

VRTRIX 数据手套介绍及型号对比

Date	Modified by	Comments
2019-12-22	Guo	Init Version.

简介

Introduction

VRTRIX[™] 数据手套通过遍布全手的高性能 9 轴 MEMS 惯性传感器实时采集各指头关节运动数据,并通过反向动力学还原骨骼运动,可以在虚拟现实的场景中实现对真实手部运动的重现,并进行精细的手部运动还原和交互。每只手套上根据不同的型号,分别分布有 6 个/7 个/11 个传感器,可以实时高精度低延迟输出全手所有关节的运动姿态。

VRTRIX™ 数据手套提供主流游戏引擎插件(包括 Unity3D 以及 UE4),以供开发者在 Unity3D 以及 UE4 平台下接入数据手套硬件进行驱动。支持模型动作实时渲染,手势识别,虚拟现实支持,虚拟现实环境下的交互以及与全身动捕的整合。开发者可以通过插件 SDK 中开放的 API 接口和场景示例工程,与原有虚拟现实项目进行整合,或者与全身动捕设备进行整合。

VRTRIX[™] 数据手套支持通过插件在 MotionBuilder 中对手套数据进行实时观看,录制以及回放,支持通过插件在 MotionBuilder 界面下将手部骨骼数据与模型进行骨骼朝向和骨骼长度的匹配,对手部骨骼数据解算算法进行微调,实现 MotionBuilder 平台下与全身动捕系统的对接。

VRTRIX™ 数据手套支持通过 C++ API 提供的动态链接库对手套数据进行访问,读取手套实时数据流,获取手部各关节姿态,硬件信息例如电池电量以及信号强度等。同时可以控制手套掌心震动模块。

应用场景

Applications

- 影视制作与动作捕捉:数据手套广泛应用于影视工业上,主要用于对手部精细动画的生成,提高动画师工作效率, VRTRIX[™]数据手套可以轻松与各种主流光学全身动作捕捉系统进行对接,提供专业的动作捕捉支持。
- 虚拟现实与人机交互: VRTRIXTM 数据手套提供虚拟现实交互解决方案,可以在虚拟现实场景下,高精度低延迟的渲染出手部 3D 动作,提供主流游戏引擎(Unity3D 以及 UE4)的支持,并开源提供示例 demo 交互场景,让开发者更容易上手进行二次开发。
- 工业仿真与机器人:利用 VRTRIXTM 数据手套,可以开发出工业模拟仿真的高复杂度系统,将原本高成本、高风险、高环境要求的工业培训置于低成本、安全可控的虚拟场景之中。除了应用于教学和培训,数据手套还可以用来进行一些机器人/无人机科研项目的研发,例如可以通过捕捉人手数据实现机械手的遥操作等功能。
- 医疗康复与仿真: VRTRIX[™] 数据手套可以用于一些医疗操作中数据的采集和分析,也可以用于病人手部的康复程度 评估。例如可以将康复过程中患者的手指、手臂的动作状态以三维模型的方式实时呈现,在康复训练的同时收集数据, 可以帮助医师对康复效果进行评估,并定制下一步康复方案。
- 虚拟偶像直播: VRTRIXTM 数据手套可以与全身动捕系统结合,用于驱动虚拟偶像全身骨骼运动,可以将真人表演者的肢体动作,手部动作以及面部表情等——精准低延迟的还原展现在虚拟主播上,并通过直播的形式实时推流到用户端设备上。

型号对比

Products Comparison

型묵	DK1/DK2	PRO	PRO7	PRO11
传感器节 点数量	6	6	7	11
传感器布 置	五指各一个,手背一个	五指各一个,手背一个	四指和手背各一个,大拇 指两个	五指各两个,手背一个
动态精度	航向: +/-2°, 俯仰: +/-1°, 横滚: +/-1°	航向: +/-2°, 俯仰: +/- 0.5°, 横滚: +/-0.5°	航向: +/-2°, 俯仰: +/- 0.5°, 横滚: +/-0.5°	航向: +/-1°, 俯仰: +/- 0.5°, 横滚: +/-0.5°
数据更新 速率	单手 90Hz	单手 120Hz	单手 120Hz	单手 120Hz
适合应用场景	虚拟现实与人机交互	虚拟现实与人机交互 影视制作与动作捕捉 虚拟偶像直播	虚拟现实与人机交互 影视制作与动作捕捉 虚拟偶像直播	工业仿真与机器人 虚拟现实与人机交互 影视制作与动作捕捉 虚拟偶像直播

手势识别	>12 种	>12 种	>18 种	>30 种
拇指航向 解锁	N/A	N/A	支持	支持
多副手套同时使用	N/A	同一台 PC 电脑可同时运行 最多 6 副手套,同一空间 内同时运行最多 8 副手套	同一台 PC 电脑可同时运行 最多 6 副手套,同一空间 内同时运行最多 8 副手套	同一台 PC 电脑可同时运行 最多 6 副手套,同一空间 内同时运行最多 12 副手套
软件开发 包 SDK	适配 Unity3D、UE4 引 擎	适配 Unity3D、UE4 引 擎、MotionBuilder	适配 Unity3D、UE4 引擎、 MotionBuilder	适配 Unity3D、UE4 引擎、 MotionBuilder,同时支持 C++ SDK 定制开发*
手势识别 算法定制 开发	N/A(仅提供 SDK 静态 手势识别示例)	N/A(仅提供 SDK 静态手 势识别示例)	N/A(仅提供 SDK 静态手 势识别示例)	支持手势识别算法定制开 发,支持静态手势,动态 手势,连续手势的识别。
API 接口 定制	N/A	N/A	N/A	支持 C++接口定制开发, 算法参数接口开放。*
虚拟现实 VR 支持	支持 HTC lighthouse 定 位,适配 HTC Tracker 进行腕部定位	支持 HTC lighthouse 定位,适配 HTC Tracker 进行腕部定位,支持光学定位系统集成和定制开发。*	支持 HTC lighthouse 定位,适配 HTC Tracker 进行腕部定位,支持光学定位系统集成和定制开发。*	支持 HTC lighthouse 定位,适配 HTC Tracker 进行腕部定位,支持光学定位系统集成和定制开发。*
全身动捕 支持	N/A	支持多种主流光学及惯性 动作捕捉系统	支持多种主流光学及惯性 动作捕捉系统	支持多种主流光学及惯性 动作捕捉系统
操作系统 支持	Win10	Win7 SP1+, Win10	Win7 SP1+, Win10	Win7 SP1+, Win10, 支持 Linux 发行版, ROS, 以及 其他嵌入式平台/工业平台 数据手套 SDK 定制开发。*

*表中所有定制开发项,均不包含在硬件产品价格中,请联系北京无远弗届科技有限公司,根据需求确定具体价格。

手势效果对比

Gesture Comparison

N/A	N/A	
N/A	N/A	