清华大学统计学辅修课程

Linear Regression Analysis

Lecture 12-ANOVA Inference & Two-Way ANOVA

周在莹

清华大学统计学研究中心

http://www.stat.tsinghua.edu.cn

Topic 1: Inference

Outline

- ► Review One-way ANOVA
- ► Inference for means
- ▶ Differences in cell means
- ► Contrasts

Cell Means Model

- $Y_{ij} = \mu_i + \varepsilon_{ij}$ where μ_i is the theoretical mean or expected value of all observations at level i and the ε_{ij} are iid $N(0, \sigma^2)$
- ► $Y_{ij} \sim N(\mu_i, \sigma^2)$ independent

Parameters

► The parameters of the model are

$$\triangleright \mu_1, \mu_2, ..., \mu_r$$

- $\succ \sigma^2$
- \triangleright Estimate μ_i by the mean of the observations at level i,

$$\hat{\mu}_i = \bar{Y}_{i.} = \sum_j Y_{ij}/n_i$$
 -level *i* sample mean

$$> s_i^2 = \sum_j (Y_{ij} - \bar{Y}_{i.})^2 / (n_i - 1)$$
 -level *i* sample variance

$$ightharpoonup s^2 = \sum ((n_i - 1)s_i^2)/(n_T - r)$$
 -pooled variance

F Test

- $F^* = MSR/MSE$
- \blacktriangleright $H_0: \mu_1 = \mu_2 = ... = \mu_r = \mu$ (a constant)
- \blacktriangleright H_a : not all μ_i 's are the same
- ▶ Under H_0 , $F^* \sim F(r-1, n_T r)$
- ▶ Reject H_0 when F^* is large
- ► Common to report the *P*-value along with decision

7

Cereal Package Example

- ► KNNL p 676, p 685
- ▶ *Y* is the number of cases of cereal sold
- ightharpoonup X is the design of the cereal package
 - > there are four levels for X because there are four different designs
- i = 1 to 4 levels
- \rightarrow j = 1 to n_i stores with design i (n_i = 5, 5, 4, 5)

Means Plot

d	esign	N	Mean	StdDev	Minimun	Maximum
1	1	5	14.6	2.302173	11	17
2	2	5	13.4	3.646917	10	19
3	3	4	19.5	2.645751	17	23
4	4	5	27.2	3.962323	22	33

Summarize Data

▶ Import the data

```
> a1 = read.table("CH16TA01.txt")
> colnames(a1) = c("cases", "design", "store")
> a1$design = as.factor(a1$design)
```

▶ Describe the data

Confidence Intervals

- $ightharpoonup \overline{Y}_{i.} \sim N(\mu_i, \sigma^2/n_i)$
- ightharpoonup CI for μ_i is $\overline{Y}_{i} \pm t_c s / \sqrt{n_i}$
- ▶ t_c is computed from the $t(\alpha/2, n_T r)$
- ▶ Degrees of freedom larger than n_i −1 because we're pooling variances together into one single estimate s
 - > This is advantage of ANOVA if model assumptions appropriate

- ▶ We can use this information to calculate *SSE*
- $SSE = 4(2.3)^2 + 4(3.65)^2 + 3(2.65)^2 + 4(3.96)^2 = 158.2$

```
      design N Mean StdDev Minimun Maximum

      1
      1
      5
      14.6
      2.302173
      11
      17

      2
      2
      5
      13.4
      3.646917
      10
      19

      3
      3
      4
      19.5
      2.645751
      17
      23

      4
      4
      5
      27.2
      3.962323
      22
      33
```

```
      design
      Lower95CL Upper95CL

      1
      1

      1
      11.741475

      2
      2

      8.871755
      17.92824

      3
      3

      15.290019
      23.70998

      4
      4

      22.280127
      32.11987
```

There is no pooling of error in computing these CI's. Each interval assumes different variance estimate.

