

Introduction to Data Science

(BAZG523 / CSIZG523)

Tirtharaj Dash Dept. of Comp. Sc. and APP Center for A.I. Research BITS Pilani, K.K. Birla Goa Campus

lead

Introduction to Data Science Lecture No. 05 (C.H.: 9, 10)

Previous Lecture:

- Data
- Types of data sources
 - Transactions data
 - Unstructured data
 - Qualitative or expert data
 - Publicly available data
- Sampling
- Types of data elements
 - Continuous
 - Categorical (nominal, ordinal, binary)
- Visualizing data
 - Exploration (plotting) and analysis (basic statistical measurements)
- Missing values
 - Replace, delete, keep

Sampling

- Population: The entire group that you want to draw conclusions about.
- Sample: A subset of population.
 - A well-chosen sample will contain most of the information about the population.
 - The relation between sample and population should be such that the inferences made from the sample should apply to the population as well.
- Variable: It is a characteristic that describes the member of a sample.
 - We will refer to it as "attribute" or "feature".

Sampling methods

We will study two types:

- 1. Probabilistic sampling
- 2. Non probabilistic sampling

Probabilistic Sampling

- Select the members of population that have equal or non-zero probability.
- Types:
 - Simple sampling
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling

innovate achieve lead

Simple sampling

 A sample of size n from a population of size N is obtained through simple random sampling if every possible sample of size n has an equally likely chance of occurring.

Select 4 members from this group.

Population [1]

A possible sample from the give population:

Sampled 4 members [1]

Systematic sampling

- Pick up the members from the population through a welldefined system to make a Sample.
- Sampling is done based on some given condition.

Source: Wikipedia

Stratified sampling

 First, stratify to make an ordered or categorized samples from the population called as strata.

Then, choose members from each stratum for making a

sample.

Source: Wikipedia

innovate achieve lead

Cluster sampling

- Divide the population into groups call as clusters.
- Use simple random sampling to select the cluster to form a sample. (mostly common in geography)

Source: Wikipedia

Outliers

- Outliers are extreme observations that are very dissimilar to the rest of the population.
- Two types of outliers:
 - 1. Valid observations (e.g., salary of boss is \$1 million)
 - 2. Invalid observations (e.g., age is 300 years)
- Both (1) and (2) are univariate (outlying on 1 dimension).
- Multivariate outliers are observations that are outlying in multiple dimensions.

Multivariate outliers

Income and age (Source: T4, Ch.2)

Detecting univariate outliers

- Two standard ways:
 - Visualizing data
 - Statistical measurements
- Visualization based methods:
 - Histogram
 - Box-plot
- Statistical measurements:
 - z-score

Using histogram for outlier detection:

Example: Histogram of age (Source: T4, Ch.2)

Using box-plot for outlier detection:

- It represents 3 key quartiles of the data: the first quartile (25% of the observations have a lower value), the median (50% of the observations have a lower value), and the third quartile (75% of the observations have a lower value).
- All three quartiles are represented as a box.
- The minimum and maximum values are then also added unless they are too far away from the edges of the box.
- Too far away is then quantified as more than 1.5 * Interquartile Range:

$$IQR = Q3 - Q1$$

Box-plot (Source: T4, Ch.2)

z-score method for outlier detection:

Measures how many standard deviation an observation lies away from the mean.

$$z_i = \frac{x_i - \mu}{\sigma}$$

- Here, μ is the mean of X; x_i is an observation that belongs to X; the denominator is the standard deviation.
- A practical rule of thumb: Outliers when the absolute value of the *z*-score |z| is greater than 3.
- Note: z-score relies on the normal distribution.

Age	Z-Score
30	(30 - 40)/10 = -1
50	(50 - 40)/10 = +1
10	(10 - 40)/10 = -3
40	(40 - 40)/10 = 0
60	(60 - 40)/10 = +2
80	(80 - 40)/10 = +4

$\mu = 40$	$\mu = 0$
$\sigma = 10$	$\sigma = 1$

z-score based outlier detection for Age (Source: T4, Ch.2)

innovate achieve lead

Detecting multivariate outliers

 Multivariate outliers can be detected by fitting regression lines and inspecting the observations with large errors (using, for example, a residual plot).

[2] https://www.jmp.com/

- Alternative methods are clustering or calculating the Mahalanobis distance.
- Note: Although potentially useful, multivariate outlier detection is typically not considered in many modeling exercises due to the typical marginal impact on model performance.

Standardizing Data

- It is a data preprocessing activity targeted at scaling variables to a similar range.
- Why should you standardize data?

Standardizing Data

- It is a data preprocessing activity targeted at scaling variables to a similar range.
- Why should you standardize data?
 - Consider, for example, two variables: gender (coded as 0/1) and income (ranging between \$0 and \$1 million).
 - When building logistic regression models using both information elements, the coefficient for income might become very small.
 - Hence, it could make sense to bring them back to a similar scale.

innovate achieve lead

Cont.

Methods:

- Min/Max standardization
- z-score standardization
- Decimal scaling

Min/Max standardization

$$X_{new} = \frac{X_{old} - \min(X_{old})}{\max(X_{old}) - \min(X_{old})} (newmax - newmin) + newmin,$$

newmax and newmin are the newly imposed maximum and minimum (e.g., 1 and 0).

z-score standardization

$$z_i = \frac{x_i - \mu}{\sigma}$$

• This becomes the standardized value for an observation x_i .

