Isogeometrische Analysis

Mark Fischer

Universität Stuttgart

Sommersemester 2021

Inhalt

Einführung

Non-uniform rational B-Splines Konstruktion B-Splines Konstruktion NURBS

NURBS Toolbox

NURBS für lineare RWP

GeoPDEs

Fehleranalyse

Quellen

Einführung

- IGA wurde entwickelt, um die Zusammenarbeit zwischen Design und FEM zu verbessern
- Bisher arbeiten CAD und FEM unabhängig voneinander Sie nutzen verschiedene geometrische Konstrukte
- Problem 1: CAD-Geometrien sind nicht FEM-kompatibel
- Problem 2: Das FE-Mesh ist nur eine Approximation, d.h. es entstehen Fehler
- Problem 3: Übertragung von CAD-Files in FEM-kompatible Geometrien benötigt ca. 80% der Laufzeit der FEM

Ziel von IGA: Fokus auf ein geometrisches Modell

Hintergrund

- Am häufigsten werden im Ingenieursdesign zur Modellierung NURBS (Non-uniform rational B-Splines) genutzt
- Diese werden definiert durch B-Splines
- In FEA hat jedes Element einen eigenen Parameterraum mit eigener Abbildung
- In IGA wird ein Parameterraum in den gesamten physischen Raum (sog. Patches) abgebildet
- Patches sind Teilgebiete, in welchen Modelle uniform sind.
- Häufig reicht für ein Modell ein einziger Patch

Konstruktion B-Splines

- (a): Je Element ein individueller Parameterraum
- (b): ein Parameterraum für den gesamten physischen Raum

Gegeben ist ein Knotenvektor in einer Dimension:

$$\Xi = \{\xi_1, \xi_2, ..., \xi_{n+p+1}\}$$

als eine Menge aufsteigender Koordinaten im Parameterraum. Dabei steht:

- *p* für die Polynomordnung,
- *n* für die Nummer von Basisfunktionen,
- $\xi_i \in \mathbb{R}$ für den *i*-ten Knoten,
- und *i* für den Knotenindex.

$$\Xi = \{\xi_1, \xi_2, ..., \xi_{n+p+1}\}$$

- uniformer Knotenvektor: Knoten sind gleichmäßig verteilt.
- ullet offener Knotenvektor: erster und letzter Knoten wird p+1 Mal wiederholt.

Basisfunktionen, die durch einen offenen Knotenvektor definiert werden, sind an den Ecken des Patches interpolierend, aber generell nicht.

Die B-Spline-Basisfunktionen werden dann rekursiv definiert durch:

$$N_{i,0}(\xi) = \begin{cases} 1, & \xi_i \le \xi < \xi_{i+1} \\ 0, & \text{sonst} \end{cases}$$

$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi)$$
(Cox-de-Boor Rekursionsformel)

Basisfunktionen 0., 1. und 2. Grades zum Knotenvektor $\Xi = \{0, 1, 2, ...\}$

Eigenschaften von B-Spline-Basisfunktionen

• Partition der Eins:

$$\sum_{i=1}^{n} N_{i,p}(\xi) = 1, \qquad \forall \xi$$

• Nichtnegativität:

$$N_{i,p}(\xi) \geq 0 \quad \forall \xi$$

- ⇒ Steifigkeitsmatrix wird positiv sein
- Jede Basisfunktion p-ter Ordnung liegt in C^{p-1}
- Der Träger einer Basisfunktion p-ter Ordnung erstreckt sich über maximal p+1 Knotenzwischenräume

Eigenschaften von B-Spline-Basisfunktionen

- Basisfunktionen der Ordnung p haben am Knoten ξ_i
 Regularität der Stufe p m_i, wobei m_i der Vielfachheit von ξ_i
 im Knotenvektor Ξ entspricht.
- Für m_i = p ist eine Basisfunktion der Ordnung p interpolatorisch am Knoten ξ_i.
- Für $m_i = p + 1$ ist eine Basisfunktion der Ordnung p unstetig im Knoten ξ_i .

