

1.6 кг 1900\$

0.25 кг 1100\$

0.25 кг 1100\$

0.48 кг 1200\$

0.04 кг 430\$

0.04 кг 430\$

Вместимость рюкзака 1.8 кг

Жадный алгоритм

- Давайте начнём брать сначала самые легкие вещиПример жадного алгоритма
- Для одной задачи может быть несколько типов жадных алгоритмов Все они определяются одинаково, разница лишь в том, по какой метрике определять порядок

0.25 кг 1100\$

0.48 кг 1200\$

Вместимость рюкзака 1.8 кг

1.3 кг 2500\$

1.6 кг 1900\$

Общая стоимость 4260\$

0.25 кг 1100\$

0.48 кг 1200\$

Вместимость рюкзака 1.8 кг

Жадный алгоритм

- Для первого подхода при выборе веса в качестве метрики
 Стоимость 4260\$
- Далее попробуем взять стоимость в качестве метрики

1.6 кг 1900\$

Вместимость

рюкзака 1.8 кг

1.3 кг 2500\$

0.04 кг 430\$

0.25 кг 1100\$ 0.04 кг 430\$

0.25 кг 1100\$

1.3 кг 2500\$

0.48 кг 1200\$

0.04 кг 430\$

0.04 кг 430\$

0.25 кг 1100\$

0.25 кг 1100\$

Вместимость рюкзака 1.8 кг

Общая стоимость 3700\$

1.3 кг 2500\$

0.48 кг 1200\$ Вместимость рюкзака 1.8 кг

1.6 кг 1900\$

Жадный алгоритм

- Для первого подхода при выборе веса в качестве метрики
 Стоимость 4260\$
- Для второго подхода при выборе стоимости в качестве метрики
 Стоимость 3700\$
- Далее попробуем расчётную метрику цена/вес

Общая стоимость 4260\$

0.25 кг 1100\$

0.48 кг 1200\$

Вместимость рюкзака 1.8 кг

Жадный алгоритм

- 4260\$ лучшее решение?
 - оптимальное решение?

Общая стоимость 4700\$

Жадный алгоритм

- О Для одной задачи может быть несколько типов жадного алгоритма
 - Выдают различный результат
 - Зависят от входных данных

- Очень быстро моделируются
- Очень быстро рассчитываются
- Найти допустимое решение должно быть легко

Недостатки:

- Не гарантирует качество решения
- Качество решения будет зависеть от входных данных

Цель курса

- Начнём с жадного алгоритма, чтобы понять, как можно его улучшить
- Затем перейдём к продвинутым техникам:
 - Программирование в ограничениях (Constraint programming)
 - Локальный поиск (Local Search)
 - Целочисленное программирование (Integer programming)
- Для того, чтобы:
 - Уметь находить допустимое решение
 - Уметь строить высококачественное решение вне зависимости от входных данных
 - В идеале, обеспечивать оптимальность решения

Моделирование

- Как формализовать оптимизационную задачу в математическую модель?
- Важно, чтобы постановка задачи правильно и полностью вписывалась в математическую модель, иначе задача не будет решена в полной мере

- \bigcirc Возьмём I как множество предметов $i \in I$:
 - Где *w_i*
 - Где v_i
- Вместимость рюкзака K
- \bigcirc Найдем подмножество элементов из I, которые:
 - Будут суммарно выдавать максимальную стоимость
 - При этом не будут превышать вместимость рюкзака К

Оптимизационная модель

- Как моделировать оптимизационную задачу?
 - Определить множество переменных
 - Это то, что мы будем искать в качестве решения
 - Определить ограничения, выраженные через переменные
 - Это то, что будет определять множество допустимых решений
 - Определить целевую функцию
 - Это то, что выражает цель оптимизации и определяет качество решения
 - В результате получается оптимизационная модель
 - Задекларированная формализация
 - Могут быть различные формулировки для одной оптимизационной модели

- \bigcirc Множество бинарных переменных x_i , которое определяет, берём лимы в рюкзак предмет $i \in I$, при этом:
 - x_i = 1, если предмет будет взят в рюкзак
 - x_i = 0, если предмет взят не будет
- Ограничение задачи:
 - $\sum_{i \in I} w_i x_i \le K$
- Целевая функция задачи:

$$\sum_{i \in I} v_i x_i$$

Maximize $\sum_{i \in I} v_i x_i$

При этом, $\sum_{i \in I} w_i x_i \le K$, $x_i \in \{0,1\}$, $(i \in I)$

Экспоненциальный рост

- Как много может быть возможных конфигураций?
 (0, 0, 0, ..., 0), (0, 0, 0, ..., 1), ..., (1, 1, 1, ..., 1)
- Не все из конфигураций попадают в допустимое множество Из-за ограничения на вместимость рюкзака
- Сколько возможных комбинаций?
 2|I|
- Как много времени потребуется на расчёт?
 - Допустим на тестирование одной конфигурации уходит 1 миллисекунда
 - Если количество элементов равно 50, то на перебор всех вариантов уйдет **1.285.273.866 веков**

