CRESYM joint Harmony-BiGER workshop TU Delft, June 5-6, 2023

A four-VSC benchmark system:

modelling, simulation and limits of phasor approximation

Thierry Van Cutsem

thierry.h.van.cutsem@gmail.com

https://thierryvancutsem.github.io/home/

- Power-electronics converters push the phasor approximation to its limit (and beyond...)
- There is a need for benchmark systems
 - with large penetration of converters
 - small enough to be easily tractable
 - complex enough to reflect real-life systems
 - easily implemented in various simulation tools
- A 100% power electronics, 4-VSC test system is presented
- The embedded EMT models of VSCs were developed, tuned and thoroughly tested by Prof. Xavier Guillaud and his team at Ecole Centrale de Lille, France
 - this presentation focuses on models under the phasor (or "RMS") approximation
 - simulation results in phasor-mode are compared with their EMT counterparts

- Models and data of the benchmark are readily available in open source
- This is *not* a presentation about the "best" design and/or tuning of VSC controls
 - the models in this presentation are generic
 - they encompass many variants proposed in the literature

Table of contents

- 1. Modelling of the 4-VSC benchmark: network part
- 2. Modelling of the 4-VSC benchmark: converter part
- 3. Examples of simulations under phasor approximation
- 4. Comparison with EMT simulations
- 5. Next steps

Topology and main characteristics

Network parameters

line / cable	nominal voltage	R (Ω)	χ (Ω)	ωC/2 (μS)	length (km)	Snom (MVA)
A-C *	400	1.04	20.80	98	65	3000
A-B *	400	0.51	10.24	48	32	3000
B-C *	400	1.12	22.40	105	70	3000
A2-E **	225	0.42	0.83	9000	50 km	2400
B2-F **	225	0.42	0.83	9000	50 km	2400

^{*} data of a single circuit

^{**} data of 6 cables in parallel (400 MVA each)

transformer	nominal voltages	R (%)	X (%)	transfo ratio (%)	Snom (MVA)
A1-A	320 / 400	0.5	15.0	102.	1200
B1-B	320 / 400	0.5	15.0	104.	1700
A2-A	225 / 400	0.5	15.0	102.	2400
B2-B	225 / 400	0.5	15.0	105.	2400
WP1-E *	66 / 225	0.5	12.0	105.	2400
WP2-F *	66 / 225	0.5	12.0	104.	2400

^{* 6} transformers in parallel, 400 MVA each

converter	Snom (MVA)	Pnom (MW)
WP1	2400	2300
WP2	2400	2300
HVDC1	1200	1150
HVDC2	1700	1630

Operating point No. 1

Equiv

- Power injected by WPs and HVDC links exported to external system
- network heavily loaded
- no load

BUS VOLTAGE MAGNITUDE (PU)

ACTIVE POWER (MW)

Operating point No. 2

Equiv

- WP productions exported by HVDC links
- load at bus C
- zero power flow in external equivalent
- network lightly loaded
- larger shunt reactors

BUS VOLTAGE MAGNITUDE (PU)

ACTIVE POWER (MW)

Table of contents

- 1. Modelling of the 4-VSC benchmark: network part
- 2. Modelling of the 4-VSC benchmark: converter part
 - grid-following converters
 - grid-forming converters
- 3. Examples of simulations under phasor approximation
- 4. Comparison with EMT simulations
- 5. Next steps

Grid-following converter

MMC-type converter connected to grid through transformer.

• no LC filter

DC side $\underline{\text{not}}$ modelled (v_{dc} assumed constant)

• focus is on AC grid dynamics

Grid-following converter: reference frames

Network reference frame:

(x, y) axes rotating at angular speed ω_{ref} (rad/s)

 v_{χ} , v_{V} : rectangular components of PCC voltage phasor \overline{V} .

VSC control reference frame:

(d,q) axes tracking the voltage phasor and given by Phase Locked Loop

 v_d , v_q : d, q components of \overline{V}

 δ_g : phase angle of \bar{V} wrt x (rad) $\tilde{\delta}_g$: angle between d and x (rad) in steady-state: $\tilde{\delta}_g$ = δ_g

 $\widetilde{\omega}_q$: angular speed of (d,q) axes (pu/s)

Grid-following converter: voltages and currents in transformer

Passing from (x, y) to (d, q) reference frame :

voltage at PCC:
$$v_d = v_x \cos \tilde{\delta}_g + v_y \sin \tilde{\delta}_g$$
 current in converter: $i_d = r \, i_x \cos \tilde{\delta}_g + r \, i_y \sin \tilde{\delta}_g$
$$v_q = -v_x \sin \tilde{\delta}_g + v_y \cos \tilde{\delta}_g$$

$$i_q = -r \, i_x \sin \tilde{\delta}_g + r \, i_y \cos \tilde{\delta}_g$$

Dynamics of current in transformer in (d, q) reference frame :

$$L_{pr}\frac{d}{dt}i_{d} = \omega_{N} \left(v_{md} - \frac{v_{d}}{r} - R_{pr} i_{d} + \tilde{\omega}_{g} L_{pr} i_{q}\right)$$

$$L_{pr}\frac{d}{dt}i_{q} = \omega_{N} \left(v_{mq} - \frac{v_{q}}{r} - R_{pr} i_{q} - \tilde{\omega}_{g} L_{pr} i_{d}\right)$$

