1. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x;\lambda) = 2\lambda^2 x^3 e^{-\lambda x^2}, \qquad x > 0.$$

- a) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.

 That is, find $\hat{\lambda} = \arg\max L(\lambda) = \arg\max \ln L(\lambda)$, where $L(\lambda) = \prod_{i=1}^n f(x_i; \lambda)$.

 Suppose n = 5, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.

 Find the maximum likelihood estimate of λ .
- b) What is the probability distribution of $W = X^2$?
- c) Suppose n = 5 and $\lambda = 0.2$. Find $P(\sum_{i=1}^{n} X_i^2 < 35)$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

d) Suppose n = 5 and $\lambda = 0.2$. Find c such that $P\left(\sum_{i=1}^{n} X_i^2 < c\right) = 0.01$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

e) Is the maximum likelihood estimator of λ , $\hat{\lambda}$, an unbiased estimator of λ ? If $\hat{\lambda}$ is not an unbiased estimator of λ , construct an unbiased estimator of λ based on $\hat{\lambda}$.

f) Find
$$MSE(\hat{\lambda}) = E[(\hat{\lambda} - \lambda)^2] = (bias(\hat{\lambda}))^2 + Var(\hat{\lambda}).$$

g) Find
$$E(X^k)$$
, $k > -4$. Hint 1: Consider $u = \lambda x^2$ or $u = x^2$.

Hint 2:
$$\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{-u} du$$
, $a > 0$.

Hint 3:
$$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\lambda u}$$
 is the p.d.f. of Gamma $(\alpha, \theta = \frac{1}{\lambda})$ distribution

Hint 4: If
$$T_{\alpha}$$
 has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

h) Obtain a method of moments estimator of λ , $\widetilde{\lambda}$.

That is, if
$$E(X) = h(\lambda)$$
, solve $\overline{X} = h(\widetilde{\lambda})$ for $\widetilde{\lambda}$.

Suppose
$$n = 5$$
, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.

Find a method of moments estimate of λ .

Answers:

1. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with the probability density function

$$f(x;\lambda) = 2\lambda^2 x^3 e^{-\lambda x^2}, \qquad x > 0.$$

a) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$. That is, find $\hat{\lambda} = \arg\max L(\lambda) = \arg\max \ln L(\lambda)$, where $L(\lambda) = \prod_{i=1}^n f(x_i; \lambda)$. Suppose n = 5, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$. Find the maximum likelihood estimate of λ .

$$L(\lambda) = \prod_{i=1}^{n} \left(2\lambda^{2} x_{i}^{3} e^{-\lambda x_{i}^{2}} \right) = 2^{n} \lambda^{2} n \left(\prod_{i=1}^{n} x_{i}^{3} \right) e^{-\lambda \sum_{i=1}^{n} x_{i}^{2}}.$$

$$\ln L(\lambda) = n \cdot \ln 2 + 2n \cdot \ln \lambda + \sum_{i=1}^{n} \ln \left(x_{i}^{3} \right) - \lambda \cdot \sum_{i=1}^{n} x_{i}^{2}.$$

$$\left(\ln L(\lambda) \right)' = \frac{2n}{\lambda} - \sum_{i=1}^{n} x_{i}^{2} = 0. \qquad \Rightarrow \qquad \hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} X_{i}^{2}}.$$

$$x_1 = 0.6, \quad x_2 = 1.1, \quad x_3 = 2.7, \quad x_4 = 3.3, \quad x_5 = 4.5.$$

$$\sum_{i=1}^{n} x_i^2 = 40.$$

$$\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} x_i^2} = \mathbf{0.25}.$$

b) What is the probability distribution of $W = X^2$?

Why $W=X^2$? Because the maximum likelihood estimator $\hat{\lambda}$ is made out of them. If we want to know more about $\hat{\lambda}$, we may want to know more about the distribution of $W=X^2$.

Let W = X²
$$X = \sqrt{W} = v(W)$$
 $v'(w) = \frac{1}{2\sqrt{w}}$

$$\begin{split} f_{\mathbf{W}}(w) &= f_{\mathbf{X}}(v(w)) \cdot \big| \, v'(w) \big| \, = \, 2 \, \lambda^{2} \, w^{3/2} \, e^{-\lambda w} \cdot \frac{1}{2 \sqrt{w}} \, = \, \lambda^{2} \, w e^{-\lambda w} \\ &= \, \frac{\lambda^{2}}{\Gamma(2)} w^{2-1} \, e^{-\lambda w}, \qquad \qquad w > 0. \end{split}$$

 \Rightarrow W has Gamma ($\alpha = 2, \theta = \frac{1}{\lambda}$) distribution.

Suppose X and Y are independent, X is $\operatorname{Gamma}(\alpha_1, \theta)$, Y is $\operatorname{Gamma}(\alpha_2, \theta)$. If random variables X and Y are independent, then $\operatorname{M}_{X+Y}(t) = \operatorname{M}_X(t) \cdot \operatorname{M}_Y(t)$.

$$\Rightarrow M_{X+Y}(t) = \frac{1}{(1-\theta t)^{\alpha_1}} \cdot \frac{1}{(1-\theta t)^{\alpha_2}} = \frac{1}{(1-\theta t)^{\alpha_1+\alpha_2}}, \qquad t < \frac{1}{\theta}.$$

$$\Rightarrow$$
 X + Y is Gamma $(\alpha_1 + \alpha_2, \theta)$;

$$\Rightarrow \sum_{i=1}^{n} X_{i}^{2} = \sum_{i=1}^{n} W_{i} \text{ has Gamma} (\alpha = 2n, \theta = \frac{1}{\lambda}) \text{ distribution.}$$

c) Suppose
$$n = 5$$
 and $\lambda = 0.2$. Find $P(\sum_{i=1}^{n} X_i^2 < 35)$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_T(t) = P(T \le t) = P(Y \ge \alpha)$ and $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

$$\sum_{i=1}^{n} X_{i}^{2} \text{ has Gamma} (\alpha = 2n, \theta = \frac{1}{\lambda}) \text{ distribution.}$$

$$\Rightarrow \sum_{i=1}^{n} X_{i}^{2}$$
 has Gamma ($\alpha = 10, \theta = 5$) distribution.

$$P\left(\sum_{i=1}^{n} X_{i}^{2} < 35\right) = P\left(Gamma(\alpha = 10, \theta = 5) < 35\right)$$

$$= P\left(Poisson(0.2 \cdot 35) \ge 10\right) = 1 - P\left(Poisson(7) \le 9\right)$$

$$= 1 - 0.830 = 0.170.$$

d) Suppose
$$n = 5$$
 and $\lambda = 0.2$. Find c such that $P\left(\sum_{i=1}^{n} X_i^2 < c\right) = 0.01$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$\sum_{i=1}^{n} X_{i}^{2}$$
 has Gamma ($\alpha = 2n, \theta = \frac{1}{\lambda}$) distribution.

$$\Rightarrow \sum_{i=1}^{n} X_i^2$$
 has Gamma ($\alpha = 10, \theta = 5$) distribution.

$$P(\sum_{i=1}^{n} X_{i}^{2} < c) = P(2 \cdot 0.2 \cdot \sum_{i=1}^{n} X_{i}^{2} < 2 \cdot 0.2 \cdot c) = P(\chi^{2}(20) < 0.4 \cdot c) = 0.01.$$

$$\Rightarrow$$
 0.4 $c = \chi_{0.99}^2(20) = 8.26$.

$$\Rightarrow$$
 $c = 20.65$.

e) Is the maximum likelihood estimator of λ , $\hat{\lambda}$, an unbiased estimator of λ ? If $\hat{\lambda}$ is not an unbiased estimator of λ , construct an unbiased estimator of λ based on $\hat{\lambda}$.

$$Y = \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} W_i$$
 has Gamma $(\alpha = 2n, \theta = \frac{1}{\lambda})$ distribution.

$$\hat{\lambda} = \frac{2n}{Y}.$$
 $E(\hat{\lambda}) = E(\frac{2n}{Y}) = 2n \cdot E(\frac{1}{Y}).$

If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

$$\Rightarrow$$
 $E(\frac{1}{Y}) = E(Y^{-1}) = \frac{\lambda}{(\alpha-1)} = \frac{\lambda}{2n-1}.$

$$\mathrm{E}(\,\hat{\lambda}\,) = \mathrm{E}\big(\,\frac{2n}{\mathrm{Y}}\,\big) = \,\frac{2n}{2n-1} \cdot \lambda \,\,=\,\, \lambda + \frac{\lambda}{2n-1} \,\neq\, \lambda.$$

 $\hat{\lambda}$ is NOT an unbiased estimator of λ .

Consider
$$\hat{\lambda} = \frac{2n-1}{2n} \cdot \hat{\lambda} = \frac{2n-1}{\sum_{i=1}^{n} X_i^2}$$
.

Then
$$E(\hat{\lambda}) = \frac{2n-1}{2n} \cdot E(\hat{\lambda}) = \lambda.$$

 $\hat{\hat{\lambda}}$ is an unbiased estimator of $\,\lambda.$

f) Find
$$MSE(\hat{\lambda}) = E[(\hat{\lambda} - \lambda)^2] = (bias(\hat{\lambda}))^2 + Var(\hat{\lambda}).$$

$$\operatorname{Var}(\hat{\lambda}) = 4n^2 \operatorname{Var}(\frac{1}{Y}).$$

$$\operatorname{Var}\left(\frac{1}{Y}\right) = \operatorname{E}\left(\frac{1}{Y^2}\right) - \left[\operatorname{E}\left(\frac{1}{Y}\right)\right]^2.$$

If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{k}) = \frac{\theta^{k} \Gamma(\alpha+k)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+k)}{\lambda^{k} \Gamma(\alpha)}, \qquad k > -\alpha.$$

$$\Rightarrow E\left(\frac{1}{Y^2}\right) = E(Y^{-2}) = \frac{\lambda^2}{(\alpha-1)(\alpha-2)} = \frac{\lambda^2}{(2n-1)(2n-2)}.$$

$$\operatorname{Var}(\hat{\lambda}) = 4n^{2} \operatorname{Var}(\frac{1}{Y}) = 4n^{2} \left[\frac{\lambda^{2}}{(2n-1)(2n-2)} - \frac{\lambda^{2}}{(2n-1)^{2}} \right]$$
$$= \frac{4n^{2} \lambda^{2}}{(2n-1)^{2} (2n-2)}.$$

MSE(
$$\hat{\lambda}$$
) = (bias($\hat{\lambda}$))² + Var($\hat{\lambda}$) = $\frac{\lambda^2}{(2n-1)^2}$ + $\frac{4n^2 \lambda^2}{(2n-1)^2 (2n-2)}$
= $\frac{(4n^2 + 2n - 2)\lambda^2}{(2n-1)^2 (2n-2)}$ = $\frac{(2n+2)\lambda^2}{(2n-1)(2n-2)}$.

g) Find
$$E(X^k)$$
, $k > -4$.

Hint 1: Consider $u = \lambda x^2$ or $u = x^2$.

Hint 2:
$$\Gamma(a) = \int_{0}^{\infty} u^{a-1} e^{-u} du$$
, $a > 0$.

Hint 3: $\frac{\lambda^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\lambda u}$ is the p.d.f. of Gamma $(\alpha, \theta = \frac{1}{\lambda})$ distribution

Hint 4: If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \cdot 2\lambda^{2} x^{3} e^{-\lambda x^{2}} dx \qquad u = \lambda x^{2} \qquad du = 2\lambda x dx$$

$$= \lambda \cdot \int_{0}^{\infty} \left(\frac{u}{\lambda}\right)^{\frac{k}{2}+1} e^{-u} du = \lambda^{-k/2} \cdot \int_{0}^{\infty} u^{\frac{k}{2}+1} e^{-u} du$$

$$= \lambda^{-k/2} \Gamma\left(\frac{k}{2} + 2\right).$$

OR

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \cdot 2\lambda^{2} x^{3} e^{-\lambda x^{2}} dx \qquad u = x^{2} \qquad du = 2x dx$$

$$= \lambda^{2} \cdot \int_{0}^{\infty} u^{\frac{k}{2}+1} e^{-\lambda u} du$$

$$= \lambda^{-k/2} \Gamma\left(\frac{k}{2} + 2\right) \cdot \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{k}{2} + 2\right)} \lambda^{\frac{k}{2}+2} u^{\frac{k}{2}+1} e^{-\lambda u} du = \lambda^{-k/2} \Gamma\left(\frac{k}{2} + 2\right),$$

since $\frac{1}{\Gamma\left(\frac{k}{2}+2\right)}\lambda^{\frac{k}{2}+2}u^{\frac{k}{2}+1}e^{-\lambda u}$ is the p.d.f. of Gamma $(\alpha = \frac{k}{2}+2, \theta = \frac{1}{\lambda})$.

$$E(X^k) = E(W^{k/2}) = \dots$$

W has Gamma (
$$\alpha = 2$$
, $\theta = \frac{1}{\lambda}$) distribution. $W = T_2$.

If T_{α} has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then

$$E(T_{\alpha}^{m}) = \frac{\theta^{m} \Gamma(\alpha+m)}{\Gamma(\alpha)} = \frac{\Gamma(\alpha+m)}{\lambda^{m} \Gamma(\alpha)}, \qquad m > -\alpha.$$

... =
$$\frac{\Gamma\left(2+\frac{k}{2}\right)}{\lambda^{k/2}\Gamma(2)} = \lambda^{-k/2}\Gamma\left(\frac{k}{2}+2\right).$$

h) Obtain a method of moments estimator of λ , $\widetilde{\lambda}$.

That is, if $E(X) = h(\lambda)$, solve $\overline{X} = h(\widetilde{\lambda})$ for $\widetilde{\lambda}$.

Suppose n = 5, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.

Find a method of moments estimate of λ .

$$\begin{split} E(X) &= \lambda^{-1/2} \, \Gamma\!\!\left(\frac{1}{2} + 2\right) = \lambda^{-1/2} \cdot \Gamma\!\!\left(\frac{5}{2}\right) = \lambda^{-1/2} \cdot \frac{3}{2} \cdot \Gamma\!\!\left(\frac{3}{2}\right) \\ &= \lambda^{-1/2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\!\!\left(\frac{1}{2}\right) = \lambda^{-1/2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{3}{4} \cdot \sqrt{\frac{\pi}{\lambda}}. \end{split}$$

$$\frac{3}{4} \cdot \sqrt{\frac{\pi}{\lambda}} = \overline{X} \qquad \Rightarrow \qquad \widetilde{\lambda}_1 = \frac{9\pi}{16(\overline{X})^2}.$$

$$x_1 = 0.6$$
, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$. $\overline{x} = \frac{12.2}{5} = 2.44$.

$$\widetilde{\lambda}_1 = \frac{9\pi}{16(x)^2} \approx 0.09448 \,\pi \approx 0.29682.$$

$$E(X^2) = \lambda^{-2/2} \Gamma(\frac{2}{2} + 2) = \lambda^{-1} \cdot \Gamma(3) = \lambda^{-1} \cdot 2! = \frac{2}{\lambda}.$$

$$\frac{2}{\lambda} = \overline{X^2} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i^2 \qquad \Rightarrow \qquad \widetilde{\lambda}_2 = \frac{2}{\overline{X^2}} = \frac{2n}{\sum_{i=1}^{n} X_i^2}.$$

$$x_1 = 0.6$$
, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.
$$\sum_{i=1}^{n} x_i^2 = 40$$
.

$$\widetilde{\lambda}_2 = \frac{2n}{\sum_{i=1}^n x_i^2} = 0.25.$$