

[First Hit](#) [Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

End of Result Set

[Generate Collection](#) [Print](#)

L1: Entry 1 of 1

File: DWPI

Apr 18, 2002

DERWENT-ACC-NO: 2002-428169

DERWENT-WEEK: 200246

COPYRIGHT 2007 DERWENT INFORMATION LTD

TITLE: Welding device for welding of multi-part workpieces, especially multi-shelled containers whose parts have workpiece flanges has tensioning device for positionally exact tensioning

PATENT-ASSIGNEE:

ASSIGNEE	CODE
KUKA SCHWEISSANLAGEN GMBH	KUKAN

PRIORITY-DATA: 2001DE-2003412 (February 27, 2001)

[Search Selected](#) [Search ALL](#) [Clear](#)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<input checked="" type="checkbox"/> DE 20103412 U1	April 18, 2002		026	B23K037/047

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
DE 20103412U1	February 27, 2001	2001DE-2003412	

INT-CL (IPC): B23K 26/00; B23K 37/047

ABSTRACTED-PUB-NO: DE 20103412U

BASIC-ABSTRACT:

NOVELTY - A welding device for the welding of multi-part workpieces, especially multi-shelled containers whose parts have workpiece flanges standing out at the sides, is described.

DETAILED DESCRIPTION - The welding device (1) has a tensioning device (8) for the positionally exact tensioning of the workpiece parts (3,4) with workpiece flanges (5,6) lying on one another and a welding tool (20) aimed at the flange end side with a pressure element (22) pressing together the workpiece flanges plus a movement device (14) for the generation of a relative movement between the workpiece (2) and the welding tool. The tensioning device has several tensioners (10) with a support device (13) and a movable tensioning element (12) for the tensioning and alignment of the workpiece flanges.

USE - For welding of multi-part workpieces, especially multi-shelled containers whose parts have workpiece flanges.

ADVANTAGE - Allows a sealed welding of the workpiece parts at the workpiece flanges.

DESCRIPTION OF DRAWING(S) - The drawing shows a top view of the welding device.

welding device 1

workpiece 2

workpiece parts 3,4

workpiece flanges 5,6

tensioning device 8

tensioners 10

tensioning element 12

support device 13

movement device 14

welding tool 20

pressure element 22

CHOSEN-DRAWING: Dwg.1/6

TITLE-TERMS: WELD DEVICE WELD MULTI PART WORKPIECE MULTI SHELL CONTAINER PART
WORKPIECE FLANGE TENSION DEVICE POSITION EXACT TENSION

DERWENT-CLASS: P55 X24

EPI-CODES: X24-D09;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N2002-336719

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

(19) BUNDESREPUBLIK
DEUTSCHLAND

(12) **Gebrauchsmusterschrift**
(10) DE 201 03 412 U 1

(61) Int. Cl. 7:
B 23 K 37/047
B 23 K 26/00

DE 201 03 412 U 1

(21) Aktenzeichen: 201 03 412.3
(22) Anmeldetag: 27. 2. 2001
(47) Eintragungstag: 18. 4. 2002
(43) Bekanntmachung im Patentblatt: 23. 5. 2002

(73) Inhaber:
KUKA Schweissanlagen GmbH, 86165 Augsburg,
DE

(74) Vertreter:
Ernicke & Ernicke, 86153 Augsburg

(56) Recherchenergebnisse nach § 7 Abs. 2 GbmG:
DE 199 45 563 C1
DD 2 14 786 A

(54) Schweißeinrichtung zum Schweißen von mehrteiligen Werkstücken

(57) Schweißeinrichtung zum Schweißen von mehrteiligen Werkstücken, insbesondere mehrschaligen Behältern, deren Teile seitlich abstehende Werkstückflansche aufweisen, dadurch gekennzeichnet, dass die Schweißeinrichtung (1) eine Spanneinrichtung (8) zum liegegenauen Spannen der Werkstückteile (3, 4) mit aufeinanderliegenden Werkstückflanschen (5, 6) und ein auf die Flanschstirnseite (7) gerichtetes Schweißwerkzeug (20) mit einem die Werkstückflansche (5; 6) zusammenpressenden Andrückelement (22) sowie eine Bewegungseinrichtung (14, 19) zur Erzeugung einer Relativbewegung zwischen dem Werkstück (2) und dem Schweißwerkzeug (20) aufweist.

