

同花顺数据接口环境设置

修订时间: 2023.10.11

浙江核新同花顺网络信息股份有限公司

地址: 浙江省余杭区五常街道同顺街 18 号

邮编: 310023

电话: 952555

电子邮箱: myhexin@myhexin.com

官网: http://quantapi.10jqka.com.cn/

目录

1、	接口使用介绍	绍	3
	1-1、使用》		3
	1-2、资料 ̄	下载	3
	1-3、账号标	又限、数据量说明	5
	1-3-1、	账号权限说明	5
	1-3-2、	账号数据量说明	5
	1-4、超级6	命令客户端介绍	7
2、	SDK 接口环境	竟修复说明	9
	2-1、SDK 担	妾口 Windows 环境部署	9
	2-1-1、	Python	9
	2-1-2、	MATLAB	11
	2-1-3、	Java	12
	2-1-4、	R	13
	2-1-5、	VBA	14
	2-1-6、	C#	16
	2-1-7、	C++	17
	2-2、SDK 担	妾口 linux 环境部署	18
	2-2-1、	Python	19
	2-2-2、	Java	20
	2-2-3、	C++	21
3、	HTTP 接口使	·用说明	23
	3-1、HTTP	接口说明	23
		refresh token 与 access token 说明	
	3-2、Postm	nan 等工具使用 HTTP 接口	24
	3-2-1、	获取 access token	24
	3-2-2、	获取数据	25
	3-3、Pytho	n 等语言环境使用 HTTP 接口	26
	3-3-1、	获取 access token	26
	3-3-2、	获取数据	26

1、接口使用介绍

1-1、使用流程介绍

- 1) 阅读官网说明手册、示例及数据量计算等规则
- 2) 下载 Windows SDK 安装包登录超级命令并生成取数命令
- 3) 环境初始化设置
- 4) 开发环境使用数据接口账号登录
- 5) 开发环境通过取数命令执行提取数据

1-2、资料下载

1) SDK 接口安装包下载:

http://quantapi.10jqka.com.cn/?page=home

2) SDK 接口与 HTTP 接口说明文档下载:

http://quantapi.10jqka.com.cn/?page=helpCenter

注:根据使用的编程语言下载对应说明,SDK接口: Python、MATLAB与 HTTP接口有单

独文档,其他语言下载 V2.0 版本统一说明文档。

3) 接口代码示例下载:

http://quantapi.10jqka.com.cn/?page=sample

1-3、账号权限、数据量说明

1-3-1、账号权限说明

函数名称	免费账号	试用账号	正式账号
高频序列函数	最近1年	最近1年	2010 年至今
实时行情函数	不限制	不限制	不限制
历史行情函数	最近5年	最近5年	证券上市至今
基础数据函数	最近5年	最近5年	证券上市至今
日期序列函数	最近5年	最近5年	证券上市至今
数据池函数	指定报表	不限制	不限制
专题报表函数	不限制	不限制	不限制
EDB 函数	不提供	最近5年	不限制
智能选股	不限制	不限制	不限制
组合管理	不限制	不限制	不限制
日内快照函数	最近1个月	最近3个月	2010 年至今
特色数据	不限制	不限制	不限制

注:日期序列中指数和板块起始日期和截止日期间隔不能超过 1 年,免费账号指拥有 ifind 产品账号的用户可以直接使用 ifind 账号登录接口。

1-3-2、账号数据量说明

1) 免费账号

同花顺数据接口环境设置

免费版数据接口				
	高频序列:150万/月			
行情数据	日内快照:200万/月			
1.」同類紅格	历史行情:100万/月			
	实时行情:300万/月			
	日期序列:60万/月			
基本面数据	基础数据:60万/月			
	数据池:600次/月			
特色数据	特色数据:2000/月			

说明:

