Office Action Dated: April 18, 2003

PATENT

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended)

a compound of formula

P

$$Q = \begin{bmatrix} R^1 \\ A^2 \\ A^3 \end{bmatrix}$$
 (I)

a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof wherein

 $-a^1=a^2-a^3=a^4$ - represents a bivalent radical of formula

$$(a-3);$$

$$(a-4)$$
; or

$$(a-5);$$

wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may optionally be replaced by halo, C_{1-6} alkyl, nitro, amino, hydroxy, C_{1-6} alkyloxy, polyhalo C_{1-6} alkyl, carboxyl, amino C_{1-6} alkyl, mono- or di(C_{1-4} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, hydroxy C_{1-6} alkyl, or a radical of formula

wherein =Z is =O, =CH-C(=O)-NR^{5a}R^{5b}, =CH₂, =CH-C₁₋₆alkyl, =N-OH or =N-O-C₁₋₆alkyl;

Q is a radical of formula

Application No.: 10/019,380

Office Action Dated: April 18, 2003

PATENT

wherein Alk is C₁₋₆alkanediyl;

Y¹ is a bivalent radical of formula -NR²- or -CH(NR²R⁴)-;

X¹ is NR⁴, S, S(=O), S(=O)₂, O, CH₂, C(=O), C(=CH₂), CH(OH), CH(CH₃), CH(OCH₃), CH(SCH₃), CH(NR^{5a}R^{5b}), CH₂-NR⁴ or NR⁴-CH₂;

 X^2 is a direct bond, CH_2 , C(=0), NR^4 , C_{1-4} alkyl- NR^4 , NR^4 - C_{1-4} alkyl;

t is 2, 3, 4 or 5;

u is 1, 2, 3, 4 or 5;

v is 2 or 3; and

whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by R³; with the proviso that when R³ is hydroxy or C₁₋₆alkyloxy, then R³ can not replace a hydrogen atom in the α position relative to a nitrogen atom;

<u>G is C_{1-10} alkanediy</u>l substituted with one or more hydroxy, C_{1-6} alkyloxy, aryl C_{1-6} alkyloxy, C_{1-6} alkylthio, aryl C_{1-6} alkylthio, HO(-CH₂-CH₂-O)_n-, C_{1-6} alkyloxy (-CH₂-CH₂-O)_n-;

R¹ is a monocyclic heterocycle or aryl; said heterocycle being selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, tetrahydrofuranyl, thienyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl; and each heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio,

Application No.: 10/019,380

Office Action Dated: April 18, 2003

C'
Pont

 C_{1-6} alkyloxy C_{1-6} alkyl, aryl, aryl C_{1-6} alkyl, aryl C_{1-6} alkyl, aryl C_{1-6} alkyl, hydroxy C_{1-6} alkyl, monoor di(C_{1-6} alkyl)amino, mono-or di(C_{1-6} alkyl)amino C_{1-6} alkyl, polyhalo C_{1-6} alkyl, C_{1-6} alkylcarbonylamino, C_{1-6} alkyl-SO₂-NR^{5c}-, aryl-SO₂-NR^{5c}-, C_{1-6} alkyloxycarbonyl, $-C(=O)-NR^{5c}R^{5d}$, $HO(-CH_2-CH_2-O)_n$ -, halo(- $CH_2-CH_2-O)_n$ -, C_{1-6} alkyloxy(- $CH_2-CH_2-O)_n$ -, aryl C_{1-6} alkyloxy(- $CH_2-CH_2-O)_n$ - and mono- or di(C_{1-6} alkyl)amino (- $CH_2-CH_2-O)_n$;

PATENT

each n independently is 1, 2, 3 or 4;

