Теоретические задачи из задания 1 по курсу «Машинное обучение»

Александр Князев

February 27, 2017

Задача (1). Покажите, что если в наивном байесовском классификаторе классы имеют одинаковые априорные вероятности, а плотность распределения признаков в каждом классе имеет вид $P(x^{(k)}|y)=\frac{1}{2\pi\sigma^2}e^{-\frac{(x^{(k)}-\mu_y)^2}{2\sigma^2}}, x^{(k)}, k=1...n-$ признаки объекта x классификация сводится к отнесению объекта x к классу y, центр которого μ_y ближе всего к x.

Решение.

 $y_{map} = argmax_{y \in Y}(P(y) \cdot \prod_{i=1}^{n} P(x^{(k)}|y)) = argmax_{y \in Y}[log(P(y) \cdot \prod_{i=1}^{n} P(x^{(k)}|y))] = argmax_{y \in Y}[logP(y) + \sum_{i=1}^{n} logP(x^{(k)}|y)] =$ | выкидываем отсюда logP(y) так как по условию все априорные вероятности равны| = $argmax_{y \in Y}[\sum_{i=1}^{n}logP(x^{(k)}|y)] = argmax_{y \in Y}\sum_{i=1}^{n}[-\frac{(x^{(k)}-\mu_{y})^{2}}{2\sigma^{2}}] = argmin_{y \in Y}\sum_{i=1}^{n}[\frac{(x^{(k)}-\mu_{y})^{2}}{2\sigma^{2}}] = argmin_{y \in Y}\sum_{i=1}^{n}(x^{(k)}-\mu_{y})^{2}$ Последнее выражению и обозначает, что объект x будет отнесен к тому классу, центр которого ближе всего к нему.

Задача (2). Покажите, что «треугольный ROC-AUC» (см.лекцию 2) в случае, когда классификатор дает случайные ответы -a(x)=1 с вероятностью p и a(x)=0 с вероятностью 1 - р, будет в среднем равен 0.5, независимо от р и доли класса 1 в обучающей выборке.

Решение.

Первый вариант решения.

a(x) = I[b(x) > t], где t - порог, b(x) - какая-то функция, ставящая в соответствие объекту вероятность принятия ею значения 1, а a(x) - наше предсказание.

Так как ответы случайны, то значение b(x) - не зависит от x.

Вспомним, что по смыслу площадь под кривой ROC-AUC равна вероятности того, что случайно выбранный объекта класса 1 получит оценку принадлежности к классу 1 (то есть значение b(x)) выше, чем случайно выбранный объект класса 0.

В силу случайности ответов, для двух произвольных объектов вероятность, что значение b(x) у первого больше, чем это значение у второго, равна вероятности, что значение b(x) у второго больше, чем это значение у первого. То есть эти вероятности равны 0.5.

Таким образов, из смысла площади под кривой, мы понимаем, что в среднем она будет равна 0.5. И не зависит от р и доли класса 1 в обучающей выборке

Второй вариант.

Треугольный ROC-AUC определяется одной точкой. Найдем положение этой точки. Для этого нужно определить $\frac{TPR}{FPR}$.

Пусть n - доля элементов первого класса. Так как ответы случайны, то

ТРR =
$$\frac{TP}{TP+FN}$$
 = $\frac{\text{верные срабатывания}}{\text{размер класса }1}$ = $\frac{n \cdot p}{n}$ = p .

FPR = $\frac{FP}{FP+TN}$ = $\frac{\text{ложные срабатывания}}{\text{размер класса }0}$ = $\frac{(1-n) \cdot p}{1-n}$ = p .

То есть $\frac{TPR}{FPR}$ = 1, точка лежит на диагонали, площадь под кривой равна в среднем 0.5

Задача (3). Утверждается, что метод одного ближайшего соседа асимптотически (при условии, что максимальное по всем точкам выборки расстояние до ближайшего соседа стремится к нулю) имеет матожидание ошибки не более чем вдвое больше по сравнению с оптимальным байесовским классификатором (который это матожидание

Покажите это, рассмотрев задачу бинарной классификации. Достаточно рассмотреть вероятность ошибки на фиксированном объекте $x,\ m.к.$ матожидание ошибок на выборке размера V будет просто произведением V на эту вероятность. Байесовский классификатор ошибается на объекте х с вероятностью:

$$E_B = min(P(1|x), P(0|x))$$

Условные вероятности будем считать непрерывными функциями от $x \in R^m$, чтобы иметь возможность делать предельные переходы. Метод ближайшего соседа ошибается с вероятностью:

$$E_N = P(y \neq y_n)$$

3десь y - настоящий класс x, а y_n - класс ближайшего соседа x_n к объекту x в предположении, что в обучающей выборке n объектов, равномерно заполняющих пространство.

Докажите исходное утверждение, выписав выражение для E_N (принадлежность к классам 0 и 1 для объектов x и x_n считать независимыми событиями) и осуществив предельный переход по n.

Решение.

Расписываем, используя условие, что принадлежность к классам 0 и 1 для объектов x и x_n независимые события.

$$E_N = P(y \neq y_n) = P(y = 0, y_n = 1) + P(y = 1, y_n = 0) = P(0|x) \cdot P(1|x_n) + P(1|x) \cdot P(0|x_n)$$

При $n \to \infty$ $x_n \to x$, и в силу непрерывности получаем:

$$E_N = P(y \neq y_n) \approx P(0|x) \cdot P(1|x) + P(1|x) \cdot P(0|x) = 2P(0|x) \cdot P(1|x)$$

Используя, что $E_B = min(P(1|x), P(0|x))$, получаем что:

$$E_N \approx 2P(0|x) \cdot P(1|x) = 2(1 - E_B)(E_B) \le 2E_B.$$

Что и требовалось доказать.