Fiche de modélisations n°6

Variables et classes latentes

Kim Antunez

Table des matières

1	Objectif	1
2	Analyses	1
3	Code et résultats	1
	3.1 Correlation coefficients	1
	3.2 Exploratory Factor Analysis (EFA)	3
	3.3 Latent Categorical Variables	7
	3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté	10
	3.5 Structural equation models (SEM) [pas utilisé dans le mémoire]	25
	3.6 Figures rapport	26
4	Notes méthodologiques	35
Bi	ibliographie	35

1 Objectif

L'objectif de cette sixième série de modèles est de ...

2 Analyses

3 Code et résultats

```
#chargement des packages
library(knitr)
library(dplyr) #manipuler les bases de données
library(psych) #EFA
library(lavaan) #CFA et SEM
library(semPlot) #path draw CFA SEM
library(poLCA) #pour les Latent Categorical Variables
library(ade4) #pour la fonction s5 de plot des classes de CAH
library(RColorBrewer) #palettes de couleur
library(ggplot2) #graphiques corrplot
library(tidyr) #pour pivot_longer / wider
```

```
library(tibble) #pour rownames_to_column
library(DiagrammeR) #pour refaire les graphiques de path
```

3.1 Correlation coefficients

A correlation coefficient suited for dichotomous data and based on this underlying normal strategy is the tetrachoric correlation. It gives us a single number describing the degree of dependence in the table above with the extreme values of 1 if the off-diagonals are 0 and -1 if the diagonals are 0. In addition, we get estimates for the thresholds tau1 and tau2. polycholoric existe aussi pour deux items polytomous.

We print out the last six eigenvalues and see that the last eigenvalue is negative. Thus, this matrix does not fulfill the properties of a correlation matrix. The trick is now to apply some smoothing on the correlations.

The final criterion is interpretability.

3.1.1 Indicatrices

3.1.2 Variables catégorielles (plus de 2 modalités possibles)

3.2 Exploratory Factor Analysis (EFA)

However, in order to get an even clearer picture, in EFA we typically apply a rotation on the loadings matrix. Such a rotation does not change the fit of the model; it is only done for interpretation purposes by transforming the loadings. We distinguish between two basic types of rotations: orthogonal (qui implique que les facteurs sont indépendants) and nonorthogonal rotation (comme oblimin).

In practice, EFA with oblique rotation is often used prior to a CFA in order to explore whether the underlying latent structure theory is reflected by the data.

[1] 42.54 11.24 9.20 8.16 7.20 6.44 4.64 4.10 3.31 1.90 1.26

Scree plot

\$scores

\$weights

	ML2	ML1
s_sentpauvrisque	0.124328013	2.101368e-03
$s_infminidecla$	0.381013391	3.394757e-06
${\tt m_quantilenivie_inv}$	0.334620586	6.776220e-03
m_locatif_inv	0.102441677	1.342346e-03
m_financier_inv	0.126410549	1.068562e-03
i_log	-0.006909332	9.819798e-01
i_rsa	0.059356859	5.200322e-03

```
i_chom
                     0.016238551 1.620456e-03
i_handi
                     0.004025149 1.995196e-03
                    -0.015258729 3.523381e-03
i_bourse
i_hlm
                     0.053560993 4.032462e-03
$r.scores
          ML2
                    ML1
ML2 1.0000000 0.6577487
ML1 0.6577487 1.0000000
$R2
      ML2
                ML1
0.8689771 0.9950905
Factor analysis with Call: fa(r = bdd_poLCA_poly$rho, nfactors = 2, rotate = "oblimin",
    scores = "regression", missing = TRUE, impute = "median",
    fm = "ml", cor = "poly")
Test of the hypothesis that 2 factors are sufficient.
The degrees of freedom for the model is 34 and the objective function was 0.81
The root mean square of the residuals (RMSA) is 0.07
The df corrected root mean square of the residuals is 0.09
 With factor correlations of
     ML2 ML1
ML2 1.00 0.61
ML1 0.61 1.00
Loadings:
                    MI.2
                           ML1
                     0.539
s_sentpauvrisque
s_infminidecla
                     0.901
m_quantilenivie_inv 0.668
m_locatif_inv
                     0.513
m_financier_inv
                     0.590
i_log
                            1.001
                            0.522
i_rsa
i_chom
                            0.349
i_handi
                            0.550
i_bourse
i_hlm
                            0.457
                 ML2
                       ML1
               2.294 2.114
SS loadings
Proportion Var 0.209 0.192
Cumulative Var 0.209 0.401
```

s_infminidecla m_quantilenivie_inv

0.74

0.69

m_locatif_inv

0.34

s_sentpauvrisque

0.43

Premier type de clustering (de variables et non d'individus) avec iclust

ICLUST using polychoric correlations

3.3 Latent Categorical Variables

 $Source: https://m\text{-}clark.github.io/sem/mixture-models.html}$

 $Documentation\ https://raw.githubusercontent.com/dlinzer/poLCA/master/inst/doc/poLCA-manual-1-4.pdf$

Classe A: part de la population = 12.8 %

Classe B : part de la population = 30.5 %

Classe C.1 : part de la population = 23.3 %

Classe C.2 : part de la population = 7.2 %

Classe D.1 : part de la population = 9.9 %

Classe D.2 : part de la population = 16.3 %

3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté

EFA and CFA are mathematically very similar, since we have the same fundamental equation in both cases.