- 1) 1条数据指1个EXCEL单元格,比如同花顺在20180515的收盘价会统计为1条数据;
- 2)数据统计会在每月1号的00:00进行数据清零;
- 3)免费版账号仅需要ifind账号即可登录,不需要申请试用;
- 4)日期序列与基础数据单次提取限制为1万单元格;
- 5)高频序列单次提取限制为5万单元格;
- 6)日内快照单次提取限制为10万单元格;
- 7)日内快照只支持上海证券交易所、深圳证券交易所、上海期货交易所、大连商品交易所;
- 8)历史行情单次提取限制为5万单元格;
- 9)数据池仅能调取:板块成分、指数成分、每日交易龙虎榜、十大成交活跃股、沪深港通成交统计、沪深港通当日余额;
- 10)特色数据目前包含:期股联动、形态预测、智能选股;其中提取限制为期股联动1000每月,形态预测1000每月,智能选股无限制;
- 11) 免费版公告函数上限为1万条

2) 试用账号

试用版数据接口						
行情数据:1.5亿/周						
高频序列函数	实时行情函数	历史行情函数				
日内快照						
基本面数据:500万条/周						
基础数据函数	日期序列函数	数据池函数				
宏观经济数据:5万/周						
EDB请求函数						
特色数据:1万/周						
1)1条数据指1个EXCEL单元格,比如同花顺在20180515的收盘价会统计为1条数据; 2)数据统计会在每周周一的00:00进行数据清零; 3)通过高频序列函数、实时行情函数、历史行情函数调用的数据会统计到行情数据中,即:高频序列函数 <= 1.5亿/周; 实时行情函数 <= 1.5亿/周; 历史行情函数 <= 1.5亿/周; 历史行情函数 <= 1.5亿/周; 日内快照 <= 1.5亿/周; 日内快照 <= 1.5亿/周; (高频序列函数 + 实时行情函数 + 历史行情函数 + 日内快照) <= 1.5亿/周 4)通过基础数据函数、日期序列函数、数据池函数调用的数据会统计到基本面数据中,即:基础数据函数 <= 500万/周; 日期序列函数 <= 500万/周; 数据池函数 <= 500万/周; 《基础数据函数 + 日期序列函数 + 数据池函数) <= 500万/周 5)通过EDB请求函数调用的数据会统计到宏观经济数据中,即: EDB请求函数 <= 5万/周						

3) 正式账号

	正式版数据接口					
行情数据: 1.5亿/周						
高频序列函数	实时行情函数	历史行情函数				
日内快照						
基本面数据:500万条/周						
基础数据函数	日期序列函数	数据池函数				
宏观经济数据:5万/周						
EDB请求函数						
特色数据:1万/周						
1)1条数据指1个EXCEL单元格,比如同花顺在20180515的收盘价会统计为1条数据; 2)数据统计会在每周周一的00:00进行数据清零; 3)通过高频序列函数、实时行情函数、历史行情函数调用的数据会统计到行情数据中,即:高频序列函数 <= 1.5亿/周; 实时行情函数 <= 1.5亿/周; 历史行情函数 <= 1.5亿/周;						

基础数据函数 <= 500万/周;

日期序列函数 <= 500万/周;

数据池函数 <= 500万/周;

(基础数据函数 + 日期序列函数 + 数据池函数) <= 500万/周

5)通过EDB请求函数调用的数据会统计到宏观经济数据中,即:

(高频序列函数 + 实时行情函数 + 历史行情函数 + 日内快照) <= 1.5亿/周

4)通过基础数据函数、日期序列函数、数据池函数调用的数据会统计到基本面数据中,即:

EDB请求函数 <= 5万/周

1-4、超级命令客户端介绍

用户可以通过超级命令客户端查看接口支持的指标、辅助生成接口提取命令。

1) 下载 SDK 接口 Windows 安装包解压后双击 SuperCommand.exe 打开超级命令客户端;

2) 指标查询与命令生成方式;

选择使用语言

选择函数、证券类型

选择代码、指标、指标参数生成命令

点击确定后生成接口命令

2、 SDK 接口环境修复说明

2-1、SDK 接口 Windows 环境部署

下载 Windows SDK 安装包解压后,登录超级命令客户端-工具-环境设置进行环境修复

注:环境修复前用户需有对应语言的开发环境,此步骤不会帮助用户安装。

2-1-1、 Python

1) 选择 Python 语言点击确定

2) 选择使用的 Python 版本路径进行修复

如未识别出路径可以点击手动添加路径;

如不清楚目前所使用的 Python 路径,可以执行如下命令查看:

import sys

print(sys.executable)

```
In [1]: import sys
...: print(sys.executable)
D:\APP\anaconda3\pythonw.exe
```

3)点击继续后程序会自动进行修复,点击显示桌面如出现如下提醒框则表示修复成功,点 击确定完成修复

4) 修复成功后可以在开发软件中进行接口测试(建议修复后重启 Spyder、PyCharm 等开发工具,如不重启可能还会报错)

2-1-2、MATLAB

1) 选择 MATLAB 语言点击确定

2) 选择使用的 MATLAB 版本路径进行修复

如未识别出路径可以点击手动添加路径

3) 点击继续后程序会自动进行修复,点击显示桌面出现如下提醒框则表示修复成功,点击确定完成修复

4) 修复成功后可以在 MATLAB 中进行接口取数测试

同花顺数据接口环境设置

2-1-3 Java

1) 选择 Java 语言点击确定

2) 选择使用的 Java 版本路径进行修复

3) 点击继续后程序会自动进行修复,点击显示桌面出现如下提醒框则表示修复成功,点击确定完成修复

- 4) Jar 包导入路径
 - 64 位: THSDataInterface_Windows\bin\x64\ThsJDI.jar
 - 32位: THSDataInterface_Windows\bin\x86\ThsJDI.jar

5) 修复成功后可以使用官网示例修改测试接口

```
System.load("E://THSDataInterface_Windows//bin//x64//iFinDJava_x64.dll");

//登入
JDIBridge client = new JDIBridge();
int ret = client.THS_iFinDLogin("账号", "密码");

long startTime = System.currentTimeMillis(); //茲取开始时间
String strResultDataSerious = JDIBridge_THS_RealtimeQuotes("3000033.SZ","latest");
```

2-1-4、R

1) 选择 R 语言点击确定

2) 选择目前使用的 R 版本路径进行修复

3) 选择继续后程序会自动进行修复,点击显示桌面出现如下提醒框则表示修复成功,点击确定完成修复

4) 修复成功后可以在 R 中进行接口测试

2-1-5、VBA

1) 选择 VBA 语言点击确定

2) 选择 VBA 路径进行修复

3) 选择继续后程序会自动进行修复,点击显示桌面出现如下提醒框则表示修复成功,点击确定完成修复

4) 修复成功后可以用官网 VBA 示例进行接口测试

600007. SH

600008. SH

13 3. 52

```
Sub login()
    Dim verRet As Variant
    verRet = THS_iFinDLogin("用户名", "密码")
    Debug.Print verRet
End Sub
```

```
Function test_BasicData()

Dim verRet As Variant

Dim varThsCode As Variant
Dim varParamArrnInd As Variant
Dim varparamOtherArray As Variant
varThsCode = "600007. SH, 600008. SH, 600010. SH"
varParamArrnInd = "ths_pre_close_stock"
varparamOtherArray = "2018-12-25, 100"

verRet = THS_BasicData(varThsCode, varParamArrnInd, varparamOtherArray)

Dim strCodeArray As Variant
strCodeArray = Split(varThsCode, ",")

For n = LBound(strCodeArray) To UBound(strCodeArray)
Debug.Print Spc(5); Format(verRet(n, 0)); Spc(5); Format(verRet(n, 1))
Next n
End Function

THSCODE ths_pre_close_stock
```

