Programmazione dinamica (V parte)

Progettazione di Algoritmi a.a. 2023-24

Matricole congrue a 1

Docente: Annalisa De Bonis

Implementazione efficiente di Bellman-Ford Alcune osservazioni sull'algoritmo

- Risparmio in termini di spazio: puo` essere ottenuto osservandoche non e` necessario portarsi dietro tutta la matrice M perche' nell'algoritmo di fatto ogni volta che si riempe una nuova riga di M si fa uso solo dei valori della riga precedente
 - per riempire la riga i si usano solo i valori presenti della
 - quindi perche' portarsi dietro anche le altre righe?

•Un primo immediato miglioramento lo si ottiene andando a modificare la prima versione dell'algoritmo in modo che

- usi un array unidimensionale M
 ad ogni iterazione del for piu` esterno vada ad aggiornare ciascun valore M[v] allo stesso modo in cui prima computava i valori M[i,v].
 - Per far questo invece di utilizzare i valori M[i-1,v] utilizzera` i valori M[v] computati all'iterazione precedente che saranno stati salvati in un array di

Con questa modifica usiamo 2 array unidimensionali per computare le lunghezze dei percorsi e un array 5 per tenere traccia dei successori-> spazio O(n)

Algoritmo di Bellman-Ford : I miglioramento

MA: array di appoggio

```
Improved-Shortest-Path 1(G, t) {
    foreach node v ∈ V
       M[v] \leftarrow \infty
        MA[v] \leftarrow \infty
        \texttt{S[v]} \leftarrow \emptyset \text{ // }\emptyset \text{ indica che non ci sono percorsi}
                        //da v a t di al piu` 0 archi
   M[t] \leftarrow 0
   MA[t] \leftarrow 0
    S[t] \leftarrow t
                 //t indica che non ci sono successori
                           //lungo il percorso ottimo da t a t
    for i = 1 to n-1
        foreach node v \in V
            foreach edge (v, w) \in E
                if MA[w] + c_{vw} < M[v]
                     M[v] \leftarrow MA[w] + c_{vw}
                     S[v] \leftarrow w //serve per ricostruire i
                                    //percorsi minimi verso t
        foreach node v ∈ V
            MA[v]=M[v] //salvo M[v] nell'array di appoggio
                              Progettazione di Algoritmi A.A. 2023-24
A. De Bonis
```

73

Implementazione efficiente di Bellman-Ford Alcune osservazioni sull'algoritmo

- Un ulteriore miglioramento basato sulla seguente osservazione:
- Se in una certa iterazione i del for esterno il valore di MA[w] è lo stesso dell'iterazione precedente (M[w] non è stato aggiornato nel corso dell'iterazione i-1) allora i valori $MA[w] + c_{vw}$ computati nell'iterazione i sono esattamente gli stessi computati nell'iterazione i-1.
- Questa osservazione dà l'idea per un secondo miglioramento dell'algoritmo: quando in una certa iterazione i del for esterno, l'algoritmo calcola M[v] va a considerare solo quei nodi w per cui esiste l'arco (v,w) e tali che M[w] e` stato modificato durante l'iterazione i-1.
- •L'algoritmo nella slide successiva realizza questa idea in questo modo: scandisce ciascun nodo w del grafo e controlla se il valore di M[w] è cambiato nell'iterazione precedente e solo in questo caso esamina gli archi (v,w) entranti in v e per ciascuno di questi archi computa $MA[w] + c_{vw}$
 - Cio` equivale a scandire tutti i nodi v e a controllare per ogni arco (v,w) uscente da v se M[w] e` cambiato nell'iterazione precedente prima di calcolare MA[w] + c_{vw}

