Table 1 Glossary of variables used in the generic case, "tank2" (skirt-supported propellant tank) (This is part of the tank2.DEF file, created automatically by the GENOPT processor, GENTEXT, with use of information, variable names and one-line definitions provided by the GENOPT user.)

C-					======					
C –	ARRAY	NUMBEF			PROMPT					
C	?	(ROWS,C		ROLE	NUMBER	NAME		DEFINITION OF VARIABLE		
C	•	(ROWD, C	,010,		tank2.PR			DEFINITION OF VARIABLE		
	C=====================================									
C	n	(0,	0)	2	10	GRAV		acceleration of gravity		
C	n	(0,	0)	2	20	DIAVEH		diameter of launch vehicle		
C	n	(0,	0)	2	30	AFTDIA		diameter of the aft dome of the tank		
С	n	Ò,	0)	2	35	AFTHI		height of the aft dome of the tank		
С	n	Ò,	o)	2	40	FWDDIA		diameter of the forward dome of the tank		
С	n	Ò,	o)	2	45	FWDHI		height of the forward dome of the tank		
С	n	(0,	0)	2	50	FLTANK		axial dist. from aft dome apex to fwd dome apex		
C	n	(0,	0)	2	55	ZAPEX		global axial coordinate of the aft dome apex		
C	n	(0,	0)	2	60	DENPRP	=	weight density of the propellant		
С	n	(0,	0)	2	65	ZCG	=	global axial coordinate of the tank cg		
С	n	(0,	0)	1	70	THKAFT	=	thickness of the tank aft dome skin		
С	n	(0,	0)	1	75	THKMID	=	thickness of the tank cylinder skin		
С	n	(0,	0)	1	80	THKFWD	=	thickness of the forward tank dome skin		
С	n	(0,	0)	1	90	STRSPC	=	spacing of the tank orthogrid stringers		
С	n	(0,	0)	1	95	RNGSPC	=	spacing of the tank orthogrid rings		
С	n	(0,	0)	1	100	STRTHK	=	thickness of the tank orthogrid stringers		
C	n	(0,	0)	1	105	STRHI	=	height of the tank orthogrid stringers		
C	n	(0,	0)	1	110	RNGTHK	=	thickness of the tank orthogrid rings		
C	n	(0,	0)	1	115	RNGHI	=	height of the tank orthogrid rings		
C	n	Ò,	0)	2	125	ETANK		Young's modulus of the cold tank material		
С	n	(0,	0)	2	130	NUTANK	=	Poisson's ratio of the tank material		
С	n	Ò,	0)	2	135	DENTNK	=	mass density of the tank material		
С	n	(0,	0)	2	140	ALTNK	=	coef.thermal expansion of tank material		
С	n	(0,	0)	2	150	IAXIS		tank is vertical (1) or horizontal (2)		
C	n	(0,	0)	2	160	IZTANK		skirt support ring number in ZTANK(IZTANK)		
С	У	(2,	0)	1	165	ZTANK		global axial coordinate of tank support ring		
С	У	(2,	0)	1	170	ZGRND		global axial coordinate of "ground"		
С	У	(2,	0)	2	180	RNGTYP		propellant tank reinforcement type		
С	n	Ò,	0)	2	190	IDUBAXL		propellant tank reinforcement type number in		
DU	BAXL(II	•	,							
С	у`	(2,	0)	1	195	DUBAXL	=	axial length of the propellant tank doubler		
С	У	(2,	0)	1	200	DUBTHK		max.thickness of the propellant tank doubler		
С	У	(2,	0)	1	210	TRNGTH		thickness of the tank reinforcement ring		
С	У	(2,	0)	1	215	TRNGHI	=	height of the tank reinforcement ring		
С	У	(2,	o j	2	220	TRNGE		hoop modulus of the tank ring		
С	У	· 2,	o j	2	225	ALRNGT		coef.of thermal expansion of the tank ring		
С	n	Ò,	0)	2	235	ISKRTYP		skirt type number in SKRTYP(ISKRTYP)		
С	У	(2,	o)	2	240	SKRTYP		skirt type index		
С	У	(2,	0)	1	250	LNGTNK1		tank-end length of one-layered skirt part		
C	У	(2,	0)	1	255	THKTNK1		tank-end thickness of tapered skirt part		
C	У	(2,	0)	1	260	LNGTNK2		tank-end length of tapered prongs		
C	У	(2,	0)	1	265	THKTNK2		tank-end thickness of one tapered prong		
C	У	(2,	0)	1	270	LNGVEH1		"ground" end length of one-layered skirt part		
C	У	(2,	0)	1	275	THKVEH1		"ground"-end thickness of tapered skirt part		
C	У	(2,	0)	1	280	LNGVEH2		"ground"-end length of tapered prongs		
C	У	(2,	0)	1	285	THKVEH2		"ground"-end thickness of one tapered prong		
C	У	(2,	0)	2	300	WALTYP		type of wall constructions in skirt type SKRTYP		
C	n n	(0,	0)	2	310	ITHICK		thickness index in THICK(ITHICK)		
C	У	(15,	0)	1	315	THICK		thickness of a lamina		
_	1	, 10/	٠,	-	-10					

```
320
                                    ANGLE
                                             = layup angle
     У
            15,
                  0)
                              325
                                    MATTYP
                                             = Material type
     У
         (
С
             0,
                  0)
                              335
                                    JLAYTYP = wall type number in LAYTYP(ILAYTYP, JLAYTYP)
         (
            0,
                  0)
                        2
С
                                    ILAYTYP = layer number in LAYTYP(ILAYTYP, JLAYTYP)
                              340
    n
            90,
                                    LAYTYP = layer type index
С
                  2)
                        2
                              345
     У
                                    IE1
                                             = material type in E1(IE1)
    n
             Ο,
                  0)
                        2
                              355
                              360
                                             = modulus in the fiber direction
С
                        2
             2,
                  0)
                                    E1
    У
                                    E1
E2
G12
NU
С
                              365
                                             = modulus transverse to fibers
                 0)
                        2
    У
            2,
           2,
                                             = in-plane shear modulus
                 0)
                        2
                              370
    У
                        2
                              375
                                             = small Poisson's ratio
           2,
                  0)
    У
                                    G13
С
                              380
                                             = x-z out-of-plane shear modulus
           2,
                 0)
                        2
    У
С
                       2
                              385
                                    G23
                                             = y-z out-of-plane shear modulus
           2,
                 0)
                                    ALPHA1
           2,
                 0)
С
                       2
                              390
                                             = coef.of thermal expansion along fibers
    У
С
           2,
                 0)
                        2
                              395
                                             = coef.of thermal expan.transverse to fibers
                                    ALPHA2
    У
                                    ALPHA2
TEMTUR
           2,
