# Funções Reais de Variável Real

#### Matemática I

2018-2019



Generalidades sobre Funções Reais de Variável Real

Generalidades sobre Funções Reais de Variável Real

# Linguagem matemática

- ullet = "pertence a"
- ullet = "está contido em ou igual a"
- ullet negação:  $\sim$  "não" ou "não é verdade"
- conjunção: ∧ "e"
- disjunção: ∨ "ou"
- implicação: ⇒ "implica" ou "se ... então ..."
- equivalência: ⇔ "equivale a" ou "se e só se"
- quantificador universal: ∀ "qualquer que seja"
- quantificador existêncial: ∃ "existe pelo menos um"
- quantificador de existência e unicidade:  $\exists^1$  "existe um e um só"

## Definição de Função

Uma função f de um conjunto A para um conjunto B é uma correspondência que a cada elemento x de A associa um único elemento y de B. Simbolicamente escreve-se

$$f: A \to B$$
$$x \to y = f(x)$$

- Ao conjunto A chama-se **domínio** da função f e representa-se por  $D_f$ .
- Ao conjunto B chama-se conjunto de chegada.
- A cada elemento  $x \in A$  designa-se por **objeto**.
- Se a um elemento  $x \in A$  estiver associado um elemento  $y \in B$ , diz-se que y é **imagem** de x e representa-se por y = f(x).
- Ao conjunto das imagens chama-se **contradomínio** da função f e representa-se por  $CD_f$ .

## Definição de Função Real de Variável Real

Uma função que tem por domínio e contradomínio subconjuntos do conjunto dos números reais,  $\mathbb{R}$ , diz-se uma função real de variável real (f.r.v.r.). Simbolicamente escreve-se

$$f: D_f \subseteq \mathbb{R} \rightarrow \mathbb{R}$$
  
 $x \rightarrow y = f(x)$ 

onde  $CD_f = \{y \in \mathbb{R} : \exists x \in D_f, y = f(x)\} \subseteq \mathbb{R}.$ 

### Representação Gráfica de uma função real de variável real

Seja f uma função real de variável real, chama-se gráfico de f a

$$G_f = \left\{ (x, y) \in \mathbb{R}^2 : x \in D_f \land y = f(x) \right\}.$$

#### Observação:

- No eixo do x lê-se o domínio de f;
- No eixo do y lê-se o contradomínio de f.

## Algumas representações gráficas de funções básicas importantes:







$$f(x) = x^2$$



$$f(x) = x^3$$



$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$



$$f(x) = x^{\frac{1}{3}}$$



7 / 67

### Algumas representações gráficas de funções básicas importantes:



$$f(x) = \frac{1}{x} = x^{-1}$$



f(x) = lnx







$$f(x) = senx$$



 $f(x) = e^x$ 



f(x) = cosx

## Algumas transformações nas representações gráficas:

- y = f(x c), com  $c > 0 \longrightarrow$  deslocamento para a direita;
- y = f(x + c), com  $c > 0 \longrightarrow$  deslocamento para a esquerda;

- y = f(x) c, com  $c > 0 \longrightarrow$  deslocamento para baixo;
- $\bullet \ y = f(x) + c$ , com  $c > 0 \longrightarrow$  deslocamento para cima;
- $y = -f(x) \longrightarrow \text{reflexão em torno do eixo do } x;$
- $y = f(-x) \longrightarrow \text{reflexão em torno do eixo do } y;$
- $y = -f(-x) \longrightarrow \text{reflex}$ ão relativamente à origem.

4 D > 4 A > 4 B > 4 B > B 9 Q P

### Zeros

x é **zero ou raiz** de f sse f(x) = 0.

## Sinal

- f é **positiva** em  $A \subseteq D_f$  sse  $\forall x \in A, f(x) > 0$
- f é negativa em  $A \subseteq D_f$  sse  $\forall x \in A, f(x) < 0$
- f é nula em  $A \subseteq D_f$  sse  $\forall x \in A, \ f(x) = 0$  (isto é, x é zero de f)

#### **Paridade**

- f é par sse  $\forall x \in D_f$ , f(-x) = f(x) (o gráfico é simétrico em relação ao eixo dos yy)
- f é **ímpar** sse  $\forall x \in D_f$ , f(-x) = -f(x) (o gráfico é simétrico em relação à origem do referencial)
- f não tem paridade se não é par nem ímpar.

