Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему «Изучение библиотек обработки данных»

Выполнил: студент группы ИУ5-22М Бурашников В. В.

1. Цель лабораторной работы

Изучить библиотеки обработки данных Pandas и PandaSQL [?].

2. Задание

Задание состоит из двух частей [?].

2.1. Часть 1

Требуется выполнить первое демонстрационное задание под названием «Exploratory data analysis with Pandas» со страницы курса mlcourse.ai.

2.2. Часть 2

Требуется выполнить следующие запросы с использованием двух различных библиотек — Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных,
- один произвольный запрос на группировку набора данных с использованием функций агрегирования.

Также требуется сравнить время выполнения каждого запроса в Pandas и PandaSQL.

3. Ход выполнения работы

3.1. Часть 1

Ниже приведён демонстрационный Jupyter-ноутбук «Exploratory data analysis with Pandas» курса mlcourse.ai (файл assignment01_pandas_uci_adult.ipynb). Все пояснения приведены на исходном языке ноутбука — на английском.

mlcourse.ai - Open Machine Learning Course

Author: Yury Kashnitskiy. Translated and edited by Sergey Isaev, Artem Trunov, Anastasia Manokhina, and Yuanyuan Pao This material is subject to the terms and conditions of the Creative Commons CC BY-NC-SA 4.0 license. Free use is permitted for any non-commercial purpose.

Assignment #1 (demo)

Exploratory data analysis with Pandas

In this task you should use Pandas to answer a few questions about the Adult dataset.

Unique values of all features (for more information, please see the links above):

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary: >50K, <=50K.

Importing all required packages:

```
In [1]: import pandas as pd
```

Setting maximum display width for text report [?]:

```
In [2]: pd.set_option("display.width", 70)
```

Loading data:

```
Out[3]:
                       workclass fnlwgt
                                          education education-num
           age
            39
                                   77516
                                          Bachelors
                                                                 13
        0
                       State-gov
        1
            50
                Self-emp-not-inc
                                   83311
                                          Bachelors
                                                                 13
        2
            38
                         Private
                                  215646
                                             HS-grad
                                                                  9
                                                                  7
        3
            53
                         Private
                                  234721
                                                11th
        4
            28
                         Private 338409
                                          Bachelors
                                                                 13
               marital-status
                                       occupation
                                                    relationship
                                                                   race
        0
                Never-married
                                    Adm-clerical
                                                   Not-in-family
                                                                  White
        1
           Married-civ-spouse
                                 Exec-managerial
                                                         Husband
                                                                  White
        2
                     Divorced Handlers-cleaners
                                                  Not-in-family
                                                                  White
          Married-civ-spouse Handlers-cleaners
                                                         Husband
        3
                                                                  Black
          Married-civ-spouse
                                  Prof-specialty
                                                            Wife
                                                                  Black
                   capital-gain
                                 capital-loss
                                                hours-per-week
              sex
        0
                           2174
             Male
                                             0
                                                            40
        1
             Male
                              0
                                             0
                                                            13
        2
             Male
                              0
                                             0
                                                            40
        3
                              0
             Male
                                             0
                                                            40
        4
          Female
                              0
                                             0
                                                            40
          native-country salary
          United-States <=50K
          United-States <=50K
        1
        2 United-States <=50K
         United-States <=50K
        4
                    Cuba
                         <=50K
  1. How many men and women (sex feature) are represented in this dataset?
In [4]: data["sex"].value_counts()
Out[4]: Male
                  21790
```

```
10771
       Female
       Name: sex, dtype: int64
  2. What is the average age (age feature) of women?
In [5]: data[data["sex"] == "Female"]["age"].mean()
```

Out[5]: 36.85823043357163

3. What is the percentage of German citizens (native-country feature)?

```
In [6]: print("{0:%}".format(data[data["native-country"] == "Germany"]
                             .shape[0] / data.shape[0]))
0.420749%
```

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

6. Is it true that people who earn more than 50K have at least high school education? (education - Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

```
In [9]: data.groupby(["race", "sex"])["age"].describe()
```