                                             = curing delta temperature (positive)
    У
        (
                 0)
                        2
                              400
                                    COND1
COND2
                                             = conductivity along the fibers
С
                             405
                 0)
                        2
    У
            2,
                 0)
С
            2,
                        2
                             410
                                             = conductivity transverse to fibers
     У
                  0)
                                             = weight density of the material
                        2
                          415
                                    DENSTY
    У
             2,
             Ο,
                  0)
                        2 425
                                    WGT
                                             = objective=WGT*(empty tank mass) +(1-
WGT) * (conductance)
                        2
             0,
                  0)
                             430
                                    TNKNRM
                                             = normalizing empty tank mass
С
     n
                                    CONNRM
                                             = normalizing total skirt conductance
С
             Ο,
                  0)
                        2
                              435
     n
С
     n
             0,
                  0)
                        2
                              445
                                    IPHASE
                                             = IPHASE=1=launch phase; IPHASE=2=orbital phase
         (
                                    NCASES
                                             = Number of load cases (number of environments)
С
     n
             0,
                  0)
                        2
                              455
PRESS (NCASES)
                       3 460
3 465
3 470
3 475
                                             = propellant tank ullage pressure
            20,
                  0)
                                    PRESS
         (
    У
            20,
                  0)
                                    GAXIAL
                                             = quasi-static axial q-loading
    У
С
                                    GLATRL
                                             = quasi-static lateral g-loading
        (20,
                  0)
    У
       ( 20,

( 0, 0) 2

( 20, 4) 4 4 4 6

( 20, 4) 6 500 I

( 0, 0) 2 510

( 20, 6) 4 515

( 20, 6) 6 525

( 20, 6) 6 525

( 20, 6) 4 530

20 6) 5 535

6 540

550
        (20,
                 0)
                                    TNKCOOL = propellant tank cool-down from cryogen
С
                                    JFREQ
                                             = vibration mode type in FREQ(NCASES, JFREQ)
С
    n
С
                                             = free vibration frequency (cps)
    У
                                             = minimum allowable frequency (cps)
    У
                                    FREQA
                                    FREQF
С
                                             = factor of safety for frequency
    У
С
                                    JSTRES1 = stress component number in STRES1(NCASES, JSTRES1)
    n
С
                                    STRES1 = maximum stress in material 1
    У
                                    STRES1A = maximum allowable stress in material 1
    У
С
                                    STRES1F = factor of safety for stress, matl 1 \,
    У
С
                                    STRES2 = maximum stress in material 2
    У
                                    STRES2A = maximum allowable stress in material 2

STRES2F = factor of safety for stress, matl 2

JSHLBUK = skirt number (1 for aft skirt) in
С
    У
     У
С
                              550
     n
            0,
                  0)
                        2
SHLBUK (NCASES, JSHLBUK)
                              555
    У
         ( 20,
                  2)
                                    SHLBUK
                                             = buckling of skirt as a shell
            20,
                  2)
                              560
                                    SHLBUKA = allowable for shell buckling of skirt
     У
                                    SHLBUKF = factor of safety for shell buckling of skirt
            20,
                  2)
                              565
    У
         (
                                    FORCE
С
                                             = launch-hold force in a skirt
         (20,
                  2)
                        4
                              570
    У
                                    FORCEA
FORCEF
TNKSTR
                  2)
С
           20,
                       5
                              575
                                             = maximum allowable launch-hold force in skirt
    У
           20,
                  2)
                              580
                                             = factor of safety for launch-hold force
         (
                        6
    У
С
    У
         (
            20,
                  2)
                        4
                              585
                                             = maximum stress in the propellant tank
                     <del>4</del>
5
                                    TNKSTRA = allowable for propellant tank stress
С
                             590
            20,
                  2)
    У
                 2) 6 595
                                    TNKSTRF = factor of safety for tank stress
С
         ( 20,
    У
                        4 600
         ( 20,
                                    TNKBUK = propellant tank buckling load factor
                 2)
    У
                                    TNKBUKA = allowable for propellant tank buckling
         (20,
                  2)
                        5
                              605
            20,
                  2)
                        6
                              610
                                    TNKBUKF = factor of safety for tank buckling
         (
                        7
                                    CONDCT = WGTxTOTMAS/TNKNRM +(1-WGT)xCONDCT/CONNRM
     n
            0,
                  0)
                              620
C------
```

