

Noise in Digital Signals

ENCE361 Embedded Systems 1

Course Coordinator: Ciaran Moore (ciaran.moore@Canterbury.ac.nz)

Lecturer: Le Yang (le.yang@canterbury.ac.nz)

Department of Electrical and Computer Engineering

Where we're going today

Sources of noise

Signal-to-noise ratio

Noise margin and hardware interfacing

Sources of Noise: Overview

- Definition of noise
 - Disturbance that are unwanted and unrelated to information content in a digital signal
- Random noise vs. systematic error
 - Random noise is stochastic
 - Quantization error
 - Sampling jitter
 - Thermal effect in electronics
 - Interference from other signals
 - System noise is deterministic
 - Measurement offset
 - Non-linear response
 - Generally can be calibrated

Quantization Error

Quantization maps a sample value to one of the possible discrete values

Original signal vs. its **ZOH-sampled & quantised version**

- 4-bit uniform quantization with 16 discrete values
- Quantization step $\Delta = 3/16 = 0.188$ Volt

Quantization error

• Random error with maximum magnitude = $\Delta/2 = 0.094 \text{ Volt}$

Sampling Jitter

 Sampling jitter makes sampling interval no long uniform

- Cause sampling amplitude uncertainty
- Example:

for a sinewave with amplitude A and frequency f Hz, maximum error magnitude is $\Delta V = 2\pi f A \Delta t$

S(t) 个

Derivation:

 $Asin(2\pi ft)$ has an instantaneous changing rate $2\pi fAcos(2\pi ft)$.

Maximum amplitude change after sampling jitter is $2\pi f A \cos(2\pi f t) \Delta t \leq 2\pi f A \Delta t$

Johnson Noise

- Thermal noise
 - Due to random thermal motion of charge carriers (usually electrons)
 - Occurs regardless of any applied voltage
- A resistor of resistance R generates thermal noise with a RMS voltage

$$v_n = \sqrt{4kTBR}$$
 $V(t) = V(t+T) T = period$

$$v_n = \sqrt{4kTBR} \qquad v(t) = V(t+T) \quad T = \rho e riod$$
• $k = 1.38 \times 10^{-23} J/^o K$ Boltzmann's constant
• T : absolute temperature in $^o K$ (Kelvin)
• B : noise bandwidth in Hz
• R : resistance in Ohm

RM 5 Voltage

Interference

- 3 sources of interference that could be present simultaneously
 - Conductive coupling: noise current caused by a changing voltage in a nearby circuit
 - Cross-talk between closely spaced circuits
 - Inductive coupling: noise voltage caused by a changing current in a nearby circuit
 - Resistive coupling: occurs when high-level signals share a wire with low-level signals
 - Direct coupling

Where we're going today

Sources of noise

Signal-to-noise ratio

Noise margin and hardware interfacing

Signal-to-Noise Ratio (1)

- Signal-to-noise ratio (SNR)
 - Expressed in decibel (dB)

- Definition 1: $SNR = 10 \log \left(\frac{Average \, Signal \, Power}{Average \, Noise \, Power} \right)$
- <u>Definition 2</u>: $SNR = 10 \log \left(\frac{(Signal\ RMS\ Voltage)^2}{(Noise\ RMS\ Voltage)^2} \right) = 20 \log \left(\frac{Signal\ RMS\ Voltage}{Noise\ RMS\ Voltage} \right)$
- Use of decibel (dB)
 - Logarithm used to better quantify very large or small values such as SNR

Signal-to-Noise Ratio (2)

SNR = 0 dB Signal & noise have SAME power

SNR = 40 dB

Signal power is 100,00 times higher than noise power

Signal Averaging Revisited (1)

• Digital signal conditioning via signal averaging (slide 15 in previous lecture)

$$z(nT_S) = \frac{1}{M} \sum_{m=0}^{M-1} y((n-m)T_S)$$

 Reduce noise power by a factor of 1/M for independent & identically distributed (i.i.d.) noise samples

Sin (21154) f=2.5HZ $f=0.01 \Rightarrow \frac{1}{2.5} \times 100^2 40$ Signal Averaging Revisited (2) M=16

• If the noise is NOT random, the performance of signal averaging may depend on the noise period (in samples) and its relation to M

- Sample the signal at a sampling rate f_s = 100 Hz (T_s = 0.01s)
- The noise is a sinewave at 2.5Hz

Where we're going today

Sources of noise

Signal-to-noise ratio (SNR)

Noise margin and hardware interfacing

Noise Margin (1)

- Logic gate circuits output and input logic-1 ('High') and logic-0 ('Low')
 - Ideally, logic-1 is represented by full power supply voltage (say, 5 V)
 - Ideally, logic-0 is represented by zero voltage
- Ideal voltages are rarely attained in practice

Connect a TTL output to a TTL input

Noise Margin (2)

- High-level noise margin in TTL (transistor-transistor logic) = 2.7-2 = 0.7 V
- Low-level noise margin in TTL (transistor-transistor logic) = 0.8-0.5 = 0.3 V

Hardware Interfacing

- Compatible hardware interfacing
 - High-level output range ⊂ High-level input range
 - Low-level output range ⊂ Low-level input range

- Incompatible hardware interfacing
 - Cause <u>uncertain response</u> at CMOS gate when TTL gate outputs logic-1 even without noise

- 1. A primary source of noise in resistors is due to thermal (Johnson) noise
 - What is the noise RMS voltage of a 1 M Ω resistor at 300° K over a 100 kHz bandwidth?
 - What is the noise RMS voltage of a 1 M Ω resistor in parallel with a 1 k Ω resistor at 300° K over a 100 kHz bandwidth?
- 2. In the example with SNR = 20 dB shown on slide 12, the average power of the signal is 0.9 W (ignoring the DC offset). What is the average power of the noise?
- 3. In slide 13, explain why the noise amplitude on the right (obtained via signal averaging with M=32) is significantly less than that on the left (obtained via signal averaging with M=16).