FLA (Fall 2021) – Assignment 1

 Name:
 Dept:

 Grade:
 ID:

Due: Oct. 26, 2021

Problem 1

Provide DFAs and REs of the following languages. In all parts, the alphabet $\Sigma = \{0, 1\}$ and $|v|_{\omega}$ means the number of substring v occurrences in string ω .

- a. $\{\omega \mid |101|_{\omega} = 0 \}$
- b. $\{\omega \mid |0|_{\omega} \bmod 3 \equiv 0 \wedge |1|_{\omega} \bmod 2 \equiv 0 \}$ (DFA only)
- c. $\{\omega \mid |01|_{\omega} = |10|_{\omega} \}$
- d. $\{\omega \mid \text{every four consecutive symbols in } \omega \text{ contains at least two } 0 \}$ (DFA only)
- e. $\{\omega \mid |01|_{\omega} \mod 2 \equiv 0 \}$

Let
$$R = (\mathbf{a} + \mathbf{b})^* (\mathbf{b} + \mathbf{c})^* \mathbf{a} \mathbf{b} (\mathbf{a} + \mathbf{c})^*$$
.

- a. Convert R to an $\epsilon\text{-NFA}$
- b. Convert the ϵ -NFA to a DFA by subset construction

Give a DFA as figure below, please give the regular expression for the following R_{ij}^k , and try to simplify the expressions as much as possible.

- a. All the REs R_{ij}^0
- b. All the REs ${\cal R}^1_{ij}$
- c. All the REs R_{ij}^2
- d. The RE for this DFA

Prove that the following languages are not regular. You may use the pumping lemma and the closure properties of the class of regular languages.

- a. $\{\omega 2\omega \mid \omega \in \{0, 1\}^* \}$ b. $\{0^a 1^b 2^c \mid a, b, c \ge 0 \land \text{if a} = 1, \text{ then b} = c \}$ c. $\{0^a 1^b \mid \gcd(a, b) = 2 \land a, b \ge 0 \}$ d. $\{0^a 10^b 10^{\max(a, b)} \mid a, b \in \mathbb{Z} \}$
- Proof.

We define an operation *three* on strings as three(c1c2c3c4c5c6...)=c3c6... then the above-described definition is extended to languages. Prove that the class of regular languages is closed under this operation.

Proof.

We define an operation min for language L to be

 $min(L) = \{w | w \text{ is in } L, but \text{ no proper prefix of } w \text{ is in } L\}$

In other words, min(L) is the set of strings in L, and for each string $w \in L$, there is no $u \in L$, $v \in \Sigma^+$, such that w = uv. For example, if L = ab*, then min(L) = a. If L = a*b, then min(L) = a*b. If L = a*b*, $min(L) = \lambda$. Prove that the class of regular languages is closed under min operation.

Proof.

Problem 7

Prove or disprove the following statement:

- a. If A is a language over alphabet Σ , h is a homomorphism on Σ and A is not regular, then h(A) is not regular.
- b. If A and B are not regular languages and C is a language such that $A\subseteq C\subseteq B$, then C is not regular.

Let A and B be languages over $\Sigma = \{0,1\}$. Define $N_0(w)$ is the number of 0s that string w contains and $N_1(w)$ is the number of 1s that string w contains. Define

$$\begin{split} A \sim_0 B &= \{ a \in A \mid \text{for some } b \in B, N_0(a) = N_0(b) \} \\ A \sim_{01} B &= \{ a \in A \mid \text{for some } b \in B, N_0(a) = N_0(b) \text{ and } N_1(a) = N_1(b) \} \end{split}$$

- a. Show that the class of regular languages is closed under \sim_0 operation.
- b. Show that the class of regular languages is not closed under \sim_{01} operation.

Proof.