5. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Wintersemester 2020/21

11. Dezember 2020

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 47 des Vorlesungsskripts behandelt.

Aufgabe 17 (K):

Untersuchen Sie die folgenden Reihen auf Konvergenz, absolute Konvergenz und Divergenz:

(i)
$$\sum_{n=1}^{\infty} \frac{n^5}{5^n},$$

(ii)
$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n}$$

(i)
$$\sum_{n=1}^{\infty} \frac{n^5}{5^n}$$
,
(iii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)^n n!}$,

(ii)
$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n},$$
(iv)
$$\sum_{n=1}^{\infty} (1 + (-1)^n)^n \left(\frac{n+3}{4n}\right)^n.$$

Lösungsvorschlag zu Aufgabe 17:

(i) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=1}^{\infty} \frac{n^5}{5^n}$ gegeben.

Behauptung: Die Reihe ist absolut konvergent.

<u>Beweis:</u> Definiere die Folge (a_n) durch

$$a_n := \frac{n^5}{5^n} \quad (n \in \mathbb{N}).$$

Es gilt:

$$\sqrt[n]{|a_n|} = \frac{1}{5} \cdot (\sqrt[n]{n})^5 = \frac{1}{5} \cdot \underbrace{\sqrt[n]{n} \cdots \sqrt[n]{n}}_{\text{5 Faktoren}} \xrightarrow{n \to \infty} \frac{1}{5} \cdot \underbrace{1 \cdots 1}_{\text{5 Faktoren}} < 1.$$

Somit ist die Reihe $\sum_{n=1}^{\infty} \frac{n^5}{5^n}$ nach dem Wurzelkriterium absolut konvergent.

(ii) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=3}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n}$ gegeben.

Behauptung: Die Reihe ist konvergent, aber nicht absolut konvergent.

<u>Beweis:</u> Definiere die Folge (b_n) durch

$$b_n := \frac{\sqrt{n+1}}{n} \quad (n \in \mathbb{N}).$$

Es gilt

$$\frac{\sqrt{n+1}}{n} = \sqrt{\frac{n+1}{n^2}} = \sqrt{\frac{1}{n} + \frac{1}{n^2}} \xrightarrow{n \to \infty} 0,$$

d.h. (b_n) ist eine Nullfolge. Weiter gilt (für alle $n \in \mathbb{N}$):

$$b_{n+1} \le b_n \quad \Leftrightarrow \quad \frac{\sqrt{n+2}}{n+1} \le \frac{\sqrt{n+1}}{n} \quad \Leftrightarrow \quad \frac{n+2}{(n+1)^2} \le \frac{n+1}{n^2}$$

 $\Leftrightarrow \quad n^3 + 2n^2 \le n^3 + 3n^2 + 3n + 1 \quad \Leftrightarrow \quad 0 \le n^2 + 3n + 1.$

Letzteres ist eine wahre Aussage, sodass (b_n) insgesamt eine monoton fallende Nullfolge ist. Nach dem Leibnizkriterium (Satz 3.3) ist die Reihe daher konvergent. Des Weiteren gilt

$$\left| (-1)^{n+1} \frac{\sqrt{n+1}}{n} \right| = \frac{\sqrt{n+1}}{n} \ge \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}} \ge \frac{1}{n} \quad (n \in \mathbb{N}).$$

Da die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, divergiert nach dem Minorantenkriterium daher die Reihe $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{\sqrt{n+1}}{n} \right|$ ebenfalls. Somit ist die Reihe $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n}$ nicht absolut konvergent.

(iii) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)^n n!}$ gegeben.

Behauptung: Die Reihe ist absolut konvergent.

Beweis: Definiere die Folge (a_n) durch

$$a_n := \frac{(2n)!}{(3n)^n n!} \quad (n \in \mathbb{N}).$$

Insbesondere ist $|a_n| > 0$ für alle $n \in \mathbb{N}$. Daher gilt:

$$\begin{split} \left| \frac{a_{n+1}}{a_n} \right| &= \frac{(2n+2)!}{(3n+3)^{n+1}(n+1)!} \cdot \frac{(3n)^n n!}{(2n)!} = \frac{(2n+2) \cdot (2n+1)}{(3n+3) \cdot (n+1)} \cdot \left(\frac{3n}{3n+3} \right)^n \\ &= \frac{(2n+2) \cdot (2n+1)}{3(n+1)^2} \cdot \left(\frac{n}{n+1} \right)^n = \frac{2}{3} \cdot \frac{2n+1}{n+1} \cdot \left(\frac{n+1}{n} \right)^{-n} \\ &= \frac{2}{3} \cdot \frac{2+\frac{1}{n}}{1+\frac{1}{n}} \cdot \left(1+\frac{1}{n} \right)^{-n} \xrightarrow{n \to \infty} \frac{2}{3} \cdot 2 \cdot e^{-1} = \frac{4}{3e}. \end{split}$$

