

PRACTICAL - 3

DIGITAL COMMUNICATION (EC-209)

Aim

- To study and observe Amplitude Modulation:
 - DSB (Conventional AM)
 - DSB-SC
- Observe the effect of varying the modulation index (m<1, m>1 and m=1)
- Also observe the Trapezoidal Method of determining Modulation Index

What is Modulation

Modulation

In the modulation process, some characteristic of a high-frequency carrier signal (bandpass), is changed according to the instantaneous amplitude of the information (baseband) signal.

Why Modulation

- Suitable for signal transmission (distance...etc)
- Multiple signals transmitted on the same channel
- Capacitive or inductive devices require high frequency AC input (carrier) to operate.
- Stability and noise rejection

About Modulation

- Application Examples
 - broadcasting of both audio and video signals.
 - Mobile radio communications, such as cell phone.

- Basic Modulation Types
 - Amplitude Modulation: changes the amplitude.
 - Frequency Modulation: changes the frequency.
 - Phase Modulation: changes the phase.

AM Modulation/Demodulation

AM Block Diagram

Amplitude Modulation

 The amplitude of high-carrier signal is varied according to the instantaneous amplitude of the modulating message signal m(t).

Carrier Signal: $\cos(2\pi f_c t)$ or $\cos(\omega_c t)$

Modulating Message Signal: m(t): $\cos(2\pi f_m t)$ or $\cos(\omega_m t)$

The AM Signal: $S_{AM}(t) = [A_c + m(t)]\cos(2\pi f_c t)$

Amplitude Modulation

- The AM signal is generated using a multiplier.
- All info is carried in the amplitude of the carrier, AM carrier signal has time-varying envelope.
- In frequency domain the AM waveform are the lower-side frequency/band (f_c f_m), the carrier frequency f_c , the upper-side frequency/band (f_c + f_m).

AM Modulation – Example

The information signal is usually not a single frequency but a range of frequencies (band). For example, frequencies from 20Hz to 15KHz. If we use a carrier of 1.4MHz, what will be the AM spectrum?

Measurement of 'm'

The magnitude of 'm' can be measured directly from the AM display itself.

Maximum and minimum amplitudes of the transmission signal's envelope determine the modulation depth:

$$m = rac{s_{ ext{max}} - s_{ ext{min}}}{s_{ ext{max}} + s_{ ext{min}}}$$

Modulation Index =1

Modulation Index =.05

Max. Amp. = 2v, DC of 40v added

<u>Undermodulation</u>

Display on Oscilloscope For Different Modulation indexes

m=1

m < 1

m > 1

Trapezoidal Method

for finding

Modulation Index

Flow Chart (To Find Entropy of an Image)

Calculating m in the time domain

- We can calculate m in the time domain using an oscilloscope and the trapezoid method
- The scope is placed in in XY mode
 - X : modulating signal
 - · Y: modulated signal
- Modulation index is then calculated from the vertical edge lengths using :

$$m = \frac{a - b}{a + b}$$

a

Different Cases of 'm'

- ▶ As modulation index (m) increases, the ratio between the vertical trapezoid edges increases
 - The trapezoid width is unaffected by modulation depth

Double Side-Band Suppressed Carrier DSB-SC

DSB - SC

Double Side Band Suppressed Carrier (DSB-SC)

m (t) cos (2
$$\pi$$
fot) \longleftrightarrow $\frac{1}{2}$ $\left[M\left(f-f_0\right)+M\left(f+f_0\right)\right]$

Demodulation Methods

Envelope/Diode AM Detector

Envelope Detector

Simulation Links

https://www.etti.unibw.de/labalive/experiment/am/

To Be Continued...