First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L2: Entry 1 of 2

File: EPAB

Mar 24, 1988

PUB-NO: DE003631123A1

DOCUMENT-IDENTIFIER: DE 3631123 A1

TITLE: Process for adhesively bonding the sole and upper of shoes

PUBN-DATE: March 24, 1988

INVENTOR-INFORMATION:

NAME COUNTRY

FAST, GEB FALIER DE

ASSIGNEE-INFORMATION:

NAME

FAST GEB FALIER MARIA DE

APPL-NO: DE03631123

APPL-DATE: September 12, 1986

PRIORITY-DATA: DE03631123A (September 12, 1986)

US-CL-CURRENT: 36/19.5

INT-CL (IPC): A43D 25/06; A43D 25/20

EUR-CL (EPC): A43D025/06; A43D037/00, B29C059/16, C08J007/12, C09J005/02

ABSTRACT:

CHG DATE=19990617 STATUS=0> A description is given of a process for adhesively bonding the surface of the sole and upper of shoes using polyurethane adhesives. To improve the adhesive bond between upper and sole, the surface of the sole is pretreated and the treated surface of the sole consists of vulcanised rubber materials or of thermoplastic rubber materials. The surface of the sole is cleaned with a low-boiling solvent and then subjected to a brief treatment with UV rays of a wavelength of about 200-400 nm. On account of the low expenditure of energy, time and work, this process is very cost-effective and, in addition, environmentally

friendly, because it precludes the use of toxic surface treating agents.

Previous Doc Next Doc Go to Doc#

First Hit Previous Doc

Next Doc

Go to Doc#

End of Result Set

Generate Collection

Print

L2: Entry 2 of 2

File: DWPI

Mar 24, 1988

DERWENT-ACC-NO: 1988-085249

DERWENT-WEEK: 198813

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Treating shoe sole for gluing to upper - by irradiating briefly with UV of specified wavelength range after cleaning with solvent, eliminating use of toxic

agents

INVENTOR: FAST, M

PATENT-ASSIGNEE:

ASSIGNEE CODE
FAST F M FASTI
SCHUSINSKI E SCHUI

PRIORITY-DATA: 1986DE-3631123 (September 12, 1986)

Search Selected

Search ALL

∴Clear.

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

DE 3631123 A March 24, 1988 007

DE 3631123 C April 19, 1990 000

APPLICATION-DATA:

PUB-NO APPL-DATE

PPL-DATE APPL-NO DESCRIPTOR

DE 3631123A September 12, 1986 1986DE-3631123

INT-CL (IPC): A43D 25/06

ABSTRACTED-PUB-NO: DE 3631123A

BASIC-ABSTRACT:

The soles and uppers of shoes are bonded together with polyurethans adhesive after treating the surface of the sole to improve the bond. This treated surface is a cured rubber or thermoplastic rubber and is cleaned with a low b.pt. solvent and then subjected to a short irradiation with u/v of wavelength 200-400nm.

ADVANTAGE - Excellent bonds are obtd. without using toxic surfact-treating agents. ABSTRACTED-PUB-NO:

DE 3631123C

EQUIVALENT-ABSTRACTS:

The glueing of a sole of vulcanised or thermoplastic rubber to a shoe upper with a polyurethane adhesive is improved by first cleaning the sole upper surface with a low boiling solvent and then treating the cleaned surface with UV light of wave length 200-400 nm for a time of the order of minutes, pref.

15-30 mins. ADVANTAGE - Adhesion is improved without the use of toxic halogenating agents.

(7pp)

CHOSEN-DRAWING: Dwg.0/2

TITLE-TERMS: TREAT SHOE SOLE GLUE UPPER IRRADIATE BRIEF ULTRAVIOLET SPECIFIED WAVELENGTH RANGE AFTER CLEAN SOLVENT ELIMINATE TOXIC AGENT

ADDL-INDEXING-TERMS: POLYURETHANE ADHESIVE

DERWENT-CLASS: A35 A83 P22

CPI-CODES: A05-G01E; A11-C01C; A11-C04E; A12-A05F; A12-C04;

