Problème 1 – CCP PSI 2012

Partie 1.

1.1 Le dessin ne pose aucun problème.

On a $P(1,0),\ Q(-1/2,\sqrt{3}/2)$ et $R(-1/2,-\sqrt{3}/2)$. On en déduit les équations des droites

$$(PQ): y = -\frac{1}{\sqrt{3}}(x-1)$$

$$(PR): y = \frac{1}{\sqrt{3}}(x-1)$$

$$(QR)$$
 : $x = -1/2$.

Une droite d'équation ax + by + c = 0 découpe le plan en deux parties : l'une où ax + by + c > 0 et l'autre où ax + by + c < 0. En testant en l'origine, on sait quelle partie correspond à quel signe. On trouve alors immédiatement que $M(x + iy) \in T$ si et seulement si

$$2x+1>0,\ x-\sqrt{3}y-1<0,\ x+\sqrt{3}y-1<0\,.$$

- **1.2.1** Avec la propriété (2), on a immédiatement (1,1,1) qui est vecteur propre de A associé à la valeur propre 1.
- ${f 1.2.2}$ Toute matrice étant trigonalisable sur ${\Bbb C}$, la trace est égale à la somme des valeurs propres comptées avec leurs multiplicités. Ainsi,

$$tr(A) = 1 + \lambda + \overline{\lambda} = 1 + 2a$$

 A^2 est, elle, semblable à une matrice triangulaire dont les coefficients sont les carrés des valeurs propres de A et de même

$$tr(A^2) = 1 + \lambda^2 + \overline{\lambda}^2 = 1 + 2(a^2 - b^2)$$

1.2.3 tr(A) > 0 découle de la propriété (1) (la trace est > 0 comme somme des coefficients diagonaux qui sont > 0).

On a
$$(A^2)_{i,i} = \sum_{k=1}^{3} a_{i,k} a_{k,i} > a_{i,i}^2$$
 (toujours avec (1)) et donc $\operatorname{tr}(A^2) > a_{1,1}^2 + a_{2,2}^2 + a_{3,3}^3$.

L'inégalité de Schwarz donne $(u|v)^2 \le ||u||^2 ||v||^2$ ce qui s'écrit, avec les vecteurs proposés

$$(\operatorname{tr}(A))^2 = (a_{1,1} + a_{2,2} + a_{3,3})^2 = (u|v)^2 \leqslant 3(a_{1,1}^2 + a_{2,2}^2 + a_{3,3})^2 < 3\operatorname{tr}(A^2)\,.$$

1.2.4 Avec les expressions obtenues en 1.2.2 on a donc

$$1 + 2a = \operatorname{tr}(A) > 0$$

$$0 < 3\operatorname{tr}(A^2) - (\operatorname{tr}(A))^2 = 2(1 + a^2 - 3b^2 - 2a) = (a - \sqrt{3}b - 1)(a + \sqrt{3}b - 1).$$

1.2.5 La condition 2a + 1 > 0 indique que $M(\lambda)$ est à droite du côté (QR).

La condition $(a - \sqrt{3}b - 1)(a + \sqrt{3}b - 1) > 0$ indique que soit $M(\lambda)$ est au dessus de (PR) et en dessous de (PQ) soit l'inverse. Or, le second quart de plan est entièrement hors de D (comme le montre le dessin par exemple). $M(\lambda)$ est donc dans le premier quart de plan et on a $(a - \sqrt{3}b - 1) < 0$ et $(a + \sqrt{3}b - 1) < 0$.

La question 1.1 nous permet d'affirmer que

$$M(\lambda) \in T$$
.

