Regents: Similarity

- 1. Triangle JGR is similar to triangle MST. Which statement is *not* always true?
 - (a) $\angle J \cong \angle M$

(c) $\angle R \cong \angle T$

(b) $\angle G \cong \angle T$

- (d) $\angle G \cong \angle S$
- 2. In trapezoid ABCD below, $\overline{AB} \parallel \overline{CD}.$

If AE = 5.2, AC = 11.7, and CD = 10.5, what is the length of \overline{AB} , to the nearest tenth?

- 3. The line represented by 2y = x + 8 is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y \frac{1}{2}x = 2$. What is the scale factor?
- 4. In quadrilateral ABCD below, $\overline{AB} \parallel \overline{CD}$, and E, H, and F are the midpoints of \overline{AD} , \overline{AC} , and \overline{BC} , respectively.

If AB = 24, CD = 18, and AH = 10, then what is FH?

5. Given right triangle ABC with a right angle at C, $m \angle B = 61^{\circ}$. Given right triangle RST with a right angle at T, $m \angle R = 29^{\circ}$.

Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is *not* correct?

(a)
$$\frac{AB}{RS} = \frac{RT}{AC}$$

(c)
$$\frac{BC}{ST} = \frac{AC}{RT}$$

(b)
$$\frac{BC}{ST} = \frac{AB}{RS}$$

(d)
$$\frac{AB}{AC} = \frac{RS}{RT}$$

6. In the accompanying diagram of right triangle ABC, altitude \overline{BD} is drawn to hypotenuse \overline{AC} .

Which statement must be true?

(a)
$$\frac{AD}{AB} = \frac{BC}{AC}$$

(c)
$$\frac{BD}{BC} = \frac{AB}{AD}$$

(b)
$$\frac{AD}{AB} = \frac{AB}{AC}$$

(d)
$$\frac{AB}{BC} = \frac{BD}{AC}$$

7. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} .

If RV = 4.1 and TV = 10.2, what is the length of \overline{ST} , to the nearest tenth?

8. In the diagram below of right triangle ABC, altitude \overline{BD} is drawn to hypotenuse \overline{AC} .

If BD = 4, AD = x - 6, and CD = x, what is the length of \overline{CD} ?

9. In the diagram below of $\triangle HAR$ and $\triangle NTY$, angles H and N are right angles, and $\triangle HAR \sim \triangle NTY$

If AR = 13 and HR = 12, what is the measure of $\angle Y$, to the nearest degree?

10. In the diagram below of right triangle KMI, altitude \overline{IG} is drawn to hypotenuse \overline{KM} .

IF KG = 9 and IG = 12, what is the length of \overline{IM} ?

11. In diagram below of right triangle ABC, altitude \overline{BD} is drawn.

Which ratio is always equivalent to $\cos A$?

(a) $\frac{AB}{BC}$

(c) $\frac{BD}{AB}$

(b) $\frac{BD}{BC}$

- (d) $\frac{BC}{AC}$
- 12. In the diagram of $\triangle ABC$ below, points D and E are on sides \overline{AB} and \overline{CB} respectively, such that $\overline{DE} \parallel \overline{AC}$.

IF EB is 3 more than DB, AB=14, and CB=21, what is the length of \overline{AD} ?

13. In the diagram below of $\triangle RST$, L is a point on \overline{RS} , and M is a point on \overline{RT} , such that $\overline{LM} \parallel \overline{ST}$.

IF RL = 2, LS = 6, LM = 4, and ST = x + 2, what is the length of \overline{ST} ?

BECA / Dr. Huson / Geometry Regents Mixed Review

Name:

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$