

International A-level FURTHER MATHEMATICS FM05

(9665/FM05) - Further Mechanics Unit 2

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Mark	Comments
1 (a)	$0.1 \times 9.8 \times 0.8(1 - \cos 40^{\circ}) = \frac{1}{2} \times 0.1v^{2}$ $v = \sqrt{15.68(1 - \cos 40^{\circ})} = 1.9 \text{ m s}^{-1}$	M1 A1 A1	M1: GPE found using either cos40° or sin 40° A1:Correct energy equation A1: Correct speed. AWRT 1.9
1 (b)	$T - 0.1 \times 9.8 = 0.1 \times \frac{15.68(1 - \cos 40^\circ)}{0.8}$ T = 1.4 N	M1 A1 A1	M1: Equation of motion using radial acceleration formula. Allow their speed from part (a). A1: Correct three term equation of motion. A1: Correct tension. AWRT 1.4
	Total	6	

Q	Answer	Mark	Comments
	$\frac{\lambda \times 30^2}{2 \times 20} = 75 \times 9.8 \times 50$	M1 B1	M1: Correct GPE used in two term energy equation.
2 (a)	$\lambda = \frac{1470000}{900} = \frac{4900}{3} = 1600 \text{ N}$	A1	B1: Correct initial EPE. A1: Correct modulus. AWRT 1600
		3	
2 (b)	Max speed when: $\frac{4900 \times e}{3 \times 20} = 75 \times 9.8$ $e = 9 \text{ m}$ Speed given by:	M1 B1 A1 M1A1	M1: Tension and weight equated. B1: Correct tension A1: Correct extension for equilibrium. M1: Energy equation with at least two terms correct with any signs A1: Correct equation. A1: Correct speed.
	$29 \times 75 \times 9.8 = \frac{1}{2} \times 75v^2 + \frac{4900 \times 9^2}{2 \times 3 \times 20}$ $v = \sqrt{480.2} = 22 \text{ m s}^{-1}$	A1 A1 7	AWRT 22
2 (c)	No air resistance. Bungee Jumper is a particle	B1 1	B1: Two appropriate assumptions.
	Total	11	

Q	Answer	Mark	Comments
	$5\cos 30^{\circ} = v\cos \alpha$	M1A1	M1: Equation for motion parallel to wall.
		M1A1	A1: Correct equation.
	$0.4 \times 5\sin 30^{\circ} = v\sin \alpha$		M1: Equation for motion perpendicular to
	sing 2sin20°	N/4 N/4	wall. Must include 0.4
2 (2)	$\frac{\sin\alpha}{\alpha} = \frac{2\sin 30^{\circ}}{5\cos^{2}\alpha}$	M1A1	A1: Correct equation.
3 (a)	$\cos \alpha = 5\cos 30^{\circ}$		M1: Expression for tan <i>α</i> A1: Correct expression.
	$\tan \alpha = \frac{2\sqrt{3}}{15}$	A1	A1: Correct expression: A1: Correct angle. AWRT 13°
	$\alpha = 13.0039^{\circ}$	711	771. Goneot angle. 777771
	$\alpha = 13.0039$ $\alpha = 13^{\circ}$		
	$\alpha = 13$	7	
	$v = \frac{5\cos 30^{\circ}}{\cos 30^{\circ}}$	M1A1	M1: Equation with v as the only unknown.
	$\cos \alpha$		A1: Correct equation.
	v = 4.4	A1	A1: Correct value for v. AWRT 4.4
3 (b)	Or 2sin30°	/N/A A A \	
	v =	(M1A1)	
	$\sin \alpha$ $v = 4.4$	(A1)	
	V 1.1	3	
	$I = 0.5 \times 4.44 \sin 13^{\circ} - 0.5(-5 \sin 30^{\circ})$	M1A1	M1: Impulse equation with correct values
			and any signs.
3 (c)	I = 1.7 N s	A1	A1: Correct equation.
			A1: Correct impulse AWFW [1.7, 1.8]
		3	
	Total	13	

Q	Answer	Mark	Comments
4 (a)	$mv\frac{\mathrm{d}v}{\mathrm{d}x} = -kv$ $m\frac{\mathrm{d}v}{\mathrm{d}x} = -k$	M1 A1	M1: Differential equation with correct terms and any signs. A1: Simplified correct differential equation.
4 (b)	$mv = -kx + c$ Using $x = 0$, $v = U$ $mU = c$ Using $v = 0$ $0 = -kx + mU$ $x = \frac{mU}{k}$	M1 A1 M1 A1 A1 A1	M1: Integrating their equation. Condone omission of <i>c</i> . A1: Correct integration. M1: Initial values used to find <i>c</i> . A1: Correct value of <i>c</i> and correct final answer from correct working.
4 (c)	$m\frac{dv}{dt} = -kv$ $\frac{m}{v}\frac{dv}{dt} = -k$ $m\ln(v) = -kt + c$ Using $t = 0, v = U$ $m\ln(U) = c$ Using $v = \frac{U}{2}$ $m\ln\left(\frac{U}{2}\right) = -kt + m\ln(U)$ $t = \frac{m}{k}\ln(2)$	M1 M1 A1 M1 A1 M1 A1	M1: Differential equation with correct terms and any signs. M1: Integrating their equation. Condone omission of c . A1: Correct integrals. M1: Initial values used to find c . A1: Correct value of c . M1: Substitutes $\frac{U}{2}$. A1: Correct time.
	Total	13	

