PREVIOUS: June 1977 (1 atm)

\$.	Reference	1 2 2	= T, = 298.15		Standard State Pressur kJ·mol ⁻¹	اة ا	, p = 0.1 MPa
7,K	ប	را د	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_{r}H$	Φ.	log Kr
°28	0. 16.010 22.631	0. 10.034 23.730	53.414 53.414 35.354	-5.007	ooo	ÖÖC	o o o
298.15	24.442	33.164	33.164	0	် ဝံ	င်	် ဝ
888	24.462 25.318 25.913	33.315 40.484 46.705	33.164 34.136	2.539	000	ರರ	ರರ
, 0	26.481	50.982	38.107	3.105	.	o c	၁ င
88	26.996	58.739	40.247	10.399	ioc	doc	óóc
00	28.049 28.662	62,009	46.261	15.899	်ဝင	óoc	್ ರ ರ
88	29.479	67.763	48.091	21.638	် ဝ	i ဝ	် ဝံ
_		70.368 17.871	49.840 51.516	24.633 27.762	o' o'	ರರ	ರ ರ
1358.000	33.353 32.844	74.300 83.974	52.459 52.459	29.660	8	CRYSTAL <> LIQUID TRANSITION	— andra
<u>\$8</u>	32.844 32.844	84.974 87.240	53.419 55.599	44.177	ೆಂ	oo	ರರ
00	32.844 32.844	89.360 91.351	57.644 59.569	50.746	00	00	ြင်
<u>88</u>	32.844 32.844	93.229 95.004	61.387	57.31S 60.600	ರರ	್ ರ	်ဝင်
2 9	32.844	96.689	64.747	63.884	o.	Ö	ó
888	32.844	98.292 99.819	66.307 67.795	70.453	00	ರ ರ	ರರ
250	32.84	102.677	70.585	2.1.2 2.02.5 2.02.5	ာ်ဝင်	ರರಂ	ಶರ
2600	32.844	105.306	73.156	83.591	် ဝင်	် ဝင	ာ် ဝင
2800 2843.261	32.844 32.844	107.740	75.540	90.159			0. DEAT GAS
797	24.379	213.995	76.034	392.257	f		3
3000	24.653 25.147	214.479	78.738 83.277	393.648 396.138	o o	ರರ	ರ ರ
3200	25.652 26.162 25.163	216.156	87.550 91.582	398.678 401.268	000	ರರ	oo
288	77.180	218.595 219.390	99.006 102.434	405.510 406.603 409.346	ರರರ	ಶರರ	o o o
3600	28.168	220.177 220.955	105.694	412.138 414.979	ರರ	do	00
888 888 888	29.533 29.948	22.23 23.23 23.23	11,780	417.866 420.798 423.772	ರ ರ ರ	ರರರ	ರರಂ
4200	30.339	223.984	119.889	426.786	60	60	; o c
888	31.051 31.370 565	225.446 226.163	124.765	432.927 436.048 439.200	ddd	000	000
22	31.936	127.571	131.401	442.380	i oʻc	i de	joc
\$ 6 5 8 8 5 8 8 5	32.413 32.621	228.940	135.437	448.817	idd	idd	i d d d
28	32.981	230.923	140.996	458.630	် ဝံ	် ဝံ	် ဝံ
2300	33.279	232.198	144.413	465.257 468.257 468.591	500	ಶರರ	ಶರರ
00	33.530 33.641	233.435	147.628	471.938	o	o c	o c
2888 8888	33.746 33.845	235,224	150.660	478.666	တ်ဝင်	ಶರರ	jodo
	34.035	236.375	154.903	488.834	ಶರ	ာ်ဝ	ာ်ဝ

REFERENCE STATE

crystal liquid ideal monatomic gas

1358 2843.261 2843.261

2 2

Refer to the individual tables for details.

Copper (Cu)

-0.015 -0.075

-13.097 -12.847

0.406 1.363 2.296 3.194 4.045 5.570

-12.381 -11.697 -10.797 -9.681 -8.347

\$6.209 \$7.690 \$9.140 60.563

80.187 82.592 84.983 87.362 89.730

65 85 888

31.081 34.615 38.366 42.333 46.518 50.919 55.537

ರದದರ ರ ದರದದರ ದರದದರ ದರದ

0000 0 00000 00000 000

0000 0 00000 00000 000

0.045 1.282 2.539 3.815 5.105 7.725 10.0399 13.123

33.164 33.464 34.136 35.011 35.997 40.247 42.336 44.343 46.261

33.315 37.127 40.484 40.489 46.206 50.982 55.103 58.739 64.994

26.481 26.996 27 494 28 049 28.662

24.462 24.975 25.318 25.686 25.686

24.442

48.091 49.840 51.516

67.763 70.368 72.871 74,300

29.479 30.519 32.143 33,353

52.459 53.129

75.330

Standard State Pressure = p° = 0.1 MPa

H*-H*(T,)

 $S^{*} - [G^{*} - H^{*}(T_{*})]T$

ڻ

0. 10.034 23.730 28.915 33.164

 $\Delta_t H^{\circ}(0 \text{ K}) = 0 \text{ kJ mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$

Enthalpy Reference Temperature = T, = 298.15 K

S°(298.15 K) = 33.164 ± 0.04 J K⁻¹·mol⁻¹

Copper (Cu)

 $\Delta_{\text{tus}}H^{\circ} = 13.138 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$

The low temperature heat capacity and entropy of copper have been well established by the critical review of Furukawa et al., Their recommended smoothed values are adopted with minor corrections for a change in the relative atomic mass from 63.54 to 63.546² and for a change to the International Practical Temperature Scale of 1968. These corrections increase the entropy at 298.15 K from 7.923 to 7.926 "mol" and the enthalpy difference, H°(298.15 K)-H°(0 K), from 1 1962 to 1.1967 kcal mol". The values recommended by are those of Furukawa et al. Heat Capacity and Entropy Zero by definition.

as given by their equation (300-900 K), are in excellent agreement with the selection of Hultgren et al. 3 Also, while the data given by Brooks et al 7 (313-1193 K) were 1-2% higher than Hultgren's selected values, the later measurements of Yeh and Brooks¹ on the same sample did not totally confirm the earlier results and measurements on a larger sample (370–870 K) are in good agreement with Hultgren et al. ² The same evaluation used by Hultgren et al. ² was used by two other tabulations^{9 10}, although there are small differences in the tabulated values. From 300 K to the melting point, the heat capacity selected by Hultgren et al. 5 has been adopted, with correction for relative atomic mass and temperature scale, and has been joined smoothly with the adopted low temperature data. The measurements of Chekhovskoi and Gerasina,

Righini et al. ¹¹ reviewed the precise measurements of the freezing point of high-purity copper made since 1960. The mean value of five investigations is 1357.99 \pm 0.24 (IPTS-68). Ergardi² found 1358.41 K and Righini et al. ¹¹ measured 1357.98 \pm 0.1 K. We adopt 1358.0 \pm 0.2 K for the melting point. As a secondary fixed point IPTS-68 uses 1357.6 K. ¹³ The adopted value for $\Delta_{lus}H^{o}$ is based upon five measured values and an evaluation of $H^{0}(1358 \text{ K})-H^{0}(298 \text{ 15 K})$ for the solid and the liquid.

Δ _{fur} H°, kcal·mol ⁻¹	3.239	3.030	3.080	3.290 ± 0.275	+1
Source	<u>±</u>	23	2	11	=

The average is 3.149 kcal·mol-1. Our least squares linear fit of the liquid enthalpy data of Wust, Meuthen, and Durrer14 leads to " = 3.139 kcal-mol-1, and with this change, the average of the five measured values is 3.129 kcal-mol-1

We adopt Δ_{ta}H° = 3.140 ± 0.1 kcal·mol⁻¹

Sublimation Data

Refer to the ideal gas Cu(g) table for details.

G. T. Furukawa, W. G. Saba, and M. L. Reilly, NSRDS-NBS 18, (1968).

²IUPAC, Pure Appl. Chem. 30, 639 (1972).

³T. B. Douglas, J. Res. Natl. Bur. Std. 73A 451 (1969).

'R. Hultgren, P. D. Desai, et al., Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals, ICSU-CODATA Task Group, J. Chem. Thermodyn. 8, 603 (1976).

⁶V Ya Chekhovskoi and G. Z. Gerasma, Teploffz, Vys. Temp. 9, 938 (1971).
⁷C. R. Brooks, W.E. Norem, D.E. Hendrix, J.W. Wright, and W.G. Northcutt, J. Phys. Chem. Solids 29, 565 (1968).
⁸C.C. Yeh and C.R. Brooks, High Temp. Sci. 5, 403 (1973). Park, Ohio, 1973, Copper evaluation dated (1969).

Pt. Hultgren and P D. Desai, Selected Thermodynamic Values and Phase Diagrams for Copper and Some of its Binary Alloys. INCRA Series

^oE.G. King, A.D. Mah, and L.B. Pankrantz, Thermodynamic Properties of Copper and its Inorganic Compounds. INCRA Series on the on the Metallurgy of Copper, No. 1, INCRA, New York (1971).

¹²N. N. Ergardt, Tr. Inst. Kom. Standartov, Mer i Izmerit. Priborov pri Sov. Min. SSSR 71, 94 (1963).

¹⁷The International Practical Temperature Scale of 1968, Metrologia 5, 35 (1969). ¹¹F. Rıghini, A. Russo, and G. Ruffino, High Temp.-High Pressures 4, 471 (1972). Metallurgy of Copper, No. 2, INCRA, New York (1973).

¹⁴F. Wust, A. Meuthen, and R. Durrer, Forsch. Gebrete Ingenteurw, VDI-Forschungshelft 204, (1918)
¹⁵W. Oelsen, E. Schurmann, and D. Buchholz, Arch. Eisenhuttenw, 32, 39 (1961).

¹⁶E. Schuermann and A. Kaune, Z. Metallk. 56, 453 (1965).
 ¹⁷R. N. Dokken and J. F. Elliott, Trans. Met. Soc. AIME 233, 1351 (1965).
 ¹⁸O. Vollmer and R. Kohlbaus, Z. Metallk. 59, 273 (1968).

Copper (Cu)

PREVIOUS December 1965

CURRENT: June 1977

Cu₁(cr)

J. Phys. Chem. Ref. Data, Monograph 9

CODATA Gal K

Enthalpy of Formation Tes = 1358.0 ± 0.2 K

CURRENT: June 1977

A, = 63.546 Copper (Cu)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [11.857] \text{ kJ·mol}^{-1}$ $\Delta_{fus} H^{\circ} = 13.138 \pm 0.4 \text{ kJ·mol}^{-1}$

Cu₁(I)

S°(298.15 K) = [41.620] J K⁻¹-mol⁻¹ Fes = 1358.0 ± 0.2 K

LIQUID

Copper (Cu)

Enthalpy of Formation

The enthalpy of formation at 298.15 is calculated from that of the crystal by adding $\Delta_{las}H^{\circ}$ and the difference in enthalpy, $H^{\circ}(1358 \, \text{K})$ -H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

calorimetry (1428-2007 K). The scatter in the new liquid argon calorimetry data is large and is considered only in that it tends to support a "chronological increase" in C_s(l) of copper. The enthalpy differences, H'(1358 K)-H'(298.15 K), derived from the measurements of Vollmer and Kohlhaus* and Chaudhur et al.² are in good agreement at about 10.228 kcal-mol-¹, which we adopt. The scatter of liquid enthalpy measurements easily accommodates a wide range of values for C_s(l); we adopt 7.85 cal K⁻¹ mol⁻¹, an average of the value selected Since the critical evaluation of Hultgren et al. and the selection of 7.80 cal K-1 mol-1 for the heat capacity of liquid copper, there have been two experimental investigations. Chaudhuri et al. 2 measured enthalpies (1386-1887 K) by levitation heating aluminum block drop calorimetry and determined $C_p(I) = 7.89 \pm 0.41$ cal K⁻¹-mol⁻¹. Stephens found $C_p(I) = 8$ cal K⁻¹-mol by levitation heating liquid argon by Hultgren et al. and the later measurement of Chaundhuri et al. This value is assumed constant from 900 to 4000 K. A glass transition is assumed at 900 K below which the heat capacity is tha of the crystal.

The entropy is calculated in a manner similar to that used to calculate the enthalpy of formation.

Fusion Data

Refer to the crystal table for details.

Vaporization Data

Trap is the calculated temperature at which the Gibbs energy difference is zero for the reaction Cu(f) = Cu(g), AugH" is the difference in Δ_rH° between gas and liquid at T_{rap}

References

¹R. Hultgren, P. D. Desai, et al., Selected Values of the Thermodynamic Properties of the Elements, Americal Society for Metals, Metals Park,

 K. Chaudhuri, D. W. Bonnell, L. A. Ford, and J. L. Margrave, High Temp. Sci. 2, 203 (1970).
 H. P. Stephens, High Temp. Sci. 6, 156 (1974).
 Vollmer and R. Kohlhaus, Z. Metallk. 59, 273 (1968). Ohio, 1973. copper evaluation dated (1969).

,* = 0.1 MPa	log K.		-1.636	-1.623	-1.107	-0.935 -0.797	-0.591	-0.333	-0.247	- anori	-0.176	-0.117 -0.066	-0.023	00	l 0	o' c	óóó	o c	o o	် ဝံ	oʻ (ರರರ	1 bar	-0.108	-0.456	-0.613 -0.760	-0.899 -1.029	-1.151	-131	-1.481 -1.579	
Standard State Pressure = p° = 0.1 MPa	δ,6		9.336	9.320	8.475	8.052 7.629	6.784	5.093	4.248	GLASS <> L TRANSITION	3,378	2.466 1.523	0.561	00	ó	o ' o	်ဝံင	o c	တ်ဝ	ာ် ဝ	oʻ (000	FUGACITY -	5.996 16.541	27.060	37.556	58.488 68.927	79.352	100.165	110.556	
Standard Sta	I		11.857	11.857	11.857	11.857	11.857	11.856	11.856			12.686 12.975	13.131 CRYSTAL	óc	ó	o ' c	óóó	o c	o o	j oʻ	oʻ (o o o	1	-300.204	-298.665	-297.971 -297.328	-296.737 -296.195	-295.703	- 294.862	-294.509 -294.199	
×	$H^{\bullet}-H^{\bullet}(T_{*})$		oʻ	0.045	253	3.814 5.104	7.724	13.121	15.898	15.898 15.898	19.182	22.467 25.751	30.941	32,320	38.889	42.173	48.742	55.027	58.596	65.164	68.449	75.018 78.302	27.72	81.587 84.871	88.155	91.440	98.009 101.293	104.578	111.147	114.431	
Enthalpy Reference Temperature = T, = 298.15 K	-[G*-H*(T,)]T		41.620	41.621	42.592	43.467 44.453	46.563	50.791	52.798	52.798 52.798	54.741	56.629 58.452	61.190	63.504	65.055	66.543	69.351	71 053	73.185	15.525	76 639	78.761 78.761 78.767	80.205	80.760	82.646	83.551 84.432	85.291 86.128	86.945	88.521	89.282 90.026	
Temperature	[0		41.620	41.772	48.939	51.944 54.661	59.436	67.193	70,463	70.463 70.463	73.923	77.053 19.911	82.540	84.974	89.360	91.351	95.004	90,009	98.19	102.677	104.018	106.546 106.546 107.740	108.244	108.893	111.083	112.126	114.117	115.995	117.770	118.624	
eference	ະ		24.442	24.460	25.316	25.684 25.910	26.478	27.491	28.047	28.047 32.844	32.844	32.844 32.844	32.844	32.844	32.844	32.844	32.844	32 844	32.844	32.844	32.844	32.844 32.844 32.844	32.844	32.844	32.844	32.844 32.844	32.844 32.844	32.844	32.844	32.844 32.844	
Enthalpy R	7/K	0 0 0 0 0 0 0 0	298.15	85	8	Ž Š	88	38	8	000.006 000.006	0001	8 13 13 13 13 13 13 13 13 13 13 13 13 13	1358,000	1500	009	<u>8</u>	888	3 5	288	562	200	3,736 3,736	2843,261	3000 3000	3100	3200 3300	3.40 3.00 3.00	3600	3800	3300 4000 000	

PREVIOUS. December 1966

Cu₁(cr,l)

~
_
65
-
=
π
v

	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	$\Delta_t H^{ullet}$	• 5	log K
	INFINITE	-5.007	6	0,0	o c
23.730	35.354	รู้รา	io	do	် ဝ
	33,503	-1.162	o c	.	<i>;</i>
312 215	33 164	0.045	; c	Ċ	
37.127	33.464	1 282	ö	Ö	ď
40.484	34.136	2539	o o	ರ	o c
46.206	35.997	5.105	်ငံ	ö	ó
50.982	38.107	227.1	0	o'	o'
55.103	40.247	10.399	0 0	oʻ c	o' c
62,003	44343	15.89	်ဝံ	် ဝ	ó
64.994	46.261	18.733	ó	ó	ö
67.763 70.368	48.091 49.840	21.638	o o	ರ ರ	ರ ರ
17.871	51.516	27.762		ö	ö
74.300	52.459	29.660	<u>8</u>	CRYSTAL <> I TRANSITION	rionin —
84.974	53.419	44.17	ó	Ö	o o
87.240	55.599	47.462	.	ರ ೧	o c
91.351	59.569 59.569	54.031	jo	်ငံ	် ဝ
93.229	61.387	57.315	oʻ	o' c	oʻ (
95.004 96.689	63.110	63.884 63.884	o o	ರ ರ	ರ ರ
98.292	66.307	67.168	o	ö	Ö
99.819	67.795	70.453	o' c	oʻ c	o' c
102.677	70.585	7,022		60	ö
104.018	71.896	80306	o' (o o	o o
105,306	73.156	83.591	o' c	o c	o c
107.740	75.540	90.159		ö	
108.244	76.034	91.580		FUGACTIY -	1 bar
108.893	76.671 73.764	93.44 96.728	-300,204	88.5 88.5	-0.108 -0.288
111.083	78.821	100.013	-298.665	27,060	-0.456
112.126	79.846	103.297	-297.971	37.556	-0.613
113.137	80.839	106.582	-297.328	58.488	0.89
115.069	82.741	113.151	-296.195	68.927	-1.029
115.995	83.652	116.435	-295.703	79.352	-1.151
116.894	84.538	119.719	-295.259	89.78	1971-
118.624	86.242	126.288	-294.509	110.556	-1.481
		70 673	-294.199	120.938	-15/3

Copper (Cu)

CRYSTAL-LIQUID

Refer to the individual tables for details. 0 to 1358 K crystal above 1358 K liquid

Ar = 63.546 Copper (Cu)

Copper (Cu)

1	5	
•	Ξ	
:	Š	
C	٥	
Ċ	3	

CURRENT: September 1984 (1 bar)

IDEAL GAS Ar = 63.546 Copper (Cu)	Copper ((Cri						Cu ₁ (g)	
$\Delta_t H^0(0 \text{K}) = 336.4 \pm 1.2 \text{kJ} \cdot \text{mol}^{-1}$	<u></u>	Reference	Temperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard State Pressure = p = 0.1 MPa	Pressure = 1	0.1 MPa	
ΔΑΥ. (298.13 K) = 357.6 ± 1.2 KJ·mol	7.K	ប)]- & -[(-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	₩.Ψ	₽ <i>G</i> •	log Kr	
: Levels and Quantum Weights	°288	0. 20.786 20.786	0. 143.690 158.097	INFINITE 184.877 168.298	-6.197 -4.119 -2.040	336.409 337.819 337.885	336.409 324.454 311.011	INFINITE -169.477 -81.228 -63.581	
0,000	298.15		166.397	166.397	0.	337.600	297.877	-52.187	
1202.565	888		166.525 169.730 172.505	166.597 166.650 167.213	0.038 1.078 2.117	337.593 337.396 337.178	297.630 284.369	-51.822 -43.427 -37.135	
	2 8		174.953	167.939 168.752	8.3 8.3 8.3 8.3	336.942 336.691	71.782	-32244	
) = 337.6 ± 1.2 LJ·mol ⁻¹ , is the value recommended by CODATA!. This value	88888	20.786 20.786 20.786 20.786	180.933 184.137 186.913 189.361	170.476 172.205 173.874 175.461	6274 8353 10.431 12.510 14.589	336.150 335.554 334.509 334.211 333.456	28.179 245.230 232.370 219.594 206.898	-22.476 -18.299 -15.172 -12.745	
Morns and Lenas, Marshall et al., McConnack et al., Myles and Darby, iolonka ¹⁰ and Ponslit and Bariaux. ¹¹ Additional references are given in Hultgren	<u> </u>		193.533 197.006 198.549 198.549	178.719 179.719 180.986 182.186	16.667 18.746 20.826 22.907	332,629 331,713 330,665 316,330	194.282 181.745 169.289 157.326	-9226 -7.911 -6.802 -5.870	
weights, given by Moore. ¹³ is incomplete because many theoretically predicted he ground state and the lowest lying levels, all levels listed by Moore, ¹³ as well	88888 88888		20130 20130 204.950 204.950	184.409 185.443 186.430 187.375	29.174 33.277 33.393	313.933 312.743 311.562 310.394 309.241	134.775 123.614 112.523 101.497 90.533	- 4.400 - 3.798 - 2.790 - 2.790	
I levels are too numerous to list completely. The calculations indicate that for timated missing levels (for $n = 4 - 11$), the cut off procedure, and the inclusion	2200		207.093	189.152	37.676	308.107 306.998	29.625 1.77.80	-1.981	
ng variations of 0.001 J K ⁻¹ ·mol ⁻¹ at this temperature. The reported uncertainty is mass, and the fundamental constants. Extension of these calculations above	252 268 268 268 268		209.083 210.034 210.960	190.799 191.581 192.338	42.053 44.286 55.55	305.915 304.865 303.849	57.967 36.495	-1.316 -1.027 -0.763	
s (n>11), and use of different fill and cut off procedures.	2278 22008 8000		211.865 212.752 213.622	193.071 193.784 194.477	48.863 51.213 53.607	302.873 301.938 301.048	25.820 15.182 4.578	-0.519 -0.294 -0.085	
for Thomselve 1 Chem Thomselve 10 003 (1978)	2843.261		213.995	194.771	54,657	1	FUGACITY -	. bar	
ing Thermodyn, 1. Chem. Inernodyn. 10, 503 (1976). Chem. Soc. 75, 2467 (1953).	3000		215.323	195.810	58.538 61.078	್ ಂ	ೆಂ ರ	်ဝ ဝ	
Cours you as a con-	8888		216.978 217.791 218.595	197.082 197.697 198.300	65.66 65.10 69.003 69.003	ರರರ	ರರರ	ರರರಂ	
rn. 50c. 53, 110 (1957). Eng. Data 10, 319 (1965).	360		220.177 220.955	199.472 200.042	74539 74539 77378	ೆ ರೆರೆ	ಶ ರರ	ರ ರರ	
oc. Conf. 7, 341 (1961).	8888 8888		22.72 22.485 23.03	200.602 201.154 201.696	80.266 83.198 86.172	ರಂರ	ರರರ	ಂದರ	
. 25, 252 (1903). 12] 69 (1969). 52, 248 (1966).		30,339 30,707 31,051 31,370	223.984 224.719 225.446 226.163	202.231 202.758 203.277 203.789	89.187 92.239 95.327 98.449	ರಂದರೆ.	ರ ೆ ರೆರೆರೇ	ರರರರ	
ermodynamic Properties of Metals, American Society of Metals, Metals Park,			226.872	204.792	101.601	ဝ ဝ	ರ ರ	ರ ರ	
ume II, 1970 [Reprint of NBS Circular 467, Volume II, 1952]. R-TR-78-0960, (1978).	\$\$\$\$\$		228.940 228.940 229.611	205.284 205.770 206.250	107.987 111.217 114.469	ರಂದರ	ರರರರ	ರರರರ	
	\$200 \$300 \$300		230.923 231.565 232.198	207.192 207.654 208.111	121.030 124.336 127.657	ರಂದ	ರರರ	ರರರ	
	28 88 80 88		232.82	208.563 209.010 209.452	134,339 137,697	ರರ ರ	ಶರ ರ	ರಂ ರಂ	
	68888 88888 88888	33.746 33.845 33.941 34.035	235.224 235.224 235.834 236.335	209.888 210.320 210.747 211.169	141,006 144,446 147,835 151,234	ರಂದಂ	ರರಂಠ	ಶರರರ	

was based on the measurements of Edwards et al.,2 Hersh,3 Morris and Zella Grieviso et al.,4 Kirschenbaum and Cahill,9 Knipkowski and Golonka 10 and Pon The adopted enthalpy of formation for Cu(g), $\Delta_i H^*$ (298.15 K) = 337.6 \pm 1.2 Enthalpy of Formation et al. 12

Electronic Levels and Qua

IP(Cu, g) = 62317.2 ± 0.5 cm⁻¹ S°(298.15 K) = 166.397 ± 0.025 J K⁻¹·mol⁻¹

Copper (Cu)

State

Heat Capacity and Entropy

6000 K may require consideration of the higher excited states (n>11), and use of different fill and cut off procedures. 14 The information on electronic energy levels and quantum weights, given by levels have not been observed. Although we have listed only the ground state at as estimated levels, are used in the calculation. The observed levels are too no of n<12 levels up to 6000 K; the Gibbs energy function showing variations of 0 in S'(298.15 K) is due to uncertainties in the relative atomic mass, and the Cu(g), the thermodynamic functions are independent of the estimated missing

References

D. Cox, chairman, CODATA Taxk Group on Key Values for Thermodyn., J. Chem. Thermodyn. 10, 903 (1978).
 W. Edwards, H. L. Johnston, and W. E. Ditmars, J. Am. Chem. Soc. 75, 2467 (1953).

³H. N. Hersh, J. Am. Chem. Soc. 75, 1529 (1953)

P. Morris and G. R. Zellars, J. Metals 8, 1086 (1956).
 A. L. Marshall, R. W. Dontte, and F. J. Norton, J. Am. Chem. Soc. 59, 116 (1937).
 M. McCormack, J. R. Myers, and R. K. Saxer, J. Chem. Eng. Data 10, 319 (1965).
 R. M. Myles and J. B. Darby, Acta Met. 16, 485 (1968).
 P. Grievison, G. W. Hooper, and C. B. Alcok, Metallurg, Soc. Conf. 7, 341 (1961).

⁹A. D. Kirschenbaum and J. A. Cahill, J. Inorg. Nucl. Chem. 25, 232 (1963).
¹⁰Krupkowski and J. Golonka, Bull. Acad. Polon. sci Cl. [3, 12] 69 (1969).

²R. Hultgren, R. P. Desai, et al. Selected Values for the Thermodynamic Properties of Metals, American Society of Metals, Metals Park, Penslit and D. Bariaux, Bull. cl. Sci. Acad. Roy. Belgigue 52, 248 (1966).

Ohio, 1973; Copper evaluation dated (1961). ¹²C. E. Moore, U. S. Nat. Bur. Stand., NSRDS NBS 35 Volume II, 1970 [Reprint of NBS Circular 467, Volume II, 1952]

⁴J. R. Downey, The Dow Chemical Company, Rept. AFOSR-TR-78-0960, (1978)

Copper (Cu)

PREVIOUS: June 1977 (1 atm)

522.098 599.462 576.787 531.324 531.324 485.721 445.885 433.618

1097.015 1097.888 1098.761 1100.506 1101.379 1102.252 1103 124 803 793 805.461

37.453 39.532 41.610 43.689 45.768

240,313 241,355 241,355 243,281 243,283 245,087 246,687 246,687 248,205 248,205 249,621 250,248 250,248

262.888 263.855 264.779 265.663

20.786 20.786 20.786 20.786 20.786

268.868 269.597 270.302

20.786 20.786 20.786 20.786 20.786

270.983

725.7327

-7.097 -6.672 -6.271 -5.894 -5.537

421 197 408.724 396.203 383.637 371.028

-5.200 -4.880 -4.577 -4.289

358.380 345.694 332.974 320.220

814.404 815.720 816 990 818.216 819.399

-3.754 -3.504 -3.267 -3.039

294.623 281.782 268.915 256.024 243.110

820.542 821.647 822.716 823.753 824.758

-2.614 -2.414 -2.223 -2.039 -1.862

204.239 191.243 178.228

330,274

230.174

-1.692 -1.528 -1.371 -1.219 -1.072

165.196 152.147 139.081 126.000

0.794

99 793 86 668 73 530

834.397 835 186 835.965 836 734 837 493

-35918 -3226 -22074 -2636 -2392 -2188 -2018 -1834 -1633 -1539 -120

667.242

1092.651 1093.524 1094.397 1095.269 1096.142

258.495 259.684 260.807 261.874

20.786 20.786 20.786 20.786 20.786

Cu1(g)

CURRENT. September 1984 (1 bar)

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 63.54545 Copper, Ion (Cu*)

S -[G-H'(T,)]T

ž

kI-mol Δ_H

og K

PG.

081,889

240.792 224.213 222.654 222.311

222.311

222.312 223.127 223.854 224.667

-178.684 -151.579 -131.235 -115.399 -102.722

1026.239 1015.680 1004.963 994.163 983.275 983.272 939.016 916.551 893.909 871.116

-83.686 -70.070 -59.845 -51.881 -45.502

1094.101 1095.584 1097.017 1098.398 1099.721

226.391 228.119 229.788 231.376 232.877

0.038 1.078 1.078 1.078 1.117 3.156 6.274 8.353 10.431 11.2510 14.589 11.2510 14.589 18.746 20.824 22.903 22.903 22.106 29.139 31.217 33.236

848.195 825.163 802.039 779.248 756.957

1100.973 1102.135 1103.164 1090.906

234.295 235.634 236.901 238.100 239.239

20.786 20.786 20.786 20.786 20.786

254.460

257.235

734.607

 $IP(Cu^{+},g) = 163669.2 \pm 0.5 \text{ cm}^{-1}$

Copper, Ion (Cu*)

IDEAL GAS

$\Delta_{p}H^{0}(0 \text{ K}) = 108$	$\Delta_{r}H^{\circ}(298.15 \text{ K}) = [1]$	

Electronic Levels and Quantum Weights 0.0 21928.60 22847.03 23998.31 26264.52 $S^{\circ}(298\ 15\ K) = 222.311 \pm 0.02\ J\ K^{-1} \cdot mol^{-1}$

Enthalpy of Formation

[U-mol-1] from Moore. The ionization limit is converted from cm-1 to [U-mol-1] using the factor, 1 cm-1 = 0.01196266 fd cm-1, which is derived from the 1973 CODATA fundamental constants? Rosenstock et al. and Levin and Lias have summarized additional ionization and Δμ"(Cu⁺, g, 0 K) is calculated from Δμ"(Cu, g, 0 K) using the spectroscopic value of IP(Cu) = 62317 2 ± 0.5 cm⁻¹ (745.479 ± 0.006 appearance potential data.

 $\Delta H^{q}(Cu^{+}, g, 298.15 \, K)$ is calculated from $\Delta H^{q}(Cu, g, 0 \, K)$ by using IP(Cu) with JANAF¹ enthalpies, $H^{q}(0 \, K) - H^{q}(298.15 \, K)$, for Cu(g), $Cu^{*}(g)$, and $e^{-}(g)$, $\Delta_{H}^{q}(Cu \to Cu^{*} + e^{-}, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock *et al.*⁴ $\Delta_{H}^{q}(298.15 \, K)$ should be changed by $-6.197 \, k$ mol⁻¹ if it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

levels, that any reasonable method of filling in these missing levels and cutting off the summation in the partition function, has no effect on states. The next excited state is 66418 65 cm⁻¹ above the ground state. Since inclusion of these excited states has no effect on the The information on electronic energy levels and quantum weights, given by Moore, 26 is incomplete because many theoretically predicted the thermodynamic functions to 6000 K. This is a result of the high energy of all levels other than the ground state and the first four excited thermodynamic functions to 6000 K, we list only the ground state and the first four excited states. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the excited states and use of different fill and cutoff procedures.7

References

JANAF Thermochemical Tables: Cu(g), 9-30-84; e-(ref), 3-31-82.

²C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34, (1970).

³E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

⁴H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).

⁵R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand., NSRDS-NBS-71,1982.

⁶C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-35, Volutine 1, 1971 [Reprinted from NBS Circular 467, Volume 1, 1949]. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-0960, Contract No. F44620-75-1-0048,1978.

807.078 808.645 810.160 811.625 813.039 47.846 49.925 52.004 54.082 56.161 58.239 60.318 62.397 64.475 68.633 70.711 74.869 76.948 79.026 81.105 83.184 85.263 252.196 253.794 253.345 253.346 253.346 255.550 255.55 259.748 260.166 260.576 260.979 261.373 261 761 262.141 262.514 262.881 263.242 263.596 263.945 264.288 264.625 264.625 271.643 272.283 272.903 273.506 276.795 277.296 277.785 278.263 278.263 281.332 274.091 274.661 275.215 275.755 276.282 279.187 279.634 280.072 280.501 20.786 20.786 20.786 20.787 20.787 20.787 20.787 20.787 20.787 20.788 20.788 20.788 20.789 20.789 20.791

PREVIOUS June 1977 (1 atm)

CURRENT: September 1984 (1 bar)

PREVIOUS

M _r = 63.54655 Copper, Ion (Cu ⁻)	
IDEAL GAS	
Copper, Ion (Cu ⁻)	

Cu₁(g)

$EA(Cu, g) = 1.228 \pm 0.010 \text{ eV}$	$\Delta_H^{\circ}(0)$
$S^{(298.15 \text{ K})} = 160.634 \pm 0.001 \text{ J K}^{-1} \cdot \text{mol}^{-1}$	Δ _t H°(298 15 K

$\Delta_t H^{\circ}(S)$	
	Electonic level and quantum weight State e., cm ⁻¹ So 0.0 1
	nic level and quant e., cm ⁻¹
	Elector State

Enthalpy of Formation

AH"(Cu _ g, 0 K) is calculated from ∆H"(Cu,g, 0 K) using the adopted electron affinity of EA(Cu) = 1.228 ± 0.010 eV (118.483 ± 0.9 KI mol "). This value, recommended by Hotop and Lineberger, ² is based on a laser photodetachment election spectrometry study² Addition information on Cu (g) may be obtained in the entical discussions of Hotop and Lineberger, ² Rosenstock et all ³ and Massey. ∆H"(Cu _ g, 298.15 K) is obtained from AH"(Cu _ g, 0 K) by using EA(Cu) with JANAF enthalpies, H"(0 K) − H"(298.15 K), for Cu ⁻ Cu(g), and e ⁻ (g). ∆H"(Cu → Cu + e ⁻, 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies a to threshold effects discussed by Rosenstock et all ³ ∆H"(298.15 K) should be changed by +6.197 kJ·mol ⁻ if it is to be used in the convention that excludes the enthalpy of the electron.

The ground state electronic configuration for Cu (g) is given by Hotop and Lineberger²⁴ and Rosenstock et al. ⁵ Lacking any experime evidence as to the stability of any excited states, we assume that no stable excited states exist. Heat Capacity and Entropy

'JANAF Thermochemical Tables: Cu(g), 9-30-84, e⁻(ref), 3-31-82.

²H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).
³H. Hotop, R. A. Bennett and W. C. Lineberger, J. Chem. Phys. 58, 2373 (1973).
⁴H. Hotop and W. C. Lineberger, J. Phys Chem. Ref. Data 4, 539 (1975).
⁵H. M. Rosenstock, K. Draxl et al., J. Phys Chem. Ref. Data 6, Supp. 1 (1977).
⁶H. S. W. Massey, Negative Ions, 3rd ed., Cambridge University Press, Cambridge, (1976).

"(0 K) = 217.926 kJ·mol ⁻¹	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = T, = 29&15 K		Standard State Pressure	e Pressure = p	$p^* = 0.1 \text{ MPa}$
5 K) = [212.920] kJ mol ⁻¹	ì		.=			上: - -		;
	¥.	ប	ر او د	-[G°-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	$\Delta_r H$	• ∇′C	log Kr
	288 E O	0. 20.786 20.786 20.786	0. 137.927 152.334 156.973	INFINITE 179 114 162.535 160.976	-6 197 -4.119 -2.040 -1.001	217 926		
	298.15	20.786	160634	160.634	o	212.920	181,169	-31.740
010 eV (118 483 + 0.965	380	20.786 20.786	160.762 163.967	160.634	0.038	212.874 211.638	180.972 175.753	-31.510 -26.230
trometry study Additional	\$ \$ \$	20.786 20.786 20.786	166.742 169.190 171.381	161.450 162.176 162.989	2.117 3.156 4.196	210.381 209.105 207.815	170 712 165.830 161.091	-22.293 -19.249 -16.829
H°(298.15 K), for Cu ⁻ (g),	902	20.786	175.170	164 713	6.274 8.353	205.195	151 991	-13.232 -10.696
it is to be used in the ion	885	20 786 20.786 20.786	181.150 183.598 185.788	168.111	10.431 12.510	199.797 197.020	135.064	-8.819 -7.379 -6.243
	001	20.786	187.769	172.617	16.667	191.281	112.199	-5.328
Lacking any experimental	989	20.786 20.786 20.786	191.242	173.956 175.223 176.473	18 746 20.824 22 903	188.286 185.158 168.747	105.141 98.338 97.189	-4.577 -3.951 -3.440
	1200	20.786	194216	177.562	24.982	165.458	86.835	-3024
	091 0021	20.786 20.786	195.558 196.818	178.645 179.677	27.060 29 139	162.173 158 889	81.701 76.772	-2.667 -2.359
	2000 2000 2000 2000	20.786 20.786 20.786	198.006 199.130 200 196	180.663 181.606 182.509	31.217 33.296 35.375	155.605 152.320 149.036	72.036 67.483 63.103	-2.090 -1.855 -1.648
	2100	20 786	201.210	183.375	37.453	145.751	58.887	-1 465
	2300	20.786	203.101	185 010	41.610	139 182	50.918	-1.156
	2500	20.786	204.834	186.527	45.768	132.613	43.521	-0.909
	2600 2700	20.786 20.786	205.650 206.434	187.247 187.943	47.846 49.925	129.329 126.045	40.022 36.649	-0.804 -0.709
	2800	20.786 20.786	207.190	188.617		122.760 -180.728	33.398	-0.623 -0.653
	3100	20.786	209.306	190.519		-185.758	51.394	-0.866
	3200	20.786	209.966	191.116		-188349	59.085	-0.964
	3400	20.786	211.226	192.262	64 475	-193.683 -196.426	74.712	-1.148
	3600	20.786	212,414	193,349		-199219	90.658	-1,315
	3800	20.786	213.538	194.382	72.790	-204.946	106.918	-1.470
	4000	20.786	214,604	195.367		-210.852	123.484	-1.613
	4100 4200	20.786 20.786	215.117	195.843 196.308		-213 <i>867</i> -216 <i>9</i> 19	131.880	-1.680
	4 4 4 4 500 4 4 500 4 4 500 4 4 500 4 4 600 4 60	20.786 20.786 20.786	216.107 216.585	196.762 197.207 197.643	83.183 85.261 87.140	-220.007 -223.129 -276.281	148.892 157.507 166.194	-1.809
	4600	20.786	217.509	198.070		-229.461	174.950	-1.987
	4 4 800 4 800	20.786	218.324	198.899	93.576 95.654	-235.897 -239.149	192.671	-2.149
	2000	20.786	219.242	969.661		-242,421	210.662	-2.201
	2200	20.786	219.654 220.057	200.083 200.463	99.811 101.890	-245.710 -249.016 -252.337	219.756	-2251 -2299
	\$400 \$500	20.786	220.842	201.203		-255.672 -259.019	247.423 256.771	-2393 -2439
	\$600 \$700	20.786	221.598	201.918		-262.377	266.179	-2.483
	2800	20.786 20.786 20.786	222.327 222.682 223.032	202.610 202.947 203.279		-269.126 -272.515 -275.914	285.175 294.761 304.404	-2.568 -2.610 -2.650

Δ_{fur}H° = Unknown

$\Delta_i H^{\circ}(0 \text{ K}) = \text{Unknown}$	$\Delta_t H^0(298.15 \text{ K}) = [-280.33 \pm 41.8] \text{ kJ·mol}^{-1}$	Δ ₆ H° = Unknown
	8.15 K) = $[64.852 \pm 2.1] \text{ J K}^{-1} \cdot \text{mol}^{-1}$	Unknown

The enthalpy of formation is calculated by combining the adopted $\Delta_t H^0(\text{CuF}, g, 298.15 \, \text{K}) = -3.0\pm4 \, \text{kcal mol}^{-1}$ with the estimated enthalpy of sublimation of 64 kcal mol}^{-1}. A comparison of enthalpies of sublimation of LiF with L.C., NaF with NaCl, and KF with KCl along with an enthalpy of sublimation of CuCl of 54.77 kcal mol}^{-1} indicates that $\Delta_{aab}H^0(\text{CuF}, cr, 298.15 \, \text{K})$ might be in the range of 58 to 71 kcal mol}^{-1}. The tabulations of King et al}^{-1} lead to $\Delta_{aab}H^0(298.15 \, \text{K}) = 64 \, \text{kcal mol}^{-1} \text{ which we adopt. We derive } \Delta_t H^0(\text{CuF}, cr, 298.15 \, \text{K}) = -67\pm10 \, \text{kcal mol}^{-1}$. **Enthalpy of Formation**

Heat Capacity and Entropy

We adopt the heat capacities estimated by King et al.² and $S'(298.15 \text{ K}) = 15.5\pm0.5 \text{ cal K}^{-1} \cdot \text{mol}^{-1}$ estimated by Kelley and King.³

JANAF Thermochemical Tables: LiCI(at, g), 9-30-65, NaCI(at, g), 9-30-64, KCI(at, g), CuCI(at, g), 3-31-66; LiF(at, g), NaF(at, g), References

12-31-68; KF(Gr, g), 6-30-69.

²E. G. King, A. D. Mah and L. B. Pankratz, Thermodynamic Properties of Copper and Its Inorganic Compounds INCRA Series on a Metallurgy of Copper, No. 2, INCRA, New York, (1973).

³K. K. Kelley and E. G. King, U. S. Bur. Mines Bull. 592, (1961).

집	nthalpy R	eference Te	mperature -	Enthalpy Reference Temperature = T_t = 298.15 K 1.K ⁻¹ mol ⁻¹		Standard Sta	Standard State Pressure = $p^* = 0.1 \text{ MPa}$ t 1-mol ⁻¹	" = 0.1 MPa
	τÆ	೮	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\bullet})$	Δ.Η.	Φ'C•	log K,
	°88							
	298.15	51.882	64.852	64.852	ó	-280.328	-259.545	45.471
	888	51.965 55.145	65.173 80.574	64.853 66.931	5.457 5.457	-280,306	-259.416 -252.638	45.168 32.991 35.770
	8	59.580	103.850	75.570	16.968	-276.142	-240.043	20.838
	88	196.09	113.143	80.288	22.998	-274.562	-234.151	17.473
	88	62.802	128.706	89.382	35.391	-202172	-223.030	12.944
	8	63.764	141.410	27.72	48.056	-268.081	-212.639	10.097
	000	64.057	46.971	101.598	54.448	-266.557	-207.667	9.040
	8	64.78	156.874	108.805	67.297	-265.03	-197.664	7.375
	200	64.434	161,318	112.159	73.739	-275.780	- 192.038	6.687
	38	64.434	169.383	118.427	86.625	-273.29	-181.032	5.562
	<u>88</u>	6 54 43 43	173,066	121.361 124.175	93.069 99.512	-272.070	-175.640 -170.316	5.097 4.682
	2000	64.434	179.854	126.877	105.955	-269.629	-165.056	4311
<u> </u>	EVIOUS.	PREVIOUS. June 1966					CURRENT	CURRENT: December 1977
Ŀ	2001	June 1700						Desember 1

Copper Fluoride (CuF)

Cu₁F₁(cr)

CURRENT: December 1977 (1 bar)

PREVIOUS: December 1977 (1 atm)

M. = 82.544403 Copper Fluoride (CuF)
IDEAL GAS
pper Fluoride (CuF)

State Color Colo	IDEAL GAS
449 Å 440 Å 44	$\Delta_{t}\hbar$
49 Å 100 1317 26.07 26.	Electronic levels and quantum weights
449 Å 49 Å 40 34371 215570 226.696 0.002 - 122.03 - 40.101 40 34371 225.72 215.697 226.70 - 125.00 - 125.00 40 34371 226.202 215.73 1.025.00 - 123.00 - 123.00 40 34371 226.202 215.73 1.025.00 - 123.00 - 123.00 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.00 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.0 - 123.0 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.0 - 123.0 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.0 - 123.0 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.0 - 123.0 40 34371 226.202 215.73 1.023.0 - 123.0 - 123.0 - 123.0 41 30 34371 226.202 215.73 1.023 - 123.0 - 123.0 - 123.0 - 123.0 42 41.12 - 2.06.21	15
49 Å 40 35.759 244.66 229.02 1517 - 11360 - 11660 - 151669 41 20 36.77 20.089 11373 - 1177 - 11361 - 1688	Z=8
### 19 \$\hat{\text{t}} = 0.00 \text{ is 5.717 } \text{ 256.820} \text{ 256.821 } \text{ 1.05.72 } \text{ 1.05.13 } \text{ 1.05.05 } \text{ 1.05.13 } \text{ 1.05.05 } \text{ 1.05.13 } \text{ 1.05.05 } \text{ 1.05.13 } 1.0	[7]
m pressures of the reactions 100 37529 22549 24481 24,831 21,657 11,245 11,000 11,000 37529 273.467 249.282 22,910 11,000 37529 273.467 249.282 22,910 11,000 37529 273.467 249.282 22,910 11,000 37529 273.467 249.282 22,910 11,000 37529 273.467 249.282 22,910 11,000 37529 273.467 249.282 22,910 11,000 37529 273.463 21,485 24,100 11,000 37529 273.463 21,485 24,100 11,000 37,100 3	
Drift \(\text{A} \text{A} \text{COR} \) 1900 \\ 37824 \\ 27824 \\	10
-29±19 −415±3 1700 88.038 205.93 205.13 1.518.3 −4.015±3 1700 88.182 202.105 201.105	1
1100 88.35 297330 26.577 67.111 -4.5926 -118.712 2000 88.453 29.713 57.7294 77.729 -47.712 -197.7412 2000 88.543 201.424 26.5035 77.2294 77.7294 77.7294 77.7294 77.7294 17.7294 17.7294 77.7294 17.7294 17.7294 17.7295 -119.7412 20.03 88.746 20.6157 27.2936 86.375 -51.477 -20.5232 17.7294 20.00 20.255 -51.477 -20.5232 17.7294 20.00 20.255 -51.477 -20.5232 17.7294	7.08±0.68 62.34±0.19
mization of CuF ₃ , derived from 2500 38.541 304.659 271.657 82.356 -51.477 -203.532 2700 38.545 304.659 271.657 82.356 -51.477 -203.532 270 38.545 304.659 271.657 82.356 -51.477 -203.532 270 38.545 30.000 271.657 271.657 82.356 -51.477 -203.532 270 38.545 30.000 271.7141 99 90.125 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 271.7141 99.01.55 -54.110 -211.536 90.233 90.233 90.323 91.1773 91.01.594 -91.51.57 -91.51.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51 -91.51.51	
mization of CuF ₃ , derived from 280 3835 30751 774193 90255 -54110 -215382 11	7.7
### Cours, 288.15 K) = 182.17 100	de ga
commends $D_0^a = 81 \text{ kcal^anol}^{-1}$ 3300 39.746 315.465 281.008 111387 - 3158.89 - 202.647 304 316.405 281.008 111387 - 3158.89 - 202.647 304 316.405 281.000 111779 - 3158.89 - 202.647 304 3178.45 282.040 111779 - 3158.49 - 197.304 - 197.304 3178.45 282.040 111779 - 3158.240 - 197.304 - 197.304 3178.45 282.040 111779 - 3158.240 - 197.304 - 197.304 3200 4.1177 322.242 282.972 - 340.549 - 187.304 317.30	For A
at. used April (298.15 K) = 14 3600 40.387 318.380 284.029 122.873 -360.129 3700 40.584 320.089 284.989 122.873 -361.121 -178.774 3800 41.467 312.288 125.874 -161.277 -178.774 4100 41.767 324.316 286.84 136.059 -362.877 -178.774 4100 41.767 324.316 286.84 136.059 -363.44 -169.117 4200 42.013 325.316 288.642 156.519 -363.44 -169.117 4200 42.013 325.316 288.642 156.759 -363.44 -169.017 4200 42.013 325.316 289.44 156.319 -365.04 -169.618 4400 42.746 377.299 291.158 159.071 -365.04 -169.618 4500 43.45 372.299 291.158 150.071 -365.04 -198.629 4400 43.47 372.217 167.640 -366.038 -198.824 4500 44.48 330.118 293.377 176.00 -366.939 -113.899 4500 44.37 333.790 295.838 185.389 -367.799 -112.077 5500 44.37 333.790 295.811 189.817 -366.049 -112.077 5500 46.219 336.409 288.712 203.588 188.85 5600 47.115 333.790 296.711 203.589 -367.799 -102.087 5600 47.115 333.790 296.711 203.589 -368.877 -102.087 5600 47.115 333.110 500.88	mol ⁻¹ , D&CuF, 298.15 K) must be greater than 91.08 kcal·mol ⁻¹ to agree with the valence state concept. Other calculations by Kent et al., give D (298.15 K) values ranging from 84.4 to 94.5 kcal mol ⁻¹ , Gaydon for the concept.
3500 41.75 25.277 133.950 -178.774 25.277 133.950 -1.8.774 25.277 133.950 -1.8.774 25.277 133.950 -1.8.774 25.277 13.275 -1.8.774 25.277 13.275 -1.8.774 25.277 13.275 25.277 13.275 25.277 113.953 -1.6.177 12.277 12.278 25.277 12.278 25.277 12.278 25.277 12.278 25.278 25.278 25.278 25.278 25.278 25.278 25.279 12.279 25.279 12.270 -1.6.257 25.279 25.279 25.279 12.270 25.279 12.270 25.279 25.27	Z
4100 41,767 324,316 288,622 164,346 -365,444 -164,267 430 42,018 210,339 210,3	į
31–77. 4500 43.445 330.215 327.711 167.640 -366.038 -139.822 4600 43.445 330.151 293.537 172.00 -366.038 -139.822 4700 43.804 330.153 293.537 172.00 -366.499 -1348.93 130.772 293.537 172.00 -366.499 -138.899 172.00 -366.499 -138.899 172.00 -366.499 173.999 295.038 180.836 -367.379 -129.967 172.00 -129.967 172.00 -120.077 172.00 -129.967 172.00 -129	and a
Add, London, (1968). 5100 45.279 333.790 25.571 183.817 -368.049 -115.121 5200 45.651 334.573 257.255 194.54 -368.049 -116.128 5300 45.021 335.546 280.008 185.947 -368.521 -110.128 5400 45.390 335.446 299.671 203.568 -368.827 -100.218 5500 45.315 337.244 299.658 203.568 -368.827 -100.218 5500 47.115 338.110 30.008 212 019.91 -469.741 -00.761	1, 8),
5400 46,350 336,409 298,712 203,568 -3,68,857 -100,218 550 46,75 337,244 299,405 208,215 -3,90,054 -9,92,41 5600 47,115 318,110 30,008 21,919 -3,69,714 -00,761	A. C. Gayoot, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd ed., Chapman and Hall L *E. G. King, A. D. Mah and L. B. Pankratz, Thermodynamic Properties of Copper and its Inorganic Com- Metalluray of Copper, No. 2, INCRA, New York, (1973).
	د, (1970

			Data	A.H°(298.151	O. kcal mol-1	Drift	Δ.H(298.15 K)
Source	Reaction*	<i>1</i> 7K	points	2nd law	2nd law 3rd law	cal K-1-mol-1	al K-'-mol-' kcal-mol-'
-	٧	1413-1590	12	11.52±2.84	7.08±0.68	-2.9±1.9	-4.15±3
7	B	936-948	3	75.97±3.90	62.34±0.19	-14.5±4.1	-2.06±21
•	;		i				

Standard State Pressure = $p^* = 0.1$ MPa

38.773 32.142 27.189 23.353 20.299 17.811

-445.372 -430.732 -416.406 -402.371 -388.603

-534.201 -532.083 -529.821 -527.454 -525.013

22.539 30.883 39.479 48.276 57.241 66.340

91.436 97.739 103.984 110.052 115.895 121.498

-375.081 (STAL <-->

-522.539

8 -520.070 -517.673 -528.521 -526.211

67.164 75.550 84.844 94.203 103.608

121.991

182.554 189.820 197.259 204.195 210.683

91.713

91.588

15.748 14.011 12.513 11.201 10.058 9.054 8.166 7.375 6.666

-308.097 -294.681 -281.402 -268.250 -255.220

-523.891 -521.570 -519.258 -516.959 -514.668

13.041 122.492 131.948 141.404 150.859

146.121 150.447 154.601 158.595 162.439

216.771 222.501 227.906 233.018 237.868

94.433 94.558 94.558 94.558

-361.785 -348.693 -335.374 -321.659

126.862 131.995 136.907 141.611

92.550 93.303 93.847 94.224

86.134 85.551 62.117 48.092

-491,349 -475,674 -460,348

-538.881 -538.881 -537.682 -536.097

0.121 7.034 14.549

77.452 77.453 80.113 85.347

ช

0. 21.852 53.151 77.858 97.697 111.446 111.857 141.857 153.332 163.692 173.136

65.552 65.689 77.383 77.739 81.923 84.810 87.027 88.868

-491.642

MAINTE

-537.170 -539.289 -539.591

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $S^{*} - [G^{*} - H^{*}(T_{*})]\Pi$

3

Enthalpy Reference Temperature = T, = 298.15 K

J.K. mol

CRYSTAL

Copper Fluoride (CuF₂)

CURRENT December 1977

 $\Delta_H^{\circ}(0 \text{ K}) = -537.2 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_H^{\circ}(298.15 \text{ K}) = -538.9 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_{fus}H° = 55.229 ± 20.1 kJ·mol⁻¹

> $S^{*}(298.15 \text{ K}) = 77.452 \pm 0.08 \text{ J K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation The = 1109 ± 10 K

Pervov et al.! have measured a enthalpy of formation of -128.8±0.3 kcal·mol⁻¹ by direct fluorme combustion calorimetry. In view of the spread of values obtained from the equilibrium pressure and the emf data discussed below, we adopt $\Delta_t H^0$ (CuF₂, 298.15 K) = -128.8±2 kcal·mol⁻¹ (-538.899 ± 8.4 kJ·mol⁻¹).

Jellinek and Rudar² and Domange³ have measured equilibrium partial pressures for reactions of CuF₂(cr) with hydrogen and with water, respectively. Koerber and De Vries² and Skelton and Patterson³ have derived $\Delta_i G^2$ from emf studies. Our 2nd and 3rd law analyses are as follows, using auxiliary data from the JANAF Thermochemical Tables⁶

Source	Reactions*	7/K	Data points	Δ _r H*(298.15 k 2nd law	λ _t H°(298.15 K), kcal·mol ⁻¹ nd law 3rd law	Drift $\Delta_l H^\circ$	Δ _t H°(298.15 K) kcal·mol ⁻¹
7	4	423	-		22.6	1	-1529
•	a	573-723	4	23.3±1.3	20.8±0.6	-3.9 ± 2.0	-130.6±2
•	ပ	273-283	2	-1.9	-10.6 ± 0.4	-31.4	-126.6±4
'n	Ω	816-199	Equation	-132.1	-136.4	-5.5	-136.4
	*Reactions:	(A) CuF ₂ (cr) + (B) CuF ₂ (cr) +	A) CuF ₂ (cr) + H ₂ (g) = Cu(cr) + 2 HF(g) B) CuF ₂ (cr) + H ₂ O(g) = CuO(cr) + 2 HF(g)	+ 2 HF(g) cr) + 2 HF(g)	(C) $Cu(\alpha) + Hg_2F_2 = CuF_2(\alpha)$ (D) $Cu(\alpha) + F_2(g) = CuF_2(\alpha)$	C) $Cu(cr) + Hg_2F_2 = CuF_2(cr) + 2 Hg(l)$ D) $Cu(cr) + F_2(g) = CuF_2(cr)$	Hg(l)

The evaluation of King et al., Δμf'(CuF₂, cr, 298.15 K) = -130.2 kcal·mol⁻¹, preceded the direct fluorination study of Pervov et al.! and is based mainly on the work of Domange³ and Koerber and De Vries. We place greater reliance on the direct fluorination work.

Heat Capacity and Entropy

the differential scanning calorimetric measurements of heat capacity by Ehlert⁹ (300–710 K). Our graphical joining and smoothing of the two data sets produces data which are 1 to 2% lower than Ehlert's measurements' in the 350–500 K range and are in agreement from 520–700 K; our extrapolation to 1000 K yields 21.60 cal·K⁻¹-mol⁻¹ compared to 22.4 cal·K⁻¹-mol⁻¹ by Ehlert.

Boo and Stout' show an anomaly in the heat capacity at 70.90 K. S^o(298.15 K) = 18.51 cal·K⁻¹-mol⁻¹ is based on S^o(10 K) = 0.009 cal·K⁻¹-mol⁻¹ by Boo and Stout. The heat capacity is based on smoothed values from the unpublished low temperature measurements of Boo and Stout* (10-300 K) and

Fusion Data

Eblert and Wang' interpret their DTA measurements as indicating a solid state transition at 1065±10 K and a fusion point of 1109±10 K. They believe the observed transitions at 1028 K and 1040 K are caused by Cu₂O-CuF₂ and 10 CuO₂-20Cu-70CuF₂ weight percent eutectics, respectively. Based on the latter, and ignoring the 1065 K solid state transition, they calculated a enthalpy of fusion of 13.2±2 kcal-mol⁻¹ We adopt $T_{tu} = 1109 \pm 10 \text{ K}$ and $\Delta_{tu}H^{\circ} = 13.2 \pm 5 \text{ kcal·mol}^{-1}$ and await confirmation of the solid state transition

Sublimation Data

Refer to the ideal gas table for details.

References

¹V. S. Pervov, V. Ya. Leonidov, L. I. Klyuev, and A. G. Muravina, Dokl. Akad. Nauk SSSR 214, 1088 (1974)

²K. Jellinck and A. Rudat, Z. anorg. allgem. Chem. 175, 281 (1928)

¹L. Domange, Comp. rend. 200, 239 (1935)

G. G. Koerber and T. De Vries, J. Amer. Chem. Soc. 74, 5008 (1952)

⁵JANAF Thermochemical Tables: H_z(ref st), 3-31−77; Cu(cr), HF(g), 6-30−77; H_zO(g), 3-31-61; Cu(ycr), 9-30−77; Hg₂F_z(cr), 3-31-62; ⁵W. H. Skelton and J. W. Patterson, J. Less Common Metals 31, 47 (1973).

Hg(l), 12-31-61; F₄(ref st), 6-31-7

G. King, A. D. Mah, and L. B. Pankratz, "Thermodynamic Properties of Copper and its Inorganic Compounds. INCRA Series on the

*W. O. J. Boo and J. W. Stout, The University of Chicago, personal communication, (November 1977) Metallurgy of Copper, No. 2," INCRA, New York, (1973).

⁹T. C. Ehlert, Thermochim, Acta 21, 111 (1977).

Or. C. Ehlert and J. S. Wang, J. Phys. Chem. 81, 2069 (1977)

Copper Fluoride (CuF₂)

PREVIOUS. June 1966

Cu₁F₂(1)

Copper Fluoride (CuF ₂)	LIQUID	M _r = 101.542806 Copper Fluoride (CuF ₂)	Copper Flu	oride (C	uF ₂)					Cu ₁ F ₂ (I)
$S^{*}(298.15 \text{ K}) = [122.585] \text{ J K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{th}} = 1109 \pm 10 \text{ K}$	Δ _t H°(298.15 K) = Δ _{(u} H° = 55	$\Delta_t H^{\circ}(298.15 \text{ K}) = [-487.854] \text{ kJ·mol}^{-1}$ $\Delta_{tur} H^{\circ} = 55.229 \pm 20.1 \text{ kJ·mol}^{-1}$	Enthalpy Reference Temperature = T_r = 298.15 K $J_rK^{-1}mol^{-1}$ $J_rK^{-1}mol^{-1}$	ference Tem	[emperature = 1 J·K ⁻¹ mol ⁻¹	ture = T_r = 298.15 K mol ⁻¹ -[G°-H'(T _r)]/T	H*-H*(T.)	Standard State Pressure LJ-mol ⁻¹ $\Delta_t H^{\circ}$ $\Delta_t G^{\circ}$	ite Pressure = p	= p* = 0.1 MPa
Enthalpy of Formation $\Delta_t H^{\circ}(\mathrm{CuF}_2, 1, 298.15 \mathrm{K})$ is calculated from that of the cobetween the crystal and the liquid.	nthalpy of Formation $\Delta_H^a(\text{CuF}_2, 1, 298.15 \text{K})$ is calculated from that of the crystal by adding $\Delta_{ta}H^a$ and the difference in enthalpy, $H^a(1109 \text{K}) - H^a(298.15 \text{K})$, tween the crystal and the liquid.	109 K)-H°(298.15 K),	000	Ş		9				70 648
Heat Capacity and Entropy The heat capacity is estimated from an average heat capacity of 8 cal K ⁻¹ g-atom ⁻¹ for several is assumed at 740 K below which the heat capacity is that of the crystal. The entropy is calculated in a manner analogous to that used for the enthalpy of formation.	Heat Capacity and Entropy The heat capacity is estimated from an average heat capacity of 8 cal K ⁻¹ g-atom ⁻¹ for several difluorides and dichlorides. A glass transition is assumed at 740 K below which the heat capacity is that of the crystal. The entropy is calculated in a manner analogous to that used for the enthalpy of formation.	rides. A glass transition	28.15 20.05		122.383 142.830 142.830 159.579 174.134	122.585 122.586 125.246 130.480 136.569	0.121 7.034 14.549 22.539 30.883		-454 035 -453.844 -442.682 -431 870 -421 407 -411.280	79.021 79.021 57.808 45.117 36.687 30.690
Fusion Data Refer to the crystal table for details.					191.730 191.730 199.558 211.386	145.386 145.386 149.159 155.429	34.295 34.295 40.320 50.361	-477.935 -474.324	GLASS <> LIQUID TRANSITION -401.501 26. -392.165 22.	1QUID N 26.215 22.761
Vaporization Data $T_{\rm vip} = 1948.9 \rm K$ is the calculated temperature at which the $I_{\rm vip} = 1948.9 \rm K$ is the calculated temperature at which the $I_{\rm vip} = 1948.9 \rm K$ is the difference in $\Delta_i H^2$ between the ideal gas	Vaporization Data $T_{\text{vap}} = 1948.9 \text{K}$ is the calculated temperature at which the fugacity of CuF ₂ (g) is 1 atm for the reaction CuF ₂ (l) = CuF ₂ (g). $\Delta_{\text{vap}} H^{\circ} = 81.132 \text{k}$ mol ⁻¹ is the difference in $\Delta_{\text{e}H^{\circ}}$ between the ideal gas and liquid at T_{vap} .	F ₂ (g). $\Delta_{vep}H^o = 81.132$	8	100.416 100.416 100.416 100.416	221.965 231.536 232.354 240.273 248.311	161.563 167.496 168.019 173.202	60.403 70.444 71.348 80.486 90.528	-470.806 -467.390 CRYS -464.089 -460.945	467.390 -373.226 200 467.390 -374.634 177 CRYSTAL <> LIQUID - 464.089 -365.348 155 460.945 -338.332 14.3	20 018 17 790 QUID 15.947 14.398
						183.917 188.940 193.754 198.370 202.802 207.061	100.569 110.611 120.652 130.694 140.736	-4/1.110 -468.163 -462.323 -459.426 -456.540	-330.144 -341.607 -332.265 -325.106 -317.118	13.084 10.880 9.203 8.503
			2000 2200 2300 2400 2500			211.139 215.106 218.911 222.584 226.133	170.860 180.902 190.944 200.985 211.027	-455.084 -450.794 -445.058 -442.184 -439.301	- 201.010 - 294.084 - 286.689 - 279.424 - 277.284 - 265.264	7.315 6.807 6.346 5.926 5.542
			PREVIOUS June 1966	une 1966					CURRENT	CURRENT: December 1977

Cu₁F₂(cr,l)

Refer to the individual tables for details.

0 to 1109 K above 1109 K

:		Times of the second sec	4 C1067 = 1/1				
		J·K-'mol-'			kJ·mol-1		ı
7.K	ប	S -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_c H^{\bullet}$	ΦG	log K,
٥٥	0.	0.	INFINITE 138 307	-12.103	-537.170	-537.170	INFINITE
8	55.73	53.151	83.178	-6.005	-539.591	-507.345	132.505
298.15	65.552	77.452	77.452	oʻ	-538.899	-491.642	86.134
88	65.689	77.858 97.697	77.453 80.113	0.121	-538.881	-491.349 -475.674	85.551 62.117
8	71.739	114,446	85.347	14.549	-536.097	-460.348	48.092
38	84.810	141.857	97.739	30.883	-532.083	-430.732	32.142
8	120.18	153,332	103.984	39.479	-529.821	-416.406	27.189
88	88.868	163.692	110.052	48.276	-527.454	-402.371	70,780
3 5	000 10	101 000	171 408	66.340	- 577 530	-175 081	17811
		100.101	100101	31.5	()	TOTAL VIEW	en cui cui
000601	100.416	232.354	121.991	122.393		TRANSITION	
1200		240.273	130.664	131.531	-464,089	-366.348	15.947
8	100.416	248.311	139.409	141.573	-460.945	-358,331	14.398
85	100.416	255.753	147.457	151.614	-471.109	-350.144	13.064
8	100 416	191 096	058 191	171 608	-465 734	-111 265	10.880
2	100.416	275.249	168,344	181.739	-462.323	-325.106	6866
081	100.416	280.989	174 444	191.781	-459.425	-317.118	9.203
88	100.416	286.418	180.196	201.822	-456.540	-309.291	8,503
2007	100.410	8007167	100.001	400117	-433.004	500.00	1101
200	100.416	296.468	90.798	221.906	-450.734	784.084	2157
35	100.416	305.139	203.03	241.947	-445.057	- 270 474	6.346
2400	100.416	309.876	204.864	252.030	-442.183	-272.284	5.926
200	100.416	313.976	209.147	707707	-439.301	107.007	2542
PREVIOUS						CURRENT	CURRENT: December 1977
3							

CURRENT: December 1977 (1 bar)

PREVIOUS: December 1977 (1 atm)

Copper Fluoride (CuF ₂)	(CuF ₂)		IDEA	IDEAL GAS		₹	M,=101.542806 Copper Fluoride (CuF ₂)	Copper Fi	luoride	(CuF ₂)					Cu ₁ F ₂ (g)	_
S*(298.15 K) = [267.0	$S^{(298.15 \text{ K})} = [267.09 \pm 2.1] \text{ J K}^{-1} \cdot \text{mol}^{-1}$				γ Ω,H'V	Δ _t H°(0 K) = 265.1 98.15 K) = 266.9	$\Delta_H^{\circ}(0 \text{ K}) = 265.16 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_H^{\circ}(298.15 \text{ K}) = 266.94 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$		eference Te	mperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure	e Pressure = p	- p - 0.1 MPa	
								rÆ	ប	S -[G	$S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_t)]T$	$H^{\bullet}-H^{\bullet}(T_{\tau})$	$\Delta_i H^{\bullet}$	Φ_G	log Kr	
		Electron	Electronic Levels and Quantum W State ε, cm ⁻¹	id Quantum Weights €., cm ⁻¹	² 2 eg			2000	0. 38,109 43,318 45,858	0. 220.861 248.878 258.823	INFINITE 306.489 271.334 267.865	-12.056 -8.563 -4.491	-265.163 -265.246 -266.117 -266.55	-265.163 -269.292 -273.016	140.664 140.664 71.304	
			2	0	[2]			298.15	47.987		267.086		-266.939		48.393	
		[,\forall_1]	31]		£ ₹			888	49.859	274.932	267.087 267.679	2.539	-266.954	-276.279	41.460	
		Vibratio	mal Frequencie	Vibrational Frequencies and Degeneracies	l's:			888	52.419	287.796	269.016 270.768	5.069 7.662	-268.036 -268.036	-280,703	36.470	
			'n	v, cm ⁻¹	1			888	54.609 54.609 54.669	303.210	277.031		-269.073 -269.073	- 284.769	24.791	
			625 (I) 185±5 (625 (1) 185±5 (1) 782 (1)				888	56.057 56.481 56.796	319.144 325.773 331.741	289.751 289.751 293.656	26.792 32.420 38.084	-270.547 -271.350 -272.210	-289.783 -292.140 -294.404	18.921 16.955 15.378	
	G	ound State Qu	antum W	[Z]		9-2		2200	57.042 57.245 57.426	337.166 342.138 346.727	297.369 300.895 304.246		-273.142 -274.169 -275.332	-298.665 -298.665 -300.660	14.083	
	Poi Bo	Point Group: Cx-Bond Distance: C	Point Group: C2. Bond Distance: Cu-F - [1.72]Å	ن د. د				200	57.599 57.776	354,969	307.435 310.473		-289.787 -291.114	-302.153	11.273	
	Pa Pa	nd Angle: F- duct of the M	Bond Angle: F-Cu-F = 165 ± 8° Product of the Moments of Inertia	Bond Angle: F-Cu-F = 165 \pm 8° Product of the Moments of Inertia: $I_AI_BC = [6.77288 \times 10^{14}]$ g²-cm ⁶	77288 × 10114	်] g³ -ငmီ		8288 8288	57.965 58.170 58.396 58.647	352.224 362.224 365.555	313.372 316.143 318.796	72.532 78.339 84.167	-293.763 -293.763 -295.079	-303.739 -304.405 -304.992	9.916 9.353 8.851	
Enthalpy of Formation	tion							2002	58.909 58.909	371.734	321.341 323.786		-296.384 -297.672	-305.508	7.995	
Sublimation pressur effusion cell mass spe	Sublimation pressures, CuF ₂ (cr) = CuF ₂ (g), have been measured by Kent et al. 1 (897–1026 K) and by Ehlert and Wang ² (874–1005 K) by effusion cell mass spectrometric techniques. Using JANAF data ⁸ for CuF ₂ (cr), we derive the following by 2nd and 3rd law analysix:	have been me Using JANAF	easured by Ken F data for CuF	it et al.! (897-10 2(cr), we derive	226 K) and by the following	Fhlert and Wang 5 by 2nd and 3rd	g ² (874–1005 K) by law analysis:	2222	59 195 59.498 59.814	374.615 377.376 380.027	326.138 328.405 330.592	101.801 107.735 113.701	-298.938 -300.178 -301.385	-306.337 -306.660 -306.928	7.620 7.281 6.971	
Source	Data T/K points	5 53	Δ _w .H°(298.	Δ _{ub} H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd	nol-1 3rd law	Drift	Δ _t H°(g, 298.15 K)	2,005	60.476 60.816	385,042 385,042 387,420	334.750 334.750 336.730		-302.535 -303.683 -304.765	-307.144 -307.311 -307.435	6.683 6.421 6.176	
- 2 cir. 2	976		63.20±0.50	62.74	62.74±0.17	-0.5±0.5		730 730 730 730 730 730 730 730 730 730	61.158 61.498 61.836	389.722 391.952 394.116	338.650 340.514 342.326	137.893 144.025 150.192	-305.798 -306.777 -607.904	-307.518 -307.564 -301.579	5.949 5.738 5.432	
via CuF			65.92±0.67	65.085	65.085±0.30	-0.9±0.8 -0.9±0.7	93.8	3100	62.108 62.493 63.808	398.262	345.802		-607.975 -608.036	-291.015 -280.449 -260.881	2.067 4.726	
Two data points One data point e	Two data points eliminated by a statistical test. One data point eliminated by a statistical test.	ical test. al test.						3400	63.408 63.600 63.600	402.188 404.077 405.919	349.101 350.691 352.242		-608.150 -608.160 -608.180	-259.311 -248.741 -238.169	4.105 3.821 3.554	
We adopt Δ _t H°(CuF ₂ ,	We adopt \$AH^(CuF2, g. 298.15 K) = -63.8 ± 3 kcal·mol· (266.4 ± 12.6 kJ mol-¹)	± 3 kcal·moľ	⁻¹ (266.4 ± 12.0	5 kJ mol ⁻¹).				360 80 80 80 80 80	63.958 64.214 64.455	407.717 409.473 411.189	353.758 355.241 356.690	194.251 200.659 207.093	-608.188 -608.185 -608.169	-227.597 -217.025 -206.454	3,302 3,064 2,838	
Heat Capacity and Entropy	Entropy	!	:	;	!			3900 4000	64.882	412.866	358.109 359.499		-608.140 -608.098	-195.882 -185.312	2.624 2.420	
The bond distance is were estimated to be t	The bond distance is taken from Brewer et al. The bond distances for all of the transition metal difluorides from chromium through copper were estimated to be the same with the assessment that an error of 0.5 Å would lead to an error of less than I cal.K. mol. in the entropy,	al. The bond sment that an	distances for al	l of the transition would lead to an	n metal difluo n error of less	rides from chrom than I cal-K-1-m	sition metal difluorides from chromium through copper to an error of less than I cal.K.'mol' in the entropy.	44 4 4300 4300	65.094 65.278 449	416.111	360.860 362.194 363.503	226.528 233.047 739.583	-608.041 -607.970 -607.883	-174.743 -164.176 -153.610	2022	
The bond angle and velectronic states and I	The bond angle and vibrational frequencies are those derived by Hastie et al. from infrared studies of matrix isolated isotopic species. The electronic states and levels are assumed the same as those assigned to $CuCl_{L^2}$ The principal moments of inertia are $I_A = 0.1990 \times 10^{-39}$.	re those derive same as those	ed by Hastie et assigned to C	al. from infranuCl ₂ . The princ	ed studies of ipal moment	matrix isolated is s of inertia are I_A	otopic species. The $(=0.1990 \times 10^{-39})$	4400 4500	65.606	420.726	364.786 366.046	246.136 252.704	-607.780	-143.047 -132.486	1.698	
$I_{\rm B}$ = 18.3484 × 10 ⁻³⁷ . References	.Ic = 18.5474 × 10^3 g	3.cm,						84.4 80.4 80.0 80.0 80.0 80.0 80.0 80.0	88.88 86.997 81.103	423.649 425.067 426.458	367.282 368.497 369.690	259.286 265.880 272.485	-607.524 -607.371 -607.200	-121.928 -111.373 -100.822	1.097	
R. A. Kent, J. D. Mc	1R. A. Kent, J. D. McDonald and J. L. Margrave, J. Phys. Chem. 70, 874 (1966).	rave, J. Phys.	Chem. 70, 874	1 (1966).				800 8	66.279	421.822 429.160	372.015	285.724	-606.805	-90.774	0.833	
L. Brewer, G. R. Son	1. Calculated S. Walls, J. P. M. Jerlin 31, 2007 (1977). 1. Brewer, G. R. Somayajulu and E. Brackett, Chem. Rev. 63, 111 (1963). 1. W. Havile, R. H. Hanoe and J. J. Marorave. High Term. Sc. 1 75 (1964).	tt, Chem. Rev	v. 63, 111 (196 n. Sc. 1 76 (1		ا الا	Chem. Soc. D 1969, 1452 (1969)		2200	66.411	431.762 433.027	374.263 375.360	298.993 305.637	-606.341 -606.083	-58.656 -48.127	0.70	
⁵ J. T. Hougen, G. E. I JANAF Thermochem	 T. Hougen, G. E. Leving, and T. C. James, J. Chem. Phys. 44, 1581 (1961). JANAF Themochemical Tabless. CuF-der. 12-31-77. 	J. Chem. Phy 12-31-77.	s. 44, 1581 (15			(coci) 2CT, (coc)		\$ \$200 \$00 \$00 \$00	66.537 66.537	434.270 435.491 436.690	376.440 377.502 378.548	312.286 318.938 125.593	-605.808 -605.517 -605.211	-37,602	0.257	
								2888 2888	66.577 66.585 65.585	437.868 439.026 440.164	379.579 380.594 381.594	332.249 338.908	-604.891 -604.557	-6.059 4.443	0.056	
								0009	66.581	441.284	382.579	352.225	-603.852	25.432	-0.221	

		Data	Δ _{wb} H"(298.15 K),	K), kcal·mol·	Drift	1,H°(g, 298.15 K)
Source	7/K	points	2nd law	3rd law	cal K'-mol'	kcal·mol·1
_	897-1026	26	63,20±0,50	62.74±0.17	-0.5±0.5	-66.1
2 via CuF	874-1005	33,	65.82±0.72	64.992±0.33	-0.9±0.8	-63.8
2 via CuF	874-1005	33	65.92±0.67	65.085±0.30	-0.9±0.7	

Heat Capacity and Entropy

References

Cu,H,O₂(cr)

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 29&15 K

 $\Delta_t H^{\circ}(0 \text{ K}) = \text{Unknown}$

 $\Lambda_1 H^{\circ}(298.15 \text{ K}) = -450.37 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$

J.K-1mol-1.

M_r = 97.56068 Copper Hydroxide (Cu(OH)₂)

log Kr

AG.

 $\Delta_i H^{\bullet}$

 $H^{\bullet}-H^{\bullet}(T_i)$

 $S^{*} - [G^{*} - H^{*}(T_{*})]T$

ئ

CURRENT June 1966

S*(298.15 K) = [108.366] J K⁻¹·mol⁻¹

Enthalpy of Formation

The enthalpy change, A.H. (433 K), for the reaction Cu(OH)₂(cr) = CuO(cr) + H₂O(g) has been determined by My. Based on the reported , using value, $\Delta_r H^\circ$ (

K) and alpy of d 26.26 Δ₁H°(298.15 K The Gibbs e kcal·mol⁻¹, bas Δ₁H°(298.15 K formation, Δ_p

•	-105.3	0.3	CuO(cr) + H ₂ O(l) = Cu(OH) ₂ (cr)
	-107.5	-1.9	$CuO(cr) + H_2O(1) = Cu(OH)_2(cr)$
2	-104.52	9.97	$Cu(OH)_2(cr) - Cu^+(aq) + 2 OH^-(aq)$
_	-104.61	10.06	$Cu(OH)_2(cr) - Cu^{++}(aq) + 2 OH^{-}(aq)$
Source	Δ _t H*(298.15 K) kcal·mol ⁻¹	Δ _t H°(298.15 K) kcal-mol ^{-t}	Reaction
H°(298.15 K) and entha	nding enthalpy change Δ_r presented as follows:	is' and NBS, the correspo	5 K) for Cu ⁺⁺ (aq) and OH (aq) from NBS ² and NBS, ² the corresponding enthalpy change $\Delta_t H^0$ (298.15 K) and enthalph (298.15 K) for Cu(OH) ₂ (cr) are derived. The results obtained are presented as follows:
ing values of S°(298.15 F	and Zhuk,1 respectively. Us	(cr) reported by Ganelina?	, based on the solubility product for Cu(OH)2(cr) reported by Ganelina2 and Zhuk, respectively. Using values of \$\infty(298.15)\$
raluated to be 26.36 and	*(aq) + 2 OH (aq) was ev	reaction Cu(OH)2(cr) = Cu	bs energy change, Δ_c (298.15 K), of the reaction Cu(OH) ₂ (cr) = Cu ⁺ (aq) + 2 OH ⁻ (aq) was evaluated to be 26.36 and
	spectively.	for CuO(cr) and H2O(g), re-	$(5 \text{ K}) = -37.250 \text{ and } -57.798 \text{ kcal·mol}^{-1} \text{ for CuO(cr) and H2O(g), respectively.}$
s 107.64 kcal·mol-1,	K) value was derived a	Δ _t H°(Cu(OH) ₂ , cr, 298.15	$^{10}(433 \text{ K}) = 12 \text{ kcal·mol}^{-1}$. The adopted $\Delta_{H}^{10}(\text{Cu}(OH)_2, \text{ cr}, 298.15 \text{ K})$ value was derived as $-107.64 \text{ kcal·mol}^{-1}$.

55.289 54.802 33.518 33.518 52.744 50.216 60.91 60.91 60.90 60 60.90 60 60.90 60 60 60.90 60 60 60 60 60 60 60 60

-295.709 -270.913 -246.442 -222.279 -198.401

-445.479 -443.332 -440.952 -438.425

108.367 112.154 119.444 127.782 136.319 160.708 160.708 163.204 175.366 187.396 188.739 194.983

848 85888 58888

-372.660 -372.178 -346.323 -320.841

-48.977 -448.977 -447.361

0. 0.176 9.912 20.075 30.666 41.680 53.073 76.644

108.955 136.934 159.595 178.893 195.862 211.070 224.829 237.352

95.228 99.496 103.763 108.031 112.131 115.562 117.989 119.662

298.15

988

-174.782 -151.395 -128.209 -104.790

-433.267 -430.774 -428.435 -439.431

248.811 259.353 269.094 278.133 286.558

120.750 121.503 121.880 122.047

kcal·mol⁻¹, respectively. From these data, the enthalpy change for the reaction CuO(cr) + H₂O(l) = Cu(OH)₂(cr) was derived as -1.9 kcal·mol⁻¹. For the same reaction, the enthalpy change was reported to be 0.3 kcal·mol⁻¹ by Sabatier? Based on Δ_HP²(298.15 K) = -37.25 and -68.315 kcal mol-1 for CuO(cr) and H₂O(I), respectively, the enthalpy of formation for Cu(OH), was evaluated. The results obtained The enthalpies of solution of CuO(cr) and Cu(OH)₂(cr) in HNO₃(aq) have been determined by de Forcrand⁴ to be -16.38 and -14.46 are presented in the above table

Heat Capacity and Entropy

Heat capacities, 298.15 – 700 K, were estimated by comparison with those for CuO(cr), CaO(cr) and Ca(OH)_X(cr). The C_p^s values above 700 K were obtained by graphical extrapolation. $S^o(298.15 \text{ K})$ was estimated such that the derived $\Delta_1G^o(\text{Cu}(OH)_2, \text{ cr}) = \Delta_1G^o(\text{Cu}(OH)_2, \text{ cr}) + \Delta_1G^o(H_0, g)$ at 433 K.

Decomposition Data

Tem = 433 K is the temperature at which the Gibbs energy change for the reaction Cu(OH)_A(ct) = CuO(cr) + H₂O(g) is such that the fugacity of water is I atm.

References

¹L. V. My, Bull. soc. chim. France, No. 3, 545 (1964). ²E. S. Ganelina, Zh. prikl. Khim. 37, 1358 (1964).

N. P. Zhuk, Zh. Fiz. Khim. 28, 1523 (1954).
 U. S. Nat. Bur. Stand. Circ. 500, (1952).
 U. S. Nat. Bur. Stand. Tech. Note 270 1, (1965).
 de Forcrand, Compt. rend. 157, 441 (1913).
 P. Sabatier, Compt. rend. 125, 301 (1897).

Copper Hydroxide (Cu(OH)2)

PREVIOUS.

CURRENT December 1977

Cu,O,(cr)

Copper Oxide (CuO)

PREVIOUS: June 1966

Standard State Pressure = $p^* = 0.1$ MPa

L'mol-1 Δ_{IH}

NFINITE log Kr

> -153.807 -146.585 -137.461 -128.292

> > -156.063 -156.057 -155.553 -154.836

W_r = 79.5454 Copper Oxide (CuO)

CRYSTAL

 $\Delta_{e}H^{\circ}(0 \text{ K}) = -153.81 \pm 2.1 \text{ kJ·mol}^{-1}$

 $\Delta_t H^{\circ}(298.15 \text{ K}) = -156.06 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$

Enthalpy Reference Temperature = T, = 298.15 K

 $H^{\bullet}-H^{\bullet}(T_t)$ $-[G^*-H^*(T_t)]H$ 42,594 INFINITE I-K-1mol-1 42.594 42.246 ť 298.15

988

of the Cu₂O(cr) + 1/2 O₄(g) = 2 CuO(cr) equilibrium by pressure and by emf measurement. The more consistent data leading to the adopted value are summarized below.

The enthalpy of formation of CuO(cr) has been investigated calorimetrically (both oxidation and reduction reactions) and by extensive study

 $S^{\circ}(298.15 \text{ K}) = 42.59 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Enthalpy of Formation

Copper Oxide (CuO)

42.595 44.319 47.703 42.856 55.723 66.451

75.588 83.541 90.591 50.935 52.240 53.349 54.340 55.262

Drift Δ_tH°(298.15 K)** cal K⁻¹·mol⁻¹ kcal·mol⁻¹

Δ,H°(298.15 K), kcal·mol⁻¹ 2nd law 3rd law

Data points

Reaction*

Source Method

31.15 30.27±0.2

1 1

(Coarse grain CuO) (Fine powder CuO) (Coarse grain CuO)

298.15

Text

Sec.

Calorimetric Calorimetric Calorimetric

Aq Calorim

297.9 297.9 8

108.014 56.135

-37.23±0.15

-38.04

-37.16

 -38.72 ± 0.30 -38.59 ± 0.35

 -36.50 ± 0.2

41.265 46.921 52.660 58.430 64.380 70.359 76.416 82.550 88.761

-14.891 -5.938 2.958 11.798 20.580

-155.665 -155.608 -155.608 -154.486

158,583

-148.656 -147.837 -160.239 -159.444

-41.520 -32.963 -23.899

149542

154.022 153.162 152.274 151.368 150.453

14.388 19.549 24.829 30.215 35.695

76568 335901 22746 227308 227308 8.730 6.869 6.869 6.869 7.445 7.455 7.4

70.500 713.834 77.020 80.069 82.991 83.795 88.491 91.086 93.589

-128.120 -118.875 -109.785

100.851

121.841 125.911

129.769 133.441 136.947 140.305 143.530 58.601 59.395

60.181

-37.38 -37.23 -37.24

 -32.52 ± 0.18

Equation

1011-1156 1223-1322 193-1293

< a a a a c</p>

Equil Press Equil Press

emf

345-1270

20

 -33.28 ± 0.06

 -33.23 ± 0.28 32.79 ± 0.14 -35.50±0.37

 -37.73 ± 0.43 -33.65 ± 0.06

 -3384 ± 0.31

 -0.3 ± 0.0 -0.1±0.0

-37.24-37.25

 -0.4 ± 0.2 -0.9 ± 0.1

 -0.7 ± 0.1

 -33.69 ± 0.17 -3368 ± 0.04 -33.68 ± 0.04 -33.62 ± 0.07

14±0.3

-0.6 0.2 -0.6

-33.64

Equation

973–1273 892–1320 1023–1294

1047-1342 1026-1072 189-1358

Equil Press Equil Press Equil Press

2 2

Equil Press emf

emf emf Ē

2 4 2 9 2 8

-33.58 -33.58

-37.21

-3719-37.22

-37.19

-37.90-37.46-0.1±0

10.0

 -34.12 ± 0.0

34.18±0.06

-33.39-34.37 29.92 40.06

-34.30

-35.00

Equation Equation

873-1073

Equil Press

Equation Equation Equation

0711-078

993-1021 800-950

**Based on third law where possible and ∆_tH°(Cu₂O, cr, 298.15 K) = *Reactions:

-40.8 kcal·mol-1 in Reaction C. (A) $Cu(cr) + H_2O(I) = CuO(cr) + H_2(g)$ (B) $Cu(cr) + I/2 O_2(g) = CuO(cr)$

(C) $Cu_2O(cr) + 1/2 O_2(g) \approx 2 CuO(cr)$

Fe + H₅SO₄, and Fe + CuSO₄(aq). Wartenberg and Werth² and Nunez et al. I have measured the direct enthalpy of reduction of CuO(cr) by H₅: Mah et al. I and Nunez et al. I have measured the direct enthalpy of oxidation of copper by O₂. Mah et al. I obtained a mixed Cu₂O and CuO product and used $\Delta_1 H^2$ (298.15 K) = -33 63±0.05 kcal·mol⁻¹ for the equilibrium reaction Cu₂O(cr) + 1/2 O₂(g) = 2 CuO(cr) to resolve Thomsen's data may be reduced to the enthalpy of reduction of CuO(cr) with H₂ by combining enthalpies of reaction for CuO + H₂SO₄,

heir results into $\Delta_H^0(\text{CuO}, \text{cr}, 298.15 \text{ K})$ and $\Delta_H^0(\text{Cu}_2O, \text{cr}, 298.15 \text{ K})$. From the measurment of the reduction of coarse and fine CuO(cr),

Nunez et al.* conclude that Att° of the copper oxides is influenced by material history, state of subdivision, and non stoichiometry. Eliminating three studies 1118 from our 3rd law analysis because of large drift and poor 2nd and 3rd law agreement, the average of the eleven remaining studies is -37.32 kcal mol⁻¹. We adopt $\Delta_i H^0(298.15 \text{ K}) = -37.3 \pm 0.5$ kcal mol⁻¹

The adopted values are based on the low temperature heat capacities by Hu and Johnston 19 (15-297 K) and the high temperature enthalpies Heat Capacity and Entropy

by Mah et al. 3 (410–1400 K). Changes are made where appropriate to adjust to the 1975 atomic weights²⁰ and the IPTS 68 temperature scale ²¹. A small anomaly in the heat capacity was observed in the 210–230 K region. Magnetic measurements of O'Keefe and Stone ²² and neutron The entropy is obtained from the adopted heat capacities based on a T^3 extrapolation to obtain $S'(15 \, \text{K}) = 0.016$ cal K^{-1} diffraction studies of Brockhouse23 suggest that this is a Neel point associated with antiferromagnetism.

Decomposition Data

Iden = 1397 K is the temperature at which fugacity (O2) = 1 atm for the reaction 2 CuO(cr) = Cu₂O(cr) + 1/2 O₂(g).

1. Thomsen, "Thermochemishe Untersuchungen," Vol. I, III, Barth, Leipzig, (1883). References

Van Wartenberg and H. Werth, Z. Electrochem. 38, 51 (1932).
 A. D. Mah, L. B. Pankratz, W. W. Weller, and E. G. King, U. S. Bur. Mines RI 7026, (1967).