3.4.1 Modèle avec 3 dimensions de la pauvreté (i,m,s) ORTHOGONALES + SANS hiérarchie

=> Le modèle avec les dimensions de la pauvreté orthogonales peut être qualifié de très mauvais. C'est pourquoi on teste juste après le même modèle avec rotation oblique.

[1] "fit1_var: "

chisq df pvalue cfi tli rmsea 4.059847e+04 4.400000e+01 0.0000000e+00 2.425781e-01 5.322258e-02 2.626772e-01 srmr 2.862002e-01

3.4.2 Modèle avec 3 dimensions de la pauvreté (i,m,s) OBLIQUES + SANS hiérarchie

3.4.2.1 Sans covariates avec dimension subjective Graphique

[1] "fit2_var: "

chisq df pvalue cfi tli rmsea
792.11575285 41.00000000 0.00000000 0.98597167 0.98118151 0.03703316
srmr
0.07278577

Règles pour être un modèle acceptable :

- p-valeur du test du chi-2 de 0, très mauvais car un résultat non significatif veut dire que le modèle "fits" mais il ne faut pas faire très attention à cette statistique car elle est très souvent significative quand l'échantillon est grand, c'est-à-dire dans notre cas
- Le CFI doit être supérieur à 0.95.
- Le RMSEA doit être dans l'intervalle [0.05,0.10].
- Le SRMR doit être inférieur à 0.08.

Confirmément à ce à quoi on s'attendait, fit2 a des indicateurs de qualité du modèle bien meilleurs que fit1 : il faut introduire des corrélations entre facteurs (oblique).

3.4.2.2 Sans covariates sans dimension subjective Graphique

3.4.2.3 CFA avec des covariables (MIMIC) MIMIC stands for multiple indicators multiple independent causes (Jöreskog and Goldberger, 1975) and is a general structural latent variable concept where CFA is extended in terms of linking covariates with latent variables. MIMIC models can be used to control for sociodemographic or other types of covariates in CFA and more general SEM specifications.

srmr

0.07687038

Remarque : ne marche qu'avec les covariates exogènes de moins de 2 facteurs (c'est pourquoi nous avons transformé toutes les covariate en indicatrices du type : indicatrice d'être un couple sans enfant, etc.)

Remarque : le contrôle "Propriétaire" n'a pas été ajouté en raison de sa colinéarité avec l'indicateur de pauvreté institutionnelle de locataire d'un HLM. L'intégrer ne permettait pas aux modèles de converger.

lavaan 0.6-8 ended normally after 132 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	95
Number of observations	13359

Model Test User Model:

	Standard	Robust
Test Statistic	3144.455	2640.525
Degrees of freedom	194	194
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.214
Shift parameter		50.796
simple second-order correction		

Model Test Baseline Model:

Test statistic	11384.554	10145.273
Degrees of freedom	45	45
P-value	0.000	0.000
Scaling correction factor		1.123

User Model versus Baseline Model:

Robust Comparative Fit Index (CFI)

Comparative Fit Index (CFI)	0.740	0.758
Tucker-Lewis Index (TLI)	0.940	0.944

NA

Robust	Tucker-Lewis	Index	(TLI)
1000000	TOUTOT HOWEN	T11401	(/

NA

Root Mean Square Error of Approximation:

RMSEA	0.034	0.031
90 Percent confidence interval - low	wer 0.033	0.030
90 Percent confidence interval - up	per 0.035	0.032
P-value RMSEA <= 0.05	1.000	1.000
Robust RMSEA		NA
90 Percent confidence interval - low	wer	NA
90 Percent confidence interval - upp	per	NA

Standardized Root Mean Square Residual:

SRMR 0.090 0.090

Parameter Estimates:

Standard errors Robust.sem
Information Expected
Information saturated (h1) model Unstructured

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
m	=~						
	m_quantilnv_nv	0.844	0.019	44.560	0.000	1.187	0.911
	m_locatif_inv	0.428	0.015	28.055	0.000	0.602	0.554
	m_financier_nv	0.443	0.014	31.098	0.000	0.623	0.570
i	=~						
	i_rsa	0.595	0.016	38.252	0.000	0.845	0.724
	i_chom	0.193	0.015	13.117	0.000	0.274	0.269
	i_log	0.840	0.013	64.824	0.000	1.193	0.910
	i_handi	0.222	0.018	12.673	0.000	0.316	0.308
	i_bourse	0.392	0.018	21.217	0.000	0.557	0.518
	i_hlm	0.513	0.012	42.656	0.000	0.728	0.647

