Report on VAN BENTHEM CHARACTERIZATION THEOREM but in mathematical logic class

June 7, 2023, XIN CHEN

Target

- Which first-order formulas are equivalent to the modal formulas on model level?
- the proof strategy of van Benthem's Theorem
- some tools in (first-order or modal) Model Theory

Keywords

invariant under bisimilarity/modal-equivalence, compactness, detour strategy, ω -saturation \sim m-saturation, ultrafilters \sim ultraproducts \sim ultrapowers, Łoś's Theorem....

Recap

1. Languages

$$\mathcal{L}_{\Diamond} \ni \varphi ::= p_i \mid \neg \varphi \mid (\varphi \vee \varphi) \mid \Diamond \varphi.$$

$$\mathcal{L}_1 \ni \alpha ::= x = y \mid P_i x \mid Rxy \mid \neg \alpha \mid (\alpha \vee \alpha) \mid \exists x \alpha.$$

- 2. Model: $\mathfrak{M} = (W, R, V)$ (also a first-order structure)
- 3. Standard translation $ST_x \colon \mathcal{L}_{\diamondsuit} \to \mathcal{L}_1 \implies \mathcal{L}_{\diamondsuit}$ is a fragment of \mathcal{L}_1
- 4. *m-saturation*: $\stackrel{\leftarrow}{\hookrightarrow} = \longleftrightarrow$, (but in general $\stackrel{\subseteq}{\hookrightarrow} \longleftrightarrow$)
- 5. ultrafilter, principal ultrafilter (generated filter). (finite intersection property (FIP) → ultrafilter)
- 6. ultrafilter extension $\mathfrak{M}^{\mathfrak{ue}} \Rightarrow m$ -saturated
- 7. ultrafilter extension *not* preserve the truth value of first-order formulas

Section 1

proof 1

Subsection 1.1

A simple characterization

Definition 1.1

(Invariant under modal equivalence/bisimilarity) A first-order formula $\alpha(x) \in \mathcal{L}_1$ is invariant under modal equivalence, if for any \mathfrak{M}, w and \mathfrak{N}, v :

$$\mathfrak{M}, w \iff \mathfrak{N}, v \text{ implies } \mathfrak{M} \models \alpha(x)[w] \Leftrightarrow \mathfrak{N} \models \alpha(x)[v].$$

And $\alpha(x)$ is invariant under bisimilarity, if

$$\mathfrak{M}, w \leftrightarrow \mathfrak{N}, v \text{ implies } \mathfrak{M} \models \alpha(x)[w] \Leftrightarrow \mathfrak{N} \models \alpha(x)[v].$$

Theorem 1.2

(A characterization via modal equivalence) Let $\alpha(x)$ be a first-order formulas in \mathcal{L}_1 with one free variable.

 $\alpha(x)$ is invariant under modal equivalence \Leftrightarrow it is equivalent¹ to the standard translation of a modal formula in $\mathcal{L}_{\diamondsuit}$.

¹ semantic equivalence, 如果这里 想得到的是语形等价, 非常复杂或 者几乎是不可能。

Proof

(Proof of this simple characterization)

 \Leftarrow This direction is trivial. If for some modal formula $\varphi \in \mathcal{L}_{\Diamond}$ such that $\alpha(x) = ST_x(\varphi)$, and further suppose that $\mathfrak{M}, w \iff \mathfrak{N}, v$.

Then $\mathfrak{M}, w \Vdash \varphi \Leftrightarrow \mathfrak{N}, v \Vdash \varphi$, by local correspondence, $\mathfrak{M} \models \alpha(x)[w] \Leftrightarrow \mathfrak{N} \models \alpha(x)[v]$. That is, $\alpha(x)$ is invariant under model equivalence.

 \Rightarrow (Depends on Compactness² of FOL)

Suppose $\alpha(x)$ is invariant under model equivalence. Let the *modal consequence* of $\alpha(x)$ be

$$MOC(\alpha(x)) := \{ ST_x(\varphi) \mid \alpha(x) \models ST_x(\varphi) \& \varphi \in \mathcal{L}_{\Diamond} \}.$$

We have two claims:

Claim 1: If $MOC(\alpha(x)) \models \alpha(x)$ then there is a modal formula φ such that $ST_x(\varphi)$ is (semantic) equivalent to $\alpha(x)$.

Claim 2: $MOC(\alpha(x)) \models \alpha(x)$ is indeed holds.

If these two claims is true, then we have done.

The first claim can be proved by an argument based on the Compactness of FOL (Σ is finitely satisfiable $\Rightarrow \Sigma$ is satisfiable).

Suppose $MOC(\alpha(x)) \models \alpha(x)$, then $MOC(\alpha(x)) \cup \{\neg \alpha(x)\}$ is not satisfiable, by (contraposition of) Compactness, there is a *finite* subset Z of $MOC(\alpha(x)) \cup \{\neg \alpha(x)\}$ which is unsatisfiable. There are two cases:

- 1. $\alpha(x) \notin Z$, let Z = X, then X is finite, $X \subseteq MOC(\alpha(x))$ and $X \cup \{\neg \alpha(x)\}$ is unsatisfiable.
- 2. $\alpha(x) \in Z$, then there is a *finite* set $X \subseteq MOC(\alpha(x))$ and $\alpha(x) \notin X$ such that $Z = X \cup \{\neg \alpha(x)\}$

Therefore, there exists a finite $X \subseteq MOC(\alpha(x))$ such that $X \cup \{\neg \alpha(x)\}$ is unsatisfiable, that is, $X \models \alpha(x)$.

Since X is finite, thus $\models \bigwedge X \to \alpha(x)$, moreover, $\models \alpha(x) \to \bigwedge X$ (by the definition of $MOC(\alpha(x))$), then $\models \bigwedge X \leftrightarrow \alpha(x)$.

Assume $X = \{ST_x(\psi_1), \dots, ST_x(\psi_n)\}$, let $\varphi = \psi_1 \wedge \dots \wedge \psi_n$, then $ST_x(\varphi) = \bigwedge X$. Therefore, there is a modal formula φ such that $ST_x(\varphi)$ is (semantic) equivalent to $\alpha(x)$.

Proof of Claim 2

Suppose for any model \mathfrak{M} we have $\mathfrak{M} \models MOC(\alpha(x))[w]$, then we only need to show that $\mathfrak{M} \models \alpha(x)[w]$.

Let

$$\Gamma = Th(\mathfrak{M}, w) \coloneqq \{ \varphi \in \mathcal{L}_{\diamondsuit} \mid \mathfrak{M}, w \Vdash \varphi \}$$

and

$$ST_x(\Gamma) = \{ST_x(\varphi) \mid \varphi \in \Gamma\}$$

If $ST_x(\Gamma) \cup \{\alpha(x)\}$ is satisfiable (in first-order sense) in some pointed model \mathfrak{N}, v , then $\mathfrak{M}, w \leadsto \mathfrak{N}, v$ since they satisfy same *modal* formulas.⁴ While $\alpha(x)$ is invariant under modal equivalence, hence $\mathfrak{M} \models \alpha(x)[w]$.

Therefore it suffices to show that $ST_x(\Gamma) \cup \{\alpha(x)\}$ is satisfiable (in first-order sense) in some pointed model \mathfrak{N}, v . (again by a compactness argument)

² 想说一个东西存在,就先划一个 范围,然后用如同**紧致性**这样的性 质把该对象逼出来。

如果 $\alpha(x)$ 的模态对应存在的话. $MOC(\alpha(x))$ 相当于划定了 $\alpha(x)$ 模态对应的范围,然后再从这个范围里「逼出」 $\alpha(x)$ 的模态对应。先划范围,然后再逼近,这是一种常见且有用的证明思路

 3 如果熟悉一阶逻辑的紧致性,从 $MOC(\alpha(x)) \models \alpha(x)$ 直接可得 $X \models \alpha(x)$ 。这里也可以使用可靠性。

 4 \mathfrak{N}, v 满足的模态公式会比 Γ 中的 多吗? — 不可能。从另一个角度看, Γ 是一个 MCS (w.r.t. **K**)。 Suppose $ST_x(\Gamma) \cup \{\alpha(x)\}$ is unsatisfiable, then $ST_x(\Gamma) \models \neg \alpha(x)$, by Compactness, there exists a *finite* subset Y of $ST_x(\Gamma)$ such that $Y \models \neg \alpha(x)$. Hence $\alpha(x) \models \neg \bigwedge Y$. By the definition of $MOC(\alpha(x))$, we have $\neg \bigwedge Y \in MOC(\alpha(x))$, by assumption $\mathfrak{M} \models MOC(\alpha(x))[w]$, thus $\mathfrak{M} \models \neg \bigwedge Y[w]$. But $\bigwedge Y \in ST_x(\Gamma)$, it follows that $\mathfrak{M} \models \bigwedge Y[w]$. Contradiction!