Progettazione di Algoritmi A.A. 2023-24

Algoritmo di Bellman-Ford : II miglioramento

MA: array di appoggio

```
Improved-Shortest-Path_2(G, t) {
    foreach node v ∈ V
       M[v] \leftarrow \infty
        MA[v] \leftarrow \infty
        S[v] \leftarrow \emptyset // \emptyset indica che non ci sono percorsi
                       //da v a t di al piu` 0 archi
   M[t] \leftarrow 0
   MA[t] \leftarrow 0
   S[t] \leftarrow t
                 //t indica che non ci sono successori
                          //lungo il percorso ottimo da t a t
   for i = 1 to n-1
      foreach node w ∈ V
          if M[w] has been updated in iteration i-1
           foreach edge (v, w) \in E
                 if MA[w] + c_{vw} < M[v]
                     M[v] \leftarrow MA[w] + c_{vw}
                     S[v] \leftarrow w //serve per ricostruire i
                                  //percorsi minimi verso t
     foreach node v \in V
       MA[v]=M[v]//salvo M[v]nell'array di appoggio
Progettazione di Algoritmi A.A. 2023-24
A. De Bonis
```

75

Implementazione efficiente di Bellman-Ford Alcune osservazioni sull'algoritmo

- Torniamo per un momento al fatto che un miglioramento dell'algoritmo consiste nell'usare un array unidimensionale M.
- Abbiamo detto che per far ciò l'algoritmo può usare un array di appoggio che memorizza i valori di M computati dall'iterazione precedente del for esterno.
- Domanda: cosa accade se non utilizziamo un array di appoggio?
- · Consideriamo l'iterazione i del for esterno.
- Se non utilizziamo un array di appoggio, quando calcoliamo $M[w] + c_{vw}$, siamo costretti ad usare i valori M[w] presenti in M.
 - •Quando calcoliamo $M[w] + c_{vw}$, il valore M[w] potrebbe essere uguale al valore computato nell'iterazione i-1 o potrebbe gia` essere stato aggiornato nell'iterazione i (anche piu` di una volta).
 - •Nel caso M[w] sia stato già modificato nell'iterazione i allora M[w] conterrà la lunghezza di un percorso piu` corto rispetto al valore di M[w] computato nell'iterazione precedente.
 - Di conseguenza M[v] potrebbe essere aggiornato con un valore piu` piccolo di quello che si sarebbe ottenuto utilizzando il valore di M[w] computato nell'iterazione precedente.

Progettazione di Algoritmi A.A. 2023-24 A. De Bonis

Implementazione efficiente di Bellman-Ford Alcune osservazioni sull'algoritmo

- Consequenze dell'osservazione nella slide precedente:
 - Dopo ogni iterazione i, M[v] potrebbe contenere la lunghezza di un percorso per andare da v a t formato da piu` di i archi.
 - La lunghezza di M[v] e` sicuramente non piu` grande della lunghezza del percorso piu` corto per andare da v a t formato da al massimo i archi.

Progettazione di Algoritmi A.A. 2023-24 A. De Bonis

77

77

Implementazione efficiente di Bellman-Ford Alcune osservazioni sull'algoritmo

- Conseguenze dell'osservazione nella slide precedente:
 - · Esempio, Consideriamo il grafo qui di fianco.
 - supponiamo di esaminare i nodi w in questo ordine t,a,b,c
 - Iterazione i=1:.
 - Quando esaminiamo w=t, poniamo M[a]=4 e M[b]=2.
 - Quando si esamina w=a si ha M[a]=4 e di conseguenza M[b] diventa 1 (lunghezza del percorso b,a,t).
 - Quando poi esaminiamo b, M[c] da ∞ che era, diventa 7 (lunghezza di c,b,a,t).
 - Nell'implementazione con array di appoggio, alla fine della prima iterazione avremmo avuto M[b]=2 e M[c] = ∞

