POSTECH

대회 목적

13개의 기상변수와 5개의 모델 예측 발전량을 통하여 Amount를 예측하는 것

데이터 셋

(과거 데이터) 2022.06.19~2023.10.15 (사전 대회 기간 데이터) 2023.10.22~2023.11.11

특이사항

10시에 적합한 조건과 17시에 적합한 조건을 설정

데이터의 상관성 분석

변수	- 간의 싱	항관관계	0.																
	C/0//2	tem-	ground midit	pres Wind	Spo Wij	חמ -	Δ.	snow dew	Poin	4	/V ,	in _{Urt} ele	vation 1	oder 1	nodel2 1	nodel n	oder h	0000 à1	noun
amount	-0.17	0.09	-0.31	0.03	0.05	0.22	-0.07	-0.06	-0.04	0.16	0.73	0.07	0.74	0.93	0.93	0.92	0.92	0.82	1.0
model5	-0.17	0.00		0.01	0.05		0.05	-0.02	-0.04	0.10	0.75	0.07	0.74	0.00	0.93	0.92	0.92	1.0	
model4	-0.18	0.07	-0.32	0.06	0.02	0.23	-0.09	-0.05	-0.06	0.16	0.77	0.07	0.77	0.98	0.98	0.98	1.0	0.83	0.92
model3	-0.15	0.11	-0.31	0.02	0.04	0.24	-0.08	-0.04	-0.03	0.15	0.77	0.07	0.77	0.98	0.98	1.0	0.98	0.84	0.92
model2	-0.18	0.08	-0.34	0.05	0.03	0.25	-0.09	-0.04	-0.06	0.17	0.79	0.07	0.78	0.99	1.0	0.98	0.98	0.85	0.93
model1	-0.17	0.08	-0.33	0.05	0.04	0.24	-0.09	-0.04	-0.06	0.17	0.78	0.07	0.78	1.0	0.99	0.98	0.98	0.86	0.93
elevation	0.04	0.29	-0.02	-0.24	0.02	0.16	0.04	-0.05	0.22	0.01	0.71	0.01	1.0	0.78	0.78	0.77	0.77	0.75	0.74
azimuth	-0.02	0.05	-0.08	0.0	0.07	0.19	-0.04	-0.01	0.01	0.06	-0.06	1.0	0.01	0.07	0.07	0.07	0.07	0.07	0.07
uv_idx	-0.1	0.21	-0.11	-0.14	-0.04	0.12	-0.03	-0.04	0.13	0.1	1.0	-0.06	0.71	0.78	0.79	0.77	0.77	0.67	0.73
vis	-0.21	-0.23	-0.41	0.34	0.0	0.07	-0.23	-0.01	-0.32	1.0	0.1	0.06	0.01	0.17	0.17	0.15	0.16	0.11	0.16
dew_point	0.16	0.95	0.71	-0.85	-0.29	-0.15	0.17	-0.19	1.0	-0.32	0.13	0.01	0.22	-0.06	-0.06	-0.03	-0.06	-0.04	-0.04
snow	0.09	-0.19	-0.02	0.05	0.26	0.09	-0.02	1.0	-0.19	-0.01	-0.04	-0.01	-0.05	-0.04	-0.04	-0.04	-0.05	-0.02	-0.06
rain	0.16	0.11	0.27	-0.21	0.13	-0.05	1.0	-0.02	0.17	-0.23	-0.03	-0.04	0.04	-0.09	-0.09	-0.08	-0.09	-0.05	-0.07
wind_dir	-0.07	-0.11	-0.12	0.02	0.3	1.0	-0.05	0.09	-0.15	0.07	0.12	0.19	0.16	0.24	0.25	0.24	0.23	0.21	0.22
wind_speed	0.14	-0.26	-0.13	0.1	1.0	0.3	0.13	0.26	-0.29	0.0	-0.04	0.07	0.02	0.04	0.03	0.04	0.02	0.09	0.05
ground_press	-0.21	-0.8	-0.69	1.0	0.1	0.02	-0.21	0.05	-0.85	0.34	-0.14	0.0	-0.24	0.05	0.05	0.02	0.06	0.01	0.03
humidity	0.28	0.51	1.0	-0.69	-0.13	-0.12	0.27	-0.02	0.71	-0.41	-0.11	-0.08	-0.02	-0.33	-0.34	-0.31	-0.32	-0.26	-0.31
temp	0.1	1.0	0.51	-0.8	-0.26	-0.11	0.11	-0.19	0.95	-0.23	0.21	0.05	0.29	0.08	0.08	0.11	0.07	0.08	0.09
cloud	1.0	0.1	0.28	-0.21	0.14	-0.07	0.16	0.09	0.16	-0.21	-0.1	-0.02	0.04	-0.17	-0.18	-0.15	-0.18	-0.07	-0.17

