1 Planes in \mathbb{P}^4

It is interesting to me to consider configurations of planes in \mathbb{P}^4 . Let us start by considering the Chow ring $A = A(\mathfrak{Gr}(3,5))$.

First note that $A \cong \mathbb{Z}^{10}$, we have

and the following geometric interpretations of each Schubert class:

$\Sigma_{0,0,0}$	All planes
$\Sigma_{1,0,0}$	Planes touching a given line ℓ
$\Sigma_{1,1,0}$	Planes whose intersection with a given plane π is at least some line
$\Sigma_{2,0,0}$	Planes containing a given point p
$\Sigma_{1,1,1}$	Planes in a given three perplane τ
$\Sigma_{2,1,0}$	Planes intersecting a given plane π at at least a line and contain a given
	point $p \in \pi$
$\Sigma_{2,1,1}$	Planes contained in a given three perplane τ and contain a given point
	$p \in \tau$
$\Sigma_{2,2,0}$	Planes containing a given line ℓ
$\Sigma_{2,2,1}$	Planes contained in a given three perplane τ and contain a given line $\ell \subseteq \tau$
$\Sigma_{2,2,2}$	One plane

We also have the following multiplication table:

×	σ_0	σ_1	$\sigma_{1,1}$	σ_2	$\sigma_{1,1,1}$	$\sigma_{2,1}$	$\sigma_{2,1,1}$	$\sigma_{2,2}$	$\sigma_{2,2,1}$	$\sigma_{2,2,2}$
σ_0	σ_0	σ_1	$\sigma_{1,1}$	σ_2	$\sigma_{1,1,1}$	$\sigma_{2,1}$	$\sigma_{2,1,1}$	$\sigma_{2,2}$	$\sigma_{2,2,1}$	$\sigma_{2,2,2}$
σ_1		$\sigma_{1,1} + \sigma_2$	$\sigma_{1,1,1} + \sigma_{2,1}$	$\sigma_{2,1}$	$\sigma_{2,1,1}$	$\sigma_{2,1,1} + \sigma_{2,2}$	$\sigma_{2,2,1}$	$\sigma_{2,2,1}$	$\sigma_{2,2,2}$	0
$\sigma_{1,1}$			$\sigma_{2,1,1} + \sigma_{2,2}$	$\sigma_{2,1,1}$	$\sigma_{2,2,1}$	$\sigma_{2,2,1}$	$\sigma_{2,2,2}$	0	0	0
σ_2				$\sigma_{2,2}$	0	$\sigma_{2,2,1}$	0	$\sigma_{2,2,2}$	0	0
$\sigma_{1,1,1}$					$\sigma_{2,2,2}$	0	0	0	0	0
$\sigma_{2,1}$						$\sigma_{2,2,2}$	0	0	0	0
$\sigma_{2,1,1}$							0	0	0	0
$\sigma_{2,2}$								0	0	0
$\sigma_{2,2,1}$									0	0
$\sigma_{2,2,2}$										0

According to my (possibly erroneous) calculations, in $\mathbb{P}^4_{\mathbb{F}_2}$ we have the following sizes of Schubert cycles:

$$\#\Sigma_{0,0,0} = 155$$

$$\#\Sigma_{1,0,0} = 91$$

$$\#\Sigma_{1,1,0} = 43$$

$$\#\Sigma_{2,0,0} = 35$$

$$\#\Sigma_{1,1,1} = 15$$

$$\#\Sigma_{2,1,0} = 19$$

$$\#\Sigma_{2,1,1} = 7$$

$$\#\Sigma_{2,2,0} = 7$$

$$\#\Sigma_{2,2,1} = 3$$

$$\#\Sigma_{2,2,2} = 1$$

Note
$$\#\Sigma_0 = \mathfrak{Gr}(3,5) = 155 = \frac{\frac{31*30*28}{6}}{\frac{7*66*4}{6}}$$
.

Question: Can we cover $\mathbb{P}^4_{\mathbb{F}_2}$ with planes that pairwise intersect at points?

Question: Can we come up with a configuration $(31_?,?_7)$ covering $\mathbb{P}^4_{\mathbb{F}_2}$? Possibly a $(31_?,31_7)$.

