Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Source:

Spring and Durum Wheat Quality Laboratory
USDA, Agricultural Research Service
Harris Hall, NDSU
Fargo, North Dakota 58105

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE in cooperation with STATE AGRICULTURAL EXPERIMENT STATION

QUALITY EVALUATION OF HARD RED SPRING WHEAT CULTIVARS 1991 CROP¹/

by

G.A. Hareland, L.A. Grant, A. Ostenson, W.J. Newell, W.J. Erickson, J.G. Wear, E. Winter²/, and M. Skunberg³/

This report represents cooperative investigations on the quality of Hard Red Spring Wheat Cultivars from the 1991 crop. Some of the results presented have not been sufficiently confirmed to justify varietal release. Confirmed results will be published through established channels. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report. This report is primarily a tool for use by cooperators and their official staff and to those individuals having direct and special interest in the development of agricultural research programs.

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for use of their facilities and the services provided in support of these studies. The report is not intended for publication and should not be referenced in either literature citations or quoted in publicity and advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved.

- Research Food Technologist, Research Chemist, Biological Science Technician, Physical Science Technicians, and Secretary, USDA/ARS Hard Red Spring & Durum Wheat Quality Lab., NDSU, Fargo, ND.
- 3/ Food Technologist, Dept. of Cereal Science & Food Technology, NDSU, Fargo, ND.

TABLE OF CONTENTS

<u>Contents</u> <u>Pag</u>	e No.
Cooperating Agencies	3-4
Introduction	6
Source of the Samples	7
Table of Varieties and Crosses	9
Methods	10-12
Discussion	13-18
Uniform Regional Nursery Samples	19
Field Plot Nursery Samples	20
Explanation of Abbreviations, 1991 Crop	21
Footnotes to Tables	22
Reference Mixogram Patterns	23
HRS Wheat Quality Tables 1 - 68	

1991 COOPERATING AGENCIES AND STATIONS

The cooperative agencies and stations conducting the varietal plot and nursery experiments from which the 1991 spring wheat samples were received are listed below:

University of California, Davis

Imperial Valley

New York State College of Agriculture and Life Science Cornell University

Ithaca

Minnesota Agricultural Experiment Station
Crookston, Morris, St. Paul

Montana Agricultural Experiment Station

Bozeman, Sidney, Havre

North Dakota Agricultural Experiment Station
Minot, Langdon, Dickinson, Williston,

Carrington, Prosper, Casselton

South Dakota Agricultural Experiment Station

Redfield, Brookings, Selby

Idaho Agricultural Experiment Station
Aberdeen

Wyoming Agricultural Experiment Station
Powell

1991 COOPERATING AGENCIES AND STATIONS (cont.)

Washington Agricultural Experiment Station
Pullman

Wisconsin Agricultural Experiment Station

Madison

But to H. H. Hard Tarle Line Cooks in Communicative Plant and

MINISTER EXCEPTIONS IN THE COST SPECIAL PROPERTY OF THE SAME AND ADDRESS.

A complete list of all cooperating agencies, stations, and personnel for the year will be found in the report by R. H. Busch, et al., Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1991.4/

Busch, R. H. Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1991. Agricultural Research Service, U. S. Department of Agriculture and State Agricultural Experiment Station, St. Paul, MN.

INTRODUCTION

Samples of standard cultivars and new selections of hard red spring wheat grown in cooperative experiments in spring wheat regions of the United States are milled each year by the USDA/ARS, Wheat Quality Laboratory. Wheat and their corresponding flours are evaluated for physical and chemical properties, and the flours are baked to determine bread characteristics. The purpose of this report is to make available to the cooperators and other interested parties, quality data on the standard varieties and new selections of hard red spring wheat from the 1991 crop.

The same general format and techniques were used in evaluating the wheat as outlined in quality reports from previous years. The same computer scoring system has been used for the past several years, hence some faulting values differ slightly from earlier years. In general, data contained in this report are comparable to data in past reports. Statistical data is included for each cultivar and experimental line from the Uniform Regional Nurseries.

The evaluation of a wheat sample involves the analysis of kernel characteristics, milling performance, and baking performance. A brief description of testing methods employed is shown on pages 10 to 12 of this report. The various characteristics and any outstanding features or deficiencies of each cultivar are evaluated from results of these tests. No specific comments are made regarding mixogram patterns derived from samples. However, reference mixograms, shown on page 23, illustrate ranges from which sample mixograms may be compared.

SOURCE OF THE 1991 CROP SAMPLES

Tests were performed on 1622 samples which were received from 22 stations in 10 states. However, data on 938 samples is excluded from this report, because the information was of interest only to plant breeders at specific experiment stations.

Data presented in this report represents the evaluation of spring wheats received from Field Plot Nurseries and Uniform Regional Nurseries. The following stations were cooperators:

California: Imperial Valley

Idaho: Aberdeen

Minnesota: Crookston, Morris and St. Paul

Montana: Bozeman, Sidney and Havre

New York: Ithaca

North Dakota: Minot, Langdon, Dickinson, Prosper

Williston, Carrington, and Casselton

South Dakota: Redfield, Brookings and Selby

Washington: Pullman Wisconsin: Madison Wyoming: Powell

UNIFORM REGIONAL NURSERY TRIALS

The geographical areas from which the samples were received are shown on page 8. Spring wheat cultivars and experimental lines included in the Uniform Regional Nursery trials are listed on page 9. The Western and Midwestern areas were comprised of four stations each, the Northeastern area five stations, and the Southeastern area six stations. The geographical areas tend to represent the movement of wheat in the market. Contrary to previous reports which presented data on wheat blends from these geographical areas, samples tested from the 1991 crop were not blended. Included in this report is statistical data on quality factors of each cultivar or experimental line from each geographical location.

Georgraphical areas from which wheat samples were obtained.

THE UNIFORM REGIONAL HARD RED SPRING WHEAT PERFORMANCE NURSERY

The 32 entries in the 1991 URHRSWPN are listed below:

Entry No.	Cross or Variety	CI No. or Selection No.	Year Entered	Source
		0.5.4		
1.	Marquis	3561	1929	Canada
2.	Chris	13751	1969	USDA-MN
3.	Stoa		1987	ND
4.	Era**	13986	1972	USDA-MN
5.	Butte 86		1987	ND
6.	SD3055	ND604/SD2971	1990	SD
7.	SD3056	ND604/SD2971	1990	SD
8.	SD3080	Butte 86/SD3004	1991	SD
9.	SD8072	SD8052/SD2971	1991	SD
10.	SD8073	SD8052/SD2971	1991	SD
11.	SD8074	SD8052/SD2971	1991	SD
12.	MN87150**	MN82008/Vance	1990	USDA-MN
13.	MN88170**	MN84139/MN74103	1991	USDA-MN
14.	MN88189**	MN84139/MN84565	1991	USDA-MN
15.	MN88320**	MN84377/Wheaton	1991	USDA-MN
16.	MN88334**	MN4436/Vance	1991	USDA-MN
17.	ND655**	Stoa's'/ND617's'	1990	ND
18.	ND657**	ND622's'/Cutless	1990	ND
19.	ND662**	ND603//ND517-2*7/Agent	1991	ND
20.	ND671	Stoa's'/ND620	1991	ND
21.	ND672**	Grandin/ND620's'	1991	ND
22.	XW398A4	MN7375/SD2903	1991	NDSUDF
23.	N86-0542**	Nordic/Norseman	1990	AGRIPRO
24.	N87-0306**	HS81-0074/MN7357	1991	AGRIPRO
25.	N88-3136	Sinton/Stoa	1991	AGRIPRO
26.	N88-3034	Sinton/Stoa	1991	AGRIPRO
27.	N87-467**	Wheaton/Probrand 711	1991	AGROPRO
28.	FA987-350**	MSFRSP	1991	WPB
29.	CI982-309**	MSFRSP	1991	
30.	AC-Minto			WPB
31.	BW148	BW120(Col/BW63//Kat/BW552) BW83(ND499/RL4137)ND585	1990	AGRICAN
32.	ID367	DMO2 (ND433/KE4T2) 10082	1991 1991	AGRICAN ID

^{**} Semidwarf

METHODS

Following are terminologies and testing methods used in the evaluation process:

Test Weight Per Bushel - The weight per Winchester bushel of cleaned, dry wheat subsequent to passing the sample through a Carter-Day dockage tester.

1000-Kernel Weight - The weight of 1000 kernels was determined by counting, using a Seedburo seed counter, the number of kernels in 10 g samples of cleaned, hand-picked wheat. 5/

<u>Kernel Size</u> - The percentages of the size of kernels (large, medium and small) were determined using a wheat sizer as described by Shuey⁶/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler #7 with 2.92 mm opening Middle Sieve - Tyler #9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

Milling - The samples were cleaned by passing the wheat through a Carter-Day dockage tester and through a modified Forster scourer (Model 6). The clean, dry samples were pretempered to 12.5% moisture for at least 72 hours, then tempered to 15.5% moisture and allowed to stand overnight prior to milling.

Mention of a trademark name or a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

Shuey, William C. A Wheat Sizing Technique for Predicting Flour Milling Yield. Cereal Science Today 5:71-72,75 (1960).

The Uniform Nursery Regional spring wheat samples were milled in a Brabender Quadrumat Junior mill. The mill was equipped with a #18 wire on the drum sieve from which the overs were classified as bran. The throughs of the #18 wire were rebolted for one minute on a Strand sifter equipped with a #60 Tyler sieve. The throughs of the #60 wire were classified as flour and the overs were classified as crude shorts.

The Field Plot Nursery samples were milled on a Buhler continuous experimental mill. The Buhler mill had been slightly modified for better comparison with commercial milling operations. Break scalping sieves were clothed with #54 stainless steel wire. Reduction scalping sieves were clothed with #58, #66 and #105 stainless steel wire for the first, second and third reductions, respectively. All flour sieves were clothed with #135 stainless steel wire.

The six flour streams obtained from Buhler milled wheat were combined and represented patent flour. The extraction of a good milling wheat using this flow is approximately 68% and is comparable to a commercial "long patent" extraction flour. At a 68% flour extraction, changes in flour ash are most sensitive to changes in percent extraction.

Hardness Test - Wheat hardness scores are determined according to AACC Method 39-70A. The procedure involves grinding the wheat samples in a Udy grinder and obtaining reflectance data from a Technicon 400 near infrared analyzer. Wavelengths used were 1680 nm and 2230 nm. This procedure was developed by Mr. Karl Norris, USDA, Beltsville through a co-operative research project in which the Hard Red Spring and Durum Wheat Quality Laboratory also participated. Hard red spring wheats generally have scores between 60 and 85.

<u>Protein Content</u> - Wheat and flour proteins were determined from NIR reflectance data, the Kjeldahl procedure, or Leco Nitrogen determinations. Nitrogen values, as determined the Kjeldahl procedure or Leco, were multplied by 5.7 to calculate protein values.

Mineral or Ash Content - Wheat or flour ash was determined by measuring the residual weight of minerals remaining after incinerating the sample for approximately 16 hours at 575°C. The results were reported as percentages of the sample weights.

Mixograph Analysis - Mixograms for each flour sample were determined by using 30 g of flour and adding 20 cc of water. The sensitivity spring setting was set at 10. All mixograms were run with constant weight of flour and volume of water. Absorptions reported were adjusted according to the peak heights of the mixograms. Correction factors were determined from a series of flours by varying the amount of absorption.

Mixogram Patterns - Reference mixogram patterns shown on page 24 illustrate the different types of mixograms that were obtained. A single number is assigned each pattern to characterize and simplify the classification of the curves. The larger numbers indicate stronger curve characteristics.

Baking Procedure and Formula - Following is the baking formula used:

100% flour 3% Non-fat Dry Milk
2% salt 3% yeast
5% sugar 2% shortening (Crisco, melted)

Samples were mixed to optimum dough development in National Manufacturing mixers, the micro mixer for 25 g samples and the 100 g special mixer for 100 g samples. Bromate (10 ppm) for oxidation and barley malt flour (0.106%) for enzymatic supplement were added to each sample. All doughs were moulded in a Roll-Er-Up moulder. Samples undergo 3 hour fermentation, 1 hour proof and 20 minute bake time.

<u>Absorption</u> - The amount of water, expressed as percent of flour, required for optimum dough consistency.

<u>Crumb Color</u> - A value was determined by comparing the crumb color of the tested sample with the crumb color of a baking standard. The standard flour was an equal blend of the variety Len grown at Casselton and Minot, ND, and Crookston, MN.

<u>Loaf Volume</u> - The volume of the baked loaf as determined by rapeseed displacement.

All values (protein, ash and absorption) were reported on a 14% moisture basis.

DISCUSSION

The following discussion presents the basic techniques and criteria used in the quality evaluation of the Hard Red Spring Wheat cultivars. Evaluations are based on the categories of kernel characteristics, milling performance, and baking score.

Each evaluation category is important. For example, a sample could be of a sufficiently poor quality for a given category to suggest elimination from future testing. However, a sample submitted for the first time and found to be questionable should be tested again to confirm previous evaluations. A sample which is consistently rated as questionable should be discarded.

Five kernel characteristics (test weight, 1000 kernel weight, percent small kernels, wheat ash, and wheat protein) were independent variables used to calculate the dependent variable, wheat score. Four milling characteristics (percent extraction, ash content @ 65% extraction, flour protein, and milling character) were used to calculate the dependent variable, mill score. Seven characteristics (mixogram pattern, bake absorption, mixing time, dough characteristics, crumb color, crumb grain, and loaf volume) were used to calculate the dependent variable, bake score. These three dependent variables become independent variables used to calculate a dependent variable, the general evaluation, which is an overall general score.

The current computer program used by the Wheat Quality Laboratory was designed and implemented to perform the analysis and tabulation of data generated from each station. The program has been in operation for nine years and utilizes the Statistical Analysis Systems (SAS Institute, In., SAS Circle, Box 8000, Cary, NC 27511). [7]

Wheat samples are tested and data collected on 18 quality factors or variables. The computer program then grades each factor against predetermined faulting values and assigns major (MJ) or minor (MI) faults where applicable. The data is then broken down into 3 major areas which relate more directly to agronomic, industrial, and consumer requirements. Each sample is assigned a score of 4 in the areas of Wheat Characteristics, Milling Characteristics, and Baking Characteristics. The program then adjusts the score (4 = Good promise, 3 = Some promise, 2 = Little promise, 1 = No promise) depending upon the number of major and/or minor faults assigned to that sample.

Nolte, L.L., Youngs, V.L., Crawford, R.D., and Kunerth, W. H. 1985. Computer program evaluation of hard red spring wheat. Cereal Foods World 30:227-229.

A general score is a numerical score of 1-4 and is determined by calculating the mean of the other 3 scores - wheat characteristics, milling characteristics, and baking characteristics.

The following tables list the variables used in each scoring area and their specific faulting and scoring values.

WHEAT SCORE

Variables Included	Faulting Limits Minor Major	Effect on Score Minor Major
Test Weight (#/bu)	57.9 56.9	1
1000 Kernel Weight (g)	Mean-2.1 Mean-5.1	1
Small Kernels (%)	8 18	1
Wheat Ash (%)	1.71 1.81	
Wheat Protein (%)	13.9 12.9	-1 -2

MILL SCORE

Variables Included	Faulting Minor	Major	Effect of Minor	Major
Flour Extraction ^a / (%)	Mean-2.1 Me	ean-4.1	-1	-2
Flr. Ash @ 65% Ex. b/ (g) Large Samples Small Samples	.47 .57	.51 .61	=	-1 -1
Flour Protein (%)	12.9	12.4	-1 -1	_
Milling Character ^{c/}	3	2	-1	-2

The mean, or average, is calculated using the standards tested with that station.

b/ Large samples are milled on a Buhler experimental mill, and small samples are milled on a Quadrumat Jr. experimental mill.

Different values are used to compensate for differences in the efficiency of the two mills and their respective procedures.

^{5 =} Normal. 4 = Normal-soft. 3 = Soft-normal. 2 = Soft.
1 = Gritty. 0 = Very soft.

BAKE SCORE

Variables Included	Faultin Minor	ng Limits <u>Major</u>	Effect Minor	on Score Major
Mixogram Patterna/	2,7 or 8	1,or 9-11	-	-1
Bake Absorption (%)	61.9	60.4	-1	-2
Mix Time (min.)	5.75-8.00	over 8.00	-1	-2
	or 2.00-2.75	or 0-1.75	-1	-2
Dough Characteristic b/	6	4 or less	-	-2
Crumb Colorc/	75	50 or less	-	-1
Crumb Grain ^d /	80	50 or less	-	-1
Loaf Volume (cc) Lg.	Mean-55	Mean-105	-1	-2
Sm.		Mean-31	-1	-2

a/ Refer to reference mixograms for numerical curve pattern.
(1 = very weak, 11 = very strong)

- \underline{b} / 9 = Elastic. 7 = Slightly pliable.
 - 5 = Very pliable. 4 = Bucky 2 = Very, very pliable. 0 = Dead.
- c/ 100 = Soft, white
 - 80 = Soft, slightly creamy
 - 60 = Creamy
 - 40 = Very creamy
 - 20 = Dull, very gray
- <u>d</u>/ 100 = Close, elongated, and uniform cells; fine grain and thin walls; soft texture.
 - 80 = Slightly open, elongated cells; fine grain and thin walls; soft texture.
 - 60 = Open, elongated to round cells; fine grain and thick walls; slightly coarse texture.
 - 40 = Open, round cells; coarse grain and thick walls; coarse to rough texture.
 - 20 = Irregular, open and large cells; coarse grain and thick walls; rough or soggy texture.
- Average values are calculated using the standards tested with that station. "Lg." refers to the faulting and scoring values for 100 g. loaves. "Sm." refers to the faulting and scoring values for 25 g. (pup) loaves.

All samples were compared with a milling and baking standard representative of the crop year. Agronomic and climatic conditions of the individual locations can affect the quality of the wheat such that the evaluation of all samples, including commercial cultivars, harvested from these locations may be classified as questionable to unsatisfactory. Therefore, the evaluation ratings from one station may not be compared with ratings from other stations, but only provide a comparison within that station. For example, an area may produce low protein wheat with large and plump kernels, good milling performance, and good kernel characteristics, but with low flour protein and unsatisfactory baking performance such as short mixing time, low loaf volume, and weak dough characteristics. The wheat from this area could not be considered a strong spring wheat and would not maintain the quality expected from the spring wheat producing area. An acceptable variety should have tolerance to a wide range of environmental conditions.

Kernel Characteristics are important in determining the initial value of wheat. Poor kernel characterisitics could disqualify a new variety from further consideration. Because of the present wheat grading system, high test weight is desirable. Plump kernels are desirable because of their high ratio of endosperm to bran. Low 1000-kernel weight and small kernel size distribution affect milling performance due to their high ratio of bran to endosperm. Wheat ash is an important factor when comparing one cultivar against other standard cultivars. Wheat with a high mineral content may yield flour with a high ash content. Wheat protein quality and quantity must be considered as an important characteristic when comparing cultivars grown at the same location. Wheats with low protein values are undesirable since protein affects baking performance.

Milling Performance is a very important characteristic of spring wheats. Low extraction and high flour ash are major factors unacceptable under commercial milling operations. Flour mineral contents are reported at a constant extraction of 65% so that flour extraction rates among cultivars are easily compared. As a general rule, an increase of 0.01% in ash content is equivalent to an increase of approximately 2% in flour extraction.

Milling characteristics: Wheat comprising soft kernels requires different milling techniques when compared with wheat of uniform hard kernels. On commercial mills flowed for hard vitreous spring wheats, the introduction of soft wheats into the mill will result in milling problems. Likewise, a sample which is extremely hard and vitreous will mill differently. Both types of wheat (soft and vitreous) require different roll pressures, clothing, sifter surface, and temper to be milled properly. The blending of normal bread wheats with soft wheats or extremely hard, vitreous wheats is undesirable since they are not compatible in the milling operation. Normal to soft score indicates that the sample shows a tendency toward softness of character on the flour mill stocks and extraction. Adjustments would either have to be made in the milling flow or in tempering procedures to compensate for differences in kernel hardness. Properties of soft wheat may or may not be compatible with other wheats. Therefore, maintaining pure varieties with uniform milling characteristics is important.

The amount of protein recovered in flour from wheat is important. High protein wheats yielding low protein flours are not desirable. Such wheats would contain much of the protein distributed in the outer portion of the kernels resulting in excessive protein in the feed streams. Therefore, higher protein wheat would be necessary to yield a flour with protein content comparable to that of a wheat that yields optimum flour protein.

Mixogram Patterns are important in estimating the strength and mixing tolerance or potential mixing tolerance of a flour. From the standard mixogram patterns shown on page 23, patterns 6 - 8 indicate flours with optimum mixing tolerance and gluten strength. Mixogram patterns 9 - 11 indicate flour samples with long mixing times, and strong gluten characteristics, whereas, patterns 1 - 5 indicate flours with weak gluten characteristics and short mixing times. Both the pattern and length of the curve are important, and both must be considered in the evaluation. Abnormal curves, such as sway-back or long initial times to incorporate water, indicate undesirable characteristics.

Baking Evaluation takes into account the flour water absorption, mixing time, dough characteristics, loaf volume, crumb texture, and machinability. Flour samples with low water absorptions would be unsatisfactory. Samples with extremely short mixing times would relate to weak gluten characteristics and be considered undesirable. Samples evaluated in the minimal range for these values require further testing to determine whether definite deficiencies exist.

Doughs having mellow to weak properties show a tendency towards weakness. Doughs having mellow to strong properties show a tendency to be strong, whereas, doughs having strong to mellow properties show a tendency to be mellow. Since these characteristics are evaluated by subjective means, the tendencies are estimated which allows for double grades.

The crumb grain or appearance of the interior of the loaf shows how well the sample stood up during baking and may indicate some deficiencies which have been observed during the baking test. Crumb grain is likely related to gluten protein properties (quantity and quality).

Bread loaf volume indicates potential strength of doughs in a different manner than mixing time or dough characteristics. Optimum loaf volume demonstrates the capacity, or lack thereof, for the dough to expand under pressure and to contain the entrapped gases during expansion. Weak doughs are like balloons which burst when blown up. They tend to collapse and yield breads with low loaf volumes, or yield breads with extremely large volumes containing large holes in the interior. Low protein flours produce extensible doughs which exhibit properties similar to putty. These doughs do not expand adequately during fermentation or baking and thus produce bread with low loaf volumes. Tough and very bucky doughs are bound too tightly and impede expansion of the gases resulting in breads with low loaf volume. Loaf volume is a characteristic probably related to gluten functionality in the dough.

Statistical Data including mean, SD, minimum and maximum values, variance, and coefficient of variation are shown for each cultivar within the four geographical areas - Northeast, Southeast, Midwest, and West. This data provides information on the variability of each selection within the Uniform Regional Nurseries for each of the parameters measured.

UNIFORM REGIONAL NURSERY SAMPLES - 1991 CROP

Discussion of URN

A total of 615 URN samples were received from 19 stations in 8 states. Twenty-seven URN selections were experimental lines and the remainder were commercial cultivars. Along with the experimental lines, the cultivars Butte 86, Chris, Era, Marquis, and Stoa were included in the statistical analysis of the URN samples. Each sample was evaluated for kernel characteristics, milling performance, and baking properties. Some selections were not included in the baking evaluation because of poor kernel characteristics or rheological dough properties.

Data from the northeastern area were from five stations -- Prosper, Langdon, Minot, and Carrington, North Dakota, and Crookston, Minnesota. Quality data of the spring wheat cultivars and experimental lines is shown in Tables 1-5. Statistical data is shown on Tables 6-16.

Data from the southeastern area were from six stations -Brookings, Redfield, and Selby, South Dakota, Morris and St.
Paul, Minnesota, and Madison, Wisconsin. Quality data of the
spring wheat cultivars and experimental lines is shown in Tables
17-22. Statistical data is shown on Tables 23-33.

Data from the midwestern area were from four stations -- Williston and Dickinson, North Dakota, Powell, Wyoming, and Sidney, Montana. Quality data of spring wheat cultivars and experimental lines is shown in Tables 34-37. Statistical data is shown on Tables 38-48.

Data from the western area are from four stations -- Havre and Bozeman, Montana, Aberdeen, Idaho, and Pullman, Washington. Quality data of spring wheat cultivars and experimental lines is shown in Tables 49-52. Statistical data is shown on Tables 53-63.

FIELD PLOT NURSERY SAMPLES - 1991 CROP

Sixty-nine samples were received from three states at four stations. Quality data for the individual samples is shown in Tables 64-67.

Casselton, Langdon and Minot - North Dakota

Three commercial cultivars were received from Langdon, four from Casselton, and five from Minot. Data for these selections is shown in Tables 64-66. Len was used as the standard for comparison.

Ithaca - New York

Twenty selections were received from this station. Data for these samples is shown in Table 67. Stoa was used as the standard for comparison.

Imperial Valley - California

Thirty-seven selections were received from this station. Data for these samples is shown in Table 68. Yecora Rojo was used as the standard for comparison.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND THOSE THAT MAY BE LISTED UNDER MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

TW = Test Weight

KW = 1,000 Kernel Weight
LG = Large Kernels

SM = Small Kernels

WHT ASH = Wheat Ash

WHT ASH = Wheat Ash
WP; WHT PRO = Wheat Protein

A65 = Ash at 65% Flour Extraction

FP; FLR PRO = Flour Protein

MC; MILL CHAR = Milling Characteristics

MIX ABS = Mixograph Absorption

MX: MIX PAT = Mixograph Pattern Score

BA; BAKE ABS = Actual Bake Absorption

MT: MIX TIME = Actual Dough Mixing Requirements

DC; DOUGH CHAR = Dough Handling Characteristics

CC; CRUMB COLOR = Standard 80

CG; CRUMB GRAIN = Standard 85

LV; LOAF VOL = Loaf Volume

FOOTNOTES FOR TABLES

These footnotes are applicable for specified column headings in all tables that follow

Column Heading	Footnote
WHT ASH, WHT PRO, ASH @ 65%, FLR PRO, BAKE ABS (100 G loaf)	14% Moisture basis.
MILL CHAR	5 = Normal. 4 = Normal-soft. 3 = Soft- normal. 2 = Soft. 1 = Gritty. 0 = Very soft.
MIX PAT	Refer to reference mixograms for numerical curve pattern. (1 = Very weak 11 = Very strong.)
DOUGH CHAR	9 = Elastic. 7 = Slightly pliable. 5 = Very pliable. 4 = Bucky. 2 = Very, very pliable. 0 = Dead.
CRUMB COLOR	100 = Soft, white 80 = Soft, slightly creamy 60 = Creamy 40 = Very creamy 20 = Dull, very gray
CRUMB GRAIN	<pre>100 = Close, elongated, and uniform cells; fine grain and thin walls; soft texture. 80 = Slightly open, elongated cells; fine grain and thin walls; soft texture. 60 = Open elongated to round cells; fine grain and thick walls; slightly coarse texture. 40 = Open round cells; coarse grain and thick walls; coarse to rough texture. 20 = Irregular open and large cells, coarse grain and thick walls; rough or soggy texture.</pre>

STANDARD MIXOGRAM PATTERNS

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	ING SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO *	MILL	MILL SCORE ***	MIX ABS	PAT
1 8		1	29		-	1 00	14.	1 &	 4		4	•		4	60.3	2
0 211	3		21.	8 8	12	6	15.	9	4	۰	5			8	•	m
2 6	ប	0	1 6		2.4	. C	15.	9	7		7	4		٦		m
1	3	•	21.	, α	- 1	0	12.	9	1	۰	2			2	. 0	~
MAKUUIS	Ü		24.	2 0) V) œ	14.	9	ব্য		4			4		4
u C ct c	a	•	000	2 10) -	∞	15.	വ	4		4			4	~	က
SD 3055		61.5	٦, د	200	10	1.76	15.0	80	4	60.7	0.50	14.4	2	4		n
200		•	. 40	46	· -	. [15.	7	4		4	-		4		က
5000		0	27	, K	2	· თ	15.	-	4		5	-		ጥ	~	m
000		•	30.	40	-	ω	14.	-	4	•	5			4		ব্য
		•	30.	45	-	2	14.	5	4	~	4	~		ধ্য	·	2
2 / C 0		• •	28	25	1 4	-	13.	E)	c		4	~		4	7	٦
8817		_	30	48	2	-	13.	9	m		4	01		m	-	-
200			35.	61	0	-	13.	9	c		4	~		4	m	m i
0 7 0 0			3 6	49	0		13.	-3	m	~	4	~		ক		m
2000			25	26	7	W.	14.	ш	4	-	4	~		4	_	7
657 757 757			31	46	m	0	15	-1	ぜ	.0	4	.0		4	0	m ·
2 4			32	51	0	w	16.		4	m	4			7	i	4
		10	3 4	54	0		15		4	.0	4	'n		4	0	_
ט כ		. ~	30	56	0	Ψ,	15	•	4	ω.	4.	10		ঝ	2	m
ט ע		~	30	43	Н	٠.	14	ω	4	œ.	d.	ά.		ት	ത	က
2988		1 (7)	31	35	2		14		4	0		4		4	0	(1)
) [. ~	26	25	4		13	•• 1	m	2	u,	œ.		な	ത	m i
1-030			3 [41	-	-	15		4	S	4	4		4	0	m
2127		0	29	50	0	-	14		4	2	4.	귝.		4	ത	m
202-0		2 00	28	30	2		16		4	~	2.	u .		4		m
200-1		-	29	26	m		14	,	4	Ξ.	4,	ω.		4	-	7
007-25		- 00	3 2	44	-		15		4	8		4		4	ω.	7
n o		0	200	7	18		15		2	H	9	5		~	6	4
MINITO		0	30	46	-		16		4	0		5		ক	ω.	m
1 40			30	46	2		16		4	2		9		4	٠ ص	m
10		2	200	α	10		14		m	S		m		m	9	m
>		2	6.3	>	1		4									

QUALITY DATA OF SPRING WHEAT SAMPLES STATE=NORTH DAKOTA STATION=PROSPER

1991 CROP NURSERY=UNIFORM

VARIETY STD ABS TIME CHAR COLOR GRAIN VOL SCORE SCORE TW KW SH WF EX A66 FP MC MY BA HT DC CC CG LV	VARIETY STD A TE 86 S 6 IS S 5 201S S 5 8 056 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	B															
E 66 S 60.2 3.50 9 85 85 183 2 3.0 MIL MI	TE 86 S 6 IS S 5 20 IS S 5 30 55 80 56	1 30	IME	CHAR	COLOR		VOL		SCORE ***		SM		65 F		BA	DC	SS
S S S S S S S S S S	TE 86 S 6 IS S 5 20 IS S 5 30 55 50 56									1 1 1 1 1 1	: ! !	 	1 1 1 1 1				1 1 1 1
S 58.2 5.50 9 80 80 189 2 3.0 MI	1S S S S S S S S S S S S S S S S S S S	0	. 5	6	85	85	8	2						M			
S 57.6 5.00 9 80 85 209 1 1.3 MJ MI MI MJ	2011S S 5 A S 5 3055 S 5 3056 6	ω	. 5	6	80	80	∞	2		Σ		MI					MI
15 15 15 15 15 15 15 15	20UIS S 5 A S S S S S S S S S S S S S S S S S S S	7	0.	0	80	85	0	2				MJ	MJ		MJ		!
S 59.6 5.0 9 8 8 0 197 2 3.3 9 8 0 107 2 0 0 0 0 107 0 0 0 0 0 0 0 107 0 0 0 0 0	3055 S S S S S S S S S S S S S S S S S S	5.	. 5	2	80	80	8	1			MI	-	Σ	X		Σ	X
Second Color	3055 3056 6	9.	0.	6	80	80	9	2					,	7		•	Σ
17.50 17.5	3056	ω	. 2	6	80	80	\vdash	2							M.I		ı E
1972 1972 1975		0	. 7	6	80	80	0	2							M.T		MI
17.2 17.2 17.2 17.2 18.6 19.0 2 3 3 3 3 3 4 4 4 4 4	3080	0	0.	6	80	80	0	· C							Σ		X I
1.5 1.5	5 8072 5	8	. 2	6	75	80	6	2							ZΞ	2	
1150 157.3 15.00 9 80 85 183 4 4.0 MI	8073	7	0.	6	80	75	0	l M							Σ		
1750 57.3 3.25 7 80 80 191 1 2.7 MI	8074	2.	0	6	80	85	∞	4							4		711
9110 57.9 5.25 5 80 85 179 1 2.3 HI MI HI	37150 5	7.	. 2	7	80	80	6	7			_	1		Σ			M
934	38170 5	7.	. 2	5	80	85	-	· ~	•			<u>.</u>	M	Σ	Σ.	Σ	711
89324 60.0 3.50 9 80 80 187 2 3.0 MI 55 60.8 3.75 9 80 80 185 2 3.3 MI 61.1 3.75 9 80 80 185 210 3 3.7 61.1 3.75 9 80 80 185 210 3 3.7 62.2 60.3 5.50 9 80 85 185 1 3.0 72 62.5 5.0 7 80 80 197 2 3.3 884 60.3 5.50 9 80 85 195 1 2.7 884 60.3 3.50 9 80 85 195 1 2.7 885 195 1 1.3 3.7 886 187 2 3.3 887 80 80 80 197 2 3.3 888 188 189 1 1.3 889 189 189 189 189 189 189 189 189 189	88189 5	8	. 5	6	80	80	0	2				. I.	!		×	•	M
8334 57.6 4.25 7 80 85 185 2 3.3	88320 6	0.	. 5	6	80	80	8	2	•			11			Σ		Σ
55 60.8 3.75 9 80 80 198 3 3.7 HI	88334 5	7.	. 2	7	80	85	8	2						Ξ			•
62 66.1 3.75 9 80 85 210 3 3.7	655	0.	. 7	6	80	80	6	m									M
62 660.3 6.25 9 80 85 185 1 3.0 71 652.6 53.50 9 85 75 210 4 4.0 72 59.0 6.50 9 80 80 197 2 3.3 73 85.0 6.50 9 80 80 197 2 3.3 74 860.3 5.50 9 80 80 197 2 3.3 75 70 80 80 197 2 3.3 76 80 80 80 197 2 3.3 77 80 80 80 207 2 3.3 78 80 85 202 2 3.3 78 80 85 202 2 3.3 78 80 85 202 2 3.3 78 80 85 202 2 3.3 78 80 80 197 2 3.3 78 80 80 197 2 3.3 78 80 80 197 2 3.3 78 80 80 197 2 3.3 78 80 80 197 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 3.3 78 80 187 2 5 6 75 80 175	657 6	1.	. 7	6	80	85	\vdash	m							Σ		:
71	662 6	0	. 2	6	80	85	8	-1						Σ	MJ	j-n-i	
72 59.0 5.00 7 80 90 190 2 3.3 MI	671 6	2.	. 5	6	85	75	-	4							:	4	M
98A4 60.3 5.50 9 80 80 197 2 3.3 MI	672 5	9	0.	7	80	9.0	9	2	•						M.J		:
0542 59.0 6.50 9 80 85 195 1 2.7 0306 60.8 3.50 9 80 85 202 3 3.7 0308 59.6 3.75 7 85 220 2 3.3 0334 60.3 3.50 9 80 85 202 2 3.3 0334 60.3 3.50 9 80 80 207 2 3.3 0334 66.3 3.50 9 80 80 207 2 3.3 0467 57.9 5.25 7 80 85 202 2 3.3 047 87-350 58.6 5.25 7 80 85 196 1 1.3 01NTO 58.2 3.50 7 80 80 187 2 3.3 01NTO 58.2 3.50 7 80 80 187 2 3.3 025FICIENCIES TWO KW SW WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES TWO 200-2.75 6 75 60 17 60 17 60 10 10 2.00-2.75 6 75 80 175 02.5 5.00 2.00-2.75 6 75 60 175 03.6 5.00 7 80 80 187 04.8 6.00 7 80 85 194 1 2.3 04.8 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.5 6.00 7 80 85 194 1 2.3 05.7 6.00 7 80 85 194 1 2.3 05.7 6.00 7 80 85 194 1 2.3 05.7 6.00 7 8 80 175	398A4 6	0.	.5	6	80	80	6	2					MI		L'M		MT
9306 60.8 3.50 9 80 85 202 3 3.7 MI 3136 59.6 3.75 7 85 75 220 2 3.3 MI 80 80 207 2 3.3 MI 80 80 207 2 3.3 MI 81 MJ 82-309 5.25 7 80 80 85 196 1 1.3 MJ 81 MJ 82-309 5.55 6.00 7 80 80 197 2 3.3 MJ 83 MJ 84 MJ 85 194 1 2.3 MJ 87 MJ 88 MJ 89 MJ 80 MJ 80 MJ 80 MJ 80 MJ 80 MJ 80 MJ 81 MJ 82 MJ 83 MJ 84 MJ 85 MJ 86 MJ 87 MJ 88 MJ 89 MJ 80 MJ	6-0542 5	9.	.5	6	80	85	9	-	•			11					:
3136 59.6 3.75 7 85 75 220 2 3.3 MI 3034 60.3 3.50 9 80 80 207 2 3.3 MI 467 57.9 5.25 7 80 85 202 2 3.3 MI 87-350 58.6 5.25 7 85 70 203 2 3.3 MI 87-350 58.6 5.25 7 80 85 196 1 1.3 MJ 81 MJ 82-309 59.6 6.00 7 80 85 196 1 1.3 MJ 80 197 2 3.3 MJ 81 MJ 81 MJ 82 MJ 83 MJ 84 MJ 85 MJ 86 MJ 87 MJ 87 MJ 88 MJ 89 MJ 89 MJ 80	7-0306	0.	.5	6	80	85	0	m									
3034 60.3 3.50 9 80 80 207 2 3.3 MI 467 57.9 5.25 7 80 85 202 2 3.3 MI 87-350 58.6 5.25 7 85 70 203 2 3.3 MI 88-309 59.6 6.00 7 80 80 197 2 3.3 MJ 1NTO 58.2 3.55 7 80 80 197 2 3.3 MJ	8-3136 5	9	. 7	7	85	75	2	2							Σ		M
467 57.9 5.25 7 80 85 202 2 3.3 MI 87-350 58.6 5.25 7 85 70 203 2 3.3 82-309 58.6 5.25 7 80 85 196 1 1.3 MJ MI MJ MJ MJ MJ MI 82-309 58.2 3.50 7 80 80 197 2 3.3 848 59.6 3.25 7 80 80 187 2 3.3 85 194 1 2.3 MJ MI 85 194 1 2.3 MJ MI	8-3034 6	0.	.5	6	80	80	0	2							ĽΣ		X
87-350 58.6 5.25 7 85 70 203 2 3.3 MJ MI MJ MJ MJ MJ MI MJ MJ MJ MJ MI MJ	7-467	7.	. 2	7	80	85	0	2		MI				Σ			*
82-309 59.6 6.00 7 80 85 196 1 1.3 MJ MI MJ MJ MJ MJ MJ INTO 58.2 3.50 7 80 80 197 2 3.3 MJ MJ MJ 59.6 3.25 7 80 80 187 2 3.3 MJ MI MI MI MI MJ MJ S6.5 6.00 7 80 85 194 1 2.3 MJ MI MI MI MI MI MJ MJ MJ S6.5 6.00 7 80 85 19.4 1 2.3 MJ MI DC CC CG LV SFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV RAULTING VALUES 57.9 22.2 8 13.9 56.4 .57 12.9 3 2.7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 175 RAULTING VALUES 56.9 19.2 18 12.9 56.4 .57 12.9 3 2.7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 175	987-350 5	8	. 2	7	85	7.0	0	2		:				Σ			M
INTO 58.2 3.50 7 80 80 197 2 3.3 48 48 59.6 3.25 7 80 80 187 2 3.3 MJ MJ MJ MJ MJ MJ MJ MJ MJ M	982-309 5	9	0	7	80	85	6	I —	. 4	Σ	Σ	L.M.	L.W		Σ	_	1 1
48 367 367 367 367 368 369 369 367 367 368 369 367 369 367 369 367 369 367 369 367 369 367 369 369 369 369 369 369 369 369 369 369	MINTO	8	. 5	7	80	80	6	2								•	Σ
367 56.5 6.00 7 80 85 194 1 2.3 MJ MI MI MI MI MI MJ MI DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV REDLING VALUES 57.9 22.2 8 13.9 56.4 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 175 REDLING VALUES 57.9 22.2 8 13.9 56.4 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 175	148 5	9	. 2	7	80	80	8	2							Σ.		X
OEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG REAULTING VALUES 57.9 22.2 8 13.9 56.4 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	0367 5	9	0.	7	80	85	6	+		DM	MI	MI	MI			н	
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG RAS FAULTING VALUES 57.9 22.2 8 13.9 56.4 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1																	
* FAULTING VALUES 56 9 19 2 18 12 9 54 4 61 12 4 2 10 210 200 200-2.12 6 19 2 10 I	DEFICIENCIES	MI	KE	SM	0,	A6	FP		BA	i.	TIME	_	L			•	
	FAULTING VALUES	٠ ٧	1 0	\circ	י ס	C . K	12.	7 -	0.11 CO	0-1.1 0-01.0	2 0	1	07.			1/1 1/1	

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	ING	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH (A 65%EX %	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
1 6	1 0	1	7	1 2	2	1 9	15.		4	1 .	1 4	4	l	4		2
BULLESO	2		23.	0	2 1	1.56	16	99	m	8.09	0.48	15.8	5	m	61.1	2
	U		22	1 -	0	00	14.	-	2		5	د		4		m
-	3	6	23	10	0	6	15.	9	m	•	5	5.		2		m
	U.		77.	1 (*)	2	0	15.	9	4	•	4	5.		4	•	2
វេ)		29.	2	-	.5	13.	ಬ	2	•	5	2.		m	•	
717			29	. (*)	7	9	14.	9	3		4	<u>.</u>		ተ		
9199		•	30.	4	2	9	14.	9	c		4	4.		4	~	7
σα		• •	29.	. 4	ı 	9	13.	5	n		4,	2.		m		7
2522		• •	24.		9	9	14.	9	ব	•	4	~		4	•	
1054		•	26.	(7	9		14.	ω	2	•	S	~		4 1 ⋅	· .	m ·
2 0		•	24	-	5		15.	9	m		S	e-91		47	•	ਹਾ।
-467			26.		2	-	14.	u,	m	-	S	·		ਹਾ ਂ	÷.	י ניי
- 303			28	. (-)	7	-	16.	Ψ	m	-	4	.0		ব া		m r
ן טיר			31		0	9	15.	w	4	•	4	m - m - m - m - m - m - m - m - m - m -		4	÷	~)
7 7 7			27	-	Н		15	1-	4	01	4	'n		4,	• !	य ।
, 4			26	. •	2	ω.	16	, ~	٣	~	τ.)	i,		ব '	~ .	ກ
1 0			29		2	- h	15	w	m	~	4.	ń		বা	m	٠
			31		0	9	15		4		(1)	4		4	~	₹ 1
			27		0	•	16	~	4	\sim i	u,	2		む	· .	7
205		-	32		0	۳.	15		4	~	4.	വ		4.		, C
SD3056		-	32		0	_	15	_	ব্দ	,	7.			বা •	· -	7) (
202		~	33		0	٠.	16	_	4		4.	2		4 1 (-i (v) •
207		-	32		0		15	•	4	Ö	4.7	ਹਾਂ		m (5	4 " (
700		-	30		0		14	•	4	on.	٧.	4		. .	· α	ກ ່
~ a			3.5		0		16		4	0	٠.	Ŋ		ਧਾ	0	4
		1 10	29		0		16		c	0		9		m	0	m i
1178		0	32		0	0	16		4	m	٦.	9		ਧਾ	-	m ·
207-20		. ~	26		4		14		m	2		4		5		ਹਾ।
200		10	27		5		15		8	œ	-:	ਧਾ		7	σ	v) (
767		4	23		m		14		က	2	-:	マ		7	- (י רי
XW398A4		58.7	29.1	36		•	14		4	0	•	ব্য		.	0	יי
1																

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=UNIFORM

Second S												1	DEF1	DEFICIENCIES	S	1 1 1	1 1 1
THE SECOND S.		A 1	TI	ED	COLOR	GRA	TOA	SCORE **	SCOR	1	X	W I	65 F	1	A H	ט	S
RES. 5 91.0 2.50 7 8 9 187 2 2.7 HO HI	UTTE8	60.	ω.	2			0	2						X	Ε.Χ		¥
Name	RIS	61,	2.	0			00	2				×		I X	Z		III
NATIONAL S.		59.	4	5			9	2	• (M.T	7117	T X	111	E		
1	DUIS	57.	m	0			6	2			Σ	E.M.	Ι Σ		N. I		
1915 1915		63.	1 4.	0			0	4				2	711		22		7
1911 1912 1913 1914 1915	7150	55.	8 3.	0			0	٠			M.T	×	M	X	M.T	7	I X
1911 1912 1913 1914 1915	8817	0	0 2.	0			-	I			E.W.	411	7:	E			
88320 57.9 4.25 7 80 85 192 2.77	8818	8	2 4.	5			0	2			N.			Σ		CEI	4
Second	8832	7	9 4.	5			5	2				Σ	M	I W	N I		
6-0542 6-0542 6-0542 6-0542 6-0542 6-0542 6-0542 6-0542 6-0543 6-0542 6-	8833	9	5 4.	0			0							Σ	X.T	M	M
7-0306 60.8 4.75 9 80 80 217 3 3.3 HJ MI	6-054	6	3 4.	5			0	7							Σ	Σ	7
7-467 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8	7-030	0	8 4.	5				8							Σ	*	
8-3034 61.8 3.25 9 80 75 226 3 3.3 MJ	7-46	9	0 5.	0			-	2	•				MI		X		Σ:
Harron H	8-303	1.	8 3.	5			2	3			MJ				MI		X
655 61.1 4.25 9 80 80 201 3 3.7 MJ	8-313	9	6 4.	2			0	2	•						MJ		E
657 66.1 5.00 9 8 8 6 85 220 4 3.7 MJ 672 66.8 4.50 9 85 212 3 3.7 MJ 673 66.0 8 4.50 9 85 212 3 3.7 674 66.8 4.50 9 85 212 3 3.7 675 67.8 6.0 9 85 212 3 3.7 677 678 60.8 4.25 9 86 85 218 3 3.7 678 60.8 4.25 9 80 80 75 208 3 3.7 678 60.8 4.25 9 80 80 222 3 3.7 678 60.8 4.25 9 80 80 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 678 60.8 4.25 9 80 90 222 3 3.7 688 60.8 4.25 9 80 80 80 80 80 80 80 80 80 80 80 80 80	2	1:	4	5			0	٣							MI		Σ
Secondary Seco	5	2.	1 5.	0			2	4			MJ						!
671 62.5 2.75 7 85 85 200 3 3.7 MI	9	8	6 7.	0			6	7	•		MJ					MJ	
Secondary Seco	-	2.	5 2.	5			0	3									
3055 61.1 3.50 9 80 85 218 3 3.7 MI	12	0	8 4.	0			\dashv	က	•					MI			
3056 60.5 3.50 9 85 80 207 3 3.7 8072 8072 8072 8072 8073 8073 8073 8074 80 80 199 3 3.37 8074 80 80 199 1 2.7 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80 80 199 1 8.3 80	0.5	1	1 3.	0			-	3	•						MI		
8072 61.1 3.50 9 80 75 208 3 3.7 MI	0.5	0	3	0			0	٣	•						MI		MI
8073 60.8 4.25 7 80 85 199 3 3.3 MI	07	-	1 3.	0			0	3							MI		MI
8074 58.2 7.00 7 80 80 197 1 2.7 MI	0 7	0	8 4.	2			9	m			MI	M			MI		
3080 60.8 4.25 9 80 90 222 3 3.7 MI MI 148 60.5 2.50 7 90 85 212 2 2.7 MJ MI MI 148 982-309 57.6 5.75 5 85 90 194 1 2.0 MJ MJ MJ MJ MJ MI 3987-350 58.2 6.00 7 85 90 211 1 2.0 MJ MJ MJ MJ MJ MJ MJ 3987-350 57.3 6.00 7 80 85 206 1 2.0 MJ M	07	ω	2 7.	0			6	~			MI	MI			Σ		MI
-MINTO 60.5 2.50 7 90 85 212 2 2.7 MJ MI	0 8	0	8 4.	2			2	က									
148 861.1 3.25 5 80 90 215 3 3.7 882-309 882-3	C-MINT	0	2.	0			\vdash	2			MJ	MI					
982-309 57.6 5.75 5 85 90 194 1 2.0 MJ MJ MJ MI MI MI MI 987-350 58.2 6.00 7 85 90 211 1 2.0 MJ MJ MJ MJ MJ MJ MI MJ MJ MI MJ MJ MI MJ MJ MI MJ MJ MI MJ	14	1.	3	5			\vdash	3								MI	
987-350 58.2 6.00 7 85 90 211 1 2.0 MJ MJ MJ MJ MI MJ	982-30	7.	5	5			9	-	•		MJ	MJ				M	
0367 398A4 60.0 5.75 9 80 85 206 1 2.0 MJ MI MJ MJ MJ MJ MJ MJ MI 398A4 60.0 5.75 9 80 75 220 1 2.7 MJ MJ MJ MJ MJ MJ MJ DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MJX TIME (MT) DC CC CG LV NOR FAULTING VALUES 57.9 25.8 8 13.9 60.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179	987-35	8	9	0			-	7			MJ	MJ				!	
398A4 60.0 5.75 9 80 75 220 1 2.7 MI MI MI DC CC CG LV DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV NOR FAULTING VALUES 57.9 25.8 8 13.9 60.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179	036	7	9	0			0	-				MJ					
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 25.8 8 13.9 60.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	398A	0	5.	ري ا			2	Н				MI					MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 25.8 8 13.9 60.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1																	
NOR FAULTING VALUES 5/.9 25.8 8 13.9 60.9 .5/ 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	DEFICIENCIE	E-4 E	33.	3	WP	A	5 FP	0	MX	BA	MIX	(MT)			50	LV	
	NOR FAULTING	200	7 5.	φ.	3.9		7 12.		,7,8	1.9	8	2.00-	.75		80	179	

	1 1 1		1	1				-		1 1	1 1 1 1 1 1	1 1 1 1 1	1	1 1 1	1 1 1	1 1 1 1
VARIETY	STD	TEST	1000 K.WT	SIZ	ING	WHT	WHT	HARD-	WHEAT	FLR	ASH @	FLR	MILL	MILL	MIX	MIX
		#/BU	Ö	96	90	æ	e e		*) } }	3 %	News	* * *	96 0	ζ
E	S	3	9	65	0	5.	6.		4	5.	1 4	1 .	5	4	-	1 ~
CHRIS		6.	4	20	4	9.	9		2	5.	4		, L	4		· ~
	ಬ	8	5.	22	7	9.	4.		m	8	. 5		<u>ب</u>	. 4	9	, 0
MARQUIS		0.	3	17	9	8.	5.		m	'n	. 5	- 4	ک د	· m	· C	2 0
OA	ഗ	1.	2.	44	0	.5	5.		4	7.	· ~		· ις) প্ৰ	. 6	1 4
D305		2.	9	74	0	₹.	9		マ	9	4		. 7.	4	0	. (*)
03		62.0	37.0	97	0	1.50	15.8	67	4"	65.7	0.48	14.8	2	4	59.6	2 0
D308		3	5.	09	0	₽.	9		4	4	4		2	m	0	ı M
0.7		٠ س	9	73	0	4.	5.		4	9	4.	4	2	4	6	5
7.0		2.	9	71	0	4.	5.		ヤ	9	4.	4	5	4	0	2
4 1		m i	5	57	0	.5	2		ヤ	5.	4.		5	4	ω.	m
715			2.	57	0	. ሳ	4.		খ	4	. 3	2.	5	2	3	-
7		თ	-	41		. 5	ক ক		4,	7.	.3	ω,	S	4	9	
8 5			7	70	0	. 5	ъ.		ব্য	7.		4.	2	4	5	7
832		2.	21	61	0	4	.		m	о Ф	. 4	2.	5	2	8	2
ים העו		٠ س		m m	m	4.	4		4	7.	٣.	3	2	4	7.	2
O L		m,	H 1	28	0	. 5	5.		4	9	4.	5.	2	4	9	2
0 1		i.	2.	20	0	• 5	9		4	5.	4.	5.	2	4	0	m
0 1		-	5	52	0	. 5	5.		4,	4.	4.	4.	2	m	9	m
- 1		m i	-	09	0	. 5	9		4	3.	.3	9	5	٣	-	m
7.1		2.	ნ	53	-	. 5	5.		ず	4	4.	4	2	m	8	4
SAA4		2.	4	09	0	9.	4		4,	7.	4.	4.	2	4	· 00	m
1		0,	0	42	2	.5	4		4	5.	4.	3	2	4	ω.	2
-030		Ξ,	বা	19	٦	. 5	5.		4	5.	e. 3	4.	S	4	7.	m
-313		m .	2.	09	0	. 5	5.		4	4	٠,	4	5	m	e m	2
-303		0	6	34	0	9•	9		41	9	4.	6.	5	4	9.	7
-467		2.	٠ ۲	54	0	4.	4.		4	5.	4.	3	5	4	7	2
-186		0	5.	09	0	. 5	5.		₹'	т •	.3	4	5	m		2
82-30		4	5.	24	m	. 7	5.		2	2.	. 5	5.	2	2	9	ব্য
U I		· o	ω .	34	2	9 .	9		4	1.	4.		5	2	7	2
4 H		-	1.	47	0	. 7	9		প্দ	ش	4.		5	m	m	2
7		9	~	Φ	ω	. 7	4.		2	2	4.		5	2	10	2

