Laboratorium 1 - Predykaty geometryczne

Mateusz Podmokły

18 październik 2023

1 Specyfikacja użytego środowiska

Specyfikacja:

• Środowisko: Jupyter Notebook,

• Język programowania: Python,

• System operacyjny: Microsoft Windows 11,

• Architektura systemu: x64.

2 Przebieg ćwiczenia

Ćwiczenie polega na analizie wyników algorytmów obliczających na różne sposoby położenie punktów względem prostej.

2.1 Losowanie punktów

Wylosowane zostały następujące zbiory punktów:

- 1. 10^5 losowych punktów o współrzędnych z przedziału [-1000, 1000],
- 2. 10^5 losowych punktów o współrzędnych z przedziału $[-10^{14}, 10^{14}]$,
- 3. 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100,
- 4. 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor \overrightarrow{ab} , gdzie $a=(-1,0),\,b=(1,\frac{1}{10}).$

Rysunek 1: Zbiór 1. - obszar kwadra-Rysunek 2: Zbiór 2. - obszar kwadra-towy.

Rysunek 3: Zbiór 3. - okrag.

Rysunek 4: Zbiór 4. - prosta.

2.2 Funkcje obliczające wyznacznik macierzy

Łatwo zbadać położenie punktu względem prostej obliczając wyznacznik macierzy 2x2 lub 3x3. Jeżeli det(a,b,c)>0 to punkt leży po lewej stronie prostej, det(a,b,c)<0 - leży po prawej, a jeżeli det(a,b,c)=0 to dany punkt leży na prostej. Dla prostej wyznaczonej przez wektor \overrightarrow{ab} i punktu c mamy wyznacznik 2x2:

$$det(a, b, c) = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix} = (a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)$$

oraz wyznacznik 3x3:

$$det(a, b, c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} = a_x b_y + a_y c_x + b_x c_y - c_x b_y - b_x a_y - a_x c_y$$

Do testów użyta została funkcja obliczająca wyznacznik wbudowana w bibliotekę Numpy linalg.det() oraz własne implementacje.

2.3 Obliczanie klasyfikacji punktów z użyciem powyższych funkcji

Dla każdego zbioru obliczone zostały klasyfikacje punktów przy użyciu typu danych float64 oraz $\epsilon=10^{-12}$ na 4 sposoby:

- wyznacznik 2x2 zaimplementowany ręcznie,
- wyznacznik 2x2 z biblioteki Numpy,
- wyznacznik 3x3 zaimplementowany ręcznie,
- wyznacznik 3x3 z biblioteki Numpy.

Następnie obliczenia zostały powtórzone z użyciem $\epsilon=1$. Na koniec typ danych został ustawiony na float32 i wszystko ponownie przeliczone. Wyniki obliczeń zostaną przedstawione poniżej.

Przykładowe klasyfikacje punktów ze zbiorów:

Rysunek 5: Zbiór 1. - obszar kwa- Rysunek 6: Zbiór 2. - obszar kwa- dratowy.

Rysunek 7: Zbiór 3. - okrąg.

Rysunek 8: Zbiór 4. - prosta.

3 Analiza wyników

3.1 Zestawienie otrzymanych danych:

3.1.1 Typ danych float64, $\epsilon=10^{-12}$

	Po lewej	Po prawej	Na prostej
Zbiór 1	49979	50021	0
Zbiór 2	50064	49927	9
Zbiór 3	513	487	0
Zbiór 4	80	94	826

Tabela 1: Wyznacznik 2x2 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49979	50021	0
Zbiór 2	50063	49926	11
Zbiór 3	513	487	0
Zbiór 4	118	107	775

Tabela 2: Wyznacznik 2x2 Numpy.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49979	50021	0
Zbiór 2	50067	49933	0
Zbiór 3	513	487	0
Zbiór 4	0	0	1000

Tabela 3: Wyznacznik 3x3 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49979	50021	0
Zbiór 2	50067	49933	0
Zbiór 3	513	487	0
Zbiór 4	0	0	1000

Tabela 4: Wyznacznik 3x3 Numpy.

3.1.2 Typ danych float64, $\epsilon=1$

	Po lewej	Po prawej	Na prostej
Zbiór 1	49799	50153	48
Zbiór 2	50047	49945	8
Zbiór 3	476	519	5
Zbiór 4	0	0	1000

Tabela 5: Wyznacznik 2x2 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49799	50153	48
Zbiór 2	50045	49944	11
Zbiór 3	476	519	5
Zbiór 4	0	0	1000

Tabela 6: Wyznacznik 2x2 Numpy.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49799	50153	48
Zbiór 2	50049	49951	0
Zbiór 3	476	519	5
Zbiór 4	0	0	1000

Tabela 7: Wyznacznik 3x3 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49979	50153	48
Zbiór 2	50049	49951	0
Zbiór 3	476	519	5
Zbiór 4	0	0	1000

Tabela 8: Wyznacznik 3x3 Numpy.

