(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 1 September 2005 (01.09.2005)

PCT

(10) International Publication Number WO 2005/079397 A2

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/US2005/004714

(22) International Filing Date: 11 February 2005 (11.02.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/778,908 13 February 2004 (13.02.2004) US 10/845,057 13 May 2004 (13.05.2004) US

- (71) Applicant (for all designated States except US): ROCK-EFELLER UNIVERSITY [US/US]; 1230 York Avenue, New York, NY 11021-6399 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TUSCHL, Thomas, H. [DE/US]; 504 East 63rd Street, #37R, New York, NY 10021 (US). LANDTHALER, Markus [DE/US]; 238 East 81st Street, #3A, New York, NY 10028 (US). MEISTER, Gunter [DE/US]; 500 East 63rd Street, New York, NY 10021 (US). PFEFFER, Sebastien [FR/US]; 10 River Road, #11C, New York, NY 10044 (US).

- (74) Agents: FEIT, Irving, N. et al.; Hoffmann & Baron, LLP, 6900 Jericho Turnpike, Syosset, NY 11791 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANTI-MICRORNA OLIGONUCLEOTIDE MOLECULES

(57) Abstract: The invention relates to isolated anti-microRNA molecules. In another embodiment, the invention relates to an isolated microRNA molecule. In yet another embodiment, the invention provides a method for inhibiting microRNP activity in a cell.

Anti-MicroRNA Oligonucleotide Molecules

This application is a continuing application of U.S. Application Serial Number 10/778,908 filed on February 13, 2004. The specification of U.S. Application Serial Number 10/778,908 is hereby incorporated by reference in its entirety.

The invention claimed herein was made with the help of grant number 1 R01 GM068476-01 from NIH/NIGMS. The U.S. government has certain rights in the invention.

BACKGROUND OF THE INVENTION

RNA silencing is a fundamental mechanism of gene regulation that uses double-stranded RNA (dsRNA) derived 21- to 28-nucleotide (nt) small RNAs to guide mRNA degradation, control mRNA translation or chromatin modification. Recently, several hundred novel genes were identified in plants and animals that encode transcripts that contain short dsRNA hairpins.

Defined 22-nt RNAs, referred to as microRNAs (miRNAs), are reported to be excised by dsRNA specific endonucleases from the hairpin precursors. The miRNAs are incorporated into ribonucleoprotein particles (miRNPs).

Plant miRNAs target mRNAs containing sequence segments with high complementarity for degradation or suppress translation of partially complementary mRNAs. Animal miRNAs appear to act predominantly as translational repressors. However, animal miRNAs have also been reported to guide RNA degradation. This indicates that animal miRNPs act like small interfering RNA (siRNA)-induced silencing complexes (RISCs).

Understanding the biological function of miRNAs requires knowledge of their mRNA targets. Bioinformatic approaches have been used to predict mRNA targets, among which transcription factors and proapoptotic genes were prominent candidates. Processes such as *Notch* signaling, cell proliferation, morphogenesis and axon guidance appear to be controlled by miRNA genes.

Therefore, there is a need for materials and methods that can help elucidate the function of known and future microRNAs. Due to the ability of microRNAs to induce RNA degradation

or repress translation of mRNA which encode important proteins, there is also a need for novel compositions for inhibiting microRNA-indexed cleavage or repression of mRNAs.

SUMMARY THE INVENTION

In one embodiment, the invention provides an isolated single stranded anti-microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have the same sequence as a sequence of bases in any one of the anti-microRNA molecules shown in Tables 1-4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; the moiety in the molecule at the position corresponding to position 11 of the microRNA is non-complementary; and the molecule is capable of inhibiting microRNP activity.

In another embodiment, the invention provides a method for inhibiting microRNP activity in a cell, the microRNP comprising a microRNA molecule, the microRNA molecule comprising a sequences of bases complementary of the sequence of bases in a single stranded anti-microRNA molecule, the method comprising introducing into the cell the single-stranded anti-microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein at least ten contiguous bases of the anti-microRNA molecule are complementary to the microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties may be additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the moiety in the molecule at the position corresponding to position 11 of the microRNA is non-complementary.

In another embodiment, the invention provides an isolated microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular

backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, wherein at least ten contiguous bases have the same sequence as a sequence of bases in any one of the microRNA molecules shown in Table 2, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.

In another embodiment, the invention provides an isolated microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, wherein at least ten contiguous bases have any one of the microRNA sequences shown in Tables 1, 3 and 4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and is modified for increased nuclease resistance.

In yet another embodiment, the invention provides an isolated single stranded antimicroRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein at least ten contiguous bases have the same sequence as a sequence of bases in any one of the anti-microRNA molecules shown in Tables 1-4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof; no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and the molecule is capable of inhibiting microRNP activity.

In yet a further embodiment, the invention provides a method for inhibiting microRNP activity in a cell, the microRNP comprising a microRNA molecule, the microRNA molecule comprising a sequences of bases complementary of the sequence of bases in a single stranded anti-microRNA molecule, the method comprising introducing into the cell the single-stranded anti-microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum

of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein at least ten contiguous bases of the antimicroRNA molecule are complementary to the microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties may be additions, deletions, mismatches, or combinations thereof; and no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.

DESCRIPTION OF THE FIGURES

Figure 1 shows the modified nucleotide units discussed in the specification. B denotes any one of the following nucleic acid bases: adenosine, cytidine, guanosine, thymine, or uridine.

Figure 2. Antisense 2'-O-methyl oligoribonucleotide specifically inhibit miR-21 guided cleavage activity in HeLa cell S100 cytoplasmic extracts. The black bar to the left of the RNase T1 ladder represents the region of the target RNA complementary to miR-21. Oligonucleotides complementary to miR-21 were pre-incubated in S100 extracts prior to the addition of ³²P-cap-labelled cleavage substrate. Cleavage bands and T1 hydrolysis bands appear as doublets after a 1-nt slipping of the T7 RNA polymerase near the middle of the transcript indicated by the asterisk.

Figure 3. Antisense 2'-O-methyl oligoribonucleotides interfere with endogenous miR-21 RNP cleavage in HeLa cells. HeLa cells were transfected with pHcRed and pEGFP or its derivatives, with or without inhibitory or control oligonucleotides. EGFP and HcRed protein fluorescence were excited and recorded individually by fluorescence microscopy 24 h after transfection. Co-expression of co-transfected reporter plasmids was documented by superimposing of the fluorescence images in the right panel.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to an isolated single stranded anti-microRNA molecule. The molecule comprises a minimum number of ten moieties, preferably a minimum of thirteen, more preferably a minimum of fifteen, even more preferably a minimum of 18, and most preferably a minimum of 21 moieties.

The anti-microRNA molecule comprises a maximum number of fifty moieties, preferably a maximum of forty, more preferably a maximum of thirty, even more preferably a maximum of twenty-five, and most preferably a maximum of twenty-three moieties. A suitable range of minimum and maximum number of moieties may be obtained by combining any of the above minima with any of the above maxima.

Each moiety comprises a base bonded to a backbone unit. In this specification, a base refers to any one of the nucleic acid bases present in DNA or RNA. The base can be a purine or pyrimidine. Examples of purine bases include adenine (A) and guanine (G). Examples of pyrimidine bases include thymine (T), cytosine (C) and uracil (U). Each base of the moiety forms a Watson-Crick base pair with a complementary base.

Watson-Crick base pairs as used herein refers to the hydrogen bonding interaction between, for example, the following bases: adenine and thymine (A = T); adenine and uracil (A = U); and cytosine and guanine (C = G). The adenine can be replaced with 2,6-diaminopurine without compromising base-pairing.

The backbone unit may be any molecular unit that is able stably to bind to a base and to form an oligomeric chain. Suitable backbone units are well known to those in the art.

For example, suitable backbone units include sugar-phosphate groups, such as the sugar-phosphate groups present in ribonucleotides, deoxyribonucleotides, phosphorothioate deoxyribose groups, N'3-N'5 phosphoroamidate deoxyribose groups, 2'O-alkyl-ribose phosphate groups, 2'-O-alkyl-alkoxy ribose phosphate groups, ribose phosphate group containing a methylene bridge, 2'-Fluororibose phosphate groups, morpholino phosphoroamidate groups, cyclohexene groups, tricyclo phosphate groups, and amino acid molecules.

In one embodiment, the anti-microRNA molecule comprises at least one moiety which is a ribonucleotide moiety or a deoxyribonucleotide moiety.

In another embodiment, the anti-microRNA molecule comprises at least one moiety which confers increased nuclease resistance. The nuclease can be an exonuclease, an endonuclease, or both. The exonuclease can be a 3'-5' exonuclease or a 5'-3' exonuclease. Examples of 3'-5' human exonuclease include PNPT1, Werner syndrome helicase, RRP40,

RRP41, RRP42, RRP45, and RRP46. Examples of 5'→3' exonuclease include XRN2, and FEN1. Examples of endonucleases include Dicer, Drosha, RNase4, Ribonuclease P, Ribonuclease H1, DHP1, ERCC-1 and OGG1. Examples of nucleases which function as both an exonuclease and an endonuclease include APE1 and EXO1.

An anti-microRNA molecule comprising at least one moiety which confers increased nuclease resistance means a sequence of moieties wherein at least one moiety is not recognized by a nuclease. Therefore, the nuclease resistance of the molecule is increased compared to a sequence containing only unmodified ribonucleotide, unmodified deoxyribonucleotide or both. Such modified moieties are well known in the art, and were reviewed, for example, by Kurreck, Eur. J. Biochem. 270, 1628-1644 (2003).

A modified moiety can occur at any position in the anti-microRNA molecule. For example, to protect the anti-microRNA molecule against 3' \rightarrow 5' exonucleases, the molecule can have at least one modified moiety at the 3' end of the molecule and preferably at least two modified moieties at the 3' end. If it is desirable to protect the molecule against 5' \rightarrow 3' exonuclease, the anti-microRNA molecule can have at least one modified moiety and preferably at least two modified moieties at the 5' end of the molecule. The anti-microRNA molecule can also have at least one and preferably at least two modified moieties between the 5' and 3' end of the molecule to increase resistance of the molecule to endonucleases. In one embodiment, all of the moieties are nuclease resistant.

In another embodiment, the anti-microRNA molecule comprises at least one modified deoxyribonucleotide moiety. Suitable modified deoxyribonucleotide moieties are known in the art.

A suitable example of a modified deoxyribonucleotide moiety is a phosphorothioate deoxyribonucleotide moiety. See structure 1 in figure 1. An anti-microRNA molecule comprising more than one phosphorothioate deoxyribonucleotide moiety is referred to as phosphorothioate (PS) DNA. See, for example, Eckstein, Antisense Nucleic Acids Drug Dev. 10, 117-121 (2000).

Another suitable example of a modified deoxyribonucleotide moiety is an N'3-N'5 phosphoroamidate deoxyribonucleotide moiety. See structure 2 in figure 1. An oligonucleotide molecule comprising more than one phosphoroamidate deoxyribonucleotide moiety is referred to as phosphoroamidate (NP) DNA. See, for example, Gryaznov *et al.*, J. Am. Chem. Soc. *116*, 3143-3144 (1994).

In another embodiment, the molecule comprises at least one modified ribonucleotide moiety. Suitable modified ribonucleotide moieties are known in the art.

A suitable example of a modified ribonucleotide moiety is a ribonucleotide moiety that is substituted at the 2' position. The substituents at the 2' position may, for example, be a C_1 to C_4 alkyl group. The C_1 to C_4 alkyl group may be saturated or unsaturated, and unbranched or branched. Some examples of C_1 to C_4 alkyl groups include ethyl, isopropyl, and allyl. The preferred C_1 to C_4 alkyl group is methyl. See structure 3 in figure 1. An oligoribonucleotide molecule comprising more than one ribonucleotide moeity that is substituted at the 2' position with a C_1 to C_4 alkyl group is referred to as a 2'-O -(C_1 - C_4 alkyl) RNA, e.g.,2'-O-methyl RNA (OMe RNA).

Another suitable example of a substituent at the 2' position of a modified ribonucleotide moiety is a C_1 to C_4 alkoxy - C_1 to C_4 alkyl group. The C_1 to C_4 alkoxy (alkyloxy) and C_1 to C_4 alkyl group may comprise any of the alkyl groups described above. The preferred C_1 to C_4 alkoxy - C_1 to C_4 alkyl group is methoxyethyl. See structure 4 in figure 1. An oligonucleotide molecule comprising more than one ribonucleotide moiety that is substituted at the 2' position with a C_4 alkoxy- C_1 to C_4 alkyl group is referred to as a 2'-O-(C_1 to C_4 alkoxy - C_1 to C_4 alkyl) RNA, e.g., 2'-O-methoxyethyl RNA (MOE RNA).

Another suitable example of a modified ribonucleotide moiety is a ribonucleotide that has a methylene bridge between the 2'-oxygen atom and the 4'-carbon atom. See structure 5 in figure 1. An oligoribonucleotide molecule comprising more than one ribonucleotide moiety that has a methylene bridge between the 2'-oxygen atom and the 4'-carbon atom is referred to as locked nucleic acid (LNA). See, for example, Kurreck *et al.*, Nucleic Acids Res. *30*, 1911-1918 (2002); Elayadi *et al.*, Curr. Opinion Invest. Drugs *2*, 558-561 (2001); Ørum *et al.*, Curr. Opinion Mol. Ther. *3*, 239-243 (2001); Koshkin *et al.*, Tetrahedron *54*, 3607-3630 (1998); Obika *et al.*,

Tetrahedron Lett.39, 5401-5404 (1998). Locked nucleic acids are commercially available from Proligo (Paris, France and Boulder, Colorado, USA).

Another suitable example of a modified ribonucleotide moiety is a ribonucleotide that is substituted at the 2' position with fluoro group. A modified ribonucleotide moiety having a fluoro group at the 2' position is a 2'-fluororibonucleotide moiety. Such moieties are known in the art. Molecules comprising more than one 2'-fluororibonucleotide moiety are referred to herein as 2'-fluororibo nucleic acids (FANA). See structure 7 in figure 1. Damha *et al.*, J. Am. Chem. Soc. *120*, 12976-12977 (1998).

In another embodiment, the anti-microRNA molecule comprises at least one base bonded to an amino acid residue. Moieties that have at least one base bonded to an amino acid residue will be referred to herein as peptide nucleic acid (PNA) moieties. Such moieties are nuclease resistance, and are known in the art. Molecules having more than one PNA moiety are referred to as peptide nucleic acids. See structure 6 in figure 1. Nielson, Methods Enzymol. 313, 156-164 (1999); Elayadi, et al, id.; Braasch et al., Biochemistry 41, 4503-4509 (2002), Nielsen et al., Science 254, 1497-1500 (1991).

The amino acids can be any amino acid, including natural or non-natural amino acids. Naturally occurring amino acids include, for example, the twenty most common amino acids normally found in proteins, i.e., alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Glu), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ileu), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan, (Trp), tyrosine (Tyr), and valine (Val).

The non-natural amino acids may, for example, comprise alkyl, aryl, or alkylaryl groups. Some examples of alkyl amino acids include α -aminobutyric acid, β -aminobutyric acid, γ -aminobutyric acid, δ -aminovaleric acid, and ϵ -aminocaproic acid. Some examples of aryl amino acids include ortho-, meta, and para-aminobenzoic acid. Some examples of alkylaryl amino acids include ortho-, meta-, and para-aminophenylacetic acid, and γ -phenyl- β -aminobutyric acid.

Non-naturally occurring amino acids also include derivatives of naturally occurring amino acids. The derivative of a naturally occurring amino acid may, for example, include the addition or one or more chemical groups to the naturally occurring amino acid.

For example, one or more chemical groups can be added to one or more of the 2', 3', 4', 5', or 6' position of the aromatic ring of a phenylalanine or tyrosine residue, or the 4', 5', 6', or 7' position of the benzo ring of a tryptophan residue. The group can be any chemical group that can be added to an aromatic ring. Some examples of such groups include hydroxyl, C₁-C₄ alkoxy, amino, methylamino, dimethylamino, nitro, halo (i.e., fluoro, chloro, bromo, or iodo), or branched or unbranched C₁-C₄ alkyl, such as methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, or t-butyl.

Furthermore, other examples of non-naturally occurring amino acids which are derivatives of naturally occurring amino acids include norvaline (Nva), norleucine (Nle), and hydroxyproline (Hyp).

The amino acids can be identical or different from one another. Bases are attached to the amino acid unit by molecular linkages. Examples of linkages are methylene carbonyl, ethylene carbonyl and ethyl linkages. (Nielsen et al., *Peptide Nucleic Acids-Protocols and Applications*, Horizon Scientific Press, pages 1-19; Nielsen et al., *Science* 254: 1497-1500.)

One example of a PNA moiety is N-(2-aminoethyl)-glycine. Further examples of PNA moieties include cyclohexyl PNA, retro-inverso, phosphone, propionyl and aminoproline PNA.

PNA can be chemically synthesized by methods known in the art, e.g. by modified Fmoc or tBoc peptide synthesis protocols. The PNA has many desirable properties, including high melting temperatures (Tm), high base-pairing specificity with nucleic acid and an uncharged molecular backbone. Additionally, the PNA does not confer RNase H sensitivity on the target RNA, and generally has good metabolic stability.

Peptide nucleic acids are also commercially available from Applied Biosystems (Foster City, California, USA).

In another embodiment, the anti-microRNA molecule comprises at least one morpholino phosphoroamidate nucleotide moiety. A morpholino phosphoroamidate nucleotide moiety is a modified moiety which is nuclease resistant. Such moieties are known in the art. Molecules comprising more than one morpholino phosphoroamidate nucleotide moiety are referred to as morpholino (MF) nucleic acids. See structure 8 in figure 1. Heasman, Dev. Biol. 243, 209-214 (2002). Morpholono oligonucleotides are commercially available from Gene Tools LLC (Corvallis, Oregon, USA).

In another embodiment, the anti-microRNA molecule comprises at least one cyclohexene nucleotide moiety. A cyclohexene nucleotide moiety is a modified moiety which is nuclease resistant. Such moieties are known in the art. Molecules comprising more than one cyclohexene nucleotide moiety are referred to as cyclohexene nucleic acids (CeNA). See structure 10 in figure 1. Wang *et al.*, J. Am. Chem. Soc. *122*, 8595-8602 (2000), Verbeure *et al.*, Nucleic Acids Res. *29*, 4941-4947 (2001).

In another embodiment, the anti-microRNA molecule comprises at least one tricyclo nucleotide moiety. A tricyclo nucleotide moiety is a modified moiety which is nuclease resistant. Such moieties are known in the art. Steffens *et al.*, J. Am. Chem. Soc. *119*, 11548-11549 (1997), Renneberg *et al.*, J. Am. Chem. Soc. *124*, 5993-6002 (2002). Molecules comprising more than one tricyclo nucleotide moiety are referred to as tricyclo nucleic acids (tcDNA). See structure 9 in figure 1.

In another embodiment, to increase nuclease resistance of the anti-microRNA molecules of the present invention to exonucleases, inverted nucleotide caps can be attached to the 5' end, the 3' end, or both ends of the molecule. An inverted nucleotide cap refers to a 3' \rightarrow 5' sequence of nucleic acids attached to the anti-microRNA molecule at the 5' and/or the 3' end. There is no limit to the maximum number of nucleotides in the inverted cap just as long as it does not interfere with binding of the anti-microRNA molecule to its target microRNA. Any nucleotide can be used in the inverted nucleotide cap. Typically, the inverted nucleotide cap is one nucleotide in length. The nucleotide for the inverted cap is generally thymine, but can be any nucleotide such as adenine, guanine, uracil, or cytosine.

Alternatively, an ethylene glycol compound and/or amino linkers can be attached to the either or both ends of the anti-microRNA molecule. Amino linkers can also be used to increase nuclease resistance of the anti-microRNA molecules to endonucleases. The table below lists some examples of amino linkers. The below listed amino linker are commercially available from TriLink Biotechnologies, San Diego, CA.

2'-Deoxycytidine-5-C6 Amino Linker (3' Terminus)
2'-Deoxycytidine-5-C6 Amino Linker (5' or Internal)
3' C3 Amino Linker
3' C6 Amino Linker
3' C7 Amino Linker
5' C12 Amino Linker
5' C3 Amino Linker
5' C6 Amino Linker
C7 Internal Amino Linker
Thymidine-5-C2 Amino Linker (5' or Internal)
Thymidine-5-C6 Amino Linker (3' Terminus)
Thymidine-5-C6 Amino Linker (Internal)

Chimeric anti-microRNA molecules containing a mixture of any of the moieties mentioned above are also known, and may be made by methods known, in the art. See, for example, references cited above, and Wang *et al.*, Proc. Natl. Acad. Sci. USA *96*, 13989-13994 (1999), Liang *et al.*, Eur. J. Biochem. *269*, 5753-5758 (2002), Lok *et al.*, Biochemistry *41*, 3457-3467 (2002), and Damha *et al.*, J. Am. Chem. Soc. *120*, 12976-12977 (2002).

The molecules of the invention comprise at least ten contiguous, preferably at least thirteen contiguous, more preferably at least fifteen contiguous, and even more preferably at least twenty contiguous bases that have the same sequence as a sequence of bases in any one of the anti-microRNA molecules shown in Tables 1-4. The anti-microRNA molecules optimally

comprise the entire sequence of any one of the anti-microRNA molecule sequences shown in Tables 1-4.

For the contiguous bases mentioned above, up to thirty percent of the base pairs may be substituted by wobble base pairs. As used herein, wobble base pairs refers to either: i) substitution of a cytosine with a uracil, or 2) the substitution of a adenine with a guanine, in the sequence of the anti-microRNA molecule. These wobble base pairs are generally referred to as UG or GU wobbles. Below is a table showing the number of contiguous bases and the maximum number of wobble base pairs in the anti-microRNA molecule:

Table for Number of Wobble Bases

No. of Contiguous Bases	10	11	12	13	14	15	16	17	18
Max. No. of Wobble Base Pairs	3	3	3	3	4	4	4	5	5

No. of Contiguous Bases	19	20	21	22	23
Max. No. of	5	6	6	6	6
Wobble Base					
Pairs	-				

Further, up to ten percent, and preferably up to five percent of the contiguous bases can be additions, deletions, mismatches or combinations thereof. Additions refer to the insertion in the contiguous sequence of any moiety described above comprising any one of the bases described above. Deletions refer to the removal of any moiety present in the contiguous sequence. Mismatches refer to the substitution of one of the moieties comprising a base in the contiguous sequence with any of the above described moieties comprising a different base.

The additions, deletions or mismatches can occur anywhere in the contiguous sequence, for example, at either end of the contiguous sequence or within the contiguous sequence of the anti-microRNA molecule. If the contiguous sequence is relatively short, such as from about ten

to about 15 moieties in length, preferably the additions, deletions or mismatches occur at the end of the contiguous sequence. If the contiguous sequence is relatively long, such as a minimum of sixteen contiguous sequences, then the additions, deletions, or mismatches can occur anywhere in the contiguous sequence. Below is a table showing the number of contiguous bases and the maximum number of additions, deletions, mismatches or combinations thereof:

Table for Up to 10%

No. of Contiguous Bases	10	11 .	12	13	14	15	16	17	18
Max. No. of Additions, Deletions and/or Mismatches	1	1		1	1	1	1	1	1

No. of	19	20	21	22	23
Contiguous Bases					
Max. No. of	1	2	2	2	2
Additions,					
Deletions and/or					
Mismatches					

Table for Up to 5%

No. of Contiguous Bases	10	11	12	13	· 14	15	16	17	18
Max. No. of Additions, Deletions and/or Mismatches	0	0	0	О	0	О	0	0	0

No. of Contiguous Bases	. 19	20	21	22	23
Max. No. of Additions,	0	1	1	1	1
Deletions and/or Mismatches					-

Furthermore, no more than fifty percent, and preferably no more than thirty percent, of the contiguous moieties contain deoxyribonucleotide backbone units. Below is a table showing the number of contiguous bases and the maximum number of deoxyribonucleotide backbone units:

Table for Fifty Percent Deoxyribonucleotide Backbone Units

No. of	10	11	12	13	14	15	16	17	18
Contiguous Bases								The second	
Max. No. of	5	5	6	6	7	7	8	8	9
Deoxyribonucleotide									
Backbone Units			·						`

No. of Contiguous Bases	19	20	21	22	23
Max. No. of	9	10	10	11	11
Deoxyribonucleotide					
Backbone Units					

Table for Thirty Percent Deoxyribonucleotide Backbone Units

No. of Contiguous Bases	10	11	12	13	14	15	16	17	18
Max. No. of	3	3	3	3	4	4	4	5	5
Deoxyribonucleotide									
Backbone Units									

No. of Contiguous Bases	19	20	21	22	23
Max. No. of	5	6	6	6	6
Deoxyribonucleotide					
Backbone Units					

The moiety in the anti-RNA molecule at the position corresponding to position 11 of the microRNA is optionally non-complementary to a microRNA. The moiety in the anti-microRNA molecule corresponding to position 11 of the microRNA can be rendered non-complementary by an addition, deletion or mismatch as described above.

In another embodiment, if the anti-microRNA molecule comprises only unmodified moieties, then the anti-microRNA molecules comprises at least one base, in the at least ten contiguous bases, which is non-complementary to the microRNA and/or comprises an inverted nucleotide cap, ethylene glycol compound or an amino linker.

In yet another embodiment, if the at least ten contiguous bases in an anti-microRNA molecule is perfectly (i.e., 100%) complementary to ten contiguous bases in a microRNA, then the anti-microRNA molecule contains at least one modified moiety in the at least ten contiguous bases and/or comprises an inverted nucleotide cap, ethylene glycol compound or an amino linker.

As stated above, the maximum length of the anti-microRNA molecule is 50 moieties. Any number of moieties having any base sequence can be added to the contiguous base sequence. The additional moieties can be added to the 5' end, the 3' end, or to both ends of the contiguous sequence.

MicroRNA molecules are derived from genomic loci and are produced from specific microRNA genes. Mature microRNA molecules are processed from precursor transcripts that form local hairpin structures. The hairpin structures are typically cleaved by an enzyme known as Dicer, which generates one microRNA duplex. See Bartel, Cell 116, 281-297 (2004) for a review on microRNA molecules. The article by Bartel is hereby incorporated by reference.

Each strand of a microRNA is packaged in a microRNA ribonucleoprotein complex (microRNP). A microRNP in, for example, humans, also includes the proteins eIF2C2, the helicase Gemin3, and Gemin 4.

The sequence of bases in the anti-microRNA molecules of the present invention can be derived from a microRNA from any species e.g. such as a fly (e.g., *Drosophila melanogaster*), a worm (e.g., *C. elegans*). Preferably the sequence of bases is found in mammals, especially humans (*H. sapiens*), mice (e.g., *M. musculus*), and rats (*R. norvegicus*).

The anti-microRNA molecule is preferably isolated, which means that it is essentially free of other nucleic acids. Essentially free from other nucleic acids means that it is at least 90%, preferably at least 95% and, more preferably, at least 98% free of other nucleic acids.

Preferably, the molecule is essentially pure, which means that the molecules is free not only of other nucleic acids, but also of other materials used in the synthesis of the molecule, such as, for example, enzymes used in the synthesis of the molecule. The molecule is at least 90% free, preferably at least 95% free and, more preferably, at least 98% free of such materials.

The anti-microRNA molecules of the present invention are capable of inhibiting microRNP activity, preferable in a cell. Inhibiting microRNP activity refers to the inhibition of cleavage of the microRNA's target sequence or the repression of translation of the microRNA's target sequence. The method comprises introducing into the cell a single-stranded microRNA molecule.

Any anti-microRNA molecule can be used in the methods of the present invention, as long as the anti-microRNA is complementary, subject to the restrictions described above, to the microRNA present in the microRNP. Such anti-microRNAs include, for example, the anti-

microRNA molecules mentioned above (see Table 1-4), and the anti-microRNAs molecules described in international PCT application number WO 03/029459 A2, the sequences of which are incorporated herein by reference.

The invention also includes any one of the microRNA molecules having the sequences as shown in Table 2. The novel microRNA molecules in Table 2 may optionally be modified as described above for anti-microRNA molecules. The other microRNA molecules in Tables 1, 3 and 4 are modified for increased nuclease resistance as described above for anti-microRNA molecules.

Utility

The anti-microRNA molecules and the microRNA molecules of the present invention have numerous *in vivo*, *in vitro*, and *ex vivo* applications.

For example, the anti-microRNA molecules and microRNA of the present invention may be used as a modulator of the expression of genes which are at least partially complementary to the anti-microRNA molecules and microRNA. For example, if a particular microRNA is beneficial for the survival of a cell, an appropriate isolated microRNA of the present invention may be introduced into the cell to promote survival. Alternatively, if a particular microRNA is harmful (e.g., induces apoptosis, induces cancer, etc.), an appropriate anti-microRNA molecule can be introduced into the cell in order to inhibit the activity of the microRNA and reduce the harm.

In addition, anti-microRNA molecules and/or microRNAs of the present invention can be introduced into a cell to study the function of the microRNA. Any of the anti-microRNA molecules and/or microRNAs listed above can be introduced into a cell for studying their function. For example, a microRNA in a cell can be inhibited with a suitable anti-microRNA molecule. The function of the microRNA can be inferred by observing changes associated with inhibition of the microRNA in the cell in order to inhibit the activity of the microRNA and reduce the harm.

The cell can be any cell which expresses microRNA molecules, including the microRNA molecules listed herein. Alternatively, the cell can be any cell transfected with an expression vector containing the nucleotide sequence of a microRNA.

Examples of cells include, but are not limited to, endothelial cells, epithelial cells, leukocytes (e.g., T cells, B cells, neutrophils, macrophages, eosinophils, basophils, dendritic cells, natural killer cells and monocytes), stem cells, hemopoietic cells, embryonic cells, cancer cells.

The anti-microRNA molecules or microRNAs can be introduced into a cell by any method known to those skilled in the art. Useful delivery systems, include for example, liposomes and charged lipids. Liposomes typically encapsulate oligonucleotide molecules within their aqueous center. Charged lipids generally form lipid- oligonucleotide molecule complexes as a result of opposing charges.

These liposomes-oligonucleotide molecule complexes or lipid- oligonucleotide molecule complexes are usually internalized by endocytosis. The liposomes or charged lipids generally comprise helper lipids which disrupt the endosomal membrane and release the oligonucleotide molecules.

Other methods for introducing an anti-microRNA molecule or a microRNA into a cell include use of delivery vehicles, such as dendrimers, biodegradable polymers, polymers of amino acids, polymers of sugars, and Oligonucleotide-binding nanoparticles. In addition, pluoronic gel as a depot reservoir can be used to deliver the anti-microRNA oligonucleotide molecules over a prolonged period. The above methods are described in, for example, Hughes et al., Drug Discovery Today 6, 303-315 (2001); Liang et al. Eur. J. Biochem. 269 5753-5758 (2002); and Becker et al., In Antisense Technology in the Central Nervous System (Leslie, R.A., Hunter, A.J. & Robertson, H.A., eds), pp.147-157, Oxford University Press.

Targeting of an anti-microRNA molecule or a microRNA to a particular cell can be performed by any method known to those skilled in the art. For example, the anti-microRNA molecule or microRNA can be conjugated to an antibody or ligand specifically recognized by receptors on the cell.

The sequences of microRNA and anti-microRNA molecules are shown in Tables 1-4 below. Human sequences are indicated with the prefix "hsa." Mouse sequences are indicated with the prefix "rno." *C. elegan* sequences are indicated with the prefix "cel." Drosophila sequences are indicated with the prefix "dme."

