MATH 3175 Notes

Xin Guan

1. 01.22

(a) Definition: 7.1

Function $f: X \to Y$ is bijection if f is both surjection(on to) and injection (one to one)

(b) Theorem: 7.2

 $f: X \to Y$ is bijection \Leftrightarrow

 $\exists g: Y \to X \text{ s.t. } g \circ f = id_x, f \circ g = id_y \ (id_x \text{ means identity})$

Such g is called the inverse of f. Denoted by f^{-1}

- (c) Recall:
 - Composition of two injective functions is injective.
 - o Composition of two surjective functions is surjective.
 - Composition of two bijective functions is bijective.
- (d) Definition: 7.4 Permutation:

Permutation on set *X* is a bijection $f: X \to X$

- (e) prop 7.5
 - i. if $f: X \to X$ is a permutation then $\exists f^{-1}: X \to X$ which is also permutation.
 - ii. composition of two permutation is again a permutation.
- (f) Definition: 7.6

if $X = \{1, 2, ..., n\}$ then, $S_n := \{\text{all permutation on } X\}$

(g) EX 7.7

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$$

Find $\alpha\beta$ (composition of α and β), α^{-1}

Solution:

$$(\alpha\beta)(1) = \alpha(\beta(1)) = \alpha(5) = 5$$

$$(\alpha\beta)(2) = \alpha(\beta(2)) = \alpha(1) = 3$$

$$(\alpha\beta)(3) = \alpha(\beta(3)) = \alpha(4) = 2$$

$$(\alpha\beta)(4) = \alpha(\beta(4)) = \alpha(5) = 1$$

$$(\alpha\beta)(5) = \alpha(\beta(5)) = \alpha(2) = 4$$

Then,
$$\alpha \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\alpha^{-1} = \begin{pmatrix} 3 & 4 & 1 & 2 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$
rearrange:
$$\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$

(h) Homework: 2.1 9(b)

 $g : \mathbb{Z}_8 \Rightarrow \mathbb{Z}_1 2$, $g([x]_8) = [6x]_1 2$ show that g is well defined. Solution:

Proof. Suppose
$$[x]_8 = [x']_8$$
, WTS $g([x]_8) = g([x']_8)$
Let $[x]_8 = [x']_8$
⇒ $x \equiv x' \pmod{8}$
⇒ $8|(x-x')$
⇒ $x-x' = 8*q$ for some $q \in \mathbb{Z}$
 $x = 8 \cdot q + x'$
By definition of g , $g([x]_8) = [6x]_{12}$
Then, $g([x]_8) = [6(8q + x')]_{12} = [48q + 6x']_{12}$, $g([x']_8) = [6x']_{12}$
WTS $[48q + 6x']_{12} = [6x']_{12}$
Enough to show: $12|(48q + 6x' - 6x')$
Since $48q + 6x' - 6x' = 48q = 12 \cdot 4 \cdot q$
⇒ $12|12 \cdot 4 \cdot q$
⇒ $12|(48q + 6x' - 6x')$
⇒ $g([x]_8) = g([x']_8)$

2. 01.23

(a) Recall:

DEF: Permutation on set X is a bijection $f: X \to X$ NOTE: $S_x = \{\text{permutation on X}\}, S_n = \{\text{permutation on } \{1,2,3, \dots n\}\}$

PROPERTIES:

composition of permutation is again a permutation.

identity map: $id: X \rightarrow X(id(x) = x)$ is a permutation.

each permutation f there is an inverse f^{-1} such that $f \circ f^{-1} = id$, $f^{-1} \circ f = id$.

(b) Definition: 8.1 Disjoint cycle decomposition

Suppose
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 8 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$$

= $(1\ 3\ 8\ 5\ 2\ 4)(6)(7)$ or $(1\ 3\ 8\ 5\ 2\ 4)$ (in cycle notation)

(c) Definition: 8.2

2-cycle
$$\rightarrow$$
 (i j) $i \neq j$
3-cycle \rightarrow (i j k) i,j,k distinct
r-cycle \rightarrow ($i_1, i_2, ..., i_r$), $i_1, i_2, ..., i_r$ distinct

(d) Example: 8.3 $\alpha = (142), \beta = (13) \alpha \rightarrow 3$ -cycle, $\beta \rightarrow 2$ -cycle.