2-1-6、C#

1) C#语言无需在终端中修复,直接下载官网示例测试 下载地址: http://quantapi.10jqka.com.cn/?page=sample

2) 修改接口安装包本地路径、填写账号、密码

```
//修改下面路径为本地数据接口安装包路径;如果是64位则目录为E:\\THSDataInterface_Windows\\bin\\x64\\,文件名称为FTDataInterface_x64.dll const string strPath = @*E:\\THSDataInterface_Windows\\bin\\x86\\*; const string strDllFileName = FIDstaInterface_dll; const string strDllFile = strPath + strDllFileName;

0 个引用
static void Main(string[] args)
{
    /*登录函数,填写账号、密码
    */
    string strUserName = "账号";
    string strUserName = "账号";
    string strPassWord = "密码";
    int nRet = THS_IFinDlogin(strUserName, strPassWord);
    string strOut = "Login result:" + nRet;
    Console.WiteLine(strOut);
    Thread.Sleep(3000);
    _event = new AutoResetEvent(false);
    ThreadStart threadStart = new ThreadStart(testSample);
    Thread thread = new Thread(threadStart);
    thread.Start();
    _event.WaitOne();
```

3) 修改需要的函数命令执行

```
Login result:0
("errorcode":0,"errmsg":"Success!","tables":[("pricetype":1,"thscode":"300033.SZ","time":["2022-06-20 16:30:06"],"table":("latest":[96.01]))
```

2-1-7、C++

1) C++语言也无需在终端中修复,直接下载官网的示例测试

2) 修改接口安装包本地路径、填写账号、密码

```
#ifdef _WIN32

//下面路径按照本地接口支装包路径修改
    if (!InitialFunction("E:\\THSDataInterface_Windows\\bin\\x86\\ShellExport"))
    {
        return 0;
    }

//填写账号密码
    int ret = THS_iFinDLogin("账号", "密码");

std::cout << "Ret:" << ret << std::endl;
```

3) 修改需要的函数命令执行

//实时行情 //惠三个参数 'pricetype:1' 为债券报价方式参数,超级命令生成其他证券类型的命令没有这个参数,但请不要填空,按照下面命令填写 'pricetype:1' int retn = THS_RealtimeQuotes("300033.SZ", "latest", "pricetype:1", &pRetData);

Ret:0
result:("errorcode":0,"errnsg":"Success!","tables":[("pricetype":1,"thscode":"300033.SZ","time":["2022-06-20 16:30:06"],"table":("latest":[96.01]))]

2-2、SDK 接口 linux 环境部署

在调用前必须在解压后的接口目录中使用 ldd libShellExport.so、ldd libFTDataInterface.so 和 ldd hqdatafeed 查看接口库所依赖的环境是否齐全,如果不齐全,请使用 yum 或者 apt-get 安装(以下说明命令以 Ubuntu 环境为例),如下:

Centos: sudo yum install -y libgcc.i686 zlib.i686 glibc.i686 libstdc++-devel.i686 Ubuntu: sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386

1) 如出现以下'not found'报错,按照缺少报错安装

```
an@litian-virtual-machine:-/ifind/bin64$ ldd libFTDataInterface.so
    linux-vdso.so.1 (0x00007ffd41380000)
    libhcrypt-3.1.so => ./libhcrypt-3.1.so (0x00007fbd63800000)
    librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007fbd6484d000)
    libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fbd64848000)

libidn.so.11 => not found
    libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007fbd635d4000)
    libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fbd6475f000)
    libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007fbd6473f000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fbd633ac000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fbd6473a000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fbd64863000)
```

2) 常见缺少 libidn.so.11 报错安装方式 可以先搜索一下 libidn 并安装:

> 查找: apt-cache search libidn 安装: sudo apt install libidn-dev

安装后如 ldd libFTDataInterface.so 查看环境依赖还是缺少,可能是安装的位置有误先搜索: sudo find / | grep libidn.so

如下图可以查看到 libidn.so.11 在目录: /snap/core18/2538/lib/x86_64-linux-gnu/ 将文件移动到 ldd 查询到的其他文件的目录: /lib/x86_64-linux-gnu/