Regressions:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
i ~							
cv_prf_st	tt_c_	-0.486	0.274	-1.775	0.076	-0.342	-0.025
cv_prf_st	tt_c_	0.033	0.096	0.344	0.731	0.023	0.004
cv_prf_st	tt_c_	-0.301	0.078	-3.874	0.000	-0.212	-0.060
cv_prf_st	tt_c_	0.528	0.059	8.936	0.000	0.372	0.132
cv_prf_st	tt_c_	0.528	0.062	8.552	0.000	0.372	0.119
cv_prf_st	tt_c_	1.573	0.067	23.618	0.000	1.107	0.288
cv_prf_st	tt_c_	0.341	0.084	4.048	0.000	0.240	0.109
cv_prf_st	tt_c_	1.379	0.085	16.219	0.000	0.971	0.197
cv_prf_st	tt_c_	1.597	0.069	23.208	0.000	1.124	0.306

	cov_diplom_sns	0.451	0.040	11.155	0.000	0.318	0.159
	cv_dplm_bcpls2	-0.213	0.052	-4.059	0.000	-0.150	-0.054
	cv_dplm_bcpls3	-0.357	0.055	-6.528	0.000	-0.252	-0.096
	cv_g_trnc_1829	0.176	0.049	3.595	0.000	0.124	0.047
	cv_g_trnc_4049	-0.120	0.047	-2.531	0.011	-0.084	-0.032
	cv_g_trnc_5059	-0.303	0.051	-5.945	0.000	-0.213	-0.080
	cv_g_trnc_6069	-0.653	0.078	-8.328	0.000	-0.460	-0.179
	cov_g_trnch_70	-1.061	0.093	-11.395	0.000	-0.747	-0.249
	cov_vie_fam_sl	0.862	0.044	19.410	0.000	0.607	0.288
	cov_vi_fm_cpnf	0.699	0.049	14.224	0.000	0.492	0.214
	cov_vie_fam_mn	1.766	0.066	26.854	0.000	1.244	0.327
	cov_vie_fam_nf	0.115	0.074	1.569	0.117	0.081	0.018
	cov_vie_fam_tr	0.693	0.110	6.283	0.000	0.488	0.056
	cov_sexe_homme	-0.037	0.032	-1.159	0.247	-0.026	-0.013
m	~						
	cv_prf_sttt_c_	0.385	0.163	2.361	0.018	0.274	0.020
	cv_prf_sttt_c_	0.062	0.064	0.970	0.332	0.044	0.008
	cv_prf_sttt_c_	-0.362	0.050	-7.189	0.000	-0.258	-0.073
	cv_prf_sttt_c_	0.432	0.049	8.880	0.000	0.307	0.109
	cv_prf_sttt_c_	0.496	0.053	9.428	0.000	0.353	0.113
	cv_prf_sttt_c_	1.506	0.066	22.908	0.000	1.070	0.278
	cv_prf_sttt_c_	0.579	0.063	9.123	0.000	0.412	0.187
	cv_prf_sttt_c_	1.228	0.075	16.437	0.000	0.873	0.177
	cv_prf_sttt_c_	1.573	0.066	23.839	0.000	1.118	0.304
	cov_diplom_sns	0.568	0.034	16.537	0.000	0.403	0.202
	cv_dplm_bcpls2	-0.323	0.040	-8.040	0.000	-0.230	-0.082
	cv_dplm_bcpls3	-0.689	0.042	-16.463	0.000	-0.490	-0.187
	cv_g_trnc_1829	0.177	0.045	3.969	0.000	0.126	0.048
	cv_g_trnc_4049	-0.179	0.040	-4.446	0.000	-0.127	-0.049
	cv_g_trnc_5059	-0.481	0.043	-11.185	0.000	-0.342	-0.128
	cv_g_trnc_6069	-0.623	0.061	-10.142	0.000	-0.442	-0.172
	cov_g_trnch_70	-0.742	0.069	-10.822	0.000	-0.528	-0.176
	cov_vie_fam_sl	0.715	0.034	21.100	0.000	0.508	0.241
	cov_vi_fm_cpnf	0.752	0.039	19.293	0.000	0.535	0.232
	cov_vie_fam_mn	1.572	0.061	25.814	0.000	1.118	0.294
	cov_vie_fam_nf	0.031	0.059	0.527	0.598	0.022	0.005
	cov_vie_fam_tr	0.800	0.090	8.936	0.000	0.569	0.065
	cov_sexe_homme	-0.135	0.025	-5.465	0.000	-0.096	-0.048
s	_sentpauvrisque_s	td ~					
	cv_prf_sttt_c_	0.239	0.140	1.710	0.087	0.239	0.015
	cv_prf_sttt_c_	0.072	0.070	1.032	0.302	0.072	0.012
	cv_prf_sttt_c_	-0.158	0.057	-2.763	0.006	-0.158	-0.040
	cv_prf_sttt_c_	0.344	0.045	7.671	0.000	0.344	0.107
	cv_prf_sttt_c_	0.434	0.048	9.106	0.000	0.434	0.122
	cv_prf_sttt_c_	0.825	0.052	15.869	0.000	0.825	0.188
	cv_prf_sttt_c_	0.127	0.063	2.022	0.043	0.127	0.051
	cv_prf_sttt_c_	0.526	0.063	8.333	0.000	0.526	0.094
	cv_prf_sttt_c_	0.788	0.052	15.029	0.000	0.788	0.188
	cov_diplom_sns	0.292	0.030	9.624	0.000	0.292	0.128

