What is claimed is:

1. A compound having the Formula I:

 $\begin{array}{c|c}
R1 \\
A_2 \\
\hline
A \\
B \\
C
\end{array}$ $\begin{array}{c|c}
R1 \\
B_1 \\
B_2 \\
R5 \\
\end{array}$

wherein:

10

15

20

ring B and ring F, independently, and each together with the carbon atoms to which they are attached, are selected from the group consisting of:

- a) an unsaturated 6-membered carbocyclic aromatic ring in which from 1 to 3 carbon atoms may be replaced by nitrogen atoms;
- b) an unsaturated 5-membered carbocyclic aromatic ring; and
- c) an unsaturated 5-membered carbocyclic aromatic ring in which either
 - 1) one carbon atom is replaced with an oxygen, nitrogen, or sulfur atom;
 - 2) two carbon atoms are replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or
- 3) three carbon atoms are replaced with three nitrogen atoms; R¹ is selected from the group consisting of:
 - a) H, substituted or unsubstituted alkyl having from 1 to 4 carbons, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;

le de la chemina de la company de la company

15

20

25

b) -C(=O)R⁹, where R⁹ is selected from the group consisting of alkyl, aryl and heteroaryl;

c) -OR¹⁰, where R¹⁰ is selected from the group consisting of H and alkyl having from 1 to 4 carbons;

d) -C(=O)NH₂, -NR¹¹R¹², -(CH₂)_pNR¹¹R¹², -(CH₂)_pOR¹⁰, -O(CH₂)_pOR¹⁰ and -O(CH₂)_pNR¹¹R¹², wherein p is from 1 to 4; and wherein either

1) R¹¹ and R¹² are each independently selected from the group consisting of H and alkyl having from 1 to 4 carbons; or

2) R¹¹ and R¹² together form a linking group of the formula -(CH₂)₂-X¹-(CH₂)₂-, wherein X¹ is selected from the group consisting of -O-, -S-, and -CH₂-;

R² is selected from the group consisting of H, alkyl having from 1 to 4 carbons, -OH, alkoxy having from 1 to 4 carbons, -OC(=O)R⁹, -OC(=O)NR¹¹R¹², -O(CH₂)_pNR¹¹R¹², -O(CH₂)_pOR¹⁰, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl;

R³, R⁴, R⁵ and R⁶ are each independently selected from the group consisting of:

- a) H, aryl, heteroaryl, F, Cl, Br, I, -CN, CF₃, -NO₂, -OH, -OR⁹, $-O(CH_2)_p NR^{11}R^{12}, -OC(=O)R^9, -OC(=O)NR^{11}R^{12}, -O(CH_2)_p OR^{10}, -CH_2 OR^{10}, -NR^{11}R^{12}, -NR^{10}S(=O)_2 R^9, -NR^{10}C(=O)R^9,$
- b) -CH₂OR¹⁴ wherein R¹⁴ is the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;
- c) $-NR^{10}C(=0)NR^{11}R^{12}$, $-CO_2R^2$, $-C(=0)R^2$, $-C(=0)NR^{11}R^{12}$, $-CH=NOR^2$, $-CH=NR^9$, $-(CH_2)_pNR^{11}R^{12}$, $-(CH_2)_pNHR^{14}$, or $-CH=NNR^2R^{2A}$ wherein R^{2A} is the same as R^2 ;
- d) $-S(O)_yR^2$, $-(CH_2)_pS(O)_yR^9$, $-CH_2S(O)_yR^{14}$ wherein y is 0, 1 or 2;
- e) alkyl having from 1 to 8 carbons, alkenyl having from 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein
 - 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or

