11/20/2018 heaps

Elementary Data Structures and Algorithms

Binary Heaps

Printable Version

If the heap is stored in an array, it is stored in the standard way.

Arrays use zero-based indexing, unless otherwise indicated.

Assume integer division.

Concept: heap shapes

•	-	•	
1. In a heap, the upper bound on the number of leaves is:			
		A. O(1)	
		B. O (n)	
		C. O (log n)	
		D. O (n log n)	
2. In	a heap,	the distance from the root to the furthest leaf is:	
		$A.\theta(n\log n)$	

- 3. In a heap, let d f be the distance of the furthest leaf from the root and let d c be the analogous distance of the closest leaf. What is d f d
 - A. 0

 $B.\,\theta\,(\,1\,)$ $C.\,\theta\,(\,\log n\,)$ $D.\,\theta\,(\,n\,)$

- B. 2
- C. θ (log n)
- D 1
- 4. What is the most number of nodes in a heap with a single child?
 - A. 0
 - B. 1
 - C. 2
 - D. Θ (n)
 - E. Θ (log n)
- 5. What is the fewest number of nodes in a heap with a single child?
 - A. 0
 - B. 2
 - C. one per level
 - D. 1
- 6. T or F: There can be two or more nodes in a heap with exactly one child.
- 7. T or F: A heap can have no nodes with exactly one child.
- 8. T or F: All heaps are perfect trees.
- 9. T or F: No heaps are perfect trees.
- $10.\,T$ or F: All heaps are complete trees.
- 11. T or F: No heaps are complete trees.
- 12. T or F: A binary tree with one node must be a heap.
- 13. T or F: A binary tree with two nodes and with the root having the smallest value must be a min-heap.
- 14. T or F: If a node in a heap is a right child and has two children, then its sibling must also have two children.
- 15. T or F: If a node in a heap is a right child and has one child, then its sibling must also have one child.

Concept: heap ordering

- 16. In a min-heap, what is the relationship between a parent and its left child?
 - A. the parent has a smaller value
 - B. there is no relationship between their values
 - C. the parent has a larger value

11/20/2018 heaps

- D. the parent has the same value
- 17. In a min-heap, what is the relationship between a left child and its sibling?
 - A. the right child has a larger value
 - B. both children cannot have the same value
 - C. the left child has a smaller value
 - D. there is no relationship between their values
- 18. T or F: A binary tree with three nodes and with the root having the smallest value and two children must be a min heap.
- 19. T or F: The largest value in a max-heap can be found at the root.
- 20. T or F: The largest value in a min-heap can be found at the root.
- $21.\,T$ or $F\!\!:$ The largest value in a min-heap can be found at a leaf.

Concept: heaps stored in arrays

22. How would this heap be stored in an array?

- A. [2,4,5,10,11,12,13,15,21]
- B. [2,10,4,11,13,5,15,21,12]
- C. [21,11,12,10,13,2,5,4,15]
- D. [2,10,11,21,12,13,4,5,15]
- 23. Printing out the values in the array yield what kind of traversal of the heap?
 - A. level-order
 - B. post-order
 - C. in-order
 - D. pre-order
- 24. Suppose the heap has n values. The root of the heap can be found at which index?
 - A. n-1
 - B. n
 - C. 0
 - D. 1
- 25. Suppose the heap has n values. The left child of the root can be found at which index?
 - A. n-1
 - B. 1
 - C. 0
 - D. *n*
 - E. n-2
 - F. 2
- 26. Left children in a heap are stored at what kind of indices?
 - A. all even but one
 - B. a roughly equal mix of odd and even
 - C. all odd but one
 - D. all odd
 - E. all even
- 27. Right children in a heap are stored at what kind of indices?
 - A. all odd but one
 - B. all even
 - C. a roughly equal mix of odd and even
 - D. all odd
 - E. all even but one
- 28. The formula for finding the left child of a node stored at index i is:

11/20/2018 heaps

	A. i * 2 - 1
	B. i * 2
	C. i * 2 + 2
	D. i * 2 + 1
29. The fo	rmula for finding the right child of a node stored at index i is:
	A. i * 2
	B. i * 2 + 2
	C. i * 2 + 1
	D. i * 2 - 1
30. The fo	ormula for finding the parent of a node stored at index <i>i</i> is:
	A. i / 2
	B. (i+1)/2
	C. (i-1)/2
	D. $(i+2)/2$
31. If the	array uses one-based indexing, the formula for finding the left child of a node stored at index i is:
	A. i * 2 - 1
	B. i * 2
	C. i * 2 + 2
	D. i * 2 + 1
32. If the	array uses one-based indexing, the formula for finding the right child of a node stored at index i is:
	A. i * 2 + 1
	B. i * 2 - 1
	C. i * 2 + 2 D. i * 2
33. If the	array uses one-based indexing, the formula for finding the parent of a node stored at index i is:
	A. (i-1)/2
	B. i / 2 C. (i + 2) / 2
	D. $(i+1)/2$
24 Commi	
34. Consid	der a trinary heap stored in an array. The formula for finding the left child of a node stored at index i is: A. $i * 3 - 2$
	B. i * 3 + 3
	C.i*3+1
	D. i * 3 - 1
	E.i*3
	F. i * 3 + 2
35. Consid	der a trinary heap stored in an array. The formula for finding the middle child of a node stored at index i is:
DDT COIDI	A. i * 3
	B. i * 3 + 3
	C. i * 3 + 2
	D. i * 3 - 2
	E. i * 3 - 1
	F. i * 3 + 1
36. Consid	der a trinary heap stored in an array. The formula for finding the right child of a node stored at index i is:
	A. i * 3 - 1
	B. i * 3 + 2
	C. i * 3 + 1
	D. i * 3 - 2
	E. i * 3 + 3
	F. i * 3
37. Consid	der a trinary heap stored in an array. The formula for finding the parent of a node stored at index i is:
	A. i / 3 + 1
	B. i / 3 - 1
	C.(i+1)/3
	D. (i-1)/3
	E. (i-2)/3

F.(i+2)/3

Concept: heap operations

- 38. In a max-heap with no knowledge of the minimum value, the minimum value can be found in time:
 - A. θ (n)
 - B. θ (n log n)
 - $C. \theta (log n)$
 - D. θ (1)
- 39. Suppose a min-heap with *n* values is stored in an array *a*. In the *extractMin* operation, which element immediately replaces the root element (prior to this new root being sifted down).
 - A. a[n-1]
 - B. the minimum of a[1] and a[2]
 - C. a[2]
 - D. a[1]
- 40. The findMin operation in a min-heap takes how much time?
 - Α.Θ(1)
 - B. Θ (n log n)
 - C. Θ (log n)
 - $D.\Theta(n)$
- 41. The extractMin operation in a min-heap takes how much time?
 - A. Θ (n log n)
 - B. Θ (log n)
 - C. Θ (1)
 - $D.\Theta(n)$
- 42. Merging two heaps of size n and m, m < n takes how much time?
 - A. Θ (log n + log m)
 - B. Θ (n log m)
 - C. Θ (n * m)
 - D. Θ (log n * log m)
 - E. Θ (n + m)
 - $F. \Theta (m \log n)$
- 43. The insert operation takes how much time?
 - A. Θ (n)
 - B. Θ (1)
 - C. Θ (n log n)
 - D. Θ (log n)
- 44. Turning an unordered array into a heap takes how much time?
 - A. Θ (log n)
 - B. Θ (n log n)
 - C. Θ (1)
 - $D.\Theta(n)$
- 45. Suppose the values 21, 15, 14, 10, 8, 5, and 2 are inserted, one after the other, into an empty *min*-heap. What does the resulting heap look like? Heap properties are maintained after every insertion.

- A. y
- B. w
- C. *x*
- D. z
- 46. Using the standard *buildHeap* operation to turn an unordered array into a *max*-heap, how many parent-child swaps are made if the initial unordered array is [5,21,8,15,25,3,9]?
 - A. 2

11/20/2018 heaps

B. 4 C. 3 D. 7 E. 5 F. 6