 R^2 is hydrogen, formyl, C_{1-6} alkylcarbonyl, Hetcarbonyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C_{3-7} cycloalkyl substituted with $N(R^6)_2$, or C_{1-10} alkyl substituted with $N(R^6)_2$ and optionally with a second, third or fourth substituent selected from amino, hydroxy, C_{3-7} cycloalkyl, C_{2-5} alkanediyl, piperidinyl, mono-or $di(C_{1-6}$ alkyl)amino, C_{1-6} alkyloxycarbonylamino, aryl and aryloxy;

 R^3 is hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, aryl C_{1-6} alkyloxy; aryl C_{1-6} alkyloxy;

R⁴ is hydrogen, C₁₋₆alkyl or arylC₁₋₆alkyl;

R^{5a}, R^{5b}, R^{5c} and R^{5d} each independently are hydrogen or C₁₋₆alkyl; or

R^{5a} and R^{5b}, or R^{5c} and R^{5d} taken together form a bivalent radical of formula -(CH₂)_s- wherein s is 4 or 5;

 R^6 is hydrogen, C_{1-4} alkyl, formyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl;

aryl is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, and C_{1-6} alkyloxy; and

Het is pyridyl, pyrimidinyl, pyrazinyl, or pyridazinyl.

2. (previously amended) A compound according to claim 1, wherein -a = a^2-a^3=a^4- is a radical of formula (a-1) or (a-2).

Application No.: 10/019,380

Office Action Dated: April 18, 2003

3. (previously amended) A compound according to claim 1, wherein R^1 is phenyl optionally substituted with halo, C_{1-6} alkyl or C_{1-4} alkyloxy; or pyridyl optionally substituted with 1 or more substituents selected from aryl C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyl, aryl, mono-or di $(C_{1-6}$ alkyl)amino, C(=O)-NR 5c R 5d , halo or C_{1-6} alkyl.

PATENT

- 4. (previously amended) A compound according to claim 1, wherein G is C₁₋₄alkanediyl substituted with hydroxy, C₁₋₆alkyloxy, HO(-CH₂-CH₂-O)_n-, C₁₋₆alkyloxy(-CH₂-CH₂-O)_n- or arylC₁₋₆alkyloxy(-CH₂-CH₂-O)_n-.
- 5. (previously amended) A compound according to claim 1, wherein Q is a radical of formula (b-5) wherein v is 2 and Y is -NR²-.
- 6. (previously amended) A compound according to claim 1, wherein X¹ is NH or CH₂.
- 7. (previously amended) A compound according to claim 1, wherein R^2 is hydrogen or C_{1-10} alkyl substituted with NHR⁶ wherein R^6 is hydrogen or C_{1-6} alkyloxycarbonyl.
- 8. (original) A compound according to claim 1, wherein the compound is

 [(A),(S)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-1H-benzimidazol-2-amine; [(A),(S)]-N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine

 (compound 75); (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-4-methyl-1H-benzimidazol-2-amine trihydrochloride trihydrate;

 [(A),(R)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; (±)-N-[1-(2-methoxyethoxy)]

Application No.: 10/019,380

Office Action Dated: April 18, 2003

C'

Out cont

aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1Hbenzimidazol-2-amine; [(A)(S)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-[(A),(R)]-N-[1-(2-aminopropyl)-4pyridinyl)methyl 1H-benzimidazol-2-amine; piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine (\pm) -N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(6-bromo-2monohydrate; pyridinyl)ethoxymethyl]-2-benzimidazol-2-amine; (\pm) -N-[1-(2-aminoethyl)-4piperidinyl]-1-[(2-ethoxyethoxy)(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-[(B),(S)]amine; pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; (\pm) -N-[1-(2-amino-3methylbutyl)-4-piperidinyl]-3-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-7methyl-3H-imidazo[4,5-b]pyridin-2-amine; (\pm) -N-[1-(2-amino-3-methylbutyl)-4piperidinyl]-1-[(2-ethoxyethoxy)(6-phenyl-2-pyridinyl)methyl]-1H-benzimidazol-2-(±)-N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methoxyethoxy)(6-metyl-2amine; pyridinyl)methyl]-1H-benzimidazol-2-amine; (±)-N-[1-(2-amino-3-methylbutyl)-4piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-4-methyl-1H-benzimidazol-2monohydrate; [(A),(R)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6amine bromo-2-pyridinyl)ethoxymethyl]-1H-benzimidazol-2-amine; (±)-N-[1-(2-amino-3methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-1Hbenzimidazol-2-amine; a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof.