1.3.1 $2r\cos(\theta) = \lambda + \overline{\lambda}$ donne immédiatement

$$\alpha = \frac{1 + 2r\cos(\theta)}{3}$$

 $j\lambda + j^2\overline{\lambda} = j\lambda + \overline{j\lambda} = 2\mathcal{R}e(j\lambda) = 2r\cos(\theta + 2\pi/3)$ et ainsi

$$\beta = \frac{1 + 2r\cos(\theta + \frac{2\pi}{3})}{3}$$

Enfin, on a de même $j^2\lambda + j\overline{\lambda} = 2\mathcal{R}e(j^2\lambda) = 2r\cos(\theta + 4\pi/3) = -2r\cos(\theta + \frac{\pi}{3})$ et donc

$$\gamma = \frac{1 - 2r\cos(\theta + \frac{\pi}{3})}{3}$$

1.3.2 On a immédoatement $\alpha + \beta + \gamma = 1$ car $1 + j + j^2 = 0$. A vérifie donc la propriété (2).

Par ailleurs, $M(\lambda) \in T$ donne $\lambda + \overline{\lambda} = 2\Re(\lambda) > -1$ et donc $\alpha > 0$.

De même, $j\lambda + j^2\overline{\lambda} = 2\mathcal{R}e(j\lambda) = -\mathcal{R}e(\lambda) - \sqrt{3}\mathrm{Im}(\lambda) > -1 \text{ (avec } \mathbf{1.1) et } \beta > 0.$

Enfin, $\gamma > 0$ s'obtient de même avec la troisième condition vue en 1.1.

Finalement, A vérifie aussi (1) et donc la propriété (ST > 0).

1.3.3 Le calcul donne

$$J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad J^3 = I_3$$

 X^3-1 annulant J, les valeurs propres de J sont racines de X^3-1 et ne peuvent valoir que $1,j,j^2$. Si on trouve un vecteur propre pour chacune de ces potentielles valeurs, on aura le spectre et on pourra affirmer (les sous-espaces propres étant en somme directe) que les sous-espaces propres sont de dimension 1. On trouve que $(1,1,1), (1,j,j^2)$ et $(1,j^2,j)$ conviennent. Ainsi,

$$\operatorname{Sp}_{\mathbb{C}}(J) = \{1, j, j^2\}, \ E_1(J) = \operatorname{Vect}((1, 1, 1)), \ E_j(J) = \operatorname{Vect}((1, j, j^2)), \ E_{j^2}(J) = \operatorname{Vect}((1, j, j^2))$$

1.3.4 On a immédiatement

$$A = \alpha I_3 + \beta J + \gamma J^2 = P(J)$$
 avec $P = \alpha + \beta X + \gamma X^2$

Comme J est diagonalisable, il existe une matrice inversible Q telle que $Q^{-1}JQ = \text{diag}(1, j, j^2)\Delta$. Une récurrence simple indique que pour tout entier naturel p, $Q^{-1}J^pQ = \Delta^p$. On en déduit, par combinaisons linéaires, que

$$Q^{-1}AQ = Q^{-1}P(J)Q = P(Q^{-1}JQ) = \operatorname{diag}(P(1), P(j), P(j^2))$$

Les valeurs propres de A sont donc (avec $1+j+j^2=0$ et les formules de 1.3.1)

$$P(1) = 1, \ P(j) = \lambda \ \text{ et } \ P(j^2) = \overline{\lambda}.$$

Partie 2.

2.1 La *i*-ième coordonnée de AU est $\sum_{j=1}^{n} a_{i,j} u_j = \sum_{j=1}^{n} a_{i,j} = 1$ d'après (2). On en déduit que

$$AU = U$$
.

c'est à dire que U est vecteur propre de A associé à la valeur propre 1 (U étant non nul).

2.2.1 Comme BX=0, sa k-ième coordonnée est nulle : $\sum_{j=1}^{n}b_{k,j}x_{j}=0$, ce qui donne

$$b_{k,k}x_k = -\sum_{j \neq k} b_{k,j}x_j$$

L'inégalité triangulaire donne (avec la définition de k)

$$|b_{k,k}||x_k| \le \sum_{j \ne k} |b_{k,j}||x_j| \le |x_k| \sum_{j \ne k} |b_{k,j}|$$

Comme $|x_k| > 0$ (X n'est pas nul), on en déduit l'inégalité demandée.

2.2.2 $B = A - \lambda I_n$ est bien non inversible (puisque λ est valeur propre) et la question précédente donne (les coefficients non diagonaux de B étant ceux de A)

$$|a_{k,k} - \lambda| \leqslant \sum_{j \neq k} |a_{k,j}|$$

Avec la propriété (ST > 0) on a donc

$$|a_{k,k} - \lambda| \leqslant \sum_{j \neq k} a_{k,j} - a_{k,k} = 1 - a_{k,k}$$

Avec la seconde forme de l'inégalité triangulaire, on en déduit que $|\lambda| - a_{k,k} \leq 1 - a_{k,k}$ et donc que

$$|\lambda| \leqslant 1$$

2.2.3 Si $|\lambda|=1$, on a égalité ci-dessus et on doit donc avoir égalité dans l'inégalité triangulaire c'est à dire avoir $1-a_{k,k}=|\lambda|-a_{k,k}=|k-a_{k,k}|=|e^{i\theta}-a_{k,k}|$. En élevant cette identité au caré, on obtient après simplification $-2a_{k,k}=-2\cos(\theta)a_{k,k}$. Comme $a_{k,k}\neq 0$, on a $\cos(\theta)=1$ et donc

$$\lambda = 1$$

2.3.1 Le déterminant est invariant par transposition et donc A et tA ont mêmes valeurs propres (puisque même polynôme caractéristique). En particulier, $1 \in \operatorname{Sp}_{\mathbb{C}}({}^tA)$. Le rang est aussi invariant par transposition. Les images de $A - I_n$ et de ${}^tA - I_n$ ont donc même dimension.

$$\dim(E_1(A)) = n - \operatorname{rg}(A - I_n) = n - \operatorname{rg}(^tA - I_n) = \dim(E_1(^tA))$$

2.3.2 La *i*-ième coordonnée de tAV est $\sum_{j=1}^n a_{j,i}v_j$. Elle vaut aussi v_i (car ${}^tAV = V$). Par inégalité triangulaire, on en déduit que

$$|v_i| = \left| \sum_{j=1}^n a_{j,i} v_j \right| \le \sum_{j=1}^n |a_{j,i} v_j| = \sum_{j=1}^n a_{j,i} |v_j|$$

En sommant ces inégalités, on a donc

Par théorème du rang, on a alors

$$\sum_{i=1}^{n} |v_i| \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} |v_j| = \sum_{j=1}^{n} \left(|v_j| \sum_{i=1}^{n} a_{j,i} \right)$$

Avec la propriété (2), cette ingéalité est une égalité. Toutes les inégalités intermédiaires sont donc aussi (par exemple par l'absurde) des égalité. On a donc

$$\forall i, |v_i| = \sum_{i=1}^n a_{j,i} |v_j|$$

Ceci signifie exactement que ${}^tA|V|=|V|$ (pour tout i, les deux vecteurs ont même i-ième coordonnée). Si, par l'absurde, il existait un i tel que $|v_i|=0$ alors on aurait $0=\sum_{j=1}^n a_{i,j}|v_j|$ ce qui donnerait la nullité pour tout j de $a_{i,j}|v_j|$ (une somme de quantités positives n'est nulle que si toutes les quantités sont nulles) et donc de tous les v_j (propriété (1)). Ceci contredit $V\neq 0$. Ainsi

$$\forall i, |v_i| > 0$$

2.3.3 Y étant un élément non nul de $E_1({}^tA)$, on a $\forall i, y_i \neq 0$. On peut en particulier poser $Z = X - \frac{x_1}{y_1}Y$. C'est un élément de $E_1({}^tA)$ dont la première coordonnée est nulle. Avec la question précédente (en contraposant), c'est donc le vecteur nul. X est donc multiple de Y et

$$\dim(E_1(^tA))=1$$

Soit V un vecteur non nul de $E_1({}^tA)$ et $\Omega = \frac{1}{\sum\limits_{i=1}^n |v_i|} |V|$. Ω est un élément de $E_1({}^tA)$ (question **2.3.2**) dont

les coordonnées sont > 0 à somme égale à 1.

 Ω est le seul élément ayant ces propriétés car tout autre élément de $E_1(^tA)$ est multiple de Ω (et la somme des coordonnées est multiple dans le même rapport).

