POWER EXAMPLES

1) Single sample *t*-test (assume variance is known) – you can do this in the applet, or Stata, or both

H ₀ :	H ₁ :	σ	α	n	1-sided	Power	Pr(Type II
					or 2		error)
μ=100	μ=105	15	0.05	25	1-sided +		
μ=100	μ=105	15	0.05	35	1-sided +		
μ=100	μ=105	15	0.05	50	1-sided +		
μ=100	μ=105	15	0.05	50	2-sided		
μ=100	μ=110	15	0.05	25	1-sided +		
μ=100	μ=110	15	0.05	35	1-sided +		
μ=100	μ=110	15	0.05	50	1-sided +		
μ=100	μ=110	15	0.05	50	1-sided -		
μ=100	μ=103	15	0.05	20	1-sided +		
μ=100	μ=103	15	0.05	40	1-sided +		
μ=100	μ=103	15	0.05	60	1-sided +		
μ=100	μ=103	15	0.05	80	1-sided +		
μ=100	μ=103	15	0.05	160	1-sided +		

2) Single sample *t*-test (assume variance is known) minimum required sample size – use Stata's power calculator

H ₀ :	H ₁ :	σ	α	n	1-sided	Power	Pr(Type II
					or 2		error)
μ=100	μ=105	15	0.05		1-sided +	0.80	0.20
μ=100	μ=105	15	0.05		1-sided +	0.90	0.10
μ=100	μ=107	15	0.05		1-sided +	0.80	0.20
μ=100	μ=103	15	0.05		1-sided +	0.80	0.20
μ=100	μ=105	20	0.05		1-sided +	0.80	0.20
μ=100	μ=105	20	0.05		1-sided +	0.90	0.10

3) Single sample *t*-test (assume variance is known) minimum detectable effect size – use Stata's power calculator

H ₀ :	H ₁ :	σ	α	n	1-sided	Power	Pr(Type II
					or 2		error)
μ=100		15	0.05	25	1-sided +	0.80	0.20
μ=100		15	0.05	35	1-sided +	0.90	0.10
μ=100		15	0.05	50	1-sided +	0.80	0.20
μ=100		15	0.05	50	2-sided	0.80	0.20

4) NY voucher data

- a. Open the dataset on Github called nyvoucher.dta
- b. Conduct a *t*-test for the difference in mean post-test score (voucher recipients vs. non-voucher recipients).
- c. Do the same thing using regression with a single regressor.
- d. Now add the pre-test score as a covariate to the regression in (c). How does the coefficient compare? How does the standard error compare?
- e. How (qualitatively) does statistical power compare in the part (d) regression as compared to the part (c) regression?