Math 2551 Worksheet Section 13.4

- 1. Find \overrightarrow{T} , \overrightarrow{N} , and κ for
 - (a) $\vec{r}(t) = (3\sin t)\hat{i} + (3\cos t)\hat{j} + 4t\hat{k}$.
 - (b) $\vec{r}(t) = \langle t, \ln \cos t \rangle, -\pi/2 < t < \pi/2.$

2. The graph y = f(x) in the xy-plane automatically has parametrization x = x and y = f(x), and the vector formula $\dot{r}(x) = x\hat{i} + f(x)\hat{j}$. Use this formula to show that if f is a twice-differentiable function of x, then

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}.$$

- 3. Find $\kappa(x)$ for
 - (a) $f(x) = e^x$.
 - (b) $f(x) = \sin x$.

4. Determine the maximum curvature for $f(x) = \ln x$.

- 5. Let $\dot{\vec{r}}(t) = -(t + (1/t))\hat{i} + (2\ln t)\hat{j}, e^{-5} \le t \le e^5.$
 - (a) Find the radius curvature at t = 1.
 - (b) Find \overrightarrow{N} at t = 1,
 - (c) Find the center of the circle of curvature at t=1.
 - (d) Find the equation for the circle of curvature at t = 1.