Table 1: Human, Mouse and Rat microRNA and anti-microRNA sequences.

microRNA name microRNA sequence (5' to 3') AACCCGUAGAUCCGAACUUGUG hsa-miR-103 AGCAGCAUUGUACAGGGCUAUG hsa-miR-106a AAAAGUGCUUACAGUGCAGAUAU hsa-miR-106b UAAAGUGCUGACAGGGCUAUG hsa-miR-107 AGCAGCAUUGUACAGGGCUAUC hsa-miR-108 UACCCUGUAGAACCGAAUUUGU ASA-MIR-109 CACAAGUUCGGAUCUGAGACUCUGUG CCACAGGAGUUUGAGACAUUUGU UACCUGCACUGUAAGCACUUUU GAUAGCCCUGUAAGACCUGUUA UAUCUGCACUGUAAGACCUUUU GAUAGCCCUGUACAAUGCUGCU ACAAAUUCGGUUCUACAGGGUA hsa-miR-128b UCACAGGGAACCGGUCUCUUUC ACAAAUUCGGUUCUACAGGGUA hsa-miR-140-3p LACCACAGGGUAGAACCACGAA UACCCCUUUCAUCAUCAUGACACUG ACAAAUUCGGUUCUACCCUGUGA AUGCCCUUUCAUCAUCAUGUGA AUGCCCUUUCAUCAUCAUGUGA AUGCCCUUUCAUCAUCAUGUGA AUGCCCUUUCAUCAUUGACCUG GAAAGAGACCCGGUUCACCUGUGA AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUUAUGCGGUAAGAACACACGGA UCCGUGGUUCUACCCUGUGGGA AUGCCCUUUCACCAUUUAA CCCGACAGGGUAGAACCACGGA UCCGUGGUUCUACCCUGGA AUGCCCUUUCACCGUUGAGA CCCCUAUCACGAUUAGACCUCGA CCCCUAUCACGAUUAAAGUAGAAUGGUU ACCACCGACAGCGUUGAAUGUU ACCACCGACAGCGUUGAAUGUU CCCCUAUCACGAUUAGAA CCCCUAUCACGAUUAGAACGAUUAAA CAAUUCAACGCUGUCGGUGAG CCCCCUAUCACGAUUAGAAUGUU ACCCCGACAGCGUUGAAUGUU CCCCCACCGACAGCAUUAGAA CCCCCACCGACAGCAUUGAAUGUU ACCCCGACAGCGUUGAAUGUU ACCCCGACAGCGUUGAACCUCGA CCCCUAUCACCGACAGCAUUAAAGUAGACACCUGGU ACCCCGACAGCAUUAAAGUUGUU ACCUGCACCGACAGCAUUACACGCUUGCGU ACCCGACAGCAUUCACCCUGUGGG ACCCCCACCGACAGCAUUAGAACCGCUGUGGG ACCCCCACCGACAGCAUUAGAACCGUUGUGAGUUUCAACCGUUGGU ACCCCGACAGCAUUAAAGUGUGUUCACCUUGCGA AUGCCCUUUCACCCUGUGGGA ACCAUCACCGACAGCAUUAAAGUGUGUUCACCUUGGA ACCUCCCCACCGACAGCAUUAAAGUGUU ACCUGCACCGACAGCAUUAAAGUGUUCAACCCUGGUGGG ACCCCCACCGACAGCAUUAAAGUGUUCAACCCUGGUGGG ACCCCCACCGACAGCAUUAAAGUGUUCAACCCUGGUGGG ACCCCCACCGACAGCAUUAAAGUGUUCAACCCUGGUGGG ACCCCCACCGACAGCAUUAAAGUGUUCAACCCUGGUGGG ACCCCCACCGACAGCAUUAAAAGUGUGUUCACCCUGGGGGA ACCCCCACCGACAGCAUUAAAAGUGUGUUCACCCUGGGGGA ACCAUCACCGACAGCAUUAAACCGCUGGUGGGGACCGGUUCAACCGGUUCAACCGGUUCAACCGGUUCAACCGGUUCAACCGAUGAACCACGAGAAUGAAU
hsa-miR-100 hsa-miR-103 hsa-miR-103 hsa-miR-103 hsa-miR-105-5p UCAAAUGCUCAGACUCUGUGG hsa-miR-106a hsa-miR-106b UAAAGUGCUUACAGUGCAGGUAU hsa-miR-107 hsa-miR-10b UACCUGUACAGUGCAGGUAU hsa-miR-10b UACCUGUAGAACCGAAUUUGU hsa-miR-10b UACCUGUAGAACCGAAUUUGU hsa-miR-128b UCACAGGGGUCUCUUUC hsa-miR-128b UCACAGGGGUCUCUUUC hsa-miR-130b CAGUGCAAUGAACCGGAUUUUC hsa-miR-140-3p UACCACAGGGUAGAACCACGGA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC hsa-miR-155 UUAAUGCUAACGCUGUAGAA hsa-miR-155 UUAAUGCUAAUGGUGAGAC hsa-miR-181a AACAUUCAAUGCUGGGGG CACAAGUUCACAGGGUU CACAAGGGUUAAAGCACUUUU CACAAAUUCGGUUCAAAUGUUCAACAGGGUA AAAAAUUCGGUUCAACACGUAA AAAAAUUCGGUUCAACACUGUA AUGCCCUUUCAUCAUUACACUGGA AUGCCCUUUCAUCAUUACACUGGUA AUGCCCUUUCAUCAUUACACUGGUA AUGCCCUUUCAUCAUUUAUCGG CCCCUAUCACCGUUUCACCUCUCGA CCCCUAUCACGAUUAA CCCCCUAUCACGAUUAA CCCCCCCACCGACAGCGUUGAAUGUU CCCCCCCCCC
hsa-miR-103 hsa-miR-105-5p UCAAAUGCUCAGACUCCUGUGG CCACAGGAGUCUGAGCAUUUGA hsa-miR-106a hsa-miR-106b UAAAGUGCUGACAGUGCAGAUA hsa-miR-107 hsa-miR-10b UACCCUGUAGAACCGAAUUUGU hsa-miR-128b UCACAGGGACUCUUUC hsa-miR-130b CAUAGCCCUGUAGACCUUUA AGCAGCAUUGUACAGUGCAGAUA UAUCUGCACUGUCAGCACUUUA GAUAGCCCUGUAAGCACUUUU GAUAGCCCUGUAAGCACUUUU ACCUGCACUGUAAGCACUUUU ACCAGGGCAAUUUGU ACCAAAUUCGGUUCUACAGGGUA ACAAAUUCGGUUCUACAGGGUA ACAAAUUCGGUUCACCAGGGUA AUGCCCUUUCAUCACUGUGA AUGCCCUUUCACCAGGGUA AUGCCCUUUCACCAGGGUA AUGCCCUUUCAUCACUGUGA AUGCCCUUUCACCCUGUGA AUGCCCUGUACAAUGCUGA ACAAAUUCGGUUCUACCCUGUGA AUGCCCUUUCAUCAUUGCACUG UCCGUGGUUCUACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUUUCACCCUUCGA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCCUUUCACCCUGUGGUA AUGCCCUUUCACCCUGUGGUA AUGCCCCUGUGGUA AUGCCCUGUCACCGGUUGAAUGAU ACUAGACCGCUUUCUACCCUGUGGA ACAAAUUCCACCCUGUGGGA AUGCCCUUUCACCCUGUGGGA ACCAAAUUCCACGGUUCACCGGUA AUGCCCUUUCACCCUGUGGA AUGCCCUUUCACCCUGUGGGA AUGCCCUUUCACCCUGUGGGA AUGCCCUUUCACCCUGUGGGA AUGCCCUUUCACCCUGUGGGA AUGCCCUUUCACCCUGUGGGA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGGGA ACAAAUUCCACCUGUGGAA AUGCCCUUUCACCCUGUGGAA AUGCCCUGUCACACGGA AUGCCCUGUCACACGGA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGGAA AUGCCCUGUCACACGGA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGGAA AUGCCCUUUCACCCUGUGAAAAAAAAAA
hsa-miR-105-5p UCAAAUGCUCAGACUCCUGUGG CCCACAGGAGUCUGAGCAUUUUGA AAAAGUGCUUACAGUGCAGGUA UACCUGCACUGUAAGCACUUUUU hsa-miR-106b UAAAGUGCUGACAGUGCAGAUA UAUCUGCACUGUCAGCACUUUUA AGCAGCAUUGUACAGGGCUAUC GAUAGCCCUGUACAAUGCUGCU ACAAAUUCGGUUCUACAGGGUA ACCAGUGAACCGAAUUUGU ACAAAUUCGGUUCUACAGGGUA AUGCCCUGUACAAUGCUGCU ACAAAUUCGGUUCACAGGGUA AUGCCCUUUCACAGGGUA AUGCCCUUUCAUCAUCACUGUGA AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUGCACUG AUGCCCUUUCAUCAUUGCACUG AUGCCUUUCACCCUGUGGUA AUGCCCUUUCACCUUUACGG AUGAACAAAGAACACACGA UCCGUGGUUCUACCCUGUGGUA AUGCCUUUCUACCUUUAUGGG AUGAACAAAUGUAGAAAGCACUAC GUAGUGCUUUCUACCUUUAUGGG AUGAAAGAACACACGA UACCAGAGCGUUCACUUCAC
hsa-miR-106a AAAAGUGCUUACAGUGCAGGUA UACCUGCACUGUAAGCACUUUU hsa-miR-107 AGCAGCAUUGUACAGGGCUAUC GAUAGCCCUGUACAAUGCUGCU ACAAUUCGGUUCUACAGGGUA Hsa-miR-10b UACCCUGUAGAACCGAAUUUGU ACAAAUUCGGUUCUACAGGGUA ACAAAUUCGGUUCUACAGGGUA ACAAAUUCGGUUCUACAGGGUA ACAAAUUCGGUUCUACAGGGUA AUGCCCUUUCACCUGUGA AUGCCCUUUCAUCAUCAUUGCACUG AUGCCCUUUCAUCAUCAUUGCACUG AUGCCCUUUCAUCAUCAUUGCACUG AUGCCCUUUCAUCAUCAUUGCACUG AUGCCCUUUCACCUGUGGUA AUGCCCUUUCUACCCUGUGGUA AUGCCCUUUCUACCCUGUGGUA AUGCCCUUUCUACCUUUAUGGG AUGACACAGGCACUAC GUAGUGCUUUCUACCUUUAUGGG AUGACACAGGGUAAAGCACUAC GUAGUGCUUUCUACCUUUAUGGG AUGACACAGGCUUCACAGGUCUAGUA AUGCCUUUCUACCUUUAUGGG AUGACACGAGCGUUGAAUGUU ACCCUAACAGACCACGA CCCCUAUCACGAUUAGCAUUAA AACAUUCAACGCUGUCGGUGAG CCCCCUAUCACGAUUAGCAUUAA AACAUUCAACGCUGUCGGUGAG CCCCCCACCGACAGCGUUGAAUGUU AACAUUCAUUGCUGUCGGUGGG CCCCACCGACAGCGUUGAAUGUU
hsa-miR-106b UAAAGUGCUGACAGUGCAGAUA hsa-miR-107 AGCAGCAUUGUACAGGGCUAUC hsa-miR-10b UACCCUGUAGAACCGAAUUUGU ACAAAUUCGGUUCUACAGGGUA hsa-miR-128b UCACAGUGAACCGGUCUCUUUC hsa-miR-130b CAGUGCAAUGAUGAAAGGGCAU hsa-miR-140-3p UACCACAGGGUAGAACCACGA UCCGUGUUCAUCAUCAUUGCACUG hsa-miR-142-5p CCCAUAAAGUAGAAACCACGA UCCGUGUUUCUACCCUGUGGUA hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGACCUCUCUU CUCCUUUCAUCAUUAUCGG UUCACCGACGGUUCACCUCUCGA CCCCUAUCACGAUUAACCACUCA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCCUAUCACGAUUAACCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CCCACCGACAGCGUUGAAUGUU
hsa-miR-107 hsa-miR-10b UACCCUGUAGAACCGAAUUUGU hsa-miR-128b UCACAGUGAACCGGUCUCUUUC hsa-miR-130b CAGUGCAAUGAUGAAGGGCAU hsa-miR-140-3p UACCACAGGGUAGAACCAGGA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA hsa-miR-155 UUAAUGCUAAUCGUGAAAGGAA hsa-miR-181a AACAUUCAUGGGCAUUCACAGGCUUACACGACGA CCCCUAUCACCGACGACUUACACGACGA CCCCUAUCACGAUUAACACGCUGUAAAGUUAACACGCUGGGGGCACAGCGUUGAAUGUU CCCCCCCCCC
hsa-miR-10b UACCCUGUAGAACCGAAUUUGU ACAAAUUCGGUUCUACAGGGUA hsa-miR-128b UCACAGUGAACCGGUCUCUUUC hsa-miR-130b CAGUGCAAUGAUGAAAGGGCAU AUGCCCUUUCAUCAUCAUGACAUG hsa-miR-140-3p UACCACAGGGUAGAACCACGGA UCCGUGGUUCUACCUGUGGUA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAACAUGAAUGUU hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAUGAAUGUU
hsa-miR-128b UCACAGUGAACCGGUCUCUUUC GAAAGAGACCGGUUCACUGUGA hsa-miR-130b CAGUGCAAUGAUGAAAGGGCAU AUGCCCUUUCAUCAUUGCACUG hsa-miR-140-3p UACCACAGGGUAGAACCACGGA UCCGUGGUUCUACCCUGUGGUA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC GUAGUGCUUUCUACUUUAUGGG hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGGUGGG CCCACCGACAGCAAUGAAUGUU
hsa-miR-130b CAGUGCAAUGAUGAAAGGGCAU AUGCCCUUUCAUCAUUGCACUG hsa-miR-140-3p UACCACAGGGUAGAACCACGGA UCCGUGGUUCUACCUUGUGGUA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC GUAGUGCUUUCUACUUUAUGGG hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAUGAAUGUU
hsa-miR-140-3p UACCACAGGGUAGAACCACGGA UCCGUGGUUCUACCCUGUGGUA hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC GUAGUGCUUUCUACUUUAUGGG hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAUGAAUGUU
hsa-miR-142-5p CCCAUAAAGUAGAAAGCACUAC GUAGUGCUUUCUACUUUAUGGG hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAUGAAUGUU
hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGUA UACUAGACUGUGAGCUCCUCGA hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAAUGAAUGUU
hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGG CCCCUAUCACGAUUAGCAUUAA hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAAUGAAUGUU
hsa-miR-181a AACAUUCAACGCUGUCGGUGAG CUCACCGACAGCGUUGAAUGUU hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAAUGAAUGUU
hsa-miR-181b AACAUUCAUUGCUGUCGGUGGG CCCACCGACAGCAAUGAAUGUU
hsa-miR-181c AACAUUCAACCUGUCGGUGAGU ACUCACCGACAGGUUGAAUGUU
hsa-miR-182 UUUGGCAAUGGUAGAACUCACA UGUGAGUUCUACCAUUGCCAAA
hsa-miR-183 UAUGGCACUGGUAGAAUUCACU AGUGAAUUCUACCAGUGCCAUA
hsa-miR-184 UGGACGGAGAACUGAUAAGGGU ACCCUUAUCAGUUCUCCGUCCA
hsa-miR-185 UGGAGAGAAAGGCAGUUCCUGA UCAGGAACUGCCUUUCUCCCA
hsa-miR-186 CAAAGAAUUCUCCUUUUGGGCU AGCCCAAAAGGAGAAUUCUUUG
hsa-miR-187 UCGUGUCUUGUGUUGCAGCCGG CCGGCUGCAACACAAGACACGA
hsa-miR-188-3p CUCCCACAUGCAGGGUUUGCAG CUGCAAACCCUGCAUGUGGGAG
hsa-miR-188-5p CAUCCCUUGCAUGGUGGAGGGU ACCCUCCACCAUGCAAGGGAUG
hsa-miR-189 GUGCCUACUGAGCUGAUAUCAG CUGAUAUCAGCUCAGUAGGCAC
hsa-miR-190 UGAUAUGUUUGAUAUAUUAGGU ACCUAAUAUAUCAAACAUAUCA
hsa-miR-191 CAACGGAAUCCCAAAAGCAGCU AGCUGCUUUUUGGGAUUCCGUUG
hsa-miR-192 CUGACCUAUGAAUUGACAGCCA UGGCUGUCAAUUCAUAGGUCAG
hsa-miR-193-3p AACUGGCCUACAAAGUCCCAGU ACUGGGACUUUGUAGGCCAGUU
hsa-miR-193-5p UGGGUCUUUGCGGGCAAGAUGA UCAUCUUGCCCGCAAAGACCCA
hsa-miR-194 UGUAACAGCAACUCCAUGUGGA UCCACAUGGAGUUGCUGUUACA
hsa-miR-195 UAGCAGCACAGAAAUAUUGGCA UGCCAAUAUUUCUGUGCUGCUA
hsa-miR-196 UAGGUAGUUUCAUGUUGUUGGG CCCAACAACAUGAAACUACCUA
hsa-miR-197 UUCACCACCUUCUCCACCCAGC GCUGGGUGGAGAAGGUGGUGAA
hsa-miR-198 GGUCCAGAGGGGAGAUAGGUUC GAACCUAUCUCCCCUCUGGACC
hsa-miR-199a-3p ACAGUAGUCUGCACAUUGGUUA UAACCAAUGUGCAGACUACUGU
hsa-miR-199a-5p CCCAGUGUUCAGACUACCUGUU AACAGGUAGUCUGAACACUGGG

microRNA name	mi gree DNA GOOTH CO	7 1 7 7 7 7
microrna name	microRNA sequence	Anti-microRNA molecule
h	(5' to 3')	sequence (5' to 3')
hsa-miR-199b	CCCAGUGUUUAGA CUAUCUGUU	AACAGAUAGUCUAAACACUGGG
hsa-miR-200a	UAACACUGUCUGGUAACGAUGU	ACAUCGUUACCAGACAGUGUUA
hsa-miR-200b	CUCUAAUACUGCCUGGUAAUGA	UCAUUACCAGGCAGUAUUAGÁG
hsa-miR-200c	AAUACUGCCGGGUAAUGAUGGA	UCCAUCAUUACCCGGCAGUAUU
hsa-miR-203	GUGAAAUGUUUAGGACCACUAG	CUAGUGGUCCUAAACAUUUCAC
hsa-miR-204	UUCCCUUUGUCAUCCUAUGCCU	AGGCAUAGGAUGACAAAGGGAA
hsa-miR-205	UCCUUCAUUCCAC CGGAGUCUG	CAGACUCCGGUGGAAUGAAGGA
hsa-miR-206	UGGAAUGUAAGGA.AGUGUGUGG	CCACACACUUCCUUACAUUCCA
hsa-miR-208	AUAAGACGAGCAA.AAAGCUUGU	ACAAGCUUUUUGCUCGUCUUAU
hsa-miR-210	CUGUGCGUGUGACAGCGGCUGA	UCAGCCGCUGUCACACGCACAG
hsa-miR-211	UUCCCUUUGUCAU CCUUCGCCU	AGGCGAAGGAUGACAAAGGGAA
hsa-miR-212	UAACAGUCUCCAGUCACGGCCA	UGGCCGUGACUGGAGACUGUUA
hsa-miR-213	ACCAUCGACCGUUGAUUGUACC	GGUACAAUCAACGGUCGAUGGU
hsa-miR-214	ACAGCAGGCACAGACAGGCAGU	ACUGCCUGUCUGUGCCUGU
hsa-miR-215	AUGACCUAUGAAUUGACAGACA	UGUCUGUCAAUUCAUAGGUCAU
hsa-miR-216	UAAUCUCAGCUGG CAACUGUGA	UCACAGUUGCCAGCUGAGAUUA
hsa-miR-217	UACUGCAUCAGGA ACUGAUUGG	CCAAUCAGUUCCUGAUGCAGUA
hsa-miR-218	UUGUGCUUGAUCUAACCAUGUG	CACAUGGUUAGAUCAAGCACAA
hsa-miR-219	UGAUUGUCCAAACGCAAUUCUU	AAGAAUUGCGUUUGGACAAUCA
hsa-miR-220	CCACACCGUAUCUGACACUUUG	CAAAGUGUCAGAUACGGUGUGG
hsa-miR-221	AGCUACAUUGUCUGCUGGGUUU	AAACCCAGCAGACAAUGUAGCU
hsa-miR-222	AGCUACAUCUGGCUACUGGGUC	GACCCAGUAGCCAGAUGUAGCU
hsa-miR-223	UGUCAGUUUGUCAAAUACCCCA	UGGGUAUUUGACAAACUGACA
hsa-miR-224	CAAGUCACUAGUGGUUCCGUUU	
hsa-miR-28-5p	AAGGAGCUCACAGUCUAUUGAG	AAACGGAACCACUAGUGACUUG CUCAAUAGACUGUGAGCUCCUU
hsa-miR-290	CUCAAACUGUGGGGGCACUUUC	GAAAGUGCCCCCACAGUUUGAG
hsa-miR-296	AGGGCCCCCCCCAAUCCUGUU	
hsa-miR-299	UGGUUUACCGUCCACAUACAU	AACAGGAUUGAGGGGGGCCCU
hsa-miR-301		AUGUAUGUGGGACGGUAAACCA
hsa-miR-301	CAGUGCAAUAGUAUUGUCAAAG	CUUUGACAAUACUAUUGCACUG
	UAAGUGCUUCCAUGUUUUGGUG	CACCAAAACAUGGAAGCACUUA
hsa-miR-30e	UGUAAACAUCCUUGACUGGAAG	CUUCCAGUCAAGGAUGUUUACA
hsa-miR-320	AAAAGCUGGGUUGAGAGGGCGA	UCGCCCUCUCAACCCAGCUUUU
hsa-miR-321	UAAGCCAGGGAUUGUGGGUUCG	CGAACCCACAAUCCCUGGCUUA
hsa-miR-322	AAACAUGAAUUGCUGCUGUAUC	GAUACAGCAGCAAUUCAUGUUU
hsa-miR-323	GCACAUUACACGGUCGACCUCU	AGAGGUCGACCGUGUAAUGUGC
hsa-miR-324-3p	CCACUGCCCAGGUGCUGCUGG	CCAGCAGCACCUGGGGCAGUGG
hsa-miR-324-5p	CGCAUCCCCUAGGGCAUUGGUG	CACCAAUGCCCUAGGGGAUGCG
hsa-miR-326	CCUCUGGGCCCUUCCUCCAGCC	GGCUGGAGGAAGGCCCAGAGG
hsa-miR-328	CUGGCCCUCUCUGCCCUUCCGU	ACGGAAGGCCAGAGAGGCCCAG
hsa-miR-329	AACACACCCAGCUAACCUUUUU	AAAAAGGUUAGCUGGGUGUGUU
hsa-miR-34a	UGGCAGUGUCUUAGCUGGUUGU	ACAACCAGCUAAGACACUGCCA
hsa-miR-34b	AGGCAGUGUCAUUAGCUGAUUG	CAAUCAGCUAAUGACACUGCCU
hsa-miR-34c	AGGCAGUGUAGUUAGCUGAUUG	CAAUCAGCUAACUACACUGCCU
hsa-miR-92	UAUUGCACUUGUCCCGGCCUGU	ACAGGCCGGGACAAGUGCAAUA
hsa-miR-93	AAAGUGCUGUUCGUGCAGGUAG	CUACCUGCACGAACAGCACUUU
hsa-miR-95	UUCAACGGGUAUUUAUUGAGCA	UGCUCAAUAAAUACCCGUUGAA
hsa-miR-96	UUUGGCACUAGCACAUUUUUGC	GCAAAAAUGUGCUAGUGCCAAA
hsa-miR-98	UGAGGUAGUAAGUUGUAUUGUU	AACAAUACAACUUACUACCUCA
mmu-miR-106a	CAAAGUGCUAACAGUGCAGGUA	UACCUGCACUGUUAGCACUUUG
mmu-miR-10b	CCCUGUAGAACCGAAUUUGUGU	ACACAAAUUCGGUUCUACAGGG
mmu-miR-135b	UAUGGCUUUUCAUUCCUAUGUG	CACAUAGGAAUGAAAAGCCAUA

microRNA name	mi graphy grants	
microrna name	microRNA sequence	Anti-microRNA molecule
mm	(5' to 3')	sequence (5' to 3')
mmu-miR-148b	UCAGUGCAUCACAGAACUUUGU	ACAAAGUUCUGUGAUGCACUGA
mmu-miR-151-3p	CUAGACUGAGGCUCCUUGAGGA	UCCUCAAGGAGCCUCAGUCUAG
mmu-miR-155	UUAAUGCUAAUUGUGAUAGGGG	CCCCUAUCACAAUUAGCAUUAA
mmu-miR-199b	CCCAGUGUUUAGACUACCUGUU	AACAGGUAGUCUAAACACUGGG
mmu-miR-200b	UAAUACUGCCUGGUAAUGAUGA	UCAUCAUUACCAGGCAGUAUUA
mmu-miR-203	UGAAAUGUUUAGGACCACUAGA	UCUAGUGGUCCUAAACAUUUCA
mmu-miR-211	UUCCCUUUGUCAUCCUUUGCCU	AGGCAAAGGAUGACAAAGGGAA
mmu-miR-217	UACUGCAUCAGGAACUGACUGG	CCAGUCAGUUCCUGAUGCAGUA
mmu-miR-224	UAAGUCACUAGUGGUUCCGUUU	AAACGGAACCACUAGUGACUUA
mmu-miR-28-3p	CACUAGAUUGUGAGCUGCUGGA	UCCAGCAGCUCACAAUCUAGUG
mmu-miR-290	CUCAAACUAUGGGGG CACUUUU	AAAAGUGCCCCAUAGUUUGAG
mmu-miR-291-3p	AAAGUGCUUCCACUUUGUGUGC	GCACAAAGUGGAAGCACUUU
mmu-miR-291-5p	CAUCAAAGUGGAGGC CCUCUCU	AGAGAGGCCUCCACUUUGAUG
mmu-miR-292-3p	AAGUGCCGCCAGGUUUUGAGUG	CACUCAAAACCUGGCGGCACUU
mmu-miR-292-5p	ACUCAAACUGGGGGCUCUUUUG	CAAAAGAGCCCCCAGUUUGAGU
mmu-miR-293	AGUGCCGCAGAGUUUGUAGUGU	ACACUACAAACUCUGCGGCACU
mmu-miR-294	AAAGUGCUUCCCUUUUGUGUGU	ACACAAAAAGGGAAGCACUUU
mmu-miR-295	AAAGUGCUACUACUUUUGAGUC	GACUCAAAAGUAGUAGCACUUU
mmu-miR-297	AUGUAUGUGCAUGUGCAUGU	
mmu-miR-298	GGCAGAGGAGGCUGUUCUUCC	ACAUGCACAUGCACAUACAU
mmu-miR-300	UAUGCAAGGGCAAGCUCUCUUC	GGAAGAACAGCCCUCCUCUGCC
mmu-miR-31		GAAGAGAGCUUGCCCUUGCAUA
mmu-miR-322	AGGCAAGAUGCUGGCAUAGCUG	CAGCUAUGCCAGCAUCUUGCCU
mmu-miR-325	AAACAUGAAGCGCUGCAACACC	GGUGUUGCAGCGCUUCAUGUUU
	CCUAGUAGGUGCUCAGUAAGUG	CACUUACUGAGCACCUACUAGG
mmu-miR-326	CCUCUGGGCCCUUCCUCCAGUC	GACUGGAGGAAGGCCCAGAGG
mmu-miR-330	GCAAAGCACAGGGCCUGCAGAG	CUCUGCAGGCCCUGUGCUUUGC
mmu-miR-331	GCCCCUGGGCCUAUCCUAGAAC	GUUCUAGGAUAGGCCCAGGGGC
mmu-miR-337	UUCAGCUCCUAUAUGAUGCCUU	AAGGCAUCAUAUAGGAGCUGAA
mmu-miR-338	UCCAGCAUCAGUGAUUUUGUUG	CAACAAAUCACUGAUGCUGGA
mmu-miR-339	UCCCUGUCCUCCAGGAGCUCAC	GUGAGCUCCUGGAGGACAGGGA
mmu-miR-340	UCCGUCUCAGUUACUUUAUAGC	GCUAUAAAGUAACUGAGACGGA
mmu-miR-341	UCGAUCGGUCGGUCAGUC	GACUGACCGACCGAUCGA
mmu-miR-342	UCUCACACAGAAAUCGCACCCG	CGGGUGCGAUUUCUGUGUGAGA
mmu-miR-344	UGAUCUAGCCAAAGC CUGACUG	CAGUCAGGCUUUGGCUAGAUCA
mmu-miR-345	UGCUGACCCCUAGUC CAGUGCU	AGCACUGGACUAGGGGUCAGCA
mmu-miR-346	UGUCUGCCCGAGUGCCUGCCUC	GAGGCAGGCACUCGGGCAGACA
mmu-miR-34b	UAGGCAGUGUAAUUAGCUGAUU	AAUCAGCUAAUUACACUGCCUA
mmu-miR-350	UUCACAAAGCCCAUACACUUUC	GAAAGUGUAUGGGCUUUGUGAA
mmu-miR-351	UCCCUGAGGAGCCCUTUGAGCC	GGCUCAAAGGGCUCCUCAGGGA
mmu-miR-7b	UGGAAGACUUGUGAUUUUGUUG	CAACAAAAUCACAAGUCUUCCA
mmu-miR-92	UAUUGCACUUGUCCCGGCCUGA	UCAGGCCGGGACAAGUGCAAUA
mmu-miR-93	CAAAGUGCUGUUCGUGCAGGUA	UACCUGCACGAACAGCACUUUG
rno-miR-327	CCUUGAGGGCAUGAGGGUAGU	ACUACCCUCAUGCCCCUCAAGG
rno-miR-333	GUGGUGCUAGUUACUUUUGG	CCAAAAGUAACUAGCACACCAC
rno-miR-335	UCAAGAGCAAUAACGAAAAAUG	CAUUUUUCGUUAUUGCUCUUGA
rno-miR-336	UCACCCUUCCAUAUCUAGUCUC	
rno-miR-343	UCUCCCUCCGUGUGCCCAGUAU	GAGACUAGAUAUGGAAGGGUGA
rno-miR-347	UGUCCCUCUGGGUCGCCCAGCU	AUACUGGGCACACGGAGGGAGA
rno-miR-349		AGCUGGGCGACCCAGAGGGACA
rno-miR-352	CAGCCCUGCUGUCUUAACCUCU	AGAGGUUAAGACAGCAGGGCUG
710 m11-332	AGAGUAGUAGGUUGCAUAGUAC	GUACUAUGCAACCUACUACUCU

Table 2: Novel Human microRNA and anti-microRNA sequences.

microRNA name	microRNA sequence (5' to 3')	Anti-microRNA molecule sequence (5' to 3')
hsa-miR-361	UUAUCAGAAUCUCCAGGGGUAC	GUACCCCUGGAGAUUCUGAUAA
hsa-miR-362	AAUCCUUGGAACCUAGGUGUGA	UCACACCUAGGUUCCAAGGAUU
hsa-miR-363	AUUGCACGGUAUCCAUCUGUAA	UUACAGAUGGAUACCGUGCAAU
hsa-miR-364	CGGCGGGACGGCGAUUGGUCC	GGACCAAUCGCCGUCCCCGCCG
hsa-miR-365	UAAUGCCCCUAAAAAUCCUUAU	AUAAGGAUUUUUAGGGGCAUUA
hsa-miR-366	UAACUGGUUGAACAACUGAACC	GGUUCAGUUGUUCAACCAGUUA

Table 3: C. elegans microRNA and anti-microRNA sequences.

microRNA name	microRNA sequence	Anti-microRNA molecule
	(5' to 3')	sequence (5' to 3')
Cel-let-7	UGAGGUAGUUGUAUAGUU	AACUAUACAACCUACUACCUCA
Cel-lin-4	UCCCUGAGACCUCAAGUGUGAG	CUCACACUUGAGGUCUCAGGGA
Cel-miR-1	UGGAAUGUAAAGAAGUAUGUAG	CUACAUACUUCUUUACAUUCCA
Cel-miR-2	UAUCACAGCCAGCUUUGAUGUG	CACAUCAAAGCUGGCUGUGAUA
Cel-miR-34	AGGCAGUGUGGUUAGCUGGUUG	CAACCAGCUAACCACACUGCCU
Cel-miR-35	UCACCGGGUGGAAACUAGCAGU	ACUGCUAGUUUCCACCCGGUGA
Cel-miR-36	UCACCGGGUGAAAAUUCGCAUG	CAUGCGAAUUUUCACCCGGUGA
Cel-miR-37	UCACCGGGUGAACACUUGCAGU	ACUGCAAGUGUUCACCCGGUGA
Cel-miR-38	UCACCGGGAGAAAACUGGAGU	ACUCCAGUUUUUCUCCCGGUGA
Cel-miR-39	UCACCGGGUGUAAAUCAGCUUG	CAAGCUGAUUUACACCCGGUGA
Cel-miR-40	UCACCGGGUGUA CAUCAGCUAA	UUAGCUGAUGUACACCCGGUGA
Cel-miR-41	UCACCGGGUGAAAAAUCACCUA	UAGGUGAUUUUUCACCCGGUGA
Cel-miR-42	CACCGGGUUAACAUCUACAGAG	CUCUGUAGAUGUUAACCCGGUG
Cel-miR-43	UAUCACAGUUUACUUGCUGUCG	CGACAGCAAGUAAACUGUGAUA
Cel-miR-44	UGACUAGAGACACAUUCAGCUU	AAGCUGAAUGUGUCUCUAGUCA
Cel-miR-45	UGACUAGAGACACAUUCAGCUU	AAGCUGAAUGUGUCUCUAGUCA
Cel-miR-46	UGUCAUGGAGUCGCUCUCUCA	UGAAGAGAGCGACUCCAUGACA
Cel-miR-47	UGUCAUGGAGGCGCUCUCUUCA	UGAAGAGAGCGCCUCCAUGACA
Cel-miR-48	UGAGGUAGGCUCAGUAGAUGCG	CGCAUCUACUGAGCCUACCUCA
Cel-miR-49	AAGCACCACGAGAAGCUGCAGA	UCUGCAGCUUCUCGUGGUGCUU
Cel-miR-50	UGAUAUGUCUGGUAUUCUUGGG	CCCAAGAAUACCAGACAUAUCA
Cel-miR-51	UACCCGUAGCUCCUAUCCAUGU	ACAUGGAUAGGAGCUACGGGUA
Cel-miR-52	CACCCGUACAUAUGUUUCCGUG	CACGGAAACAUAUGUACGGGUG
Cel-miR-53	CACCCGUACAUUUGUUUCCGUG	CACGGAAACAAAUGUACGGGUG
Cel-miR-54	UACCCGUAAUCUUCAUAAUCCG	CGGAUUAUGAAGAUUACGGGUA
Cel-miR-55	UACCCGUAUAAGUUUCUGCUGA	UCAGCAGAAACUUAUACGGGUA
Cel-miR-56	UACCCGUAAUGUUUCCGCUGAG	CUCAGCGGAAACAUUACGGGUA
Cel-miR-57	UACCCUGUAGAUCGAGCUGUGU	ACACAGCUCGAUCUACAGGGUA
Cel-miR-58	UGAGAUCGUUCAGUACGGCAAU	AUUGCCGUACUGAACGAUCUCA
Cel-miR-59	UCGAAUCGUUUAUCAGGAUGAU	AUCAUCCUGAUAAACGAUUCGA
Cel-miR-60	UAUUAUGCACAUUUUCUAGUUC	GAACUAGAAAAUGUGCAUAAUA
Cel-miR-61	UGACUAGAACCGUUACUCAUCU	AGAUGAGUAACGGUUCUAGUCA
Cel-miR-62	UGAUAUGUAAUCUAGCUUACAG	CUGUAAGCUAGAUUACAUAUCA
Cel-miR-63	AUGACACUGAAGCGAGUUGGAA	UUCCAACUCGCUUCAGUGUCAU

Cel - miR - 64	microRNA name	microPNA company	77
Cel - miR - 65 UAUGACACUGARAGCGUUACCGA UCGGUACACUCUCAUGA Cel - miR - 65 CAUGACACUGAUUAGGGAUGUG UCGGUUACGCUUCAGUUCAGGAUGUG Cel - miR - 66 CAUGACACUCCUCAGAAAGAGUA UCGCAUCCCUAAUCGGUUGUGCACA Cel - miR - 67 UCCACACCUCCUCAGAAAGAGUA UACUCUUUCUAGGAGUUCUCGA Cel - miR - 68 UCGAAAAGUGUAAAAGUGUAGAA UUCUACACUUUUUAGUUCUCCA Cel - miR - 70 UAAUACGUCGUUGGUGUUUCCA UGGAACACCACGGUUUUCA Cel - miR - 71 UGAAAGUGUAGCAGUGAGC CGUUCACUACCCAACCGACUUUCA Cel - miR - 72 UGGCAAGAAUGGUAGCCACCGGCUUCA UGUAGCCCAACCGGCUUCA Cel - miR - 73 UGGCAAGAAAUGGAGCAUCCAA UGUAGCCGAACCGACUUCCA Cel - miR - 74 UGGCAAGAAAUGGCAGCUUCCA UGAACCUCACACCGGCUUCA Cel - miR - 75 UUCAAGGCCUACCAACCGGCUUCA UGAAGCCGAUGGCUGCAAGCU Cel - miR - 76 UUCAAGGCCUACCAAACCU UGAACCCAACCGACCCCCACACGACCU Cel - miR - 78 UGAGACCAAGCCAACCGCCUCCAAACCU UGAACCCAACCAACCCACCGCUCAACGACCACCCCCCAAACCU Cel - miR - 80 UGAGAUCAUAGUUGAAAACCC CGCCUUUCAACACCAACCAACCACCCCCCAACCCCACCACCA	micionna mame	microRNA sequence	Anti-microRNA molecule
Cel - miR - 65 URUGACACUGAROCIDA ROCCEA UCGGUIAGGUUCAGU Cel - miR - 66 CAUGACACUGAUUAGGAUGUG CACAUCCCUCAGARAGAGUA Cel - miR - 68 UCGARAGCUCCUAGARAGAGUA UACUCUUCUAGAGGGUUCUGCA Cel - miR - 69 UCGARAGUUGARAGAGUA UUCUACACCUUCUUGAGUUUUCCA Cel - miR - 70 UARAGCUCGUUGUUGUUCCA UGGARACACCAACGACGUUUU Cel - miR - 71 UGARAGACAUGGUUGUGUUUCCA UGGARACACCAACGACGUUUUA Cel - miR - 72 AGGCAAGAUGUUGGCAUAGCUU CAGCUUAUGCCAACCCACCGUUCA Cel - miR - 73 UGGCARGARAGUGGAGUUCUACA UGUAGACUGACUACA Cel - miR - 74 UGGCARGARAGUGGAGUUCUACA UGUAGACCGCUUCA Cel - miR - 75 UUCAUCAGGCCALAGCUUUCA UGARGCGGUUCAACCAGCUUCA Cel - miR - 77 UUCAUCAGGCCALAGCUUUCCCA UGGACACAGUAGAUGAUUCCCA Cel - miR - 79 AURAGCUUGACAAGAGCU AGCACAACCAACCAGCGCUUCA Cel - miR - 79 AURAGCUUGACAAGAGCU AGCACAACAACACACGAGCUUCA Cel - miR - 81 UGACAUCAUUCUCUCACAAGCU AGCACAACAACACACAGAGCUUCAC Cel - miR - 82 UGACAUCAUUCAGACUAAACUACUCAGAGUACCCCCACAGU ACUAGCUUUCACAAAAACACACAUCUCCCCAAGUACACUAAUAACUCACCAGAGCACCCAGAGCACCACCAGAGCACACACA	Col min 64		
Cel-miR-66 Cel-miR-67 Cel-miR-67 Cel-miR-68 UCGAAGCUCANAAAGGAU Cel-miR-68 UCGAAGCUCANAAAGGAU Cel-miR-69 UCGAAGCUCANAAAGGAC GULAMAACUUUUUUAGGAGGUUUUCA Cel-miR-70 UAANAAAGUUCAAAAAGUUUCA Cel-miR-71 UGAAAGACUCANAAAAGUUUCA Cel-miR-71 UGAAAGACAUGGUGGGUUUCCA Cel-miR-72 AGGCAAGAGUGUGGGCANAGCU Cel-miR-73 UGGCAAGAUGUGGGCANAGCU Cel-miR-73 UGGCAAGAUGUGGGCANAGCU Cel-miR-73 UGGCAAGAAAUGAAAAGUGCAACACCAACCAACCAACGACUUUUCA Cel-miR-73 UGGCAAGAUGUUGGCANAGCU Cel-miR-74 UGGCAAGAAAUGAAAAGGCAUCACA Cel-miR-75 UUAAAGCUACCAUCUUCA Cel-miR-76 UUCGUUGUUGAAAAAGUUCAA Cel-miR-77 UUCAUCAGGCCAUGACUUCA Cel-miR-77 UUCAUCAGGCCAUGACUUCA Cel-miR-77 UUCAUCAGGCCAUGACUUCA Cel-miR-78 UUCGUUGUUGAAAAGCAU Cel-miR-79 UUCAUCAGGCCUAGAUGUUCA Cel-miR-79 UUCAUCAGGCCUUGA UUCAAGCUUCAACAACGAC Cel-miR-79 UUCAUCAGGCCUAGAUGUUCA Cel-miR-79 UUCAUCAGGCCUAGAUGUUCA Cel-miR-79 UUCAUCAGGCCUAGAUGUUCA Cel-miR-80 UGAGAUCAUGAUUAGUAAAGCU Cel-miR-81 UGAGAUCAUCAUGAAAGCU Cel-miR-81 UGAGAUCAUCAUGAAAGCU Cel-miR-82 UGAGAUCAUCAUGAAAGCU Cel-miR-83 UACCACCAUAAAAGUUAGUAA CCL-miR-84 UGAGAUCAUCAUGAAAGCUAG Cel-miR-85 UAAAGGAUAUGUUGAAAGCUAGU Cel-miR-86 UAAGGUAUUUGAAAAGUUAGUAA Cel-miR-87 UGAGAUCAUCAUGAAAGCUAGU Cel-miR-88 UAACACCAUAUAAAUUCAGUAA UUACACAACAACACAGAGAUCUCA Cel-miR-89 UGAGAUCAUCAUGAAAGCUAGU Cel-miR-89 UAAAGCACAACAACACCAGGCUCCA Cel-miR-89 UAAAGCACAACAACAACACCAGGCUACA Cel-miR-89 UAAAGCACCAUAUAAAUUCAGUAA UUACUGAAUUUUAACAGAUCUCA Cel-miR-89 UAAAGCACCAUAUAAAUUCAGUAA UUACUGAAUUCUCAAUACCUCA Cel-miR-89 UAAAGCACCAGGGUGAAAGCUAG Cel-miR-231 UAAAGCACCAGGGGGAAGCUC Cel-miR-231 UAAGCACCAGGGGGAAGCUCC Cel-miR-231 UAAGCACCAGGGGGGAAGGCC CCCCACGGGGGAAGCUUCAACACACACACACACACACACA		UAUGACACUGAAGCGUUACCGA	UCGGUAACGCUUCAGUGUCAUA
Cel-miR-67		UAUGACACUGAAGCGUAACCGA	UCGGUUACGCUUCAGUGUCAUA
Cel-mir-69 Cel-mir-70 UGANAAUUAAAAGUGUAGC Cel-mir-71 UGAAAGCAUGGUGUGUUUCCA UGGAAACUUCAACGCUUUUUAAUUUUCGA Cel-mir-71 UGAAAGCAUGGUGUGUUUCCA UGGAAACACCAACGACGACGAUUUUCCCA Cel-mir-72 UGCAAGAUGUUGGCAUAGCU Cel-mir-73 UGGCAAGAUGUUGGCAUAGCU Cel-mir-74 UGGCAAGAUGUUGGCAUAGCU Cel-mir-75 UUGAAGCAUCGCUUCA Cel-mir-75 UUGAAGCAUGUUGCCA Cel-mir-76 UUGAUGAAGAAUGUUGCCA Cel-mir-77 UUCAUCAGGCUUCA Cel-mir-77 UUCAUCAGGCUUCA Cel-mir-78 UUGGUAGCUUCACAUCUUUAA UCAAGCCUUUUAAUGCCAUCUUUAA Cel-mir-79 UUCAUCAGGCCUUCA Cel-mir-77 UUCAUCAGGCCUUCA Cel-mir-79 UUCAUCAGGCCUUCA Cel-mir-79 UUGAUGAGCUGCCAACCACCGGCUUCA Cel-mir-79 UUGAUCAGGCCUUCA Cel-mir-79 UUGAUCAGGCCUUCA Cel-mir-79 UUGAUCAGGCCUUCA Cel-mir-80 UGAGACCCAGCCUUCA Cel-mir-81 UGAGACCAGCAUGUUCCA Cel-mir-80 UGAGACCAUGAUGUUCCA Cel-mir-81 UGAGAUCAUCAGUUGAAAGCCU Cel-mir-82 UGAGACCAUAACAACACAGGCUUCA Cel-mir-83 UGAGACCAUAUAAGUUGAAAGCC Cel-mir-84 UGAGAUCAUCAGUUGAAAGCC Cel-mir-85 UAGAGUCAUCAGGUUGAAAGCCAGU Cel-mir-86 UAGAGUCAUCAGGAUAGCUAGU Cel-mir-87 UAGAGUCAUCAGGAAGCCAGU Cel-mir-87 Cel-mir-88 UAGAGCACAAACAACACAGGCCAGU Cel-mir-89 UACAAAGUAUUUGAAAGCCAGU Cel-mir-89 UACAAAGUAUUUGAAAGCCAGU Cel-mir-89 UACAAAGUAUUUGAAAGCCAGU Cel-mir-89 UACAAAGUAUUUGAAAGCCAGU Cel-mir-89 UACAAAGUAUUUGAAAGCCAGU Cel-mir-234 AUGACCACCUGAACCUUCCACAGU Cel-mir-234 AUGACCACCUGAACCUCCACAGU Cel-mir-234 UAAGCCACCUGAACCUUCCACAGU Cel-mir-234 UAAGCCACCUGAACCUUCCACAGU Cel-mir-235 UAAAGCCACCUGAACCUUCAAUCACUCCACGUGCCUUA Cel-mir-239 UUUGUACACACCUGCCACAGUG CCCCCCACAUUCAAACCACCUCCC Cel-mir-239 UUUGUACCACCAGGGCGCGGCGGGGCACCCCC Cel-mir-239 UUUGUACCACCACGGGGCGGGCACCCCC Cel-mir-239 UUUGUACCACCAUGAAGCCCCC Cel-mir-239 UUUGUACCACCAUGAAGCCCCC Cel-mir-239 UUUGUACCACACUGGGGGGGCCCCAACCCCGACCCUGACCCUCAACCCCCACCCCCCCC		CAUGACACUGAUUAGGGAUGUG	CACAUCCCUAAUCAGUGUCAUG
Cel-mir-70 UCGAAAAUUAAAAGUGUAGAA UUCUACACUUUUTAAUUUUCGA Cel-mir-71 UGAAAGCUGUUGGUGUUUUCCA UGGAAAACACCAACGACGACGACGUUUUCA Cel-mir-72 AGGCAAGAUGGUGGUGGUUCAG CGUUACUACCACGUUUUCA Cel-mir-73 LUGCAAGAUGUGGCAUGUCG CGAGCUAUGCCCAACAUUUUGCCA Cel-mir-74 UGGCAAGAAUGGCAGUUCUAA UGAAGCGCAUUUUCCA Cel-mir-75 UUCAUGGCCAUAGCUUCA UGAAGCGCUUUGA Cel-mir-76 UUCAUCAGGCAUAGCUUCA UCAAGGCUAUGCCAACGA Cel-mir-77 UUCAUCAGCAAAGCUUGA UCAAGGCUICAACAACAACACA Cel-mir-78 UUCAUCAGCACAAACCUUGUA AGCACAACAACAACGAGCUUCAA Cel-mir-79 AUAAAGCUAGUGAAAGCU AGCUUUGGAACCUAACGU Cel-mir-879 AUAAAGCUAGUGAAAGCUAGU AGCUUUGGAAUCAUGUGGAAAGCU Cel-mir-880 UGAGAUCAUUGAAAGCUAGU ACUAGCUUUCACAGAUGAUGU Cel-mir-81 UGAGAUCAUCAUGAAAGCUAGU ACUAGCUUUCACAGUGAUGUUCA Cel-mir-83 UACACACACAGAACGUU ACUAGCUUUCACAGUGAUCUCA Cel-mir-84 UGAGAUCAUUCAGAGAACAU ACUAGCUUUCACAGAUGAUCUCA Cel-mir-85 UACAAAGUUUCACAGAAACAUUUCAAAAAUUCACGA ACGACUUUCACAGAACAUUCUCACAAAAACAUUUCAAAAAAAUCAUCUCAAAAAA			UACUCUUUCUAGGAGGUUGUGA
Cel-miR-70 UAAUACGUCGUUGGUGUUUCCA UGGAAACACCAACGACGUGUUUCCA Cel-miR-71 UGAAAGACAUGGUUUGCAUGCUUCACCAAUGUCUUCCC Cel-miR-73 AGGCAAGAUGUUGGCAUGCUUCA CGUUACCAACCAAUGUUUGCCU Cel-miR-74 UGGCAAGAUGUUGGCAUUUCACA UGUAGACGACAUCUUGCCU Cel-miR-75 UUAAAGCUACCAACGGCUUCA UGLAGACGCAUUCUUGCA Cel-miR-76 UUCGUUGUUGAUGAAGCUUUCA UGAAGCCGUUCAUCAACAACGACCA Cel-miR-78 UGGAGGCCUGGUUGUUUGUUCCA UGAACCAACAACCAGGCCUUCA Cel-miR-79 AUAAAGCUAGGUUGCAACAGCU AGCACAAACAACCAGGCCUUCA Cel-miR-79 AUAAAGCUAGGUUGACAAGACU AGCACAAAACAACCAGGCCUUCA Cel-miR-79 AUAAAGCUAGGUUGAAAGCU AGCACAAAACAACCAGGCUUCA Cel-miR-8-1 UGAGAUCAUUGUGAAACCC GUUCAACAACAACAACAACAGCAGCCC Cel-miR-81 UGAGAUCAUCGUGAAAGCUAGU ACUAGGUUUCAACGAUGAUCUCA Cel-miR-82 UGACAACAUCUGUGAAAGCUAGU ACUAGCUUUCAACGAUGAUCUCA Cel-miR-83 UAGCACCACAAAAAUUCAGUAA UUACUGAAUUUAUAUGUGU Cel-miR-85 UAACAGUAGUUUCAACGAUGAU UUACUGAAUUUAUAUGUGU Cel-miR-86 UAACGUAAGUUUCAGGUUGU ACCACUUUCAACAUUUUCA Cel-miR-90		UCGAAGACUCAAAAGUGUAGAC	
Cel-mir-71 UGAAAGACAUGGGUAGUGAACG Cel-mir-72 AGGCAAGAUGUGCCAUGCUG Cel-mir-73 UGGCAAGAUGUGGCAGUUCAG Cel-mir-74 UGGCAAGAUGUGGCAGUUCAG Cel-mir-75 UUGAAGAGAAUGUGCCACCAGUUUCCCA Cel-mir-76 UUCGUUGUUGAUGAAGCUUCA UGAAGCCGAUUUGUUCA Cel-mir-77 UUCAUCAGGCCAUGUUCA UGAAGCCGUUGAUGAACACCACCAGCUUCA Cel-mir-77 UUCAUCAGGCCAUGUUCA UGAAGCCGGUUGAUGAA Cel-mir-79 AUAAAGCUAGCAGCUUCA UGAAGCCGUUGAUGAA Cel-mir-79 AUAAAGCUAGGAUGUUGCA UGAAGCAGAACAACCAGGCCUCCA Cel-mir-79 AUAAAGCUAGGUUUGAACCAAAGCU AGCACAAACAACCAGGCCUCCA Cel-mir-80 UGAGAUCAUGAACGCGCUUGA Cel-mir-81 UGAGAUCAUGAACGCGCGUGCA Cel-mir-82 UGAGAUCAUGACCAGGCCUCCA Cel-mir-83 UGAGAUCAUGAGCGCGCGCAAAGCU Cel-mir-83 UGAGAUCAUGAAGCCG Cel-mir-84 UGAAGCCAUAAGCCCCCCCAAAGCU Cel-mir-85 UACAAAGUAUUGAAAGCCG Cel-mir-86 UAAGGCACAAAGUUGGAAAGCCCCCCA-mir-86 UAAGGCACAAAGUUCGAAAGCCC Cel-mir-87 UACAAAGUAUUGAAAAGCCG Cel-mir-88 UGAGGAUCAUGGUAAAGCCAGU Cel-mir-89 UGAGAUCAUGAAAGCCAGU Cel-mir-86 UAAAGGAUCAUGGUAAAGCCAGU Cel-mir-87 UGAGAUCAUCAGUAAUAAUUCGAAACCAUAUAACAUCACCUCA Cel-mir-88 UACAAAGUAUUGCACACGGCGUGCAACCUACCCCACGU Cel-mir-89 UGAGAUCAUCAGGUGGUCCACGCGCGCGCCCACGCCCACGU Cel-mir-29 UGAUAUGUUGUAAAAGUCGU Cel-mir-29 AUAGCACCGGGUGAAUCCCCC Cel-mir-229 AUAGCACCGGGUGAAUCCCACGCGGGCCAUUCACCGGGGCCAUUCACCUAACCAUAUAACCAGUGCUCACCCCCCCC			
Cel-mir-72			
Cel-miR-73 UGGCAAGAUGUAGGCAGUUCAG CUGAACUGCUACAUCUUGCCA Cel-miR-75 UUAAAGCUACCAACCGGCUUCA UGUAGACUGCCAUUUCUUGCCA UGUAGACUGCCAUUUCUUGCCA UUAAAGCUACCAACCGGCUUCA UGUAGACUGCCAUUUCUUGCCA UGAAGCGGUUGAUAGAGCCAACCGAA UCAAGCGUUCAACCAACCAA UGUAAGCUUCAACAACCAA CEl-miR-76 UUCAUUGUUGAGAGCCUUGA UCAAGCGUUCAUCAACAACCAA CEl-miR-78 UGGAGGCUGGUUGAUGAGAGCCUUGA AGCACAAACAACAACAACAACCACGGCCUCCA AGCUUCABCUGUUAU GUGAGACCAAACCAACGACCUCCAACCEl-miR-79 AUAAAGCUAGAUUCUGAAC GUUCAGAAACCAACGACCUCCAACCEl-miR-80 UGAGAUCAUUAGAUUCUGAAC GUUCAGAAUCAUGUCGAAAGCU AGCUUUCAACUAACUACCCCEl-miR-81 UGAGAUCAUUAGUUGAAAGCCAGU ACCUUUCAACUAACUACCCCCI-miR-82 UGAGAUCAUUAGUUGAAAGCCAGU ACUAGCUUUCACGAUGUCCAACCCI-miR-83 UAGCACCAUAUAAAUUCAGUAAU UUACCGAUGUCCACACCCI-miR-83 UAAGCACCAUAUAAAAUUCAGUAAU UUACUGAAUUUAACGAUGUCCAACCCI-miR-85 UACAAAGUAUUCAGAAUCAU ACUAGCUUUCACGAUGAUCCCACCI-miR-85 UACAAAGUAUUCAGAAGCAU ACUAGCUUUCAACAUACUUUGUA ACUAGUUCACGAUGAUCCCCCI-miR-85 UACAAAGUAUUCAGAAGCAU ACUAGUUUCAAAUACUUUGUA ACUI-miR-87 GUGAGCAAAGUUUCAGAUGUCCCACGU ACCGCCUUUCAAACUAUCCCCCCCI-miR-87 GUGAGCAAAGUUUCAGGUUGC GCACACCCCUAAACCUUGCCCACGU ACCGCCUUUCAAACAACAUAUCCCCI-miR-87 GUGAGCAAGGUUUCAGGUUGC GCACACCCCGAACCUUCACCCCCCGCCCUAACCUUCACCCGCGUGCCUUA AAGGCAUUCACACGCGUGCCUUA CEl-miR-230 UUAUAGUUGUUGAAAUCCCCGCGGGCAUUCAAACAACAUAUCCCCI-miR-228 AAUGGCACGGUGAAUCCCGGGGGCAUUCACACGGCGCUUACCCCCCGGCCUUAACCGGUGCCUUACCCGCGUGCCUUAACCGGGUGCCUUAACACCGGCGCUUAACCGGGCGCUUAACCGGCGCCUCACCCI-miR-231 UAAGCUCGUAACCGGGGGAACCCGGGGGCACCACGGAGCCICACACCCCCCCGGCCCUAACCCCCCCGGCCCUAACCCCCCCGGCCCUAACCCCCCCGGCCCUAACCCCCCCGGCCCCAACCUUCACCGGCGGAAACCCCCCCC			CGUUCACUACCCAUGUCUUUCA
Ce1 - miR - 74 UGGCAAGAAAUGGCAGUCUACA UGUAAGCUGCCAUUUCUUGCCA Ce1 - miR - 75 UUAAAGCUACCAACCGGCUUCA UGAAGCCGGUUGGUACA Ce1 - miR - 76 UUCAUUGUUGUUGUGCA UGAAGCCGGUUGGCACAACAACAACACCAACAACACCGACCUCA Ce1 - miR - 77 UUCAUCAGGCCAUAGCUGUCCA UGGACACAACAACCAGCCUCCA Ce1 - miR - 79 AUAAAGCUAGUUUUUGUCU AGCCUAUGGCCUCCA Ce1 - miR - 81 UGAGAUCAUUGAAAGCCAG GUUCAGAACCAACAACAACCAGCCUCCA Ce1 - miR - 81 UGAGAUCAUCGUGAAAGCCAGU ACUAGCUUUCACGAUGUUCCA Ce1 - miR - 82 UGAGAUCAUCGUGAAAGCCAGU ACUAGCUUUCACGAUGAUCUCA Ce1 - miR - 84 UGAGGUAGUAGUAGUAGUAGU ACUAGCUUUCACGAUGAUCUCA Ce1 - miR - 85 UACAAGGUAUUCAGAGGUAGU ACGACUUUUCACAGUCAC Ce1 - miR - 86 UAAGUGAAGCAGU ACGACCUUCAAUACUUCACUCA Ce1 - miR - 87 GUGAGCAAAGUUUCAGAUGCU ACGACCUUCAAUACUUCACCC Ce1 - miR - 90 UGAUAUGUUGUUUGAAUACCCC GGGGCAUUCAACCGCCGUGAAUCACCCC Ce1 - miR - 228 AAUGGCACUGCAGAAUCACCC GGGGCAUUCAACCACACACACACACACACACACACACACA			CAGCUAUGCCAACAUCUUGCCU
Cel-miR-75 Cel-miR-75 Cel-miR-76 Cel-miR-77 UUCAUCAGGCCAUAGCUGGUUCA Cel-miR-78 UUGAGGCCUGGUUGUUGUUCA Cel-miR-78 UUGAGGCCUGGUUGUUUGUGCU Cel-miR-79 AUAAAGCUAGCCAUAGCUGCCA Cel-miR-79 AUAAAGCUAGCCAUAGCUGCCA Cel-miR-79 AUAAAGCUAGCCAUAGCUGCCA Cel-miR-79 AUAAAGCUAGCCAUAGCUGCCA Cel-miR-80 UGAGACCAGAAACAACCAGGCCUCCA Cel-miR-81 UGAGAUCAUGUGAAAGCUAG Cel-miR-82 UGAGAUCAUGGUAAAGCUAGU Cel-miR-82 UGAGAUCAUCGAAAGCUAGU Cel-miR-84 UGAGAUCAUCGUAAAGCUAGU Cel-miR-85 UACCAAAAAAUAAUAGUUGAAAGCCAGU Cel-miR-85 UACCAAAAAAUAAUAGUCGAAAGCUAGU Cel-miR-85 UACAAAGUAUGUGAAAGCCAGU Cel-miR-85 UACAAAGUAUUGUGAAAGCCAGU Cel-miR-86 UGAGGUAGUAAUAGUUGAAAGCCAGU Cel-miR-87 GUGAGCCAUAUAAAAUCCAGAUGAUUCCA Cel-miR-87 GUGAGCAAAAAGUAUUGUAAAUAUUGUA Cel-miR-87 GUGAGCAAAGUAUUCCAAGU Cel-miR-87 GUGAGCAAAGUAUUCCAAGU Cel-miR-90 UGAUAUGUUGUAAAGUCCCC GGGCAUUCAAACAACAUAUCA Cel-miR-228 AAUGGCACGCGGUGAAUCCCC Cel-miR-228 AAUGGCACGCGGUGAAUCCCC Cel-miR-228 AAUGGCACGCGGUGAAUCCAC Cel-miR-228 AAUGGCACGCGGUGAAUCCCC Cel-miR-230 GUAUUAGUUGUUCUUCCAC Cel-miR-231 UAAGCUCGUGAACACAGGAG Cel-miR-232 UAAAUGCAUUUCCAACAGGAG Cel-miR-233 UUGAGCAUGAGUAUCUUCC Cel-miR-233 UUGAGCAAUGAUCACACAGGAG Cel-miR-234 UUAUUGCUGAGAACACAUAAUCA Cel-miR-235 UAAAUGCAUCUUCCCCGGCUGA Cel-miR-236 UAAAUGCAUCUUCCCCGGCUGA Cel-miR-237 UUAAGCACGUGUUCCACAGGAG Cel-miR-238 UUUGACAACACACAUAAUCAC Cel-miR-239 UUAAACUGUCCCCAAACACAACACAAUAAUCAC Cel-miR-239 UUAAACUGUCCCCCAGGAG CCCCGCACAUGCGCAAUCACACAGGAG Cel-miR-239 UUAAACUGUCCCCCAGGCCUUU AAAGGGUAUCACCGCGUUAACCUUCCACACCCCCUUAACCACAGCAACAACAACAACACAAUAACCCICCAGGAC Cel-miR-238 UUUGACAACACAUAACCAUAACACCACAACACACAACACAACACAACA			CUGAACUGCCUACAUCUUGCCA
Ce1-miR-75 UUAAAGCUACAACCGGCUUCA UGAAGCCGUUGAUGA Ce1-miR-76 UUCGUUGUUGAUGAAGACCUUGA UCAAGGCUUCAUCACAACAACACACACACACACACACACA			UGUAGACUGCCAUUUCUUGCCA
Cel - miR - 77 UUCAUCAGGCCAUAGCUGUCCA UGGACGCCUGGUUGUUGUGCU AGCACAACACAGGCCUGAUAGCUCCA Cel - miR - 78 UGGAGGCCUGGUUGUUGUGUC AGCACAACACAGGCCUCCA Cel - miR - 79 AUAAAGCUAGGUUACCAAAGCU AGCUUUGGUAACCUAGUUUAU Cel - miR - 80 UGAGAUCAUUGGAAAGCUAGU GUUCAGAAUCAUAGUAUCCA Cel - miR - 81 UGAGAUCAUCGUGAAAGCUAGU ACUAGCUUUCACGAUGAUCCA Cel - miR - 82 UGAGAUCAUCGUGAAAGCCAGU ACUAGCUUUCACGAUGAUCUCA Cel - miR - 83 UAGCACCAUAUAAAUUCAGUAA UUCACGAAUUAUUAUAUGUGUCCA Cel - miR - 84 UGAGAUCAUUCUAAUAUUCAGUAA UUCACGAAUAUUAUAUAUGUGUCUA Cel - miR - 85 UAACAAGUUUUCAAGUUGU ACGACCUUUACACGAUAUACUUUACCCACGU Cel - miR - 86 UAAGUGAAAGUUUCAGGUGC GCACACCUGAAACUUUACCCCCACGU Cel - miR - 87 GUGAGCAAAGUUUCAGGUGCCAC GCACACCUGAAACCUUUAACCGCCCCCCCCCCCCCCCCC		UUAAAGCUACCAACCGGCUUCA	
Cel-mir-78 Cel-mir-78 Cel-mir-79 AUAAAGCUAGGUUGUUGACAAAGGU Cel-mir-297 AGCUUUGACAUGAGUUGACAAAGGU Cel-mir-80 UGAGAUCAUUGAGAAGGUUAGUUGAACGGGGGGGGGGGG		UUCGUUGUUGAUGAAGCCUUGA	UCAAGGCUUCAUCAACAACGAA
Cel-mix-78 UGGAGGCCUGGUIGUUUGUGUCU AGCACAACACCAGGCCUCCA Cel-mix-27 AUAAAGCUAGGUUACAAAGCU AGCUUUGAACCUAGCUUUAU Cel-mix-80 UGAGAUCAUUGUUGAAGC GUUCCAGAAUCAUUAUUGAACC Cel-mix-81 UGAGAUCAUUGGUGAAAGCUAGU ACUUUCACCAUAAUAAUUCACUCA Cel-mix-82 UGAGAUCAUCGUGAAAGCCAGU ACUUGCUUUCACGAUGAUCUCA Cel-mix-83 UAGCACCAUAUAAAAUUCAGUAA UUACUGAAUUUAAUAUUGUA Cel-mix-85 UACAAAGUAUUCAAAUUUGUAA UUACAAAAUUUCAAUACUACCUCA Cel-mix-86 UAAGUGAUGUUUGCCACAGU ACUGUGGAAAGCUUUCCACUCA Cel-mix-87 GUGAGCAAAGGUUUCACCAGU ACUGUGAAAGCUUUCACUUA Cel-mix-87 GUGAGCAAAGGUUUCACCAGU ACUGUUCAAAUACUUCUUCA Cel-mix-90 UGAUAUGUUUGAAUGCCCC GGGGCAUUCAAAACAUAUUCCCCC Cel-mix-228 AAUGGCACUGCAUGAAUUCCCCC GUGGCAUUCAACAGGUUCACCCC Cel-mix-229 AAUGGCACUGAUGAAUCCUUACCGCGGUGCCUUA GUGCCAUUACCCGCGUGCCUUA Cel-mix-231 UAAGUCGUACACAGGCG CUCCUGGUCGCACAACUAAUAC Cel-mix-232 UAAAUGCUUCACAGGAGC CUCCUGGUCGCACAACUAAUAC Cel-mix-233 UUAGCACUCCCCGCCCUGA CCCCCAGGUUAGCAUUCCCCAACCAUACCACACACACACA			
Cel-mir-227 AGCUUUGAACAAAGCU Cel-mir-80 UGAGAUCAUGAUGAAGCU Cel-mir-80 UGAGAUCAUGAUGAAAGCU Cel-mir-81 UGAGAUCAUGAAAGCUAGUUUGAAACCUAGUAUGAAAGCU Cel-mir-82 UGAGAUCAUGUGAAAGCUAGU Cel-mir-83 UAGCACCAUAUAAUUCGAAAGCUAGU Cel-mir-84 UGAGGAUCAUCGUGAAAGCUAGU Cel-mir-85 UACAAAGUAUUUGAAAUAUUGUA Cel-mir-85 UACAAAGUAUUUGAAAGUAGU Cel-mir-86 UAAGUGAUGAUGAAUAUUGUA Cel-mir-87 GUGAGCAAGUUUGCCACAGU Cel-mir-87 GUGAGCAAGUUUCACGGUGAAGCCAGU Cel-mir-90 UGAUUGUUUGCCACAGU Cel-mir-124 UAAGGCACGGGGGAAGCCAGU Cel-mir-228 AAUGGCACUGAAAGUUUUACCGAUGAUCACUAC Cel-mir-229 AAUGACACAGGAGCAGGCGGGGAAAAGUUUACCGCACAGU Cel-mir-221 UAAGCCACGGGGAGAGCCAGGGCCAGGAGCACACGAGUAACACAUAUCACCUCA Cel-mir-231 UAAGCUCGGAACACGGGGCCAGGGCCUUAACCGCAGUUCACCGAGCAACGUUACACGAGCAUAACACAUAUCACCICA Cel-mir-232 UAAAGCACGGGAGAGCCGGGGCACACCUGAAACUUUCCCCGACCACCUGAAACUUUCCCCGACCACCUGAAACUUUCCCCGACCACCUGAAACUUUCCCCGACACCUGAAACUUUCCCCGACACCUGAAACUUUCCCCGACACCUGAAACCUUACACACAGACCACCGCGGCCCUUA Cel-mir-228 AAUGGCACUGCACAGGAG CUCCUGGAGUACACACAUAUCACCGCCGCGCCUUA Cel-mir-231 UAAGCCACGCAGGAG CUCCUGGGCGCACAACCAAUACCCCIC-mir-232 UAAAUGCACCGCAUGACCGGGGCCUUA Cel-mir-233 UUAAGCAACAGGCAG CUCCCUGUUGAUCACGACCUUA Cel-mir-234 UUAUUGCUCGAGCAAUGCCCUUU AAAGGGUAUUCCCCAGCCCUGA Cel-mir-235 UAAUACCUCCCCGGCCCUA Cel-mir-236 UAAUACUCCCCGGCCCUGA Cel-mir-237 UCCCUGAGAAUCCCCCGCGCCGGGGAGAGUGCAAUA Cel-mir-238 UUUGUACCACAAAAGUACCC Cel-mir-239 UUUGUACCACAAAAGUACCU Cel-mir-239 UUUGUACCACAAAAGUACCU Cel-mir-241 UGAGGUAGGCACACGC GCGGGAGAGUGCAAAA Cel-mir-242 UUCCCCGGGCCGAAAACCACGC GCGCGAGAAAUACCCUAACAAAACCCICAAAACCAAAAGUACCU Cel-mir-244 UCCUUGGCCCCCGCGCGGAAAACCCCCACACCAAACCAA			AGCACAAACAACCAGGCCUCCA
Cel-miR-227 Cel-miR-80 UGAGAUCAUUGAACAGCCG Cel-miR-81 UGAGAUCAUUGAAGCCGG Cel-miR-81 UGAGAUCAUCGUGAAAGCCAGU Cel-miR-82 UGAGAUCAUCGUGAAAGCCAGU Cel-miR-83 UGAGAUCAUCGUGAAAGCCAGU Cel-miR-84 UGAGAUCAUCGUGAAAGCCAGU Cel-miR-85 UACCACAUAUAAAUUCAGUAA Cel-miR-85 UACAAAGUAUUUGCAACAGU Cel-miR-86 Cel-miR-87 GUGAGCACAUUUGAACAGU Cel-miR-87 GUGAGCAGUUUCACAGUUAAAUUCUAA Cel-miR-88 UACAAAGUAUUUGCAACGU Cel-miR-87 GUGAGCAAAGUUUCGAACGU Cel-miR-87 GUGAGCAAAGUUUCGACAGU Cel-miR-90 UGAUAUGUUGUUUGCACAGU Cel-miR-124 UAAGGCACCGGGGGAAUGCCCC GGGGCAUUCAAACAACAUAUCA Cel-miR-228 AAUGGCACUGAUGAAUUCACGCGGGGCCCUUA Cel-miR-230 Cel-miR-231 UAAGCUCGUGAUCACAGGGGG Cel-miR-232 UAAAUGCACCAGGGGGGGGGGGCCUUA Cel-miR-233 Cel-miR-234 UUGAGAUCACUUAACCGCGGGGCCCUGA Cel-miR-235 UAUUGCCCGCACCUGAAUGCAGU Cel-miR-236 Cel-miR-237 Cel-miR-237 Cel-miR-238 Cel-miR-238 UUUGUACACUCCCCGGGCGUGAUGCCAU Cel-miR-239 Cel-miR-239 UUUGUACACAUGAU Cel-miR-239 Cel-miR-239 Cel-miR-239 Cel-miR-239 Cel-miR-239 Cel-miR-240 Cel-miR-240 Cel-miR-241 UGAGGUAGGGGGGGGGGACACUUCGGACACGCGCAGGUUCACACCGCGCAGCACCUGAACCCACACCUGAACCCACACCCGAACCUCACACACCACCCGCACCCCCACACCCCGACACCCCGACACCCCGACACCCCCACACCCCCC			AGCUUUGGUAACCIJAGCIIIIJAII
Cel-mir-80 Cel-mir-81 UGAGAUCAUUAGUUGAAAGCUAGU Cel-mir-82 UGAGAUCAUCGUGAAAGCUAGU Cel-mir-83 UAGCACCAUAUAAAUUCAGUAA Cel-mir-83 UAGCACCAUAUAAAUUCAGUAA Cel-mir-85 UACAAAGUAUUGAAAGCCAGU Cel-mir-85 UACAAAGUAUUGAAAGCCAGU Cel-mir-86 Cel-mir-87 Cel-mir-87 Cel-mir-87 UACAAAGUAUUGAAAAGUCGU Cel-mir-87 Cel-mir-87 Cel-mir-88 UAAGGACAUUUGCACAGGU Cel-mir-87 Cel-mir-89 UACAAAGUUUUGAAAAGUCGU Cel-mir-90 UGAUAUGUUUUGAGGUGGG Cel-mir-124 UAAGGCACCGGGGGAAAGCAUUCACUUA Cel-mir-124 Cel-mir-229 AAUGACACUGGUUUUCAGGUGGC Cel-mir-230 Cel-mir-231 Cel-mir-232 Cel-mir-232 UAAAUGCAUCUUAACUGGGGG Cel-mir-233 UUGAGCAAUCUUAACUGGGGG Cel-mir-234 Cel-mir-235 Cel-mir-235 UAUUGCCGAGAAUACCUUU Cel-mir-236 Cel-mir-237 Cel-mir-237 Cel-mir-238 Cel-mir-238 Cel-mir-239 UUUGUACCGAGAAUCCCCGGGGGAAGCAUUAACCCGACCUUAACACACAUAAC Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-240 Cel-mir-240 Cel-mir-241 UGAGGAAGAGUCUCGACAAGCACCCC Cel-mir-244 UCUUUGGUGAGACAAGACC Cel-mir-247 Cel-mir-247 UGACAGAGCUUUUCCCCGAGACCC Cel-mir-247 UACAGCCCCCAAAUCUUCAACACACCCCC CACACUUUUGACCACACCUUCAA Cel-mir-244 UCUUUGGUGACCACAAGCC Cel-mir-244 UCUUUGGUGACCCCCAAGACCUUCCAAACCUUUCAACACACCAAACAUAAAACAUAAAACAUAAAACAUAACAAAAACAUAAAACAUAACAAAAACAUAAACAAAAACAUAACAAAAACAUAACAAAAACAUAACAAAAACAUAAACACAAAAAA			
Cel-mir-81 UGAGAUCAUCGUGAAAGCCAGU ACUAGCUUUCACGAUGAUCUCA Cel-mir-82 UGAGAUCAUCGUGAAAGCCAGU ACUGGCUUUCACGAUGAUCUCA Cel-mir-83 UAGCACCAUAUAAAUUCAGUAA UUACUGAAUUUUAUAUGGGUCUA Cel-mir-85 UACAAAGUAUUUGAAAAGUCGU ACGACUUUUCAAAUACUUACCUCA Cel-mir-87 GUGAGCAAAGUUUCAGGUGG GCACACCUGAAACUUUCACUUA Cel-mir-87 GUGAGCAAAGUUUCAGGUGG GCACACCUGAAACUUUCACUUA Cel-mir-890 UGAUAUGUUGUUUGAAGCCCC GGGGCAUUCAACCGCGUGCCUUA Cel-mir-124 UAAGGACCGGGUGAAUUCACG GUGGCAUUCACCGCGUGCCUUA Cel-mir-228 AAUGGCACUGCAUGAAUUCACG GUGGCAUUCACCGCGUGCCUUA Cel-mir-229 AAUGACACUGGUUAUCCUUUUCC GGAAAAGAUAACCAGUGCAUU Cel-mir-231 UAAGCUCUGACAACAGGCAG CUCCUGGUCGACAACUAAUAC Cel-mir-233 UGAGCAAUGCGCAUGUGCGGG CUGCCUGUUGAUCAACAGGAGC Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU AAAGGGUAUUCUCGAGAAUUCUCGAGCAGUA Cel-mir-235 UAAUACCUGUCCCCGGCCUGA UCAGGCCGGGGGAGAGUCCAAUA Cel-mir-236 UAAUACUGUCAGGUAAUACCUCAA UCAGGCCGGGGGAGAAUACAAA Cel-mir-239a UUUGUACUACACAUAGGUACCG CCGGCAAGAUUCGAGACUUCAGACAAAAGCC <td></td> <td>UGAGAUCAUUAGUUGAAAGCCG</td> <td></td>		UGAGAUCAUUAGUUGAAAGCCG	
Cel-mir-82 UGAGAUCAUCGUGAAAGCCAGU Cel-mir-83 UAGCACCAUAUAAAUUCAGUAA UUACAUGAUUUUAUAUGUGUCUCA Cel-mir-85 UACAAAGUAUUUGAAAAGUCGU Cel-mir-86 UAAGGUAGUUUGCCACAGU Cel-mir-87 GUGAGCAAAGUUUUCACAGUGA Cel-mir-87 GUGAGCAAAGUUUUCACAGUGC Cel-mir-90 UGAUUUUUAAAUCCUCA Cel-mir-90 UGAUUUUUAAAUCCUCA Cel-mir-124 UAAGGCAGGUGUUUACCACGUGC Cel-mir-228 AAUGGCACGGGUGAAUCCCC Cel-mir-230 GUAUUAGUUUGAAUCCACGGGCGUGAAUCCACUUA Cel-mir-231 UAAGCCCUGAUCACAGGAG Cel-mir-232 UAAAUGCAUCUUAACGGGGCGCGUGAUCACAGUCCC Cel-mir-233 UUGAGCAAGUUUCACGGGGGGCCACCAGGAG Cel-mir-234 UUAUUGCCGCGCGUGAUCACAGGGCCC Cel-mir-235 Cel-mir-235 UAUUGCACCUCCCGGCGUGAUCACAGGCCC Cel-mir-236 Cel-mir-237 UCCCUGAGAACUUUACCCUUU Cel-mir-238 Cel-mir-239 UUUGUACUCCCCCGCCUQA Cel-mir-239 UUUGUACUCACGAUGCCAUC Cel-mir-239 UUUGUACUCACGAGAGCC Cel-mir-240 Cel-mir-241 Cel-mir-242 Cel-mir-245 Cel-mir-245 Cel-mir-245 AUUGCCCCCCAAAUCUCCCCGCGCGCACAACUAAGACACACAC		UGAGAUCAUCGUGAAAGCUAGU	
Cel-miR-83 UGAGCACCAUAUAAAUUCAGUAA UUUACUGAAUUUAUAUAGGUGCUA Cel-miR-84 UGAGGUAGUAUGUAAUAUUGUA Cel-miR-85 UACAAAGUAUUAAAAGUCGU ACGACUUUUCAAAUACUUCAAUACCUCAA Cel-miR-86 UAAGGCAAAGUUUCAGGUGUGC Cel-miR-87 GUGAGCAAAGUUUCAGGUGUGC Cel-miR-90 UGAUAUGUUGGAAUGCCCC GGGGCAUUCAACACAUAUCA Cel-miR-124 UAAGGCACGGGUGAAUGCCAC Cel-miR-124 UAAGGCACGGGUGAAUGCCAC Cel-miR-228 AAUGGCACUGGAUGAAUUCAG Cel-miR-230 GUAUUAGUUGUAGCACGGGGGGCAUUCACCGCGUGCCUUA Cel-miR-231 UAAGCUCGGGGCACCAGGAG Cel-miR-232 UAAAUGCAUCACGGGGGGCACCAGGAG Cel-miR-233 UUGAGCAAUGACUUAACUGCGGGG Cel-miR-234 UUAUUGCCGGGGGGCCAGGAG Cel-miR-235 UAUAGCACCUUU AAAGGGCACUCAAUGAAUUCA Cel-miR-236 UAAUACCUCCCGGCCUGA Cel-miR-237 UCCCUGAGAAUCCCUUU AAAGGGUAUUCACGCGGGGGAAUUAACCCCACCAGCAGACCAACUAAUAA Cel-miR-237 UCCCUGAGAAUUCUCAGGGGG Cel-miR-238 UUUGUACCACAGGGAG CCGGGGGAGAGGAAUAACCCUUU Cel-miR-239 UUUGUACCACAGGGAG CCGGCAGUUAACCGAGCAUUGCCAA Cel-miR-239 UUUGUACCCAGGGAAUACCCUUU AAAGGGUAUUCUCGAGCAAUAA Cel-miR-239 UUUGUACUACGGGUGCCAUUCAG Cel-miR-240 UACAGGAAUCCGAUGCCAUUCAG Cel-miR-241 UGAGGUAGUACACAAAAGUACCU Cel-miR-242 UUGCGUAGGCCAUUCGGA Cel-miR-244 UCUUGGUCGGGCAGAAUAA Cel-miR-245 CGGUACCUUGGUCCGAGCAGUAU Cel-miR-245 CGGUACGCCCCCCGACCUACCCCGACCUACCCCCACCUACCCCAACUACCUCAACAACACCCUACCUCA Cel-miR-245 UUCACCACAAAGUAGCU Cel-miR-245 UUACACACAAAAGUACCU Cel-miR-246 UUACAGCAUCGGGAGAAUCACCGAACCCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCUACCCCCACCCACCA	Cel-miR-82	UGAGAUCAUCGUGAAAGCCAGU	
Cel-miR-84 UGAGGUAGUAGUAAUAUUGUA Cel-miR-85 UACAAAGUAUUUGAAAAGUCGU Cel-miR-86 UACAAGUAUUUGAAAAGUCGU Cel-miR-87 GUGAGCAAAGUUUUCAGGUGGC Cel-miR-90 UGAUAUGUUGUAAGUCCC Cel-miR-124 UAAGGCACGGGUGAAUGCCCC Cel-miR-228 AAUGGCACCUGAAAGUUUCAGGUGCCC Cel-miR-229 AAUGACACUGAUUCACGCCC Cel-miR-229 Cel-miR-231 Cel-miR-231 Cel-miR-232 UAAAUGCUUUAACGGCGGUGAAUGCCCC Cel-miR-233 Cel-miR-233 Cel-miR-234 Cel-miR-235 Cel-miR-235 Cel-miR-236 Cel-miR-237 Cel-miR-237 Cel-miR-238 Cel-miR-239 Cel-miR-239 Cel-miR-239 Cel-miR-239 Cel-miR-240 Cel-miR-241 Cel-miR-242 Cel-miR-242 Cel-miR-242 Cel-miR-244 Cel-miR-245 Cel-miR-245 Cel-miR-245 Cel-miR-245 Cel-miR-246 Cel-miR-247 Cel-miR-247 Cel-miR-248 Cel-mi	Cel-miR-83	UAGCACCAUAUAAAUUCAGUAA	
Cel-miR-85 UACAAAGUAUUUGAAAAGUCGU ACGACUUUUCAAAUACUUUGUA Cel-miR-86 UAAGUGAUGCUUUGCCACAGU ACUGUGGCAAAGCAUUCACUUA Cel-miR-90 UGAGCAAAGUUUUGAAAUGCCCC GeGGGCAUUCAAACAUUUGCCAC Cel-miR-124 UAAGGCACGCGGUGAAUGCCAC Cel-miR-124 UAAGGCACGCGGUGAAUUCACG Cel-miR-229 AAUGACACUGAAAUUCACG Cel-miR-230 GUAUUAGUUGUUCGCACCGGAAAACAUAUACA Cel-miR-231 UAAGCUCGUGAUCAACAGGAG Cel-miR-232 UAAAUGAUCUUUUCC Cel-miR-233 UUAAGCACGGAAUACCAGGAG Cel-miR-234 UUAUUGCCACGGAAAUACCCACAGUGCAUU Cel-miR-235 UAAUACGAAUCUUAACCGGCGCGCGCACAACUAAUAC Cel-miR-236 UAAUACGAGCACUUA Cel-miR-237 UCCCUGAGAAUACCCUUU Cel-miR-238 UUUGUACCCCGGCCUGA Cel-miR-239 UUUGUACUCCCCAGGCCUGA Cel-miR-239 UUUGUACUCCAACAGGC Cel-miR-239 UUUGUACUACACAUGCCAUUCAG Cel-miR-240 UACUGGCCCCAAUCGAAACAAAAGUACCAAAAG Cel-miR-241 UGAGGUAGGCCCCAAACCAAAAGUACCAAAACUAAAACCAAAAGUACCCUCACCCAAGUACCCUCACCCAAGCACCUAUCACCCCAAGUACCCCAACCAA	Cel-miR-84		
Cel-miR-86 UAAGUGAAUGCUUUGCACAGU Cel-miR-87 GUGAGCAAAGUUUCAGUUGC Cel-miR-90 UGAUAUGUUGUUUGAAUGCCC Cel-miR-124 UAAGGCACGGGUGAAUGCCCC GGGGCAUUCAAACAACAUAUCA Cel-miR-124 UAAGGCACGGGUGAAUCCAC Cel-miR-228 AAUGGCACUGAUAUUCACG Cel-miR-229 AAUGACACUGGUUAAUUCACG Cel-miR-231 UAAGCUCGUGAACAUUUCCC GGAAAGAAUAACCAGUGCAUU Cel-miR-231 UAAGCUCGUGAACAGGCAG Cel-miR-232 UAAAUGCACUUUAACGGGGG CCCCGCACAUGAGUUCACGACAGAG Cel-miR-233 UUGAGCAAUGCGCAUGGGG CCCCGCACAUGCGGAUUAACAGGCAU Cel-miR-234 UUAUUGCCCCGGCCUGA Cel-miR-235 UAUUGCACUCCCCGGCCUGA Cel-miR-236 UAAUACUGUCCCCGGCCUGA Cel-miR-237 Cel-miR-238 UUUGUACUCCCCGGCCUGA Cel-miR-238 UUUGUACUCCCAGAAUACC Cel-miR-239 Cel-miR-239 UUUGUACUACACAUAGGUAC Cel-miR-240 Cel-miR-241 Cel-miR-241 Cel-miR-242 Cel-miR-242 Cel-miR-244 CCel-miR-245 AUUGGCCCCCAAAUCUCCCC CCCAAUCUCCCCCCAGCUU AGAGAUUUUGGGGCCAUUCCCCCCCCCAAUCUCGC Cel-miR-244 CCel-miR-245 CCel-miR-245 AUUGGUCCCCCAAGUACGC CCGCACAUUGGGGCCAUUUGCCCAACGC CCGCACAUGCGCAUUGCCCAAACGC CCGCACAUGCGCAUUCCCAACACGC CCGCACAUGCGCAUUCCCAACACGC CCGCACAUGCGCAUUCCCAACACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCGCAUUCCGAACACGC CCGCACAUGCGCAUUCCCAACGC CCGCACAUGCCCAAUUCCGAG CCGCGCACAUGCCCAAUUCCCAACGC CCGCACAUGCCCAAUUCCCAACGC CCGCACAUGCCCAAAUCUCCGAG CCGCGCACAUGCCCAAAUCUCCGAG CCGCGCACAUCCCCAAAUCUCCAACGC CCGCACAUGCCCACACACAAAAGUACCC CCGCACAUGCCCACACACACACACAAAAGUACCC CCGCACAUGCCCACACACACACACACACACACACACACAC	Cel-miR-85		
Cel-miR-87 Cel-miR-90 UGAUAUGUUUGAGUUGC Cel-miR-124 UAAGGCACGCGGUGAAUGCCAC Cel-miR-124 UAAGGCACGCGGUGAAUGCCAC Cel-miR-124 UAAGGCACGCGGUGAAUUCACG Cel-miR-228 AAUGGCACUGCAUGAAUUCACG Cel-miR-229 AAUGACACUGGUUAUCUUUUCC Cel-miR-230 Cel-miR-231 UAAGCUCGUGACCAGGAG Cel-miR-232 UUAAGCACUGGUAUCACGGGUGCCUUA Cel-miR-233 UUGAGCAAUGCGAGGCAG Cel-miR-234 UUAUUGCUCGAGAAUACCCUUU Cel-miR-235 UAUUGACCAUGCGUUA Cel-miR-236 Cel-miR-236 Cel-miR-237 UCCCUGAGAAUCCUCCCCGGCCUGA Cel-miR-238 UUUGUACUCCGAUGCAUUCA Cel-miR-239 UUGUACUACACAAAGGCAG Cel-miR-239 Cel-miR-239 Cel-miR-240 Cel-miR-240 Cel-miR-241 Cel-miR-241 Cel-miR-242 Cel-miR-243 Cel-miR-243 Cel-miR-244 Cel-miR-244 Cel-miR-245 Cel-miR-245 Cel-miR-245 Cel-miR-246 Cel-miR-247 Cel-miR-247 Cel-miR-247 Cel-miR-248 Cel-miR-248 Cel-miR-248 Cel-miR-248 Cel-miR-248 Cel-miR-249 UCACAGGACUUUGGUCCUCCCGGGAGCU Cel-miR-249 Cel-miR-248 Cel-miR-249 UCACAGGACUUUCUCCUCCAAAAGUACU Cel-miR-248 Cel-miR-248 Cel-miR-248 Cel-miR-249 UCACAGGACUUUUGGUCCUCCCAAAAGGCU Cel-miR-248 Cel-miR-248 Cel-miR-248 Cel-miR-249 UCACAGGACUUUUGGUCCUCCCAAAAGGUCC Cel-miR-249 Cel-miR-248 Cel-miR-249 UCACAGGACUUUUGCUCC CGGGCAGUUCAGCACAAAAGCUCC CGCACAUUUCGCACCUACAAAAGACACCCUACCUCAAACACAAAAACAACAACAACAACAACA	Cel-miR-86		
Cel-miR-90 UGAUAUGUUGUUUGAAUGCCCC Cel-miR-124 UAAGGCACGCGUUGAAUUCACC Cel-miR-228 AAUGGCACUGCAUGAAUUCACC Cel-miR-229 AAUGACACUGGUUAUUUUUCC Cel-miR-230 GUAUUAGUUGUGGACCAGGAG Cel-miR-231 UAAGCUCGUGAUUCACCGAGGAG Cel-miR-233 UUAGGCACUUAACAGGCAG Cel-miR-233 UUAAGCACUGUGUUUAACUGCGGG Cel-miR-233 UUGAGCAUUCACGGGGG CCCCCACAUUAAGAUCACCGAGCUUA Cel-miR-233 UUGAGCAUUCACGGGGG CCCCCACAUGCAGCAUUUAACUGCGGGG CCCCCACAUGCCAGAGC Cel-miR-234 UUAUUGCUCCAGGAAUACCCUUU Cel-miR-235 UAUUGCACUCUCCCCGGCCUGA Cel-miR-236 UAAUACUGUCAGGAAAAGCCCAUUG Cel-miR-237 UCCCUGAGAAUUCUCAGCCAUCAG Cel-miR-238 UUUGUACUCCGAUGCCAUCAG Cel-miR-239a UUUGUACUCCGAUGCCAUCAG Cel-miR-239a UUUGUACUACACAAAAGUACUG Cel-miR-240 UACUGGCCCCCAAAUCUUCGCU Cel-miR-241 UGAGGUAGGUCGAGAAAUCCGAACCCUUC Cel-miR-242 Cel-miR-244 UCUUUGGUCGAGAAAUCUUCGAG Cel-miR-244 UCGCGAGAUUCUCGCCGCCUCCAAGUACCGC CCCCACAUACCCACCUACCCCAGCCACUACCCAGCCACUACCCCAGCCACUACCCCAAACCAAAAGUACCC Cel-miR-244 UCUUUGGUUGACUACACAAAAGUACCC Cel-miR-244 UCUUUGGUUGACCACAAAAGUACCC Cel-miR-244 UCUUUGGUUGACCACAAAAGUACCC Cel-miR-244 UCUUUGGUUGACCACAAAAGUACCC Cel-miR-244 UCUUUGGUUGACCACAAAAGUACCC Cel-miR-244 UCUUUGGUUGACCACAAAAGUGCUC Cel-miR-244 UCUUUGGUUGACCACAAAAGUGCUC Cel-miR-244 UCUUUGGUUGACCACAAAAGUGCUC Cel-miR-244 UCUUUGGUUGACCACAAAAGUGCUC Cel-miR-244 UCUUUGGUUGACCACAAAAGUGCUC Cel-miR-244 UCUUUGGUUGACCACACAAAAGUGGUA Cel-miR-244 UCUUUGGUUGACCAAAACUACCCAAAAAGUGGUA Cel-miR-244 UCUUUGGUUGACCACACAAAAGUGGUA Cel-miR-245 AUUGCCCCCCCCCCCAAAUCUUCUCUCU AGAACACACACAAAGACCCAAACACACAAAGACACAAAAGACACAAAAGACCCAAAACACACAAAAGACCCAAAAACACACAAAAGAC	Cel-miR-87		
Cel-mir-124 UAAGGCACGCGGUGAAUGCCAC Cel-mir-228 AAUGGCACUGCAUGAUGAUUCACG Cel-mir-229 AAUGACACUGGUUAUCUUUUCC Cel-mir-230 GUAUUAGUUGUGGGACCAGGAG Cel-mir-231 UAAGCUCGUGAUCAACAGGCAG Cel-mir-232 UAAAUGCAUUUAACUGCGGUG Cel-mir-233 UUGAGCACUGGAAUACCCUUU Cel-mir-233 UUGAGCAAUGCGCAUGGGGG CCCGCACAUGCGCAUUAACACGGCGG Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU Cel-mir-235 UAUUGCACUCUCCCGGGCCUGA Cel-mir-236 UAAUACUGCGGUAACACGC Cel-mir-237 UCCCUGAGAAUACCCUUU Cel-mir-238 UUUGACUCUCCCGGCCUGA Cel-mir-239 UUUGUACUACACAGGCAG Cel-mir-239 UUUGUACUACACAUGCGCAUUCAG Cel-mir-239 UUUGUACUACACAUAGGUACU Cel-mir-240 UACUGGCCCCAAAUCUUCGC Cel-mir-241 UGAGGUAGGUGCGAAUACCCU Cel-mir-242 UUGCGUAGGCAAUACCCU Cel-mir-244 UCUUUGGUCGGGGGAAAUACC Cel-mir-245 CGGUACGCCAAAUCUUCGAC Cel-mir-244 UCUUUGGUCGGGGGGAAUACC Cel-mir-244 UCUUUGGUUGUUCGAG Cel-mir-244 UCUUUGGUUGUUCGAG Cel-mir-244 UCUUUGGUUGUUCGAGCACAUACCCGACCCACACCCCACCCCACACCCCACCCA	Cel-miR-90		
Cel-mir-228 Cel-mir-229 Cel-mir-230 Cel-mir-230 Cel-mir-231 Cel-mir-231 Cel-mir-231 Cel-mir-232 Cel-mir-232 Cel-mir-233 Cel-mir-233 Cel-mir-233 Cel-mir-234 Cel-mir-235 Cel-mir-235 Cel-mir-236 Cel-mir-236 Cel-mir-237 Cel-mir-237 Cel-mir-238 Cel-mir-238 Cel-mir-238 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-236 Cel-mir-237 Cel-mir-237 Cel-mir-238 Cel-mir-238 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-240 Cel-mir-240 Cel-mir-241 Cel-mir-241 Cel-mir-242 Cel-mir-242 Cel-mir-243 Cel-mir-244 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-244 Cel-mir-245 Cel-mir-244 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-246 Cel-mir-246 Cel-mir-247 Cel-mir-248 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-248 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-246 Cel-mir-246 Cel-mir-247 Cel-mir-248 Cel-mir-248 Cel-mir-249 Cel-mi	Cel-miR-124		
Cel-mir-229 Cel-mir-230 Cel-mir-231 Cel-mir-231 Cel-mir-232 Cel-mir-232 Cel-mir-232 Cel-mir-233 Cel-mir-233 Cel-mir-234 Cel-mir-234 Cel-mir-235 Cel-mir-235 Cel-mir-235 Cel-mir-236 Cel-mir-237 Cel-mir-237 Cel-mir-237 Cel-mir-238 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-237 Cel-mir-238 Cel-mir-239 Cel-mir-238 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-239 Cel-mir-240 Cel-mir-241 Cel-mir-241 Cel-mir-242 Cel-mir-242 Cel-mir-242 Cel-mir-243 Cel-mir-243 Cel-mir-244 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-247 Cel-mir-248 Cel-mir-248 Cel-mir-249 Cel-mir-248 Cel-mir-249 Cel-mi	Cel-miR-228		
Cel-mir-230 Cel-mir-231 UAAGCUCGUGAUCAACAGGCAG Cel-mir-232 UAAAUGCAUCUUAACUGCGGUG Cel-mir-233 UUGAGCAUGUUGAGCAGGCAG Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU Cel-mir-235 Cel-mir-235 UAUUGCAUCUUCCCCGGGCUGA Cel-mir-236 Cel-mir-237 UCCCUGAGAAUUCUCCCCGGGCCUGA Cel-mir-238 UUUGUACUAGGAAUUCUCGAACAGC Cel-mir-239 Cel-mir-239a UUUGUACUACACAUAGGUACUG Cel-mir-239a Cel-mir-239b UUUGUACUACACAUAGGUACUG Cel-mir-240 Cel-mir-241 Cel-mir-242 Cel-mir-243 Cel-mir-243 Cel-mir-243 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-246 Cel-mir-246 Cel-mir-247 Cel-mir-247 Cel-mir-248 Cel-mir-248 Cel-mir-249 UACACGGACUAUUCGGAGACGC CACCGCACAUUGACCUCAACACGC CGCGCACAUUCAGGAAUUCUCGAACAGC CCGCACAUUCAGGAAUUCUCGAACAGC CCGCACAUUCAGGAAUUCUCGAACAGC CCGCACAUUCAGGAAUUCUCGAACAGC CCGCACAUUCCGAAGAGAUUCUCAGAGAAUUCUCAGGGAACAUCUCAGGAAAUCUCCAGAAAAGUACUG CAGUACUUUUGUUAGUACAAAA CAAAAAGGACCUAUUUUGUUAGGAGCCU AGCGAAGAUUUGGGGGCCAGUA CCCL-MIR-244 CCGUACGUACGCCCCAAAUCUUCGAAGACAGC CCCGAAGAAGAGCCUAUCUCGAAGACACAAAAGAACACCAAAAGAACACCAC	Cel-miR-229		
Cel-mir-231 UAAGCUCGUGAUCAACAGGCAG CUGCCUGUUGAUCACGAGCUUA Cel-mir-232 UAAAUGCAUCUUAACUGCGGUG CACCGCAGUUAAGAUGCAUUUA Cel-mir-233 UUGAGCAAUGCGCAUGUGCGGG CCCGCACAUGCGCAUUGCUCAA Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU AAAGGGUAUUCUCGAGCAAUAA Cel-mir-235 UAAUACUGUCCCCGGCCUGA UCAGGCCGGGGAGAGUGCAAUA Cel-mir-236 UAAUACUGUCAGGUAAUGACC GCGUCAUUACCUGACAGUAUUA Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC GCGUCAUUACCUGACAGUAUUA Cel-mir-238 UUUGUACUCCGAUGCAUCAG CUGAAUGGCAUUCAG Cel-mir-239a UUUGUACUACACAUAGGUACUG CAGUACCUAUGUGUAGAAA Cel-mir-239b UUUGUACUACACAAAAGUACUG CAGUACCUAUGUGUAGUACAAA Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU AGCAGACUUUUGUGUAGGACAAA Cel-mir-241 UGAGGUAGGCGUUUGCUUCGAG Cel-mir-242 UUGCGUAGGCCUUUGCUCAAG Cel-mir-243 CGGUACGGGGGAUAU AUAUCCCGCCGCGAUCGCAA Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA CUCGAAGCAAAGGCCUACCUCA Cel-mir-245 AUUGGUCCCCCCAAGUAGUC GAGCUAUUUGUACAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGAACAACACAAAGAC Cel-mir-245 UUACAUGUUUCGGGUAGAGCU AGCUCCUACCCGCAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGGACCAAU Cel-mir-245 UUACAUGUUUCGGGUAGGAGCU Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU Cel-mir-247 UGACUAGAGCCUAUUCUUCU AGAAGAGAAACAUGUAA Cel-mir-248 UACACGUGCAGGAUAACGCUC GAGCUUACCCGAAACAUGUAA Cel-mir-249 UCACAGGACUUUUGAGCGUUCG CACGCCGCACAUUACCCGACACAACA CACGCUCAACGCCCAAAAACACCCAAACA CACACCUUUGAACACAAAAACACAAAACACCAAACA CACACCUUUGAACCCCAAACACACAACACA	Cel-miR-230		
Cel-mir-232 UAAAUGCAUCUUAACUGCGGUG CACCGCAGUUAAGAUGCAUUUA Cel-mir-233 UUGAGCAAUGCGCAUGUGCGGG CCCGCACAUGCGCAUUGCUCAA Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU AAAGGGUAUUCUCGAGCAAUAA Cel-mir-235 UAAUACUGUCCCCGGCCUGA UCAGCCGGGGGAGAGUGCAAUA Cel-mir-236 UAAUACUGUCAGGUAAUGACGC GCGUCAUUACCUGACAGUAUUA Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC GCUGUUCGAGAAUUCUCAGGGA Cel-mir-238 UUUGUACUCCGAUGCCAUUCAG CUGAAUGGCAUCGAAGUACAAA Cel-mir-239a UUUGUACUACACAAAAGGUACUG CAGUACCUAUGGUAGUACAAA Cel-mir-239b UUUGUACUACACAAAAGGAC CAGUACCUAUUUGUUGUAGUACAAA Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU AGCGAAGAUUUUGGGGGCCAGUA Cel-mir-241 UGAGGUAGGCCUUUGCUUCGAG Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAG Cel-mir-243 CGGUACGAUCGGGGGGAUAU AUAUCCCGCCGCGCGAUCGUACCCCA Cel-mir-244 UCCUUUGGUUGAAAAGUGUA CUCGAAGCAAAGGCCUACCGCAA Cel-mir-244 UCCUUUGGUUGAAAAGUGGUA UACCACUUUGUACAAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGGACCAAU Cel-mir-246 UUACAUGUUCCGGUAGGAGCU Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAGAAAAACGCUCAACCCAAACACCAAAGA Cel-mir-248 UACACGUGCACGGAUAACGCUC Cel-mir-248 UACACGUGCACGGAUAACGCUC Cel-mir-249 UCACAGGACUUUUGAGCGUCG GAGCGUUAUCCGGGCACAAAGUCCUACCCGAAACAUCUAGCCC CACCGCACACUUUAGAACCCUAGUACCC CACCGCACACUUUAACACAAAAAACGCUC CACCGCACACUUUGUACAAAAAACGCUC CACCGCACACUUUGUACAAAAACGCUC AGCUACCUCACCCGAAACACAUAAAAACACCAAAAGA CCACUUUGGAAGGACCUAUUCUCUUCU AGAAGAGAAAAAGGCCUAAUAAACGCUC CACCGCACACUUUAACACAAAAAACGCUC CACGCACACUUUGUACAAAAAACGCUC CACCGCACACAUAAAAAACACCAAAAAAAACAAAAAAAAA	Cel-miR-231		
Cel-mir-233 UUGAGCAAUGCGCAUGUGCGGG Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU AAAGGGUAUUCUCGAGCAAUAA Cel-mir-235 UAUUGCACUCUCCCCGGCCUGA Cel-mir-236 UAAUACUGUCAGGUAAUGACGC Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC Cel-mir-238 UUUGUACUCCGAUGCCAUUCAG Cel-mir-239a Cel-mir-239b UUUGUACUACACAUAGGUACUG Cel-mir-240 UACUGGCCCCAAAUCUUCGCU Cel-mir-241 UGAGGUAGGUCGAGAAUUCGCGACAC Cel-mir-242 Cel-mir-243 Cel-mir-243 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-246 Cel-mir-247 Cel-mir-248 Cel-mir-248 Cel-mir-248 Cel-mir-249 UCACGGAGACUUUCGCU AGAGCAAAGGCCUAUCGCAAACCAAAC	Cel-miR-232		
Cel-mir-234 UUAUUGCUCGAGAAUACCCUUU AAAGGGUAUUCUCGAGCAAUAA Cel-mir-235 UAUUGCACUCUCCCGGCCUGA UCAGGCCGGGGAGAGUGCAAUA Cel-mir-236 UAAUACUGUCAGGUAAUGACGC GCGUCAUUACCUGACAGUAUUA Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC GCUGUUCGAGAAUUCUCAGGGA Cel-mir-238 UUUGUACUCCGAUGCCAUUCAG CUGAAUGGCACUAAA Cel-mir-239a UUUGUACUACACAUAGGUACUG CAGUACCUAUGUGUAGUACAAA Cel-mir-239b UUUGUACUACACAAAAGUACUG CAGUACCUAUGUGUAGUACAAAA Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU AGCGAAGAUUUUGGGGGCCAGUA Cel-mir-241 UGAGGUAGGUCGAGAAAUGAC GUCAUUUUUGUGUAGUACAAA Cel-mir-242 UUGCGUAGGCCUUUGCUUCAAG CUCGAAGCAAAAGGCCUACCCACA Cel-mir-243 CGGUACGAUCGCGGGGGGAUAU AUAUCCCGCCGCGCAUCGUACCCCA Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA AUAUCCCGCCGCGCAUCGUACCG Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGUACAACCAAAGA Cel-mir-246 UUACAUGUUUCGGGUAGGACCU AGCUCCUACCCCGAAACAUGUAA Cel-mir-247 UGACUAGAGCCUUAUCUCUCU AGAAGAAAUGUCA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGCGCACGUUAUCCACCCGAAACAUGUAA Cel-mir-249 UCACAGGACUUUUGAGCGUUCG Cel-mir-249 UCACAGGACUUUUGAGCGUUCG CAGUACUUCGAGCCUCAAAGUACCC AGCCUCCUACCCGCAAACGUACAACACAAC	Cel-miR-233	UUGAGCAAUGCGCAUGUGCGGG	
Cel-mir-235 UAUUGCACUCUCCCGGCCUGA Cel-mir-236 UAAUACUGUCAGGUAAUGACGC Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC Cel-mir-238 UUUGUACUCCGAUGCCAUUCAG Cel-mir-239a Cel-mir-239b UUUGUACUACACAAAAGUACUG Cel-mir-240 Cel-mir-241 UGAGGUAGGUAGGAAUUCUCGAG Cel-mir-242 Cel-mir-242 Cel-mir-243 Cel-mir-243 Cel-mir-243 Cel-mir-244 Cel-mir-245 Cel-mir-244 UCUUUGGUAGGCCCUCCAAGUAGUA Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-246 Cel-mir-247 Cel-mir-248 UUACACGUGGGUAGGAGAACGCUC Cel-mir-248 UACACGUGGAGACUAUCUCGCU CAGUACCUUUGUAGGACCUACCUCA CEL-Mir-246 CEL-Mir-247 CEL-Mir-247 CEL-Mir-248 CEL-Mir-248 CEL-Mir-248 CEL-Mir-249 UCACACGUGCACGAAACGCUC CEL-Mir-249 CEL-Mir-		UUAUUGCUCGAGAAHACCCIIIII	
Cel-mir-236 Cel-mir-237 Cel-mir-237 Cel-mir-238 Cel-mir-238 Cel-mir-239a Cel-mir-239b Cel-mir-240 Cel-mir-241 Cel-mir-242 Cel-mir-243 Cel-mir-243 Cel-mir-243 Cel-mir-243 Cel-mir-244 Cel-mir-243 Cel-mir-244 Cel-mir-243 Cel-mir-244 Cel-mir-245 Cel-mir-245 Cel-mir-245 Cel-mir-246 Cel-mir-247 Cel-mir-248 Cel-mir-248 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-248 Cel-mir-248 Cel-mir-249 Cel-mir-248 Cel-mir-249 Cel-mir-249 Cel-mir-248 Cel-mir-249 Cel-mir-249 Cel-mir-249 Cel-mir-248 Cel-mir-249 Cel-		UAUUGCACUCUCCCCGCCCTGA	
Cel-mir-237 UCCCUGAGAAUUCUCGAACAGC Cel-mir-238 UUUGUACUCCGAUGCCAUUCAG Cel-mir-239a UUUGUACUACACAAAAGUACUG Cel-mir-239b UUUGUACUACACAAAAGUACUG Cel-mir-240 UACUGGCCCCCCAAAUCUUCGCU AGCGAAGAUUUUGGGGGCCAGUA Cel-mir-241 UGAGGUAGGCCUUUGCUUCGAG CUCGAAGCAAAAGGCCUCCA Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAG CUCGAAGCAAAGGCCUACCUCA Cel-mir-243 CGGUACGAUCGCGGCGGGAUAU AUAUCCCGCCGCGGAUCGUACCG Cel-mir-244 UCUUUGGUUGAAAAGUGGUA AUAUCCCGCCGCGCGAUCGUACCG Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGCCAAU Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU AGCUACUUGGAGGCCAAU Cel-mir-247 UGACUAGAGCCUAUCUCUCU AGAAGAAAAAGUGCUCACCGAAACAUGUAA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCCGUGCACCUCACCU		UAAUACUGUCAGGUAAUGACCC	
Cel-miR-238 UUUGUACUCCGAUGCCAUUCAG Cel-miR-239a UUUGUACUACACAUAGGUACUG CAGUACCUAUGUGUAGUACAAA Cel-miR-239b UUUGUACUACACAAAAGUACUG Cel-miR-240 UACUGGCCCCCAAAUCUUCGCU Cel-miR-241 UGAGGUAGGUGCGAGAAAUGAC Cel-miR-242 UUGCGUAGGCCUUUGCUUCGAG Cel-miR-243 CGGUACGUUGGUUCGAG Cel-miR-244 UCUUUGGUUGAAAAGUGGUA Cel-miR-245 AUUGGUCCCCCAAGUAGUA Cel-miR-246 UUACAUGUUUCGGGUAGGAGCU Cel-miR-247 Cel-miR-247 UGACUAGGUAGGCUAUCUCUCU Cel-miR-248 UACACGUGCACGGAUAU Cel-miR-248 UACACGUGCACGGAUAUCUCUCU Cel-miR-248 UACACGUGCACGGAUAACGCUC CAGUACUUUGUAGAGCCUACCUCA CGAAGAAAAGGCCUAUUCUCUUCU AGAAGAGAAACAUGUAA CGAGCGUUAUCCGGAAACAUGUAA CGAGCGUUAUCCGGAAACAUGUAA CGAGCGUUAUCCGGAAACAUGUAA CCEl-miR-247 UGACUAGAGCCUAUUCUCUUCU CGAAGCAAAGA CGAGCUACUUGGAGGGGACCAAU ACCACUUUGGAGGGGACCAAU AGCCCUACCCGAAACAUGUAA CGAGCGUUAUCCGGGAAACAUGUAA CCEl-miR-248 UACACGUGCACGGAUAACGCUC CAGUACUUUGGAGGGCCAAACAUGUAA CACCUUUGGAGGGCCUAUUCUCUCU AGAAGAGAAAACAUGUAA CCEl-miR-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA CCEl-miR-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA			
Cel-mir-239a UUUGUACUACACAUAGGUACUG CAGUACCUAUGUGUAGUACAAA Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU AGCGAAGAUUUUGUGUAGUACAAA Cel-mir-241 UGAGGUAGGUGCGAGAAAUGAC GUCAUUUUUGUGUAGUACCUCA Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAG CUCGAAGAAAGGCCUACCUCA Cel-mir-243 CGGUACGAUCGCGGGGGAUAU AUAUCCCGCCGCGGAUCGUACCG Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA UACCACUUUGUACAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGACCAAU Cel-mir-246 UUACAUGUUUCGGGUAGGACU AGCUCCUACCCGAAACAU Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAAACAUGUAA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACCUGUACCCGAACAUCUAGCCACCUAGCCACGUGUACCCACCUACCCGAAACAUCUAGCCACCUACCCGAAACAUCUAGCCACCUACCCGAAACAUCUAGCCACCUACCCGAAACAUCACCACACACA			
Cel-mir-249 UUUGUACUACACAAAAGUACUG CAGUACUUUUGUGUAGUACAAA Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU AGCGAAGAUUUUGGGGGGCCAGUA Cel-mir-241 UGAGGUAGGUGCGAGAAAUGAC GUCAUUUCUCGCACCUACCUCA Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAG CUCGAAGCAAAGGCCUACGCAA Cel-mir-243 CGGUACGAUCGCGGGGGAUAU AUAUCCCGCCGCGGAUCGUACCG Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA UACCACUUUGUACAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGACCAAU Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU AGCUCCUACCCGAAACAU Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAAAUAGGCUCUAGUCA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGGUGCACGUGUA Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GCAACGUUCAAAAGUCCUGUGA			
Cel-mir-240 UACUGGCCCCCAAAUCUUCGCU Cel-mir-241 UGAGGUAGGUGCGAGAAAUGAC Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAG Cel-mir-243 CGGUACGAUCGCGGCGGGAUAU Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU Cel-mir-247 UGACUAGGCCUACCCAAGUAGCU Cel-mir-248 UACACGUGCAGAAACGUC Cel-mir-248 UACACGUGCAGAAACGUC Cel-mir-249 UCACAGGACUUUGUGGGGACGUAC AGCGAAGAUUUGGGGGACCUAUUCUCUUCU AGAAGAGAAAUAGGCUCUAGUCA Cel-mir-249 UCACAGGACUUUUGAGCGUUGA CGACGUUACCGGAAACAUGUAA CAAAGAGAAAAAGUCCUCGAAAAAGUCCUCGAAACAUGUAA AGAAGAGAAAAAGUCCUCGAAAAAGUCCUCGAAAAAGUCCUGUGA CAAAAAAGUCCUCAAAAAGUCCAAAAAAGUCCUCAAAAAAGUCCUCAAAAAAGUCCUCGAAAAAAGUCCUCGAAAAAAGUCCUCGAAAAAAGUCCUCGAAAAAAGUCCUCGAAAAAAGUCCUCGAAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAAAAGUCCUCGUGAAAAAAGUCCUCGUGAAACAUCCGAAAAAGUCCUCGUGAAACAUCCGUCAAAAAGUCCUCGUGAAACAUCCGUCAAAACAUCCCGAAACAUCCCGAAACAUCCCGAAACAUCCCGAAACAUCCACACAAACAUCCACAAACAUCCCGAAACAACAUCCACACACA		ITITICITÀ CITÀ CA CA A A ACITA CITA	
Cel-mir-241 UGAGGUAGGUGCAGAAAUGAC Cel-mir-242 UUGCGUAGGCCUUUGCUUCGAA Cel-mir-243 CGGUACGAUCGCGGGGGAUAU Cel-mir-244 UCUUUGGUUGAAAAGUGGUA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU Cel-mir-248 UACACGUGCACGGAUAACGCUC Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GAGCUACUUGGAGGCGCACAAU AGAAGAGAAUAGGCUCUAGUCA GAGCGUUAUCCGGAAACAUGUAA AGAAGAGAAUAGGCUCUAGUCA GAGCGUUAUCCGGUGCACGUGUA GAACGCUCAAAAGUCCUCGAACCGUGUA GAACGCUCAAAAAGUCCUCGGAAAAAGUCCUCGGAAAAAGUCCUGUGA		IIA CIICCCCCCA A A LICITICACIA	
Cel-mir-243 UUGCGUAGGCCUUUGCUUCGAG CUCGAAGCAAAGGCCUACCUCA Cel-mir-244 CUCGAGGCGGGGGAUAU AUAUCCCGCCGCGAUCGUACCG Cel-mir-245 AUUGGUUGUACAAAGUGGUA UACCACUUUGUACAACCAAAGA Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU GAGCUACCUACCGAAACAU Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAAACAUGUAA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGGUCAGCCCACUAGUCA Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		TICACCITA CCTTCCCA CA A ALTGA C	
Cel-miR-243 CGGUACGAUCGCGGCGGGAUAU AUAUCCCGCCGCGAUCGUACGCAA Cel-miR-244 UCUUUGGUUGUACAAAGUGGUA UACCACUUUGUACAACCAAAGA Cel-miR-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGGACCAAU Cel-miR-246 UUACAUGUUUCGGGUAGGAGCU AGCUCCUACCCGAAACAUGUAA Cel-miR-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAGAAUAGGCUCUAGUCA Cel-miR-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-miR-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		ITICCCIIA CCCCITTUCCITTACA	GUCAUUUCUCGCACCUACCUCA
Cel-mir-244 UCUUUGGUUGUACAAAGUGGUA UACCACUUUGUACAACCAAAGA Cel-mir-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGGACCAAU Cel-mir-246 UUACAUGUUUCGGGUAGGAGCU AGCUCCUACCCGAAACAUGUAA Cel-mir-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAGAAUAGGCUCUAGUCA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		CGGIIA CGAIICCGGGGGGGAIIAIT	CUCGAAGCAAAGGCCUACGCAA
Cel-miR-245 AUUGGUCCCCUCCAAGUAGCUC GAGCUACUUGGAGGGACCAAU Cel-miR-246 UUACAUGUUUCGGGUAGGAGCU AGCUCCUACCCGAAACAU Cel-miR-247 UGACUAGAGCCUAUUCUCUUCU AGAAGAAAUAGGCUCUAGUCA Cel-miR-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-miR-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		TICITUICCITICITA CA A CITICATE	AUAUCCCGCCGCGAUCGUACCG
Cel-miR-246 UUACAUGUUUCGGGUAGGAGCU AGCUCCUACCCGAAACAUGUAA Cel-miR-247 UGACUAGAGCCUAUUCUUCU AGAAGAGAAUAGGCUCUAGUCA Cel-miR-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-miR-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		AUTICCUCCCCTICCA ACTA	UACCACUUUGUACAACCAAAGA
Cel-mir-247 UGACUAGAGCCUAUUCUUCU AGAAGAGAAUAGGCUCUAGUCA Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		ITTA CATICITATIOGGGTTA GGA CG	GAGCUACUUGGAGGGGACCAAU
Cel-mir-248 UACACGUGCACGGAUAACGCUC GAGCGUUAUCCGUGCACGUGUA Cel-mir-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		IICA CIIA CA COCITA IIIICA	
Cel-miR-249 UCACAGGACUUUUGAGCGUUGC GCAACGCUCAAAAGUCCUGUGA		IIA CA COLICCA COCATTA A COCATTA	AGAAGAGAAUAGGCUCUAGUCA
GCAACGCOCAAAAGUCCUGUGA		IICACACGUGCACGAUAACGCUC	GAGCGUUAUCCGUGCACGUGUA
CCAUGCCAACAGUCAACUGUUGGCAUGG CCAUGCCAACAGUUGACUGUGA		IICA CA CIICA A CIICTETCA CO	GCAACGCUCAAAAGUCCUGUGA
		CACAGUCAACUGUUGGCAUGG	CCAUGCCAACAGUUGACUGUGA