Unfortunately, I think that, given a point $p \in \mathbb{P}^4_{\mathbb{F}_2}$, a maximal set of planes π_i that contain p and intersect each other only at p (that is, $\pi_i \cap \pi_j = \{p\}$) has size 5. Think of it like this: take a threeperplane τ that does not contain p. Then every plane containing p must intersect τ at a line. So we want to find a maximal set of lines in $\tau \cong \mathbb{P}^3_{\mathbb{F}_2}$ that are mutually-skew. That is a spread in $\mathbb{P}^3_{\mathbb{F}_2}$, which is well-known to consist of 5 lines.

Therefore in that $(31_7, 31_7)$ configuration, we must attain planes that meet at lines: every set of seven planes containing a point p must have planes whose intersection is a line.

We could thus make a "spread" of 5 planes in $\mathbb{P}^4_{\mathbb{F}_2}$ that all intersect at the same point.

New stuff as of 7 March 2025

We can also find how many Schubert cycles there are of a given type. For example $\#\{\Sigma_0\}=1$ since there is just one Σ_0 (all of $\mathfrak{Gr}(3,5)$). Similarly, $\#\{\Sigma_{2,2,2}\}=155$ since

each $\Sigma_{2,2,2}$ is a point in $\mathfrak{Gr}(3,5)$, which has 155 points. Enumerating these is really just a matter of enumerating the flags containing a combinations of a given point, line, plane, or threeperplane.

$$\begin{split} \#\{\Sigma_{0,0,0}\} &= 1 \\ \#\{\Sigma_{1,0,0}\} &= 155 = \#\mathfrak{Gr}(2,5) \\ \#\{\Sigma_{1,1,0}\} &= 155 = \#\mathfrak{Gr}(3,5) \\ \#\{\Sigma_{2,0,0}\} &= 31 = \#\mathbb{P}_2^4 \\ \#\{\Sigma_{1,1,1}\} &= 31 = \#\mathfrak{Gr}(4,5) \\ \#\{\Sigma_{2,1,0}\} &= 1085 = \#\mathfrak{Gr}(3,5) * \#\mathbb{P}_2^2 \\ \#\{\Sigma_{2,1,1}\} &= 465 = \#\mathfrak{Gr}(4,5) * \#\mathbb{P}_2^3 \\ \#\{\Sigma_{2,2,0}\} &= 155 = \#\mathfrak{Gr}(2,5) \\ \#\{\Sigma_{2,2,1}\} &= 1085 = \#\mathfrak{Gr}(4,5) * \#\mathfrak{Gr}(2,4) \\ \#\{\Sigma_{2,2,2}\} &= 155 = \#\mathfrak{Gr}(3,5) \end{split}$$

2 Planes in \mathbb{P}^5

Now let's look at planes in \mathbb{P}^5 . We have the Chow ring $A = A(\mathfrak{Gr}(3,6))$. Note that $\dim \mathfrak{Gr}(3,6) = 3(6-3) = 9$, and $\operatorname{rank} A(\mathfrak{Gr}(3,6)) = \binom{6}{3} = 20$.

And the following geometric interpretations of each Schubert class:

$\Sigma_{0,0,0}$	All planes
$\Sigma_{1,0,0}$	Planes touching a given plane π
$\Sigma_{1,1,0}$	Planes whose intersection with a given three perplane τ is at least some
	line
$\Sigma_{2,0,0}$	Planes touching a given line ℓ
$\Sigma_{1,1,1}$	Planes contained in a given four perplane φ
$\Sigma_{2,1,0}$	Planes intersecting a given three perplane τ at at least a line and touch a
	given line $\ell \in \tau$
$\Sigma_{3,0,0}$	Planes containing in a given point p
$\Sigma_{2,1,1}$	Planes contained in a four perplane φ and that touch a given line $\ell \subseteq \varphi$
$\Sigma_{2,2,0}$	Planes whose intersection with a given plane π is at least a line
$\Sigma_{3,1,0}$	Planes whose intersection with a given three perplane τ is at least a line
	and who contain a given point $p \in \tau$
$\Sigma_{2,2,1}$	Planes contained in a given four perplane φ and whose intersection with a
	given plane $\pi \subseteq \varphi$ is at least a line
$\Sigma_{3,1,1}$	Planes contained in a given four perplane φ and contain a given point $p \in \varphi$
$\Sigma_{3,2,0}$	Planes whose intersection with a given plane π is at least some line $\ell \subseteq \pi$
	and who contain a given point $p \in \pi$
$\Sigma_{2,2,2}$	Planes contained in a given three perplane τ
$\Sigma_{3,2,1}$	Planes contained in a given four perplane φ and whose intersection with
	a given plane $\pi \subseteq \varphi$ is at least some line $\ell \subseteq \pi$ and who contain a given
	point $p \in \pi$
$\Sigma_{3,3,0}$	Planes that contain a given line ℓ
$\Sigma_{3,2,2}$	Planes contained in a given three perplane τ and whose intersection with
	a given plane $\pi \subseteq \tau$ is at least some line $\ell \subseteq \pi$ and who contain a given
	point $p \in \pi$
$\Sigma_{3,3,1}$	Planes contained in a given four perplane φ and contain a given line $\ell \subseteq \varphi$
$\Sigma_{3,3,2}$	Planes contained in a given three perplane τ and contain a given line $\ell \subseteq \tau$
$\Sigma_{3,3,3}$	One plane

This time the multiplication table is too large to fit into the document. But one can test the products by using the SchurRings package with the following commands:

i1: loadPackage "SchurRings"

i2: S=schurRing(QQ,s,3)

And then multiply the desired s_{i_1,j_1,k_1} 's and s_{i_2,j_2,k_2} 's together. Just remember to interpret any s whose subscript contains a number greater than 3 as a 0 because those are invalid Schubert classes in this particular Grassmannian of $\mathfrak{Gr}(3,6)$.

And the following count of the sizes of each Schubert cycles over \mathbb{F}_2 .

$$\#\Sigma_{0,0,0} = 1395$$

$$\#\Sigma_{1,0,0} = 883$$

$$\#\Sigma_{1,1,0} = 435$$

$$\#\Sigma_{2,0,0} = 435$$

$$\#\Sigma_{1,1,1} = 155$$

$$\#\Sigma_{2,1,0} = 243$$

$$\#\Sigma_{3,0,0} = 155$$

$$\#\Sigma_{2,1,1} = 91$$

$$\#\Sigma_{2,2,0} = 99$$

$$\#\Sigma_{3,1,0} = 91$$

$$\#\Sigma_{2,2,1} = 43$$

$$\#\Sigma_{3,1,1} = 35$$

$$\#\Sigma_{3,1,1} = 35$$

$$\#\Sigma_{3,2,1} = 19$$

$$\#\Sigma_{3,2,2} = 15$$

$$\#\Sigma_{3,2,1} = 19$$

$$\#\Sigma_{3,3,0} = 15$$

$$\#\Sigma_{3,3,1} = 7$$

$$\#\Sigma_{3,3,2} = 3$$

$$\#\Sigma_{3,3,3} = 1$$

Note: $\#\Sigma_{1,1,0}$ can be calculated either by taking the 35 lines in τ times the 48 points in $\mathbb{P}^5 \setminus \tau$, dividing by the four points of the plane not in τ , and then adding the 15 planes in τ , or by dualizing: the set of planes whose join with a given line ℓ is at most some three perplane; this is simply the planes that touch ℓ , so the dual of $\Sigma_{1,1,0}$ is $\Sigma_{2,0,0}$.

For $\#\Sigma_{2,1,0}$ we can take the 19 lines in τ touching ℓ , times the 48 points in $\mathbb{P}^5 \setminus \tau$, dividing by the four points of the plane not in τ , and then adding the 15 planes in τ (each plane in τ necessarily touches ℓ).

For $\#\Sigma_{2,2,0}$ we can take the 14 planes containing $\ell \subseteq \pi$ that are **not** equal to π itself, multiplying by the 7 lines of π , and then adding the plane π back in.

$$883 = (155 - 15 - 15 - 15 + 2) * 7 + 99.$$