Sensitivity Analysis: Random Survival Forest

Mingcheng Hu

Table of contents

Load Data	2
Random Survival Forest (RSF) Variable Selection	6 6 9 11
<pre>library(tidyverse) library(survival) library(randomForestSRC) library(caret) library(survcomp) library(parallel) library(doParallel) library(mcprogress) # wrap mclapply with progress bar. library(kableExtra) # include knitr automatically source("/work/users/y/u/yuukias/BIOS-Material/BIOS992/utils/csv_utils.r") # * Don't use setwd() for Quarto documents! # setwd("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data") adjust_type <- ifelse(exists("params"), params\$adjust_type, "full") #</pre>	
<pre> options: "minimal", "partial", "full" impute_type <- ifelse(exists("params"), params\$impute_type, "unimputed") # options: "unimputed", "imputed" include_statin <- ifelse(exists("params"), params\$include_statin, "no") # options: "yes", "no" n_folds <- 10 set.seed(1234) </pre>	
bet.beeu(1201)	

```
unimputed = "unimputed",
  imputed = "imputed"
)
print(paste0("Data Imputation Type: ", impute_type_str))
```

[1] "Data Imputation Type: unimputed"

impute_type_str <- switch(impute_type,</pre>

Load Data

```
if (include_statin == "yes") {
    data_train <-
    read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/train_data_",
    impute_type_str, "_statin.csv"),
        header = TRUE
    )
} else {
    data_train <-
    read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/train_data_",
    impute_type_str, ".csv"),
        header = TRUE
    )
}
data_train <- data_train[, -1] # the first column is the index generated by
    sklearn
(dim(data_train))</pre>
```

[1] 28127 100

```
data <- select_subset(data_train, type = adjust_type)
(dim(data))</pre>
```

[1] 28127 89

colnames(data)

[1]	"event"	"time"
[3]	"age"	"sex"
[5]	"ethnicity"	"BMI"
[7]	"smoking"	"diabetes"
[9]	"systolic_bp"	"hypertension_treatment"
[11]	"total_chol"	"hdl_chol"
[13]	"education"	"activity"
[15]	"max_workload"	"max_heart_rate"
[17]	"HRV_MeanNN"	"HRV_SDNN"
[19]	"HRV_RMSSD"	"HRV_SDSD"
[21]	"HRV_CVNN"	"HRV_CVSD"
[23]	"HRV_MedianNN"	"HRV_MadNN"
[25]	"HRV_MCVNN"	"HRV_IQRNN"
[27]	"HRV_SDRMSSD"	"HRV_Prc20NN"
[29]	"HRV_Prc80NN"	"HRV_pNN50"
[31]	"HRV_pNN20"	"HRV_MinNN"
[33]	"HRV_MaxNN"	"HRV_HTI"
[35]	"HRV_TINN"	"HRV_LF"
[37]	"HRV_HF"	"HRV_VHF"
[39]	"HRV_TP"	"HRV_LFHF"
[41]	"HRV_LFn"	"HRV_HFn"
[43]	"HRV_LnHF"	"HRV_SD1"
[45]	"HRV_SD2"	"HRV_SD1SD2"
[47]	"HRV_S"	"HRV_CSI"
[49]	"HRV_CVI"	"HRV_CSI_Modified"
[51]	"HRV_PIP"	"HRV_IALS"
[53]	"HRV_PSS"	"HRV_PAS"
[55]	"HRV_GI"	"HRV_SI"
[57]	"HRV_AI"	"HRV_PI"
[59]	"HRV_C1d"	"HRV_C1a"
[61]	"HRV_SD1d"	"HRV_SD1a"

```
[63] "HRV_C2d"
                                     "HRV_C2a"
[65] "HRV_SD2d"
                                     "HRV_SD2a"
[67] "HRV_Cd"
                                     "HRV_Ca"
[69] "HRV_SDNNd"
                                     "HRV_SDNNa"
[71] "HRV ApEn"
                                     "HRV ShanEn"
[73] "HRV_FuzzyEn"
                                     "HRV MSEn"
[75] "HRV CMSEn"
                                     "HRV RCMSEn"
[77] "HRV_CD"
                                     "HRV_HFD"
[79] "HRV_KFD"
                                     "HRV LZC"
[81] "HRV_DFA_alpha1"
                                     "HRV_MFDFA_alpha1_Width"
[83] "HRV_MFDFA_alpha1_Peak"
                                     "HRV_MFDFA_alpha1_Mean"
[85] "HRV_MFDFA_alpha1_Max"
                                     "HRV_MFDFA_alpha1_Delta"
[87] "HRV_MFDFA_alpha1_Asymmetry"
                                     "HRV_MFDFA_alpha1_Fluctuation"
[89] "HRV_MFDFA_alpha1_Increment"
```

