Estruturas Avançadas de Dados I (Shellsort)

Prof. Gilberto Irajá Müller

Introdução

- Proposto por Ronald Shell em 1959;
- Explora as seguintes características do método de <u>inserção direta</u>:
 - desempenho aceitável quando o número de chaves é pequeno;
 - desempenho aceitável quando as chaves já possuem uma ordenação parcial.
- É considerado uma extensão do método de inserção, pois se diferencia deste apenas no número de segmentos considerados;
- Realiza classificações parciais do array a cada iteração, favorecendo o desempenho dos passos seguintes.

Introdução (cont.)

- Artigo "A High-Speed Sorting Procedure" disponível em http://penguin.ewu.edu/cscd300/Topic/AdvSorting/p30-shell.pdf;
- Primeiro algoritmo a "quebrar" a barreira quadrática, mas alguns anos depois, provou-se ser subquadrático. Ex.: (O^{3/2});
- A complexidade de tempo do algoritmo é algo desconhecido, embora existam várias definições;
- Shellsort tem um bom desempenho porque explora o que tem de melhor no Insertion Sort: boa ordenação quando o array está parcialmente ordenado.

Funcionamento

- No primeiro passo, o array A[n] é dividido em h segmentos (também chamado de gap), de tal forma que cada um possua n / h chaves;
- Os elementos de um segmento são identificados por:
 Segmento i: A[i], A[h + i], A[2h + i], A[3h + i], ..., p/ i = 1, 2, ..., h;
- Cada um dos segmentos é classificado por inserção direta separadamente;
- No passo seguinte, o h é decrementado (a metade do valor anterior, se este era potência inteira de 2 – baseado no artigo original); h=2²=4
- No último passo, h = 1 $h=2^1=2$

$$1=2^1=2$$

3 passos

 $h=2^0=1$

Funcionamento (cont.)

- Testes empíricos sugerem que a melhor escolha para os valores de h é a sequência (3^t-1)/2, ..., 13, 4, 1; onde:
- $h_t = 3h_{t-1}+1$ 3*0+1 = 1 3*1+1 = 4 3*4+1 = 133*13+1 = 40
- Sequência original do Shellsort: N/2, N/4, ..., 1;
- Sequência de Hibbard: 1, 3, 7, ..., 2^k 1;
- Sequência de Knuth: 1, 4, 13, ..., (3^k 1) / 2;
- Sequência de Sedgewick: 1, 5, 19, 41, 109,
- Outras https://en.wikipedia.org/wiki/Shellsort#Gap sequences

Implementação do Shellsort

```
public static <T extends Comparable<? super T>> void shellSort(T[] a) {
   int h = 1;
   while (3 * h + 1 < a.length) h = 3 * h + 1;
   while (h > 0) {
      for (int i = h; i < a.length; i++) {
         for (int j = i; j >= h && a[j - h].compareTo(a[j]) > 0; j -= h) {
            exchange(a, j - h, j);
         }
      }
      h /= 3;
   }
}
```

Baseado no h do Knuth

Exemplo

0	1	2	3	4	5	6	7
7	12	5	4	2	1	8	9

while (h * 3 + 1 < a.length) h = 3 * h + 1;

Primeiro passo h = 4

0	1	2	3	4	5	6	7			
2	12	5	4	7	1	8	9			
Troca 7 > 2										
0	1	2	3	4	5	6	7			
2	1	5	4	7	12	8	9			
Troca 12 > 1										
0	1	2	3	4	5	6	7			
2	1	5	4	7	12	8	9			
Não troca 5 < 8										
0	1	2	3	4	5	6	7			
2	1	5	4	7	12	8	9			

Não troca 4 < 9

Exemplo

	0	1	2	3	4	5	6	7		
	2	1	5	4	7	12	8	9		
Segundo passo h = 1 h /= 3;										
	0	1	2	3	4	5	6	7		
	1	2	5	4	7	12	8	9		
	0	1	2	3	4	5	6	7		
	1	2	4	5	7	12	8	9		
	0	1	2	3	4	5	6	7		
	1	2	4	5	7	8	12	9		
	0	1	2	3	4	5	6	7		
	1	2	4	5	7	8	9	12		

Com h = 1 ocorre o processo do Insertion Sort tradicional. O exemplo acima contém apenas os elementos trocados.

Exemplo com h = n / 2.

 Ao ser considerado o gap de n/2 conforme artigo original, teríamos três passos para o

Complexidade

- A análise do desempenho do método é complexa, envolvendo problemas matemáticos difíceis, alguns deles ainda não resolvidos; por quê? A complexidade depende do cenário e do gap (h);
- Por exemplo, um dos problemas é determinar o efeito que a ordenação dos segmentos em um passo produz nos passos subsequentes;
- Também não se conhece a melhor sequência de incrementos que produz o melhor resultado;
- Acredita-se que seja qualquer coisa entre O(nlog n) e O(n^{3/2}).

Complexidade (cont.)

Método	Caso médio	Melhor caso	Pior caso	Complexidade de Espaço	Estável	Interno	Recursivo	Comparação
Bubble Sort	O(n²)	O(n)	O(n²)	In-place = O(1)	Sim	Sim	Não	Sim
Insertion Sort	O(n²)	O(n)	O(n²)	In-place = O(1)	Sim	Sim	Não	Sim
Selection Sort	O(n²)	O(n ²)	O(n ²)	In-place = O(1)	Sim	Sim	Não	Sim
Shell Sort	O(n ^{7/6}) – depende do gap	O(nlog(n))	O(nlog(n)) a O(n ^{3/2})	In-place = O(1)	Não	Sim	Não	Sim

Exercícios Teóricos

Exercício 1. Considerando o seguinte array:

```
        11
        1
        5
        7
        6
        12
        17
        8
```

a) Aplique o Shellsort (passo-a-passo) somente para as chaves que mudarem.

Referências Bibliográficas

- CORMEN, Thomas H. et al. **Introduction to algorithms.** 3. ed. Cambridge: MIT, 2009. xix. 1292 p.
- https://www.tutorialspoint.com/data_structures_algorithms/s
 <a href="https://www.tutorialspoin