DISC Course: Nonlinear Control Systems

Assignment 1

Hai Zhu

Delft University of Technology

h.zhu@tudelft.nl

Monday 5 February 2018

Exercise 1 (4.15 from [1]): Consider the system

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -h_1(x_1) - x_2 - h_2(x_3), \quad \dot{x}_3 = x_2 - x_3$$

where h_1 and h_2 are locally Lipschitz functions (we need h_2 to be at least Lipschitz at 0) that satisfy $h_i(0) = 0$ and $yh_i(y) > 0$ for all $y \neq 0$.

- (a) Show that the system has a unique equilibrium point at the origin.
- (b) Show that $V(x) = \int_0^{x_1} h_1(y) dy + x_2^2/2 + \int_0^{x_3} h_2(y) dy$ is positive definite for all $x \in \mathbb{R}^3$.
- (c) Show that the origin is asymptotically stable.
- (d) Under what conditions on h_1 and h_2 , can you show that the origin is globally asymptotically stable.

Solution: (a) Assume $\bar{x} = [\bar{x}_1, \bar{x}_2, \bar{x}_3]^T$ is an equilibrium point of the system. According to the definition of equilibrium points, we have

$$\bar{x}_2 = 0 \tag{1a}$$

$$-h_1(\bar{x}_1) - \bar{x}_2 - h_2(\bar{x}_3) = 0$$
 (1b)

$$\bar{x}_2 - \bar{x}_3 = 0 \tag{1c}$$

This results $\bar{x}_2 = 0$, $\bar{x}_3 = 0$ and $h_1(\bar{x}_1) = -h_2(0) = 0$. Since $yh_i(y) > 0$ for all $y \neq 0$, we have $h_i(y) \neq 0$ for all $y \neq 0$. Therefore, $h_1(\bar{x}_1) = 0 \Rightarrow \bar{x}_1 = 0$. Hence, the system has a unique equilibrium point at the origin, i.e., $[\bar{x}_1, \bar{x}_2, \bar{x}_3]^T = [0, 0, 0]^T$.

(b) To show that V(x) is positive definite for all $x \in \mathbb{R}^3$, we need to show

$$V(0) = 0 (2a)$$

$$V(x) > 0, \quad \forall x \in \mathbb{R}^3, x \neq 0$$
 (2b)

For the first condition, it is trivial that V(0)=0. For the second condition, notice that V(x) is a sum of three non-negative terms, thus we have $V(x)\geq 0$. Furthermore, since $yh_i(y)>0$ for all $y\neq 0$, the two integral terms $\int_0^{x_1}h_1(y)dy$ and $\int_0^{x_3}h_2(y)dy$ equals to 0

only at $x_1 = 0$ and $x_3 = 0$, respectively. Besides, the term $x_2^2/2$ equals to 0 only at $x_2 = 0$ as well. Thus, we have $V(x) = 0 \Rightarrow x = 0$, which gives that $V(x) > 0, \forall x \in \mathbb{R}^3, x \neq 0$. Hence, V(x) is positive definite for all $x \in \mathbb{R}^3$.

(c) Taking V(x) the Lyapunov function candidate, from (b) we show that V(x) is positive definite. This is equivalent to the existence of $\alpha_1, \alpha_2 \in \mathcal{K}$ such that

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$$
 (3)

Furthermore, since h_2 is locally Lipschitz functions, there exists a constant $L_2 > 0$ and a domain $D_2 \subset \mathbb{R}^3$ such that

$$||h_2(x) - h_2(y)|| \le L_2 ||x - y||, \forall x, y \in \mathcal{B}_r(x_0), \forall x_0 \in D_2$$
(4)

Letting x = 0 in the above equations and $L = \max\{L_2, 1\}$, we have $||h_2(y)|| \le L ||y||$. Thus we have

$$\frac{\partial V}{\partial x}f(x) = h_1(x_1)\dot{x}_2 + x_2\dot{x}_2 + h_3(x_3)\dot{x}_3
= h_1(x_1)x_2 + x_2(-h_1(x_1) - x_2 - h_2(x_3)) + h_3(x_3)(x_2 - x_3)
= -x_2^2 - x_3h_2(x_3)
\le -Lx^2
\le -\alpha_3(||x||)$$
(5)

with $\alpha_3(r) = Lr^2 \in \mathcal{K}$. Hence, the origin is (locally) asymptotically stable.

(d) Note that we already have $\alpha_3 \in \mathcal{K}$. To show that the origin is globally asymptotically stable, we need $\alpha_1,\alpha_2 \in \mathcal{K}_{\infty}$. That is, V(x) should be radially unbounded. Hence, the two integral terms $\int_0^{x_1} h_1(y) dy$ and $\int_0^{x_3} h_2(y) dy$ should tend to infinity $x_1 \to \infty$ and $x_3 \to \infty$ respectively. To conclude, the conditions on h_1 and h_2 are

$$\lim_{y \to \infty} \int_0^y h_i(y) dy = \infty, \quad i = 1, 2$$
 (6)

Exercise 2 (4.21 from [1]): A gradient system is a dynamical system of the form $\dot{x} = -\nabla V(x)$, where $\nabla V(x) = [\partial V/\partial x]^T$ and $V: D \subset \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable.

- (a) Show that $\dot{V}(x) \leq 0$ for all $x \in D$, and $\dot{V}(x) = 0$ if and only if x is an equilibrium point.
- (b) Take $D=\mathbb{R}^n$. Suppose the set $\Omega_c=\{x\in\mathbb{R}^n|V(x)\leq c\}$ is compact for every $c\in\mathbb{R}$. Show that every solution of the system is defined for all $t\geq 0$.
- (c) Continuing with part (b), suppose $\nabla V(x) \neq 0$, except for a finite number of points p_1, \ldots, p_r . Show that for every solution x(t), $\lim_{t \to \inf} x(t)$ exits and equals to one of the points p_1, \ldots, p_r .

