Midterm

Graded

Student

PO-YUN) 鄭博允 (CHENG

Total Points

76 / 100 pts

Question 1

Question 1

8 / 8 pts

- - + 6 pts One minor mistake
 - + 4 pts Multiple minor mistakes
 - + 2 pts Some reasonable effort (incorrect proof)
 - + 0 pts Totally wrong or empty

Question 2

8 / 8 pts

- → + 8 pts Correct
 - +7 pts 1 mistake
 - + 6 pts 2 mistakes
 - + 5 pts 3 mistakes
 - + 4 pts 4 mistakes
 - + 3 pts 5 mistakes
 - + 2 pts 6 or more mistakes
 - + 0 pts Totally wrong or empty

- - + 6 pts 3.1. One minor mistake
 - + **4 pts** 3.1. Two minor mistakes or one major mistake
 - + 2 pts 3.1. Some reasonable effort
 - + 0 pts 3.1. Totally wrong or empty
- - + 6 pts 3.2. One minor mistake
 - + **4 pts** 3.2. Two minor mistakes or one major mistake
 - + 2 pts 3.2. Some reasonable effort
 - + 0 pts 3.2. Totally wrong or empty

- → + 8 pts Correct (#1,#3,#4,#6,#9) and minimum
 - + **7 pts** Correct (#1,#3,#4,#6,#9) with one incorrect answer
 - + 6 pts Correct but not minimum
 - +4 pts Incorrect with #1 and #3
 - + 2 pts Some reasonable effort
 - + 0 pts Totally wrong or empty

Question 5

- **+ 8 pts** Correct (0, A'B, AB', AB, A, B, A'B+AB', A+B).
- + 6 pts 1 mistake (e.g., missing 1 correct expression)
- + 4 pts 2 mistakes (e.g., missing 2 correct expressions or having 2 incorrect expressions)
- → + 4 pts 1 major mistake (e.g., listing all 16 expressions, list all 8 expressions without minimization)
 - + **3 pts** 3 mistakes (e.g., missing 3 correct expressions)
 - + 2 pts At least 1 correct expression
 - + 1 pt Some reasonable effort
 - + 0 pts Totally wrong or empty
- C Regrade Submitted on: Apr 17
 Request

教授好,打擾了。 關於第五題,我認為我的算法並沒 有錯,答案也是對的,只是沒有經 過簡化,然而即便沒有簡化,結果 也會是一樣的,例如我的答案 AB+A'B+AB' 和正確的答案 A+B 實 際上兩者是等價的。 因此我認為此題應該視為忘記簡化 而斟酌扣分, 而不是視為缺少正確答案或是給出 錯誤答案而只有2分。 感謝教授。

We have decided to give 4 points for correct functions without minimization.

Reviewed on: Apr 20

Question 6

Question 6

8 / 8 pts

- - + 6 pts 1 mistake
 - +4 pts 2 mistakes
 - + 2 pts 3 mistakes

Question 7

Question 7

8 / 8 pts

- - +6 pts 1 mistake
 - + 4 pts 2 mistakes
 - + 2 pts Some reasonable effort
 - + 0 pts Totally wrong or empty

- + 8 pts 8.1. Correct
- + 6 pts 8.1. One minor mistake
- → + 4 pts 8.1. Two minor mistakes or one major mistake
 - + 2 pts 8.1. Some reasonable effort
 - + 0 pts 8.1. Totally wrong or empty
 - + 8 pts 8.2. Correct
 - + 6 pts 8.2. One minor mistake
 - + **4 pts** 8.2. Two minor mistakes or one major mistake
- → + 2 pts 8.2. Some reasonable effort
 - + 0 pts 8.2. Totally wrong or empty

- + 10 pts Correct
- + 8 pts Almost correct (no generalization)
- + 6 pts True with a correct (3-gate) but non-generalizable counterexample
- + **4 pts** True with a wrong counterexample
- + 2 pts True (only)
- → + 2 pts False with some reasonable effort
 - + **0 pts** Totally wrong or empty
 - 2 pts A minor mistake (check comments below)

- + 10 pts Correct
- → * 8 pts Almost correct (show a correct counterexcample and the understanding of PI/EPI but consider "<=" instead of "<")
 </p>
 - + 6 pts False with some reasonable effort
 - + 4 pts True with a good direction
 - + 2 pts True with some reasonable effort
 - + 2 pts False with a totally wrong counterexample
 - + 0 pts Totally wrong or empty

CSIE 2344, Spring 2023: Midterm

Name: 遊憶化 SID: 811902038 Email: 611902038@csie.ntu.edu.tw

1 Boolean Algebra (8pts)

Prove
$$A(B \oplus C) = (AB) \oplus (AC)$$
, where \oplus is XOR.

$$A(B \oplus C) = A(B'C + BC') = (AC)(AB)' + (AB)(AC)'$$

$$= AB'C + ABC' = (AB) \oplus (AC)$$

$$= A'AC + AB'C + A'AB + ABC'$$

$$= AC(A'+B') + AB(A'+C')$$

$$\emptyset \in D$$

2 Full Subtracter (8pts)

A parallel subtracter for (X - Y) is shown below. A full subtracter has three inputs X_i, Y_i, B_i and two outputs D_i, B_{i+1} . Complete the following truth table. No explanation is required.

