דף נוסחאות – תורת המספרים

מוסכמה: כל המספרים הם שלמים אלא אם כן צוין אחרת

1. קבוצות מספרים:

```
\mathbb{N} = \{0,1,2,...\} :(natural numbers) הטבעיים \mathbb{Z} = \{...,-2,-1,0,1,2,...\} :(integers) השלמים החיוביים: \mathbb{Z}^+ = \{1,2,3,...\} :(rationals) הרציונליים \mathbb{Q} = \{p/q: p,q \in \mathbb{Z}, \ q \neq 0\} :(rationals) הממשיים \mathbb{R} :(real numbers) הממשיים החיוביים: \mathbb{R}^+ :המרוכבים החרובים החרובים
```

- 2. **עיקרון הסדר הטוב (well-ordering principle):** כל תת-קבוצה לא ריקה של ₪ מכילה מספר מינימלי.
 - ac = b אם קיים c כך ש-a מחלק את b, ומסמנים b, אם קיים c כך ש-a.
- 4. **משפט החילוק (division algorithm):** אם a,b הם מספרים כאשר $b \neq 0$, אזי קיים זוג (**division algorithm):** מספרים **ייחודי** a=qb+r עך ש- q,r למספר q קוראים $r=a \bmod b$
 - xמסמן את המספר השלם הכי גדול שלא גדול מ-x אזי $x \in \mathbb{R}$ אזי $x \in \mathbb{R}$ מסמן את המספר השלם הכי גדול שלא גדול מ-
- טענה: אם $x\in\mathbb{R}^+$ ו- $x\in\mathbb{R}^+$ אזי קיימים בדיוק $a\in\mathbb{R}^+$ מספרים שלמים חיוביים לא .6 גדולים מ-x שמתחלקים ב-a.
 - $D(n) = \{m : m \mid n\}$ מלקים של המחלקים של.
- של a,b של (greatest common divisor) של פמסומן (greatest common divisor) של a,b שמסומן. $\gcd(a,b)$ או (a,b)

$$\gcd(a,b) = \max(D(a) \cap D(b))$$

.(relatively prime) אזי נאמר שa,b הם זרים $\gcd(a,b)=1$ אזי נאמר ש-9

.n-ו מספר n > 1 נקרא (prime) אם אין לו מחלקים חיוביים חוץ מ-1 ו-n נקרא (composite) אחרת הוא נקרא פריק (

$$gcd(a,b) = gcd(a-kb,b)$$
 .11

- ונסמן (extended gcd theorem) יהיו יהיו פכרים, ונסמן: (extended gcd theorem) אזי קיימים מספרים. ונסמן: d=ax+by -שx,y כך שx,y ביימים מספרים x,y ביימים מספרים ונסמן
 - . gcd(a,b) מחלק את a,b מחלק משותף של 13.
- c אזי גם ab מחלק את ab הם זרים וכל אחד מהם מחלק את ab הם זרים וכל אחד מהם מחלק את
 - gcd(ac,bc) = c gcd(a,b) .15
- .16 הם a/d, b/d אזי $d = \gcd(a,b)$ הם זרים. מספרים, ונסמן a,b
- $a \mid c$ אזי , $a \mid bc$ הם זרים ו- (Euclid's lemma). אם a,b אזי .17
- של (least common multiple) של (least common multiple) של מסומנת .18 (a,b) של (a,b) נתונה ע"י (a,b)

$$lcm(a,b) = min\{m \in \mathbb{Z}^+ : a \mid m, b \mid m\}$$

- $ab = \operatorname{lcm}(a, b) \cdot \gcd(a, b)$.19
- .lcm(a,b) איא כפולה של a,b היא משותפת של 20.
- הם x,y הם מספרים נתונים ו- ax+by=c הם a,b,c משוואה משוואה מארה במקרה ax+by=c במקרה נעלמים. אזי למשוואה יש פתרון אם ורק אם c היא כפולה של ax+by=c במקרה נעלמים. אזי למשוואה יש פתרון אם ורק אם ax+by=c הוא פתרון מסוים למשוואה, אזי כל פתרון למשוואה הוא ax+by=c במה, אם ax+by=c במקרה c במקרה ax+by=c הוא פתרון אם ורק במחוואה מספרים במקרה משוואה משוואה מחוואה מחווא מחווא

$$\left(x = x_0 + \frac{b}{d}t, \ y = y_0 - \frac{a}{d}t\right)$$

- -טענה במספר . $n \in \mathbb{N}$ טענה התלויה במספר . (induction משפט (אינדוקציה. 22. משפט (אינדוקציה.
 - ,היא נכונה S(0)
 - . היא נכונה, אז גם S(n+1) היא נכונה, אז גם אם היא נכונה. S(n) היא נכונה.
 - . $n \in \mathbb{N}$ אזי S(n) נכונה לכל

