上参课为客回顾

- □扭转破坏分析
- □非圆截面杆的扭转简介
- □扭转超静定问题的求解

口静矩和形心:
$$S_z = \int_A y dA$$
 $y_C = \frac{S_z}{A}$

□ 惯性矩和惯性积:
$$I_z = \int_A y^2 dA$$
 $I_{yz} = \int_A yz dA$

$$\square$$
 平行移轴公式: $I_z = I_{zc} + Aa^2$

□主惯轴、形心主惯轴

矩形截面
$$I_z = \frac{bh^3}{12}$$

圆截面
$$I_z = \frac{\pi D^4}{64}$$

第四章 弯曲内力

- √ 概述
- 梁的剪力与弯矩、剪力图与弯矩图
- ✓ 弯矩、剪力和载荷之间的微分-积分关系
- ✓ 刚架和曲杆的弯曲内力

学前问题:

- 弯曲内力?
- 内力的符号规则?
- 弯曲内力如何确定?

航天航空学院--力学中心

4-1 概述

一、力学模型:

- ◆ 受力特点: 力偶或外力作用垂直于轴线。
- ◆ 变形特点: 杆件的轴线由直线变为曲线。
- ◆ 以弯曲(Bending)为主要变形的杆称之为梁(Beam)。

4-1 概述

二、支座形式:

- 固定铰支座:
- 活动铰支座:
- 固定端:

三、静定梁的形式:

(Simply Supported Beam)

外伸梁

(Overhanging Beam)

(Cantilever Beam)

四、载荷的形式:

集中力 集中力偶 分布力

$$\sum F_{y} = 0 \quad F_{s} = F$$

 F_s 称为剪力

(Shearing Force)

$$\sum m = 0$$
 $M = Fx$

M 称为弯矩

(Bending Moment)

$$F_{\rm s}' = F_{\rm s} = F$$
 $M' = M = Fx$

lacksquare

剪力的符号规则:

截面外法线顺时针转 90度后与剪力方向一 致时,该剪力为正; 反之为负。

弯矩的符号规则:

使分离体弯曲成凹面 向上的弯矩为正;使 分离体弯曲成凹面向 下的弯矩为负。

• 剪力、弯矩方程: 用方程的形式表达 F_s 和M 沿梁轴线的变化规律;

• 剪力、弯矩图: 用图线的形式表达 F_s 和M 沿梁轴线的变化规律;

→ 力区: 能用一个方程来表达内力的变化规律的区间。

设正法:由于截面上内力的方向未知,故将截面上的内力均假设为正值,若求出为正,说明假设与实际一致,作内力图时画在轴线的上方;若求出为负,说明假设与实际相反,作内力图时画在轴线的下方。

例4-1 作内力图。

解: 1、支反力: $R_A = F/2$, $R_B = F/2$

2、剪力方程和弯矩方程:

$$F_{s1} = \frac{1}{2} F$$

$$M_{1} = \frac{1}{2} Fx$$

$$R_{A}$$

$$M_{1} = \frac{1}{2} Fx$$

$$(0 \le x \le l/2)$$

$$F_{s2} = -\frac{1}{2}F$$

$$M_2 = \frac{1}{2}F(l-x)$$

$$M_2 = \frac{1}{2}F(l-x)$$

$$(l/2 \le x \le l)$$

3、剪力图和弯矩图:

4、最大值:

$$|F_{\rm s}|_{\rm max} = F/2$$
 $|M|_{\rm max} = Fl/4$

5、讨论:

例4-2 作内力图。

解: 1、支反力: $R_A = m/l$ $R_B = -m/l$

2、剪力方程和弯矩方程:

$$F_{s1} = \frac{m}{l}$$

$$M_{1} = \frac{m}{l} x$$

$$(0 \le x \le l/2)$$

$$F_{s2} = \frac{m}{l}$$

$$M_{2} = m(\frac{x}{l} - 1)$$

$$M_{1} = \frac{m}{l} x$$

$$M_{2} = m(\frac{x}{l} - 1)$$

$(l/2 \le x \le l)$

3、剪力图和弯矩图:

4、最大值:

$$|F_{\rm s}|_{\rm max} = m/l$$
 $|M|_{\rm max} = m/2$

5、讨论:

例4-3 作内力图。

解: 1、支反力: $R_A = R_B = ql/2$

2、剪力方程和弯矩方程:

$$F_{\rm s} = \frac{ql}{2} - qx$$

$$(0 \le x \le l)$$

$$M = \frac{ql}{2}x - \frac{q}{2}x^2$$

3、剪力图和弯矩图:

4、最大值:

$$|F_{\rm s}|_{\rm max} = ql/2$$
 $|M|_{\rm max} = ql^2/8$

5、讨论:

例4-4 作内力图。

解: 1、剪力和弯矩方程

$$F_{s}(x) = -qx$$

$$M(x) = -\frac{q}{2}x^{2}$$

$$(0 \le x \le l)$$

2、剪力图和弯矩图

3、最大值

$$\left|F_{\rm s}\right|_{\rm max} = ql$$
 $\left|M\right|_{\rm max} = \frac{ql^2}{2}$

4、讨论

例4-5 求图示梁的剪力弯矩方程, 并作 F_s 、M 图。

解: (1) 支反力 $F_A = F_B = qa$

(2) 列 F_s、M 方程

 $M(x_2) = F_B x_2 = qa(3a - x_2)$

$$F_{s}(x_{1}) = qa - qx_{1}$$

$$M(x_{1}) = qax_{1} - \frac{q}{2}x_{1}^{2}$$

$$(0 \le x_{1} \le 2a)^{F_{A}}$$

$$F_{s}(x_{2}) = -F_{B} = -qa$$

$$(2a \le x_{2} \le 3a)^{F_{A}}$$

(3) 作F_s、M图

$$|F_{\rm s}|_{\rm max} = qa$$
 $|M|_{\rm max} = qa^2$

课堂练习: 作下梁的剪力弯矩图。

解: (1) 求支反力:

$$R_{\rm C}$$
=5 qa , $R_{\rm B}$ =- qa

今日作业

4-2 (e), (f), (h)

上爷课向客回顾

- \Box 弯曲内力: 剪力 F_s 和弯矩M
- 口符号规则:

剪力 F_s :

截面外法线顺时针转90度后 与剪力方向一致时,该剪力 为正:反之为负。

弯矩 M:

使分离体弯曲成凹面向上的 弯矩为正;使分离体弯曲成 凹面向下的弯矩为负。

口利用截面法作弯曲内力图 (设正法)

第四章 弯曲内力

- √ 概述
- ✓ 梁的剪力与弯矩、剪力图与弯矩图
- **Ý** 弯矩、剪力和载荷之间的微分-积分关系
- **刚架和曲杆的弯曲内力**

学前问题:

- 微分-积分关系的几何意义?
- 作图规律?
- 运用作图规律作内力图?

航天航空学院--力学中心

$$F_{s}(x) + dF_{s}(x) = F_{s}(x) + q(x)dx$$

$$M(x) + dM(x) = M(x) + F_s(x)dx + q(x)dx \frac{dx}{2}$$

$$\frac{\mathrm{d}F_{\mathrm{s}}(x)}{\mathrm{d}x} = q(x)$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{s}}(x)$$

$$\frac{\mathrm{d}^2 M(x)}{\mathrm{d}x^2} = \frac{\mathrm{d}F_{\mathrm{s}}(x)}{\mathrm{d}x} = q(x)$$

微分关系的几何意义:剪力图某处的斜率等于该处分布力的大小;弯矩图某处的斜率等于该处剪力的大小;剪力为零处的弯矩有极值。

二、积分关系

$$\frac{\mathrm{d}F_{\mathrm{s}}(x)}{\mathrm{d}x} = q(x)$$

$$dF_s(x) = q(x)dx$$

$$\int_{F_{s1}}^{F_{s2}} dF_{s}(x) = \int_{x_{1}}^{x_{2}} q(x) dx$$

$$F_{s2} - F_{s1} = \int_{x_1}^{x_2} q(x) dx$$

$$\frac{\mathrm{d}M(x)}{\mathrm{d}x} = F_{\mathrm{s}}(x)$$

$$dM(x) = F_{s}(x)dx$$

$$\int_{M_1}^{M_2} dM(x) = \int_{x_1}^{x_2} F_s(x) dx$$

$$M_2 - M_1 = \int_{x_1}^{x_2} F_s(x) dx$$

积分关系的几何意义:任意两截面的剪力差等于两截面间分布力所包围的面积;任意两截面的弯矩差等于两截面间剪力图所包围的面积。

突跳关系的几何意义:集中力作用处剪力图突跳该力的大小,突跳方向与集中力的方向一致;集中力偶作用处弯矩图突跳该力偶的大小,且顺时针力偶向上突跳。

通过例4-5进行验证:

1、微分关系

M图抛物线的极值点, 一定是剪力为零的点

2、积分关系

3、突跳关系

四、如何利用M、 F_s 和q之间的关系作内力图

	无载荷	均布力(+)	均布力(-)	集中力(+)	集中力偶(顺)
载荷	$A \qquad B$	$ \begin{array}{c} q \\ A \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$ \begin{array}{c} q \\ A \\ \downarrow \\ X \end{array} $	A^{L} A^{R} A^{R}	A^{L} A^{R}
F _s ≝	水平线	上斜直线	下斜直线	突跳	无变化
				F	
	斜率为0 $F_{\rm s}{}^{\rm A} = F_{\rm s}{}^{\rm B}$	斜率为 q $F_s^A + qx = F_s^B$	斜率为-q F _s ^A - qx = F _s ^B	正 F 向上突跳 $F_s^{AL} + F = F_s^{AR}$	
M ੑ <u>≅</u>	斜直线	下凸抛物线	上凸抛物线	有拐点	突跳
					m
	斜率为F _s A MA+F _s Ax=MB	极值在 F_s =0处 $M^A+S(F_s)=M^B$	极值在 F_s =0处 $M^A+S(F_s)=M^B$		顺 m 向上突跳 $M^{ m AL}+m=M^{ m AR}$

四、如何利用M、F。和q之间的关系作内力图

1、确定支反力:

2、定特征点:集中载荷处、约束处、边界、极值处

3、定线型:水平线、斜直线、抛物线,何处突跳

4、定数值:原点出发,是否突跳,斜直线用微分关系(斜率)定值,抛物线用积分关系(面积)定值

5、作剪力、弯矩图:

注意: 1、从轴线的原点出发,最终一定回到轴线上;

2、剪力图线穿越横轴,弯矩图将出现极值点。

-qa/4

(4) 最大值:

$$|F_{\rm s}|_{\rm max} = qa$$
 $|M|_{\rm max} = qa^2/2$

例4-8 作下梁的剪力弯矩图。

解: (1) 支反力:

$$R_A = -\frac{qa}{4}$$
 $R_B = \frac{5qa}{4}$

(2) 剪力图 (线型、数值):

AB段水平线,BC段下斜直线, 斜率为-q,A、B处突跳。

(3) 弯矩图 (线型、数值):

AB段下斜直线,斜率为-qa/4,BC段上凸抛物线,无突跳。

$$M_B = M_A + (-\frac{qa}{4}) \times 2a = -\frac{qa^2}{2}$$

(斜率或面积)

例4-9 作下梁的剪力弯矩图。

解: (1) 求支反力: $R_A = -R_B = F/2$

- (2) 作剪力图、弯矩图:
- (3) 最大值:

$$|F_{\rm s}|_{\rm max} = F/2$$
 $|M|_{\rm max} = Fa/2$

- (4) 若将D点的载荷反向
- (5) 特点:
- 口对称结构受正对称载荷时,剪力 图反对称,弯矩图正对称;
- 口对称结构受反对称载荷时,剪力 图正对称,弯矩图反对称;
- 口反对称轴通过的截面弯矩为零, 正对称轴通过的截面剪力为零。

例4-10 作下梁的剪力弯矩图。

解: (1) 求支反力:

$$R_A = R_B = qa$$

(2) 作剪力图、弯矩图:

$$F_{sA} = qa$$

$$F_{sC} = F_{sA} + (-q) \times 2a = -qa$$

$$F_{sD} = 0 : x_0 = a$$

$$M_D = M_A + \frac{1}{2} \times qa \times a = \frac{qa^2}{2}$$

$$M_C^- = 0$$
 面积 $M_C^+ = qa^2$

$$M_C^+ = qa^2$$

(3) 最大值:

$$|F_{\rm s}|_{\rm max} = qa$$
 $|M|_{\rm max} = qa^2$

例4-11 作下梁的剪力弯矩图。

解: (1) 求支反力:

$$R_A = qa/2$$
 $R_B = 5qa/2$

(2) 作剪力图、弯矩图:

$$F_{sA} = R_A = \frac{qa}{2}$$
 $F_{sB}^- = F_{sA} + (-q) \times 2a = -\frac{3qa}{2}$

$$F_{sB}^{+} = F_{sB}^{-} + R_{B} = qa$$

$$F_{sC} = 0: x_0 = a/2$$

$$M_C = M_A + \frac{1}{2} \times \frac{qa}{2} \times \frac{a}{2} = \frac{qa^2}{8}$$

$$M_B = M_C - \frac{1}{2} \times \frac{3qa}{2} \times \frac{3a}{2} = -qa^2$$

(3) 最大值:

$$|F_{\rm s}|_{\rm max} = 3qa/2$$
 $|M|_{\rm max} = qa^2$

例4-12 作下梁的剪力弯矩图。

解: (1) 求支反力R_A、R_B:

$$R_A = 2kN$$
, $R_B = 4kN$

(2) 作剪力图和弯矩图:

$$F_{sA} = F_{sC} = F_{sD}^- = 2kN$$

$$F_{sD}^{+} = F_{sD}^{-} - F = -2kN$$

$$F_{sB} = F_{sE} - q \times 1 = -4kN$$

$$M_C^- = F_{sA} \times 1 = 2$$
kNm

$$M_C^+ = M_C^- + m_0 = 3$$
kNm

$$M_D = M_C^+ + F_{sC} \times 1 = 5 \text{kNm}$$

$$M_E = M_D + F_{sD}^+ \times 1 = 3$$
kNm

(3) 最大值:

$$|F_{\rm s}|_{\rm max} = 4 \text{kN}$$
 $|M|_{\rm max} = 5 \text{kNm}$

例4-13 作下梁的剪力弯矩图。

解: (1) 求支反力:

 $R_{\Lambda}=3qa/2$, $R_{\rm R}=3qa/2$

(2) 作剪力和弯矩图:

(2) **FPTHSES**:
$$F_{sA} = R_A = 3qa/2$$

$$F_{sC} = R_A - q \times 2a = -qa/2$$

$$F_{sD}^+ = F_{sC} - qa = -3qa/2$$

$$F_{sE} = 0: x_0 = 3a/2$$

$$M_E = \frac{1}{2} \times \frac{3}{2} qa \times \frac{3}{2} a = \frac{9qa^2}{8}$$

$$M_C = M_E - \frac{1}{2} \times \frac{1}{2} qa \times \frac{1}{2} a = qa^2$$

$$M_C = M_C - \frac{1}{2} a \times a = aa^2/2$$

$$M_D = M_C - \frac{1}{2}qa \times a = qa^2 / 2$$

$$M_B^- = M_D - \frac{3}{2} qa \times a = -qa^2$$

例4-14 作多跨梁的剪力弯矩图。

解: (1) 中间铰拆开, 求约束力:

$$R_C = 5qa/2$$
, $R_B = 3qa/2$

$$R_A = 3qa/2$$
, $m_A = 3qa^2/2$

(2) 作剪力、弯矩图:

$$M_A = 3qa^2/2$$

$$M_C = M_A - 3qa / 2 \times 2a = -3qa^2 / 2$$

$$M_D = M_C + \frac{1}{2} \times qa \times a = -qa^2$$
 in \mathbb{R}

(3) 最大值:
$$|F_{\rm s}|_{\rm max} = qa$$
 $|M|_{\rm max} = 3qa^2/2$

(4) 总结:

- □多跨梁可视为若干独立的梁,先确定各 中间铰的约束力;
- □中间铰只传递剪力,不传递弯矩;
- □若中间铰无外力偶作用,该处弯矩为零。

思考题:分析双杠的合理跨度

最佳设计方案

解:建立力学模型

-Fa

$$a = l / 4$$

国际标准:

$$l = 230$$
cm

$$a = 60 \text{cm}$$

课堂练习: 作下梁的剪力弯矩图。

解:

$$R_A = 7$$
kN

$$R_D = 9$$
kN

课堂练习: 作下梁的剪力弯矩图。

4-4 刚梁与曲杆的弯曲内力

- ●轴线为平面折线或平面曲线的杆件称为刚架(Rigid Frame)和曲杆(Curved Bar);
- ●刚架和曲杆中的内力通常有: 弯矩M、剪力 F_s 和轴力 F_N ;
- ●作刚架和曲杆内力图的步骤: 求支反力, 分力区, 截面法 求解;

• 刚架和曲杆内力的符号规则:

M: 凹面向外为正;

 F_s : 截面外法线方向顺时针转90度后一致为正;

 F_N : 截面外法线方向一致为正;

正的内力画在杆外侧,同时在图中标出正负。

4-4 刚梁与曲杆的弯曲内力

4-4 刚梁与曲杆的弯曲内力

例4-7 作曲杆内力图。

解:取分离体

$$F_{\rm N}(\theta) = F \sin \theta$$

$$F_{\rm s}(\theta) = -F\cos\theta$$

$$M(\theta) = FR \sin \theta$$

$$|F_{\rm N}|_{\rm max} = F$$

$$|F_{\rm s}|_{\rm max} = F$$

$$|M|_{\max} = FR$$

第四章的基本要求

- 1. 掌握梁上内力: 剪力 F_s 和弯矩M的正负号规则;
- 2. 熟练掌握如何建立剪力、弯矩方程, 如何绘制剪力图和弯矩图;
- 3. 深刻理解弯矩、剪力和线分布载荷集度三者之间 的微分-积分关系,并利用微分-积分关系绘制或检 查内力图(即剪力图、弯矩图);
- 4. 掌握刚架和曲杆的内力图绘制方法。

今日作业

4-3 (a) (c) (d), 4-6(c)