Package 'ISOpureR'

October 12, 2022

0000001 12, 2022
Version 1.1.3
Date 2019-05-10
Title Deconvolution of Tumour Profiles
Author Gerald Quon [aut], Catalina V Anghel [aut, trl], Syed Haider [aut], Francis Nguyen [aut], Amit G Deshwar [aut], Quaid D Morris [aut], Paul C Boutros [aut, cre]
Maintainer Paul C Boutros <pboutros@mednet.ucla.edu></pboutros@mednet.ucla.edu>
Depends R (>= $3.1.1$)
Imports Rcpp (>= 0.11.3), stats, futile.logger
LinkingTo Rcpp, RcppEigen (>= 0.3.2.2.0)
Suggests knitr
VignetteBuilder knitr
Description Deconvolution of mixed tumour profiles into normal and cancer for each patient, using the ISOpure algorithm in Quon et al. Genome Medicine, 2013 5:29. Deconvolution requires mixed tumour profiles and a set of unmatched `basis" normal profiles.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-05-11 00:00:03 UTC
R topics documented:
ISOpure.calculate.tac ISOpure.model_optimize.cg_code.rminimize ISOpure.model_optimize.vv.vv_deriv_loglikelihood ISOpure.model_optimize.vv.vv_loglikelihood ISOpure.step1.CPE

2

Index

ISOpure.step2.PPE	8
ISOpure.util.logsum	10
ISOpure.util.matlab_greater_than	11
ISOpure.util.matlab_less_than	12
ISOpure.util.matlab_log	13
ISOpure.util.repmat	14
$ISOpure S1. model_core. compute_log like lihood \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	15
ISOpureS1.model_core.new_model	15
ISOpureS1.model_core.optmodel	16
ISOpureS1.model_optimize.kappa.kappa_compute_loglikelihood	17
ISOpureS1.model_optimize.kappa.kappa_deriv_loglikelihood	17
ISOpureS1.model_optimize.kappa.kappa_loglikelihood	18
ISOpureS1.model_optimize.mm.mm_deriv_loglikelihood	19
ISOpureS1.model_optimize.mm.mm_loglikelihood	19
ISOpureS1.model_optimize.omega.omega_compute_loglikelihood	20
ISOpureS1.model_optimize.omega.omega_deriv_loglikelihood	21
ISOpureS1.model_optimize.omega.omega_loglikelihood	21
ISOpureS1.model_optimize.opt_kappa	22
ISOpureS1.model_optimize.opt_mm	23
ISOpureS1.model_optimize.opt_omega	24
ISOpureS1.model_optimize.opt_theta	25
ISOpureS1.model_optimize.opt_vv	26
ISOpureS1.model_optimize.theta.theta_deriv_loglikelihood	27
ISOpureS1.model_optimize.theta.theta_loglikelihood	27
ISOpureS1.model_optimize.vv.vv_compute_loglikelihood	28
ISOpureS2.model_core.compute_loglikelihood	29
ISOpureS2.model_core.new_model	29
ISOpureS2.model_core.optmodel	30
ISOpureS2.model_optimize.cc.cc_deriv_loglikelihood	31
ISOpureS2.model_optimize.cc.cc_loglikelihood	31
ISOpureS2.model_optimize.kappa.kappa_compute_loglikelihood	32
ISOpureS2.model_optimize.kappa.kappa_deriv_loglikelihood	33
ISOpureS2.model_optimize.kappa.kappa_loglikelihood	33
ISOpureS2.model_optimize.opt_cc	34
ISOpureS2.model_optimize.opt_kappa	35
ISOpureS2.model_optimize.opt_theta	36
ISOpureS2.model_optimize.opt_vv	37
ISOpureS2.model_optimize.theta.theta_deriv_loglikelihood	38
ISOpureS2.model_optimize.theta.theta_loglikelihood	38
ISOpureS2.model_optimize.vv.vv_compute_loglikelihood	39
	40

ISOpure.calculate.tac 3

ISOpure.calculate.tac Perform calculation for Tumour Adjacent Cell (TAC) profiles

Description

Performs the mathematical calculations taking bulk tumor data and deconvolved profiles and returning deconvolved tumour adjacent cell profiles.

Usage

```
ISOpure.calculate.tac(tumor.profiles, deconvolved.profiles, purity.estimates)
```

Arguments

tumor.profiles a GxD matrix representing gene expression profiles of heterogeneous (mixed) tumor samples, where G is the number of genes, D is the number of tumor samples.

deconvolved.profiles

a GxD matrix representing gene expression profiles of purified (ISOpure output) tumor samples, where G is the number of genes, D is the number of tumor samples.

purity.estimates

a vector D representing the purity estimates (output from ISOpure)

Value

a GxD matrix representing gene expression profiles of purified (ISOpure output) tumor adjacent cell signal, where G is the number of genes, D is the number of tumor samples.

Author(s)

Natalie Fox

```
ISO pure.model\_optimize.cg\_code.rminimize \\ \textit{Minimize a differentiable multivariate function}
```

Description

This function is a conjugate-gradient search with interpolation/extrapolation by Carl Edward Rasmussen. A description of the Matlab code can be found at http://learning.eng.cam.ac.uk/carl/code/minimize/ (accessed Jan. 21, 2014). This is a implementation in R.

Usage

```
ISOpure.model_optimize.cg_code.rminimize(X, f, df, run_length, ...)
```

Arguments

X	The starting point is given by X which must be either a scalar or a column vector or matrix, not a row matrix
f	The name of the function to be minimized, returning a scalar
df	The name of the function which returns the vector of partial derivatives of f wrt X, where again the partial derivatives must be in scalar or column vector/matrix form
run_length	Gives the length of the run: if it is positive, it gives the maximum number of line searches, if negative its absolute gives the maximum allowed number of function evaluations. Note, for ISOpureR, used only positive run_length.
	Parameters to be passed on to the function f.

Details

The function returns when either its length is up, or if no further progress can be made (ie, we are at a (local) minimum, or so close that due to numerical problems, we cannot get any closer). NOTE: If the function terminates within a few iterations, it could be an indication that the function values and derivatives are not consistent (ie, there may be a bug in the implementation of your "f" function).

