Lecture 7: Eigenvalue problem

School of Mathematical Sciences, Xiamen University

1. Eigenvalues

• The eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ are the m roots of its characteristic polynomial

$$p(z) = \det(z\mathbf{I} - \mathbf{A}).$$

• We have

$$\det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_m, \quad \operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 + \cdots + \lambda_m.$$

Theorem 1 (Gerschgorin's theorem)

Every eigenvalue of **A** lies in at least one of the m circular disks in the complex plane with centers a_{ii} and radii $\sum_{j\neq i} |a_{ij}|$. Moreover, if n of these disks form a connected domain that is disjoint from the other m-n disks, then there are precisely n eigenvalues of **A** within this domain.

The proof is left as an exercise.

Theorem 2

Eigenvalues of A are continuous functions of entries of A.

Proof.

See Demmel's book: Proposition 4.4, Page 149, Applied numerical linear algebra.

Remark 3

Eigenvalues of A are not necessarily differentiable everywhere.

Example: Consider the $m \times m$ matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ \varepsilon & & & & 0 \end{bmatrix}. \quad \lambda_j(\varepsilon) = \varepsilon^{\frac{1}{m}} \exp\left(\frac{\mathrm{i}2j\pi}{m}\right).$$

2. Eigenvectors

- A nonzero vector $\mathbf{y} \in \mathbb{C}^m$ is called a *left eigenvector* of $\mathbf{A} \in \mathbb{C}^{m \times m}$ corresponding to $\lambda \in \Lambda(\mathbf{A})$ if $\mathbf{y}^* \mathbf{A} = \lambda \mathbf{y}^*$.
- A nonzero vector $\mathbf{x} \in \mathbb{C}^m$ is called a (right) eigenvector of $\mathbf{A} \in \mathbb{C}^{m \times m}$ corresponding to $\lambda \in \Lambda(\mathbf{A})$ if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Theorem 4

If $\mathbf{A} \in \mathbb{C}^{m \times m}$ and if $\lambda, \mu \in \Lambda(\mathbf{A})$, with $\lambda \neq \mu$, then any left eigenvector of \mathbf{A} corresponding to μ is orthogonal to any right eigenvector of \mathbf{A} corresponding to λ .

Proof.

Let $\mathbf{y}^* \mathbf{A} = \mu \mathbf{y}^*$ and $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$. We have

$$\mathbf{y}^* \mathbf{A} \mathbf{x} = \mathbf{y}^* (\lambda \mathbf{x}) = \lambda (\mathbf{y}^* \mathbf{x}), \quad \mathbf{y}^* \mathbf{A} \mathbf{x} = (\mu \mathbf{y}^*) \mathbf{x} = \mu (\mathbf{y}^* \mathbf{x}).$$

Then, $\mathbf{y}^*\mathbf{x} = 0$ follows from $\lambda \neq \mu$.

3. Geometric multiplicity and algebraic multiplicity

- The geometric multiplicity of an eigenvalue λ is the dimension of the null-space of $\mathbf{A} \lambda \mathbf{I}$, which is an eigenspace corresponding to the eigenvalue λ .
- The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial. The algebraic multiplicity of an eigenvalue is at least as great as its geometric multiplicity.
- An eigenvalue is *simple* if its algebraic multiplicity is 1. Otherwise, *multiple*.

Remark 5

Simple eigenvalue of **A** is differential at $\mathbf{A} \in \mathbb{C}^{m \times m}$.

Theorem 6

An eigenvalue is multiple if and only if it has a pair of orthogonal left and right eigenvectors.

The proof is left as an exercise.

4. Jordan form

Theorem 7

For any square matrix **A** there exists a similar matrix $\mathbf{J} = \mathbf{S}\mathbf{A}\mathbf{S}^{-1}$ such that

$$\mathbf{J} = \operatorname{diag}\{\mathbf{J}_1, \mathbf{J}_2, \cdots, \mathbf{J}_k\}$$

where each
$$\mathbf{J}_i$$
 is a Jordan block: $\mathbf{J}_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_i & 1 \\ & & & & \lambda_i \end{bmatrix}$.

- Up to permuting the order of the J_i , the Jordan form is unique.
- Up to a nonzero constant, there are only one left eigenvector and one right eigenvector per J_i .
- Discussion: How to determine the rank of A via its Jordan form?

