Package 'FastLORS'

January 4, 2019

Type Package
Title Joint Modeling for eQTL Mapping in R
Version 0.1.0
Author Jacob Rhyne, Jessie Jeng, and Eric Chi
Maintainer Jacob Rhyne < jdrhyne 2@ncsu.edu>
Description This package applies FastLORS to perform eQTL mapping for gene expression and SNP data. It can also be used to apply the LORS method of Yang et al. (2013). The package also contains two pre-screening methods to reduce the number of SNPs before joint modeling: (1) HC-Screening: a method that selects the top SNPs based on their higher criticism statistics (Rhyne et al. 2018) and (2) LORS-Screening: which fits a marginal estimate and selects the top SNPs per each gene.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports glmnet, MASS, utils, methods, stats
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
Fast_LORS Fast_LORS_Tuning GetMaxRho HC_Screening InitialEst linspace logspace LORS0 LORS2 LORSscreen

Fast_LORS

Index	SVT	19 20
	svd_st	
	survival	18
	softImpute	
	S	
	Run_LORS_Screening	
	Run_LORS	14
	prox_1	
	ParamTuneParallel	
	LORS_Screen_Parallel	11

Fast_LORS

Fast_LORS

Description

 $Fast_LORS$ is a function for solving the LORS optimization problem in Can Yang et al. (2013) through the proximal gradient method

Usage

```
Fast_LORS(Y, X, rho, lambda, maxiter = 5000, eps = 2.2204e-16,
  tol = 1e-04, verbose = FALSE)
```

Arguments

Υ	gene expression matrix
Χ	matrix of SNPs
rho	parameter for enforcing sparsity of coefficient matrix
lambda	parameter for enforcing low-rank structure of hidden factor matrix
maxiter	maximum number of iterations
eps	constant used when checking the convergence. Ensures no division by 0.
tol	tolerance level for convergence
verbose	chooses whether details should be printed to console. Default is FALSE.

Value

В	The estimated coefficients
mu	The estimated intercept
L	The estimated matrix of hidden factors
f_val_vec	The objective function values
res_vec	The relative change in objective function values
iter	The number of iterations

Fast_LORS_Tuning 3

Examples

```
##Example
## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X \leftarrow matrix(rbinom(n*p,1,0.5),n,p)
L \leftarrow matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y <- X %*% B + L + E
rho <- runif(1,3,5)
lambda <- runif(1,3,5)
## Usage
Fast_LORS(Y, X, rho, lambda)
```

Fast_LORS_Tuning

Fast_LORS_Tuning

Description

Fast_LORS_Tuning is a function used perform parameter tuning using FastLORS instead of LORS

Usage

```
Fast_LORS_Tuning(Y, X, rho, lambda, Training, Validation, maxiter = 5000,
  eps = 2.2204e-16, tol = 1e-04, B = NULL, mu = NULL, L = NULL)
```

Arguments

Υ gene expression matrix matrix of SNPs Χ rho parameter used to enforce sparsity of B lambda parameter used to enforce low-rank structure of L Boolean matrix for training data Training Validation Boolean matrix for validation data maxiter maximum number of iterates eps

a small constant to prevent dividing by zero when checking relative change in

function values.

4 GetMaxRho

tol	tolerance threshold for convergence
В	an estimate for matrix of coefficients. Default is NULL.
mu	an estimate for the intercept. Default is NULL.
L	an estimate for the hidden factors Default is NULL.

Value

B matrix of coefficients
L matrix of hidden factors
mu vector of intercepts

Err Residual sum of squares of validation data

f_vals Objective function values

res_vec Relative change in objective function values

iter Number of iterations

GetMaxRho GetMaxRho

Description

GetMaxRho is a function used to determine the maximum value as a candidate for rho. See the parmeter tuning section of Yang et al. (2013) Note: This function is adapted from the LORS MATLAB implementation

Usage

```
GetMaxRho(X, Y, L, Omega0)
```

Arguments

X matrix of SNPsY gene expression matrix

matrix of hidden factors

Omega0 Boolean matrix of observed entries

Value

MaxRho The maximum value of rho to be used in parameter tuning

```
##Example

## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
```

HC_Screening 5

```
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))
B[activeSNPs[i], genes_influenced] <- 2
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E
Omega0 <- !(is.na(Y))

## Usage
GetMaxRho(X, Y, L, Omega0)</pre>
```

HC_Screening

HC_Screening HC_Screening is a function to apply the HC-Screening screening method of Rhyne et al. (2018) (In progress) Note: HC-Screening ranks SNPs by their higher criticism statistics and selects the top n, where n is the number of samples

Description

HC_Screening HC_Screening is a function to apply the HC-Screening screening method of Rhyne et al. (2018) (In progress) Note: HC-Screening ranks SNPs by their higher criticism statistics and selects the top n, where n is the number of samples