命令: sudo cp /snap/core18/2538/lib/x86_64-linux-gnu/libidn.so.11 /lib/x86_64-linux-gnu

```
litian@litian-virtual-machine:~/ifind/bin64$ sudo find / | grep libidn.so
 libidn.so.11
/home/litian/ifind/bin64/libidn.so.11
/home/litian/Downloads/qq-files/3409779239/file_recv/idn/libidn.so.11
/home/litian/Downloads/qq-files/3409779239/file_recv/idn/<mark>libidn.s</mark>
/home/litian/Downloads/qq-files/3409779239/file_recv/idn/libidn.so.11.6.1
snap/core18/2538/lib/x86_64-linux-gnu/libidn.so.11/
/snap/core18/2538/lib/x86_64-linux-gnu/lib
                                                so.11.6.16
/root/.local/share/Trash/files/l
/root/.local/share/Trash/files/l
                                  oldn.so.trashinfo
/root/.local/share/Trash/info/li
                                  oidn.so.11.6.1.trashinfo
/root/.local/share/Trash/info/li
/usr/lib/x86_64-linux-gnu/libidn.so.11
                             hidn.so.12.6.3
/usr/lib/x86_64-linux-gnu/<mark>l</mark>i
/usr/lib/x86_64-linux-gnu/<mark>l</mark>
/usr/lib/x86_64-linux-gnu/libidn.so.12
/usr/lib64/<mark>l</mark>
find:'/run/user/1000/doc': 权限不够
find: '/run/user/1000/gvfs': 权限不够
litian@litian-virtual-machine:~/ifind/bin64$ ldd libShellExport.so
        linux-vdso.so.1 (0x00007ffcb33ad000)
        libidn.so.11 => /lib/x86_64-linux-gnu/libidn.so.11 (0x00007fb58c800000)
        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fb58ce7d000)
        libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fb58ce78000)
        libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007fb58c5d4000)
        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fb58cb19000)
        libgcc\_s.so.1 \Rightarrow /lib/x86\_64-linux-gnu/libgcc\_s.so.1 \; (0x00007fb58ce56000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x000007fb58c3ac000)
        /lib64/ld-linux-x86-64.so.2 (0x00007fb58ce93000)
```

2-2-1, Python

- 1) 按照上述说明环境依赖查询已经齐全后,调用接口目录中 installiFinDPy.py 安装例如:接口压缩包解压放在/lib 目录下
- 32 位调用接口 bin 目录中的 installiFinDPy.py 安装,输入参数为文件解压后的文件路径 例如:压缩包解压放在/lib 目录下

Sudo python /lib/bin/installiFinDPy.py /lib

64 位调用接口 bin64 目录中的 installiFinDPy.py 安装,输入参数为文件解压后的文件路径 例如:压缩包解压放在/lib 目录下

Sudo python /lib/bin64/installiFinDPy.py /lib

```
litian@litian-virtual-machine:~/ifind/bin64$ pwd
/home/litian/ifind/bin64
litian@litian-virtual-machine:~/ifind/bin64$ sudo python3 /home/litian/ifind/bin64/installiFinDPy.py /home/litian/ifind
/home/litian/ifind/bin64/installiFinDPy.py:1: DeprecationWarning: The distutils package is deprecated and slated for removal i
Python 3.12. Use setuptools or check PEP 632 for potential alternatives
    from distutils.core import setup
/home/litian/ifind/bin64/installiFinDPy.py:6: DeprecationWarning: The distutils.sysconfig module is deprecated, use sysconfig
stead
    from distutils.sysconfig import get_python_lib
Python is 64 bits
Installed into
/usr/lib/python3/dist-packages
OK!
```

2) 环境部署好后测试接口的使用

```
litian@litian-virtual-machine:~/ifind/bin64$ python3
Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from iFinDPy import *
/usr/lib/python3/dist-packages/iFinDPy.pth
>>> THS_iFinDLogin('litian000','1234qwerws')
>>> THS_RQ('000001.SZ,600000.SH','open;high;low;latest;amount;volume')
errorcode=0
errmsg=Success!
data=
                      time
                              thscode open high
                                                       low latest
                                                                         amount
                                                                                  volume
 2023-10-09 15:28:30 000001.SZ 11.16 11.17 11.06
                                                      11.11 772959350.0 695828.0
  2023-10-09 15:28:38 600000.SH
                                   7.08
                                          7.08
                                                 7.00
                                                        7.03 195214390.0 277631.0
```

