

CONTROL SYSTEMS

Karpagavalli S.

Department of Electronics and Communication Engineering

UNIT 5: STABILITY IN THE FREQUENCY DOMAIN

Introduction

Karpagavalli S.

Department of Electronics and Communication Engineering

Introduction

- The major advantage of Polar Plot lies in stability study of systems
- Harry Nyquist related the stability of a dynamical system to these plots (1932 at Bell Labs)
- His work on Polar plots (applied to stability of systems) are called as Nyquist
 Plots

Introduction

- Given open loop frequency response , Nyquist Plots determines closed loop system stability
- For a given continuous closed path in the s-plane that does not go through the singular points, there corresponds a closed curve in the F(s) plane.

Introduction

- Number and direction of encirclements plays an important role in the stability of the system.
- For each point in the s-plane , there corresponds a point in the F(s) plane. i.e., for $s = \sigma + j\omega$, there would be F(s) = u + jv in F(s) plane. This is called mapping.

UNIT 5: STABILITY IN THE FREQUENCY DOMAIN

Mapping of Contours in s - plane

Karpagavalli S.

Department of Electronics and Communication Engineering

Mapping of Contours in s - plane

PES UNIVERSITY ONLINE

- A contour map is a contour or trajectory in one plane mapped or translated into another plane by a relation F(s).
- For example, F(s) = 2s + 1 $S = 6 + j \omega, \quad F(s) = a(6 + j \omega) + l$ $= 26 + j + j 2 \omega$
- This type of mapping, which retains the angles of the s-plane contour on the F(s)plane is called conformal mapping.

$$G = \{1, \frac{1}{2} = 1\}$$
 $A = \{1 + \frac{1}{2}\}$
 $F(S) = 3 + 2\frac{1}{2}$
 $F(S) = 3 + 2\frac{1}{2}$
 $F(S) = 3$
 $F(S) = 3 - 2\frac{1}{2}$
 $F(S) = -1 - 2\frac{1}{2}$
 $F(S) = -1 + 2\frac{1}{2}$

Mapping of Contours in s - plane

For example,
$$F(s) = \frac{s}{s+2}$$

$$F(s) = (\sigma + j w) (\sigma + 2 - j w)$$

$$(\sigma + 2)^{2} + w^{2}$$

$$= \frac{(^{2}+w^{2}+1)^{2}+w^{2}}{(^{2}+2)^{2}+w^{2}} + \frac{1}{(^{2}+2)^{2}+w^{2}}$$

Mapping of Contours in s - plane

Cauchy's Theorem(Principle of Argument)

If a contour Γ_S in the s- plane encircles z zeros and p poles of F(s) and does not pass through any pole or zero of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour Γ_F in the F(s) plane encircles the origin of the F(s) – plane N = Z – P times in the clockwise direction

$$F(s) = \frac{s}{s + 1/2}$$

$$P = 1$$

$$N = 1 - 1 = 0$$

Mapping of Contours in s - plane

$$2 = 3$$
 $P = 1$
 $N = 2 - p$
 $= 3 - 1$

Mapping of Contours in s - plane

Different closed contours in s – plane gives rise to different closed curves in F(s) – plane.

Mapping of Contours in s - plane

Different closed contours in s – plane gives rise to different closed curves in F(s) – plane.

UNIT 4: STABILITY IN THE FREQUENCY DOMAIN

Nyquist Stability Criterion

Karpagavalli S.

Department of Electronics and Communication Engineering

Nyquist Stability Criterion

The Nyquist path encloses the entire RHS plane and encloses all the zeros and poles of 1 + G(s)H(s) that have positive real parts.

In general,
$$G_1(S)H(S) = K(S+Z_1)(S+Z_2)---(S+Z_m)$$
 _ () $(S+P_1)(S+P_2)---(S+P_n)$

C.E,
$$F(s) = |+ (\eta(s) H(s) = 0)$$

= $|+ (s+z_1)(s+z_2) \cdot - \cdot (s+z_m)| = 0$
 $(s+R)(s+P_2) \cdot - \cdot (s+P_n)$
 $(s+P_1)(s+P_2) \cdot - \cdot (s+z_m)| = 0$ (2)
 $(s+P_1)(s+P_2) \cdot - \cdot (s+z_m)| = 0$

Nyquist contour

Nyquist Stability Criterion

$$G(s) H(s) = \frac{S+1}{(S+2)(S-1)}$$

Comparing equations 1 & 2,

- we observe that the poles of F(s) and poles of G(s)H(s) are same.
- The zeros of F(s) are the roots of characteristic equation.
- For the system to be stable, the roots of the characteristic equation must lie in the LHS plane. i.e., zeros of F(s) must lie in the LHS plane.
- The number of RH plane zeros of F(s) is equal to the number of poles 1+G(s)H(s) in the RH plus the number of encirclements of the origin of the F(s) plane. N=2-P

