IFT 6085 - Lecture 15

Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas

Winter 2019: [Jonathan Guymont, Marzieh Mehdizadeh]

1 Summary

Consider the one hidden layer multilayer perceptron with identity output activation function $f(\mathbf{x}) = \mathbf{W}^{(2)} \sigma(\mathbf{W}^{(1)} \mathbf{x})$ where σ could be a non linear activation function. A standard way to ensure that f is a good mapping from the input $\mathbf{x} \in \mathcal{X}$ to the output $y \in \mathcal{Y}$ is to optimize (e.g. via SGD) $\mathbf{W}^{(1)}$ and $\mathbf{W}^{(2)}$ such that they minimize the empirical risk. Now consider drawing $\mathbf{W}^{(1)}$ from some distribution $p(\mathbf{W})$ and optimizing the empirical risk over $\mathbf{W}^{(2)}$ only. In this setup, we have $f(\mathbf{x}) = \mathbf{W}^{(2)}\phi(\mathbf{x};\mathbf{W}^{(1)})$ where ϕ is a deterministic feature map that is initialized randomly. The authors in [1] showed that even if the parameter of the feature map are not optimized, minimizing the empirical risk with respect to $\mathbf{W}^{(2)}$ returns a function whose true risk is near the lowest true risk attainable by an infinite-dimensional class of functions \mathcal{F}_p defined as below:

$$\mathcal{F}_{p} \equiv \left\{ f(x) = \int_{\Omega} \alpha(\omega)\phi(x;\omega)d\omega \mid |\alpha(\omega)| \le Cp(\omega) \right\}$$
 (1)

where $p(\omega)$ is the distribution from which $\mathbf{W}^{(1)}$ was drawn.

2 Introduction

Given a set of training data in a domain $\{x^{(i)}, y^{(i)}\}_{i=1,...,m}, x^{(i)} \in \mathcal{X}, y^{(i)} \in \{-1,1\}$ the goal is to learn the mapping $f \colon \mathcal{X} \mapsto \mathcal{Y}$ that minimizes the empirical risk

$$\hat{R}_S[f] = \sum_{(x,y)\in S} l(h(x),y) \tag{2}$$

where l is a loss function that specifying the penalty assign to the deviation between the prediction f(x) and the ground truth y and $S \subset (\mathcal{X} \times \mathcal{Y})$.

Similarly to kernel machines, we will consider functions of the form

$$f(x) = \sum_{i} \alpha(\omega_i)\phi(x;\omega_i)d\omega$$
(3)

if $\{\omega_i\}$ is a discrete set, or

$$f(x) = \int \alpha(\omega)\phi(x;\omega)d\omega \tag{4}$$

if ω is continuous. The function $\phi \colon \mathcal{X} \to \mathbb{R}$ is a feature map parametrized by some vector $\omega \in \Omega$ that are weighted by a function $\alpha \colon \Omega \mapsto \mathbb{R}$. Let ω^*, α^* be the vectors of weights that minimize the empirical risk, i.e.

$$\boldsymbol{\omega}^*, \boldsymbol{\alpha}^* = \underset{\omega_1, \dots, \omega_K \in \Omega, \ \alpha_1, \dots, \alpha_K \in \mathcal{A}}{\arg \min} \hat{\mathbf{R}}_S \left[\sum_{k=1}^K \phi(x; \omega_k) \alpha_k \right]$$
 (5)

A standard approach in machine learning is to use some optimization procedure to approximate ω^* and α^* . However, the authors propose less orthodox way approximate the empirical risk minimizer; instead of optimizing w.r.t ω and α , draw ω from some distribution $p(\omega)$ and optimize over α only. Algorithm (1) describe the procedure.

Algorithm 1 Pseudocode for Anomaly detection

Input: A dataset $\{x^{(i)}, y^{(i)}\}_{i=1,...,n}$

Input: A bounded feature function $|\phi(x;\omega)| \leq 1$

Input: $K \in \mathbb{N}$ Input: $C \in \mathbb{R}$

Input: A probability distribution $p(\omega)$

Output: A function $\hat{h}(x) = \sum_{k=1}^{K} \phi(x; \omega_k) \alpha_k$ Draw $\boldsymbol{\omega} \in \mathbb{R}^K$ from $p(\boldsymbol{\omega})$

Featurize the input: $\mathbf{z}^{(i)} \leftarrow \phi(\mathbf{x}^{(i)}; \boldsymbol{\omega})$

With ω fixed, solve the empirical risk minimization problem

$$\boldsymbol{\alpha}^* = \underset{\boldsymbol{\alpha} \in \mathbb{R}^K}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n l\left(\boldsymbol{\alpha}^\top \mathbf{z}^{(i)}, y^{(i)}\right)$$
 (6)

s.t
$$||\alpha||_{\infty} \leq C/K$$
.

