Bioinformatics approaches in animal breeding

July 9-11, 2025 Zagreb

University of Ljubljana

MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information

User's manual

Brajković Vladimir

Literature

MaGelLAn Demo

Computational approach to utilisation of mitochondrial DNA in the verification of complex pedigree errors

Mato Čačić a, Vlatka Cubric-Curik b, Strahil Ristov c,*, Ino Curik b,*

Fig. 2. Graphical illustration of the maternal lineage pedigree for the mare line Traviata with sequenced and a priori expected haplotype DUBOVINA (yellow), and non-concordant haplotypes ALLEGRA (red), L (green), and MH2 (brown). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Lipizzan horse pedigree

MaGelLAn 1.0

Ristov et al. Genet Sel Evol (2016) 48:65 DOI 10.1186/s12711-016-0242-9

Open Access

SOFTWARE

(CrossMark MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information

Strahil Ristov^{1*}, Vladimir Brajkovic², Vlatka Cubric-Curik², Ivan Michieli¹ and Ino Curik²

MaGelLAn 2.0/2.1

Mitogenome information in cattle breeding and conservation genetics: Developments and possibilities of the SNP chip

V. Brajkovic a, 1, *, D. Hršak b, 1, *, L. Bradić a, K. Turkalj a, D. Novosel c, S. Ristov b, P. Ajmone-Marsan^d, L. Colli^e, V. Cubric-Curik^a, J. Sölkner^f, I. Curik^{a,1},

1. Introduction

2. Installation

- MaGelLAn 1.0 software
 - Project home page: http://lissp.irb.hr/software/magellan-1-0/
 - Article: https://gsejournal.biomedcentral.com/articles/10.1186/s12711-016-0242-9
 - Operating system(s): Platform independent
 - Programming language: Python3
 - Other requirements: None
 - License: The software is free
 - Any restrictions to use by non-academics: Written permission required

2. Installation MaGelLAn 1.0

2. Installation MaGelLAn 2.0 – 2.1

7-Zip is a file archiver with a high compression ratio https://www.7-zip.org/

TextPad - text editor https://www.textpad.com/download#textpad9

Python 3.10.9 or some of the 3.10.x version — newer versions (3.11.x and above) are not compatible with the TensorFlow version listed below.

https://www.python.org/downloads/windows/
- when installing Python, mark "Add python.exe to Path"

Open command prompt in Windows or bash terminal in Linux/Mac/WSL:

pip install pandas

pip install dask

pip install dask[dataframe]

pip install PyQt6

pip install xgboost

pip install tensorflow #maybe

pip install matplotlib

2. Installation MaGelLAn 2.0 – 2.1

1.After installing packages, open CMD:

2. Copy address of Magellan folder as text:

3. Type: cd C:\Users\Bella\Desktop\magellan2.0_2.1

```
Command Prompt

Microsoft Windows [Version 10.0.19045.6093]

(c) Microsoft Corporation. All rights reserved.

C:\Users\Bella>cd C:\Users\Bella\Desktop\magellan2.0_2.1

C:\Users\Bella\Desktop\magellan2.0_2.1>
```

2. Installation MaGelLAn 2.0 – 2.1

3. Type *dir* to see the content of folder:

4.Run Magellan by typing: python mag_gui.py

3. Software functionalities

MaGelLan – suite of four modules:

mag_stat

mag_calc

mag_sampl

3. Software functionalities

Maternal lineages

"Maternal inheritance without recombination"

MaGelLAn (Maternal Genealogy Lineage Analyser)

3.1. mag_verif

Verification of the pedigree correctness

- finds inconsistencies in female haplotype line
- calculates haplotype error rates
- search for standard pedigree errors:
- → 1. cycles in a pedigree an individual repeated as its own parent
- → 2. gender inconsistencies
- \rightarrow 3. when an individual is listed as a parent, but does not have its own record in the pedigree \rightarrow non fatal error \rightarrow "autocorrectional_log.txt"

Output files are:

- OutputVerif_Summary.txt
- OutputVerif_ConflictingIndividuals.txt
- OutputVerif_MisplacedBranches.txt
- ERROR_ALERT.TXT

OutputVerif_Summary.txt

```
No. of individuals in pedigree 4413
No. of distinct haplotypes 0
No. of individuals with sequenced haplotype 0
No. of pairwise mismatches 0
Maximal no. of conflicts / individual 0 / NA
No. of informative individuals 0
No. of individuals participating in conflicts 0
No. of conflicting or misplaced individuals 0
Pruned no. of conflicting individuals 0
```

There are no conflicts in the pedigree.