N=2-P
NO-OF
Z=N+P_>^poles of GLOPHUS) which lie in RHS of s-plane
Tunstable poles

Nyquist Stability Criterion

$$F(s)=1+L(s) => L(s) = F(s) - 1 = F'(s)$$

GH. Plane

always mapping is between s-plane to GH plane instead of F=1+67H plane

- A feedback system is stable if and only if the contour Γ_L in the L(s) plane does not encircle the (-1, 0) point when the number of poles of L(s) in the right hand s-plane is zero(P = 0)
- A feedback control system is stable if and only if, for the contour Γ_L , the number of encirclement of the (-1,0) point is equal to the number of poles of L(s) with positive real parts.
- The basis for the 2 statements lies in the following expression
- Z = N + P

Example,
$$L(s) = \frac{K}{(s+1)(0.1s+1)}$$

$$L(j\omega) = \frac{k}{(j\omega+1)(0-1j\omega+1)}$$
Let $K=100$

$$|L[[\omega]] = \frac{100}{[\omega^2 + 1] (\omega \cdot (\omega)^2 + 1)}$$

$$L(Jw) = \frac{100 (1-jw)(1-0.1 \sqrt{w})}{(w^2+1)((0.1 \sqrt{w})+1)}$$

$$= \frac{100(1-0.1 M^2) - i(100 \times 1.1 M)}{(M^2 + 1)(0.01 M^2 + 1)}$$

$$L(s) = \lim_{R \to \infty} \frac{100}{(1 + Re^{i\phi})(0 - 1Re^{i\phi} + 1)} = \lim_{R \to \infty} \frac{100}{Re^{i\phi} \times 0 - 1Re^{i\phi}} = \lim_{R \to \infty} \frac{100}{0 - 1Re^{i\phi}}$$

$$= 0, e^{-i2\phi}$$

path de,
$$S = -j\omega$$
, $\omega = -00$ 50
mirror image of path ab

$$C_{21}$$
 $S = Re^{i\theta}$, $R \to \infty$

Nyquist Stability Criterion – Example 2

Nyquist Stability Criterion

for path ab

Nyquist Stability Criterion – Example 3

fx3, G(s) =
$$\frac{K}{s^2(zs+1)}$$

sol: path ab, $s = jw$, $K = 1$, $\ell = 1$
 $|G(jw)| = \frac{1}{w^2 \sqrt{w^2 + 1}}$
 $|G(jw)| = \frac{1}{-w^2(jw+1)} \times \frac{1-jw}{(1-jw)}$
 $= \frac{1}{-1+jw}$

W	[62(Ja)]	(4(h)	الاه دلالم)	رسه (۱۹۲۸)
٥	∞	-180		
1	4-707	- 225°		
2	0.11	-243		
ø	٥	– २ २ ७°		•
puth	6cd, <u>c</u> =	Response	φ ⇒ 90° -	6 1º
GLS) = lin [Reit) (Reit+1)				
	= livs RTO	R3 e355	β = D € , - 2	176 - 0 - 27

$$N = 2$$

$$P = 0$$

$$Z = 2+0 = 2$$

$$\Rightarrow \therefore \text{ system is unstable}$$

Polar plot for different type of systems

$$G_1(s) = \frac{k}{Z_{s+1}}$$

$$G(S) = \frac{k}{Z_{S+1}}$$

$$M = k$$

$$M = D$$

$$D = -90$$

$$G(\zeta) = \frac{1}{(\zeta_1 S_{71})(\zeta_2 S_{71})} \qquad M = K$$

$$\phi = 0$$

Polar plot for different type of systems

$$\omega_{=0}$$
 $\omega = \infty$

Order

$$M = \infty$$

 $M = \omega \qquad M = 0$ $\emptyset = -90^{\circ} \qquad \emptyset = -70^{\circ}$

$$M = \infty$$

(3)
$$K = \infty \qquad M = 0$$

$$S(Z_1S+1)(Z_2S+1) \qquad \not p = -90 \qquad \not p = -270$$

Polar Plat

$$(4)$$
 (73571) (73571) (73571) (73571) (73571)

