Técnicas y Dispositivos Digitales II

Simplificación de Circuitos Secuenciales Completamente Especificados

- Disponemos de medios para obtener una tabla de estados, para una especificación dada, pero no es única y puede no ser óptima.
- Definición: Dos estados son equivalentes si no los podemos distinguir. Si para todas las secuencias de entradas posibles generan las mismas salidas, sin importar los estados internos.

Estados redundantes:

Conviene su eliminación por:

- Costo: La cantidad de elementos de memoria esta directamente relacionada con el número de estados.
- Complejidad: Cuantos más estados tenga el circuito, más complejos será el diseño y su implementación asociada.
- Ayuda para el análisis de fallas: En general, las rutinas de diagnóstico (software) suponen que no existen estados redundantes.

- Métodos de simplificación:
 - Simple inspección
 - Método de Particiones (Método de Huffman-Mealy)
 - Tabla de Implicantes (Método de Paul-Unger)

- Métodos de simplificación:
 - Simple inspección
 - Método de Particiones (Método de Huffman-Mealy)
 - Tabla de Implicantes (Método de Paul-Unger)

Simplificación por simple inspección

1er caso:

Qn	Xn	
	0 1	
А	B/1	C/1
В	C/0 A/1	
С	B/1 B/0	
D	C/0	A/1

Simplificación por simple inspección

1er caso:

	Qn	Xn	
		0	1
	А	B/1	C/1
	В	C/0	A/1
	С	B/1	B/0
	D	C/0	A/1

 Q^{n+1}/Z

Los estados B y D responden del mismo modo a la entrada y generan la misma salida

Simplificación por simple inspección

1er caso:

Qn	Xn	
	0 1	
А	B/1	C/1
В	C/0	A/1
С	B/1	B/0
	C/0	A/1

Simplificación por simple inspección

1er caso:

Qn	Xn	
	0 1	
Α	B/1	C/1
В	C/0	A/1
С	B/1 B/0	

Simplificación por simple inspección

2do caso:

Qn	Xn	
	0 1	
А	B/0	C/1
В	B/0 A/1	
С	D/1 B/0	
D	D/0	A/1

Simplificación por simple inspección

2do caso:

Qn	Xn	
	0 1	
А	B/0	C/1
В	B/0	A/1
С	D/1	B/0
D	D/0	A/1

 Q^{n+1}/Z

Los estados B y D van a sí mismos para entrada=0. Hay que presuponer y verificar

Simplificación por simple inspección

2do caso:

Qn	Xn	
	0	1
А	B/0	C/1
В	B/0	A/1
С	D/1	B/0
	D/0	A/1

 Q^{n+1}/Z

Se corrige el estado destino que se elimina por su equivalente

Simplificación por simple inspección

2do caso:

Qn	Xn	
	0 1	
А	B/0	C/1
В	B/0	A/1
С	B/1 B/0	

$$Q^{n+1}/Z$$

Simplificación por simple inspección

3er caso:

Qn	Xn	
	0 1	
А	B/0	C/1
В	D/0 A/1	
С	D/1 B/0	
D	B/0	A/1

Simplificación por simple inspección

3er caso:

Q ⁿ	>	(n	
	0	1	
A	B/0	C/1	On+1 / 7
В	D/0	A/1	Q ⁿ⁺¹ / Z
С	D/1	B/0	
D	B/0	A/1	

Simplificación por simple inspección

3er caso:

Qn	Xn	
	0 1	
А	B/0	C/1
В	D/0 A/1	
С	D/1 B/0	
-D	B/0	A/1

 Q^{n+1}/Z

Como en el caso anterior, hay que presuponer equivalencia y luego verificarla

Simplificación por simple inspección

3er caso:

Qn	Xn	
	0	1
А	B/0	C/1
В	D /0	A/1
С	D/1	B/0
-D	B/0	A/1-

 Q^{n+1}/Z

Como en el caso anterior, hay que presuponer equivalencia y luego verificarla

Simplificación por simple inspección

3er caso:

Qn	Xn		
	0	1	
А	B/0	C/1	
В	B/0	A/1	
С	B/1	B/0	

$$Q^{n+1}/Z$$

Se efectua la corrección de estados siguientes eliminados sustituyendo por el equivalente

Ejemplo:

Q ⁿ	Xn	
	0	1
Q_0	Q ₀ ,1	Q ₄ ,0
Q_1	Q ₀ ,0	Q ₄ ,0
Q_2	Q ₁ ,0	Q ₅ ,0
Q_3	Q ₁ ,0	Q ₅ ,0
Q_4	Q ₂ ,0	Q ₆ ,1
Q_5	Q ₂ ,0	Q ₆ ,1
Q_6	Q ₃ ,0	Q ₇ ,1
Q_7	Q ₃ ,0	Q ₇ ,1

Ejemplo:

Q ⁿ	Xn	
	0	1
Q_0	Q ₀ ,1	Q ₄ ,0
Q_1	Q ₀ ,0	Q ₄ ,0
Q_2	Q ₁ ,0	Q ₅ ,0
Q_3	Q ₁ ,0	Q ₅ ,0
Q_4	Q ₂ ,0	Q ₆ ,1
Q_5	Q ₂ ,0	Q ₆ ,1
Q_6	Q ₃ ,0	Q ₇ ,1
Q_7	Q ₃ ,0	Q ₇ ,1

Ejemplo:

Q ⁿ	>	(n
	0	1
Q_0	Q ₀ ,1	Q ₄ ,0
Q_1	$Q_{0},0$	Q ₄ ,0
Q_2	Q ₁ ,0	Q ₅ ,0
$-Q_3$	Q ₁ ,0	Q ₅ ,0
Q_4	Q ₂ ,0	Q ₆ ,1
$-Q_5$	Q ₂ ,0	Q ₆ ,1
Q_6	Q ₃ ,0	Q ₇ ,1
-Q ₇	Q ₃ ,0	Q ₇ ,1

Ejemplo:

Q ⁿ	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,1	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₄ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₂ ,0	Q ₆ ,1	

Ejemplo:

Q ⁿ	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,1	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₄ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₂ ,0	Q ₆ ,1	

Ejemplo:

Q ⁿ	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,1	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₄ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
$-Q_6$	Q ₂ ,0	Q ₆ ,1	

Ejemplo:

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,1	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₄ ,0	
Q_4	Q ₂ ,0	Q ₄ ,1	

$$Q^{n+1}$$
, Z

Tabla simplificada de un sistema "Detector de Errores"

- Métodos de simplificación:
 - Simple inspección
 - Método de Particiones (Método de Huffman-Mealy)
 - Tabla de Implicantes (Método de Paul-Unger)

Método de Particiones (Huffman-Mealy)

Ejemplo:

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₅ ,0	
Q_3	Q ₁ ,0	Q ₅ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_5	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₃ ,0	Q ₇ ,1	
Q_7	Q ₃ ,0	Q ₇ ,1	

Método de Particiones (Huffman-Mealy)

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₅ ,0	
Q_3	Q ₁ ,0	Q ₅ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_5	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₃ ,0	Q ₇ ,1	
Q_7	Q ₃ ,0	Q ₇ ,1	

Obtenemos una división de los estados en este caso en tres clases.

Clases Equivalentes	а	b		C				
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₅ ,0	
Q_3	Q ₁ ,0	Q ₅ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_5	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₃ ,0	Q ₇ ,1	
Q_7	Q ₃ ,0	Q ₇ ,1	

Clases Equivalentes	а		b			(
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Estados Siguientes								

Qn	>	(n
	0	1
Q_0	Q_0 1	Q ₄ ,0
Q_1	$Q_{0},0$	Q ₄ ,0
Q_2	Q ₁ ,0	Q ₅ ,0
Q_3	Q ₁ ,0	Q ₅ ,0
Q_4	Q ₂ ,0	Q ₆ ,1
Q_5	Q ₂ ,0	Q ₆ ,1
Q_6	Q ₃ ,0	Q ₇ ,1
Q_7	Q ₃ ,0	Q ₇ ,1

