

Design considerations of 65W active clamp flyback adaptor with MasterGaN

Mike Chen

Industrial Power & Energy Competence Center

AP Region, STMicroelectronics

Agenda

1 Travel adapter developing

5 MasterGaN used in 65W ACF

2 Drawback of flyback

6 Gate drive signal

ACF Used in smart sharger product

7 Noise prevent-PCB layout

4 MasterGaN introduction

8 dv/dt Adjustment

Power & Energy Competence Center

Travel adapter development

Power Level Increasing

5W

─

65W

→ 120W

Power Density Increasing 5W/in3 ------ 20W/in3 ------ 30W/in3

Drawbacks of flyback

Drawbacks of traditional Flyback

- High power loss and spike caused by leakage inductance of the transformer
- High switching loss of the main MOSFET due to the spike

$$P_{ON} = I_{P(RMS)}^2 R_{DS(ON)}$$

$$P_{SW-ON(Coss)} = f_{SW} \int_{0}^{V_{DS(OFF)}} C_{OSS}(V_{ds}) V_{ds} dV_{ds}$$

$$P_{SW-OFF} = \frac{I_P^2 T_{FALL}^2}{6C_{OSS(eq)}} f_{SW}$$

Competence Center

ACF used in smart charger

- The leakage inductance energy is recycled with clamp circuit, while the Turn-OFF voltage stress across the power switch is minimized
- The ZVS of the power switch is achieved and subsequently the switching losses are minimized
- Decrease the stress of the secondary rectifier diode

Competence Center

ACF used in smart charger

PROs

- The energy of the leakage inductance is recycled
- ZVS is achieved and switching losses are minimized → High efficiency and high switching frequency achievable
- Soft-switching architecture

CONs

- Additional clamp power switch with dedicated high-side driver
- Increases the complexity of the controller
- Much more difficult to design and optimize compared with a standard flyback

Competence Center

GaN vs. Silicon based transistors

Gallium Nitride (GaN) is a wide-bandgap (WBG)
material. HEMT (High Electron Mobility
Transistor) gallium nitride (GaN) transistors, or
simply GaN transistor, represents a major step
forward in power electronics, providing high
frequency operation, increased efficiency and
higher power density compared with silicon-based
transistors.

	GaN	Silicon	Comments
Qg-Gate charge	Lower	Higher	GaN with lower driver loss to achieve higher frequency & efficiency
Coss-Output capacitance	Lower	Higher	GaN with lower switching loss to achieve higher frequency & efficiency
Qrr-Reverse recovery charge	Lower	Higher	GaN suitable for higher frequency & efficiency
Vgs- gate voltage	Difficult	Easy	GaN need better gate drive circuit and PCB layout
Vsd-body diode conduction	Higher	Lower	GaN need better control of deadtime

MasterGaN1

High power density half-bridge 650V GaN with embedded driver

Features

- Power system-in-package integrating half-bridge gate driver and high-voltage GaN transistors:
 - -BVDSS = 650 V
 - $RDS(ON) = 150 \text{ m}\Omega$
 - -IDS(MAX) = 10 A
- Reverse current capability
- Zero reverse recovery loss
- UVLO protection on low-side and high-side
- Internal bootstrap diode
- Interlocking function
- Dedicated pin for shutdown functionality
- Accurate internal timing match
- 3.3 V to 15 V compatible inputs with hysteresis and pull-down
- Overtemperature protection
- Bill of material reduction
- Very compact and simplified layout
- Flexible, easy and fast design

Competence Center

23, 29, 30, 31

N.C.

Not Connected

Figure 2. Pin connection (top view)

Pin Number	Pin Name	Туре	Function
15, 16, 17, 18, 19	VS	Power Supply	High voltage supply (high-side GaN Drain)
12, 13, 14, EP3	OUT	Power Output	Half-bridge output
4, 5, 6, 7, 8, 9, 10, 11, EP2	SENSE	Power Supply	Half-bridge sense (low-side GaN Source)
22	воот	Power Supply	Gate driver high-side supply voltage
21	OUTb	Power Supply	Gate driver high-side reference voltage, used only for Bootstrap capacitor connection. Internally connected to OUT.
27	VCC	Power Supply	Logic supply voltage
1	PVCC	Power Supply	Gate driver low-side supply voltage
28, EP1	GND	Power Supply	Logic ground
3	PGND	Power Supply	Gate driver low-side driver reference. Internally connected to SENSE.
26	HIN	Logic Input	High-Side driver logic input
24	LIN	Logic Input	Low-Side driver logic input
25	SD/OD	Logic Input-Output	Driver Shutdown input and Over-Temperature
2	GL	Output	Low-Side GaN gate.
20	GH	Output	High-Side GaN gate.

