به نام خدا

هوش مصنوعی

استاد عصایی معمم

تمرین دوم

(سوالات ميانترم)

پگاه گورکانی

۱-سیستمی که مانند انسان رفتار میکند را با ذکر مثال تشریح دهید؟

هنرساخت ماشینهایی که کارهایی انجام میدهندکه آن کارها فعالتوسط انسان بافکرکردن انجام میشود . مطالعه برای ساخت کامپیوترهایی که کارهایی راانجام دهندکه فعالانسان آنهارابهترانجام میدهند . دتست تورینگ مثالی مناسب برای این سیستم است. دراین تست کامپیوترتوسط فردی محققمورد آزمایش قرارمیگیرد، به طوری که این فرددورازکامپیوترقرادارد، کامپیوتربه پرسش های مطرح شده پاسخ میدهد. کامپیوتروقتی ازاین تست عبورمیکند که این شخص نتواند تشخیص دهد که پاسخ دهنده یک انسان است یاچیزدیگر. این تستباید قابلیت هایی نظیر) پردازش زبان طبیعی، بازنمایی دانش، استدالل خودکار، یادگیری ماشین، بینایی کامپیوتر، دانش روباتیک (داشته باش

۲-هدف از تفکر عاقلانه چیست و چه آورده ای در پی خواهد داشت؟

عاقالنه فکرکردن ،به معنایی ساخت الگوهایی برای ساختارهای استداللی است. درواقع عاقالنه فکرکردن یعنی مطالعه ی توانایی های ذهنی ازطریق مدلهای محاسباتی) منطق گرایی (عاقالنه فکرکردن مطالعه ی محاسباتی است که منجذبه درک واستدالل شود . عاقالنه تفکرکردن رسم منطق گرایی درهوش مصنوعیبرای ساخت سیستمهای هوشمنداست. درواقع برنامه هایی نوشته میشوند که میتوانندمسائل قابل حلی که درنمادگذاری منطقیتوصیف میشوند راحل کنند . موانع اصلی این تفکر 1: (دریافت دانش غیررسمی و تب دیل آن به دانش رسمی 2 (تفاوت میان قادربه حل مسئله بودن درتئوری و در عمل) بن بست محاسباتی

٣-اجزای اعمال و وظایف عامل را با رسم شکل و تابع نویسی بررسی کنید؟

عامل هرچیزی است که قادراست محیط خودرا ازطریق حسگرهادرک کندوازطریق محرک هاعمل کند . به عنوان مثال عامل روباتیک شامل دوربینهایی به عنوان سنسوریاحسگر.موتورهای متعد دی به عنوان محرم است.یاعامل انسان دارای چشم وگوش واعضای دیگربرای حس کردن ودست وپاودهان واعضای دیگربه عنوان محرک است .عاملها ازطریق حسگرها ومحرکها بامحیطدر تعامل هستند . سنسوروظیفه دریافت مشخصه هایی ازمحیط را داردومحرک وظیفه انجام اعمال برروی محیط را دارد .عامل وظیفه دارد رشته دریافتهای ورودی را به دنباله ای ازاعمال نگاشت کند. بنابراین میتوان گفت عامل میتواندمانند تابع عمل کند..

 $F: P^* \rightarrow A$

که A اعمال وPرشته دریافت هااست.عامل میتوانداعمال محیط خودرادرک کند،اماتأثیرآنهابرروی محیط همیشه قابل پیش بینی نیست.

۴- PEAS رابرای ربات فضانورد وفوتبالیست تشریح کنید؟

ربات فوتباليست

معيار كارايي : برد بازي - رعايت قوانين - سرعت عمل مناسب

محيط : زمين چمن - زمين خاكى - سالن ورزشى - زمين آسفالت - تيم خود - توپ - تيم حرى ف

عملگر : پاس دادن - گل زدن - حمله - دفاع

سنسور : سرعت سنج – فاصله یاب – بازوهای محرک – سنسور رو به عقب – سنسور رو به جلو –