Out[9]:			cou	nt		mean	std	min	\
	race	sex							
	Amer-Indian-Eskimo	Female	119	. 0	37.	.117647	13.114991	17.0	
		Male	192	. 0	37.	.208333	12.049563	17.0	
	Asian-Pac-Islander	Female	346	.0	35.	.089595	12.300845	17.0	
		Male	693	. 0	39	.073593	12.883944	18.0	
	Black	Female	1555	.0	37.	.854019	12.637197	17.0	
		Male	1569	.0	37	.682600	12.882612	17.0	
	Other	Female	109	.0	31.	678899	11.631599	17.0	
		Male	162	. 0	34.	.654321	11.355531	17.0	
	White	Female	8642	.0	36	.811618	14.329093	17.0	
		Male	19174	. 0	39	.652498	13.436029	17.0	
			25%	50)%	75%	max		
	race	sex							
	Amer-Indian-Eskimo	Female	27.0	36.	0	46.00	80.0		
		Male	28.0	35.	0	45.00	82.0		
	Asian-Pac-Islander	Female	25.0	33.	0	43.75	75.0		
		Male	29.0	37.	0	46.00	90.0		
	Black	Female	28.0	37.	0	46.00	90.0		
		Male	27.0	36.	0	46.00	90.0		
	Other	Female	23.0	29.	0	39.00	74.0		
		Male	26.0	32.	0	42.00	77.0		
	White	Female	25.0	35.	0	46.00	90.0		
		Male	29.0	38.	0	49.00	90.0		

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

9. What is the maximum number of hours a person works per week (hoursper-week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for each country (native-country). What will these be for Japan?

Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000
Ireland	40.947368	48.000000
Italy	39.625000	45.400000
Jamaica	38.239437	41.100000
Japan	41.000000	47.958333
Laos	40.375000	40.000000
Mexico	40.003279	46.575758
Nicaragua	36.093750	37.500000
<pre>Outlying-US(Guam-USVI-etc)</pre>	41.857143	NaN
Peru	35.068966	40.000000
Philippines	38.065693	43.032787
Poland	38.166667	39.000000
Portugal	41.939394	41.500000
Puerto-Rico	38.470588	39.416667
Scotland	39.44444	46.666667
South	40.156250	51.437500
Taiwan	33.774194	46.800000
Thailand	42.866667	58.333333
Trinadad&Tobago	37.058824	40.000000
United-States	38.799127	45.505369
Vietnam	37.193548	39.200000
Yugoslavia	41.600000	49.500000

In [14]: p.loc["Japan"]

Out[14]: salary

<=50K 41.000000 >50K 47.958333

Name: Japan, dtype: float64

3.2. Часть 2

Импортируем pandasql:

```
In [27]: from pandasql import sqldf
     pysqldf = lambda q: sqldf(q, globals())
```

Для выполнения данного задания возьмём два набора данных из исходных данных, представленных NASA для своего хакатона по предсказанию мощности солнечного излучения [?]:

Посмотрим на эти наборы данных:

```
In [20]: book.head()
```

3 41865

4 2657

41865

2657

Out [20]:

1 2 3	2767052 3 41865	best_book_id 2767052 3 41865 2657	2792775 4640799 3212258	272	439023483 439554934 316015849	isbn13 9.78043902348e+12 3 9.78043955493e+12 3 9.78031601584e+12 3 9.78006112008e+12 1
1 2 3	2767052 3	41865	2792775 4640799	272491226	439023483 439554934 316015849	isbn13 9.78043902348e+12 9.78043955493e+12 9.78031601584e+12 9.78006112008e+12
1 2 3	2767052 3 41865		2792775	272 491 226	439023483 439554934 316015849	isbn13 9.78043902348e+12 9.78043955493e+12 9.78031601584e+12 9.78006112008e+12
1 2			2792775 4640799	272 491 226	439023483 439554934 316015849	isbn13 9.78043902348e+12 9.78043955493e+12 9.78031601584e+12 9.78006112008e+12
	2767052	best_book_id 2767052 3		272	439023483	isbn13

3212258 226

3275794 487

316015849 9.78031601584e+12

61120081 9.78006112008e+12

```
id book_id best_book_id work_id books_count isbn
                                                                isbn13
            2767052 2767052
                                 2792775 272
                                                      439023483 9.78043902348e+12
         2
                                 4640799 491
           3
                    3
                                                      439554934 9.78043955493e+12
                                 3212258 226
         3
           41865
                    41865
                                                      316015849 9.78031601584e+12
         4 2657
                    2657
                                 3275794 487
                                                      61120081 9.78006112008e+12
In [39]: book[["average_rating", "ratings_count"]] = book[["average_rating", "rat
         book.dtypes
Out[39]: id
                            object
         book_id
                            object
         title
                            object
                           float64
         average_rating
         ratings_count
                           float64
         language_code
                            object
         dtype: object
In [40]: rate.head()
Out [40]:
            book_id user_id
                             rating
         0
            book_id user_id
                              rating
         1
                  1
                         314
                                   5
         2
                         439
                                   3
                  1
         3
                  1
                         588
                                   5
         4
                  1
                        1169
In [41]: rate.dtypes
Out[41]: book_id
                    object
         user_id
                    object
                    object
         rating
         dtype: object
  Объединим эти наборы данных различными способами, проверяя время их
выполнения [?,?,?]:
In [42]: book.merge(rate[["book_id", "rating"]], on="book_id").head()
Out [42]:
              id book_id title
                                average_rating ratings_count
         0
            2468
                                        52708.0
                    2246 1749
                                                           NaN
           2468
                    2246 1749
                                        52708.0
                                                           NaN
         2
           2468
                    2246 1749
                                        52708.0
                                                           NaN
         3
           2468
                    2246 1749
                                        52708.0
                                                           NaN
           2468
                    2246 1749
                                        52708.0
                                                           NaN
                                                 language_code rating
           https://images.gr-assets.com/books/1327389004s...
         1 https://images.gr-assets.com/books/1327389004s...
                                                                  4
           https://images.gr-assets.com/books/1327389004s...
                                                                  4
           https://images.gr-assets.com/books/1327389004s...
                                                                  4
         4 https://images.gr-assets.com/books/1327389004s...
                                                                  3
```

```
In [51]: %%timeit
         book.merge(rate[["book_id", "rating"]], on="book_id")
142 ms ± 5.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In []: pysqldf("""SELECT b.book_id, b.title, b.average_rating, b.ratings_count,
                           b.language_code, r.rating
                   FROM book AS b JOIN rate AS r
                   ON b.book_id = r.book_id
                """).head()
In [31]: %%timeit
         pysqldf("""SELECT b.book_id, b.title, b.average_rating, b.ratings_count,
                            b.language_code, r.rating
                    FROM book AS b JOIN rate AS r
                    ON b.book_id = r.book_id
9.32 s \pm 132 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
  Видно, что pandasql в 100 раз медленнее, чем pandas.
  Сгруппируем набор данных с использованием функций агрегирования различными
способами:
In [45]: book.groupby("language_code")["average_rating"].mean().head()
Out [45]: language_code
         https://images.gr-assets.com/books/1156897088s/350.jpg
                                                                        87322.0
         https://images.gr-assets.com/books/1159814395s/2095.jpg
                                                                         9920.0
         https://images.gr-assets.com/books/1163789140s/3478.jpg
                                                                        71333.0
         https://images.gr-assets.com/books/1165519096s/5367.jpg
                                                                         10877.0
         https://images.gr-assets.com/books/1166154337s/10365.jpg
                                                                        115103.0
         Name: average_rating, dtype: float64
In [47]: %%timeit
         book.groupby("language_code")["average_rating"].mean()
8.69 \text{ ms} \pm 352 \text{ }\mu\text{s} per loop (mean \pm std. dev. of 7 runs, 100 loops each)
In [48]: pysqldf("""SELECT language_code, AVG(average_rating)
                    FROM book
                    GROUP BY language_code
                  """).head()
Out [48]:
                                                  language_code \
         0 https://images.gr-assets.com/books/1156897088s...
         1 https://images.gr-assets.com/books/1159814395s...
         2 https://images.gr-assets.com/books/1163789140s...
         3 https://images.gr-assets.com/books/1165519096s...
```

4 https://images.gr-assets.com/books/1166154337s...

""")

```
110 ms \pm 2.08 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each)
```

Здесь разница уже более чем в 100 раз. Таким образом для таких простых запросов проще использовать Pandas.