

AD-A123 911 PERMANENT MAGNET PROPERTIES OF IN SITU FORMED CU-FE
MULTIFILAMENTARY COMPOSITES(U) HARVARD UNIV CAMBRIDGE
MA GORDON MCKAY LAB G DUBLON ET AL JUL 82 TR-23
UNCLASSIFIED N00014-77-C-0002 F/G 9/1 NL

END

CENTER

DATA

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A	,

Office of Naval Research
 Contract N00014-77-C-0002 NR-039-136

PERMANENT MAGNET PROPERTIES OF IN SITU
 FORMED Cu-Fe MULTIFILAMENTARY COMPOSITES

By

G. Dublon, F. Habbal, and J.L. Bell

TR 23

Technical Report No. 23

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted by the U. S. Government.

July 1982

The research reported in this document was made possible through support extended the Division of Applied Sciences, Harvard University, by the Office of Naval Research, under Contract N00014-77-C-0002.

Division of Applied Sciences
 Harvard University Cambridge, Massachusetts

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 23	2. GOVT ACCESSION NO. <i>AD-A123911</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PERMANENT MAGNET PROPERTIES OF <u>IN SITU</u> FORMED Cu-Fe MULTIFILAMENTARY COMPOSITES	5. TYPE OF REPORT & PERIOD COVERED Interim Report	
7. AUTHOR(s) G. Dublon F. Habbal J.L. Bell	6. CONTRACT OR GRANT NUMBER(s) N00014-77-C-0002	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Division of Applied Sciences Harvard University Cambridge, Mass. 02138	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBER(S)	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE July 1982	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 15	
	15. SECURITY CLASS. (of this report) Unclassified	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted by the U. S. Government.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Permanent magnets; multifilamentary composites; high coercive force; high energy product; high strength		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Cu-Fe multifilamentary composites with up to 60 vol% Fe were prepared <u>in situ</u> . Magnetic hysteresis loops were obtained at room temperature as a function of composition, cross sectional area reduction, up to 99.9996%, and annealing conditions. H_c and $(B \cdot H)_{max}$ increase with cross sectional area reduction and show pronounced changes on annealing. H_c = 600, 520 and 380 Oe and M_r = 5.6, 8.2 and 11.9 kG were measured in the smallest 30, 45 and 60 vol% Fe composites, respectively, following optimal heat treatment. $(B \cdot H)_{max}$ = 3.2 MG·Oe was measured in both Cu-45 vol% Fe and Cu-60 vol% Fe with hysteresis loop squareness		

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

of 0.95. Considering the excellent mechanical and transport properties, inexpensive constituent elements and simple preparation, the in situ formed Cu-Fe composites appear to have the potential for permanent magnet applications.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Permanent magnet properties of in situ formed Cu-Fe multifilamentary composites (a)

G. Dublon, F. Habbal, and J.L. Bell

Gordon McKay Laboratory, Harvard University, Cambridge, MA 02138 USA

ABSTRACT

Cu-Fe multifilamentary composites with up to 60 vol% Fe were prepared in situ. Magnetic hysteresis loops were obtained at room temperature as a function of composition, cross sectional area reduction, up to 99.9996%, and annealing conditions. H_{ci} and $(B \cdot H)_{max}$ increase with cross sectional area reduction and show pronounced changes on annealing. $H_{ci} = 600, 520$ and 380 Oe and $M_r = 5.6, 8.2$ and 11.9 kG were measured in the smallest 30, 45 and 60 vol% Fe (composites, respectively, following optimal heat treatment. $(B \cdot H)_{max} = 3.2$ MG·Oe was measured in both Cu-45 vol% Fe and Cu-60 vol% Fe with hysteresis loop squareness of 0.95. Considering the excellent mechanical and transport properties, inexpensive constituent elements and simple preparation, the in situ formed Cu-Fe composites appear to have the potential for permanent magnet applications.