Subsection 1.2

van Benthem Characterization Theorem

Theorem 1

(van Benthem Characterization Theorem) Let $\alpha(x)$ be a first-order formula in \mathcal{L}_1 , 5

 $\alpha(x)$ is invariant under bisimilarity \Leftrightarrow it is equivalent to the standard translation of a modal formula.

 $^{5} \iff this\ direction\ is\ trivial.$

To prove this theorem based on the previous *simple characterization result*, we only need to show that:

Lemma 1.3 $\alpha(x)$ is invariant under bisimilarity $\Leftrightarrow \alpha(x)$ is invariant for modal equivalence.

Right-to-Left is trivial, since bisimilarity implies modal equivalence⁶:

⁶ that is $\Leftrightarrow \subseteq \leadsto$.

Left
$$\mathfrak{M}, w \hookrightarrow \mathfrak{N}, v \Rightarrow (\mathfrak{M} \models \alpha(x)[w] \Leftrightarrow \mathfrak{N} \models \alpha(x)[v])$$

$$\uparrow \quad \text{(trivial direction)}$$
Right $\mathfrak{M}, w \leadsto \mathfrak{N}, v \Rightarrow (\mathfrak{M} \models \alpha(x)[w] \Leftrightarrow \mathfrak{N} \models \alpha(x)[v])$

Left-to-Right is hard. It is not trivial since $\iff \neq \iff$ in general.⁷

⁷ 某种意义上, bisimilarity 比 modal equivalence 更细致.

Subsection 1.3

A detour strategy

⁸ $\stackrel{\text{def}}{\rightleftharpoons} /\alpha(x)$: $\alpha(x)$ is invariant under bisimilarity. $\stackrel{\text{def}}{\rightleftharpoons} /\alpha(x)$: $\alpha(x)$ is invariant under modal equivalence

Figure 1. A detour strategy(曲线救国): 1-2-3-4 and 4-3-2-1

How to construct \mathfrak{M}^* , w^* and \mathfrak{N}^* , v^* ? They at least need be **m-saturated**, since for m-saturated models: \Leftrightarrow coincides with \iff .

Remark

If two (pointed) models such that FOL formulas are preserved, thus modal formulas are preserved too!

First candidate: **Ultrafilter extension**⁹. Though Ultrafilter extension preserve truth value of modal formulas, but *does not preserve the truth value of first-order formulas*. Pass! To see that, considering the ultrafilter extension of $(\mathbb{N}, <)$: ¹⁰

⁹note that $\mathfrak{M}, w \iff \mathfrak{M}^{\mathfrak{ue}}, \pi_w,$ Prop 2.59 in Blue Book.

¹⁰p.95 in Blue Book without transitive arrows.

Figure 2. the ultrafilter extension of $(\mathbb{N}, <)$

There is a "cluster" of reflexive non-principal ultrafilters at the "end" of the chain of natural numbers. Every non-principal ultrafilters is reachable from π_0^{11} . Thus the first-order formula $\exists y(Rxy \land Ryy)$ is satisfiable at $((\mathbb{N}, <)^{\mathfrak{ue}}, \pi_0)$ but not at $((\mathbb{N}, <), 0)$.

¹¹the principal ultrafilter generated by 0.

Hence we need a model construction method which can:

- 1. make the models m-saturated, and
- 2. preserve truth values of first-order formulas.

Subsection 1.4

Ultraproducts

1.4.1 Ultrafilters again

Intuition

每个 filter 可以被视为 一些「很大」 的子集 的集合 An intuition¹² behind (ultra)filters: "small" subsets are out, only "large" subsets stay (imagine a *filter* in the basin that we use everyday, or a coffee/tea filter).

Ultrafilters were originally used to define a collection of subsets of a nonempty set W which can be regarded as "large" subsets of W in a consistent mathematical sense.

Therefore given an index set I of a family of models $\{\mathfrak{M}_i\}_{i\in I}$, if φ holds on some \mathfrak{M}_i, w_i , and $\{i \mid \mathfrak{M}_i, w_i \Vdash \varphi\}$ is in a (non-principal) ultrafilter over I, then we can say that φ holds on "almost every" in the family of models. We use this idea to define ultraproducts of models.