UNLINKED-DERWENT-REGISTRY-NUMBERS: 0122U ; 1508U ; 1520U ; 1725U ; 1966U ; 5314U

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Key Serials: 0009 0010 3003 0037 0206 0218 0222 0223 0224 3000 0072 0183 0229 0304 0306 3159 0318 1095 1294 1985 2016 2018 2020 2194 2198 2208 2209 2217 2218 2219 2236 2301 2302 2307 2315 2321 2477 2488 3252 2682 2726 0105

Multipunch Codes: 014 03- 032 034 040 055 056 058 07& 07- 075 08- 09& 10- 11& 117 122 13- 15- 150 231 255 27& 299 303 305 306 307 308 310 311 314 315 341 353 359 364 365 371 44& 443 446 45- 466 473 477 48- 54& 546 582 597 600 609 688 721

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1988-038207 Non-CPI Secondary Accession Numbers: N1988-064340

Previous Doc Next Doc Go to Doc#

DEUTSCHLAND

DEUTSCHES PATENTAMT

② Aktenzeichen:

P 36 31 123.5

Anmeldetag: 1
 Offenlegungstag: 2

12. 9.86 24. 3.88

<u>Behördeneigentum</u>

Anmelder:

Fast, geb. Falier, Maria, 8031 Eichenau, DE

· (34) Vertreter:

Geyer, W., Dipl.-Ing. Dr.-Ing.; Hagemann, H., Dipl.-Chem. Dr.rer.nat.; Kehl, G., Dipl.-Phys., Pat.-Anwälte, 8000 München @ Erfinder:

gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

(8) Verfahren zum Verkleben von Sohle und Schaft von Schuhen

Beschrieben wird ein Verfahren zum Verkleben der Oberfläche von Sohle und Schaft von Schuhen mit PolyurethanKlebstoffen, wobei die Sohlenoberfläche zur Verbesserung der Klebverbindung zwischen Schaft und Sohle vorbehandelt wird und die behandelte Oberfläche der Sohle aus vulkanisierten Gummimaterialien oder aus thermoplastischen Kautschukmaterialien besteht, die Oberfläche der Sohle mit
einem niedrig-siedenden Lösungsmittel gereinigt und darauf einer kurzzeitigen Behandlung mit UV-Strahlen einer
Wellenlänge von etwa 200 bis 400 nm unterzogen wird. Dieses Verfahren ist aufgrund des geningen Energie-, Zeit- und
Arbeitsaufwandes sehr wirtschaftlich und darüber hinaus
umweltfreundlich, weil es die Verwandung toxischer Oberflächenbehandlungsmittel ausschließt.

ΓIG. 1

Patentansprüche

1. Verfahren zum Verkleben der Oberfläche von Sohle und Schaft von Schuhen mit Polyurethan-Klebstoffen, wobei die Sohlenoberfläche zur Verbesserung der Klebverbindung zwischen Schaft und Sohle vorbehandelt wird, dadurch gekennzeichnet, daß die behandelte Oberfläche der Sohle aus vulkanisierten Gummimaterialien oder aus thermoplastischen Kautschukmaterialien besteht, die Oberfläche der Sohle mit einem niedrig-siedenden Lösungsmittel gereinigt und darauf einer kurzzeitigen Behandlung mit UV-Strahlen einer Wellenlänge von etwa 200 bis 400 nm unterzogen wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche der Sohle mit einem Lösungsmittel eines Siedebereiches von 60 bis 80°C gereinigt wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Lösungsmittel Benzin verwendet wird. 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mit UV-Strahlen eines Spektralbereichs

von etwa 230 bis 280 nm behandelt wird.

3

10

15

20

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit UV-Strahlen eines Spektralbereiches mit einem Maximum von etwa 254 nm behandelt wird.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mehr als 5 Minuten mit UV-Strahlen behandelt wird.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß etwa 15 bis 30 Minuten lang mit UV-Strahlen behandelt wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Verkleben der Oberfläche von Sohle und Schaft von Schuhen mit Polyurethan-Klebstoffen, wobei die Sohlenoberfläche zur Verbesserung der Klebverbindung zwischen Schaft und Sohle vorbehandelt wird.