Clases Equivalentes	а		b			(
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Estados Siguientes	а							

	Qn	>	(n
		0	1
	Q_0	Q ₀ ,1	Q_4 0
	Q_1	Q ₀ ,0	Q ₄ ,0
	Q_2	Q ₁ ,0	Q ₅ ,0
K	Q_3	Q ₁ ,0	Q ₅ ,0
	Q_4	Q ₂ ,0	Q ₆ ,1
	Q_5	Q ₂ ,0	Q ₆ ,1
	Q_6	Q ₃ ,0	Q ₇ ,1
	Q_7	Q ₃ ,0	Q ₇ ,1

Clases Equivalentes	a		b			(
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Estados Siguientes	a c							

	Qn	>	(n
		0	1
	Q_0	Q ₀ ,1	Q ₄ ,0
	Q_1	Q ₀ ,0	Q ₄ ,0
	Q_2	Q ₁ ,0	Q ₅ ,0
K	Q_3	Q ₁ ,0	Q ₅ ,0
	Q_4	Q ₂ ,0	Q ₆ ,1
	Q_5	Q ₂ ,0	Q ₆ ,1
	Q_6	Q ₃ ,0	Q ₇ ,1
	Q_7	Q ₃ ,0	Q ₇ ,1

Clases Equivalentes	a		b			(
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Estados Siguientes	ас	a c	b c	b c	b c	b c	b c	b c

Qn	>	(n
	0	1
Q_0	Q ₀ ,1	Q ₄ ,0
Q_1	Q ₀ ,0	Q ₄ ,0
Q_2	Q ₁ ,0	Q ₅ ,0
Q_3	Q ₁ ,0	Q ₅ ,0
Q_4	Q ₂ ,0	Q ₆ ,1
Q_5	Q ₂ ,0	Q ₆ ,1
Q_6	Q ₃ ,0	Q ₇ ,1
Q_7	Q ₃ ,0	Q ₇ ,1

En el ejemplo: la clase "b" contiene pares de estados distintos, por lo tanto no son indistinguibles.

Clases Equivalentes	а		b			(
Estados	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Estados Siguientes	ac	a c) b c	b c	b c	b c	b c	b c

Г	Qn	Х	(n
		0	1
	Q_0	Q ₀ ,1	Q ₄ ,0
	Q_1	Q ₀ ,0	Q ₄ ,0
	Q_2	Q ₁ ,0	Q ₅ ,0
\llbracket	Q_3	Q ₁ ,0	Q ₅ ,0
	Q_4	Q ₂ ,0	Q ₆ ,1
	Q_5	Q ₂ ,0	Q ₆ ,1
	Q_6	Q ₃ ,0	Q ₇ ,1
	Q_7	Q ₃ ,0	Q ₇ ,1

Separar la clase "b" en dos clases: "b" y "d".

Clases Equivalentes	а	b		С			d	
Estados	Q_0	Q_2	Q_3	Q_4	Q_5	Q_6	Q ₇	Q_1
Estados Siguientes								

Qn	X ⁿ			
	0	1		
Q_0	Q ₀ ,1	Q ₄ ,0		
Q_1	Q ₀ ,0	Q ₄ ,0		
Q_2	Q ₁ ,0	Q ₅ ,0		
Q_3	Q ₁ ,0	Q ₅ ,0		
Q_4	Q ₂ ,0	Q ₆ ,1		
Q_5	Q ₂ ,0	Q ₆ ,1		
Q_6	Q ₃ ,0	Q ₇ ,1		
Q_7	Q ₃ ,0	Q ₇ ,1		

Separ Rehacer la tabla con las nuevas clases!!!!!!!

