Chapitre 7

Courbes paramétrées

Objectifs

- Définition d'une courbe paramétrée et du vocabulaire qui s'y rattache. Lien avec la cinématique.
- Plan d'étude d'une courbe paramétrée. Étude locale au voisinage d'un point. Étude des branches infinies.
- Définition et étude des courbes polaires.
- Étude des coniques.

Sommaire

I)	Généralités	
	Fonctions vectorielles	
	2) Définition d'une courbe paramétrée	
II)	Etude locale en un point	
	Tangente en un point	
	2) Branches infinies	
III)	Courbes paramétrées en polaires	
) Généralités	
	2) Cas particulier	
	B) Plan d'étude d'une courbe polaire 6	
IV)	es coniques	
	Définition monofocale	
	2) Le cas de la parabole	
	B) Le cas de l'ellipse	
	Le cas de l'hyperbole	
	Définition bifocale	
	Définition algébrique	
V)	Exercices	

 \mathscr{P} désigne un plan affine muni d'un repère [éventuellement orthonormé direct] $\mathscr{R} = (O, \overrightarrow{\iota}, \overrightarrow{\jmath})$, on note $\overrightarrow{P} = \{a\overrightarrow{\iota} + b\overrightarrow{\jmath} / a, b \in \mathbb{R}\}$ l'ensemble des vecteurs du plan. Dans tout le chapitre I désigne un intervalle de \mathbb{R} (non vide et non réduit à un point).

Généralités I)

Fonctions vectorielles

DÉFINITION 7.1

Une fonction vectorielle est une fonction $\overrightarrow{f}: I \to \overrightarrow{P}$. Pour $t \in \mathbb{R}$ on note (x(t), y(t)) les coordonnées de $\overline{f}(t)$ dans la base $(\overrightarrow{\iota}, \overrightarrow{\jmath})$, on a donc $\overrightarrow{f}(t) = x(t)\overrightarrow{\iota} + y(t)\overrightarrow{\jmath}$. On remarquera que x et y sont deux fonctions de I dans \mathbb{R} .

Remarque: Le repère étant choisi, se donner une fonction vectorielle revient à se donner deux fonctions réelles. Si le repère est orthonormé direct, on peut utiliser la notion d'affixe complexe.

ØDéfinition 7.2

Soit $\overrightarrow{f}: I \to \overrightarrow{P}$ une fonction vectorielle, soit $\overrightarrow{\ell} \in \overrightarrow{P}$ et soit t_0 un élément de I (ou une borne de I), on dit que \overrightarrow{f} admet pour limite le vecteur $\overrightarrow{\ell}$ en t_0 lorsque :

$$\lim_{t \to t_0} \|\overrightarrow{f}(t) - \overrightarrow{\ell}\| = 0$$

Notation: $\lim_{t \to t_0} \overrightarrow{f}(t) = \overrightarrow{\ell}$ ou $\overrightarrow{f}(t) \xrightarrow[t \to t_0]{} \overrightarrow{\ell}$.

Caractérisation de la limite avec les fonctions coordonnées :

√ THÉORÈME 7.1

 $Si\overrightarrow{f}(t) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j} \text{ et } si \overrightarrow{\ell} = a\overrightarrow{i} + b\overrightarrow{j} \text{ alors} : \lim_{t \to t_0} \overrightarrow{f}(t) = \overrightarrow{\ell} \iff \begin{cases} x(t) \xrightarrow{t \to t_0} a \\ y(t) \xrightarrow{t \to t_0} b \end{cases}.$

Preuve: Supposons le repère orthonormé, alors $\|\overrightarrow{f}(t) - \overrightarrow{\ell}\| = \sqrt{[x(t) - a]^2 + [y(t) - b]^2}$ ce qui donne l'implication de droite à gauche. D'autre part, on a : $|x(t) - a| \le \|\overrightarrow{f}(t) - \overrightarrow{\ell}\|$ et $|y(t) - b| \le \|\overrightarrow{f}(t) - \overrightarrow{\ell}\|$ ce qui donne la

Par analogie avec les fonctions réelles, on définit les notions de continuité puis de dérivabilité.

DÉFINITION 7.3

Soit $\overrightarrow{f}: I \to \overrightarrow{P}$ une fonction vectorielle et t_0 un élément de I, on dit que \overrightarrow{f} est continue en t_0 lorsque $\lim_{t \to t_0} \overrightarrow{f}(t) = \overrightarrow{f}(t_0)$.

Remarque : si $\overrightarrow{f}(t) = x(t)\overrightarrow{\iota} + y(t)\overrightarrow{\jmath}$ alors il découle du théorème précédent que \overrightarrow{f} est continue en t_0 ssi les fonctions x et y sont continues en t_0 .

DÉFINITION 7.4

Remarque : si $\overrightarrow{f}(t) = x(t)\overrightarrow{\iota} + y(t)\overrightarrow{\jmath}$ alors il découle du théorème précédent que \overrightarrow{f} est dérivable en t_0 ssi les fonctions x et y sont dérivables en t_0 auquel cas on a $\overrightarrow{f}'(t_0) = x'(t_0)\overrightarrow{\iota} + y'(t_0)\overrightarrow{\jmath}$.

On peut alors vérifier que l'on retrouve les règles usuelles de dérivation : dérivée d'une somme, de $\lambda \cdot \overrightarrow{f}$, de $\overrightarrow{f} \circ g$, auxquelles s'ajoutent de nouvelles règles :

-`<mark>@</mark>-THÉORÈME **7.2**

Soient \overrightarrow{f} et \overrightarrow{g} deux fonctions vectorielles dérivables sur I, on a :

- dérivée du produit scalaire : $(\overrightarrow{f} \cdot \overrightarrow{g})' = \overrightarrow{f}' \cdot \overrightarrow{g} + \overrightarrow{f} \cdot \overrightarrow{g}'$.
- $\ d\acute{e}riv\acute{e}e \ du \ d\acute{e}terminant : \left(\det(\overrightarrow{f}', \overrightarrow{g}')\right)' = \det(\overrightarrow{f}', \overrightarrow{g}') + \det(\overrightarrow{f}', \overrightarrow{g}').$
- dérivée de la norme : si \overrightarrow{f} ne s'annule pas, $\|\overrightarrow{f}\|' = \frac{\overrightarrow{f}' \cdot \overrightarrow{f}}{\|\overrightarrow{f}\|}$.

Preuve: En exercice.

Pour terminer cette partie nous allons définir la notion de classe d'une fonction :

Définition 7.5

Une fonction vectorielle $\overrightarrow{f}: I \to \overrightarrow{P}$ est dite de classe \mathscr{C}^k sur l'intervalle I lorsqu'elle est k fois dérivable sur I et que sa dérivée k-ième (notée $\overrightarrow{f}^{(k)}$) est continue sur I.

