

SiI9134 HDMI Deep Color Transmitter

Data Sheet

Document # SiI-DS-0193-F

This document was watermarked on 27-04-2011 at 16:37:59 local time.

July 2010

Copyright Notice

Copyright © 2009-2010 Silicon Image, Inc. All rights reserved. These materials contain proprietary and confidential information (including trade secrets, copyright and other interests) of Silicon Image, Inc. You may not use these materials except only for your bona fide non-commercial evaluation of your potential purchase of products and/services from Silicon Image or its affiliates, and/or only in connection with your purchase of products and/or services from Silicon Image or its affiliates, and only in accordance with the terms and conditions herein. You have no right to copy, modify, transfer, sublicense, publicly display, create derivative works of or distribute these materials, or otherwise make these materials available, in whole or in part, to any third party.

Patents

The subject matter described herein contains one or more inventions claimed in patents and/or patents pending owned by Silicon Image, Inc., including but not limited to the inventions claimed in US patents #6, 914, 637, #6, 151, 334, #6, 026, 124, #5, 974, 464 and #5, 825, 824.

Trademark Acknowledgment

Silicon ImageTM, VastLaneTM, SteelVineTM, PinnaClearTM, SimplayTM, Simplay HDTM, LiquiHD, SatalinkTM, InstaPortTM, and TMDSTM are trademarks or registered trademarks of Silicon Image, Inc. in the United States and other countries. HDMITM, the HDMI logo and High-Definition Multimedia InterfaceTM are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC. x.v.ColorTM is a trademark of Sony Corporation.

Export Controlled Document

This document contains information subject to the Export Administration Regulations (EAR) and has a classification of EAR99 or is controlled for Anti-Terrorism (AT) purposes. Transfer of this information by any means to an EAR Country Group E:1 or foreign national thereof (whether in the U.S. or abroad) may require an export license or other approval from the U.S. Department of Commerce. For more information, contact the Silicon Image Director of Global Trade Compliance.

Further Information

To request other materials, documentation, and information, contact your local Silicon Image, Inc. sales office or visit the Silicon Image, Inc. web site at www.siliconimage.com.

Revision History

Revision	Date	Comment
A	11/2006	Tables of AC and DC specification were updated.
В	12/2006	Updated DC specifications and overall formatting.
B01	2/2007	Updated I _{CCT} and I _{STBY} specifications.
C	4/2007	Added Audio Down-sampler information and HDMI design considerations
D	10/2007	Corrected DC and Digital I/O specifications, hot plug information, and other content
E	8/2009	Updated to include 3D provided for in the HDMI 1.4 Standard.
E01	5/2010	Updated page 1 and layout to prepare Data Brief; minor editing throughout.
F	7/2010	Updated Table 22; clarified 3D information.

© 2009-2010 Silicon Image. Inc. All rights reserved.

Table of Contents

General Description	
HDMI Output	
Digital Video Interface	
Digital Audio Interface	
Control Capability	
Package	1
SiI9134 Transmitter Compared with SiI9030 and SiI9034 Devices.	2
Pin Diagram	
Description	
Video Data Input and Conversion	
Video Draggging Dipoling	5
Video Processing Pipeline	5
Video Data Capture Logic	5
Configuration to Compant Door color	
Configuration to Support Deep-color	
Common Video Input Formats	
Date Freshle Conserver	
Data Eliable Gelierator	
Re-sampling	
Embedded Sync Decoding Data Enable Generator Re-sampling Color Space Converters (CSC) 14-to-8/10/12-Dither	/
Calar Dange Scaling	/
Color Range ScalingClipping	/
LIDOD For compution, For circs (VOD Mostle	c
HDCP Encryption Engine/XOR Mask	٥
1 MDS Digital Core	٥
TMDS Digital Core 3D Video Formats 3D Video Limitations	8
Audio Data Continu I axia	9
Audio Data Capture Logic	
Audio Data Capture Logic	9
1 0	1
One-Bit Audio Input (DSD/SACD)	10
High-Bit Rate Audio on HDMI	1
Audio Downsampier Limitations	1
Audio Downsampler Limitations HDCP Key ROM Interrupt Out	12
Control and Canformation	12
Control and Configuration	12
Registers/Configuration Logic Microcontroller Slave I ² C Interface	12
DDC Master I ² C Interface	12
DDC Waster 1 C Interface	12
Electrical Specifications	14
Absolute Maximum Conditions	14
Normal Operating Conditions	
DC Specifications	
Digital I/O Specifications	
TMDS I/O Specifications	
DC Power Supply Pin Specifications	
AC Specifications	
TMDS AC Timing Specifications	
Audio AC Timing Specifications	
Video AC Timing Specifications	
Control Timing Specifications	
Timing Diagrams	
Input Timing Diagrams.	
Audio Timing Diagrams	23

Power Supply Sequencing Output Timing Diagrams	
Pin Descriptions	
Video Input Pins	
Audio Input Pins	
Configuration/Programming Pins	
Control Pins	
Differential Signal Data Pins	
Power and Ground Pins	
Data Bus Mappings	
RGB and YCbCr 4:4:4 Formats with Separate Syncs	
YC 4:2:2 Formats with Separate Syncs	
YC 4:2:2 Formats with Embedded Sync	
YC Mux 4:2:2 Formats with Separate Syncs	
YC Mux 4:2:2 Embedded Sync Formats	37
YC Mux 4:2:2 Embedded Sync Formats 12/15/18-Bit DMO RGB and YCbCr Formats	39
Design Guidelines	40
Downer Counties	40
Voltage Ripple Regulation Decoupling High-Speed TMDS Signals ESD Protection	40
Decoupling	40
High-Speed TMDS Signals	41
ESD Protection	41
Transmitter Layout Guidelines	41
Protection for I ² C Port	41
Protection for I ² C Port	42
HDMI Design Considerations	42
HDMI CTS Test ID 7-4: TMDS Differential Rise and Fall Time	42
Recommendation to pass Test ID 7-4 EMI Considerations	42
EMI Considerations	42
Typical Circuit	43
Power Supply Decoupling	43
HDMI Port TMDS Connections	44
Power Supply Decoupling	45
Packaging	46
100-pin TQFP Package Dimensions and Marking Specification	46
Ordering Information	46
References	47
Standards Documents	47
Silicon Image Documents	47

List of Figures

Figure 1. SiI9134 System Diagram	1
Figure 2. Pin Diagram	
Figure 3 Functional Block Diagram	
Figure 4. Transmitter Video Data Processing Path	
Figure 5. High Speed Data Transmission	
Figure 6. High Bitrate Stream Before and after Reassembly and Splitting	
Figure 7. High Bit Rate Stream After Splitting	
Figure 8. Simplified I ² C Ports	12
Figure 8. Master I ² C Supported Transactions	13
Figure 9. IDCK Clock Cycle/HIGH/LOW Times	21
Figure 10. Control and Data Single-Edge Setup/Hold Times to IDCK	21
Figure 11. Dual-Edge Setup/Hold Times to IDCK	21
Figure 12. VSYNC and HSYNC Delay Times from/to DE	22
Figure 13. DE HIGH/LOW Times	22
Figure 14. RESET# Minimum Timings	22
Figure 15. S/PDIF Input Timings	23
Figure 16. I ² S Input Timings	23
Figure 16. I ² S Input Timings	23
Figure 18. MCLK Timings	23
Figure 19. Power Supply Sequencing	24
Figure 20. Differential Transition Times	24
Figure 21. I ² C Data Valid Delay (Driving Read Cycle Data)	24
Figure 22 INT Output Pin Response to HPD Input Change	24
Figure 23 4·4·4 RGB 36-Bit Timing Diagram	30
Figure 24. 4:44 YCbCr 36-Bit Timing Diagram	30
Figure 25. 4:4:4 RGB 30-Bit Timing Diagram	30
Figure 26. 4:4:4 YCbCr 30-Bit Timing Diagram	31
Figure 27, 4:4:4 RGB 24-Bit Timing Diagram	31
Figure 28. Figure 24. 4:4:4 YCbCr 24-Bit Timing Diagram	31
Figure 29. YC 4:2:2 12-Bit per Pixel Timing Diagram	34
Figure 30, YC 4:2:2 10-Bit per Pixel Timing Diagram	34
Figure 31. YC 4:2:2 8-Bit per Pixel Timing Diagram	34
Figure 32. YC Mux 4:2:2 Timing Diagram	36
Figure 33. YC Mux 4:2:2 Embedded Sync Encoding Timing Diagram	38
Figure 34. 12-Bit Input DMO Timing Diagram	39
Figure 35. Decoupling and Bypass Schematic	40
Figure 36. Decoupling and Bypass Capacitor Placement	
Figure 37. Transmitter to HDMI Connector Routing-Top View	41
Figure 38. Power Supply Decoupling and PLL Filtering Schematic	
Figure 39. HDMI Port TMDS Connections Schematic	44
Figure 40. HDMI Port ESD Protection Schematic	
Figure 41. Controller Connections Schematic	45
Figure 42. Package Diagram	46

List of Tables

Table 1. Summary of New Features	
Table 2. Video Input Formats Example	6
Table 3. Color Space versus Video Format	7
Table 4. YCbCr-to-RGB Color Space Conversion Formula	7
Table 5. Supported 3D Video Formats	
Table 5. Supported MCLK Frequencies	
Table 6. Channel Status Bits Used for Word Length	
Table 7. Control of I ² C Address with CI2CA Pin	
Table 9. Absolute Maximum Conditions	
Table 10. Normal Operating Conditions	
Table 11. Digital I/O Specifications	
Table 12. TMDS DC Specifications—Internal Source Termination On	. 16
Table 13. TMDS DC Specifications—Internal Source Termination Off	. 16
Table 14. Power-Down Modes	.17
Table 15. Total Power Mode	. 17
Table 16. Power Operating Modes	. 17
Table 17. TMDS AC Specifications	. 18
Table 17. TMDS AC Specifications	. 18
Table 19. 1'S Input Port Timings	. 18
Table 20. DSD Input Port Timings	. 19
Table 21. Video Input AC Specifications	. 19
Table 22. Control Signal Timing Specifications	. 20
Table 23. Input Video Formats	. 28
Table 24. 4:4:4 Mappings Table 25. YC 4:2:2 Separate Sync Pin Mappings Table 26. YC 4:2:2 Embedded Sync Pin Mappings Table 27. YC Mux 4:2:2 Mappings Table 28. YC Mux 4:2:2 Mappings	. 29
Table 25. YC 4:2:2 Separate Sync Pin Mappings	. 32
Table 26. YC 4:2:2 Embedded Sync Pin Mappings	. 33
Table 27. YC Mux 4:2:2 Mappings	. 35
Table 28. YC Mux 4:2:2 Embedded Sync Pin Mapping	. 37
Table 28. YC Mux 4:2:2 Embedded Sync Pin Mapping	. 39
Table 30. Referenced Documents	. 47
Table 31. Standards Groups Contact Information.	47
Table 32. Silicon Image Publications	47

General Description

The SiI9134 HDMI Deep Color Transmitter is a third-generation High Definition Multimedia Interface (HDMI®) transmitter that provides a simple method of sending protected digital audio and video that provides end users with a truly all-digital experience. A/V receivers, along with Blu-ray Disc™ and HD DVD players and recorders, can provide high quality digital audio and video over a simple, low cost cable.

The SiI9134 transmitter extends the Silicon Image family of HDMI transmitters by supporting 30-bit and 36-bit Deep Color video, and incorporates a flexible audio and video interface. It is software and pin-compatible with the SiI9034 transmitter.

The transmitter performs the 10- or12-bit to 8-bit conversion of the 10/12-bit Deep Color video input data by increasing the TMDS[™] clock frequency and packing the extra bits into the next byte. An integrated color-space converter allows direct connection to all major MPEG decoders, including those that provide only an ITU.656 output.

Pre-programmed High Bandwidth Content Protection (HDCP) keys provide the highest level of key security; which simplifies manufacturing and lowers cost.

HDMI Output

- Supports Deep Color and High-Bitrate Audio
- Supports all the mandatory and several optional 3D formats described in the HDMI 1.4 Specification
- uses the latest generation of TMDS core technology, which operates from 25 MHz to 225 MHz to support Deep Color and 1080p resolution
- Backward compatibility with the DVI Specification allows HDMI systems to connect to DVI displays.
- HDCP encryption engine for transmitting protected audio and video content

Digital Video Interface

- Supports DVD and HD MPEG decoders
- 24-bit, 30-bit, and 36-bit RGB/YCbCr 4:4:4 (Deep Color)
- 16-bit, 20-bit, and 24-bit YCbCr 4:2:2
- 8-bit, 10-bit, and 12-bit YCbCr 4:2:2 (ITU.601 and ITU.656)
- 12-bit, 15-bit and 18-bit dual-edge clocking input modes
- YCbCr-to-RGB color space conversion
- BTA-T1004 video input format
- Input clock divider or multiplier (input clock frequencies of 0.5x, 2x, 4x).
- Programmable Data Enable generator and sync extraction.

Digital Audio Interface

- DTS HD and Dolby True HD high bit rate audio support
- A dedicated 4-pin Direct Stream Digital (DSD) 8-channel input provides for Super Audio CD (SACD) and decoded Dolby Digital applications
- Four I²S inputs with flexible channel mapping support High Bit-Rate audio and accept Dolby Digital and DVD-Audio input (2-channel 192 kHz, 8-channel 192 kHz)
- S/PDIF input supports PCM, Dolby Digital, and DTS digital audio transmission (32–192 kHz sample rate)
- IEC60958 or IEC61937 compatible
- 2:1 and 4:1 down-sampling handles 96 kHz and 192 kHz audio streams

Control Capability

- Monitor Detection supported through Hot Plug and Receiver Detection
- Master I²C interface for DDC connection simplifies board layout and lowers cost.
- Flexible power management.

Package

• 100-pin14 mm by 14 mm TQFP package

Figure 1. SiI9134 System Diagram

SiI9134 Transmitter Compared with SiI9030 and SiI9034 Devices

Table 1 summarizes the differences among the SiI9030, the SiI9034, and the SiI9134 HDMI transmitters.

Table 1. Summary of New Features

Transmitter Video Input Digital Video Input Ports I/O Voltage Input Pixel Clock Multiply/Divide Maximum Pixel Input Clock Rate Maximum TMDS Output Clock 150 MHz Maximum TMDS Output Clock	1 3.3 V 0.5x, 2x, 4x 165 MHz	1 3.3 V 0.5x, 2x, 4x
Digital Video Input Ports I/O Voltage Input Pixel Clock Multiply/Divide Maximum Pixel Input Clock Rate 1 3.3 V 0.5x, 2x, 4x 150 MHz	3.3 V 0.5x, 2x, 4x 165 MHz	3.3 V 0.5x, 2x, 4x
I/O Voltage Input Pixel Clock Multiply/Divide Maximum Pixel Input Clock Rate 3.3 V 0.5x, 2x, 4x 150 MHz	3.3 V 0.5x, 2x, 4x 165 MHz	3.3 V 0.5x, 2x, 4x
Input Pixel Clock Multiply/Divide 0.5x, 2x, 4x Maximum Pixel Input Clock Rate 150 MHz	0.5x, 2x, 4x 165 MHz	0.5x, 2x, 4x
Maximum Pixel Input Clock Rate 150 MHz	165 MHz	
I I		
Maximum TMDS Output Clock 150 MHz		165 MHz
Maximum TMD5 Output Clock 150 MHz	165 MHz	225 MHz
BTA-T1004 Format Support Yes	Yes	Yes
Video Format Conversion		
36-Bit and 30-Bit Deep Color	No	Yes
$YCbCr \rightarrow RGB CSC $ Yes	Yes	Yes
$RGB \rightarrow YCbCr CSC$	Yes	Yes
$4:2:2 \rightarrow 4:4:4$ Upsampling Yes	Yes	Yes
4:4:4 → 4:2:2 Decimation No	Yes	Yes
$16-235 \rightarrow 0-255$ Expansion Yes	Yes	Yes
0-255 → 16-235 Compression No	Yes	Yes
16-235/240 Clipping No	Yes	Yes
Audio Input		
S/PDIF Input Ports	1	1
= W === P *** = = ***	(8-channel)	4 (8-channel)
High Bit Rate Audio Support No	No	Yes
Compressed DTS-HD and Dolby True-HD		
One-bit Audio (DSD/SACD)	Yes	Yes
	2 kHz on I ² S	192 kHz on I ² S
96 kHz on S/PDIF 192	kHz on S/PDIF	192 kHz on S/PDIF
8-Channel Maximum Sample Rate 96 kHz	192 kHz	192 kHz
	kHz to 48 kHz	96 kHz to 48 kHz
	kHz to 48 kHz	192 kHz to 48 kHz
I ² C Address Bus		
Device Address Select CI2CA Pin	CI2CA Pin	CI2CA Pin
Master DDC Bus Yes	Yes	Yes
Other —	_	
3D Support No	No	Yes
HDCP Reset Software Register Sof	tware Register	Software Register
Package 80-pin TQFP ePad 10	00-pin TQFP	100-pin TQFP

Pin Diagram

Figure 2 shows the pin connections for the SiI9134 transmitter in the 100-pin TQFP package. Individual pin functions are described in the Pin Descriptions section beginning on page 25.

