TEST REPORT

Reference No.: WTS18S05110676-2W FCC ID.....: XOMEL161WL Applicant: Shenzhen Qiyue Optronics Company Limited Flat3, Tower 3, Excellence Meilin Center Plaza, Zhongkang Road 128, Address: Shangmeilin, Futian District, Shenzhen, China Manufaturer: SHENZHEN QIYUE OPTRONICS COMPANY LIMITED BRANCH Address: SEIYU INDUSTRIAL PARK, DA SAN VILLAGE, DA SHUI KENG, GUANLAN TOWN, LONGHUA NEW DISTRICT, SHENZHEN, P.R.C Product.....: Electronic shelf display Model(s): : EL161WLBC0HWWW, EL161WL, XXXXXXXXX16XXXXXXXXXXXXXX(Where"X"can be any alphanumeric of a-z,A-Z or 0-9 or blank or-) Standards: FCC CFR47 Part 15 C Section 15.407: 2017 Date of Receipt sample.... : 2018-05-07 Date of Test: 2018-05-08 to 2018-05-16 Date of Issue 2018-05-17

Remarks:

Test Result:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Pass

Jack Wen / Test Engineer

Philo Zhong / Manager

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

2.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	A2LA	EMCD \ RED	-
Taiwan	(Certificate No.: 4243.01)	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Reference No.: WTS18S05110676-2W Page 4 of 115

3 Revision History

Test report #	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S05110676- 2W	2018-05-07	2018-05-08 to2018-05-16	2018-05-17	Original	1	Valid

Reference No.: WTS18S05110676-2W Page 5 of 115

4 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
	15.407(a)	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Duty Cycle	KDB 789033	PASS
6dB Bandwidth	15.407(a)	PASS
26 dB Emission Bandwidth	15.407(a)	PASS
& 99% Occupied Bandwidth	13.407 (a)	1700
Maximum Conducted Output Power	15.407(a)	PASS
Power Spectral Density	15.407(a)	PASS
Restricted bands around	15.407(a)	PASS
fundamental frequency	13.407 (a)	1 700
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure	1.1307(b)(1)	PASS
(Exposure of Humans to RF Fields)	1.1307(0)(1)	1 700

5 Contents

		Page
	COVER PAGE	
2	LABORATORIES INTRODUCTION	
	2.1 TEST FACILITY	
3	REVISION HISTORY	
4	TEST SUMMARY	
5	CONTENTS	
6	GENERAL INFORMATION	
	6.1 GENERAL DESCRIPTION OF E.U.T	-
	6.2 DETAILS OF E.U.T	
7	EQUIPMENT USED DURING TEST	
,	7.1 EQUIPMENTS LIST	
	7.1 EQUIPMENTS LIST	
	7.3 MEASUREMENT UNCERTAINTY	
	7.4 TEST EQUIPMENT CALIBRATION	
8	CONDUCTED EMISSION	15
	8.1 E.U.T. OPERATION	
	8.2 EUT SETUP	
	8.3 MEASUREMENT DESCRIPTION	
9	RADIATED EMISSIONS	
9	9.1 EUT OPERATION	
	9.2 TEST SETUP	
	9.3 SPECTRUM ANALYZER SETUP	
	9.4 TEST PROCEDURE	
	9.6 SUMMARY OF TEST RESULTS	
10		
	10.1 SUMMARY OF TEST RESULTS	34
11		
	11.1 Test Produce	41
	11.2 TEST RESULT	
12	6 DB BANDWIDTH	54
	12.1 Test Procedure:	
	12.2 TEST RESULT:	
13	26 DB BANDWIDTH AND 99% OCCUPIED BANDWID	ГН62
	13.1 TEST PROCEDURE:	
	13.2 TEST RESULT:	
14		
	14.1 TEST PROCEDURE:	
15	14.2 TEST RESULT : POWER SPECTRAL DENSITY	
15	15.1 Test Procedure:	
	15.1 TEST PROCEDURE:	
16		

Reference No.: WTS18S05110676-2W Page 7 of 115

	16.1	TEST PROCEDURE:	111
	16.2	Test Result:	112
17	ANTE	ENNA REQUIREMENT	113
18	SAR	EVALUATION	114
19	PHOT	TOGRAPHS – TEST SETUP AND EUT PHOTOS	115

Reference No.: WTS18S05110676-2W Page 8 of 115

6 General Information

6.1 General Description of E.U.T

Product: Electronic shelf display

Model(s): EL161WLBC0HWWW, EL161WL,

XXXXXXXXX16XXXXXXXXXXXXXXX(Where"X"can be any

alphanumeric of a-z,A-Z or 0-9 or blank or-)

Model Description: Only the model names are different. The model EL161WLBC0HWWW

is the test sample.