cv_dplm_bcpls2	_	-0.214	0.039	-5.490	0.000 -	-0.214	-0.
cv_dplm_bcpls3	-	-0.404	0.042	-9.738	0.000	-0.404	-0.
cv_g_trnc_1829	_	-0.179	0.039	-4.536	0.000	-0.179	-0.
cv_g_trnc_4049	_	-0.072	0.037	-1.940	0.052	-0.072	-0.
cv_g_trnc_5059	-	-0.133	0.040	-3.367	0.001 -	-0.133	-0.
cv_g_trnc_6069	_	-0.177	0.060	-2.973	0.003	-0.177	-0.
cov_g_trnch_70	_	-0.400	0.066	-6.074	0.000	-0.400	-0.
cov_vie_fam_sl		0.538	0.029	18.520	0.000	0.538	0.
cov_vi_fm_cpnf		0.097	0.035	2.750	0.006	0.097	0.
cov_vie_fam_mn		0.707	0.047	14.990	0.000	0.707	0.
cov_vie_fam_nf		0.011	0.058	0.195	0.845	0.011	0.
cov_vie_fam_tr		0.406	0.093	4.366	0.000	0.406	0.
cov_sexe_homme	-	-0.031	0.024	-1.284	0.199	-0.031	-0.
Covariances:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.al	1
.m ~~							
.s_sntpvrsq_std .i ~~	0.475	0.014	32.817	0.000	0.475	0.47	5
.s_sntpvrsq_std	0.437	0.015	29.471	0.000	0.437	0.43	7
.m ~~	0.704	0 001	25 100	0 000	0.704	0.70	1
.i	0.724	0.021	35.102	0.000	0.724	0.72	4
Intercepts:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.al	
.m_quantilnv_nv	0.000				0.000	0.00	
.m_locatif_inv	0.000				0.000	0.00	
.m_financier_nv	0.000				0.000	0.00	
.i_rsa	0.000				0.000	0.00	
.i_chom	0.000				0.000	0.00	
.i_log	0.000				0.000	0.00	
.i_handi	0.000				0.000	0.00	
.i_bourse	0.000				0.000	0.00	
.i_hlm	0.000				0.000	0.00	
.s_sntpvrsq_std	0.000				0.000	0.00	
. m	0.000				0.000	0.00	
.i	0.000				0.000	0.00	0
Thresholds:			_	- 4 1 15	.	.	_
	Estimate	Std.Err	z-value		Std.lv	Std.al	
m_qntlnv_nv t1	-0.222	0.050	-4.465		-0.222	-0.17	
m_qntlnv_nv t2	0.538	0.049	10.925		0.538	0.41	
m_qntlnv_nv t3	1.220	0.050	24.415	0.000	1.220	0.93	6

