CPE301 - SPRING 2018

Design Assignment 2

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST

For Tasks 1, 3, and 4:

- Atmega328P
- Programmer for the chip
- One 5K resistor that is connected to port B.2
- One LED light

For Tasks 2, and 5:

- Same as above
- Another 5K resistor that is connected to port D.2
- One pushbutton, one side connects to the resistor and the other side to ground

2. CODE OF TASK 1/A

```
; Design Assignment 2, task 1
; Blinks an LED with a DC of 50% and a period of .5 sec
start:
   SBI DDRB, 2
                     ; set port b.2 as an output port
   LDI R17, 0x00
   OUT PORTB, R17
                     ; turn led off first
                     ; make a delay
   RCALL delay
   LDI R17, 0x80
   OUT PORTB, R17
                    ; turn led on
   RCALL delay
                     ; make another delay
   LDI R17, 0x00
   OUT PORTB, R17; turn led off
   RJMP myLp
delay:
   LDI R18, 125
delLp1:
   LDI R19, 228
delLp2:
   NOP
   NOP
   NOP
   NOP
   DEC R19
   BRNE delLp2
   DEC R18
   BRNE delLp1
   RET
```

3. CODE OF TASK 1/B

```
*/
int main(void)
   DDRB = (1<<PB7); // set pb7 as an output
      while(1)
      {
             PORTB ^= (1<<PB7); // flip port7 on/off
                                  // delay for .25 sec
             delay ms(2500);
             _delay_ms(1);
      }
}
4.
      CODE OF TASK 2/A
   ; Design Assignment 2, task 2 in assembly
   start:
       CBI DDRD, 2
                           ; set port d.2 as an input
      SBI DDRB, 2
      LDI R17, 0x04
      OUT PORTB, R17
                          ; load 1 to port b.2
   again:
      SBIC PIND, 2
                          ; check if d.2 is clear (0). means button is pressed
                          ; if not pressed, just turn the led off by making it an input
      RJMP ledOff
      SBI PORTB, 2
                         ; Button is pressed, turn led on by setting is as output
                          ; The timer below is for ~0.25 seconds, so repeat that 4 times
      LDI R21, 4
   to get one second
   timer:
      LDI R20, 60
      OUT TCNT0, R20
                          ; load value for timer to start
      LDI R20, 0x00
      OUT TCCR0A, R20
                          ; normal mode
      LDI R20, (1<<CS02 | 1<<CS00) ; 1024 prescalar
      OUT TCCR0B, R20
   tLp:
      IN R20, TIFR0
                           ; read timer value
      SBRS R20, 0
                            ; if not done, keep checking
      RJMP tLp
      LDI R20, 0x0
      OUT TCCR0B, R20
                           ; stop the timer
      LDI R20, (1<<TOV0)
      OUT TIFR0, R20
                            ; clear the flag
      DEC R21
                            ; check if this has been done 4 times, if not
      CPI R21, 0
      BRNE timer
                            ; repeat
      CBI PORTB, 2
                            ; after 1 second, turn led off again by setting it as an
   input.
      RJMP again
   ledOff:
      CBI PORTB, 2
                            ; turns the led off by setting it as an input.
      RJMP again
5.
      CODE OF TASK 2/B
   // Design Assignment 2, task 2 in c
   #include <avr/io.h>
```

```
int main(void)
                       // set pinb.2 as an output
   DDRB |= (1<<2);
                         // set pind.2 as an input
   DDRD |= (0 << 2);
                         // initially have the led off
   PORTB = 0 \times 00;
   while(1)
         will be 0 when pressed)
                PORTB ^= (1<<2); // turn on the led for(int i = 0; i < 4; i++) // the timer goes on for .25 seconds,
so do that 4 times to get one second
                {
                                              // load start value
                      TCNT0 = 61;
                      TCCR0A = 0x00;
                                              // normal mode
                      TCCR0B = 0x05;
                                             // prescalar of 1024
                      while((TIFR0 & 0x01) == 0)
                             // wait until overflow occurs
                      TCCR0B = 0;
                                             // turn off the timer
                      TIFR0 |= 1<<TOV0;
                                            // reset the flag
                PORTB ^= (1<<2);
                                          // once the for loop is done, turn the
led off
         }
   }
   CODE FOR TASK 3/A
start:
   SBI DDRB, 7
   LDI R16, 0x80
   LDI R17, 0
  OUT PORTB, R17
begin:
   LDI R20, 61
   OUT TCNT0, R20
                  ; load timer 0
   LDI R20, 0x00
   OUT TCCR0A, R20 ; normal mode for timer 0
   LDI R20, (1<<CS02 | 1<<CS00) ; prescalar of 1024
   OUT TCCR0B, R20
   IN R20, TIFR0
                 ; check if overflow occurs
   SBRS R20, 0
   RJMP loop
   LDI R20, 0x0
                   ; stop the timer
   OUT TCCRØB, R20
   LDI R20, (1<<TOV0)
   OUT TIFR0, R20
                    ; clear the flag
   EOR R17, R16
   OUT PORTB, R17
                   ; flip led on/off
   RJMP begin
```

