3.2 Regelkreise

Julian Huber - Bussysteme 1 / 19

Beispiel Konstantlicht-Regelung

regelt die Raumbeleuchtung oder Teile davon bei Belegung automatisch so, dass eine eingestellte Mindestbeleuchtungsstärke nicht unterschritten wird

 Im Gegensatz zur Tageslichtschaltung, soll es aber auch nicht unnötig hell sein, wenn es draußen schon hell ist

Abkürzungen im Funktionsblock		
Bezeichnung	Тур	Beschreibung
Eingabeinformationen		
P_ACT	Anw	Belegungszustand aus Belegungsauswertung/ Präsenzerkennung
H_ROOM	Lux	gemessene Beleuchtungs- stärke am Arbeitsplatz
L_MAN	Licht	Übersteuerung durch Nutzer
Ausgabeinformationen		
L_SET	Licht	(Regler-)Ausgangsgröße für zugehörige Aktorfunktionen

Konstantlicht-Regelung

• Lichtstärke kann (quasi) stetig gesteuert werden (z.B. über Dimmer oder Pulsweitenmodulation)

Julian Huber - Bussysteme 3 / 19

- Laden Sie die Datei Konstantlicht_nur_p.zcos und passen Sie den P-Parameter in PID -Baustein an und beobachten Sie die Reaktion des Systems
- Welche Komponenten werden durch welche Bausteine dargestellt?

Julian Huber - Bussysteme 4 / 19

- Bleibende Regelabweichung. Die 100 Lux werden nie erreicht
- Schwingen des Systems

Proportional-Regler

- Reaktion der Stellgröße bzw. Steuerungsgröße $u(t) = K_P \cdot e(t)$
- ullet multipliziert die Regelabweichung e_t mit dem Verstärkungsfaktor K_P und gibt das Ergebnis aus
- je dunkler y_m im Verhältnis zur Führungsgröße (w), desto heller die Beleuchtung (u)

Julian Huber - Bussysteme 6 / 19

 Reaktion der Stellgröße:

•
$$u(t) = K_P \cdot e(t)$$

def p-regler(e, k_p):
ausgang = e * k_p
return ausgang

Julian Huber - Bussysteme 7 / 19

- Ziel ist der Entwurf eines Reglers zur Steuerung einer Belüftungsanlage auf Basis der Schadstoffkonzentration im Raum in ppm
- Zeichnen Sie den Verlauf der Stellgrößen (Drehzahl der Anlage) für folgende zwei Regler:
 - \circ stetiger Proportionalregler: $u(t) = rac{2}{\min \cdot \mathrm{ppm}} e(t)$
 - Regelung nach Logik nächste Seite.

Julian Huber - Bussysteme 8 / 19

√ Lösung

```
def regler (e, letzte_drehzahl):
if e == 1000:
   drehzahl = letzte_drehzahl
else:
   if e > 1000:
     drehzahl = e
   else:
     drehzahl = 0
return drehzahl
```

Julian Huber - Bussysteme 9 / 19

√ Lösung

Julian Huber - Bussysteme

Zusammenfassung P-Regler

- P-Glied, welches als Regler eingesetzt wird
- Zeitverhalten: reagiert unverzögert
- bleibende Regelabweichung bei Systemen mit Ausgleich (Regelstrecken welche sich nicht proportional verhalten)

Julian Huber - Bussysteme 11 / 19

 Entfernen Sie den I und D-Anteil des PID-Reglers in demo_watertank.zcos und beobachten Sie die Reaktion des Systems

Julian Huber - Bussysteme 12 / 19

Integral-Regler

- Antwort u(t) auf Sprung unmittelbar, jedoch nicht sofort mit voller Stärke
- Je länger (t) die Regelabweichung besteht und umso größer sie ist, desto stärker die Antwort

•
$$u(t) = \frac{1}{T_n} \int_0^t e(\tau) d\tau$$

[Quelle](Abbildung rechts ist Reaktion auf Sprungfunktion)

Julian Huber - Bussysteme 13 / 19

- $u(t) = \frac{1}{T_n} \int_0^t e(\tau) d\tau$
- $u(t) = K_I \cdot \int_0^t e(au) d au$
- T_n ... Nachstellzeit bestimmt den Gradienten des Anstieges von u
- summiert die Regelabweichung über die Zeit auf
- Regelabweichungen werden auch bei Strecken mit Ausgleich vollständig eliminiert, dafür langsamer

Julian Huber - Bussysteme 14 / 19

Julian Huber - Bussysteme 15 / 19

Proportional-Integral-Regler

- Sprungantwort: $u(t) = K_P e(t) + K_I \cdot \int_0^t e(au) d au$
- PI-Regler Kombination aus P- und I-Regler
- schnelle Reaktion (wie P-Regler)
- exakte Ausregelung ohne eine bleibende Regelabweichung (wie I-Regler)

Julian Huber - Bussysteme 16 / 19

Proportional-Differenzial-Regler

- ullet Sprungantwort: $u(t) = K_P e(t) + K_d rac{de(t)}{dt} = K_P e(t) + T_v rac{de(t)}{dt}$
- kombiniert P-Regler mit Differenzial-Anteil
- der D-Anteil bewertet die Änderung einer Regelabweichung (differenziert) und berechnet so deren Änderungsgeschwindigkeit
- reagiert schon auf "Ankündigungen" von Veränderungen
- sehr schnell, doch bleibende Regelabweichung
- Unruhe im Regelkreis wird verstärkt, wenn Sensorsignal verrauscht

Julian Huber - Bussysteme 18 / 19

Julian Huber - Bussysteme