 Jordan form is a discontinuous function of A, so any rounding error can change it completely. Therefore, Jordan form is theoretically useful only.

Example: Consider the matrix

$$\mathbf{A}(\varepsilon) = \begin{bmatrix} \varepsilon & 1 & & \\ & 2\varepsilon & \ddots & \\ & & \ddots & 1 \\ & & & m\varepsilon \end{bmatrix}.$$

It is easy to show that

$$\lim_{\varepsilon \to 0} \mathbf{J}(\mathbf{A}(\varepsilon)) \neq \mathbf{J}(\mathbf{A}(0)) = \begin{vmatrix} 0 & 1 \\ & 0 & \ddots \\ & & \ddots & 1 \\ & & & 0 \end{vmatrix}.$$

5. Schur form

Theorem 8 (Schur factorization)

If $\mathbf{A} \in \mathbb{C}^{m \times m}$, then there exists a unitary matrix $\mathbf{Q} \in \mathbb{C}^{m \times m}$ and an upper-triangular matrix $\mathbf{T} \in \mathbb{C}^{m \times m}$ such that $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$.

Proof. By induction on the dimension m of \mathbf{A} .

Remark 9

See Demmel's book (Applied numerical linear algebra, Theorem 4.3, Page 147) for real Schur form of a real matrix A.

Exercise: Let $\lambda_1, \dots, \lambda_m$ be the *m* eigenvalues of $\mathbf{A} \in \mathbb{C}^{m \times m}$. Let

$$\mathbf{M} = \frac{\mathbf{A} + \mathbf{A}^*}{2}, \quad \mathbf{N} = \frac{\mathbf{A} - \mathbf{A}^*}{2}.$$

Prove that

$$\sum_{i=1}^{m} |\lambda_i|^2 \le \|\mathbf{A}\|_{\mathrm{F}}^2, \quad \sum_{i=1}^{m} |\mathrm{Re}\lambda_i|^2 \le \|\mathbf{M}\|_{\mathrm{F}}^2, \quad \sum_{i=1}^{m} |\mathrm{Im}\lambda_i|^2 \le \|\mathbf{N}\|_{\mathrm{F}}^2.$$

• Let $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ be a Schur factorization. If $\{\lambda, \mathbf{x}\}$ is an eigenpair of \mathbf{T} , then $\{\lambda, \mathbf{Q}\mathbf{x}\}$ is an eigenpair of \mathbf{A} .

6. Unitary diagonalization

- A matrix **A** is called *unitarily diagonalizable* if there exists a unitary matrix **Q** and a diagonal matrix Λ such that $\mathbf{A} = \mathbf{Q}\Lambda\mathbf{Q}^*$. Examples: Hermitian, skew-Hermitian, ...
- A matrix **A** is called *normal* if $\mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^*$. Examples: Hermitian, skew-Hermitian, ...

Theorem 10

A matrix is unitarily diagonalizable if and only if it is normal.

Proof.

" \Rightarrow ": Easy. " \Leftarrow " By Schur factorization of **A**.

7. Eigenvalue perturbation theory

Theorem 11 (Bauer–Fike)

Suppose $\mathbf{A} \in \mathbb{C}^{m \times m}$ is diagonalizable with $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$, and let $\mathbf{\Delta} \in \mathbb{C}^{m \times m}$ be arbitrary. For each eigenvalue $\widehat{\lambda}$ of $\mathbf{A} + \mathbf{\Delta}$, there exists an eigenvalue λ of \mathbf{A} such that

$$|\widehat{\lambda} - \lambda| \le \|\mathbf{V}\|_2 \|\mathbf{V}^{-1}\|_2 \|\mathbf{\Delta}\|_2.$$

Proof. Assume that $\{\lambda, \mathbf{V}\mathbf{y}\}\$ is an eigenpair of $\mathbf{A} + \boldsymbol{\Delta}$. Then we have

$$(\widehat{\lambda}\mathbf{I} - \mathbf{\Lambda})\mathbf{y} = \mathbf{V}^{-1}\mathbf{\Delta}\mathbf{V}\mathbf{y}.$$

