Course	40144 0000 T	Course	DICORTE MATHEMATICS FOR ENGINEERS	Course	DC		L	T	Р	С
Code	18MAB302T	Name	DISCRTE MATHEMATICS FOR ENGINEERS	Category	BS	Basic Sciences	3	1	0	4

	requisite ourses	18MAB101T		Co-requisite Courses	NII		Progressive Courses	Nil
Course	e Offering I	Department	Mathematics			Data Book / Codes/Standards	nil	

Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram l	earni	ng O	utcon	nes (F	PLO)				
CLR-1:	Apply set theory, functions and relations in storage, communication and manipulation of data	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Apply number theory concepts in computer engineering such as public key crypto system.																		
CLR-3:	Apply mathematical reasoning in computer science such as design of computer circuit, verification of programs.							ų;			lity								
CLR-4:	Learning about groups, rings and fields. Solving problems on coding theory.	E	(%)	(%)	a)			arc			abi		~						
CLR-5:	Using graph models in computer network and shortest path problems Apply graph coloring in problems involving scheduling and assignments.	g (Bloo			wledg	S	pment	, Rese	age	υ	Sustainability		m Work		Finance	ng			
CLR-6:	Apply mathematical reasoning, combinatorial analysis, algebraic structures and graph theory in solving mathematical problems as applied to the respective branches of Engineering.	of Thinking (Bloom)	Expected Proficiency	Expected Attainment	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & S		Individual & Team	Communication	Project Mgt. & F	Life Long Learning	—	2	3
		-evel	bec	bec	gin	aple	sigi	alys	ger	ciet	ΑĖ	Ethics	ķi	mm	ojec	F C	PSO -	PSO -	PSO -
	earning Outcomes (CLO): At the end of this course, learners will be able to:	_		Ě			Ď	An	Ĭ	S	Ш	盂	<u>=</u>	၁၁	Pr	Lif	δ,	δĜ	PS
CLO-1:	Problem solving in sets, relations and functions.	3	85	80		Н	L						M	L		Н			
CLO-2:	Solving problems in basic counting principles, inclusion exclusion and number theory.	3	85	80	M	Н		M	M				M			Н			
CLO-3:	Solving problems of mathematical logic, inference theory and mathematical induction.	3	85	80	M	Н							M			Η			
CLO-4:	Gaining knowledge in groups, rings and fields. Solving problems in coding theory.	3	85	80	M	Н		M					M			Н			
CLO-5 :	Gaining knowledge in graphs and properties. Learning about trees, minimum spanning trees and graph coloring.	3	85	80	M	Н	L						M	L		Н			
CLO-6:	Learning mathematical reasoning, combinatorial analysis, algebraic structures and graph theory.	3	85	80	М	Н							М			Н			

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5
Durati	on (hour)	12	12	12	12	12
	SLO-1	Sets and examples. Operations on sets.	Permutation and Combination	Propositions and Logical operators	Binary operation on a set- Groups and axioms of groups.	Basic concepts - Basic Definitions- degree and Hand shaking theorem.
S-1	SLO-2	Laws of Set theory- Proving set identities using laws of set theory.	Simple problems using addition and product rules.	Truth values and truth tables.	Properties of groups.	Some Special Graphs – complete, regular and bipartite graphs.
S-2	SL0-1	Partition of a set – examples.	Principle of inclusion and exclusion	Propositions generated by a set- Symbolic writing using conditional and biconditional connectives.	Permutation group, equivalence classes with addition modulo m and multiplication modulo m.	Isomorphism of graphs – necessary conditions.
3-2	SLO-2	Cartesian product of sets.	Problems using inclusion and exclusion principle.	Writing converse inverse and contra positive of a given conditional.	Cyclic groups and properties.	Isomorphism- simple examples.
S-3	SL0-1	Relations – Properties.	Pigeon-hole principle and generalized pigeon-hole principle.	Tautology, contradiction and contingency-examples.	Subgroups and necessary and sufficiency of a subset to be a subgroup.	Paths, cycles and circuits.
3-3	SLO-2	Equivalence relation and partial order relation	Problems on pigeon-hole principle.	Proving tautology and contradiction using truth table method.	Group homomorphism and properties.	Connectivity in undirected graphs – connected graphs and odd degree vertices.
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet	
	SL0-2 SL0-1	Poset - Graphs of relations Digraphs	Divisibility and prime numbers.	Equivalences – truth table method to prove equivalences.	Rings- definition and examplesZero devisors.	13 Eulerian and Hamiltonian graphs.
S-5	SLO-2	Hasse diagram – problems.	Fundamental theorem of arithmetic – problems.	Implications- truth table method to prove implications.	Integral domain- definition , examples and properties.	Necessary and sufficient condition for a graph to be Eulerian-examples.

S-6	SL0-1	Closures of relations- examples	Finding prime factorization of a given number.	Laws of logic and some equivalences.	Fields – definition, examples and properties.	Matrix representation of graphs- adjacent and incidence matrices and examples.
3-0	SLO-2	Transitive closure and warshall's algorithm	Some more problems using fundamental theorem of arithmetic.	Proving equivalences and implications using laws of logic.	Coding Theory – Encoders and decoders- Hamming codes.	Isomorphism using adjacency.
S-7	SLO-1	and range of a function - examples	Division algorithm- greatest common divisor and properties-problems.	Rules of inference – Rule P, Rule T and Rule CP	Hamming distance. Error detected by an encoding function.	Digraphs – in degree and out degree – Hand shaking theorem.
	SLO-2	Types of functions- one- one and onto- bijection- examples.	Euclid's algorithm for finding GCD(a,b)- examples	Direct proofs	examples.	Verification of hand shaking theorem in digraphs.
S-8	SL0-1 SL0-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	11	Problem solving using tutorial sheet 14
	SLO-1	Composition of functions – examples.	Problems using Euclid's algorithm.	Problems using direct method.	Error correction using matrices.	Graph colouring – chromatic number-examples.
S-9	SLO-2	Associatiivity of composition of functions – Identity and inverse of functions.	Least common Multiple(LCM)- relation between LCM and GCD.	Problems using CP rule.	Problems on error correction using matrices.	Four colour theorem(statement only) and problems.
6.10	SLO-1	Necessary and sufficiency of existence of inverse of a function.	Problems on LCM.	Inconsistency and indirect method of proof.	Group codes-error correction in group codes-parity check matrix.	Trees – definitions and examples. Properties.
S-10	SLO-2	Uniqueness of identity	Finding LCM and GCD using prime factorization.	Inconsistent premises and proof by contradiction (indirect method).	Problems on error correction in group codes.	Properties continued.
	SLO-1	Inverse of composition	Finding GCD and LCM using Euclid's algorithm.	Principle of mathematical induction.	Procedure for decoding group codes.	Spanning trees – examples.
S-11	SLO-2	Checking if a given function is bijection and if so, finding inverse, domain and range- problems.	More problems on GCD and LCM.	Problems based on Mathematical Induction	Problems on decoding group codes.	Kruskal's algorithm for minimum spanning trees.
S-12	SLO-1 SLO-2	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
Learning Resource		Kenneth H.Rosen, Tremblay J. P. and Narsing Deo, Grapl C.L. Liu, Elements	Discrete Mathematics and its Applical Manohar R., Discrete Mathematical Soft Theory with applications to Enginee of Discrete Mathematics, 4th Edition, ete Mathematics with Graph Theory	Structures with applications to Comp ring and Computer science, Prentice McGraw Higher ED, 2012.	uter Science, Tata Mc Graw Hill Publi -Hall of India pvt. Ltd., New Delhi, 20	shing Co., 35th edition,2008.

Learning Ass	essment											
	Bloom's			Continuous	s Learning As:	sessment (50%	weightage)			Final Examir	nation (50%	
	Level of	CLA - 1 (CLA – 1 (10%) CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#									
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Understand											
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
	Analyze											
Level 3	Evaluate	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Create											
	Total	100 %	6	100 %	%	10	00 %	100 9	6	100	%	

Course D	esigners						
(a) Exper	ts from Industry						
1 Mr. V.	Maheshwaran	CTS, Chennai	maheshwaranv@yahoo.com				
(b) Expert	s from Higher Technical Institutions		-				
2 Dr.K.0	C.Sivakumar	IIT, Madras	kcskumar@iitm.ac.in	3	Dr.Nanjundan	Bangalore University	nanzundan@gmail.com
(b) Interna	al Experts						
4 Dr.A.0	Govindarajan	SRMIST	govindarajan.a@ktr.srmuniv.ac.in	5	Dr.N. Parvathi	SRMIST	parvathn@srmist.edu.in

Course	10CCC201T	Course	FORMAL LANGUAGE AND AUTOMATA	Course	C	Professional Core	L	Т	Р	С
Code	18CSC3011	Name	FORMAL LANGUAGE AND AUTOMATA	Category	C	Professional Core	3	0	0	3

Pre-requisite Courses	Nil		Co-requisite Courses	Nil			gress ourse		Nil													
Course Offering I	Department	Computer Science and	l Engineering	Data I	Book / Codes/Standards	Nil		-	1													
Course Learning	Rationale (CLR):	The purpose of learning	g this course is to:			Le	earniı	ng				- 1	Progi	ram L	.earni	ing Ou	utcon	nes (F	PLO)			
CLR-1: Utilize t	the mathematics and	engineering principles t	for the basics of F	ormal Language		1	2	3	1	2	3	4	5	6	7	8	9	10	11 1	12 13	3 14	15
CLR-2: Acquire	e knowledge of Auton	nata and minimize with I	Regular language	'S		~		~														
CLR-3: Acquire	e knowledge of Conte	ext free Grammar and si	mplify using norm	al forms		(Bloom)	(%)	Attainment (%)	edge		Ħ						Work		9			
CLR-4: Gain kr	nowledge to push do	vn automata and apply	it with CFL			<u>@</u>	Proficiency	ent	¥		Development		ge				>		Finance	<u>6</u>		
CLR-5: Analyze	e the methods of turn	ing machine				ing.	icie.	in	Knowle	/sis	형	sign,	Jsa	nre	.~		Team	Ξ	급 :			
CLR-6: Analyze	e and Design the me	thods of computational of	complexity			hinking	rof	۱Ħ۵	g	Analysis	ě.	Desi	10	Cultur	ữ ≧		& 	aţic	∞ .	Learning		
							ğ	pe	1 =	٦A			은	∞	nment nability			을	Mg	ong L	. 2	
Course Learning	Outcomes (CLO):	At the end of this cours	se, learners will be	able to:		Level of	Expected	Expected,	Engineering	Problem.	Design	Analysis, Research	Modern Tool Usage	Society	Environm Sustainat	Ethics	ndividual	Communication	<u> </u>	Life Lor		` I
CLO-1: Acquire	e the knowledge of m	athematics and enginee	ering principles for	the basics of Forma	l Language				М	Н	-	Н	L	-	-	-	L	L	-	Н -	-	-
CLO-2: Acquire	e the ability to identify	specification of a Regu	lar language's wit	h Automata					М	Н	L	Μ	L		-	-	М	L	-	Н -	-	-
CLO-3: Acquire	e knowledge of Conte	ext free Grammar and si	mplify using norm	al forms					М	Н	М	Н	L		-	-	М	L	-	Н -	-	-
CLO-4: Unders	tand the concepts of	f push down automata a	and CFL .						М	Н	М	Н	L	-	-	-	М	L	-	Н -	-	-
CLO-5: Apply ti	he knowledge to turn	ing machine and its met	thods						Н	Н	М	Н	L	-	-	-	М	L	- 1	Н -	-	T -
0101	the computational ar	ad acceptor machines u	oina EA DDA one	I Turing machines					- 1	Н	_	Н	ı	_	_	_	1	1	_	Н -	_	

Durati	on (hour)	11	9	9	9	7
S-1	` '	Introduction to Automaton	Grammars: Introduction: Types of Grammar	Pushdown Automata: Definitions Moves	Turing Machines: Introduction	Undecidability :Basic definitions
3-1	SLO-2	Mathematical concepts	Context Free Grammars and Languages	Instantaneous descriptions	Formal definition of Turing machines, Instantaneous descriptions	Decidable problems,
S-2	SLO-1	Formal Languages: Strings, Languages, Properties	Derivations	Deterministic pushdown automata	Turing Machine as Acceptors	Examples of undecidable problems and Problems
3-2	SLO-2	Finite Representation : Regular Expressions	Ambiguity	Problems related to DPDA		Rice's Theorem
S-3	SLO-1	Problems related to regular expressions	Relationship between derivation and derivation trees	Non - Deterministic pushdown automata	Problems related to turning machine as Acceptors	Undecidable problems about Turing Machine- Post's Correspondence Problem
3-3	SLO-2	Finite Automata :Deterministic Finite Automata	Problems related to Context free Grammar	Problems related to NDPDA		Problems related to Post's Correspondence Problem
S-4	SLO-1	Nondeterministic Finite Automata	Simplification of CFG : Elimination of Useless Symbols	Problems related to DPDA and NDPDA	Turing Machine as a Computing Device	Properties of Recursive and Recursively enumerable languages
3-4	SLO-2	Finite Automaton with €- moves			Problems related to turning Turing Machine as a Computing Device	
S-5	SLO-1	Problems related to Deterministic and Nondeterministic Finite Automata	Simplification of CFG : Unit productions	Pushdown automata to CFL Equivalence	Problems related to turning Turing Machine as a Computing Device	Introduction to Computational Complexity: Definitions
3-3	SLO-2	Problems related to Finite Automaton with €- moves	Simplification of CFG : Null productions	Problems related to Equivalence of PDA to CFG		Time and Space complexity of TMs
S-6	SLO-1	Equivalence of NFA and DFA	Problems related to Simplification of CFG	Problems related to Equivalence of PDA to CFG	Techniques for Turing Machine Construction	Complexity classes: Class P, Class NP
3-0	SLO-2	Heuristics to Convert NFA to DFA				
	SLO-1	Equivalence of NDFA's with and without €- moves	Chomsky normal form	CFL to Pushdown automata Equivalence	Considering the state as a tuple Considering the tape symbol as a tuple	Complexity classes: Introduction to NP- Hardness
S-7	SLO-2	Problems related Equivalence of NDFA's with and without €-moves	Problems related to CNF	Problems related to Equivalence of CFG to PDA	Checking off symbols	NP Completeness
	SLO-1	Minimization of DFA	Greiback Normal form	Pumping lemma for CFL	Modifications of Turing Machine	
S-8	SLO-2	Problems related to Minimization of DFA			Multi-tape Turing Machine	

		SLO-1	Regular Languages : Equivalence of Finite Automata and Regular Languages	Problems related to GNF	Problems based on pumping Lemma	Non-Deterministic Turing Machine	
S	-9					Semi-Infinite Tape Turing Machine	
			Equivalence of Finite Automata and				
			Regular Grammars				
			Problems related to Equivalence of Finite				
			Automata and Regular Languages and				
S.	10		Regular Grammars				
			Variants of Finite Automata :Two-way				
		SLO-2	Finite Automaton Mealy Machines				
		SLO-1	Properties of Regular Languages: Closure				
			Properties				
S.	11	SLO-2	Set Theoretic Properties & Other				
ľ	∟	JLU-Z	Properties				
		SLO-3	Pumping Lemma				

Learning
Resources

Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008.
 Michael Sipser, "Introduction to the Theory of Computation" Cengage Learning, 2012.

4. John. C. Martin, "Introduction to Languages and the Theory of Computation" McGraw-Hill Education, 01- May-

Kamala Krithivasan, Rama.R," Introduction to Formal Languages, Automata Theory and Computation",
 Pearson Education India, 01-Sep-2009.
 Peter Linz, "An introduction to formal languages and automata", Jones & Bartlett Learning, 2001.

Learning Assessment

	Bloom's			Contir	nuous Learning Ass	essment (50% weigl	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA – :	3 (15%)	CLA – 4	(10%)#	I IIIai Laiiiiialloi	i (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	100) %	100	0 %	10	0 %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
		Dr.R.AnnieUthra
		Dr. Jeyasudha

Course Code	18CSC302J	Course Name	COMPUTER NETWORKS	COMPUTER NETWORKS Course Category C	Professional Core	3	0	2	4	
Pre-requisi	ite		Co-requisite	Progre	Avisa					

Pre-requisite Courses	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course Le	earning Rationale (CLR):	The purpose of learning this course is to:																		
CLR-1:	Understand the evolution of	computer networks using the layered network architecture	1																	
		concepts and learn networks devices	l l	_earni	na					Proai	ram L	_earni	ina O	utcor	nes (I	PLO)				
CLR-3:	Design computer networks i	ising subnetting and routing concepts														,				
CLR-4:	Understand the error types	framing, flow control	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-5:	Understand the various Me	dium Access Control techniques and also the characteristics of physical layer functionalities	11_																	
CLR-6:	Understand basic network a	dministration	1 E	8	<u>%</u>	ge		Ħ						동		a				
			evelofThinking (Bloom)		ed Attainment(%)	EngineeringKnowledge	Problem Analysis	Design&Development	Analysis,Design,	ModernTool Usage	Society&Culture	Environment&	Tability	ndividual & TeamWork	Communication	ProjectMgt.&Finance	ifeLongLearning			3
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Levelo	Expect	Expected	Engine	Probler	Design	Analys	Modern	Society	Enviror	Sustan	Individ	Comm	Project	LifeLor	PS0-1	PS0-2	PSU-
CLO-1:	Acquire the basics of comp	uter network and its architecture	3	80	70	L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-
CLO-2:	Acquire the knowledge of va	rious networks devices and addressing methods	3	85	75	М	Н	L	М	L	-	-	-	М	L	-	Н	-	-	-
	Abilty to design the network		3	75	70	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
	Acquire the various error co		3	85	80	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
		rsical layer functions and components	3	85	75	Н	Н	М	Н	Ĺ	-	-	-	М	L	-	Н	-	-	-
CLO-6:	Ability to design a compute	network using a switch and router	3	80	70	L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-

Durat	ion (hour)	15	15	15	15	15
S-1	SLO-1	Evolution of Computer Networks	Addressing types	Network layer functionalities	Introduction- error types	Physical layer overview
	SLO-2	The Internet today	Physical, logical, port, specific addresses	Delivery vs Forwarding	Detection vs Correction	Functionalities
S-2	SLO-1	Data communications	IPv4 addresses	Unicast routing protocols	Error detection	Analog and digital
	SLO-2	Components	Notations	Intra , inter domain routing	Parity	Data, signals
S-3	SLO-1	Networks	Classful addressing	Multicast routing protocols	CRC	Transmission impairment
	SLO-2	Physical structures	Categories	Applications	Checksum	Attenuation, Distortion, Noise
S	SLO-1	Lab 1: Introduction to Packet racer	Lab 4: IP Addressing and subnetting	Lab 7: Implementation of Static Routing	Lab 10: Implementation of EIGRP	Lab 13: Implementation of Single-Area
4-5	SLO-2		(VLSM).		Configuration	OSPF Link Costs and Interface
S-6	SLO-1	Network models	Classless addressing	Distance vector routing	Error correction	Performance metrics
	SLO-2	Categories of network	Prefix usage	Node instability issues	Hamming code	Bandwidth, delay, throughput, jitter
S-7	SLO-1	Protocols and standards	Network Address Translation(NAT)	RIPv1	Framing	Wireless 802.11
	SLO-2	Standards organizations	Translation table	RIPv2	Flow control	Addressing mechanism

S-8	SLO-1	Layered tasks	IPv6 addresses	Link state routing	Error control	Transmission Media
	SLO-2	Hierarchy	Types, Notation	Dijkstra's Algorithm	ARQ types	Twisted pair, Coaxial, Fibre
_	SLO-1		Lab 5: Configuring Interfaces	Lab 8: Implementation of Default Routing	Lab 11:	Lab 14 :Implementation of Multi-Area
S 9-10	SLO-2	creation			Implementation of EIGRP Bandwidth and	OSPF with Stub Areas and Authentication
, .0	OLO 2				Adjacencies	
S-11	SLO-1	OSI model	VLSM	OSPF	Random access	IEEE 802.15
	SLO-2	Layered approach, Peer-peer approach	Masking	EIGRP	ALOHA	Architecture
S-12	SLO-1	Layers in the OSI model	CIDR	Path vector routing	CSMA/CD	IEEE 802.15.4
0 1.2	SLO-2	Comparison of layers	Address aggregation	Stabilized routing table creation for AS	CSMA/CA	Architecture
S-13	SLO-1	TCP/IP protocol suite	Networking devices	BGP	Controlled access	IEEE 802.16
2 10	SLO-2	Comparison with OSI moldel	Router, Switch, hub, Bridges	BGP Sessions	Channelization	Architecture
	SLO-1	Lab 3: Implement the categories of	Lab 6: Basic Router Configuration,	Lab 9: Implementation of RIPv1, v2	Lab 12:Implementation of EIGRP	Lab 15: Redistribution Between EIGRP
S 14-15	SLO-2	network(LAN,MAN,WAN)	Creating Passwords		Authentication and Timers	and OSPF

Learning	
Resources	

- Behrouz A. Forouzan, "Data Communications and Networking "5" hedition, July 1, 2010, ISBN: 9780073376226.
- 2. ToddLammle, "CCNAStudyGuide", Edition7, 2011, ISBN:13:9780470901076.
- 3. WilliamStallings, "DataandComputerCommunications", Edition9, 2010.

Learning Ass	sessment										
-	Bloom's			Contir	nuous Learning Ass	essment (50% weigl	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIdi Exallillatioi	i (50% weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	100	0 %	100	0 %	100	0 %		-

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1 Dr. Sricharan, Wipro Technologies, Chennai	1. Dr.Noor Mahammad, IIITDM, Kancheepuram, noor@iiitdm.ac.in	1. Mr. K. Venkatesh, SRMIST
2.	2.	2.Ms.D. Anitha, SRMIST
	3.	3. Ms. Ferni Ukrit, SRMIST

Course		Course	rse Artificial Neural Networks Course F		L	T	Р	С		
Code	18CSE388T	Name		- .	E	Professional Elective	3	0	0	3

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering	Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:		L	earniı	ng		
CLR-1:	Connect Biology with Comp	uters		1	2	3		
CLR-2:	Understand components of	artificial neural networks						
CLR-3:	Understand supervised lear	stand supervised learning networkparadigms						
CLR-4:	Understand unsupervised learning networkparadigms							
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment		
CLO-1:	Know the purpose of Artific	al Neural Networks		1	80	85		
CLO-2:	Apply the concepts of activa	ation, propogation functions		2	75	80		
CLO-3:	Work with supervised learn	ing network paradigm		3	85	80		
CLO-4:	Work with unsupervised lea	rning network paradigm		3	80	75		

					Prog	ram L	.earn	ing O	utco	nes (PLO)				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
1	Н	L	-	-	H-	-	-	-	-	-	-	Н	L	L	-
	Н	Н	-	-	Н	-	-	-	-	-	-	Н	Н	Н	Н
	Н	Н	Н	•	Н	-	•	-	-	1	1	Н	Н	Н	Н
	Н	Н	-	-	Н	-	-	-	-	-	-	Н	Н	Н	Н

_	ation our)	9	9	9	9	9
S-1	SL0-1	Why neural network?	Components of artificial neural networks	Learning and training samples	Radial basis functions	Unsupervised learning networkparadigms
3-1	SLO-2	Basics of Artificial Neural Networks	The concept of time in neural networks	Paradigms of Learning	Information processing of an RBF network	Structure of a self-organizing map(SOM)
S-2		A brief history of neural networks Biological neural networks	Connections	Using training samples	Training of RBF networks	Functionality
	SLO-2	biological fleural fletworks	Propagation function	Gradient Optimization Procedure	Consider of DDF activistic	Training
S-3	SL0-1	Biological neural networks	Activation	Hebbian learning rule	Growing of RBF networks	Topology function
3-3	SLO-2	The vertebrate nervous system	Threshold value, Activation function	Supervised learning networkparadigms	Compare multilayer perceptrons and RBF	Decreasing Learning Rate
S-4	SLO-1	peripheral nervous system	Common activation functions	The perceptron, back propagation and its variants	Recurrent perceptron-like networks	Variations of SOMs
	SLO-2	Cerebrum, cerebellum,	Output function, Learning strategies	Singlelayer perceptron	Jordan networks	Neural gas
S-5	SL0-1	diencephalon,brainstem	Network topologies	Linear Separability	Elman networks	Multi-SOM
2-3	SLO-2	The Neuron	Feedforward networks	Multilayer perceptron	T	Multi-neural gas
S-6	SL0-1	Components	Recurrentnetworks	Backpropagation of error	Training recurrent networks	Growing neural gas
3-0	SLO-2	Electrochemical processes	Completely linked networks	Selecting learning rate	Unfolding in time	Adaptive resonance theory(ART)
	SLO-1	Receptor cells- Various types	Bias neuron	Resilient Backpropagation	Teacher forcing	Task and structure of an ART network
S-7	SLO-2	Information processing within nervous system	Representing Neurons	Adaption of Weights	D	
S-8	SL0-1	Light Sensing organs	Orders of Activation	V-i-ti i- Dlti	Recurrent backpropagation	Resonance
3-8		Neurons in living organisms	Synchronous activation	Variations in Backpropagation		
S-9	SLO-1	Transition to technical neurons	Asynchronous activation	Multilayer perceptron	Evolutionary algorithms	Learning process of an ART network
	SLO-2	The state of the s	input and outputof data	ivididiayer perceptrori		

Learning Resources 1. David Kriesel, A Briefintroduction to Neural Networks, dkriesel.com, 2005 2. GunjanGoswami, Introduction to Artificial Neural Networks, S.K. Kataria& Sons, 2012 3. Raul Rojas, Neural Networks: A Systematic Introduction, 1996. 4. S. Sivanandam, Introduction to Artificial Neural Networks, 2003	
--	--

Learning Ass	sessment										
-	Bloom's			Contir	nuous Learning Ass	essment (50% weigl	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIdi Examiliado	ii (50% weiginage)
	Level of Thirting	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	%	100	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	<u>.</u>	,
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. 1. Dr. Harisekharan, CTO, Sri Seshaa Technologies Pvt. Ltd., Chennai	1. Dr.J.Suresh, SSN College of Engineering	Dr.G.Vadivu
	2. Dr. Sharmila Shankar, Crescent Institute of Science and Technology	Dr. D.Rajeswari
		Dr.M.S.Abirami

Course	18CSE390T	Course	COMPUTER VISION	Course	Е	Professional Elective	L	Т	Р	С
Code	1003E3901	Name	COMPOTER VISION	Category		PIOIESSIONAI ETECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co-requisite Ni	il	Progressive Courses	Nil
Course Offering I	Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course Learn	ourse Learning Rationale (CLR): The purpose of learning this course is to:								Prog	ram L	_earn	ing Ou	itcom	nes (F	PLO)				
CLR-1:	Recognize and describe both the theoretical and practical aspects of computing with images. Connect issues from Computer Vision to Human Vision	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Describe the foundation of image formation and image analysis. Understand the basics of 2D and 3D Computer Vision.							ch			oility								
CLR-3: Become familiar with the major technical approaches involved in computer vision. Describe various methods used for registration, alignment, and matching in images.			Icy (%)	ent(%)	ledge		nent	Res ear	e e		Sustainability		TeamWork		ance				
CLR-4:	Get an exposure to advanced concepts leading to object and scene categorization from images.	ing (Bloom)	ficier	in l	NOV.	ysis	elopr	ign,F	Usaç	ure	8 Su		Fean	Io	Fina	arning			
CLR-5:	Build computer vision applications.	hinking	dPro	dAtta	ringk	Anal	Dev	,Des	Tool	«Cult	nent		<u>8</u>	nicat	/lgt.&	JLear			
Course Learn	ing Outcomes (CLO): At the end of this course, learners will be able to:	Levelof	ExpectedProficiency (%)	ExpectedAttainment(%)	EngineeringKnowledge	ProblemAnalysis	Design&Development	Analysis,Design,Res	ModernTool Usage	Society&Culture	Environment&	Ethics	Individual &	Communication	ProjectMgt.&Fin	LifeLongLe		PS0-2	PS0-3
CLO-1:	Provide an introduction to computer vision including fundamentals of image formation	3	80	75	L	Н	-	H	L	-	-	-	L	L	-	Н	-	-	-
CLO-2:				75	М	Н	L	Н	L	-	•		М	L	-	Н	-	-	-
CLO-3:				75	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	- 1	-
CLO-4:				80	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO-5:	Provide knowledge about Image rendering	3	80	75	Н	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-

Durati	on (hour)	9	9	9	9	9
C 1	SLO-1	Introduction to Computer Vision	Points and patches-An Introduction	Active contours	Triangulation	Motion models
S-1	SLO-2	Image formation	Feature detectors	Snakes	Two-frame structure from motion	Planar perspective motion
	SLO-1	Geometric primitives	Feature descriptors	Dynamic snakes and CONDENSATION	Projective reconstruction	Rotational panoramas
S-2	SLO-2	2D,3D Transformations	-		Self-calibration	
	SLO-1	3D to 2D Projection	Feature matching	Scissors	Perspective and projective factorization	Gap closing
S-3	SLO-2	Lighting,Reflectance and shading	-	Level Sets	Bundle adjustment	
S-	SLO-1	Sampling and aliasing	Feature tracking	Split and merge	Exploiting sparsity	Cylindrical and spherical coordinates
4	SLO-2	Image processing Point operators				
	SLO-1	Pixel transforms	Edge detection	Mean shift and mode finding	Constrained structure and motion	Bundle adjustment
S-5	SLO-2	Color transforms				
C /	SLO-1	Histogram equalization	Edge linking	Normalized cuts	Hierarchical motion estimation	Parallax removal
S-6	SLO-2					
S-7	SLO-1	Linear filtering	Successive approximation	Graph cuts and energy-based methods	Fourier-based alignment	Recognizing panoramas

	SLO-2	Non Linear filtering	Hough transforms			
S- 8	SLO-	Fourier transforms	Hough transforms	2D and 3D feature-based alignment	Incremental refinement	Compositing
S-9	SLO-	Two-dimensional Fourier transforms , Wiener filtering	Vanishing points	Pose estimation	Case Study	Case Study

Learning
Resources

- 1. RichardSzeliski, "ComputerVision:AlgorithmsandApplications", Springer, 2010.
- 2. Forsyth/Ponce,"ComputerVision:AModernApproach",PearsonEducationIndia;2edition(2015)
- S.Nagabhushana, "Computer Vision and Image Processing", New Age International Pvt Ltd; First edition (2005)

4. Rafael C. GonzaLez"Digital Image Processing", Pearson Education; Fourth edition (2018)

	Bloom's	Final Examination (50% weighta						
	Level of Thinking	CLA - 1 (10%)	CLA – 2 (15%)	Continuous Learning Assessment (50% weightage) CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#				
evel 1	Remember	40%	30%	30 %	30%	30%		
Ur	Understand	40 /0	3076	30 %	3076	3076		
evel 2	Apply	40%	40%	40 %	40%	40%		
CVCIZ	Analyze	4070	4070	40 70	4070	4070		
evel 3	Evaluate	10%	30%	30%	30%	30%		
evel 3	Create	1078	30%	3078	30%	3076		
	Total	100 %	100 %	100 %	100 %	-		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
	Dr. A.P.Shanthi, CEG Campus Anna University	1.Dr.V.Ganapathy,SRMIST
		2.T.Senthil Kumar,SRMIST

Course Cod	18ECO133T	Course Name		SENSO	RS AND TRA	ANSDUCERS					Cou Categ		0			Open	n Elec	tive			L 3	T 0	P 0	C 3
Pre-requ Course	INII			Co-requisite Courses	Nil							Progre Cou		Nil										
Course Offe	ring Department	Electron	ics and Instrumenta	ation Engineering		Data Book / Codes/St	and	ards			Ni													
Course Lear	ning Rationale (CLR):	The purpo	ose of learning this	course is to:			7	Lea	rning	a T				Proc	gram	Learr	ning (Outc	ome	s (PL	.0)			
	Gain knowledge on classi							1	2	3	1	2 3	4	5		7	8				12	13	14	15
CLR-2:	Acquire the knowledge of	different types of	inductive and capa	acitive sensors																				
	Acquire the knowledge of different types of thermal and radiation sensors						%) /	%	ge	Ħ						Ŷ		හු		control screte	≪	1		
CLR-4:	Acquire the knowledge of	different types of	magnetic sensors						enc)	Jen	w ec	ی ا		ge	4			N N		nan	g	c cc Jisci	O	<u>s</u>
CLR-5:	Acquire the knowledgeof	different types of	sensors measuring	non-Electrical qua	ntity			ing	ficie	Ë.	(no	ysis elo	igi,	Usa	ture	∞ ŏ		ear	E	ίΞ	Ē	nati S& c	교원	ive
CLR-6:	Locate the Applications of sensors in industries and home appliances					of Thinking	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis Design & Development	Analysis, Design Research	Modern Tool Usage	Society & Culture	Environment &	Iability	ndividual & Team Work	Sommunication	Project Mgt. & Finance	ife Long Learning	PSO 1: Automatic contro for continuous& discrete	PSO-2: Utilize PLC DCS for control of	PSO-3: Effective management skills		
								evel of Bloom)	ect	Sect	gine	sign Bie	alys	deri	iet)	i i i	Ethics	Νį	шш	ject	2	PSO 1: for conti	0-2 S fc	0-3 nag
Course Lear	ning Outcomes (CLO):	At the end	d of this course, lead	rners will be able to).'			<u> </u>		Ä			Ang	₽	S	Ē,	計	pul	S	Pro	Life	PS for	PS DC	PS ma
CLO-1:	To demonstrate the variou	us types of basic	sensors.					2,3	80	80	Н	- H	-	-	Н	Н	Н	-	-	-	Н	Н	-	-
CLO-2:	Understand the inductive	and capacitive se	ensors which are us	ed for measuring v	arious paran	neters.		1,2	80	80	Н	- -	Н	-	Н	-		_	_		Н	-	Н	
CLO-3:	Understand the thermal a	nd radiation sens	ors					1	80	80	-	- -	-	-	Н	-	-	Н	Н	-	-	Н	-	
CLO-4:	Have an adequate knowle	edge on the vario	us magnetic sensor	rs		·		3	80	80	-	1 Н	-	-	-	-	-	-	-	-	- [-	Н	-
CLO-5:	To demonstrate the variou	us types of basic	sensors measuring	non electrical quar	ntity			3	80	80	-	- H	-	Н	-	-	-	-	-	-	Н	-	-	Н
CLO-6:	Select the right transduce	r for the given ap	plication					3	80	80	Н	- H	-	-	Н	Н	Н	-	-	-	Н	Н		-

Duratio	n (hour)	9	9	9	9	9	
6.4	SLO-1	Introduction to sensors/ transducers, Principles	Introduction to Inductive sensor	Thermal sensors: Introduction	Magnetic sensors: Introduction	Measurement of Non-Electrical quantity: Introduction	
S-1	SLO-2	Classification based on different criteria	Sensitivity and linearity of the sensor	Thermal Expansion type.	Villari effect	Flow Measurement – Introduction.	
	SLO-1	Characteristics of measurement systems	Transformer type transducer	Acoustics temperature sensors.	Wiedmann effect	Ultrasonic Flow Meters.	
S-2		Static characteristics Accuracy, Precision, Resolution, Sensitivity	Electromagnetic transducer	Thermo-emf sensor.	Hall effect	Hot Wire Anemometers.	
S-3	SLO-1	Dynamic characteristics.	Magnetosrtictive transducer	Materials for thermos-emf sensors.	Construction,	Electromagnetic Flow meters.	
	SLO-2	Environmental Parameters	Materials used in inductive sensor	Thermocouple construction	performance characteristics,	Principle and types.	
	SLO-1	Characterization and its type	Mutual Inductance change type	Types.	and its Application	Measurement of Displacement.	
S-4	SLO-2	Electrical characterization.	LVDT: Construction.	Thermo-sensors using semiconductor device	Introduction to smart sensors	Introduction and types.	
S-5	SLO-1	Mechanical Characterization.	Material, input output relationship,	Pyroelectric thermal sensors	Film sensors: Introduction	Measurement of Velocity/ Speed.	
3-3	SLO-2	Thermal Characterization	Synchros-Construction	Introduction	Thick film sensors	Introduction and types.	

S-6	SL0-1	Optical Characterization.	Capacitive sensor: Introduction	characteristics	Microelectromechanical systems	Measurement of Liquid Level.	
3-0	SLO-2	Errors and its classification.	Parallel plate capacitive sensor	Application	Micromachining.	Introduction and types.	
S-7	SLO-1	Selection of transducers.	Variable thickness dielectric capacitive sensor Radiation sensors.		Nano sensors	Measurement of Pressure.	
5-7	SLO-2	Introduction to mechanical sensors	Electrostatic transducer	Introduction	Applications: Industrial weighing systems: Link– lever mechanism.	Introduction and types.	
	SLO-1	Resistive potentiometer and types	Piezoelectric elements	Characteristics	Load cells – pneumatic, elastic and their mounting.	Measurement of Vibration.	
S-8		Strain gauge: Theory, type, design consideration, sensitivity.	Ultrasonic Sensors	Geiger counters	different designs of weighing systems.	Introduction and types.	
	SLO-1	Resistive transducer: RTD, materials used in RTD	Calculation of sensitivity.	Scintillation detectors	conveyors type.	Application of sensors in industries	
S-9	SLO-2	Thermistor: thermistor material, shape	Capacitor microphone, response characteristics	Application on radiation sensors	weighfeeder type.	Application of sensors in home appliances	

Learning Resources 1. Patranabis, D., "Sensors and Transducers", 2nd Edition, Prentice Hall India Pvt. Ltd, 2010. 2. Doeblin, E.O., "Measurement Systems: Applications and Design", 6th Edition, Tata McGraw-Hill Book Co., 2011. 3. Bentley, J. P., "Principles of Measurement Systems", 4th Edition, Addison Wesley Longman Ltd., UK, 2004. 4. Murthy, D.V.S., "Transducers and Instrumentation", Prentice Hall of Neubert H.K.P., "Instrument Transducers – An Introduction to their University Press, Cambridge, 2003.

Learning Asse	Learning Assessment											
	Continuous Learning Assessment (50% weightage)											
	Bloom's Level of Thinking	$(1.0 \pm 1.00\%)$		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100) %	100 %		100) %	100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	Mrs. K. Vibha, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	Dr. G. Joselin Retna Kumar, SRMIST