CIs in R

$$>$$
 fit = lm (cases $\sim 0 +$ design, data = a1)

> confint(fit)

Here is the result

	2.5 %	97.5 %
	11.50438	
	10.30438	
design3	16.03899	22.96101
design4	24.10438	30.29562

Compare with before

Lower95CL	Upper95CL
11.741475	17.45853
8.871755	17.92824
15.290019	23.70998
22.280127	32.11987

► These CI's are often narrower because more degrees of freedom (common variance)

design1	design2	design3	design4
6.191240	6.191240	6.922017	6.191240
5.717050	9.056490	8.419961	9.839747

Multiplicity Problem

- ▶ We have constructed 4 (in general, r) 95% confidence intervals
- ► The overall confidence level (all intervals contain its mean) is less that 95%
- ▶ Many different kinds of adjustments have been proposed
- We have previously discussed the Bonferroni adjustment (i.e., use α/r)

Familywise Error Rate (FWE总体错误率)

- ▶ Multiple Comparisons Fallacy (多重比较谬误)
- Accounting for the multiplicity of individual tests can be achieved by controlling an appropriate error rate
- The traditional/classical FWE is the probability of one or more false discoveries (falsely reject H_0)
- ► In <u>single-step multiple comparison procedure</u>, individual test statistics are compared to their critical values simultaneously, and after this simultaneous 'joint' comparison, the multiple testing method stops
- ▶ Often single-step methods can be improved in terms of power via stepwise methods, while still maintaining control of the desired error rate

Bonferroni CIs

- ▶ Simultaneous 95% confidence limits:
- \triangleright > confint(mod1, level = 1 0.05/4)

Here is the result

0.625 % 99.375 % design1 10.480212 18.71979 design2 9.280212 17.51979 design3 14.893937 24.10606 design4 23.080212 31.31979

Compare with before

2.5 % 97.5 %
11.50438 17.69562
10.30438 16.49562
16.03899 22.96101
24.10438 30.29562

The CI's become wider

Hypothesis Tests on Individual Means

- ▶ Not usually done
- ► A test of the null hypothesis H_0 : $\mu_i = 0$
- ► To test H_0 : $\mu_i = c$, where c is an arbitrary constant, first subtract c from all observations in each level
- ► Can also check confidence intervals for means

Testing Differences in means

$$ightharpoonup \overline{Y}_{i.} - \overline{Y}_{k.} \sim N(\mu_i - \mu_k, \sigma^2/n_i + \sigma^2/n_k)$$

► CI for $\mu_i - \mu_k$ is

$$\overline{Y}_{i.} - \overline{Y}_{k.} \pm t_c s(\overline{Y}_{i.} - \overline{Y}_{k.})$$

where

$$s(\overline{Y}_{i.} - \overline{Y}_{k.}) = s\sqrt{\frac{1}{n_i} + \frac{1}{n_k}}$$

Determining t_c

- There are $\binom{r}{2} = \frac{r(r-1)}{2}$ pairwise comparisons
- \blacktriangleright Handle multiplicity problem by adjusting t_c
- ▶ Many different choices are available
- ► Change α level (e.g., Bonferonni)
- ▶ Use different distribution

Least Significant Difference (LSD)

- ► Fisher's LSD test
- ► Simply <u>ignores multiplicity issue</u>
- ▶ Uses $t(n_T r)$ to determine critical value for each comparison

Bonferroni

- ▶ Use the <u>error budget idea</u>
- There are r(r-1)/2 comparisons among r means
- So, replace for each comparison by $\alpha/(r(r-1)/2)$ and use $t(n_T r)$ to determine critical value

Tukey

- ► Tukey's HSD(honestly significant difference) test
- ► Uses the <u>studentized range distribution</u> (SRD) instead of *t*. Focuses on distribution of maximum minus minimum divided by the standard deviation
- ► $t_c = q_c/\sqrt{2}$ where q_c is determined from SRD
- ▶ Details are in KNNL Section 17.5 (p 746)

Scheffé

- ▶ Based on the *F* distribution
- $t_c = \sqrt{(r-1)F(1-\alpha;r-1,n_T-r)}$
- ► Takes care of multiplicity for <u>all linear</u> <u>combinations</u> of means, not just pairwise comparisons
- Can be used for a wide variety of data mining
- ► See KNNL Section 17.6 (page 753)

Multiple Comparisons

- ► LSD is too liberal (i.e., too many Type I errors)
- ► Scheffé is too conservative (very low power)
- ▶ Bonferroni is ok for small *r*
- ► Tukey is recommended for pairwise comparisons
- ▶ Other procedures exist and worthy of consideration
 - > Focus on pairwise comparisons or linear combinations?
 - > Focus on family-wise error rate?

