

*Novosibirsk State University *THE REAL SCIENCE

Non-linear Regression

Luu Minh Sao Khue Department of Mathematics and Mechanics

Overview

- Non-Linear Regression
- Bias vs Variance
- Ridge Regression
- Lasso Regression
- Data Visualization

• Non-linear regression is a type of regression analysis in machine learning where the relationship between the independent variable(s) and the dependent variable cannot be modeled by a straight line (linear equation). Instead, it involves a non-linear function of the parameters to model more complex relationships.

Year Value 0 1960 5.918412e+10 1 1961 4.955705e+10 2 1962 4.668518e+10 3 1963 5.009730e+10 4 1964 5.906225e+10 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10			
1 1961 4.955705e+10 2 1962 4.668518e+10 3 1963 5.009730e+10 4 1964 5.906225e+10 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10	Value	Year	
 2 1962 4.668518e+10 3 1963 5.009730e+10 4 1964 5.906225e+10 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10 	8412e+10	1960	0
3 1963 5.009730e+10 4 1964 5.906225e+10 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10	5705e+10	1961	1
 4 1964 5.906225e+10 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10 	8518e+10	1962	2
 5 1965 6.970915e+10 6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10 	9730e+10	1963	3
6 1966 7.587943e+10 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10	6225e+10	1964	4
 7 1967 7.205703e+10 8 1968 6.999350e+10 9 1969 7.871882e+10 	0915e+10	1965	5
8 1968 6.999350e+10 9 1969 7.871882e+10	7943e+10	1966	6
9 1969 7.871882e+10	5703e+10	1967	7
	9350e+10	1968	8
	1882e+10	1969	9

	Year	Value
0	1960	5.918412e+10
1	1961	4.955705e+10
2	1962	4.668518e+10
3	1963	5.009730e+10
4	1964	5.906225e+10
5	1965	6.970915e+10
6	1966	7.587943e+10
7	1967	7.205703e+10
8	1968	6.999350e+10
9	1969	7.871882e+10

How to identify non-linear relationship

Visualize

Polinomial Regression

Limitations of Polynomial Regression

Overfitting:

- Increasing the degree of a polynomial improves the fit on training data but worsens performance on new data.
- The model becomes too specific to the training set and captures noise.
- Unpredictable Behavior:
- High-degree polynomials diverge rapidly outside the training data range:
 - Odd degrees: Shoot off in opposite directions.
 - **Even degrees**: Shoot off in the same direction.
- When to Use Polynomial Regression:
- Only when the underlying relationship is **known to follow a polynomial pattern** (e.g., natural laws like projectile motion).

Linear vs Non-Linear Regression

	Linear Regression	Non-Linear Regression
Model Form	Linear equation	Non-linear equation
Complexity	Simple, easy to interpret	Flexible, hard to interpret
Parameters Estimation	Closed-form solution	Iterative optimization
Computation	Low	High

...but, in this case, we don't know the formula, so we're going to use two machine learning methods to approximate this relationship.

The first thing we do is split the data into two sets, one for training the machine learning algorithms and one for testing them.

The first machine learning algorithm that we will use is Linear Regression (aka "Least Squares").

High Bias

Another machine learning method might fit a **Squiggly Line** to the **training set**...

High Variance

Low Bias Low Variance

- Regularization -> add penalties to the loss function
- Bagging -> reduce variance
- Boosting -> reduce bias

Ridge Regression

Regularization

 Regularization is a technique used in machine learning and statistics to improve the performance and generalization of a model by adding a penalty to the loss function. This penalty discourages the model from becoming too complex or overly reliant on specific features, which can lead to overfitting.

Ridge Regression

- Ridge regression, also known as L2 Regularization, is a linear regression technique that introduces a penalty term to the loss function. It is used to address the problem of multicollinearity (high correlation among predictors) and to prevent overfitting in models with a large number of features or small datasets.
- Formula: https://github.com/luumsk/NSU_ML/blob/main/Lectures/Day 4_RidgeRegression.pdf

Ridge Regression

The main idea behind Ridge Regression is to find a New Line that doesn't fit the Training Data as well...

In other words, by starting with a slightly worse fit, Ridge Regression can provide better long term predictions.

When to use Ridge Regression

- You have many correlated predictors.
- You want to improve generalization without removing features.
- You are dealing with **small datasets** or **high-dimensional data**.

Lasso Regression

Lasso Regression

Least Absolute Shrinkage and Selection Operator

NOTE: Just like with Ridge Regression, λ can be any value from 0 to positive infinity and is determined using Cross Validation.

Lasso Regression

Ridge vs Lasso Regression

When we increase the Ridge Regression Penalty, aka the L2 Penalty, aka the Square Penalty...

Ridge vs Lasso Regression

And even when we set λ (lambda) to something crazy high, like 400, we still end up with an optimal slope > 0.

Ridge vs Lasso Regression

...the optimal value shifts towards **0**, but, since we have a kink at **0**, **0** ends up being the optimal slope.

Data Visualization

Data Visualization

• Lab: https://www.kaggle.com/code/khueluu/data-visualization

Graded Assignment

- TBA
- Deadline: **Monday, 02.12.2024**

References

- https://online.stat.psu.edu/stat462/node/158/
- https://tahera-firdose.medium.com/understanding-polynomial-regression-603eb25501d
- https://tahera-firdose.medium.com/understanding-polynomial-regression-603eb25501d
- https://www.cuemath.com/calculus/nonlinear-functions/
- https://www.coursera.org/learn/machine-learning-withpython?specialization=ibm-data-science