WHAT IS CLAIMED IS:

- A cosmetic method of skin lightening comprising applying to the skin a composition comprising:
 - a. about 0.000001 to about 50 % of a compound of general formula I

(1)

Where each or both R_1 and/or R_2 represents hydrogen (H); linear or branched, saturated or unsaturated $C_1 - C_{12}$ alkyl, alkenyl, acyl, or heteroalkyl groups;

10

5

 R_3 represents linear or branched, cyclic or acyclic, saturated or unsaturated C_1 – C_{12} alkyl, alkenyl, cycloalkyl, cycloalkenyl, or heteroalkyl group;

R₄ represents a hydrogen atom (H); straight or branched, cyclic or acyclic,
saturated or unsaturated, containing or not containing a heteroatom C₁-C₂₂ alkyl,
alkenyl, cycloalkyl, cycloalkenyl, heteroalkyl, aryl, or heteroaryl group;
and

b. a cosmetically acceptable carrier.

20

2. The method of claim 1, wherein said composition further comprises a sunscreen.

- 3. The method of claim 2, wherein said sunscreen is a micronized metal oxide.
- 4. The method of claim 1, wherein said compound is a 4-methyl 7-hydroxy coumarin derived resorcinol derivative.
 - 5. The method of claim 1, wherein said compound is a compound of formula II:

10

٠)

- 6. The cosmetic method of claim 1, wherein R₁ and R₂ both represent hydrogen.
- 7. The cosmetic method according to claim 1, wherein said composition further comprises a skin benefit agent selected from the group consisting of alphahydroxy acids, beta-hydroxy acids, polyhydroxy acids, hydroquinone, t-butyl hydroquinone, Vitamin C derivatives, dioic acids, retinoids, resorcinol derivatives, and mixtures thereof.
- 8. The cosmetic method of claim 1, wherein said composition further comprises an organic sunscreen selected from the group consisting of Benzophenone-3, Benzophenone-4, Benzophenone-8, DEA, Methoxycinnamate, Ethyl

dihydroxypropyl-PABA, Glyceryl PABA, Homosalate, Methyl anthranilate,
Octocrylene, Octyl dimethyl PABA, Octyl methoxycinnamate (PARSOL MCX),
Octyl salicylate, PABA, 2-Phenylbenzimidazole-5-sulphonic acid, TEA
salicylate, 3-(4-methylbenzylidene)-camphor, Benzophenone-1,
Benzophenone-2, Benzophenone-6, Benzophenone-12, 4-Isopropyl
dibenzoyl methane, Butyl methoxy dibenzoyl methane (PARSOL
1789), Etocrylene, and mixtures thereof.

- 9. A cosmetic composition comprising:
 - a. about 0.000001 to about 50 % of a compound of general formula I:

(l)

wherein each or both R_1 and/or R_2 represents hydrogen (H); linear or branched, saturated or unsaturated $C_1 - C_{12}$ alkyl, alkenyl, acyl, or heteroalkyl groups;

15

20

5

10

ì

 R_3 represents linear or branched, cyclic or acyclic, saturated or unsaturated $C_1 - C_{12}$ alkyl, alkenyl, cycloalkyl, cycloalkenyl, or heteroalkyl group;

R₄ represents a hydrogen atom (H); straight or branched, cyclic or acyclic, saturated or unsaturated, containing or not containing a heteroatom C₁-C₂₂ alkyl, alkenyl, cycloalkyl, cycloalkenyl, heteroalkyl, aryl, or heteroaryl group; and

b. a cosmetically acceptable carrier.

10. The cosmetic composition of claim 9, wherein said compound is a compound of formula II:

(II)

5

- 11. The cosmetic composition of claim 9, wherein R_1 and R_2 both represent hydrogen.
 - 12. The cosmetic composition of claim 9, wherein said compound comprises about 0.00001 % to about 10 % of said composition.
- 13. The cosmetic composition of claim 9, wherein said compound comprises about 0.001 % to about 7 % of said composition.
 - 14. The cosmetic composition of claim 9, wherein said compound comprises about 0.01 % to about 5 % of said composition.

15. A process for making compounds having a general formula selected from the group consisting of B, C, D, and mixtures thereof, comprising:

HO
$$\downarrow$$
 Catalyst \downarrow Catalyst

5

53

wherein

 R_3 represents linear or branched, cyclic or acyclic, saturated or unsaturated C_1 – C_{12} alkyl, alkenyl, cycloalkyl, cycloalkenyl, or heteroalkyl group;

R₄ represents a hydrogen atom (H); straight or branched, cyclic or acyclic, saturated or unsaturated, containing or not containing a heteroatom C₁-C₂₂ alkyl, alkenyl, cycloalkyl, cycloalkenyl, heteroalkyl, aryl, or heteroaryl group.

16. The process of claim 15 further comprising substitution of the 1,3-hydroxy positions of the phenyl ring to yield compound of general formula I:

(1)

- wherein each or both R_1 and/or R_2 represents hydrogen (H); linear or branched, saturated or unsaturated $C_1 C_{12}$ alkyl, alkenyl, acyl, or heteroalkyl groups.
 - 17. A compound of general formula I

(l)

10

Where each or both R_1 and/or R_2 represents hydrogen (H); linear or branched, saturated or unsaturated $C_1 - C_{12}$ alkyl, alkenyl, acyl, or heteroalkyl groups;

R₃ represents linear or branched, cyclic or acyclic, saturated or unsaturated C₁ – C₁₂ alkyl, alkenyl, cycloalkyl, cycloalkenyl, or heteroalkyl group;

 R_4 represents a hydrogen atom (H); straight or branched, cyclic or acyclic, saturated or unsaturated, containing or not containing a heteroatom C_1 - C_{22} alkyl, alkenyl, cycloalkyl, cycloalkenyl, heteroalkyl, aryl, or heteroaryl group.

5

18. The compound of claim 17, wherein said compound is a compound of formula II:

(II)

10

- 19. The compound of claim 1, wherein said compound is a 4-methyl 7-hydroxy coumarin derived resorcinol derivative.
 - 20. The compound of claim 1, wherein R_1 and R_2 both represent hydrogen.