

Beijing University of Posts and Telecommunications

《算法分析一第二章实验》

实验报告

姓	名_	<u>袁洁</u>	胡敏臻		
学	号_	2019211426	2019211424		
班	级	2019211307	2019211307		
专	4 /	计算机科	学与技术		

1 实验内容

- 1.1 采用合并排序与快速排序,取 N=30,000,生成长度为 n、最大值 $x(n-1) \le N$ 的 L 组序列 $\{SEQ(n,N)\}$,每组序列 $\{SEQ(n,N)\}$ 中有 M 个长度均为 n、组成序列的数字相同,但数字间顺序不同的序列。要求:
 - L=6 种不同长度, n=2,000, 5,000, 10,000, 15,000, 20,000, 30,000
 - M=5, 即每组有 5 个长度相同的序列 SEQ(n, N)
 - · 对同组内长度相同的序列, ADD、DD 值不相同
- 1.2 采用线性时间选择算法,根据基站 k-dist 距离,挑选出
 - k-dist 值最小的基站
 - k-dist 第 5 小的基站
 - k-dist 值第 50 小的基站
 - k-dist 值最大的基站

要求

- 在排序主程序中设置全局变量,记录选择划分过程的递归层次
- 参照讲义 PPT,将教科书上的"一分为二"的子问题划分方法,改进为"一分为三",比较这 2 种划分方式下,选择过程递归层次的差异。
- 1.3 采用平面最近点对算法,根据基站经纬度,挑选出
 - 距离非零、且最近的 2 个基站
 - 距离非零、且次最近的 2 个基站

要求:返回

- 最近/次最近的 2 个基站间距离
- 最近/次最近的 2 个基站点对(用基站 ENodeBID 表示)

2 排序算法

2.1 四种算法说明

本次实现了 4 种算法,递归合并排序算法,非递归合并排序算法,快速排序 1,快速排序 2。并且参照 PPT 讲义内容,当输入数组 a[p:r]已经按照非递减序排列好时,直接返回 a[p:r],作为排序结果;当 a[p:r]已经按照非递增序排列好时,返回 a[p:r]中元素的逆序,作为排序结果。并且我们同时在排序主程序中设置全局变量,记录排序过程的**递归层次。**这四种算法都采取了以上这两个策略。

- 合并排序 1: 自上而下分解数组,直至子序列长度为 1,再自下而上采用 merge 合并已经排好序的子序列
- 合并排序 2: 省略了自下而上的分解过程,将数组中相邻元素两两配对,作为最底层的子问题,再由下而上使用 merge 进行排序
 - 快速排序 1: 快速排序 1 固定最左边的数为划分的基准元素
- 快速排序 2: 因为考虑到划分后的子序列是否平衡、对称,快速排序 2 在 a[p:r]中随机一个数作为划分的基准元素

2.2 测试结果

- 2.2.1 对序列 SEQ(n, N)从小到大进行排序,要求
 - •用表格记录每个序列的长度、ADD、DD、排序时间
 - 对递归算法,观察统计递归层次。

测试结果如下表说明:

	以 年			ADD	(単山人 サロ	非 第 中	計畫 1 2 並 l□	計事 7英中
序	长度	组	DD	ADD	递归合并层	非递归	快排1递归	快排2递归
列 SEO	n	号			次/时间	合并时	层次/时间	层次/时间
SEQ						间		
编								
号	2000	1	064610	402.21	10/0.001070	0.000533	21/0.000220	22/0.00020
1	2000	1	964619	482.31	10/0.001058	0.000532	21/0.000228	22/0.00038
2	2000	1	971007	485.503	10/0.000962	0.000347	21/0.000232	22/0.000387
3	2000	1	984371	492.185	10/0.001156	0.000339	21/0.000234	22/0.000381
4	2000	1	996800	498.4	10/ 0.00125	0.000439	21/0.000336	22/0.000499
5	2000	1	1.03042e+06	515.211	10/0.001049	0.000382	22/0.000428	22/0.000411
6	5000	2	6.13262e+06	1226.52	12/0.002762	0.001028	26/0.000677	27/0.001022
7	5000	2	6.19416e+06	1238.83	12/0.002863	0.001007	26/0.000675	25/0.001012
8	5000	2	6.29067e+06	1258.13	12/0.002918	0.001301	23/0.00099	25/0.001164
9	5000	2	6.32757e+06	1265.51	12/0.002885	0.00102	24/0.000732	25/0.001073
10	5000	2	6.38757e+06	1277.51	12/0.00294	0.001091	24/0.000911	28/0.001197
11	10000	3	2.47829e+07	2478.29	13/0.005897	0.001988	28/0.001362	28/0.002059
12	10000	3	2.48784e+07	2487.84	13/0.006096	0.002191	26/0.00143	26/0.002263
13	10000	3	2.49507e+07	2495.07	13/0.006214	0.002255	26/0.001327	28/0.002113
14	10000	3	2.51447e+07	2514.47	13/0.006476	0.002258	31/0.001588	26/0.002431
15	10000	3	2.51829e+07	2518.29	13/0.005814	0.002062	28/0.001417	35/0.00245
16	15000	4	5.58874e+07	3725.83	13/0.009317	0.003153	26/0.002168	29/0.003218
17	15000	4	5.59386e+07	3729.24	13/0.009833	0.003207	33/0.002187	32/0.003282
18	15000	4	5.59866e+07	3732.44	13/0.009848	0.003641	31/0.002323	29/0.003418
19	15000	4	5.63803e+07	3758.68	13/0.009426	0.003284	31/0.00213	31/0.003189
20	15000	4	5.67095e+07	3780.63	13/0.009455	0.003775	31/0.002647	29/0.003782
21	20000	5	9.96514e+07	4982.57	14/0.013375	0.004489	33/0.003006	32/0.004488
22	20000	5	9.9923e+07	4996.15	14/0.012513	0.004486	28/0.003476	30/0.004326
23	20000	5	1.00037e+08	5001.85	14/0.013891	0.004598	30/0.002964	31/0.004361
24	20000	5	1.00687e+08	5034.34	14/0.012592	0.00466	33/0.002942	32/0.004705
25	20000	5	1.00997e+08	5049.84	14/0.013229	0.004728	32/0.003025	36/0.004304
26	30000	6	2.22915e+08	7430.5	14/0.019105	0.00677	31/0.004652	32/0.006562
27	30000	6	2.23742e+08	7458.08	14/0.019693	0.006908	32/0.004876	32/0.00672
28	30000	6	2.24568e+08	7485.59	14/0.018343	0.007391	31/0.004508	30/0.00659
29	30000	6	2.24801e+08	7493.37	14/0.01939	0.007836	32/0.004594	33/0.006489
30	30000	6	2.26477e+08	7549.25	14/0.019561	0.006783	32/0.004468	30/0.006358
	1			1	1			I

2.2.2 针对 L=6 种不同序列长度,从表中选 6 行,考察对同一输入 SEQ(n,N),考察问题规模 n、DD 相同时,四种排序算法运行时间 T(n,I)差异。

我们选中第 5、10、15、20、25、30 行进行分析。根据分析表格我们可以发现,在同一行中,在规模 n、DD 相同时,递归合并排序的时间最长,非递归合并排序时间与快排 2 所用时间差不多,快排 1 的使用时间最短。然而在第五次实验中,快排 2 的时间比快排 1 的时间更短。

我们的分析是这样的。递归合并排序与非递归合并排序相比,递归所调用的时间更多,会存在冗余计算,而非递归合并排序因为不用递归调用,因此时间较短。快排 2 和快排 1 的区别是快排 2 中,所选取比较的数是随机选取的,而快排 1 指定在最左边的数。因为数本身是随机生成的,因此对于这两种选择结果相差并不大,而每次的随机选取需要消耗一部分时间,因此快排 2 的时间反而会更高。但是在第五次实验中,可能随机数选取有较好的表现,因此快排 2 的时间会更短。

2.2.3 观察在长度 n 相同的同一组内,同一算法的运行时间随 ADD、DD 增长的变化情况。在 6 组实验中,从第 1-5,6-10,11-15,16-20,21-25,26-30 组实验中进行组内分析,我们发现对同一算法而言,并没有随着 ADD 或者 DD 的变化时间有递增或者递减的趋势,时间呈现的是一种无序性。

我们思考分析后考虑,这些算法可能对 ADD 或者 DD 的要求比较小,并且我们的序列是随机生成并打乱的,他们的 ADD 或者 DD 值都在一个正态分布的峰值区域,虽然其范围很大,但是我们随机到的数列 ADD 或者 ADD 相差比较小,因此对于时间变化的不怎么明显,并且每组只有 5 次实验,次数较少,随机性比较大,较难看出规律。

2.2.4 考察问题规模 n 对算法运行时间的影响.

