再版说明

为了帮助中学生和知识青年自学珠算知识,现将一九七三年出版的《珠算基础知识》一书进行了修订,并纳入《青年自学丛书》。

这次再版,除将原来章节作了些修改外,还增加"开平方简算法"和"利息基本算法"两节。"开平方简算法"是 根据原北京二十六中学张运筹同志介绍的算法,我们于一九七四年合写成的。

由于水平所限,书中可能存在缺点和错误,请同志们批评指正。

编 者 一九七八年三月

目 录

-,	引言	1
Ξ,	常用的算盘和拨珠的方法	2
	(一)常用的算盘	2
	(二) 拨珠的方法	3
三、	加减法	5
	(一)加法······	5
	(二) 减法 ·······	13
	(三)加减法的基本练习方法 ······	22
	(四)加减简法	23
四、	乘法	28
	(一)乘法口诀	28
	(二)乘法的定位方法······	29
	(三)一位乘法	33
	(四)二位乘法	35
	(五)多位乘法	40
	(六)乘法的基本练习方法 ······	5 <i>7</i>
	(七)乘法简法	5 <i>7</i>
五、	除法	64
	(一)除法口诀	64
	(二)除法的定位方法······	7 1
	(三)一位除法	73
	(四) 多位除法	76

•
(五)除法的基本练习方法 ······89
(六)除法简法90
六、百分比简算法106
七、开平方简算法113
(一) 笔算开平方的一般方法 • · · · · · · · · · · · · · · · · · ·
· (二)珠算开平方的简算法·····116
八、利息基本算法122
(一) 计算利息的一般常识······122
(二) 利息的基本算法·····123
九、复核多笔连续加减的简法127
附录一、乘除公式定位法130
附录二、双珠算法······135
附录三、数字的写法144

一、引言

算盘,是我国人民创造发明的一种计算工具。早在十五世纪初期,算盘已经在我国社会上广泛应用了。由于算盘具有构造简单、使用灵便等优点,一直到今天仍是我们常用的一种计算工具。解放以来,算盘的形式和计算方式,又有了改革,使珠算得到进一步发展。

算盘这个计算工具,掌握在哪个阶级手里,就为哪个阶级的利益服务。解放前,在万恶的旧社会,地主、资本家就利用算盘来残酷地剥削压榨劳动人民。解放后,在伟大领袖毛主席和中国共产党的领导下,劳动人民翻了身,当了国家的主人,算盘成了劳动人民管理经济,为社会主义革命和建设服务的计算工具。我们要掌握算盘这个计算工具,就要树立"为革命打算盘"的思想,要为革命刻苦钻研技术,练好打算盘的本领,不断提高工作效率,为革命作出更大的贡献。

打算盘的要求是既准又快。只准不快不能提高工作效率; 快而不准,等于白忙一阵。准、快相比,准是主要的。因此, 初学珠算时,应首先要求打准,准中求快。

珠算加、减、乘、除的运算是互相联系的,而乘、除法 又是以加、减法为基础的。初学珠算时,要进行加、减、乘、 除的全面练习,更重要的是在实践中多进行练习,就会熟能 生巧。

二、常用的算盘和拨珠的方法

(一) 常用的算盘

我国常用的算盘有两种:一种是七珠大算盘,一种是多档式的六珠(或五珠)小算盘。上图介绍的算盘是我国多数地区使用的一种十三档的七珠大算盘。

算盘四周的框子叫做"边",边又分"上边"、"下边"、 "左边"、"右边"。中间有一条横木叫做"梁",通过横梁贯穿着 算珠的一根根细杆子叫做"档",每档七颗算珠。梁上面的两 颗算珠叫"上珠",每颗当作"五",最上面的一颗,有时也可 临时当"十"用,叫"顶珠";梁下有五颗算珠,叫"下珠", 每颗当作"一",最底下一颗叫"底珠"。

算盘上没有固定的位数,为了避免弄错位数,有的算盘按"三位一节"的记数方法,在梁上每隔三位作一计位点(也

可贴上白纸条作标记)。在记小数时,标记也可当作小数点。如果算盘上装有铜档时,也可利用铜档作计位的标记。

(二) 拨珠的方法

珠算是拨动算珠来进行运算的,初学珠算时,必须首先 学会正确的拨珠方法,这是珠算的基本动作,又叫"指法"。 正确的指法是;

- 1.用拇指、食指和中指三个 手指拨算珠(无名指和小指可以 卷曲,以防带珠)。见图 1。
- 2. 中指专门拨梁 上 面 的 两颗珠(往上拨或往下拨)。见图 2、3。

图1

3.拇指和食指拨梁下面的五颗珠(往上拨用拇指,往下 拨用食指)。见图 2 、3。

为了养成正确的拨珠习惯,初学珠算时,可经常按拇指、 食指和中指的拨珠分工在算盘上进行指法练习,见图 4。 在实际工作中,不不实际工作中,不不实际工作生发来。 一点还养成握笔或铅笔或错的,常把钢笔或名指与无名指写无名指写,见图 5 。 这种,只要把一个人,不要把一个人,不可以的一个人,不可以的一个人,不可以的一个人,不可以的一个人,不可以是一个人。

拨珠时,一律要从左向右逐档进行拨珠,如果数字中间有"0"时,就用空档表示。下图表示把最末(即最右)一档作为个位,自左向右拨上18,045的情况。

	5
	- 222

三、加 减 法

(一)加 法

把两个数或好几个数合并为一个总数的方法叫"加法"。例如:86+47=133 就是加法的算式,其中"+"代表"加"的符号;86是"被加数",47是"加数";"="代表"等于"的符号;133就是相加的结果,叫做"和数",简称"和",在实际工作中也常叫"总数"。

珠算加法的次序和笔算不同。笔算是自右而左,就是从个位加起,再加十位、百位……; 珠算却是自左而右,就是从最高位加起,依次加到最低位。相加时,位数必须对齐,即百位加百位、十位加十位、个位加个位,加完以后,算盘上得出的数就是和数。

珠算加法有不进位加法和进位加法两类。

- 1.不进位加法: 指两数相加的和不足10,本档的上、下珠都够用,不必进位的加法。又可分为两种:
- (1)直接的加法,只在本档把上、下珠直接拨上,编成"几上几"的口诀共九句:
 - 一上一 二上二 三上三 四上四 五上五 六上六 七上七 八上八 九上九

这类口诀的意思是:加数是几,就拨上几颗算珠靠在梁上。如"一上一",就是当加数是1时,要拨上一颗下珠;"六

上六",就是当加数是6时,要拨上一颗下珠和一颗上珠。

【例1】5+4=9

在算盘上先拨上被加数 5 , 然后加上 4 , 口诀是"四上四",图示如下(黑珠表示原有数,白珠是新拨的数,下同):

【例2】12+37=49

在算盘上先拨上12,然后加上37,先在十位上加 3,口诀是"三上三";再在个位上加 7,口诀是"七上七"。图示如下:

- (2)满5的加法,两数相加的和满5时,本档下珠不够加,要拨下一颗上珠,并去掉多余的下珠,编成"几下五去几"的口诀共四句:
 - 一下五去四 二下五去三 三下五去二 四下五去一 这类口诀的意思是: 相加时,必须拨下 — 颗 当 5 的上

珠,同时拨去几颗下珠。如"三下五去二",就是当加数是 3 时,要拨下一颗上珠,同时拨去二颗下珠。

【例1】
$$4+1=5$$

在算盘上拨上4后,加1时,一般不用底珠,要用口诀"一下五去四",见下图:

	m 1
0000	0000
 拨上4	<u> </u>
V.T.	下
	五 去
	四

[6] 2 1 43 + 24 = 67

- 2.进位加法: 指两数相加的和是10或超过10,必须向左档进一位的加法。也可分为两种:
- (1)满10的加法,两数相加的和满10时,本档的上、下珠不够用,就在本档上拨去几颗算珠,在左一档拨上一颗

下珠,编成"几去几进一"的口诀共九句:

一去九进一 二去八进一 三去七进一

四去六进一 五去五进一 六去四进一

七去三进一 八去二进一 九去一进一

这类口诀的意思是: 相加时, 先在本档拨去几颗算珠, 同时在左一档拨上一颗下珠。如"三去七进一", 就是当加数是 3 时, 要在本档拨去一颗当 5 的上珠和二颗下珠, 同时在左一档拨上一颗下珠, 即向左进一位(代表10)。

【例1】9+1=10

在算盘上拨上9后,加1时,一般不用底珠,要用口诀"一去九进一",见下图:

【例 2 37 + 89 = 126

(2)满10破5的加法,两数相 加 的 和 超过10,进位时,本档下珠不够"去几"的数,就要用破5的方法,拨去上珠,加添下珠,再向左一档拨上一颗下珠,编成"几上几去五进一"的口诀共四句:

六上一去五进一

七上二去五进一

八上三去五进一

九上四去五进一

这类口诀的意思是: 当本档上的被加数是5或超过5,而加数是6以上时,就必须在本档拨上几颗下珠,同时拨去一颗当5的上珠,再在左一档拨上一颗下珠。如"八上三去五进一",就是当加数是8时,要在本档拨上三颗下珠,同时拨去一颗上珠,再在左一档拨上一颗下珠,即向左进一位(代表10)。

【例1】 5+6=11

在算盘上拨上5后,加6时,口诀是"六上一去五进一",见下图:

珠算加法口诀是按照拨珠的动作编成的,共26句。应用口诀计算加法,可以帮助我们养成正确的拨珠习惯,因而就能打得又准又快。现根据加法口诀的难易程度,分类列表如下:

口诀热类		位 加 法	进位	加法
加数别	直接的	满 5 的	满 10 的	满 10 破 5 的
1	ー上ー	一下五去四	一去九进一	
2	ニナニ	二下五去三	二去八进一	
3	三上三	三下五去二	三去七进一	
4	四上四	四下五去一	四去六进一	
5	五上五		五去五进一	
6	六上六	r	六去四进一	六上一去五进一
7	七上七		七去三进一	七上二去五进一
8	八上八		八去二进一	八上三去五进一
9	九上九		九去一进一	九上四去五进一

每句口诀的第一个字,是指要加的数,后面的字是说明 拨珠动作。"上几"表示只把上珠或下珠直接拨上,"下五"表 示拨下一颗上珠,"去几"表示拨去上珠或下珠,"进一"表示 在左一档拨上一颗下珠。

下面再举例说明综合运用各类加法口诀的算法:

【例 1 】 154+372=526

在实际计算中,为防止错位,常利用算盘上的计位点定位,把被加数个位放在计位点的左一档,见下图:

在实际工作中,加法用得比较多,并且常常需要把许多位数的很多数字加在一起(即多位数的连加),在算盘上拨多位数时,一般是分节看数,分节拨珠。如467,328一数就可分两次拨,先看467一节,马上拨珠,将要拨7时,便回头看328一节,同时右手接连拨珠。初学珠算加法时,就要养成这种分节看数和拨珠的习惯,切忌看一位数拨一档算珠,以免降低速度和出错。

在算盘上算小数加法和算整数加法完全一样**,**只要注意 对齐小数位数就行。

例如: 12.45+3.5=15.95

计算时,可利用算盘上的计位点当作小数点,见下图:

在实际计算中,为了简化,对较大的数,也常以"万"或"亿"做计算的单位,把"万"或"亿"以下的数用小数来表示。 如以 "万" 作为计算单位时,15,600 元 就 写 作1.56万元,156,000斤就写作15,6万斤。

(二)减 法

计算一个数和另一个数相差多少的方法叫做"减法"。例如: 133-86=47 就是减法的算式,其中"-"代表"减"的符号,133是"被减数",86是"减数",47就是减下来的结果,叫做"差数",简称"差"。

减法是加法的还原,人们往往用它来验算加法的结果是

否正确。

珠算减法的次序和加法一样,也是从左到右,从最高位 减起,减完后,算盘上得出的数就是差数。

珠算减法有不退位减法和退位减法两类。

- 1.不退位减法:指被减数的各位在减去减数时,都是够减的,不要向上一位"退十"(即借1)的减法。又可分为两种:
- (1)直接的减法,只在本档直接把上珠或下珠拨去, 编成⁴几去几"的口诀共九句:

一去一 二去二 三去三 四去四 五去五 六去六 七去七 八去八 九去九

这类口诀的意思是:减数是几,就拨去几颗 靠 梁 的 算珠。如"一去一",就是当减数是1时,要拨去一颗下珠;"六去六",就是当减数是6时,要拨去一颗下珠和一颗当5的上珠。

【例1】9-4=5

在算盘上先拨上被减数9,然后减去4,口诀是"四去四",见下图:

【例 2 】 49 - 37 = 12

在算盘上先拨上49,然后减去37,先在十位上减3,口 诀是"三去三";再在个位上减7,口诀是"七去七"。见下图:

- (2)破5的减法,本档虽然够减,但下珠不够减,必须拨去上珠破5,并相应地把破5后多减的数拨下珠补上,编成"几上几去五"的口诀共四句:
- 一上四去五 二上三去五 三上二去五 四上一去五 这类口诀的意思是:相减时,必须拨上几颗下珠,同时拨去一颗当5的上珠。如"三上二去五",就是当减数是3时,要拨上二颗下珠,同时拨去一颗上珠。

[6] 1] 5-1=4

在算盘上拨上5后,减1时,用口诀"一上四去五",见下图:

	减 1
9999	0000
1 - 1 - 1 00000 00000 00000	T T T O
拨上 5	—————————————————————————————————————

2.退位减法:指本档的瀔不够减,须从上一位"退十" (即从左一档借1)才够减的减法。在左一档"退十"相减后,把余数直接拨在本档上。编成"几退十还几"的口诀共九句:

 一退十还九
 二退十还八
 三退十还七

 四退十还六
 五退十还五
 六退十还四

 七退十还三
 八退十还二
 九退十还一

这类口诀的意思是:相减时,必须从左一档借1,同时把余数拨在本档上。如"三退十还七",就是当减数是3时,要从左一档借1(即"退十"),并在本档拨上一颗当5的上珠和二颗下珠。