July 5 Col

10

15

R⁷ is

20

25

2) each alkyl, alkenyl or alkynyl group is substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, -CN, - NO_2 , -OH, -OR 9 , - $X^2(CH_2)_pNR^{11}R^{12}$, - $X^{2}(CH_{2})_{p}C(=O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{p}OC(=O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}$, $X^{2}(CH_{2})_{p}S(O)_{v}R^{b}$, $-X^{2}(CH_{2})_{p}NR^{10}C(=O)NR^{11}R^{12}$, $-OC(=O)R^{9}$, -OCONHR², -Otetrahydropyranyl, -NR¹¹R¹², -NR¹⁰CO₂R⁹, - $NR^{10}C(=O)NR^{11}R^{12}$, $-NHC(=NH)NH_2$, $NR^{10}C(=O)R^9$, $-NR^{10}S(O)_2R^9$, - $S(O)_{\nu}R^{9}$, $-CO_{\nu}R^{2}$, $-C(=O)NR^{11}R^{12}$, $-C(=O)R^{2}$, $-CH_{2}OR^{10}$, - $CH=NNR^2R_1^{2A}$, $-CH=NOR^2$, $-CH=NR^9$, $-CH=NNHCH(N=NH)NH_2$, - $S(=O)_2NR^2R^{1/2A}$, $-P(=O)(OR^{10})_2$, $-OR^{14}$, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from of 1 to 4 carbons;

 X^2 is O, S, or NR^{10} ;

$$G$$
 G
 $CH_2)_mR_8$
 A
 E
 $D-C$

wherein:

m is 0-4;

G is a bond; or alkylene having 1 to 4 carbons, wherein the alkylene group is unsubstituted, or substituted with NR^{11A}R^{12A} or OR¹⁹;

 $R^{\parallel A}$ and R^{12A} are the same as R^{11} and R^{12} ;

 R^{19} is selected from the group consisting of H, alkyl, acyl, and $C(=O)NR^{11A}R^{12A}$;

10

15

20

25

30

 R^8 is selected from the group consisting of $O(C=O)NR^{11}R^{12}$, -CN, acyloxy, alkenyl, -O-CH₂-O-(CH₂)₂-O-CH₃, halogen and R^{1A} wherein R^{1A} is the same as R^1 ;

A and B are independently selected from the group consisting of O, N, S, CHR¹⁷, C(OH)R¹⁷, C(=O), and CH₂=C; or A and B together can form - CH=CH-;

C and D are independently selected from the group consisting of a bond, O, N, S, $CHR^{17}/C(OH)R^{17}$, C(=O) and $CH_2=C$;

E and F are independently selected from the group consisting of a bond, O, N, S, C(=0), and $CH(R^{17})$;

R¹/_p is selected from the group consisting of H, substituted or unsubstituted alkyl, alkoxycarbonyl, and substituted or unsubstituted alkoxy;

wherein:

- 1) ring J contains 0 to 3 ring heteroatoms;
- 2) any two adjacent hydroxyl groups of ring J can be joined in a dioxolane ring;
- 3) any two adjacent ring carbon atoms of ring J can be joined to form a fused aryl or heteroaryl ring;
- 4) any two adjacent ring nitrogen atoms of ring J can be joined to form a fused heterocyclic ring which can be substituted with 1 to 3 alkyl or aryl groups;

provided that:

- 1) ring J contain at least one carbon atom that is saturated;
- 2) ring J not contain two adjacent ring O atoms;
- 3) ring J contains a maximum of two ring C(=O) groups;
- 4) when G is a bond, ring J can be heteroaryl;

Q is selected from the group consisting of O, S, NR¹³, NR^{7A} wherein R^{7A} is the same as R⁷, CHR¹⁵, X³CH(R¹⁵), and CH(R¹⁵)X³, wherein X³ is selected from the group consisting of -O-, -S-, -CH₂-, NR^{7A}, and NR¹³;

W is selected from the group consisting of CR¹⁸R⁷ and CHR²;

15

20

25

30

 R^{13} is selected from the group consisting of H, $-SO_2R^9$, $-CO_2R^9$, $-C(=O)R^9$, -C(=O)NR¹¹R¹², alkyl of 1-8 carbons, alkenyl having 2-8 carbons, and alkynyl having 2-8 carbons; and either

1) the alkyl, alkenyl, or alkynyl group is unsubstituted; or

2) the alkyl, alkenyl, or alkynyl group independently is

substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoky, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, -CN, -NO₂, -OH, -OR⁹, - $X^2(CH_2)_nNR^{11}R^{12}$, - $X^{2}(CH_{2})_{n}C(\neq O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{n}OC(=O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{n}CO_{2}R^{9}$,

