NOIP 模拟

时长: 4小时

题目名称	算面积	猜数	排序	水池
源文件名	matrix	number	sort	pool
输入文件名	matrix.in	number.in	sort.in	pool.in
输出文件名	matrix.out	number.out	sort.out	pool.out
时间限制	4s	1s	2s	1s
空间限制	512MB	512MB	512MB	512MB
测试点数目	10	10	10	10
测试点分值	10	10	10	10
题目类型	传统题	传统题	传统题	传统题
比较方式	全文比较	全文比较	全文比较	全文比较
是否有部分分	是	是	是	是

算面积(matrix)

题目描述

wor 装修他的新房子, 现在他要计算他的房子的面积。

wor 的房子由若干方块组成, wor 测量了他的每个方块的面积。

具体的,wor 的房子有 $r \times c$ 个方块,每个方块有一个面积 $0 \sim 9$,你需要回复 q 次询问,每次询问你需要求得一个矩形范围内的面积总和。

由于 $r \times c$ 可能很大,所以这里我们规定如下:每一行输入一串字符串,表示这一行由这个字符串重复得到。

输入格式

第一行两个整数 $r, c (1 \le r, c \le 10^5)$, 表示 r 行 c 列。

接下去r行每行一个字符串,含义如题面所述,每行至多 $\min(c, 100)$ 个字符。

接下去一行一个整数 $q(1 \le q \le 10^5)$, 表示 q 次询问。

接下去 q 行每行四个整数 x_1,y_1,x_2,y_2 $(1 \le x_1 \le x_2 \le r, 1 \le y_1 \le y_2 \le c)$ 表示询问矩形的左下 角坐标、右上角坐标,每行每列的起始编号为 1。

输出格式

每个询问输出一行表示矩形内面积和。

样例输入1

```
4 10
1
04
123
98
1
1 1 4 10
```

样例输出 1

```
134
```

样例解释 1

```
1111111111
0404040404
1231231231
9898989898
```

样例输入2

```
4 3
5
0
330
405
2
1 1 4 1
1 1 3 1
```

样例输出 2

```
12
8
```

数据范围

测试点编号	$r \leq$	$c \leq$	$q \leq$
1	5000	5000	1
$2\sim 3$	5000	5000	10^5
$4\sim 6$	10^5	10^5	1
$7\sim 10$	10^5	10^5	10^5

猜数(number)

题面描述

wor 在玩猜数游戏。

这个游戏是这样的,有一个正确的数字 x,但你并不知道,你要去猜这个数字。现在告诉你一个数字 $z=x+\mathrm{mirrored}(x)$, $\mathrm{mirrored}(x)$ 是将 x 翻转并去除前导零。

现在 wor 知道 z, 他想知道有几个可能的 x 满足。

输入格式

第一行一个整数 $T(1 \le T \le 500)$ 表示 T 组数据。

接下来 T 行,每行一个整数 $z(1 \le z \le 10^{18})$ 。

输出格式

对于每组询问,输出一行一个整数表示可能的 x 的数量。

样例输入

```
4
10
11
121
109
```

样例输出

```
1
1
9
0
```

数据范围

40% 的数据, $z \le 10^6$ 。

对于 100% 的数据, $z \le 10^{18}$.

排序(sort)

题面描述

wor在给一个队伍排序。

这个队伍有 n 个人,每个人有一个身高 a_i ,现在 wor 用一个方案进行排队。

我们从 1 号开始依次往右,如果我们当前在排 i 号,若存在 j>i 且 $a_j>a_i$,那么花费 1 块钱让这个人排到末尾去(换句话说,我们把 i-th 放到 n-th,并且 i+1 到 n 位全部前移)。否则,开始排 i+1 号。当我们排到 n 号时,结束排序。

问需要多少钱才能结束整个排序。

输入格式

第一行一个整数 n 表示队伍里有 $n(1 \le n \le 10^6)$ 个人。

第二行 n 个整数 $a_i (1 \le a_i \le 10^9)$ 表示每个人的身高。

输出格式

一个整数表示需要的钱数。

样例输入

```
10
3 7 6 8 5 8 2 1 7 6
```

样例输出

14

样例解释

```
3 7 6 8 5 8 2 1 7 6 3 6 8 5 8 2 1 7 6 3 6 8 5 8 2 1 7 6 3 7 8 5 8 2 1 7 6 3 7 6 8 5 8 2 1 7 6 3 7 6 8 8 2 1 7 6 3 7 6 5 8 8 1 7 6 3 7 6 5 2 8 8 7 6 3 7 6 5 2 1 6 8 8 7 7 6 5 2 1 6 3 8 8 7 7 6 1 6 3 5 2 8 8 7 7 6 6 5 2 1 8 8 7 7 6 6 5 2 1 8 8 7 7 6 6 5 2 1 8 8 7 7 6 6 5 2 1 8 8 7 7 6 6 5 2 1 8 8 7 7 6 6 5 2 1 3 8 8 7 7 6 6 5 5 1 3 2 8 8 7 7 6 6 5 5 3 2 1
```

数据规模

40% 的数据, $n \le 1000$ 。

对于 100% 的数据, $n \le 10^6$.

水池(sort)

题面描述

wor有一个水池。

这个水池可以蓄水,每一格代表 1L 水,当然现实中水池可能不是这么的规整。

现在 wor 想要放水,他想在水池的底部修 k 个出水口,以便放水。这些出水口只能修在每个水平线的中心点,且每条水平线只能有至多一个出水口,例如上图,在 (1.5,3) 和 (4,2) 两处修了两个洞。现在可以放水了。

如上图,放水后,低于出水口的水都被流了下来,而放出去了 19L 水。然而,如果如下图这么挖出水口,则会放出 25L 水。

现在告诉你水池的构造,你能告诉 wor 能放出最多多少升水吗?

输入格式

第一行一个整数 $n(4 \le n \le 3 \times 10^5, n \equiv 0 \pmod{2})$ 。

接下来 n 行,每行两个整数 $x_i, y_i (0 \le x_i, y_i \le 10^9)$ 表示水池顶点坐标。

数据保证水池的轮廓一定由(0,0)出发,第一条线一定是竖直的,中间的线不是竖直的就是水平的,且水平线竖直线一定交错出现,即不存在一条线上有三个点,最后一条线一定是竖直的,且 $y_n=0$ 。

最后一行一个整数 $k(1 \le k \le \frac{n}{2})$ 表示修 k 个出水口。

输出格式

一行一个整数表示修 k 个出水口最多放出的水量,以升为单位。

样例输入

14			
0 0			
0 5			
1 5			
1 3			
2 3			
2 4			
3 4			
3 2			
5 2			

```
5 4
6 4
6 3
8 3
8 0
2
```

样例输出

25

问题规模

对于 40% 的数据,k=1。

对于 100% 的数据, $1 \le k \le \frac{n}{2}$ 。