

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICERRECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA ASIGNATURA MATEMÁTICA I. (Código 0826101) LAPSO ACADÉMICO 2014-1

UNIDAD 2 LÍMITES Y CONTINUIDAD (Ejercicios)

Elaborada por: Profa. Jeraldyne Moncada. Prof. Leonardo Pérez Material didáctico en revisión En los ejercicios del del 1 al 3 estimar por el procedimiento numérico el valor del límite.

1)
$$\lim_{x \to -\frac{3}{2}} |2x + 3|$$

2)
$$\lim_{x\to 0} \left(x^3 - \frac{1}{2} \right)$$

3)
$$\lim_{x \to 2} \sqrt[3]{x + 25}$$

$$f(x) = \begin{cases} (x+1)^3 & x \le 0\\ \sin x + 1 & x > 0 \end{cases}$$

- a) ¿Existe f(0)?
- b) Estudiar numéricamente el comportamiento de f alrededor de 0

5) Sea
$$f(x) = \frac{-4}{x+3}$$

- a) ¿Existe f(-3)?
- b) Estudiar numéricamente el comportamiento de f

alrededor de -3

En los ejercicios del 6 al 8 decir cuales proposiciones son verdaderas y cuales son falsas. En caso de ser falsa dar un contraejemplo.

- 6) Decir que $\lim_{x \to a} f(x) = L$ significa que f(a) = L
- 7) Decir que $\lim_{x\to a} f(x)$ no existe significa que f(a) no existe
- 8) Si f(a) no existe, entonces $\lim_{x\to a} f(x)$ no existe

En los ejercicios comprendidos del 9 al 12 calcular el límite indicado aplicando sus propiedades.

9)
$$\lim_{x \to 0} \sqrt{\frac{\cos(6x) + 2x + 11x^2}{\ln(e^{12})}}$$

10)
$$\lim_{x\to 5} \frac{-x^4 + 2x - 3}{x + 7}$$

11)
$$\lim_{t \to 7} \log_4(t^2 + 5)$$

12)
$$\lim_{x \to -\frac{3}{4}} \left(x^4 + 12x^3 + 54x^2 + 108x + 81 \right)$$

En los ejercicios 13 al 17 demostrar formalmente el límite que se indica.

13)
$$\lim_{x \to -6} \left(4x + \frac{3}{2} \right) = -\frac{45}{2}$$

14)
$$\lim_{x \to \frac{3}{4}} \left(\frac{x}{3} - \frac{2}{5} \right) = -\frac{3}{20}$$

15)
$$\lim_{t \to 7} (5-3t) = -16$$

16)
$$\lim_{x \to -2} (2-9x) = 20$$

17)
$$\lim_{x \to c} (kx + d) = kc + d \qquad k \neq 0$$

En los ejercicios 18 al 28 calcule el límite indicado. Escriba el significado del valor calculado en cada caso.

18)
$$\lim_{x\to 3} (3x^2 - 2x - 2)$$

19)
$$\lim_{x\to 0} \frac{x}{1+x^2}$$

20)
$$\lim_{x\to 1} (3x^2 - x - 1)^3$$

21)
$$\lim_{x \to 1} \frac{(x-3)(x-2)(x-1)}{(x+3)(x+2)(x+1)}$$

22)
$$\lim_{x \to 0} \frac{(1+x)(1+2x)(1+3x)(1+4x)}{(1-x)(1-2x)(1-3x)(1-4x)}$$

23)
$$\lim_{x \to 3} \frac{\sqrt{x+6}-3}{x}$$

24)
$$\lim_{x\to 0} \sqrt{1+\sqrt{1-\sqrt{2-\sqrt{1+x}}}}$$

25)
$$\lim_{x \to 3} (x+5)$$

26)
$$\lim_{x \to 2} \frac{x^2 + 3}{2x + 5}$$

27)
$$\lim_{x \to -1} \frac{(3x+2)(x+1)(x^2+2)(2x+3)}{(x-1)(x-2)(x-3)}$$

28)
$$\lim_{x\to 0} \sqrt[3]{\frac{5x+16}{3x-2}}$$

En los ejercicios 29 al 185 calcule el límite indicado.

