Analiza szeregów czasowych - notowania giełdowe firm McDonald's oraz Starbucks

Alicja Hołowiecka, Matylda Jankowska, Marcin Dziadosz 23 12 2019

Spis treści

$\operatorname{Wst} olimits \operatorname{Ep} olimits$. 1
Wczytanie bibliotek	. 2
McDonald's	
Opis firmy	. 2
Wczytanie danych i rysunki	. 2
Wydzielanie trendu	. 3
Ruchoma średnia	. 3
Metoda wykładniczych wag ruchomej średniej	. 4
Dopasowanie wielomianu	. 6
Metoda różnicowa	. 6
Dopasowanie modelu liniowego	. 6
Drugiego stopnia	. 8
Trzeciego stopnia	. 9
Czwartego stopnia	. 12
Testy na resztach modelu	. 12
Jednorodność wariancji	. 12
Normalność	. 14
Autokorelacja	. 17
Stacjonarność	. 19
Arima	. 21
Holt - Winters	. 21
Starbucks	. 21
Opis firmy	. 21
Wczytanie danych	
Rysunek	
Dopasowanie wielomianu	. 25
Model liniowy	
Drugiego stopnia	. 27
Trzeciego stopnia	. 28
Ruchoma średnia	. 29
Metoda wykładniczych wag ruchomej średniej	
Testy na resztach modelu sześciennego	
Metoda różnicowa	
Stacjonarność	

Wstęp

W tym raporcie przeanalizujemy dwa szeregi czasowe: notowania firm McDonald's oraz Starbucks z okresu dwóch lat (od początku 2018 do końca 2019). Na potrzeby oceny w raporcie pojawia się nie tylko sama analiza, ale też wszystkie polecenia w języku R, jakich używaliśmy w jej celu.

Wczytanie bibliotek

Na początek wczytamy wszystkie potrzebne biblioteki. Biblioteka tseries przyda nam się m. in. do wczytania danych oraz wykonania testów na stacjonarność szeregu. Z pakietu randtests skorzystamy przy testach na losowość reszt. W bibliotece nortest znajduje się wiele testów na normalność. Dzięki paczce lmtest utworzymy modele wielomianowe różnego stopnia i zbadamy ich dopasowanie. W bibliotece forecast są m. in. funkcje dotyczące modeli ARIMA. Pakiet stargazer pozwoli nam estetycznie wyświetlać tabele z podsumowaniami.

```
library(tseries)
library(randtests)
library(nortest)
library(lmtest)
library(forecast)
library(stargazer)
library(kableExtra)
library(tidyverse)
library(tables)
```

McDonald's

Opis firmy

McDonald's to największa na świecie sieć restauracji szybkiej obsługi. Obejmuje ona ponad 30 tys. restauracji, każdego dnia obsługujących ponad 46 mln osób w 119 krajach. Wartość marki McDonald's szacuje się na 24,7 mld dolarów.

Wczytanie danych i rysunki

Dane pobieramy z yahoo finance za pomocą funkcji get.hist.quote i zamieniamy na typ numeryczny.

Wykonamy rysunek przedstawiający notowania firmy McDonald's od 01-01-2018 do 31-12-2019

```
plot(mcd, type = "l", xlab = "czas", ylab = "USD", main = "Notowania McDonald's")
```

Notowania McDonald's

Na rysunku w ciągu tych dwóch lat wyraźnie widać trend rosnący.

Wydzielanie trendu

Spróbujemy wydzielić część deterministyczną. Do tego celu posłużymy się metodami średnich ruchomych (prostą i wykładniczą).

Ruchoma średnia Wykorzystamy metody ruchomych średnich, aby wygładzić szereg i zaobserwować ogólne trendy. Metoda średniej ruchomej ma na celu zmniejszenie rozrzutu razy m+1.

