Introduction

Steganography: Hiding data within an unencrypted message (image).

Dense SteganoGAN with Data Depth 6

Cover Image

Stego Image

Distortion (|Stego - Cover|)

'I Love Deep Learning!'

- Cryptography might face legal restrictions or invite attackers.
- Steganography is an alternative for medical data and copyright.
- Goals: Send more information, that is undetectable & lossless.
 - Undetectable to critic networks & lossless given error correcting.

Original Paper Contributions

GAN-like Network Architecture (Encoder, Decoder, Critic), [1]

- Uses adversarial training (GAN) to train a steganography network.
- Develops RS-BPP for evaluating the data capacity of a network.
- Achieves 4.4 RS-BPP (# data bits that can be stored per pixel).
- Evades traditional steganography detection [4] with 0.59 auROC.

Our Hypothesis/Goals

- We aimed to make a working SteganoGAN trained on Div2K dataset.
- RS-BPP is a statistic based on the mean accuracy of the network.
 - Wanted to investigate if a large variance could affect RS-BPP.
- Paper claims Div2K < COCO (datasets) due to content differences.
 - We believe that performance differences are due to **image size**.
- Observe the effect of various perturbations:
 - \circ Doubling the **training epochs** (32 \rightarrow 64)
 - Increasing data depth trained on (# of bits/pixel encoded)
 - Switching order of LeakyReLU and BatchNorm to below [5].

SteganoGAN Perturbation Tests

Mohammad, Alperen, Camilo, Aidan - Cornell

Methodology

Network Architecture:

- Encoder (Basic/Residual/Dense): Image + Random Data → Image.
- Decoder (Dense): Image → Recovered Data (using Reed-Solomon).
- Critic (Basic): Image → Realism Score (higher is more real).

Basic, Residual, and Dense Encoder Versions, [1]

2 Phase Training: Encoder/Decoder (freeze Critic) → Critic (freeze rest).

Datasets: Div2K (Higher Quality, ~1000), COCO (Lower Quality, ~330k).

Div2K Image, [2]

Modifications

COCO Image, [3]

Modern Network Architecture:

- Optimizer: Adam → AdamW.
- Image Normalization: Manual [-1, 1] → Pillow [0, 1].

Reduce Training Time:

- Train on only 4x compressed Div2K, test on both Div2K and COCO.
- Test evasion with traditional steganalysis tools (StegExpose).

Perturbation Results

RS-BPP at Increasing Data Depths

Dense Perturbation

- Leaky achieves a significantly better RS-BPP than other networks.
- Residual surprisingly seems to outperform Dense at larger depths.

Metric Comparison

Dataset	D	Accuracy			RS-BPP			PSNR			SSIM		
		Basic	Resid.	Dense	Basic	Resid.	Dense	Basic	Resid.	Dense	Basic	Resid.	Dense
Div2K pretrained	1	1.00	1.00	1.00	1.00	1.00	1.00	24.42	41.44	43.06	1.00	1.00	1.00
	2	0.99	1.00	1.00	1.97	1.99	2.00	27.23	38.55	37.34	1.00	1.00	1.00
	3	0.98	0.99	1.00	2.87	2.95	2.97	20.33	33.64	34.38	0.99	1.00	1.00
	4	0.85	0.86	0.95	2.78	2.88	3.60	18.29	34.64	33.64	0.99	1.00	1.00
	5	0.78	0.78	0.84	2.79	2.84	3.45	24.19	36.21	34.30	1.00	1.00	1.00
	6	0.73	0.73	0.74	2.77	2.82	2.84	28.62	35.99	35.13	1.00	1.00	1.00
СОСО	1	1.00	1.00	1.00	0.99	1.00	1.00	23.78	39.45	40.70	1.00	1.00	1.00
	2	0.99	0.99	1.00	1.96	1.97	1.99	25.80	37.01	35.78	1.00	1.00	1.00
	3	0.97	0.98	0.99	2.80	2.88	2.95	19.75	31.91	33.05	0.99	1.00	1.00
	4	0.84	0.85	0.93	2.69	2.77	3.45	18.08	33.02	32.46	0.99	1.00	1.00
	5	0.77	0.77	0.83	2.67	2.70	3.29	23.25	34.75	32.78	1.00	1.00	1.00
	6	0.72	0.72	0.73	2.65	2.69	2.71	27.01	34.52	33.65	1.00	1.00	1.00

Our Network vs Paper SteganoGAN (Green = Our > Paper)

- Superior in Div2K, likely due to 4x compression/network changes.
- Worse in COCO, likely due to the network being trained on Div2K.
- PSNR and SSIM are less comparable due to data normalization.

Further Analysis

Dense SteganoGAN with Data Depth 6

Perfect = 1 vs Random = ½
Paper **0.59** vs Our **0.63**

95% Confidence: $0.725 \rightarrow 0.703$ Changes RS-BPP: $2.7 \rightarrow 2.436$

- Our network did not differ significantly in auROC from the paper.
- Ensuring 95% confidence interval can affect RS-BPP by ~10%.
 - >>100 test images may lead to differences being less significant.

Final Takeaways

- GAN's can produce images with enough hidden data to consistently pass messages around while being mostly undetectable.
- Our model:
 - Performed similar to the original SteganoGAN on noisy metrics.
 - Explored various perturbations and found significant trends.
 - Likely does not generalize across data sets other than 4x Div2K.
- Training at a larger scale is required to certify our results, and confirm the methods to enhance undetectability and relative payload.
 - [1] SteganoGAN: https://arxiv.org/abs/1901.03892
 - [2] Div2K: https://ieeexplore.ieee.org/document/8014884
 - [3] COCO: https://arxiv.org/abs/1405.0312
 - [4] Steg Analysis Tool: https://github.com/b3dk7/StegExpose
 - [5] LeakyReLU Image: https://researchgate.net/356162640