Operation Frequency: IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5150MHz to 5250MHz

IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5725MHz to 5850MHz

Type of modulation: IEEE for 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)

The Lowest Oscillator: 32.768KHz

Antenna installation: Internal Antenna

Antenna Gain: 3dBi

6.2 Details of E.U.T

Ratings Input: 100-240V~, 50/60Hz, 0.3A

Adapter Model: A1812_SM

6.3 Channel List

U-NII-1 (5.15-5.25GHz)		U-NII-3 (5.725-5.85GHz)		
channel	Frequency(MHz)	channel	Frequency(MHz)	
36	5180	149	5745	
38	5190	151	5755	
40	5200	153	5765	
42	5210	155	5785	
44	5220	157	5785	
46	5230	159	5795	
48	5240	161	5805	
		165	5825	

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20)/ac(HT20):

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	149	5745
40	5200	157	5785
48	5240	165	5825

For 802.11 n(HT40)/ac(HT40):

channel	Frequency(MHz)	channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

For 802.11 ac(HT80):

channel	Frequency(MHz)	channel	Frequency(MHz)
42	5210	155	5775

Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Radiated Emissions	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Radiated Emissions	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Duty Cycle	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Dand Edge	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Band Edge	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX

_	, 			
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
CAD Down downstra	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
6dB Bandwidth	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
26dB Bandwidth and 99% Occupied	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Bandwidth	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Conducted Output Bours	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Conducted Output Power	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Dower Spectral Density	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Power Spectral Density	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

Reference No.: WTS18S05110676-2W Page 12 of 115

	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
Frequency Stability	Un-modulation	/	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

7 Equipment Used during Test

7.1 Equipments List

Condu	cted Emissions Test	Site				
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2018-04-29	2019-04-28
2	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-04-09	2019-04-08
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-13	2019-04-12
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2018-04-13	2019-04-12
5	Spectrum Analyzer	R&S	FSP40	100501	2017-10-20	2018-10-19
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-09-14	2018-09-13
7	Microwave Broadband Preamplifier	SCHWARZBECK	BBV 9721	100472	2017-10-25	2018-10-24
8	Cable	Тор	18GHz-40GHz	-	2017-10-25	2018-10-24
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site			
Item	Equipment	Manufaturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018-04-13	2019-04-12
2	Ative Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-10-17	2018-10-16
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-08	2019-04-07
4	Amplifier	ANRITSU	MH648A	M43381	2018-04-13	2019-04-12
5	Cable	HUBER+SUHNER	CBL2	525178	2018-04-13	2019-04-12
6	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11
RF Cor	nducted Testing					
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11

Reference No.: WTS18S05110676-2W Page 14 of 115

3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11
4.	Coaxial Cable (10Hz-30GHz)	1	1	1	2017-09-12	2018-09-11
5.	Antenna Connector*	/	1	/	2017-09-12	2018-09-11

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

7.2 Description of Support Units

Equipment	Manufaturer	Model No.	Series No.	
1	1	1	1	

7.3 Measurement Uncertainty

Parameter	Uncertainty		
Radio Frequency	± 1 x 10 ⁻⁶		
RF Power	± 1.0 dB		
RF Power Density	± 2.2 dB		
	± 5.03 dB (30M~1000MHz)		
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)		
Conducted Spurious Emissions test	± 3.64 dB (A mains 150KHz~30MHz)		

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS18S05110676-2W Page 15 of 115

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation: Transmitting mode

The test was performed in Transmitting mode(For WIFI), Only the worst case 802.11 mode were record in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup acordance with the ANSI C63.10:2013.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1499	1.40	10.06	11.46	66.00	-54.54	QP	
2	0.1499	-0.31	10.06	9.75	56.00	-46.25	AVG	
3	0.2020	40.89	9.92	50.81	63.52	-12.71	QP	
4	0.2020	28.99	9.92	38.91	53.52	-14.61	AVG	
5	0.2580	33.00	10.01	43.01	61.49	-18.48	QP	
6	0.2580	18.42	10.01	28.43	51.49	-23.06	AVG	
7	0.3260	24.56	10.02	34.58	59.55	-24.97	QP	
8	0.3260	11.29	10.02	21.31	49.55	-28.24	AVG	
9	0.5260	22.58	10.07	32.65	56.00	-23.35	QP	
10	0.5260	12.56	10.07	22.63	46.00	-23.37	AVG	
11	2.2659	20.40	10.22	30.62	56.00	-25.38	QP	
12	2.2659	15.38	10.22	25.60	46.00	-20.40	AVG	

