

MA/NA2311 Cálculo Numérico

Exercícios de interpolação polinomial

1) Considere a função da pela tabela

x	0	1	2	3	
f(x)	0	0	0	0	

e o polinômio p(x) = x(x-1)(x-2)(x-3).

- a) Verifique que $p(x_i) = f(x_i)$;
- b) p(x) é o polinômio interpolador de f(x)?
- 2) Considere a função f(x) = sen(x) tabelada abaixo:

x	1,3	1,4	1,5	1,6
sen(x)	0,9636	0,9854	0,9975	0,9996

calcular um valor aproximado para sen(1,45) e um limitante superior para o erro de truncamento. (Resp: $sen(1,45) \approx 0,9927$ e $|E_{tr}| \leq 0,0000023438$)

3) Considere a função $f(x) = x \cdot e^{x/2}$ e a tabela abaixo:

x	2	2,25	2,5	2,75	3
$e^{x/2}$	2,71	3,08	3,49	3,96	4,48

a) Determinar o polinômio interpolador de f(x) sobre três pontos;

(Resp:
$$p(x) = 2,32x^2 - 3,82x + 3,78$$
 ou $p(t) = 0,18t^2 + 1,62t + 6,93$ com $t = 4x - 9$)

- b) calcular um valor aproximado para f(2,4); (Resp:7,98 ou 7,97)
- c) um limitante superior para o erro de truncamento. (Resp: $|E_{tr}| \leq 0,0037$).
- 4) Sabendo que $\sqrt{1,03}=1,0149$ e $\sqrt{1,04}=1,0198$, calcular $\sqrt{1,035}$ usando interpolação linear. (Resp. 1,0174.)

5) Considere as tabelas de uma função f(x) e de sua derivada f'(x).

x	1	1,5	3
f(x)	-1	0,485	1,685
f'(x)	0,156	0,8	0,2

- a) calcular, usando a fórmula de Lagrange, f(2,5); (Resp. 1,827)
- b) calcular, usando a fórmula de Lagrange, f'(2,5); (Resp. 0,822)
- c) determine a equação da reta tangente ao gráfico de f(x) no ponto (2,5;f(2,5)). (Resp: y-1,827=0,822(x-2,5)).
 - 6) Dada a tabela abaixo,

x	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7
f(x)	1	1,350	1,822	2,460	3,320	4,482	6,050	8,166

- a) monte a tabela das diferenças;
- b) determine o grau de polinômio interpolador necessário para interpolar f(0, 25) na tabela dada; (Resp: n=4)
- c) determine a expressão do polinômio interpolador de Newton e expresse a mudança de variável; (Resp: $p(t) = 0,001t^4 + 0,007t^3 + 0,082t^2 + 0,548t + 1,822$; t = 10x 2)
 - d) calcule o valor aproximado de f(0,25). (Resp. 2,113)
 - 7) Considere a função ln(2x+1), deseja-se calcular f(1,65) seguindo os passos:
- a) construir a tabela das diferenças para f(x) no intervalo [1,5;1,9] com 3 casas decimais sendo que x varia com passo h = 0, 1;
 - b) determiar o grau do polinômio interpolador; (Resp. grau 1)
 - c) fazer a mudança de variável; (Resp. t = 10x 16)
 - d) calcular f(1,65); (Resp. 1,459)
- e) delimitar o erro de truncamento cometido nesta interpolação. (Resp: $|E_{tr}| \le 0,0003$)

8) Dada a tabela abaixo, determine os valores de α e β sabendo que o polinômio interpolador de f(x) tem grau 2. (Resp: $\alpha = 3$ e $\beta = 7$).

x	0	1	2	3	4
f(x)	-1	α	5	β	7

9) Dada a tabela abaixo e utilizando o polinômio interpolador de Lagrange, calcule um valor aproximado da raiz da equação $x \cdot sen(2x) = 0$ neste intervalo. Trabalhe com 3 casas decimais. (Resp. 1,254)

x	1	2	3
$x \cdot sen(2x)$	0,909	-1,514	-0,838

- 10) Utilizando a tabela abaixo e o método de Newton, determine:
- a) a mudança de variável; (Resp. t = 125x 3)
- b) valor aproximado para $\sqrt[3]{0,025}$; (Resp. 0,292)
- c) um limitante superior para o erro de truncamento. (Resp. 0,0001352)

x	0,016	0,024	0,032	0,040	0,048
$\sqrt[3]{x}$	0,252	0,288	0,317	0,342	0,363