ENGR 4421: Robotics II Arduino

Outline

- Arduino Introduction
- Arduino Nano Every
- Get Started
- Blink LED
- Interrupts

What is Arduino

- Arduino is an open-source microcontroller project.
- Arduino is simple (OS not required).
- Easily build your project with Arduino.

Arduino Family

Arduino Leonardo

Arduino Due

Arduino Yún

Arduino Tre

Arduino Micro

Arduino Robot

Arduino Esplora

Arduino Mega ADK

Arduino Ethernet

Arduino Mega 2560

Arduino Mini

LilyPad Arduino USB

LilyPad Arduino Simple

LilyPad Arduino SimpleSnap

LilyPad Arduino

Arduino Nano

Arduino Pro Mini

Arduino Nano Every

Microcontroller	ATMega4809 @ 16MHz
Digital I/O Pins	14
Analog Input Pins	8
PWM Pins	5 (3, 5, 6, 9 10 @ 976Hz)
I/O Voltage	5V

ARDUINO NANO EVERY

Get Started - Arduino Nano Every

- Download and install <u>Arduino IDE</u>.
- 2. Install the megaAVR core.
 - a. Open Arduino IDE.
 - b. Navigate to **Tools > Board > Board Manage**.
 - c. Search "megaavr", then install "Arduino mbed-enabled boards".
- 3. Select board: Tools > Board > Arduino > Arduino megaAVR Boards, select port: Tools > Port.
- 4. Open an example: File > Examples > 01.Basics > Blink, then upload.

Arduino IDE

Sketch

Select Board and Port

Manage Libraries

Encoder Reading

Cases:

- Clockwise: $\{0, 0\} \rightarrow \{0, 1\}; \{0, 1\} \rightarrow \{1, 1\}; \{1, 1\} \rightarrow \{1, 0\}; \{1, 0\} \rightarrow \{0, 0\}$
- Counterclockwise: $\{0,0\} \rightarrow \{1,0\}$; $\{1,0\} \rightarrow \{1,1\}$; $\{1,1\} \rightarrow \{0,1\}$; $\{0,1\} \rightarrow \{0,0\}$

Interrupts

- Video tutorial: https://youtu.be/9VZUb5cMrV0
- Encoder reading example: https://dronebotworkshop.com/robot-car-with-speed-sensors/


```
const byte encA = 2;
const byte encB = 3:
int motorDir = 0; // clockwise: 1, ccw: -1
long counts = 0:
int stateA = 0:
int stateB = 0;
int lastStateA = 0:
int lastStateB = 0;
void setup() {
 // setup pin modes
 Serial.begin(9600):
 attachInterrupt(digitalPinToInterrupt(encA), ISR_updateA, CHANGE);
 attachInterrupt(digitalPinToInterrupt(encB), ISR updateB, CHANGE);
 stateA = digitalRead(encA);
 stateB = digitalRead(encB);
 lastStateA = stateA:
 lastStateB = stateB;
void ISR_updateA() {
 lastStateA = stateA:
 stateA = !stateA;
 if (lastStateA == 0) {
   if (lastStateB == 0) {
     motorDir = 1; // last states: {0,0}, present states: {1,0}
     motorDir = -1; // last states: {0,1}, present states: {1,1}
   if (lastStateB == 0) {
     motorDir = -1; // last states: {1,0}, present states: {0,0}
     motorDir = 1; // last states: {1,1}, present states: {0,1}
 counts += motorDir:
 motorDir = 0;
void ISR_updateB() {
 lastStateB = stateB:
 stateB = !stateB;
 if (lastStateA == 0)
   if (lastStateB == 0) {
     motorDir = -1; // last states: {0,0}, present states: {0,1}
     motorDir = 1: // last states: {0.1}, present states: {0.0}
   if (lastStateB == 0) {
     motorDir = 1; // last states: {1,0}, present states: {0,1}
     motorDir = -1; // last states: {1,1}, present states: {1,0}
 counts += motorDir;
 motorDir = 0:
void loop() {
// counts += motorDir:
 Serial.println(counts);
```

Interrupt Service Routine

- Interrupt types: LOW, HIGH, FALLING, RISING, CHANGE
- Needs to run quickly. Make sure the code running in ISR AS FAST/SHORT AS POSSIBLE.
- ISR function cannot take input parameters, or return values.
- Cannot pause in ISR ("delay(), millis() are disabled").
- Only a certain number of pins are capable as "interrupt pins".

BOARD	DIGITAL PINS USABLE FOR INTERRUPTS
Uno, Nano, Mini, other 328-based	2, 3
Uno WiFi Rev.2, Nano Every	all digital pins
Mega, Mega2560, MegaADK	2, 3, 18, 19, 20, 21 (pins 20 & 21 are not available
	to use for interrupts while they are used for I2C
	communication)
Micro, Leonardo, other 32u4-based	0, 1, 2, 3, 7
Zero	all digital pins, except 4
MKR Family boards	0, 1, 4, 5, 6, 7, 8, 9, A1, A2
Nano 33 IoT	2, 3, 9, 10, 11, 13, A1, A5, A7
Nano 33 BLE, Nano 33 BLE Sense	all pins
Due	all digital pins
101	all digital pins (Only pins 2, 5, 7, 8, 10, 11, 12, 13
	work with CHANGE)

Communication Protocols

UART I2C SPI

Read Serial Data

```
#!/usr/bin/env python3
import serial

if __name__ == '__main__':
    ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1)
    ser.reset_input_buffer()

while True:
    if ser.in_waiting > 0:
        line = ser.readline().decode('utf-8').rstrip()
        print(line)
```