

LightAutoML

Антон Вахрушев

Лаборатория АІ Сбера

31.05.2023

Типичный pipeline решения ML задач

Довольно сложно... А есть ли способ решить задачу машинного обучения проще?

Классификация AutoML

6 уровней AutoML от Bojan Tunguz*:

- No automation. You code your own ML algorithms. From scratch, In C++.
- Use of high-level algorithm APIs. Sklearn, Keras, Pandas, H2O, XGBoost, etc.
- Automatic hyperparameter tuning and ensembling. Basic model selection.
- Automatic (technical) feature engineering and feature selection, technical data augmentation, GUI.

Мы здесь (если хватает ресурсов, обычно нет)

- Automatic domain and problem specific feature engineering, data augmentation, and data integration.
- Full ML Automation. Ability to come up with superhuman strategies for solving hard ML problems without any input or guidance. Fully conversational interaction with the human user.

Из статьи AutoSklearn...

- No single machine learning method performs best on all datasets
- Some machine learning methods (e.g., non-linear SVMs) crucially rely on hyperparameter optimization

Сюда же относятся:

- Neural Architecture Search (NAS)
- Простой Meta Learning
- Стратегии обучения + управление бюджетом

Перспективные направления:

- Продвинутое Meta Learning (больше мета датасетов)
- Domain Specific Language **
- Базы знаний (Графы?)

Что такое AutoML?

AutoML в узком смысле — инструмент для автоматического решения задачи машинного обучения

AutoML в широком смысле — технология, помогающая автоматизировать весь процесс моделирования и другие этапы, включая:

- подготовку данных/feature engineering
- отбор признаков
- построение модели, оптимизация параметров
- валидацию/построение отчетов
- внедрение и инференс моделей в проме/мониторинг

Open source решения:

- LightAutoML (Sber AI Lab)
- + H2O AutoML (H2O.ai)
- AutoGluon (Amazon)
- TPOT
- AutoSklearn

Проприетарные решения:

- H2O Driveless AI
- Google Cloud AutoML
- IBM AutoAl
- Microsoft Azure AutoML

•••

• • •

Мотивация разработки собственного AutoML

Требуется AutoML, который поддерживает разные модальности – числа, категории, даты, тексты, изображения и т.п.

Разные типы задач — классификация (бинарная/мультикласс), регрессия, uplift моделирование, multilabel и т.д.

Часто датасет бывает не одной таблицей, а набором связанных таблиц – нужно уметь собрать плоский датасет

Быстрое решение большого количества ML подзадач единой бизнес постановки — brute-force подход слишком медленный (ориентир на «модель за 10 минут с качеством среднего DS-а на midrange железе»)

Необходимость построения интерпретируемых моделей

Максимальная кастомизация выстраиваемых pipeline-ов, в том числе с написанием своих модулей для SOTA алгоритмов, при едином внешнем интерфейсе

Решение ML задачи — не только модель, но и отчет о разработке, интерпретация, интеграция со средами инференса (ML Space в SberCloud), мониторинг и т.п.

Высокая технологичность и эффективность решения – запуск решения на GPU и Spark, использование данных из БД

LightAutoML (LAMA)

Кросс-платформенный модульный фреймворк

включающий в себя набор пресетов пайплайнов для решения end-to-end типовых задач, а также возможность разработки кастомных пресетов на разном уровне абстракции

Целевая аудитория – разработчики и DS

На сегодняшний день реализованы

- ✓ BlackBox preset
- ✓ WhiteBox preset
- ✓ NLP preset

https://github.com/sb-ai-lab/LightAutoML

SBER Al Lab

Верхнеуровневое описание LightAutoML (LAMA)

Частично доступно / в разработке

Разработки других групп

Пример использования LightAutoML


```
import pandas as pd
from sklearn.metrics import f1 score
from lightautoml.automl.presets.tabular presets import TabularAutoML
from lightautoml.tasks import Task
df_train = pd.read_csv('../input/titanic/train.csv')
df test = pd.read csv('../input/titanic/test.csv')
automl = TabularAutoML(
    task = Task(
        name = 'binary',
        metric = lambda y true, y pred: f1 score(y true, (y pred > 0.5)*1))
oof pred = automl.fit predict(
    df train,
    roles = {'target': 'Survived', 'drop': ['PassengerId']}
test pred = automl.predict(df test)
pd.DataFrame({
    'PassengerId':df_test.PassengerId,
    'Survived': (test_pred.data[:, 0] > 0.5)*1
}).to csv('submit.csv', index = False)
```

