21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

7- Wednesday September 14, 2011.

Remark 7.1: When one has an equivalence relation \mathcal{R} on a set X, it defines a partition of X into equivalence classes and a quotient set X/\mathcal{R} whose elements are the equivalence classes, and there is a natural (surjective) projection π from X onto X/\mathcal{R} which to $x \in X$ associates its equivalence class $\pi(x) = \{y \in X \mid y \mathcal{R} x\}$. If a mapping f from X into a set Y has the property that $x \mathcal{R} y$ implies f(x) = f(y), then it defines a mapping \overline{f} from X/\mathcal{R} into Y defined by $\overline{f}(\pi(x)) = f(x)$ for all $x \in X$, and one has $f = \overline{f} \circ \pi$.

If G is a group, what kind of equivalence relation \mathcal{R} can one put on G so that the quotient set G/\mathcal{R} is a group and π is an homomorphism? The kernel of π should be a normal subgroup, and since $x \mathcal{R} y$ means $\pi(x) = \pi(y)$, or equivalently $\pi(xy^{-1}) = e$, i.e. $xy^{-1} \in N$, the equivalence class of x is the coset N y, which by the normality of N is equal to y N.

Said otherwise, suppose that H is a subgroup of G and one wonders if one can define an operation on cosets xH by deciding that for making the product of aH by bH, one picks an element $x \in aH$, an element $y \in bH$ and the product is the coset containing xy: it only makes sense if this coset is independent of the choice of x and y, and since a particular choice is x = a, y = b, one must be sure that $x = ah_1, y = bh_2$ implies $xy = abh_3$ (with $h_1, h_2, h_3 \in H$, as suggested by the choice of notation, but the quantifiers are 'for all h_1, h_2 there exists h_3 ')); since $ah_1bh_2 = abh_3$ is equivalent to $h_1b = bh_3h_2^{-1}$, it means that bH = Hb, and because b is arbitrary, b must be a normal subgroup of b.

Definition 7.2: If G is a group and N is a normal subgroup of G, one denotes G/N the quotient group defined by the operation (a N) (b N) = (a b) N.

Lemma 7.3: (first isomorphism theorem for groups) If ψ is an homomorphism of a group G_1 into a group G_2 , then $\psi(G_1)$ is subgroup of G_2 which is isomorphic to $G_1/\psi^{-1}(\{e\})$.

Proof: It was shown before that $\psi(G_1)$ is a subgroup of G_2 (and it follows from $\psi(a) \psi(b) = \psi(ab)$), and that $\psi^{-1}(e)$ is a normal subgroup of G_2 , so that since $\psi(a) = \psi(b)$ whenever $\pi(a) = \pi(b)$ there is a factorization $\psi = \psi \circ \pi$, where $\overline{\psi}$ is an homomorphism from $G_1/\psi^{-1}(e)$ into G_2 , which is injective (since its kernel is the identity of the quotient group), and it becomes surjective if one considers it as an homomorphism from $G_1/\psi^{-1}(e)$ onto $\psi(G_1)$, so that it then is a bijection, hence an isomorphism between these two groups.

Remark 7.4: The same approach works for a ring R (even without imposing the existence of an identity for multiplication, which one then denotes 1), which is an Abelian group (with operation noted +, identity noted 0, and inverse noted -) with an associative multiplication written without a symbol, which is distributive with respect to addition on both sides, i.e. a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$. One then defines an ideal J as any subgroup of R which has the property that for all $r \in R$ and all $j \in J$, both rj and jr belong to J.

One then defines a ring-homomorphism ψ from a ring R_1 into a ring R_2 as a mapping satisfying f(a+b) = f(a) + f(b) and f(ab) = f(a) f(b) for all $a, b \in R_1$, so that it is an homomorphism of groups, and the kernel of f is $f^{-1}(\{0\}) = \{a \in R_1 \mid f(a) = 0\}$, which is a subgroup of R (automatically normal since R is Abelian), but the kernel is actually an ideal of R_1 since f(j) = 0 implies f(rj) = f(r) f(j) = 0 and f(jr) = f(j) f(r) = 0 for all $r \in R_1$.

An equivalence relation \mathcal{R} on a ring R is adapted to the ring structure if the quotient R/\mathcal{R} is a ring and the projection π is a ring-homomorphism, so that the kernel of π (which is the inverse image of $\{0\}$) is an ideal J of R, and then $\pi(x) = \pi(y)$ means $\pi(x - y) = 0$, i.e. $y \in x + J$, but since $\pi(ab) = \pi(a)\pi(b)$ it means that $(a + j_1)(b + j_2) = ab + j_3$ (with $j_1, j_2, j_3 \in J$, as suggested by the choice of notation, but the

¹ For the definition to make sense, it is necessary that $\pi(x) = \pi(y)$ implies f(x) = f(y), which is precisely the hypothesis made, since $\pi(x) = \pi(y)$ is equivalent to $x \mathcal{R} y$.

² Some authors call a rng (i.e. ring without the letter i) such a ring without an identity for multiplication.

³ An ideal is also called a two-sided ideal, because one defines a left ideal as any subgroup $J \leq R$ with the property that for all $r \in R$ and all $j \in J$, $rj \in J$, and a right ideal as any subgroup $J \leq R$ with the property that for all $r \in R$ and all $j \in J$, $jr \in J$.

quantifiers are 'for all j_1, j_2 there exists j_3), so that by taking $j_1 = 0$ one finds that $a j_2 \in J$ and by taking $j_2 = 0$ one finds that $j_1 b \in J$, and since a, b are arbitrary in R and j_1, j_2 are arbitrary in J, one deduces that J is an ideal.

Said otherwise, suppose that H is a subgroup of R (for addition) and one wonders if one can define a multiplication on cosets x+H by deciding that for making the product of a+H by b+H, one picks an element $x \in a+H$, an element $y \in b+H$ and the product is the coset containing xy: it only makes sense if this coset is independent of the choice of x and y, and since a particular choice is x=a,y=b, one must be sure that $x=a+h_1, y=b+h_2$ implies $xy=ab+h_3$ (with $h_1,h_2,h_3 \in H$, as suggested by the choice of notation, but the quantifiers are 'for all h_1,h_2 there exists h_3 ')); the choice $h_1=0$ implies that $ah_2 \in H$ for all $a\in R$ and all $a\in R$ and all $a\in R$ and all $a\in R$ and the choice $a\in R$ implies that $a\in R$ and all $a\in R$ a

Definition 7.5: If R is a ring and J is an ideal of R, one denotes R/J the quotient ring defined by the addition (a + J) + (b + J) = (a + b) J and the multiplication (a + J) (b + J) = (a b) J.

Lemma 7.6: (first isomorphism theorem for rings) If ψ is a ring-homomorphism of a ring R_1 into a ring R_2 , then $\psi(R_1)$ is subring of R_2 which is ring-isomorphic to $R_1/\psi^{-1}(\{0\})$.

Proof: That $\psi(R_1)$ is a subring of R_2 follows from $\psi(a) + \psi(b) = \psi(a+b)$ and $\psi(a) \psi(b) = \psi(ab)$, and it was shown that $\psi^{-1}(\{0\})$ is an ideal of R_2 , so that since $\psi(a) = \psi(b)$ whenever $\pi(a) = \pi(b)$ there is a factorization $\psi = \overline{\psi} \circ \pi$, where $\overline{\psi}$ is an homomorphism from $R_1/\psi^{-1}(\{0\})$ into R_2 , which is injective (since its kernel is the 0 of the quotient ring), and it becomes surjective if one considers it as a ring-homomorphism from $R_1/\psi^{-1}(\{0\})$ onto $\psi(R_1)$, so that it then is a bijection, hence a ring-isomorphism between these two rings.

Definition 7.7: If G is a group, then for $a, g \in G$, the *conjugate* of a by g is $a^g = g \, a \, g^{-1}$, and the *conjugate* of a subgroup H by g is $H^g = \{g \, h \, g^{-1} \mid h \in H\}$, which is a subgroup of G (and a subgroup H is normal if and only if $H^g = H$ for all $g \in G$).⁴ The *conjugation by* g is the automorphism $\psi_g \in Aut(G)$ defined by $\psi_g(x) = g \, x \, g^{-1}$ for all $x \in G$. The *conjugacy class* of g is $g \in G$.

Remark 7.8: The fact that $\psi_g(xy) = g \, x \, y \, g^{-1} = g \, x \, g^{-1} g \, y \, g^{-1} = \psi_g(x) \, \psi_g(y)$ show that ψ_g is an homomorphism of G into G (i.e. an endomorphism), but $\psi_g(\psi_h(x)) = \psi_g(h \, x \, h^{-1}) = g \, h \, x \, h^{-1} g^{-1} = (g \, h) \, x \, (g \, h)^{-1} = \psi_g \, h(x)$ shows that $\psi_g \circ \psi_h = \psi_g \, h$, and in particular ψ_g is invertible with inverse $\psi_{g^{-1}}$ (since ψ_e is the identity mapping id_G on G), so that ψ_g is an isomorphism of G onto G (i.e. an automorphism). The set of automorphism of G, denoted Aut(G), is a group for the operation of composition, whose identity is $e = id_G$, and the relation $\psi_g \circ \psi_h = \psi_{g \, h}$ for all $g, h \in G$ shows that the mapping $g \mapsto \psi_g$ is an homomorphism from G into Aut(G).

If G is Abelian, then $\psi_g = id_G$ for all $g \in G$, all subgroups are normal, and each conjugacy class is reduced to one element.

Definition 7.9: One says that a subgroup $H \leq G$ is *characteristic* in G, and one writes H *char* G, if (and only if) $\psi(H) = H$ for all $\psi \in Aut(G)$,⁵ the group of automorphisms of G.

Remark 7.10: Being a characteristic subgroup is a stronger property than being a normal subgroup, since normality is $\psi_g(H) = H$ for all $g \in G$ (or simply $\psi_g(H) \subset H$ for all $g \in G$), where ψ_g is the automorphism of conjugation by g.

