

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Musterlösungen zur Klausur

Robotik I: Einführung in die Robotik

am 24. Juli 2018, 14:00 – 15:00 Uhr

Name:	Vorname:		Matrikelnui	mmer:
Denavit	Hartenberg	5	$\frac{\pi}{2}$	
Aufgabe 1			von	5 Punkten
Aufgabe 2			von	7 Punkten
Aufgabe 3			von	7 Punkten
Aufgabe 4			von	7 Punkten
Aufgabe 5			von	7 Punkten
Aufgabe 6			von	6 Punkten
Aufgabe 7			von	6 Punkten
Gesamtpunktzahl:			45 v	on 45 Punkten
		Note:	1,0	

Aufgabe 1 Quaternionen

1. Multiplikation von Quaternionen kommutativ?

1 P.

Nein, da $i \cdot j = -j \cdot i \neq j \cdot i$.

2. Abgeschlossenheit der Einheitsquaternionen

2 P.

$$\mathbb{S}^3 = \{ \boldsymbol{q} \in \mathbb{H} \mid \|\boldsymbol{q}\| = 1 \}$$

Seien $q_1, q_2 \in \mathbb{S}^3$. Aus der Abgeschlossenheit der Quaternionen \mathbb{H} folgt, dass $q_1 \cdot q_2 \in \mathbb{H}$. Weiter gilt:

$$\|oldsymbol{q}_1 \cdot oldsymbol{q}_2\|^2 = (oldsymbol{q}_1 oldsymbol{q}_2) \cdot (oldsymbol{q}_1 oldsymbol{q}_2)^* = oldsymbol{q}_1 oldsymbol{q}_2 oldsymbol{q}_2^* oldsymbol{q}_1^* = oldsymbol{q}_1 (oldsymbol{q}_2 oldsymbol{q}_2^*) oldsymbol{q}_1^* = oldsymbol{q}_1 \|oldsymbol{q}_2\|^2 oldsymbol{q}_1^* \cdot \|oldsymbol{q}_2\|^2 = \|oldsymbol{q}_1\|^2 \cdot \|oldsymbol{q}_2\|^2 = 1.$$

3. Rotationswinkel und -achse für $\mathbf{q} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$

2 P.

$$\mathbf{q} = (\cos(\frac{\theta}{2}), \mathbf{u} \cdot \sin(\frac{\theta}{2}))$$

Für $\theta=\pi$ (bzw. $\theta=180^\circ$) gelten $\cos\frac{\theta}{2}=0$ und $\sin\frac{\theta}{2}=1$. Damit sind $\boldsymbol{u}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ und $\theta=\pi$ eine mögliche Lösung.

Für $\theta=-\pi$ (bzw. $\theta=-180^\circ$) ergibt sich eine weitere Lösung mit $\boldsymbol{u}=(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)$ und $\theta=-\pi$.

Aufgabe 2 Kinematik

1. DH-Parameter:

Gelenk	$ heta_i$	d_i	a_i	α_i
1	θ_1	0	L_1	0°
2	θ_2	0	L_2	0°

2. Vorwärtskinematik:

$$f(\theta_1, \theta_2) = \begin{pmatrix} x \\ y \\ z \\ \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} L_1 \cos\theta_1 + L_2 \cos(\theta_1 + \theta_2) \\ L_1 \sin\theta_1 + L_2 \sin(\theta_1 + \theta_2) \\ 0 \\ 0 \\ \theta_1 + \theta_2 \end{pmatrix}$$

3. Jacobi-Matrix:

$$J = \begin{pmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} \\ \frac{\partial z}{\partial \theta_1} & \frac{\partial z}{\partial \theta_2} \\ \frac{\partial \alpha}{\partial \theta_1} & \frac{\partial \alpha}{\partial \theta_2} \\ \frac{\partial \beta}{\partial \theta_1} & \frac{\partial \beta}{\partial \theta_2} \\ \frac{\partial \beta}{\partial \theta_1} & \frac{\partial \beta}{\partial \theta_2} \\ \frac{\partial \gamma}{\partial \theta_1} & \frac{\partial \gamma}{\partial \theta_2} \end{pmatrix} = \begin{pmatrix} -L_1 \sin\theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos\theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

