IntroML ML. 3. (Linear) Classification

DataLab CSIC

Objectives and schedule

General concepts and basic algos in (linear) classification

- Discriminant functions
- Probabilistic discriminative approaches
- Probabilistic generative approaches

Contents

- Key concepts: Likelihood optimisation for classification, Bayesian classification, Stochastic gradient descent, multiple class, metrics, glms (beyond logistic regression)
- Later chapters more on non-linear classification

ISLR 4, ESL 4, Bishop 4

Lab

- LDA, QDA
- Full logistic regression example (incl. Regularisation)
- Text classification (multiple classifiers)

Classification. Three broad approaches

Objective

Divide input space into decision regions so that each input is associated to one (and only one) class

Methods (in this chapter). Decision surfaces are linear in inputs

- Discriminant function
- Probabilistic generative model
- Probabilistic discriminative model

Classification. Three broad approaches (as usual with blurry frontiers)

Objective

Divide input space into decision regions so that each input is associated to one (and only one) class

Methods (in this chapter). Decision surfaces are linear in inputs

- Discriminant function
- Probabilistic generative model
- Probabilistic discriminative model

A decision analytic perspective

K classes. Prior probability for class i Given class i, feature distribution

Given x, posterior probability for class i

Uij

Utility for assigning to class j when actually in class i

Maximise expected utility

Discriminant functions

Discriminant functions

A function that takes an input x and assigns it to one of the clases

No direct assessment of class probability given input x

LDA

Feature density given class is normal Same variance for all clases

$$\int_{i}^{2} (x) = \frac{1}{\sqrt{2n}} \operatorname{oxp} \left(-\frac{1}{2} \frac{(x-\mu_{i})^{2}}{\sigma_{i}^{2}} \right)$$

$$\sigma_{i}^{2} = \sigma_{i}^{2} = \dots = \sigma_{K}^{2}$$

max
$$\rho_{i}(x) = \frac{\prod_{i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (x-\mu_{i})^{2}\right)}{\sum_{i=1}^{k} \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (x-\mu_{i})^{2}\right)} \propto \prod_{i} \exp\left(-\frac{1}{2\sigma^{2}} (x-\mu_{i})^{2}\right) \propto \prod_{i} \exp\left(-\frac{1}{2\sigma^{2}} (x-\mu_{i})^{2}\right)$$

LDA (cont)

K=2, Equal prior probs Class 1 if

Boundary

Gen, Discriminant function

$$2 \times (\mu_{1} - \mu_{2}) > \mu_{1}^{2} - \mu_{2}^{2}$$

$$\times = \frac{\mu_{1}^{2} - \mu_{2}^{2}}{2(\mu_{1} - \mu_{2})} = \frac{\mu_{1} + \mu_{2}}{2}$$

$$\hat{G}(x) = \times \frac{\hat{\mu}_{i}}{\hat{G}^{2}} - \frac{\hat{\mu}_{i}^{2}}{2\hat{G}^{2}} + \log(\hat{\Pi}_{i}) \hat{\sigma}^{i} = \frac{1}{n-k} \sum_{n=1}^{K} \sum_{n=1}^{N} (x_{i}^{2} - \hat{\mu}_{n}^{2})}{\hat{\Pi}_{i} = \frac{n}{n}}$$

QDA

Feature density given class is normal Specific variance for each class

Discriminant function

LDA vs QDA

With p predictors

Algo	Pars	Flexibility	Variance	Bias
LDA	p(p+1)/2	Less	Smaller	Bigger
QDA	K(p(p+1))/2	More	Bigger	Smaller

Regularised discriminant analysis

$$Z_{i}(\lambda) = \chi \hat{Z}_{i} + (1-\alpha)\hat{Z}$$

$$\hat{Z}(\delta) = \chi \hat{Z} + (1-\delta)\hat{Z}^{2}$$

$$\hat{Z}(\delta) = \chi \hat{Z} + (1-\delta)\hat{Z}^{2}$$

Computations in discriminant analysis

Probabilistic discriminative models

Probabilistic discriminative models

Compute class probabilities given input, typically through a parametric model

Logistic regression

Data

Model

Logistic regression. Likelihood formulation

$$\begin{aligned} &\mathcal{C}(\alpha_{i}\beta_{i}|(x_{i}\gamma_{i})) = \begin{bmatrix} \prod_{i:\gamma_{i}=0}^{n} \theta_{i}(x_{i}) \end{bmatrix} \begin{bmatrix} \prod_{i:\gamma_{i}=0}^{n} \left(1-\theta_{i}(x_{i})\right) \end{bmatrix} = \prod_{i=1}^{n} \left[\theta_{i}(x_{i})^{\gamma_{i}} \left(1-\theta_{i}(x_{i})\right)^{\gamma_{i}} \right] \\ &\log \left[\ell(\alpha_{i}\beta_{i}|(x_{i}\gamma_{i})) = \sum_{\gamma_{i}=1}^{n} \log \theta_{i}(x_{i}) + \sum_{\gamma_{i}=0}^{n} \log \left(1-\theta_{i}(x_{i})\right) \right] \\ &= \sum_{i=1}^{n} \gamma_{i} \log \left(\theta(x_{i})\right) + \left(1-\gamma_{i}\right) \log \left(1-\theta_{i}(x_{i})\right) \end{aligned}$$