29)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

30)
$$\lim_{x \to 1} \frac{x^2 - 9x + 8}{x^2 - 1}$$

31)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

32)
$$\lim_{x \to 1} \frac{x^2 + 10x - 11}{x^2 + 3x - 4}$$

33)
$$\lim_{x \to -1} \frac{x^4 - 1}{x^3 + 1}$$

34)
$$\lim_{x \to 2} \frac{x^3 - 2x - 4}{x^3 - 8}$$

35)
$$\lim_{x \to 1} \frac{x^3 + 12x^2 - 10x - 3}{x^3 + 9x^2 - 6x - 4}$$

36)
$$\lim_{x \to 3} \frac{x^3 - 2x - 21}{x^4 - 27x}$$

37)
$$\lim_{x \to 4} \frac{(x-4)^4 + 3(x-4)^2 + x^2 - 16}{x^3 - 64}$$

38)
$$\lim_{x \to 1} \frac{x^5 + 3x^4 - 4x^3 + 8x^2 - 2x - 6}{x^4 + 5x^3 - 2x^2 - 2x - 2}$$

39)
$$\lim_{x \to -1} \frac{x^{14} + x^2 - 2}{x^{12} + 4x^8 + x^2 - 6}$$

40)
$$\lim_{x \to -1} \frac{x^{34} - 1}{x^{27} + 1}$$

41)
$$\lim_{x \to 1} \frac{x^{101} - x^{50} + x^{23} - 1}{x^{99} - 3x^{49} + 2}$$

42)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{x^2}$$

43)
$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x-2}$$

44)
$$\lim_{x \to 1} \frac{\sqrt{15 + x} - \sqrt{17 - x}}{\sqrt{3 + x} - 2}$$

45)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + x + 7} - \sqrt{2x^2 + 10x - 3}}{\sqrt{x^2 + 1} - \sqrt{3x^2 - 1}}$$

46)
$$\lim_{x \to 3} \frac{\sqrt{13 + x} - \sqrt{10 + 2x}}{\sqrt{19 + 2x} - 5}$$

47)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$

48)
$$\lim_{x \to 2} \frac{\sqrt[3]{15 + 6x} - \sqrt[3]{25 + x}}{x^4 + 2x - 20}$$

49)
$$\lim_{x \to 1} \frac{\sqrt[3]{x + 26} - \sqrt[4]{80 + x}}{\sqrt{x + 8} - 3}$$

50)
$$\lim_{x\to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x}$$

51)
$$\lim_{x \to 0} \frac{(1+x)^5 - (1+5x)}{x^2 + x^5}$$

52)
$$\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)(x-4)(x-5)}{(5x-1)^5}$$

53)
$$\lim_{x \to \infty} \frac{(2x-3)^{20} (3x+2)^{30}}{(2x+1)^{50}}$$

54)
$$\lim_{x\to 3} \frac{x^2-5x+6}{x^2-8x+15}$$

55)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

56)
$$\lim_{x \to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$

57)
$$\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$

58)
$$\lim_{x \to 2} \frac{\left(x^2 - x - 2\right)^{20}}{\left(x^3 - 12x + 16\right)^{10}}$$

59)
$$\lim_{x \to 1} \frac{x^{100} - 2x + 1}{x^{50} - 2x + 1}$$

60)
$$\lim_{x\to 1} \frac{x^m-1}{x^n-1}$$
 m y n números naturales

61)
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}$$

62)
$$\lim_{x \to +\infty} \frac{\sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}}{\sqrt{2x+1}}$$

63)
$$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

64)
$$\lim_{x \to -8} \frac{\sqrt{1-x} - 3}{2 + \sqrt[3]{x}}$$

65)
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} \qquad n \text{ número entero}$$