2 P.

4 P.

1 P.

Aufgabe 3 Regelung

1. Vervollständigen Sie die Tabelle:

2 P.

Bezeichnung im System	Bezeichnung im Blockschaltbild
Regler	Block 1
Vorgabe für den Motorstrom	w
Gemessener Motorstrom	x
Eingestellte Ankerspannung	У
Motor	Block 2
Rückführgröße	r
Differenz zwischen Vorgabe	$\mathbf{x}_{\mathbf{d}}$
und Messung des Motorstroms	

2. (a) Gleichung im Frequenzbereich:

1 P.

$$U_A(s) = R_A \cdot I_A(s) + s \cdot L_A \cdot I_A(s)$$

(b) Übertragungsfunktion im Frequenzbereich:

2 P.

$$\frac{I_A(s)}{U_A(s)} = \frac{I_A(s)}{I_A(s) \cdot (R_A + s \cdot L_A)} = \frac{1}{R_A + s \cdot L_A}$$

(c) Gleichungen für den PD-Regler im Zeit- und Frequenzbereich:

2 P.

•
$$u(t) = K_p \cdot e(t) + K_d \cdot \frac{d}{dt} e(t)$$

•
$$U(s) = K_p \cdot E(s) + K_d \cdot s \cdot E(s)$$

Aufgabe 4 Bewegungsplanung mit RRT*

1. Pfadkosten:

2 P.

- Cost(q1) = 0
- $Cost(q2) = Cost(q1) + Cost(q1, q2) = 0 + \sqrt{(2^2 + 1^2)} = \sqrt{5} \approx 2.236$
- Cost(q3) = Cost(q1) + Cost(q1, q3) = 0 + 2 = 2
- Cost(q4) = Cost(q3) + Cost(q3, q4) = 2 + 2 = 4
- Cost(q5) = Cost(q4) + Cost(q4, q5) = 4 + 2 = 6
- Cost(q6) = Cost(q5) + Cost(q5, q6) = 6 + 2 = 8
- $Cost(q7) = Cost(q5) + Cost(q5, q7) = 6 + \sqrt{2^2 + 1^2} = 6 + \sqrt{5} \approx 8.236$

2. (a) q_{nn} und q_{new} :

1 P.

$$q_{nn} = q6$$

 q_{new} Position: (1,1)

Da die Entfernung zu qs > d = 2 ist, wird q_{new} auf der Verbindung von q6 zu qs mit Abstand d = 2 von q6 platziert.

(b) Knoten im Rewire-Schritt:

1 P.

Alle Knoten mit Abstand kleiner als r=3 werden betrachtet: $Q_{\text{near}}=\{q2,q6,q7\}$

(c) Neuer Baum:

3 P.

Kanten zwischen q1 - q5 bleiben unverändert (nicht im Rewiring-Radius).

 q_{new} erhält q2 als Elternknoten, da die Kosten von q6 und q7 zu hoch sind.

q6 und q7 werden im Rewiring-Schritt mit q_{new} als Elternknoten verbunden, da der Pfad kürzer ist, als der bisherige.

qs muss nicht angegeben werden.

Aufgabe 5 Greifplanung

1. Öffnungswinkel β :

Alternative Lösungswege:

- $\beta = \arctan(\mu) = \arctan(1) = \frac{\pi}{4} = 45^{\circ}$
- $\tan(\beta) = 1 \Rightarrow \beta = \frac{\pi}{4} = 45^{\circ}$
- \bullet Geometrische Herleitung (Tangential- = Normalkraft): 45°

2. Reibungsdreiecke:

2 P.

1 P.

4 P.

3. Berechnung der Wrenches:

Hinweis: Die beiden Wrenches pro Kontaktpunkt $(w_{a,i} \text{ und } w_{b,i})$ haben keine bestimmte Reihenfolge und können in der Lösung auch vertauscht werden.