Reference No.: WTS18S05110676-2W Page 17 of 115

Neutral line:

8

9

10

11

12

0.3420

0.5340

0.5340

2.3660

2.3660

9.94

24.12

13.93

21.82

16.49

10.05

10.07

10.07

10.22

10.22

19.99

34.19

24.00

32.04

26.71

49.15

56.00

46.00

56.00

46.00

-29.16

-21.81

-22.00

-23.96

-19.29

AVG

QP

AVG

QP

AVG

Reference No.: WTS18S05110676-2W Page 18 of 115

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIII.						
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Distance			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 52.1 % RH

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup acordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS18S05110676-2W Page 21 of 115

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, eah emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Fator and Cable Fator, and subtrating the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Fator + Cable Fator - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

9.6 Summary of Test Results

FCC Part15.33: For an intentional radiator, the spectrum shall be investigated from the lowest radio

frequency signal generated in the device, without going below 9 kHz, up to at least the frequency

shown in this paragraph: If the intentional radiator operates below 10 GHz: to the tenth harmonic of

the highest fundamental frequency or to 40 GHz, whichever is lower.

Test Frequency: 30MHz ~ 18GHz

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
802.11n(HT20) U-NII-1 low Channel 5180MHz										
226.36	46.22	QP	324	1.6	Н	-11.25	34.97	46.00	-11.03	
226.36	46.58	QP	291	1.1	V	-11.25	35.33	46.00	-10.67	
4511.65	45.60	PK	135	1.4	Н	-1.54	44.06	74.00	-29.94	
4511.65	38.84	Ave	135	1.4	Н	-1.54	37.30	54.00	-16.70	
5110.04	45.37	PK	128	1.2	Н	-0.75	44.62	74.00	-29.38	
5110.04	46.33	Ave	128	1.2	Н	-0.75	45.58	54.00	-8.42	
10360.00	37.99	PK	202	1.4	Н	5.33	43.32	74.00	-30.68	
10360.00	25.41	Ave	202	1.4	Н	5.33	30.74	54.00	-23.26	
15540.00	43.27	PK	239	1.4	Н	5.29	48.56	74.00	-25.44	
15540.00	38.61	Ave	239	1.4	Н	5.29	43.90	54.00	-10.10	
		802.11n	(HT20) U-	NII-1 mid	dle chai	nnel 5200MH	lz			
226.52	44.25	QP	322	2.0	Н	-10.96	33.29	46.00	-12.71	
226.52	47.57	QP	71	1.6	V	-10.96	36.61	46.00	-9.39	
4518.39	46.35	PK	276	1.1	Н	-1.64	44.71	74.00	-29.29	
4518.39	43.45	Ave	276	1.1	Н	-1.64	41.81	54.00	-12.19	
5144.14	45.66	PK	323	1.1	Н	-0.91	44.75	74.00	-29.25	
5144.14	43.77	Ave	323	1.1	Н	-0.91	42.86	54.00	-11.14	
10400.00	38.70	PK	21	1.4	Н	5.21	43.91	74.00	-30.09	
10400.00	23.06	Ave	21	1.4	Н	5.21	28.27	54.00	-25.73	
15600.00	46.67	PK	233	1.7	Н	5.30	51.97	74.00	-22.03	
15600.00	38.07	Ave	233	1.7	Н	5.30	43.37	54.00	-10.63	

_	Receiver	D 4 4	Turn	RX An	tenna	Corrected		FCC F 15.407/2			
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	802.11n(HT20) U-NII-1 High channel 5240MHz										
226.64	45.26	QP	208	1.8	Н	-10.97	34.29	46.00	-11.71		
226.64	44.19	QP	94	1.7	V	-10.97	33.22	46.00	-12.78		
4504.45	41.58	PK	254	1.9	Н	-1.56	40.02	74.00	-33.98		
4504.45	43.13	Ave	254	1.9	Н	-1.56	41.57	54.00	-12.43		
5113.71	44.95	PK	159	1.2	Н	-0.81	44.14	74.00	-29.86		
5113.71	43.92	Ave	159	1.2	Н	-0.81	43.11	54.00	-10.89		
10480.00	41.44	PK	311	1.4	Н	5.14	46.58	74.00	-27.42		
10480.00	35.54	Ave	311	1.4	Н	5.14	40.68	54.00	-13.32		
15720.00	46.89	PK	284	1.6	Н	5.10	51.99	74.00	-22.01		
15720.00	39.36	Ave	284	1.6	Н	5.10	44.46	54.00	-9.54		
	1	802.11	ln(HT20) l	U-NII-3 lo	w Chan	nel 5745MH	Z	1			
227.30	46.24	QP	47	1.9	Н	-10.99	35.25	46.00	-10.75		
227.30	44.06	QP	359	1.9	V	-10.99	33.07	46.00	-12.93		
4538.84	44.87	PK	331	1.1	Н	-1.80	43.07	74.00	-30.93		
4538.84	39.31	Ave	331	1.1	Н	-1.80	37.51	54.00	-16.49		
5144.75	42.49	PK	192	1.3	Н	-0.96	41.53	74.00	-32.47		
5144.75	36.83	Ave	192	1.3	Н	-0.96	35.87	54.00	-18.13		
11490.00	46.80	PK	147	1.7	Н	5.93	52.73	74.00	-21.27		
11490.00	37.85	Ave	147	1.7	Н	5.93	43.78	54.00	-10.22		
17235.00	46.60	PK	291	1.2	Н	10.35	56.95	74.00	-17.05		
17235.00	38.28	Ave	291	1.2	Н	10.35	48.63	54.00	-5.37		