66)
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{x + x^2}$$

67)
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$

68)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$

69)
$$\lim_{x \to 0} \frac{\sqrt[m]{1 + \alpha x} - \sqrt[n]{1 + \beta x}}{x} \quad m \text{ y } n \text{ enteros}$$

70)
$$\lim_{x \to 1} \frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1} \quad m \text{ y } n \text{ enteros}$$

71)
$$\lim_{x \to +\infty} \left[\sqrt{(x+a)(x+b)} - x \right]$$

72)
$$\lim_{x \to +\infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right]$$

73)
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{1+x}}{x^2 - 9}$$

74)
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6} + 2}{x^3 + 8}$$

75)
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$

76)
$$\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x} - 2}$$

77)
$$\lim_{x \to 7} \frac{\sqrt{x+2} - \sqrt[3]{x+20}}{\sqrt[4]{x+9} - 2}$$

78)
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \frac{x}{3}} - \sqrt[4]{1 + \frac{x}{4}}}{1 - \sqrt{1 - \frac{x}{2}}}$$

79)
$$\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1+5x} - (1+x)}$$

$$80) \quad \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$$

81)
$$\lim_{x \to \infty} \frac{1 - x^3}{x^2 + 1}$$

82)
$$\lim_{x \to \infty} \frac{(2x+3)^2 (3x+2)^4}{12x^6 + 3x^3 + 7}$$

83)
$$\lim_{x \to \infty} \frac{7x^3 + x^2 - 5x + 2}{4x^3 - x}$$

84)
$$\lim_{x \to -\infty} \left[\sqrt{x^2 - 4x} - \sqrt{x^2 + 1} \right]$$

$$85) \quad \lim_{x \to \infty} \frac{1000x^3}{x^4 - 1}$$

86)
$$\lim_{x \to \infty} \frac{x^3}{10 + x^2 \sqrt[3]{x}}$$

$$87) \quad \lim_{x \to \infty} \left(\frac{x^2 + 2}{x} - x \right)$$

88)
$$\lim_{x \to +\infty} \left[\sqrt{x \left(x - \sqrt{x^2 - 1} \right)} \right]$$

89)
$$\lim_{x \to \infty} \left(\sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2} \right)$$

90)
$$\lim_{x \to \infty} \frac{(x+1) + (x+2)^2 + (x+3)^3}{(x^2 + 4x + 3)^2}$$

91)
$$\lim_{x \to \infty} \frac{(x+1) + (2x+1)^2 + (3x+1)^3}{(x-1) + (2x-1)^2 + (3x-1)^3}$$

92)
$$\lim_{x \to \infty} \frac{(x+1)(x+2)^2(x+3)^3(x+4)^4}{(x^5+x^4+x^3+x^2+x+1)^2}$$

93)
$$\lim_{x \to \infty} \frac{(x-1)(x-2)^2 \dots (x-20)^{20}}{(x+1)(x+2) \dots (x+210)}$$

94)
$$\lim_{x \to \infty} \frac{\left(x^2 + 3x + 2\right)^2 \left(x^3 + x + 1\right)^3}{\left(x^7 + x^2 + 3x + 12\right)^2}$$

95)
$$\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^2 + 3x + 1} - \frac{x^3 + x + 2}{x^2 + 6x + 1} \right)$$

96)
$$\lim_{x \to \infty} \left(\frac{x^5 + 2x^4 + 3x + 2}{x^2 + 3x + 1} - \frac{x^4 + x + 1}{x + 2} \right)$$

97)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 2} - \frac{x^2 + 10}{x + 1} \right)$$

98)
$$\lim_{x \to \infty} \left(\frac{x^2 + 3x + 1}{x + 2} - \frac{x^2 + 3x + 10}{x + 1} \right)$$

99)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^4 + x + 2} + \sqrt[5]{x^3 + 3x^2 + x + 1}}{\sqrt[4]{x^6 + 3x + 2} + \sqrt[5]{x^2 + 4x + 7}}$$

