סיכום מאת תומר גוֹדינגר

אלגוריתם קרוסקל

- <u>נתחזק:</u>
- קשתות שעדיין לא נבדקו C \circ
 - קשתות בעץ B
 - <u>אתחול</u>: •
 - $C \leftarrow E \circ$
 - $B \leftarrow \varnothing$ o
 - :צעד
- : |B| < |V| 1 כל עוד \circ
- C -ביותר ביותר e קלה ביותר ב
 - $C \leftarrow C \setminus \{e\}$
- $B \leftarrow B \cup \{e\}$ אם הקשת לא סוגרת מעגל, נוסיף אותה:
- <u>סיום</u>:
- B נחזיר את \circ

הוכחת נכונות

- אבחנה: האלגוריתם לא נתקע ומחזיר עץ פורש.
 - <u>הסבר:</u>

ig(V,Big) אם כל קשת סוגרת מעגל אז כל קשת מוכלת ברכיב קשירות של

- G של הקשירות של ביבי=(V,B) של הקשירות של \Leftarrow
- יש רכיב קשירות אחד ב-(V,B), וכן אין מעגלים [[כי מוסיפים קשת רק אם היא לא $B \Leftarrow [$ סוגרת מעגל $B \Leftrightarrow B$
 - משפט: האלגוריתם מחזיר עץ פורש מינימלי.
 - $B\!\subseteq\!T$ -טענת עזר: בכל צעד באלגוריתם קיים עץ פורש מינימלי (V,T) כך ש-

[[<u>הוכחת המשפט</u>:

, $B \subseteq T$ -מידית מטענת העזר, שכן אם לאחר הצעד האחרון קיים עץ פורש מינימלי (V,T כך ש

$$[[\ .\ B=T\$$
נובע כי ובע $|B|=|V|-1=|T|$ אזי מכך ש

<u>הוכחת טענת העזר:</u>

באינדוקציה על מספר הצעדים.

- $B = \emptyset$: $\underline{\text{co'o}}$ •
- $\varnothing = B$ במקרה זה כל פתרון מכיל את B; בפרט, קיים עץ פורש מינימלי, והוא מכיל את
 - <u>צעד אינדוקטיבי:</u> •

19.3.2014

סיכום מאת תומר גוֹדינגר

נניח שבתחילת הצעד הנוכחי קיים עץ פורש מינימלי (V,T) כך ש- $B\subseteq T$, ובצעד זה אנו $e\in E$ בוחנים את הקשת

-ש כך $\left(V,T^*
ight)$ כך שינימלי פתרון חלקי 'B אזי קיים עץ פורש מינימלי (V,T^*) כך ש $B'\subset T^*$

- סוגרת מעגל e : מקרה א': a סוגרת מעגל $B'=B\subseteq T=T^*$ ונקבל B'=B ואפשר לקחת B'=B
- $e\in T$ אזי e: לא סוגרת מעגל וּe: $\{e\}\subseteq T$ אזי $\{e\}\subseteq T$ אזי $B'=B\cup \{e\}\subseteq T$ ויודעים ש- $B'=B\cup \{e\}$ לכן $B'=B\cup \{e\}$ ושוב ניתן לקחת $T^*=T$ ושוב ניתן לקחת
- e
 otin T לא סוגרת מעגל פe : e לא סוגרת מעגל פe לא סוגרת מעגל פe . e סוגרת מעגל e במקרה זה, לפי משפט בe סוגרת מעגל e לא יכול להיות מורכב רק מe ומקשתות בe (אחרת e הייתה סוגרת מעגל ולא היינו בוחרים להשתמש בה באלגוריתם). $e'
 otin T \cap B$ במעגל $e'
 otin P \cap B$ במעגל e'
 oti

$$B \cup \{e\} \subseteq T^*$$
-מצאנו, אם כן, עץ פורש $\left(V, T^*
ight)$ כך ש

נותר להראות ש- T^* מינימלי.

 $B\subseteq T$ -ן T -ן א סוגרת מעגל ב- B כי היא לא סוגרת מעגל ב- e' והאלגוריתם פיוון ששתי הקשתות e,e' לא סוגרות מעגל ב- e (ולא נמצאות בו), והאלגוריתם בצעד זה בוחר להשתמש בקשת e' ולא e' ומכיוון שהאלגוריתם עובר על הקשתות לפי משקלן בסדר עולה, בוודאות $w(e)\leq w(e')$

$$[[\boxed{*} w(e) - w(e') \le 0]$$

:כעת, המשקל של T^* הוא

$$w(T^*) = w(T \cup \{e\} \setminus \{e'\}) = w(T) + \underbrace{w(e) - w(e')}_{\leq 0 \text{ according to } \blacksquare} \leq w(T) \leq w(T^*)$$
 מהמינימליות של T

. כלומר $w(T^*)=w(T)$ ולכן T^* הוא עץ פורש מינימלי.

מימוש וזמן ריצה

צריכים לעשות שימוש במבנה הנתונים Union-Find.

סיכום מאת תומר גוֹדינגר

<u>מימוש:</u>

- <u>אתחול:</u>
- . נמיין את כל הקשתות ונשים במערך.
 - $B \leftarrow \emptyset$ o
- . make_set(v) נעשה $v \in V$ לכל קדקוד \circ
 - <u>צעד</u>: •
 - . נעבור על הקשתות לפי הסדר במערך e=(v,u) עבור הקשת הנוכחית
 - אז: find_set(u) \neq find_set(v) אם \circ
- [v] ושל [v] ושל ושל מunion [v,u]
 - $B \leftarrow B \cup \{e\}$

<u>זמן ריצה:</u>

- $[[|E| = O(|V|^2)]$ כי $O(|E|\log|V|) = []O(|E|\log|E|)$: מיוון:
- עם n איברים לוקחות סה"כ זמן של Union-Find- עם m פעולות של O $(m+n\log m)$. $O(m+n\log m)$
 - $O(|E| + |V|\log |E|)$: צעדים
 - . $rac{\mathrm{O}ig(ig|Eig|\logig|Vig|ig)}{\mathrm{O}\mathrm{o}$ ה"כ: