Aprendizaje automatizado

ALGORITMOS DE APRENDIZAJE

Gibran Fuentes-Pineda Mayo 2023

Algoritmo de optimización mínima secuencial (SMO)

- Divide el problema de optimización en una serie de subproblemas con 2 multiplicadores de Lagrange (es el mínimo debido a la restricción de desigualdad lineal)
- · Es posible optimizar cada subproblema de forma analítica

$$0 \le \alpha_1, \alpha_2 \le C$$
$$y^{(1)} \cdot \alpha_1 + y^{(2)} \cdot \alpha_2 = k$$

donde *k* es el negativo de la suma del resto de los términos de la restricción de igualdad

Algoritmo de descenso por subgradiente (PEGASOS)

 La función bisagra no es diferenciable, pero podemos usar el subgradiente

$$\tilde{\nabla}E(\mathbf{w},b) = \begin{cases} 0, & y^{(i)} \cdot (\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \ge 1\\ y^{(i)} \cdot \mathbf{x}^{(i)}, & y^{(i)} \cdot (\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) < 1 \end{cases}$$

- · Algoritmo
 - 1. Inicializamos w y b a 0
 - 2. Para t = 1, ..., T realizar
 - 2.1 Elige ejemplo $\{x^{(i)}, y^{(i)}\}$ aleatoriamente

2.2
$$\eta^{\{t\}} = \frac{1}{\lambda \cdot t}$$

2.3 Si
$$y^{(i)}\left(\left(\mathbf{w}^{\{t\}}\right)^{\top}\mathbf{x}^{(i)}+b\right)<1$$

$$\mathbf{w}^{\{t+1\}} = (1 - \eta^{\{t\}} \cdot \lambda) \cdot \mathbf{w}^{\{t\}} + \eta^{\{t\}} \cdot \mathbf{v}^{(i)} \cdot \mathbf{x}^{(i)}$$

2.4 En caso contrario

$$\mathbf{w}^{\{t+1\}} = (1 - \eta^{\{t\}} \cdot \lambda) \cdot \mathbf{w}^{\{t\}}$$

PEGASOS kernelizado

- Es posible entrenar un SVM definido a partir de los parámetros
- · Esta versión kernelizada es la siguiente:
 - 1. Inicializa $\alpha_i^{\{0\}}, i = 1, ..., n$ a 0
 - 2. Para t = 1, ..., T realizar
 - 2.1 Elige el índice de un ejemplo aleatoriamente $s \in \{1, \dots, n\}$
 - $2.2 \quad \eta^{\{t\}} = \frac{1}{\lambda \cdot t}$
 - 2.3 Si $y^{(s)} \cdot \left[\eta^{\{t\}} \cdot \sum_{i=1}^n \alpha_i \cdot y^{(i)} \cdot K(\mathbf{x}^{(i)}, \mathbf{x}^{(s)}) \right] < 1$, entonces

$$\alpha_{s}^{\{t\}} = \alpha_{s}^{\{t-1\}} + 1$$

2.4 En caso contrario

$$\alpha_s^{\{t\}} = \alpha_s^{\{t-1\}}$$