S. No	Name of Experiment			
1.	LED BLINKING: - Program to cause continuous blinking of LEDs			
	(i)simultaneously(allotonic), (ii) sequentially			
2.	LED BLINKING CONTROLLED BY A SWITCH: - (i) Program to glow an LED when its			
	corresponding switch is pressed (ii) Program to glow LO when SW1 is pressed, LO and L1			
	when SW2 is presses, L0, L1, L2 when SW3 is presses and all the LEDs when SW4 is			
3.	presses INTERFACING OF SEVEN SEGMENT DISPLAY: - Program to display digits 0 to 9 on seven			
	segment display.			
4.	INTERFACING OF BUZZER: -			
	Program to control buzzer			
5.	BUZZER CONTROLLED BY A SWITCH: -			
	Program to cause the buzzer to beep (i) once when switch1 (SW1) is pressed (ii) twice			
	when switch2 (SW2) is pressed (iii) thrice when switch (SW3) is pressed and (iv) four			
	times when swich4 (SW4) is pressed			
6.	D.C. MOTOR INTERFACING: - Drogram to rotate a d.c. motor in clockwise and anti-clockwise direction			
	Program to rotate a d.c. motor in clockwise and anti-clockwise direction			
7.	Stepping Motor: -			
	I. Single phase stepping motor			
	II. 2 phase stepping motor			
	III. Half phase stepping motor			

AIM:

LEDBLINKING Program to cause continuous blinking of LEDs

(i)simultaneously(allotonic),(ii)sequentially

SOURCE CODE: -

```
Program Code
  #include<avr/io.h>
                           // header to include all definitions related to AVR
  #include<util/delay.h> // header file to include TIME DELAY
                           microcontroller
  int main(void)
    DDRC=0X0F;
                      // To configure pins PC0 to PC3 as OUTPUT PINs
    while(1)
                         // To GLOW all the LEDs connected to PC0 to PC3
      PORTC=0X0F;
      _delay_ms(1000); // To include TIME DELAY of 1000 ms
      PORTC=0X00;
                        // To SWITCH OFF all the LEDs connected to PC0 to PC3
      _delay_ms(1000);
    return(0);
```

```
Program Code
 #include<avr/io.h>
 #include<util/delay.h>
 int main(void)
 DDRC=0X0F;
                 // To configure pins PC0 to PC3 as OUTPUT PINs
 while(1)
 {
                    // To GLOW LED Lo
 PORTC=0x01;
 _delay_ms(1000);
                    // To GLOW LED L<sub>1</sub>
 PORTC=0x02;
 _delay_ms(1000);
 PORTC=0x04;
                    // To GLOW LED L2
 _delay_ms(1000);
                    // To GLOW LED L<sub>3</sub>
 PORTC=0x08;
 _delay_ms(1000);
 return(0);
 }
```

CONCLUSION: -

Blinking of LED's simultaneously and sequentially has been successfully observed on AVR kit.

AIM:-

LED BLINKING CONTROLLED BY A SWITCH

- (i) Program to glow an LED when its corresponding switch is pressed
- (ii) Program to glow L0 when SW1 is pressed, L0 and L1 when SW2 is presses, L0, L1, L2 when SW3 is presses and all the LEDs when SW4 is presses


```
#include<avr/io.h>
= int main(void)
{
    DDRC=0X01;
    DDRB=0X00;
    while(1)
    {
        //TODO::Pleasewriteyourapplicationcode
        if((PINB &0X01)==0X00)
        {
            PORTC=0X01;
        }
        else
        {
            PORTC=0X00;
        }
    }
    return(0);
}
```

i)

```
#include<avr/io.h>
        {
             DDRC=0X0F;
             DDRB=0X00;
             while(1)
                if((PINB&0X01)==0X00)
                    PORTC=0X01;
                else
                    PORTC=0X00;
                if((PINB&0X02)==0X00)
                    PORTC=0X03;
ii)
                 }
                 else
                      PORTC=0X00;
                 if((PINB&0X04)==0X00)
                      PORTC=0X07;
                 }
                 else
                      PORTC=0X00;
                 if((PINB&0X08)==0X00)
                 {
                      PORTC=0X0F;
                 }
                 else
                      PORTC=0X00;
                  3
                 else
                      PORTC=0X00;
            return(0);
```

CONCLUSION: -			
The blinking of LEDs was seen both and continues like this.	by keeping the one switch on i	n which first LO glows the LO a	nd L1

AIM: -

INTERFACING OF SEVEN SEGMENT DISPLAY Program to display digits 0 to 9 on seven segment display.

