ГУАП

КАФЕДРА № 42

ОТЧЕТ			
ЗАЩИЩЕН С ОЦЕНКО	Й		
ПРЕПОДАВАТЕЛЬ			
канд. техн. наук, дог	цент		А.В. Аграновский
должность, уч. степень, з	вание	подпись, дата	инициалы, фамилия
0	тиет о па	БОРАТОРНОЙ РАБ	OTE Mo5
O	ичет Ола	DOFATOFITON FAD	O1E 363
СЕТЕВЫ	Е ИСТОЧ	ники постоя	ІННОГО ТОКА
	~		
ПС	курсу: Эле	ектроника и схемо	отехника
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4329		Д.М. Онопричук
		подпись, дата	инициалы, фамилия

Цель работы: изучение и практическое исследование работы сетевых источников постоянного тока.

Схемы экспериментальных установок:

Рисунок 1 - Схема источника питания с однополупериодным выпрямителем.

Рисунок 2 - Схема источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

Рисунок 3 - Схема источника питания с двухполупериодным выпрямителем на основе диодного моста.

Результаты измерений и вычислений:

Исследование источника питания с однополупериодным выпрямителем проведено при различных значениях сопротивления нагрузки и ёмкости сглаживающего конденсатора.

При фиксированной ёмкости C=100мкФ и изменяющемся сопротивлении нагрузки R_H , выходное напряжение Uп снижается по мере увеличения сопротивления (см. Таблицу 1). При малых сопротивлениях напряжение остаётся выше, поскольку конденсатор разряжается быстрее на низком сопротивлении.

При фиксированном сопротивлении R_H =100 Ом и увеличении ёмкости конденсатора наблюдается снижение выходного напряжения (см. Таблицу 2). Это связано с тем, что при больших ёмкостях конденсатор заряжается медленнее в условиях однополупериодного выпрямления.

Таблица 1- $C = 100 \text{ мк}\Phi$

R _H , O _M	100	300	500	700	1000	1500	2000	5000
Uπ, B	2.7	1.4	1.1	1.0	0.6	0.5	0.3	0.1

Таблица 2 - $R_H = 100 \text{ Ом}$

С, мкФ	10	50	100	500	750	1500	3000	5000
Uπ, B	3.9	3.7	3.0	1.3	0.7	0.5	0.4	0.1

Исследование источника питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой показывает, что при фиксированной ёмкости С=100 мкФ выходное напряжение также падает с ростом сопротивления нагрузки R_H, но начальные значения ниже, чем в случае однополупериодного выпрямителя (см. Таблицу 3).

При фиксированном сопротивлении R_H =100 Ом и увеличении ёмкости C, наблюдается быстрое снижение напряжения при больших значениях ёмкости, указывая на сильное влияние фильтрации в данной схеме (см. Таблицу 4).

Таблица 3 - C = 100 мкФ

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U _{II} , B	2.2	0.9	0.6	0.4	0.3	0.2	0.2	0.1

Таблица 4 - $R_H = 100 \text{ Ом}$

С, мкФ	10	50	100	500	750	1500	3000	5000
U _п , В	3.8	2.7	2	0.5	0.3	0.3	0.1	0

Исследование источника с двухполупериодным выпрямителем на основе диодного моста дало ещё более низкие значения выходного напряжения. При фиксированной ёмкости С=100 мкФ и увеличении сопротивления R_H, напряжение уменьшается значительно быстрее, чем в предыдущих схемах (см. Таблицу 5). Аналогично, при фиксированном сопротивлении R_H=100 Ом увеличение ёмкости сглаживающего конденсатора также приводит к резкому снижению выходного напряжения (см. Таблицу 6).

Таблица 5 - C = 100 мк Φ

R _H , O _M	100	300	500	700	1000	1500	2000	5000
Uп, В	1.5	0.7	0.4	0.3	0.2	0.2	0.1	0.1

Таблица 6 - $R_H = 100 O_M$

С, мкФ	10	50	100	500	750	1500	3000	5000
Uп, В	3.2	2.3	1.4	0.4	0.3	0.2	0.2	0.1

Графики зависимостей уровня пульсаций напряжения на выходе источника питания от параметров схемы.

Исследование источника питания с однополупериодным выпрямителем проведено при различных значениях сопротивления нагрузки и ёмкости сглаживающего конденсатора.

При фиксированной ёмкости C=100 мкФ и изменяющемся сопротивлении нагрузки R_H, выходное напряжение Uп снижается по мере увеличения сопротивления (см. таблицу 1). Как видно на рисунке 4, при возрастании сопротивления уровень пульсаций уменьшается — это объясняется тем, что ток нагрузки становится меньше, и конденсатор дольше удерживает заряд.

При фиксированном сопротивлении $R_H = 100$ Ом и увеличении ёмкости конденсатора наблюдается снижение выходного напряжения (см. таблицу 2). На рисунке 5 видно, что при увеличении ёмкости уровень пульсаций заметно уменьшается благодаря более эффективному сглаживанию.

Исследование источника питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой показывает, что при фиксированной ёмкости С=100 мкФ выходное напряжение также падает с ростом сопротивления нагрузки R_H (см. таблицу 3). Как показано на рисунке 6, уровень пульсаций снижается, но уже с более низкого начального значения по сравнению с однополупериодной схемой.

При фиксированном сопротивлении R_H =100Ом и увеличении ёмкости сглаживающего конденсатора напряжение на выходе также уменьшается (см. таблицу 4). Из рисунка 7 видно, что с увеличением

ёмкости уровень пульсаций резко падает до определённого уровня, после чего дальнейшее увеличение ёмкости даёт меньшее улучшение.

Исследование источника с двухполупериодным выпрямителем на основе диодного моста дало ещё более низкие значения выходного напряжения. При фиксированной ёмкости С=100 мкФ и увеличении сопротивления R_H, напряжение уменьшается (см. таблицу 5), а уровень пульсаций, как видно на рисунке 8, также снижается, но при этом значения напряжения ниже, чем у других схем, из-за падения напряжения на четырёх диодах.

Аналогично, при фиксированном сопротивлении R_H =100 Ом увеличение ёмкости приводит к снижению выходного напряжения (см. таблицу 6). На рисунке 9 видно, что увеличение ёмкости эффективно снижает уровень пульсаций, особенно на малых значениях ёмкости, после чего кривая выравнивается.

Рисунок 4 - График зависимости уровня пульсации напряжения к таблице 1.

Рисунок 5 - График зависимости уровня пульсации напряжения к таблице 2.

Рисунок 6 - График зависимости уровня пульсации напряжения к таблице 3.

Рисунок 7 - График зависимости уровня пульсации напряжения к таблице 4.

Рисунок 8 - График зависимости уровня пульсации напряжения к таблице 5.

Рисунок 9 - График зависимости уровня пульсации напряжения к таблице 6.