

DATA ANALYSIS

PARAMETER ESTIMATION

LEARNING GOALS

- understand Bayes rule for parameter estimation
 - (conjugate) priors, likelihood
- point-valued & interval-based estimators
 - frequentist: MLE, confidence intervals
 - Bayes: mean of posterior, credible intervals

WHAT'S A MODEL PARAMETER

- A model parameter is a value that the likelihood depends on
- In the graphical notation we introduced in previous lecture, parameters usually (but not necessarily) show up as white nodes, because they are unknowns.

WHAT'S A MODEL PARAMETER

For example, the single parameter θ_c in the Binomial Model shapes or fine-tunes the likelihood function. Remember that the likelihood function for the Binomial Model is:

$$P_M(k \mid heta_c, N) = \mathrm{Binomial}(k, N, heta_c) = inom{N}{k} heta_c^k (1 - heta_c)^{N-k}$$

EXERCISES

a. Use R to calculate how likely it is to get k=22 heads when tossing a coin with bias $heta_c=0.5$ a total of N=100 times.

b. Which parameter value, $\theta_c=0.4$ or $\theta_c=0.6$, makes the data from the previous part of this exercise (N=100 and k=22) more likely? - Give a reason for your intuitive guess and use R to check your intuition.

ESTIMATES

- point-valued: single "best" values
- interval-range: "good" values (around "best" value)

estimate	Bayesian	frequentist
best value	mean of posterior posterior	maximum likelihood estimate
interval range	credible interval (HDI)	confidence interval

Bayes rule for parameter estimation

BAYES RULE FOR PARAMETER ESTIMATION

$$P(\theta \mid D) = P(D \mid \theta) P(\theta)$$
posterior
 $P(D)$
marginal likelihood

$$P(D) = \int P(D \mid \theta) P(\theta) d\theta$$
marginal likelihood

REMARKS ON NOTATION

- if there is only one model M, we leave out the model index, writing $P(\theta)$ instead of $P_M(\theta)$
- we write $P(\theta \mid D)$ instead of $P(\Theta = \theta \mid \mathcal{D} = D)$
- short-hand with non-normalized probabilities (implicit normalizing constant):

$$P(\theta \mid D) \propto P(\theta) \quad P(D \mid \theta)$$
 $posterior \quad prior \quad likelihood$

EXAMPLE

model:

$$k \sim \text{Binomial}(N, \theta)$$

 $\theta \sim \text{Beta}(\alpha, \beta)$

data:

• "24/7"
$$k = 7$$
 $N = 24$

PRIOR

LIKELIHOOD

POSTERIOR

Bayesian point-& interval-estimates

EXAMPLE

- ▶ model: $k \sim \text{Binomial}(N, \theta), \theta \sim \text{Beta}(1,1)$
- data: k = 7, N = 24

POSTERIOR MEAN & MAP

posterior mean:

$$\mathbb{E}_{P(\theta|D)} = \int \theta \, P(\theta \mid D) \, d\theta$$

maximum a posteriori:

$$\mathsf{MAP}(P(\theta \mid D)) = \arg\max P(\theta \mid D)$$

- posterior mean is proper Bayesian measure, because it is holistic = influenced by whole distribution
- MAP is local, not influenced by whole distribution
- estimation of posterior mean is (usually) less error-prone than estimation of MAP

CREDIBLE INTERVAL

• interval [l; u] is a $\gamma\%$ credible interval for a random variable X if

(I)
$$P(l \le X \le u) = \frac{\gamma}{100}$$
, and

- (II) for every $x \in [l; u]$ and $x' \notin [l; u]$ we have P(X = x) > P(X = x')
- "range of values too probable to properly ignore"

[see David Lewis on "Elusive Knowledge"]

posteriors from conjugacy

BAYES RULE FOR PARAMETER ESTIMATION

$$P(\theta \mid D) = \frac{P(\theta \mid D) = P(\theta \mid D)}{P(\theta \mid D)}$$

CONJUGACY

- prior $P(\theta)$ is a conjugate prior for likelihood $P(D \mid \theta)$ iff prior $P(\theta)$ and posterior $P(\theta \mid D)$ are of the same kind of probability distribution (possibly with different parameter values)
- e.g., prior and posterior are both normal distributions, but have different means and standard deviations

CONJUGACY OF BETA & BINOMIAL

- claim: beta & binomial are conjugate
- proof:

$$P(\theta \mid k, N) \propto \text{Binomial}(k; N, \theta) \text{ Beta}(\theta \mid a, b) P(\theta \mid k, N) \propto \theta^{k} (1 - \theta)^{N-k} \theta^{a-1} (1 - \theta)^{b-1}$$
 $P(\theta \mid k, N) \propto \theta^{k+a-1} (1 - \theta)^{N-k+b-1}$
 $P(\theta \mid k, N) = \text{Beta}(\theta \mid k + a, N - k + b)$