38.951

-19.181

-20.296

22.068

17.213

21.879

0.000

0.000

0.000

0.000

0.000

0.000

1.979

-1.796

-1.645

2.483

1.296

1.561

1.519

-1.654

-1.507

2.130

1.272

1.191

1.979

-1.796

-1.645

2.483

1.296

1.561

m_qntlnv_nv|t4

m_locatf_nv|t1

m_finncr_nv|t1

i_rsa|t1

 $i_chom | t1$

i_log|t1

0.051

0.094

0.081

0.113

0.075

0.071

i_handi t1	2.151	0.100	21.402	0.000	2.151	2.098
i_bourse t1	2.764	0.120	23.061	0.000		2.570
i_hlm t1	1.244	0.065	19.205	0.000		1.105
s_sntpvrsq_s 1	0.716	0.056	12.808	0.000		0.629
s_sntpvrsq_s 2	1.577	0.057	27.467	0.000		1.386
1 1 1 1 1 1 1 1 1						
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.{\tt m_quantilnv_nv}$	0.288				0.288	0.169
$.{\tt m_locatif_inv}$	0.817				0.817	0.693
$.{\tt m_financier_nv}$	0.804				0.804	0.675
.i_rsa	0.646				0.646	0.475
.i_chom	0.963				0.963	0.928
.i_log	0.294				0.294	0.171
.i_handi	0.951				0.951	0.905
.i_bourse	0.846				0.846	0.732
.i_hlm	0.737				0.737	0.582
.s_sntpvrsq_std	1.000				1.000	0.772
.m	1.000				0.505	0.505
.i	1.000				0.496	0.496
Scales y*:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_quantilnv_nv	1.000				1.000	1.000
m_locatif_inv	1.000				1.000	1.000
m_financier_nv	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_handi	1.000				1.000	1.000
i_bourse	1.000				1.000	1.000
i_hlm	1.000				1.000	1.000
s_sntpvrsq_std	1.000				1.000	1.000
[1] "fit3_var : "						
chiga	df	n	•	cfi	tli	rmaos
chisq 792.11575285 41.00			e 0 000E			rmsea 0.03703316
	3000000	0.000000	0 0.900	91101	0.90110131	0.03703310
srmr						
0.07278577						
[1] "fit_mimic_into	er : "					
chisq	df	pvalu	е	cfi	tli	rmsea
3.144455e+03 1.9400	000e+02 0.	000000e+0	0 7.39808	6e-01 9.	396463e-01	3.374216e-02
srmr						
8.992346e-02						

Effet souvent plus faible du subjectif par rapport aux deux autres dimensions.

Le sentiment de pauvreté est celui qui a l'effet le moins prononcé.

PCS

- Ouvrier (subjectif très fort). Dans une moindre mesure employés
- Chômeur, au foyer et autres inactifs : monétaire et institutionnel très fort. Subjectif fort également mais bien moindre comparé aux deux autres dimensions.

Diplôme

— RAS

Âge

- 18-29 ans : effet proche de la référence mais élément étrange : l'effet du subjectif est légèrement négatif alors que monétaire et institutionnel est légèrement positif
- 70 ans et + : faible pauvreté sur l'ensemble des dimensions mais plus particulièrement sur les dimensions monétaires et institutionnel. Ils peuvent parfois se sentir pauvres

Situation familiale

- Couple avec enfant : monétaire et institutionnel relativement fort mais subjectif très proche des couples avec enfants
- Chef famille mono : Effet très fort de toutes les dimensions mais plus particulièrement institutionnelle
- Vie seul, l'effet du subjectif est presque aussi fort que l'effet institutionnel et monétaire qui est de moyenne ampleur.

3.4.3 Modèle avec 2 dimensions de la pauvreté (i,m) et le sentiment de pauvreté (s tronqué) ORTHOGONALES + AVEC hiérarchie

En oblique, il y a un problème avec le modèle, avec des NA pour les standard-error. Comme si le modèle n'était pas bien identifié... Cela semble être dû à l'intégration des corrélations entre s,m et i. Je pense que le fait d'intégrer une hiérarchie intègre de fait une corrélation entre les dimensions s,m et i et que si on les rajoute en plus le modèle n'a plus de sens.

Du coup on enlève les corrélations entre i,m et s pour voir ce que ça donne... Le modèle est pas mal. Deux corrections sont effectuées - On fixe un loading de chaque catégorie à une valeur de référence (celle trouvée dans le précédent modèle) - Il y a juste une variance négative (Heywood case) de m que nous corrigeons en remplaçant la variance légèrement négative de m par une variance légèrement positive (la variance nulle fait aussi bugger le modèle). Le modèle n'est que légèrement moins bien mais permet d'estimer les scores des facteurs latents (avec la fonction predict)

Mais on veut rester dans le cadre précédent et ne garder que le sentiment de pauvreté dans la dimension subjective de la pauvreté.

Graphiques des résultats où on projette les scores latents de tous les individus. On a bien une corrélation très directe entre s et m, et légèrement plus floue entre i et m (et donc i et s).

J'affiche aussi les anciennes classes latentes pour montrer que les résultats sont conformes à l'intuition.

3.4.3.1 Ajout des contrôles uniquement sur l'indicateur global de pauvreté

lavaan 0.6-8 ended normally after 75 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	48
Number of observations	13359

Model Test User Model:

	Standard	Robust
Test Statistic	3508.216	2943.969

Degrees of freedom P-value (Chi-square) Scaling correction factor	241 0.000	
Shift parameter		65.087
simple second-order correction		
Model Test Baseline Model:		
Test statistic		10145.273
Degrees of freedom	45	45
P-value	0.000	
Scaling correction factor		1.123
User Model versus Baseline Model:		
Comparative Fit Index (CFI)	0.712	0.732
Tucker-Lewis Index (TLI)	0.946	0.950
Robust Comparative Fit Index (CFI)		NA
Robust Tucker-Lewis Index (TLI)		NA
Root Mean Square Error of Approximation:		
RMSEA	0.032	0.029
90 Percent confidence interval - lower	0.028	
90 Percent confidence interval - upper	0.033	0.030
P-value RMSEA <= 0.05	1.000	1.000
Dahart DMCPA		NI A
Robust RMSEA 90 Percent confidence interval - lower		NA NA
90 Percent confidence interval - upper		NA NA
Standardized Root Mean Square Residual:		
Standard 200 Hour Square Hostadar.		
SRMR	0.091	0.091
Parameter Estimates:		
Standard errors	Robust.sem	
Information	Expected	
Information saturated (h1) model	Unstructured	
Latent Variables:		
	alue P(> z)	Std.lv Std.all
m =~		1.133 0.872
<pre>m_quantilnv_nv</pre>	.591 0.000	1.133 0.872 0.622 0.566
	.860 0.000	0.635 0.576
i =~	3.000	0.010

