Semestrální práce

Testování softwaru

Paralelka č. 103

Vypracoval: Artem Vozhov.

Návrh testovací strategie

Popis aplikace

Simulation of N body problem in 2D

Aplikace simuluje problém N těles ve 2D. Uživatel může vybírat různé simulace, zastavit nebo pozastavit běh, uložit stav a načíst uloženou simulaci. Může měnit pohled kamery, kliknutím na objekt zobrazit a upravit jeho vlastnosti, včetně rychlosti, hmotnosti, velikosti a barvy.

- Popis funkcionality aplikace
 - 1. User able to choose from different simulation for N's celestial bodies.
 - 2. User able to Stop/Pause the simulation.
 - 3. User able to Save state of the simulation.
 - 4. User able to Use saved simulation.
 - 5. User able to Change camera view, (get closer/ far)
 - 6. Click on object to choose and see property-change-sidebar of that object.
 - 7. Set Velocity-Component properties (for sun)
 - 8. Set Mass-Component property (for sun).
 - 9. Set Size-Component property(for sun)
 - 10. Set Color of the object.

Přehled částí aplikace

SliderPane:

- Výběr simulace: Uživatel může vybírat z různých simulací pro N těles.
- Zobrazení a úprava vlastností objektu: Uživatel může zobrazit a upravit vlastnosti objektu (rychlost, hmotnost, velikost, barva).
- Nastavení parametrů simulace: Uživatel může nastavit parametry simulace (počet těles, počáteční podmínky).

Canvas:

- Zobrazení aktuálního stavu simulace: Uživatel může vidět aktuální stav simulace.
- Ovládání simulace: Uživatel může zastavit nebo pozastavit simulaci.
- Uložení a načtení stavu simulace: Uživatel může uložit aktuální stav simulace a načíst uloženou simulaci.
- Změna pohledu kamery: Uživatel může měnit pohled kamery (přiblížení/oddálení).

Prioritizujte části aplikace.

Proce s	Podproce s	Požadavek	Možné poškozen í	Vysvětlení poškození	Část systém u	Pravdě podob nost selhání	Vysvětlení pravděpodobnosti selhání	Třída rizika
Simul ace	Ovládání simulace	Zastavení/Po zastavení simulace	Ztráta kontroly nad simulací	Uživatel nemůže zastavit nebo pozastavit simulaci, což může vést k nesprávným výsledkům	Canvas	Vysoká	Tato funkce je klíčová a často používaná	Vysoká
Simul ace	Výběr simulace	Výběr simulace	Nemožnos t spustit simulaci	Uživatel nemůže vybrat simulaci, což znemožňuje její spuštění	SliderP ane	Vysoká	Bez této funkce nelze simulaci spustit	Vysoká
Rende r	Zobrazení stavu	Zobrazení aktuálního stavu simulace	Nesprávné zobrazení simulace	Uživatel nevidí aktuální stav simulace, což může vést k nesprávným rozhodnutím	Canvas	Středni	Tato funkce je důležitá pro sledování simulace	Střední
GSO N Handl er	Uložení/N ačtení stavu	Uložení a načtení stavu simulace	Ztráta dat	Uživatel nemůže uložit nebo načíst stav simulace, což může vést ke ztrátě pokroku	Scene	Střední	Tato funkce je důležitá pro pokračování v simulaci	Střední
Simul ace	Pohled kamery	Změna pohledu kamery	Omezený přehled	Uživatel nemůže měnit pohled kamery, což omezuje přehled o simulaci	Canvas	Střední	Tato funkce je důležitá pro lepší přehled	Střední
Intera kce s objekt y	Úprava vlastností	Zobrazení a úprava vlastností objektu	Nesprávné nastavení simulace	Uživatel nemůže upravit vlastnosti objektů, což může vést k nesprávným výsledkům	SliderP ane	Střední	Tato funkce je důležitá pro přesnost simulace	Střední
Nasta vení	Parametry simulace	Nastavení parametrů simulace	Nesprávné počáteční podmínky	Uživatel nemůže nastavit parametry simulace, což může vést k nesprávným výsledkům	SliderP ane	Střední	Tato funkce je důležitá pro přizpůsobení simulace	Střední

Test Levels pro simulaci N těles

Část systému	Třída rizika	Revize	Vývojářské testy	Systémové testy	UAT	Test v produkci
Ovládání simulace (zastavení/pozastavení)	Vysoká	Ne	Vysoká		Vysoká	Ano
Výběr simulace	Vysoká	Ano	Vysoká		Vysoká	Ano
Zobrazení aktuálního stavu simulace	Střední	Ne	Střední	Střední		
Uložení a načtení stavu simulace	Střední	Ano	Střední	Střední		Ano
Změna pohledu kamery	Střední	Ne	Střední	Střední		Ano
Zobrazení a úprava vlastností objektu (rychlost, hmotnost, velikost, barva)	Střední	Ne			Střední	Ano
Nastavení parametrů simulace (počet těles, počáteční podmínky)	Střední	Ano			Střední	Ano

Vstupní parametr 1:

Existuje slunce v simulaci

Popis: Tento parametr určuje, zda je slunce přítomno v simulaci. To může výrazně ovlivnit chování a výsledky simulace, protože slunce je centrálním tělesem, kolem kterého se otáčejí ostatní objekty.