【例1】10-1=9

在算盘上拨上10后,减1时,用口诀"一退十还九",见 下图:

【例 2 】 126-89=37

在应用退位减法口诀时,还需要注意下列几种情况: (1)"退十"时,如果上一位恰好是"0",没有算珠, 就要用隔位退位的办法(即再向上一位去借)。

【例1】100-1=99

	百位去1	个位减1
000000000000000000000000000000000000000	00-1 -00000	0-0 0000-0
拨上1 0 0	退还 一十	一退十还九

【例 2 1,002-4=998

(2)"退十"时,如上一位恰好是"5",就要结合破5的减法口诀进行计算。

例如: 50-2=48

(3)"退十"时,还常结合满5的加法口诀进行计算。

珠算减法口诀同样也是按照拨珠的动作编成的。现根据 减法口诀的难易程度,分类列表如下:

口被法类别	不退(立滅法	退位减法
城数	直接的	破 5 的	退 10 的
1	一去一	一上四去五	一退十还九
2	二去二	二上三去五	二退十还八
3	三去三	三上二去五	三退十还七
4	四去四	四上一去五	四退十还六
5	五去五		五退十还五
6	六去六		六退十还四
7	七去七		七退十还三
8	八去八		八退十还二
9	九去九		九退十还一

每句口诀的第一个字,是指要减的数,后面的字是说明 拨珠动作。"去几"表示只把上珠或下珠直接拨去,"上几"表 示把下珠拨上,"退十"表示在左一档拨去一颗下珠,"还几" 表示在左一档"退十"后本档加上几颗算珠。

下面再举例说明综合运用各类减法口诀的算法。

【例 1 】 315-267=48

【例 2 1,234-738=496

珠算小数减法和加法一样,必须对齐小数位数。

(三)加减法的基本练习方法

珠算加减法的应用最广,而且是各种算法的基础,因此,必须熟练地掌握珠算加减法的运算技术。要提高熟练程度,只有多练,练习时,不要急于求成,要正确地拨算珠,应用口诀进行计算。要领会口诀的道理,不必死背口诀,这样经过反复练习,就能得心应手,达到既准又快的目的。

下面介绍几种常用的加减法的基本练习方法,可以帮助 熟习指法和口诀,能随时自行练习。

- 1.三盘成(或三盘清): 先在算盘上拨123,456,789,再 从左到右各档都照原数加上,即用"见珠打珠"的方法,连拨 三盘,最后再加9,就得987,654,321。也就是:123,456,789 +123,456,789+246,913,578+493,827,156+9=987,654, 321。这是专练加法的。
 - 2. 七盘成(或七盘清): 先在算盘上拨123,456,789,再

从左到右逐次加上123,456,789,连加七次。也就是把123,456,789连续拨八次,最后再加9,得987,654,321。再从这个总数中先减去9,然后连减八次123,456,789,恰好减完。

- 3.打百子: 就是从1起挨次加2、加3······一直加到100。加到36时是666;加到77时是3003;加到100时,总数是5,050。然后再从5,050当中挨次减1、减2······一直减到100,正好减完。
- 4.加625: 连加16次, 得总数10,000; 然后再在总数中减去625, 直到减完为止。
- 5.加6,875: 连加10次, 得总数68,750; 然后再在 总 数 中减去6,875, 直到减完为止。
- 6.加16,835; 连加 3 次,得总数50,505; 连加 6 次,得总数101,010; 连加 9 次,得总数151,515; 连加12次,得总数202,020。然后再在总数中减去16,835,直到减完为止。

另外,还可利用率表上的数字来进行加、减运算,这是 在实践中进行练习的方法。

(四)加减简法

1.凑整加減法

当加数或减数接近整数(即10的乘方数)时,用凑整数(即10的乘方数)和补加数来进行加、减运算的方法,就叫做"凑整加减法",或叫"补加数加减法"。例如998 这 个数接近整数1,000(998和1,000相差 2,即998+2=1,000,这里,2就叫做998的补加数),就可用凑整数1,000和补加数 2 来进行运算。

举例图示如下:

[9] 1] 10,364+9,998=10,364+10,000-2=20,362

【例 2 】 3,832-994=3,832-1,000+6=2,838

从以上图例可以看出,用凑整加减法来运算,可以简化 拨珠动作,提高计算速度,但必须用心算来帮助,要养成习惯,才能又准又快。

2. 倒减法

在计算往来帐时,各户的存欠数有时存、有时欠,常会 发生减数大于被减数的情况,为了计算上的简便,遇到这种 情况不必另行拨珠,可把较小的被减数留在算盘上,利用借 1的方法,加大被减数后,减去较大的减数,算出应得的差 数。这种以较小的数来倒减较大的数的方法,就叫"倒减法"。

【例1】21,638-34,279+28,670-5,600=10,429

不够减 3 4,2 7 9	
9 99999	
<u> </u>	
十万位上加1(在上一位暂借1)	,

<u></u>	₹ 3	4,	2	7	9
<u>88</u>	0-0	0-0	9	<u> </u>	Property of the control o
00000	90-00	000	9 00-00	-00000	0-0
1	2	1, 4,	6 2	3 7	8
	8	7,	3	5	9

加28,670
8 7, 3 5 9 + 2 8, 6 7 0 1 1 6, 0 2 9

9999	99
- 6 - - - - - - - - -	000-000
五位土1 (还新信	+ 的 1)

【例 2 】 45,076+8,521-69,548-4,834=-20,785

	不	多两	6	9,	5	4	8
	00-	9	0-0	9	<u> </u>	0-0	<u></u>
	100000	0-0000	-00000	999 -00]-00000	0000-0	
レモは	=		<u> </u>	<u> </u>		400	ш.

借1后,算盘上的结果79,215不够还,还差20,785(即 100,000-79,215), 它是79,215的补加数,成为"负数",用 "一"的符号表示,即一20,785。用此法算往来帐的结余时,原是结存,到此就是结欠;反之,原是结欠,到此 就 是 结存。

以上两例说明,"倒减法"可以随时以较小的数来减较大的数,不必另行拨珠计算,就能提高效率。但在上一位借1时,必须注意在哪一档上借的1,到够还时,就在哪一档去1,要随借随还,如不够还,算盘上算出结果的补加数才是所求的数。因此,必须养成心算凑整,求一数的补加数的习惯。

四、乘 法

乘法就是同一个数连加几次的简便算法。例如: 6×7=42就是乘法的算式(也就是把6连加7次),其中"×"代表"乘"的符号,6是"被乘数",7是"乘数"(根据乘法的原理,被乘数和乘数可以互相调换,乘得的结果一样),42就是乘得的结果,叫做"积数"(简称"积")。

珠算乘法根据乘数的位数多少,可分为一位乘法、二位 乘法和多位乘法三种。为了运算方便起见,一般把位数较少 的一个数作为乘数。

(一)乘法口诀

在算盘上算乘法,和笔算一样,也是运用乘法"九九歌快"来计算的,共45句。由于口诀的各个乘积有二位的,也有一位的,为了防止运算加错档次,都当二位看待,凡乘积是一位的,都在乘积前加上一个"0",特列表如下:

01								
一二02	==04							
-≡03	二三06	三三09			*			
一四04	二四08	三四12	四四16					
一五05	二五10	三五15	四五20	H. F. 25				
一六06	二六12	三六18	四六24	五六30	六六36			
一七07	二七14	三七21	M 528	五七35	六七42	-t: ±149		
一八03	二八16	三八24	四八32	五八40	六八48	七八56	八八64	
一九09	二九18	三九27	四九36	五九45	六九54	七九63	八九72	九九81

每句口诀的前两个字是指乘数和被乘数,后面的阿拉伯数字是积数。乘法口诀并不表示拨珠动作,运算时就是把算出的结果加上,因此必须和珠算加法口诀结合进行。

(二) 乘法的定位方法

珠算乘法运算完毕,在算盘上的数字便是积数,由于算盘上以空档表示"0",而运算过程中发生的0和空档是分不清的。如625×748和6.25×7.48算盘上积数的有效数字(指头和尾不带0的数字)都是4675,实际上前者的积数是467,500,后者是46.75,这就必须掌握乘法的定位方法。

珠算乘法的定位,以乘数的位数为准,在整数乘法中, 只要数一下乘数有几位,被乘数个位的右面第几档就是积数 的个位。在运算时,可先看乘数有几位,就在被乘数的个位 后面空几档。如乘数是一位数,就把算盘最右档的前一档作

ì

为被乘数的个位档;乘数是二位数,就把算盘最右档的前二档作为被乘数的个位档,以此类推。乘得积数后,算盘上最右一档就是积数个位(也可选定一个计位点或铜档作定位的标记)。

在小数乘法中,可暂把被乘数和乘数都当作整数看待,但当被乘数或乘数是纯小数,而小数点后带"0"时,只取有效数字,如0.0003就当一位整数,0.034就当两位整数,余此类推。乘得积数后,再看被乘数和乘数里共有几位小数,然后从所得积数的最末一位(最末一位是"0"也要计算在内)向左数几位小数后,左边第一档就是积数的个位。也就是照笔算小数乘法定积数小数位的方法办理,被乘数和乘数里共有几位小数,积数就取几位小数。

举例图示说明如下:

【例1】 $408 \times 300 = 122,400$

乘数 300 是三位数,如以算盘最右档作为积数的个位档,就在被乘数个位后面空三档,乘得积数得 122,400。见下图。

空三档
999999

99999999
11000011
积

积数个位

【例 2 】 $408 \times 0.0003 = 0.1224$

乘数0.0003暂当一位整数看待,就在被乘数的个位后面空一档,乘得积数后,先看乘数是四位小数,就从最末一位向左数四位小数,得0.1224。见下图。

【例 3 】 $40.8 \times 0.3 = 12.24$

被乘数和乘数都暂当整数看待(乘数0.3当一位整数看待),就在被乘数末位后面空一档,乘得积数后,由于被乘数和乘数里共有两位小数,就从最末一位向左数两位小数,得12.24。见下图。

空一档	
000000	888888
	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	积数个位

如乘数有两个以上的连乘法也可用同样的方法计算。

例如: 38×0.027×118=121.068

乘数0.027和118当作五位整数看待,就在被乘数个位后面空五档。先算38×27,得1026;再以1026×118,得121068。由于乘数里有三位小数,就从最末一位向左数三位小数,得

121.068。

这种在算盘上数档位的定位方法就称为"数档定位法"。

(三)一位乘法

一位乘法就是乘数只有一位的乘法。在算盘上运算时,可在算盘的右边空一档放被乘数(即把算盘最右档的前一档作为被乘数的个位档)。乘数可放在算盘的左边,与被乘数的最高位(也叫"头位")隔开几档(为了不影响运算速度,习惯上常把乘数默记在心里,并不放在算盘上。 初学 珠算时,应养成这种默记乘数的习惯)。乘的顺序和笔算一样,也是从右到左,即由乘数乘被乘数的末位起,依次乘到被乘数的最高位为止。

乘积的记法,每乘一位,就把被乘数本档上的数字改成 乘积的十位数,个位数拨在右一档上(如乘 积 的 十位数是 0,应先贵去本档数字,以空档代 0,个位 数 仍 在 右一档 上)。所有被乘数都乘过之后,算盘上的结果便是积数。这 种乘法叫做"不隔位乘法",具有简便易学等优点,是实际工 作中常用的方法。

举例图示说明如下:

[5] 1] 408 × 3 = 1,224

计算时,先在算盘右边拨上被乘数408,被乘数 个 位右 边应留一空档,在被乘数头位左边隔开二档拨上乘数 3 。见 图 1 。

先以乘数3去乘被乘数个位8,口决"三八24",把本档8改为2,并在右一档加上4。见图2。

被乘数十位是 0 ,不用乘。再以乘数 3 去乘被乘数头位 (即百位) 4 ,口诀"三四12",把本档 4 改为 1 ,并在右一 档加上 2 ,得乘积1,224。算盘最右一档即乘积的个位档。见 图 3 。

【例 2 】 152×4=608

拨上被乘数152和乘数4。见图1。

先以乘数 4 去乘被乘数个位 2 ,口诀"二四 0 8",拨去本档 2 ,在右一档加上 8 。见图 2 。

再以乘数 4 去乘被乘数十位 5 ,口诀"四五20",把本档 5 改为 2 ,因乘积的个位数是 0 ,右一档不 加 数 字。 见图 3 。

最后,以乘数4去乘被乘数头位1,口诀"一四04",拨去本档1,在右一档加上4,得乘积603。见图4。

(四)二位乘法

二位乘法就是乘数只有二位的乘法。运算时,可在算盘的右边空二档放被乘数(即把算盘最右档的前二档作为被乘数的个位档),放乘数的方法和一位乘法相同。

乘的顺序是: 先用乘数第二位(即个位)去乘被乘数的 末位,再用乘数第一位(即十位)去乘被乘数的末位; 乘完 被乘数末位后,仍先用乘数第二位,再用乘数第一位,依次 去乘被乘数的各位,直到乘完被乘数的最高位为止。 乘积的记法,用乘数第二位去乘被乘数的某一位时,乘 积的个位数就拨在被乘数本位右边第二档,十位数拨在被乘 数本位右一档上;但用乘数第一位去乘被乘数的某一位时, 就把被乘数本档上的数字改成乘积的十位数,个位数拨在右 一档上(和一位乘法相同)。

如果被乘数的某一位还没有同乘数的第一位乘过,而在被乘数的右一档乘积已有9或满10或超过10,这时不能进位,应使用底珠、顶珠,或悬珠(就是把上珠悬在中间,既不靠上边,也不靠梁,又不和靠梁的另一颗上珠接触。悬珠当10)来暂记。等到同乘数的第一位乘过后,才能把右一档的数进位。

举例图示说明如下:

【例1】23×43=989

先在算盘右边拨上被乘数23,被乘数个位右边应空二档;在算盘左边拨上乘数43,乘数个位和被乘数头位可隔开二档。见图1。

先用乘数个位 3 去乘被乘数末位 3 , 口诀"三三09", 在被乘数末位右面第二档加上 9 。见图 2 。

再用乘数十位 4 去乘被乘数末位 3 ,口诀"三四12",把 被乘数末位 3 改为 1 ,右一档加上 2 。见图 3 。

然后,用乘数个位3去乘被乘数头位2,口诀"二三06", 在被乘数头位右面第二档加上6。见图4。

最后,再用乘数十位4去乘被乘数头位2,口诀"二四08",拨去被乘数头位2,在右一档加上8,得乘积989。 见图5。

【例2】189×98=18,522 本例应使用底珠和顶珠。 拨上被乘数189和乘数98。见图 1。

先用乘数个位 8 去乘被乘数末位 9 ,口诀"八九72",在被乘数末位右一档加上 7 ,右面第二档加上 2 。见图 2 。

再用乘数十位9去乘被乘数末位9,口诀"九九81",把 被乘数末位9改为8,右一档加上1。见图3。

然后,用乘数个位 8 去乘被乘数十位 8 ,口诀"八八64",在被乘数十位右一档加上 6 ,右面第二档加上 4 ,这时,被乘数十位的右一档上虽已超过10,但不能进位(因为被乘数十位 8 还没有同乘数的第一位乘过),应使用底珠和顶珠。见图 4 。

再用乘数十位9去乘被乘数十位8,口决"八九72",把 被乘数十位8改为7,右一档加上2。见图5。

最后,用乘数个位 8 去乘被乘数头位 1,口诀"一八08", 在被乘数头位右面第二档加上 8。见图 6。

再用乘数十位9去乘被乘数头位1,口诀"一九09", 拨去被乘数头位1,右一档加上9,得乘积18,522。见图 7。

【例 3 】 $7.5 \times 0.014 = 0.105$

小数乘法,可暂把被乘数和乘数当整数看待,本例乘数 0.014,有两位数字,可当整数二位乘法来进行运算。

拨上被乘数和乘数,被乘数末位右边空二档。见图 1 。 先用乘数第二位 4 去乘被乘数末位 5 ,口诀"四五20",

再用乘数头位1去乘被乘数末位5,口诀"一五05"。见图2。

然后,用乘数第二位 4 去乘被乘数头位 7 ,口诀"四七 28",最后,用乘数头位 1 去乘被乘数头位 7 ,口诀"一七07",得积数1050,由于被乘数和乘数里共有四位小数,应从最末一位向左数四位小数,得0.105。见图 3。

(五) 多位乘法

多位乘法是乘数有三位或三位以上的乘法。运算时,如 乘数是几位,被乘数末位后面就空几档(即乘数三位,空三档;乘数是四位,就空四档,以此类推)。 珠算多位乘法,由于乘的顺序不同,具体的运算方法也不同,其中"留头乘法"是实际工作中广泛采用的方法,本书就主要介绍这种方法。

留头乘法就是先用乘数左起第二位去乘被乘数的末位, 再用乘数左起第三位、第四位……去乘被乘数的末位,最后 才用乘数的最高位(即左起第一位)去乘被乘数的末位,这 样,依次去乘被乘数的其它各位后便得出积数,所以叫做留 头乘法。因为留头乘法先从乘数第二位数字乘起,所以又叫 "穿心乘法"。乘的顺序如下图:

乘积的记法,乘数是第几位,乘积的个位就放在该被乘 数本位后面的第几档上(乘积的十位数放在个位数的左一档 上)。

这种乘法的优点是,在运算中容易认清被乘数和积数, 能减少差错。为了避免在边乘边加时错档,开始运算时,可 用左手食指点在被乘数个位档上,等到本档被乘数乘完后, 再点在被乘数十位档上,以下类推。

举例图示说明如下:

【例 1 】 $625 \times 748 = 467,500$

先在算盘右边拨上被乘数625,被乘数个位右边留三位空档; 在算盘左边拨上乘数748。见图1。

第一步: 先用乘数第二位 4 去乘被 乘 数 末 位 5 , 口诀

"四五20",从被乘数末位右一档起加上乘积20。见图 2。

再用乘数末位8去乘被乘数末位5,口诀"五八40",从 被乘数末位右面第二档起加上乘积40。见图 3 。

然后,用乘数头位7去乘被乘数末位5,口诀"五七35", 拨去被乘数末位5,从本档起加上乘积35。见图4。

第二步: 先用乘数第二位 4 去乘被乘数第二位 2 , 口诀 "二四08",在被乘数第二位右面第二档加上乘积8。见图5。

再用乘数末位 8 夫乘被乘数第二位 2 , 口诀"二八16", 从被乘数第二位右面第二档起加上乘积16。见图 6。

然后,用乘数头位7去乘被乘数第二位2,口诀"二七 14", 把被乘数第二位2改成乘积的十位数1,在右一档加上 个位数4。见图7。

第三步: 先用乘数第二位 4 去乘被 乘 数 头 位 6 , 口诀 "四六24",从被乘数头位右一档起加上乘积24。见图 8。

再用乘数末位8去乘被乘数头位6,口决"六八48",从 被乘数头位右面第二档起加上乘积48。见图9。

最后,用乘数头位7去乘被乘数头位6,口诀"六七42", 把被乘数头位7改成乘积的十位数4,在右一档加上个位数 2. 便得乘积467,500。见图10。

【例 2 $\mathbf{1}$ 987 \times 998 = 985,026

本例应使用顶珠和悬珠。

拨上被乘数987和乘数998。见图1。

第一步: 先用乘数第二位9去乘被乘数 宋 位 7,口诀"七九63",从被乘数末位右一档起加上乘积63。见图 2。

再用乘数末位8去乘被乘数末位7,口决"七八56",从 被乘数末位右面第二档起加上乘积56。见图3。

然后,用乘数头位9去乘被乘数末位7,口诀"七九63", 把被乘数末位改成乘积的十位数6,在右一档加上个位数3。 见图4。

第二步: 先用乘数第二位9去乘被乘数第二位8,口诀"八九72",从被乘数第二位右一档起加上乘积72,相加后被乘数第二位右一档虽已超过10,但不能进位(因为被乘数第二位8还没有同乘数的头位乘过),应使用顶珠。见图5。

再用乘数末位 8 去乘被乘数第二位 8 ,口诀"八八64", 从被乘数第二位右面第二档起加上乘积64。见图 6 。

然后,用乘数头位9去乘被乘数第二位8,口诀"八九72",把被乘数第二位8改成乘积的十位数7,在右一档加上个位数2。见图7。

第三步: 先用乘数第二位 9 去乘被 乘 数 头 位 9 ,口诀 "九九81",从被乘数头位右一档起加上乘积81,相加后被乘 数头位右一档虽已超过10,但被乘数头位还没有和乘数末位 乘过,所以还不能进位,而这时被乘数头位右一档上的算珠 又不够用,因此,应使用悬珠,用顶珠(上不靠边,下不靠下面的一颗上珠)悬起来当10。见图 8 。

再用乘数末位8去乘被乘数头位9,口诀"八九72",从

被乘数头位右面第二档起加上乘积72。见图 9 。

最后,用乘数头位9去乘被乘数头位9,口决"九九81", 把被乘数头位改成乘积的十位数8,在右一档加上个位数 1,拨去悬珠,在左一档"进1",便得积数985,026。见图 10。

 $[6]3]1,289 \times 4,056 = 5,228,184$

本例乘数4,056第二位是0,就从第三位乘起。

拨上被乘数1,289和乘数4,056。见图1。

第一步: 先用乘数第三位 5 去乘被 乘数 末 位 9 , 口诀 "五九45",从被乘数末位右面第二档起加上乘积45。见图 2 。

再用乘数末位6去乘被乘数末位9,口诀"六九54",从 被乘数末位右面第三档起加上乘积54。见图3。

然后,用乘数头位4去乘被乘数末位9,口诀"四九36", 把被乘数末位9改成乘积的十位数3,在右一档加上个位数6。见图4。 第二步: 先用乘数第三位5去乘被乘数第三位8,口诀"五八40",从被乘数第三位右面第二档起加上乘积40。见图5。

再用乘数末位 6 去乘被乘数第三位 8 , 口诀"六八48", 从被乘数第三位右面第三档起加上乘积48。见图 6 。

然后,用乘数头位 4 去乘被乘数第三位 8 ,口诀"四八32",把被乘数第三位 8 改成乘积的十位数 3 ,在右一档加上个位数 2 。见图 7 。

第三步: 先用乘数第三位5去乘被乘数第二位2,口诀"二五10",从被乘数第二位右面第二档起加上乘积10。见图8。

再用乘数末位 6 去乘被乘数第二位 2 ,口诀"二六12", 从被乘数第二位右面第三档起加上乘积12。见图 9 。

然后,用乘数头位 4 去乘被乘数第二位 2 ,口诀"二四 08",拨去被乘数第二位 2 ,右一档加上乘积的个位数 8 。见 图10。

第四步: 先用乘数第三位 5 去乘被 乘 数 头 位 1 ,口诀"一五05",在被乘数头位右面第三档加上乘积的个位数 5 。 见图11。

再用乘数末位 6 去乘被乘数头位 1 , 口诀"一六06", 在被乘数头位右面第四档加上乘积的个位数 6 。见图12。

最后,用乘数头位 4 去乘被乘数头位 1,口诀"一四04", 拨去被乘数头位 1,在右一档加上乘积的个位数 4,便得积 数5,228,184。见图13。

【例 4 】 $8.64 \times 62.5 = 540$

本例是小数乘法,乘数62、5有三位数字,可当整数三位乘法来进行运算。

拨上被乘数和乘数,被乘数右边空三档。见图 1。

第一步: 先用乘数第二位 2 去乘被 乘 数 末 位 4 ,口诀 "二四08",再用乘数末位 5 去乘被乘数末位 4 ,口诀 "四五 20"; 然后,用乘数头位 6 去乘被乘数末位 4 ,口诀"四六24"。 见图 2。

第二步: 先用乘数第二位 2 去乘被乘数第二位 6 ,口诀"二六12"; 再用乘数末位 5 去乘被乘数第二 位 6 ,口 诀"五六30"; 然后,用乘数头位 6 去乘被乘数第二位 6 ,口诀"六六36"。见图 3 。

第三步: 先用乘数第二位 2 去乘被乘数头位 8,口诀"二八16"; 再用乘数末位 5 去乘 8,口诀"五八40"; 最后,用乘数头位 6 去乘 8,口诀"六八48",得积数540000。由于被乘数和乘数里共有三位小数,应从最末位向左数三位小数,得540。见图 4。

多位乘法,除"留头乘法"外,还有"破头 乘 法"和"掉尾乘法"。

破头乘法是先从乘数最高位数字和被乘数的末位数字乘起,被乘数每一位数字和乘数的各位相乘时,一开始就要破本位,所以叫做"破头乘法"。乘的顺序如下图:

现以625×748为例图示说明如下(图示从简):

拨上被乘数和乘数,被乘数个位右边空三档(与留头乘 法相同)。见图 1。

第一步: 先用乘数头位 7 去乘被乘数末 位 5 ,口 诀"五七35",把被乘数末位改成乘积的十位数 3 ,在右 一档加上个位数 5 ;再用乘数第二位 4 去乘被乘数 末 位 5 ,口诀"四五20",从被乘数末位右一档起加上乘积20;然后,用乘数末位 8 去乘被乘数末位 5 ,口诀"五八40",从被乘数末位右面第二档起加上乘积40。见图 2。

第二步: 先用乘数头位 7 去乘被乘 数 第 二 位 2 ,口诀 "二七14",把被乘数第二位改成乘积的十位数 1 ,在右一档 加上个位数 4; 再用乘数第二位 4 去乘被乘数第二位 2 ,口 决"二四08",在被乘数第二位右面第二档加上乘积 8; 然后 用乘数末位 8 去乘被乘数第二位 2 ,口诀"二八16",从被乘数第二位右面第二档起加上乘积16。见图 3。

第三步: 先用乘数头位 7 去乘被乘数 头 位 6 ,口诀"六七42",把被乘数头位 6 改成乘积的十位数 4 ,在 右 一档加上个位数 2;再用乘数第二位 4 去乘被 乘 数 头 位 6 ,口诀"四六24",从被乘数头位右一档起加上乘积24;最后,用乘数末位 8 去乘被乘数头位 6 ,口诀"六八48",从被乘数头位右面第二档起加上乘积48,便得积数467,500。见图 4 。

掉尾乘法是先从乘数末位数字和被乘数的 末 位 数 字乘起,被乘数每一位数字一开始就和乘数的末位数字相乘,所以叫做"掉尾乘法"。乘的顺序如下图:

现仍以625×748为例图示说明如下(图示从简):

拨上被乘数和乘数,被乘数个位右边空三档(与留头乘 法相同)。见图1。

第一步: 先用乘数末位 8 去乘被乘 数 末位 5 ,口诀"五八40",从被乘数末位右面第二档起加上乘积40;再用乘数第二位 4 去乘被乘数末位 5 ,口诀"四五20",从被乘数末位右一档起加上乘积20; 然后,用乘数头位 7 去 乘 被 乘 数末位 5 ,口诀"五七35",把被乘数末位 5 改成乘积的十位数 3 ,在右一档加上乘积的个位数 5 。见图 2 。

第二步: 先用乘数末位 8 去乘被乘数第二位 2,口诀"二八16",从被乘数第二位右面第二档起加上乘积16;再用乘数第二位 4 去乘被乘数第二位 2,口诀"二四08",在被乘数第二位右面第二档加上乘积 8; 然后,用乘数头位 7 去乘被乘数第二位 2,口诀"二七14",把被乘数第二位改为乘积的十位数 1,在右一档加上乘积的个位数 4。见图 3。

