Exercise 3.1.1
(a):
solution: True
27 is a multiple of 3, and 27 \in Z. Therefore 27 \in A
(b):
solution: False
27 is not a perfect square number
(c):
solution: True
100 is a perfect square of 10/-10, 100 \in Z. Therefore 100 \in B.
(d):
solution: False
$E \subseteq C$ is false, and $C \subseteq E$ is false or false is false
(e):
solution: True
All the elements of E are multiples of 3 and set A contains all the elements. Therefore $E\subseteq A$
(f):
solution : False
$12 \in A$, but 12 is not an element in E. Hence its false

(g):
solution: False
All of elements of A are multiples of 3, and it does not contain E as an element
Exercise 3.1.2
(a):
solution: False
15 is a single element instead of a set , 15 \in A
(b):
solution: True
A = {, -9, -6, -3, 0, 3, 6, 9, 12, 15}
$\{15\}\subseteq A$, and at least one element in A and is not $\{15\}$. Hence $\{15\}\subset A$
(c):
solution: True
empty set is a proper subset of every set. Hence it is true
(d):
solution: True
every set is a subset of itself. Therefore its true
(e):
solution: False
\varnothing is an empty set which cannot be an element of B

Exercise 3.1.5
(b):
solution: { $x \in N$: x is a multiple of 3}; Infinite set
(d):
solution: { $x \in \mathbb{N}$: x is a multiple of 10 and $0 \le x \le 1000$ }; the cardinality is 101
Exercise 3.2.1
(a):
solution: True
(b):
solution: True
(c):
solution: False
$2 \in X$, and $\{2\} \subseteq X$
(d):
solution: False
$\{3\} \in X \text{ not } 3$
(e):
solution: True
{1, 2} is an element of X
(f):

solution: True

$1, 2 \in X$, therefore $\{1, 2\}$ is a subset of X
(g):
solution: True
2, $4 \in X$, therefore $\{2, 4\} \subseteq X$
(h):
solution: False
$\{2,4\}\subseteq X$
(i):
solution: False
$\{2,\{3\}\}\subseteq X$
(j):
solution: False
$\{3\} \in X$
(k):
solution : False

There are six elements not seven

Q8

Exercise 3.2.4

(b):

solution: {{2}, {1,2}, {2,3}, {1,2,3}}

$$P(A) = {\emptyset, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}$$

Since we only need subsets that contain the element 2, therefore:

$${X \in P(A): 2 \in X} = {\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}}$$

Q9

Exerc	ise	3	3	1
LACIC	130	J,	. ں	. д

(c):

solution: {-3, 1, 17}

(d):

solution: {-5, -3, 0, 1, 4,17}

 $B \cap C = \{-5, 1\}$

 $A \cup (B \cap C) = \{-5, -1, 0, 1, 4, 17\}$

(e):

solution: {1}

 $A \cap B = \{1, 4\}$

 $A\cap B\cap C=\{1\}$

Exercise 3.3.3

(a):

solution: {1}

$$\bigcap_{i=2}^{5} A_i = A2 \cap A3 \cap A4 \cap A5 = \{2^0, 2^1, 2^2\} \cap \{3^0, 3^1, 3^2\} \cap \{4^0, 4^1, 4^2\} \cap \{5^0, 5^1, 5^2\}$$

 $=\{1,2,4\}\cap\{1,3,9\}\cap\{1,4,16\}\cap\{1,5,25\}$

={ 1 }

(b):

solution: { 1, 2, 3, 4, 5, 9, 16, 25}

$$\bigcup_{i=2}^{5} A_i = A2 \cup A3 \cup A4 \cup A5 = \{2^0, 2^1, 2^2\} \cup \{3^0, 3^1, 3^2\} \cup \{4^0, 4^1, 4^2\} \cup \{5^0, 5^1, 5^2\}$$

 $= \{1, 2, 4\} \cup \{1, 3, 9\} \cup \{1, 4, 16\} \cup \{1, 5, 25\}$

= { 1, 2, 3, 4, 5, 9, 16, 25}

(e):

solution: $\{x \in \mathbf{R} : -1/100 \le x \le 1/100\}$

$$\bigcap_{i=1}^{100} C_i = \bigcap_{i=1}^{100} \{x \in \mathbf{R} : -1/i \le x \le 1/i\} = \{x \in \mathbf{R} : -1 \le x \le 1\} \cap \{x \in \mathbf{R} : -1/2 \le x \le 1/2\} \cap \{x \in \mathbf{R} : -1/3 \le x \le 1/3\} \dots$$

 $\cap \{x \in \mathbf{R} : -1/100 \le x \le 1/100\}$

for all i (1...100), $\{x \in \mathbb{R} : -1/100 \le x \le 1/100\}$ is a subset of all the other sets.

(f):

solution: $\{x \in \mathbf{R} : -1 \le x \le 1\}$

$$\bigcup_{i=1}^{100} C_i = \bigcap_{i=1}^{100} \{x \in \mathbf{R} : -1/i \le x \le 1/i\} = \{x \in \mathbf{R} : -1 \le x \le 1\} \cup \{x \in \mathbf{R} : -1/2 \le x \le 1/2\} \cup \{x \in \mathbf{R} : -1/3 \le x \le 1/3\} \dots$$

 $\cup \{x \in \mathbf{R} : -1/100 \le x \le 1/100\}$

for all (1...100), $\{x \in \mathbb{R} : -1 \le x \le 1\}$ contains all the elements in all other sets.