- 23. **המשפט היסודי של האריתמטיקה (fundamental theorem of arithmetic):** כל מספר .20 חיובי ניתן להיכתב כמכפלה של מספרים ראשוניים באופן **ייחודי** (עד כדי סדר הגורמים).
 - $.\sqrt{n}$ -אינו ראשוני, אזי יש לו גורם ראשוני קטן-שווה ל- 24.
- מספרים של שני מספרים $a=p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}$, $b=p_1^{b_1}p_2^{b_2}\cdots p_n^{b_n}$ יהי יהי. $a=p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}$ הפירוק לראשוניים של שני מספרים .25

$$\gcd(a,b) = p_1^{\min\{a_1,b_1\}} p_2^{\min\{a_2,b_2\}} \cdots p_n^{\min\{a_n,b_n\}},$$

$$\operatorname{lcm}(a,b) = p_1^{\max\{a_1,b_1\}} p_2^{\max\{a_2,b_2\}} \cdots p_n^{\max\{a_n,b_n\}}$$

- מודולו m, ומסמנים (congruent) נקראים שקולים (קראים מודולו a,b נקראים (a,b) מודולו $m \mid (b-a)$ אם $a \equiv b \pmod m$
 - . $a \mod m = b \mod m$ אם ורק אם $a \equiv b \pmod m$.27
- באות: היחס מודולו m הוא יחס שקילות, כלומר הוא מקיים את התכונות הבאות:
 - $a \equiv a \pmod{m}$
 - . $b \equiv a \pmod m$ אז גם $a \equiv b \pmod m$ אם •
- . $a \equiv c \pmod m$ אז גם $b \equiv c \pmod m$ וגם $a \equiv b \pmod m$
 - אזי: $c \equiv d \pmod m$ וגם $a \equiv b \pmod m$ -שיי. 29
 - $a \pm c \equiv b \pm d \pmod{m}$.1
 - $ac \equiv bd \pmod{m}$.2
 - $a^k \equiv b^k \pmod{m}$.3
 - אזי $a\equiv b\ (\mathrm{mod}\ m)$ אזי שלמים. אם פולינום בעל מקדמים פולינום בעל p(x) היהי פולינום בעל מקדמים $p(a)\equiv p(b)\ (\mathrm{mod}\ m)$
- . $a\equiv b\pmod{m/d}$ אזי . $d=\gcd(c,m)$ ונסמן , $ac\equiv bc\pmod{m}$ -ש .31
- $a\equiv b\ (\mathrm{mod}\ \mathrm{lcm}(m_1,m_2))$ אזי , $a\equiv b\ (\mathrm{mod}\ m_2)$ וגם $a\equiv b\ (\mathrm{mod}\ m_1)$ אזי .32
- .33 משוואה $ax\equiv b\pmod m$ הם מספרים נתונים ו-a, משוואה משוואה $ax\equiv b\pmod m$ הוא נעלם. $d=\gcd(a,m)$ נסמן
 - אזי למשוואה אין פתרון. $d \nmid b$ אם •
 - m אחרת, למשוואה יש d פתרונות לא שקולים מודולו ullet

- (modular inverse) m מספרים זרים. אזי ההופכי של a מודולו a מספרים זרים. אזי הברה: יהיו $ax\equiv 1\ (\mathrm{mod}\ m)$ הפתרון a למשוואה
- אזי למערכת (ad-bc) אזי למערכת מספרים נתונים, כאשר מספרים a,b,c,d,r,s,m יהיו 35.

$$ax + by \equiv r \pmod{m}$$

 $cx + dy \equiv s \pmod{m}$

m יש פתרון יחיד מודולו

- מספר ההופכי של a מספר ראשוני, ויהי a מספר מספר מספר מספר a מספר מספר אזי a מספר מספר a מספר ראשוני, ויהי $a\equiv \pm 1\ (\mathrm{mod}\ p^k)$ אם ורק אם $a\equiv \pm 1\ (\mathrm{mod}\ p^k)$
 - $x^2 \equiv 1 \pmod{2^k}$. מה: נתבונן במשוואה 37.
 - $x \equiv 1$ אזי הפתרון היחיד הוא k = 1
 - $x \equiv \pm 1$ אזי יש שני פתרונות: k = 2
 - . $x\equiv 2^{k-1}\pm 1$, $x\equiv \pm 1$:אם $k\geq 3$ אזי יש ארבעה פתרונות
- מספרים $m_1, m_2, ..., m_k$ יהיו :(Chinese remainder theorem) משפט השאריות הסיני. 38. משפט השאריות מספרים $a_1, a_2, ..., a_k$ זרים אחד לשני, ויהיו $a_1, a_2, ..., a_k$ מספרים כלשהם. אז למערכת

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_k \pmod{m_k}$

 y_i יש פתרון יחיד מודולו , $1 \leq i \leq k$ עבור , נסמן : $M=m_1m_2 \dots m_k$ עבור , $M_i=M/m_i$ יש פתרון יחיד מודולו , $M_i=m_1m_2 \dots m_k$ מודולו . M_i מודולו M_i אז הפתרון היחיד הוא

:(Wilson's theorem) משפט וילסון.