## Bijetividade

- $f \in \text{injetiva}$  sse  $\forall x_1, x_2 \in D_f, \ x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$  (a objetos diferentes correspondem imagens diferentes)
- f é sobrejetiva sse  $\forall y \in \mathbb{R} \exists x \in D_f, \ y = f(x)$  (o contradomínio coincide com o conjunto de chegada) No caso das funções reais de variável real equivale a afirmar que

$$CD_f = \mathbb{R}$$

• f é **bijetiva** sse é injetiva e sobrejetiva, isto é

$$\forall y \in \mathbb{R} \exists^1 x \in D_f, \ y = f(x)$$

#### Monotonia

• f é crescente em  $A \subseteq D_f$  sse

$$\forall x_1, x_2 \in A, \ x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

• f é estritamente crescente em  $A \subseteq D_f$  sse

$$\forall x_1, x_2 \in A, \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

• f é decrescente em  $A \subseteq D_f$  sse

$$\forall x_1, x_2 \in A, \ x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

• f é estritamente decrescente em  $A \subseteq D_f$  sse

$$\forall x_1, x_2 \in A, \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b

#### Monotonia

- f é **monótona** em  $A \subseteq D_f$  sse f é crescente ou decrescente em A;
- f é estritamente monótona em  $A \subseteq D_f$  sse f é estritamente crescente ou estritamente decrescente em A;
- f é constante em  $A \subseteq D_f$  sse

$$\forall x \in A, \ f(x) = k \quad (k \in \mathbb{R}).$$

#### Extremos

• f(a) é um **máximo local ou relativo** de f sse existir um intervalo  $]a - \varepsilon, a + \varepsilon[$ , com  $\varepsilon > 0$ , tal que

$$\forall x \in ]a - \varepsilon, a + \varepsilon[\cap D_f, f(x) \le f(a);$$

• f(b) é um **mínimo local ou relativo** de f sse existir um intervalo  $]b-\varepsilon,b+\varepsilon[$ , com  $\varepsilon>0$ , tal que

$$\forall x \in ]b - \varepsilon, b + \varepsilon[\cap D_f, f(x) \ge f(b);$$

- $f\left(a\right)$  é um **máximo absoluto** de f sse  $\forall x \in D_{f}, \ f\left(x\right) \leq f\left(a\right);$
- f(b) é um **mínimo absoluto** de f sse  $\forall x \in D_f, f(x) \geq f(b)$ .

◆ロ > ◆母 > ◆き > ◆き > き の Q (\*)

#### Concavidades

- f tem a **concavidade virada para cima** se a curva de f é côncava. (Uma curva é côncava no intervalo [a,b] onde tem apenas um mínimo, quando o gráfico da curva fica por baixo da corda que une as imagens de a e b.)
- f tem a **concavidade virada para baixo** se a curva de f é convexa. (Uma curva é convexa no intervalo [a,b] onde tem apenas um máximo, quando o gráfico da curva fica por cima da corda que une as imagens de a e b.)
- O ponto onde ocorre uma mudança de concavidade de f diz-se um ponto de inflexão.

OBS: As retas não têm concavidades.

### Majorada

f diz-se **majorada** em  $A\subseteq D_f$  sse  $\exists M\in\mathbb{R}\,\forall x\in A,\;f\left(x\right)\leq M$ 

#### Minorada

f diz-se **minorada** em  $A\subseteq D_f$  sse  $\exists m\in\mathbb{R}\ \forall x\in A,\ f\left(x\right)\geq m$ 

#### Limitada

f diz-se **limitada** em  $A\subseteq D_f$  sse é majorada e minorada em A, isto é

$$\exists m, M \in \mathbb{R} \, \forall x \in A, \ m \le f(x) \le M$$

ou de forma equivalente

$$\exists N > 0 \, \forall x \in A, |f(x)| \le N.$$

Sejam  $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$  e  $g:D_g\subseteq\mathbb{R}\to\mathbb{R}$  duas funções reais de variável real.

Soma de f e q

$$(f+g)(x) = f(x) + g(x)$$
  $e$   $D_{f+g} = D_f \cap D_g$ .

$$D_{f+g} = D_f \cap D_g.$$

Diferença de f e q

$$(f-g)(x) = f(x) - g(x)$$
  $e$   $D_{f-g} = D_f \cap D_g$ .

$$D_{f-g} = D_f \cap D_g$$

Produto de f e q

$$(f \times g)(x) = f(x) \times g(x)$$
  $e$   $D_{f \times g} = D_f \cap D_g$ .

$$D_{f\times q}=D_f\cap D_q.$$

Quociente de f e q

$$\left(\frac{f}{a}\right)(x) = \frac{f(x)}{a(x)}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad e \qquad D_{\frac{f}{g}} = D_f \cap D_g \cap \left\{x \in \mathbb{R} : g(x) \neq 0\right\}.$$

## Raiz índice n de f

$$\sqrt[n]{f\left(x\right)}\quad e\quad D_{\sqrt[n]{f}}=\left\{ \begin{array}{cc} D_{f}\cap\left\{ x\in\mathbb{R}:f\left(x\right)\geq0\right\} &\text{, se }n\text{ \'e par }\\ \\ D_{f}&\text{, se }n\text{ \'e impar }\end{array} \right.$$

## Logaritmo de f

$$\ln (f(x)) \quad e \quad D_{\ln f} = D_f \cap \{x \in \mathbb{R} : f(x) > 0\}$$

### Função Módulo

$$|f(x)| = \begin{cases} f(x) &, \text{ se } f(x) \ge 0\\ -f(x) &, \text{ se } f(x) < 0 \end{cases}$$

# Função Composta de f por g

$$(f \circ g)(x) = f[g(x)] \quad e \quad D_{f \circ g} = \{x \in \mathbb{R} : x \in D_g \land g(x) \in D_f\}$$

Se  $(f \circ g)(x) = (g \circ f)(x)$  as funções f e g dizem-se permutáveis.

