BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/~bbm205

Lecture 8: Connectivity, Euler Walk,
Hamilton Paths/Cycles,
Graph Coloring, Planar Graphs
Lecturer: Lale Özkahya

Resources:

Kenneth Rosen, "Discrete Mathematics and App." http://www.inf.ed.ac.uk/teaching/courses/dmmr http://www.cs.nthu.edu.tw/ wkhon/math16.html

Graph Colouring

Suppose we have k distinct colours with which to colour the vertices of a graph. Let $[k] = \{1, \ldots, k\}$. For an undirected graph, G = (V, E), an admissible vertex k-colouring of G is a function $c : V \to [k]$, such that for all $u, v \in V$, if $\{u, v\} \in E$ then $c(u) \neq c(v)$.

For an integer $k \ge 1$, we say an undirected graph G = (V, E) is k-colourable if there exists a k-colouring of G.

The **chromatic number** of G, denoted $\chi(G)$, is the *smallest positive integer* k, such that G is k-colourable.

Some observations about Graph colouring

- Note that any graph G with n vertices in n-colourable.
- The *n*-Clique, K_n , i.e., the complete graph on n vertices, has chromatic number $\chi(K_n) = n$. All its vertices must get assigned different colours in any admissible colouring.
- The clique number, $\omega(G)$, of a graph G is the maximum positive integer $r \geq 1$, such that K_r is a subgraph of G.
- Note that for all graphs G, $\omega(G) \le \chi(G)$: if G has an r-clique then it is not (r-1)-colorable.
- However, in general, $\omega(G) \neq \chi(G)$. For instance, The 5-cycle, C_5 , has $\omega(C_5) = 2 < \chi(C_5) = 3$.

More observations about colouring

- As already mentioned, any bipartite graph is 2-colourable.
 Indeed, that is an equivalent definition of being bipartite.
- More generally, a graph G is k-colourable precisely if it is k-partite, meaning its vertices can be partitioned into k disjoint sets such that all edges of the graph are between nodes in different parts.

Algorithms/complexity of colouring graphs

To determine whether a *n*-vertex graph G = (V, E) is k-colourable by "brute force", we could try all possible colourings of n nodes with k colours.

Difficulty: There are k^n such k-colouring functions $c: V \to [k]$.

Question: Is there an efficient (polynomial time) algorithm for determining whether a given graph G is k-colourable?

Algorithms/complexity of colouring graphs

To determine whether a *n*-vertex graph G = (V, E) is k-colourable by "brute force", we could try all possible colourings of n nodes with k colours.

Difficulty: There are k^n such k-colouring functions $c: V \to [k]$.

Question: Is there an efficient (polynomial time) algorithm for determining whether a given graph *G* is *k*-colourable?

Answer: No, no generally efficient (polynomial time) algorithm is known, and even the problem of determining whether a given graph is 3-colourable is **NP-complete**. (Even approximating the chromatic number of a given graph is NP-hard.)

In practice, there are hueristic algorithms that do obtain good colourings for many classes of graphs.

Applications of Graph Colouring (many)

Final Exam Scheduling

- There are n courses, $\{1, \ldots, n\}$.
- Some courses have the same students registered for both, so their exams can't be scheduled at the same time.
- Let $G = (\{1, ..., n\}, E)$ be a graph such that $\{i, j\} \in E$ if and only if $i \neq j$ and courses i and j have a student in common.
- Question: What is the minimum number of exam time slots needed to schedule all n exams?
- **Answer:** This is precisely the chromatic number $\chi(G)$ of G.

Furthermore, a *k*-colouring of *G* yields an *admissible schedule* of exams into *k* time slots, allowing all students to attend all their exams, as long as different "colors" are scheduled in disjoint time slots.

What is a Planar Graph?

Definition: A planar graph is an undirected graph that can be drawn on a plane without any edges crossing. Such a drawing is called a planar representation of the graph in the plane.

Ex: K₄ is a planar graph

3

Examples of Planar Graphs

Ex: Other planar representations of K₄

Examples of Planar Graphs

• Ex: Q₃ is a planar graph

Examples of Planar Graphs

Ex: K_{1,n} and K_{2,n} are planar graphs for all n

Definition: A planar representation of a graph splits the plane into regions, where one of them has infinite area and is called the infinite region.

• Ex:

4 regions (R₄ = infinite region)

2 regions (R₂ = infinite region)

7

 Let G be a connected planar graph, and consider a planar representation of G. Let

V = # vertices, E = # edges, F = # regions.

Theorem: V + F = E + 2.

• Ex:

$$V = 4$$
, $F = 4$, $E = 6$

$$V = 8$$
, $F = 6$, $E = 12$

- Proof Idea:
 - Add edges one by one, so that in each step, the subgraph is always connected
 - Use induction to show that the formula is always satisfied for each subgraph
 - For the new edge that is added, it either joins:
 - (1) two existing vertices

(2) one existing + one new vertex

Let G be a connected simple planar graph with
 V = # vertices, E = # edges.

Corollary: If $V \ge 3$, then $E \le 3V - 6$.

- Proof: Each region is surrounded by at least 3
 edges (how about the infinite region?)
 - \rightarrow 3F \leq total edges = 2E
 - \rightarrow E + 2 = V + F \leq V + 2E/3
 - \rightarrow E \leq 3V 6

Theorem: K_5 and $K_{3,3}$ are non-planar.

- Proof:
 - (1) For K_5 , V = 5 and E = 10
 - \rightarrow E > 3V 6 \rightarrow non-planar
 - (2) For $K_{3,3}$, V = 6 and E = 9.
 - → If it is planar, each region is surrounded by at least 4 edges (why?)
 - \rightarrow F \leq $\lfloor 2E/4 \rfloor = 4$
 - \rightarrow V+F \leq 10 < E+2 \rightarrow non-planar

Definition: A Platonic solid is a convex 3D shape that all faces are the same, and each face is a regular polygon

Theorem: There are exactly 5 Platonic solids

• Proof:

```
Let n = # vertices of each polygon

m = degree of each vertex

For a platonic solid, we must have

n F = 2E and V m = 2E
```

Proof (continued): By Euler's planar formula, 2E/m + 2E/n = V + F = E + 2 \rightarrow 1/m + 1/n = 1/2 + 1/E (*) Also, we need to have n > 3 and m > 3[from 3D shape] but one of them must be = 3[from (*)]

- Proof (continued):
 - → Either

(i)
$$n = 3$$
 (with $m = 3, 4, or 5)$

(ii)
$$m = 3$$
 (with $n = 3, 4, or 5)$

Map Coloring and Dual Graph

Map Coloring and Dual Graph

Observation: A proper color of M

A proper vertex color the dual graph

Proper coloring: Adjacent regions (or vertices) have to be colored in different colors

- Appel and Haken (1976) showed that every planar graph can be 4 colored (Proof is tedious, has 1955 cases and many subcases)
- Here, we shall show that:

Theorem: Every planar graph can be 5 colored.

 The above theorem implies that every map can be 5 colored (as its dual is planar)

Proof:

We assume the graph has at least 5 vertices. Else, the theorem will immediately follow.

Next, in a planar graph, we see that there must be a vertex with degree at most 5. Else,

 $2E = total degree \ge 3V$ which contradicts with the fact $E \le 3V - 6$.

Proof (continued):
 Let v be a vertex whose degree is at most 5.

Now, assume inductively that all planar graphs with n-1 vertices can be colored in 5 colors

→ Thus if v is removed, we can color the graph properly in 5 colors

What if we add back v to the graph now ??

• Proof (continued):

Case 1: Neighbors of v uses at most 4 colors

there is a 5th color for v

• Proof (continued):

Case 2: Neighbors of v uses up all 5 colors

• Proof ("Case 2" continued):

Can we color the yellow neighbor in blue?

First, we check if the yellow neighbor can connect to the blue neighbor by a "switching" yellow-blue path

• Proof ("Case 2" continued):

Can we color the yellow neighbor in blue?

If not, we perform "switching" and thus save one color for v

• Proof ("Case 2" continued):

Can we color the yellow neighbor in blue?

Else, they are connected

orange and green cannot be connected by "switching path

• Proof ("Case 2" continued):

We color the orange neighbor in green!

→ we can perform "switching" (orange and green) to save one color for v

Definition: A subdivision operation on an edge { u, v } is to create a new vertex w, and replace the edge by two new edges { u, w } and { w, v }.

• Ex:

Definition: Graphs G and H are homeomorphic if both can be obtained from the same graph by a sequence of subdivision operations.

• Ex : The following graphs are all homeomorphic :

• In 1930, the Polish mathematician Kuratowski proved the following theorem :

Theorem:

- Graph G is non-planar
- \Leftrightarrow G has a subgraph homeomorphic to K_5 or $K_{3,3}$
- The "if" case is easy to show (how?)
- The "only if" case is hard (I don't know either ...)

• Ex: Show that the Petersen graph is non-planar.

• Proof:

Petersen Graph

Subgraph homeomorphic to K_{3,3}

Ex: Is the following graph planar or non-planar?

• Ans: Planar