- Одна из наиболее популярных техник для работы с оптимизационными задачами
 - Для некоторых типов задач подходит хорошо, но с некоторыми не работает совсем
 - Базовый принцип
 - Разделяй и властвуй
 - Расчёт снизу вверх

- Основные понятия и определения
 - Пусть есть множество элементов $I = \{1, 2, 3, ..., n\}$
 - O(k,j) определяет оптимальное решение для проблемы наполнения рюкзака с вместимостью рюкзака k и элементами $[1 \dots j]$

Maximize
$$\sum_{i \in 1...j} v_i x_i$$

При этом,
$$\sum_{i \in 1...j} w_i x_i \le k$$
, $x_i \in \{0,1\}$, $(i \in 1...j)$

 \bigcirc Нам интересно найти наилучшее значение для O(K,n)

Рекуррентные отношения

- Предположим, что мы знаем как найти
 - O(k, j-1) для каждого k из 0...K
- \bigcirc Мы хотим найти O(k,j)
 - Что больше задачи O(k, j-1) всего на 1 предмет j
- \mathbb{E} Если $w_i \leq k$ у нас есть два случая
 - Мы не возьмём в рюкзак предмет j, потому что решение O(k,j-1) лучше
 - Мы возьмём в рюкзак предмет j и лучшее решение будет значением v_i + $O(k-w_i,j-1)$
- В итоге
 - $O(k,j) = \max(O(k,j-1), v_j + O(k-w_j,j-1)),$ если $w_j \le k$
 - O(k,j) = O(k,j-1), если $w_i > k$
- 🔾 Очевидно
 - O(k,0)=0 для любого k

Рекуррентные отношения

О Можем написать простейшую программу

Насколько эффективен этот алгоритм?

Рекуррентные отношения

○ Рассмотрим расчёт чисел Фибоначчи

```
def fib(n):
 if n=0 or n=1:
     return 1
     else:
     return fib(n-2)+fib(n-1)
```

- Насколько эффективен этот алгоритм?
 - Для каждого п необходимо рассчитывать функцию n-1 раз
 - Что само по себе не очень эффективно

- Рассчитываем рекурсивным методом снизу вверх
 - Рассчитываем для нуля предметов
 - Рассчитываем для одного предмета

. . .

Рассчитываем для всех предметов

Maximize $5x_1 + 4x_2 + 3x_3$

При этом,

$$4x_1 + 5x_2 + 2x_3 \le 9$$
, $x_i \in \{0,1\}$, $(i \in 1 ... 3)$

Живой пример

Вместимость	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	$\frac{1}{2} / \frac{1}{2} $ 0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	\ \\\	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11

Maximize $5x_1 + 4x_2 + 3x_3$ При этом,

$$4x_1 + 5x_2 + 2x_3 \le 9$$
, $x_i \in \{0,1\}, (i \in 1 \dots 3)$

Вместимость	0	1	2	3	4
0	0	0	0	0	0
	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Maximize $16x_1+19x_2+23x_3+28x_4$ При этом, $2x_1+3x_2+4x_3+5x_4\leq 7,\ x_i\in\{0,1\}, (i\in 1\dots 4)$

- В чём сложность алгоритма?
 - Время на заполнение таблицы
 - То есть время на поиск O(k,j)
 - Время расчёта полиномиально?
 - Безусловно, нет
 - Нижняя оценка log(K) бит для расчёта К
 - Является псевдо-полиномом имеет полиномиальное время в случае, если К мало
 - Следовательно подход эффективен для небольшого К

Maximize $45x_1+48x_2+35x_3$ При этом, $5x_1+8x_2+3x_3\leq 10,\ x_i\in\{0,1\}, (i\in1\dots3)$

- Итерация двух шагов
 - Ветвление
 - Ограничение
- Ветвление
 - Разбиение задачи на несколько подзадач
- Ограничение
 - Поиск оптимистичной оценки для лучшего решения на основе подзадач
 - Максимизация нижней границы и минимизация верхней границы

- Как получить оптимистичную оценку?
 - Ослабить условия задачи

Maximize
$$45x_1 + 48x_2 + 35x_3$$

При этом,

$$5x_1 + 8x_2 + 3x_3 \le 10, \ x_i \in \{0,1\}, (i \in 1 \dots 3)$$

- Как мы можем ослабить задачу наполнения рюкзака?
 - Ослабить условие вместимости рюкзака