The Polack-Ribiere flavour of conjugate gradients is used to compute search directions, and a line search using quadratic and cubic polynomial approximations and the Wolfe-Powell stopping criteria is used together with the slope ratio method for guessing initial step sizes. Additionally a bunch of checks are made to make sure that exploration is taking place and that extrapolation will not be unboundedly large.

Value

A list with three components:

X	The found solution X
fX	A vector of function values fX indicating the progress made
i	The number of iterations

Author(s)

Catalina Anghel, Francis Nguyen, Carl Edward Rasmussen

```
# Example from Carl E. Rasmussen's webpage

rosenbrock <- function(x){
D <- length(x);
    y <- sum(100*(x[2:D] - x[1:(D-1)]^2)^2 + (1-x[1:(D-1)])^2);
    return(y);
    };
drosenbrock <- function(x){
D <- length(x);
df <- numeric(D);</pre>
```

```
df[1:D-1] <- -400*x[1:(D-1)]*(x[2:D]-x[1:(D-1)]^2) - 2*(1-x[1:(D-1)]);
    df[2:D] <- df[2:D] + 200*(x[2:D]-x[1:(D-1)]^2);
    return(df);
};

ISOpure.model_optimize.cg_code.rminimize(c(0,0), rosenbrock, drosenbrock, 25)
#
    #[[1]]
# [1] 1 1
#
# [[2]]
# [1] 1.000000e+00 7.716094e-01 5.822402e-01 4.049274e-01 3.246633e-01
# [6] 2.896041e-01 7.623420e-02 6.786212e-02 3.378424e-02 1.089908e-03
# [11] 1.087952e-03 8.974308e-05 1.218382e-07 6.756019e-09 3.870791e-15
# [16] 1.035408e-21 6.248025e-27 5.719242e-30 4.930381e-32
#
# [[3]]
# [1] 20</pre>
```

ISOpure.model_optimize.vv.vv_deriv_loglikelihood

Compute the derivative of the loglikelihood relevant to vv for step 1

Description

Computes the derivative of the loglikelihood function relevant to optimizing vv for step 1

Usage

```
ISOpure.model_optimize.vv.vv_deriv_loglikelihood(ww, sum_log_theta, DD)
```

Arguments

```
ww log(vv-1), a Kx1 matrix sum_log_theta the column sums of log(theta), a 1xK matrix DD the number of patients (a scalar)
```

Value

The negative derivative of the part of the loglikelihood function relevant to vv with respect to (log) vv

Author(s)

6 ISOpure.step1.CPE

Description

Computes the part of the loglikelihood function relevant to optimizing vv for step 1

Usage

```
ISOpure.model_optimize.vv.vv_loglikelihood(ww, sum_log_theta, DD)
```

Arguments

ww log(vv-1), a Kx1 matrix

sum_log_theta the column sums of log(theta), a 1xK matrix

DD the number of patients (a scalar)

Value

The negative of the loglikelihood relevant to vv

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpure.step1.CPE Perfor

Perform first step of ISOpure purification algorithm

Description

Performs the first step of the ISOpure purification algorithm, taking tumor data normal profiles and returning the a list, ISOpureS1model, with all the updated parameters.

Usage

```
ISOpure.step1.CPE(tumordata, BB, PP, MIN_KAPPA, logging.level)
```

ISOpure.step1.CPE 7

Arguments

tumordata a GxD matrix representing gene expression profiles of heterogeneous (mixed)

tumor samples, where G is the number of genes, D is the number of tumor

samples.

BB represents $B = [b_1 ... b_(K-1)]$ matrix (from Genome Medicine paper) a Gx(K-1)

1) matrix, where (K-1) is the number of normal profiles $(\beta_1, ..., \beta_(K-1))$, G is the number of genes. These are the normal profiles representing normal cells that contaminate the tumor samples (i.e. normal samples from the same tissue location as the tumor). The minimum element of BB must be greater than 0-i.e. every gene/transcript must be observed on some level in each normal sample.

PP a GxM matrix, representing the expression profiles whose convex combination

form the prior over the purified cancer profile learned.

MIN_KAPPA (optional) The minimum value allowed for the strength parameter kappa placed

over the reference cancer profile m (see Quon et al, 2013). By default, this is set to 1/min(BB), such that the log likelihood of the model is always finite. However, when the min(BB) is very small, this forces MIN_KAPPA to be very large, and can sometimes cause the reference profile m to look too much like a 'normal profile' (and therefore you may observe the tumor samples having low % cancer content estimates). If this is the case, you can try setting MIN_KAPPA=1, or some other small value. For reference, for the data presented in Quon et al.,

2013, MIN_KAPPA is on the order of 10⁵.

logging.level (optional) A string that gives the logging threshold for futile.logger. The pos-

sible options are 'TRACE', 'DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL'. Currently the messages in ISOpureR are only in the categories 'INFO', 'WARN', and 'FATAL', and the default setting is 'INFO'. Setting a setting for the entire

package will over-ride the setting for a particular function.

Value

ISOpureS1model, a list with the following important fields:

theta a DxK matrix, giving the fractional composition of each tumor sample. Each

row represents a tumor sample that was part of the input, and the first K-1 columns correspond to the fractional composition with respect to the Source Panel contaminants. The last column represents the fractional composition of the pure cancer cells. In other words, each row sums to 1, and element (i,j) of the matrix denotes the fraction of tumor i attributable to component j (where the last column refers to cancer cells, and the first K-1 columns refer to different 'normal cell' components). The 'cancer', or tumor purity, estimate of each

tumor is simply the last column of theta.

alphapurities tumor purities (alpha_i in paper), same as the last column of the theta variable,

pulled out for user convenience.

mm reference cancer profile, in the form of parameters of a multinomial or discrete

distribution (sum of elements is 1). This is the same as the purified cancer profile

that ISOLATE was designed to learn.

omega a Mx1 vector describing the convex combination weights learned by ISOpure

step 1 over the PPtranspose matrix, that when applied to the Site of Origin Panel,

8 ISOpure.step2.PPE

forms the prior over the reference cancer profile. When ISOpure step 1 is used in a similar fashion to the ISOLATE algorithm, entry i indicates the "probability" that the normal profile in the i-th column of PP is the site of origin of the secondary tumors stored in tumordata.

total_loglikelihood

log likelihood of the model

vv (internal parameter) hyper-parameters from Dirichlet distribution, representing

both mean and strength of a Dirichlet distribution over theta

kappa (internal parameter) the strength parameter over the Dirichlet distribution over

the reference cancer parameter, mm

mm_weights, theta_weights, omega_weights

(internal parameters) used in the optimization of mm, theta, and omega (instead of performing constrained optimization on these positively constrained variables

directly, we optimize their logs in an unconstrained fashion.)

log_BBtranspose, PPtranspose, log_all_rates:

(internal parameters) used in the calculations of loglikelihood

MIN_KAPPA (internal parameter) as described in the Arguments section

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

References

G Quon, S Haider, AG Deshwar, A Cui, PC Boutros, QD Morris. *Computational purification of individual tumor gene expression profiles*. Genome Medicine (2013) 5:29, http://genomemedicine.com/content/5/3/29.

