

Analisi e Visualizzazione delle Reti Complesse

NS08 - Network Models

Prof. Rossano Schifanella

Outline

- Random networks
- Small-world networks
- The configuration model

Recap on structural characteristics of real networks

Features of real networks

small-world property

- Most real-world networks have short paths between any pair of nodes
- $\circ~$ The average shortest path length scales logarithmically with network size: $\langle l
 angle \sim \log N$
- Typically characterized by a "six degrees of separation" phenomenon
- Examples:
 - Social networks: any two people are connected through a short chain of acquaintances
 - Brain networks: information can travel efficiently between distant brain regions
 - Internet: data can reach any destination in a few hops
- Implications:
 - Efficient information/disease spread
 - Fast communication across the network
 - Network is "navigable" with local information
- Co-exists with clustering in real networks (unlike random networks)

Features of real networks

high clustering coefficient

 The clustering coefficient of a node is the fraction of pairs of the node's neighbors that are connected to each other:

$$C(i) = rac{ au(i)}{k_i(k_i-1)/2} = rac{2 au(i)}{k_i(k_i-1)}$$

- where $\tau(i)$ is the number of triangles involving i. Note that in this definition, the clustering coefficient is undefined if $k_i < 2$, i.e., a node must have at least degree 2 to have any triangles.
- \circ NetworkX assumes C=0 if k=0 or k=1
- Many networks have high clustering coefficients
- o Other networks, e.g., bipartite and tree-like networks, have low clustering coefficient

5

Features of real networks

scale-free

- \circ A network is **scale-free** if its **degree distribution** follows a **power-law**: $P(k) \sim k^{-\gamma}$
- \circ Where k is the node degree and γ is the exponent (typically $2 < \gamma < 3$ for real networks)
- \circ A power-law distribution $P(k) \sim k^{-\gamma}$, when plotted on a log-log scale, the distribution appears as a straight line
 - Mathematically, taking the logarithm of both sides: $\log P(k) = -\gamma \log k + \log C$ (where C is a constant)
 - This is equivalent to the equation of a straight line y = mx + b where $y = \log P(k)$, $x = \log k$, $m = -\gamma$ (the slope is the negative exponent) and $b = \log C$ (y-intercept)

6

- In a power-law distribution:
 - There are many nodes with few connections
 - There are few nodes with many connections (hubs)
 - The distribution has a heavy tail

- The term "scale-free" refers to the **lack of a characteristic scale** in the degree distribution
 - No "typical" node with which to characterize the network
 - Degrees span several orders of magnitude
 - The power-law distribution remains the same at different scales.

Characteristics of scale-free networks

- Presence of hubs: nodes with abnormally high degree
 - Hubs can have orders of magnitude more connections than average nodes
 - Hubs often play critical roles in the network's function
- Heavy-tailed degree distribution
 - The probability of finding extremely high-degree nodes is not negligible
 - No sharp cutoff in the maximum degree
- High heterogeneity parameter $\kappa = rac{\langle k^2
 angle}{\langle k
 angle^2}$
 - \circ In scale-free networks, κ can be very large or even diverge
 - \circ In random networks, $\kappa pprox 1 + rac{1}{\langle k
 angle}$

Properties of scale-free networks

- Robustness against random failures
 - Random removal of nodes is unlikely to affect hubs
 - Network connectivity remains largely intact
- Vulnerability to targeted attacks
 - Removing hubs can quickly fragment the network
 - Critical for understanding network resilience
- Ultra-small world property
 - \circ Average path length scales as $\sim \ln \ln N$ (where N is the number of nodes)
 - \circ Even shorter paths than in random networks ($\sim \ln N$)

O

Models

Model:

A set of instructions to build networks

Goal:

Find models that generate networks with the same characteristics as real-world networks

Why build models?

To understand the fundamental processes that create real networks

The importance of network models

- **Explanation**: Models help us understand the underlying mechanisms that generate network structures we observe
 - Why do real networks have hubs?
 - Why do social networks form dense communities?
 - What causes the small-world property?
- **Prediction**: Models let us forecast how networks might evolve or respond to changes
 - How will removing certain nodes affect connectivity?
 - How quickly will information spread?
 - Our How resilient is the network to failures or attacks?
- Benchmark: Models provide reference points to compare real networks against
 - How different is our observed network from random?
 - Which features are significant vs. expected by chance?

Scientific value of network models

- Parsimony: Good models capture complex network properties using simple rules
 - o Example: Preferential attachment explains scale-free degree distributions with a single mechanism
- Generative understanding: Models reveal how microscopic rules lead to macroscopic properties
 - Example: Simple rewiring rules in Watts-Strogatz model create small-world networks
- Counterfactuals: Models let us explore "what if" scenarios
 - Example: How would the Internet evolve with different connection rules?
- Abstraction: Models strip away details to reveal fundamental principles
 - Example: Despite their differences, citation networks and the Web share similar growth patterns

Random networks

13

Random networks

Simple idea

Placing links at random between pairs of nodes

Paul Erdős (1913-1996)

Famous for the Erdős-Rényi random model

We present in these slides an equivalent formulation: the Gilbert's model

Main difference: version by Erdős and Rényi the number of links of the network is fixed, whereas in the model by Gilbert it is variable

Random networks

Gilbert's random network model

G(n,p) where n is the number of nodes and 0 is the probability that an edge occurs.

Algorithm:

- 1. Start with *n* nodes and zero links
- 2. Go over all pairs of nodes $\binom{n}{2}$; for each pair of nodes i and j, generate a random number r between 0 and 1
- If r and <math>j get connected
- If $r>p \Rightarrow i$ and j remain disconnected

The probability of obtaining any one particular random graph with m edges is $p^m(1-p)^{\binom{n}{2}-m}$

Random networks: evolution

Let us focus on the **connected components**

- With p = 0 no links: N components with one node each
- With p=1 all links are there: one component (complete network) with N nodes

Question:

What happens as we add links to the network?

Naïve expectation:

The size of the largest component grows smoothly with the number of links

Wrong expectation:

There is an **abrupt increase** for a given value of the link probability p

Random networks: evolution

Around $\langle k \rangle = 1$ a giant component grows very fast at the expense of the other, smaller components.

[Example in NetLogo]

Random networks: number of links, density, average degree

- Equivalence with the tossing of a biased coin, which yields heads with probability p
- Number of independent trials (tosses): t
- Number of heads after t trials: h
- Special cases:

 $\circ \ p=0$ the coin never yields heads $\Rightarrow h=0$

 $\circ \ \ p=1$ the coin always yields heads $\Rightarrow h=t$

 $\circ~~p=rac{1}{2}~~$ the coin yields heads (about) half of the times $\Rightarrow hpprox rac{t}{2}$

General rule:

 $\circ h \approx p \cdot t$

Random networks: number of links, density, average degree

Expected number of links $\langle L \rangle$ of a random network with N nodes:

Number of heads with probability of yielding heads equal to p and the number of trials t equal to the number of all node pairs of the network:

$$t=rac{N(N-1)}{2}
ightarrow \langle L
angle =pinom{N}{2}=prac{N(N-1)}{2}$$

Expected density of links d of a random network with N nodes:

$$d=rac{\langle L
angle}{rac{N(N-1)}{2}}=rac{prac{N(N-1)}{2}}{rac{N(N-1)}{2}}=p$$

Real-world networks are sparse.

For random networks to be better models of real networks, p must be very small.

Random networks: number of links, density, average degree

Expected average degree $\langle k \rangle$ of a random network with N nodes:

Let's derive this step by step:

- 1. For any node in a random network, it has N-1 potential neighbors (all other nodes)
- 2. For each potential connection, the probability of a link existing is p
- 3. Therefore, the expected number of links per node is:

$$\langle k
angle = p \cdot (N-1)$$

Alternative derivation:

- 1. The expected total number of links in the network is $\langle L
 angle = p rac{N(N-1)}{2}$
- 2. The average degree is twice the number of links divided by the number of nodes:

$$\langle k
angle = rac{2 \langle L
angle}{N} = rac{2 \cdot p rac{N(N-1)}{2}}{N} = p(N-1)$$

Example: For a random network with N=1000 nodes and link probability p=0.01:

ullet Expected average degree is $\langle k
angle = 0.01 imes 999 pprox 10$ links per node

Random networks: degree distribution

Question: What is the probability that a node has k neighbors?

Back to coin tossing problem: What is the probability that a coin that yields heads with probability p results in k heads out of N-1 (independent) trials?