Logistic regression. Evaluating the likelihood

Some little tricks

$$\frac{\log t^{-2}}{1 - \ln t^{-2}} = \frac{1}{1 - \frac{1}{1 + e^{-2}}} = \frac{1}{e^{-2}} = e^{2} \qquad \log \left(\frac{\log t^{-2}}{1 - \log t^{-2}} \right) = Z$$

$$1 - \log t^{-2}(z) = 1 - \frac{1}{1 - \frac{1}{1 + e^{-2}}} = \frac{e^{-2}}{1 + e^{-2}} = \frac{1}{1 + e^{2}}$$

$$\log \left(1 - \log t^{-2}(z) \right) = -\log \left(1 + e^{2} \right) = -\log \left(e^{2} \right)$$

$$\log \left(\ell(\alpha_{1}\beta_{1} \mid (x_{1}\gamma_{1})) = Z_{1}(\alpha_{1}\beta_{2}x_{1}) - Z_{2}\log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

$$= Z_{1}(\alpha_{1}\beta_{2}x_{1}) - (1 - \gamma_{1}) \log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

$$= Z_{2}(\alpha_{1}\beta_{2}x_{1}) - (1 - \gamma_{1}) \log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

$$= Z_{1}(\alpha_{2}\beta_{2}x_{1}) - (1 - \gamma_{1}) \log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

$$= Z_{2}(\alpha_{1}\beta_{2}x_{1}) - (1 - \gamma_{1}) \log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

$$= Z_{1}(\alpha_{2}\beta_{2}x_{1}) - (1 - \gamma_{2}\beta_{2}x_{1}) \log \rho \left(\exp \left(x + \beta_{2}x_{1} \right) \right)$$

Logistic regression. Gradient descent

Basic approach

$$(\alpha_{1}\beta)_{i+1} = (\alpha_{1}\beta)_{i} - \gamma_{i}^{2} \nabla \theta_{8} (\ell(\alpha_{1}\beta))$$

$$\nabla \theta_{8} (\ell(\alpha_{1}\beta)) = \begin{pmatrix} z_{1} - z_{2} \frac{\partial}{\partial x} \log l_{p} (\exp(x + \beta x_{i})) \\ y_{i+1} - z_{i+2} \frac{\partial}{\partial x} \log l_{p} (\exp(x + \beta x_{i})) \end{pmatrix}$$

$$\nabla (\alpha_{1}\beta)_{i+1} = \begin{pmatrix} z_{1} - z_{2} \frac{\partial}{\partial x} \log l_{p} (\exp(x + \beta x_{i})) \\ y_{i+1} - z_{i+2} \frac{\partial}{\partial x} \log l_{p} (\exp(x + \beta x_{i})) \end{pmatrix}$$

Newton-Raphson

Iterative reweighted least squares

Logistic regression. Stochastic gradient descent

When n is super-large

Robbins Monro (1954) stoch. approx.

Fits in memory, smaller complexity, Parallelise, Escape local optima

Logistic regression. Stochastic gradient descent

Fits in memory, smaller complexity, Parallelise, Escape local optima

Logistic regression. Stochastic gradient descent

Fits in memory, smaller complexity, Parallelise, Escape local optima

Logistic regression. Interpretation

Odds ratio
$$\theta(x) = \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \quad \text{odds} \quad \frac{\theta(x)}{1-\theta(x)} = e^{\alpha+\beta x} \in (0,\infty)$$

$$\log \frac{\theta(x)}{1-\theta(x)} = \alpha+\beta x \quad x \to x+1 \Rightarrow \cos(-0.00s + \beta)$$

$$\log \frac{\theta(x)}{1-\theta(x)} = \alpha+\beta x \quad x \to x+1 \Rightarrow \cos(-0.00s + \beta)$$

$$000s \neq e^{\beta}$$

$$OR = \frac{exp(\alpha + \beta(x+1))}{exp(\alpha + \beta x)} = e^{\beta}$$

Odds Ratio	X vs Y
1	No association
>1	Bigger output probability
<1	Smaller output probability

Logistic regression. Prediction

Just plug-in estimators to assess probabilities

$$R(Y=1/\tilde{x}) = \frac{e^{\frac{x}{4} + \beta \tilde{x}}}{1 + e^{\frac{x}{4} + \beta \tilde{x}}}$$

Cut-off level

Logistic regression with regulariser

max
$$= \sum_{i=1}^{n} \left[y_i \log p(x_i|\beta) + (4-y_i) \log (4-p(x_i|\beta)) \right] - \lambda \sum_{i=1}^{n} \beta_i^2$$

max $= \sum_{i=1}^{n} \left[y_i \log p(x_i|\beta) + (4-y_i) \log (4-p(x_i|\beta)) \right] - \lambda \left[\sum_{i=1}^{n} \beta_i \right]$

max $= \sum_{i=1}^{n} \left[y_i \log p(x_i|\beta) + (4-y_i) \log (4-p(x_i|\beta)) \right] - \lambda \left[\sum_{i=1}^{n} \beta_i \right]$