J. Phys. Chem. Ref. Data, Monograph 9

Continued on page 1027

Cu,O,(g)

IDEAL GAS

Copper Oxide (CuO)

5,6298

CURRENT. December 1977 (1 bar)

PREVIOUS: December 1977 (1 atm)

Copper Oxide (CuO)

				_										_	_	_	_
.* = 0.1 MP2	log Kr	INFINITE	-154.939	-74.840	- 58.829	-48.492	-48.161	-40,545	-34,837	-30.400	-26.853	-21.539	-17.749	-14.913	-12.712	-10.956	-9523
Pressure = p	P.C.	305,866	296.621	286.552	281.563	276.788	276.605	271.676	266.774	261.896	257,043	247.405	237.858	228.399	219.026	209.737	200.533
Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1.mol ⁻¹	 •#₹	305,866	306.715	306.577	306.428	306,269	306,262	306.083	305.891	305.683	305,459	304.957	304,378	303.726	303,001	302,202	301.319
	$H^{\bullet}-H^{\bullet}(T_t)$	-9.751	-6.781	-3.451	-1.707	ö	9900	1.862	3.674	5.501	7337	11.035	14.757	18.498	22.252	26.018	29.795
Enthalpy Reference Temperature = T_t = 29&.15 K $1.K^{-1}$ mol-1	S -[G-H(T,)]T	INFINITE	265.437	237.849	235.202	234.617	234.618	235.054	236.028	237.292	238.711	241.735	244.782	247.736	250.556	253.230	255.762
emperature =	S -[C•	0	197.630	220.596	228,373	234.617	234.838	240.373	245.214	249.515	253,386	260.127	265,864	270.858	275.280	279.248	282.847
Reference To	ប	oʻ	31.554	34.498	35.198	35.693	35.710	36.098	36,399	36,636	36.827	37.114	37,320	37.478	37.606	37.715	37.810
Enthalpy I	TÆ	0	8	202	250	298.15	300	350	9	420	88	8	902	8	8	0001	81
$\Delta_p H^0(0 \text{ K}) = 305.87 \pm 41.8 \text{ kJ} \cdot \text{mol}^{-1}$	- (N C1:027) 187															-b	r 1.7246 A
		lectronic levels and quantum weights		رد اا	0 2	277.0	15531.9 2	16492.4	188114	21103.7	21222	215040	2 0.74.0	23898 4	,	w.x. = 4.43 cm ⁻¹	a _e = 0.0046 cm ⁻¹
		tronic lev		ושונ	2П.,	х2П,2	, W	į.	L.	ī d	2122	- 1	1,	71132			
38 IS V.\ = 234617 I V = 1.m.d = 1		8	5	ก้	i×	×	*	•		7.6	บั	: °	ָרָ כּי י	Σ		ω _e = 640.14 cm ⁻¹	Be = 0.44454 cm ⁻¹

Enthalpy of Formation

ments of the equilibrium reaction CuO(g) + Ni(g) = Cu(g) + NiO(g) (1611–1828 K). Auxiliary data²⁻³ are used in the analysis. A considered in the evaluation are, the unpublished but quoted and others] value of Burns, $D_0^a = 62.7 \pm 3$ kcal mol⁻¹, the sublima measurement of the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation corresponding the ground state to obtain D_0^a and the linear Birge Sponer extrapolation corresponding the ground state to obtain D_0^a and the linear Birge Sponer extrapolation corresponding to the ground state to obtain D_0^a and the linear Birge Sponer extrapolation corresponding to the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and the linear Birge Sponer extrapolation of the ground state to obtain D_0^a and D_0^a The adopted $\Delta_t H^0(298.15 \text{ K}) = 73.2 \pm 10 \text{ kcal-mol}^{-1}$ comes from our 3rd law analysis of the mass spectrometric Knudsen cell meas for the ionic character of CuO according to Hildenbrand.

Source	$D_0^{\bullet}(0 \text{ K})$ kcal·mol ⁻¹	Δ _t H'(298.15 K) kcal mol ⁻¹
Smoes et al.', Equilibrium Bums', Mass spec. Mack et al.', Transpiration (1273 K) Linear Birge Sponer Modified Linear Birge Sponer	66.3 62.7±3 80.2 65.2 61.0±12	73.2 76.8±3 59.02 74.2 78.5±12

Mack et al.3 report measurements at 873, 1073, and 1173 K which lead to higher dissociation energies. Because of the scatter of measurements and the suspect nature of the analytical measurement recognized by the authors, the D_0° value of 80.2 kcal·mol ⁻¹ is discou

Heat Capacity and Entropy

The molecular constants and electronic levels are taken from the work of Appelblad and Lagerqvist, 3 4 Lefebvre et al., 10 and Lefe et al.1. The spectrum of CuO is complex and there are almost certainly excited states mussing among those already analyzed,9 in fact s doubt still exists that the XII, state is really the ground state? although the absence of est signals in the matrix isolation study of Thom et al. 12 supports this assignment. Because of the uncertain and incomplete spectral analysis, we choose to calculate the thermodynz functions with first order anharmonic corrections assuming the ground state vibrational rotational constants for all states. Use of the ac constants for each state increases the entropy at 6000 K by 0.045 cal·K⁻¹ mol⁻¹.

References

'S. Smocs, F. Mandy, A. Vander Auwera Mahieu and J. Drowart, Bull. Soc Chim Belg, 81, 45 (1972).

¹JANAF Thermochemical Tables Ni(g), 12–31–76, Cu(g), 6–31–78, O(g), 3–31–77, CuO(cr), 12–31–77

G. J. Cheetham and R. F. Barrow in "Advances in High Temperature Chemistry," Vol. 1, L. Eyring, Ed., Academic Press, New York A. D. Mah and L. B. Pankratz, U. S. Bur Mines Bull. 668, (1976).

⁶D. L. Hildenbrand in "Advances in High Temperature Chemistry," Vol. 1, L. Eyring, Ed., Academic Press, New York, pp. 193–217 (1 D. L. Hildenbrand and E. Murad, J. Chem. Phys. 51, 807 (1969). ⁵E. Mack, G. O. Osterhof and H. M. Kramer, J. Amer Chem. Soc. 45, 617 (1923). 7-41 (1967).

O Appelblad and A. Lagerqvist, Phys. Scr. 10, 307 (1974).
 O Appelblad and A. Lagerqvist, Can. J. Phys. 53, 2221 (1975).
 O Appelblad and A. Lagerqvist, Phys. Scr. 13, 275 (1976).
 Lefebvre, B. Pinchemel and R. Bacis, Can. J. Phys. 54, 735 (1976).
 I'Y. Lefebvre, B. Pinchemel and J. Schamps, J. Mol Spectrosc. 68, 81 (1977).
 I'K. R. Thompson, W. C. Easlye and L. B. Knight, J. Phys. Chem. 73, 49 (1973).

-lou	Enthalpy R	eference Te	mperature - I.K - mol-1	Enthalpy Reference Temperature = T, = 298.15 K I.K-'mol-'		Standard State Pressure = $p^* = 0.1 \text{ MPz}$ k I-mol ⁻¹	Pressure = p	, = 0.1 MPa
	τÆ	ະ	S -[G	-[G-H'(T,)]T	$H^{\bullet}-H^{\bullet}(T_{\bullet})$	$\Delta_r H^{\bullet}$	Δ_{iG}	log K,
	9889	0. 31.554 34.498	0. 197.630 220.596	1NFINITE 265.437 237.849	-9.751 -6.781 -3.451	305.866 306.715 306.577	305.866 296.621 286.552	-154.939 -74.840
	298.15	35.693		234.617	0.10	306.269	276.788	-48.492
-	88	35.710	234.838	234.618	0.066	306.262	276.605	-48.161 -40.545
	\$ \$	36.399	245.214 249.515	236.028	3.674	305.891	266.774 261.896	-34.837
	88	36.827	253.386	238.711	7337	305.459	247.405	-26.853
	58	37.320	265.864	244.782	14.757	304.378	228.399	-17.749
	88	37.606 37.715	275.280 279.248	250.556 253.230	22.252 26.018	303.001	219.026 209.737	-12.712 -10.956
	0021	37.810	282.847	255.762	33.580	301.319	200.533	-9 <i>5</i> 23 -8 <i>3</i> 32
-	400	38.050	289.178	262.584	37.374	299.209	173.848	-7.328 -6.486
sure-	8 5	38.121	294.622	264.633	44.983	283.491	158.17	-5.164
Also	88	38.256	299.402	268.448	\$2.621 \$6.450	280.881	150.466	-4.623
ected	000 2000 2000	38.389	303.664	271.935	60.286 64.128	278.248 276.925	135.272	-3.719
,	2100	38.526	307.513	275.143	67.977	275.597	120.356	-2.994
	388	38.677	311.024	278.113	75.697	272.929	105.695	-2.400
	2500	38.850	314.256	280.877	83 449	270.248	91.266	-1.907
	2600 2700	38.949 39.056	315.782	282.190 283.461	87.339 91.239	268.906 267.563	84.133 77.052	-1.690 -1.491
	7800 7800 7800 7800	39.174	318.676	284.694 285.890 287.051	95.151 99.074	266.221 -35.323 -35.854	69.033 69.033	-1.243 -1.243
	3100	39.598	322 684	288.179	106.964	-36.450	76.267	-1.285
	3200 3300	39.766 39.949	323.944 325.170	289.277 290.347	110.932	-37.079 -37.751	79.913 83.579	-1.304 -1.323
of the	3400 3500	40.145 40.357	326.366 327.532	291.388 292.404	118.922	-38.463 -39.213	87.266 90.975	-1341
	3600 3700	40.583	328.672 329.787	293.396 294.365	126.994 131.064	-39.998 -40.815	94.706 98.458	-1.374
ebvre	9 9 9 9 9 9 9	4 4 4 9 4 3 48 6 4 3 48	330,880	295.311 296.237 297.143	135.159	-41.662 -42.533 -43.426	102.234 106.032 109.853	-1.405 -1.420 -1.435
some	4100	41.926	334.032	298.030	147.607	-44337	113.696	-1.449
namic	65 63 63 63 63 63 63 63 63 63 63 63 63 63	42.234	335.046	298.900	151.815	-45.263	117.562	-1.462
actual	4500 4500	42.881	337.025	300.588	160.326	-47.141	125.359	-1.488
	9600	43,566	338.947	302.214	168.970	-49.033	133.242	-1513
	808	44.279	340.816	303.784	177.754	-50.914	141.208	-1537
	2000	45.012	342.638	305.302	186.683	-52.763	149.251	-1.559
	200 200 200	45.383 45.756	343.533 344.418	306.042	191.203 195.760	-53.670	153.301	-1 <i>5</i> 70 -1 <i>5</i> 81
ž Ed	2888 2888 2888	46.129 46.501 46.872	345.293 346.159 347.015	307.490 308.199 308.897	200.354 204.986 209.654	-55.441 -56.303 -57.149	161.451 165.552 169.668	-1.591 -1.601 -1.611
1967);	\$600 5700	47.240	347.863 348.703	309.585	214.360	-57 <i>977</i> -58.789	173.799 177.945	-1.621 -1.631
	2800	48.319 48.319	349.534	310.934	223.881 228 695	- 59.584 -60.362	182.106	-1.640 -1.649
	3	40.007	271.100	312.240	490,004	071 10-	130.460	om:1-

CURRENT, June 1966

Copper Sulfate (CuSO₄)

CRYSTAL

 $\Delta_t H^{\circ}(0 \text{ K}) = -760.059 \pm 0.84 \text{ kJ·mol}^{-1}$ Enthalpy $\Delta_t H^{\circ}(298.15 \text{ K}) = -769.982 \pm 0.84 \text{ kJ·mol}^{-1}$

M. = 159.6036 Copper Sulfate (CuSO.)

Cu10,S1(cr)

the reported value, $\Delta H^* = 5.61 \pm 0.09$ kcal-mol⁻¹ for the reaction CuO(cr) + $H_2SQ_4 \cdot 7.068 H_2O(aq) = CuSO_4(cr) + 8.068 H_2O(l)$, the en of formation, $\Delta H^*(298.15 \text{ K})$, for CuSO_4(cr) was evaluated as -184.03 kcal-mol⁻¹, using $\Delta_1 H^*(298.15 \text{ K}) = -37.25$, -209.49 and -6ccal·mol⁻¹ for CuO(cr), H₂SO₄7.068 H₂O(aq) and H₂O(l), respectively. See Fe₂(SO₄)₃(cr) table for the sources of the last two Δ₄H°(298 The enthalpy of solution, A,H"(298.15 K), of CuO(cr) in sulfuric acid to form CuSO₄(cr) has been measured by Adami and King. S°(298.15 K) = 109.254 ± 0.42 J K⁻¹·mol⁻¹ **Enthalpy of Formation**

 $Cu_2O(cr) + SO_2(g)$, and (C) 4 $Cu_2O_3(cr) + Cu_2O(cr) = 3 Cu_2O(cu) + SO_2(g)$, were determined by several investigators. For reaction the partial pressures of SO₂(g) at different temperatures were calculated from the measured total pressures exerted by SO₂(g), SO₂(g) and produced by the reaction SO₂(g) = SO₂(g) + 1/2 O₂(g). From these vapor pressure data, the corresponding enthalpy changes, Δ_4H^2 (298, for the three reactions were evaluated by the 2nd and 3rd law methods. The results obtained are presented in the following table. The of Δ_4H^2 (CuSO₄, α_1 , 298, 15 K) adopted was - 184.03 \pm 0.2 kcal-mol⁻¹. The equilibrium pressure for the following chemical reactons: (A) 2 CuSO₄(cr) = CuOCuSO₄(cr) + SO₂(g), (B) 3 Cu(cr) + CuSO₄

Source	Reaction	7/K	Δ,H°(298.15 K),kcal 2nd law	·mol ⁻¹ 3rd law	Drift cal K ⁻¹ ·mol ¹	Δ _r H*(298.15 K) kcal·mol ⁻¹
2	(A)	819.15-1004.15	25.90±3.60	47.45	22+4	-18187
~	€	953.15-1053.15	56.54±0.77	51.96	-4.55±0.79	-184.13
	Q	825.15-921.15	42.84±1.38	42.34	-0.55±1.57	-184.42
•	€	880.15-1071.75	51.59±0.41	51.75	0.07±0.43	-184.02
•	(B)	525.1 - 608.1	31.71±0.76	32.27	0.84 ± 1.30	-184.62

Heat Capacity and Entropy

Low temperature heat capacities, 52.67-296.29 K were obtained from Weller.⁶ The high temperature heat capacities were measus Schottky⁷ (282°C), Ewald⁸ (275-373 K), Krestovnikov and Feigina⁸ (288-873 K), and Chiznikov and Khirik¹⁰ (373-1273 K). The curve shows a maximum at 34.8 K. In an attempt to evaluate the entropy due to the anomalous portion of the curve, a "normal" heat ca curve was drawn. The entropy above the normal C curve is reported to be 0.48 cal K-1 mol-1 rather than a magnetic entropy of Rln2 = cal K-1 mol-1. Apparently the magnetic entropy increases gradually above 40 K so that it is not feasible to separate the heat capaci capacities below 51 K were obtained from Stout. 11 that paper, the Covalues, 15-58 K, were plotted as function of temperature and to magnetic effects from that of the crystal lattice.

The C, values above 298.15 K were extrapolated smoothly by comparison with those for MnSO4(cr) (refer to FeSO4(cr) table for de The adopted C, values are close to the average of the reported C, values.

The value of $S^{2}(298.15 \text{ K})$ was derived using the low temperature C_{ρ}^{ρ} data reported by Weller, based on $S^{2}(51 \text{ K}) = 2.851 \text{ cal K}^{-1}$ evaluated from C_{ρ}^{ρ} data determined by Stout.¹¹

Decomposition Data

T_{em} = 1078 K is the temperature at which the total pressure of the gaseous decomposition products equals one atmosphere. It was ob by graphical extrapolation of the decomposition pressures for CuSO₄(cr), determined by Ingraham.

Wohler, W. Pluddemann and P. Wohler, Ber. Deut. Chem. Gesell. 41, 703 (1908)

Chizhikov and A. S. Khirik, Tr. Inst. Met. im. A. A. Balkova, Akad. Nauk SSSR, No. 12 79-84 (1963). H. H. Adami and E. G. King, U. S. Bur. Mines RI 6617, (1965).
 L. Wohler, W. Pluddemann and P. Wohler, Ber. Deut. Chem. Gesell. 41, 703 (19 by Reinders and F. Goudriaan, Z. anorg. allgem. Chem. 126, 85 (1923).
 R. Ingraham, Trans. Met. Soc. AIME 233, 259 (1965).
 M. Randall, R. F. Nielsen and G. H. West, Ind. Eng. Chem. 23, 388 (1931).
 W. W. Weller, U. S. Bur. Mines RI 6669, (1965).
 H. Schottky, Z. phys. Chem. 64, 415 (1908).
 R. Ewald, Ann. Physik. 44, 1213 (1914).
 A. N. Krestovnikov and E. J. Feigina, J. Gen. Chem. USSR 6, 1481 (1936).
 D. M. Chizhikov and A. S. Khirik, Tr. Inst. Met. im. A. A. Balkova, Akad. Nauk. II. W. Stout, J. Chem. Phys. 9, 285 (1941).

