Predicting Available Listings for Seattle Airbnb

Melissa G Ngamini

Thinkful Data Science

June 24, 2018

1 / 28

Why do people choose Airbnb?

Some of the reasons why people choose to stay at an Airbnb rather than a hotel.

Convenient location

They give the customer the illusion of living like a local because of their location that range from along beaches, canals, Main Streets, main attractions, or in secluded area.

Flexibility

Hotels are strict about their check-in and check-out day and time. At most Airbnb those can be accommodated to fit the clients need.

Household amenities

Amenities that are included can be priceless, like the use of a full kitchen, a living room and extra bedrooms.

More space for less Money

Depending on the customer needs, they can decide to book a location that only offers a bedroom if they are traveling alone or they can choose to book a house or an apartment if they are with their family or just want more space.

One-on-one interaction with the owner

The owners are typically very helpful with recommendations, directions, and any information they feel may benefit you on your trip.

2 / 28

What do Airbnb hosts want?

Some of the informations an Airbnb host would get from this research.

Find the right pricing

Since they are not a hotel, they shouldn't price themselves as one. They will want to know the prices that attract the most customers depending on what they offer and their location.

Find the periods of high demand

There are periods in the year that have the most customers. They will want to know those times so that they can make sure to have their Listing available at the time to be booked as soon as possible.

Find the "in demand" amenities

What amenities attracts the most customers. For the type of listing they have on Airbnb, are the customers interested in having easy access to a bathroom, or the kitchen. The best numbers of quests can they allow their customer to have.

Find the customers expect from host

What are the elements of hosting that seem to attract customer. What they need to write in their summary/description and implement to make sure they receive good reviews so that their listing is not available throughout the year.

How to find an available Airbnb Listing?

What is an available Listing?

A listing is said to be available when it can be booked by an Airbnb client.

- What do we need to to be able to predict an available Listing?
 - Features Selection for Prediction

After cleaning and Analyzing the data choose features that can help with the prediction.

- Using Random Forest Classifier
- Using SelectKbest
- 2 Models used for Prediction

Choose 3 different modeling techniques to find which one gave us the better result.

- Random Forest Classifier
- Logistic Regression
- Gradient Boosting
- Opening Prediction of Available Airbnb Listings

Of the best models which one gave us the better result?

- Prediction using Random Forest Classifier
- Prediction using Gradient Boosting

4 / 28

Reviews, Calendar and Listings data

The shape of the Reviews data is: (84849, 6)

The shape of the Calendar data is: (1393570, 4)

	listing_id	id	date	reviewer_id	reviewer_name	comments
0	7202016	38917982	2015-07-19	28943674	Bianca	Cute and cozy place. Perfect location to every
1	7202016	39087409	2015-07-20	32440555	Frank	Kelly has a great room in a very central locat
2	7202016	39820030	2015-07-26	37722850	lan	Very spacious apartment, and in a great neighb
3	7202016	40813543	2015-08-02	33671805	George	Close to Seattle Center and all it has to offe
4	7202016	41986501	2015-08-10	34959538	Ming	Kelly was a great host and very accommodating

(a) Reviews Data

(b) Calendar Data

The shape of the Listings data is: (3818, 92)

id	listing_url	scrape_id	last_scraped	name	summary	space	description
241032	https://www.airbnb.com/rooms/241032	20160104002432	2016-01-04	Stylish Queen Anne Apartment	NaN	Make your self at home in this charming one- be	Make your self at home in this charming one-be
1 953595	https://www.airbnb.com/rooms/953595	20160104002432	2016-01-04	Bright & Airy Queen Anne Apartment	Chemically sensitive? We've removed the irrita	Beautiful, hypoallergenic apartment in an extr	Chemically sensitive? We've removed the irrita