Figure 2. Pin Diagram

Description

The SiI9134 transmitter provides a complete solution for transmitting HDMI digital audio or video. Specialized audio and video processing available within the transmitter adds HDMI capability to consumer electronics devices easily and cost effectively. Figure 3 shows the functional blocks of the device. Pin descriptions begin on page 25.

Figure 3 Functional Block Diagram

Video Data Input and Conversion

Video Processing Pipeline

Figure 4 shows the video data processing stages. Each of the processing blocks can be bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required except in embedded sync modes. The DE input signal is optional; the DE generator can create this signal using the HSYNC and VSYNC pulses.

Figure 4. Transmitter Video Data Processing Path

Input Clock Multiplier/Divider

The input pixel clock can be multiplied by 0.5, 1, 2, or 4. Video input formats that use a 2x clock (such as YC Mux mode) can then be transmitted across the HDMI link with a 1x clock; similarly with 1x to 2x, 1x to 4x and 2x to 4x.

Video Data Capture Logic

The video data capture logic receives uncompressed digital video through an 8-bit to-24 bit wide interface. The three 8/10/12-bit data channels of the interface can be configured for 17 different video formats (see Table 2 on page 6). It provides a direct connection to major A/V processors. Register settings configure the interface bus width, format (8/10/12/16/20/24-bit), and rising or falling edge latching. The appropriate registers must be configured to describe which format of video is being sent to the SiI9134 transmitter. This information travels over the HDMI link in CEA-861D Active Video Information (AVI) packets. The transmitter also supports dual-edge clocking using 12 data pins.

Configuration to Support Deep-color

The Sil9134 transmitter provides support for Deep Color video data up to the maximum specified link speed of 2.25 Gbps (225 MHz internal clock rate for the Deep Color packetized data). It supports both 30-bit (10-bits per pixel component) and 36-bit (12-bits per pixel component) video input formats, and converts the data to 8-bit packets for encryption and TMDS encoding for transferring across the TMDS link.

When the input data width is wider than desired, the device can be programmed to dither or truncate the video data to the desired size. For instance, if the input data width is 12 bits per pixel component, but the sink device only supports 10 bits, the transmitter can be programmed either to dither or to truncate the 12-bit input data to the desired 10-bit output data. Dither processing is the final block in the video processing path and occurs after all other video processing has been performed.

Common Video Input Formats

Table 2 lists the video input formats that the SiI9134 transmitter supports.

Table 2. Video Input Formats Example

Calan	V /2-Jan	T4	D	HCVNC	Input Pixel Clock (MHz)								
Color Space	Video Format	Input Channels	Bus Width ^{1, 2}	HSYNC/ VSYNC ⁴	480i ⁵	VGA/4 80p	XGA	720p	1080i	SXGA	1080p	UXGA	Notes
RGB	4:4:4	3	36	Separate	27	25/27		74.25	74.25	108	148.5		
		3	30	Separate	27	25/27		74.25	74.25	108	148.5		
		3	24	Separate	27	25/27	65	74.25	74.25	108	148.5	162	
		1.5	12	Separate	27	25/27	65	74.25	74.25				3
		1.5	15	Separate	27	25/27	65	74.25	74.25			_	3
		1.5	18	Separate	27	25/27	65	74.25	74.25				3
YCbCr	4:4:4	3	36	Separate	27	27	<u>(</u>	74.25	74.25		148.5	_	
		3	30	Separate	27	27)	74.25	74.25		148.5	1	
		3	24	Separate	27	27	N -	74.25	74.25	_	148.5	_	_
		1.5	12	Separate	27	27		74.25	74.25			_	3
		1.5	15	Separate	27	25/27	65	74.25	74.25		١	_	3
		1.5	18	Separate	27	25/27	65	74.25	74.25	1			3
	4:2:2	2	16/20/24	Separate	27	27		74.25	74.25		148.5	_	_
		2		Embedded	27	27	_	74.25	74.25		148.5	_	4
				Separate	27	54	_	148.5	148.5		-	_	_
		1	8/10/12	Embedded	27	54		148.5	148.5				4
			3/10/12	BTA- T1004	F	54			-	<i></i>	_	_	4,6

Notes:

- 1. Bus widths of 8, 10, or 12 bits use one channel. Bus widths of 16, 20, or 24 bits with 4:2:2 data sequences use two data channels.
- 2. Latching edge is programmable.
- These formats use dual-edge clocking.
- 4. If embedded syncs are provided, then DE is generated internally from SAV/EAV sequences. Embedded syncs use 656 SAV/EAV sequences of FF, 00, 00, XY.
- 5. 480i must be input at 27 MHz using pixel replication to be transmitted across the HDMI link.
- 6. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus with encoded syncs.

Embedded Sync Decoding

The SiI9134 transmitter can create DE, HSYNC, and VSYNC signals from the Start of Active Video (SAV) and End of Active Video (EAV) codes within the 656 video stream. HDCP is not supported in this mode.

Data Enable Generator

The transmitter includes logic to construct a DE signal from the incoming HSYNC, VSYNC, and clock. Registers are programmed to enable the DE signal to define the size of the active display region. This feature is useful when interfacing to MPEG decoders that do not provide a specific DE output signal.

Re-sampling

Re-sampling (up-sampling/decimation) blocks allow conversion of 4:4:4 data to 4:2:2 and of 4:2:2 data to 4:4:4 for transmission over the HDMI link.

Color Space Converters (CSC)

Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video formats supplied by A/V processors and to provide full DVI backward compatibility. The CSC can be adjusted to perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate registers.

RGB to YCbCr The RGB→YCbCr color space converter can convert from video data RGB to standard definition or to high definition YCbCr formats. The HDMI AVI packet defines the color space of the incoming video.

Table 3. Color Space versus Video Format

Video Format	Conversion	Formulas	
		CE Mode 16-235 RGB	
640 x 480	ITU-R BT.601	Y = 0.299R' + 0.587G' + 0.114B'	
480i	ITU-R BT.601	Cb = -0.172R' - 0.339G' + 0.511B' + 128	
576i	ITU-R BT.601	Cr = 0.511R' - 0.428G' - 0.083B' + 128	
480p	ITU-R BT.601		
576p	ITU-R BT.601		
240p	ITU-R BT.601		• (
288p	ITU-R BT.601		
720p	ITU-R BT.709	Y = 0.213R' + 0.715G' + 0.072B'	
1080i	ITU-R BT.709	Cb = -0.117R' - 0.394G' + 0.511B' + 128	
1080p	ITU-R BT.709	Cr = 0.511R' - 0.464G' - 0.047B' + 128	

YCbCr to RGB The YCbCr→RGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in Table 4. Note the difference between RGB range for CE modes and PC modes.