6.

```
7. CODE FOR TASK 3/B
   /*
    Design Assignment 2, Task 3 in C
   #include <avr/io.h>
   int main(void)
       DDRB = (1 << 2);
      PORTB = 0;
      while(1)
      {
             TCNT0 = 61;
                                         // normal mode
             TCCR0A = 0x00;
             TCCR0B = 0x05;
                                          // 1024 prescalar
             while((TIFR0 & 0x01) == 0)
             {
                    // wait until overflow occurs
             TCCR0B = 0;
                                        // stop the clock
             TIFR0 |= 1<<TOV0;  // clear the flag
PORTB ^= (1<<2);  // switch the led on/off
      }
   }
8.
      CODE FOR TASK 4/A
   ; Design assignment 2, task 4 in assembly
   .org 0x00
      RJMP start
   .org 0x20
      RJMP T0_overflow
      SBI DDRB, 2
                          ; set pin 2 of port b as an output
      LDI R17, 0
      LDI R16, 0x04
      OUT PORTB, R17
   begin:
                                   ; for timer that takes 25ms
      LDI R19, 61
      OUT TCNT0, R19
                                   ; load normal mode into the timer
      LDI R19, 0x00
      OUT TCCROA, R19
      LDI R20, (1<<CS02 | 1<<CS00) ; prescalar of 1024
      OUT TCCR0B, R20
      LDI R20, 0x01
                            ; enable the timer interupt
      STS TIMSK0, R20
      SEI
                                   ; enable global interupts
   again:
      RJMP again
   T0 overflow:
      LDI R20, (1<<TOV0)
                          ; reset the interupt
      OUT TIFR0, R20
      EOR R17, R16
```

```
OUT PORTB, R17
                                   ; invert the value to the led
      LDI R20, 61
                                    ; restart the timer
      OUT TCNT0, R20
      RETI
9.
      CODE FOR TASK 4/B
   /*
    Design Assignment 2, Task 4 in C
   #include <avr/io.h>
   #include <avr/interrupt.h>
   int main(void)
       DDRB |= (1<<2);
                         // set portb.2 as an output
      PORTB = 0x00;
                         // turn led off at beginning
                        // load timer value
      TCNT0 = 61;
                       // normal mode
      TCCR0A = 0x00;
      TCCR0B = 0x05;
                        // 1024 prescalar
      TIMSK0 = (1<<TOIE0); // set overflow interrupt</pre>
      sei();
                        // turn on global interrupts
      while(1)
      {
             // do nothing now :)
      }
   }
   ISR (TIMER0 OVF vect)
      TCNT0 = 61; // reload timer value
      PORTB ^= (1<<2); // switch led on/off
      TIFR0 |= (1<<TOV0); // clear the flag
   }
10.
      CODE FOR TASK 5/A
   .ORG 0x00
      JMP main
   .ORG 0x02
      JMP int0Chng
   .ORG 0x16
      JMP time1CTC
   main:
      LDI R16, HIGH(RAMEND)
                              ; initialize stack
      OUT SPH, R16
      LDI R16, LOW(RAMEND)
      OUT SPL, R16
                                ; set portb.2 as an output
      SBI DDRB, 2
      CBI PORTB, 2
                                  ; turn led off initially
      LDI R20, HIGH(3125)
                                ; set ctc compare value (~1 second)
      STS OCR1AH, R20
      LDI R20, LOW(3125)
      STS OCR1AL, R20
      LDI R20, 1<<OCIE1A
```

```
STS TIMSK1, R20
                         ; enable timer 1 interrupt
      CBI DDRD, 2
                                 ; set portd.2 as an input
      LDI R20, 0x00
      STS EICRA, R20
      LDI R20, 1<<INT0
      OUT EIMSK, R20
                                  ; enable int0 interrupt
                                  ; enable global interrupts
      SEI
   lp:
      RJMP lp
                                  ; be here forever!!
   int@Chng:
      SBI PORTB, 2
                                  ; turn on the led
      LDI R20, (1<<WGM12 | 1<<CS12) ; turn on timer 1 in ctc mode
      STS TCCR1B, R20 ; and prescalar of 256
      LDI R20, 1<<INTF0
      OUT EIFR, R20
                                  ; clear int0 flag
      RETI
   time1CTC:
                                 ; turn off led
      CBI PORTB, 2
      LDI R20, 1<<OCF1A
      STS TIFR1, R20
                                 ; clear timer1 flag
      LDI R20, 0x00
      STS TCCR1B, R20
                                 ; turn off timer
      RETI
11.
      CODE FOR TASK 5/B:
   #include <avr/io.h>
   #include <avr/interrupt.h>
   int main(void)
   {
       DDRB = (1 << 2); // set pin b.2 as an output
      PORTD = 1 << 2;
      EICRA = 0x02; // falling edge
      EIMSK = (1<<INT0); // turn on int0 interrupt</pre>
      sei();
                          // enable global interrupts
      while(1)
      }
   }
   ISR (TIMER1_COMPA_vect)
      PORTB ^= (1<<2); // turn off the LED TIFR1 |= (1<<0CF1A); // clear the timer flag
      TCCR1B = 0;
                              // turn off the timer
   ISR(INT0_vect)
      PORTB ^= (1<<2); // turn on the LED
      OCR1A = 3125;
                             // Load the compare value
```

