Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -periodicity

Lecture 20 Trigonometric identities

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 20

MATH 0200

- Trigonometric identities for α , $-\alpha$ and $\pi \alpha$
- Trigonometric identities for α and $\frac{\pi}{2} \alpha$

Trigonometric identities involving 2π-periodicity

- ① Trigonometric identities for $\alpha, -\alpha$ and $\pi \alpha$
- 2 Trigonometric identities for α and $\frac{\pi}{2} \alpha$
- 3 Trigonometric identities involving 2π -periodicity

Lecture 20

MATH 0200

Trigonometridentities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} = \alpha$

Trigonometric identities involving 2π -periodicity

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -

•
$$\cos(-\alpha) = \cos(\alpha)$$
 and $\cos(\pi - \alpha) = -\cos(\alpha)$;

Lecture 20

MATH 0200

Trigonometridentities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -

- $\cos(-\alpha) = \cos(\alpha)$ and $\cos(\pi \alpha) = -\cos(\alpha)$;
- $\sin(-\alpha) = -\sin(\alpha)$ and $\sin(\pi \alpha) = \sin(\alpha)$;

Lecture 20

MATH 0200

Trigonometri identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -

•
$$\cos(-\alpha) = \cos(\alpha)$$
 and $\cos(\pi - \alpha) = -\cos(\alpha)$;

•
$$\sin(-\alpha) = -\sin(\alpha)$$
 and $\sin(\pi - \alpha) = \sin(\alpha)$;

•
$$\tan(-\alpha) = \frac{\sin(-\alpha)}{\cos(-\alpha)} = \frac{-\sin(\alpha)}{\cos(\alpha)} = -\tan(\alpha);$$

Lecture 20

MATH 0200

Trigonometri identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -periodicity

- $\cos(-\alpha) = \cos(\alpha)$ and $\cos(\pi \alpha) = -\cos(\alpha)$;
- $\sin(-\alpha) = -\sin(\alpha)$ and $\sin(\pi \alpha) = \sin(\alpha)$;
- $\tan(-\alpha) = \frac{\sin(-\alpha)}{\cos(-\alpha)} = \frac{-\sin(\alpha)}{\cos(\alpha)} = -\tan(\alpha);$
- $\tan(\pi \alpha) = \frac{\sin(\pi \alpha)}{\cos(\pi \alpha)} = \frac{\sin(\alpha)}{-\cos(\alpha)} = -\tan(\alpha)$.

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -periodicity

Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π-periodicity

Let's take a look at a right triangle (with angles α , $\frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -

Let's take a look at a right triangle (with angles α , $\frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -periodicity

Let's take a look at a right triangle (with angles α , $\frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

•
$$\cos\left(\frac{\pi}{2} - \alpha\right) = \frac{a}{c} = \sin(\alpha)$$
 and $\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{b}{c} = \cos(\alpha)$;

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometri identities for α and $\frac{\pi}{2} - \alpha$

Trigonometric identities involving 2π -periodicity

Let's take a look at a right triangle (with angles $\alpha, \frac{\pi}{2} - \alpha$ and $\frac{\pi}{2}$).

•
$$\cos\left(\frac{\pi}{2} - \alpha\right) = \frac{a}{c} = \sin(\alpha)$$
 and $\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{b}{c} = \cos(\alpha)$;

•
$$\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{\sin\left(\frac{\pi}{2} - \alpha\right)}{\cos\left(\frac{\pi}{2} - \alpha\right)} = \frac{\cos(\alpha)}{\sin(\alpha)} = \cot(\alpha).$$

Trigonometric identities involving 2π -periodicity

Question

Given that $\cos(u) = -0.6$ and $0 < \frac{\pi}{2} - u < \frac{\pi}{2}$, find $\cos(\frac{\pi}{2} - u)$.

Question

Given that $\cos(u) = -0.6$ and $0 < \frac{\pi}{2} - u < \frac{\pi}{2}$, find $\cos(\frac{\pi}{2} - u)$.

Answer: first we use the identity $\sin\left(\frac{\pi}{2}-u\right)=\cos(u)=-0.6$ and then find $\cos\left(\frac{\pi}{2}-u\right)=\pm\sqrt{1-\sin^2\left(\frac{\pi}{2}-u\right)}=\pm\sqrt{1-(-0.6)^2}=\pm\sqrt{1-0.36}=\pm\sqrt{0.64}=\pm0.8$. As $0<\frac{\pi}{2}-u<\frac{\pi}{2}$, we choose the positive value $\cos\left(\frac{\pi}{2}-u\right)=0.8$.

Lecture 20

MATH 0200

Trigonometric identities for α , $-\alpha$ and $\pi - \alpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometridentities involving 2π -periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Lecture 20

MATH 0200

Trigonometric identities for lpha, -lpha and $\pi-lpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π -periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x + P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

Lecture 20

MATH 0200

Trigonometric identities for lpha, -lpha and $\pi-lpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π -periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x+P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

Lecture 20

MATH 0200

Trigonometric identities for lpha, -lpha and $\pi-lpha$

Trigonometric identities for lpha and $rac{\pi}{2}-lpha$

Trigonometri identities involving 2π -periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x+P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

 $\bullet \sin(x) = \sin(x + 2\pi);$

Lecture 20

MATH 0200

Trigonometric identities for lpha, -lpha and $\pi-lpha$

Trigonometric identities for lpha and $rac{\pi}{2}-lpha$

Trigonometri identities involving 2π -periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x+P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

- $\bullet \sin(x) = \sin(x + 2\pi);$

Lecture 20

MATH 0200

Trigonometric identities for lpha, -lpha and $\pi-lpha$

Trigonometric identities for α and $\frac{\pi}{2} - \alpha$

Trigonometri identities involving 2π periodicity

Remark

Notice that the radius corresponding to an angle α is the same as the radius corresponding to angle $\alpha + 2\pi n$ for any integer n.

Definition

A function f(x) is called **periodic** if it repeats its values at regular intervals: f(x) = f(x+P) for a constant P and all values of x in the domain. The smallest positive constant P for which this is the case is called the **period** of the function.

The trigonometric functions $\sin(x)$, $\cos(x)$, $\tan(x)$, $\cot(x)$, $\sec(x)$ and $\csc(x)$ are periodic with period 2π :

- $\bullet \sin(x) = \sin(x + 2\pi);$
- $\cos(x) = \cos(x + 2\pi)$;
- $tan(x) = tan(x + 2\pi) \dots$

Trigonometri identities involving 2π -periodicity

Example

Find the smallest number α larger than 7π such that $\tan(\alpha) = -1$.

Trigonometri identities involving 2π -periodicity

Example

Find the smallest number α larger than 7π such that $\tan(\alpha) = -1$.

We know that $\tan\left(\frac{3\pi}{4} + n\pi\right) = -1$ and, therefore, need to find the smallest integer n with $\frac{3\pi}{4} + n\pi > 7\pi$. As $\frac{3\pi}{4} + n\pi > 7\pi \Leftrightarrow \frac{3}{4} + n > 7 \Leftrightarrow n > 6.25$, the smallest integer value of n satisfying the inequality is 7. The answer is $\alpha = \frac{3\pi}{4} + 7\pi = \frac{31\pi}{4}$.