6. Linear Temporal Logic

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Recap: Temporal logic

Propositional logic

- syntax, semantics, equivalences (derived operators)
- a, b (atomic propositions), ∧ (conjunction), ∨ (disjunction),
 ¬ (negation), → (implication), etc.

Temporal logic

- precise, unambiguous specification of correctness properties
- extends propositional logic with temporal operators
- (next), U (until), ♦ (eventually), □ (always)
- Linear temporal logic (LTL)

LTL – Intuitive semantics

LTL - More properties

- LTL syntax:
 - $\psi ::= true \mid a \mid \psi \wedge \psi \mid \neg \psi \mid \bigcirc \psi \mid \psi \cup \psi \mid \diamondsuit \psi \mid \Box \psi$
 - many more properties formed by combining temporal operators
 - simple examples: $(\diamondsuit a) \land (\diamondsuit b)$, $\bigcirc \bigcirc a$, $a \land \bigcirc \bigcirc a$
- □(a→♦b)
 - "b always follows a"
- \Box (a \rightarrow \bigcirc b)
 - "b always immediately follows a"
- □ ♦ a
 - "a is true infinitely often"
- ♦ □ a
 - "a becomes true and remains true forever"

Other uses of LTL

- Example: robot task specifications
 - ¬zone₃ U (zone₁ ∧ (\diamondsuit zone₄)
 - visit zone 1 (without passing through zone 3), and then go to zone 4
 - $(\Box \neg zone_3) \wedge (\Box \diamondsuit zone_5)$
 - avoid zone 3 and patrol zone₅ infinitely often

LTL semantics

- Recall: we define properties in terms of:
 - infinite words $\sigma = A_0 A_1 A_2 A_3 \dots$ over 2^{AP}
- Some notation:
 - $\sigma[j]$ is the (j+1)th symbol, i.e. A_i
 - $\sigma[j...]$ is the suffix starting in $\sigma[j]$, i.e. $A_jA_{j+1}A_{j+2}...$
- LTL semantics ($\sigma \models \psi$, for infinite word σ and LTL formula ψ)
 - $\sigma \models true$ always
 - $\sigma \models a \Leftrightarrow a \in \sigma[0]$
 - $\sigma \vDash \psi_1 \wedge \psi_2 \Leftrightarrow \sigma \vDash \psi_1 \text{ and } \sigma \vDash \psi_2$
 - $\sigma \vDash \neg \psi \Leftrightarrow \sigma \nvDash \psi$
 - $\sigma \vDash \bigcirc \psi \Leftrightarrow \sigma [1...] \vDash \psi$
 - σ ⊨ ψ_1 U ψ_2 \Leftrightarrow $\exists k \ge 0$ s.t. $\sigma[k...]$ ⊨ ψ_2 and $\forall i < k$ $\sigma[i...]$ ⊨ ψ_1

LTL semantics

- When does an LTS M satisfy an LTL formula ψ ?
 - intuitively, if <u>all</u> paths of M satisfy ψ
- More precisely:
 - if all <u>traces</u> of all paths of M satisfy ψ:
 - $-M \models \psi \Leftrightarrow trace(\pi) \models \psi \text{ for every } \pi \in Paths(M)$
- Alternatively (using a linear-time property):
 - Words(ψ) = { $\sigma \in (2^{AP})^{\omega} \mid \sigma \models \psi$ }
 - $M \models \psi \Leftrightarrow Traces(M) \subseteq Words(\psi)$

Examples

- $M = \square (a \lor b)$?
- M ⊨ b?
- M ⊨ b?
- M ⊨ □ b?
- $M = \square \diamondsuit \neg a$?
- $M = \square((a \land \neg b) \rightarrow \diamondsuit \neg b)$?

What can we express in LTL?

