1 propositional logic

a proposition is a precise statement that is either true (\top) or false (\bot) , but not both, for example:

- 2 + 2 = 4 (true)
- all dogs have 3 legs (false)
- $x^2 < 0$ (false)

however, not all statements are propositions. for example:

- eliana is cool
 - *cool* is a subjective term.
- $x^3 < 0$
 - true if x < 0, false otherwise.
- springfield is the capital
 - true in illinois, false in massachusetts.

1.1 logical connectives

$1.1.1 \neg negation$

the negation (or not) of a proposition is true iff the proposition is false.

- $\neg \bot = \top$
- $\neg T = \bot$

$1.1.2 \land conjunction$

the *conjunction* (or *and*) of two propositions is true *iff* **both** propositions are true.

- $\top \wedge \top = \top$
- $\top \wedge \bot = \bot$
- $\bot \land \top = \bot$
- $\bot \land \bot = \bot$

$1.1.3 \lor disjunction$

the disjunction (or or) of two propositions is true iff at least one proposition is true.

- $\top \lor \top = \top$
- $\top \lor \bot = \top$
- $\bot \lor \top = \top$
- $\bot \lor \bot = \bot$

$1.1.4 \oplus$ exclusive disjunction

the *exclusive disjunction* (or *xor*) of two propositions is true *iff* **exactly one** proposition is true.

- $\top \oplus \top = \bot$
- $\top \oplus \bot = \top$
- $\bot \oplus \top = \top$
- $\bot \oplus \bot = \bot$

1.1.5 ightarrow implication

the *implication* $p \to q$ is false if p is true, and q is false $p \to q$ is true otherwise. hint: p is called the *hypothesis*, and q is called the *conclusion*.

- $\top \rightarrow \top = \top$
- $\top \rightarrow \bot = \bot$
- $\bot \to \top = \top$
- $\bot \to \bot = \top$

$1.1.6 \leftrightarrow biconditional$

the *biconditional* $p \leftrightarrow q$ is true iff p and q assume the same truth value.

- $\top \leftrightarrow \top = \top$
- $\top \leftrightarrow \bot = \bot$
- $\bot \leftrightarrow \top = \bot$
- $\bot \leftrightarrow \bot = \top$

1.2 logic operators order

- 1. \neg negation
 - $\neg q \lor r \text{ means } (\neg q) \lor r, \text{ not } \neg (q \lor r)$
- 2. \land conjunction
- 3. V disjunction
 - $q \wedge r \vee s$ means $(q \wedge r) \vee s$, not $q \wedge (r \vee s)$
- 4. \rightarrow implication
 - $q \wedge r \to s$ means $(q \wedge r) \to s$, not $q \wedge (r \to s)$
- $5. \leftrightarrow biconditional$

1.3 other conditional statements

given an implication $p \to q$:

- $\neg p \rightarrow \neg q$ is its inverse
- $q \rightarrow p$ is its converse
- $\neg q \rightarrow \neg p$ is its contrapositive

1.4 activities

1.4.1 two propositions

show that an implication $p \to q$ and its $contrapositive \neg q \to \neg p$ always have the same value.

p,q	$\neg q, \neg p$	p o q	$\neg q \rightarrow \neg p$	$(p \to q) \leftrightarrow (\neg q \to p)$
ТТ	$\perp \perp$	Т	Т	Τ
ТТ	Т⊥	上	上	Τ
\perp \top	⊥ ⊤	Т	Т	Τ
\Box \Box	ТТ	Т	Т	Τ

1.4.2 complex example 1

construct a truth table for $(p \wedge q) \to \neg r$.

p,q,r	$p \wedge q$	$\neg r$	$(p \land q) \to \neg r$
TTT	Т	\perp	\perp
\top \top \bot	Т	Τ	Τ
$\top \perp \top$		\perp	Τ
$\top \bot \bot$		Τ	Τ
\bot \top \top			Τ
$\top \bot \top$		Τ	Τ
$\bot \bot \top$			Т
$\perp \perp \perp \perp$		T	Т

1.5 complex example 2

construct a truth table for $p \land (\neg q \lor r) \to r$.

p,q,r	$\neg q$	$\neg q \lor r$	$p \wedge (\neg q \vee r)$	$\begin{array}{c} p \wedge (\neg q \vee \\ r) \rightarrow r \end{array}$
TTT	上	Т	Т	Т
\top \top \bot	上	上	上	Т
$\top \perp \top$	Т	Т	Τ	Т
$\top \bot \bot$	Т	Т	Т	
\top \bot \top		Т		Т

p,q,r	$\neg q$	$\neg q \lor r$	$p \wedge (\neg q \vee r)$	$\begin{array}{c} p \wedge (\neg q \vee \\ r) \rightarrow r \end{array}$
$\top \bot \top$	上	上	上	Τ
\bot \bot \top	Т	Т	上	Т
\bot \bot \bot	Т	Т	上	Т