2-2-2 Java

1) 按照上述说明环境依赖查询已经齐全后,在编译使用前,请添加当前目录到系统环境变量 LD_LIBRARY_PATH(由于本程序使用到了配置文件,请勿复制到系统目录,否则会导致数据异常)

如解压之后的 bin64 所在目录为 /root/Linux export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/root/Linux/bin64

2) 修改示例代码登录函数、提取数据命令函数测试

3)引入 jar 包,使用示例代码测试 例如解压之后的 java 所在目录为/root/Linux 命令如下(注意命令间空格): javac -cp /root/Linux/java/Ths/output/ThsJDI.jar test.java

java -cp /root/Linux/java/Ths/output/ThsJDI.jar: test

```
lttlan@lttlan-virtual-machine:-/ifind/java/Ths/outpuu$ javac -cp /home/litian/ifind/java/Ths/output/ThsJDI.jar Demo6.java
lttlan@lttlan-virtual-machine:-/ifind/java/Ths/outpuu$ java -cp /home/litian/ifind/java/Ths/output/ThsJDI.jar: Demo6
=========DDI_demo6==========
login Successful!
{"errorcode::0, "errmsg":", "tables":[{"thscode":"000001.52", "time":["2023-09-11", "2023-09-12", "2023-09-13", "2023-09-14", "2023-09-15", "2023-09-18","
-09-19", "2023-09-20", "2023-09-21", "2023-09-22", "2023-09-25", "2023-09-26", "2023-09-27", "2023-09-28", "2023-10-09"], "table":["open":[11.3,11.35,11.29,
8,11.35,11.22,11.22,11.22,11.2,11.14,11.03,11.24,11.22,11.15,11.19,11.16,11.15,11.18,11.04,11.35,11.33,11.33,11.4,11.24,11.23,11.22,11.24,11.25,11.22,11.14,11.6,11.15,11.18,11.04,11.03,11.33,11.33,11.34,11.24,11.23,11.28,11.28,11.25,11.29,11.14,11.15,11.18,11.06], "close":[11.34,11.28,11.25,11.29,11.14,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.23,11.2
```

2-2-3、C++

按照上述说明环境依赖查询已经齐全后,下载官网示例修改测试下载地址: http://quantapi.10jqka.com.cn/?page=sample

C++接口函数使用案例

编程语言: C++ 上传日期: 2022-02-12

文件大小: 8.08MB 下载次数: 2847次

简介:

演示C++各接口函数的使用,包括底层动态库函数定义调用7 对返回的JSON格式数据进行获取并保存

解压 linux 安装包与 C++示例

修改示例、填写账号、密码

```
34 int main(int argc, char *argv[])
35 {
36 int nl
37 #ifdef _WIN32
           int nBitLong = sizeof(void *);
           //下面路径按照本地接口安装包路径修改
39
40
           if (!InitialFunction("E://THSDataInterface_Windows//bin//x86//ShellExport"))
41
                   return 0;
           }
42
43 #else
44
45
           if (nBitLong == 8)
                   if (!InitialFunction("libFTDataInterface.so")
46
47
48
49
50
51
52
53
54
                            return 0;
                   }
           else
                   if (!InitialFunction("libFTDataInterface.so"))
                            return 0;
56
57
           }
```

添加接口目录到系统环境变量(以 bin64 目录为例)

```
littian@littian-virtual-machine:~/ifind/C++_demo$ pwd
/home/littian/ifind/C++_demo
littian@littian-virtual-machine:~/ifind/C++_demo$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/littian/ifind/bin64
```