microRNA name	microRNA sequence	Anti-microRNA molecule
	(5' to 3')	sequence (5' to 3')
Cel-miR-251	UUAAGUAGUGGUGCCGCUCUUA	UAAGAGCGGCACCACUACUUAA
Cel-miR-252	UAAGUAGUAGUGCCGCAGGUAA	UUACCUGCGGCACUACUUA
Cel-miR-253	CACACCUCACUAACACUGACCA	UGGUCAGUGUUAGUGAGGUGUG
Cel-miR-254	UGCAAAUCUUUCGCGACUGUAG	CUACAGUCGCGAAAGAUUUGCA
Cel-miR-256	UGGAAUGCAUAGAAGACUGUAC	GUACAGUCUUCUAUGCAUUCCA
Cel-miR-257	GAGUAUCAGGAGUACCCAGUGA	UCACUGGGUACUCCUGAUACUC
Cel-miR-258	GGUUUUGAGAGGAAUCCUUUUA	UAAAAGGAUUCCUCUCAAAACC
Cel-miR-259	AGUAAAUCUCAUCCUAAUCUGG	CCAGAUUAGGAUGAGAUUUACU
Cel-miR-260	GUGAUGUCGAACUCUUGUAGGA	UCCUACAAGAGUUCGACAUCAC
Cel-miR-261	UAGCUUUUUAGUUUUUCACGGUG	CACCGUGAAAACUAAAAAGCUA
Cel-miR-262	GUUUCUCGAUGUUUUCUGAUAC	GUAUCAGAAAACAUCGAGAAAC
Cel-miR-264	GGCGGGUGGUUGUUAUGGG	CCCAUAACAACCACCCGCC
Cel-miR-265	UGAGGGAGGAAGGGUGGUAUUU	AAAUACCACCCUUCCUCCCUCA
Cel-miR-266	AGGCAAGACUUUGGCAAAGCUU	AAGCUUUGCCAAAGUCUUGCCU
Cel-miR-267	CCCGUGAAGUGUCUGCUGCAAU	AUUGCAGCAGACACUUCACGGG
Cel-miR-268	GGCAAGAAUUAGAAGCAGUUUG	CAAACUGCUUCUAAUUCUUGCC
Cel-miR-269	GGCAAGACUCUGGCAAAACUUG	CAAGUUUUGCCAGAGUCUUGCC
Cel-miR-270	GGCAUGAUGUAGCAGUGGAGAU	AUCUCCACUGCUACAUCAUGCC
Cel-miR-271	UCGCCGGGUGGGAAAGCAUUCG	CGAAUGCUŲUCCCACCCGGCGA
Cel-miR-272	UGUAGGCAUGGGUGUUUGGAAG	CUUCCAAACACCCAUGCCUACA
Cel-miR-273	UGCCCGUACUGUGUCGGCUGCU	AGCAGCCGACAGUACGGGCA