Kypc по LightAutoML от авторов фреймворка

Курс состоит из трех частей с записанными вебинарами, квизами и практическими заданиями:

Часть 1 - general overview, почему сделали свой AutoML, польза для бизнеса, практика применения на конкретных задачах

Часть 2 — нестандартные применения LightAutoML: NLP/CV, AutoUplift, Whitebox модели и генерация отчетов

Часть 3 - что у LAMA под капотом, как писать свои модули и как собирать свой ML pipeline из блоков

https://arxiv.org/pdf/2109.01528.pdf

Сравнение с другими open-source AutoML решениями

Бенчмарки:

- ❖ ODS AutoML benchmark топ-1 по качеству
- ❖ OpenML benchmark вошли в топ-3 по качеству

	Tpot	MLJar	AutoGluon	H2O	LightAutoML
All datasets	4.4256%	13.4466%	13.8290%	14.0555%	14.2106%

Основной вывод – серебряной пули не существует, но к ней можно приблизиться и облегчить работу DS...

https://ods.ai/competitions/automl-benchmark

	Tpot	MLJar	AutoGluon	H2O	LightAutoML
credit-g	4.5263%	0.3384%	5.2524%	5.8536%	7.1453%
segment	3.9669%	4.0503%	4.0662%	4.0415%	4.0884%
kc1	1.9731%	4.6170%	4.3764%	3.4514%	4.3977%
adult	8.7560%	10.1771%	10.2830%	10.0099%	10.7383%
APSFailure	0.7326%	2.9269%	2.8785%	2.9182%	3.1428%
jungle_chess_2r	21.1461%	21.6394%	23.8115%	21.0370%	21.5449%
jannis	7.8074%	10.1464%	10.0499%	9.8560%	10.6147%
Public Result	6.9869% Tpot	7.6994% MLJar	8.6740% AutoGluon	8.1668% H2O	8.8103% LightAutoML
Australian	-0.1075%	0.6740%	1.6828%	1.7655%	2.5489%
blood-transfusioi	1.1255%	3.7273%	4.5049%	2.4485%	2.5994%
jasmine	4.9719%	4.7390%	5.7296%	6.2263%	5.4881%
kr-vs-kp	1.5306%	1.8719%	1.8438%	1.8834%	1.8276%
phoneme	15.3687%	17.6236%	18.0752%	17.7147%	17.6690%
christine	8.2872%	44.3333%	48.5931%	47.5563%	49.2230%
guillermo	24.1032%	33.0760%	32.8832%	32.7489%	33.2271%
riccardo	2.6704%	8.6528%	8.6433%	8.6332%	8.6051%
Amazon_employ	31.9851%	56.9123%	61.4628%	61.5476%	67.1970%
nomao	-7.5334%	1.4202%	1.4435%	1.4000%	1.6287%
bank-marketing	-5.1903%	7.2434%	7.5410%	7.2266%	6.8950%
KDDCup09_app	3.0263%	16.9375%	19.3707%	18.2408%	19.6266%
higgs	6.2353%	27.8541%	15.9513%	33.6727%	15.3974%
MiniBooNE	-9.1812%	3.6579%	3.7463%	3.5905%	3.6961%
albert	5.3842%	8.3612%	4.6184%	6.2567%	10.0091%
airlines	1.8004%	19.5060%	19.2035%	19.4160%	16.9867%
connect-4	-1.8769%	47.2913%	45.6030%	48.7328%	47.7235%
vehicle	-16.7940%	-0.9291%	3.5984%	4.7849%	2.7386%
dilbert	0.3463%	9.5782%	9.7509%	9.1540%	9.7808%
fabert	-4.0466%	4.5736%	6.0223%	5.1054%	5.5430%
covertype	-2.4152%	9.5197%	9.6756%	7.7375%	9.5059%
cnae-9	31.3196%	35.6319%	36.0236%	29.0659%	35.6767%
mfeat-factors	0.1297%	0.6726%	0.8200%	0.8429%	0.7891%
robert	21.2027%	37.6371%	40.0294%	44.3273%	43.8943%
volkert	-3.9274%	9.3570%	10.0814%	7.5759%	9.2988%
Fashion-MNIST	-1.6510%	3.2091%	3.3119%	2.5074%	3.3279%
sylvine	-2.1660%	3.0265%	3.0413%	2.9512%	3.1579%
numerai28,6	1.3915%	0.5786%	0.0471%	1.6630%	1.6390%
Private result	3.7853%	14.8835%	15,1178%	15.5277%	15.5607%

