Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Домашняя работа №5

по дисциплине
«Дискретная математика»
Вариант №9

Выполнил:

Студент группы Р3113

Султанов А.Р.

Преподаватель:

Поляков В.И.

г. Санкт-Петербург 2023г.

Оглавление

Оглавление	2
Задание	3
Решение	4

Задание

 G_{1}

V/V	x 1	x2	x 3	x4	x5	x6	x7	x8	x9	x10	x11	x12	p(x)
x1	0	0	0	1	0	3	0	1	1	1	0	1	6
x2	0	0	0	1	0	0	0	0	1	0	0	0	2
х3	0	0	0	0	5	3	1	0	0	4	1	2	6
x4	1	1	0	0	0	0	0	3	5	0	0	2	5
x5	0	0	5	0	0	5	2	0	1	5	0	3	6
х6	3	0	3	0	5	0	0	0	5	4	3	0	6
x7	0	0	1	0	2	0	0	1	2	3	2	0	6
x8	1	0	0	3	0	0	1	0	3	2	2	0	6
x9	1	1	0	5	1	5	2	3	0	0	0	0	7
x10	1	0	4	0	5	4	3	2	0	0	0	0	6
x11	0	0	1	0	0	3	2	2	0	0	0	1	5
x12	1	0	2	2	3	0	0	0	0	0	1	0	5

 G_2

V/V	y1	y2	y3	y4	у5	у6	y7	y8	у9	y10	y11	y12	p(y)
y1	0	0	1	0	0	0	0	1	0	0	0	0	2
y2	0	0	0	5	3	1	0	0	4	1	2	0	6
у3	1	0	0	0	0	0	3	5	0	0	2	1	5
y4	0	5	0	0	5	2	0	1	5	0	3	0	6
у5	0	3	0	5	0	0	0	5	4	3	0	3	6
у6	0	1	0	2	0	0	1	2	3	2	0	0	6
у7	0	0	3	0	0	1	0	3	2	2	0	1	6
y8	1	0	5	1	5	2	3	0	0	0	0	1	7
у9	0	4	0	5	4	3	2	0	0	0	0	1	6
y10	0	1	0	0	3	2	2	0	0	0	1	0	5
y11	0	2	2	3	0	0	0	0	0	1	0	1	5
y12	0	0	1	0	3	0	1	1	1	0	1	0	6

Решение

Для графа
$$G_1$$
: $\Sigma \rho(x) = 66$. Список $P(x) = \{7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 2\}$ Для графа G_2 : $\Sigma \rho(y) = 66$. Список $P(y) = \{7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 2\}$

	$\rho(x) = \rho(y) = 2$	$\rho(x) = \rho(y) = 5$	$\rho(x) = \rho(y) = 6$	$\rho(x) = \rho(y) = 7$
X	x_2	<i>x</i> ₄ , <i>x</i> ₁₁ , <i>x</i> ₁₂	$x_1, x_3, x_5, x_6, x_7, x_8, x_{10}$	x_9
Y	y_{1}	y ₃ , y ₁₀ , y ₁₁	y ₂ , y ₄ , y ₅ , y ₆ , y ₇ , y ₉ , y ₁₂	y_8

Из таблицы сразу видно соответствие вершин графов:

X	Y
x_2	y_{1}
x_9	y_8

Для определения соответствия остальных вершин попробуем связать вершины из классов 2, 7 (удалив вершины, соответствие между которыми уже установлено)

Схематически видно, что вершины x_4 и y_3 - единственные вершины, у которых две связи. Установим соответствие $x_4{\sim}y_3$.

X	Y
x_2	\boldsymbol{y}_1
x_9	y_8
x_4	y_3

Схематически видно, что x_{12} и y_{11} - это единственные вершины, которые связаны только с x_4 и y_3 соответственно. Установим соответствие $x_{12}{\sim}y_{11}$.

X	Y
x_2	\boldsymbol{y}_1
x_9	y_8
x_4	y_3
x ₁₂	y ₁₁

Видно, что x_1 и y_{12} - единственные вершины, имеющие 3 связи. Помимо этого, заметим, что x_5 и y_4 - единственные вершины, имеющие ровно 2 связи с парами x_9 , x_{12} и y_8 , y_{11} . То же самое относится к x_8 и y_7 : это единственные вершины, имеющие ровно 2 связи с парами x_4 , x_9 и y_3 , y_8 . Установлены соответствия $x_1{\sim}y_{12}$, $x_5{\sim}y_4$, $x_8{\sim}y_7$.

X	Y
x_2	\boldsymbol{y}_1
x_9	$\boldsymbol{\mathcal{Y}}_{8}$
x_4	y_{3}
<i>x</i> ₁₂	<i>y</i> ₁₁
x_{1}	<i>y</i> ₁₂
x_5	\mathcal{Y}_4
x_8	y_{7}

Видно, что x_3 и y_2 - единственные вершины, имеющие связь с парами x_5, x_{12} и y_4, y_{11} .

То же самое относится к x_6 и y_5 : это единственные вершины, имеющие связь с троицами x_1, x_5, x_9 и y_{12}, y_4, y_8 .

Также и для x_7 и y_6 : это единственные вершины, имеющие связь с троицами x_5, x_8, x_9 и y_4, y_7, y_8 .

Соответственно и для x_{11} и y_{10} : это единственные вершины, имеющие связь с парами x_{8}, x_{12} и y_{7}, y_{11} .

И таким же образом для x_{10} и y_9 : это единственные вершины, имеющие связь с троицами x_1, x_5, x_8 и y_{12}, y_4, y_7 .

Установлены соответствия $x_3 \sim y_2, x_6 \sim y_5, x_7 \sim y_6, x_{11} \sim y_{10}, x_{10} \sim y_9.$

X	Y
x_2	\boldsymbol{y}_1
x_9	\mathcal{Y}_8
x_4	y_3
<i>x</i> ₁₂	<i>y</i> ₁₁
x_1	y ₁₂
x_5	\mathcal{Y}_4
x_8	\mathcal{Y}_7
x_3	\boldsymbol{y}_2
x_{6}	y_5

x_{7}	y_6
<i>x</i> ₁₁	y_{10}
x_{10}	y_9

Так как мы установили каждой вершине соответствие, значит, что графы \boldsymbol{G}_1 и \boldsymbol{G}_2 изоморфны.