Table 2 Input data for the GENOPT processor, BEGIN (oneskirt.BEG file) (These input data are provided by the End user for the generic case called "tank2" and the specific case called "oneskirt".)

```
______
               $ Do you want a tutorial session and tutorial output?
  386.4000
               $ acceleration of gravity: GRAV
               $ diameter of launch vehicle: DIAVEH
      300
      200
               $ diameter of the aft dome of the tank: AFTDIA
               $ height of the aft dome of the tank: AFTHI
       50
               $ diameter of the forward dome of the tank: FWDDIA
      200
       50
               $ height of the forward dome of the tank: FWDHI
      400
               $ axial dist. from aft dome apex to fwd dome apex: FLTANK
               $ global axial coordinate of the aft dome apex: ZAPEX
      100
 0.2560000E-02 $ weight density of the propellant: DENPRP
               $ global axial coordinate of the tank cq: ZCG
      300
 0.1000000
               $ thickness of the tank aft dome skin: THKAFT
               $ thickness of the tank cylinder skin: THKMID
 0.1000000
 0.1000000
               $ thickness of the forward tank dome skin: THKFWD
       10
               $ spacing of the tank orthogrid stringers: STRSPC
               $ spacing of the tank orthogrid rings: RNGSPC
       10
               $ thickness of the tank orthogrid stringers: STRTHK
 0.5000000
        1
               $ height of the tank orthogrid stringers: STRHI
 0.5000000
               $ thickness of the tank orthogrid rings: RNGTHK
               $ height of the tank orthogrid rings: RNGHI
 0.1000000E+08 $ Young's modulus of the cold tank material: ETANK
 0.300000
               $ Poisson's ratio of the tank material: NUTANK
 0.2500000E-03 $ mass density of the tank material: DENTNK
 0.1000000E-04 $ coef.thermal expansion of tank material: ALTNK
               $ tank is vertical (1) or horizontal (2): IAXIS
        1
               $ Number IZTANK of rows in the array ZTANK: IZTANK
        1
      300
               $ global axial coordinate of tank support ring: ZTANK(
       50
               $ global axial coordinate of "ground": ZGRND(
               $ propellant tank reinforcement type: RNGTYP(
        1
                                                             1)
               $ Number IDUBAXL of rows in the array DUBAXL: IDUBAXL
        1
               $ axial length of the propellant tank doubler: DUBAXL(
       30
 0.1000000
               $ max.thickness of the propellant tank doubler: DUBTHK(
               $ thickness of the tank reinforcement ring: TRNGTH(
 0.200000
               $ height of the tank reinforcement ring: TRNGHI(
  1.000000
 0.1000000E+08 $ hoop modulus of the tank ring: TRNGE(
 0.1000000E-04 $ coef.of thermal expansion of the tank ring: ALRNGT(
               $ Number ISKRTYP of rows in the array SKRTYP: ISKRTYP
        1
               $ skirt type index: SKRTYP( 1)
        1
               $ tank-end length of one-layered skirt part: LNGTNK1(
        5
 0.2500000
               $ tank-end thickness of tapered skirt part: THKTNK1(
               $ tank-end length of tapered prongs: LNGTNK2(
 0.5000000E-01 $ tank-end thickness of one tapered prong: THKTNK2( 1)
               $ "ground" end length of one-layered skirt part: LNGVEH1(
               $ "ground"-end thickness of tapered skirt part: THKVEH1(
 0.2500000
               $ "ground"-end length of tapered prongs: LNGVEH2(
```

```
0.5000000E-01 $ "ground"-end thickness of one tapered prong: TNKVEH2( 1)
              $ type of wall constructions in skirt type SKRTYP: WALTYP( 1)
              $ Number ITHICK of rows in the array THICK: ITHICK
0.3000000E-01 $ thickness of a lamina: THICK(
                                               1)
0.3000000E-01 $ thickness of a lamina: THICK(
0.3000000E-01 $ thickness of a lamina: THICK(
                                               3)
0.3000000E-01 $ thickness of a lamina: THICK(
                                               4)
0.3000000E-01 $ thickness of a lamina: THICK(
                                               5)
0.3000000E-01 $ thickness of a lamina: THICK(
             $ layup angle: ANGLE( 1)
      45
             $ layup angle: ANGLE(
     -45
                                     2)
             $ layup angle: ANGLE(
     45
                                     3)
             $ layup angle: ANGLE( 4)
     -45
      45
              $ layup angle: ANGLE(
                                    5)
     -45
             $ layup angle: ANGLE( 6)
             $ Material type: MATTYP( 1)
      1
       1
              $ Material type: MATTYP(
                                        2)
             $ Material type: MATTYP(
       1
                                        3)
       1
              $ Material type: MATTYP(
                                        4)
      1
              $ Material type: MATTYP(
                                        5)
              $ Material type: MATTYP(
                                        6)
      1
              $ Number JLAYTYP of columns in the array, LAYTYP: JLAYTYP
      1
      12
              $ Number ILAYTYP of rows in this column of LAYTYP: ILAYTYP
              $ layer type index: LAYTYP(
       1
                                          1,
                                               1)
       2
             $ layer type index: LAYTYP(
                                               1)
       3
             $ layer type index: LAYTYP(
                                               1)
       4
              $ layer type index: LAYTYP(
                                               1)
       5
             $ layer type index: LAYTYP(
                                               1)
       6
              $ layer type index: LAYTYP( 6,
                                               1)
       6
              $ layer type index: LAYTYP(
                                               1)
       5
              $ layer type index: LAYTYP( 8,
                                               1)
              $ layer type index: LAYTYP( 9,
       4
                                               1)
       3
              $ layer type index: LAYTYP( 10,
       2
              $ layer type index: LAYTYP( 11,
                                               1)
             $ layer type index: LAYTYP( 12,
                                             1)
              $ Number IE1
                              of rows in the array E1: IE1
0.2100000E+08 $ modulus in the fiber direction: E1( 1)
 1600000.
              $ modulus transverse to fibers: E2( 1)
              $ in-plane shear modulus: G12( 1)
 679000.0
0.2300000E-01 $ small Poisson's ratio: NU( 1)
              $ x-z out-of-plane shear modulus: G13(
 627000.0
              $ y-z out-of-plane shear modulus: G23( 1)
 334000.0
0.1000000E-05 $ coef.of thermal expansion along fibers: ALPHA1(
0.1000000E-04 $ coef.of thermal expan.transverse to fibers: ALPHA2(
              $ curing delta temperature (positive): TEMTUR( 1)
     000
0.7270000E-02 $ conductivity along the fibers: COND1( 1)
0.4370000E-02 $ conductivity transverse to fibers: COND2( 1)
0.5700000E-01 $ weight density of the material: DENSTY( 1)
0.5000000
              $ objective=WGT*(empty tank mass) +(1-WGT)*(conductance): WGT
10.00000
              $ normalizing empty tank mass: TNKNRM
0.2000000E-02 $ normalizing total skirt conductance: CONNRM
       1
              $ IPHASE=1=launch phase; IPHASE=2=orbital phase: IPHASE
              $ Number NCASES of load cases (environments): NCASES
```

```
25
             $ propellant tank ullage pressure: PRESS(
     2.5
             $ propellant tank ullage pressure: PRESS(
                                                         2)
             $ quasi-static axial q-loading: GAXIAL(
     10
      0
             $ quasi-static axial g-loading: GAXIAL( 2)
             $ quasi-static lateral g-loading: GLATRL( 1)
      0
    -10
             $ quasi-static lateral g-loading: GLATRL(
             $ propellant tank cool-down from cryogen: TNKCOOL(
   -200
             $ propellant tank cool-down from cryogen: TNKCOOL(
   -200
      4
             $ Number JFREQ
                              of columns in the array, FREQ: JFREQ
     10
             $ minimum allowable frequency (cps): FREQA(
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               1)
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               2)
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               2)
     10
             $ minimum allowable frequency (cps): FREQA(
                                                               3)
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               3)
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               4)
             $ minimum allowable frequency (cps): FREQA(
     10
                                                               4)
             $ factor of safety for frequency: FREQF(
1.200000
                                                           1)
1.200000
             $ factor of safety for frequency: FREQF(
                                                           1)
             $ factor of safety for frequency: FREQF(
1.200000
             $ factor of safety for frequency: FREQF(
                                                       2,
1.200000
                                                           2)
             $ factor of safety for frequency: FREQF(
1.200000
                                                       1,
                                                           3)
1.200000
             $ factor of safety for frequency: FREQF(
                                                           3)
             $ factor of safety for frequency: FREQF(
1.200000
                                                           4)