J-mol-1	Enthalpy F	Reference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard Stat	Standard State Pressure = $p^* = 0.1$ MPa	" - 0.1 MPz
Tom-r	TK	ย)- S	-[G*-H*(T,)]/T	H*-H*(T,)	A.H.	₽G	log Kr
	0	. 6	ď	INFINITE	-16.863	-760 059	-760.059	INFINITE
rrom	88	43.718	32.670	181,424	-14875	-765239	-731,589	382.143
68315	208.15	898.86	100 254	117.049	06.0	-760 087	-660.781	161.508
8 15 K)	300	98,000	100 867	100 256	0.183	760 004	101.000	114034
```	8	114.934	40.654	113.347	10.923	-772.288	-623,342	81.400
(cr) = 2	200	127.194	167.676	121.566	23.055	-772.767	-586.042	61.223
(A) uoi	88	136315	191.710	131.291	36.251	-772.095	-548.744	47.772
0,00	38	147.92	213.244	141.488	2223	750.047	-511.625	38.178
92.5	88	151.042	250 251	161.680	207.00	-819616	-417.054	35.3%
	1000	153.762	266,309	171.352	94.958	-815.986	-394.741	20.619
a value	1100	156.063	281.074	180,665	110,451	-812.287	-352.795	16.753
	1200	158.113	294.743	189.609	126.161	-808.556	-311.188	13.546
	88	159.954	307.473	198.191	142.066	-804.849	-269.891	10.844
_	8	163.218	330.594	214,335	174.389	-810.587	-186.755	8.524 6.503
	0091	164.724	341.177	221.935	190,787	-806.756	-145 290	4.743
	1700	166.147	351,206	229.247	207.330	-802.843	-104.068	3.198
	0082	167.569	360.743	236,289	224.017	-798.849	-63.079	1.831
	88	168.908	369.839	243.081	240.841	-794.778	-22313	0.613
	707	14701	160.016	749,030	27.13	16006/-	18.20	0.4/0
ured by								
he heat								
1the Co								
apacity								
1377								
ity due								
fetails).								
'-mol-1								
hained								
- Commercial Commercia								

PREVIOUS:

IDEAL GAS

Copper (Cu₂)

CURRENT: September 1966 (1 bar)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\Delta_t H^0(0 \text{ K}) = 1485.43 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$	Enthalpy l	deference Te	mperature	Enthalpy Reference Temperature = T, = 298.15 K	S	Standard State Pressure = $p^{\circ}$ = 0.1	Pressure =	. = 0.
nic Levels and Quantum Weights  e, , cm ⁻¹ lo 0, 0, 0, INFINITE −9990 483.428 485.428 1  e, , cm ⁻¹ lo 115evels and Quantum Weights  lo 115evels and Quantum Wei	S°(298 15 K) = 241.72 J K ⁻¹ ·mol ⁻¹			$\Delta_f H^0(298.15 \text{ K}) = 485.34 \pm 12.6 \text{ kJ·mol}^{-1}$	7.K	ប	J-K ⁻¹ mol ⁻¹ S* -[G*	-H'(T,)]/T	H*-H*(T,)	KJ-mol ⁻¹	P.C.	2
nic Levets and Quantum weights  e, , cm ⁻¹ g, 200 31.964 200.874 277.337 - 6946 470.714 468.693  e, , cm ⁻¹ g, 1] 200 31.964 200.874 277.337 - 6946 470.714 468.693  200 35.442 277.337 242.321 -1.752 485.916 441.345  200 36.453 241.721 245.038 -1.547 485.916 441.345  204.33 [1] 204.33 141.721 0. 485.344 433.051  204.33 [1] 204.34 43.051 141.72 0. 485.344 433.051  204.33 [1] 204.34 43.051 141.72 0. 485.344 433.051  204.34 [1] 204.34 43.051 141.72 0. 685.344 433.051  204.35 [1] 204.35 [1] 204.35 141.72 0. 685.344 433.051  206.37 [1] 206.37 144.55 241.68 1905 484.684  206.37 [2] 206.37 144.455 241.68 1905 482.616 398.39  206.37 [2] 206.37 144.45 24.163 398.39  206.37 [2] 206.37 [2] 206.39 14.455 241.34 481.357  206.37 [2] 206.37 [2] 206.39 14.455 241.34 481.347  206.37 [2] 206.37 [2] 206.39 14.455 241.34 481.347  206.37 [2] 206.37 [2] 206.39 [2] 248.93 [2] 248.93 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2] 248.83 [2]					0	ó	ó	INFINITE	-9.930	485.428	485,428	Z
£, , cm ⁻¹ g,         200         35.442         277.321         245.038         -3.543         456.650         450.478           20433         [1]         20.513         24.1721         24.1721         0         48.534         431.545           20433         [1]         20.513         24.1721         24.1721         0         48.534         431.545           21758         [1]         30.559         24.1947         24.1722         0.068         483.321         43.275           400         31.58         24.1947         24.1722         0.068         483.321         43.276           400         31.59         26.893         24.1947         24.1722         0.068         483.321         43.276           400         31.20         25.893         24.4455         5615         484.337         406.849           40         37.261         25.933         24.4455         5615         482.561         39.399           40         37.261         26.933         24.853         11.234         481.124         381.63           40         37.261         26.935         24.893         11.234         481.124         31.84		Electronic	Levels and Quantum weights		8	31.964	203.874	273,337	-6946	487.074	468.693	7
250 36.156 235.313 242.321 -1.752 485.916 441.545  20 36.156 235.313 242.321 -1.752 485.916 441.545  204.33 [1] 20.252 241.721 241.721 0.068 483.321 433.051  204.33 [1] 20.252 241.721 0.068 483.321 433.051  205.2752 241.721 0.068 483.321 433.051  205.2752 241.722 0.068 483.321 433.051  205.2752 241.65 0.068 483.321 445.387  205.2752 243.65 244.455 5.615 483.329 406.849  205.2752 24.455 26.93 244.455 5.615 483.329 406.849  205.2752 24.455 26.93 244.455 3.933 11.24 481.633  205.2752 24.455 26.93 14.445 383.329		State	£.cm-1		200	35.442	227,321	245.038	-3,543	486.450	450.478	=
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					250	36,156	235,313	242.321	-1.752	485.916	441.545	6
20433 [1] 300 36.558 241,947 241,722 0.068 483.321 432,726 21758 [1] 350 36.558 241,947 241,722 0.068 483.321 432,726 434.010 235 36.893 243,168 1955 484.866 434.010 45.877 45.879 45.879 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.899 45.8		[3]	0		298.15	36,585	241.721	241.721	ó	485.344	433.051	-75
21758 [1] 350 36.893 247.612 242.168 1.905 484.686 424.010 400 37 103 222.533 243.164 3.756 484.021 41.337 400 37 103 222.533 243.164 3.756 484.021 41.337 400 37 103 222.533 243.164 3.756 484.021 41.337 42.00 37 103 222.533 244.455 5.615 483.219 42.616 38.337 42.616 38.339 42.616 38.339			20433 [1]		300	36.598	241.947	241.722	0.068	485.321	432.726	-75
400 37 103 25253 243.164 3.756 484.021 415.387 465.899 466.849 465 6.615 483.279 466.849 465.849 465.849 481.124 481.639 481.124 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.134 481.			21758		350	36.893	247.612	242.168	1.905	484,686	424.010	9
450 37.261 256.933 244.455 5.615 483.329 406.849 ω _ε ζ _e =1.015 cm ⁻¹ σ = 2.219 Å 482.616 38.330 α _e = 0.000608 cm ⁻¹ r _e =2.219 Å 481.613 481.124 481.124 381.633					8	37 103	252.553	243.164	3.756	484.021	415,387	3
ω ₂ ν ₄ = 1.015 cm σ = 2 ω ₂ ν ₄ = 1.015 cm σ = 2 ω ₄ ν ₄ = 1.015 cm σ = 2.219 Å 60 37.576 267.699 248.983 11.230 481.124 381.683		1	1	•	450	37.261	256.933	244.455	5.615	483.329	406.849	-47
α, = 0.000608 cm ⁻¹ r, = 2.219 A 600 37.576 267.699 248.983 11.230 481.124 381.683	จั	= 265.34 cm	ω.χ. = 1.015 cm	7	88	37.386	260.865	245 903	7.481	482,616	398,390	-41
	B	■ 0.10776 cm ⁻¹	a. = 0.000608 cm ⁻¹	r. = 2.219 A	8	37.576	267.699	248.983	11.230	481.124	381.683	-33

**Enthalpy of Formation** 

The entialpy of formation is calculated from that of Cu(g) using  $\Delta H^0(298.15 \text{ K}) = 46.0 \text{ kcal·mol}^{-1}$  for Cu₂(g)  $\rightarrow$  2 Cu(g) obtained by 3rd law analysis of the mass spectrometric data of Ackerman *et al.*¹ Earlier studies of mass spectra and of the electronic band spectra yield values in reasonable agreement as shown below. The selected  $\Delta H^0$  corresponds to  $D_0^0(0 \text{ K}) = 1.97 \text{ eV}$  compared with the linear Birge-Sponer

extrapolation of 2.1 eV.

			Δ,H°(298 15 K), kcal-mol-	, kcal·mol-1	Drift	Δ _t H°(298.15 K)
Source	Method	T/K	2nd law	3rd law	cal K-1.mol-1	kcal·mol ⁻¹
-	Mass Spect.	1549-1709	47.8±2.6	45.99	-1.0±1.6	116.0
7	Mass Spect.	1575-1720	50.3±3.7	46.76	-2.1±2.3	115.0
e.	Mass Spect.	1440-1560	1	46.5	I	115.5
•	Band Spectra	1	I	49.0	I	113.0

## Heat Capacity and Entropy

Molecular constants, except for ω, x,e, were taken from the rotational analysts of bands of the B-X system given by Travis and Barrow. The value for  $\omega_{x,x}$  was obtained from the earlier study of Kleman and Lindkvist who showed by means of the vibrational isotope effect that the emitter was Cu₂. The spectroscopic characters of the ground and excited states are uncertain, but Travis and Barrow indicate that the transition is probably \(\Sigma_{\text{t}}^2 - \text{\text{\$\subset\$\gents_{\text{t}}}^2 for the B-X system. Vibrational and rotational constants were adjusted for 30.91\(\pi_{\text{C}}\subseteq C_{\text{t}}\)

References

¹M. Ackerman, F. E. Stafford and J. Drowart, J. Chem Phys. 33, 1784 (1960).

²P. Schissel, J. Chem. Phys. 26, 1276 (1957).

³J. Drowart and R. E. Honig, J. Chem. Phys. 25, 581 (1956).

⁴B. Kleman and S. Lindkvist, Arkiv Fysik 8, 333 (1954).

⁵D. N. Travis and R. F. Barrow, Proc. Chem. Soc. (London), 44 (1962).

Enthalpy Re	ference Te	Enthalpy Reference Temperature = T.	. T. = 298.15 K		Standard State Pressure = p = 0.1 MPa kJ·mol ⁻¹	Pressure = p	0.1 MPa
τÆ	ಚ	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ,Η.	₽'Q•	log Kr
°885	0. 31.964 35.442	0. 203.874 227.321	273.337 245.038 245.038	-9.930 -6.946 -3.543	485.428 487.074 486.450 485.916	485.428 468.693 450.478 441 545	-244.820 -117.653 -92.256
298.15	36.585		241.721	6	485.344	433.051	-75.869
88	36.598 36.893	241.947 247.612	241.722 242.168	0.068	485.321	432.726 424.010	-75.344 -63.280
\$ <b>%</b>	37 103 37.261	252.553	243.164	3.756 5.615	484.021 483.329	415.387	- <b>54244</b> -47.226
88	37.386	260.865	245 903	7.481	482.616	398,390	-41.619
88	37.720	273.503	252.082	14.995	419.541	365.233	-27.254
88	37.945	283.011	257.942	22.562	476.108	333,014	-19328
2	38.131	290.644	263.216	30.170	472.237	301.607	-14.322
88	38.299	297.027	267.940	37.813	467.634	270.963	-10.887
6 6 8 8 8	38.380 38.459	299.869 302.519	270.121 272.193	41.647	438.637 435.910	256.749 243.852	-9.579
002	38.537	305.004	274.167	49,339	433.191	231.137	-7.546
88	38.691	309.552	277.851	57.062	427.776	206.205	-5.984
88	38.843	313.636	281.229	64.815	422.392	181.875	-4.750
2100	38.919	315.533	282.817	68.704	419.711	169.915	-4.226
3065	39.071	319,081	285.819	76.503	414.372	146.372	-3.324
750 2500	39.149 39.228	320.745 322.345	287.239 288.612	80.414 84.332	411.714	133.792	-2.933
2500	39.308	323.885	289.939	88.259	406.422	111.914	-2248
2800	39.475 39.562	326.804 328.191	292.469 293.677	96.137 100.089	401.162	89.457 90.362	-1.669
3000	39.653	329.533	294.850	104.050	-202.882	100,456	-1.749
3200 3300 3300	39.747 39.845 39.948	330.835 332.099 333.326	295.990 297.099 298 178	108.020 111.999 115.989	-203.991 -205.193 -206.487	110.585 120.752 130.958	-1.863 -1.971 -2.073
3400 3500	40.055	334,520 335,683	299.230 300.255	119.989	-207.872 -209.348	141.204	-2.169 -2.261
3600	40.283	336.816	301.255	128.022	-210.910	161.823	-2.348
3800	40.533	339.001	303.184	136.104	-214.284	182.621	-2510
600	40.804	341.087	305.027	144237	-217.963	203.605	-2.659
4500 4500	40.947	342.096	305.919	148.324	-219.904	214.168	-2.729 -2.796
844 888	4 4 4 8 6 2 8 6 2 8 6 2	345.003	308.486 308.486 309.308	156.544 160.677 164.826	-223.966 -226.076 -228.231	255.439 246.147 256.904	-2.922 -2.922 -2.982
4600	41.740	346.851	310.114	168.991	-230.426	267.709	-3.040
808 908	41.913	348.635	311.682	173.174	-234.916	289.462	-3.150
8 8 8 8 8	42.454	349.505 350.361	312.445	181.592 185.828	-237.201 -239.509	300.411	-3202 -3253
\$100	42.641	351.203	313.932	190.083	-241.833	322.447	-3.303
888 888	43.023	352.851 353.657	315.370	198.649 202.961	-246.521 -248.878	344.666	-3.442
2200	43.414	354.452	316.762	207.293	-251.240	367.063	-3.486
8 5 5 8 8 5 6 8 8 6 8 8	43.612 43.811 44.012	355.236	317.442	211.644 216.015 220.406	-253.606 -255.973 -258.341	389.632 400.972	-3.529 -3.571 -3.611
888	44.414	357.527 358.272	320.064	224.817	-260.709 -263.075	412.367	-3.651

PREVIOUS September 1966 (1 atm)

Copper Oxide (Cu₂O)

PREVIOUS: June 1966

Cu₂O₁(cr)

Standard State Pressure =  $p^* = 0.1$  MPa

Enthalpy Reference Temperature = T, = 298.15 K

kj.mol_

 $H^{\bullet}-H^{\bullet}(T_{r})$ 

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$ 

NFINITE 84.944 40.573

-168.952 -162.621 -155.348

-168 952 -169 584 -170 360

0. 37.092 69.143 92.360

log Kr

25.909 25.725 18.294 13.840 10.877 8.766 7.188 5.964 4.194 3.535 2.973 2.474 2.000

-124.944 -117 478 -110.087 -102 767 -95.517

-169.961 -169.479 -168.929 -168.325 -167.688

105.465 111.259 116.959 122.473 127.769

140.161 151.651 161.886 171.141 179.606

28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15 28.15

-147.745 -140.092 -132.484

-170.709 -170.641 -170.363

0.116 6.657 13.596

92.361 94.888 99.809

111.531

92.747

62.543 62.664 67.688 70.922

-147.886

-170.707

-- CRYSTAL <--> LIQUID --

-48.635 -39.928 -31.335 -22.868 -14.542

-188 755 -187 020 -184.917 -182.440 -179.581

97.406 105.578 115.728 126.257 137.173

-81.208 -74.144 -66.321 -57.438

-166.322 -165.608 -191.165 -167.029

132.842 137.702 142.367 146.855 151.186 151.895

187.443

73 448 75.645 77.666 79.493 81.245 83.385 86.110 89.173

20.818 35.941 35.941 43.801 51.837 60.061 68.532 77.294 86.375

-190 132

215.052 216,118

95.987 96.587

1500 1516 700 1600 1700 1800 1900 2000

CURRENT: December 1977

CRYSTAL Copper Oxide (Cu,O)

 $\Delta_P H^{\circ}(0 \text{ K}) = -168.95 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$   $\Delta_P H^{\circ}(298.15 \text{ K}) = -170.71 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$   $\Delta_{\text{los}} H^{\circ} = 64.768 \pm 0.63 \text{ kJ} \cdot \text{mol}^{-1}$  $S^{\circ}(298.15 \text{ K}) = 92.36 \pm 0.34 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$   $T_{tot} = 1516.7 \text{ K}$ 

Enthalpy of Formation

The enthalpy of formation of Cu₂O(cr) has been investigated calorimetrically (both oxidation and reduction reactions) and the oxidation reaction 2 Cu(cr) + 1/2 O₂(g) = Cu₂O(cr) has been studied extensively by pressure and by emf measurement. The more consistent data leading to the adopted value are summarized below.

					Δ,H°(298.15	Δ _r H°(298.15 K), kcal·mol ⁻¹	Drift	Δ,H°(298.15 K)
Source	Method	Reaction*	7/K	Points	2nd law	3rd law	cal K ⁻¹ ·mol ⁻¹	kcal·mol-1
-	Aq Calorim.	V	291	ı	17.61	19		-40.70
7	Calorimetric	See Text	298.15	I	1		i	-40.83±0.30
	Calorimetric	٧	297.90	١	26.93	93	1	-41.39±0.32
•	Aq emf	∢	273-318	S	27.47±0.04	27.58±0.02		-40.74
2 <b>*</b>	d emf	∢	298-318	7	29.97±0.38	28.02±0.14	-6.4±1.3	-40.30
