

Resten ved polynomdivisjon

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORRYLINIVERSITETET

Resten ved polynomdivisjon

1 Polynomfunksjoner

2 Polynomdivisjon

- 3 Resten ved polynomdivisjon
 - Rest og polynomverdier
 - Ruffinis regel

$$(x^2-2x+1):(x-7)=$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^2-2x+1):(x-7)=x$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^2 - 2x + 1) : (x - 7) = x - x^2 + 7x$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^2-2x + 1): (x-7) = x$$

 $\frac{-x^2+7x}{5x} + 1$

■ Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^2-2x +1): (x-7) = x+5$$

 $\frac{-x^2+7x}{5x+1}$

■ Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^{2} - 2x + 1) : (x - 7) = x + 5$$

$$\frac{-x^{2} + 7x}{5x + 1}$$

$$-5x + 35$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^{2} - 2x + 1) : (x - 7) = x + 5$$

$$\frac{-x^{2} + 7x}{5x + 1}$$

$$\frac{-5x + 35}{36}$$

■ Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$
.

$$(x^{2} - 2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$
Vi regner ut $\frac{x^{2} - 2x + 1}{x - 7}$.
$$\frac{-x^{2} + 7x}{5x + 1}$$

$$\frac{-5x + 35}{36}$$

$$(x^2 - 2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$
= Vi regner ut $\frac{x^2 - 2x + 1}{x - 7}$.
$$-x^2 + 7x$$

$$5x + 1$$

$$-5x + 35$$

$$36$$
= Vi regner ut $\frac{x^2 - 2x + 1}{x - 7}$.
$$Vi ser at vi får 36 som rest.$$

■ Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1$.

$$P(7) = 7^2 - 2 \cdot 7 + 1$$

$$(x^2 - 2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$

$$= Vi \text{ regner ut } \frac{x^2 - 2x + 1}{x - 7}.$$

$$= Vi \text{ ser at vi får 36 som}$$

$$= Vi \text{ regner også ut } P(7)$$

$$= P(x) = x^2 - 2x + 1.$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1.$

$$P(7) = 7^2 - 2 \cdot 7 + 1$$
$$= 49 - 14 + 1$$

$$(x^2 - 2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$

$$= Vi \text{ regner ut } \frac{x^2 - 2x + 1}{x - 7}.$$

$$= Vi \text{ ser at vi får 36 som}$$

$$= Vi \text{ regner også ut } P(7)$$

$$= P(x) = x^2 - 2x + 1.$$

■ Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1.$

$$P(7) = 7^2 - 2 \cdot 7 + 1$$

$$= 49 - 14 + 1$$

$$= 36.$$

$$(x^2 - 2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$

$$= Vi \text{ regner ut } \frac{x^2 - 2x + 1}{x - 7}.$$

$$= Vi \text{ ser at vi får 36 som}$$

$$= Vi \text{ regner også ut } P(7)$$

$$= P(x) = x^2 - 2x + 1.$$

$$= Vi \text{ får 36 som svar.}$$

Vi regner ut
$$\frac{x^2-2x+1}{x-7}$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1$.
- Vi får 36 som svar.

$$P(7) = 7^2 - 2 \cdot 7 + 1$$

$$= 49 - 14 + 1$$

$$= 36.$$

$$(x^{2}-2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$
Vi regner ut $\frac{x^{2}-2x+1}{x - 7}$.

Vi ser at vi får 36 som

Vi regner også ut $P(7)$
 $P(x) = x^{2} - 2x + 1$.

Vi får 36 som svar.

$$P(7) = 7^2 - 2 \cdot 7 + 1$$

$$= 49 - 14 + 1$$

$$= 36.$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1$.
- Vi får 36 som svar.
- Merk at resten vi fikk når vi delte på x-7 er samme som svaret vi fikk når vi satt inn 7.

$$(x^{2}-2x + 1) : (x - 7) = x + 5 + \frac{36}{x - 7}$$
Vi regner ut $\frac{x^{2}-2x+1}{x - 7}$.

Vi ser at vi får 36 som

Vi regner også ut $P(7)$
 $P(x) = x^{2} - 2x + 1$.