PATENT

9. (currently amended) A method of using as a medicine treating a viral infection, comprising the step of administering a therapeutically effective amount of a compound as claimed in any one of claims 1 to 8.

Application No.: 10/019,380

Office Action Dated: April 18, 2003

10. (previously amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as claimed in any one of claims 1 to 8.

PATENT

Pont

11. (previously amended) A process of preparing a composition as claimed in claim 10, comprising the step of intimately mixing said carrier with said compound.

12. (original) An intermediate of formula

with R^1 , G and $-a^1=a^2-a^3=a^4$ defined as in claim 1, P being a protective group, and Q_1 being defined as Q according to claim 1 provided that it is devoided of the R^2 or R^6 substituent.

13. (original) An intermediate of formula

with R^1 , G and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and $(O=)Q_3$ being a carbonyl derivative of Q, said Q being defined according to claim 1, provided that it is devoided of the $-NR^2R^4$ or $-NR^2$ substituent.

14. (original) An intermediate of formula

PATENT

C'

Out Cont

$$Q = N$$

$$Q = N$$

$$A^{1}$$

$$A^{2}$$

$$A^{2}$$

$$A^{3}$$

$$A^{3}$$

$$A^{2}$$

$$A^{3}$$

$$A^{3$$

with R^1 , Q and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and $O=G_2$ being a carbonyl derivative of G, said G being defined according to claim 1.

- 15. (currently amended) A process of preparing a compound as claimed in claim 1, comprising at least one step selected from the group consisting of:
 - a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula (III)

with R^1 , G, Q and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and W_1 being a suitable leaving group, in the presence of a suitable base and in a suitable reactioninert solvent;

b) deprotecting an intermediate of formula (IV)

Office Action Dated: April 18, 2003

with R¹, G, and -a¹=a²-a³=a⁴- defined as in claim 1, H-Q₁ being defined as Q according to claim 1 provided that R² or at least one R⁶ substituent is hydrogen, and P being a protective group;

PATENT

c) deprotecting and reducing an intermediate of formula (IV-a)

P—Q_{1a}(CH=CH)
$$\begin{array}{c}
R^{1} \\
Q \\
N \\
A \\
A^{2} \\
A^{3}
\end{array}$$

$$(IV-a)$$

$$H-Q_{1}$$

$$(I-a)$$

$$(I-a)$$

with R¹, G, and -a¹=a²-a³=a⁴- defined as in claim 1, H-Q₁ being defined as Q according to claim 1 provided that R² or at least one R⁶ substituent is hydrogen, Q_{1a}(CH=CH) being defined as Q₁ provided that Q₁ comprises an unsaturated bond, and P being a protective group;

d) deprotecting an intermediate of formula (V)

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 1, and H_2N-Q_2 being defined as Q according to claim 1 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen;

e) deprotecting an intermediate of formula (VI)

Page 9 of 23

Application No.: 10/019,380

Office Action Dated: April 18, 2003

PATENT

C'
O'
Cont

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and H_2N-Q_2 being defined as Q according to claim 1 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen, and P being a protective group;

f) deprotecting an intermediate of formula (VII) or (VIII)

$$P = Q_{1'}(OP) = \begin{pmatrix} R^1 & & & \\ & & &$$

with R¹, G, and -a¹=a²-a³=a⁴- defined as in claim 1, H-Q₁·(OH) being defined as Q according to claim 1 provided that R² or at least one R⁶ substituent is hydrogen and provided that Q comprises a hydroxy moiety, H₂N-Q₂·(OH) being defined as Q according to claim 1 provided that both R⁶ substituents are hydrogen or R² and R⁴ are both hydrogen and provided that Q comprises a hydroxy moiety, and P being a protective group;

g) amination of an intermediate of formula (IX)

Office Action Dated: April 18, 2003

PATENT

$$(O=)Q_3 \xrightarrow{R^1} a^{1 \over 3}$$
 amination
$$H_2N - Q_3H \xrightarrow{N} a^{1 \over 3}$$

$$(I-a-1-2)$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and H_2N-Q_3H being defined as Q according to claim 1 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen, and the carbon adjacent to the nitrogen carrying the R^6 , or R^2 and R^4 substituents contains at least one hydrogen, in the presence of a suitable an amination reagent;

h) reducing an intermediate of formula (X)

NC-Q₄

$$R^1$$
 R^1
 $R^$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and $H_2N-CH_2-Q_4$ being defined as Q according to claim 1 provided that Q comprises a $-CH_2-NH_2$ moiety, in the presence of a suitable reducing agent;

i) reducing an intermediate of formula (X-a)

with G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, $H_2N-CH_2-Q_4$ being defined as Q according to claim 1 provided that Q comprises a $-CH_2-NH_2$ moiety, and $R^{1'}$

Office Action Dated: April 18, 2003

PATENT

being defined as R¹ according to claim 1 provided that it comprises at least one substituent, in the presence of a suitable reducing agent and suitable solvent;

j) amination of an intermediate of formula (XI)

 CH_2-Q_4 CH_2-Q_4

with R¹, G, and -a¹=a²-a³=a⁴- defined as in claim 1, and H₂N-CH₂-CHOH-CH₂-Q₄, being defined as Q according to claim 1 provided that Q comprises a CH₂-CHOH-CH₂-NH₂ moiety, in the presence of a suitable an amination reagent;

k) reacting an intermediate of formula (XII) with formic acid, formamide and ammonia

$$C_{1-4}\text{alkyl} - C_{1-4}\text{alkyl} - C_{1-4}\text{a$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and H-C(=O)-Q₁ being defined as Q according to claim 1 provided that R^2 or at least one R^6 substituent is formyl;

amination of an intermediate of formula (XIII) by reaction with an intermediate of formula (XIV)

Application No.: 10/019,380

Office Action Dated: April 18, 2003

 $(O=)Q_{5} \xrightarrow{R^{1}} a^{1} a^{2} + R^{2a} \xrightarrow{NH_{2}} amination$ (XIV) (XIV) (I-c)

PATENT

Ont Cont

with R¹, G, and -a¹=a²-a³=a⁴- defined as in claim 1, and R^{2a}-NH-HQ₅ being defined as Q according to claim 1 provided that R² is other than hydrogen and is represented by R^{2a}, R⁴ is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R² and R⁴ substituents, carries also at least one hydrogen atom, in the presence of a suitable reducing agent;

m) reducing an intermediate of formula (XV)

$$(R^{6})_{2}N-(C_{1}-9alkyl)-NH-HQ_{5}$$

$$(R^{6})_{2}N-(C_{1}-9alkyl)-NH-HQ_{5}$$

$$(XV)$$

$$(R^{6})_{2}N-(C_{1}-9alkyl)-NH-HQ_{5}$$

$$(R^{6})_{2}N-(C_{1}-9alkyl)-NH-HQ_{5}$$

$$(I-c-1)$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and $(R^6)_2N$ -[($C_{1-9}alkyl$)CH₂OH]-NH-HQ₅ being defined as Q according to claim 1 provided that R^2 is other than hydrogen and is represented by $C_{1-10}alkyl$ substituted with $N(R_6)_2$ and with hydroxy, and the carbon atom carrying the hydroxy, carries also two hydrogen atoms, and provided that R^4 is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R^2 and R^4 substituents, carries also at least one hydrogen atom, with a suitable reducing agent;

n) deprotecting an intermediate of formula (XVI), (XVI-a) or (XVI-b)