编译、测试接口示例

```
litian@litian-virtual-machine:~/ifind/C++_demo$ make -f makefile ###
g++ test.o ExportFunction.o -o ./test -fPIC -lidn -L../bin -ldl -lpthread
litian@litian-virtual-machine:~/ifind/C++_demo$ ./test
result:{"errorcode":0,"errmsg":"","tables":[{"thscode":"300033.SZ","table":{"ths_stock_short_name_stock'
77F"],"ths_the_sw_industry_stock":["\u8BA1\u7B97\u673A"]}},{"thscode":"600000.SH","table":{"ths_stock_siock":["\u4E3B\u677F"],"ths_the_sw_industry_stock":["\u94F6\u884C"]}}],"datatype":[{"itemid":"ths_stock_siock":["\u94F6\u884C"]}}],"datatype":[{"itemid":"ths_stock_siock","type":"DT_STRING"}],"inputatedsector_stock","type":"DT_STRING"}],"inputatedsector_stock","system":"false","value":""}]},{"function":"ths_listedsector_stock","id":"09235","params":[{"name'
hs_the_sw_industry_stock","id":"00444","params":[{"name":"THSCODE","system":"false","value":""},{"name'
","system":"false","value":""}]]},"dataVol":8,"perf":25}
```

3、 HTTP 接口使用说明

3-1、HTTP 接口说明

3-1-1、refresh token 与 access token 说明

接口鉴权方案分为长期的 refresh_token 和短期的 access_token

1) refresh token

refresh_token 有效期与获取时账号有效期一致(后续账号有续期、权限变更必须重新获取来更新 refresh token 的有效期)。

refresh_token 只用来请求当前有效的 access_token 或者获取一个新的 access_token。refresh_token 只能通过超级命令客户端"工具-refresh_token 查询"获取。

注:超级命令使用介绍见本说明'1-4、超级命令客户端介绍'

refresh token 更新后,所有环境过去的的 refresh_token、access_token 均会失效,更新 refresh_token 相当于更改 HTTP 接口的账号密码。

2) access token

access_token 可以利用 refresh token 使用接口函数获取,在初次生成的七天后失效,如失效前三天重新获取 access_token 会刷新失效时间。

access_token 用来直接向同花顺服务器请求数据。

单个 access_token 最多支持 20 个 IP,如报错'Device exceed limit'可以更新 access token 重置绑定。

3-2、Postman 等工具使用 HTTP 接口

3-2-1、获取 access token

超级命令选择 HTTP 接口生成 get_access_token 函数的命令

超级命令获取到 refresh token 后利用接口获取最新的 access token

requestHeaders:{"Content-Type":"application/json","refresh_token":"eyJzaWduX3RpbWUiOilyMDIzLTA3L<mark>T</mark>EyIDE

3-2-2、获取数据

超级命令查看取数函数命令

填写参数获取数据

3-3、Python 等语言环境使用 HTTP 接口

用户可以参考官网示例测试,下载地址: http://quantapi.10jqka.com.cn/?page=sample

HTTP接口应用案例(python环境)

编程语言: python 上传日期: 2022-07-06

文件大小: 8.48KB 下载次数: 2715次

简介:

演示在Python环境使用HTTP接口提取各函数数据

3-3-1、获取 access token

```
# Token accessToken 及权限校验机制
getAccessTokenUrl = 'https://quantapi.51ifind.com/api/v1/get_access_token'
# 获取refresh_token需下载Windows版本接口包解压,打开超级命令-工具-refresh_token查询
refreshtoken = 'eyJzaWduX3RpbWUi0iIyMDIzLTA3LTEyIDE20jI10jQ5In0=.eyJ1aWQi0iIz0DE4NzUzNTcifQ==.F9'
getAccessTokenHeader = {"Content- Type": "application/json", "refresh_token": refreshtoken}
getAccessTokenResponse = requests.post(url=getAccessTokenUrl, headers=getAccessTokenHeader)
accessToken = json.loads(getAccessTokenResponse.content)['data']['access_token']
```

3-3-2、获取数据

```
# 基础数据: 获取证券基本信息、财务指标、盈利预测、日频行情等数据

def basic_data():
    thsUrl = 'https://quantapi.51ifind.com/api/v1/basic_data_service'
    thsPara = {"codes":"601318.SH","indipara":[{"indicator":"ths_corp_cn_name_stock"}]}
    thsResponse = requests.post(url=thsUrl, json=thsPara, headers=thsHeaders)
    data = json.loads(thsResponse.content)
```