Fox derivatives, group cohomology, and Kazhdan's property (T)

Piotr Mizerka

Institute of Mathematics of Polish Academy of Sciences

22/03/2022

Introduction

Introduction

000000

Results

Outline

• We focus on finitely presented groups

- We focus on finitely presented groups
- Goal: study cohomology conditions generalizing property (T)

- We focus on finitely presented groups
- Goal: study cohomology conditions generalizing property (T)
- Idea: interpretation in a group ring setting

- We focus on finitely presented groups
- Goal: study cohomology conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus

- We focus on finitely presented groups
- Goal: study cohomology conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus
- Vanishing and reducibility of cohomology

- We focus on finitely presented groups
- Goal: study cohomology conditions generalizing property (T)
- Idea: interpretation in a group ring setting
- Fox calculus
- Vanishing and reducibility of cohomology
- Results

Introduction

000000

Relations between main concepts

• Fox derivatives define group cohomology

Relations between main concepts

Fox derivatives define group cohomology

 Kazhdan's property (T) can be viewed cohomologically

Introduction

000000

• We translate cohomological properties to group rings

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g\}$

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g\}$
- Finite-dimensional reduction: consider balls in G

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g\}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} G = \{\sum_{g \in G} \lambda_g g\}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)
- Elements of interest: Laplacians

- We translate cohomological properties to group rings
- ullet The group ring: $\mathbb{R} {\it G} = \{ \sum_{g \in {\it G}} \lambda_g g \}$
- Finite-dimensional reduction: consider balls in G
- Positivity in group rings (sums of squares)
- Elements of interest: Laplacians
- We work with matrices over $\mathbb{R}G$

Sums of squares (SOS)

Introduction

000000

Sums of squares (SOS)

• *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$

sums of squares (505)

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} G)$: $(M^*)_{i,j}=M^*_{j,i}$

sums of squares (505)

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} G)$: $(M^*)_{i,j}=M^*_{j,i}$

Sums of squares (SOS)

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} \mathcal{G})$: $(M^*)_{i,j} = M^*_{j,i}$

Definition

 $M \in M_n(\mathbb{R} G)$ is an SOS if there exist M_1, \ldots, M_l such that

$$M=M_1^*M_1+\cdots+M_l^*M_l.$$

Sums of squares (SOS)

- *-involution in $\mathbb{R} G$: $\xi^* = \sum_{g \in G} \xi_g g^{-1}$
- ullet *-involution in $M_{m,n}(\mathbb{R} \mathcal{G})$: $(M^*)_{i,j}=M^*_{j,i}$

Definition

 $M \in M_n(\mathbb{R}G)$ is an SOS if there exist M_1, \ldots, M_l such that

$$M = M_1^* M_1 + \cdots + M_I^* M_I.$$

• We decide SOS property with convex optimization

• Algebraic versions of Laplacians

- Algebraic versions of Laplacians
- $\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}}$

- Algebraic versions of Laplacians
- $\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}}$
- ullet Upper-Laplacian: $\Delta_i^+ = d_i^* d_i \in M_{k_i}(\mathbb{R} G)$

- Algebraic versions of Laplacians
- $\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}}$
- Upper-Laplacian: $\Delta_i^+ = d_i^* d_i \in M_{k_i}(\mathbb{R}G)$
- Lower-Laplacian: $\Delta_i^- = d_{i-1}d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

- Algebraic versions of Laplacians
- $(\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}}$
- Upper-Laplacian: $\Delta_i^+ = d_i^* d_i \in M_{k_i}(\mathbb{R}G)$
- Lower-Laplacian: $\Delta_i^- = d_{i-1}d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$
- Laplacian of interest: $\Delta_i = \Delta_i^+ + \Delta_i^-$

- Algebraic versions of Laplacians
- $\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}}$
- Upper-Laplacian: $\Delta_i^+ = d_i^* d_i \in M_{k_i}(\mathbb{R}G)$
- Lower-Laplacian: $\Delta_i^- = d_{i-1}d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$
- Laplacian of interest: $\Delta_i = \Delta_i^+ + \Delta_i^-$
- ullet We work mostly with Δ_1

