COMP 565 Assignment 5

March 30, 2023

This assignment is worth 8% of your total grade and due at **23:59 on April 17, 2023**. In case you are considering Project 3 (Hierarchical guided-topic model for electronic health record data) for the final course project, this assignment will give you a strong boost.

Download the electronic health record (EHR) data containing ICD-9 codes for a subset of the MIMIC-III ICU patients' records and the meta information about the ICD codes from here:

https://drive.google.com/drive/folders/1L4yWqJcL93qJHf07xCuv4vbs20hlaAcV?usp=sharing

The data file named MIMIC3_DIAGNOSES_ICD_subset.csv.gz contains two columns with the first column for the patient ID (SUBJECT_ID) and the second column for the ICD-9 code (ICD9_CODE). For the purpose of this assignment, the patients were chosen to have at least one of 3 ICD-9 categories: 331, 332, 340, which correspond to Alzheimer's disease, Parkinson disease, and Multiple Sclerosis, respectively.

To make this assignment even more manageable, the codes for external injuries, supplementary classification code, and hypertension NOS (ICD-9 401.9) were removed. We will work with only 1000 ICD codes that were randomly sampled from the ICD codes of those pre-filtered patients. As a result, among the 1000 ICD codes from the data file, there are D=689 unique patients based on the SUBJECT_ID and M=389 unique ICD-9 codes.

The file named D_ICD_DIAGNOSES.csv.gz contain description of the ICD-9 codes in the SHORT_TITLE and LONG TITLE columns.

File to submit

Submit your code that implements the LDA Gibbs sampling algorithm and generates the subsequent required heatmap plots in ONE file with name COMP565_A5_LDA.py or COMP565_A5_LDA.R via MyCourses. Write your name and student ID on the top of your script to indicate that **the work is solely yours**.

Useful plotting libraries

The heatmap plots shown below were plotted using ComplexHeatmap (https://jokergoo.github.io/ComplexHeatmap-reference/book/) in R. If you are programming in Python, you can also plot similar heatmaps using seaborn https://seaborn.pydata.org/

Review code of conduct

Review **Avoid plagiarism and cheating** policy under Content tab and make sure that you strictly follow them in completing this assignment.

1 Implementing collapsed Gibbs sampling LDA (5%)

Implement the *collapsed Gibbs sampling algorithm* discussed in **Lecture 22**. Set the number of topics K to 5. Set the hyperparameters $\alpha=1$ and $\beta=0.001$ for the document topic Dirichlet prior and the ICD-9 topic Dirichlet prior, respectively.

As shown in the equations below, your implementation involves 3 key updates: (1) update the $K \times 1$ topic distribution of z_{id} for each ICD code i from each patient d, (3) update $n_{.dk}$ for the patients-by-topics count matrix (i.e., the $D \times K$ count matrix), (4) update $n_{w.k}$ for the ICDs-by-topics counts (i.e., the $M \times K$ count matrix):

$$\gamma_{idk} = (\alpha_{z_{id}} + \frac{n_{dk}^{-(i,d)}}{\sum_{w} \beta + \frac{n_{x_{id},k}^{-(i,d)}}{\sum_{w} \beta + \frac{n_{w,k}^{-(i,d)}}{\sum_{w} \beta}}), \quad p(z_{id} = k|z^{-(i,d)}, x_{id}) = \frac{\gamma_{idk}}{\sum_{k} \gamma_{idk}}$$
(1)

$$z_{id} \sim p(z_{id} = k|z^{-(i,d)}, x_{id})$$
 (2)

$$n_{.dk} = \sum_{i=1}^{n_d} [z_{id} = k] \tag{3}$$

$$n_{w.k} = \sum_{d=1}^{D} \sum_{i=1}^{M_d} [z_{id} = k][x_{id} = w]$$
(4)

Run 100 iterations of your collapsed Gibbs sampling algorithm, which will take under one minute.

Normalize the final ICDs-by-topics and the patients-by-topics matrix, respectively:

$$\phi_{wk} = \frac{\beta + n_{w.k}}{W\beta + \sum_{w} n_{w.k}} \tag{5}$$

$$\theta_{dk} = \frac{\alpha + n_{.dk}}{K\alpha + \sum_{k} n_{.dk}} \tag{6}$$

2 Visualizing the top ICD codes under each topic (1%)

For each topic k, choose the top 10 ICD-9 codes defined under the distribution Φ_k . Concatenate the top 10 ICD codes per topic together, resulting in a 50×5 ICDs-by-topics matrix as illustrated in Figure 1.

Because of the stochastic nature of the sampling algorithm and implementation differences, your inferred topics may differ from Figure 1 and may not clearly separate the above 3 ICD-9 categories due to disease complications and comorbidities. However, your inferred topics should be meaningful and represent clear distinction from one another. Otherwise, there are bugs in your code.

Topic 1 and topic 5 have ICD codes prefix 331 as the top code, implying their connections with Alzheimer's disease. Topic 2 has the top second code beginning with 332 (i.e., Paralysis agitans), which codes Parkinson's disease although we see comorbidity code 4280 CHF for Congestive heart failure, unspecified (https://icdlist.com/icd-9/428.0), appearing as the top 1 code. Interestingly, topic 4 involves code 294 w/o behavioral disturbance and the target code 340 for multiple sclerosis (among others). Topic 3 does not have any of the target codes and contain codes for infection such as urinary tract infection (5990), pneumonia (486), etc.

Figure 1: Latent topics inferred from the collapsed Gibbs sampling. The intensities ranges from 0 (white) to 1 (red). The rows are the top ICD-9 code under each of the 5 topics. The row names are concatenation of ICD-9 codes and the corresponding SHORT_TITLE from D_ICD_DIAGNOSES.csv.gz.

3 Correlating topics with the target ICD codes (1%)

To further make sense of the 5 topics, compute the normalized patient-by-topic mixture θ_{dk} for each patient d and topic k using Eq (6). Then, correlate each topic from the $N \times 5$ patient topic mixtures θ with each binary target ICD code (331,332,340) over the N patients.

Indeed, we see that topic 1 and 5 are positively correlated with ICD 331, topic 2 correlates with ICD 332, topic 4 correlates with code 340, and topic 3 does not correlate with any of the target

codes (Figure 2).

Figure 2: Topics by target ICD correlation.

4 Visualizing patient topic mixtures (1%)

Now choose top 100 patients under each topic and display them in a heatmap as shown in Figure 3. Reassuringly, we observe that the top patients with high probabilities under topic 1 and 5 are enriched for ICD codes 331, the top patients under topic 2 and 4 are enriched for ICD codes 332 and 340, respectively. In contrast, top patients under topic 3 do not have any of the 3 target ICD codes. Once again, your heatmap may differ from the one shown below but some of your topics should prioritize patients in one of the 3 disease groups.

Figure 3: Top 100 patients per topic. The row annotations indicate whether each patient has the ICD code 331, 332, or 340.