Thus,
$$\min_{\lambda \in \Lambda(\mathbf{A})} |\widehat{\lambda} - \lambda| \le \frac{\|(\widehat{\lambda}\mathbf{I} - \mathbf{\Lambda})\mathbf{y}\|_2}{\|\mathbf{y}\|_2} \le \|\mathbf{V}\|_2 \|\mathbf{V}^{-1}\|_2 \|\mathbf{\Delta}\|_2. \quad \Box$$

Corollary 12

If **A** is normal, i.e., $\mathbf{A}\mathbf{A}^* = \mathbf{A}^*\mathbf{A}$, then for each eigenvalue $\widehat{\lambda}$ of $\mathbf{A} + \mathbf{\Delta}$, there is an eigenvalue λ of **A** such that $|\widehat{\lambda} - \lambda| \leq ||\mathbf{\Delta}||_2$.

8. Hermitian matrix eigenvalues

Theorem 13 (Courant–Fisher)

If $\mathbf{A} \in \mathbb{C}^{m \times m}$ is Hermitian, then the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ satisfy

$$\lambda_k = \max_{S \subseteq \mathbb{C}^m, \dim(S) = k} \min_{\mathbf{0} \neq \mathbf{y} \in S} \frac{\mathbf{y}^* \mathbf{A} \mathbf{y}}{\mathbf{y}^* \mathbf{y}}$$
$$= \min_{S \subseteq \mathbb{C}^m, \dim(S) = m - k + 1} \max_{\mathbf{0} \neq \mathbf{y} \in S} \frac{\mathbf{y}^* \mathbf{A} \mathbf{y}}{\mathbf{y}^* \mathbf{y}},$$

for k = 1, 2, ..., m.

Theorem 14 (Interlacing property)

If $\mathbf{A} \in \mathbb{C}^{m \times m}$ is Hermitian and $\mathbf{A}_k = \mathbf{A}(1:k,1:k)$, then

$$\lambda_{k+1}(\mathbf{A}_{k+1}) \le \lambda_k(\mathbf{A}_k) \le \lambda_k(\mathbf{A}_{k+1}) \le \dots \le \lambda_2(\mathbf{A}_{k+1}) \le \lambda_1(\mathbf{A}_k) \le \lambda_1(\mathbf{A}_{k+1})$$

for k = 1 : m - 1.

Theorem 15 (Weyl)

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ and $\mathbf{B} \in \mathbb{C}^{m \times m}$ be Hermitian. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ be eigenvalues. Then

$$|\lambda_k(\mathbf{A}) - \lambda_k(\mathbf{B})| \le ||\mathbf{A} - \mathbf{B}||_2, \quad k = 1, 2, \dots, m.$$

Corollary 16

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{B} \in \mathbb{C}^{m \times n}$ be arbitrary. Let $p = \min\{m, n\}$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$ be singular values. Then

$$|\sigma_k(\mathbf{A}) - \sigma_k(\mathbf{B})| \le ||\mathbf{A} - \mathbf{B}||_2, \quad k = 1, 2, \dots, p.$$

Theorem 17

Let $\mathbf{A} \in \mathbb{C}^{l \times m}$ and $\mathbf{B} \in \mathbb{C}^{m \times n}$ be arbitrary. Let $p = \min\{l, m, n\}$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$ be singular values. Then

$$\sigma_k(\mathbf{AB}) \leq \sigma_1(\mathbf{A})\sigma_k(\mathbf{B}), \quad k = 1, 2, \dots, p.$$

9. Generalized eigenvalue problem

- For $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times m}$, $\{\lambda, \mathbf{x}\}$ is called an eigenpair if $\{\lambda, \mathbf{x}\}$ satisfies $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$.
- If **A** and **B** are square and $det(\mathbf{A} \lambda \mathbf{B})$ is not identically zero, the pencil $\mathbf{A} \lambda \mathbf{B}$ is called *regular*. Otherwise it is called *singular*.
- When $\mathbf{A} \lambda \mathbf{B}$ is regular, $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{B})$ is called the characteristic polynomial of the pencil $\mathbf{A} \lambda \mathbf{B}$ and the eigenvalues of the pencil $\mathbf{A} \lambda \mathbf{B}$ are defined to be
 - (1) the roots of $p(\lambda) = 0$,
 - (2) ∞ (with multiplicity $m \deg(p)$) if $\deg(p) < m$.
- Generalized Schur factorization for (A, B):

$$\mathbf{Q}^* \mathbf{A} \mathbf{Z} = \mathbf{S}, \quad \mathbf{Q}^* \mathbf{B} \mathbf{Z} = \mathbf{T},$$

where \mathbf{Q} and \mathbf{Z} are unitary, and \mathbf{S} and \mathbf{T} are upper-triangular.

