Løsningsforslag prøveeksamen MAT1110 våren 2011

John Rognes

(1a) $\nabla f(x,y) = (4x - 4x^3, 2y)$ er lik (0,0) når $4x - 4x^3 = 4x(1-x^2) = 0$ og 2y = 0, dvs. for (x,y) = (-1,0), (0,0) og (1,0). Dette er de stasjonære punktene for f.

(1b) $Hf(x,y) = \begin{bmatrix} 4-12x^2 & 0 \\ 0 & 2 \end{bmatrix}$. I punktene $(\pm 1,0)$ har $Hf(\pm 1,0) = \begin{bmatrix} -8 & 0 \\ 0 & 2 \end{bmatrix}$ en positiv og en negativ egenverdi, så disse stasjonære punktene er sadelpunkter. I (0,0) har $Hf(0,0) = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ bare positive egenverdier, så (0,0) er et lokalt minimum.

(2a) Bruker polarkordinater, $(x,y)=(r\cos\theta,r\sin\theta)$ der $a\leq r\leq b$ og $0\leq\theta\leq 2\pi$:

$$\begin{split} \iint_A 2\sqrt{b^2 - x^2 - y^2} \, dx dy &= \int_0^{2\pi} \int_a^b 2\sqrt{b^2 - r^2} \cdot r \, dr d\theta \\ &= 2\pi \left[-\frac{2}{3} (b^2 - r^2)^{3/2} \right]_a^b = \frac{4\pi}{3} (b^2 - a^2)^{3/2} \, . \end{split}$$

(2b) Volumet er gitt ved integralet i (2a), hvor $2\sqrt{b^2-a^2}=6$ eller $(b^2-a^2)^{1/2}=3$, dvs. $\frac{4\pi}{3}3^3=36\pi$ kubikkcentimeter.

(3a) Matrisen $A=\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-1&2\end{bmatrix}$ har karakteristisk polynom $p_A(\lambda)=\det(\lambda I-A)=$

 $\det \begin{bmatrix} \lambda - 2 & 1 & 0 \\ 1 & \lambda - 2 & 1 \\ 0 & 1 & \lambda - 2 \end{bmatrix} = (\lambda - 2)^3 - 2(\lambda - 2) = (\lambda - 2)(\lambda^2 - 4\lambda + 2) \text{ med røtter } \lambda = 2 \text{ og } \lambda = (4 \pm \sqrt{16 - 8})/2 = 2 \pm \sqrt{2}.$ Egenverdiene til A er $\lambda_1 = 2 - \sqrt{2}$, $\lambda_2 = 2$ og $\lambda_3 = 2 + \sqrt{2}$.

(3b) En egenvektor $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ for $\lambda_1 = 2 - \sqrt{2}$ oppfyller $(\lambda_1 I - A)\vec{v} = \vec{0}$, med koeffisientmatrise

 $\begin{bmatrix} -\sqrt{2} & 1 & 0 \\ 1 & -\sqrt{2} & 1 \\ 0 & 1 & -\sqrt{2} \end{bmatrix} \sim \begin{bmatrix} -\sqrt{2} & 1 & 0 \\ 0 & 1 & -\sqrt{2} \\ 0 & 0 & 0 \end{bmatrix}. \text{ Med andre ord er } -\sqrt{2}x + y = 0 \text{ og } y - \sqrt{2}z = 0,$

så $\vec{v} = \begin{bmatrix} z \\ \sqrt{2}z \\ z \end{bmatrix} = z \begin{bmatrix} 1 \\ \sqrt{2} \\ 1 \end{bmatrix}$ for $z \neq 0$. En slik egenvektor er $\vec{v}_1 = \begin{bmatrix} 1 \\ \sqrt{2} \\ 1 \end{bmatrix}$.