Nyquist Stability Criterion

Example,
$$G_7(S) = \frac{k_1}{s(s-1)}$$

$$G_{7}(jw) = \frac{k_{1}}{jw(jw-1)} \times \frac{-w^{2}+jw}{-w^{2}+jw}$$

$$= \frac{-K_1\omega^2 + \frac{1}{6}K_1\omega}{\omega^4 + \omega^2} - \frac{-K_1\omega^2}{\omega^4 + \omega^2} + \frac{1}{6}\frac{K_1\omega}{\omega^4 + \omega^2}$$

$$|G(j\omega)| = \frac{K_1}{\omega \sqrt{\omega^2 + 1}}, \quad |G(j\omega)| = -90 - t\omega n^2 \omega = -90 - (\kappa - t\omega n^2 \omega)$$

$$= -90 - (\kappa - t\omega n^2 \omega)$$

$$= -30 - (\kappa - t\omega n^2 \omega)$$

Nyquist

(a) path bold,
$$S = Re^{j\theta}$$
 $O \Rightarrow 9iboi = -9i$
 $R \Rightarrow \infty$

$$G(S) = \lim_{R \to \infty} \frac{K_1}{R \Rightarrow \infty} = \lim_{R \to \infty} \frac{K_1}{R^2 e^{j2} e^{j2}}$$
 $= 0 e^{j\theta} (Re^{j\theta} - 1) \xrightarrow{R \Rightarrow \infty} \frac{K_2}{R^2 e^{j2} e^{j2}}$
 $= 0 e^{j\theta} - 0$
 $= 0$, $-2(9i)$ $= 0$

Nyquist Stability Criterion

- (3) path de, $S=-j\omega$ mirror image of polar plot obtained for path ab
- ④ path efa, S= re^{ff} / Ø=> -90 to 6 to 90

$$G(S) = \lim_{r \to 0} \frac{k_1}{re^{i\phi}} = \lim_{r \to 0} \frac{k_1}{re^{i\phi} \cdot e^{i\phi}}$$

check whether system is stable

N=1, P=1,
Z=1+1=2,
2 CL poles
on RHS
implies that
system is
unstable
-qr+lsv

UNIT 5: STABILITY IN THE FREQUENCY DOMAIN

Relative stability and Nyquist Criterion

Karpagavalli S.

Department of Electronics and Communication Engineering

Relative stability & Nyquist Stability Criterion

Gain Margin: GM is the reciprocal of the magnitude $|G(j\omega)|$ at the frequency at which phase angle is -180.

GM in dB =
$$20 \log \frac{1}{|G(j\omega)|} = -20 \log_{10} |G(j\omega)|$$

Where $K_g = |G(j\omega)|$

The GM in dB is +ve if $K_g > 1$

The GM in dB is -ve if $K_g < 1$

Phase cross over frequency(PCF), ω_{pc} : frequency at which phase angle of open loop transfer function equals - 180.

Relative stability & Nyquist Stability Criterion

Phase Margin: PM is the amount of additional phase lag at the gain cross over frequency required to bring the system to the verge of instability.

$$PM = 180 + \phi$$

Where
$$\phi = angle\{G(j\omega)\}|_{\omega = \omega_{gc}}$$

Gain cross over frequency(GCF), ω_{gc} : frequency at which magnitude of open loop transfer function equals unity.

Relative Stability and Nyquist Stability Criterion

For example,
$$G(s) = \frac{1}{s(s+1)(s+0.5)}$$
 Find a) wgc , b) wpc c) $G(s) = \frac{1}{s(s+1)(s+0.5)}$

$$G(j_0) = \frac{1}{j_0(j_0 + 1)(j_0 + 1/2)}$$

$$G(i\omega) = -\frac{\omega^2}{2} - \omega^2 + j(\omega^3 - \omega_2)$$

$$(\omega^{4} + \omega^{2}) (\omega^{2} + \frac{1}{4})$$

$$|G(i\omega)| = \frac{1}{\omega \sqrt{\omega^{2} + 1}} \sqrt{\omega^{2} + 1/4}$$

For example,
$$G(s) = \frac{1}{s(s+1)(s+0.5)}$$

path de, $S = -jw$

mirror image of path ab

Path efa, $S = re^{j\Theta}$, $\theta = -je^{j\Theta} - 0 - 0 - 90$
 $G(s) = \lim_{r \to 0} \frac{1}{re^{j\Theta}(re^{j\Theta}+1)} (re^{j\Theta}+0.5)$
 $\lim_{r \to 0} \frac{1}{re^{j\Theta}(re^{j\Theta}+1)} (re^{j\Theta}+0.5)$
 $\lim_{r \to 0} \frac{1}{re^{j\Theta}(re^{j\Theta}+1)} (re^{j\Theta}+0.5)$
 $\lim_{r \to 0} \frac{1}{re^{j\Theta}(re^{j\Theta}+1)} (re^{j\Theta}+0.5)$

For example,
$$G(s) = \frac{1}{s(s+1)(s+0.5)}$$

To find wasc

$$|G(yw)|_{W=w_{ac}} = |G(yw)|_{W=c} = |G(yw)|_{W=c}$$

Relative Stability and Nyquist Stability Criterion

$$E_X$$
, $G_1H(S) = K(S_{a}+1)$

1 path ab, s-jw

$$\frac{(jw)^{2}}{(jw)^{2}} = \frac{k(jwz_{\alpha}+1)}{-jw^{2}} \times \frac{jw^{2}}{j\omega^{2}}$$

