Name: Shantanu S. Mangale B.E B A1242 DMW
LP-II Assignment No. 2
Title: Consider a suitable dataset, for actustoring of data
instances in different groups apply different clustering techniques (minimum 2). Virt Visualize the clusters
techniques (minimum 2). Virt Visualize the clus tens
using suitable tool.
Problem Definition:
Vigualize the cluster using Suitable tool.
Pre-requisite:
it Basic concepts of ETL.
Pre-requisite:- it Basic concepts of ETL. it Knowledge about R tool.
S/W & H/W Requirements:- R-tool, PN, 2GB RAB, 500 GB HDD
R-tool, PN, 2GB RAB, 500 GB HDD
Learning Objectives:
Use R Functions to create K-means Clustering models &
Voe R functions to create K-means Clustering models & Heirarchical clustering models.
Outcomomes:
Visualize the effectiveness of the k-means clustering algorithm & hierarchical clustering using graphic
algorithm & hierarchical clustering using araphic
0 00

capabilities in R
Theory.
Libot is K-means clustering?
K-means dustering is a type of unsupervised learning which is
K-means dustering is a type of unsupervised learning which is
in the data with the number of groups represented by the varial K. Data ports are clustered based on feature similarity. The results
K. Data ports are clustered based on feature similarity. The result
of the K-means clustering algorithm are:
of the K-means clustering algorithm are: The centroids of the K-clusters, which can be used to label
hew dota.
ii) labels for the training data (each data point is assigned
is Labels for the training data (each data point is assigned to a single cluster).

· steps to perform K-means Clustering.

· R Implemementations:

The K-means function, provided by the cluster package, is used as follows:

K-means (x centers, iter. max' = 10, nstart = 1, algorithm = c ("Hartigan-Wong" Lloyd", "Forgy", "Mac Queen")

where the arguments are:

Anumeric matrix of data or an object that can be co-erced to such a matrix (such as a numeric

rector or adata Frame with all numeric columns). centers > fither the number of clusters or a set of initial (distinct) cluster centers. If a number a random set of (distinct) now in I is chosen as the initial centers iter max -> The maximum number of iterations allowed. nstart > If centers is a number, n start gives the number of random sets that should be chosen. algorithm -> The algorithm to be used. It should be one of the following. · IRIS dataset: This is perhaps the best known database to be found in the pattern recognition literature. The data set contains 3 classes of sorinstances each, where each class refers to alype of its inis plant. Conclusion:

algorithm & hierarchical clustering using graphic capabilities in R.

Output:

Clustering using K-means and DB Scan

Visualization:

