

"Space Data Processing: Making Sense of Experimental Data"

Laboratory work 12 Joint assimilation of navigation data coming from different sources

Tatiana Podladchikova Rupert Gerzer Term 4, March 28 – May 27, 2016 t.podladchikova@skoltech.ru

Navigation data coming from different sources

Observation interval

T = 2 seconds - time interval between steps

Measurement equation for the first observer

Measurement equation
$$z_i = h(X_i) + \eta_i$$

Observation function for the first observer

Derivative with respect to X_{i+1} at point $\widehat{X}_{i+1,i}$

$$\frac{dh(\widehat{X}_{i+1,i})}{dX_{i+1}} = \begin{vmatrix} \frac{x_{i+1,i}}{\sqrt{x_{i+1,i}^2 + y_{i+1,i}^2}} & 0 & \frac{y_{i+1,i}}{\sqrt{x_{i+1,i}^2 + y_{i+1,i}^2}} & 0 \\ \frac{y_{i+1,i}}{x_{i+1,i}^2 + y_{i+1,i}^2} & 0 & -\frac{x_{i+1,i}}{x_{i+1,i}^2 + y_{i+1,i}^2} & 0 \end{vmatrix}$$

Measurement equation for the second observer

Measurement equation
$$z_i = h(X_i) + \eta_i$$

Observation function for the second observer

Derivative with respect to X_{i+1} at point $\widehat{X}_{i+1,i}$

$$\frac{dh(\widehat{X}_{i+1,i})}{dX_{i+1}} = \begin{vmatrix} y_{i+1,i} \\ x_{i+1,i}^2 + y_{i+1,i}^2 \end{vmatrix} 0 - \frac{x_{i+1,i}}{x_{i+1,i}^2 + y_{i+1,i}^2} 0$$