0.5

기상에 따라 최적 모델이 다르다?

Azimuth Model별 평균 에러

Temp Model별 평균 에러

Cloud Model별 평균 에러

Humidity Model별 평균 에러

Minimize Function의 사용?

앙상블의 목적?

모델들을 적절히 조합하여 최고의 결과를 내는 것

각 모델에 대한 가중치를 어떻게 설정하느냐

각각의 가중치는 0에서 1 사이이며, 가중치의 합은 1이다.(ex. 0.25 0.25 0.25 0.25)

가중치의 합이 1이어야 하는 이유 (Constraint)

모델들이 표현가능한 범위 내에서 예측을 하려고 했음(가중산술평균)

각각의 가중치가 0에서 1 사이여야 하는 이유 (Bound)

가중치의 절대값이 커지면 모델이 데이터에 과적합이 될 수 있음

scipy.optimize의 minimize

기상 지표

[과거와 현재의 차이?]

THAIR CUIT WART

제약조건의효과성은?

Limit 해제를 통한 보완

Model 1 Model 2 Model 3 Model 4 Model 5

Limit 해제를 통한 보완 해제 전 예측 가능 범위 해제 후 예측 가능 범위 **Amount** Model 1 Model 2 Model 3 Model 4 Model 5

Limit 해제를 통한 보완

11월 17일 Constraint에 따른 Incentive 획득량

(例从) 2023.09.20 incentive 出교

변수 중요도를 통하여 기상 변수 선별?

AutoGluon-Tabular(Auto ML)

Framework	Wins	Losses	Failures	Champion	Avg. Rank	Avg. Rescaled Loss	Avg. Time (min)
AutoGluon	-	-	1	23	1.8438	0.1385	201
H2O AutoML	4	26	8	2	3.1250	0.2447	220
TPOT	6	27	5	5	3.3750	0.2034	235
GCP-Tables	5	20	14	4	3.7500	0.3336	195
auto-sklearn	6	27	6	3	3.8125	0.3197	240
Auto-WEKA	4	28	6	1	5.0938	0.8001	244

Framework	Wins	Losses	Failures	Champion	Avg. Rank	Avg. Percentile	Avg. Time (min)
AutoGluon	-	-	0	7	1.7143	0.7041	202
GCP-Tables	3	7	1	3	2.2857	0.6281	222
H2O AutoML	1	7	3	0	3.4286	0.5129	227
TPOT	1	9	1	0	3.7143	0.4711	380
auto-sklearn	3	8	0	1	3.8571	0.4819	240
Auto-WEKA	0	10	1	0	6.0000	0.2056	221