Progettazione di Algoritmi A.A. 2023-24

78

Implementazione efficiente di Bellman-Ford

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v ∈ V {
                                                                   Le osservazioni viste
       M[v] \leftarrow \infty
                                                                   nelle slide precedenti
                      //nel libro si chiama first[v]
       S[v] \leftarrow \phi
                                                                   ci portano a questa
                                                                   versione
                                                                   dell'algoritmo
   M[t] = 0 , S[t]=t
for i = 1 to n-1 {
       foreach node w ∈ V {
       if (M[w] has been updated in previous iteration) {
           foreach node v such that (v, w) ∈ E {
               if (M[v] > M[w] + c_{vw}) {
                  M[v] \leftarrow M[w] + c_{vw}
                  S[v] \leftarrow w
       if no M[v] value changed in this iteration i
          return M[s]
   return M[s]
```

NB: in una certa iterazione del for esterno quando si calcola una distanza M[w]+c_{vw} potrebbe accadere che M[w] sia stata aggiornata gia` in quella stessa iterazione.

Progettazione di Algoritmi A.A. 2023-24

79

Miglioramento dell'algoritmo

Teorema. Durante l'algoritmo Push-Based-Shortest-Path, M[v] e` la lunghezza di un certo percorso da v a t, e dopo i round di aggiornamenti (dopo i iterazioni del for esterno) il valore di M[v] non è più grande della lunghezza del percorso minimo da v a t che usa al piu` i archi

- Non usare un array di appoggio in pratica accelera i tempi per ottenere i percorsi piu` corti fino a t formati da al piu` n-1 archi (che sono quelli che ci interessa ottenere).
- Nulla cambia per quanto riguarda l'analisi asintotica dell'algoritmo
- Consequenze sullo spazio usato da Push-Based-Shortest-Path
- Memoria: O(n).
- . Tempo:
- il tempo e` sempre O(nm) nel caso pessimo pero` in pratica l'algoritmo si comporta meglio.
 - Possiamo interrompere le iterazioni non appena accade che durante una certa iterazione i nessun valore M[v] cambia

Progettazione di Algoritmi A.A. 2023-24 A. De Bonis

Mig	liorame	ento de	:ll'algor	ritmo:	un ese	mpio		
•		t	_ a	b	С	<u></u> d_	е	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	М	0	∞	∞	∞	∞	∞ ×	inizializ-
	S	t	ф	ф	ф	ф	ф	zazione
	M	0	-3	œ	3	4	2	i=1
	$\stackrel{t}{\triangleright}$ s	t	t	ф	t	t	t	w=t
	M	0	-3	œ	3	3	2] i=1
	S	t	t	ф	t	а	t	w=a
per ogni nodo w esaminato nel secondo foreach le celle verdi sono quelle che cambiano valore	М	0	-3	œ	3	3	2] i=1
	S	t	t	ф	t	а	t	w=b
	M	0	-3	œ	3	3	0] i=1
le celle arancioni sono quelle il cui valore non e` cambiato nell'i-esima iterazione	S	t	t	ф	t	а	С	w=c
	М	0	-3	2	3	3	0] i=1
	S	t	t	d	t	а	С	w=d
Progettazione di Algoritmi A.A. 2023-24 A. De Bonis	М	0	-3	-2	3	3	0	i=1
	S	t	t	e	t	а	С	w=e

Moltiplicazione di una catena di matrici

- Input: una sequenza di n matrici $A_1, A_2, A_3, \ldots, A_n$, compatibili due a due rispetto al prodotto
 - Due matrici A e B sono compatibili rispetto al prodotto se il numero di colonne di A è uguale al numero di righe di B
- Obiettivo: vogliamo calcolare il prodotto delle n matrici in modo da minimizzare il numero di moltiplicazioni.
 - Data una matrice mxn A e una matrice nxp B la matrice AxB è una matrice mxp e per calcolare ciascuna delle mp entrate di AxB abbiamo bisogno di moltiplicare una riga di A per una colonna di B → n moltiplicazioni scalari per ciascuna entrata di AxB→ mnp moltiplicazioni scalari.
 - La moltiplicazione tra matrici è associativa per cui possiamo scegliere l'ordine in cui moltiplichiamo le matrici parentesizzando opportunamente la catena di matrici

85

Moltiplicazione di una catena di matrici

Consideriamo le tre matrici

• A: 100×1 vettore colonna • B: 1×100 vettore riga

• $C: 100 \times 1$ vettore colonna

• Numero di moltiplicazioni per diverse parentesizzazioni:

• $((A \cdot B) \cdot C) \rightarrow (100 \times 1 \times 100) + (100 \times 100 \times 1) = 20000$

- prima $100 \times 1 \times 100$ moltiplicazioni per $A \cdot B$ e poi $100 \times 100 \times 1$ moltiplicazioni per $(A \cdot B) \cdot C$
- $(A \cdot (B \cdot C)) \rightarrow (1 \times 100 \times 1) + (100 \times 1 \times 1) = 200$
 - prima $1 \times 100 \times 1$ moltiplicazioni per $B \cdot C$ e poi $100 \times 1 \times 1$ moltiplicazioni per $A \cdot (B \cdot C)$

Moltiplicazione di una catena di matrici

- Per ikj, una parentesizzazione P(i,...,j) del prodotto $A_i \cdot A_{i+1} \cdot \cdot \cdot A_j$ consiste nel prodotto di due parentesizzazioni $(P(i,...,k) \cdot P(k+1,...,j))$
 - P(i,...,k) e P(k+1,...j) sono le due parentesizzazioni a livello piu` esterno
- Sia A(i ... j)= $A_i \cdot A_{i+1} \cdot \cdot \cdot A_j$ una sottosequenza della catena di moltiplicazioni $A_1 \cdot A_2 \cdot A_3, ... \cdot A_n$.
- Supponiamo che P(i ... j) sia una parentesizzazione ottima di A(i ... j) e siano P(i ... k) e P(k+1 ... j) le parentesizzazioni a livello piu` esterno in P(i ... j).
- Sottostruttura ottimale: se P(i . . . j) è una parentesizzazione ottima di A(i . . . j) allora le due parentesizzazioni P(i . . . k) e P(k + 1 . . . j) sono ottime per le sottosequenze A(i . . . k) e A(k + 1 . . . j) rispettivamente.

87

Moltiplicazione di una catena di matrici

OPT(i,j): minimo numero di moltiplicazioni scalari per calcolare il prodotto $\textsc{A}(i\dots j)$

Caso i = j. In questo caso (base) OPT(i,j)=0

Caso i < j.

- Supponiamo di sapere che la parentesizzazione ottima per A(i,...,j) sia formata a livello piu` esterno dal prodotto delle parentesizzazioni di A(1,..,k) e A(k+1,...,n). Per la sottostruttura ottimale si ha: $OPT(i,j) = OPT(i,k) + OPT(k+1,j) + c_{i-1} \cdot c_k \cdot c_j$
 - c_{i-1} = numero di righe della matrice A_i
 - c_i = numero di colonne della matrice A_i
 - la matrice $(A_i \cdot \ldots \cdot A_k)$ ha dimensioni $c_{i-1} \times c_k$
 - la matrice $(\textbf{A}_{k+1}\cdot\ldots\cdot\textbf{A}_{j})$ ha dimensioni $c_{k}\times c_{j}$
 - \rightarrow costo per moltiplicare la matrice $(A_i \cdot \ldots \cdot A_k)$ con $(A_{k+1} \cdot \ldots \cdot A_j)$ è $c_{i-1} \cdot c_k \cdot c_j$
- Siccome non conosciamo il valore di k nella soluzione ottima, computiamo il valore OPT(i,k) + OPT(k + 1,j) + c_{i-1} · c_k · c_j per ogni k tra i e j-1 e scegliamo il piu` piccolo di questi valori.

Moltiplicazione di una catena di matrici

Dai due casi precedenti si ha la seguente formula di ricorrenza:

```
\begin{split} & OPT(i,j) \!\!=\!\! 0 \text{ se } i \!\!=\!\! j \\ & OPT(i,j) \!\!=\!\! \min_{i \leq k < j} \left\{ OPT(i,k) + OPT(k+1,j) + c_{i-1} \cdot c_k \cdot c_j \right\} \\ & \qquad \qquad \text{se } i < j \end{split}
```

89

Esercizio

```
MoltiplicazioneMatrici (c) // c array t.c. c[i] = c_i = \#colonne\ A_i = \#righe\ A_{i+1}
 n=length(c)
 for i=1 to n
      M[i, i]=0
 for lung=2 to n //ogni iterazione calcola M[i,j] ed m[i,j] per
     //i,j tali che i<j e j-i=lung
   for i=1 to n-lung+1
      j=i+lung-1
      M[i, j]=∞
                                                                                      O(n^3)
      for k=i toj-1
                                                                         vengono calcolati M[i,j] per ogni (i,j), con i<j, in questo ordine: (1,2),(2,3),\ldots,(n-1,n) (1,3),(2,4),\ldots,(n-2,n)
          M = M[i, k] + M[k+1, j] + c[i-1] c[k] c[j]
         if M < M[i, j] then M[i, j]=M
    return M[1, n]
                                                                         (1,n-1),(2,n)
(1,n)
```