Somit gilt $\limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{4}{3\mathrm{e}}<1$, nach dem Quotientenkriterium konvergiert die Reihe $\sum_{n=1}^{\infty}\frac{(2n)!}{(3n)^n n!}$ daher absolut.

(iv) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=1}^{\infty} (1 + (-1)^n)^n \left(\frac{n+3}{4n}\right)^n$ gegeben.

Behauptung: Die Reihe ist absolut konvergent.

<u>Beweis:</u> Definiere die Folge (a_n) durch

$$a_n := (1 + (-1)^n)^n \left(\frac{n+3}{4n}\right)^n \quad (n \in \mathbb{N}).$$

Es gilt:

$$\sqrt[n]{|a_n|} = \sqrt[n]{a_n} = \begin{cases} \frac{n+3}{2n}, & n \text{ gerade,} \\ 0, & n \text{ ungerade.} \end{cases}$$

Betrachte die Teilfolgen (a_{2k}) und (a_{2k-1}) . Es gilt:

$$\sqrt[2k]{|a_{2k}|} = \frac{2k+3}{4k} = \frac{2+\frac{3}{k}}{4} \xrightarrow{k \to \infty} \frac{1}{2},$$

$$\sqrt[2k+1]{|a_{2k+1}|} = 0 \xrightarrow{k \to \infty} 0.$$

Somit gilt $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2} < 1$ und daher ist die Reihe $\sum_{n=1}^{\infty} (1+(-1)^n)^n \left(\frac{n+3}{4n}\right)^n$ nach dem Wurzelkriterium absolut konvergent.

Aufgabe 18:

(i) Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n^2 + n}{n^3 + 1},$$
 (b)
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{(-1)^n}{n} \right)^{n^2}.$$

(ii) Es sei (a_n) eine Folge mit $|a_n| > 0$ für alle $n \in \mathbb{N}$. Dann kann man zeigen, dass folgende Ungleichungskette gilt:

$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \le \liminf_{n \to \infty} \sqrt[n]{|a_n|} \le \limsup_{n \to \infty} \sqrt[n]{|a_n|} \le \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \tag{1}$$

Zeigen Sie unter Verwendung von (1), dass gilt:

$$\frac{n}{\sqrt[n]{n!}} \to e \quad (n \to \infty).$$

Lösungsvorschlag zu Aufgabe 18:

(i) (a) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=0}^{\infty} \frac{(-1)^n n^2 + n}{n^3 + 1}$ gegeben.

Behauptung: Die Reihe ist konvergent, aber nicht absolut konvergent.

<u>Beweis:</u> Definiere die Folgen $(a_n), (b_n)$ und (c_n) durch

$$a_n := (-1)^n \underbrace{\frac{n^2}{n^3 + 1}}_{=:b_n} + \underbrace{\frac{n}{n^3 + 1}}_{=:c_n} \quad (n \in \mathbb{N}).$$

Es gilt:

$$b_n = \frac{n^2}{n^3 + 1} = \frac{1}{n + \frac{1}{n^2}} \le \frac{1}{n} \xrightarrow{n \to \infty} 0,$$

d.h. (b_n) ist eine Nullfolge. Weiter gilt für $n \in \mathbb{N}$:

$$b_{n+1} \le b_n \quad \Leftrightarrow \quad \frac{(n+1)^2}{(n+1)^3 + 1} \le \frac{n^2}{n^3 + 1} \quad \Leftrightarrow \quad (n+1)^2 \cdot (n^3 + 1) \le n^2 \cdot ((n+1)^3 + 1)$$

$$\Leftrightarrow \quad n^5 + n^2 + 2n^4 + 2n + n^3 + 1 \le n^5 + 3n^4 + 3n^3 + 2n^2$$

$$\Leftrightarrow \quad 0 \le n^4 + 2n^3 + n^2 - 2n - 1 \quad \Leftrightarrow \quad 0 \le n^4 + 2n^3 + (n-1)^2 - 2.$$

