中国科学技术大学

2023—2024学年第一学期考试试卷

	考试科目概	率论与数理统计	得分 _					
	所在院系	姓名	学号 _					
	考试时间: 2024	4 年 1 月 17 日上午 8:3	0-10:30; 可使月	目简单计算器				
— 、	(30分, 每小题3分) 填空	·题或单选题, 答案可	以直接写在试	卷上.				
	1. 设 $P(A) = 0.7$, $P(B) = 0.4$, $P(A B) = 0.5$, 则 $P(B A \cup \bar{B}) =$.							
	 下述表述正确的是((A)分布函数连续的) 的随机变量即为连续到	型随机变量					
	(B) 将一个随机变量	量加上一个常数则熵会	会增加					
	, ,	7 置信区间为 [0.1,0.	-					
	(D) 一个假设检验F 3. 设随机变量 <i>X</i> , <i>Y</i> 的	可题中得到的 p 值为 p 值为 p	•					
		· 列中一定为密度函数	, \ ,	:铁,叫对应时刀仰凶	双刀 加			
	, , , , ,	2f(x)G(x) (C) $F(x)$, ,	f(x)G(x) + F(x)g(x))			
	4. 设随机变量 X,Y 相互独立且均服从参数为 λ 的 Poisson 分布, 若记 $S=X+Y$							
	则 $Var[E(S X)] =$							
	5. 如果随机变量序列 $\{X_n\}$ 依分布收敛到随机变量 X ,则下述表述正确的是()							
	$(A) \lim_{n \to \infty} X_n = X$	$(B) \lim_{n \to \infty}$	$P(X_n \le x) =$	$P(X \le x), \ \forall x \in \mathbb{R}$				
		收敛到 X (D) $\lim_{n\to\infty}$	$P(X_n-X \leq$	$(\varepsilon) = 1, \ \forall \varepsilon > 0$				
	6. 下述表述正确的是() (A) 两个正本分布随机变量之和眼从正本分布							
	` '	(A) 两个正态分布随机变量之和服从正态分布 (B) t_{30} 分布可近似为标准正态分布						
	(C) 标准正态分布的尾部比 t 分布的尾部高							
	(D) 标准正态分布密度的峰比 t 分布密度的峰要低							
	7. 下述表述错误的是(
	(A) 矩估计量一般不 (C) 相合性 是一个付			↑总是优于有偏估计 * 休 计 可 N 不 方 东				
		古计量应具有的性质 为来自均匀			去知会			
	8. 设 X_1, X_2, \dots, X_n 为来自均匀总体 $U(0, \theta)$ 的简单随机样本, 其中 $\theta > 0$ 为未知参数. 记 $X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$, 若使损失函数 $h(c) = \mathbb{E}[(cX_{(n)} - \theta)^2]$ 最小,							
	则 $c =$	(1 / 2 / / 10) / /] "" ,			
	9. 设正态总体 $N(\mu, \sigma^2)$	2) 的方差 σ^{2} 已知, 若	样本容量 n 和	置信水平不变,则对	不同的			
		的置信区间长度						
	10. 设 $X_1,, X_n$ 为来	\$- · · ·			-			
	$0 \leftrightarrow H_1: \mu = 0.5.$ 样本量 n 至少为	如果要求检验犯第一	关和另—关销	医凹燃平均个超过 ().05,则			

二、 (20分) 设 $n (n \ge 3)$ 维随机向量 (X_1, X_2, \dots, X_n) 的密度函数为

$$f(x_1, x_2, \dots, x_n) = 1 + \prod_{i=1}^n x_i, \quad -0.5 \le x_i \le 0.5, \quad i = 1, 2, \dots, n.$$