.
$$(p-1)! \equiv -1 \pmod{p}$$
 הוא ראשוני אם ורק אם p

40. המשפט הקטן של פרמה (Fermat's little theorem):

.
$$a^{p-1}\equiv 1\ (\mathrm{mod}\ p)$$
 אם p ראשוני ו- a זר ל- p , אזי אזי p

- . $a^p \equiv a \pmod p$ אוני, אזי $p \equiv a \pmod p$. 41
- 1.42 אם n זר ל-n אם (pseudoprime) אם (pseudoprime) אם n ייקרא פסאודו-ראשוני n ייקרא $a^{n-1} \equiv 1 \pmod n$
- לכל a שזר ל-n, אזי n נקרא מספר (הגדרה: אם n פריק, ומתקיים (מתקיים n לכל $a^{n-1} \equiv 1 \pmod n$ (Carmichael number).

- כאשר $n=p_1p_2\dots p_k$ משפט: מספר פריק הוא מספר קרמייקל אם ורק אם $n=p_1p_2\dots p_k$ משפט: מספר פריק הוא מספר קרמייקל אם ורק אונים אחד מהשני, ו- p_1,p_2,\dots,p_k
- -45. הוא מספר המספרים בין 1 ל (Euler's totient function הגדרה (פונקצית אוילר $\varphi(n)=|\{1\leq i\leq n:\gcd(i,n)=1\}|$:n
 - . $a^{\varphi(n)} \equiv 1 \pmod n$ אם זר ל-n: (Euler's theorem אם 46. משפט (אוילר.
 - . $a^{\varphi(n)-1}$ אם n מודולו n הוא a אזי ההופכי של a אזי הרופכי של a אזי הרופכי של .47
 - . $arphi(p^k) = p^{k-1}(p-1)$, אם q ראשוני, אזי q(p) = p-1 , ובאופן יותר כללי, אם q ראשוני, אזי
 - . $\varphi(mn) = \varphi(m)\varphi(n)$ זרים, אזי m,n אם 49
 - אזי: אזי: $n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ יהי יהי $p_k^{a_k}$ יהי הפירוק של 1.50

$$\begin{split} \varphi(n) &= p_1^{a_1-1}(p_1-1)p_2^{a_2-1}(p_2-1)\cdots p_k^{a_k-1}(p_k-1) \\ &= n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots \left(1-\frac{1}{p_k}\right) \end{split}$$

- . n > 2 זוגי לכל $\varphi(n)$.51
- . $2^k \mid \varphi(n)$ יש אזי שונים, אזי מחלקים ראשוניים אי-זוגיים שונים, אזי k יש ה-52. למה:
 - $n = \sum_{d \mid n} \varphi(d)$ משפט: .53
- 2 או 0 או $x^2 \equiv a \pmod p$ יש או 0 או a. אזי למשוואה אם p>2 ראשוני ו-a יש או a יש או a יש או a פתרונות מודולו a.
- a אזי $x^2 \equiv a \pmod p$ -ש- כך ש- x כך ש- p > 2 אזי a. אזי a > 2 ראשוני ו-a נקרא אי-שארית ריבועית (quadratic residue) נקרא שארית ריבועית (quadratic nonresidue)
- (p-1)/2 אריות ריבועיות ובדיוק p>2 אריות ריבועיות ובדיוק אזי יש בדיוק p>2. למה: יהי יהי p>2 אי-שאריות ריבועיות מודולו p.
 - אזי a-ויהי p>2 יהי (Legendre symbol אזר מימן אז'נדר (סימן a-ויהי a-ויהי

אזי a-ויהי p>2 יהי (Euler's criterion – אזי משפט (מבחן אוילר 1.58): משפט (מבחן אוילר 1.58)

$$. \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

. $\left(\frac{ab}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$: אזי: a,b זרים לa,b ראשוני ויהיו p>2 אזי: p>2

מספר השאריות מבין (Gauss' lemma – ראשוני ו-p זר ל-p. יהי יp>2 יהי (Gauss' lemma – למה (גאוס

$$a \mod p$$
, $2a \mod p$, ..., $\left(\frac{p-1}{2} \cdot a\right) \mod p$

. $\left(\frac{a}{p}\right) \equiv (-1)^k \pmod p$ אזי . p/2 אזי . שגדולות מ- 2p/2

.61 למה: יהי p>2 ראשוני. אזי:

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \end{cases}$$

$$\left(\frac{2}{p}\right) = \begin{cases} 1, & p \equiv 1,7 \pmod{8} \\ -1, & p \equiv 3,5 \pmod{8} \end{cases}$$

$$\left(\frac{-2}{p}\right) = \begin{cases} 1, & p \equiv 1, 3 \pmod{8} \\ -1, & p \equiv 5, 7 \pmod{8} \end{cases}$$