Battery Example: Two-way Factorial Analysis

In this example, we consider 3 levels of temperature (temp) and 3 levels of material (mat) for a total of 9 treatment combinations. There are n = 4 reps per treatment combination for a total of 36 observations. The response variable is battery life (in hours).

```
library(dplyr)
library(ggplot2)
library(car)
library(emmeans)
                                                              3x3 × 4 = 36 obs
Battery <- read.csv("~/Dropbox/STAT512/Lectures/ExpDesign2/ED2_Battery.csv")</pre>
str(Battery)
## 'data.frame':
                   36 obs. of 4 variables:
                                            Cactors
## $ temp: int 1 1 1 1 1 1 1 1 1 ...
   $ mat : int 1 1 1 1 2 2 2 2 3 3 ...
## $ k
        : int 1234123412...
## $ life: int 130 155 74 180 150 188 159 126 138 110 ...
#Important: Need to define Temp and Mat as.factors!!!!
Battery$temp<-as.factor(Battery$temp>
Battery$mat<-as.factor(Battery$mat)</pre>
str(Battery)
## 'data.frame':
                   36 obs. of 4 variables:
  $ temp: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
   $ mat : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 2 2 2 3 3 ...
## $ k : int 1 2 3 4 1 2 3 4 1 2 ...
  $ life: int 130 155 74 180 150 188 159 126 138 110 ...
```

Summary Statistics and Graphs

```
SumStats <- summarize(group_by(Battery, temp, mat),</pre>
                n = n(),
                mean = mean(life),
                    = sd(life),
                sd
                     = sd/sqrt(n))
                SE
SumStats
## # A tibble: 9 x 6
## # Groups:
               temp [3]
##
     temp mat
                     n mean
                                sd
     <fct> <fct> <int> <dbl> <dbl> <dbl>
##
## 1 1
           1
                     4 135.
                              45.4 22.7
## 2 1
           2
                     4 156.
                              25.6 12.8
## 3 1
                              26.0 13.0
                     4 144
## 4/2
                     4 57.2 23.6 11.8
## 5 2
                     4 120. / 12.7 6.33
## 6 2
                     4 146.
                              22.5 11.3
## 7 3
                     4 57.5 26.9 13.4
## 8 3
           2
                     4 49.5 19.3 9.63
## 9 3
                     4 85.5 19.3 9.64
```


Two-way model

Sum- to- 200

Typical research questions are addressed using Type 3 tests (using Anova() from the car package) and pairwise comparisons (using lsmeans() from the lsmeans package). Important: Change contrasts options to get meaningful Type 3 tests!

```
options(contrasts=c("contr.sum", "contr.poly"))
Model1 <- lm(life ~ mat*temp, data = Battery)</pre>
#Equivalent to lm(life ~ mat + temp + mat:temp, data = Battery)
Anova(Model1, type = 3)
## Anova Table (Type III tests)
##
## Response: life
##
               Sum Sq Df F value
                                     Pr(>F)
## (Intercept) 400900 1 593.7386 < 2.2e-16 ***
## mat
                10684 2
                           7.9114 0.001976 **
## temp
                39119
                      2
                          28.9677 1.909e-07 ***
                           3.5595 0.018611 (*
## mat:temp
                9614
## Residuals
                18231 27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2, 2))
plot(Model1)
```


Factor Level Combinations

Pairwise Comparisons

on adjusting

Pairwise comparisons on materials at FACH level of Temp. This type of comparison is reasonable given the significant interaction.