Table 4. YCbCr-to-RGB Color Space Conversion Formula

Format change	Conversion	YCbCr Input Color Range 2, 3
YCbCr 16-235 Input ^{2,}	601 ¹	R' = Y + 1.371(Cr - 128)
³ to		G' = Y - 0.698(Cr - 128) - 0.336(Cb - 128)
RGB 16-235 Output ^{2, 3}		B' = Y + 1.732(Cb - 128)
	709 ¹	R' = Y + 1.540(Cr - 128)
		G' = Y - 0.459(Cr - 128) - 0.183(Cb - 128)
		B' = Y + 1.816(Cb - 128)
YCbCr 16-235 Input ^{2, 3}	601	R' = 1.164((Y-16) + 1.371(Cr - 128))
to		G' = 1.164((Y-16) - 0.698(Cr - 128) - 0.336(Cb - 128))
RGB 0-255 Output ^{2, 3}		B' = 1.164((Y-16) + 1.732(Cb - 128))
	709	R' = 1.164((Y-16) + 1.540(Cr - 128))
		G' = 1.164((Y-16) - 0.459(Cr - 128) - 0.183(Cb - 128))
		B' = 1.164((Y-16) + 1.816(Cb - 128))

Notes:

- 1. No clipping can be done.
- 2. For 10-bit deep color, all occurrences of the values 16, 128, 235, and 255 should be multiplied by 4.
- 3. For 12-bit deep color, all occurrences of the values 16, 128, 235, and 255 should be multiplied by 16.

14-to-8/10/12-Dither

The 14-to-8/10/12-dither block dithers internally processed, 14-bit data to 8, 10, or 12 bits for output on the HDMI link. It can be bypassed to output 10/12-bit modes when supplied by the A/V processor or converted in the decimator and CSC.

Color Range Scaling

The SiI9134 transmitter can scale the input color range from limited-range into full-range or vice versa through the range expansion and compression blocks. When enabled by itself, the range expansion block expands 16–235 (64–943 to 256–3775 for 30/36-bit color depth) limited-range data into 0–255 (0–1023 to 0–4095 for 30/36-bit color depth) full-

range data for each video channel. When range expansion and the YCbCr to RGB converter are both enabled, the input conversion range for Cb and Cr channels is 16–240 (64–963 to 256–3855 for 30/36-bit color depth). Similarly, the range compression block compresses 0–255/0–1023/0–4095 full-range data into 16–235/64–943/256–3775 limited-range data for each video channel when enabled by itself. When enabled with the RGB to YCbCr converter, this block compresses to 16–240/64–963/256–3855 for the Cb and Cr channels. The color range scaling is linear.

Clipping

The clipping block, when enabled, clips the values of the output video to 16–235 for RGB video or the Y channel, and to 16–240 for the Cb and Cr channels.

HDCP Encryption Engine/XOR Mask

The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key Selector Value (KSV) stored in the on-board ROM to calculate a number that is then applied to an XOR mask. This process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle.

TMDS Digital Core

The TMDS digital core performs 8-to-10-bit TMDS encoding on the data received from the HDCP XOR mask. This data is sent to three TMDS differential data lines, along with a TMDS differential clock line. A resistor tied to the EXT SWING pin controls the TMDS swing amplitude.

3D Video Formats

The SiI9134 transmitter supports the 3D video modes described in the HDMI Specification. All modes support RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:2 color formats and 8-, 10-, and 12-bit data-width per color component. External separate HSYNC, VSYNC, and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream. Table 5 shows only the maximum possible resolution with a given frame rate; for example, Side-by-Side (Half) mode is defined for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz is supported. Input pixel clock changes accordingly.

When using Side-by-Side format, the use of 4:2:2 to 4:4:4: up-sampling and 4:4:4 to 4:2:2 down-sampling should be prevented as it may result in visible artifacts.

Video processing should be bypassed in the case of L + depth format.

Transmission of the HDMI Vendor Specific InfoFrame, which carries 3D information to the receiver, is supported by the SiI9134 device.

Table 5. Supported 3D Video Formats

3D Format	Extended Definition	Resolution	Frame Rate (Hz)	Input Pixel Clock (MHz)
		1080p	24	
Frame Packing		720p	50/60	
	interlaced	1080i	50/60	
L + depth		1080p	24	148.5
		720p	50/60	146.3
	full	1080p	24	
Sido by Sido	Tuii	720p	50/60	
Side-by-Side	half	1080p	50/60	
	пап	1080i	50/60	74.25
Top and Dottom		1080p	24	74.25
Top-and-Bottom		720p	50/60	74.23

3D Video Limitations

Frame Packing Format: Frame packing format requires Vact_space, which must have constant video data. Dithering should be disabled when transmitting the frame packing format.

In the case of 1080p 24 Hz format, this video format has a total of 2295 lines. However, the VRES counter (0x72.0x3C,0x3D) of the SiI9134 device has only 11 bits, which means a maximum of 2047 lines. In this case, the VRES counter overflows and shows a value of 0.

The DE generator is supported except for the 1080p 24 Hz format. The DE_LIN register (0x72.0x38,0x39) has only 11 bits (maximum 2047), but the 1080p 24 Hz format requires 2205 lines.

Side-by-Side format: L frame and R frame are concatenated without a border. Since 4:4:4 to 4:2:2 down-sampling and 4:2:2 dithering and upsampling to 4:4:4 has a decimation filter which looks at adjacent pixels, those features should not be used to avoid visible artifacts.

L + Depth format: Any video processing should be bypassed.

Top-and-Bottom format: There are no limitations.

Audio Data Capture Logic

The SiI9134 transmitter accepts digital audio over an S/PDIF interface, four I²S inputs, or eight one-bit audio inputs.

S/PDIF

The S/PDIF stream can carry 2-channel uncompressed PCM data (IEC 60958) or a compressed bit stream for multichannel (IEC 61937) formats. The audio data capture logic forms the audio data into packets described in the HDMI Specification. The S/PDIF input supports audio sampling (Fs) rates from 32 to 192 kHz. A separate master clock input (MCLK), coherent with the S/PDIF input, is required for time-stamping purposes. *Coherent* means that the MCLK and S/PDIF have been created from the same clock source. This step usually uses the original MCLK to strobe out the S/PDIF from the sourcing chip. There is no setup or hold timing requirement on an input with respect to MCLK.

I^2S

Four I²S inputs allow transmission of DVD-Audio or decoded Dolby Digital to A/V receivers and high-end displays. The interface supports up to 8-channels at 192 kHz. The I²S pins must also be coherent with MCLK.

Register control allows the audio data to be downsampled by one-half or one-fourth. This control allows the transmitter to share the audio bus with a high-sample-rate audio DAC, while downsampling audio for an attached display that supports only lower rates. Conversions from 192 to 48 kHz, from 176.4 to 44.1 kHz, from 96 to 48 kHz, and from 88.2 to 44.1 kHz are supported. Audio data can only be downsampled on 2-channel audio.

The appropriate registers must be configured to describe the audio format provided to the SiI9134 transmitter. This information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets.

Table 5 shows the MCLK frequencies that support the seven audio sample rates.

Table 5. Supported MCLK Frequencies

	I ² S and S/PDIF Supported MCLK Rates									
Multiple of Fs Audio Sample Rate, Fs										
	32 kHz	44.1 kHz	48 kHz	88.2 kHz	96 kHz	176.4 kHz	192 kHz			
128	4.096 MHz	5.645 MHz	6.144 MHz	11.290 MHz	12.288 MHz	22.579 MHz	24.576 MHz			
192	6.144 MHz	8.467 MHz	9.216 MHz	16.934 MHz	18.432 MHz	33.868 MHz	36.864 MHz			
256	8.192 MHz	11.290 MHz	12.288 MHz	22.579 MHz	24.576 MHz	45.158 MHz	49.152 MHz			
384	12.288 MHz	16.934 MHz	18.432 MHz	33.864 MHz	36.864 MHz	67.737 MHz	73.728 MHz			
512	16.384 MHz	22.579 MHz	24.576 MHz	45.158 MHz	49.152 MHz	_	_			
768	24.576 MHz	33.869 MHz	36.864 MHz	67.738 MHz	73.728 MHz	_	_			
1024	32.768 MHz	45.158 MHz	49.152 MHz	_						
1152	36.864 MHz	50.803 MHz	55.296 MHz	_	_	_	_			

One-Bit Audio Input (DSD/SACD)

Direct Stream Digital (DSD) is an audio data format defined for Super Audio CD (SACD) applications. A clock and four data inputs, each for left and right channels, provide support for up to 8 channels. One-bit audio sources provide MCLK and support 64 × Fs, with Fs being either 44.1 kHz or 88.2 kHz.

