

Exercise 10A

Question 22:

Given: ABCDE is a pentagon. EG, drawn parallel to DA, meets BA produced at G, and CF, drawn parallel to DB, meets AB produced at F.

To Prove: $ar(Pentagon ABCDE) = ar(\Delta DGF)$

Proof:

Triangles on the same base and between the same parallels are equal in area.

Since $\Delta\, \text{DGA}$ and $\Delta\, \text{AED}$ have same base AD and lie between parallel lines AD and EG

 $\therefore \operatorname{ar}(\Delta \operatorname{DGA}) = \operatorname{ar}(\Delta \operatorname{AED})....(1)$

Similarly, Δ DBC and Δ BFD have same baseDB and lie between parallel lines BD and CF.

 $\Rightarrow ar(\Delta DBF) = ar(\Delta DBC)....(2)$

Adding both the sides of the equations (1) and (2), we have

 \therefore ar(\triangle DGA)+ ar(\triangle DBF)=ar(\triangle AED)+ar(\triangle BCD)

Adding $ar(\Delta ABD)$ to both sides, we get,

 $ar(\Delta DGA) + ar(\Delta DBF) + ar(\Delta ABD)$

 $= ar(\Delta AED) + ar(\Delta BCD) + ar(\Delta ABD)$

 \therefore ar (\triangle DGA) = ar (pentagon ABCDE)

******* END ******