Solution: (a) According to the definition, we have

$$\dot{V}(x) = \frac{\partial V}{\partial x}\dot{x} = -(\nabla V)^T(\nabla V) \le 0 \tag{7}$$

Thus

$$\dot{V}(x) = 0 \iff \nabla V = 0 \iff \dot{x} = 0 \tag{8}$$

Hence, $\dot{V}(x) = 0$ if and only if x is an equilibrium point.

(b) Denote $\dot{x} = f(x)$. Since V(x) is twice continuously differentiable in $D = \mathbb{R}^n$, we have

$$\frac{\partial f(x)}{\partial x} = -\frac{\partial^2 V}{\partial x} \tag{9}$$

is continuous in \mathbb{R}^n . Thus, f(x) is locally Lipschitz in \mathbb{R}^n . Further, for every solution $x_0 \in \Omega_c$, since $\dot{V}(x) \leq 0$ in $D = \mathbb{R}^n$, we have $V(x) \leq V(x_0) \leq c$. That is, V(x) lies in the same compact Ω_c . Hence, according to Theorem 3.3 in [1], there is a unique solution that is defined for all $t \geq 0$.

(c) Combining the results in (b) with LaSalle's invariance principle, x(t) approaches $M=\{p_1,\ldots,p_r\}$ as $t\to\infty$. That is, given $\varepsilon>0$, there exists a sequence $\{t_k\}$ such that $t_k\to\infty$ as $k\to\infty$ and $x(t_k)\in N(p,2\varepsilon)$, where $p\in M$. Since ε can be sufficiently small in the statement and p_1,\ldots,p_r are isolated points, it implies that x(t) approaches p as $t\to\infty$ for some $p\in M$.

Exercise 3 (4.25 from [1]): Consider the linear system $\dot{x} = Ax + Bu$, where (A, B) is controllable. Let $W = \int_0^\tau e^{-At}BB^Te^{-A^Tt}dt$ for some $\tau > 0$. Show that W is positive definite and let $K = B^TW^{-1}$. Use $V(x) = x^TW^{-1}x$ as a Lyapunov function candidate for the system $\dot{x} = (A - BK)x$ to show that (A - BK) is Hurwitz.

Solution: (a) The controllability Gramian of the linear system is defined as

$$W_c = \int_0^\tau e^{At} B B^T e^{A^T t} dt \tag{10}$$

for some $\tau > 0$. Since the pair (A, B) is controllable, according to Theorem 6.1 in [2], W_c is positive definite. Define $\xi = \tau - t$, then we have

$$W_{c} = \int_{\xi=\tau}^{0} e^{A(\tau-\xi)} B B^{T} e^{A^{T}(\tau-\xi)} (-d\xi)$$

$$= \int_{0}^{\tau} e^{A\tau} e^{-A\xi} B B^{T} e^{-A^{T}\xi} e^{A^{T}\tau} d\xi$$

$$= e^{A\tau} W e^{A^{T}\tau}$$
(11)

Hence, $W=e^{-A\tau}W_ce^{-A^T\tau}$ is positive definite.

(b) To show (A - BK) is Hurwitz, we need to show that all eigenvalues of (A - BK) satisfy $\text{Re}[\lambda] < 0$, or equivalently, to show that the origin of the system $\dot{x} = (A - BK)x$ is asymptotically stable.

Note that

$$AW + WA^{T} = \int_{0}^{\tau} \{Ae^{-At}BB^{T}e^{-A^{T}t} + e^{-At}BB^{T}e^{-A^{T}t}A^{T}\}dt$$

$$= \int_{0}^{\tau} \frac{d}{dt} \{-e^{-At}BB^{T}e^{-A^{T}t}\}dt$$

$$= -e^{-A\tau}BB^{T}e^{-A^{T}\tau} + BB^{T}$$
(12)

Thus,

$$(A - BK)W + W(A - BK)^{T} = AW + WA^{T} - BKW - WK^{T}B^{T}$$

$$= AW + WA^{T} - 2BB^{T}$$

$$= -e^{-A\tau}BB^{T}e^{-A^{T}\tau} - BB^{T}$$
(13)

Use $V(x) = x^T W^{-1}x$ as a Lyapunov function, we have

$$\dot{V}(x) = x^{T} (A - BK)^{T} W^{-1} x + x^{T} W^{-1} (A - BK) x
= x^{T} [(A - BK)^{T} W^{-1} + W^{-1} (A - BK)] x
= x^{T} W^{-1} [(A - BK) W + W (A - BK)^{T}] W^{-1} x
= -x^{T} W^{-1} (e^{-A\tau} BB^{T} e^{-A^{T}\tau} + BB^{T}) W^{-1} x$$
(14)

Since W is positive definite, W^{-1} is also positive definite. Let $G = W^{-1}(e^{-A\tau}BB^Te^{-A^T\tau}+BB^T)W^{-1}$. Since the pair (A,B) is controllable, it is trivial that BB^T is definite positive. Thus, the matrix G is positive definite. Hence, we have

$$\dot{V}(x) = -x^T G x < 0, \quad \forall x \neq 0$$
 (15)

Therefore, the origin of the system $\dot{x} = (A - BK)x$ is asymptotically stable. Hence, the matrix (A - BK) is Hurwitz.

References

- [1] H.K. Khalil. *Nonlinear systems*. Prentice Hall, Upper Saddle River, USA, third edition, 2002.
- [2] C.T. Chen. *Linear system theory and design*. Oxford University Press, Inc., USA, 1998.