1.4.2 Ultraproducts

Definition 1.4

(Ultraproducts over sets) Given a family of sets $\{W_i\}_{i\in I}$ and an ultrafilter U over the nonempty index set I. Define the equivalence relation \sim_U^{13} as

$$\sim_U = \left\{ (f,g) \mid f,g \in \prod_{i \in I} W_i \text{ and } \left\{ i \in I \mid f(i) = g(i) \right\} \in U \right\}.$$

The equivalence class of f w.r.t. \sim_U is

$$f_U = \{ g \in \prod_{i \in I} W_i \mid g \sim_U f \}.$$

The ultraproduct of W_i modulo U, denoted as $\prod_U W_i$, is the set of all equivalence classes of \sim_U :

$$\prod_{U} W_i = \{ f_U \mid f \in \prod_{i \in I} W_i \}.$$

If for all i have $W_i = W$ then the ultraproduct is called the **ultrapower of** W **modulo** U, denoted by $\prod_U W$.

Intuition

Two sequences (or functions) f, g are considered the same if they coincide "almost everywhere" f(i) = g(i) for all the i belongs to some large set in the ultrafilter U.

¹² another intuition is that, an ultrafilter often seen as the extension of a MCS.

Figure 3. a coffee filter

 $^{13}\sim_U$ 有自反性和对称性很显然;因为 U 是超滤且超滤对交封闭,易知 \sim_U 是传递的。

The elements in $\prod_{i \in I} W_i$ are (may infinite) sequences $\langle w_1, w_2, w_3, \dots, w_i, \dots \rangle$, but from another perspective, a sequence is a function $f: I \to \bigcup_{i \in I} W_i$ such that for a given index $i \in I$, f chooses an element f(i) from W_i , hence f(i) is just the i-th parameter in the sequence $\langle w_1, w_2, w_3, \dots \rangle$. See the following diagram¹⁴:

$$f = \langle w_1, w_2, w_3, \dots, w_i, \dots \rangle$$

And $f \sim_U g$ means that those elements selected respectively by f and g are same "almost everywhere" 15.

虽然这里集合的下标是 1,2,3,..., 但一般来说指标集不必 是自然数集,此处的写法只是为了 方便起见

 ^{15}I 上的超滤 U 暗含了"几乎所 有"的意思,因为超滤是那些很大 的子集的集合。

Definition 1.5

(Ultraproduct over models with a binary relation) Let $\{\mathfrak{M}_i\}_{i\in I}$ be a family of models. Given an ultrafilter U over I, the ultraproduct of $\{\mathfrak{M}_i\}_{i\in I}$ modulo U is a triple $\prod_{U} \mathfrak{M}_{i} = (W, \to, V)$ where:

- $W = \prod_{U} W_i$, where W_i is the universe of \mathfrak{M}_i .
- $f_U \to q_U \Leftrightarrow \{i \mid f(i) \xrightarrow{\mathfrak{M}_i} q(i)\} \in U$, where $\xrightarrow{\mathfrak{M}_i}$ is the binary relation of \mathfrak{M}_i .
- $f_U \in V(p) \Leftrightarrow \{i \mid f(i) \in V_i(p)\} \in U$

If for all i have $\mathfrak{M}_i = \mathfrak{M}$, then $\prod_U \mathfrak{M}_i = \prod_U \mathfrak{M}$ is called the **ultrapower of** \mathfrak{M} modulo U.

Intuition

Massage many models into one such that if most models satisfy something then this merged one also satisfies something. ¹⁶

Remark

The above is well-defined. Considering the valuation V, for example, suppose $f \sim_U g$, we need check that $\{i \mid f(i) \in V_i(p)\} \in U \iff \{i \mid g(i) \in V_i(p)\} \in U.$

Theorem 1.6

(**Łoś's Theorem** one free variable case) 17 Let U be an ultrafilter over an nonempty index set I, given any first-order formula $\alpha(x)$:

$$\prod_{U} \mathfrak{M}_{i} \models \alpha(x)[f_{U}] \Leftrightarrow \{i \mid \mathfrak{M}_{i} \models \alpha(x)[f(i)]\} \in U.$$

Intuition

The **Right** of above theorem means that: in the family $\{\mathfrak{M}_i\}_{i\in I}$ of models, $\alpha(x)$ is satisfiable in "almost every" model.

