Лабораторная работа № 4.

Транспортная задача. Методы нахождения начального решения транспортной задачи

Цель: Составить опорные планы различными методами, сравнить значения суммарной стоимости перевозок по каждому плану.

Задача 1 Постановка залачи

A_i	B_{I}	B_2	B ₃	B 4	a_i
A_{I}	2	3	2	4	30
A_2	3	2	5	1	40
A_3	4	3	2	6	20
b_j	20	30	30	10	90

Решение Метод северо-западного угла

A _i B _j	B ₁	\mathbf{B}_2	B ₃	B ₄	a _i
A ₁	20	10	- 2	-	30
\mathbf{A}_2	3	20	5 20	-	40
A 3	-	- 3	10	6	20
bj	20	30	30	10	90

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 6, а должно быть m+n-1=6. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_1 = 20*2+10*3+20*2+20*5+10*2+10*6 = 290$$

Метод минимальной стоимости

A_i	\mathbf{B}_1	\mathbf{B}_2	В3	B 4	ai
A 1	20	-	10	-	30
A 2	-	30	5	10	40
A 3	-	0	20	6	20
bj	20	30	30	10	90

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 6, а должно быть m+n-1=6. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_2 = 20*2+10*2+30*2+10*1+0*3+20*2 = 170$$

Метод аппроксимации Фогеля

A_i B_j	B ₁	B ₂	В3	B4	ai	Δc_{ij}
A ₁	20	- 3	10	4	30	0;0;0;1;0
A 2	- 3	30	5	10	40	1;1;1;1
A 3	- 4	0 3	20	-	20	1;1
bj	20	30	30	10	90	
Δc _{ij}	1;1;1;1;0	1;1;1;1	0;0;3	3		

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 6, а должно быть m+n-1=6. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_3 = 20*2+10*2+30*2+10*1+0*3+20*2 = 170$$

Вывод: $Z_1 > Z_2$, $Z_1 > Z_3$, $Z_2 = Z_3 = >$ метод минимальной стоимости и метод аппроксимации Фогеля более оптимальны для данной задачи.

Задача 2

Постановка задачи

A_i	B 1	B ₂	B 3	B 4	B 5	ai
A_1	2	7	3	6	2	30
A_2	9	4	5	7	3	70
A_3	5	7	6	2	4	50
b_j	10	40	20	60	20	150

Решение

Метод северо-западного угла

A _i B _j	B ₁	B ₂	В3	B 4	B 5	ai
A ₁	10	7 20	-	6	- 2	30
\mathbf{A}_2	9	20	5 20	30	- 3	70
A ₃	5	7	-	30	20	50
bj	10	40	20	60	20	150

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_1 = 10*2+20*7+20*4+20*5+30*7+30*2+20*4 = 690$$

Метод минимальной стоимости

A _i B _j	B ₁	\mathbf{B}_2	В3	B4	B 5	ai
A 1	10	7	0	-	20	30
A 2	9	40	5 20	7 10	3	70
A 3	5	7	6	50	4	50
bj	10	40	20	60	20	150

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_2 = 10*2 + 0*3 + 20*2 + 40*4 + 20*5 + 10*7 + 50*2 = 490$$

Метод аппроксимации Фогеля

A_i B_j	B ₁	B ₂	В3	B 4	B 5	ai	Δc_{ij}
A ₁	10	7	20	6	0	30	0;0;1;1;3
\mathbf{A}_2	9	40	5	7 10	20	70	1;1;1;2;2
A 3	- 5	7	6	50	- 4	50	2
$\mathbf{b_{j}}$	10	40	20	60	20	150	
Δc _{ij}	3;7	3;3;3	2;2;2;2	4;1;1;1;1	1;1;1;1		

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_3 = 10*2+20*3+0*2+40*4+10*7+20*3+50*2 = 470$$

Вывод: $Z_1 > Z_2 > Z_3 \implies$ метод аппроксимации Фогеля более оптимальный для данной задачи.