	0 740				0.045	0 740
i_rsa	0.740				0.817	0.712
i_chom	0.240	0.020	12.308	0.000	0.265	0.261
i_log	1.045	0.031	34.230	0.000	1.155	0.904
i_handi	0.276	0.023	11.776	0.000	0.305	0.299
i_bourse	0.475	0.025	18.638	0.000	0.525	0.494
i_hlm	0.652	0.022	29.353	0.000	0.720	0.645
pauvrete =~						
m	0.907	0.012	77.665	0.000	0.989	0.989
i	0.690	0.020	35.207	0.000	0.929	0.929
s_sntpvrsq_std	0.491	0.009	51.798	0.000	0.731	0.643
Regressions:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
pauvrete ~						
cv_prf_sttt_c_	0.207	0.158	1.314	0.189	0.139	0.010
cv_prf_sttt_c_	0.061	0.068	0.887	0.375	0.041	0.007
cv_prf_sttt_c_	-0.380	0.054	-7.077	0.000	-0.255	-0.073
cv_prf_sttt_c_	0.558	0.047	11.821	0.000	0.375	0.133
cv_prf_sttt_c_	0.623	0.051	12.303	0.000	0.418	0.134
cv_prf_sttt_c_	1.734	0.057	30.479	0.000	1.165	0.303
cv_prf_sttt_c_	0.509	0.065	7.881	0.000	0.342	0.155
cv_prf_sttt_c_	1.410	0.070	20.089	0.000	0.947	0.192
cv_prf_sttt_c_	1.763	0.056	31.252	0.000	1.184	0.322
cov_diplom_sns	0.589	0.033	17.965	0.000	0.395	0.198
cv_dplm_bcpls2	-0.333	0.041	-8.171	0.000	-0.224	-0.080
cv_dplm_bcpls3	-0.662	0.042	-15.749	0.000	-0.445	-0.170
cv_g_trnc_1829	0.116	0.042	2.791	0.005	0.078	0.030
cv_g_trnc_4049	-0.171	0.039	-4.395	0.000	-0.115	-0.044
cv_g_trnc_5059	-0.431	0.041	-10.423	0.000	-0.289	-0.109
cv_g_trnc_6069	-0.673	0.062	-10.840	0.000	-0.452	-0.176
cov_g_trnch_70	-0.949	0.070	-13.536	0.000	-0.637	-0.213
cov_vie_fam_sl	0.897	0.032	27.743	0.000	0.603	0.286
cov_vie_ram_sr	0.734	0.032	19.962	0.000	0.493	0.214
cov_vie_fam_mn	1.812	0.057	34.178	0.000	1.217	0.320
cov_vie_fam_nf	0.065	0.059	1.102	0.270	0.044	0.010
cov_vie_fam_tr	0.846	0.039	9.814	0.000	0.568	0.010
	-0.103		-4.091	0.000	-0.069	
cov_sexe_homme	-0.103	0.025	-4.091	0.000	-0.009	-0.034
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
$.{\tt m_quantilnv_nv}$	0.000				0.000	0.000
$.{\tt m_locatif_inv}$	0.000				0.000	0.000
$.{\tt m_financier_nv}$	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
.i_chom	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_handi	0.000				0.000	0.000
.i_bourse	0.000				0.000	0.000
.i_hlm	0.000				0.000	0.000