Table 4: Drosophila microRNA and anti-microRNA sequences.

microRNA name	microRNA sequence	Anti-microRNA molecule
microkia name	(5' to 3')	
Dme-miR-263a	GUUAAUGGCACUGGAAGAAUUC	sequence (5' to 3') GAAUUCUUCCAGUGCCAUUAAC
Dme-miR-184	UGGACGGAGAACUGAUAAGGGC	GCCCUUAUCAGUUCUCCGUCCA
Dme-miR-184	UUUUGUGACCGACACUAACGGC	CCCGUUAGUGUCGGUCACAAAA
Dme-miR-275	UCAGGUACCUGAAGUAGCGCGC	
		GCGCGCUACUUCAGGUACCUGA
Dme-miR-92a Dme-miR-219	CAUUGCACUUGUCCCGGCCUAU UGAUUGUCCAAACGCAAUUCUU	AUAGGCCGGGACAAGUGCAAUG
	UAGGAACUUCAUACCGUGCUCU	AAGAAUUGCGUUUGGACAAUCA AGAGCACGGUAUGAAGUUCCUA
Dme-miR-276a		
Dme-miR-277	UAAAUGCACUAUCUGGUACGAC UCGGUGGGACUUUCGUCCGUUU	GUCGUACCAGAUAGUGCAUUUA AAACGGACGAAAGUCCCACCGA
Dme-miR-278		
Dme-miR-133	UUGGUCCCCUUCAACCAGCUGU UGACUAGAUCCACACUCAUUAA	ACAGCUGGUUGAAGGGGACCAA
Dme-miR-279		UUAAUGAGUGUGGAUCUAGUCA
Dme-miR-33	AGGUGCAUUGUAGUCGCAUUGU	ACAAUGCGACUACAAUGCACCU
Dme-miR-280	UGUAUUUACGUUGCAUAUGAAA	UUUCAUAUGCAACGUAAAUACA
Dme-miR-281	UGUCAUGGAAUUGCUCUCUUUG	CAAAGAGAGCAAUUCCAUGACA
Dme-miR-282	AAUCUAGCCUCUACUAGGCUUU	AAAGCCUAGUAGAGCUAGAUU
Dme-miR-283	UAAAUAUCAGCUGGUAAUUCUG	CAGAAUUACCAGCUGAUAUUUA
Dme-miR-284	UGAAGUCAGCAACUUGAUUCCA	UGGAAUCAAGUUGCUGACUUCA
Dme-miR-34	UGGCAGUGUGGUUAGCUGGUUG	CAACCAGCUAACCACACUGCCA
Dme-miR-124	UAAGGCACGCGGUGAAUGCCAA	UUGGCAUUCACCGCGUGCCUUA
Dme-miR-79	UAAAGCUAGAUUACCAAAGCAU	AUGCUUUGGUAAUCUAGCUUUA
Dme-miR-276b	UAGGAACUUAAUACCGUGCUCU	AGAGCACGGUAUUAAGUUCCUA
Dme-miR-210	UUGUGCGUGUGACAGCGGCUAU	AUAGCCGCUGUCACACGCACAA
Dme-miR-285	UAGCACCAUUCGAAAUCAGUGC	GCACUGAUUUCGAAUGGUGCUA
Dme-miR-100	AACCCGUAAAUCCGAACUUGUG	CACAAGUUCGGAUUUACGGGUU
Dme-miR-92b	AAUUGCACUAGUCCCGGCCUGC	GCAGGCCGGGACUAGUGCAAUU
Dme-miR-286	UGACUAGACCGAACACUCGUGC	GCACGAGUGUUCGGUCUAGUCA
Dme-miR-287	UGUGUUGAAAAUCGUUUGCACG	CGUGCAAACGAUUUUCAACACA
Dme-miR-87	UUGAGCAAAUUUCAGGUGUGU	ACACACCUGAAAUUUUGCUCAA
Dme-miR-263b	CUUGGCACUGGGAGAAUUCACA	UGUGAAUUCUCCCAGUGCCAAG
Dme-miR-288	UUUCAUGUCGAUUUCAUUUCAU	AUGAAAUGAAAUCGACAUGAAA
Dme-miR-289	UAAAUAUUUAAGUGGAGCCUGC	GCAGGCUCCACUUAAAUAUUUA
Dme-bantam	UGAGAUCAUUUUGAAAGCUGAU	AUCAGCUUUCAAAAUGAUCUCA
Dme-miR-303	UUUAGGUUUCACAGGAAACUGG	CCAGUUUCCUGUGAAACCUAAA
Dme-miR-31b	UGGCAAGAUGUCGGAAUAGCUG	CAGCUAUUCCGACAUCUUGCCA
Dme-miR-304	UAAUCUCAAUUUGUAAAUGUGA	UCACAUUUACAAAUUGAGAUUA
Dme-miR-305	AUUGUACUUCAUCAGGUGCUCU	AGAGCACCUGAUGAAGUACAAU
Dme-miR-9c	UCUUUGGUAUUCUAGCUGUAGA	UCUACAGCUAGAAUACCAAAGA
Dme-miR-306	UCAGGUACUUAGUGACUCUCAA	UUGAGAGUCACUAAGUACCUGA
Dme-miR-9b	UCUUUGGUGAUUUUAGCUGUAU	AUACAGCUAAAAUCACCAAAGA
Dme-miR-125	UCCCUGAGACCCUAACUUGUGA	UCACAAGUUAGGGUCUCAGGGA
Dme-miR-307	UCACAACCUCCUUGAGUGAGCG	CGCUCACUCAAGGAGGUUGUGA
Dme-miR-308	AAUCACAGGAUUAUACUGUGAG	CUCACAGUAUAAUCCUGUGAUU
dme-miR-31a	UGGCAAGAUGUCGGCAUAGCUG	CAGCUAUGCCGACAUCUUGCCA
dme-miR-309	GCACUGGGUAAAGUUUGUCCUA	UAGGACAAACUUUACCCAGUGC
dme-miR-310	UAUUGCACACUUCCCGGCCUUU	AAAGGCCGGGAAGUGUGCAAUA
dme-miR-311	UAUUGCACAUUCACCGGCCUGA	UCAGGCCGGUGAAUGUGCAAUA
dme-miR-312	UAUUGCACUUGAGACGGCCUGA	UCAGGCCGUCUCAAGUGCAAUA
dme-miR-313	UAUUGCACUUUUCACAGCCCGA	UCGGGCUGUGAAAAGUGCAAUA
dme-miR-314	UAUUCGAGCCAAUAAGUUCGG	CCGAACUUAUUGGCUCGAAUA

microRNA name	microRNA sequence	Anti-microRNA molecule
	(51 to 31)	sequence (5' to 3')
dme-miR-315	UUUUGAUUGUUGCUCAGAAAGC	GCUUUCUGAGCAACAAUCAAAA
dme-miR-316	UGUCUUUUUCCGCUUACUGGCG	CGCCAGUAAGCGGAAAAAGACA
dme-miR-317	UGAACACAGCUGGUGGUAUCCA	UGGAUACCACCAGCUGUGUUCA
dme-miR-318	UCACUGGGCUUUGUUUAUCUCA	UGAGAUAAACAAAGCCCAGUGA
dme-miR-2c	UAUCACAGCCAGCUUUGAUGGG	CCCAUCAAAGCUGGCUGUGAUA
Dme-miR-iab45p	ACGUAUACUGAAUGUAUCCUGA	UCAGGAUACAUUCAGUAUACGU
Dme-miR-iab43p	CGGUAUACCUUCAGUAUACGUA	UACGUAUACUGAAGGUAUACCG

EXAMPLES

Example 1: Materials and Methods

Oligonucleotide synthesis

MiR-21 were synthesized using 5'-silyl, 2'-ACE phosphoramidites (Dharmacon, Lafayette, CO, USA) on 0.2 μ mol synthesis columns using a modified ABI 394 synthesizer (Foster City, CA, USA) (Scaringe, Methods Enzymol. 317, 3-18 (2001) and Scaringe, Methods 23, 206-217 (2001)). The phosphate methyl group was removed by flushing the column with 2 ml of 0.2 M 2-carbamoyl-2-cyanoethylene-1,1-dithiolate trihydrate in DMF/water (98:2 v/v) for 30 min at room temperature. The reagent was removed and the column rinsed with 10 ml water followed by 10 ml acetonitrile. The oligonucleotide was cleaved and eluted from the solid support by flushing with 1.6 ml of 40% aqueous methylamine over 2 min, collected in a screwcap vial and incubated for 10 min at 55 °C. Subsequently, the base-treated oligonucleotide was dried down in an Eppendorf concentrator to remove methylamine and water. The residue was dissolved in sterile 2'-deprotection buffer (400 μ l of 100 mM acetate-TEMED, pH 3.8, for a 0.2 μ mol scale synthesis) and incubated for 30 minutes at 60 °C to remove the 2' ACE group. The oligoribonucleotide was precipitated from the acetate-TEMED solution by adding 24 μ l 5 M NaCl and 1.2 ml of absolute ethanol.

2'-O-Methyl oligoribonucleotides were synthesized using 5'-DMT, 2'-O-methyl phosphoramidites (Proligo, Hamburg, Germany) on 1 μmol synthesis columns loaded with 3'-aminomodifier (TFA) C7 Icaa control pore glass support (Cherngenes, MA, USA). The aminolinker was added in order to also use the oligonucleotides for conjugation to amino group

reactive reagents, such as biotin succinimidyl esters. The synthesis products were deprotected for 16 h at 55 °C in 30% aqueous ammonia and then precipitated by the addition of 12 ml absolute 1-butanol. The full-length product was then gel-purified using a denaturing 20% polyacrylamide gel. 2'-Deoxyoligonucleotides were prepared using 0.2 µmol scale synthesis and standard DNA synthesis reagents (Proligo, Hamburg, Germany).

The sequences of the 2'-O-methyl oligoribonucleotides were 5'-GUCAACAUCAGUCUGAUAAGCUAL (L, 3' aminolinker) for 2'-OMe miR-21, and 5'-AAGGCAAGCUGACCCUGAAGUL for EGFP 2'-OMe antisense, 5'-UGAAGUCCCAGUCGAACGGAAL for EGFP 2'-OMe reverse; the sequence of chimeric 2'-OMe/DNA oligonucleotides was 5'-GTCAACATCAGTCTGATAAGCTAGCGL for 2'-deoxy miR-21 (underlined, 2'-OMe residues), and 5'-AAGGCAAGCTGACCCTGAAGTGCGL for EGFP 2'-deoxy antisense.

The miR-21 cleavage substrate was prepared by PCR-based extension of the partially complementary synthetic DNA oligonucleotides 5'-

GGCATAAAGAATTGAAGAGTTTTCACTGCATACGACGATTCTGTGATTTGTATTC AGCCCATATCGTTTCATAGCTTCTGCCAACCGA. The extended dsDNA was then used as template for a new PCR with primers 5'-

TAATACGACTCACTATAGAACAATTGCTTTTACAG and 5'-

ATTTAGGTGACACTATAGGCATAAAGAATTGAAGA to introduce the T7 and SP6 promoter sequences for in vitro transcription. The PCR product was ligated into pCR2.1-TOPO (Invitrogen). Plasmids isolated from sequence-verified clones were used as templates for PCR to produce sufficient template for run-off in vitro transcription reactions using phage RNA polymerases (Elbashir et al., EMBO 20, 6877-6888 (2001)). ³²P-Cap-labelling was performed as reported (Martinez et al., Cell 110, 563-574 (2002)).

