

SEQUENCE-STRUCTURE RELATIONSHIP

Master of Science in Data Science

Damiano Piovesan

Same fold and high sequence similarity

- Human insulin (1his)
- Pig insulin (3ins)

• 91% sequence identity

Low sequence similarity but same fold

- 1vid Transferase (EC 2.1.1.6)
 - Rattus norvegicus
 - Inactivation of neurotransmitters

- 1chd Methylesterase (EC 3.1.1.61)
 - Salmonella typhimurium
 - Cell sensory response

1vid	${\tt TKEQRILRYVQQNAKPGDPQSVLEAIDTYCTQKEWAMNVGDAKGQIMDAVIREYSPSLVL}$
1chd	llsseKLIA
1vid	ELGAYC.GYSAVRMARLLQ.PGARLLTMEMNP.DYAAITQQMLNFA.GLQD
1chd	${\tt IGAStggTEAIRHVLQPLP1SSPAVIITQHMPpGFTRSFAERLNKLcQISV} ke a edgervalue of the property of t$
1vid	KVTILNGASQDLIPQLKKKYDVDTLDMVF
1chd	${\tt lpgHAYIAPgdkhmelarsganyqikihdgppvnrhrPSVDVLFHSVAK HAGRnAVGV}$
1vid	$\verb LDHWKDRYLPDTLLLEK.CGLLRKGTVLLADNVIVPGTPDFLAYVRGSSSFECTHYSSYL $
1chd	ILTGMGNdGAAGMLAmYQAGaWTIAQNEAscvvfg
1vid	EYMKVVDGLEKAIYQGPSX
1chd	mpreainmggVSEVvdlsqvsqqmlakisagqairi

DIPARTIMENTO **MATEMATICA**

- Rossmann fold
- 10% sequence identity
- RMSD 3.0 Å for 104 out of 198 residues

Sequence similarity == Structure similarity?

Pairs of proteins with similar structure

Sequence similarity == Structure similarity?

Pairs of proteins with different structure

Sequence similarity – Structure similarity?

- Proteins with at least ca. 30% identical residues, likely have the same fold (similar structure). For shorter alignments the threshold is higher
- In some cases proteins with less than 20% of sequence identity, "twilight zone", have the same fold
- Any pair of sequences have at least 15% sequence identity

Orthologues

- Different species
- Same function
- Vertical descent

Paralogues

- Same species
- Similar (but different) function
- Horizontal evolution (duplication)

Homology

Remote homology

- Same structure
- Same ancestor
- Same function
- Low sequence identity

Analogues

- Same structure
- Different ancestor
- Same function ?

STRUCTURAL EVOLUTION

Master of Science in Data Science

Damiano Piovesan

Structural evolution

- How protein structure has evolved?
 - Ancestral proteins?
 - Footprints of the evolutionary path?

- Structural evolution
 - Inference from structural classification
 - Hypothesis on the common elements
 - Theories on the origin of life

Structural complexity

Complexity

• Millions of species → each with thousand of coding genes

Mechanisms

- Point mutations, insertion, deletions
- Random drift + natural selection
- Parental inheritance, acquisition, duplication

Observations

- Proteins display substantial similarity in sequence and 3D structure
- Structures diverge much more slowly than sequences → evidence of common ancestry

"More than the sum of their parts: on the evolution of proteins from peptides"

- There is a basic complement of autonomously folding units (domains)
- The complement was established at the time of the "last common ancestor"

"More than the sum of their parts: on the evolution of proteins from peptides"

Examples of circular permutations

Close N- and C-termini can be found in different parts of the protein

Duplication

Fission and fusion

Model of structural evolution

Common "operators"

- Oligomerization (repetition)
- Fusion
- Circular permutation
- Decoration

STRUCTURAL CLASSIFICATION

Master of Science in Data Science

Damiano Piovesan

Recognition of distant evolutionary events make it possible to describe the basic complement of domains in the last common ancestor

Domain based classification

Families

Superfamilies

Homologous families - Divergent evolution

Folds

Analogous superfamilies - Convergent evolution

Folds

- Estimated total folds 10,000
- A quarter of domains is inside "superfolds"
- 80% of all domains is inside 400 "mesofolds"
- The rest are called "unifolds"

Why some folds are so common?