Relative Stability and Nyquist Stability Criterion

$$\infty$$

$$\alpha$$

凶

path esa,
$$S = re^{i\phi}$$
, $\phi \Rightarrow -9i \Rightarrow 0 \Rightarrow 9i$
 $G(S) = \frac{K(re^{i\phi}ta + 1)}{r^3} = \frac{K}{r^3} \cdot e^{i3i\phi}$
 $= \infty$, $\frac{-3(-9i)}{270i} \Rightarrow 0 \Rightarrow -3(9i)$
 $= 270i \Rightarrow (65i \Rightarrow 90i \Rightarrow 0) \Rightarrow -180i \Rightarrow -270i$

Relative Stability and Nyquist Stability Criterion

Example,
$$G_{1}(S) = \frac{K(S+4)}{(S-1)(S-2)}$$
 Find the range of $(S-1)(S-2)$ k for which the system is stable. Sol: path ab , $S = jw$

$$G_{1}(jw) = \frac{K(jw+4)}{(jw-1)(jw-2)}$$

$$= K(jw+4)(-jw-1)(-jw-2)$$

$$= K(jw+4)(-w^{2}+4)$$

$$= K(4+jw)(-w^{2}+3jw+2)$$

$$= K(4+jw)(-w^{2}+4)$$

$$= K(4+jw)(-w^{2}+4)$$

system is stuble.

$$= \frac{K(\kappa + j | 2w - 4w^{2} + 2jw - 3w^{2} - jw^{3})}{(w^{2} + 1)(w^{2} + 4)}$$

$$= \frac{K(\kappa - 7w^{2})}{(w^{2} + 1)(w^{2} + 4)} + \frac{j}{j} \frac{K(14w - w^{3})}{(w^{2} + 1)(w^{2} + 4)}$$

$$|G(i\omega)| = \frac{K\sqrt{\omega^2+16}}{4} \int_{0.00}^{0.00} |G(i\omega)| = +\omega n^{-1}\omega - (180 - +\omega n^{-1}\omega) - (180 - +\omega n^{-1}\omega)$$

(a) Path bed
$$S = Re^{i\theta}$$
, $R \to \infty$, $B \to 90 \to 00 \to -90$
 $(965) = \frac{k(Re^{i\theta} + 4)}{(Re^{i\theta} - 2)} = \frac{K}{R}e^{i\theta} = 0$, $(-90 \to 00) \to 90$

$$z = N + P$$

$$= -\lambda + 2$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$\frac{(W^{2}+1)(W^{2}+4)}{(W^{2}+4)} = 0 \Rightarrow 14W-W^{2} = 0$$

$$W^{2} = 14 = 0 \Rightarrow W = \sqrt{14} = W^{2}C$$

=)
$$K > \frac{1}{0.33}$$

 $K > 3.003$

To find
$$W_{gc}$$
, $|G_{G_{gi}}| = 1$

$$K \left[\frac{\omega_{jc}^2 + 1b}{\omega_{gc}^2 + 1} \right] = 1$$

$$|G_{gi}| = 1$$

let $k = 8$, $W_{gc} = 1$

Sub. W_{gc} in $|G_{gi}| = 4$

$$|G_{gi}| = 4$$

$$|G_{gi}| = 4$$

Example,
$$(\eta(s)) = \frac{K(1+2s)}{S(1+s+s^2)}$$
 Find the $S(1+s)(1+s+s^2)$ for which $S=0$, $S=0$

Relative Stability and Nyquist Stability Criterion

$$|G(j\omega)| = \frac{K\sqrt{1+4\omega^2}}{\omega\sqrt{1+\omega^2}\sqrt{1+\omega^4-\omega^2}}$$

1

$$N=0$$
, $P=0=$) $z=0$
=) system stable to $\times \times 0.86$

where it cuts the real and is
$$\lim_{n \to \infty} (\omega_{n}) = 0$$

$$Re((\eta L | w)) \Big|_{w = 1.168} = -k \cdot 3 w^{3}$$

$$\omega(1 + w^{2}) ((1 - w^{2})^{2} + w^{2}) \Big|_{w = 1.168} = -k \cdot 1.165$$

For the system to be stable,
$$N=0$$
 : $P=0$, ... -1<1.165 >-1

 $K \subset \frac{1}{1.165}$
 $0 \le K \le 0$

THANK YOU

Karpagavalli S.

Department of Electronics and Communication Engineering

karpagavallip@pes.edu

+91 80 2672 1983 Extn 753