Задача A. LCA

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в вершине 0. Вам нужно ответить на m запросов вида «найти LCA двух вершин». LCA вершин u и v в подвешенном дереве — это наиболее удаленная от корня дерева вершина, лежащая на обоих путях от u и v до корня.

Формат входных данных

В первой строке вводится натуральное число n — размер дерева $(2 \leqslant n \leqslant 10^5)$. В следующей строке записано n-1 целое число p_i — предок вершины i $(0 \leqslant p_i < i)$.

Затем дано число m. Далее заданы m $(0 < m \le 10^5)$ запросов вида (u, v) — найти LCA двух вершин u и v $(0 \le u, v < n; u \ne v)$.

Формат выходных данных

На каждый из m запросов выведите по одному числу – LCA заданных вершин.

стандартный вывод
0
0
1
1
0

Задача В. Самое дешевое ребро

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса (стоимости). Вам нужно ответить на M запросов вида «найти у двух вершин минимум среди стоимостей ребер пути между ними».

Формат входных данных

В первой строке задано целое число n – число вершин в дереве ($2 \le n \le 10^5$).

В следующих n-1 строках записаны два целых числа x и y. Число x на строке i означает, что x – предок вершины i, y задает стоимость ребра $(x < i; |y| \le 10^6)$.

Далее заданы m $(0 \leqslant m \leqslant 10^5)$ запросов вида (x,y) – найти минимум на пути из x в y $(0 \leqslant x,y < n; x \neq y).$

Формат выходных данных

Выведите ответы на запросы.

стандартный ввод	стандартный вывод
5	2
0 2	2
0 3	
1 5	
2 2	
2	
1 2	
3 4	
5	1
0 1	1
0 2	
1 3	
2 4	
2	
0 3	
2 1	

Задача С. Длина максимального подпалиндрома

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Палиндромом называется строка, которая одинаково читается как слева направо, так и справа налево. Подпалиндромом данной строки называется последовательность символов из данной строки, не обязательно идущих подряд, являющаяся палиндромом. Например, HELOLEH является подпалиндромом строки HTEOLFEOLEH. Напишите программу, находящую в данной строке подпалиндром максимальной длины.

Формат входных данных

Во входном файле находится строка длиной не более 100 символов, состоящая из заглавных букв латинского алфавита.

Формат выходных данных

Выведите на первой строке выходного файла длину максимального подпалиндрома, а на второй строке сам максимальный подпалиндром. Если таких подпалиндромов несколько, то ваша программа должна вывести любой из них.

стандартный вывод
7
HELOLEH
1
F

Задача D. Распил брусьев

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Вам нужно распилить деревянный брус на несколько кусков в заданных местах. Распилочная компания берет k рублей за распил одного бруска длиной k метров на две части.

Понятно, что различные способы распила приводят к различной суммарной стоимости заказа. Например, рассмотрим брус длиной 10 метров, который нужно распилить на расстоянии 2, 4 и 7 м, считая от одного конца. Это можно сделать несколькими способами. Можно распилить сначала на отметке 2 м, потом 4 и, наконец, 7 м. Это приведет к стоимости 10+8+6=24, потому что сначала длина бруса, который пилили, была 10 м, затем она стала 8 м, и, наконец, 6 м. А можно распилить иначе: сначала на отметке 4 м, затем 2, затем 7м. Это приведет к стоимости 10+4+6=20, что лучше.

Определите минимальную стоимость распила бруса на заданные части.

Формат входных данных

Первая строка входных данных содержит целое число L ($2 \le L \le 10^6$) — длину бруса и целое число N ($1 \le N \le 100$) — количество распилов. Во второй строке записано N целых чисел C_i ($0 < C_i < L$) в строго возрастающем порядке — места, в которых нужно сделать распилы.

Формат выходных данных

Выведите одно натуральное число – минимальную стоимость распила.

стандартный ввод	стандартный вывод
10 3	20
2 4 7	

Задача Е. Упаковка символов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Билл пытается компактно представить последовательности прописных символов от A до Z с помощью упаковки повторяющихся подпоследовательностей внутри них. Например, один из способов представить последовательность AAAAAAAAAAABABABCCD — это 10(A)2(BA)B2(C)D. Он формально определяет сжатые последовательности символов и правила перевода их в несжатый вид следующим образом:

- Последовательность, содержащая один символ от A до Z, является упакованной. Распаковка этой последовательности даёт ту же последовательность из одного символа.
- Если S и Q упакованные последовательности, то SQ также упакованная последовательность. Если S распаковывается в S', а Q распаковывается в Q', то SQ распаковывается в S'Q'.
- Если S упакованная последовательность, то X(S) также упакованная последовательность, где X десятичное представление целого числа, большего 1. Если S распаковывается в S', то X(S) распаковывается в S', повторённую X раз.

Следуя этим правилам, легко распаковать любую заданную упакованную последовательность. Однако Биллу более интересен обратный переход. Он хочет упаковать заданную последовательность так, чтобы результирующая сжатая последовательность содержала наименьшее возможное число символов.

Формат входных данных

В первой строке находится последовательность символов от A до Z. Ограничения: длина исходной последовательности от 1 до 100.

Формат выходных данных

В единственной строке выводится упакованная последовательность наименьшей длины, которая распаковывается в заданную последовательность. Если таких последовательностей несколько, можно выводить любую.

стандартный ввод	стандартный вывод
AAAAAAAAABABABCCD	9(A)3(AB)CCD
NEERCYESYESYESNEERCYESYES	2(NEERC3(YES))

Задача F. Монетки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.2 секунд Ограничение по памяти: 256 мегабайт

64 мегабайта

В Волшебной стране используются монетки достоинством A_1, A_2, \ldots, A_M . Волшебный человечек пришел в магазин и обнаружил, что у него есть ровно по две монетки каждого достоинства. Ему нужно заплатить сумму N. Напишите программу, определяющую, сможет ли он расплатиться без сдачи.

Формат входных данных

Сначала вводится целое число N ($1 \le N \le 10^9$), затем — целое число M ($1 \le M \le 10$) и далее M попарно различных целых чисел A_1, A_2, \ldots, A_M ($1 \le A_i \le 10^9$).

Формат выходных данных

Выведите сначала K — количество монет, которое придется отдать Волшебному человечку, если он сможет заплатить указанную сумму без сдачи. Далее выведите K чисел, задающих достоинства монет. Если решений несколько, выведите вариант, в котором Волшебный человек отдаст наименьшее возможное количество монет. Если таких вариантов несколько, выведите любой из них.

Если без сдачи не обойтись, то выведите одно число 0. Если же у Волшебного человечка не хватит денег, чтобы заплатить указанную сумму, выведите одно число –1 (минус один).

стандартный ввод	стандартный вывод
5 2	3
1 2	1 2 2
7 2	-1
1 2	
5 2	0
3 4	