# CS201

# MATHEMATICS FOR COMPUTER SCIENCE I

# Lecture 15

### **MOTIVATION**

- Given a set of elements, many relationships between them are binary:
  - Friend relationship between a set of people
  - Order relationship between a set of numbers
  - ► Subset relationship between sets
  - ► Neighborhood relationship between a set of points
  - ► Flight connectivity between a set of cities
- Such relationships are best captured by graphs.

#### DEFINITION

A graph G = (V, E) consists of a set V of vertices and a set E of edges with  $E \subseteq V \times V$ .

• E represents a binary relationship between vertices of V.

4/14

# Example: Air Connectivity between cities



### Types of Graphs

#### DIRECTED AND UNDIRECTED

Graph G = (V, E) is undirected if E is symmetric, otherwise directed.

#### GRAPH WITHOUT SELF-LOOPS

Graph G = (V, E) is simple if E is irreflexive.

Unless otherwise stated, a graph is simple, undirected, and with finite number of vertices.

### SUBGRAPHS

Graph  $H = (V_H, E_H)$  is a subgraph of  $G = (V_G, E_G)$  if  $V_H \subseteq V_G$  and  $E_H \subseteq E_G$ .

#### INDUCED SUBGRAPHS

Graph  $H=(V_H,E_H)$  is an induced subgraph of  $G=(V_G,E_G)$  if  $V_H\subseteq V_G$  and

$$E_H = \{(u, v) \mid (u, v) \in E_G \& u, v \in V_H\}.$$

#### PATHS

Let  $u, v \in V$  be two vertices of graph G = (V, E). A path from u to v is a sequence of vertices  $u_0, u_1, \ldots, u_k$  with  $u_0 = u, u_k = v$ , and  $(u_i, u_{i+1}) \in E$  for every i,  $0 \le i < k$ . Length of a path is the number of edges in it (= k).

#### CYCLES

A cycle of the graph G is a path from vertex u to u of length at least one and with no repeated vertex.

8/14

### CONNECTED GRAPHS AND COMPONENTS

Graph G = (V, E) is connected if there exists a path between any two vertices of the graph. A connected component of G is an induced subgraph that is connected.

#### TRANSITIVE CLOSURE

Graph  $G^* = (V, E^*)$  is a transitive closure of graph G = (V, E) if  $E^* = \{(u, v) \mid \text{there is a path from } u \text{ to } v \text{ in } G\}.$ 

E\* is an equivalence relation on V with connected components of G
as equivalence classes.

### SPECIAL TYPES OF GRAPHS

Let G = (V, E) be a graph. Following are special types of G:

- Complete Graph:  $E = V \times V$ . Denoted as  $K_{|V|}$ .
- Independent Set:  $E = \emptyset$ .
- Bipartite Graph:  $V = V_1 \cup V_2$ ,  $V_1 \cap V_2 = \emptyset$  and  $E \subseteq V_1 \times V_2$ .
- Complete Bipartite Graph: Bipartite graph with  $E = V_1 \times V_2$ . Denoted as  $K_{|V_1|,|V_2|}$ .
- Forest: G has no cycles.
- Tree: G is a forest and connected.

10/14

# Properties of Forests

#### THEOREM

If G = (V, E) is a forest then  $|E| \le |V| - 1$ . Forest G is a tree iff |E| = |V| - 1.

#### PROOF.

.

- Proof is by induction on m = |E|.
- Trivially true for m = 0. Assume for m 1.

# Properties of Forests

- Let G have  $G_1$ ,  $G_2$ , ...,  $G_k$ ,  $G_i = (V_i, E_i)$ , as connected components.
- Each  $G_i$  is a tree.
- If more than one connected component contains an edge then each  $G_i$  is a tree with  $|E_i| < m$ .
- By induction hypothesis,  $|E| = \sum_{i=1}^{k} |E_i| = \sum_{i=1}^{k} (|V_i| 1) < |V| 1$ .
- If only  $G_1$  has edges, deleting one edge from  $G_1$  makes it disconnected into two components: say  $H_1$  and  $H_2$ .
- Both are trees with fewer edges than m and so by induction hypothesis:

$$|E| = \# Edges in H_1 + \# Edges in H_2 + 1 = |V_1| - 1 \le |V| - 1.$$

• If G is a tree then  $G_1 = G$  and hence  $|E| = |V_1| - 1 = |V| - 1$ .

#### DEGREE OF VERTICES

#### INCIDENCE, ADJACENT, AND ENDPOINT

For edge  $e \in E$ , if e = (u, v) then vertices u and v are called endpoints of e. Vertices u and v are called adjacent. Edge  $e \in E$  is incident on vertex  $v \in V$  if v is an endpoint of e.

#### DEGREE

Degree of vertex  $v \in V$  is the number of edges incident on it. It is denoted as deg(v).

### DEGREES AND EDGES

#### THEOREM

$$\sum_{v \in V} \deg(v) = 2|E|.$$

• Every edge  $e \in E$  is counted exactly twice in the sum  $\sum_{v \in V} \deg v$ : once each for the two endpoints of e.

Manindra Agrawal CS201: Lecture 15 14/14