(c) Listings Data

Figure: Features in Reviews, Calendar and Listings data

Features in Listings data

```
'bathrooms',
'id',
                                  'host is superhost',
                                                                     'bedrooms'.
'listing url',
                                  'host thumbnail url',
                                                                     'beds',
'scrape id'.
                                  'host picture url',
                                                                     'bed type',
'last scraped',
                                  'host neighbourhood',
                                                                     'amenities',
'name',
                                  'host listings count',
                                                                     'square feet',
'summary'.
                                  'host total listings count',
                                                                     'price',
'space',
                                  'host verifications',
                                                                     'weekly price',
'description',
                                  'host has profile pic',
                                                                     'monthly price',
'experiences offered'.
                                  'host identity verified'.
                                                                     'security deposit',
'neighborhood overview',
                                  'street'.
                                                                     'cleaning fee',
'notes',
                                  'neighbourhood'.
                                                                     'quests included'.
'transit'.
                                  'neighbourhood cleansed'.
                                                                     'extra people',
'thumbnail url',
                                  'neighbourhood group cleansed',
                                                                     'minimum nights',
                                                                                                        'review scores accuracy'.
                                  'city'.
'medium url',
                                                                     'maximum nights',
                                                                                                        'review scores cleanliness',
                                  'state'.
'picture url',
                                                                                                        'review scores checkin',
                                                                     'calendar updated',
                                  'zipcode'.
'xl picture url',
                                                                                                       'review scores communication',
                                                                     'has availability',
                                  'market',
                                                                                                       'review scores location',
'host id',
                                                                     'availability 30',
                                                                                                       'review scores value'.
                                  'smart location',
'host url'.
                                                                     'availability 60',
                                                                                                        'requires license'.
                                  'country code',
'host name',
                                                                     'availability 90',
                                                                                                       'license',
                                  'country',
'host since',
                                                                     'availability 365',
                                                                                                       'jurisdiction names',
                                  'latitude',
                                                                                                       'instant bookable',
'host location'.
                                                                     'calendar last scraped',
                                  'longitude',
                                                                                                        'cancellation policy',
'host about',
                                                                     'number of reviews',
                                  'is location exact',
                                                                                                        'require quest profile picture',
'host response time'.
                                                                     'first review',
                                  'property type',
                                                                                                       'require quest phone verification'.
'host response rate',
                                                                     'last review',
                                                                                                       'calculated host listings count'.
                                  'room type',
'host acceptance rate',
                                                                     'review scores rating',
                                                                                                       'reviews per_month']
                                  'accommodates',
         (a) Part 1
                                            (b) Part 2
                                                                              (c) Part 3
                                                                                                                (d) Part 4
```

Figure: Features in Listings Data

Training set description

The shape of the Training set is: (975499, 69)

	price_calendar	month	host_listings_count	accommodates	bathrooms	bedrooms	beds	guests_included	minimum_nights
7203765	110.0	6	1.0	2	1.0	0.0	1.0	1	3
6400000	160.0	5	3.0	4	1.0	1.0	1.0	0	1
6856295	85.0	8	1.0	2	1.0	1.0	1.0	2	1
9149612	69.0	12	1.0	2	1.0	0.0	1.0	2	2
9217337	52.0	7	1.0	2	1.5	1.0	1.0	1	1

(a) X Train

```
The shape of the Training set is: (975499,)
7203765 0
6400000 1
6856295 1
9149612 0
9217337 1
Name: availability, dtype: int64
```

(b) Y Train

Figure: Features in the Training Set

Dealing with missing data

print(dfLnumeric.shape)			
(3818, 33)		print(df.shape)	
<pre># Count nulls null_count = dfLnumeric.isnul null_count[null_count>0]</pre>	l().sum()	(1393570, 80) # Count nulls	
host_listings_count	2 16	<pre>null_count = df.isnull().sum(null_count[null_count>0]</pre>)
bedrooms beds square_feet review scores rating	6 1 3721 647	price_calendar host_listings_count bathrooms bedrooms	459725 730 5840 2190
review_scores_accuracy review_scores cleanliness review_scores_checkin review_scores_communication review_scores_location	658 653 658 651 655	beds review_scores_rating review_scores_accuracy review_scores_cleanliness review_scores_checkin review_scores_communication	365 236155 240170 238345 240170 237615
review_scores_value license reviews_per_month price dtype: int64	656 3818 627 1	review_scores_location review_scores_value reviews_per_month price_listing dtype: int64	239440 239440 228855 365

Figure: Missing Data

Features kept from Analysis of correlation matrix

Figure: Features that were kept despite being highly correlated

Features removed from Analysis of correlation matrix

Figure: Features removed for being highly correlated

Relationship between month and availability

```
### Date at which the Listings data was last scraped.
dfL['last_scraped'][0]
```

'2016-01-04'