 $X^{2}(CH_{2})_{p}S(\phi)_{v}R^{9}$, $-X^{2}(CH_{2})_{p}NR^{10}C(=O)NR^{11}R^{12}$, $-OC(=O)R^{9}$, $-OCONHR^{2}$, -O-tetrahydropyranyl, -NR¹¹R¹², -NR¹⁰CO₂R⁹, -NR¹⁰C(=O)NR¹¹R¹², - $NHC(=NH)NH_2$, $NR^{10}C(=O)R^9$, $-NR^{10}S(O)_2R^9$, $-S(O)_vR^9$, $-CO_2R^2$, -

 $C(=O)NR^{11}R^{12}$, $-C(=O)R^2$, $-CH_2OR^{10}$, $-CH=NNR^2R^{2A}$, $-CH=NOR^2$, -

CH=NR⁹, -CH=NNHCH(N=NH)NH₂, -S(=O)₂NR²R^{2A}, -P(=O)(OR¹⁰)₂, -

OR¹⁴, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from of 1 to 4 carbons;

R¹⁵ is selected from the group consisting of H, OR¹⁰, SR¹⁰, R^{7A}, and R¹⁶; R¹⁶ is selected from the group consisting of alkyl of 1 to 4 carbons; phenyl; naphthyl; arylalkyl having 7 to 15 carbons, -SO₂R⁹, -CO₂R⁹, -C(=O)R⁹, alkyl having 1-8 carbons; alkenyl having 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein

1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or

2) each alkyl, alkenyl, or alkynyl group is substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, -CN, -NO₂, -OH, -OR, - $X^2(CH_2)_pNR^{11}R^{12}$, - $X^2(CH_2)_pC(=O)NR^{11}R^{12}$, - $X^{2}(CH_{2})_{p}OC(=O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}$, $X^{2}(CH_{2})_{p}S(O)_{y}R^{9}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}$, $X^{2}(CH_{2})_{p}S(O)_{y}R^{9}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}$, $X^{2}(CH_{2})_{p}S(O)_{y}R^{9}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}$, $-X^{2}(CH_{2})_{p}CO_$

20

 $X^{2}(CH_{2})_{p}NR^{10}C(=O)NR^{11}R^{12}$, -OC(=O)R⁹, -OCONHR², -Otetrahydropyranyl, - $NR^{11}R^{12}$, - $NR^{10}CO_2R^9$, - $NR^{10}C(=O)NR^{11}R^{12}$, -NHC(=NH)NH₂, NR 10 C(=O)R 9 , -NR 10 S(O)₂R 9 , -S(O)_vR 9 , -CO₂R 2 , - $C(=O)NR^{11}R^{12}$, $-C(=O)R^2$, $-CH_2OR^{10}$, $-CH=NNR^2R^{2A}$, $-CH=NOR^2$, -CH=NR⁹, -CH=NN $\frac{1}{1}$ CH(N=NH)NH₂, -S(=O)₂NR²R^{2A}, -P(=O)(OR¹⁰)₂, -OR¹⁴, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from of 1 to 4 carbons;

R¹⁸ is selected from the group consisting of R², thioalkyl of 1-4 carbons, and halogen;

A¹ and A² are selected from the group consisting of H, H; H, OR²; H, -SR²; H, -N(R²)₂; and a group wherein A¹ and A² together form a moiety selected from the group consisting of =0, =S, and $=NR^2$;

B¹ and B² are selected from the group consisting of H, H; H, -OR²; H, -SR²; H, -N(R²)₂; and a group wherein B¹ and B² together form a moiety selected from the group consisting of =0, =S, and =NR²; with the proviso that at least one of the pairs A^1 and A^2 , or B^1 and B^2 , form =0;

with the proviso that when Q is NH or NR^{7A}, and in any R⁷ or R^{7A} group m is 0 and G is a bond, R^8 is H, and $R^{\frac{1}{2}}$ or R^{7A} contains one ring hetero oxygen atom at position A in a 5- or 6-membered ring, then B cannot be CHR¹⁷ where R¹⁷ is substituted or unsubstituted alkyl; and

with the further proviso that the compound of Formula I contains one R⁷ or R^{7A} group or both an R^7 and R^{7A} group.

