## [IR2018-19-HW1] 1183732 Davide Martini

### 1. Descrizione del lavoro svolto

Lo sviluppo dell'homework è stato effettuato in ambiente Linux, Ubuntu 18.04, tramite l'utilizzo di:

- terrier-core-4.4 per l'indicizzazione dei documenti e la generazione delle varie run [2].
- trec\_eval 9.0.4 per l'ottenimento delle misure di valutazione dei vari sistemi [3].
- · os libreria di Python per le chiamate di sistema [4].
- matplotlib libreria in Python per la creazione dei grafici riassuntivi [5].
- · statsmodel libreria di Python per il calcolo del test ANOVA 1-way e il Tukey HSD test [6].
- numpy, scipy librerie Python accessorie [7].
- · PyCharm programma utilizzato per lo sviluppo ed il test dello script [8].

È stato inoltre prodotto uno script in *Python 3.7* per automatizzare l'esecuzione dell'indicizzazione, la produzione delle varie run, il calcolo delle misure, produrre il test statistico ANOVA 1-way, il Tukey HSD test e per ottenere i plot finali. Lo script è contenuto nella repository con il nome di '*ir script.py*'. Di seguito verrà riportata la struttura del codice con una breve spiegazione del suo contenuto.

Per automatizzare l'esecuzione di tutto il workflow necessario per ottenere i risultati, il codice esegue i seguenti passi:

- I. Viene impostata una cartella principale dove è contenuta la collezione di documenti, gli eseguibili dei software terrier e trec\_eval e dove verranno salvati i risultati ottenuti.
- II. Viene inizializzato il software terrier e vengono modificate le proprietà per l'indicizzazione e per l'esecuzione delle run. Questo passaggio viene ripetuto per tutti i modelli da analizzare. Sono stati salvati i vari file degli indici nella cartella 'indexes/' e i file delle run nella cartella 'indexes/run/'.
- III. Viene eseguita la valutazione tramite il software *trec\_eval* sui file risultanti delle run. I file contenenti le misure per la valutazione sono stati successivamente salvati nella cartella '*indexes/run/eval/*'.
- IV. È stata creata una struttura per contenere le varie misure di valutazione ottenute dal software *trec\_eval*, in modo da avere un facile reperimento di queste per i test statistici e per i successivi plot.
- V. Sono stati creati dei file, per ogni misura, in cui ogni colonna rappresenta una run.
- VI. È stata successivamente effettuata l'ANOVA 1-way ed il Tukey HSD test.
- VII. Sono stati infine prodotti i plot per ogni topic e run delle misure *P*(10) e *Rprec*. Un grafico contenente il valore della *MAP* per ogni modello analizzato.

#### 2. Risultati ottenuti

In *Tabella 1* vengono riportati il numero di documenti indicizzati e il numero di parole presenti nel vocabolario, in modo da notare come vari l'utilizzo o meno delle stopword e del Porter Stemmer.

I vari modelli sono riportati con una sigla:

- · BM25: modello BM25 con stopword e Porter Stemmer.
- BM25\_stem: modello BM25 senza stopword, con Porter Stemmer.
- · TF\_IDF: modello TF\_IDF con stopword e Porter Stemmer.
- TF\_IDF\_not: modello BM25 senza stopword e Porter Stemmer.

|                           | TF_IDF | BM25   | BM25_stem | TF_IDF_not |
|---------------------------|--------|--------|-----------|------------|
| documenti indicizzati     | 528155 | 528155 | 528155    | 528155     |
| dimensione del dizionario | 738439 | 738439 | 738643    | 840517     |

Tabella 1. Statistiche dei vari indici

È stato sviluppato il test statistico ANOVA 1-way, Tukey HSD pairwise test e Tukey HSD multiple comparisons.

L'obiettivo del test statistico ANOVA 1-way è capire se i vari modelli analizzati avessero oppure no la stessa media. Nello sviluppo del test, il valore di soglia  $\alpha = 0.05$  permette di rifiutare o meno l'ipotesi che i 4 modelli abbiamo la stessa media. I valori ottenuti sono presenti nel file 'run/plot/anova.txt' e vengono riportati in Tabella 2.

| $F_{stat}$                        | ~ 0.0996 |  |
|-----------------------------------|----------|--|
| $p = P [F \ge F_{stat} \mid H_0]$ | ~ 0.9601 |  |

Tabella 2. ANOVA 1-way.

Si nota quindi che l'ipotesi non viene rifiutata e quindi i 4 modelli hanno la stessa media. Per quanto riguarda il Tukey HSD test, i risultati ottenuti sono riportati nella *Tabella 3*.

| Multiple Comparison of Means - Tukey HSD, FWER=0.05 |            |          |         |        |        |
|-----------------------------------------------------|------------|----------|---------|--------|--------|
| group 1                                             | group 2    | meandiff | lower   | upper  | reject |
| BM25                                                | BM25_stem  | 0.0029   | -0.0816 | 0.0874 | False  |
| BM25                                                | TD_IDF_not | -0.0135  | -0.0980 | 0.0710 | False  |
| BM25                                                | TF_IDF     | -0.0006  | -0.0851 | 0.0838 | False  |
| BM25_stem                                           | TD_IDF_not | -0.0164  | -0.1008 | 0.0681 | False  |
| BM25_stem                                           | TF_IDF     | -0.0035  | -0.0880 | 0.0810 | False  |
| TD_IDF_not                                          | TF_IDF     | 0.0128   | -0.0716 | 0.0973 | False  |

Tabella 3. Tukey HSD pairwise test.