Vi får 36 som svar.

$$P(7) = 7^2 - 2 \cdot 7 + 1$$

$$= 49 - 14 + 1$$

$$= 36$$

- Vi ser at vi får 36 som rest
- Vi regner også ut P(7) med $P(x) = x^2 - 2x + 1$.
- Vi får 36 som svar.
- Merk at resten vi fikk når vi delte på x-7 er samme som svaret vi fikk når vi satt inn 7.
- Dette vil alltid stemme.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

- Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.
- Vi kan også bruke det til å regne ut verdien til polynomet uten å sette inn.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

- Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.
- Vi kan også bruke det til å regne ut verdien til polynomet uten å sette inn.
- For større potenser er det lettere å utføre divisjonen.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

- Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.
- Vi kan også bruke det til å regne ut verdien til polynomet uten å sette inn.
- For større potenser er det lettere å utføre divisjonen.

Eksempel

Vi vil regne ut $x^3 - 41x + 2$ for x = 7.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

- Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.
- Vi kan også bruke det til å regne ut verdien til polynomet uten å sette inn.
- For større potenser er det lettere å utføre divisjonen.

Eksempel

Vi vil regne ut $x^3 - 41x + 2$ for x = 7. Vi må da regne ut $7 \cdot 7 \cdot 7 = 343$ og $41 \cdot 7 = 287$.

Regel

Tallet du får som rest når du regner ut P(x): $(x - x_1)$ er lik $P(x_1)$.

- Dette kan vi bruke til å finne ut hva resten blir uten å utføre divisjonen.
- Vi kan også bruke det til å regne ut verdien til polynomet uten å sette inn.
- For større potenser er det lettere å utføre divisjonen.

Eksempel

Vi vil regne ut $x^3 - 41x + 2$ for x = 7. Vi må da regne ut $7 \cdot 7 \cdot 7 = 343$ og $41 \cdot 7 = 287$. Det er ganske store tall vi må regne på.

$$(x^3 - 41x + 2) : (x - 7) =$$

■ Vi vil regne ut P(7) når $P(x) = x^3 - 41x + 2$.

$$(x^3 - 41x + 2) : (x - 7) =$$

- Vi vil regne ut P(7) når $P(x) = x^3 41x + 2$.
- Vi regner heller ut P(x) : (x-7).

$$(x^3 - 41x + 2) : (x - 7) = x^2$$

- Vi vil regne ut P(7) når $P(x) = x^3 41x + 2$.
- Vi regner heller ut P(x) : (x-7).

$$\begin{pmatrix} x^3 - 41x + 2 \end{pmatrix} : (x - 7) = x^2$$

- Vi vil regne ut P(7) når $P(x) = x^3 41x + 2$.
- Vi regner heller ut P(x) : (x 7).

$$(x^3 - 41x + 2) : (x - 7) = x^2$$

 $\frac{-x^3 + 7x^2}{7x^2 - 41x}$ Vi vil regne ut $P(7)$ når $P(x) = x^3 - 41x + 2$.
Vi regner heller ut $P(x) : (x - 7)$.

$$(x^3 - 41x + 2) : (x - 7) = x^2 + 7x$$

 $\frac{-x^3 + 7x^2}{7x^2} - 41x$ Vi vil regne ut $P(7)$ når $P(x) = x^3 - 41x + 2$.
Vi regner heller ut $P(x) : (x - 7)$.

$$(x^3 - 41x + 2) : (x - 7) = x^2 + 7x + 8$$

$$-x^3 + 7x^2$$

$$-7x^2 - 41x$$

$$-7x^2 + 49x$$

$$-7x^2 + 49x$$

$$-8x + 2$$

$$-8x^3 - 41x + 2.$$

$$-9x^3 - 41x$$

$$(x^3 - 41x + 2) : (x - 7) = x^2 + 7x + 8$$

$$-x^3 + 7x^2$$

$$7x^2 - 41x$$

$$-7x^2 + 49x$$

$$8x + 2$$

$$-8x + 56$$

$$Vi vil regne ut $P(7)$ når $P(x) = x^3 - 41x + 2$.
$$Vi regner heller ut $P(x) : (x - 7)$.$$$$

$$(x^{3} - 41x + 2) : (x - 7) = x^{2} + 7x + 8$$

$$-x^{3} + 7x^{2}$$

$$7x^{2} - 41x$$

$$-7x^{2} + 49x$$

$$8x + 2$$

$$-8x + 56$$

$$58$$

$$Vi vil regne ut $P(7)$ når $P(x) = x^{3} - 41x + 2$.
$$Vi regner heller ut $P(x) : (x - 7)$.$$$$

$$(x^3 - 41x + 2) : (x - 7) = x^2 + 7x + 8$$

$$-x^3 + 7x^2$$

$$7x^2 - 41x$$

$$-7x^2 + 49x$$

$$8x + 2$$

$$-8x + 56$$

$$58$$
Vi vil regne ut $P(7)$
Selv om det var litt to mindre enn når vi stationer.