- Real generalized Schur forms for real matrices A and B.
- QZ algorithm for generalized eigenvalue problem.

10. Matrix polynomial eigenvalue problem

• We consider the matrix polynomial

$$\mathbf{A}(\lambda) := \sum_{i=0}^{d} \lambda^i \mathbf{A}_i = \lambda^d \mathbf{A}_d + \lambda^{d-1} \mathbf{A}_{d-1} + \dots + \lambda \mathbf{A}_1 + \mathbf{A}_0,$$

where $\mathbf{A}_i \in \mathbb{C}^{m \times m}$.

• The characteristic polynomial of the matrix polynomial $\mathbf{A}(\lambda)$ is

$$p(\lambda) = \det(\mathbf{A}(\lambda)).$$

The roots of $p(\lambda) = 0$ are defined to be the eigenvalues. (How many eigenvalues? Discuss based on whether the matrix \mathbf{A}_d is singular.)

• Suppose that γ is an eigenvalue. A nonzero vector \mathbf{x} satisfying $\mathbf{A}(\gamma)\mathbf{x} = \mathbf{0}$ is a right eigenvector for γ . A left eigenvector \mathbf{y} is defined analogously by $\mathbf{y}^*\mathbf{A}(\gamma) = \mathbf{0}$.

• Linearize the matrix polynomial to get the generalized eigenvalue problem:

$$egin{bmatrix} -\mathbf{A}_{d-1} & -\mathbf{A}_{d-2} & \cdots & \cdots & -\mathbf{A}_0 \ \mathbf{I} & \mathbf{I} & & & & & & \\ & \mathbf{I} & & & & & & \\ & & \mathbf{I} & & & & & \\ & & & \ddots & & & & \\ & & & & \mathbf{I} & & \end{bmatrix} - \lambda egin{bmatrix} \mathbf{A}_d & & & & & \\ & \mathbf{I} & & & & \\ & & & \mathbf{I} & & \\ & & & \ddots & & \\ & & & & & \mathbf{I} \end{bmatrix}$$

• Linearize the matrix polynomial to get the standard eigenvalue problem if \mathbf{A}_d is nonsingular:

$$egin{bmatrix} -\mathbf{A}_d^{-1}\mathbf{A}_{d-1} & -\mathbf{A}_d^{-1}\mathbf{A}_{d-2} & \cdots & \cdots & -\mathbf{A}_d^{-1}\mathbf{A}_0 \ \mathbf{I} & & & & & \\ & & \mathbf{I} & & & & \\ & & & \ddots & & & \\ & & & & \mathbf{I} & & \end{pmatrix} - \lambda \mathbf{I}$$

10.1. The quadratic eigenvalue problem

• F. Tisseur and K. Meerbergen, SIAM Review, 43: 235–286, 2001. Consider the ODE system

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{B}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{0},$$

where $\mathbf{M}, \mathbf{B}, \mathbf{K} \in \mathbb{C}^{m \times m}$. If we seek solutions of the form $\mathbf{x}(t) = e^{\gamma t} \mathbf{x}(0)$, we get

$$e^{\gamma t}(\gamma^2 \mathbf{M} \mathbf{x}(0) + \gamma \mathbf{B} \mathbf{x}(0) + \mathbf{K} \mathbf{x}(0)) = \mathbf{0},$$

i.e.,

$$\gamma^2 \mathbf{M} \mathbf{x}(0) + \gamma \mathbf{B} \mathbf{x}(0) + \mathbf{K} \mathbf{x}(0) = \mathbf{0}.$$

Thus γ is an eigenvalue and $\mathbf{x}(0)$ is an eigenvector of the matrix polynomial

$$\lambda^2 \mathbf{M} + \lambda \mathbf{B} + \mathbf{K}.$$

• Tacoma Narrows Bridge, London Millennium Bridge, Humen Bridge