emmeans (Model1, pairwise mat temp)

```
##
   $emmeans
##
   temp = 1:
##
    mat emmean
                      SE df
                            lower.CL upper.CL
        134.75 12.99243 27 108.09174 161.40826
##
    2
        155.75 12.99243 27 129.09174 182.40826
##
##
    3
        144.00 12.99243 27 117.34174 170.65826
##
##
   temp = 2:
                      SE df
##
    mat emmean
                             lower.CL
                                        upper.CL
         57.25 12.99243 27
                             30.59174
                                        83.90826
##
    1
    2
        119.75 12.99243 27
                             93.09174 146.40826
##
    3
        145.75 12.99243 27 119.09174 172.40826
##
##
   temp = 3:
##
##
    mat emmean
                      SE df
                             lower.CL
                                        upper.CL
         57.50 12.99243 27
                             30.84174
                                        84.15826
##
    1
##
    2
         49.50 12.99243 27
                             22.84174
                                       76.15826
##
    3
         85.50 12.99243 27
                             58.84174 112.15826
##
## Confidence level used: 0.95
##
```

```
## $contrasts
## temp = 1:
   contrast estimate
                           SE df t.ratio p.value
                                  -1.143 0.4967
              -21.00 18.37407 27
   1 - 3
               -9.25 18.37407 27
                                  -0.503
                                           0.8703
               11.75 18.37407 27
##
   2 - 3
                                    0.639
                                          0.7998
##
## temp = 2:
##
    contrast estimate
                            SE df t.ratio p.value
##
   1 - 2
            -62.50 18.37407 27
                                  -3.402 0.0058
   1 - 3
               -88.50 18.37407 27
                                  -4.817 0.0001
              -26.00 18.37407 27 -1.415 0.3475
   2 - 3
##
##
## temp = 3:
   contrast estimate
                            SE df t.ratio p.value
##
   1 - 2
                 8.00 18.37407 27
                                    0.435 0.9012
##
   1 - 3
               -28.00 18.37407 27
                                  -1.524
                                          0.2959
##
   2 - 3
              -36.00 18.37407 27 -1.959
##
## P value adjustment: tukey method for comparing a family of 3 estimates
We can look at ALL pairwise comparisons, but many of these may not be of interest.
But we pay a price for running so many tests with Tukey adjustment.
                                         emmens 11 do this
emmeans(Model1, pairwise  mat*temp)
## $emmeans
##
                          SE df lower.CL upper.CL
   mat temp emmean
        1
            134.75 12.99243 27 108.09174 161.40826
##
             155.75 12.99243 27 129.09174 182.40826
##
   3
        1
            144.00 12.99243 27 117.34174 170.65826
##
             57.25 12.99243 27
   1
                                 30.59174 83.90826
##
   2
        2
            119.75 12.99243 27
                                93.09174 146.40826
        2
            145.75 12.99243 27 119.09174 172.40826
##
   3
##
   1
        3
             57.50 12.99243 27
                                 30.84174 84.15826
##
    2
        3
             49.50 12.99243 27
                                 22.84174 76.15826
##
   3
        3
             85.50 12.99243 27
                                 58.84174 112.15826
##
                                                       Vilce (2) - 36
## Confidence level used: 0.95
##
## $contrasts
   contrast estimate
                            SE df t.ratio p.value
               -21.00 18.37407 27
                                    -1.143 0.9616
##
  1,1 - 2,1
                -9.25 18.37407 27
                                    -0.503
                                           0.9999
  1,1 - 3,1
  1,1 - 1,2
##
                77.50 18.37407 27
                                     4.218 0.0065
  1,1 - 2,2
##
                15.00 18.37407 27
                                     0.816 0.9953
##
  1,1 - 3,2
               -11.00 18.37407 27
                                    -0.599 0.9995
## 1,1 - 1,3
                77.25 18.37407 27
                                     4.204 0.0067
## 1,1 - 2,3
                 85.25 18.37407 27
                                     4.640
                                           0.0022
## 1,1 - 3,3
                 49.25 18.37407 27
                                     2.680
                                           0.2017
## 2,1 - 3,1
                                     0.639
                 11.75 18.37407 27
                                           0.9991
## 2,1 - 1,2
                 98.50 18.37407 27
                                     5.361
                                           0.0003
##
   2,1 - 2,2
                 36.00 18.37407 27
                                     1.959
                                           0.5819
##
   2,1 - 3,2
                                     0.544 0.9997
                 10.00 18.37407 27
```