PACS numbers: 85.70.Nk, 81.20.Jz, 75.60.Ej, 75.50.Bb

INTRODUCTION

Several methods have been developed during the last decades to prepare magnetically hard metal matrix composite materials containing aligned, submicron filaments [1-7]. Recently, intrinsic coercivities, H_{ci} , of up to ~ 600 Oe were measured at room temperature (RT) in in situ formed Cu-30 vol% Fe multifilamentary composites [7]. Combined with excellent mechanical [8] and transport properties [9,10] simple preparation [11] and inexpensive constituent elements, these materials appear to have the potential for permanent magnet (PM) applications. Further interest in the magnetic properties of the Cu-Fe in situ composites arises in conjunction with the extensive work on the isostructural superconducting Cu-Nb system [8-11].

The in situ formed composites with $10^{6}-10^{10}$ filaments/ cm^2 , each $50-2000$ Å thick and up to several mm long, have an exceptionally high dislocation density, by far exceeding the maximum attainable densities in single-phase bulk materials [8-11].

This report is concerned mostly with the practical magnetic properties of the in situ formed Cu-Fe composite system. The understanding of the unusual magnetic, mechanical and transport properties, their

interdependence and relation to the unique microstructure of the in situ composite is, however, far from complete and requires extensive additional study.

In the present work we report RT permanent magnet (PM) characteristics of in situ formed Cu-Fe composites with 30, 45 and 60 vol% Fe.

EXPERIMENTAL

Multifilamentary Cu-Fe composites were formed in situ following a procedure which is described in detail elsewhere [8-11]. Starting two-phase alloys were prepared by RF levitation melting of 3N Cu and Fe and rapid cooling of the liquid solution. The resulting cylindrical ingots weighing ~ 12 g, ~ 1.2 cm in diameter, were then vacuum annealed for 12 days at 850°C to partially remove Fe from solid solution and in order to facilitate plastic deformation by cold swaging. The heat treatment produces significant coarsening of the initial microstructure as illustrated in Fig. 1 for Cu-60 vol% Fe. More work on the effects of annealing on the initial microstructure (and hardness) is needed as it in turn appears to affect the PM properties of the final, multifilamentary in situ composite.

Fig. 2 shows SEM micrographs of the cross section of Cu-30 vol% Fe and Cu-60 vol% Fe wire, 250 and 180 μ in diameter, respectively, as obtained by cold swaging and drawing with intermediate anneals at 300 or 350°C. Samples were eventually reduced down to 25 μ in diameter or 99.9996%. The estimated average filament cross section area in the smallest composites is

$\sim 10^4 \text{ } \text{\AA}^2$. As expected for a bcc material in an fcc matrix, the initial Fe precipitates (Fig. 1) become ribbon-like filaments (Fig. 2) with a well defined <110> texture as they twist and curl due to the constraints of the surrounding matrix [8-11].

Hysteresis loops were obtained at RT using a vibrating sample magnetometer with the magnetic field applied parallel to the wire's long axis. The measurements were made as a function of composition, cold work and heat treatment (250-950°C).

RESULTS AND DISCUSSION

The RT saturation magnetization of the in situ formed Cu-Fe composite system increases linearly with the Fe content at 1.96 emu/g/vol% Fe between 5 and 60 vol% Fe and, within experimental accuracy, is unaffected by cold work or heat treatment beyond the first, high temperature anneal of the initial ingot. These results imply the presence of up to 2wt% Fe dissolved in the Cu matrix following the first anneal - down from ~ 6 at % in the initial ingot - in agreement with

electron microprobe tests.

Figure 3 shows H_{ci} values of in situ-formed Cu-45 vol% Fe composite wire at various stages of preparation. Similar results along with M_r/M_s values are shown in

Fig. 4 for Cu-60 vol% Fe. Of particular interest is the dramatic increase of H_{ci} by more than a factor of 2 on proper annealing (Fig. 3). Such an increase of H_{ci} has already been reported for Cu-30 vol% Fe [7].