Преимущества LightAutoML

Преимущества внедрения LightAutoML:

- ❖ Сокращение времени разработки модели около 10 раз. Сокращение time-to-market до 70% (при условии интеграции со средой инференса)
- Способ доставки state-of-art решений индустриальным разработчикам
- ❖ Повышение качества разрабатываемых моделей. LightAutoML работает на уровне топ 10% «белковых» data scientists
- ❖ Работа с длинным правым хвостом разработка множества моделей, которые приносят мало прибыли сами по себе
- ❖ Автовалидация, бенчмаркинг, быстрая проверка гипотез, нестандартные подходы
- ❖ Устранение гандикапа модели больше не нужно разрабатывать «на века»

Устранение гандикапа

Текущая парадигма построения моделей

Эксперимент	2017-2018 год	Январь 2019	Февраль 2019	Март 2019	Апрель 2019	Май 2019	Июнь 2019
1	Train	Test					
2	Train		Test				
3	Train			Test			
4	Train				Test		
5	Train					Test	
6	Train						Test

→ Парадигма «устранение гандикапа» (стала реализуема благодаря LightAutoML):

Эксперимент	2017-2018 год	Январь 2019	Февраль 2019	Март 2019	Апрель 2019	Май 2019	Июнь 2019
1	Train	Test					
2	Trai	n	Test				
3	Train Test						
4	Train				Test		
5	Train					Test	
6	Train					Test	

Борьба с деградацией моделей во времени путем регулярного перестроения

NLP & CV пресеты в LightAutoML

Извлечение числовых признаков

Специализированные модели

NLP & CV пресеты в LightAutoML

AutoML pipeline

Поддерживаемые языки: RU, EN, Multilanguage.

Интерпретация: локальная & глобальная

Методы интерпретации NLP моделей в LightAutoML:

- LIME
- L2X

Посредством LIME можно узнать, в сторону какого класса и насколько сильно «тянет» конкретный токен, а L2X позволяет выделить набор токенов, наиболее важных для принятия моделью решения

LIME:

L2X – основные идеи:

- ❖ Выделить наиболее информативный набор токенов (HT) = оптимизировать совместную информацию между НТ и таргетом
- Используем релаксацию через Gumbel-Softmax trick (аналог reparametrization trick для категориальных переменных, которые можно генерировать из непрерывных)
- Дополнительное улучшение: добавляем в функционал штраф за разреженность выделенного набора токенов (т.е. поощряем выделение полноценных длинных фраз)

Pours a orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing. Smells, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink but not something I'd be trying every night.

Рис.: Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

Интерпретация: локальная & глобальная

Глобальная интерпретация - реализована возможность построения графиков ICE и PDP на основе обученной модели

Отчеты и мониторинг в LightAutoML

- ❖ Есть встроенный декоратор ReportDeco построения интерактивного отчета по модели – интерфейс идентичен обычному запуску
- ❖ Реализован прототип мониторинга моделей на обучении запоминаем распределение признаков, первичных предсказаний и доли NULL, а при дальнейших предсказаниях:
 - Объединяем данные в эпохи достаточного размера (неделя, месяц, и т.д.)
 - Для каждой эпохи считаем PSI (Population Stability Index):
 - для каждого признака
 - для распределения предсказаний
 - о Сравниваем долю NULL с тренировочной выборкой

LAMA report

This report was generated automatically.