3.1.3 Typ danych float32, $\epsilon=10^{-12}$

	Po lewej	Po prawej	Na prostej
Zbiór 1	50252	49748	0
Zbiór 2	49986	50008	6
Zbiór 3	531	469	0
Zbiór 4	408	404	188

Tabela 9: Wyznacznik 2x2 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	50252	49748	0
Zbiór 2	49983	50008	11
Zbiór 3	531	469	0
Zbiór 4	429	427	144

Tabela 10: Wyznacznik 2x2 Numpy.

	Po lewej	Po prawej	Na prostej
Zbiór 1	50252	49748	0
Zbiór 2	49990	50010	0
Zbiór 3	531	469	0
Zbiór 4	408	404	188

Tabela 11: Wyznacznik 3x3 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	50252	49748	0
Zbiór 2	49990	50010	0
Zbiór 3	531	469	0
Zbiór 4	408	404	188

Tabela 12: Wyznacznik 3x3 Numpy.

3.1.4 Typ danych float32, $\epsilon=1$

	Po lewej	Po prawej	Na prostej
Zbiór 1	49998	49946	56
Zbiór 2	50147	49847	6
Zbiór 3	499	496	5
Zbiór 4	0	0	1000

Tabela 13: Wyznacznik $2\mathrm{x}2$ implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49998	49946	56
Zbiór 2	50147	49849	4
Zbiór 3	499	496	5
Zbiór 4	0	0	1000

Tabela 14: Wyznacznik 2x2 Numpy.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49998	49946	56
Zbiór 2	50151	49849	0
Zbiór 3	499	496	5
Zbiór 4	0	0	1000

Tabela 15: Wyznacznik 3x3 implementacja własna.

	Po lewej	Po prawej	Na prostej
Zbiór 1	49998	49946	56
Zbiór 2	50151	49849	0
Zbiór 3	499	496	5
Zbiór 4	0	0	1000

Tabela 16: Wyznacznik 3x3 Numpy.

3.2 Analiza otrzymanych danych

Można zauważyć że liczby punktów po prawej i po lewej stronie prostej są do siebie zbliżone. Wyznacznik 3x3 znajduje mniej punktów na prostej niż wyznacznik 2x2 (Tabela 1 i 3), nastomiast ręcznie zaimplementowane wyznaczniki więcej w porównaniu do bibliotecznych (Tabela 10 i 11). Po zwiększeniu tolerancji dla zera znacznie wzrasta liczba punktów klasyfikowanych jako leżące na prostej. Natomiast zmiana precyzji z float64 na float32, która zmniejsza dokładność obliczeń, powoduje, że wiele punktów ze zbioru 4. leżących na prostej jest błędnie klasyfikowane jako nieleżące na prostej.

4 Wnioski

Wyznaczniki

Mniejsza liczba punktów klasyfikowanych przez wyznacznik 3x3 jako leżące na prostej może być spowodowana większą liczbą mnożeń niż w przypadku wyznacznika 2x2 co powoduje zaokrąglenia wyników i straty w dokładności. Podobnie może być w przypadku różnic między wyznacznikiem zaimplementowanym ręcznie, a wersją pochodzącą z biblioteki Numpy - druga funkcja jest przystosowana do obliczania dowolnych wyznaczników $n \times n$, więc ilość obliczeń, które są przeprowadzane na danych wejściowych może być znacznie większa niż wewnąrtrz funkcji zaimplementowanych ręcznie, służących do obliczania konkretnego rodzaju wyznacznika. Nadmierne obliczenia mogą powodować straty dokładności.

Dokładność

Zwiększenie tolerancji w klasyfikowaniu punktów powoduje, że punkty, które wcześniej znajdowały się w zbyt dużej odległości od prostej teraz są uznawane za należące do niej. Natomiast zmiana typu używanych danych z float64 na float32 znacznie obniża precyzję obliczeń, przez co punkty ze zbioru 4., które leżą na prostej zostają niepoprawnie uznane za leżące poza prostą.

Podsumowanie

Wyznacznik 3x3 przy użyciu typu danych float64 bada położenie punktu względem prostej z dużą dokładnością. Widać to po obserwacji zbioru 4., gdzie wszystkie punkty leżące na prostej są poprawnie sklasyfikowane.