En egenvektor $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ for $\lambda_2 = 2$ oppfyller $(\lambda_2 I - A)\vec{v} = \vec{0}$, med koeffisientmatrise

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \text{ Med andre ord er } x + z = 0 \text{ og } y = 0, \text{ så } \vec{v} = \begin{bmatrix} -z \\ 0 \\ z \end{bmatrix} = z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

for $z \neq 0$. En slik egenvektor er $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

En egenvektor $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ for $\lambda_3 = 2 - \sqrt{2}$ oppfyller $(\lambda_1 I - A)\vec{v} = \vec{0}$, med koeffisientmatrise $\begin{bmatrix} \sqrt{2} & 1 & 0 \\ 1 & \sqrt{2} & 1 \\ 0 & 1 & \sqrt{2} \end{bmatrix} \sim \begin{bmatrix} \sqrt{2} & 1 & 0 \\ 0 & 1 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix}$. Med andre ord er $\sqrt{2}x + y = 0$ og $y + \sqrt{2}z = 0$, så $\vec{v} = \begin{bmatrix} z \\ -\sqrt{2}z \\ z \end{bmatrix} = z \begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix}$ for $z \neq 0$. En slik egenvektor er $\vec{v}_3 = \begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix}$. Svar: $M = \begin{bmatrix} 1 & -1 & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 1 & 1 \end{bmatrix}$ og $D = \begin{bmatrix} 2 - \sqrt{2} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 + \sqrt{2} \end{bmatrix}$.

 $(3c) \; \text{Skriver} \; \vec{r_0} = c_1 \vec{v_1} + c_2 \vec{v_2} + c_3 \vec{v_3} \; \text{som en lineærkombinasjon av egenvektorer.} \; \text{Da må} \; M\vec{c} = \vec{r_0}, \; \text{der} \; \vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}. \; \text{Radreduserer den utvidede matrisen} \; \begin{bmatrix} 1 & -1 & 1 & 2 \\ \sqrt{2} & 0 & -\sqrt{2} & 0 \\ 1 & 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \; \text{og får} \; \vec{c} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \; \text{så} \; \vec{r_0} = \vec{v_1} + \vec{v_3}.$

 $\text{Da er } \vec{r_n} = M \vec{c_n} \text{ der } \vec{c_n} = D^n \vec{c_0} = \begin{bmatrix} (2 - \sqrt{2})^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (2 - \sqrt{2})^n \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} (2 - \sqrt{2})^n \\ 0 \\ (2 + \sqrt{2})^n \end{bmatrix}. \text{ Altså}$ er $\vec{r_n} = \begin{bmatrix} 1 & -1 & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} (2 - \sqrt{2})^n \\ 0 \\ (2 + \sqrt{2})^n \end{bmatrix} \text{ lik}$

$$\vec{r}_n = \begin{bmatrix} (2 - \sqrt{2})^n + (2 + \sqrt{2})^n \\ \sqrt{2}(2 - \sqrt{2})^n - \sqrt{2}(2 + \sqrt{2})^n \\ (2 - \sqrt{2})^n + (2 + \sqrt{2})^n \end{bmatrix}.$$

(3d) Her er $\vec{x}_n = \begin{bmatrix} (\frac{2-\sqrt{2}}{2+\sqrt{2}})^n + 1\\ \sqrt{2}(\frac{2-\sqrt{2}}{2+\sqrt{2}})^n - \sqrt{2}\\ (\frac{2-\sqrt{2}}{2+\sqrt{2}})^n + 1 \end{bmatrix}$. Siden $|\frac{2-\sqrt{2}}{2+\sqrt{2}}| < 1$ går $(\frac{2-\sqrt{2}}{2+\sqrt{2}})^n \to 0$ når $n \to \infty$, så

$$\vec{x}_n \to \begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix}$$
 når $n \to \infty$.

(4a)
$$\vec{F}'(x,y) = \begin{bmatrix} \frac{y}{x} & \ln x \\ \ln y & \frac{x}{y} \end{bmatrix}$$
.

(4b) Det er tilstrekkelig at $\vec{F}'(\vec{p})$ er invertibel.

(4c) For
$$\vec{p} = (2, 1)$$
 er $\vec{F}'(2, 1) = \begin{bmatrix} \frac{1}{2} & \ln 2 \\ 0 & 2 \end{bmatrix}$ (siden $\ln 1 = 0$). Determinanten er $\frac{1}{2} \cdot 2 = 1 \neq 0$,

så $\vec{F}'(2,1)$ er invertibel. Jacobi-matrisen til den omvendte funksjonen er den inverse matrisen

$$\vec{G}'(\vec{q}) = \vec{F}'(\vec{p})^{-1} = \begin{bmatrix} \frac{1}{2} & \ln 2 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -\ln 2 \\ 0 & \frac{1}{2} \end{bmatrix}$$
.