113)
$$\lim_{x \to 0} \frac{x^3}{tag^3(3x)}$$

112) $\lim_{x\to 0} \frac{x^2}{\sin^2 x}$

100)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^5 + 2x^3 + x + 7}}{\sqrt[4]{\left(x^5 + 3x + 2\right)\left(x^2 + 1\right)}} + \sqrt[5]{x^2 + x + 1}$$

114)
$$\lim_{x\to 0} \frac{1-\cos(3x)}{\sin^2(2x)}$$

101)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{3 + x + 2x^2} \right)$$

115)
$$\lim_{x\to 0} \frac{tag^2(4x)}{1-cos(5x)}$$

$$102) \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right)$$

116)
$$\lim_{x \to 0} \frac{sen x cos^3 (4x)}{tag (4x) sec^2 (7x)}$$

103)
$$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+3} - \sqrt{x+2} \right)$$

117)
$$\lim_{x\to 0} \frac{sen \ x - tag \ x}{1 - cos x}$$

104)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2} - \sqrt{x^2 + 3} \right)$$

118)
$$\lim_{x \to 0} \frac{sen \ x - tag \ x}{1 - cos(3x)}$$

105)
$$\lim_{x \to \infty} \left(\sqrt{2x+3} - \sqrt{3x+2} \right)$$

119)
$$\lim_{x\to 0} \frac{sen(2x) - tag(2x)}{sen(3x) - tag(3x)}$$

106)
$$\lim_{x\to\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

120)
$$\lim_{x\to 0} \frac{1-\cos(2x)}{1-\cos(5x)}$$

$$107) \lim_{x\to 0} \frac{sen(2x)}{2x}$$

121)
$$\lim_{x\to 0} \frac{\operatorname{sen} x (1-\operatorname{sec}(4x))}{\operatorname{sen}(4x)(1-\operatorname{sec}(3x))}$$

$$108) \lim_{x \to 0} \frac{sen(6x)}{8x}$$

122)
$$\lim_{x\to 0} \frac{1-\cos^3 x}{4x^2}$$

109)
$$\lim_{x \to 0} \frac{sen(2x)}{sen(9x)}$$

123)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

110)
$$\lim_{x \to 0} \frac{tag(2x)}{sen(2x)}$$

124)
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - sen \ x}{x - \frac{\pi}{2}}$$