Basisfunktionen 4. Grades zum offenen Knotenvektor $\Xi=\{0,0,0,0,0,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,5\}$

B-Spline Kurven

Für eine B-Spline-Kurve im \mathbb{R}^d betrachtet man eine Linearkombination von B-Spline-Basisfunktionen:

$$\mathbf{C}(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) \mathbf{B}_{i}$$

Die Koeffizienten $\mathbf{B}_i \in \mathbb{R}^d$ heißen Kontrollpunkte. Diese entsprechen den nodalen Koordinaten der FEM, werden jedoch nicht interpoliert. Das Kontrollpolygon erhält man durch stückweise lineare Interpolation der Kontrollpunkte.

B-Spline-Flächen

Gegeben sind die Knotenvektoren

$$\Xi = \{\xi_1, \xi_2, ..., \xi_{n+p+1}\}, \quad \mathcal{H} = \{\eta_1, \eta_2, ..., \eta_{m+q+1}\}$$

und ein **Kontrollnetz** $\{\mathbf{B}_{i,j}\}$ für i=1,...n und j=1,...,m. Dann ist die B-Spline-Fläche definiert durch:

$$S(\xi, \eta) = \sum_{i=1}^{n} \sum_{i=1}^{m} N_{i,p}(\xi) M_{j,q}(\eta) B_{i,j}$$

Wobei $N_{i,j}$ und $M_{j,q}$ den B-Spline-Basisfunktionen zu den Knotenvektoren Ξ und \mathcal{H} entsprechen.

B-Spline-Volumina

Analog zu B-Spline-Flächen:

$$\Xi = \{\xi_1, ..., \xi_{n+p+1}\}, \mathcal{H} = \{\eta_1, ..., \eta_{m+q+1}\}, \mathcal{Z} = \{\zeta_1, ..., \zeta_{l+r+1}\}$$

$$\{\mathbf{B}_{i,j,k}\} \text{ Kontrollgitter}, \quad i=1,...,n, \quad j=1,...,m, \quad k=1,...,l$$

$$\mathbf{S}(\xi, \eta, \zeta) = \sum_{i=1}^{n} \sum_{i=1}^{m} \sum_{k=1}^{l} N_{i,p}(\xi) M_{j,q}(\eta) L_{k,r}(\zeta) \mathbf{B}_{i,j,k}$$

Konstruktion NURBS

Einführung zu NURBS

- Mit Hilfe von NURBS können komplexe Geometrien dargestellt werden, die sich mit Polynomen nicht darstellen lassen (Beispiel: Kurven und Ellipsen)
- Dabei entstehen NURBS-Geometrien im \mathbb{R}^d durch Projektion einer B-Spline-Geometrie im \mathbb{R}^{d+1} .

Im Folgenden bezeichnet:

- $C^w(\xi)$ eine B-Spline-Kurve, die **projektive Kurve**
- B_i^w die **projektiven Kontrollpunkte**
- $C(\xi)$ die NURBS-Kurve
- *B_i* die NURBS-Kontrollpunkte

Konstruktion NURBS

Stückweise quadratische B-Spline Kurve im \mathbb{R}^3 wird auf die Ebene z=1 projiziert und ergibt einen Kreis im \mathbb{R}^2

Definition NURBS-Kurve

Die Kontrollpunkte einer NURBS-Kurve werden berechnet durch:

$$(\mathbf{B}_i)_j = rac{(\mathbf{B}_i^w)_j}{w_i}, \quad orall j = 1,...,d, \quad ext{wobei} \quad w_i = (\mathbf{B}_i^w)_{d+1}.$$

wi heißt i-tes Gewicht. Unter Definition der Gewichtsfunktion

$$W(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) w_i$$

wird dann die NURBS-Kurve definiert durch

$$(\mathbf{C}(\xi))_j = \frac{(\mathbf{C}^w(\xi))_j}{W(\xi)}, \quad \forall 1, ..., d$$

- Die NURBS-Kurve ist dann eine rationale Funktion, die aus zwei polynomiellen Funktionen selben Grades besteht.
- Die **Ordnung** einer NURBS-Kurve entspricht dann der Ordnung der B-Spline-Kurve, aus welcher sie erzeugt wurde.

