Logistic Regression Project Report

Heart Disease

By

Roger Swartz

Logistic Regression: Speaks to the need to assign the likelihood of an event especially when there is no clear individual causal factor, but multiple independent variables associated with the likelihood of an event.

Gathered Extensive Variables on Patient Data to Run a Logistic Regression for Heart Disease:

The data have 270 rows and 14 columns column names: **Further Detail** age_yr resting_BP_mm_Hg age_yr choleterol mg dl sex M F fasting blood sugar high max HR chest_pain_value exercise angina resting_BP_mm_Hg ST_depresssion_exercise number_vessels_involved cholesterol_mg_dl heart disease sex_M_F 0 fasting_blood_sugar_high sex M F 1 chest_pain_value_1 ECG value chest_pain_value_2 max_HR chest_pain_value_3 chest pain value 4 exercise_angina ECG_value 0 ECG value 1 ST_depresssion_exercise ECG_value_2 ST_slope_peak_1 ST_slope_peak ST slope peak 2 number_vessels_involved ST_slope_peak_3 defect_diag_3 defect_diag defect diag 6 defect_diag_7 heart_disease

Purpose

- Develop a Logistic Regression to Predict the Likelihood of Heart Disease
- Accomplish this with an extensive number of health indicators.
- Use both quantitative variables and categorical variables
- Use all features to build the Logistic Regression Model.
- Use Machine Learning Methods to Maximize the performance of the Logistic Regression
- Evaluate with a Confusion Matrix.
- Develop a Probability Classifier for Resting Blood Pressure (mm Hg) vs. Cholesterol Level (mg/dl)

The Model Building Cycle Using Linear Classifiers

- (a) train/test split
- (b) create an object of the class associated with the algorithm to be used--in this case LogisticRegression
- (c) build an actual model using the "fit" method from the class (applied to the training set)
- (d) predict with the built model using the "predict" method from the class (training set and test set)
- (e) compute performance metrics (in this case, accuracy) for the training and test predictions

```
LogisticRegression
LogisticRegression(C=1000, max_iter=500, solver='liblinear')
```

```
▼ LogisticRegression

LogisticRegression(max_iter=500, solver='newton-cg')
```

The Model Building Cycle Using Linear Classifiers

```
LogisticRegression
LogisticRegression(C=1000, max_iter=500, solver='liblinear')
```

```
print("Classification Report for Training Data")
print(classification_report(ytrain, classifier.predict(Xtrain))
Classification Report for Training Data
              precision
                           recall f1-score
                                              support
           0
                   0.61
                             0.78
                                       0.68
                                                  117
                   0.61
                             0.40
                                       0.48
                                                   99
                                       0.61
                                                  216
    accuracy
                   0.61
                             0.59
                                       0.58
                                                  216
   macro avg
weighted avg
                   0.61
                             0.61
                                       0.59
                                                  216
print("Classification Report for Test Data")
print(classification_report(ytest, classifier.predict(Xtest)))
Classification Report for Test Data
                           recall f1-score support
              precision
                   0.63
                             0.82
                                       0.71
                                                    33
                   0.45
                             0.24
                                       0.31
                                                    21
                                       0.59
                                                    54
    accuracy
                   0.54
                             0.53
                                       0.51
                                                    54
   macro avg
                   0.56
weighted avg
                             0.59
                                       0.56
                                                    54
```

```
▼ LogisticRegression

LogisticRegression(max_iter=500, solver='newton-cg')
```

Confusion Matrix for newton-cg linear classifier

Discovering an Optimal C Value (Regularization Parameter) for newton-cg linear Classifier

[Training Acc	uracy for C=: precision		f1-score	support	
0 1	0.88 0.88	0.91 0.84	0.89 0.86	112 90	
accuracy macro avg weighted avg	0.88 0.88	0.88 0.88	0.88 0.88 0.88	202 202 202	

[Training Acc	uracy for C= precision		f1-score	support
0 1	0.89 0.91	0.93 0.86	0.91 0.88	112 90
accuracy macro avg weighted avg	0.90 0.90	0.89 0.90	0.90 0.89 0.90	202 202 202

Reasonably Consistent Model Performance newton-cg linear classifier

for

Computed Decision Boundary: Cholesterol Level (mg/dl) VS Resting Blood Pressure (mm Hg) Red: Heart Disease | Blue: No Heart Disease

Circles: Training Set | Squares: Testing Set

Probability Classifier for Resting Blood Pressure (mm Hg) vs. Cholesterol Level (mg/dl)

Sigmoidal Like Partial Dependence Plots Generated by SVM Classifier