The compound of claim 1 wherein:

A and B are independently selected from the group consisting of O, N, S, CHR¹⁷,

 $C(OH)R^{17}$, C(=O), and $CH_2=C$;

R¹⁷ is selected from the group consisting of H, substituted or unsubstituted alkyl, and substituted or unsubstituted alkoxy; wherein:

1) ring J contains 0 to 3 ring heteroatoms;

CEPH-0939 - 94 - 0 PATENT

2) any two adjacent hydroxyl groups ϕ fring J can be joined in a dioxolane ring;

3) any two adjacent ring carbon atoms of ring J can be joined to form a fused aryl or heteroaryl ring;

provided that:

5

- 1) ring J contain at least one carbon atom that is saturated;
- 2) ring J not contain two affiacent ring O atoms;
- 3) ring J contains a maximum of two ring C(=O) groups;
- 4) when G is a bond, ring J can be heteroaryl; and

 R^8 is selected from the group consisting of O(C=O)NR¹¹R¹², acyloxy, alkenyl, O-O-CH₂-O-(CH₂)₂-O-CH₃, halogen and R^{1A} wherein R^{1A} is the same as R¹.

- 3. The compound of claim 2 wherein R¹, R⁴ and R⁶ are H.
- 4. The compound of claim 2 wherein one of A_1, A_2 or B_1, B_2 is H,H and the other is =0.
- The compound of claim 3 wherein one of A_1, A_2 or B_1, B_2 is H,H and the other is =0.
 - 6. The compound of claim 2 wherein R¹, R⁴, R⁵, R⁶ and R⁸ are H.
 - 7. The compound of claim 2 wherein R³ and R⁵ are independently selected from the group consisting of H, alkoxy, halogen, alkoxyalkyl, alkoxy-alkoxyalkyl and alkoxy-alkoxycarbonyl.

- 8. The compound of claim 2 wherein Q is NR^{13} .
- 9. The compound of claim 8 wherein preferably wherein R^{13} is H or R^{7A} .
- 10. The compound of claim 9 wherein R¹³ is H.

CEPH-0939 - 95 -

11. The compound of claim 2 wherein W is CH₂ or CR¹⁸R⁷.

PATENT

- 12. The compound of claim 11 wherein W is CR¹⁸R⁷.
- 13. The compound of claim 12/wherein R¹⁸ is H or lower alkyl.
- 14. The compound of claim 2 wherein R⁷ is a 3-, 4-, 5- or 6-membered carbocyclic ring, or a 5- or 6-membered heterocyclic ring which contains one or two ring O, N, or S atoms.
 - 15. The compound of claim 14 wherein R⁷ is a heterocyclic ring having one ring O, N, or S hetero atom.
- 16. The compound of claim 15 wherein R⁷ is a 3-, 4-, 5- or 6-membered 10 heterocyclic ring which contains one ring O atom.
 - 17. The compound $\oint f$ claim 2 wherein G is a bond or CH_2 .
 - 18. The compound of claim 2 wherein m is 0 or 1.
- 19. The compound of claim 2 wherein R⁸ is H, OH, halogen, ethenyl, acyloxy, alkoxy, substituted or unsubstituted phenyl, substituted or unsubstituted heteroaryl, or hydroxyalkyl.
 - 20. The compφund of claim 19 wherein R⁸ is H or OH.
 - 21. The compound of claim 2 having the Formula II:

- 22. The compound of claim 21 wherein R¹, R⁴ and R⁶ are H.
- 23. The compound of claim 21 wherein one of A_1, A_2 or B_1, B_2 is H,H and the other is =0.
- 5 24. The compound of claim 21 wherein R³ and R⁵ are, independently selected from the group consisting of H, alkoxy, halogen, alkoxyalkyl, alkoxy-alkoxyalkyl and alkoxy-alkoxycarbonyl.
 - 25. The compound of claim 21 wherein G is a bond or CH₂.
 - 26. The compound of claim 21 wherein W is CH₂ or CR¹⁸R⁷.
- The compound of claim 21 wherein Q is NR¹³ or NR^{7A}.
 - 28. The compound of claim 21 wherein R⁸ is H, OH, halogen, ethenyl, acyloxy, alkoxy, substituted or unsubstituted phenyl, substituted or unsubstituted heteroaryl, or hydroxyalkyl.
- The compound of claim 21 wherein R¹, R⁴ and R⁶ are H; one of A₁,A₂ or B₁,B₂ is H,H and the other is =O; R³ and R⁵ are, independently selected from the group consisting of H alkoxy, halogen, alkoxyalkyl, alkoxy-alkoxyalkyl and alkoxy-alkoxycarbonyl; G is a bond or CH₂; W is CH₂ or CR¹⁸R⁷; R⁸ is selected from the group consisting of H, OH, halogen, ethenyl, acyloxy, alkoxy, substituted or unsubstituted phenyl, substituted or unsubstituted heteroaryl, and hydroxyalkyl; and Q is NR¹³ or NR^{7A}.