Konstruktion NURBS

Um weiterhin eine NURBS-Kurve direkt durch Änderung der Kontrollpunkte zu verändern, werden NURBS-Basisfunktionen wie folgt definiert:

$$R_{i}^{p}(\xi) = \frac{N_{i,p}(\xi)w_{i}}{W(\xi)} = \frac{N_{i,p}w_{i}}{\sum_{\tilde{i}=1}^{n}N_{\tilde{i},p}(\xi)w_{\tilde{i}}}$$

Damit ergibt sich die NURBS-Kurve zu:

$$\mathbf{C}(\xi) = \sum_{i=1}^{n} R_{i}^{p}(\xi) \mathbf{B}_{i}$$

Diese Definition ist analog zur vorigen.

NURBS-Flächen und Volumina

Analog wird wieder für NURBS-Flächen...

$$R_{i,j}^{p,q}(\xi,\eta) = \frac{N_{i,p}(\xi)M_{j,q}(\eta)w_{i,j}}{\sum_{\tilde{i}=1}^{n}\sum_{\tilde{j}=1}^{m}N_{\tilde{i},p}(\xi)M_{\tilde{j},q}(\eta)w_{\tilde{i},\tilde{j}}}$$

... und Volumina vorgegangen:

$$R_{i,j,k}^{p,q,r} = \frac{N_{i,p}(\xi)M_{j,q}(\eta)L_{k,r}(\zeta)w_{i,j,k}}{\sum_{\tilde{i}=1}^{n}\sum_{\tilde{j}=1}^{m}\sum_{\tilde{k}}^{l}N_{\tilde{i},p}(\xi)M_{\tilde{j},q}(\eta)L_{\tilde{k},r}(\zeta)w_{\tilde{i},\tilde{j},\tilde{k}}}$$

Konstruktion NURBS

Eigenschaften der NURBS-Basisfunktionen

Viele Eigenschaften folgen aus den Eigenschaften der B-Spline-Basisfunktionen

- Die Regularität und der Träger folgt aus den Knotenvektoren
- Partition der Eins
- Punktweise nichtnegativ
- Sind alle Gewichte gleich, so folgt aus der Partition der Eins der $N_{i,p}$, dass $R_i^p(\xi) = N_{i,p}(\xi)$. Damit sind B-Splines ein Spezialfall von NURBS.

NURBS-Einheitskugel

```
crv1 = nrbcirc(1, [], 0, pi);
crv2 = nrbline([-1 0 0], [1, 0 ,0]);
srf = nrbruled(crv1, crv2);
vol = nrbrevolve(srf, [0 0 0], [1 0 0]);
```


(a) Halbkreis

(b) gesamte Kugel

NURBS-Rohr

```
curve1 = nrbcirc (1);
curve2 = nrbcirc (2);
ring = nrbruled (curve1, curve2);
pipe = nrbextrude (ring, [0 0 5]);
```


NURBS-Doppel-T-Träger

```
pnts_r = [7 7 4 4 7 7; 0 -1 -1 -4 -4 -5];
right = nrbmak(pnts_r, [0 0 1/5 2/5 3/5 4/5 1 1]);
pnts_l = [0 0 3 3 0 0; 0 -1 -1 -4 -4 -5];
left = nrbmak(pnts_l, [0 0 1/5 2/5 3/5 4/5 1 1]);
srf = nrbruled(left, right);
vol = nrbextrude(srf, [0 0 7]);
```


Starke Form des RWP

Als Beispiel wird im Folgenden das Lösungsverfahren zur Laplace-Gleichung betrachtet. Gesucht ist also eine Funktion

$$u:\overline{\Omega}\to\mathbb{R}$$

mit:

wobei
$$\overline{\Gamma_D \cup \Gamma_n \cup \Gamma_R} = \Gamma = \partial \Omega$$
 und $\Gamma_D \cap \Gamma_N \cap \Gamma_R = \emptyset$.