PROOF By induction on $\alpha(x)$. Cf. Theorem A.19 in [Blue Book p.493].

Definition 1.7

(**Elementary embedding**) Given any two models $\mathfrak A$ and $\mathfrak B$ for $\mathcal L_1$ with universe Aand B respectively. A function $f: A \to B$ is an elementary embedding from $\mathfrak A$ to \mathfrak{B} , notation $f: \mathfrak{A} \leq \mathfrak{B}$, if for any first-order formulas $\alpha(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in A$,

$$\mathfrak{A} \models \alpha(x_1, \dots, x_n)[a_1, \dots, a_n] \Leftrightarrow \mathfrak{B} \models \alpha(x_1, \dots, x_n)[f(a_1), \dots, f(a_n)].$$

16 把一堆模型揉成一个模型,并且 最终的成品保留"大多数"模型都 满足的性质。指标集上的超滤 ≈ 大 多数, 因此考虑"大多数"对象要满 足某种性质的时候,超滤是一个强

有力的工具。

 17 also called the **fundamental** theorem of ultraproducts. This theorem due to Jerzy Łoś. the surname is pronounced approximately "wash" - 沃希定理.

Chaff: 螺蛳 (没有粉) 定理

Figure 4. Jerzy Łoś

6

$$w \mapsto (f_w)_U$$

where f_w is a constant function such that f(i) = w for all $i \in I$. (in other words, f_w is the sequence $\langle w, w, w, \dots, w, \dots \rangle$)

Prop. 1.8 The diagonal mapping $d: \mathfrak{M} \to \prod_U \mathfrak{M}$ such that $d(w) = (f_w)_U$ is an elementary embedding from \mathfrak{M} to $\prod_U \mathfrak{M}$, that is, $d: \mathfrak{M} \preceq \prod_U \mathfrak{M}$.

PROOF Let $\alpha(x)$ be a first-order formula and a an element of \mathfrak{M} ,

$$\Pi_{U} \mathfrak{M} \models \alpha(x)[d(a)] \Leftrightarrow \Pi_{U} \mathfrak{M} \models \alpha(x)[(f_{a})_{U}] \quad \text{(since } d(a) = (f_{a})_{U}) \\
\Leftrightarrow \{i \in I \mid \mathfrak{M} \models \alpha(x)[a]\} \in U \quad \text{(by Łoś's theorem)} \\
\Leftrightarrow \mathfrak{M} \models \alpha(x)[a]$$

Corollary 1.9 (Ultrapower) Let $\prod_U \mathfrak{M}$ be an ultrapower of \mathfrak{M} , then for all first-order formula $\alpha(x)$ given any first-order formula $\alpha(x)$:

$$\prod_{U} \mathfrak{M} \models \alpha(x)[(f_w)_U] \Leftrightarrow \mathfrak{M} \models \alpha(x)[w]$$

Proof

$$\begin{array}{lll} \prod_{U}\mathfrak{M} \models \alpha(x)[(f_{w})_{U}] & \Leftrightarrow & \{i \mid \mathfrak{M}_{i} \models \alpha(x)[f_{w}(i)]\} \in U \text{ (by Łoś's theorem)} \\ & \Leftrightarrow & \{i \mid \mathfrak{M} \models \alpha(x)[w]\} \in U \text{ } (\mathfrak{M} = \mathfrak{M}_{i}, f_{w}(i) = w) \\ & \Leftrightarrow & \mathfrak{M} \models \alpha(x)[w] \end{array}$$

Theorem 1.10 (Łoś's Theorem for modal logic) Fixing a U, given any modal formula φ :

$$\prod_{U} \mathfrak{M}_{i}, f_{U} \Vdash \varphi \iff \{i \mid \mathfrak{M}_{i}, f(i) \Vdash \varphi\} \in U.$$

PROOF | For any modal formula $\varphi \in \mathcal{L}_{\diamondsuit}$,

Corollary 1.11 (Ultrapower in modal logic) Let $\prod_U \mathfrak{M}$ be an ultrapower of \mathfrak{M} . Then for all modal formula φ we have :

$$\prod_{U} \mathfrak{M}, (f_w)_U \Vdash \varphi \iff \mathfrak{M}, w \Vdash \varphi.$$

Subsection 1.5

Saturation

Definition 1.12 (Type and Realization) A type is a set $\Gamma(x)$ of first-order formulas such that for any $\alpha \in \Gamma$, x is the unique variable may occur free in α .

