# Reproducible Research

## KRUG 9차 Meet up

(2013-01-17)

유충현

# R 객체를 LaTeX의 Table로 출력하기

## 개요

## Table 출력하기

#### ● LaTeX에서의 테이블 출력 대상

- R Objects
  - matrix
  - data frames
- Table Objects
  - table objects, contingency table
  - xtabs
- Model Objects
  - ANOVA (aov, anova)
  - regression (lm, glm)
- Time Series Objects

#### ● 테이블 출력 packages

- xtable package
- tables package
- stargazer package
- apsrtable package

#### xtable function

## xtable package

#### xtable function

Usage

xtable(x, caption=NULL, label=NULL, align=NULL, digits=NULL, display=NULL, ...)

- x : An R object
- caption : 도표의 caption or title
- align : 칼럼의 정렬.
  - I(left), r(right), c(center)
- digits : 숫자의 소수점 자리 지정
- display : 출력하고자 하는 칼럼의 format 지정
  - "d", "f", "e", "E", "s", ...
- 출력
  - TeX의 table tag code

#### ● 가능한 객체

```
> methods(xtable)
[1] xtable.anova* xtable.aov* xtable.aovlist* xtable.coxph* xtable.data.frame*
[6] xtable.glm* xtable.lm* xtable.matrix* xtable.prcomp* xtable.summary.aov*
[11] xtable.summary.aovlist* xtable.summary.glm* xtable.summary.lm* xtable.summary.prcomp*
[15] xtable.table* xtable.summary.glm* xtable.zoo*
```

#### data frame

## xtable package

#### data frame example

```
library(xtable)
iris.table <- xtable(iris[1:5,])
print(iris.table)
```

#### ● 결과

```
#begin{table}[ht]

#begin{center}

#begin{tabular}{rrrrr}

#hline

& Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species ₩₩

#hline

1 & 5.10 & 3.50 & 1.40 & 0.20 & setosa ₩₩

2 & 4.90 & 3.00 & 1.40 & 0.20 & setosa ₩₩

3 & 4.70 & 3.20 & 1.30 & 0.20 & setosa ₩₩

4 & 4.60 & 3.10 & 1.50 & 0.20 & setosa ₩₩

5 & 5.00 & 3.60 & 1.40 & 0.20 & setosa ₩₩

#hline

#end{tabular}

#end{center}

#end{center}
```

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 1 | 5.10         | 3.50        | 1.40         | 0.20        | setosa  |
| 2 | 4.90         | 3.00        | 1.40         | 0.20        | setosa  |
| 3 | 4.70         | 3.20        | 1.30         | 0.20        | setosa  |
| 4 | 4.60         | 3.10        | 1.50         | 0.20        | setosa  |
| 5 | 5.00         | 3.60        | 1.40         | 0.20        | setosa  |

#### matrix

## xtable package

#### matrix example

#### ● 결과

```
#begin{table}[ht]

#begin{center}

#begin{tabular}{rrrr}

#hline

& C.1 & C.2 & C.3 ₩₩

#hline

row1 & 1.00 & 2.00 & 3.00 ₩₩

row2 & 11.00 & 12.00 & 13.00 ₩₩

#hline

#end{tabular}

#end{tabule}
```

|      | C.1   | C.2   | C.3   |
|------|-------|-------|-------|
| row1 | 1.00  | 2.00  | 3.00  |
| row2 | 11.00 | 12.00 | 13.00 |

## xtable package

#### aov example

```
data(tli)
fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data=tli)
fm1.table <- xtable(fm1)
print(fm1.table,floating=FALSE)
```

#### ● 결과

```
₩begin{tabular}{Irrrrr}

₩hline
& Df & Sum Sq & Mean Sq & F value & Pr($>$F) ₩₩

₩hline
sex & 1 & 75.37 & 75.37 & 0.38 & 0.5417 ₩₩
ethnicty & 3 & 2572.15 & 857.38 & 4.27 & 0.0072 ₩₩
grade & 1 & 36.31 & 36.31 & 0.18 & 0.6717 ₩₩
disadvg & 1 & 59.30 & 59.30 & 0.30 & 0.5882 ₩₩
Residuals & 93 & 18682.87 & 200.89 & & ₩₩

₩hline
₩end{tabular}
```