Lemma 7.11: $A \operatorname{char} B \operatorname{char} C$ implies $A \operatorname{char} C$, and $A \operatorname{char} B \triangleleft C$ implies $A \triangleleft C$. Proof: In the first case, for $\varphi \in \operatorname{Aut}(C)$ one has $\varphi(B) = B$, so that $\varphi|_B \in \operatorname{Aut}(B)$, and then $\varphi(A) = \varphi|_B(A) = C$

In the second case, for $c \in C$ one has $\varphi_c(B) = B$, so that $\varphi_c|_B \in Aut(B)$, and then $\varphi_c(A) = \varphi_c|_B(A) = A$.

Remark 7.12: In general $A \triangleleft B \triangleleft C$ does not imply $A \triangleleft C$.

A.

⁴ Since $(H^{g_1})^{g_2} = H^{g_2g_1}$ for all $g_1, g_2 \in G$, $K = H^g$ is equivalent to $H = K^{g^{-1}}$, and one deduces that H is normal if and only if $H^g \subset H$ for all $g \in G$.

⁵ It is enough that $\psi(H) \subset H$ for all automorphisms of G, because ψ^{-1} being also an automorphism, one has $\psi^{-1}(H) \subset H$, and then applying ψ gives $H \subset \psi(H)$.

For example, let C be the dihedral group D_4 which has order 8, and is generated by a which has order 4 and b which has order 2, satisfying $ba = a^3b$, so that $ba^2 = a^3ba = a^6b = a^2b$, and $ba^3 = a^2ba = a^5b = ab$. Since b commutes with a^2 , $B = \{e, a^2, b, a^2b\}$ is a subgroup of C, which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, and which is a normal subgroup of C, since B has index 2 in C. Since B is Abelian, $A = \{e, b\}$ is a normal subgroup of B. However, $aba^{-1} = aba^3 = a^2b$, so that A is not stable by ψ_a , hence A is not a normal subgroup of C.

Example 7.13: $G = \mathbb{Z}_n$ is Abelian, so that $\psi_g = id_G$ for all $g \in G$, but Aut(G) is not reduced to one element, and it actually has $\varphi(n)$ elements, and Aut(G) is isomorphic to \mathbb{Z}_n^* , the multiplicative group of units of the ring \mathbb{Z}_n . Indeed, if ψ is an automorphism of G, it sends any generator of \mathbb{Z}_n to a generator of \mathbb{Z}_n , i.e. 1 is sent to an element $a \in \mathbb{Z}_n^*$, so that x is sent to ax modulo n, and if another automorphism ψ' is the multiplication by a b.

All the subgroups of \mathbb{Z}_n are characteristic subgroups, since for every d dividing n there is exactly one subgroup of order d, and any automorphism must send this subgroup of order d on itself, so that it is a characteristic subgroup.

Example 7.14: $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ is Abelian, so that $\psi_g = id_G$ for all $g \in G$, but Aut(G) is not reduced to one element, and it actually has 6 elements, and Aut(G) is isomorphic to the symmetric group S_3 . Indeed, if ψ is an automorphism, it sends any element of order 2 to an element of order 2, and there are 3 of them: $G = \{e, a, b, c\}$ with $a^2 = b^2 = c^2 = e$, ab = ba = c, bc = cb = a, and ca = ac = b; once $\psi(a)$ and $\psi(b)$ are chosen distinct among a, b, c, the image $\psi(c)$ is the third one, so that any permutation of a, b, c gives an automorphism of G.

There are 3 subgroups of order 2, which are normal since G is Abelian, but none of them is a characteristic subgroup, since they are permuted by the automorphisms.

Example 7.15: $G = \mathbb{Z}_2 \times \mathbb{Z}_4$ is Abelian, so that $\psi_g = id_G$ for all $g \in G$, but Aut(G) is not reduced to one element. G has 4 elements of order 4 ((0,1),(0,3),(1,1),(1,3)), and 3 elements of order 2 ((0,2),(1,0),(1,2)) so that it has 2 subgroups of order 4 and 3 subgroups of order 2, but the intersection of the two subgroups of order 4 is a subgroup of order 2, generated by (0,2), so that this subgroup is characteristic (among the elements or order 2, (0,2) is the only one which is divisible by 2).

Since G is generated by 2 of the elements of order 4, like a=(0,1) and b=(1,1), so that the other elements of order 4 are 3a and 3b, and the elements of order 2 are 2a=2b, b-a, and b+a. There are then 4 automorphisms, obtained by sending (a,b) on either (a,b), (3a,b), (a,3b), or (3a,3b), and Aut(G) is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

For example, a is the rotation of angle $\frac{\pi}{2}$ (like multiplication by i in \mathbb{C}), and b is a mirror symmetry (like complex conjugation in \mathbb{C}), so that $b a(z) = b(iz) = -i\overline{z} = a^3 b(z)$, hence $b a = a^3 b$.

⁷ Since it is a subgroup, and a^2 , b, and a^2b have order 2.

⁸ These are given by mappings $(x,y) \in \mathbb{Z}_2 \times \mathbb{Z}_4 \mapsto (\alpha x + \beta y, \gamma x + \delta y) \in \mathbb{Z}_2 \times \mathbb{Z}_4$ with the matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ given by $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.