- (1) 对任意 $1 \le k \le n$, 试求 X_k 的边缘分布.
- (2) 试求概率 $P(X_1 > 0, X_2 > 0, \dots, X_n > 0)$.
- (3) 对任一整数 $2 \le m < n$, 证明: X_1, \dots, X_m 相互独立, 但 X_1, \dots, X_n 不相互独立.
- (4) 设随机向量 $\mathbf{X}^{(1)} = (X_1, \dots, X_m), \mathbf{X}^{(2)} = (X_{m+1}, \dots, X_n), 1 \le m < n.$ 对给定的常数 $-0.5 \le x_{m+1}, \dots, x_n \le 0.5$, 证明在条件 $\mathbf{X}^{(2)} = (x_{m+1}, \dots, x_n)$ 下, $\mathbf{X}^{(1)}$ 的条件密度函数 $f(x_1, \dots, x_m | x_{m+1}, \dots, x_n)$ 与 $f(x_1, x_2, \dots, x_n)$ 具有相同表达式.
- 三、 (15分) 设随机变量 X 和 Y 相互独立且均服从正态分布 $\mathcal{N}(0,\sigma^2)$. 记随机变量 $U = (X^2 + Y^2)/\sigma^2$ 及 V = |Y|/X. 试求 (U,V) 的联合密度函数, 指出 U 和 V 各自服从的具体分布, 并证明两者相互独立.
- 四、 (15分) 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, 且 X 的密度函数为 $f(x) = \frac{1}{\sigma}e^{-(x-\theta)/\sigma}I_{[\theta,\infty)}(x)$, 其中 $\sigma > 0$ 为一己知的常数, 而 θ 为未知参数.
 - (1) 试求 θ 的矩估计 $\hat{\theta}$ 和最大似然估计 $\tilde{\theta}$.
 - (2) 问 $\hat{\theta}$ 和 $\tilde{\theta}$ 是否为 θ 的无偏估计? 若是, 请证明之; 若否, 请修正之.
 - (3) 试求常数 b, 使对任意 $x \in \mathbb{R}$, 均有 $\lim_{n \to \infty} P(\sqrt{n}(\hat{\theta} \theta)/b \le x) = \Phi(x)$ 成立, 其中 $\Phi(x)$ 为标准正态分布函数.
- 五、(12分) 某种内服药有使病人血压增高的副作用, 且血压增高值的分布为 N(22,84.64). 现研制出一种新药, 通过测试 10 名服用新药病人的血压, 发现血压增高的样本均值和 样本方差分别为 17.9 和 25.4. 在检验水平 $\alpha=0.05$ 下,
 - (1) 通过比较均值, 所测数据能否支持"新药的副作用显著变小"这一结论?
 - (2) 所测数据能否支持"新药的方差显著变小"这一结论?
- 六、(8分) 英国女作家Jane Austen(1775–1817)的作品有 $Sense\ and\ Sensibility,\ Pride\ and\ Prejudice$ 和 Emma 等,她哥哥在她去世后主持了遗作Persuasion 和 $Northanger\ Abbey$ 两部作品出版.下面表格收集了 $Sense\ and\ Sensibility,\ Emma$ 和 Persuasion 三部作品 前两章中常用代表词的出现频数,根据你所学统计知识,我们能否认为这三部作品在 选择这些常用词的习惯没有差异? (检验水平 $\alpha=0.05$)

单词	Sense and Sensibility	Emma	Persuasion
a	147	186	184
an	25	26	40
this	32	39	30
that	94	105	59

附录 标准正态分布函数: $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

上分位数: $t_9(0.025) = 2.2622$, $t_9(0.05) = 1.8331$,

 $\chi_6^2(0.05) = 12.592, \ \chi_6^2(0.95) = 1.635, \ \chi_9^2(0.05) = 16.919, \ \chi_9^2(0.95) = 3.325,$

参考答案

一、每小题3分.

 $\begin{bmatrix} 1-5 \end{bmatrix}$ $\frac{1}{4}$; D; D; λ ; C;

[6-10] B; $\frac{h+2}{h+1}$; 保持不变; 44.

- 二、 每小题 5 分.
 - (1) 对任意 $1 \le k \le n$, 由

$$f_k(x_k) = \int_{-1/2}^{1/2} \cdots \int_{-1/2}^{1/2} \left(1 + \prod_{i \neq k} x_i \right) dx_1 \cdots dx_{k-1} dx_{k+1} \cdots dx_n = 1, \quad -\frac{1}{2} \le x_k \le \frac{1}{2},$$

知 $X_k \sim U(-1/2, 1/2)$, 即 X_k 服从区间 (-1/2, 1/2) 上的均匀分布.

(2) 由密度函数的基本性质可知

$$P(X_1 > 0, X_2 > 0, \dots, X_n > 0) = \int_0^{1/2} \dots \int_0^{1/2} \left(1 + \prod_{i=1}^n x_i \right) dx_1 \dots dx_n$$
$$= \frac{1}{2^n} + \left(\int_0^{1/2} x dx \right)^n = \frac{1}{2^n} + \frac{1}{8^n} = \frac{4^n + 1}{8^n}.$$

(3) 对 $2 \le m < n$, 类似 (1) 可知 X_1, X_2, \dots, X_m 的联合密度函数为

$$f_{1,2,\dots,m}(x_1,x_2,\dots,x_m)=1, \quad -\frac{1}{2} \le x_1,x_2,\dots,x_m \le \frac{1}{2}.$$

再由 (1) 可知 X_1, X_2, \cdots, X_m 相互独立. 而当 x_1, x_2, \cdots, x_n 均不为 0 时, 联合密度函数 $f(x_1, x_2, \cdots, x_n) \neq 1$, 从而知 X_1, X_2, \cdots, X_n 不相互独立.