             $ factor of safety for frequency: FREQF(
1.200000
                                                           4)
             $ Number JSTRES1 of columns in the array, STRES1: JSTRES1
      5
 140571
             $ maximum allowable stress in material 1: STRES1A(
                                                                       1)
 140571
             $ maximum allowable stress in material 1: STRES1A(
                                                                       1)
             $ maximum allowable stress in material 1: STRES1A(
 104714
                                                                      2)
             $ maximum allowable stress in material 1: STRES1A(
 104714
                                                                      2)
             $ maximum allowable stress in material 1: STRES1A(
  10557
                                                                      3)
             $ maximum allowable stress in material 1: STRES1A(
  10557
                                                                      3)
             $ maximum allowable stress in material 1: STRES1A(
  14529
                                                                      4)
             $ maximum allowable stress in material 1: STRES1A(
  14529
                                                                      4)
             $ maximum allowable stress in material 1: STRES1A(
   6290
                                                                      5)
   6290
             $ maximum allowable stress in material 1: STRES1A(
                                                                      5)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
                                                                   1)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                   2)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                               1,
                                                                   3)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                   3)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                   4)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
                                                                   4)
             $ factor of safety for stress, matl 1: STRES1F(
1.500000
                                                                   5)
1.500000
             $ factor of safety for stress, matl 1: STRES1F(
 140571
             $ maximum allowable stress in material 2: STRES2A(
                                                                      1)
 140571
             $ maximum allowable stress in material 2: STRES2A(
                                                                      1)
             $ maximum allowable stress in material 2: STRES2A(
 104714
                                                                      2)
             $ maximum allowable stress in material 2: STRES2A(
 104714
                                                                      2)
             $ maximum allowable stress in material 2: STRES2A(
  10557
                                                                      3)
  10557
             $ maximum allowable stress in material 2: STRES2A(
                                                                      3)
             $ maximum allowable stress in material 2: STRES2A(
  14529
                                                                      4)
```

```
14529
               $ maximum allowable stress in material 2: STRES2A(
                                                                    2,
                                                                        4)
     6290
                $ maximum allowable stress in material 2: STRES2A(
                                                                        5)
               $ maximum allowable stress in material 2: STRES2A(
     6290
                                                                        5)
  1.500000
               $ factor of safety for stress, matl 2: STRES2F(
               $ factor of safety for stress, matl 2: STRES2F(
  1.500000
                                                                     1)
  1.500000
               $ factor of safety for stress, matl 2: STRES2F(
                                                                     2)
               $ factor of safety for stress, matl 2: STRES2F(
  1.500000
                                                                     2)
               $ factor of safety for stress, matl 2: STRES2F(
  1.500000
                                                                     3)
  1.500000
               $ factor of safety for stress, matl 2: STRES2F(
                                                                     3)
  1.500000
                $ factor of safety for stress, matl 2: STRES2F(
                                                                     4)
               $ factor of safety for stress, matl 2: STRES2F(
  1.500000
                                                                     4)
               $ factor of safety for stress, matl 2: STRES2F(
  1.500000
                                                                     5)
  1.500000
               $ factor of safety for stress, matl 2: STRES2F(
        2
               $ Number JSHLBUK of columns in the array, SHLBUK: JSHLBUK
               $ allowable for shell buckling of skirt: SHLBUKA(
         1
               $ allowable for shell buckling of skirt: SHLBUKA(
         1
                                                                       1)
        1
               $ allowable for shell buckling of skirt: SHLBUKA(
                                                                       2)
               $ allowable for shell buckling of skirt: SHLBUKA(
        1
        2
               $ factor of safety for shell buckling of skirt: SHLBUKF(
                                                                              1)
        2
               $ factor of safety for shell buckling of skirt: SHLBUKF(
                                                                              1)
        2
               $ factor of safety for shell buckling of skirt: SHLBUKF(
                                                                              2)
               $ factor of safety for shell buckling of skirt: SHLBUKF(
        2
                                                                              2)
    15000
               $ maximum allowable launch-hold force in skirt: FORCEA(
                                                                             1)
               $ maximum allowable launch-hold force in skirt: FORCEA(
    15000
                                                                             1)
               $ maximum allowable launch-hold force in skirt: FORCEA(
    15000
                                                                             2)
               $ maximum allowable launch-hold force in skirt: FORCEA(
    15000
                                                                             2)
               $ factor of safety for launch-hold force: FORCEF(
         1
                                                                       1)
               $ factor of safety for launch-hold force: FORCEF(
         1
                                                                       1)
               $ factor of safety for launch-hold force: FORCEF(
        1
                                                                       2)
               $ factor of safety for launch-hold force: FORCEF(
        1
                                                                       2)
    50000
               $ allowable for propellant tank stress: TNKSTRA(
                                                                      1)
    50000
               $ allowable for propellant tank stress: TNKSTRA(
                                                                  2,
                                                                      1)
    50000
               $ allowable for propellant tank stress: TNKSTRA(
                                                                      2)
               $ allowable for propellant tank stress: TNKSTRA(
    50000
                                                                      2)
               $ factor of safety for tank stress: TNKSTRF(
      1.5
                                                                  1)
               $ factor of safety for tank stress: TNKSTRF(
      1.5
                                                                  1)
      1.5
               $ factor of safety for tank stress: TNKSTRF(
                                                                  2)
               $ factor of safety for tank stress: TNKSTRF(
      1.5
               $ allowable for propellant tank buckling: TNKBUKA(
        1
                                                                        1)
               $ allowable for propellant tank buckling: TNKBUKA(
        1
                                                                        1)
               $ allowable for propellant tank buckling: TNKBUKA(
                                                                        2)
        1
        1
               $ allowable for propellant tank buckling: TNKBUKA(
                                                                        2)
      2.0
               $ factor of safety for tank buckling: TNKBUKF(
      2.0
               $ factor of safety for tank buckling: TNKBUKF(
                                                                    1)
               $ factor of safety for tank buckling: TNKBUKF(
                                                                    2)
      2.0
                $ factor of safety for tank buckling: TNKBUKF(
      2.0
______
```