Similarly pronounced increases on annealing of the Young's modulus have been observed in isostructural in situ Cu-Nb composites [8]. Also, some of the increase of H_{ci} on annealing is lost by subsequent cold work

(Fig. 3), resembling observed reversible changes of the elastic properties of Cu-Nb [8]. This, together with the stress dependence [10] of the superconducting properties of in situ formed Cu-Nb₃Sn and Cu-Nb₃Ga suggests the presence of stress induced magnetic anisotropy in Cu-Fe along with shape anisotropy. Work is in progress to determine the role of several conceivable sources of magnetic anisotropy [12] and the modes of magnetization rotation [13] in in situ formed Cu-Fe composites.

The pronounced increase, up to ~ 0.95, of both M_r/M_s (Fig. 4) and the hysteresis loop squareness with deformation and proper heat treatment implies improved filament alignment and uniformity. Anneals at high temperature (750-950°C) for only several minutes, or prolonged anneals at lower temperatures (300-500°C), produce a deterioration of the PM properties as a result of coarsening and eventual spheridization of the filaments. Some of that loss is recoverable by subsequent mechanical reduction. Additional indirect information about the composites' microgeometry is provided by the distribution of intrinsic coercivities as determined from their demagnetization remanence curves [14]. Thus obtained, the H_{ci} distributions in terms of filament volume fraction, v , for optimally annealed 30 and 60 vol% Fe samples are shown in Fig. 5. The analysis implies that ~ 80 vol% of filaments possess coercivities within 25 Oe of the measured composite H_{ci} in the

best PM Cu-60 vol% Fe samples (Fig. 5). Similar results were obtained for Cu-45 vol% Fe. The smallest optimally annealed Cu-30 vol% Fe composites show a much broader distribution and some of the filaments appear to have coercivities up to ~ 1000 Oe (Fig. 5).

Figures 6 and 7 show RT hysteresis loops and energy product curves, respectively, of the best PM 30, 45 and 60 vol% Fe in situ composites prepared so far. The decrease of the best H_{ci} with increasing Fe content

is in agreement with general theoretical predictions [12]. However, in view of a maximum H_{ci} observed around 30 vol% Fe in powder metallurgically prepared Ag-Fe composites [2], there is work underway to determine the composition dependence of H_{ci} of in situ formed Cu-Fe down to 5 vol% Fe.

The PM properties of the Cu-Fe in situ composites (Figs. 6,7) are by far superior to those of powder metallurgically prepared composites [2-4]. In addition to their easier preparation, their PM properties are also better (Figs. 6,7) than those of conventionally prepared compacts [1]. Other structurally related materials, such as [15] Cu-1.7 wt% Fe and [16] Fe-34 at % Pd precipitation alloys as well as Au-27 at % Co aligned eutectics [5] which exhibit higher coercivities [5,15,16] have, however, much lower remanence [5,15] and/or contain very expensive constituent elements [5,16]. Overall, taking into account coercivity, remanence, maximum energy product and hysteresis loop squareness, the PM characteristics of the Cu-Fe composites (Figs. 6,7) approach the performance of Cr-Co-Cu-Fe alloys [17] and sintered [18] Cr-Co-Fe. The Cu-60 vol% Fe material with H_{ci} up to 380 Oe, high remanence and square hysteresis loop (Fig. 6) compares favorably with commercial semi-hard magnets such as Remendur and Vicalloy as well as with more recently introduced [19] Co-Fe-Nb and [6] Fe-Ni and Fe-Mn alloys. Also, considering their exceptional mechanical strength [8], high electrical [9,10] and thermal [20] conductivity, superior to those of e.g. Co-Fe-V alloys [21], the in situ formed Cu-Fe composites appear to fulfill important requirements for rotor applications.

SUMMARY

In situ formed Cu-Fe multifilamentary composites with 30, 45 and 60 vol% Fe exhibit a range of useful permanent magnet properties. Intrinsic coercivities of 600, 520 and 380 Oe were measured at RT in optimally annealed 35-25 μ wire with 30, 45 and 60 vol% Fe, respectively. The 45 and 60 vol% Fe composites with remanences of 11.9 and 8.2 kG, respectively, hysteresis loop squareness of 0.95 and maximum energy product of 3.2 MG-Oe, compare favorably with Co-based and other semi-hard magnet alloys. In view of their outstanding mechanical and transport properties, in addition to inexpensive constituent elements and relatively simple preparation, the in situ formed Cu-Fe composites appear to have the potential for a variety of permanent magnet applications.