- Vi vil regne ut P(7) når $P(x) = x^3 41x + 2$.
 - Vi regner heller ut P(x): (x-7).
 - Selv om det var litt flere utregninger, var hver av dem mindre enn når vi satt inn direkte

Regne polynomverdi ved å finne rest

$$(x^3 - 41x + 2) : (x - 7) = x^2 + 7x + 8$$

$$-x^3 + 7x^2$$

$$7x^2 - 41x$$

$$-7x^2 + 49x$$

$$8x + 2$$

$$-8x + 56$$

$$9x + 2$$

$$-8x + 56$$

- Vi vil regne ut P(7) når $P(x) = x^3 41x + 2$.
 - Vi regner heller ut P(x): (x-7).
 - Selv om det var litt flere utregninger, var hver av dem mindre enn når vi satt inn direkte
 - Dette er sieldent nyttig, siden vi kan bruke kalkulator. Men litt kult

Dersom vi får 0 i rest, sier vi at divisjonen går opp.

- Dersom vi får 0 i rest, sier vi at divisjonen går opp.
- Vi kan da faktorisere det opprinnelige polynomet.

- Dersom vi får 0 i rest, sier vi at divisjonen går opp.
- Vi kan da faktorisere det opprinnelige polynomet.

■ Siden
$$(x^2 - 2x - 3) : (x + 1) = x - 3$$
, er $x^2 - 2x - 3 = (x + 1)(x - 3)$.

- Dersom vi får 0 i rest, sier vi at divisjonen går opp.
- Vi kan da faktorisere det opprinnelige polynomet.
- Siden $(x^2 2x 3) : (x + 1) = x 3$, er $x^2 2x 3 = (x + 1)(x 3)$.
- Siden resten av P(x): $(x x_1)$ er det samme som $P(x_1)$ må x_1 være et nullpunkt for at divisjonen skal gå opp.

- Dersom vi får 0 i rest, sier vi at divisjonen går opp.
- Vi kan da faktorisere det opprinnelige polynomet.
- Siden $(x^2 2x 3) : (x + 1) = x 3$, er $x^2 2x 3 = (x + 1)(x 3)$.
- Siden resten av P(x): $(x x_1)$ er det samme som $P(x_1)$ må x_1 være et nullpunkt for at divisjonen skal gå opp.

Regel

Divisjonen

$$P(x):(x-x_1)$$

går opp hvis og bare hvis $P(x_1) = 0$.

- Dersom vi får 0 i rest, sier vi at divisjonen går opp.
- Vi kan da faktorisere det opprinnelige polynomet.
- Siden $(x^2 2x 3) : (x + 1) = x 3$, er $x^2 2x 3 = (x + 1)(x 3)$.
- Siden resten av P(x): $(x x_1)$ er det samme som $P(x_1)$ må x_1 være et nullpunkt for at divisjonen skal gå opp.

Regel

Divisjonen

$$P(x):(x-x_1)$$

går opp hvis og bare hvis $P(x_1) = 0$.

Polynomet P(x) har $(x - x_1)$ som faktor hvis og bare hvis $P(x_1) = 0$.

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

Oppgave

Bestem hva a må være for at divisjonen går opp:

$$(x^2 - ax + 3) : (x - 3).$$

For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

$$0 = x^2 - ax + 3$$

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

$$0=x^2-ax+3$$

$$=3^2-3a+3$$

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

$$0 = x^{2} - ax + 3$$
$$= 3^{2} - 3a + 3$$
$$= 12 - 3a$$

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

$$0 = x^{2} - ax + 3$$
$$= 3^{2} - 3a + 3$$
$$= 12 - 3a$$
$$12 = 3a$$

Oppgave

$$(x^2 - ax + 3) : (x - 3).$$

- For at divisjonen skal gå opp, må x = 3 være et nullpunkt for polynomet.
- Vi setter inn x = 3 og påstår at det skal bli 0:

$$0 = x^{2} - ax + 3$$
$$= 3^{2} - 3a + 3$$
$$= 12 - 3a$$
$$12 = 3a$$
$$4 = a$$

Resten ved polynomdivisjon

1 Polynomfunksjoner

2 Polynomdivisjon

- 3 Resten ved polynomdivisjon
 - Rest og polynomverdier
 - Ruffinis regel

Mesteparten av tiden så deler vi på et førstegradspolynom.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.
- Men bruker mindre plass, og gir mindre sjanse for regnefeil.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.
- Men bruker mindre plass, og gir mindre sjanse for regnefeil.
- Regelen brukes kun om vi deler på $x x_1$.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.
- Men bruker mindre plass, og gir mindre sjanse for regnefeil.
- Regelen brukes kun om vi deler på $x x_1$.
- Om vi vil regne ut $\frac{3x^2-2x+1}{2x-1}$ med Ruffinis regel, må vi derfor heller regne ut $3x^2-2x+1$ delt på $x-\frac{1}{2}$

