УТВЕРЖДЕН		
A .		
	втоматизированная система нд автоматизации и интеллектуального ко	онтпола
	ручных операций"	on poin
Техническое задан	ие на создание автоматизированной сист	емы
	на листах	

ОГЛАВЛЕНИЕ

1.	Обі	цие сведения	4
	1.1.	Полное наименование АС	4
	1.2.	Заказчик работ	4
	1.3.	Основания для выполнения работ	4
	1.4.	Исполнитель работ	4
	1.5.	Сроки создания АС	5
	1.6.	Перечень используемых определений и сокращений	5
2.	Цел	ии и назначение создания автоматизированной системы	7
	2.1.	Цели создания АС	7
	2.2.	Назначение АС	7
3.	Xap	рактеристика объекта автоматизации	8
	3.1.	Объект автоматизации	8
	3.2.	Исходные данные	8
	3.3.	Особенности объекта автоматизации	8
4.	Тре	бования к автоматизированной системе	9
	4.1.	Требования к структуре АС в целом	9
	4.1	.1. Описание подсистем	9
	4.1	.2. Требования к способам и средствам обеспечения информационного	
	вза	имодействия компонентов АС	9
	4.2.	Требования к функциям (задачам), выполняемым АС	11
	4.3.	Требования к видам обеспечения АС	12
	4.3	.1. Состав информационного обеспечения АС	12
	4.3	.2. Организация информационного обеспечения АС	12
	4.4.	Общие технические требования к АС	13
	4.4	.1. Требования к численности и квалификации персонала и пользователей А	.C.13
	4.4	.2. Требования к проведению испытаний по оценке надежности	13
	4.4	.3. Требования к патентной чистоте и патентоспособности	15
	4.4	.4. Требования по стандартизации и унификации	15
5.	Co	став и содержание работ по созданию автоматизированной системы	16
	5.1.	Этап 1. Анализ предметной области и сценариев применения	16
	5.2.	Этап 2. Проектирование архитектуры фреймворка и хранилища моделей	16
	5.3.	Этап 3. Программная реализация и тестирование фреймворка, подготовка	
	комп	лекта научно-технической документации	16

6.	Требования к составу и содержанию работ по подготовке объекта автоматизации к	
ввод	ду автоматизированной системы в действие	.18
7.	Требования к документированию	.18
8.	Источники разработки	.19

1. Общие сведения

1.1. Полное наименование АС

Автоматизированная система "Испытательный стенд автоматизации и интеллектуального контроля ручных операций" (далее – AC).

1.2. Заказчик работ

Данные о Заказчике работ представлены в таблице 1.

Таблица 1 – Данные о Заказчике работ

№ п/п	Полное наименование организации	Адрес фактического местонахождения	

1.3. Основания для выполнения работ

Основания для выполнения работ представлены в таблице 2.

Таблица 2 – Основания для выполнения работ

№ п/п	Наименование и реквизиты нормативного правового акта (дата, номер)	Статья, пункт, подпункт
1	Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»	-
2	Государственная программа	-
3	Приказ Министерства образования и науки Российской Федерации от	-
6	Государственный контракт от г.	-

1.4. Исполнитель работ

Исполнитель работ (полное наименование): НИУ ВШЭ (далее – Исполнитель).

Данные об Исполнителе работ представлены в таблице 3.

Таблица 3 – Данные об Исполнителе работ

№	Полное наименование	Адрес фактического местонахождения
п/п	организации	
	Национальный	109028, г. Москва, Покровский бульвар, д. 11

исследовательский	
университет «Высшая	
школа экономики»	

1.5. Сроки создания АС

Начало выполнения работ – $01.01.2022 \ \Gamma$.

Сроки окончания работ – $30.06.2024 \ \Gamma$.

1.6. Перечень используемых определений и сокращений

Перечни используемых определений и сокращений представлены в таблицах 4 и 5.

Таблица 4 – Перечень определений

Термин	Определение
Фреймворк	Программная платформа, включающая в себя набор библиотек,
	позволяющая ускорить процесс разработки программного
	обеспечения.
Машинное	Направление в сфере искусственного интеллекта, нацеленное на
зрение	обработку фото и видео данных для решения разного рода
	прикладных задач без участия (полного или частичного) человека.
Accuracy	Метрика качества для задач классификации, которая описывает
	общую точность предсказания модели по всем классам.
Precision	Метрика качества для задач классификации, которая определяется
	как отношение количества истинно отнесенных классификатором
	объектов к заданному классу к общему числу объектов, отнесенных к
	заданному классу.
Recall	Метрика качества для задач классификации, которая определяет долю
	найденных объектов заданного класса из всех объектов заданного
	класса.
F -мера	Метрика качества для задач классификации, которая определяется
	как среднее гармоническое между значениями precision и recall
Intersection over	Метрика качества для задач сегментации, которая определяется как
Union (IoU)	отношение площади пересечения двух областей к их общей площади

Таблица 5 – Перечень сокращений

Термин	Определение
БД	База данных.
API	Программный интерфейс Системы
ЧТ3	Частное техническое задание.