۰	Aq emf	¥	288-308	3	29.54±0.73	28.25±0.10	·	-40.06
	Equil Press	В	1011-1156	2	$-35.79\pm0.86$	-41.55±0.66		-41.55
•	emf vs Fe/FexO	xOB	1073-1323	4	-42.29±0.59	$-40.96\pm0.23$		-40.96
•	Fused Salt em	nf B	286			-41.72		-41.72
9	emf	В	1100-1200	7	-60.17	$-39.77\pm2.03$		-39.77
=	emt	В	973-1273	뗦	-41.10	-40.75		-40.75
ជ	emf	В	892-1320	Edu	-40.75	-40.77	•	40.77
13	Equil Press	В	1200-1420	Eda	-33.37	-40.30		-40.30
<u>*</u>	Equil Press	В	1280-1450	Eda	-36.82	-40.24		-40.24
21	emf	В	973-1373	Edn	-41.83	-41.01		-41.01
9 '	emf	В	845-1270	뛆	-40.83	-40.88	-0.1	-40.88
-	emt	8	976-1234	Eda	-39.84	-40.59	,	-40.59
=	emf	В	1073-1273	뗦	-41.07	-39.12	1.7	-39.12
<u>e</u>	Equil Press	В	1013-1243	뗦	-43.07	-43.86	1.4	-43.86
ន	emf	В	973-1273	뗦	-42.62	-41.23		-41.23
ĸ.	emf	ш	1173-1356	댎	-40.71	40.90	-0.2	-40.90

(B) 2 Cu(cr) + 0.5 O₂(g) = Cu₂O(cr) *Reactions (A) 2 Cu(cr) +  $H_2O(1)$  = Cu₂O(cr) +  $H_2(g)$ 

measured the direct heat of oxidation of copper by  $O_2$ , but they obtained a mixed product of  $Cu_2O$  and CuO and used  $\Delta_4H^o(298.15 \, K) = -33.63 \pm 0.05 \, kcal·mol⁻¹ for the equilibrium reaction <math>Cu_2O(cr) + 1/2 \, O_2(g) = 2 \, CuO(cr)$  to resolve their results into Δ_tH°(Cu₂O, cr, 298 15 K) and Δ_tH°(Cu₂O, cr, 298.15 K). The overall average from our 3rd law analyses is -40.82 kcal mol⁻¹; without the outlier to the average is 40.81, the average of the six data sets with an absolute drift less than 1 is -40.77. We adopt Δ_tH°(Cu₂O, cr, Thomsen¹ obtained  $\Delta_t H^o(298.15 \, \mathrm{K})$  values of -40.18, -40.87, and -41.51 kcal mol⁻¹ from aqueous calorimetry using three different re + CuSO₄(aq) to yield the heat of reduction of Cu₂O with H₂. Nunez et al. 3 measured the direct heat of reduction of Cu₂O by H₂, to conclude paths. He favored the first path which is recalculated by combination of the heats of reaction of Cu₂O+H₂SO₄, Fe+H₃SO₄, and that the heats of formation of the copper oxides are influenced by material history, state of subdivision, and non stoichiometry Mah et all 298.15 K =  $-40.8 \pm 0.5 \text{ kcal·mol}^{-}$ 

Heat Capacity and Entropy

The heat capacities are smoothed values adopted from a consideration of the work of Gregor²² (2.8-21 K), Hu and Johnston²³ (15-300 K) and Mah et al. ² (52-296 K, 406-1464 K). The data of Mah et al. ² are favored over that of Hu and Johnston²³ above 120 K. Adjustment is made to the IPTS 68 temperature scale²⁴

The entropy is based on a  $T^3$  extrapolation to obtain S(2.8 K) = 0.0015 cal  $K^{-1}$ -mol⁻¹

Fusion Data

Refer to the liquid table for details.

References

Continued on page 1027

Thomsen, "Thermochemische Untersuchungen," Vol III, Barth, Leipzig, (1883). D. Mah, L. B. Pankratz, W. W. Weller and E. G. King, U. S. Bur. Mines RI 7026, (1967).

J. Phys. Chem. Ref. Data, Monograph 9

10	24					MAL	LCOLM W. CHASE		
Cu,O,( )	= p = 0.1 MPa	log K,	17.587 17.466 12.591 9.671	6.349 5.318 4.521 3.886	3.375 2.957 2.661 2.289 1.975	1.704 1.704 1.468 1.260 1.077 0.914	<b>\$</b> 160	cember 1977	Cu ₂ O ₁ (I)
	ile Pressure = p	Φ'C•	-100.384 -100.312 -96.419 -92.570 -88.791	-85.085 6. -81.452 5. -77.893 4. -74.402 3.	-71.064 -71.064 -67.938 -64.987 -61.360	3.836 -5.1001D 5-7 3.836 -5.2197 1.70c 2.239 -4.7168 1.40c 0.0694 -4.3431 1.20c 9.142 -5.9181 1.077 7.600 -3.5013 0.914		CURRENT December 1977	
	Standard State Pressure	ı	-111.995 -111.997 -111.531 -111.531	- 110.767 - 110.217 - 109.613 - 108.976	- 106,550 - 104,323 - 102,380 - 127,026	-123.836 -122.259 -120.694 -119.142			
	×	H*-H*(T,)	0. 0.116 6.657 13.596 20.818	28.274 35.941 43.801 51.837 51.837	61.828 71.819 81.811 91.802	111.785 121.776 131.768 141.759			
	Enthalpy Reference Temperature = T, = 29&15 K	-[G*-H*(T,)]/T	(29.957 (29.959 (32.486 (37.407	148.857 154.557 160.071 165.367 165.367	170.519 175.570 180.486 185.249 189.853	194.298 198.587 202.727 206.723 210.583			
(O ^z n	emperature	S• -[G•	129.957 130.345 149.128 164.598 177.758	189.249 199.483 208.739 217.203	226.726 235.420 243.417 250.822 257.715	264.163 270.220 275.931 281.333			(0²r
Oxide (C	Reference T	ប		75.645 77.666 79.493 81.245 81.245				June 1966	Oxide (C
Copper Oxide (Cu ₂ O)	Enthalpy	7.K	28.15 28.15 28.15 28.15 28.15	200 200 200 200 200 200 200 200 200 200	1200 1200 1400 1500	2000 2000 2000 2000		PREVIOUS- June 1966	Copper Oxide (Cu ₂ O)
$M_t = 143.0914$	$\Delta_t H^{\circ}(298.15 \text{ K}) = [-111.995] \text{ kJ·mol}^{-1}$ $\Delta_{ta} H^{\circ} = 64.768 \pm 0.63 \text{ kJ·mol}^{-1}$	nthalpy of Formation A _f H°(Co ₂ O, I, 298.15 K) is calculated from that of the crystal by adding Δ _{los} H° and the difference in enthalpy, H°(1516.7 K)–H°(298.15 K), tween the crystal and liquid.	eat Capacity and Entropy  The heat capacity is taken from the enthalpy measurements of Mah et al. (1521-1600 K) and is assumed constant at 23.88 cal K ⁻¹ -mol ⁻¹ om 1000 to 2000 K. A glass transition is assumed at 1000 K below which the heat capacity is that of the crystal. The entropy is calculated in a manner similar to that used for the enthalpy of formation.	recting to the IPTS-68 temperature scale, ³ we adopt	References ¹ A. D. Math, L. B. Pankratz, W. W. Weller and E. G. King, U. S. Bur. Mines RI 7026, (1967). ² The International Practical Temperature Scale of 1968, Methologia 5, 35 (1969); T. B. Douglast, J. Res. Nat. Bur. Stand. 73A, 451 (1969).				
בוסטום		n that of the crystal by adding $\Delta_{los}H^{\circ}$ and the	ly measurements of Mah <i>et al.</i> 1 (1521–160) assumed at 1000 K below which the heat confiat to that used for the enthalpy of forma	usion Data  The melting point, 1515 K, was determined by drop calorimetry by Mah et al.! Correcting  = 1516.7 K. Δtor H° = 15.48 ± 0.15 kcal·mol-1 is based on our smoothing through the grant material.	and E. G. King, U. S. Bur. Mines RI 7026, ale of 1969; T. B.				
Copper Oxide (Cu ₂ O)	S*(298.15 K) = [129.957] J K ⁻¹ ·mol ⁻¹ T _{fer} = 1516.7 K	Enthalpy of Formation $\Delta dH$ (Cu ₂ O, I, 298.15 K) is calculated from between the crystal and liquid.	Heat Capacity and Entropy  The heat capacity is taken from the enthalpy measurements of Mah et al. ! (1521–1600 K) and is assumed constant from 1000 to 2000 K. A glass transition is assumed at 1000 K below which the heat capacity is that of the crystal. The entropy is calculated in a manner similar to that used for the enthalpy of formation.	Fusion Data  The melting point, 1515 K, was determine $T_{log} = 1516.7 \text{ k}$ $\Delta_{log} H^{\circ} = 15.48 \pm 0.15 \text{ kcal-mol}^{-1} \text{ is base}$	References ¹ A. D. Mah, L. B. Pankratz, W. W. Weller a ² The International Practical Temperature Sca				

(C ₀ ² O)
Oxide
Copper
143.0914
.= W

Cu₂O₁(cr,l)

9	
AL-LIQ	
RYST/	
Ö	

	0 to 1516.7 K crystal above 1516.7 K liquid	Refer to the individual tables for details.
5	Ą	Refer

Enthalpy Re	eference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure	e Pressure = p	. = 0.1 MPa
7/K	្រ		-[G*-H*(T,)]/T	H*-H*(T,)		<b>₽</b> <i>G</i> •	log Kr
°88	39.499	37.092	INFINITE 141.510	-12.600 -10.442 -5.777	- 168.952 - 169.584 - 170.360	-168.952 -162.621 -155.348	NEINTTE 84.944 40.573
298 15	62.543	92.360	92.360	0	-170.707	-147.886	25.909
88	62.664 67.688	92.747	92.361 94.888	0.116 6.657	-170.709 -170.641	-147.745 -140.092	25.725 18.294
200	70.922	127,000	608.66	13.5%	-170.363	-132.484	13.840
88	73.448 75.645	140.161	111.259	20.818 28.274	- 169.361	-117.478	8.766
88	71,666	161.886	116.959	35.941	-168.929 -168.325	-110.087	5.964
0001	81.245	179.606	127.769	51.837	-167.688	-95.517	4.989
82	83,385	187.443	132.842	190.09	-167.029	-88.331	3.535
300	89.173	201.824	142.367	71.294	-165.608	-74.144	2.979
1400	92.489	208.552	146.855	56.375	191.18 13.18	-57.438	2 000
1516.700		250512	151 895	97.406	CRY	STAL <>	non
1516.700		258.821	151.895	162.174			,
0091	99.914	264.163	157.603	170.497	-123.836	-52.197	5.4
0081	99.914	275.931	170.109	190.480	-120.694	-43.431	1760
<u>8</u> 8	99.914 99.914	281.333	175.822 181.227	200.471	-119.142	-35.013	0.914
POEVIOVIC						CURRENT	GIRPENT December 1977

Cu2OsS1(cr)

M_r = 239.1490 Copper Oxide Sulfate (CuO-CuSO₄)

CURRENT: June 1966

 $\Delta_t H^{\circ}(0 \text{ K}) = \text{Unknown}$  $\Delta_t H^{\circ}(298.15 \text{ K}) = -927.593 \pm 1.3 \text{ k} \cdot 1 \cdot \text{mol}^{-1}$  $S^{(298.15 \text{ K})} = [157.318 \pm 8.4] \text{ J K}^{-1} \cdot \text{mol}^{-1}$ 

		_
	thalpy of Formation  The equilibrium pressures for the following reactions: (A) CuO-CuSO ₄ (ct) = 2 CuO(ct) + SO ₃ (g) and SO ₃ (g) = SO ₂ (g) + 0.5 O ₂ (g) and (B)  O-CuSO ₄ (cr) + Cu ₂ O(cr) = 4 CuO(cr) + SO ₂ (g), were determined by Reinders¹ and Ingraham² Using the reported vapor pressures, the responding enthalpy changes were evaluated by both the 2nd and 3rd law methods. The results obtained are presented as follows:	
	: following re iO(cr) + SO _Z ( cre evaluated	
,	s for the = 4 Cu inges w	
•	thalpy of Formation The equilibrium pressure O-CuSO ₄ (cr) + Cu ₂ O(cr) crsponding enthalpy cha	

t 0.5 O ₂ (g) and (B) tpor pressures, the ed as follows:	Δ _t H°(298.15 K) kcal·mol ⁻¹	-221.5 -221.7 -221.7
nd SOJ(g) = SOJ(g) 4 Jsing the reported va obtained are presente	Drift cal K ⁻¹ ·mol ⁻¹	-0.7±2.4 0.5±1.4 1.5±0.2
cucyer) + soyig) a rs¹ and Ingraham.² t ethods. The results	kcal·mol ⁻¹ 3rd law	52.43 42.43 52.57
termined by Reinde e 2nd and 3rd law n	Δ _t H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	53.03±2.53 41.72±1.42 50.92±0.16
CUO-CUSO((CT) + CU ₂ O(CT) = 4 CuO(CT) + SO _L (g), were determined by Reinders' and Ingraham. Using the reported vapor pressures, the corresponding enthalpy changes were evaluated by both the 2nd and methods. The results obtained are presented as follows:	T/K	1013–1093 917–1027 969–1138
+ Cu ₂ O(cr) = 4 CuC thalpy changes wer	Reaction	A* A*
CuO CuSO,(cr) corresponding en	Reference	8

*Partial pressures were calculated from JANAF values for the SO₃ - SO₂ equilibrium.

The value of ΔμH°(CuO·CuSO4, cr, 298.15 K) adopted is -221.7±0.3 kcal·mol⁻¹.

## Heat Capacity and Entropy

The heat capacities are calculated as the sum of those for CuO(cr) and  $CuSO_4(cr)$ . The value of  $S^*(298.15 \text{ K})$  is estimated by comparison with those for CuO(cr) and  $CuSO_4(cr)$  and adjusted so that, using the derived free energy functions, the 2nd and 3rd law values for  $\Delta_4 H^*(298.15 \text{ K})$  agree reasonably.

Decomposition Data

Tem = 1138 K is the temperature at which the total pressure of the gaseous decomposition products of reaction (A) equals one atmosphere. It was obtained by graphical extrapolation of the decomposition pressures for CuOCuSO₄(cr), determined by Ingraham.²

References ¹ W. Reinders and F. Goudriaan, Z. anorg. allgem. Chem. 126, 85 (1923). ² T. R. Ingraham, Trans. Met. Soc. AIME 233, 359 (1965).

PREVIOUS:

#### Copper

# Continued from Page 1019

H. W. Foote and E. K. Smith, J. Amer. Chem. Soc. 30, 1344 (1908). ⁶G. B. Barbi, Gazz. Chim. Ital. 100, 64 (1970). Balesdent, Compt. rend. 240,

¹H. S. Roberts and F. H. Smyth, J. Amer. Chem. Soc. 43, 1061 (1921); 42, 2582 (1920).

n. 3. Rockett, Dissertation, Darmistal, 1971, 67, L. Wohler and N. Jochum, Z. physik. Chem. 1674, 169 (1933).
P. Becker, Dissertation, Darmistal, 1927, 67 (1955).
P. Assayaga, Aun. Chim. (Paris) 12, 637 (1955).
P. M. M. Gadalla, W. F. Ford and J. White, Trans. Brit. Ceram. Soc. 62, 45 (1963).
P. L. R. Bidwell, J. Electrochem. Soc. 114, 30 (1967).
P. G. Charette and S. N. Flengas, J. Electrochem. Soc. 115, 796 (1968).
P. K. Hochgeschwender and T. R. Ingraham, Z. Erzbergbau Metallheuttenm. 21, 58 (1968).
P. K. Kodera, I. Kusunoki and S. Shinkichi, Bull. Chem. Soc. Jap. 41, 1039 (1968).
P. K. Rigdon and R. E. Grace, Trans. Met. Soc. Albi (Amer. Inst. Mining, Met., Petrol. Eng.) 242, 822 (1968).
P. K. Razenas, D. M. Chizhikov and Yu. V. Tsetkov, Izv. Akad. Nauk SSSR, Metal 1969, 60 (1969).
P. W. Shchedrin, A. A. Telegin, V. N. Vas'kin and I. S. Kulikov, Deposited Publ. VINITT 6690 73 (1973).

¹⁹. Hu and H. L. Johnston, J. Amer. Chem. Soc. 75, 2471 (1953).
²⁰UPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976).

²¹The International Practical Temperature Scale of 1968, Metrologia 5, 35 (1969); T. B. Douglas, J. Res. Nat. Bur.

²M. O'Keefe and F. S. Stone, Phys. Chem. Solids 23, 261 (1962)

²³B. N. Brockhouse, Phys. Rev. 94, 781 (1954)

# Continued from Page 1023

'F Ishakawa and G. Kumura, "Sexagint, Yikichi Osake," pp. 255 69, Chem. Inst. Kyoto Imp. Univ., Kyoto, Japan, (1927), cf. M. Randall, R. F. Nielsen, and G. H. West, Ind. Eng. Chem. 23, 388 (1931). ³L. Nunez, G. Pilcher and H. A. Skinner, J. Chem. Thermodyn. 1, 31 (1969).

⁶I. A. Makolkin, J. Phys. Chem. (U.S.S.R.) 16, 13 (1942), cf. Chem. Abs. 37, 2641 (1943). ⁵C. G. Maier, J. Amer. Chem. Soc. **51**, 194 (1929).

A. Matonkin, J. T. P. Carali, Construction, Computent and A. S. Gillespie, Jr. J. Electrochem. Soc. 104, 379 (1957).
 K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957).
 K. Kiukkola and C. Wagner, J. Electrochem. Soc. 105, 408 (1958).
 D. G. Hill, B. Porter and A. S. Gillespie, Jr., J. Electrochem. Soc. 105, 408 (1958).
 P. C. Wilder, Trans. Met. Soc. AIME 239, 103 (1966).
 E. Rizzo, L. R. Bidwell and D. F. Frank, Trans. Met. Soc. 115, 796 (1968).
 G. G. Charette and S. W. Flengas, J. Electrochem. Soc. 115, 796 (1968).
 K. Kodera, I. Kusunoki and S. Shinkichi, Bull. Chem. Soc. 1ap. 41, 1039 (1968).
 K. Kazenas, D. M. Chizhikov and Yu. V. Tsetkov, Izv. Akad Nauk SSSR, Metal 1969, 60 (1969).
 Moriyama, N. Saot, H. Asao and Z. Kozuka, Mem. Fac. Eng., Kyoto Univ 31, (Pr 2), 253 (1969).
 G. B. Barbi, Gazz. Chim. Ital. 100, 64 (1970).
 G. Shaefer, U. S. Nat. Tech. Inform. Serv. PB Rep. No. 203731 (avail NITS), 14 pp. (1971).
 A. A. Slobodyanyak, Yu. D. Tret'yakov and A. F. Bessonov; Russ. J. Phys. Chem. 45, 1065 (1971).
 W. M. Shchedrin, A. A. Telegin, V. N. Vas'kin and I. S. Kalikov, Deposited Publ. VINITI 6690 73 (1973).
 W. Kemoir, I. Katayama and Z. Kozuka, Nippon Kinzoka Gakkaishi 41, 803 (1977).
 H. u and H. L. Johnston, J. Amer. Chem. Soc. 73, 4550 (1951).

²⁴The International Practical Temperature Scale of 1968, Metrologia 5, 35 (1969); T B Douglas, J. Res. Nat. Bur.