Principles of Strength Training and Conditioning

Training Principles

- The success and extent of training outcomes are dependent on the following principles
 - Progressive overload
 - Specificity
 - Variation (progression model)
 - Individualization
 - Recovery / De-loading

Progressive Overload

- Accommodation
 - Biological law where the response of a biological system to a given constant stimulus decreases over time
 - Can be viewed both as a positive and a negative outcome
- Progressive overload: gradual increase in stress placed on the body during training

Progressive Overload

- In principle, there are two ways to produce an overload
 - Qualitative selecting difficult/complex exercises
 - Quantitative –varying training load and goal
- Options:
 - Exercise complexity
 - e.g. squat: back \rightarrow front \rightarrow overhead
 - Resistance / load
 - Sets | Repetitions | Rest intervals
 - Training frequency
 - Lifting velocity with submaximal loads may be increased once technique is mastered

Progressive Overload

- Options (con't)
 - Training methodology, examples:
 - Rest/pauses (aka cluster sets): short 10-20s between single or a group of repetitions
 - Drop sets: performing successive sets to failure w/ decreasing resistance
 - Iso-dynamic contrasts: 3-5 s pause at the midpoint of a rep (reversal from ECC-CON)
 - Tempo contrast: performing some reps (odd) slowly and some (even) quickly
 - Improve mental focus:
 - Creating an efficient nervous system
 - Mental aspect (mind-body link) should not be dismissed

- All training adaptations are largely specific to the stimulus applied
 - Fitness enthusiast: look good and move well while being healthy
 - Athletes: focus is on field performance
- Specificity as an issue of transfer may be Positive | Negative | Neutral
- Specificity of adaptation increases with the level of fitness for both athletes and fitness enthusiasts
 - For beginners almost all exercises are useful and yield positive transfer
 - For advanced individuals the transfer is lower
 - Increases in strength and power are not as critical as the mastery of skill itself

Muscle Action

- ECC, CON & ISOM actions increase muscle strength
- Strength gains are specific to the type of muscle action trained

Range of Motion

- Partial ROM training strength increases are specific to the joint angles trained
- Partials may be warranted where the demand for high force production is needed
 - Primarily for sport application purposes

- Velocity of Movement
 - Greatest strength increases take place at or near training velocity
 - Isokinetic experiments
 - Some carryover effect above and below training velocity
 - Moderate velocity (180 240°/sec) produces greatest strength increase across all testing velocities
 - Greatest carryover effects seen in untrained or moderately trained individuals
 - Advanced trainees benefit greatly from training at a velocity specific to their needs
 - Strength/power athletes benefit most from high velocity movements

- Muscle Groups Trained
 - Adaptations occur mainly in muscle groups that are trained
 - Lower body training upper body training
 - Training all major muscle groups is important for:
 - Attaining muscle balance
 - Reducing risk of injuries
 - Optimizing performance

- Energy Metabolism
 - Adaptations to training are specific to energy system involvement
 - Energy systems adapt mostly by increasing:
 - Enzyme activity
 - Substrate storage/usage
 - Interaction between volume, intensity, repetition velocity, & rest-interval length is critical to eliciting acute metabolic responses that target different systems

Movement Patterns

- Free weights versus machines
 - Free weight duplicate actual movement patterns more closely than machines
- Open- vs. closed-chain kinetic exercises
 - Extremity free to move against load vs fixed
 - Upper body typically functions in an open-chain kinetic system
 - Lower body typically functions in a closed-chain kinetic system
 - Questionable value of liable surface exercises for strength and power training

Movement Patterns

- Unilateral Training
 - · Cross education: strength gain carried over to opposite limb
 - Strength increase of ~7-8% or about ½ of the trained side
 - Useful when a limb is injured
- Bilateral Deficit
 - Max force produced in bilateral contraction is less than the sum of limbs contracting unilaterally
 - Deficit ranges approximately 2-20% in upper limbs
 - Deficit ranges approximately 10-25% in lower limbs

- Movement Patterns
 - Movement-specific training
 - Overweight/underweight implements should not exceed 5% 20% of normal load for throwing athletes
 - Alter movement mechanics

Progressive Overload + Specificity = Variation

- Alterations to program variables is key to providing optimal training stimulus
 - Human body adapts rapidly to stress
 - Variation is critical for subsequent adaptations to take place
 - Systematic variation of volume & intensity is most effective for long-term progression
- Training status dictates the pattern of progression for a fitness component
 - Rate & magnitude of progression decrease with higher levels of conditioning
 - Plateaus near genetic ceiling

Progressive Overload + Specificity = Variation

- General-to-Specific Model of Progression
 - Untrained people
 - Less-specific training is sufficient
 - No need for complexity
 - Training characterized by:
 - Learning proper technique
 - Building conditioning base
 - Advanced training targeting progression is more complex & requires greater variation specific to training goals