In der Schuhindustrie ist es derzeit bei der Verklebung von Sohle und Schaft mittels Polyurethan-Klebstoffen erforderlich, die Sohlenoberfläche zu aktivieren, um danach den Polyurethan-Klebstoff aufzutragen und die wünschenswerte feste Verbindung zwischen Sohle und Schaft zu erreichen. In dem Falle, daß die Sohle aus vulkanisiertem Gummi (vulkanisierter, natürlicher oder synthetischer Kautschuk/vgl. hierzu Römpps Chemie-Lexikon, & Aufl., Bd. 2, 1981, S. 1558/1559) oder TR-Blockcopolymerisaten (vgl. Römpps Chemie-Lexikon, Aufl., Bd. 6, 1977. S. 3564) besteht, erfolgt die Oberflächenaktivierung nach bekannten Verfahren mechanisch und/oder chemisch. Bei dem mechanischen Verfahren wird die Oberfläche der Sohle aufwendig aufgeraut bzw. geschliffen. Die chemische Behandlung erfolgt mit chlorhaltigen Oxidationsmitteln, so mit den unter den Handelsbezeichnungen ICORTIN C 27, HALOSOL-3FL vertriebenen Mitteln. Die mechanische und chemische Oberflächenbehandlung kann auch in Kombination miteinander erfolgen. Nach dieser Behandlung wird die Sohle für mindestens 30 Minuten beiseite gelegt und dann erst mit dem Polyurethan-Klebstoff bestrichen, um mit dem Schaft verklebt zu werden. Die oben beschriebenen bekannten Verfahren zur Vorbehandlung der mit dem Schaft zu verklebenden Sohle zeigen verschiedene Nachteile. Das Aufrauhen führt zu einer Klebeverbindung, die nicht zufriedenstellt, bzw. unzuverlässig ist. Die Behandlung der Sohlenoberfläche mit chlorhaltigen Oxidationsmitteln ist teuer. Darüber hinaus sind diese Mittel aufgrund ihrer Toxizität gefährlich. Trotz dieser seit langem erkannten Nachteile und des seit langem bestehenden Bedürfnisses, hier nützliche Abhilfe zu schaffen, sind bis heute noch keine praktikablen Verbesserungen vorgeschlagen worden.

Der Erfindung liegt die Aufgabe zugrunde, das eingangs beschriebene Verfahren so weiterzubilden, daß zwischen Sohle und Schaft eine bessere Verklebung erzielt wird und darüber hinaus auf toxische Oberflächenbe-

handlungsmittel verzichtet werden kann.

Die Erfindung löst diese Aufgabe dadurch, daß die behandelte Oberfläche der Sohle aus vulkanisierten Gummimaterialien oder aus thermoplastischen Kautschukmaterialien besteht, die Oberfläche der Sohle mit einem niedrig-siedenden Lösungsmittel gereinigt und darauf einer kurzzeitigen Behandlung mit UV-Strahlen einer Wellenlänge von etwa 200 bis 400 nm unterzogen wird.

Wenn im Rahmen der Erfindung von einem "niedrig-siedenden Lösungsmittel" gesprochen wird, so ist dieser Begriff weitestgehend zu verstehen. Hierbei ist insbesondere die Funktion des Lösungsmittels zu bedenken. Es dient dazu, die Oberfläche in geeigneter Weise zu reinigen und damit für den Auftrag des Polyurethan-Klebstoffs vorzubereiten. Um eine möglichst zügige Versahrensführung zu gewährleisten, wird ein Lösungsmittel niedrigen Siedepunktes verwendet. Ein Lösungsmittel eines Siedebereiches von 60 bis 80°C gilt als bevorzugt. Zu den besonders geeigneten Lösungsmitteln zählen Benzine, Aceton, Ketone, wie Methylethylketon, und Ester, wie Ethylacetat. Hierunter werden die Benzine bevorzugt.

Grundsätzlich können folgende im Sinne der Erfindung unter den Begriff "niedrig-siedendes Benzin" fallenden Flüssigkeiten mit besonderem Vorteil zur Reinigung der Sohlenoberfläche herangezogen werden: Petrolether, Siedegrenzenbenzine I, II und III. FAM-Normalbenzin, Lackbenzin, Waschbenzin, und Aliphatin (vgl. Römpps Chemie-Lexikon, Bd. 1, 8. Aufl., 1979, S. 396).