Office Action Dated: April 18, 2003

PATENT

with G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and H-Q₁ being defined as Q according to claim 1 provided that R² or at least one R⁶ substituent is hydrogen, and R^{1a}-(A-O-H)_w, R^{1a'}-(A-O-H)₂ and R^{1a'}-(A-O-H)₃ being defined as R¹ according to claim 1 provided that R¹ is substituted with hydroxy, hydroxyC₁₋₆alkyl, or HO(-CH₂-CH₂-O)_n-, with w being an integer from 1 to 4 and P or P₁ being a suitable protecting group, with a suitable acid;

o) amination of an intermediate of formula (XVII)

Office Acti n Dated: April 18, 2003

PATENT

p) amination of an intermediate of formula (XIX)

$$H - C - C_{1-3} \text{alkyl} - NR^4$$

$$N = A_{1-3} \text{alkyl} - NR^4$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and $Q_6N-CH_2-C_{1-3}$ alkyl-NR⁴ being defined as Q according to claim 1 provided that in the definition of Q, X^2 is C_{2-4} alkyl-NR⁴, in the presence of **a suitable an** amination agent;

q) deprotecting an intermediate of formula (XXI)

$$P - O - G_1$$

$$Q - N - A_1 - A_2$$

$$Q - N - A_3 - A_4 - A_3$$

$$Q - N - A_4 - A_4$$

$$Q - N - A_4 - A_3$$

$$Q - N - A_4 - A_4$$

$$Q - N - A_4$$

$$Q - N$$

with R^1 , Q, and $-a^1=a^2-a^3=a^4$ defined as in claim 1, and HO-G₁ being defined as G according to claim 1 provided that G is substituted with hydroxy or HO-(CH₂CH₂O-)_n; and

r) reducing an intermediate of formula (XXII)

Page 15 of 23

Office Action Dated: April 18, 2003

PATENT

C'A Pont

$$Q = \begin{pmatrix} R^1 \\ O = \end{pmatrix} \begin{pmatrix} G \\ G \\ O = \end{pmatrix} \begin{pmatrix} G \\$$

with R¹, Q, and -a¹=a²-a³=a⁴- defined as in claim 1, and H-G₂-OH being defined as G according to claim 1 provided that G is substituted with hydroxy and the carbon atomicarrying the hydroxy substituent carries also at least one hydrogen, in the presence of a suitable reducing agent.

16. (previously amended) A product, comprising:

- (a) a first compound as claimed in claim 1; and
- (b) a second antiviral compound,

wherein said first compound and said second compound are simultaneously, separately or sequentially used in the treatment or the prevention of viral infections.

17. (previously amended) A pharmaceutical composition, comprising:

- (a) a pharmaceutically acceptable carrier; and
- (b) as active ingredients:
 - i. a first compound as claimed in claim 1; and
 - ii. a second antiviral compound.
- 18. (previously added) The process of claim 15, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into a therapeutically active non-toxic acid addition salt by treatment with an acid.

Application No.: 10/019,380

Office Action Dated: April 18, 2003

19. (previously added) The process of claim 15, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into a therapeutically active non-toxic base addition salt by treatment with alkali.

PATENT

The process of claim 15, further comprising the step of converting the acid addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into the free base by treatment with alkali.

- 21. (previously added) The process of claim 15, further comprising the step of converting the base addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into the free acid by treatment with acid.
- 22. (new) The process of claim 15, further comprising the step of converting said compound of formula (I'), stereochemically isomeric form, metal complex, quaternary amine or N-oxide form thereof, into a different form of compound of formula (I'), stereochemically isomeric form, metal complex, quaternary amine or N-oxide form thereof.