3.2. mag_stat

- Outputs various useful distributions of individuals over maternal pedigree lines.
- In particular, lists all individuals belonging to a given founder dam line with the corresponding haplotype.
- Imputation of a haplotype to each individual in pedigree (connection between phenotype and mitochondrial haplotype)

Output files are:

- OutputStat_DamLineMembership_1.txt
- OutputStat DamLineMembership 2.txt
- OutputStat DamLineMembershipAllInRefPop.txt
- OutputStat DamLineMembershipFemaleOnlyInRefPop.txt
- OutputStat DamLinesWithFemalesInRefPop.txt
- OutputStat_DamLinesWithOnlyMalesInRefPop.txt

OutputStat_DamLineMembership_1.txt

```
founder dam: 040000093111973 number of individuals in dam line = 8
                                                                           haplotype = N/A
040000606937973
040000340162842
040000497533142
040000468688573
040000254837173
040000093111973
040000398973273
040000529104773
founder dam: 040000087046873 number of individuals in dam line = 7
                                                                           haplotype = N/A
040000087046873
040000040417773
040000328567273
040000560171473
040000413949473
040000450971973
040000352568373
```

OutputStat_DamLineMembership_2.txt

```
founder dam:individual in dam line
840000000003841:84000000055163
84000000003841:840000000005502
840000000003841:840000000275936
840000000003841:840000000090827
040000571672743:040000694704845
040000571672743 • 040000758088634
040000571672743:040000345550211
040000571672743 • 040000620785742
040000571672743 • 040000305001244
84000000053381:84000000053381
840000000053381:040000566339973
840000000053381:84000000755396
840000000053381:040000331228362
840000000053381:040000569348773
```

OutputStat_DamLinesWithFemalesInRefPop.txt

```
276000970206864: no. of desc. in ref. pop. = 8
276000979313425: no. of desc. in ref. pop. = 3
756111900504092: no. of desc. in ref. pop. = 3
840000000011105: no. of desc. in ref. pop. = 4
756111900897729: no. of desc. in ref. pop. = 3
040000003577323: no. of desc. in ref. pop. = 3
040000053037464: no. of desc. in ref. pop. = 6
040000047670964: no. of desc. in ref. pop. = 6
756110154021003: no. of desc. in ref. pop. = 5
040000077586786: no. of desc. in ref. pop. = 2
040000025707749: no. of desc. in ref. pop. = 13
040000026691249: no. of desc. in ref. pop. = 4
840000000426072: no. of desc. in ref. pop. = 3
756110121091459: no. of desc. in ref. pop. = 4
```

3.3. mag_calc

- Calculates the effective population size separately for founder dam lines, founder haplotype lines, and founder sire lines.
- A meaningfull haplotype line N_e can be computed only if enough of the individuals are sampled.

- Output file is:
 - OutputCalc_InputAndResults.txt

OutputCalc_InputAndResults_1925_2002.txt

```
Records in the studbook = 4413
No. of individuals in the reference population (1925 - 2002) = 3764
No. of female individuals in the reference population = 2404
No. of founder dams = 881
No. of founder dam lines in reference population = 748
No. of founder dam lines including lines with only males in reference population = 870
No. of founder dam lines in reference population with samples = 0
No. of founder dam lines in reference population with only one sample = 0
Total number of samples (haplotyped individuals) = 0
No. of samples in reference population = 0: dams = 0, sires = 0
Dam lines:
Probability of identity in founder dams = 0.0011350737797956867
Probability of identity of a dam line in reference population = 0.0019538982450214796
Increase in identity = 0.0008197549475726404
Effective dam line size = 1219.876748485727
Haplotype lines:
Probability of identity of a haplotype line in founder population = 0.0011350737797956858
Probability of identity of a haplotype line in reference population = 0.0019538982450214818
Increase in identity = 0.0008197549475726434
Effective haplotype line size = 1219.8767484857224
```

3.4. mag_sampl

- Accepts the optional "available" column with ('1' / anything) values.
- Calculates the target number of the individuals per dam line for sequencing within given planned number of sequencing.
- Restricts the target numbers to available individuals if available data is present.
- Selects the candidates that provide the highest potential for haplotype diversity within dam line.
- Output files are:
 - OutputSampl_IndividualsForSampling.txt
 - OutputSampl DetailedInfo.txt
 - OutputSampl_AvailabilityRestrictions.txt