(e) identity permutation in S_n

- i. (1)(2)...(n)
- ii. fixes $\forall i$
- iii. 1-cycle (*i*) fixes *i*
- iv. often we do not note 1-cycle: $\alpha = (142) = (142)(3)$
- v. id = (1) = (1)(2)...(n)
- (f) Example: 8.5 multiplication of permutation

$$\alpha = (142), \beta = (13), \in S_4$$

compute - write as a product of disjoint cycles (same as Example: 7.7 with new notation)

$$\alpha\beta = (142)(13) = (1342)$$

HOWTO: β : 1 \rightarrow 3, then α : 3 \rightarrow 3, then (13) now.

 $\beta: 3 \to 1$, then $\alpha 1 \to 4$, then (134) now.

 $\beta: 4 \rightarrow 4$, then $\alpha 4 \rightarrow 2$, then (1342).

Similarly: $\beta \alpha = (13)(142) = (1423)$

- (g) Remark: 8.6 In general $\alpha \beta \neq \beta \alpha$ if α, β are disjoint then $\alpha \beta = \beta \alpha$
- (h) Definition: 8.7

Order of permutation α is the smallest positive integer n such that $\alpha^n = (1)$ where $\alpha^n = \alpha \alpha \dots \alpha$ (there are n α 's)

(i) Example: 8.8

$$\alpha = (142)$$

$$\alpha^2 = \alpha \alpha = (142)(142) = (124)$$

$$\alpha^3 = \alpha \alpha \alpha = (142)(142)(142) = (142)(124) = (1)(2)(4) = (1)$$

Then $|\alpha| = 3$. Order of α is 3.

$$\beta = (13)$$

$$\beta^2 = (13)(13) = (1)$$

Then $|\beta| = 2$

- (j) Prop: 8.10 Order of an r-cycle is r
- (k) Example: $8.11 \alpha = (143)(25)$

$$|\alpha| = LCM(|(143)|, |(25)|) = LCM(3, 2) = 6$$

- (1) Prop: 8.12 Let α, β be two disgoint permutation. Then $|\alpha\beta| = LCM(|\alpha|, |\beta|)$
- (m) Possible Disjoint Cycles

Partition of 6	Disjoint cycles	Example	Order	How many different permutation
6	6 cycle	(132654)		$\frac{6!}{6} = 5!$
5 + 1	5 cycle, 1 cycle	(13465)(2)	5	$\begin{pmatrix} \binom{6}{5} \frac{5!}{5} \frac{1!}{1!} = \binom{6}{5} \cdot 4! \\ \binom{6}{4} \binom{2}{2} \frac{4!}{4} \frac{2!}{2} \end{pmatrix}$
4 + 2	4 cycle, 2 cycle	(1354)(26)	4	$\binom{6}{4}\binom{2}{2}\frac{4!}{4}\frac{2!}{2}$

NOTE: We need to divide by the order since (123) = (231) = (312). We need to eliminate repeative terms.

3. 01.27 GROUPS!

- (a) Definition: 9.11 G set
 - i. $G \times G \rightarrow *G$ binary operation: $(x, y) \rightarrow x * y$

ii. associative law:

$$(x * y) * z = x * (y * z), \forall x, y, z \in G$$

- iii. $\exists e \in G$ is identity s.t. $e * x = x, x * e = x, \forall x \in G$
- iv. $\forall x \in G, \exists y \in Gs.t.x * y = e, y * x = e$ and y is called inverse of x. (it is not necessarily unique)

v.
$$x * y = y * x \forall x, y \in G$$

If only the **first** 2 properties hold, it is called **semigroups**.

If only the **first 3** properties hold, it is called **monoid**.

If only the **first** 4 properties hold, it is called **group**.

If only the all properties hold, it is called Commutative group (Abelian group).