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=UNIFORM

## RAIN VOL SCORE SCORE TW KW SH WP EX A65 FP HC HX BA HT DC CC CC *** *** *** ## B	SEG C C							7077		THURWEN	7		1	DEFICIENCIES	FUCIEN		1 1 1 1 1	1 1
THE BE S 61.4 3.00 9 65 80 195 3 3.7 MJ	VARIELI	STD	m 26 i	IME	CHAR	COLOR	GRAIN	TOA	SCORE ***	ا ا ا	6-3	KW S	P EX A6	FP M	C MX			CG FA
REAL S 60.0 3.25 7 85 82 20.2 2 7 MJ MJ MI MI MI MI MJ MI MI MI MI MI MJ MI MI MI MI MJ MI MI MJ MI MI MI MJ MI MI MJ MI MI MI MJ MJ MI MJ MJ MJ MJ MI MJ	8	ß	7	0.	6		80	6	m	3.7				1 1 3 1	 		1 1	5
Maintain State Main	CHRIS		0.	. 2	7		85	0	2	2.7					4 2	11		IH
ORE SELECTION OR S	ERA	ഗ	6.	0.	7		8 2		10							5.		
9355 59.3 4.50 9 80 80 220 2 3.3	DUI		5.	0.	7		8 2	0	2 %	0 1		D E	M			5.		
13655 60.0 3.50 9 60 60 220 2 3.3 MI	Æ	្ល	9	.5	6		80		10			01.1	71.7			25		7
1906 1909	0.5		0	. 5	6		80	2	2 2	0 4					-, 2	21		Z Z
9300 60.0 3.50 9 80 85 216 2 3.0 MI	05		9	0.	7		06	0	2									T E
1907 1907	08		0.	.5	6		85	-	2				MT) T		
8073 60.0 3.50 9 80 85 196 2 3.3	07		9	. 2	7		85	0	2				1			£.		
18	07		0.	.5	6		85	6	2							1.1		
1911-50 55.5 3.70 7 90 90 170 1 2.3 1	074		8	. 2	6		75	œ	2							1.1		TM
88170 56.9 1.75 5 85 85 172 1 3.0 881870 56.5 1.75 5 86 85 172 1 3.0 88334 56.5 3.00 7 80 85 187 2 2.3 88334 57.5 3.00 7 80 85 187 2 2.3 88334 57.5 3.00 7 80 85 172 1 3.0 88334 57.5 3.00 7 80 85 172 1 3.0 88334 66.5 4.25 9 80 80 187 2 2.7 88384 55.2 5 9 90 85 180 1 2.7 883 80 180 1 2.7 883 80 180 1 2.7 883 80 180 180 180 180 180 180 180 180 180	715		د	0.	7		06	7	1				MI	MI		17		711
88189 55.5 4 .25 7 90 85 187 2 3.3 88189 88189 55.5 4 .25 7 90 85 187 2 2.3 88189 655 655 655 655 655 655 655 655 657 657	817		9	. 7	2		85	~	٦								MT	
88320 58.6 3.00 7 80 90 183 2 2.3 MI MI MJ	818		ک	. 2	7		85	∞	2								:	
8834 57.3 3.00 7 80 85 172 1 3.0 MI MI MJ	832		8	0.	7		06	8	2				MI	MJ		13		
655 655 656 4.00 9 85 80 192 2 3.3 MI MJ 662 662 662 662 9 7.00 7 80 80 180 13 2.7 MI 663 662 662 662 9 7.00 7 80 80 180 180 180 180 180 180 180 180 1	833		-	0	7		85	7				MI				13		
Secondary Seco	2		• 6	0.	0		80	9	2							13		MI
DEFICIENCIES T.00	0		0	. 2	ത :		80	\vdash	സ						1	4I		MI
1984 5 51 5 51 5 5 6 6 6 6 7 8 85 8 18 18 18 18 18 18 18 18 18 18 18 18 1	9 0		• • •	0.1	-		80	φ,	-				MI		-			MI
98.4 58.6 5.25 9 90 85 189 2 3.0 MI MJ	0 1		- c	0	י ע		08	-1	77				MI		-	I		MI
March Marc	7/0		D 0	7.	ז עכ		82	∞	7 .				MI		_			
PEFICIENCIES TOTAL STATES SATES STATES STATES STATES STATES STATES STATES STATES STATES STAT	S-OFA		о и	. u	- 0		0 0	א מ	- 0									MI
8-3136 8-	87-030				- 0		0 c		7 (73		
8-3034 59.0 3:25 9 80 85 205 2 3:3 MI	88-313		- 00		7 0		000	J -	7 (,			C.		
7-467 987-350	88-303		6	. 2	9 0) w	4 0	7 0			T.M.	TE			3.7		
987-350 57.6 4.00 7 85 70 185 2 3.0 MI MJ MI MJ MJ MI MJ MJ MI MJ	87-467		7	7	7		0 8	0	2 0			71.7				51		***
982-309 982-309 859.6 5.75 9 85 80 217 1 1.7 MJ	A987-35		7	0	7		7.0	1 0	10				TM			21		Z Z
MINTO 57.9 3.25 9 85 85 203 2 2.7 MI MJ	1982-30		6	. 7	6		8 0	> ~	7 -				I M					u i
148 0367 DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES TO 196 2.00 2.00 2.00 2.75 6 75 80 179 JOR FAULTING VALUES 57.9 29.2 8 13.9 65.0 61 12.4 2 10.11 60.4 100 50.0 6 12.6 60 179	C MINTO		7.	. 2	6		85	10	7				Σ					TH
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES TO 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179 JOR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179	W14		8	. 7	6		85	9	-				M.					
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 17	D036		5	. 5	6		70	6	2			MJ	MJ					MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 17 JOR FAULTING VALUES 56.9 26.2 18 12 9 63 0 61 12 4 2 1 9.11 60 4 110000 1 25 0000 4 60 60 4			ě		i			1										
JOR FAULTING VALUES 56.9 26.2 18 12 9 63 0 61 12 4 2 1 9 11 60 4 1000 12 20 20 12		VALUE	1 W	¥ 6		ME O	EX . A	5 FP	۳ پ	XX C	Ø.	MIX 75-8	(MT)		ນ ນ ແ	_ນ ວ	7 5	
	TOP EATT.	211			, ,		> (1 .) :	0		5	2 . 7 . 00 . 3		2	00	•	

	1 1 1 1	1 6	1 0	1 0				1 4	1 4		1		1 1 1	1	- 1	
VARIETY	STD	MT	K.WT	LG	SM	ASH	PRO	NESS	SCORE	FLR	ASH (d	FLR	CHAR	MILL	MIX	MIX
				90	%	96	96		*	96	96	₩ ₩		*	₽	¢
UTTE 8	 	1 &	1 00		7	1.	5.		4	4	1-4	1 4	5	4	1 -	4
		9	· ω			.1	5.		Н	9	9.	2	5	-	0	۰ ،
ERA	ഗ	7	9.		20	٠,	4.		H	9	ω.	4	2	2	0	· ~
04		9.	7				5.		Н	6	7	5	2	· —		۰ ۳
DA	ഗ	9	7.			8	4		m	4	4	· 4	2 (2	4 4	. ~) 4
302		7.	9		6	8	4		4	0	4.	4	2	· ~	0	٠ 4
302		8	ω			8	4		4	2.	.5	4	2	ক	1	٠ 4
SD3080		9	7.	31	10	. 7	5.		4	ω,	4.	5.	5	2	0	7
807		6	0.		7	8	4			8	. 5	4.	2	2	1.	m
807		7.	8		9	. 8	4			9	.5	4	5	2	7	4
8074		9	9.		4	. 7	4.			2.	4.	3	2	4	0	. 73
8715		2.	2.		16	6.	<u>ب</u>			5.	.5	3	5	2	9	2
8817		2.	9		8	6.	3			4	4.	3	S	4	0	2
881		4	7.			.8	4			4	4	8	5	4	1	n
8832		7	4		10	8	3			9	4.	2.	5	2	0	m
8833		m	7			6.	4			2.	. 5	3	5	2	9	2
65		7	5		6	8	4			1.	4.	4.	2	4	0	~
65		5.	9			6.	5.			0.	4.	5.	5	٣	2.	5
99		ত	4		15	0.	4			ش	.5	4	2	4	-	2
67		0	7			. 7	5.			3	3	4	5	4	-	2
672		2	٠ ٣		12	0.	5.			7.	. 5	4.	2	2	0	2
398A4		4	5.			0.	4.			9.	9.	3	2	2	1.	5
9		-	2.			.1	3			ω	9.	د	2	7	0	4
7-030		4	4			6.	4			1.	.5	4	2	4	7	m
8-313		7	φ		7	8	5.			4.	4.	5.	5	4		ιΩ
8-303		0	~ ~			۳.	9			2.	9.	9	5	m	8	প
7-467		2.	3			0.	4.			9.	9.	~	5	2	6	n
98		2	3		15	0.	4			9.	. 5	4.	5	m	8	2
982-30		7	-i				4.			9	. 7	4.	2	Н	1.	4
-MINT		٠ ص	0			. 2	9			9	.7	9	2	7	1.	m
BW-148		57.2	25.4	33		1.91	16.5	70	বা	63.4	0.50	16.5	5	4	8.09	4
D036		0	-	0	13	0.	4			8	.5	ω.	5	М	7	m

### CARIETY STD ABS TIME CHAR COLOR GRAIN VOL SCONTINE SECONTINE S	TE 86 S 60.13 2.75 7 85 85 178 13 15 15 178 13 15 15 15 15 15 15 15 15 15 15 15 15 15	CRUMB LOAF BAKE GENERAL	
THE SECOND SECON	RES 6 60.3 2.75 7 85 85 178 3 3 18 1 18 1 18 1	VOL SCORE CC ***	KW SM WP EX A65 FP MC MX BA MT DC CC
REAL COLOR	REIS SOLO 4.25 7 80 85 178 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	78 3	
Region R	RAULTISES S 60.0 4.7.5 7 80 85 197 1 80 85 197 2 190 4 80 80 80 197 2 190 80 80 80 80 80 80 80 80 80 80 80 80 80		IW
State Stat	NAME OF COLOR 1.75	.1 8/	MJ MJ MJ MJ EM EM EM EM
Second	REQUIS REQUIS	90 2 1.	MG MG MI MG
1905 1906	National Color	80 1 1.	M IM CM CM CM CM CM CM
1965 1965	13055 60.5 3.75 9 80 80 193 3 13056 61.8 3.75 9 80 80 195 3 13080 60.5 5.25 9 80 85 190 3 18072 61.1 4.25 9 80 85 190 3 18073 61.4 4.75 7 80 80 183 1 175 60.3 5.00 7 80 85 172 2 18189 61.1 3.50 9 85 175 1 18180 61.1 3.50 9 85 175 1 1818334 60.0 4.00 7 80 85 118 2 181834 65.2 4.00 7 80 85 193 3 188320 65.2 4.00 7 80 85 193 3 188334 65.2 4.00 7 80 85 194 3 19884 61.4 5.00 7 80 85 194 3 19884 61.4 5.00 7 80 85 194 3 1988-3034 61.4 5.00 7 80 85 199 3 1988-3034 61.4 5.00 7 80 85 199 3 1988-3034 61.4 2.50 5 80 85 190 2 190 3 190	88 4 3.	X
30056 60.18 3.75 9 80 85 190 3 3.7	13056 61.8 3.75 9 80 85 190 3 13080 60.5 5.25 9 80 75 195 3 13080 60.1 4.75 7 80 80 180 3 18074 60.3 5.00 7 80 85 172 2 18175 88170 60.1 1.75 2 80 80 85 172 2 18181 88130 60.0 4.00 7 80 85 195 3 181820 60.1 4.25 9 80 85 178 2 1818334 60.2 3.00 5 80 85 195 3 1818334 655 60.1 4.25 9 80 85 194 3 181834 655 60.1 4.75 7 80 85 193 3 181834 657 65.1 4.25 9 80 85 194 3 181834 61.4 5.00 7 80 85 194 3 181834 61.4 5.00 7 80 85 194 3 181834 61.4 5.00 7 80 85 194 3 181834 61.4 5.00 7 80 85 194 3 181834 61.8 3.50 9 85 199 3 190 2 1917 3 19184 60.8 5.00 7 80 85 199 3 190 2 19185 19187 19186 19187 19188 19189	93 3 3.	MI MI
1990 1990	13080 13	90 3 3.	Σ
1907 1907	8072 8072 8073 8074 8073 8074 8073 8074 8074 8074 8074 8074 8074 8074 8077 8076 8077 8076 8077 8076 8077 8076 8077 8076 8077 8077	95 3 3.	IM IM
19973 1997	8073 8073 8074 8073 8074 8074 8074 8074 8074 8074 8074 8074	90 3 3.	I.W.
1974 61.03 5.00 7 80 85 172 2 3.3 H	8074 8074 8074 8074 8074 80715 81715 81817 81817 81818 81817 81818 81818 81819	80 3 3.	IW DW I
11.50 61.0 2.50 7 80 80 183 2 1.7 MJ MI MJ MI MJ MI	881189 881189	72 2 3.	
98170 60.8 1.75 2 80 85 175 1 2.3 MJ MI	88170 88170 88189	83 2 1.	MI MJ MI MJ MI MI MI MI MI MI
88189 60.0 4 3.50 9 85 20.2 3 3.3 MJ MI	88189 88189 88189 88189 88189 88189 88189 88189 88189 88189 88189 881834 60.0 4.00 7 80 85 182 2 881834 60.5 4.00 7 85 85 178 2 857 65.1 4.25 9 80 85 193 3 857 65.2 3.00 5 885 85 194 3 857 60.8 4.75 7 85 85 194 3 8584 60.8 4.75 7 85 85 194 3 8584 60.8 4.75 7 80 85 201 2 8-3136 8-31	75 1 2.	MI MI MI MJ MJ MJ
88324 66.0 4.00 7 80 85 182 2 2.3 MI	88320 88320 88334 8655 860.2 3.00 5 80 85 178 2 88334 6655 660.5 4.00 7 85 85 195 3 661.4 5.50 7 80 85 193 3 672 672 672 674 662.8 3.50 9 85 85 194 3 398A4 661.4 5.00 7 85 85 194 3 398A4 660.8 5.00 7 85 85 194 3 7-0306 8-0542 60.8 5.00 7 80 85 198 3 7-467 8-3136 61.8 3.50 9 85 85 198 3 8-3034 61.4 5.00 7 80 85 196 2 8-3034 61.8 3.50 9 80 85 215 3 8-3034 61.4 4.50 5 80 85 197 2 8-3034 00.8 2.75 5 80 85 197 2 8-3186 00.8 2.75 5 80 85 197 2 8-3187 00.8 2.75 5 80 85 197 2 8-3187 00.8 2.75 5 80 85 197 2 8-3188 00.8 5.00 7 80 85 197 2 8-3188 00.8 5.00 7 80 85 197 2 8-3188 00.8 5 197 2	02 3 3.	W
8834 56.2 3.00 5 80 85 178 2 2.0 MJ MI MJ MJ MJ MI	88334 56.2 3.00 5 80 85 178 2 65.5 60.5 4.00 7 85 85 195 3 65.7 60.1 4.25 9 80 85 195 3 65.7 61.4 5.50 7 80 85 195 3 66.2 61.8 3.50 9 85 85 194 3 60.8 6.054 60.8 5.00 7 80 85 194 3 60.054 60.8 5.00 7 80 85 109 2 61.4 5.00 9 80 85 201 2 7 7 80 85 201 2 7 80 85 80 85 201 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	82 2 2.	MI MI MI
Color	655 665 667 667 668 671 661.4 5.50 7 80 85 195 3 667 662 661.8 3.50 9 85 85 194 3 672 661.8 3.50 9 85 85 194 3 674 661.8 3.50 9 85 85 194 3 674 661.8 5.00 7 80 85 198 3 7-0306 61.8 5.00 7 80 85 198 3 7-467 8-3136 61.8 3.50 9 80 85 215 3 7-467 8-3034 61.8 3.50 9 80 85 210 3 8-3034 61.4 4.50 5 80 90 190 2 882-309 61.4 4.50 5 80 85 197 3 0367 DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 18 13.9 60.6 .57 12.9 3 00 RAULTING VALUES 56.9 20.0 18 12.4 2 00 RAULTING VALUES 56.9 20.0 18 112.4 20.0 18 112.4 20.0 18 112.4 20.0 18 112.4 20.0 18 112.4 20.0 18 112.4 20.0 18 112.4 20.0 18 11	78 2 2.	MI MJ MJ MJ MJ MJ MJ M
657 65.1 4.25 9 80 85 202 4 3.3 MJ MI	657 662 662 662 662 663 661.4 5.50 7 80 85 202 4 661.8 3.50 9 85 85 193 3 671 671 671 672 673 674 675 677 677 677 678 678 679 679 679 670 670 670 670 670 670 670 670 670 670	95 3 3.	IM
Secondary Seco	662 662 662 662 661.4 5.50 7 80 85 193 3 671 671 661.8 3.50 9 85 85 194 3 672 661.8 3.50 9 85 85 194 3 398A4 661.4 5.00 9 85 80 212 3 60.8 5.00 7 80 85 198 3 7-0306 61.8 3.50 9 80 85 201 2 8-3136 61.8 3.50 9 80 85 201 2 8-3136 61.8 3.50 9 80 85 201 2 8-3034 63.7 2.75 9 80 85 215 3 61.4 4.50 5 80 90 197 3 -MINTO 61.4 4.50 5 80 85 190 2 61.4 2.50 5 80 85 190 2 0367 DEFICIENCIES TW KW KW KW KW KW KW KW KW KW	02 4 3.	MI MI
671 61.8 3.50 9 85 85 188 3 3.7 MJ	671 672 672 672 672 672 672 672 672 672 672	93 3 3.	MI
Secondary Seco	672 672 672 672 674 675 7 85 85 194 3 398A4 61.4 5.00 7 80 85 198 3 6-0542 60.8 60.8 5.00 7 80 85 198 3 7-0306 8-3136 61.8 8-3136 8-316 8	88 3 3.	
98.44 61.4 5.00 9 85 80 212 3 2.7 MJ MI MJ MJ MJ MJ MJ MI MJ	398A4 61.4 5.00 9 85 80 212 3 6-0542 60.8 5.00 7 80 85 198 3 7-0306 8-3136 8-3109 8-3136 8-316 8-31	94 3 2.	MI MJ
Colored State Colored Stat	60-0542 60.8 5.00 7 80 85 198 3 7-0306 57.6 5.00 7 80 85 201 2 8-3136 61.8 3.50 9 80 85 210 3 8-3136 63.7 2.75 9 80 80 196 2 8-3034 63.7 2.75 9 80 80 196 2 987-350 58.6 4.00 5 80 90 197 3 -MINTO 61.4 2.50 5 80 85 190 2 -148 60.8 2.75 5 80 85 190 2 0367 DEFICIENCIES TW KW SM WP EX A65 FP MC DEFICIENCIES TW KW SM WP EX A65 FP MC DEFICIENCIES 57.9 23.0 8 13.9 60.6 .57 12.9 3 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2	12 3 2.	IM LM IM IM
7-0306 57.6 5.00 7 80 85 201 2 3.0 MJ MI 8-3136 61.8 3.50 9 80 85 210 3 3.7 MJ MI 8-3136 61.8 3.50 9 80 85 210 3 3.7 MJ MI	7-0306	98 3 1.	MI MJ MI MJ MJ MJ
8-3136 61.8 3.50 9 80 85 210 3 3.7 MI MJ MI MI MI MJ MI	8-3136 61.8 3.50 9 80 85 210 3 8-3034 63.7 2.75 9 80 85 215 3 7-467 7-467 987-350	01 2 3.	MI
8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3034 8-3035 8-305 8-	8-3034 63.7 2.75 9 80 85 215 3 7-467 59.6 3.75 5 80 80 196 2 887-350	10 3 3.	
7-467 59.6 3.75 5 80 80 196 2 2.0 MJ MJ MI	7-467 7-467 987-350 987-350 987-350 987-350 988-6 4.00 5 80 80 190 2 982-309 61.4 4.50 5 80 90 197 3 -MINTO 61.4 2.50 5 80 85 190 2 -148 60.8 2.75 5 80 85 182 2 0367 DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 5 1 1 12.4 2	15 3 3.	M DM IM
987-350 987-35	987-350	96 2 2.	M IM EM EM IM EM
982-309 61.4 4.50 5 80 90 197 3 2.0 MJ MI MJ MJ MJ MJ MI	982-309 61.4 4.50 5 80 90 197 3 -MINTO 61.4 2.50 5 80 85 190 2 -148 60.8 2.75 5 80 85 182 2 0367 57.9 5.50 7 80 85 197 2 DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 * 1 = NO DEFICE 2 - FITTE PROMISE 2 - SOME PROMISE 4 - SOME PROMI	90 2 2.	M I M I M I M I M I M I M I M I M I M I
-MINTO 61.4 2.50 5 80 85 190 2 2.0 MJ MI MI MJ MJ MI	-MINTO 61.4 2.50 5 80 85 190 2 -148 60.8 2.75 5 80 85 182 2 0367 57.9 5.50 7 80 85 197 2 DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 * 1=NO DEFICE OF TRAFF PROMISE 2-50.0 18 12.9 58.6 .61 12.4 2	97 3 2.	MI MJ MJ MJ
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 THAT IN DEPARTS 56.9 20.0 18 12.9 58.6 .61 12.4 2	90 2 2.	IM I
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2	82 2 3.	MIMIMI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2	97 2 2.	MI MI MI MI MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	DEFICIENCIES TW KW SM WP EX A65 FP MC NOR FAULTING VALUES 57.9 23.0 8 13.9 60.6 .57 12.9 3 JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2		
JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	JOR FAULTING VALUES 56.9 20.0 18 12.9 58.6 .61 12.4 2	65 FP MC MX BA 57 12.9 3 2,7,8 61.	MIX TIME (MT) DC CC CG L 5.75-8.00 2.00-2.75 6 75 80 16
		1 12.4 2 1,9-11 60.	UNDER 1.75 OVER 8.00 4 50 50 15

	I ! ! !	4554		1 5		taum.	Tara m	1 0			1 :	1 .		1 1	10	1 1
VARIETY	STD			LG	SM	ASH	PRO	NESS	SCORE	EXT	ASH (4)	FLK	CHAR	SCORE	MIX	MIX
		#/BU		96	96	46	96		*	₩	90	æ		*	1 26	
UTT	ស	7.	9		4.	1 6	5.		4	9.	1 .	4	5	4	2.	3
CHRIS		7.	3.		7	8	5.		4	2.	4	4	2	m	. 6	4
ERA	ഗ	2.	0		14	۲.	5.		m	7.	9	4	2	m	0	4
MARQUIS		4	1.		6	0.	m		2	-	9 •	2.	· ιΩ) g=+	9	• (*)
_4	လ	5.	47.		ω	6.	5.		m	-	5	4	<u>ب</u>	2 1	0) LC
5		ω	7.		Н	ω.	5		4	5.	4	5	Ŋ	4	-	4
9		7.	7.		က	6.	5.		4	5.	9	4	ۍ ت	4		4
SD3080		57.4	23.8	20	10	1.92	15.7	7.0	ব্য	56.0	0.51	15.0	2	্ বা	60.8	4
7		4	2.		8	۲.	5.		က	9	9.	4.	2	m	1	4
7		5.	2.		9	0.	5.		က	5.	9 •	4	5	m	2.	. 73
174		9	5		2	6.	5.		က	9.	.5	د	Ŋ	2	7.	4
715		-	0		15	0	4		က	5	.5	4	2	2	7.	2
317			3			0.	4		က	8	. 5	~	5	4	9.	2
E :		4	7.		က	9	5.		ო	9	.5	4	5	4	0	4
332		9	4		ω	6.	4.		m	œ	. 5	3	2	4	9	m
333		6	٠ ٣		7	. 7	4		4	5.	4.	3	2	4	7.	2
		ω	3		7	6.	5.		4	4.	. 5	5.	2	4	2.	4
		ۍ	Ω.		4	0.	5.		m	1.	.5	5.	2	₽¹	Ξ.	4
10 1		6	6		2	8	5.		4	4.	. 5	4.	2	4	7	9
Poor 1		7	4		2	<u>-</u>	5.		4	9	. 5	5.	2	4	4	2
12		ω	5		2	8	4		か	8	.5	3	2	4	0	4
98A4		4	4		ω	۲.	5.		m	7.	9.	4	2	m	ω.	5
- 1		4	٠ د		10	6.	4		m	7.	9.	د	2	m	0	ゼ
-030		4	ص		10	-	5.		m	0.	.5	5.	Ŋ	4	5.	9
-313		7	9	26	7	6.	5.		4	φ ω	. 5	5.	2	4	0	4
-303		5	₹ •			۲.	9		m	0.	.5	9	2	4	7	ゼ
-467		e m	٠ ٣		12	٦.	4.		m	4.	9.	3	5	m	0	5
7-350		4	5.			. 2	5.		m	9	.5	5	5	4	0	4
I982-3		4	4.		7	6.	5.		c	1.	.5		2	2	9	4
C-X		9	&			φ.	5		3	0.	. 5		5	4	0	m
3		ω .	7	33	7	6.			4,	7.	. 5		5	4	-	m
03		ਹਾਂ ਹਾ	귝.		7	0.			m	4	.5		Ŋ	ক	8	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=CROOKSTON NURSERY=UNIFORM

THE GARS TIME CHAR COLOR GRAIN VOL. SCORE SCORE TWIN SHIP WP EX A65 FP	E 86 S 62.1 E 86 S 62.1 S 60.3 JIS S 60.8 56 61.4 56 61.4 73 62.1 74 57.9 170 59.0					1	SCORE ***	SCORE ***		S	A6	FP MC	MX BA	MT	DC CC	CG LV
THE 86 S 62.1 3 0.0 9 75 85 215 4 4.0 WILLIAM THE 86 S 66.2 4 0.0 9 75 85 207 3 3.3 WILLIAM THE WILLIA	E 86 S 62.1 S 61.3 JIS S 60.3 55 S 60.8 56 61.4 80 61.4 72 61.4 73 62.1 14 57.9		, , , , , , , , , , , , , , , , , , ,		8 8 8 8 5 5 5 5				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1		1				
15	S 61.3 JIS S 60.3 56.2 56 61.8 80 60.8 72 61.4 73 62.1 74 57.9 170 57.9	.50 .00 .00 .00 .25 .00 .50 .25			8 8 2 2 2	-	4		X							1
Second	S 60.3 56.2 56.2 56.2 56.2 56.3 56.3 50.8 72 61.4 61.4 73 74 74 57.9 170 57.9				2 2 C	1 0	י מ	•	T X		12				Ξ:	
9018 56.2 4.75 9 80 85 202 2 1.7	JIS S 60.8 55 60.8 56 61.4 80 60.8 72 61.4 73 62.1 74 57.9 170 57.9				85	0	, ,	•		>			ב כ	-4 1	E :	
\$ 60.8 \$ 5.00 \$ 75 85 212 \$ 2.7 \$ 70 \$ 71 \$ 71 \$ 72 \$ 73 \$ 85 212 \$ 3 \$ 3.7 \$ 70 \$ 71 \$ 71 \$ 72 \$ 85 212 \$ 3 \$ 3.7 \$ 70 \$ 71 \$ 71 \$ 72 \$ 85 212 \$ 3 \$ 3.7 \$ 70 \$ 71 \$ 71 \$ 72 \$ 72 \$ 73 \$ 73 \$ 73 \$ 74 \$ 74 \$ 75 \$ 75 \$ 75 \$ 75 \$ 75 \$ 75	\$55 \$60.8 \$60.8 \$60.8 \$00.8 \$7.2 \$7.9 \$17.0 \$17.0 \$17.0				כככ	1 0	10	•		HI X			בן ל	,	M M	
055 61.8 4.75 9 75 80 220 3 3.7 1150 61.4 4.25 9 75 80 224 3 3.7 1150 074 61.8 4.75 9 75 80 224 3 3.7 1150 074 075 61.4 4.25 9 70 85 200 4 2 3.3 17 175 175 80 224 3 3.7 175 80 204 2 2.3 175 175 80 204 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 80 205 2 2.3 175 175 175 175 175 175 175 175 175 175	055 056 056 072 072 073 074 57.9 8170 59.0		1 0 0 0 0 0 0 0 1		N C) -	۷ ۳	•		E IEX		I E	E Z	7 .	2	
056 61.4 4.25 9 70 85 228 3 3.7 MI	056 080 072 073 073 074 57.9 8170 59.0				200	40	٦ ~	•	SE	T L			Ξ;	-	Ĭ:	!
000	080 072 073 073 074 57.9 1150 57.9 8170 59.0	.00 .25 .00 .25			8.5	10	n (*		7		M		בּב		I E	Ξ
072	072 073 62.1 074 57.9 7150 8170 59.0	. 25 . 50 . 25 . 25	തെതെ		80	30) ~	•	T E	- X	111		2 7		H	1
173 62.1 5.00 9 70 85 200 4 3.3 MJ MJ MJ MJ MJ MJ MJ M	073 62.1 074 57.9 7150 57.9 8170 59.0	.00.50.25	0 0 1		90	3	n		T E	I E	L.M.		Z Z		ZZ	Ξ
7150 57.9 5.50 9 65 80 214 2 2.3 HJ MI MI MJ MJ MI MJ MJ MI MJ MI MJ MI MJ MI MJ MI MJ	074 57.9 7150 57.9 8170 59.0	.25	6		85	0	4		ĽΣ	1	Σ			1	T E	
1150 57.9 3.25 7 70 80 206 2 2.3 MJ MI MI MJ MJ MI MJ	7150 57.9 8170 59.0	.25	-		80	-	2		M				M	1	MI	MT
8170 69.0 2.25 5 75 85 193 1 2.7 MJ MI MI MI 8189 60.0 4.50 9 70 80 215 2 3.0 MJ MI MI 8189 60.0 4.50 9 75 85 193 1 3.0 MJ MI MI 83.4 62.5 4.75 9 70 80 223 4 4.0 MJ MI MI MI 85.7 61.4 4.75 9 70 80 223 4 4.0 MJ MI MI MI 85.7 61.4 4.50 9 85 85 229 3 3.3 MJ MI MI MJ MI 98.4 60.0 5.00 9 85 80 220 3 3.3 MJ MI MI MJ MJ MI MJ MJ MI MJ	8170 59.0	.25	7		80	0	2						LM IM		Ä	I E
8189 66.0 4.50 9 70 80 215 2 3.0 MJ MI 8320 59.6 4.00 9 75 85 207 2 3.0 MJ MI 8334 57.6 3.00 7 75 85 207 2 3.0 MJ MI 557 66.2 4.75 9 70 80 223 4 4.0 MJ MI 64.4 4.50 9 80 80 228 3 3.3 MJ MI 72 66.5 5.00 9 85 218 2 3.3 MJ MI 73 98A4 66.0 5.25 9 80 80 228 3 3.7 MJ MI 74 66.0 5.25 9 75 85 229 2 3.3 MJ MI 75 85 229 2 3.3 MJ MI 76 66.3 5.25 9 75 85 229 2 3.3 MJ MI 77 850 66.0 5.75 9 70 85 224 1 2.3 MJ MI 78 85 211 2.3 MJ MI 79 75 85 224 1 2.3 MJ MI 79 75 85 224 1 2.3 MJ MI 70 80 228 2 3.0 MJ MI 71 864 8 6.25 9 75 85 217 2 3.0 MJ 71 86 6.25 9 85 80 207 1 2.3 MJ 71 86 6.25 9 85 80 207 1 2.7 MJ 72 86 6.25 9 85 80 207 1 2.7 MJ 73 74 MJ 74 86 6.25 9 85 80 207 1 2.7 MJ 74 75 75 75 75 75 75 75 75 75 75 75 75 75			5		85	9	٦	•					LM IM	J MI	MI MI	MI
8320 59.6 4.00 9 75 85 207 2 3.0 MJ MI 8334 62.5 4.75 9 70 85 193 1 3.0 62 61.4 4.75 9 70 85 229 3 3.3 MJ MI 62 61.4 4.75 9 70 85 229 3 3.3 MJ MI 71 64.4 4.50 9 80 80 228 4 4.0 MJ MI 72 66.5 5.00 9 80 80 208 3 3.7 MJ MI 73 66.0 5.25 9 75 85 211 2 2.7 MJ MI 74 65.1 4.75 9 75 85 211 2 2.7 MJ MI 75 85 229 2 3.3 MJ MI 75 86.0 5.0 9 75 85 229 2 3.3 MJ MI 76 60.0 5.75 9 70 85 224 1 2.3 MJ MI 77 60.0 5.0 9 70 85 224 1 2.3 MJ MI 77 60.0 5.0 9 70 85 217 2 3.0 MJ MI 78 75 76 85 217 2 3.0 MJ MI 78 75 76 85 217 2 3.0 MJ MI 78 75 77 86 85 217 2 3.0 MJ MI 78 78 85 217 2 3.0 MJ MI 78 78 85 217 2 3.0 MJ MI 78 78 86 228 2 3.0 MJ MI 78 78 78 78 78 78 78 MJ 78 78 78 78 78 MJ 7	0.09 60.0	.50	6		80	$\overline{}$	2		MJ							MI
8334 57.6 3.00 7 75 85 193 1 3.0 62.5 4.75 9 70 86 223 4 4.0 61.4 7.75 9 70 85 229 3.3 71 62.6 61.4 4.75 9 70 85 229 3.3 72 61.4 7.75 9 70 85 229 3.3 72 64.4 4.50 9 80 80 228 4 4.0 72 65.1 6.50 9 80 80 220 3 3.7 72 65.1 4.75 9 75 85 211 2 2.7 73 65.1 4.75 9 75 85 211 2 2.7 74 75 85 229 2 3.3 77 75 75 85 229 2 3.3 77 75 75 85 229 2 3.3 77 75 75 85 229 2 3.3 77 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 75 85 229 2 3.3 75 76 77 78 77 78 78 78 78 78 78 78 78 78 78	8320 59.6	00.	6		85	0	2		MJ	MI			MJ	D	M	
55 62.5 4.75 9 70 80 223 4 4.0 57 61.4 4.75 9 75 85 229 3 3.3 70 61.4 4.75 9 76 85 229 3 3.3 71 60.5 5.00 9 85 80 228 4 4.0 72 60.5 5.00 9 85 80 228 3 3.0 73 60.6 5.1 6.50 9 80 80 208 3 3.0 74 60.0 5.25 9 75 85 211 2 2.7 75 85 229 2 3.3 76 85 224 1 2.3 77 85 224 1 2.3 77 85 224 1 2.3 77 85 224 1 2.3 77 85 224 1 2.3 77 85 224 1 2.3 77 85 224 1 2.3 77 87 87 87 87 87 78 85 211 2 2.3 78 85 224 1 2.3 78 85 224 1 2.3 78 85 213 1 2.0 78 87 88 88 88 88 88 88 88 88 88 88 88 8	8334 57.6	00.	7		85	9	7						UM IM	1	MI	MI
61.4 4.75 9 75 85 229 3 3.3 MJ MI	55 62.5	.75	6		80	2	4								MI	MI
62. 61.4 7.75 9 70 85 218 2 3.3 7. 66.4 4.50 9 80 80 228 4 4.0 MI MI MJ	57 61.4	.75	6		85	2	m		MJ		MI		Σ	1	MI	
72 64.4 4.50 9 80 8228 4 4.0 MI MI 72 60.5 5.00 9 85 80 220 3 3.7 60.5 5.00 9 85 80 220 3 3.7 60.6 5.25 9 75 85 211 2 2.7 60.0 5.25 9 75 85 221 2 2.7 60.0 5.25 9 75 85 229 2 3.3 MI MJ	62 61.4	.75	0		85	7	2						MI	I WI	MI	
98A4 60.5 5.00 9 85 80 220 3 3.7 MJ MI MJ MI MJ MI MJ MI MJ MJ MI MJ MJ MI MJ	7.1	.50	0		80	7	4		MI		MI					MI
598A4 65.1 6.50 9 80 80 208 3 3.0 MJ MI MJ 6-0542 66.0 5.25 9 75 85 211 2 2.7 MJ MI MJ 7-0306 65.1 4.75 9 75 85 211 2 2.7 MJ MI MJ 8-3136 60.3 5.25 9 75 85 229 2 3.3 MJ MI MJ 7-467 60.0 5.75 9 70 85 224 1 2.3 MJ MI MJ 87-350 60.0 5.75 9 70 80 228 2 3.0 MJ MI MJ MI MJ MI MJ 87-350 60.0 5.75 9 80 85 217 2 3.0 MJ MI MJ MINTO 60.0 3.00 9 75 85 217 2 3.0 MJ MI MJ	5.09	00.	o (80	2	m	•					MI	I		MI
60.042 60.0 5.25 9 75 85 211 2 2.7 MJ MI MJ 7-0306 65.1 4.75 9 75 85 229 2 3.3 MI MJ MI 8-3136 60.3 5.25 9 75 85 229 2 3.3 MI MI MI 8-3034 57.3 3.50 9 75 85 224 1 2.3 MJ MI MJ 7-467 60.0 5.75 9 70 80 228 2 3.0 MJ MI MJ 87-350 60.0 5.75 9 80 85 217 2 3.0 MJ MJ MI MINTO 60.0 3.00 9 75 85 217 2 3.3 MJ MI 148 61.4 3.50 9 85 80 207 1 2.7	348A4 63.1	.50	0		80	0	m		MJ	MI	CM			MI		MI
8-3136 60.3 5.25 9 75 85 229 2 3.3 MI	60.0	.25	ത ദ		85	-	7	٠	MJ	MI	MJ		MJ	J	MI	
8-3136 60.3 5.25 9 75 85 229 2 3.3 MI MJ	1-0306 1-0306	. 75	י ת		07.	~	4.	•	MJ	MI					M	MI
7-467 60.0 5.75 9 70 85 224 1 2.3 MJ MI MJ 87-350 60.0 5.75 9 70 80 228 2 3.0 MJ MI MJ 982-309 60.0 5.75 9 80 85 213 1 2.0 MJ MI 982-309 60.0 3.00 9 75 85 217 2 3.0 MJ 148 61.4 3.50 9 80 80 196 2 3.3 0367 DEFICIENCIES TW MM MJ MI MJ MJ MI MJ	8-3136 60.3	. 25	ກ (82	2	7	•	MI				MJ	ר	MI	
7-467 87-350 87-350 60.0 5.00 9 70 80 228 2 3.0 MJ MI 982-309 982-309 982-309 60.0 3.00 9 75 85 217 2 3.0 MJ MINTO 61.4 3.50 9 80 80 196 2 3.3 985 80 207 1 2.7 MJ MINTO DEFICIENCIES TW KW SW MD SY ME EN MY	8-3034	.50	5		85	3	2	•	MJ				MJ	1	MI	
87-350 60.0 5.00 9 70 80 228 2 3.0 MJ MI 982-309 59.0 5.75 9 80 85 213 1 2.0 MJ MI 982-309 60.0 3.00 9 75 85 217 2 3.0 MJ MJ MI 61.4 3.50 9 80 80 196 2 3.3 MJ MI 0367 58.6 6.25 9 85 80 207 1 2.7 MJ MI MI	7-467	.75	6		85	2	П	•	MJ	MI	CM		Ĭ	JMI	MI	
982-309 59.0 5.75 9 80 85 213 1 2.0 MJ MJ MI MINTO 60.0 3.00 9 75 85 217 2 3.0 MJ MJ MI 48 61.4 3.50 9 80 80 196 2 3.3 MJ MI MJ MI 61.4 3.50 9 85 80 207 1 2.7 MJ MJ MI DEFICIENCIES TW KM SW MP TO THE COLUMN	87-350 60.0	00.	6		80	2	2		MJ	MI			MJ	J	MI	MI
C-MINTO 60.0 3.00 9 75 85 217 2 3.0 MJ W148 61.4 3.50 9 80 80 196 2 3.3 MJ MI	982-309 59.0	.75	6		85	H	-1		MJ				DM	JMI		
W148 61.4 3.50 9 80 80 196 2 3.3 MI D0367 58.6 6.25 9 85 80 207 1 2.7 MJ MI MI DEFICIENCIES THE WAY NOT THE WAY NO	C-MINTO 60.0	00°	. 6		85	-	2		MJ				LM.		M	
D0367 58.6 6.25 9 85 80 207 1 2.7 MJ MI	W148 61.4	.50	6		80	5	2				MI		Σ	Н		MI MI
AND	D0367 58.6	. 25	6		80	0	-		MJ		MI		MJ	JMI		H
THE TAX SEE THE SEE TH																
PERICLEMENTES IN NW SM WE EX ABS FP MC MX BA MIX TIME (MT) REAULTING VALUES 57.9 21.6 8 13.9 53.9 .57 12.9 3 2.7.8 61.9 5 75-8 00 2 00-2 75	DEFICIENCIES TW FAULTING VALUES 57.	КW 1.6	13 12	EX 9 53.	·	FP	MC 3	MX BA	MIX 75-8	TIME	1 2 7	DC	25	CG	10	
R FAULTING VALUES 56.9 18.6 18 12.9 51.9 .61 12.4 2 1.9-11 60.4 HINDER 1 75 OVER 8 00	RAULTING VALUES 56.	8 . 6	8 12	9 51.	9	2	1	9-11 60	٠, -	7.5	2 0	0 4	2 0	0 4	187	

0
NTC
4
-
Σ
7
-
\mathbf{O}
A.
11
>1
ET
1
\blacksquare
VAR
7
1
>
- 1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	56.0000000	4.1755239	49.0000000	59.7000000	17.4350000	7.4562927
K WT	27.3200000	3.7652357	20.7000000	30,000000	14.1770000	13,7819755
LG	39.4000000	12.7593103	22.0000000	56,0000000	162.8000000	32.3840364
SM	3.0000000	4.5276926	0	11,0000000	20,5000000	150.9230856
WHTASH	1.9000000	0.2131901	1.6800000	2.2500000	0.0454500	11.2205293
WHT PRO	16.1600000	0.5319774	15.3000000	16.6000000	0.2830000	3.2919396
HARD	68.2000000	6.8337398	60,0000000	77.0000000	46.7000000	10.0201464
EXTR	59.7400000	2.2311432	56.0000000	61.9000000	4.9780000	3.7347560
FL_ASH	0.5500000	0.0984886	0.4400000	0.7100000	0.0097000	17.9070142
FL PRO	15.7400000	0.7987490	14.4000000	16,3000000	0.6380000	5.0746444
MIXO	2.8000000	0.4472136	2.0000000	3.0000000	0.2000000	15.9719141
BAKE ABS	29,6000000	1.5049917	57.9000000	61,4000000	2,2650000	2.5251538
LOAF VOL	203.8000000	10.9407495	190.0000000	217.0000000	119.7000000	5.3683756

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.6600000	2.2345022	57.6000000	63.1000000	4.9930000	3.7453942
KWT	30.8600000	3.7340327	26.9000000	36.1000000	13.9430000	12,0999114
LG	46.0000000	13.7295302	31.0000000	65.0000000	188.5000000	29.8468048
SM	2.8000000	2.7748874	0	7.0000000	7.7000000	99.1031209
WHTASH	1.7420000	0.1572260	1.5800000	1.9600000	0.0247200	9.0256000
WHT PRO	15.3400000	0.7092249	14.3000000	16.1000000	0.5030000	4.6233698
HARD	76.2000000	7.1902712	70.0000000	88.0000000	51,7000000	9.4360514
EXTR	63.1400000	2.5637863	59.1000000	65.7000000	6.5730000	4.0604787
FL_ASH	0.4380000	0.0109545	0.4200000	0.4500000	0.000120000	2.5010162
FL_ PRO	14.5800000	0.3563706	14.1000000	15.1000000	0.1270000	2.4442428
MIXO	2.8000000	0.8366600	2.0000000	4.0000000	0.700000	29.8807152
BAKE_ABS	60.9800000	0.8467585	60.000000	62.1000000	0.7170000	1.3885840
LOAF VOL	194.2000000	14.6184815	178,0000000	215.0000000	213.7000000	7.5275394

VARIETY=BW148 -

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	59.5000000	1.7421251	57.2000000	61.9000000	3.0350000	2.9279414
K WT	29.4400000	2.8814927	25.4000000	32.3000000	8,3030000	9.7876789
re .	42.0000000	8.4261498	33.0000000	51,0000000	71.0000000	20.0622614
SM	2.4000000	3.2863353	0	8.0000000	10.8000000	136.9306394
WHT ASH	1.8540000	0.0763544	1.7500000	1.9300000	0,0058300	4.1183623
WHT PRO	16.4800000	0.3768289	15.9000000	16.9000000	0.1420000	2,2865830
HARD	74.4000000	7.4363970	64.0000000	83.0000000	55,3000000	9.9951572
EXTR	62,1000000	2.7230498	57.3000000	63.9000000	7.4150000	4.3849433
FL ASH	0.4940000	0.0482701	0.4400000	0.5700000	0.0023300	9.7712699
FL. PRO	16.1400000	0.7635444	14.8000000	16.7000000	0.5830000	4.7307582
MIXO	3.0000000	0.7071068	2.0000000	4.0000000	0.5000000	23.5702260
BAKE ABS	60.3000000	1.1704700	58.6000000	61.4000000	1.3700000	1.9410779
LOAF VOL	195.4000000	12.6214104	182.0000000	215.0000000	159.3000000	6.4592684

VARIETY=CHRIS	
VARIETY=CHRIS	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
35	55.5000000	3.4154063	49.8000000	58.7000000	11.6650000	6.1538852
LM.	22.2600000	2.5402756	18.0000000	24.2000000	6.4530000	11.4118400
97	18.0000000	4.0520192	11.0000000	21.0000000	16.5000000	22.5667733
SM	10.0000000	9.1923882	2.0000000	25,0000000	84.500000	91.9238816
WHTASH	1.8260000	0.2199545	1.5600000	2.1400000	0.0483800	12.0457032
WHT PRO	15.6800000	0.4969909	15.3000000	16.4000000	0.2470000	3,1695851
HARD	64.0000000	4.3011626	59.0000000	70,0000000	18,5000000	6.7205666
EXTR	58.1000000	4.8862051	52.9000000	_	23,8750000	8.4099915
FL_ASH	0.5300000	0.0827647	0.4700000	0.6700000	0.0068500	15.6159862
FL_PRO	15.2600000	0.8590693	14.2000000	16.3000000	0.7380000	5.6295496
MIXO	3.0000000	0.7071068	2.0000000	4.0000000	0.500000	23.5702260
BAKE_ABS	60.1800000	1.2316655	58.2000000	61,3000000	1.5170000	2.0466360
OAF VOL	192.6000000	11.7601020	178,0000000	207.0000000	138,3000000	6.1059720

5
230
2
œ
98
-
\[\]
>
E
田田
_
AR
d
5

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	51.6600000	3.1816662	47.8000000	54.5000000	10.1230000	6.1588584
K_WT	23.5200000	2.7334959	20.2000000	26.0000000	7.4720000	11,6220065
LG	18.2000000	8.2583291	7.0000000	28.0000000	68,2000000	45.3754348
SM	9.8000000	7.1902712	3.0000000	18,0000000	51,7000000	73.3701143
WHT ASH	2.0260000	0.2615913	1.7900000	2.4100000	0.0684300	12.9117120
WHT PRO	15.0000000	0.3937004	14.4000000	15.4000000	0,1550000	2.6246693
HARD	53.2000000	4.2071368	49.0000000	60.0000000	17.7000000	7.9081519
EXTR	54.7400000	4.6203896	51,2000000	62,0000000	21,3480000	8,4406094
FL_ASH	0.6020000	0.0973139	0.5100000	0.7200000	0.0094700	16.1651038
FL PRO	14.7600000	0.3847077	14.3000000	15,2000000	0.1480000	2,6064206
MIXO	4.0000000	0	4.0000000	4.0000000	0	0
BAKE ABS	59.4400000	1.3667480	57,6000000	61,4000000	1,8680000	2.2993741
LOAF VOL	203.4000000	10.7377838	194.0000000	217.0000000	115,3000000	5.2791464

- 1
_
~
α
回
- 11
\rightarrow
ET
H
K
K
>

TW EMPT 53.0000000 3.9198214 47.5000000 58.4000000 7.5280000 7.5280000 7.5280000 7.5280000 7.5280000 7.5280000 7.5280000 7.52.0000000 7.52800000 7.52800000 7.52800000 7.445626 6.0000000 22.0000000 33.000000 54.800000 5.7445626 6.0000000 22.0000000 54.8000000 54.8000000 54.8000000 5.7445629 1.6800000 22.3400000 54.8000000 54.800000 5.5080000 7.4027022 7.0000000 15.3000000 0.1470000 7.1063352 55.0000000 74.0000000 50.5000000 115.3000000 0.1470000 50.5000000 0.1470000 50.5000000 0.1372224 0.5000000 0.8600000 0.8600000 0.3480000 0.5899152 13.20000000 14.6000000 0.59420000 0.59420000 22.9420000 15.152259 56.2000000 229.0000000 257.7000000 17.152259 56.2000000 229.0000000 257.7000000 17.152259 56.20000000 229.0000000 257.7000000 17.152259 56.2000000 229.0000000 257.70000000 17.152259 56.20000000 229.0000000 257.70000000 14.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.0000000 229.00000000 229.00000000 229.0000000 229.00000000 229.00000000 229.00000000 229.0000000000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	ΛO
21.1600000 2.7437201 18.5000000 25.3000000 7.5280000 13.0000000 5.7445626 6.0000000 22.0000000 33.0000000 33.0000000 7.4027022 7.0000000 24.0000000 33.0000000 0.2874369 1.6800000 2.3400000 0.0826200 0.2874369 1.6800000 15.3000000 0.1470000 0.1470000 0.3034058 14.40000000 15.3000000 0.1470000 0.1470000 0.1470000 0.137224 0.5000000 0.8600000 0.3480000 0.5899152 13.2000000 14.6000000 0.3480000 0.5899152 13.2000000 0.8600000 0.3480000 0.5805200 0.17152259 56.2000000 0.259.000000 0.557.7000000 0.557.7000000	TW	53.0000000	3.9198214	47.5000000	58.4000000	15.3650000	7.3958895
13.0000000 5.7445626 6.0000000 22.000000 33.000000 14.6000000 7.4027022 7.0000000 24.0000000 54.8000000 14.6000000 0.2874369 1.6800000 2.3400000 0.0826200 PRO 14.8200000 0.3834058 14.4000000 74.000000 0.1470000 59.7800000 7.1063352 55.000000 74.000000 50.500000 SH 0.6560000 0.137224 0.500000 0.860000 0.0188300 RO 14.0600000 0.5899152 13.200000 14.600000 0.3480000 ABS 58.6200000 1.7152259 56.200000 229.000000 2.9420000 VOL 203.800000 16.0530371 190.000000 229.000000 257.7000000	K_WT	21.1600000	2.7437201	18.5000000	25,3000000	7.5280000	12.9665411
14.6000000 7.4027022 7.0000000 24.000000 54.800000 PRO 1.680000 2.3400000 0.082620 PRO 14.8200000 0.3834058 14.4000000 15.3000000 0.1470000 62.0000000 7.1063352 55.0000000 74.000000 0.1470000 SH 0.6560000 0.137224 0.500000 0.860000 0.0188300 RO 14.060000 0.5899152 13.200000 14.600000 0.348000 ABS 58.620000 1.7152259 56.200000 229.00000 2.942000 ABS 58.620000 16.0530371 190.000000 229.000000 257.7000000	LG	13.0000000	5.7445626	000000009	22,0000000	33,0000000	44.1889434
ASH 2.0780000 0.2874369 1.6800000 2.3400000 0.0826200 PRO 14.8200000 0.3834058 14.4000000 15.3000000 0.1470000 0.1470000 0.3034058 14.4000000 7.1063352 55.0000000 74.0000000 50.5000000 0.1470000 0.137224 0.5000000 0.8600000 0.0188300 0.0188300 0.1372224 0.5000000 14.6000000 0.3480000 0.3480000 0.7071068 2.0000000 4.0000000 0.50000000 0.500000000	SM	14.6000000	7.4027022	7.0000000	24.0000000	54.8000000	50.7034398
PRO 14.8200000 0.3034058 14.4000000 15.3000000 0.1470000 0.1470000	WHT ASH	2.0780000	0.2874369	1.6800000	2.3400000	0.0826200	13.8323845
62.0000000 7.1063352 55.0000000 74.0000000 50.5000000 59.780000 5.5088111 53.1000000 68.0000000 30.3470000 SH 0.6560000 0.1372224 0.5000000 0.0188300 RO 14.0600000 0.5899152 13.2000000 14.6000000 0.3480000 3.0000000 0.7071068 2.0000000 4.0000000 0.500000 ABS 58.6200000 1.7152259 56.2000000 229.000000 2.942000 VOL 203.8000000 16.0530371 190.0000000 229.000000 257.7000000	WHT PRO	14.8200000	0.3034058	14.4000000	15.3000000	0.1470000	2.5870836
SH 0.6560000 0.1372224 0.5000000 0.8600000 0.0188300 0.0188300 0.1372224 0.5000000 0.8600000 0.0188300 0.0188300 0.1372224 0.5000000 0.8600000 0.0188300 0.0188300 0.5899152 13.2000000 14.6000000 0.3480000 0.7071068 2.0000000 4.0000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.500000000	HARD	62.0000000	7.1063352	55,0000000	74.0000000	50.5000000	11,4618310
SH 0.6560000 0.1372224 0.5000000 0.8600000 0.0188300	EXTR	59.7800000	5.5088111	53,1000000	68,0000000	30.3470000	9.2151407
RO 14.0600000 0.5899152 13.2000000 14.6000000 0.3480000	FL_ASH	0.6560000	0.1372224	0.5000000	0.8600000	0.0188300	20,9180560
3.0000000 0.7071068 2.0000000 4.0000000 0.5000000 2 ABS 58.6200000 1.7152259 56.2000000 60.3000000 2.9420000 .VOL 203.8000000 16.0530371 190.00000000 229.0000000 257.7000000	FL_PRO	14.0600000	0.5899152	13.2000000	14.6000000	0.3480000	4.1956988
58.6200000 1.7152259 56.2000000 60.3000000 2.9420000 203.8000000 16.0530371 190.0000000 229.0000000 257.7000000	MIXO	3.0000000	0.7071068		4.0000000	0.5000000	23,5702260
203.8000000 16.0530371 190.0000000 229.0000000 257.7000000	BAKE ABS	58.6200000	1.7152259	56.2000000	60,3000000	2.9420000	2.9260081
	LOAF VOL	203.8000000	16.0530371		229.0000000	257.7000000	7.8768582