FOOTNOTE: Some Conventions are as follows:

An "A" added to a behavioral variable name means "allowable" An "F" added to a behavioral variable name means "factor of safety" Array Indices, i,j,k:

FREQ(i,j) = modal vibration frequency: i = load case; j = vibration modej = 1 means first eigenvalue for n = 0 waves (usually the mode with significant axial motion of the tank) i = 2 means first eigenvalue for n = 1 waves (a mode with significant lateral-pitch motion of the tank) j = 3 means first eigenvalue for n = 2 waves (a mode in which the tank wall deforms with 2 circ. waves) i = 4 means first eigenvalue for n = 3 or 4 waves (a mode in which the tank wall deforms) STRESSi(j,k) = stress component in strut: i = material no., j = load case, k = stress component i = 1 means "material no. 1" which also means "strut type no. 1" (aft ring of struts) i = 2 means "material no. 2" which also means "strut type no. 2" (forward ring of struts) j = 1 means "Load Case 1" (See the section above entitled TWO LOAD CASES) j = 2 means "Load Case 2" (See the section above entitled TWO LOAD CASES) k = 1 means tension along the fibers of a ply k = 2 means compression along the fibers of a ply k = 3 means tension transverse to the fibers of a ply k = 4 means compression transverse to the fibers of a ply k = 5 means in-plane shear in a ply SHLBUK(i,j) = buckling of the strut as a thin shell: i = load case; j = strut type j = 1 means the type of strut attached to the aft propellant tank support ring.

i = 2 means the type of strut attached to the forward propellant tank support ring. TNKSTR(i,j) = maximum effective stress: i = load case; j = meridian number

j = 1 = effective stress in the tank is the maximum from the distribution along meridian no. 1 i = 2 = effective stress in the tank is the maximum from the distribution along meridian no. 2

TNKBUK(i,j) = buckling load factor: i = load case; j = meridian numberj = 1 means buckling load factor of the tank from the prebuckling stress distribution along meridian no. 1 j = 2 means buckling load factor of the tank from the prebuckling stress distribution along meridian no. 2

Table 3 Maximum stresses (psi) in the optimized "oneskirt" configuration under Load Cases 1 and 2 predicted by the GENOPT/BIGBOSOR4 model

```
Load Case 1 (10g axial acceleration, 25 psi ullage pressure, 200 deg. tank cool-down):
Stress= 9.1942E+02 fiber tension: matl=2, A, seg=3, node=90, layer=12,z=0.17; FS= 1.50
Stress= 3.3538E+04 fiber tension: matl=3, A, seg=17, node=7, layer=1, z=-0.49; FS= 1.50
Stress= 1.8489E+04 fiber compres.: matl=2, A, seg=4, node=13, layer=11,z=0.12; FS= 1.50
Stress= 5.8708E+03 fiber compres.: matl=3, A, seg=21, node=50, layer=1, z=-0.43; FS= 1.50
Stress= 2.4409E+03 transv tension: matl=2, A, seg=3, node=94, layer=10,z=0.12; FS= 1.50
Stress= 2.9366E+04 transv tension: matl=3, A, seg=18, node=7, layer=1, z=-0.03; FS= 1.50
Stress= 4.1398E+02 transv compres: matl=2, A, seg=3, node=2, layer=1, z=-0.17; FS= 1.50
Stress= 1.7041E+04 transv compres: matl=3, A, seg=23, node=5, layer=1, z=-0.44; FS= 1.50
Stress= 5.6036E+02 in-plane shear: matl=2, A, seg=3, node=94, layer=3, z=-0.12; FS= 1.50
Stress= 2.1462E+04 effect. stress: matl=1, A, seg=4, node=2, layer=14, z=0.18; FS= 1.50
                                          A, seg=16, node=9, layer=2, z=-0.09; FS= 1.50
Stress= 1.8987E+04 effect. stress: matl=4,
                                          A, seg=19, node=2, layer=3, z=0.03; FS=1.50
Stress= 2.8270E+04 effect. stress: matl=5,
Stress= 3.1977E+04 effect. stress: matl=6,
                                          A, seg=18, node=6, layer=2, z=0.03; FS=1.50
Stress= 2.1141E+04 effect. stress: matl=7,
                                          A, seg=33, node=13, layer=2, z=0.04; FS=1.50
Modified maximum stress components for Load Case 1 STRESS2(i),i=1,6=
  fiber tension fiber compres. transv tension transv compres in-plane shear effect. stress
  3.3538E+04
                8.8282E+03
                              2.9366E+04
                                            1.7041E+04
                                                          4.4544E+03
                                                                        3.1977E+04
Load Case 2 (10g lateral acceleration, 25 psi ullage pressure, 200 deg. tank cool-down):
Stress= 1.8841E+03 fiber tension: matl=2, A, seg=3, node=9, layer=12, z= 0.17; FS= 1.50
Stress= 3.3333E+04 fiber tension: matl=3, A, seg=22, node=8, layer=1, z=-0.44; FS= 1.50
Stress= 1.6076E+04 fiber compres:: matl=2, A, seg=4, node=13, layer=11,z=0.12; FS= 1.50
Stress= 6.8810E+03 fiber compres.: matl=3, A, seg=21, node=50, layer=1, z=-0.43; FS= 1.50
Stress= 2.4820E+03 transv tension: matl=2, A, seg=3, node=93, layer=10,z=0.12; FS= 1.50
Stress= 2.6867E+04 transv tension: matl=3, A, seg=21, node=47, layer=1, z=-0.03; FS= 1.50
Stress= 1.4473E+03 transv compres: matl=2, A, seg=3, node=2, layer=1, z=-0.17; FS= 1.50
Stress= 1.8667E+04 transv compres: matl=3, A, seg=23, node=5, layer=1, z=-0.44; FS= 1.50
Stress= 6.0517E+02 in-plane shear: matl=2, A, seg=3, node=5, layer=3, z=-0.12; FS= 1.50
Stress= 2.2347E+04 effect. stress: matl=1,
                                          A, seg=4, node=2, layer=1, z=-0.18; FS= 1.50
                                          A, seg=16, node=9, layer=2, z=-0.09; FS= 1.50
Stress= 1.4335E+04 effect. stress: matl=4,
Stress= 2.6055E+04 effect. stress: matl=5,
                                          A, seg=20, node=12, layer=3, z=0.03; FS= 1.50
Stress= 2.8461E+04 effect. stress: matl=6,
                                          A, seg=21, node=48, layer=2, z=0.03; FS=1.50
Stress= 2.3645E+04 effect. stress: matl=7,
                                          A, seg=33, node=6, layer=2, z=0.04; FS=1.50
Modified maximum stress components for Load Case 2 STRESS2(i),i=1,6=
  fiber tension fiber compres. transv tension transv compres in-plane shear effect. stress
                7.6760E+03
                                            1.8667E+04
                                                          4.8106E+03
                                                                        2.8461E+04
  3.3333E+04
                              2.6867E+04
```

Table 4 Maximum stresses (psi) in the optimized "twoskirt" configuration under Load Cases 1 and 2 as predicted by GENOPT/BIGBOSOR4

```
Load Case 1 (10g axial acceleration, 25 psi ullage pressure, 200 deg. tank cool-down):
Stress= 2.7506E+04 fiber tension: matl=2, A, seg=36, node=7, layer=10,z=0.04; FS= 1.50
Stress= 3.3583E+04 fiber tension: matl=3, A, seg=16, node=5, layer=1, z=-0.46 :FS= 1.50
Stress= 2.8580E+04 fiber compres.: matl=2, A, seg=4, node=13, layer=13,z=0.05; FS= 1.50
Stress= 2.4008E+04 fiber compres.: matl=3, A, seg=22, node=2, layer=1, z=-0.44; FS= 1.50
Stress= 4.7809E+03 transv tension: matl=2, A, seg=36, node=8, layer=12,z=0.06; FS= 1.50
Stress= 1.9012E+04 transv tension: matl=3, A, seg=19, node=3, layer=1, z=-0.06; FS= 1.50
Stress= 1.7932E+04 transv compres: matl=3, A, seg=15, node=11, layer=1, z=-0.46; FS= 1.50
Stress= 5.5800E+02 in-plane shear: matl=2, A, seg=35, node=2, layer=2, z=-0.06; FS= 1.50
Stress= 3.2173E+04 effect. stress: matl=1, A, seg=35, node=2, layer=1, z=-0.07; FS= 1.50
Stress= 2.4268E+04 effect. stress: matl=4, A, seg=6, node=2, layer=2, z = 0.06; FS= 1.50
Stress= 2.4061E+04 effect. stress: matl=5, A, seg=18, node=12, layer=3, z= 0.07; FS= 1.50
Stress= 2.7316E+04 effect. stress: matl=6, A, seg=19, node=2, layer=2, z= 0.06; FS= 1.50
Stress= 2.3496E+04 effect. stress: matl=7, A, seg=33, node=13, layer=2, z= 0.04; FS= 1.50
Modified maximum stress components for Load Case 1 STRESS2(i),i=1,6=
  fiber tension fiber compres. transv tension transv compres in-plane shear
                                                                        effect. stress
  3.3583E+04
                2.4008E+04
                              2.2643E+04
                                            1.7932E+04
                                                          4.4356E+03
                                                                        3.2173E+04
Load Case 2 (10g lateral acceleration, 25 psi ullage pressure, 200 deg. tank cool-down):
Stress= 3.4188E+04 fiber tension: matl=2, A, seg=3, node=93, layer=9, z= 0.03; FS= 1.50
Stress= 3.4335E+04 fiber tension: matl=3, A, seg=23, node=9, layer=1, z=-0.44; FS= 1.50
Stress= 3.0823E+04 fiber compres.: matl=2, A, seg=35, node=1, layer=12, z= 0.05; FS= 1.50
Stress= 2.0893E+04 fiber compres.: matl=3, A, seg=22, node=2, layer=1, z=-0.44; FS= 1.50
Stress= 5.2071E+03 transv tension: matl=2, A, seg=3, node=92, layer=12, z= 0.05; FS= 1.50
Stress= 1.8089E+04 transv tension: matl=3, A, seg=33, node=13, layer=1, z=-0.04; FS= 1.50
Stress= 8.0684E+01 transv compres: matl=2, A, seg=36, node=98, layer=10,z=0.04; FS= 1.50
Stress= 1.7819E+04 transv compres: matl=3, A, seg=24, node=4, layer=1, z=-0.44; FS= 1.50
Stress= 2.1950E+03 in-plane shear: matl=2, A, seg=4, node=1, layer=3, z=-0.04; FS= 1.50
Stress= 3.4632E+04 effect. stress: matl=1, A, seg=4, node=2, layer=1, z=-0.05; FS= 1.50
                                          A, seg=6, node=2, layer=2, z=0.06; FS=1.50
Stress= 1.8883E+04 effect. stress: matl=4,
Stress= 2.2342E+04 effect. stress: matl=5,
                                          A, seg=18, node=12, layer=3, z=0.07; FS= 1.50
Stress= 2.5577E+04 effect. stress: matl=6,
                                          A, seg=19, node=2, layer=2, z=0.06; FS=1.50
Stress= 2.6047E+04 effect. stress: matl=7,
                                           A, seg=33, node=13, layer=2, z=0.04; FS=1.50
Modified maximum stress components for Load Case 2 STRESS2(i),i=1,6=
  fiber tension fiber compres. transv tension transv compres in-plane shear effect. stress
                2.0893E+04
                              2.4662E+04
                                             1.7819E+04
                                                          1.7448E+04
  3.4335E+04
                                                                         3.4632E+04
```

Table 5 Predictions by GENOPT/tank2 of buckling of the aft conical skirt under Load Case 1 for the optimized "twoskirt" configuration

```
Buckling in the propellant tank/skirt system from the prebuckling load distribution on the meridian at angle, CIRCANG(JCOL) = 0.0000E+00 in which JCOL = 1
The valid BIGBOSOR4 input file is called: twoskirt.BEHX911
```