 $Si \overrightarrow{f}(t) = x(t)\overrightarrow{\iota} + y(t)\overrightarrow{j}$ alors la fonction \overrightarrow{f} est de classe \mathscr{C}^k sur I ssi les fonctions x et y sont elles-mêmes de classe \mathscr{C}^k sur I, si c'est le cas, alors on a $\overrightarrow{f}^{(k)}(t) = x^{(k)}(t)\overrightarrow{\iota} + y^{(k)}(t)\overrightarrow{j}$.

2) Définition d'une courbe paramétrée

DÉFINITION 7.6

Une courbe paramétrée (ou arc paramétré) C, de classe \mathscr{C}^k est la donnée d'un triplet $C = (I, \overrightarrow{f}, \Gamma)$, où I est un intervalle de \mathbb{R} , \overrightarrow{f} une fonction vectorielle de classe \mathscr{C}^k sur I, et $\Gamma = \{M(t) / t \in I \text{ et } \overrightarrow{f}(t) = \overrightarrow{OM(t)}\}$. Le couple (I, \overrightarrow{f}) est appelé paramétrage de la courbe, et Γ est appelé le support de la courbe [ou ensemble des points de la courbe].

Exemples:

- Un arc paramétré est souvent donné par un paramétrage, exemple : soit C la courbe paramétrée par $x(t) = 1 + t^2$ et $y(t) = 1 t^2 + t$, $t \in \mathbb{R}$.
- Une courbe cartésienne d'équation $y = g(x), x \in I$ est un cas particulier de courbe paramétrée, on peut prendre comme paramétrage : x(t) = t et $y(t) = g(t), t \in I$.

Interprétation cinématique :

- La courbe $C = (I, \overrightarrow{f}, \Gamma)$ est appelée **mouvement**, et le support Γ est appelé **trajectoire**.
- Le vecteur $\overrightarrow{f}(t) = \overrightarrow{OM(t)} = x(t)\overrightarrow{\iota} + y(t)\overrightarrow{\jmath}$ est appelé **vecteur position**.
- Le vecteur $\overrightarrow{f}'(t) = \frac{d(\overrightarrow{OM(t)})}{dt} = x'(t)\overrightarrow{\iota} + y'(t)\overrightarrow{\jmath} = \overrightarrow{v}(t)$ est appelé **vecteur vitesse**. Lorsque $\overrightarrow{v}(t) \neq 0$, on dit que le point M(t) est **régulier**, sinon on dit qu'il est **stationnaire**. Lorsque tous les points sont réguliers, on dit que la courbe C est régulière.
- Le vecteur $\overrightarrow{f}''(t) = \frac{d^2(\overrightarrow{OM(t)})}{dt^2} = x''(t)\overrightarrow{\iota} + y''(t)\overrightarrow{\jmath} = \overrightarrow{a}'(t)$ est appelé **vecteur accélération**. Lorsque $\overrightarrow{v}(t)$ et $\overrightarrow{a}'(t)$ sont non colinéaires, (i.e. $\det(\overrightarrow{v}(t), \overrightarrow{a}'(t)) \neq 0$), on dit que le point M(t) est **birégulier**. Lorsque tous les points sont biréguliers, on dit que la courbe C est birégulière.

Exemple: Montrer que la courbe paramétrée par : $x(t) = 1 + t^2$ et $y(t) = 1 - t^2 + t$, est birégulière. Étudier les variations de x et de y, étudier le rapport $\frac{y}{x}$ au voisinage de ∞ , et donner l'allure de la courbe.

Étude locale en un point II)

Tangente en un point 1)

Soit $C = (I, \overrightarrow{f}, \Gamma)$ une courbe de classe \mathscr{C}^n $(n \ge 1)$, soit $M(t_0)$ un point régulier et soit $h \in \mathbb{R}^*$ tel que $t_0 + h \in I$, alors le vecteur :

$$\frac{1}{h} \overrightarrow{M(t_0)} \overrightarrow{M(t_0 + h)} = \frac{x(t_0 + h) - x(t_0)}{h} \overrightarrow{i} + \frac{y(t_0 + h) - y(t_0)}{h} \overrightarrow{j}$$

est un vecteur directeur de la droite $(M(t_0)M(t_0+h))$, donc lorsque h tend vers 0, cette droite « tend » vers la droite qui passe par $M(t_0)$ et dirigée par le vecteur $\overrightarrow{f}'(t_0)$.

DÉFINITION 7.7

Si $M(t_0)$ est un point **régulier**, la droite qui passe par $M(t_0)$ et dirigée par $\overrightarrow{f}'(t_0)$ [le vecteur vitesse] est appelée tangente à la courbe au point $M(t_0)$.

En un point stationnaire $M(t_0)$, si le quotient $\frac{y(t)-y(t_0)}{x(t)-x(t_0)}$ admet une limite en t_0 , alors celle-ci est le coefficient directeur de la tangente au point $M(t_0)$. Cela revient aussi à étudier la limite en t_0 du rapport $\frac{y'(t)}{x'(t)}$ (si celui-ci existe).

Nous démontrerons dans un autre chapitre que la **première dérivée non nulle** en t_0 de \overrightarrow{f} donne un vecteur directeur de la tangente.

Exemple: Étudier la courbe paramétrée par : $x(t) = \cos(t)$ et $y(t) = \sin(t)[1 + \cos(t)]$.

Réponse : on peut se placer dans l'intervalle $[-\pi;\pi]$ car la fonction x(t) est paire et la fonction y(t) est impaire, la courbe est symétrique par rapport à l'axe Ox, et on peut réduire l'étude à l'intervalle $[0; \pi]$. Le tableau des variations est:

Le point $M(\pi)$ est stationnaire, $\frac{y(t)-y(\pi)}{x(t)-x(\pi)} = \sin(t) \xrightarrow[t \to \pi]{} 0$ on a donc une tangente horizontale en $M(\pi)$.

Branches infinies

ØDéfinition 7.8

Soit t_0 un élément de I ou une borne de I, on dit que la courbe $C = (I, \overrightarrow{f}, \Gamma)$ admet une branche infinie en t_0 lorsque $\lim_{t\to t_0} x(t) = \infty$ ou $\lim_{t\to t_0} y(t) = \infty$.

Étude des branches infinies :

- Si $\lim_{t \to t_0} x(t) = \infty$ et $\lim_{t \to t_0} y(t) = y_0$, alors on dit qu'il y a une asymptote horizontale d'équation $y = y_0$. Si $\lim_{t \to t_0} x(t) = x_0$ et $\lim_{t \to t_0} y(t) = \infty$, alors on dit qu'il y a une asymptote verticale d'équation $x = x_0$.
- Si $\lim_{t \to t_0} x(t) = \infty$ et $\lim_{t \to t_0} y(t) = \infty$, alors on étudie la limite en t_0 du rapport $\frac{y(t)}{x(t)}$:
 - Si $\lim_{t \to t_0} \frac{y(t)}{x(t)} = 0$, on dit qu'il y a une branche parabolique dans la direction de l'axe Ox.