_	Receiver	D 4 4	Turn	RX An	tenna	Corrected		FCC F 15.407/2			
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	802.11n(HT20) U-NII-3 middle channel 5785MHz										
227.36	46.75	QP	346	1.1	Н	-11.13	35.62	46.00	-10.38		
227.36	46.16	QP	335	1.8	V	-11.13	35.03	46.00	-10.97		
4505.04	44.03	PK	91	1.4	Н	-1.59	42.44	74.00	-31.56		
4505.04	42.52	Ave	91	1.4	Н	-1.59	40.93	54.00	-13.07		
5125.35	41.12	PK	350	1.9	Н	-0.95	40.17	74.00	-33.83		
5125.35	35.36	Ave	350	1.9	Н	-0.95	34.41	54.00	-19.59		
11570.00	46.99	PK	212	1.6	Н	5.81	52.80	74.00	-21.20		
11570.00	38.71	Ave	212	1.6	Н	5.81	44.52	54.00	-9.48		
17355.00	45.72	PK	275	1.9	Н	10.37	56.09	74.00	-17.91		
17355.00	39.42	Ave	275	1.9	Н	10.37	49.79	54.00	-4.21		
		802.111	n(HT20) U	I-NII-3 H	igh char	nnel 5825MH	lz				
227.14	44.85	QP	176	1.7	Н	-11.03	33.82	46.00	-12.18		
227.14	46.95	QP	58	1.4	V	-11.03	35.92	46.00	-10.08		
4527.42	43.00	PK	261	1.4	Н	-1.68	41.32	74.00	-32.68		
4527.42	43.64	Ave	261	1.4	Н	-1.68	41.96	54.00	-12.04		
5127.21	42.25	PK	27	1.2	Н	-0.96	41.29	74.00	-32.71		
5127.21	35.37	Ave	27	1.2	Н	-0.96	34.41	54.00	-19.59		
11650.00	45.14	PK	299	1.9	Н	5.84	50.98	74.00	-23.02		
11650.00	38.12	Ave	299	1.9	Н	5.84	43.96	54.00	-10.04		
17475.00	45.17	PK	109	1.0	Н	10.41	55.58	74.00	-18.42		
17475.00	39.12	Ave	109	1.0	Н	10.41	49.53	54.00	-4.47		

_	Receiver	D	Turn	RX An	tenna	Corrected		FCC I 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	a(HT20) l	J-NII-1 lo	w Chan	nel 5180MH	Z		
227.05	45.60	QP	125	1.6	Н	-11.20	34.40	46.00	-11.60
227.05	44.53	QP	280	1.8	V	-11.20	33.33	46.00	-12.67
4510.91	43.26	PK	247	1.7	Н	-1.80	41.46	74.00	-32.54
4510.91	43.07	Ave	247	1.7	Н	-1.80	41.27	54.00	-12.73
5143.01	41.47	PK	68	1.3	Н	-0.94	40.53	74.00	-33.47
5143.01	34.20	Ave	68	1.3	Н	-0.94	33.26	54.00	-20.74
10360.00	41.96	PK	195	1.4	Н	5.33	47.29	74.00	-26.71
10360.00	25.08	Ave	195	1.4	Н	5.33	30.41	54.00	-23.59
15540.00	43.46	PK	75	1.7	Н	5.29	48.75	74.00	-25.25
15540.00	38.74	Ave	75	1.7	Н	5.29	44.03	54.00	-9.97
	,	802.11a	(HT20) U-	NII-1 mid	dle cha	nnel 5200Ml	Ηz		
226.87	47.15	QP	47	1.4	Н	-11.15	36.00	46.00	-10.00
226.87	42.64	QP	164	1.1	V	-11.15	31.49	46.00	-14.51
4525.30	42.34	PK	42	1.1	Н	-1.69	40.65	74.00	-33.35
4525.30	41.01	Ave	42	1.1	Н	-1.69	39.32	54.00	-14.68
5140.78	42.41	PK	90	1.9	Н	-0.91	41.50	74.00	-32.50
5140.78	43.94	Ave	90	1.9	Н	-0.91	43.03	54.00	-10.97
10400.00	40.08	PK	264	1.6	Н	5.21	45.29	74.00	-28.71
10400.00	23.68	Ave	264	1.6	Н	5.21	28.89	54.00	-25.11
15600.00	46.83	PK	8	1.8	Н	5.30	52.13	74.00	-21.87
15600.00	39.97	Ave	8	1.8	Н	5.30	45.27	54.00	-8.73