<pre>.s_sntpvrsq_std .m .i .pauvrete</pre>	0.000 0.000 0.000 0.000				0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_qntlnv_nv t1	-0.222	0.050	-4.465	0.000	-0.222	-0.171
m_qntlnv_nv t2	0.538	0.049	10.925	0.000	0.538	0.414
m_qntlnv_nv t3	1.220	0.050	24.415	0.000	1.220	0.938
m_qntlnv_nv t4	1.979	0.051	38.951	0.000	1.979	1.523
$m_locatf_nv t1$	-1.796	0.094	-19.181	0.000	-1.796	-1.634
m_finncr_nv t1	-1.645	0.081	-20.296	0.000	-1.645	-1.492
i_rsa t1	2.483	0.113	22.068	0.000	2.483	2.164
i_chom t1	1.296	0.075	17.213	0.000	1.296	1.275
i_log t1	1.561	0.071	21.879	0.000	1.561	1.222
i_handi t1	2.151	0.100	21.402	0.000	2.151	2.105
i_bourse t1	2.764	0.120	23.061	0.000	2.764	2.599
$i_hlm t1$	1.244	0.065	19.205	0.000	1.244	1.114
s_sntpvrsq_s 1	0.716	0.056	12.808	0.000	0.716	0.630
s_sntpvrsq_s 2	1.577	0.057	27.467	0.000	1.577	1.387
Variances:						
. 42 2422 00 1	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.m	0.040			- (1-1)	0.021	0.021
.pauvrete	1.000				0.451	0.451
.m_quantilnv_nv	0.406				0.406	0.240
.m_locatif_inv	0.821				0.821	0.680
.m_financier_nv	0.813				0.813	0.668
.i_rsa	0.649				0.649	0.493
.i_chom	0.963				0.963	0.932
_ .i_log	0.299				0.299	0.183
.i handi	0.951				0.951	0.911
.i_bourse	0.855				0.855	0.756
_ .i_hlm	0.728				0.728	0.584
.s_sntpvrsq_std	0.759				0.759	0.587
.i	0.166	0.020	8.359	0.000	0.136	0.136
Scales y*:						
J .	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
m_quantilnv_nv	1.000			. 1-17	1.000	1.000
m_locatif_inv	1.000				1.000	1.000
m_financier_nv	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_handi	1.000				1.000	1.000
i_bourse	1.000				1.000	1.000
i_hlm	1.000				1.000	1.000

```
1.000
                                                            1.000
                                                                      1.000
    s_sntpvrsq_std
[1] "fit_mimic_global : "
                                 pvalue
                                                  cfi
       chisq
                        df
                                                               tli
                                                                           rmsea
3.508216e+03 2.410000e+02 0.000000e+00 7.118744e-01 9.462006e-01 3.185735e-02
9.089809e-02
[1] "fit_mimic_inter : "
       chisq
                        df
                                 pvalue
                                                  cfi
                                                               tli
                                                                           rmsea
3.144455e+03 1.940000e+02 0.000000e+00 7.398086e-01 9.396463e-01 3.374216e-02
8.992346e-02
```

Le modèle avec contrôles devient moins bien que le précédent.

3.5 Structural equation models (SEM) [pas utilisé dans le mémoire]

Structural equation models (SEM) integrate confirmatory factor analysis (CFA) into a larger path analytic framework. Formally, we extend the basic CFA expression (measurement model) by an additional linear specification reflecting dependencies among the latent variables (structural model).

Remarque : ne marche pas pour les facteurs non ordonnés (en gros, considère les facteurs comme des variables numériques)

Remarque : estimator ML for ordered data is not supported yet. Use WLSMV instead.

3.6 Figures rapport

Table 1 – Indices d'ajustement des 4 modèles d'AFC

Modèle	Chi2	Degrés de liberté	CFI	RMSEA	SRMR
Modèle 1	40598	44	0,243	0,263	0,286
Modèle 2	792	41	0,986	0,037	0,073
Modèle 3	590	33	0,985	0,036	0,077
Modèle 4	595	34	0,985	0,035	0,076

Table 2: Effets des covariables sur les différentes dimensions de la pauvreté

	Pauvreté	Monétaire	InstitutionnelleSentiment	
				de pauvreté
Situation professionnelle	Agriculteur	0.39*	-0.49	0.24
	Artisan commerçant Cadre supérieur, profession libérale	0.06 -0.36***	0.03 -0.3***	0.07 -0.16**
	Profession intermédiaire Employé	Réf. 0.43***	Réf. 0.53***	Réf. 0.34***

(suite en page suivante...)

Table 2: Effets des covariables sur les différentes dimensions de la pauvreté (suite)

	Pauvreté	Monétaire	InstitutionnelleSentiment	
				de pauvreté
	Ouvrier	0.5***	0.53***	0.43***
	Chômeur	1.51***	1.57***	0.83***
	Retraité	0.58***	0.34***	0.13*
	Au foyer	1.23***	1.38***	0.53***
	Autre inactif	1.57***	1.6***	0.79***
Niveau de diplôme le plus élevé	CAP, BEP ou moins	0.57***	0.45***	0.29***
-	Baccalauréat	Réf.	Réf.	Réf.
	Bac + 2	-0.32***	-0.21***	-0.21***
	Bac + 3 ou plus	-0.69***	-0.36***	-0.4***
Classe d'âge	18 à 29 ans	0.18***	0.18***	-0.18***
	30 à 39 ans	Réf.	Réf.	Réf.
	$40 \stackrel{.}{a} 49 \text{ ans}$	-0.18***	-0.12*	-0.07
	$50 \stackrel{.}{a} 59 \text{ ans}$	-0.48***	-0.3***	-0.13***
	$60 \stackrel{.}{a} 69 \text{ ans}$	-0.62***	-0.65***	-0.18**
	70 ans et plus	-0.74***	-1.06***	-0.4***
Situation familiale	Vit seul	0.71***	0.86***	0.54***
	Membre du couple (pas d'enfants à charge)	Réf.	Réf.	Réf.
	Membre du couple (enfants à charge)	0.75***	0.7***	0.1**
	Chef famille monoparentale	1.57***	1.77***	0.71***
	Enfant	0.03	0.12	0.01
	Autre situation familiale	0.8***	0.69***	0.41***
Sexe	Femme	Réf.	Réf.	Réf.
	Homme	-0.13***	-0.04	-0.03

Note:

^{* :} significatif au seuil de 5 % ; ** : 1 % ; *** : 0,1 %.