针对 L=6 种不同序列长度 n=2000, 5000, 10000, 15000, 20000, 30000,

- 统计 6 组相同长度的输入序列的平均 avgDD、avgADD,
- 计算四种算法对每组中的 M 个序列进行排序的平均时间 avgT(n)
- •观察同一算法的 avgT(n)随 n 的变化情况

测试结果如下表说明:

序	长 度	组	DD	ADD	递归合并	非递归合	快排1时	快排2时
列	n	号			时间	并时间	间	间
SEQ								
编								
号								
1	2000	1	989443.6	494.7218	0.001095	0.0004078	0.0002916	0.0004116
2	5000	2	6.27E+06	1253.3	0.0028736	0.0010894	0.000797	0.0010936
3	10000	3	2.50E+07	2498.792	0.0060994	0.0021508	0.0014248	0.0022632
4	15000	4	5.62E+07	3745.364	0.0095758	0.003412	0.002291	0.0033778
5	20000	5	1.00E+08	5012.95	0.01312	0.0045922	0.0030826	0.0044368
6	30000	6	2.25E+08	7483.358	0.0192184	0.0071376	0.0046196	0.0065438

观察同一个算法,我们发现,avgT(n)随 n 的增大不断增大。

2.2.5 考察对排序难度相同/相近、问题规模 n 不同的序列, n 对算法运行时间的影响。

从 L=6 个组中,每组分别挑选 1 个序列,共挑选出 6 个长度 n 不同的序列 SEQ(n,N),要求: 这 6 个序列 SEQ(n,N)的 ADD 尽可能相同或接近;观察对同一算法,算法运行时间 T(n,I)随 n 的变化情况。

以 n=10000 为例,运行结果如下:

ADD:1

递归合并排序递归层数13

递归合并排序The run time is: 0.001422

合并排序The run time is: 0.001501

快排1递归层数9997

快排1The run time is: 0.133808

快排2递归层数26

快排2The run time is: 0.001731

将测试结果汇聚成报告如下:

序列	长度 n	组号	DD	ADD	递归合并	非递归合	快排 1	快排 2
SEQ	V 1/3C ==	, <u>, , , , , , , , , , , , , , , , , , </u>			时间	并时间	时间	时间
编号								
1	2000	1	2000	1	0.000321	0.000222	0.0056	0.000379
2	5000	2	5000	1	0.000817	0.00058	0.033484	0.0009
3	10000	3	10000	1	0.00147	0.001528	0.136779	0.001515
4	15000	4	15000	1	0.002161	0.002061	0.294021	0.002827
5	20000	5	20000	1	0.002685	0.002938	0.527427	0.00365
6	30000	6	30000	1	0.004097	0.004903	1.16582	0.005941

因为在随机生成的数组中,每组的 ADD 相差都比较大,很难达到 ADD 相近的情况,因此在测试该组数据的时候,我们人为地进行了构造,使得每一组的 ADD 值都为 1。在 ADD 相同的情况下,我们对同一算法进行分析。发现在其他条件相同的情况下,**算法运行的时间随着 n 的增大不断增大。**

3 线性时间选择算法

3.1 算法说明

此算法模仿了递归划分排序算法,对输入数据进行划分排序。并且因为我们知道要找第几小的,因此,我们可以得知我们要找数的划分区域,减少递归的次数,因此其时间复杂性可以为线性的。在上机实验中,对于一分为二和一分为三两种方式我们都采用了。截图答案情况下,一分为二和一分为三结果相同。

在此时,为了在线性时间内找到一个划分基准,使得按这个基准所划分出的 2 个子数组的长度都至多。我们将 n 个元素 5 个 5 个划分成了一组,取出每一组的中位数,并在所有中位数中再找到值较大的中位数,以这个元素作为划分的基准。

• k-dist 值最小的基站

1

递归层数: 6

k-dist值第1小 568030:103.075

Program ended with exit code: 0

• k-dist 第 5 小的基站

5

递归层数: 6

k-dist值第5小 567883:126.096

Program ended with exit code: 0

• k-dist 值第 50 小的基站

50

递归层数: 6

k-dist值第50小 568074:208.475

Program ended with exit code: 0

• k-dist 值最大的基站

1033

递归层数: 6

k-dist值第1033小 568313:2735.8

Program ended with exit code: 0

• 不同划分情况

一分为二:

541

递归层数: 6

k-dist值第541小 565754:340.346

Program ended with exit code: 0

541

递归层数: 0

k-dist值第541小 565754:340.346 Program ended with exit code: 0

参照讲义 PPT,将教科书上的"一分为二"的子问题划分方法,改进为"一分为三",比较这 2 种划分方式下,我们发现一分为三的减治法降低了递归深度,速度更快,在面对一些特殊位置的值的时候可以更快的命中。