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.
- Men bruker mindre plass, og gir mindre sjanse for regnefeil.
- Regelen brukes kun om vi deler på $x x_1$.
- Om vi vil regne ut $\frac{3x^2-2x+1}{2x-1}$ med Ruffinis regel, må vi derfor heller regne ut $3x^2-2x+1$ delt på $x-\frac{1}{2}$
- Og så dele svaret på 2.

- Mesteparten av tiden så deler vi på et førstegradspolynom.
- Det finnes en rask metode å utføre divisjonen på kalt Ruffinis regel.
- Den går gjennom de samme utregningene som den vanlige divisjonsalgoritmen for polynom.
- Men bruker mindre plass, og gir mindre sjanse for regnefeil.
- Regelen brukes kun om vi deler på $x x_1$.
- Om vi vil regne ut $\frac{3x^2-2x+1}{2x-1}$ med Ruffinis regel, må vi derfor heller regne ut $3x^2-2x+1$ delt på $x-\frac{1}{2}$
- Og så dele svaret på 2.
- Mesteparten av tiden kan vi bruke Ruffinis regel uten problemer.

■ Vi vil regne ut $x^2 - 5x + 3$ når x = 2. Vi setter opp en tabell som over.

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.

$$x = 2 \begin{array}{|c|c|c|c|c|}\hline 1 & -5 & 3 \\ \hline & 1 \\ \hline & 1 \\ \hline \end{array}$$

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med *x*-verdien, og skriver svaret i neste kolonne.

$$x = 2 \begin{array}{|c|c|c|c|} \hline 1 & -5 & 3 \\ \hline 2 & 2 \\ \hline 1 & -3 \\ \hline \end{array}$$

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi summerer tallene i midtre kolonne.

- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med *x*-verdien, og skriver svaret i neste kolonne.

$$x = 2 \begin{array}{|c|c|c|c|c|} \hline 1 & -5 & 3 \\ \hline 2 & -6 \\ \hline 1 & -3 & 2 \\ \hline \end{array}$$

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med *x*-verdien, og skriver svaret i neste kolonne.

- Vi summerer tallene i midtre kolonne.
- Vi ganger svaret med *x*-verdien.

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med *x*-verdien, og skriver svaret i neste kolonne.

- Vi summerer tallene i midtre kolonne.
- Vi ganger svaret med x-verdien.
- Vi summerer tallene i siste kolonne.

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med x-verdien, og skriver svaret i neste kolonne.

- Vi summerer tallene i midtre kolonne.
- Vi ganger svaret med x-verdien.
- Vi summerer tallene i siste kolonne.
- Vi får da at P(x) = -3.

- Vi vil regne ut $x^2 5x + 3$ når x = 2. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $x^2 5x + 3$ i øverste rad.
- Vi summerer tallene i første kolonne.
- Vi ganger svaret med x-verdien, og skriver svaret i neste kolonne.

- Vi summerer tallene i midtre kolonne.
- Vi ganger svaret med x-verdien.
- Vi summerer tallene i siste kolonne.
- Vi får da at P(x) = -3.
- Og at $\frac{x^2-5x+3}{x-2} = x-3 \frac{3}{x-2}$.

■ Vi vil regne ut $(2x^3 - 7x^2 - 5x + 4)$: (x - 4). Vi setter opp en tabell som over.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

$$x = 4 \begin{array}{|c|c|c|c|c|} \hline 2 & -7 & -5 & 4 \\ \hline & 8 & \\ \hline & 2 & 1 \\ \hline \end{array}$$

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4)$: (x 4). Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.

- Vi vil regne ut $(2x^3 7x^2 5x + 4) : (x 4)$. Vi setter opp en tabell som over.
- Vi fyller inn koeffisientene til $2x^3 7x^2 5x + 4$ i øverste rad.
- Vi følger Ruffinis regel.
- Dette gir oss at

$$\frac{2x^3 - 7x^2 - 5x + 4}{x - 4} = 2x^2 + x - 1$$

med null i rest.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET