Correction

1.a
$$\begin{cases} x(-t) = x(t) \\ y(-t) = -y(t) \end{cases}$$
 donc la courbe est symétrique par rapport à l'axe des abscisses.

$$\begin{cases} x(\pi-t)=-x(t)\\ y(\pi-t)=y(t) \end{cases}$$
 donc la courbe est symétrique par rapport à l'axe des ordonnées.

$$\begin{cases} x(\pi/2-t) = y(t) \\ y(\pi/2-t) = x(t) \end{cases}$$
 donc la courbe est symétrique par rapport à la première bissectrice.

$$1.b \quad \begin{cases} x(t+2\pi) = x(t) \\ y(t+2\pi) = y(t) \end{cases}, \text{ on peut donc restreindre l'étude à } t \in \left[-\pi, \pi\right].$$

On obtient alors directement l'intégralité de la courbe.

Les symétries précédentes permettent de réduire l'étude à $[0,\pi],[0,\pi/2]$ puis $[0,\pi/4]$.

On obtiendra l'intégralité de la courbe en complétant par les symétries proposées.

$$t \mapsto M(t)$$
 est \mathcal{C}^{∞} sur $[0, \pi/4]$.

$$\begin{cases} x'(t) = -3\sin t \cos^2 t \\ y'(t) = 3\cos t \sin^2 t \end{cases}, \begin{cases} x'(t) = 0 \Leftrightarrow t = 0 \\ y'(t) = 0 \Leftrightarrow t = 0 \end{cases}$$

t	0		$\pi/4$		t	(
	1					
x(t)		\setminus		,	a ₁ (+)	
			$1/(\sqrt{2})^3$		$y(\iota)$	١,
	$\frac{t}{x(t)}$	1	1	x(t) $x(t)$	x(t) $x(t)$,	x(t) $x(t)$ $x(t)$

En
$$t = 0$$
, $M(0)\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ est un point singulier.

$$\begin{cases} x''(t) = -3\cos^3 t + 6\sin^2 t \cos t \\ y''(t) = -3\sin^3 t + 6\cos^2 \sin t \end{cases}, \begin{cases} x''(0) = -3 \\ y''(0) = 0 \end{cases}.$$

rebroussement de première espèce.

En
$$t = \pi/4$$
, $M(\pi/4) \left| \frac{1/(\sqrt{2})^3}{1/(\sqrt{2})^3} \right|$ admet une tangente de pente -1 .

1.c
$$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{x'^2(t) + y'^2(t)} = 3|\sin t \cos t|$$
.

$$L = \int_{-\pi}^{\pi} 3|\sin t \cos t| dt = 12 \int_{0}^{\pi/2} \sin t \cos t dt = 3[-\cos 2t]_{0}^{\pi/2} = 6.$$

2.a
$$\vec{T}(t) = \cos \alpha \cdot \vec{i} + \sin \alpha \cdot \vec{j}$$
 et $\vec{N}(t) = -\sin \alpha \cdot \vec{i} + \cos \alpha \cdot \vec{j}$ avec

$$\begin{cases} \cos \alpha = \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = -\frac{\sin t \cos^2 t}{|\sin t \cos t|} \\ \sin \alpha = \frac{\mathrm{d}y}{\mathrm{d}s} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\cos t \sin^2 t}{|\sin t \cos t|} \end{cases}$$

$$\begin{cases}
\sin \alpha = \frac{\mathrm{d}y}{\mathrm{d}s} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\cos t \sin^2 t}{|\sin t \cos t|}
\end{cases}$$

2.b Si
$$\sin t \cos t > 0$$
 alors $\begin{cases} \cos \alpha = -\cos t \\ \sin \alpha = \sin t \end{cases}$, $\alpha = \pi - t$ est une détermination angulaire convenable. Si $\sin t \cos t < 0$ alors $\begin{cases} \cos \alpha = \cos t \\ \sin \alpha = -\sin t \end{cases}$, $\alpha = -t$ est une détermination angulaire convenable. Dans les deux cas : $\frac{1}{R(t)} = \frac{\mathrm{d}\alpha}{\mathrm{d}s} = \frac{\mathrm{d}\alpha}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = -\frac{1}{3|\sin t \cos t|}$ puis $R(t) = -3|\sin t \cos t|$.

Si
$$\sin t \cos t < 0$$
 alors $\begin{cases} \cos \alpha = \cos t \\ \sin \alpha = -\sin t \end{cases}$, $\alpha = -t$ est une détermination angulaire convenable.

Dans les deux cas :
$$\frac{1}{R(t)} = \frac{d\alpha}{ds} = \frac{d\alpha}{dt} \frac{dt}{ds} = -\frac{1}{3|\sin t \cos t|}$$
 puis $R(t) = -3|\sin t \cos t|$.