$$111) \lim_{x \to 0} \frac{tag(7x)}{3x}$$

125)
$$\lim_{x \to \frac{\pi}{2}} \frac{sen^2(2x)}{1-sen x}$$

126)
$$\lim_{x \to \pi} \frac{(x-\pi)^2}{sen^2 x}$$

127)
$$\lim_{x \to \pi} \frac{1 + \cos x}{\sin x}$$

128)
$$\lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x}$$

129)
$$\lim_{x \to \pi} \frac{\tan^2 x}{1 + \cos x}$$

130)
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos(2x)}$$

131)
$$\lim_{x \to 0} \frac{sen(5x)}{x}$$

132)
$$\lim_{x \to \infty} \frac{sen x}{x}$$

133)
$$\lim_{x \to \pi} \frac{sen(mx)}{sen(nx)}$$
 n y m enteros

134)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

135)
$$\lim_{x \to 0} \frac{tag \ x}{x}$$

136)
$$\lim_{x \to 0} x \ ctg(3x)$$

137)
$$\lim_{x \to 0} \frac{tag \ x - sen \ x}{sen^3 x}$$

138)
$$\lim_{x \to 0} \frac{sen(5x) - sen(3x)}{sen x}$$

139)
$$\lim_{x \to 0} \frac{\cos x - \cos (3x)}{x^2}$$

140)
$$\lim_{x \to a} \frac{sen x - sen a}{x - a}$$

141)
$$\lim_{x \to a} \frac{\cos x - \cos a}{x - a}$$

142)
$$\lim_{x \to a} \frac{tag \ x - tag \ a}{x - a}$$

143)
$$\lim_{x \to a} \frac{ctg \ x - ctg \ a}{x - a}$$

144)
$$\lim_{x \to a} \frac{\sec x - \sec a}{x - a}$$

145)
$$\lim_{x \to a} \frac{\cos c x - \cos c a}{x - a}$$

146)
$$\lim_{x \to 2} \frac{3}{|x-2|}$$

147)
$$\lim_{x \to 2} \frac{1}{(x-2)^4}$$

148)
$$\lim_{x \to 0} \frac{\cos(3x)}{\sin(2x)}$$

149)
$$\lim_{x \to 1} \frac{9 - 8x - x^2}{x^2 - 2x + 1}$$

150)
$$\lim_{x \to 0} \frac{3x^3 + 2x^2 + 9x}{-x^2}$$

151)
$$\lim_{x \to 1} \frac{x^3 + 3x^2 - 2x - 2}{x^3 - 3x^2 + 3x - 1}$$

152)
$$\lim_{x \to 0} \frac{x}{sen^2(3x)}$$

153)
$$\lim_{x \to 0} \frac{sen x}{1 - cos(2x)}$$

154)
$$\lim_{x \to 1} \frac{x^4 - x^3 + 2x^2 + 5x - 7}{3x^3 - 4x^2 - x + 2}$$

155)
$$\lim_{x \to 2} \frac{-4x^2 + 16}{x^2 - 4x + 4}$$

156)
$$\lim_{x \to \infty} \frac{2x^3 + 7x^2 + 11x + 12}{x^2 + 4x + 8}$$

157)
$$\lim_{x \to 2} \frac{-8}{|4-x^2|}$$

158)
$$\lim_{x \to 4} \frac{\left| x^2 - 16 \right|}{x - 4}$$

159)
$$\lim_{x \to 2} \frac{[x]}{x+3}$$

160)
$$\lim_{x \to \infty} \left(\frac{x+2}{2x-1} \right)^{x^2}$$

161)
$$\lim_{x \to \infty} \left(\frac{3x^2 - x + 1}{2x^2 + x + 1} \right)^{\frac{x^2}{1 - x}}$$

162)
$$\lim_{n\to\infty} sen^n \left(\frac{2\pi n}{3n+1} \right)$$

163)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x-1}{x+1}}$$

164)
$$\lim_{x \to 0} \sqrt[x]{1 - 2x}$$

165)
$$\lim_{x \to \infty} \left(\frac{x+a}{x-a} \right)^x$$

166)
$$\lim_{x \to +\infty} \left(\frac{a_1 x + b_1}{a_2 x - b_2} \right)^x \quad a_1 > 0 , a_2 > 0$$

167)
$$\lim_{x \to 0} (1 + x^2)^{\cot^2 x}$$

168)
$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{\sec x}}$$

169)
$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{\sin^3 x}}$$

170)
$$\lim_{x \to a} \left(\frac{sen \ x}{sen \ a} \right)^{\frac{1}{x-a}}$$

171)
$$\lim_{x \to 0} \left(\frac{\cos x}{\cos(2x)} \right)^{\frac{1}{x^2}}$$

172)
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan(2x)}$$

173)
$$\lim_{x \to \frac{\pi}{2}} (sen x)^{tan x}$$

174)
$$\lim_{x \to 0} \left[\tan \left(\frac{\pi}{4} - x \right) \right]^{\cot x}$$

175)
$$\lim_{x \to \infty} \left[sen\left(\frac{1}{x}\right) + cos\left(\frac{1}{x}\right) \right]^x$$

176)
$$\lim_{x \to 0} \sqrt[x]{\cos \sqrt{x}}$$

177)
$$\lim_{x \to \infty} \left(\frac{n+x}{n-1} \right)^n$$

178)
$$\lim_{x \to \infty} \cos^n \left(\frac{x}{\sqrt{n}} \right)$$

179)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$

180)
$$\lim_{x \to +\infty} x [\ln(x+1) - \ln x]$$

181)
$$\lim_{x \to 0^{+}} \frac{\ln \left[\tan \left(\frac{\pi}{4} + ax \right) \right]}{sen(bx)}, con b \neq 0$$

