UNCLASSIFIED

AD 437885

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

MATERIAL - EVALUATION - CHARPY IMPACT STRENGTH

D6AC AND 4330-V STEEL ALLOY

Published and distributed under Contract No. AF33(657)-11214, Air Force Materials Laboratory, Aeronautical Systems Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

GENERAL DYNAMICS FORT WORTH

19990413010

WRAL DYNAMICS/FORT WORTH

TEST DATA MEMORANDUM

PTDM NO.	3135	
MODEL	F-111	
	30-2890	

TEST: MATERIAL - EVALUATION - CHARPY IMPACT STRENGTH DEAC AND 4330-V STEEL ALLOY

OBJECT: Determine the Charpy impact strength of D6ac and 4330-V alloy steel at R.T. and -65°F.

PROCEDURE: Eighteen specimens were prepared for Charpy "V" notch impact tests per drawing FTJ-10940-100 shown as Figure 1. The material for the six "A" series 4330-V specimens came from a T2-V configuration forging. These specimens, representing the longitudinal direction, were taken from a 2-1/4" diameter section which protruded from the forging proper. This forging was of lower carbon content, approximately .30C, and was given a double draw at 500°F to obtain a hardness of between 45.5 and 46 Rc.

The "B" series 4330-V specimens were taken from the grip section of fracture toughness specimen number 4-22 tested under test 30-2618. The specimens represent the long transverse direction of a 4" x 12" forged The "H" series D6ac specimens were taken from 4" x 12" billet "DB", reference test 30-2682. These specimens represent the long transverse direction of the billet. In heat treating, the specimens were given the 950°F shelving treatment. All specimens were ground to the finished configuration after heat treatment. The ground notches were polished with a rotating wire and silicon carbide slurry after grinding. After polishing, the specimens were stress-relieved at 400°F for 2 hours. Testing was conducted on a Riehle Model P1-2 impact testing machine using the 60 foot-pound range. A mixture of M.E.K. and dry ice was maintained between -68 and -70°F to cool the specimens prior to test.

RESULTS: The test results are given in Table I.

DISCUSSION: The specimens tested under this test program were ground to the correct dimensions. The thickness at the base of the specimen notches was within 1.001" on the .3.5" dimension and the notch radius was .010"

Specimens machined from the failed 4330-V fracture toughness specimens had low impact strengths. The average value of 8 foot-pounds is in agreement with the results obtained under test 30-2752. The 4330-V specimens machined from the T2-V forging protrudance had high impact strengths, averaging better than 15 foot-pounds at both R.T. and -65°F. This protrudance received a considerable amount of hot working which probably explains the very high R.T. impact values. Specimens machined from the D6ac billet also averaged better than 15 foot-pounds impact strength at both R.T. and -65°F. One-third the -65°F test values were below 15 foot-pounds for both the D6ac billet and 4330-V T2-V forging specimens. Increasing the specimen thickness at the base of the notch from .295" (Ref. 30-2752) to .315" increase both the R.T. and -65°F impact strength of the Doac by about 2 foot-pounds.

CONCLUSIONS: Both the well forged 4330-V (longitudinal direction) and Doac billet material (long-transverse direction) exceeded an average of 15 foot-pounds Charpy "V" notch impact strength at R.T. and -65°F.

DATE: 2 July 1963 *Reference FTDM 3130 submitted by AF33(657)-11214.

JM. APPROVED B. J. Bales.

CONVAIR—FORT WORTH
TABULATION SHEET

TABLE I - CHARPY "V" NOTCH IMPACT TEST RESULTS.

											The second secon												A Company of the Comp	1 1	1mpact strength	temper the "A"	heat treating,	tempering range,		led_out	strength to	31	35	,
	TEMP	2Hr.+2Hr		500°F						625 F				1023 F											steel has a lower 1			n this		of the tempering ra	ultimate tensile s			
- ⊩	Ava. Ava. R.T65F					25.3			16.2			8,0				0'8						16.3			SAE 4330-V s	range	ss measur	tempered at 500°F		the middle o	41	strength.		
	ST IMPACT	.e.		T. 25.0		27.0	65F 15.4	12.2	. 20.9	65 F 8.2	89.5	7.7		 - -	3.67	\dashv	65'F 14.8	17.3	18.4	/4.5	16.2	8.91			itcated that	1 blue brittle)	based on hardness	were		which is in	temperature t	in impact		+
ABLE 1	, ,	7	+	45.8 219. R.			Ĭ	-	-	46.0 221 -				48.3 239 R)-								(FIDM-3130) Indicated	600°F (so called	-	Ě	higher impact strengths are obtained.	The Doac was tembered at 1025 PF	at a higher t	ed an increas		
SHEET	3	ш		4-1 45	F- 4	\ 	+	4-A	A-6	B-1 40	2 3-2	h-8 ×		\dashv	5.H	01-H	2-H	H-3	H-H	7-H	H-7	H-8			testing	in the 6	ens in t	t possible a	et strengths	ac was tember	. Tempering	have caus		
TABULATION				1530-7	a	LA -V FORGINGS	LONG. DIRECTION			SERIES B.	1 6	L.T. DIRECTION	Dloac.	SERIES "H"	4x12 BILLET	L.T. DIRECTION									Previous	when tempered	series speci	this was not possible	higher impac	The D6	1n PPS-1029.	220 ks1 would		

NOTES:

- 1. Unless otherwise specified tolerances are as follows: Linear dimensions .xx ≠ .03 .xxx ≠ .010 Angular dimensions $- \neq 0^{\circ} - 30^{\circ}$ 2. Material to be as specified.
- 3. Grain direction to be longitudinal waters otherwise specified.
 4. Finish 32/all over.

Figure 1

1			,
DRAWM	BATE	IMPACT TEST SPECIMEN	FTJ-10040 -100
CHECKED			Scale-Double
ING.		V NOTCH Charpy	
PROJECT		CONSOLIDATED VULTER AIRCRAFT CORPORATION FORT WORTH DIVISION - FORT WORTH, TIXAS	and the second state of the second se

er mib;