Accelerating Deep Learning with the Biggest Losers

Angela H. Jiang, Daniel L.-K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R. Ganger, Gauri Joshi, Michael Kaminsky, Michael A. Kozuch, Zachary C. Lipton, Padmanabhan Pillai

Deep learning enables emerging applications

DNN training analyzes many examples

Selective-Backprop prioritizes informative examples

DNN basics How to use and train a DNN

Example task: Image classification

DNN inference: From image to "Dog"

Training DNNs relies on a labeled dataset

Class: Bird

Class: Lizard

Class: Dog

DNN training: Determining the weights

DNN training: Determining the weights via backpropagation

DNN training: Determining the weights via backpropagation

DNN training analyzes an example many times

DNN training analyzes an example many times

SelectiveBackprop targets slowest part of training

Not all examples are equally useful

Prioritize examples with high loss

Examples with low loss

Examples with high loss

Selective Backprop algorithm

DNN training analyzes an example many times

Bad idea #1:

Deciding with a hard threshold

if loss > threshold: backprop()

Bad idea #2:

Deciding probabilistically with absolute loss

P(backprop) = normalize(loss, 0, 1)

Good idea:

Use relative probabilistic calculation

P(backprop) = $Percentile(loss, recent losses)^{B}$

Example of probability calculation

Selective-Backprop approach

Forward propagate example through the network

1 Output

Calculate usefulness of backpropping example based on its accuracy

P(Backprop) = L2 Dist²(Output , Target)

Decide probabilistically if we should backprop

StaleSB reduces forward passes

Forward propagate example through the network every n epochs

Calculate usefulness of backpropping example based on its accuracy

Decide probabilistically if we should backprop

Evaluation of Selective Backprop

Datasets

CIFAR10

CIFAR 100

SVHN

60,000 Training Images 60,000 Training Images 604,388 Training Images

Train CIFAR10 to 4.14% (1.4x Traditional's final error)

SB: 1.5X faster

StaleSB: 2X faster

Backwards (training)

Forwards (selecting)

Forwards (training)

Other (setup, overhead)

Train CIFAR100 to 25.5% (1.4x Traditional's final error)

SB: 1.2X faster

StaleSB: 1.6X faster

Backwards (training)

Forwards (selecting)

Forwards (training)

Other (setup, overhead)

Train SVHN to 1.72% (1.4x Traditional's final error)

SB: 3.5X faster

StaleSB: 5X faster

Backwards (training)

Forwards (selecting)

Forwards (training)

Other (setup, overhead)

SB on CIFAR10 targets hard examples

Selective-Backprop accelerates training

Reduces time spent in the backwards pass by prioritizing high-loss examples

SelectiveBackprop outperforms static approaches

Trains up to 3.5x faster compared to standard SGD

Trains 1.02-1.8X faster than state-of-the-art importance sampling approach

Stale-SB further accelerates training

Trains on average 26% faster compared to SB

www.github.com/angelajiang/SelectiveBackprop

Compared approaches

Traditional

Classic SGD with no filtering

Katharopoulos18

State of the art importance sampling approach

Random

Random sampling approach

Selective-Backprop (Us)

SVHN

Most Pareto optimal points are SB or StaleSB

SB is robust to modest amounts of error

0.1% Randomized

10% Randomized

20% Randomized

