1. Granularity using intervals A:

$$A_0 = [a_0 (1 - \varepsilon_1), a_0 (1 + \varepsilon_1)]$$

$$A_1 = [a_1 (1 - \varepsilon_2), a_1 (1 + \varepsilon_2)]$$

2. Coverage and specificity functions:

$$egin{aligned} cov(\epsilon_1,\epsilon_2) &= rac{1}{N} \sum_{i=1}^N I(y_i \in Y(x_i,\epsilon_1,\epsilon_2)) \ sp(\epsilon_1,\epsilon_2) &= rac{1}{N} \sum_{i=1}^N 1 - min(1,rac{Y^+(x_i,\epsilon_1,\epsilon_2) - Y^-(x_i,\epsilon_1,\epsilon_2)}{R}) \end{aligned}$$

3. $Q(\varepsilon_1, \varepsilon_2)$ for $\varepsilon = 0.6$

Maximal value Q for $\varepsilon_1 = 1$, $\varepsilon_2 = 0.2$ Intervals Y(x) for $\varepsilon_1 = 1$, $\varepsilon_2 = 0.2$:

4.
$$Q(\varepsilon_1, \varepsilon_2)$$
 for $\varepsilon = 0.9$

We observe a decrease in the values of $\mathit{Q}(\epsilon_1,\ \epsilon_2)$ function.

5.
$$Q(\varepsilon_1, \varepsilon_2)$$
 for $\varepsilon = 0.5$

We observe an increase in the values of $\mathcal{Q}(\epsilon_1,\ \epsilon_2)$ function. Maximal value Q for $\epsilon_1=0.9,\ \epsilon_2=0.1$ Intervals Y(x) for $\epsilon_1=0.9,\ \epsilon_2=0.1$:

6.
$$Q(\varepsilon_1, \varepsilon_2)$$
 for $\varepsilon = 0.4$

We observe a decrease in the values of $\,{\it Q}(\epsilon_1,\;\epsilon_2)\,$ function.

 \Rightarrow optimal level of granularity is $\,\epsilon\,=\,0.5$, with $\,\epsilon_1\,=\,0.9,\;\epsilon_2\,=\,0.1$. For this values we achieve maximum $\mathcal{Q}(\epsilon_1,\ \epsilon_2) = \mathit{cov}(\epsilon_1,\ \epsilon_2) \ *\mathit{sp}(\epsilon_1,\ \epsilon_2)$ according to principle of justifiable granularity.