G Quon, QD Morris. *ISOLATE: a computational strategy for identifying the primary origin of cancers using high-thoroughput sequencing*. Bioinformatics 2009, 25:2882-2889 http://bioinformatics.oxfordjournals.org/content/25/21/2882.

ISOpure.step2.PPE

Perform second step of ISOpure purification algorithm

Description

Performs the second step of the ISOpure purification algorithm, taking tumor data and normal profiles and returning the a list, ISOpureS2model, with all the updated parameters.

Usage

ISOpure.step2.PPE(tumordata, BB, ISOpureS1model, MIN_KAPPA, logging.level)

ISOpure.step2.PPE 9

Arguments

tumordata (same as for ISOpureS1) a GxD matrix representing gene expression profiles of

heterogeneous (mixed) tumor samples, where G is the number of genes, D is the

number of tumor samples.

BB (same as for ISOpureS1) represents $B = [b_1 ... b_(K-1)]$ matrix (from Genome Medicine paper) a Gx(K-1) matrix, where (K-1) is the number of normal profiles $(\beta_1, ..., \beta_l K - 1)$, G is the number of genes. These are the normal profiles

representing normal cells that contaminate the tumor samples (i.e. normal samples from the same tissue location as the tumor). The minimum element of BB must be greater than 0 - i.e. every gene/transcript must be observed on some

level in each normal sample.

ISOpureS1model output model list from ISOpureS1 code

MIN_KAPPA (optional) The minimum value allowed for the strength parameter kappa placed

over the reference cancer profile m (see Quon et al, 2013). By default, this is set to 1/min(BB), such that the log likelihood of the model is always finite. However, when the min(BB) is very small, this forces MIN_KAPPA to be very large, and can sometimes cause the reference profile m to look too much like a 'normal profile' (and therefore you may observe the tumor samples having low % cancer content estimates). If this is the case, you can try setting MIN_KAPPA=1, or some other small value. For reference, for the data presented in Ouon et al..

2013, MIN_KAPPA is on the order of 10⁵.

logging.level (optional) A string that gives the logging threshold for futile.logger. The possible options are 'TRACE', 'DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL'.

Currently the messages in ISOpureR are only in the categories 'INFO', 'WARN',

and 'FATAL', and the default setting is 'INFO'. Setting a setting for the entire

package will over-ride the setting for a particular function.

Value

theta

ISOpureS2model, a list with the following important fields:

row represents a tumor sample that was part of the input, and the first K-1 columns correspond to the fractional composition with respect to the Source Panel contaminants. The last column represents the fractional composition of the pure cancer cells. In other words, each row sums to 1, and element (i,j) of the matrix denotes the fraction of tumor i attributable to component i (where

a DxK matrix, giving the fractional composition of each tumor sample. Each

the matrix denotes the fraction of tumor i attributable to component j (where the last column refers to cancer cells, and the first K-1 columns refer to different 'normal cell' components). The 'cancer', or tumor purity, estimate of each

tumor is simply the last column of theta.

alphapurities (same as ISOpureS1) tumor purities (alpha_i in paper), same as the last column of the theta variable, pulled out for user convenience - not changed in step 2

cc_cancerprofiles

purified cancer profiles. This matrix is of the same dimensionality as tumordata, and is also on the same scale (i.e. although ISOpureS2 treats purified cancer profiles as parameters of a multinomial distribution, we re-scale them to be on the

10 ISOpure.util.logsum

same scale as the input tumor profiles – see Genome Medicine paper). Column i of cc_cancerprofiles corresponds to column i of tumordata.

total_loglikelihood

log likelihood of the model

omega (internal parameter, same as ISOpureS1) prior over the reference cancer profile

- not changed in step 2

vv (internal parameter) hyper-parameters from Dirichlet distribution, representing

both mean and strength of a Dirichlet distribution over theta

kappa (internal parameter) the strength parameter over the Dirichlet distribution over

cc, given the reference cancer parameter, mm

mm_weights, theta_weights, omega_weights

(internal parameters) used in the optimization of mm, theta, and omega (instead of performing constrained optimization on these positively constrained variables

directly, we optimize their logs in an unconstrained fashion.)

log_BBtranspose, PPtranspose, log_all_rates:

(internal parameters) used in the calculations of loglikelihood

MIN_KAPPA (internal parameter) as described in the Arguments section

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

References

G Quon, S Haider, AG Deshwar, A Cui, PC Boutros, QD Morris. *Computational purification of individual tumor gene expression profiles*. Genome Medicine (2013) 5:29, http://genomemedicine.com/content/5/3/29.

G Quon, QD Morris. *ISOLATE: a computational strategy for identifying the primary origin of cancers using high-thoroughput sequencing*. Bioinformatics 2009, 25:2882-2889 http://bioinformatics.oxfordjournals.org/content/25/21/2882.

ISOpure.util.logsum *Log-sum-exp*

Description

Prevents underflow/overflow using the log-sum-exp trick

Usage

```
ISOpure.util.logsum(xx, dimen);
```

Arguments

xx A matrix of numerical values

dimen The dimension along which the long sum is taken (1 for row, 2 for column)

Value

Returns log(sum(exp(x),dimen)), the log sum of exps, summing over dimension dimen but in a way that tries to avoid underflow/overflow.