The one-bit audio inputs are sampled on the positive edge of the DSD clock, assembled into 56-bit packets, and mapped to the appropriate FIFO. The Audio InfoFrame, instead of the Channel Status bits, carries the sampling information for one-bit audio.

High-Bit Rate Audio on HDMI

The new high-bit-rate compression standards, such as MLP and DTS-HD, transmit data at bit rates as high as 18 or 24 Mbps. Because these bit rates are so high, DVD decoders and HDMI transmitters (as source devices), and DSP and HDMI receivers (as sink devices) must carry the data using four I²S lines rather than using a single very-high-speed S/PDIF interface or I²S bus (see Figure 5 on the next page).

Figure 5. High Speed Data Transmission

The high-bit-rate audio stream is originally encoded as a single stream. To send the stream over four I²S lines, the DVD decoder splits it into four streams. Figure 6 shows the high-bit-rate stream before it has been split into four I²S lines. Figure 7 shows the same audio stream after being split. Each sample requires 16 cycles of the I²S clock (SCK).

Figure 6. High Bitrate Stream Before and after Reassembly and Splitting

Figure 7. High Bit Rate Stream After Splitting

Audio Downsampler Limitations

The SiI9134 transmitter has an audio downsampler function that can down sample the incoming two-channel audio data and output the result over the HDMI link. The audio data can be downsampled by one-half or one-fourth with register control. Conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96 to 48 kHz, and 88.2 to 44.1 kHz are supported. Some limitations in the audio sample word length when using this feature may need special consideration in a real application.

When enabling the audio downsampler, the Channel Status registers for the audio sample word lengths sent over the HDMI link always indicate the maximum possible length. For example, if the input S/PDIF stream was in 20-bit mode with 16 bits valid, after enabling the downsampler the Channel Status indicates 20-bit mode with 20 bits valid.

Audio sample word length is carried in bits 33 through 35 of the Channel Status register over the HDMI link, as shown in Table 6. These bits are always set to 0b101 when enabling the down-sampler feature. Audio data is not affected because 0s are placed into the LSBs of the data, and the wider word length is sent across the HDMI link.

Table 6. Channel Status Bits Used for Word Length

	В	it			
Audio sample word length			Max. word length ¹	Sample word length, bits	Note
35	34	33	32		
0	0	0	0	Not indicated	
0	0	1	0	16	2
0	1	0	0	18	2
1	0	0	0	19	2
1	0	1	0	20	2, 4
1	1	0	0	17	2
0	0	0	1	Not indicated	3
0	0	1	1	20	3
0	1	0	1	22	3
1	0	0	1	23	3
1	0	1	1	24	3, 4
1	1	0	1	21	3

- 1. Maximum audio sample word length (MAXLEN) is 20 bits if MAXLEN = 0, 24 bits if MAXLEN = 1.
- 2. Maximum audio sample word length is 20.
- 3. Maximum audio sample word length is 24.
- 4. Bits [35:33] are always 0b101 when the down-sampler is enabled

HDCP Key ROM

The SiI9134 transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM. System manufacturers do not need to purchase key sets from the Digital-Content Protection LLC. Silicon Image handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the highest level of security because there is no way to read the keys once the devices are programmed. Customers must sign the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Silicon Image before receiving samples of the transmitter.

Interrupt Out

The INT pin provides an interrupt signal to the system microcontroller when any of the following occur:

- Monitor Detect (HPD input) changes
- VSYNC (useful for synchronizing a microcontroller to the vertical timing interval)
- Error in the audio format
- DDC FIFO status change
- HDCP authentication error

Control and Configuration

All functions of the transmitter are monitored and controlled with I²C registers. Register addresses range from 0x00 to 0xFF on each page in the I²C protocol. Because there are more than 255 bytes of registers in the transmitter, it is accessed using one of two I²C device addresses, which can be altered with the CI2CA pin. The level on the CI2CA pin is not latched internally and therefore must not be changed during any active I²C operations.

Table 7. Control of I²C Address with CI2CA Pin

Device Address	CI2CA = HIGH	CI2CA = LOW
First Device Address	0x76	0x72
Second Device Address	0x7E	0x7A

Registers/Configuration Logic

The Register/Configuration Logic block incorporates all the registers required for configuring and managing the SiI9134 transmitter. These registers are used to perform HDCP authentication, audio/video format processing, CEA-861D infopacket formatting, and power-down control.

Microcontroller Slave I²C Interface

The controller slave I²C interface on the transmitter (pins CSCL and CSDA) is capable of running up to 400 kHz. This bus is used to configure the transmitter by reading and writing to various registers and is 5 V tolerant. Figure 8 shows the host I²C ports.

Figure 8. Simplified I²C Ports

DDC Master I²C Interface

The transmitter includes two I²C ports: a master port to connect directly to the HDMI cable and a port to connect to the system microcontroller or processor. Both are shown in Figure 8. DDC reads and writes are executed by reading and writing registers in the SiI9134 transmitter.

Silicon Image, Inc.

The master DDC block supports I^2C transactions specified by VESA Enhanced Display Data Channel Standard (Section 3.1.2), and it supports an I^2C write transaction needed for HDCP. The Master DDC block complies with the Standard Mode timing of the I^2C specification (100 kHz) and supports slave clock stretching as required by E-DDC. Section 8.4.1 of the HDMI Specification limits the speed allowed on the DDC bus to 100 kHz.

Figure 8 provides information about the transactions supported by the master I²C interface.

Figure 8. Master I²C Supported Transactions

Electrical Specifications

The following tables provide electrical specifications for the SiI9134 transmitter.

Absolute Maximum Conditions

Table 9. Absolute Maximum Conditions

Symbol	Parameter	Min	Тур	Max	Units	Note
IOVCC33	I/O pin supply voltage 3.3 V	-0.3	_	4.0	V	3
PVCC1	TMDS PLL supply voltage	-0.3	_	2.5	V	
PVCC2	TMDS PLL supply voltage	-0.3	_	2.5	V	
AVCC18	TMDS analog supply voltage	-0.3	_	2.5	V	
AVCC33	TMDS analog supply voltage 3.3 V	-0.3	_	4.0	V	3
CVCC18	Digital Core supply voltage	-0.3	7	2.5	V	3
DDCPWR5V	DDC I ² C I/O reference voltage	-0.3		5.5	V	
$V_{\rm I}$	Input voltage	-0.3	_	5.5	V	1-
Vo	Output voltage	-0.3		IOVCC33 + 0.3	V	
T_A	Ambient temperature (with power applied)	-25		105	°C	
T_{J}	Junction temperature (with power applied)	V — (125	°C	_
T_{STG}	Storage temperature	-65	_	150	°C	_

Notes:

- 1. Permanent device damage can occur if absolute maximum conditions are exceeded.
- 2. Restrict functional operation to the conditions described in the Normal Operating Conditions section below.
- 3. Voltage undershoot or overshoot cannot exceed absolute maximum conditions.
- 4. Refer to the SiI9134 HDMI Deep Color Transmitter Qualification Report for information on ESD performance.

Normal Operating Conditions

Table 10. Normal Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units	Note
IOVCC33	I/O pin supply voltage 3.3 V	2.97	3.3	3.63	V	1
PVCC1	TMDS PLL supply voltage	1.62	1.8	1.98	V	2
PVCC2	TMDS PLL supply voltage	1.62	1.8	1.98	V	2
AVCC18	TMDS analog supply voltage 1.8 V	1.62	1.8	1.98	V	_
AVCC33	TMDS analog supply voltage 3.3 V	2.97	3.3	3.63	V	5
CVCC18	Digital core supply voltage	1.62	1.8	1.98	V	_
DDCPWR5V	DDC I ² C I/O reference voltage	4.50	5.0	5.50	V	4
DIFF3318	(VCC33–VCC18)	-1.0		2.0	V	3, 4
T_{A}	Ambient temperature (with power applied)	0	25	70	°C	_
Θ_{ja}	Ambient thermal resistance (Theta JA)			55	°C/W	6
$\Theta_{ m jc}$	Junction thermal resistance (Theta JC)		_	17.5	°C/W	_

- 1. Power to IOVCC33 and AVCC33 pins should be controlled from one source.
- 2. Power to PVCC1 and PVCC2 pins should be regulated.
- 3. Applies to all 3.3 V and 1.8 V power supplies. Power supply sequencing must guarantee that power pins stay within these limits of each other. See Figure 19.
- 4. No power sequencing is required on other supply voltages.
- 5. The HDMI Specification requires termination voltage to be controlled to 3.3 V \pm 5%. The SiI9134 HDMI Deep Color Transmitter tolerates a wider range of \pm 300 mV.
- 6. Airflow at 0 m/s.
- 7. See page 42 for schematics showing decoupling and power supply regulation.

