Support Vector Machines

André Hopfgartner & Matthias Rupp 08.06.2021

Vorarlberg University of Applied Sciences

Einführung

Frame Title

• Eine Hard-Margin SVM trennt die Klassen so, dass keine Fehlklassifikationen entstehen.

Frame Title

- Eine Hard-Margin SVM trennt die Klassen so, dass keine Fehlklassifikationen entstehen.
- Eine Soft-Margin SVM erlaubt einzelne Fehlklassifikationen damit eine mitunter bessere Trennebene gefunden werden kann.

Trennungsebene

Trenngrenze:

$$w^T x_n + b = 0 (1)$$

Trennungsebene

Trenngrenze:

$$w^T x_n + b = 0 (1)$$

Klassifikation über Vorzeichen:

$$y = sign(w^T x + b)$$
 gleichbedeutend mit (2a)
 $w^T x + b > 0$ für $y = +1$ (2b)
 $w^T x + b < 0$ für $y = -1$ (2c)

A test with images

- Some
- text
- on left side of slide here..
- Abb. 1 zeigt blabla.

A test with images

- Some
- text
- on left side of slide here..
- Abb. 1 zeigt blabla.

Abbildung 1: Abhängig von der Lage der Trennebene entstehen schmale (blau) oder breite (rot) Trennbänder. Ziel ist die Maximierung der Breite des Trennbands durch die Ermittlung der optimalen Lage der Trennebene.

$$y = sign(w^Tx + b)$$
 gleichbedeutend mit (3a)
 $w^Tx + b > 0$ für $y = +1$ (3b)
 $w^Tx + b < 0$ für $y = -1$ (3c)

In Gleichung (3) wird .. Footcite example¹ Burges (1998)

¹Platt 1998.

Fragen?

Literatur

- Burges, Christopher J.C. (1. Juni 1998). "A Tutorial on Support Vector Machines for Pattern Recognition". In: Data Mining and Knowledge Discovery 2.2, S. 121–167. ISSN: 1573-756X. DOI: 10.1023/A:1009715923555. URL: https://doi.org/10.1023/A:1009715923555 (besucht am 06.03.2021).
- Platt, John (Apr. 1998). Sequential Minimal Optimization: A
 Fast Algorithm for Training Support Vector Machines.

 MSR-TR-98-14, S. 21. URL:
 https://www.microsoft.com/enus/research/publication/sequential-minimaloptimization-a-fast-algorithm-for-trainingsupport-vector-machines/.