Author(s)

Gerald Quon and Catalina Anghel

Examples

```
x <- c(1, 1e20, 1e40, -1e40, -1e20, -1);
x <- as.matrix(x);

# compute log sum exp without the function
log(sum(exp(x)))
#[1] Inf

# compute log sum exp with the function
ISOpure.util.logsum(x, 1)
#[1] 1e+40</pre>
```

```
ISOpure.util.matlab_greater_than

Greater than operator
```

Description

Greater than function that matches Matlab behaviour when one of the arguments is NA (i.e. returns FALSE instead of NA)

Usage

```
ISOpure.util.matlab_greater_than(a, b)
```

Arguments

- a A numeric value (including Inf) or NA
- b A numeric value or NA

Value

```
Logical: TRUE if a > b, FALSE if a <= b OR if one of a, b is NA or NaN
```

Author(s)

Catalina Anghel

Examples

```
ISOpure.util.matlab_greater_than(5,3)
#[1] TRUE
ISOpure.util.matlab_greater_than(3,5)
#[1] FALSE
ISOpure.util.matlab_greater_than(5,NA)
#[1] FALSE
ISOpure.util.matlab_greater_than(NA,5)
#[1] FALSE
ISOpure.util.matlab_greater_than(5,Inf)
#[1] FALSE
ISOpure.util.matlab_greater_than(Inf,5)
#[1] TRUE
```

```
ISOpure.util.matlab_less_than 
 Less than operator
```

Description

Less than function that matches Matlab behaviour when one of the arguments is NA (i.e. returns FALSE instead of NA)

Usage

```
ISOpure.util.matlab_less_than(a, b)
```

Arguments

a A numeric value (including Inf) or NAb A numeric value (including Inf) or NA

Value

Logical: TRUE if a < b, FALSE if a >= b OR if one of a, b is NA or NaN

Author(s)

Catalina Anghel

```
ISOpure.util.matlab_less_than(5,3)
#[1] FALSE
ISOpure.util.matlab_less_than(3,5)
#[1] TRUE
ISOpure.util.matlab_less_than(5,NA)
#[1] FALSE
```

```
ISOpure.util.matlab_less_than(NA,5)
#[1] FALSE
ISOpure.util.matlab_less_than(5,Inf)
#[1] TRUE
ISOpure.util.matlab_less_than(Inf,5)
#[1] FALSE
```

```
ISOpure.util.matlab_log
```

Modified logarithm function

Description

Logarithm function that matches Matlab behaviour on negative entries (i.e. returns a complex number)

Usage

```
ISOpure.util.matlab_log(x)
```

Arguments

х

A numeric or complex value, vector, or matrix.

Value

Returns log(x) if all entries of x > 0. For complex or negative input, x, where x = a + bi, the function returns log(z) = log(abs(z)) + 1i*atan2(b,a) where atan(b,a) is on the half-closed interval, (-pi, pi], as for the Matlab log function.

Author(s)

Catalina Anghel

```
ISOpure.util.matlab_log(5)
#[1] 1.609438
ISOpure.util.matlab_log(-5)
#[1] 1.609438+3.141593i
ISOpure.util.matlab_log(complex(real=3, imaginary=4))
#[1] 1.609438+0.927295i
ISOpure.util.matlab_log(c(2,3,4,-7,1))
#[1] 0.6931472+0.000000i 1.0986123+0.000000i 1.3862944+0.000000i
#[4] 1.9459101+3.141593i 0.0000000+0.000000i
```

14 ISOpure.util.repmat

ISOpure.util.repmat Tiles matrix horizontally or vertically

Description

Tiles matrix horizontally or vertically in the same way as the Matlab repmat command

Usage

```
ISOpure.util.repmat(a, n, m)
```

Arguments

- a A matrix
 n Number of times the matrix should be tiled horizontally
- m number of times the matrix should be tiled vertically

Value

A matrix which has replicated and tiled the input matrix a by n rows and m columns

Author(s)

Catalina Anghel, Ohloh (now Black Duck Open Hub)

```
x \leftarrow matrix(runif(6), 3, 2)
            [,1]
                      [,2]
# [1,] 0.5167029 0.7543404
# [2,] 0.9064936 0.4316977
# [3,] 0.3256870 0.5310625
ISOpure.util.repmat(x, 1, 2)
            [,1]
                      [,2]
                                 [,3]
                                           [,4]
# [1,] 0.5167029 0.7543404 0.5167029 0.7543404
# [2,] 0.9064936 0.4316977 0.9064936 0.4316977
# [3,] 0.3256870 0.5310625 0.3256870 0.5310625
ISOpure.util.repmat(x, 2, 1)
            [,1]
                      [,2]
# [1,] 0.5167029 0.7543404
# [2,] 0.9064936 0.4316977
# [3,] 0.3256870 0.5310625
# [4,] 0.5167029 0.7543404
# [5,] 0.9064936 0.4316977
# [6,] 0.3256870 0.5310625
ISOpure.util.repmat(x, 2, 3)
            [,1]
                     [,2]
                                [,3]
                                           [,4]
                                                     [,5]
                                                               [,6]
# [1,] 0.5167029 0.7543404 0.5167029 0.7543404 0.5167029 0.7543404
```

```
# [2,] 0.9064936 0.4316977 0.9064936 0.4316977 0.9064936 0.4316977

# [3,] 0.3256870 0.5310625 0.3256870 0.5310625 0.3256870 0.5310625

# [4,] 0.5167029 0.7543404 0.5167029 0.7543404 0.5167029 0.7543404

# [5,] 0.9064936 0.4316977 0.9064936 0.4316977 0.9064936 0.4316977

# [6,] 0.3256870 0.5310625 0.3256870 0.5310625 0.3256870 0.5310625
```

```
ISOpureS1.model_core.compute_loglikelihood

Compute loglikelihood given all model parameters for step 1
```

Computes complete loglikelihood given all model parameters for step 1

Usage

```
ISOpureS1.model_core.compute_loglikelihood(tumordata, model)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples model list containing all the parameters updated in ISOpure step one iterations

Value

The scalar value of the complete loglikelihood obtained given the model parameters

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS1.model_core.new_model

Initialize a model list to hold all the parameters
```

Description

Produces a list (the model) which initializes the parameters vv, log_BBtranspose, PPtranspose, kappa, theta, omega, log_all_rates for step 1