Dem Fachmann ist es ohne weiteres ersichtlich, daß die vorstehende Auflistung von Lösungsmitteln nicht vollständig ist. Vielmehr fallen hierunter verschiedene weitere Lösungsmittel, insbesondere "Benzin-Sorten", die in ihrer Zusammensetzung den obengenannten Flüssigkeiten mehr oder weniger weit entsprechen und auch einen Siedepunkt aufweisen, der dazu führt, daß nach dem Reinigen noch anhaftendes Lösungsmittel möglichst schnell verdunstet.

Der Auftrag des Lösungsmittels erfolgt mit den üblichen Auftrags- bzw. Reinigungssystemen, die dem Fachmann geläufig sind. Hierin ist auch kein wesentliches Merkmal der Erfindung zu sehen. Als vorteilhaft erweist sich der Auftrag des Lösungsmittels mit einem Pinsel, wobei eventuell vorhandene Staub- und Fettbelege

entfernt werden.

Nachdem die Reinigung mit dem niedrig-siedenden Lösungsmittel abgeschlossen ist, wird die Sohlenoberfläche einer Behandlung mit UV-Strahlen eines Spektralbereiches von etwa 200 bis 400 nm ausgesetzt. Dabei wird der Bereich von etwa 230 bis 270 nm bevorzugt, wobei das Maximum vorzugsweise stets etwa 254 nm beträgt. Diese Behandlung mit UV-Strahlen kann kurzzeitig erfolgen. So kann eine Einwirkung der UV-Strahlen während etwa 5 Minuten bereits ausreichen. Bevorzugt wird allerdings eine Behandlungszeit von etwa 15 bis 30 Minuten. Für die Behandlung mit UV-Strahlen hat sich eine Quecksilberhochdrucklampe (Philips, HPI-T) einer Leistung von 400 Watt als besonders vorteilhaft erwiesen.

Während der Einwirkung der UV-Strahlen wird Ozon erzeugt, das auf die Sohlenoberstäche aus vulkanisiertem Gummi oder aus den thermoplastischen Kautschukmaterialien (TR-Blockmischeopolymermaterialien) ehemisch einwirkt. Durch diese photochemische Einwirkung wird die Oberstäche der Sohle in einem solchen Maße
aktiviert, daß die Verklebung mittels Polyurethan-Klebstossen zu ganz vorzüglichen Bindesestigkeitswerten
fihrt.

Die erfindungsgemäß erzielten photochemischen Effekte auf der Oberfläche des vulkanisierten Gummis bzw. aus TR-Blockmischeopolymermaterialien führen zu keinen nachteiligen physikalischen Veränderungen, was nachfolgend noch anhand eines Vergleichsbeispiels gezeigt wird. Ein weiteres Vergleichsbeispiel zeigt die Überlegenheit des erfindungsgemäßen Verfahrens gegenüber einem vorbekannten Verfahren, bei dem eine reine chemische Oberflächenbehandlung der Sohle erfolgt.

Das erfindungsgemäße Verfahren läßt sich anhand einer Einrichtung besonders gut durchführen, die durch die nachfolgend erörterten Fig. 1 und 2 näher dargestellt wird.

Die Fig. 1 stellt die Vorderseite der besonders vorteilhaften Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens dar. Diese Einrichtung besteht aus einem Blechkasten 1 und einer Haube 2, unter der Quecksilberhochdrucklampen (2 Einheiten mit der Leistung von 400 Watt) befestigt sind. Die Fronttafel weist einen Nockenschalter 4, die Zeitrelais-Zahlenscheibe 3 und die Meldeleuchte 5 auf. An der Seitenwand befindet sich die Steckverbindung 6 für einen nicht gezeigten Spartrafo. Der Netzanschluß erfolgt mit einer Schnur mit dem Schutzkontaktstecker. Die erfindungsgemäß zu behandelnde Sohle wird auf den Blechkasten 1 unter die Haube 2 gestellt. Die gewünschte Einwirkungszeit von Ozon durch Behandlung mit UV-Strahlen wird mit Hilfe der auf der Vorderseite befindlichen Zeitrelais-Zahlenscheibe 3 eingestellt. Die Spartrafo-Ausgangsspannung wird an die Steckverbindung 6 angeschlossen. Durch die Betätigung des Nockenschalters 7 beginnt der Arbeitszyklus, dessen Ablauf durch die elektrische Schaltung der Fig. 2 dargestellt wird. L und N bedeuten den Anschluß an ein normales Netz.