The following theorem (1) states that algorithm (1) has low true risk. The true risk $\mathbf{R}[h]$ is defined as the expected loss on points drawn from the data distribution \mathcal{D} .

$$\mathbf{R}[f] = \mathbb{E}_{(x,y) \sim \mathcal{D}} l(f(x), y) \tag{7}$$

More specifically, theorem (1) states Algorithm (1) returns a function whose true risk is near the lowest true risk attainable by an infinite-dimensional class of functions \mathcal{F}_p defined below:

Theorem 1. (Main result) Let p be a distribution on Ω , and let ϕ satisfy $\sup_{x,w} |\phi(x;w)| \leq 1$ (uniformly bounded). Define the hypothesis set as follows:

$$\mathcal{F}_{p} \equiv \left\{ f(x) = \int_{\Omega} \alpha(\omega) \phi(x; \omega) d\omega \mid |\alpha(\omega)| \le Cp(\omega) \right\}$$
 (8)

Suppose the loss function is as below l(y, y') = l(yy'), with l(yy') L-Lipschitz. Then for any $\delta > 0$, if the training data $\{x_i, y_i\}_{i=1\cdots m}$ are drawn i.i.d from some distribution P, Algorithm 1 returns a function \hat{f} that satisfies

$$\mathbf{R}[\hat{f}] - \min_{f \in \mathcal{F}_p} \mathbf{R}[f] \le O\left\{ \left(\left(\frac{1}{\sqrt{m}} + \frac{1}{\sqrt{K}} \right) LC \log \sqrt{\log 1/\delta} \right) \right\}$$

with probability at least $1-2\delta$ over the training dataset and the choice of the parameters $\omega_1, \dots, \omega_K$.

C is arbitrarily chosen and can be considered as a regulirizer. The hypothesis set \mathcal{F}_p is quite rich. It consists of functions whose weights $\alpha(\omega)$ decays more rapidly than the given sampling distribution p.

3 Steps to prove the Main Theorem

Algorithm 1 returns a function that lies in the random set:

$$\hat{\mathcal{F}}_{\omega} \equiv \left\{ f(x) = \int_{\Omega} \alpha(\omega) \phi(x; \omega) d\omega \mid |\alpha(\omega)| \le C/K \right\}$$

We are going to see how much we loose by going from \mathcal{F}_p to $\hat{\mathcal{F}}_{\omega}$.

The upper bound in the main theorem can be decomposed in a standard way into two bounds:

- An approximation error bound that shows that the lowest true risk attainable by a function in $\hat{\mathcal{F}}_{\omega}$ is not much larger than the lowest true risk attainable in \mathcal{F}_p (Lemma 2).
- An estimation error bound that shows that the true risk of every function in $\hat{\mathcal{F}}_{\omega}$ is close to its empirical risk (Lemma 3)

The following Lemma is helpful in bounding the approximation error:

Lemma 1. Let μ be a measure on \mathcal{X} , and f^* a function in \mathcal{F}_p . If $\omega_1, \dots, \omega_K$ are drawn i.i.d from p, then for any $\delta > 0$, with probability at least $1 - \delta$ over $\omega_1, \dots, \omega_K$, there exists a function $\hat{f} \in \mathcal{F}_{\omega}$ so that

$$\sqrt{\int_{\mathcal{X}} \left(\hat{f}(x) - f^*(x) \right)^2} d\mu(x) \leq \frac{C}{\sqrt{K}} \left(1 + \sqrt{2 \log 1/\delta} \right)$$

Lemma 2. (Bound on the approximation error) Suppose l(y,y') is L-Lipschitz in its first argument. Let f^* be a fixed function in \mathcal{F}_p . If $\omega_1, \dots, \omega_K$ are drawn i.i.d from p, then for any $\delta > 0$, with probability at least $1 - \delta$ over $\omega_1, \dots, \omega_K$, there exists a function $\hat{f} \in \hat{\mathcal{F}}_{\omega}$ that satisfies

$$\mathbf{R}[\hat{f}] \le \mathbf{R}[f^*] + \frac{LC}{\sqrt{K}} \left(1 + \sqrt{2\log 1/\delta}\right)$$

A standard result from statistical learning theory states that for a given choice of $\omega_1, \dots, \omega_K$ the empirical risk of every function in $\hat{\mathcal{F}}_{\omega}$ is close to its true risk. The following lemma can be proven by using Holder inequality.

