Aufgabe 1 (????). Sei G die Isometriegruppe der Euklidische Ebene, unter der ein gleichseitiges Dreieck Δ invariant ist. Zeigen Sie, daß G zur symmetrischen Gruppe \mathfrak{S}_3 isomorph ist.

Lösung. Sei $T = \{A, B, C\}$ die Menge bestehend aus den drei Eckpunkten des Dreiecks. Es genügt einen Isomorphismus von G auf die symmetrische Gruppe \mathfrak{S}_T anzugeben. Sei $\phi: G \to \mathfrak{S}_T, g \mapsto g|_T$ die Einschränkung von der Ebene auf die Punkte in T. Wir zeigen, daß ϕ ein Isomorphismus ist.

Zunächst stellen wir fest, daß ϕ wohldefiniert ist. In der Tat sendet jedes Element g der Gruppe G jeden Eckpunkt des Dreiecks Δ wieder auf einen Eckpunkt des Dreiecks Δ . Und da g bijektiv ist (als Isometrie), ist die Einschränkung auf die Eckpunkte auch wieder bijektiv. Also ist in der Tat $\phi(g) = g|_T \in \mathfrak{S}_T$ und es ist klar, daß ϕ ein Gruppenhomomorphismus ist.

Wir zeigen nun, daß er injektiv ist. Sei $\phi(g) = g|_T = \mathrm{id}_T$. Dann ist g eine Isometrie der Ebene mit mindestens drei Fixpunkten. Daher kann g nur die Identität sein.

Zeigen wir nun, daß ϕ surjektiv ist. Da \mathfrak{S}_3 von Transpositionen erzeugt wird, genügt es zu zeigen, daß die Transpositionen im Bild von ϕ sind. Betrachten wir zum Beispiel die Transposition $(A\ B) = \begin{pmatrix} A & B & C \\ B & A & C \end{pmatrix}$. Ihr Urbild ist die Spiegelung an der Achse die orthogonal auf der Linie [A,B] und durch

 ${\cal C}$ verläuft. Ähnlich für die übrigen Transpositionen.

Aufgabe 2 (Frühjahr 1973). G sei eine Gruppe, Q(G) das Erzeugnis der Quadrate:

$$Q(G) := \langle g^2 ; g \in G \rangle.$$

- (a) Man bestimme die Elemente von $Q(\mathfrak{S}_4)$, wobei \mathfrak{S}_4 die symmetrische Gruppe vierten Grades ist.
- (b) Man beweise, daß Q(G) bei jedem Automorphismus von G im ganzen festbleibt.
- (c) Man bestätige, daß $Q(\mathfrak{A}_n) = \mathfrak{A}_n$ ist, wobei \mathfrak{A}_n die alternierende Gruppe n-ten Grades ist.
- (d) Man zeige: Hat G eine Untergruppe vom Index 2, so ist $Q(G) \neq G$.

Lösung. (a) Es ist

$$\mathfrak{S}_4 = \{ id, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (123), (124), (142), (134), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1423), (1432) \}$$

Elemente der Ordnung 2 sind: $\{(12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23)\}$, für dies gilt $x^2 = id$.

Elemente der Ordnung drei sind: $\{(123), (132), (124), (142), (134), (143), (234), (243)\}$, für diese gilt

$$(123)^2 = (132)$$
 und $(132)^2 = (123)$
 $(124)^2 = (142)$ und $(142)^2 = (124)$
 $(134)^2 = (143)$ und $(143)^2 = (134)$
 $(234)^2 = (243)$ und $(243)^2 = (234)$

Elemente der Ordnung 4 sind: $\{(1234), (1243), (1324), (1342), (1423), (1432)\}$, für diese gilt

$$(1234)^2 = (13)(24) = (1432)^2$$
$$(1243)^2 = (14)(23) = (1342)^2$$
$$(1324)^2 = (12)(34) = (1423)^2$$

Also ist

$$Q(\mathfrak{S}_4) = \langle \mathrm{id}, (13)(24), (14)(23), (12)(34), (123), (132), (124), (142), (134), (143), (234), (243) \rangle = \langle \mathfrak{A}_4 \rangle = \mathfrak{A}_4.$$