Durch die Betätigung des Nockenschalters 16 der Fig. 2 werden der Betriebsschalter 13, der die Quecksilberlampen 12a und 12b aktiviert, und das Zeitrelais 14 an die Spannung angeschlossen. Hiermit beginnt der Zeitablauf.

Die Quecksilberlampen strahlen das UV-Licht aus, wodurch Ozon gebildet wird. Das Ozon wirkt auf die Sohle unter der Haube ein. Die Intensität der Ozonbildung (Konzentration des Ozons) kann durch die Veränderung der Spannung der Quecksilberlampe mit Hilfe des Spartrafos 8 geändert werden. Nach dem eingestellten Zeitablauf wird der Betriebsschalter 13 ausgeschaltet. Der Zyklus ist somit beendet. Das Verfahren der Oberflächenbehandlung der Sohle wird erneut dadurch eingeleitet, indem kurzzeitig ausgeschaltet und darauf der Nockenschalter 16 wieder betätigt wird. In der Fig. 2 sind des weiteren dargestellt: Anschlüsse 9, Sicherungen 10a und 10b (Sicherungsstärke: 6 Ampere), Drosselspulen 11a und 11b (Stärke: 400 Watt), Zeitrelais 14, Meldeleuchte 15 und Nockenschalter 16.

Die besonderen Vorteile des erfindungsgemäßen Verfahrens sind insbesondere darin zu sehen, daß gegenüber den chemisch-/mechanischen Verfahren weniger Aufwand an Energie, Zeit bzw. Arbeit erfolgt, es somit wirtschaftlicher ist. Gegenüber den chemischen Verfahren ist es umweltfreundlicher, da die Verwendung toxischer halogenhaltiger Mittel entfällt. Hierdurch werden die Bedingungen, unter denen das Betriebspersonal arbeiten muß, wesentlich verbessert.

Die Erfindung wird nun anhand von Beispielen näher erläutert werden, bei denen bekannte Oberflächenbehandlungsverfahren zum Vergleich herangezogen werden.

Beispiel 1

50

Die erfindungsgemäß einerseits und nach dem Stand der Technik andererseits behandelten Proben aus verschiedenen Gummimischungen wurden mit Naturleder (Spaltvelour) verbunden. Auf die Probeplättehen wurden je zwei Klebstoffschichten (Trocknungszeit 15—20 min) aufgetragen. Nach der Trocknung erfolgte Wärmeaktivierung bei 70°C während 10 sec. Die miteinander verbundenen Probeplättehen wurden danach mit 3 bis 3,5 bar Überdruck (3 bis 3,5 atū) gepreßt. Auf einer Zugprüfmaschine (Dynamometer) wurde die Trennkraft zwischen den verklebten Materialien bei einer Geschwindigkeit von 100 mm/min geprüft. Die erzielten Ergebnisse werden in der nachfolgenden Tabelle 1 zusammengestellt. Darin bedeuten die Bezeichnungen B₁ und B₂ verschiedene Polyurethan-Klebstoffe. Die Zahlenwerte bedeuten die Trennkraft in N/mm. Ferner bedeuten M₁ = braum, M₂ = transparent, M₃ = grau, M₄ = schwarz, M₅ = weiß und M₆ = transparent für die verschiedenen Gummimischungen der Sohle. Die Mindestbehandlungszeit zur Erzielung optimaler Ergebnisse beträgt bei den Proben M₁ bis M₆ 15 Minuten. Diese Zeit ist bei den verschiedenen Farben unterschiedlich. M₁ und M₅ (helle Farben) ergeben ein optimales Ergebnis bei 30 Minuten. Für M₃ und M₄ sowie M₂ und M₆ (transparent) genügen 15 Minuten.