Revisit Our Example

- \blacktriangleright Least significant difference (LSD) t test for cases
- ▶ NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate

► LSD Intervals ->

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of t	2.13145

desig Compa		Difference Between Means	Simultaneous 95% Confidence Limits		
4	- 3	7.700	3.057	12.343 ***	
4	- 1	12.600	8.222	16.978 ***	
4	- 2	13.800	9.422	18.178 ***	
3 -	- 4	-7.700	-12.343	-3.057 ***	
3 -	- 1	4.900	0.257	9.543 ***	
3 -	- 2	6.100	1.457	10.743 ***	
1	- 4	-12.600	-16.978	-8.222 ***	
1 .	- 3	-4.900	-9.543	-0.257 ***	
1	- 2	1.200	-3.178	5.578	
2	- 4	-13.800	-18.178	-9.422 ***	
2	- 3	-6.100	-10.743	-1.457 ***	
2 -	- 1	-1.200	-5.578	3.178	

Tukey

- > mod1 <- aov(cases $\sim 0 + design, data = a1)$
- > mod1.Tukey <- TukeyHSD (mod1, conf.level = 0.95)</pre>
- > plot(mod1.Tukey, sub="Tukey Honest Significant Differences")

Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = cases $\sim 0 + \text{design}$, data = a1) \$design diff lwr p adj upr -7.119758 4.719758 0.9352978 4.9 -1.378852 11.178852 0.1548895 4-1 12.6 6.680242 18.519758 0.0001013 -0.178852 12.378852 6.1 0.0582866 13.8 7.880242 19.719758 0.0000368 1.421148 13.978852 0.0142180

95% family-wise confidence level

Scheffé

- Scheffe's Test for cases
- ► NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons
- ► Scheffé Intervals

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of F	3.28738

$$F(.95, 3, 15) = 3.28$$

$$t_c = \sqrt{(r-1)F(1-\alpha; r-1, n_T - r)}$$
=Sqrt(3*3.28) = 3.14

design		Difference			
Comp	arison	Between Means	Confidence Limits		
4	- 3	7.700	0.859	14.541	***
4	- 1	12.600	6.150	19.050	***
4	- 2	13.800	7.350	20.250	***
3	- 4	-7.700	-14.541	-0.859	***
3	- 1	4.900	-1.941	11.741	
3	- 2	6.100	-0.741	12.941	
1	- 4	-12.600	-19.050	-6.150	***
1	- 3	-4.900	-11.741	1.941	
1	- 2	1.200	-5.250	7.650	
2	- 4	-13.800	-20.250	-7.350	***
2	- 3	-6.100	-12.941	0.741	
2	- 1	-1.200	-7.650	5.250	

Pairwise Comparison in R

- > pairwise.t.test(a1\$cases, a1\$design, p.adjust="none", pool.sd = T)
- > pairwise.t.test(a1\$cases, a1\$design, p.adjust="bonferroni", pool.sd = T)

```
Pairwise comparisons using t tests with pooled SD
```

data: a1\$cases and a1\$design

```
1 2 3
2 0.568 - -
3 0.040 0.013 -
4 1.9e-05 6.9e-06 0.003
```

P value adjustment method: none

```
Pairwise comparisons using t tests with pooled SD
```

data: a1\$cases and a1\$design

```
1 2 3
2 1.00000 - - -
3 0.23969 0.08075 -
4 0.00011 4.1e-05 0.01802
```

P value adjustment method: bonferroni

Linear Combinations of Means

- ► These combinations should come from research questions, not from an examination of the data
- $L = \sum c_i \mu_i$
- - $\triangleright Var(\hat{L}) = \sum c_i^2 Var(\bar{Y}_{i.})$
 - > $Var(\hat{L})$ is estimated by $s^2 \sum (c_i^2/n_i)$
- ► Can use our linear statistical model to construct a *t*-test of any linear combination
- $\blacktriangleright Var(\hat{L}) = MSE \sum (c_i^2/n_i)$
- ► Under H_0 : $L = L_0$, $T \sim t(n_T r)$

$$T = \frac{\hat{L} - L_0}{\sqrt{Var(\hat{L})}}$$

Contrasts

▶ Special case of a linear combination

▶ Requires $\sum c_i = 0$

- \blacktriangleright Example 1: $\mu_1 \mu_2$
- Example 2: $\mu_1 (\mu_2 + \mu_3)/2$
- Example 3: $(\mu_1 + \mu_2)/2 (\mu_3 + \mu_4)/2$