- (b) Sei $\psi \in \operatorname{Aut}(G)$. Dann ist für $g \in G$ $\psi(g^2) = \psi(g)^2 \in Q(G)$. Also werden Erzeuger auf erzeuger abgebildet, und damit ist $\psi(Q(G)) \subset Q(G)$.
- (c) Für jede Gruppe gilt $Q(G) \triangleleft G$: Für $g \in G$ ist die Konjugation mit g, ein Automorphismus von Gm nämlich $\kappa(g)(x) = gxg^{-1}$. Also folgt nach (b) $gQ(G)g^{-1} = \kappa(g)(Q(G)) \subset Q(G)$.

Da für $n \geqslant 5$ die alternierende Gruppe \mathfrak{A}_n einfach ist, folgt $Q(\mathfrak{A}_n) = \mathfrak{A}_n$ oder $Q(\mathfrak{A}_n) = \{e\}$. Den letzten Fall können wir ausschließen, da $Q(\mathfrak{A}_n)$ alle Zakel ungerader Ordnung enthält, denn für einen solchen Zykel σ der ungeraden Ordnung n ist $\sigma = (\sigma^{\frac{n+1}{2}})^2$. Also $Q(\mathfrak{A}_n) = \mathfrak{A}_n$. Für \mathfrak{A}_i , i = 1, 2, 3, 4, kann man das von Hand zeigen.

(d) Sei $H \subset G$ eine Untergruppe vom Index 2. Für jedes $x \in G \setminus H$ ist $G = H \cup xH = H \cup Hx$ disjunkte Vereinigung. Insbesondere $G \setminus H = xH = Hx$. Angenommen $x^2 \in G \setminus H$. Dann gibt $h \in H$ mit $x^2 = xh$, unmöglich, da dann $x = h \in H \cap xH$. Also ist $x^2 \in H$ und damit

$$Q(G) \subset H \subsetneq G$$
.

Aufgabe 3 (Herbst 2013). Zeigen Sie, daß die alternierende Gruppe A_4 keine Untergruppe der Ordnung 6 beztzt.

 $L\ddot{o}sung$. Annahme A_4 enhält Untergruppe H der Ordnung 6. Dann ist $H \triangleleft A_4$. Da für die Klein'sche Vierergruppe V gilt $V \nsubseteq H$, ist $A_4 = VH = HV$, $V \cap H \triangleleft H$, $A_4/V \cong HV/V \cong H/H \cap V$ ist zyklische Gruppe der Ordnung 3, $|H \cap V| = 2$. Sei $h \in H \setminus (H \cap V)$. Wegen $3 = \operatorname{ord}(hH \cap V) \mid \operatorname{ord}(h)$ ist $\operatorname{ord}(h) \in \{3, 6\}$. In beiden Fällen ist H zyklisch: Das ist klar, wenn $\operatorname{ord}(h) = 6$. Falls $\operatorname{ord}(h) = 3$, dann gilt $[H : \langle h \rangle] = 2$, also $\langle h \rangle \triangleleft H$. Es folgt $H = \langle h \rangle \times (H \cap V)$, also $H \cong \mathbb{Z} / \mathbb{Z} 3 \times \mathbb{Z} / \mathbb{Z} 2 \cong \mathbb{Z} / \mathbb{Z} 6$. Da \mathfrak{S}_4 kein Element der Ordnung 6 enthält, hat man einen Widerspruch. (Die Gruppe \mathfrak{S}_4 enthält Diedergruppen der Ordnung 6 aber keine zyklischen Gruppen der Ordnung 6.)

Aufgabe 4 (Herbst 2013). (a) Eine Permutation sei das Produkt zweier disjunkter Zykel der teilerfremden Längen k und l. Welche Ordnung hat σ ?

(b) Sei $\alpha(n)$ die größte Elementordnung in der symmetrischen Gruppe S_n . Man zeige $\lim_{n\to\infty}\frac{\alpha(n)}{n}=\infty$.