|                          | $\operatorname{Df}$ | Sum Sq   | Mean Sq | F value | Pr(>F) |
|--------------------------|---------------------|----------|---------|---------|--------|
| sex                      | 1                   | 75.37    | 75.37   | 0.38    | 0.5417 |
| ethnicty                 | 3                   | 2572.15  | 857.38  | 4.27    | 0.0072 |
| $\operatorname{grade}$   | 1                   | 36.31    | 36.31   | 0.18    | 0.6717 |
| $\operatorname{disadvg}$ | 1                   | 59.30    | 59.30   | 0.30    | 0.5882 |
| Residuals                | 93                  | 18682.87 | 200.89  |         |        |

#### lm

## xtable package

#### Im example

```
fm2 <- Im(tlimth ~ sex*ethnicty, data=tli)
fm2.table <- xtable(fm2)
print(fm2.table,floating=FALSE)</pre>
```

#### ● 결과

```
Whegin{tabular}{rrrrr}
Whline
& Estimate & Std. Error & t value & Pr($>$$|$t$|$) ₩₩
Whline
(Intercept) & 73.6364 & 4.2502 & 17.33 & 0.0000 ₩₩
sexM & -1.6364 & 5.8842 & -0.28 & 0.7816 ₩₩
ethnictyHISPANIC & -9.7614 & 6.5501 & -1.49 & 0.1395 ₩₩
ethnictyOTHER & 15.8636 & 10.8360 & 1.46 & 0.1466 ₩₩
ethnictyWHITE & 4.7970 & 4.9687 & 0.97 & 0.3368 ₩₩
sexM:ethnictyHISPANIC & 10.6780 & 8.7190 & 1.22 & 0.2238 ₩₩
sexM:ethnictyWHITE & 5.1230 & 7.0140 & 0.73 & 0.4670 ₩₩
Whline
₩end{tabular}
```

|                       | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-----------------------|----------|------------|---------|-------------|
| (Intercept)           | 73.6364  | 4.2502     | 17.33   | 0.0000      |
| sexM                  | -1.6364  | 5.8842     | -0.28   | 0.7816      |
| ethnictyHISPANIC      | -9.7614  | 6.5501     | -1.49   | 0.1395      |
| ethnictyOTHER         | 15.8636  | 10.8360    | 1.46    | 0.1466      |
| ${\it ethnictyWHITE}$ | 4.7970   | 4.9687     | 0.97    | 0.3368      |
| sexM:ethnictyHISPANIC | 10.6780  | 8.7190     | 1.22    | 0.2238      |
| sexM:ethnictyWHITE    | 5.1230   | 7.0140     | 0.73    | 0.4670      |

## prcomp

## xtable package

#### prcomp example

```
pr1 <- prcomp(USArrests)
print(xtable(pr1),floating=FALSE)</pre>
```

## ● 결과

```
₩begin{tabular}{rrrrr}

₩hline
& PC1 & PC2 & PC3 & PC4 ₩₩

₩hline

Murder & 0.0417 & -0.0448 & 0.0799 & -0.9949 ₩₩

Assault & 0.9952 & -0.0588 & -0.0676 & 0.0389 ₩₩

UrbanPop & 0.0463 & 0.9769 & -0.2005 & -0.0582 ₩₩

Rape & 0.0752 & 0.2007 & 0.9741 & 0.0723 ₩₩

₩hline

₩end{tabular}
```

|          | PC1    | PC2     | PC3     | PC4     |
|----------|--------|---------|---------|---------|
| Murder   | 0.0417 | -0.0448 | 0.0799  | -0.9949 |
| Assault  | 0.9952 | -0.0588 | -0.0676 | 0.0389  |
| UrbanPop | 0.0463 | 0.9769  | -0.2005 | -0.0582 |
| Rape     | 0.0752 | 0.2007  | 0.9741  | 0.0723  |