A first-order model \mathfrak{M} realizes type $\Gamma(x)$ if there is an element w in \mathfrak{M} such that for all $\alpha \in \Gamma(x)$, $\mathfrak{M} \models \alpha[w]$.

Definition 1.13

(**Expansions** of language and model) Let \mathfrak{M} (with domain W) be a model for the first-order language \mathcal{L}_1 . For any subset $A \subseteq W$, $\mathcal{L}_1[A]$, given by

$$\mathcal{L}_1[A] := \mathcal{L}_1 \cup \{\underline{a} \mid a \in A\},\$$

is the language obtained by extending \mathcal{L}_1 with new constants \underline{a} for all $a \in A$.

 \mathfrak{M}_A is the **expansion** of \mathfrak{M} to a structure for $\mathcal{L}_1[A]$ in which each \underline{a} is interpreted as a.

Definition 1.14

(ω -Saturated models) ¹⁸ Suppose \mathfrak{M} with domain W is a model for first-order language \mathcal{L} .

 \mathfrak{M} is ω -saturated iff for any *finite* subset $A \subseteq W$ and any type $\Gamma(x)$ of $\mathcal{L}[A]$, if the expansion \mathfrak{M}_A realizes every *finite* subset of $\Gamma(x)$ then \mathfrak{M}_A realizes $\Gamma(x)$.

18 此处定义参考 [文学锋, 定义 10.3.14]

Theorem 1.15

Any ω -saturated model for language \mathcal{L}_1 is m-saturated. It follows that the class of ω -saturated models has the Hennessy-Miliner property. ¹⁹

¹⁹ Theorem 2.65 in Blue Book

Proof

Suppose $\mathfrak{M}=(W,R,V)$ (viewed as a first-order structure) is ω -saturated. Let a be a state in \mathfrak{M} and Σ is a set of modal formulas which is finitely satisfiable in $R(a)^{20}$. It suffices to show that Σ is satisfiable in R(a). Let Σ' be

$$\Sigma' = \{Rax\} \cup ST_x(\Sigma)^{21}$$

then Σ' is a type of \mathcal{L}_a . For any *finite* subset X of Σ' , there are two cases:

- 1. $R\underline{a}x \notin X$. Then $X \subseteq ST_x(\Sigma)$, since Σ is finitely satisfiable in R(a), by local correspondence, hence X is realized in some state b such that Rab, thus \mathfrak{M}_a realizes X.
- 2. $R\underline{a}x \in X$. Then $X = Y \cup \{R\underline{a}x \in X\}$ and Y is a finite subset of $ST_x(\Sigma)$. Similarly, Y is realized in some state b such that Rab, clearly \mathfrak{M}_a realizes $Y \cup \{R\underline{a}x\}$.

Therefore, \mathfrak{M}_a realizes every finite subset of Σ' . By ω -saturation, \mathfrak{M}_a realizes Σ' , that is, $\mathfrak{M}_a \models \{R\underline{a}x\} \cup ST_x(\Sigma)[b]$ for some b. By $\mathfrak{M}_a \models R\underline{a}x[b]$ it follows that b is a successor of a. Since $\mathfrak{M}_a \models ST_x(\Sigma)[b]$, by local correspondence, $\mathfrak{M}, b \Vdash \Sigma$.

Thus Σ is satisfiable in R(a). Then we complete the proof of that all ω -saturated models are m-saturated.

 20 the successor set of a.

21 尽管这里的关系符号和模型中的 关系都是用 R 表示, 但根据上下文 容易区分每处 R 指的是语言中的 符号还是模型中的解释。

1.
$$\alpha(x)$$
 \mathfrak{M}, w \longleftrightarrow \mathfrak{N}, v 4. $\alpha(x)$

2.
$$\alpha(x)$$
 $\prod_U \mathfrak{M}, (f_w)_U \iff = \bigoplus \prod_U \mathfrak{N}, (f_v)_U = 3. \alpha(x)$

the detour strategy — use ultrapower

The ultrapower works! We need to show that ultrapowers over certain ultrafilters are m-saturated.