Fox calculus

•0000000

Fox calculus

Definition of Fox derivatives

Introduction

Definition of Fox derivatives

Fox calculus

0.000000

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Definition of Fox derivatives

Fox calculus

0.000000

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• Fox derivatives: $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$

- $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$
- Fox derivatives: $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$
- $\frac{\partial}{\partial s_i}: \mathbb{R}F_n \to \mathbb{R}G, \ F_n = \langle s_1, \dots, s_n \rangle$

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• Fox derivatives: $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$

•
$$\frac{\partial}{\partial s_i}: \mathbb{R}F_n \to \mathbb{R}G, \ F_n = \langle s_1, \dots, s_n \rangle$$

• Product rule: $\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

• Fox derivatives: $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$

$$\bullet \ \frac{\partial}{\partial s_j}: \mathbb{R}F_n \to \mathbb{R}G, \ F_n = \langle s_1, \ldots, s_n \rangle$$

• Product rule:
$$\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$$

•
$$\frac{\partial s_j}{\partial s_j} = 1$$
, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$

Definition of Fox derivatives

- $G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$
- Fox derivatives: $\frac{\partial r_i}{\partial s_i} \in \mathbb{R}G$
- $\bullet \ \frac{\partial}{\partial s_j}: \mathbb{R} F_n \to \mathbb{R} G, \ F_n = \langle s_1, \ldots, s_n \rangle$
- Product rule: $\frac{\partial (uv)}{\partial s_j} = \frac{\partial u}{\partial s_j} + u \frac{\partial v}{\partial s_j}$
- $\frac{\partial s_j}{\partial s_j} = 1$, $\frac{\partial s_j^{-1}}{\partial s_j} = -s_j^{-1}$, and $\frac{\partial s_i^{\pm 1}}{\partial s_j} = 0$ for $i \neq j$
- Defined by Ralph. H. Fox in 1950s

•
$$F_2 = \langle a, b \rangle$$
:

• $F_2 = \langle a, b \rangle$:

$$\frac{\partial(aba^{-1}b^{-1})}{\partial b} = \frac{\partial(ab)}{\partial b} + ab\frac{\partial(a^{-1}b^{-1})}{\partial b}
= \frac{\partial a}{\partial b} + a\frac{\partial b}{\partial b} + ab\left(\frac{\partial a^{-1}}{\partial b} + a^{-1}\frac{\partial b^{-1}}{\partial b}\right)
= a - aba^{-1}b^{-1}$$

• $F_2 = \langle a, b \rangle$:

$$\frac{\partial(aba^{-1}b^{-1})}{\partial b} = \frac{\partial(ab)}{\partial b} + ab\frac{\partial(a^{-1}b^{-1})}{\partial b}
= \frac{\partial a}{\partial b} + a\frac{\partial b}{\partial b} + ab\left(\frac{\partial a^{-1}}{\partial b} + a^{-1}\frac{\partial b^{-1}}{\partial b}\right)
= a - aba^{-1}b^{-1}$$

• $\mathbb{Z}^2 = \langle a, b | aba^{-1}b^{-1} \rangle$:

$$\frac{\partial (aba^{-1}b^{-1})}{\partial b} = a - aba^{-1}b^{-1} = a - 1$$

Results

Geometric interpretation

Geometric interpretation

Introduction

• Similarly, denoting $r = aba^{-1}b^{-1}$, we get: $\frac{\partial r}{\partial a} = 1 - b$, $\frac{\partial r}{\partial a^{-1}} = -a + ab$, $\frac{\partial r}{\partial b^{-1}} = -ab + b$

Geometric interpretation

- Similarly, denoting $r = aba^{-1}b^{-1}$, we get: $\frac{\partial r}{\partial a} = 1 b$, $\frac{\partial r}{\partial a^{-1}} = -a + ab, \ \frac{\partial r}{\partial b^{-1}} = -ab + b$
- \bullet $\frac{\partial r}{\partial a} + \frac{\partial r}{\partial b} + \frac{\partial r}{\partial a^{-1}} + \frac{\partial r}{\partial b^{-1}} = 0$