Joze Bevk and David Turnbull are gratefully acknowledged for their help and support.

REFERENCES

(a) Supported in part by ONR-N00014-77-C-0002 and
NSF-MRL-DMR-80-20247.

1. F.P. Levi, J. Appl. Phys. 31, 1469 (1960).
2. H.P. Wahl and G. Wasserman, Z. Metallk. 61, 326 (1970).
3. J.H. Swisher and E.O. Fuchs, J. Appl. Phys. 41, 1097 (1970).
4. G. Frommeyer, Metallw. Tech. 31, 732 (1977).
5. J.D. Livingston, J. Appl. Phys. 41, 197 (1970).
6. S. Jin and T.H. Tiefel, IEEE Trans. Mag-16, 1062 (1980).
7. G. Dublon, F. Habbal and J. Bevk, Appl. Phys. Lett. 39, 659 (1981).
8. J. Bevk, W.A. Sunder, G. Dublon and D.E. Cohen, Proc. MRS Conf., Boston, MA, Nov. 1981.
9. K.R. Karasek and J. Bevk, J. Appl. Phys. 52, 1370 (1981).
10. J. Bevk, M. Tinkham, F. Habbal, C.J. Lobb and J.P. Harbison, IEEE Trans. Mag-17, 235 (1981); J. Bevk and F. Habbal, Appl. Phys. Lett. 36, 336 (1980).
11. J. Bevk, J.P. Harbison and J.L. Bell, J. Appl. Phys. 49, 6031 (1978).
12. E.P. Wohlfarth, Magnetism III, eds. G.T. Rado and H. Suhl, Academic Press (New York, 1963), p. 351.
13. S. Shtrikman and D. Treves, ibid p. 395.
14. R.A. McCurrie, Phil. Mag. 22, 1013 (1970).
15. A. Boltax, Trans. AIME, 224, 281 (1962).
16. K. Watanabe, Phys. Stat. Solidi (a) 66, 697 (1981).
17. M.L. Green, R.C. Sherwood, G.Y. Chin, J.W. Wernick and J. Bernardini, IEEE Trans. Mag-16, 1053 (1980).
18. M.L. Green, R.C. Sherwood, and C.C. Wong, J. Appl. Phys. 53, 2398 (1982).
19. Y. Suzuki, M. Sagawa, M. Okada and Z. Henmi, J. Appl. Phys. 50, 7122 (1979).
20. F. Habbal and G. Dublon, in progress.
21. B. Thomas, IEEE Trans. Mag-16, 444 (1980).

FIGURE CAPTIONS

Fig. 1. SEM micrographs of polished and etched cross section of the initial Cu-60 vol% Fe ingot as cast (right) and annealed at 850°C for 12 days (left), showing the distribution of Fe precipitates (dark areas).

Fig. 2. SEM micrographs of the cross section of in situ formed Cu-60 vol% Fe 180 μ (right) and of Cu-30 vol% Fe 250 μ wire composite (left). The Fe filaments have been etched away (dark areas).

Fig. 3. Intrinsic coercivity of in situ Cu-45 vol% Fe wire composites as a function of $\eta = \ln(a_0/a)$, where a_0 and a are the cross section areas of the initial ingot and of the composite tested, respectively. (a), (b), (c), (d) denote H_{ci} values of samples obtained by successive wire drawing (full symbols) or anneals (open symbols). The effect of intermediate anneals is indicated by type of line drawn to connect data points for both as drawn and annealed samples.

Fig. 4. Intrinsic coercivity and remanence to saturation ratio of in situ Cu-60 vol% Fe wire composites as a function of $\eta = \ln(a_0/a)$, where a_0 and a are the cross section areas of the initial ingot and of the composite tested, respectively. Full lines indicate the succession of wire drawing and annealing steps taken, up to $\eta = 12$. Dashed and dotted lines connect H_{ci} data of samples annealed for 1 hour at 300 and 350°C, respectively.

