Problème (7 points)

voulez faire le découpage des sous réseaux suivant la topologie suivante : Vous êtes administrateur réseau de l'entreprise Onetech qui possède trois filiales et vous

Vous possédez le préfixe 150.20.128.0/17.

Vous administrez 4 routeurs:

- R-MECHATRONICS: le routeur de la filiale MECHATRONICS
- R-ICT : le routeur de la filiale ICT
- R-CABLES : le routeur de la filiale CABLES
- R-Onetech: routeur Onetech central qui est connecté aux 3 routeurs déjà cités et à son FAI pour accéder à l'INTERNET.

3) Faites le découpage optimal puis remplissez le tableau suivant

Réseau	@réseau	/CIDR	/CIDR Masque
ICT	150.20.128.0	121	121 251.255.248.0
MECHATRONICS	150,20,136.0	122	122 211.211.252.0
CABLES	150,20.140.0	124	124 288.288.286.0
R-Onetech & R-ICT	160.20.141.0	130	130 281.286.215-212
R- Onetech & R-MECHATRONICS	NO. 20. 141. H	130	NO. 20. 141.4 /30 RM. 288.288.282
R- Onetech & R-CABLES	150.20.141.8	/30	150.20.141.8 /30 28.281.281.282

4) Remplir les @IP des interfaces suivantes sachant que :

Les interfaces de R- Onetech obtiennent toujours la première @IP

Les interfaces G0 des autres routeurs obtiennent toujours la dernière @IP disponible.

R- CABLES.G0	R- CABLES.S0	R-ICT.G0	R-ICT.S0	R- MECHATRONICS.G0	R- MECHATRONICS.S0	R- Onetech.S2	R- Onetech.S1	R- Onetech.S0	Interfaces
150.20.140.254	150.20.141.10	150.20.135.254	150.20.141.2	150.20.139.254	150.20.141.6	150.20.141.9	150.20.141.1	150.20.141.5	@IP

5) Nous supposons que dans le réseau de la filiale MECHATRONICS, il y a un PC0 (qui a la 20^{ème} adresse) et un serveur DNS (qui a la 300^{ème} adresse). Aussi, dans la filiale ICT, il y a un serveur web qui a la 1200 ème adresse. Calculez les @IP correspondantes

1130:20	Serveur DNS.e0	PC0.e0 150.20.136.20	Machines.interfaces @IP
	44.	20	P

- L'administrateur inscrit les 3 routeurs des trois filiales dans le groupe 224.0.0.20
- Quelle est la classe de cette adresse de groupe et son type close), (a multicast

Exercice (3points)

512 bits. La distance entre les équipements est toujours égale à d=80métres. propagation est de 100 000 km/s. La taille minimale des trames échangées sur ce réseau est de support physique utilisé est un câble de paires torsadées à 100 Mbits/sec dont la vitesse de La figure suivante représente un réseau Ethernet composé de trois hubs et d'un switch. Le

comment peut-on agir pour que CSMA/CD soit applicable Peut-on appliquer la méthode d'accès CSMA/CD sur ce réseau? Expliquer. Si non, dites