Letzteres ist für alle $n \in \mathbb{N}$ erfüllt, daher ist (b_n) eine monoton fallende Nullfolge. Nach dem Leibnizkriterium ist die Reihe $\sum_{n=1}^{\infty} (-1)^n b_n$ konvergent. Des Weiteren gilt:

$$|c_n| = \frac{1}{n^2 + \frac{1}{n}} \le \frac{1}{n^2} \quad (n \in \mathbb{N}).$$

Da die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert, ist die Reihe $\sum_{n=1}^{\infty} c_n$ nach dem Majorantenkriterium ebenfalls konvergent (sogar absolut konvergent). Insgesamt erhalten wir daraus die Konvergenz der Reihe $\sum_{n=1}^{\infty} a_n$.

Wir prüfen nun die Reihe noch auf absolute Konvergenz. Es gilt für $n \ge 2$:

$$|a_n| = \left| \frac{(-1)^n n^2 + n}{1 + n^3} \right| \ge \frac{n^2 - n}{1 + n^3} = \frac{1 - \frac{1}{n}}{\frac{1}{n^2} + n} \ge \frac{1 - \frac{1}{n}}{2n} \ge \frac{1}{4n},$$

wobei wir ausgenutzt haben, dass gilt: $\frac{1}{n^2} \le 1 \le n \ (n \in \mathbb{N})$ und $1 - \frac{1}{n} \ge \frac{1}{2}$ für $n \ge 2$. Nach dem Minorantenkriterium divergiert die Reihe $\sum_{n=1}^{\infty} |a_n|$, die Reihe $\sum_{n=1}^{\infty} a_n$ ist also nicht absolut konvergent

(b) <u>Voraussetzung:</u> Es sei die Reihe $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{(-1)^n}{n}\right)^{n^2}$ gegeben.

Behauptung: Die Reihe ist absolut konvergent

<u>Beweis:</u> Definiere die Folge (a_n) durch

$$a_n := \frac{1}{3^n} \left(1 + \frac{(-1)^n}{n} \right)^{n^2} \quad (n \in \mathbb{N}).$$

Wir betrachten nun die Folge $b_n:=\sqrt[n]{|a_n|}=\frac{1}{3}\left(1+\frac{(-1)^n}{n}\right)^n \ (n\in\mathbb{N})$. Für die beiden Teilfolgen (b_{2k}) und (b_{2k-1}) gilt

$$b_{2k} = \frac{1}{3} \left(1 + \frac{1}{2k} \right)^{2k} \xrightarrow{k \to \infty} \frac{e}{3},$$

$$b_{2k-1} = \frac{1}{3} \left(1 - \frac{1}{2k-1} \right)^{2k-1} \xrightarrow{k \to \infty} \frac{1}{3e}.$$

Da die Folge (b_n) keine weiteren Häufungswerte hat, gilt $\limsup_{n\to\infty} b_n = \limsup_{n\to\infty} \sqrt[n]{|a_n|} = \frac{e}{3} < 1$, da e < 3. Nach dem Wurzelkriterium ist die Reihe $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{(-1)^n}{n}\right)^{n^2}$ daher absolut konvergent.

(ii) <u>Behauptung:</u> Es gilt: $\frac{n}{\sqrt[n]{n!}} \to e$ für $n \to \infty$.

<u>Beweis:</u> Wir definieren die Folge (a_n) durch $a_n := \frac{n^n}{n!}$ $(n \in \mathbb{N})$. Dann gilt: $|a_n| = a_n > 0$ für alle $n \in \mathbb{N}$. Damit gilt die Ungleichungskette (1) und wir berechnen:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^{(n+1)}}{n^n} \cdot \frac{n!}{(n+1)!} = \left(\frac{n+1}{n} \right)^n \cdot \frac{n+1}{n+1} = \left(1 + \frac{1}{n} \right)^n \xrightarrow{n \to \infty} e,$$

d.h. die Folge $(\frac{a_{n+1}}{a_n})$ konvergiert und somit gilt in (1) überall Gleichheit. Daraus folgt insbesondere die Konvergenz der Folge $(\sqrt[n]{|a_n|})$ mit demselben Grenzwert, d.h. $\frac{n}{\sqrt[n]{n!}}$ konvergiert gegen e für $n \to \infty$

