- **b.** Find the expected change in the mean conversion for a unit change in temperature x_1 for model 1 when $x_2 = 5$. Does this quantity depend on the specific value of reaction time selected? Why?
- c. Find the expected change in the mean conversion for a unit change in temperature x_1 for model 2 when $x_2 = 5$. Repeat this calculation for $x_2 = 2$ and $x_2 = 8$. Does the result depend on the value selected for x_2 ? Why?
- 3.22 Show that an equivalent way to perform the test for significance of regression in multiple linear regression is to base the test on R^2 as follows: To test H_0 : $\beta_1 = \beta_2 = \ldots = \beta_k$ versus H_1 : at least one $\beta_i \neq 0$, calculate

$$F_0 = \frac{R^2(n-p)}{k(1-R^2)}$$

and to reject H_0 if the computed value of F_0 exceeds $F_{\alpha,k,n-p}$, where p = k + 1.

3.23 Suppose that a linear regression model with k = 2 regressors has been fit to n = 25 observations and $R^2 = 0.90$.

$$SS_{R} = \sum_{i=1} \hat{y}_{i}^{2} - n\overline{y}^{2}$$

3.25 Consider the multiple linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Using the procedure for testing a general linear hypothesis, show how to test

a.
$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta$

b.
$$H_0$$
: $\beta_1 = \beta_2$, $\beta_3 = \beta_4$

c.
$$H_0: \beta_1 - 2\beta_2 = 4\beta_3$$

 $\beta_1 + 2\beta_2 = 0$

Discuss the behavior of these qualities as x_i moves farther from \bar{x} ,

3.30 Consider the multiple linear regression model $y = X\beta + \varepsilon$. Show that the least-squares estimator can be written as

$$\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \mathbf{R}\boldsymbol{\varepsilon}$$
 where $\mathbf{R} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

- 3.31 Show that the residuals from a linear regression model can be expressed as $e = (I H)\varepsilon$. [Hint: Refer to Eq. (3.15b).]
- 3.32 For the multiple linear regression model, show that $SS_R(\beta) = y'Hy$.
- **3.33** Prove that R^2 is the square of the correlation between y and \hat{y} .
- **3.34** Constrained least squares. Suppose we wish to find the least-squares estimator of β in the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ subject to a set of equality constraints on $\boldsymbol{\beta}$, say $\mathbf{T}\boldsymbol{\beta} = \mathbf{c}$. Show that the estimator is