- VARIETY=FA987350

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3	56.1400000	3.2035917	52,2000000	60,1000000	10.2630000	5.7064334
WI	29.0200000	4.7996875	23.9000000	35,5000000	23.0370000	16.5392401
LG	33.6000000	18,1741575	15.0000000	60.000000	330,3000000	54.0897544
Σ	6.2000000	6.3007936	0	15.0000000	39.700000	101,6257032
HT ASH	1.9060000	0.2534364	1.5600000	2.2300000	0.0642300	13.2967672
HT_PRO	15.1400000	0.4037326	14.6000000	15.7000000	0.1630000	2.6666617
ARD	49.6000000	8.8487287	40.0000000	58,0000000	78.3000000	17,8401789
XTR	59.1400000	2.7409852	56.3000000	63.6000000	7.5130000	4.6347400
L_ASH	0.5120000	0.0729383	0.3900000	0.5700000	0.0053200	14,2457676
FL_PRO	14.6600000	0.3209361	14.3000000	15.1000000	0.1030000	2,1891960
IXO	2.6000000	0.8944272	2.0000000	4.0000000	0.000000000	34.4010458
BAKE ABS	58.6000000	0.8831761	57.6000000	60.000000	0.7800000	1.5071264
LOAF_VOL	203.4000000	17.1842952	185.0000000	228.0000000	295.3000000	8.4485227

	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	54.1400000	2,2908514	50.5000000	56.2000000	5.2480000	4.2313472
K_WT	23.1400000	1.0945319	21.3000000	24.0000000	1,1980000	4.7300426
LG	9.4000000	1.6733201	8.0000000	12.0000000	2,8000000	17.8012772
SM	8.2000000	3.7013511	3.0000000	13.0000000	13,7000000	45.1384281
WHT ASH	1.9640000	0.1484251	1.7800000	2.1000000	0,0220300	7.5572844
WHT PRO	14.3600000	0.3781534	14.0000000	14.8000000	0.1430000	2,6333803
HARD	49.8000000	8.0436310	38.0000000	57,0000000	64.7000000	16,1518695
EXTR	57.2800000	3.0970954	54.9000000	62.1000000	9.5920000	5,4069403
FL ASH	0.5480000	0.0679706	0.4300000	0.5900000	0.0046200	12,4033909
FL. PRO	13.8600000	0.4560702	13.4000000	14.4000000	0.2080000	3,2905496
MIXO	3.0000000	0.7071068	2.0000000	4.0000000	0.5000000	23.5702260
BAKE ABS	57.1200000	1.2774976	55.3000000	58.6000000	1.6320000	2,2365153
LOAF VOL	200.0000000	6.0415230	194.0000000	207.0000000	36.5000000	3.0207615

VARIETY=ID367

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.2800000	3.9258120	49.3000000	60.200000	15.4120000	7.1016860
K WT	21.5200000	2.3952035	17.7000000	23.6000000	5.7370000	11,1301280
LG .	13.0000000	6.5574385	000000009	22.0000000	43.0000000	50,4418348
WS.	11.4000000	10.9224539	0	29.0000000	119.3000000	95,8109994
WHTASH	2.0000000	0.1896049	1.8300000	2.3000000	0.0359500	9.4802426
WHT_PRO	14.6400000	1.2837445	12.8000000	15.8000000	1.6480000	8.7687467
HARD	60.2000000	6.0580525	52.0000000	67.0000000	36.7000000	10.0632101
EXTR	55.4200000	5,6353350	49.1000000	63.8000000	31.75700,00	10,1684138
FL_ASH	0.6040000	0.0870632	0.5100000	0.7400000	0.0075800	14.4144363
FL_PRO	14.1600000	1.3277801	12.6000000	15.4000000	1.7630000	9.3769781
MIXO	2.4000000	0.8944272	1.0000000	3.0000000	0.8000000	37.2677996
BAKE ABS	56.9400000	2.0132064	55.3000000	60.0000000	4.0530000	3,5356628
LOAF VOL	189.4000000	9.5551033	180.0000000	202,0000000	91.3000000	5.0449331
				1 1 1 1 1 1 1 1 1 1		

VARIETY=MARQUIS

-- VARIETY=MN87150

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	∆ D .
TE	56.4400000	4.1088928	51.8000000	61.0000000	16.8830000	7.2801077
K WT	26.8200000	4.9454019	20.6000000	32.5000000	24.4570000	18.4392316
LG	25.4000000	19,7306868	6.0000000	57,0000000	389.3000000	77.6798691
SM	7.2000000	7.7265775	0	16.0000000	59.7000000	107.3135765
WHT ASH	1.7600000	0.2487971	1.4800000	2.0700000	0.0619000	14.1361992
WHT PRO	14.1200000	0.4086563	13,8000000	14.8000000	0.1670000	2.8941667
HARD	51.8000000	6,2209324	44.0000000	59.0000000	38.7000000	12,0095220
EXTR	57.9600000	7.7063610	45.7000000	64.900000	59.3880000	13.2959990
FL_ASH	0.5060000	0.0826438	0.3800000	0.5900000	0.0068300	16.3327696
FL PRO	13.3200000	0.5761944	12.7000000	14.1000000	0.3320000	4.3257839
MIXO	1.4000000	0.5477226	1,0000000	2,0000000	0.3000000	39.1230398
BAKE ABS	57.1000000	2.7631504	53.5000000	61.0000000	7.6350000	4.8391425
LOAF VOL	187.4000000	13.0499042	170.0000000	206.0000000	170.3000000	6.9636629

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.6600000	3.6691961	51.5000000	59.7000000	13.4630000	6.5921597
WT	28,3800000	3,1728536	23.5000000	31.0000000	10.0670000	11.1798929
LG	34.0000000	13,1719399	13.0000000	48.0000000	173.5000000	38.7409996
M	4.8000000	4,4384682	1,0000000	11.0000000	19.700000	92.4680876
WHT ASH	1.7900000	0.2198863	1.5100000	2.0600000	0.0483500	12.2841528
HT_PRO	14.2800000	0.4266146	13.8000000	14.7000000	0.1820000	2.9874971
HARD	57.8000000	8,1055537	49.0000000	65.0000000	65,7000000	14.0234492
EXTR	63.8400000	3.6596448	58.1000000	67.6000000	13,3930000	5.7325263
L ASH	0.4800000	0.0710634	0.3800000	0.5800000	0.0050500	14.8048650
FL PRO	13.1400000	0.4159327	12.5000000	13.5000000	0.1730000	3.1653934
MIXO	1.4000000	0.5477226	1.0000000	2.0000000	0.3000000	39.1230398
BAKE ABS	58.9200000	1.5674821	56.9000000	60.8000000	2,4570000	2.6603565
LOAF VOL	178.0000000	8.9442719	171.0000000	193,0000000	80,000000	5.0248719

--- VARIETY=MN88170 -----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.7000000	3.7861590	54.2000000	61,9000000	14.3350000	6.5618007
K_WT	31.7800000	4.7367711	27.5000000	37.7000000	22.4370000	14.9048806
LG	46.0000000	19.1702895	24.0000000	70,0000000	367.5000000	41.6745424
SM	2.2000000	2.4899799	0	6.0000000	6.2000000	113,1809054
WHTASH	1.7500000	0.1759261	1.5100000	1.9600000	0.0309500	10.0529212
WHT_PRO	14.5800000	0.5718391	13.8000000	15,1000000	0.3270000	3.9220791
HARD	54.8000000	5.5407581	48.0000000	61,0000000	30.7000000	10.1108724
EXTR	63.8800000	4.3424647	56.4000000	67.0000000	18.8570000	6.7978471
FL_ASH	0.4480000	0.0732803	0.3600000	0.5500000	0.0053700	16,3572062
FL_PRO	14.0200000	0.3346640	13.6000000	14.4000000	0.1120000	2.3870472
MIXO	2.8000000	0.8366600	2.0000000	4.0000000	0.700000	29.8807152
BAKE ABS	58.6000000	2.1295539	55.5000000	61,1000000	4.5350000	3.6340511
LOAF VOL	202.0000000	9.9749687	187.0000000	215.0000000	99.5000000	4.9381033
11111111						

-- VARIETY=MN88189 --

TABLE 10

VARIETY=MN88320

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	Λ
34	59.7600000	2.9022405	56.9000000	63.4000000	8.4230000	4.8564935
K WT	28.4200000	3,7519328	24.2000000	32.7000000	14.0770000	13.2017341
LG	40.6000000	17,1697408	19,0000000	61,0000000	294.8000000	42.2900020
W.S.	3.8000000	4.8166378	0	10.0000000	23.2000000	126.7536271
WHT ASH	1.7280000	0.1776795	1.4900000	1.9200000	0.0315700	10.2823777
WHT PRO	13.8400000	0.3646917	13.4000000	14.4000000	0.1330000	2.6350553
HARD	63,6000000	8,0808415	54.0000000	72,0000000	65,3000000	12.7057257
EXTR	62.7200000	3.9908646	58,3000000	68,6000000	15.9270000	6.3629856
FL ASH	0.4720000	0.0420714	0.400000	0.5100000	0.0017700	8.9134254
FL PRO	12,7400000	0.4335897	12.3000000	13.3000000	0.1880000	3,4033726
MIXO	2,6000000	0.5477226	2.0000000	3.0000000	0.300000	21.0662522
BAKE ABS	59.2200000	0.9338094	57.9000000	60.000000	0.8720000	1.5768480
LOAF VOL	190,2000000	10.1833197	182,0000000	207,0000000	103,7000000	5,3540061

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	NO CA
TW	58.9000000	3.7101213	53.7000000	63.2000000	13.7650000	6.2990175
K WT	24.6000000	2.4010414	21,2000000	27.7000000	5.7650000	9.7603311
LG	21.0000000	8.2764727	13.0000000	33.0000000	68.5000000	39.4117747
E S	8.4000000	6,1481705	3.0000000	19.0000000	37.8000000	73.1925055
WHT ASH	1.6820000	0.1567482	1.4700000	1.9100000	0.0245700	9.3191561
WHT PRO	14.5400000	0,2073644	14.3000000	14.8000000	0.0430000	1.4261652
HARD	57.0000000	5.7879185	48.0000000	63.0000000	33.5000000	10.1542429
EXTR	61.9600000	5,7155927	52.5000000	67.1000000	32.6680000	9.2246493
FL ASH	0.4300000	0.0509902	0.3700000	0.5100000	0.0026000	11.8581849
FL PRO	13.6200000	0.1303840	13.5000000	13.8000000	0.0170000	0.9572984
MIXO	1,8000000	0.4472136	1.0000000	2.0000000	0.2000000	24.8451997
BAKE ABS	57.0400000	0.6503845	56.2000000	57.6000000	0.4230000	1.1402253
LOAF VOL	181,8000000	7.8549348	172.0000000	193,0000000	61.7000000	4.3206462

VARIETY=MN88334

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	75
TE	60.2600000	2.6264044	57.6000000	63.8000000	6.8980000	4,3584540
K WT	27.9600000	3.3125519	23.7000000	31.4000000	10.9730000	11.8474674
LG	39.8000000	15.1393527	20.0000000	58.0000000	229.2000000	38.0385746
SM	4.0000000	3.8729833	0	9.0000000	15.0000000	96.8245837
WHT ASH	1.7400000	0.1595306	1.5100000	1.9400000	0.0254500	9.1684231
WHT PRO	15.5400000	0.4393177	14.8000000	15.9000000	0.1930000	2.8270119
HARD	66.8000000	9.5760117	56,0000000	77.0000000	91,7000000	14.3353469
EXTR	64.2400000	2.2322634	61.4000000	66.5000000	4.9830000	3.4748808
FL ASH	0.4500000	0.0479583	0.4000000	0.5200000	0.0023000	10.6574034
FL PRO	15.2400000	0.2302173	14.9000000	15.5000000	0.0530000	1.5106121
MIXO	3.2000000	0.8366600	2,0000000	4.0000000	0.700000	26.1456258
BAKE ABS	60.900000	1.0559356	59.6000000	62.5000000	1,1150000	1.7338844
LOAF_VOL	201.8000000	12.3166554	192.0000000	223.0000000	151.7000000	6.1033971
						1111111111111

VARIETY=ND655

-- VARIETY=ND657

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE		3.1059620	55.0000000	61.3000000	9.6470000	5.3662094
K WT	28.7000000	3.4878360	25.8000000	32.7000000	12,1650000	12,1527387
LG	33,8000000	15.7384879	17.0000000	51,0000000	247.7000000	46.5635735
SM	3.0000000	3.7416574	0	9.0000000	14.0000000	124.7219129
WHTASH	1.8380000	0.1948589	1.5500000	2.0600000	0.0379700	10.6016824
WHT PRO	15.9800000	0.3346640	15.6000000	16.4000000	0.1120000	2.0942679
HARD	68,0000000	4.5276926	61,0000000	72,0000000	20.5000000	6.6583714
EXTR	62,6200000	1.9408761	60.200000	65.0000000	3.7670000	3.0994508
FL_ASH	0.4960000	0.0522494	0.4400000	0.5800000	0.0027300	10.5341536
FL PRO	15.5000000	0.4636809	15.0000000	16.1000000	0.2150000	2,9914898
MIXO	4.2000000	0.8366600	3,0000000	5.0000000	0.700000	19,9204768
BAKE ABS	61.4400000	0.6841053	60.5000000	62,1000000	0.4680000	1.1134526
LOAF VOL	215.6000000	10.2127371	202.0000000	229.0000000	104.3000000	4.7368911

VARIABLE	MEAN	STD DEV	MUMINIM	MAXIMUM	VARIANCE	CV
	58.6800000	3.3491790	54.0000000	62.2000000	11.2170000	5.7075307
	29.9800000	4.0313769	24.0000000	34.6000000	16.2520000	13,4468877
LG	40.2000000	15.2545075	18,0000000	55.0000000	232.7000000	37,9465361
	3.8000000	6.3403470	0	15.0000000	40.2000000	166.8512367
WHT ASH	1.7620000	0.1811629	1.5600000	2.0400000	0.0328200	10.2816635
PRO	15.3600000	0.4159327	14.8000000	15.8000000	0.1730000	2.7078951
HARD	62.4000000	5.2249402	57.0000000	70.0000000	27.3000000	8.3733016
EXTR	64.0000000	1.3397761	62,3000000	0000000.99	1.7950000	2.0934002
FL ASH	0.4780000	0.0630079	0.4100000	0.5700000	0.0039700	13.1815766
RO	14.7600000	0.3714835	14.2000000	15.1000000	0.1380000	2,5168260
HIXO	5.2000000	1,4832397	3.0000000	7.0000000	2,2000000	28.5238403
BAKE ABS	59.7200000	1.9485892	56.9000000	61.4000000	3.7970000	3.2628755
NOL	193.6000000	14.6389890	180.0000000	218.0000000	214.3000000	7.5614613

- VARIETY=ND662

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.2200000	2,3657980	57.6000000	63.5000000	5.5970000	3.8644201
K WT	29.0600000	3.2261432	24.4000000	31,9000000	10,4080000	11.1016628
LG	44.4000000	15.6460858	24.0000000	60.0000000	244.8000000	35,2389319
SM	2.2000000	3.0331502	0	6.0000000	9,2000000	137.8704626
WHTASH	1.7540000	0.2514558	1.5500000	2.1800000	0.0632300	14.3361324
WHT PRO	15.6400000	0.5224940	15.1000000	16.5000000	0.2730000	3.3407546
HARD	66.2000000	4.9699095	60.000000	73.0000000	24.7000000	7.5074161
EXTR	62.4200000	3.5835736	56.4000000	66.0000000	12.8420000	5.7410664
FL_ASH	0.4260000	0.0864870	0.3800000	0.5800000	0.0074800	20.3021111
FL_PRO	15.3400000	0.6618157	14.8000000	16.4000000	0.4380000	4.3143135
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1.0000000	25,0000000
BAKE ABS	62.5200000	1.1519549	61.4000000	64.4000000	1.3270000	1.8425382
LOAF VOL	208.0000000	15.0332964	188.0000000	228.0000000	226.0000000	7.2275463

-- VARIETY=ND671

TABLE 12

- VARIETY=ND672

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	20
31	59.7000000	2.6981475	55.8000000	62,3000000	7.2800000	4.5195101
WT	27.1000000	3,0919250	23,0000000	30.5000000	9.5600000	11.4093172
LG	35,8000000	16.0374562	15.0000000	53,0000000	257.2000000	44.7973636
Σ	3.8000000	4.9699095	0	12.0000000	24.7000000	130.7870909
HT ASH	1.7800000	0.1656804	1.5900000	2.0200000	0.0274500	9.3078885
HT PRO	15,2600000	0.6877500	14.5000000	16.2000000	0.4730000	4.5068804
ARD	77,0000000	6.5192024	71,0000000	86.0000000	42.5000000	8.4664966
XTR	61,3000000	2.9874738	57,7000000	64.9000000	8.9250000	4.8735299
L ASH	0.5080000	0.0580517	0.4200000	0.5600000	0.0033700	11.4275002
FL PRO	14.2200000	1.0207840	13,1000000	15.4000000	1.0420000	7.1785092
IXO	4.6000000	1.5165751	3,0000000	7.0000000	2.3000000	32,9690237
BAKE ABS	59.9400000	1.0573552	58,6000000	60.800000	1.1180000	1.7640227
LOAF VOL	201.0000000	14.1067360	189.0000000	220.0000000	199,0000000	7.0182766

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3E	55.8800000	3.5884537	51,3000000	60.300000	12.8770000	6.4217139
K WT	25,8200000	3,0268796	22,4000000	30.200000	9.1620000	11.7230038
LG	24.0000000	11,6619038	11,0000000	42.0000000	136,0000000	48.5912658
MS	8,0000000	6,3245553	2,0000000	18.0000000	40.0000000	79.0569415
WHT ASH	1.8760000	0.2242320	1.5800000	2.1800000	0.0502800	11.9526665
WHT PRO	14.1000000	0.2121320	13.9000000	14.4000000	0.0450000	1.5044825
HARD	57.8000000	6,3796552	51,0000000	68,0000000	40.700000	11.0374657
EXTR	61,1600000	3,2913523	57,3000000	65.4000000	10,8330000	5,3815440
FL ASH	0.5560000	0.0890505	0.4400000	0.6600000	0.0079300	16,0162855
FL PRO	13,3400000	0.2509980	13.1000000	13.6000000	0.0630000	1.8815443
MIXO	3,200000	0.8366600	2.0000000	4.0000000	0.7000000	26.1456258
BAKE ABS	58,8800000	2.1182540	55,3000000	60.8000000	4.4870000	3,5975781
LOAF VOL	198,0000000	10,3440804	183.000000	211.0000000	107.0000000	5.2242830

-- VARIETY=N86-0542 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
5	57.1800000	3.7419246	54.2000000	61.8000000	14.0020000	6.5441144
2	27.7200000	4.9901904	23.0000000	34.5000000	24.9020000	18.0021298
(*)	30.4000000	20.6591384	9.00000006	61,0000000	426.8000000	67.9576922
	5.4000000	4.5055521	1.0000000	10.0000000	20,3000000	83.4361506
	1.8480000	0.2233159	1.5400000	2.1500000	0.0498700	12.0841948
	15.2600000	0.4827007	14.7000000	15.9000000	0.2330000	3,1631765
	58.4000000	8.7635609	50.0000000	70,0000000	76.8000000	15.0060975
	62.6400000	2.5793410	60.0000000	65,7000000	6.6530000	4.1177219
	0.4800000	0.0754983	0.3900000	0.5600000	0.0057000	15.7288217
	14.6400000	0.4037326	14,2000000	15.2000000	0.1630000	2.7577362
	3.8000000	1.3038405	3,0000000	6.0000000	1.700000	34.3115916
	60.4400000	3.0204304	57.6000000	65.1000000	9.1230000	4.9974031
2	209.2000000	14.6355731	195.0000000	231,0000000	214.2000000	6.9959718

- VARIETY=N87-0306 --

REGION	
NORTHEAST	

VARIETY=N87-467

	7.1991428 17.0275108 75.6033689 93.9164884 14.3336759 2.7417143 12.9214638 6.9095384 17.1862550 2.8442566 40.8248290 1.9351627 5.9526049		6.8180362 9.083279 28.4130860 105.4092553 13.6620560 0.8038474 9.4185864 3.5658120 16.7332005 1.3448811 26.1456258 4.0900935 6.0162694	CV 4.7615688 9.0172455 30.3144827 168.5083432 10.3050575 2.4248115 15.0445156 4.4563318 10.2842445 2.8371943 33.5345713 2.1830880 3.9690806
ANC	16.2880000 340.3000000 48.3000000 0.0730800 0.1520000 30.3000000 17.7860000 0.0088700 0.1470000 1.5930000 1.2930000	VARIANC	14.6300000 5.9170000 64.2000000 10.00000000 0.0711200 0.0170000 31.3000000 5.0530000 0.0470000 0.0470000 0.0470000 171.7000000	VARIANCE 8.1730000 7.1820000 203.00000000 9.20000000 0.0328200 0.1330000 66.0000000 7.8870000 0.0021800 0.1730000 1.3000000 7.3.5000000
AXIMU	62.2000000 34.5000000 54.0000000 17.0000000 2.1800000 14.9000000 51.0000000 65.4000000 13.9000000 5.00000000	034	29.100 36.000 36.000 8.000 16.400 66.000 66.000 16.500 236.000	2
INIMU	52.2000000 23.1000000 7.0000000 1.40000000 37.0000000 54.7000000 0.4000000 13.0000000 2.0000000 194.0000000	ETY=N8 MINIMU	50.2000000 16.0000000 16.0000000 16.1000000 52.0000000 0.4000000 0.4000000 16.0000000 2.0000000 2.0000000 2.0000000	MINIMUM 57.2000000 26.10000000 26.00000000 1.52000000 58.40000000 58.2000000 58.2000000
D DE	4.0358394 4.6451050 18.4472220 6.9498201 0.2703331 0.3898718 5.5045436 4.2175822 0.0941807 0.3834058 1.2247449	TD DE	3.8249183 2.4324884 8.0124902 3.1622777 0.2666833 0.1303840 5.5946403 2.2478879 0.0836660 0.2167948 0.8366600 2.4712345	STD DEV 2.8588459 2.6799254 14.2478068 3.0331502 0.1811629 0.3646917 8.1240384 2.8083803 0.0466905 0.4159327 1.1401754 1.3076697
MEAN	56.0600000 27.2800000 24.4000000 7.4000000 1.8860000 14.2200000 61.0400000 61.0400000 0.5480000 13.4800000 3.0000000 58.7600000	MEAN	56.1000000 28.2000000 3.0000000 1.9520000 16.2200000 63.0400000 63.0400000 16.1200000 3.2000000 217.8000000	MEAN 60.0400000 29.7200000 47.00000000 1.8000000 1.7580000 15.0400000 63.02000000 63.02000000 63.4000000 63.40000000 216.00000000
VARIABLE	TW K WT LG SM WHT.ASH WHT.PRO HARD EXTR FL_ASH FL_PRO MIXO BAKE_ABS LOAF_VOL	VARIABLE	TW K_WT LG SM WHT ASH WHT PRO HARD EXTR FL ASH	VARIABLE TW KEWT LG SM WHT_ASH WHT_PRO HARD EXTR FL_ASH FL_PRO MIXO BAKE ABS LOAF VOL

-- VARIETY=SD3055

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	59.6800000	1.9253571	57.9000000	62.0000000	3.7070000	3.2261346
K WT	30.7200000	4.1823438	26.7000000	36,900000	17.4920000	13.6144005
PG	51.6000000	15.2741612	35.0000000	74.0000000	233,3000000	29.6010876
SM	2.2000000		0	9.0000000	14.7000000	174.2753592
WHT ASH	1.7420000		1.4800000	1.8800000	0.0292200	9.8127776
WHT PRO	15.6200000	0.4919350	14.9000000	16.2000000	0.2420000	3.1493915
HARD	56.6000000		49.0000000	62,0000000	26,3000000	9.0606936
EXTR	61.3000000	3.8619943	55.7000000	66.4000000	14.9150000	6.3001538
FL ASH	0.4420000	0.0294958	0.4000000	0.4700000	0.000870000	6.6732494
FL_PRO	15.3200000	0.3962323	14.8000000	15.9000000	0.1570000	2.5863724
MIXO	3.4000000	0.5477226	3.0000000	4,0000000	0.300000	16.1094870
BAKE ABS	60.4000000	1.2103718	58,6000000	61,8000000	1.4650000	2.0039269
LOAF VOL	213.6000000	11.5887877	193.0000000	220.0000000	134.3000000	5.4254624

1	
1	
9	
4	
~	
S	
G S ==	
>	
E	
FILE	
VAR	
-	
R	
>	
1	
- 1	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.5800000	2.0092287	57.5000000	62.0000000	4.0370000	3.3723208
K_WT	31.3000000	3.7363083	27.6000000	37.0000000	13.9600000	11.9370873
LG	52.0000000	16.6733320	34.0000000	76,0000000	278.0000000	32.0641000
SM	1.8000000	2.6832816	0	6.0000000	7.2000000	149.0711985
WHTASH	1.7320000	0.1559487	1.5000000	1.9200000	0.0243200	9.0039671
WHT_PRO	15.4200000	0.4816638	14.8000000	15.8000000	0.2320000	3,1236302
HARD	75.0000000	7.9686887	67.0000000	85.0000000	63.5000000	10.6249183
EXTR	61.2000000	3.6013886	55.7000000	65.7000000	12.9700000	5.8846219
FL ASH	0.5160000	0.0482701	0.4800000	0.6000000	0.0023300	9.3546654
FL_PRO	14.6800000	0.2167948	14.4000000	14.9000000	0.0470000	1.4768040
MIXO	3.2000000	0.8366600	2.0000000	4,0000000	0.7000000	26.1456258
BAKE ABS	60.6600000	0.9262829	59,6000000	61,8000000	0.8580000	1.5270077
LOAF VOL	206.4000000	13.7222447	190.0000000	228.0000000	188.3000000	6.6483744

VARIETY=SD3080

TW 61.1000000 K WT 30.3400000 LG 44.2000000 SM 4.2000000 WHT_ASH 1.6800000 WHT_PRO 15.7600000 HARD 67.2000000 EXTR 60.3400000 FL ASH 0.4380000	2.8861739 5.1834352 18.7403308 5.3103672	57.4000000			
	5.1834352 18.7403308 5.3103672	23.8000000	63.9000000	8.3300000	4.7236889
	18.7403308 5.3103672 0.1870829		35.6000000	26.8680000	17.0844929
	5.3103672	20.0000000	64.0000000	351.2000000	42,3989386
	0 1870829	0	10.0000000	28.2000000	126.4373147
	7707070	1.4800000	1.9200000	0.0350000	11,1358851
	0.4505552	15.3000000	16.4000000	0.2030000	2,8588529
	5.3572381	58.0000000	71.0000000	28.7000000	7.9720805
	3.3849668	56.0000000	64.5000000	11.4580000	5.6098223
	0.0496991	0.4000000	0.5100000	0.0024700	11.3468252
FL_PRO 15.2600000	0.4560702	14.6000000	15.7000000	0.2080000	2.9886643
	1.6431677	3.0000000	7.0000000	2.7000000	39.1230398
BAKE_ABS 60.5200000	0:3271085	0000000.09	60,8000000	0.1070000	0.5404966
LOAF_VOL 212.2000000	11.0090872	195.0000000	222.0000000	121.2000000	5.1880712

	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
59.	59.1200000	3.0621888	54.6000000	63.1000000	9.3770000	5.1796156
30.	0800000	5.5323594	22.4000000	36,6000000	30,6070000	18.3921521
45.	45.0000000	23.2056028	16.0000000	73,0000000	538,5000000	51.5680062
3,	3.4000000	3.8470768	0	8,0000000	14.8000000	113,1493180
-	1.8280000	0.2487368	1.4500000	2.1000000	0.0618700	13,6070464
15.	4400000	0.5029911	14.7000000	16.0000000	0.2530000	3.2577141
72.	72.4000000	7.0213959	62.0000000	80.000000	49.3000000	9.6980606
.09	60.4600000	3.7280021	56.3000000	66.2000000	13.8980000	6.1660638
0	5240000	0.0779744	0.4300000	0.6300000	0.0060800	14.8806021
14.	7800000	0.2683282	14.5000000	15.2000000	0.0720000	1.8154814
3.	3.0000000	0.7071068	2.0000000	4.0000000	0.5000000	23.5702260
.09	60.1600000	1.4570518	58.2000000	61.4000000	2.1230000	2,4219611
202.	0000000.20	11.3666178	190,0000000	214.0000000	129.2000000	5.6214727

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.4000000	2.8451713	55.0000000	62.2000000	8.0950000	4.8718687
K_WT	29.9200000	5.0662609	22,6000000	36.4000000	25.6670000	16.9326903
LG	45.8000000	19.0052624	22.0000000	71.0000000	361.2000000	41.4962062
SM	2.6000000	3.1304952	0	00000009	9.8000000	120.4036603
WHT ASH	1.8140000	0.2277718	1.4700000	2.0900000	0.0518800	12.5563294
WHT PRO	14.9000000	0.3162278	14.4000000	15.2000000	0.1000000	2.1223340
HARD	71.4000000	5.5946403	65.0000000	79.0000000	31,3000000	7.8356307
EXTR	60.5200000	4.3372803	55.7000000	0000000099	18.8120000	7.1666891
FL_ASH	0.5280000	0.0779102	0.4100000	0.6200000	0.0060700	14.7557206
FL_PRO	14.2800000	0.1788854	14.2000000	14.6000000	0.0320000	1.2526991
MIXO	3.8000000	1.0954451	2.0000000	5.0000000	1.2000000	28.8275030
BAKE ABS	61.0800000	0.7726578	60.0000000	62.1000000	0.5970000	1.2649930
LOAF VOL	192.2000000	8.7863531	180.0000000	200.0000000	77.2000000	4.5714636

--- VARIETY=SD8073 -----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	ΛO
TW	60.0200000	2.8278967	56.9000000	63.2000000	7.9970000	4.7115907
K_WT	29.6400000	2.6754439	25.5000000	32,9000000	7.1580000	9.0264639
LG	45.2000000	11.1445054	27.0000000	57.0000000	124.2000000	24.6559853
SM	2.0000000	2.3452079	0	5,0000000	5.5000000	117.2603940
WHT_ASH	1.7240000	0.1453616	1.5100000	1.9200000	0.0211300	8.4316484
WHT_PRO	14.8200000	0.6723095	14.2000000	15,8000000	0.4520000	4.5365010
HARD	71.0000000	6.5192024	61.0000000	79,0000000	42,5000000	9.1819752
EXTR	59.7800000	6.3558634	49.1000000	65,3000000	40.3970000	10.6320901
FL ASH	0.4760000	0.0577062	0.4200000	0.5700000	0.0033300	12.1231412
FL_PRO	14.0200000	0.5585696	13.5000000	14.8000000	0.3120000	3.9840913
MIXO	4.4000000	0.8944272	3.0000000	5,0000000	0.8000000	20.3278907
BAKE ABS	59.3400000	1.8174157	57.9000000	62,1000000	3.3030000	3.0627161
LOAF VOL	190.8000000	15.8018986	172.0000000	214.0000000	249.7000000	8.2819175

-- VARIETY=SD8074

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

TABLE 16

NORTHEAST REGION

--- VARIETY=STOA -

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	20
TW	57.8600000	2.2864820	55.4000000	61.4000000	5.2280000	3.9517491
K_WT	27.3400000	3,3283630	24.2000000	32,6000000	11.0780000	12,1739684
LG	26.8000000	11.1892806	16.0000000	44.0000000	125,2000000	41.7510470
SM	5.0000000	3.8729833	0	9.0000000	15.0000000	77.4596669
WHTASH	1.7940000	0.1700882	1.5200000	1.9900000	0.0289300	9.4809483
WHT_PRO	15.1200000	0.3768289	14.7000000	15.7000000	0.1420000	2.4922545
HARD	64.2000000	2.5884358	61.0000000	68,0000000	6.7000000	4.0318315
EXTR	61.4200000	6.0329926	51.7000000	67.5000000	36,3970000	9.8225214
FL_ASH	0.4720000	0.0641872	0.3900000	0.5700000	0.0041200	13.5989886
FL_PRO	14.8400000	0.5366563	14.3000000	15.7000000	0.2880000	3.6162824
MIXO	4.4000000	0.5477226	4.0000000	5.0000000	0.3000000	12.4482399
BAKE ABS	61.0600000	1.6979399	59.3000000	63,1000000	2.8830000	2.7807729
LOAF_VOL	202.0000000	9.4868330	188.0000000	211.0000000	90,000000	4.6964520

1
4
Ø
8
9
3
3
⋈
11
\succ
H
EI
H
K
K
>

0000 3.5017139 54.2000000 62.4000000 12.2620000 0000 4.3390091 24.2000000 34.6000000 18.8270000 0000 17.9916647 11.000000 323.700000 0000 4.8270074 0.11.000000 23.300000 0000 0.2094517 1.610000 2.160000 0.043870 0000 0.4658326 14.200000 15.300000 0.2170000 0000 10.6160256 46.000000 71.000000 14.7470000 0000 3.8401823 57.100000 0.6800000 14.7470000 0000 0.3271085 13.8000000 14.600000 0.1070000 1.0954451 3.0000000 5.0000000 1.2000000 1.6813685 58.600000 220.000000 103.8000000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
28.8800000 4.3390091 24.2000000 34.600000 18.8270000 34.2000000 17.9916647 11.0000000 60.000000 23.300000 4.4000000 4.8270074 0 11.000000 23.300000 1.9420000 0.2094517 1.610000 2.160000 0.043870 0.4658326 14.200000 15.300000 0.217000 53.800000 10.6160256 46.00000 71.000000 112.700000 60.820000 3.8401823 57.100000 67.300000 14.747000 14.280000 0.3271085 13.800000 14.600000 0.107000 3.800000 1.0954451 3.000000 5.000000 2.8270000 35.200000 10.1882285 196.00000 220.00000 103.800000	ML	57.8200000	3.5017139	54.2000000	62.400000	12.2620000	6.0562329
34.2000000 17.9916647 11.0000000 523.7000000 4.4000000 4.8270074 0 11.0000000 23.3000000 1.9420000 0.2094517 1.6100000 2.1600000 0.0438700 0.4658326 14.2000000 15.3000000 0.2170000 53.8000000 10.6160256 46.000000 112.700000 60.8200000 3.8401823 57.100000 14.7470000 14.2800000 0.3271085 13.800000 14.600000 0.107000 3.800000 1.0954451 3.000000 5.000000 1.200000 35.60.680000 1.6813685 58.600000 220.00000 103.800000 35.2000000 10.1882285 196.00000 220.000000 103.8000000	K_WT	28,8800000	4.3390091	24.2000000	34.6000000	18.8270000	15.0242697
4.4000000 4.8270074 0 11.0000000 23.3000000 1.9420000 0.2094517 1.6100000 2.1600000 0.0438700 2.1600000 0.4658326 14.2000000 15.3000000 0.2170000 53.8000000 10.6160256 46.000000 71.000000 112.700000 60.8200000 3.8401823 57.100000 67.300000 14.7470000 14.2800000 0.3271085 13.800000 14.600000 0.107000 3.8000000 1.0954451 3.000000 5.000000 1.200000 35.60660000 1.6813685 58.600000 220.00000 103.800000	LG	34,2000000	17.9916647	11.0000000	60.0000000	323.7000000	52.6072068
1 1.9420000 0.2094517 1.6100000 2.1600000 14.6200000 0.4658326 14.2000000 15.3000000 53.8000000 10.6160256 46.000000 71.000000 60.8200000 3.8401823 57.1000000 67.300000 0.5660000 0.1006479 0.4100000 67.300000 14.2800000 0.3271085 13.8000000 14.600000 3.8000000 1.0954451 3.0000000 5.000000 3.60.6800000 1.6813685 58.600000 63.100000 3L 206.600000 10.1882285 196.000000 220.000000	SM	4.4000000	4.8270074	0	11.0000000	23.3000000	109.7047126
14.6200000 0.4658326 14.2000000 15.3000000 53.8000000 10.6160256 46.000000 71.000000 11.000000 60.8200000 3.8401823 57.1000000 67.3000000 1 0.5660000 0.1006479 0.4100000 67.3000000 1 14.2800000 0.3271085 13.8000000 14.600000 3.8000000 1.0954451 3.0000000 5.0000000 35.60.6800000 1.6813685 58.6000000 63.1000000 3L 206.6600000 10.1882285 196.000000 220.000000 10	WHT_ASH	1.9420000	0.2094517	1.6100000	2.1600000	0.0438700	10.7853587
53.8000000 10.6160256 46.000000 71.0000000 1.0000000 60.8200000 3.8401823 57.1000000 67.3000000 0.5660000 0.1006479 0.4100000 0.6800000 14.2800000 0.3271085 13.800000 14.6000000 3.8000000 1.0954451 3.0000000 5.0000000 35 60.6800000 1.6813685 58.6000000 63.1000000 3L 206.6600000 10.1882285 196.000000 220.000000 1	WHT PRO	14.6200000	0.4658326	14.2000000	15.3000000	0.2170000	3.1862694
60.82000003.840182357.100000067.30000000.56600000.10064790.41000000.680000014.28000000.327108513.800000014.60000003.80000001.09544513.00000005.000000035.60.68000001.681368558.600000063.100000035.00.00000010.1882285196.000000220.000000	HARD	53.8000000	10.6160256	46.0000000	71.0000000	112.7000000	19.7323896
0.5660000 0.1006479 0.4100000 0.6800000	EXTR	60.8200000	3.8401823	57.1000000	67.3000000	14.7470000	6.3140123
14.2800000 0.3271085 13.8000000 14.6000000 0 3.8000000 1.0954451 3.0000000 5.000000 1 35 60.6800000 1.6813685 58.6000000 63.1000000 2 35 206.6000000 10.1882285 196.0000000 220.0000000 103	FL_ASH	0.5660000	0.1006479	0.4100000	0.6800000	0.0101300	17.7823147
3.8000000 1.0954451 3.0000000 5.0000000 1 60.6800000 1.6813685 58.6000000 63.1000000 2 206.6000000 10.1882285 196.0000000 220.0000000 103	FL_PRO	14.2800000	0.3271085	13.8000000	14.6000000	0.1070000	2.2906761
60.6800000 1.6813685 58.6000000 63.1000000 206.6000000 10.1882285 196.0000000 220.0000000 10	MIXO	3.8000000	1.0954451	3.0000000	5.0000000	1.2000000	28.8275030
206.6000000 10.1882285 196.0000000 220.0000000	BAKE_ABS	60.6800000	1.6813685	58,6000000	63.1000000	2.8270000	2.7708775
	LOAF. VOL	206.6000000	10.1882285	196.0000000	220.0000000	103.8000000	4.9313788

VARIETY	STD	ES WT	1000 K.WT G.	\$121 LG &	ING	WHT	WHT PRO	HARD-	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO *	MILL	MILL SCORE ***	MIX	MIX
			1		1		-1			i	1	1				1 1
ULL	ഗ	9	9		7	. 7			m	6	.5	4.	5	4	-	2
HR		4	٠ ا	19		8			m	2.	. 5	5.	5	4	0	4
A	ಬ	3	0.		14	6.	•		m	9	. 5	4.	5	4	7.	4
8		2.	9	80		7			m	1.	. 5	~	5	4	2	2
A	တ	9	۳,		8	8			က	2.	. 5	4	5	4	0	1 47
8715		щ •	4		8	-	•		က	5.	.5	4	Ŋ	2	9	· (r)
8817		2.	5.		4	8			က	8	.5	3	2	4	ω	2
		5.	28.3	39	2	1.84	14.6	53	က	58.4	0.47	13.8	5	4	57.6	4
N8832		9	4.		9	_			m	9	. 5	ς.	5	٣	7.	m
8833		9	8		11	. 7	•		М	0.	4.	4.	5	4	9	2
65		9	4.		9	6.			М	8	. 5	4.	5	4	9.	4
65		4	7.		7	6.	•		m	5.	9.	6.	Z	H	0	2
99		5	5.		9	. 7			М	9	.5	4.	5	4	9	7
67		8	9		3	6.	•		4	0.	4.	4	5	4	9	2
D672		4	2.		11	9			m	د	9 •	3	4	2	5.	4
7-46		2.	9		2	0.	•		Э	.	.5	ж •	4	2	9	m
09		2	2		11	0.			m	9	.5	4.	4	2	6	S
7030		2	4		2	6.			က	5.	.5	4.	4	2	9.	5
8303		2	4.		2	0.			٣	7.	.5	6.	2	m	5.	ਧਾ
8313		9	4		9	8	•		3	4	. 5	4.	5	2	0.	m
305		2	7		4	. 7			က	7.	. 5	5.	2	m	0.	4
302		5	9		4	. 7	•		က	6	. 5	4	2	4	-	4
308		ω .	7		9	9.	•		ঝ	7	4	4.	2	m	0.	ず
807		9	7.		7	8	•		m	-	. 5	3.	2	4	ω	m
807		4	7.		2	9	•		М	0.	. 5	4	2	4		41
807		4	3		4	8			m	9	.5	3	5	4	8	5
W398A		1.	4.		9	6.	•		٣	7.	9.	4	5	2	-	ব্য
C-M		4	5.		4	6.	•		٣	7.	9 .	5.	2	2	0.	m
W148		5	5.		4	6.			т	8	9.	5.	5	m		4
1982		7	7.			0	•		٦	9	9.	4	5	2	9.	5
98735		0	4.		10	6.			m	5.	9.	4.	5	2	9	c
D036		0	0	9		6.	•		က	8	• 5	<u>.</u>	5	3	7	4.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=BROOKINGS NURSERY=UNIFORM

_
Z
(CONT)
17
L
TARI
1

STORY STOR	S			BAKE	MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		יים ביים	DEFICIENCIES		
E 86 5 61.4 3.50 9 80 85 189 1 3.3 HJ	E 8 6 5 61.4 3.50 9 80 95 199 1 2.7	VARIETY	STD	ABS		CHAR	COLOR	GRAIN	NOL	SCORE ***	SCORE **	MT I	SM	EX A	5 FP	1	1	22
8 6 5 6 1.4 3 5.6 9 8 0 8 5 189 3 3.3 M M M M M M M M M M M M M M M M M	S 60.4 3.50 9 80 85 189 3 3.3 MJ MI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1		 	1 1 1 1 1										
Secondary Color Secondary	S 5 6 6 2 1 7 6 9 9 8 0 8 5 190 1 2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	α	er.	_	10	6		85		m		MJ						
S 57.5 4.00 5 60 65 193 2 3.0 HJJ HI H H H H H H H H H H H H H H H H	Secondary Color Secondary	၁ <u>ဒီ</u> ဗ	3	-)	0		8 5		٦		DM	MI				Σ	
See	2011	CHKIS	ย		· C	· σ		8 2		7		DM			41		MJ	
1,1,5,0,	Name		a	- u	ט ע	1		0 0		2		LM.				H	MJ	MI
1.50 2.6.9 2.00 7 80 85 209 2 2.3 10 10 10 10 10 10 10 1	National Section	107		n c	2 0	- 0		າແ		1 m		EM.					MI	
1150 58.6 9 3.00 7 80 85 186 1 2.7 MJ MI	1150 58.6 2.00 7 80 85 186 1 2.7 HJ HJ HI HJ HI HJ	ď	S)	:	\supset	זת	000	ה מ ס		י כ		Σ.	X	M.T			MJ	
8170 556.6 4.500 7 80 80 10 203 2 1.7 MJ NI MJ N	81170 58.6 2.00 7 80 85 186 1 2.7 MJ MI	715		9	0		80	۵ ۱ ۵ ۱		7 1		CH	111	011		×		
80.20	83.26	817		ω	0	7	80	82		Н		2				TH		7
8220 55.3 4.25 9 80 85 184 2 2.7 MJ MI	8320 55.3 4.25 9 80 85 206 2 2.7 MJ MI	818		7.	5	b	80	80		2		CM		!			25.	TE
Secondary Seco	Secondary Seco	832			2	6	80	85		7		DM		MI			Ω ! Σ	
55. 59.6 4.00 7 80 80 181 2 3.0 MJ	Secondary Color	2 6 0				6	80	85		2		DM	MI			M	MJ	
57 66.3 3.50 9 80 80 204 2 2.0 MJ	Secondary Color	י י י י				7	80	80		2	_	CM					MJ	MI
19	19	7 4		•) LC	. 0	80	80		2	_	LM.			MJ			MI
Part	Secondary Seco	0) L	10	0 0	, α α		-		LM				MI		
Color Colo	Secondary Seco	99		•	3 0	n c				10							MJ	MI
19	Secondary Seco	2		•	13 1	י ת	000	0 0		7 -	-	7	L X		MT			
194 2 2 3 4 5 5 5 4 2 5 5 6 5 5 5 5 5 5 5	17-467 56.5 4.25 9 80 85 194 2 2.3 MJ MI MJ MI MJ MI MJ	67				ത	80	8 2 1		⊣ (TH		1 1			
60542 59.3 4.50 9 80 85 194 2 2.3 MJ M1 MJ	60542 59.3 4.50 9 80 85 194 2 2.3 MJ MI MJ MJ MJ MI MJ	7-46			(V	6	80	82		7		2 :			11			
1930 1930	1936 59.0 4.25 9 75 85 212 2 2.7	6054			71	σ	80	85		7		Œ			!		2 2	,
33034 55.5 3.50 9 80 80 192 2 2.7 MJ MI MJ	3334 55.5 3.50 9 80 80 192 2 2.7 MJ MI MJ	87030			14	6	75	85		7		M			Ξ.		S 2	
13156 60.0 4.25 9 80 85 205 2 2.3 MJ MJ MI	13135 60.0 4.25 9 80 85 205 2 3.3 MJ MJ MI MI MJ MI MJ MI MJ MI MJ MI MJ MI MJ	88303			4.	6	80	80		2		EM		MI			2:	IH
3055 60.5 4.50 9 75 80 206 3 3.0 MJ MI	3055 60.5 4.50 9 75 80 206 3 3.0 MJ MI	88313			, ,	6	80	85		2		M		MJ			35	
3056 61.4 4.25 9 80 80 200 3 3.3 MJ M	3056 61.4 4.25 9 80 80 200 3 3.3 MJ MI 3056 60.0 5.25 9 75 90 198 2 3.0 MJ 8072 8072 8073 8074 80 80 180 2 3.0 MJ 8073 8074 80 80 180 2 3.0 MJ 8074 80 80 180 2 3.0 MJ 8074 80 80 180 2 3.0 MJ 80 85 198 3 2.7 MJ 80 MJ 80 85 191 2 2.3 MJ 80 MJ 80 85 193 3 0 MJ 80 MJ	30 F F		_	-	6	75	80		m		EM		MI			MI	
MINION FAULER ST. 27	MAJONES GO. 0 5.25 9 75 90 198 2 3.0 MJ					σ	80	80		8		CM					MI	
MJ MJ MJ MJ MJ MJ MJ MJ	Mag	300		·	. `	σ	75	06		2	- 4			MI			MJ	
## BA MIX TIME MI MJ MI MI MJ MI	BO 2 2 3 3 3 3 3 3 3 3	300		•		n o	ο α	0 0		2	- 0	CM					MJ	MI
## 58.6 5.75 9 75 85 186 1 2.7 MJ MI MJ MI M MI M MI M MI M MI M MI M	8074 8074 8074 8074 8074 8074 8074 8074	807		•		η σ	0 0	0 8		ım		CM			MI		MI	
86 14	Not fauting values 56.9 19.3 12.4 19.5 19.6 19	000				10	200	y ur		·		M						MI
398A4 61.8 3.50 9 80 85 191 2 2.3 MJ	398A4 61.8 4.75 9 80 85 191 2 2.3 MJ	8074				n (~ 0	0 0		4 0		X		MI	MJ		MI	
HO 60.0 3.00 9 80 85 193 3 3.0 MJ	HO 60.0 3.00 9 80 85 191 2 2.3 MJ	398A		-		ית	0 0	0 0		, כ				×	M.T		M.T	
61.8 3.50 9 80 85 193 3 3.0 MJ MJ MI MJ	61.8 3.50 9 80 85 193 3 3.0 mJ	-MI		0		5	80	82		7				711	Z = Z		X :	
109 59.3 5.00 9 75 85 195 2 1.7 MJ MJ MI MJ	59 55.9 5.00 9 75 85 195 2 1.7 MJ	14		1		6	80	82		, (Y	_	E :	1	2	25.7		X	IM
56.9 5.00 9 80 85 2 2.7 MJ MI	56.9 5.00 9 80 85 200 2.7 MJ MI	98230		9.	0.	6	75	80.0		7 (-	Ξ	2	E X	Z Z		Z X	1
FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16	FAULTING VALUES 56.9 19.3 18 12.9 56.3 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 5	A98735		9	0	თ	80	85		7	-	Ē :	3				X .	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16	EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC C FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 8 FAULTING VALUES 56.9 19.3 18 12.9 56.3 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 5	D0367		7.	0.	ი	85	06		2	_	Σ	MI	Ę	4 5		2	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16	EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC C FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 8 75 8 75 8 75 8 75 8 75 8 75 8																	
FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16	FAULTING VALUES 57.9 22.3 8 13.9 58.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 8 FAULTING VALUES 56.9 19.3 18 12.9 56.3 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 5	<u> </u>	20172	34	X		WP		65 F	MC			IX TIME	0		U	DD.	LI.
FAULTING VALUES 31.2 10 12 0 55 3 51 12 4 2 1 9-11 60 4 HNDER 1 75 OVER 8.00 4 50 50 15	FAULTING VALUES 56.9 19.3 18 12.9 56.3 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 5	ממט בייי	F K	6 E7	C	· ~	σ	~	57 12		.7.8 6	9 5.7	-8.00	1 - 2	75		80	9
	FAULTING VALUES 56.9 19.3 10 12.9 50.3 .01 12.3 2 1,2 11 00.3 cmm.		AL		. 777			۰ د	101	. ~	9-11 E	P	1.75	~	00	5	20	2

