SOME PROOFS INVOLVING CARDINALITY

Theorem 1 (Cantor-Schröder-Bernstein). Let X and Y be sets, and suppose there exist injective functions $f: X \to Y$ and $g: Y \to X$. Then there exists a bijective function $h: X \to Y$.

Proof. Suppose the functions $f: X \to Y$ and $g: Y \to X$ are injective. Define the function $\varphi: \mathcal{P}(X) \to \mathcal{P}(X)$ by

$$\varphi(A) = X \setminus \Big(g[Y \setminus f[A]]\Big).$$

Define the sequence $(A_n)_{n\in\omega}$ of subsets of X inductively by setting $A_0=\emptyset$ and then for each $n\geq 0$ letting $A_{n+1}=\varphi(A_n)$. Let $A=\cup_n A_n$. We show that the function $h:X\to Y$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A; \\ g^{-1}(x) & \text{if } x \in X \setminus A \end{cases}$$

is bijective. To see this, note that by De Morgan's laws and the fact that unions and intersections are preserved under forward images by injective functions, we have

$$\varphi(A) = \varphi(\cup_n A_n) = X \setminus g[Y \setminus f[\cup_n A_n]]$$

$$= X \setminus g[Y \setminus \cup_n f[A_n]]$$

$$= X \setminus g[\cap_n (Y \setminus f[A_n])]$$

$$= X \setminus (\cap_n g[Y \setminus f[A_n]])$$

$$= \cup_n (X \setminus g[Y \setminus f[A_n]]) = \cup_n \varphi(A_n) = \cup_n A_{n+1} = A.$$

This means that $X \setminus A = g[Y \setminus f[A]]$, which implies that h is bijective.

Theorem 2. If A_1, \ldots, A_n are countable sets, then $A_1 \times \cdots \times A_n$ is countable.

Proof. Suppose A_i is countable for each $1 \leq i \leq n$. Then there exist injective functions $f_i: A_i \to \mathbb{N}$. Define $f: A_1 \times \cdots \times A_n \to \mathbb{N}$ by

$$f(a_1,\ldots,a_n) = \prod_{i=1}^n p_i^{f_i(a_i)},$$

where p_i is the *i*th prime number. Then f is injective by the Fundamental Theorem of Arithmetic. This shows that $A_1 \times \cdots \times A_n$ is countable.

Theorem 3. Let $\{A_i : i \in I\}$ be an indexed family of sets. If I is countable and if A_i is countable for each $i \in I$, then $\bigcup_{i \in I} A_i$ is countable.

Proof. Let $f: \mathbb{N} \to I$ be a surjection, and for each $n \in \mathbb{N}$ let $f_n: \mathbb{N} \to A_{f(n)}$ be a surjection. We know that $\mathbb{N} \times \mathbb{N}$ is countable, so let $h: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ be surjective, and write $h(n) = (n_1, n_2) \in \mathbb{N} \times \mathbb{N}$. Now define $g: \mathbb{N} \to \bigcup_{i \in I} A_i$ by $g(n) = f_{n_1}(n_2)$. Then g is surjective, so $\bigcup_{i \in I} A_i$ is countable.