

TIME SERIES FORECASTING WITH TRANSFORMERS

Iram Liu, Jeffrey Xiang, Wen Chen, Ajay Sachdev, Nick Hsieh Cornell Engineering CS 4782 Deep Learning Final Project

Background

Transformers are well-suited for time series forecasting, as the attention mechanism can learn relationships between points in time.

However, simple linear models can **outperform** sophisticated Transformer-based models. [1]

Methods		IMP.	Linear*		NLinear*		DLinear*		FEDformer		Autoformer	
M	l etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317
	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334
	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338
田	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361

How can we improve the performance of Transformer-based forecasting models?

New Design Features

Two key features are proposed in PatchTST:

- 1) Patching
- 2) Channel-independence

Impact: local semantic info is better retained, reduced computation allowing for longer look back periods, better generalization

Architecture

Apply same transformer backbone to all channels

Datasets

We tested PatchTST on five datasets:

- 1) Electricity: electricity use for 321 households
- 2) Illness: number of patients and ILI ratio
- 3) **Traffic**: road occupancy rates from 860 sensors on San Francisco freeways
- 4) ETTh1: hourly powerload data from China
- 5) ETTm1: 15 minute powerload data from China

Goal: for each channel, we lookback 336 time steps and predict 96 time steps into the future

Results

Dataset	Our MSE	Paper MSE	Our MAE	Paper MAE
Electricity	0.156	0.129	0.258	0.222
Illness*	2.071	1.319	0.974	0.754
Traffic	0.421	0.360	0.295	0.249
ETTh1	0.427	0.370	0.452	0.400
ETTm1	0.326	0.293	0.372	0.346

*model results unreliable due to dataset size and splitting
We got our metrics from the test set, using a 70/10/20
split for training, validation, and testing.

Conclusions and Next Steps

The paper found significant improvements compared to other transformer models + basic linear models and we were able to see the same type of improvement in our reimplementation.

For our reimplementation, we focused on **supervised learning**. Next steps involve implementing **self-supervised learning** and testing hyperparameters.

References

- [1] Are transformers effective for time series forecasting? [Zeng et al., 2022]
- [2] Long-term Forecasting with Transformers [Nie et al., 2022]

