NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS 1, HW $_3$

NICK LEWIS

Problem 1 Consider the equation (here d = 1 and m = 1).

$$u_t(x,t) = a\partial_x^s u(x,t)$$
$$u(x,0) = f(x)$$

where is s is a positive integer and a is a constant. What does a have to be for the problem to be stable?

Solution To determine what a has to be for this problem to be stable we will do a Fourier Analysis. Recall for problems of the form,

$$\partial_t u(x,t) = P(x,t,\partial_x)u(x,t)$$

 $u(x,0) = f(x).$

The solution in Fourier Space is

$$u(\omega, t) = e^{\hat{P}(i\omega)t} \hat{f}(\omega)$$

Since $P(x, t, \partial_x) = \partial_x^s$, we then know that $\hat{P}(i\omega) = (i\omega)^s$. For the solution to the PDE to be stable, we need the following condition to hold

$$||u(\cdot,t)|| \le Ke^{\alpha t}||f||$$

which simplifies to $||e^{\hat{P}(i\omega)t}|| \leq Ke^{\alpha t}$ when we use the fact that $u(x,t) = \frac{1}{\sqrt{2\pi}}\hat{u}(\omega,t)e^{i\omega x}$.

This yields the following cases for $\hat{P}(i\omega)$.

$$\hat{P}(i\omega) = \begin{cases} (i\omega)^s & \text{for } s \text{ odd} \\ (-1)^{s/2}\omega^s & \text{for } s \text{ even} \end{cases}$$

So if s is odd, this problem is automatically stable for any a since it will be bounded by 1, which makes since given that the coefficient for the transport equation can be positive or negative. For s even, if s=2n, with n being an odd number, then a must be positive, else this problem will blow up for large values of t. Likewise if n is even, then a must have a negative sign, else the same problem occurs.

Problem 2

a) Suppose that d > 1 and m = 1 and consider the problem

$$u_t(x,t) = Pu = \sum_{\ell=1}^d \sum_{j=1}^d \partial_{x_\ell} (a_{\ell j}(x) \partial_{x_j} u(x,t))$$
$$u(x,0) = f(x).$$

Date: September 19, 2022.

Let A the $d \times d$ matrix with entries $(a_{\ell j})$. We assume that the coefficients are 2π -periordic in each variable. Assume that A is symmetric and uniformly positive definite. That is, it is symmetric and there exists $\theta > 0$ for every $v \in \mathbb{R}^d$

$$v^T A(x) v \ge \theta v^T v \quad \forall v \in \mathbb{R}^d, \forall x.$$

Show that Pu is semi-bounded. Hint: you should show that

$$\langle v, Av \rangle \ge \theta \langle v, v \rangle \quad \forall v \in \mathbb{C}^d, \forall x.$$

b) Again assuming that d > 1 and m = 1 consider the problem:

$$u_t(x,t) = \sum_{\ell=1}^d \sum_{j=1}^d \partial_{x_\ell} (a_{\ell j}(x) \partial_{x_j} u(x,t)) + \sum_{j=1}^d \beta_j \partial_{x_j} u.$$

$$u(x,0) = f(x).$$

Where the coefficients are 2π periodic and uniformly bounded. That is, there exists a constant C so that $|\beta_j(x)| \leq C$, $\forall x$. Show that this problem is stable.

Solution

a). We want to show that P is semi-bounded which is equivalent to saying that

$$(Pu, u) + (u, Pu) < 2\alpha ||u||$$

From class, recall that $(\partial_{x_j} u, w) = -(u, \partial_{x_j} w)$. This will then yield that

$$(Pu, u) = \left(\sum_{\ell=1}^{d} \sum_{j=1}^{d} \partial_{x_{\ell}}(a_{\ell j}(x) \partial_{x_{j}} u(x, t)), u(x, t)\right)$$

$$= \sum_{\ell=1}^{d} \sum_{j=1}^{d} (\partial_{x_{\ell}}(a_{\ell j}(x) \partial_{x_{j}} u(x, t)), u(x, t))$$

$$= -\sum_{\ell=1}^{d} \sum_{j=1}^{d} (a_{\ell j}(x) \partial_{x_{j}} u(x, t), \partial_{x_{\ell}} u(x, t))$$