QUALITY DATA OF SPRING WHEAT SAMPLES STATE=SOUTH DAKOTA STATION=REDFIELD NURSERY=UNIFORM

										1 1 1 1 1	1111111	11111	1 1 1 1 1 1		1 1 1 1	1 1
VARIETY	STD	WT WT	1000 K.WT G.	\$15 215	ING	WHT ASH	WHT PRO	HARD-	WHEAT SCORE	FLR EXT	ASH (A 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX	MIX
	1 1 1 1	1	1	1	1 1	1 1	1	1 1 1	1	1 1	} 	; ; ;	1		P	
F	co		29.7		m	. 7	•		٣	-	.5	•	Ŋ	2	7	0
HRI		7.	2	15	0	8	•		4	9	.5		Ω.	1 4	. 9	1 (*)
ď	ß	ς.	9		17	6.				6	9.	٠	ι Ω	2	9	· ~
MARQUIS		4	8			8	•		-		9.		Ŋ	·	 	,
A	ಬ	8	5		7	8			m	-	.5	٠	2	m	7	۳ ۱
715		7.	7		2	. 7			m	-	9	•	. 72	m	5	0
MN88170		4.	9	18	7	1.76	13.2	6.7	2	63.6	0.58	12.4	2	5	54.6	2 0
818		7.	0.		7	8			m		5	•	2	m	9	ı M
832		6	9		9	8			2	-	9.	•	5	7	2	·
833		8	4.		6	.7			က		.5	2	2	m	マ	l =-1
2		0	5		7	8			4	0.	.5	<u>ر</u>	2	4	5	7
2		8	8		7	6.			4		9.	5.	2	m	0	m
9		7.	9		7	8	•		4	3.	4	~	5	4	9	4
-		0	5		8	8			က	6	4.	3	5	4	7	m
12		ω.	2.		12	8			m	8	.5	2.	2	-1	5.	m
-46		5	4			0.	•		7	0.	.5	3	5	4	7.	2
0 5		5.	8		9	0.	•		2	0	.5	2	5	c	5.	2
030		9	9		15	0.			7	0.	. 5	3.	S	4	8	m
303		4	٠ س			0.			m	6	5	4.	5	4	7	2
313		9.	9		9	•	•		m		.5	•	2	m	5.	2
0 5		8	7		7	6.	•		か	8	.5	3	5	m	8	2
0 5		8	5.		ω	8			4	-	.5	3	5	4	0.	c
08		0	7		თ				m	ω.	4.	ς,	2	m	8	c
07		9	7		m	6.			m	9.	.5	2.	2	2	9	2
07		7 .	7		4	.7	•		က	9.	9.	2	5	m	8	2
07		7	9		ঝ	8	•		m	6	.5	2.	Ŋ	2	5.	7
98		9			7	6.			2	8	9.	3	Ŋ	m	7.	3
MIN		4	2.		11	0.			m	2	9.	4	4	٦	5.	2
48		7	5.	23	7	6.			4	7.	9.	5.	5	2	0	4
8		-	8		20	. 2			1	i	. 7	3	4	П	9	4
3735		4	4	18		6.			2	7.	9.		2	2	9	2
36		٠ د	6	4		6.	•			4	9.	•	4	7	5.	2

TABLE 18

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=REDFIELD NURSERY=UNIFORM

TABLE 18 (CONT)

	BAKE	MIX	роисн	СКИМВ	СКИМВ	LOAF	BAKE	GENERAL	١			DEF	-DEFICIENCIES	CIES-	1		i ! ! !
VARIETY STD	D ABS	TIME	CHAR	COLOR	GRAIN	TON	SCORE ***	SCORE ***		TW KW SM	M WP EX	A65	FP MC	MX BA	MT	DC CC	CG LV
					L		c				,			-	*		
BUTTE86	59.	3.50	5	80	85	163	7				MI	4	E CE	בי דע	7 '		
CHRIS		3.5	7	80	9.0		2							M			
ERA	56.	5.0	7	80	85		2	_		MI	J MI		4I		J		
ours	53.	4.5	5	80	85	166	-	_		MJ MJ M	MJ MI MI	MJ	MI	MJ MJ	٦٠	MI	
1	57.	5.0	Ŋ	80	85	171	2				MI		4I	MJ	ם	MI	
150	55.	3.5	7	06	85		2			MI	MI	MJ		MI MJ	J		
817	•	2.	. 2	80	85	173	7			MJ	MI		MJ	MI MJ	J MI	MI	
818	•	4.5	7	80	85		2			MI	MI MI	MI			J		
3 6	55.8	3.7	. LO	80	75	~		1.7			MJ		MJ		D	MI	MI
833	•	m		80	85	172	1			Σ	II MI	-	MI	MJ MJ	J	MI	
655		4.0		80	90	~	2								מ		
LO	•	3.5		80	85	~	c				MI	MI		MI			
99		7.2		85	85	10	~			MI				Ĭ	JMI	MJ	
67	_ •	4.2		80	85	m	2	-			MI			MJ	כי		
-		5.5		85	85	10	-			M I M	MI MI MI	MI	MJ		כי	MJ	
-46	_ •	3.7		80	9.6	m	2							MI MJ	ט	MI	
05	_	4.7		85	06	3	2			MJ	MI	MI	MI		ט	MI	
030	-	4.7		9.0	85	-	2			MJ	MI MI				ט		
03	~	3.7		80	85	0	2					MI			ט		
313		4.7		80	85	α	2				MI MI			MI MJ	ט		
305	~	4.0		80	85	∞	2				MI				ט		
0.5	_	3.5		80	85	~	2			Σ	MI	MI		MJ	ר		
308	m	4.5		85	85	~	2			Σ	MI MI MI				ט		
0	10	3.7		7.0	85	മ	⊢ 1				MI		MJ		ר	MJ MI	
807	m	4.0		0.9	06	9	7			MI	MI	MI	MI	MI MJ	מ		
807	10	4.5		75	06	9	2			MI	MI		MJ		רו	MI MI	
398	_	5.(80	75	∞	2			MJ					ט		MI
-MIM-	10	4.0		80	85		2			MJ MI M	H			UM IM	ר	MI	
4	0	m		80	85	∞	2	_		MI	MI			MJ	J		
98230	0	5.5		80	9.0		2			MJ	MI				ט		
9873	ത	4		80	85	9	2	_		ט	MI MI MI						
D0367	Ю	6.2		80		∞	-1			MJ MJ M		CM	MI	MI MJ	J MI		MI
EFICIENCIE			S	O.	EX	5 FP	MC	MX	BA	MIX	ME (MT		DC	22	55	LV	
FAULTING	VALUES 57.	m (8 6	<u>ი</u> (in u	2 0	m c	2,7,8	61.9	5.75-8.00	2.00-	27.75	9 4	7 2	8 0 7 0	140	
FAULTING	VALUES 56.	7 7 7 7	S L S	י. מממ	0 · 0	000 C	2 GMT GE	ָ ו		-1 -2	2		۲	2		2 7	
=NO PROMIS	7 - 7 - 7 - 7	'n	เ อ	li .	1 2 2	4	2										

QUALITY DATA OF SPRING WHEAT SAMPLES
STATE=SOUTH DAKOTA STATION=SELBY NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	ING SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
E	တ	61.4	32.3	51	0	4.		92	m	2.			5	4	16	3
CHRIS			24.7		2	. 5	•		4	9.	4.		5	4	8	m
	ഗ	9	3		11	. 7			2	7.	9.	•	5	8	5	ı m
AR		7	1			9 .			2	1.	4	•	2	2	٠ س	2
OA	Ω	0	8		٣	9.			4	7	4.		2	। ক	7	ım
8715		ω.	0		2	.5			m	9.	4		2	ব্য	9	2
MN88170			29.5	33	4	1.58	13.2	62	m	62.7	0.50	12.5	2	m	57.9	2
8818		9	5.		2	9 •			m	0.	4	•	5	4	9	4
8832		1	9		m	. 5			М	9.	.5	•	5	2	د	2
8833		6	9		9	4			М	0.	4.	<u>«</u>	5	4	5.	2
6.5		2.	ω		4	. 5			4	4.	4.	4.	5	4	8	4
55		0	3		7	. 7			4	1.	.5	5.	5	4	-	5
99		9	6		4	. 5			4	3	4.	4	5	4"	5.	7
67		2.	9		2	.5			m	<u>-</u>	4.	•	5	41	8	5
672		6	2		7	9.			4	8	. 5	2.	5	m	5.	4
7-46		ω.	0		7	. 7			٣	9.	.5	2.	5	m	9	m
6054		7.	0		4	9.			m	7.	.5	2.	5	m	9	m
703		φ.	1.		4	.5			4	0.	4.	ω,	5	41	0	5
8303		φ ω	ω		m	ω.			4	8	. 5	5.	5	4	6	m
313		0	9		2	. 7	•		4	0.	.5	4.	5	4	8	4
305		0	-		-	. 5			4	0	4	4.	2	4	9.	m
305		i.	3		2	.5			4	8	.5	3.	2	4	8	m
308		5			~	4.			4	8	4.	ش	5	4	7.	4
807		Ä.	m		7	. 5			4	2.	4.	3	2	4	7.	3
807		1	2.		-	.5			4	1.	4.		5	4	9	4
8074		<u>-</u>	1.		7	. 5			4	2.	4.		5	V	8	2
398A4		ω	-		2	. 7			М	4	9.		4	1	7	m
Σ		ω	8		3	9.	•		4	4	. 5	•	2	2	7	4
148		0	9.		4	9.			4	1	.5	•	5	せ	0	. 73
CI982309		2	1		15		14.2		2	9			5	m	0	9
98735		Ф	8	35	4	9.			m	2.	4.	•	5	47'	9	3
D036		ک	2.	7	15	. 7	•		1	9	• 6	•	5	٦	5.	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=SELBY NURSERY=UNIFORM

TABLE 19 (CONT)

LV

MINOR FAULTING VALUES 57.9 26.0 8 13.9 56.8 .57 12.9 3 MAJOR FAULTING VALUES 56.9 23.0 18 12.9 54.8 .61 12.4 2 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=MORRIS NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI LG	ING SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH A 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
1 8	1 1	1 4	1		1 8	1 0	1			1 1		1			i	
4	ν N	4	7			٠,	٠		ν,	5.	. 2	7	2	7		m
CHRIS		т	9	11		ω.	9		m	3	.5	5	5	4	8	c
ERA	ß	2.	4	m		. 2	9		2	9	8	5	5	7	0	2
α		7	9	9	16	6.	5		2	2	-	4	2	m	7	m
OA	ಬ	8	7.	5		0.	9		2	0	.5	9	2	7	0	4
305		2.	2		9	6.	9		e	2.	.5	5	5	4	7	· (*)
SD3056		52.2	23.1	24	7	1.90	16.0	72	m	55.0	0.63	15.1	5	m	59.0	ক
308		5.	3		9	8	5.		2	0	.5	4	5	4	8	5
807		1	0.		8	0.	9		٣	9	. 5	5.	5	4	5.	5
807		-	-		9	0.	5.		8	4	9.	4	5	8	7	5
807		1	0.		8	ω.	5.		m	5.	.5	4	5	4	0	5
8715		9	7			0.	5.		2	9	9.	4	5	2	-	m
8817		7.	9			0.	5.		m	~	9.	3	5	3	0	m
881		9.	ä	10	12	0.	5.		က	2.	.5	4	5	4	0	4
8832		0.	6			6.	5.		က	6	9.	3	5	٣	0.	m
833		<u>ب</u>	8	9		8	5.		2	2.	.5	4	5	4	6	2
65		6	9			-	9		2	4.	9 .	9	5	-1	-	4
65		7.	0	14		. 2	7		m	0	9.	6.	5	m	1.	5
99		-	-			6.	9		m	8	9.	5.	5	2	7.	4
67		1	е Ф		14	0.	9		٣	ش	9.	5.	5	4	1.	2
672		9	5	S			9		2	0.	9.	5.	5	٣	6	4
398A4		4	9	7		.3	5.		2	3	8	4	2	H	9	c
9-05		9	ω	8		۲.	5.		2	9	. 7	4.	2	H	6	4
7-030		7.	7.	9		-	7.		m	0	9.	9	5	m	3.	5
8-313			6	15		0.	9		m	0	.5	5.	5	4	8	n
8-303		9	9	0	6		7.		m	9.	. 5	7.	5	4	-	4
7-467		-	9	2		. 2	5.		2	8	. 7	4.	2	2	0.	c
987-3		5.	7	7	20	. 2	9		2	4	9.	5.	5	7	9	4
982-30		0	3	4		.3	9		2	6	9.	5.	5	٣	0	5
C-MINT		0	2.	30	2	0.	9		m	4	9.	5.	5	c	0	4
148		2.	س			0.	9		m	5.	. 5	5.	5	4	7.	4
D03		4	5	2	29	0.	9		2	6	9 •	5.	5	-1	4.	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=MORRIS NURSERY=UNIFORM

TABLE 20 (CONT)

Second State	S		BAKE	MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL	1	1	1		Q	EFICI	DEFICIENCIES	3	1 1 1		
S 60.3 3.25 7 80 85 212 2 3.0 HJ	S 5 60.3 3.25 7 8 8 8 212 2 3.0 MJ HJ HJ MJ MJ MJ MJ HJ	1 1 1 1	AB I	ZZ	1	COLOR	GRAIN	CC	SCORE ***	SCORE ***	 	1	N 1	Q 1	A6	다. 다.	XX	A	0	1	ΓΛ
S S S S S S S S S S	S	9		3.2		80	85		2			MJ					4	13			
S 60.5 3 3.25 9 80 95 243 2 1.7 MJ	S 50.3 3.25 9 80 85 243 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	3.0		80	85		2					>	>		Z . A	J			
S	S S S S S S S S S S		•	3.2		80	85		7			Σ		Σ			6 0 d	ر د د	;		
\$ 60.5 \$ 5.50 \$ 60 \$ 75 \$ 217 \$ 3 \$ 3.0 \$ MJ \$ M1	\$ 6.0.5 3.50 5 80 75 217 3 3.0 MJ	IS		3.0		80	06		2			W.	CW :		Ξ;		-	Ç :	Į:	2	
\$ 57.9 \$ 5.50 \$ 9 \$ 80 \$ 80 \$ 235 \$ 2 \$ 3.0 \$ MJ \$ MI \$ MJ \$ MI \$ MJ \$ MJ \$ MJ \$ MJ	\$ 57.9 \$ 5.0 \$ 6.0 \$ 8.0 \$ 2.2 \$ 2.0 \$ 8.0	S	•	3.5		80	75		(1)			DW.	M		Ξ		~ ,		ĪΨ	Σ	
6 59.0 6.0 9 75 85 22.2 2 7.7 MJ	6 59.0 4.00 9 76 85 222 2 2.7 MJ M1		•	3.5		80	80		2			MJ			Ξ			43			
Color Colo	Secondary Seco			4.0		75	85		2			MJ			X	_	~	MJ.	2.	ij	
2 5.5 4 7.25 7 8 6 9 0 213 2 3.0 MJ MI	2 55.5 4.25 7 80 90 213 2 9.0 M.J.			5.0		80	85		2			MJ						NJ.			
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	3			4.2		80	9.0		2			MJ			Ξ			HJ.			
10 10 10 10 10 10 10 10	Handle H		•	4.7		75	85		3			MJ			X		-	MI	2	ij	
Second	State Stat			5.0		75	85		2			MJ	MI					MJ.	2	II	
10	10 10 10 10 10 10 10 10	· LO	•	3.0	_	75	85		2			LM	MJ	Σ		_	-	MJ.	2.	Ħ	
Secondary Seco	Secondary Seco	-		2.2		75	06		-			MJ	MI		X	-		Σ	H	II	
1.5	10	18		3.5		75	85		2			UM	MI		Ξ		~	MJ.	2		
13	134 59.0 2.75 5 75 85 258 3 2.0 M M M M M M M M M	32	-	w		80	75		2			MJ	MI		Ĭ	_		MJ			
61.8 3.25 9 75 85 258 3 2.0 MJ	61.8 3.25 9 75 85 258 3 2.0 MJ	33	_	2.7		75	85		1			MJ	MJ				 	Σ	1-4	IJ	MI
61.1 3.75 9 75 85 257 3 3.0 MJ MI MJ MJ MJ MJ MJ MI MI MI MI MJ	Color Colo	5	1	3.		75	85		m			MJ	MJ	Σ		_		MI	۷.	IJ	
ST.9 7.00 9 80 85 212 1 2.0	S	7		3		75	85		8			MJ	MI		Σ	1	_		2	IJ	
Color Colo	Color Colo	2	_	7.(_	80	85		٦			MJ	MI	Σ		_		Σ			
Secondary Seco	Secondary Seco	1	_	3.		80	80		m				MI		Σ	u	~	MI		Σ	
13.4 59.6 4.00 5 75 80 238 2 1.7 MJ MJ MJ MJ MJ MJ MI MI MJ	Main color Mai	2	0	4	0	75	85		2	- 0		Σ				1		MU			
1542 59.0 4.00 5 70 85 235 2 1.7 MJ MJ MJ MJ MJ MI MI MI MJ MJ MI MJ MJ MI MJ MJ MI MJ	13.6	d	0	4.	0	75	80		2			MJ	MJ	Σ		J	_	MJ		Σ	
1306 63.1 3.75 9 80 80 261 4 3.3 MJ MI MJ MJ MI MJ MJ MI MJ MJ MI MJ	1306 63.1 3.75 9 80 80 261 4 3.3 MJ MI MJ MJ MI MJ	54	0	4.	0	70	85		2			MJ	MJ	Σ		_		MJ			
3136 58.6 4.00 9 75 80 246 2 3.0 MJ MI MJ MJ MI MJ MJ MI MJ	3136 58.6 4.00 9 75 80 246 2 3.0 MJ MI	30	m	'n	10	80	80		か			MJ	MI		ž	_					
3034 61.1 3.25 9 75 80 253 3 3.3 MJ MI	3034 61.1 3.25 9 75 80 253 3 3.3 MJ MI	313	ത	4	0	75	80		7			MJ	MI					MJ	_		
467 66.0 3.75 2 60 70 224 1 1.7 MJ	#67 60.0 3.75 2 60 70 224 1 1.7 MJ	303	-	m	10	75	80		c			MJ	MI			lund.		Ξ			
7-350 7-350 60.3 4.50 2 70 80 227 1 2.0 MJ MJ MJ MJ MJ MJ MJ MI MM 1NTO 60.0 2.75 7 80 80 223 1 2.3 MJ	7-350 59.6 4.00 5 75 85 236 2 1.7 MJ MJ MJ MJ MJ MJ MI M MI M MI M MI M	467	0	3.	2	09	70		7			MJ	MJ	Σ		n		DW			
2-309 60.3 4.50 2 70 80 227 1 2.0 MJ MI MJ MJ MJ MJ MJ MJ MJ MI M INTO 60.0 2.75 7 80 80 223 1 2.3 MJ MJ MJ MJ MJ MJ MI MJ MJ MI MJ MI MJ MI MJ MI	2-309 60.3 4.50 2 70 80 227 1 2.0 MJ MJ MJ MJ MJ MJ MJ MJ MJ MI MJ MJ MJ MJ MI MJ MJ MJ MI M GO.0 2.75 7 80 80 223 1 2.3 MJ	7-35	O	4	0	75	85		2			MJ	MJ	Σ		1		MJ			
INTO 60.0 2.75 7 80 80 223 1 2.3 MJ 8 57.3 3.25 7 75 85 223 2 3.0 MJ 8 57.3 3.25 7 75 85 212 2 1.7 MJ MI MJ MJ MI MI MI MI MI MI 67 54.3 5.25 5 75 85 212 2 1.7 MJ MI MJ MJ MJ MI MI MI MI MI DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV R FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203	INTO 60.0 2.75 7 80 80 223 1 2.3 MJ 57.3 3.25 7 75 85 223 2 3.0 MJ 57.3 3.25 7 75 85 223 2 3.0 MJ MJ MI MI DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) R FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203 R FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 193 1-NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	2-30	0	4.	0	70	80		Н						Í	_				Σ	
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV RAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203 1=N0 PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	INTO	0	2.	2	80	80		-1			MJ			Í	J	_	Σ		Σ	
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) R FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV RAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 203 R FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 193 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	000	-	m	5	75	85		2			MJ						MJ		11	
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L R FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 20	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L R FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 20 R FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 191 NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	9	4	υ.	2	75	85		2			J M	Σ	Σ		n	_	D T	Н	Ţ	
DEFICIENCIES TW	DEFICIENCIES TW KW SM WE EA ASS FF MC MA EA		E			2		n t	5			×	×		_	5	ئ	נ			
	R FAULTING VALUES 56.9 13.1 10 12.9 46.9 .01 12.4 2 1.7 11 50.4 5.75 1.7 5.75 3 5.00 5.00 1.00 PROMISE 2=LITTLE PROMISE 3=SUME PROMISE 4=GOOD PROMISE.	DEFICIENCIE R FAULTING	S 57	on 0	י ה	¥ ω ι	0.80	57 12.	=	7,8 6	6.	.75-8 NDFP	00	20	8.0		75	80	105		

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=ST. PAUL NURSERY=UNIFORM

VARIETY	STD	田3/	1000 K.WT G.	SIZI LG	S W *	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	FLR EXT	ASH (A 65%EX	FLR PRO %	MILL	MILL SCORE ***	MIX ABS	MIX
1 =	S	54.3	1 8		5	-		55	3	5.	9.	4	5		i o	1 4
CHRIS		3	2.		8	. 2			m	7.	7.	9	5	m	0	' থ্
C	ಬ	4	ς,		7	0.	•		m	4	.5	5	5	4	0	' বা
MARQUIS		3	2.		8	0.			m	4	9.	ω.	5	m	· ~	2
STOA	ß	4.	9.		0	0.			c	<u>ر</u>	. 5	4	5	4	-	7
)5		9	8		⊣	0.			m	9.	.5	9	2	4	ω	7
SD3056		5.	29.8	99	7	2.03	16.2	77	က	56.8	0.61	15.1	5	٣	57.9	2
9		7.	8		Н	6.	•		4	7.	.5	5.	5	4	7	m
0.7		9	0.		-1	0.			m	-;	. 5	5.	5	4	7.	2
0.7		5.	9.		٦	0.			m	8	9.	4.	5	က	9.	c
174		5.	7.		٦	6.	•		m	5.	.5	4	5	4	9	m
115		5.	7.		4	· •	•		က	7.	. 5	3,	5	ব্য	4	2
317		4.	8		2	6.			ო	4	. 5	2.	5	က	8	2
37		5.	2		Н				က	7.	₽.	3	5	4	9	2
332		9	8		4	8.	•		m	9	. 5	2.	2	٣	9.	2
333		7.	4.		4	ω.	•		4	7.	• 4	3	2	4	м	-1
10		7.	5.		2	0.			4	1.	.5	5.	5	4	9.	က
10		5.	8		0	0.			m	ъ 8	.5	6.	വ	4	0.	m
		5.	7		2	6.			m	9	4	5.	2	4	8	4
Phone		7.	7.		2	6.			ব্য	9.	٠ 4	9	5	4	1.	Ų
7		7	5		2	0.	•		マ	4.	.5	ς.	2	4	8	n
8A4		5.	8		н	0.			m	0	9.	3	2	2	5.	2
-054		S	ω		2	0.			2	9.	٠ 4	2.	2	m	7.	m
-030		9	8		m	6.	۰		m	Ή.	ঝ	4.	5	ব্য	9.	m
4		9	9		2	0.			m	7.	4.	5.	2	4	9	m
-303		2.	3		4	0.	٠		m	8	4.	7.	5	ব	2.	47
-467		٠ ت	7.		m	6.			m	9.	.5	2.	2	m	6.	2
17-3		e m	9		2	0.	•		m	2.	. 5	4.	5	4	6.	7
12-30		1.	2.		10	0.	•		m	5.	9.	4.	2	m	7	4
INI		e C	2		4	۲.	•		m	5.	. 7	6.	5	m	i.	m
14		5.	-		-	٠.			m	4.	9.	9	2	m	2.	2
D03		-	+		12	0.	14.7		m	1.	9 •	4	5	m	8	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=ST. PAUL NURSERY=UNIFORM

Sec. 9 1.25 7 80 75 188 2 2.7 MJ MI MI MJ MI		BAKE	MIX	попен	CRUMB	CRUMB	LOAF	DANE	GENERAL	1				DEF TOTENOTES			! ! !
S 56.9 3.25 7 8 8 75 188 2 2.7	1 1 1	A I	TIME	1	COLOR	GRAIN	VOL	$\circ *$ 1	SCORE	1	KW SM W	A65	Q	1	1	1	50 00
S 60.3 4.00 9 80 80 189 2 2.7 MJ MI	о С	55	3.2	7	80	75	~	2			Ľ	'n		Σ	ļ.		Σ
S 60.3 4.00 9 86 186 2 3.0 MJ MI))	.09	2.5	- 6	80	80		2 2			MIM	X		Σ	Σ		X
Name	1	60.	4.0	6	85	80	~	7			MI			Σ			MI
1965 1966	OUI	53.	5.0	7	80	75	~	2			MI M	MJ			J		M
1955 55.6 5.25 9 75 80 126 2 2.7 MJ MJ MJ MJ MJ MJ MJ M	d	57.	3.0	7	80	85	Pre-	2				MI			כו		
156 157 15 15 15 15 15 15 1	05	8	3.2	6	75	80		2			MJ				כ	Σ	I MI
National N	D305	. •	3.2	6	75	85	T	2			MJ	MJ			ט	Σ	MI
17.2 57.6 5.50 9 85 85 192 2 3.0 MJ MJ MJ MJ MJ MJ MJ M	308	. •	4.2	6	80	70	•	2			MI				7		MI
19	D807		3.5	6	85	85	~	2			MJ			н	ם		
11.50 56.9 3.00 7 75 85 178 2 3.0 MJ MJ MJ MJ MJ MJ MJ M	07		3.5	7	80	85	\sim	2			MJ	CM.			J		
1150 54.3 2.75 7 80 80 186 1 2.7 MJ MJ MJ MJ MJ MJ MJ M	07		3.0		75	85	-	2			MJ	MI		2.	כו	Σ	H
1987 1987 1987 1987 1988	715		2.7		80	80	00	7			MJ						
1889 56.9 3.25 7 85 80 188 2 3.0 MJ MJ MJ MJ MJ MJ MJ M	817	~	2.0		80	80	-	7			MJ	4	11			MJ	MI
8320 59.3 3.00 7 80 85 190 2 2.7 MJ	818		3.2		85	80	m	2			LM				כ		Ξ
8334 53.8 3.00 2 85 85 170 1 3.0 MI	832		3.0		80	85	0	2			MJ	_	11		נו		
Secondary Color	833	~	3.0		85	85	-	7			MI				כ	MJ	
57 60.8 2.75 9 80 70 193 2 3.0 MJ MI	2		3.5		85	75	(1)	2			MI			Σ			M
62 5 5.0 7 8 8 7 5 182 2 3.0 MJ 71 61.1 3.25 9 8 8 75 183 3 3.7 MJ 72 56.2 5.0 7 8 8 8 75 188 1 2.0 MJ 73 7 8 8 8 75 188 1 2.0 MJ 74 8 8 8 8 188 1 2.0 MJ 75 8 8 8 188 1 2.0 MJ 76 8 8 188 2 2.3 MJ 77 8 8 8 188 2 2.3 MJ 78 MJ 79 MJ 70 MJ	2		2.7		80	70	(7)	2			MJ			Σ	Σ		M
71 61.1 3.25 9 80 75 193 3 3.7 MI	9	m	5.0		80	75	α	2			MJ			Σ	כ		MI
Secondary Seco	-		3.2		80	75	3	က			MI			Σ	H		M
398A4 55.5 5.75 7 80 85 188 1 2.0 MJ MI MJ	67	m.	5.0		80	85	8	2	- 0		MI			Σ			
6-0542 57.3 4.00 7 70 85 188 2 2.3 MJ MI MI MI MJ	398A	١.	5.7		80	85	8	-1				MJ		н			
7-0306 59.3 4.00 9 85 75 194 2 3.0 MJ	6 - 054	-	4.0		70	85	∞	7			Σ	La	11	2	IJ	Σ	MI
8-3136 59.3 3.50 7 75 80 190 2 3.0 MJ	7-030	ъ О	4.0		85	75	ത	2			MJ			Σ	כי		MI
8-3034 62.5 3.00 9 70 70 202 4 3.7 MJ MJ MJ MI MJ	8-313	σ.	ت		75	80	ത	2			MJ			2.	2	Σ	MI MI
7-467 56.2 4.00 5 85 90 200 2 2.7 MJ MJ MI M	8-303	α	3.0		70	70	0	4			MJ					Σ	
987-350 56.5 5.00 5 85 85 193 2 3.0 MJ MI	7-46	ģ	4.0		85	06	0	2			MJ	_	11		J.	MI	
2-309 57.3 5.75 5 75 85 198 1 2.3 MJ MI MI MJ MJ MJ MJ MI	987-35	و	5.0		85	85	ത	2			MJ	MI			J	MI	
INTO 61.8 2.50 9 70 80 210 2 2.7 MJ MJ MI	1982-30	_	5.7		75	85	g O	-			MI M	MJ		2.			Н
3 3.0 MJ MI	C-MINTO	H	2.5		70	80	~~	2				MJ		2			MI MI
ST 58.6 5.00 9 80 85 198 2 2.7 MJ MI MI MJ MJ MJ MJ DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) RAULTING VALUES 57.9 23.6 8 13.9 52.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 R FAULTING VALUES 56.9 20.6 18 12.9 50.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	W148	2	2.7		80	80	∞	c			π	MJ		-			MI
SEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) R FAULTING VALUES 57.9 23.6 8 13.9 52.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 R FAULTING VALUES 56.9 20.6 18 12.9 50.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	D036	œ	5.0		80	85	gn .	2			MIM	MJ		2.	J.		
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L R FAULTING VALUES 57.9 23.6 8 13.9 52.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 16 R FAULTING VALUES 56.9 20.6 18 12.9 50.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15																	
R FAULTING VALUES 56.9 20.6 18 12.9 50.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 15	DEFICIENCIE INOR FAULTING	ALUES 57.	n	8	WP 3.9	A .	5 FP 7 12.	ည္က	MX,	BA 1.	.75-8.00 2	2.7	DC 6	CC 75	80		
TOTAL MOOR PROPERTY OF THE PARTY OF THE PART	AJOR FAULTING	LUE	6	6 18	2.9	0	12.	2	,9-1	0.	NDER 1.75 OV	8.0	4	20	20	5	

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ]	ING EN EN EN EN EN EN EN EN EN EN EN EN EN	WHT ASH	WHT PRO %	HARD-	WHEAT SCORE ***	FLR EXT %	ASH G 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
	ಬ		40	23	10	1.87	16.3	70	 m c	52.1	0.55	15.2	w	 4, 4	62.5	1 00
4	C.	٦ د) () 0		· 0	•		7 °	7 (٠ د بر	٠ ٥ <	Ωu	4, ∠		v) =
MARQUIS	1	, 4.	. 6			9	• •		2 0		9	י י	വ	T (- 00	4º (~
STOA	ഗ	7.				-	•		4	m	. 5	4	. L	। ব) 4
SD 3055		8	5.	56	2	∞			4	4	.5	9	5	ব	0	4
LO.		7.	7.		マ	∞			4	5.	.5	4.	2	4	Н	m
က		φ •	5		7	8	•		4	5.	.5	9	2	ゼ	4	9
-		9	4		က	∞			m	-	9.	5.	2	m	9.	c
-		9	4.		က	9	•		m	2.	9.	4.	2	4	2.	খ
74		5.			9	8			m	각	. 5	4	2	4	-	9
15		5	4		5	∞	•		٣	3	.5	4.	2	4	7.	2
17		3.	2.		2	8			က	8	.5	ς,	2	4	0	2
-		5	7.		2	ω.	•		m	4	.5	4	2	4	8	m
32		٠ •	2.			8	•		٣	٦,	9.	8	5	4	8	2
33		9	0		14	. 7	•		m	7.	4.	4.	5	4	9	2
ND 655		7 .	9	12		8	•		4	5.	.5	4	2	4	9.	m
ND 657		7	9		ጥ	6.			4	7.	9.	9	5	2	0	3
ND 662		5.	<u>.</u>		ω	8	•		m	4	. 5	5.	2	4	7.	5
ND 671		9	0	16	æ	6.			٣	5.	.5	9	5	4	4	2
2		7	-		ω	8			₽'	7	. 5	4.	5	m	8	ক
XW 398A4		-	9		4	9	•		ヤ	3.	9.	5.	2	m	9.	3
6-054		2	ر		ω	6			٣	7.	. 5	4.	2	4	-	4
7-030		ى	4.		4	ω.			٣	3.	.5	5.	2	4	2.	2
8-313		ω	ਾ ਹਾ		2	α			4	7.	. 5	4	2	4	9	2
88-303		٠ د	.		0	0.	•		m	5.	. 5	9	S	4	0.	2
87-467		4	2.	15	0	6.	•		m	5.	9.	4	Ŋ	m	9.	m
A98		9.	ω		21	\dashv	•		2	7.	9.	5.	2	Ħ	9.	m
82-30		당	-	7		0.	•		m	ж •	9.	9	5	က	-	7
CMINI		~	-	13	9	6 •	•		m	7.	9.	9	5	-1	0	4
ω .		9	m			6	•		m	3	9.	9	2	m	2.	4
D 03		m	ω	2	23	8	- 4		2	9	9.	ж •	2	က	9	m

1991 CROP QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROESTATE=WISCONSIN STATION=MADISON NURSERY=UNIFORM

		BAKE	MIX	роисн	CRUMB	СКОМВ	LOAF	BAKE	GENERAL	AL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DE	-DEFICIENCIES	NCIES	1		1
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	CC	SCORE	SCORE ***	1 1 1 1 1	TW KW SM	WP EX A65	FP MC	MX	BA MT	םם ככ	AT DO
	٥				α α	α L	19				I M						
BULIE 86		60.0	2 0			2 %	200				IM IM CM	MI		Σ	MJ		MI
EBB	U		1 [000	8.5	21							Σ	MJ		
MAROITE		58.6	4.25	n 01	80	8 2	207	, 1	2.0		MI	MI MJ		Σ	MJ		
4	Ů,	•	2		80	85	19	2	_					Σ	MJ		
10			7		85	75	22							Σ	MI		MI
SD 3056			2		80	80	21				MI	MI		Σ	ij		MI
0		•	5		80	06	22										
-			S		80	85	20				MJ	MI MI		Σ	MJ		
-		•	ß		85	75	20		3.7		MJ	MI					MI
7		•	0		75	80	20				MJ	MI			MI MI	M	
15		•	L)		80	85	20				МJ						
17		•	Ω 3		80	80	18				MJ	MI		MIM	MJ MI	MI	MI
18		•	(80	85	21								MJ		
l m		58.6	ш,		75	85	20		3.0		IM CM	MI		MIM	MJ	MI	
33			(-		75	06	78				MI				MJ	Ä	
655			٠,		80	85	21				MI			Σ	MJ		
65			4		85	85	19				MI	MJ MI		Σ			
99					85	80	21					MI		Σ	MJ MJ		MI
67					80	85	20				MI						
67		m			90	85	20					MI		Σ	MJ MI		
398A		0	4		80	85	20		- 0		MI	DM		Σ			
-05			٠.		75	85	1.5		3.0		MJ MI			Σ	MI MI	MI	
7-030		~			9.0	85	21				MJ						
8-313		о О	٠.		80	85	21								MC		
88-303		0	٠.		80	90	2(MI		Σ			
87-467		σ,			85	85	2(MJ MI	CM.		Σ	MJ MI		
987-35		6			80	85	2.1	2	1.7		MJ MI MJ	MJ MJ					
T987-		-			80	75	2				MJ MI	MJ		MI	MI MI		MI
OTNIM	•	0			80	85	H				MJ	MJ MJ		Σ	MJ		
W 148		N			85	80	H	4	3.3		MJ	CM.					MI
ID 0367		9			80	80	ä	-			MJ MI MJ	MJ		Σ	IJ MI		M
SAISNAISIAGO	S.	TE	X		WP	EX	65		MX	BA		(MT)	DC	ນ	SS	LV	
י בי	VALUE	3 57.	20.			51.9	.57 12.	9 3	2,7,8	61.9	8.00	2.00-2.75	9	75	80	179	
MAJOR FAULTING	VALUE	5	17.	6		9.	61 12	4			UNDER 1.75		4,	20	20	9	

TABLE 22 (CONT)

MINOR FAULTING VALUES 57.9 20.9 8 13.9 51.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 MAJOR FAULTING VALUES 56.9 17.9 18 12.9 49.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME-PROMISE 4=GOOD-PROMISE.

i.
i
i
1
0
\simeq
LL
·MI
Σ,
- 1
AC
K
11
\succ
EI
EI
\blacksquare
α
4
VAR
1
1
i
1
1
-
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
T. C.	53.9833333	2.4935249	50.5000000	58.2000000	6.2176667	4.6190644
L WI	24.2000000	2.7597101	21.0000000	28.4000000	7.6160000	11.4037609
LG		11.6518954	9.0000000	39.0000000	135,7666661	46.2989222
X.	5.5000000	2.8809721	3.0000000	11,0000000	8,3000000	52,3813101
WHT ASH	1.9650000	0.1670629	1.6700000	2.1700000	0.0279100	8.5019268
NHT_PRO	16.0166667	1.1016654	14.7000000	17.2000000	1,2136667	6.8782439
HARD	70.0000000	4.5607017	65.0000000	76.0000000	20,8000000	6.5152881
EXTR	53.7333333	3.5612732	47.2000000	57.4000000	12.6826667	6.6276796
FL_ ASH	0.6283333	0.0604704	0.5400000	0.7300000	0.0036567	9.6239329
FL_PRO	15.5500000	1.0212737	14.3000000	16.9000000	1.0430000	6.5676766
MIXO	3,3333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
BAKE ABS	59.1000000	2.2768399	55.5000000	61,8000000	5,1840000	3.8525210
COAF_VOL	197.0000000	16.8878655	180.0000000	223.0000000	285.2000000	8.5725205

---- VARIETY=BUTTE 86 -----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.0666667	3.0223611	54.3000000	61.4000000	9.1346667	5 2961935
K WT	27.1666667	3.7924486	23,1000000	32,3000000	14.3826667	13.9599336
PG	31.6666667	13.8948432	17.0000000	51,0000000	193.0666667	43.8784521
SM	4.5000000	3.6193922	0	10.0000000	13,1000000	80,4309381
WHT ASH	1.8066667	0.2057831	1.4900000	2.1000000	0.0423467	11,3902061
WH'T PRO	15.0000000	1.1916375	13.5000000	16.3000000	1.4200000	7.9442502
HARD	74.0000000	12.7121989	55.0000000	92.0000000	161.6000000	17.1786471
EXTR	57.7500000	4.0267853	52.1000000	62,6000000	16,2150000	6.9727884
FL ASH	0.5366667	0.0683130	0.4200000	0.6300000	0.0046667	12.7291314
FL_PRO	14.0333333	1.1893976	12.1000000	15.2000000	1,4146667	8.4755174
MIXO	3.333333	1.0327956	2.0000000	5.0000000	1.0666667	30.9838668
BAKE ABS	60.0500000	1.9086645	56.9000000	62.5000000	3.6430000	3.1784587
LOAF VOL	186.8333333	18,1043273	163.0000000	212.0000000	327.7666667	9.6900949

VARIETY=BW148

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
		2.4679951	52.8000000	60.300000	6.0910000	4.3875469
KWT	25.6666667	2.5920391	23.0000000	29.6000000	6.7186667	10,0988536
LG	27.5000000	8.8713020	17.0000000	38.0000000	78.7000000	32,2592802
	4.1666667	2.1369761	1.0000000	7.0000000	4.5666667	51.2874254
WHTASH	1.9500000	0.1555635	1.6900000	2.1300000	0.0242000	7.9776150
WHT PRO	16.3833333	0.7859177	15.2000000	17.4000000	0.6176667	4.7970563
HARD	76.6666667	8.8694231	65.0000000	89.0000000	78.6666667	11.5688128
EXTR	56.9500000	2.7142218	53.8000000	61.1000000	7.3670000	4.7659733
FL_ASH	0.6000000	0.0644981	0.5200000	0.6600000	0.0041600	10.7496770
FL. PRO	15.8000000	0.5549775	15.1000000	16.6000000	0.3080000	3.5125157
MIXO	3.8333333	0.9831921	2.0000000	5.0000000	0.9666667	25.6484891
BAKE ABS	60.6666667	1.9294213	57.3000000	62.5000000	3.7226667	3.1803648
LOAF VOL	195.8333333	15.7786776	180.0000000	223.0000000	248.9666667	8.0571971

Ĺ	Z
٠	
C	1
G	3
	>
	R
	į
	ŧ
	ğ
	ì
	Ì
	Ī
	I

TABLE 24

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
W.	55.6500000	2.3227139	53.1000000	59.4000000	5.3950000	4.1737896
WT	21.7166667	2.0585594	19.4000000	24.7000000	4.2376667	9.4791682
LG	15.0000000	4.6904158	8.0000000	20.0000000	22.0000000	31.2694384
MS.	6.8333333	4.7504386	0	12.0000000	22.5666667	69,5186133
WHT ASH	1.8800000	0.2039608	1.5900000	2.2300000	0.0416000	10.8489777
WHT PRO	15.5000000	0.7797435	14.5000000	16.3000000	0.6080000	5,0306035
IARD	68,6666667	3.1411251	63.0000000	71.0000000	9.8666667	4.5744540
EXTR	57.5000000	3.7239764	53.1000000	62.2000000	13.8680000	6.4764806
FL ASH	0.5583333	0.0793515	0.4700000	0.7000000	0.0062967	14.2122159
FL PRO	15.4166667	0.9641922	14.4000000	16.9000000	0,9296667	6.2542199
IXO	3,3333333	0.5163978	3.0000000	4.0000000	0.2666667	15,4919334
BAKE ABS	59.2000000	1.4436066	56.9000000	60.8000000	2.0840000	2.4385247
OAF VOT.	193 833333	12 1020595	172 000000	210 000000	173 766667	6 8007181

i
i
1 1 1 1 1 1
i
i
i
•
a
č
~
'n
à
ã
ĭ
p
-
4
É
Ę.
ひりとこととしていることの
0
6
2
-
1
i
li
i
i
ı
i

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	49.6833333	4.9745017	40.7000000	54.3000000	24.7456667	10.0124153
K WT	19,1333333	3.2702701	13.8000000	22,7000000	10.6946667	17.0920041
LG	6.8333333	2.9944393	4.0000000	12,0000000	8.9666667	43.8210628
SM	18,1666667	7.1390942	10.0000000	30,0000000	50.9666667	39.2977665
WHT ASH	2.0950000	0.1546286	1.8800000	2.3200000	0.0239100	7.3808395
WHT PRO	15,1833333	1,1720353	13.9000000	17.0000000	1.3736667	7.7192224
HARD	55.5000000	9.9749687	37.0000000	67.0000000	99.5000000	17.9729165
EXTR	53.8000000	2.9209587	49.3000000	56.6000000	8.5320000	5.4292914
FL ASH	0.6383333	0.0462241	0.5900000	0.7100000	0.0021367	7.2413721
FL PRO	14.8333333	1.1307814	13.5000000	16.7000000	1.2786667	7.6232457
MIXO	5.1666667	1.1690452	4.0000000	7.0000000	1.3666667	22.6266812
BAKE ABS	59.666667	1.4787382	57.3000000	61,8000000	2.1866667	2.4783322
LOAF VOL	202.0000000	19.1311265	182.0000000	227.0000000	366.0000000	9.4708547

VARIETY=ERA

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
ML	52.6166667	5.1316339	42.5000000	56.7000000	26.3336667	9.7528678
K WT	20.5500000	3.4645346	14.1000000	23.5000000	12.0030000	16.8590492
LG	10.6666667	6.9474216	3.0000000	23.0000000	48.2666667	65.1320774
SM	15,3333333	8.8242091	7.0000000	32.0000000	77.8666667	57.5491899
WHT ASH	1.9933333	0.1842462	1.7300000	2.2900000	0.0339467	9.2431210
WHT PRO	15,1500000	1.2973049	13.5000000	16.5000000	1.6830000	8.5630686
HARD	68.666667	4.9665548	61.0000000	74.0000000	24.6666667	7.2328468
EXTR	55.5000000	4.8801639	46.4000000	59.5000000	23.8160000	8.7930882
FL ASH	0.6250000	0.0971082	0.5500000	0.8000000	0.0094300	15.5373099
FL PRO	14.3000000	1,3311649	12.6000000	15.8000000	1.7720000	9.3088455
MIXO	3,8333333	0.7527727	3.0000000	5.0000000	0.5666667	19.6375475
BAKE ABS	57,8833333	2.0341255	55.3000000	60.3000000	4.1376667	3.5141817
LOAF VOL	199.5000000	23.7886528	180.0000000	243.0000000	265.9000000	11.9241367

- VARIETY=FA987350

	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	52.0500000	4.4858667	45.4000000	58,1000000	20.1230000	8.6183798
	23.1500000	4.4175785	17.7000000	28.700000	19.5150000	19.0824126
	21.0000000	11.7643529	7.0000000	35,0000000	138.400000	56.0207283
	11.8333333	7.2502874	4.0000000	21,0000000	52.5666667	61.2700339
	1.9933333	0.2014613	1.6500000	2.2300000	0.0405867	10,1067556
	15.0500000	1.1878552	13.7000000	16.4000000	1,4110000	7.8927256
	53.1666667	9.8674549	38,0000000	67.0000000	97,3666667	18,5594763
	53.2833333	6.6381975	44.6000000	62.4000000	44.0656667	12.4583001
	0.6000000	0.0687023	0.4800000	0.6700000	0.0047200	11,4503760
	14.3000000	1.0807405	13.0000000	15,6000000	1.1680000	7.5576258
	2.8333333	0.7527727	2.0000000	4.0000000	0.5666667	26.5684466
	58.0833333	1.4661742	56,5000000	59,6000000	2.1496667	2.5242597
2	204.5000000	18.1190507	191,0000000	236,0000000	328.300000	8.8601715

1
7
9
~
2
PP4
- 11
>-
ET
\vdash
04
K
>

VAPTABLE	N CONTRACTOR	4 4 4 4 4	7			- !
anger ver	LEAN	SID DEV	MUMINIM	MAXIMUM	VARIANCE	CV
TW	51,4333333	3.9505274	44.0000000	55.2000000	15.6066667	7.6808698
K_WT	19.4666667	2,5858590	15.2000000	22.4000000	6.6866667	13.2835222
LG LG	5,3333333	3.4448028	2.0000000	11.0000000	11.8666667	64.5900534
WS.	18.5000000	6.7749539	12.0000000	29.0000000	45.9000000	36,6213723
WHTASH	1.9233333	0.1127239	1.7300000	2.0500000	0.0127067	5.8608588
WHT_PRO	14.5166667	0.9432214	13.5000000	16.0000000	0.8896667	6.4975070
HARD	54.3333333	9.3309521	39.0000000	64.0000000	87.0666667	17,1735314
EXTR	54.4166667	7.5998465	39.7000000	61.5000000	57,7576667	13.9660272
FL_ASH	0.6400000	0.0357771	0.5900000	0.6900000	0.0012800	5,5901699
FL_PRO	13.7000000	0.7924645	12.9000000	15.0000000	0.6280000	5.7844125
MIXO	3.5000000	0.8366600	2.0000000	4.0000000	0.700000	23.9045722
BAKE ABS	56.4333333	1.5108497	54.3000000	58,6000000	2.2826667	2.6772292
LOAF VOL	197.1666667	8.2077199	188.0000000	212,0000000	67.3666667	4.1628334

VARIETY=MAROUIS ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	20
TW	53.5166667	3.2908459	47.6000000	57.4000000	10.8296667	6.1491982
K_WT	19.7000000	2.0746084	16.5000000	22.4000000	4.3040000	10.5310071
LG	7.5000000	3.9370039	4.0000000	15.0000000	15.5000000	52,4933858
SM	14.0000000	5.0199602	8.0000000	20.0000000	25.2000000	35,8568583
WHT_ASH	1.8700000	0.1512614	1.6800000	2.0600000	0.0228800	8.0888430
WHT_PRO	14.6166667	1.0778064	13.4000000	16.2000000	1,1616667	7.3738181
HARD	65.3333333	9.6471066	50,0000000	75.0000000	93.0666667	14.7659796
EXTR	56.3166667	4.4047323	51,0000000	61.5000000	19,4016667	7.8213654
FL_ASH	0.6116667	0.0752108	0.4900000	0.700000	0.0056567	12,2960460
FL_PRO	13.4666667	1.0385888	12.2000000	14.8000000	1.0786667	7.7122930
MIXO	2.1666667	0.7527727	1.0000000	3.0000000	0.5666667	34.7433532
BAKE ABS	55.7000000	1.9748418	53,5000000	58.6000000	3.9000000	3.5454969
LOAF_VOL	189.1666667	18.7341044	166.0000000	216.0000000	350.9666667	9.9034913

- 1
ı
2
150
-
8
Z
Σ
=MN8
-
-
100
I ETY:
VAR
A
>
1
2

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	54.4166667	4.3705454	46.4000000	58.7000000	19.1016667	8.0316300
	25.1666667	4.5592397	17.1000000	30,6000000	20.7866667	18.1161842
	20.0000000	10.2176318	4.0000000	33.0000000	104.4000000	51.0881591
	7.8333333	7.6789756	2.0000000	23.0000000	58.9666667	98.0294761
WHT ASH	1.7933333	0.1770499	1.5100000	2.0500000	0.0313467	9.8726709
PRO	14.4833333	0.9064583	13.4000000	15.5000000	0.8216667	6.2586304
D	54.8333333	10.4578519	36,0000000	67.0000000	109.3666667	19.0720704
2	55.5000000	5.1749396	46.9000000	61.7000000	26.7800000	9.3242155
FL ASH	0.5566667	0.0531664	0.4900000	0.6300000	0.0028267	9.5508513
PRO	13.7833333	0.6585337	13.0000000	14.4000000	0.4336667	4.7777537
0	2,3333333	0.5163978	2.0000000	3.0000000	0.2666667	22,1313334
BAKE ABS	56.4500000	1.3217413	54.3000000	57.9000000	1.7470000	2.3414372
JOAF VOL	200.0000000	18.4715998	182.0000000	230,0000000	341.2000000	9.2357999

7
_
α
~
Z
MN
î
ä
Ĺ
E
-
α
d
>

VARIABLE	Σ	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	483	3.3492785	47.6000000	57.8000000	11.2176667	6.2622846
K WT	25.1500000	3.4921340	19.7000000	29.2000000	12.1950000	13.8852247
LG	24.5000000	10.8027774	11.0000000	39.000000	116.7000000	44.0929691
SM	5.833333	3.8686776	2.0000000	13.0000000	14.9666667	66.3201881
WHT ASH	1.8450000	0.1630644	1.5800000	2.0300000	0.0265900	8.8381791
WHT PRO	14.1500000	0.8167007	13.2000000	15.1000000	0.6670000	5.7717363
HARD	58.5000000	5.0892043	54.0000000	67.0000000	25.9000000	8.6994945
EXTR	60.200000	4.3349740	53.1000000	64.7000000	18.7920000	7.2009536
FL ASH	0.5733333	0.0634560	0.5000000	0.6900000	0.0040267	11.0679107
FL PRO	13.0500000	0.5958188	12,4000000	13.9000000	0.3550000	4.5656610
MIXO	2.1666667	0.4082483	2.0000000	3.0000000	0.1666667	18.8422288
BAKE ABS	58.2166667	1.9843555	54.6000000	60.0000000	3.9376667	3.4085694
LOAF_VOL	182.833333	18,3893085	164.0000000	217.0000000	338,1666667	10.0579627

VARIETY=MN88189

	MEA	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	.2333	3.4788887	49.2000000	59,8000000	12.1026667	6.2985312
K WT	9	4.8578459	21,2000000	35.2000000	23.5986667	16.5985623
LG	39.1666667	16.0426515	10.000000	57,0000000	257,3666667	40.9599612
SM	3,3333333	4.2739521	1,0000000	12,0000000	18.2666667	128.2185634
WHT ASH	1,8533333	0.1408072	1.6400000	2,0800000	0.0198267	7.5975106
WHT PRO	14.6833333	0.8328665	13.7000000	15,7000000	0.6936667	5.6721898
HARD	58,0000000	6.8992753	48.0000000	68,0000000	47.6000000	11,8953023
EXTR	56.9166667	2.9633877	52.9000000	0000006.09	8.7816667	5.2065377
FL ASH	0.5250000	0.0546809	0.4700000	0.5900000	0.0029900	10.4154081
FL PRO	14.0000000	0.3633180	13.6000000	14.5000000	0.1320000	2.5951289
MIXO	3,333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
BAKE ABS	57.7500000	1.3277801	26.5000000	60.0000000	1.7630000	2.2991863
LOAF_VOL	199.3333333	23.2436371	175.0000000	238.0000000	540.2666667	11.6606875

•
0
7
m
8
8
z
Z W II
Ξ.
ETY
_
2
4
>
ı

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW.	56.1500000	3.8103806	50.0000000	61.0000000	14.5190000	A 7860740
K WT	25.1333333	3.9439405	19.1000000	29,7000000	15.5546667	15.6920710
T.G	30,3333333	11.9443152	14.0000000	49,0000000	142.6666667	39.3768634
S.M.	6.8333333	3.4880749	3.0000000	12,0000000	12,1666667	51.044989
WHTASH	1.8100000	0.1503330	1.5300000	1.9600000	0.0226000	8.3056886
WHT PRO	14.1000000	1.0881176	12.6000000	15,3000000	1.1840000	7.7171464
HARD	66.1666667	8.6813977	56.0000000	79.0000000	75.3666667	13.1205004
EXTR	56.0000000	4.7438381	49.1000000	61.700000	22.504000	8 4711395
FL_ASH	0.5616667	0.0475044	0.5000000	0.6100000	0.0022567	8.4577541
FL_PRO	12.8500000	0.9418068	11.7000000	13.9000000	0.8870000	7.3292356
MIXO	2.1666667	0.7527727	1.0000000	3.0000000	0.5666667	34.7433532
BAKE_ABS	57.5166667	2.4045097	53.8000000	60.3000000	5.7816667	4.1805442
LOAF_VOL	198,3333333	15.8703077	183.0000000	225.0000000	251,8666667	8.0018358