Q	Answer	Mark	Comments
	$1.5 = 0.05\omega$	M1	M1: Max speed used to form an equation
	$\omega = 30$	A1	to find ω .
5 (a)	$\frac{2\pi}{1000} = \frac{2\pi}{1000} = 0.200 \text{ s}$		A1: Correct ω.
(u)	Period = $\frac{2\pi}{30}$ = 0.209 s	A1	A1: Correct period. AWRT 0.21
		3	
	As SHM		M1: Differential equation in terms of <i>k</i> .
	$0.5\ddot{x} = -kx$	M1	A1: Correct equation for <i>k</i> .
5 (b)	$2k = 30^2$	A1	A1: Correct <i>k</i> .
3 (5)	$k = \frac{900}{2} = 450 \text{ N m}^{-1}$	A1	
	2 = 430 N III	_	
	La a su difficienza	3	MA. Facetian to find actions in
	In equilibrium	M1	M1: Equation to find extension in
	$0.5 \times 9.8 = 450e$	A1	equilibrium. A1: Correct extension.
	$e = \frac{4.9}{450} = 0.0109 \mathrm{m}$	A1	A1: Correct extension. A1: Correct maximum extension.
5 (c)	Max extension = $0.0109 + 0.05$, , , ,	A1: Correct maximum length. AWRT 0.56
	= 0.0609 m	A1	The second secon
	Max length = $0.0609 + 0.5 = 0.561$ m		
		4	
	$v^2 = 30^2(0.05^2 - 0.0109^2)$	M1A1	M1: Use of SHM equation with correct
5 (D	$v = 1.46 \text{ m s}^{-1}$	A1	values. The terms x and a may be
5 (d)			interchanged.
		3	A1: Correct equation.
		<u> </u>	A1: Correct speed. AWRT 1.5
	Total	13	

Q	Answer	Mark	Comments
	$y = U\sin\theta t - \frac{1}{2}g\cos 30^{\circ}t^2$	M1A1	M1: Equation for distance from the plane. Allow sign / angle errors.
	$0 = U\sin\theta t - \frac{\sqrt{3}}{4}gt^2$ $t = \frac{4U\sin\theta}{g\sqrt{3}}$	M1	A1: Correct equation. M1: Solving <i>their</i> quadratic for <i>t</i>
	$t = \frac{403110}{g\sqrt{3}}$	A1	A1: Correct time.
6 (a)	$\dot{x} = U\cos\theta - g\sin 30^{\circ}t$	M1	M1: Equation for velocity parallel to the
	$\dot{x} = U\cos\theta - g\sin 30^{\circ}t$ $0 = U\cos\theta - \frac{g}{2} \times \frac{4U\sin\theta}{g\sqrt{3}}$	A1	plane. Allow sign / angle errors. A1: Correct equation.
	$\sqrt{3}\cos\theta = 2\sin\theta$ $\tan\theta = \frac{\sqrt{3}}{2}$	A1	A1: AG, CSO.
	2	7	
	$\dot{y} = U\sin\theta - g\cos 30^{\circ}t$ $\frac{1}{3}\sqrt{3} + 4U = 3$	M1	M1: Equation for velocity perpendicular to the plane. Allow sign / angle errors. A1: Correct equation.
	$\dot{y} = U \sqrt{\frac{3}{7}} - \frac{\sqrt{3}}{2} g \times \frac{4U}{g\sqrt{3}} \times \sqrt{\frac{3}{7}}$ $\dot{y} = -U \sqrt{\frac{3}{7}}$	A1	A1: Correct equation: A1: Correct velocity A1: Correct speed.
6 (b)	$\dot{y} = -U\sqrt{\frac{3}{7}}$	A1	
	Speed = $U\sqrt{\frac{3}{7}} = \frac{U\sqrt{21}}{7} = 0.65U$	A1	
		4	
	Total	11	

Q	Answer	Mark	Comments
7 (a)	B will move along the line of centres.	B1 1	B1: Correct statement about the line of centres.
7 (b)	Conservation of momentum along line of centres: $3 \times 4\cos 60^\circ = 2v_B + 3v_A$ $6 = 2v_B + 3v_A$ Use of law of restitution: $v_A - v_B = -0.6(4\cos 60^\circ - 0)$ $v_A - v_B = -1.2$ $v_A = v_B - 1.2$ $v_A = v_B - 1.2$ $v_B = \frac{9.6}{5} = 1.9 \text{ m s}^{-1}$	M1 A1 M1 A1 M1 A1	M1: Three term equation for conservation of momentum. Allow trig errors. A1: Correct equation. M1: Restitution equation. Allow sign / trig errors. A1: Correct equation. M1: Solving their equations. A1: Correct speed to 2 sf. Accept 1.92
7 (c)	Velocity along line of centres: $= 1.92 - 1.2 = 0.72$ Velocity perpendicular to line of centres: $= 4 \sin 60 = 2 \sqrt{3}$ Magnitude of velocity: $\sqrt{0.72^2 + \left(2\sqrt{3}\right)^2} = 3.5 \text{ m s}^{-1}$ Direction θ to line of centres: $\theta = \tan^{-1}\left(\frac{2\sqrt{3}}{0.72}\right) = 78^\circ$	M1 M1 A1 A1	M1: Finding velocity along line of centres. M1: Finding velocity perpendicular to the line of centres. A1: Correct magnitude of velocity. AWRT 3.5 A1: Correct direction. AWRT 78
7 (d)	$I = 2 \times 1.92 = 3.8 \text{ N s}$	M1A1F 2	M1: Impulse equation with correct values and any signs. A1F: Correct impulse. AWRT 3.8 FT their velocity.
	Total	13	