MATH 629 Lecture Notes

Pongsaphol Pongsawakul

Spring 2024

Contents

1	From Riemann to Lebesgue		
	1.1	Riemann Integral	2
	1.2	Lebesgue null sets	4
	1.3	Oscillation and Discontinuity	6
2	Measures		
	2.1	Introduction	9
	2.2	Construction of Measure	10
	2.3	σ -algebra	12
		Generating σ -algebra	14
	2.4	Measures	

1 From Riemann to Lebesgue

§1.1 Riemann Integral

Definition 1.1.1. $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ is a partition of [a, b].

Definition 1.1.2. If P, P' are partitions of [a, b] and $P \subseteq P'$, then P' is a refinement of P.

Definition 1.1.3. Given a bounded function $f:[a,b] \to \mathbb{R}$ and a partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ we define

$$m_i(f) = \inf_{t \in [x_{i-1}, x_i]} f(t)$$

$$M_i(f) = \sup_{t \in [x_{i-1}, x_i]} f(t)$$

define the lower sum as

$$L(f, P) = \sum_{i=1}^{n} m_i(f)(x_i - x_{i-1})$$

and the upper sum as

$$U(f, P) = \sum_{i=1}^{n} M_i(f)(x_i - x_{i-1})$$

Lemma 1.1.4

Given a bounded function $f:[a,b]\to\mathbb{R}$ and partitons P of [a,b]. Suppose that P' is a refinement of P then

$$(b-a)\inf_{t\in[a,b]} f(t) \le L(f,P) \le L(f,P') \le U(f,P') \le U(f,P) \le (b-a)\sup_{t\in[a,b]} f(t)$$

Corollary 1.1.5

Suppose that P_1, P_2 are partitions of [a, b] then $L(f, P_1) \leq U(f, P_2)$

Proof. Let $P' = P_1 \cup P_2$ then P' is a refinement of P_1 and P_2 and use Lemma 1.1.4 \square

Lemma 1.1.6

Suppose that $f:[a,b]\to\mathbb{R}$ is bounded. Then

$$(b-a)\inf_{t\in[a,b]}f(t)\leq \sup_{P}L(f,P)\leq \inf_{P}U(f,P)\leq (b-a)\sup_{t\in[a,b]}f(t)$$

Definition 1.1.7. A function $f:[a,b]\to\mathbb{R}$ is Riemann integrable if

$$\sup_{P} L(f, P) = \inf_{P} U(f, P)$$

and the common value is called the Riemann integral of f and is denoted by $\int_a^b f$

Lemma 1.1.8

Suppose that $f:[a,b]\to\mathbb{R}$ is bounded. Then f is Riemann integrable if and only if for any $\varepsilon>0$ there exists a partition P such that

$$U(f,P) - L(f,P) < \varepsilon$$

Proof. (\Rightarrow) For any $\varepsilon > 0$. Suppose that f is Riemann integrable. Then there exists P_1, P_2 such that

$$L(f, P_1) \ge \int_a^b f - \frac{\varepsilon}{2}$$

$$U(f, P_2) \le \int_a^b f + \frac{\varepsilon}{2}$$

let $P = P_1 \cup P_2$ then

$$U(f,P) - L(f,P) \le \varepsilon$$

 (\Leftarrow) For any $\varepsilon > 0$, there exists P_{ε} such that

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$$

since ε is arbitrary, we have

$$\sup_{P} L(f, P) = \inf_{P} U(f, P)$$

Theorem 1.1.9

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] then f is Riemann integrable.

Proof. f is continuous on a compact set, so, f is uniformly continuous. For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in [a, b]$ if $|x - y| < \delta$ then $|f(x) - f(y)| < \frac{\varepsilon}{(b - a)}$. Let N be such that $\frac{(b - a)}{N} < \delta$ and let $P = \{x_i := a + \frac{(b - a)i}{N}\}$ then

$$U(f,P) - L(f,P) = \sum_{i=1}^{N} (M_i(f) - m_i(f)) \frac{(b-a)}{N}$$

$$\leq \sum_{i=1}^{N} \frac{\varepsilon}{(b-a)} \frac{(b-a)}{N}$$

$$= \varepsilon$$

Remark 1.1.10. Let $f(x) = \mathbb{1}_{\mathbb{Q}}(x)$ defined on the [0,1]. Then U(f,P) = 1 and L(f,P) = 0 for any partition P. So, f is not Riemann integrable.

