## GEMINI - Data Exploration

Jennifer Yueh May 25, 2017

```
library(data.table)
library(dplyr)
library(lubridate)
library(ggplot2)
library(Hmisc)
library(psych)
library(GGally)
library(knitr)
calcLOS <- function(startDate, startTime, endDate, endTime){</pre>
  t1 <- paste(startDate, startTime)</pre>
  t2 <- paste(endDate, startTime)</pre>
 tt.interval <- t1 %--% t2
 time.duration <- as.duration(tt.interval)</pre>
  return (as.numeric(time.duration, "hours"))
}
getTestData <- function(fileName){</pre>
  filePath <- paste0("Data/Clinical/",fileName)</pre>
  target <- read.csv(filePath, header=T, stringsAsFactors=F)</pre>
  target <- target %>% select(-c(Site, Test.Item))
  # how many different types of 'Test.ID' in 'albumin' table
  testDF <- data.frame(table(target$Test.ID))</pre>
  #colnames(testDF) <- c("Test.ID", "Count")</pre>
  head(testDF)
  id_occurCount <- target %>% group_by(EncID.new) %>%
    summarise(ID_Count=n(), Mean=round(mean(Result.Value),1)) %>%
    arrange(desc(ID_Count))
  target_joined <- left_join(target, id_occurCount, by='EncID.new')</pre>
  result <- target_joined %>% select(EncID.new, Mean, ID_Count, Admit.Date, Admit.Time, Discharge.Date,
    rename(target.code = Mean) %>%
    select(EncID.new, Admit.Date, Admit.Time, Discharge.Date, Discharge.Time, target.code, ID_Count) %>
    distinct()
  return (result)
}
doTest <- function(){</pre>
  thenames <- list.files("./Data/Clinical")</pre>
  thenames <- thenames[2:16] # BE VERY very CAREFUL HERE
```

## load in 'albumin' test data

```
ALB <- read.csv("Data/Clinical/lab.albumin.csv", header=T, stringsAsFactors=F)
ALB <- ALB %>% select(-c(Site, Test.Item)) # 10750 11 (10750 observations)
length(unique(ALB$EncID.new))
```

## [1] 10166

## 3

CALB

how many different types of 'Test.ID' in the table

```
testDF <- data.frame(table(ALB$Test.ID))
colnames(testDF) <- c("Test.ID", "Count")
testDF

## Test.ID Count
## 1 ALB 10720
## 2 ALBPE 29</pre>
```

number of the 'albumin' tests having been done

```
id_occurCount <- ALB %>% group_by(EncID.new) %>%
   summarise(ALB_Count=n(), Mean=round(mean(Result.Value),1)) %>%
   arrange(desc(ALB_Count))
head(id_occurCount, 10) #show 10 patients only

## # A tibble: 10 × 3
## EncID.new ALB_Count Mean
## <int> <int> <dbl>
```

```
## 2
      11916073
                       4 20.4
## 3
      11986124
                       4 42.0
                       3 39.0
## 4
      11104078
## 5
      11155168
                       3 38.2
## 6
                       3 35.7
      11171499
## 7
                       3 31.7
      11182572
                       3 34.9
## 8
      11201344
## 9
      11206232
                       3 25.0
## 10 11279141
                       3 34.0
ALB_joined <- left_join(ALB, id_occurCount, by='EncID.new')
albumin <- ALB_joined %>% select(EncID.new, Mean, ALB_Count, Admit.Date, Admit.Time, Discharge.Date, Di
         rename(ALB = Mean) %>%
         select(EncID.new, Admit.Date, Admit.Time, Discharge.Date, Discharge.Time, ALB, ALB_Count) %>%
                   distinct()
combined <- albumin # 10166 7
```

## display randomly selected observations in the dataset here

4 34.8

## 1

11384748

```
testSet <- doTest()
testSet$LOS <- calcLOS(testSet$Admit.Date, testSet$Admit.Time, testSet$Discharge.Date, testSet$Discharge
thesample <- sample_n(testSet,5)

df <- thesample %>% select(1,6,8,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38)
kable(df)
```