W metodzie średniej ruchomej estymator części deterministycznej ma postać

$$\hat{f}(t) = \frac{1}{m+1} \sum_{k=0}^{m} x_{t-k}$$

Do wykonania wygładzonych wykresów napisaliśmy funkcję ruchoma, której argumentami są x - szereg czasowy, m - paramter metody średniej ruchomej, kolor - kolor, na jaki dorysujemy wygładzoną linię na wykresie.

```
ruchoma <- function(x, m, kolor){
  t <- length(x)
  f <- NULL
  for(i in (m+1):t){
    f[i] <- mean(x[(i-m):i])
  }
  tytul = paste("Średnia ruchoma rzędu ", m)
  plot(x, type = "l", main = tytul)</pre>
```

```
lines((m+1):t, f[(m+1):t], lwd = 2, col = kolor)
}
```

Narysujemy wykresy dla kilku parametrów m.

```
par(mfrow = c(2, 2))
ruchoma(mcd, 3, "red")
ruchoma(mcd, 10, "green")
ruchoma(mcd, 30, "blue")
ruchoma(mcd, 50, "pink")
```

Srednia ruchoma rzedu 3

Srednia ruchoma rzedu 10

Srednia ruchoma rzedu 30

Srednia ruchoma rzedu 50


```
par(mfrow = c(1, 1))
```

Jak widać, im większy parametr m przyjmiemy, tym bardziej wygładzony wykres uzyskujemy, ale też mniej dokładny.

Metoda wykładniczych wag ruchomej średniej W metodzie ruchomej średniej obserwacje starsze i nowsze mają taką samą wagę, dlatego ta metoda jest mało dokładna. Skorzystamy teraz z dokładniejszej metody wykładniczych wag ruchomej średniej.

W tej metodzie estymator części deterministycznej ma postać:

$$\hat{f}(t) = \frac{1 - \eta}{1 - \eta^t} \sum_{k=0}^{t-1} \eta^k x_{t-k}$$

gdzie $\eta \in (0,1)$

Skorzystamy z postaci rekurencyjnej:

$$\hat{f}(t) = \frac{1 - \eta}{1 - \eta^t} \left[x_t + \eta \frac{1 - \eta^{t-1}}{1 - \eta} \hat{f}(t - 1) \right]$$

```
wykladnicza <- function(x, mi, kolor){
    f <- NULL
    f[1] <- x[1]

for (i in 2:length(x)){
        f[i] <- (1-mi)/(1-mi^i)*(x[i]+mi*(1-mi^(i-1))/(1-mi)*f[i-1])
    }

    tytul = paste("średnia ruchoma z wagami wykładniczymi z parametrem ", mi)
    plot(x, type = "1", main = tytul)
    lines(1:length(x), f, lwd = 2, col = kolor)
}

par(mfrow = c(2, 2))
    wykladnicza(mcd, 0.2, "red")
    wykladnicza(mcd, 0.5, "green")
    wykladnicza(mcd, 0.7, "blue")
    wykladnicza(mcd, 0.9, "pink")</pre>
```

ruchoma z wagami wykladniczymi z para ruchoma z wagami wykladniczymi z para

ruchoma z wagami wykladniczymi z para ruchoma z wagami wykladniczymi z para


```
par(mfrow = c(1, 1))
```

Podobnie jak w przypadku prostej metody średniej ruchomej - im większy parametr η , tym bardziej wygładzony wykres, ale i mniejsza dokładność. Jednakże, dokładność jest i tak większa niż w przypadku prostej metody

ruchomej średniej.

Dopasowanie wielomianu

Metoda różnicowa Za pomocą metody różnicowej sprawdzimy, jaki stopień wielomianu byłby najbardziej odpowiedni.

```
par(mfrow = c(2, 3))
for(i in 1:6){
plot(diff(mcd, differences = i), type = "l")
abline(h = 0)}
```



```
par(mfrow=c(1,1))
```

Spróbujemy do danych dopasować wielomian stopnia 1, 2, 3 i 4.

```
t <- 1:length(mcd)
```

```
mod1 <- lm(mcd~t)

stargazer(mod1, header = F)</pre>
```

Dopasowanie modelu liniowego Zarówno wyraz wolny, jak i współczynnik kierunkowy są istotne statystycznie. R^2 wynosi około 74%.

```
par(mfrow = c(1, 2))
plot(mcd, type = "l", main = "Model liniowy", xlab = "czas", ylab = "USD")
```

Tablica 1:

	Dependent variable:
	mcd
t	0.116***
	(0.003)
Constant	153.029***
	(0.885)
Observations	502
\mathbb{R}^2	0.743
Adjusted R ²	0.742
Residual Std. Error	9.905 (df = 500)
F Statistic	1,442.546**** (df = 1; 500)
Note:	*p<0.1; **p<0.05; ***p<0.

