Inhaltsverzeichnis

1	Einleitung	1
2	Ziele	1
3	Aufgabenstellung	
	3.1 Allgemein	2
	3.2 Vorgaben	2
	3.2.1 Gruppenorganisation	2
	3.2.2 Implementierung	2
	3.2.3 Format Arbeitsergebnisse	2
	3.2.4 Quellenangaben	2
	3.2.5 Hilfsmittel	2
	3.2.6 Terminplan	3
	3.3 Arbeitsphasen	3
	3.3.1 Checklisten	3
	3.3.1.1 Anforderungskatalog	3
	3.3.1.2 Konzept/Architektur	4
	3.3.1.3 Implementierung	4
	3.3.1.4 Test und Abnahme	5
	3.4 Aufgabenspezifisch	
	3.4.1 Pulsradarsystem (Gruppe 1)	5
	3.4.2 Puls-Doppler-Radarsystem (Gruppe 2)	6
	3.4.3 Dauerstrichradar (Gruppe 3)	7
	3.4.4 FMCW-Radar (Gruppe 4)	8
	3.4.5 Lidar-System (Gruppe 5)	9
	3.4.6 Ultraschallsystem (Gruppe 6)	.10
4	Referenzen	.10

1 Einleitung

Dieses Dokument soll die Inhalte der im Rahmen der Projektarbeiten umzusetzenden Anforderungen im Detail beschreiben.

2 Ziele

Die Studierenden sollen das in der Vorlesung Sensorik vermittelte Fachwissen aus dem Bereich der FAS-Umfeldsensorik im Rahmen einer zu erstellenden Softwareapplikation praktisch einsetzen können.

Die Studierenden sollen ausreichende Kenntnisse erwerben, um den Nutzen einer softwaretechnischen Abbildung von FAS-Sensoren beurteilen zu können.

Die Studierenden sollen in der Lage sein das Signalverhalten eines FAS-Sensors softwaretechnisch umzusetzen.

3 Aufgabenstellung

3.1 Allgemein

Die Kursteilnehmer sollen die technischen Hauptkomponenten der in Kap. 3.4 genannten Sensortypen in der vorgegebenen Softwareumgebung /-sprache softwaretechnisch abbilden.

Dabei sollen an den wesentlichen Punkten der Signalverarbeitung eine grafische Datenausgabe erfolgen, um das Verhalten der umgesetzten Verarbeitungsblöcke verifizieren zu können.

3.2 Vorgaben

3.2.1 Gruppenorganisation

- wenn möglich je 4 Mitglieder pro Gruppe;
- Benennung eines Gruppensprechers;

3.2.2 Implementierung

- Sprache: Python 3.x
- Applikation: als Jupyter-Notebook oder als eigenständige Python-Anwendung
- Parametrierung der Komponenten muss möglich sein (z.B. als Parameterdatei oder über GUI)
- Datenausgabe in Diagrammform (z.B. über Paket matplotlib)

3.2.3 Format Arbeitsergebnisse

- Arbeitsergebnisse (außer Source-Code) in elektronischer Form bevorzugt auf Basis von MS-Office oder LibreOffice
- Source Code als Textdatei;
 - zusätzlich ist eine Version von jedem Arbeitsdokument als PDF-Datei zu erstellen;

3.2.4 Quellenangaben

Fremdinhalte sind mit Quellenangabe zu versehen

3.2.5 Hilfsmittel

- alle Inhalte aus der Vorlesung
- sonstige Quellen, Werkteuge bei Bedarf

3.2.6 Terminplan

s. Moodle-Seite der Vorlesung Sensorik;

3.3 Arbeitsphasen

Auf Basis des V-Modells teilt sich die Gruppenarbeit jeweils in folgende 4 Phasen:

- Anforderungserhebung u. -bewertung
 - Arbeitsergebnis: Anforderungskatalog
 - in Tabellenform (max. 10 Attribute (ID, Anforderung, Testbedingung, Priorität, ...)
- Konzepterstellung
 - Arbeitsergebnis: Architektur der Software-Komponenten und Schnittstellen
- Implementierung
 - Arbeitsergebnis: Lauffähiger dokumentierter Quellcode
- Test und Abnahme
 - Arbeitsergebnis: Testkonzept und -bericht
 - Inhalt: Testfälle mit Bezug zu Anforderungen (Stichwort: Tracebility), Pass-/Fail-Kriterien, Testergebnisse;

Im Lauf des Semesters werden die Ergebnisse jeweils im Rahmen eines Kurzvortrages (ca. 10 bis 20 Minuten) von einem Gruppenmitglied dem Kursteilnehmer vorgestellt.

