

Neuroimaging, An Overview

Shreya Kapoor Cognitive Computer Vision Lab Friedrich Alexander Universität Erlangen-Nürnberg 04 Dec 2024

Outline

- Introduction
- Types of Neuroimaging
 - Structural
 - o Functional
 - Multimodal
- Summary
 - Data formats
 - O Data analysis

What does a typical Neuroimaging study look like?

Different Modalities

Adapted from Mihai Teleanu et. al 2019 Nanomaterials accessed on 22.11.22

Structural Neuroimaging

Useful for medical applications where spatial resolution is important

CT scan

Faster scans, better view of tissue structure, organs and bones, works with X-ray radiation

Structural MRI scan

2

Better spatial resolution, safety from radiation, better soft tissue contrast

Structural MRI: Difficult problems

Segmentation

Separating image into white matter (yellow), gray matter (red) and cerebrospinal fluid (blue)

Determining the boundaries of a tumor Edema (green), core (red), enhancing core (yellow)

Image (1) from <u>link</u> and Image (2) from <u>link</u>, accessed on 24.11.22

Functional Neuroimaging

Image from Strobe 2015

What are we trying to measure?

Brain Signals: indirect vs direct

Oxygen Levels

Blood Oxygen Level Dependent (BOLD) Signal

fMRI, fNIRS...

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)

-INVOLVES EXPOSING THE BRAIN TO MULTIPLE MAGNETIC FIELDS

-HYDROGEN PROTONS RESPOND BY EMITTING AN ELECTROMAGNETIC SIGNAL

-SCANNER RECEIVES SIGNAL, USES IT TO CREATE HIGH-RES IMAGE OF THE BRAIN:

fMRI: Difficult problems, big data

Number of voxels	~10e5
Time	0.5h = 1800 s
Array size per session	60 x 60 x 30 x 1800
Number of sessions	3
If longitudinal, then number of time points	3
Total dimensions (per subject)	60 x 60 x 30 x 1800 x 3 x 3
Number of subjects	50

Brain Signals: indirect vs direct

Electrical Activity: EEG

Image (1) and (2) from mne docs, Image (3) from Abhang et. al 2016 Elsevier

Magnetic Activity: MEG

Magnetically shielded room

First ever MEG device invented by MIT physicist David Cohen

Image (1) from Brookes et. al 2022 Trends in Neuroscience, Image (2) and (3) from wikicommons

Magnetic Activity: OPM-MEG

Data challenges: EEG and MEG

Spatio-Temporal Resolution in functional Neuroimaging

MultiModal Neuroimaging

EEG-fMRI EEG-fNIRS

Image (1) from Brain Products and Image (2) from NIRx ,accessed on 11.11.22

Mobile Neuroimaging - out of the lab

Brain Computer Interfaces

Images from <u>Luhmann et. al 2020 BMC</u>, accessed on 11.11.22

Brain Computer Interfaces + Machine Learning

sub-01_T1w.nii.gz

sub-01_dwi.nii.gz

sub-01_dwi.json

sub-01 dwi.bval

sub-01 dwi.bvec

sub-01 task-rest bold.nii.gz

sub-01 task-rest bold.ison

Neuroimaging: Data formats

Image (1) and (2) from bids docs, Image (3) from link, accessed on 25.11.22

Neuroimaging: Data Analysis

Tasks	Modality	Packages
Quality Control	fMRI/sMRI	MRIQC
	EEG/MEG/fNIRS/ OPM-MEG	MNE, BrainStorm
Preprocessing	fMRI	fMRIPrep
	EEG/MEG/fNIRS/ OPM-MEG	MNE python
Machine Learning	All	Converting data into numpy arrays from all the preprocessing packages, then std. ML

Thank you for your attention!