1100. Final Standings

Time Limit: 1.0 second Memory Limit: 16 MB

Old contest software uses bubble sort for generating final standings. But now, there are too many teams and that software works too slow. You are asked to write a program, which generates exactly the same final standings as old software, but fast.

Input

The first line of input contains only integer $1 < N \le 150000$ — number of teams. Each of the next N lines contains two integers $1 \le ID \le 10^7$ and $0 \le M \le 100$. ID — unique number of team, M — number of solved problems.

Output

Output should contain N lines with two integers ID and M on each. Lines should be sorted by M in descending order using bubble sort (or analog).

Sample

input	output					
8	3 5					
1 2	26 4					
16 3	ZZ 4					
11 2 20 3 3 5	16 3					
20 3	20 3					
3 5	1 2					
26 4	11 2					
7 1	7 1					
22 4						

Hint

Bubble sort			works			followin	way:			
while	(exists	A[i]	and	A[i+1]	such	as	A[i]	<	A[i+1])	do
Swap(A[i], A[i+1]);										

Problem Author: Pavel Atnashev