- Si $\lim_{t \to t_0} \frac{y(t)}{x(t)} = \infty$, on dit qu'il y a une branche parabolique dans la direction de l'axe Oy.
- Si $\lim_{t\to t_0} \frac{y(t)}{x(t)} = a \in \mathbb{R}^*$, alors on étudie la limite de y(t) ax(t) en t_0 :
 - Si $\lim_{t \to a} y(t) ax(t) = b$, alors on dit qu'il y a une asymptote d'équation y = ax + b.
 - Si $\lim_{t\to t_0} y(t) ax(t) = \infty$, alors on dit qu'il y a une branche parabolique dans la direction asymptotique y = ax.

Exemples:

- Étudier les branches infinies de la courbe paramétrée par $x(t) = \frac{t^3}{t^2 9}$ et $y(t) = \frac{t(t-2)}{t-3}$. Réponse : On a $I =]-\infty; -3[\cup]-3; 3[\cup]3; +\infty[$.

Reponse : On a $t=J-\infty$; $-3\lfloor \bigcup_{j=3} 3, 3\lfloor \bigcup_{j=3} 3, +\infty \rfloor$. * En $t_0=-3:\lim_{t\to 3} x(t)=\infty$ et $\lim_{t\to 3} y(t)=-5/2$, il y a donc une asymptote horizontale d'équation y=-5/2. * En $t_0=3:\frac{y(t)}{x(t)}=\frac{t(t-2)(t+3)}{t^3} \xrightarrow{3} \frac{2}{3}$ puis on calcule $y(t)-\frac{2}{3}x(t)=\frac{t(t+6)}{3(t+3)} \xrightarrow{3} \frac{3}{2}$ il y a donc une asymptote d'équation $y+\frac{2}{3}x=\frac{3}{2}$. $y(t)-\frac{2}{3}x(t)-\frac{3}{2}=\frac{(t-3)(2t+9)}{6(t+3)}$ donc la courbe est au-dessus de l'asymptote au voisinage à droite de 3, et en-dessous au voisinage à gauche de 3. En $t_0=\pm\infty$: on a $\frac{y(t)}{x(t)} \xrightarrow{\infty} 1$ et $y(t)-x(t)=\frac{t^2-6t}{t^2-9} \xrightarrow{\infty} 1$, on a donc une asymptote d'équation y=x+1. D'autre part, $y(t)-x(t)-1=\frac{9-6t}{t^2-9}$, donc la courbe est au-dessus de l'asymptote au voisinage de $-\infty$ et en-dessous au voisinage de $+\infty$. en-dessous au voisinage de $+\infty$.

- Étudier la courbe paramétrée par : $x(t) = \frac{t}{\ln(t)}$ et $y(t) = \frac{t^2}{t-1}$.

- * En $+\infty: \frac{y(t)}{x(t)} \longrightarrow +\infty:$ branche parabolique de direction Oy.
- * En $0: \frac{y'(t)}{x'(t)} \longrightarrow 0:$ on arrive à l'origine horizontalement. * En $1: \frac{y(t)}{x(t)} \longrightarrow 1$ et $y(t) x(t) \longrightarrow \frac{1}{2}:$ asymptote d'équation $y = x + \frac{1}{2}.$

Dans la suite du chapitre, $\mathcal{R} = (O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ désigne un repère orthonormé direct.

Courbes paramétrées en polaires III)

Généralités 1)

Une courbe paramétrée de \mathcal{P} peut être représentée par des coordonnées polaires $(\rho(t), \theta(t))$ en fonction du paramètre réel t. Dans ce cas la fonction vectorielle correspondante est :

$$\overrightarrow{OM(t)} = \overrightarrow{f}(t) = \rho(t)\overrightarrow{u}(\theta(t))$$
 ou $\overrightarrow{u}(\theta(t)) = \cos(\theta(t))\overrightarrow{\iota} + \sin(\theta(t))\overrightarrow{\jmath}$

ce qui équivaut au paramétrage cartésien $x(t) = \rho(t)\cos(\theta(t))$ et $y(t) = \rho(t)\sin(\theta(t))$.

Le vecteur vitesse : On a $\overrightarrow{v}(\theta) = \overrightarrow{u}(\theta + \frac{\pi}{2}) = -\sin(\theta)\overrightarrow{\iota} + \cos(\theta)\overrightarrow{\jmath}$, les fonctions vectorielles $\theta \mapsto \overrightarrow{u}(\theta)$ et $\theta \mapsto \overrightarrow{v}(\theta)$ sont donc dérivables et on a :

$$\frac{d\overrightarrow{u}}{d\theta} = \overrightarrow{v}(\theta) \text{ et } \frac{d\overrightarrow{v}}{d\theta} = -\overrightarrow{u}(\theta).$$

On en déduit que si les fonctions $t\mapsto \rho(t)$ et $t\mapsto \theta(t)$ sont dérivables sur I alors la fonction $t\mapsto \overrightarrow{f}(t)$ l'est aussi et on a :

$$\overrightarrow{f}'(t) = \rho'(t)\overrightarrow{u}(\theta(t)) + \rho(t)\theta'(t)\overrightarrow{v}(\theta(t)).$$

Le vecteur accélération : Si les fonctions $t \mapsto \rho(t)$ et $t \mapsto \theta(t)$ sont deux fois dérivables sur I alors la fonction $t \mapsto \overrightarrow{f}(t)$ l'est aussi et on a :

$$\overrightarrow{f}''(t) = \left[\rho''(t) - \rho(t)\theta'(t)^2\right] \overrightarrow{u}(\theta(t)) + \left[2\rho'(t)\theta'(t) + \rho(t)\theta''(t)\right] \overrightarrow{v}(\theta(t)).$$

2) Cas particulier

Le cas particulier le plus simple est celui où $\theta(t) = t$, autrement dit le paramètre est l'angle polaire θ .

DÉFINITION 7.9

La courbe polaire d'équation $r = \rho(\theta)$ où $\rho: I \to \mathbb{R}$ est une fonction de classe $\mathscr{C}^k, k \geqslant 1$, est la courbe paramétrée par : $\overrightarrow{OM(\theta)} = \overrightarrow{f}(\theta) = \rho(\theta)\overrightarrow{u}(\theta)$, c'est à dire $\begin{cases} x(\theta) = \rho(\theta)\cos(\theta) \\ y(\theta) = \rho(\theta)\sin(\theta) \end{cases}$

Propriétés : si la fonction ρ est de classe \mathscr{C}^2 alors :

- Le vecteur vitesse au point $M(\theta)$ est $\overrightarrow{f}'(\theta) = \rho'(\theta)\overrightarrow{u}'(\theta) + \rho(\theta)\overrightarrow{v}'(\theta)$ et le vecteur accélération est $\overrightarrow{f}''(t) = \lceil \rho''(\theta) \rho(\theta) \rceil \overrightarrow{u}'(\theta) + 2\rho'(\theta) \overrightarrow{v}'(\theta)$.
- $M(\theta)$ est un point régulier \iff $(\rho'(\theta), \rho(\theta)) \neq (0, 0)$, on en déduit que tous les points de la courbe **distincts de** O sont des **points réguliers**.
- $M(\theta)$ est birégulier $\iff 2\rho'(\theta)^2 + \rho(\theta)^2 \rho(\theta)\rho''(t) \neq 0$ (c'est le déterminant entre les vecteurs vitesse et accélération dans la base $(\overline{u}'(\theta), \overline{v}'(\theta))$.

3) Plan d'étude d'une courbe polaire

- Restriction du domaine d'étude :
 - Si $\rho(\theta) = \rho(-\theta)$: alors la courbe présente une symétrie par rapport à l'axe Ox, on peut restreindre l'étude à $t \ge 0$.
 - Si $\rho(-\theta) = -\rho(\theta)$: alors la courbe présente une symétrie par rapport à l'axe Oy, on peut restreindre l'étude à $t \ge 0$.

- Si $\rho(2\alpha \theta) = \rho(\theta)$: alors la courbe présente une symétrie par rapport à la droite d'équation polaire $\theta = \alpha$, on peut restreindre l'étude à $\theta \ge \alpha$.
- Si $\rho(2\alpha \theta) = -\rho(\theta)$: alors la courbe présente une symétrie par rapport à la droite d'équation polaire $\theta = \alpha + \pi/2$, on peut restreindre l'étude à $\theta \ge \alpha$.
- Si $\rho(T+\theta)=\rho(\theta)$: (T est une période de ρ), alors le point $M(T+\theta)$ se déduit de $M(\theta)$ par la rotation de centre O et d'angle T, on peut restreindre l'étude à un intervalle de longueur T.
- Si $\rho(T+\theta) = -\rho(\theta)$: (T est une anti-période de ρ), alors le point $M(T+\theta)$ se déduit de $M(\theta)$ par la rotation de centre O et d'angle $T + \pi$, on peut restreindre l'étude à un intervalle de longueur Т.
- On étudie ensuite les variations de la fonction ρ .
- Classification des points :
 - Si $M(\theta_0) \neq O$: alors le point $M(\theta_0)$ est régulier, donc la tangente est portée par le vecteur vitesse : $\overrightarrow{f}'(\theta_0) = \rho'(\theta_0)\overrightarrow{u}'(\theta_0) + \rho(\theta_0)\overrightarrow{v}'(\theta_0)$. L'équation de cette tangente dans le repère $(M(\theta_0), \overrightarrow{u}(\theta_0), \overrightarrow{v}(\theta_0))$ est : $\rho(\theta_0)X - \rho'(\theta_0)Y = 0$, son coefficient directeur est $\frac{\rho(\theta_0)}{\rho'(\theta_0)}$ lorsque
 - Si $M(\theta_0) = O$ alors $\lim_{\theta \to \theta_0} \frac{1}{\rho(\theta)} \overrightarrow{OM(\theta)} = \overrightarrow{u}(\theta_0)$, donc la tangente est dirigée par le vecteur
- Recherche des points doubles :

$$M(\theta) = M(\theta') \iff \begin{cases} \theta = \theta' + 2k\pi \\ \rho(\theta) = \rho(\theta') \end{cases} \text{ ou } \begin{cases} \theta = \theta' + (2k+1)\pi \\ \rho(\theta) = -\rho(\theta') \end{cases}.$$

- Branches infinies : il y en a une lorsque $\lim_{\theta \to \theta_0} \rho(\theta) = \pm \infty$ avec θ_0 réel, ou bien lorsque $\rho(\theta)$ a une limite dans $\overline{\mathbb{R}}$ en $\pm \infty$. D'où la distinction :
 - Si $\lim_{\theta \to 0} \rho(\theta) = \pm \infty$ alors on dit qu'il y a une branche infinie en spirale.
 - Si $\lim_{\theta \to \pm \infty} \rho(\theta) = a \in \mathbb{R}$ alors on dit qu'il y a un cerce asymptote, de centre O et de rayon |a|.
 - Si $\theta_0 \in \mathbb{R}$ et $\lim_{\theta \to \theta_0} \rho(\theta) = \pm \infty$ alors dans le repère polaire d'angle θ_0 , les coordonnées de $M(\theta)$ sont $X = \rho(\theta)\cos(\theta - \theta_0)$ et $Y = \rho(\theta)\sin(\theta - \theta_0)$, la limite de l'abscisse X en θ_0 est infinie, on étudie celle de *Y* :
 - Si $\lim_{\theta \to \theta_0} \rho(\theta) \sin(\theta \theta_0) = a \in \mathbb{R}$ alors on dit qu'il y a une asymptote d'équation Y = a dans le repère polaire, dans le repère d'origine l'équation dévient $-\sin(\theta_0)x + \cos(\theta_0)y = a$.
 - Si $\lim_{\theta \to \theta_0} \rho(\theta) \sin(\theta \theta_0) = \pm \infty$ alors on dit qu'il y a une branche parabolique dans la direction de la droite d'équation polaire $\theta = \theta_0$.

Exemples:

- Étudier la courbe polaire d'équation $\rho(\theta) = a\sqrt{\cos(2\theta)}$ où a > 0 (Lemniscate de *Bernoulli*).
 - * ρ est paire et π -périodique : étude sur $[0; \frac{\pi}{2}] \cap D_{\rho} = [0; \frac{\pi}{4}]$, on complétera avec la symétrie par rapport à Ox, puis avec la symétrie de centre O.

 - * En $\theta_0=0$: $\rho(0)=a$ et $\overrightarrow{f}'(0)=a$: tangente verticale. * En $\theta_0=\frac{\pi}{4}:M(\theta_0)=O$ donc la tangente est la première bissectrice.

– Étudier la courbe polaire d'équation $\rho(\theta) = \ln(1 - \sin(\theta))$. Réponse : La fonction est définie sur $\mathbb{R}\setminus\{\pi/2+k\pi\ /\ k\in\mathbb{Z}\}$. La fonction ρ est 2π -périodique et $\rho(\pi-\theta)=\rho(\theta)$, il y a donc une symétrie par rapport à l'axe Ox, on peut donc restreindre l'étude à $[-\pi/2; \pi/2]$. Le tableau des variations est:

- * Points particuliers:
- i) En $\theta_0 = -\pi/2$: un vecteur directeur de la tangente est $\ln(2)\vec{\iota}$, on a donc une tangente horizontale.
- ii) En $\theta_0 = 0$: on a $M(\theta_0) = 0$ et $\rho'(0) = -1$, donc M(0) est un point régulier et la tangente en portée par $\overrightarrow{u}(0) = \overrightarrow{\iota}$.
- * Branche infinie en $\pi/2$:

 $Y = \rho(\theta)\sin(\theta - \frac{\pi}{2}) = -\rho(\theta)\cos(\theta) = -\ln(1 - \sin(\theta))\cos(\theta)$, c'est à dire, en posant $u = \theta - \pi/2$, $Y = \ln(1 - \cos(u))\sin(u) = \ln(2\sin^2(\frac{u}{2}))\sin(u) \xrightarrow{u \to 0} 0$, il y a donc une asymptote d'équation Y = 0 dans le repère polaire, c'est à dire x = 0 dans le repère d'origine.

* Points doubles:

cela revient à chercher $\theta \in [-\pi/2; \pi/2[$ tel que $\rho(\theta) = -\rho(\theta + \pi)$, ce qui donne $\sin(\theta) = 0$ et donc $\theta = 0$, par conséquent O est le seul point double.

IV) Les coniques

1) Définition monofocale

PDÉFINITION 7.10

Soit F un point du plan, $\mathfrak D$ une droite affine ne passant pas par F et soit e un réel strictement positif. On a appelle conique de foyer F, de directrice $\mathfrak D$ et d'excentricité e l'ensemble

$$\mathscr{C} = \{ M \in \mathscr{P} \mid MF = \operatorname{ed}(M, \mathfrak{D}) \}$$

Lorsaue :

- -e=1: la courbe $\mathscr C$ est appelée parabole.
- -e < 1: la courbe $\mathscr C$ est appelée ellipse.
- -e > 1: la courbe \mathscr{C} est appelée hyperbole.

On choisit un repère $\Re = (F, \overrightarrow{\iota}, \overrightarrow{\jmath})$ de tel sorte que \mathfrak{D} admette comme équation dans ce repère x = -d

Une équation cartésienne dans le repère $(F, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est : $MF^2 = e^2MH^2$ c'est à dire $x^2 + y^2 = e^2(x+d)^2$ ou encore $x^2(1-e^2) - 2e^2dx + y^2 - e^2d^2 = 0$. Déterminons maintenant un paramétrage polaire : on a $MH = |x_H - x_M| = |d+x| = |d+\rho\cos(t)|$, et $MF = |\rho|$, on a donc $M \in \mathscr{C} \iff \rho^2 = e^2\left(d+\rho\cos(t)\right)^2$ ce qui équivaut à $\rho = e(d+\rho\cos(t))$ ou $\rho = -e(d+\rho\cos(t))$, on obtient ainsi que \mathscr{C} est la réunion de deux

 $\text{courbes}: \mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2 \text{ avec } \mathscr{C}_1 \text{ d'équation polaire}: \rho_1 = \frac{ed}{1 - e\cos(t)} \text{ et } \mathscr{C}_2 \text{ d'équation polaire } \rho_2 = \frac{-ed}{1 + e\cos(t)}.$ On voit que $\rho_2(\pi + t) = -\rho_1(t)$ et donc $M_2(\pi + t) = M_1(t)$, on en déduit que les deux courbes sont confondues, $\mathscr{C}_1 = \mathscr{C}_2$ et donc :

[™]-THÉORÈME 7.3

Une équation polaire de $\mathscr C$ dans le repère $(F,\overrightarrow{\iota},\overrightarrow{\jmath})$ est $: \rho(t) = \frac{p}{1 - e\cos(t)}$ où p = ed est appelé paramètre de la courbe. Une équation cartésienne dans le repère $(F, \overrightarrow{\iota}, \overrightarrow{J})$ est :

$$x^2(1 - e^2) - 2epx + y^2 - p^2 = 0$$

2) Le cas de la parabole

Équation réduite: On a e=1, l'équation cartésienne devient $y^2=2px+p^2=2p(x+\frac{d}{2})$. Soit $O(-\frac{d}{2},0)$, alors dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ l'équation devient : $Y^2 = 2pX$ c'est **l'équation réduire** de la parabole. On est ramené à tracer la courbe représentative de la fonction $f(X) = \sqrt{2pX}$ puis à faire une symétrie par rapport à Ox.

Allure de la courbe :

Parabole de sommet $O(-\frac{d}{2}, 0)$ et d'axe Ox.

Tangente en un point : paramétrons la parabole par $x(t) = \frac{t^2}{2p} - \frac{d}{2}$ et y(t) = t dans le repère $(F, \overrightarrow{t}, \overrightarrow{J})$, la tangente est dirigée par la vitesse $\overrightarrow{v}(t)$ de coordonnées $(\frac{t}{p},1)$, or \overrightarrow{FH} a pour coordonnées (-p,t), on en déduit que $\overrightarrow{v}(t) \cdot \overrightarrow{FH} = 0$. La tangente est donc la perpendiculaire à (FH) passant par M, **c'est la** médiatrice du segment $\lceil FH \rceil$:

Application: principe du miroir parabolique.

3) Le cas de l'ellipse

Équation réduite : On a e < 1, une équation cartésienne dans le repère $(F, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est (avec e < 1) :

$$x^{2}(1-e^{2}) - 2epx + y^{2} - p^{2} = 0 \iff x^{2} - 2\frac{ep}{1-e^{2}}x + \frac{y^{2}}{1-e^{2}} = \frac{p^{2}}{1-e^{2}}$$

$$\iff \left(x - \frac{ep}{1-e^{2}}\right)^{2} + \frac{y^{2}}{1-e^{2}} = \frac{p^{2}}{1-e^{2}} + \frac{e^{2}p^{2}}{(1-e^{2})^{2}} = \frac{p^{2}}{(1-e^{2})^{2}}$$

$$\iff \frac{\left(x - \frac{ep}{1-e^{2}}\right)^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

avec $a = \frac{p}{1 - e^2}$ et $b = \frac{p}{\sqrt{1 - e^2}}$. Soit $O(\frac{ep}{1 - e^2}, 0)$, alors dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$, on a $X = x - \frac{ep}{1 - e^2}$ et Y = y, donc l'équation devient $X^2 = \frac{Y^2}{a^2} + \frac{Y^2}{b^2} = 1$. C'est **l'équation réduite** de l'ellipse.

Remarques:

- On a $b < a \operatorname{car} 0 < 1 e^2 < 1$.
- Les coordonnées de F dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ sont $(-c = -\frac{ep}{1-e^2}, 0)$.
- On a $c = \sqrt{a^2 b^2}$, $e = \frac{c}{a}$ et l'équation de la directrice dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est $X = -d c = -\frac{a^2}{c}$. En particulier on en déduit que $0 < c < a < \frac{a^2}{c}$.
- L'ellipse est symétrique par rapport à Oy, elle a donc un deuxième foyer F' de coordonnées (c,0) et une autre directrice \mathfrak{D}' d'équation $X = \frac{a^2}{c}$ dans le repère $(O, \overline{\iota}', \overline{\jmath}')$.
- Un paramétrage possible dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est $X(t) = a\cos(t)$ et $Y(t) = b\sin(t)$ avec $t \in \mathbb{R}$.