• Kontakt
$$i = 1$$
: $f_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
Reibungskraft: $f_{R,1} = \mu \cdot f_{\perp,1} = 1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\mathbf{f}_{a,1} = f_1 + f_{R,1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\mathbf{f}_{b,1} = f_1 - f_{R,1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $\tau_{a,1} = (\mathbf{p}_1 - \mathbf{c}) \times \mathbf{f}_{a,1} = \begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \end{pmatrix} \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} = (-1) \cdot 1 - (-2) \cdot 1 = 1$
 $\tau_{b,1} = (\mathbf{p}_1 - \mathbf{c}) \times \mathbf{f}_{b,1} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \end{pmatrix} = (-1) \cdot (-1) - (-2) \cdot 1 = 3$
 $w_{a,1} = (\mathbf{f}_{a,1}, \tau_{a,1}) = (1, 1, 1)$
 $w_{b,1} = (\mathbf{f}_{b,1}, \tau_{b,1}) = (1, -1, 3)$
• Kontakt $i = 2$: $f_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

• Kontakt
$$i=2$$
: $f_2=\begin{pmatrix} -1\\0 \end{pmatrix}$

Reibungskraft:
$$f_{R,2} = \mu \cdot f_{\perp,2} = 1 \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\mathbf{f}_{a,2} = f_2 + f_{R,2} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$\mathbf{f}_{b,2} = f_2 - f_{R,2} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\tau_{a,2} = (\mathbf{p}_2 - \mathbf{c}) \times \mathbf{f}_{a,2} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \end{pmatrix} = 2 \cdot (-1) - (-2) \cdot (-1) = -4$$

$$\tau_{b,2} = (\mathbf{p}_2 - \mathbf{c}) \times \mathbf{f}_{b,2} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 2 \cdot 1 - (-2) \cdot (-1) = 0$$

$$w_{a,2} = (\mathbf{f}_{a,2}, \tau_{a,2}) = (-1, -1, -4)$$

$$w_{b,2} = (\mathbf{f}_{b,2}, \tau_{b,2}) = (-1, 1, 0)$$

1 P.

3 P.

Aufgabe 6 Bildverarbeitung

1. Bildpunkt: 1 P.

Formel:

$$\begin{pmatrix} u \cdot w \\ v \cdot w \\ w \end{pmatrix} = P \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Werte einsetzen:

$$\begin{pmatrix} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 200 \\ 200 \\ 1000 \end{pmatrix} = \begin{pmatrix} 200 \cdot 200 + 0 \cdot 200 + 320 \cdot 1000 \\ 0 \cdot 200 + 200 \cdot 200 + 240 \cdot 1000 \\ 0 \cdot 200 + 0 \cdot 200 + 1 \cdot 1000 \end{pmatrix} = \begin{pmatrix} 360000 \\ 280000 \\ 1000 \end{pmatrix} \rightarrow \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 360 \\ 280 \end{pmatrix}$$

2. Mathematische Eigenschaften eines linearen Filters:

• Additivität: f(x+y) = f(x) + f(y)

• Homogenität: $f(\alpha x) = \alpha f(x)$

3. Verschiebungsfilter:

$$\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

4. Ergebnis der Laplace-Filterung:

Ergebnis:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} * B = \begin{pmatrix} 0 & 0 & 2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 & 0 \end{pmatrix}$$

Alternativer Filter:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix} * B = \begin{pmatrix} 0 & 0 & 6 & -6 & 0 & 0 \\ 0 & 0 & 6 & -6 & 0 & 0 \\ 0 & 0 & 6 & -6 & 0 & 0 \\ 0 & 0 & 6 & -6 & 0 & 0 \end{pmatrix}$$

Aufgabe 7 Symbolisches Planen

1. Ist pickup(B,C) ausführbar?

2 P.

Nein, da die Vorbedingung Clear(B) nicht erfüllt ist.

Anschaulich bedeutet dies, dass Block B nicht gegriffen werden kann, weil Block A auf B steht.

2. Planungsoperator pickupAndPutdown(X, Y, Z):

2 P.

```
pickupAndPutdown(X, Y, Z):
Preconditions:
    Clear(X), On(X,Y), HandEmpty, Clear(Z)
```

Effects:

!Clear(Z), !On(X,Y), Clear(Y), On(X,Z)

3. Notwendige STRIPS-Erweiterung:

2 P.

Zwei alternative Antworten:

- Es muss die Möglichkeit geben, Disjunktionen im Zielzustand anzugeben.
- Es muss die Möglichkeit geben, den Existenz-Quantor im Zielzustand anzugeben.