§1.2 Lebesgue null sets

Definition 1.2.1. For the closed interval I = [a, b], the length of I, denoted as $\ell(I)$ is defined as $\ell(I) = b - a$

Definition 1.2.2. A set E is said to be a Lebesgue null set if for any $\varepsilon > 0$ there exists a sequence of intervals $\{I_n\}_{n\in\mathbb{N}}$ such that

$$E \subseteq \bigcup_{n=1}^{\infty} I_n$$

and

$$\sum_{n=1}^{\infty} \ell(I_n) < \varepsilon$$

Lemma 1.2.3

Countable unions of Lebesgue null sets are Lebesgue null sets.

Proof. For any $\varepsilon > 0$ and for each Lebesgue null sets E_n there exists $I_{E_n,i}$ such that

$$E_n \subseteq \bigcup_{i=1}^{\infty} I_{E_n,i}$$

and

$$\sum_{i=1}^{\infty} \ell(I_{E_n,i}) < \frac{\varepsilon}{2^n}$$

then

$$\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \ell(I_{E_n,i}) < \varepsilon$$

Definition 1.2.4. A set $E \subseteq [a,b]$ has content zero if for any $\varepsilon > 0$ there exists I_1, I_2, \ldots, I_n such that

$$E \subseteq \bigcup_{i=1}^{n} I_i$$

and

$$\sum_{i=1}^{n} \ell(I_i) < \varepsilon$$

Lemma 1.2.5

Suppose that $E \subseteq [a, b]$ is a compact Lebesgue null set then E has content zero.

Proof. For any $\varepsilon > 0$ there exists a sequence of interval $\{I_n\}_{n \in \mathbb{N}}$ such that $E \subseteq \bigcup I_n$ and $\sum \ell(I_n) < \frac{\varepsilon}{2}$. Suppose that $I_n = [a_n, b_n]$, then let

$$J_n = \left(a_n - \frac{\varepsilon}{2^{n+3}}, b_n + \frac{\varepsilon}{2^{n+3}}\right) \supseteq E_n$$

then from the compactness of E, there exists a finite subcover $J_{n_1}, J_{n_2}, \ldots, J_{n_k}$ such that $E \subseteq \bigcup J_{n_i}$ then we construct a finite closed interval K_i by

$$K_i = \left[a_{n_i} - \frac{\varepsilon}{2^{n_i + 2}}, b_{n_i} + \frac{\varepsilon}{2^{n_i + 2}} \right]$$

then $E \subseteq \bigcup K_i$ and $\sum \ell(K_i) < \varepsilon$

Corollary 1.2.6

if a < b then [a, b] is not a Lebesgue null set.

Proof. By contradiction, since [a,b] is compact, then [a,b] has content zero, but [a,b] don't have content zero.

§1.3 Oscillation and Discontinuity

Definition 1.3.1. Suppose that $X \subseteq \mathbb{R}$, $f: X \to \mathbb{R}$ for any $x \in X$ and $\delta > 0$, define

$$M_{f,\delta}(x) := \sup\{f(y) : d(x,y) < \delta\}$$

$$m_{f,\delta}(x) := \inf\{f(y) : d(x,y) < \delta\}$$

then we define

$$\operatorname{osc}_f(x) := \lim_{\delta \to 0+} M_{f,\delta}(x) - m_{f,\delta}(x)$$

Lemma 1.3.2

f is continuous at x if and only if $\operatorname{osc}_f(x) = 0$.

