

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Stability of Discrete-Time LTI and LTV Systems

Stability of DT Autonomous Linear Systems

Discrete-time LTV system $x[k+1] = A[k]x[k], \quad k = 0, 1, ...$

Definition (Asymptotic Stability)

LTV system is asymptotically stable at time k_0 if its solution x[k] starting from any initial state $x[k_0]$ at time k_0 satisfies

$$x[k] \to 0$$
 as $k \to \infty$

Definition (Exponential Stability)

LTV system is exponentially stable at time k_0 if its solution x[k] starting from any initial state $x[k_0]$ at time k_0 satisfies

$$||x[k]|| \le Kr^{k-k_0}||x[k_0]||, \quad \forall k = k_0, k_0 + 1, \dots$$

for some constants K > 0, 0 < r < 1

Stability of DT LTI Systems

Theorem

For LTI system x[k+1] = Ax[k], the following statements are equivalent

- 1 The LTI system is asymptotically stable
- 2 The LTI system is exponentially stable
- $oldsymbol{3}$ All the eigenvalues of A are inside the open unit disk of ${\mathbb C}$
- Asymptotic stability = exponential stability
- Starting time k₀ does not matter

Marginal Stability of DT LTI Systems

System x[k+1] = Ax[k] is unstable if **either** of the following is true:

- $oldsymbol{0}$ A has eigenvalues outside the closed unit disk of $\mathbb C$
- $oldsymbol{2}$ A has defective eigenvalues on the unit circle of ${\mathbb C}$

System x[k+1] = Ax[k] is marginally stable if **both** of following hold:

- $oldsymbol{0}$ A has no eigenvalue outside the close unit disk of $\mathbb C$
- $oldsymbol{2}$ A has eigenvalues on the unit circle of \mathbb{C} , each being non-defective

Stability of DT LTV Systems

LTV system x[k+1] = A[k]x[k] has solution $x[k] = \Phi[k]x[0]$

Theorem

• LTV system is asymptotically stable at time k_0 if

$$\Phi[k, k_0] \to 0$$
 as $k \to \infty$

• LTV system is exponentially stable at time k_0 if there exist C > 0, 0 < r < 1, such that

$$\|\Phi[k,k_0]\| \le Cr^{k-k_0}, \quad \forall k \ge k_0$$

- Asymptotic stability ≠ exponential stability
- Starting time k_0 does matter