4 平面最近点对算法

4.1 算法说明

选取垂直线 l:x=m 来作为分割直线。其中 m 为 S 中在 x 坐标上第 $\lceil n/2 \rceil$ 小、第 $(\lceil n/2 \rceil + 1)$ 小的 2 个点的 x 坐标的平均值。由此将平面 S 分割为子平面 S1 和 S2。并且递归地在 S1 和 S2 上找出其最小距离 d1 和 d2,并设 $d=min\{d1,d2\}$,根据 d 构造点集 P1、P2

S中的最接近点对(p,q)有3种情况

- •位于左边的 S1 中, 距离 d=d1
- 位于右边的 S2 中, 距离 d=d2
- •某个 $\{p,q\}$, $p \in 左边点集合 P1$, $q \in 右边点集合 P2$

关于跨两个区域的情况,在中位线左右两侧找范围 d 以内的点进行查找,并且对于一个点来说,在另一边最多只有 6 个点满足条件。

4.2 算法结果

算法结果如下图展示,前两个数为用基站 ENodeBID 表示的基站点对,第三个数为两个基站间的距离。

最近点对:

566803 567389 5.78896

次近点对:

567222 566784 7.56999

5 时间、空间复杂性分析

5.1 合并排序

复杂度分析 $T(n) = \begin{cases} O(1) & n \le 1 \\ 2T(n/2) + O(n) & n > 1 \end{cases}$

T(n)=O(nlogn) 渐进意义下的最优算法

5.2 快速排序

复杂度分析

$$T(n) = \begin{cases} O(1) & n \le 1\\ 2T(n/2) + O(n) & n > 1 \end{cases}$$

T(n)=O(nlogn) 渐进意义下的最优算法

5.3 线性时间选择

复杂度分析

$$T(n) \le \begin{cases} C_1 & n < 75 \\ C_2 n + T(n/5) + T(3n/4) & n \ge 75 \end{cases}$$

$$T(n) = O(n)$$

5.4 平面最近点对

$$T(n) = \begin{cases} O(1) & n < 4 \\ 2T(n/2) + O(n) & n \ge 4 \end{cases}$$
$$T(n) = O(n\log n)$$

6 实验总结

在本次实验中,我们组总体花费的时间较长,对每个任务我们都付出了较多的努力。每个人的贡献度为50%+50%。

关于优化性能方面:**第一**是在排序算法中,我们同时完成了 4 种排序算法。对于每种排序,我们都在操作之前检验了此时的数组是否是递增或者递减数组,当遇到这种情况的时候可以优化性能。并且我们都采用了全局变量来记录递归的层数。**第二**在快速排序中,考虑到划分后的子序列是否平衡、对称,我们采取在 a[p:r]中的随机一个元素作为划分元素。**第三**在线性时间选择算法中,我们采取了更加优化的策略,将 n 个元素 5 个 5 个划分成了一组,

取出每一组的中位数,并在所有中位数中再找到值较大的中位数,以这个元素作为划分的基准。这样子的策略进一步确保了划分区域的平衡性。并且我们同时编写了一分为二和一分为三两个程序,用于比较不同减治法的递归情况。**第四**,在平面最近点对算法中,在跨区域的时候,将待测点按照 y 的顺序进行排列,则只要检查每个点往上的有限区域即可,这样减少了重复的检查运算。

关于改进思路的一点想法。第一是在构造随机数列时,因为采用随机生成与随机打乱的策略,导致最后数组的 ADD 相差不大,可以在生成的时候人为的控制一些数的大小关系,让 ADD 的区分度更加大更加具有典型性。第二是在快排的时候,除了采取随机的策略之外,还可以考虑采用五个元素的分组方式,使划分更加平衡。第三,平面最近点对算法中,在排序跨区域数组 Z[]的时候,我们在实验中发现,采用快速排序的时间会变长,在改进的时候我们采用了冒泡排序的方式,时间就简短了。考虑到原因可能是因为此时 Z 的个数比较少,采用冒泡是更好的选择。第四,在做平面最近点对时,采用了预排序技术,即在使用分治法之前,预先将 S 中 n 个点依其 y 坐标值排好序,设排好序的点列为 P*。在执行分治法的第 4 步时,只要对 P*作一次线性扫描,即可抽取出我们所需要的排好序的 点列 P1*和 P2*。在第 5 步中再对 P1*作一次线性扫描,即可求 得 dl。因此,第 4 步和第 5 步的两遍扫描合在一起只要用 O(n)时间。第三与第四点在我们的代码中已经实现。