Probabilidad y estadística Clase 3

Variables aleatorias condicionadas

Variables discretas

Sean X, Y dos variables aleatorias, y sean $p_X(x) > 0$ y $p_{X,Y}(x,y)$ las función de probabilidad marginal de X y la función de probabilidad conjunta respectivamente. Se define la función de probabilidad condicionada de Y dado que X = x como:

$$egin{aligned} p_{Y|X=x}(y) &= \mathbb{P}\left[Y=y|X=x
ight] \ &= rac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(X=x)} \ &= rac{p_{X,Y}(x,y)}{p_X(x)} \end{aligned}$$

Variables continuas

Sean X,Y dos variables aleatorias con función de densidad conjunta $f_{X,Y}(x,y)$ y densidad marginal de $X\,f_X(x)$. Se define la función de densidad condicional de Y dado X=x como

$$f_{Y|X=x}(y)=rac{f_{X,Y}(x,y)}{f_X(x)}$$

Obs: Si $f_{Y|X=x}(y) = f_Y(y) X$ e Y son independientes.

Factorización

Sean X,Y dos variables aleatorias con función. de densidad conjunta $f_{X,Y}(x,y)$, la misma puede descomponerse de la forma

$$f_{X,Y}(x,y) = f_X(x) f_{Y|X=x}(y)$$

Obs: Si $f_{X,Y}(x,y) = f_X(x)f_Y(y) X$ e Y son independientes.

Mezcla de v.a.

Sea M una v.a. discreta a valores $1,\dots,n$, con función de probabilidad $p_M(m)$, y sea X una v.a. tal que se conocen las distribuciones $X|M=m,\ m=1,2,\dots,n$. Luego, la distribución de X resulta

$$F_X(x) = \sum_{m=1}^n F_{X|M=m}(x) p_M(m)$$

Obs:

Si
$$X$$
 es v.a.d: $p_X(x) = \sum_{m=1}^n p_{X|M=m}(x) p_M(m)$

Si
$$X$$
 es v.a.c $f_X(x) = \sum_{m=1}^n f_{X|M=m}(x) p_M(m)$

Bayes para mezclas

Sea M una $\underline{\mathrm{v.a.}}$ discreta a valores $1,\ldots,n$, con función de probabilidad $p_M(m)$, y sea X una $\underline{\mathrm{v.a.}}$ continua tal que se conocen las distribuciones $f_{X|M=m}(x),\ m=1,2,\ldots,n$, la función de probabilidad de M dado que X=x será:

$$p_{M|X=x}(m) = rac{f_{X|M=m}(x)p_{M}(m)}{\sum_{m=1}^{n}f_{X|M=m}(x)p_{M}(m)}$$

Esperanza condicional

Función de regresión

Def: Sean X, Y dos v.a. discretas, se llama función de regresión a

$$arphi(x) = \mathbb{E}[Y|X=x] = \sum_{y \in R_y} y p_{Y|X=x}(y), \quad orall x \in R_X$$

Def: Sean X, Y dos <u>v.a.</u> continuas, se llama función de regresión a

$$arphi(x) = \mathbb{E}[Y|X=x] = \int_{y \in R_y} y f_{Y|X=x}(y), \quad orall x \in R_X$$

Observar que es función de x

Esperanza condicional

 ${f Def:}$ La variable aleatoria esperanza condicional de Y dada X se define como

$$\mathbb{E}[Y|X] = \varphi(X).$$

Además $\varphi(X)$ satisface que $\mathbb{E}[(Y-\varphi(X))\,t(X)]=0$ para toda función medible $t:R_X o\mathbb{R}$, tal que $\mathbb{E}[t(X)]<\infty$.

¿A qué nos recuerda esto?

 $\mathbb{E}[Y|X]$ es el mejor predictor de Y basado en X (i.e. es la proyección ortogonal de Y en el espacio de funciones de X)

Propiedades

- 1. $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$
- 2. $\mathbb{E}[r(X)s(Y)|X]=r(X)\mathbb{E}[s(Y)|X]$, para r, s tal que r(X)s(X), r(X) y s(Y) tienen esperanza finita
- 3. $\mathbb{E}[aY_1 + bY_2|X] = a\mathbb{E}[Y_1|X] + b\mathbb{E}[Y_2|X]$
- 4. $\mathbb{E}[Y|X]=\mathbb{E}[Y]$ si X y Y son independientes

Varianza condicional

Def: Dada au(x) = var(Y|X=x), se define la varianza condicional como

$$\mathbb{V}(Y|X) = au(X) = \mathbb{E}[Y^2|X] - \mathbb{E}[Y|X]^2$$

Propiedad: (Pitágoras)

$$var(Y) = \mathbb{E}[\mathbb{V}(Y|X)] + var(\mathbb{E}[Y|X])$$