Coordinate systems

Coordinate Systems

The main reason for selecting a basis for a subspace H, instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors. To see why, suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for H, and suppose a vector \mathbf{x} in H can be generated in two ways, say,

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$$
 and $\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_p \mathbf{b}_p$ (1)

Then, subtracting gives

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_p - d_p)\mathbf{b}_p \tag{2}$$

Since \mathcal{B} is linearly independent, the weights in (2) must all be zero. That is, $c_j = d_j$ for $1 \le j \le p$, which shows that the two representations in (1) are actually the same.

DEFINITION

Suppose the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace H. For each \mathbf{x} in H, the **coordinates of x relative to the basis** \mathcal{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1\mathbf{b}_1 + \dots + c_p\mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is called the coordinate vector of x (relative to \mathcal{B}) or the \mathcal{B} -coordinate vector of \mathbf{x} .

EXAMPLE 1 Let
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Then

 \mathcal{B} is a basis for $H = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$ because \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Determine if \mathbf{x} is in H, and if it is, find the coordinate vector of \mathbf{x} relative to \mathcal{B} .

SOLUTION If x is in H, then the following vector equation is consistent:

$$c_1 \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

The scalars c_1 and c_2 , if they exist, are the \mathcal{B} -coordinates of \mathbf{x} . Row operations show that

$$\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus $c_1 = 2$, $c_2 = 3$, and $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. The basis \mathcal{B} determines a "coordinate system" on H, which can be visualized by the grid shown in Fig. 1.

FIGURE 1 A coordinate system on a plane H in \mathbb{R}^3 .

Notice that although points in H are also in \mathbb{R}^3 , they are completely determined by their coordinate vectors, which belong to \mathbb{R}^2 . The grid on the plane in Fig. 1 makes H "look" like \mathbb{R}^2 . The correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one correspondence between H and \mathbb{R}^2 that preserves linear combinations. We call such a correspondence an *isomorphism*, and we say that H is *isomorphic* to \mathbb{R}^2 .

In general, if $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for H, then the mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one correspondence that makes H look and act the same as \mathbb{R}^p (even though the vectors in H themselves may have more than p entries). (Section 4.4 has more details.)

The dimension of a Subspace

The **dimension** of a nonzero subspace of H,denoted by dim H,is the number of vectors in any basis for H.The dimension of the zero subspace {0} is defined to be zero.

The space of \mathbb{R}^n has dimension n.every basis for \mathbb{R}^n consists of n vectors. A plane through 0 in \mathbb{R}^3 is two-dimensional, and a line through 0 is one-dimensional.

The rank of a matrix A, denoted by rank A, is the dimension of the column space of A

• to find the dimension of Nul A, simply identify and count the numbeer of free variables in Ax=0.

since the pivot columns of A form a basis Col A, the rank of A is just the number of pivot columns of A.

EXAMPLE 3 Determine the rank of the matrix

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix}$$

SOLUTION Reduce A to echelon form:

$$A \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & -6 & 4 & 14 & -20 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
Pivot columns

The matrix A has 3 pivot columns, so rank A = 3.

The zero subspace has no basis (becasue the zero vector by itself forms a linearly dependent set).

Theorem 14:The rank theorem

if a matrix A has n columns, the Rank A + dim Nul A = n.

Theorem 15: The basis theorem

Let H be a p-dimensional subspaces of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Rank and the invertible matrix theorem

The various vector space concepts associated with a matrix provide several more statements for the invertible matrix theorem.

The invertible Matrix theorem (continued)

Let A be an n * n matrix.then the following statements are each equivalent to the statement that A is an invertible matrix.

- the columns of A form a basis of \mathbb{R}^n
- Col A = n
- rank A = n
- Nul A ={0}
- dim Nul A = 0