data <- tibble::as tibble(data)</pre>

```
# * There are some imputed ethnicity set to "e". We will exclude them at this

    time.

data <- data %>%
   filter(ethnicity != "e")
# * We also need to manually relevel the categorical variables
data <- data %>%
   mutate(
        # Set "Never" (0) as baseline for smoking
        smoking = factor(smoking,
           levels = c("0", "1", "2", "-3"),
           labels = c("Never", "Previous", "Current", "Prefer not to
            → answer")
        ),
        # Set "No" (0) as baseline for diabetes
        diabetes = factor(diabetes,
            levels = c("0", "1", "-1", "-3"),
            labels = c("No", "Yes", "Do not know", "Prefer not to answer")
        ),
        # Ensure other categorical variables are properly factored
        ethnicity = factor(ethnicity,
           levels = c("1", "2", "3", "4", "5", "6"),
           labels = c("White", "Mixed", "Asian/Asian British", "Black/Black
            ⇔ British", "Chinese", "Other")
```

```
),
    education = factor(education,
        levels = c("1", "2", "3", "4", "5", "6", "-7", "-3"),
        labels = c(
            "College/University degree", "A levels/AS levels",
            "O levels/GCSEs", "CSEs", "NVQ/HND/HNC",
            "Other professional", "None of the above",
            "Prefer not to answer"
       )
    ),
    activity = factor(activity,
        levels = c("0", "1", "2"),
        labels = c("Low", "Moderate", "High")
    ),
    sex = factor(sex,
       levels = c("0", "1"),
       labels = c("Female", "Male")
    ),
    hypertension_treatment = factor(hypertension_treatment,
        levels = c("0", "1"),
       labels = c("No", "Yes")
    )
)
```

Note now the interpretation of HR is different! For example, if HR=1.16 for the predictor in the univariate model fitted using scaled data, it means that each standard deviation increase is associated with 16% higher risk of event.

Random Survival Forest (RSF)

Variable Selection

The method argument can be set to vh instead for variable hunting, which should be used for problems where the number of variables is substantially larger than the sample size.

```
n_cores <- min(parallel::detectCores() - 1, 32)
cl <- makeCluster(n_cores)
registerDoParallel(cl)</pre>
```

```
rsf_var_select <- var.select.rfsrc(Surv(time, event) ~ .,
    data = data,
    method = "md",
    seed = 1234,
    ntree = 200,
    parallel = TRUE
) # minimal depth variable selection</pre>
```

```
running forests ... minimal depth variable selection ...
```

family : surv

var. selection : Minimal Depth

conservativeness : medium x-weighting used? : TRUE dimension : 87 sample size : 19577 ntree : 200 nsplit : 10 mtry : 30 nodesize : 2 refitted forest : FALSE model size : 87

depth threshold : 13.917

Top variables:

		vimp
age	1.105	0.116
hypertension_treatment	1.950	0.024
sex	2.335	0.016
systolic_bp	2.940	0.003
diabetes	3.285	0.045
max_heart_rate	3.530	-0.014
BMI	3.545	0.003
max_workload	3.605	-0.006
hdl_chol	3.865	-0.002
total_chol	4.735	0.002
education	4.740	0.004
HRV_Prc20NN	5.010	-0.011
HRV_ApEn	5.505	-0.001
smoking	5.545	-0.007
HRV_IALS	5.610	0.000
HRV_PIP	5.670	0.002
HRV_KFD	5.700	-0.002
HRV_CD	5.750	-0.006
HRV_MinNN	5.865	0.000
HRV_TINN	5.925	0.012
HRV_HTI	5.950	-0.011
HRV_PAS	5.990	-0.003
HRV_LZC	6.040	-0.006
HRV_ShanEn	6.130	-0.002
HRV_AI	6.140	-0.008
HRV_PI	6.160	-0.002
ethnicity	6.215	-0.017
HRV_pNN50	6.215	-0.003
HRV_MadNN	6.240	-0.003
<pre>HRV_MFDFA_alpha1_Delta</pre>	6.245	-0.004
HRV_GI	6.260	-0.005
<pre>HRV_MFDFA_alpha1_Asymmetry</pre>	6.290	-0.006
HRV_MedianNN	6.310	-0.001
HRV_SI	6.380	-0.006
HRV_MFDFA_alpha1_Peak	6.380	-0.009
HRV_MFDFA_alpha1_Max	6.410	-0.004
HRV_Prc80NN	6.450	-0.006
HRV_HFn	6.500	-0.006

