Práctica 5: Algoritmos de Vuelta Atrás(Backtracking) y de Ramificación y Poda(Branch and Bound)

Grupo 4

Integrantes: Raúl Rodríguez Pérez, Francisco Javier Gallardo Molina, Inés Nieto Sánchez, Antonio Lorenzo Gavilán Chacón

Pseudocódigo TSP: Backtracking y Branch and Bound

```
void backtracking(ciudad actual, visitadas, matriz distancias, cota real, cota opt, min cota, sol final)
       visitadas.add(ciudad_actual) //añadimos la primera ciudad
       if(visitadas == numero ciudades){ //caso base
               for(...)
                 distancia += matriz distancia[][]; //calculamos la distancia del recorrido de ciudades
                                                       visitadas
               if(cota global > distancia){
                       //actualizamos la distancia global con el valor de distancia
                       //actualizamos sol final con el recorrido de ciudades de visitadas
        else{
                cota local = cota real + cota opt
                                                      //calculamos la cota local
               if(cota local < cota global){
                       for(...; i < numero ciudades; ...){
                               if('i' no se encuentra en 'visitadas'){
                                       //calculamos la cota real
                                       //calculamos la cota optimista
                                       backtracking(i, ..., ...) //volvemos a llamar recursivamente
                                                                        a la funcion
                                       visitadas.pop back()
```

```
Algoritmo B&B (matriz, arista menor, tama) {
   priority queue < Solucion > Q:
   Solucion n_e, mejor_solucion;
   mejor solucion.Greedy(matriz);
   CG = mejor_solucion.getDistancia();
    Q.push(n_e);
        while (!Q.empty && Q.top().cota local() < CG) {
            n = Q.top():
            aux = n e.resto ciudades();
           for (int i = 0; i < aux.size(); i++) {
               n_e.añadir_ciudad (aux[i], matriz);
               n e.quitarCiudadRestante (aux[i]);
               if (n_e.Es_Solucion()) {
                   distancia_actual = n_e.Evalua();
                   if (distancia_actual < CG) {
                       CG = distancia actual;
                       mejor solucion = n e;
               else {
                   if (n_e.Cota_Local < CG)
                       Q.push(n e);
               n_e.quitarCiudad (matriz);
               n e.añadirCiudadRestante (aux[i]);
   return mejor_solucion;
```

TSP: Recorridos Ulysses 8, 10 y 12

TSP: Tabla comparativa B&B y Backtracking

	Backtracking	Branch and Bound
Ulysses6	199	99
Ulysses7	778	331
Ulysses8	3395	1869
Ulysses9	16640	9219
Ulysses10	57217	33426
Ulysses11	282268	194659
Ulysses12	1310853	893537
Ulysses13	8068748	5391542
Ulysses14	56058989	38452570

Transporte de mercancías

Esquema Recursivo

```
void back_recursivo(Solucion & Sol, int k)
if (k == Sol.size())
  Sol.ProcesaSolucion();
else {
  Sol.IniciaComp(k);
  Sol.SigValComp(k);
  while (!Sol.TodosGenerados(k) {
    if (Sol.Factible(k))
       back_recursivo(Sol, k+1);
    Sol.SigValComp(k);
```


Caso de ejecución

```
Divel 1
         Nive? 2
wivel 5
```

```
20 500 100 40 50
500 30 10 15 60
100 10 35 200 11
40 15 200 80 70
50 60 11 70 55
```

```
Punto de distribución: 0 ---> Punto de venta: 0
Punto de distribución: 1 ---> Punto de venta: 3
Punto de distribución: 2 ---> Punto de venta: 4
Punto de distribución: 3 ---> Punto de venta: 1
Punto de distribución: 4 ---> Punto de venta: 2
```

```
Punto de distribución inicial 0 distancia minima: 72
Punto de distribución inicial 1 distancia minima: 577
Punto de distribución inicial 2 distancia minima: 191
Punto de distribución inicial 3 distancia minima: 126
Punto de distribución inicial 4 distancia minima: 126
```