Recap

1.5.1 Construct saturated models

Definition 1.16

(Countably incomplete ultrafilter) An ultrafilter U over I is countably incomplete if it is not closed under countable intersections. (i.e. there exists $E \subseteq U$, E is countable but $\bigcap E \notin U$) ²²

²²note that, ultrafilter is closed under (finite) intersections

A *principle ultrafilter* is not countably incomplete, since any intersection must contains the element which generated this principle ultrafilter.

Thus a countably incomplete ultrafilter must be *non-principal*. Such ultrafilter exists (recall that the non-principal ultrafilters over \mathbb{N})!

Note 1.17 However, the existence of *non-principal countably complete* (closed under countable intersections) ultrafilter is not provable in ZFC.

Theorem 1.18 If U is a countably incomplete ultrafilter over a nonempty set I, then the ultrapower $\prod_{U} \mathfrak{M}$ is ω -saturated, thus it is m-saturated. ²³

²³Lemma 2.73 in Blue Book .

Proof

This theorem is dependent on the language \mathcal{L}_1 and \mathcal{L}_{\Diamond} is countable. The detail can cf. p.384 of [Chang & Keisler 1990].

Subsection 1.6

Back to plotline

1.
$$\alpha(x)$$
 \mathfrak{M}, w \longleftrightarrow \mathfrak{N}, v 4. $\alpha(x)$

$$\equiv_{FOL}$$

$$\equiv_{FOL}$$
2. $\alpha(x)$ $\prod_{U} \mathfrak{M}, (f_w)_U \longleftrightarrow = \stackrel{\longleftrightarrow}{=} \prod_{U} \mathfrak{N}, (f_v)_U \ 3. \ \alpha(x)$

Recap

Again: the detour strategy

Let above U be a **countably incomplete ultrafilter**, that is ensure the ultrapower is ω -saturated, hence m-saturated.

Now we complete the proof.

Section 2

van Benthem Characterization Theorem: proof-2

- **Lemma 2.1** (**Detour Lemma**) ²⁴ Let \mathfrak{M} and \mathfrak{N} be two models with state w and v respectively. Then the following are equivalent:
- ²⁴Lemma 2.66 in Blue Book .

- (i) $\mathfrak{M}, w \longleftrightarrow \mathfrak{N}, v$. (ii) $\mathfrak{M}^{\mathfrak{ue}}, \pi_w \overset{.}{\hookrightarrow} \mathfrak{N}^{\mathfrak{ue}}, \pi_v$.
- (iii) There exist ω -saturated models \mathfrak{M}^*, w^* and \mathfrak{N}^*, v^* and elementary embeddings $f: \mathfrak{M} \leq \mathfrak{M}^*$ and $g: \mathfrak{N} \leq \mathfrak{N}^*$ such that
 - (a) $f(w) = w^*$ and $g(v) = v^*$,
 - (b) $\mathfrak{M}^*, w^* \leftrightarrow \mathfrak{N}^*, v^*$.

- (i) \Leftrightarrow (ii) It is just Theorem 2.62 in *Blue Book*.
- $(i) \Rightarrow (iii)$ Let

$$\mathfrak{M}^*, w^*$$
 be $\prod_U \mathfrak{M}, (f_w)_U$

and

$$\mathfrak{N}^*, v^*$$
 be $\prod_U \mathfrak{N}, (f_v)_U$

where U is a countably incomplete ultrafilter, by the argument in the previous section, then we have done.

- (iii) \Rightarrow (i) Trivially, since first-order satisfaction in invariant under elementary embeddings, so is for modal satisfaction.
- Theorem 2.2

(van Benthem Characterization Theorem) For any $\alpha(x) \in \mathcal{L}_1$. Then $\alpha(x)$ is invariant for bisimulations iff it is equivalent to $ST_x(\varphi)$ for a modal formula in $\varphi \in \mathcal{L}_{\diamondsuit}$.

Proof

Suppose $\alpha(x)$ is equivalent to $ST_x(\varphi)$ for some $\varphi \in \mathcal{L}_{\diamondsuit}$, \mathfrak{M}, w and \mathfrak{N}, v are two arbitrary pointed models with $\mathfrak{M}, w \leftrightarrow \mathfrak{N}, v$.

