Gircadient Descent

Featune (2)	Output (y)
1	1
3	4
2	3

YouTube @ Study Marzt

We know,
$$y = Mx + C$$
 (Liean Equation)

Hypothesis for Linear Regnession,

 $\lambda_{\omega}(x) = W_0 + W_1 x$

And, $cost$ function for Linear Regnession,

 $cost(w_0, w_1) = \frac{1}{2M} \sum_{i=1}^{M} \left\{ \lambda_{\omega}(x^i) - y^i \right\}^2$

Now, we have to update our weight,

 $W_{new} = W_0 - \alpha = \frac{\partial Lose}{\partial Old Weight}$
 $\alpha = Learner Rate$

oc = Learing Rate

$$W_0 = 0.00$$

so, Hypothesis will be,

$$\lambda_{\omega}(x) = 0 + 0 \times x$$

 $= 0$

Now, Dreaw a table for predicted output and Ennor:

2	Yout	Predicted Outp.	Error [y - y]	cost Ennor 2
1	1	0	- 1	1
3	4	0	- 4	16
2	3	0	- 3	9

Total Ennor = -8
Total Ennor = 26

Ennor = aniginal - Anide

60, cost for wo and wo weight is,

cost $(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} \left\{ h_w \left[x_i - y_i \right] \right\}^2$ or, $= \frac{1}{2m} \sum_{i=1}^{m} \left\{ y_{\text{Predicted}} \right\}^2$ $= \frac{1}{2*3} \times 26$ $= \frac{26}{5}$ = 5.2

This is the cost value for first data point, Now, we have need to update our weight.

Weight update Formula

$$w_j = w_i - \eta - \frac{\partial}{\partial w_j} \log(w_0, w_1)$$

when, lose = 0 then,
$$W = W_{old} - \alpha + \sum_{i=1}^{m} \{h_w(x_i) - y_{(i)}\}$$
new

when lose > 0;

$$W_{\text{new}} = W_{\text{old}} - \infty \frac{1}{m} \sum_{i=1}^{m} \left\{ h_{w}(\pi_{i}) - (y_{i}) \right\} \cdot \chi_{i}^{(i)}$$

Now, Let's Assume Learning Rate & = 0.01

50, We can update our weight:

$$W_0 = 0 - 0.01 \times \frac{1}{3} \times (-8)$$

$$= 0.027$$

$$W_1 = 0 - 0.01 \times \frac{1}{3} (-8) \times 1$$

$$= 0.027$$

Now, $W_0 = 0.027$ and $W_1 = 0.027$

Now we calcuate for 2nd data point:

×	y	Predicted y	Ennor	Ennor2
1	1	. 054	-946	1894
3	4	.108	-3.892	15.147
2	3	.081	-2.919	35 8.52

Total = 24.56

Cost
$$(w_0, w_1) = \frac{1}{2m} \left\{ \frac{1}{2m} \left(\frac{1}{2m} \left$$

Again update weight and Calculate for 3rd data point.