(4) 设 $f_{m+1,\dots,n}(x_{m+1},\dots,x_n)$ 为 $\mathbf{X}^{(2)}$ 的边缘密度函数,则类似于 (3) 中结论可知 $f_{m+1,\dots,n}(x_{m+1},\dots,x_n)=1, -1/2 \leq x_{m+1},\dots,x_n \leq 1/2$. 故由条件密度基本公式

$$f(x_1, \dots, x_m | x_{m+1}, \dots, x_n) = \frac{f(x_1, x_2, \dots, x_n)}{f_{m+1, \dots, n}(x_{m+1}, \dots, x_n)},$$

可知结论成立.

三、 记 Z=|Y|, 函数 $u=\frac{1}{\sigma^2}(x^2+z^2), v=z/x$. 注意到 $(x,z)\longmapsto (u,v)$ 为一一映射, 且 Jacobi 行列式为

$$J^{-1} = \left| \frac{\partial(u, v)}{\partial(x, z)} \right| = \left| \begin{array}{cc} 2x/\sigma^2 & 2z/\sigma^2 \\ -z/x^2 & 1/x \end{array} \right| = \frac{2}{\sigma^2} \left(1 + \frac{z^2}{x^2} \right) = \frac{2(1 + v^2)}{\sigma^2}.$$

由 (X,Z) 的联合密度函数为 $f(x,z)=\frac{1}{\pi\sigma^2}e^{-(x^2+z^2)/(2\sigma^2)}, \ -\infty < x < \infty, z>0$ 及密度变换公式可知 (U,V) 的联合密度为

$$g(u, v) = f(x, z)|J| = \frac{1}{2\pi(1 + v^2)}e^{-u/2}, \quad u > 0, -\infty < v < \infty.$$

(注: 变量取值范围不写或写错和 1 分.) 由 g(u,v) 可分离变量知, U 服从参数为 1/2 的指数分布 (或自由度为 2 的 χ^2 分布), V 服从 Cauchy 分布, 且两者相互独立.

四、 每小题 5 分.

(1) 由 $EX = \theta + \sigma$ 可知所求矩估计 $\hat{\theta} = \overline{X} - \sigma$, 其中 \overline{X} 为样本均值. 再由似然函数

$$L(\theta) = \frac{1}{\sigma^n} \exp \left\{ -\sum_{i=1}^n \frac{x_i - \theta}{\sigma} \right\} I_{[\theta, \infty)}(x_1, x_2, \cdots, x_n)$$

可知最大似然估计 $\tilde{\theta} = X_{(1)} = \min\{X_1, \dots, X_n\}$.

- (2) 通过计算知 $E(\hat{\theta}) = \theta$ 及 $E(\tilde{\theta}) = \theta + \sigma/n$, 故 $\hat{\theta}$ 是 θ 的无偏估计, 而 $\tilde{\theta}$ 则不是, 可 修正为 $\tilde{\theta}^* = X_{(1)} \sigma/n$.
- (3) 由 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i \sigma)$ 及独立同分布场合下的中心极限定理可知

$$b/\sqrt{n} = \sqrt{\operatorname{Var}(\hat{\theta})} = \sigma/\sqrt{n},$$

故 $b = \sigma$.

- 五、 每小题 6 分. 注意 H_0 , H_1 的设置(1分), 检验统计量的选取(1分), 数值计算(1分), 分位数的使用(1分), 决策结果(2分)各步骤是否正确.
 - (1) $H_0: \mu \geq \mu_0 = 22$ (或 $\mu = \mu_0$) $\leftrightarrow H_1: \mu < \mu_0$. 由检验统计量

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{17.9 - 22}{\sqrt{25.4/10}} = -2.57 < -t_9(0.05) = -1.8331,$$

故拒绝 Ho, 即可以认为新药的副作用显著变小.

(2) $H_0: \sigma^2 \ge \sigma_0^2 = 84.64$ (或 $\sigma^2 = \sigma_0^2$) $\leftrightarrow H_1: \sigma^2 < \sigma_0^2$. 由检验统计量

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{9 \times 25.4}{84.64} = 2.7 < \chi_9^2(0.95) = 3.325,$$

故拒绝 H₀, 即可以认为新药的方差显著变小.

六、 齐次性检验. 原假设 H_0 : 这三部作品在选择这些常用词的习惯没有差异. 检验统计量为

$$\chi^2 = \sum_{i=1}^4 \sum_{j=1}^3 \frac{(n_{ij} - n_{i\cdot} n_{\cdot j}/n)^2}{n_{i\cdot} n_{\cdot j}/n}.$$

在原假设成立条件下, 该统计量的极限分布是自由度为 $(4-1) \times (3-1) = 6$ 的卡方分布. 代入数据计算可得

$$\chi^2 = 19.722 > \chi^2_{0.05}(6) = 12.592,$$

故在 $\alpha = 0.05$ 下, 我们可以拒绝原假设, 即认为这三部作品在选择常用词的习惯上有显著差异.