Fig. 5. RT distribution of intrinsic coercivities in terms of filament volume fraction, v , as obtained from the demagnetization remanence curves of Cu-30 vol% Fe and Cu-60 vol% Fe in situ composites (see Ref. 14).

Fig. 6. RT hysteresis loops of optimally annealed Cu-30 vol% Fe 25 μ , Cu-45 vol% Fe 30 μ and Cu-60 vol% Fe 33 μ wire.

Fig. 7. RT energy product curves of the in situ Cu-Fe composites of Fig. 6.

五

F, 6, 2

Fig. 6

Fig. 5

Fig. 6

B, (G)

Defense Documentation Center Government Services Arlington, Virginia 22204	(12)	Commanding General Department of the Army Ft. Monmouth, Pennsylvania 15437 Attn: CDRDA-1200	Dr. David G. Nordin National Memorial Institute Catalytic Laboratories 305 King Avenue Columbus, Ohio 43201
Office of Naval Research Department of the Navy		Office of Scientific Research Department of the Air Force Washington, D.C. 20331 Attn: Solid State Div. (SASD)	Professor C. E. Jacobsohn Ohio State University Dept. of Welding Engineering 190 West 18th Avenue Columbus, Ohio 43210
Attn: Code 471 Code 103 Code 470	(3)	Aerospace Research Lab. Wright-Patterson AFB Building 453 Dayton, Ohio 45433	Professor G. Judd Rensselaer Polytechnic Institute Dept. of Materials Engineering Troy, New York 12181
Director Office of Naval Research Bronx Office 405 Summer Street Boston, Massachusetts 02210		Air Force Materials Lab. (AL) Wright-Patterson AFB Dayton, Ohio 45433	Dr. C. S. Kortovich TBW, Inc. 23355 Euclid Avenue Cleveland, Ohio 44117
Director Office of Naval Research Bronx Office 336 South Clark Street Chicago, Illinois 60603		NASA Headquarters Washington, D.C. 20546 Attn: Code RRM	Professor D. A. Koss Michigan Technological University College of Engineering Houghton, Michigan 49931
Office of Naval Research San Francisco Area Office 700 Market Street, Room 447 San Francisco, California 94102		NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Library	Professor A. Lowley Drexel University Dept. of Metalurgical Engineering Philadelphia, Pennsylvania 19104
Naval Research Laboratory Washington, D.C. 20370		National Bureau of Standards Washington, D.C. 20544 Attn: Metallurgy Division Inorganic Materials Division	Dr. H. Margolin Polytechnic Institute of New York 333 Jay Street Brooklyn, New York 11201
Attn: Mr. F. S. Williams Naval Air Development Center Code 302 Warminster, Pennsylvania 18974		Atomic Energy Commission Washington, D.C. 20545 Attn: Metals and Materials Branch	Professor K. Mazzanti Massachusetts Institute of Technology Department of Ocean Engineering Cambridge, Massachusetts 02139
Naval Air Propulsion Test Center Treasure, New Jersey 06628		Defense Metals and Ceramic Information Center National Memorial Institute 305 King Avenue Columbus, Ohio 43201	Dr. G. H. Meyer University of Pittsburgh Dept. of Metallurgical and Materials Engineering Pittsburgh, Pennsylvania 15213
Attn: Library		Director Ordnance Research Laboratory P.O. Box 30 State College, Pennsylvania 16801	Professor J. W. Morris, Jr. University of California College of Engineering Berkeley, California 94720
Naval Weapons Laboratory Bethesda, Maryland 20248		Director Applied Physics Lab. University of Washington 1013 Northeast Fortis Street Seattle, Washington 98133	Professor R. Ono University of California Materials Department Los Angeles, California 90024
Attn: Research Division		Metals and Ceramics Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, Tennessee 37830	Professor W. F. Stille Rensselaer Polytechnic Institute School of Engineering Troy, New York 12181
Naval Construction Ballistic Civil Engineering Laboratory Port Hueneme, California 93043		Los Alamos Scientific Lab. P.O. Box 1600 Los Alamos, New Mexico 87544 Attn: Report Library	Dr. C. Shaw Sandwell International Corp. P.O. Box 1600 1040 Costa del Sol Drive Thousand Oaks, California 91360