Plasmids

Plasmids pEGFP-S-21 and pEGFP-A-21 were generated by T4 DNA ligation of preannealed oligodeoxynucleotides 5'-GGCCTCAACATCAGTCTGATAAGCTAGGTACCT

and 5'-GGCCAGGTACCTAGCTTATCAGACTGATGTTGA into NotI digested pEGFP-N-1 (Clontech). The plasmid pHcRed-C1 was from Clontech.

HeLa extracts and miR-21 quantification

HeLa cell extracts were prepared as described (Dignam et al., Nucleic Acid Res. 11 1475-1489 (1983)). $5x10^9$ cells from HeLa suspension cultures were collected by centrifugation and washed with PBS (pH7.4). The cell pellet (approx. 15 ml) was re-suspended in two times of its volume with 10mM KCl/1.5 mM MgCl₂/0.5 mM dithiothreitol/10mM HEPES-KOH (pH 7.9) and homogenized by douncing. The nuclei were then removed by centrifugation of the cell lysate at 1000 g for 10 min. The supernatant was spun in an ultracentrifuge for 1 h at 10,5000 g to obtain the cytoplasmic S100 extract. The concentration of KCl of the S100 extract was subsequently raised to 100 mM by the addition of 1 M KCl. The extract was then supplemented with 10% glycerol and frozen in liquid nitrogen.

280 μg of total RNA was isolated from 1 ml of S100 extract using the acidic guanidinium thiocyanate-phenol-chloroform extraction method (Chomczynski et al., Anal. Biochem. *162*, 156-159 (1987)). A calibration curve for miR-21 Northern signals was produced by loading increasing amounts (10 to 30000 pg) of synthetically made miR-21 (Lim et al. et al., Genes & Devel. *17*, 991-1008 (2003)). Northern blot analysis was performed as described using 30 μg of total RNA per well (Lagos-Quintana et al., Science *294*, 853-858 (2001)).

In vitro miRNA cleavage and inhibition assay

2'-O-Methyl oligoribonucleotides or 2'-deoxyoligonucleotides were pre-incubated with HeLa S100 at 30 °C for 20 min prior to the addition of the cap-labeled miR-21 target RNA. The concentration of the reaction components were 5 nM target RNA, 1 mM ATP, 0.2 mM GTP, 10 U/ml RNasin (Promega) and 50% HeLa S100 extract in a final reaction volume of 25 µl. The reaction time was 1.5 h at 30 °C. The reaction was stopped by addition of 200 µl of 300 mM NaCl/25 mM EDTA/20% w/v SDS/200 mM Tris HCl (pH7.5). Subsequently, proteinase K was added to a final concentration of 0.6 mg/ml and the sample was incubated for 15 min at 65 °C. After phenol/chloroform extraction, the RNA was ethanol-precipitated and separated on a 6% denaturing polyacrylamide gel. Radioactivity was detected by phosphorimaging.

Cell culture and transfection

HeLa S3 and HeLa S3/GFP were grown in 5% CO2 at 37 °C in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 unit/ml penicillin, and 100 μg/ml streptomycin. One day before transfection, 105 cells were plated in 500 μl DMEM containing 10% FBS per well of a 24-well plate. Plasmid and plasmid/oligonucleotide transfection was carried out with Lipofectamine2000 (Invitrogen). 0.2 μg pEGFP or its derivatives were cotransfected with 0.3 μg pHcRed with or without 10 pmol of 2'-O-methyl oligoribonucleotide or 10 pmol of 2'-deoxyoligonucleotide per well. Fluorescent cell images were recorded on a Zeiss Axiovert 200 inverted fluorescence microscope (Plan-Apochromat 10x/0.45) equipped with Chroma Technology Corp. filter sets 41001 (EGFP) and 41002c (HcRed) and AxioVision 3.1 software.

Example 2: MicroRNA-21 Cleavage of Target RNA

In order to assess the ability of modified oligonucleotides to specifically interfere with miRNA function, we used our previously described mammalian biochemical system developed for assaying RISC activity (Martinez et al., Cell 100, 563-574 (2002)). Zamore and colleagues (Hutvágner et al., Science 297, 2056-2050 (2002)) showed that crude cytoplasmic cell lysates and eIF2C2 immunoprecipitates prepared from these lysates contain let-7 RNPs that specifically cleave let-7-complementary target RNAs. We previously reported that in HeLa cells, numerous miRNAs are expressed including several let-7 miRNA variants (Lagos-Quintana et al., Science 294, 853-858 (2001)).

To assess if other HeLa cell miRNAs are also engaged in RISC like miRNPs we examined the cleavage of a 32P-cap-labelled substrate RNA with a complementary site to the highly expressed miR-21 (Lagos-Quintana et al., Science 294, 853-858 (2001); Mourelatos et al., Genes & Dev. 16, 720-728 (2002)). Sequence-specific target RNA degradation was readily observed and appeared to be approximately 2- to 5-fold more effective than cleavage of a similar let-7 target RNA (Figure 2A, lane 1, and data not shown). We therefore decided to interfere with miR-21 guided target RNA cleavage.

Example 3: Anti MicroRNA-21 2'-O-methyl Oligoribonucleotide Inhibited MicroRNA-21-Induced Cleavage of Target RNA

A 24-nucleotide 2'-O-methyl oligoribonucleotide that contained a 3' C7 aminolinker and was complementary to the longest form of the miR-21 was synthesized. The aminolinker was introduced in order to enable post-synthetic conjugation of non-nucleotidic residues such as biotin.

Increasing concentrations of anti miR-21 2'-O-methyl oligoribonucleotide and a control 2'-O-methyl oligoribonucleotide cognate to an EGFP sequence were added to the S100 extract 20 min prior to the addition of 32P-cap-labelled substrate. We determined the concentration of miR-21 in the S100 extract by quantitative Northern blotting to be 50 pM (Lim et al., Genes & Devel. 17, 991-1008 (2003)).

The control EGFP oligonucleotide did not interfere with miR-21 cleavage even at the highest applied concentration (Figure 2A, lanes 2-3). In contrast, the activity of miR-21 was completely blocked at a concentration of only 3 nM (Figure 2A, lane 5), and a concentration of 0.3 nM showed a substantial 60%-70% reduction of cleavage activity (Figure 2, lane 6). At a concentration of 0.03 nM, the cleavage activity of miR-21 was not affected when compared to the lysate alone (Figure 2, lane 1, 7).

Antisense 2'-deoxyoligonucleotides (approximately 90% DNA molecules) at concentrations identical to those of 2'-O-methyl oligoribonucleotides, we could not detect blockage of miR-21 induced cleavage (Figure 2A, lanes 8-10). The 2'-deoxynucleotides used in this study were protected against 3'-exonucleases by the addition of three 2'-O-methyl ribonucleotide residues.

Example 4: Anti MicroRNA-21 2'-O-methyl Oligoribonucleotide Inhibited MicroRNA-21-Induced Cleavage of Target RNA *In Vitro*

In order to monitor the activity of miR-21 in HeLa cells, we constructed reporter plasmids that express EGFP mRNA that contains in its 3' UTR a 22-nt sequence complementary to miR-21 (pEGFP-S-21) or in sense orientation to miR-21 (p-EGFP-A-21). Endogenous miRNAs have previously been shown to act like siRNAs by cleaving reporter mRNAs carrying

sequences perfectly complementary to miRNA. To monitor transfection efficiency and specific interference with the EGFP indicator plasmids, the far-red fluorescent protein encoding plasmid pHcRed-C1 was cotransfected.

Expression of EGFP was observed in HeLa cells transfected with pEGFP and pEGFP-A-21 (Figure 3, rows 1 and 2), but not from those transfected with pEGFP-S-21 (Figure 3, row 3). However, expression of EGFP from pEGFP-S-21 was restored upon cotransfection with anti miR-21 2'-O-methyl oligoribonucleotide (Figure 3, row 4). Consistent with our above observation, the 2'-deoxy anti miR-21 oligonucleotide showed no effect (Figure 3, row 5). Similarly, cotransfection of the EGFP 2'-O-methyl oligoribonucleotide in sense orientation with respect to the EGFP mRNA (or antisense to EGFP guide siRNA) had no effect (Figure 3,row 6).

We have demonstrated that miRNP complexes can be effectively and sequencespecifically inhibited with 2'-O-methyl oligoribonucleotides antisense to the guide strand positioned in the RNA silencing complex.

What we claim is:

1. An isolated single stranded anti-microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein:

at least ten contiguous bases have the same sequence as a sequence of bases in any one of the anti-microRNA molecules shown in Tables 1-4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof;

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units;

the moiety in the molecule at the position corresponding to position 11 of the microRNA is non-complementary; and

the molecule is capable of inhibiting microRNP activity.

- 2. A molecule according to claim 1, wherein up to 5% of the contigous moieties are additions, deletions, mismatches, or combinations thereof.
- 3. A molecule according to claim 1, wherein at least one of the moieties is a deoxyribonucleotide.
- 4. A molecule according to claim 3, wherein the deoxyribonucleotide is a modified deoxyribonucleotide moiety.
- 5. A molecule according to claim 4, wherein the modified deoxyribonucleotide is a phosphorothioate deoxyribonucleotide moiety.
- 6. A molecule according to claim 4, wherein the modified deoxyribonucleotide is N'3-N'5 phosphoroamidate deoxyribonucleotide moiety.

7. A molecule according to claim 1, wherein at least one of the molecules is a ribonucleotide moiety.

- 8. A molecule according to claim 7, wherein at least one of the moi eties is a modified ribonucleotide moiety.
- 9. A molecule according to claim 8, wherein the modified ribonucleotide is substituted at the 2' position.
- 10. A molecule according to claim 9, wherein the substituent at the 2' position is a C_1 to C_4 alkyl group.
- 11. A molecule according to claim 10, wherein the alkyl group is me thyl.
- 12. A molecule according to claim 10, wherein the alkyl group is allyl.
- 13. A molecule according to claim 9, wherein the substituent at the 2 ' position is a C_1 to C_4 alkoxy C_1 to C_4 alkyl group.
- 14. A molecule according to claim 13, wherein the C_1 to C_4 alkoxy C_1 to C_4 alkyl group is methoxyethyl.
- 15. A molecule according to claim 8, wherein the modified ribonucle otide has a methylene bridge between the 2'-oxygen atom and the 4'-carbon atom.
- 16. A molecule according to claim 1, wherein at least one of the moieties is a peptide nucleic acid moiety.
- 17. A molecule according to claim 1, wherein at least one of the moieties is a 2'-fluororibonucleotide moiety.
- 18. A molecule according to claim 1, wherein at least one of the moieties is a morpholino phosphoroamidate nucleotide moiety.
- 19. A molecule according to claim 1, wherein at least one of the moieties is a tricyclo nucleotide moiety.

20. A molecule according to claim 1, wherein at least one of the moieties is a cyclohexene nucleotide moiety.

- 21. A molecule according to claim 1, wherein the molecule comprises at least one modified moiety for increased nuclease resistance.
- 22. A molecule according to claim 21, wherein the nuclease is an exonuclease.
- 23. A molecule according to claim 22, wherein the molecule comprises at least one modified moiety at the 5' end.
- 24. A molecule according to claim 22, wherein the molecule comprises at least two modified moieties at the 5' end.
- 25. A molecule according to claim 22, wherein the molecule comprises at least one modified moiety at the 3' end.
- 26. A molecule according to claim 22, wherein the molecule comprises at least two modified moieties at the 3' end.
- 27. A molecule according to claim 22, wherein the molecule comprises at least one modified moiety at the 5' end and at least one modified moiety at the 3'end.
- 28. A molecule according to claim 22, wherein the molecule comprises at least two modified moieties at the 5' end and at least two modified moieties at the 3'end.
- 29. A molecule according to claim 22, wherein the molecule comprises a nucleotide cap at the 5' end, the 3' end or both.
- 30. A molecule according to claim 22, wherein the molecule comprises an ethylene glycol compound and/or amino linkers at the 5' end, the 3' end, or both.
- 31. A molecule according to claim 1, wherein the nuclease is an endonuclease.
- 32. A molecule according to claim 31, wherein the molecule comprises at least one modified moiety between the 5' and 3' end.

33. A molecule according to claim 31, wherein the molecule comprises an ethylene glycol compound and/or amino linker between the 5' end and 3' end.

- 34. A molecule according to claim 1, wherein all of the moieties are nuclease resistant.
- 35. A method for inhibiting microRNP activity in a cell, the microRNP comprising a microRNA molecule, the microRNA molecule comprising a sequences of bases complementary of the sequence of bases in a single stranded anti-microRNA molecule, the method comprising introducing into the cell the single-stranded anti-microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein:

at least ten contiguous bases of the anti-microRNA molecule are complementary to the microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties are addition, deletions, mismatches, or combinations thereof;

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and

the moiety in the molecule at the position corresponding to position 11 of the microRNA is non-complementary.

- 36. A method according to claim 35, wherein the anti-microRNA is a human anti-microRNA.
- 37. A method according to claim 35, wherein the anti-microRNA is a mouse anti-microRNA.
- 38. A method according to claim 35, wherein the anti-microRNA is a rat anti-microRNA.
- 39. A method according to claim 35, wherein the ant-microRNA is a drosophila microRNA.
- 40. A method according to claim 35, wherein the anti-microRNA is a C. elegans microRNA.

41. An isolated microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit wherein:

at least ten contiguous bases have the same sequence as a sequence of bases in any one of the microRNA molecules shown in Table 2, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof; and

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.

- 42. A molecule according to claim 41 having the sequence shown in Table 2.
- 43. A molecule according to claim 41, wherein the molecule is modified for increased nuclease resistance.
- 44. A molecule according to claim 41, wherein the moiety at position 11 is an addition, deletion or substitution.
- 45. An isolated microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit wherein:

at least ten contiguous bases have any one of the microRNA sequences shown in Tables 1, 3 and 4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases are additions, deletions, mismatches, or combinations thereof;

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and

is modified for increased nuclease resistance.

46. A molecule according to claim 45, wherein the molecule is modified for increased nuclease resistance.

47. A molecule according to claim 45, wherein the moiety at position 11 is an addition, deletion, or substitution.

48. An isolated single stranded anti-microRNA molecule comprising a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base wherein:

at least ten contiguous bases have the same sequence as a sequence of bases in any one of the anti-microRNA molecules shown in Tables 1-4, except that up to thirty percent of the bases pairs may be wobble base pairs, and up to 10% of the contiguous bases may be additions, deletions, mismatches, or combinations thereof;

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units; and

the molecule is capable of inhibiting microRNP activity.

49. A method for inhibiting microRNP activity in a cell, the microRNP comprising a microRNA molecule, the microRNA molecule comprising a sequences of bases complementary of the sequence of bases in a single stranded anti-microRNA molecule, the method comprising introducing into the cell the single-stranded anti-microRNA molecule comprising a sequence of a minimum of ten moieties and a maximum of fifty moieties on a molecular backbone, the molecular backbone comprising backbone units, each moiety comprising a base bonded to a backbone unit, each base forming a Watson-Crick base pair with a complementary base, wherein:

at least ten contiguous bases of the anti-microRNA molecule are complementary to the microRNA, except that up to thirty percent of the bases may be substituted by wobble base pairs, and up to ten percent of the at least ten moieties may be additions, deletions, mismatches, or combinations thereof; and

no more than fifty percent of the contiguous moieties contain deoxyribonuleotide backbone units.

Figure 1

Phosphorothicate DNA Unit (PS) Structure 1

2'-O-methyl RNA unit (OMe) Structure 3

2'-O-methoxy-ethyl RNA unit (MOE) Structure 4

Peptide nucleic acid unit (PNA) Structure 6

N3'-P5' Phosphoroamidate DINA unit (NP) Structure 2

2'-fluoro-ribo nucleic acid unit (FANA) Structure 7

Locked nucleic acid unit (LNA) Structure 5

Morpholino phosphoroar nidate nucleic acid unit (MF)
Structure 8

Cyclohexane nucleic acid unit (CeNA) Structure 10

Tricyclonucleic acid umit Structure 9

Figure 2

10

Figure 3

1119-10CON-PCT.ST25 SEQUENCE LISTING

<110>	The Rockefeller University	
<120>	Anti-MicroRNA Oligonucleotide Molecules	
<130>	1119-10 CON/PCT	
<140> <141>	unknown 2005-02-11	
<150> <151>	US 10/845,057 2004-05-13	
<150> <151>	US 10/778,908 2004-02-13	
<160>	623	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>	1 22 RNA Homo sapiens	
<400> aacccg	1 uaga uccgaacuug ug	22
<210> <211> <212> <213>	2 22 RNA Homo sapiens	
<400> agcagca	2 auug uacagggcua ug	22
<210> <211> <212> <213>	3 22 RNA Homo sapiens	
<400> ucaaau	3 gcuc agacuccugu gg	22
<210> <211> <212> <213>	4 22 RNA Homo sapiens	
<400> aaaagug	4 gcuu acagugcagg ua	22
<210> <211> <212> <213>	5 22 RNA Homo sapiens	
<400> uaaagug	5 gcug acagugcaga ua	22

<210> <211> <212> <213>	6 22 RNA Homo sapiens								
<400> agcagc	6 auug uacagggcua	uc				-			22
<210> <211> <212> <213>	7 22 RNA Homo sapiens				•				
<400> uacccu	7 guag aaccgaauuu	gu		·					22
<210> <211> <212> <213>	8 22 RNA Homo sapiens								,
<400> ucacag	8 ugaa ccggucucuu	uc		•					22
<210> <211> <212> <213>	9 22 RNA Homo sapiens				,			•	
<400> cagugca	9 aaug augaaagggc	au							22
<210> <211> <212> <213>	10 22 RNA Homo sapiens						•		
<400> uaccaca	10 aggg uagaaccacg	ga							22
<210> <211> <212> <213>	11 22 RNA Homo sapiens		•		VI.		•		
<400> cccauaa	11 aagu agaaagcacu	ac		. '					22
<210> <211> <212> <213>	12 22 RNA Homo sapiens				· .				
<400> ucgagga	12 ageu cacagucuag	ua							22

<210> <211> <212> <213>	13 22 RNA Homo sapiens						
<400> uuaaug	13 cuaa ucgugauagg	gg					22
<210> <211> <212> <213>	14 22 RNA Homo sapiens						
<400> aacauu	14 caac gcugucggug	ag	,			•	22
<210> <211> <212> <213>	15 22 RNA Homo sapiens			•		-	
<400> aacauu	15 cauu gcugucggug	gg					22
<210> <211> <212> <213>	16 22 RNA Homo sapiens		•				
<400> aacauu	16 caac cugucgguga	gu					22
<210> <211> <212> <213>	17 22 RNA Homo sapiens					,	
<400> uuuggca	17 aaug guagaacuca	ca					22
<210> <211> <212> <213>	18 22 RNA Homo sapiens						
<400> uauggca	18 acug guagaauuca	cu	·		٠		22
<210> <211> <212> <213>	19 22 RNA Homo sapiens		,				
<400> uggacgg	19 gaga acugauaagg	gu				a	,22

			1119-10co	N-PCT.ST	25		
<210> <211> <212> <213>	20 22 RNA Homo sapiens					1	
<400> uggaga	20 gaaa ggcaguuccu	ga		•			22
<210> <211> <212> <213>	21 22 RNA Homo sapiens				-,		
<400> caaaga	21 auuc uccuuuuggg	cu					22
<210> <211> <212> <213>	22 22 RNA Homo sapiens						
<400> ucgugu	22 cuug uguugcagcc	gg					22
<210> <211> <212> <213>	23 22 RNA Homo sapiens				,		
<400> cuccca	23 caug caggguuugc	ag					22
<210> <211> <212> <213>	24 22 RNA Homo sapiens	м.					
<400> caucco	.24 uugc augguggagg	gu			•		, , 22
<210> <211> <212> <213>	25 22 RNA Homo sapiens			•			
<400> gugccua	25 acug agcugauauc	ag	•				22
<210> <211> <212> <213>	26 22 RNA Homo sapiens						
<400> ugauaug	26 guuu gauauauuag	gu					22
<210>	27	•					•

			1119-10CON-P	CT.ST25		
<211> <212> <213>	22 RNA Homo sapiens					
<400> caacgg	27 aauc ccaaaagcag	cu				22
<210'> <211> <212> <213>	28 22 RNA Homo sapiens		,		,	
<400> cugacc	28 uaug aauugacagc	ca		ſ		22
<210> <211> <212> <213>	29 22 RNA Homo sapiens		·			
<400> aacugg	29 ccua cáaaguccca	gu				22
<210> <211> <212> <213>	30 22 RNA Homo sapiens					
<400> uggguci	30 uuug cgggcaagau	ga				22
<210> <211> <212> <213>	31 22 RNA Homo sapiens					
<400> uguaaca	31 agca acuccaugug	ga		•		22
<210> <211> <212> <213>	32 22 RNA Homo sapiens					
<400> uagcago	32 caca gaaauauugg	ca		•		22
<210> <211> <212> <213>	33 22 RNA Homo sapiens					
<400> uagguag	33 guuu cauguuguug	gg				22
<210> <211>	34 22		4		,	

			1119-10	CON-PCT	.ST25			
<212> <213>	RNA Homo sapiens							
<400> uucacc	34 accu ucuccaccca	gc						22
<210> <211> <212> <213>	35 22 RNA Homo sapiens		,					
<400> ggucca	35 gagg ggagauaggu	uc						22
<210> <211> <212> <213>	36 22 RNA Homo sapiens							٠
<400> acagua	36 gucu gcacauuggu	ua			,			22
<210> <211> <212> <213>	37 22 RNA Homo sapiens		•					
	37 guuc agacuaccug	uu			÷			22
<210> <211> <212> <213>	38 22 RNA Homo sapiens							
	38 guuu agacuaucug	uu			. ,	•		22
<210> <211> <212> <213>	39 22 RNA Homo sapiens	•						
<400> uaacacı	uguc ugguaacgau	gu		,			·	22
<210> <211> <212> <213>	40 22 RNA Homo sapiens					• .		
<400> cucuaai	40 Jacu gccugguaau	ga					,	22
<210> <211> <212>	41 22 RNA		-					

			1119-10CON-PCT.ST25	
<213>	Homo sapiens			
<400>	41 gccg gguaaugaug	ga		22
•		3	1	
<210> <211> <212> <213>	42 22 RNA Homo sapiens	•		
<400> gugaaai	42 uguu uaggaccacu	ag		22
<210> <211> <212> <213>	43 22 RNA Homo sapiens			
<400> uucccui	43 Jugu cauccuaugc	cu		22
<210> <211> <212> <213>	44 22 RNA Homo sapiens			
<400> uccuuca	44 auuc caccggaguc	ug		22
<210> <211> <212> <213>	45 22 RNA Homo sapiens			
<400> uggaaug	45 guaa ggaagugugu	gg		22
<210> <211> <212> <213>	46 22 RNA Homo sapiens			
<400> auaagad	46 gag caaaaagcuu	gu		22
<210> <211> <212> <213>	47 22 RNA Homo sapiens	,		
<400> cugugco	47 Jugu gacagcggcu	ga		22
<210> <211> <212> <213>	48 22 RNA Homo sapiens	- •		

<400> uucccui	48 uugu cauccuucgc	cu		22
<210> <211> <212> <213>	49 22 RNA Homo sapiens		•	
<400> uaacagi	49 ucuc cagucacggc	ca	٠	22
<210> <211> <212> <213>	50 22 RNA Homo sapiens			
<400> accauc	50 gacc guugauugua	сс		22
<210> <211> <212> <213>	51 22 RNA Homo sapiens			
<400> acagcag	51 ggca cagacaggca	gu	•	22
<210> <211> <212> <213>	52 22 RNA Homo sapiens			
<400> augaccı	52 Jaug aauugacaga	ca		 22
<210> <211> <212> <213>	53 22 RNA Homo sapiens			
<400> uaaucud	53 cagc uggcaacugu	ga		22
<210> <211> <212> <213>	54 22 RNA Homo sapiens	•		
<400> uacugca	54 auca ggaacugauu	gg		22
<210> <211> <212> <213>	55 22 RNA Homo sapiens			

<400> uugugc	55 uuga ucuaaccaug	ug		,		22
<210> <211> <212> <213>	56 22 RNA Homo sapiens					
<400> ugauug	56 ucca aacgcaauuc	uu ,				22
<210> <211> <212> <213>	57 22 RNA Homo sapiens				•	,
<400> ccacac	57 cgua ucugacacuu	ug				22
<210> <211> <212> <213>	58 22 RNA Homo sapiens					
<400> agcuac	58 auug ucugcugggu	uu	To the second	, ,		22
<210> <211> <212> <213>	59 22 RNA Homo sapiens					
<400> agcuac	59 aucu ggcuacuggg	uc	•			22
<210> <211> <212> <213>	60 22 RNA Homo sapiens	•		·		
<400> ugucagi	60 uuug ucaaauaccc	ca	•, •			22
<210> <211> <212> <213>	61 22 RNA Homo sapiens	,				
<400> ⊂aaguca	61 acua gugguuccgu	uu		,		22
<210> <211> <212> <213>	62 22 RNA Homo sapiens					
<400>	62					

aaggagcuca cagucuauug ag	1119-10CON-PCT.ST25		22
<210> 63 <211> 22 <212> RNA <213> Homo sapiens			
<400> 63 cucaaacugu gggggcacuu uc			22
<210> 64 <211> 22 <212> RNA <213> Homo sapiens			•
<400> 64 agggcccccc cucaauccug uu			22
<210> 65 <211> 22 <212> RNA <213> Homo sapiens			
<400> 65 ugguuuaccg ucccacauac au			22
<210> 66 <211> 22 <212> RNA <213> Homo sapiens			
<400> 66 cagugcaaua guauugucaa ag			22
<210> 67 <211> 22 <212> RNA <213> Homo sapiens		·	
<400> 67 uaagugcuuc cauguuuugg ug			22
<210> 68 <211> 22 <212> RNA <213> Homo sapiens			
<400> 68 uguaaacauc cuugacugga ag			22
<210> 69 <211> 22 <212> RNA <213> Homo sapiens		·	,
<400> 69 aaaagcuggg uugagagggc ga			22

<210> <211> <212> <213>	70 22 RNA Homo sapiens				•			
<400> uaagcca	70 aggg auuguggguu	cg						22
<210> <211> <212> <213>	71 22 RNA Homo sapiens							
<400> aaacaug	71 gaau ugcugcugua	uc						22
<210> <211> <212> <213>	72 22 RNA Homo sapiens							
<400> gcacauı	72 uaca cggucgaccu	cu						22
<210> <211> <212> <213>	73 22 RNA Homo sapiens						•	
<400> ccacugo	73 cccc aggugcugcu	gg .				`		22
<210> <211> <212> <213>	74 22 RNA Homo sapiens			,		•		
<400> cgcauco	74 Eccu agggcauugg	ug	•					22
<210> <211> <212> <213>	75 22 RNA Homo sapiens							,
<400> ccucugo	75 gcc cuuccuccag	сс						22
<210> <211> <212> <213>	76 22 RNA Homo sapiens							
	76 Cucu cugcccuucc	gu	•					22

<210> 77 <211> 22 <212> RNA <213> Homo sapiens	
<400> 77 aacacaccca gcuaaccuuu uu	22
<210> 78 <211> 22 <212> RNA <213> Homo sapiens	,
<400> 78 uggcaguguc uuagcugguu gu	22
<210> 79 <211> 22 <212> RNA <213> Homo sapiens	
<400> 79 aggcaguguc auuagcugau ug	· 22
<210> 80 <211> 22 <212> RNA <213> Homo sapiens	,
<400> 80 aggcagugua guuagcugau ug	22
<210> 81 <211> 22 <212> RNA <213> Homo sapiens	
<400> 81 uauugcacuu gucccggccu gu	22
<210> 82 <211> 22 <212> RNA <213> Homo sapiens	
<400> 82 aaagugcugu ucgugcaggu ag	22
<210> 83 <211> 22 <212> RNA <213> Homo sapiens	
<400> 83 uucaacgggu auuuauugag ca	22

			TTT8-100	CON-PCT.S	ST25		
<210> <211> <212> <213>	84 22 RNA Homo sapiens						
<400> uuuggc	84 acua gcacauuuuu	gc					22
<210> <211> <212> <213>	85 22 RNA Homo sapiens						
<400> ugaggu	85 agua aguuguauug	uu					 22
<210> <211> <212> <213>	86 22 RNA Mouse						
	86 gcua acagugcagg	ua	•			1	22
<210> <211> <212> <213>	87 22 RNA Mouse						
<400> cccugu	87 agaa ccgaauuugu	gu					22
<210> <211> <212> <213>	88 22 RNA Mouse						
<400> uauggci	88 uuuu cauuccuaug	ug					22
<210> <211> <212> <213>	89 22 RNA Mouse						
<400> ucagugo	89 cauc acagaacuuu	gu				1	22
<210> <211> <212> <213>	90 22 RNA Mouse			•			
<400> cuagacı	90 Igag gcuccuugag	ga					22
<210>	91						

			1119-1000	N-PCT.ST25		
<211> <212> <213>	22 RNA Mouse		1113 1000	V 1 C113123		
<400> uuaaug	91 cuaa uugugauagg	gg				22
<210> <211> <212> <213>	92 22. RNA Mouse					
<400> cccagu	92 guuu agacuaccug	uu				22
<210> <211> <212> <213>	93 22 RNA Mouse					
	93 ugcc ugguaaugau	ga ·				22
<210> <211> <212> <213>	94 22 RNA Mouse					
<400> ugaaauq	94 guuu aggaccacua	ga				22
<210> <211> <212> <213>	95 22 RNA Mouse					
	.95 lugu cauccuuugc	cu			,	22
<210> <211> <212> <213>	96 22 RNA Mouse					
<400> uacugça	96 uuca ggaacugacu	gg				22
<210> <211> <212> <213>	97 22 RNA Mouse					
<400> uaaguca	97 Icua gugguuccgu	uu				22

		1110 10000 200 0000	
<212> <213>	RNA Mouse	1119-10CON-PCT.ST25	
<400> cacuag	98 auug ugagcugcug	ga	. 22
<210> <211> <212> <213>	99 22 RNA Mouse		
<400> cucaaa	99 cuau gggggcacuu	uu	22
<210> <211> <212> <213>	100 22 RNA Mouse		
<400> aaagug	100 cuuc cacuuugugu	gc	22
<210> <211> <212> <213>	101 22 RNA Mouse		
<400> caucaa	101 agug gaggcccucu	cu	· · · · · · · · · · · · 22
<210> <211> <212> <213>	102 22 RNA Mouse	i e e e e e e e e e e e e e e e e e e e	
<400> aagugc	102 cgcc agguuuugag	ug	. 22
<210> <211> <212> <213>	103 22 RNA Mouse		
<400> acucaaa	103 acug ggggcucuuu	ug	22
<210> <211> <212> <213>	104 22 RNA Mouse		•
<400> agugccg	104 Jcag aguuuguagu	gu	22

<210> 105 <211> 22 <212> RNA

<213>	Mouse		1119-10CON-PCT.ST25	
	105		•	
	cuuc ccuuuugugu	gu		22
<210> <211>	106 22			
<212> <213>	RNA Mouse			
<400> aaagug	106 cuac uacuuuugag	uc		22
<210> <211> <212>	107 22			
<213>	RNA Mouse			
<400> auguau	107 gugu gcaugugcau	gu		22
<210>	108			
<211> <212> <213>	22 RNA Mouse		•	
<400> ggcaga	108 ggag ggcuguucuu	сс	•	22
<210>	109		•	
<211> <212> <213>	22 RNA Mouse			*
<400> uaugcaa	109 aggg caagcucucu	uc		22
<210>	110			
<211> <212>	22 RNA			
<213>	Mouse		•	
<400> aggcaag	110 gaug cuggcauagc	ug		22
<210> <211>	111 · 22			
<212> <213>	RNA Mouse		<i>,</i>	
<400> aaacaug	111 gaag cgcugcaaca	cc		22
<210>	112			
<211> <212> <213>	22 RNA Mouse			

<400> ccuagu	aggu gcucaguaag	ug		22
<210> <211> <212> <213>	113 22 RNA Mouse	,		
<400> ccucug	113 ggcc cuuccuccag	uc		22
<210> <211> <212> <213>	114 22 RNA Mouse			
<400> gcaaag	114 caca gggccugcag	ag		22
<210> <211> <212> <213>	115 22 RNA Mouse			
	115 gggc cuauccuaga	ac		22
<210> <211> <212> <213>	116 22 RNA Mouse			
<400> uucagcı	116 Iccu auaugaugcc	uu	· · · · · · · · · · · · · · · · · · ·	22
<210> <211> <212> <213>	117 22 RNA Mouse			
<400> uccagca	117 auca gugauuuugu	ug		22
<210> <211> <212> <213>	118 22 RNA Mouse			
	118 Iccu ccaggagcuc	ac	2	, 2 2
	119 22 RNA Mouse			