▼ Model overview

- **▶** Model parameters
- **▼** Summary results

Results for data samples:

Evaluation parameter	Validation sample	Test sample
AUC-score	0.7522	0.7335
Precision	0.2196	0.2315
Recall	0.4100	0.4688
F1-score	0.2860	0.3099

▼ Data overview

- ► Train data summary
- ► Train data details
- ► Feature importance

▼ Detailed model results

- ► Results on validation sample
- ► Results on test sample

AutoUplift в LightAutoML: основные принципы

Results on Hillstrom dataset					
Blackbox base learners					
meta learner LightAutoML xgb (uber)					
TLearner	0,222	0,203			
Xlearner	0,223	0,198			
Linear base lear	ners				
meta learner LightAutoML sklearn (uber)					
TLearner	0,228	0,223			
Xlearner	0,223	0,222			

TLearner

1) Строим независимые модели на целевой и контрольной группах

$$model^T = fit \begin{pmatrix} x_{11} & \cdots & x_{1k} & y_1 \\ \vdots & \ddots & \vdots & \cdots \\ x_{p1} & \cdots & x_{pk} & y_p \end{pmatrix}, \quad model^C = fit \begin{pmatrix} x_{11} & \cdots & x_{1k} & y_1 \\ \vdots & \ddots & \vdots & \cdots \\ x_{q1} & \cdots & x_{qk} & y_q \end{pmatrix}$$

$$X_{train,treat} \quad Y_{train,treat} \quad X_{train,control} \quad Y_{train,control} \quad Y_{train,control} \quad Y_{train,treat} \quad X_{train,treat} \quad X_{train,treat} \quad Y_{train,treat} \quad X_{train,treat} \quad X_{$$

 Вычисляем величину uplift как разницу 2х моделей – вероятности при коммуникации и без

$$\begin{array}{cccc} \textit{model}^T \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \textit{predict} \begin{pmatrix} \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mk} \end{pmatrix} - \begin{array}{cccc} \textit{model}^c \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix}$$

XLearner

- ♣ LightAutoML предоставляет обертки (meta learners) для удобного построения сильных базовых моделей, используя TabularAutoML пресет и оценке на их основе величины uplift.
- Помимо этого доступна функция автоматического поиска лучшей комбинации базовых AutoML + metalearners.

 Строим независимые модели на целевой и контрольной группах

3) Строим независимые модели на прокси uplift в целевой и контрольной группах Предсказываем прокси uplift на клиента в целевой и контрольной группах

$$\begin{split} \mathbf{\hat{y}}c &= \frac{model^c}{predict} \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & \vdots \\ x_{pr} & \cdots & x_{pk} \end{pmatrix}; \ \mathbf{\hat{y}}^T &= \underset{prodict}{predict} \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{q_1} & \cdots & x_{q_k} \end{pmatrix} \\ & & & & & \\ X_{train.treat} & & & \\ \bar{b}^T &= \underset{productive}{V_{train.treat}} - \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c}, \ \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} = \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{\hat{y}^c}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{\hat{y}}^c}{\mathbf{\hat{y}}^c} - \overset{\mathbf{$$

- 4) Оценка uplift взвешенное среднее прогнозов на прокси uplift 2х моделей
- $model_{new}^{\Gamma} = fit\begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{p1} & \dots & x_{pk} \end{pmatrix}, \quad model_{new}^{\Gamma} = fit\begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{q1} & \dots & x_{qk} \end{pmatrix} = fit\begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{q1} & \dots & x_{qk} \end{pmatrix} + \begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} + \begin{pmatrix} 1 g \end{pmatrix}, \quad model_{new}^{\Gamma} \begin{pmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \\ x_{m1} & \dots & x_{mk} \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \vdots \end{pmatrix} = \begin{pmatrix} u_1 & \dots & u_{1k} \\ \vdots & \dots & \dots & \vdots \\ \vdots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots$

