

Rovinné grafy a farbenie grafov

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

27. apríla 2011

Definícia

Diagram grafu v rovine nazveme **rovinný**, ak sa jeho hrany nepretínajú nikde inde okrem vrcholov.

Graf G = (V, H) nazveme **rovinný**, ak k nemu existuje rovinný diagram.

V niektorej slovenskej literatúre sa namiesto termínu rovinný graf používa termín **planárny graf**.

Obr.: Dva diagramy toho istého grafu G = (V, H),

kde $V = \{1, 2, 3, 4\}, H = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$

Stena rovinného grafu

Definícia

Stenou rovinného diagramu nazveme maximálnu časť roviny, ktorej ľubovoľné dva body možno spojiť súvislou čiarou nepretínajúcou žiadnu hranu diagramu.

Jedna stena rovinného diagramu. Aj časť roviny ohraničená hranami $\{4,5\},\ \{5,6\},\ \{6,4\}$ je stena.

Stena rovinného grafu

Máme steny dvoch druhov – práve jedna stena je neohraničená, a nazýva sa **vonkajšia stena**. Ostatné steny sa nazývajú **vnútorné**.

Poznámka

Všimnime si ešte, že vrcholy a hrany diagramu, ktoré vymedzujú ktorúkoľvek stenu, tvoria "cyklus".

V diagrame však vidíme aj také hrany – sú to hrany $\{4,7\}$, $\{4,8\}$ – ktoré nevymedzujú žiadnu stenu.

Hrana vymedzuje niektorú stenu práve vtedy, keď leží aspoň na jednom cykle.

Vylúčením ktorejkoľvek hrany ležiacej na cykle klesne počet stien

Eulerova polyedrická formula

Veta

Eulerova polyedrická formula. Nech G = (V, H) je súvislý rovinný graf, nech S je množina stien jeho rovinného diagramu. Potom platí:

$$|S| = |H| - |V| + 2. (1)$$

Dôkaz.

Matematickou indukciou podľa počtu |S| stien rovinného grafu. Pre |S| = 1 súvislý graf G neobsahuje žiadny cyklus – G je strom.

V strome je
$$|H| = |V| - 1$$
.

Počítajme:
$$|H| - |V| + 2 = (|V| - 1) - |V| + 2 = 1$$
.

$$|S| = 1 \text{ máme}$$

$$1 = |S| = |H| - |V| + 2.$$

Maximum počtu hrán rovinného grafu

Dôsledok

V každom rovinnom grafe G = (V, H), kde $V \ge 3$, je

$$|H| < 3 \cdot |V| - 6.$$

Úplný graf K_5 nie je rovinný

Veta

Úplný graf s piatimi vrcholmi K_5 nie je rovinný.

Dôkaz.

Úplný graf K_5 má 5 vrcholov a $(5\cdot 4)/2=10$ hrán. Keby bol rovinný mohol, by mať najviac $3\cdot |V|-6=3\cdot 5-6=9$ hrán.

Úplný graf $K_{3,3}$ nie je rovinný

Graf $K_{3,3}$ má 9 hrán. Keď že má 6 vrcholov a jeho diagram neobsahuje ani jeden trojuholník.

Ak by bol rovinný, môže mať najviac 2.6 - 4 = 8 hrán – graf $K_{3,3}$ nemôže byt rovinný.

Definícia

Hovoríme, že graf G'=(V',H') vznikol z grafu G(V,H) rozpolením hrany $h\in H$, ak

$$V' = V \cup \{x\}$$
 $kde \ x \notin V$,
 $H' = (H - \{\{u, v\}\}) \cup \{\{u, x\}, \{x, v\}\}$

Hovoríme, že grafy G(V, H), G' = (V', H') sú homeomorfné, ak sú izomorfné, alebo ak konečným počtom rozpoľovaní ich hrán môžeme z nich dostať izomorfné grafy.

a) Graf G b) Graf \overline{G} Homeomorfné grafy. Graf \overline{G} vznikol z grafu G rozpolením hrany $\{1,4\}$.

Veta

Kuratowski. Graf G je rovinný práve vtedy, keď ako podgraf neobsahuje graf homeomorfný s K_5 alebo $K_{3,3}$.

a) Graf homeomorfný s K_5

ný s K_5 b) Graf homeomorfný s $K_{3,3}$ Dva prototypy nerovinných grafov.

Problém farbenia máp:

Zafarbiť štáty politickej mapy minimálnym počtom farieb tak, aby žiadne dva štáty so spoločnou hranicou neboli tej istej farby.

Grafový model pre problém farbenia máp.

- a) každému štátu i moru priradíme vrchol grafu,
 - b) pospájame vrcholy susedných štátov,
 - c) diagram výsledného grafu.

Problém farbenia máp sme previedli na problém: Zafarbiť vrcholy grafu minimálnym počtom farieb tal

Zafarbiť vrcholy grafu minimálnym počtom farieb tak, aby yžiadne dva susedné vrcholy neboli tej istej farby.