## xtable package

#### ts example

```
ts1 <- ts(1:10, frequency = 4, start = c(2010, 2))
print(xtable(ts1),floating=FALSE)
```

#### ● 결과

```
₩begin{tabular}{rrrrr}

₩hline
& Q1 & Q2 & Q3 & Q4 ₩₩

₩hline
2010 & & 1 & 2 & 3 ₩₩

2011 & 4 & 5 & 6 & 7 ₩₩

2012 & 8 & 9 & 10 & ₩₩

₩hline

₩end{tabular}
```

|      | Q1 | Q2 | Q3 | Q4 |
|------|----|----|----|----|
| 2010 |    | 1  | 2  | 3  |
| 2011 | 4  | 5  | 6  | 7  |
| 2012 | 8  | 9  | 10 |    |

## xtable package

#### caption argument

```
ts1 <- ts(1:10, frequency = 4, start = c(2010, 2))
print(xtable(ts1, caption="Time Series Table"))
```

#### ● 결과

```
Wbegin{table}[ht]

Wbegin{center}

Wbegin{tabular}{rrrrr}

Whline

& Q1 & Q2 & Q3 & Q4 ₩W

Whline

2010 & & 1 & 2 & 3 ₩W

2011 & 4 & 5 & 6 & 7 ₩W

2012 & 8 & 9 & 10 & ₩W

Whline

Wend{tabular}

Wcaption{Time Series Table}

Wend{table}
```

|      | Q1 | Q2 | Q3 | Q4 |
|------|----|----|----|----|
| 2010 |    | 1  | 2  | 3  |
| 2011 | 4  | 5  | 6  | 7  |
| 2012 | 8  | 9  | 10 |    |

Table 1: Time Series Table

## xtable package

#### align argument

```
iris.table <- xtable(iris[1:5,], align="llrccr")
print(iris.table)</pre>
```

#### ● 결과

```
#begin{table}[ht]

#begin{center}

#begin{tabular}{Ilrccr}

#hline

& Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species ₩₩

##hline

1 & 5.10 & 3.50 & 1.40 & 0.20 & setosa ₩₩

2 & 4.90 & 3.00 & 1.40 & 0.20 & setosa ₩₩

3 & 4.70 & 3.20 & 1.30 & 0.20 & setosa ₩₩

4 & 4.60 & 3.10 & 1.50 & 0.20 & setosa ₩₩

5 & 5.00 & 3.60 & 1.40 & 0.20 & setosa ₩₩

##hline

##end{tabular}

##end{tabular}

##end{table}
```

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 1 | 5.10         | 3.50        | 1.40         | 0.20        | setosa  |
| 2 | 4.90         | 3.00        | 1.40         | 0.20        | setosa  |
| 3 | 4.70         | 3.20        | 1.30         | 0.20        | setosa  |
| 4 | 4.60         | 3.10        | 1.50         | 0.20        | setosa  |
| 5 | 5.00         | 3.60        | 1.40         | 0.20        | setosa  |

## xtable package

#### column lines using align argument

```
iris.table <- xtable(iris[1:5,], align="l|l|r|c|c|r")
print(iris.table)</pre>
```

#### ● 결괴

```
#begin{table}[ht]

#begin{center}

#begin{tabular}{||r|c|c|r}

#hline

& Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species ₩₩

#hline

1 & 5.10 & 3.50 & 1.40 & 0.20 & setosa ₩₩

2 & 4.90 & 3.00 & 1.40 & 0.20 & setosa ₩₩

3 & 4.70 & 3.20 & 1.30 & 0.20 & setosa ₩₩

4 & 4.60 & 3.10 & 1.50 & 0.20 & setosa ₩₩

5 & 5.00 & 3.60 & 1.40 & 0.20 & setosa ₩₩

#hline

#end{tabular}

#end{center}

#end{table}
```

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 1 | 5.10         | 3.50        | 1.40         | 0.20        | setosa  |
| 2 | 4.90         | 3.00        | 1.40         | 0.20        | setosa  |
| 3 | 4.70         | 3.20        | 1.30         | 0.20        | setosa  |
| 4 | 4.60         | 3.10        | 1.50         | 0.20        | setosa  |
| 5 | 5.00         | 3.60        | 1.40         | 0.20        | setosa  |

## xtable package

## ● digits argument – 소수점 자리 수

```
iris.table <- xtable(iris[1:5,], align="|||||r|c|c|r|", digits=1)
print(iris.table)</pre>
```