Lösung. (a) Sei $\sigma = \rho \tau$ Produkt eines k- und eines l-Zykels, die disjunkt sind. Dann vertauschen ρ und τ : $\rho \tau = \tau \rho$, und $\operatorname{ord}(\rho) = k$, $\operatorname{ord}(\tau) = l$. Es gilt

$$\sigma^{kl} = (\rho \tau)^{kl} = \rho \tau \rho \tau \cdots \rho \tau = \rho^{kl} \sigma^{kl} = (\rho^k)^l (\sigma^l)^k = id.$$

Also $\operatorname{ord}(\sigma)|kl$. Sei $m \in \mathbb{Z}$ mit $\sigma^m = \operatorname{id}$. Dann $\operatorname{id} = \sigma^m = (\rho\tau)^m = \rho^m\tau^m$, also $\rho^m = (\tau^{-1})^m \in \langle \rho \rangle \cap \langle \tau \rangle = \sigma^m\tau^m$ $\{id\}.$ (Es ist $\langle \rho \rangle \cap \langle \tau \rangle = \{id\}$ da (k,l) = 1.) Da $\operatorname{ord}(\rho) = k$ und $\operatorname{ord}(\tau) = \operatorname{ord}(\tau^{-1}) = l$ also k|m und l|m, also kl|m, da (k,l)=1. Damit $kl|\operatorname{ord}(\sigma)$. Zusammen folgt $\operatorname{ord}(\sigma)=kl$.

(b) Sei $m = \lfloor \frac{n-1}{2} \rfloor$. Da $m + (m+1) \leqslant \frac{n-1}{2} + \frac{m+1}{2} = n$ kann dann in S_n ein Produkt σ aus disjunkten Zykeln der Länge m und m+1 gebildet werden. Die Zahlen m und m+1 sind teilerfremd. Mit (a) erhalten wir

$$\operatorname{ord}(\sigma) = m(m+1) > \frac{n-3}{2} \frac{n-1}{2} = \frac{1}{4}(n-3)(n-1) = \frac{1}{4}(n^2 - 4n + 3),$$

abgeschätzt mit $m > \frac{n-1}{2} - 1 = \frac{n-3}{2}$. Also

$$\frac{\alpha(n)}{n} > \frac{1}{4}(n-4+\frac{3}{n}, \forall n \in \mathbb{N}.$$

Wegen $\lim_{n\to\infty} \frac{1}{4}(n-4+\frac{3}{n}=\infty \text{ also } \lim_{n\to\infty} \frac{\alpha(n)}{n}=\infty.$

Aufgabe 5 (??). Geben Sie eine Untergruppe von \mathfrak{S}_7 der Ordnung 21 an.

Lösung. Wir brauchen $a, b \in \mathfrak{S}_7$ mit $\operatorname{ord}(a) = 7$, $\operatorname{ord}(b) = 3$, und einen nichttrivialen Homomorphismus $\tau: \langle b \rangle \to \operatorname{Aut}(\langle a \rangle), \operatorname{oder} \langle a \rangle \to \operatorname{Aut}(\langle b \rangle).$

Da $\operatorname{Aut}(\langle a \rangle) \cong (\mathbb{Z}/\mathbb{Z}7)^{\times}$ hat $\operatorname{Aut}(\langle a \rangle)$ ein Element der Ordnung 3, also gibt es so ein τ . Es gibt aber

keinen nicht-trivialen Homomorphismus
$$\langle a \rangle \to \text{Aut}(\langle b \rangle)$$
.
Sei $a=(1234567),\ a^2=(1357246),\ b=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 5 & 7 & 2 & 4 & 6 \end{pmatrix}=(235)(476),\ \text{dann gilt }bab^{-1}=a^2,$ dh. $ba=a^2b$. Sei

$$\tau: \langle b \rangle \to \operatorname{Aut}(\langle a \rangle), \tau(b^z) = (\kappa_b)^z = \kappa_{b^z}.$$

Resultat: $G = \langle a, b \rangle = \{ id, a, \dots, a^6, b, ab, \dots, a^6b, b^2, \dots, a^6b^2 \}$ ist semidirektes Produkt von $\langle a \rangle \triangleleft G$ und $\langle b \rangle \subset G$.