Proof. (\Rightarrow) Suppose that f is continuous at x, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(x,y) < \delta$ then $|f(x) - f(y)| < \frac{\varepsilon}{2}$. Then

$$M_{f,\delta}(x) - m_{f,\delta}(x) \le \sup\{f(y) : d(x,y) < \delta\} - \inf\{f(y) : d(x,y) < \delta\} < \varepsilon$$

(\Leftarrow) Suppose that $\operatorname{osc}_f(x) = 0$, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that $M_{f,\delta}(x) - m_{f,\delta}(x) < \varepsilon$. Then for any $y \in X$ such that $d(x,y) < \delta$, we have $|f(x) - f(y)| < \varepsilon$ then f is continuous at x.

Before we prove this theorem, we need to prove the following lemma.

Lemma 1.3.3

 $\{x \in [a, b] : \operatorname{osc}_f(x) \ge \gamma\}$ is closed.

Proof. We need to show that $\{x: \operatorname{osc}_f(x) < \gamma\}$ is open. Fix x in that set. Let $\varepsilon = \gamma - \operatorname{osc}_f(x)$ then

$$\sup_{|w-x|<\delta} f(w) - \inf_{|w-x|<\delta} f(w) < \operatorname{osc}_f(x) < \gamma$$

then for any $w \in (x - \delta, x + \delta)$ if $|w - x| < \frac{\delta}{2}$ then

$$\operatorname{osc}(w) \le \sup_{|y-w| < \frac{\delta}{2}} f(y) - \inf_{|y-w| < \frac{\delta}{2}} f(y) < \gamma$$

So,
$$B\left(x, \frac{\delta}{2}\right) \subseteq \left\{x : \operatorname{osc}_f(x) < \gamma\right\}$$

we observe that

- (i) If the set of discontinuities is a Lebesque null set, then $\{x : \operatorname{osc}_f(x) \ge \gamma\}$ is a set of content zero.
- (ii) If $\{x : \operatorname{osc}_f(x) \ge \gamma\}$ is a Lebesgue null set, then the set of discontinuities is also a Lebesque null set.

Lemma 1.3.4

Suppose that f is defined on [c,d], assume that $\operatorname{osc}_f(x) < \gamma$ then we can find a partition

$$U(f, P) - L(f, P) < \gamma(b - a)$$

Proof. For every $x \in [c, d]$, there exists $\delta_x > 0$ such that

$$\sup_{|w-x|<\delta_x} f(w) - \inf_{|w-x|<\delta_x} f(x) < \gamma$$

construct a cover by

$$B(x, \delta_x) = \{ w \in [c, d] : |w - x| < \delta_x \}$$

since [c,d] is compact, there exists a finite subcover $B(p_1,\delta_{p_1}),\ldots,B(p_n,\delta_{p_n})$ then let $\delta_0 = \frac{\min\{\delta_{p_i}\}}{100}$ then we can construct a partition $P = \{c = x_0 < x_1 < \cdots < x_n = d\}$ such that $|x_i - x_{i-1}| < \delta_0$ then $M_i - m_i < \gamma$ and

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

$$< \gamma \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \gamma (d - c)$$

Theorem 1.3.5

Suppose that $f:[a,b]\to\mathbb{R}$ then $f\in\mathcal{R}([a,b])$ if and only if f is bounded and the set of discontinuity of f is a Lebesgue null set.

Proof. (\Rightarrow) We want to show that for every $n \in \mathbb{N}$,

$$\mathcal{D}_n = \left\{ x : \operatorname{osc}_f(x) \ge \frac{1}{n} \right\}$$

is a Lebesque null set. For any $\varepsilon > 0$, since f is Riemann integrable, there exists a partition P of [a,b] such that

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1})(M_i - m_i) \le \frac{\varepsilon}{n}$$

where $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ and $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$. in particular

$$\sum_{\substack{[x_{i-1}, x_i] \cap \mathcal{D}_n \neq \emptyset \\ \frac{1}{n} \sum_{\substack{[x_{i-1}, x_i] \cap \mathcal{D}_n \neq \emptyset }} \ell([x_{i-1}, x_i]) \leq \frac{\varepsilon}{n}}$$

