CS 663 - Fundamentals of Digital Image Processing Assignment 2

Gagan Jain - 180100043 Hitesh Kandala - 180070023

September 29, 2020

1 Edge-preserving Smoothing using Bilateral Filtering

1.1 2/data/barbara.mat

Figure 1: Original — Corrupted — Filtered

Optimal parameters:

$$\sigma_{space}^* = 1.4$$
$$\sigma_{intensity}^* = 10.2$$

RMSD for noisy image = 4.992Optimal RMSD for filtered image = 3.276

Other RMSD values:

(i) $0.9\sigma_{space}^*: RMSD = 3.281$

 $(ii) \quad 1.1\sigma_{space}^*: RMSD = 3.279$

(iii) $0.9\sigma_{intensity}^*: RMSD = 3.293$

(iv) $1.1\sigma_{intensity}^*: RMSD = 3.298$

1.2 2/data/grass.png

Figure 2: Original — Corrupted — Filtered

Optimal parameters:

$$\begin{split} \sigma_{space}^* &= 0.729 \\ \sigma_{intensity}^* &= 0.18 \end{split}$$

RMSD for noisy image = 0.0462

Optimal RMSD for filtered image = 0.0289

Other RMSD values:

 $(i) \quad 0.9\sigma_{space}^*: RMSD = 0.0294$

 $(ii) \quad 1.1\sigma^*_{space}: RMSD = 0.0294$

 $(iii) \quad 0.9\sigma_{intensity}^*: RMSD = 0.029$

 $(iv) \quad 1.1\sigma_{intensity}^*: RMSD = 0.0289$

1.3 2/data/honeyCombReal.png

Figure 3: Original — Corrupted — Filtered

Optimal parameters:

$$\sigma_{space}^* = 0.88$$

$$\sigma_{intensity}^* = 0.16$$

RMSD for noisy image = 0.0495

Optimal RMSD for filtered image = 0.0284

Other RMSD values:

 $(i) \quad 0.9\sigma_{space}^*: RMSD = 0.0288$

 $(ii) \quad 1.1\sigma^*_{space}: RMSD = 0.0284$

 $(iii) \quad 0.9\sigma_{intensity}^*: RMSD = 0.0286$

 $(iv) \quad 1.1\sigma_{intensity}^*: RMSD = 0.0285$

2 Gaussian mask

Figure 4: For barbara.mat

Figure 5: For grass.png

Figure 6: For honeyCombReal.png