Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2020/21

duração: 2h

Exame (25.06.2021)

N.º	Nome
	Seja r a expressão regular $((b + ((b^*)(ab)))^*)$ sobre $\Sigma = \{a, b\}.$
a)	Desenhe o diagrama de transição do AFND- ε que se obtém por aplicação do método de Thompson a r
b)	Justifique que $\mathcal{L}(r) = \mathcal{L}(s)$, para $s = ((b + (ab))^*)$.
c)	Descreva informalmente $\mathcal{L}(r)$.
2.	Diga, justificando, se a gramática $\mathcal{G} = (\{A, B, C\}, \Sigma, P, C)$ com $\Sigma = \{a, b\}$ e P dado por:
	$A \; o \; exttt{bb} \; \; exttt{bBb} \qquad \qquad B \; o \; exttt{a} B \; \; exttt{a} \qquad \qquad C \; o \; CA \; CB \; \; exttt{a}$
esta	á na forma normal de Chomsky (FNC) e, se não estiver, converta-a para FNC.
	• · · · · · · · · · · · · · · · · · · ·

DC	C/FCUP -Modelos de Computação (CC1004) – Exame 25.06.2021
N.º	Nome
3. C	Considere novamente a gramática $\mathcal{G}=(\{A,B,C\},\Sigma,P,C)$, com $\Sigma=\{\mathtt{a},\mathtt{b}\}$ e P dado por:
	$A \; o \; { m bb} \; \; { m b}B{ m b} \qquad \qquad B \; o \; { m a}B \; \; { m a} \qquad \qquad C \; o \; CA \; CB \; \; { m a}$
a) In	adique a forma das palavras w que satisfazem as condições indicadas:
•	$A\Rightarrow_{\mathcal{G}}^k w$, para $k\geq 1$ fixo, e $w\in \{\mathtt{a},\mathtt{b},A,B,C\}^\star.$
•	$B\Rightarrow_{\mathcal{G}}^k w$, para $k\geq 1$ fixo, e $w\in \Sigma^\star$.
•	$C\Rightarrow_G^k w$, para $k\geq 1$ fixo, na derivação de w só se substituiu C 's, e $w\in\{\mathtt{a},\mathtt{b},A,B,C\}^\star$.
	y_{g} w, para $n \ge 1$ into, ha derivação de w so se substituia v s, v $w \in \{u, v, 11, 21, v\}$.
b) A	presente uma expressão regular (abreviada) que descreva $w \in \mathcal{L}(\mathcal{G})$.
	Iostre que abbbaaab $\in \mathcal{L}(\mathcal{G})$ e aaaaaa $\in \mathcal{L}(\mathcal{G})$, apresentando árvores de derivação . Se a palavratir mais do que uma árvore de derivação, deve indicar duas .
d) A	verigue se $\mathcal G$ é ambígua e, se for, indique uma GIC não ambígua que gere $\mathcal L(\mathcal G)$. Justifique.
(i) 11	refigue se g e umorgaa e, se for, marque uma ore nao amorgaa que gere $z(g)$. Justinque.

b) Converta A para um AFD, usando o método base-

ado em subconjuntos. Não renomeie os estados.

N.º		
	N.º	
	IN.	

Nome

4. Seja \mathcal{A} o AFND representado pelo diagrama de transição seguinte, com $\Sigma = \{a, b\}$.

a) Indique $x \in \Sigma^*$ tal que:

Justifique o segundo caso.

 $x \neq \varepsilon e \ x \notin \mathcal{L}(\mathcal{A})$ $|x| \ge 2 e \ x \in \mathcal{L}(\mathcal{A})$

- **5.** Seja $L = \{x \mid x = \varepsilon \text{ ou } |x| \ge 2 \text{ e termina b}\}, \text{ com } \Sigma = \{a, b\}.$
- a) Indique uma expressão regular (abreviada) que defina L.
- **b**) Desenhe o diagrama de transição de um AFD que aceite L.

	·	

c) Justifique que qualquer AFD que aceite L tem pelo menos dois estados finais.

6. Diga para que serve o algoritmo CYK. Explique de que modo explora o facto de a gramática estar na forma normal de Chomsky, para resolver corretamente o problema.

N.º	Nome					
Re	onda a apenas a uma das alíneas da questão 7					
7.	$L = \{x \mid x \in \{a, b\}^* \text{ e } x \text{ tem bb como subpalavra ou tem mais a's do que b's} \}$					
a) A	sente um autómato de pilha que reconheça L , com aceitação por pilha vazia . Indique a interpretação dos de modo que seja possível compreender a correção do autómato.					
	Por aplicação teorema de Myhill-Nerode, averigue se existe um AFD que reconhece L e, se existir, letermine o AFD mínimo para L . Na justificação da resposta, deve usar a relação R_L .					
do l	Usando diretamente o lema da repetição para linguagens regulares, prove que L não satisfaz a condição do lema ou que L satisfaz a condição do lema. Diga ainda se L não satisfaz a condição do lema da repetição para linguagens independentes de contexto (justificando sucintamente).					

DCC/FCUP -Modelos de Computação (CC1004) — Exame

25.06.2021