Enfin, ${}^tA\Omega = \Omega$ s'écrit

$$\forall i, \ \sum_{j=1}^{n} a_{j,i} \omega_j = \omega_i$$

- **2.3.4** Les valeurs propres de A sont en module plus petites que 1 et la seule de module 1 est 1. De plus, $E_1(A)$ est de dimension 1 et une base en est (1, ..., 1). Les valeurs propres de tA sont en module plus petites que 1 et la seule de module 1 est 1. De plus, $E_1({}^tA)$ est de dimension 1 et les coordonnées d'un vecteur propres sont toutes > 0 ou toutes < 0.
- **2.4.** N est positive, vérifie l'axiome de séparation $(N(X) = 0 \Rightarrow X = 0 \text{ car les } \omega_i \text{ sont } > 0)$, est homogène $(N(\lambda X) = |\lambda| N(X))$ et vérifie l'inégalité triangulaire $(N(X + Y) \leq N(X) + N(Y))$ est conséquence de l'ingéalité triangulaire dans \mathbb{C}). N est donc une norme.

Posons Y = AX; on a $y_i = \sum_{j=1}^n a_{i,j} x_j$ et donc (avec la dernière égalité de **2.3.3**)

$$N(AX) = \sum_{i=1}^{n} \omega_i \left| \sum_{j=1}^{n} a_{i,j} x_j \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_i a_{i,j} |x_j| = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{i,j} \omega_i \right) |x_j| = \sum_{j=1}^{n} \omega_j |x_j| = N(X)$$

Si λ est une valeur propre de A et X un vecteur propre associé, on a donc $|\lambda|N(X)=N(\lambda X)=N(AX)\leqslant N(X)$ et donc (puisque N(X)>0, X étant non nul) $|\lambda|\leqslant 1$. On retrouve

$$\operatorname{Sp}_{\mathbb{C}}(A) \subset \{z/|z| \leqslant 1\}$$

- **2.5.1** Le même calcul que ci-dessus (mais sans les modules et donc avec des égalités) donne immédiatement $\Phi(AX) = \Phi(X)$.
- **2.5.2** Si $X \in \text{Ker}(\Phi) \cap E_1(A)$ alors $X \in \text{Vect}(U)$ et $\Phi(X) = 0$. Il existe donc $\lambda \in \mathbb{C}$ tel que $X = \lambda U$ et $0 = \Phi(X) = \Phi(\lambda U) = \lambda \sum \omega_i = \lambda$. Donc X = 0. $E_1(A)$ et $\text{Ker}(\Phi)$ sont ainsi en somme directe. Par ailleurs, $\dim(E_1(A)) = 1$ et $\dim(\text{Ker}(\Phi)) = n 1$ (le noyau d'une forme linéaire non nulle est un hyperplan). La somme de ces dimensions est égale à la dimension de $\mathcal{M}_{n,1}(\mathbb{C})$. Des deux arguments précédents, on tire

$$\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \oplus \operatorname{Ker}(\Phi)$$

- **2.5.3** On suppose $AX = \lambda X$ et $\lambda \neq 1$. On a alors $\Phi(X) = \Phi(AX) = \Phi(\lambda X) = \lambda \Phi(X)$. $\lambda \neq 1$ indique que $\Phi(X) = 0$ c'est à dire que $X \in \text{Ker}(\Phi)$.
- **2.5.4** Soit f l'endomorphisme de \mathbb{C}^n canoniquement associé à A. **2.5.1** montre que $\operatorname{Ker}(\Phi)$ est stable par f (si $\Phi(X) = 0$ alors $\Phi(AX) = 0$). $E_1(A)$ est aussi stable par f. Dans une base adaptée à la décomposition de **2.5.2**, la matrice de f est bloc-diagonale du type $\operatorname{diag}(1,B)$. Si 1 était valeur propre de B alors $E_1(A)$ serait de dimension ≥ 2 (on aurait deux vecteurs propres de f indépendants, l'un étant dans $E_1(A)$ et l'autre dans $\operatorname{Ker}(\Phi)$) ce qui est exclus. 1 n'est donc pas racine de χ_B . Or $\chi_f = (1-X)\chi_B$ (déterminant diagonal par blocs) et 1 est donc racine simple de χ_f . Finalement, la valeur propre 1 est de multiplicité 1.