So, this interval cover the set \mathcal{D}_n

(\Leftarrow) pick $\varepsilon_1 \ll \varepsilon$, consider the set $D(\varepsilon_1) = \{x \in [a,b] : \operatorname{osc}_f(x) \geq \varepsilon_1\}$ closed set. Since $D(\varepsilon_1)$ is a Lebesgue null set from the Lemma 1.2.5 it has content zero so we can find I_1, \ldots, I_n such that

$$\sum_{j=1}^{n} \ell(I_j) < \varepsilon_1 \text{ and } D(\varepsilon_1) \subseteq \bigcup_{j=1}^{n} I_j$$

We form a partition of [a, b], $a = x_0 < x_1 < \cdots < x_N = b$ from I_j . There are two cases that we need to consider

- 1) if $[x_{i-1}, x_i] \subseteq I_j$ for some j then set $P_i = [x_{i-1}, x_i]$
- 2) if $[x_{i-1}, x_i] \cap I_j = \emptyset$ for all j then $\operatorname{osc}(x) < \varepsilon_1$ for all $x \in [x_{i-1}, x_i]$. We want to partition further the interval $[x_{i-1}, x_i]$ by partition P_i . Using Lemma 1.3.4 we can find a partition P_i of $[x_{i-1}, x_i]$ such that

$$U(f, P_i) - L(f, P_i) < \varepsilon_1(x_i - x_{i-1})$$

We form a partition $P = P_1 \cup \cdots \cup P_N$ then

$$U(f, P) - L(f, P) = \sum_{i=1}^{N} (U(f, P_i) - L(f, P_i))$$

$$= \sum_{i:\text{case } 1} (U(f, P_i) - L(f, P_i)) + \sum_{i:\text{case } 2} (U(f, P_i) - L(f, P_i))$$

$$\leq 2M \sum_{i:\text{case } 1} (x_i - x_{i-1}) + \varepsilon_1 \sum_{i:\text{case } 2} (x_i - x_{i-1})$$

$$\leq 2M \varepsilon_1 + \varepsilon_1 (b - a)$$

$$= \varepsilon_1 (2M + b - a)$$

2 Measures

§2.1 Introduction

We define the $\ell([c,d]) = d-c$ and If $E = [c_1,d_1] \cup [c_2,d_2]$ where $d_1 < c_2$ then $\ell(E) = d_1 - c_1 + d_2 - c_2$. This is consistent with the definition

$$\ell(E) = \int \mathbb{1}_E(x) \, \mathrm{d}x$$

where the integral denotes the Riemann integral.

if $E \subseteq [a, b]$ reference interval is

$$\int_a^b \mathbb{1}_E \, \mathrm{d}x$$

Remark 2.1.1. The consistency of the definition also works with the set (c, d), [c, d), and (c, d], where the length of all of them is d - c.

Remark 2.1.2. we defnote $\mathbb{1}_E$ to be

$$\mathbb{1}_{E}(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

Example 2.1.3

Let $f(x) = \mathbb{1}_{\mathbb{Q}}(x)$ defined on the [0,1]. Then U(f,P) = 1 and L(f,P) = 0 for any partition P.

Fix the reference interval [a, b] and consider subset of [a, b]

Let $\mathcal{A} = \text{collection of sets for which } \int_{[a,b]} \mathbb{1}_E \, dx \text{ exists.}$

If $A_1, \ldots, A_n \in \mathcal{A}$, we can make the set to be mutually disjoint by taking $E_1 = A_1$, $E_2 = A_2 \setminus A_1$, $E_3 = A_3 \setminus (A_1 \cup A_2)$, and so on.