- differential equations not in agreement with the phasor approximation of network (algebraic eqs.)
- aimed at (hopefully) capturing fast dynamics of converter

Grid-following converter: Phase Locked Loop (PLL)

values in per unit on the S_{nom} base (nominal apparent power of converter)

Blocking/unblocking the PLL for low voltage:

V: PCC voltage magnitude (pu)

 V_{pll1} = 0.4 pu V_{pll2} = 0.5 pu

Grid-following converter: d-q current control

$$K_i=R_{pr}~\omega_c$$
 = 6 pu/s $K_p=L_{pr}{\omega_c\over\omega_N}$ = 0.4584 for WP1 and WP2 = 0.5730 for HVDC1 and HVDC2

 $(\omega_c = 1200 \text{ rad/s})$

Grid-following converter: active power control

$$T_{LPF} = \frac{1}{\omega_{LPF}} = 1/300 = 3.3 \text{ ms}$$
 $K_{ip} = 10 \text{ pu/s}$ $K_{pp} = K_{ip}/\omega_{LPF} = 10/300 = 33.3$

$$K_{ip}$$
= 10 pu/s

$$K_{pp} = K_{ip}/\omega_{LPF} = 10/300 = 33.3$$

 I_{nom} : nominal current (1 pu)

Lower block-diagram: limits the rate of recovery of I_d^{max} after it has been decreased by an increase of i_a (priority given to reactive current)

T : small time constant (0.002 s)

 $(\frac{a i_d}{dt})_{max}$ = 0.5 pu/s for WP1 and WP2 = 10 pu/s for HVD1 and HVDC2

Grid-following converter: voltage / reactive power control

Q: reactive power injected into the grid (pu)

$$T_{LPF}$$
= 3.3 ms

$$V_{comp}$$
 : compensated voltage : $V_{comp} = |rac{ar{V}}{r} + (R_c + jX_c) \ r \ ar{I}|$

 I_{a1}^{max} : see next slide

 $R_c = R_{pr}$ and $X_c = L_{pr} \Rightarrow$ the V_m voltage magnitude is controlled

qswitch =
$$1 K_{in} = 50$$

vqswitch =1
$$K_{iv}$$
= 50 pu/s K_{pv} = K_{iv}/ω_{LPF} = 0.1667

$$K_{iv} = 10 \text{ pu/s}$$

vqswitch =0
$$K_{iv}$$
= 10 pu/s K_{pv} = K_{iv}/ω_{LPF} = 0.0333

Dynamic voltage support : $V_{s1} = 0.95 \text{ pu}$ $V_{s2} = 0.5 \text{ pu}$

$$V_{s1} = 0.95 \text{ pu}$$

$$V_{s2} = 0.5 \text{ pu}$$

Grid-following converter : limit I_{q1}^{max} on quadrature current

First option: limited capability

Second option: full capability

normal voltage control

_____ dynamic voltage support

The second option has been selected

Grid-forming converter

MMC-type converter connected to grid through transformer.

• no LC filter

DC side $\underline{\text{not}}$ modelled (v_{dc} assumed constant)

• focus is on AC grid dynamics

Grid-forming converter: reference frames and voltage control

The d axis is attached to the internal phase angle δ_m

• δ_m is given by the active power and phase angle control : see slide 22

In normal operation, when the converter current is not limited:

- δ_m is the phase angle of the modulated voltage
- \bar{V}_m lies along the d axis, i.e. $v_{mq} = 0$
- the magnitude of \bar{V}_m is constant, i.e. $v_{md} = V_m^*$ (voltage setpoint)

Grid-forming converter: voltages and currents in transformer

Passing from (x, y) to (d, q) reference frame :

voltage at PCC:
$$v_d = v_x \, \cos \delta_m + v_y \, \sin \delta_m$$
 current in converter: $i_d = r \, i_x \, \cos \delta_m + r \, i_y \, \sin \delta_m$
$$v_q = -v_x \, \sin \delta_m + v_y \, \cos \delta_m$$

$$i_q = -r \, i_x \, \sin \delta_m + r \, i_y \, \cos \delta_m$$

Dynamics of current in transformer in (d, q) reference frame :

$$L_{pr}\frac{d}{dt}i_d = \omega_N \left(v_{md} - \frac{v_d}{r} - R_{pr} i_d + \tilde{\omega_g} L_{pr} i_q\right)$$
$$L_{pr}\frac{d}{dt}i_q = \omega_N \left(v_{mq} - \frac{v_q}{r} - R_{pr} i_q - \tilde{\omega_g} L_{pr} i_d\right)$$

• same remark as for the grid-following converter (differential, not algebraic eqs.)