موقعیت یاب

ربات فضانور د

معیار کارایی : دسته بندی صحیح تصاویر - کمترین هزینه – سرعت عمل مناسب - ایمن ی

محيط : محل آزمايشگاه – فضا

عملگر : نمایش تصاویر طبقه بندی شده - تشخیص ها - نمایشگر

سنسور : آرایه ای از پیکسل های رنگی – دوربین – سونار (مکان یاب صوتی) - حسگر دما – حسگر

فشار هوا - حسگر

های شیمیای

۵-طبق شبه کد زیر چرا عامل مبتی بر جدول به شکست مواجه می شود ؟ راهکار های پیشنهادی خود را نام برده و مختصری در خصوص هر کدام توضیح دهید ؟ function TABLE-DRIVEN-AGENT(percept) returns an action

persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action — LOOKUP(percepts, table)

return action

این برنامه یک برنامه عامل ساده است که دنباله ی ادراک راردیابی کرده ووازآن به عنوان شاخصی درجدول فعالیتها استفاده می کندتاتصمیم بگیرد چه کاری بایدانجام دهد.

برای ساخت عامل خردمندماباید جدولی بسازیم که برای هردنباله ی ادراک ممکن،دارای فعالیتهای مناسبی باشد .

رهیافت جدولی برای ساخت عامل باشکست مواجه میشود چون ما به ازای مجموعه ای ادراکات ممکن

وتعدادکل ادراکاتی که عامل دریافت میکند برای جدول جستجوبایدتعداد زیادی درایه داشته باشیم که امکان پذیرنیست.اندازه این جدول بیان میکندکه):1هیچ عامل فیزیکی دراین دنیانمیتواند فضایی برای ذخیره این جدول داشته باشد:2.طراح برای ایجاد جدول زمان مناسب ندارد:3.هیچ عاملی نمیتواندتمام درایه های جدول را در تجربه خودبه کارگیرد:4.حتی اگرمحیط خیلی ساده باشد که اندازه جدول قابل تحمل باشد طراح نمیداند درایه های جدول را چگونه ذخیره کند).

۷- دنیای جاروبرقی راباتوجه به فرموله سازی مسئله تشریح کنید؟

بااستفاده ازیک کدکوچک به جای جدول بزرگ رفتارعقالیی راانجام دهد.

حالتها:(states (حالت به وسیله مکان عامل ومکانهای کثیف تعیین میشود. عامل دریکی ازدومکان است که هرکدام ممکن است کثیف باشندیانباشند. پس8=2^2*2 حالت وجوددارد. یعنی(n2.^n(حالت .

حالت شروع:هرحالتي ميتواندبه عنوان حالت شروع باشد.

فعالیتها:(action(دراین محیط جاروبرقی فقط سه فعالیت میتواندانجام دهد1:(حرکت به سمت چپ 2(حرکت به سمت راست 3(عمل مکش

آزمون هدف:بررسی میکنذآیاتمام مکانهاتمیزاست یاخیر .

هزینه ی مسیر:تعدادمراحل موجوددرمسیر،هزینه ی مسیراست

 ۷- جست و جوی عمقی را با رسم مرحله به مرحله شرح دهید و در نهایت کارایی الگوریتم را با چهار معیار اندازه گیری بیان کنید ؟

جستجوی عممًی ،عمیق ترین گره رابسط میدهد ،جستجوازعمیق ترین سطح درخت جستجوادامه می یابد ،وقتیوقتی گره ها بسط داده شدند ازمرزحذف میشوندوجستجوبه عمیق تری ن گره بعدی برمی

```
گردد. جستجوی عمقی ازصف LIFO استفاده میکند. در این صف جدید ترین گره تولید شده، برای بسط دادن
انتخاب میشود، این گره باید عمیق ترین گره بسط نداده شده باشد .
```

جستجوی عمقی :

كامل بودن : خير ، مكّر اينكه فضاى حالت محدود باشد و حلقه تكرار وجود نداشته باشد.

بهینه بودن: خیر، چون کامل نیست.

پیچیدگی زمانی m^b(O)، اگر m خیلی بزرگتر از d باشد به مراتب بدتر است / در بسیاری از مسائل سریعتر از جست وجوی BF است.

پیچیدگی حافظه (+O1+) bm: ، در زمان عقبگرد حافظه آزاد می شود .