Model liniowy

Reszty modelu liniowego


```
par(mfrow = c(1, 1))
```

Drugiego stopnia Teraz stworzymy model wielomianowy drugiego stopnia.

```
mod2 <- lm(mcd~t+I(t^2))
stargazer(mod2, header = F)</pre>
```

Tablica 2:

	Dependent variable:
	mcd
t	0.081***
	(0.012)
I(t^2)	0.0001***
	(0.00002)
Constant	155.975***
	(1.321)
Observations	502
\mathbb{R}^2	0.747
Adjusted R ²	0.746
Residual Std. Error	9.828 (df = 499)
F Statistic	$737.143^{***} (df = 2; 499)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Wszystkie współczynniki są istotne statystycznie. R^2 wynosi około 75%, a więc zmieniło się bardzo nieznacznie.

Model wielomianowy drugiego stopnia

Reszty modelu wielomianowego drugiego stopnia


```
par(mfrow = c(1, 1))
```

Model kwadratowy zachowuje się bardzo podobnie jak model liniowy.

```
mod3 <- lm(mcd~t+I(t^2)+I(t^3))
stargazer(mod3, header = F)</pre>
```

Trzeciego stopnia W modelu wielomianowym trzeciego stopnia wszystkie współczynniki są istotne statystycznie. R^2 wynosi 90%, a więc znacząco się poprawił w stosunku do poprzednich dwóch modeli.

Tablica 3:

	$Dependent\ variable:$
	mcd
t	-0.408***
	(0.019)
I(t^2)	0.002***
	(0.0001)
I(t^3)	-0.00000***
	(0.00000)
Constant	176.570***
	(1.096)
bservations	502
\mathbb{Z}^2	0.903
djusted R^2	0.902
tesidual Std. Error	6.094 (df = 498)
Statistic	$1,544.632^{***} \text{ (df} = 3; 49)$
Tote:	*p<0.1; **p<0.05; ***p<

Reszty modelu wielomianowego


```
par(mfrow = c(1, 1))
```

Widać, że reszty modelu mają mniejszy rozrzut niż poprzednio - teraz mamy skalę od -15 do 15, a wcześniej było od -20 do 20.

```
mod4 <- lm(mcd~t+I(t^2)+I(t^3)+I(t^4))
stargazer(mod4, header = F)</pre>
```

Tablica 4:

	Dependent variable:
	mcd
t	-0.180***
	(0.036)
I(t^2)	0.0005
,	(0.0003)
I(t^3)	0.00000***
(* -)	(0.00000)
I(t^4)	-0.000***
	(0.000)
Constant	170.792***
	(1.309)
Observations	502
\mathbb{R}^2	0.912
Adjusted \mathbb{R}^2	0.912
Residual Std. Error	5.798 (df = 497)
F Statistic	1,293.328*** (df = 4; 497)
Note:	*p<0.1; **p<0.05; ***p<0.01

Czwartego stopnia

par(mfrow=c(1,1))

W modelu wielomianowym czwartego stopnia współczynnik przy t^3 jest nieistotny statystycznie, ale nie możemy go usunąć, ponieważ efekt wyższego rzędu (t^4) jest istotny. R^2 wynosi około 91%, więc niewiele się różni od modelu wielomianowego 3 stopnia. Reszty także znajdują się w podobnym przedziale jak w poprzednim modelu. Model z t^4 niewiele się różni od tego z t^3 , dlatego do dalszych badań wykorzystamy model wielomianowy 3 stopnia.