SOURCE CODE:

```
#include<avr/io.h>
#include<util/delay.h>
∃int main(void)
    DDRB=0X3F;
    DDRD=0X02;
    while(1)
         //TODO::Pleasewriteyourapplicationcode
         //fordisplaying0
         PORTB=0X00;
         PORTD=0X02;
        _deLay_ms(5000);
         //fordisplaying1
         PORTB=0X39;
         PORTD=0X02;
        _delay_ms(5000);
         //fordisplaying2
         PORTB=0X24;
         PORTD=0X00;
        _delay_ms(5000);
```

```
//fordisplaying3
    PORTB=0X30;
    PORTD=0X00;
    _delay_ms(5000);
     //fordisplaying4
    PORTB=0X19;
    PORTD=0X00;
    _delay_ms(5000);
     //fordisplaying5
    PORTB=0X12;
    PORTD=0X00;
    _delay_ms(5000);
     //fordisplaying6
    PORTB=0X02;
    PORTD=0X00;
    _delay_ms(5000);
//fordisplaying7
    PORTB=0X38;
    PORTD=0X02;
    _delay_ms(5000);
    //fordisplaying8
    PORTB=0X00;
    PORTD=0X00;
    _delay_ms(5000);
//fordisplaying9
    PORTB=0X18;
    PORTD=0X00;
    _delay_ms(5000);
return(0);
```

CONCLUSION: -

All 0 to 9 digits were displayed on seven segment display drivers using ATMEGA8 board

AIM: -

Program to control buzzer (INTERFACING OF BUZZER)

SOURCE CODE:

i) Simple Program to beep the buzzer

```
#define F_CPU 8000000UL
#include<avr/io.h>
#include<avr/>io.h>
#include<avr/io.h>
#include<avr/>io.h>
```

ii) Program to control buzzer using switch

```
#include<avr/io.h>
#include<avr/>io.h>
#include<avr/>io.h</a>
#include<avr/>io.h<
```

CONCLUSION: -
An interfering of human in ATMICAR bound by quitab and other simula made is absorbed
An interfacing of buzzer in ATMEGA8 board by switch and other simple mode is observed.

AIM: -

BUZZER CONTROLLED BY A SWITCH Program to cause the buzzer to beep

- (i) once when switch1(SW1) is pressed
- (ii) twice when switch2(SW2) is pressed
- (iii) thrice when switch (SW3) is pressed and
- (iv) four times when swich4 (SW4) is pressed.

SOURCE CODE: -

#include <avr/io.h>

int main(void)

```
{
      DDRC=0X0F;
      DDRB=0X00;
while(1)
   //TODO:: Please write your application code
            if((PINB&0X01)==0X00)
                   PORTC=0X01;
    }
            else
                   PORTC=0X00;
              }
            if((PINB&0X02)==0X00)
                   PORTC=0X02;
            else
              {
                   PORTC=0X00;
                 if((PINB&0X04)==0X00)
                  PORTC=0X04;
```

CONCLUSION: -

A buzzer function was seen by beeping it by twice and once in ATMEGA8 board

AIM: -

D.C. MOTOR INTERFACING

Program to rotate a d.c. motor in clockwise and anti-clockwise direction

SOURCE CODE: -

```
#include<avr/io.h>
#include<util/delay.h>
int main(void)
DDRD=0X03;
while(1)
{
      POTRD=0X02;
      _delay_ms(5000);
      POTRD=0X00;
      _delay_ms(5000);
      POTRD=0X01;
       _delay_ms(5000);
      POTRD=0X00;
       _delay_ms(5000);
 }
return(0);
}
```

CONCLUSION: -

A motor is interfaced to rotate in clockwise and anticlockwise direction in ATMEGA8 board

AIM: -

Stepping motor interfacing

- 1. Single phase stepping motor
- 2. 2 phase full stepping motor
- 3. Half phase stepping motor

SOURCE CODE: -

1.

```
        → main.c
        → ∴
        → ∴
        C\Users\ANKUSH RANA\OneDrive\Documents\Desktop\Practical Lab 1 - Robotics\Stepper Motor\main.c
        → ②GO

        #includecutil/delay.h>
        ⇒ int main(void)
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        ↓
        <
```

2.

3.

```
*Author: AMKUSH RANA

*/
#includecavr/io.h>
#includ
```

CONCLUSION: -

A step per motor is been rotated by having different phase of operation.