Clases Equivalentes	а	b		С				d
Estados	Q_0	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_1
Estados Siguientes								

Método de Particiones (Huffma

	Qn	Xn		
		0	1	
	Q_0	Q_0 ,	Q ₄ ,0	
	Q_1	$Q_{0},0$	Q ₄ ,0	
	Q_2	Q ₁ ,0	Q ₅ ,0	
Ł	Q_3	Q ₁ ,0	Q ₅ ,0	
	Q_4	Q ₂ ,0	Q ₆ ,1	
	Q_5	Q ₂ ,0	Q ₆ ,1	
	Q_6	Q ₃ ,0	Q ₇ ,1	
	Q_7	Q ₃ ,0	Q ₇ ,1	

La nueva partición puede presentar los mismos problemas, entonces hay que repetir el proceso de verificar las clases de los estados siguientes.

Clases Equivalentes	а	k)		(d
Estados	Q_0	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_1
Estados Siguientes	a							

Método de Particiones (Huffm

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₅ ,0	
Q_3	Q ₁ ,0	Q ₅ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_5	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₃ ,0	Q ₇ ,1	
Q_7	Q ₃ ,0	Q ₇ ,1	

En este caso específico, las cuatro clases "a", "b", "c" y "d" son indistinguibles. Se verifica que para cada entrada las clases de los estados siguientes son las mismas.

Clases Equivalentes	а	k	0		(d
Estados	Q_0	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q ₁
Estados Siguientes	ac	d c	d c	b c	b c	b c	b c	ас

Método de Particiones (Huffma

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₅ ,0	
Q_3	Q ₁ ,0	Q ₅ ,0	
Q_4	Q ₂ ,0	Q ₆ ,1	
Q_5	Q ₂ ,0	Q ₆ ,1	
Q_6	Q ₃ ,0	Q ₇ ,1	
Q_7	Q ₃ ,0	Q ₇ ,1	

Para formar el circuito equivalente, sólo hay que seleccionar arbitrariamente un estado original de cada clase equivalente.

Clases Equivalentes	а	k)		(C		d
Estados	Q_0	Q_2	Q_3	Q_4	Q_5	Q_6	Q ₇	Q ₁
Estados Siguientes	ас	d c	d c	b c	b c	b c	b c	ас

Método de Particiones (Huffman-Mealy)

Tabla equivalente:

Qn	Xn		
	0	1	
Q_0	Q ₀ ,1	Q ₄ ,0	
Q_1	Q ₀ ,0	Q ₄ ,0	
Q_2	Q ₁ ,0	Q ₄ ,0	
Q_4	Q ₁ ,0	Q ₄ ,1	

 Q^{n+1} , Z

Simplificación de Circ. Secuenciales Completamente Especificados

- Métodos de simplificación:
 - Simple inspección
 - Método de Particiones (Método de Huffman-Mealy)
 - Tabla de Implicantes (Método de Paul-Unger)

Se puede aplicar a circuitos secuenciales con especificación incompleta Ejemplo:

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Armar la Tabla de implicación

Filas: todos los estados del sistema menos el primero.

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Armar la Tabla de implicación

Filas: todos los estados del sistema menos el primero.

Columnas: todos los estados menos el último.

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Armar la Tabla de implicación

Filas: todos los estados del sistema menos el primero.

Columnas: todos los estados menos el último.

La tabla contiene una casilla por cada par de estados.

:	X=0	X=1
Α		B 0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Armar la Tabla de implicación

En cada casilla pondremos en el lado izquierdo los estados siguientes del estado que se encuentre en la base de la columna,

	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	X=0	X=1
Α	C/1	B/0
В		(E) (0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Armar la Tabla de implicación

En cada casilla pondremos en el lado izquierdo los estados siguientes del estado que se encuentre en la base de la columna,

En el lado derecho y por el mismo orden según las entradas que les correspondan, los estados siguientes del estado de la izquierda de la fila

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Armar la Tabla de implicación

En cada casilla pondremos en el lado izquierdo los estados siguientes del estado que se encuentre en la base de la columna,

En el lado derecho y por el mismo orden según las entradas que les correspondan, los estados siguientes del estado de la izquierda de la fila

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los casilleros "1-No Equivalentes" son los que tienen diferentes salidas

En el ejemplo: D y E tienen salida 0 1, todos los demás tienen salida 1 0.