第三步: 先用乘数末位 8 去乘被乘数头位 6 ,口诀"六八48",从被乘数头位右面第二档起加上乘积48;再用乘数第二位 4 去乘被乘数头位 6 ,口诀"四六24",从被乘数头位右一档起加上乘积24;最后,用乘数头位 7 去乘被乘数头位 6 ,口诀"六七42",把被乘数头位 6 改成乘积的十位数 4 ,在右一档加上乘积的个位数 2 ,便得积数467,500。见图 4 。

破头乘法一开始就要破掉被乘数,如果位数较多,往往 容易把被乘数的数字忘掉;而掉尾乘法也容易发生串位错档 的错误。所以,这两种乘法只适用于位数较少的多位乘法。

(六)乘法的基本练习方法

初学珠算乘法时,可在算盘上拨123,456,789作被乘数,分别用2、3、4、5、6、7、8、9去乘,这是一位乘法的基本练习方法之一,也是打好多位乘法的基础。然后分别用9的倍数(即18、27、36、45、54、63、72、81)去乘,乘得结果依次是2,222,222,202到9,999,999,909。还可经常练习以下各题:

- 1. 781,250×128=100,000,000算盘上乘得的结果是1(有效数字),叫做"万众一心"。
- 2. 16,225,679×35=567,898,765算盘上积数的盘式左 右对称,叫做"凤凰展翅"。
- 3. 以1,953,125 为被乘数,分别用512和它的倍数(即1,024、1,536、2,048、2,560、3,072、3,584、4,096、4,608)去乘,乘得的结果依次是1、2、3、4、5、6、7、8、9(有效数字),这是多位乘法的基本练习方法之一,叫做"狮子滚绣球"。

(七)乘法简法

1. 凑整乘法

两数相乘如有一数接近整数(即10的乘方数)时,也可用补加数的方法来简化计算过程。这种乘法,是用被乘数与乘数的补加数相乘,在被乘数的适当位数上减去这个乘积进行运算的。例如:189和9相乘时,乘数9接近整数10,补加数是1,就把乘数凑整为10,把被乘数189扩大10倍,成为

1,890,减去被乘数189和补加数1的乘积(即1,890-189×1),便得乘积1,701。又如: 189 和 98相乘时,乘数 98 接近整数 100,补加数是 2,就把乘数凑整为100,把被乘数 189 扩大100倍,成为18,900,减去被乘数189和补加数 2 的乘积(即18900-189×2),便得乘积18,522。这种乘法就叫"凑整乘法",或称"补加数乘法"。因为它是用减法来进行运算的,所以又叫"减乘法"。"凑整乘法"用加、减运算,既简便,又能避免错位。

举例图示说明如下:

【例 1 $\mathbf{1}$ 987 × 998 = 985,026

乘数998接近整数1,000,补加数是2,把被乘数987扩大1,000倍,成为987,000,减去987×2的积数1,974,便得乘积985,026。

乘数998是三位数,应在算盘最右边空三档放被乘数987, 也就是把被乘数扩大1000倍,成为987,000;补加数2默记 在心里。见图1。

然后在987,000里减去987×2的乘积(即被乘数本数的2倍),只要在百位起减两次987后,便得乘积985,026。非常简便。见图2、3。

【例 2 】 $476 \times 995 = 473,620$

乘数995的补加数是 5 , 把被乘数 476扩大1,000倍,成为 476,000, 减去476×5的积数2,380。 便得乘积473,620。

在算盘最右边空三档放被乘数476,也就是把此数 看 成为476,000。见图 1。

从476,000里减去 476×5 治乘积, 先以补加数 5 去乘被乘数末位 6, "五六30", 从被乘数末位右面第二档起减去乘积30, 见图 2。

再以补加数 5 去乘被乘数第二位 7, "五七35", 从被乘数第二位右面第二档起减去乘积35。见图 3。

最后,以补加数5去乘被乘数头位4,"四五20",从被乘数头位右面第二档起减去乘积20,便得乘积473,620。见图4。

【例 3] $1,289 \times 4,056 = 5,228,184$

本例被乘数1,289中有接近整数10的8和9,因为被乘数和乘数可以互相调换,例如9×4,056和4,056×9的积数一样,如把9×4,056当作4,056×9,把乘数4,056扩大10倍,成为40,560,减去4,056×1,便得积数36,504。在运算9×4,056时,就可拨去9,从本位起加上40,560,并从本位右一档起减去4,056,进行加减运算。在运算8×4,056时,就可拨去8,从本位起加上40,560,并从本位右一档起两次减去4,056,便得所乘的积数。见图1一6。

当被乘数中有1或2时,如1×4,056,也可拨去被乘数1,从本位的右一档起加上乘数4,056;如2×4,056,就拨去被乘数2,从本位右一档起加上乘数4,056二次。便得所乘的积数。见图7-9。

2. "加代乘"法

在日常计算中,常有某个乘数在一个时期里是固定不变的,只是被乘数不同,可先把固定不变的乘数从 1 — 9 倍的乘积算出来编成表(称做"倍数表"),然后拨被乘数在算盘上,从被乘数末位起,依次照表上相应的倍数相加,就得所求的积数。这种用加法来代替乘法的方法,就叫"加代乘"法,运算起来比用乘法简便得多。

例如:粮食基层单位收购和销售各种粮食,计算价款时,由于粮食购销牌价极少变动,就可预先把不同品种粮食的每斤单价编成1—9倍的倍数表,分别用"加代乘"法运算。

现以面粉和小米销售单价为例,编成每斤单价的倍数表如下(单位元):

斤	面	粉	小	*
1	0.18		0.134	
2	0.36		0.268	
3	0.54		0.402	
4	0.72		0.536	
5	0.90		0.670	
6	1.08		0.804	
7	1.26		0.938	
8	1.44		1.072	
9	1.62		1.206	

注,设面粉每斤0.18元,小米 每斤0.134元。

如售出小米 28.5 斤,价 款 应是:

 $28.5 \times 0.134 = 3.819$ 元

运算时,先在算盘右边拨上被乘数28.5,但在被乘数末位后面应空三档(乘数0.134作三位看待),从被乘数末位起查倍数表,把被乘数从本位起改成相应的倍数逐位相加。如倍数头位是0,0应在本位,就把被乘数本位拨去,从右一档起加倍数的其他各数;如倍数头位不是0,就把被乘数本位改成该倍数的头位数字,从右一档起加倍数的

其他各数,注意对准位数。图示如下:

如把算盘图式摆成加法算式就是:

在实际工作中,例如食堂会计出售饭票计价、生产队年 终分配计算各户工分值等,都可仿照上述编成倍数表的办法, 用"加代验"法运算,就能提高工作效率。

五、除 法

除法是计算一个数被另一个数等分的方法,实际上也可以说是一种简便的减法,它的道理和乘法正相反。例如: 42÷6=7,就是除法的算式。其中"÷"代表"除"的符号,42是"被除数",6是"除数",7是除得的结果,叫做"商数"(简称"商");有时除不尽,剩下的数叫"余数"。

珠算除法根据除数的位数多少,可分为一位除法和多位 除法两种。

(一)除法口诀

在算盘上算除法,也有一套除法口诀叫"归除歌诀"。除数是一位的除法叫"归",也叫"九归法"。除数是1的叫"一归",除数是2的叫"二归",以下类推。除数是二位以上的多位除法叫"归除",除数的头位是几就是几归,头位以下的数是几就是几除,如除数是12的叫"一归二除",除数是365的叫"三归六五除"等。

一位除法用"九归口诀",共59句;多位除法,除九归口 诀外,有时还要用"撞归口诀",共18句。

九归口决如下:

一归 逢一进1,逢二进2,逢三进3,逢四进4,逢五进 5,逢六进6,逢七进7,逢八进8,逢九进9。

- 二归 二一改作 5,逢二进 1,逢四进 2,逢六进 3,逢八 进 4。
- 三归 三一3余1,三二6余2,逢三进1,逢六进2,逢九进3。
 - 四归 四一 2 余 2 , 四二 改作 5 , 四三 7 余 2 , 逢四进 1 , 逢八进 2 。
 - 五归 五一改作 2 ,五二改作 4 ,五三改作 6 ,五四改作 8 , 逢五进一。
 - 六归 六一下加 4 , 六二 3 余 2 , 六三改作 5 ,六四 6 余 4 , 六五 8 余 2 , 逢六进 1 。
 - 七归 七一下加3,七二下加6,七三4余2,七四5余5,七五7余1,七六8余4,逢七进1。
 - 八归 八一下加²,八二下加⁴,八三下加⁶,八四改作⁵, 八五⁶余²,八六⁷余⁴,八七⁸余⁶,逢八进¹。
 - 九归 九一下加1,九二下加2,九三下加3,九四下加4, 九五下加5,九六下加6,九七下加7,九八下加8, 逢九进1。

九归口诀可分为没有余数的和有余数的两类。

- 1.没有余数(即能除尽)的口诀,又可分为两种。
- (1)"逢几进几"类: 当被除数大于除数(即"够除"时),就用这类口诀。"逢几"表示当被除数"够除"时,拨去本档被除数;"进几"表示在左档加上几颗算珠。因为这类口诀里没有除数,应用时要注意属于哪一归(即除数是几),并特别注意"逢几进1"和加法口诀里逢10"进1"的区别。例如:"逢八进4"就是8-2=4的意思。图示如下:

在算盘左边第二档拨上被除数8。见图1。

拨去被除数8,在左一档拨上四颗下珠。见图2。

(2)"改作"类:当被除数小于除数(罩"不够除")时用这类口诀。"改作"表示在本档把被除数改成商数。例如"二一改作5"就是10+2-5 商意思。图示如下:

在算盘左边拨上被除数10。见图1。

在本档拨下一颗上珠,并拨去一颗下珠。见图 2。

2. 有余数(即不能除尽)的口诀,也可分为两种:

(1)"余"类(即"×××余×"): 当被除数小于除数(即"不够除")但不能除尽时,就用这类口诀。"余"表示有余数,"余"字前的阿拉伯数字是商数,后面是余数,如:"三一3余1"就是10被3除,商数是3,余数是1。运算时,在本档把被除数改成商数,并在右一档加上余数。图示如下:

在算盘左档拨上被除数10。见图1。

在本档投上二颗下珠,把被除数改成商数3,再在右一档拨上一颗下珠。见图2。

(2)"下加"类: 当被除数小于除数(即"不够除")而被除数恰与商数相同,且有余数时,用这类口诀。"下加"表示被除数本档不动(成为商数),在右一档加上余数(即阿拉伯数字)。例如:"六一下加4",就是10-6=1余4的意思。图示如下:

在算盘左边拨上被除数10。见图 1 。 在右一档加上四颗下珠。见图 2 。

现把九归口诀分类列表如下:

				<u>`</u>
口 分	没有余多	改- 的	有 余 - 数	女 的
诀 \ 类	进商类	改商类	商余	类
归(除数)	进 商 类 (逢几进几)	(改作)	(余)	(下 加)
	逢一进1			
=	逢二进1,逢四进2, 逢六进3,逢八进4	二一改作5		
Ξ	逢三进1,逢六进2, 逢九进3		三一3余1 三二6余2	
四	逢四进1,逢八进2	四二改作5	四一2余2 四三7余2	
五.	逢五进1	五一改作2 五二改作4 五三改作6 五四改作8	<u>.</u>	
六	逢六进1	六三改作 5	六二3余2, 六四6 余4, 六五8余2	
せ	逢七进1		七三4余2,七四5 余5,七五7余1, 七六8余4	七二下加6
八	逢八进1	八四改作 5	八五6余2,八六7余4,八七8余6	八三下加6
九	逢九进1			九一下加1九八下加8

上表除"逢几进几"类口诀未注明除数外,其余三类口诀的第一个字指除数,第二个字指被除额; 所有口诀后面的阿拉伯数字是指商数或余数。

撞归口诀如下:

口诀/归	A	商 九 类	退商类
_	归	见一无除9余1	无除退一下还1
=	归	见二无除 9 余 2	无除退一下还 2
三	归	见三无除9余3	无除退一下还 3
妽	归	见四无除9余4	无除退一下还 4
五	归	见五无除9余5	无除退一下还 5
六	归	见六无除9余6	无除退一下还 6
七	归	见七无除 9 余 7	无除退一下还 7
八	归	见八无除9余8	无除退一下还 8
九	归	见九无除 9 余 9	无除退一下还9

在多位除法中,如被除数和除数的头位数相同,而被除数第二位和以下数字比除数第二位和以下各位数字小(即"不够除")时,就要用撞归口诀。

撞归口诀有"商九"和"退商"两类。

1."商九"类:每句口诀的商数都是9。"见几"表示被除数和除数都是几(即头位相同),"无除"表示"不够除","9余几"表示商数是9,余数是"几"(与除数头位数相同)。例如;115÷12就要用口诀"见一无除9余1"。图示如下:

在算盘左边拨上被除数115。见图 1。 把被除数头位 1 改成 9,右一档拨上一颗下珠。见图 2。

2."退商"类:每句口诀的"无除退一"表示商数过大,也就是商数和除数第二位和以下各位数字相乘的积数大于余数(即余数不够减)时,就要把商数减去1;"下还几"表示在商数的右一档加上几(与除数头位数相同)。有时退1后仍不够减,可继续退1,到够减为止。例如113÷14用口诀"见一无除9余1"后,余数23不够减商数9和除数第二位4的乘积36,这时就要用口诀"无除退1下还1",从商数减去1。图示如下:

拨上被除数113。见图1。

先用商九口诀"见一无除9余1"。见图2。

再用退商口诀"无除退1下还1",从商数9减去1,在 右一档拨上一颗下珠,商数是8,余数是33。见图3。

上述口诀主要是按照算出的结果编成的,有些也能结合 拨珠动作。如果在理解口诀意思的基础上,背熟口诀,运算 时,商数可脱口而出。即使忘了某句口诀,也可随时根据口 诀来源,用心算的方法算出来。

(二)除法的定位方法

珠算除法的定位,以除数的位数为准,也是用数档位的 方法,只是方向和乘法相反。

在整数除法中,只要数一下除数有几位,被除数个位的 左面第几档 就是商数的个位。如除数是一位,商数个位在 被除数个位的左面第一档上;除数是二位,商数个位在被除 数个位的左面第二档上,以此类推。在运算时,可选定一个 计位点或铜档作定位的标记。

