

Trees

Fall 2020
School of Software Engineering
South China University of Technology

Contents

- Definitions of tree
- Binary tree
- •AVL tree
- Splay tree
- •B-tree

Readings

- Reading
 - Sections 4.5-4.7

Self adjusting Trees

- Ordinary binary search trees have no balance conditions
 - what you get from insertion order is it
- •Balanced trees like AVL trees enforce a balance condition when nodes change
 - tree is always balanced after an insert or delete
- •Self-adjusting trees get reorganized over time as nodes are accessed
 - Tree adjusts after insert, delete, or find

- •Splay trees are tree structures that:
 - Are not perfectly balanced all the time
 - Data most recently accessed is near the root. (principle of locality; 80-20 "rule")
- The procedure:
 - After node X is accessed, perform "splaying" operations to bring X to the root of the tree.
 - Do this in a way that leaves the tree more balanced as a whole

- How to perform splaying?
 - A Simple Idea
 - •to perform single rotations, bottom up

- How to perform splaying?
 - A Simple Idea
 - •to perform single rotations, bottom up

- How to perform splaying?
 - · A Simple Idea
 - •to perform single rotations, bottom up

- How to perform splaying?
 - · A Simple Idea
 - •to perform single rotations, bottom up

- How to perform splaying?
 - · A Simple Idea
 - •to perform single rotations, bottom up

- How to perform splaying?
 - A Simple Idea
 - •to perform single rotations, bottom up
 - This strategy is not good enough
 - A sequence of M operations requires $\Omega(N \cdot M)$

Consider the tree formed by inserting keys 1, 2, 3, . . . , N into an initially empty tree

- •Goal:
 - Principle of locality
 - •An O(logN) amortized cost per operation
- •How to perform splaying?
 - Another strategy to perform double rotations (splay)

Terminology

- Let X be a non-root node with ≥ 2 ancestors.
 - P is its parent node.
 - G is its grandparent node.

Zig-Zig and Zig-Zag

Parent and grandparent in same direction.

Parent and grandparent in different directions.

Splay Tree Operations:

1. Helpful if nodes contain a parent pointer.

- 2. When X is accessed, apply one of six rotation routines.
- Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

Double Rotations (X has both a P and a G)
 ZigZigFromLeft, ZigZigFromRight
 ZigZagFromLeft, ZigZagFromRight

Zig at depth 1 (single rotation)

- •"Zig" is just a single rotation, as in an AVL tree
- •Let R be the node that was accessed (e.g. using Find)

•ZigFromLeft moves R to the top →faster access next time

Zig at depth 1 (single rotation)

·Suppose Q is now accessed using Find

•ZigFromRight moves Q back to the top

Zig-Zag operation

• "Zig-Zag" consists of two rotations of the opposite direction (assume R is the node that was accessed)

(ZigFromRight)

(ZigFromLeft)

ZigZagFromLeft

Zig-Zig operation

•"Zig-Zig" consists of two single rotations of the same direction (R is the node that was accessed)

(ZigFromLeft)

(ZigFromLeft)

ZigZigFromLeft

Decreasing depth - "autobalance"

- splaying not only moves the accessed node to the root,
- but also has the effect of roughly halving the depth of most nodes on the access path

Splay Tree Insert and Delete

•Insert x

• Insert x as normal then splay x to root.

• Delete x

- Splay x to root and remove it. (note: the node does not have to be a leaf or single child node like in BST delete.) Two trees remain, right subtree and left subtree.
- Splay the max in the left subtree to the root
- Attach the right subtree to the new root of the left subtree.

Example Insert

- •Inserting in order 1,2,3,...,8
- Without self-adjustment

Example Insert

- •Inserting in order 1,2,3,...,8
- With self-adjustment

Example Deletion

Analysis of Splay Trees

- Splay trees tend to be balanced
 - M operations takes time $O(M \log N)$ for $M \ge N$ operations on N items. (proof is difficult)
 - Amortized O(log n) time.
- •Splay trees have good "locality" properties
 - Recently accessed items are near the root of the tree.
 - Items near an accessed one are pulled toward the root.

Homework

- •Homework 3-3
 - Textbook exercises 4.27, 4.28

B-Trees

Beyond Binary Search Trees: Multi-Way Trees

- •Example: B-tree of order 3 has 2 or 3 children per node
- •e.g. search for 8

B-Trees

•B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

B-Trees

- A B-Tree of order M has the following properties:
 - The root is either a leaf or has between 2 and M children.
 - All nonleaf nodes (except the root) have between M/2 and M children.
 - All leaves are at the same depth.

- All data records are stored at the leaves.
- Internal nodes have "keys" guiding to the leaves.
- Leaves store between \[\textsup L/2 \] and L data records, where L can be equal to M (default) or can be different.

B-Tree Details

Each (non-leaf) internal node of a B-tree has:

- Between M/2 and M children.
- up to M-1 keys $k_1 < k_2 < ... < k_{M-1}$

Keys are ordered so that:

$$k_1 < k_2 < ... < k_{M-1}$$

Properties of B-Trees

• Children of each internal node are "between" the items in that node.

Suppose subtree T_i is the *i*th child of the node:

- All keys in T_i must be between keys $k_{i\text{-}1}$ and k_i
- i.e. $k_{i-1} \le T_i < k_i$, k_{i-1} is the smallest key in T_i
- All keys in first subtree $T_1 < k_1$
- All keys in last subtree $T_M \ge k_{M-1}$

Properties of B-Trees

B-Tree Nonleaf Node

- The Ks are keys
- The Ps are pointers to subtrees

Properties of B-Trees

B-Tree leaf Node (B+tree)

- The Ks are keys (assume unique).
- The Rs are pointers to records with those keys.
- The Next link points to the next leaf in key order (B+-tree).

Searching in B-trees

•B-tree of order 3: also known as 2-3 tree (2 to 3 children)

- •Examples: Search for 9, 14, 12
- •Note: If leaf nodes are connected as a Linked List, B-tree is called a B+ tree Allows sorted list to be accessed easily

Searching in B-trees

•Searching a B-Tree T for a Key Value K

```
Find(ElementType K, Btree T){
 B = T;
 while (B is not a leaf){
  find the Pi in node B that points to the proper
subtree that K will be in;
 B = Pi:
/* Now we're at a leaf */
if key K is the jth key in leaf B,
  use the jth record pointer to find the
  associated record;
else /* K is not in leaf B */ report failure;
```

Inserting into B-Trees

- •Insert X: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node
 - E.g. Insert 9

Inserting into B-Trees

```
// Inserting a New Key in a B-Tree of Order M (and L=M)
Insert(ElementType K, Btree B)
 find the leaf node LB of B in which K belongs;
 if notfull(LB) insert K into LB;
 else {
   split LB into two nodes LB and LB2 with
   i = \lfloor (M+1)/2 \rfloor keys in LB and the rest in LB2;
                            K[j+1] R[j+1] ... K[M+1] R[M+1]
 K[1] R[1] ... K[i] R[i]
    if (IsNull(Parent(LB)))
       CreateNewRoot(LB, K[j+1], LB2);
    else
       InsertInternal(Parent(LB), K[j+1], LB2);
```

Inserting into B-Trees

// Inserting a (Key,Ptr) Pair into an Internal Node If the node is not full, insert them in the proper place and return.

If the node is already full (M pointers, M-1 keys), find the place for the new pair and split the adjusted (Key,Ptr) sequence into two internal nodes with

 $j = \lfloor (M+1)/2 \rfloor$ pointers and j-1 keys in the first,

the next key is inserted in the node's parent, and the rest in the second of the new pair.

Example of Insertions

Insertions into a B+tree with M=3, L=2

Insertion Sequence: 9, 5, 1, 7, 3,12

Deleting From B-Trees

- •Delete X : Do a find and remove from leaf
 - Leaf underflows borrow from a neighbor
 - E.g. 11
 - Leaf underflows and can't borrow merge nodes, delete parent
 - E.g. 17

Run Time Analysis of B-Tree Operations

- •For a B-Tree of order M
 - Each internal node has up to M-1 keys to search
 - Each internal node has between M/2 and M children
 - Depth of B-Tree storing N items is $O(\log_{\lceil M/2 \rceil} N)$

•Find: Run time is:

- O(log M) to binary search which branch to take at each node. But M is small compared to N.
- Total time to find an item is O(depth*log M) = O(log N)

Run Time Analysis of B-Tree Operations

- How Do We Select the Order M?
 - In internal memory, small orders, like 3 or 4 are fine.
 - On disk, we have to worry about the number of disk accesses to search the index and get to the proper leaf.

Rule: Choose the largest M so that an internal node can fit into one physical block of the disk.

- This leads to typical M's between 32 and 256
- And keeps the trees as shallow as possible.

Summary of Search Trees

- Problem with Binary Search Trees
 - Must keep tree balanced to allow fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees
- •Multi-way search trees (e.g. B-Trees):
 - More than two children per node allows shallow trees; all leaves are at the same depth.
 - Keeping tree balanced at all times.
 - Excellent for indexes in database systems.

Homework

•Homework 3-4

- Show the updated B+-Tree with order 4 that results from inserting the records U and R in order.
- Assume that the leaf nodes are capable of storing up to 3 records