۸- ضمن بررسی الگوریتم جستجوی درختی شبه کد زیر را بررسی کنید که استراتژی در کدام از 4 توابع ، پیاده سازی شده است ، توابع را نام برده و عملکرد هر یک را بیان کنید ؟

```
function TREE-SEARCH(problem fringe) return a solution or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[node] then

return SOLUTION(node)

else

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
```

درالگوریتم جستجوی درختی ،حالت شروع در ریشه درخت قرارمی گیرد ،انشعابها ،فعالیتها و گره ها ،حالتهای موجودهستند .ابتداریشه رابر رسی میکنیم که ایاحالتهدف است یاخیر درصورتی که حالت هدف نبودان رابسط میدهیم تامجموعه ی جدیدی از حالتهابه وجود آید ،بعداز آن حالتهارایکی یکی بر رسی کرده تازمانی که به آخرین گره برسیم که هیچ فرزندی ندارد . پس سراغ گره ها میرویم ویکی یکی بر رسی میکنیم پس از آن گره هایی که مارا به هدف نمیرساند حذف میکنیم واین روش ادامه پیدامیکندتابه هدف

برسيم.

استراتژی های متفاوتی برای رسیدن به حالت هدف وجوددارد.استراتژی مادراینجااین است که یک گره کاندید رابررسی کن اگر هدف نبود آن رابسط بده،آنقدراین کارراتکرار کن تا به هدف برسی .

تابع:(fringelراولین خانه رfringel) میکند

تابع:(test goal)آیابه هدف رسیدیم؟ خیر.یک گره باتوجه به استراتژی انتخاب کن

تابع:(expand)وقتی به هدف نرسیدیم گره هارایسط بده.

تابع:(insert)گره های فرزندرادرfringبسط بده ونتایج رابه جستجواضافه کن .

استراتژی در تابع insert پیاده سازی شده است.

۹- شبه کد زیر مربوط به کدام جست و جوی نا آگاهانه می باشد ، از مزایای کدام جست و جو های دیگر بهره برده است ، با ترسیم شکل توضیح دهید ؟

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure for depth = 0 to ∞ do

result ← DEPTH-LIMITED-SEARCH(problem, depth)

if result ≠ cutoff then return result

این شبه کدمربوط به جستجوی عمقی تکرارشونده است ،که این الگوریتم ازلحاظ زمانی ازمرتبه جستجوی اول سطحی است و ازلحاظ پیچیدگی حافظه ازمرتبه جستجوی اول عمق بهره میبرد.

جست و جوی عمقی تکراری ، یک استراتژی کلی است . این الگوریتم با شروع از مقدار صفر به عنوان
عمق محدود ، مقدار آن را به تدیج اضافه می کند مانند یک و . . تا ایکه هد فی پیدا شود . هد ف وقتی پیدا
می شود که عمق محدود به d برسد ، که d عمق مربوط به عمیق ترین گره هد ف است . این الگوریتم از
مزایای جست و جوی عمقی و جست و جوی عرضی استفاده می کند فواید مربوط به این دو الگوریتم را
با هم ترکیب می کند . این الگوریتم برای تعیین عمق محدود است که جست و جو با عمق محدود را با
حدود صعودی تکرار می کند و زمانی خاتمه می یابد که جوابی پیدا شود یا جست و جو با عمق محدود
مقدار failure را برگرداند که این عمل نشان می دهد جوابی وجود ندارد .

شكل: Limit=0

■ Limit=1

■ Limit=2

■ Limit=3

10- شش نوع جست و جو های نا آگاهانه جدول زیر را به تفکیک ، با چهار معیار مربوطه به اختصار شرح دهید ؟

Criterion	Breadth- First	Uniform- cost	Depth-First	Depth- limited	Iterative deepening	Bidirectional search
Complete?	YES*	YES*	NO	YES,	YES	YES*
				if $1 \ge d$		
Time	b^{d+1}	AC4/6	b^m	Ы	b^d	$b^{d/2}$
Space	b^{d+1}	BC*/6	bm	ы	bd	$b^{d/2}$
Optimal?	YES*	YES*	NO	NO	YES	YES

1)جست و جوی سطحی

كامل بودن : بله / شرط : جواب بهينه در عمق d قابل دسترس باشد . فاكتور انشعاب b محدود باشد.