Bei den Gummimischungen M₁ und M₅ kam es während der 15 min dauernden photochemischen Aktivierung in manchen Fällen zur Trennung der Klebstoffschicht. Bei der Aktivierungsdauer von 30 min wurde eine derartige Erscheinung nicht beobachtet. Beim photochemischen Verfahren während 30 min und bei den soge-

nannten Schwarzmischungen war die Trennkraft unmittelbar nach der Verklebung der Proben (in der sogenannten Nullzeit) ersichtlich besser.

					Tancine 1	-							
Oberflächenbehandlung	Tremnung	M		M2		ž		¥		Ms		ž.	
		B,	B ₂	B ₁	B ₃	ā	B3	ď.	B ²	คื	B,	g	B
Halogenisierung mit Halosol 3 FL	1. h	80 80	9,1	7,3	8,1	7,5	10,0	£,8	0,8	27	8,7	2,2	5.2
	72 h	8 ,5	12,0	10,3	10,0	8,1	9,1	9'11	12,5	8,1	9,6	8,8	5,7
Erfindungsgemäße Behandlung	1 h	0,6	10,8	9'9	7,1	8,3	. 9,8	2,6	90 90	8,3	7.3	\$2	52
(Reinigung und 15 min photo- chemische Behandlung)	72 h	£,	11,9	10,0	11,1	6,	10,0	11,8	13,0	.	2,6	5,7	5,8
Ersindung (Reinigung und 30 min	1 h	9,1	9,4	4,7	7,1	8,1	8,3	9,6	8, 2,8	8,4	7.5	5.3	5.4
photochemische Benandlung)	72 h	1,6	12,0	10,1	11,4	8,2	10,0	12,0	13,0	8,5	9,6	5,7	5,6

OS 36 31 123

Anmerkungen zur Tabelle !

B₁ and B₂ sind Polyarethan-Klebstoffe folgender Zusammensetzung:
B₄ = Ultraflex-4814 (von der Firma Fuller GmbH, München), zuzüglich 5% Desmodur-RF (von der Firma Bayer AG, Leverkusen);

M₁ bis M₆ sind verschiedene Gummimischungen. Ihre Zusammensetzung ist wie folgt, wobei die in Klammern 10 gesetzten Zahlenwerte Gewichtsteile bedeuten.

Mr: Solprene 1205 (1994.0), Kralex 01040252 ML (486.0), ZnO (aktiv) (49.0), Stearinsäure (73.0), Vulkacit DM (29.0), Vulkacit H (49.0), Vulkacit P-extra-N (19.5), Akticit B (Aktivator B) (26.0), Phthalsäuredioctylester (146.0), Vulkanox DS (24.0), vulkasil S (1105.5) und Schwefel (49.0).

M2: Styrol-Butadien-Kautschuk-1778 (100,0), ZnO (aktiv) (1,0), Stearinsäure (2,0), Kolophonium (4,0), Permanax ExP. (0,5), Mineralol (Weichmacher) (6,0), Vulkalent B/C (0,5), Ultrasil VN-3 (60,0), PEG-4000 (1,3), Vulkacit DOTIG (1,5), Vulkacit H (1,2), Vulkacit DM (1,4) und Schwefel (1,5).

M3: Styrol-Butadien-Kautschuk 1502 (100,0), ZnO (4,0), Mineralöl (paraffinierter Typ) (Weichmacher) (20,0), Ultrasil VN₋₁ (50,0), Vulkafor MBTS (Vulkacit DM) (1,5), Vulkacit H (1,0), Vulkacit P-extra-N (1,0), PEG-4000 (2,0), Ruß, GPF, N-660 (20% Charge) (0,4), Mineralkautschuk (50%) (0,15), TiO₂ (0,4), Kolophonium (1,0) und Schwefel (1,8).

M4: SKS-30 ARKM-15 (100,0), Gummimchl (30,0), ZnO (5,0), Stearinsäure (1,0), Vulkanox DS (1,0), Mineralöl (paraffinierter Typ) (Weichmacher) (5,0), Ruß, N-550 (Sterlin SO) (5,0), PEG-4000 (1,0), Ultrasil VN_1 (55,0), Vulkacit DM (1,5), Vulkacit D (0,8), Vulkacit Thiuram MS (0,8) und Schwefel (2,0).

