Примерен тест по физика-2

- 1. Магнитното поле е:
- потенциално ◆ непотенциално ◆ консервативно ◆ нито едно от изброените
- 2. Напишете закона на Био-Савар, направете подходящ чертеж и пояснете участващите в него величини.
- **3.** Силата на Ампер, която действа върху проводник с дължина 1cm, по който тече ток с големина 100mA, е $10^{-3}N$. Определете големината на магнитната индукция на хомогенно магнитно поле, в което се намира проводника, ако последният е разположен перпендикулярно на магнитните силови линии.
- **4.** Определете магнитния поток през малка равнинна площ $S = 1 mm^2$ намираща се в хомогенно магнитно поле с индукция B = 1T, чиято нормала сключва ъгъл 90° спрямо магнитната индукция.
- **5.** Коефициентът на взаимна индукция на два токови контура е $M = 1 \mu H$. Определете големината на индуцираното електродвижещо напрежение в единия от контурите, ако силата на тока в другия контур се мени със скорост десет ампера за време една секунда.
- 6. Собствената кръгова честота на една трептяща система е :

$$\bullet \qquad \omega_0 = \frac{k}{m} \qquad \bullet \qquad \omega_0 = \frac{m}{k} \qquad \bullet \qquad \omega_0 = \sqrt{\frac{k}{m}} \qquad \bullet \qquad \omega_0 = \sqrt{\frac{m}{k}}$$

- 7. Определете честотата на затихване на трептяща система със собствена кръгова честота $\omega_0=100\,rad\,/\,s\,$ и коефициент на затихване на трептенията $\,\gamma=10\,s^{-1}\,.$
- 8. Напишете вида на силите действащи върху една система извършваща принудени трептения.
- 9. Законът за движение (уравнението) на линейна вълна е :

$$\bullet \ \ s = A\cos(\omega t + \varphi) \ \bullet \ \ x = A_0\cos(\omega_0 t + \varphi) \ \bullet \ \ x = A_0e^{-\gamma t}\cos(\omega_3 t + \varphi) \ \bullet \ \ s = A\cos(\omega t - kx + \varphi)$$

- 10. Дайте дефиниция за кохерентни монохроматични вълни.
- **11.** Коефициентът на пречупване на стъклото спрямо въздуха е n = 1.5. Определете граничния ъгъл за пълно вътрешно отражение.
- **12.** Посочете вярната дефиниция на оптичен път s:

12. Посочете вярната дефиниция на оптичен път
$$s$$
:

 $s = nl$
 $s = l$
 $s = cl$
 $s = l$
 $s = l$
 $s = l$
 $s = l$

където l е геометричният път, n е коефициента на пречупване, c е скоростта на светлината във вакуум.

- **13.** Максимумът в спектъра на топлинно излъчване на едно тяло е при $\lambda_{\max} = 10 \, \mu m$. Определете температурата на това тяло.
- **14.** Фотокатод с отделителна работа $1{,}82.10^{-19}\,J$ се осветява със светлина с честота $\nu=10^{15}\,Hz$. Определете задържащото напрежение за фотоефекта при тези условия.
- **15.** Посочете вярната формулировка за импулса p на фотона:

където h е константата на Планк, λ е дължината на вълната, ν е честотата, c е скоростта на светлината във вакуум.

- **16.** Минималната неопределеност на импулса на електрон преминал през отвор е $\Delta p = 10^{-30} \, kg \, m \, / \, s$. Оценете размера на отвора.
- 17.Определете големината на орбиталния момент на импулса на електрон в състояние с орбитално квантово число l=3.
- 18. Изкажете принципа на Паули.
- **19.** Електрон се движи в хомогенно магнитно поле със скорост $v = 10^5 \, cm/s$ под ъгъл 30^0 спрямо магнитните силови линии. Каква е големината на магнитната индукция на полето, ако електронът се движи по винтова линия с отстояние (радиус) от оста на винтовата линия R = 1cm. (4 точки)
- (4 точки) 20. Изведете израза за енергията на водородния атом в рамките на модела на Бор.

Електрична константа $\epsilon_0 = 8,85.10^{-12}$ F/m Магнитна константа $\mu_0 = 4\pi.10^{-7}$ H/m Маса на електрона в покой $m_e = 9,1.10^{-31}$ kg Маса на протона в покой $m_p = 1,6.10^{-27}$ kg Константа на Планк $h = 6,62.10^{-34}$ J.s

Скорост на светлината във вакуум $c = 3.10^8$ m/s Елементарен електричен заряд $e = 1,6.10^{-19}$ С Константа на Вин $b = 2,9.10^{-3}$ m.K Константа на Стефан–Болцман $\sigma = 5,7.10^{-8}$ W/(m².K⁴)

Указания за попълване на изпитния тест

Максималният брой точки за въпросите от №1 до №18 е 2.

Въпроси с избираем отговор.

Ако въпросът е за разпознаване на закон, формула или дефиниция, за получаване на 2 точки се изисква само отбелязване на верния отговор.

Ако въпросът е с изчисления, за получаване на 2 точки се изисква отбелязване на верния отговор и решение. При липса на решение точки не се дават. При неточности в решението се дава 1 точка.

Въпроси със свободен отговор.

При въпроси от дефиниции, формулировки и закони 2 точки се дават за пълен отговор. Пълният отговор включва словесна формулировка, запис на съответното уравнение, поясняване на физичните величини, влизащи в него, като и привеждане на съответните мерни единици там, където е необходимо.

До 1 точка се отнема, ако:

отговорът е непълен;

има малки неточности във формулировките.

При въпроси с приложения в числени примери 2 точки се дават при пълно решение, получен числен резултат и приведени мерни единици. При въпроси, решавани на две стъпки (с използване на два закона), за вярно решение само на едната стъпка се дава 1 точка. 0,5 точки се отнемат, ако:

не са записани правилно мерните единици;

има правилно буквено решение, но има грешки в изчисленията.

Максималният брой точки за въпроси №19 и №20 е 4.

При въпроси от изводи на основни физични зависимости 4 точки се дават при пълен извод в рамките на предаденото по време на лекции. Ако изводът не е направен докрай, точки се дават пропорционално на изпълнената част. За правилно записани изходни уравнения или за направо записан краен резултат се дава 1 точка.

При въпроси с решаване на кратка задача 4 точки се дават при пълно решение, получен числен резултат и привеждане на съответните мерни единици. При липса на пълно решение по 1 точка се дава за:

правилно записани изходни уравнения;

вярно решение на всяка стъпка от задачата.

До 1 точка се отнема, ако:

не са записани правилно мерните единици; има грешки в изчисленията.

Минималните точки, необходими за съответната оценка на изпитния тест, са:

 Среден 3.00
 17 т.

 Добър 4.00
 26 т.

 Мн. добър 5.00
 33 т.

 Отличен 6.00
 39 т.