	importance	stddev	p_value	n	p99_high	p99_low
uv_idx	6.755734	0.266948	2.919400e-07	5	7.305383	6.206084
elevation	6.018258	0.194062	1.295570e-07	5	6.417834	5.618681
azimuth	1.799953	0.101760	1.220661e-06	5	2.009478	1.590428
cloud	1.403375	0.167020	2.362671e-05	5	1.747272	1.059479
humidity	1.402972	0.109507	4.418044e-06	5	1.628448	1.177496
rain	0.967076	0.119125	2.707791e-05	5	1.212356	0.721796
temp	0.458720	0.064058	4.447133e-05	5	0.590616	0.326823
dew_point	0.298858	0.077916	5.075197e-04	5	0.459287	0.138428
vis	0.195553	0.042976	2.627641e-04	5	0.284040	-0.107065
wind_dir	0.112965	0.099038	3.163521e-02	5	0.316886	-0.090955
wind_speed	0.043546	0.070728	1.203198e-01	5	0.189175	-0.102084
ground_press	-0.009937	0.072647	3.874832e-01	5	0.159517	- 0.139643
snow	-0.000000	0.000000	5.000000e-01	5	0.000000	-0.000000

비슷한 날씨 조건에서의 비교?

구간을 나누지 않고 일괄 적용한 경우

9.137

8.792

최대 발전량을 기준으로 구간을 나눈 경우

전체 데이터에서 최소의 MAE를 만족하는 조합 찾기

rank_columns = ['uv_idx_rank', 'elevation_rank', 'azimuth_rank', 'cloud_rank', 'humidity_rank']

31개의 조합 중 최소의 MAE Error를 만족하는 조합

('100', "('uv_idx_rank', 'elevation_rank', 'cloud_rank', 'humidity_rank')")

구간을 나눈 데이터에서 최소의 MAE를 만족하는 조합 찾기(최대 발전량 부근)

rank_columns = ['uv_idx_rank', 'elevation_rank', 'azimuth_rank', 'cloud_rank', 'humidity_rank']

31개의 조합 중 최소의 MAE Error를 만족하는 조합 ('100', "('uv_idx_rank', 'cloud_rank', 'humidity_rank')")

구간을 나눈 데이터에서 최소의 MAE를 만족하는 조합 찾기(최소 발전량 부근)

rank_columns = ['uv_idx_rank', 'elevation_rank', 'azimuth_rank', 'cloud_rank', 'humidity_rank']

31개의 조합 중 최소의 MAE Error를 만족하는 조합 ('100', "('uv_idx_rank', 'cloud_rank') ")

시간대별 가중치와 결과값

1人	[0.2 0.2 0.2 0.2 0.2]	13人	[0.99 0. 0. 0. 0.]
2人	[0.2 0.2 0.2 0.2 0.2]	14人	[0.99 0. 0. 0.0 0.01]
3人	[0.2 0.2 0.2 0.2 0.2]	15人	[0.54 0.28 0.06 0.08 0.03]
4人	[0.2 0.2 0.2 0.2 0.2]	16月	[0.62 0.08 0. 0.3 0.]
5人	[0.2 0.2 0.2 0.2 0.2]	17人	[0.24 0.25 0.23 0.28 0.002]
6人	[0.2 0.2 0.2 0.2 0.2]	18月	[0.23 0.18 0.57 0. 0.02]
7人	[0.29 0. 0. 0.714 0.]	19月	[0.31 0.06 0.50 0.09 0.03]
8月	[0.26 0.25 0.27 0.22 0.001]	20月	[0.27 0.001 0.73 0.0001 0.]
9人	[0.26 0.16 0.38 0.20 0.]	21川	[0.2 0.2 0.2 0.2 0.2]
10人	[0.39 0.42 0.01 0.18 0.0003]	22月	[0.2 0.2 0.2 0.2 0.2]
11人	[0.29 0.15 0.22 0.34 0.0005]	23月	[0.2 0.2 0.2 0.2 0.2]
12月	[0.99 0. 0.0034 0. 0.]	24月	[0.2 0.2 0.2 0.2 0.2]

선형회귀, 랜덤포레스트를 사용한다면?

과거데이터 중 예측할 기상데이터와 가장 유사한 기상데이터를 추출하여 이에 최적화

급작스러운 기상변화에 민첩하고 정확하게 예측 가능 GPU자원이 필요하지 않고 적은 메모리로도 쉽게 연산이 가능

감사합니다.