Geometric interpretation

- Similarly, denoting $r = aba^{-1}b^{-1}$, we get: $\frac{\partial r}{\partial a} = 1 b$, $\frac{\partial r}{\partial a^{-1}} = -a + ab, \ \frac{\partial r}{\partial b^{-1}} = -ab + b$
- \bullet $\frac{\partial r}{\partial a} + \frac{\partial r}{\partial b} + \frac{\partial r}{\partial a-1} + \frac{\partial r}{\partial b-1} = 0$

Vanishing and reducibility of cohomology

Computing cohomology

Computing cohomology

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

Fox calculus

00000000

$$\bullet \ G = \langle s_1, \dots, s_n | r_1, \dots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

Vanishing and reducibility of cohomology

Computing cohomology

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

• Jacobian:
$$d_1 = \left[rac{\partial r_i}{\partial s_j}
ight]$$

•
$$G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

- ullet Jacobian: $d_1 = \left[rac{\partial r_i}{\partial s_j}
 ight]$
- How to compute $H^*(G, V)$, V = G-module?

Computing cohomology

$$\bullet \ G = \langle s_1, \ldots, s_n | r_1, \ldots, r_m \rangle$$

$$\bullet \ d_0 = \begin{bmatrix} 1 - s_i \\ \vdots \\ 1 - s_n \end{bmatrix}$$

- ullet Jacobian: $d_1 = \left[rac{\partial r_i}{\partial s_j}
 ight]$
- How to compute $H^*(G, V)$, V = G-module?
- $0 \to V \xrightarrow{d_0} V^n \xrightarrow{d_1} V^m \to \cdots$ (Lyndon, 1950s)

$$\bullet \ \Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R}G)$$

- $\bullet \ \Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R} G)$
- $\bullet \ \Delta_1^- = d_0 d_0^* \in M_n(\mathbb{R} G)$

- $\bullet \ \Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R}G)$
- $\Delta_1^- = d_0 d_0^* \in M_n(\mathbb{R}G)$
- Laplacian of interest: $\Delta_1 = \Delta_1^- + \Delta_1^+$

Vanishing and reducibility of cohomology

Laplacians

- $\bullet \ \Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R}G)$
- $\Delta_1^- = d_0 d_0^* \in M_n(\mathbb{R}G)$
- Laplacian of interest: $\Delta_1 = \Delta_1^- + \Delta_1^+$
- Higher Fox differentials: d_i , i > 2

Vanishing and reducibility of cohomology

Laplacians

- $\Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R}G)$
- $\bullet \ \Delta_1^- = d_0 d_0^* \in M_n(\mathbb{R}G)$
- Laplacian of interest: $\Delta_1 = \Delta_1^- + \Delta_1^+$
- Higher Fox differentials: d_i , i > 2
- $\bullet \ \Delta_{:}^{+} = d_{i}^{*}d_{i} \in M_{k_{i}}(\mathbb{R}G), \ \Delta_{i}^{-} = d_{i-1}^{*}d_{i-1} \in M_{k_{i}}(\mathbb{R}G)$

- $\Delta_1^+ = d_1^* d_1 \in M_n(\mathbb{R}G)$
- $\bullet \ \Delta_1^- = d_0 d_0^* \in M_n(\mathbb{R}G)$
- Laplacian of interest: $\Delta_1 = \Delta_1^- + \Delta_1^+$
- Higher Fox differentials: d_i , i > 2
- $\Delta_i^+ = d_i^* d_i \in M_{k_i}(\mathbb{R}G), \ \Delta_i^- = d_{i-1}^* d_{i-1} \in M_{k_i}(\mathbb{R}G)$
- Higher Laplacians: $\Delta_i = \Delta_i^+ + \Delta_i^-$

Higher differentials

Higher differentials

$$\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i = ?} (\mathbb{R}G)^{k_{i+1}}$$

$$\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i=?} (\mathbb{R}G)^{k_{i+1}}$$

• Row space of d_i equals $\{v \in M_{1,k_i}(\mathbb{R}G)|vd_{i-1}=0\}$

$$\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i=?} (\mathbb{R}G)^{k_{i+1}}$$

- Row space of d_i equals $\{v \in M_{1,k_i}(\mathbb{R}G)|vd_{i-1}=0\}$
- Thus, $d_i d_{i-1} = 0$

Higher differentials

$$\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i = ?} (\mathbb{R}G)^{k_{i+1}}$$

