ICrAData – Софтуер за Интеркритериален анализ

Николай Икономов 1 , Петър Василев 2 , Олимпия Роева 2

¹Институт по математика и информатика, БАН nikonomov@math.bas.bg
²Институт по биофизика и биомедицинско инженерство, БАН peter.vassilev@gmail.com, olympia@biomed.bas.bg

26 юни 2017

Интеркритериалният анализ [1] е основан на Индексирани матрици [2] и Интуиционистки размити множества [3].

Нека имаме дадена индексирана матрица, където O_n са обектите, а C_n са критериите по които оценяваме:

	O_1	O_2	 O_n
C_1	$C_1(O_1)$	$C_1(O_2)$	 $C_1(O_n)$
C_2	$C_1(O_1)$ $C_2(O_1)$	$C_2(O_2)$	 $C_2(O_n)$
C_m	$C_m(O_1)$	$C_m(O_2)$	 $C_m(O_n)$

Критериалната матрица, създадена от индексираната матрица, е:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline C_1 & C_1(O_1) - C_1(O_2) & C_1(O_1) - C_1(O_3) \dots & C_1(O_1) - C_1(O_n) & C_1(O_2) - C_1(O_3) \dots \\ \hline C_2 & C_2(O_1) - C_2(O_2) & C_2(O_1) - C_2(O_3) \dots & C_2(O_1) - C_2(O_n) & C_2(O_2) - C_2(O_3) \dots \\ \hline \dots & \dots & \dots & \dots & \dots & \dots \\ \hline C_n & C_n(O_1) - C_n(O_2) & C_n(O_1) - C_n(O_3) \dots & C_n(O_1) - C_n(O_n) & C_n(O_2) - C_n(O_3) \dots \\ \hline \end{array}$$

Ще покажем нагледно алгоритъма с пример:

$ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \end{array} $	O_1	O_2	O_3	O_4	O_5
C_1	6	5	3	7	6
C_2	7	7	8	1	3
C_3	4	3	5	9	1
C_4	4	5	6	7	8

Критериалната матрица е:

	(1-2)	(1-3)	(1-4)	(1-5)	(2-3)	(2-4)	(2-5)	(3-4)	(3-5)	(4-5)
$\overline{C_1}$	1	3	-1	0	2	-2	-1	-4	-3	1
C_2	0	-1	6	4	-1	6	4	7	5	-2
C_3	1	-1	-5	3	-2	-6	2	-4	4	8
C_4	-1	-2	-3	-4	-1	-2	-1 4 2 -3	-1	-2	-1

Сега създаваме нова матрица, която взима само знака на всяко число от критериалната матрица:

S_1	1	1	-1	0	1	-1	-1	-1	-1	1
S_2	0	-1	1	1	-1	1	1	1	1	-1
S_3	1	-1	-1	1	-1	-1	1	-1	1	1
S_1 S_2 S_3 S_4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Крайната матрица (която е резултата) се получава чрез сравняване на всеки ред с всички редове, можем да запишем така:

	C_1	C_2	C_3	C_4
C_1	$S_1 \# S_1$	$S_1 \# S_2$	$S_1 \# S_3$	$S_1 \# S_4$
C_2	-	$S_2 \# S_2$	$S_2 \# S_3$	$S_2 \# S_4$
C_3	-	-	$S_3 \# S_3$	$S_3 \# S_4$
C_4	-	-	-	$S_4 \# S_4$

Метод μ -biased.

Използваме тези сравнения за матрица μ : $0=0,\ 1=1,\ -1=-1.$ Както и следните сравнения за матрица ν : $-1 \neq 1,\ 1 \neq -1.$

Броим съвпадащите (или несъвпадащите) елементи между два реда и разделяме на броя на колоните.

Метод Unbiased.

Сравнения за матрица μ : $1=1,\ -1=-1.$ Сравнения за матрица ν : $-1\neq 1,\ 1\neq -1.$ Сравнението 0 и 0 не се брои, то е неопределен елемент.

S_1	1	1	-1	0	1	-1	-1	-1	-1	1
S_2	0	-1	1	1	-1	1	1	1	1	-1
S_3	1	-1	-1	1	-1	-1	1	-1	1	1
S_1 S_2 S_3 S_4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

μ	C_1	C_2	C_3	C_4	ν	C_1	C_2	C_3	C_4
C_1	0.9	0	0.5	0.5	C_1	0	0.8	0.4	0.4
C_2	-	0.9	0.5	0.3	C_2	-	0	0.4	0.6
C_3	-	-	1	0.5	C_3	-	-	0	0.5
C_4	_	-	-	1	C_4	_	-	-	0

Метод ν -biased.

