PROJET IA Gravitational Search Algorithm

Olivier Agudo-Perez Sylvain Gherardi Léonard Liévin

L3 - MIAGE - 2017 / 2018

Origine de l'algorithme

- → Le GSA est proposé par Esmat Rachedi en 2009
- → Esmat Rashedi : professeur à l'université de Kerman en Iran
- → Basé sur la loi de gravitation et les interactions entre les masses
- → La "population" est un ensemble de planètes qui interagissent entre elles en fonction de la force gravitationnelle
- → La performance est mesurée par la masse de la planète

Principe du GSA

- → Une planète est un objet, ces derniers s'attirent grâce à la force gravitationnelle
- → Une planète qui se déplace représente l'étape d'exécution du GSA
- → La meilleure solution (best fitness) est la solution avec la masse la plus lourde

Masse des planètes

$$m_i(t) = \frac{fit_i(t) - worst(t)}{best(t) - worst(t)}$$

$$M_i(t) = \frac{m_i(t)}{\sum_{j=1}^{N} m_j(t)}$$

m_i = masse de la planète i

M_i = masse inertielle de la planète i

fit_i = fitness de la planète i

worst = plus mauvaise fitness de la population

best = meilleure fitness de la population

La constante gravitationnelle G

$$G(t) = G_0 e^{-\alpha \frac{t}{T}}$$

 $G_0 = 100$

alpha = 20

T = nombre d'exécutions

t = itération courante

t	G
0	100.0000000
1	10.8368023
2	1.1743628
3	0.1272634
4	0.0137913
5	0.0014945
6	0.0001620
7	0.0000176
8	0.0000019
9	0.0000002

Force gravitationnelle des planètes

$$F_{ij}^d = G(t)^{\frac{M_{pi}(t) \times M_{aj}(t)}{R_{ij} + \varepsilon}} (x_j^d(t) - x_i^d(t))$$

$$F_{i}^{d}(t) = \sum_{j \in Kbest, j \neq i}^{N} rand_{j} F_{ij}^{d}(t)$$

F^d_{ii} = force entre la masse i et la masse j dans la dimension d

F^d; = force totale appliquée à i dans la dimension d

 M_{ai} = masse gravitationnelle active

 M_{pi} = masse gravitationnelle passive

R_{ii} = distance euclidienne entre i et j

x^d_i = position de i dans la dimension d

 x_i^d = position de j dans la dimension d

Accélération gravitationnelle

$$a_i^d = \frac{F_i^d(t)}{M_{ii}(t)}$$

 M_{ii} = masse inertielle

F^d_i = force totale sur la dimension d

Changement de vitesse et de position

Pendant l'algorithme, on met à jour ses valeurs :

Vitesse:
$$v_i^d(t+1) = rand_i \ v_i^d(t) + a_i^d(t)$$

Position:
$$x_i^d(t+1) = x_i^d(t) + v_i^d(t+1)$$

Répartition des tâches

Olivier

- MyAlgorithm::afficher_best()
- MyAlgorithm::afficher_all()
- MyAlgorithm::change_parameters()
- MyAlgorithm::best_cost_overall()
- Solution::mass_calculation()
- Solution::update_solution()
- Doxygen

Sylvain

- MyAlgorithm::MyAlgorithm()
- MyAlgorithm::evolution()
- MyAlgorithm::spaceBound()
- MyAlgorithm::g_evolution()
- Solution::Solution()
- Solution::acceleration_calculation()
- PowerPoint

Léonard

- MyAlgorithm::~MyAlgorithm()
- MyAlgorithm::initalize()
- MyAlgorithm::upper_cost()
- MyAlgorithm::lower_cost()
- Solution::fitness()
- Solution::initialize()
- PowerPoint

Classe Solution

Une Solution est représentée par une planète, elle contient :

- Une position en d dimensions
- Une vitesse sur d dimensions
- Une accélération sur d dimensions
- Une masse gravitationnelle
- Une masse inertielle
- Une fitness

Classe Problem

Un problème représente une fonction objectif, elle est composée de :

- D'un nom et d'un numéro de problème : Weierstrass, Rastrigin, ... par exemple
- D'une direction : maximisation ou minimisation
- De limites inférieures et supérieures
- D'un nombre de dimensions

Classe MyAlgorithm

La classe MyAlgorithm représente un ensemble de Solutions ainsi que le problème associé.

Un problème contient :

- Un ensemble de planètes : la population
- Un problème : la fonction à optimiser
- La meilleure fitness et la pire de la population actuelle
- La meilleure solution parmis toute les évolutions
- La constante de gravitation G

Etape 0 : Initialisation

La population initiale est générée aléatoirement.

On boucle sur les étapes 1 à 6 jusqu'à atteindre les critères souhaités.

Etape 1: Evaluation

Evaluation de chaque agent via les fonctions objectif, on cherche le meilleur et le plus petit résultat de la fitness.

Etape 2: Masses

Calcul des masses et masses inertielles. (diapositive 4)

Etape 3: G

Mise à jour de la constante gravitationnelle. (diapositive 5)

Etape 4: Forces

Calcul des forces agissant sur chaque planète. (diapositive 6)

Etape 5 : Accélération

Calcul de l'accélération. (diapositive 7)

Etape 6 : Déplacement

Mouvement des planètes. (diapositive 8)

Etape 7: Fin

On retourne la solution optimale obtenue au cours de l'algorithme.

Nos résultats

Résultats Matlab

Rosenbrock: 27.7646 3.095 x 10⁻¹³

Rastrigin: 13.9294 16.9143

Ackley: 1.20123×10^{-8} 3.8778×10^{-9}

Schwefel: 9811.29 -2680

Schaffer: 2.07182×10^{-5}

Weierstrass: -3.33298

Merci de votre attention