Example 19

(2003 AIME 2 Problem 11) Triangle ABC is a right triangle with AC=7, BC=24, and right angle at C. Point M is the midpoint of AB, and D is on the same side of line AB as C so that AD=BD=15. Given that the area of $\triangle CDM$ can be expressed as $\frac{m\sqrt{n}}{p}$, where m,n, and p are positive integers, m and p are

relatively prime, and n is not divisible by the square of any prime, find m+n+p. Solution: 578. Draw $CH \perp AB$ to meet AB at H. Since DA = DB, DM is the perpendicular bisector of triangle DAB. So $DM \perp AB$.

Thus
$$CH//DM$$
. Connect DH . We have $S_{\triangle CDM} = S_{\triangle HDM} = \frac{1}{2}HM \times DM$. $DM = \sqrt{AD^2 - AM^2} = \frac{5\sqrt{11}}{2}$,

$$\begin{split} HM = AM - AH &= \tfrac{1}{2}AB - \tfrac{AC^2}{AB} = \tfrac{527}{50}. \\ \text{Thus } CH//DM \text{ and} \\ S_{\triangle CDM} &= S_{\triangle HDM} = \tfrac{1}{2}HM \times DM = \tfrac{1}{2} \times \tfrac{5\sqrt{11}}{2} \times \tfrac{527}{50} = \tfrac{527\sqrt{11}}{40}. \\ \text{So } m + n + p = 527 + 11 + 40 = 578. \end{split}$$

