Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) Portable surface friction testing apparatus for determining the coefficient

of friction of a surface, the apparatus consisting of a body, the underside of which is fitted with at

least one slider to induce friction between the body and the test surface as the body moves across

the test surface; and means of propelling that body to a predetermined initial velocity at the

commencement of a test run, over which test run the coefficient of friction of the surface is

determined by reference to the distance required to cause the at least one slider to bring the body

to a standstill, wherein the dimensions of the at least one slider, the force on the slider and the

speed of commencement of the test run are selected such that when the test surface is wet the

hydro-dynamic critical film thickness developed is in the range of 1 to 3 µm.

2. (Original) Apparatus as claimed in Claim 1, wherein the body is in the form of a

trolley comprising wheels in contact with the ground for providing, together with the at least one

slider, directional stability to the trolley, the wheels and at least one slider all positioned such that

the force between the at least one slider and the surface can be determined and remains constant

under any particular value of uniform deceleration.

3. (Original) Apparatus as claimed in Claim 2, where the trolley is arranged to have two

wheels in contact with the ground during the test run, with a single slider forming the third point

of contact with the ground.

(Currently amended) Apparatus as claimed in Claim 2-or-3, wherein the means for

propelling the trolley comprises a ramp of known incline and length.

5. (Original) Apparatus as claimed in Claim 4, wherein the trolley comprises at least

one additional wheel, wherein the ramp and trolley are arranged such that the at least one

-3-

additional wheel supports the trolley on the ramp during a period in which the trolley accelerates down the ramp, but wherein the mass on the at least one wheel is transferred to the at least one slider at commencement of the test run.

6. (Original) Portable surface friction testing apparatus for determining the coefficient of friction of a surface, the apparatus consisting of a body, the underside of which is fitted with at least one slider to induce friction between the body and the test surface as the body moves across the test surface, and means of propelling that body to a predetermined initial velocity at the commencement of a test run, over which test run the coefficient of friction of the surface is determined by reference to the distance required to cause the at least one slider to bring the body to a standstill, wherein:

the body is in the form of a trolley comprising wheels in contact with the ground for providing, together with the at least one slider, directional stability to the trolley, the wheels and at least one slider all positioned such that the force between the at least one slider and the surface can be determined and remains constant under any particular value of uniform deceleration;

the trolley is arranged to have two wheels in contact with the ground during the test run, with a single slider forming the third point of contact with the ground;

the means for propelling the trolley comprises a ramp of know incline and length; and

the trolley comprises at least one additional wheel and the ramp and trolley are arranged such that the at least one additional wheel supports the trolley on the ramp during a period in which the trolley accelerates down the ramp, but wherein the mass on the at least one wheel is transferred to the at least one slider at commencement of the test run.

7. (Original) Apparatus as claimed in Claim 6 wherein the dimensions of the at least one slider, the force on the slider and the speed of commencement of the test run are selected such that when the test surface is wet the hydro-dynamic critical film thickness developed is in the range of 1 to 3 μ m.

Docket No.: 56618/S307

Amdt date December 16, 2005

8. (Currently amended) Apparatus as claimed in any one of claims 2 to 7 Claim 2 wherein the trolley comprises two wheels arranged to be in contact with test surface during a test run, the two wheels being on a common axis and locked together to improve direction stability.

- 9. (Currently amended) Apparatus as claimed in any preceding claim Claim 6, wherein the body is propelled during the test run only by the initial kinetic energy of the body until the body comes to rest, the distance travelled during the test run being indicative of the coefficient of friction of the surface over which the body has travelled.
- 10. (Currently amended) Apparatus as claimed in any preceding claim Claim 6, wherein the at least one slider is a plastics or rubber material.
- 11. (Currently amended) Apparatus as claimed in-any preceding claim Claim 6, wherein the hydro-dynamic critical film thickness developed is in the range 1.5 to $2.5 \mu m$.
- 12. (Original) Apparatus as claimed in Claim 10, wherein the hydro-dynamic critical film thickness developed is in the range of 1.9 to 2.1 μ m.
- 13. (Currently amended) Apparatus as claimed in-any preceding claim Claim 6, wherein the apparatus comprises means for determining the distance travelled by the body.
- 14. (Original) Apparatus as claimed in Claim 13, wherein the distance is automatically used to calculate the coefficient of friction for the test surface.
- 15. (Original) Apparatus as claimed in Claim 14, comprising a look-up table or graph for determining the coefficient of friction corresponding to the distance travelled by the body.
- 16. (Currently amended) Apparatus as claimed in any one of Claims 13, 14 or 15 Claim 13, wherein the body determines and displays the coefficient of friction.
- 17. (Currently amended) Apparatus as claimed in-any preceding claim Claim 6, wherein the mass of the body is less than 6 kg.

Docket No.: 56618/S307

Amdt date December 16, 2005

18. (New) Apparatus as claimed in Claim 6, wherein the trolley comprises two wheels arranged to be in contact with test surface during a test run, the two wheels being on a common axis and locked together to improve direction stability.