3 Karnaugh Maps (16pts)

Given a Boolean function $F(A,B,C,D) = \sum m(9,11,12,13) + \sum d(1,3,4,5,14).$

 (8pts) Find a minimum sum-of-products expression for F. Only the Karnaugh Map and the final expression are required.

DAB	00	01	П	. 10	
00	0	X	1	0	
01	$\overline{\times}$	X		$\prod_{i=1}^{n}$	
11	X	0	0	L	
10	0	0	Х	0	

2. (8pts) Find a minimum product-of-sums expression for F. Only the Karnaugh Map and the final expression are required. \searrow A8

A:
$$F = (B' + C')(B + D)$$

4 Quine-McCluskey Method (8pts)

Given all prime implicants (PIs) in the following table, list the labels of the selected prime implicants (PIs) for a minimum sum-of-products expression. No explanation is required.

Label	PI	0	4	8	10	12	16	17	21	23	26	30	31
(#1)	(0,4,8,12)	(x)	(X)	(x)	. 7.	(%)		1	1-			14	,
#2	(0,16)	*				1	×						П
(#3)	(10,26)				(*)						(×)		
(#4)	(16,17)				M		(x	(x)			1		
#5	(17,21)							×	×	1			
(#6)	(21,23)		1						×	X)			
#7	(23,31)									×			×
#8	(26,30)										×	×	
(#9)	(30,31)			1		- 1	1					*	×

A: #1 #3 #4 #6 #9

5 Boolean Functions (8pts)

Given a Boolean function F(A,B), where F(0,0)=0, list the minimum sum-of-products expressions for all possible Boolean functions F(A,B). No explanation is required.

6 Two-Level Circuit Conversion (8pts)

Draw the following four different two-level gate circuits to realize F(A,B,C)=A(B+C). No explanation is required.

1. (2pts) OR-AND	2. (2pts) NOR-NOR
: Dr.	:DOZDOF
A—TOF	A' — 4. (2pts) AND-NOR
3. (2pts) NAND-AND	4. (2pts) AND-NOR
A—D—F	A'F

7 Multi-Level Circuit Conversion (8pts)

Convert the following circuit directly (not from a Karnaugh Map) to a four-level circuit containing only NAND gates (NOT gates are not allowed) and circuit inputs A, B, C, D (A', B', C', D' are not allowed as circuit inputs). The number of NAND gates should be 8. No explanation is required.

8 Static Hazards (16pts)

Given a Boolean function F(A, B, C, D) = (B' + C + D)(B' + C + D')(A + B + D).

 (8pts) Find a minimum product-of-sums expression for F, where the corresponding gate circuit has no static-0 hazard. Only the Karnaugh Map and the final expression are required.

			CDAB
вв'с	DD'A		00
BB'D	DD'B	DD'B'	ol
вВ'D'	DD'C		
		7	- 11
F'= A'C'D' +	A'B'D	+ BC	10

A
$$F = (A+C+D)(B'+C+D)(B'+C+D')(A+B'+C)(A'+B'+C)(A+B+D)$$

 (8pts) Find a minimum product-of-sums expression for F, where the corresponding gate circuit has no static-1 hazard. Only the Karmaugh Map and the final expression are required.

9 Dynamic Hazards (10pts)

In the examples of dynamic hazards in the lecture and the discussion, there are three changes of the circuit output. Here, we are considering 2n+1 changes of the circuit output.

Assumptions:

- · There is only one circuit input.
- There is only one circuit output.
- There are only four types of gates: {NOT, AND, OR, XOR}.
- A NOT gate has exactly one gate input.
- . An AND gate, an OR gate, or an XOR gate has exactly two gate inputs.
- · All gates have the same positive propagation delay.

<u>Statement</u>: Given the assumptions, it is possible to use only 2n+1 gates to let one change of the circuit input results in 2n+1 changes of the circuit output.

Answer if the statement is True or False and then draw a corresponding gate circuit (if True) or prove it (if False).

False

10 Prime Implicants and Essential Prime Implicants (10pts)

The size of an implicant is defined as the number of minterms covered by the implicant. For example, given a Boolean function F(A, B, C, D) = ABCD + A'B'C', the size of ABCD is 1, and the size of A'B'C' is 2.

Also, the total-size of a function is defined as the summation of the sizes of all prime implicants of the function. For example, given a Boolean function F(A, B, C, D) = ABCD + A'B'C', the total-size of F is 3.

Statement: given a Boolean function F(A, B, C, D), if all of its prime implicants are essential prime implicants, then the total-size of F is smaller than 32.

Answer if the statement is True or False and then prove it (if True) or find a counterexample (if False).

True.

The max size of an implicant is 8, such implicant one A.A', B, B', C, C', D, D'

Since A+A'=1 can be ingnore,

the max total-size of F(A,B,C,D) happoned when F = (A/A') + (B/B') + (C/C') + (D/D') and it's 32.

so the statement is true.

