International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day2 2

messy Country: SYR

تفكيك الخطأ البرمجي المسبب للمشاكل

للبرمجيات ويقوم بتطوير بنى معطيات فعالة. في أحد الأيام ابتكر إلشات بنية معطيات جديدة بنية بنية بنية على تخزين إعداد صحيحة غير سالبة مؤلفة من n بت، حيث n هي إحدى قوى العدد 2، أي $=2^b$ أجل عدد صحيح غير سالب b .

ت فارغة في البداية. يجب على أي برنامج يرغب باستخدام بنية المعطيات هذه أن يتبع القواعد التالية: كن طلبرنامج أن يضيف عناصر تحوي أعداد صحيحة \(n\) بت،إلى بنية المعطيات، واحد ف كل مرة باستخدام التابع add_element(x\)‎. إذا حاول البرنامج إضاف عناصر موجودة مسبقا في بنية المعطيات لا يحدث أي شدىء.

إضافة آخر عنصر يجب على البرنامج أن يستدعي التابع compile_set(\)‎ مرة واحدة تماماً. خيراً يمكن للبرنامج أن يستدعي التابع theck_element(x\)‎ ليتأكد من أن العنصر x موجود في المعطيات يمكن استخدام هذا التابع أكثر من مرة.

ت بتنفيذ بنية المعيطات أول مرة□ حصل خطأ برمجي ضمن التابع compile_set(\)\lam{. الخطأ تيب الخانات الثنائية في كل عنصر من عناصر المموعة بنفس الطريقة. يريد منك إلشات إيجاد الطريقة ي يتم فيها إعادة ترتيب الخانات بسبب هذا الخطأ البرمجي.

باً لتكن السلسلة $[p_0,\dots,p_{n1}]=$ بهيث أن كل رقم من 0 إلى n-1 موجود مرة واحدة فقط، ندعو هذه ملسلة a_0 رحيث a_0 موجود مرة واحدة فقط، ندعو هذه سلسلة تبديل. لنفرض أحد عناصر السلسلة والذي تكون خاناته في النظام الثنائي هي: a_0,\dots,a_{n-1} (حيث a_0 عناصر العنصر بالعنصر بالعنصر بالعنصر بالعنصر بالعنصر بالعنصر بالعنصر بالعنصر بالعنصر a_0 عندما يتم استدعاء التابع a_0 التابع a_0 . a_{p_0} , a_{p_1} , $a_{p_{n-1}}$. $a_{p_{n-1}}$

استخدام نفس التبديل p من أجل إعادة ترتيب خانات كل عنصر من عناصر بنية المعطيات. يمكن لهذا التبديل أن يكون علياً بما ذلك إمكانية أن يكون $p_i=i$ من أجل $0\leq i\leq n-1$.

ى على ذلك لنفعرض أن n=4 n=2, وقمت بإدخال الأعداد التي ترميزها الثنائي كالتإلى إلى مجموعة: 0000, 1010 و 1110. إن استدعاء التابع compile_set يغير هذه العناصر إلى 0000, 0001 و 1110. إن استدعاء التابع 1110.

عليك كتابة برنامج يقوم بإيجاد التبديل p عن طريق التفاعل مع بنية المعطيات لذلك يجب عليك القيام بما يلي وفق رتيب الموضح:):

موعة من الأعداد الصحيحة والتي يتألف كل منها من $\,n$ -بتاً,

ذه الأعداد الصحيحة إلى بنية المعطيات.

متدعاء التابع compile_set لتفعيل الخطأ البرمجي,

س وجود بعض العناصر ضمن المجموعة المعدلة,

دة من تلك المعلومات لتحديد التبديل $\,p\,$ الذي يتوجب إعادته.

نه يمكن لبرنامجك استدعاء التابع compile set مرة واحدة فقط.