- Row space of d_i equals $\{v \in M_{1,k_i}(\mathbb{R}G) | vd_{i-1} = 0\}$
- Thus, $d_i d_{i-1} = 0$
- d_i can be infinite for i > 2

Higher differentials

$$\bullet \ (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i = ?} (\mathbb{R}G)^{k_{i+1}}$$

- Row space of d_i equals $\{v \in M_{1,k_i}(\mathbb{R}G)|vd_{i-1}=0\}$
- Thus, $d_i d_{i-1} = 0$
- d_i can be infinite for $i \ge 2$
- Unlike d_0 and d_1 , no explicit formula

Results

Application: one relator groups

• Lyndon, 1950

- Lyndon, 1950
- $G = \langle s_1, ..., s_n | r = Q^q \rangle$, q = 1, 2, ...

• Lyndon, 1950

- $G = \langle s_1, \dots, s_n | r = Q^q \rangle$, $q = 1, 2, \dots$
- $S = 1 + Q + \ldots + Q^{q-1}$

- Lyndon, 1950
- $G = \langle s_1, ..., s_n | r = Q^q \rangle$, q = 1, 2, ...
- $S = 1 + Q + \ldots + Q^{q-1}$
- $H^2(G, V) =_{(Q-1)} V/S(\frac{\partial Q}{\partial s_1}, \dots, \frac{\partial Q}{\partial s_n})V$

Application: one relator groups

- Lyndon, 1950
- $G = \langle s_1, ..., s_n | r = Q^q \rangle$, q = 1, 2, ...
- $S = 1 + Q + \ldots + Q^{q-1}$
- $H^2(G, V) =_{(Q-1)} V/S(\frac{\partial Q}{\partial s_1}, \dots, \frac{\partial Q}{\partial s_n})V$
- $H^{i}(G, V) =_{S} V/(Q-1)V$, i = 3, 5, ...

Application: one relator groups

- Lyndon, 1950
- $G = \langle s_1, ..., s_n | r = Q^q \rangle$, q = 1, 2, ...
- $S = 1 + Q + \ldots + Q^{q-1}$
- $H^2(G, V) =_{(Q-1)} V/S(\frac{\partial Q}{\partial s_1}, \dots, \frac{\partial Q}{\partial s_n})V$
- $H^{i}(G, V) =_{S} V/(Q-1)V$, i = 3, 5, ...
- $H^{i}(G, V) =_{(Q-1)} V/SV$, i = 4, 6, ...

• vanishing = vanishing for every unitary representation

- vanishing = vanishing for every unitary representation
- When $H^1(G, \rho) = 0$ for every unitary representation ρ ?

- vanishing = vanishing for every unitary representation
- When $H^1(G, \rho) = 0$ for every unitary representation ρ ?
- $H^1 = 0$ iff G has property (T)

- vanishing = vanishing for every unitary representation
- When $H^1(G, \rho) = 0$ for every unitary representation ρ ?
- $H^1 = 0$ iff G has property (T)
- \bullet (T) \approx actions on Hilbert spaces have fixed points

- vanishing = vanishing for every unitary representation
- When $H^1(G, \rho) = 0$ for every unitary representation ρ ?
- $H^1 = 0$ iff G has property (T)
- (T) \approx actions on Hilbert spaces have fixed points
- (T) iff $\Delta^2 \lambda \Delta = SOS$ for $\lambda > 0$ (Ozawa, 2016)

- vanishing = vanishing for every unitary representation
- When $H^1(G, \rho) = 0$ for every unitary representation ρ ?
- $H^1 = 0$ iff G has property (T)
- (T) \approx actions on Hilbert spaces have fixed points
- (T) iff $\Delta^2 \lambda \Delta = SOS$ for $\lambda > 0$ (Ozawa, 2016)
- $\Delta = d_0^* d_0 = \sum_{i=1}^n (1-s_i)^* (1-s_i)$

Reducibility of cohomology

• Bader and Nowak, 2020

- Bader and Nowak, 2020
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

- Bader and Nowak, 2020
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

• Reduced cohomology: $\overline{H}^i = \operatorname{Ker} d_i / \overline{\operatorname{Im} d_{i-1}}$

Introduction

- Bader and Nowak, 2020
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

- Reduced cohomology: $\overline{H}^i = \operatorname{Ker} d_i / \overline{\operatorname{Im} d_{i-1}}$
- H^i is reduced if it coincides with \overline{H}^i

- Bader and Nowak, 2020
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

- Reduced cohomology: $\overline{H}^i = \operatorname{Ker} d_i / \overline{\operatorname{Im} d_{i-1}}$
- H^i is reduced if it coincides with \overline{H}^i
- \bullet Equivalently, H^i is Hausdorff in the quotient topology

- Bader and Nowak, 2020
- Suppose H^* is given by

$$\cdots \rightarrow C_{i-1} \xrightarrow{d_i} C_i \xrightarrow{d_{i+1}} C_{i+1} \rightarrow \cdots$$

- Reduced cohomology: $\overline{H}^i = \operatorname{Ker} d_i / \overline{\operatorname{Im} d_{i-1}}$
- H^i is reduced if it coincides with \overline{H}^i
- \bullet Equivalently, H^i is Hausdorff in the quotient topology
- Caution: $\overline{H}^i \neq \text{Ker} (H^i(x) \to H^i(\{x_0\}))$

Introduction

• reducibility = reducibility for every unitary representation

- $\bullet \ \ reducibility = reducibility \ for \ every \ unitary \ representation \\$
- Obviously, vanishing implies reducibility

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

- reducibility = reducibility for every unitary representation
- Obviously, vanishing implies reducibility
- The converse holds in dimension one
- It does not hold in higher dimensions:

Proposition (Dymara-Januszkiewicz)

For any $i \ge 2$ there exists a group G_i with reduced H^i and $H^i(G, \rho_0) \ne 0$ for some unitary representation ρ_0 .

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} \to \cdots$$

$$\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

• Suppose we compute cohomology of *G* from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

• Suppose we compute cohomology of G from

$$\cdots \to (\mathbb{R} G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R} G)^{k_i} \xrightarrow{d_i} (\mathbb{R} G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

• H^i vanish and H^{i+1} are reduced.

• Suppose we compute cohomology of G from

$$\cdots \to (\mathbb{R}G)^{k_{i-1}} \xrightarrow{d_{i-1}} (\mathbb{R}G)^{k_i} \xrightarrow{d_i} (\mathbb{R}G)^{k_{i+1}} \to \cdots$$

 $\bullet \ \Delta_i = d_i^* d_i + d_{i-1} d_{i-1}^* \in M_{k_i}(\mathbb{R}G)$

Theorem (Bader and Nowak, 2020)

TFAE for G and $i \ge 1$:

- Hⁱ vanish and Hⁱ⁺¹ are reduced.
- $\Delta_i \lambda I = SOS$ for some $\lambda > 0$.

Introduction

• Equivalence on representation level:

• Equivalence on representation level:

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho) = 0$ and $H^{i+1}(G, \rho)$ is reduced iff $\Delta_{i}(\rho) - \lambda I \succeq 0$ for some $\lambda > 0$.

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G,\rho)=0$ and $H^{i+1}(G,\rho)$ is reduced iff $\Delta_{i}(\rho)-\lambda I\succeq 0$ for some $\lambda>0$.

• Translation to the group ring setting:

The two proof's steps

Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

$$H^{i}(G,\rho)=0$$
 and $H^{i+1}(G,\rho)$ is reduced iff $\Delta_{i}(\rho)-\lambda I\succeq 0$ for some $\lambda>0$.

Translation to the group ring setting:

The two proof's steps

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G,\rho)=0$ and $H^{i+1}(G,\rho)$ is reduced iff $\Delta_{i}(\rho)-\lambda I\succeq 0$ for some $\lambda>0$.

• Translation to the group ring setting:

Proposition (Bader and Nowak, 2020)

 $\Delta_i(\rho) - \lambda I \succeq 0$ for each unitary ρ iff $\Delta_i - \lambda I = SOS$ for some $\lambda > 0$.

$$ullet$$
 Reminder: $\Delta_j^+=d_j^*d_j$, $\Delta_j^-=d_{j-1}d_{j-1}^*$

$$ullet$$
 Reminder: $\Delta_j^+=d_j^*d_j$, $\Delta_j^-=d_{j-1}d_{j-1}^*$

• Reminder: $\Delta_{i}^{+} = d_{i}^{*}d_{j}, \ \Delta_{i}^{-} = d_{j-1}d_{j-1}^{*}$

Theorem (Bader and Nowak, 2020)

 $H^{i}(G,\rho)$ is reduced for every unitary representation ρ if at least one of the following conditions holds:

ullet Reminder: $\Delta_j^+ = d_j^* d_j$, $\Delta_j^- = d_{j-1} d_{j-1}^*$

Theorem (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced for every unitary representation ρ if at least one of the following conditions holds:

• There exists $\lambda > 0$ such that $(\Delta_{i-1}^+)^2 - \lambda \Delta_{i-1}^+ = SOS$.

ullet Reminder: $\Delta_j^+=d_j^*d_j$, $\Delta_j^-=d_{j-1}d_{j-1}^*$

Theorem (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced for every unitary representation ρ if at least one of the following conditions holds:

- There exists $\lambda > 0$ such that $(\Delta_{i-1}^+)^2 \lambda \Delta_{i-1}^+ = SOS$.
- There exists $\lambda > 0$ such that $(\Delta_i^-)^2 \lambda \Delta_i^- = SOS$.

ullet Reminder: $\Delta_j^+=d_j^*d_j$, $\Delta_j^-=d_{j-1}d_{j-1}^*$

Theorem (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced for every unitary representation ρ if at least one of the following conditions holds:

- There exists $\lambda > 0$ such that $(\Delta_{i-1}^+)^2 \lambda \Delta_{i-1}^+ = SOS$.
- There exists $\lambda > 0$ such that $(\Delta_i^-)^2 \lambda \Delta_i^- = SOS$.

• The converse implications remain open

Introduction

• Equivalence on representation level:

• Equivalence on representation level:

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced iff one of the following holds:

Fox calculus

Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced iff one of the following holds:

• $(\Delta_{i-1}^+(\rho))^2 - \lambda \Delta_{i-1}^+(\rho) \succeq 0$ for some $\lambda > 0$.

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced iff one of the following holds:

- $(\Delta_{i-1}^+(\rho))^2 \lambda \Delta_{i-1}^+(\rho) \succeq 0$ for some $\lambda > 0$.
- $(\Delta_i^-(\rho))^2 \lambda \Delta_i^-(\rho) \succeq 0$ for some $\lambda > 0$.

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced iff one of the following holds:

- $(\Delta_{i-1}^+(\rho))^2 \lambda \Delta_{i-1}^+(\rho) \succeq 0$ for some $\lambda > 0$.
- $(\Delta_i^-(\rho))^2 \lambda \Delta_i^-(\rho) \succeq 0$ for some $\lambda > 0$.

• M = SOS implies $M(\rho) \succeq 0$ for every unitary ρ

• Equivalence on representation level:

Proposition (Bader and Nowak, 2020)

 $H^{i}(G, \rho)$ is reduced iff one of the following holds:

- $(\Delta_{i-1}^+(\rho))^2 \lambda \Delta_{i-1}^+(\rho) \succeq 0$ for some $\lambda > 0$.
- $(\Delta_i^-(\rho))^2 \lambda \Delta_i^-(\rho) \succeq 0$ for some $\lambda > 0$.

- $M = \mathsf{SOS}$ implies $M(\rho) \succeq 0$ for every unitary ρ
- Does the converse hold for $M=(\Delta_i^\pm)^2-\lambda\Delta_i^\pm$?

Introduction

Results

(joint work with M. Kaluba and P. Nowak)

Introduction

• When $M \in M_n(\mathbb{R}G)$ is an SOS?

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^*Py$.

- When $M \in M_n(\mathbb{R}G)$ is an SOS?
- $y = I_n \otimes x \in M_{mn,n}(\mathbb{R}G)$, x column with half-basis for M

Lemma

M = SOS iff there exists $P \succeq 0$ such that $M = y^*Py$.

• Convex optimization for $M = \Delta_1 - \lambda I$:

maximize: λ

subject to: $M_{i,j}(g) = \langle \delta_{i,j} \otimes \delta_g, P \rangle$,

 $P \succeq 0$.