Leave floating

MasterGaN1 pinout

Competence Center

MasterGaN1 applications and benefits

Applications

Power Supply for 5G Communication Infrastructure

EV/HEV Charging Stations

HV

Gate

driver

LS Gate Driver

Energy Storage Systems (UPS)

Solar DC-AC Converters

PC Power, OLED TV

High-Density AC-DC

Key benefits

- Compact system solution and simplified layout
- BOM reduction: SiP with offline driver optimized for GaN
- Robust solution: driver and GaN power transistors integration
- Package GQFN 9x9
- Flexible, easy and fast design
- Scalable p2p solution for power range 30-500 W

MasterGaN family roadmap QFN 9x9 mm² pin-to-pin scalable

One driver, many standard transistors for HB configuration

From 45 up to 400 W

MasterGaN1

Symmetrical

 $150 + 150 \, \text{m}$ Ω

Mass production

MasterGaN2

Asymmetrical

150 + 225 mΩ

MP Dec 2020

MasterGaN3

Asymmetrical

225 + 500 mΩ

Development

MasterGaN4

Symmetrical

225 + 225 mΩ

Development

MasterGaN5

Symmetrical

 $500 + 500 \, \text{m}$ Ω

Development

Whole product family to be released by H1 2021

65W ACF Application example - MasterGaN

Competence Center

65WACF Application example typical connection

65W ACF application example efficiency

Efficiency performance at low Line and high Line

Power & Energy Competence Center

65W ACF application example typical waveform

230 Vacin 20V/3.25A

Competence Center

Gate drive logic inputs – truth table

	Input pins			GaN transistors status	
	SD/OD	LIN	HIN	LS	HS
Disabled input port	L	X	X	OFF	OFF
Normal Operation	Н	L	L	OFF	OFF
Normal Operation Configurations	Н	L	Н	OFF	ON
	Н	Н	Г	ON	OFF
Interlocking	Н	Н	Н	OFF	OFF

1. X: Don't care

Logic inputs – Interlocking

MASTERGAN has an interlocking feature to prevent contemporary activation of high side and low side.

HIN and LIN high never occurs, normal condition

HIN and LIN high in black square → Interlock GL and GH are both low

- When Interlock condition is applied to the input, the active driver is shut down after T(OFF)
- When Interlock condition is removed from the input, the new input configuration is applied on the output after T(OFF)

Competence Center

Noise prevent-PCB layout

VCC Filter caps placed to close VCC-GND Pins

Competence Center

Noise prevention - PCB layout

- Keep signals traces away from OUT trace
- Keep bulk voltage—transformer-OUT-SENSE-GND loop as small as possible

dv/dt adjustment

- During the design of power converters, the adjustment of dV/dt of middle point of OUT pin is important to:
 - Reduce EMI
 - To avoid undesired oscillations when parasitic elements cannot be further minimised
 - Reduce secondary side stress

dv/dt adjustment

OUT pin dv/dt at turn on: GaN turn-on when resonance has sufficient amplitude to obtain ZVS

dv/dt adjustment

OUT pin dv/dt at turn off: Turn off dV/dt can be reduced using proper selection of MASTERGAN biasing components

dv/dt adjustment adding cap on GaN's gate

- Adding a capacitor between GL (GH) and PGND (OUTb), is equivalent to increase GaN's Gate Charge
- Maximum value must be found to avoid driver's dynamical overstress and considering the operating frequency Fsw
 - CGx<80mW/(Pvcc^2*Fsw)-(330pF)

PROs	CONs
Fine tuning of the obtained effect	Additional operating consumption to PVCC and Vbo, especially at high frequency
High repeatability of the effect thanks to the accuracy of the available discrete components	Not suitable for very high frequency solutions
Effect is also on EMI associated with normal operation	

Power & Energy Competence Center

- A resistor in series with PVCC or VBO decreases the driving current.
- A very short drop is evident on PVCC / VBO at driver turn on.

Adding a resistor on PVCC

PROs	CONs
Fine tuning of the obtained effect	PVCC / VBO drop can increase the propagation delay
High repeatability of the effect thanks to the accuracy of the available discrete components	Short-on time can result into worse Rdson because of the reduced Gan's gate overdrive voltage (i.e. PVCC-Vgsth)
Effect is also on EMI associated with normal operation	Duration of VBO drop must be shorter than 2 µs to prevent UVLO activation

dv/dt Adjustment - adding dv/dt killer

- An RC network feedback can be added between OUT node and GL in order to reduce the GL voltage in case of intense negative dV/dt.
- Consider to use PCB, especially for thin PCBs, instead of the added Ck
- Example
- 0.8mm 4 layer PCB, 0.1mm inner core thickness, εr=4.4
- 10pF -> 30mm2: can fit below MasterGaN

PROs	CONs
Acts on high dV/dt only: the dV/dt value is then balanced over entire operating conditions	High voltage component needed

Adding dV/dt limiter – design tips

- The value of the Capacitor (Ck) limits the dV/dt during hard switching thanks to Miller effect
 - During turn on the rate is limited to $\sim \frac{V_{PVCC} V_{TH}}{R_{ONG}Ck} = \frac{V_{PVCC} 1.7}{50 \cdot Ck}$
 - During turn off, it is limited to $\sim \frac{V_{TH}}{R_{OFFG}Ck} = \frac{0.85}{Ck}$
- A resistor in series is required to avoid oscillations due to stray inductance

•
$$R_{DAMP} \gg \sqrt{\frac{L_{stray}}{C_k}}$$

- Capacitor required is typically 5pF to 10pF (600V rated)
 - E.g.: Using PVCC = 6V and max dV/dt = 10V/ns → Ck = 8.6pF

dv/dt adjustment - adding dv/dt killer

- Startup waveforms at 230VAC compared
 - dV/dt changed from original 37v/ns to 6v/ns

Original dV/dt equal to 37V/ns

With dV/dt limiter cap 10pF / 200Ω dV/dt limited to 6V/ns

dv/dt adjustment - adding dv/dt killer

Example of the 65W board: Rpvcc=15 Ω Cg=470pF R43=200 Ω C57=10pF 220V/50Hz input 20V/3.25A output

Turn on: 1.85V/nS

Turn off: 6.6V/nS

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