DC Specifications

Digital I/O Specifications

Under normal operating conditions, unless otherwise specified.

Table 11. Digital I/O Specifications

Symbol	Parameter	Pin Type ³	Conditions	Min	Тур	Max	Units	Notes
V_{IH}	HIGH-level input voltage	LVTTL		2.0	1		V	1
$V_{\rm IL}$	LOW-level input voltage	LVTTL				0.825	V	1
V_{OH}	HIGH-level output voltage	LVTTL		2.4			V	1
V_{OL}	LOW-level output voltage	LVTTL				0.4	V	1
I_{OH}	Output minimum source DC current	LVTTL	VOUT = 2.4 V	6.2	12.4	19	mA	2, 7, 8
I_{OL}	Output minimum sink current	LVTTL	VOUT = 0.4 V	4.5	6.6	7.6	mA	2, 7, 8
V _{TH+I2L}	LOW to HIGH threshold, local I ² C bus	Schmitt		1.9	_	5	V	1, 4
V _{TH-I2L}	HIGH to LOW threshold, local I ² C bus	Schmitt	0-2	_	- (0.7	V	1, 4
V _{TH+I2D}	LOW to HIGH threshold, DDC I ² C Bus	Schmitt	10	2.3			V	1
V _{TH-I2D}	HIGH to LOW threshold, DDC I ² C bus	Schmitt	<u></u>		(=	1.5	V	1
V _{CINL}	Input clamp voltage	All	ICL = -18 mA			GND - 0.8	V	1, 5
V_{CIPL}	Input clamp voltage	All	ICL = 18 mA			$V_{CC} + 0.8$	V	1, 5
I_{IL}	Input leakage Current	All	High impedance	-10		10	μΑ	1, 6

- 1. Guaranteed by characterization.
- 2. Guaranteed by design.
- 3. LVTTL inputs except CI2CA have no internal pull-up or pull-down resistors. All unused input pins should be tied LOW
- 4. When no VCC is applied to the chip, the CSCL and CSDA pins can continue to draw a small current and prevent the I²C master from communicating with other devices on the I²C bus. Therefore, do not remove VCC from the transmitter unless the attached I²C bus is completely idle.
- 5. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater than 3 ns or for more than one third of the clock cycle, whichever is less. Exceeding the Clamp Current I_{CL} listed can result in permanent damage to the chip.
- 6. Limits defined by HDMI Specification.
- 7. Output drive specification applies to INT, DSCL, DSDA, and CSDA pins.
- 8. Minimum output drive specified at ambient = 70 °C and IOVCC = 3.0 V. Typical drive specified at ambient = 25 °C and IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 °C and IOVCC = 3.6 V.

TMDS I/O Specifications

Table 12. TMDS DC Specifications—Internal Source Termination On

Internal source termination and leakage bias (STERM and LVBIAS in TMDS Control Register #1 bits 0 and 2 respectively) are turned on in the chip. External source termination components must be removed. LVBIAS should be set to 1 after reset.

Symbol	Parameter	Pin Type	Conditions	Min	Тур	Max	Units	Notes
V_{DOH}	Differential HIGH level output voltage	TMDS	_	AVCC33 - 150	AVCC33 - 130	AVCC33 -110	mV	1
V_{DOL}	Differential LOW level output voltage	TMDS	_	AVCC33 - 600	AVCC33	AVCC33 - 400	mV	1
V_{OD}	Differential Outputs single ended swing amplitude	TMDS	REXT_SWING = $698 \Omega 1\%$	400	450	600	mV	1, 3
V _{ODD}	Differential Outputs differential swing amplitude	TMDS	REXT_SWING = 698 Ω 1%	800	900	1200	mV	1, 3
I_{DOS}	Differential output short circuit current	TMDS	VOUT = 0 V		_	5	μА	2

Notes:

- 1. Guaranteed by characterization.
- 2. Guaranteed by design.
- 3. Minimum output drive specified at ambient = 70 °C and IOVCC = 3.0 V. Typical drive specified at ambient = 25 °C and IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 °C and IOVCC = 3.6 V.

Table 13. TMDS DC Specifications—Internal Source Termination Off

Internal source termination and leakage bias (STERM and LVBIAS in TMDS Control Register #1 bits 0 and 2 respectively) are turned off in the chip. External source termination components are required and the chip must be set accordingly upon power up.

Symbol	Parameter	Pin Type	Conditions	Min	Тур	Max	Units	Notes
V_{DOH}	Differential HIGH level output voltage	TMDS	7	AVCC33 - 10	AVCC33	AVCC33 + 10	mV	1
V_{DOL}	Differential LOW level output voltage	TMDS		AVCC33 - 600	AVCC33 - 500	AVCC33 - 400	mV	1
V _{OD}	Differential Outputs single ended swing amplitude	TMDS	REXT_SWING = $850 \Omega 1\%$	400	500	600	mV	1, 3
V _{ODD}	Differential Outputs differential swing amplitude	TMDS	REXT_SWING = $850 \Omega 1\%$	800	1000	1200	mV	1, 3
I_{DOS}	Differential output short circuit current	TMDS	VOUT = 0 V		_	5	μΑ	2

- 1. Guaranteed by characterization.
- 2. Guaranteed by design.
- 3. Minimum output drive specified at ambient = 70 °C and IOVCC = 3.0 V. Typical drive specified at ambient = 25 °C and IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 °C and IOVCC = 3.6 V.

DC Power Supply Pin Specifications

Table 14. Power-Down Modes

Crombal	Parameter	Mode	Enganomar	Maxii	Units	Notes	
Symbol	1 at afficter	Mode	Frequency	1.8 V	3.3 V	Units	Notes
I_{PDQ3}	Complete power-down current	A	No input	1	5	mA	1, 2
I_{PDQ}	Quiet power-down current	В	clock	8	5	mA	1
I_{PD}	Power-down current @ 225 MHz	C	Clocking	30	5	mA	1

Notes:

- 1. Power is not related to input pixel clock (IDCK) frequency.
- 2. Most registers are accessible with no input pixel clock. Exceptions include Packet Control and ROM test. Stopping the input pixel clock (IDCK) is equivalent to setting PDIDCK# = 0 to minimize power.
- 3. Maximum power limits measured with all supplies at maximum normal operating conditions, minimum normal operating ambient temperature, and a single pixel checkerboard pattern.

Table 15. Total Power Mode

Ch al	Parameter	Mode	lode Frequency	Typi	ical ¹	Maxi	mum ²	Units	Natas
Symbol				1.8 V	3.3 V	1.8 V	3.3 V	Units	Notes
			27 MHz			20	5	mA	
I_{STBY}	Standby current	D	74.25 MHz		_	44	5	mA	3
		D	150 MHz		_	77	5	mA	3
			225 MHz		*	94	5	mA	
		. 0	27 MHz	87	5	102	5	mA	
T	Transmitter supply	E	74.25 MHz	146	5	168	5	mA	
I _{CCT}	current		150 MHz	221	5	230	5	mA	
	. () ())	225 MHz	251	5	276	5	mA	

- 1. Typical power specifications measured with supplies at typical normal operating conditions and an SMPTE133 video pattern.
- 2. Maximum power limits measured with all supplies at maximum normal operating conditions, minimum normal operating ambient temperature, and a single pixel checkerboard pattern.
- 3. Typical values are specified for full functional mode, not for power-down modes.

Table 16. Power Operating Modes

	e 10/10// CF Operating			Bit States				
	Mode	PDTOT#	PD#	PDIDCK#	PDOSC	Input Switching	Description	Comment
A	Complete Power Down	1	0	0	1	No	Minimum power.	Lowest power mode.
В	Quiet Power Down	1	0	0	0	No	Master DDC available.	Access DDC bus
С	Power Down	1	0	0	0	Yes	Upstream chip still active.	while minimizing transmit power.
D	Standby	1	0	1	0	Yes	Internal clock trees active.	Power-reset mode.
Е	Full Power	1	1	1	0	Yes	Full-function.	Functional mode.

