OpenCUDA+MPI

A Framework for Heterogeneous GP-GPU Cluster Computing

Kenny Ballou

March 20, 2013

- **1** GP-GPU Computing Introduction
- 2 Problems and Solutions
- 3 A Little About Methodology
- 4 What's Been Done

- **1** GP-GPU Computing Introduction
 - Parallel versus Distributed Computing
 - Applications of Supercomputing
 - Who Uses Supercomputing?
- 2 Problems and Solutions
- 3 A Little About Methodology
- 4 What's Been Done

Introduction

Parallel and Distributed Computing

What is GP-GPU Distributed Computing?

- Parallel:
 - Processing concurrently
- Distributed:
 - Processing over many computers, typically in parallel, but not always
 - Local
 - Grid Computing

Applications of Supercomputing

What can we do with Parallel and Distributed Computing?

- Solving (Large) Linear Systems
 - LINPACK Benchmarks
- Fluid Dynamic Simulations
- N-Body Simulations
- Brute-Force Password/Hash Cracking
- Prime Number Searching
- Protein Folding
- Image Analysis / Manipulation
-

Who Uses Supercomputing?

ALL The People

Who Uses Supercomputing? No Really...

- Google Page Indexing
 - Created Map-Reduce
- Facebook Data Mining
- Universities
- Many Others

- 1 GP-GPU Computing Introduction
- 2 Problems and Solutions
 - Problems with Current Solutions
 - Solutions
 - Plans and Goals
- 3 A Little About Methodology
- 4 What's Been Done

Problems

- "Distributed Programming" is expensive
- Specificity of Hardware
- Data
 - Distribution
 - Volume
 - NFS
- Fault Tolerance
- Optimizing Resources and Utilization

A Framework

Solutions

- Ease Programming Interface for Highly Parallel Distributed Computing
- Allow for Diversity in Computing Environment
 - Bring together ideas from both types of distributed computing
 - "Jungle Computing"

Plan and Goals

- Develop a framework for distributed computing over a heterogeneous cluster
- Develop several different solutions for vascular extraction from CT angiography scans
- Profile the different solutions
- Add Cluster/ Node Configuration and Scheduling Options
- Release as FOSS to the world

- 1 GP-GPU Computing Introduction
- 2 Problems and Solutions
- 3 A Little About Methodology
 - Implementation Details
- 4 What's Been Done

Implementation Details

- Arch Linux
- Salt
- Python
- CUDA
- (Open)MPI

Arch Linux

- Core Tenet: Minimalism
- Small
- Lightweight
- Familiarity

Salt

More than just NaCl

Provisioning tool for managing infrastructure

- Allows for "Push" based state changes
- Remote Execution
- Simplicity
- Fast

Python

- Development Speed: Expressive and Readable
- Fast Enough
 - Written in C/C++
- Great and Many Profiling Tools
 - time.time()
 - timeit
 - cProfile
 -
- Where slow, allows use of C/C++ code

CUDA

Compute Unified Device Architecture

- Established interface with (nVidia) GPU's
- pyCUDA
 - Deferred CUDA kernel compilation
- Familiarity

(Open)MPI

- Established interface for inter-process communication
- mpi4py
 - One of the most complete MPI implementations

- 1 GP-GPU Computing Introduction
- 2 Problems and Solutions
- 3 A Little About Methodology
- 4 What's Been Done
 - What I have been doing
 - Moving Forward
 - Problems Encountered
 - Potential Solutions

Tasks

- Learning MPI, mpi4py, and pyCUDA
- Node/ Cluster Administration
 - Node Build Scripts
 - Salt Configuration
 - Special Thanks to Danny
- Lots of thinking

Moving Forward

- Finish Creating Salt States and Configuration
- Continue Learning MPI and pyCUDA
- Develop Framework

Problems / Roadblocks

- Power Requirements
- NFS Share /home performance
- Time?

Potential Solutions

- Request(ing) more suitable and stable power
- Researching Distributed Filesystems / File storage

OpenCUDA+MPI

A Framework for Heterogeneous GP-GPU Cluster Computing

Kenny Ballou

March 20, 2013