(b) Examples:

- i. $(\mathbb{Z},+)$
 - A. $x, y \in \mathbb{Z}, x + y \in \mathbb{Z}$
 - B. (x + y) + z = x + (y + z)
 - C. $x + 0 = x, 0 + x = x, \forall x \in \mathbb{Z}$ therefore e = 0
 - D. $x + y = 0, y + x = 0 \rightarrow y = -x$
 - E. x + y = y + x

Then, $(\mathbb{Z}, +)$ is **Abelian group**

- ii. (\mathbb{Z},\cdot)
 - A. $x, y \in \mathbb{Z}, x \cdot y \in \mathbb{Z}$
 - B. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - C. $x \cdot 1 = x, 1 \cdot x = x, \forall x \in \mathbb{Z}$ therefore e = 1
 - D. $x \cdot y = 1$, $y \cdot x = 1 \rightarrow NO$ inverse in general. $\{1,-1\}$ have inverse
 - E. $x \cdot y = y \cdot x$

Then, $(\mathbb{Z}, +)$ is a **commutative monoid** but not a **group**

- iii. $(\mathbb{Z}, -)$
 - A. $x, y \in \mathbb{Z}, x y \in \mathbb{Z}$
 - B. $(x-y) z \neq x (y-z)$ example: $2 (1-5) \neq (2-1) 5$ Then, $(\mathbb{Z}, +)$ is not even a **semigroup**.

We don't need to check following properties since it does not have an operation. All the following properties are target at the operation.

- iv. $(\mathbb{Z}_6, +_6)$
 - A. $[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 + [y]_6 = [x+y]_6 \in \mathbb{Z}_6$
 - B. (x + y) + z = x + (y + z)
 - C. $e = [0]_6$
 - D. inverse: $[-x]_6 + [x_6] = e$
 - E. $[x]_6 + [y]_6 = [y]_6 + [x]_6$ (\mathbb{Z}_6 , +6) is **Abelian group**
- v. (\mathbb{Z}_6, \cdot_6)
 - A. $[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 \cdot [y]_6 = [x \cdot y]_6 \in \mathbb{Z}_6$
 - B. works
 - C. $e = [1]_6$

D. y does not always exists. only when gcd(x, 6) = 1 inverse exists.

E.
$$[x]_6 \cdot [y]_6 = [y]_6 \cdot [x]_6$$

(\mathbb{Z}_6 , $+_6$) is **commutative monoid** but not a **group**

vi. $(\mathbb{Z}_6^{\times}, \cdot_6)$

$$\mathbb{Z}_6^{\times} = \{ [x]_6 \in \mathbb{Z}_6 | gcd(x, 6) = 1 \}$$

$$\mathbb{Z}_6^{\times} = \{[1]_6, [5]_6\}$$

A.
$$[x]_6, [y]_6 \in \mathbb{Z}_6, [x]_6 \cdot [y]_6 = [x \cdot y]_6 \in \mathbb{Z}_6$$

B. works

C.
$$e = [1]_6$$

D. holds!

E.
$$[x]_6 \cdot [y]_6 = [y]_6 \cdot [x]_6$$

 $(\mathbb{Z}_6^{\times}, +_6)$ is **Abelian group**

vii.
$$(M_2(\mathbb{R}), +), M_2(\mathbb{R}) = M \in \mathbb{R}^{2 \times 2}$$

A. Yes, there is a closed binary operation.

B. associate law is inherted from +

$$C. \ e = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

D. inverses exist.

E. commutative property holds. $(M_2(\mathbb{R}), +)$ is **Abelian group**

viii. $(M_2(\mathbb{R}), \cdot)$

A. Yes, there is a closed binary operation.

B.
$$(AB)C = A(BC)$$

$$C. e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

D. inverses not necessaily exist. only $det(x) \neq 0$

E. commutative property dose not hold. $(M_{\bullet}(\mathbb{R}) +)$ is manaid.

$$(M_2(\mathbb{R}),+)$$
 is **monoid**

ix. $(GL_2(\mathbb{R}), \cdot)$ GL: general linear group – determinants is $\neq 0$

A.
$$det(AB) = det(A)det(B) \neq 0$$

B.
$$(AB)C = A(BC)$$

C.
$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

D. inverse exists

E.
$$AB \neq BA$$
 in general $(GL_2(\mathbb{R}), \cdot)$ is **Abelian group**

 $\mathbf{x}.\ (S_3,\cdot)$

$$S_3 = \{(123), (132), (12), (13), (23), (1)\}$$

A.
$$\alpha \cdot \beta = \alpha \beta$$

B. associative law good

C.
$$e = (1)$$

D. inverse exists $(123)^{-1} = (321)...$

+1 (01.27)