Figure: Distribution of availability per month

Relationship between price calendar and month vs price listing and month

(a) Distribution of calendar price per month

(b) Distribution of listing price per month

Figure: Available and Non Available Prices per month

Relationship between reviews per month and number of reviews

Figure: Number of reviews vs Reviews per month

Occurrence of some features in Data

Figure: Histograms of some features in data

Occurrence of keywords selected from Summary in Data

Figure: Count of keywords from Summary

Random Forest Classifier

Figure: Random Forest Classifier to select important features

Question of the second of t

Score on Training Set: 0.732044830389

Score on Test Set: 0.731796752226

The numbers of important features we will use are: 30

SelectKBest

```
*# Select Kbest Features
selector = SelectKbest(classif, k=30)
start_time = time.clock()
start_time = time.clock()
start_time = time.clock()
selector.fit_transform(x train, Y_train)
print('\nNuntime for SelectKbest: '+'% seconds'% (time.clock() - start_time)) # End time for execution speed.
names = X_train.columns.values[selector.get_support()]
scores = selector.scores[selector.get_support()]
scores = selector.scores[selector.get_support()]
names_scores = list(tip(names, scores), columns=['Feat_names', 'F_Scores'])
d_cetures = pi.thetPrams(data = names_scores, columns=['Feat_names'], scores'])
d_cetures = pi.thetPrams(data = names_scores, columns=['Feat_names'], ascending = [Feat_names'])
print('\nNtsing SelectKbest the 30 best features se will use are: ', len(best_Kfeatures))
print(best_Kfeatures)
```

Figure: SelectKBest to select important features

- Runtime for SelectKBest: 18.22121599999997 seconds
- 2 The numbers of important features we will use are: 30

30 features selected with Random Forest and SelectKBest

```
Using Random Forest Classifier the 30 best features are: 

('price calendar', 'month', 'host listings count', 'number of_reviews', 'maximum nights', 'calculated hos 

t listings count', 'reviews per month', 'review scores rating', 'bedrooms', 'accommodates', 'ninimum night 

ti, 'quests included', 'review scores value', 'beds', 'bathrooms', 'review scores location', 'host is su 

perhost', 'require guest profile picture', 'instant bookable', 'require guest phone verification', 'coz 

y', 'bathroom', 'seattle', 'bedroom', 'downtown', 'parking', 'light', 'view', 'bed', 'easy']
```

Figure: Important features using Random Forest Classifier

```
Using SelectKbest the 30 best features are: ['calculated_host_listings_count', 'review_scores_value', 'mo nth', 'price_calendar', 'review_scores_location', 'bedrooms', 'guests_included', 'review_scores_rating', 'require_guest_phone_verification', 'accommodates', 'host_has_profile_pic', 'require_guest_profile_picture', 'host_is_guperhost', 'spacious', 'bedroom', 'bonus', 'bathroom', 'newly', 'guest', 'groceries', 'furn_ished', 'reviewg_per_month', 'beds', 'view', 'restaurant', 'kitchen', 'tea', 'seattle']
```

Figure: Important features using SelectKBest

```
The numbers of important features belonging to both are: 20

These features are:
['price_calendar', 'bedrooms', 'review_scores_value', 'number_of_reviews', 'host_is_superhost', 'bathroom', 'beds', 'view', 'guests_included', 'review_scores_rating', 'accommodates', 'seattle', 'reviews_per_month', 'month', 'review_scores_location', 'require_guest_profile_picture', 'host_listings_count', 'bedroom', 'calculated host listings_count', 'require_guest_phone verification')
```

Figure: Important features belonging to both

30 features selected with Random Forest and SelectKBest

Figure: Variable Importance

R-Squared score using features from the Random Forest Classifier

Random Forest Classifier:

hyper parameters: maxdepth=10, maxfeatures='auto', nestimators=40

- Runtime for Random Forest with RFeatures: 146.56320900000003 seconds
- Score on Training Set: 0.747988465391
- Score on Test Set: 0.747870577007
- Cross validation results: 74.904% ± 0.105%

2 Logistic Regression:

penalty: 'l2'

- Runtime For Logistic Regression with RFeatures: 39.91339199999993 seconds
- Score on Training set: 0.670319498021
- Score on Test set: 0.670785584267
- Cross validation results: 67.026% ± 0.019%

Gradient Boosting:

hyper parameters: 50 iterations, 5-deep trees, loss function = deviance

- Runtime for Gradient Boosting with RFeatures: 386.33381800000006 seconds
- Score on Training Set: 0.733607107747
- Score on Test Set: 0.734272408275
- Cross validation results: 73.465% ± 0.152%

Results using features from the Random Forest Classifier

	Predict False	Predict True			Predict False	Predict True
Actual False	82930	238498	Ac	ctual False	6907	314521
Actual True	7339	646732	A	Actual True	7082	646989
					tives (Type tives (Type	

(a) Random Forest Classifier

(b) Logistic Regression

```
        Predict False
        Predict True

        Actual False
        88253
        233175

        Actual True
        26691
        627380

        False Positives (Type I error): 233175 (72.5%)

        False Negatives (Type II error): 26691 (4.1%)
```