在小数除法中,如除数是带小数,只要数一下整数有几

位,商数个位就在被除数个位的左面第几档上;如除数是纯小数,小数点后面没有"0",如0.3,商数个位就在被除数的个位档上;但当除数是纯小数,而小数点后面带"0",如0.0003,只要数一下带几个0,商数个位就在被除数个位的右面第几档上。

【例1】12,240÷300=40.8

除数300是三位数, 商数个位在被除数个位的 左 面第三档上(即左移三档)。见下图。

【例 2 】 $1,224 \div 0.3 = 4,080$

除数0.3是小数点后不带"0"的纯小数,商数个位就在被除数的个位档上。见下图。

 商数个位

【例 3 】 $0.1224 \div 0.0003 = 408$

除数0.0003,小数点后有三个0,商数个位在被除数个位的右面第三档上(即右移三档)。见下图。

(三)一位除法

一位除法就是除數只有一位的除法。在算盘上运算时, 通常把除数放在算盘的左边(除数也可记在心里),在距离 除数二或三档的右边拨被除数。

除的顺序,和笔算一样,也是由被除数的最高位数字, 从左向右,依次被除数除,直到除完为止;如除完被除数的 末位数后,在该档右边还有数字,那就是余数(即除不尽)。

除的方法,按照九归口诀改变被除**数的算** 珠,即得商数。 被除数个位的左一档便是商数的个位。

【例1】632÷4=158

在算盘左边拨除数 4,隔开三档拨被除数632,商数个位 在被除数个位的左一档。见图 1。

先从被除数头位除起, 6 - 4, 6 大于 4, 用四归口

诀"逢四进1",从本档6中减去4,在左一档加上1(就是商数)。见图2。

2 · 4 , 2 小于 4 ,用口诀"四二改作 5 ",把本档 2 改成 5 (成为商数)。见图 3 。

3 - 4 , 用口诀"四三 7 余 2 ", 把本档 3 改成 7 (成为商数), 在右一档加上余数 2 。见图 4 。

最后, 4 - 4, 口诀"逢四进 1", 拨去本档 4, 在左一档加上 1, 得商数 158。 见图 5。

-【例 2 】 518 ÷ 7 = 74

拨上除数7和被除数518。见图1。

5 → 7 ,用七归口诀"七五 7 余 1 ",把本档 5 改成商数 7 ,在右一档加上余数 1 。见图 2 。

2 ÷ 7, 口诀"七二下加六", 本档 2 不动, 成为商数, 在右一档加上 6。不能逢10进 1, 要用顶珠。见图 3。

14÷7,口诀"逢七进1",拨去本档7,在左一档加上 商数1。见图4。

再"逢七进1",拨去本档7,在左一档加上商数1(也可直接拨去14,在左一档加上商数2,即"逢十四进2"),得商数74。见图5。

(四)多位除法

多位除法,就是除数是两位以上的除法。在算盘上运算时,分为"归"和"除"两步,叫做"归除"。"归"就是先用除数的头位去除被除数的头位,用九归口诀求得商数(有时,还要用撞归口诀);"除"就是再用商数同除数的第二位和以下各位数字相乘,把相乘的积数依次从被除数中减去,直到除尽,或除到所要求的几位商数为止。

【例1】989÷43=23

在算盘左边拨除数43,隔开三档拨被除数989,除数是二位数,商数个位就在被除数个位的左面第二档上。见图1。

除数头位是 4,应用四归口诀来除被 除 数 头 位 9,口 诀"逢八进 2",拨去本档 8,在左一档加 上 商 数 2。见 图 2。

然后,在商数2的右面第二档上减去除数第二位3和商数2的乘积6。见图3。

再用除数头位 4 去除被除数 1 ,口诀"四一 2 余 2 ",把本档 1 改成商数 2 ,在右一档加上余数 2 。见图 4。云

余数49大于除数43,要进行"补商"(即"够除",要加大商数),用口诀"逢四进1",拨去4,并在左一档加上1(商数成为3)。见图5。

最后,在商数3的右面第二档上减去除数第二位3和商数3的乘积9,便得商数23。见图6。

【例2】3,045÷35=87

在算盘左边拨上除数35,隔开三档拨被除数3,045,被除数个位的左面第二档是商数个位档,见图1。

除数和被除数头位都是3,被除数第二位0小于除数第二位5(即"不够除"),应用"商九"口诀"见三无除9余3", 把本档3改成商数9,在右一档加上余数3。见图2。 商数9过大,余数34不够减除数第二位5和商数9的乘积45,要用"退商"口诀"无除退一下还3",从商数9中减去1,在右一档加上3。见图3。

然后,从商数8的右一档起减去除数第二位5和商数8的乘积40。见图4。

再用除数头位 3 去除被除變 2 ,用口诀"三二 6 余 2", 把本档 2 改成商数 6 ,在右一档加上余数 2 。见图 5 。

余数65大于除数35,要"补商",用意决"逢三进1",从本档6中减去3,在左一档加上1(商数成为7)。见图6。

最后,从商数7的右一档起减去除数第二位5和商数7的乘积35,得商数87。见图7。

【例 3 】 $40,948 \div 706 = 58$

在算盘左边拨上除数706,隔开4档拨被除数40,948,因除数是三位数,被除数个位的左面第三档便是商数个位档。 见图1。

除数头位是7,应用七归口诀来除被除数头位4,口诀"七四5余5",把本档4改成商数5,在右一档加上余数5。见图2。

除数第二位是 0 , 应从商数 5 的右面第二档起减去除数第三位 6 和商数 5 的乘积30。见图 3 。

再用除数头位7去除被除数5,口决"七五7余1",把 本档5改成商数7,在右一档加上余数1。见图4。

余数748大于除数706,要"补商",用口诀"逢七进1", 拨去7,并在左一档加上1(商数成为8)。见图5。

最后,从商数8的右面第二档起减去除数第三位6和商数8的乘积48,得商数58。见图6。

图	0-0	00	<u> </u>	0	00	8	0	8	8	0	8	0-	00-
1	000-000	-00000	0000	-00000	-00000	-00000	-00000	8000-0	-00000	6006-0	0000-0	99-00	-00000
			除数个位	,					商数个位		,	被除数个位	

【例 4 】 826,731 ÷ 8,523 = 97

號上除数8,523和被除数826,731。因除数是四位数,被 除数个位的左面第四档便是商数个位档。见图 1。

除数和被除数头位都是8,被除数第二位2小于除数第二位5(即"不够除"),应用"商九"口诀"见八无除9余8", 把本档8改成商数9,在右一档加上余数8,不能逢10进1, 要用底珠。见图2。

从商数9的右一档起减去除数第二位5和商数9的乘积45。见图3。

再从商数9的右面第二档起减去除数第三位2和商数9

的乘积18。见图 4。

再从商数 9 的右面第三档起减去除数第四位 3 和商数 9 的乘积27。见图 5。

然后,用除数头位8去除被除数5,口诀"八五6余2", 把本档5改成商数6,在右一档加上余数2,不能逢10进1, 要用顶珠。见图6。

商数 6 的右一档11比除数头位 8 大,要补商,口诀"逢八进1",从11中减去 8,在左一档加上1(商数成为 7)。 见图 7。

从商数7的右一档起减去除数第二位5和商数7的乘积35。见图8。

再从商数7的右面第二档起减去除数第三位2和商数7的乘积14。见图9。

最后,从商数7的右面第三档起减去除数第四位3和商数7的乘积21,得商数97。见图10。

【例 5 】 $0.105 \div 0.014 = 7.5$

本例除数和被除数都是纯小数,在算盘左边拨上除数的有效数字14,隔开四档拨被除数的有效数字105。除数0.014,小数点后有一个"0",商数个位应在被除数个位档的右一档,可利用计位点作为商数的小数点。见图1。

除数和被除数头位都是1,被除数第二位0比除数第二位4小(即"不够除"),应用"商九"口诀"见一无除9余1",把本档1改成商数9,右一档加上余数1。见图2。

商数9过大,余数15不够减除数第二位4和商数9的乘积36,要用"退商"口诀"无除退一下还1",从商数9中减去1,在右一档加上1。见图3。

商数 8 仍过大, 余数25不够减除数第二位 4 和商数 8 的 乘积32, 还要用"退商"口诀"无除退一下还 1", 从商数 8 中减去 1, 在右一档加上 1。见图 4。

从商数7的右一档起减去除数第二位4和商数7的乘积28。见图5。

再用除数头位1去除被除数7,7比1大,用一归口诀 "逢五进5",从本档7中减去5,在左一档加上5(成为商数)。见图6。

最后,从商数 5 的右一档起减去除数第二位 4 和商数 5 的乘积20,得商数7.5。见图 7。

(五)除法的基本练习方法

通常先在算盘上拨123,456,789九个数,然后用 2 乘,乘过后再被 2 除,这样一乘一除的结果仍是原数,就叫做"二归",接着再用 3 去乘和除,叫做"三归"。其他各归以此类推。这是练习一位除法和熟记九归口诀的常用的练习方法。也可反着进行,即先除后乘。

多位除法也可用123,456,789乘9的倍数(即18、27、36、45、54、63、72、81)后,再除以原乘数(即9的倍数);或用123,456,789乘任意两位数(如19、28、37、46、55、64、73、

82、91等)后,再除以原乘数(即任意两位数)。也可反着进行,即先除后乘。

还可经常练习以下各题:

- 1.以"狮子滚绣球"(即1,953,125×512及其倍数:1,024、1,536、2,048、2,560、3,072、3,584、4,096、4,608)的乘积,用除法还原验算。
- 2. 998,001÷999=999, 99,980,001÷9,999=9,999。 此二算题要用到悬珠,叫做"孤雁出群"。
- 3. $55,555 \times 9,375 = 520,828,125$, 并用除法还原。相乘时,被乘数个位 $5 \times 9,375 = 46,875$, 以后各位都是 5,可依次在被乘数本位拨去 5,加上46,875,即得积数,不必乘算,既准又简便。除法还原时,应以9,375为除数。这叫做"山上五只虎,地下九三七五"。

(六)除法简法

1. 商除法和剥皮除法

商除法不用另记口诀,是在乘法九九口诀的基础上进行 计算的。计算方法和笔算相同,很容易学会。但商除法要进 行试商,因此,定商不如归除法明显,在运算时要结合珠算 加、减、乘法以及笔算和心算进行。

商除法通常也把除数放在算盘的左边,在距离除数二、 三档的右边拨上被除数;如果除数默记在心里,则被除数可 放在算盘的左边(从第三档起拨被除数,空两档 留 作 放 商 数)。在放置商数时应牢记:"够除商隔位,不够除商挨位" 的原则。即:当除数是一位的除法,如被除数头 位 数 大 于 或等于除数头位数也就是"够除"时,商数应放在被除数的左面第二档上(隔位上商);如被除数头位数小于除数头位数也就是"不够除"时,商数应放在被除数的左一档上(挨位上商)。当除数是二位的除法,"够除"与"不够除"就要看被除数的前二位,除数是三位或三位以上的除法,"够除"与"不够除"就要看被除数的前三位或前三位以上。

【例1】96÷8=12

在算盘左面第三档起拨上被除数96,除数8记在心里。 商数个位在被除数个位的左面第二档上。见图1。

先用除数 8 除被除数头位 9 , 9 大于 8 , 在被除数 9 的 左面第二档(即隔位)拨上一颗下珠,就是商数;并在本档 9 中减去除数 8 和商数 1 的乘积 8 。见图 2 。

再用除数 8 去除16,被除数头位 1 小于 8,在被除数 1 的左一档(即挨位)拨上二颗下珠,就是商数;并从商数 2 的右一档起减去除数 8 和商数 2 的乘积16,得商数12。见图 3。

【例2】 $112 \div 7 = 16$

拨上被除数112,除数7记在心里。商数个位在被除数个位的左面第二档上。见图1。

11÷7,被除数头位1小于除数7,应挨位上商1;并在被除数头二位数11中减去除数7和商数1的乘积7。见图2。

42÷7,被除数头位4小于除数7,应挨位上商6;并从商数6的右一档起减去除数7和商数6的乘积42,得商数16。见图3。

多位除法,为了在试商的时候便于运算,可把被除数和除数按照"四舍五入"的办法看作整十或整百数去试除,试商的数字要"宁小勿大",以免商数太大,不够除时,难于还原。发现余数大于除数时,再加大商数。

【例1】989÷43=23

在算盘左边拨上除数43,隔开三档拨被除数989,除数是 二位数,商数个位在被除数个位的左面第三档上。见图1。

第一步: 98÷43, 可看作90÷40(头位 9 大于 4), 隔位

上商数2,从商数2的右面第二档起减去除数43和商数2的乘积86。见图2。

第二步: 129÷43,可看作120÷40(头位1小于4), 挨位上商数3,从商数3的右一档起减去除数43和商数3的 乘积129,得商数23。见图3。

[8] 2 $[40,948 \div 706 = 58]$

拨上除数和被除数,除数706是三位数,商数个位应在被除数个位的左面第四档上。见图 1。

第一步:4,094÷706,可看作4,000÷700,应挨位上商 5; 并从商数 5 的右一档起减去除数706和商数 5 的乘积3,530。 见图 2。 第二步: 5,648÷706,可看作5,600÷700,挨位上商8; 并从商数8的右一档起减去除数706和商数8的乘积5,648, 得商数58。见图3。

当商数是1或2时,也可运用珠算减法,在上商数1的同时,从被除数里减去除数一次,直到除尽或不够减时为止,这种方法就叫"剥皮法",也叫"减除法"。在上商数时仍应牢记"够除商隔位,不够除商挨位"的原则。