Principle of Individualization

- All individuals respond differently to training
- Factors involved in individual level of adaptation:
 - Genetics
 - Training status
 - Nutritional intake
 - Program
- The most effective programs are those designed to meet individual needs

Performance response to a given training stimulus

Principle of Recovery / De-loading

- Detraining: near or complete cessation of training
 - Loss of adaptations associated with training may occur in as little as 2 weeks
- Progressive overload principle is not sustainable
 - Should be more correctly applied as fluctuating overload
- Periodic training modification to further gains in fitness is the central premise of periodization

Principle of Recovery / De-loading

- Recovery / De-loading options:
 - Volume reduction (total reps per exercise reduced by 40%)
 - Intensity reduction (with an increase in reps)
 - "Testing-only" week
 - Rehab week (therapeutic exercises)
 - Learning a new movement
 - Complete rest
 - Active rest (non-RT)
 - Exercise or frequency reduction

Movement Prep

Warm-Up

Benefits of Warm-Up

- An adequate warm-up minimizes the risk of injury and aids performance
- Neurological benefits:
 - Facilitates neural transmission and muscle activation
 - Improves rate of force development and reaction time
 - Improves strength and power
- Metabolic benefits:
 - Accelerates chemical reactions

Benefits of Warm-Up

- Circulatory benefits:
 - Increases blood flow to muscles
 - Improves oxygen delivery
- Movement benefit:
 - Increase body and muscle temperature
 - Increases proprioception (spatial awareness)
 - Heightens coordination and joint stabilization
 - Emphasize general movement patterns

General Warm-Up

- Goal of a general warm-up is to increase blood flow and muscle temperature
- Especially important when exercising in the morning or in a 'cold' state.
- May be Passive or Active
 - Passive: hot shower, sauna, heat application
 - Active: 5-10 min of low intensity cardiovascular exercise

Specific Warm-Up

- Relies on the actual movement of the activity performed easily at first to provide a highly specific WU and neuromuscular preparatory phase.
- 5 15 min focusing on movements that work through the range of motion required by the activity_____
- Progression in exercise specificity & intensity
 - Include: calisthenics, technique drills, resistance exercises, medicine ball drills, flexibility exercises, plyometrics, sprint and agility drills
- Content & structure is activity specific

Specific Warm-Up for Resistance Training

- Generally includes preparatory movements and some initial 'warm-up' sets to an exercise
- Are often inappropriately performed, either:
 - too brief (e.g. 1-2 sets w/ light weights)
 - too long (e.g. multiple sets, almost rep'ing-out with progressively heavier weights)

Specific Warm-Up for Resistance Training

- A proper specific RT WU should include 'warm-up' and 'weight acclimation' sets
 - Acclimation sets prepare muscle and supporting soft tissue for upcoming heavy weights

Example: Bench Press, target training weight 275 lbs

	Common Approach	Better Approach	
	135 lbs x 10-15 reps	1 <mark>35</mark> lbs x 5-8 reps (warm-up)	
50	185 lbs x 10 reps ———	- 1 <mark>85</mark> lbs x 3 reps (acclimation)	50
20	205 lbs x 5 reps	225 lbs x 1 reps (acclimation)	40
20	225 lbs x 5 reps	245 lbs x 1 reps (acclimation)	20
20	245 lbs x 5 reps	2 <mark>75</mark> lbs x ~ <i>4-6 reps</i>	30
30	275 lbs x ~2-3 reps	w/ multiple sets	

35-40 reps vs. 10-13 reps

Stretching as Part of a Warm-Up

- Stretching alone does not appear to reduce the risk of injury
 - Also, stretching before or after exercise has no effect on the prevention DOMS
- Stretching in and of itself does not constitute a warm-up
 - Although it may be included as part of one
- If stretching routines are to be included in a warm up, they should not interfere with the WU's goals and benefits

Principles of Stretching

- Synchronize breathing with movement
 - Short-rapid breathing stimulates SNS
- Match stretching method to the conditions at hand
 - Warm up versus cool down
- Prioritize stretching of tight muscles
- Gain ROM without pain
 - Should not feel tight or sore after stretching
- Employ multiple planes of movement
 - Movement is generally non-linear

Static Stretching

- Positions typically held between 15 90 seconds
 - 30s considered optimal
- Likelihood of injury proportional to intensity
- Literature suggests:
 - Impaired blood flow during the stretching period
 - Strength (force) deficit immediately following stretch
 - Power (vertical jump) impairments immediately following stretch
 - Decreased muscle activation (EMG) immediately following stretch
 - Decreased reaction and movement time and balance
 - Prolonged ground contact times

Dynamic (Active) Stretching

- Consists of controlled movements / swings that take the limbs to the limits of their range of motion
- 8-15 repetitions are typically performed over 10-20 yard distance
- Most closely matches the general goals of a warm up

