УДК 550,84:631.42

Підвищення експресності визначення мобільних форм важких металів при геохімічних дослідженнях

Приходько М.В.

Інститут геохімії, мінералогії та рудоутворення НАН України, м. Київ

У статті розглянуто можливість спрощення методики пропопідготовки при еколго-геохімічних і пошукових дослідженнях з метою підвищення експресності аналізу.

Однією з важливих характеристик при геохімічних та агрохімічних дослідженнях є вміст мобільних форм важких металів у грунті. Це пояснюється значною інформативністю характеристики для вирішення як екологічних, так і пошукових питань, що дозволяє визначати ступінь забрудненості території, забезпеченість рослин мікроелементами, буферну здатність грунтів та проводити еколого-геохімічний моніторинг екосистеми, виявляти вторинні ореоли розсіювання хімічних елементів-індикаторів пошуків, і, головне — проводити розбраковку природних та техногенних аномалій при вирішенні прикладних питань.

На даний час існує значна кількість методик по вилученню мобільних форм хімічних елементів та використання для цього різних екстрагентів [1 – 4]. Але, як показали результати геохімічних досліджень на різних полігонах України, на експериментальному етапі досліджень виникає досить багато питань суто аналітичного характеру: усереднення та представництво проби, первинний вміст та змінність його з часом, особливості та час відбору, пробопідготовка тощо. Все це взагалі характерно для аналізу природніх об'єктів довкілля: кори вивітрювання, гірських порід, а особливо грунтів і поверхневих та донних відкладів.

З метою підвищення експресності було вирішено зробити спробу відмовитись від стадії сушки та просіювання, а обмежитись лише квартуванням проби. Остаточно метод полягає в наступному: після квартування наважка грунту 5-10 г і екстрагент у відношенні 1:10 струшуються протягом 5-20 хвилин (в залежності від екстрагента). У фільтраті методом атомної абсорбції визначають Zn, Ni, Co, Cu, Pb. Визначення проводились в полум'ї на AAC C-115 (атомно- абсорбційний спектрофотометр); чутливість — 0,1мг/л та в ETA (електротермічний атомізатор) на AAC Сатурн-3; чутливість — 0,01мг/л.

Таке спрощення методики розглядали й інші дослідники [3], але як самостійний метод опробування не сприймали.

Звичайно, за таких умов слід очікувати певного спотворення та зниження відновлюваності результатів. Хоча грунт сам по собі є матеріалом досить неоднорідним, але, враховуючи можливість збільшення наважки до 5-10 г, слід очікувати задовільних результатів, що і показали експериментальні дослідження.

Експериментальне опробування, проведене на основних типах грунтів з використанням в якості екстрагента 0,1н HCl, показало певне заниження результатів (у порівнянні з опробуванням, до якого входило доведення проби до повітряно-сухого стану та просіювання), але загальне розходження не перевищило 20% (табл. 1), що цілком нормально для природних об'єктів. При даному способі пробопідготовки зберігається загальна закономірність розподілу вмісту рухомих форм металів у грунті. А це особливо важливо при геохімічних пошуках за рухомими формами хімічних елементів, де головну роль відіграє відносне значення їх вмісту.

Обчислене середнє квадратичне відхилення для опробувань на фоні 0,1 н HCl також показало нормальну відтворюваність результатів (табл. 2). Таким чином результати, отримані за

Таблиця Абсолютне (Δ) та відносне (є) відхилення результатів при спрощенні пробопідготовки

Νů		Zn			Ni			Co		Cu			
пρ	вміст	Δ	3	BMICT	Δ	ε	BMICT	Δ	Ε	вміст	Δ	E	
l	1.6/1.3	0.3	0.19	1.8/1.5	0,3	0,17	1,0/0,8	0,2	0.2	2,0/1.6	0.4	0,2	
2	3,3/2.8	0,5	0.15	2,7/2.3	0.4	0.15	2.1/1.7	0.4	0,19	2.1/1.7	0.4	0,19	
3	2,1/1,8	0,3	0.14	3.8/3.2	0.6	0,16	2.7/2,3	0,4	0,15	1,7/1,3	0.4	0.23	
4	6,3/5,3	Τ	0.16	7.8/6.7	1,1	0,14	3,7/3,1	0,6	0,16	3,0/2,5	0.5	0,1	
5	8,8/7.6	1.2	0.14	9.6/8.2	1.3	0,14	4.9/4,2	0,7	0,14	4.0/3.4	0.6	0.15	
£ cp		-	0.16			0,15			0.17		一	0,19	