182)
$$\lim_{x \to 0} \frac{\ln(\cos(ax))}{\ln(\cos(bx))}$$

183)
$$\lim_{x \to a} \frac{\ln(x) - \ln(a)}{x - a} con \ a > 0$$

184)
$$\lim_{x \to +\infty} \log \left(\frac{100 + x^2}{1 + 100 x^2} \right)$$

185)
$$\lim_{x \to +\infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})}$$

En los ejercicios 186 al 193 determine si la función es continua en el punto indicado. En caso de no ser continua clasificarla y de ser posible redefinirla para que sea continua.

186)
$$f(x) = \begin{cases} \frac{\sqrt{1+x+x^2}-1}{x} & x < 0\\ \frac{\ln(x+1)+4}{8} & x \ge 0 \end{cases}$$
 En $x = 0$

187)
$$f(x) = \begin{cases} \frac{3\cos^2 x + 2\cos x + 7}{1 + \cos x} & x \le 0\\ \frac{5\sin(6x)}{\sin(5x)} & x > 0 \end{cases}$$
 En $x = 0$

188)
$$f(x) = \begin{cases} \frac{\sqrt{x-1}}{\sqrt[3]{x-1}} & x > 1 \\ e^{x+2} & x \le 1 \end{cases}$$
 En $x = 1$

189)
$$f(x) = \begin{cases} 2\sqrt[3]{1+4x} & x \ge 0 \\ 3x - \tan x & x < 0 \end{cases}$$
 En $x = 0$

190)
$$f(x) = \begin{cases} \frac{4}{3+2x} & x \neq -\frac{3}{2} \\ 8 & x = -\frac{3}{2} \end{cases}$$
 En $x = -\frac{3}{2}$

191)
$$f(x) = \begin{cases} \sec(x-5) & x > 5 \\ \frac{2}{5-x} & x = 5 & \text{En } x = 5 \\ \cos(x-5) & x < 5 \end{cases}$$

192)
$$f(x) = \begin{cases} \log_3(x+3) & x > -2 \\ \frac{6}{4-x} & x = -2 \text{ En } x = -2 \\ 5^{x+2} - 1 & x < -2 \end{cases}$$

193)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x < 1 \\ x^2 + 1 & x \ge 1 \end{cases}$$
 En $x = 1$

En los ejercicios 194 al 196 encuentre el valor de a A para que la función sea continua en el punto indicado.

194)
$$f(x) = \begin{cases} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}} & x > 4 \\ Ax + 3 & x \le 4 \end{cases}$$
 En $x = 4$
195) $f(x) = \begin{cases} \frac{\sqrt{5 + x}}{2} & x > -2 \\ \cos(A) & x \le -2 \end{cases}$ En $x = -2$
con $0 \le A \le \frac{\pi}{2}$
196) $f(x) = \begin{cases} \frac{(x - \pi)}{senx} & x > \pi \\ -3A & x \le \pi \end{cases}$ En $x = \pi$

En los ejercicios 197 al 199 encuentre los valores de A y B para que la función sea continua en los puntos indicados.

197)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & x < -2\\ Ax + 3B & |x| \le 2 & \text{En } x = \pm 2\\ sen(x - 2) + 3 & x \ge 2 \end{cases}$$

198)
$$f(x) = \begin{cases} \frac{x^2}{sen^2x} & x < 0 & \text{teorema del valor intermed intervalo indicado y encorogramantizado por el teorema.} \\ \frac{3x^4 - 4x^3 + 1}{(x-1)^2} & x > 2 & 208) \quad f(x) = x^2 + x - 1, \\ \frac{3x^4 - 4x^3 + 1}{(x-1)^2} & x > 2 & 209) \quad f(x) = x^2 - 6x + 8, \end{cases}$$

