(JEMY	Primeira Avaliação		Nota:
Curso:	Ciência da Computação		
Disciplina:	Linguagens Formais e Autômatos		_
Aluno(a):		Data:	19/30/22

- 1) Considere a seguinte expressão regular: (a + b + c) c* a* + d + (b + c)*. Marque a opção que apresenta uma palavra que não seja gerada por ela. (2 pts).
 - a) () d
 - b) () cb
 - c) () aaaa
 - d) () ccca
 - e) bbca
- Com o uso do algoritmo AFε → AFN construa o AFN equivalente ao AFε abaixo e marque a afirmativa correta com relação ao autômato gerado: (2 pts)

- a) () Possui 6 transições
- b) () Possui 7 transições
- c) () Possui 8 transições
- d) () Possui 9 transições
- e) Nenhuma das respostas anteriores.
- 3) Qual das opções denota a função programa estendida (δ) de um AF ϵ ? (2 pts)
 - a) \bowtie $2^Q \times \Sigma^* \rightarrow 2^Q$
 - b) () $2^Q \times \sum^* \rightarrow Q$
 - c) () $Q \times \Sigma \rightarrow 2^Q$
 - d) () $Q \times \sum \rightarrow Q$
 - e) () Nenhuma das respostas anteriores.
- 4) Marque a opção que corresponde a uma expressão regular que especifique a linguagem aceita pelo AFN M dado. (2 pts)

 $M = (\{x, y, z\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_2\})$

δ:	X	y	Z
Oo.	{q1}	{qı}	{q ₁ }
Q1	{q ₀ , q ₂ }	$\{q_0, q_2\}$	{q ₀ , q ₂ }
q ₂			-

a) () (xyz)*xyz

b) () $(x+y+z)^*$

c) () $(x+y+z)^*(x+y+z)$

d) () (x+y+z)(x+y+z)*(x+y+z)

e) Nenhuma das respostas anteriores.

5) Marque a opção que apresenta as afirmativas que são verdadeiras com relação ao algoritmo de minimização de autômatos. (1 pt):

I.Dois estados q_i e q_j são equivalentes quando para qualquer palavra w pertencente a \sum^* , $\underline{\delta}(q_i, w)$ e $\underline{\delta}(q_j, w)$ resultam ambos em estados não finais.

II.Um dos pré-requisitos para a aplicação do algoritmo é que o autômato seja um AFN.

III.Um dos pré-requisitos para a aplicação do algoritmo é que a função programa seja definida para todas as combinações de estados com símbolos do alfabeto.

IV.O algoritmo de minimização de autômatos gera um AFN com o menor número de estados possível.

a) () П

b) **⋈** Ⅲ (c) () I, II, III

d) () II, III, IV

e) () I, II, III, IV

6) Dada a GR G1, qual a ER que gera a linguagem por ela denotada? (1 pt)

 $G_1 = (\{S, A, B, C\}, \{a, b, c\}, P, S)$

P:

 $S \rightarrow aS \mid A$

 $A \rightarrow aaB \mid C$

 $B \rightarrow cB \mid \varepsilon$

 $C \rightarrow bC \mid B$

a) () a*(aa + b)c*

b) \ a*(b* + aa)c*

c) () a*(aa+b)*c

d) () $a^*(b^* + aa^*)c$

e) () Nenhuma das respostas anteriores

Algoritmo AFE →AFN

Seja $M = (\Sigma, Q, \delta, q_0, F)$ um AF ϵ qualquer. Seja $M' = (\Sigma, Q, \delta', q_0, F')$ um AFN construído a partir de M como segue:

$$δ'$$
Tal que $δ'$: $Q \times Σ \rightarrow 2^Q$ onde $δ'(q, a) = \underline{δ}(\{q\}, a)$

F'

Conjunto de todos os estados q pertencentes a Q tal que algum elemento do Fe (q) pertence aF.

$$\frac{\delta(P, \varepsilon) = F\varepsilon(P)}{\delta(P, wa) = F\varepsilon(R) \text{ onde } R = \{r \mid r \in \delta(s, a) \text{ e } s \in \underline{\delta}(P, w)\}$$

Algoritmo AFN →AFD

Seja $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer. Seja $M' = (\Sigma, Q', \delta', \langle q_0 \rangle, F')$ um AFD construido a partir de M como segue:

Q' Conjunto de todas as combinações, sem repetições, de estados de Q as quais são denotadas por <q1q2 ... qn>, onde qi pertence a Q, para i em {1, 2, ..., n}. Note-se que a ordem dos elementos não distingue mais combinações. Por exemplo, $\langle q_u q_v \rangle = \langle q_v q_u \rangle$;

δ'

Tal que $\delta'(\langle q_1 ... q_n \rangle, a) = \langle p_1 ... p_m \rangle$ se, e somente se, $\delta(\{q_1, ..., q_n\}, a) = \{p_1, ..., p_m\}$. Ou seja, um estado de M' representa uma imagem dos estados de todos os caminhos alternativos de M;

<qo>

Estado inicial;

F'

Conjunto de todos os estados <q1q2 ... qn> pertencentes a Q' tal que alguma componente qi pertence a F, para i em $\{1, 2, ..., n\}$.

Simplificação

- Todo estado que possua somente setas chegando a ele e que não seja um estado final deve ser eliminado, bem como as transições.
- Todo estado que possua apenas setas saindo de si e que não seja o estado inicial deve ser eliminado, bem como as transições.