Example 2.1.4

For $E_1, E_2 \in \mathcal{A}$, we have

$$\mathbb{1}_{E_1 \cap E_2}(x) = \mathbb{1}_{E_1}(x) \mathbb{1}_{E_2}(x)$$

Example 2.1.5

For the Riemann integral, we have

$$\int_{a}^{b} f(y) = \int_{a-v}^{b-v} f(v+y)$$

and we want

$$\int \mathbb{1}_E(x) \, \mathrm{d}x = \int \mathbb{1}_{v+E}$$

where $v + E = \{v + x : x \in E\}$

Let $E = \mathbb{Q} \cap [0,1]$ countable set, we can enumerate r_1, r_2, r_3, \ldots such that

$$E = \bigcup_{n=1}^{\infty} \{r_n\}$$

and

$$\int \mathbb{1}_{\{r_k\}} = 0$$

E should have length zero but according $\mathbbm{1}_E$ is not Riemann integrable.

§2.2 Construction of Measure

Suppose that \mathcal{C} be a collection of sets.

Can we define on suitable large collection of subset of \mathbb{R} ?

a set function $\mu: \mathcal{C} \to [0, \infty]$ such that if $\{E_j\}_{j=1}^{\infty}$ is a sequence of disjoint set in \mathcal{C} then

$$\mu\left(\bigcup_{i=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$$

$$\mu([a,b]) = b-a,\, \mu([0,1)) = 1$$

Can we do this for the collection of all subset of \mathbb{R} ?

Answer: No, Vitali set.

Theorem 2.2.1

We cannot define a measure on the collection of all subset of \mathbb{R} . i.e., there does not exist a set function $\mu: \mathfrak{P}(\mathbb{R}) \to [0, \infty]$ such that

- (i) $\mu(v+E) = \mu(E)$ for all $E \subseteq \mathbb{R}$ and $v \in \mathbb{R}$
- (ii) $\mu([0,1]) = 1$
- (iii) $\mu\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mu(A_{j})$ for all disjoint $A_{j}\subseteq\mathbb{R}$

Before we prove that theorem, we need to define something and prove the following lemma.

Definition 2.2.2. We define a Vitali set V from picking an element $x \in [0,1)$ from each equivalence class of the relation $x \sim y$ if $x - y \in \mathbb{Q}$. (e.g, pick $x \in O_x$ for $O_x \in \mathbb{R}/\mathbb{Q}$)

Lemma 2.2.3

Suppose that V is a Vitali set then

$$V \cap V + q = \emptyset$$

For all $q \in \mathbb{Q} \setminus \{0\}$

Proof. Suppose not, there exists $a \in V$ such that $a \in V + q \implies a - q \in V$ but we only pick 1 element in each equivalence class. contradiction.

Lemma 2.2.4

Let V be a Vitali set and let $W = \{q \in [-1,1] : q \in \mathbb{Q}\}$ and

$$E = \bigcup_{w \in W} V + w$$

then

$$[0,1] \subseteq E \subseteq [-1,2]$$

Proof. Consider $E \subseteq [-1,2]$. Since $V \subseteq [0,1)$, then for any $v \in V$, $v \in [0,1) \implies v + w \in [-1,2]$.

For the $[0,1] \subseteq E$, for any $x \in [0,1]$ there exists $O_x \in \mathbb{R}/\mathbb{Q}$ such that $x \in O_x$. then there exists $v \in C_x$ such that $v \in [0,1)$ and $v \in V$, since both are from the same equivalence

class, then $x - v \in \mathbb{Q}$ and $|x - v| < 1 \implies x - v \in (-1, 1)$. Hence, there exists $w \in W$ such that w = x - v so v + w = x.

Proof of the theorem. Suppose that μ exists then using the result from Lemma 2.2.4 we get that

$$\mu([0,1]) \le \mu(E) \le \mu([-1,2])$$

from Lemma 2.2.3 we know that each V + w is disjoint, so

$$\mu([0,1]) \le \sum_{w \in W} \mu(V) \le \mu([-1,2])$$
$$1 \le \sum_{w \in W} \mu(V) \le 3$$

if $\mu(V) = 0$ then $\mu(E) = 0$ and if $\mu(V) > 0$ then $\mu(E) = \infty$. Both are contradiction. \square

§2.3 σ -algebra

Definition 2.3.1. Given a reference X. An algebra is a collection of subsets of X, A, such that