AutoUplift в LightAutoML: отчеты

▼ Test sample summary

Parameter	Value	
Number of records	12808	
Share of treatment	0.500937	
Mean target	0.128826	
Mean target on treatment	0.15134	
Mean target on control	0.106227	

▼ Uplift distribution by bins

Bin number	Amount of objects	Min uplift	Mean uplift	Max uplift	Uplift fact
0	1281	0.006775	0.012237	0.014686	0.011384
1	1281	0.014687	0.016168	0.017456	0.013744
2	1281	0.017457	0.018420	0.019439	0.021174
3	1281	0.019440	0.020591	0.021860	-0.005444
4	1280	0.021860	0.036508	0.052474	0.021594
5	1281	0.052474	0.059125	0.066409	0.059540
6	1281	0.066419	0.067920	0.069274	0.085208
7	1281	0.069275	0.070493	0.071554	0.085346
8	1281	0.071558	0.072540	0.073615	0.073221
9	1280	0.073622	0.075052	0.077110	0.085762

WhiteBox AutoML: интерпретируемые модели

Разработка моделей в формате классической скор карты с минимальными потерями в качестве относительно BlackBox

Variable	Value	WOE	COEF	POINTS
Intercept	None	None	-2.48	-2.48
EXT_SOURCE_2	EXT_SOURCE_2 <= 0.05	-1.58	-0.83	1.31
EXT_SOURCE_2	0.05 < EXT_SOURCE_2 <= 0.16	-1.04	-0.83	0.86
EXT_SOURCE_2	0.16 < EXT_SOURCE_2 <= 0.45	-0.41	-0.83	0.34
EXT_SOURCE_2	0.45 < EXT_SOURCE_2 <= 0.67	0.24	-0.83	-0.2
EXT_SOURCE_2	EXT_SOURCE_2 > 0.67	1.05	-0.83	-0.87
EXT_SOURCE_2	NaN_0	0	-0.83	0.0
EXT_SOURCE_3	EXT_SOURCE_3 <= 0.14	-1.36	-0.82	1.11
EXT_SOURCE_3	0.14 < EXT_SOURCE_3 <= 0.22	-0.86	-0.82	0.7
EXT_SOURCE_3	0.22 < EXT_SOURCE_3 <= 0.32	-0.44	-0.82	0.36
EXT_SOURCE_3	0.32 < EXT_SOURCE_3 <= 0.53	-0.04	-0.82	0.03
EXT_SOURCE_3	EXT_SOURCE_3 > 0.53	0.69	-0.82	-0.56
EXT_SOURCE_3	NaN	-0.14	-0.82	0.12
EXT_SOURCE_1	EXT_SOURCE_1 <= 0.2	-0.87	-0.55	0.48
EXT_SOURCE_1	0.2 < EXT_SOURCE_1 <= 0.38	-0.34	-0.55	0.19
EXT_SOURCE_1	0.38 < EXT_SOURCE_1 <= 0.58	0.3	-0.55	-0.16
EXT_SOURCE_1	0.58 < EXT_SOURCE_1 <= 0.72	0.78	-0.55	-0.43
EXT_SOURCE_1	EXT_SOURCE_1 > 0.72	1.41	-0.55	-0.78
EXT_SOURCE_1	_NaN	-0.11	-0.55	0.06
AMT_CREDIT	AMT_CREDIT <= 273330.0	0.01	-0.64	-0.01
AMT_CREDIT	273330.0 < AMT_CREDIT <= 480618.0	-0.34	-0.64	0.22
AMT_CREDIT	480618.0 < AMT_CREDIT <= 798322.5	-0.09	-0.64	0.06
AMT_CREDIT	AMT_CREDIT > 798322.5	0.48	-0.64	-0.31
AMT_CREDIT	NaN_0	0	-0.64	0.0