Contrast sum of squares

$$H_0: L = 0$$

$$T = \frac{\sum c_i \bar{Y}_{i.}}{\sqrt{MSE \sum \left(c_i^2/n_i\right)}} \sim t(n_T - r)$$

$$T^{2} = \frac{\left(\sum c_{i} \bar{Y}_{i.}\right)^{2}}{MSE \sum \left(c_{i}^{2}/n_{i}\right)} = \frac{SSC/1}{MSE} \sim F(1, n_{T} - r)$$

where
$$SSC = \left(\sum c_i \bar{Y}_{i.}\right)^2 / \sum (c_i^2/n_i)$$

$$t^2(n_T - r) = F(1, n_T - r)$$

► Contrast sum of squares *SSC* represent amount of variation due to this contrast

Multiple Contrasts

- ► We can simultaneously test a collection of contrasts (1 df for each contrast)
- ► Example 1, H_0 : $\mu_2 = \mu_3 = \mu_4$
 - > The F statistic for this test will have an $F(2, n_T r)$ distribution
- **Example 2**, H_0 : $\mu_1 = (\mu_2 + \mu_3 + \mu_4)/3$
 - \triangleright The F statistic for this test will have an $F(1, n_T r)$ distribution

Contrast and Estimate

```
    c1 <- c(.5, .5, -.5, -.5)</li>
    c2 <- c(1, -.3333, -.3333, -.3333)</li>
    c3 <- c(3, -1, -1, -1)</li>
    c4 <- c(0, 1, -1, 0)</li>
    cntrMat <- rbind("1&2 v 3&4" = c1, "1 v 2&3&4" = c2, "1 v 2&3&4" = c3, "2 v 3 " = c4)</li>
```

Simultaneous Tests for General Linear Hypotheses

Fit: $aov(formula = cases \sim 0 + design, data = a1)$

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

```
1&2 v 3&4 == 0  -9.350  1.497  -6.246  <0.001 *** 1 v 2&3&4 == 0  -5.431  1.694  -3.206  0.0148 * 1 v 2&3&4 == 0  -16.300  5.083  -3.207  0.0149 * 2 v 3 == 0  -6.100  2.179  -2.800  0.0329 *
```

- > library(multcomp)
- > summary(glht(mod1, linfct=cntrMat))

F Test

- For c1, "1&2 v 3&4", c = (.5, .5, -.5, -.5)
 - $(-6.246)^2 = 39.01$
 - $> SSC = \left(\sum c_i \overline{Y}_{i.}\right)^2 / \sum (c_i^2/n_i)$

Contrast	DF	SS	MS	\mathbf{F}	P
1&2 v 3&4	1	411	411	39.01	<.0001

- > SSC <- (sum(singleMean*c))^2/sum(c^2/freq)
- > F <- SSC/MSE
- ► For multiple comparison "2 v 3 v 4", (0, 1, -1, 0) (0, 0, 1, -1)
 - > library(car)
 - > linearHypothesis(fit, rbind(c (0, 1, -1, 0), c(0, 0, 1, -1)))

Contrast	DF	SS	MS	F	P
1 v 2&3&4	1	10.29		10.29	.0059
2 v 3 v 4	2	22.66		22.66	<.0001

Linear hypothesis test

Hypothesis:

design2 - design3 = 0

design 3 - design 4 = 0

Model 1: restricted model

Model 2: cases $\sim 0 + \text{design}$

Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 636.13

2 15 158.20 2 477.93 22.658 2.934e-05 ***

Last Slide

- ▶ We did large part of Chapter 17
- ▶ We used programs topic12_1.R to generate the output for today

Topic 2: Two-Way ANOVA

Outline

- ► Cell means model
 - > Parameter estimates
- ► Factor effects model
 - > Parameter estimates
- ► ANOVA

Two-Way ANOVA

- ► The response variable *Y* is continuous
- There are now <u>two</u> categorical explanatory variables or factors
 - > Treatments/groups can be classified in two ways
 - > Form a two-way table

Data

- ► *Y* is the response variable
- ightharpoonup Factor A with levels i = 1 to a
- ▶ Factor *B* with levels j = 1 to *b*
- $ightharpoonup Y_{ijk}$ is the k^{th} observation in cell (i,j)
- In Chapter 19, we assume equal sample size in each cell $(n_{ij} = n)$

Bakery Example

- ► KNNL p 833
- ▶ *Y* is the number of cases of bread sold
- ightharpoonup A is the height of the shelf display, a = 3
 - > levels: bottom, middle, top
- \triangleright B is the width of the shelf display, b = 2
 - > levels: regular, wide
- ▶ n = 2 stores for each of the $3 \times 2 = 6$ treatment combinations ($n_T = 12$)

Notation

- \blacktriangleright For Y_{ijk} we use
 - > i to denote the level of the factor A
 - \triangleright j to denote the level of the factor B
 - \triangleright k to denote the k^{th} observation in cell (i, j)
- $\triangleright i = 1, ..., a$ levels of factor A
- \triangleright j = 1, ..., b levels of factor B
- $\triangleright k = 1,...,n$ observations in cell (i,j)

width\hight	1	2	3
1	47,43	62,68	41,39
2	46,40	67,71	42,46

sales height width store					
1	47	1	1	1	
2	43	1	1	2	
3	46	1	2	1	
4	40	1	2	2	
5	62	2	1	1	
6	68	2	1	2	
7	67	2	2	1	
8	71	2	2	2	
9	41	3	1	1	
10	39	3	1	2	
11	42	3	2	1	
12	46	3	2	2	

CH19TA07

Model Assumptions

We assume that the response variable observations are

- ► Normally distributed
- ▶ With a mean that <u>may depend only on the levels of the factors A and B</u>
 - > With constant variance
 - > Independent

Cell Means Model

- $Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$
 - where μ_{ij} is the theoretical mean or expected value of all observations in cell (i, j)
 - \triangleright the ε_{ijk} are iid $N(0, \sigma^2)$
- ► This means $Y_{ijk} \sim N(\mu_{ij}, \sigma^2)$, independent
- ► The parameters of the model are
 - $\triangleright \mu_{ij}$, for i = 1 to a and j = 1 to b
 - $\succ \sigma^2$

Estimates

Estimate μ_{ij} by the mean of the observations in cell (i, j),

$$\bar{Y}_{ij.} = \sum_{k} Y_{ijk}/n$$

For each (i, j) combination, we can get an estimate of the variance

$$s_{ij}^2 = \sum_{k} (Y_{ijk} - \bar{Y}_{ij.})^2 / (n-1)$$

We need to combine these to get an pooled estimate of σ^2

Pooled estimate of σ^2

- ▶ In general we pool the s_{ij}^2 , using weights proportional to the df, $n_{ij} 1$
- ► The pooled estimate is

$$s^2 = (\sum_{ij} (n_{ij} - 1)s_{ij}^2) / (\sum_{ij} (n_{ij} - 1))$$

► Here, $n_{ij} = n$, so $s^2 = (Σs_{ij}^2)/(ab),$

which is the average sample variance

- ► Cell estimates used for calculating parameter estimates
- > aggregate(sales~ height*width, a, length)
- > aggregate(sales~ height*width, a, mean)
- > aggregate(sales~ height*width, a, sd)

Level of	Level of	N	sales		
height	width	1	Mean	Std Dev	
1	1	2	45.0000000	2.82842712	
1	2	2	43.0000000	4.24264069	
2	1	2	65.0000000	4.24264069	
2	2	2	69.0000000	2.82842712	
3	1	2	40.0000000	1.41421356	
3	2	2	44.0000000	2.82842712	

width\hight	1	2	3
1	45	65	40
2	43	69	44

Coefficients:

Estimate Std. Error t value Pr(>|t|)45.000 2.273 19.797 1.08e-06 *** (Intercept) 20.000 6.222 0.000797 *** height2 height3 -5.000 3.215 -1.555 0.170844 width2 -2.0003.215 -0.622 0.556718 height2:width2 6.000 4.546 1.320 0.235013 height3:width2 6.000 4.546 1.320 0.235013