Testy na resztach modelu

Do danych dobraliśmy wcześniej model wielomianowy trzeciego stopnia. Teraz sprawdzimy, czy reszty tego modelu spełniaja założenia:

- losowość
- jednorodność wariancji
- normalność

Jednorodność wariancji Aby zbadać czy jednorodność reszt posłużymy się kilkoma popularnymi testami.

Test Breuscha-Pagana

 H_0 : jednorodność wariancji reszt.

 H_1 : wariancja reszt zależy od zmiennych objaśniających w modelu.

bptest(mod3)

##

```
## studentized Breusch-Pagan test
##
## data: mod3
## BP = 27.565, df = 3, p-value = 4.483e-06
pv1 <- bptest(mod3)$p.value</pre>
```

P-value wynosi 0.0000044826, zatem Wug testu Breuscha-Pagana należałoby odrzucić hipotezę o jednorodności wariancji reszt.

Test Goldfelda-Quandta

Weryfikacja hipotezy polega na podziale danych na dwie grupy i sprawdzeniu, czy w obu wariancja ma taką samą wartość.

 H_0 : wariancja reszt jest równa w obu grupach.

 H_1 : wariancja reszt różni się w obu grupach.

```
gqtest(mod3, order.by = ~fitted(mod3))
```

```
##
## Goldfeld-Quandt test
##
## data: mod3
## GQ = 0.94266, df1 = 247, df2 = 247, p-value = 0.6785
## alternative hypothesis: variance increases from segment 1 to 2
pv2 <- gqtest(mod3, order.by = ~fitted(mod3))$p.value</pre>
```

P-value wynosi 0.678, zatem nie ma podstaw do odrzucenia hipotezy o równości wariancji.

Test Harrisona-McCabe'a

Sprawdza hipotezę podobną do tej, którą weryfikuje test Goldfelda-Quandta; jednak w tym przypadku porównuje się zależność wariancji reszt dla całości obserwacji i wybranego kwantyla (w tym przypadku rzędu 0.5).

 H_0 : wariancja reszt jest równa w porównywanych grupach.

 H_1 : wariancja reszt różni się się w porównywanych grupach.

```
hmctest(mod3, order.by = ~fitted(mod3))
```

```
##
## Harrison-McCabe test
##
## data: mod3
## HMC = 0.39433, p-value = 0.001
pv3 <- hmctest(mod3, order.by = ~fitted(mod3))$p.value</pre>
```

P-value wynosi jest praktycznie równe 0, należy przyjąć hipotezę alternatywną, czyli wariancja reszt modelu ulega zmianie.

Biorąc pod uwagę uzyskane wyniki, należy przyjąć, że reszty z modelu trzeciego stopnia nie są jednorodne.

```
plot(density(mod3$residuals), main = "Wykres gęstości rozkładu reszt w porównaniu z rozkładem normalnym
curve(dnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd = 2)
```

Wykres gestosci rozkladu reszt w porównaniu z rozkladem normalny

Normalność

```
qqnorm(mod3$residuals, main = "Wykres z linia kwantylowa")
qqline(mod3$residuals, col=2, lwd = 3)
```

Wykres z linia kwantylowa

plot(ecdf(mod3\$residuals), main = "Dystrybuanta empiryczna w porównaniu z rozkładem normalnym")
curve(pnorm(x, 0, sd(mod3\$residuals)), add = T, col = 2, lwd =2)

Dystrybuanta empiryczna w porównaniu z rozkladem normalnym


```
ks.test(x = mod3$residuals, y = "pnorm", mean = 0, sd = sd(mod3$residuals))
##
##
    One-sample Kolmogorov-Smirnov test
##
## data: mod3$residuals
## D = 0.051812, p-value = 0.135
## alternative hypothesis: two-sided
lillie.test(mod3$residuals)
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
##
## data: mod3$residuals
## D = 0.051812, p-value = 0.002624
shapiro.test(mod3$residuals)
##
    Shapiro-Wilk normality test
##
##
## data: mod3$residuals
## W = 0.98969, p-value = 0.001356
ad.test(mod3$residuals)
##
    Anderson-Darling normality test
```

```
##
## data: mod3$residuals
## A = 1.3485, p-value = 0.001691
```

