i 's don't have to look at all like a normal distribution
- how large should n be? Depends, but if distribution of X_i 's is not strongly skewed, say $n \geq 30$

Example

Suppose $X_1, ..., X_n$ are independent coin flips, i.e., $X_i \sim \text{Bernoulli}(p)$.

The sample proportion, sometimes written \hat{p}_n , is just $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Recall $E(X_i) = p$ and $Var(X_i) = p(1 - p)$.

CLT tells us

$$\hat{p}_n \approx N(p, \sqrt{p(1-p)/n})$$

Galton Bean Machine

A dramatic video of a beautiful phenomenon

Prelim 1 will cover topics only upto this point, not the next slides

Inference

Sampling distribution: A probabilistic description of how the observed values of a numerical summary statistic (e.g., sample mean) behave under repeated SRS.

This concept underlies all basic statistical inference procedures – its importance cannot be overstated!

In practice: we only collect one sample.

Question: how can we combine the information from a single SRS about a population parameter with our knowledge of sampling distributions in order to perform statistical inference?

Two primary goals

- 1. A **confidence interval** a range of plausible values for a (population) parameter, based on the data obtained from our observed sample.
- 2. A hypothesis (or significance) test an assessment of whether the observed value of a statistic computed using the sample data is consistent with or divergent from some hypothesized value of the (population) parameter.

Note: these get at "what is μ ?" better than just reporting a single **point** estimate (e.g., $\bar{x} = 33.8$)

Confidence Interval (CI)

Point estimate

- · interval is calculated based on sample (centered at $ar{X}_n$)
- · thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- · thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- · thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- · thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- · thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

- · interval is calculated based on sample (centered at $ar{X}_n$)
- thus it is random... remember we're looking at just one realization
- interval here is $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$

Question

What is the probability that $[\bar{X}_n - 3.2, \bar{X}_n + 3.2]$ includes μ ?

[1] 0.9583

(used Monte Carlo to answer this.)

What happens if interval narrower?

$$P(\bar{X}_n - 2.0 \le \mu \le \bar{X}_n + 2.0]) = ?$$

[1] 0.4608

Monte Carlo simulation in a picture

- 100 realizations of the random interval $[\bar{X}_n 3.2, \bar{X}_n + 3.2]$
- 97 out of 100 "cover" μ

Monte Carlo simulation in a picture

- 100 realizations of the random interval $[\bar{X}_n 2.0, \bar{X}_n + 2.0]$
- 48 out of 100 "cover" μ

Confidence Interval

The random interval $[\bar{X}_n - 3.2, \bar{X}_n + 3.2]$ is called a 96% confidence interval. Here, 96% is said to be its confidence level.

$$P([\bar{X}_n - 3.2, \bar{X}_n + 3.2] \text{ includes } \mu) = 96\%$$