- 30. The compound of claim 29 wherein R⁸ s H or OH.
- 31. The compound of claim 21 wherein Q is NR¹³ where R¹³ is H, G is a bond; W is CR¹⁸R⁷ where R¹⁸ is H or lower alkyl; and R³ and R⁵ are independently selected from the group consisting of H, alkoxy, and alkoxy-alkoxycarbonyl.
- 5 32. The compound of claim 31 wherein R⁷ is a 3-, 4-, 5- or 6-membered carbocyclic ring, or a 5- or 6-membered heterocyclic ring which contains one or two ring O, N, or S atoms.
 - 33. The compound of claim $\frac{1}{2}$ 1 wherein \mathbb{R}^7 is a heterocyclic ring having one ring O, N, or S hetero atom.
 - 34. The compound of claim 31 wherein R⁷ is a 3-, 4, 5- or 6-membered heterocyclic ring which contains one ring O atom.
 - 35. The compound of claim 31 wherein the constituent variables of the compounds of Formula II are selected in accordance with Table 7.
 - 36. The compound of claim 31 wherein R⁸ is H or OH.
 - 37. The compound of claim 21 wherein Q is NR^{7A}; R⁵ and R⁸ are H; W is CH₂; m is 0; G is a bond or CH₂; and R³ is independently selected from the group consisting of H, halogen, alkoxyalkyl, and alkoxy-alkoxyalkyl.
- 38. The compound of claim 37 wherein R^{7A} is a 3-, 4-, 5- or 6-membered carbocyclic ring, or a 5- or 6-membered heterocyclic ring which contains one or two ring O, N, or S atoms.
 - The compound of claim 37 wherein R^{7A} is a heterocyclic ring having one ring O, N, or S hetero atom.

- 40. The compound of claim 37 wherein R^{7A} is a 3-, 4, 5- or 6-membered heterocyclic ring which contains one ring O atom.
- 41. The compound of claim 37 wherein the constituent variables of the compounds of Formula II are selected in accordance with Table 8 supra.
- 42. The compound of claim 21 wherein R^1 , R^3 , R^4 and R^6 are each H; A_1 , A_2 is H, H; B_1 , B_2 is =O; Q is NH; R^5 is H or alkoxy. W is $CR^{18}R^7$ where R^{18} is H; G is a bond; M is 1; M is M and M are each M is M is M is M and M are each M is M is M and M are each M is M and M are each M is M and M is M and M are each M is M and M is M and M are each M is M and M is M is M and M is M is M and M and M is M and M is M and M and M and M
 - 43. The compound of claim 42 wherein R⁵ is attached to the 10-position.
- 10 44. The compound of claim 43 wherein R⁵ is alkoxy.
 - 45. The compound of claim 43 wherein R⁵ is -O-CH₃.
 - 46. The compound of claim 45 wherein R⁸ is -OH.
 - 47. The compound of claim 43 wherein R⁵ is H.
- 15 48. The compound of claim 47 wherein R⁸ is -OH.
 - 49. The compound of claim 43 wherein R⁵ is H and R⁸ is -O-C(=O)-alkyl.
 - 50. The compound of claim 49 wherein R⁸ is -O-(C=O)-CH₃.
- 51. The compound of claim 21 wherein R^1 , R^3 , R^4 R^5 and R^6 are each H; A_1 , A_2 20 is H, H; and B_1 , B_2 is =0.
 - 52. The compound of claim 51 wherein Q is NR^{7A} and W is CHR¹⁷.