Chromatické číslo a k-zafarbiteľnosť

Definícia

Zafarbenie grafu je funkcia, ktorá každému vrcholu grafu priraďuje farbu.

Zafarbenie, ktoré žiadnym dvom susedným vrcholom nepriraďuje tú istú farbu nazveme **prípustným zafarbením**.

Graf G = (V, H) nazveme k-**zafarbiteľným**, ak jeho vrcholy možno prípustne zafarbiť k farbami (t. j. tak, aby žiadne dva susedné vrcholy neboli zafarbené rovnakou farbou.)

Chromatické číslo grafu je najmenšie prirodzené číslo k také, graf G k-zafarbiteľný.

Chromatické číslo grafu G budeme značiť symbolom $\chi(G)$.

Heuristiky pre farbenie grafu

Veta

Problém zafarbiť graf s minimálnym počtom farieb je NP-ťažký.

Algoritmus

Sekvenčné farbenie grafu.

- Krok 1. Nech $\mathcal{P} = v_1, v_2, \dots, v_n$ je ľubovoľná postupnosť vrcholov grafu G = (V, H).
- **Krok 2.** Postupne pre i = 1, 2, ..., n urob: Zafarbi vrchol v_i farbou najmenšieho čísla takou, že žiaden zo zafarbených susedov vrchola v_i nie je zafarbený touto farbou.

Horný odhad chromatického čísla grafu

Veta

Algoritmus na sekvenčné farbenie grafu potrebuje na zafarbenie ľubovoľného grafu najviac

$$\max\{\deg(v)\mid v\in V\}+1$$

farieb.

Dôsledok

Pre chromatické číslo $\chi(G)$ ľubovoľného grafu G platí:

$$\chi(G) \leq 1 + \max\{\deg(v) \mid v \in V\}$$

Farbenie rovinných grafov a farbenie máp

Problém farbenia politickej mapy vedie na problém zafarbenia rovinného grafu minimálnym počtom farieb.

Farbenie rovinných grafov a farbenie máp

Veta

Appel, Haken, 1976. Každý rovinný graf je 4-zafarbiteľný.

Poznámka

- Dlho pred dokázaním tejto vety sa vedelo, že každý rovinný graf je 5-zafarbiteľný.
 - Nenašiel sa však žiaden rovinný graf G s chromatickým číslom $\chi(G)=5.$
- Veta o 4-zafarbiteľnosti rovinných grafov je jedna z prvých, na dokázanie ktorej bol použitý počítač.
 - Počítačový postup navrhol pôvodne Heesch, Appel a Haken zredukovali problém na skontrolovanie viac ako 1900 konfigurácií.
- Na vyriešenie problému sa spotrebovalo viac ako 1200 hodín strojového času.
- Dnes sú počítače takmer o tri rády rýchlejšie, ale aj tak by tento výpočet vyžadoval výpočtový čas meraný v hodinách.
 Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Algoritmus

Paralelné farbenie grafu.

- **Krok 1.** Zoraď vrcholy grafu G = (V, H) do postupnosti $\mathcal{P} = v_1, v_2, \dots, v_n$ podľa stupňa vrchola nerastúco. Inicializuj množinu farieb $\mathcal{F} := \{1\}, j := 1.$
- **Krok 2.** Postupne s prvkami $v_1, v_2, ..., v_n$ postupnosti \mathcal{P} urob: Ak vrchol v; nie je zafarbený a nemá suseda zafarbeného farbou j, tak ho farbou i zafarbi.
- Krok 3. Ak sú všetky vrcholy postupnosti P zafarbené, STOP.
- Krok 4. Ak nie sú všetky vrcholy postupnosti P zafarbené, zvýš počet farieb, t. j. j:=j+1, $\mathcal{F}:=\mathcal{F}\cup\{j\}$ a GOTO Krok 2.

LDF (Largest Degree First) farbenie grafu

Nasledujúci algoritmus je v podstate sekvenčný algoritmus, ktorý si však v priebehu výpočtu stanovuje, ktorému z vrcholov sa bude prideľovať najnižšia prideliteľná farba.

Algoritmus

Farbenie grafu LDF (Largest Degree First).

Pre účel tohto algoritmu definujeme farebný stupeň vrchola v ako počet rôznych farieb, ktorými sú zafarbení susedia vrchola v.

- **Krok 1**. Zo všetkých nezafarbených vrcholov s najväčším stupňom vyber vrchol v s najväčším farebným stupňom.
- Krok 2. Priraď vrcholu v farbu najnižšieho možného čísla.
- Ak sú všetky vrcholy zafarbené, STOP. Inak GOTO Krok 1.

Aplikácie

- Priraďovanie rádiových frekvencií
- Minimalizácia počtu nákupných tašiek
- Minimalizácia počtu fáz na svetelne riadenej kriyžovatke
- Rozvrhovanie školských predmetov do minimálneho počtu časových blokov
- Minimalizácia počtu autobusových stanovíšť na autobuspovej stanici
- Atd'.