Name *Admission No:*

ABES Institute of Technology, Ghaziabad Subject Code: BAS101

Subject Name: Engineering Physics Year - 1st, Branch-All

2nd ASSIGNMENT (ODD SEMESTER 2024-25)

[Time: 1 Hours] [Total Marks: 10]

COURSE OUTCOMES

CO	Statements		
	To explain the distribution of energy in black body radiation and to understand the		
1	difference in particle and wave nature with explanation of Compton effect and		
	Schrodinger wave equation.		
4	To know the functioning of optical fiber and its properties and applications. To		
4	understand the concept, properties and applications of Laser.		
	Date - 22:10:2024 onwards		

SECTION-A

Q.1	Attempt one Questions. (1×1=1)	CO
a.	Explain Planck's law of black body radiation?	1
b.	Define V number of an optical fibre?	4

SECTION-B

Q.2	Attempt two Questions. (2x3=6)	CO
a.	Calculate the group velocity and phase velocity of an electron whose de Broglie wavelength is 1.2 Å.	1
b.	Calculate the kinetic energy and de Broglie wavelength of an alpha particle accelerate from rest through a potential difference of 200 volts.	1
c.	There is loss of 3.6 dB optical power in a fibre of length one kilometre. <i>What</i> fraction of its initial intensity remain after 1.5 Km.	4

SECTION-C

Q.3	Attempt one Questions. (1x3=3)	CO
a.	Prove that in a dispersive medium the group velocity of a wave packet is less than the phase velocity and also show that $v_p.v_g = c^2$. where c is the speed of light.	1
b.	<i>Discuss</i> the important factors responsible for absorption and scattering loss of an optical signal.	4

Name...... Admission No:

ABES Institute of Technology, Ghaziabad

Subject Code: BAS101 Subject Name: Engineering Physics Year - 1st, Branch-All

2nd ASSIGNMENT (ODD SEMESTER 2024-25)

[Time: 1 Hours] [Total Marks: 10]

COURSE OUTCOMES

	To explain the distribution of energy in black body radiation and to understand the	
1	difference in particle and wave nature with explanation of Compton effect and	
	Schrodinger wave equation.	
4	To know the functioning of optical fiber and its properties and applications. To	
4	understand the concept, properties and applications of Laser.	
	Date - 22:10:2024 onwards	

(SET-B) SECTION-A

Q	.1	Attempt one Questions. (1×1=1)	CO
a	۱.	Differentiate between phase velocity and group velocity of a wave packet?	1
b).	What is a wave function? Give its interpretation as proposed by Max Born.	1

SECTION-B

Q.2	Attempt two Questions. (2x3=6)	CO
a.	What is de-Broglie wavelength of matter wave? Show that the wavelength associated with a particle of mass m and kinetic energy E is given by $\lambda = \frac{h}{\sqrt{2mE}}$ Calculate the wavelength of thermal radiation of neutron at 27°·C	1
b.	A single mode fiber has a fiber core of refractive index 1.54 and diameter 10 µm. The cut off parameter is 2.405 and the operating wavelength is 1300 nm.	4
	Compute the maximum value of refractive index of cladding and the fractional difference of refractive indices of core and cladding,	
c.	What do you <i>understand</i> by intermodal and intramodal dispersion in optical fibre? The optical power, after propagating through a fibre of 500m long is reduced to 25% of its initial value. Calculate the fibre loss in dB/Km.	4

SECTION-C

Q.3	Attempt one Questions. (1x3=3)	CO
a.	Describe Davisson and Germer's experiment to demonstrate the wave character or wave nature of electrons.	1
b.	<i>Discuss</i> the structure, refractive index profile and performance characteristics of step index and graded index fibre.	4