Bayesian logistic regression

Likelihood Generic prior Generic posterior

If few parameters, numerical integration else MCMC or Laplace approximations

Multiclass logistic regression

OR with K classes

Probabilities

Parameters

Log-likelihood

$$\frac{\log \frac{P(1|x)}{P(K|x)} = \beta_{10} + \beta_{1}^{t} \times \log \frac{P(2|x)}{P(K|x)} = \beta_{20} + \beta_{2}^{t} \times -\log \frac{P(K|x)}{P(K|x)} = \beta_{3000} + \beta_{30}^{t} \times \log \frac{P(K|x)}{P(K|x)} = \beta_{3000} + \beta_{30}^{t} \times \log \frac{P(K|x)}{P(K|x)} = \frac{1}{1 + \sum_{k=1}^{N} \exp(\beta_{30} + \beta_{k}^{t} \times)}$$

$$\theta = \left(\beta_{30}, \beta_{1}^{t}, \dots, \beta_{30}, \dots, \beta_{300}, \beta_{300}^{t}\right)$$

$$\theta = \left(\beta_{30}, \beta_{1}^{t}, \dots, \beta_{300}, \beta_{300}, \beta_{300}^{t}\right)$$

$$\rho_{10}(x) = \sum_{k=1}^{N} \log p_{30}(x) = \beta_{10}(x) = \beta_{10}(x) = \beta_{10}(x) = \beta_{10}(x) = \beta_{10}(x)$$

$$\rho_{10}(x) = \sum_{k=1}^{N} \log p_{30}(x) = \beta_{10}(x) = \beta_{10}(x) = \beta_{10}(x)$$

$$\rho_{10}(x) = \sum_{k=1}^{N} \log p_{30}(x) = \beta_{10}(x) = \beta_{10}(x)$$

$$\rho_{10}(x) = \sum_{k=1}^{N} \log p_{30}(x) = \beta_{10}(x)$$

$$\rho_{10}(x) = \sum_{k=1}^{N} \log p_{30}(x)$$

Probit regression

Close to logistic regression

$$Pr(11x) = \Phi(p_0 + p_1x) \qquad \phi \mapsto N(0,1)$$

$$\Phi(2) = \frac{1}{2} \left\{ 1 + erd \left(\frac{2}{\sqrt{2}} \right) \right\}$$

glms

Exponential family

e.g., Bernoulli

$$\theta^{\gamma} (1-\theta)^{A-\gamma} = 1 \cdot \left(\frac{\theta}{1-\theta}\right)^{\gamma} (1-\theta)$$

$$= 1 \cdot \exp\left(\left(\log \frac{\theta}{1-\theta}\right)^{\gamma}\right) \cdot (1-\theta)$$

glm

GLH
$$y[x;\theta \in Exp Family (y)] h_{\theta}(x) = E(y|x,\theta) \eta = \theta^{t}x$$
Databa CSIC

Probabilistic generative models

Probabilistic generative models

Estimate class probabilities and input distribution given class Compute class probability given input via Bayes formula

Naive Bayes

Variational autoencoders

Naive Bayes

NB ass.

Naive Bayes. Parameter estimation

Continuous

Counts

Categorical

Classification metrics

Ok... but how do we assess classifier performance??? (More in labs!!!)

Confusion matrix

Confusion matrix

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample

Imbalanced problems

Accuracy not sufficient in imbalanced problems

- Example. CTR (click-through rate, click 1, no-click 0)
 - About 10⁸ ads (observations), only 80000 clicks
 - A model classifying always as 0, accuracy of 99.92%

Unequal class distribution inherent in

Fraud detection
Anomaly detection
Credit default prediction
Conversion prediction
Intrusion detection....

Imbalanced problems

F1 score

$$\frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$$

Hybrid metric useful for unbalanced classes

Oversampling Undersampling

SMOTE Synthetic Minority Oversampling Tech

Bayesian methods

ROC (receiver operating characteristics) AUC (area under curve)

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity

More generally, need to take into account costs
Fraud, no fraud
Cannabinoids. Decisions entail researching or not researching drug

Calibration

Discrimination vs Calibration

The Achilles heel of predictive analytics

https://bmcmedicine.biomedcentral.com/articles/10.1186/s129 16-019-1466-7

When you say probability of A is 70% you are right 70% of the times

Back to the decision analytic perspective...

K classes. Prior probability for class i

Given class i, feature distribution

Given x, posterior probability for class i

Uij

Utility for assigning to class j when actually in class i

Maximise expected utility

Classification. To be seen

C+R. Decision trees, random forests, boosting

C (+R). Support vector machines

R +C. Perceptrons. Neural networks. Deep neural nets

See you next week

introml@icmat.es

Stuff at

https://datalab-icmat.github.io/courses stats.html