EXERCISES

a. Fill in the blanks in the code below to get a plot of the posterior distribution for the coin flip scenario with k=20, N=24, making use of conjugacy and starting with a uniform Beta prior.

```
theta = seq(0, 1, length.out = 401)

as_tibble(theta) %>%

mutate(posterior = ____ ) %>%

ggplot(aes(___, posterior)) +
   geom_line()
```

EXERCISES

b. Suppose that Jones flipped a coin with unknown bias 30 times. She observed 20 heads. She updates her beliefs rationally with Bayes rule. Her posterior beliefs have the form of a beta distribution with parameters $\alpha=25$, $\beta=15$. What distribution and what parameter values of that distribution capture Jones' prior beliefs before updating her beliefs with this data?

frequentist estimation

MAXIMUM LIKELIHOOD ESTIMATE

maximum likelihood estimate:

$$\hat{\theta} = \underset{\theta}{\text{arg max}} P(D \mid \theta)$$

EXERCISES

Can you think of a situation where MLE and MAP are the same? HINT: Think which prior eliminates the difference between them!

CONFIDENCE INTERVAL (MATH)

- lacktriangleright let ${\mathcal D}$ be the random variable describing the probability of data
- X_l and X_u are random variables derived from \mathcal{D} via functions g_l and g_u so that $g_{l,u}\colon D\mapsto \mathbb{R}$
- a $\gamma\%$ confidence interval for observed data $D_{\rm obs}$ is the interval:

$$[g_l(D_{\text{obs}}), g_u(D_{\text{obs}})]$$

• where functions $g_{l,u}$ are constructed so that:

$$P(X_l \le \theta_{\text{true}} \le X_u) = \frac{V}{100}$$

ightharpoonup and where $heta_{
m true}$ is the true value

CONFIDENCE INTERVAL (ALGORITHM)

CONFIDENCE INTERVAL (ALGORITHM)

- \blacktriangleright fix number of coin flips N (not really necessary, but easier)
- ightharpoonup suppose the true coin bias is $heta_{
 m true}$ (but we don't know it)
- we have a magic function MF: $k \mapsto [u_k; l_k]$
- we now sample repeatedly $k \sim \text{Binomial}(N, \theta_{\text{true}})$
- for each sample k, compute $MF(k) = [u_k; l_k]$
- MF gives us a $\gamma\%$ confidence interval if θ_{true} is inside of $MF(k) = [u_k; l_k]$ in $\gamma\%$ of the sampled k

addressing point-valued hypotheses with estimation

ADDRESSING POINT-VALUED HYPOTHESES (BAYES)

- $\Theta_i = \Theta_i^*$ is out point-valued hypothesis
- ▶ a region of practical equivalence [ROPE] is an ϵ -region around θ_i^* : ROPE(θ_i^*) = [$\theta_i^* - \epsilon$, $\theta_i^* + \epsilon$]
- for a Bayesian credible interval [l; u] for Θ_i , we:
 - accept the point-valued hypothesis iff [l; u] is contained entirely in ROPE (θ_i^*) ;
 - reject the point-valued hypothesis iff [l; u] and $ROPE(\theta_i^*)$ have no overlap;
 - withhold judgement otherwise.

ADDRESSING POINT-VALUED HYPOTHESES (FREQUENTIST)

- \bullet $\Theta_i = \theta_i^*$ is out point-valued hypothesis
- we do not consider a ROPE
- for a frequentist credible interval [l; u] for Θ_i , we:
 - reject the point-valued hypothesis iff $\theta_i^* \notin [l; u]$; and
 - withhold judgement otherwise.

EXAMPLE

- 24/7 example,
 uninformative priors for
 Bayesian model
- point- and interval estimates:

```
## # A tibble: 2 x 4

## approach lower point upper
## <chr> ## 1 Bayes 0.141 0.32 0.483
## 2 frequentist 0.126 0.292 0.511
```


computing estimates

CPTMZNGFUNCTIONS

```
# function for the negative log-likelihood of the given
# data and fixed parameter values
nll = function(y, x, beta_0, beta_1, sd) {
    # negative sigma is logically impossible
    if (sd <= 0) {return( Inf )}
    # predicted values
    yPred = beta_0 + x * beta_1
    # negative log-likelihood of each data point
    nll = -dnorm(y, mean=yPred, sd=sd, log = T)
    # sum over all observations
    sum(nll)
}</pre>
```

```
## [1] 1.425080e+00 -2.247373e-08 3.950978e-01
```

```
lm(average_price ~ total_volume_sold, avocado_data)$coef

## (Intercept) total_volume_sold
## 1.425096e+00 -2.247455e-08
```