problem statement

a real esate agent want help to predict the house price for regions in USA. he gave us the daataset to work on to use liner regression model create a model that help him to estimate of what the house would sell sell for

DATA COLLECTIN

In [1]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

a=pd.read_csv(r"C:\Users\user\Downloads\10_USA_Housing.csv")
a

Out[2]:

	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael 674\nLaur	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johns Suite C Kathle	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Stravenue∖nDa W	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymo	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
USNS Willia AP 30	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC (8489\nAPO <i>F</i>	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Trac Suite 076∖nJo	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 Georç Apt. 509\nE	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

5000 rows × 7 columns

DATA CLEANING AND PRE-

```
In [4]:
```

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [7]:

```
# to display summary of statastic
a.describe()
```

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [11]:

```
# to display colum heading
a.columns
```

Out[11]:

EDA and VISUALIZATION

In [12]:

sns.pairplot(a)

Out[12]:

<seaborn.axisgrid.PairGrid at 0x237911459d0>

In [14]:

sns.displot(a["Price"])

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x23793ed6b50>

In [15]:

In [18]:

```
sns.heatmap(b.corr())
```

Out[18]:

<AxesSubplot:>

id train the model-model bulding

we are going to train liner hegression model; we to split out data into two variable x and y where x is independent variable (input) and y is depending on x(output) we could ignore address column as it is not required for our model

In [21]:

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [26]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[26]:

LinearRegression()

In [28]:

```
lr.intercept_
```

Out[28]:

-2628316.2526118616

In [31]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[31]:

	Co-efficient
Avg. Area Income	21.590609
Avg. Area House Age	166192.278504
Avg. Area Number of Rooms	119202.096364
Avg. Area Number of Bedrooms	2972.498223
Area Population	14.975198

In [34]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[34]:

<matplotlib.collections.PathCollection at 0x23795c74910>

In [35]:	
<pre>lr.score(x_test,y_test)</pre>	
Out[35]:	
0.9209554669633928	
In []:	