Grid-forming converter: active power and phase angle control

Inertia emulation : H=5 s

Damping: 2 options:

• with PLL to estimate grid frequency ($\widetilde{\omega}_{grid}$): D=200-300 $K_p=0$

• IP scheme without PLL: D=0 $K_p=0.01592$

Both options are equivalent to a "Virtual Synchronous Machine" scheme

Participation to primary frequency control : droop R=25

f: freezing factor: see next slide

Grid-forming converter: current limiter

$$K_{CS} = 2.05 \text{ pu}$$

$$I_{max} = 1 \text{ pu}$$

Check: when current not limited:

$$i_d^* = i_{ds}^*$$
 $i_q^* = i_{qs}^*$ $v_{md} = V_{md}^* = V_m^*$ $v_{mq} = V_{mq}^* = 0$

Freezing factor f:

Table of contents

- 1. Modelling of the 4-VSC benchmark: network part
- 2. Modelling of the 4-VSC benchmark: converter part
- 3. Examples of simulations under phasor approximation
 - short word about simulation tool
 - large-disturbance simulation
- 4. Comparison with EMT simulations
- 5. Next steps

STEPSS

(Static and Transient Electric Power Systems Simulation)

STEPSS

(Static and Transient Electric Power Systems Simulation)

RAMSES

- differential/algebraic equations solver developed at the Univ. of Liège by P. Aristidou and T. Van Cutsem
- phasor approximation
- decomposition (Schur-complement) + localization techniques
- parallel processing

CODEGEN

- receives user-defined models written according to a simple syntax
- translates them into FORTRAN 2003 code, to be compiled and linked to the rest of RAMSES
- 4 types of models: excitation control of sync. mach. / torque control of sync. mach. / injectors / two-ports
- models freely shared by users \rightarrow open-source simulation software

LICENSE TERMS

STEPSS can be used free of charge for non-commercial/non-profit purposes, in a version limited to 1000 buses and 2 cores.

0.6

0.0

Equiv

- operating point No. 1
- WP1, WP2 & HVDC1 in grid-following mode
 - WP1 in reactive power control
 - WP2 and HVDC1 in voltage control
 - dynamic voltage support disabled
- HVDC2 in grid-forming mode
- short-circuit power of external system : 10 000 MVA
- disturbance:
 - solid fault on line A-C#1, next to bus A
 - cleared in 150 ms by opening line A-C#1

Network voltages

Responses of the converters in grid-following mode

Responses of the converters in grid-following mode

Response of the converter in grid-forming mode

Response of the converter in grid-forming mode

Table of contents

- 1. Modelling of the 4-VSC benchmark: network part
- 2. Modelling of the 4-VSC benchmark: converter part
- 3. Examples of simulations under phasor approximation
- 4. Comparison with EMT simulations
- 5. Next steps

Simulation of a mild disturbance; oper. pt No. 2

- All four converters in grid-following mode
- load at bus C modelled as constant admittance
- opening of one circuit between buses A and B at t= 1 s

• variation of short-circuit power S_{sc} of the external equivalent

BUS VOLTAGE MAGNITUDE (PU)

EMT vs. phasor-mode simulation

oscillation frequency ≈ 16 Hz

oscillation frequency ≈ 8 Hz

Simulation of a mild disturbance at oper. pt No. 2

Equiv

- WP2 in grid-**forming** mode
- the other three VSCs in grid-following mode
- same disturbance

• variation of short-circuit power S_{sc} of the external equivalent

EMT vs. phasor-mode simulations

Strong stabilizing effect of grid-forming converter.

System so stable that the response is acceptable with S_{sc} as low as 300 MVA!

EMT model and phasor approximation in agreement.

Simulation of a mild disturbance at (variant of) oper. pt No. 2

- Variant without load at bus C (corresponding power taken by external equivalent)
- All four converters in grid-following mode
- short-circuit power S_{sc} of external equivalent : 17 700 MVA
- same disturbance

VOLTAGE MAGNITUDE (PU)

EMT vs. phasor-mode simulations

Damping effect of (constant admittance) load not seen in phasor-mode simulation

Table of contents

- 1. Modelling of the 4-VSC benchmark: network part
- 2. Modelling of the 4-VSC benchmark: converter part
- 3. Examples of simulations under phasor approximation
- 4. Comparison with EMT simulations
- 5. Closing words

Closing words

- Significant discrepancies between EMT and phasor models in terms of stability limits
- Apparently less pronounced with grid-forming than with grid-following VSCs
 - probably due to higher system stability
 - to be further checked in large-disturbance scenarios
- Need to better understand the discrepancies between EMT and phasor models
- Not shown in this presentation: "spurious" transients most likely due to incoherency between differential eqs. of transformer and algebraic eqs. of network
- Indicators to complement phasor-mode simulation and raise alarms about the necessity to switch to EMT simulation ?
- Alternatives to phasor-mode simulation: dynamic phasors, co-simulation, etc.
- The proposed benchmark is well suited to validate those approaches
 - it can also be extended: e.g., with smallest STATCOM or synchronous condenser to stabilize the system

Thank you for our attention!

thierry.h.van.cutsem@gmail.com