- 1	
- 1	
i	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- i	
- 1	
- !	
- 4	
V	•
~)
~)
MN883)
00	ı
Z	
Σ	
H	
>	1
-2	ì
	ĺ
100	ı
- C	
VARIE	
1	
1 1	
- 1	
- 1	
- 1	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	ΛO
31	56.8500000	2.3097619	53.0000000	59.8000000	5.3350000	4.0629057
K WT	23.7500000	3.8625121	18.2000000	28,1000000	14.9190000	16.2632090
50	16.3333333	8.1404341	6.0000000	26.0000000	66.2666667	49.8393922
MS	10.3333333	5.1639778	4.0000000	18,0000000	26.6666667	49.9739787
WHT ASH	1.7416667	0.1328784	1.4900000	1.8700000	0.0176567	7,629381
WHT_PRO	4.	0.8961027	13.5000000	15,6000000	0.8030000	6.1587813
HARD	65.3333333	8.9591666	52.0000000	76,0000000	80,2666667	13,7130101
EXTR	58.5000000	3.3178306	52.9000000	62,0000000	11,0080000	5.6715053
FL_ASH	0.4850000	0.0258844	0.4500000	0.5200000	0.000670000	5.3369811
FL_PRO	13.7666667	0.6377042	12.8000000	14,3000000	0.4066667	4.6322340
MIXO	1.6666667	0.5163978	1.0000000	2,0000000	0.2666667	30.9838668
BAKE_ABS	56.0500000	1.8875911	53.8000000	59,0000000	3.5630000	3,3676914
LOAF VOL	182.5000000	11.5195486	170.0000000	202.0000000	132,7000000	6.312081

1
Ц
ď
Y
A N N N
11
>
E L
۳
Ω
4

VARIABLE	Σ	STD DEV	MINIMUM	MAXIMUM	VARIANCE	>2 C<
	57.1166667	4.4228573	49.1000000	62,0000000	19.5616667	7.7435494
WT	23.3666667	4.5723809	16.1000000	28,8000000	20,9066667	19.5679637
	23.0000000	11.7303026	7.0000000	38,0000000	137.6000000	51.0013158
	9.5000000	6.6558245	4.0000000	21,0000000	44.3000000	70.0613107
ASH	1.9033333	0.2018580	1.5900000	2,1800000	0.0407467	10,6055010
PRO	15.3166667	1.0534072	14.0000000	16,9000000	1,1096667	6.8775223
HARD	67.3333333	6.9474216	59.0000000	78,0000000	48.2666667	10,3179528
EXTR	57.6166667	7.0499409	44.5000000	64,4000000	49,7016667	12.2359402
FL ASH	0.5350000	0.0605805	0.4600000	0.6300000	0.0036700	11,3234626
FL_PRO	14.8333333	1.0576704	13.5000000	16,5000000	1,1186667	7,1303622
0	3,3333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
BAKE_ABS	59.0166667	1.9333046	55.8000000	61,8000000	3.7376667	3.2758621
LOAF VOL	201,6666667	31,2452663	180.0000000	258 0000000	976.2666667	15 4935205

SOUTHEAST REGION

- 1
1
1
Pron
-
S
9
<u> </u>
=
Z
11
54
5
[]
24
7
~
>
1
1
1
i

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	20
TW	55.5833333	4.5079559	47.6000000	60.8000000	20.3216667	8.1102655
K_WT	27.5166667	4.3087895	20.2000000	33.4000000	18.5656667	15.6588351
LG	34.1666667	11.6002874	14.0000000	48.0000000	134.5666667	33.9520605
SM	3.5000000	3.0822070	0	9.0000000	9.5000000	88.0630572
WHT ASH	1.9750000	0.1501666	1.7600000	2.2000000	0.0225500	7.6033708
WHT PRO	16.4166667	0.7704977	15.5000000	17.3000000	0.5936667	4.6933869
HARD	74.5000000	7.8930349	62.0000000	86.0000000	62,3000000	10.5946777
EXTR	55.2500000	5.5251244	47.4000000	61.9000000	30.5270000	10.0002252
FL ASH	0.5900000	0.0651153	0.5000000	0.6900000	0.0042400	11.0364885
FL_PRO	16.1000000	0.4732864	15.5000000	16.8000000	0.2240000	2.9396670
MIXO	4.0000000	1.0954451	3.0000000	5.0000000	1.2000000	27.3861279
BAKE ABS	60,6333333	0.4457204	60.0000000	61.1000000	0.1986667	0.7351078
LOAF VOL	206.833333	25.2936092	190.0000000	257.0000000	639.7666667	12.2289811

VARIETY=ND662

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	55.8500000	2.6425367	51.6000000	59.6000000	6.9830000	4.7314891
K WT	25.3666667	3.4529215	21.1000000	29.9000000	11.9226667	13.6120426
LG	21,8333333	10.5719755	8,0000000	36.0000000	111.7666667	48.4212620
SM	6.6666667	3.7771241	2.0000000	13.0000000	14.2666667	56.6568619
WHT ASH	1.8416667	0.1444184	1.5800000	1.9800000	0.0208567	7.8417216
WH'T PRO	15.5500000	0.8893818	14.1000000	16.4000000	0.7910000	5.7194972
HARD	68.1666667	7.4139508	54.0000000	75.0000000	54.9666667	10.8762115
EXTR	58,0666667	5.9922172	48.1000000	63.9000000	35.9066667	10.3195474
FL ASH	0.5216667	0.0746771	0.4300000	0.6200000	0.0055767	14.3150957
FL PRO	14.7000000	0.7949843	13,4000000	15.4000000	0.6320000	5.4080563
MIXO	5.1666667	1.4719601	4.0000000	7.0000000	2.1666667	28.4895512
BAKE_ABS	57,0833333	1.1461530	55.3000000	58,6000000	1.3136667	2.0078592
LOAF VOL	191.1666667	18.7661042	169.0000000	216.0000000	352.1666667	9.8166195

VARIETY=ND671

VARIABLE		STD DEV	MUMINIM	MAXIMUM	VARIANCE	CV
7.6	7	3.7917894	51.6000000	62.6000000	14.3776667	6.5394470
K WT	4	4.1005691	18,7000000	29.4000000	16.8146667	16.6464238
LG	24.6666667	9.8319208	10.0000000	33.0000000	96.6666667	39.8591384
SM	6.1666667	4.7504386	2.0000000	14.0000000	22.5666667	77.0341391
WHT ASH	1.8833333	0.1963331	1.5100000	2.0800000	0.0385467	10.4247637
WHT PRO		1.3556056	13.7000000	16.6000000	1.8376667	8.8698297
HARD	5.	6.7131711	57.0000000	76.0000000	45.0666667	10.2231032
EXTR	58,2666667	3.2004166	53.4000000	61,7000000	10.2426667	5.4927059
FL ASH	0.4900000	0.0644981	0.4100000	0.6000000	0.0041600	13.1628698
FL PRO	15.0166667	1.2952477	13.4000000	16.4000000	1.6776667	8.6254010
MIXO	4.5000000	0.8366600	3.0000000	5.0000000	0.700000	18.5924450
BAKE ABS	60.2833333	2.4895113	57.3000000	64.0000000	6.1976667	4.1296843
LOAF VOL	197.6666667	17.5233178	181.0000000	228.0000000	307.0666667	8.8650849
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SOUTHEAST REGION

0	ì
~	
ع)
ā	3
Z	į
	5
11	
\succ	ı
E-	ı
EE	l
2	
Ø	
>	
1	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.9500000	3.9210968	49.0000000	59.8000000	15.3750000	7.0082159
K_WT	21.9333333	3.5200379	15,6000000	25,2000000	12,3906667	16.0488049
LG	18.1666667	9.8674549	5.0000000	33,0000000	97,3666667	54.3162656
SM	11.0000000	6.4187226	5.0000000	23.0000000	41,2000000	58.3520238
WHT ASH	1.8650000	0.1975601	1.6100000	2.1200000	0.0390300	10.5930358
WHT PRO	15.0166667	1.2155931	13.3000000	16,5000000	1.4776667	8.0949598
HARD	74.5000000	9.5864488	60.0000000	86.0000000	91,9000000	12.8677165
EXTR	54.4166667	3.3078190	50,3000000	58,5000000	10.9416667	6.0786873
FL_ASH	0.5883333	0.0549242	0.5400000	0.000069.0	0.0030167	9.3355564
FL_PRO	13.6000000	1,2132601	12.0000000	15.5000000	1.4720000	8.9210299
MIXO	3.6666667	0.5163978	3.0000000	4.0000000	0.2666667	14.0835758
BAKE ABS	57.0166667	1.8861778	55.0000000	59,3000000	3.5576667	3,3081166
LOAF VOL	192.5000000	19.9874961	168,0000000.	226.0000000	399,5000000	10,3831149

4.0106940 46.1000000 57.4000000 12.6134848 8.0000000 38.000000 0 0.15.6134848 8.0000000 38.000000 0.15.6134848 8.0000000 20.0000000 0.15.50959 1.6700000 15.5000000 0.9831921 13.0000000 15.5000000 0.98310412 46.0000000 60.9000000 0.0828654 0.4900000 60.9000000 1.0059821 12.5000000 14.8000000 1.6480291 56.5000000 61.1000000 1.9.6333050 183.0000000 235.0000000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
25.3666667 4.5697556 18.3000000 30.600000 23.5000000 15.6134848 8.0000000 38.0000000 15.6134848 8.0000000 38.0000000 15.6134848 8.0000000 20.0000000 15.6000000 15.6000000 15.5000000 14.3333333 7.5277265 51.0000000 71.0000000 55.3310412 46.0000000 60.9000000 25.3310412 46.0000000 14.8000000 25.0000000 1.0059821 12.5000000 14.8000000 1.0488088 2.0000000 235.0000000 1.6480291 56.5000000 235.0000000 3.85.0000000 1.6480291 56.5000000 235.0000000 3.85.0000000 1.6480291 56.5000000 235.0000000 3.85.0000000 3.85.00000000000000000000000000000000000	TW	53.5833333	4.0106940	46.1000000	57.4000000	16.0856667	7.4849655
23.5000000 12.6134848 8.0000000 38.0000000 4 8.5000000 6.4420494 2.0000000 20.000000 4 1.978333 0.1650959 1.6700000 2.1700000 4 14.3333333 0.9831921 13.0000000 15.5000000 5 59.3333333 7.5277265 51.0000000 71.0000000 2 6.3000000 5.3310412 46.000000 0.7200000 2 13.600000 1.0059821 12.5000000 14.8000000 3.5000000 1.6480291 56.5000000 5.000000 3.5 196.333333 19.6333050 183.000000 235.000000	K_WT	25,3666667	4.5697556	18,300000	30,6000000	20.8826667	18.0148054
8.5000000 6.4420494 2.0000000 20.0000000 4 1.9783333 0.1650959 1.6700000 2.1700000 15.5000000 15.5000000 59.3333333 7.5277265 51.0000000 71.0000000 5.3310412 46.0000000 71.0000000 2.57300000 1.0059821 12.5000000 14.8000000 1.0059821 12.5000000 5.0000000 3.5000000 1.6480291 56.5000000 2.35.000000 3.85.0000000 1.6480291 56.5000000 2.35.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.0000000 3.85.00000000 3.85.00000000 3.85.00000000000000000000000000000000000	LG	23.5000000	12.6134848	8.0000000	38.000000	159.1000000	53.6744036
1.9783333 0.1650959 1.6700000 2.1700000 14.3333333 0.9831921 13.0000000 15.5000000 59.3333333 7.5277265 51.0000000 71.0000000 56.3000000 5.3310412 46.000000 0.7200000 0.5733333 0.0828654 0.4900000 0.7200000 13.6000000 1.0059821 12.5000000 14.8000000 3.5000000 1.6480291 56.5000000 61.1000000 5.855000000 1.6480291 56.5000000 235.000000 196.3333333 19.6333050 183.000000 235.000000	SM		6,4420494	2.0000000	20.0000000	41.5000000	75.7888160
14.333333 0.9831921 13.0000000 15.5000000 59.333333 7.5277265 51.0000000 71.000000 5.3310412 56.3000000 5.3310412 46.000000 71.000000 2 0.573333 0.0828654 0.4900000 0.7200000 2 13.600000 1.0059821 12.5000000 14.8000000 3.5000000 1.0488088 2.0000000 5.0000000 58.5000000 1.6480291 56.5000000 61.1000000 196.3333333 19.6333050 183.000000 235.000000	WHT_ASH	1.9783333	0.1650959	1.6700000	2.1700000	0.0272567	8.3452030
59.333333 7.5277265 51.0000000 71.0000000 5 56.3000000 5.3310412 46.000000 60.900000 2 0.573333 0.0828654 0.4900000 0.7200000 2 13.6000000 1.0059821 12.5000000 14.8000000 3.5000000 1.0488088 2.0000000 5.0000000 58.5000000 1.6480291 56.5000000 61.1000000 196.3333333 19.6333050 183.000000 235.000000	WHT_PRO	14.3333333	0.9831921	13.0000000	15.5000000	0.9666667	6.8594796
56.3000000 5.3310412 46.0000000 60.9000000 2 0.573333 0.0828654 0.4900000 0.7200000 13.6000000 1.0059821 12.5000000 14.8000000 3.5000000 1.0488088 2.0000000 5.0000000 15 58.5000000 1.6480291 56.5000000 235.0000000	HARD	59,3333333	7.5277265	51,0000000	71.0000000	56.666667	12.6871795
0.573333 0.0828654 0.4900000 0.7200000	EXTR	56.3000000	5.3310412	46.0000000	60.900000	28.4200000	9.4689897
13.6000000 1.0059821 12.5000000 14.80000000 3.5000000 1.0488088 2.0000000 5.0000000 1.5480291 56.5000000 61.1000000 3.8 58.5000000 1.6480291 56.5000000 235.0000000 3.8	FL_ASH	0.5733333	0.0828654	0.4900000	0.7200000	0.0068667	14.4532592
3.5000000 1.0488088 2.0000000 5.0000000 ABS 58.5000000 1.6480291 56.5000000 61.1000000 VOL 196.333333 19.6333050 183.0000000 235.0000000 38	FL. PRO	13.6000000	1.0059821	12.5000000	14.8000000	1.0120000	7.3969273
ABS 58.5000000 1.6480291 56.5000000 61.10000000 VOL 196.3333333 19.6333050 183.0000000 235.0000000 38	MIXO	3.5000000	1.0488088	2.0000000	5.0000000	1.1000000	29.9659671
VOL 196.333333 19.6333050 183.0000000 235.0000000 38	BAKE ABS	58.5000000	1.6480291	56.5000000	61.1000000	2.7160000	2.8171438
	LOAF VOL	196.3333333	19.6333050	183.0000000	235.0000000	385.4666667	9.9999856

VARIETY=N86-0542

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	44	4.0618961	47.0000000	58,300000	16.4990000	7.4873661
K_WT	25.3666667	4.7659906	17.2000000	31.1000000	22,7146667	18.7883993
LG	24.3333333	10,6144556	0000000.9	38.0000000	112.6666667	43.6210502
	7.5000000	5.4680892	3.0000000	15.0000000	29.9000000	72.9078566
WHT_ASH	1.9316667	0.2129241	1.5500000	2.1900000	0.0453367	11.0228173
WHT_PRO	15.2666667	1.1826524	13.8000000	17.0000000	1.3986667	7.7466314
HARD	64.5000000	7.3959448	55.0000000	73.0000000	54.7000000	11,4665811
EXTR	57.0666667	4.3715748	50.9000000	61.3000000	19.1106667	7.6604699
FL_ASH	0.5633333	0.0742069	0.4900000	0.6900000	0.0055067	13,1728257
FL_PRO	14.5000000	1,0954451	13.1000000	16.1000000	1.2000000	7.5547939
MIXO	4.3333333	1.0327956	3.0000000	5.0000000	1.0666667	23.8337437
	60.4666667	2.0284641	58.2000000	63.1000000	4.1146667	3,3546816
LOAF VOL	208.1666667	28,7083031	178.0000000	261.0000000	824.1666667	13.7910183

VARIETY=N87-0306

SOUTHEAST REGION

VARIETY=N87-467

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
J.E.	52.8500000	5.7916319	41,8000000	58,6000000	33.5430000	10.9586223
K WT	24.7000000	4.7728398	16,3000000	30.1000000	22.7800000	19,3232382
LG	19.0000000	9.7775252	5.0000000	34.0000000	95.6000000	51,4606592
SM	9.5000000	7.0922493	3.0000000	23.0000000	50,3000000	74.6552557
WHT_ASH	1.9866667	0.1731666	1.7400000	2.2700000	0.0299867	8.7164389
WHT_PRO	14.3666667	0.8936815	13.5000000	15.6000000	0.7986667	6.2205211
HARD	47.6666667	9.8522417	30,0000000	57.0000000	97.0666667	20,6690385
EXTR	56.1666667	4.6727579	48.6000000	60.900000	21.8346667	8.3194503
FL_ASH	0.5933333	0.0893682	0.5200000	0.7600000	0.0079867	15.0620482
FL_PRO	13.5833333	0.8183316	12.7000000	14.6000000	0.6696667	6.0245274
MIXO	2,6666667	0.5163978	2.0000000	3.0000000	0.2666667	19,3649167
BAKE ABS	57.8000000	1.5594871	56.2000000	60.0000000	2.4320000	2.6980746
LOAF VOL	196.8333333	17,0928835	178.0000000	224.0000000	292.1666667	8.6839374

- 1	
4	
\sim	
0	
30	
- 1	
8	
00	
Z	
= N8	
\rightarrow	
EI	
[1]	
-	
\aleph	
4	
VAR	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	53.0166667	3.7112891	46.6000000	58.1000000	13.7736667	7.0002309
K_WT	23,4833333	3.1141077	19.4000000	28.6000000	9.6976667	13.2609270
LG	16.0000000	7.2387844	8,0000000	25.0000000	52,4000000	45.2424027
SM	6.666667	3.0110906	3,0000000	10.0000000	9,0666667	45.1663592
WHT ASH	2.0466667	0.0997330	1.8700000	2.1700000	0.0099467	4.8729468
WHT_PRO	16.1500000	1.0153817	14.4000000	17.4000000	1.0310000	6.2871932
HARD	65.0000000	7.8740079	56,0000000	78.0000000	62.0000000	12,1138583
EXTR	56.4000000	3.6027767	49.5000000	59.2000000	12.9800000	6.3879020
FL_ASH	0.5516667	0.0371035	0.4900000	0.5900000	0.0013767	6.7257025
FL_PRO	16.1166667	1.0515069	14.6000000	17.5000000	1.1056667	6.5243445
MIXO	3.1666667	0.9831921	2.0000000	4.0000000	0.9666667	31.0481710
BAKE_ABS	59,4333333	2.5216397	55,5000000	62.5000000	6.3586667	4.2428037
LOAF VOL	207.3333333	22.8881338	192.0000000	253.0000000	523.8666667	11.0392928

VAR1ETY=N88-3136

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	57.1000000	3.4974276	51.0000000	60.700000	12.2320000	6.1250922
K W'L	25.1833333	3.1808280	19.8000000	29.5000000	10.1176667	12.6306869
LG	30.8333333	9.9481992	15.0000000	42.0000000	98.9666667	32.2644297
SM	4.3333333	2.6583203	2.0000000	8.0000000	7.0666667	61,3458524
WHT ASH	1.8833333	0.1262801	1.7800000	2,0600000	0.0159467	6.7051387
WHT PRO	15.1833333	0.9745084	13.8000000	16.5000000	0.9496667	6.4182772
HARD	65,0000000	7.0142712	55,0000000	74.0000000	49.2000000	10.7911864
EXTR	56.1666667	3.3897886	50.2000000	60,0000000	11,4906667	6.0352319
FL_ASH	0.5266667	0.0233809	0.4900000	0.5500000	0.000546667	4.4394121
FL_PRO	14.6000000	0.8809086	13,3000000	15.9000000	0.7760000	6.0336207
MIXO	2,8333333	0.7527727	2.0000000	4.0000000	0.5666667	26.5684466
BAKE ABS	58.5500000	1.5833509	55.5000000	0000000009	2.5070000	2.7042714
LOAF_VOL	204.1666667	23.4044155	183.0000000	246.0000000	547.7666667	11.4633872

SOUTHEAST REGION

TT 3
0
\sim
2
S
11
\succ
H
딥
H
\mathbb{Z}
Ø
>
1

VARIETY=SD3055	
	NEWN

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	999	2.9049383	52.8000000	60.900000	8 4386667	
	11666	3 0294664	22 4000000	0000000		7.0704233
		5.0234004	0000006.22	31.400000	1.999//T.8	11.1719720
		13.7173856	24.0000000	56.0000000	188.1666667	36.9077638
	4.0000000	2.5298221	1.0000000	7,0000000	6.4000000	63,2455532
ASH	1.8483333	0.1530251	1.5800000	2,0000000	0.0234167	8.2790831
PRO	15.5666667	1.1707547	14.1000000	16,6000000	1.3706667	7.5209084
	63.8333333	10.9802854	55.0000000	85,0000000	120.5666667	17.2014914
	57.0166667	3.3132562	52.1000000	60.800000	10.9776667	5.8110310
	0.5150000	0.0378153	0.4600000	0.5700000	0.0014300	7.3427846
	15.2500000	0.9523655	13.9000000	16,3000000	0.907000	6.2450195
	3.0000000	0.8944272	2.0000000	4.0000000	0.800000	29.8142397
ABS	59.1166667	1.1338724	57.9000000	60,5000000	1.2856667	1.9180250
VOL	208.3333333	19.3045763	188,0000000	235.0000000	372,6666667	9.2661966

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	6.7166667	3.0155707	52.2000000	61.1000000	9.0936667	5.3169040
K_WT	7.	3.5251478	23.1000000	33,3000000	12,4266667	12,7414979
LG	39.1666667	14.6480943	24.0000000	58.0000000	214.5666667	37,3993897
M.	4.3333333	2.7325202	1.0000000	8.0000000	7.4666667	63.0581586
WHTASH		0.1705775	1.5300000	2.0300000	0.0290967	9.4677586
WHT_PRO	5.	0.8818541	14.0000000	16.2000000	0.7776667	5.7574806
HARD	0	7.7824589	72.0000000	93.0000000	60.5666667	9.6277842
EXTR	57.8000000	2,6389392	55.0000000	61.5000000	6.9640000	4.5656387
FL_ASH	0.5816667	0.0402078	0.5200000	0.6300000	0.0016167	6.9125147
FL_PRO	14.3666667	0.7447595	13,3000000	15.1000000	0.5546667	5.1839406
MIXO	3.1666667	0.7527727	2.0000000	4.0000000	0.5666667	23.7717680
BAKE ABS	59.833333	1.5807171	57.9000000	61.8000000	2,4986667	2.6418671
LOAF VOL	200.6666667	15.3839743	179.0000000	222.0000000	236.666667	7.6664324

-- VARIETY=SD3056 ----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.5500000	2.3813862	55.4000000	62.0000000	5.6710000	4.0672693
K_WT	27.2000000	2.9058562	23,0000000	31,5000000	8.4440000	10.6832947
LG	32,8333333	9.8674549	. 21,0000000	44.0000000	97,3666667	30,0531622
WS.	5,3333333	2.8751812	1.0000000	9.0000000	8.2666667	53,9096466
WHT ASH	1.7483333	0.1836754	1.4300000	1.9400000	0.0337367	10,5057448
WHT PRO	15.2833333	1.2303116	13.7000000	16.8000000	1.5136667	8.0500215
HARD	71.5000000	3.8858718	68,0000000	78,0000000	15,1000000	5.4347858
EXTR	56.0166667	3.0459262	50,2000000	58,0000000	9.2776667	5,4375357
FL_ASH	0.4966667	0.0372380	0.4300000	0.5300000	0.0013867	7,4975785
FL_PRO	14.6500000	1.2533954	13.2000000	16.4000000	1.5710000	8.5555999
MIXO	4.1666667	1.1690452	3.0000000	6.0000000	1.3666667	28.0570847
BAKE_ABS	59.2666667	2.4881050	57.3000000	64.0000000	6.1906667	4.1981525
LOAF_VOL	198,1666667	21.2265557	175,0000000	225.0000000	450.5666667	10.7114663

-- VARIETY=SD3080

7
0
8
SD
11
\succ
E
-
2
A
2
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	57.0833333	3.5022374	51.4000000	61.8000000	12,2656667	6.1353064
K WT	27.3500000	4.2552321	20.7000000	33,0000000	18,1070000	15.5584354
101	39.000000	16,5529454	15.0000000	59,0000000	274.0000000	42,4434496
N S	3.000000	2,6076810	1.0000000	8.0000000	0000008°9	86.9226987
WHT ASH	1.8783333	0.1890414	1.5400000	2.0600000	0.0357367	10.0643181
WHT PRO	15.0833333	1.3075422	13,2000000	16.3000000	1.7096667	8.6687882
HARD	76.333333	7,0332543	65.0000000	84.0000000	49.4666667	9.2138703
FYTE	59.783333	3.9341666	51,6000000	62,6000000	15.4776667	6.6362101
FL ASH	0.5483333	0.0411906	0.4800000	0.6000000	0.0016967	7.5119660
ET. DEO	14.266667	1.3589211	12,2000000	15.7000000	1.8466667	9.5251482
MIYO	3.000000	1.0954451	2,0000000	5.0000000	1.2000000	36.5148372
DAKE ARG	57.683333	1.4105554	55,5000000	59,6000000	1.9896667	2.4453432
LOAF VOL	188.5000000	19.1702895	161,0000000	213.0000000	367.5000000	10.1699149

- VARIETY=SD8073 ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3.5	56.0166667	3.3247055	51,1000000	61.0000000	11.0536667	5.9352077
K CUT	27.000000	4.1095012	21,0000000	32,9000000	16.8880000	15.2203748
1 2 1	35,8333333	14.4141135	16,0000000	55,0000000	207.7666667	40.2254329
N E	2.8333333	1.9407902	1,0000000	000000009	3.7666667	68,4984782
WHT ASH	1.8633333	0.1773885	1.5500000	2.0200000	0.0314667	9.5199533
WH'T PRO	15.0000000	0.9899495	13,6000000	15.9000000	0.9800000	6.5996633
	76.1666667	10.5719755	0000000009	89.0000000	111.7666667	13.8800554
FYTE	57.8166667	3.6853313	52,1000000	61,1000000	13.5816667	6.3741677
FL ASH	0.5850000	0.0476445	0.4900000	0.6200000	0.0022700	8.1443619
FI. PRO	14,1333333	0.8640988	12.8000000	14.9000000	0.7466667	6.1139063
MIXO	3.6666667	1.0327956	2.0000000	5.0000000	1.0666667	28.1671516
RAKE ABS	60.6500000	1.4377065	58,6000000	62.5000000	2.0670000	2.3704971
LOAF VOL	194.3333333	24.3775853	165.0000000	235.0000000	594.2666667	12.5442120
						111111111111

- VARIETY=SD8074 -

56.2000000 25.25000000 28.666667 4.0000000 1.823333 0 14.833333 73.3333333 57.716667	3.4105718 4.0411632 13.6918467 2.7568098 0.1303329	51.6000000 14.00000000 1.00000000 1.5800000	61.8000000 31.5000000 49.0000000 8.0000000 1.9600000	11.6320000 16.3310000 187.4666667 7.6000000 0.0169867	6.0686331 16.0046067 47.7622560 68.9202438 7.1880571
25.2500000 28.666667 4.0000000 1.823333 PRO 14.833333 73.333333 57.716667	4.0411632 13.6918467 2.7568098 0.1303329	20.5000000 14.0000000 1.0000000 1.5800000	31.5000000 49.0000000 8.0000000 1.9600000	16.3310000 187.4666667 7.6000000 0.0169867	16.0046067 47.7622560 68.9202438 7.1480571
ASH 1.823333 PRO 14.833333 PRO 73.333333 57.716667	13.6918467 2.7568098 0.1303329 1.0250203	1.0000000 1.0000000 1.5800000	49.0000000 8.0000000 1.9600000	187.4666667 7.6000000 0.0169867	47.7622560 68.9202438 7.1480571
ASH 1.8233333 PRO 14.8333333 73.3333333 57.716667	2.7568098 0.1303329 1.0250203	1.0000000	1.9600000	7.6000000 0.0169867	68.9202438 7.1480571 6.9102494
PRO	0.1303329	1.5800000	1.9600000	0.0169867	7.1480571
PRO PRO	1,0250203	13 300000	15 900000	1 0506667	6 9107494
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0000000	00000000	- SOCOCO - T	F/F70T/*0
- W	9.2448184	60.0000000	84.0000000	85,4666667	12,6065705
•	3,1701209	54.5000000	62,7000000	10.0496667	5.4925572
	0.0488876	0.4500000	0.5900000	0.0023900	8.9702067
	0.8931219	12,2000000		0.7976667	6.4640907
MINO A 222 223	1.5055453	2,0000000	000000009	2,2666667	34.7433532
1000000 PA 616666	2.1414170	55.8000000		4.5856667	3.6532561
VOI. 188.666667	17.9962959	166.0000000	216.0000000	323.8666667	9.5386727

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

SOUTHEAST REGION

TABLE 33		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VARIETY=STOA	DA		1 1 1 1 2 8 1 1 1 2
VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.8000000	4.2218479	48.0000000	60.1000000	17.8240000	7.5660357
K W'F		4.5271404	17.4000000	29.8000000	20.4950000	18.5159116
LG	20.5000000	14.3213128	5.0000000	46.0000000	205.1000000	69.8600624
SM	7.6666667	6.2182527	0	18.0000000	38.6666667	81,1076439
		0.1747474	1.6400000	2.0800000	0.0305367	9.3364614
WHT_PRO	5.	1.2388166	13.4000000	16.6000000	1.5346667	8.1860130
HARD	0	6.4109282	29,0000000	78.0000000	41.1000000	9.0935151
EXTR	56.2833333	4.7654660	50.7000000	62.2000000	22.7096667	8.4669222
FL_ASH	0.5383333	0.0435507	0.4900000	0.5900000	0.0018967	8.0899201
FL_PRO	.26666	1.1621819	12.8000000	16.1000000	1.3506667	8.1461345
MIXO	3.333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
BAKE ABS	59.3500000	1.2880217	57.6000000	60.5000000	1.6590000	
LOAF_VOL	187.6666667	15.9708067	171.0000000	217.0000000	255.0666667	8.5101990

1
4
V
8
9
3
3
^
11
\succ
E
田
н
\mathbb{R}
K
>

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	54.0500000	5.2217813	44.5000000	58.6000000	27.2670000	9.6610200
K_WT	25.6500000	4.9358890	16.7000000	31.0000000	24.3630000	19.2432319
LG	20,3333333	8.6409876	7.0000000	31,0000000	74.6666667	42,4966603
SM	7.1666667	6.6156380	1.0000000	20.0000000	43,7666667	92,3112285
WHT_ASH	2.0100000	0.2063008	1.7300000	2.3600000	0.0425600	10.2637190
WHT_PRO	14.7166667	0.9432214	13.6000000	15.8000000	0.8896667	6,4092056
HARD	55,1666667	10.3231132	37.0000000	0000000.99	106.5666667	18,7125919
EXTR	53.1000000	5.3859075	43.8000000	58.6000000	29,0080000	10,1429520
FL ASH	0.6750000	0.0973139	0.6100000	0.8700000	0.0094700	14.4168778
FL PRO	14.1666667	0.8477421	13.3000000	15.1000000	0.7186667	5.9840619
MIXO	3.0000000	0.6324555	2.0000000	4.0000000	0.4000000	21.0818511
BAKE ABS	58,5666667	2.1210061	55,5000000	61.8000000	4,4986667	3,6215243
LOAF_VOL	200.1666667	20.1337196	183.0000000	238.0000000	405.3666667	10.0584778

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	I D'N I	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT %	ASH @	FLR PRO %	MILL	MILL SCORE ***	MIX ABS	MIX
*AMIDON	1		1 .		4	.5	1 9	85	4	! .	.5	5.	5	m	58.2	2
	ຜ	•	•	50	٦	. 7	7.	17	4	•	. 5	9	2	М	· 0	2
ı Lec	1		•		7	. 7	7.	63	m		4.	9	2	m	9	2
*CUTLESS		•		17	iH	9.	7	99	₽ ^r		.5		2	2	. 0	4
1	S		•	13	7	7.	5.	55	4	~	ь.	4	2	4	ъ Ф	m
DO		9.09	25.5	24	4	1.80	15.6	57	4	51.9	0.53	14.3	5	2	55.0	7
l O		•	•	50	-1	. 5	5.	99	4		4.		വ	₹ľ	ω	2
A	ល		. •	22		. 7	6.	63	ヤ	·	4		2	4	ნ	2
U		•		37	0	9	5.	58	4	~	٠,		2	4	7	7
0.5			•	59	2	7	7.	99	4	~	.5		5	4	0.	2
305		•	•	61	0	7	7.	77	4	~	9.	9	2	- -1	0	2
8		61.7		45	0	9.	7.	99	ል	.0	. 5	7.	2	m	H	m
307			•	59	0	9.	7.	73	4		. 5	9	2	4	6	2
307			•	52	0	9.	9	84	4	on.	. 5	5.	2	47	0.	m
307				39	3	9.		89	4	.0	. 5	5.	2	3	0.	3
3715		•	~	43	7	9.		50	ਧਾ	υ.	. 5	5.	2	2	5.	Н
8817				13	7	. 7		99	m	m	. 5	3.	5	4	5.	-1
8818			01	49	4	9		63	4	0	4.	5.	5	4	9	m
MN88320			01	55	4	9		67	4	1.	4		5	4	8	2
333				14	5	ເນ		48	4	6	4.	4	ഹ	ጥ	4	
10			~	36	2		7.	70	4	9	. 5	7	2	マ	9	2
-10				31	3	9.		67	4	5	. 5	9	Ŋ	m	1	m
ND662			0:	43	4	9.	7.	75	4	0	.5	6.	Ω.	4	0	7
-		-	m	51	2	9	7.	69	47	-	4	7.	2	4	1.	m
2-		-		48	m	-		81	ゼ	7	4	9	2	4	3	9
98A		0	0	29	4	-	9	48	4	5	· CI	9	2	m	H	4
-054		9	m	29	9			54	ゼ	7	4.	4	2	m	6	m
-030		-	m	33	9	-		53	4	9	4.	9	S	4	9	9
-313		1.	0	45	m	Ψ.	9	63	4	9		9	ည	m	8	2
88-30		-	_	18	9	w.	7	69	4	6	· S	7.	2	4	9	2
87-467		φ.	Ċ	24	7		5	41	4	0	4.	5.	ಬ	4	-	4
87-35		0		78	3		9	09	ক	0		5.	S	2	ω.	2
1982-		4	বা	15	10	w	9	99	m	φ.		6.	വ	2	0	2
C-MINTO		8	-	27	m	1.72		71	4	4	0.53	9	2	2	7	m
W148		g.	6	37	က	00	2	74	4	0	. 6	9	2	2	0	m
ID367		_	-	11	7	9	2	52	4	4		ਧਾ	2	7	9	m

NURSERY=UNIFORM 1991 CROP QUALITY DATA OF SPRING WHEAT SAMPLES STATE=NORTH DAKOTA STATION=WILLISTON

TABLE 34 (CONT)

VARIETY STD ABS TITLE CHAR COLOR GRAIN VCL SCORB STORE TO WE SED NO MI	ARIETY ST ON E 86 S ESS														
HUTCH BE S 58.2 4.00 9 00 199 12 2.7 HJ HIT	AMIDON BUTTE 86 CHRIS CUTLESS	AB I	E N I	СНА	COLOR	GRAIN	VOL	COR 1 * 1	* CO *	X	EX A65 F	υ	Æ		CG IV
NATIONALES S 59.0 2 2.75 9 9 9 9 9 9 9 19 19 10 2 2.7	ANIDON BUTTE 86 CHRIS CUTLESS	c	•	c			(ć			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1
HATTERS SECTION OF SEC	ES C C	0 0	7.0	nσ			ם ת	7 -	•		¥ :	Ĭ:			MI
NAMERICAL S 561 6 5 6 6 6 6 5 2 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E CS	٠ ٧	4	0			0	-1 C			I I	Ξ :	Σ		H
Color Colo	1	. 0	4.0	10			J -	7 0		SE SE	M M	I W	D Z		MI
Main color Mai	R.W.	000	5.0	0			1 -	1 C		7	25		25		
TORDIC S 59.6 4 0.0 9 80 80 1910 2 3.3	RQUIS	5	4.5	0			10	2	• •	I E	M.T	X	2 7		7
NAME S 59.3 S 0.0 9 8 0 8 0 201 1 2 3.3 NAME D 50.5 S 2.5 9 8 0 8 0 201 1 1 2 3.3 D 50.5 S 0.5 S 2.5 9 8 0 8 0 201 1 1 2 3.3 D 50.5 S 0.5 S 2.5 9 8 0 8 0 201 1 2 3.3 D 50.5 S 2.5 S 2 S 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3 S 3	RDIC	ω	4.0	6			5	2				X			n I
Name	OA	6	5.0	6			0	2 ا				I W	Σ		T M
1999-1995 1999-1999 1999-1999-1999-1999-1999-	NC	7	3.0	6			0	7				: X) E		711
DEPICIENCIES DEPICE DEPI	305	0	2.5	6				-	•			Ξ.			M
Deciding	305	0	2.2	6			0	7				H			X L
Decided Section Decided Se	308	Ξ.	3.2	6			0	m				:			LΕ
NEW PROPERS NEW PROPESS NEW PROPERS NEW PROPERS NEW PROPERS NEW PROPERS NEW PROPESS NEW PROPERS NEW PROPERS NEW PROPERS NEW PROPERS NEW PROPESS NEW PROPESS NEW PROPERS NEW PROPESS	807	9.	3.2	6			8	-1	•			MI	MJ		IW
NN81750 55.5 2.75 5 75 80 184 12 2.3 NN818170 55.5 2.75 5 75 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 9 80 187 1 2.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN818180 55.5 2.75 5 75 1 20 1 2 3.3 NN 1	807	0	3.5	6			∞	m					MI		
National N	8074	0	4.0	0			8	2	•		Σ		MJ	MI	X I
NN88170 55.5 5.75 5 75 90 187 1 2 2.77 NN881870 55.5 3.70 9 80 85 201 2 3.33 NN88320 56.2 3.00 9 80 85 198 2 3.33 NN88320 56.5 3.00 9 80 85 198 2 3.33 NN88320 56.5 3.00 9 80 80 75 188 2 3.33 NN88320 DE57 61.1 3.00 9 80 80 75 182 2 3.33 NN	8715	5	3.0	7			6	-1			MJ	MJ	MJ	MI	MI
N88189 59.0 3.75 9 80 85 201 2 3.3	8817	5.	2.7	വ			∞		•	MJ		MJ		Н	
N88320 54.6 3.50 9 80 85 198 2 3.3 D655 61.1 3.00 9 80 75 168 1 3.0 D657 61.1 4 2.50 9 80 75 168 2 3.3 D671 D671 D671 D671 D671 D671 D672 D673 D674 D675 D674 D675 D675 D675 D676 D677 D6	8818	5	3.7	6			0	2							
NASSA4 54.6 3.50 5 80 75 168 1 3.0 D655 C61.1 3.00 9 80 75 168 2 2 3.3 D657 C61.1 3.00 9 80 80 202 3 3.3 C61.1 3.00 9 80 80 178 2 3.3 C61.1 3.00 9 80 80 178 2 3.3 C61.1 3.00 9 80 80 178 2 3.3 C61.1 6.75 9 85 195 4 4.0 C61.1 6.75 9 85 194 2 3.0 C61.1 6.75 9 80 75 194 2 3.0 C61.1 6.75 9 80 80 175 194 2 3.0 C61.1 6.75 9 80 175 1 2.3 C61.1 6.75 9 80 181 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8832	φ.	3.0	6			9	2				MI	MJ		
DEFICIENCIES 59.3 3.00 99 80 75 182 2 3.3 DEFICIENCIES 60.8 4.00 9 80 75 182 2 3.3 DEFICIENCIES 61.4 2.50 99 80 80 178 2 3.3 ENDORF ANDLEN S 57.9 2 80 80 178 2 3.3 ENDORF ANDLEN S 57.9 2 80 80 175 182 2 1.4 ENDORF ANDLEN S 57.9 2 86.3 18 12.9 5.56 6.51 2.4 ENDORF ANDLEN S 7.7 5 0.0 ENDORF ANDLEN S 7.7 5 0.0 ENDORF ENDING WINDER S 7.7 5 0.0 ENDORF ENDORF ENDING WINDER S 7.7 5 0.0 ENDORF ENDORF WINDE	3833	4	m d	ഗ			9					MJ	MJ	MI	UM IM
DEST 61.1 3.00 9 80 80 202 3 3.3 MI MI MI MI MI MI MI MI DEFICIENCIES 61.1 4.00 9 80 80 202 3.3 MI	00	ъ Б	3.0	6			8	7	•			MI	MJ		MI
DEFICIENCIES 60.8 4.00 9 80 80 178 2 3.3 DOFFLOATING VALUERS 57.9 2 80 80 178 2 3.3 MI M	5		3.0	6			0	က			Σ		MI		MI
Main of the color of the colo	20	0,	4.0	ი (-	7	•			MI			MI MI
No. 12	- 1	(7.5	ט ע			5 (7	•						MI
MSSEA4 WASSEA4 WASSEA WASSEA4 WASSEA WASSE	7/0	٠, د	4. C	ט ע			5 1	ਧਾ (•						
National Service	SYORA PROPER	-i <	0.0	ם ע			_ (7	•		MI				
MS WE SHOW SHOWN SHOW SHOWN SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW	4000	, ע	4 · U	א ע			n (7	•		MI		MJ	H	
Name	000-1	. 0	4. C	ח מ			-	7		MI			MJ		H
Secondary Seco	CTC C	0 0	٠, ١	א ע			0	7	•		MI	MI	MJ		MI
No.	3 - 3 0 3	٠ ۲	3.0	ກ (0	7	•	MI		MI	MJ	MI	MI
A567-350 58.6 4.00 9 85 85 200 2 2.7 1982-309 60.5 6.50 9 80 80 188 2 2.3 C-MINTO 57.3 3.00 9 80 85 188 2 2.7 W148 60.5 2.50 9 85 80 175 1 2.3 W148 D367 DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) INOR FAULTING VALUES 57.9 26.3 8 13.9 57.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 181 AJOR FAULTING VALUES 56.9 23.3 18 12.9 55.6 .61 12.4 2 1.9-11 60.4 UNDER 1.75 0VER 8.00 4 50 50 171	104-10	· ·	D . C	ט ע			3	<u>ښ</u>					MI		
1982-309 1982-309 1982-309 1982-309 60.5 6.50 9 80 80 188 2 2.7 MJ M	A987-35	· œ	4.0	ر د			0	2			MJ	MI	MJ		
C-MINTO	1982-30	0	6.5	σ,			8	7	•	MI	MJ				MI
W148 W148 W148 W148 W148 W148 W148 W148 W148 W148 W148 W15 W15 W15 W15 W17 W17 W17 W17	C-MINT	7	3.0	6			8	2	•		MJ		MJ		
D367 D56.2 5.00 9 80 197 2 2.7 MI MJ MJ MI DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) INOR FAULTING VALUES 57.9 26.3 8 13.9 57.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 181 AJOR FAULTING VALUES 56.9 23.3 18 12.9 55.6 .61 12.4 2 1.9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 171	W14	0	2.5	6			7	н							MI MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CC INCHERULTING VALUES 57.9 26.3 8 13.9 57.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1 AJOR FAULTING VALUES 56.9 23.3 18 12.9 55.6 .61 12.4 2 1.9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1	D36	. 9	5.0	თ			6	7	•	M					
INGE FAULTING VALUES 37.3 25.3 6 13.9 57.6 .5/ 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 18 AJOR FAULTING VALUES 56.9 23.3 18 12.9 55.6 .61 12.4 2 1.9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 17	DEFICIENCIE	E- C	× 0	₩ S	a. c	X A6	다 (MG .	MX BA	MIX	(MT)	U	00	LV	٠
	AJOR FAULTING	5 56 S 56	9 23	18	. o.	9.	12.	n 0	,7,8 61.	5.75-8.00 UNDER 1.7	-2.75 8.00	5	80 20	200	

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE-NORTH DAKOTA STATION-DICKINSON NURSERY-UNIFORM

														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1
VARIETY	STD	TEST	1000 K.WT	SIZING	NG W	HT	WHT PRO	HARD- NESS	WHEAT	FLR	ASH @ 65%EX	FLR	MILL	MILL	MIX	MIX
		#/BU	O	æ	20	ap I	∂P		* * *	ا ا جو ا	1 1 1 1 1	ا ا عو ا	1 1	* *	ا ا عو ا	1 1
21144E86		1 4	29.8	22	2]	7		93	4	~		•		4,	61.4	4
	, c	•	23.7			8		77	c	•	5			4	_1	വ
ARPOILE)	58.6	24.5	15	2	ω		83	4	-	5			2		m
	S)			9	7	ω	-	71	ゼ		5			ঝ	•	S.
AC-MINTO		57.8	•	19	m	7		95	4		4.			m		m
148		60.4	40.2	31	2	1.80	17.8	81	4	62.8	0.55	17.0	2	4		पा।
982-30		54.7	•	15	7	9	~	94	ന		.5	7 .		7	·	7
786		59.0		65	2	9	7	99	ব্য	7	5			7	٠.	m
)			~	5	10	7	7	16	m	.0	.5	.0		2	÷	ιΩ I
87-030			~	22	4	9	7	70	4	8	. 5	ιΩ.		m	~	_
6-05		9	. ~	9	11	σ,		80	3		. 5	10		4		ব্য ।
-467				18		- ∞	٠ د	46	4	6	S.	5		m	0	വ
8-303			4	ω		0.	æ	79	က	-	5	7		ጥ		m ·
, ר ט ר			,	20		ω.	· ·	68	4	9	S.	9		m	0	ਧਾ :
87150		1.0	LO LO	7			9	16	က	8	.5	5.		m	0	က
- ~		, e	ص	2	8	Φ.	9	74	m	ω.	9.	5.		m ·	0	M I
8818		_	2	30		9 .	9	70	4	4.	٠,	9		4	i	S
2000		. 6	000	25		9	5	73	4	÷	τ.	5		ঝ	÷.	작
א ה ה		00	4	6		ω.	_	88	4	9	ທ	9		m	2	4 1
י ה ה			9	13	2	ω,	-	81	4	φ.		7.		m	٠ س	വ
9 9		6	6	17		9	9	91	4	4	43	9		₽	0	1 00
ND 671		<u>-</u>	29.8	35	-	ω.	_	7.0	4	0	4.	-		4	γ,	
67		0	PI	AVAIL	Ø.	•		•		•		- 1		•		۰ ۲
883		φ.	3	S	10	9.	9	87	4	2.	ላ.	٠ ا		di (ο 10 τ	7 L
305		6	-	36	m	. 7	7	67	4	0	. 5	7		~	-	Ω,
305		ω	2	43	m	7.	7	88	4	0	. 5	9		m I	i,	ਧਾ (
308		0	5	24	4	5	7.	73	4	0.	4.	7.		m	-	∞ ι
200			M	48	2	9.	7	96	4	د	• 4	9		ゼ	5	ر ک
200		6	0	26	7	. 7	6.	85	ゼ	$\vec{-}$.5	9		₹'	0	υ,
_		60.8		29	7	1.62	17.3	8 9	4	60.3	0.50	16.1	. 5	က (60.3	বা
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, α	ω	15	2	ω,	9	61	4	ω.	. 5	9		m _.	1	
4000)													

TABLE 35

TABLE 35 (CONT)

1991 CROP	ON NURSERY-UNIFORM
QUALITY DATA OF SPRING WHEAT SAMPLES	STATION-DICKINSON
WHEAT	TATION=
, SPRING	
OF	DA
DATA	ORTH
QUALITY	STATE=NORTH DAKOTA

RIETY STD ABS TIME CHAR COLOR GRAIN VOL SCORE SCORE TW KW ST 66		BAKE	MIX	роисн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	1			DE	FICIE	-DEFICIENCIES-		 	1 1 1 1
TTERE S 61.4 4.5.5 9 85 75 181 3 3.7 MJ MI NI	 	四世十	1	CHAR	COLOR	GRAIN	CC	SCORE ***	SCORE ***	 	KE	SM WP EX	X A65	FP MC	X	BA MT	DC CC	CG FA
S 61.1 4.50 9 85 80 185 3 3.3 HJ MI NUCL S 62.5 5.25 9 80 85 184 2 2.7 NUCL S 62.5 5.25 9 80 85 187 4 4.0 S 62.7 6.50 9 80 85 187 4 4.0 S 62.1 6.50 9 80 85 187 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.1 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 85 185 1 2.3 NUCL S 62.2 6.50 9 80 80 184 2 3.3 NUCL S 62.2 6.50 9 80 80 80 80 80 80 80	982		. 7	6	8		∞	m							Σ	-		7
S			. 5	6	85		0	m			Σ	11	M		Σ	X = X		I X
NTO	JIS	0	0.	6	80		8	2			!	EM	MI		Σ	: 5		7 1 1
NTO		2.	. 2	6	80		∞	4			MI					2		
2-309	AC-MINTO	6	. 2	6	80		8	2			MI	M	Н		Σ	M		
2-309 5-2-2-309 5-2-2-30	BW-148		.5	6	85		6	٣					1		Σ	Σ		Σ
7-350 7-350	982-30	2.	.5	6	80		9	m			MJ	DM	J MI		MI			:
Second	987-35	7.	0.	6	80		∞	-1				DM				MJ MI		
Main of the color of the colo	36	9.	0.	6	80		9	-1			MI		ט		Σ	MJ MI		
Main of the color of the colo	87-030	2.	. 5	6	80		9	4				MI	I		MI			MI
#67 60.5 6.75 9 80 80 193 2 3.0 MI 3034 661.4 3.25 9 85 75 204 3 3.3 MJ 3136 60.0 3.00 9 85 80 201 2 2.7 MJ 1150 60.8 2.50 5 85 85 170 2 2.7 MJ 1189 661.4 4.25 9 80 85 170 3 3.7 MJ 120 60.8 2.50 5 80 85 170 3 3.7 MJ 121 60.8 2.50 5 80 85 170 3 3.7 MJ 121 62.5 4.75 7 80 85 178 4 3.7 122 60.5 7.00 9 80 85 184 4 4.0 123 60.5 7.00 9 80 80 183 2 3.3 123 60.0 5.00 7 80 80 192 3 3.3 124 661.8 4.25 9 80 80 192 3 3.3 125 66.0 5.00 7 80 80 170 4 4.0 126 62.1 4.00 7 80 80 170 4 4.0 127 60.1 5.25 7 80 80 185 2 3.0 128 60.2 5.25 7 80 80 185 2 2 3.0 129 80 80 170 4 4.0 120 80 170 4 4.0 120 80 170 4 4.0 120 80 170 4 4.0 120 80 170 4 4.0 120 80 170 4 4.0 120 80 170 4 4.0 120 80 170 6.1 120 80 80 80 80 80 80 80 80 80 80 80 80 80	86-054	9	. 2	6	80		9	2			MI					13		X
3034 61.4 3.25 9 85 75 204 3 3.3 MJ 3136 60.3 4.50 9 80 80 213 2 3.0 150 60.0 2.50 5 85 85 170 2 2.7 MJ 170 60.8 2.50 5 86 85 170 2 2.7 MJ 189 61.1 4.25 9 80 85 170 3 3.7 2 62.5 4.75 7 80 85 178 4 4.0 2 63.1 4.25 9 80 85 184 4 4.0 2 63.1 4.25 9 80 85 184 4 4.0 2 63.1 4.25 9 80 85 184 2 3.3 2 65.1 4.00 7 80 85 103 3 3.3 334 60.3 5.25 9 80 85 170 4 4.0 344 61.1 8.25 9 80 185 2 3 3.3 344 60.3 5.25 7 80 80 185 2 20 3 3.3 3.4 5 60.0 5.00 7 80 80 185 2 20 3 3.3 3.4 5 60.1 4.00 7 80 80 185 2 20 3 3.3 3.4 5 60.1 4.00 7 80 80 185 2 20 3 3.3 3.4 5 60.1 4.00 7 80 80 185 2 20 5 7 80 80 185 2 20 5 80 170 4 4.0 5 80 80 185 2 20 5 80 80 185 2 20 5 80 80 185 2 20 5 80 80 185 2 20 5 80 80 185 2 20 5 80 80 80 185 2 20 5 80 80 80 80 185 2 20 5 80 80 80 80 80 80 80 80 5 80 80 80 80 80 80 80 80 5 80 80 80 80 80 80 80 80 5 80 80 80 80 80 80 80 5 80 80 80 80 80 80 80 5 80 80 80 80 80 80 5 80 80 80 80 80 80 5 80 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 80 80 5 80 80 80 5 80 80 5 80 80 80 5 80 80 5 80 80 80 5 80 80	87-46	0.	. 7	6	80		6	2				MI	I		Σ	MI MI		X
3136 60.3 4.50 9 80 80 213 2 3.0 MJ 150 60.0 3.00 9 85 80 201 2 2.7 MJ 189 61.1 4.50 9 80 80 192 3 3.7 MJ 189 61.1 4.50 9 80 80 192 3 3.7 MJ 22 62.5 4.75 7 80 85 178 4 3.7 MJ 23 60.5 7.00 9 80 85 184 4 4.0 24 60.5 7.00 9 80 85 184 4 4.0 25 62.1 4.25 9 80 80 192 3 3.3 26 61.8 4.25 9 80 80 192 3 3.3 27 7 80 80 192 3 3.3 28 61.8 5.25 9 80 85 170 4 4.0 29 80 85 184 2 3.3 20 62.1 4.00 7 80 85 170 4 4.0 21 4.00 7 80 80 185 200 23 3.3 24 60.3 5.25 7 80 80 185 200 25 80 80 192 3 3.3 26 80 192 3 3.3 27 80 80 185 200 28 80 185 200 29 80 80 198 178 2 3.3 20 80 185 200 20 80 80 80 80 80 80 80 80 80 80 80 80 80	88-303	-	. 2	6	85		0	c			MJ				2.			M
150 60.0 3.00 9 85 85 170 2 2.7 MJ MI 189 61.4 4.25 9 80 85 170 2 2.7 MJ MI 189 61.4 4.25 9 80 85 170 3 3.7 MJ 189 61.4 4.25 9 80 80 182 3 3.7 MJ 189 61.5 4.75 7 80 85 106 4 3.7 180 85 106 4 3.7 180 85 108 4 4.0 181 4.25 9 80 80 184 4 4.0 181 4.25 9 80 80 184 4 4.0 181 4.25 9 80 80 184 3 3.3 181 4.25 9 80 80 184 3 3.3 181 4.25 9 80 80 184 3 3.3 181 4.25 9 80 80 184 3 3.3 181 4.00 9 85 193 3 3.3 181 60.3 5.25 7 80 80 188 2 3.3 181 60.3 5.25 7 80 80 188 2 3.3 181 60.3 5.25 7 80 80 188 2 20 181 60.3 5.25 7 80 80 188 5 20 181 60.3 5.25 7 80 80 188 5 20 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 188 5 2 181 60.3 5.25 7 80 80 80 80 80 80 80 80 80 80 80 80 80	88 313	0.	. 5	6	80		\vdash	2				Σ	I		2,	MJ		MI
170 66.8 2.50 5 85 85 170 2 2.7 MJ MI 189 661.4 4.25 9 80 85 170 3 3.7 MJ MI 189 661.4 4.25 9 80 85 170 3 3.7 MJ MI 180 661.1 4.55 9 80 85 178 4 3.7 MJ MI 180 661.2 4.75 7 80 85 206 4 3.7 180 85 206 4 3.7 180 85 206 4 3.7 180 80 183 2 3.3 181 4.25 9 80 80 184 4 4 4.0 181 4.25 9 80 80 184 2 3.3 181 4.25 9 80 80 184 2 3.3 181 4.25 9 80 80 192 3 3.3 181 4.25 9 80 80 80 193 3 3.3 181 4.00 9 85 193 3 3.3 181 6.1 8.25 9 80 80 170 4 4.0 181 6.1 8.25 9 80 80 170 4 4.0 181 6.1 8.25 9 85 80 170 4 4.0 182 7 80 80 178 2 3.0 183 4 60.3 5.25 7 80 80 178 2 3.3 184 4.0 185 6.1 8.25 9 85 80 170 4 6.0 185 6.1 8.25 9 85 80 170 4 6.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 2 3.0 185 80 178 80 80 80 80 80 80 80 80 80 80 80 80 80	8715	0.	0.	6	85		0	2			MJ	MI	I		2	MJ		MI
189 61.4 4.25 9 80 85 170 3 3.7 MI 320 61.1 4.50 9 90 80 192 3 3.7 MI 5 62.5 4.75 7 80 85 178 4 3.7 6 63.4 4.50 7 80 85 206 4 3.7 6 63.4 4.50 7 80 80 183 2 3.3 2 63.1 4.25 9 80 80 184 2 3.3 33.4 58.6 3.75 9 80 80 192 3 3.3 5 6 61.8 4.25 9 80 80 192 3 3.3 5 6 61.8 4.25 9 80 80 170 4 4.0 7 80 80 170 4 4.0 7 80 80 178 2 3.3 7 80 80 178 2 3.3 7 80 80 178 2 3.0 7 80 80 185 2 20 7 80 80 185 2 20 7 80 80 178 2 3.0 7 80 80 178 2 3.0 7 80 80 178 2 3.0 7 80 80 198 1 2.7 8 80 80 178 2 3.0 8 80 178 2 3.0 8 80 178 2 3.0 8 80 178 2 3.0 8 80 178 2 3.0 8 80 185 3 3.3 8 80 185 3 3.3 8 80 18	8817	0.	. 5	5	85		7	2			MI		I MI		Σ	MI MI	MI	
320 61.1 4.50 9 90 80 192 3 3.7 5 62.5 4.75 7 80 85 178 4 3.7 6 63.4 4.50 7 80 85 178 4 3.7 5 60.5 7.00 9 80 80 183 2 3.3 6 61.8 4.25 9 80 80 192 3 3.3 5 6 61.8 4.00 9 85 85 193 3 3.3 6 61.8 5.25 9 80 80 170 4 4.0 7 80 85 200 3 3.3 7 80 80 170 4 4.0 7 80 80 178 2 3.0 7 80 80 178 2 3.0 7 80 80 178 2 3.0 7 80 80 198 1 2 2.7 8 85 85 193 3 3.3 8 85 86 170 4 6.0 8 85 86 170 6.0 8 85 8	8818	1.	. 2	6	80		-	က							2.			
5 62.5 4.75 7 80 85 178 4 3.7 63.4 4.50 7 80 85 206 4 3.7 60.5 7.00 9 80 80 183 2 3.3 10 63.1 4.25 9 80 80 184 4 4.0 25 61.8 4.25 9 80 80 192 3 3.3 61.8 5.25 9 80 80 192 3 3.3 72 62.1 4.00 7 80 85 184 4 4.0 73 60.0 5.00 7 80 80 170 4 4.0 74 60.3 5.25 7 80 80 185 2 3.0 74 60.3 5.25 7 80 80 198 1 2.7 75 FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8	8832	-	.5	6	9.0		6	c							2.	MI		MI
2 63.4 4.50 7 80 85 206 4 3.7 60.5 7.00 9 80 80 183 2 3.3 3 4.00 5 7.00 9 80 80 183 2 3.3 3 4.00 5 7.00 9 80 85 184 4 4.00 5.00 5.00 7 80 80 170 4 4.0 5.00 5.00 7 80 80 185 2 3.0 5.7 5.7 80 80 80 170 4 4.0 5.00 5.00 7 80 80 185 2 3.0 5.7 5.7 80 85 85 85 80 198 1 2.7 85 80 85 85 80 80 80 80 80 80 80 80 80 80 80 80 80	65	2.	. 7	7	80		1	4					I					
2 60.5 7.00 9 80 80 183 2 3.3 1 63.1 4.25 9 80 80 184 4 4.0 2 63.1 4.25 9 80 80 184 2 4.0 33.4 58.6 3.75 9 80 80 184 2 3.3 55 61.8 4.25 9 80 80 192 3 3.3 56 61.8 4.00 9 85 85 193 3 3.3 72 61.8 5.25 9 80 80 170 4 4.0 73 60.0 5.00 7 80 80 178 2 3.0 74 60.3 5.25 7 80 80 185 2 3.0 74 61.1 8.25 9 85 80 198 1 2.7 75FICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	65	3.	.5	7	80		0	4				MI	I MI					
1 63.1 4.25 9 80 85 184 4 4.0 2 3.34 334 58.6 3.75 9 80 80 184 2 3.3 55 61.8 4.25 9 80 80 192 3 3.3 56 61.8 4.00 9 85 85 193 3 3.3 57 60.0 5.25 9 80 80 170 4 4.0 57 80 80 178 2 3.3 584 60.3 5.25 7 80 80 185 2 3.0 584 61.1 8.25 9 85 80 198 1 2.7 585 586 61.1 8.25 9 85 80 198 1 2.7 587 587 587 587 587 587 587 587 587 58	99	0	0.	6	80		8	2	•							MI MI		MI
23.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 5.5 61.8 4.25 9 80 80 192 3 3.3 5.6 61.8 4.00 9 85 85 193 3 3.3 5.0 62.1 4.00 7 80 80 170 4 4.0 7. 80 80 178 2 3.3 7. 80 80 178 2 3.3 80 178 2 3.3 80 178 2 3.3 80 184 5 80 80 170 4 4.0 80 185 5.25 7 80 80 184 5 80 80 170 170 170 80 185 80 185 80 80 184 6.0 80 184 5 80 80 170 170 170 80 185 80 185 80 80 198 1 2.7 80 80 198 1 2.7 80 80 198 1 2.7 80 85 80 198 1 2.7 80 80 80 198 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 1 2.7 80 80 80 80 1 2.7 80 80 80 80 1 2.7 80 80 80 80 80 80 80 80 80 80 80 80 80 8	67	3	. 2	6	80		∞	4							MI			
334 58.6 3.75 9 80 80 184 2 3.3 MIX 55 61.8 4.25 9 80 80 192 3 3.3 56 61.8 4.25 9 80 80 192 3 3.3 56 61.8 4.00 9 85 85 193 3 3.3 57 60.0 5.25 9 80 80 170 4 4.0 7 80 80 178 2 3.3 74 60.3 5.25 7 80 80 185 2 3.0 584 61.1 8.25 9 85 80 198 1 2.7 56 57 60.3 5.25 7 80 80 50 198 1 5.75 57 58 60.3 5.25 7 80 80 198 1 5.75 58 61.1 8.25 9 85 80 198 1 5.77 58 60.3 5.75 9 85 80 198 1 5.77 58 60.3 5.75 9 87 WP EX A65 FP MC MX BA MIX 58 60.3 5.75 9 87 WP EX A65 FP MC MX BA MIX 58 60.3 5.75 9 87 WP EX A65 FP MC MX BA MIX 58 60.3 5.75 9 87 WP EX A65 FP MC MX BA MIX 58 60.3 5.75 9 87 WP EX A65 FP MC MX BA MIX 60 7 8 13.9 60.3 5.71 2.9 3 2.77 8 61.9 5.75 6.8	67	٠	•	•	•	٠	•	4										
55 61.8 4.25 9 80 80 192 3 3.3 56 61.8 4.00 9 85 85 193 3 3.3 30 61.8 4.00 9 85 85 193 3 3.3 30 61.8 5.25 9 80 85 200 3 3.3 72 60.0 5.00 7 80 80 178 2 3.0 74 60.3 5.25 7 80 80 185 2 3.0 3A4 61.1 8.25 9 85 80 198 1 2.7 EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FABILITING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	8833	8	. 7	6	80		8	2				ΑI			2.	MJ		MI
56 61.8 4.00 9 85 85 193 3 3.3 30 61.8 5.25 9 80 85 200 3 3.3 72 62.1 4.00 7 80 80 170 4 4.0 73 60.0 5.00 7 80 80 178 2 3.0 74 60.3 5.25 7 80 80 185 2 3.0 5A4 61.1 8.25 9 85 80 198 1 2.7 5FICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	305	1.	. 2	6	80		9	m	•				н		. 2.	MI		MI
30 61.8 5.25 9 80 85 200 3 3.3 72 62.1 4.00 7 80 90 170 4 4.0 73 60.0 5.00 7 80 80 178 2 3.3 74 60.3 5.25 7 80 80 185 2 3.0 85 80 198 1 2.7 86 85 80 198 1 2.7 87 61.1 8.25 9 85 80 198 1 2.7 87 61.9 5.75-8.	305	7	0.	6	85		9	8				M			2	I E		
72 62.1 4.00 7 80 90 170 4 4.0 73 60.0 5.00 7 80 80 178 2 3.3 74 60.3 5.25 7 80 80 185 2 3.0 85 80 198 1 2.7 86 60.3 5.25 7 80 85 80 198 1 2.7 86 EXILERCIES TW KW SM WP EX A65 FP MC MX BA MIX FABILITING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2.7, 8 61.9 5.75-8.	308	1.	. 2	6	80		0	m	. 4			Σ			. A	Ξ.		
73 60.0 5.00 7 80 80 178 2 3.3 74 60.3 5.25 7 80 80 185 2 3.0 84 61.1 8.25 9 85 80 198 1 2.7 SFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	807	2.	0	7	80		-	4					•			1		
74 60.3 5.25 7 80 80 185 2 3.0 3A4 61.1 8.25 9 85 80 198 1 2.7 SFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	807	0	0.	7	80		-	2							2	M.T		M
3A4 61.1 8.25 9 85 80 198 1 2.7 SFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8. FAULTING VALUES 56 9 21 0 18 12 9 58 3 61.12 4 2 1 9.11 60 4 100.50 1	D 807	0	. 2	7	80		0	2				Σ			. 2	N.T.		Ι Σ
SFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8.	W 398.	i.	. 2	6	82		6	-	•			M	. 14		MI	MI MJ		H
FICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX FAULTING VALUES 57.9 24.0 8 13.9 60.3 .57 12.9 3 2,7,8 61.9 5.75-8. FAULTING VALUES 56.9 21.0 18 12.9 5.61.12.4 2 1.0.11 60.4 110000000000000000000000000000000000		i		i		,												
	INOR FAULTING VALUE	57.	24.	ν. Σως	ു ത	8x 0.3	65 FF 57 12.		7, 8	BA 1.9		Σ i	-2.75	9 9	75	00 80	LV 163	
FACELING VALUES 30.3 ZI.O 10 IZ.3 30.3 .OI IZ.4 Z I,9-II 60.4 UNDER I./	TAJOR FACELLING VALUE	700 mm	D · T Z	2 L 2 L	ם ע	3. V.	01 17.		, y-11	0.4	UNDER 1.	75 OVER	8.0	4	20	20	153	

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZIN	NG N	HT HT H	WHT PRO	HARD-	WHEAT SCORE ***	EXT EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX	MIX
BUTTE 86	ഗ	63.1		78	0 1		13.1	72	ω,	62.8	0.47	12.1	5	2	57.3	
HKI	C	2 0	(4.7		٠,	٠,		বা (د	4	•	Ω.	বা (-	-1
KA	Σ.	. 7 -	າ ເ	10		٠,	-		7	٠ د د	4	6	S)	7	<u>.</u>	 1
K (m .	62		9 (٠ س		m (5	. 5	5	വ		4	Н
OA	Ŋ	~ (٠	29		9.	 -		7	ر د	4.	0	വ	2	5	- -1
305		e m	-	82		9 .	5.		7	2.	. 4	2	2	Н	5.	
SD3056		~	-	84		9.			2	2.	.5	•	2	2	9	٦
308		ः स्टाः	ω .	72		9 .	٠ ش		က	2.	4.	2.	2	m	7	٦
807		e m	ω	80		9.	5		2		.5	1	2	2	7.	-1
807		m	6	80		9.	j.		2	2.	4	0	2	Н	7	2
8074		ਹਾ ਹਾ	4	70		9.	2.		7	0	.5	0	5	H	7.	2
8715		e e	0	92		. 5	2.		7	5.	4.	-	5	2	5.	7
8817		0	0	74		.5			2	4.	4.	0	2	2	4	-
8818		.	4	98		9.	.		m	7.	4.	3	2	4	9	2
883		٠ ح	9	11		. 5	•		2	د	4.	-	Ω	2	7.	Н
8833		2.	5.	89		. 5	2.		7	3.	4.	<u>.</u>	2	2	4	٦
65		ش	2	74		9.	2		2	<u>.</u>	4.	-	2	2	9	Н
65		1.	0	82		. 7	<u>.</u>		m	د	. 5	2.	5	m	8	2
99		3	7.	65		9.	د		က	2.	4.	2.	5	2	ω	2
_		4	7	29		. 7	3		m	0.	4.	2.	5	٦	9	2
672		2	7.	8.0		9.	7		2	0.	4.	9	5	Н	5.	2
W398A4		<u>.</u>	2.	81		9.	2.		2	4.	. 5	-	5	2	7.	2
0 5		2.	8	78		. 5	-		2	4.	. 4	0.	5	2	9	2
87-030		4	ж •	80		9.	2.		2	ж •	4	1	2	2	8	2
88-313		2	7.	80		. 5	2.		2		.5	-	5	7	9	2
88-303		6	4.	63		. 7	3		m	4.	.5	3	2	4	7.	2
87-467		2.	i.	19		9.	-		2	4.	.5	0	2	2	5.	~
A987-3		2.	9	90		9.	2.		2	5.	4.	-	2	2	9	2
1982-30		7	5.	71		9.	-		2	9	.5	0.	5	-	7.	2
-MINT		2	9	71		9 •			m	œ	.5	•	2	Н	5.	
W148		.	4	64		. 7			m	8	. 5	2.	2	ᆸ	7.	~
D03		ä	-	69		9 •	•		2	귝.	4	0	2	2	5	٦

 Γ

		BAKE	MIX	ропсн	CRUMB	CRUMB	LOAF	BAKE	GENERAL			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEFI	DEFICIENCIE	IES	1 1	
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	NOL	SCORE ****	SCORE	1 1 1 1	TW KW SM	WP EX	A65 FP	MC MX	BA	MT DC	ອວ ລວ
BUTTE 86 CHRIS ERA MARQUIS STOA SD3080 SD3080 SD3080 SD8074 MN88189 MN88189 MN88120 MN88189 ND655 ND657 ND657 ND657 ND672 ND672 NB6-0542 N88-3136 N88-3034 N88-3034 N88-309 CI982-309 AC-MINTO	က က က 							 			I E E E E E E E E E E E E E E E E E E E	A THE				 	
רי מיז		• •			• •	• •	• •	n m				MJ MJ	TH TH		E E		
DEFICIENCIES MINOR FAULTING VA MAJOR FAULTING VA ***	S TW VALUES 57.	TW 57.9 56.9	34.2 31.2	SM 8 18	M WP EX 8 13.9 62.6 8 12.9 60.6		A65 FP .57 12.9 .61 12.4	MG 7	2,7,8 1,9-11	BA 61.9 60.4	MIX TIME 5.75-8.00 UNDER 1.75	E (MT) 2.00-2 OVER 8	.75	DC C 6 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CC CG 75 80 50 50		LV .

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

TABLE 37			SIAIG	AIE-MONIANA	SAN	INIC	76-NO118	SIDNE	NORSER	RI-UNIFURM	E CRE					
VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	S W &	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	EXT EXT	ASH @ 65%EX	FLR PRO 1	MILL	MILL SCORE ***	MIX ABS.	MIX
BUTTE 86		1 .	33.	47	1	9	15.	76	4	.	4	1 10	5	4,	1 2	3 .
HRIS			25.	17	4	8	16.	77	4		5		5	4	0	m
4	ഗ	•	23.	13	6	9	14.	59	4		5		2	4	7	m
A			25.	25	5	6	15.	58	4		5	5	2	m	7	က
)A	ß		28.	22	2	6	15.	62	4	***	4	5	5	4	0.	2
305			28.	78	7	9	15.	69	4	10	4	5.	2	4	0.	2
SD3056		•	37.	74	-	7	15.	70	4		5	5.	2	8	1.	2
308		•	34.	53	7	7	17.	74	4	~	4	-	2	4	3.	S
807			34.	58	7	7	15.	77	4	*	5	5.	2	4	-	4
807			33.	54	7	8	14.	74	4		5	4	5	4	0.	4
807			32.	54	1	7.	15.	16	4	-	. 5	5.	5	4	1.	m
8715		~	32.	39	2	9	14.	57	4	8	4	4	5	4	8	2
8817			30.	34	2	6	15.	54	4	.0	.5	4	5	4.	1.	2
818		~	36.	69	m	7.	16.	59	ব	4	4	9	5	4	1.	4
1832		01	35.	65	7	. 7	14.	80	4	-	4	3.	5	4	0.	3
383			28.	25	4	.7	14.	59	4	8	3	3.	5	4	5.	٦
555			34.	99	2	7.	15.	77	4	· ·	4	5.	2	4,	٠ س	4
S			32.	41	٦		15.	68	4	3	4	5.	5	4	٦.	4
9			31.	26	-	φ.	15.	61	4	8	4	5.	5	4	1.	7
7		Ξ.	32.	54	٦		16.	65	4	9	4.	9	5	4	5	4
57			31.	38	2	8	15.	85	4	1.	.5	5.	2	4	1.	2
398A		Ċ	35.	47	٦	9	15.	99	4	5	4	5.	IJ	4	0	7
5-054		m	27.	25	8	6	14.	67	4	5.	4	4	5	4	1.	m
7-030		0	32.	45	2	8	15.	63	4	3	4	5.	5	4	-	4
3 - 313		0	31,	43	2	-	16.	67	4	2.	4.	9	5	4	9.	m
8-30		8	30	34	3		16.	7.0	প্	4	4	7.	2	4	9	2
7-467		6	34	43	-1	9	14.	54	4	4	4	4	5	4	7	2
98735		6	37	69	٦	8	15.	49	4	3	4	4	2	4	8	m
9823		m	25	17	9	0.	17.	61	8	-	u)	9	2	2	9.	4
INT		57.8	29.5	40	7	1.91	16.5	81	4	62.5	0.55	16.7	2	4	0.09	2
148		0	32	48	٢	ω.	16.	70	4	4	υ.	6.	2	4	-	m
3		8	27	18	9	•	14.	47	4	ŀ.	4	4	2	4	6	4

/

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

>

VARIETY STD				CKOMB	Chorin	LOAF		GENERAL		DEF1	DEFICIENCIES	
8 8	ABS &	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE	TW KW SM WP	EX A65 FP	MC MX BA MT	90 00 0g
HRIS	2	.2	თ			9	41	4.0				
	0.	. 2	6			6	2		MI		MJ	
RA	7.	.5	6			9	2		MI MI MI		MJ	
ARQUIS	7.	. 2	7			9	2		MI	MI MI	E.W.	
TOA	0	.0	7			9	3	3.7			ΙW	
10	0	. 7	2			9	2				MI MT	11
D3056	61.8	2.50	2	80	85	198	2	3.0		MI	MI MI MI	MI
~	3	. 7	6			\vdash	4	4.0				MT
Phone	1	0.	6			9	m				MI	4
Phone.	2	. 2	7			8	4,	4.0				
4	-	0.	7			8	m	3.7			MI	
5	8	. 7	2			9	-1				MI	MI
	-	. 2	თ			9	m	3.7	MI		MI	
8		. 2	6			\vdash	ო				MI	
32	0	0.	o			0	ო				MI	
33	5.	. 7	2			∞		•				MI
10	5.	. 2	6			9	P '	•				MI
0657	÷	. 2	6			\vdash	က				MI	
0662	3	. 2	6			8	က				MI MI	
0671	5.	.5	6			Н	4	4.0				
٥.	1	. 7	σ			0	2				MI MI	MI
A4	0	. 5	6			0	2					MI
154	<u>-</u>	0.	7			\vdash	m	•	MI			
3	÷	. 7	6			\vdash	m				M	
313	9.	. 2	6			٦	2				MJ	
303	9	0.	7			Н	2					M
167	7	. 2	7			-	2				MI MJ	M
35	8	. 7	5			9	2				MJ	
33	6	0.	S			0	Н	•	MJ MI	MJ	M	
NT	0	. 7	S			0		•	X X		X	Σ.
V148	-	. 7	2			6	2	•	1		MT MT	-
00367	9	.5	6			-	-				×	I.W.

TABLE 37 (CONT)

DC 6 MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00 BA 61.9 60.4 DEFICIENCIES TW KW SM WP EX A65 FP MC MX MINOR FAULTING VALUES 57.9 26.7 8 13.9 60.7 .57 12.9 3 2,7,8 MAJOR FAULTING VALUES 56.9 23.7 18 12.9 58.7 .61 12.4 2 1,9-11 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

LV 172 162

80 50

75 75 50 MIDWESTERN REGION

_
-
NTO
-
-
_
MI
-AC-
P 1
_
1
ETY=1
7
-
n
~
Line
d
VAR
3
Part I

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	57.8666667	0.1154701	57.8000000	58.0000000	0.0133333	0383991 0
K WT	28,1000000	1.3114877	26,9000000	29.5000000	1.7200000	4 6672160
PC	28.6666667	10.5987421	19,0000000	40.000000	112 333333	36 972756
MS	2.6666667	0.5773503	2,0000000	3.0000000	0.333333	21 6506251
WHT ASH	1.7900000	0.1044031	1.7200000	1.910000	0.0109000	5 8275725
WHT PRO	17.1666667	0.7023769	16,5000000	17.9000000	0.493333	4 0915160
HARD	82.333333	12.0554275	71,0000000	95,0000000	145, 333333	TOLCCAS AL
EXTR	58,8000000	4.2225585	54.200000	62.500000	17.8300000	7 1812219
FL ASH	0.5233333	0.0305505	0.490000	0.550000	000000000000000000000000000000000000000	C177101.1
FL PRO	16.7666667	0.4041452	16.400000	17 200000	0 1633333	2 4104007
MIXO	2.6666667	0.5773503	2.0000000	3.0000000	0.222233	21 6506251
BAKE ABS	58.8666667	1.4011900	57,3000000		1.9633333	7777085 6
LOAF VOL	190.333333	11.6761866	180.0000000	203.0000000	136.333333	6.1345989

VARIETY=BUTTE 86

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	60.533333	0.9504385	59.6000000	61.5000000	0.9033333	1.5701076
	32,3333333	2.2143472	29.8000000	33,9000000	4.9033333	6.8484964
	39.6666667	15.3731367	22.0000000	50.0000000	236,3333333	38.7558069
	1.3333333	0.5773503	1.0000000	2.0000000	0,3333333	43,3012702
ASII	3.0400000	2.2863945	1.7000000	5.6800000	5.2276000	75.2103468
PRO	16.7333333	0.9865766	15.6000000	17.4000000	0.9733333	5.8958759
	82.0000000	9.5393920	76.0000000	93.0000000	91,0000000	11.6334049
	60.9333333	3.7740341	56.6000000	63.5000000	14.2433333	6.1937102
FL_ASH	0.5000000	0.0264575	0.4800000	0.5300000	0.000700000	5.2915026
FL, PRO	15.9333333	0.7234178	15.1000000	16.4000000	0.5233333	4.5402792
	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33,333333
BAKE_ABS	60.8333333	1.6258331	59.0000000	62,1000000	2.6433333	2.6726024
LOAF_VOL	187.6666667	5,8594653	181.0000000	192,0000000	34.333333	3 1222728

VARIETY=BW148

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.1666667	0.5859465	59.5000000	60.6000000	0.3433333	0.9738723
K WT	34.1000000	5.5650696	29.3000000	40.2000000	30,9700000	16.3198523
LG	38.6666667	8.6216781	31.0000000	48.0000000	74.3333333	22.2974434
SM	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50,0000000
WHT ASH	1.8266667	0.0305505	1.8000000	1.8600000	0.000933333	1.6724729
WHT PRO	17.1000000	0.8185353	16.2000000	17.8000000	0.6700000	4.7867560
HARD	75.0000000	5.5677644	70.0000000	81.0000000	31.0000000	7.4236858
EXTR	59.2666667	7.2748425	50.9000000	64.1000000	52,9233333	12.2747624
FL_ASH	0.5600000	0.0360555	0.5300000	0.6000000	0.0013000	6.4384844
FL_PRO	16,6333333	0.3214550	16.4000000	17.0000000	0.1033333	1.9325953
MIXO	3.3333333	0.5773503	3.0000000	4.0000000	0.3333333	17.3205081
BAKE ABS	61.2333333	0.6658328	60.5000000	61.8000000	0.4433333	1.0873699
LOAF VOL	179.0000000	10.5830052	171.0000000	191.0000000	112.0000000	5.9122934

MIDWESTERN REGION

-- VARIETY=CHRIS ---

VARIABLE	MEAN	STD DEV	MINIMIM	MAXIMIM	VARIANCE	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						2
TW	60.000000	0.4242641	59.7000000	60.300000	0 180000	0.001000
K WT	23.9500000	1.6263456	22.8000000	25 100000	000001.0	0.1011058
LG	13.0000000	5.6568542	0000000	13.000000	22 0000000	0/8506/ 9
MU		100000	000000	00000007	32.000000	43.5142635
1.10	0000000	2.1213203	4.0000000	7.0000000	4.5000000	38.5694608
WHTASH	1.7550000	0.0777817	1.7000000	1.8100000	0.0060500	4 4320083
WHT PRO	16.5500000	0.6363961	16,1000000	17.000000	0 405000	0007040 0
HARD	70.000000	0 800000	00000000000			1667640.6
0 1 2 2 2		0.00.00.0	000000000	000000000	98.0000000	14.1421356
EXTR	29.200000	3.5355339	56.7000000	61,7000000	12.5000000	5 9721857
FL_ASH	0.5000000	0.0141421	0.490000	0.5100000	0000000000	0000000
FL PRO	16.300000		16 300000	300000000000000000000000000000000000000	200	T/76070°7
02.17			0000000	10.300000	0	0
MINO	7.5000000	0.7071068	2.0000000	3.0000000	0.5000000	28.2842712
BAKE ABS	58.1000000	2.6870058	56,2000000	60.000000	7.2200000	Q 67479A
LOAF_VOL	193.0000000	1.4142136	192,0000000	194.0000000	000000000	1527657

-- VARIETY=C1982309 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	20
TW	54.333333	0.6350853	53.6000000	54.7000000	0.4033333	1.1688686
K WT	24.9666667	0.5773503	24.3000000	25,3000000	0.3333333	2.3124844
ยู่	15,6666667	1.1547005	15.0000000	17,0000000	1,3333333	7.3704290
SM	7.6666667	2.0816660	6.0000000	10,0000000	4,3333333	27.1521652
WHT ASH	1.9600000	0.0900000	1.8700000	2,0500000	0.0081000	4.5918367
WHT PRO	17.3000000	0.6244998	16.8000000	18,0000000	0.390000	3.6098254
HARD	73.6666667	17.7857621	61,0000000	94.0000000	316,3333333	24.1435685
EXTR	53.8666667	4.4601943	48.8000000	57,2000000	19.8933333	8.2800637
FL_ASH	0.5633333	0.0152753	0.5500000	0.5800000	0.000233333	2,7115833
FL_PRO	17.1000000	0.5196152	16.8000000	17,7000000	0.2700000	3.0386856
MIXO	5.333333	1.5275252	4.0000000	7.0000000	2,3333333	28.6410981
BAKE ABS	60.833333	1.7243356	59.3000000	62,7000000	2.9733333	2.8345243
LOAF_VOL	193.6666667	8.1445278	188,0000000	203.0000000	66,333333	4 2054360

- VARIETY=ERA --

MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
57.6666667	1.2897028	56.6000000	59.1000000	1.6633333	2.2364789
23.9000000		23.7000000	24.1000000	0.0400000	0.8368201
10.6666667	4.0414519	000000009	13.0000000	16.3333333	37.8886114
0000		7.0000000	11.0000000	4.0000000	22.22222
8300		1.7400000	1.9000000	0.0067000	4.4728704
15.8000000	1.1532563	14.9000000	17.1000000	1,3300000	7.2990902
9999		55.0000000	77.0000000	137.3333333	18,4066972
62.233333		61.1000000	63.6000000	1.6033333	2,0346459
9909		0.3900000	0.5700000	0.0102333	19.9657775
14.9000000	0.9643651	14.2000000	16.0000000	0.9300000	6.4722488
3.6666667		3.0000000	5.0000000	1,3333333	31,4918329
59.2000000		57.9000000	61.1000000	2.8300000	2.8416561
198.6666667	15.8219257	185.0000000	216.0000000	250,3333333	7.9640566

Z
ō
1
REG
[H]
2
Z
ER
[1]
€
S
田
33
Ω
H
Σ

- VARIETY=FA987350

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	A
TW	59.7666667	0.7505553	59.000000	50 5000000		
T. 1.3 7.	20 022223	0000000		0000000000	0.000000	1.2558093
T M T	39.033333	T. 36.29909	37.9000000	41.3000000	3.8533333	5.0290112
LG	70.666667	6.6583281	65.0000000	78.000000	44 333333	40010010
SM	2.0000000	1.000000	1 0000000		000000000000000000000000000000000000000	5247776
	200000000000000000000000000000000000000	0 10 00 00 00 00 00 00 00 00 00 00 00 00		3.000000	1.000000	0000000.00
שני דעש	1.1300001	0.0750555	1.6600000	1.8100000	0.0056333	4.321815R
WHT PRO	16.4333333	1.1930353	15,1000000	17.400000	1.423333	7 2500500
HARD	58,333333	8.6216781	49 000000	0000000	74 222222	1 4 2000000
FYTD	E7 022223	100000000000000000000000000000000000000		00000000	14.333333	14./800196
EAIR	21.0333333	6.2683285	50.2000000	63.3000000	43,1433333	11.5167010
FL_ASH	0.5033333	0.0305505	0.4700000	0.5300000	0 00093333	2222030
FL PRO	15.5666667	0 8504901	14 6000000			0.003636
0212		100000000000000000000000000000000000000	0000000	10.200000	0./233333	5.463533
DYTH	7.0000007	0.5773503	2.0000000	3.0000000	0.3333333	21,6506351
BAKE ABS	58.033333	0.6658328	57,3000000	58.600000	0.443333	1 1472787
LOAF VOL	194.0000000	7.9372539	185,0000000	200.0000000	63.000000	4 0913680

VARIETY=ID367

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.0000000	1.6643317	55.1000000	58.2000000	2.770000	7 9198807
K_WT	25.3666667	2.9160476	22,0000000	27,1000000	8.5033333	11 495583
LG	11.3333333	6.5064071	5.0000000	18.000000	42,3333333	57.4094744
SM	7.6666667	2.0816660	6.0000000	10,0000000	4,3333333	27,1521652
WHT ASH	1.7800000	0.1212436	1.6700000	1.9100000	0.0147000	6.8114358
WHT PRO	15.7333333	1.2096832	14.8000000	17,1000000	1,4633333	7.6886641
HARD	58.333333	15.5026879	47.0000000	76.0000000	240,3333333	26,5760365
EXTR	57,4666667	3.7447741	54.1000000	61,5000000	14,0233333	6.5164283
FL ASH	0.5166667	0.0305505	0.4900000	0.5500000	0.000933333	5.9130009
FL PRO	15.0666667	1.0785793	14.3000000	16.3000000	1,1633333	7.1587123
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1,0000000	25.0000000
BAKE ABS	58.2666667	1,8147543	56.2000000	59,6000000	3,2933333	3,1145670
LOAF VOL	203.3333333	12.7410099	195.0000000	218.0000000	162.333333	6.2660704

VARIETY=MAROUIS

ŀ
0
5
~
5
∞
Z
2
il
\times
ET
\equiv
K
A
>
-
- 1
1
1

1			
] 			
71			
2			
ANNIET TOTAL			
l H			
3			
1 1			
4			

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.0666667	1.1930353	56.7000000	58.900000	1.4233333	2.0545959
K WT	29.2000000	2.9614186	26.4000000	32,3000000	8.7700000	10.1418444
LG	29.6666667	19.7315314	7.00000000	43.0000000	389,3333333	66.5107802
SM	5.0000000	2.6457513	2.0000000	7.0000000	7.0000000	52.9150262
WHT ASH	1,7033333	0.0585947	1.6600000	1.7700000	0.0034333	3.4399992
WH'T PRO	15.8000000	0.7937254	14.9000000	16.4000000	0.6300000	5.0235784
HARD	61.0000000	13.4536240	50.0000000	76,0000000	181,0000000	22.0551214
EXTR	58.9666667	4.2193996	55.0000000	63,4000000	17.8033333	7.1555675
FL ASH	0.5000000	0.0346410	0.4600000	0.5200000	0.0012000	6.9282032
FL PRO	15.3333333	0.5033223	14.8000000	15.8000000	0.2533333	3.2825367
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1,0000000	50.000000
BAKE ABS	58,0000000	2,1071308	55.8000000	60.000000	4.4400000	3.6329841
LOAF VOL	196,0000000	5.5677644	190.0000000	201.0000000	31.0000000	2.8406961

-- VARIETY=MN88170 -----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	55.8000000	1.7691806	53.9000000	57.4000000	3.1300000	3.1705746
	27,0333333	3.4019602	23.7000000	30.5000000	11,5733333	12.5843165
	17,3333333	14.9777613	5.0000000	34.0000000	224.333333	86.4101613
	000000009	2.6457513	3.0000000	8.0000000	7.0000000	44.0958552
	1.8200000	0.0854400	1.7300000	1.9000000	0.0073000	4,6945076
	15.6333333	0.9291573	15.0000000	16.7000000	0.8633333	5.9434370
	61,3333333	11.0151411	54.0000000	74.0000000	121.3333333	17.9594692
	60.8666667	4.1884763	58,3000000	65.7000000	17.5433333	6,8813958
	0.5433333	0.0493288	0.5100000	0.6000000	0.0024333	9.0789255
	14.7000000	0.9165151	13.9000000	15.7000000	0.8400000	6.2347969
MIXO	3.0000000	2.0000000	1.0000000	5,0000000	4.0000000	66.666667
••	59,2333333	3.2470499	55.5000000	61.4000000	10.5433333	5.4817951
	184.0000000	12.7671453	170.0000000	195,0000000	163,0000000	6.9386659

	MEAN	S'TD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	1999999	0.8386497	57.5000000	0000000.65	0.7033334	1 4344066
	33.7666667	2.3072350	32.1000000	36,4000000	5,3233333	6.8328776
	1333333	19,5021366	30,0000000	69,0000000	380,333333	39.5313580
	1999999	2.0816660	3.0000000	7.0000000	4,333333	44.6071286
ASH	833333	0.0503322	1.6300000	1.7300000	0.0025333	2.9900334
PRO	1666667	0.4509250	16.0000000	16.9000000	0.2033333	
	0000000	5.5677644	59,0000000	70.0000000	31,0000000	8.6996318
	1999999	2.4846194	60.4000000	64.8000000	6.1733333	
FL ASH 0.4	433333	0.0115470	0.4300000	0.4500000	0.000133333	
	1666667	0.3511885	15.6000000	16.3000000	0.1233333	2,1995102
4	.0000000	1.0000000	3.0000000	5.0000000	1.0000000	25,0000000
	0000009.09	1.3856406	59.0000000	61.4000000	1.9200000	2,2865357
LOAF_VOL 195.33	195.3333333	23.0289673	170.0000000	215.0000000	530,3333333	11.7895737

VARIETY=MN88189

į
_
0
20
3
8
=MN88
Z
~
-
-11
\rightarrow
E
ETY
_
AR
K
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.2666667	1.2858201	59.8000000	62.2000000	1.6533333	2.0987270
K WT	32.3000000	3.6755952	28.4000000	35.7000000	13.5100000	11.3795517
LG	48.3333333	20.8166600	25.0000000	65.0000000	433,3333333	43.0689517
SM	3.0000000	1.7320508	1.0000000	4.0000000	3.0000000	57,7350269
WHT ASH	1.7000000	0.0173205	1.6900000	1.7200000	0.000300000	1.0188534
WHT_PRO	15.2333333	0.7637626	14.4000000	15.9000000	0.5833333	5.0137590
HARD	73.333333	6.5064071	67.0000000	80.0000000	42.333333	8.8723733
EXTR	61.4333333	0.4041452	61.2000000	61.9000000	0.1633333	0.6578598
FL_ASH	0.4866667	0.0208167	0.4700000	0.5100000	0.000433333	4.2773959
FL. PRO	14.7000000	0.7810250	13.8000000	15.2000000	0.6100000	5,3130950
MIXO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33,333333
BAKE ABS	59.933333	1.5307950	58.2000000	61.1000000	2.3433333	2.5541630
LOAF VOL	196.6666667	4.1633320	192,0000000	200,0000000	17.3333333	2.1169485

VARIETY=MN88334

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CC
TW	60.233333	1.4843629	58.6000000	61.5000000	2.2033333	2.4643546
K WT	26.3000000	2.7495454	23,300000	28.7000000	7.5600000	10,4545453
LG	14.6666667	10.0166528	5.0000000	25.0000000	100.333333	68.2953600
SM	6.3333333	3.2145503	4.0000000	10.0000000	10.333333	50,7560566
WHT ASH	1.6500000	0.0984886	1.5400000	1.7300000	0.0097000	5.9690047
WHT PRO	15.5000000	0.9539392	14.5000000	16.4000000	0.9100000	6.1544465
HARD	64.6666667	20.1080415	48.0000000	87,0000000	404.3333333	31,0949096
EXTR	61.8333333	2.3713569	59.2000000	63.8000000	5,6233333	3.8350785
FL_ASH	0.4300000	0.0529150	0.3700000	0.4700000	0.0028000	12,3058201
FL_PRO	14.7000000	1.1532563	13.6000000	15,9000000	1,3300000	7.8452807
MIXO	1.6666667	1.1547005	1.0000000	3.0000000	1.3333333	69.2820323
BAKE ABS	56.0666667	2.2030282	54.6000000	58,6000000	4.8533333	3.9293012
LOAF_VOL	180.0000000	10.5830052	168,0000000	188,0000000	112.0000000	5.8794474

VARIETY=ND655

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3.	60.233333	1.8175075	58.2000000	61.7000000	3,3033333	3.0174446
K WT	29.1666667	4.8003472	24.4000000	34,0000000	23.0433333	16,4583333
55	33.6666667	23.5867194	9.0000000	56,0000000	556,3333333	70,0595627
MS	6.0000000	4.5825757	2.0000000	11,0000000	21.0000000	76,3762616
WHT ASH	1.7733333	0.0568624	1.7100000	1.8200000	0.0032333	3.2065267
WH'T PRO	17.0666667	1.0408330	15.9000000	17.9000000	1.0833333	6.0986309
HARD	78.333333	9.0737717	70.0000000	88.0000000	82.333333	11.5835384
EXTR	61.6000000	4.1617304	59.0000000	66.4000000	17.3200000	6.7560559
FL ASH	0.5133333	0.0503322	0.4600000	0.5600000	0.0025333	9.8049798
FL PRO	16.7000000	0.7211103	15.9000000	17.3000000	0.5200000	4.3180255
MIXO	3.3333333	1.1547005	2.0000000	4.0000000	1,3333333	34.6410162
BAKE ABS	62.5000000	3.2000000	59.3000000	65.7000000	10.2400000	5.1200000
LOAF VOL	184.3333333	7.7674535	178.0000000	193.0000000	60.333333	4.2138084

MIDWESTERN REGION

VARIABLE	MEAN	STD DEV	MUMINIM	MAXIMUM	VARIANCE	ΛC
3	59.4666667	1.1150486	58.200000	60.300000	1 243333	1 875,001
K WT	9.36666	2.8536526	26.6000000	32,300000	8.143333	4.07.73188
57	28.333333	14.1891978	13.0000000	41,0000000	201,3333333	50.0795215
Mc	3.0000000	2.0000000	1.0000000	5,0000000	4.0000000	66.6666667
	1.7333333	0.0750555	1.6600000	1.8100000	0.0056333	4.3301270
WHT PRO	16.8333333	1.1930353	15.5000000	17,8000000	1,4233333	7.0873387
HARD		7.8102497	67.0000000	81,0000000	61,0000000	10.8475690
EXTR	59.333333	4.1789153	55.7000000	63,900000	17.4633333	7.0431157
FL_ASH	0.5533333	0.0550757	0.4900000	0.5900000	0.0030333	9.9534407
FL_PRO	16.5666667	1.1676187	15.3000000	17,6000000	1,3633333	7.0480000
1IXO	4.0000000	1.0000000	3.0000000	5.0000000	1,0000000	25,0000000
BAKE ABS	61.8666667	1.3279056	61,1000000	63.4000000	1.7633333	2,1463992
LOAF VOL	206.0000000	4.0000000	202.0000000	210.0000000	16,0000000	1.9417476

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.5000000	0.5196152	59.2000000	60.1000000	0.2700000	0.8733029
K W.F	31.3666667	1.5631165	29.7000000	32.8000000	2,4433333	4.9833684
FG	28.6666667	13.2035349	17,0000000	43.0000000	174.3333333	46.0588426
SM	3.3333333	2.0816660	1.0000000	5.0000000	4,3333333	62,4499800
WHT ASH	1.7233333	0.1021437	1.6500000	1.8400000	0.0104333	5.9271000
WHT PRO	16.6666667	0.9712535	15,6000000	17.5000000	0.9433333	5,8275209
HARD	75.6666667	15.0111070	61,0000000	91,0000000	225,3333333	19.8384674
EXTR	62.5666667	2.2368132	60.0000000	64.1000000	5.0033333	3.5750877
FL_ASH	0.5000000	0.0608276	0.4300000	0.5400000	0.0037000	12,1655251
FL_PRO	16.2333333	0.8962886	15.2000000	16.8000000	0.8033333	5.5212853
MIXO	7.3333333	0.5773503	7.0000000	8.0000000	0.3333333	7.8729582
BAKE ABS	61.4666667	1.4224392	60.5000000	63.1000000	2.0233333	2,3141636
LOAF VOL	182.0000000	3,6055513	178.0000000	185.0000000	13.0000000	1.9810721

--- VARIETY=ND671

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.2666667	0.2309401	61.0000000	61.4000000	0.0533333	0.3769425
K WT	31.9000000	1.8193405	29.8000000	33.0000000	3.3100000	5.7032619
LG	46.6666667	10.2143690	35.0000000	54.0000000	104,3333333	21,8879335
SM	1.3333333	0.5773503	1.0000000	2.0000000	0.3333333	43,3012702
WHT ASH	1.7533333	0.0642910	1.6800000	1.8000000	0.0041333	3.6667874
WHT PRO	17.3000000	0.6000000	16.7000000	17.9000000	0.3600000	3.4682081
HARD	68.0000000	2.6457513	65.0000000	70.0000000	7.0000000	3.8908108
EXTR	61.4000000	4.2567593	57.6000000	0000000099	18.1200000	6.9328328
FL ASH	0.4400000	0.0435890	0.4100000	0.4900000	0.0019000	9.9065885
FL PRO	17.0666667	0.8386497	16,1000000	17.6000000	0.7033333	4.9139631
MIXO	4.6666667	2.0816660	3.0000000	7.0000000	4,3333333	44.6071286
BAKE ABS	63.2000000	1.8520259	61.4000000	65.1000000	3.4300000	2.9304208
LOAF VOL	195.6666667	13.2035349	184.0000000	210.0000000	174.3333333	6.7479735

MIDWESTERN REGION

- VARIETY=ND672

VARIETI=ND6/2			

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.8500000	0.2121320	60.700000	61 0000000	0.0050000	
T3 X	31 250000	0 0707107	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.348614/
	000000000000000000000000000000000000000	1011010	31.200000	31.3000000	0.0020000	0.2262742
200	43.000000	7.0710678	38.0000000	48.0000000	50.0000000	16.4443437
SM	2.5000000	0.7071068	2,0000000	3.0000000	0.500000	28 2842712
WHT ASH	1.7600000	0.0848528	1,700000	1 820000	0000000	77/7607:07
WH'T PRO	16.6000000	0.9899495	15.900000	17 300000	00000000	4.8211826
HARD	83.000000	2 8284271		000000000000000000000000000000000000000	0.380000	5.9635512
2000		T/26070.7	0000000.	85.000000	8.0000000	3.4077435
EAIR	000000019	0.2121320	61.2000000	61.5000000	0.0450000	0.3457735
FL ASH	0.4950000	0.0212132	0.4800000	0.5100000	0 000450000	A DEFACE
FL PRO	16.3500000	0.6363961	15.900000	16 800000	0 4050000	000000000000000000000000000000000000000
MIXO	5.500000	0 7071068	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	20.0223309
DAVE ADE	0000000		000000000000000000000000000000000000000	00000000	0.000000	12.8564869
DANE ADS	07.400000	1.8384//6	61.1000000	63.7000000	3.3800000	2.9462783
LOAF_VOL	199.0000000	5.6568542	195.0000000	203.0000000	32,0000000	2.8426403

2
d.
5
0
-1
9
8
Z
11
×
ET
\blacksquare
K
VAR
>

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	57.2666667	2.1939310	54.8000000	59.0000000	4.8133333	3.8310786
	26.7666667	2.5794056	23.9000000	28.9000000	6,6533333	9.6366337
	20.0000000	12.2882057	6.0000000	29.0000000	151,0000000	61,4410286
	8.3333333	2.5166115	6.0000000	11.0000000	6.3333333	30,1993377
ASH	1.8633333	0.1193035	1.7300000	1.9600000	0.0142333	6.4026942
	15.6666667	1.1239810	14.7000000	16.9000000	1.2633333	7.1743469
	67.0000000	13.0000000	54.0000000	80.000000	169.000000	19,4029851
	61.2666667	3.9068316	57.5000000	65,3000000	15,2633333	6.3767654
	0.4933333	0.0057735	0.4900000	0.5000000	0.000033333	1.1703046
	15,3333333	1.0115994	14.7000000	16.5000000	1,0233333	6.5973874
	3.333333	0.5773503	3,0000000	4.0000000	0.3333334	17 3205081
BAKE_ABS	28.966667	2.3180452	56.5000000	61,1000000	5,3733333	3.9311111
LOAF_VOL	200.6666667	12.4230968	193,0000000	215,0000000	154 333333	6 1909120

i
7
3
1
8.7
: N8
<u>"</u>
1
RI
A

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CC
TW	58.2000000	1.4000000	57.2000000	59.8000000	1.9600000	2.4054983
K_WT	29.5666667	2.8041636	27.8000000	32.8000000	7,8633333	9.4842060
LG	33.333333	11.5036226	22.0000000	45.0000000	132.333333	34.5108679
SM	4.0000000	2.0000000	2.0000000	6.0000000	4.0000000	50,0000000
WHTASH	1.7333333	0.0757188	1.6800000	1.8200000	0.0057333	4.3683910
WHT PRO	16.4666667	0.7767453	15.6000000	17.1000000	0.6033333	4.7170770
HARD	62.0000000	8.5440037	53.0000000	70.0000000	73.0000000	13.7806512
EXTR	62.7000000	3.8974351	58.4000000	66,0000000	15.1900000	6.2160049
FL_ASH	0.4500000	0.0556776	0.4000000	0.5100000	0.0031000	12.3728097
FL PRO	16.2333333	0.5507571	15.6000000	16,6000000	0.3033333	3.3927539
MIXO	2.6666667	1.5275252	4.0000000	7.0000000	2,3333333	26.9563276
BAKE ABS	59.833333	3.3381632	56.0000000	62.1000000	11.1433333	5.5791028
LOAF VOL	206.6666667	10.2143690	195.0000000	214.0000000	104.3333333	4.9424366

1
1
1
i
i
1
1
_
9
4
1
-
œ
Z Z
H
×
9
-9
-
_
AK
>
1
1
1
1
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CO
3	58.4666667	1.1718931	57,6000000	59.8000000	1 373333	7 00 40700
K WT	31,2333333	2,6083200	29,3000000	34.2000000	A 803333	10/6400.2
LG	28.333333	13.0511813	18,0000000	43.000000	170 333333	08/07/07/09/09/09/09/09/09/09/09/09/09/09/09/09/
SM	3,3333333	3.2145503	1.0000000	7.0000000	10.333333	9766790.04
WHT ASH	1.7700000	0.0721110	1,6900000	1.830000	0.0052000	0700008.00
WH'T PRO	15.5000000	0.8888194	14.5000000	16.2000000	0.03565.0	7.0040092
HARD	47.0000000	6.5574385	41.0000000	54.0000000	43.000000	13 9510069
EXTR	61.5666667	2.8746014	59.3000000	64 8000000	8 26 23 2 2 2	COUCTOR V
FL ASH	0.4700000	0.0400000	0.4300000	0 510000	0.0014000	4.0090013
FL PRO	14.9666667	0.8504901	14.100000	15.800000	0.0010100	6 6026010
MIXO	3.6666667	1.5275252	2.0000000	5.0000000	2.333333	41 6597790
BAKE ABS	59.833333	1.9857828	57,6000000	61.4000000	3.9433333	2 3188570
LOAF VOL	213.6666667	19.6044213	193.0000000	232.0000000	384.333333	9.1752362

VARIETY=N88-3034 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.1000000	1.0535654	56.1000000	58.2000000	1,1100000	1.8451232
K_WT	27.1666667	2.7537853	24.5000000	30,0000000	7.5833333	10.1366329
LG	20.0000000	13.1148770	8.0000000	34.0000000	172,0000000	65.5743852
SM	5.3333333	2.0816660	3.0000000	7.0000000	4,3333333	39.0312375
WHTASH	1.7300000	0.4396590	1.2400000	2.0900000	0.1933000	25,4138126
WHT_PRO	17.5000000	0.5567764	16.9000000	18,0000000	0.3100000	3.1815796
HARD	72.6666667	5.5075705	69.0000000	79,0000000	30,3333333	7.5792255
EXTR	61.8333333	2.3501773	59.5000000	64.2000000	5,5233333	3.8008258
FL_ASH	0.5166667	0.0230940	0.4900000	0.5300000	0.000533333	4.4698085
FL_PRO	17.3000000	0.2645751	17.0000000	17.5000000	0.000000	1.5293360
MIXO	2.3333333	0.5773503	2.0000000	3,0000000	0.3333333	24.7435830
BAKE ABS	59.9000000	1.3076697	59,0000000	61.4000000	1.7100000	2.1830880
LOAF VOL	207.3333333	3.0550505	204.0000000	210,0000000	9,3333333	1.4734970

CV	0.7388175	7.0973719	38,5901222	21,6506351	3.8339701	1.5099669	4.0087141	5.7239936	6.9772541	1.2718937	33,333333	1.4383845	3.4724055
VARIANCE	0.2033333	4,4933333	193.0000000	0.3333333	0.0044333	0.0633333	7.0000000	11.5733333	0.0012333	0.0433333	1.0000000	0.7300000	52.333333
MAXIMUM	61.5000000	31,8000000	45.0000000	3.0000000	1.8100000	16,9000000	68,0000000	62,9000000	0.5400000	16.6000000	4.0000000	60.3000000	213.0000000
MINIMUM	60.6000000	27.6000000	20.0000000	2.0000000	1.6800000	16.4000000	63.0000000	56.1000000	0.4700000	16.2000000	2.0000000	58.6000000	200.0000000
STD DEV	0.4509250	2.1197484	13.8924440	0.5773503	0.0665833	0.2516611	2.6457513	3.4019602	0.0351188	0.2081666	1.0000000	0.8544004	7.2341781
MEAN	61.0333333	29.8666667	36.0000000	2.6666667	1.7366667	16.6666667	0000000.99	59.4333333	0.5033333	16.3666667	3.0000000	59.4000000	208.333333
VARIABLE	TW	K_WT	LG	SM	WHT ASH	WHT_PRO	HARD	EXTR	FL ASH	FL_PRO	MIXO	BAKE ABS	LOAF VOL

VARIETY=N88-3136

MIDWESTERN REGION

- 1
ľ
5
5
0
\sim
2
SD
-11
>
IET
VAR
K
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.333333	1.0598742	59.2000000	61.3000000	1.1233333	1 7566976
K_WT	31,2333333	2.3501773	28,9000000	33.600000	5.523333	7.5245805
re	57.6666667	21.0317221	36.0000000	78,0000000	442,3333333	36.4711943
SM	2.0000000	1.0000000	1.0000000	3.0000000	1,0000000	50.000000
WHT ASH	1.7433333	0.0550757	1.6800000	1.7800000	0.0030333	3.1592183
WHT PRO	16,9333333	1,0016653	15.8000000	17.7000000	1,0033333	5.9153461
HARD	67.3333333	1.5275252	0000000.99	69,0000000	2.3333333	2.2686018
EXTR	61.1333333	3.5641736	58,2000000	65.1000000	12.7033333	5 8301640
FL_ASH	0.4966667	0.0351188	0.4600000	0.5300000	0.0012333	7 0709086
FL PRO	16.7666667	1.0408330	15,6000000	17.6000000	1.0833333	6 2077515
MIXO	3.0000000	1.7320508	2,0000000	5.0000000	3,000000	57 7350269
BAKE ABS	60.9666667	0.7637626	60.300000	61,8000000	0.5833333	1.2527544
LOAF VOL	199.6666667	10.0166528	192.0000000	211,0000000	100.3333333	5.0166875

VARIETY=SD3056

59.4666667 0.7637626 58.800000 6.570000 34.900000 2.5632011 32.500000 37.600000 6.5700000 59.333333 15.5670592 43.000000 74.000000 242.333333 1 1.3333333 1.5275252 3.000000 2.3333333 1 1.7266667 0.0208167 1.7100000 1.750000 0.000433333 1 2.666667 1.0148892 15.700000 17.700000 1.0300000 1.0300000 3.333333 9.0737717 70.000000 88.000000 16.5900000 16.5900000 0.5833333 0.0577350 0.5500000 0.6500000 0.9700000 16.1000000 0.9848858 15.000000 4.000000 0.9700000 2.6666667 1.1547005 2.0000000 4.000000 0.5633333 4 35 61.366667 4.5092498 193.000000 202.000000 20.3333333 4	VARIABLE	Σ	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
34.9000000 2.5632011 32.500000 37.600000 6.5700000 1.333333 1.5275252 43.0000000 74.0000000 242.333333 1.5275252 1.7266667 0.0208167 1.7100000 1.7500000 1.0300000 1.0148892 15.7000000 17.7000000 17.7000000 17.7000000 17.300000 1.0300000 1.0300000 16.59000000 16.5900000 16.5900000 0.0583333 1.58.0000000 0.0577350 0.55000000 16.59000000 16.5900000 0.9700000 16.9000000 16.333333 1.52666667 1.1547005 2.0000000 202.000000 0.5633333 0.5633333 1.15505553 60.5000000 202.000000 202.333333 0.5633333 1.155050000 0.000000 0.5633333 0.5633333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.5000000 202.0000000 202.3333333 0.7505553 60.50000000 202.0000000 202.3333333 0.7505553 60.50000000 202.0000000 202.3333333 0.7505553 60.50000000 202.0000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505553 60.50000000 202.3333333 0.7505555 0.75055000000 202.3333333 0.7505555 0.75055000000 202.33333333 0.7505555 0.750550000000 202.33333333 0.7505555 0.750550000000 202.3333333 0.7505555 0.7505000000 202.3333333 0.7505555 0.7505000000 202.3333333 0.7505555 0.7505000000 202.3333333 0.7505550000000000000000000000000000000		59.4666667	0.7637626	58.8000000	60.3000000	0.5833333	1 2843542
59.333333 15.5670592 43.0000000 74.000000 2.333333 1 1.3333333 1.5275252 0.0208167 1.7100000 1.7500000 2.333333 1 1.7266667 0.0208167 1.7100000 1.7700000 1.0300000 1.0300000 16.8000000 1.0148892 15.7000000 17.700000 1.0300000 78.333333 9.0737717 70.0000000 82.33333 0.0577350 0.58000000 0.6500000 0.6500000 0.0033333 16.1000000 0.9848858 15.0000000 16.9000000 2.6666667 1.1547005 2.0000000 4.0000000 0.5633333 35 61.3666667 4.5092498 193.000000 202.000000 20.3333333	WT	34.9000000	2.5632011	32.5000000	37.6000000	6.5700000	7.3444158
1.333333 1.5275252 0 3.0000000 2.3333333 1.1 1.7266667 0.0208167 1.7100000 1.7500000 1.0300000 16.8000000 1.0148892 15.7000000 17.700000 1.0300000 78.333333 9.0737717 70.0000000 82.333333 16.5900000 0.5833333 0.0577350 0.5500000 0.6500000 0.0033333 16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 0.5633333 3L 197.666667 4.5092498 193.000000 202.000000 20.3333333		٠ ق	15.5670592	43.0000000	74.0000000	242,3333333	26.2366167
1.7266667 0.0208167 1.7100000 1.7500000 0.000433333 16.8000000 1.0148892 15.7000000 17.700000 1.0300000 78.333333 9.0737717 70.0000000 82.333333 16.5900000 0.5833333 0.0577350 0.5500000 0.6500000 0.0033333 16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 0.5633333 0.7505553 60.5000000 202.000000 20.3333333	SM	1.3333333	1.5275252	0	3,0000000	2,3333333	114.5643924
16.8000000 1.0148892 15.7000000 1.0300000 78.333333 9.0737717 70.0000000 82.333333 58.000000 4.0730824 53.3000000 60.500000 16.5900000 0.583333 0.0577350 0.5500000 0.0033333 0.0033333 16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 0.5633333 3L 197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	WHT ASH	1.7266667	0.0208167	1.7100000	1.7500000	0.000433333	1,2055981
78.333333 9.073717 70.000000 88.000000 82.333333 1 58.000000	T_PRO	16.8000000	1.0148892	15.7000000	17.7000000	1.0300000	6,0410069
SH 0.583333 0.0577350 0.5500000 0.6500000 16.5900000 SH 0.583333 0.0577350 0.5500000 0.6500000 0.0033333 RO 16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 1.333333 ABS 61.3666667 0.7505553 60.5000000 202.0000000 20.333333 VOL 197.6666667 4.5092498 193.0000000 202.0000000 20.333333	RD	78.3333333	9.0737717	70.0000000	88.0000000	82,333333	11,5835384
0.5833333 0.0577350 0.5500000 0.6500000 0.0033333 16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 1.3333333 4 35 61.3666667 0.7505553 60.5000000 61.8000000 0.5633333 0.563333333 3L 197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	TR	58.0000000	4.0730824	53.3000000	60.5000000	16.5900000	7.0225558
16.1000000 0.9848858 15.0000000 16.9000000 0.9700000 2.6666667 1.1547005 2.0000000 4.0000000 1.3333333 4 38 61.3666667 0.7505553 60.5000000 61.8000000 0.5633333 0.56333333 30 197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	ASH	0.5833333	0.0577350	0.5500000	0.6500000	0.0033333	9.8974332
2.6666667 1.1547005 2.0000000 4.0000000 1.3333333 4 8S 61.3666667 0.7505553 60.5000000 61.8000000 0.5633333 OL 197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	PRO	16.1000000	0.9848858	15.0000000	16.9000000	0.9700000	6.1173030
61.3666667 0.7505553 60.5000000 61.8000000 0.5633333 197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	xo	999999	1.1547005	2.0000000	4.0000000	1,3333333	43,3012702
197.6666667 4.5092498 193.0000000 202.0000000 20.3333333	KE_ABS	1.366666	0.7505553	60.5000000	61,8000000	0.5633333	1.2230668
	AF VOL	9	4.5092498	193.0000000	202.0000000	20.333333	2,2812393

VARIETY=SD3080

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CC
3	61.3666667	0.9451631	60.300000	62.1000000	0.8933333	1.5401898
TW	31.8333333	2.3501773	29.5000000	34.2000000	5.5233333	7,3827559
LG	40.6666667	14.9777613	24.0000000	53.0000000	224.3333333	36,8305606
SM	1.6666667	2.0816660	0	4.0000000	4.3333333	124,8999600
WHT ASH	1.6566667	0.0832666	1.5900000	1.7500000	0.0069333	5.0261553
HT_ PRO	17.2000000	0.2000000	17.0000000	17.4000000	0.0400000	1,1627907
HARD	71,0000000	4.3588989	0000000.99	74.0000000	19,0000000	6.1392943
EXTR	59.9333333	2.9670412	56,8000000	62,7000000	8,8033333	4.9505693
FL_ASH	0.4866667	0.0115470	0.4800000	0.5000000	0.000133333	2,3726723
L_PRO	17.0666667	0.0577350	17.0000000	17.1000000	0.0033333	0.3382912
MIXO	5.3333333	2.5166115	3.0000000	8.0000000	6.3333333	47.1864652
AKE ABS	62.1000000	1.1789826	61.1000000	63.4000000	1.3900000	1.8985227
LOAF VOL	207.0000000	7.5498344	200.0000000	215.0000000	57.0000000	3.6472630

4
2
-
_
0
8
\simeq
SD
11
>
EL
(-)
2
Æ.
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
MJ	61,2000000	0.5000000	60.700000	61.7000000	0.2500000	0.8169935
LM Y	33.5666667	0.6506407	32.9000000	34.2000000	0.4233333	1.9383537
5.5	55.0000000	6.0827625	48.0000000	59.0000000	37,0000000	11,0595682
	1.0000000	1.0000000	0	2.0000000	1,0000000	100.000000
WHTASH	1.7000000	0.0624500	1.6500000	1.7700000	0.0039000	3.6735282
WHT_PRO	16,6333333	0.8082904	15.7000000	17.1000000	0.6533333	4.8594612
HARD	82.0000000	12.2882057	73.0000000	96.0000000	151,0000000	14.9856167
EXTR	62.2000000	2.5942244	59.3000000	64.3000000	6.7300000	4.1707787
FL_ASH	0.5166667	0.0230940	0.4900000	0.5300000	0.000533333	4.4698085
FL_PRO	16.2333333	0.5686241	15.6000000	16.7000000	0.3233333	3.5028177
MIXO	3.6666667	1.5275252	2.0000000	5,0000000	2,3333333	41.6597790
BAKE ABS	60.8333333	1.4189198	59.3000000	62.1000000	2.0133333	2.3324709
LOAF_VOL	180.0000000	10.0000000	170.0000000	190,0000000	100,0000000	5.555556

TW K. W.T LG			HOUTHIN	MAXIMUM	VARIANCE	S
	60.5666667	0.7505553	59.700000	61,0000000	0.5633333	1.2392218
	32.0333333	1.8147543	30.1000000	33,7000000	3,2933333	5.6652061
	44.0000000	15,6204994	26.0000000	54.0000000	244.0000000	35.5011349
	1.0000000	1.0000000	0	2.0000000	1.0000000	100,0000000
WHT ASH	1.7200000	0.0854400	1.6400000	1.8100000	0.0073000	4.9674440
	16.0000000	0.9539392	14.9000000	16.6000000	0.9100000	5.9621200
	81.0000000	6.0827625	74.0000000	85.0000000	37.0000000	7.5095834
EXTR	62,5333333	3.0664855	59.9000000	65.9000000	9.4033333	4.9037615
	0.5300000	0.0100000	0.5200000	0.5400000	0.000100000	1.8867925
RO	15.5333333	0.8326664	14.6000000	16.2000000	0.6933333	5.3605133
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1.0000000	25,0000000
	61.0000000	1.3228757	60.0000000	62.5000000	1.7500000	2,1686486
LOAF_VOL 1	183.6666667	5.5075705	178.0000000	189.0000000	30,3333333	2.9986772

VARIETY=SD8074

---- VARIETY=SD8073 ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	60.5666667	0.4932883	0000000000	00000006.09	0.2433333	0.8144551
X X.I.	30.7333333	1.2342339	29.7000000	32,1000000	1.5233333	4.0159455
LG	40.6666667	12,5830574	29,0000000	54.0000000	158,3333333	30.9419444
MIS.	2.00000000	1.00000000	1.0000000	3,0000000	1.0000000	50,0000000
WHT ASH	1.6900000	0.000000	1,6200000	1.7600000	0.0049000	4.1420118
WHT PRO	16.5333333	0.9291573	15.5000000	17,3000000	0,8633333	5.6199032
HARD	77.6666667	10.5987421	68.0000000	89.0000000	112,3333333	13.6464490
EXTR	59.4333333	2.9955523	56.1000000	61.9000000	8,9733333	5.0401889
FL ASH	0.5433333	0.0404145	0.5000000	0.5800000	0,0016333	7,4382550
FL, PRO	15.7666667	0.4163332	15.300000	16,1000000	0.1733333	2,6405911
MIXO	3,3333333	0.5773503	3.0000000	4.0000000	0.3333333	17,3205081
BAKE ABS	0.80000	0.8660254	60.3000000	61.8000000	0.7500000	1.4243839
LOAF VOL	.00000	2.6457513	184.0000000	189.0000000	7.0000000	1.4224469
1 2 1 1 1 1						

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

TABLE 48

MIDWESTERN REGION

--- VARIETY=STOA ---

T. T						
TO M	999	2.0033306	57.3000000	61.3000000	4.0133333	3.3745040
T M Y	27.1333333	2.0599353	24.8000000	28.7000000	4.2433333	7.5918990
LG	16.6666667	9.2376043	6.0000000	22.0000000	85,333333	55.4256258
SM	3.333333	3.2145503	1.0000000	7.0000000	10.3333333	96.4365076
WHT ASH	1.8333333	0.1171893	1.7000000	1.9200000	0.0137333	6.3921439
WHT PRO	16.4000000	1.0000000	15.4000000	17.4000000	1.0000000	6.0975610
0	65.333333	4.9328829	62.0000000	71.0000000	24.3333333	7.5503309
EXTR	61.7333333	2.8005952	58.9000000	64.5000000	7.8433333	4.5366013
FL ASH	0.4733333	0.0351188	0.4400000	0.5100000	0.0012333	7.4194745
	15.7333333	0.6806859	15.2000000	16.5000000	0.4633333	4.3263936
MIXO	4.0000000	1.7320508	2.0000000	5.0000000	3.0000000	43,3012702
BAKE_ABS	60.8666667	1.6010413	59,3000000	62.5000000	2,5633333	2.6304074
	193.0000000	7.2111026	187.0000000	201.0000000	52.0000000	3.7363226

	l	
9	5	9
4000	Z	2
()	ì
¢	٧	î
2000	Ē	3
7	>	
	Į	1
	>	
8		,
ļ	5	
1	Į	į
1		
ь	ë	d

VARIABLE	Σ	STD DEV	MINIMUM	MAXIMUM	VARIANCE	ΛΩ
TW	59.7000000	1.3747727	58.200000	60.900000	1.8900000	2.3028019
K WT	31,3333333	3,2316147	28.9000000	35.0000000	10.4433333	10.3136638
LG	30,3333333	16.0416126	15.0000000	47.0000000	257.3333333	52.8844370
SM	3,3333333	2.0816660	1.0000000	5.0000000	4.3333333	62.4499800
WHT ASH	1.8266667	0.1026320	1.7400000	1.9400000	0.0105333	5.6185417
WHT PRO	16,1333333	0.5686241	15.5000000	16.6000000	0.3233333	3.5245294
HARD	55.0000000	6.5574385	48.0000000	61.0000000	43.0000000	11.9226155
EXTR	59,9333333	4.9095146	55.9000000	65.4000000	24.1033333	8.1916261
FL ASH	0.5000000	0.0519615	0.4400000	0.5300000	0.0027000	10.3923048
FL PRO	16.2000000	0,3605551	15.9000000	16.6000000	0.1300000	2.2256489
MIXO	6.0000000	1.7320508	4.0000000	7.0000000	3.0000000	28.8675135
BAKE ABS	60.7333333	0.6350853	60.0000000	61.1000000	0.4033333	1.0456948
LOAF VOL	205.6666667	8.0208063	198,0000000	214,0000000	64,3333333	3.8999058

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=HAVRE NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ	ING SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	PLR PRO	MILL	MILL SCORE ***	MIX	MIX
BUTTE 86	ß	ω .	1	12	5	9	6	7.0	4	1	1 .	5.	1 1		1 0	
CHRIS		9	0			7 .	•		m	2.	4		2 50	শ প্ৰ		4 m
ERA	ಬ	3	0	m	21	8	5.		2	-	.5	4	വ	4) (°
MARQUIS		9	33	9	8	7	9		m	6	5	4	<u>ا</u>	থ	- α	~
	ಬ	55.5	•	٣	14	1.79	16.0	63	m	61.8	0.48	15.8	ı ω	. 4.	61.4	ט יר
0.5		9	0		2	9 .			₯	3	4.	5	2	4	0	m
05		9	8	1.8	2	7			m	~	.5	5	2	7	, ,	4
38		0	6		m	. 5	•		4	2.	4	5.	2	ক	2	4
0.7		7.	9		m	9 .			4	2	4	5.	2	4	0	· (*)
0.7		9	4	9	7		•		m	ω.	5	5.	2	4	0	4
074		ω	5.	10	2				4	3	. 5	5	5	4	0	. 7
715		9	5.	7	9	9 .			m	2.	4	4	2	4	7	2
317		0		-1	17	8			2	3	5	5	2	ক	0	2
MN88189		7	0	29	2		•		4	9	4	5.	5	4	6	ım
332		8	5.	6	7	9 .			4	3	4.	~	5	4	0	m
333		5.	0		24	. 7	•		7	3	4	4	2	4	6	m
0		6	5	11	9	9 .			4	3	.5	9	5	4	0	C
10		9	5	9	8	. 7	٠		m	3	.5	9	5	4	2.	4
10		. 9	5	7	6	. 7			m	4.	.5	5.	5	4	8	5
Pro-		0	9	11	က	9 .	•		4	2.	4.	9	5	4	0	4
12		5.	-		14	8	•		m	2.	5	5.	2	4	2.	7
98A4		φ.	6	13	9		•		4	4	. 5	5.	5	4	0	3
1		3	2.	S	13	8	•		m	7.	4.	4	2	4	0	2
-030		4	4	8	0	9.			m	5.	4	5.	5	4	0	5
-313		7.	2.	9	8	. 7			4	5.	.5	5.	5	4	6	4
-303		4	2.	4	11	. 8			m	4.	.5	9	5	ক	6	3
-467		9	9	7	ω	8			က	4	4	4	2	4	7	m
3735		7	÷	30	7	9.			4	1	4.	4	2	4	7	· C
323		2.	2.	ω	11	8			m	9	.5	7.	5	2	0	5
INT		7	9	12	2	. 7	•		4	4	4.	9	5	4	0	3
8		9	7.		က	. 7			4,	2.	.5	9	5	4	6	C
~			1	m	19	8	•		7	2	4.	5.	2	4	9	7

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=HAVRE NURSERY=UNIFORM

TABLE 49 (CONT)

Name		3440														
S S S S S S S S S S	1 1 1 1	A I	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE ***	 	KW	WP EX A6	다 다 나	XX		1
S 59.6 5.50 7 80 85 183 2 3.0 HJ HI HJ	80	59	0.	7	80	9.0		2	ю 6						Ω	
S S S S S S S S S S	ro	58	5	7	80	85		2			M) !: 	
S S S S S S S S S S		57.	.5	7	80	85	6	7			. H				MJ	
56 60.08 4.00 9 188 3 3.3 MJ MI MI MI 56 61.08 4.25 9 80 85 186 3 3.3 MJ MI MI MI 56 61.08 4.25 9 80 85 186 2 3.3 MJ MI	JIS	58	. 2	7	8 2	82	0	2							70	
Second		61.	.2	7	80	85	8	m) H	
1.50 1.50	055	60.	0	σ	80	85	B	က							H	
Harry Harr	05		. 2	6	80	9.0	0	m			MJ				Σ H	
Main of the color of the colo	D308	~	. 2	6	80	85	0	4								
17.3 60.8 5.25 7 80 85 180 3 3.3 MJ MJ MJ MJ MJ MJ MJ M	D807	0	. 5	7	80	85	8	2			MI				NG.	
1150 1150	D807		. 2	7	80	85	8	m			MJ				H	
1150 55.6 3.50 5 85 85 182 2 3.0 MJ MJ MJ MJ MJ MJ MJ MJ	D807	0	. 7	7	75	85	9									W
1917 1917	715		.5	5	85	85	00	2			MJ					
18.89 59.6 3.75 7 86 90 197 2 3.3 M1 M3 M3 M4 M3 M4 M3 M5 M5 M5 M5 M5 M5 M5	817	0	.5	2	80	75	8	1			MI					MJ
8320 66.0 4.25 7 85 85 198 2 3.3 MJ MI MJ	818	9	. 7	7	80	90	0	2								
9334 59.3 4.25 7 80 85 188 2 2.7 MJ MI MJ	832	0	. 2	7	85	85	9	2							AJ.	
55 60.3 4.00 7 80 85 195 2 3.3 MJ MI MI <th< td=""><td>833</td><td>9</td><td>. 2</td><td>7</td><td>80</td><td>85</td><td>8</td><td>2</td><td></td><td></td><td>MI</td><td>1</td><td></td><td></td><td>43</td><td></td></th<>	833	9	. 2	7	80	85	8	2			MI	1			43	
57 62.7 4.25 9 80 85 212 4 3.7 MJ MI MJ MI MI <th< td=""><td>2</td><td>0</td><td>0.</td><td>7</td><td>80</td><td>85</td><td>9</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>AJ.</td><td></td></th<>	2	0	0.	7	80	85	9	2							AJ.	
62 58.6 7.00 7 80 85 193 3 3.7 MJ MI MI MJ	2	2.	. 2	6	80	85	\vdash	4								
Color Colo	9	φ.	0.	7	80	85	9	~				bud				
672 62.7 6.00 9 80 85 206 3 3.3 MJ MI	67	0	. 7	7	85	85	6	m								
398A4 60.0 7.00 9 85 90 181 1 3.0 MJ MI MJ MI MJ MI	67	2.	0.	6	80	85	0	m						MI	MI	
6-0542 60.3 5.00 9 75 85 200 2 3.0 MJ MI	398A	0	0.	6	85	90	∞									
7-0306 60.3 5.75 9 85 75 190 1 2.7 MJ MI MI MI MJ	6-054	0	0.	6	75	85	0	2				h-u-d			43	M
8-3136 59.3 5.75 9 80 85 194 1 3.0 MI	7-030	0	-	6	85	75	6	~								
8-3034 59.6 3.50 9 80 85 208 2 3.0 MJ MI MJ	8-313	6	٠.	6	80	85	9	-				فيوا				
7-467 7-467 7-467 7-467 7-467 7-467 7-467 7-467 7-467 7-467 7-467 80 85 195 12.7 MJ	8-303	60	٠ س	6	80	85	0	2						~	43	
987350 57.6 5.25 7 85 85 202 2 3.3 MI MJ MI MJ MI MJ MI MJ MI MJ MI MJ M	7-46	7.	2	6	85	85	9	Н								
982309 62.3 6.00 7 80 80 195 3 2.7 MJ MI MJ MI MJ MI 148 148 159.6 3.00 2 80 90 188 1 3.0 MI MJ MI MJ MI 148 159.6 3.00 5 85 85 182 2 3.3 MJ MJ MI 159.6 7.00 9 80 75 203 1 2.3 MJ MJ MJ DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV NOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 50 160	98735	7.	2	7	85	85	0	2						~		
-MINTO 60.0 3.00 2 80 90 188 1 3.0 MI MI MJ	98230	2.	0.	7	80	80	6	e				DM	-			٠
148 0367	-MINT	0.	0.	2	80	06	8	~						_		EM.
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV NOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 170 100 FAULTING VALUES 56.9 18.3 18 12.9 57.3 .61 12.4 2 1.9-11 60.4 HNDER 1.75 OVER 8.00 4 50 50 160	W148	9	0	S	85	8 5	8	7				Σ	j.m.		17	MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV NOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 170 300 FAULTING VALUES 56.9 18.3 18 12.9 57.3 .61 12.4 2 1.9-11 60.4 HNDER 1.75 OVER 8.00 4 50 50 160	D036	9	0.	6	80	75	0	-								:
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 13.08 FAULTING VALUES 56.9 18.3 18 12.9 57.3 .61 12.4 2 1.9-11 60.4 HNDER 1.75 OVER 8.00 4 50 50 1								1								
NOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	EFICIENCIE	TE	X	S	O.	A	5 F	MC	MX		Ų		DC	S	SS	LV
JOR FAULTING VALUES 56.9 18.3 18 12.9 57.3 .61 12.4 2 1.9-11 60.4 HNDER 1.75 OVER 8.00 4 50 50	NOR FAULTING	S 57.	21.	3 8	•	•	7 12.	m	,7,8	1.9	~	2.00-2.7		75	80	170
	SNIT THER GOT	0 1 0		•))	

QUALITY DATA OF SPRING WHEAT SAMPLES
STATE=MONTANA STATION=BOZEMAN NURSERY=UNIFORM

	1															
VARIETY	STD	TEST WT #/BU	1000 K.WT G.	7	ING SM SM	WHT ASH &	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX	MIX
59	ß	2	0	25	0	.2	۱ •		1 4	1 6	1	1 4	i i i i t	V	ia	1
1375		8	1.			5	•		4	-	. 7.	, -	ט וע	r <		7 C
CI 13986	ഗ	8	2		13	4.	•		4		. 5	. 7	ט נט	r 4		n (r
3651		7	9		1	4	•		ব	ω .	7	5	. r	4		۰ ۳
582	S	-	4.	8	9	4.	•		4	6	4		2	' ব'		0 4
305		2.	0		7	4			4	œ	.5	5	ν.	4		• (11)
m		<u>.</u>	4.		٦	٠,	•		4	7	. 5	4	2	4	6	2 0
308		4	.		0	. 2	•		4	1.	4.	9	5	4	0	ım
807		.	9		 1	٣.			4	9	.5	5	5	m	6	2
807		i.	7		m	4.			4	1.	. 5	5	5	4	-	4
8074		<u>.</u>	٠ ش			· 3	9		4	0	4.	5	2	4	0	4
08715		-	9		0	· .	4		4	4.	4.	3	5	4	9	·
08817		ω	2		ঝ	۳,	5.		4	3	4.	4	5	4	9	2
88		;	9		7	4.	5.		4	0	4	5	2	4	9	2
08832		٠ س	Ф			٣.	4		4,	9.	. 5	3	5	4	8	2
08833		0	2.		15	3	5.		4	2.	4.	4	5	V '	9	2
655		0	2.			. 5	7		4	-	. 5	7	5	4	-	2
65		٠ د	0			4	9		Ą	-	4	5.	5	4	3	c
99		6	٠		15	4.	9		4	2.	.5	9	5	4	-	7
67		<u>ক</u>	5.			3	9		か	0	4.	9	5	4	8	2
672		6	-:		17	. 5	9		m	2.	9.	9	5	Н	2.	5
398A		0	7		9	4.	5.		4	9	.5	5.	2	m	0.	c
9 [9 1		7	4	4.		4	9	4	3	2	4	8	2
7-030		0	5		9	4.	. 9		4	-	4.	5.	2	4	1.	4
8-313		5	5		7	4	9		4.	2.	4	9	2	4	0	2
8-303		Ξ.	9			4.	9		4	5.	4.	9	2	4	7	2
7-467		ω	ۍ		14	. 5	5.		4	6	.5	5.	5	4	0	c
98735		0	2		Н	.	5.		4	8	4.	5.	5	4	7	2
9823		ω	9		က	4	9		4	5.	. 5	9	5	8	9	4
LNIM-		٠ ص	د		m	. 5	œ		ক	1.	.5	8	5	4	0.	m
BW148		62.7	29.3	28	0	1.40	16.7	85	4	61.3	0.46	16.5	2	4	0.09	3
036		0	7		ঝ	. 2	4		4	i.	4	٠ ش	2	4	7	3

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=BOZEMAN NURSERY=UNIFORM

TABLE 50 (CONT)

		BAKE	MIX	ролен	CRUMB	CRUMB	LOAF	BAKE	GENERAL	1		DEFIC	DEFICIENCIES	8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	NOL CC	SCORE * * * !	SCORE	 	TW KW SM WP EX	A65 FP	MC MX	BA MT	מכ מכ	CG LV
ND597	c.	59.3	ī.	6	ω π	80 70	~	-					M	MJ MI		
T 1275)	•	7	0	0 8	α π		10								
- - -	Ü	57.6	- (1 0	0 0) (C	1 ^	10	_		I X					
T TOOK	2	•	1 5	10		0 0	3 0	1 -								
365		•	- [ח ת	80	80	_ /	ન (IM CM		1
582	ಬ	•		5 1	9.0	08	_	7) (Ξ.		MI
305			7	7	80	85		2								
10			7	6	90	85		7					MI	MJ MI		
308			0	7	80	85	_	m						MI		
807			0	7	80	80		2			MI		MI	MJ		MI
807			2	7	85	80		c						MI		MI
807			0	7	75	80		2				٠		MJ	MI	MI
08715			Ω.	7	80	85	_	7					MJ	MJ MI		
		59.3	2.00	2	80	85	194	-	3.0				MI		MI	
08818			7	6	80	85	_	2					MI	MJ		
08832		~	0	7	06	80		2					MI	MJ		MI
833			0	7	75	85		2			MI MI		MI	MJ	MI	
9			т;	6	75	85		m					MI	MI	MI	
65		~	-	6	85	75	\sim	4"								MI
9				6	80	85	ന	2			MI MI		MI	MI MI		
67		~		6	85	80	grand	4								MI
67		~	-	6	80	80	m	4			DM DM IM	MJ				MI
398A		0	0	6	85	80	-	2			M	MI		MI MI		MI
6 - 05		ω.		6	80	80		2					MI	MJ		MI
87-030		Ξ.	4	6	80	75	\sim	3						MI		MI
88-31		0		6	80	80		n					MI	MI		MI
88-303		_	•	6	80	85		2					MI			
87-46		0		6	80	80	(7	2			IW			MI MI		MI
98735		_		2	85	80	(N	2					MI	MJ	MI	MI
19823		6		6	06	85	L A	2			MI					
MINT		0		6	85	85	\sim	-						MJ MI		
W14		0	٦.	ത	06	80	w	2	- 4					MJ		MI
1D367		-	•	6	06	75	_	2						MJ		MI
	•															
DEFICIENCIE	SVALU	T S S 7	XW 23.	88 88 6 F	60	A 7 .	65 F 57 12	N W C	2,7,8	BA 61.9	MIX TIME (MT) 5.75-8.00 2.00-2	2.75 6	75	0 0 u	LV 185	
FAULTING =NO PROMIS	VALUE E 2=L	ITTLE	PROMI	E 3=S	E PR	SE 4=	GOOD PR	OMISE.	T C '		Navo Crea				2	

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=IDAHO STATION=ABERDEEN NURSERY=UNIFORM

	1 1 1 1			1111	1 1 1 1		11111	11111		1 1 1 1 1	1 1 1 1 1 1	1 1			1	
VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ LG	ING SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO %	MILL	MILL SCORE ***	MIX ABS	MIX
UTT	ഗ	9.	3		-	9.	4r		4		5	1 6	5		1 ~	
HR		7.	5.		-	9.	ω.		m		.5	 . M	· ru	, m		- ⊹
ERA	ഗ	9.	7.		0	.5	-		2	4	4	0	. L	0 0		- ٠
2		8	2.		0	9.			4	2	. 5	2	വ	1 M		٦ ٣
OA	S	ω	8		0	9.	ω.		m	4	4	, m	. LC) er	1 00	2 0
SD3055		59.3		9.5	0	1.68	15.3	74	4	9.09	0.47	15.3	Ω Ω) 4	61.1	10
302		9.	7.		0	. 5			4	-1	.5	س	2	2		1 ~
308		0.	2.		Н	9.			4	5	4	5.	2	m		1 ~
807		9.	4.		0	9.	•		4	9	.5	4.	2	4	၂ တ	1
807		8	5.		٦	. 5	•		4	0	. 5	2	5	ਜ	· ~	2
8074		9	&		0	9.	•		4	-	.5	4.	2	2	0	ım
8715		8	2		٦	. 5			3	5.	.5	-	5	Н	2.	·
8817		9	4.		0	9.	•		-1	6	. 5		2	2	9	·
18		ω.	α		Н	. 5			m	9	.5	2.	5	2	7	2
883		6	4.		0	. 5	<u>.</u>		ო	9	4.	2.	S	2	9	-
833		9	7 .		٦	. 5	m		m	ж •	4.	ς.	5	ব্য	9	٦
2		0	-		٦	. 7	5.		4	7	.5	4	5	2	8	-
2		8	6		٦	. 7	4		4	4.	.5	3	5	က	6	2
9		ω	2.		0	9.	5.		4	5	.5	5.	5	3	0	7
67		9	9		႕	9.	•		4		4.	9	5	2	4	m
12		-i	2.		Н	. 5	3.		m	3	4.	2.	5	Н	6	2
S		0	8		0	9.	•		4	5.	9.	ς.	5	2	8	-
-542		6	0		7	. 5	-		2	4.	4.	0	5	2	4	-
-03		o	4		٦	. 5	2.		2	4	4	ä	2	2	7	-
-313		-	6		0	. 5	4.		4	4.	. 5	~	2	m	7	-1
-303		9	9		٦	. 7			m	7.	.5	4	2	4	7.	-
-467		5	7 .		0	. 5	٠ س		m	5.	٠ 4	2.	2	2	9	2
987-3		٠ ص	4		0	. 7			4	ش	4.	4	5	2	0	ĸ
982-30		9	2.		٦	. 5			か	0.	4.	3	5	2	8	-1
LNIM-		7	2.		٦	. 7			4	ω	.5	4	5	ব্য	-	٦
		φ	8		0	.7			か	4.	.5		5	m	0	2
D036		· 6	2.		7	.5	•		2	4.	4.	-	2	2	8	m
OPPE		٠ 6	~		-	9.			2	9	4.	-	2	2	7	m
* PONDERA		0	ω.		0	.5	•		m	8	4.	2.	2	m	0	m
D034		ω	9.		-	9.			ব্য	2.	. 5	3	5	2	6	2

WARFIETY STD 485 THE CHAR CALOR GRAIN VOL. SCORE STORE THE KH S AGE FF MC NY BA MT DC CC																	
State Stat	S XLE	AB I	TIM	СНА	COLOR	GRAIN	TOA	SCORE ***	SCORE ***			WP	A65 F	MC	ВА	DC	
S 55.5 2 50 5 6 8 9 10 110 2.7							t t 1 1	 		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1
Second Color	63	53.	2.5	0			9	7	2.7			Σ	9	X	MJ	Ľ.W.	
NULS S 60.2 3.25 5 8 9 8 5 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HRI	8	2.5	0			8	-	2.3				-	Σ	X		
Section Sect	RA	55.	2.7	S.			-	l -	,						2 7		
Secondary Color	25	61	, C) c			- a	10	•		717				25.		
Secondary Color			7	5 1			0	7 (-1		Ξ		
1955 1957 1958	4	60.	3.2	ر م			σ	7					1	E		MI	
1966 53-4 3.25 5 6 6 9 144 1 2.3 14 1 1 1 1 1 1 1 1	D302	-	2.2	2			0	2						MI	MI		
19.00 19.0	D305	٠ ص	2.7	5			8	7				Σ		M	Σ.Μ.		
973	D308	3	3.2	5			6	4				Σ		Σ			
1.50 2.00	D807	,	2.2	2			α	۱	•						Z		7.7
1156 66.0 3.50 2 6 6 75 179 1 2.3 MJ	D807	2	3.0				3	- ۱				2	MT	-	1 7		=======================================
1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	D807		, K				- [-	- H	•			2		4		2 2 2	***
17.0 17.0	8715		י י י) c			- <	۲,	•								Į.
8.85	2100	7 U	0.	o u			3" (-1 -			!				D.	MJ	
March Marc	7000	•	7	n (0	- 1 (MJ	EM	Σ		M		MI
March Marc	0100	•	ດຸກ	י כ			ו ת	7				M	Σ		MJ		
\$554 \$50.2	750	າ ກ່	7.7	ດ			Φ 1	Н,				MI	Σ		MJ		
State	833	9	2.5	0			-	٦			MI	MI		CM	MJ		
Secondary Seco	S 1	0	3.2	2			ω	-1				Σ	ם	M		MI	
Color Colo	2	٠ ص	3.2	വ			Ō	2				Σ	فسو	MI			
March Marc	99	0	4.7	5			9	2				Σ	beed	M			
1984 1985	2	٠ ت	2.5	0			9	m				Ĕ	1				
9884 58.6 4.25 7 75 85 190 1 2.3 MI MJ	57	9.	3.2	5			-	2							MJ		
1.7 MJ MJ MJ MJ MJ MJ MJ M	398A	ω	4.2	5			9	Н					LM.			Σ	
1-0306 57.9 3.50 7 80 85 195 1 1.7 MI	5-54	4	4.2	5			9	H								•	Σ
B-3136 57.3 2.75 5 75 90 195 1 2.7 MI M M MI M M M M M M M M M M M M M M M	7-030	7	3.5	0			6	!!				ĽΨ	Σ			2	711
8-3034 57.6 2.75 5 80 85 196 1 2.7 MJ MI	8-313	7.	2.7	5			5	l ==			MT				Σ.	M	
7-467 7-467 99.0 3.00 7 75 85 204 2 2.3 987-350 60.3 3.75 7 90 85 193 2 2.7 987-350 987-350 60.3 3.75 7 90 85 193 2 2.7 MI M	3-303	7	2.7	5			5	l ==1						T.X	X	X	
987-350 60.3 3.75 7 90 85 193 2 2.7 MJ	7-46	6	3.0	0			0	2				T	X) E	4 1 4	
982–309 58.2 3.50 5 85 90 188 1 2.3 MINTO 57.6 1.50 2 85 75 175 1 3.0 MINTO 57.6 1.50 2 85 75 175 1 3.0 MINTO 60.8 2.25 5 80 85 180 2 2.0 MINTO 367 58.2 4.25 5 80 80 192 2 2.0 MINTO	987-35	0	3.7	ιςı			6	10								713	
-MINTO 57.6 1.50 2 85 75 175 1 3.0 MI	982-30	ω.	3,5	0			00	. –				Σ	-	- X		7	
148 60.8 2.25 5 80 85 180 2 3.0 3.0 367 858.2 4.25 5 90 80 192 2 2.0 MJ MJ MI	-MINTO	7	1.5	0			7	- ۱	•		TM	4 4			2 7		7.7
DEFICIENCIES TWO KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DEFICIENCIES 57.9 80 192 2 2.0 MJ M	148	0	2.2	5			- α	10			711	7					111
PPER 57.6 4.75 2 90 75 178 1 1.7 MJ	036	8	4.2	2			Ø	10	•				711		1 2		7.77
NDERA NDERA NDERA NDERA NOS41 NOS41 NOS425 NOS425 NOS53 NOS5425 N	PPE	7	4.7	י ער) [٦ ٢				27	2	. .	SE X	TE:	TW:
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 37.9 8 13.9 56.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	ONDED) (- 0	٦ ،				25	Ē		2	ZZ.	MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 37.9 8 13.9 56.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	DO DE A		0 4	ם כ			5	7 (1.7							MI	
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NOR FAULTING VALUES 57.9 37.9 8 13.9 56.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1	7000	, ,	7 • 7	n			D	7	7.7			Σ	Σ	M			
TOR FAILTING VALUES 56 9 34 9 18 12 9 54 0 61 12 4 2 1 6 11 60 4 11 60 4 11 60 4 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DEFICIENCIE	r. r.	0	3	WP	EX A	5 FP	טי	MX	4 .			L	Ü		LV	
	ALTOR FAULTING	ים הת	, ~		0.0 0.0	•	1 13		0,1,	٠,٠		2.00	2.75	- 1		150	

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WASHINGTON STATION=PULLMAN NURSERY=UNIFORM

TABLE 52

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ	ING	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
BUTTE 86	1 1 1 1	3 -		47	0		2.			5.	1 4	1 -			1 4	
CHRIS		62.8	26.7	18	Н	1.43	13.4	09	ım	60.3	0.48	13.4	ν LΩ	1 M	54.6	7 (
	S	ش	9		m		-		2	2.	4	0	5	2		₹ ←
MARQUIS		<u>.</u>	6		0		3		3	2	4	2	2	m	4	1 0
ect.	ល	<u>.</u>	ж ж		0		ب		3	3	4.	2.	2	m	5	2 2
SD 3055		5.			0	4	2.		2	3	.3	2	2	2	5	2 2
305		3	4.		0		۳,		٣	-	.5	2.	5	H	9	2
308		9	3		0		3		m	0	4	8	5	m	7	2
307		4.	-		0	4	۳.		m	5.	4.	2.	5	٣	7	2
807		ж •	0		0	4	3		m	6	4	2	5	2	8	7
8074		٠ ٣	9		0	4	4.		4		4.	3.	5	8	7	m
8715		٠ د	0		٦	. 4	2.		2	-	4	2	5	1	4	٦
881			9		0	4	2.		2	2.	4.	-	5	2	8	Н
8818		작	5.		0	. 4	2.		2	5.	.3	1.	5	2	3	2
8832		2	٠ ٣		0	4	<u>.</u>		2	-	. 4	0.	5	7	4	-1
8833		٠ د	9		2	4	;		2	2.	4.	0.	2	2	2	Н
65		4	2		0	7.			2	6	4.	0	2	7	2.	7
65		4.	H		0	. 5	2.		2	9	.5	1	2	٦	5.	2
99		М	0		0	4			2	4	٤,	0.	2	2	3	2
67		9	0		0	• 4	2.		2	6	٠,	2.	5	7	7.	2
672		m	8		-	. 5			2	9	4.	0.	5	-1	1.	-
39		4	4		0	. 5	j.		2	1	4.	0	2	Т	2.	٦
6-054		m ·	0		7	7.	<u>.</u>		2	3	٣.	0.	5	2	1.	0
7-030		় বা ।	2.		0	. 4			2	9	4.	0.	5	Н	-	0
88-313		٠ د	ه		0	4	2.		2	2	4.	2.	2	2	4	٦
88-303		2.	_		0	. 5	3		m	8	4.	8	2	2	5.	٦
87-0467		2	-		2	. 5	1		2	7.	4.	Ξ.	5	-1	2.	2
A 9873		÷	9		0	. 5	2.		2	7.	4.	1	5	-1	2	٦
98230		-	2		0	. 5	۳,		m	7 .	4.	3.	2	2	8	e
C-MINT		٠ س	-		0	.5	<u>.</u>		m	8	4.	3	2	2	5.	m
74		4	0		0	7.	4.		4	2.	4.	4	2	4	7.	3
D 367		٠ س	6		7	4	-		2	6	4.	;	5		5.	2
*WPB 0906		2	ω		0	4.	2.		2	9	4.	i.	2	-1	4	2

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WASHINGTON STATION=PULLMAN NURSERY=UNIFORM

ΓΛ

TABLE 52 (CONT)

	BAKE	E MIX	ропен	СКОМВ	CRUMB	LOAF	BAKE	GENERAL -			DEFICIENCIES	ENCIES	1 1 1	1
VARIETY STD	D ABS	TIME	3 CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE ***	TW KW	SM WP EX	A65 FP	MC MX B	BA MT	50 00 0d
BUTTE 86 CHRIS ERA MARQUIS STOA SD 3055 SD 3056 SD 3056 SD 3056 SD 3056 SD 3056 SD 3056 SD 3073 SD 8073 SD 8073 SD 8074 MN 88170 MN 88189 MN 88170 MN 88189 MN 88170 MN 88334 ND 655 ND 655 ND 655 ND 655 ND 655 ND 657 ND 657 ND 657 ND 657 ND 672 XW 398A4 NB 7-0306 NB 8-3136 NB 8-3136 NB 7-0467 FA 987350 CI 982309 AC-MINTO BW 148 ID 367							च च ल च च च च च च च ल ल च ल ल ल च च च ल ल च च ल ल च	7 % 7 % % % % % % % % % % % % % % % % %	HH H	THE	E EEEE EE EEEEEEEEEE EE EE	MENTHER TO THE THE THE THE THE		
DEFICIENCIES MINOR FAULTING VAI MAJOR FAULTING VAI *** 1=NO PROMISE	ES TW VALUES 57. VALUES 56.	9 27 9 24 9 PROP	SM 8 18 3=	13.9 6 12.9 5 SOME PROP	EX A65 9 61.9 .57 9 59.9 .61 PROMISE 4=GO	A65 FP .57 12.9 .61 12.4 =GOOD PROM	MC 3 2 2 1 2 1 OMISE.	MX BA ,7,8 61.9 ,9-11 60.4	MIX T 5.75-8.0 UNDER 1.	TIME (MT) 00 2.00- 75 OVER) DC -2.75 6 8 9.00 4	75 75 50	CG 80 50	L.V

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

- VARIETY=AC-MINTO --

VARIABLE	MEAN	STD DEV	HINIMIH	MAXIMUM	VARIANCE	AD CA
	C C C C C C C C C C C C C C C C C C C					
MI	27.9666667	1.3428825	57.0000000	59,5000000	1.8033333	2.3166460
K WT	31,3333333	9.2424744	25.7000000	42.0000000	85.423333	0010201010
LG	38.666667	43.6157464	12,0000000	00000000	1902 23	007777777
MU	2 000000	00000000			000000	144.1993441
		2.000000	7.000000	000000000	4.0000000	66,6666667
	1.6433333	0.0981495	1.5300000	1.7000000	0.0096333	5.9725890
WHT PRO	16.333333	1.8009257	14.5000000	18,1000000	3.2433333	11 026026
HARD	79.6666667	8.3266640	73.000000	89 000000	60 222323	70.00.01
0.65	***************************************			000000000	00000000	CE/81CF.01
EXIR	b1.4333333	2.7754879	58.9000000	64.4000000	7.7033333	4.5178860
FL_ASH	0.5133333	0.0321455	0.4900000	0.5500000	0.0010333	6.2621109
FL PRO	16,1666667	2.0008332	14.200000	18 200000	4 0033333	750575
MTYO	2 333333	1000411				17.3/070/0
OVIL	6.555555	C00/8CT-T	1.000000	3.000000	1.3333333	49.4871659
BAKE ABS	59.2000000	1.3856406	57.6000000	60.0000000	1.9200000	2,3406092
LOAF VOL	189.3333333	15.0443788	175.0000000	205.0000000	226,3333333	7.9459747

-- VARIETY=BUTTE 86

FW T		STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
4	03	1.9295941	58.5000000	62.2000000	3.7233333	3.2142045
	33.9000000	8.5580372	27.9000000	43.7000000	73.2400000	25.2449474
	42.3333333	41.7891533	12.0000000	90.000000	1746.33	98,7145353
	2.0000000	2.6457513	0	5.0000000	7.0000000	132,2875656
WHT ASH	1.5266667	0.2055075	1.2900000	1.6600000	0.0422333	13,4611901
WHT PRO	15.6333333	1.2423097	14.2000000	16.4000000	1.5433333	7.9465438
HARD	72.6666667	7.3711148	67.0000000	81,0000000	54.3333333	10,1437360
EXTR	58.8000000	2.7874720	55.7000000	61,1000000	7.7700000	4.7405986
FLASH	0.4733333	0.0351188	0.4400000	0.5100000	0.0012333	7.4194745
FL PRO	14.8000000	1,0816654	13.6000000	15.7000000	1,1700000	7,3085499
0	1,6666667	0.5773503	1.0000000	2.0000000	0.3333333	34.6410162
BAKE, ABS	57,5666667	3.2654760	53.8000000	59.6000000	10.6633333	5.6725118
LOAF VOL	181.6666667	19.2959409	160.0000000	197.0000000	372.3333333	10.6216188

-- VARIETY=BW148 ---

VARIABLE	MEAN	STD DEV	MINIMUM	МАХІМОМ	VARIANCE	CC
TW	60,1333333	2.2278540	58.7000000	62.7000000	4.9633333	3,7048569
K WT	31,7333333	5.4720502	27.9000000	38.0000000	29.9433333	17.2438557
LG	43.6666667	36.1432336	18,0000000	85.0000000	1306.33	82.7707639
SM	1.0000000	1.7320508	0	3.0000000	3.0000000	173,2050808
WHTASH	1.6200000	0.1928730	1.4000000	1.7600000	0.0372000	11.9057417
WHT PRO	16.5000000	0.2645751	16.2000000	16.7000000	0.000000	1.6034856
HARD	77.6666667	7.0237692	71.0000000	85.0000000	49.3333333	9.0434796
EXTR	59.4000000	4.5574115	54.2000000	62,7000000	20.7700000	7,6724100
FL_ASH	0.5333333	0.0635085	0.4600000	0.5700000	0.0040333	11,9078493
FL PRO	16,3000000	0.2000000	16.1000000	16.5000000	0.0400000	1,2269939
MIXO	2.6666667	0.5773503	2.0000000	3,0000000	0.3333333	21,6506351
BAKE ABS	60,1333333	0.6110101	59,6000000	60,8000000	0.3733333	1.0160922
LOAF VOL	LOAF VOL 183.6666667	4.7258156	180.0000000	189.0000000	22.3333333	2.5730394

VARIETY=CHRIS

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.3666667	0.8504901	56.5000000	58.2000000	0.7233333	1.4825509
K WT	26.0333333	8.2923660	20.900000	35.6000000	68.7633333	31.8528782
LG	26.3333333	37.8461799	3.0000000	70.0000000	1432.33	143.7196705
SM	10.0000000	7.8102497	1.0000000	15.0000000	61,0000000	78.1024968
WHT ASH	1.6333333	0.1205543	1.5200000	1.7600000	0.0145333	7.3808740
WHT PRO	15.6666667	2.0033306	13.4000000	17.2000000	4.0133333	12.7872163
HARD	72.3333333	0.5773503	72.0000000	73.0000000	0.3333333	0.7981801
EXTR	58.1333333	4.1549168	54.1000000	62.4000000	17.2633333	7.1472192
FL ASH	0.5066667	0.0251661	0.4800000	0.5300000	0.000633333	4.9669963
FL. PRO	15.6666667	2.4440404	13.0000000	17.8000000	5.9733333	15.6002577
MIXO	2,3333333	1.1547005	1.0000000	3.0000000	1.3333333	49.4871659
BAKE ABS	59.4000000	1.4730920	58.5000000	61,1000000	2.1700000	2.4799528
LOAF VOL	193.0000000	17.3205081	183.000000	213.0000000	300.000000	8.974356

VARIETY=C1982309 ---

TW K_WT LG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S.I.D DEV	MINIMUM	MAXIMUM	VARIANCE	CC
WT	56.6000000	3.8574603	52.2000000	59.4000000	14.8800000	6.8153009
	30.7666667	10.4318423	22.9000000	42.6000000	108.8233333	33.9063129
	38.666667	44.7362642	8.0000000	90.000000	2001.33	115.6972350
	5.0000000	5.2915026	1.0000000	11.0000000	28.0000000	105.8300524
WHT ASH	1.6233333	0.2318045	1.4100000	1.8700000	0.0537333	14.2795389
WHT PRO	15.9666667	1.6258331	14.2000000	17.4000000	2.6433333	10.1826709
HARD	72.333333	5.1316014	68.0000000	78.0000000	26.333333	7.0943799
EXTR	54.2000000	3.2078030	50.5000000	56.2000000	10.2900000	5.9184557
FL_ASH	0.5266667	0.0550757	0.4900000	0.5900000	0.0030333	10.4574124
FL_PRO	15.6666667	1.6258331	13.9000000	17.1000000	2.6433333	10.3776582
0X	3,333333	2.0816660	1.0000000	5.0000000	4.3333333	62.4499800
BAKE ABS	59.933333	2.1221059	58,2000000	62,3000000	4.5033333	3.5407773
LOAF VOL 2	201,3333333	17.3877351	188.0000000	221.0000000	302,3333333	8.6362923