Schwache Form des RWP

Zur Bestimmung der schwachen Form des RWP definiere den Sobolev-Raum

$$H^1(\Omega) = \{u \mid D^{\alpha}u \in L^2(\Omega), |\alpha| \le 1\},\$$

den Ansatzraum

$$\mathcal{S} = \{ u \mid u \in H^1(\Omega), u|_{\Gamma_D} = g \}$$

und den Testraum

$$\mathcal{V} = \{ w \mid w \in H^1(\Omega), w |_{\Gamma_D} = 0 \}$$

Schwache Form des RWP

Multipliziert man nun die starke Form mit einer Testfunktion $w \in \mathcal{V}$ und integriert über das Gebiet Ω , so erhält man die schwache Form:

Finde $u \in \mathcal{S}$, sodass für alle $w \in \mathcal{V}$ gilt:

$$\underbrace{\int_{\Omega} \nabla w \cdot \nabla u \, \mathrm{d}\Omega + \beta \int_{\Gamma_R} w u \, \mathrm{d}\Gamma}_{= \mathsf{a}(w, u)} = \underbrace{\int_{\Omega} w f \, \mathrm{d}\Omega + \int_{\Gamma_N} w h \, \mathrm{d}\Gamma + \int_{\Gamma_R} w r \, \mathrm{d}\Gamma}_{= \ell(w)}.$$

Beziehungsweise äquivalent als Bilinear- und Linearform:

$$a(w,u)=\ell(w)$$

Galerkin-Methode

Ziel der Galerkin-Methode ist es nun, endlichdimensionale Teilräume

$$\mathcal{S}^h \subset \mathcal{S}, \qquad \mathcal{V}^h \subset \mathcal{V}$$

zu konstruieren.

Unter der Annahme, dass ein $g^h \in \mathcal{S}^h$ existiert mit $g^h|_{\Gamma_D} = g$, kann jedes $u^h \in \mathcal{S}^h$ durch ein eindeutiges $v^h \in \mathcal{V}^h$ dargestellt werden durch

$$u^h = g^h + v^h$$

Galerkin-Methode

Damit ergibt sich die Galerkin-Form zu:

Finde $u^h = g^h + v^h$, $v^h \in \mathcal{V}^h$ zu gegebenem g^h , sodass für alle $w^h \in \mathcal{V}^h$ gilt:

$$a(w^h, u^h) = \ell(w^h),$$

und mit $u^h = g^h + v^h$ zu:

$$a(w^h, v^h) = \ell(w^h) - a(w^h, g^h).$$

Assemblierung des LGS

Betrachte nun den Lösungsraum der NURBS-Funktionen:

$$\{N_A:\Omega\to\mathbb{R},\quad A=1,...,n_{np}\}$$

Aufgrund des lokalen Trägers verschwinden die meisten Funktionen auf dem Rand von Ω , d.h.

$$N_A|_{\Gamma_D} = 0, \quad \forall A = 1,...,n_{eq}$$

Damit lassen sich alle $w^h \in \mathcal{V}^h$ darstellen durch:

$$w^h = \sum_{A=1}^{n_{eq}} N_A c_A$$

mit Konstanten c_A .

Assemblierung des LGS

Analog kann g^h dargestellt werden als:

$$g^h = \sum_{A=n_{eq}+1}^{n_{np}} N_A g_A,$$

wobei $g_1 = ... = g_{n_{eq}} = 0$.

Damit existieren dann d_A , $A = 1, ..., n_{eq}$, dass für u^h gilt:

$$u^{h} = \sum_{A=1}^{n_{eq}} N_{A} d_{A} + \sum_{B=n_{eq}+1}^{n_{np}} N_{B} g_{B}$$

Assemblierung des LGS

Setzt man die Darstellungen von u^h und w^h in die schwache Form ein, erhält man unter Umstellen für $A=1,...,n_{ed}$:

$$\sum_{B=1}^{n_{\rm eq}} a(N_A, N_B) d_B = \ell(N_A) - a(N_A, g^h)$$

Damit ergeben sich für $A, B = 1, ..., n_{eq}$:

$$K_{AB} = a(N_A, N_B), \quad \mathbf{K} = [K_{AB}]$$
 Steifigkeitsmatrix $F_A = \ell(N_A) - a(N_A, g^h), \quad \mathbf{F} = [F_A]$ Lastvektor $\mathbf{d} = [d_A]$ Verschiebungsvektor

und das zu lösende LGS:

$$\mathsf{Kd} = \mathsf{f}$$

GeoPDEs

Alle gezeigten Programme sowie eine Installationsanleitung finden sich unter:

https://github.com/markpecheur/GeoPDEs.git

Alternativ via:

Beispielproblem

Die Funktion

$$u(x, y) = \sqrt{x^2 + y^2} - 1$$

ist Lösung der Differentialgleichung

$$\Delta u = -\left(-\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} - \frac{x^2}{(x^2 + y^2)^{\frac{3}{2}}}\right)$$

Ziel: Löse die Differentialgleichung mit GeoPDEs auf dem Einheitskreis :

$$\Omega = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \le 1\}$$

Einheitskreis in NURBS Toolbox

Nach Konstruktion erfüllt u automatisch die Dirichlet-Nullrandbedingung:

$$u|_{\partial\Omega}=0$$

Fehleranalyse

Das selbe Prinzip wurde im Folgenden im großen Rahmen durchgeführt:

Löse die Poisson-Gleichung zu gegebener Lösung \boldsymbol{u} auf dem Einheitswürfel

$$\Omega = [-0.5, 0, 5]^d, \qquad d = 1, 2, 3$$

Mit rechter Seite f:

$$f(r) = -\Delta u(r)$$

und Dirichlet-Rand u(r) für $r \in \partial \Omega$

Fehleranalyse in 1D

Fehleranalyse für $u(x)=(x^4-0.0625)\sin(x)$. Bei FEM ist die Polynomordnung und Steigung angegeben, bei IGA der Grad, die globale Glattheit und Steigung

Fehleranalyse in 2D

Fehleranalyse für $u(x,y)=\sin(5\pi x)\cos(5\pi y)$. Bei FEM ist die Polynomordnung und Steigung angegeben, bei IGA der Grad, die globale Glattheit und Steigung

Fehleranalyse in 3D

Fehleranalyse für $u(x,y,z)=\sin(5\pi x)\sin(5\pi z)\cos(5\pi y)$. Bei FEM ist die Polynomordnung und Steigung angegeben, bei IGA der Grad, die globale Glattheit und Steigung

Fehleranalyse in 3D (2)

Fehleranalyse für $u(x,y,z)=(x^3-0.125)(y^3-0.125)(z^3-0.125)$. Bei FEM ist die Polynomordnung und Steigung angegeben, bei IGA der Grad, die globale Glattheit und Steigung

Es existiert eine analoge Aussage zur Fehlerabschätzung elliptischer RWP bzgl. der FEM-Lösung

$$||u-u^h||_{H^m}\leq Ch^{\beta}||u||_{H^r}$$

für IGA.

Die IGA-Lösung, die unter Nutzung von NURBS *p*-ter Ordnung entsteht, besitzt die selbe Konvergenzordnung wie die klassiche FEM-Lösung mit Polynomen *p*-ter Ordnung.

Damit erweist sich IGA als wesentlich effizienter als FEM.

Quellenangaben

Einführung

Primärquelle:

Isogeometric Analysis: Toward Integration of CAD and FEA,
 J. Austin Cottrell, Thomas J.R Hughes, Yuri Bazilevs, Wiley
 Verlag, 2009, Seite 1-107

Zu GeoPDEs und der NURBS Toolbox:

 Vorlesungsunterlagen zur Vorlesung Advanced Finite Elements (MA5337), Prof. Dr. B. Wohlmuth, Markus Muhr, Technische Universität München, Wintersemester 2017/18: https:

//www-m2.ma.tum.de/bin/view/Allgemeines/AFEMWS17

Zu GeoPDEs:

Einführung

- Report Series, R. Vázquez, Consiglio Nazionale delle Ricerche Istituto di Matematica Applicata e Tecnologie Informatiche "Enrico Magenes", April 2016, Seite 1-19:
 - http://irs.imati.cnr.it/files/reports/16-02.pdf

Zur Fehleranalyse:

 Finite element method and isogeometric analysis in electronic structure calculations: convergence study, Robert Cimrman, Matyás Novák, Radek Kolman, Miroslav Tuma, Jiri Vackár, Cornell University, Dezember 2015, Seite 10-16: https://arxiv.org/abs/1512.07156

Quellen