

DETECTING FRAUDULENT

RETURNS DUE TO FAKE AI

GEN-IMAGES IN E-

COMMERCE

REAL VS FAKE

TEAM MEMBERS

- 1 Rishav Rana
- 2 Vivek Kumar Manjhi
- 3 Roshan Kumar
- 4 Kartik Sinha
- 5 Rakesh Kumar
- 6 Satya Ranjan Rout

INTRODUCTION

- The rise of e-commerce has made shopping more convenient with flexible return options, but it has also led to an increase in return fraud.
- Advancements in generative AI and image editing tools have made it easier to create fake return evidence, making it difficult for traditional validation systems to detect subtle fraud.

PROJECT MOTIVATION

 With rising trend of fraudulent returns, especially those involving fake damaged images and AI-generated content has motivated us for this project. Over the year Ecommerce platforms are facing an increase in scams, with customers exploiting return policies by submitting false evidence...

 This growing fraud leads to financial losses,
 operational disruptions, and damaged brand trust, while burdening honest customers.

REAL-LIFE PROBLEMS

- E-commerce platforms face growing issues
 with fraudulent returns, where customers
 submit fake damage claims or Al-generated
 evidence.
- Hard to distinguish real vs fake damage or Al content.
- Al tools make it easier to manipulate evidence.
- Fake returns create massive financial loss.

TECHNOLOGY USED

MODEL

- > PYTHON Libraries
- TensorFlow/Keras
- Streamlit
- NumPy
- Pillow
- EfficientNet for image classification
- > Al image detection libraries
- Data visualization (Matplotlib)

APP IMPLEMENTATION

APP IMPLEMENTATION

DATASET USED

A curated dataset containing both real and Al-generated images.

https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-syntheticimages

NUMBER OF CLASSES-

Training Set:

- 50,000 real images
- 50,000 Al-generated images

Testing Set:

- 10,000 real images
- 10,000 Al-generated images

METHODOLOGY

IMAGE PREPROCESSING

- Resize \rightarrow 32 × 32 px
- Efficient Net-specific normalization
- Pixel scaling to [0 1]

FEATURE EXTRACTION

EfficientNet-B0
 without top
 (pre-trained weights,
 last 18 layers
 unfrozen)

CUSTOM LAYER

- Dense 256 + ReLU
- Dropout 0.5
- 2 Softmax neurons

EVALUATI ON

- Precision
- Recall
- F1-Score
- Accuracy

MODEL ARCHITECTURE

- Unfroze top 18 layers for fine-tuning
- Preprocessing:
 efficientnet.preprocess_input
- Architecture:
- GlobalAveragePooling2D → converts features to 1D
- Dense(256, relu) + Dropout(0.5) →
 learns deep patterns and prevents
 overfitting
- Dense(2, softmax) → final classification layer

MODEL ARCHITECTURE

TRAINING CONFIGURATION

Optimization Techniques:

- StochasticGradientDescent (SGD)
- Learning rate:0.001
- Momentum:0.9

Evaluation Metrics:

- Accuracy
- Precision
- Recall
- F1 Score
- AUC

Loss Function:

Binary

Crossentropy

Epochs: 30

Batch Size: 16

RESULTS

Metric	Real	Fake	Overall
Precision	96%	95%	96%
Recall	95%	96%	96%
F1-Score	96%	96%	96.8%
Accuracy	96%		

RESULTS

RESULT

True Positives (TP): 4750

False Negatives (FN): 189

False Positives (FP): 247

True Negatives (TN): 4814

FUTURE WORK

Integration with E-commerce Platforms

Build a lightweight tool for warehouse teams to verify returns instantly via mobile.

Extend the solution to video-based AI content detection

Integrate into real-time applications.

CONCLUSION

- The model effectively distinguishes between real and Al-generated images.
- Achieved high accuracy and balanced performance on all metrics.
- Demonstrates the power of transfer learning and finetuning using modern CNN architectures like EfficientNet.

THANK YOU FOR LISTENING!