

What is Forecasting?

Forecasting – prediction of future events used for planning purposes Used for:

- Strategic planning (long term capacity decisions)
- Finance and Accounting (budgeting and cost control)
- Marketing (future sales trends and new product introduction)
- Production and Operations (staffing and supplier relations)

Georgia Tech

General Characteristics of Forecasts

- Forecasts are almost always wrong!
- Forecasts are more accurate from groups or families of items
- Forecasts are more accurate for shorter periods of time
- · Every forecast should include an error estimate
- Forecasts are no substitute for actual demand

Some Important Questions

- What is the purpose of the forecast?
- Which systems will use the forecast?
- How important is the past in predicting the future?

Answers will help determine the time horizons, techniques, and level of detail in the forecast

Type of Forecasting Methods

Qualitative

Rely on subjective opinions from one or more experts

Quantitative

· Relay on data and analytical techniques

Georgia Tech

Quantitative Forecasting Methods

Time Series: models that predict future demand based on past history trends

Casual Relationships: models that use statistical techniques to establish relationships between various items and demand (Ex: Linear Regression)

Simulation: models that can incorporate some randomness and non-linear effects

Summary 1. Forecasting is trying to predict future events for planning purposes. 2. In Operations Management forecasting Demand is key. 3. Demand can exhibit multiple patterns 4. We will focus on Time Series techniques Georgia Tech

Why Exponential Smoothing?

- Uses less storage space for data
 (although not a problem these days)
- Extremely accurate
- Easy to understand
- · Little calculation complexity

Georgia Tech

Exponential Smoothing (ES)

Assume that we are currently in period t. We calculated the forecast for the last period (Ft-1) and we know the actual demand last period (A_{t-1}) :

$$F_{t+1} = F_t + \propto (A_{t-1} - F_{t-1})$$
where $0 \le \propto \ge 1$

The smoothing constant a expresses how much our forecast will react to observed differences:

- If α is **low**, there is little reaction to difference
- If α is **high**, there is a lot of reaction to differences

How do you get started?

Week	Demand	Forecast
1	820	820 ←
2	775	820
3	680	811
4	655	785
5	750	759
6	802	757
7	798	766
8	689	772
9	775	756
10		760

You must pick an initial forecast.

- · Can set it equal to demand
- · Can use another methods solution
- Note the initial forecast is not calculated from the exponential smoothing formula. Don't use it in evaluating the method

Summary
 Exponential Smoothing is a common method used to forecast random behavior in demand.
 It uses the prior forecast and error to predict the next period.
 The smoothing constant α determines how much the error alters the next prediction (forecast).

Recall: Exponential Smoothing (ES)

Assume that we are currently in period t. We calculated the forecast for the last period (Ft-1) and we know the actual demand last period (A_{t-1}) :

$$F_{t+1} = F_t + \propto (A_{t-1} - F_{t-1})$$
where $0 \le \propto \ge 1$

The smoothing constant α expresses how much our forecast will react to observed differences:

- If a is low, there is little reaction to difference
- · If a is high, there is a lot of reaction to differences

Georgia Tech

What Happens if Demand is Trending?

What do you think will happen to the exponential smoothing model when there is a trend in the data?

ES will lag behind trends

Exponential Smoothing With a Trend?

How can we account for a trend in the data?

Georgia Tech

Forecast Including Trend

$$FIT_t = F_t + T_t$$

$$F_{t} = FIT_{t-1} + \alpha(A_{t-1} - FIT_{t-1})$$

FIT - Forecast Including Trend

$$T_{t} = T_{t-1} + \delta(F_{t} - FIT_{t-1})$$

 δ - trend smoothing constant

The idea is that the two effects are decoupled,

(F is the forecast without trend and T is the trend component)

More on ES with and without a Trend...

- ES and FIT models require initial estimates for forecast and trend (can use prior period as baseline to start)
- Values for α and δ are found by trial and error (or using a solver to optimize).
- If initial estimates are grossly incorrect, it may take a while for the model to stabilize (higher α and δ increase convergence speed if initial estimates incorrect, but may tend to "overreact" to the noise in the data)
- ES and FIT only use the prior period's data for estimation of the current period's demand; this makes calculation and storage of data easy

Seasonality Calculation

- Measures the seasonal variation in demand
- Relates the average demand in a particular period to the average demand for all periods

The Seasonal Index = $\frac{\text{period average demand}}{\text{average demand for all periods}}$

Calculation of Seasonal Index

Monthly Sales of Ice Cream

January	10
February	10
March	10
April	50
May	150
June	400

July	600
August	700
September	350
October	100
November	10
December	10

Total annual sales Average monthly sales June's sales are 2400 cases 200 cases 400 cases