OutputSampl_DetailedInfo.txt

```
reference population size = 3764
 dam lines in ref.pop. = 870
 IndividualsMissingFounderDamInRefPopCount = 241
 PreviouslySequencedInRefPop = 0
 HowManyToSequence = 50
 Number of lines without previous samples = 870
 TargetSum (that remains to be proportionally divided among dam lines) = 0
 FOUNDER DAM:
 276000970206864 -> in ref.pop.: 8 targ: 0
                                              prev: 0 todo:0
 276000979313425 -> in ref.pop.: 3 targ: 0
                                              prev: 0
                                                      todo:0
 756111900504092 -> in ref.pop.: 3 targ: 0
                                              prev: 0 todo:0
 84000000011105 -> in ref.pop.: 4 targ: 0
                                              prev: 0 todo:0
                                              prev: 0 todo:0
 756111900897729 -> in ref.pop.: 3 targ: 0
 040000003577323 -> in ref.pop.: 3
                                    targ: 0
                                              prev: 0 todo:0
 040000053037464 ->
                    in ref.pop.: 6
                                              prev: 0 todo:0
                                    targ: 0
                                              prev: 0 todo:0
 040000047670964 ->
                   in ref.pop.: 6 targ: 0
 756110154021003 -> in ref.pop.: 5 targ: 0
                                              prev: 0 todo:0
 040000077586786 ->
                    in ref.pop.: 2
                                    targ: 0
                                              prev: 0
                                                      todo:0
040000025707749 ->
                    in ref.pop.: 13
                                     targ: 0 prev: 0 todo:1
 040000026691249 ->
                   in ref.pop.: 4 targ: 0
                                              prev: 0 todo:0
 840000000426072 -> in ref.pop.: 3
                                              prev: 0 todo:0
                                    targ: 0
 756110121091459 ->
                    in ref.pop.: 4
                                                      todo:0
                                    tarq: 0
                                              prev: 0
```

OutputSampl_IndividualsForSampling.txt

founder dam 040000025707749 : 040000567134473,

founder dam 040000024292449 : 040000647564843,

founder dam 040000062987186 : 040000199321586,

founder dam 040000002556523 : 040000251634126,

founder dam 840000000040077 : 840000000181926,

founder dam 840000000089500 : 840000000853876,

founder dam 040000002905723 : 040000340174334,

founder dam 040000052761964 : 040000143225961,

founder dam 040000432933532 : 040000243952345,

4. Example of the input pedigree file

- The input file must be in CSV (comma-separated values) \rightarrow .csv or .txt
- The position of the information in columns must match the position of the corresponding keyword in the header!

```
x, extra information which I use to count number of individual \uparrow header line \rightarrow x,ID,father,mother,YOB,gender,haplotype,available, 1,Id100,0,0,2000,1,,0, 2,Id101,Id100,Id102,2005,2,hap1,1, 3,Id102,0,0,2001,2,hap1,0,
```

- 1 male, 2 female; 0 missing parents;
- haplotype name tag of a haplotype; if present, haplotype data enables full functionality of all modules, however, modules are partially functional without it
- available '1' for available, anything else for not available; exclusive use in module mag sampl

5. Additional input files:

reference_years.txt

- stores the first and the last year of birth for the individuals included in the reference population
- formatted as two numbers in two lines
- used in modules *mag_ stat, mag_calc* and *mag_sampl*

planned_number_of_sequencings.txt

- stores the number of planned sequencings
- formatted as one number in a single line
- exclusive use in module mag_sampl

If any of the additional files is missing, the default values (coded in the scripts) are used.

6. A typical workflow of the MaGelLan modules with a new pedigree

Each **module** performs the initial **verification** of pedigree correctness. In case of errors in the pedigree, module *mag_verif* outputs the description of errors, while other modules abort the execution and direct the user to module *mag_verif*.

