TD2 – Mélanges de gaz parfaits

Mélange idéal de deux gaz 1

Soit une masse $m=80\,\mathrm{g}$ d'un mélange gazeux de diazote N_2 et de méthane CH_4 , formé de 30 % en masse de diazote. Ce mélange occupe un volume $V=9.95\,\mathrm{L}$ à $T=150\,\mathrm{^{\circ}C}$. Il est considéré comme un mélange idéal de gaz parfaits.

- 1. Calculer la pression totale du mélange gazeux.
- 2. Calculer les pressions partielles de chacun des gaz.

Données:

- $\begin{array}{l} \bullet \ \ {\rm Masse\ molaire\ du\ diazote:}\ M_{\rm N_2} = 28\,{\rm g\,mol^{-1}}\ ; \\ \bullet \ \ {\rm Masse\ molaire\ du\ m\'ethode:}\ M_{\rm CH_4} = 16\,{\rm g\,mol^{-1}}. \end{array}$

Cuve à eau $\mathbf{2}$

Figure 1: Cuve à eau

On recueille dans une cuve à eau (fig. 1) un mélange de dihydrogène (H₂) et de vapeur d'eau (H₂O) qui occupe un volume $V=150\,\mathrm{cm}^3$. La pression atmosphérique vaut 1 bar et la température $20\,\mathrm{^\circ C}$. La dénivellation d'eau est $h = 5 \,\mathrm{cm}$. Évaluer la masse d'hydrogène.

Données : la pression de vapeur saturante de l'eau vaut $P_{\mathrm{H_2O}}\left(20\,^{\circ}\mathrm{C}\right) = 0.023 \times 10^{5}\,\mathrm{Pa}.$

3 Dissociation du dibrome

On néglige dans un premier temps la dissociation du dibrome (Br + Br \leftrightarrows Br₂).

- 1. Quel est le volume V_0 occupé par $m_0=1\,\mathrm{g}$ de dibrome (Br₂) à $T_0=900\,\mathrm{K}$ sous la pression normale ?
- 2. Que deviendrait ce volume (noté V_1) à $T_1=1800\,\mathrm{K},$ toujours sous la pression normale ?

L'expérience montre que ce volume est en fait $V_1'=1.2\,\mathrm{L}.$

- 3. Montrer que ce résultat peut s'expliquer en admettant qu'une partie des molécules Br_2 s'est dissociée en atomes de brome Br .
- 4. Calculer le coefficient de dissociation (c'est-à-dire la proportion des molécules dissociées).

 ${\bf Donn\acute{e}s}$: la masse molaire du brome vaut $M_{\rm Br}=80\,{\rm g\,mol^{-1}}.$