Étude de la courbe : Les fonctions X et Y sont 2π -périodiques, X est paire et Y est impaire, on a donc une symétrie par rapport à Ox, on réduit l'étude sur $[0,\pi]$. On a $X(\pi-t)=-X(t)$ et $Y(\pi-t)=Y(t)$: symétrie par rapport à (Oy), on réduit l'étude sur $[0,\frac{\pi}{2}]$. La tangente au point M(0) est verticale et la tangente au point $M(\frac{\pi}{2})$ est horizontale :

Ellipse de centre $O(\frac{ep}{1-e^2}, 0)$, de demi-grand axe $a = \frac{p}{1-e^2}$, de demi-petit axe $b = \frac{p}{\sqrt{1-e^2}}$.

• Pour tout point M de l'ellipse, on a MF + MF' = 2a.

Preuve: On a $MF + MF' = e \times MH + e \times MH' = ed(\mathfrak{D}, \mathfrak{D}') = e2\frac{a^2}{c} = 2a$.

- 🔐 THÉORÈME 7.5 (Tangente en un point)

En tout point M de l'ellipse, la tangente est la bissectrice extérieure de l'angle $\widehat{FMF'}$.

Preuve: On choisit un paramétrage de l'ellipse puis on dérive la relation $\|\overrightarrow{FM(t)}\| + \|\overrightarrow{F'M(t)}\| = 2a$ ce qui donne $\overrightarrow{v}(t) \cdot \left[\frac{\overrightarrow{FM}}{\|\overrightarrow{FM}\|} + \frac{\overrightarrow{F'M}}{\|\overrightarrow{F'M}\|}\right] = \overrightarrow{0}$, or le deuxième vecteur est un vecteur directeur de la bissectrice intérieure de l'angle $\widehat{FMF'}$, le résultat en découle.

4) Le cas de l'hyperbole

Équation réduite : On a e > 1, une équation cartésienne dans le repère $(F, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est :

$$x^{2}(1-e^{2}) - 2epx + y^{2} - p^{2} = 0 \iff x^{2} - 2\frac{ep}{1-e^{2}}x + \frac{y^{2}}{1-e^{2}} = \frac{p^{2}}{1-e^{2}}$$

$$\iff \left(x + \frac{ep}{e^{2} - 1}\right)^{2} - \frac{y^{2}}{e^{2} - 1} = \frac{p^{2}}{1-e^{2}} + \frac{e^{2}p^{2}}{(1-e^{2})^{2}} = \frac{p^{2}}{(e^{2} - 1)^{2}}$$

$$\iff \frac{\left(x + \frac{ep}{e^{2} - 1}\right)^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1,$$

avec $a = \frac{p}{e^2 - 1}$ et $b = \frac{p}{\sqrt{e^2 - 1}}$. Posons $O(\frac{-ep}{e^2 - 1}, 0)$, alors dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ on a $X = x + \frac{ep}{e^2 - 1}$ et

Y = y, l'équation cartésienne s'écrit alors $\left| \frac{X^2}{a^2} - \frac{Y^2}{b^2} \right| = 1$ c'est **l'équation réduite** de l'hyperbole.

Remarques:

- Les coordonnées de F dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{J})$ sont $(c = \frac{ep}{e^2 1}, 0)$.
- On a $c = \sqrt{a^2 + b^2}$, $e = \frac{c}{a}$ et l'équation de la directrice dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ est $X = -d + c = \frac{a^2}{c}$.
- En particulier on en déduit que $0 < \frac{a^2}{c} < a < c$.

 L'hyperbole est symétrique par rapport à Oy, elle a donc un deuxième foyer F' de coordonnées (-c,0) et une autre directrice \mathfrak{D}' d'équation $X = -\frac{a^2}{c}$ dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{J})$.
- Un paramétrage possible dans le repère $(O, \overrightarrow{t}, \overrightarrow{J})$ est $X(t) = \pm a \operatorname{ch}(t)$ et $Y(t) = b \operatorname{sh}(t)$ avec $t \in \mathbb{R}$.

Étude de la courbe :

La partie de la courbe dans le demi-plan X > 0 est paramétrée par $X(t) = a \operatorname{ch}(t)$ et $Y(t) = b \operatorname{sh}(t)$ avec $t \in \mathbb{R}$ (l'autre partie est symétrique par rapport à Oy]. La fonction X est paire et la fonction Y est impaire il y a donc une symétrie par rapport à Ox et on réduit l'étude sur $[0; +\infty[$.

La tangente au point M(0) est verticale. En $+\infty$: on a $\frac{Y(t)}{X(t)} = \frac{b}{a} \operatorname{th}(t) \to \frac{b}{a}, \ Y(t) - \frac{b}{a} X(t) = -be^{-t} \to 0, \text{ on a donc une asymptote d'équation } Y = \frac{b}{a} X \text{ et la courbe est}$ sous l'asymptote.

Remarque: Lorsque a = b les deux asymptotes sont orthogonales (ce sont les deux bissectrices) on dit alors que l'hyperbole est **équilatère**. Dans ce cas, dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$ avec $\overrightarrow{u} = \frac{1}{\sqrt{2}} [\overrightarrow{\iota} - \overrightarrow{J}]$ et

 $\overrightarrow{v} = \frac{1}{\sqrt{2}} [\overrightarrow{\iota} + \overrightarrow{J}]$, on a $X = \frac{1}{\sqrt{2}} [X' + Y']$ et $Y = \frac{1}{\sqrt{2}} [-X' + Y']$ donc l'équation de l'hyperbole devient $(X - Y)(X + Y) = a^2 \text{ i.e. } \left| X'Y' = \frac{a^2}{2} \right|.$

• Pour tout point M de l'hyperbole, on a |MF - MF'| = 2a.

Preuve: Prenons M dans le demi-plan X > 0, on a $MF - MF' = e \times MH - e \times MH' = -ed(\mathfrak{D}, \mathfrak{D}') = -e2\frac{a^2}{c} = -2a$.

🧑 THÉORÈME 7.7 (Tangente en un point)

En tout point M de l'hyperbole, la tangente est la bissectrice intérieure de l'angle $\widehat{FMF'}$.

