

Dual N-Ch 60V Fast Switching MOSFETs

Description

The HSM1564 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The HSM1564 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

Product Summary

V _D S	60	V
R _{DS(ON),TYP}	13.5	mΩ
lo	8	Α

Dual SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	Drain-Source Voltage 60	
V _G s	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	8	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹ 6		А
I _{DM}	Pulsed Drain Current ² 32		А
EAS	Single Pulse Avalanche Energy ³	150	mJ
P _D @T _A =25°C	Total Power Dissipation ⁴	2	W
T _{STG}	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter Typ. Max.		Unit	
R ₀ JA	Thermal Resistance Junction-Ambient ¹	rmal Resistance Junction-Ambient ¹ 75		°C/W
Reuc	Thermal Resistance Junction-Case ¹		24	°C/W

Dual N-Ch 60V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V	
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =8A		13.5	17	mΩ	
R _{DS(ON)}		V _{GS} =4.5V , I _D =6A		15.5	20		
V _{GS(th)}	Gate Threshold Voltage	V V I 250A	1.2	2	3	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_{D}=250uA$		-5.24		mV/°C	
l	Drain Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	uA	
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5		
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V_{DS} =5 V , I_{D} =8 A	18			S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3.2		Ω	
Qg	Total Gate Charge (4.5V)			53			
Q _{gs}	Gate-Source Charge	V _{DS} =30V , V _{GS} =10V , I _D =6A		7.5		nC	
Q _{gd}	Gate-Drain Charge			12			
T _{d(on)}	Turn-On Delay Time			8			
Tr	Rise Time	V_{DD} =30 V , V_{GS} =10 V , R_{G} =3 Ω ,		5.5			
T _{d(off)}	Turn-Off Delay Time	I _D =4A		29		ns	
T _f	Fall Time			4.6			
C _{iss}	Input Capacitance			2600			
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		180		pF	
Crss	Reverse Transfer Capacitance			123			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			8	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3.The power dissipation is limited by 150°C junction temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

HSM1564

Typical Characteristics

Fig.1 On-Region Characteristics

Fig.3 On-Resistance vs. Drain Curent and Gate Voltage

Fig.5 On-Resistance vs. Gate-Source Voltage

Dual N-Ch 60V Fast Switching MOSFETs

Fig.2 Transfer Characteristics

Fig.4 On-Resistance vs.Junction
Temperature

Fig.6 Body-Diode Characteristics

Dual N-Ch 60V Fast Switching MOSFETs

Ordering Information

Part Number	Part Number Package code	
HSM1564	SOP-8	4000/Tape&Reel

Symbol	Dimensions In	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°