Binomial distribution:

$$P(k) = inom{N-1}{k} p^k (\underline{1-p})^{N-1-k}$$

For small p and large N the binomial distribution is well approximated by a bell-shaped curve \Rightarrow Most degree values are concentrated around the peak, so the average degree is a good descriptor of the distribution

Random networks: degree distribution

The degree distribution of random networks is **very different** from the broad distributions of most real-world networks!

Random networks: small-world property

Question: How many nodes are there (on average) d steps away from any node?

Premise: Since nodes have approximately the same degree, let us assume they all have the same degree k

- At distance d = 1 there are k nodes
- At distance d=2 there are k(k-1) nodes
- At distance d there are $k(k-1)^{d-1}$ nodes
- If k is not too small, the total number of nodes within a distance d from a given node is approximately:

$$N_d \sim k(k-1)^{d-1} \sim k^d$$

Random networks: small-world property

Question: how many steps does it take to cover the whole network?

$$N \sim k^{d_{max}} \ log(N) \sim d_{max}log(k) \ d_{max} \sim rac{log(N)}{log(k)}$$

The diameter of the network grows like the logarithm of the network size

Example: N = 7,000,000,000, k = 150 (Dunbar's number)

$$d_{max} = 4.52$$

Random networks: clustering coefficient

The clustering coefficient of a node i can be interpreted as the probability that two neighbors of i are connected

$$C_i = rac{ ext{number of pairs of connected neighbors of i}}{ ext{number of pairs of neighbors of i}}$$

Question: what is the probability that two neighbors of a node are connected?

Answer: since links are placed independently of each other, it is the probability p that any two nodes of the graph are connected:

$$C_i = p = rac{\langle k
angle}{N-1} \sim rac{\langle k
angle}{N}$$

Since $\langle k \rangle$ is a small number, the average clustering coefficient of random networks with realistic values for $\langle k \rangle$ and N is much smaller than the ones observed in real-world networks

Random networks: summary

- Links are placed at **random**, independently of each other
- Distances between pairs of nodes are short (small-world property): good!
- The average clustering coefficient is much lower than on real networks of the same size and average degree: bad!
- The nodes have approximately the same degree; there are no hubs: bad!

Conclusion: the random network is not a good model for many real-world networks

In NetworkX:

```
G = nx.gnm_random_graph(N,L) # Erdős—Rényi random graph
G = nx.gnp_random_graph(N,p) # Gilbert random graph
```


Why random network models are important

Despite their limitations in capturing real network properties, random networks remain valuable:

- **Null models**: Serve as baseline for comparison
 - "Is this network property significant or expected by chance?"
 - Statistical testing against randomized models
- Mathematical tractability:
 - Have analytical solutions for many properties
 - Allow rigorous proofs and predictions
- Historical significance:
 - First systematic approach to model networks mathematically
 - Foundation for more complex models

Small-world networks

Small-world networks

Problem: Real networks often have two seemingly contradictory properties:

- High clustering (many triangles, like in social networks)
- Short average path lengths (small-world property)

Goal: Create a model that captures both properties simultaneously

Approach: Start with a highly clustered structure and introduce shortcuts

Small-world networks

Regular lattices have high clustering but long paths:

- In a regular lattice, neighbors of a node tend to be connected (high clustering)
- But getting from one side to another requires many steps (long paths)
- This doesn't match real-world networks where paths are much shorter

The key insight: Just a few random "shortcuts" can dramatically reduce path lengths while preserving most of the clustering

The Watts-Strogatz model

Model procedure:

- 1. Start with a **regular ring lattice** of N nodes, each connected to k nearest neighbors
- 2. For each link, with probability p, rewire one end to a randomly chosen node
- 3. Continue until all links have been considered for rewiring
- 4. The final network is the Watts-Strogatz model with parameters N, k, and p

32

The Watts-Strogatz model: Effect of rewiring probability

The rewiring parameter p controls the network structure:

- **p = 0**: Pure regular lattice (high clustering, long paths)
- **0** < **p** < **0.1**: Small-world network (high clustering, short paths)
- **p = 1**: Random network (low clustering, short paths)

Key finding: Even a small p (\approx 0.01-0.1) creates sufficient shortcuts to drastically reduce path lengths while maintaining most triangles

The Watts-Strogatz model: Small-world region

The "sweet spot" for representing real-world networks:

- For a narrow range of p (typically 0.01 < p < 0.1):
 - ∘ Average path length $L(p) \approx L(1) << L(0)$
 - Clustering coefficient $C(p) \approx C(0) >> C(1)$

This means: Networks in this region have both:

- Short paths like random networks
- High clustering like regular lattices

This combination matches many real-world networks like social networks, power grids, and neural networks.