بهینه بودن ؛ بله / شرط ؛ مسیر ها فاقد هزینه باشند.

پیچیدگی زمانی : گره ریشه حداکثر دارای b فرزند است / هر فرزند نیز حداکثر دارای b فرزند است بنابراین در سطح

دوم b2 گره وجود دارد / با فرض اینکه جواب در عمق d باشد در بدترین حالت جواب باید در سمت راست ترین گره باشد

/تعداد نود های تولید شده از رابطه زیر محاسبه می شود.

$$b^{d} + b^{1} + b^{2} + b^{3} + \dots + b^{d} + (b^{d+1} - b) = O(b^{d+1})$$
$$b^{d+1} - b = O(b^{d+1})$$

پیچیدگی حافظه : هم مرتبه پیچیدگی زمانی است.

2) جست و جو با هزینه یکنواخت

```
کامل بودن ؛ بله / شرط ؛ جواب در عمق قابل دسترس باشد . هزینه ها مقدار مثبت داشته باشند.
```

بهینه بودن : بله / شرط : کامل باشد.

پیچیدگی زمانی : فرض شود c* هزینه مسیر بهینه است . فرض شود هزینه هر عمل حداقل e است . در بدترین حالت

.است زمانی پیچیدگی) o(b^c*e) .

پیچیدگی حافظه : هم مرتبه پیچیدگی زمانی است.

3)جست و جوی عمق ی

کامل بودن : خی ر / شرط : مگر اینکه فضای حالت محدود باشد و حلقه تکرار وجود نداشته باشد.

بهینه بودن : خیر / زیرا کامل نیست .

پیچیدگی زمانی(m^ob) (:است،اگر m خیلی بزرگتر از d باشد به مراتب بدتر است. در بسیاری از

مسائل سریعتر از جست

و جوی BF است.

پیچیدگی حافظه:) +1 0)bm(ر زمان عقبگرد حافظه آزاد می شود.

4) جست و جوی عمقی محدود

در حقیقت DF با عمق محدود L است.

تعیین در همه مسائل امکان پذیر نمی باشد.

اگر d<L آنگاه غیر کامل است.

اگر d>L آنگاه کامل اما غیر بهینه است.

اگر d=L آنگاه کامل و بهینه است.

پیچیدگی زمانی:) b(01

پیچیدگی حافظهO)bl():

5) جست و جوی عمق ی تکراری

كامل بودن : بله/شرط : حلقه تكرار وجود نداشته باشد.

بهینه بودن : بله/اگر هزینه مسیر ها با هم برابر باشد.

: (b^d)زمانی پیچیدگی

پیچیدگی حافظهO(bd):

6) جست و جوی دو طرف ه

کامل بودن: بله / شرط: استفاده کردن از جست و جوی سطری

بهینه بودن : بل ه / شرط : استفاده کردن از جست و جوی سطری

پیچیدگی زمانی: O(b^d/2)

پیچیدگی حافظه: (O(b^d/2

۱۱- جست وجوی A* را با توجه به جدول SLD h با جست و جوی حریصانه search Greedy با رسم درختی به طور کامل توضیح داده و تفاوت ها را با دلیل ذکر کنید؟

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	3.80
Dobreta	2.42	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timicoara	329
Hirsova	151	Urziceni	80
Laci	226	Vashui	199
Lugoj	2.44	Zerind	374
Aret O at	-	-\	lvens
Dit to Co	menera in to	Plant 31 12 Ustowel 1	D ctors

دراین روش گره هارا باترکیب n(g)) یعنی هزینه رسیدن به گره و n(h) یعنی هزینه رسیدن ازاین گره به گره هدف ارزیابی می کند .

n(h+)n(g)=n(F) هزینه برآوردشده ی ارزانترین جوار ازطریق n است. پس باید به گره ای فکرکنیم که کمترینg) و n(h) راداشته باشد .