Table 1. Superfolds and the fraction of their residues contained in the supersecondary structure elements $\alpha\alpha$, $\beta\beta$, $\beta\alpha\beta^{(21)}$

	Internal symmetry			
Fold	Sequence*	Structure	Number of superfamilies (%)	% Supersecondary structure content
β-trefoil	+	+	2 (0.1)	83
Jelly roll	-	+	17 (1.2)	47
Immunoglobin-like		+	55 (4.0)	67
TIM-barrel	+	+	28 (2.0)	82
Ferredoxin-like	+	+	65 (4.7)	38
Updown bundle	+	+	17 (1.2)	90
OB fold	2	-	16 (1.1)	77
UB-roll		-	16 (1.1)	55
Globin-like		_	4 (0.3)	88
Doubly wound	=	-	122 (8.8)	68
All superfolds			342 (24.7)	65
All folds			1386 (100)	62

Why some folds are so common?

DIPARTIMENTO MATEMATICA

- Stability and folding efficiency
- Better scaffold for active sites (fold competition)
- Limited number of supersecondary structures

SCOP - Structural Classification of Proteins

- Alexey Murzin
- Mainly manually curated
- Gold standard
- Class
 - α , β , α/β , $\alpha+\beta$, ...
- Fold
 - Structural similarity
- Superfamily
 - Homology
- Family
 - Homology and function

SCOP - Structural Classification of Proteins

- Initially a protein structure is classified into domains
- A domain is a region of the protein that has its own hydrophobic core and has relatively little
 interaction with the rest of the protein making it structurally independent
- Domain types
 - mainly α
 - mainly β
 - \circ α / β \rightarrow the β-sheet and α-helices are mixed (typically β-strands connected by α-helices)
 - \circ $\alpha + \beta \rightarrow$ domains that have the α and β units largely separated in sequence
 - Multidomain
 - Membrane and cell surface
 - Small proteins

SCOP - Folds

- The most difficult stage of classification
- Same major secondary structures, same arrangement, same topological connections
- Peripheral elements of secondary structure and turn regions may differ in size and conformation
- Useful to infer evolutionary relationship for distant homologs

About Contact Download		Search SCOP by text or ID							
Statistics									
				SCOP2	SCOP 1.75				
Number of folds				1560	1195				
Number of IUPR				24	n.a				
Number of hyperfamilies				22	n.a				
Number of superfamilies				2811	1962				
Number of familie	s			5928	3902				
Number of inter-re	elationships			60	n.a				

SCOP

Superfamilies

- Share a common fold, perform similar functions, usually low sequence identity
- A strong functional relationship (eg the conserved interaction with substrate or cofactor molecules) can compensate for a different fold (provided it includes the active site)

Families

- Sequence identity +30% or functions and structures are very similar
- Common evolutionary origin

"Strange" families

- Sequence similarity below family definition but above the superfamily level
- Similar domain organization, common fold in the catalytic domain → likely to be closely related

CATH

- Semi-Automatic
- Only Architectures are manually assigned

CATH

Semi-Automatic, only Architectures are manually assigned

- Class → secondary structure content
 - mainly-alpha, mainly-beta, mixed alpha/beta, "few secondary structures"
- Architecture → general arrangement of the secondary structures irrespective of connectivity between them
 - Eg. alpha/beta sandwich
- Topology (fold) → connectivity of secondary structures in the chain
- Homologous Superfamily → domains (believed to be) related by a common ancestor

CATH

architectures

β 8 Propellor (3aahA)

β Complex (1ppkE2)

CATH hierarchy in the PDB

- Wheels
 - Inner → architectures
 - \circ Outer \rightarrow folds
- Classes
 - \Rightarrow Pink \rightarrow mainly α
 - \circ Yellow \rightarrow mainly β
 - Green $\rightarrow \alpha$ - β
- Slice size proportional to the number of folds and superfamilies

CATH hierarchy in 150 genomes - Gene3D

Gene3D

HMM models of CATH families

