Claims

[c1]	1. A method, comprising:
	forming a sacrificial layer of material on a substrate;
	covering said sacrificial layer of material with a polymer material;
	removing said sacrificial layer to form a cantilevered polymer structure over a substrate
	using micromachining techniques; and
	forming at least one structure between said polymer structure and said substrate which
	avoids said polymer structure sticking to said substrate after said removing.
[c2]	2. A method as in claim 1, wherein said forming at least one structure comprises
	forming a plurality of leg portions, extending between an extendin portion of said
	cantilevered polymer structure, and said substrate.
[c3]	3. A method as in claim 2, further comprising an additional etching operation operating
	to free said leg portions from said substrate.
[č4]	4. A method as in claim 3, wherein said additional etching operation comprises a gas
Can man gen gen	phase etching which removes a portion of said substrate adjacent said leg portions.
[&]	5. A method as in claim 3, wherein said additional etching operation comprises etching
	using BrF 3
G Gen	6. A method as in claim 1, wherein said forming at least one structure comprises
[]]	forming an anti stick layer on said substrate, said anti stick layer formed of a different
	material than a material of said substrate.
[c7]	7. A method as in claim 6, wherein said substrate is formed of silicon, and said anti stic
	layer is formed of a material other than silicon.
[c8]	8. A method as in claim 7, wherein said material other than silicon includes polysilicon.
[c9]	9. A method as in claim 7, wherein said material other than silicon includes a titanium
	material.
[c10]	10. A method as in claim 6, wherein said anti stick layer is part of a sacrificial layer, and
	further comprising removing said sacrificial layer.
[c]]]	

11. A method as in claim 10, further comprising a forming a plurality of leg portions,

- [c24] 24. A method as in claim 23, wherein said forming a layer comprises forming a layer of polysilicon.
- [c25] 25. A method as in claim 23, wherein said forming a layer comprises forming a layer of titanium.
- [c26] 26. A structure, comprising:
 a silicon substrate; and
 a polymer cantilevered element, overlying said silicon substrate, and forming a cavity
 between a bottom surface of said cantilevered element and said silicon substrate, said
 polymer cantilevered element having a thickness less than 100 microns, and a length
 greater than 100 microns.
 - 27. A structure as in claim 26, wherein said cantilevered element further includes at least one leg thereon, which leg extends between said bottom surface of said polymer cantilevered element and said silicon substrate.
 - 28. A structure as in claim 27, wherein said cantilevered element includes at least a plurality of legs thereon, each of which extends between said bottom surface and said silicon substrate.
 - 29. A structure as in claim 27, further comprising an indentation in said substrate in an area of said leg, wherein said leg is separated from said substrate.