2. Цели и назначение создания автоматизированной системы

2.1. Цели создания АС

В результате создания АС требуется получить стенд, поддерживающий 2 режима работы:

- 1. Основной режим работы: обеспечивает в реальном времени контроль сборки изделий, выдаёт подсказки оператору.
- 2. Режим испытаний: проводит запись видео роликов рабочей зоны для последующей разметки и оценки эффективности используемой модели распознавания ручных операций и системы в целом;

Ключевой функционал стенда в основном режиме работы включает:

- 1. Контроль действий оператора-сборщика с помощью систем интеллектуального видеонаблюдения;
- 2. Распознавание некорректных (не соответствующих белому списку) операций в процессе сборки деталей и конструкций;
- 3. Распознавание фактов несоблюдения техники безопасности во время работы на производстве;
- 4. Предоставление отчетности (статистики) о процессе сборки изделия оператору-сборщику и руководителю производства.

2.2. Назначение АС

AC предназначена для проведения исследований и проверки методов интеллектуального контроля ручных операций сборочного производства.

Исследовательский стенд позволяет обеспечивать контроль правильности выполнения конечного набора регламентированных операций, выявлять типовые ошибки, допускаемые в ходе выполнения операций: нарушение последовательности действий, ошибки выбора компонентов изделия, неверный выбор инструментов (необходимых для сбора-разбора изделия), нарушение правил техники безопасности, другие ошибочные действия и тому подобное.

3. Характеристика объекта автоматизации

3.1. Объект автоматизации

Объектом автоматизации является непосредственно процесс сборки изделий, контролируемый AC и выполняемый оператором-сборщиком.

3.2. Исходные данные

Для корректной работы АС необходимы следующие исходные данные:

- <u>Установленный стенд</u>. В рамках работ планируется разработка аппаратной составляющей стенда с установкой дополнительного оборудования.
- <u>Модель искусственного интеллекта</u>. Заранее подготовленная для данного процесса сборки модель (1 или более) искусственного интеллекта;
- <u>Комплект деталей</u> для сборки заданного количества конечных изделий (объектов сборки);
 - Описание последовательности действий сборщика на рабочем месте.
 - И другие необходимые компоненты

3.3. Особенности объекта автоматизации

Рекомендации по особенностям объекта автоматизации, которые необходимо учитывать при разработке системы:

- <u>Условия освещенности</u>. Необходимо учесть яркость освещения, т.к. уменьшение яркости приводит к ухудшению качества детектирования деталей;
- <u>Наличие и отсутствие вибраций</u>. Вибрации негативно влияют на качество изображения, получаемых с камер высокого разрешения, что приводит к нечеткому и размытому входному видеопотоку;
- <u>Расположение камер относительно рабочей области и угол наклона камер</u>. При формировании набора камер и области обзора необходимо учесть видимость объекта с данных камер;
- <u>Расположения проектора</u> для вывода графической информации в рабочей области оператора сборщика должно иметь область, в которую не попадают тени от остального оборудования;
- <u>Вычислительная мощность компьютерной аппаратной платформы.</u> Мощности аппаратной платформы должны быть выбраны достаточными для обработки потоков данных используемых на автоматизированном стенде.

4. Требования к автоматизированной системе

4.1. Требования к структуре АС в целом

4.1.1. Описание подсистем

В составе Системы можно выделить следующие функциональные подсистемы, но не ограничиваясь ими:

- подсистема сбора и предварительной обработки данных предназначена для реализации процессов сбора данных (фотографий деталей) и приведения указанных данных к виду, необходимому для наполнения подсистемы хранения данных (датасетов для обучения моделей)
- подсистема хранения данных предназначена для хранения данных в структурах, предназначенных для обучения и использования моделей компьютерного зрения
- подсистема отрисовки вспомогательных элементов предназначена для отображения таких визуальных элементов как границы рабочей области, ограничительные рамки основной области сборки, а также областей хранения деталей в рабочей области для поддержки оператора
- подсистема обработки входного потока данных предназначена для анализа действий оператора-сборщика в рабочей области с целью выявления ошибок сборки, а также предоставления соответствующих подсказок/сопроводительной информации для поддержки нормального (удовлетворяющего всем правилам техники безопасности и любым другим техническим требованиям на производстве) процесса сборки;
 - аппаратная компьютерная платформа;
 - рабочее поле (сборки) и станина;
 - видеокамеры и датчики;
 - и другие необходимые подсистемы.