- 53. The compound of claim 52 wherein wherein R^{7A} and R¹⁷ are each cyclopropylmethyl.
- 54. The compound of claim 1 wherein R^1 , R^3 , R^4 R^5 and R^6 are each H; A_1 , A_2 is H,H; B_1 , B_2 is =O, W is CH₂, and Q is NR^{7A} .
- 55. The compound of claim 54 wherein R^{7A} is G is CH₂, m is 0, R⁸ is -CN, and ring J is cyclopropyl.
 - 56. The compound of claim 1 wherein R^1 , R^3 , R^4 R^5 and R^6 are each H; A_1 , A_2 is H,H; B_1 , B_2 is =0, Q is NH, and W is $CR^{18}R^7$ where R^{18} is H.
- 57. The compound of claim 56 wherein G is CHOH, m is 0, R⁸ is H, A and B form -CH=CH-, C is CHR¹⁷ where R¹⁷ is -CH₃, D is a bond, E and F are each N.
 - 58. The compound of claim 57 wherein E and F are joined to form a fused heterocyclic ring which is substituted with 1 aryl group.
 - 59. The compound of claim 58 wherein \mathbb{R}^7 has the formula:

- 15 60. The compound of claim 54 wherein G is ethylene, m is 0, R⁸ is H, A is NH, B is CHR¹⁷, C and D are each a bond, E is CH₂ and F is S.
 - 61. The compound of claim 60 wherein R¹⁷ is alkoxycarbonyl.

- 62. The compound of claim 61 wherein \mathbb{R}^{17} is methoxycarbonyl.
- 63. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 64. A pharmaceutical composition for treating or preventing prostate disorders comprising a compound of claim 1 and a pharmaceutically-acceptable carrier.
- 65. The pharmaceutical composition of claim 23 wherein the prostate disorder is prostate cancer or benign prostate hyperplasia.
- 66. A pharmaceutical composition for treating or preventing neoplasia, rheumatoid arthritis, pulmonary fibrosis, myelofibrosis, abnormal wound healing, atherosclerosis, or restenosis comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
 - 67. A pharmaceutical composition for treating or preventing Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, stroke, ischaemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathy, or injuries of the brain or spinal chord comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
 - 68. A method for inhibiting a kinase comprising comprising providing a compound of claim 1 in an amount sufficient to result in effective inhibition.
 - 69. The method of claim 68 wherein the kinase is selected from *trk* kinase, VEGFR, MLK, and FGFR,
 - 70. A method for inhibiting *trk* kinase activity comprising providing a compound of claim 1/in an amount sufficient to result in effective inhibition.
 - 71. The method of claim 70 wherein the trk kinase is trk A.

72. The method of claim 70 wherein the compound of claim 1 is provided to treat inflammation.

- 73. A method for treating or preventing prostate disorders which comprises administering to a host in need of such treatment or prevention a therapeutically effective amount of a compound of glaim 1.
- 74. The method of claim 73 wherein the prostate disorder is prostate cancer or benign prostate hyperplasia.
- 75. A method for treating or preventing disorders where VEGFR activity contributes to pathological conditions comprising providing a compound of claim 1 in an amount sufficient to result in the platelet derived growth factor receptor being contacted with an effective inhibitory amount of the compound.
 - 76. The method of claim 75 wherein the disorder is cancer, endometriosis, psoriasis, hemangioblastoma, or an ocular disease.
 - 77. The method of claim 75 wherein the disorder is cancer.
- 78. The method of claim 77 wherein the disorder is a solid tumors or a hematopoietic or lymphatic malignancy.
 - 79. The method of claim 75 wherein the disorder is an ocular disease.
 - 80. The method of claim 79 wherein the ocular disease is diabetic retinopathy.
- 81. A method for treating or preventing disorders where PDGFR activity
 20 contributes to pathological conditions comprising providing a compound of claim 1 in an amount sufficient to result in the platelet derived growth factor receptor being contacted with an effective inhibitory amount of the compound.