Table 3: Effets des covariables sur l'indice global de pauvreté

	Effet sur l'indice global de pauvreté
Chef famille monoparentale Autre inactif Chômeur Au foyer 70 ans et plus	1.81*** 1.76*** 1.73*** 1.41*** -0.95***
Vit seul Autre situation familiale Membre du couple (enfants à charge)	0.9*** 0.85*** 0.73***

(suite en page suivante...)

Table 3: Effets des covariables sur l'indice global de pauvreté (suite)

	Effet sur l'indice global de pauvreté
60 à 69 ans	-0.67***
Bac + 3 ou plus	-0.66***
Ouvrier	0.62***
CAP, BEP ou moins	0.59***
Employé	0.56***
Retraité	0.51***
50 à 59 ans	-0.43***
Cadre supérieur, profession libérale Bac + 2 Agriculteur 40 à 49 ans 18 à 29 ans	-0.38*** -0.33*** 0.21 -0.17*** 0.12**
Homme	-0.1***
Enfant	0.07
Artisan commerçant	0.06

Note:

4 Notes méthodologiques

Pour ces modèles cinq vagues du Baromètre ont été empilées : 2015, 2016, 2017, 2018 et 2019 (15 137 observations). Le nombre d'observations utilisées est différent dans chaque modèle, il s'agit uniquement des individus où toutes les variables utilisées dans les modèles sont renseignées (voir notes en bas des tableaux).

Bibliographie

- https://stats.idre.ucla.edu/spss/seminars/efa-spss/ https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/203-30.pdf https://community.jmp.com/t5/JMP-Blog/Principal-components-or-factor-analysis/ba-p/38347 bases de l'EFA
- En bouquins: https://books.google.es/books?hl=fr&lr=&id=qKrumJ4CsboC&oi=fnd&pg=PT 180&ots=TDmmzvQP5X&sig=7gFjzxbPC49Tz7IkGT-4gXMzx8U&redir_esc=y#v=onepage &q&f=false et slides https://slideplayer.com/slide/5080/
- https://m-clark.github.io/posts/2020-04-10-psych-explained/
- https://cran.r-project.org/web/packages/psychTools/vignettes/factor.pdf
- https://rstudio-pubs-static.s3.amazonaws.com/363499_73a1c1a94da148b6ad81e6eb8dc1b771. html
- https://en.wikipedia.org/wiki/Factor analysis
- Analyse en facteurs communs et spécifiques docs en Français. https://www.rocq.inria.fr/axis/m odulad/archives/numero-37/Chaventetal-37/Chaventetal-37.pdf http://grumlidesforets.free.fr/

^{*:} significatif au seuil de 5 %; ***: 1 %; ***: 0,1 %.

 $cours\%20psycho/M1\%20psycho/chapitre2/chapitre2.pdf \ http://jeanalain.monfort.free.fr/Dico\ stat2005/A/Analyse_en_facteurs_communs_etc.pdf \ https://www.google.com/url?sa=t\&rct=j\&q=\&esrc=s\&source=web\&cd=\&ved=2ahUKEwjX-NWssbbxAhUNxoUKHXMzBxEQFno\ ECAkQAA\&url=http\%3A\%2F\%2Fwww.normalesup.org\%2F\simcarpenti\%2FNotes\%2FAnalyse-factorielle%2FAnalyse-Factorielle-2011.doc&usg=AOvVaw04RFWMowmry0JRVMNZqR7h \ http://jeanalain.monfort.free.fr/Dicostat2005/A/Analyse_en_facteurs_communs_etc.pdf \ https://www.psychometrie.jlroulin.fr/cours/aide_quizz.html?H.html \ https://www.persee.fr/doc/hism_0982-1783_1997_num_12_3_1544 \ http://psychologie.psyblogs.net/2012/01/cours-theories-de-lintelligence-en.html$

— 23/07: https://s3.amazonaws.com/assets.datacamp.com/production/course_6419/slides/chapt er3.pdf https://stats.stackexchange.com/questions/448204/sem-model-in-lavaan-cant-compute-standard-errors https://www.researchgate.net/post/Is_it_possible_to_extract_a_score_for all observations of a latent variable after confirmatory factor analysis If yes how