شناخته شده ترين جستجوى آگاهانه

- •ایده: از بسط گرههایی که به صرفه به نظر نمیرسند، اجتناب میکند.
 - ارزیابی تابع f(n)= g(n) +h(n)

nهزینه واقعی از گره شروع تا گره • (n(g•)

تا هدف n هزینه تخمینی از گره •n(h

n (f• مرینه تخمینی از گره شروع تا هدف با عبور از گره •n (f• ا

کامل وبهینه وبهینه موثراست.مرتبه زمانی ومکانی آن نمایی است. Aجستجوی ∗

f(Arad) = c(??,Arad)+h(Arad)=0+366=366

f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393 f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447 f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449

f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646 f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415 f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671 f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+h(Rimnicu Vilcea)=220+192=413

RCraiova)=e(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526 f(Pitesti)=e(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100-417 f(Sibin)=e(Rimnicu Vilcea, Sibiu)+h(Sibin)=300+253=553

f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591 f(Bucharest)=c(Fagaras,Bucharest)+h(Bucharest)=450+0=450

جستجوی حریصانه : n(h)= n(f): گره ایی را بسط م پدهد که به هدف نزدیکتر باشد .

این جستجوکامل نیست چون حلقه تکراردارد وبهینه هم نیست ومرتبه زمانی ومکانی ان (m^b(O))است

تفاوت الگوریتم حریصانه ۸* در n(g)) یعنی هزینه واقعی است ۸* . جستجورابهینه و کامل میکند. جستجوی حریصامه زودتصمیم می گیرد ،امادر ۸*مینیمم ترین گره انتخاب شده و به آن مینیمم هزینه واقعی اعتمادمیکند.

١٤- الگوريتم زير را شرح دهيد و با توجه به جدول و شكل سوال 11 با رسم درخت جست و جو توضيح

Recursive best-first search

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure return RFBS(problem:MAKE-NODE(INITIAL-STATE[problem]), ∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-cost limit if GOAL-TEST[problem](STATE[node]) then return node successors ← EXPAND(node, problem) if successors is empty then return failure, ∞ for each s in successors do f f | ← max(g(s) + h(s), f [node]) repeat

best ← the lowest Evalue node in successors if f [best] > f_limit then return failure, f [best]

if I [best] > I min'then return failure, I [best] alternative ← the second lowest Evalue among successors result, I [best] ← RBFS(problem, best, min(I limit, alternative)) if result = failure then return result

این الگوریتمRBFS است که درآن :

1) بهترین گره برگ و بهترین جانشین برای آن انتخاب شود.

2)اگر مقدار بهترین گره برگ از جانشین آن بیشتر شد، آنگاه به مسیر

جانشین عمّبگرد شود.

3) در حین عقیگرد، مقدار n(f) بروزرسانی شود.

4)گره جانشین بسط داده شود.

RBFS جستجوی به مراتب موثرتری از A ID * است.

از تولید تعداد بسیار زیادی گره به دلیل تغییر عقیده رنج می برد.

مانند A* اگر n(h) قابل پذیرش باشد، بهینه است.

پیچیدگی حافظه bd(o) است.

پیچیدگی زمانی به کیفیت تابع هیوریستیک و میزان تغییر عقیده بستگی دارد.

۱۳- چند نوع تابع هیوریستیک را می توان برای پازل اعداد معرفی کرد ، با رسم شکل بررسی کنید ؟

- ا ، h تعداد کاشی هایی که سرجای خود نمی باشند.
- مجموع فاصله افقی عمودی قطری هر کاشی تا جای واقعی h_3 ،

تابع ھيوريستيک قابل پذيرش1

• از طریق نسخه ساده شده از مسالهversion relax

.1h هر کاشی می تواند به هرجایی منتقل شود

... 2h هر کاشی می تواند به هر خانه همسایه منتقل شود.

ABSolver..هزینه راه حل برای مکعب روبیک را تخمین میزند .

ابداع تابع هیوریستیک قابل پذیرش (۲)

از طریق نسخه کوچتر از مساله (subproblem)

ابداع تابع هیوریستیک قابل پذیرش(3)

• از طریق یادگیری از تجربه (experience experience from learning)

تجربه ؛ حل تعداد بسيار زيادي از مساله

۱۴-سه راه حل جهت ابداع تابع هیوریستیک نام برده و شرح دهید ؟

1) از طریق نسخه ساده شده از مساله

H1 هر کاشی می تواند به هر جایی منتقل شود.