[Example in NetLogo]

The Watts-Strogatz model: degree distribution

Limitations in representing real networks:

- The degree distribution remains narrowly distributed around k
- Most nodes have similar degrees (k or slightly different)
- No hubs are generated, unlike many realworld networks
- Example: N = 10000, k = 10, p = 0.1

The Watts-Strogatz model: summary

Strengths:

- Successfully models the coexistence of high clustering and short paths
- Explains the "small-world phenomenon" observed in many real networks
- Only needs a few random links to create efficient paths

Limitations:

- Fails to generate hubs and scale-free properties
- Starts with an artificial regular structure
- Assumes uniform rewiring across all nodes

In NetworkX:

G = nx.watts_strogatz_graph(N, k, p)

The Configuration Model

NS08 - Network Models

37

The Configuration Model

Problem: How can we build networks with a specific degree distribution?

Solution: The **configuration model** allows us to generate random networks with a prescribed degree sequence

Core concept: Instead of building networks with random connections (like Erdős-Rényi) or preferential attachment, we can directly control the degree of each node

Application areas:

- Creating null models to test hypotheses about network structure
- Studying the effect of degree distribution on network properties
- Generating synthetic networks with realistic degree distributions

The Configuration Model: Algorithm

Input: A degree sequence (k_1, k_2, \ldots, k_N) where k_i is the desired degree of node i

Procedure:

- 1. Create N nodes, assign k_i "stubs" (half-edges) to each node i
- 2. Randomly pair stubs to form complete edges
- 3. Continue until all stubs are connected

Important constraint: The sum of degrees must be even: $\sum_{i=1}^{N} k_i = 2m$ (where m is the number of edges)

Note: In practice, self-loops and multi-edges may be created and are typically removed or avoided through rewiring

The Configuration Model: Properties

Random mixing: The model creates random connections while preserving the degree sequence

Clustering coefficient: Generally low (similar to random networks)

Path lengths: Similar to random networks, typically exhibiting the small-world property

Degree correlations: No inherent degree correlations (assortativity ≈ 0)

However, constraints to avoid self-loops can introduce some disassortativity

In NetworkX:

```
# From a degree sequence
degree_sequence = [3, 3, 3, 3, 4, 4, 5, 5]
G = nx.configuration_model(degree_sequence)

# From an existing graph's degree sequence
H = nx.Graph() # some existing graph
G = nx.configuration_model(dict(H.degree()).values())
```


Degree-Preserving Randomization

Goal: Generate randomized versions of an existing network while preserving its degree sequence

Procedure:

- 1. Start with the original network
- 2. Repeatedly select two edges at random (e.g., A-B and C-D)
- 3. Rewire them (A-D and B-C) if no self-loops or multiple edges would result
- 4. Repeat many times until the network is sufficiently randomized

Applications (two of many):

Statistical testing of network properties:

- Compare properties of real network vs. randomized versions
- If property values differ significantly, they cannot be explained by degree sequence alone
- Example: If clustering in real network is much higher than in randomized versions, it suggests meaningful triangles beyond what's expected by chance

• Motif significance analysis:

- Generate many randomized networks preserving degree sequence
- Count occurrences of subgraphs (motifs) in real and randomized networks
- Calculate z-scores to identify statistically over/under-represented motifs
- Common in biological networks to identify functional circuit patterns

NS08 - Network Models

44

Null models for community detection:

- Provides baseline expectation for modularity-based algorithms
- Helps determine if observed community structure is statistically significant

In NetworkX:

```
G_rand = nx.double_edge_swap(G, nswap=1000) # Rewire 1000 edge pairs
```


Original Graph

Double Edge Swap

Configuration Model Graph

The Configuration Model: Limitations

Self-loops and multiple edges:

- The basic model can create self-loops (edges connecting a node to itself)
- It can also create multiple edges between the same node pairs

Realizability:

Not all degree sequences can be realized as simple graphs

Structure:

- No community structure, clustering, or other mesoscale patterns
- Used primarily as a null model against which to compare real networks

Reading material

References

[ns1] Chapter 5 (Network Models)