# Função Inversa de f

$$x = f^{-1}(y) \Leftrightarrow y = f(x)$$
  $e^{-1} = CD_f$   $e^{-1} = CD_{f-1} = D_f$ .

- Só as funções injetivas é que têm inversa.
- Os gráficos são simétricos em relação à equação y=x.
- $(f^{-1})^{-1}(x) = f(x)$ .
- Se f e g são bijetivas então  $(f \circ g)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$  .

#### Limites

Noção de limite; limites laterais; propriedades e operações.

Existe  $\lim_{x\to a} f(x)$  ?













### Ponto de acumulação

Sejam A um subconjunto de  $\mathbb{R}$  e  $a \in \mathbb{R}$ .

Diz-se que a é um **ponto de acumulação** de A se, qualquer que seja o valor  $\varepsilon>0$ , no intervalo  $]a-\varepsilon,a+\varepsilon[$  (**vizinhança de** a **com raio**  $\varepsilon$ ) existe pelo menos um elemento de A <u>diferente de a</u>.

Intuitivamente,

a é um ponto de acumulação de A se, tão próximo quanto quisermos de a, existem sempre elementos de A, diferentes do próprio a.

### Observações:

- Um ponto de acumulação tanto pode pertencer ao conjunto como não pertencer.
- ullet O conjunto dos pontos de acumulação de A representa-se por A'.

## Noção de limite em $\mathbb R$

# Limite (finito) de uma função em $a \in \mathbb{R}$

Consideremos  $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$  uma função real de variável real (f.r.v.r.), a um ponto de acumulação de  $D_f$  e  $b\in\mathbb{R}$ .

Intuitivamente,

uma função f tende para b quando x tende para a sse quando os objetos se aproximam muito de a, as suas imagens por f aproximam-se muito de b.

# Definição de Limite segundo Cauchy

Sejam a um ponto de acumulação de  $D_f$  e  $b\in\mathbb{R}$ . Diz-se que f tende para  $b\in\mathbb{R}$  quando x tende para a, isto é

$$\lim_{x \to a} f(x) = b$$
 
$$\operatorname{sse}$$
 
$$\forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f \backslash \left\{a\right\} : (|x - a| < \varepsilon \Rightarrow |f\left(x\right) - b| < \delta)$$
 
$$\operatorname{sse}$$
 
$$\forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x \in D_f \backslash \left\{a\right\} : (a - \varepsilon < x < a + \varepsilon \Rightarrow b - \delta < f\left(x\right) < b + \delta)$$

#### Intuitivamente,

as imagens dos pontos do domínio, diferentes de a, estão tão próximas quanto quisermos de b (proximidade definida pelo  $\delta$ ,  $f\left(x\right)\in\left]b-\delta,b+\delta\right[$ ), desde que nos aproximemos suficientemente de a (proximidade definida pelo  $\varepsilon$ ,  $x\in\left]a-\varepsilon,a+\varepsilon\right[$ ).

# Limite lateral à direita (segundo Cauchy)

Seja a um ponto de acumulação de  $D_f \cap ]a, +\infty[$ . Diz-se que f tende para b quando x tende para a por valores superiores (ou à direita de a) e representa-se por

$$\lim_{x \to a^+} f(x) = b$$
 sse 
$$\forall \delta > 0 \; \exists \varepsilon > 0 \; \forall x \in D_f : \; (0 < x - a < \varepsilon \Rightarrow |f(x) - b| < \delta)$$
 sse 
$$\forall \delta > 0 \; \exists \varepsilon > 0 \; \forall x \in D_f : \; (a < x < a + \varepsilon \Rightarrow b - \delta < f(x) < b + \delta)$$

◆ロ → ◆部 → ◆注 → ◆注 → りへで

# Limite lateral à esquerda (segundo Cauchy)

Seja a um ponto de acumulação de  $D_f\cap ]-\infty, a[$ . Diz-se que f tende para b quando x tende para a por valores inferiores (ou à esquerda de a) e representa-se por

$$\lim_{x \to a^{-}} f(x) = b$$
 sse 
$$\forall \delta > 0 \; \exists \varepsilon > 0 \; \forall x \in D_{f} : \; (-\varepsilon < x - a < 0 \Rightarrow |f(x) - b| < \delta)$$
 sse 
$$\forall \delta > 0 \; \exists \varepsilon > 0 \; \forall x \in D_{f} : \; (a - \varepsilon < x < a \; \Rightarrow b - \delta < f(x) < b + \delta)$$

## Proposição (Unicidade do Limite)

O limite de uma função num ponto, quando existe, é único.