Practical – preparation of pedigree for Magellan format

1. Open pedigree "gv_ped.csv" using Textpad or Notepad

 2. Copy (CTRL + A) whole pedigree and paste it into Excel

3. Import pedigree into Excel (mark column A → Data → Text to clumns

4. Set Delimiter ":" to separate columns

5. Set first four columns to the Text, and last two to General

6. Now we have to extract year of birth

7. Add two/three empty columns on the right side of column D

8. Separate column D (mark column D → Data → Text to clumns → separator "." → next

9. Leave "General" for all three columns → Finish

10. Subset only these columns:

	Α	В	С	D	Е
1	040000001281434	040000098146676	040000079454976	1998	1
2	040000002101734	040000097114576	040000200058676	1998	1
3	040000002104134	040000098146676	040000200058676	1999	1
4	040000010933872	040000216864776	040000134528442	2005	1
5	040000012891776	000000000000000	0000000000000000	1950	1
6	040000013566576	0000000000000000	0000000000000000	1950	1
7	040000013680476	0000000000000000	0000000000000000	1950	1
8	040000013692876	000000000000000	0000000000000000	1950	1
9	040000014056976	000000000000000	0000000000000000	1959	2
10	040000015704676	0000000000000000	0000000000000000	1951	1
11	040000017000876	040000034000476	040000032375476	1966	1
12	040000017754142	040000218575276	040000204271476	1999	2
13	040000018115976	0000000000000000	0000000000000000	1951	1
14	040000018552976	0000000000000000	0000000000000000	1950	1
15	040000018613376	0000000000000000	0000000000000000	1950	1
16	040000018860376	000000000000000	0000000000000000	1952	1
17	040000018920576	0000000000000000	0000000000000000	1951	1
18	040000018960476	0000000000000000	0000000000000000		1
19	040000019040276	000000000000000	0000000000000000	1951	1
20	040000019413376	0000000000000000	0000000000000000	1960	2
21	040000019550976	0000000000000000	0000000000000000	1952	1
22	040000019655676	0000000000000000	0000000000000000	1952	1
23	040000019662576	0000000000000000	0000000000000000	1951	1
24	040000020000476	0000000000000000	0000000000000000	1952	1
25		0000000000000000		1952	1
26	040000020029876	0000000000000000	0000000000000000	1951	2

11. Prepare input for Magellan format:

1	X	ID	father	mother	YOB	gender	haplotype	available
2				040000079454976		1		
3				040000200058676		1		
4	3	040000002104134	040000098146676	040000200058676	1999	1		
5	4	040000010933872	040000216864776	040000134528442	2005	1		
6	5	040000012891776	0000000000000000	0000000000000000	1950	1		
7	6	040000013566576	0000000000000000	0000000000000000	1950	1		
8				0000000000000000		1		
9				0000000000000000		1		
10	9	040000014056976	0000000000000000	0000000000000000	1959	2		
11	10	040000015704676	000000000000000	0000000000000000	1951	1		
12	11	040000017000876	040000034000476	040000032375476	1966	1		
13				040000204271476		2		
14	13	040000018115976	000000000000000	000000000000000	1951	1		
15	14	040000018552976	0000000000000000	0000000000000000	1950	1		
16				000000000000000		1		
17	16	040000018860376	0000000000000000	0000000000000000	1952	1		
18	17	040000018920576	0000000000000000	0000000000000000	1951	1		
19	18	040000018960476	0000000000000000	000000000000000		1		
20	19	040000019040276	0000000000000000	0000000000000000	1951	1		
21	20	040000019413376	0000000000000000	0000000000000000	1960	2		
22	21	040000019550976	0000000000000000	0000000000000000	1952	1		
23	22	040000019655676	0000000000000000	0000000000000000	1952	1		
24	23	040000019662576	0000000000000000	0000000000000000	1951	1		
25	24	040000020000476	0000000000000000	0000000000000000	1952	1		
26	25	000020026576	000000000000000	0000000000000000	1952	1		

12. Replace all individuals 000000000000000 with 0

 13. Filter all "Blank" YEAR OF BIRTH and replace by 0; sort YOB from smallest to largest, notice interval 1950 - 2006

 14. Mark field A1, then CTRL+A to mark all columns and copy pedigree in Texpad

 15. Mark and copy "invisible" delimiter and replace with ",", and save as "ped_1_magellan.txt

16. Open with magellan 2.0/2.1 GUI

17. Notice error alert

 18. Notice error alert – replace year of birth of younger mothers with 0, search

```
ERROR ALERT.TXT X
  WARNING! Following inconsistencies detected:
  Individual 040000030286276 has younger mother 040000022160376
  Individual 040000046045476 has younger mother 040000029751476
                                  mother
                                               YOB gender haplotype available
                    father
        ID
X
273,040000030286276,040000023500676,040000022160376,1959,2,,
275,04000003041357 040000024340576,0,1959,2,,
                                                           mother
 54,040000022030576,0,0,1960,2,,
 56,040000022160376,0,0,1960,2,,
 91,040000024519176-0,0,1960,2,,
                            mother
```

19. Load corrected pedigree, Run mag_verif, View report

20. Display pedigree file

21. Run ID to recode to numerical and Save recoded pedigree

22. Mag_stat module for the reference year 2000 - 2006

23. Mag_calc module for the reference year 2000 - 2006

24. Mag_viz