BUCKLING OF THE PROPELLANT TANK/SKIRT SYSTEM FROM THE BIGBOSOR4 MODEL 6.3407E+00(n= 3 circ.waves); IFAILD= 0 6.3295E+00(n= 5 circ.waves); IFAILD= 0 6.3129E+00(n= 7 circ.waves); IFAILD= 0 6.2907E+00(n= 9 circ.waves); IFAILD= 0 6.2631E+00(n= 11 circ.waves); IFAILD= 0 6.2294E+00(n= 13 circ.waves); IFAILD= 0 6.1897E+00(n= 15 circ.waves); IFAILD= 0 6.1437E+00(n= 17 circ.waves); IFAILD= 0 6.0902E+00(n= 19 circ.waves); IFAILD= 0 6.0329E+00(n= 21 circ.waves); IFAILD= 0 5.9862E+00(n= 23 circ.waves); IFAILD= 0 5.9573E+00(n= 25 circ.waves); IFAILD= 0 5.9460E+00(n= 27 circ.waves); IFAILD= 0 ← critical buckling load factor 5.9520E+00(n= 29 circ.waves); IFAILD= 0 5.9575E+00(n= 31 circ.waves); IFAILD= 0 5.9633E+00(n= 33 circ.waves); IFAILD= 0 5.9873E+00(n= 35 circ.waves); IFAILD= 0 6.0297E+00(n= 37 circ.waves); IFAILD= 0 6.0905E+00(n= 39 circ.waves); IFAILD= 0 6.1694E+00(n= 41 circ.waves); IFAILD= 0 6.2660E+00(n= 43 circ.waves); IFAILD= 0 6.3798E+00(n= 45 circ.waves); IFAILD= 0 6.5102E+00(n= 47 circ.waves); IFAILD= 0 6.6189E+00(n= 49 circ.waves); IFAILD= 0

PANDA2-type buckling predictions corresponding to the prebuckled state along the skirt meridian at theta= 0.0000E+00 degrees...

In this buckling analysis there are two PANDA2 models:

Model 1: The full length of the effective cylindrical shell is included and Nx,Ny,Nxy at the midlength of the skirt are considered to be the prebuckled state which is uniform over the entire PANDA2 model.

Model 2: 1/4th of the length nearest the large-diameter end of the conical skirt is included, and Nx,0.,Nxy

ten nodal points from the large-diameter end are considered to be the uniform prebuckled state.

```
We use the minimum of the two buckling load factors from
PANDA2 Model 1 and PANDA2 Model 2 as the buckling load
obtained from a PANDA2 analysis.
Listed next are the assumed prebuckled state, length and
radius of the effective cylindrical shell, buckling mode,
(MSKIN, NSKIN, SLOPE), and buckling load factor for Model 1:
Buckling load factor predicted from a PANDA2-type model of
the aft skirt for Load Case
Average Load Set A prebuckling resultants used in the PANDA2 model:
Average axial resultant over meridian length, NXAVE = -2.8593E+02
Average hoop resultant over meridian length, NYAVE = -2.9823E+00
Average in-plane shear resultant,
                                              NXYAVE = 0.0000E + 00
Average Load Set B prebuckling resultants used in the PANDA2 model:
Average axial resultant over meridian length, NXFIX = 1.4326E+03
Average hoop resultant over meridian length, NYFIX = 6.2338E-01
Length of the equivalent cylindrical shell, FLEFF = 1.3928E+02
Radius of the equivalent cylindrical shell, RAVE = 1.3393E+02
Critical buckling mode:
Number of axial half-waves over shell length, MSKIN =
                                                       1
Number of circ. half-waves over 180 degrees, NSKIN =
                                                       15
                                                       0.0000E+00
Slope of the buckling nodal lines,
                                              SLOPE =
SLOPE=dy/dx in Fig. 9(b) of 1987 "Theoretical Basis paper.
"Bump-up" factor to adjust for milder imperfection
 sensitivity factor when in-plane shear is significant 1.0000E+00
The actual buckling load factor, EIGLOC*FKNOCK/RATIO= 5.6307E+00
PANDA2-type buckling predictions corresponding to the
prebuckled state along the skirt meridian at theta= 0.0000E+00
degrees...
Model 2: 1/4th of the length nearest the large-diameter end
          of the conical skirt is included, and Nx,0.,Nxy
         ten nodal points from the large-diameter end are
          considered to be the uniform prebuckled state.
We use the minimum of the two buckling load factors from
PANDA2 Model 1 and PANDA2 Model 2 as the buckling load
obtained from a PANDA2 analysis.
Listed next are the assumed prebuckled state, length and
radius of the effective cylindrical shell, buckling mode,
(MSKIN, NSKIN, SLOPE), and buckling load factor for Model 2:
Buckling load factor predicted from a PANDA2-type model of
the aft skirt for Load Case
                              1:
Average Load Set A prebuckling resultants used in the PANDA2 model:
Average axial resultant over meridian length, NXAVE = -2.4787E+02
Average hoop resultant over meridian length, NYAVE = 0.0000E+00
Average in-plane shear resultant,
                                             NXYAVE = 0.0000E + 00
Average Load Set B prebuckling resultants used in the PANDA2 model:
```

Average axial resultant over meridian length, NXFIX = 1.2235E+03 Average hoop resultant over meridian length, NYFIX = 0.0000E+00 Length of the equivalent cylindrical shell, FLEFF = 3.4821E+01 Radius of the equivalent cylindrical shell, RAVE = 1.6071E+02 Critical buckling mode: Number of axial half-waves over shell length, MSKIN = 3 Number of circ. half-waves over 180 degrees, NSKIN = 32 Slope of the buckling nodal lines, SLOPE = 1.0167E-01 SLOPE=dy/dx in Fig. 9(b) of 1987 "Theoretical Basis paper. "Bump-up" factor to adjust for milder imperfection sensitivity factor when in-plane shear is significant 1.0000E+00 The actual buckling load factor, EIGLOC*FKNOCK/RATIO= 5.6305E+00

Minimum buckling load from PANDA2 Models 1 & 2, EIGMIN= 5.6305E+00

For the buckling load factor, GENOPT/SKIRT uses the minimum buckling load from PANDA2 for the aft and forward (if any) skirt(s) and the buckling load from the BIGBOSOR4 model.

The buckling load from the BIGBOSOR4 model is EIGCRT= 5.9460E+00

Table 6 Predictions by GENOPT/tank2 of buckling of the aft conical skirt under Load Case 2 for the optimized "twoskirt" configuration according to the PANDA-type Model 1 with use of the prebuckling resultants at the midlength of the meridian of Segment 3 of the aft conical skirt at the circumferential coordinate, theta = 90 degrees. The following list is part of the twoskirt. OPM file corresponding to the optimized "twoskirt" design subjected to Load Case 2 (Load Set A = 10 g lateral acceleration, Load Set B = 25 psi internal ullage pressure in the propellant tank plus 200-degree uniform propellant tank cooldown plus axisymmetric non-uniform thermal loading of the aft conical skirt)

```
PANDA2-type buckling predictions corresponding to the
prebuckled state along the skirt meridian at theta= 9.0000E+01 degrees...
Listed next are the assumed prebuckled state, length and
 radius of the effective cylindrical shell, buckling mode,
 (MSKIN, NSKIN, SLOPE), and buckling load factor for Model 1:
 Buckling load factor predicted from a PANDA2-type model of
 the aft skirt for Load Case
                              2:
 Average Load Set A prebuckling resultants used in the PANDA2 model:
 Average axial resultant over meridian length, NXAVE = -2.2837E+01
 Average hoop resultant over meridian length, NYAVE = -1.5016E-06
 Average in-plane shear resultant,
                                               NXYAVE=
                                                        2.5361E+02
 Average Load Set B prebuckling resultants used in the PANDA2 model:
 Average axial resultant over meridian length, NXFIX =
                                                        1.4326E+03
 Average hoop resultant over meridian length, NYFIX =
                                                        6.2338E-01
 Length of the equivalent cylindrical shell,
                                              FLEFF =
                                                        1.3928E+02
 Radius of the equivalent cylindrical shell,
                                              RAVE
                                                        1.3393E+02
 Critical buckling mode:
 Number of axial half-waves over shell length, MSKIN =
                                                        1
 Number of circ. half-waves over 180 degrees, NSKIN =
                                                        23
 Slope of the buckling nodal lines,
                                                        1.9008E-01
 SLOPE=dy/dx in Fig. 9(b) of 1987 "Theoretical Basis paper.
 "Bump-up" factor to adjust for milder imperfection
  sensitivity factor when in-plane shear is significant
                                                          1.5000E+00
 The actual buckling load factor, EIGLOC*FKNOCK/RATIO=
                                                        1.3022E+00
```

The purpose of the "bump-up" factor listed here is to compensate for the use in the "tank2" formulation of a factor of safety (F.S.) for skirt buckling, TNKBUKF=2.0 (listed in Table 2) that is too high for the much milder sensitivity to initial imperfections of conical or cylindrical shells under primarily in-plane shear loading rather than uniform axial compression. In the "tank2" formulation we assume that an appropriate knockdown factor for shell buckling under primarily in-plane shear loading is 1/F.S. = 1/1.3333 rather than 1/2.0, which is more appropriate for axial compression of the laminated composite skirt configurations processed in this paper. The "Bump-up" factor is given by 2.0/1.3333 = 1.50 in this particular case (Load Case 2 loading at theta=90 deg.).

Table 7 Summary of predictions from STAGS for the maximum stress components in the laminated composite parts of the skirt supports of the optimized configuration called "twoskirt", with predictions from GENOPT/BIGBOSOR4

Aft Skirt Stresses, Load Case 1

Stresses, Loud Cuse 1								
	Stress (psi)							
Layer	Fiber D	irection	Transverse	Shear				
	Max	Min	Max	Min	lMaxl			
1	2283	1864	-1161	-13210	2899			
2	2281	1848	-1142	-13220	2900			
3	17050	9339	1740	1050	2500			
4	16720	9608	1740	1041	2448			
5	16410	9877	1745	1031	2400			
6	16140	10150	1759	1022	2357			
7	15940	10410	1773	1012	2326			
8	15740	10600	1787	1003	2295			
9	15550	10680	1801	993	2264			
10	15360	10730	1815	983	2233			
11	2267	1706	-972	-13270	2907			
12	2266	1691	-952	-13270	2908			

Forward Skirt Stresses, Load Case 1

	Stress (psi)						
Layer	Fiber D	irection	Transverse	Shear			
	Max	Min	Max	Min	lMaxl		
1	2912	2474	-485	-11140	2067		
2	2909	2476	-473	-11150	2068		
3	23790	14930	2064	1604	3580		
4	23630	15140	2064	1597	3553		
5	23460	15340	2063	1590	3528		
6	23330	15340	2072	1584	3506		
7	23190	15550	2083	1577	3485		
8	23060	15730	2093	1570	3463		
9	22920	15830	2104	1563	3442		
10	22790	15910	2115	1557	3420		
11	2890	2486	-363	-11180	2071		
12	2888	2487	-351	-11180	2071		

Prediction from BIGBOSOR4, Load Case 1 (only the maximum stress determined from either the aft skirt or the forward skirt appears in the GENOPT/BIGBOSOR4 output). From Table 4, Load Case 1: Stress=2.7506E+04 psi, fiber tension: matl=2, A, seg=36, node=7, layer=10, z= 0.04 Segment 36 is the laminated composite part of Segment No. 3 of the forward skirt.

Aft Skirt Stresses, Load Case 2

	Stress (psi)						
Layer	Fiber D	irection	Transverse	Shear			
	Max	Min	Max	Min	lMaxl		
1	3331	1361	4762	-22320	6599		
2	3329	1342	4761	-22320	6598		
3	31440	2460	2369	737	6422		
4	31280	2840	2379	726	6399		
5	31130	3220	2388	714	6381		
6	31060	3594	2398	702	6373		
7	31080	3970	2408	689	6368		
8	31110	4099	2417	677	6365		
9	31130	4132	2427	665	6361		
10	31160	4153	2436	652	6357		
11	3312	1164	4753	-22310	6588		
12	3311	1143	4752	-22310	6586		

Forward Skirt Stresses, Load Case 2

	Stress (psi)						
Layer	Fiber D	irection	Transverse	Shear			
	Max	Min	Max	Min	lMaxl		
1	3197	1535	3668	-21290	5600		
2	3195	1563	3668	-21300	5600		
3	30440	3228	2320	811	6432		
4	30250	3551	2324	794	6401		
5	30080	3876	2334	777	6370		
6	29920	4198	2344	761	6340		
7	29770	4519	2354	744	6309		
8	29620	4647	2364	727	6279		
9	29470	4685	2373	710	6249		
10	29320	4716	2383	693	6218		
11	3181	1533	3663	-21340	5599		
12	3180	1504	3662	-21350	5599		

Prediction from BIGBOSOR4, Load Case 2 (only the maximum stress determined from either the aft skirt or the forward skirt appears in the GENOPT/BIGBOSOR4 output). From Table 4, Load Case 2: Stress=3.4188E+04 psi, fiber tension: matl=2, A, seg=3, node=93, layer=9, z=0.03 Segment No. 3 is in the laminated composite part of the aft skirt.