Dal Tukey HSD test si nota che ogni coppia di modelli è simile e c'è sempre intersezione nell'intervallo di confidenza di un altro modello. Per avere una visione d'insieme è stato effettuato un confronto multiplo tra i vari modelli riportato in *Figura 1* e nel file 'rum/plot/TukeyHSDtest.svg'.

I modelli quindi sono molto simili, anche se l'indicizzazione del modello *TF\_IDF\_not* è risultata più lunga in quanto sono state tenute in considerazione tutte le parole e queste non sono state sottoposte al processo di stemming.

Per quanto riguarda l'analisi della misura *Rprec* il confronto dei grafici, presenti nella cartella '*run/plot/*' con nome '*RprecMODEL.svg*', dove *MODEL* indica il modello considerato, indica una lieve differenza tra i modelli *BM25*, *BM25\_stem*, *TF\_IDF*, ma evidenzia un forte calo nel modello *TF\_IDF\_not*. Questa differenza non è presente in tutti i topic ma è abbastanza accentuata nei topic dove si verifica.

I valori ottenuti per la misura P(10), presenti nei grafici nella cartella 'run/plot' con nome ' $P\_10MODEL.svg$ ' dove MODEL indica il modello considerato, mostrano un andamento abbastanza simile per i modelli BM25,  $BM25\_stem$ ,  $TF\_IDF$ , ma il modello  $TF\_IDF$  ha un andamento simile per alcuni topic e un valore minore della Precision per gli altri.

Da queste due misure, anche se il test di Tukey non ha mostrato grandi differenze, si può definire il modello *TF\_IDF\_not*, come il peggiore dei 4 per quanto riguarda l'aspetto di efficacia nel reperimento dei documenti.



Figura 1. Tukey HSD test - Multiple Comparisons.

In Figura 2, viene riportato il valore della MAP per ogni modello. Notiamo che il modello TD\_IDF\_not ha una MAP più bassa tra tutti mentre, come nelle considerazioni precedenti, gli altri 3 modelli assumono valori molto simili.



Figura 2. MAP.

Durante la fase di indicizzazione è stato conteggiato il tempo necessario per la sua esecuzione per ogni modello. Vengono riportati in *Tabella 4* i valori ottenuti. I numeri indicati indicano il numero di secondi utilizzati per effettuare l'indicizzazione dei documenti.

| TF_IDF   | BM25     | BM25_stem | TF_IDF_not |
|----------|----------|-----------|------------|
| 260.3225 | 260.3225 | 293.6788  | 294.5869   |

Tabella 3. Tempo di indicizzazione della collezione (sec).

Si può notare che ovviamente nei due modelli nei quali non vengono eliminate le stopword il tempo di esecuzione è maggiore. Questo è già un elemento che potrebbe incidere nella scelta di un modello rispetto ad un altro.

# 3. Conclusioni

Come riportato nel test ANOVA1-way la media dei vari modelli risulta essere la stessa, ed il Tukey HSD pairwise test e il multiple comparisons, mettono in evidenza che i vari modelli non hanno delle differenze sostanziali.

Occorre però notare che i valori di Rprec e P(10) sono molto più bassi nel modello  $TF\_IDF\_not$ , il quale ha inoltre un dizionario più ampio ed un tempo di indicizzazione maggiore rispetto agli altri per il fatto che vengono considerate tutte le parole presenti nei documenti e non viene applicata la fase di stemming. Questo risulta il modello peggiore da utilizzare tra i 4 analizzati.

Per quanto riguarda i 3 modelli restanti, un tempo di esecuzione di circa il 10% in più rispetto ai due modelli che eliminano le stopword è un fattore negativo per il modello *BM25\_stem*, che applicato su una collezione di dimensioni maggiori verrebbe scartato in quanto l'efficienza di un IRS è un fattore molto importante da considerare.

Tra i modelli  $TF\_IDF$  e BM25, nei quali vengono eliminate le stopword e viene applicato il Porter Stemmer, il tempo di indicizzazione è lo stesso e i risultati per quanti riguarda MAP, Rprec e P(10) sono molto simili. Quindi tra i 4 modelli analizzati questi si sono rilevati i modelli con una migliore efficienza ed efficacia.

#### 4. Riferimenti

- [1] Github: https://github.com/davidemartini/Information-Retrieval
- [2] Terrier: http://terrier.org/
- [3] Trec\_eval: https://github.com/usnistgov/trec\_eval
- [4] os: https://docs.python.org/3/library/os.html?highlight=os#module-os
- [5] matplotlib: https://matplotlib.org/
- [6] statsmodel: https://www.statsmodels.org/stable/index.html
- [7] numpy e scipy: <a href="https://docs.scipy.org/doc/">https://docs.scipy.org/doc/</a>
- [8] PyCharm: <a href="https://www.jetbrains.com/pycharm/">https://www.jetbrains.com/pycharm/</a>