Usage

```
ISOpureS1.model_core.new_model(tumordata, kappa, INITIAL_VV, PPtranspose, BBtranspose)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples

kappa scalar strength parameter kappa placed over the reference cancer profile mm

INITIAL_VV a vector with K components, the prior over mixing proportions, theta, with last

entry weighed more heavily

PPtranspose a (K-1)xG matrix, standardized so that all entries sum to 1, see ISOpure.step1.CPE.R

BBtranspose a (K-1)xG matrix of the standardized normal profiles, so that they sum to 1

Value

model a newly generated model list to hold all the parameters vv, log_BBtranspose,

PPtranspose, kappa, theta, omega, log_all_rates

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_core.optmodel

Optimizes the ISOpure parameters for step 1

Description

Optimizes the ISOpure parameters for step 1 cyclically until convergence

Usage

ISOpureS1.model_core.optmodel(tumordata, model, NUM_ITERATIONS=35)

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

NUM_ITERATIONS (optional) minimum number of iterations of optimization algorithm, default is

35

Value

model updated model list containing all the parameters

Author(s)

ISOpureS1.model_optimize.kappa.kappa_compute_loglikelihood

Compute loglikelihood relevant to kappa for step 1

Description

Computes the part of the loglikelihood function relevant to optimizing kappa for step 1

Usage

ISOpureS1.model_optimize.kappa.kappa_compute_loglikelihood(kappa, tumordata, model)

Arguments

kappa a scalar kappa, the strength parameter in the prior over the reference cancer

profile

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

Value

The part of the loglikelihood function relevant to optimizing kappa

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.kappa.kappa_deriv_loglikelihood

Compute derivative of loglikelihood with respect to kappa for step 1

Description

Computes the derivative of the part of the loglikelihood function relevant to optimizing kappa for step 1. Instead of performing constrained optimization on kappa directly, we optimize the log of kappa in an unconstrained fashion. Thus, if $y=\log(kappa)$ and L is the loglikelihood function w.r.t. y, to optimize L w.r.t. y, dL/dy = dL/dkappa * dkappa/dy, where $dkappa/dy = \exp(y) = \exp(\log(kappa))$. The input into the derivative function is $\log(kappa - model)$ MIN_KAPPA).

Usage

ISOpureS1.model_optimize.kappa.kappa_deriv_loglikelihood(log_kappa, tumordata, model)

Arguments

log_kappa the scalar log(kappa - model\\$MIN_KAPPA)

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

Value

The negative derivative of the part of the loglikelihood function relevant to kappa with respect to log kappa (a scalar given that for step 1 of ISOpure kappa is a scalar)

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.kappa.kappa_loglikelihood

Compute loglikelihood relevant to kappa for step 1

Description

Computes the part of the loglikelihood function relevant to optimizing kappa for step 1. Instead of performing constrained optimization on kappa directly, we optimize the log of kappa in an unconstrained fashion.

Usage

ISOpureS1.model_optimize.kappa.kappa_loglikelihood(log_kappa, tumordata, model)

Arguments

log_kappa the scalar log(kappa - model\\$MIN_KAPPA)

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

Value

The negative of the loglikelihood relevant to optimizing kappa

Author(s)

ISOpureS1.model_optimize.mm.mm_deriv_loglikelihood

Compute the derivative of the loglikelihood relevant to mm for step 1

Description

Computes the derivative of the loglikelihood function relevant to optimizing the reference cancer profile, mm, for step 1

Usage

ISOpureS1.model_optimize.mm.mm_deriv_loglikelihood(ww, tumordata, model)

Arguments

ww the mm_weights, with G entries

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

Value

The negative derivative the likelihood function relevant to optimizing mm. The derivative is taken not with respect to mm but with respect to unconstrained variables via a change of variables.

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.mm.mm_loglikelihood

Compute the loglikelihood relevant to mm for step 1

Description

Computes the loglikelihood function relevant to optimizing the reference cancer profile, mm, for step 1

Usage

ISOpureS1.model_optimize.mm.mm_loglikelihood(ww, tumordata, model)

Arguments

ww the mm_weights, with G entries

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

Value

The negative of the likelihood function relevant to optimizing mm.

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.omega.omega_compute_loglikelihood

Compute loglikelihood relevant to omega for step 1

Description

Computes the part of the loglikelihood function relevant to optimizing omega for step 1

Usage

ISOpureS1.model_optimize.omega.omega_compute_loglikelihood(omega, tumordata, model)

Arguments

omega (K-1)x1 matrix representing the weights of the normal profiles B_i used to make

the weighted combination that forms the mean parameter vector for the Dirichlet

distribution over m

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

Value

The part of the loglikelihood function relevant to optimizing omega

Author(s)

ISOpureS1.model_optimize.omega.omega_deriv_loglikelihood

Compute the derivative of loglikelihood relevant to omega for step 1

Description

Compute the derivative of the part of the loglikelihood function relevant to omega with respect to (log) omega, in step 1. Instead of performing constrained optimization on omega directly, we optimize the log of omega in an unconstrained fashion.

Usage

ISOpureS1.model_optimize.omega.omega_deriv_loglikelihood(ww, tumordata, model)

Arguments

ww (K-1)x1 matrix, log(omega), where the entries in omega are constrained to add

to 1 where K-1 is the number of normal samples

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

Value

The negative derivative of the part of the loglikelihood function relevant to omega with respect to (log) omega

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.omega.omega_loglikelihood

Compute the loglikelihood relevant to omega for step 1

Description

Compute the the part of the loglikelihood function relevant to omega in step 1

Usage

ISOpureS1.model_optimize.omega.omega_loglikelihood(ww, tumordata, model)

Arguments

ww (K-1)x1 matrix, log(omega), where the entries in omega are constrained to add

to 1 where K-1 is the number of normal samples

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

Value

The negative of the loglikelihood function relevant to omega

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS1.model_optimize.opt_kappa
Optimize kappa in step 1
```

Description

This function optimizes kappa, the strength parameter in the prior over the reference cancer profile. Note that we don't directly optimize kappa because it has constraints (must be greater than the minimum determined in ISOpure.step1.CPE.)

Usage

```
ISOpureS1.model_optimize.opt_kappa(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the kappa parameter updated

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS1.model_optimize.opt_mm
```

Optimize the reference cancer profile, m, in step 1

Description

The goal of this function is to optimize the reference cancer profile mm. Because mm is constrained (must be parameters of multinomial/discrete distribution), we don't directly optimize the likelihood function w.r.t. mm, but we perform change of variables to do unconstrained optimization. We therefore store these unconstrained variables in the field "mm_weights", and update these variables.