Z testów Kołmogorowa-Lillieforsa, Shapiro-Wilka oraz Andersona-Darlinga wynika, że musimy odrzucić hipotezę o normalności rozkładu reszt (dla testu Kołmogorowa-Smirnova nie było podstaw do odrzucenia, p-value około 0.14). Jeżeli chodzi o wykresy, to brak normalności najbardziej widać na wykresie gęstości. Na drugim wykresie (z linią kwantylową) reszty najbardziej odstają od rozkładu normalnego na początku i na końcu. Dystrybuanta empiryczna jest zbliżona do dystrybuanty rozkładu normalnego.

Autokorelacja

• Test serii

 H_0 : losowość

 H_1 : brak losowości

```
runs.test(mod3$residuals, threshold = 0, plot = T)
```



```
##
## Runs Test
##
## data: mod3$residuals
## statistic = -18.556, runs = 44, n1 = 229, n2 = 273, n = 502, p-value <
## 2.2e-16
## alternative hypothesis: nonrandomness</pre>
```

P-value bliskie zero, odrzucamy hipotezę o losowości reszt.

• Test Durbina-Watsona

Weryfikuje hipotezę o niezależności reszt, sprawdzając, czy istotna jest autokorelacja reszt rzędu pierwszego.

```
dwtest(mod3, order.by = ~t)
##
##
    Durbin-Watson test
##
## data: mod3
## DW = 0.11243, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
  • Test Breuscha-Godfreya
bgtest(mod3, order.by = ~t, order = 3)
    Breusch-Godfrey test for serial correlation of order up to 3
##
##
## data: mod3
## LM test = 447.34, df = 3, p-value < 2.2e-16
  • Wykres ACF (funkcji autokorelacji)
acf(mod3$residuals, main = "Wykres funkcji autokorelacji")
```

Wykres funkcji autokorelacji

Oba testy wskazują, że istnieje seryjna korelacja błędów. Również z wykresu funkcji acf możemy wyciągnąć te same wnioski. Dla opóźnień do rzędu 25 obserwacje nie mieszczą się w niebieskich przerywanych liniach wnioskujemy, że pojawia się autokorelacja.

• Wykres PACF (cząstkowej funkcji autokorelacji)

pacf(mod3\$residuals, main = "Cząstkowa funkcja autokorelacji")

Czastkowa funkcja autokorelacji

Wykres PACF jako jedyny nie wykrywa autokorelacji.

• Test Ljunga-Boxa

 H_0 : niezależność

 H_1 : brak niezależności

```
Box.test(mod3$residuals, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: mod3$residuals
## X-squared = 449.38, df = 1, p-value < 2.2e-16</pre>
```

P-value jest bardzo bliskie zero, odrzucamy hipotezę zerową, reszty nie są niezależne.

Ostatecznie stwierdzamy, że zachodzi autokorelacja reszt.

Stacjonarność

Zbadamy, czy szereg jest stacjonarny albo TS (trend stationary).

Skorzystamy z dwóch testów : - adf (Dickey-Fullera)

 H_0 : niestacjonarność

```
H_1: stacjonarność
  • kpss (Kwiatkowskiego-Phillipsa-Schmidta-Shina)
H_0: stacjonarność
H_1: niestacjonarność
adf.test(mcd)
##
##
   Augmented Dickey-Fuller Test
##
## data: mcd
## Dickey-Fuller = -2.2351, Lag order = 7, p-value = 0.4788
## alternative hypothesis: stationary
kpss.test(mcd)
  KPSS Test for Level Stationarity
##
##
## data: mcd
## KPSS Level = 7.0755, Truncation lag parameter = 5, p-value = 0.01
kpss.test(mcd, null = "Trend")
##
   KPSS Test for Trend Stationarity
##
##
## data: mcd
## KPSS Trend = 0.66563, Truncation lag parameter = 5, p-value = 0.01
Po wykonaniu testów otrzymujemy wniosek, że szereg nie jest stacjonarny, ani stacjonarny wobec trendu.
adf.test(diff(mcd, differences = 1)) #stacj
##
##
   Augmented Dickey-Fuller Test
##
## data: diff(mcd, differences = 1)
## Dickey-Fuller = -8.574, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss.test(diff(mcd, differences = 1)) #stacj
##
##
  KPSS Test for Level Stationarity
## data: diff(mcd, differences = 1)
## KPSS Level = 0.12182, Truncation lag parameter = 5, p-value = 0.1
kpss.test(diff(mcd, differences = 1), null = "Trend") #stacj
##
   KPSS Test for Trend Stationarity
## data: diff(mcd, differences = 1)
## KPSS Trend = 0.1159, Truncation lag parameter = 5, p-value = 0.1
Po zróżnicowaniu 1 raz, szereg jest zarówno stacjonarny, jak i TS.
```