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.215 on 6 degrees of freedom Multiple R-squared: 0.9622, Adjusted R-squared: 0.9308

F-statistic: 30.58 on 5 and 6 DF, p-value: 0.0003384

► Commonly do not consider R-sq when performing ANOVA...interested more in difference in levels rather than the model's predictive ability

Marginal Means

▶ Height marginal

Level of	N	sales		
height		Mean	Std Dev	
1	4	44.0000000	3.16227766	
2	4	67.0000000	3.74165739	
3	4	42.0000000	2.94392029	

▶ Width marginal

Level of	N	sales		
width		Mean	Std Dev	
1	6	50.0000000	12.0664825	
2	6	52.0000000	13.4313067	

Plot the Data

Questions to Consider

- ▶ Does the height of the display affect sales?
 - > If yes, compare top with middle, top with bottom, and middle with bottom
- ▶ Does the width of the display affect sales?
 - > If yes, compare regular and wide

But Wait!!!

- ► Are these factor level comparisons meaningful?
- ▶ Does the effect of height on sales depend on the width?
- ▶ Does the effect of width on sales depend on the height?
- If yes, we have an interaction and we need to do some additional analysis

The Interaction Plot

with(a,

```
interaction.plot(x.factor = height,
```

```
trace.factor = width,
response = sales,
fun = mean))
```

Plot of the Means

Factor Effects Model

► For the one-way ANOVA model, we wrote

$$\mu_i = \mu + \alpha_i$$

▶ Here we use

$$\mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}$$

- ▶ Under "common" formulation
 - $\triangleright \mu (\mu \text{ in KNNL})$ is the "overall mean"
 - $\triangleright \quad \alpha_i$ is the main effect of A
 - \triangleright β_j is the main effect of B
 - \triangleright $(\alpha\beta)_{ij}$ is the interaction between A and B

Constraints

- $(\alpha\beta)_{.j} = \Sigma_i (\alpha\beta)_{ij} = 0 \text{ for all } j$
- $(\alpha\beta)_{i.} = \Sigma_j (\alpha\beta)_{ij} = 0 \text{ for all } i$

Factor Effects Model

- $\blacktriangleright \mu = (\Sigma_{ij} \mu_{ij})/(ab)$
- $\blacktriangleright \mu_{i.} = (\Sigma_j \mu_{ij})/b$ and $\mu_{.j} = (\Sigma_i \mu_{ij})/a$
- \blacktriangleright $(\alpha\beta)_{ij}$ is...
 - \triangleright difference between μ_{ij} and $\mu + \alpha_i + \beta_j$
 - What's unexplained by completely additive model
 - $(\alpha\beta)_{ij} = \mu_{ij} (\mu + (\mu_{i.} \mu) + (\mu_{.j} \mu))$ $= \mu_{ij} \mu_{i.} \mu_{.j} + \mu$

Interpretation

- $\blacktriangleright \mu_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}$
 - $\triangleright \mu$ is the "overall" mean
 - $\triangleright \alpha_i$ is an adjustment for level *i* of *A*
 - $\triangleright \beta_j$ is an adjustment for level j of B
 - \triangleright $(\alpha\beta)_{ij}$ is an additional adjustment that takes into account both i and jthat cannot be explained by the previous adjustments

Estimates for Factor Effects Model

$$\hat{\mu} = \overline{Y}_{...} = \sum_{ijk} Y_{ijk} / (abn)$$

$$\hat{\mu}_{i.} = \overline{Y}_{i..} \text{ and } \hat{\mu}_{.j} = \overline{Y}_{.j.}$$

$$ightharpoonup \hat{\alpha}_i = \bar{Y}_{i..} - \bar{Y}_{...}$$
 and $\hat{\beta}_j = \bar{Y}_{.j.} - \bar{Y}_{...}$

$$(\widehat{\alpha\beta})_{ij} = \overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...}$$