3.3.1 Checklisten

Die Prüfung der Erfüllung der jeweiligen Arbeitsphasen/-ergebnisse erfolgt primär auf Basis folgender Checklisten:

3.3.1.1 Anforderungskatalog

- Anforderung atomar
 Nur eine Anforderung pro Anforderungsbeschreibung
- Anforderung testbar
 Klare Testvorschrift und Erfüllungskriterium
- Anforderung eindeutig
 Kein Raum für Interpretationen
- Anfoderung konsistent Keine Widersprüche

- Anforderung vollständig
 Alle pro Anforderung notwendigen Informationen liegen vor
- Abgrenzung Muss-Kann-Anforderungen
 Klare Definition, wie eine Muss-Anforderung beschrieben ist
- Anforderung URI vergeben Jede Anforderung eindeutig referenzierbar.
- Anforderungskatalog vollständig für nächste Arbeitsphasen? Selbsteinschätzung der Gruppe
- Zeitlimit 10 Minuten f. Vorstellung eingehalten

3.3.1.2 Konzept/Architektur

- · Aufteilung in eindeutig benannte Blöcke
- Funktion der Blöcke beschrieben
- Schnittstellen definiert
- Eingabedaten definiert
- Ausgabedaten definiert
- Referenzen zu Anforderungen vorhanden
- Konzept vollständig für nächste Arbeitsphasen?
 Selbsteinschätzung der Gruppe
- Zeitlimit 10 Minuten f. Vorstellung eingehalten

3.3.1.3 Implementierung

- Aufteilung in eindeutig benannte Klassen/Funktionen
- Kurzbeschreibung Klassen/Methoden als Kommentar im Code
- Anwendung Coding-Standards? (eigene/vorhandene)
- Benutzeschnittstellen dokumentiert?
- Live-Demo
- Bekannte Fehler?
- Abdeckung aller Anforderungen?
 Selbsteinschätzung der Gruppe
- Referenzen zu Anforderungen und Architektur vorhanden? (Stichprobe)
- Implementierung vollständig für nächste Arbeitsphase?
 Selbsteinschätzung der Gruppe

Zeitlimit 10 Minuten f. Vorstellung eingehalten

3.3.1.4 Test und Abnahme

- Testkonzept vorhanden?
- Testbericht vorhanden?
- Test Systeminput (Benutzerschnittstelle)
- Test Systemoutput (Benutzerschnittstelle)
- Test Performance
- Abdeckung aller Anforderungen? Selbsteinschätzung der Gruppe
- Referenzen zu Anforderungen vorhanden? (Stichprobe) Te
- Bekannte Fehler dokumentiert?
- Bekannte nicht zu 100% implemenierte Anforderungen dokumentiert?
- Zeitlimit 10 Minuten f. Vorstellung eingehalten

3.4 Aufgabenspezifisch

3.4.1 Pulsradarsystem (Gruppe 1)

Es soll das Verhalten der Basiskomponenten eines Pulsradarsystems softwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende Darstellung aus dem Vorlesungsskript verwendet werden:

Es muss mindestens an den Schnittstellen der Komponenten eine Datenausgabe in Diagrammform erfolgen. Weitere Datenausgaben liegen im Ermessen des Projektteams.

3.4.2 Puls-Doppler-Radarsystem (Gruppe 2)

Es soll das Verhalten der Basiskomponenten eines Pulsdopplerradarsystems softwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende Darstellung aus dem Vorlesungsskript verwendet werden:

3.4.3 Dauerstrichradar (Gruppe 3)

Es soll das Verhalten der Basiskomponenten eines Dauerstrichradarsystems softwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende Darstellung aus dem Vorlesungsskript verwendet werden:

3.4.4 FMCW-Radar (Gruppe 4)

Es soll das Verhalten der Basiskomponenten eines FMCW-Radarsystems softwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende Darstellung aus dem Vorlesungsskript verwendet werden:

- Frequenzmodulation einer sinusförmigen Schwingung (FM)
- Frequenzhub Δf
- periodisch mit der Modulationsperiodendauer T_m
- Modulationssignal sägezahnförmig, dreieckförmig, treppenförmig

3.4.5 Lidar-System (Gruppe 5)

Es soll das Verhalten der Basiskomponenten eines LIDAR-Systems softtwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende stark vereinfachte Darstellung aus dem Vorlesungsskript verwendet werden:

3.4.6 Ultraschallsystem (Gruppe 6)

Es soll das Verhalten der Basiskomponenten eines Ultraschall-Systems softtwaretechnisch abgebildet werden. Als mögliche Grundlage für das umzusetzende System kann die folgende Darstellung aus dem Vorlesungsskript verwendet werden:

Es muss mindestens an den Schnittstellen der Komponenten eine Datenausgabe in Diagrammform erfolgen. Weitere Datenausgaben liegen im Ermessen des Projektteams.

4 Referenzen

- [1] R. Aue; Vorlesung Sensorik FA204, Hochschule Kempten;
- [2] H. Winner et al. Handbuch Fahrerassistenzsysteme, 2., korrigierte Auflage, ATZ/MTZ- Fachbuch;
- [3] K. Reif (Hrsg.), Sensoren im Kraftfahrzeug, 2., erga nzte 'Bosch Fachinformation Automobil;
- [4] J. Detlefsen; Radartechnik; Springer, 1989;
- [5] Radartutorial (<u>www.radartutorial.eu</u>);
- [6] R. Lerch et.al.; Technische Akustik, Grundlagen und Anwendungen; Springer, 2009;