Aufgabe 19 (K):

- (i) Bestimmen Sie das Cauchyprodukt der Reihen $\sum_{n=0}^{\infty} 3^{-n}$ und $\sum_{n=0}^{\infty} 5^{-n}$ und berechnen Sie dessen Reihenwert.
- (ii) Die Folge $(a_n)_{n=0}^{\infty}$ sei definiert durch $a_0 := 0$ und $a_n := \frac{(-1)^n}{\sqrt{n}}$ für alle $n \in \mathbb{N}$.
 - (a) Zeigen Sie die Konvergenz der Reihe $\sum_{n=0}^{\infty} a_n$.
 - (b) Zeigen Sie die Divergenz des Cauchyprodukts von $\sum_{n=0}^{\infty} a_n$ mit sich selbst. Begründen Sie, warum dies nicht dem Satz über die Konvergenz des Cauchyprodukts widerspricht.

Lösungsvorschlag zu Aufgabe 19:

(i) <u>Voraussetzung:</u> Es seien die beiden Reihen $\sum_{n=0}^{\infty} 3^{-n}$ und $\sum_{n=0}^{\infty} 5^{-n}$ gegeben. Behauptung: Das Cauchyprodukt der beiden Reihen ist gegeben durch

$$\frac{15}{2} \sum_{n=0}^{\infty} \left(3^{-(n+1)} - 5^{-(n+1)} \right)$$

und sein Reihenwert ist $\frac{15}{8}$.

<u>Beweis:</u> Per Definition ist das Cauchyprodukt der beiden Reihen die Reihe $\sum_{n=1}^{\infty} c_n$ mit

$$c_n := \sum_{k=0}^n 3^{-k} \cdot 5^{-(n-k)} = 5^{-n} \sum_{k=0}^n 3^{-k} \cdot 5^k = 5^{-n} \sum_{k=0}^n \left(\frac{5}{3}\right)^k$$
$$= 5^{-n} \frac{1 - \left(\frac{5}{3}\right)^{n+1}}{1 - \frac{5}{3}} = 5 \cdot \frac{5^{-(n+1)} - 3^{-(n+1)}}{-\frac{2}{3}} = \frac{15}{2} \left(3^{-(n+1)} - 5^{-(n+1)}\right)$$

für alle $n \in \mathbb{N}$. Da die Reihen $\sum_{n=0}^{\infty} 3^{-n}$ und $\sum_{n=0}^{\infty} 5^{-n}$ als geometrische Reihen absolut konvergieren mit $\sum_{n=0}^{\infty} 3^{-n} = \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$ und $\sum_{n=0}^{\infty} 5^{-n} = \frac{1}{1-\frac{1}{5}} = \frac{5}{4}$ folgt mit Satz 3.12:

$$\frac{15}{2} \sum_{n=0}^{\infty} \left(3^{-(n+1)} - 5^{-(n+1)} \right) = \sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} 3^{-n} \right) \cdot \left(\sum_{n=0}^{\infty} 5^{-n} \right) = \frac{3}{2} \cdot \frac{5}{4} = \frac{15}{8}.$$

Alternativ hätte man $\sum_{n=0}^{\infty} c_n$ auch direkt ausrechnen können.

- (ii) <u>Voraussetzung:</u> Es sei die Folge $(a_n)_{n=0}^{\infty}$ definiert durch $a_0 := 0$ und $a_n := \frac{(-1)^n}{\sqrt{n}}$ für alle $n \in \mathbb{N}$.
 - (a) <u>Behauptung:</u> Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert.

<u>Beweis:</u> Die Folge $(\frac{1}{\sqrt{n}})$ ist eine monoton fallende Nullfolge. Nach dem Leibnizkriterium ist die Reihe $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ daher konvergent, also auch die Reihe

$$\sum_{n=0}^{\infty} a_n = a_0 + \sum_{n=1}^{\infty} a_n = 0 + \sum_{n=1}^{\infty} a_n.$$

(b) <u>Behauptung:</u> Das Cauchyprodukt von $\sum_{n=0}^{\infty} a_n$ mit sich selbst divergiert.