|       | EncID.new | ALB | ALP | ALT | AST | CA  | CR  | GLUF | GLUR | HGB | VLACT | MCV  | PLT | k s |
|-------|-----------|-----|-----|-----|-----|-----|-----|------|------|-----|-------|------|-----|-----|
| 13296 | 11544196  | NA  | NA  | NA  | NA  | NA  | 59  | NA   | 14.4 | 117 | NA    | 88.4 | 189 | 4.8 |
| 2237  | 11305873  | 43  | 99  | 27  | 20  | 2.4 | 76  | NA   | 19.7 | 130 | 2.2   | 92.2 | 266 | 3.5 |
| 12122 | 11325143  | NA  | NA  | NA  | NA  | NA  | 129 | NA   | 9.2  | 96  | NA    | 91.6 | 109 | 4.4 |
| 6292  | 11655014  | 32  | 99  | 17  | 39  | 2.2 | 83  | NA   | 6.4  | 127 | NA    | 89.6 | 416 | 4.3 |
| 2923  | 11365770  | 32  | 126 | 37  | 55  | NA  | 55  | NA   | 7.0  | 123 | NA    | 84.6 | 361 | NA  |

```
df_count <- thesample %>% select(1,7,9,11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38)
kable(df_count)
```

|       | ${\bf EncID.new}$ | ALB_Count | ALP_Count | ALT_Count | AST_Count | CA_Count | $CR\_Count$ | GLUF_Cour |
|-------|-------------------|-----------|-----------|-----------|-----------|----------|-------------|-----------|
| 13296 | 11544196          | NA        | NA        | NA        | NA        | NA       | 1           | N         |
| 2237  | 11305873          | 1         | 1         | 1         | 1         | 1        | 1           | N         |
| 12122 | 11325143          | NA        | NA        | NA        | NA        | NA       | 1           | N         |
| 6292  | 11655014          | 1         | 1         | 1         | 1         | 1        | 1           | N         |
| 2923  | 11365770          | 1         | 1         | 1         | 1         | NA       | 1           | N         |

## number of missing tests per patient

| EncID.new | ALB | ALP | ALT | AST | CA  | $\operatorname{CR}$ | GLUF | GLUR | HGB | VLACT | MCV   | PLT | k   | $\operatorname{sodium}$ |
|-----------|-----|-----|-----|-----|-----|---------------------|------|------|-----|-------|-------|-----|-----|-------------------------|
| 11100037  | 44  | 51  | 101 | 97  | NA  | 58.0                | NA   | 4.6  | 147 | NA    | 90.9  | 290 | 4.0 | 133                     |
| 11100066  | 42  | 79  | 57  | 56  | 2.2 | 84.0                | NA   | 6.8  | 142 | 1.4   | 92.5  | 163 | 3.9 | 135                     |
| 11100114  | 42  | NA  | NA  | NA  | 2.4 | 65.0                | NA   | 5.3  | 142 | NA    | 94.2  | 178 | 3.6 | 135                     |
| 11100155  | 37  | 58  | 19  | 11  | NA  | 79.0                | NA   | 7.9  | 92  | NA    | 83.4  | 316 | 4.1 | 138                     |
| 11100241  | 35  | 104 | 13  | 28  | NA  | 472.5               | NA   | 6.4  | 129 | 1.9   | 103.0 | 228 | 3.8 | 134                     |
| 11100368  | 33  | 123 | 12  | 24  | NA  | 120.0               | NA   | 7.1  | 111 | NA    | 83.4  | 280 | 4.4 | 127                     |

```
ggplot(data=smallSet, aes(x=NA_count)) + geom_histogram(bins=25, color="lightblue") +
    scale_x_continuous(breaks = seq(0,16,2)) +
    scale_y_continuous(breaks = seq(0,3000,500)) +
    xlab("Number of missing tests") +
    ylab("Number of patients")
```



percentage of patients have missed (have not taken) a particular test

```
##
      missing_Test.ID missing_Count Percent
## 1
                 GLUF
                               15684
                                        72.7
## 2
                VLACT
                               11410
## 3
                  TNI
                               10145
                                        64.6
## 4
                                        52.4
                   CA
                                8221
## 5
                  ALT
                                6873
                                        43.8
## 6
                  AST
                                6868
                                        43.8
## 7
                  ALP
                                6864
                                        43.7
## 8
                  ALB
                                5527
                                        35.2
## 9
                    k
                                 485
                                         3.1
## 10
                  PLT
                                 127
                                         0.8
## 11
                  MCV
                                  93
                                         0.6
## 12
                    CR
                                  72
                                         0.5
## 13
                 GLUR
                                  85
                                         0.5
## 14
                  HGB
                                  86
                                         0.5
## 15
                IWBCR.
                                  86
                                          0.5
## 16
               sodium
                                  58
                                          0.4
```

long\_stay vs short\_stay

```
smallSet$typeStay <- if_else(smallSet$LOS <= 72, "short_stay", "long_stay")
smallSetTally <- smallSet %>% count(typeStay) %>% rename(Count = n)
ggplot(data=smallSetTally, aes(x=typeStay, y=Count)) +
   geom_bar(stat="identity", fill='lightgrey', colour='darkgrey') +
   scale_y_continuous(breaks = seq(0,10000,1000)) +
   xlab("") + ylab("Number of patients")
```