• Adding relations preserves $\Delta_1 - \lambda I$ being SOS:

• Adding relations preserves $\Delta_1 - \lambda I$ being SOS:

• Adding relations preserves $\Delta_1 - \lambda I$ being SOS:

Proposition

If Δ_1 is an SOS for $G = \langle S|R_1 \rangle$, then it is an SOS for $G' = \langle S | R_1 \cup R_2 \rangle$.

• Adding relations preserves $\Delta_1 - \lambda I$ being SOS:

Proposition

If Δ_1 is an SOS for $G = \langle S|R_1 \rangle$, then it is an SOS for $G' = \langle S|R_1 \cup R_2 \rangle$.

• Free products preserve $(\Delta_2^-)^2 - \lambda \Delta_2^-$ being SOS:

• Adding relations preserves $\Delta_1 - \lambda I$ being SOS:

Proposition

If Δ_1 is an SOS for $G = \langle S|R_1 \rangle$, then it is an SOS for $G' = \langle S | R_1 \cup R_2 \rangle$.

• Free products preserve $(\Delta_2^-)^2 - \lambda \Delta_2^-$ being SOS:

Proposition

If $(\Delta_2^-)^2 - \lambda \Delta_2^-$ is an SOS for G_1 and G_2 , then it is an SOS for $G = G_1 * G_2$.

Introduction

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

Introduction

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•
$$G = \langle \{E_{i,j}\}| \cdots \rangle$$

Introduction

Reducibility of the second cohomology for $SL_3(\mathbb{Z})$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

•
$$G = \langle \{E_{i,j}\}|\cdots \rangle$$

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

• $G = \langle \{E_{i,j}\}| \cdots \rangle$

Theorem (Kaluba, M., Nowak)

For G, $\Delta_1 - \lambda I = SOS$ for any $\lambda \leq 0.32$.

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

• $G = \langle \{E_{i,j}\}| \cdots \rangle$

Theorem (Kaluba, M., Nowak)

For G, $\Delta_1 - \lambda I = SOS$ for any $\lambda \leq 0.32$.

• We use the following presentation of $SL_3(\mathbb{Z})$:

$$SL_3(\mathbb{Z}) = \langle \{E_{i,j}\}| \cdots, (E_{1,2}E_{2,1}^{-1}E_{1,2})^4 \rangle$$

• $G = \langle \{E_{i,j}\}| \cdots \rangle$

Theorem (Kaluba, M., Nowak)

For G, $\Delta_1 - \lambda I = SOS$ for any $\lambda \leq 0.32$.

Corollary

The first cohomology of $SL_3(\mathbb{Z})$ vanishes, and the second is reduced.

•
$$C_n = \langle a | a^n \rangle$$

•
$$C_n = \langle a | a^n \rangle$$

Introduction

$$ullet$$
 $d_1=rac{\partial (a^n)}{\partial a}=1+a+\ldots+a^{n-1}$, and thus $d_1^*=d_1$

- $C_n = \langle a | a^n \rangle$
- $d_1 = \frac{\partial(a^n)}{\partial a} = 1 + a + \ldots + a^{n-1}$, and thus $d_1^* = d_1$
- \bullet $\Delta_2^- = d_1 d_1^* = d_1^2 = n(1 + \ldots + a^{n-1}) = nd_1$

- $C_n = \langle a | a^n \rangle$
- ullet $d_1=rac{\partial (a^n)}{\partial a}=1+a+\ldots+a^{n-1}$, and thus $d_1^*=d_1$
- $(\Delta_2^-)^2 n^2 \Delta_2^- = n^2 d_1^2 n^2 d_1^2 = 0 = SOS$

- $C_n = \langle a | a^n \rangle$
- ullet $d_1=rac{\partial (a^n)}{\partial a}=1+a+\ldots+a^{n-1}$, and thus $d_1^*=d_1$
- $(\Delta_2^-)^2 n^2 \Delta_2^- = n^2 d_1^2 n^2 d_1^2 = 0 = SOS$
- Corollary: $*_{k=1}^{m} C_{n_k}$ has reduced second cohomologies

Introduction

Thank you for attention!