Tota	l No. o	of Questions : 10] SEAT No. :
P36	550	[Total No. of Pages : 4
		[5460]-515
		T.E. (Mechanical)
		REFRIGERATION AND AIR CONDITIONING
		(2015 Pattern)
Time		
		0 Hours] [Max. Marks: 70
Insti	ructio 1)	ns to the candidates:
	<i>1) 2)</i>	Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks.
	3)	Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
	4)	Assume suitable data, if necessary.
Q 1)	a)	Explain importance of refrigeration in dairy industry. [5]
	b)	What is the selection criteria for environment friendly refrigerants? Explain with suitable example. [5]
Q2)	a)	What are the LCCP components? Discuss the methodology for calculating LCCP. [6]
	b)	Explain the design features of an air conditioning system for hospitals.[4]
Q3)	a)	Compare use of individual expansion vs multiple expansion valve. [4]
	b)	Explain Recovery, Recycle and Recharge of refrigerant. [6]
		OR OR
Q4)	a)	100 TR refrigerant system used for cold storage with ammonia as

Q4) a) 100 TR refrigerant system used for cold storage with ammonia as refrigerant. Evaporation temperature is -20°C and condensing temperature is 30°C. Find theoretical COP of refrigeration system and power input if there is 10°C subcooling and 5°C superheat.

b) Explain Linde-Hampson cycle with neat diagram. [5]

Q5) a) Explain procedure of heat load calculation. [8]

b) Write note on: i) IAQ ii) ASHRAE Comfort chart [8]

OR

Q 6)	a)	Explain: SHF, RSHF, ESHF and EHSF. [8]
	b)	100 cmm air stream at 30°C DBT and 24°C WBT is passed over cooling
		coil. If coil capacity is 50kW, [8]
		i) Find air properties at coil exit and moisture removal rate if coil ADP = 15°C
		ii) If coil capacity reduced by 20%, Find air properties at coil exit & moisture removal rate, if coil ADP is same.
Q7)	a)	With neat schematic explain variable refrigerant flow system. Explain its pros and cons over VAV system. [8]
	b)	Discuss various types of refrigerant condensers. What is their selection criteria? [8]
Q8)	a)	Draw neat diagram of TXV and explain its working. [6]
20)	b)	Draw the neat diagram of flooded evaporator. Explain its working stating
	0)	advantages and limitations. Compare it with DX type evaporator. [10]
Q9)	a)	Explain friction and dynamic pressure losses in ducting. [6]
21)	b)	A circular duct of 400 mm is selected to carry air at a velocity
	U)	440 m/min. If duct is replaced by rectangular duct of aspect ratio 1.5,
		find the size of rectangular duct for equal friction when: [6]
		i) Velocity in two ducts is same
		ii) Discharge in two ducts is same
		If $f = 0.015$, find the pressure loss per 100 m length of duct.
		Take density of air $= 1.15 \text{ kg/m}^2$.
	c)	Explain working of humidity sensor. [6]
		OR
Q10) a)	With neat diagram explain working of AHU. [6]
	b)	Explain static regain method of duct design. [6]
	c)	Explain design consideration of duct system with respect to the followings.[6]
		i) Duct Insulation
		ii) Duct System Leakage
		iii) System and Duct Noise
		Se.