Styrol-Butadien-Kautschuk 1502 (1000), KER-1904 (11.0), Ultrasil VN_1 (32.6), TiO2 (11.0), Vulkanox DS (1.1), Stearinsäure (1.5), Mineralöl (paraffinierter Typ) (Weichmacher) (3,3), ZnO (4,4), Vialkyd AN/60/100 (3,3), Ultramarin (50% Charge) (0,1), Gummimehl (33,3), PEG-4000 (1,3), Vulkacit DM (1,6), Vulkacit D (1,5), Vulkalent G (0,3) und Schwefel (2,2).

Styrol-Butadien-Kautschuk 1502 (100,0), KER-1904 (11,2), Fe₂O₃ (Typ 720) (50% Charge) (0,5), Mineral-kautschuk (50% Charge) (0,3), Hostasin-HR (0,2), TiO₂ (2,2), ZnO (4,5), Stearinsäure (1,1), Vulkacit DM (1,7), Vulkacit D (1,3), Santogard PV (0,3), PEG-4000 (2,2), Vulkasil S (56,2), Kaolin (32,8), Vulkanox DS (1,1), Mineralöl (paraffinierter Typ) (Weichmacher) (6,7) und Schwefel (2,2).

Der vorstehend genannte Styrol-Butadien-Kautschuk 1502 setzt sich zusammen aus 55% Styrol-Butadien-Co-polymer (64% Butadien), 30% Polystyrol und 15% α-Methylstyrolpolymer.

Beispiel 2

Es wurden verschiedene physikalische Werte ermittelt, die sich einstellen, wenn einerseits erfindungsgemäß und andererseits ohne Oberflächenbehandlung vorgegangen wird. In der nachfolgenden Tabelle bedeuten dabei: A = Reinigung und photochemische Behandlung während 15 min (Erfindung), B = keine Oberflächenbehandlung, C = Reinigung und photochemische Behandlung während 15 min, Bestimmung der Werte bei konstanter Temperatur von 70°C nach 7 Tagen (Erfindung) und D = keine erfindungsgemäße Behandlung, Ermittlung der Werte nach 7 Tagen bei konstanter Temperatur von 70°C.

55

65

OS 36 31 123

Tabelle 2
(Physikalisch-mechanische Rigenschaften)

			(Filysika	nscu-mec	manuscrite is	Renzemi	ai)			
	Tempe	satur			•					
	150°C					150°C				
	Zeit in	nin								
	5	10	15	20	25	5	10	15	20	25
Modul - 200%	,							•		
A	23	25	28	28	28	24	25	25	26	26
В	25	28	28	28	28	24	25	28	28	27
C	41	37	37	30	30	37	36	38	36	38
D	40	40	37	38	31	36	37	38	38	39
Modul - 300%	1									
A	35	40	43	43	43	36	37	39	39	41
В	35	42	43	43	43	35	37	39	41	42
C	-	59	.59	58	46	56	55	57	54	56
D	-	S6	59	56	46	55	55	56	58	59
Stärke in kg/cm²										
A	103	95	90	95	90	135	148	145	145	148
В	100	95	96	. 85	89	140	141	145	147	143
C	56	57	62	62	63	140	132	135	135	120
מ	54	61	65	57	64	138	129	135	132	130
Ausdehnung in %										
A	560	500	450	460	470	760	770	740	750	740
В	550	480	460	450	470	780	770	770	740	740
C	270	300	300	310	350	640	620	630	680	630
D	260	290	320	300	360	650	620	640	640	650
Elastische Gegenkraft in %		•				•				
A	34	35	35	35	35	23	24	24	24	24
В	35	36	36	35	35	24	24	23	24	25
C	36	36	34	32	33	30	30	-30	30	30
D	38	38	37	38	35	19	29	30	29	29
Dichte in g/cm²			-				÷			
A			1,17					1,17		
В			1,17					1,17		
C			1,17					1,17		
D			1,17					1,17	-	
Abnutzung in cam³					•					-
A			201					141		
В			204					227	_	
C			250					275		•
D		•	270					238		
Reißfestigkeit in										•
A			26					46		
В			29					46		
C			30					41		
D	•		29					42		

Nummer:

Int. Cl.4: Anmeldetag: Offenlegungstag:

36 31 123 A 43 D 25/06 12: September 1986 24: März 1988

808 812/157

3631123