<u>Beweis:</u> Wegen $a_0 = 0$ gilt $c_0 = c_1 = 0$. Für $n \in \mathbb{N}$ mit $n \ge 2$ berechnet man:

$$c_n = \sum_{k=0}^n a_k a_{n-k} = \sum_{k=1}^{n-1} \frac{(-1)^k}{\sqrt{k}} \cdot \frac{(-1)^{n-k}}{\sqrt{n-k}} = (-1)^n \sum_{k=1}^{n-1} \frac{1}{\sqrt{k}\sqrt{n-k}}.$$

Weiter gilt:

$$|c_n| = \sum_{k=1}^{n-1} \frac{1}{\sqrt{k} \cdot \sqrt{n-k}} \ge \sum_{k=1}^{n-1} \frac{1}{\sqrt{n-1} \cdot \sqrt{n-1}} = \frac{n-1}{n-1} = 1,$$

also ist (c_n) keine Nullfolge und die Reihe $\sum_{n=0}^{\infty} c_n$ damit divergent. Es gilt $|a_n| = \frac{1}{\sqrt{n}}$ und die Reihe $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ ist nicht konvergent, also konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ nicht absolut. Somit sind aber die Voraussetzungen des Satzes aus der Vorlesung über die Konvergenz des Cauchyprodukts (Satz 3.12) nicht erfüllt.

Aufgabe 20:

(i) Zeigen Sie, dass das Cauchyprodukt der beiden divergenten Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ mit $a_0 :=$ $-1,\ a_n:=1\ (n\in\mathbb{N})$ und $b_0:=2,\ b_n:=2^n\ (n\in\mathbb{N})$ absolut konvergiert.

(ii) Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen sowie die Menge aller $x \in \mathbb{R}$, in denen die Potenzreihe konvergiert.

(a)
$$\sum_{n=0}^{\infty} \frac{n}{2^n} x^{n^2},$$
 (b)
$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n!} \frac{1}{k}\right) x^n.$$

Hinweis zu (b): Zeigen Sie zunächst $\sum_{k=1}^{n!} \frac{1}{k} \le n^2$.

Lösungsvorschlag zu Aufgabe 20:

(i) <u>Voraussetzung:</u> Es seien die beiden Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ mit $a_0 := -1$, $a_n := 1$ $(n \in \mathbb{N})$ und $b_0 := 2$, $b_n := 2^n$ $(n \in \mathbb{N})$ gegeben.

Behauptung: Das Cauchyprodukt der beiden divergenten Reihen ist absolut konvergent.

<u>Beweis:</u> Definiere die Folge (c_n) durch $c_n := \sum_{k=0}^n a_k b_{n-k}$ $(n \in \mathbb{N})$. Dann gilt

$$c_0 = a_0 \cdot b_0 = -2,$$

$$c_1 = a_0 \cdot b_1 + a_1 \cdot b_0 = -2 + 2 = 0.$$

Für $n \ge 2$ gilt:

$$\begin{split} c_n &= \sum_{k=0}^n a_k b_{n-k} = a_0 \cdot b_n + \sum_{k=1}^{n-1} a_k b_{n-k} + a_n \cdot b_0 = -2^n + \sum_{k=1}^{n-1} 2^{n-k} + 2 \\ &= 2 - 2^n + 2^n \cdot \sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k = 2 - 2^n + 2^n \cdot \left(\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} - 1\right) \\ &= 2 - 2^{n+1} + 2^{n+1} \cdot \left(1 - \left(\frac{1}{2}\right)^n\right) = 2 - \frac{2^{n+1}}{2^n} = 2 - 2 = 0. \end{split}$$

Somit gilt $\sum_{n=0}^{\infty} c_n = -2$ und $\sum_{n=0}^{\infty} |c_n| = 2$, das Cauchyprodukt ist also absolut konvergent.

(ii) (a) <u>Voraussetzung:</u> Es sei die Potenzreihe $\sum_{n=0}^{\infty} \frac{n}{2^n} x^{n^2}$ gegeben.

 $\underline{Behauptung:}$ Der Konvergenzradius ist 1 und die Potenzreihe konvergiert genau dann, wenn $\overline{x\in [-1,1].}$

Beweis: Für jedes $k \in \mathbb{N}$ definieren wir

$$a_k := \begin{cases} \frac{n}{2^n}, & \text{falls } k = n^2 \text{ für ein } n \in \mathbb{N}, \\ 0, & \text{sonst.} \end{cases}$$

Dann gilt $\sum_{n=0}^{\infty} \frac{n}{2^n} x^{n^2} = \sum_{k=0}^{\infty} a_k x^k$. Nun gilt $\sqrt[k]{|a_k|} = 0$ für alle $k \in \mathbb{N} \setminus \{n^2 \colon n \in \mathbb{N}\}$ und für $k = n^2$ $(n \in \mathbb{N})$ gilt

$$\sqrt[k]{|a_k|} = \sqrt[n^2]{\frac{n}{2^n}} = \sqrt[n]{\frac{\sqrt[n]{n}}{2}} \xrightarrow{n \to \infty} 1,$$

denn

$$1 \stackrel{n \to \infty}{\longleftarrow} \sqrt[n]{\frac{1}{2}} \le \sqrt[n]{\frac{\sqrt[n]{n}}{2}} \le \sqrt[n]{\frac{\sqrt[n]{2^n}}{2}} = \sqrt[n]{1} \xrightarrow{n \to \infty} 1.$$

Also ist $\limsup_{k\to\infty} \sqrt[k]{|a_k|}=1$ und der Konvergenzradius der Reihe beträgt 1. Zu prüfen sind nun noch die Ränder, sei dazu $x\in\{-1,1\}$. Dann konvergiert die Reihe $\sum\limits_{n=0}^{\infty}\frac{n}{2^n}x^{n^2}$ nach dem Wurzelkriterium, denn:

$$\sqrt[n]{\left|\frac{n}{2^n} \cdot x^{n^2}\right|} = \sqrt[n]{\frac{n}{2^n}} = \frac{\sqrt[n]{n}}{2} \xrightarrow{n \to \infty} \frac{1}{2} < 1$$

und die Behauptung folgt.

(b) <u>Voraussetzung:</u> Es sei die Potenzreihe $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n!} \frac{1}{k}\right) x^n$ gegeben.

<u>Behauptung:</u> Der Konvergenzradius ist 1 und die Potenzreihe konvergiert genau dann, wenn $x \in (-1,1)$.

<u>Beweis:</u> Definiere die Folge (a_n) durch

$$a_n := \sum_{k=1}^{n!} \frac{1}{k} \quad (n \in \mathbb{N}).$$

Wir zeigen zunächst den Hinweis mittels vollständiger Induktion:

$$\underline{\text{IA:}} \text{ F\"{u}r } n=1 \text{ gilt } \sum_{k=1}^{1!} \tfrac{1}{k} = 1 \leq 1^2.$$

<u>IV:</u> Für ein festes aber beliebiges $n \in \mathbb{N}$ gelte bereits $\sum_{k=1}^{n!} \frac{1}{k} \leq n^2$.

IS $(n \leadsto n+1)$: Es gilt:

$$a_{n+1} = \sum_{k=1}^{(n+1)!} \frac{1}{k} = \sum_{k=1}^{n!} \frac{1}{k} + \sum_{k=n!+1}^{n!+n \cdot n!} \frac{1}{k} \stackrel{\text{(IV)}}{\leq} n^2 + \sum_{k=1}^{n \cdot n!} \frac{1}{n!+k} \leq n^2 + \frac{n \cdot n!}{n!+1}$$
$$\leq n^2 + n \leq n^2 + 2n + 1 = (n+1)^2.$$

Da $a_n \geq 1$ für alle $n \in \mathbb{N}$ gilt, erhalten wir

$$1 \le \sqrt[n]{|a_n|} \le \sqrt[n]{n^2} \xrightarrow{n \to \infty} 1,$$

d.h. $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 1$. Somit ist der Konvergenzradius 1 und die Potenzreihe konvergiert für |x| < 1 und divergiert für |x| > 1. Für x = 1 divergiert die Reihe $\sum_{n=1}^{\infty} a_n$, da (a_n) keine Nullfolge ist. Auch die Folge $((-1)^n a_n)$ ist keine Nullfolge, daher divergiert auch die Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$. Insgesamt konvergiert die Potenzreihe also für $x \in (-1,1)$.