Definice funkce.

1.
$$f = \{[x, z]; x^2 - y^2 - 1 = 0\}, y^2 = x^2 - 1, |y| = \sqrt{x^2 - 1}, x \in (-\infty, -1 > 0 < 1, +\infty)$$

Pro každé $x \in (-\infty, -1) \cup (1, +\infty)$ existují $y_1 = \sqrt{x^2 - 1}$, $y_2 = -\sqrt{x^2 - 1}$ a je při tom splněno $y_1^2 = x^2 - 1 = y_2^2$.

Na množině $x \in (-\infty, -1) \cup (1, +\infty)$ není f funkce.

2.
$$f(x) = x^2 - 5x + 6$$
.

Jedná se o funkci? Určete množiny, kde je funkce prostá a na nich definujte funkci inverzní.

Nechť f není funkce na svém definičním oboru, $y_1 = x_1^2 - 5x_1 + 6$, $y_2 = x_2^2 - 5x_2 + 6$, nechť $y_1 \neq y_2$ a $x_1 = x_2$. Pak $x_1^2 - 5x_1 + 6 = x_2^2 - 5x_2 + 6$ neboli $y_1 = y_2$, což je spor.

fje funkce v celém svém definičním oboru, tj. pro všechna reálná x.

f je prostá, jestliže pro $x_1 \neq x_2$ je $y_1 \neq y_2$.

Jedná se polynom 2. řádu s kořeny $x_1 = 2$, $x_2 = 3$. Funkce je prostá na intervalech $(-\infty,5/2)$ a $(5/2,+\infty)$.

$$v \ge -1/4$$

$$y = x^2 - 5x + 6$$
, $y - 6 = x^2 - 5x$, $y - 6 + 25/4 = x^2 - 5x + 25/4$, $y + 1/4 = (x - 5/2)^2$

$$\sqrt{y+1/4} = \left| x - 5/2 \right|.$$

Pro $x \ge 5/2$ je $x = 5/2 + \sqrt{y+1/4}$, pro $x \le 5/2$ je $x = 5/2 - \sqrt{y+1/4}$.

Inverzní funkce $f^{-1}(x) = 5/2 - \sqrt{x+1/4}$, $D(f^{-1}) = <-1/4, +\infty$, $H(f^{-1}) = (-\infty, 5/2)$,

nebo

$$f^{-1}(x) = 5/2 + \sqrt{x+1/4} , \ D(f^{-1}) = <-1/4, +\infty), (f^{-1}) = <5/2, +\infty).$$

3.
$$f(x) = x^2 - 5x + 6$$
, $x \ge 5/2$

Pro každou dvojici x_1, x_2 platí: $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ Funkce je rostoucí na intervalu $<5/2, +\infty$).

4. Nakreslete graf funkce $f(x) = -2x^2 + x + 4$

$$D=33,\ x_1=\frac{-1+\sqrt{33}}{-4}=\frac{1}{4}-\frac{\sqrt{33}}{4}\,,\ x_2=\frac{-1-\sqrt{33}}{-4}=\frac{1}{4}+\frac{\sqrt{33}}{4}\,,$$

$$f(0) = 4$$

5. Nakreslete graf funkce $f(x) = -2x^2 + 12x - 18$

 $f(x) = -2(x-3)^2$. Oproti funkci $f(x) = -x^2$ je parabola "užší" a posunuta o 3 jednotky po ose x vpravo.

6. Nakreslete graf funkce $f(x) = \frac{3-x}{2x+5}$.

$$x \neq -5/2$$

Asymptoty: x = -5/2, y = -1/2.

 $x = 0 \Rightarrow y = 3/5 > -1/2 \Rightarrow$ větve hyperboly umístěny v 1. a 3. kvadrantu.

7. Nakreslete graf funkce f(x) = 3|2x+1|

Nulový bod
$$x = -1/2$$
.

$$x \ge -1/2$$
, $f(x) = 6x + 3$, $f(0) = 3$, $f(x) = 0 \Leftrightarrow x = -1/2$

$$x \le -1/2$$
, $f(x) = -6x - 3$, $f(0) = -3$, $f(x) = 0 \Leftrightarrow x = -1/2$

8. Nakreslete graf funkce f(x) = 2|x+2|-3|2x+1|-5

Nulové body: -2, -1/2

	(-∞, -2>	<- 2, -1/2 >	<- 1/2, +∞)
x+2	-	+	+
2x + 1	-	-	+

$$x \in (-\infty, -2)$$

$$f(x) = -2x - 4 + 6x + 3 - 5 = 4x - 6, \ f(0) = -6, \ f(x) = 0 \Leftrightarrow x = 3/2, \ f(-2) = -14$$

$$x \in < -2, -1/2 >$$

$$f(x) = 2x + 4 + 6x + 3 - 5 = 8x + 2,$$

$$f(0) = 2, \ f(x) = 0 \Leftrightarrow x = -1/4, \ f(-2) = -14 \Rightarrow \text{navazuje}, \ f(-1/2) = -2$$

$$x \in < -1/2, +\infty$$

$$f(x) = 2x + 4 - 6x - 3 - 5 = -4x - 4, \ f(0) = -4, \ f(x) = 0 \Leftrightarrow x = -1,$$

9. Nakreslete graf funkce $f(x) = 2|(x+2)(x-1)| - 3|(2x+1)x| - 5x^2 + 1$

Nulové body: -2, -1/2, 0, 1

	$(-\infty, -2>$	<- 2, -1/2 >	<- 1/2, 0 >	<0, 1 >	$<1,+\infty)$
(x+2)(x-1)	+	-	-	-	+
x(2x+1)	+	+	-	+	+

$$x \in (-\infty, -2 > \cup < 1, +\infty)$$

 $f(x) = 2x^2 + 2x - 4 - 6x^2 - 3x - 5x^2 + 1 = -9x^2 - x - 3$
D < 0 nemá kořeny
 $f(-2) = -37, f(1) = -13$

$$x \in <-2,-1/2> \cup <0,1>$$

$$f(x) = -2x^2 - 2x + 4 - 6x^2 - 3x - 5x^2 + 1 = -13x^2 - 5x + 5$$

$$D = 285$$
, $x_1 = -1.68323$, $x_2 = 0.913996$

$$f(-2) = -37, f(1) = -13 \Rightarrow \text{navazuje}, f(-1/2) = 17/4, f(0) = 5$$

$$x \in <-1/2,0>$$

$$f(x) = -2x^2 - 2x + 4 + 6x^2 + 3x - 5x^2 + 1 = -x^2 + x + 5$$

$$D = 21, x_1 = -1.79129, x_2 = 2.791288$$

$$f(-1/2) = 17/4, f(0) = 5 \Rightarrow$$
 navazuje

10. Nakreslete graf funkce f(x) = 2|(x+2)(x-1)|+1

Nulové body: -2, 1

•	(-∞, -2>	<- 2, 1 >	<1, +∞)
(x+2)(x-1)	+	-	+

$$x \in (-\infty, -2 > \cup < 1, +\infty)$$

$$f(x) = 2x^2 + 2x - 4 + 1 = 2x^2 + 2x - 3$$

$$D = 28$$
, $x_1 = 0.822876$, $x_2 = -1.82288$, $f(-2) = 1$, $f(1) = 1$

$$x \in <-2,1>$$

$$f(x) = -2x^2 - 2x + 4 + 1 = -2x^2 - 2x + 5$$

$$D = 44$$
, $x_1 = 1.158312$, $x_2 = -2.15831$

$$f(-2) = 1$$
, $f(1) = 1 \Rightarrow \text{navazuje}$, $f(0) = 5$

11. Nakreslete graf funkce $f(x) = \frac{|1-x|}{2|x|+3}$

Nulové body: 0, 1

	(-∞, 0>	<0,1>	<1, +∞)
1-x	+	+	-
X	-	+	+

$$x \in (-\infty, 0 >$$

$$f(x) = \frac{1-x}{3-2x}$$
, asymptoty $x = 3/2$, $y = 1/2$, $x = 0 \Rightarrow f(0) = 1/3 < 1/2 \Rightarrow 1$. a 3. kvadrant $x \in <0,1>$

$$f(x) = \frac{1-x}{3+2x}$$
, asymptoty $x = -3/2$, $y = -1/2$, $x = 0 \Rightarrow f(0) = 1/3 > -1/2 \Rightarrow 1$. a 3. kvadrant, $f(1) = 0$ $x \in <1,+\infty)$

$$f(x) = \frac{x-1}{3+2x}$$
, asymptoty $x = -3/2$, $y = -1/2$, $x = 1 \Rightarrow f(1) = 0 \Rightarrow$ navazuje,

$$f(0) = -1/3 > -1//2 \Rightarrow 2$$
. a 4. kvadrant