4.1.2. Требования к способам и средствам обеспечения информационного взаимодействия компонентов АС

На диаграмме (рисунок 1), представленной ниже, отображены связи между возможными элементами системы:

Рисунок 1 – Связи между элементами системы

Логика работы и ключевой функционал системы должна быть реализована в виде программного обеспечения, работающего на компьютерной аппаратной платформе. Входные данные, как показано на рисунках 1 и 2, поступают от видео камер или других устройств.

Также на вход программной части системы поступают данные из конфигурационных файлов, данные файлов с моделями ИИ.

Выход комплекса программных подсистем может содержать следующие данные:

- видео данные с изображением зоны сборки;
- данные с визуальной разметкой и подсказками для сборщика, выводимые на проектор, для визуализации процесса на рабочей зоне;
- записанное видео для последующей обработки, разметки и оценки эффективности работы стенда и оператора;
 - текущие данные о работе стенда (опционально);
- итоговые данные о работе стенда с временными метками наступления событий различного рода.

Рисунок 2 – Схема функциональной структуры взаимодействия подсистем, входной и выходной информации

4.2. Требования к функциям (задачам), выполняемым АС

Для каждой подсистемы должен быть определен перечень выполняемых ею функций и задач:

- Программная подсистема сбора, обработки и сохранения данных (выполнение процессов сбора, обработки и загрузки данных; протоколирует результаты сбора, обработки и загрузки данных);
- Программная подсистема хранения данных (Запись, хранения и модификация данных);
- Программная подсистема отрисовки вспомогательных элементов (хранение информации обо всех вспомогательных визуальных элементах; анализ и расчет характеристик каждого сопроводительного элемента; визуализация сопроводительных элементов поддержки);
- Программная подсистема обработки входного потока данных (обработка данных с камер; обработка данных с внешних устройств;);

- Аппаратная компьютерная платформа (запуск и работа всех программных подсистем; аппаратное сопряжение с сетевой инфраструктурой (при необходимости); подключение другого оборудования стенда);
 - Рабочее поле стола и станина;
 - Видеокамеры и датчики;
 - Информационное оборудование и осветительные приборы;
 - Прочие необходимые подсистемы.

4.3. Требования к видам обеспечения АС

4.3.1. Состав информационного обеспечения АС

Внутримашинное информационное обеспечение (программное обеспечение) включает нейросеть YOLOv5 или иную подходящую модель для детектирования объектов в кадре, MediaPipe Hands, модель от Google по детектированию рук, Pytorch, OpenCV, Numpy.

4.3.2. Организация информационного обеспечения АС

Решение может представлять собой многопоточное монолитное приложение, включающие в себя подключаемые модули различных сценариев распознавания и контроля ручных операций и соблюдения техники безопасности во время сборочного процесса.

В данном приложении фронтенд – графическая часть, функции которой ограничиваются выбором сценария при старте работы и отображением обработанных кадров с камер. Бекенд – часть, отвечающая за логику приложения, за выполнение строго отведённых функций, скрытых от пользователя. Для связи данных сущностей должен быть контроллер, что передаёт с камер кадры и передаёт их логической части на обработку. Однако, в случае данного приложения важно помнить, что логика сильно связана с моделью для нейросети. Для унификации работы с разными моделями необходима одна общая логическая часть, унифицированные модели и конфигурационные файлы.

Для данного приложения возможен выбор модели MVP, так как она фокусируется на отделении уровня представления от бизнес-логики в приложении.

Структура должна отражать части приложения и их роль в соответствии с выбранной архитектурой.

4.4. Общие технические требования к АС

4.4.1. Требования к численности и квалификации персонала и пользователей **AC**

Персонал и пользователи AC могут иметь различные квалификации в зависимости от требуемых задач по эксплуатации AC, такие как:

- 1. Оператор-сборщик изделия или механизма.
- 2. Программист на языке Python уровня Middle или выше.