H2 هر کاشی می تواند به هر خانه همسایه منتقل شود.

ABSolover هزینه راه حل برای مکعب روبیک را تخمین می زند.

2)از طریق نسخه کوچکتر از مساله

3)از طریق یادگیری از تجربه

تجربه : حل تعداد بسيار زيادي از مساله

۱۵-انواع جست و جوی محلی را نام برده و ایده هریک را بیان کنید؟

جست و جوی تپه نوردی ،SA، پرتو محلی ، ژنتیک

الگوریتم جست و جوی محلی تپه نوردی : این الگوریتم حلقه ای است که در جهت افزایش مقدار حرکت می کند)به طرف باالی تپه (. وقتی به قله ای رسید که هیچ همسایه ای از آن بلند تر نیست خاتمه می یابد.

الگوریتم جست و جوی محلی: SAاین الگوریتم نسخه ای از تپه نوردی اتفاقی است و پایین آمدن از تپه مجاز است . حرکت به طرف پایین و به آسانی در اوایل زمانبندی annealing پذیرفته شده و با گذشت طمان کمتر اتفاق می افتد .

الحّوريتم جست و جوی پرتو محلی : نحّهداری فقط یک حّره در حافظه ، واکنش افراطی نسبت به مسئله محدودیت حافظه است . این الحّوریتم به جای بک حالت ، kحالت را نحّهداری می کند . این الحّوریتم با k حالت که به طور تصادفی تولید شدند ، شرو ع می کند . در هر مرحله تمام پسین های همه حالت ها

توليد مي شوند . اگريكي از آن ها هدف بود ، الگوريتم متوقف مي شود ؛ وگرنه بهترين يسين را انتخاب

وعمل را تكرار مي كند.

الگوريتم جست و جوی محلی ژنتيک؛ این الگوريتم شکلی از جست و جوی پرتو اتفاقی است که در آن ، حالت های پسین از طریق ترکیب دو حالت والد تولید می شوند . در مقایسه با انتخاب طبیعی ، مثل جست و جوی پرتو اتفاقی است ، با این تفاوت که اینجا با تولید مثل جنسی سروکار داریم نه غیر جنسی . این الگوریتم همانند جست و جوی پرتو محلی ، با مجموعه ای از k حالت که به طور تصادفی تولید شدند شروع می کند که به آن جعیت گفته می شو د .

۱۶-الگوریتم زیر را شرح داده و انواع آن را نام برده و بررسی کنید؟

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 neighbor ← a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]
 current ← neighbor

الگوریتم باال مربوط به الگوریتم جست و جوی محلی تپه نوردی می باشد . این الگوریتم حلقه ای است که در جهت افزایش مقدار حرکت می کند) به طرف باالی تپه (. وقتی به قله ای رسید که هیچ همسایه ای از آن بلند تر نیست خاتمه می باید .

در این الگوریتم درخت جست و جو را نگهداری نمی کند . لذا ساختمان داده گره فعلی فقط باید حالت و مقدار تابع هدف را نگهداری کند . تپه نوردی به همسایه های حالت فعلی نگاه می کند . مثل تالش برای یافتن قله کوه اورست در مه گرفتگی غلیظ ، در حالی که دچار فراموشی هستید . تپه نوردی گاهی جست و جوی محلی حریصانه نام دارد زیرا بدون اینکه قبال فکر کند به کجا برود ، حالت همسایه خوبی را انتخاب می کند . تپه نوردی معموال به سرعت به جواب پیش می رود ، زیرا به راحتی می تواند حالت بد را به بود به بخواب پیش می رود ، زیرا به راحتی می تواند حالت بد

انواع تپه نوردی؛

تپه نوردی غیر قطعی : در ب ین حرکت های رو به باال یکی به صورت تصادفی انتخاب می شود . البته احتمال انتخاب با شیب متناسب است.

تپه نوردی با انتخاب اولین گزینه ؛ گره ها تا حصول یک گره بهتر بسط داده می شوند.

تپه نوردی تصادفی : از حالت شروع مجدد تصادفی تا حصول جواب مجددا شروع خواهد نمود