【例1】3,552÷296=12

拨上除数296和被除数3,552,除数296是三位数,商数个位应在被除数个位的左面第四档上。见图 1。

第一步: 355÷296, 可看作350÷300, 因"够除", 应隔位上商数1,从355中减去一次除数296。见图2。

第二步: 592÷296,"够除",先隔位上商数 1,从592中减去一次除数296。见图 3。

再隔位上商数1,减去296,得商数12。见图4。

【例 2 】 11,844 \div 564 = 21

拨上除数564和被除数11,844,商数个位在被除数个位的 左面第四档上。见图 1。

第一步: 1,184÷564, 可看作1,100÷560, 头位1小于5, 不够除, 应挨位上商数1, 从商数1的右面第二档起减去一次除数564。见图2。

第二步: 620÷564, 因"够除",应隔位上商数1,从右

面第二档起减去一次除数564。见图 3。

第三步: 564÷564, 因"够除", 应隔位上商数1, 从右面第二档起减去一次除数564, 得商数21。见图4。

当商数是8或9时,还可在被除数的头位或第二位起加上一次或两次除数后,再用珠算减法运算,一次减去除数的10倍,以简化运算过程,加了几次除数,商数就是从10减去"几"的差数。如被除数加上一次除数够减除数的10倍时,商数就是(10-1)=9;被除数加上两次除数够减除数的10倍时,商数就是(10-2)=8。其余类推。这种方法就叫"大剥皮法",也叫"加成法",或称为"加除法"。

运算时,如被除数略小于除数(即"不够除"),就在被除数的第二位起加除数;如被除数大于除数的八、九倍时(即

"够除"),就在被除数的头位起加除数,头位超过10时,应向前进位。注意不要加错位,并记住除数加了几次,以便确定商数。

【例1】66,150÷675=98

拨上除数675和被除数66,150,商数个位在被除数个位的 左面第四档上。见图 1。

第一步:6,615-675,可看作6,600-680,估计商数是9,就可用"加除法"进行运算,因被除数头三位数661略小于除数675,从被除数第二位起加除数675(即6,615+675),得7,290,已超过除数675的10倍(6,750)。见图2。

因加一次除数,应挨位上商数9(即10-1),从右一档起减去除数的10倍6,750。见图3。

第二步: 5,400÷675,可看作5,400÷680,估计商数是8,仍用"加除法"运算,从被除数第二位起加一次除数675(即5,400+675),得6,075。见图 4。

因为6,075小于除数的10倍6,750,再从被除数第二位起加一次除数675(即6,075+675),得6,750。见图 5。

共加了二次除数,应挨位上商数8(即10-2),从右一档起减去除数的10倍,得商数98。见图6。

【例2】9,345÷105=89

拨上除数105,被除数9,345,商数个位在被除数个位的 左面第四档上。见图 1。

第一步: $934 \div 105$,可看作 $900 \div 100$,估计商数是9或8,被除数934大于除数105,从被除数头位起加除数105(即 $934 \div 105$),得1,039。见图2。

1,039小于除数的10倍1,050,应从被除数第二位起加除数105(即1,039+105),得1,144,已够减除数的10倍1,050。 见图 3。

共加了二次除数,就挨位上商数8(即10-2),从右一档起减去除数的10倍1,050。见图4。

第二步: 945÷105,可看作900÷100,仍从被除数头位起加除数105(即945+105),得1,050。见图 5。

只加一次除数,挨位上商数9(即10-1),从右一档 起减去除数的10倍1,050,得商数89。见图 6。

由于商数数字大小不一,在运算时如果灵活运用商除法 和剥皮除法,就很简便。

【例 3] $30,135 \div 35 = 861$

拨上除数35,被除数30,135,商数个位在被除数个位的 左面第三档上。见图 1。

第一步: 301÷35,可看作300÷35,估计商 数 是 8,用 "加除法"运算,因被除数头二位数30略小于除数35,从被除 数第二位起加除数35(即301+35),得336。见图 2。

336不够减除数的10倍350,再从被除数第二位起加一次除数35(即336+35),得371,已超过除数的10倍350。见图3。

共加二次除数,就挨位上商8(即10-2),从右一档 起减去除数的10倍350。见图4。

第二步: 213÷35,可看作210÷35,估计商 数 是 6,用 "商除法"运算,挨位上商数 6,从右一档起减去除数35和商 数 6 的乘积210。见图 5。

第三步: 余数35,与除数相同,用"减除法"运算,隔位 上商数1,从右面第二档起减去除数35,得商数861。见图 6。

商除法和剥皮除法的定位,由于隔位上商,因此,除数是一位时,商数个位应在被除数个位的左面第二档上;除数是二位时,商数个位应在被除数个位的左面第三档上,其余类推。如除数是纯小数,小数点后面没有"0",商数个位在被除数个位的左一档;小数点后面带"0"时,有一个0的,商数个位在被除数的个位档,有两个0的,商数个位在被除数个位的右一档。以此类推。

2."减代除"法

6)

(即35

当除数固定而被除数不固定时,也可编制除数的倍数表, 用减法来运算,就比较简便。 例如: 一年为365天,实际计算中常以365作为除数,就可编制365的 1-9 倍的倍数表如下:

	倍	数
1	0365	
2	0730	
3	1095	
4	1460	
5	1825	
6	2190	
7	2555	
8	2920	
9	3285	

在算盘上运算时,先从算盘左边第三档起放被除数,空两档留作放商数(也按商除法"够除商隔位,不够除商挨位"的原则),然后从被除数的头位起依次照表上相应的倍数相减求得商数。这种用减法来代替除法的方法,就叫"减代除"法。

例如: 57,305÷365=157

在算盘左边第三档起拨上被除数57,305,除数365是三位数,商数个位在被除数个位的左面第四档上。见图1。

先查倍数表,在算盘左一档上商数 1, 从商数 1 的右一档起减去0365。见图 2。

再查表,在算盘左边第二档上商数 5 ,从商数 5 的右一档起减去1825 (365的 5 倍)。见图 3 。

最后,在算盘左边第三档上商数7,从商数7的右一档起减去2,555(365的7倍),得商数157。见图4。

3.飞归法

从11至99二位除数,仿照九归口诀的方法,编成一套口诀来运算除法的方法就叫做"飞归"。"飞归"法,可以直接用口诀得出商数和余数,因此,演算速度较快,但口诀太多,难以熟记,也就不易推广。

对日常计算中经常遇到的某个位数不太多的除数,可仿 照飞归的方法编成几句口诀写在纸上备用,运算起来就比较 方便。

仍以365这个数为例,可以编成四句"飞归"口诀如下:

被除物	日決	来	源	说	明			
1	一 2 余27	1,0	00 ÷ 365 =	= 2 余270	·			
2	二 5 会175	2,0	00 ÷ 365 :	= 5 余175				
3	三 8 余 08	3,000÷365= 8 余080						
"够陈"	逢365进 1	被除数大于365时就是"够除"						

具体运算方法是:

见被除数 1 就把它改成商数 2 , 从右一档起加27; 见被除数 2 就把它改成商数 5 , 从右一档起加175; 见被除数3就把它改成商数8,从右一档起加08;

如被除数超过除数365(即"够除")时,就依次减去365, 在被除数头位的左一档加上商数1。

例如: $134,685 \div 365 = 369$

在算盘左边留一空档放商数,从第二档起拨上被除数 134,685,除数365是三位数,商数个位应在被除数个位的左 面第三档上(定位方法同归除法)。见图 1。

被除数头位是1,用口诀"一2余27",把本档改成商数2,从右一档起加上余数27。见图2。

被除数头三位数616 大 于 除 数365,就用口诀"逢365进 1",从616中减去365,在算盘左边第二档加上 商 数 1 (商 . 数成为 3)。见图 3。

被除数头位是 2 ,用口诀"二 5 余175",把本 档 改成商数 5 ,从右一档起加上余数175。见图 4 。

被除数头三位数693大于除数365, 就用 口 诀 "逢365进 1", 从693中减去365, 在算盘左边第三档加上 商 数 1 (商 数成为 6)。见图 5。

被除数头位是 3 ,用口诀"三 8 余08",把本档改成商数 8 ,在右面第二档加上余数 8 。见图 6 。

最后,用口诀"逢365进1"把余数365拨去,在算盘左边第四档加上商数1(商数成为9),得商数369。见图7。

六、百分比简算法

在日常计算中,常常用百分比来表示计划完成的情况。 百分比的算式是:子数÷母数×100%=百分率,实际 计 算时,省去"×100%"的运算,只用除法,以子数为被除数、母数为除数,把除得商数的小数点向右移二位添上百分比的符号"%"就直接得出结果来。

例如:某生产队全年计划生产粮食358,600斤,而实际生产粮食369,742斤,计算完成计划的%时,就以实际数为子数(即被除数),计划数为母数(即除数),除得商数后,把小数点向右移二位,就是完成计划的%。即:

369,742÷358,600=1.03107=103.11%(尾数四舍五入)。

由于百分比一般只计算三、四位,小数以下至多留二位,因此,在算盘上算百分比就可应用简便的定位方法和简化运算过程。

首先,在算盘上确定百分比小数点的标记,把小数点固 定在算盘右边第四档和第五档中间梁上(可贴白纸作小数点 标记)。

其次,在算盘的右边放子数时,要对比母数和子数的位数来确定放子数的档次。如果子数和母数位数相同(即"同位"),子数就从标记的左面第二档放起,标记的左面第二档就定作"同位"档。如子数比母数少一位,子数应从标记的左一档放起,少二位,应从标记的右一档放起;如子数比母数

多一位,应从标记的左面第三档放起,其余类推。

这样算出的百分比位数在算盘上是固定的,就是:标记左边各档是百分比的整数,右边各档是百分比的小数,立即可以读出,不需要再去定位,就很方便。这种定位方法就称为"固定档位定位法",是珠算归除法定位方法在算百分比中的应用。

如用商除法算百分比,由于隔位上商的关系,应把标记 向左移一档,并把标记左一档定做"同位"档。

分别图示如下:

运算时,子数照限定的档位放在算盘上,只放到最右档为止(以下四舍五入),母数可放在算盘的左边。为了简化计算过程,从子数减去每位商数乘除数的积数时,可减到最右档为止,减不着的省略舍去,舍去的第一位如果满5,应在最右档多减1。百分比只算到小数点第三位即可四舍五入,以下省略不算,并不影响准确程度。这种省略运算过程的除法就叫"省除法"。用归除法或商除法都可进行运算;但不宜用剥皮除法,因常会出现尾差,影响准确性。如果母数固定,也可用"减代除"法算百分比,但应按照商除法定小数点的标记和放子数。

【例1】某生产队全年总收入34,520元,副业收入8,729元,问副业收入占总收入的百分之几?

本例以副业收入为子数,总收入为母数,即:

 $8,729 \div 34,520 = 25.29\%$

子数8,729比母数少一位,应从标记的左一档放起。运算时,先放子数;然后在算盘左边放母数。见图 1。

用归除法运算,每位商数乘除数的积数,减到最右档为止,减不着的舍去。见图 2 ~ 4 (算盘图中黑珠表示除数、被除数和余数,白珠表示商数,下同)。

算盘上的得数是25.28%,因余数24大于母数头二位数字34的半数(即小数第三位商数满5,不必再算),应加1(即五入),就是25.29%。见图5。

如用商除法运算,只是标记左移一档,其余算法相仿,即每位商数乘除数的积数,减到最右档为止, 减 不 着 的舍去。图示如下(运算过程从略):

子数比母数少 1 位,从标记(或"同位"档)的右一档放起。见图 1。

算出的百分比和余数跟归除法算出的百分比和余数是一 样的,见图 2。

【例2】某生产队去年粮食产量是128,961斤,今年是156,625斤,问今年产量是去年的百分之几? 比去年增产百分之几?

本例先算出今年产量是去年的百分之几,应以今年产量为子数,去年产量为母数,即:

 $156,625 \div 128,961 = 121.45\%$;

然后,再算出今年比去年增产百分之几,即:

121.45% - 100% = 21.45%

子数和母数的位数相同,应先从"同位"档起放子数 156,625,母数可写在纸上。见图1(运算过程从略)。 余数 2 小于母数头二位数12的半数(即小数点第三位商数不满 5), 舍去, 应是121.45%。见图 2。

七、开平方简算法

一个数自乘一次的积数叫"平方数",自乘数对它的平方数来说,叫"平方根"。如 $25 \times 25 = 625$ 。625是25 的 平 方 数 (记作 $25^2 = 625$),而25就是625的平方根。

求一个数的平方根的运算叫"开平方",这个数叫"被开方数"。开平方的符号用"1"(读作"根号")表示,套在被开方数上。如1625 表示求625的平方根。

在日常计算中,有时需要求出一个数的平方根。一位数和二位数的平方根,只要从乘法口读心算即得。如4从"二二04"便知平方根是2;81从"九九81"即得平方根是9。三位数以上的平方根,一般可用计算尺或查《平方根表》进行计算,但位数常有一定限制。如用算盘开平方,原有的"归除开平方法"或"折半开平方法"等古老算法,都必须记住一套口法,既麻烦,也比较难学。

这里介绍一种笔算和珠算相结合的开平方简算法。它不 用一套专门的口诀,对已学会笔算开平方的人,是很容易掌 握的。

(一) 笔算开平方的一般方法

为了说明珠算开平方的简算法,应先简要介绍一下笔算 开平方的一般方法。 笔算开平方首先要把被开方的数加以分段。

如被开方数是整数,从个位起向左用撇号"'"每隔两位 分成一段,到尽头只剩一位时,独立算一段,每段应得平方 根一位。例如:

1089分二段: 10'89应得平方根整数二位;

32041分三段: 3'20'41应得平方根整数三位。

如被开方数是纯小数,从小数点起向右每隔两位分成一 段,每段得平方根一位,如末段只剩一位,应添一个"0", 凑成二位。如被开方数是带小数,整数部分从小数点起向左 分,小数部分从小数点向右分。例如:

322.5616分成 3'22.56'16 四段, 得平方根整数小数各二位;

0.01234分成0.0123340三段, 得平方根小数三位。

下面通过例题说明笔算开平方的一般方法。

【例1】
$$1/625 = 25$$

具体算法是:

先找出被开方数625的第一段数 6 ,心算得初根 2 ,写在第一段数 6 的上边;把初根的平方(即 $2^2 = 4$)写在 6 的下边,6 -4 = 2;再把第二段数25移下,得余数225。

用初根×20 (即2×20) = 40, 再用40试除余数225,得

试商 5 (即次根), 45×5=225, 225-225=0, 刚 好 开 尽, 得平方根25。

应当注意,余数225并不是次根的平方,而是: 225=2 (初根) $\times 20 \times 5$ (次根) $+5^2$ (次根²) 【例 2】1/423801=651

(初根的平方) 6²=36

本例求得的平方根651是三位数,为便于说明,我们把三根也当作次根,则初根和次根就可视作初根来运算。在左边的算式中可见;

当次根是 1 时,如把次根 1 代入算式,则(初根×20+次根)×次根=(初根×20+1)×1=(初根×20)×1+1²=初根×20+1²,这里1²也就是次根²。这就是说,余数中应减去的是:初根的20倍与次根平方的和。

当次根是 5 时,如把次根 5 代入算式,则(初根×20+次根)、次根。 (初根×20+5) × 5 = (初根×20) × 5 + 5 2 = 初根×100+5 2 ,这里 5 2 也就是次根 2 。这样,余数中应减去的就是:初根的100倍与次根平方的和。

(二)珠算开平方的简算法

珠算开平方的简算法就是根据上述笔算开平方的方法, 在算盘上加以应用。在运算前也要首先把被开方数加以分 段,第一段心算得初根的运算过程与笔算也是一样的。以后 的运算过程,根据上述例题中左边算式的运算结果,就可分 别不同的情况进行试商运算:

由于当次根是 5 时,余数中应减去的是初根的100 倍 与 次根平方的和,那末,如所取段的余数大于或等于初 根 100 倍与25的和,就试商 5,在余数中减去初根100倍;

当次根是1时,余数中应减去的是初根的20倍与次根平方的和,那末,如所取段的余数小于初根100倍,但大于或等于初根20倍与1的和,就試商1,在余数中减去初根20倍;然后,再从所取段的余数中减去次根的平方。

这也就是把试商先定为 5 或 1;然后,看所取段的余数剩下多少,再酌情加大商数,商数每加1,就要从剩下的余数中减去初根的20倍;最后,还要从剩下的余数中减去次根的平方。

综上所述, 珠算开平方简算法可归纳为以下四句话:

求初根,分段先算第一段;

大商 5, 余数减初根百倍;

小商1,余数减初根二十倍;

不够商,余数减次根平方。

运算时,可固定从算盘左边第三档起拨上被开方数,并 从算盘左边第一档起拨平方根。

现举例图示说明珠算开平方简算法如下:

【例1】1/1225 = 35

12'25分二段,应得平方根整数二位。

在算盘左边第三档起拨上被开方数1225。分清第一段有 2 位,以便心算求初根。在算盘上分段不作标记,但须在心中记清。见图 1 。

第一段数12,从乘法口诀心算得初根3(三三09),拨 在算盘左边第一档;然后,在第一段数中减去初根的平方,即12-9=3,得余数325。见图2(算盘图中黑珠表示被 开方数和余数,白珠表示平方根,下同)。

余数325大于初根的100倍(即300),就试商5。将试商5拨在初根3的右一档;然后,从余数中减去初根的100倍,还余25。见图3。

余数25不足初根 3 的20倍(即60),就从余数中再减去 次根的平方($5^2 = 25$),25 - 25 = 0,刚好开尽,得 平 方 根35。见图 4。

$[9] 2] 1 \sqrt{68644} = 262$

6′86′44分三段,应得平方根整数三位。

在算盘左边第三档起拨上被开方数68644。见图1。

第一段数 6 ,只一位,心算得初根 2 (二二04),拨在算盘左边第一档,6-4=2 ,连同第二段数86,得第一余数286。见图 2 。

286大于初根 2 的100倍, 就试商 5, 拨在初根 2 的右一档, 286-200 (即初根 2 的100倍), 还余86。见图 3。

86大于初根 2 的20倍,原试商 5 加大 1 变为 6,再从余数86中减去初根 2 的20倍,还余46。见图 4。

然后,从余数46中减去次根 6 的平方,得初 根 和 次 根 26,第二余数1044。见图 5。

1044小于初根和次根26的100倍,但大于26的20倍,先试商1,拨在次根6的右一档;从第二余数1044中减去26的20倍(即1044—520),还余524。见图6。

524仍大于26的20倍,再试商1(原试商1变为2),并 从余数524中减去26的20倍(即524—520),还余4。见图 7。

最后,还要从余数 4 中减去三根 2 的平方, 4-4=0,刚好开尽,得平方根262。见图 8。

【例 3】 $\sqrt{65.1249} = 8.07$

65.12'49分三段,应得平方根整数一位小数二位。 在算盘左边第三档起拨上651249。小数点默记心里。见 图 1 。

第一段数65心算得初根 8 , 拨在算盘左边第一档, 65-64=1, 取第二段数12, 得112, 余数112不足初根 8 的20倍

(即160), 次根为 0; 再取第三段数49得11249。见图 2。 余数11249大于初根和次根80的100倍(8000), 先试商 5, 应拨在算盘左边第三档; 11249-8000=3249。见图 3。 3249大于80的20倍(1600),原试商 5加 1 成 6,3249-1600=1649; 1649仍大于80的20倍, 再加 1,变为 7,1649-1600=49。见图 4、 5。

最后,还要从余数49中减去三根 7^2 ,49-49=0,刚好开尽、得平方根8.07。见图6。

【例 4 】 求 $1/\overline{0.4}$ 的平方根至小数二位。

0.4应添 0 为0.40。

在算盘左边第三档起拨上40(小数点默记心里)。见图 1。 从40心算得初根 6,拨在算盘左边第一档,40-36=4, 得余数400。见图 2。

400小于初根 6 的100倍, 但大于 6 的20倍, 先试商 1, 拨在初根6的右一档,减去初根6的20倍(120);原试商1 加1, 再减120, 次根再加1变为3, 仍减120, 余40(即投 次根为 3, 400-6×20×3=40)。最后,还要从余数中减 去次根 3 的平方 9, 40-9=31。见图 3。

下段余数3100小子初根和次根63的100倍,三根不足5, 舍去, 得平方根0.63。

验算: $0.63 \times 0.63 + 0.0031 = 0.4$

图	00000000						
	1101111						
被开方数							

图 2	78888888						
減 3 6 (即初根 ²)							

(即6×20×3)

(即次根2)

平方根0.63 余0,0031

八、利息基本算法

(一) 计算利息的一般常识

银行(信用社)常要根据存(贷)款的金额和期限,按 照规定的利率来计算利息,因此,存(贷)款的金额、期限 和利率就是计算利息必须具备的三个因素。计算利息的基本 公式是:

利息=存(贷)款金额×期限×利率

计算存(贷)款的期限时,一般采用"算头不算尾"的办法。所谓算头不算尾,以存款来说,是从存入那一天起,算到提取存款的前一天为止,取款的那一天不算;以贷款来说,是从贷款那一天起,算到偿还贷款的前一天为止,还款的那一天不算。例如:9月4日存入的款,在9月18日 股、应从9月4日算到9月17日,期限是14天,9月18日那天不算(为计算方便,在计算时可以18-4即得14天)。

目前的利率,一般都按月息计算,用"月‰"来表示。例如:"月1.8‰"表示每千元一个月的利息是一元八角(每元一个月的利息是一厘八毫),通常称为月息一厘八。

由于存(贷)款的期限不可能都恰好是一个月,如遇不足月时,就要把月息除以30天(为计算方便,大、小月都按30天折算),来折算零头天数的利息。

(二) 利息的基本算法

1. 定期存(贷) 款的利息算法

定期存(贷)款的利息一般就按前述的基本公式(即: 利息=存(贷)款金额×期限×利率)来计算。

例如:定期储蓄存款金额150元,月息二厘七,定期一年,利息的算法是:

150元×12(月数)×月2.7%(即0.0027)=4.86元

说明:因按月息计算,期限一年,应折算成12月。利息的定位,可按每年每百元3元2角4分(即0.27×12)来推算(也可按连乘法在算盘上数档位的定位方法计算,下同)。

又如:定期储蓄存款金额150元,去年7月28日存入,到 今年10月16日提取,月息二厘七。利息的算法是:

首先,算出这笔定期储蓄存款的期限为1年2个月零18天。即去年7月26日到今年9月27日为1年零2个月,也就是14个月;9月28日到10月15日是18天。然后,分别计算14个月和18天的利息。

14个月的利息算式是:

150元×14(月数)×月2.7‰(即0.0027)=5.67元 16天的利息算式是:

159元×18 (天数) ×0.00009 (即月2.7‰÷30) = 0.243元≈0.24元(分位以下四舍五入)

14个月零18天的利息算式是:

5.67元+0.24元=5.91元

另外,还可把14个月零18天折算成438天(14个月,每月

都按30天折算,即: 14×30+18),按以下算式计算利息:

150元×438 (天数) ×0.00009=5.913≈5.91元

以上两种算法虽然不同,但算出的利息是一样的,不过由于四舍五入的关系,有时可能出现尾差。

说明: 计算定期存(贷)款的期限时,还可采用"对年对月"的办法。所谓对年就是一年的意思。例如: 去年7月28日存入的款,到今年7月28日就是一年。所谓对月就是一月的意思。例如: 7月28日存入的款,到8月28日就是一个月。有时存款的那一天,在到期的月份可能没有,如2月份就没有30和31日这两天,那末,1月30或31日存入的款,到2月底就算作一个月(平月就是2月28日,闰月就是2月29日为到期日)。

本例定期储蓄存款超过一年以后,到今年10月16日提取,按照对年对月的办法,从去年7月28日到今年9月28日为14个月,根据算头不算尾的原则,9月28日这一天不算在内。计算零头天数时,10月16日取款这一天也不算在内,所以从9月28日算到10月15日为18天。共计14个月零18天(或438天)。因按月息计算,零头天数(或折算成438天)的利息,就要把月息除以30天加以折算。

2.活期存(贷)款的利息算法

活期存(贷)款的利息,由于存(贷)款的金额经常变动,不能象定期存(贷)款的利息那样逐笔进行计算,一般是根据积数来计算的。所谓积数,就是把每天的存(贷)款金额相加起来的数字。积数的计算公式是:

积数 = 存(贷)款金额×日数

计算积数的工作是日常在活期存(贷)款的帐页上随时

进行的。活期存(贷)款每季算一次利息,一般规定在每季末月(如3、6、9和12月)的20日这一天为计息时间,叫做结息日。每到结息日,只要把各笔积数相加,求得总积数(即积数的总和),这个总积数,就是计算利息的金额。用积数来计算利息,是把逐天的金额累计为一天的金额,所以应把月息除以30天来折算。利息的计算公式应是:

利息=总积数×月息÷30

例如:某企业11月25日在银行开立存款户,现以该户的收付数和余额为例,说明在帐页上计算日数、积数和利息的方法如下:

利率:月1.5%

19×	×年	摘要	凭证	d5	入	付	出	收或	余	额	日	积	数	复核
月	日	1141 54	与码	12	, , 			付			数			
11	25.	开户		10,0	00.00			收	10,0	00.00	3	30,0	00.00	
"	28	略	_			2,500	00.0	"	7,5	00.00	8	60,0	00.00	
12	6	"	略	5,0	00.00									
"	"	"	J			3,000	0.00	"	9,5	00.00	11	104,5	500.00	
"	17	"				2,000	0.00							
"	"	"				1,200	0.00	"	6,3	300.00	4	25,2	200.00	
"	21	利息			10.99			"	6,3	310.99	26	219,7	700.00	
			-											İ
			-		.,,									
			-											

说明:某企业11月25日存入10,000元,从11月25日到11月27日余额没有变动,日数是3天(在计算时可以28-25即得),积数是:10,000元×3=30,000元。

11月28日,付出 2,500元,存款余额是: 10,000元-2,500元=7,500元,从11月28日到12月5日是8天(计算时可以30+6-28即得),积数是: 7,500元×8=60,000元。

12月 6 日和12月17日都是一天内发生两笔收付业务,应按最后余额计算积数,即: 9,500元×11=104,500元; 6,300元×4=25,200元。

从11月25日到12月20日(即从开户这一天到结息日)总日数是26天(应包括结息日这一天在内,计算时可以30+21-25即得,如与"日数"栏的总和一致,就说明日常计算的日数无误),总积数(即"积数"栏的总和)是219,700元,应填在"积数"栏的上半格,下半格仍可填结息日以后的日数和积数。

如按月息一厘五计息,应除以30天折为0.05%(即0.00005)。

利息 = 219,700元 × 0.00005 = 10.985元 ≈ 10.99 元 利息的定位,可按每十万元积数为 5 元来推算。

这种按每笔余额求得积数来计算利息的方法,就叫"余额计息法",或叫"积数计息法"。算出的利息数一般在结息日的次日(即21日)转入帐内。

九、复核多笔连续加减的简法

实际计算中,用算盘连续加减数字的笔数常常很多,为了保证计算结果正确,算完一遍后,必须进行复算。第二遍复算的结果,如果和第一遍不符,可先算出两遍不同结果的差数,按照以下常易发生的几种差错情况进行查算,能省力省时,很快地找出差错的原因。

1.有时常发生尾差,错在尾数,这样,就只复算尾数。如果两遍不同结果的差数是最末二位数,就重新计算最末二位数;如果是最末三位数,就重算最末三位数。

例如:连续加算20笔多位 数, 第一 遍 算 出 的 结 果是 171,556.05, 第二遍算出的结果是171,555.98, 错在末尾三位, 第三遍就只复算各数末尾三位。如第三遍复算结果与第一遍相同,说明第一遍的结果是正确的。见例 1。