- (i) $X \in \mathcal{A}$
- (ii) If $A \in \mathcal{A}$ then the complement $A^{\complement} = X \setminus A \in \mathcal{A}$
- (iii) If $A, B \in \mathcal{A}$ then $A \cup B \in \mathcal{A}$

Remark 2.3.2. • $\emptyset \in \mathcal{A}$ because $\emptyset = X^{\complement}$

- A₁, A₂ ∈ A, A₁ \ A₂ = A₁ ∩ A₂^ℂ ∈ A
 Observe that if A₁, A₂ ∈ A then A₁ ∩ A₂ ∈ A because (A₁ ∩ A₂)^ℂ = A₁^ℂ ∪ A₂^ℂ

Example 2.3.3

X = [a, b] and \mathcal{A} is the collection of all sets $E \subseteq [a, b]$ such that the Riemann integral $\int \mathbb{1}_E(t) dt$ exists

Definition 2.3.4. A σ -algebra \mathcal{M} on X is

- (i) an algebra of subsets of X
- (ii) If A_1, A_2, A_3, \ldots is a sequence of set in \mathcal{M} then

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$$

 (X, \mathcal{M}) is called a "measurable space".

Remark 2.3.5. \mathcal{M} is a σ -algebra on X then it satisfies

- (i) $X \in \mathcal{M}$ (ii) If $A \in \mathcal{M}$ then $A^{\complement} \in \mathcal{M}$
- (iii) countable union of sets in \mathcal{M} is in \mathcal{M}

Definition 2.3.6. Let (X, \mathcal{M}) be a measurable set. Then a measure μ is a set function $\mu: \mathcal{M} \to [0, \infty], E \mapsto \mu(E)$ such that

- (i) $\mu(\emptyset) = 0$
- (ii) If E_1, E_2, E_3, \ldots is a sequence of disjoint set in \mathcal{M} then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$$

called σ -additivity.

 (X, \mathcal{M}, μ) is called a "measure space".

Remark 2.3.7.

$$\left(igcap_{j=1}^{\infty}A_j
ight)=\left(igcup_{j=1}^{\infty}A_j^{f C}
ight)^{f C}\in\mathcal{M}$$

Example 2.3.8

examples of σ -algebra

- (i) $\mathcal{M} = \{\emptyset, X\}$
- (ii) $\mathcal{M} = \mathfrak{P}(X) = \text{collection of all subsets of } X$

 $\mathbb{N} = \{1, 2, 3, \dots\}$ and $\mu(E) = |E|$ (the cardinality of E) if E is finite and $\mu(E) = \infty$ if E is infinite.

- (iii) X write X as a disjoint (countable) union of sets A_i . Then $\mathcal{M} =$ all countable unions of A_i .
- (iv) Let X be a set. Let \mathcal{M} be the collection of all sets $A, A \subseteq X$ such that A is countable or A^{\complement} is countable.
- (v) $X = \mathbb{R}$ (or \mathbb{R}^n), $\mathcal{B}_{\mathbb{R}}$ is the smallest σ -algebra containing all open sets.

More generally if \mathcal{E} is a collection of subsets of X then $\mathfrak{M}(\mathcal{E})$ is the smallest σ -algebra that contains all sets in \mathcal{E} .

If $\mathcal{M}_1, \mathcal{M}_2$ are two σ -algebras, then $\mathcal{M}_1 \cap \mathcal{M}_2$ is also a σ -algebra.

If $\{\mathcal{M}_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a collection of σ -algebras, their intersection is also a σ -algebra.

Generating σ -algebra

Definition 2.3.9. $\mathfrak{M}(\mathcal{E}) = \text{intersection of all } \sigma\text{-algebra that contain the collection } \mathcal{E}$ We call it the σ -algebra generated by \mathcal{E} .

