Učilnica:	T ' ' 1
Ct. 1	Ime in priimek:
Stolpec:	Vpisna številka:
Vrsta:	-

Izpit pri predmetu OPERACIJSKI SISTEMI OSVB, FRI, ULJ

18. 9. 2012

Skup
aj je možno zbrati ${\bf 50}$ točk.

 $\check{\text{C}}\text{as pisanja: }75$ minut.

V prvih 10 minutah lahko odstopite od izpita in dobite vrnjeno prijavnico.

V vsakem primeru **MORATE** ta list oddati poleg pole **z imenom, priimkom in vpisno številko**! Slikanje ipd. izpita pred koncem izpita je **prepovedano**! Izpita je konec, ko nadzornik pobere vse izpite. Izpit bo naknadno objavljen na eUčilnici!

Izpit ima 15 vprašanj. Pišite čitljivo!

Ogled izpitov bo v ponedeljek 24.9.2012 ob 11h v LRV laboratoriju! (zraven dekanata FRI)

1.	Naštej vsaj štiri datotečne sisteme?	(2)
2.	(a) Kakšna je razlika med segmentacijo in ostranjevanjem?	(1)
	(b) Poznaš še kakšno tehniko delitve navideznega pomnilnika?	(1)
3.	Skiciraj in opiši plasti med strojno in uporabniško plastjo.	(2)
4.	(a) Kaj je smisel pomnilniške hierarhije?	(2)
	(b) Kako pomnilniško hierarhijo vidijo aplikacije?	(1)
5.	(a) Razloži kdaj in zakaj prihaja do zunanje drobitve (angl. fragmentation) pomnilnika.	(1)
	(b) Kateri postopek uporabljamo za reševanje tega problema (kratko ga opišite)?	(2)
	(c) Kaj s tem pridobimo?	(1)
6.	(a) Pojasni razliko med monolitnim in mikro jedrom.	(2)
_	(b) Kakšno jedro uporablja GNU/Linux? Kakšno Windows 7?	(2)
7.	(a) Kaj je razlika med nitjo, procesom in aplikacijo?(b) Naštejte in kratko opišite vsaj 2 prednosti uporabe niti napram kreiranju novega procesa.	(3) (2)
8.		` '
0.	(a) Smo se z zanko while(TRUE);	(1)
	znašli v smrtnem objemu?	
	(b) Kakšna bo obremenjenost CPE?	(1)
9.	(a) Katero lastnost mora imeti optimalen zamenjevalen algoritem strani v navideznem pomnilniku (ali z drugimi besedami kakšen cilj želimo doseči z vsemi zamenjevalnimi algoritmi)?	(2)
	(b) Zakaj takšnega algoritma ni mogoče implementirati?	(2)
10.	Ali OS Windows Vista lahko izvaja različne niti enega procesa na različnih procesorjih?	(1)
11.	(a) Naštejte štiri glavne funkcije operacijskega sistema z vidika upravljanja.	(2)
	(b) V katero izmed njih spada koncept trde realne časovnosti?	(1)

- 12. (a) Kaj izpiše spodnja skripta?
 - (b) Kakšen pa je v tem primeru njen izhodni status? Zakaj? (2)

(3)

(2)

(3)

```
fn () {
  if (( $1 <= 0 )); then
    return 0;
  else
    fn $(( $1 - 2 ))
    r=$?
    return $(( $1 * $1 + $r ))
  fi
}
fn 5; echo $?</pre>
```

13. Imamo en procesor in več procesov, ki jih želimo izvajati na procesorju. Čas prispetja in čas izvajanja posameznega procesa je podan v tabeli 1.

proces	čas prispetja	čas izvajanja
A	0	6
В	1	3
\mathbf{C}	2	1
Č	2	3

Tabela 1: procesi

Skicirajte kratkoročno razporejanje:

- (a) po kriteriju "najprej najstarejši" (FIFO FCFS); (2)
- (b) po kriteriju "konstantne časovne rezine" (RR). Časovna rezina je dolga 2 časovni enoti, čakalna vrsta je ena za vse procese.
- (c) Primerjajte rezultate obeh algoritmov izračunajte in primerjajte normalizirane čase procesiranja (angl. normalized turnaround time). Kateri algoritem je bil v danem primeru boljši?
- 14. Na sliki 1 imamo prikazane štiri procese in alociranje virov Ra, Rb, Rc, Rd in Re. Ali pride do smrtnega objema? Odgovor obrazložite. (4)

Slika 1: Graf alociranja virov

15. Naštejte in na kratko opišite vsaj 4 načine razporejanja posameznih zahtev za dostop do diska.