-- VARIETY=ERA --

VARIABLE	MEAN	STD DEV	MUMINIM	MAXIMUM	VARIANCE	CV
TW	57.0000000	3.1240999	53.4000000	59.0000000	9.7600000	5.4808770
K W'T	26.7333333	9.5001754	20.0000000	37.6000000	90.2533333	35,5368158
LG	29.6666667	41.1015004	3.0000000	77.0000000	1689,33	138.5443833
SM	11.3333333	10.5987421	0	21.0000000	112.3333333	93.5183123
WHT ASH	1.6066667	0.1890326	1.4600000	1.8200000	0.0357333	11.7655161
WHT PRO	14.1000000	1.9924859	11.8000000	15.3000000	3.9700000	14.1311056
HARD	66.0000000	5.5677644	60.0000000	71.0000000	31.0000000	8.4360066
EXTR	0000006.09	3.6592349	57.1000000	64.4000000	13.3900000	6.0085959
FL ASH	0.5166667	0.0404145	0.4700000	0.5400000	0.0016333	7.8221649
FL PRO	13.2000000	2.1794495	10.7000000	14.7000000	4.7500000	16.5109808
MIXO	2,3333333	1.1547005	1.0000000	3.0000000	1.3333333	49.4871659
BAKE ABS	56.8000000	1.3856406	55.2000000	57.6000000	1.9200000	2.4395082
LOAF VOL	196.3333333	25.5408170	170.0000000	221.0000000	652.3333333	13.0089051

WESTERN REGION

TABLE 55

-
35
m
-
8
9
K
1Za
-11
>4
ET
H
2
Z
5
termina
1
i

VARIABLE	MEAN	STD DEV	MINIMOM	MAXIMUM	VARIANCE	CV
	59.0000000	1.6000000	57.4000000	60.600000	2.5600000	2.7118644
	39,7333333	13.1561139	31.4000000	54.9000000	173,0833333	33,1110250
LG	55.0000000	35.7910603	30.0000000	96.0000000	1281.00	65.0746552
	1.0000000	1.0000000	0	2.0000000	1.0000000	100,0000000
WHT ASH	1,5833333	0.1934770	1.3600000	1.7000000	0.0374333	12.2195974
PRO	15.5000000	0.2000000	15.3000000	15.7000000	0.040000	1.2903226
	25.6666667	13.4288247	46.0000000	71.0000000	180,3333333	24.1236372
EXTR	57.7666667	3,8850139	53.5000000	61,1000000	15,0933333	6,7253559
FL_ASH	0.4733333	0.0152753	0.4600000	0.4900000	0.000233333	3.2271660
FL PRO	14.9333333	0.2309401	14.8000000	15.2000000	0.0533333	1.5464739
	2.6666667	0.5773503	2.0000000	3.0000000	0.3333333	21,6506351
BAKE ABS	58.6000000	1.4798649	57.6000000	60.3000000	2,1900000	2,5253667
LOAF VOL	205.6666667	14.8436294	193.0000000	222.0000000	220,3333333	7.2173239

VARIETY=ID367 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	57.2666667	4.8190594	51.8000000	60.900000	23.2233333	8.4151212
K_W'I	30.5333333	10.5396078	21.7000000	42.2000000	111.0833333	34.5183663
LG	34.3333333	43.5009578	3.0000000	84.0000000	1892.33	126.7018190
SM	8.0000000	9.6436508	1.0000000	19.0000000	93.0000000	120.5456345
WHT ASH	1.5600000	0.2700000	1.2900000	1.8300000	0.0729000	17.3076923
WHT PRO	14.2666667	1.5275252	12.6000000	15.6000000	2,3333333	10,7069526
HARD	61.3333333	10.5039675	51.0000000	72.0000000	110.3333333	17.1260340
EXTR	62.7000000	1.7000000	61.0000000	64.4000000	2.8900000	2.7113238
FL_ASH	0.4433333	0.0416333	0.4100000	0.4900000	0.0017333	9.3909744
FL_PRO	13.6666667	1.7502381	11,9000000	15.4000000	3.0633333	12.8066201
MIXO	4.3333333	2.3094011	3.0000000	7.0000000	5,3333333	53.2938710
BAKE ABS	58,4666667	1.0263203	57.6000000	59.6000000	1,0533333	1.7553939
LOAF VOL	201.6666667	9.0737717	192.0000000	210.0000000	82,3333333	4.4993909

- VARIETY=MARQUIS ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.933333	2.6764404	56.5000000	61.8000000	7.1633333	4.5414713
K WT	30.5000000	10.0642933	23.3000000	42.0000000	101.2900000	32,9976830
LG	38,6666667	45.7857329	6.0000000	91.0000000	2096.33	118.4113781
SM	3,0000000	4.3588989	0	8.0000000	19.0000000	145.2966315
WHT ASH	1.6166667	0.1887679	1.4100000	1.7800000	0.0356333	11.6763671
WHT PRO	15.9666667	0.4932883	15.4000000	16,3000000	0.2433333	3.0894882
HARD	70,6666667	6.1101009	64.0000000	76.0000000	37.333333	8.6463692
EXTR	57.7000000	1.7691806	55.8000000	59.3000000	3.1300000	3.0661709
FL ASH	0.5200000	0.0360555	0.4800000	0.5500000	0.0013000	6.9337525
FL_PRO	15.3666667	0.5859465	14.7000000	15.8000000	0.3433333	3.8131010
MIXO	3.0000000	0	3.0000000	3.0000000	0	0
BAKE ABS	59.533333	1.4640128	58,2000000	61.1000000	2,1433333	2,4591480
LOAF VOL	190.6666667	14.2243922	181.0000000	207.0000000	202.3333333	7.4603456

WESTERN REGION

TABLE 56

-- VARIETY=MN87150 --

VARIABLE	HEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	AD
TW	58.9666667	2.5383722	56.9000000	61.8000000	6.4433333	4.3047578
K WT	32,4666667	8,4719144	25.8000000	42.0000000	71.7733333	26.0941921
เล	39,6666667	43.4664622	7.0000000	89.0000000	1889.33	109.5793164
SM	2,3333333	3,2145503	0	6.0000000	10,3333333	137.7664394
WHT ASH	1.5000000	0.1833030	1.3000000	1.6600000	0.0336000	12.2202019
WHT PRO	14.1666667	0.9712535	13.1000000	15.0000000	0.9433333	6.8559070
HARD	63.6666667	9.0737717	57.0000000	74.0000000	82,3333333	14.2519975
EXTR	57,5000000	10.2781321	45.7000000	64.5000000	105.6400000	17.8750124
FL ASH	0.4700000	0.0529150	0.4300000	0.5300000	0.0028000	11.2585162
FL PRO	13.2666667	1.4977761	11.6000000	14.5000000	2.2433333	11.2897698
MIXO	1,3333333	0.5773503	1.0000000	2.0000000	0.3333333	43.3012702
BAKE ABS	55,4333333	2.8536526	52,2000000	57.6000000	8,1433333	5.1479001
LOAF VOL	178.6666667	36.1155553	141.0000000	213.0000000	1304.33	20.2139302

- 1
-
-
α
00
2
N
H
>
Ē.
E.T.
F
Ω
A
5
Bred
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	NO CO
TW	55.1333333	4.3878620	50.2000000	58.600000	19.2533333	7.9586373
K WT	30,300000	12,2462239	21,1000000	44.2000000	149.9700000	40.4165806
LG	35,0000000	48.0728614	1.0000000	90.000000	2311.00	137,3510325
WS.	7.0000000	8.8881944	0	17.0000000	79,0000000	126.9742060
WHT ASH	1.6400000	0.2505993	1.3800000	1.8800000	0.0628000	15.2804440
WHT PRO	14.700000	1.5874508	12,9000000	15.9000000	2.5200000	10,7989849
HARD	57.6666667	2,5166115	55,0000000	60.000000	6.3333333	4.3640661
EXTR	62,233333	2.2143472	59,7000000	63.8000000	4.9033333	3.5581368
FI. ASH	0.5266667	0.0450925	0.4800000	0.5700000	0.0020333	8.5618666
FL. PRO	13.8333333	1.9857828	11,6000000	15,4000000	3,9433333	14,3550564
MIXO	1.6666667	0.5773503	1.0000000	2.0000000	0,3333333	34.6410162
BAKE ABS	58,6666667	2,2188586	56,2000000	60.5000000	4.9233333	3,7821453
LOAF VOL	180,3333333	14.5716620	165.0000000	194.0000000	212,3333333	8.0804041

-- VARIETY=MN88189 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3.	59,0000000	2.4020824	57.1000000	61.7000000	5.7700000	4.0713262
E.T.	36,3000000	10.8282039	29,8000000	48.8000000	117,2500000	29.8297628
	50,0000000	38.1182371	27,0000000	94.0000000	1453.00	76.2364742
SW	1.6666667	0.5773503	1.0000000	2,0000000	0,3333333	34.6410162
	1.5366667	0.0901850	1,4500000	1,6300000	0.0081333	5.8688717
WHT PRO	14.900000	1.3076697	13,4000000	15,8000000	1.7100000	8,7763066
IARD	66.000000	2.6457513	63.0000000	68,0000000	7.0000000	4.0087141
EXTR	61.0666667	4.7606022	56,5000000	66,0000000	22,6633333	7.7957460
FL ASH	0.4600000	0.040000	0.4200000	0.5000000	0.0016000	8.6956522
T. PRO	14.1666667	1.6165808	12,3000000	15,1000000	2.6133333	11.4111583
MIXO	2.333333	0.5773503	2,0000000	3.0000000	0,3333333	24.7435830
RAKE ARS	58.933333	1.1547005	57,6000000	59,6000000	1.3333333	1.9593335
TONE VOI	703 666667	10 6926766	197 000000	216.0000000	114.3333333	5.2500867

- 1
- 1
0
2
32
8
8
Z
Σ
11
\Rightarrow
(1)
H
86
VAR
5
-
- 1
- 1
1
i

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3	60.4666667	2.3245071	58.7000000	63.1000000	5.4033333	3.8442786
K WT	32.7666667	10.3365049	25.5000000	44.6000000	106.8433333	31.5457932
LG	43.333333	44.7921124	9.0000000	94.0000000	2006.33	103,3664132
NS.	3,3333333	3.5118846	0	7.0000000	12,3333333	105.3565375
WHTASH	1.5266667	0.1401190	1.3700000	1.6400000	0.0196333	9.1781002
WHT PRO	13.9666667	0.6658328	13.2000000	14.4000000	0.4433333	4.7672994
HARD	76.0000000	8.8881944	69.0000000	86.0000000	79,0000000	11.6949927
EXTR	60.8000000	2.3811762	59.0000000	63.5000000	5.6700000	3.9164082
LASH	0.4833333	0.0208167	0.4600000	0.5000000	0.000433333	4.3068952
FL PRO	13.0000000	0.5567764	12.4000000	13.5000000	0.3100000	4.2828957
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50,000000
BAKE ABS	59.4000000	0.7211103	58.6000000	60.0000000	0.5200000	1.2139903
LOAF VOL	193.333333	11.7189306	180,0000000	202.0000000	137,3333333	6.0615158

- 1
4
~
~
α
α
2
2
- 11
>
F
-
Ω
NO

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.3666667	2.7465129	55.3000000	60.6000000	7.5433333	4.7056190
K WT	26.7666667	9.3724774	20.2000000	37.5000000	87.8433333	35.0154823
LG	29.6666667	43.6615773	2.0000000	80.0000000	1906.33	147.1738561
SM	13,333333	11.5902258	1.0000000	24.0000000	134.3333333	86.9266933
WHT ASH	1.5433333	0.1755942	1.3600000	1.7100000	0.0308333	11.3775958
WH'T PRO	14.9000000	0.8717798	13.9000000	15.5000000	0.7600000	5.8508711
HARD	64.0000000	3.6055513	60.0000000	67.0000000	13.0000000	5.6336739
EXTR	63.0666667	0.9291573	62.0000000	63.7000000	0.8633333	1.4732939
FL ASH	0.4466667	0.0321455	0.4100000	0.4700000	0.0010333	7.1967543
FL_PRO	14.1666667	1.0214369	13.0000000	14.9000000	1,0433333	7.2101428
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50.0000000
BAKE ABS	58,3666667	1.8823744	56.2000000	59,6000000	3.5433333	3.2250846
LOAF VOL	189.333333	13.0511813	177.0000000	203.0000000	170,3333333	6.8932296

VARIETY=ND655

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
M. M. M.	59.9666667	0.6506407	59.3000000	60.6000000	0.4233333	1.0850040
K WT	29.6333333	10.2627157	22.0000000	41.3000000	105.3233333	34.6323364
LG	35,3333333	45.6544996	7.0000000	88.0000000	2084.33	129.2108479
SM	6.6666667	6.0277138	1.0000000	13.0000000	36.333333	90.4157066
WHT ASH	1.6633333	0.0763763	1.5800000	1.7300000	0.0058333	4.5917592
WHT PRO	16.233333	1.0503968	15.2000000	17.3000000	1.1033333	6.4706165
HARD	74.3333333	8.0829038	67.0000000	83.0000000	65,3333333	10.8738616
EXTR	57.7333333	8.6858122	47.8000000	63.9000000	75.4433333	15.0447093
FL ASH	0.5133333	0.0152753	0.5000000	0.5300000	0.000233333	2.9756985
FL_PRO	15.8666667	1.3650397	14.4000000	17.1000000	1.8633333	8.6031913
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50.0000000
BAKE ABS	60.6333333	0.6658328	60.2000000	61.4000000	0.4433333	1.0981300
LOAF VOL	196.0000000	11.5325626	185.0000000	208.0000000	133.0000000	5.8839605

WESTERN REGION

TABLE 58

- VARIETY=ND657

CV	6.2491241 22.5366905 103.6721874 121.2435565 10.4748999 5.8007287 6.2919764 8.4253442 2.2941070 8.6659368	3.4479933
	1 7 7	
VARIANCE	13.7633333 50.5033333 1552.00 16.3333333 0.0290333 0.8400000 20.3333333 25.4700000 0.000133333 1.77333333	4.5700000
MAXIMUM	63.4000000 82.0000000 8.0000000 1.7300000 16.6000000 76.0000000 63.8000000 16.5000000	63,7000000
MINIMUM	56.1000000 25.0000000 6.0000000 1.0000000 1.4.8000000 67.0000000 67.0000000 13.9000000	59.6000000
STD DEV	3.7098967 7.1065697 39.3954312 4.0414519 0.1703917 0.9165151 4.5092498 5.0467812 0.0115470	2,1377558
MEAN	59.3666667 31.5333333 38.0000000 3.3333333 1.626667 15.8000000 71.6666667 59.9000000 0.5033333 15.3666667	62.0000000
VARIABLE	TW KWT LG SM WHT ASH WHT PRO HARD EXTR FL ASH FL PRO	BAKE ABS LOAF VOL

- 1
-1
i.
0
9
9
Z
H
~"
>
5
1
-
α
A
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
31	58.4000000	1.6703293	56.6000000	59,9000000	2.7900000	2.8601529
K ET	30.400000	10.2586549	23,6000000	42.2000000	105.2400000	33.7455753
ומו	34,0000000	45.9020697	7.0000000	87.0000000	2107.00	135.0060873
N W	8,0000000	7.5498344	0	15.0000000	57.0000000	94.3729304
WHT ASH	1,6133333	0.1361372	1.4600000	1,7200000	0.0185333	8,4382553
MHT DBO	15.8666667	0.6027714	15,3000000	16.5000000	0,3633333	3.7989793
HARD	70.000000	6.0000000	64.0000000	76,0000000	36.0000000	8.5714286
FYTO	61 1000000	4.8041649	55.700000	64.9000000	23,0800000	7.8627903
FI. ACH	0.510000	0.0100000	0.500000	0.5200000	0.000100000	1.9607843
ממם זמ	15 533333	0.6110101	15.0000000	16,2000000	0.3733333	3.9335414
KIYO	4 333333	3.0550505	1.0000000	7.0000000	9,3333333	70.5011645
HAKE ARG	60.3000000	1.6093477	58,6000000	61,8000000	2.5900000	2.6689016
LOAF VOI.	196.0000000	1.7320508	195,0000000	198,0000000	3.0000000	0.8836994

-- VARIETY=ND671

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
3.6	61,2000000	2.5357445	59.4000000	64.1000000	6.4300000	4.1433733
K CUT	30.433333	7.8014956	25,2000000	39,4000000	60.8633333	25.6347062
12	36.666667	42.7356214	11,0000000	86,0000000	1826.33	116.5516946
2 2	2,333333	1.1547005	1,0000000	3,0000000	1,3333333	49,4871659
HT ASH	1.5633333	0.1625833	1,3800000	1.6900000	0.0264333	10.3997854
DBO TH	16.533333	0.4041452	16,1000000	16.9000000	0.1633333	2.4444265
NO.	70 666667	10.2632029	62,0000000	82,0000000	105.3333333	14.5234003
מאאמ	58 23333	5.1403632	52.400000	62,1000000	26,4233333	8.8271834
T ACU	0 436667	0.0208167	0.4200000	0.4600000	0.000433333	4.7671740
T DDO	16 633333	0.3785939	16.200000	16.9000000	0.1433333	2.2761156
MINO	A 0000000	1 0000000	3,0000000	5.0000000	1.0000000	25.0000000
DAVE ABC	62 533333	1,8175075	60,5000000	64.0000000	3,3033333	2,9064618
במאים שאסם	200000000000000000000000000000000000000	12 5769412	192,0000000	216,0000000	184,3333333	6.777175.

VARIETY=ND672

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIHUM	VARIANCE	CV
31	58,4666667	2.9687259	55.2000000	61.0000000	8.8133333	5.0776383
K WT	28.7000000	11.8646534	21.8000000	42.4000000	140.7700000	41.3402557
5	35.6666667	47.9617903	6.0000000	91.0000000	2300.33	134.4723094
SM	10.6666667	8.5049005	1,0000000	17.0000000	72,3333333	79.7334426
WHT ASH	1.6433333	0.1550269	1.5300000	1.8200000	0.0240333	9,4336843
WHT PRO	15.5000000	1.5132746	13,8000000	16.7000000	2.2900000	9.7630619
HARD	80.3333333	5.5075705	75.0000000	86.0000000	30,3333333	6.8558969
EXTR	55.9666667	5.2367293	52.6000000	62.0000000	27.4233333	9.3568718
FL ASH	0.5566667	0.0702377	0.4900000	0.6300000	0.0049333	12,6175494
FL PRO	14.8333333	1.6862186	12.9000000	16,0000000	2.8433333	11.3677662
MIXO	4.6666667	2.5166115	2.0000000	7.0000000	6,3333333	53.9273888
BAKE ABS	61.5000000	1.9078784	59.3000000	62.7000000	3.6400000	3.1022413
LOAF VOL	204.0000000	27.0554985	176.0000000	230.0000000	732.0000000	13.2624993

VARIETY=N86-0542

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.9666667	3.8552994	53.6000000	60.9000000	14.8633333	6.6508903
K WT	29.7000000	9.3439820	22.3000000	40.2000000	87.3100000	31,4612189
LG	34.3333333	42.4421174	5.0000000	83.0000000	1801,33	123.6178178
SM	7.0000000	6.0000000	1,0000000	13,0000000	36.0000000	85.7142857
WHT ASH	1.6433333	0.1955335	1.4800000	1.8600000	0.0382333	11.8985877
WHT PRO	13,4666667	2,1385353	11,0000000	14.8000000	4.5733333	15.8802128
HARD	59.0000000	5.1961524	53.0000000	62.0000000	27.0000000	8.8070380
EXTR	63.933333	4.1198705	59.6000000	67.8000000	16.9733333	6.4440102
FL ASH	0.4533333	0.0208167	0.4300000	0.4700000	0.000433333	4.5919103
FL PRO	12.833333	2.2300972	10,3000000	14.5000000	4.9733333	17.3773805
MIXO	2.6666667	2.0816660	1.0000000	5.0000000	4.3333333	78.0624750
BAKE ABS	57.8333333	2.9263174	54.6000000	60.3000000	8.5633333	5.0599148
LOAF VOL	190.0000000	19.0787840	168,0000000	202.0000000	364.0000000	10.0414653

VARIETY=N87-0306

VARIABLE	MEAN	STD DEV	MINIMOM	MAXIMUM	VARIANCE	CV
TW	57.933333	2.9143324	54.6000000	60.000000	8.493333	5.0304932
K WT	31.7666667	11.3005900	24.7000000	44.8000000	127.7033333	35.5737354
LG	38,6666667	43.9355589	8.0000000	89.0000000	1930.33	113.6264454
SM	5,3333333	4.0414519	1.0000000	9.0000000	16.333333	75.7772228
WHT ASH	1.5766667	0.1059874	1.4800000	1.6900000	0.0112333	6.7222466
WH'T PRO	14.7000000	1.9974984	12.4000000	16.0000000	3.9900000	13.5884247
HARD	64.0000000	5.5677644	58,0000000	69.0000000	31.0000000	8.6996318
EXTR	63,6333333	2.0305993	61,3000000	65.0000000	4.1233333	3.1910936
FL ASH	0.4500000	0.0100000	0.4400000	0.4600000	0.000100000	2.222222
FL PRO	13.8666667	2,3180452	11,2000000	15.4000000	5.3733333	16.7166718
MIXO	3,333333	2.0816660	1,0000000	5.0000000	4.3333333	62.4499800
BAKE ABS	60.000000	1,9672316	57.9000000	61.8000000	3.8700000	3.2787193
LOAF VOL	201.0000000	14.9331845	190.0000000	218.0000000	223.0000000	7.4294450

,
1
1
-
46
T
- 4
5
N N
7
11
>4
E-0
ETY
H
8
/AF
-
-
- 1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.8333333	1.6072751	56.0000000	59.0000000	2.5833333	2.7791501
K_WT	33.0000000	12,4903963	25,1000000	47.4000000	156,0100000	37.8496858
LG	35,3333333	47.3532822	7.0000000	90.000000	2242.33	134.0187232
SM	7.3333333	7.0237692	0	14.0000000	49.333333	95,7786705
WHT ASH	1.6633333	0.1357694	1.5800000	1.8200000	0.0184333	8,1624897
WHT PRO	14.6333333	1,3203535	13.2000000	15.8000000	1.7433333	9.0229168
HARD	52.6666667	9.2915732	45.0000000	63.000000	86.333333	17.6422277
EXTR	63.0666667	3.5571524	59.0000000	65.6000000	12.6533333	5,6403051
FL_ASH	0.4866667	0.0378594	0.4600000	0.5300000	0.0014333	7,7793265
FL_PRO	13.9666667	1.4294521	12,4000000	15.2000000	2.0433333	10.2347406
MIXO	2.6666667		2.0000000	3.0000000	0.3333333	21,6506351
BAKE ABS	59.1333333	1.6041613	57.6000000	60.8000000	2,5733333	2.7127868
LOAF VOL	207.3333333	14.2945211	195.0000000	223.0000000	204.333333	6.8944636

,	
4	
~	
~	
8	
N	
11	
>	
F.T	
-	
0	
AD	
2	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.233333	3.5161532	54.5000000	61.2000000	12,3633333	6.1435408
K. W.T.	28.666667	7.2141066	22.5000000	36.6000000	52.0433333	25.1654880
LG	33.6666667	39.8789836	4.0000000	79.0000000	1590.33	118.4524265
SM	5.0000000	5.2915026	1.0000000	11.0000000	28,0000000	105.8300524
WHT ASH	1.6833333	0.2112660	1.4600000	1,8800000	0.0446333	12.5504569
WHT PRO	15.7000000	0.9848858	14.6000000	16.5000000	0.9700000	6.2731578
HARD	67.6666667	8.0829038	63.0000000	77.0000000	65,3333333	11.9451780
EXTR	62.2000000	4.4305756	57.1000000	65.1000000	19.6300000	7,1231119
FL_ASH	0.4866667	0.0416333	0.4400000	0.5200000	0.0017333	8.5547918
FL_PRO	15.7000000	1.0440307	14.5000000	16.4000000	1.0900000	6.6498768
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50.000000
BAKE_ABS	58,3666667	1.0785793	57.6000000	59.6000000	1,1633333	1.8479371
LOAF VOL	204.0000000	6.9282032	196.0000000	208,0000000	48.0000000	3.3961781

VARIETY=N88-3136 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	59.4666667	2.8867513	57.8000000	62.8000000	8.333333	4.8544025
K WT	28.8666667	8.9500466	22,5000000	39.1000000	80,1033333	31.0047802
LG	36,3333333	43.3628105	0000000.9	86.0000000	1880.33	119.3471848
SM	3,3333333	4.1633320	0	8.0000000	17,3333333	124.8999600
WHT ASH	1.5866667	0.1877054	1.4200000	1.7900000	0.0352333	11,8301750
WHT PRO	15,4333333	1.1718931	14.1000000	16,3000000	1,3733333	7.5932595
HARD	61,0000000	6.5574385	55.0000000	68.0000000	43.0000000	10.7498992
EXTR	60,7333333	6.0210741	54.0000000	65,6000000	36,2533333	9.9139530
FL ASH	0.5066667	0.0404145	0.4700000	0.5500000	0.0016333	7.9765498
FL_PRO	15.1666667	1.4742230	13.5000000	16.3000000	2,1733333	9.7201514
MIXO	2,3333333	1.5275252	1.0000000	4.0000000	2.3333333	65.4653671
BAKE ABS	59,0333333	1.6165808	57.3000000	60.5000000	2.6133333	2.7384202
LOAF VOL	204.0000000	16.4620776	194.0000000	223.0000000	271.0000000	8.0696459

WESTERN REGION

	1		- VARIETY=SD3055			
VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	60.2000000	1.7349352	59.1000000	62,2000000	3.0100000	2.8819521
K_WT	36.2000000	10.4790267	30,1000000	48.3000000	109,8100000	28.9475875
LG	47.0000000	41.5812458	22.0000000	95.0000000	1729.00	88.4707357
SM	1.3333333	1.1547005	0	2.0000000	1,3333333	86.6025404
WHT ASH	1.5800000	0.1178983	1.4500000	1,6800000	0.0139000	7.4619153
WHT_PRO	15.5666667	0.2309401	15.3000000	15,7000000	0.0533333	1.4835553
HARD	63.3333333	9.4516313	56,0000000	74.0000000	89,3333333	14.9236283
EXTR	60.833333	2.1594752	58,8000000	63.1000000	4.6633333	3.5498223
FL_ASH	0.4800000	0.0264575	0.4600000	0.5100000	0.00070000	5,5119819
FL_PRO	15.6000000	0.2645751	15.3000000	15.8000000	0.000000	1.6959944
MIXO	2.6666667	0.5773503	2.0000000	3.0000000	0.3333333	21,6506351
BAKE ABS	60.4000000	0.9643651	59,3000000	61,1000000	0.9300000	1.5966309
LOAF_VOL	202.3333333	14.6401275	189.0000000	218,0000000	214.3333333	7.2356479

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	59.7666667	3.0664855	56.9000000	63.0000000	9.4033333	5.1307621
	36.8333333	9.5845362	28.7000000	47.4000000	91.8633333	26.0213651
	53.6666667	38.2143080	18,0000000	94.0000000	1460.33	71,2067850
	2.0000000	2.6457513	0	5.0000000	7.0000000	132.2875656
	1.5500000	0.1868154	1.3500000	1.7200000	0.0349000	12.0526075
	15.0333333	0.5686241	14.4000000	15,5000000	0.3233333	3.7824218
	70.0000000	5.2915026	0000000099	76.0000000	28.0000000	7.5592895
	57.6333333	6.0011110	51.7000000	63,7000000	36.0133333	10.4125697
	0.5300000	0.0346410	0.5100000	0.5700000	0.0012000	6.5360408
	14.3666667	0.6506407	13.7000000	15,0000000	0.4233333	4.5288216
	2.6666667	1.1547005	2.0000000	4.0000000	1,3333333	43.3012702
	60.1333333	1.4742230	59,0000000	61,8000000	2.1733333	2.4515903
	197.6666667	11,9303534	184.0000000	206.0000000	142.333333	6.0355920

VARIETY=SD3056

VARIETY=SD3080

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	61.6666667	2.0305993	60.3000000	64.0000000	4.1233333	3.2928637
K WT	34,3333333	6.8391033	29.8000000	42,2000000	46.7733333	19.9197182
LG	43.6666667	37.4210280	15.0000000	86.0000000	1400.33	85.6970106
SM	1.3333333	1.5275252	0	3.0000000	2.3333333	114.5643924
WHT ASH	1.5100000	0.2029778	1.2900000	1.6900000	0.0412000	13.4422405
WHT PRO	16.2666667	0.3785939	16.0000000	16.7000000	0.1433333	2.3274215
HARD	0000000.99	9.0000000	57.0000000	75.0000000	81,0000000	13.6363636
EXTR	59.7666667	3.7004504	55.5000000	62,1000000	13,6933333	6.1914954
FL_ASH	0.4500000	0.0360555	0.4200000	0.4900000	0.0013000	8.0123362
FL_PRO	16.0000000	0.5567764	15.5000000	16.6000000	0.3100000	3.4798527
MIXO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33,333333
BAKE ABS	62.1333333	1.4843629	60.5000000	63.4000000	2.2033333	2.3889961
LOAF VOL	205.0000000	11.5325626	193.0000000	216.0000000	133.0000000	5.6256403

TABLE 62

WESTERN REGION

-- VARIETY=SD8072

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	60.2666667	2.8988503	57.9000000	63.5000000	8.4033333	4.8100393
K W'T	33.233333	9.5143751	26.4000000	44.1000000	90.5233333	28,6290123
LG	44.3333333	42.7239199	13.0000000	93.0000000	1825.33	96.3697442
SM	1,3333333	1.5275252	0	3.0000000	2.3333333	114.5643924
WHT ASH	1.5466667	0.1814754	1.3400000	1.6800000	0.0329333	11.7333255
WHT PRO	15,3333333	0.8082904	14.4000000	15.8000000	0.6533333	5.2714590
HARD	75.6666667	11.5902258	65.0000000	88.0000000	134.3333333	15.3174790
EXTR	59,5333333	3.1501323	56.4000000	62.7000000	9.9233333	5.2913756
FLASH	0.5100000	0.0360555	0.4700000	0.5400000	0.0013000	7.0697084
FL_PRO	15.0333333	0.6658328	14.3000000	15.6000000	0.4433333	4,4290431
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50,000000
BAKE ABS	0000000.09	1.0000000	59.0000000	61.0000000	1.0000000	1.6666667
LOAF VOL	189,0000000	5.5677644	184.0000000	195.0000000	31,0000000	2.9459071

- 1
- 1
- 8
-1
- :
-1
~
-
-
~
-
20
w.
-11
>
2
13
Ω
-
0
AH
1
2
-1
- 1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.933333	2.8571548	56.2000000	61.9000000	8.1633333	4.8481133
K_WT	32.4000000	11.4642924	24.2000000	45.5000000	131.4300000	35.3836185
LG	38.333333	46.8009971	6.0000000	92,0000000	2190.33	122.0895578
SM	3.6666667	3.0550505	1.0000000	7.0000000	9,3333333	83.3195581
WHT ASH	1.5566667	0.1715615	1.4000000	1.7400000	0.0294333	11.0210786
WHT PRO	15,2333333	1.0692677	14.0000000	15.9000000	1.1433333	7.0192626
HARD	73.333333	10.2143690	0000000.99	85.0000000	104,3333333	13.9286850
EXTR	58.533333	7.4574348	50,0000000	63.8000000	55.6133333	12.7404922
FL ASH	0.5433333	0.0351188	0.5100000	0.5800000	0.0012333	6.4635913
FL PRO	14.6000000	1.6462078	12.7000000	15.6000000	2,7100000	11.2753956
MIXO	3,3333333	1.1547005	2.0000000	4.0000000	1,3333333	34.6410162
BAKE ABS	59.3666667	3,3857545	55,5000000	61,8000000	11,4633333	5.7031238
LOAF VOL	187.0000000	15.7162336	176.0000000	205.0000000	247.0000000	8.4044030

VARIETY=SD8074

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.1000000	2.8160256	58.0000000	63.3000000	7.9300000	4.6855667
K_W'r	30.8000000	7.1630999	25.3000000	38,9000000	51,3100000	23,2568178
LG	39,333333	44.0605644	10.0000000	90.0000006	1941.33	112.0183840
SM	2.0000000	2.6457513	0	5.0000000	7.0000000	132,2875656
WHT ASH	1.5333333	0.1674316	1.3400000	1.6300000	0.0280333	10.9194507
WHT PRO	15.6333333	0.8144528	14.7000000	16.2000000	0.6633333	5.2097193
HARD	73.0000000	3.6055513	69.000000	76.0000000	13.0000000	4.9391113
EXTR	58,7666667	6,1581924	51.9000000	63.8000000	37,9233333	10.4790568
FL ASH	0.4966667	0.0152753	0.4800000	0.5100000	0.000233333	3.0755542
FL PRO .	15,1333333	0.9814955	14.0000000	15,7000000	0.9633333	6.4856528
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1.0000000	25.0000000
BAKE ABS	60.3666667	0.4041452	60.0000000	60.800000	0.1633333	0.6694840
LOAF VOL	185,0000000	20.6639783	168.0000000	208.0000000	427.0000000	11.1697180

A

- VARIETY=STOA

WESTERN REGION

TABLE 63

A
DAT
R
54
NURSERY
63
111
O.J
2
Z
-3
REGIONAL
7
0
-
O
\Box
02
5
UNIFORM
E
Q
T.
hard
Z
_
Ĉv.
OF
0
_
EVALUATION
0
\mathbf{H}
Free
24
7
٦
H
A.
>
团
J
AI
7)
0
E
S
1-1
H
d
STATISTICAL
O1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.5000000	2.9512709	55.5000000	61.4000000	8.7100000	5.0449075
K WT	28.6333333	8.7214295	22,4000000	38.6000000	76.0633333	30.4590089
LG	30,3333333	43.0851869	3.0000000	80.0000000	1856.33	142.0390778
SM	6.6666667	7.0237692	0	14.0000000	49.3333333	105,3565375
WHT ASH	1.6200000	0.1808314	1.4300000	1.7900000	0.0327000	11.1624329
WH'T PRO	15,2333333	1.2423097	13.8000000	16.0000000	1.5433333	8.1552058
HARD	70,3333333	11,0151411	63.0000000	83.0000000	121.3333333	15.6613380
EXTR	58,533333	3,9803685	54.1000000	61.8000000	15.8433333	6.8001740
FL ASH	0.4733333	0.0208167	0.4500000	0.4900000	0.000433333	4.3978859
FL PRO	15.0000000	1,3000000	13.5000000	15.8000000	1.6900000	8.6666667
MIXO	3.6666667	1.5275252	2.0000000	5.0000000	2,3333333	41.6597790
BAKE ABS	60.7000000	0.6244998	60.2000000	61.4000000	0.3900000	1.0288300
LOAF VOL	190.3333333	8.7368949	183.0000000	200.000000	76.333333	4.5903126

- VARIETY=XW398A4 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	00	1.1789826	58.5000000	60.800000	1.3900000	1.9715428
K WT	34.9666667	11.4596393	27.0000000	48.1000000	131.3233333	32.7730390
LG	41.0000000	45.0777107	13.0000000	93.0000000	2032.00	109.9456358
SM	4.0000000	3.4641016	0	6.0000000	12,0000000	86.6025404
WHT_ASH	1.6266667	0.1365040	1.4700000	1.7200000	0.0186333	8.3916374
WHT PRO	15.0666667	0.9073772	14.1000000	15.9000000	0.8233333	6.0224149
HARD	65.6666667	4.0414519	62,0000000	70,0000000	16.3333333	6.1544953
EXTR	58.8666667	4.8180217	55,6000000	64.4000000	23.2133333	8.1846349
FL ASH	0.5766667	0.0650641	0.5100000	0.6400000	0.0042333	11.2827869
FL PRO	14.7333333	0.9073772	13.7000000	15,4000000	0.8233333	6.1586686
MIXO	2.3333333	1.1547005	1.0000000	3,0000000	1,3333333	49.4871659
BAKE ABS	59.8000000	1.1135529	58,6000000	60.8000000	1.2400000	1.8621285
LOAF VOL	195.0000000	17.0587221	181.0000000	214.0000000	291.0000000	8.7480626

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=CASSELTON NURSERY=FIELD PLOTS

TABLE 64

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZING LG SM	ING SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	ह्म च	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
MADCHALL		7 7 7	25.4	16	α	2 09	148	81	~	67.8	0.51	13.4		· ·	61.4	4
ממטווסטים		000			,	7003		4)		1000				,	• [
STOA		58.4	31.9		-	1.82	15.5	91	4	69.2	0.43	14.1	വ	4	62.7	ည
BUTTE 86		58.4	33.7	52	2	1.88	15.7	94	4	67.8	0.40	14.1	2	4	63.7	4
T.EN	S.	57.4	30.1		m		15.9	86	4	68.8	0.40	14.4	5	4	62.5	7

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=CASSELTON NURSERY=FIELD PLOTS

	BAKE	MIX	ніх роисн	СКОМВ	CRUMB	LOAF	BAKE	GENERAL				Q	EFICIE	DEFICIENCIES-	 	1 1 1	[]]
VARIETY STD	ABS 1	TIME CHAR	CHAR	COLOR	GRAIN	CC	SCORE ***	SCORE	Z :	TW KW		SM WP EX A65	FP M(A65 FP MC MX BA MT DC CC CG	A MT	DD DG	CG LV
ARSHALL	60.2	3.50	7	80	80	925	2	2.7	397	БЖ	M IM EM	M		БМ	ט		MI
STOA	61.9	4.50	6	80	80	940	m	3.7	384					Σ	I		MI
BUTTE 86	62.8	3.00	7	80	85	925	ず	4.0	400								;
LEN	61.6	5.50	7	80	80	930	т	3.7	366	MI				MI MI	н		MI
DEFICIENCIES	TW	KW	SM	WP	EX A	A65 FP	MC		ВА	MI	MIX TIME (MT)	(MT)	DC	ນຸນ	500	LV	
MINOR FAULTING VALUES 57.9 28.0 8 13.9 66.7 .47 12.9 3 2,7,8 MAJOR FAULTING VALUES 56.9 25.0 18 12.9 64.7 .51 12.4 2 1,9-11	ES 57.9	28.() 18	13.9	66.7	47 12.5 51 12.4	m 2		60.4	5.75- UNDER	5.75-8.00 2 UNDER 1.75 0	5./5-8.00 2.00-2./3 UNDER 1.75 OVER 8.00		50		825	
*** 1=NO PROMISE 2=	LITTLE	PROMIS	SE 3=S(OME PRO	MISE 4=	GOOD PI	ROMISE.										

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=FIELD PLOTS

VARIETY STD	TEST WT #/BII	1000 K.WT	SIZII	S W %	WHT ASH	WHT PRO	HARD-	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
	00/=	P) 	P }	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1	 	1	1 1 1	1 t	1	1
ಬ	56.8	26.0	32	7	1.96	14.8	63	\sim	67.2	0.38	13.4	S	4	9.69	4
	60.8	28.2	49	0	1.67	2	75	2	72.1	0.32		2	2	56.5	2
	59.8	28.9	52	0	1.77	15.	9.2	4	9.19	0.37	14.3	5	₹'		5

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=FIELD PLOTS

CG LV	MI MI MI	
00 00 00 00 00 00 00 00 00 00 00 00 00	μ	879 869
A MT	MJ MI	80 80 50
NCIES	E Y Y	75 75
FICIE FP MC	MJ	DC 4
A65		8.00
TW KW SM WP EX A65 FP MC MX BA MT DC CC CG LV	Σ	MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00
	Σ	5.75 UNDE
 		BA 61.9 60.4
GEN SC *	3.7	A65 FP MC MX .57 12.9 3 2,7,8 .61 12.4 2 1,9-11 4=GOOD PROMISE.
BAKE SCORE ***	3 1 2 1	P MC 9 3
LOAF	900	FP 12.9 12.4 OD PRC
JMB I	70 80 65	`
COLOR GRAIN	1	EX 65.1 63.1
CRUMI		WP 13.9 12.9 ME PR(
DOUGH	1 6 6 6	SM 8 18 3=50
i 日	3.50	KW SM WP EX 23.9 8 13.9 65.1 20.9 18 12.9 63.1 PROMISE 3=SOME PROMISE
BAKE ABS	1.90.1	TW 57.9 56.9
STD	1 2 2 9	ALUES ALUES 2=LIT
VARIETY	LEN MARSHALL STOA	DEFICIENCIES TW KW SM WP EX MINOR FAULTING VALUES 57.9 23.9 8 13.9 65.1 MAJOR FAULTING VALUES 56.9 20.9 18 12.9 63.1 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE

TABLE 66

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOTS

		TEST	1000		ING	WHT	WHT	HARD-	WHEAT	FLR	ASH @	FLR	MILL	MILL	MIX	MIX
VARIETY	STD	WT #/BU			E &	ASH	PRO %	NESS	SCORE ***	EXT %	65%EX	PR0	CHAR	SCORE ***	ABS	PAT
	 	59.7		48	2	1.46	15.4	76	4	70.0	0.34	14.4	5	4	63.1	4
COTEAU		58.1	29.5	24	2	1.49	17.1		4	70.6	0.38	16.1	5	4	66.1	4
LEN	တ	59.5	34.6	74	0	1.49	15.7	71	4	71.4	0.34	14.6	2	4.	64.4	9
MARSHALL		59.1	28.6	41		1.51	14.2		m	72.8	0.31	13.2	2	₽'	8.09	3
STOA		0.09	33.2	51	0	1.48	15.4	73	ঝ	70.4	0.31	14.3	5	4	64.0	5

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOTS

	CC CG PA	M I M J I M	
	DC		LV 975 925
S	BA MT	I W	CG 80 50
DEFICIENCIES-	C MX	-	CC 75 50
FICI	EP M	1	DC 6
	TW KW SM WP EX A65 FP MC MX BA	MJ	MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00
.7	Z L	3 3 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BA 61.9 60.4
GENERAL	SCORE ***		2,7,8 1,9-11 (E.
BAKE	SCORE ***	 	MO MO
LOAF	CC	1035 875 1030 970 1010	A65 FP .47 12.9 .51 12.4 4=GOOD PRO
CRUMB CRUMB LOA	GRAIN	 	4
CRUMB	COLOR	1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1	WP 13.9 6 12.9 6
нэлос	CHAR	0 - 0 0 0	SM 8 18 3=S0
MIX DOUGH	TIME CHAR	3.50 4.00 4.00	KW 32.5 29.5 PROMIS
BAKE	ABS	11.4.80.	TW 557.9 5 56.9
	STD	ω	S VALUES VALUES E 2=L]
	VARIETY	ALEX COTEAU LEN MARSHALL STOA	DEFICIENCIES TW KW SM WP EX MINOR FAULTING VALUES 57.9 32.5 8 13.9 69.3 MAJOR FAULTING VALUES 56.9 29.5 18 12.9 67.3 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NEW YORK STATION=ITHACA NURSERY=FIELD PLOTS

TABLE 67		1	 	1 1	1	1	1 1	1 1	 		1 1	1 1 1 1	1 1	1	1	1
VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ	ING SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	FLR **	ASH A 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
SINTON	 	59.5	0	55	2	.7	5.	64	4	1 -	1 4	•	Γ Γ	 - 	1	1 m
HT BRAND 715		60.2		41	2	1.78	14.0	7.8	4	69.1	0.46	13.1	2	4	0.09	m
STOA	വ	0	0	32	7	9.	4.	71	4	0	3	8	2	4	~	9
MARSHALL		0	0	36	2	8	4	77	4	7.	ω.	3	2	4	0	m
LO		2	3	47	0	. 7	5.	84	4	9	٣.	~	2	4	*	4
82080-0-4		2.	30.3	40	7	ω.	5.	67	4	0	4.	3	2	4	0	m
82073-0-6		1.	0.	43	2	. 7	5.	70	4	9	4.	3	2	4	3	4
PF83699		1.		30	2	. 7	4	39	4	9	ω.	2.	ታ	٦	е Ф	2
AMIDON		0	7	43	2	9.	5.	87	4	9	ω.	3	5	4	-	か
GRANDIN		i.	9	65	Н	. 7	5.	74	4	0	4.	4.	5	4	9	9
ND 652		0.	3	53	٦	. 7	5.	77	4	9		4.	2	4	3	2
		Ή.	5.	09	Н	. 7	5.	70	4	0.	4	4	5	4	د	m
NY 83030-2-3		0.	0.	34	-1	. 7	4.	6.5	4	8	· 3	3.	2	4	5	2
64/AL		9.	φ.	63	٦	. 7	4.	79	4	0.	. 4	3	2	4	-	2
NY82080-0-4		-	0.	36	ന	. 7	5.	52	4	0.	4.	3	2	4	2.	2
MG1		φ	8	89	Н	ω.	4	37	4	7	.3	2.	4	2	4	٦
PF839204		59.8	36.4	48	7	. 7	5.	19	4	2.		2.	m	-1	4	-1
CNT 10		61.4	35.6	09	٦	ω.	5.	23	4	5.		3.	က	-1	0	2
PF83781		1	35.0	34	-1	. 7	7.	20	4	9	٣.	5.	2	-1	0	2
MARINGA		59.0	32.9	45	0	. 7	5.	39	4	7.	4	3	m		0	m

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NEW YORK STATION=ITHACA NURSERY=FIELD PLOTS

TABLE 67 (CONT)

	 	BAKE	MIX	DOUGH	СКОМВ	CRUMB	LOAF	BAKE	GENERAL		IQ	DEFICIENCIES	ES		
VARIETY	STD A	ABS &	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE	TW KW SM	WP EX A65	FP MC MX	K BA MT	ם ככ	CG LV
			1												
NOLV			2.75	6	82	80	0	Н	2.7		MI		MI MI		MI MJ
HT BRAND 715	J.		. 5	7	80	85	2	1	3.0				MJ		MJ
STOA	S	2	. 2	6	80	85	2	4	4.0						
MARSHALL	•	0	0.	6	85	85	2	2	3,3				MJ		
ND 594	•	- CTI	. 5	6	80	80	\sim	4	4.0						MI
-0-0		0	. 2	6	80	85	9	۲	3.0				MJ		MJ
82073-0-6		8	0.	6	80	85	0	4	4.0						
PF83699		58.2	2.00	7	80	85	835	1	2.0		MI	IM CM			MJ
AMIDON		-	0.	6	80	85	7	m	3.7				MI		
GRANDIN		Ġ	. 7	6	80	85	03	4	4.0						
ND 652		ω.	3.75	6	80	85	3	4	4.0			MI	ı		
		د	0.	6	80	80	03	4	4.0						MI
-2-		5	0.	6	80	85	02	4	4.0						
64/ALD		7.	0.	7	80	80	0	٦	3.0			MI	I M I		MI MJ
NY82080-0-4		2	. 2	6	80	85	2	٣	3.7			MI			MI
MG1		4.	. 7	7	80	85	8	-1	2.3		MI		J MJ MI		MJ
PF839204		4.	0.	5	80	06	8	Н	2.0		MJ	MI	MJ	MI	MJ
CNT 10		0	. 5	5	85	85	6	7	2.0		MJ		MJ	MI	MJ
PF83781		0	. 7	6	85	80	0	1	2.0		MJ	MJ MJ	MJ		MI
MARINGA		0	0.	5	80	85	5	1	2.0		MJ	MI		MI	ВÜ
EFICIENCIE		TW	3	S	0.	K A	5			MIX TIM	: (MT)	DC		ΓΛ	
MINOR FAULTING V	VALUES	57.9	28.1	ω °	13.9 6	•	12	m c	2,7,8 61.9	5.75-8.00	2.00-2.75	6 75	5 80	929	
=NO PROMIS		`	n had	E 3	E PRO	SE 4=	00D P	OMISE.		ONDER I. I.	00.00 MAYO	r		676	

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=FIELD PLOTS

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	\$15 16	ING SM %	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
	1	64.7	36.1		; -	1 4	11.	7	: : : : : :	t •	1 (2)		1	2		 ~
YECORA ROJO	S	64.7	46.9	73	0	5	13.	8	m		C	•		m		n
		64.1	36.0		0	5	11.	9	-		က	•		2		
KLASIC		65.8	49.3	88	0	4	13.	8	m		\sim	•		2		m
TADINIA		-			4	5	12.	7	٦	•	A.	•		2		
		63.6	43.3		0	9	12.	9	2	•	4			2	•	1
BAKER			•	72	0	5	13.	10	e		3			m	•	2
EXPRESS		63.8	42.6	71	0	9	13.	10	m		က			m	•	7
m			37.7	89	0	4	11.	7	1		3			2	۰	-1
T BR 570			47.4	75	0	5	13.	8	m		3			2		2
BR 57			44.1	75	0	4	14.	_	4	•	C			4		2
BR 573		3		61	0	S	13.	8	2		m	•		4		2
42		62.4	8	99	0	S	13.	7	2		3	•		2		2
84		6.09		30	9	9	13.	00	2		A,	•		2		2
84		5.	9	72	0	5	14.	8	m	•	m	~		4	•	സ
ONEER RB1010		62.7		80	0	9	11.	ഗ	2		4			2		7
IONEER RB1		5.	1.	75	0	ഹ	12.	σ		-	4			-1	_	2
CCOR		2	2.	58	0	9	13.	7	m	•	ਧ	o.		2	_	m ·
H98		3		84	0	S.	14.	8	4	1	m	~		4	_	ব
RI		4	2.	99	0	4	12.	8	2		(*)	\sim		2	-	7
S			5	40	0	S.	12.	σ	Н	~	4			2	_	2
89		4.		58	0	4	12.	8	П	m	(1)			Н	Ċ	7
9		7	7	99	0	u)	12.	O1	7		4.			2		(n)
UC898		65.6		98	0	ш)	13.	10	2		(-)	~		2	٠į.	m (
PH986-12W		64.7	6	8 9	0	4	14.	Oi	4	~i	1.3	m		ጥ		m (
87-1		63.4	1	64	0	п,	12.	01	Н			<u>-</u>		2		7
PH988-131		64.3		65	0	4	13.	01	m			~		5	0 1	m (
CONT BR 5237		64.6	5.	42	0		11.	10	-	Ċ	7	ò		2	-	7
FMC 5187		62.6	5.	38	0	u,	13.	UI	2	œ		<u>-</u>		r-l		M (
56		64.0		63	0		13,	Ψ	m	0		2		2	φ.	2
556		61.7	9	43	0	9.	13,	0.	2	ത		2		2	_	ব
61		63.3		64	0		12.	01	Н	0		ä		2	a	m ·
ORA		64.2	•	69	0	4,	13,		٣	0		H		2	0	ਹਾ ਂ
BLANC09		63.7	6.	50	0	9	13,	~	2	œ		7		٢	5	m ·
IONEER RB101		64.3	36.9	62	0	1.46	11	9.5		71.8	0.34	10.7	5 /	2	57.3	 (
IONEER HBY33		61.3	7.	43	0	•	11	~	П	6		0		2	-	2
PIONEER WBC122		60.09	0.	20	9	•	13		2	_	•	7			N	7

NURSERY=FIELD PLOTS 1991 CROP STATION-IMPERIAL VALLEY SPRING WHEAT SAMPLES STATE=CALIFORNIA QUALITY DATA OF

TABLE 68 (CONT)

2

M

MJ

MA

MU

MJ

MUM

HHHH HHHHHHH HWWHW CG HI HHHHHH S H MJ EV 800 750 EM DM DM DM E C E DC CUCCUCHHICC HHH H MT I I THHH MI 80 HU CH -DEFICIENCIES 75 75 50 XX MC DC 6 FP THE TERMENT THE COLOR CHUUUUUUUUU E E E M M M M M M MH A65 H HH MJ MJ MI H EX WP MUM SM X MAMM MI GENERAL SCORE *** SCORE *** BAKE 11112122112221122122211221222 580 9855 7735 7735 7715 8855 8875 8875 7715 7725 7740 8875 8875 8875 7740 7750 8875 8875 7775 7775 7770 8875 8875 8875 7775 7775 8875 8775 8 LOAF VOL CRUMB GRAIN 7330 7450 CRUMB COLOR DOUGH CHAR 11.75 22.25 24.44 27.00 27.25 27 TIME MIX 555.4 561.1 56 BAKE ABS 8 S DEFICIENCIES UC 842 UC 844 UC 849 PIONEER RB10104 PIONEER RB10161 YECORA ROJO 90W YECORA BLANCO90 PIONEER RB10130 HBY334 WBC122 CONT BR 5702 CONT BR 5710 CONT BR 5738 CONT BR 5237 ROJO FMC BR 5144 TANORI 87W UC895 UC896 UC897 UC898 PH986-12W VARIETY PH988-131 FMC 5187 FMC 5680 FMC 5569 FMC 6128 ACCORD PH986-61 PIONEER | EXPRESS ANZA **TADINIA** KLASIC SERRA BAKER VOLOY

MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00 61.9 2,7,8 1,9-11 A65 FP MC .47 12.9 3 2 .51 12.4 2 1 .4=GOOD PROMISE. SM WP EX 8 13.9 69.4 18 12.9 67.4 3=SOME PROMISE 4 MINOR FAULTING VALUES 57.9 44.8
MAJOR FAULTING VALUES 56.9 41.8
*** 1=NO PROMISE 2=LITTLE PROMISE