- Decimal scaling
 - Divide by a power of 10 as follows:

$$X_{new} = \frac{X_{old}}{10^n}$$

• Here, *n* is the number of digits of the maximum absolute value.

Data Quality

4 categories:

- Intrinsic
- Contextual
- Representational
- Accessibility

- Intrinsic category
 - Accuracy: Data are regarded as correct
 - Believability: Data are accepted or regarded as true, real, and credible
 - Objectivity: Data are unbiased and impartial
 - Reputation: Data are trusted or highly regarded in terms of their source and content

- Contextual category
 - Value-added: Data are beneficial and provide advantages for their use
 - **Completeness**: Data values are present
 - Relevancy: Data are applicable and useful for the task at hand
 - Appropriate amount of data: The quantity or volume of available data is appropriate

- Representational category
 - Interpretability: Data are in appropriate language and unit and the data definitions are clear
 - Ease of understanding: Data are clear without ambiguity and easily comprehended

- Accessibility category
 - Accessibility: Data are available or easily and quickly retrieved
 - **Security**: Access to data can be restricted and hence kept secure.

High-dimensional Data

- Dimensionality refers to the number of features
 (attributes) that defines a data point or a data instance.
- Example: In one of our experiments, we saw that the an Iris flower is described by 4 features:
 - Sepal length
 - Sepal width
 - Petal length
 - Petal width
- For Iris dataset, dimensionality is 4.

There are some common misunderstandings and wrong definitions:

- Large number of features
 - My question: How much large is "large"? Is it 1000, 10000, 100000000?
- When our computer cannot handle the given data dimensions
 - My question: What if someone else's computer can?
- There are many such definitions available all over the internet. Do not read such non-scientific definitions.

Definition: Let a dataset contain *N* data instances. Each data instance can be described by *d* features. The dataset is called "high-dimensional" data, iff *d* > *N*.

Example:

- N=5, d=10: high-dimensional data
- N=100, d=101: high-dimensional data
- N=1000000, d=10000: not high-dimensional data

Question:

 A dataset of 1M images, of size 128×128×3. Will you call this dataset high-dimensional?

innovate achieve lead

Cont.

Definition: Let a dataset contain *N* data instances. Each data instance can be described by *d* features. The dataset is called "high-dimensional" data, iff *d* > *N*.

Example:

- N=5, d=10: high-dimensional data
- N=100, d=101: high-dimensional data
- N=1000000, d=10000: not high-dimensional data

Question:

 A dataset of 1M images, of size 128×128×3. Will you call this dataset high-dimensional? Answer: No

Is high-dimensionality a problem?

- Curse of dimensionality
- Nearest-neighbor problem

Curse of dimensionality

 With a fixed number of training samples, the predictive power of a classifier or regressor first increases as d increases, and then decreases with d.

Nearest-neighbor problem

 Let's look at the following example of determining nearest neighbor (used in k-NN, geoinformatics, etc.)

Fig 1: Query point (Q), and its neighbor [3]

Nearest-neighbor problem

But, what happens now?

Fig 2: Query point (Q), and its neighbor [3]

Nearest-neighbor problem

- So: the distance between the nearest neighbor (point at minimum distance) and any other point in the space is small.
- Specifically, given a query point Q, the minimum and maximum distance between Q and any list of n random points in the space follows:

$$\lim_{d\to\infty} \frac{dist_{max}(d) - dist_{min}(d)}{dist_{min}(d)} \to 0$$

As d increases, distance function loses its usefulness.

Data Models

- We will mean a data model as a statistical model.
- It provides:
 - Quantitative summary of the data
 - Impose a specific structure on the population
- A trivial model is no model at all.
 - Example: Let say, you are building a new product. You did a market survey on a set of people on 'how much would they be willing to pay for the new product?' And you got the following price data:

 A trivial model could be: you draw the histogram of prices i.e. X-axis will be each discrete price, and Y-axis will be frequency.

Data Models

- We will mean a data model as a statistical model.
- It provides:
 - Quantitative summary of the data
 - Impose a specific structure on the population
- A trivial model is no model at all.
 - Example: Let say, you are building a new product. You did a market survey on a set of people on 'how much would they be willing to pay for the new product?' And you got the following price data:

- A trivial model could be: you draw the histogram of prices i.e. X-axis will be each discrete price, and Y-axis will be frequency.
- Difficulty: You can't reliably question like "Will anyone buy my product if I sell it for 30?"

Models as expectations

- Imposes a structure on the population
- We will call this structure as a 'distribution'.
- The most common distribution is normal distribution. This is called a normal model, denoted as $\mathcal{N}(\mu, \sigma^2)$
- The probability density function (PDF) is:

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$
 $\mu : \text{mean}, \sigma^2 : \text{variance}$

We can assume that this distribution generated the obtained data.

Models as expectations

X: price, Y: density (Source: T3, Ch.5)

Models as expectations

Now we can answer questions.

X: price, Y: density (Source: T3, Ch.5)

 What is the probability that the product can be sold for 30? (Homework!)

Here are the steps:

- You have the mathematical function for the density.
- Plug in the value of 30 for x in the PDF and obtain the answer.
- The mean and variance are the mean and variance of the data sampled during the market survey.

Issues with normal model

Assumptions: Normal model will fit the data. What if it

does not.

Solution 1: Get a different model (e.g. gamma distribution)

X: price, Y: density (Source: T3, Ch.5)

Solution 2: Get different or more data: perform the survey again to collect more data or replace the existing data. Getting more data is better.