○ Подход не самый лучший, ограничили только несколько ветвей

Maximize
$$45x_1+48x_2+35x_3$$
 При этом,
$$5x_1+8x_2+3x_3\leq 10,\ x_i\in\{0,1\}, (i\in1\dots3)$$

Линейная релаксация

○ Переменные могут принимать дробные значения от 0 до 1

Maximize $45x_1 + 48x_2 + 35x_3$

При этом,

 $5x_1 + 8x_2 + 3x_3 \le 10, \ 0 \le x_i \le 1, (i \in 1 \dots 3)$

Это называется линейной релаксацией Будет более подробно рассказано об этом позже в курсе

Линейная релаксация

- Как мы можем решить новую задачу?
 - lacktriangle Расположить предметы по убыванию показателя v_i/w_i
 - Получится своего рода удельный показатель на 1 кг
 - Наполняем рюкзак, пока не закончится в нём место
 - При этом последний предмет, который попадёт в рюкзак, вероятно, не будет целым

Maximize
$$45x_1 + 48x_2 + 35x_3$$

При этом,

$$5x_1 + 8x_2 + 3x_3 \le 10, \ 0 \le x_i \le 1, (i \in 1 \dots 3)$$

- В конкретном примере:
 - $v_1/w_1 = 9$, $v_2/w_2 = 6$, $v_3/w_3 = 11.7$
 - Предметы 3 и 1 поместятся в рюкзак полностью
 - Предмет 2 поместится только на ¼
 - Оценка 92

Линейная релаксация

- Почему это верно?
 - Пусть $x_i = y_i/v_i$

Maximize $\sum_{i \in 1...j} y_i$

При этом, $\sum_{i \in 1...j} w_i y_i / v_i \le k$, $0 \le y_i \le 1$, $(i \in 1...j)$

Почему это не будет решением задачи?

Живой пример

Использование линейной релаксации

Стратегии поиска в методе ветвей и границ

- Первый по глубине (depth-first)
 - Обрезаем те ветви, оценка которых хуже уже найденного решения
- Первый лучший (best first)
 - Выбираем ту ветвь, которая имеет лучшую оценку
- Наименьшее расхождение (least discrepancy)
 - Доверяем жадному алгоритму

Первый по глубине

- Идём вглубь
- Когда обрезаем ветви?
 - Когда находим новую ветвь с оптимистичной оценкой ниже уже найденного решения
- За найденной ветвью обрезаем все нижестоящие
- Насколько это эффективно с точки зрения использования памяти?
 - Довольно неэффективно, потому что приходится хранить большое количество информации

Первый лучший

- Идём к лучшему
- Когда обрезаем ветви?
 - Когда все ветви дают решение хуже найденного
- За найденной ветвью обрезаем все нижестоящие
- Насколько это эффективно с точки зрения использования памяти?
 - Так же неэффективно

Наименьшее расхождение

- Предположим, что у нас есть отличная эвристика
 - Делает очень мало ошибок
 - Дерево поиска бинарное
 - Эвристика указывает на верные значения в левой стороне
 - Ветви с правой стороны считаются неверными
 - Ограниченный поиск расхождений (Limited Discrepancy Search (LDS))
 - Избегает отклонения от эвристики
 - Исследует дерево решений увеличивая порядок отклонений
 - Доверяет эвристике меньше и меньше
- Порядок отклонений увеличивается волнами
 - Без отклонений от эвристики
 - С одним отклонением
 - С двумя отклонениями

Наименьшее расхождение

- О Волна 1
- О Волна 2
- Волна 3
- Волна 4

Наименьшее расхождение

- О Доверяем эвристике
- Когда обрезаем ветви?
 - Когда вся следующая волна ниже предыдущей по оценке
 - Насколько это эффективно с точки зрения использования памяти?
 - Зависит от реализации и выбранной эвристики

Заключение

- Релаксация и стратегия поиска важнейшая часть в решении задач оптимизации
- Важно пробовать различные подходы для ускорения процесса расчёта и использования памяти:
 - Исследовать природу рассматриваемой задачи
 - Подобрать максимально эффективную эвристику там, где это возможно
 - Использовать релаксацию там, где это может быть эффективно Выбрать наиболее подходящий метод поиска

Задание для воркшопа

Решить задачу наполнения рюкзака для различного количества предметов

Maximize $\sum_{i\in I}v_ix_i$ При этом, $\sum_{i\in I}w_ix_i\leq K$, $x_i\in\{0,1\},(i\in 1..n)$

	Выход					
Целевая функция		Оптима	альность			
	x1	x2		x3		xn

Задание для воркшопа

Решить задачу наполнения рюкзака для различного количества предметов

Maximize $\sum_{i \in I} v_i x_i$

При этом, $\sum_{i \in I} w_i x_i \le K$, $x_i \in \{0,1\}$, $(i \in 1..n)$

Вход

n	K
v_1	w_1
v_2	w_2
v_n	w_n

4	11
8	4
10	5
15	8
4	3

Выход

Целевая функция	Оптимальность
19	0

x1	x2	x3	x4
0	0	1	1

Солверы

Constraint Programming:

CHOCO - java library, open source

Gecode - c++, free

FICO Express - binary, free with academic

license

JACOP - java, open source

CPLEX – binary, free with academic license

MiniZinc / G12 - binary, free for students

or-tools - C++, open source, APIs - Java,

Python, and .NET

SAS OR – binary, free with academic license

Local Search:

Local Solver - binary, free with academic

license

OptaPlanner - java, open source

CPLEX – binary, free with academic license

SAS OR – binary, free with academic license

Mixed Integer Programming:

BCP - c++, open source

CBC - c++, open source

CPlex - binary, free with academic license

GLPK - c, open source

gurobi - binary, free with academic license

LPSolve - c, open source

MIP – binary, open source

SCIP - binary, free for academic use

SAS OR - binary, free with academic license

Non-Linear Optimization:

Artelis Knitro – binary, free with academic license

CPLEX – binary, free with academic license

SAS OR – binary, free with academic license

...

Пакеты для Python, часть 1

MINLP+MIQP+MILP +NLP+IP+LP		
Package	Link	
gekko	Official	
knitro	<u>Official</u>	
lindo	Official	
midaco	<u>Official</u>	
naginterfaces	Official	
octeract	<u>Official</u>	
pydrake	<u>Official</u>	
pygmo	<u>Official</u>	
pyomo	Official	
pyscipopt	Official	
xpress	Official	

MIQP+MILP+IP +LP		
Package	Link	
copt	<u>Official</u>	
cplex	Official	
docplex	<u>Official</u>	
gurobipy	Official	
highs	<u>Official</u>	
localsolver	Official	
mosek	Official	
optlang	<u>Official</u>	
sasoptpy	Official	

MILP+IP+LP			
Package	Link		
cvxopt	Official		
cvxpy	Official		
cylp	Official		
flowty	Official		
lpsolve55	Official		
Mindoptpy	Official		
Mip	Official		
Ortools	Official		
picos	<u>Official</u>		
pulp	Official		
pymprog	Official		
swiglpk	<u>Official</u>		

NLF	P+LP
Package	Link
iminuit	<u>Official</u>
nlopt	<u>Official</u>
openmdao	<u>Official</u>
pyopt	<u>Official</u>
scipy	Official
worhp	<u>Official</u>
cyipopt	Official

Пакеты для Python, часть 2

GPP

Package	Link
arm-mango	<u>Official</u>
ax	<u>Official</u>
bayesian- optimization	Official
bayesianevolution	<u>Official</u>
bayeso	<u>Official</u>
bayesopt	<u>Official</u>
bolbib	<u>Official</u>
cma	<u>Official</u>
cmaes	<u>Official</u>
cuopt	<u>Official</u>
deap	Official
dfoalgos	<u>Official</u>
dfogn	<u>Official</u>
dlib	<u>Official</u>

evolopy	<u>Official</u>
freelunch	Official
gaft	<u>Official</u>
geneticalgorithm	Official
gyopt	<u>Official</u>
hebo	<u>Official</u>
heuristic_optimiz ation	<u>Official</u>
hpbandster	<u>Official</u>
hyperopt	<u>Official</u>
inspyred	<u>Official</u>
mealpy	<u>Official</u>
mipego	<u>Official</u>
mystic	<u>Official</u>
nevergrad	Official
niapy	Official

oasis	<u>Official</u>
optuna	Official
optuner	Official
opytimizer	<u>Official</u>
pagmo	<u>Official</u>
pdfo	Official
platypus	Official
proxmin	Official
py-bobyqa	Official
pydogs	Official
pygpgo	<u>Official</u>
pymoo	<u>Official</u>
pyopus	<u>Official</u>
pypesto	Official
pyriad	<u>Official</u>

	pysmac	<u>Official</u>
	pysot	<u>Official</u>
	pyswarms	<u>Official</u>
	rapids- NeurIPS	<u>Official</u>
	ray	<u>Official</u>
	rbfopt	<u>Official</u>
	scikit- optimize	<u>Official</u>
	simanneal	<u>Official</u>
	simple	<u>Official</u>
	solidpy	<u>Official</u>
	spearmint	<u>Official</u>
	spotpy	<u>Official</u>
	ssb- optimize	<u>Official</u>

swarmlib	<u>Official</u>
swarmpack agepy	Official
tgo	<u>Official</u>
turbo- NeurIPS	Official
turbo	<u>Official</u>
ultraopt	<u>GitHub</u>
yabox	<u>GitHub</u>
zoopt	GitHub