Примітка. Одержані результати вимірювань наведені у мг/кг. У чисельнику – результат, одержаний за класичною схемою (сушка, просіювання), у знаменнику – за спрощеною методикою (лише квартування).

Таблиця 2

Відтворюваність результатів при спрощенні методики

№пр	Zn Ni						Со				Cu							
	C,1	C _{i2}	Di=C _{it} -C _{i2}	D,2x102	C _{i1}	C,2	Di=C _{ii} -C _{i2}	D ₁ ² ×10 ²	С,,	C,2	Di=C _{i1} -C _{i2}	$D_i^2 \times 10^2$	Cit	C ₁₂	Di=C _{i1} -C _{i2}	$D_i^2 \times 10^2$		
1	1,3	1,4	0,1	1	1,5	1,4	0,1	1	0,8	0,9	0,1	1	1,6	1,5	0,1	1		
2	2,8	2,7	0,1	1	2,3	2,5	0,2	4	1,7	1,8	0,1	1	1,7	1,6	0,1	1		
3	1,8	1,7	0,1	1	3,2	3,4	0,2	4	2,3	2,1	0,2	4	1,3	1,4	0,1	1		
4	5,3	5.5	0,2	4	6,7	6,4	0,3	9	3,1	3,3	0,2	4	2,5	2,3	0,2	4		
5	7,6	7,3	0,3	9	8,2	7,9	0,3	9	4,2	4,4	0,2	4	3,4	3,7	0,3	9		
S	0,127				0,165				0,118				0,127					
S.	6%					4%				5%				7%	7%			

Примітка. C_{it} , C_{i2} — вміст металів при опробуванні (мг/кг); D_i — різниця результатів парних опробувань; S — середнє квадратичне відхилення.

даним способом пробопідготовки, можна вважати достовірними, а сам метод можливим при проведенні геохімічних та агрохімічних робіт.

Аналогічні дослідження по вилученню рухомих форм хімічних елементів було проведено з іншими екстрагентами: 1м NH₄Cl (як більш м'який екстрагент) та 0,1н HNO₃ (як більш жорсткий екстрагент). Обидва екстрагенти повели себе подібним чином, але з певними особливостями: 1м NH₄Cl проявив себе певною

мірою селективним до цинку, а застосування 0,1н HNO_3 іноді призводило до розчинення мінеральної фази.

На стадії регіональних пошукових робіт та при еколого-геохімічному картуванні за мобільними формами елементів таке спрощення пробопідготовки є допустимим, як таке, що спрямоване на підвищення експресності аналізу, особливо при масштабному опробуванні місцевості.

- 1. Жовинский Е.Я., Кураева И.В., Новикова Л.Б. Подвижность разных форм цинка, меди, кобальта и никеля в почвах Украины//Мин.журн. 1996. т.18, №5. С.57–67.
 - 2. Подвижные формы токсичных элементов в почвах Украины//Тез докл. респ. научно-практ. конф./Киев.1993. 97с.
- 3. Обухов А.И., Плеханова И.О. Атомно-абсорбционный анализ в почвенно-биологических исследованиях // Издво Моск. ун-та, 1991.
- 4. Методические основы исследования химического состава горных пород, руд и минералов. Под ред. Остроумова Г.В. // М.: Недра, 1979.

В данной статте рассмотрена возможность упрощения методики пробоподготовки при эколого-геохимических и поисковых исследованиях с целью повышения экспрессности анализа.

The article scrutinires the possibility of simplification of this sample preparation in explore an environmental geochemistry recearch with the purpose of analisys expressing.