INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE PPT

Course Name	PROBABILITY AND STATISTICS
Course Code	AHS010
Programme	B.Tech
Semester	II
Course Coordinator	Mr. J Suresh Goud
Course Faculty	Ms. P Srilatha
Lecture Number	38
Topic Covered	Problems on Estimation
Course Learning	Understand the concept of estimation for classical inference
Outcome's	involving confidence interval.

PROBLEMS ON ESTIMATION

Problems:

1. What is the maximum error can to make with probability 0.95 when using a mean of random sample of size 64 to estimate the mean of population with variance 2.56.

Given
$$n=64$$
, $\sigma^2 = 2.56$, $\sigma = 1.6$
 $Z_{\alpha/2} = 1.96$ at 95%
 $E = Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
 $= 1.96 \times \frac{1.6}{8}$
 $= 0.392$

2. A sample of size 10 is taken from population and S.D of sample is 0.3. Find maximum error at 99% Confidence level.

Given
$$n=10$$
, $\sigma=0.3$

$$t_{\alpha/2} = 3.25 \text{ at } 99\%$$
 $E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
 $= 3.25 \times \frac{0.3}{\sqrt{10}}$
 $= 0.3$

3. Assuming that σ =20 how large a random sample to be taken with probability 0.95 that the sample mean will not differ from the population mean by more than 3 points.

Given
$$\sigma = 0.3, E = 3, n = ?$$

$$Z_{\alpha/2} = 1.96$$
 at 95%

$$n = \left[\frac{Z_{\alpha/\sigma}}{\frac{Z_{\alpha/\sigma}}{E}}\right]^{2}$$
$$= \left[\frac{1.96 \times 20}{3}\right]^{2}$$
$$= 1.71$$

4. The mean and S.D of population are 11795,14054. Find maximum error with 95% confidence level. If \bar{x} =11795 and sample size n=50. Construct 95% confidence level interval.

Given
$$n=50$$
, $\sigma=14054$ and $\bar{x}=11795$

$$Z_{\alpha/2} = 1.96 \text{ at } 95\%$$

$$E = Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

$$= 1.96 \times \frac{14054}{\sqrt{50}}$$

$$= 03895$$

Confidence interval of $(1-\alpha)100\%$ is

$$(\bar{x}-E,\bar{x}+E)$$

= $(11795-3895,11795+3895)$
= $(7900,15690)$