NUSRI Summer Programme 2016

RI3004A 3D Graphics Rendering

Lecture 10 Local Reflection Models

School of Computing National University of Singapore

[Gilles Tran]

[Dmytry Lavrov]

Photo-Realistic Rendering

- Inputs for realistic rendering
 - Camera
 - Geometry
 - Lighting
 - Material
- Material appearances
 - Color, intensity, glossiness, texture, etc.

[Durand]

Material Appearances

- Material appearance is caused by the interaction of light with the object surface and reflected/transmitted from the surface
 - Reflection is characterized by its BRDF (Bi-directional Reflection Distribution Function)
 - Transmission is characterized by its <u>BTDF</u> (Bi-directional Transmission Distribution Function)
- Reflection may be modeled by <u>local reflection models</u>
 - Examples
 - Phong reflection model (empirical)
 - Cook-Torrance reflection model (physically-based)

Local Reflection vs Global Illumination

Local reflection

- Considers relationship between a <u>light source</u>, a <u>single surface</u>
 <u>point</u>, and a <u>view point</u>
- No interaction with other objects

Global illumination

Considers all light sources and surfaces

Radiometry

- Study of physical measurement of light / radiation energy
- Defines some fundamental radiometric quantities
 - Radiant flux / power
 - Irradiance
 - Radiant exitance / radiosity
 - Radiance

Radiometric Quantities (1)

Radiant Power or Radiant Flux

- Total energy flows from/to/through a surface per unit time
- Expressed in watts (W)
- Usually denoted as Φ

Irradiance

- Incident (incoming) radiant power on a surface per unit surface area
- Expressed in W/m²

$$E = \frac{d\Phi}{dA}$$

Usually denoted as E

Radiant Exitance or Radiosity

- Exitant (outgoing) radiant power from a surface per unit surface area
- Expressed in W/m²
- □ Usually denoted as M (radiant exitance) and B (radiosity)

$$M = B = \frac{d\Phi}{dA}$$

Radiometric Quantities (2)

Radiance

- Radiant power per unit <u>projected surface area</u> per unit <u>solid angle</u>
 - Solid angle measured in <u>steradian</u> (sr), where a steradian is the sphere surface area intercepted by a cone divided by the square of the sphere's radius r
 - □ A hemisphere has solid angle of $2\pi r^2/r^2 = 2\pi$ sr
 - Projected surface area = surface area \times cos θ
- Expressed in W/(sr.m²)
- Usually denoted as L

$$L = \frac{d^2 \Phi}{d\omega \cdot dA \cos \theta}$$

Radiometric Quantities (3)

Radiance

- Most important quantity in global illumination algorithms
- Corresponds to light "intensity"
- Relationship with other quantities

Radiant Power,
$$\Phi = \int_{A} \int_{\Omega} L(x \to \Theta) \cos \theta \, d\omega_{\Theta} \, dA_{x}$$

Irradiance,
$$E(x) = \int_{\Omega} L(x \leftarrow \Theta) \cos \theta \, d\omega_{\Theta}$$

Radiosity,
$$B(x) = \int_{\Omega} L(x \to \Theta) \cos \theta \, d\omega_{\Theta}$$

Radiometric Quantities (4)

Radiometric quantities can vary with wavelength

Radiometric quantities are perception independent

Example

- Diffuse emitter
 - Emits equal radiance, L, in all directions

Radiosity,
$$B(x) = \int_{\Omega} L(x \to \Theta) \cos \theta \, d\omega_{\Theta}$$

 $= L \int_{\Omega} \cos \theta \, d\omega_{\Theta}$
 $= L \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} \cos \theta \sin \theta \, d\theta \, d\phi$
 $= L\pi$

Properties of Radiance

- Property (1): Radiance is invariant along straight paths
 - Radiance leaving point x directed towards point y is equal to radiance arriving at point y from point x
 - Assuming no participating medium
- Property (2): Sensors (such as cameras and human eyes) are sensitive to radiance
 - Response of sensors is proportional to radiance incident upon them

 (1)+(2) explain why perceived color or brightness of an object does not change with distance

BRDF

- Bi-directional Reflection Distribution Function
- Describes the "amount" of incident light reflected in an exitant direction

BRDF,
$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)}$$

Example BRDF.
It shows the BRDF for only one incident direction.