DE 201 03 412 U 1

Anmelder: KUKA Schweissanlagen GmbH
Blücherstraße 144
86165 Augsburg / DE

Vertreter: Patentanwälte
Dipl.-Ing. H.-D. Ernicke
Dipl.-Ing. Klaus Ernicke
Schwibbogenplatz 2b
86153 Augsburg / DE

Datum: 23.02.2001

Akte: 772-952 er/he

DE 2010341201

AB1

DE-G-201 03 421.3

BESCHREIBUNG

Schweißeinrichtung zum Schweißen von mehrteiligen5 Werkstücken

Die Erfindung betrifft eine Schweißeinrichtung zum Schweißen von mehrteiligen Werkstücken, insbesondere von mehrschaligen Behältern mit den Merkmalen im Oberbegriff des Hauptanspruchs.

Aus der DE-C 199 45 563 ist es bekannt, einen Schweißroboter zum Schweißen eines Tanks einzusetzen, welcher in einem mehrachsigen Schwenkrahmen gehalten wird. Hierbei wird eine umlaufende Schweißnaht mit einem nicht näher beschriebenen und nicht dargestellten Schweißbrenner gesetzt.

Die DD 214 786 befasst sich mit einer Greifvorrichtung zum Halten von Kleinteilen, insbesondere Halbschalen während ihrer Verschweißung mittels einer Schweißelektrode im Schmelzpressschweißverfahren. Die Schweißelektrode ist in Schließrichtung der beiden Halbschalen ausgerichtet und drückt auf die Oberseite der Flansche.

Aus der Praxis ist es ferner bekannt, das Rollnahtschweißen zum Verbinden von mehrteiligen Werkstücken einzusetzen. Hierbei werden die Teile mit ihren seitlich abstehenden Werkstückflanschen plan aufeinander gelegt und dann von den Rollen geschweißt. Diese Technik ist für Behälter nur eingeschränkt einsetzbar, insbesondere wenn eine Dichtschweißung erfolgen soll und wenn außerdem die Größe und insbesondere Breite der Werkstückflansche aus Gründen optimaler Raumausnutzung oder dergleichen begrenzt ist. Das Rollennahtschweißen lässt sich unter diesen Bedingungen

DE 20103442 U1

Prozesssicherheit erreicht werden. Die Stützeinrichtung an den Spannern und die Andrückrolle am Laserkopf pressen die Werkstückflansche an der Schweißstelle dicht zusammen und bieten optimale Schweißbedingungen. In den anderen Bereichen bleiben die Werkstückteile durch die dort geschlossenen Spanner nach wie vor in der Sollposition ausgerichtet und gespannt. Das temporäre Öffnen der Spanner in den jeweiligen Schweißbereichen hat dadurch keine negativen Auswirkungen auf die schweißgerechte Lage der Werkstückteile. Die Spanner können je nach Ausbildung nach dem Schweißen wieder schließen. Sie können alternativ aber zumindest zum Teil auch offen bleiben, weil die anderen Spanner im ungeschweißten Bereich das Werkstück noch festhalten und weil die Werkstückteile durch die Schweißverbindung zusammengehalten sind.

In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung angegeben.

20

25

30

35

DE 201003412 U1

Die Erfindung ist in den Zeichnungen beispielsweise und schematisch dargestellt. Im Einzelnen zeigen:

- 5 Figur 1: eine Draufsicht auf eine Schweißeinrichtung mit einem robotergeführten Schweißwerkzeug, einem zu schweißenden mehrschaligen Behälter und einer Spann- und Positioniereinrichtung,
- 10 Figur 2: eine Stirnansicht der Positionier- und Spanneinrichtung gemäß Pfeil II von Figur 1,
- 15 Figur 3: eine abgebrochene und vergrößerte Detaildarstellung in Seitenansicht der Behälterschalen mit Spannern,
- 20 Figur 4: eine abgebrochene Seitenansicht der Spanneinrichtung mit ihrer Spannkontur ohne Werkstück,
- 25 Figur 5: eine vergrößerte und abgebrochene Detaildarstellung der Schweißstelle an den Werkstückflanschen mit Spanner und Laserkopf und
- 30 Figur 6: eine noch stärker vergrößerte Darstellung der Schweißstelle von Figur 5.
- 35 Figur 1 zeigt in der Draufsicht und in einer schematischen Darstellung eine Schweißeinrichtung (1) zum Schweißen eines mehrteiligen Werkstücks (2). Das Werkstück kann von beliebiger Art und Ausbildung sein. Es besteht aus einem schweißbaren Werkstoff, vorzugsweise Metall, z.B. aus Edelstahl oder verzinkten oder auf andere Weise beschichteten Stahlblechen. In der gezeigten Ausführungsform ist das Werkstück (2) als Behälter

ausgebildet und besteht aus mindestens zwei aufeinander liegenden gewölbten Behälterschalen (3,4). Der Behälter (2) dient hierbei vorzugsweise als Kraftstofftank für PKW's.

5

Die Behälterschalen (3,4) haben an ihren Öffnungsseitigen Rändern nach außen gebogene und vorzugsweise umlaufende Schalenflansche (5,6). An den Schalenflanschen (5,6) erfolgt die Schweißverbindung und zwar an deren Stirnseite (7). Die Schalenflansche (5,6) werden hierfür plan aufeinander gelegt und schließen an den Stirnseiten (7) bündig miteinander ab. Die Schalenflansche (5,6) haben eine geringe Breite und sind gerade so groß, dass sie ausreichend Platz für die nachfolgend näher beschriebene Andrückrolle (22) eines Laserkopfes (21) bieten.

10

Die Schweißeinrichtung (1) umfasst einen Manipulator (19); vorzugsweise einen mehrachsigen Gelenkroboter, der an seiner Roboterhand ein Schweißwerkzeug (20) führt. Hierbei handelt es sich vorzugsweise um den nachfolgend näher beschriebenen Laserkopf (21). Die Schweißeinrichtung (1) umfasst ferner eine Spanneinrichtung (8) zum lagegenauen Positionieren und Spannen der Behälterschalen (3,4) und ihrer Schalenflansche (5,6). Die Behälterschalen (3,4) werden von einem Bediener (29) manuell oder mit einem geeigneten Manipulator auf die Spanneinrichtung (8) gelegt. Die Schweißeinrichtung (1) kann ferner noch eine ein- oder mehrachsig bewegliche Positioniereinrichtung (14) aufweisen, mit der die Spanneinrichtung (8) und der mehrschalige Behälter (2) bewegt werden. Der Roboter (19) und die Positioniereinrichtung (14) sind in ihren Bewegungen aufeinander abgestimmt. Hierzu können sie eine gemeinsame Steuerung (25) aufweisen, die separat angeordnet oder alternativ auch in eine der beiden Bewegungseinrichtungen (14,19) oder in eine übergeordnete Prozesssteuerung integriert ist.

Das Schweißwerkzeug (20) besteht aus dem vorerwähnten Laserkopf (21). Dieser umfasst eine geeignete Lasereinheit mit einer Laserstrahlzuführung (nicht dargestellt) und einer Laseroptik (28). Vorzugsweise kommt hierbei ein Diodenlaser oder ein Festkörperlaser zum Einsatz, bei dem der Laserstrahl (24) über ein Lichtleitkabel zugeführt wird. Ansonsten kann die Lasereinheit aber auch in beliebig anderer geeigneter Weise ausgebildet sein und z.B. mit einem Gaslaser mit einer Spiegelstrahlführung oder dergleichen ausgerüstet sein. Das Schweißwerkzeug (20) kann weitere Zusatzeinrichtungen, wie eine Schweißdrahtzuführung, eine Schutzgaseinrichtung etc., aufweisen.

