## 数据结构与算法 II 作业 (9.15)

中国人民大学 信息学院 崔冠宇 2018202147

**P47, T4.2-1** 使用 Strassen 算法计算如下矩阵乘法:

$$\left[\begin{array}{cc} 1 & 3 \\ 7 & 5 \end{array}\right] \left[\begin{array}{cc} 6 & 8 \\ 4 & 2 \end{array}\right]$$

给出计算过程。

**解:** 在此例子中,  $A_{11} = [1]$ ,  $A_{12} = [3]$ ,  $A_{21} = [7]$ ,  $A_{22} = [5]$ ;  $B_{11} = [6]$ ,  $B_{12} = [8]$ ,  $B_{21} = [4]$ ,  $B_{22} = [2]$ .

$$S_1 = B_{12} - B_{22} = [6], S_2 = A_{11} + A_{12} = [4], S_3 = A_{21} + A_{22} = [12], S_4 = B_{21} - B_{11} = [-2], S_5 = A_{11} + A_{22} = [6], S_6 = B_{11} + B_{22} = [8], S_7 = A_{12} - A_{22} = [-2], S_8 = B_{21} + B_{22} = [6], S_9 = A_{11} - A_{21} = [-6], S_{10} = B_{11} + B_{12} = [14].$$

 $P_1 = A_{11}S_1 = [6], P_2 = S_2B_{22} = [8], P_3 = S_3B_{11} = [72], P_4 = A_{22}S_4 = [-10], P_5 = S_5S_6 = [48], P_6 = S_7S_8 = [-12], P_7 = S_9S_{10} = [-84].$ 

$$C_{11} = P_5 + P_4 - P_2 + P_6 = [18], C_{12} = P_1 + P_2 = [14], C_{21} = P_3 + P_4 = [62], C_{22} = P_5 + P_1 - P_3 - P_7 = [66].$$

所以 
$$\begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix}$$
  $\begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$  =  $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$  =  $\begin{bmatrix} 18 & 14 \\ 62 & 66 \end{bmatrix}$ .

**P50, T4.3-1** 证明: T(n) = T(n-1) + n 的解是  $O(n^2)$  的.

**证明:** ① 假设对于任意 k < n 有  $T(k) \le ck^2$ , 则

$$T(n) = T(n-1) + n$$

$$\leq c(n-1)^{2} + n$$

$$= cn^{2} - 2cn + 1 + n$$

$$= cn^{2} - ((2c-1)n + 1)$$

当  $c \ge \frac{1}{2}$  时,上式第二项为正数,故  $T(n) \le cn^2$ ,归纳成立.

② 验证边界条件. 因为  $T(1) = \Theta(1)$ , 取  $c \ge T(1)$  时,  $T(1) \le c$ , 边界条件成立.

综上, 当  $c \ge \frac{1}{2}$  且  $c \ge T(1)$  时,  $T(n) \le cn^2$  恒成立, 所以  $T(n) = O(n^2)$ .

**P53, T4.4-1** 对递归式 T(n) = 3T(|n/2|) + n, 利用递归树确定一个好的渐进上界, 用代入法进行验证.

**解**: 为简单起见, 假设 n 是 2 的幂. 画出递归树.



计算整棵树的代价:

$$\begin{split} T(n) &= n + \frac{3}{2}n + (\frac{3}{2})^2 n + \dots + (\frac{3}{2})^{\log_2 n - 1} n + \Theta(n^{\log_2 3}) \\ &= n \sum_{i=0}^{\log_2 n - 1} (\frac{3}{2})^i + \Theta(n^{\log_2 3}) \\ &= (3 \cdot (\frac{3}{2})^{\log_2 n - 1} - 2)n + \Theta(n^{\log_2 3}) \\ &= (2 \cdot (\frac{3}{2})^{\log_2 n} - 2)n + \Theta(n^{\log_2 3}) \\ &= 2n^{\log_2 3} - 2n + \Theta(n^{\log_2 3}) \\ &= \Theta(n^{\log_2 3}) \end{split}$$

下面用代入法验证  $T(n) = O(n^{\log_2 3})$ .

① 假设对任意 k < n 有  $T(k) \le c_1 k^{\log_2 3} - c_2 k$ , 则

$$T(n) = 3T(\lfloor n/2 \rfloor) + n$$

$$\leq 3(c_1(\lfloor n/2 \rfloor)^{\log_2 3} - c_2 \lfloor n/2 \rfloor) + n$$

$$\leq 3c_1(n/2)^{\log_2 3} - 3c_2(n/2) + 3c_2 + n$$

$$= (c_1 n^{\log_2 3} - c_2 n) - (\frac{c_2 - 2}{2} n - 3c_2)$$

可见当  $c_2 > 2$ , n 充分大时, 第二项为正,  $T(n) \le (c_1 n^{\log_2 3} - c_2 n)$ , 归纳成立.

② 验证边界条件: 因为  $T(1) = \Theta(1)$ , 当取  $c_1 \ge c_2 + T(1)$  时,  $T(1) \le c_1 - c_2$ , 也成立.

综上, 当  $c_1 \ge c_2 + T(1)$ ,  $c_2 > 2$  时, 对充分大的 n 有  $T(n) \le c_1 n^{\log_2 3} - c_2 n \le c_1 n^{\log_2 3}$ , 所以  $T(n) = O(n^{\log_2 3})$ .

P55, T4.5-1 对下列递归式, 使用主方法求出渐进紧确界。

**a.** 
$$T(n) = 2T(n/4) + 1$$

**b.** 
$$T(n) = 2T(n/4) + \sqrt{n}$$

**c.** 
$$T(n) = 2T(n/4) + n$$

**d.** 
$$T(n) = 2T(n/4) + n^2$$

**解:** 以下诸题均有 a = 2, b = 4 以及  $\log_b a = 1/2$ .

**a.** 取 
$$\varepsilon = 1/2$$
, 则  $f(n) = 1 = O(n^{\log_b a - \varepsilon}) = O(1)$ . 根据主定理,  $T(n) = \Theta(\sqrt{n})$ .

**b.**  $f(n) = \sqrt{n} = \Theta(n^{\log_b a})$ . 根据主定理,  $T(n) = \Theta(\sqrt{n} \log n)$ .

**c.** 取  $\varepsilon = 1/2$ , 则  $f(n) = n = \Omega(n^{\log_b a + \varepsilon})$ , 且  $\exists c = 1/2 < 1$ , 对充分大的 n 有  $af(n/b) = n/2 \le cf(n)$ . 根据主定理,  $T(n) = \Theta(n)$ .

**d.** 取  $\varepsilon = 1/2$ , 则  $f(n) = n^2 = \Omega(n^{\log_b a + \varepsilon})$ , 且  $\exists c = 1/8 < 1$ , 对充分大的 n 有  $af(n/b) = n^2/8 \le cf(n)$ . 根据主定理,  $T(n) = \Theta(n^2)$ .

