Engenharia de Materiais

A Engenharia de Materiais é área do conhecimento humano que está relacionada à pesquisa, desenvolvimento, produção e aplicação, tanto dos novos como dos materiais tradicionais, fazendo um estudo das relações entre:

ESTRUTURA-PROPRIEDADES-PROCESSAMENTO-APLICAÇÕES.

Processamento Aplicações

Estrutura

Propriedades

FIGURE 1-9 The three-part relationship between structure, properties, and processing method. When aluminum is rolled into foil, the rolling process changes the metal's structure and increases its strength.

Estruturas Cristalinas

Tabela 4.2 — Estrutura cristalina dos principais metais puros.

Estrutura	Metal
CFC	Ag, Al, Au, Ca, Co-β, Cu, Fe-γ, Ni, Pb, Pd, Pt, Rh, Sr
НС	Be, Cd, Co-α, Hf-α, Mg, Os, Re, Ru, Ti-α, Y, Zn, Zr-α
CCC	Ba, Cr, Cs, Fe- α , Fe- δ , Hf- β , K, Li, Mo, Na, Nb, Rb, Ta, Ti- β , V, W, Zr- β

Fonte: [1]

Estruturas

Estruturas Atômicas

Estrutura Cloreto de Sódio

Estrutura Titanato de Bário

Estruturas Atômicas

Estrutura Argila - Caulinita

Estruturas Atômicas - Vidros

Estruturas de Silicatos

Si⁴⁺ 0^{2-} Na⁺

Vidro sódio-silicato

Polimerização via radical livre

dimer

Com ligações cruzadas

Em rede (tridimensional) Fonte: [2]

Ângulo de ligação e vibrações atômicas

Conformação macromoléculas

Cristalito

Célula Unitária - Polietileno

Microscopia eletrônica

Apenas 1 Fases

Mistura de fases

5

Formação dos grãos durante a solidificação

Revelação do contorno de grão

Grãos de fases diferentes

Microestrutura Cerâmica

Sinterização

Figure 5-20 Diffusion processes during sintering and powder metallurgy. Atoms diffuse to points of contact, creating bridges and reducing the pore size.

Fonte: [2]

Microestrutura da Porcelana

Microscopia ótica – luz polarizada

Polietileno Glicol

Esferulitos

Microscopia ótica – luz polarizada

Cristalização de Polietileno Glicol - Taxa de resfriamento 20°C/min

http://www.youtube.com/watch?v=DEwpo4PKc-0&feature=youtu.be

Bibliografia Consultada/Sugerida

- [1] Materiais de Engenharia Microestrutura e Propriedades A. F. Padilha Hemus AS 1997 Capítulo 4.
- [2] Materials Science and Engineering-An Introduction Ninth edition William D. Callister Jr. and David G. Rethwisch– John Wiley & Sons, Inc. Chapters 3, 4, 9, 12, 13, and 14.