Der Laserkopf (21) beinhaltet ferner ein Andrückelement (22), welches vorzugsweise als frei drehbare Andrückrolle ausgebildet ist. Anders als in normalen Anwendungen ist hier die Andrückrolle (22) quer zum Laserstrahl (24) ausgerichtet. Hierfür ist ein Winkelarm (23) vorgesehen, mit dem die Laseroptik (28) gegenüber der Andrückrolle (22) um 90° gedreht wird. Am Winkelarm (23) befindet sich außerdem ein Führungselement (30), welches z.B. als Tastfinger oder kantentastender Sensor ausgebildet ist. Es ist in der Schweiß-Bewegungsrichtung vor der Andrückrolle angeordnet und tastet die Flanschlage, z.B. die Vorderkante oder die Stirnseite (7) taktil oder berührungslos ab. Hierüber werden der Laserstrahl (24) und die Andrückrolle (22) exakt an den Schalenflanschen (5,6) geführt. Figur 5 zeigt diese Anordnung im Detail.

Die Spanneinrichtung (8) besteht aus mehreren rund um die Außenkontur des Behälters (2) und seiner Behälterschalen (3,4) angeordneten und vorzugsweise im Wesentlichen gleichmäßig verteilten Spannern (10). Die Spanner (10) positionieren die Behälterschalen (3,4) mit ihren Behälterflanschen (5,6) in einer schweißgerechten Lage und halten sie in dieser Position fest. Hierbei hat die

Spanneinrichtung (8) auch eine Richtfunktion, wobei etwaige Geometrieabweichungen der Behälterschalen (3,4) ausgeglichen und die Behälterschalen (3,4) hierfür u.U. verformt und verspannt werden.

5

Die Spanner (10) bestehen aus einem Unterbau, z.B. einem Sockel (11), der eine bedarfsgerechte Höhe hat. Die Sockel (11) sind auf einer geeigneten Unterlage, z.B. einem Spanntisch (9), an vorgegebenen Positionen befestigt.

10

Hierbei kann zur exakten Lageanpassung eine Verstellmöglichkeit gegeben sein. Figur 2 und 4 zeigen diese Anordnung, wobei in Figur 2 die seitlichen Spanner (10) der Übersicht wegen unvollständig dargestellt sind.

15

An der Oberseite tragen die Sockel (11) eine stationär angeordnete Stützeinrichtung (13), für die untere Behälterschale (3), die z.B. als eine Kulisse ausgebildet ist, die an die Soll-Form der Behälterschale (3) und ihres Schalenflansches (5) angepasst ist. Die Kulisse (13) kann hierbei als breites und seitlich über den Sockel (11) beidseits hinausragendes Stützblech ausgebildet sein, welches mit seiner Oberkante den Schalenflansch (5) auf einem längeren Bereich formgebend abstützt. Die Kulissenform ist hierbei durch die Soll-Lage des Behälterflansches (5) in der Richt- und Spannposition bestimmt. Die Kulissenform folgt hierbei auch dem häufig in räumlichen Kurven verlaufenden Behälterflansch (5). Figur 3 und 4 zeigen diese Anordnung.

25

30

Die Kulisse (13) kann zudem eine angeschrägte und verdünnte Oberkante im Anlagebereich zum Behälterflansch (5) aufweisen. Hierdurch wird ein Freiraum gegenüber der toleranzbehafteten Flanschbiegung geschaffen. Außerdem kann die Kulisse (13) zusätzlich frontal vorstehende Stützelemente (31) oder Formteile aufweisen, die gegen die Schalenwand drücken und diese in die gewünschte Position bringen. Figur 5 zeigt diese Anordnung. Die ründ um das

Werkstück (2) verteilten Spanner (10) mit den Kulissen (13) bilden ein rahmenartiges Auflagebett, auf dem die unter Behälterschale (3) aufliegt und formschlüssig in der schweißgerechten Soll-Lage geführt ist. Hierbei ist auch durch die breiten Kulissen (13) der untere Schalenflansch (5) umlaufend und gleichmäßig sowie vorzugsweise ohne größere Unterbrechungen abgestützt.

