Simulación 14 de octubre de 2020

ITAM 2020-II

Tarea 4.

La fecha de entrega es el 26 de octubre de 2020.

Lecturas

- Robert & Casella Caps. 3 y 4.
- Dagpunar Cap.5 (Técnicas de Reducción de varianza)

Problemas

1. Consideren el siguiente modelo de líneas de espera con un servidor. Los tiempos de interarribo, así como los tiempos de servicio son independientes $\mathcal{U}(0,1)$.

Sea T_i el tiempo de interarribo entre los clientes i-1 e i y S_i el tiempo de servicio del cliente i. W_i es el tiempo de espera en fila del cliente i. La condición inicial es que el primer cliente en el sistema llega en el tiempo 0. Entonces:

$$W_i = max\{0, W_{i-1} + S_{i-1} - T_i\}$$

para $i=2,3,\ldots,100$, donde $W_1=0$. Escriban un programa para simular 5000 realizaciones del tiempo total de espera en la fila, junto con 5000 realizaciones antitéticas.

- a. Usando un estimador combinado de las realizaciones primarias y antitéticas, estimar la esperanza del tiempo de espera de los 100 clientes y su error estándar estimado. Estimar el porcentaje de reducción de varianza.
- b. Repetir el experimento cuando la duración del servicio es $\mathcal{U}(0,2)$. ¿Porqué se alcanza una reducción de varianza mucho mejor aquí que en (a)?
- 2. Cinco elementos, numerados del 1 al 5 se acomodan inicialmente en un orden aleatorio (esto es, el orden inicial es una permutación aleatoria de los números $\{1,2,3,4,5\}$) En cada estado del proceso, uno de los elementos es seleccionado con cierta probabilidad y puesto en el frente de la lista. Por ejemplo, si el orden presente es $\{2,3,4,1,5\}$ y el elemento 1 se elige, entonces el nuevo orden es $\{1,2,3,4,5\}$. Supongan que cada selección es independiente y se elige al elemento i con probabilidad p_i , donde las $p_i's$ son $(\frac{1}{15}, \frac{2}{15}, \frac{3}{15}, \frac{4}{15}, \frac{5}{15})$. Sea L_j la variable que denota la posición del j-ésimo elemento seleccionado, y sea $L = \sum_{j=1}^{100} L_j$. Queremos usar simulación para estimar E(L).

- (a) Expliquen cómo realizarían la simulación para estimar E(L).
- (b) Calculen $E(N_i)$ donde N_i es el número de veces que el elemento i es elegido en 100 selecciones.
- (c) Sea $Y = \sum_{i=1}^{5} iN_i$ ¿Cómo se correlaciona Y con L?
- (d) Estimar *L* usando *Y* como variable de control.
- 3. Sean X y Y dos independientes exponenciales con medias 1 y 2 respectivamente y supongan que queremos estimar P(X+Y>4). ¿Cómo utilizarían condicionamiento para reducir la varianza del estimador? Digan si considerarían condicionar en X o en Y y porqué.
- 4. Supongan que queremos estimar $\theta = \int_0^1 e^{x^2} dx$. Muestren que generar un número aleatorio u y usar el estimador $e^{u^2}(1+e^{1-2u})/2$ es mejor que generar dos números aleatorios u_1 y u_2 y usar $(e^{u_1^2}+e^{u_2^2})/2$.
- 5. Explicar cómo se pueden usar variables antitéticas en la simulación de la integral

$$\theta = \int_0^1 \int_0^1 e^{(x+y)^2} \, dx \, dy$$

¿Es claro en este caso que usando variables antitéticas es más eficiente que generando nuevos pares de variables aleatorias? Dar una justificación a su respuesta.

- 6. En ciertas situaciones una variable aleatoria X con media conocida, se simula para obtener una estimación de $P(X \le a)$ para alguna constante dada a. El estimador simple de una simulación para una corrida es $I = I(X \le a)$.
 - ullet Verificar que I y X están correlacionadas negativamente.
 - Por el inciso anterior, un intento natural de reducir la varianza es usar X como variable de control (esto es usar $Y_c = I c(X E(X))$). En este caso, determinar el porcentaje de reducción de varianza de Y_c sobre I es es posible (usando la mejor c si X es $\mathcal{U}(0,1)$.
 - Repetir el inciso anterior si X es exponencial con media 1.
- 7. El número de reclamos en una aseguradora que se harán la próxima semana depende de un factor ambiental U. Si el valor de este factor es U=u, entonces el número de reclamos tendrá distribución Poisson con media $\frac{15}{0.5+u}$. Suponiendo que $U \sim \mathcal{U}(0,1)$, sea p la probabilidad de que habrá al menos 20 reclamos la siguiente semana.
 - Explicar como obtener una simulación cruda de *p*.
 - Desarrollar un estimador de simulación eficiente usando esperanza condicional junto con una variable de control

- Desarrollar un estimador de simulación eficiente usando esperanza condicional y variables antitéticas.
- Escriban un programa para determinar las varianzas de los incisos anteriores.
- 8. Consideren la siguiente gráfica, representando una red puente:

Supongan que queremos estimar la longitud esperada l de la ruta más corta entre los nodos A y B, donde las longitudes de los arcos son variables aleatorias X_1, \ldots, X_5 . Entonces tenemos que $l = E(H(\mathbf{X}), \text{ donde})$

$$H(\mathbf{X}) = \min\{X_1 + X_4, X_1 + X_3 + X_5, X_2 + X_3 + X_4, X_2 + X_5\}$$

Noten que $H(\mathbf{x})$ es no decreciente en cada componente del vector \mathbf{x} . Supongan que las longitudes son independientes y $X_i \sim \mathcal{U}(0, a_i)$, con $\mathbf{a} = (1, 2, 3, 1, 2)$. Escribiendo $X_i = a_i U_i$ se puede restablecer el problema como la estimación de $l = \mathrm{E}(h(\mathbf{U}))$ con $h(\mathbf{U}) = H(a_1 U_1, \dots, a_5 U_5)$.

- Obtener un estimador crudo de MonteCarlo para *l*.
- Obtener un estimador usando variabes antitéticas
- Obtener un estimador usando variables de control.
- Obtener un estimador usando condicionamiento.

En todos los casos anteriores, calcular la reducción de varianza obtenida y determinar el mejor método.

- 9. Sea S la suma de los resultados de lanzar 100 veces un dado honesto. Usen la desigualdad de Chebyshev para acotar $P(S \ge 380)$.
- 10. Estimar usando MC crudo: $\int_{-\infty}^{\infty} \log(x^2) e^{-x^2} \, dx$ y aplicar dos técnicas de reducción de varianza a esta integral. Calcular la reducción lograda con cada método.