## Observações

- Se  $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$ , então não existe  $\lim_{x \to a} f(x)$ .
- $\bullet \ \lim_{x \to a} f(x) = b \ \mathrm{sse} \ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = b.$

#### Limites infinitos e no infinito

Pretende-se generalizar a noção de limite aos casos em que x tende para infinito e/ou limite da função é infinito.

# Limite de f com $a = +\infty$ e $b \in \mathbb{R}$

Sejam f uma f.r.v.r., com  $D_f$  não limitado superiormente, e  $b \in \mathbb{R}$ :

$$\lim_{x \to +\infty} f(x) = b$$
 
$$\operatorname{sse} \forall \delta > 0 \ \exists M > 0 \ \forall x \in D_f : (x > M \Rightarrow |f(x) - b| < \delta).$$

#### Limite de f com $a = -\infty$ e $b \in \mathbb{R}$

Sejam f uma f.r.v.r., com  $D_f$  não limitado superiormente, e  $b \in \mathbb{R}$ :

$$\lim_{x \to -\infty} f(x) = b$$
 sse 
$$\forall \delta > 0 \; \exists N < 0 \; \forall x \in D_f : (x < N \Rightarrow |f(x) - b| < \delta).$$

### Limite de f com $a = +\infty$ e $b = +\infty$

Seja f uma f.r.v.r., com  $D_f$  não limitado superiormente:

$$\lim_{x\to +\infty} f(x) = +\infty$$
 sse 
$$\forall L>0 \; \exists M>0 \; \forall x\in D_f: (x>M\Rightarrow f(x)>L).$$

◆ロ > ◆母 > ◆き > ◆き > き のQで

#### Limite de f com $a = -\infty$ e $b = -\infty$

Seja f uma f.r.v.r., com  $D_f$  não limitado inferiormente:

$$\lim_{x \to -\infty} f(x) = -\infty$$
 sse 
$$\forall R < 0 \; \exists N < 0 \; \forall x \in D_f : (x < N \Rightarrow f(x) < R).$$

### Limite de f com $a = +\infty$ e $b = -\infty$

Seja f uma f.r.v.r., com  $D_f$  não limitado inferiormente:

$$\lim_{x \to +\infty} f(x) = -\infty$$
 
$$\operatorname{sse}$$
 
$$\forall R < 0 \; \exists M > 0 \; \forall x \in D_f : (x > M \Rightarrow f(x) < R).$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□

#### Limite de f com $a \in \mathbb{R}$ e $b = +\infty$

Sejam f uma f.r.v.r. e a um ponto de acumulação de  $D_f$ :

$$\lim_{x\to a} f(x) = +\infty$$
 
$$\mathrm{sse}$$
 
$$\forall L>0 \ \exists \varepsilon>0 \ \forall x\in D_f\backslash\{a\}: (|x-a|<\varepsilon\Rightarrow f(x)>L).$$

## Limite de f com $a \in \mathbb{R}$ e $b = -\infty$

Sejam f uma f.r.v.r. e a um ponto de acumulação de  $D_f$ :

$$\lim_{x \to a} f(x) = -\infty$$
 sse 
$$\forall R < 0 \; \exists \varepsilon > 0 \; \forall x \in D_f \backslash \{a\} : (|x - a| < \varepsilon \Rightarrow f(x) < R).$$

Analogamente se definiriam os outros casos.

#### Observação:

- Se  $\lim_{x\to a} f(x) = +\infty$ , f diz-se um infinitamente grande positivo quando x tende para a.
- Se  $\lim_{x \to a} f(x) = -\infty$ , f diz-se um infinitamente grande negativo quando x tende para a.
- Se  $\lim_{x\to a} f(x) = \infty$ , f diz-se um infinitamente grande sem sinal determinado quando x tende para a.

## Propriedades dos Limites

## Proposição

- $\bullet \ \lim_{x \to a} k = k, \ \mathsf{com} \ k \in \mathbb{R}.$
- os polinómios, as raízes de índice n, as funções trigonométricas (seno, co-seno e tangente), a função exponencial e a função logaritmo têm limite, em qualquer valor de a dos respetivos domínios, igual ao valor da função em a.

# Proposição (Propriedades dos Limites Finitos)

Se f, g são funções reais de variável real com limite no ponto a e  $k \in \mathbb{R}$ , então:

- as funções kf, f+g, f-g,  $f\times g$ , |f|, têm limite em a e
  - $\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x),$
  - $\lim_{x \to a} \left[ (f+g)(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$
  - $\lim_{x \to a} \left[ (f g)(x) \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x),$
  - $\lim_{x \to a} \left[ (f \times g)(x) \right] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x),$
  - $\lim_{x \to a} |f(x)| = \left| \lim_{x \to a} f(x) \right|$

(Obs: |f| pode ter limite no ponto a e a função f não ter),

 $\bullet \text{ se } \lim_{x \to a} g(x) \neq 0 \text{, então } \lim_{x \to a} \left[ \left( \frac{f}{g} \right)(x) \right] = \frac{\lim\limits_{x \to a} f(x)}{\lim\limits_{x \to a} g(x)}.$ 

## Proposição (Propriedades dos Limites Infinitos)

Sejam f, g funções reais de variável real e a finito ou infinito, então:

#### Para a soma:

$$\bullet \ \text{ se } \lim_{x\to a}f(x)=+\infty \ \text{ e } \lim_{x\to a}g(x)=+\infty \text{, então } \lim_{x\to a}\left[\left(f+g\right)\left(x\right)\right]=+\infty;$$

• se 
$$\lim_{x \to a} f(x) = -\infty$$
 e  $\lim_{x \to a} g(x) = -\infty$ , então  $\lim_{x \to a} \left[ \left( f + g \right) (x) \right] = -\infty$ ;

• sendo  $b \in \mathbb{R}$ 

se 
$$\lim_{x \to a} f(x) = +\infty$$
 e  $\lim_{x \to a} g(x) = b$ , então  $\lim_{x \to a} \left[ \left( f + g \right) (x) \right] = +\infty$ ;

se 
$$\lim_{x \to a} f(x) = -\infty$$
 e  $\lim_{x \to a} g(x) = b$ , então  $\lim_{x \to a} \left[ \left( f + g \right) (x) \right] = -\infty$ .

◆ロト ◆部 ▶ ◆注 ▶ ◆注 ▶ 注 めなぐ

# Proposição (Propriedades dos Limites Infinitos)

Sejam f, g funções reais de variável real e a finito ou infinito, então:

#### Para o produto:

- sendo  $b \in \mathbb{R}^+$ ,
  - se  $\lim_{x\to a} f(x) = +\infty$  e  $\lim_{x\to a} g(x) = b$ , então  $\lim_{x\to a} \left[ (f\times g)(x) \right] = +\infty$ ;
  - se  $\lim_{x \to a} f(x) = -\infty$  e  $\lim_{x \to a} g(x) = b$ , então  $\lim_{x \to a} \left[ \left( f \times g \right) (x) \right] = -\infty$ ;
- sendo  $b \in \mathbb{R}^-$ ,
  - se  $\lim_{x\to a}f(x)=+\infty$  e  $\lim_{x\to a}g(x)=b$ , então  $\lim_{x\to a}\left[\left(f\times g\right)(x)\right]=-\infty$ ;
  - $= \lim_{x \to a} f(x) = -\infty \text{ e } \lim_{x \to a} g(x) = b \text{, então } \lim_{x \to a} \left[ \left( f \times g \right) (x) \right] = +\infty;$
- $\bullet \ \ \text{se} \ \lim_{x \to a} f(x) = +\infty \ \ \text{e} \ \lim_{x \to a} g(x) = +\infty, \ \ \text{então} \ \lim_{x \to a} \left[ \left( f \times g \right) (x) \right] = +\infty;$
- $\bullet \ \ \text{se} \ \lim_{x\to a} f(x) = -\infty \ \ \text{e} \ \lim_{x\to a} g(x) = +\infty \text{, então } \lim_{x\to a} \left[ \left( f\times g \right) (x) \right] = -\infty;$
- $\bullet \ \ \text{se} \ \lim_{x\to a} f(x) = -\infty \ \ \text{e} \ \lim_{x\to a} g(x) = -\infty \text{, então} \ \lim_{x\to a} \left[ \left( f\times g \right) (x) \right] = +\infty.$

# Proposição (Propriedades dos Limites Infinitos)

Sejam f, g funções reais de variável real e a finito ou infinito. Suponha que a função g é não nula numa vizinhança de a (exceto, eventualmente em a), então:

#### Para o inverso e o quociente:

- se  $\lim_{x\to a} g(x) = \infty$ , então  $\lim_{x\to a} \frac{1}{g(x)} = 0$ ;
- se  $\underset{x \to a}{\lim} g(x) = 0$ , então  $\underset{x \to a}{\lim} \frac{1}{g(x)} = \infty$ ;
  - = se  $\lim_{x\to a}g(x)=0^+$ , então  $\lim_{x\to a}\frac{1}{g(x)}=+\infty$ ;
  - se  $\lim_{x \to a} g(x) = 0^-$ , então  $\lim_{x \to a} \frac{1}{g(x)} = -\infty$ ;
- se  $\lim_{x \to a} g(x) = \infty$  e  $\lim_{x \to a} f(x)$  é finito, então  $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ ;
- se  $\lim_{x\to a} g(x) = 0$  e  $\lim_{x\to a} f(x)$  é infinito ou finito *e diferente de zero*, então  $\lim_{x\to a} \frac{f(x)}{g(x)} = \infty$ .

## Proposição

Sejam f e g funções reais de variável real, definidas num mesmo intervalo I e a um ponto interior de I. Se f e g são funções com limite no ponto a e se  $f(x) \leq g(x), \quad \forall x \in I$  então

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

#### Teorema do Encaixe

Sejam f, g e h funções reais de variável real, definidas num mesmo intervalo I, e tais que  $f(x) \leq g(x) \leq h(x), \quad \forall x \in I.$  Sendo a um ponto interior de I. se

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b$$

então

$$\lim_{x \to a} g(x) = b.$$

(ロ) (部) (注) (注) 注 り(0)

#### Infinitésimos

Diz-se que f é um  $\inf$ initésimo quando x tende para a se

$$\lim_{x \to a} f(x) = 0.$$

## Proposição

Se f é um infinitésimo quando x tende para a e g é uma função real de variável real limitada, então  $f \times g$  é um infinitésimo quando x tende para a. Ou seja

O produto de um infinitésimo por uma função limitada é um infinitésimo.

#### Indeterminações

#### Os símbolos

| $(+\infty) - (+\infty)$ | $(+\infty) + (-\infty)$ |            |
|-------------------------|-------------------------|------------|
| $0 \times (+\infty)$    | $0 \times (-\infty)$    |            |
| $\frac{0}{0}$           | $\frac{\infty}{\infty}$ |            |
| 1∞                      | 00                      | $\infty^0$ |

são designados por **símbolos de indeterminação**. Isto quer dizer que, nas situações correspondentes, o facto de existir ou não limite, bem como o seu valor, depende das funções envolvidas; não resulta imediatamente de uma propriedade das operações.

Gráfico da função 
$$f(x) = \frac{\sin x}{x}$$



Resultado importante (limite de referência):

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

4□ > 4周 > 4 = > 4 = > ■ 900

Gráfico da função 
$$f(x) = \frac{\ln(x+1)}{x}$$



Resultado importante (limite de referência):

$$\lim_{x \to 0} \frac{\ln\left(x+1\right)}{x} = 1$$

◆ロ → ◆園 → ◆ 園 → ◆ 園 → り へ ②

Gráfico da função  $f(x) = \frac{e^x - 1}{x}$ 



Resultado importante (limite de referência):

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

◆ロ → ◆園 → ◆ 園 → ◆ 園 → りゅう

Gráficos das funções: 
$$f(x)=rac{e^x}{x}, \quad g(x)=rac{e^x}{x^2}, \quad h(x)=rac{e^x}{x^3}$$



Resultado importante (limite de referência):

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty, \quad (p \in \mathbb{N})$$

Gráficos das funções: 
$$f(x) = \frac{\ln x}{x}$$
,  $g(x) = \frac{\ln x}{\sqrt{x}}$ ,  $h(x) = \frac{\ln x}{\sqrt[3]{x}}$ 



Resultado importante (limite de referência):

$$\lim_{x\to +\infty} \frac{\ln x}{\sqrt[p]{x}} = 0, \quad (p \in \mathbb{N})$$

## Resultados Importantes (limites de referência)

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1;$$

$$\bullet \lim_{x\to 0} \frac{\ln(x+1)}{x} = 1;$$

mais geral:

$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt[p]{x}} = 0, \quad (p \in \mathbb{N});$$

$$\bullet \lim_{x\to 0} \frac{e^x - 1}{x} = 1;$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty,$$

mais geral:

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty, \quad (p \in \mathbb{N}).$$

#### Continuidade

- funções contínuas, propriedades e prolongamento por continuidade;
- teoremas de Bolzano, Weierstrass e da continuidade da função inversa.

#### Continuidade de uma função

Considere  $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$  uma função real de variável real e  $\underline{a}$  um ponto de acumulação de  $D_f$  que pertence a  $D_f$ .

- Diz-se que f é contínua em a se  $\lim_{x\to a} f(x) = f(a)$ .
- Diz-se que f é contínua à direita em a se  $\lim_{x \to a^+} f(x) = f(a)$ .
- Diz-se que f é contínua à esquerda em a se  $\lim_{x \to a^-} f(x) = f(a)$ .
- Diz-se que f é contínua no intervalo [a,b] se f é contínua em ]a,b[, é contínua à direita em a e é contínua à esquerda em b.
- Diz-se que a f é contínua se f é contínua em qualquer ponto do seu domínio.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

## Continuidade de uma função

Da definição de limite segundo Cauchy, resulta que

## f é contínua em a

sse

$$\lim_{x \to a} f(x) = f(a)$$

sse

$$\forall \delta > 0 \ \exists \varepsilon > 0 \ \forall x : (x \in D_f \land |x - a| < \varepsilon \Longrightarrow |f(x) - f(a)| < \delta)$$

# Propriedades das funções contínuas (relativamente às operações)

## Proposição

Se f e g são funções contínuas em a e  $k \in \mathbb{R}$ , então:

- as funções kf, f+g, f-g,  $f\times g$  e |f| são contínuas em a;
- se  $g(a) \neq 0$ , as funções  $\frac{1}{q}$  e  $\frac{f}{q}$  são contínuas em a.

## Proposição

Se f é uma função contínua em a e g é contínua em f(a), então  $g\circ f$  é contínua em a.

## Observação

As seguintes funções são contínuas em todo o seu domínio:

- funções polinomiais;
- funções racionais;
- funções com raízes;
- funções trigonométricas;
- funções exponenciais;
- funções logarítmicas.

## Prolongamento por continuidade

Sendo f e g duas funções com domínios  $D_f$  e  $D_g$ , diz-se que g **é um prolongamento de** f (ou que f **é uma restrição de** g) se

$$D_f \subsetneq D_g \ \mathsf{e} \ \forall x \in D_f, \quad f(x) = g(x).$$

Diz-se que f é prolongável por continuidade a a, sendo  $\underline{a}$  um ponto de acumulação de  $D_f$  que não pertence a  $D_f$ , se existe um prolongamento de f, com domínio  $D_f \cup \{a\}$ , contínuo em a.

#### Proposição

Seja  $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$  e a um ponto de acumulação de  $D_f$ , com  $a\notin D_f$ .

$$f$$
 é prolongável por continuidade a  $a$  sse 
$$\exp \left( \text{e é finito} \right) \lim_{x \to a} f(x).$$

Neste caso, o prolongamento por continuidade de f a a é a função

$$g: D_f \cup \{a\} \to \mathbb{R}$$

definida por

$$g(x) = \begin{cases} f(x) & \text{, se } x \in D_f \\ \lim_{x \to a} f(x) & \text{, se } x = a \end{cases}$$

## Teorema de Bolzano (ou do Valor Intermédio)

Seja  $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$  uma função contínua em [a,b], com a< b. Então, para qualquer k estritamente compreendido entre f(a) e f(b), existe pelo menos um  $c\in ]a,b[$  tal que f(c)=k. Intuitivamente.

uma função contínua num intervalo não passa de um valor a outro sem assumir todos os valores intermédios.

#### Corolário 1

Se f é contínua no intervalo [a,b] e não se anula em algum ponto de [a,b], então em todos os pontos de [a,b] a função f tem o mesmo sinal.

#### Corolário 2

Se f é contínua no intervalo [a,b] e  $f(a)\times f(b)<0$  então f tem pelo menos um zero em ]a,b[.

#### Teorema de Weierstrass

Qualquer função contínua num intervalo [a,b] (fechado e limitado) tem máximo e mínimo nesse intervalo.

**Observação**: Em qualquer um destes resultados, as condições são apenas condições suficientes; não são condições necessárias.

# Teorema (continuidade da função inversa)

Se  $f:I\subset\mathbb{R}\to\mathbb{R}$  é uma função contínua e estritamente monótona em I, então:

- f é invertível em I;
- $f^{-1}$  é estritamente monótona;
- $f^{-1}$  é contínua.

**Observação**: O facto de f ser estritamente monótona em I garante que f é injetiva em I.

Funções Trigonométricas Inversas

#### Função seno

A <u>função seno</u> tem domínio  $\mathbb R$  e contradomínio [-1,1], é periódica (com período  $2\pi$ ), é ímpar, anula-se em  $x=k\pi$ , com  $k\in\mathbb Z$ , não é injetiva nem sobrejetiva.



Restringindo a função seno a  $[-\frac{\pi}{2},\frac{\pi}{2}]$ , temos a **restrição principal do seno**, que é contínua e estritamente crescente em  $[-\frac{\pi}{2},\frac{\pi}{2}]$ , logo invertível.

4 D > 4 D > 4 D > 4 D > 5 O O

#### Função seno e Função arco seno

## Restrição principal do seno:

$$f: [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow [-1, 1]$$

$$x \longrightarrow \operatorname{sen} x$$



#### Inversa do seno (arco seno):

$$f^{-1}: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$$

$$x \rightarrow \arcsin x$$



$$y = \operatorname{sen} x \Leftrightarrow \operatorname{arcsen} y = x$$

A inversa da função seno, a função **arco seno**, é contínua, estritamente crescente em [-1,1], ímpar e tem um zero em x=0.