F	Receiver	eiver Detector toble RX Antenna Corrected		0	FCC F 15.407/2					
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
802.11a(HT20) U-NII-1 High channel 5240MHz										
226.92	47.51	QP	58	1.9	Н	-11.18	36.33	46.00	-9.67	
226.92	44.27	QP	11	1.2	V	-11.18	33.09	46.00	-12.91	
4522.96	43.19	PK	300	1.2	Н	-1.77	41.42	74.00	-32.58	
4522.96	42.93	Ave	300	1.2	Н	-1.77	41.16	54.00	-12.84	
5135.35	45.28	PK	155	1.9	Н	-0.79	44.49	74.00	-29.51	
5135.35	44.08	Ave	155	1.9	Н	-0.79	43.29	54.00	-10.71	
10480.00	40.49	PK	351	1.7	Н	5.14	45.63	74.00	-28.37	
10480.00	35.65	Ave	351	1.7	Н	5.14	40.79	54.00	-13.21	
15720.00	46.41	PK	117	1.2	Н	5.10	51.51	74.00	-22.49	
15720.00	39.18	Ave	117	1.2	Н	5.10	44.28	54.00	-9.72	
	1	802.11	la(HT20) l	U-NII-3 lo	w Chan	nel 5745MH	z		1	
226.64	48.59	QP	13	2.0	Н	-11.15	37.44	46.00	-8.56	
226.64	45.54	QP	4	1.5	V	-11.15	34.39	46.00	-11.61	
4527.60	40.81	PK	31	1.4	Н	-1.64	39.17	74.00	-34.83	
4527.60	41.50	Ave	31	1.4	Н	-1.64	39.86	54.00	-14.14	
5147.71	39.60	PK	250	1.9	Н	-0.84	38.76	74.00	-35.24	
5147.71	36.60	Ave	250	1.9	Н	-0.84	35.76	54.00	-18.24	
11490.00	46.52	PK	49	1.3	Н	5.93	52.45	74.00	-21.55	
11490.00	38.72	Ave	49	1.3	Н	5.93	44.65	54.00	-9.35	
17235.00	46.92	PK	180	1.4	Н	10.35	57.27	74.00	-16.73	
17235.00	39.83	Ave	180	1.4	Н	10.35	50.18	54.00	-3.82	

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11a(HT20) U-NII-3 middle channel 5785MHz									
226.78	45.95	QP	333	1.9	Н	-11.02	34.93	46.00	-11.07
226.78	44.89	QP	272	1.4	V	-11.02	33.87	46.00	-12.13
4527.58	43.05	PK	230	1.6	Н	-1.63	41.42	74.00	-32.58
4527.58	41.81	Ave	230	1.6	Н	-1.63	40.18	54.00	-13.82
5133.98	40.62	PK	206	1.1	Н	-0.73	39.89	74.00	-34.11
5133.98	36.12	Ave	206	1.1	Н	-0.73	35.39	54.00	-18.61
11570.00	46.29	PK	257	1.4	Н	5.81	52.10	74.00	-21.90
11570.00	37.76	Ave	257	1.4	Н	5.81	43.57	54.00	-10.43
17355.00	46.26	PK	281	1.4	Н	10.37	56.63	74.00	-17.37
17355.00	38.44	Ave	281	1.4	Н	10.37	48.81	54.00	-5.19
	<u> </u>	802.11a	a(HT20) U	I-NII-3 H	igh char	nnel 5825MH	lz	T	T
227.11	45.80	QP	359	1.4	Н	-11.25	34.55	46.00	-11.45
227.11	44.25	QP	358	1.4	V	-11.25	33.00	46.00	-13.00
4523.25	43.70	PK	1	1.9	Н	-1.67	42.03	74.00	-31.97
4523.25	44.58	Ave	1	1.9	Н	-1.67	42.91	54.00	-11.09
5143.96	41.57	PK	201	1.6	Н	-0.83	40.74	74.00	-33.26
5143.96	35.64	Ave	201	1.6	Н	-0.83	34.81	54.00	-19.19
11650.00	46.44	PK	184	1.5	Н	5.84	52.28	74.00	-21.72
11650.00	37.89	Ave	184	1.5	Н	5.84	43.73	54.00	-10.27
17475.00	46.63	PK	31	1.1	Н	10.41	57.04	74.00	-16.96
17475.00	37.55	Ave	31	1.1	Н	10.41	47.96	54.00	-6.04

Frequenc	Receiver	eceiver Detector	Turn	RX An	tenna	Corrected	0 1 1	FCC I 15.407/2	
у	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n(HT40) U-NII-1 low Channel 5190MHz									
227.12	45.06	QP	167	1.5	Н	-11.20	33.86	46.00	-12.14
227.12	44.52	QP	176	1.9	V	-11.20	33.32	46.00	-12.68
4511.87	38.65	PK	148	2.0	Н	-1.50	37.15	74.00	-36.85
4511.87	37.81	Ave	148	2.0	Н	-1.50	36.31	54.00	-17.69
5111.63	46.74	PK	141	1.3	Н	-0.86	45.88	74.00	-28.12
5111.63	38.75	Ave	141	1.3	Н	-0.86	37.89	54.00	-16.11
10380.00	38.37	PK	346	1.4	Н	5.26	43.63	74.00	-30.37
10380.00	34.53	Ave	346	1.4	Н	5.26	39.79	54.00	-14.21
15570.00	45.30	PK	333	1.7	Н	5.13	50.43	74.00	-23.57
15570.00	38.47	Ave	333	1.7	Н	5.13	43.60	54.00	-10.40
	_	802.11	n(HT40) l	J-NII-1 F	ligh cha	nnel 5230MI	Hz		
227.02	45.97	QP	279	1.7	Н	-11.12	34.85	46.00	-11.15
227.02	43.52	QP	330	1.6	V	-11.12	32.40	46.00	-13.60
4502.50	44.31	PK	87	1.1	Н	-1.63	42.68	74.00	-31.32
4502.50	42.27	Ave	87	1.1	Н	-1.63	40.64	54.00	-13.36
5117.06	44.36	PK	40	1.5	Н	-0.90	43.46	74.00	-30.54
5117.06	43.30	Ave	40	1.5	Н	-0.90	42.40	54.00	-11.60
10460.00	41.64	PK	37	2.0	Н	5.28	46.92	74.00	-27.08
10460.00	37.28	Ave	37	2.0	Н	5.28	42.56	54.00	-11.44
15690.00	46.15	PK	320	1.2	Н	5.02	51.17	74.00	-22.83
15690.00	39.39	Ave	320	1.2	Н	5.02	44.41	54.00	-9.59

F	Receiver	Turn RX Antenna Corrected Co		0	FCC F 15.407/20				
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n(HT40) U-NII-3 low Channel 5755MHz									
227.04	47.88	QP	348	1.2	Н	-10.98	36.90	46.00	-9.10
227.04	44.36	QP	15	1.6	V	-10.98	33.38	46.00	-12.62
4517.62	35.46	PK	255	1.3	Н	-1.69	33.77	74.00	-40.23
4517.62	34.83	Ave	255	1.3	Н	-1.69	33.14	54.00	-20.86
5114.28	39.97	PK	244	1.2	Н	-0.74	39.23	74.00	-34.77
5114.28	35.14	Ave	244	1.2	Н	-0.74	34.40	54.00	-19.60
11510.00	45.55	PK	6	1.1	Н	5.88	51.43	74.00	-22.57
11510.00	38.81	Ave	6	1.1	Н	5.88	44.69	54.00	-9.31
17265.00	45.20	PK	234	1.4	Н	10.42	55.62	74.00	-18.38
17265.00	38.59	Ave	234	1.4	Н	10.42	49.01	54.00	-4.99
		802.11	n(HT40) L	J-NII-3 H	igh chai	nnel 5795MF	łz		1
227.00	44.77	QP	247	1.9	Н	-11.19	33.58	46.00	-12.42
227.00	45.16	QP	105	2.0	V	-11.19	33.97	46.00	-12.03
4517.88	45.18	PK	20	1.3	Н	-1.69	43.49	74.00	-30.51
4517.88	42.52	Ave	20	1.3	Н	-1.69	40.83	54.00	-13.17
5121.43	40.37	PK	81	1.3	Н	-0.89	39.48	74.00	-34.52
5121.43	36.36	Ave	81	1.3	Н	-0.89	35.47	54.00	-18.53
11590.00	45.89	PK	264	1.5	Н	5.63	51.52	74.00	-22.48
11590.00	37.49	Ave	264	1.5	Н	5.63	43.12	54.00	-10.88
17385.00	46.94	PK	123	1.1	Н	10.63	57.57	74.00	-16.43
17385.00	37.81	Ave	123	1.1	Н	10.63	48.44	54.00	-5.56