An zumindest einzelnen Spannern (10) können zudem noch mehrere Voreinweiser (35) für die obere Behälterschale (4) angeordnet sein. Die rund um das Werkstück (2) verteilten Voreinweiser (35) dienen als Leithilfe zum Auflegen der oberen Behälterschale (4) und als Anschläge sowie seitliche Führungen für den oberen Behälterflansch (6). Sie erlauben ein relativ genaues Positionieren der oberen Behälterschale (4) auf der unteren Behälterschale (3) und verhindern ein Verrutschen beim Einlegen des Bauteils, bis die Spanner (10) aktiviert sind und die Behälterschalen (3,4) fixieren. Die Voreinweiser (35) können als hochstehende Stifte oder Finger ausgebildet sein und sind beweglich, damit sie nach dem Spannen der Behälterschalen (3,4) entfernt oder in eine nicht störende Stellung bewegt werden können.

Auf der Oberseite der Sockel (11) hat jeder Spanner (10) mindestens ein bewegliches Spannelement (12) mit mindestens einem Antrieb (33,34). Dieses ist z.B. als schwenkbarer Spännhebel ausgebildet, der in den Zeichnungen in der Spannstellung mit durchgezogenen Linien und in der zurückgeschwenkten Ruhestellung gestrichelt dargestellt ist. Jeder Spännhebel (12) ist mit einem geeigneten und schematisch angedeuteten Schwenkantrieb (33), z.B. einem Pneumatikzylinder (nicht dargestellt) versehen. Zusätzlich ist in der bevorzugten Ausführungsform noch ein Linearantrieb (34) vorhanden, der den in Spannstellung eingeschwenkten Spännhebel (12) quer zur Flanschebene nach unten zieht. Der Linearantrieb (34)

kann ebenfalls als Pneumatikzylinder oder dgl. ausgebildet sein. Die Antriebe sind mit einer geeigneten Steuerung verbunden, vorzugsweise der gemeinsamen Steuerung (25).

5 Die Spannhebel (12) wirken in der Betriebsstellung auf die obere Behälterschale (4) ein und richten, führen und spannen deren Schalenflansch (6). Sie drücken dazu von oben und von der Stirnseite (7) gegen den oberen Schalenflansch (6). Die Spannhebel (12) haben in diesem 10 Auflagebereich ein Führungsteil (32), welches den Behälterflansch (6) an der Stirnseite (7) und auf der Oberseite erfasst. Das Führungsteil ist z.B. als Kerbe oder Ausnehmung am vorderen gekröpften Hebelende ausgebildet. Figur 3 zeigt diese Formgebung in der gestrichelten Darstellung. Die Formgebung ist auch auf die 15 Lage der Kulisse (13) angepasst.

Beim Einschwenken drücken die Spannhebel (12) mit der Rückseite der Kerbe (32) gegen die Stirnseite (7) des oberen Schalenflanschs (6) und schieben diesen zurück in die erforderliche Position gegenüber dem anderen Schalenflansch (5). Die Spannhebel (12) können hierbei die obere Behälterschale (4) bei Vorliegen von Verzügen oder sonstigen Formabweichungen kompensierend verformen. Diese 20 Richtfunktion kann u.U. auch den anderen Schalenflansch (5) beaufschlagen, wobei dieser ebenfalls stirnseitig erfasst und zurückgeschoben wird. Am Ende hält die Rückseite der Kerbe (32) als Anschlag die Stirnseiten (7) der Schalenflansche (5,6) bündig übereinander. Beim 25 anschließenden Spannhub werden die plan aufeinander liegenden Schalenflansche (5,6) zusammengepresst und auf die Kulisse (13) gedrückt. Die Spannhebel (12) sind dazu in ihrer Führungs- und Spannfunktion auf die 30 Stützeinrichtungen (13) abgestimmt.

Wie Figur 3 zeigt, schwenken die Spannhebel in der Ruhe- oder Lösestellung weit zurück und geben dabei den oberen Schalenflansch (6) vollkommen frei. Er ist dadurch für die Andrückrolle (22) frei zugänglich. Außerdem liegen in dieser Stellung auch die Stirnseiten (7) der Schalenflansche (5,6) für den Schweißprozess vollkommen frei. Sie werden nur noch an der Unterseite von der Stützeinrichtung (13) unterstützt, wobei diese auch von der Stirnseite (7) etwas nach hinten zur Behälterwand versetzt sein kann.