#### Função co-seno

A <u>função co-seno</u> tem domínio  $\mathbb R$  e contradomínio [-1,1], é periódica (com período  $2\pi$ ), é par e anula-se para  $x=k\pi+\frac{\pi}{2}$ , com  $k\in\mathbb Z$ , não é injetiva nem sobrejetiva.



Restringindo a função co-seno a  $[0,\pi]$ , temos a **restrição principal do co-seno**, que é contínua e estritamente decrescente em  $[0,\pi]$ , logo é invertível.

#### Função co-seno e Função arco co-seno

## Restrição principal do co-seno:

$$f: [0,\pi] \to [-1,1]$$

$$x \to \cos x$$

$$\cos x$$

Inversa do co-seno (arco co-seno):

$$f^{-1}: [-1,1] \to [0,\pi]$$

$$x \to \arccos x$$

$$y = \cos x \Leftrightarrow \arccos y = x$$

A inversa da função co-seno, a função **arco co-seno**, é contínua, estritamente decrescente em [-1,1] e tem um zero em x=1.

## Função tangente

A função tangente, definida por  $\operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}$ , tem domínio  $\mathbb{R} \setminus \left\{ k\pi + \frac{\pi}{2} : k \in \mathbb{Z} \right\}$  e contradomínio  $\mathbb{R}$ , é periódica (com período  $\pi$ ), é ímpar e anula-se em  $x = k\pi$ , com  $k \in \mathbb{Z}$ , não é injetiva mas é sobrejetiva.



Restringindo a função tangente a  $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ , temos a **restrição principal da tangente**, que é contínua e estritamente crescente em  $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ , logo é invertível.

#### Função tangente e Função arco tangente

# Restrição principal da tangente:

$$f: ]-\frac{\pi}{2}, \frac{\pi}{2}[ \rightarrow \mathbb{R}$$

$$x \rightarrow \operatorname{tg} x$$

$$\operatorname{tg} x$$

Inversa da tangente (arco tangente):

$$f^{-1}: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$x \to \operatorname{arctg} x$$

$$\operatorname{arctg} x$$

$$y = \operatorname{tg} x \Leftrightarrow \operatorname{arctg} y = x$$

A inversa da função tangente, a função **arco tangente**, é contínua, estritamente crescente em  $\mathbb{R}$ , ímpar e tem um zero em x=0.

## Função co-tangente

A <u>função co-tangente</u>, definida por  $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\lg x}$ , tem domínio  $\mathbb{R} \setminus \{k\pi: k \in \mathbb{Z}\}$  e contradomínio  $\mathbb{R}$ , é periódica (com período  $\pi$ ), é ímpar anula-se em  $x = k\pi + \frac{\pi}{2}$ , com  $k \in \mathbb{Z}$ , não é injetiva mas é sobrejetiva.



Restringindo a função co-tangente a  $]0,\pi[$ , obtemos a **restrição principal da co-tangente**, que é contínua e estritamente decrescente em  $]0,\pi[$ , logo é invertível.

## Função co-tangente e Função arco co-tangente

Restrição principal da cotangente:

$$f: \ ]0, \pi[ \ \rightarrow \ \mathbb{R}$$

$$x \ \rightarrow \cot g x$$

$$\cot g x$$

Inversa da co-tangente (arco co-tangente):

$$f^{-1}: \mathbb{R} \to ]0, \pi[$$

$$x \to \operatorname{arccotg} x$$

$$x \to \operatorname{arccotg} x$$

$$y = \cot g x \Leftrightarrow \operatorname{arcoctg} y = x$$

A inversa da função co-tangente, a função **arco co-tangente**, é contínua, estritamente decrescente em  $\mathbb{R}$  e não tem zeros.

## Outras Funções Trigonométricas

• Função secante

$$\sec x = \frac{1}{\cos x}$$

• Função co-secante

$$\csc x = \frac{1}{\sin x}$$

Para trabalhar com estas funções basta trabalhar com as funções co-seno e seno.

# Algumas Fórmulas Trigonométricas

- $\sin^2 \alpha + \cos^2 \alpha = 1$
- $\operatorname{sen}^2 \alpha = \frac{1}{2} \left( 1 \cos(2\alpha) \right)$
- $\cos^2 \alpha = \frac{1}{2} (1 + \cos(2\alpha))$
- $tg^2 \alpha = -1 + sec^2 \alpha$
- $\operatorname{sen}(\alpha \pm \beta) = \operatorname{sen} \alpha \cos \beta \pm \cos \alpha \operatorname{sen} \beta$
- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- $\operatorname{tg}(\alpha \pm \beta) = \frac{\operatorname{tg} \alpha \pm \operatorname{tg} \beta}{1 \mp \operatorname{tg} \alpha \operatorname{tg} \beta}$