Remark 2.3.10. If $\mathcal{E} \subset \mathcal{F} \implies \mathfrak{M}(\mathcal{E}) \subset \mathfrak{M}(\mathcal{F})$

Lemma 2.3.11

If $\mathcal{E} \subseteq \mathfrak{M}(\mathcal{F})$ then $\mathfrak{M}(\mathcal{E}) \subseteq \mathfrak{M}(\mathcal{F})$

Proof. $\mathfrak{M}(\mathcal{F})$ is a σ -algebra that contains \mathcal{E} It contains the intersection of all σ -algebras which contain \mathcal{E}

Example 2.3.12

 $\mathcal{B}_{\mathbb{R}} = \sigma$ -algebra on \mathbb{R} containing all open sets \mathcal{E} a collection of all open intervals, $\mathcal{E} \subseteq \mathcal{O} = \text{collection of all open sets in } \mathbb{R}, \, \mathcal{B}_{\mathbb{R}} = \mathfrak{M}(\mathcal{O}). \, \mathfrak{M}(\mathcal{E}) \subseteq \mathcal{B}_{\mathbb{R}}.$ Each open set is a countable union of open intervals. Each open set is contained in $\mathfrak{M}(\mathcal{E})$.

Since $\mathcal{O} \subseteq \mathfrak{M}(\mathcal{E}) \implies \mathfrak{M}(\mathcal{O}) \subseteq \mathfrak{M}(\mathcal{E})$. get $\mathfrak{M}(\mathcal{O}) = \mathfrak{M}(\mathcal{E})$.

Definition 2.3.13. Given $(X_1, \mathcal{M}_1), (X_2, \mathcal{M}_2), \dots, (X_n, \mathcal{M}_n)$ measurable spaces. Define a "product σ -algebra" on $X_1 \times X_2 \times \dots \times X_n$ denoted by

$$\mathcal{M}_1 \oplus \mathcal{M}_2 \oplus \cdots \oplus \mathcal{M}_n = \bigoplus_{j=1}^n \mathcal{M}_j$$

defined as the σ -algebra generated by the sets $E_1 \times E_2 \times \cdots \times E_n$ where $E_j \in \mathcal{M}_j$.

i.e., define $\mathcal{E} := \{(E_1 \times E_2 \times \cdots \times E_n) : E_j \in \mathcal{M}_j\}$ then

$$\bigoplus_{j=1}^n \mathcal{M}_j := \mathfrak{M}(\mathcal{E})$$

Remark 2.3.14. Folland defines it the σ -algebra generated by

$$(X_1 \times X_2 \times \cdots \times X_{n-1} \times E_n)$$

where $E_n \in \mathcal{M}_n$,

$$(X_1 \times X_2 \times \cdots E_{n-1} \times X_n)$$

where $E_{n-1} \in \mathcal{M}_{n-1}$. and so on. To be clear, let

$$\mathcal{E}' := \bigcup_{j=1}^{n} \{ (X_1 \times \dots \times X_{j-1} \times E_j \times X_{j+1} \times \dots \times X_n) : E_j \in \mathcal{M}_j \}$$

then

$$\bigoplus_{j=1}^n \mathcal{M}_j := \mathfrak{M}(\mathcal{E}')$$

Claim 2.3.15 — Both defintions on product of σ -algebra are equivalent.

Proof. The goal is to show that $\mathfrak{M}(\mathcal{E}) = \mathfrak{M}(\mathcal{E}')$.

- (\supseteq) Obviously, $\mathcal{E}' \subseteq \mathcal{E}$ so $\mathfrak{M}(\mathcal{E}') \subseteq \mathfrak{M}(\mathcal{E})$.
- (\subseteq) We want to show that $\mathcal{E} \subseteq \mathfrak{M}(\mathcal{E}')$.

Theorem 2.3.16

Given $(X_1, \mathcal{M}_1), (X_2, \mathcal{M}_2)$ measurable spaces. Assume that \mathcal{M}_1 is generated by a collection \mathcal{E}_1 and \mathcal{M}_2 is generated by a collection \mathcal{E}_2 . Then $\mathcal{M}_1 \oplus \mathcal{M}_2$ is generated by the sets $E_1 \times X_2, X_1 \times E_2$, where $E_1 \in \mathcal{E}_1$ and $E_2 \in \mathcal{E}_2$.