WhiteBox AutoML: интерпретируемые модели

WhiteBox модель может быть автоматически сохранена в виде SQL запроса для инференса на стороне БД

```
SELECT
 1 / (1 + EXP(-(
    -2.43
    -0.831*WOE TAB.EXT SOURCE 3
    -0.778*WOE TAB.EXT SOURCE 2
    -0.599*WOE TAB.DAYS EMPLOYED
    -0.533*WOE TAB.EXT SOURCE 1
    -0.6*WOE TAB.AMT GOODS PRICE
    -0.574*WOE TAB.CODE GENDER
    -0.614*WOE TAB.NAME EDUCATION TYPE
    -0.444*WOE TAB.YEARS BEGINEXPLUATATION MEDI
    -0.66*WOE TAB.OWN CAR AGE
    -0.675*WOE TAB.DEF 30 CNT SOCIAL CIRCLE
    -1.064*WOE TAB.NAME CONTRACT TYPE
  ))) as PROB,
 WOE TAB.*
FROM
    (SELECT
    CASE
     WHEN (EXT_SOURCE_3 IS NULL OR EXT_SOURCE_3 = 'Nan') THEN -0.164
     WHEN EXT SOURCE 3 <= 0.1478 THEN -1.226
      WHEN EXT SOURCE 3 <= 0.26575 THEN -0.762
      WHEN EXT SOURCE 3 <= 0.33365 THEN -0.425
      WHEN EXT SOURCE 3 <= 0.50558 THEN -0.045
      ELSE 0.647
    END AS EXT SOURCE 3,
    CASE
      WHEN (EXT SOURCE 2 IS NULL OR EXT SOURCE 2 = 'Nan') THEN 0
```

Новые пайплайны: GPU & Spark

GPU pipeline – основные особенности:

- Гибридный препроцессинг данных
- Параллелизация обучения моделей по фолдам/данным
- ❖ Поддержка Single/Multi GPU режимов

pandas dataframe CPU GPU0 GPU1 cudf/dask_cudf dataframe

hybrid parallel processing of column batches

Результаты на датасете Fashion-MNIST (70k * 785):

- Стандартный режим препроцессинг 283с, линейка 1716с, бустинг 1844с
- 1 GPU ускорение x6.5 препроцессинг x1.3, линейка x9, бустинг x10
- 2 GPU ускорение х9.3 препроцессинг х1.7, линейка х14, бустинг х15

Multi-GPU data processing during cross-validation.

Официальный репозиторий скоро появится на https://github.com/sb-ai-lab
Dev версия: https://github.com/Rishat-skoltech/LightAutoML_GPU

Новые пайплайны: GPU & Spark

Spark pipeline (SLAMA) — основные особенности:

- ❖ Написана под Spark 3.2+ и частично на Scala
- ❖ Автоматическое разбиение эстиматоров признаков на слои с кэшированием / чекпоинтами только между слоями
- ❖ Линейное преобразование датасета без использования join-ов и с минимумом broadcast-ов
- ❖ Обработка категориальных фич (Label, Ordinal, Freq encoding) с помощью кастомизированного StringIndexer
- ❖ Линейный результирующий AutoML трансформер, поддерживающий сохранение и загрузку

- ❖ SLAMA способна работать с датасетами в 1 миллиард строк и более
- ❖ Масштабируемость растет с ростом объема данных больше данных = больше ускорения, вплоть до линейной зависимости

https://github.com/sb-ai-lab/SLAMA

Dev версия LightAutoML – табличные нейронки

- ❖ Добавились новые NN модели, адаптированные для табличных данных, например, densenet, resnet.
- Можете сильно кастомизировать обучение модели и ее архитектуру (передать лосс и другие параметры)
- ❖ При обучение есть возможность использовать SWA для улучшения качества, а также клиппинг градиентов для регуляризации.
- Среди тасков, помимо стандартных задач, поддерживается мульти-регрессия и мультилэйбл.

Заключение

LightAutoML (LAMA) это:

- ❖ Open source инструмент для программистов, data scientist'ов и аналитиков (https://github.com/sb-ai-lab/LightAutoML)
- ❖ Автоматическая разработка типовой ML модели за 10 минут на ноутбуке с качеством лучше среднего DS
- 🌣 Возможность строить модели в разных постановках, важных для конкретного бизнеса
- ❖ Не только AutoML решение, но и конструктор своих ML пайплайнов

Вопросы?

Вахрушев Антон, Лаборатория АІ Сбера

AGVakhrushev@sberbank.ru,