Usage

```
HC_Screening(Y, X)
```

Arguments

Y gene expression matrix X matrix of SNPs

Value

selectedSNPs The SNPs selected by HC-Screening

```
## Example

## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
```

6 InitialEst

```
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))
B[activeSNPs[i], genes_influenced] <- 2
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E

## Usage
HC_Screening(Y, X)</pre>
```

InitialEst

InitialEst InitialEst is a function to build an initial estimate for B

Description

InitialEst InitialEst is a function to build an initial estimate for B

Usage

```
InitialEst(Y, X, lambda = NULL)
```

Arguments

Y gene expression matrix
X matrix of SNPs
lambda tuning parameter

Value

B An initial estimate of the coefficient matrix

```
## Example
## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
   genes_influenced <- sort(sample(c(1:ncol(B)),5))
   B[activeSNPs[i], genes_influenced] <- 2</pre>
```

linspace 7

```
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E
Init_est <- InitialEst(Y,X)</pre>
```

linspace

linspace

Description

linspace is a function to space a sequence linearly from x1 to x2

Usage

```
linspace(x1, x2, n = 100)
```

Arguments

x1 a starting point
x2 an ending point
n length of sequence

Value

a linear spaced sequence from x1 to x2 of length n

Examples

```
linspace(100,10,5)
```

logspace

logspace

Description

logspace is a function to space a sequence evenly on the log scale from x1 to x2

Usage

```
logspace(x1, x2, n = 50)
```

Arguments

x1 a starting point
x2 an ending point
n length of sequence

LORS0

Value

a sequence from x1 to x2 of length n spaced evenly on the log scale

Examples

```
##Example
logspace(100,10,5)
```

LORS0

LORS0

Description

LORS0 is a function for solving the LORS optimization problem through the method described in Can Yang et al. (2013). This function is adapted from the authors MATLAB implementation

Usage

```
LORS0(Y, X, rho, lambda, maxiter = 1000, eps = 2.2204e-16, tol = 1e-04, verbose = FALSE)
```

Arguments

Υ	gene expression matrix

X matrix of SNPs

rho parameter for enforcing sparsity of coefficient matrix

lambda parameter for enforcing low-rank structure of hidden factor matrix

maxiter maximum number of iterations

eps constant used when checking the convergence. Ensures no division by 0.

tol tolerance level for convergence

verbose chooses whether details should be printed to console. Default is FALSE.

Value

В	The estimated coefficients
mu	The estimated intercent

L The estimated matrix of hidden factors

f_val_vec The objective function values

res_vec The relative change in objective function values

LORS2

Examples

```
##Example
#' ## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X \leftarrow matrix(rbinom(n*p,1,0.5),n,p)
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y \leftarrow X \% + B + L + E
rho <- runif(1,3,5)
lambda <- runif(1,3,5)</pre>
LORS0(Y, X, rho, lambda)
```

LORS2

LORS2

Description

LORS2 is a function used in parameter tuning in LORS. See the parameter tuning section described in Can Yang et al. (2013). This function is adapted from the authors MATLAB implementation

Usage

```
LORS2(Y, X, L, Omega1, Omega2, B, rho, lambda, tol, maxIter = 1000)
```

Arguments

Υ	gene expression matrix
Χ	matrix of SNPs
L	matrix of hidden factors
Omega1	Boolean matrix for training data
Omega2	Boolean matrix for validation data
В	a matrix of coefficients for the SNPs
rho	parameter for enforcing sparsity of coefficient matrix
lambda	parameter for enforcing low-rank structure of hidden factor matrix
tol	tolerance level for convergence
maxIter	the maximum number of iterations

10 LORSscreen

Value

B The estimated coefficients

mu The estimated intercept

L The estimated matrix of hidden factors

Err The residual sum of squares on the validation set

Examples

```
##Example
#' ## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y \leftarrow X \% \% B + L + E
Omega0 <- !(is.na(Y))</pre>
mask \leftarrow matrix(runif(nrow(Y)*ncol(Y)) > 0.5, nrow = nrow(Y), ncol = ncol(Y))
Omega1 <- Omega0 & mask
Omega2 <- Omega0 & !mask
rho <- runif(1,3,5)
lambda <- runif(1,3,5)
tol <- 1e-4
## Usage
LORS2(Y, X, L, Omega1, Omega2, B, rho, lambda, tol)
```

LORSscreen

LORSscreen LORSscreen is a function to solve the LORS-Screening optimization problem in Yang et al. (2013)

Description

LORSscreen LORSscreen is a function to solve the LORS-Screening optimization problem in Yang et al. (2013)

```
LORSscreen(Y, X, lambda, tol)
```

Arguments

```
Y gene expression matrix
X a SNP
lambda tuning parameter
tol a tolerance level
```

Value

B the estimated coefficients for the SNP L the estimated hidden factors mu the estimate for the intercept

Examples

```
##Example
## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y <- X %*% B + L + E
## Usage to build initial estimate
Bhat_initial <- c()</pre>
for(SNP_col in 1:ncol(X)){
   X1 \leftarrow matrix(X[,SNP\_col], ncol = 1)
   LS <- LORSscreen(Y, X1, lambda = 0.1, 0.01)
   B_row <- LS$B
   Bhat_initial <- rbind(Bhat_initial, B_row)</pre>
}
```

LORS_Screen_Parallel LORS_Screen_Parallel is a function used to run LORS-Screening on a subset of the columns of X. Can be used to perform LORS-Screening in parallel on a cluster.