Usage

```
ISOpureS1.model_optimize.opt_mm(
tumordata, model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with mm_weights updated (and log_all_rates)

Author(s)

This function optimizes omega, in fact the convex mixing weights that govern prior over the reference cancer profile.

Usage

```
ISOpureS1.model_optimize.opt_omega(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the omega_weights and omega parameters updated

Author(s)

This function optimizes theta, in fact theta_weights. Since thetas are constrained (must be parameters of multinomial/discrete distribution), we don't directly optimize the likelihood function w.r.t. theta, but we perform change of variables to do unconstrained optimization. We therefore store these unconstrained variables in the field "theta_weights", and update these variables.

Usage

```
ISOpureS1.model_optimize.opt_theta(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the theta parameter updated

Author(s)

This function optimizes vv, the strength parameter in the prior over the reference cancer profile. Note that we don't directly optimize vv because it has constraints (must be >=1 to guarantee real-valued likelihoods).

Usage

```
ISOpureS1.model_optimize.opt_vv(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the vv parameter updated

Author(s)

ISOpureS1.model_optimize.theta.theta_deriv_loglikelihood

Compute the derivative of loglikelihood relevant to theta for step 1

Description

Computes the derivative of the loglikelihood function relevant to optimizing theta, not with respect to theta but with respect to unconstrained variables

Usage

ISOpureS1.model_optimize.theta.theta_deriv_loglikelihood(ww, tumordata, dd, model)

Arguments

ww the theta weights corresponding to patient dd, a 1xK matrix

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative derivative of the loglikelihood function relevant to optimizing theta, not with respect to theta but with respect to unconstrained variables.

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.theta.theta_loglikelihood

Compute the loglikelihood relevant to theta for step 1

Description

Computes the part of the loglikelihood function relevant to optimizing theta for step 1

Usage

ISOpureS1.model_optimize.theta.theta_loglikelihood(ww, tumordata, dd, model)

Arguments

ww the theta weights corresponding to patient dd, a 1xK matrix

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative of the loglikelihood relevant to theta

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS1.model_optimize.vv.vv_compute_loglikelihood

Compute loglikelihood relevant to vv for step 1

Description

Computes the part of the loglikelihood function relevant to optimizing vv for step 1.

Usage

ISOpureS1.model_optimize.vv.vv_compute_loglikelihood(vv, sum_log_theta, DD)

Arguments

vv Kx1 matrix representing the weights of the normal profiles B_i used to make the

weighted combination that forms the mean parameter vector for the Dirichlet

distribution over m

sum_log_theta the column sums of log(theta), a 1xK matrix

DD the number of patients (a scalar)

Value

The negative of the loglikelihood relevant to optimizing vv

Author(s)

ISOpureS2.model_core.compute_loglikelihood

Compute loglikelihood given all model parameters for step 2

Description

Computes complete loglikelihood given all model parameters for step 2

Usage

```
ISOpureS2.model_core.compute_loglikelihood(tumordata, model)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters updated in ISOpure step two iterations

Value

The scalar value of the complete loglikelihood obtained given the model parameters

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS2.model_core.new_model

Compute loglikelihood given all model parameters for step 2

Description

Produces a list (the model) which initializes the parameters vv, log_BBtranspose, PPtranspose, kappa, theta, omega, log_all_rates for step 2

Usage

ISOpureS2.model_core.new_model(tumordata, kappa, INITIAL_VV, PPtranspose, BBtranspose)

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples

kappa a 1xD matrix which represents strength parameter kappa over cc, given the ref-

erence profile mm

INITIAL_VV a vector with K components, the prior over mixing proportions, theta, with last

entry weighed more heavily

PPtranspose the prior on the tumor-specific cancer profiles is just the reference cancer profile

(1xG matrix) learned in ISOpureS1, standardized so that all entries sum to 1

BBtranspose a (K-1)xG matrix of the standardized normal profiles, so that they sum to 1

Value

model a newly generated model list to hold all the parameters

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS2.model_core.optmodel

Optimizes the ISOpure parameters for step 2

Description

Optimizes the ISOpure parameters for step 2 cyclically until convergence

Usage

ISOpureS2.model_core.optmodel(tumordata, model, NUM_ITERATIONS=35)

Arguments

tumordata a GxD matrix representing gene expression profiles of tumor samples

model list containing all the parameters to be optimized

NUM_ITERATIONS (optional) minimum number of iterations of optimization algorithm, default is

35

Value

model updated model list containing all the parameters

Author(s)

ISOpureS2.model_optimize.cc.cc_deriv_loglikelihood

Compute the derivative of loglikelihood relevant to the patient cancer profiles, cc, for step 2

Description

Computes the derivative of the part of the likelihood function relevant to optimizing cc.

Usage

```
ISOpureS2.model_optimize.cc.cc_deriv_loglikelihood(ww, tumordata, dd, model)
```

Arguments

ww the cc_weights for patient dd, with G entries

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative derivative of the loglikelihood function relevant to optimizing cc for patient dd, the cancer profile for that patient. The derivative is taken not with respect to vv but with respect to unconstrained variables via a change of variables

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS2.model_optimize.cc.cc_loglikelihood
```

Compute the loglikelihood relevant to the patient cancer profiles, cc, for step 2

Description

Computes the part of the loglikelihood function relevant to optimizing cc for patient dd, the cancer profile for that patient

Usage

```
ISOpureS2.model_optimize.cc.cc_loglikelihood(ww, tumordata, dd, model)
```

Arguments

ww the cc_weights for patient dd, with G entries

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative the part of the loglikelihood function relevant to optimizing cc for patient dd, the cancer profile for that patient.

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS2.model_optimize.kappa.kappa_compute_loglikelihood

Compute loglikelihood relevant to kappa for step 2

Description

Computes the part of the loglikelihood function relevant to optimizing kappa for step 2

Usage

ISOpureS2.model_optimize.kappa.kappa_compute_loglikelihood(kappa, model)

Arguments

kappa a 1xK vector strength parameter in the prior over cc given the cancer profile mm

model list containing all the parameters to be optimized

Value

The part of the loglikelihood function relevant to optimizing kappa

Author(s)

ISOpureS2.model_optimize.kappa.kappa_deriv_loglikelihood

Compute derivative of loglikelihood with respect to kappa for step 2

Description

Computes the derivative of the part of the loglikelihood function relevant to optimizing kappa for step 2. Instead of performing constrained optimization on kappa directly, we optimize the log of kappa in an unconstrained fashion.