ئ حد لعدد المرات التي يمكن لبرنامجك أن يستدعي بها توابع المكتبة بشكل مخصصن يمكن استدعاء $\operatorname{times}(w)$ يمكن استدعاء لتابع $\operatorname{add_element}(w)$ على الأكثر $\operatorname{times}(v)$ للقيام بعمليات الكتابة), واستدعاء التابع $\operatorname{check_element}(v)$

ناميل التنجيز

عليك تنجيز التابع التالي (الطريقة)::

- ;int[] restore permutation(int n, int w, int r\)&lrm •
- ه p عدد الخانات الثنائية في التمثيل الثنائي لكل عنصر من المجموعة (وهو بنفس الوقت طول p (.
 - التي يمكن لبرنامجك القيام بها. add_element التي يمكن لبرنامجك القيام بها.
 - o : أكبر عدد مسموح لاستدعاء التابع check_element التي يمكن لبرنامجك القيام بها.
 - $\,$ يج $\,\,\,\,\,\,\,\,\,\,$ على التابع أن يعيد التبديل المستعاد

ن أجل لغة C يمكنك مراجعة النسخة الانكليزية من المسألة.

بع المكتبة

جك من التفاعل مع بنية المعطيات□ يجب أن يقوم البرنامج باستخدام التوابع الثلاثة التالية:

- ;void add element(string x\)&lrm •
- التابع يضيف العنصر الموصوف بالسلسلة النصية x إلى المجموعة.
- ، سلسلة من '0' و '1' تمثل التمثيل الثنائي للعدد الصحيح الذي يجب أن تتم إضافته إلى المجموعة ، طول $\mathbf x$ يجب أن يكون n .
 - ;void compile set(\)&lrm •
- بع يجب استدعاوه مرة واحدة فقط لا يمكن لبرنامجك استدعاء add_element(\)‎ بعد استدعاء واحدة فقط التابع. هذا التابع. والمكن لبرنامجك استدعاء check_element(\)‎ قبل استدعاء هذا التابع.
 - ;boolean check element(string x\)&lrm •

قوم هذا التابع بفحص فيما إذا كان العنصر X موجوداً في المجموعة المعدلة.

- X: سلسلة نصية مؤلفة من المحارف 0' و 1' والذي يعطي التمثيل الثنائي للعنصر الذي يجب أن يتم فحصه, يجب أن يكون طول N مساوياً n.
 - عيد true إذا كان العنصر X موجوداً في السلسلة المعدلة, و false في حال عدم وجوده.

برنامجك بانتهاك أي من المحددات أعلاه∏ سيكون نتيجة التقييم "جواب خاطئ".

س يكون المحرف الأول ممثلاً البت صاحب أعلى قيمة للعدد الصحيح الموافق.

.restore_permutation م المصحح بتثبيت التبديل $\,p\,$ قبل استدعاء التابع $\,p\,$

خدام ملفات القالب المعطى من أجل تفاصيل التمجيز الخاصة بلغة البرمجة التي تختارها.

مثال

مصحح باستدعاء التابع بالشكل التالي:

- 16 و يمكن للبرنامج أن يقوم بn=4 دينا n=4; restore_permutation(4, 16, 16\)&lrm مملية كتابة و 16 عملية قراءة.
 - نامج باستدعاءات التوابع بالشكل التالي:

```
* `add_element("0001"\)‎`

* `add_element("0011"\)‎`

* `add_element("0100"\)‎`

* `compile_set(\)‎`

* `check_element("0001"\)‎` returns `false`

* `check_element("0010"\)‎` returns `true`

* `check_element("0100"\)‎` returns `true`

* `check_element("1000"\)‎` returns `false`
```

```
* `check_element("0011"\)‎ `returns `false`
* `check_element("0101"\)‎ `returns `false`
* `check_element("1001"\)‎ `returns `false`
* `check_element("0110"\)‎ `returns `false`
* `check_element("1010"\)‎ `returns `true`
* `check_element("1100"\)‎ `returns `false`
```

فقط يتوافق مع هذه القيم التي تم إعادتها من التابع check_element(\)&lrm ومو التبديل ومو التبديل وموافق مع هذه القيم التي تم إعادتها من التابع p=[2,1,3,0] .

Subtasks

```
n=8 , w=256 , p_i 
eq i (ومن أجل دليلين على الأكثر n=8 , w=256 , p_i 
eq i (علامة) , 0 \le i \le n-1 ) , points) n=32 , w=320 , r=1024 18) , points) n=32 , w=1024 , r=320 11) , points) n=128 , w=1792 , r=1792 21) .points) n=128 , w=896 , r=896 30)
```

مثال المصحح

```
المصحح بقراءة الدخل بالصيغة التالية ,, w , r n المحيحة u . والسطر u . والسطر u . والسطر u .
```