Description

LORS_Screen_Parallel LORS_Screen_Parallel is a function used to run LORS-Screening on a subset of the columns of X. Can be used to perform LORS-Screening in parallel on a cluster.

12 ParamTuneParallel

Usage

```
LORS_Screen_Parallel(Y, X, chunk)
```

Arguments

Y gene expression matrix

X matrix of SNPs

chunk a group of columns to run the screening on. Done in batches of 1000.

Value

myB matrix of coefficients from LORS-Screening lambda tuning parameter used in LORS-Screening

Examples

```
##Example
## Generate some data
n <- 20
p <- 50
q <- 30
k <- 4
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y \leftarrow X \% \% B + L + E
## Usage
LORS_Screen_Parallel(Y, X, chunk = 1)
```

ParamTuneParallel

ParamTuneParallel ParamTuneParallel is a function used to run the parameter tuning of either FastLORS or LORS in parallel

Description

ParamTuneParallel ParamTuneParallel is a function used to run the parameter tuning of either FastLORS or LORS in parallel

```
ParamTuneParallel(Y, X, fold, seed = 123)
```

prox_1 13

Arguments

Y gene expression matrix

X matrix of SNPs

fold fold in cross-validation

seed random seed used to create training and validation sets

Value

myParams lambda and a sequence of rho values to use in parameter tuning

Training Data
Validation Validation Data

Examples

```
##Example
## Generate some data
n <- 20
p <- 50
q <- 30
k <- 4
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
L \leftarrow matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y \leftarrow X \% \% B + L + E
## Usage
ParamTuneParallel(Y, X, fold = 1)
```

Description

prox_1 is the soft-thresholding function. Let the entries of b be b_j. The function subtracts tau from b_j for b_j > tau, sets b_j to 0 where $abs(b_j) < tau$, and adds tau where $b_j < -tau$.

```
prox_1(b, tau)
```

Run_LORS

Arguments

b a matrix or vector

the value to to apply soft thresholding with

Value

prox_b the soft-thresholding function applied to b with threshold tau

rankHC

rankHC rankHC is a function used to rank a Bhat matrix by higher criticism statistics

Description

rankHC rankHC is a function used to rank a Bhat matrix by higher criticism statistics

Usage

```
rankHC(Bhat_standardized)
```

Arguments

Bhat_standardized

a standardized coefficient matrix

Value

index The indices of the sorted Higher Criticism values

HC_vec The higher criticism statistics for the standardized Bhat matrix

Run_LORS Run_LORS

Description

Run_LORS is a function used to run either FastLORS or LORS

```
Run_LORS(Y, X, method = "FastLORS", screening = "LORS-Screening",
  tune_method = "FastLORS", seed = 123, maxiter = 10000,
  eps = 2.2204e-16, tol = 1e-04, cross_valid = TRUE)
```

Run_LORS 15

Arguments

Y gene expression matrix

X matrix of SNPs

method chooses with modeling method to run

screening Either "LORS-Screening", "HC-Screening", or "None". The default method,

LORS-Screening, is recommended if the number of SNPs is large. HC-Screening of Rhyne et al. (2018) is under development but is included here as an option.

tune_method chooses whether FastLORS should be used for parameter tuning or the original

LORS procedure should be used. Default is FastLORS

seed random seed to be used for setting training and validation set. Default is 123.

maxiter maximum number of iterations

eps constant used when checking the convergence. Ensures no division by 0.

tol tolerance level for convergence

cross_valid chooses whether cross-validation should be used in parameter tuning. Default is

TRUE.