Usage

ISOpureS2.model_optimize.kappa.kappa_deriv_loglikelihood(log_kappa, model)

Arguments

list containing all the parameters to be optimized

Value

The negative derivative of the part of the loglikelihood function relevant to kappa with respect to log kappa (a Dx1 matrix).

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

Description

Computes the part of the loglikelihood function relevant to optimizing kappa for step 2. Instead of performing constrained optimization on kappa directly, we optimize the log of kappa in an unconstrained fashion.

Usage

ISOpureS2.model_optimize.kappa.kappa_loglikelihood(log_kappa, model)

Arguments

log_kappa the 1xD matrix log(kappa - model\\$MIN_KAPPA)
model list containing all the parameters to be optimized

Value

The negative of the loglikelihood relevant to optimizing kappa

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS2.model_optimize.opt_cc
```

Optimize the tumor-specific cancer profiles in step 2

Description

Optimize the tumor-specific cancer profiles. Because cc is constrained (each cc_i are parameters of multinomial/discrete distribution), we don't directly optimize the likelihood function w.r.t. cc, but we perform change of variables to do unconstrained optimization. We therefore store these unconstrained variables in the field "cc_weights", and update these variables.

Usage

```
ISOpureS2.model_optimize.opt_cc(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with cc_weights and log_cc updated

Author(s)

This function optimizes kappa, the strength parameter in the prior over the reference cancer profile. Note that we don't directly optimize kappa because it has constraints (must be greater than the minimum determined in ISOpure.step2.PPE.)

Usage

```
ISOpureS2.model_optimize.opt_kappa(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the kappa parameter (which is a 1xD vector) updated

Author(s)

This function optimizes theta, in fact theta_weights. Since thetas are constrained (must be parameters of multinomial/discrete distribution), we don't directly optimize the likelihood function w.r.t. theta, but we perform change of variables to do unconstrained optimization. We therefore store these unconstrained variables in the field "theta_weights", and update these variables.

Usage

```
ISOpureS2.model_optimize.opt_theta(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the theta parameter updated (the first K-1 columns) corresponding to the normal sample contributions

Author(s)

This function optimizes vv, the strength parameter in the prior over the reference cancer profile. Note that we don't directly optimize vv because it has constraints (must be >=1 to guarantee real-valued likelihoods).

Usage

```
ISOpureS2.model_optimize.opt_vv(
tumordata,
model,
NUM_ITERATIONS_RMINIMIZE,
iter,
NUM_GRID_SEARCH_ITERATIONS
)
```

Arguments

tumordata a GxD matrix representing gene expression profiles of tumour samples

model list containing all the parameters to be optimized

NUM_ITERATIONS_RMINIMIZE

minimum number of iteration that the minimization algorithm runs

iter the iteration number

NUM_GRID_SEARCH_ITERATIONS

number of times to try restarting with different initial values

Value

The model with the vv parameter updated

Author(s)

ISOpureS2.model_optimize.theta.theta_deriv_loglikelihood

Compute the derivative of loglikelihood relevant to theta for step 2

Description

Computes the derivative of the loglikelihood function relevant to optimizing theta, not with respect to theta but with respect to unconstrained variables

Usage

ISOpureS2.model_optimize.theta.theta_deriv_loglikelihood(ww, tumordata, dd, model)

Arguments

ww the theta weights corresponding to patient dd, a 1xK matrix

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative derivative of the loglikelihood function relevant to optimizing theta, not with respect to theta but with respect to unconstrained variables.

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

ISOpureS2.model_optimize.theta.theta_loglikelihood

Compute the loglikelihood relevant to theta for step 2

Description

Computes the part of the loglikelihood function relevant to optimizing theta for step 2

Usage

ISOpureS2.model_optimize.theta.theta_loglikelihood(ww, tumordata, dd, model)

Arguments

ww the theta weights corresponding to patient dd, a 1xK matrix

tumordata a GxD matrix representing gene expression profiles of tumor samples

dd the patient number

model list containing all the parameters to be optimized

Value

The negative of the loglikelihood relevant to theta

Author(s)

Gerald Quon, Catalina Anghel, Francis Nguyen

```
ISOpureS2.model_optimize.vv.vv_compute_loglikelihood

Compute loglikelihood relevant to vv for step 2
```

Description

Computes the part of the loglikelihood function relevant to optimizing vv for step 2.

Usage

```
ISOpureS2.model_optimize.vv.vv_compute_loglikelihood(ww, sum_log_theta, D)
```

Arguments

ww log(vv-1), a Kx1 matrix

sum_log_theta the column sums of log(theta), a 1xK matrix

D the number of patients (a scalar)

Value

The negative of the loglikelihood relevant to optimizing vv

Author(s)