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC Part 15.407/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT40) U-NII-1 low Channel 5190MHz									
226.82	49.49	QP	110	2.0	Н	-11.09	38.40	46.00	-7.60
226.82	50.46	QP	226	1.1	V	-11.09	39.37	46.00	-6.63
4530.74	41.11	PK	276	1.6	Н	-1.70	39.41	74.00	-34.59
4530.74	40.74	Ave	276	1.6	Н	-1.70	39.04	54.00	-14.96
5127.80	46.69	PK	45	1.9	Н	-0.78	45.91	74.00	-28.09
5127.80	36.81	Ave	45	1.9	Н	-0.78	36.03	54.00	-17.97
10380.00	40.04	PK	74	1.1	Н	5.26	45.30	74.00	-28.70
10380.00	34.08	Ave	74	1.1	Н	5.26	39.34	54.00	-14.66
15570.00	46.15	PK	77	1.3	Н	5.13	51.28	74.00	-22.72
15570.00	38.42	Ave	77	1.3	Н	5.13	43.55	54.00	-10.45
	T	802.11a	ıc(HT40) l	J-NII-1 H	ligh cha	nnel 5230Mł	Hz	T	T
226.83	45.80	QP	4	1.3	Н	-11.25	34.55	46.00	-11.45
226.83	44.17	QP	235	1.6	V	-11.25	32.92	46.00	-13.08
4502.83	41.44	PK	320	2.0	Н	-1.50	39.94	74.00	-34.06
4502.83	39.84	Ave	320	2.0	Н	-1.50	38.34	54.00	-15.66
5124.52	38.83	PK	343	1.7	Н	-0.85	37.98	74.00	-36.02
5124.52	35.92	Ave	343	1.7	Н	-0.85	35.07	54.00	-18.93
10460.00	41.35	PK	127	1.6	Н	5.28	46.63	74.00	-27.37
10460.00	36.26	Ave	127	1.6	Н	5.28	41.54	54.00	-12.46
15690.00	45.47	PK	76	1.5	Н	5.02	50.49	74.00	-23.51
15690.00	39.62	Ave	76	1.5	Н	5.02	44.64	54.00	-9.36

	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	ac(HT40)	U-NII-3 lo	w Char	nnel 5755MH	lz		
226.84	48.72	QP	211	1.8	Н	-10.99	37.73	46.00	-8.27
226.84	44.90	QP	265	1.3	V	-10.99	33.91	46.00	-12.09
4526.73	39.09	PK	326	1.8	Н	-1.79	37.30	74.00	-36.70
4526.73	40.87	Ave	326	1.8	Н	-1.79	39.08	54.00	-14.92
5133.50	39.78	PK	201	1.8	Н	-0.81	38.97	74.00	-35.03
5133.50	34.86	Ave	201	1.8	Н	-0.81	34.05	54.00	-19.95
11510.00	45.45	PK	222	1.8	Н	5.88	51.33	74.00	-22.67
11510.00	39.46	Ave	222	1.8	Н	5.88	45.34	54.00	-8.66
17265.00	45.96	PK	283	1.3	Н	10.42	56.38	74.00	-17.62
17265.00	38.17	Ave	283	1.3	Н	10.42	48.59	54.00	-5.41
	Γ	802.11a	ıc(HT40) l	J-NII-3 H	ligh cha	nnel 5795Ml	Hz	T	
226.84	44.61	QP	196	1.0	Н	-10.99	33.62	46.00	-12.38
226.84	45.33	QP	138	1.6	V	-10.99	34.34	46.00	-11.66
4535.25	43.71	PK	4	1.1	Н	-1.54	42.17	74.00	-31.83
4535.25	42.68	Ave	4	1.1	Н	-1.54	41.14	54.00	-12.86
5146.12	41.88	PK	154	1.1	Н	-0.89	40.99	74.00	-33.01
5146.12	37.18	Ave	154	1.1	Н	-0.89	36.29	54.00	-17.71
11590.00	46.59	PK	312	1.8	Н	5.63	52.22	74.00	-21.78
11590.00	39.39	Ave	312	1.8	Н	5.63	45.02	54.00	-8.98
17385.00	45.77	PK	247	1.5	Н	10.63	56.40	74.00	-17.60
17385.00	37.33	Ave	247	1.5	Н	10.63	47.96	54.00	-6.04