HRV_FuzzyEn	6.535	-0.007
HRV_MCVNN	6.560	-0.001
<pre>HRV_MFDFA_alpha1_Mean</pre>	6.560	-0.005
HRV_Cd	6.590	0.000
HRV_Ca	6.605	-0.002
HRV_C2a	6.615	-0.003
HRV_CMSEn	6.615	-0.005
<pre>HRV_MFDFA_alpha1_Increment</pre>	6.645	-0.004
HRV_MFDFA_alpha1_Width	6.670	-0.003
HRV_LF	6.680	-0.002
HRV_C2d	6.685	-0.002
HRV_C1d	6.700	-0.004
${\tt HRV_MFDFA_alpha1_Fluctuation}$	6.705	-0.006
HRV_IQRNN	6.720	0.000
HRV_SDRMSSD	6.725	-0.004
HRV_HF	6.740	-0.007
HRV_SD1SD2	6.740	-0.006
HRV_MSEn	6.740	-0.005
HRV_MeanNN	6.750	-0.004
HRV_PSS	6.805	-0.003
HRV_TP	6.810	-0.005
HRV_C1a	6.810	-0.004
HRV_DFA_alpha1	6.810	-0.005
HRV_VHF	6.825	-0.001
HRV_MaxNN	6.840	-0.005
HRV_RCMSEn	6.865	-0.005
HRV_pNN20	6.875	-0.002
HRV_HFD	6.905	-0.002
HRV_LnHF	6.945	-0.007
HRV_LFHF	6.950	-0.004
HRV_CSI	6.990	-0.002
HRV_CVSD	7.025	-0.003
HRV_LFn	7.050	-0.003
HRV_CSI_Modified	7.140	-0.001
HRV_CVNN	7.480	-0.001
HRV_SDNN	7.535	0.001
HRV_RMSSD	7.560	-0.001
HRV_SD2a	7.560	-0.002
HRV_SDNNa	7.565	0.001
HRV_SD1	7.635	-0.005
HRV_SD2	7.650	0.000
HRV_SD1d	7.695	-0.002
HRV_SDNNd	7.715	0.001

```
HRV_SDSD 7.750 -0.001
HRV_SD2d 7.755 -0.001
HRV_SD1a 7.825 -0.001
HRV_CVI 7.900 -0.001
HRV_S 8.025 0.000
activity 8.050 0.000
```

stopCluster(cl)

```
vars_ranked <- rsf_var_select$topvars</pre>
```

Cross Validation to Select the Best Number of Features

We will use 10-fold cross validation to select the best number of features used in the model.

```
set.seed(1234)
folds <- createFolds(data$event, k = n_folds) # return indices of folds</pre>
cv_errors <- pmclapply(seq(1, length(vars_ranked), by = 1),</pre>

    function(num_vars) {
    message(paste0("Calculating the CV error with ", num_vars, " variables"))
    selected_vars <- vars_ranked[1:num_vars]</pre>
    fold_errors <- sapply(folds, function(fold_idx) {</pre>
        # * We adopt same approach as XGBoost to avoid segmentation fault.
        train_data_fold <- data[-fold_idx, c("time", "event", selected_vars)]</pre>
        train_data_fold <- model.frame(~ . - 1, data = train_data_fold,</pre>

¬ na.action = na.pass)

        train_data_fold <- model.matrix(~ . - 1, data = train_data_fold)</pre>
        train_data_fold <- as.data.frame(train_data_fold)</pre>
        val_data_fold <- data[fold_idx, c("time", "event", selected_vars)]</pre>
        val_data_fold <- model.frame(~ . - 1, data = val_data_fold, na.action</pre>
    = na.pass)
        val_data_fold <- model.matrix(~ . - 1, data = val_data_fold)</pre>
        val_data_fold <- as.data.frame(val_data_fold)</pre>
        model <- rfsrc.fast(Surv(time, event) ~ .,</pre>
            data = train_data_fold,
            ntree = 200,
             forest = TRUE
```

```
cv_errors <- as.numeric(cv_errors)
plot(1:length(cv_errors), cv_errors)</pre>
```



```
best_num_vars <- which.min(cv_errors)
vars_selected <- vars_ranked[1:best_num_vars]</pre>
```

```
print(paste0("The best number of features to retain is ", best_num_vars))
```

[1] "The best number of features to retain is 13"

Model Fitting

```
data_selected <- data[, c("time", "event", vars_selected)]</pre>
data_selected <- model.frame(~ . - 1, data = data_selected, na.action =

¬ na.pass)

data_selected <- model.matrix(~ . - 1, data = data_selected)</pre>
data_selected <- as.data.frame(data_selected)</pre>
# Before formally fitting the model, we can tune the hyperparameters to find:
# 1. optimal mtry (possible split at each node)
# 2. optimal nodesize (minimum size of terminal nodes)
rsf_tuned <- tune.rfsrc(</pre>
    Surv(time, event) ~ .,
    data = data_selected,
)
rsf_model <- rfsrc(Surv(time, event) ~ .,</pre>
    data = data_selected,
    ntree = 500,
    mtry = rsf_tuned$best.mtry,
    nodesize = rsf_tuned$best.nodesize
```

```
data_full <- model.frame(~ . - 1, data = data, na.action = na.pass)
data_full <- model.matrix(~ . - 1, data = data_full)
data_full <- as.data.frame(data_full)

# We also fit the full model
rsf_tuned_full <- tune.rfsrc(
    Surv(time, event) ~ .,
    data = data_full,
)</pre>
```

```
rsf_model_full <- rfsrc(Surv(time, event) ~ .,
    data = data_full,
    ntree = 1000,
    mtry = rsf_tuned_full$best.mtry,
    nodesize = rsf_tuned_full$best.nodesize
)</pre>
```