- Invariants?
 - yes: $\Box \Phi$, for some propositional formula Φ
 - in fact, all invariants can be represented
- Safety properties?
 - yes: e.g. □(receive→ ○ack)
 - "ack always immediately follows receive"
- Liveness properties?
 - yes: e.g. ♦terminates
 - "the program eventually terminates"
 - yes: e.g. □ ◇ready
 - "the server always gets back into a ready state"

Equivalence

- LTL formulae ψ_1 and ψ_2 are equivalent, written $\psi_1 \equiv \psi_2$ if:
 - they are satisfied by exactly the same traces
 - $-\sigma \models \psi_1 \Leftrightarrow \sigma \models \psi_2$ (for any trace σ)
 - i.e. $Words(\psi_1) = Words(\psi_2)$

- Or, equivalently:
 - if they are satisfied by exactly the same models
 - $-M \models \psi_1 \Leftrightarrow M \models \psi_2$ (for any LTS M)
- This gives us a notion of expressiveness of LTL
 - "expressiveness" = "expressivity" = "expressive power"
 - i.e. which models can LTL distinguish between?

LTL equivalences

Equivalences

- shorthand for common formulae, e.g.: $\diamondsuit \psi \equiv \text{true } U \psi$
- simplifications, e.g.: $\neg \neg p \equiv p$
- syntax vs. semantics

- Equivalences for: propositional logic + temporal operators
- Temporal operator equivalences:
 - $\Box \psi \equiv \neg \diamondsuit \neg \psi \qquad (duality)$
 - $\Box \Box \psi \equiv \Box \psi$ (idempotency)
 - $\diamondsuit \psi \equiv \psi \lor \bigcirc \diamondsuit \psi$ (expansion law)
 - $\Box(\psi_1 \wedge \psi_2) \equiv \Box \psi_1 \wedge \Box \psi_2 \qquad \text{(distributive law)}$

Example 1

• Prove (or disprove):

$$\Diamond \psi \equiv \psi \lor \bigcirc \Diamond \psi$$
 ? Yes

• Can prove directly, using the relevant semantics for LTL:

```
- \sigma \vDash \psi_1 \lor \psi_2 \Leftrightarrow \sigma \vDash \psi_1 \text{ or } \sigma \vDash \psi_2
```

$$- \sigma \vDash \bigcirc \psi \Leftrightarrow \sigma [1...] \vDash \psi$$

$$-\sigma \models \psi_1 \cup \psi_2 \iff \exists k \ge 0 \text{ s.t. } \sigma[k...] \models \psi_2 \text{ and } \forall i < k \sigma[i...] \models \psi_1$$

Example 2

• Prove (or disprove):

$$\neg(\Box a \rightarrow \diamondsuit b) \equiv \Box a \land \Box \neg b$$
 ? Yes

- Can prove by reusing simpler known equivalences
 - $\ \psi_1 \rightarrow \psi_2 \ \equiv \ \neg \psi_1 \ \lor \ \psi_2$
 - $\ \Box \psi \ \equiv \ \neg \diamondsuit \neg \psi$
 - etc.

Example 3

• Prove (or disprove):

$$\Box \diamondsuit a \land \Box \diamondsuit b \equiv \Box \diamondsuit (a \land b)$$
 ? No

- Just need to provide a single trace as a counterexample
 - e.g. {a} {b} {a} {b} ...
 - (which is satisfied by the left formula only)

LTL & Negation

• Are these statements equivalent? (for trace σ and LTL formula ψ)

```
- \sigma \vDash \neg \psi
```

- $\sigma \not\models \psi$
- Yes
 - in fact, this is just the semantics of LTL
- Are these statements equivalent? (for LTS M and LTL formula ψ)
 - $M \vDash \neg \psi$
 - M ⊭ ψ
- No:
 - M $\vDash \neg \psi$ means no trace satisfies ψ
 - $M \not\models \psi$ means it is not true that all traces satisfy ψ
 - i.e. there exists some trace that does not satisfy ψ

Existential properties

- Can we verify this, using LTL?
 - "there exists an execution that reaches program location l₂"
- Yes: $M \not\models \Box \neg I_2$
- Can we verify this, using LTL?
 - "there exists an execution that visits I_2 infinitely often, and never passes through program location I_4 "
- Yes: $M \not\models \neg((\Box \diamondsuit I_2) \land (\Box \neg I_4))$
- Can we verify this, using LTL?
 - "for every execution, it is always possible to return to the initial state of the program"
- No...