WHAT IS CLAIMED IS:

	1	1. An actuation assembly comprising:
	2	a mechanical member comprising an alloy,(said alloy member to undergo
	3	an internal change in structure thereby producing a force set within the mechanical
	4	member; and
	5	a pivot member moved by said force, said mechanical member applying
	6	said force to said pivot member.
	1	2. The actuation assembly of claim 1, wherein the alloy member is
	2	made of a shape-memory alloy taken from a group of alloys comprising of the products
	3	Nitinol™ and Flexinol™.
	1	3. A hard disk drive comprising an actuation assembly and a housing
	2	having a receptacle which removably receives a cartridge, a cover formed of a cover
	3	material and a front loading panel disposed over the receptacle, the actuation assembly
	4	comprising:
	5	a hinge assembly; and
	6	a drive assembly comprising an alloy member which is coupled to the
	7	hinge assembly; and
	8	a power supply which generates an electrical current, the current used to
-	9	sufficiently raise the temperature of the alloy member causing the alloy member to
	10	(undergo an internal change in structure) thereby producing a force set) within the alloy
	11	member, the force being sufficient to actuate movement of the hinge assembly)
	1	4. The actuation assembly of claim 3, the hinge assembly comprising:
	2	a first mechanical arm coupled to a pivot rod; and
	3	a second mechanical arm coupled to the pivot rod, wherein the contraction
	4	force causes rotation of the pivot rod which causes the arms to rotate, the pivot rod
	5	defining the axis of rotation.
	_	
	1	5. The actuation assembly of claim 3, the hinge assembly
	2	comprising: a single hinge coupled to the loading panel.

1	6. The actuation assembly of claim 3, wherein the drive assembly
2	further comprises:
3	a cam assembly comprising:
4	a cam rotatable between an initial position and first and second
5	extended positions;
6	a cam spring in slidable contact with a portion of the cam member
7	surface, whereby the cam spring engages the portion of the cam member surface
8	to locate the cam member in each of said positions; and
9	a biasing member coupled to the cam member to return the alloy
10	member to the initial position following the removal of the alloy member force.
1	7. The actuation assembly of claim 3, the drive assembly further
2	comprising:
3	a lever, having a first end and a second end, rotatable about a pivot
4	location between a first position and a second position, the first end coupled to the alloy
5	member and the second end coupled to a biasing spring, the biasing spring to return the
6	alloy member to an initial position following the removal of the alloy member force.
1	8. The actuation assembly of claim 3, the drive assembly further
2	comprising a cable having a first end coupled to the alloy member.
1	9. The actuation assembly of claim 3, wherein the power supply is
2	activated or deactivated by a switching mechanism.
1	The actuation assembly of claim 9, wherein deactivation of the
2	current causes the internal structure of the alloy member to return to its initial state
3	thereby removing the alloy member force.
1	11. The actuation assembly of claim 3, wherein the alloy member is
2	made of a shape-memory alloy taken from a group of alloys comprising of the products
3	Nitinol™ and Flexinol™.
1	12. The actuation assembly of claim 3, wherein the alloy member is
2	disposed within a protective shield.

1	13. The actuation assembly of claim 3 further comprising a pair of
2	hinge assemblies coupled to said loading panel.
1	14. A method for manipulating members of a removable hard disk
2	drive, the removable hard disk drive comprising a housing having a receptacle which
3	removably receives a cartridge, a cover formed of a cover material and a front loading
4	panel disposed over the receptacle, the method comprising:
5	selecting an alloy member which (undergoes an (internal change in structure)
6	when subjected to a change in temperature;
7	generating an electrical current, the current used to sufficiently raise the
8	temperature of the alloy member to produce a force set within the alloy member; and
9	moving a component of the drive using the alloy member force.
1	15. The method of claim 14, wherein the alloy member comprises a
2	shape-memory alloy taken from the group comprising of Nitinol™ and Flexinol™.
1	16. A method comprising:
2	supplying energy to an alloy member causing the alloy member to undergo
3	an internal change in structure thereby producing a force set within the alloy member; and
4	actuating movement of a device by coupling said force to said device.
1	17. The method of claim 16, wherein the alloy member comprises a
2	shape-memory alloy taken from the group comprising of Nitinol™ and Flexinol™.
1	18. A method for fabricating an actuation assembly for a hard disk
2	drive comprising a housing having a receptacle which removably receives a cartridge, a
3	cover formed of a cover material and a front loading panel disposed over the receptacle,
4	the method comprising:
5	selecting an alloy member, having a first end and a second end, which can
6	undergo an(internal change in structure) which produces a force within the alloy member;
7	affixing said first end of the alloy member to a pivot assembly; and
8	affixing said second end of the alloy member to a hinge mechanism, the
9	hinge mechanism being coupled to a loading panel.

	1	19. A method as in claim 18, wherein the pivot assembly comprises:
	2	positions;
	3	a cam spring in slidable contact with a portion of the cam member surface,
	4	whereby the cam spring engages the portion of the cam member surface to locate the cam
	5	member in each of said positions; and
	6	a biasing member coupled to the cam member to return the alloy
	7	member to the initial position following the removal of the alloy member force.
	1	20. A disk drive system for use with a removable disk cartridge, the
	2	disk drive system comprising a housing having a receptacle which removably receives the
	3	cartridge, the housing having a cover formed of a cover material and a door, the door
	4	being coupled to an actuation assembly comprising:
	5	a first arm coupled at a first end to the proximal end of a pivot shaft and
	6	coupled at a second end to the door;
	7	a second arm coupled at a first end to the distal end of a pivot shaft and
	8	coupled at a second end to a biasing mechanism;
z	9	a shape-memory alloy wire mechanically coupled to the second end of the
	10	second arm and a position on the housing;
	11	a power supply activated by a switch positioned on the housing, wherein
ind ting ting	12	the power supply generates a current; and
i in	13	an electrical connection for applying the current to the wire, wherein the
	14	wire is heated by the current which causes the wire to contract generating a pulling force
	15	which is adapted to actuate the first and second arms.
	1	21. The actuation assembly of claim 20, wherein the alloy material
	2	comprises a shape-memory alloy taken from the group of alloys comprising of Nitinol™
	3	and Flexinol™.