F	Receiver	Receiver Detector tobble RX Antenna Cor		Corrected	Corrected	FCC Part 15.407/209/205				
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
802.11ac(HT80) U-NII-1 low Channel 5210MHz										
226.84	44.87	QP	333	1.0	Н	-11.18	33.69	46.00	-12.31	
226.84	45.97	QP	324	1.0	V	-11.18	34.79	46.00	-11.21	
4535.25	44.80	PK	322	1.2	Н	-1.77	43.03	74.00	-30.97	
4535.25	43.03	Ave	322	1.2	Н	-1.77	41.26	54.00	-12.74	
5146.12	41.83	PK	164	1.4	Н	-0.82	41.01	74.00	-32.99	
5146.12	49.47	Ave	164	1.4	Н	-0.82	48.65	54.00	-5.35	
10420.00	41.42	PK	276	1.8	Н	4.65	46.07	74.00	-27.93	
10420.00	37.58	Ave	276	1.8	Н	4.65	42.23	54.00	-11.77	
15630.00	45.28	PK	232	1.0	Н	5.10	50.38	74.00	-23.62	
15630.00	37.14	Ave	232	1.0	Н	5.10	42.24	54.00	-11.76	
		802.11a	ac(HT80)	U-NII-3 lo	w Char	nnel 5775MH	lz		ī	
226.84	47.35	QP	221	1.3	Н	-11.13	36.22	46.00	-9.78	
226.84	43.20	QP	28	1.9	V	-11.13	32.07	46.00	-13.93	
4515.97	44.03	PK	187	1.2	Н	-1.75	42.28	74.00	-31.72	
4515.97	42.64	Ave	187	1.2	Н	-1.75	40.89	54.00	-13.11	
5133.12	44.01	PK	221	1.5	Н	-0.95	43.06	74.00	-30.94	
5133.12	44.96	Ave	221	1.5	Н	-0.95	44.01	54.00	-9.99	
11550.00	42.24	PK	13	1.8	Н	4.83	47.07	74.00	-26.93	
11550.00	35.51	Ave	13	1.8	Н	4.83	40.34	54.00	-13.66	
17325.00	46.19	PK	150	1.3	Н	10.55	56.74	74.00	-17.26	
17325.00	38.19	Ave	150	1.3	Н	10.55	48.74	54.00	-5.26	

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS18S05110676-2W Page 34 of 115

10 Duty cycle

47 CFR Part 15C 15.407 and 789033 D02 General UNII Test

Test Requirement: Procedures New Rules v02r01, Section (B)

Test Method: ANSI C63.10: 2013

N/A Test Limit:

Test Result: **PASS**

Through Pre-scan, and found 802.11a at lowest channel is the worst Remark:

case. Only the worst case is recorded in the report.

10.1 Summary of Test Results

802.11a mode											
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11n(HT20) mode										
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11n(HT40) mode										
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
38	100	100	100								
151	100	100	100								
	802.11ac(H	HT20) mode	•								
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11ac(F	HT40) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
38	100	100	100								
151	100	100	100								
	802.11ac(F	HT80) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
42	100	100	100								
155	100	100	100								

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Test result plots shown as follows:

802.11a U-NII-1 Low channel

Reference No.: WTS18S05110676-2W Page 41 of 115

11 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2013

Test Limit: (1) For transmitters operating in the 5.15-5.25 GHz band: All

emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of

27 dBm/MHz at the band edge.

Test Result: PASS

11.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.2 Test Result

Test result plots shown as follows:

Reference No.: WTS18S05110676-2W Page 54 of 115

12 6 dB Bandwidth

Test Requirement: FCC CFR47 Part 15 Section 15.407(e)

KDB789033 D02 General UNII Test Procedures New Rules v02r01

Test Method: Section C

Test Limit: ≥ 500 kHz

Test Result: PASS

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

12.2 Test Result:

Band	Operation	6 dB Bandwidth (MHz)		
	mode	Low	Middle	High
U-NII-3	802.11a	16.47	16.44	16.44
	802.11n(HT20)	17.67	17.67	17.64
	802.11n(HT40)	36.48	1	36.60
	802.11ac(HT20)	17.70	17.76	17.70
	802.11ac(HT40)	36.42	1	36.48
	802.11ac(HT80)	76.08	1	1

Test result plots shown as follows:

