Homework 10

Thomas Kim tsk389 51835

David Munoz dam2989 51840

 $\ensuremath{\mathrm{CS331}}$ Algorithms and Complexity

Problem Q1(a). Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of nonoverlapping intervals of size at least k?

Claim: Interval Scheduling \leq_p Vertex Cover

Problem Q1(b). Claim: Independent Set \leq_p Interval Scheduling

Problem Q2. Is the set of rational numbers countably infinite or uncountably infinite?

Problem Q3. Show that the following problem is undecidable.

$$\mathbf{A} = \{ \langle M \rangle | \forall w \in \mathbf{S} \ Macceptsw \}$$
 where \mathbf{S} is the set of all strings

Problem Q4(a). Given n containers of weight w_1, \ldots, w_n , trucks of capacity K, minimize the number of trucks to carry all the weight. This problem is NP-Complete.

Greedy Algorithm: Start with an empty truck, then begin piling containers 1, 2, 3, ... until you get to a container which would overflow the weight limit.

Now declare this truck "loaded" and send it off; then continue the process with a fresh truck.

Given an example of a set of weights, a value of K, where this algorithm does not use the minimum possible number of trucks.

Problem Q4(b). Show, however, that the number of trucks used by this algorithm is within a factor of 2 of the minimum possible number, for any set of weights and any value K