.400	110		1119-10CON-P	CT.ST25		
<400> uccguc	ucag uuacuuuaua	gc				22
<210> <211> <212> <213>	120 22 RNA Mouse					
<400> ucgauc	120 gguc ggucggucag	uc				22
<210> <211> <212> <213>	121 22 RNA Mouse				,	
<400> ucucac	121 acag aaaucgcacc	cg				22
<210> <211> <212> <213>	122 22 RNA Mouse					
<400> ugaucu	122 agcc aaagccugac	ug				22
<210> <211> <212> <213>	123 22 RNA Mouse			.·		
<400> ugcuga	123 cccc uaguccagug	Cu				22
<210> <211> <212> <213>	124 22 RNA Mouse	·				
<400> ugucug	124 cccg agugccugcc	uc .				22
<210> <211> <212> <213>	125 22 RNA Mouse				4	
<400> uaggca	125 gugu aauuagcuga	uu				22
<210> <211> <212> <213>	126 22 RNA Mouse					
<400>	126					

uucac	aaagc	ccauacacuu	uc	1119-100	ON-PCT.ST25			22
<210> <211> <212> <213>	127 22 RNA Mou							
<400> ucccu	127 gagga	gcccuuugag	CC			. •		22
<210> <211> <212> <213>	128 22 RNA Mou	se			·			
<400> uggaa	128 gacuu	gugauuuugu	ug					22
<210> <211> <212> <213>	129 22 RNA Mou	se						
<400> uauug	129 cacuu	gucccggccu	ga			**	v	22
<210> <211> <212> <213>	130 22 RNA Mous	se						
<400> caaagı	130 ugcug	uucgugcagg	ua					22
<210> <211> <212> <213>	131 22 RNA Rat	r		•				
<400> ccuuga	131 agggg	caugágggua	gu					22
<210> <211> <212> <213>	132 22 RNA Rat		,			,		
<400> guggug	132 Jugcu	aguuacuuuu	gg					22
<210> <211> <212> <213>	133 22 RNA Rat					r		
<400> ucaaga	133 .gcaa	uaacgaaaaa	ug					22

<210> 134 <211> 22 <212> RNA <213> Rat		
<400> 134 ucacccuucc auaucuaguc	uc	22
<210> 135 <211> 22 <212> RNA <213> Rat		
<400> 135 ucucccuccg ugugcccagu	au .	22
<210> 136 <211> 22 <212> RNA <213> Rat		
<400> 136 ugucccucug ggucgcccag	cu	22
<210> 137 <211> 22 <212> RNA <213> Rat		
<400> 137 cagcccugcu gucuuaaccu	cu	22
<210> 138 <211> 22 <212> RNA <213> Rat		
<400> 138 agaguaguag guugcauagu	ac	22
<210> 139 <211> 22 <212> RNA <213> Homo sapiens		
<400> 139 uuaucagaau cuccaggggu	ac	22
<210> 140 <211> 22 <212> RNA <213> Homo sapiens		
<400> 140 aauccuugga accuaggugu	ga	22

<210> <211> <212> <213>	141 22 RNA Homo sapiens			
<400> auugcad	141 cggu auccaucugu	aa		22
<210> <211> <212> <213>	142 22 RNA Homo sapiens			-
<400> cggcggg	142 ggac ggcgauuggu	сс		22
<210> <211> <212> <213>	143 22 RNA Homo sapiens			
<400> uaaugc	143 cccu aaaaauccuu	au		22
<210> <211> <212> <213>	144 22 RNA Homo sapiens			
<400> uaacug	144 guug aacaacugaa	сс		22
<210> <211> <212> <213>	145 22 RNA Caenorhabditis	elegans	·	
<400> ugaggua	145 agua gguuguauag	uu		22
<210> <211> <212> <213>	146 22 RNA Caenorhabditis	elegans		
	146 agac cucaagugug	ag ·		22
<210> <211> <212> <213>	147 22 RNA Caenorhabditis	elegans		
<400> uggaau	147 guaa agaaguaugu	ag .		22

<210>	148		1119-10CON-PCT.	ST25		
<211> <212> <213>	22 RNA	elegans				
<400>	148					
uaucac	agcc agcuuugaug	ug				22
<210> <211> <212> <213>	22 RNA	elegans			,	
<400> aggcag	149 ugug guuagcuggu	ug				22
<210> <211> <212> <213>	150 22 RNA Caenorhabditis	elegans				
<400> ucaccg	150 ggug gaaacuagca	gu				22
<210> <211> <212> <213>	151 22 RNA Caenorhabditis	elegans				
<400> ucaccg	151 ggug aaaauucgca	ug				22
<210> <211> <212> <213>	152 22 RNA Caenorhabditis	elegans		-		
<400≻ ucaccg	152 ggug aacacuugca	gu				22
<210> <211> <212> <213>	153 22 RNA Caenorhabditis	elegans				
<400> ucaccg	153 ggag aaaaacugga	gu				22
<210> <211> <212> <213>	154 22 RNA Caenorhabditis	elegans				
<400> ucaccg	154 ggug uaaaụcagcu	ug	-			22
<210>	155	•				

			1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Caenorhabditis	elegans		
<400> ucaccg	155 ggug uacaucagcu	aa	2	22
<210> <211> <212> <213>		elegans		
<400>			2	22
<210> <211> <212> <213>	22 RNA	elegans		
<400> caccggg	157 guua acaucuacag	ag ,		22
<210> <211> <212> <213>	22	elegans		
<400> uaucaca	158 aguu uacuugcugu	cg	2	22
<210> <211> <212> <213>	159 22 RNA Caenorhabditis	elegans		•
<400> ugacuaç	159 gaga cacauucagc	uu	2	22
<210> <211> <212> <213>	160 22 RNA Caenorhabditis	elegans		
<400> ugacuag	160 gaga cacauucagc	uu	2	22
<210> <211> <212> <213>	161 22 RNA Caenorhabditis	elegans		
<400> ugucauç	161 ggag ucgcucucuu	ca	2	22
<210> <211>	162 22			

4212 ,	DNA	1119-10CON-PCT.ST25	
<212> <213>	RNA Caenorhabditis elegans		
<400> ugucau	162 ggag gcgcucucuu ca	· · · · · · · · · · · · · · · · · · ·	22
<210> <211> <212> <213>	163 22 RNA Caenorhabditis elegans		
<400> ugaggu	163 aggc ucaguagaug cg		22
<210> <211> <212> <213>	164 22 RNA Caenorhabditis elegans		
<400> aagcac	164 cacg agaagcugca ga		22
<210> <211> <212> <213>	165 22 RNA Caenorhabditis elegans		
<400> ugauau	165 gucu gguauucuug gg		22
<210> <211> <212> <213>	166 22 RNA Caenorhabditis elegans	,	
<400> uacccgi	166 uagc uccuauccau gu		22
<210> <211> <212> <213>	167 22 RNA Caenorhabditis elegans		
<400> cacccgi	167 Jaca uauguuuccg ug		22
<210> <211> <212> <213>	168 22 RNA Caenorhabditis elegans		
<400> cacccgi	168 Jaca uuuguuuccg ug		22
<210> <211> <212>	169 22 RNA		

<213> Caenorhabditis elegans	1119-10CON-PCT.ST25	
<400> 169 uacccguaau cuucauaauc cg		22
<210> 170 <211> 22 <212> RNA <213> Caenorhabditis elegans		<i>L. L.</i>
<400> 170 uacccguaua aguuucugcu ga	•	22
<210> 171 <211> 22 <212> RNA <213> Caenorhabditis elegans		
<400> 171 uacccguaau guuuccgcug ag		22
<210> 172 <211> 22 <212> RNA <213> Caenorhabditis elegans	ï	
<400> 172 uacccuguag aucgagcugu gu	4	22
<210> 173 <211> 22 <212> RNA <213> Caenorhabditis elegans		
<400> 173 ugagaucguu caguacggca au		22
<210> 174 <211> 22 <212> RNA <213> Caenorhabditis elegans		
<400> 174 ucgaaucguu uaucaggaug au		22
<210> 175 <211> 22 <212> RNA <213> Caenorhabditis elegans		
:400> 175 Jauuaugcac auuuucuagu uc		22
210> 176 211> 22 212> RNA 213> Caenorhabditis elegans		

<400> ugacua	176 gaac cguuacucau	cu	22
<210> <211> <212> <213>	177 22 RNA Caenorhabditis	elegans	
<400> ugauau	177 guaa ucuagcuuac	ag	22
<210><211><211><212><213>	178 22 RNA Caenorhabditis	elegans	
<400> augaca	178 cuga agcgaguugg	aa	22
<210> <211> <212> <213>	179 22 RNA Caenorhabditis	elegans	
<400> uaugac	179 acug aagcguuacc	ga	22
<210> <211> <212> <213>	180 22 RNA Caenorhabditis	elegans	
<400> uaugaca	180 acug aagcguaacc	ga	22
<210> <211> <212> <213>	181 22 RNA Caenorhabditis	elegans	
<400> caugaca	181 acug auuagggaug	ug	22
<210> <211> <212> <213>	182 22 RNA Caenorhabditis	elegans	
<400> ucacaa	182 ccuc cuagaaagag	ua	22
<210> <211> <212> <213>	183 22 RNA Caenorhabditis	elegans	

1119-	10C0	N-PC	T.S	T25

	183 cuc aaaaguguag	ac	22
<211> <212>	184 22 RNA Caenorhabditis	elegans	
	184 uua aaaaguguag	aa	22
<211> <212>	185 22 RNA Caenorhabditis	elegans ·	
	185 Jucg uugguguuuc	ca .	22
	186 22 RNA Caenorhabditis	elegans	
	186 Icau ggguagugaa	cg	22
<210> <211> <212> <213>	187 22 RNA Caenorhabditis	elegans	
	187 Jaug uuggcauagc	ug	22
<211> <212>	188 22 RNA Caenorhabditis	elegans	
	188 Jaug uaggcaguuc	ag	22
	189 22 RNA Caenorhabditis	elegans	
	189 Jaaa uggcagucua	ca	22
<211> <212>	190 22 RNA Caenorhabditis	elegans	
<400>	190		

1119-10CON-PCT.ST25 uuaaagcuac caaccggcuu ca	22
<210> 191 <211> 22 <212> RNA <213> Caenorhabditis elegans	
<400> 191 uucguuguug augaagccuu ga	22
<210> 192 <211> 22 <212> RNA <213> Caenorhabditis elegans	
<400> 192 uucaucaggc cauagcuguc ca	22
<210> 193 <211> 22 <212> RNA <213> Caenorhabditis elegans	
<400> 193 uggaggccug guuguuugug cu	22
<210> 194 <211> 22 <212> RNA <213> Caenorhabditis elegans	·
<400> 194 auaaagcuag guuaccaaag cu	22
<210> 195 <211> 22 <212> RNA <213> Caenorhabditis elegans	
<400> 195 agcuuucgac augauucuga ac	22
<210> 196 <211> 22 <212> RNA <213> Caenorhabditis elegans	
<400> 196 ugagaucauu aguugaaagc cg	. 22
<210> 197 <211> 22 <212> RNA <213> Caenorhaḥditis elegans	
<400> 197	22

<211> <212>	198 22 RNA Caenorhabditis	elegans	
	198 auc gugaaagcca	gu .	22
<211> <212>	199 22 RNA Caenorhabditis	elegans	
	199 aua uaaauucagu	aa	22
<211> <212>	200 22 RNA Caenorhabditis	elegans	
	200 gua uguaauauug	ua	22
<211> <212>	201 22 RNA Caenorhabditis	elegans	
	201 uau uugaaaaguc	gu	22
<211> <212>	202 22 RNA Caenorhabditis	elegans	
	202 aug cuuugccaca	gu ·	22
<211> <212>	203 22 RNA Caenorhabditis	elegans	
	203 aag uuucaggugu	gc	22
<211> : <212> :	204 22 RNA Caenorhabditis	elegans	
	204 uug uuugaaugcc	cc	22

<211> <212>	205 22 RNA Caenorhabditis	alagans					
<400>	205 icgc ggugaaugco	_					22
<210>	206	,					
<212>	22 RNA Caenorhabditis	elegans					
	206 Icug caugaauuca	cg					22
<211>	207 22						
	RNA Caenorhabditis	elegans					
	207 .cug guuaucuuuu	сс		-		:	22
<211>	208 22 RNA						
	Caenorhabditis	elegans					
	208 uug ugcgaccagg	ag					22
<211>	209 22						
	RNA Caenorhabditis	elegans					
	209 gug aucaacaggc	ag .				•	22
<211>	210 22 RNA	•					
<213>	Caenorhabditis	elegans					
	210 auc uuaacugcgg	ug			•		22
<211>	211 22 RNA						
<213> (Caenorhabditis	elegans	*		1		
	211 aug cgcaugugcg	99					22

<210> <211>	212 22		1119-10CON-PCT.ST25	
<212> <213>	RNA Caenorhabditis	elegans		
<400> uuauug	212 cucg agaauacccu	uu		22
<210> <211> <212> <213>	213 22 RNA Caenorhabditis	elegans		
<400> uauugc	213 acuc uccccggccu	ga	·	22
<210> <211> <212> <213>	214 22 RNA Caenorhabditis	elegans		
<400> uaauac	214 uguc agguaaugac	gc		22
<210> <211> <212> <213>	215 22 RNA Caenorhabditis	elegans		
<400> ucccuga	215 agaa uucucgaaca	gc		22
<210> <211> <212> <213>	216 22 RNA Caenorhabditis	elegans		
	216 cucc gaugccauuc	ag		22
<210> <211> <212> <213>	217 22 RNA Caenorhabditis	elegans		
<400> Juugua	217 cuac acauagguac	ug		22
<210><211><212><213>	218 22 RNA Caenorhabditis	elegans		
<400> Juuguad	218 Cuac acaaaaguac	ug		22
<210>	219			

	_		1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Caenorhabditis	elegans		
<400> uacuggo	219 cccc caaaucuucg	cu	27	2
<210> <211> <212> <213>	220 22 RNA Caenorhabditis	elegans		
<400> ugaggua	220 aggu gcgagaaaug	ac	22	2
<210> <211> <212> <213>	221 22 RNA Caenorhabditis	elegans		
	221 aggc cuuugcuucg	ag	22	2
<210> <211> <212> <213>	222 22 RNA Caenorhabditis	elegans		
<400> cgguaco	222 gauc gcggcgggau	au	22	2
<210> <211> <212> <213>	223 22 RNA Caenorhabditis	elegans		
<400> ucuuugg	223 guug uacaaagugg	ua	22	2
<210> <211> <212> <213>	224 22 RNA Caenorhabditis	elegans		
<400> auuggud	224 ccc uccaaguagc	uc	22	2
<210> <211> <212> <213>	225 22 RNA Caenorhabditis	elegans		
<400> uuacaug	225 guuu cggguaggag	cu	_ 22	2
<210> <211>	226 22			

			1119-10CON-PCT.ST25	
<212> <213>	RNA Caenorhabditis	elegans		
<400> ugacuaç	226 gagc cuauucucuu	cu		22
<210> <211> <212> <213>	227 22 RNA Caenorhabditis	elegans		
	227 ugca cggauaacgc	uc		22
<210> <211> <212> <213>	228 22 RNA Caenorhabditis	elegans		
<400>	228 gacu uuugagcguu			22
<210> <211> <212> <213>	229 22 RNA Caenorhabditis	elegans		
<400>	229 Icaa cuguuggcau	-		22
<211> <212>	230 22 RNA Caenorhabditis	elegans		
	230 gug gugccgcucu	ua		22
<211> <212>	231 22 RNA Caenorhabditis	alagans		
<400>				22
<211> <212>	232 22 RNA Caenorhabditis	elegans		
<400>	232 cac uaacacugac	-		22
<211>	233 22			

<213>	Caenorhabditis	elegans	1119-10CON-PCT.ST25	
<400> ugcaaaı	233 ucuu ucgcgacugu	ag		22
<210> <211> <212> <213>	234 22 RNA Caenorhabditis	elegans		
<400> uggaaug	234 gcau agaagacugu	ac		22
<210> <211> <212> <213>	235 22 RNA Caenorhabditis	elegans		
<400> gaguau	235 cagg aguacccagu	ga		22
<210> <211> <212> <213>	236 22 RNA Caenorhabditis	elegans		
<400> gguuuu	236 gaga ggaauccuuu	ua		22
<210> <211> <212> <213>	237 22 RNA Caenorhabditis	elegans	· -	
<400> aguaaaı	237 ucuc auccuaaucu	gg		22
<210> <211> <212> <213>	238 22 RNA Caenorhábditis	elegaņs		
<400> gugaugi	238 ucga acucuuguag	ga		22
<210> <211> <212> <213>	239 22 RNA Caenorhabditis	elegans		
<400> uagcuu	239 uuua guuuucacgg	ug		22
<210> <211> <212> <213>	240 22 RNA Caenorhabditis	elegans		

1119-10CON-PCT.ST25

<400> guuucu	240 cgau guuuucugau	ac	22
<210> <211> <212> <213>	241 22 RNA Caenorhabditis	elegans	
<400> ggcggg	241 uggu uguuguuaug	gg	22
<210> <211> <212> <213>	242 22 RNA Caenorhabditis	elegans	
<400> ugaggg	242 agga agggugguau	uu .	22
<210> <211> <212> <213>	243 22 RNA Caenorhabditis	elegans	
<400> aggcaa	243 gacu uuggcaaagc	uu	22
<210> <211> <212> <213>	244 22 RNA Caenorhabditis	elegans	
<400> cccguga	244 aagu gucugcugca	au	22
<210> <211> <212> <213>	245 22 RNA Caenorhabditis	elegans	
<400> ggcaaga	245 aauu agaagcaguu	ug	22
<210> <211> <212> <213>	246 22 RNA Caenorhabditis	e l egans	
<400> ggcaaga	246 acuc uggcaaaacu	ug	22
<210> <211> <212> <213>	247 22 RNA Caenorhabditis	elegans	

400	2.47	1119-10CON-PCT.ST25	
<400> ggcaug	247 augu agcaguggag au _		22
<210> <211> <212> <213>	248 22 RNA Caenorhabditis elegans		
<400> ucgccg	248 ggug ggaaagcauu cg		22
<210> <211> <212> <213>	249 22 RNA Caenorhabditis elegans		
<400> uguagg	249 caug gguguuugga ag		22
<210> <211> <212> <213>	250 22 RNA Caenorhabditis elegans		
<400> ugcccg	250 uacu gugucggcug cu		22
<210> <211> <212> <213>	251 22 RNA Drosophila melanogaster		
<400> guuaau	251 ggca cuggaagaau uc		22
<210> <211> <212> <213>	252 22 RNA Drosophila melanogaster		
<400> uggacg	252 gaga acugauaagg gc		22
<210> <211> <212> <213>	253 22 RNA Drosophila melanogaster		
<400> .uuuguq	253 gacc gacacuaacg gg		22
<210> <211> <212> <213>	254 22 RNA Drosophila melanogaster		
-400-	254		

ucagguaccu gaaguagcgc gc	1119-10CON-PCT.ST25	22
<210> 255 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 255 cauugcacuu gucccggccu au		22
<210> 256 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 256 ugauugucca aacgcaauuc uu		22
<210> 257 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 257 uaggaacuuc auaccgugcu cu		22
<210> 258 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 258 uaaaugcacu aucugguacg ac		22
<210> 259 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 259 ucggugggac uuucguccgu uu	•	22
<210> 260 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 260 uugguccccu ucaaccagcu gu		22
<210> 261 <211> 22 <212> RNA <213> Drosophila melanogaster		
<400> 261 ugacuagauc cacacucauu aa		22

1119-10CON-PCT.ST25

<210> <211> <212> <213>	262 22 RNA Drosophila melanogaster	
<400> aggugca	262 auug uagucgcauu gu	22
<210> <211> <212> <213>	263 22 RNA Drosophila melanogaster	
<400> uguauu	263 uacg uugcauauga aa	22
<210> <211> <212> <213>	264 22 RNA Drosophila melanogaster	
<400> ugucau	264 ggaa uugcucucuu ug	22
<210> <211> <212> <213>	265 22 RNA Drosophila melanogaster	
<400> aaucua	265 gccu cuacuaggcu uu	22
<210> <211> <212> <213>	266 22 RNA Drosophila melanogaster	
<400> uaaaua	266 ucag cugguaauuc ug	22
<210> <211> <212> <213>	267 22 RNA Drosophila melanogaster	-
<400> ugaagu	267 cagc aacuugauuc ca	22
<210> <211> <212> <213>	268 22 RNA Drosophila melanogaster	
<400> uggcag	268 ugug guuagcuggu ug	22

1119-10CON-PCT.ST25

<210> <211> <212> <213>	269 22 RNA Drosophila melanogaster				
<400> uaaggo	269 cacgc ggugaaugcc aa			•	22
<210> <211> <212> <213>	270 22 RNA Drosophila melanogaster				
<400> uaaago	270 :uaga uuaccaaagc au				22
<210> <211> <212> <213>	271 22 RNA Drosophila melanogaster	-			
<400> uaggaa	271 cuua auaccgugcu cu				22
<210> <211> <212> <213>	272 22 RNA Drosophila melanogaster				
<400> uugugc	272 gugu gacagcggcu au				22
<210> <211> <212> <213>	273 22 RNA Drosophila melanogaster		•		
<400> Jagcac	273 cauu cgaaaucagu gc		1	,	22
<210> <211> <212> <213>	274 22 RNA Drosophila melanogaster		(
<400> acccg	274 uaaa uccgaacuug ug				22
<210> <211> <212> <213>	275 22 RNA Drosophila melanogaster			·	
<400> 1auugc	275 acua gucccggccu gc				22

		1119-10con-PCT.ST25	
<210> <211> <212> <213>	276 22 RNA Drosophila melanogaster		
<213>	Di Osopiii ta me tanogas cei		
<400> ugacuaç	276 gacc gaacacucgu gc		22
<210>	277		
<211>	22		
<212> <213>	RNA Drosophila melanogaster		
<400>	277		
uguguu	gaaa aucguuugca cg		22
<210>	278	;	
<211>	22		
<212> <213>	RNA Drosophila melanogaster		
<400>	278		
uugagc	aaaa uuucaggugu gu		22
<210>	279		
<211>	22		
<212> <213>	RNA Drosophila melanogaster		
<400>	279		22
cuuggc	acug ggagaauuca ca	•	22
<210>	280		
<211> <212>	22 RNA		
<213>	Drosophila melanogaster		
<400>	280		22
uuucau	gucg auuucauuuc au		44
<210>	281		
<211> <212>	22 RNA		
<213>	Drosophila melanogaster		
<400>	281		22
uaaaua	uuua aguggagccu gc		44
<210>	282		
<211> <212>	22 RNA		
<213>	Drosophila melanogaster		
<400>	282 cauu uugaaagcug au		22
agagaa	and dagaaagaag au		
<210>	283		

		1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Drosophila melanogaster		
<400> uuuagg	283 Juuuc acaggaaacu gg		22
<210> <211> <212> <213>	284 22 RNA Drosophila melanogaster		
<400> uggcaa	284 gaug ucggaauagc ug		22
<210> <211> <212> <213>	285 22 RNA Drosophila melanogaster		
<400> uaaucu	285 caau uuguaaaugu ga		22
<210> <211> <212> <213>	286 22 RNA Drosophila melanogaster		
<400> auugua	286 cuuc aucaggugcu cu		22
<210> <211> <212> <213>	287 22 RNA Drosophila melanogaster		
<400> ucuuug	287 guau ucuagcugua ga		22
<210> <211> <212> <213>	288 22 RNA Drosophila melanogaster	•	
<400> ucaggu	288 acuu agugacucuc aa	2	22
<210> <211> <212> <213>	289 22 RNA Drosophila melanogaster		
<400> ucuuug	289 guga uuuuagcugu au	2	22
<210>	290		

<212> <213>	RNA Drosophila melanogaster	1119-10CON-PCT.ST25	
<400>	_		77
ucccug	agac ccuaacuugu ga		22
<210> <211> <212> <213>	22 RNA		
<400> ucacaa	291 ccuc cuugagugag cg		22
<210> <211> <212> <213>	RNA		
<400> aaucac	292 agga uuauacugug ag		22
<210> <211> <212> <213>	22 RNA		
<400> uggcaa	293 gaug ucggcauagc ug		22
<210> <211> <212> <213>	22		
<400> gcacug	294 ggua aaguuugucc ua		22
<210> <211> <212> <213>	295 22 RNA Drosophila melanogaster		
<400> uauugc	295 acac uucccggccu uu		22
<210> <211> <212> <213>	296 22 RNA Drosophila melanogaster		
<400> uauugc	296 acau ucaccggccu ga		22
<210> <211> <212>	297 22 RNA		

<213>	Drosophila melanogaster	1119-10CON-PCT.ST25	
<400> uauugc	297 acuu gagacggccu ga		22
<210> <211> <212> <213>	298 22 RNA Drosophila melanogaster		,
<400> uauugc	298 acuu uucacagccc ga		22
<210> <211> <212> <213>	299 21 RNA Drosophila melanogaster		
<400> uauucg	299 agcc aauaaguucg g		21
<210> <211> <212> <213>	300 22 RNA Drosophila melanogaster	•	
<400> uuuuga	300 uugu ugcucagaaa gc		22
<210> <211> <212> <213>	301 22 RNA Drosophila melanogaster		
<400> ugucuui	301 uuuc cgcuuacugg cg		22
<210> <211> <212> <213>	302 22 RNA Drosophila melanogaster		
<400> ugaacad	302 cagc uggugguauc ca	·	22
<210> <211> <212> <213>	303 22 RNA Drosophila melanogaster		
<400> ucacugo	303 ggcu uuguuuaucu ca		22
<210> <211> <212> <213>	304 22 RNA Drosophila melanogaster		

1119-10CON-PCT.ST25

<400> uaucad	304 cagcc agcuuugaug gg	22
<210> <211> <212> <213>	305 22 RNA Drosophila melanogaster	
<400> acguai	305 Jacug aauguauccu ga	22
<210> <211> <212> <213>	306 22 RNA Drosophila melanogaster	
<400> cgguau	306 vaccu ucaguauacg ua	22
<210> <211> <212> <213>	307 22 RNA Artificial	
<220> <223>	Anti-microRNA molecule	
<400> cacaag	307 uucg gaucuacggg uu	22
<210> <211> <212> <213>	308 22 RNA Artificial	
<220> <223>	Anti-microRNA molecule	
<400> cauagc	308 ccug uacaaugcug cu	22
<210> <211> <212> <213>	309 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> ccacag	309 gagu cugagcauuu ga	22
<210> <211> <212> <213>	310 22 RNA Artificial	,

1119-10CON-PCT.ST25

<220> <223> anti-microRNA molecule <400> 310 22 uaccugcacu guaagcacuu uu <210> 311 <211> <212> 22 RNA <213> Artificial <220>
<223> anti-microRNA molecule <400> 311 uaucugcacu gucagcacuu ua 22 <210> 312 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 312 22 gauageccug uacaaugeug cu <210> 313 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 313 22 acaaauucgg uucuacaggg ua <210> <211> <212> 314 22 RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 314 gaaagagacc gguucacugu ga 22 315 22 <210> <211> <212> RNA <213> Artificial <220> anti-microRNA molecule <223>

<400> 315

augcco	uuuc aucauugcac ug	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> uccgug	316 guuc uacccugugg ua		22
<210> <211> <212> <213>	22	·	
<220> <223>	anti-microRNA molecule		
<400> guagug	317 cuuu cuacuuuaug gg		22
<210> <211> <212> <213>	318 22 RNA Artificial	. •	
<220> <223>	anti-microRNA molecule		
<400> uacuag	318 acug ugagcuccuc ga		22
<210> <211> <212> <213>	319 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ccccua	319 ucac gauuagcauu aa		22
<210> <211> <212> <213>	320 22 RNA Artificial		-
<220> <223>	anti-microRNA molecule		
<400> cucacci	320 gaca gcguugaaug uu		22
<210>	321		

1119-10CON-PCT.ST25

<211> <212> <213>	22 RNA Artificial		
<220>			
<223>	anti-microRNA molecule		
<400> cccacc	321 gaca gcaaugaaug uu		22
<210> <211> <212> <213>	322 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acucac	322 cgac agguugaaug uu		22
<210> <211> <212> <213>	323 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ugugag	323 uucu accauugcca aa		22
<210> <211> <212> <213>	324 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agugaa	324 uucu accagugcca ua		22
<210> <211> <212> <213>	325 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
	325 auca guucuccguc ca		22
<210> <211> <212>	326 22 RNA		

1119-10CON-PCT.ST25

<220> <223>	anti-microRNA molecule	
<400> ucaggaa	326 acug ccuuucucuc ca	22
<210> <211> <212> <213>	327 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> agccca	327 aaag gagaauucuu ug	22
<210> <211> <212> <213>	328 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> ccggcu	328 gcaa cacaagacac ga	22
<210> <211> <212> <213>	329 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> cugcaa	329 accc ugcauguggg ag	22
<210> <211> <212> <213>	330 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> acccuc	330 cacc augcaaggga ug	22
<210> <211> <212> <213>	331 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400>	331	

cugaua	ucag cucaguaggc ac	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> accuaa	332 uaua ucaaacauau ca		22
<210> <211> <212> <213>	333 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agcugo	333 uuuu gggauuccgu ug		22
<210> <211> <212> <213>	334 22 RNA Artificial	·	
<220> <223>	anti-microRNA molecule		
<400> uggcug	334 ucaa uucauagguc ag		22
<210> <211> <212> <213>	335 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acuggg	335 acuu uguaggccag uu	·	22
<210> <211> <212> <213>	336 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucaucui	336 ugcc cgcaaagacc ca		22
<210>	337		

<211>	22	1119-10CON-PCT.ST25	
<212> <213>	RNA		
<220> <223>			
<400> uccac	337 augga guugcuguua ca		22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> ugccaa	338 auauu ucugugcugc ua		22
<210> <211> <212> <213>	· 22		
<220> <223>	anti-microRNA molecule		
<400> cccaac	339 caaca ugaaacuacc ua		22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> gcuggg	340 ugga gaagguggug aa		22
<210> <211> <212> <213>	341 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gaaccu	341 aucu ccccucugga cc		2 <u>2</u>
<210> <211> <212> <213>	342 22 RNA Artificial		

,	WO 2005/079397		PCT/US2005/0047
<220>		1119-10CON-PCT.ST25	
<223> <400>			22
uaacca	augu gcagacuacu gu		22
<210> <211> <212> <213>	343 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	343 uagu cugaacacug gg		22
<210> <211> <212> <213>	344 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> aacaga	344 uagu cuaaacacug gg		22
<210><211><211><212><213>	345 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acaucg	345 uuac cagacagụgu ua		22
<210> <211> <212> <213>	346 22 RNA Artificial		

22

<210> 347 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 347

<220> <223> anti-microRNA molecule

ucauuaccag gcaguauuag ag

<400> 346

uccaucauua cccggcagua uu	1119-10CON-PCT.ST25	22
<210> 348 <211> 22 <212> RNA <213> Artificial		•
<220> <223> anti-microRNA molecule		
<400> 348 cuaguggucc uaaacauuuc ac		22
<210> 349 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 349 aggcauagga ugacaaaggg aa		22
<210> 350 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 350 cagacuccgg uggaaugaag ga		22
<210> 351 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule	•	
<400> 351 ccacacacuu ccuuacauuc ca		22
<210> 352 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 352 acaagcuuuu ugcucgucuu au		22
<210> 353		

		1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucagco	353 gcug ucacacgcac ag	2	22
<210> <211> <212> <213>	354 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aggcga	354 agga uga⊂aaaggg aa	2	2
<210> <211> <212> <213>	355 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uggccg	355 ugac uggagacugu ua	. 2	2
<210> <211> <212> <213>	356 22 RNA Artific i al		
<220> <223>	anti-microRNA molecule		
<400> gguaca	356 auca acggucgaug gu	2.	2
<210> <211> <212> <213>	357 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acugco	357 uguc ugugccugcu gu	22	2
<210> <211> <212> <213>	358 22 RNA Artificial		

