NYU Computer Science Bridge HW3

Summer 2023 Name: Jacky Choi

Question 7 Part a:

Exercise 3.1.1 a

 $27 \in A$ True 3 x 9 = 27. 27 is an integer multiple of 3

Exercise 3.1.1 b

 $27 \in B$ False 27 is not a perfect square

Exercise 3.1.1 c

 $100 \in B$ True $10 \ge 100$

Exercise 3.1.1 d

 $E \subseteq C$ or $C \subseteq E$ False

Exercise 3.1.1 e

 $E \subseteq A$ True

Exercise 3.1.1 f

 $A \subset E$ False

Exercise 3.1.1 g

 $E \in A$ True

Question 7 Part b:

Exercise 3.1.2 a

 $15 \subset A$ False

Exercise 3.1.2 b

 $\{15\}\subset A$ True

Exercise $3.1.2~\mathrm{c}$

 $\emptyset \subset C$ True

Exercise 3.1.2 d

 $D\subseteq D$ True

Exercise 3.1.2 e

 $\emptyset \in B$ False

Question 7 Part c:

Exercise 3.1.5 b

 $\{3,6,9,12,\ldots\}=\{x\in N: x \text{ is a multiple of } 3\}$ Set is infinite

Exercise $3.1.5 \ d$

 $\{0,\,10,\,20,\,30,\,...,\,1000\}=\{x\in N:0\leq x\leq 1000 \land {\bf x} \text{ is a multiple of } 10\}$ Cardinality 101

Question 7 Part d:

Let $X = \{1, \{1\}, \{1, 2\}, 2, \{3\}, 4\}$

Exercise 3.2.1 a

 $2 \in X$ True

Exercise 3.2.1 b

 $\{2\} \subseteq X$ True

Exercise 3.2.1 c

 $\{2\} \in X$ False

Exercise 3.2.1 d

 $3 \in X$ False

Exercise 3.2.1 e

 $\{1,2\} \in X$ True

Exercise 3.2.1 f

 $\{1,2\}\subseteq X$ True

Exercise 3.2.1 g

 $\{2,4\}\subseteq X$ True

Exercise 3.2.1 h

 $\{2,4\} \in X$ False

Exercise 3.2.1 i

 $\{2,3\}\subseteq X$ False

Exercise 3.2.1 j

 $\{2,3\} \in X$ False

Exercise 3.2.1 k

|X| = 7 False

Question 8:

Exercise 3.2.4 b

Let A = $\{1, 2, 3\}$. What is $\{X \in P(A) : 2 \in X\}$? $\{2, \{2,3\}\}$

Question 9 Part a:

Exercise 3.3.1 c

$$(A \cap C) = \{-3, 1, 17\}$$

Exercise 3.3.1 d

$$A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$$

Exercise 3.3.1 e

$$A \cap B \cap C = \{1\}$$

Question 9 Part b:

Exercise 3.3.3 a

$$\bigcap_{i=2}^5 A_i = A_2 \cap A_3 \cap A_4 \cap A_5$$

$$= \{1, 2, 4\} \cap \{1, 3, 9\} \cap \{1, 4, 16\} \cap \{1, 5, 25\} = \{1\}$$

Exercise 3.3.3 b

$$\bigcup_{i=2}^{5} A_i = A_2 \cup A_3 \cup A_4 \cup A_5$$

$$= \{1, 2, 4\} \cup \{1, 3, 9\} \cup \{1, 4, 16\} \cup \{1, 5, 25\} = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

Exercise 3.3.3 e

$$\bigcap_{i=1}^{100} C_i = C_1 \cap C_2 \cap C_3 \cap \dots \cap C_1 = \{x : x \in \mathbb{R} : \frac{-1}{100} \le x \le \frac{1}{100} \}$$

$$= \{x : x \in \mathbb{R} : \frac{-1}{100} \le x \le \frac{1}{100} \}$$

Exercise 3.3.3 f

$$\bigcup_{i=1}^{100} C_i = C_1 \cup C_2 \cap C_3 \cup \dots \cup C_1 00
= \{x : x \in \mathbb{R} : -1 \le x \le 1\}$$

$$= \{x : x \in \mathbb{R} : -1 < x < 1\}$$

Question 9 Part c:

Exercise 3.3.4 b

$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$$

Exercise 3.3.4 d

$$P(A) \cup P(B)$$

$$P(A) = {\{\emptyset, \{a\}, \{b\}, \{a, b\}\}}$$

$$P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$$

$$P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$$

Question 10 Part a:

Exercise 3.5.1 b

One element from: $B \times A \times C = (\text{no-foam, venti, whole})$

Exercise 3.5.1 c

Roster Notation: B x C = $\{(foam, nonfat), (foam, whole), (no-foam, nonfat), (no foam, whole)\}$

Question 10 Part b:

Exercise 3.5.3 b

 $\mathbb{Z}^2\subseteq\mathbb{R}^2$ True

Exercise 3.5.3 c

 $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$ False

Exercise 3.5.3 e

For any three sets A, B, C, if $A \subseteq B$, then A x C \subseteq B x C Example: Let A = {a,b}, B = {a,b,c}, and c = {d} A x C = {(a,d), (b,d)} B x C = {(a,d),(b,d),(c,d)} \therefore A x B \subseteq B x C True

Question 10 Part c:

Exercise 3.5.6 d

{xy: where
$$x \in \{0\} \cup \{0\}^2$$
 and $y \in \{1\} \cup \{0,1\}^2$ }
 $x = \{0, 00\}$ and $y = \{1, 11\}$
 $xy = \{01, 011, 001, 0011\}$

Exercise 3.5.6 e

{xy: where
$$x \in \{aa, bb\}$$
 and $y \in \{a\} \cup \{a\}^2\}$
 $x = \{aa, bb\}$ and $y = \{a, aa\}$
 $xy = \{aaa, aaaa, aba, abaa\}$

Question 10 Part d:

Exercise 3.5.7 c

$$(A\ x\ B)\cup (A\ x\ C)$$

$$A \times B = \{ab, ac\}$$

$$A \times C = \{aa, ab, ad\}$$

$$(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$$

Exercise 3.5.7 f

$$P(A \times B) = {\emptyset, {ab}, {ac}, {ab, ac}}$$

Exercise 3.5.7 g

P(A) x P(B) Use ordered pair notation for elements of the Cartesian product

$$P(A) = \{\emptyset, \{a\}\}$$

$$P(B) = {\emptyset, {b}, {c}, {b, c}}$$

$$\{\{a\}, \{b\}\}, \{\{a\}, \{c\}\}, \{\{a\}, \{b,c\}\} \}$$

Question 11 Part a:

Exercise 3.6.2 b

$$B \cup A \cap (\overline{B} \cup A) = A$$

$$\begin{array}{ll} B \cup A \cap (\overline{B} \cup A) = A \\ (B \cap \overline{B}) \cup A & \text{Distributive Law} \\ A \cup (B \cap \overline{B}) & \text{Commutative Law} \\ A \cup \emptyset & \text{Complement} \\ A & \text{Identity Law} \end{array}$$

Exercise 3.6.2 c

$$\overline{A \cup \overline{B}} = \overline{A} \cup B$$

$$\overline{\overline{A \cup \overline{B}}} = \overline{A} \cup B$$
 De Morgans

Question 11 Part b:

Exercise 3.6.3 b

$$A-(B\cap A)=A$$
 If A = {1,2} and B = {2}, then A - (B \cap A) is {1} \neq {2}

Exercise 3.6.3 d

$$(B - A) \cup A = A$$
 if $A = \{1\}$ and $B = \{1,2\}$, then $(B - A) \cup A$ is $\{1, 2\} \not= \{1\}$

Question 11 Part c:

Exercise 3.6.4 b

$$A \cap (B - A) = \emptyset$$

 $\begin{array}{ll} A\cap (B-A) \\ A\cap (B\cap \overline{A}) & \text{Set Subtraction} \\ (B\cap \overline{A})\cap A & \text{Commutative Law} \\ B\cap (\overline{A}\cap A) & \text{Associative} \\ \emptyset\cap B & \text{Complement} \\ \emptyset & \text{Dominaton Law} \end{array}$

Exercise 3.6.4 c

$A \cup (B - A) = A \cup B$

 $\begin{array}{ll} A \cup (B-A) & \\ A \cup (B \cap \overline{A}) & \text{Set Subtraction} \\ (A \cup B) \cap (A \cup \overline{A}) & \text{Distributive Law} \\ (A \cup B) \cap U & \text{Complement} \\ A \cup B & \text{Identity Law} \end{array}$