Arima

ARIMA JEST JESZCZE DO POPRAWKI!!!!!!

Dobra, ogólnie tutaj nie wiem jak to zrobić, czy nasz w końcu ma tę sezonowość? Bo jeśli ma, to SARIMA podobno, a jeśli nie to ARIMA. Plus, ten szereg chyba jest niestacjonarny, nie? To też przecież musi być stacjonarny i ja nie wiem już nic w końcu :((()))

```
## Series: mcd
## ARIMA(0,1,0)
##
## sigma^2 estimated as 4.176: log likelihood=-1068.94
## AIC=2139.87 AICc=2139.88 BIC=2144.09
#Arima(reszty, order = c(12,0,2)) #tu AIC jakoś 1842, jak sie leci z p do gory, to coraz lepiej, ale te
```

Holt - Winters

auto.arima(mcd)

```
#mcd_hw <- HoltWinters(mcd_sez, seasonal = "additive")
#pred <- predict(mcd_hw, n.ahead = 4*12, prediction.interval = T, level = 0.9)
#plot(mcd_hw, pred)</pre>
```

Predykcja za pomocą metody Holta-Wintersa. Testując dla różnej liczby okresów naprzód, widzimy, że przedział ufności drastycznie się rozszerza im większe n.ahead.

Starbucks

Opis firmy

Starbucks Corporation – największa na świecie sieć kawiarni. Została założona 30 marca 1971 w Seattle w stanie Waszyngton.

Kawa ze Starbucks jest znana z tego, że pojawiła się jako błąd w jednym z odcinków Gry o tron.

Kawiarnia jest znana z tego, że każdy kubek jest podpisany imieniem zamawiającego. Urocze!

Rysunek 1: Kawa ze Starbucks

Rysunek 2: Starbucks jest tak popularny, że piją go nawet w fantasy, które dzieje się w średniowieczu!

Rysunek 3: hehe

Wczytanie danych

Rysunek

```
plot(sbux, type = "1", xlab = "czas", ylab = "USD", main = "Notowania Starbucks")
```

Notowania Starbucks

Widać trend rosnący.

Dopasowanie wielomianu

```
t <- 1:length(sbux)

mod1 <- lm(sbux~t)</pre>
```

Model liniowy

summary(mod1)

##

```
## Call:
## lm(formula = sbux ~ t)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
  -10.1924 -5.1586 -0.6162
                                4.8674
                                       17.3536
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.756892
                           0.569068
                                      83.92
                                              <2e-16 ***
                0.086293
                           0.001961
                                      44.02
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.366 on 500 degrees of freedom
## Multiple R-squared: 0.7949, Adjusted R-squared: 0.7944
## F-statistic: 1937 on 1 and 500 DF, p-value: < 2.2e-16
Wszystkie współczynniki są istotne statystycznie. R^2 wynosi około 79%.
par(mfrow = c(1, 2))
plot(sbux, type = "1", main = "Model liniowy", xlab = "czas", ylab = "USD")
abline(mod1, col = "red")
plot(mod1$residuals, type = "l", main = "Reszty modelu liniowego", xlab = "czas", ylab = "reszty")
abline(h=0)
```