Proof. Let $\mathcal{P} = \{E_1 \times E_2 : E_i \in \mathcal{E}_i\}, \ \mathfrak{M}(\mathcal{P}) \subseteq \mathcal{M}_1 \oplus \mathcal{M}_2$. We need to show that $\mathcal{M}_1 \oplus \mathcal{M}_2 \subseteq \mathfrak{M}(\mathcal{P})$. Define

$$\mathcal{G}_1 = \{ E_1 \subseteq X_1 : E_1 \times X_2 \in \mathfrak{M}(\mathcal{P}) \}$$

$$\mathcal{G}_2 = \{ E_2 \subset X_2 : X_1 \times E_2 \in \mathfrak{M}(\mathcal{P}) \}$$

then \mathcal{G}_1 is a σ -algebra consistion of subset of X_1 which contains \mathcal{E}_1 , $\mathcal{E}_1 \subseteq \mathcal{G}_1$. \mathcal{E}_1 generates \mathcal{M}_1 so $\mathfrak{M}(\mathcal{E}_1) = \mathcal{M}_1 \subseteq \mathcal{G}_1$. So, we have $E_1 \times X_2 \in \mathfrak{M}(\mathcal{P})$ for all $E_1 \in \mathcal{M}_1$ and $X_1 \times E_2 \in \mathfrak{M}(\mathcal{P})$ for all $E_2 \in \mathcal{M}_2$. The σ -algebra generated by the sets $E_1 \times X_2$, $X_1 \times E_2$ is contained $\mathcal{M}_1 \oplus \mathcal{M}_2 \in \mathfrak{M}(\mathcal{P})$.

Claim 2.3.17 —
$$\mathcal{B}_{\mathbb{R}}\oplus\mathcal{B}_{\mathbb{R}}=\mathcal{B}_{\mathbb{R}^2}$$

Consider the collection of all open rectangle of the form $(a_1, b_1) \times (a_2, b_2)$ such $a_i, b_i \in \mathbb{Q}$. which are contained in $O \subseteq \mathbb{R}^2$

Definition 2.3.18 (The Borel σ algebra on the extended real line). We use the notion $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$. One possibility to define " $\mathcal{B}_{\overline{\mathbb{R}}}$ " is the σ -algebra generated by open sets in $\mathbb{R}, \{\infty\}, \{-\infty\}$ open intervals should be $(a, b), (a, \infty], [-\infty, b)$ for $-\infty \le \infty$ $a < b \le \infty$. Then define $d(x,y) = |\arctan(x) - \arctan(y)|$ and $\arctan(\infty) = \pi/2$, $\arctan(-\infty) = -\pi/2.$

§2.4 Measures

Definition 2.4.1. Measures are σ -additive set functions, $\mu(\emptyset) = 0$ and

$$\mu\left(\biguplus_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$$

where E_1, E_2, \ldots is a sequence of disjoint sets.

$$E \subseteq F \implies \mu(E) < \mu(F)$$

$$F = E \uplus (F \setminus E) \implies \mu(F) = \mu(E) + \mu(F \setminus E)$$

$$\begin{split} E \subseteq F &\implies \mu(E) \leq \mu(F) \\ F = E \uplus (F \setminus E) &\implies \mu(F) = \mu(E) + \mu(F \setminus E) \\ \mu(\bigcup A_j) &\leq \sum \mu(A_j) \text{ we can write } \bigcup A_j \text{ as a disjoint union, i.e., } E_1 = A_1, \ E_2 = A_2 \setminus A_1, \\ E_3 = A_3 \setminus (A_1 \cup A_2), \text{ and so on then } \mu(\bigcup A_j) = \mu(\bigcup E_j) = \sum \mu(E_j) \leq \mu(A_j) \end{split}$$

The monotone convergence theorem for sets (continuity from below)

Theorem 2.4.3

If $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$ then

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$$

Proof.
$$\bigcup E_i = E_1 \cup (E_2 \setminus E_1) \cup (E_3 \setminus (E_1 \cup E_2)) \cup \cdots$$