Preuve: On choisit un paramétrage de l'hyperbole puis on dérive la relation $\|\overrightarrow{FM(t)}\| - \|\overrightarrow{F'M(t)}\| = \pm 2a$ ce qui donne $\overrightarrow{v}(t) \cdot \left[\frac{\overrightarrow{FM}}{\|\overrightarrow{FM}\|} - \frac{\overrightarrow{F'M}}{\|\overrightarrow{F'M}\|} \right] = \overrightarrow{0}$, or le deuxième vecteur est un vecteur directeur de la bissectrice extérieure de l'angle FMF', le résultat en découle.

Définition bifocale 5)

-`o^-THÉORÈME **7.8**

Soient F, F' deux points distincts du plan, soit $c = \frac{FF'}{2}$ et a > c, alors l'ensemble

$$\mathscr{C} = \{ M \in \mathscr{P} / MF + MF' = 2a \}$$

est une ellipse de centre O = Mil[F; F'] d'excentricité $e = \frac{c}{a}$ et de foyer F.

Preuve: Posons O = Mil[F, F'] comme origine, $\overrightarrow{\iota} = \frac{\overrightarrow{FF'}}{\|\overrightarrow{FF'}\|}$, et \overrightarrow{J} déduit de $\overrightarrow{\iota}$ par la rotation vectorielle d'angle $\frac{\pi}{2}$.

. On a F(-c, 0) et F'(c, 0), d'où :

$$\begin{split} MF + MF' &= 2a \iff \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a \\ &\iff 2a^2 - (x^2 + y^2 + c^2) = \sqrt{(x^2 + y^2 + c^2)^2 - 4c^2x^2} \\ &\iff \left\{ \begin{array}{l} 4a^4 + [x^2 + y^2 + c^2]^2 - 4a^2(x^2 + y^2 + c^2) = [x^2 + y^2 + c^2]^2 - 4c^2x^2 \\ x^2 + y^2 + c^2 \leqslant 2a^2 \end{array} \right. \\ &\iff \left\{ \begin{array}{l} x^2(a^2 - c^2) + y^2a^2 = a^2(a^2 - c^2) \\ x^2 + y^2 \leqslant 2a^2 - c^2 \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} \frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1 \\ x^2 + y^2 \leqslant a^2 + (a^2 - c^2) \end{array} \right. \end{split}$$

On a a > d/2 = c, donc $a^2 - c^2 > 0$, posons $b = \sqrt{a^2 - c^2}$, on doit avoir la relation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, si cette relation est vérifiée, il est clair que $x^2 + y^2 \le a^2 + b^2$ et par conséquent $MF + MF' = 2a \iff \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. D'après l'étude précédente, on a une ellipse de centre O, de foyer F, d'excentricité $e = \frac{c}{a}$, de directrice \mathfrak{D} d'équation $x = -\frac{a^2}{c}$.

`orème 7.9° orème 7.9° orème 7.9° orème

Soient F, F' deux points distincts du plan, soit $c = \frac{FF'}{2}$ et 0 < a < c, alors l'ensemble

$$\mathscr{C} = \{ M \in \mathscr{P} / |MF - MF'| = 2a \}$$

est une hyperbole de centre O = Mil[F; F'] et d'excentricité $e = \frac{c}{a}$ et de foyer F'.

Preuve: On choisit le même repère que précédemment :

$$M(x,y) \in \mathscr{C} \iff MF^2 + MF'^2 - 2MF.MF' = 4a^2$$

$$\iff (x+c)^2 + y^2 + (x-c)^2 + y^2 - 4a^2 = 2\sqrt{(x^2 + y^2 + c^2)^2 - 4x^2c^2}$$

$$\iff x^2 + y^2 + c^2 - 2a^2 = \sqrt{(x^2 + y^2 + c^2)^2 - 4x^2c^2}$$

$$\iff \left\{ (x^2 + y^2 + c^2)^2 + 4a^4 - 4a^2(x^2 + y^2 + c^2) = (x^2 + y^2 + c^2)^2 - 4x^2c^2 \right.$$

$$\iff \left\{ x^2(c^2 - a^2) - a^2y^2 = a^2(c^2 - a^2) \right.$$

$$\iff \left\{ x^2(c^2 - a^2) - a^2y^2 = a^2(c^2 - a^2) \right.$$

$$\iff \left\{ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right.$$

$$\implies \left\{ x^2 + y^2 \geqslant a^2 - b^2 \right.$$

$$\iff \left\{ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right.$$

$$\implies \left\{ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right.$$

En effet, cette équation entraı̂ne $x^2 \ge a^2$ et donc $x^2 + y^2 \ge a^2 \ge a^2 - b^2$. D'après l'étude précédente, on a une hyperbole de centre O, d'excentricité $e = \frac{c}{a}$, de foyer F', et de directrice $\mathfrak D$ d'équation $x = \frac{a^2}{c}$.

6) Définition algébrique

Soit (E) l'ensemble des points M(x, y) du plan vérifiant l'équation :

$$P(x,y) = ax^2 + bxy + cy^2 + dx + ey + f = 0 \text{ avec } (a,b,c) \neq (0,0,0).$$

DÉFINITION 7.11

Le nombre $\Delta = b^2 - 4ac$ est appelé **discriminant** de l'expression P(x, y).

Soit $\overrightarrow{u} = \cos(\theta)\overrightarrow{\iota} + \sin(\theta)\overrightarrow{\jmath}$ et $\overrightarrow{v} = -\sin(\theta)\overrightarrow{\iota} + \cos(\theta)\overrightarrow{\jmath}$, notons (x, y) les coordonnées de M dans le repère $\mathcal{R} = (O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ et (X, Y) les coordonnées dans le repère $\mathcal{R}' = (O, \overrightarrow{u}, \overrightarrow{v})$, on a alors les relations : $\begin{cases} x = X\cos(\theta) - Y\sin(\theta) \\ y = X\sin(\theta) + Y\cos(\theta) \end{cases}$. On en déduit que dans le repère \mathcal{R}' l'équation de (E) devient :

$$AX^{2} + BXY + CY^{2} + DX + EY + F = 0 \text{ avec} \begin{cases} A = a\cos^{2}(\theta) + c\sin^{2}(\theta) + b\sin(\theta)\cos(\theta) \\ B = (c - a)\sin(2\theta) + b\cos(2\theta) \\ C = a\sin^{2}(\theta) + c\cos^{2}(\theta) - b\sin(\theta)\cos(\theta) \end{cases}$$

On a alors:

$$B^{2} = a^{2} \sin^{2}(2\theta) + c^{2} \sin^{2}(2\theta) + b^{2} \cos^{2}(2\theta) - 2ac \sin^{2}(2\theta) - 2ab \sin(2\theta) \cos(2\theta) + 2bc \sin(2\theta) \cos(2\theta)$$

et

$$4AC = a^{2} \sin^{2}(2\theta) + c^{2} \sin^{2}(2\theta) - 2ab \sin(2\theta) \cos(2\theta) + 2bc \sin(2\theta) \cos(2\theta) + 4ac[\cos^{4}(\theta) + \sin^{4}(\theta)] - b^{2} \sin^{2}(2\theta)$$

on en déduit alors que $B^2 - 4AC = b^2 - 4ac[\cos^4(\theta) + \sin^4(\theta) + \frac{1}{2}\sin^2(2\theta)] = b^2 - 4ac$.

