- 1. Consider the Hamiltonian $\hat{H}(\lambda) = \hat{H}_0 + \lambda \hat{V}$. The first order perturbation for the energy of this system is $\frac{\partial E}{\partial \lambda} = E'(\lambda) = \left\langle \Psi(\lambda) \middle| \hat{V} \middle| \Psi(\lambda) \right\rangle$. If the perturbation parameter can have two possible values, λ_1 , and λ_2 , then $\Psi(\lambda_1)$ yields the lowest energy $E(\lambda_1)$ for $\hat{H}(\lambda_1)$ and $\Psi(\lambda_2)$ yields the lowest energy $E(\lambda_2)$ for $\hat{H}(\lambda_2)$.
 - (a) Use the variational principle to show that $\Psi(\lambda_2)$ gives a higher energy for $\hat{H}(\lambda_1)$.

$$\begin{split} E_{\Psi(\lambda_{2})}^{trial} &= \left\langle \Psi(\lambda_{2}) \middle| \hat{H}_{\lambda_{1}} \middle| \Psi(\lambda_{2}) \right\rangle \\ &= \left\langle \Psi(\lambda_{2}) \middle| \hat{H}_{0} \middle| \Psi(\lambda_{2}) \right\rangle + \lambda_{1} \left\langle \Psi(\lambda_{2}) \middle| \hat{V} \middle| \Psi(\lambda_{2}) \right\rangle \\ E_{\Psi(\lambda_{1})}^{ground} &= \left\langle \Psi(\lambda_{1}) \middle| \hat{H}_{0} \middle| \Psi(\lambda_{1}) \right\rangle + \lambda_{1} \left\langle \Psi(\lambda_{1}) \middle| \hat{V} \middle| \Psi(\lambda_{1}) \right\rangle \\ E_{\Psi(\lambda_{2})}^{trial} &> E_{\Psi(\lambda_{1})}^{ground} \end{split}$$

(b) Repeat this for $\Psi(\lambda_1)$ and $\hat{H}(\lambda_2)$.

$$\begin{split} E_{\Psi(\lambda_{1})}^{trial} &= \left\langle \Psi(\lambda_{1}) \middle| \hat{H}_{\lambda_{2}} \middle| \Psi(\lambda_{1}) \right\rangle \\ &= \left\langle \Psi(\lambda_{1}) \middle| \hat{H}_{0} \middle| \Psi(\lambda_{1}) \right\rangle + \lambda_{2} \left\langle \Psi(\lambda_{1}) \middle| \hat{V} \middle| \Psi(\lambda_{1}) \right\rangle \\ E_{\Psi(\lambda_{2})}^{ground} &= \left\langle \Psi(\lambda_{2}) \middle| \hat{H}_{0} \middle| \Psi(\lambda_{2}) \right\rangle + \lambda_{2} \left\langle \Psi(\lambda_{2}) \middle| \hat{V} \middle| \Psi(\lambda_{2}) \right\rangle \\ E_{\Psi(\lambda_{1})}^{trial} &> E_{\Psi(\lambda_{2})}^{ground} \end{split}$$

(c) Summing both inequalities, obtain the following expression:

$$\begin{split} E^{trial}_{\Psi(\lambda_2)} + E^{trial}_{\Psi(\lambda_1)} &> E^{ground}_{\Psi(\lambda_1)} + E^{ground}_{\Psi(\lambda_2)} \\ \lambda_1 \left\langle \Psi(\lambda_2) \middle| \hat{V} \middle| \Psi(\lambda_2) \right\rangle + \lambda_2 \left\langle \Psi(\lambda_1) \middle| \hat{V} \middle| \Psi(\lambda_1) \right\rangle &> \lambda_1 \left\langle \Psi(\lambda_1) \middle| \hat{V} \middle| \Psi(\lambda_1) \right\rangle + \lambda_2 \left\langle \Psi(\lambda_2) \middle| \hat{V} \middle| \Psi(\lambda_2) \right\rangle \\ \lambda_1 E'(\lambda_2) + \lambda_2 E'(\lambda_1) - \lambda_1 E'(\lambda_1) - \lambda_2 E'(\lambda_2) &< 0 \\ (\lambda_1 - \lambda_2) (E'(\lambda_1) - E'(\lambda_2)) &> 0. \end{split}$$

- (d) Based on this expression, explain what happens to the energy as λ increases. If $\lambda_1 > \lambda_2$, then $E'(\lambda_1) < E'(\lambda_2)$, so $E'(\lambda)$ is a decreasing function.
- (e) If $E'(\lambda)$ is differentiable, what would be the behaviour of $E''(\lambda)$? It is negative.

- (f) If the perturbation is stabilizing, so that $\langle \Psi(\lambda) | \hat{V} | \Psi(\lambda) \rangle = E'(\lambda) > 0$, what happens to the slope of the energy as the perturbation becomes stronger. It becomes more negative.
- (g) Make an illustrative graph of $E(\lambda)$ vs. λ .
- 2. For which of the following systems is the Born-Oppenheimer approximation less justified?
 - KBr
 - Si₆₀
 - \bullet UF₆
 - XeCl₂

The BO approximation is more important for light atoms. Because F is the lightest, it is less justified for UF₆.

3. Why is gravitational attraction between nucleus and electrons neglected in electronic structure calculations?

$$V(r) = -\frac{GM_H m_e}{r}$$

 $V(r) = 1.925185 \times 10^{-57} J$
 $V(r) = 4.4166 \times 10^{-40} Hartree$ $<<$ $E_H = -0.5 Hartree$

- 4. A particle of mass m is confined in a one-dimensional box of length a. The state of the particle is given by the wavefunction $\Psi(x) = \frac{1}{3}\psi_1(x) + \frac{i}{3}\psi_3(x) \left(\frac{7}{9}\right)^{1/2}\psi_5(x)$, where $\psi_n(x)$ is a normalized particle-in-a-box wavefunction corresponding to quantum number n.
 - (a) Is the wavefunction $\Psi(x)$ normalized? Yes.
 - (b) What will be the outcome when the energy of the particle is measured? E_1 , E_3 , or E_5 , where $E_n = \frac{n^2h^2}{8ma^2}$.
 - (c) If more than one result is possible, what is the probability of obtaining each result? $P(E_1) = 1/9$, $P(E_3) = 1/9$, and $P(E_5) = 7/9$.
 - (d) What is the expectation value of the energy? $E = E_1 P(E_1) + E_3 P(E_3) + E_5 P(E_5) = \frac{185h^2}{72ma^2}$
 - (e) Is the wavefunction time-dependent? Yes,

$$\Psi(x,t) = \frac{1}{3}\psi_1(x)e^{-iE_1t/\hbar} + \frac{i}{3}\psi_3(x)e^{-iE_3t/\hbar} - \left(\frac{7}{9}\right)^{1/2}\psi_5(x)e^{-iE_5t/\hbar}$$