199)
$$f(x) = \begin{cases} \frac{1}{x} & x < -2 \\ Ax + B & -2 \le x \le 1 \text{ En } x = -2 \text{ y 1} \\ \ln x & x > 1 \end{cases}$$

En los ejercicios del 200 al 207 analice la continuidad de la función en el intervalo indicado

200)
$$f(x) = \frac{1}{x}$$
 en el intervalo $(-2,5)$

201)
$$f(x) = \frac{1}{x}$$
 en el intervalo $(2,5)$

202)
$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$
 en el intervalo
$$[0,1]$$

203)
$$f(x) = \begin{cases} x+1 & x \le 0 \\ x^2 & x > 0 \end{cases}$$
 en el intervalo (0,1)

204)
$$f(x) = \begin{cases} x+1 & x < 0 \\ x^2 & x \ge 0 \end{cases}$$
 en el intervalo
$$[-1,0]$$

205)
$$f(x) = \begin{cases} x+1 & x < 0 \\ x^2 & x \ge 0 \end{cases}$$
 en el intervalo
$$(-1,0)$$

206)
$$f(x) = \frac{1}{x^2 - 1}$$
 en el intervalo (-2,2)

207)
$$f(x) = \frac{1}{x^2 + 1}$$
 en el intervalo $(-2, 2)$

En los ejercicios 208 al 211 verifique que el teorema del valor intermedio es aplicable al intervalo indicado y encontrar el valor de c

208)
$$f(x) = x^2 + x - 1$$
, $[0,5]$, $k = 11$

209)
$$f(x) = x^2 - 6x + 8$$
, [0,3], $k = 0$

210)
$$f(x) = x^3 - x^2 + x - 2$$
, [0,3], $k = 4$

211)
$$f(x) = \frac{x^2 + x}{x - 1}$$
, $\left[\frac{5}{2}, 4\right]$, $k = 6$

RESPUESTAS.

- 1) 0
- 3) 3
- a) f(0) = 1
 - $b) \lim_{x \to 0} f(x) = 1$
- 5) a) f(-3) no existe
 - b) $\lim_{x \to -3^{-}} f(x) = +\infty$
 - $\lim_{x \to -3^{+}} f(x) = -\infty$
- 6) Falso
- 7) Falso
- 8) Falso
- $\frac{-103}{2}$
- 11) 3
- 13) 14)
- 15)
- 16) 17)
- 18) 19
- 19) 0 20) 1
- 21) 0
- 22) 1
- 23) 0
- 24) 1 25) 8
- 26)

- 27) 0
- 28) -2
- 29) 6
- 30)
- -2 31)
- 32)
- 34)
- 35)
- $\frac{25}{81}$ 36)
- 37)
- 38)
- 39)
- 40) $-\frac{34}{27}$
- 41)
- 42)
- 43)
- 44) 1
- 45)
- 46)
- 47)
- 48)
- 49)
- 50) 6

- 51) 10
- 52) 5^{-5}

- 55)
- 56) 1 57) $\frac{1}{4}$

- 60)
- 61) 1

- 63) $\frac{4}{3}$ 64) -2
 65) $\frac{1}{n}$
- 66)
- 67)
- 68)
- 69) $\frac{\alpha}{m} \frac{\beta}{n}$
- 70)
- 71) $\frac{1}{2}(a+b)$
- 72) $\frac{1}{2}$
- 73) $-\frac{1}{16}$

- 75)
- 76)
- 78)
- 80) 1 81) −∞
- 82) 27
- 83)
- 84) -2 85) 0
- 86) ∞ 87) 0
- 89) 0
- 90) 0 91) 1
- 92) 1
- 93) 1 94) 0
- 95) 3
- 96) ∞ 97) -1
- 98) -1
- 99) 0 100) 0
- 101) ∞ 102) 0
- 103) $\frac{1}{2}$
- 104) 0
- 105) ∞
- 106) 0
- 107) 1