Lemma 3. (Bound on the estimation error). Suppose l(y,y') = l(yy'), with l(yy') L-Lipschitz. Let $\omega_1, \dots, \omega_K$ be fixed. If $\{x_i, y_i\}$ $i = 1 \cdots m$ are drawn i.i.d from a fixed distribution, for any $\delta > 0$, with probability at least $1 - \delta$ over the dataset, we have

$$\forall \hat{f} \in \hat{\mathcal{F}}_{\omega} \quad \left| \mathbf{R}[f] - \hat{\mathbf{R}}[f] \right| \le \frac{1}{\sqrt{m}} \left(4LC + 2|c(0)| + LC\sqrt{\frac{1}{2}\log 1/2} \right)$$

No we are ready to give a sketch of the proof of main theorem by using the above lemmas.

Proof of theorem 1. Let f^* be a minimizer of the true risk \mathbf{R} over \mathcal{F}_p , \hat{f} be a minimizer of the empirical risk $\hat{\mathbf{R}}$ over $\hat{\mathcal{F}}_{\omega}$ (i.e. \hat{f} is the output of Algorithm 1), and \hat{f}^* be a minimizer of the true risk \mathbf{R} over $\hat{\mathcal{F}}_{\omega}$ (i.e. \hat{f}^* is the optimal output of Algorithm 1). Then

$$\mathbf{R}[\hat{f}] - \mathbf{R}[f^*] = \mathbf{R}[\hat{f}] - \mathbf{R}[\hat{f}^*] + \mathbf{R}[\hat{f}^*] - \mathbf{R}[f^*]$$
(9)

$$\leq |\mathbf{R}[\hat{f}] - \mathbf{R}[\hat{f}^*]| + \mathbf{R}[\hat{f}^*] - \mathbf{R}[f^*] \tag{10}$$

Let $\epsilon_{\rm est}$ denote the upper bound of the right side of the inequality in Lemma 3:

$$\epsilon_{\rm est} = \frac{1}{\sqrt{m}} \left(4LC + 2|c(0)| + LC\sqrt{\frac{1}{2}\log 1/2} \right)$$

With probability at least $1 - \delta$ we have

$$\begin{split} |\mathbf{R}[\hat{f}] - \mathbf{R}[\hat{f}^*]| = & |\mathbf{R}[\hat{f}] + \hat{\mathbf{R}}[\hat{f}^*] - \hat{\mathbf{R}}[\hat{f}^*] - \mathbf{R}[\hat{f}^*]| \\ \leq & |\mathbf{R}[\hat{f}] + \underbrace{\hat{\mathbf{R}}[\hat{f}^*] - \hat{\mathbf{R}}[\hat{f}]}_{\geq 0} - \mathbf{R}[\hat{f}^*]| \quad \text{(By optimality of } \hat{f}) \\ \leq & |\mathbf{R}[\hat{f}] - \hat{\mathbf{R}}[\hat{f}]| + |\mathbf{R}[\hat{f}^*] - \hat{\mathbf{R}}[\hat{f}^*]| \\ \leq & 2\epsilon_{\text{est}} \quad \text{(By Lemma 3)} \end{split}$$

Let ϵ_{app} denote the right term in the upper bound of the inequality in Lemma 2:

$$\epsilon_{\rm app} = \frac{LC}{\sqrt{K}} \left(1 + \sqrt{2 \log 1/\delta} \right)$$

Also note that $\mathbf{R}[\hat{f}^*] < \mathbf{R}[\hat{f}]$ since \hat{f}^* minimize the true risk over \mathcal{F}_{ω} . Using this fact we have that with probability at least $1 - \delta$ the following inequality hold

$$\mathbf{R}[\hat{f}^*] - \mathbf{R}[f^*] \leq \mathbf{R}[\hat{f}] - \mathbf{R}[f^*] \qquad (\hat{f}^* \text{ minimize } \mathbf{R} \text{ over } \mathcal{F}_{\omega})$$

$$\leq \epsilon_{\text{app}} \qquad (\text{Lemma 2})$$

Hence

$$\mathbf{R}[\hat{f}] - \mathbf{R}[f^*] \le 2\epsilon_{\text{est}} + \epsilon_{\text{app}},\tag{11}$$

and we got the desired result.

References

[1] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems 21*, pages 1313–1320. Curran Associates, Inc., 2009.