.220		TTT9-T0C0N-PC1.S125	
<220> <223>	anti-microRNA molecule		
	358 ucaa uucauagguc au		22
<210> <211> <212> <213>	359 22 RNA Artificial	·	
<220> <223>	anti-microRNA molecule		
<400> ucacag	359 uugc cagcugagau ua		22
<210> <211> <212> <213>	360 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	360 aguu ccugaugcag ua		22
<210> <211> <212> <213>	361 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacaug	361 guua gaucaagcac aa		22
<210> <211> <212> <213>	362 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aagaau	362 ugcg uuuggacaau ca		22
<210> <211> <212> <213>	363 22 RNÁ Artificial		
<220> <223>	anti-microRNA molecule		
<400>	363		

caaag	uguca gauacggugu gg	1119-10CON-PCT.ST25	22
<210><211><212><213>	22		
<220> <223>	anti-microRNA molecule		
<400> aaacc	364 cagca gacaauguag cu		22
<210> <211> <212> <213>	365 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		,
<400> gaccca	365 aguag ccagauguag cu		22
<210> <211> <212> <213>	366 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		•
<400> uggggu	366 Jauuu gacaaacuga ca		22
<210> <211> <212> <213>	367 22 RNA Artificial	•	
<220> <223>	anti-microRNA mole⊂ule		
<400> aaacgg	367 Jaacc acuagugacu ug		22
<210> <211> <212> <213>	368 22 RNA Artificial		
<220> <223>	anti-microRNA mole⊂ule		
<400> cucaau	368 agac ugugagcucc uu		22
√21 0 \	360		

	-	1119-10con-pct.st25	
<211> <212> <213>	22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gaaagu	369 gccc ccacaguuug ag		22
<210> <211> <212> <213>	370 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		-
<400> aacagg	370 auug aggggggcc cu		. 22
<210> <211> <212> <213>	371 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> auguau	371 gugg gacgguaaac ca		22
<210> <211> <212> <213>	372 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cuuuga	372 caau acuauugcac ug		22
<210> <211> <212> <213>	373 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> caccaa	373 aaca uggaagcacu ua		22
<210> <211> <212> <213>	374 22 RNA Artificial		

		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> cuucca	374 aguca aggauguuua ca		22
<210> <211> <212> <213>	375 22 RNA Artificial		,
<220> <223>	anti-microRNA molecule		
<400> ucgcco	375 cucuc aacccagcuu uu		22
<210> <211> <212> <213>	376 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgaaco	376 caca aućccuggcu ua	2	22
<210> <211> <212> <213>	377 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gauaca	377 gcag caauucaugu uu	2	22
<210> <211> <212> <213>	378 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agaggu	378 cgac cguguaaugu gc	2	22
<210> <211> <212> <213>	379 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	379		

ccagca	igcac cuggggcagu gg	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	380 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> caccaa	380 ugcc cuaggggaug cg		22
<210> <211> <212> <213>	381 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ggcugg	381 agga agggcccaga gg		22
<210> <211> <212> <213>	382 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acggaa	382 gggc agagagggcc ag		22
<210> <211> <212> <213>	383 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaaaag	383 guua gcugggugug uu		22
<210> <211> <212> <213>	384 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		٠.
<400> acaacca	384 agcu aagacacugc ca		22
<210 >	385		

<211> <212>	22 RNA	1119-10CON-PCT.ST25	
<213> <220>	Artificial		
<223>	anti-microRNA molecule		
<400> caauca	385 gcua augacacugc cu	2	22
<210> <211> <212> <213>	386 22 RNA Artificial	·	
<220> <223>	anti-microRNA molecule		
<400> caauca	386 gcua acuacacugc cu	2	2
<210> <211> <212> <213>	387 22 RNA Artificial	,	
<220> <223>	anti-microRNA molecule		
<400> acaggc	387 cggg acaagugcaa ua	.2	2
<210> <211> <212> <213>	388 22 RNA Artificial	• .	
<220> <223>	anti-microRNA molecule		
<400> cuaccu	388 gcac gaacagcacu uu	. 2	2
<210> <211> <212> <213>	389 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ugcuca	389 auaa auacccguug aa	2	2
<210> <211> <212> <213>	390 22 RNA Artificial		

		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> gcaaaa	390 augu gcuagugcca aa	;	22
<210> <211> <212> <213>	391 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aacaau	391 acaa cuuacuaccu ca		22
<210> <211> <212> <213>	392 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uaccug	392 cacu guuagcacuu ug		22
<210> <211> <212> <213>	393 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acacaa	393 auuc gguucuacag gg	· -	22
<210> <211> <212> <213>	394 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacaua	394 ggaa ugaaaagcca ua	;	22
<210> <211> <212> <213>	395 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	395		

acaaaguucu gugaugcacu ga	1119-10CON-PCT.ST25	22
<210> 396		~~
<211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 396 uccucaagga gccucagucu ag		22
<210> 397 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule	•	
<400> 397 ccccuaucac aauuagcauu aa		22
<210> 398 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 398 aacagguagu cuaaacacug gg		22
<210> 399 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 399 ucaucauuac caggcaguau ua		22
<210> 400 <211> 22 <212> RNA <213> Artificial		
<220> <223> anti-microRNA molecule		
<400> 400 ucuagugguc cuaaacauuu ca		22
<210× 401		

		1119-10con-pct.ST25	
<211> <212> <213>	22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aggcaa	401 agga ugacaaaggg aa		22
<210> <211> <212> <213>	402 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	1	
<400> ccaguc	402 aguu ccugaugcag ua		22
<210> <211> <212> <213>	403 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaacgg	403 aacc acuagugacu ua		22
<210> <211> <212> <213>	404 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uccagc	404 agcu cacaaucuag ug		22
<210> <211> <212> <213>	405 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaaagu	405 gccc ccauaguuug ag		22
<210> <211> <212> <213>	406 22 RNA Artificial		

,220·		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> gcacac	406 caaag uggaagcacu uu		22
<210> <211> <212> <213>	407 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	-	
<400> agagag	407 ggcc uccacuuuga ug		22
<210> <211> <212> <213>	408 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacuca	408 aaac cuggcggcac uu		22
<210> <211> <212> <213>	409 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	409 agcc cccaguuuga gu		22
<210> <211> <212> <213>	410 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acacua	410 caaa cucugcggca cu	· · · · · · · · · · · · · · · · · · ·	22
<210> <211> <212> <213>	411 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	411		

acacac	aaaa gggaagcacu uu	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	412 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gacuca	412 aaag uaguagcacu uu		22
<210> <211> <212> <213>	413 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acaugo	413 acau gcacacauac au	*	22
<210> <211> <212> <213>	414 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ggaaga	414 acag cccuccucug cc		22
<210> <211> <212> <213>	415 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gaagaga	415 agcu ugcccuugca ua		22
<210> <211> <212> <213>	416 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cagcua	416 ugcc agcaucuugc cu		22
<210>	417		

<211>	22	1119-10CON-PCT.ST25	
<212> <213>	RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gguguu	417 gcag cgcuucaugu uu		22
<210> <211> <212> <213>	418 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacuua	418 cuga gcaccuacua gg		22
<210> <211> <212> <213>	419 22 RNA Artificial	· · · · · · · · · · · · · · · · · · ·	
<220> <223>	anti-microRNA molecule		
<400> gacugg	419 agga agggcccaga gg		22
<210> <211> <212> <213>	420 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		•
<400> cucugo	420 aggc ccugugcuuu gc		22
<210> <211> <212> <213>	421 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> guucua	421 ggau aggcccaggg gc		22
<210> <211> <212> <213>	422 22 RNA Artificial	·	

.220		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
	422 ucau auaggagcug aa		22
<210> <211> <212> <213>	423 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	423 aauc acugaugcug ga		22
<210> <211> <212> <213>	424 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	424 uccu ggaggacagg ga		22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> gcuaua	425 aagu aacugagacg ga		22
<210> <211> <212> <213>	426 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gacuga	426 ccga ccgaccgauc ga		22
<210> <211> <212> <213>	427 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	427		

cgggug	gcgau uucuguguga ga	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	428 22 RNA Artificial		:
<220> <223>	anti-microRNA molecule		
<400> caguca	428 Iggcu uuggcuagau ca	-	22
<210> <211> <212> <213>	429 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agcacu	429 Iggac uaggggucag ca		22
<210> <211> <212> <213>	430 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gaggca	430 ggca cucgggcaga ca		22
<210> <211> <212> <213>	431 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaucag	431 cuaa uuacacugcc ua		22
<210> <211> <212> <213>	432 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gaaagu	432 guau gggcuuugug aa	•	22
√21 ∩ ∖	433		

<211>	22	1119-10CON-PC1.ST25	
<212> <213>	RNA Artificial		
<220> <223>	anți-microRNA molecule		
<400> ggcuca	433 aagg gcuccucagg ga	23	2
<212>	22	,	
<220> <223>	anti-microRNA molecule		
<400> caacaa	434 aauc acaagucuuc ca	2.	2,
<210> <211> <212> <213>	435 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	435 cggg acaagugcaa ua	2.	2
	436 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uaccug	436 cacg aacagcacuu ug	2	2
<210> <211> <212> <213>	437 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> acuacc	437 cuca ugccccucaa gg	2.	2
<210> <211> <212> <213>	438 22 RNA Artificial		

		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> ccaaaa	438 guaa cuagcacacc ac	2	22
<210> <211> <212> <213>	439 22 RNA Artificial	·	
<220> <223>	anti-microRNA molecule		÷
<400> cauuuu	439 ucgu uauugcucuu ga	2	22
<210> <211> <212> <213>	440 22 RNA Artificial		٠
<220> <223>	anti-microRNA molecule		
<400> gagacu	440 agau auggaagggu ga	7	22
<210> <211> <212> <213>	441 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> auacug	441 ggca cacggaggga ga		22
<210> <211> <212> <213>	442 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agcugg	442 gcga cccagaggga ca		22
<210> <211> <212> <213>	443 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	443		

agagg	uuaag acagcagggc ug	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	22		*
<220>	anti-microRNA molecule		
<400> guacua	444 augca accuacuacu cu		22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> guacco	445 ccugg agauucugau aa	• .	22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> ucacac	446 ccuag guuccaagga uu		22
<210> <211> <212> <213>	447 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uuacag	447 augg auaccgugca au		22
<210> <211> <212> <213>	448 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ggacca	448 aucg ccguccccgc cg		22
<210>	449		

<211> <212>	22 RNA	1119-10CON-PCT.ST25	
<213>	Artificial		
<220> <223>	anti-microRNA molecule		
<400> auaagg	449 auuu uuaggggcau ua	22	2
<210> <211> <212> <213>	450 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gguuca	450 guug uucaaccagu ua	22	2
<210> <211> <212> <213>	451 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aacuau	451 acaa ccuacuaccu ca	22	2
<210> <211> <212> <213>	452 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cucaca	452 cuug aggucucagg ga	22	2
<210> <211> <212> <213>	453 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cuacau	453 acuu cuuuacauuc ca	22	2
<210> <211> <212> <213>	454 22 RNA Artificial		

220		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
	454 aaag cuggcuguga ua	;	22
<210> <211> <212> <213>	455 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	455 gcua accacacugc cu		22
<210> <211> <212> <213>	456 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
:400> ıcugcu	456 aguu uccacccggu ga	;	22
<210> <211> <212> <213>	457 22 RNA Artificial		
:220> :223>	anti-microRNA molecule		
:400> :augcg	457 aauu uucacccggu ga		22
:210> :211> :212> :213>	458 22 RNA Artificial		
:220> :223>	anti-microRNA molecule		
:400> ıcugca	458 agug uucacccggu ga		22
:210> :211> :212> :213>	459 22 RNA Artificial		
:220> :223>	anti-microRNA molecule		
4005	450	•	

acucca	guuu uucucccggu ga	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	460 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> caagcu	460 gauu uacacccggu ga		22
<210> <211> <212> <213>	461 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uuagcu	461 gaug uacacccggu ga		. 22
<210> <211> <212> <213>	462 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uaggug	462 auuu uucacccggu ga		22
<210> <211> <212> <213>	463 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cucugua	463 agau guuaacccgg ug		22
<210> <211> <212> <213>	464 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgacago	464 caag uaaacuguga ua	,	22
<210>	465		

<211>	22	1119-10CON-PCT.ST25	
<212> <213>	RNA Artificial	•	
<220> <223>	anti-microRNA molecule		
<400> aagcug	465 aaug ugucucuagu ca		<u>:</u>
<210> <211> <212> <213>	466 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aagcug	466 aaug ugucucuagu ca	22	<u>'</u>
<210> <211> <212> <213>	467 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ugaaga	467 gagc gacuccauga ca	· · · · · · · · · · · · · · · · · · ·	<u>:</u>
<210> <211> <212> <213>	468 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	• •	
<400> ugaaga	468 gagc gccuccauga ca	22	
<210> <211> <212> <213>	469 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> :gcauci	469 uacu gagccuaccu ca	. 22	
<210> <211> <212> <213>	470 22 RNA Artificial		

		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> ucugca	470 gcuu cucguggugc uu	2	2
<210> <211> <212> <213>	471 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cccaaga	471 aaua ccagacauau ca	, 2	2
<210> <211> <212> <213>	472 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acaugg	472 auag gagcuacggg ua	2	2
<210> <211> <212> <213>	473 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacgga	473 aaca uauguacggg ug	2	2
<210> <211> <212> <213>	474 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacgga	474 aaca aauguacggg ug	2	2
<210> <211> <212> <213>	475 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	475		

cggauı	lauga agauuacggg ua	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	22		,
<220> <223>	anti-microRNA molecule		
<400> ucagca	476 gaaa cuuauacggg ua		22
<210> <211> <212> <213>	477 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cucago	477 ggaa acauuacggg ua		22
<210> <211> <212> <213>	478 22 RNA Artificial		
<220> < <223>	anti-microRNA molecule		
<400> acacag	478 cucg aucuacaggg ua	•	22
<210> <211> <212> <213>	479 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		,
<400> auugcc	479 guac ugaacgaucu ca		22
<210> <211> <212> <213>	480 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	. '	
<400> aucauc	480 cuga uaaacgauuc ga		22
<210>	481		**

1119-10CON-PCT.ST25 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 481 gaacuagaaa augugcauaa ua 22 <210> 482 <211> <212> 22 RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 482 agaugaguaa cgguucuagu ca 22 <210> 483 <211> <212> 22 RNA: Artificial <213> <220> <223> anti-microRNA molecule <400> 483 cuguaagcua gauuacauau ca 22 <210> 484 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 484 uuccaacucg cuucaguguc au 22 <210> 485 <211> 22 <212> RNA Artificial <213> <220> <223> anti-microRNA molecule <400> 485 icgguaacgc uucaguguca ua 22 <210> 486 <211> 22 <212> RNA <213> Artificial

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
	486 Iacgc uucaguguca ua	,	22
<210> <211> <212> <213>	487 22 RNA Artificial		v
<220> <223>	anti-microRNA molecule		
<400> cacauc	487 ccua aucaguguca ug		22
<210> <211> <212> <213>	488 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uacucu	488 uucu aggagguugu ga		22
<210> <211> <212> <213>	489 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> gucuac	489 acuu uugagucuuc ga	·	22
<210> <211> <212> <213>	490 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		÷
<400> uucuac	490 acuu uuuaauuuuc ga		22
<210> <211> <212> <213>	491 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	491		

uggaaa	acacc aacgacguau ua	1119-10CON-PCT.ST25		22
<210> <211> <212> <213>	492 22 RNA Artificial			
<220> <223>	anti-microRNA molecule	٠.	ı	t.
<400> cguuca	492 acuac ccaugucuuu ca			22
<210> <211> <212> <213>	493 22 RNA Artificial			
<220> <223>	anti-microRNA molecule			
<400> cagcua	493 Lugcc aacaucuugc cu			22
<210> <211> <212> <213>	494 22 RNA Artificial		•	
<220> <223>	anti-microRNA molecule	•	•	
<400> cugaac	494 ugcc uacaucuugc ca			22
<210> <211> <212> <213>	495 22 RNA Artificial		·	
<220> <223>	anti-microRNA molecule			
<400> uguaga	495 cugc cauuucuugc ca			22
<210> <211> <212> <213>	496 22 RNA Artificial			
<220> <223>	anti-microRNA molecule			
<400> ugaagc	496 cggu ugguagcuuu aa		•	22
-210 -	497			

		4440.40	
<211> <212> <213>		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> ucaagg	497 Joune aucaacaacg aa		22
<210> <211> <212> <213>			
<220> <223>	anti-microRNA molecule		
<400> uggaca	498 gcua uggccugaug aa		22
<210> <211> <212> <213>	499 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	·	
<400> agcaca	499 aaca accaggccuc ca		22
<210> <211> <212> <213>	500 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agcuuu	500 ggua accuagcuuu au		22
<210> <211> <212> <213>	501 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> guucaga	501 aauc augucgaaag cu		22

<210> 502 <211> 22 <212> RNA <213> Artificial

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
<400> cggcut	502 Iucaa cuaaugaucu ça		22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule	•	
<400> acuago	503 cuuuc acgaugaucu ca	·	22
<210> <211> <212> <213>	504 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acuggo	504 uuuc acgaugaucu ca		22
<210> <211> <212> <213>	505 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uuacug	505 aauu uauauggugc ua		22
<210> <211> <212> <213>	506 22 RNA Artificial	·	
<220> <223>	anti-microRNA molecule		
<400> uacaau	506 auua cauacuaccu ca		22
<210> <211> <212> <213>	507 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	507		

acgacı	uuuuc aaauacuuug ua ု	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	508 22 RNA Artificial	•	
<220> <223>	anti-microRNA molecule		
<400> acugug	508 ggcaa agcauucacu ua		2 2
<210> <211> <212> <213>	509 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcacac	509 cuga aacuuugcuc ac		2 2
<210> <211> <212> <213>	510 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ggggca	510 uuca aacaacauau ca		2 2
<210> <211> <212> <213>	511 22 RNA Artificial	- · · · · · · · · · · · · · · · · · · ·	
<220> <223>	anti-microRNA molecule		
<400> guggca	511 uuca ccgcgugccu ua		22
<210> <211> <212> <213>	512 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> :gugaaı	512 uuca ugcagugcca uu		22
₄ 210s	£10		

<211> <212> <213>	RNA	1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> ggaaaa	513 agaua accaguguca uu	·	22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> cuccug	514 ggucg cacaacuaau ac		22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> cugccu	515 guug aucacgagcu ua		22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> caccgc	516 aguu aagaugcauu ua		22
<210> <211> <212> <213>	517 22 RNA · Artificial		
<220> <223>	anti-microRNA molecule		
<400> cccgca	517 caug cgcauugcuc aa	· ·	22
<210> <211> <212> <213>	518 22 RNA Artificial		

		1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> aaaggg	518 uauu cucgagcaau aa	1	22
<210> <211> <212> <213>	519 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucaggo	519 cggg gagagugcaa ua		22
<210> <211> <212> <213>	520 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcguca	520 uuac cugacaguau ua		22
<210> <211> <212> <213>	521 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcuguu	521 cgag aauucucagg ga		22
<210> <211> <212> <213>	522 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> cugaau	522 ggca ucggaguaca aa		22
<210> <211> <212> <213>	523 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
44005	- 		

cagua	ccuau guguaguaca aa	1119-10CON-PCT.ST25	22
<210><211><211><212><213>	22 RNA		
<220> <223>			
<400> cagua	524 cuuuu guguaguaca aa		22
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> agcgaa	525 agauu ugggggccag ua		22
<210> <211> <212> <213>	526 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gucaนเ	526 Jucuc gcaccuaccu ca		22
<210> <211> <212> <213>	527 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cucgaa	527 gcaa aggccuacgc aa		22
<210> <211> <212> <213>	528 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> auaucc	528 cgcc gcgaucguac cg		22
√21 <i>0</i> ≤	520		

<211>	22	1119-10CON-PCT.ST25	
<212> <213>	RNA Artificial		
<220> <223>	anti-microRNA molecule	1	
<400> uaccad	529 cuuug uacaaccaaa ga		22
<210> <211> <212> <213>	530 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> gagcua	530 cuug gaggggacca au		22
<210> <211> <212> <213>	531 22 RNA Artificial	· · · · · · · · · · · · · · · · · · ·	
<220> <223>	anti-microRNA molecule		
<400> agcuco	531 uacc cgaaacaugu aa		22
<210> <211> <212> <213>	532 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agaaga	532 gaau aggcucuagu ca		22
<210> <211> <212> <213>	533 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gagcgu	533 uauc cgugcacgug ua		22
<210> <211> <212> <213>	534 22 RNA Artificial		

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
<400> gcaac	534 gcuca aaaguccugu ga		22
<210> <211> <212> <213>	22 RNA		
<220> <223>			
<400> ccaug	535 ccaac aguugacugu ga		22
<210> <211> <212> <213>	22 RNA		
<220> <223>			
<400> uaagag	536 gcggc accacuacuu aa		22
<210> <211> <212> <213>	537 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uuaccı	537 gcgg cacuacuacu ua		22
<210> <211> <212> <213>	538 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ugguca	538 gugu uagugaggug ug		22
<210> <211> <212> <213>	539 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	539		

cuacaç	gucgc gaaagauuug ca	1119-10CON-PCT.ST25		22
<210> <211> <212> <213>	540 22 RNA Artificial			
<220> <223>	anti-microRNA molecule			
<400> guacag	540 gucuu cuaugcauuc ca			22
<210> <211> <212> <213>	541 22 RNA Artificial	•		
<220> <223>	anti-microRNA molecule			
<400> ucacug	541 ggua cuccugauac uc	•		22
<210> <211> <212> <213>	542 22 RNA Artificial			
<220> <223>	anti-microRNA molecule			
<400> uaaaag	542 gauu ccucucaaaa cc			22
<210> <211> <212> <213>	543 22 RNA Artificial		•	
<220> <223>	anti-microRNA molecule			
<400> ccagau	543 uagg augagauuua cu			22
<210> <211> <212> <213>	544 22 RNA Artificial	·		
<220> <223>	anti-microRNA molecule	,		
<400> uccuaca	544 aaga guucgacauc ac	·		22
<210>	545			

1119-10CON-PCT.ST25 <211> 22 <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 545 caccgugaaa acuaaaaagc ua 22 546 22 <211> <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 546 guaucagaaa acaucgagaa ac 22 <210> 547 <211> <212> 22 RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 547 cccauaacaa caaccacccg cc 22 548 22 <210> <211> <212> RNA <213> Artificial <220> <223> anti-microRNA molecule <400> 548 aaauaccacc cuuccucccu ca 22 549 22 <210> <211> <212> RNA Artificial <213> <220> <223> anti-microRNA molecule <400> 549

22

aagcuuugcc aaagucuugc cu

550

22

<213> Artificial

<210> <211>

<212> RNA

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
<400> auugca	550 agcag acacuucacg gg		22
<210> <211> <212> <213>	22 RNA		u u
<220> <223>	anti-microRNA molecule		
<400> caaacı	551 ugcuu cuaauucuug cc		22
<210> <211> <212> <213>	22 RNA	· · · · · · · · · · · · · · · · · · ·	
<220> <223>	anti-microRNA molecule		
<400> caaguu	552 Huugc cagagucuug cc		22
<210> <211> <212> <213>	553 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aucucc	553 acug cuacaucaug cc		22
<210> <211> <212> <213>	554 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgaaug	554 cuuu cccacccggc ga		22
<210> <211> <212> <213>	555 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	555		

cuucca	aaca cccaugccua ca	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	556 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> agcago	556 cgac acaguacggg ca		22
<210> <211> <212> <213>	557 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		,
<400> gaauuc	557 uucc agugccauua ac		22
<210> <211> <212> <213>	558 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcccuu	558 auca guucuccguc ca		22
<210> <211> <212> <213>	559 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cccguu	559 agug ucggucacaa aa		22
<210> <211> <212> <213>	560 22 RNA Artificial		
<220> / <223>	anti-microRNA molecule		
<400> gcgcgcı	560 uacu ucagguaccu ga		22
210	F.C.4		

<211> <212> <213>	22 RNA Artificial	1119-10CON-PCT.ST25	
<220> <223>	anti-microRNA molecule		
<400> auaggo	561 ccggg acaagugcaa ug	22	2
<210> <211> <212> <213>	22		
<220> <223>	anti-microRNA molecule		
<400> aagaau	562 Jugcg uuuggacaau ca	· · · · · · · · · · · · · · · · · · ·	2
<210> <211> <212> <213>	563 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agagca	563 cggu augaaguucc ua	22	<u>?</u>
<210> <211> <212> <213>	564 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gucgua	564 ccag auagugcauu ua	22	١
<210> <211> <212> <213>	565 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaacgga	565 acga aagucccacc ga	22	
<210> <211> <212> <213>	566 22 RNA Artificial		

<220>		1119-10CON-PCT.ST25	
<223>			
<400> acagcı	566 Igguu gaaggggacc aa		22
<210> <211> <212> <213>	22 RNA		
<220> <223>	anti-microRNA molecule		
<400> uuaaug	567 yagug uggaucuagu ca		22
<210> <211> <212> <213>	568 22 RNA Artificial	•	
<220> <223>	anti-microRNA molecule		
<400> acaaug	568 cgac uacaaugcac cu	·	22
<210> <211> <212> <213>			
<220> <223>	anti-microRNA molecule		
<400> uuucau	569 augc aacguaaaua ca		22
<210> <211> <212> <213>	570 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> caaaga	570 gagc aauuccauga ca		22
<210> <211> <212> <213>	571 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	571	•	

aaagco	cuagu agaggcuaga uu	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	572 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cagaaı	572 Juacc agcugauauu ua		22
<210> <211> <212> <213>	573 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uggaau	573 Icaag uugcugacuu ca		22
<210> <211> <212> <213>	574 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> caacca	574 gcua accacacugc ca		22
<210> <211> <212> <213>	575 22 RNA Artificial		
<220> <223>	anti-microRNA molecule	•	
<400> uuggca	575 uuca ccgcgugccu ua		22
<210> <211> <212> <213>	576 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> augcuu	576 uggu aaucuagcuu ua		22
<210>	577		

		1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> agagca	577 acggu auuaaguucc ua		22
<210> <211> <212> <213>	578 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> auagco	578 gcug ucacacgcac aạ	*	22
<210> <211> <212> <213>	579 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcacug	579 auuu cgaauggugc ua		22
<210> <211> <212> <213>	580 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cacaag	580 uucg gauuuacggg uu		22
<210> <211> <212> <213>	581 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcaggc	581 cggg acuagugcaa uu		22 -
<210> <211> <212> <213>	582 22 RNA Artificial		

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
<400> gcacga	582 agugu ucggucuagu ca		22
<210> <211> <212> <213>	583 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgugca	583 aacg auuuucaaca ca		22
<210> <211> <212> <213>	584 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> acacac	584 cuga aauuuugcuc aa		22
<210> <211> <212> <213>	585 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
	585 uucu cccagugcca ag		22
<210> <211> <212> <213>	586 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> augaaa	586 ugaa aucgacauga aa		22
<210> <211> <212> <213>	587 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400>	587		

gcaggc	ucca cuuaaauauu ua	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	588 22 RNA Artificial		,
<220> <223>	anti-microRNA molecule		
<400> aucagc	588 uuuc aaaaugaucu ca		22
<210> <211> <212> <213>	589 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ccaguu	589 uccu gugaaaccua aa		22
<210> <211> <212> <213>	590 22 RNA Artificial	•	
<220> <223>	anti-microRNA molecule		
<400> cagcua	590 uucc gacaucuugc ca		22
<210> <211> <212> <213>	591 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucacau	591 uuac aaauugagau ua	-	22
<210> <211> <212> <213>	592 22 RNA Artificial	,	
<220> <223>	anti-microRNA molecule		
<400> agagca	592 ccug augaaguaca au		22
<210>	593		

<211> <212> <213>	22 RNA Artificial	1119-10CON-PC1.S125	
<220> <223>	anti-microRNA molecule		
<400> ucuaca	593 gcua gaauaccaaa ga	2	22
<210> <211> <212> <213>	594 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uugaga	594 guca cuaaguaccu ga	, 2	2
<210> <211> <212> <213>	595 22 RNA Artificial	•	
<220> <223>	anti-microRNA molecule		
<400> auacag	595 cuaa aaucaccaaa ga	2	2
<210> <211> <212> <213>	596 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucacaa	596 guua gggucucagg ga	2:	2
<210> <211> <212> <213>	597 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgcuca	597 cuca aggagguugu ga	22	2
<210> <211> <212>	598 22 RNA		

<220>		1119-10CON-PCT.ST25	
<223>	anti-microRNA molecule		
<400> cucaca	598 aguau aauccuguga uu		22
<210> <211> <212> <213>	599 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cagcua	599 ugcc gacaucuugc ca		22
<210> <211> <212> <213>	600 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uaggac	600 aaac uuuacccagu gc		22
<210> <211> <212> <213>	601 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> aaaggc	601 cggg aagugugcaa ua	•	22
<210> <211> <212> <213>	602 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucaggo	602 cggu gaaugugcaa ua		22
<210> <211> <212> <213>	603 22 RNA Artificial		٠,
<220> <223>	anti-microRNA molecule		
400	602		

ucaggo	cguc ucaagugcaa ua	1119-10CON-PCT.ST25	22
<210> <211> <212> <213>	604 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ucgggc	604 ugug aaaagugcaa ua		22
<210> <211> <212> <213>	605 21 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> ccgaac	605 uuau uggcucgaau a		21
<210> <211> <212> <213>	606 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> gcuuuci	606 ugag caacaaucaa aa		22
<210> <211> <212> <213>	607 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> cgccagı	607 Jaag cggaaaaaga ca		22
<210> <211> <212> <213>	608 22 RNA Artificial		
<220> <223>	anti-microRNA molecule		
<400> uggauac	608 cac cagcuguguu ca		22
-210s	600		

	1119-10CON-PCT.ST25	
<211> <212> <213>	22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> ugagau	609 Jaaac aaagcccagu ga	27
<210> <211> <212> <213>	610 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> cccauc	610 aaag cuggcuguga ua	22
<210> <211> <212> <213>	611 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> ucagga	611 uaca uucaguauac gu	22
<210> <211> <212> <213>	612 22 RNA Artificial	
<220> <223>	anti-microRNA molecule	
<400> uacgua	612 uacu gaagguauac cg	22
<210> <211> <212> <213>	613 23 RNA Artificial	
<220> <223>	2'-O-methyl microRNA molecule	
<220> <221> <222> <223>	misc_structure (23)(23) 3' aminolinker attached to the a nucleotide at position 23	
	613 Buca gucuganaag cha	22

1119-10CON-PCT.ST25

```
<210>
        614
 <211>
        21
 <212>
        RNA
        Artificial
 <213>
<220>
       2'-O-methyl antisense molecule
<223>
<220>
<221>
<222>
        misc_structure
        (21)..(21)
3' aminolinker attached to the u nucleotide at position 21
<223>
<400> 614
aaggcaagcu gacccugaag u
                                                                          21
<210>
        615
<211>
        21
<212>
       RNA
<213> Artificial
<220>
<223> 2' 0- methyl reverse segeunce
<220>
<221>
       misc_structure
<222>
       (21)..(21)
3' aminolinker attached to the a nucleotide at position 21
<400> 615
ugaaguccca gucgaacgga a
                                                                          21
<210>
        616
<211>
       26
<212>
       DNA
<213> Artificial
<220>
<223> 2'-deoxy microRNA molecule
<220>
<221>
       misc_structure
       (26)..(26)
3' aminolinker attached to the g nucleotide at position 26
<222>
<223>
<400> 616
gtcaacatca gtctgataag ctagcg
                                                                         26
<210>
       617
<211>
       24
<212>
       DNA
       Artificial
<213>
<220>
      2'-deoxy antisense molecule
<223>
<220>
```

<221>	misc_structure 1119-10CON-PCT.ST25	
<222>	(24)(24)	
<223>	3" aminolinker attached to the g nucleotide at position 24	
<400>	617	
	aagct gaccctgaag tgcg	24
		۷.٦
<210>	618	
<211> <212>	88 DNA	
<213>	Artificial	
<220>		
<223>	primer	
<400>		
gaacaa	ttgc ttttacagat gcacatatcg aggtgaacat cacgtacgtc aacatcagtc	60
tgataa	gcta tcggttggca gaagctat	88
		•
<210>	619	
<211> <212>	90 DNA	
<213>	Artificial	
<220>		
<223>	primer	
<400>	619	
ggcata	aaga attgaagaga gttttcactg catacgacga ttctgtgatt tgtattcagc	60
ccatat	cgtt tcatagcttc tgccaaccga	90
<210> <211>	620 35	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	primer	
<400>	620	
Laalac	gact cactatagaa caattgcttt tacag	35
<210>	621	
<211>	35	
<212> <213>	DNA Artificial	
<220> <223>	primer	
<400>	621	
	gtga cactataggc ataaagaatt gaaga	35
	· · · · · · · · · · · · · · · · · · ·	ی ی
<210>	622	
<211> <212>	33 DNA	

<213>	Artificial	1119-10CON-PCT.ST25	
<220> <223>	synthetic oligonucleotide	molecule	
	622 aaca tcagtctgat aagctaggta	cct	33
<210> <211> <212> <213>			
<220> <223>	synthetic oligonucleotide	molecule	
<400> ggccagg	623 gtac ctagcttatc agactgatgt	tga	33