

Chapter 9: Virtual Memory

- Background
- Demand Paging
- Process Creation
- Page Replacement
- Allocation of Frames
- Thrashing
- Demand Segmentation
- Operating System Examples

Operating System Concepts

9.5

Background

- Virtual memory separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Logical address space can therefore be much larger than physical address space.
 - Allows address spaces to be shared by several processes.
 - Allows for more efficient process creation.
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Operating System Concepts

9.3

Silberschatz, Galvin and Gagne ©2005

What happens if there is no free frame?

- Page replacement find some page in memory, but not really in use, swap it out
 - algorithm
 - performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Operating System Concepts

0.11

Thrashing

- If a process does not have "enough" pages, the page-fault rate is very high. This leads to:
 - low CPU utilization
 - operating system thinks that it needs to increase the degree of multiprogramming
 - another process added to the system
- Thrashing = a process is busy swapping pages in and out

and Garne @2005

Operating System Concepts

9.40

Thrashing (Cont.)

Uggerating System Concepts

Thrashing (Cont.)

Operating System Concepts

Silberschatz, Galvin and Gagne ©2005

