ARM Virtualization: Performance and Architectural Implications

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios Koloventzos

ARM

ARM Network Equipment

Virtualization

Native

App App App

Kernel

Hardware

Virtual Machines

ARM Hardware Virtualization Support

x86

Root (Hypervisor)

Non-Root (VM)

ARM Virtualization Extensions

EL2

- Controlled by EL2 system registers
- Limited to support hypervisors, not OS kernels

ELO User

EL1 _EL1 sysregs

EL2 _EL2 sysregs

ARM Virtualization Extensions Design Choices

1. Clear hierarchy from user to kernel to hypervisor

2. Reduced complexity

EL0 User

EL1 Kernel

EL₂ Hypervisor

ARM Virtualization Performance?

Measurement Study

- Micro-benchmarks: low-level hypervisor operations
- Macro-benchmarks: application workloads

Hardware Setup

ARM Hardware

- HP Moonshot m400
- 64-bit ARMv8-A
- 2.4 GHz APM Atlas CPU
- 8-way SMP
- 64 GB RAM (capped at 16 GB)
- 10 GB Ethernet

x86 Hardware

- Dell PowerEdge r320
- 64-bit x86_x64
- 2.1 GHz Intel Xeon ES-2450
- 8-way SMP
- 16 GB RAM
- 10 GB Ethernet

Software Setup

VM-to-Hypervisor Transitions

No-Op Hypercall

Micro Results

CPU Clock Cycles	ARM		x86	
	KVM	Xen	KVM	Xen
Hypercall	6,500	376	1,300	1,228

1: ARM can be either much faster or slower than x86

x86

ARM

Non-Root (VM)

Root (Hypervisor)

Micro Results

CPU Clock Cycles	ARM		x86	
	KVM	Xen	KVM	Xen
Hypercall	6,500	376	1,300	1,228

- 1: ARM can be either much faster or slower than x86
 - -> x86 VM Exit more complicated than ARM Trap
- 2: KVM is much slower than Xen on ARM

Hypervisor Design

Type 1 (Bare-Metal)

Type 2 (Hosted)

Xen ARM: Bare-Metal

KVM/ARM: Hosted

^{*}ASPLOS 2014: KVM/ARM: The Design and Implementation of the Linux ARM Hypervisor

KVM/ARM: Hosted

^{*}ASPLOS 2014: KVM/ARM: The Design and Implementation of the Linux ARM Hypervisor

Micro Results

CPU Clock Cycles	ARM		x86	
	KVM	Xen	KVM	Xen
Hypercall	6,500	376	1,300	1,228

- 1: ARM can be either much faster or slower than x86
 - -> x86 VM Exit more complicated than ARM Trap
- 2: KVM is much slower than Xen on ARM
 - -> ARM architecture not designed for Type 2

Application Workloads

Application	Description
Kernbench	Kernel compile
Hackbench	Scheduler stress
SPECjvm2008	Java workload
Netperf	Network performance
Apache	Web server stress
Memcached	Key-Value store
MySQL	Database workload

Application Performance

Normalized overhead (lower is better)

Virtualized I/O

KVM I/O Model

Xen Device Drivers

Xen I/O Model

KVM ARM I/O Xen ARM I/O

- Trap is slow
- But all you do is a trap

- Trap is fast
- But you do much more...

Architecture Improvements

VHE

Virtualization Host Extension

KVM

ELO App App

EL1 Linux KVM

World Switch

Host

KVM lowvisor

EL2

~ 6,000 cycles for a hypercall!

KVM + VHE

VHE

- 1. Expand EL2 to support all EL1 features
- 2. EL1 register accesses to go to EL2

VHE

- Available in ARMv8.1
- No (public) hardware yet

Conclusions

- Micro operations: ARM can be faster than x86
- Not achievable for Type 2 hypervisors
- Type 1 is dominated by other I/O costs
- ARM overhead is comparable to x86
- ARMv8.1 adds VHE for hosted hypervisors
- The software matters!