Ekvivalence třídy:

• EC1: Slunce je přítomno v simulaci (hodnota parametru = true)

• EC2: Slunce není přítomno v simulaci (hodnota parametru = false)

EC1

Krok 1. Nastavení parametru "Existuje slunce v simulaci" na hodnotu true.

Očekávaný výsledek: Parametr je úspěšně nastaven na hodnotu true.

Krok 2. Nastavení pozice slunce.

Očekávaný výsledek: Pozice slunce je úspěšně nastavena.

Krok 3. Nastavení rychlosti slunce.

Očekávaný výsledek: Rychlost slunce je úspěšně nastavena.

Krok 4. Nastavení hmotnosti slunce.

Očekávaný výsledek: Hmotnost slunce je úspěšně nastavena.

Krok 5. Nastavení velikosti slunce.

Očekávaný výsledek: Velikost slunce je úspěšně nastavena.

Krok 6. Nastavení počtu těles.

Očekávaný výsledek: Počet těles je úspěšně nastaven.

Krok 7. Spuštění nové simulace.

Očekávaný výsledek: Simulace se úspěšně spustí.

Krok 8. Ověření, že simulace byla úspěšně spuštěna a slunce je přítomno.

Očekávaný výsledek: Simulace běží a slunce je přítomno.

EC1

Krok 9. Nastavení parametru "Existuje slunce v simulaci" na hodnotu false.

Očekávaný výsledek: Parametr je úspěšně nastaven na hodnotu false.

Krok 10. Nastavení počtu těles.

Očekávaný výsledek: Počet těles je úspěšně nastaven.

Krok 11. Spuštění nové simulace.

Očekávaný výsledek: Simulace se úspěšně spustí.

Krok 12. Ověření, že simulace byla úspěšně spuštěna a slunce není přítomno.

Očekávaný výsledek: Simulace běží a slunce není přítomno.

Nastaveni simulace diagram

Node	Sub-combinations of edges			
Pause	1 - 2			
	1 - 4			
Set sun Position	6 - 7			
Set size	9 - 10			
Resume	12 - 3			
	2 - 3			
Start New Sim	11 - 12			
Sould New Sim	11 - 12			
Set Velocitty	7 - 8			
_				
Set mass	8 - 9			
Set Num of mover	10 - 11			
	5 - 11			
Set sun presention	4 - 5			
	4 - 6			
Test sequence				
1 - 4 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 3				
1-4-5-11-12-3				
3 1-2-3				

Vstupní parametr 2:

Cesta k adresáři pro uložení a načtení stavu simulace

Popis: Tento parametr určuje cestu k adresáři, kde bude stav simulace uložen a odkud bude načten.

Ekvivalence třídy (EC)

EC1: Platná cesta k existujícímu adresáři (např. src/test/resources/saves/)

EC2: Neplatná cesta (např. neexistující adresář nebo cesta s neplatnými znaky)

EC3: Prázdná cesta (např. "")

Testovací scénář: Uložení a načtení stavu simulace pomocí SimulationSaverGSON

Popis: Tento scénář ověřuje, že stav simulace může být správně uložen do souboru a následně načten zpět pomocí třídy SimulationSaverGSON.

Předpoklady:

- Aplikace je nainstalována a spuštěna.
- Uživatel má přístup k souborovému systému pro ukládání a načítání souborů.
- Krok 1. Inicializujte třídu SimulationSaverGSON a vytvořte instanci SimulationState s jedním objektem a sluncem.

Očekávaný výsledek: Instance SimulationSaverGSON a SimulationState jsou úspěšně vytvořeny.

Krok 2. Nastavte aktuální stav simulace pomocí metody setCurrentState.

Očekávaný výsledek: Aktuální stav simulace je úspěšně nastaven.

Krok 3. Uložte stav simulace do souboru pomocí metody saveSimStateGSON.

Očekávaný výsledek: Stav simulace je úspěšně uložen do souboru v adresáři src/test/resources/saves/.

Krok 4. Ověřte, že soubor byl vytvořen v adresáři src/test/resources/saves/.

Očekávaný výsledek: Soubor s názvem začínajícím na simulation_state_ a končícím na .json je přítomen v adresáři.

Krok 5. Načtěte stav simulace ze souboru pomocí metody loadSimStateGSON.

Očekávaný výsledek: Stav simulace je úspěšně načten ze souboru.

Krok 6. Ověřte, že načtený stav simulace odpovídá původnímu stavu.

Očekávaný výsledek: Počet objektů a vlastnosti slunce v načteném stavu odpovídají původnímu stavu.