#### ● 결과

```
#begin{table}[ht]

#begin{center}

#begin{tabular}{||I||r|c|c|r|}

#hline

& Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species ₩₩

#hline

1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa ₩₩

2 & 4.9 & 3.0 & 1.4 & 0.2 & setosa ₩₩

3 & 4.7 & 3.2 & 1.3 & 0.2 & setosa ₩₩

4 & 4.6 & 3.1 & 1.5 & 0.2 & setosa ₩₩

5 & 5.0 & 3.6 & 1.4 & 0.2 & setosa ₩₩

#hline

#end{tabular}

#end{tabular}

#end{table}
```

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 1 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 2 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 3 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 4 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 5 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  |

## sideways table

## xtable package

#### A sideways table

x <- xtable(iris[1:5,], caption='A sideways table')
print(x,floating.environment='sidewaystable')</pre>

#### ● 결과

```
₩begin{sidewaystable}[ht]
₩begin{center}
₩begin{tabular}{rrrrl}
 ₩hline
& Sepal.Length & Sepal.Width & Petal.Length & Petal.Width & Species \\
 ₩hline
1 & 5.10 & 3.50 & 1.40 & 0.20 & setosa \\
 2 & 4.90 & 3.00 & 1.40 & 0.20 & setosa \\
 3 & 4.70 & 3.20 & 1.30 & 0.20 & setosa ₩₩
 4 & 4.60 & 3.10 & 1.50 & 0.20 & setosa \\
 5 & 5.00 & 3.60 & 1.40 & 0.20 & setosa \\
 ₩hline
₩end{tabular}
₩caption{A sideways table}
₩end{center}
₩end{sidewaystable}
```

#### ● TeX 결과

| 1.40 | 3.50<br>3.00<br>3.20<br>1 |
|------|---------------------------|
| ,    | 3.00<br>3.20              |
| 1.40 | 3.20                      |
| 1.30 |                           |
| 1.5  | 3.10                      |
| 1.40 | 3.60                      |

Table 1: A sideways table

#### html table

## xtable package

#### html export

```
iris.table <- xtable(iris[1:5,], align="|||||r|c|c|r|", digits=1)
print(iris.table, type="html")</pre>
```

#### ● 결과

```
<TABLE border=1>
<TR> <TH> </TH> </TH> Sepal.Length </TH> <TH> Sepal.Width </TH> <TH> Petal.Length </TH> <TH>
Petal.Width </TH> <TH> Species </TH> </TR>
<TR> <TD> 1 </TD> <TD >5.1 </TD> <TD align="right"> 3.5 </TD> <TD align="center"> 1.4 </TD> <TD

align="center"> 0.2 </TD> <TD align="right"> setosa </TD> </TR>
<TR> <TD> 2 </TD> <TD align="right"> setosa </TD> <TD

align="center"> 1.4 </TD> <TD

align="center"> 1.5 </TD> <TD

align="center"> 1.3 </TD> <TD

align="center"> 1.4 </TD> <TD

align="center"> 1.5 </TD> <TD

align="center"> 1.5 </TD> <TD

align="center"> 1.5 </TD> <TD

align="center"> 1.4 </TD> <TD
```

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 1 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 2 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 3 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 4 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 5 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  |

## 개요

## tables package

- tabular function Compute complex table
  - Usage

tabular(table, data = NULL, n, suppressLabels = 0, ...)

- table : A table expression
- data: An optional dataframe, list or environment in which to look for variables in the table.
- n : An optional value giving the length of the data.
- suppressLabels : How many initial labels to suppress?
- latex function Display a tabular object using LaTeX
  - tables:::latex.tabular
  - Usage

latex(object, file="", options=NULL, ...)

