Essential Laws of Propositional Logic

Double Negation
$$\{\neg(\neg p) \mid \mid p\}$$

Excluded Middle $\{p \lor \neg p \mid \mid 1\}$

Contradiction $\{p \land \neg p \mid \mid p\}$

Idempotence $\begin{cases} p \land p \mid \mid p \\ p \lor p \mid \mid p \end{cases}$

Identity $\begin{cases} p \land 1 \mid \mid p \\ p \lor 0 \mid \mid p \end{cases}$

Domination $\begin{cases} p \land 0 \mid \mid 0 \\ p \lor 1 \mid \mid 1 \end{cases}$

Commutativity $\begin{cases} p \land q \mid \mid q \land p \\ p \lor q \mid \mid q \lor p \\ p \leftrightarrow q \mid \mid q \leftrightarrow p \end{cases}$

Associativity $\begin{cases} p \land (q \land r) \mid \mid (p \land q) \land r \\ p \lor (q \lor r) \mid \mid (p \lor q) \lor r \end{cases}$

Distributivity $\begin{cases} p \land (q \lor r) \mid \mid (p \land q) \lor (q \land r) \\ p \lor (q \land r) \mid \mid (p \lor q) \lor (q \lor r) \end{cases}$

Implication $\{p \rightarrow q \mid \mid \neg p \lor q \}$

Contrapositive $\{p \rightarrow q \mid \mid \neg p \lor q \}$

Contrapositive $\{p \rightarrow q \mid \mid \neg p \lor \neg q \}$

Equivalence $\{p \leftrightarrow q \mid \mid (p \rightarrow q) \land (q \rightarrow p) \}$

De Morgan $\begin{cases} \neg(p \land q) \mid \mid \neg p \lor \neg q \\ \neg(p \lor q) \mid \mid \neg p \land \neg q \end{cases}$

Absorption II $\begin{cases} p \land (p \lor q) \mid \mid p \\ p \lor (p \land q) \mid \mid p \end{cases}$

Absorption II $\begin{cases} (p \lor q) \land (\neg p \lor q) \mid \mid q \\ (p \land q) \lor (\neg p \land q) \mid \mid q \end{cases}$

Rules of Formal Deduction

(Abbr.)	From	Conclude	Rule
(Ref)	Ø	$A \vdash A$	Reflexivity
(+)	$\Sigma \vdash A$	$\Sigma, \Sigma' \vdash A$	Addition of premises
$(\neg -)$	$ \Sigma, \neg A \vdash B \\ \Sigma, \neg A \vdash \neg B $	$\Sigma \vdash A$	¬ elimination
$(\rightarrow -)$	$\begin{array}{c} \Sigma \vdash A \to B \\ \Sigma \vdash A \end{array}$	$\Sigma \vdash B$	\rightarrow elimination (modus ponens)
$(\rightarrow +)$	$\Sigma, A \vdash B$	$\Sigma \vdash A \to B$	\rightarrow introduction
$(\wedge -)$	$\Sigma \vdash A \land B$	$ \begin{array}{c c} \Sigma \vdash A \\ \Sigma \vdash B \end{array} $	\land elimination
$(\wedge +)$	$\begin{array}{c} \Sigma \vdash A \\ \Sigma \vdash B \end{array}$	$\Sigma \vdash A \land B$	\wedge introduction
(∨ −)	$\begin{array}{c} \Sigma, A \vdash C \\ \Sigma, B \vdash C \end{array}$		∨ elimination
(\left\ +)	$\Sigma \vdash A$	$\begin{array}{c c} \Sigma \vdash A \lor B \\ \Sigma \vdash B \lor A \end{array}$	\vee introduction
$(\leftrightarrow -)$	$\begin{array}{c} \Sigma \vdash A \leftrightarrow B \\ \Sigma \vdash A \end{array}$	$\Sigma \vdash B$	\leftrightarrow elimination
	$\begin{array}{c} \Sigma \vdash A \leftrightarrow B \\ \Sigma \vdash B \end{array}$	$\Sigma \vdash A$	