Exercise 3.3.4

(b):

solution: $P(A \cup B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$

 $A \cup B = \{a, b, c\}$

There are 8 (2³) subsets of A \cup B, therefore the power set P(A \cup B) is { \emptyset , {a}, {b}, {c}, {a, b}, {a, c},{b, c},{a, b, c}}

(d):

solution: $P(A) \cup P(B) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\} \}$

 $P(A) = {\emptyset, {a}, {b}, {a, b}}$

 $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$

 $P(A) \cup P(B) = {\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}}$

\sim	4	\sim
11	- 1	11
v	1	U

Exercise 3.5.1
(b):
solution: One example: (foam, tall, non-fat)
$B \times A \times C$ contains all ordered triples in which the first entry in the triple is in B, the second entry is in A, and the third entry is in C. Foam \in B, tall \in A, and non-fat \in C so (foam, tall, non-fat) is an element of $B \times A \times C$
(c):
solution: {(foam, non-fat), (foam, whole), (non-foam, non-fat), (non-foam, fat)}
Exercise 3.5.3
(b):
solution: True
$Z^2 = \{ (a, b): a, b \in Z \}$
$Z\subseteq R$
for every $a, b \subseteq Z$, $a, b \subseteq R$
therefore:
$Z^2 \subseteq R^2$
(c):
solution : True
The elements in \mathbb{Z}^2 are pairs. The elements in \mathbb{Z}^3 are triples. Therefore the two sets have no elements in common.

(e):

solution: True

for any subset (a, c) \in A \times C, then a \in A and c \in C

 $A \in B$, therefore $\forall a \in A \Rightarrow a \in B$

 $a \in B$ and $c \in C$

therefore: $(a, c) \in B \times C$

(a, c) is an arbitrary subset of A × C. therefore \forall (a, c) \in A × C \Rightarrow (a, c) \in B × C

Hence: $A \times C \subseteq B \times C$

Exercise 3.5.6

(d):

solution: {01, 011, 001, 0011}

$$\{0\} \cup \{0\}^2 = \{0\} \cup \{00\} = \{0,00\}$$

 $x \in \{0, 00\}$

$$\{1\} \cup \{1\}2\} = \{1\} \cup \{1, 11\} = \{1, 11\}$$

 $y \in \{1,11\}$

{xy: where $x \in \{0\} \cup \{0\}2$ and $y \in \{1\} \cup \{1\}2\} = \{01, 011, 001, 0011\}$

(e):

solution: { aaa, aaaa, aba, abaa}

 $y \in \{a\} \cup \{a\}2$

```
y \in \{a, aa\}
```

 $\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\} = \{aaa, aaaa, aba, abaa\}$

Exercise 3.5.7

(c):

solution: {aa, ab, ac, ad}

 $A \times B = \{ab, ac\}$

 $A \times C = \{aa, ab, ad\}$

$$(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$$

(f):

solution: $\{\emptyset$, $\{ab\}$, $\{ac\}$, $\{abac\}\}$

 $A \times B = \{ab, ac\}$

$$P(A \times B) = \{ \emptyset, \{ab\}, \{ac\}, \{abac\}\}$$

(g):

solution: { (a, b), (a, c), (a, b, c)}

$$P(A) = \{\emptyset, \{a\}\}\$$

$$P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$$

$$P(A) \times P(B) = \{ (a, b), (a, c), (a, b, c) \}$$

Q11

Exercise 3.6.2

(b):

solution:

(B ∪ A) ∩ (B̄∪ A)	
$(A \cup B) \cap (A \cup \overline{B})$	Commutative laws
$A \cup (B \cap \overline{B})$	Distributive laws
$A \cup \emptyset$	Complement laws
A	Identity laws

(c):

solution:

$\overline{A \cap \overline{B}}$	
$ar{A} \; \cup \overline{\overline{B}}$	De Morgan's laws
Ā∪B	Double Complement laws

Exercise 3.6.3

(b):

solution: False

if $A = \{a, b\}$, and $B = \{b\}$, then $A - (B \cap A) = \{a\}$, which is not equal to A

(d):

solution: False

if A = {a, b}, and B = {a, b, c}, then (B-A) \cup A = {a, b, c}, which is not equal to A

Exercise 3.6.4

(b):

solution:

A ∩ (B - A)	
$A \cap (B \cap \bar{A})$	Set subtraction laws
(B ∩ Ā) ∩ A	Commutative laws
$B \cap (\bar{A} \cap A)$	Associative laws
$B \cap \varnothing$	Complement laws
Ø	Domination laws

(c):

solution:

A ∪ (B - A)	
A∪(B∩Ā)	Set subtraction laws
$(A \cup B) \cap (A \cup \bar{A})$	Distributive laws
(A ∪ B) ∩ U	Complement laws
$A \cup B$	Identity laws