20

- 82. A method for treating or preventing neoplasia, rheumatoid arthritis, pulmonary fibrosis, myelofibrosis, abnormal wound healing, atherosclerosis, or restenosis which comprises administering to a host in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1.
- 83. A method for treating or preventing disorders characterized by the aberrant activity of trophic factor responsive cells comprising providing a compound of claim 1 in an amount sufficient to result in the trophic factor cell receptor being contacted with an effective activity inducing amount of the compound.
- 84. A method for treating or preventing Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, stroke, ischaemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathy, or injuries of the brain or spinal chord which comprises administering to a host in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1.
- 85. A method for treating or preventing disorders characterized by the aberrant activity of a protein kinase which comprises administering to a host in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1.
 - 86. A method for treating or preventing disorders where either the vascular endothelial growth factor receptor (VEGFR) kinase, *trkA* tyrosine kinase (trkA), mixed lineage kinase (MLK) or the fibroplast growth factor receptor kinase (FGFR) contributes to pathological conditions, the method comprising providing a compound of claim 1 in an amount sufficient to result in the receptor being contacted with an effective inhibitory amount of the compound.
- 67. A method of treating or preventing a disease mediated by a kinase selected from ab1, AKT, bcr-ab1, Blk, Brk, Btk, c-kit, c-met, c-src, CDK1, CDK2, CDK4, CDK6, chk1, chk 2, cRaf1, CSF1R, CSK, EGFR, ErbB2, ErbB3, ErbB4, ERK (Eph), ERK 2, Fak, fes, FGFR1, FGFR2, FGFR3, FGFR4, FGFR5, Fgr, FLK-4, flt-1, Fps, Frk, Fyn, GSK,

Hck, IGF-1R, INS-R, Jak, JNK, tau, VEGFR1, VEGFR2, VEGFR3, Lck, Lyn, MEK, p38, PDGFR, PIK, PKC, PYK2, ros, tie₁, tie₂, TRK, UL97, Yes and Zap70, the method comprising administering to a patient in need of such treatment or prevention a pharmaceutically effective amount of a compound of claim 1.

- 88. A method for treating or preventing disorders where a kinase selected from ab1, AKT, bcr-ab1, Blk, Brk, Btk, c-kit, c-met, c-src, CDK1, CDK2, CDK4, CDK6, chk1, chk 2, cRaf1, CSF1R, CSK, EGFR, ErbB2, ErbB3, ErbB4, ERK (Eph), ERK 2, Fak, fes, FGFR1, FGFR2, FGFR3, FGFR4, FGFR5, Hgr, FLK-4, flt-1, Fps, Frk, Fyn, GSK, Hck, IGF-1R, INS-R, Jak, JNK, tau, VEGFR1, VEGFR2, VEGFR3, Lck, Lyn, MEK, p38, PDGFR, PIK, PKC, PYK2, ros, tie₁, tie₂, TRK, UL97, Yes and Zap70 contributes to pathological conditions, the method comprising providing a compound of claim 1 in an amount sufficient to result in the receptor being contacted with an effective inhibitory amount of the compound.
- 89. A method for treating or preventing a symptom of a disorder where a kinase selected from ab1, AKT, bcr-ab1, Blk, Brk, Btk, c-kit, c-met, c-src, CDK1, CDK2, CDK4, CDK6, chk1, chk 2, cRaf1, CSF1R, CSK, EGFR, ErbB2, ErbB3, ErbB4, ERK (Eph), ERK 2, Fak, fes, FGFR1, FGFR2, FGFR3, FGFR4, FGFR5, Fgr, FLK-4, flt-1, Fps, Frk, Fyn, GSK, Hck, IGF-1R, INS-R, Jak, JNK, tau, VEGFR1, VEGFR2, VEGFR3, Lck, Lyn, MEK, p38, PDGFR, PIK, PKC, PYK2, ros, tie, tie, TRK, UL97, Yes and Zap70 contributes to such symptom, the method comprising providing a compound of claim 1 in an amount sufficient to result in the receptor being contacted with an effective inhibitory amount of the compound.
- 90. A method for treating or preventing Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, stroke, ischaemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathy, injuries of the brain or spinal chord, cancer, restenosis, osteoporosis, inflammation, angiogenesis, viral infections, bone or hematopoetic diseases, autoimmune diseases or transplant rejection which comprises administering to a host in need of such treatment or prevention a therapeutically effective

6.

amount of a compound of claim 1.

- 91. A method for the treatment of cancer comprising inhibiting one or more of Src, raf, a checkpoint kinase or a cyclin-dependent kinase.
- 5 92. The method of claim 91 wherein the cyclin-dependent kinase is CDK 1, 2, 4 or
 - 93. The method of claim 91 wherein the checkpoint kinase is chk 1 or chk 2.
 - 94. The method of claim 91 comprising inhibiting Src or raf.