12. SCHEMATICS

For Tasks 1, 3, and 4:

For Tasks 2 and 5:

13. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

For Task 1:

^{*}change is done after the first LED change, so .25 seconds on and .25 seconds off*

For Task 2:

Measured from button press to the LED turning off

For Task 3:

EOR R17, R16	Cycle Counter	199698
OUT PORTB, R17	Frequency	8.000 MHz
RJMP begin	Stop Watch	24,962.25 µs

^{*}Measured the same as task 1*

For Task 4:

	OUT TIFR0, R20 EOR R17, R16	Status Kegister	
		Cycle Counter	199702
	OUT PORTB, R17	Frequency	8.000 MHz
	LDI R20, 61	Stop Watch	24,962.75 μs

For Task 5:

time1CTC:	Julius Negistei	
CBI PORTB, 2	Cycle Counter	800304
LDI R20, 1< <ocf1a< th=""><th>Frequency</th><th>8.000 MHz</th></ocf1a<>	Frequency	8.000 MHz
STS TIFR1, R20	Stop Watch	100,038.00 μs

^{*}Measured from button press to LED turning off*

14. SCREENSHOT OF EACH DEMO (BOARD SETUP)

For Tasks 1, 3, and 4:

For Tasks 2 and 5:

15. VIDEO LINKS OF EACH DEMO

Playlist that contains all of the videos:

 $\underline{https://www.youtube.com/watch?v=DEEne5UPYv8\&index=10\&list=PL_kN1D7twBrzRnyjlp5erD3DDkbXz} \\ \underline{AMii}$

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Brian Lopez