4.4.2. Требования к проведению испытаний по оценке надежности

В разделе приведены организационно-технические требования, требования к выборкам (наборам данных) и методика для проведения испытаний и исследований с помощью стенда по оценки эффективности моделей распознавания деталей. В качестве примера приведены требования к данным по испытаниям для одной из выборок и набора деталей. Необходимо подчеркнуть, что с целью демонстрации специально выбрана не лучшая модель, позволяющая проиллюстрировать и преимущества, и недостатки.

4.4.2.1.Перечень требований при проведении испытаний по оценке эффективности модели по распознаванию деталей

Перечень требований при проведении испытаний по оценке эффективности модели по распознаванию деталей включает:

- 1. минимальный размер объекта для детектирования: 10 × 10 × 3 мм;
- 2. максимальное число одновременно обрабатываемых объектов в зоне сборки: 20 штук;
 - 3. рекомендуемый размер контролируемой области не более: 2000 × 1000 мм;
 - 4. область контроля фиксирована, рабочий стол зафиксирован и статичен;
 - 5. время детектирование: не более 300 мс;
- 6. система должна учитывать, что объекты могут быть схожими по форме, но разными по цвету, т.к. классифицироваться как различные объекты;
- 7. система должна учитывать, что из-за работы с объектами на разном расстоянии от камеры, имеет место большая дисперсия масштабов объектов;
- 8. движения оператора должны могут быть быстрыми, но плавными, не дергаными; Т.е. при FPS камеры стенда = 10 кадров/секунду, на перемещение детали должно уйти не менее 0,3 секунды (при более высоком FPS, соответственно, этот параметр может быть ниже).

- 9. система должна учитывать, что из-за работы с объектами на разном расстоянии от камеры, имеет место большая дисперсия масштабов объектов;
- 10. хорошая освещенность рабочей поверхности, не менее 500лк. При более тусклом освещении допускается использование дополнительных осветительных приборов;
 - 11. отсутствие колебаний рабочего стола;
- 12. отсутствие в зоне сборки посторонних затенений от посторонних предметов и лиц.

4.4.2.2. Разметка данных

Для разметки данных возможно использование формата .txt. Для каждого .jpg-изображения записывался файл с таким же именем, но расширением .txt, в котором содержатся строки с информацией о классе и bounding box для каждого объекта: "object-class x y width height", где object-class — категория объекта (int, диапазон от 0 до количество_классов - 1), x, y, width, height — значения типа float, выражающие центры прямоугольников и относительные ширину и высоту (диапазон: (0.0, 1.0]), а именно:

- $x = absolute_x / image_width$,
- $y = absolute_y / image_height$,
- width = absolute_width / image_width,
- height = absolute_height / image_height.

4.4.2.3. Методика испытаний

В состав АС входят модули, позволяющие автоматически маркировать изображения с одним объектом и расширять выборку за счет добавления таких аугментаций, как повороты, инверсии, масштабирование и гауссовский шум, а также варьирования фона при помощи наложения "шумных" объектов, не входящих в целевую выборку. Разработанная система должна предоставляет возможность сохранять исходные фотографии с найденными на них деталями на этапе искусственной сегментации.

Для оценки моделей могут быть использованы стандартные метрики. Среди них:

- матрица ошибок (confusion matrix),
- F1 мера (F1 curve),
- precision-confidence-кривая (РС-кривая),
- precision-recall-кривая (PR-кривая),
- recall-confidence-кривая (RC-кривая).

F1 кривая является гармоническим средним от точности и полноты. Precision (точность) — это способность детектора находить только нужные объекты (измеряет насколько точно детектор определяет положение объектов). Recall (полнота) — это

способность детектора находить все нужные объекты (измеряет, как много из всех ground truth объектов детектор обнаружил).

4.4.2.4. Рекомендации по созданию наборов данных и используемые метрики для оценки качества модели

Для успешного обучения и использования нейросетей тренировочный набор данных должен быть достаточно большим. Должны соблюдаться следующие рекомендации для наборов данных при работе с моделью:

- рекомендованное количество изображений на класс 1000–1500 или более;
- фотографии должны быть разнообразны, стоит использовать изображения,
 сделанные в разное время дня, локациях и с разных ракурсов и камер, при различном освещении;
- все изображения должны быть маркированы полностью, ни один объект обозначенных классов не может быть пропущен;
- ограничивающие рамки (bounding boxes) должны плотно прилегать к объектам;
- рекомендуется использовать 0-10% фоновых изображений в обучающей выборке, чтобы сократить FPs (метрика "False Positives"), лэйблы для таких изображений не требуются.

4.4.3. Требования к патентной чистоте и патентоспособности

Патентные исследования должны быть выполнены по Российским и иностранным реестрам в интервале с 2015 – 2021 год.

4.4.4. Требования по стандартизации и унификации

Отчет о научно-исследовательской работе должен отвечать требованиям ГОСТ 7.32-2017. Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления.

5. Состав и содержание работ по созданию автоматизированной системы

5.1. Этап 1. Анализ предметной области и сценариев применения

В рамках данного этапа предполагается решение следующих задач:

- выполнение аналитического обзора технологических обзоров (отчетов) по направлениям работы Системы за период 2015 – 2021 гг.;
- выполнение аналитического обзора отечественных и зарубежных научных публикаций по тематике проекта за период 2015 – 2021 гг.;
- анализ источников данных, условий их использования, оценка качества доступных данных.
- анализ трудовых функций персонала при производстве конкретных операций на промышленных предприятиях (сборочных производствах, конвейерных линиях и т.п.), их формализация для последующей реализации механизмов контроля и оценки качества работы с использованием Системы.
 - разработка требований к демонстрационному стенду
 - подготовка научных публикаций.

5.2. Этап 2. Проектирование архитектуры фреймворка и хранилища моделей.

Данный этап нацелен на решение следующих научно-технических задач:

- разработка функциональной структуры Системы;
- формирование наборов данных для обучения, тестирования и контроля качества Системы;
 - представление результатов НИР на научной конференции;
 - подготовка публикаций по итогам работы.

5.3. Этап 3. Программная реализация и тестирование фреймворка, подготовка комплекта научно-технической документации.

На заключительном этапе выполняются следующие работы:

- программная разработка (реализация) Системы;
- тестирование Системы согласно программе и методике испытаний;
- формирование протокола испытаний Системы;
- разработка комплекта программной и эксплуатационной документации на Систему;
 - подготовить предложения по возможным РИД;

- представление результатов НИР на научной и/или технологической конференции;
 - подготовка публикаций по итогам работы.

6. Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу автоматизированной системы в действие

Подготовка стенда к эксплуатации состоит из пяти обязательных этапов

- Сбор данных и фото-видео съемка моделей и объектов, предназначенных для контроля сборки;
 - Разметка данных и дообучение нейросетевых моделей;
 - Винтовая сборка стенда и установка камер на станине;
 - Загрузка данных и конфигураций в программного обеспечение;
 - Калибровка оборудования и тестирование сценариев работы.

7. Требования к документированию

Все проведенные работы должны быть задокументированы и оформлены в соответствие с комплектностью ГОСТ 34 (основные документы) и представлены в следующем составе:

- Общее описание системы;
- Описание автоматизируемых функций;
- Схема функциональной структуры;
- Описание технологического процесса обработки данных;
- Описание комплекса технических средств;
- Описание информационного обеспечения системы;
- Программа и методика испытаний;
- Схема соединения внешних проводок;
- Список использованных источников.

8. Источники разработки

- 1. Мотив. Нейроморфные технологии // URL: https://motivnt.ru/интеллектуальнаятехнология-контрол/ (дата обращения: 27.04.2023).
- 2. URL: https://drugoigorod.ru/ocode-ar/ (дата обращения: 27.04.2023).
- 3. Автоматизация ручных операций // Ostec URL: https://ostec-smart.ru/catalog/avtomatizatsiya-ruchnykh-operatsiy/#:~:text=Умное%20рабочее%20место%20— %20уникальное%20решение,организации%20прослеживаемости%20на%20производствах %20радиоэлектроники. (дата обращения: 27.04.2023).
- 4. Tremblay J. et al. Training deep networks with synthetic data: Bridging the reality gap by domain randomization //Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018. P. 969-977.
- 5. Prakash A. et al. Structured domain randomization: Bridging the reality gap by context-aware synthetic data //2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. P. 7249-7255.
- 6. Block L. et al. Image-Bot: Generating Synthetic Object Detection Datasets for Small and Medium-Sized Manufacturing Companies //Procedia CIRP. 2022. V. 107. P. 434-439.
- 7. Ishida Y., Tamukoh H. Semi-automatic dataset generation for object detection and recognition and its evaluation on domestic service robots //Journal of Robotics and Mechatronics. 2020. V. 32. №. 1. P. 245-253.
- 8. Zhang F. et al. Mediapipe hands: On-device real-time hand tracking //arXiv preprint arXiv:2006.10214. 2020.