Model liniowy

Reszty modelu liniowego


```
par(mfrow = c(1, 1))
```

Na wykresie widać, że reszty mają rozrzut mniej więcej od -10 do 15. Model nie jest zbyt dokładny - na początku przeszacowuje wartości, potem zdecydowanie niedoszacowuje, na koniec znowu przeszacowuje.

```
mod2 <- lm(sbux~t+I(t^2))
summary(mod2)</pre>
```

Drugiego stopnia

```
##
## Call:
## lm(formula = sbux ~ t + I(t^2))
##
## Residuals:
##
       Min
                 1Q
                      Median
                                           Max
                                   30
## -11.0010 -4.7965
                      0.7868
                               3.2228 17.4555
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.396e+01 7.717e-01 69.924
                                             <2e-16 ***
              1.245e-02 7.085e-03
                                             0.0795 .
## t
                                    1.757
## I(t^2)
              1.468e-04 1.364e-05 10.763
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.74 on 499 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8328
## F-statistic: 1249 on 2 and 499 DF, p-value: < 2.2e-16
```

Współczynnik przy t jest nieistotny statystycznie (p-value około 0.08, więc decyzja niejednoznaczna), ale R^2 poprawiło się - wynosi teraz około 83%.

```
par(mfrow = c(1, 2))
plot(sbux, type = "1", main = "Model kwadratowy", xlab = "czas", ylab = "USD")
lines(t, mod2\fitted.values, col = "red")
plot(mod2\fresiduals, type = "1", main = "Reszty modelu kwadratowego", xlab = "czas", ylab = "reszty")
abline(h = 0)
```

Model kwadratowy

Reszty modelu kwadratowego


```
par(mfrow = c(1, 1))
```

Wykres reszt jest bardzo podobny jak w przypadku modelu liniowego.

```
mod3 <- lm(sbux~t+I(t^2)+I(t^3))
summary(mod3)</pre>
```

Trzeciego stopnia

```
##
## Call:
## lm(formula = sbux ~ t + I(t^2) + I(t^3))
##
## Residuals:
##
     Min
             1Q Median
                           ЗQ
##
  -7.380 -2.608 -1.257 3.041 13.053
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
               6.526e+01 6.978e-01
                                      93.53
                                              <2e-16 ***
## (Intercept)
## t
              -2.559e-01
                          1.200e-02
                                     -21.32
                                              <2e-16 ***
## I(t^2)
               1.479e-03 5.542e-05
                                      26.69
                                              <2e-16 ***
## I(t^3)
               -1.766e-06 7.243e-08
                                              <2e-16 ***
                                     -24.38
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 3.879 on 498 degrees of freedom ## Multiple R-squared: 0.9241, Adjusted R-squared: 0.9237 ## F-statistic: 2021 on 3 and 498 DF, p-value: < 2.2e-16 Wszystkie współczynniki są istotne statystycznie, a R^2 znów wzrosło - wynosi około 92% (znaczna poprawa).
```

```
par(mfrow = c(1, 2))
plot(sbux, type = "l", main = "Model sześcienny", xlab = "czas", ylab = "USD")
lines(t, mod3$fitted.values, col = "red")
plot(mod3$residuals, type = "l", main = "Reszty modelu sześciennego", xlab = "czas", ylab = "reszty")
abline(h= 0)
```

Model szescienny

Reszty modelu szesciennego


```
par(mfrow=c(1,1))
```

Reszty modelu sześciennego mają mniejszy rozrzut niż w poprzednich przypadkach (od około -5 do 10).

Ruchoma średnia

```
ruchoma(sbux, 3, "red")
```

Srednia ruchoma rzedu 3

ruchoma(sbux, 10, "green")

Srednia ruchoma rzedu 10

ruchoma(sbux, 30, "blue")

Srednia ruchoma rzedu 30

Metoda wykładniczych wag ruchomej średniej

wykladnicza(sbux, 0.2, "red")

wykladnicza(sbux, 0.5, "green")

wykladnicza(sbux, 0.7, "blue")

wykladnicza(sbux, 0.9, "yellow")

