O isomorfismo de Curry-Howard

Ou sobre a similaridade entre provas e programas.

Rodrigo Ribeiro

Logic side: Dedução natural

$$\frac{A \in \Gamma}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

$$\frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \to B} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

Type theory side : λ -cálculo tipado simples

$$\frac{x : A \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\Gamma \vdash \lambda x.e : A \to B \quad \Gamma \vdash e' : A}{\Gamma \vdash (e \ e') : B}$$

$$\frac{\Gamma \cup \{x : A\} \vdash e : B}{\Gamma \vdash \lambda x.e : A \to B} \qquad \frac{\Gamma \vdash e : A \quad \Gamma \vdash e' : B}{\Gamma \vdash (e, e') : A \times B}$$

$$\frac{\Gamma \vdash e : A \times B}{\Gamma \vdash fst \ e : A} \qquad \frac{\Gamma \vdash e : A \times B}{\Gamma \vdash snd \ e : B}$$

Type theory side : λ -cálculo tipado simples

$$\frac{A \in \Gamma}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \\
\frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \to B} \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \times B} \\
\frac{\Gamma \vdash A \times B}{\Gamma \vdash B} \qquad \frac{\Gamma \vdash A \times B}{\Gamma \vdash B}$$

Então você percebe...

Figure 1: The truth

Uma outra visão da lógica.

- Lógica clássica: toda proposição é verdadeira ou falsa.
- ▶ Lógica intuicionista: Uma proposição é verdadeira somente se esta pode ser provada.
 - Mudança de paradigma: verdade sujeita a existência de evidência.
 - Lógica intuicionista é exatamente a lógica clássica sem o axioma do terceiro excluído e propriedades derivadas deste.
 - Ao contrário da lógica clássica, a semântica da lógica intuicionista é baseada na construção de provas, isto é, na dedução natural.

O isomorfismo de Curry-Howard

- Provas em um dado subconjunto da matemática correspondem a programas em uma dada linguagem de programação
 - Descoberto por Curry em '58 e por Howard em '69.
 - Esse "isomorfismo" é também conhecido como "proof-as-programs" correspondence.
- ► Teoremas nada mais são que tipos e o programa correspondente a prova.
 - ▶ Para isso, sua linguagem de programação deve ser expressiva.
 - ▶ Não tente provar teoremas usando Java, C/C++, Python...:)

Lógica	Computação
Provas	Programas
Fórmulas	Tipos
Axiomas	Primitivas de uma linguagem
A implica B	função de A em B
<i>A</i> e <i>B</i>	par formado por A e B
A ou B	tagged union de A e B
falso	tipo vazio
verdadeiro	tipo unit
$\exists x. P(x)$	um par formado por x e um valor de tipo $P(x)$
$\forall x \in A.P(x)$	uma função de x : A em $P(x)$.

Composição de funções

```
comp :: (B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C
comp = f \rightarrow g \rightarrow x \rightarrow f (g x)
```

$$\Gamma = \{f : B \to C, g : A \to B, x : A\}$$

$$\frac{f : B \to C \in \Gamma}{\Gamma \vdash f : B \to C} \frac{g : A \to B \in \Gamma}{\Gamma \vdash g : A \to B} \frac{x : A \in \Gamma}{\Gamma \vdash x : A}$$

$$\frac{f : B \to C, g : A \to B, x : A}{\Gamma \vdash (g : x) : B}$$

$$\frac{\{f : B \to C, g : A \to B, x : A\} \vdash f (g : x) : C}{\{f : B \to C, g : A \to B\} \vdash \lambda x : A.f (g : x) : A \to C}$$

$$\frac{\{f : B \to C\} \vdash \lambda g : A \to B.\lambda x : A.f (g : x) : (A \to B) \to A \to C}{\{f : B \to C.\lambda g : A \to B.\lambda x : A.f (g : x) : (B \to C) \to (A \to B) \to A \to C}$$

$$\frac{B \to C \in \Gamma}{\frac{\Gamma \vdash B \to C}{\frac{\Gamma \vdash A \to B}{\Gamma \vdash A}}} \frac{A \in \Gamma}{\frac{\Gamma \vdash A \to B}{\Gamma \vdash A}} \frac{A \in \Gamma}{\Gamma \vdash A}$$

$$\frac{\{B \to C, A \to B, A\} \vdash C}{\{B \to C, A \to B\} \vdash A \to C}$$

$$\frac{\{B \to C\} \vdash (A \to B) \to A \to C}{\emptyset \vdash (B \to C) \to (A \to B) \to A \to C}$$

O termo

$$\lambda f.\lambda g.\lambda x.f(g x)$$

pode ser considerado uma representação da derivação, em dedução natural, da fórmula

$$(B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$$

, que é o tipo da função anterior.

- ▶ Não é só isso: provas por indução são funções recursivas!
- ▶ Teorema: Para todo $n \in \mathbb{N}$, existe $p \in \mathbb{N}$ tal que n = 2p ou n = 2p + 1.
 - ightharpoonup Caso n=0. Imediato.
 - ► Caso n = m + 1. Pela I.H. temos que existe p tal que m = 2p ou m = 2p + 1.
 - ▶ Caso m = 2p: temos que n = 2p + 1.
 - Caso m = 2p + 1: temos que n = 2(p + 1)

▶ Não é só isso: provas por indução são funções recursivas!

A new hope...

A new hope...

 Princípios da lógica clássica, usados cotidianamente por programadores JS

Novos axiomas Novas primitivas
$$A \lor \neg A \qquad \sim \qquad \text{callcc}$$

$$\updownarrow \qquad \qquad \updownarrow$$
 Representação lógica Transformação de programas double negation $\sim \qquad$ callback-passing style

Novas perspectivas de pesquisa

- ► A relação entre lógica e computação é um campo frutífero de pesquisa!
- Homotopy type theory
- Provas como paths, tipos são homotopy spaces
- Novas perspectivas sobre a definição de igualdade em assistentes de provas.

O assistente de provas Coq

- ► Ferramenta que explora o isomorfismo de Curry-Howard.
- Desenvolvido pelo Inria, França desde 1984.
- Vencedor do ACM Software System Award, 2013

Afinal, onde isso é utilizado?

- Matemática
 - ► Teorema das 4 cores.
 - ► Teorema de Feit-Thomson.
 - Formalizações da homotopy type theory.
- Computação
 - ▶ Compilador de C/C++ (Compcert)
 - Ferramenta para criação de blogs
 - Bibliotecas para verificação de programas C usando separation logic.

Moral da história

- Tipos são fórmulas da lógica, programas são provas!
- Verificar uma prova nada mais é que o processo de verificação de tipos realizado por um compilador.
- ► Em essência, lógica e computação são visões diferentes de um mesmo fenômeno.