5.347 0.0004

2,1 - 1,3

98.25 18.37407 27

```
2,1 - 2,3
                106.25 18.37407 27
                                      5.783 0.0001
##
   2,1 - 3,3
##
                 70.25 18.37407 27
                                      3.823
                                            0.0172
##
   3,1 - 1,2
                 86.75 18.37407 27
                                      4.721
                                            0.0018
                                                        v same estimate

v dist probbe

- compare to ,0054
   3,1 - 2,2
                                      1.320
                                            0.9165
##
                 24.25 18.37407 27
##
   3,1 - 3,2
                 -1.75 18.37407 27
                                     -0.095
                                             1.0000
   3,1 - 1,3
##
                 86.50 18.37407 27
                                      4.708 0.0019
   3,1 - 2,3
##
                 94.50 18.37407 27
                                      5.143
                                            0.0006
   3,1 - 3,3
##
                 58.50 18.37407 27
                                      3.184
                                            0.0743
##
   1,2 - 2,2
                -62.50 18.37407 27
                                     -3.402 0.0460
##
   1,2 - 3,2
                -88.50 18.37407 27
                                     -4.817
                                             0.0014
   1,2 - 1,3
                 -0.25 18.37407 27
                                     -0.014
                                            1.0000
   1,2 - 2,3
                                      0.422
##
                  7.75 18.37407 27
                                             1.0000
##
   1,2 - 3,3
                -28.25 18.37407 27
                                     -1.537
                                            0.8282
   2,2 - 3,2
                                            0.8823
##
                -26.00 18.37407 27
                                     -1.415
   2,2 - 1,3
                                      3.388
##
                 62.25 18.37407 27
                                            0.0475
##
   2,2 - 2,3
                 70.25 18.37407 27
                                      3.823
                                             0.0172
                                                               Part 1
   2,2 - 3,3
##
                 34.25 18.37407 27
                                      1.864
                                            0.6420
##
   3,2 - 1,3
                 88.25 18.37407 27
                                      4.803
                                            0.0015
   3,2 - 2,3
                                      5.238
##
                 96.25 18.37407 27
                                            0.0005
##
   3,2 - 3,3
                 60.25 18.37407 27
                                      3.279
                                             0.0604
##
   1,3 - 2,3
                  8.00 18.37407 27
                                      0.435
                                             1.0000
  1,3 - 3,3
                -28.00 18.37407 27
                                     -1.524
                                             0.8347
##
   2,3 - 3,3
                -36.00 18.37407 27
                                    -1.959
##
                                             0.5819
##
## P value adjustment: tukey method for comparing a family of 9 estimates
```

Pairwise comparisons for main effect of material primarily for illustration. Probably not of interest due to significant interaction. Note: The warning from emmeans ("Results may be misleading due to involvement in interactions") will be displayed when considering comparisons of main effects in any model that includes an interaction.

```
emmeans(Model1, pairwise ~ (mat)
```

```
## NOTE: Results may be misleading due to involvement in interactions
```

```
main effect
   $emmeans
##
##
   mat
                        SE df
                               lower.CL
                                        upper.CL
           emmean
         83.16667 7.501183 27
                               67.77551
##
   1
                                         98.55782
##
   2
        108.33333 7.501183 27
                               92.94218 123.72449
        125.08333 7.501183 27 109.69218 140.47449
##
   3
##
## Results are averaged over the levels of: temp
## Confidence level used: 0.95
##
## $contrasts
                             SE df t.ratio p.value
##
   contrast estimate
##
   1 - 2
            -25.16667 10.60828 27
                                    -2.372 0.0628
             -41.91667 10.60828 27
                                    -3.951
                                           0.0014
             -16.75000 10.60828 27
                                    -1.579 0.2718
##
##
## Results are averaged over the levels of: temp
## P value adjustment: tukey method for comparing a family of 3 estimates
```