Programiranje 1 — sedma domača naloga

Rok za oddajo: nedelja, 23. decembra 2018, ob 23:55

Enotirna proga

Naloga

Na enotirni železniški progi se vlaka lahko srečata le na eni od postaj — na začetni, končni ali eni od vmesnih. Vlak A je ob času $t_{\rm A}$ pripravljen na odhod s prve postaje proti zadnji, vlak B pa je ob času $t_{\rm B}$ pripravljen na odhod z zadnje postaje proti prvi. Recimo, da je na progi 6 postaj, da so potovalni časi med zaporednima postajama enaki 20, 40, 30, 50 in 10 časovnih enot in da velja $t_{\rm A}=35$ in $t_{\rm B}=25$:

Če se vlaka srečata na postaji 1, bo vlak A čakal kar 140 časovnih enot, če se srečata, denimo, na postaji 4, pa bo vlak B čakal 40 enot. Čakalni čas bo najmanjši, če se srečata na postaji 3. V tem primeru bo vlak A čakal 20 enot.

Po branju števila postaj (n), potovalnih časov med postajami, števila m in zaporedja m parov (t_A, t_B) naj vaš program določi minimalni čakalni čas za vsak par (t_A, t_B) in izpiše vsoto dobljenih minimalnih čakalnih časov.

Vhod

Vsa števila na vhodu so cela, števila v isti vrstici pa so med seboj ločena s presledkom.

V prvi vrstici je zapisano število $n \in [2, 10^5]$, v drugi pa (n-1) števil z intervala $[1, 10^3]$, ki podajajo potovalne čase med postajami: i-to število (za $i \in \{1, ..., n-1\}$) podaja potovalni čas med postajama i in i+1. Tretja vrstica vsebuje število m, vsaka od naslednjih m vrstic pa števili $t_A \in [0, 10^8]$ in $t_B \in [0, 10^8]$.

Sledijo lastnosti posameznih testnih primerov:

- J1–J4, S1–S20: $m \in [1, 20]$; vsi potovalni časi med zaporednima postajama so med sabo enaki.
- J5–J8, S21–S40: $m \in [1, 20]$.
- J9–J10, S41–S50: $m \in [1, 10^5]$.

Izhod

Izpišite vsoto minimalnih čakalnih časov za posamezne pare (t_A, t_B) .

Testni primer J5

Vhod:

```
6
20 40 30 50 10
3
35 25
0 85
100 300
```

Izhod:

65

V primeru $t_{\rm A}=35$ in $t_{\rm B}=25$ se, kot smo že ugotovili, vlaka srečata na postaji 3, vlak A pa počaka 20 časovnih enot. V primeru $t_{\rm A}=0$ in $t_{\rm B}=85$ se vlaka srečata na postaji 5, vlak B pa počaka 45 časovnih enot. V primeru $t_{\rm A}=100$ in $t_{\rm B}=300$ se vlaka sploh ne srečata; čakalni čas je potemtakem enak 0. Vsota minimalnih čakalnih časov torej znaša 20+45+0=65.

Oddaja naloge

Program oddajte v obliki ene same datoteke z nazivom DN07_vvvvvvv . java, kjer vvvvvvv predstavlja vašo vpisno številko.