108)	$\frac{3}{4}$
	_

109)
$$\frac{2}{9}$$

111)
$$\frac{7}{3}$$

113)
$$\frac{1}{27}$$

114)
$$\frac{9}{8}$$

115)
$$\frac{32}{25}$$

116)
$$\frac{1}{4}$$

118) 0
119)
$$\frac{8}{27}$$

120)
$$\frac{4}{25}$$

121)
$$\frac{4}{9}$$

122)
$$\frac{3}{8}$$

- 125) 8
- 126) 1 127) 0

128)
$$\frac{3}{2}$$

130)
$$\frac{\sqrt{2}}{2}$$

133)
$$\left(-1\right)^{m-n} \left(\frac{m}{n}\right)$$

134)
$$\frac{1}{2}$$

136)
$$\frac{1}{3}$$

137)
$$\frac{1}{2}$$

142)
$$sec^2 a$$

143)
$$-csc^2 a$$

$$144) \frac{sen a}{cos^2 a}$$

$$145) - \frac{\cos a}{\sin^2 a}$$

148)
$$\lim_{x \to 0^{-}} f(x) = -\infty$$

$$\lim_{x \to 0^+} f(x) = +\infty$$

149)
$$\lim_{x \to 1^{-}} f(x) = +\infty$$
$$\lim_{x \to 1^{-}} f(x) = -\infty$$

150)
$$\lim_{x \to 0^{-}} f(x) = +\infty$$
$$\lim_{x \to 0^{+}} f(x) = -\infty$$

152)
$$\lim_{x \to 0^{-}} f(x) = -\infty$$
$$\lim_{x \to 0^{+}} f(x) = +\infty$$

153)
$$\lim_{x \to 0^{-}} f(x) = -\infty$$
$$\lim_{x \to 0^{+}} f(x) = +\infty$$

154)
$$\lim_{x \to 1^{-}} f(x) = -\infty$$
$$\lim_{x \to 1^{+}} f(x) = +\infty$$

155)
$$\lim_{x \to 2^{-}} f(x) = +\infty$$
$$\lim_{x \to 2^{+}} f(x) = -\infty$$

163) 1 164)
$$e^{-2}$$

165)
$$e^{2a}$$

166)
$$e^{\frac{c_1 - c_2}{a_1}} si \ a_1 = a_2 + \infty \ si \ a_1 > a_2$$

0 *si*
$$a_1 < a_2$$

169)
$$\sqrt{e}$$

170)
$$e^{cota}$$

171)
$$e^{\frac{3}{2}}$$

172)
$$\frac{1}{e}$$

174)
$$\frac{1}{e^2}$$

176)
$$\frac{\sqrt{e}}{e}$$

177)
$$e^{x+1}$$

178)
$$e^{-\frac{x^2}{2}}$$

181)
$$\frac{2a}{b}$$

182)
$$\left(\frac{a}{b}\right)^2$$

183)
$$\frac{1}{a}$$

185)
$$\frac{3}{2}$$

- 186) Continua
- 187) Continua
- 188) Discontinuidad esencial de salto
- 189) Discontinuidad esencial de salto
- 190) Discontinuidad esencial infinita
- 191) Discontinuidad removible
- 192) Discontinuidad removible
- 193) Continua

194)
$$-\frac{5}{6}$$

195)
$$\frac{\pi}{6}$$

196)
$$-\frac{1}{3}$$

197)
$$A = \frac{7}{4}, B = -\frac{1}{6}$$

198)
$$A = \frac{1}{2}, B = 8$$

199)
$$A = \frac{1}{6}, B = -\frac{1}{6}$$

- 200) Discontinua
- 201) Continua
- 202) Discontinua
- 203) Continua
- 204) Discontinua
- 205) Continua
- 206) Discontinua
- 207) Continua

208)
$$c = 3$$

209)
$$c = 2$$

210)
$$c = 2$$

211)
$$c = 3$$