Likewise for (u, Pu). This gives us that

$$(u, Pu) + (Pu, u) = -\sum_{\ell=1}^{d} \sum_{j=1}^{d} (\partial_{x_{\ell}} u(x, t), a_{\ell j}(x) \partial_{x_{j}} u(x, t)) - (a_{\ell j}(x) \partial_{x_{j}} u(x, t), \partial_{x_{\ell}} u(x, t))$$

$$\leq -2\theta \|\partial_{x_{\ell}} u\|^{2}$$

This more or less completes the proof as the last part follows from the uniform positive definiteness of A. However, to complete the proof we must extend $v^T A(x)v \geq \theta v^T v$ to the complex numbers.

$$(w,v) = \int_0^{2\pi} \cdots \int_0^{2\pi} \langle w(x), v(x) \rangle dx_1 \cdots dx_d.$$
$$\langle w, v \rangle = \overline{w_1} v_1 + \cdots \overline{w_m} v_m.$$

To that extent, let us show that

$$\langle v, Av \rangle \ge \theta \langle v, v \rangle \quad \forall v \in \mathbb{C}^d, \forall x.$$

 $\forall v \in \mathbb{C}^d$, we can write v = u + iw, where $u, v \in \mathbb{R}^d$. This will yield

$$\langle Av, v \rangle = \overline{v^T A^T} v$$

$$= \overline{v^T} Av, \text{ since } A \text{ is symmetric}$$

$$= (u - iw)^T A(u + iw)$$

$$= u^T Au + w^T Aw$$

$$\geq \theta ||v||^2$$

b). We want to show under these conditions, then the problem is stable. To simplify this problem, let's define $Pu = P_1u + P_2u$, where

$$P_1 u = \sum_{\ell=1}^d \sum_{j=1}^d \partial_{x_\ell} (a_{\ell j}(x) \partial_{x_j} u(x,t))$$
$$P_2 u = \sum_{j=1}^d \beta_j(x) \partial_{x_j} u$$

We already know that P_1u is semi-bounded from part (a). To show P_2u is semi-bounded as well, notice

$$(u, P_{1}u) + (P_{1}u, u) + (u, P_{2}u) + (P_{2}u, u) \leq -\theta \sum_{j=1}^{d} \|\partial_{x_{j}}u\|^{2} + \sum_{j=1}^{d} \left((\beta_{j}(x)\partial_{x_{j}}u, u) + (u, \beta_{j}(x)\partial_{x_{j}}u) \right)$$

$$\leq -\theta \sum_{j=1}^{d} \|\partial_{x_{j}}u\|^{2} + \sum_{j=1}^{d} \left(2\|\beta_{j}(x)\partial_{x_{j}}u\|\|u\| \right)$$

$$\leq -\theta \sum_{j=1}^{d} \|\partial_{x_{j}}u\|^{2} + \sum_{j=1}^{d} \left(2C\|\partial_{x_{j}}u\|\|u\| \right)$$

Where $(u, \beta_j(x)\partial_{x_j}u) \leq \|\beta_j(x)\partial_{x_j}u\|$ follows from the Cauchy-Schwarz inequality. We recall the following inequality

$$2\alpha\beta \le \epsilon\alpha^2 + \frac{\beta^2}{\epsilon}$$
 for all $\theta, \beta \ge 0, \epsilon > 0$.

Choosing $\epsilon = \frac{\theta}{C}, \alpha = \|\partial_{x_j} u\|, \beta = \|u\|$, we then find that

$$(u, P_1 u) + (P_1 u, u) + (u, P_2 u) + (P_2 u, u) \le -\theta \sum_{j=1}^{d} \|\partial_{x_j} u\|^2 + \sum_{j=1}^{d} \left(\theta \|\partial_{x_j} u\|^2 + \frac{C^2 \|u\|^2}{\theta}\right)$$
$$= 2\frac{dC^2}{2\theta} \|u\|^2$$

which shows the operator P is semi-stable, which in turn implies the problem is stable. **Problem 3** Consider the Laplace operator $\Delta = \partial_{x_1}^2 + \cdots + \partial_{x_d}^2$. Let $d \ge 1$ and m = 1.