Attn: Materials Division		Argonne National Laboratory Metallurgy Division P.O. Box 225 Lemont, Illinois 60439	Professor O. D. Sherry Stanford University Materials Sciences Dept. Stanford, California 94300
Naval Electronics Laboratory Center San Diego, California 92136		Brookhaven National Laboratory Technical Information Division Upton, Long Island New York 11973 Attn: Research Library	Professor J. Sauer Stanford University Materials Sciences Department Stanford, California 94300
Attn: Electronic Materials Sciences Div.		Library Building 50, Room 1M Lawrence Radiation Laboratory Berkeley, California	Dr. W. A. Slichting U.S. Steel Corporation Research Laboratories Monroeville, Pennsylvania 15146
Naval Missile Center Motorola Command Code 1117-1 Point Mugu, California 93041		Professor G. S. Ansell Rensselaer Polytechnic Institute Dept. of Metallurgical Engineering Troy, New York 12181	Dr. E. A. Smakula Georgia Institute of Technology School of Chemical Engineering Atlanta, Georgia 30332
Commanding Officer Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910		Professor H. K. Brembaum University of Illinois Department of Metallurgy Urbana, Illinois 61801	Professor N. S. Smaloff Rensselaer Polytechnic Institute School of Engineering Troy, New York 12181
Attn: Library		Dr. E. M. Barnes United Aircraft Corporation United Aircraft Research Lab. East Hartford, Connecticut 06108	Dr. E. R. Thompson United Aircraft Research Lab 600 Main Street East Hartford, Connecticut 06108
Naval Ship R. and D. Center Materials Department Annapolis, Maryland 21402		Professor H. D. Brode University of Pittsburgh School of Engineering Pittsburgh, Pennsylvania 15213	Professor David Turnbull Harvard University Divisions of Engineering and Applied Physics Cambridge, Massachusetts 02139
Naval Underwater Center San Diego, California 92132		Professor J. B. Cohen Northwestern University Dept. of Materials Sciences Evanston, Illinois 60201	Dr. F. W. Wang Naval Ordnance Laboratory Picatinny Laboratory Fort Lee Elkton Spring, Maryland 20745
Attn: Library		Professor M. Cohen Massachusetts Institute of Technology Department of Metallurgy Cambridge, Massachusetts 02139	Dr. J. C. Williams Rockwell International Science Center P.O. Box 1158 Thousand Oaks, California 91360
Naval Underwater System Center Newport, Rhode Island 02843		Professor E. C. Crossen Northeastern University Department of Chemistry Boston, Massachusetts 02115	Professor H. G. F. Walder University of Virginia Department of Materials Science Charlottesville, Virginia 22903
Attn: Library		Dr. G. T. Hess National Bureau of Standards Department of Materials 505 King Avenue Columbus, Ohio 43211	Dr. R. A. Wright University of Tennessee Space Institute Dept. of Metallurgical Engineering Tennessee 37236
Naval Warfare Center China Lake, California 93555		Professor P. W. Hevesi Carnegie-Mellon University Butler Hall Pittsburgh, Pennsylvania 15213	
Attn: Library			
Naval Postgraduate School Monterey, California 93940			
Attn: Materials Sciences Dept.			
Naval Air Systems Command Washington, D.C. 20360			
Attn: Code 52031 Code 52032 Code 520			
Naval Sea System Command Washington, D.C. 20362			
Attn: Code 535			
Naval Facilities Engineering Command Arlington, Virginia 22231			
Attn: Code 03			
Scientific Advisor Commandant of the Marine Corps Washington, D.C. 20380			
Attn: Code AX			
Naval Ship Engineering Center Department of the Navy, Washington, D.C. 20360			
Attn: Director, Materials Sciences			
Army Research Office Box Cd., Duke Station Durham, North Carolina 27708			
Attn: Materials and Ceramics Div.			
Army Materials and Mechanics Research Center Watertown, Massachusetts 02472			
Attn: Res. Program Office (AMMRA-P)			