$$= \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)(N_x \bullet \Psi)d\omega_{\Psi}}$$

BRDF

Assumptions

- Frequency of light unchanged (no fluorescence)
- Light reflected instantaneously (no phosphorescence)
- No subsurface scattering

Range of function

BRDF can give any non-negative value (even infinity)

Dimension

- 4D
- If BRDF varies on a surface (spatially-varying material), it is described by a BTF (bi-directional texture function) (6D)
- BRDF is dependent on wavelength of light, therefore, strictly speaking, it is 5D

BRDF

- Helmholtz Reciprocity
 - BRDF is symmetric with respect to the incident and reflected directions

$$f_r(x, \Psi \to \Theta) = f_r(x, \Theta \to \Psi)$$

- Energy conservation
 - Total power reflected in all directions must be equal or less than incident power
 - For any incident direction Ψ

$$\int_{\Omega_x} f_r(x, \Psi \to \Theta) (N_x \bullet \Theta) d\omega_{\Theta} \le 1$$

Example BRDFs

- Diffuse surface / reflector

$$f_r(x, \Psi \leftrightarrow \Theta) = \frac{\rho_d}{\pi}$$

where reflectance (albedo) ρ_d varies from 0 to 1

- Perfect mirror reflector
 - BRDF is 0 for all exitant directions, except the mirror reflection direction, where BRDF is infinite

$$\int_{\Omega_x} f_r(x, \Psi \to \Theta) (N_x \bullet \Theta) d\omega_{\Theta} = 1$$

Shading Models

Lambert's model

$$f_r(x, \Psi \leftrightarrow \Theta) = k_d = \frac{\rho_d}{\pi}$$

Phong model

$$f_r(x, \Psi \leftrightarrow \Theta) = k_s \frac{(R \bullet \Theta)^n}{N \bullet \Psi} + k_d$$

where R is the mirror reflection direction of Ψ

- Not energy conserving
- Not satisfying Helmhotz Reciprocity

Shading Models

Blinn-Phong model

$$f_r(x, \Psi \leftrightarrow \Theta) = k_s \frac{(N \bullet H)^n}{N \bullet \Psi} + k_d$$

where H is the halfway vector between Ψ and Θ

- Not energy conserving
- Not satisfying Helmhotz Reciprocity
- Modified Blinn-Phong model

$$f_r(x, \Psi \leftrightarrow \Theta) = k_s(N \bullet H)^n + k_d$$

- Energy conserving?
- Satisfy Helmhotz Reciprocity?

Limitations of Phong Model

- Objects have plastic-like appearance
 - As if diffuse surface is coated with a layer of lacquer
 - E.g. billiard balls

- Cannot simulate metallic appearance
 - The intensity and color of the specular highlights depend on the angle of incoming light

Limitations of Phong Model

No simulation of Fresnel effects

Example Materials Not Modeled By Phong Model

Lambertian sphere

illuminated spherical Lambertian reflector

moon no Lambertian reflector!

[Peter Eisert]

Example Materials Not Modeled By Phong Model

Plane containing L and R the mirror direction

Example Materials Not Modeled By Phong Model

Fresnel Equation

Determines the ratio of <u>reflected</u> and <u>transmitted</u> light energy from a <u>perfect surface</u>

$$F = \frac{1}{2} \left\{ \frac{\sin^2 (\phi - \theta)}{\sin^2 (\phi + \theta)} + \frac{\tan^2 (\phi - \theta)}{\tan^2 (\phi + \theta)} \right\}$$

where:

φ is the angle of incidence

 θ is the angle of refraction

 $\sin \theta = \sin \phi / \mu$ (where μ is the refractive index of the material)

Assumes incoming light is unpolarized, and surface is dielectric (non-conducting).

Refractive index is wavelength dependent.