- a) Show that $(\Delta u, w) = -\sum_{j=1}^{d} (\partial_{x_j} u, \partial_{x_j} w)$ when u and w are smooth 2π in each variable. Also, show that $(\Delta u, w) = (u, \Delta w)$.
 - b) Let s be a positive integer. For what value r is $P = (-1)^r \Delta^s$ semi-bounded?

1.222 == ...

c) Can you find $\hat{P}(i\omega)$ where $P = (-1)^r \Delta^s$?

Solution

a). Recall from class we showed (u+v,w)=(u,w)+(v,w) which establishes linearity, and that $(\partial_{x_j}^2 u,w)=-(\partial_{x_j} u,\partial_{x_j} w)$. As $\Delta=\partial_{x_1}^2+\cdots\partial_{x_d}^2$, we can see that

$$(\Delta u, w) = \left(\sum_{j=1}^{d} \partial_{x_j}^2 u, w\right)$$

$$= \sum_{j=1}^{d} (\partial_{x_j}^2 u, w)$$

$$= \sum_{j=1}^{d} -(\partial_{x_j} u, \partial_{x_j} w)$$

$$= \sum_{j=1}^{d} (u, \partial_{x_j}^2 w)$$

$$= (u, \Delta w)$$

b). Intuition says that r = s + 1 since the problem $\partial_t u = \kappa \partial_x^2 u$ is stable only for $\kappa > 0$, and $\partial_t u = \kappa \partial_x^4 u$ is stable only for $\kappa < 0$.

Using the multinomial theorem, we can write $(-1)^r \Delta^s$ more succinctly as

$$(-1)^r \Delta^s = (-1)^r \sum_{|\alpha|=s} \frac{s!}{\alpha_1! \alpha_2! \cdots \alpha_d!} \prod_{j=1}^d \partial_{x_j}^{2\alpha_j}$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d)$ and $|\alpha| = \sum_{j=1}^d \alpha_j$. Using this form of P, we can see that $\hat{P}(i\omega)$ is simply just

$$\hat{P}(i\omega) = (-1)^{r+s} \sum_{|\alpha|=s} \frac{s!}{\alpha_1! \alpha_2! \cdots \alpha_d!} \prod_{i=1}^d (\omega_i)^{2\alpha_i}$$

So to make sure $||e^{\hat{P}(i\omega)t}|| \leq Ke^{\alpha t}$ for the problem $\partial_t u(x,t) = (-1)^r \Delta^s u(x,t)$, we need to make sure $(-1)^{r+s}$ is always negative, which can be done by letting r=s+1

c). Using the form of P from the previous problem, we can see that $\hat{P}(i\omega)$ is simply just

$$\hat{P}(i\omega) = (-1)^{r+s} \sum_{|\alpha|=s} \frac{s!}{\alpha_1! \alpha_2! \cdots \alpha_d!} \prod_{j=1}^d (\omega_j)^{2\alpha_j}$$

Problem 4 Let d=1 and $m\geq 1$. Consider the problem

$$u_t(x,t) = A\partial_x u(x,t)$$
$$u(x,0) = f(x)$$

Here A is a constant $m \times m$ matrix. Suppose we can write $A = \Psi \Lambda \Psi^{-1}$ where Λ is a diagonal matrix.

- a) In the case $A = \Lambda$ find the solution operator $S(t, \tau)$.
- b) Again in the case $A = \Lambda$ consider the problem

$$u_t(x,t) = A\partial_x u(x,t) + F(x,t)$$

$$u(x,0) = f(x)$$

Using Duhamel's principle write out the solution for u(x,t). In particular, what is the representation of $u_1(x,t)$?

c) In the more general case when $A = \Psi \Lambda \Psi^{-1}$. Find the solution operator $S(t,\tau)$. Hint: Let $v(x,t) = \Psi^{-1}u(x,t)$. Which equation does v(x,t) satisfy?