Testy na resztach modelu sześciennego

runs.test(mod3\$residuals, threshold = 0, plot = T)


```
##
## Runs Test
##
## data: mod3$residuals
## statistic = -20.806, runs = 18, n1 = 187, n2 = 315, n = 502, p-value <
## 2.2e-16
## alternative hypothesis: nonrandomness</pre>
```

P-value jest bliskie 0, odrzucamy hipotezę zerową o losowości reszt

Wykresy normalności

```
plot(density(mod3$residuals))
curve(dnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd = 2)
```

density.default(x = mod3\$residuals)

Wykres gęstości empirycznej znacząco różni się od gęstości rozkładu normalnego. Bardzo znacząco.

```
qqnorm(mod3$residuals)
qqline(mod3$residuals, col=2, lwd = 3)
```

Normal Q-Q Plot

Tutaj także wyraźne odchyłki.

```
plot(ecdf(mod3$residuals))
curve(pnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd =2)
```

ecdf(mod3\$residuals)

Nawet na dystrybuancie widać, że rozkład normalny wygląda inaczej.

```
ks.test(x = mod3$residuals, y = "pnorm", mean = 0, sd = sd(mod3$residuals))
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: mod3$residuals
## D = 0.14346, p-value = 2.127e-09
## alternative hypothesis: two-sided
lillie.test(mod3$residuals)
##
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: mod3$residuals
## D = 0.14346, p-value < 2.2e-16
shapiro.test(mod3$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: mod3$residuals
## W = 0.93719, p-value = 1.043e-13
ad.test(mod3$residuals)
```

```
##
## Anderson-Darling normality test
##
## data: mod3$residuals
## A = 12.438, p-value < 2.2e-16</pre>
```

W każdym z testów p-value jest bardzo bliskie zero, stanowczo odrzucamy hipotezę o rozkładzie normalnym.

Badanie autokorelacji

```
acf(mod3$residuals)
```

Series mod3\$residuals

Słupki nie mieszczą się w niebieskim "pasku", zatem prawdopodobnie ma miejsce autokorelacja.

Metoda różnicowa

```
par(mfrow = c(3, 3))
for(i in 1:9){
plot(diff(sbux, differences = i), type = "l")
abline(h = 0)}
```


Z wykresów widać, że największa stabilizacja jest przy różnicowaniu rzędu 2 lub 3, potem rozrzut zaczyna się znacząco zwiększać.

Stacjonarność

```
adf.test(sbux) #niest
##
##
    Augmented Dickey-Fuller Test
##
## data: sbux
## Dickey-Fuller = -2.1662, Lag order = 7, p-value = 0.5079
## alternative hypothesis: stationary
kpss.test(sbux) #niest
##
    KPSS Test for Level Stationarity
##
##
## data: sbux
## KPSS Level = 7.4101, Truncation lag parameter = 5, p-value = 0.01
kpss.test(sbux, null = "Trend") #niest
##
##
    KPSS Test for Trend Stationarity
```

```
##
## data: sbux
## KPSS Trend = 1.0249, Truncation lag parameter = 5, p-value = 0.01
Szereg nie jest ani stacjonarny ani TS.
adf.test(diff(sbux, differences = 1)) #st
##
## Augmented Dickey-Fuller Test
##
## data: diff(sbux, differences = 1)
## Dickey-Fuller = -7.8439, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss.test(diff(sbux, differences = 1)) #st
##
## KPSS Test for Level Stationarity
##
## data: diff(sbux, differences = 1)
## KPSS Level = 0.15287, Truncation lag parameter = 5, p-value = 0.1
kpss.test(diff(sbux, differences = 1), null = "Trend") #st
##
## KPSS Test for Trend Stationarity
## data: diff(sbux, differences = 1)
## KPSS Trend = 0.11762, Truncation lag parameter = 5, p-value = 0.1
Po zróżnicowaniu rzędu 1 szereg jest zarówno stacjonarny jak i TS.
auto.arima(sbux)
## Series: sbux
## ARIMA(0,1,0)
##
## sigma^2 estimated as 0.8884: log likelihood=-681.25
## AIC=1364.51
                AICc=1364.52 BIC=1368.73
```