Remarques:

- Si on change \overrightarrow{v} en $-\overrightarrow{v}$ alors B est changé en -B et on a toujours $B^2 4AC = b^2 4ac$.
- On a A + C = a + c.
- Si A = B = C = 0 alors $b^2 = 4ac$ et a = -c ce qui entraîne a = b = c = 0. Par conséquent, puisque $(a, b, c) \neq (0, 0, 0)$, on a aussi $(A, B, C) \neq (0, 0, 0)$.

Un changement de repère orthonormé ne change pas le discriminant.

Étape 1 : élimination du terme croisé. Nous allons choisir θ de telle sorte que B=0 (réduction de l'équation):

- Si b = 0: il n'y a rien à faire, on prend $\theta = 0$.
- Si $b \neq 0$ et a = c: il suffit de prendre $\theta = \frac{\pi}{4} \pmod{\frac{\pi}{2}}$.
- Si $b \neq 0$ et $a \neq c$ alors il suffit de prendre $\theta = \frac{1}{2} \arctan\left(\frac{b}{a-c}\right)$.

Une fois ceci-fait, on a l'équation de (E) dans le repère \mathcal{R}'

$$AX^2 + CY^2 + DX + EY + f = 0.$$

Étape 2 : élimination des termes en *X* et en *Y* et conclusion.

– Si $AC \neq 0$ (i.e. si $\Delta \neq 0$) : alors l'équation devient :

$$A[X + \frac{D}{2A}]^2 + C[Y + \frac{E}{2C}]^2 + F' = 0$$

ou encore dans le repère $\mathcal{R}'' = (O', \overrightarrow{u}, \overrightarrow{v})$ avec $O'(-\frac{D}{2A}, -\frac{E}{2C})_{\mathcal{R}'}$:

$$A[X']^2 + C[Y']^2 + F' = 0.$$

d'où la conclusion:

- Si AC > 0, c'est à dire si $\Delta < 0$ [car ici $-4AC = \Delta$], alors l'ensemble (E) est **soit vide, soit une** ellipse [éventuellement un cercle].
- Si AC < 0, c'est à dire si $\Delta > 0$, alors l'ensemble (E) est soit une hyperbole, soit la réunion de deux droites sécantes [lorsque F' = 0].
- Supposons A = 0 [donc $C \neq 0$], c'est à dire $\Delta = 0$, alors l'équation devient $C[Y + \frac{E}{2C}]^2 + DX + F' = 0$, on en déduit que :
 - Si D = 0: alors l'ensemble (E) est soit vide, soit la réunion de deux droites parallèles.
 - Si $D \neq 0$: alors l'ensemble (E) est **une parabole** car on a $[Y + \frac{E}{2C}]^2 = 2p[X + \frac{F'}{D}]$ avec $p = -\frac{D}{2C}$.

V) **Exercices**

★Exercice 7.1

- a) Étudier la courbe paramétrée par : $x(t) = \cos(t)^3$ et $y(t) = \sin(t)^3$ (astroïde).
- b) Même question avec la courbe polaire $\rho(\theta) = 1 + \cos(\theta)$ (cardioïde).

★Exercice 7.2

Á l'aide d'un paramétrage bien choisi, étudier l'ensemble des points M(x, y) tels que :

a)
$$x^3 + 2xy + y^3 = 0$$
 (Folium de Descartes) b) $(x^2 + y^2)^3 = (x^2 - y^2)^2$

★Exercice 7.3

Un cercle roule sans glisser sur l'axe Ox, on fixe un point M sur ce cercle. Étudier la trajectoire du point M.

★Exercice 7.4

- a) Étudier la courbe paramétrée par $x(t) = \cos(t)^2$ et $y(t) = \cos(t)(1 + \sin(t))$.
- b) Á tout point M(t) de $C \setminus \{O\}$, on associe le point M(u) de C tel que les droites (OM(t))et (OM(u)) soient perpendiculaires. Déterminer (Γ) le lieu des milieux des segments [M(t), M(u)].

★Exercice 7.5

Soit r > 0, soit C le cercle de centre O et de rayon r. Pour tout $M \in C$, le cercle de centre M passant par O coupe l'axe Ox en deux points O et A (éventuellement confondus), et coupe l'axe Oy en deux points O et B (éventuellement confondus), on considère H le projeté orthogonal de O sur la droite (AB).

- a) Calculer les coordonnées cartésiennes de H en fonction de celles de M.
- b) Donner une représentation polaire du lieu des points *H* lorsque *M* décrit *C*. Étudier ce lieu.

★Exercice 7.6

Étudier les courbes paramétrées par :

Étudier les courbes paramétrées par : a)
$$x(t) = \frac{t^2}{1+t^2}$$
 et $y(t) = \frac{t^3}{1+t^2}$ b) $x(t) = \frac{1}{1+t} + \frac{1}{t}$ et $y(t) = \frac{1}{1-t} + \frac{1}{t}$ c) $\rho(\theta) = 1 + \tan(\frac{\theta}{2})$ d) $\rho(\theta) = \frac{\theta+1}{\theta-1}$

★Exercice 7.7

Déterminer la nature de la courbe d'équation cartésienne (dans un repère orthonormé du plan) : a) $x^2 - 2y^2 + x - 2y = 0$. b) $y^2 + 3x - 4y = 2$. c) $x^2 + xy + y^2 = 1$. d) $x^2 + \sqrt{3}xy + x = 2$.

Soient A et B deux points distincts du plan et I le milieu du segment [AB]. Déterminer l'ensemble des points M tels que $MI^2 = MA \times MB$.

★Exercice 7.9

Soit (H) une hyperbole équilatère, soient A, B, C trois points distincts sur (H). Montrer que l'orthocentre du triangle (ABC) est sur l'hyperbole.

★Exercice 7.10

- a) Étudier la courbe paramétrée par : $x(t) = \frac{1}{t^2 1}$ et $y(t) = \frac{t}{t^2 1}$.
- b) Montrer que cette courbe est une hyperbole privée d'un point.

★Exercice 7.11

Soit (E) une ellipse de foyers F et F', soit M un point de (E). Soient P et Q les deux points de (E)tels que F est sur la corde [M, P] et F' sur la corde [M, Q].

- a) À l'aide d'un paramètrage polaire, montrer que $\frac{1}{FM} + \frac{1}{FP} = \frac{1}{F'M} + \frac{1}{F'O} = \frac{2}{p}$, où p est le paramètre de(E).
- b) En déduire que la quantité $\frac{F'M}{F'O} + \frac{FM}{FP}$ est une constante.