

IN THE CLAIMS

Please amend claim 1 as follows:

1 1. (Currently amended) A method for use in a recommender for
2 evaluating the closeness of two items, each of said items
3 characterized by at least one symbolic feature, said method
4 comprising the steps of:

5 computing a distance between corresponding symbolic feature
6 values of said two items based on an overall similarity of
7 classification of all instances for each possible value of said
8 symbolic feature values; and

9 aggregating the distances between each of said symbolic
10 features values to determine the closeness of said two items.

1 2. (Original) The method of claim 1, wherein said computing
2 step employs a Value Difference Metric (VDM) technique to compute
3 said distance between symbolic features.

1 3. (Original) The method of claim 1, wherein said computing
2 step employs a modified Value Difference Metric (MVDM) technique to
3 compute said distance between symbolic features.

1 1. 4. (Original) The method of claim 1, wherein said
2 distance, δ , between two values, V1 and V2, for a specific symbolic
3 feature is given by:

4
$$\delta(V1, V2) = \sum | C1i/C1 - C2i/C2 |^r$$

5 wherein $C1i$ is the number of times $V1$ was classified into
6 class i and $C1$ is the total number of times $V1$ occurred in the data
7 set.

1 5. (Original) The method of claim 1, wherein said items are
2 programs, classes of interest are "watched" and not-watched" and
3 wherein said distance, δ , between two values, V1 and V2, for a
4 specific symbolic feature is given by:

5
$$\delta(V1, V2) = \left| \frac{C1_watched}{C1_total} - \frac{C2_watched}{C2_total} \right| +$$

6
$$\left| \frac{C1_not_watched}{C1_total} - \frac{C2_not_watched}{C2_total} \right|$$

7 wherein C_{1i} is the number of times V₁ was classified into
8 class i and C_{1_total} is the total number of times V₁ occurred in
9 the data set.

1 6. (Original) The method of claim 1, wherein one of said items
2 is a cluster mean.

1 7. (Original) The method of claim 1, wherein said items are
2 programs.

1 8. (Original) The method of claim 1, wherein said items are
2 content.

1 9. (Original) The method of claim 1, wherein said items are
2 products.

1 10. (Original) A method for assigning an item to one or more
2 groups of items, each of said items characterized by at least one
3 symbolic feature, said method comprising the steps of:
4 computing a distance between corresponding symbolic feature
5 values of said item and at least one item in each of said groups,

6 said distance based on an overall similarity of classification of
7 all instances for each possible value of said symbolic feature
8 values;

9 aggregating the distances between each of said features values
10 to determine the closeness of said item and at least one item in
11 each of said groups; and

12 assigning said item to said group associated with a minimum
13 distance value.

1 11. (Original) The method of claim 10, wherein said computing
2 step employs a Value Difference Metric (VDM) technique to compute
3 said distance between symbolic features.

1 12. (Original) The method of claim 10, wherein said computing
2 step employs a modified Value Difference Metric (MVDM) technique to
3 compute said distance between symbolic features.

1 13. (Original) The method of claim 10, wherein said distance,
2 δ , between two values, V1 and V2, for a specific symbolic feature
3 is given by:

4
$$\delta(V1, V2) = \sum | C1i/C1 - C2i/C2 |^r$$

5 wherein C_{1i} is the number of times V₁ was classified into
6 class i and C₁ is the total number of times V₁ occurred in the data
7 set.

1 14. (Original) The method of claim 10, wherein said items are
2 programs, classes of interest are "watched" and not-watched" and
3 wherein said distance, δ, between two values, V₁ and V₂, for a
4 specific symbolic feature is given by:

$$\delta(V_1, V_2) = \left| \frac{C_{1_watched}}{C_{1_total}} - \frac{C_{2_watched}}{C_{2_total}} \right| + \\ \left| \frac{C_{1_not_watched}}{C_{1_total}} - \frac{C_{2_not_watched}}{C_{2_total}} \right|$$

5 wherein C_{1i} is the number of times V₁ was classified into
6 class i and C_{1_total} is the total number of times V₁ occurred in
7 the data set.

1 15. (Original) The method of claim 10, wherein one of said
2 items is a cluster mean.

1 16. (Original) The method of claim 10, wherein said items are
2 programs.

1 17. (Original) The method of claim 10, wherein said items are
2 content.

1 18. (Original) The method of claim 10, wherein said items are
2 products.

1 19. (Original) A system for use in a recommender for
2 evaluating the closeness of two items, each of said items
3 characterized by at least one symbolic feature, comprising:
4 a memory for storing computer readable code; and
5 a processor operatively coupled to said memory, said processor
6 configured to:
7 compute a distance between corresponding symbolic feature
8 values of said two items based on an overall similarity of
9 classification of all instances for each possible value of said
10 symbolic feature values; and
11 aggregate the distances between each of said symbolic features
12 values to determine the closeness of said two items.

1 20. (Original) A system for use in a recommender for
2 evaluating the closeness of two items, each of said items

3 characterized by at least one symbolic feature, comprising:

4 means for computing a distance between corresponding symbolic
5 feature values of said two items based on an overall similarity of
6 classification of all instances for each possible value of said
7 symbolic feature values; and

8 means for aggregating the distances between each of said
9 symbolic features values to determine the closeness of said two
10 items.

1 21. (Original) An article of manufacture for use with a
2 recommender for evaluating the closeness of two items, each of said
3 items characterized by at least one symbolic feature, comprising:

4 a computer readable medium having computer readable code means
5 embodied thereon, said computer readable program code means
6 comprising:

7 a step to compute a distance between corresponding symbolic
8 feature values of said two items based on an overall similarity of
9 classification of all instances for each possible value of said
10 symbolic feature values; and

11 a step to aggregate the distances between each of said
12 symbolic features values to determine the closeness of said two
13 items.

1 22. (Original) A system for assigning an item to one or more
2 groups of items, each of said items characterized by at least one
3 symbolic feature, comprising:

4 a memory for storing computer readable code; and
5 a processor operatively coupled to said memory, said processor
6 configured to:

7 compute a distance between corresponding symbolic feature
8 values of said item and at least one item in each of said groups,
9 said distance based on an overall similarity of classification of
10 all instances for each possible value of said symbolic feature
11 values;

12 aggregate the distances between each of said features values
13 to determine the closeness of said item and at least one item in
14 each of said groups; and

15 assign said item to said group associated with a minimum
16 distance value.

1 23. (Original) An article of manufacture for assigning an item
2 to one or more groups of items, each of said items characterized by
3 at least one symbolic feature, comprising:

4 a computer readable medium having computer readable code
5 means embodied thereon, said computer readable program code means
6 comprising:

7 a step to compute a distance between corresponding symbolic
8 feature values of said item and at least one item in each of said
9 groups, said distance based on an overall similarity of
10 classification of all instances for each possible value of said
11 symbolic feature values;

12 a step to aggregate the distances between each of said
13 features values to determine the closeness of said item and at
14 least one item in each of said groups; and

15 a step to assign said item to said group associated with a
16 minimum distance value.