Задача З
Постановка задачи

A_i	B 1	B ₂	B ₃	B 4	B 5	ai
A_1	4	2	5	7	6	20
A_2	7	8	3	4	5	110
A_3	2	1	4	3	2	120
b_j	70	40	30	60	50	250

Решение

Метод северо-западного угла

A_i B_j	B ₁	B ₂	В3	B4	B 5	ai
A 1	20	- 2	5	7	6	20
\mathbf{A}_2	50	8 40	20	-	5	110
A ₃	- 2	- 1	10	60	50	120
bj	70	40	30	60	50	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_1 = 20*4+50*7+40*8+20*3+10*4+60*3+50*2 = 1130$$

Метод минимальной стоимости

A _i B _j	B ₁	B ₂	В3	B4	B 5	ai
A 1	-	20	5	7	6	20
A 2	7	- 8	30	60	5 20	110
A 3	70	20	4	-	30	120
bj	70	40	30	60	50	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_2 = 20*2+30*3+60*4+20*5+70*2+20*1+30*2 = 690$$

Метод аппроксимации Фогеля

A_i B_j		B ₁	B ₂	В3	B 4	B 5	ai	Δc _{ij}
A ₁	-	4	20	5	7	-	20	2;2
A 2	20	7	- 8	30	60	5 -	110	1;1;1;1;3;0
A 3	50	2	20	- 4	- 3	50	120	1;1;1;1
$\mathbf{b_{j}}$		70	40	30	60	50	250	
Δcij	2;2;	5;5;0;0;0	1;1;7	1;1;1;1;0	1;1;1;1;0;0	3		-

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_3 = 20*2+20*7+30*3+60*4+50*2+20*1+50*2 = 730$$

Вывод: $Z_1 > Z_3 > Z_2 \implies$ метод минимальной стоимости более оптимальный для данной задачи.

Задача 4
Постановка задачи

A_i	B_1	B ₂	B 3	B 4	B 5	a_i
A_I	2	8	4	6	3	120
A_2	3	2	5	2	6	30
A_3	6	5	8	7	4	40
A_4	3	4	4	2	1	60
b_j	30	90	80	20	30	250

Решение Метод северо-западного угла

A _i B _j	B ₁	B ₂	В3	B 4	B 5	ai
\mathbf{A}_1	30	90	0	6	3	120
A 2	3	- 2	30	- 2	6	30
A 3	6	5	40	7	4	40
A 4	3	- 4	10	20	30	60
bj	30	90	80	20	30	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 8, а должно быть m+n-1=8. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_1 = 30*2+90*8+0*4+30*5+40*8+10*4+20*2+30*1 = 1360$$

Метод минимальной стоимости

A _i B _j	B ₁	B ₂	В3	B4	B 5	ai
A 1	30	8 10	80	6	3	120
\mathbf{A}_2	- 3	30	5	- 2	6	30
A ₃	6	5 40	- 8	7	-	40
A 4	- 3	10	- 4	20	30	60
bj	30	90	80	20	30	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 8, а должно быть m+n-1=8. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_2 = 30*2+10*8+80*4+30*2+40*5+10*4+20*2+30*1 = 830$$

Метод аппроксимации Фогеля

A _i B _j	B 1	\mathbf{B}_2	B 3	B 4	B 5	ai	Δc_{ij}
$\mathbf{A_1}$	30	10	80	-	- 3	120	1;2;2;4;0;0;0;0
A 2	- 3	30	5	- 2	-	30	0;0;0;3;0
A 3	-	5 40	- 8	- 7	-	40	1;1;2;3;0;0;0
A 4	- 3	10	-	20	30	60	1;1;2;0;0;0

bj	30	90	80	20	30	250
Δcij	1;1	2;2;2;2;1;3;0	0;0;0;0	0;0;0	2	

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 8, а должно быть m+n-1=8. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z_3 = 30*2+10*8+80*4+30*2+40*5+10*4+20*2+30*1 = 830$$

Вывод: $Z_1 > Z_2$, $Z_1 > Z_3$, $Z_2 = Z_3 = >$ метод минимальной стоимости и метод аппроксимации Фогеля более оптимальны для данной задачи.

Вывод: В ходе лабораторной работы были решены транспортные задачи различными методами и составлены их опорные планы, также мы сравнили значения суммарной стоимости перевозок по каждому плану.