Value

LORS_Obj or Fast_LORS_Obj

A list produced from LORS or FastLORS containing (1) B: estimate of the coefficient matrix (2) L: estimate of the matrix of hidden factors (3) mu: estiamte of the vector of intercepts (4) f_val_vec: objective function values and (5) res_vec:

relative change in objective function values

selectedSNPs The SNPs selected by the screening method screening_time The time (in seconds) spent on screening step

param_time The time (in seconds) spent on the parameter tuning step model_time The time (in seconds) spent on the joint modeling step

total_time The time (in seconds) spent on the screening, parameter tuning, and joint mod-

eling steps

rho The value of rho chosen through parameter tuning lambda The value of lambda chosen through parameter tuning

```
##Example

## Generate some data
n <- 20
p <- 50
q <- 30
k <- 4
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
```

```
B[activeSNPs[i], genes_influenced] <- 2
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E

## Usage
Run_LORS(Y, X, method = "FastLORS")</pre>
```

Run_LORS_Screening

Run_LORS_Screening Run_LORS_Screening is a function to to apply the LORS-Screening Algorithm in Yang et al. (2013)

Description

Run_LORS_Screening Run_LORS_Screening is a function to to apply the LORS-Screening Algorithm in Yang et al. (2013)

Usage

```
Run_LORS_Screening(Y, X, lambda = NULL)
```

Arguments

Y gene expression matrix
X matrix of SNPs
lambda tuning parameter

Value

selectedSNPs the SNPs selected by LORS-Screening

```
##Example
## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)</pre>
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))</pre>
activeSNPs <- sort(sample(c(1:nrow(B)), 20))</pre>
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))</pre>
B[activeSNPs[i], genes_influenced] <- 2</pre>
E <- matrix(rnorm(n*q),n,q)</pre>
Y <- X %*% B + L + E
selectedSNPs <- Run_LORS_Screening(Y, X)</pre>
```

S 17

S	S S is a function used internally in rankHC. It calculates empirical
	cdf's.

Description

S S is a function used internally in rankHC. It calculates empirical cdf's.

Usage

```
S(t, my_matrix)
```

Arguments

t cutoff value of empirical cdf

my_matrix a coefficient matrix

Value

The empirical distribution function of the coefficients evaluated at t

softImpute		
	softImpute	softImpute

Description

softImpute is a function from Mazudmer et al. (2010). It solves the problem min $\| X - Z \|$ _Omega + alpha $\| Z \|$ _Nulear and is used in parameter tuning for LORS. Note: This function is adapted from the LORS MATLAB implementation

Usage

```
softImpute(X, Z, Omega0, Omega1, Omega2, alpha0, maxRank)
```

Arguments

Χ	a (possibly) incomplete matrix
Z	the target matrix

Omega0 Boolean matrix of observed entries
Omega1 Boolean matrix of training entries
Omega2 Boolean matrix of validation entries

alpha0 initial tuning parameter

maxRank maximum rank of the solution

18 survival

Value

Z Estimate of the target matrix

Err Squared Error of the difference between X and Z on the validation set

rank_alpha The rank of the estimates

znorm The sum of the soft-thresholded singular values of the estimates

Alpha The tuning parameters used

standardizeBhat standardizeBhat is a function used to standardize

a coefficient matrix

Description

standardizeBhat standardizeBhat is a function used to standardize a coefficient matrix

Usage

```
standardizeBhat(Y, X, Bhat)
```

Arguments

Y gene expression matrix

X matrix of SNPs

Bhat a coefficient matrix

Value

A standardized estimate of the coefficient matrix.

survival survival is a function used internally in rankHC. It calcu-

lates the survival function of the standard normal distribution

Description

survival survival is a function used internally in rankHC. It calculates the survival function of the standard normal distribution

Usage

```
survival(t)
```

Arguments

t a cutoff value

Value

s 1 - $Pr(Z \le t)$ where Z is a standard normal random variable

svd_st 19

svd_st svd_st

Description

 svd_st is a function for performing soft-thresholded singular value decomposition of a matrix X

Usage

```
svd_st(X, lambda)
```

Arguments

X a matrix

lambda the value to to apply soft thresholding with

Value

L the soft-thresholded singular value decomposition of X.

SVT SVT

Description

SVT is a function to perform soft-thresholded singular value decomposition. It is used to get an initial estimate for L. Note: This function is adapted from the LORS MATLAB implementation

Usage

```
SVT(Y, lambda)
```

Arguments

Y gene expression matrix lambda a tuning parameter

Value

L the singular value decomposition of Y, soft-thresholded with lambda.

```
##Example
set.seed(123)

Y <-matrix(rnorm(50*100, 7,1), nrow = 50, ncol = 100)
lambda <- runif(1,3,5)
SVT(Y, lambda)</pre>
```

Index

```
Fast_LORS, 2
{\tt Fast\_LORS\_Tuning, \textcolor{red}{3}}
GetMaxRho, 4
HC_Screening, 5
InitialEst, 6
linspace, 7
logspace, 7
LORS0, 8
LORS2, 9
LORS_Screen_Parallel, 11
LORSscreen, 10
ParamTuneParallel, 12
prox_1, 13
rankHC, 14
Run_LORS, 14
{\tt Run\_LORS\_Screening}, {\tt 16}
S, 17
softImpute, 17
\verb|standardizeBhat|, 18|
survival, 18
svd_st, 19
SVT, 19
```