DF

MS

48

$$\blacktriangleright SSA = \sum_{ijk} \widehat{\alpha_i}^2 = \sum_{ijk} (\overline{Y}_{i..} - \overline{Y}_{...})^2$$

$$ightharpoonup df_A = a - 1$$

$$ightharpoonup MSA = SSA/df_A$$

$$\blacktriangleright SSB = \sum_{ijk} \widehat{\beta}_j^2$$

►
$$df_B = b - 1$$

$$ightharpoonup$$
 MSB = SSB/df_B

$$\blacktriangleright \text{ SSAB} = \sum_{ijk} \widehat{(\alpha\beta)}_{ij}^2$$

►
$$df_{AB} = (a-1)(b-1)$$

$$MSAB = SSAB/df_{AB}$$

$$\triangleright SSE = \sum_{ijk} (\bar{Y}_{ijk} - \bar{Y}_{ij.})^2$$

$$df_{\rm E} = ab(n-1)$$

$$ightharpoonup$$
 MSE = SSE/df_E

$$\triangleright \text{ SSTO} = \sum_{ijk} (\bar{Y}_{ijk} - \bar{Y}_{...})^2$$

$$df_T = abn - 1 = n_T - 1 MST = SST/df_T$$

Two-Way ANOVA: Hypotheses F Statistics

- $\blacktriangleright H_{0A}$: $\alpha_i = 0$ for all i
- \blacktriangleright H_{1A} : $\alpha_i \neq 0$ for at least one i
- $\blacktriangleright H_{0B}$: $\beta_i = 0$ for all j
- ► H_{1B} : $\beta_i \neq 0$ for at least one j
- $\blacktriangleright H_{0AB}$: $(\alpha\beta)_{ij} = 0$ for all (i,j)
- \blacktriangleright H_{1AB} : $(\alpha\beta)_{ij} \neq 0$ for at least one (i,j)

- \blacktriangleright H_{0A} is tested by $F_A = MSA/MSE$; $df = df_A, df_E$
- \blacktriangleright H_{0B} is tested by $F_B = MSB/MSE$; $df = df_B, df_E$
- ► H_{0AB} is tested by $F_{AB} = MSAB/MSE$; $df = df_{AB}, df_{E}$

ANOVA Table

Source	df	SS	MS	F	
A	a-1	SSA	MSA	MSA/MSE	
В	b-1	SSB	MSB	MSB/MSE	
AB	(a-1)(b-1) S	SSAB	MSAB	MSAB/MSE	
Error	ab(n-1)	SSE	MSE	_	
Total	abn-1	SSTO	MST		

▶ P-values

- \triangleright P-values are calculated using the F(dfNumerator, dfDenominator) distributions
- ▶ If $P \le 0.05$ we conclude that the effect being tested is statistically significant

Bakery Example

- ► NKNW p 833
- ► Y is the number of cases of bread sold
- ► A is the height of the shelf display, a = 3 levels: bottom, middle, top
- ightharpoonup B is the width of the shelf display, b = 2: regular, wide
- n = 2 stores for each of the 3×2 treatment combinations

ANOVA in R

_	- (C:4)	
	anova(fit)	١

- ▶ Note that there are 6 cells in this design...(6-1)df for model
- ► The interaction between height and width is not statistically significant (F=1.16; df=2,6; P=0.37)
- ► Given this result, move to main effects
- ► The main effect of height is statistically significant (F=74.71; df=2,6; P<0.0001)
- ► The main effect of width is not statistically significant (F=1.16; df=1,6; P=0.32)

清华大学统计学研究中心

Analysis of Variance Table

Response: sales

Df Sum Sq Mean Sq F value Pr(>F)

height 2 1544 772.00 74.7097 5.754e-05 ***

width 1 12 12.00 1.1613 0.3226 height:width 2 24 12.00 1.1613 0.3747

Residuals 6 62 10.33

<u>Interpretation</u>

- ► The height of the display affects sales of bread
- ► The width of the display has no apparent effect
- The effect of the height of the display is similar for both the regular and the wide widths

Additional Analyses

- ► We will need to do additional analyses to explain the height effect (factor *A*)
- ▶ There were three levels: bottom, middle and top
- ► We could rerun the data with a one-way ANOVA and use the methods we learned in the previous chapters

Final Slide

- ▶ We went over Chapter 19
- ▶ We used program lec12_2.r to generate the output for today