Die Positioniereinrichtung (14) besitzt in der dargestellten Ausführungsform eine Dreheinrichtung (15) mit einer Drehachse (16), welche am Spanntisch (9) angreift und die Spanneinrichtung (8) drehen kann. Außerdem hat die Positioniereinrichtung (14) noch eine Schwenkeinrichtung (17) mit einer Schwenkachse (18), die vorzugsweise im Wesentlichen horizontal verläuft. Die Achsen (16,18) sind im rechten Winkel zueinander angeordnet. Bei der in Figur 1 in der Draufsicht dargestellten Anordnung kann mit der Dreheinrichtung (16) der in dieser Stellung im Wesentlichen horizontal ausgerichtete Spanntisch (9) um die vertikale Achse (16) gedreht und dabei gegenüber dem Schweißwerkzeug (20) bewegt werden. Über die Schwenkeinrichtung (17) kann der Spanntisch (9) mit dem Werkstück (2) aus der horizontalen in die vertikale Lage geschwenkt werden, wobei in dieser Position der Spanntisch (9) wiederum um die nun horizontale Drehachse (16) drehen kann. Mit einer solchen geschwenkten Anordnung kann z.B. ein sogenanntes Fällnahtschweißen durchgeführt werden, weil hier die Schalenflansche (5,6) eine meist überwiegende vertikale Richtungskomponente haben.

Wie eingangs erwähnt, werden die aufeinander liegenden Schalenflansche (5,6) an der Stirnseite (7) mit dem hier auftreffenden Laserstrahl (24) und gegebenenfalls einem

DE 201003412 U1

Andrückfinger oder dergleichen verwendet werden. Es können auch mehrere solcher Elemente vorhanden sein.

Variabel ist zudem die Ausgestaltung der Spanneinrichtung (8) und der Spanner (10). Die Spannhebel (12) können hierbei statt als Schwenkhebel auch als Schieber oder dergleichen gestaltet sein. Zudem können weitere Beweglichkeiten bzw. Bewegungssachsen vorhanden sein, wobei z.B. die Spannelemente (12) zusätzlich höhenverstellbar sind; Ferner ist eine Trennung von Spannelementen (12) und Stützeinrichtung (13) möglich. Die Stützeinrichtungen oder Kulissen (13) können statt an den Spännern (10) auch an anderen Teilen, z.B. direkt am Spanntisch (9) befestigt sein. Hierbei können die Stützeinrichtungen (13) auch untereinander unter Bildung eines geschlossenen Aufnahmebettes für ein oder mehrere Werkstückteile (3) gestaltet sein.

Die gezeigte Schweißeinrichtung (1) ist für beliebige mehrteilige Werkstücke (2) mit Werkstückflanschen (5,6) geeignet. Dies können außer weitgehend geschlossenen Behältern oder rohrartigen Hohlprofilen aus dem Fahrzeugbau und anderen Technikbereichen auch zumindest bereichsweise offene Werkstücke, z.B. offene Schalenprofile oder dgl. sein. Die Werkstückteile (3,4) können ferner flache Bauteile, wie Bleche, Platinen, abgekantete Profile oder dgl. sein. Im weiteren können mehr als zwei aufeinander liegende Werkstückflansche (5,6) durch Stirnschweißen miteinander verbunden werden.

30

35

DE 20103412 U1

BEZUGSZEICHENLISTE

- | | |
|----|--|
| 1 | Schweißeinrichtung |
| 2 | Werkstück, Behälter |
| 5 | Werkstückteil, Behälterschale |
| 4 | Werkstückteil, Behälterschale |
| 5 | Werkstückflansch, Schalenflansch |
| 6 | Werkstückflansch, Schalenflansch |
| 7 | Stirnseite |
| 10 | Spanneinrichtung |
| 9 | Spanntisch |
| 10 | Spanner |
| 11 | Sockel |
| 12 | Spannelement, Spannhobel |
| 15 | Stützeinrichtung, Kulisse |
| 14 | Bewegungseinrichtung, Positioniereinrichtung |
| 15 | Dreheinrichtung |
| 16 | Bewegungsachse, Drehachse |
| 17 | Schwenkeinrichtung |
| 20 | Bewegungsachse, Schwenkachse |
| 19 | Bewegungseinrichtung, Manipulator, Roboter |
| 20 | Schweißwerkzeug |
| 21 | Laserkopf |
| 22 | Andrückelement, Andrückrolle |
| 25 | Winkelalarm |
| 24 | Laserstrahl |
| 25 | Steuerung |
| 26 | Schweißnaht |
| 27 | Optikschutz, Cross-Jet |
| 30 | Laseroptik |
| 29 | Bediener |
| 30 | Führungselement, Tastfinger |
| 31 | Stützelement |
| 32 | Führungsteil, Ausnehmung |
| 35 | Schwenkantrieb |
| 34 | Linearantrieb |
| 35 | Voreinweiser |

