

We generalize the notion of distance by Bregman div.

[Definition 28] Bregman divergence.

Let f be a continuously-differentiable convex function.

The Bregman divergence is defined as:

 $D_f(w||u) := f(w) - f(u) - \nabla f(u) \cdot (w - u)$

Intuitively, $D_f(w|lu)$ captures the error of the linear approximation of f based on $\nabla f(u)$.

Property: Dr(willu) >0 (since f is convex)

Note: Of is not symmetric so no distance metrix.

[Example 34] Quadratic regularizer

Let fim = \frac{1}{2} | m | 12

Then $D_f(w||u) = \frac{1}{2}||w||_2^2 - \frac{1}{2}||u||_2^2 - |u\cdot||u\cdot||_2^2$

[Example 35] Entropic

Let $f(w) = \sum_{j=1}^{d} w_{j} \log w_{j}$ for $w \in \Delta d$ The $D_{f}(w|(u)) = \sum_{j=1}^{d} w_{j} \log w_{j} - \sum_{j=1}^{d} u_{j} \log u_{j} - \sum_{j=1}^{d} (\log u_{j} + 1)(w_{j} - u_{j})$ $= \sum_{j=1}^{d} w_{j} \log \frac{w_{j}}{u_{j}} - \sum_{j=1}^{d} w_{j} + \sum_{j=1}^{d} u_{j}$ $= \sum_{j=1}^{d} w_{j} \log \frac{w_{j}}{u_{j}}$ $\left(\sum_{j=1}^{d} w_{j} = \sum_{j=1}^{d} u_{j} = 1\right)$ = KL(w|(u))

Property (scaling): Dof (wllu) = a Df (wllu).

Unebrem 11) regret of UNID using Dregman divergence. OIMD obtains the following regret bound: Regret (u) \leq [ψ (u) $-\psi$ (w()] + $\stackrel{\bot}{\Leftarrow}_{i}$ $D_{\psi}*(\theta_{i+1}||\theta_{i})$ (528)

Pf: Assume all loss functions are linear.

Recall:

The expert:

$$\psi^*(\theta_{T+1}) \geqslant N \cdot \theta_{T+1} - \psi(u)$$

$$= \frac{1}{t-1}(-N \cdot z_t) - \psi(u)$$

Note that we have equality if u is the best expert.

The learner:

$$\Psi^{*}(\theta_{\tau+1}) = \Psi^{*}(\theta_{1}) + \sum_{t=1}^{I} \left[\Psi^{*}(\theta_{t+1}) - \Psi^{*}(\theta_{t}) \right] \\
= \Psi^{*}(\theta_{1}) + \sum_{t=1}^{I} \left[\nabla \Psi^{*}(\theta_{t}) (\theta_{t+1} - \theta_{t}) + D_{\Psi^{*}}(\theta_{t+1} | | \theta_{t}) \right] \\
= \Psi^{*}(\theta_{1}) + \sum_{t=1}^{I} \left[-W_{t} \cdot Z_{t} + D_{\Psi^{*}}(\theta_{t+1} | | \theta_{t}) \right] \quad \bigcirc$$

Note that $\psi^*(\theta_1) = -\psi(w_1)$ $(\theta_{1}=0, \psi^*(0)=\sup_{x \in X} -\psi(w_1))$

Combining O and D, we have:

In OGD we know for any convex loss, linear function is the worst, which finishes the proof \Box

Note: Th.31 is a generalization of Th.30, where $\Psi(w) = \frac{1}{2\eta} \|w\|_{2}^{2}$ and $D_{\Psi^{*}}(\theta_{t+1} \| \theta_{t}) = \frac{1}{2} \|\theta_{t+1} - \theta_{t}\|_{2}^{2} = \frac{1}{2} \|z_{t}\|_{2}^{2}$.