- object : LaTeX code로 출력할 tabular 객체
- file : A filename to which to write the LaTeX code
- options: A list of options to set for the duration of the call

#### tabular function

## tables package

#### tabular function example

```
tab <- tabular((Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris)
```

#### ● 결과

```
> tab <- tabular((Species + 1) ~ (n=1) + Format(digits=2)*
             (Sepal.Length + Sepal.Width)*(mean + sd), data=iris)
> tab
              Sepal.Length
                            Sepal.Width
Species
              mean
                          sd
                               mean
                                           sd
         50 5.01
                          0.35 3.43
                                          0.38
setosa
                                          0.31
versicolor 50 5.94
                         0.52 2.77
virginica 50 6.59
                       0.64 2.97
                                          0.32
                          0.83 3.06
                                          0.44
All
           150 5.84
> is(tab)
[1] "tabular"
```

#### latex function

## tables package

latex function example

latex(tab)

● 결과 ₩usepackage{booktabs}을 LaTeX 문서에 기술해야 함

**₩begin{tabular}{lccccc}** 

₩toprule

& & \multicolumn{2}{c}{Sepal.Length} & \multicolumn{2}{c}{Sepal.Width} \makebox \muckletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickletchickl 4}\text{\text{\text{w}}cmidrule(lr){5-6}}

Species & n & mean & sd & mean & ₩multicolumn{1}{c}{sd} ₩₩ ₩midrule

setosa & \$\phantom{0}50\$ & \$5.01\$ & \$0.35\$ & \$3.43\$ & \$0.38\$ ₩₩ versicolor & \$\phantom{0}50\$ & \$5.94\$ & \$0.52\$ & \$2.77\$ & \$0.31\$ ₩₩ virginica & \$\phantom{0}50\$ & \$6.59\$ & \$0.64\$ & \$2.97\$ & \$0.32\$ \pm\ All & \$150\$ & \$5.84\$ & \$0.83\$ & \$3.06\$ & \$0.44\$ \\ ₩bottomrule **₩end{tabular}** 

|                      |                                          | Sepal.Length   |                     | Sepal.              | Width               |
|----------------------|------------------------------------------|----------------|---------------------|---------------------|---------------------|
| Species              | $\mathbf{n}$                             | mean           | $\operatorname{sd}$ | mean                | $\operatorname{sd}$ |
| setosa<br>versicolor | 50<br>50                                 | 5.01<br>5.94   | $0.35 \\ 0.52$      | $3.43 \\ 2.77$      | $0.38 \\ 0.31$      |
| virginica<br>All     | $\begin{array}{c} 50 \\ 150 \end{array}$ | $6.59 \\ 5.84$ | $0.64 \\ 0.83$      | $\frac{2.97}{3.06}$ | $0.32 \\ 0.44$      |

## tabular example

## tables package

#### tabular example 2

```
> set.seed(1)
> Sex <- factor(sample(c("Male", "Female"), 100, rep=TRUE))
> set.seed(2)
> Status <- factor(sample(c("low", "medium", "high"), 100, rep=TRUE))
> set.seed(3)
> z <- rnorm(100)+5
> fmt <- function(x) {
+ s <- format(x, digits=2)
+ even <- ((1:length(s)) \%\% 2) == 0
  s[even] <- sprintf("(%s)", s[even])
   S
> tabular( Justify(c)*Heading()*z*Sex*Heading(Statistic)*Format(fmt())*(mean+sd) ~ Status )
                  Status
       Statistic high
 Sex
                         low
                                medium
Female mean
                  5.07
                         5.18
                               4.94
                  (0.98) (0.83) (0.72)
        sd
 Male
                  4.88 4.92 5.11
       mean
                  (0.73) (0.92) (0.98)
        sd
```

|        |                     |        | Status |        |  |
|--------|---------------------|--------|--------|--------|--|
| Sex    | Statistic           | high   | low    | medium |  |
| Female | mean                | 5.07   | 5.18   | 4.94   |  |
|        | $\operatorname{sd}$ | (0.98) | (0.83) | (0.72) |  |
| Male   | mean                | 4.88   | 4.92   | 5.11   |  |
|        | $\operatorname{sd}$ | (0.73) | (0.92) | (0.98) |  |

## **Operators**

## tables package

- $e_1 + e_2$ 
  - 행에 출력할 대상을 지정함 e₁은 상단, e₂은 하단에 출력
  - 변수의 이름이나 1을 지정
    - 변수의 이름 : 해당 변수의 모든 levels
    - 1 : All (total)

