	Lecture 8: UMVUES
Defn: (Uniformly Minimum Variance Unbiased Estimator (umvu
	If B(ô) = 0 then MSF(ô) = Varô
We c	ell 0* the UMVUE of T(0) n some in of 0 es 02 logo, e0
1+	Inhiased for TO)
	$E[0^*] = T(0)$
2	minimum varionce — uniformly
	$Var \theta^* \leq Var \hat{\theta} \forall \theta \in C$
	for all ô that one unbiased for T(O)
Defn!	Score Basically 30 but viewed as random
rece	ll: 1 deterministic, X, is radam
12 X	n ~ for when OF(-) then the score is
	$S = S_{\theta} = S_{\theta}(X) = \frac{\partial \log f_{\theta}(X)}{\partial \theta} = \frac{\partial l_{\theta}}{\partial \theta}$
	70

fo(k)

Ex.
$$\chi_n \stackrel{id}{\sim} \operatorname{Exp}(\lambda)$$
 where $\lambda > 0$

then $L(\lambda) = \prod_{n=1}^{N} \lambda e^{\lambda \chi_n} \mathbf{1}(\chi_n > 0)$
 $= \chi^n e^{-\lambda_n^2 \chi_n} \mathbf{1}(\chi_n > 0)$
 $2(\lambda) = \log L(\lambda) = N \log \lambda - \lambda_n^2 \chi_n + \log \mathbf{1}(\chi_n > 0)$
 $\frac{\partial l}{\partial \lambda} = \frac{N}{\lambda} - \frac{\gamma}{\lambda} \chi_n$

Score promotes χ_n to χ_n
 $\chi_n = \frac{N}{\lambda} - \frac{\gamma}{\lambda} \chi_n$
 $\chi_n = \frac{N}{\lambda} - \frac$

$$S_{\lambda} = \frac{N}{\lambda} - \sum_{n} \chi_{n}.$$

$$E[S_{\lambda}] = \frac{N}{\lambda} - \sum_{n} E[X_{n}] = \frac{N}{\lambda} - \sum_{n} \frac{1}{\lambda} = \frac{N}{\lambda} - \frac{N}{\lambda} = 0$$

My MLE is
$$\lambda = /\bar{\chi}$$

and
$$E\lambda = E[x] \neq \lambda$$
 unbiased for

Thim. E[So] = 0.

$$E[S_{\theta}^{(x)}] = \int S_{\theta}(x) f(x) dx$$

$$Eg(x) = g(x) f(x) dx$$

Aside: $\frac{\partial Q}{\partial Q} = \frac{\partial}{\partial Q} \log f_{Q}(\chi)$ $= \int \frac{\partial l}{\partial \theta} f(x) dx$ = Job fork dx, Veed enoth repularity = J 2f dx 1.e. for has to be nice $=\frac{\partial}{\partial \theta}\int f(x)dx$ This works for Exp. Fams, $=\frac{\partial}{\partial \theta}(1)$ What about 22? Two possiblities 0°2 ≪ 0 strayly prefer 0 over other choices

Theorem: (*) also needs regularly of for
$$Var(S_{\theta}) = \mathbb{E}[S_{\theta}^{2}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}]$$

Vole

 $ES_{\theta} = 0$

Viewly as random promote & h & random promote & h & random promote & h & $E[(\frac{\partial \ell}{\partial \theta})^{2}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}]$

Defin' Fisher Information

We define the fisher info. for θ contained in θ (N=1) is defined as

 $E[(\frac{\partial \ell}{\partial \theta})^{2}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}]$

If I have N samples θ and θ in θ is θ in θ in θ is θ .

 $E(\theta) = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}] = -\mathbb{E}[\frac{\partial^{2} \ell}{\partial \theta^{2}}]$

Theorem: IN(0) = NI(0) If I have N indep samples - I have N times as much info. $Pf = I_N(\theta) = -E\left[\frac{\partial \theta}{\partial \theta}\right] \quad \text{joint}$ $= - \mathbb{E} \left[\frac{\partial^2}{\partial \sigma^2} \log f(X) \right]$ $= - \mathbb{E} \left[\frac{\partial^2}{\partial x^2} \log \left(\prod_{n} f_0(x_n) \right) \right]$ = - E (22 Z (of f(Kn)) = Z - E[22 losf(xn)] Ex. X, iid Pois(X), X>0 Find In(). (at's find I(X) and multiply by N. 1) Find logfx(X) $f_{\lambda}(x) = \frac{xe^{-\lambda}}{\sqrt{1-x}} \Rightarrow \log f_{\lambda} = x \log \lambda - \lambda - \log(x!)$

Take two derivs.

Take two derivs.

$$\frac{\partial}{\partial x} \log f_{\lambda} = \frac{\chi}{\lambda}$$
 $\frac{\partial^{2}}{\partial x^{2}} \log f_{\lambda} = -\frac{\chi}{\chi^{2}}$

promote χ to χ χ ... χ χ χ χ χ ... χ

let's get IN(M).

(1)
$$f_{\mu}(\chi) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{26^2}(\chi - \mu)^2)$$

(2)
$$\log f_{\mu} = -\frac{1}{2} \log (2\pi 6^2) - \frac{1}{26^2} (\chi - \mu)^2$$

(3)
$$\frac{1}{6} \log f_{\mu} = -\frac{1}{26^2} (2)(\chi - \mu)(-1) = \frac{1}{6^2} (\chi - \mu) = \frac{\chi}{6^2} - \frac{\mu}{6^2}$$

(4)
$$\frac{2}{0}\mu^{2} (gf\mu = -\frac{1}{6}z)$$

(5) Promste χ to χ to get $-\frac{1}{6}z$

(6) $-\mathbb{E}[\dots] = -\mathbb{E}[-\frac{1}{6}z] = \frac{1}{6}z$
 $\mathbb{E}[\chi] = \frac{1}{6}z$