DE 201003 412 01

SCHUTZANSPRÜCHE

- 1.) Schweißeinrichtung zum Schweißen von mehrteiligen Werkstücken, insbesondere mehrschaligen Behältern, deren Teile seitlich abstehende Werkstückflansche aufweisen, dadurch g e k e n n z e i c h n e t, dass die Schweißeinrichtung (1) eine Spanneinrichtung (8) zum lagegenauen Spannen der Werkstückteile (3,4) mit aufeinanderliegenden Werkstückflanschen (5,6) und ein auf die Flanschstirnseite (7) gerichtetes Schweißwerkzeug (20) mit einem die Werkstückflansche (5,6) zusammenpressenden Andrückelement (22) sowie eine Bewegungseinrichtung (14,19) zur Erzeugung einer Relativbewegung zwischen dem Werkstück (2) und dem Schweißwerkzeug (20) aufweist.
- 2.) Schweißeinrichtung nach Anspruch 1, dadurch g e k e n n z e i c h n e t, dass die Spanneinrichtung (8) mehrere Spanner (10) mit einer Stützeinrichtung (13) und einem beweglichen Spannelement (12) zum Spannen und Ausrichten der Werkstückflansche (5,6) aufweist.
- 3.) Schweißeinrichtung nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t, dass die Spanner (10) einzeln steuerbar sind.
- 4.) Schweißeinrichtung nach Anspruch 1, 2 oder 3, dadurch g e k e n n z e i c h n e t, dass die Stützeinrichtung (13) als eine am Spanner (10) stationär angeordnete und an das eine Werkstückteil (3) angepasste Kulisse ausgebildet ist.
- 5.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch g e k e n n z e i c h n e t, dass die Spanneinrichtung (8) mehrere bewegliche Voreinweiser

DE 201003412 U1

(35) aufweist.

- 6.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Schweißwerkzeug (20) einen Laserkopf (21) mit einer im Wesentlichen quer zum Laserstrahl (24) gerichteten Andrückrolle (22) aufweist.
- 7.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Schweißwerkzeug (20) an einem Manipulator (19), vorzugsweise an einem mehrachsigen Gelenkroboter, angeordnet ist.
- 8.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Spanneinrichtung (8) an einer Positioniereinrichtung (14) mit mindestens einer Bewegungsachse (16;18) angeordnet ist.
- 9.) Schweißeinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Positioniereinrichtung (14) eine Dreh- und eine Schwenkeinrichtung (15,17) mit quer zueinander ausgerichteten Bewegungsachsen (16,18) aufweist.
- 10.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Manipulator (19) und die Positioniereinrichtung (14) eine gemeinsame Steuerung (25) aufweisen.
- 11.) Schweißeinrichtung nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Laserkopf (21) ein die Flanschlage ermittelndes Führungselement (30) zur Führung des Laserstrahls (24) und des Andrückelements (22) aufweist.

DE 00 00 00

- 1/6 -

Fig. 1

DE 2010341201

09.03.01

- 2/6 -

Fig. 2

DE 20103412 U1

DE 201 034 12 U1

- 3/6 -

Fig. 3

DE 201 034 12 U1

08-02-09

- 4/6 -

Fig. 4

DE 20100412 01

08.03.10

- 5/6 -

Fig. 5

DE 20103412 U1

08.03.01

- 6/6 -

Fig. 6

DE 201003412 01