2.有时常发生大小数的差错,在计算中常看错了某笔多位数的位数,如把千位数看成百位数,或把百位数看成千位数,这样,两数的差数一定能被"9"除尽。如果两遍不同结果的差数正好能被"9"除尽,就查看计算的各数,只要发现其中有一笔与差数被"9"除得的商数差10倍,很可能就是把这一笔数字看错位数了。

例如:连续加算20笔多位数,第一遍算出的结果是166,690.15,第二遍算出的结果是168,711.10,两数相差2,020.95,正好被"9"除尽,得商数224.55(即:2,020.95÷9),

这样很可能是发生错位。如果在加算的数字中,发现最后一笔数字2.245.50正好和商数差10倍,这就说明把最后一笔千位数误看成百位数加算,少算了2,020.95,第二遍的结果是正确的。见例 2。

3.有时常发生漏算某笔数字的差错,只要查看计算的各数,如发现其中有一笔正好与差数一样,很可能就漏算了那笔。

例如:连续加算20笔多位数,第一遍算出的结果是180,453.88,第二遍算出的结果是180,632.88,两数相差179,这个数不能被"9"除尽,说明不是大小数的差错,很可能是漏算了一笔。如果在加算的数字中发现正好和差数相同的数字,就说明差错的原因是漏打了一笔179的数字,第二遍的结果是正确的。见例3。

复核连加多位数的差错方法举例:

【例1】尾差	【例2】错位	【例 3 】漏算
235.86	54.82	8.36
42.38	325, 68	435.62
35,341.84	9,86	89.74
8.96	83,425.19	5,763.56
872.43	16.27	29.78
82,364.54	4,762.36	58,374.69
97.61	386.68	246.74
4,589.72	24,793.45	53.35
35.67	28.73	2,968.78
32,873.54	5,721.46	179.00
388.66	863.78	179.00
23.27	31,482.64	48.69
4,786.93	5.89	345.63
827.85	433.76	78,584.39
3.54	5,314.67	75.65
5,978.63	29.34	893.68
24.39	8,731.16	45.94
288.78	77.98	8,459.43
77.87	1.88	54.38
+2,693.58 (一) <u>E171,556.05</u> (二)误171,55 <u>5.98</u>	+ 2,245.50 (一)误166,690.15 (二)正168,711.10	+23,796.47 (一)误180,453.88 (二)正180,632.88
	差数2,020.95	差数 179.00

附录一、乘除公式定位法

公式定位法是以乘除各数的位数,用加、减算式来算出积数和商数位数的一种定位方法。这种定位方法,不论珠算、笔算、计算尺和计算机都适用。整数和带小数就算整数的位数,如305是三位整数,就是(+3)位,30.5 算整数二位(不管小数点后的位数),就是(+2)位;纯小数如小数点后不带"0"的都作0位(0.3、0.305都是0位),如小数点后带"0"的,有几个0就是负几位(0.03、0.0305都是(-1)位,0.003、0.00305都是(-2)位)。

正负数加减要按照代数加减法的道理计算。

(一)乘法定位算式

前面介绍的珠算乘法数档定位法,是以乘数的位数为标准,从被乘数的个位档向右数乘数的位数,乘数是几位数,乘积的个位档就在被乘数个位的右面第几档上。如果列出定位算式就是:

被乘数的位数+乘数的位数=积数的位数

但如被乘数和乘数的头位相乘积是一位数,并且以下各位相乘结果没有进位的,积数的位数就要减去1位。

举例说明如下:

被乘数408是(+3)位,乘数300也是(+3)位,两数头位相乘积12是二位数,不要减1,即:(+3)+(+3)=+6,积数应是整数六位数。

注: 两数位数都是正号, 相加得正数。

被乘数23是(+2)位,乘数43也是(+2)位,两数头位相乘积8是一位数,没有进位, 要减去1位, 即: (+2)+(+2)-1=+3,积数应是整数三位数。

被乘数8.64是(+1)位,乘数62.5是(+2)位,两数头位相乘积48是二位数,不要减1,即: (+1)+(+2)=+3,积数应是整数三位数。

$$\frac{1 \times 2 = 2}{| | |}$$
[例4] $0.0105 \times 0.0028 = 0.0000294$

被乘数0.0105是(-1)位,乘数0.0028是(-2)位,两数头位相乘积 2 是一位数,没有进位,要减去 1 位,即: (-1)+(-2)-1=-4,积数应是小数点后有四个 0 的纯小数。

注: 两数位数都是负号, 相加得负数。

被乘数0.0002是(-3)位,乘数30是(+2)位,两数头位相乘积6是一位数,没有进位,要减去1位,即:(-3)+(+2)-1=-2,积数应是小数点后有两个0的纯小数。

注:两数位数一正一负,就相减,用大数的符号,如大数的符号是正的,就得正数;如大数的符号是负的,就得负数。

被乘数7.5是(+1)位,乘数0.014是(-1)位,两数头位相乘积7虽是一位数,但两数以下各位相乘结果,实已进位,所以,积数的位数就不要减1,即: (+1)+(-1)=0,积数应是小数点后不带"0"的纯小数。

(二)除法定位算式

珠算除法数档定位法,是以除数的位数为标准,从被除数的个位档向左数除数的位数,除数是几位数,商数的个位档就在被除数个位的左面第几档上。如果列出定位 算式 就是:

被除数的位数一除数的位数=商数的位数

但如被除数头位大于除数头位,即"够除"时,**商数**的位数就要加上 1 位。

举例说明如下:

被除数头位小于除数头位(即"不够除"),不要加1,即: (+6)-(+3)=(+6)+(-3)=+3,商数应是整数三位数。

注:两数相减,可改变减数的符号,用加法计算(下同)。

被除数头位大于除数头位(即:"够除"),商数要加上 1 位,即:(+3)-(+2)+1=(+3)+(-2)+1=+2,商数应是整数工位数,

被膝数头位小于除数头位(即"不够除"),不要加1,即:(+3)-(+2)=(+3)+(-2)=+1,商数应是整数一位的带小数。

两数头位相同,看第二位,如被除数第二位大(即"够除"),要加上1位,即:(-4)-(-2)+1=(-4)+(+2)+1=-1,商数应是小数点后带一个0的纯小数。

被除数头位大于除数头位(即"够除"),要加上 1 位,即(-2)-(+2)+1=(-2)+(-2)+1=-3,商数应是小数点后带三个 0 的纯小数。

两数头位相同,第二位被除数小(即"不够除"),不要加 1 ,即: 0-(-1)=+1 ,商数应是整数一位的带小数。

凡位数较多的乘除法和小数除法用公式定位要比数档定 位方便。运算前,用心算就能立即得到积数或商数的位数。

附录二、双珠算法

珠算进行多位数字的乘、除就比较麻烦,常易错位,如果用两个同样的算盘一上一下,根据计算尺的原理,来回拉着,只用乘法口诀就可进行复杂的多位数乘、除的运算,叫做"双珠算法"。"双珠算法"是解放后的一种新创造,既容易掌握,也能又准又快。现把双珠算法图示举例说明如下:

(一)乘 法

例如: 97,052×8,604=835,035,408

用档宽相同的普通算盘两个,一上一下放好,上边算盘左边空一档(即从第二档起)放乘数,下边算盘从左边第一档起放乘数,把上边算盘的左边对准下边算盘被乘数末位2。 见图1。

 按照掉尾乘法的顺序,从乘数末位 4 开始向左依次乘被乘数末位 2,每位乘积的个位依次放在下边算盘上,对准相应的乘数位次,乘积逢10进1(下同),乘完得17,208,然后拨去被乘数末位 2。见图 2。

向左移动上边算盘,使左边对准被乘数5,仍从乘数末位4开始乘被乘数5,依次把乘得的积数,对着位数加在下边算盘上,得447403,然后拨去被乘数5。见图3。

再向左移动上边算盘,使左边对准被乘数7,仍从乘数末位4开始乘被乘数7,依次把乘得的积数,对着位数加在下边算盘上,得60675408,然后拨去被乘数7。见图4。

138

最后,仍向左移动上边算盘,使左边对准被乘数头位9,仍从乘数末位4开始乘被乘数9,把乘得的积数依次对着位数相加后,下边算盘就得乘积835,035,408,拨去被乘数9。积数的定位可用公式定位法,即:(+5)位+(+4)位=(+9)位(被乘数和乘数头位相乘积72是二位数。不要减1)。见图5。

图 5

(二)除 法

除法是乘法的还原,就是把乘法倒回去,按照商除法来 运算。

例如: 835,035,408÷8,604=97,052

上边算盘从左边

上边算盘左边空一档(即从第二档起)放除数,下边算盘左边空一档(即从第二档起)放被除数。如果被除数"够除",上边算盘除数的头位档应对准下边算盘的头位档;如果"不够除",就把除数向右退一位。

本例被除数头二位数83小于除数头二位数86(即"不够除"),应将上边算盘右移,使除数头位8对准下边算盘被除数的第二位3。见图1。

图 |

在除数头位 8 的下边,被除数头位和第二位83中有 8 的 9 倍,就在被除数左一档拨上商数 9 ,再用商数 9 乘上边算盘除数,依次从左到右对位减去相乘的积数,下边算盘上商数的右面还有余数60,675,408。见图 2。

余数头位 6 小于除数头位 8 (即"不够除"),应把除数 头位 8 右移一档,对准下边余数第二位 0。下边60里有 8 的 7 倍,就在余数的左一档拨上商数 7,依次对位减去商数 7 乘除数的积数,得余数447,408。见图 3。

除数头位 8 的下边没有数字,应向右移一位。余数头位 4 "不够除",把除数头位再向右移一位,对准下边余数第二位 4。下边44里有 8 的 5 倍,就在余数的左一档拨上商数5,依次对位减去商数 5 乘除数的积数后,得余数17,208。见图 4。

除數头位 8 对 准余数第二位 0(即下边算盘 左边第四档)

上商7 減7×8604 (即 60228)后 得余數 447,408

图 3

990 001	\sim	\cap	000	88
995				

上商 5 减 5 × 8 6 0 4 (即 4 3 0 2 0)后 得余数 1 7,2 0 8

图 4

余数头位 1 小于除数头位 8,应把除数头位 8 右移一档,对准下边余数第二位 7。下边17里有 8 的 2 倍,就在余数的左一档拨上商数 2,依次对位减去商数 2 乘除数的积数后,没有余数,表示除尽,得商数97,052。用公式定位法定位,即:(+9)位-(+4)位=(+5)位(被除数头二位数小于除数头二位数,不要加 1)。见图 5。

附录三、数字的写法

计算离不开数字,无论填写单据、记帐、制表等都要写数字,现将实际工作中常用的两种数字写法介绍如下:

- (一)在单据上用大写数字,如壹(麦)、贰(式)、叁、肆(切)、伍(仓)、陸(恅)、柒、捌、玖、拾、佰、仟、萬(万)、亿、零、圆(元)、角、分、整(正)等,一律用正楷字填写(或如括号内易于辨认不易涂改的字样也可)。大写金额前应加"人民币"三字,金额数字中间有几个"0"时,可只写一个"零"字(如圭万元零伍角)。元以下无角、分时,元后必须写一"正"字(如圭万元正)。大写金额有角、分的,元以下不要写"正"字。为防止涂改,"拾"字前必须加填"圭"字,如圭拾元正、《佰圭拾元正、叁仟零基拾元正等,不能写作"拾元"、"《任零拾元",以此类推。
- (二)阿拉伯数字在单据、帐表上的写法,和普通写法 有所不同,已经形成一定的规格,既要写得正确、整齐、清楚, 又要写得避免混同,防止涂改。在帐表横格上书写时,上边 要空出三分之一到一半的位置,备作改正错字之用。现将阿 拉伯数字标准字体介绍如下(供读者参考):

阿拉伯数字写法

1234567890

说明:

- 1.数字的写法是自上而下,先左后右。
- 2.斜度以六十度为准。
- 3. 高度以帐表格的二分之一为准。
- 4.除7和9的上面低下半格的四分之一,下伸次行上半格的四分之一外,其他数字都要靠在底线上。
- 5.4的左坚,上至下半格右边线,下迄下半格左边四分之一处,中坚高度为下半格的二分之一,以防改1为4。
 - 6.6的竖上伸上半格四分之一,防止改6为8。
 - 7. 8 的右上略出格外,避免 3 改 8 的可能。
- 8.0字注意不要写小了,连写数个 0 时,最好不要加连接线。

用阿拉伯数字记数时,整数部分,要按"三位一节"的记数方法,由个位起,从右到左,每隔三位,用分位点(,)分开,如38,642,000,看起来就很方便。小写金额元以下,角分位数字下应划一横线,并在横线左前端(即角位数字之前,元位数字之后)点一小数点,如陆元正应写为"6.00",肆角伍分应写为"0.45",伍分应写为"0.05"。

如果在帐表上写错了数字,必须把错误的数字全部划一道红(或蓝)线销去,然后重新把正确的数字写在上面,并在红(或蓝)线左端盖上改正人的图章,绝对不允许在原错误的数字上面涂改。

[General Information] 书名=珠算基础知识 作者=杨锡琪编写 页数=145 SS号=11495550 出版日期=1973年05月第1版

前言

目录 一、引言 二、常用的算盘和拨珠的方法 (一)常用的算盘 (二)拨珠的方法 三、加减法 (一)加法 (二)减法 (三)加减法的基本练习方法 (四)加减简法 四、乘法 (一)乘法口诀 (二)乘法的定位方法 (三)一位乘法 (四)二位乘法 (五)多位乘法 (六)乘法的基本练习方法 (七)乘法简法 五、除法 (一)除法口诀 (二)除法的定位方法 (三)一位除法 (四)多位除法 (五)除法的基本练习方法 (六)除法简法 六、百分比简算法 七、开平方简算法 (一) 笔算开平方的一般方法 (二)珠算开平方的简算法 八、利息基本算法

- (一)计算利息的一般常识
- (二)利息的基本算法
- 九、复核多笔连续加减的简法

附录一、乘除公式定位法 附录二、双珠算法

附录三、数字的写法