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los casilleros "1-No Equivalentes" son los que tienen diferentes salidas

Tacho intersecciones D con A, B y C y E con A, B y C

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Los "1-No-Equivalentes" son:

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Los "1-No-Equivalentes" son:

D-A

E-A

В	C - C			
	B - E			
C	C - B	C - B		
	B - E	E-E		
D	C, D	C _A D	B _j D	
	BlB	E-B	ΕB	
E	C ₋ E	C ₄ C	B ₄ E	D-E
	ВА	EIE	ΕJA	B - A
	A	В	С	D

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Los "1-No-Equivalentes" son:

D-A

E-A

D-B

E-B

D-C

	Δ	R	C	D
	ВА	EIE	EAA	B-A
Е	C, E	C C E	B _E 1 _A	D-E
	BlB	E-B	ΕB	
D	C, D	CJD	B _j D	
	B - E	E-E		
С	C - B	C - B		
	B - E			
В	C - C B - E			

· :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A D-B E-B

D-C

<u>.</u> 	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A D-B E-B D-C E-C

· :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A D-B E-B

D-C

<u>:</u> :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A D-B

E-B D-C

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A

D-B

E-B

D-C

<u>.</u> 	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A

E-A

D-B

E-B

D-C

<u>.</u> 	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los casilleros "2-No-Equivalentes" que contengan coordenadas de estados previamente tachados (Los "1-No equivalentes").

Los "1-No-Equivalentes" son:

D-A E-A D-B

E-B D-C

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

B-A

Tabla de Implicación (Paul-Ung

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

: : :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los "3-No-Equivalentes": Son aquellos que hacen referencia a los estados que fueron tachados en el paso anterior (los "2-No-Equivalentes")

Los "2-No-Equivalentes" son:

B-A C-A

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los "3-No-Equivalentes": Son aquellos que hacen referencia a los estados que fueron tachados en el paso anterior (los "2-No-Equivalentes")

Los "2-No-Equivalentes" son:

B-A C-A

· : :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Tachar los "3-No-Equivalentes": Son aquellos que hacen referencia a los estados que fueron tachados en el paso anterior (los "2-No-Equivalentes")

Los "2-No-Equivalentes" son:

B-A C-A

· :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Tachar los "4-No-Equivalentes": Son aquellos que hacen referencia a los estados que fueron tachados en el paso anterior (los "3-No-Equivalentes")

Los "3-No-Equivalentes" son: E-D

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Los "3-No-Equivalentes" son: E-D

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Construir una tabla de equivalencias

Las casillas que quedaron sin tachar indican equivalencias

D C B A

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Е	E/0	A/1

Construir una tabla de equivalencias

Las casillas que quedaron sin tachar indican

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Construir una tabla de equivalencias

D	
C	
В	
Α	

· :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Construir una tabla de equivalencias

D	
C	
В	(C,B)
Α	

	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Construir una tabla de equivalencias

D	
С	
В	(C,B)
Α	(C,B)

:	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
С	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Construir una tabla de equivalencias

D	
C	
В	(C,B)
Α	(C,B) (C,B)
	(A) (C,B) (D) (E)

· :	X=0	X=1
Α	C/1	B/0
В	C/1	E/0
О	B/1	E/0
D	D/0	B/1
Ε	E/0	A/1

Construir una tabla de equivalencias

D	
C	
В	(C,B)
Α	(C,B) (C,B)
	(A) (C,B) (D) (E)

Referencias

Nelson, V. P., Nagle, H. T., Carroll, B. D., Irwin, J. D., Palmas Velasco, O. A. T., & Hernández PÚrez, C. R. T. (1996). *Análisis y diseño de circuitos lógicos digitales*. Pearson Educación.