AC Specifications

TMDS AC Timing Specifications

Under normal operating conditions, unless otherwise specified.

Table 17. TMDS AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure
T_{DDF}	VSYNC and HSYNC Delay from DE falling edge	_	1	_		T_{CIP}	Figure 12
T_{DDR}	VSYNC and HSYNC Delay to DE rising edge	_	1	_	_	T_{CIP}	Figure 12
T _{HDE}	DE HIGH Time		_	_	8191	T_{CIP}	Figure 13
T_{LDE}	DE LOW Time ³	_	138	_	_	T_{CIP}	Figure 13
S_{LHT}	Differential Swing LOW-to-HIGH Transition Time ⁴	$R_{\text{EXT_SWING}} = 698 \ \Omega$	75	_	144	ps	Figure 20
S _{HLT}	Differential Swing HIGH-to-LOW Transition Time ⁴	Internal Source Termination On	75	_	144	ps	Figure 20

Notes:

- 1. Guaranteed by design.
- 2. Guaranteed by characterization.
- 3. T_{LDE} (DE LOW Time) minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138 pixel clocks of blanking to carry the audio packets. If only HDCP is running, minimum DE LOW time is 58 clocks (according to the HDCP Specification). If both HDCP and audio are not running, minimum DE LOW time is 12 clocks for TMDS. For more details, refer to Figure 13 on page 22. Minimum vertical blanking time is 3 horizontal line times.
- 4. Limits are defined by the HDMI Specification.

Audio AC Timing Specifications

Table 18. S/PDIF Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure
F _{S_SPDIF}	Sample Rate	2 Channel	32		192	kHz	
T_{SPCYC}	SPDIF Cycle Time ¹	$C_L = 10 \text{ pF}$)	1.0	UI	Figure 15
T_{SPDUTY}	SPDIF Duty Cycle 1	$C_L = 10 \text{ pF}$	90%		110%	UI	Figure 15
T _{MCLKCYC}	MCLK Cycle Time ³	$C_L = 10 \text{ pF}$	13.3		_	ns	Figure 15
F _{MCLK}	MCLK Frequency ³	$C_L = 10 \text{ pF}$	\sim		75	MHz	Figure 15
T _{MCLKDUTY}	MCLK Duty Cycle ³	$C_L = 10 \text{ pF}$	40%		60%	T _{MCLKCYC}	Figure 15
T_{AUDDLY}	Audio Pipeline Delay ⁴	<i>/</i> \		30	70	μs	_

Table 19. I²S Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure
F_{S_I2S}	Sample Rate	_	32	_	192	kHz	_
T_{SCKCYC}	I ² S Cycle Time ¹	$C_L = 10 \text{ pF}$	_	_	1.0	UI	Figure 16
$T_{SCKDUTY}$	I ² S Duty Cycle ¹	$C_L = 10 \text{ pF}$	90%	_	110%	UI	Figure 16
T _{I2SSU}	I ² S Setup Time ²	$C_L = 10 \text{ pF}$	15	_	_	ns	Figure 16
T _{I2SHD}	I ² S Hold Time ²	$C_L = 10 \text{ pF}$	0	_		ns	Figure 16

Table 20. DSD Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure
F_{S_DSD}	Sample Rate	_		44.1	88.2	kHz	_
T _{DCKCYC}	DSD Cycle Time ¹	$C_L = 10 \text{ pF}$		_	1.0	UI	Figure 17
$T_{DCKDUTY}$	DSD Duty Cycle ¹	$C_L = 10 \text{ pF}$	90%	_	110%	UI	Figure 17
T_{DSDSU}	DSD Setup Time	$C_L = 10 \text{ pF}$	20	_	_	ns	Figure 17
T_{DSDHD}	DSD Hold Time	$C_L = 10 \text{ pF}$	20	_	_	ns	Figure 17

Notes:

- 1. Proportional to unit time (UI) according to sample rate. Refer to the I²S or S/PDIF Specifications.
- 2. Setup and hold minima are based on 13.388 MHz sampling, which is adapted from Fig. 3 of Philips I²S Specification.
- A separate master clock input (MCLK) is required; refer to the S/PDIF section on page 9.
- 4. Audio pipeline delay is measured from the transmitter input pins to TMDS output. The video path delay is insignificant.

Video AC Timing Specifications

Under normal operating conditions, unless otherwise specified.

Table 21. Video Input AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Note
T _{CIP}	IDCK period, one pixel per clock		6.1	_	40	ns	Figure 9	1
F_{CIP}	IDCK frequency, one pixel per clock		25	_	165	MHz	Figure 9	2
T _{CIP12}	IDCK period, dual-edge clock		12.3		40	ns	Figure 11	2
F _{CIP12}	IDCK frequency, dual-edge clock	\ (f)	25)	82.5	MHz	Figure 11	2
T _{DUTY}	IDCK duty cycle	X_	40%	_	60%	T_{CIP}	Figure 9	_
T _{IJIT}	Worst case IDCK clock jitter	—	7	6	1.0	ns	Figure 9	3, 4
T_{SIDF}	Setup time to IDCK falling edge (EDGE = 0)	. (-)	1.0	>	_	ns	Figure 10	
T_{HIDF}	Hold time to IDCK falling edge (EDGE = 0)	Single-edge	0.8	_	_	ns	Figure 10	5
T_{SIDR}	Setup time to IDCK rising edge (EDGE = 1)	clocking mode	1.0	_		ns	Figure 10	3
T _{HIDR}	Hold time to IDCK rising edge (EDGE = 1)		0.5	_		ns	Figure 10	
T_{SIDD}	Setup time to IDCK rising or falling edge	12-bit dual-edge	1.0	_	_	ns	Figure 11	6
T_{HIDD}	Hold time to IDCK rising or falling edge	clocking mode	1.0	_	_	ns	Figure 11	0

- 1. T_{CIP} and F_{CIP} apply in single-edge clocking modes. T_{CIP} is the inverse of F_{CIP} and is not a controlling specification.
- 2. T_{CIP12} and F_{CIP12} apply in dual-edge mode. T_{CIP12} is not a controlling specification.
- 3. Input clock jitter is estimated by triggering a digital scope at the rising edge of input clock and measuring the peak-to-peak time spread of the rising edge of the input clock one microsecond after the trigger.
- 4. Actual jitter tolerance can be higher depending on the frequency of the jitter.
- Setup and hold time specifications apply to Data, DE, VSYNC, and HSYNC input pins, relative to IDCK input clock.
- 6. Setup and hold limits are not affected by EDGE bit setting for 12/15/18-bit, dual-edge clocking mode.

Control Timing Specifications

Under normal operating conditions, unless otherwise specified.

Table 22. Control Signal Timing Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Note
T _{RESET}	RESET# signal LOW time required for reset		50			μs	Figure 14	1, 5
T _{I2CDVD}	SDA Data Valid Delay from SCL falling edge on READ command	$C_L = 400 pF$	_	_	700	ns	Figure 21	2
T _{HDDAT}	I ² C data hold time	0–400 kHz	7.0		_	ns	_	3
T _{HDSTA}	I ² C Hold time (repeated) START condition	0–400 kHz	-7.0	ı	_	ns	_	
T _{INT}	Response time for INT output pin from change in input condition (HPD, Receiver Sense, VSYNC change, etc.).	RESET# = HIGH			100	μs	Figure 22	_
F _{SCL}	Frequency on master DDC SCL signal	_	40	70	100	kHz	E_{1}	_

- 1. Reset on RESET# pin can be LOW as the supply becomes stable, or pulled LOW for at least T_{RESET} .
- 2. All standard-mode (100 kHz) I²C timing requirements are guaranteed by design. These timings apply to the slave I²C port (pins CSDA and CSCL) and to the master I²C port (pins DSDA and DSCL).
- 3. This minimum hold time is required by CSCL and CSDA pins as an I²C slave. The device does not include the 300 ns internal delay required by the I²C Specification (Version 2.1, Table 5, note 2).
- 4. The master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I²C Standard Mode or 100 kHz. Use of the Master DDC block does not require an active IDCK.
- 5. Not a Schmitt trigger.