Clearly $\mathfrak{M}, w \Vdash \varphi \Leftrightarrow \mathfrak{N}, v \Vdash \varphi$. By Local Correspondence on Models, $\mathfrak{M} \models$ $ST_x(\varphi)[w] \Leftrightarrow \mathfrak{N} \models ST_x(\varphi)[v]$. Therefore $\alpha(x)$ is invariant for bisimulations.

$$\begin{array}{cccc} \mathfrak{M}, w \, \leftrightarrows \, \mathfrak{N}, v & \Rightarrow & \mathfrak{M}, w \Vdash \varphi \, \Leftrightarrow & \mathfrak{N}, v \Vdash \varphi \\ & & & \updownarrow & & \updownarrow \\ & & \mathfrak{M} \models ST_x(\varphi)[w] \, \Leftrightarrow & \mathfrak{N} \models ST_x(\varphi)[v] \end{array}$$

(proof sketch of Right-to-Left)

Assume that $\alpha(x)$ is invariant for bisimulations and consider the set of modal consequences of $\alpha(x)$:

$$MOC(\alpha(x)) = \{ST_x(\varphi) \in \mathcal{L}_1 \mid \varphi \in \mathcal{L}_{\diamondsuit} \text{ and } \alpha(x) \models ST_x(\varphi)\}.$$

Again, we have two claims:

Th 2.68 in Blue Book

²⁵this direction is so easy since

Summary 10

Claim 1: if $MOC(\alpha(x)) \models \alpha(x)$, then $\alpha(x)$ is equivalent to the standard translation of a modal formula.

Claim 2: $MOC(\alpha(x)) \models \alpha(x)$ indeed.

..... proof of Claim 1

Suppose $MOC(\alpha(x)) \models \alpha(x)$, by Compactness of FOL, there exists a *finite* subset X of $MOC(\alpha(x))$ such that $X \models \alpha(x)$. Hence $\models \bigwedge X \to \alpha(x)$, moreover, $\models \alpha(x) \to \bigwedge X$ (be the definition of $MOC(\alpha(x))$), thus $\models \alpha(x) \leftrightarrow \bigwedge X$. But $\bigwedge X$ is the standard translation of some modal formula, then Claim 1 is deserved.

......proof of Claim 2

Assume $\mathfrak{M} \models MOC(\alpha(x))[w]$, it suffices to show that $\mathfrak{M} \models \alpha(x)[w]$. Considering the modal theory Γ in \mathfrak{M}, w , that is:

$$\Gamma = Th(\mathfrak{M}, w) := \{ \varphi \in \mathcal{L}_{\Diamond} \mid \mathfrak{M}, w \Vdash \varphi \},\$$

let

$$ST_x(\Gamma) = \{ST_x(\varphi) \mid \varphi \in \Gamma\}.$$

It easy to check that, by compactness argument (in a similar way in the previous section, page 2), $ST_x(\Gamma) \cup \{\alpha(x)\}$ is satisfiable.

Suppose $\mathfrak{N} \models ST_x(\Gamma) \cup \{\alpha(x)\}[v]$ for some \mathfrak{N}, v . By local correspondence, $\mathfrak{N}, v \Vdash \Gamma$, thus $\mathfrak{M}, w \leadsto \mathfrak{N}, v$.

By Detour Lemma, for the ultrapowers $\prod_U \mathfrak{M}$ and $\prod_U \mathfrak{N}$ (*U* is a *countably in-complete* ultrafilter) of \mathfrak{M} and \mathfrak{N} respectively, we have

4.
$$\alpha(x)$$
 \mathfrak{M}, w $\Leftrightarrow \mathfrak{N}, v$ 1. $\alpha(x)$

$$\equiv_{FOL}$$

3.
$$\alpha(x)$$
 $\prod_U \mathfrak{M}, (f_w)_U \iff = \stackrel{\longleftrightarrow}{\longrightarrow} \prod_U \mathfrak{N}, (f_v)_U$ 2. $\alpha(x)$

The reason for \iff = \Leftrightarrow in above is that those two ultrapowers are ω -saturated, hence m-saturated. And \equiv_{FOL} since there are elementary embeddings (i.e. the *diagonal mapping*).

Since $\mathfrak{N} \models \alpha(x)[v]$, then by the assumption (that is $\alpha(x)$ is invariant under bisimulation) and along the path 1-2-3-4, we have $\mathfrak{M} \models \alpha(x)[w]$.

This proves the theorem.

Section 3

Summary

A summary of previous proofs:

Summary

- highly non-trivial and non-constructive.
- using heavy constructions w.r.t. FOL, not "modal" enough.
- using compactness of FOL.