Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Ордена Трудового Красного Знамени

федеральное государственное бюджетное образовательное учреждение высшего образования

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра «Теория электрических цепей»

Лабораторная работа №31 «Исследование входных частотных характеристик в RL-цепи»

Выполнил:

студент группы БВТ2306

Кесслер А. С.

Оглавление

Цель работы:	3
Предварительный расчет:	4
Вывод	9
Вопросы для самопроверки	10

Цель работы:

С помощью программы Micro-Cap исследовать входные амплитудночастотные (AЧX) и фазочастотные (ФЧX) характеристики RL-цепи. Сравнить AЧX и ФЧX, полученные с помощью программы Micro-Cap, с аналогичными характеристиками, полученными расчетным путем.

Предварительный расчет:

 $L = 45 \text{ M}\Gamma\text{H}$; R1 = 100 Om; E = 0.9 B

Ход работы. Схема 1.

По предварительному расчёту								
f , кГц	f/f _{ΓP}	X _L , Ом	Z _{ВХ} , Ом	φz(f), град	І, мА	U _R , мВ	U _L , мВ	
2	5,66	565,4	574	79,97	1,74	174,43	984,72	
4	11,31	1130	1135	84,95	0,88	88,46	996,11	
6	16,96	1696	1699	86,63	0,58	59,64	998,27	
8	22,62	2262	2264	87,47	0,44	44,9	999,02	
10	28,27	2827	2829	87,97	0,35	36,1	999,37	
12	33,93	3393	3395	88,31	0,29	29,6	999,56	
14	39,58	3956	3960	88,55	0,25	25,26	999,69	

Получ	ено экспер	риментальн	0			
f , кГц ,	X _L , O _M	Z _{BX} , O _M	φz(f), град	І, мА	U _R , B _M	U _L , B _M
2	565,4	574	79,97	1,74	174,43	984,72
4	1130	1135	84,95	0,88	88,46	996,11
6	1696	1699	86,63	0,58	59,64	998,27
8	2262	2264	87,47	0,44	44,9	999,02
10	2827	2829	87,97	0,35	36,1	999,37
12	3393	3395	88,31	0,29	29,6	999,56
14	3956	3960	88,55	0,25	25,26	999,69

 $f_{\Gamma P} = 353,678$

График зависимости модуля входного сопротивления от частоты.

Вывод: модуль входного сопротивления увеличивается при увеличении частоты.

График зависимости фазы входного сопротивления от частоты.

Вывод: с увеличением частоты, вх. сопротивление увеличивается.

График зависимости модуля тока от частоты.

Вывод: с увеличением частоты, модуль тока уменьшается.

График зависимости модуля напряжения на резисторе от частоты

Вывод: при увеличении частоты, модуль напряжения на резисторе уменьшается.

График зависимости резистивного сопротивления от частоты.

Вывод: увеличеннии частоты, резистивное сопротивление не изменяется.

График зависимости индуктивного сопротивления от частоты.

Вывод: при увеличении частоты, индуктивное сопротивление возрастает.

График зависимости модуля напряжения на катушке от частоты.

Вывод: при увеличении частоты, модуль напряжения на катушке возрастает.

Вывод

Мы исследоватли входные амплитудно-частотные (АЧХ) и фазочастотные (ФЧХ) характеристики RL-цепи. Сравнили АЧХ и ФЧХ, полученные с помощью программы Micro-Cap, с аналогичными характеристиками, полученными расчетным путем.

Вопросы для самопроверки

- 1. Какая частота называется граничной для RL-цепи?
- 2. Каково значение модуля входного сопротивления RL-цепи на граничной частоте?
- 3. Каково значение аргумента входного сопротивления RL-цепи на граничной частоте?
- 4.К чему стремиться модуль тока RL-цепи при увеличении частоты?
- 5. Чему равен модуль входного сопротивления RL-цепи при частоте равной нулю?

Ответы

1. Частота при которой активное сопротивление равно реактивному (действительная часть равна мнимой). Для RL-цепи: $\omega L = R = R / (2\Pi L)$

$$2.Z^2 = X^2 + R^2 \Rightarrow Z = 141.42 \text{ Om}$$

$$3.\arg(\underline{Z}) = \Pi/4 = 45^{\circ}$$

4.I =
$$\lim(f\to\infty) (U/\sqrt{(2\Pi fL)^2 + R^2}) = 0$$

$$5.Z = \sqrt{R^2 + 0} = R = 100 \text{ Om}$$