(c) Gradient Boosting

Figure: Results for models using RFC Features

R-Squared score using features from the SelectKBest

Random Forest Classifier:

hyper parameters: maxdepth=10, maxfeatures='auto', nestimators=40

- Runtime for Random Forest with KFeatures: 114.39116799999988 seconds
- Score on Training Set: 0.725604024197
 Score on Test Set: 0.725977166558
- Cross validation results: 72.633% + 0.219%
- Gloss validation results. 72.000 /6 ± 0.219 /

2 Logistic Regression:

penalty: 'l2'

- Runtime For Logistic Regression with KFeatures: 33.37867000000006 seconds
- Score on Training set: 0.671174445079
- Score on Test set: 0.671718440169
- Cross validation results: 67.105% ± 0.014%

Gradient Boosting:

hyper parameters: 50 iterations, 5-deep trees, loss function = deviance

- Runtime for Gradient Boosting with KFeatures: 368.2461929999995 seconds
- Score on Training Set: 0.724877216686
- Score on Test Set: 0.725450940151
- Cross validation results: 72.275% ± 0.115%

Results using features from the SelectKBest

Actual False 6907 314521 Actual False 8816 312612 Actual True 7082 646989 Actual True 8157 645914 False Positives (Type I error): 314521 (97.9%) False Positives (Type I error): 314521 (97.9%) False Positives (Type I error): 314521 (97.9%)							
Actual Had	Actual False	6907	314521		Actual False	8816	312612
False Positives (Type I error): 314521 (97.9%) False Positives (Type I error):	Actual True	7082	646989		Actual True	8157	645914
	False Positives	(Type	I error):	314521 (97.9%)	False Positive	es (Type	I error)

(a) Random Forest Classifier

Predict False Predict True

(b) Logistic Regression

Predict False Predict True

Figure: Results for models using KBest Features

R-Squared score updated Gradient Boosting hyper parameters and RFC Features

Gradient Boosting:

hyper parameters: 50 iterations, 10-deep trees, loss function = deviance

- Runtime for Gradient Boosting with RFeatures: 4092.5195510000003 seconds
- Score on Training Set: 0.904520660708
- Score on Test Set: 0.903169557324
- Cross validation results: 90.239% ± 0.154%

@ Gradient Boosting:

hyper parameters: 100 iterations, 10-deep trees, loss function = deviance

- Runtime for Gradient Boosting with RFeatures: 7149.300540999997 seconds
- Score on Training Set: 0.942255194521
- Score on Test Set: 0.940998060138
- Cross validation results: 94.277% ± 0.086%

24 / 28

Results using updated Gradient Boosting hyper parameters and RFC Features

	Predict False	Predict True			Predict False	Predict True
Actual False	243227	78201		Actual False	277097	44331
Actual True	14939	639132		Actual True	11999	642072
	,	,	: 78201 (24.3%)): 14939 (2.3%)			
(a) 50 itera	ations, 10-dee	ep trees, loss f	unction = deviance	(b) 100 ite	erations, 10-de	ep trees loss f

Figure: Results for models using Gradient Boosting and RFC Features

Prediction Probabilities

Random Forest Classifier with KFeatures:

hyper parameters: maxdepth=10, maxfeatures='auto', nestimators=40

• Gradient Boosting with RFeatures:

hyper parameters: 100 iterations, 10-deep trees, loss function = deviance

```
ypred proRFC = rfc.predict proba(X testR)
                                              ypred proCLF = clf.predict proba(X testR)
print(ypred proRFC)
                                              print(ypred proCLF)
  0.41552805 0.584471951
                                              [[ 0.12720408  0.87279592]
  0.42184976 0.578150241
                                                 0.86886334 0.131136661
  0.31470597
               0.685294031
                                                 0.8554316
                                                              0.1445684 1
 . . . ,
                                                . . . .
  0.31339018 0.686609821
                                                 0.0601768
                                                              0.9398232 1
  0.44072339
              0.559276611
                                                0.27904007
                                                              0.720959931
  0.42121858
               0.5787814211
                                                r 0.08502172
                                                              0.9149782811
            (a) Prediction using RFC
                                                           (b) Prediction using GB
```

Figure: Predictions between using RFC vs GB

Conclusion and Future Work

- Try to get the Type I and Type II errors to be about the same. Meaning both around 10%.
- 2 Try to include Reviews Data.
- Oreate New Features with some of the existing and deleted features.
- Using PCA instead of SelectKBest and Random Forest Classifier.
- Investigate how the Median change our data.
- Investigate how using price calendar vs price listing may impact the prediction.
- Rerun the 3 models using features selected by RFC and SelectKBest and see how they impact performance and the confusion matrix.

27 / 28

That's all folks!

Questions?

