which is (4).

Finally, assume (4). Because $\| \|$ is a matrix norm,

$$||B^k|| \le ||B||^k,$$

and since ||B|| < 1, we deduce that (1) holds.

The following proposition is needed to study the rate of convergence of iterative methods.

Proposition 10.2. For every square matrix $B \in M_n(\mathbb{C})$ and every matrix norm $\| \|$, we have

$$\lim_{k \to \infty} ||B^k||^{1/k} = \rho(B).$$

Proof. We know from Proposition 9.6 that $\rho(B) \leq ||B||$, and since $\rho(B) = (\rho(B^k))^{1/k}$, we deduce that

$$\rho(B) \le ||B^k||^{1/k} \quad \text{for all } k \ge 1.$$

Now let us prove that for every $\epsilon > 0$, there is some integer $N(\epsilon)$ such that

$$||B^k||^{1/k} \le \rho(B) + \epsilon$$
 for all $k \ge N(\epsilon)$.

Together with the fact that

$$\rho(B) \le ||B^k||^{1/k} \quad \text{for all } k \ge 1,$$

we deduce that $\lim_{k\to\infty} \|B^k\|^{1/k}$ exists and that

$$\lim_{k \to \infty} ||B^k||^{1/k} = \rho(B).$$

For any given $\epsilon > 0$, let B_{ϵ} be the matrix

$$B_{\epsilon} = \frac{B}{\rho(B) + \epsilon}.$$

Since $\rho(B_{\epsilon}) < 1$, Theorem 10.1 implies that $\lim_{k \to \infty} B_{\epsilon}^{k} = 0$. Consequently, there is some integer $N(\epsilon)$ such that for all $k \geq N(\epsilon)$, we have

$$||B_{\epsilon}^k|| = \frac{||B^k||}{(\rho(B) + \epsilon)^k} \le 1,$$

which implies that

$$||B^k||^{1/k} \le \rho(B) + \epsilon,$$

as claimed.

We now apply the above results to the convergence of iterative methods.