Solution

a). Given the system of equations

$$u_t(x,t) = \Lambda \partial_x u(x,t)$$
$$u(x,0) = f(x)$$

for a diagonal $m \times m$ matrix Λ , we can uncouple the transport equations so that they are only dependent upon the same indices. For example

$$\partial_t u_j(x,t) = \lambda_j \partial_x u_j(x,t)$$

 $u_j(x,0) = f_j(x)$

 $\forall j \in \{1, 2, \dots, m\}$, where λ_j is the j-th eigenvalue of the matrix Λ . This will yield m solutions of the form $u_j(x, t) = f_j(x + \lambda_j t)$. We can then define the solution operator $S(t, \tau)$ to be

$$u(x,t-\tau) = \left(S(t,\tau)f\right)(x,t) = \begin{bmatrix} f_1(x+\lambda_1(t-\tau)) \\ f_2(x+\lambda_2(t-\tau)) \\ \vdots \\ f_m(x+\lambda_m(t-\tau)) \end{bmatrix}$$

for $t > \tau$.

b). Now consider the problem

$$u_t(x,t) = A\partial_x u(x,t) + F(x,t)$$

$$u(x,0) = f(x)$$

where A is of the same form in (a). Using Duhamel's Principle we find the solution to be the same as before, with an added integral for the inhomogeneous portion of the equation.

$$u(x,t) = \left(S(t,0)f\right)(x,t) + \int_0^t \left(S(t,\tau)F(x,\tau)\right)(x,t)d\tau = \begin{bmatrix} f_1(x+\lambda_1t) + \int_0^t F_1(x+\lambda_1(t-\tau),\tau)d\tau \\ f_2(x+\lambda_2t) + \int_0^t F_2(x+\lambda_2(t-\tau),\tau)d\tau \\ \vdots \\ f_m(x+\lambda_mt) + \int_0^t F_m(x+\lambda_m(t-\tau),\tau)d\tau \end{bmatrix}$$

c). Now assume with $A = \Psi \Lambda \Psi^{-1}$ Again in the case $A = \Lambda$ consider the problem

$$u_t(x,t) = A\partial_x u(x,t) + F(x,t)$$

$$u(x,0) = f(x)$$

If we let $v(x,t) = \Psi^{-1}u(x,t)$, then this will simplify the problem substantially as v(x,t) will satisfy the equation

$$v_t(x,t) = \Lambda \partial_x u(x,t) + G(x,t)$$
$$v(x,0) = g(x)$$
$$g(x) = \Psi^{-1} f(x)$$
$$G(x,t) = \Psi^{-1} F(x,t)$$

Given this formulation, v(x,t) will simply be the solution from (b), which is

$$v(x,t) = \left(S(t,0)g\right)(x,t) + \int_0^t \left(S(t,\tau)G(x,\tau)\right)(x,t)d\tau = \begin{bmatrix} g_1(x+\lambda_1t) + \int_0^t G_1(x+\lambda_1(t-\tau),\tau)d\tau \\ g_2(x+\lambda_2t) + \int_0^t G_2(x+\lambda_2(t-\tau),\tau)d\tau \\ \vdots \\ g_m(x+\lambda_mt) + \int_0^t G_m(x+\lambda_m(t-\tau),\tau)d\tau \end{bmatrix}$$

so we can then see that our solution operator $S(t,\tau)$ for $\mathbf{u}(\mathbf{x},t)$ is just going to be

$$u_j(x,t) = \sum_{\ell=1}^m \psi_{\ell j} \Big(f_{\ell}(x+\lambda_{\ell}t) + \int_0^t F_{\ell}(x+\lambda_{\ell}(t-\tau),\tau) d\tau \Big)$$