MATH 425A HW5, DUE 09/27/2022, 6PM

JUAN SERRATOS

Chapter 3. §2.

Exercise 0.1 (2.5.). Finish the proof of Proposition 2.6., by proving that

$$\operatorname{Int}_{Y}(U) \cap \operatorname{Int}_{X}(Y) \subseteq \operatorname{Int}_{X}(U) \qquad (U \subseteq Y \subseteq X)$$

Proof. Suppose $U \subseteq Y \subseteq X$, where (X,d) is a metric space. Now take $t \in \operatorname{Int}_Y(U) \cap \operatorname{Int}_X(Y)$. Then we have that there is some $t \in U \cap Y$ such that $r_{\alpha} > 0$ with $B_Y(t, r_{\alpha}) \subseteq U$, and there is some r_{β} such that $B_X(t, r_{\beta}) \subseteq Y$. Using ball notation, we know that $t \in U \cap Y \cap X$, and that $B_X(t, r_{\beta}) = \{y \in X : d(t, y) < r_{\beta}\}$ and $B_Y(t, r_{\alpha}) = \{q \in Y : d(t, q) < r_{\alpha}\}$. So we need to show that $t \in \operatorname{Int}_X(U)$, i.e. $t \in X$ and there is some $r_{\gamma} > 0$ such that $B_X(t, r_{\gamma}) \subseteq U$.

Exercise 0.2 (2.6.).

Exercise 0.3 (2.7.). Let (X, d) be a metric space, and let U be a subset of X. Use Proposition 2.9 to prove that $Int_X(U)$ is open in X.

Proof. We want to show that $\operatorname{Int}_X(U) \subseteq \operatorname{Int}_X(\operatorname{Int}_X(U))$. So let $t \in \operatorname{Int}_X(U)$. Then $t \in U$ with $B(t,r) \subseteq U$ for some r > 0. Now let $y \in B(t,r)$, but as open balls are open then $y \in \operatorname{Int}(B(t,r))$, and so we can find an another open ball $y \in B(t,\epsilon) \subseteq B(t,r)$. All together, we have that $B(t,\epsilon) \subseteq B(t,r) \subseteq U$. Thus if we have some point $y \in B(t,r)$ then $y \in \operatorname{Int}(U)$, and hence $B(t,r) \subseteq \operatorname{Int}(U)$. Therefore $\operatorname{Int}(U)$ is an open set.

Exercise 0.4 (2.8.). Let (X,d) be a metric space. Assume that $U \subseteq Y \subseteq X$, and additionally that Y is open in X. Prove that U is open in Y if and only if U is open in X. (Note: There at least two possible solutions; one uses Theorem 2.13, the other uses Exercise 2.5.)

Proof. Suppose that U is open in Y. Then $U=Y\cap V$ for some open set $V\subseteq X$. But as finite intersections of open sets are open, and $Y\subseteq X$ and $V\subseteq X$ are both open in X, then $U=Y\cap V$ is open in X by Theorem 2.13. Now suppose that U is open in X. Then $U=Y\cap U$ as $U\subseteq Y$, but as U and Y are both open in X, then by Theorem 2.13 U is open in Y as well.

 $Email\ address: {\tt jserrato@usc.edu}$

Department of Mathematics, University of Southern California, Los Angeles, CA 90007

Date: September 24, 2022