#### Example

```
> latex(tabular(F + 1 ~ 1))

\text{Wbegin{tabular}{Ic}}
\text{Whline}

F & \text{Wmulticolumn{1}{c}{All}} \text{WW}

\text{Whline}

a & \text{SWphantom{0}3$ \text{WW}}

b & \text{SWphantom{0}7$ \text{WW}}

All & \text{$10$ \text{WW}}

\text{Whline}

\text{Whline}

\text{Whline}

\text{Wend{tabular}}
```

| F   | All |
|-----|-----|
| a   | 3   |
| b   | 7   |
| All | 10  |

## **Operators**

## tables package

- e<sub>1</sub> \* e<sub>2</sub>
  - 출력할 변수의 조합을 지정함 e₁은 왼쪽, e₂은 우측에 출력
  - 변수의 이름이나 1을 지정
    - 변수의 이름 : 해당 변수의 모든 levels
    - 1 : All (total)

#### Example

|   | F |                     | All      |
|---|---|---------------------|----------|
| X | a | mean                | 0.02525  |
|   |   | $\operatorname{sd}$ | 0.34842  |
|   | b | mean                | -0.03647 |
|   |   | $\operatorname{sd}$ | 0.65611  |

#### **Operators**

## tables package

- $\bullet$   $e_1 \sim e_2$ 
  - ullet 집계 기준을 지정함  $e_1$  은 변수 칼럼,  $e_2$  은 집계 칼럼
  - 변수의 이름이나 1을 지정
    - 변수의 이름 : 해당 변수의 levels
    - 1 : All (total)

#### Example

```
> latex(tabular(X*F ~ mean + sd))

₩begin{tabular}{llcc}

₩hline
  & F & mean & ₩multicolumn{1}{c}{sd} ₩₩

₩hline
  X & a & $₩phantom{-}0.02525$ & $0.3484$ ₩₩
  & b & $-0.03647$ & $0.6561$ ₩₩

₩hline

₩end{tabular}
```

|   | $\mathbf{F}$ | mean     | $\operatorname{sd}$ |
|---|--------------|----------|---------------------|
| X | a            | 0.02525  | 0.3484              |
|   | b            | -0.03647 | 0.6561              |

## **Logical vectors**

## tables package

#### Logical Vector

If the expression evaluates to a logical vector, it is used to subset the data.

#### Example

```
> latex(tabular((X > 0) + (X < 0) + 1 ~ ((n=1) + X*(mean+sd))))

\text{\text{begin{tabular}{lccc}}}

\text{\text{\text{hline}}}

& & \text{\text{\text{multicolumn{2}{c}{X}} \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\
```

|            |              | X        |                     |
|------------|--------------|----------|---------------------|
|            | $\mathbf{n}$ | mean     | $\operatorname{sd}$ |
| 0 3 X      | 5            | 0.43369  | 0.3496              |
| $X \mid 0$ | 5            | -0.46960 | 0.2761              |
| All        | 10           | -0.01796 | 0.5611              |

#### **Format**

## tables package

- Format
  - format(x, digits=4, justification="n", latex=FALSE, ...)
- Example

```
> latex(tabular((F+1) ~ (n=1)+Format(digits=2)*X*(mean + sd)))

\text{\text{\text{bular}}{\left{lccc}}}

\text{\text{\text{\text{wh}line}}

& & \text{\text{\text{\text{wh}line}}}

F & n & mean & \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te
```

|     |              | X      |                     |  |
|-----|--------------|--------|---------------------|--|
| F   | $\mathbf{n}$ | mean   | $\operatorname{sd}$ |  |
| a   | 3            | 0.025  | 0.348               |  |
| b   | 7            | -0.036 | 0.656               |  |
| All | 10           | -0.018 | 0.561               |  |

## Heading

## tables package

- Heading
  - replaces the heading
- Example

| Φ   | n  | mean   | $\operatorname{sd}$ |
|-----|----|--------|---------------------|
| a   | 3  | 0.025  | 0.348               |
| b   | 7  | -0.036 | 0.656               |
| All | 10 | -0.018 | 0.561               |

#### Add a horizontal

## tables package

- Format
  - Hline(columns)
- Example
  - > latex(tabular(Species + Hline(2:5) + 1
  - + ~ Heading()\*mean\*All(iris), data=iris))