- Also called <u>Torrance-Sparrow Reflection Model</u>
- Physically-based specular reflection
 - Based on the micro-geometry theory
 - Imperfect surfaces are made up of a collection of microfacets, where each is a perfect surface
 - For simplicity, microfacet model is assumed to consist of symmetric V-shaped grooves

- Model only the specular component
 - Diffuse component is computed separately as before
 - [□] They are combined as $sR_s + dR_d$, where s + d = 1

- The simulation of specular highlights has four components
 - (1) Statistical distribution of the orientation of the microfacets
 - (2) Shadowing and masking effects
 - (3) Glare effect
 - (4) The Fresnel term

- (1) Statistical distribution of the orientation of the microfacets
 - So we can estimate the proportion of microfacets that face a given direction
 - A simple Gaussian (normal distribution) can be used

$$D(\alpha) = k \exp[-(\alpha/m)^2]$$

- lacktriangle α is the angle between N and H
- $D(\alpha)$ gives the proportion of microfacets that mirror reflect the light in direction V
- m is the standard distribution; controls mean surface's roughness

R Gaussian, m = 0.2

Gaussian, m = 0.6

(2) Shadowing and masking effects

- Some light is trapped or intercepted
- The degree of shadowing and masking can be computed as

$$G_{\rm m} = 2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{V})/\mathbf{V} \cdot \mathbf{H}$$

$$G_s = 2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{L})/\mathbf{V} \cdot \mathbf{H}$$

$$G = \min \{1, G_s, G_m\}$$

- (3) Glare effect
 - When angle between the view vector and the mean surface normal increases, an observer sees more microfacets
 - $^{\square}$ Accounted for by the term $1 / N \cdot V$

 Countered by the masking effect if the viewing direction getting parallel to mean surface

(4) The Fresnel term

- Estimate the fraction of light that is reflected as opposed to being absorbed
- Each microfacet is assumed a perfect mirror
- Dependent on wavelength of light, refractive index of surface, and angle of incidence of incoming light w.r.t. the microfacet orientation

$$F = \frac{1}{2} \left\{ \frac{\sin^2 (\phi - \theta)}{\sin^2 (\phi + \theta)} + \frac{\tan^2 (\phi - \theta)}{\tan^2 (\phi + \theta)} \right\}$$
where:
$$\phi \text{ is the angle of incidence}$$

$$\theta \text{ is the angle of refraction}$$

$$\sin \theta = \sin \phi / \mu \text{ (where } \mu \text{ is the refractive index of the material)}$$

- Final specular term = $D(\alpha) \cdot G \cdot F / (N \cdot V)$
 - \Box $D(\alpha)$ is the micro-geometry term
 - G is the shadowing/masking term
 - F is the Fresnel term
 - \square (*N*·*V*) is the glare effect term

Final BRDF

$$f_r(x, \Psi \leftrightarrow \Theta) = \frac{F}{\pi} \cdot \frac{D(\alpha)G}{(N \bullet \Psi)(N \bullet \Theta)} + k_d$$

where $\Psi = L$ and $\Theta = V$

Phong vs. Cook-Torrance

Phong Cook-**Torrance** (c)

Limitations of Cook-Torrance Model

- Assume microfacets are perfectly clean
- The BRDF produced is independent of the <u>azimuth angle</u> (φ) of the incident light
 - Isotropic
 - Many interesting surfaces exhibit <u>anisotropic</u> BRDF
 - Surfaces are made up of strongly oriented micro-geometry elements
 - Examples
 - brushed metals
 - cloth, fur, hair

[Pantene, China]

Isotropic BRDF

If a BRDF is isotropic, then

$$f_r(x,(\theta_i,\phi_i) \leftrightarrow (\theta_o,\phi_o)) = f_r(x,(\theta_i,0) \leftrightarrow (\theta_o,\phi_o-\phi_i))$$

Pre-Computing BRDFs

- Surface element is modeled by a grid of triangular microfacets
 - The geometry can be specified using a bump map
 - No restriction on the small-scale geometry
- BRDF is calculated by firing rays from each incoming direction (on a hemisphere), and ray-tracing the reflected rays to a receiving hemisphere
 - Both hemispheres are divided into cells or bins
- The sampled BRDF is stored and can be used later in rendering
- Can simulate anisotropic BRDF

Measuring BRDFs

- Generally difficult
 - BRDF is 4D, light source & camera instability, variation in surface geometry, inter-reflection within measuring device
 - See http://www.cs.princeton.edu/~smr/cs348c-97/surveypaper.html
- Greg Ward. "Measuring and Modeling Anisotropic Reflection", SIGGRAPH 1992

Measuring BRDFs

Measurement of BRDFs for film production

See http://www.virtualcinematography.org/publications/acrobat/BRDF-

s2003.pdf

End of Lecture 10