2.c Si
$$M(t)$$
 est régulier alors :

$$\overline{M(t)\Omega(t)} = R(t)\vec{N}(t) \begin{vmatrix} 3\cos t \sin^2 t \\ 3\sin t \cos^2 t \end{vmatrix} \text{ puis } I(t) \begin{vmatrix} \cos^3 t + 3\cos t \sin^2 t \\ \sin^3 t + 3\sin t \cos^2 t \end{vmatrix}.$$

Si M(t) est irrégulier $\sin t \cos t = 0$ et la formule ci-dessus est encore valable.

2.d
$$\overrightarrow{O\Omega(t)} = X(t)\overrightarrow{I} + Y(t)\overrightarrow{J} = (\cos^3 t + 3\sin t \cos^2 t) \cdot \overrightarrow{i} + (\sin^3 t - 3\cos t \sin^2 t) \cdot \overrightarrow{j} \text{ et } \overrightarrow{i} = \frac{1}{\sqrt{2}}(\overrightarrow{I} - \overrightarrow{J}),$$

$$\vec{j} = \frac{1}{\sqrt{2}}(\vec{I} + \vec{J})$$
 donne:

$$\begin{cases} X(t) = \frac{1}{\sqrt{2}} \left(\cos^3 t + 3\sin t \cos^2 t + 3\cos t \sin^2 t + \sin^3 t\right) = \frac{1}{\sqrt{2}} \left(\cos t + \sin t\right)^3 \\ Y(t) = \frac{1}{\sqrt{2}} \left(-\cos^3 t + 3\sin t \cos^2 t - 3\cos t \sin^2 t + 0\sin^3 t\right) = \frac{1}{\sqrt{2}} \left(-\cos t + \sin t\right)^3 \end{cases}.$$

2.e
$$\cos t + \sin t = \sqrt{2}(\cos(t - \pi/4))$$
 et $-\cos t + \sin t = \sqrt{2}(\sin(t - \pi/4))$ donc $\begin{cases} X(t) = 2\cos^3 \tau \\ Y(t) = 2\sin^3 \tau \end{cases}$.

La courbe C' apparaît donc comme l'image de C par la rotation de centre O et d'angle $\pi/4$ (qui transforme le repère \mathcal{R} en \mathcal{R}') composée avec l'homothétie de centre O et de rapport 2 (qui fait apparaître le facteur 2 dans la description du système).

3.a Si
$$M(t)$$
 est régulier alors :

$$D(t)$$
: $\sin t(x-\cos^3 t) + \cos t(y-\sin^3 t) = 0$ ou $\sin t \cdot x + \cos t \cdot y = \sin t \cos t$.

Si M(t) est irrégulier, l'expression est encore valable.

3.b
$$A(t)\begin{vmatrix} a \\ 0 \end{vmatrix}$$
 et $B(t)\begin{vmatrix} 0 \\ b \end{vmatrix}$ avec $a = \cos t$ et $b = \sin t$. On a $A(t)B(t) = 1$.

4.a
$$\sin t \cdot \frac{1}{2} \cos t + \cos t \cdot \frac{1}{2} \sin t = \sin t \cos t \text{ donc } P \in D(t)$$
.

Soit
$$Q$$
 le symétrique de P par rapport à l'axe (Ox) . $Q\begin{vmatrix} \frac{1}{2}\cos t \\ -\frac{1}{2}\sin t \end{vmatrix}$. La droite (OQ) est parallèle à $D(t)$.

Pour construire D(t), on représente la parallèle à (OQ) passant par P

Pour construire
$$D(t)$$
, on represente la parallele a (OQ) passant par P .

4.b $H \begin{vmatrix} x \\ y \end{vmatrix}$ avec $\begin{cases} \sin t \cdot x + \cos t \cdot y = \cos t \sin t & (H \in D(t)) \\ -\cos t \cdot x + \sin t \cdot y = 0 & (\overrightarrow{OH} \perp D(t)) \end{cases}$ soit $\begin{cases} x = \cos t \sin^2 t \\ y = \cos^2 t \sin t \end{cases}$.

 $\overrightarrow{OM} + \overrightarrow{OH} \begin{vmatrix} \cos t \\ \sin t \end{vmatrix}$ donc $\overrightarrow{OM} + \overrightarrow{OH} = 2\overrightarrow{OP}$.

$$\overrightarrow{OM} + \overrightarrow{OH} \begin{vmatrix} \cos t \\ \sin t \end{vmatrix}$$
 donc $\overrightarrow{OM} + \overrightarrow{OH} = 2\overrightarrow{OP}$.

D(t) étant construite ci-dessus, on détermine H puis M par la relation : $\overrightarrow{OM} = 2\overrightarrow{OP} - \overrightarrow{OH}$