₩begin{tabular}{lcccc}

₩hline

Species & Sepal.Length & Sepal.Width & Petal.Length & ₩multicolumn{1}{c}{Petal.Width} ₩₩ ₩hline

setosa & \$5.006\$ & \$3.428\$ & \$1.462\$ & \$0.246\$ \\
versicolor & \$5.936\$ & \$2.770\$ & \$4.260\$ & \$1.326\$ \\
virginica & \$6.588\$ & \$2.974\$ & \$5.552\$ & \$2.026\$ \\

**\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\tinne\tinet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ticl{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}}\\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texicl{\texicl{\tilicl{\text{\texiclex{\tinic}\tint{\text{\texit{\texi}\tintet{\text{\texi}\tint{\tex** 

All & \$5.843\$ & \$3.057\$ & \$3.758\$ & \$1.199\$ \\

₩hline

**₩end{tabular}** 

| Species    | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|------------|--------------|-------------|--------------|-------------|
| setosa     | 5.006        | 3.428       | 1.462        | 0.246       |
| versicolor | 5.936        | 2.770       | 4.260        | 1.326       |
| virginica  | 6.588        | 2.974       | 5.552        | 2.026       |
| All        | 5.843        | 3.057       | 3.758        | 1.199       |

## stargazer function

## stargazer package



Table 1: Regression Results

|                         |                       | $Dependent\ variable:$ |          |  |
|-------------------------|-----------------------|------------------------|----------|--|
|                         | rat                   | rating                 |          |  |
|                         | 0                     | LS                     | probit   |  |
|                         | (1)                   | (2)                    | (3)      |  |
| complaints              | 0.692***              | 0.682***               |          |  |
|                         | (0.149)               | (0.129)                |          |  |
| privileges              | -0.104                | -0.103                 |          |  |
|                         | (0.135)               | (0.129)                |          |  |
| learning                | 0.249                 | 0.238*                 | 0.164*** |  |
| Ü                       | (0.160)               | (0.139)                | (0.053)  |  |
| raises                  | -0.033                |                        |          |  |
|                         | (0.202)               |                        |          |  |
| critical                | 0.015                 |                        | -0.001   |  |
|                         | (0.147)               |                        | (0.044)  |  |
| advance                 |                       |                        | -0.062   |  |
|                         |                       |                        | (0.042)  |  |
| Constant                | 11.011                | 11.258                 | -7.476** |  |
|                         | (11.704)              | (7.318)                | (3.570)  |  |
| Observations            | 30                    | 30                     | 30       |  |
| $\mathbb{R}^2$          | 0.715                 | 0.715                  |          |  |
| Adjusted R <sup>2</sup> | 0.656                 | 0.682                  |          |  |
| Log likelihood          |                       |                        | -9.087   |  |
| Akaike Inf. Crit.       |                       |                        | 26.175   |  |
| Residual Std. Error     | 7.139(df = 24)        | 6.863(df = 26)         |          |  |
| F statistic             | 12.063***(df = 5; 24) | 21.743****(df = 3; 26) |          |  |

p < 0.1; p < 0.05; p < 0.05; p < 0.01

Note:

## apsrtable function

## apsrtable package

#### Example

|                                          | Model 0     | Model 1 | Model 2 |
|------------------------------------------|-------------|---------|---------|
| (Intercept)                              |             | 5.0***  | 5.0***  |
|                                          |             | (0.2)   | (0.2)   |
| $\operatorname{group}\operatorname{Trt}$ | $4.7^{***}$ | -0.4    | -0.4    |
|                                          | (0.2)       | (0.3)   | (0.3)   |
| $\operatorname{groupCtl}$                | $5.0^{***}$ |         |         |
|                                          | (0.2)       |         |         |
| N                                        | 20          | 20      | 20      |
| $R^2$                                    | 1.0         | 0.1     |         |
| adj. $R^2$                               | 1.0         | 0.0     |         |
| Resid. sd                                | 0.7         | 0.7     |         |
| AIC                                      |             |         | 46.2    |
| BIC                                      |             |         | 54.1    |
| $\log L$                                 |             |         | -15.1   |

Standard errors in parentheses

 $<sup>^{\</sup>dagger}$  significant at  $p<.10;\;^*p<.05;\;^{**}p<.01;\;^{***}p<.001$ 

#### Reference

- The xtable gallery Jonathan Swinton February 8, 2012
- The tables Package Duncan Murdoch April 2, 2

# Q&A