Сравнения за матрица μ : $1=1,\ -1=-1.$ Сравнения за матрица ν : $0\neq 0,\ -1\neq 1,\ 1\neq -1.$ Сравнението 0 и 0 се брои за противозначен елемент.

$\overline{S_1}$	1	1	-1	0	1	-1	-1	-1	-1	1
S_2	0	-1	1	1	-1	1	1	1	1	-1
S_3	1	-1	-1	1	-1	-1	1	-1	1	1
S_1 S_2 S_3 S_4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

	C_1							C_3	
C_1	0.9	0	0.5	0.5	C_1	0.1	0.8	0.4	0.4
C_2	-	0.9	0.5	0.3	C_2	-	0.1	0.4	0.6
C_3	-	-	1	0.5	C_3	-	-	0	0.5
C_4	_	-	-	1	C_4	_	-	-	0

Метод Balanced.

Изчисляваме методите μ -biased и ν -biased.

Елементите от матрица μ са равни на: $(\mu_{\text{първи метод}} + \mu_{\text{трети метод}})/2$ Елементите от матрица ν са равни на: $(\nu_{\text{първи метод}} + \nu_{\text{трети метод}})/2$ Сравнението 0 и 0 се брои наполовина към съвпадащите елементи и наполовина към противозначните елементи.

	S_1	1	1	-1	0	1	-1	-1	-1	-1	1	
	S_2	0	-1	1	1	-1	1	1	1	1	-1	
	S_3	1	-1	-1	1	-1	-1	1	-1	1	1	
	S_4	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
μ	C_1		C_2	C_3	C_4	Ļ	ν	C_1	C_{i}	2	C_3	C_4
C_1	0.9	5	Λ	0 E	ΛΕ			0.05	^	^	0.4	0.4
	0.5	9	U	0.5	0.5)	c_1	0.05	U.	8	0.4	0.4
C_2							- 1	0.05				
	_	(0.95		0.3	3	C_2		0.0)5	0.4	0.6

Метод Weighted.

Изчисляваме метод Unbiased. Създаваме нова матрица P, която е сбор на матриците μ и ν на метода Unbiased: $P=\mu_{\mathsf{Втори\ метод}}+\nu_{\mathsf{Втори\ метод}}$

$$\begin{split} &\mu_{\text{пети метод}} := \mu_{\text{втори метод}} + \frac{\mu_{\text{втори метод}}}{P} (1-P) = \frac{\mu_{\text{втори метод}}}{P} \\ &\nu_{\text{пети метод}} := \nu_{\text{втори метод}} + \frac{\nu_{\text{втори метод}}}{P} (1-P) = \frac{\nu_{\text{втори метод}}}{P} \end{split}$$

Изчисленията се извършват поелементно. Това е за $P[i][j] \neq 0$. Ако P[i][j] = 0, то този елемент е равен на 0.5 и за двете матрици.

Припомняме матриците от метода Unbiased:

μ	C_1	C_2	C_3	C_4	ν	C_1	C_2	C_3	C_4
C_1	0.9	0	0.5	0.5	 C_1	0	8.0	0.4	0.4
C_2	_	0.9	0.5	0.3	C_2	-	0.8	0.4	0.6
							-		
C_4	_	-	-	1	C_4	-	-	-	0

Матрицата P:

Новите матрици за метода Weighted:

				C_4					
C_1	1	0	0.5556	0.5556	C_1	0	1	0.4444	0.4444
C_2	-	1	0.5556	0.3333	C_2	-	0	0.4444	0.6667
C_3	-	-	1	0.5	C_3	-	-	0	0.5
C_4	-	-	-	1	C ₄	-	-	-	0

- Atanassov K., D. Mavrov, V. Atanassova (2014). InterCriteria Decision Making: A New Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic Fuzzy Sets, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 11, 1-8.
- Atanassov K. (2014). Index Matrices: Towards an Augmented Matrix Calculus. Studies in Computational Intelligence, 573.
- Atanassov K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
- http://intercriteria.net/software/ http://justmathbg.info/files/math/

Благодаря за вниманието!

Авторите изказват благодарност на проекта DFNI-I-02-5 "InterCriteria Analysis: A New Approach to Decision Making" финансиран от Φ онд научни изследвания.