Seasonal Index for June = month's sales/avg sales = 400/200 = 2.0

Georgia Tech

Calculation of Seasonal Index

Monthly Sales of Ice Cream

		SI (calc.)	SI
Jan	10	= 10 / 200	;
Feb	10	= 10 / 200	
Mar	10	= 10 / 200	
Apr	50	= 50 / 200	j
May	150	= 150 / 200	ز
Jun	400	= 400 / 200	
Jul	600	= 600 / 200	3
Aug	700	= 700 / 200	3.5
Sep	350	= 350 / 200	1.75
Oct	100	= 100 / 200	0.5
Nov	10	= 10 / 200	0.05
Dec	10	= 10 / 200	0.05
TOTAL	2400		
AVERAGE	200		

Seasonal Series Indexing Sample Data

					5	Seasonal
ф	Month	Year 1Y	ear 2Y	ear 3	Total	Index
	Jan	10	12	11		
	Feb	13	13	11		
	Mar	33	38	29	100	
	Apr	45	54	47	146	1.46
	May	53	56	55	164	1.64
	Jun	57	56	55	168	1.68
	Jul	33	27	34	94	0.94
	Aug	20	18	19	57	0.57
	Sep	19	22	20	61	0.61
	•					
	Oct	18	18	15	51	0.51
	Nov	46	50	55	141	1.41
	Dec	48	53	47	148	1.48
	Total	395	417	388	1200	12.00

(SI) =
$$\frac{\text{Monthly Total (MT)}}{\text{Average Month (AM)}}$$

Where:

$$AM = \frac{1200}{12} = 100$$

$$SI_{JAN} = \frac{33}{100} = .33$$

Georgia Tech

Calculate ES with Seasonal Forecast

- 1. Inputs: Realized seasonal demand in the previous period $(\sim A_t)$, seasonal forecast for the previous period $(\sim F_t)$, and smoothing constant α
- 2. De-seasonalize demand and forecasts to obtain A_t and F_t
 - $A_t = A_t / SI_t$ and $F_t = F_t / SI_t$
- Use the exponential smoothing formula to obtain the deseasonalized forecast F_{t+1}
 - $F_{t+1} = \alpha A_t + (1 \alpha) F_t$
- 4. Re-seasonalize the forecast to obtain $\sim F_{t+1}$.
 - $\sim F_{t+1} = F_{t+1} \times SI_{t+1}$

Example: ES with Seasonality

		α = 0.5			
				De-Seasonalized	De-Seasonalized
	Actual	Forecast	SI	Actual	Forecast
Jan	9	10	0.05		
Feb			0.05		
Mar			0.05		
Apr		_	0.25	-	
May			0.75		
Jun			2	195.0	209.0
Jul	590	606.1	3	196.7	202.0
Aug	720	697.7	3.5	205.7	199.3
Sep	370	354.4	1.75	211.4	202.5
Oct	120	103.5	0.5	240.0	207.0
Nov	12	11.2	0.05	240.0	223.5
Dec	8	11.6	0.05	160.0	231.7

- 1. De-seasonalize Actual and Forecast at time t (demand / SI)
- 2. Apply ES calculation: $F_{t+1} = F_t + a (A_t F_t)$
- 3. Re-seasonalize Forecast for t+1 ($F_{t+1} \times SI$)

Measures of Forecast Accuracy

Error = Actual demand - Forecast

or

$$e_t = A_t - F_t$$

- e_t can be positive of negative
- Positive e_t means that the forecast was too low
- Negative e_t means that the forecast was too high

Georgia Tech

Measures of Forecast Error

RSFE - Running Sum of Forecast Error

RSFE=
$$\sum (A_i - F_i) = \sum e_i$$

MFE - Mean Forecast Error (Bias)

MFE=
$$\frac{\sum (A_i - F_i)}{n} = \frac{RSFE}{n}$$

MAD - Mean Absolute Deviation

$$MAD = \frac{\sum |A_i - F_i|}{n}$$

TS - Tracking Signal

$$TS = \frac{RSFE}{MAD}$$

Measuring Accuracy: MFE

- MFE = Mean Forecast Error; also called Bias
 - Average error in the observation

MFE =
$$\frac{\sum_{i=1}^{n} (A_{t} - F_{t})}{n} = \frac{\sum_{i=1}^{n} e_{t}}{n} = \frac{RSFE}{n}$$

 A more positive or negative MFE implies worse performance, the forecast on average is biased from the actual demand

> Georgia Tech

Measuring Accuracy: MAD

- MAD = Mean Absolute Deviation
 - Average absolute error in the observation

MAD =
$$\frac{\sum_{i=1}^{n} |A_{t} - F_{t}|}{n} = \frac{\sum_{i=1}^{n} |e_{t}|}{n}$$

· Higher MAD implies worse performance

Dartboard Analogy to MFE and MAD

- MFE is a measure of the overall average accuracy of the forecast (lower MFE is better)
- MAD is a measure of the overall variability of the error terms (lower MAD is better)

Large MFE Large MAD

Small MFE Small MAD

Small MFE Large MAD

Georgia Tech

MFE and MAD (by the numbers)

				E= Error	
		F =	A= Actual	(Sales	Absolute
DOFF	<u>PD</u>	<u>Forecast</u>	<u>Sales</u>	Forecast)	<u>Error</u>
RSFE =	1	1,000	1,200		
	2	1,000	1,000		
	3	1,000	800		
	4	1,000	900		
	5	1,000	1,400	400	400
Bias = MFE =	6	1,000	1,200	200	200
	7	1,000	1,100	100	100
	8	1,000	700	-300	300
	9	1,000	1,000	0	0
	10	1,000	900	100	100
Mean Absolute Deviation (MAD) =		10,000	10,200		

Mean Absolute Deviation (MAD) =

Measuring Accuracy: Tracking Signal

TS = Tracking Signal

 Measure of how often our estimations have been above or below the actual value. It is used to decide when to reevaluate the model

$$TS = \frac{RSFE}{MAD}$$

- Positive tracking signal most of the time, the actual values are <u>above</u> the forecasted values
- Negative tracking signal most of the time, the actual values are below the forecasted values
- If TS < -4 or TS > 4, *investigate!* (|TS| >4)

MAD and TS for ES with $\alpha = 0.2$

Month	Actual	ES: α=0.2	error	RSFE	MFE	Abs error	MAD	TS
Jan	1325	1370						-
Feb	1353	1361						
Mar	1305	1359						
Apr	1275	1349						
May	1210	1334						
Jun	1195	1309		-				

	<u></u>		•			•			-
Month	Actual	ES: α=0.8	error	RSFE	MFE	Abs error	MAD	TS	
Jan	1325	1370	-	-		-		ال	
Feb	1353	1334	_	_		-			
Mar	1305	1349		_				_	
Apr	1275	1314							
May	1210	1283	-	_		-	_		
Jun	1195	1225					.=	3	

\sim	\sim	\sim									
J.					$T \sim $			_	\sim 1	\sim	\sim
1	\ /			000	16, 4	\sim \sim \sim	 	/)		<u>_</u>	/
Y	1					$(\mathcal{M} \vdash \mathcal{M})$	\	$\alpha = 0$.	\times 200	\sim	
Y	~~/	Y T			1 ()		vviii	$\cdots - \cdots$	0 71111	() —	
	$\sim\sim$		~-	WILL		\mathbf{v}	** * * * * * * * * * * * * * * * * * * *	\sim	O GIIG	\mathbf{C}	$\mathbf{\circ}$

Month	Actual	FIT: a=0.8,d=0.5	error	RSFE	MFE	Abs error	MAD	TS
Jan	1325	1370	-			-		-
Feb	1353	1316						1
Mar	1305	1342						
Apr	1275	1294						
May	1210	1253	-					¥
Jun	1195	1176				- - - - - -		

Comparing the Models

	MFE	MAD	TS
ES: a=0.2	-69.8	69.8	-6.0
ES: a=0.8	-35.3	41.7	-5.1
FIT: a=0.8,d=0.5	-14.7	33.3	-2.6

- The tracking signals for both ES models are below -4, thus indicating that these models are not fitting the data well
- The FIT model yields the smallest MFE, MAD, and TS; this is the only model with an acceptable tracking signal

Georgia Tech

Summary 1. Error measurements are needed to evaluate different forecast models 2. The tracking signal is useful to alert us to changes in patterns of demand Georgia

Learning Objectives

- Discuss and recap lessons from this week
- Assess tie back to analytics

Which Forecasting Method Should You Use

- Gather historical data of what you want to forecast
- Divide the data into initiation and evaluation sets
- Use the first data set to develop the models
- Use the second data set to evaluate the models
- Compare the MADs and MFEs of each model, keeping an eye on the tracking signals
- Incorporate seasonality and trending aspects into the model if the data displays those characteristics

Recap

- Forecasting is based on the assumption that the past predicts the future.
- Components of demand include the average, trends, seasonal elements, cyclical elements, random variation, and autocorrelation.
- Qualitative forecasting is used when hard data is unavailable.
- Exponential Smoothing uses the most recent data and forecast error.
- Forecast Including Trend (FIT) extends
 Exponential Smoothing to applications with a clear trend.
- Seasonality can be incorporated into forecasting models

Recap

- Forecast error is the difference between the actual and forecasted values
- Mean Forecast Error (Bias) is as measure of the overall average of the forecast to actual demand
- Mean Absolute Deviation is a measure of variation in the error between the forecast and actual demand
- Tracking Signals tell whether a forecast is above or below actual and by how much