Index

```
ISOpure.step2.PPE, 8
* Bayesian
         ISOpure.step1.CPE, 6
                                                                                                             ISOpure.util.logsum, 10
         ISOpure.step2.PPE, 8
                                                                                                             ISOpureS1.model_core.compute_loglikelihood,
*NA
                                                                                                             ISOpureS1.model_core.new_model, 15
         ISOpure.util.matlab_greater_than,
                                                                                                             ISOpureS1.model_core.optmodel, 16
         ISOpure.util.matlab_less_than, 12
                                                                                                             ISOpureS1.model_optimize.kappa.kappa_compute_loglikeli
         ISOpure.util.matlab_greater_than,
                                                                                                             ISOpureS1.model_optimize.kappa.kappa_deriv_loglikeliho
         ISOpure.util.matlab_less_than, 12
                                                                                                             ISOpureS1.model_optimize.kappa.kappa_loglikelihood,
         ISOpure.util.matlab_log, 13
* array
                                                                                                             ISOpureS1.model_optimize.mm.mm_deriv_loglikelihood,
         ISOpure.util.repmat, 14
* cancer
                                                                                                             ISOpureS1.model_optimize.mm.mm_loglikelihood,
         ISOpure.step1.CPE, 6
         ISOpure.step2.PPE, 8
                                                                                                             ISOpureS1.model_optimize.omega.omega_compute_loglikeli
* complex
         ISOpure.util.matlab_log, 13
                                                                                                             ISOpureS1.model_optimize.omega.omega_deriv_loglikeliho
* deconvolution
         ISOpure.step1.CPE, 6
                                                                                                             ISOpureS1.model_optimize.omega.omega_loglikelihood,
         ISOpure.step2.PPE, 8
                                                                                                             {\tt ISOpureS1.model\_optimize.opt\_kappa},
* logic
         ISOpure.util.matlab_greater_than,
                                                                                                             ISOpureS1.model_optimize.opt_mm,
         ISOpure.util.matlab_less_than, 12
* mRNA expression
                                                                                                             ISOpureS1.model_optimize.opt_omega,
         ISOpure.step1.CPE, 6
         ISOpure.step2.PPE, 8
                                                                                                             ISOpureS1.model_optimize.opt_theta,
* manip
         ISOpure.util.repmat, 14
                                                                                                             ISOpureS1.model_optimize.opt_vv,
* math
         ISOpure.model_optimize.cg_code.rminimize,
                                                                                                             ISOpureS1.model_optimize.theta.theta_deriv_loglikeliho
         ISO pure.model\_optimize.vv.vv\_deriv\_loglikelihb \textbf{SO} pure S1.model\_optimize.theta\_theta\_loglikelihood, where the property of the property o
                                                                                                                      27
         ISOpure.model_optimize.vv.vv_loglikelihood,
                                                                                                             ISOpureS1.model_optimize.vv.vv_compute_loglikelihood,
         ISOpure.step1.CPE, 6
                                                                                                             ISOpureS2.model_core.compute_loglikelihood,
```

INDEX 41

```
* statistics
                                                                                              ISOpure.step1.CPE, 6
       ISOpureS2.model_core.new_model, 29
                                                                                              ISOpure.step2.PPE, 8
       ISOpureS2.model_core.optmodel, 30
       ISOpureS2.model_optimize.cc.cc_deriv_loglikelihood,
                                                                                      ISOpure.calculate.tac, 3
               31
       ISOpure S2. model\_optimize.cc.cc\_loglikelih \begin{subarray}{l} LSOpure.model\_optimize.cg\_code.rminimize, logically approximate and the control of the con
       ISOpureS2.model_optimize.kappa.kappa_compute_loglikelihood;
       ISOpureS2.model\_optimize.kappa.kappa\_deriv\_loglikelihood,
       ISOpureS2.model_optimize.kappa.kappa_loglikelihood, ISOpure.step1.CPE, 6 ISOpure.step2.PPE, 8
                                                                                      ISOpure.util.logsum, 10
       ISOpureS2.model_optimize.opt_cc,
                                                                                      ISOpure.util.matlab_greater_than, 11
                                                                                      ISOpure.util.matlab_less_than, 12
       ISOpureS2.model_optimize.opt_kappa,
                                                                                      ISOpure.util.matlab_log, 13
                                                                                      ISOpure.util.repmat, 14
       ISOpureS2.model_optimize.opt_theta,
                                                                                      ISOpureS1.model_core.compute_loglikelihood,
                                                                                                      15
       ISOpureS2.model_optimize.opt_vv,
                                                                                      ISOpureS1.model_core.new_model, 15
                                                                                     ISOpureS1.model_core.optmodel, 16
iv_loglikelihood.
ISOpureS1.model_optimize.kappa.kappa_compute_loglikelihood
       ISOpureS2.model_optimize.theta.theta_der
       ISOpureS2.model_optimize.theta.theta_loglikelihood, imodel_optimize.kappa.kappa_deriv_loglikelihood,
       * optimize
                                                                                      ISOpureS1.model_optimize.mm.mm_deriv_loglikelihood,
       ISOpure.model_optimize.cg_code.rminimize,
                                                                                                      19
                                                                                      ISOpureS1.model_optimize.mm.mm_loglikelihood,
       ISOpureS1.model_optimize.opt_kappa,
                                                                                      ISOpureS1.model_optimize.omega.omega_compute_loglikelihood
       ISOpureS1.model_optimize.opt_mm,
                                                                                      ISOpureS1.model_optimize.omega.omega_deriv_loglikelihood,
       ISOpureS1.model_optimize.opt_omega,
                                                                                      ISOpureS1.model_optimize.omega.omega_loglikelihood,
       ISOpureS1.model_optimize.opt_theta,
                                                                                                      21
                                                                                      ISOpureS1.model_optimize.opt_kappa, 22
       ISOpureS1.model_optimize.opt_vv,
                                                                                      ISOpureS1.model_optimize.opt_mm, 23
                                                                                      ISOpureS1.model_optimize.opt_omega, 24
       ISOpureS2.model_optimize.opt_cc,
                                                                                      ISOpureS1.model_optimize.opt_theta, 25
                                                                                      ISOpureS1.model_optimize.opt_vv, 26
       ISOpureS2.model_optimize.opt_kappa,
                                                                                      ISOpureS1.model_optimize.theta.theta_deriv_loglikelihood,
                                                                                                      27
       ISOpureS2.model_optimize.opt_theta,
                                                                                      ISOpureS1.model_optimize.theta.theta_loglikelihood,
       ISOpureS2.model_optimize.opt_vv,
                                                                                      ISOpureS1.model_optimize.vv.vv_compute_loglikelihood,
               37
                                                                                                      28
```

42 INDEX

```
ISOpureS2.model_core.compute_loglikelihood,
ISOpureS2.model_core.new_model, 29
ISOpureS2.model_core.optmodel, 30
ISOpureS2.model_optimize.cc.cc_deriv_loglikelihood,
ISOpureS2.model_optimize.cc.cc_loglikelihood,
ISOpureS2.model_optimize.kappa.kappa_compute_loglikelihood,
ISOpureS2.model_optimize.kappa.kappa_deriv_loglikelihood,
ISOpureS2.model_optimize.kappa.kappa_loglikelihood,
        33
ISOpureS2.model_optimize.opt_cc, 34
ISOpureS2.model_optimize.opt_kappa, 35
ISOpureS2.model_optimize.opt_theta, 36
ISOpureS2.model_optimize.opt_vv, 37
ISOpureS2.model_optimize.theta.theta_deriv_loglikelihood,
ISOpureS2.model_optimize.theta.theta_loglikelihood,
ISOpureS2.model_optimize.vv.vv_compute_loglikelihood,
```