Timing Diagrams

Input Timing Diagrams

Figure 9. IDCK Clock Cycle/HIGH/LOW Times

Figure 10. Control and Data Single-Edge Setup/Hold Times to IDCK

Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications.

Figure 11. Dual-Edge Setup/Hold Times to IDCK

Figure 12. VSYNC and HSYNC Delay Times from/to DE

Figure 13. DE HIGH/LOW Times

Note: VCC must be stable between its limits for Normal Operating Conditions for T_{RESET} before RESET# is HIGH. RESET# must be pulled LOW for T_{RESET} before accessing registers. This can be done by holding RESET# LOW until T_{RESET} after stable power (as shown to the left above) or by pulling RESET# LOW from a HIGH state (as shown to the right) for at least T_{RESET} .

Figure 14. RESET# Minimum Timings

Audio Timing Diagrams

Figure 15. S/PDIF Input Timings

Figure 16. I²S Input Timings

Figure 17. DSD Input Timings

Figure 18. MCLK Timings

Power Supply Sequencing

Figure 19. Power Supply Sequencing

Output Timing Diagrams

Figure 20. Differential Transition Times

Figure 21. I²C Data Valid Delay (Driving Read Cycle Data)

Figure 22. INT Output Pin Response to HPD Input Change

Pin Descriptions

The following tables provide pin descriptions for the SiI9134 transmitter

Video Input Pins

Pi V			ъ.	
Pin Name	Pin	Type	Dir	Description
D0	98	LVTTL	Input	These are the lower 12 bits of the 36-bit pixel bus. These pins are highly
D1	97	LVTTL	Input	configurable, and support multiple RGB and YCbCr formats. Refer to Data Bus Mappings on page 27 for complete information.
D2	96	LVTTL	Input	wappings on page 27 for complete information.
D3	95	LVTTL	Input	
D4	94	LVTTL	Input	
D5	93	LVTTL	Input	
D6	92	LVTTL	Input	O_1
D7	91	LVTTL	Input	
D8	90	LVTTL	Input	
D9	86	LVTTL	Input	
D10	85	LVTTL	Input	
D11	84	LVTTL	Input	
D12	83	LVTTL	Input	These are the middle 12 bits of the 36-bit pixel bus.
D13	82	LVTTL	Input	
D14	81	LVTTL	Input	
D15	80	LVTTL	Input	
D16	79	LVTTL	Input	
D17	78	LVTTL	Input	
D18	77	LVTTL	Input	$(C)^{*}/(C)^{*}$
D19	75	LVTTL	Input	
D20	74	LVTTL	Input	1,6
D21	73	LVTTL	Input	
D22	72	LVTTL	Input	
D23	71	LVTTL	Input	
D24	70	LVTTL	Input	These are the upper 12 bits of the 36-bit pixel bus.
D25	69	LVTTL	Input	
D26	68	LVTTL	Input	
D27	67	LVTTL	Input	
D28	63	LVTTL	Input	
D29	62	LVTTL	Input	
D30	61	LVTTL	Input	
D31	60	LVTTL	Input	
D32	59	LVTTL	Input	
D33	58	LVTTL	Input	
D34	57	LVTTL	Input	
D35	56	LVTTL	Input	
IDCK	88	LVTTL	Input	Input data clock
DE	1	LVTTL	Input	Data enable
HSYNC	2	LVTTL	Input	Horizontal sync input control signal
VSYNC	3	LVTTL	Input	Vertical sync input control signal

Audio Input Pins

D: N			D'	TD 1.41
Pin Name	Pin	Type	Dir	Description
SCK	11	LVTTL	Input	I ² S serial clock
WS	10	LVTTL	Input	I ² S Word Select
SD0	9	LVTTL	Input	I ² S serial data
SD1	8	LVTTL	Input	I ² S serial data
SD2	7	LVTTL	Input	I ² S serial data
SD3	6	LVTTL	Input	I ² S serial data
DL0	17	LVTTL	Input	One-bit audio data left 0
DR0	16	LVTTL	Input	One-bit audio data right 0
DL1	19	LVTTL	Input	One-bit audio data left 1
DR1	18	LVTTL	Input	One-bit audio data right 1
DL2	21	LVTTL	Input	One-bit audio data left 2
DR2	20	LVTTL	Input	One-bit audio data right 2
DL3	23	LVTTL	Input	One-bit audio data left 3
DR3	22	LVTTL	Input	One-bit audio data right 3
DCLK	15	LVTTL	Input	One-bit audio clock input
MCLK	5	LVTTL	Input	Audio input master clock
SPDIF	4	LVTTL	Input	S/PDIF audio input

Configuration/Programming Pins

Pin Name	Pin	Type	Dir	Description
HPD	51	LVTTL	Input	Hot Plug Detect input
RSVDL	52	LVTTL	Input	Reserved for use by Silicon Image and must be tied LOW.
INT	24	LVTTL	Output	Interrupt output

Control Pins

Pin Name	Pin	Type	Dir	Description
CI2CA	50	LVTTL	Input	I ² C device address select (see page 12)
RESET#	25	LVTTL Schmidt	Input	Reset pin (active LOW) 5 V tolerant
CSCL	48	Schmitt	Input	I ² C Clock
CSDA	49	Schmitt Open drain	Input Output	I ² C Data (open drain output.)
DSCL	46	Schmitt Open drain	Input Output	DDC Clock (open drain output)
DSDA	47	Schmitt Open drain	Input Output	DDC Data (open drain output.)

The DSCL pin is bi-directional. The transmitter monitors the state of DSCL so that it can accommodate I^2C clock stretching by the slave device. The level on the CI2CA pin is not latched internally and **must not** be changed during any active I^2C operations.

Differential Signal Data Pins

Pin Name	Pin	Туре	Dir	Description
TX0+	34	TMDS	Output	TMDS output data pairs.
TX0-	33	TMDS	Output	_
TX1+	37	TMDS	Output	_
TX1-	36	TMDS	Output	_
TX2+	40	TMDS	Output	
TX2-	39	TMDS	Output	
TXC+	31	TMDS	Output	TMDS output clock pair.
TXC-	30	TMDS	Output	_
EXT_SWING	27	Analog	Input	Voltage Swing Adjust. A resistor is tied from this pin to AVCC18. This resistor determines the amplitude of the voltage swing. Silicon Image recommends a value of 698 Ω 1%.

Power and Ground Pins

Pin Name	Pin	Type	Description	Supply
CVCC18	12, 55, 64, 76, 99	Power	Digital Core VCC.	1.8 V
IOVCC33	14, 53, 66, 89	Power	IO Pin VCC.	3.3 V
AVCC33	44	Power	Analog VCC.	3.3 V
AVCC18	32, 38,	Power	Analog VCC.	1.8 V
AGND	26, 29, 35, 41,43	Ground	Analog GND.	Ground
PVCC1	28	Power	TMDS Core PLL Power.	1.8 V
PVCC2	42	Power	Filter PLL Power.	1.8 V
DDCPWR5V	45	Power	Power reference signal. Supplies power to the DDC I ² C pads when chip is powered off.	5 V
GND	13, 54, 65, 87,100	Ground	Digital ground	Ground

Data Bus Mappings

The SiI9134 transmitter supports multiple input data mappings. Some have explicit control signals, and some have embedded control signals. The selection of data mapping mode should be consistent at the pins and in the corresponding register settings.

Table 23. Input Video Formats

Input Mode	Data Widths	Clock Mode	Syncs	Page	Notes
RGB 4:4:4	24, 30, 36	1x	Explicit	28	3, 6
YCbCr 4:4:4	24, 30, 36	1x	Explicit	28	1, 3, 6
YC 4:2:2	16, 20, 24	1 x	Explicit	_	2, 1
YC 4:2:2	16, 20, 24	1 x	Embedded	31	2, 1
YC Mux 4:2:2	16, 20, 24	1 x	Explicit	_	_
YC Mux 4:2:2	16, 20, 24	1 x	Embedded	_	_
RGB 4:4:4	12, 15, 18	dual-edge	Explicit	38	8
YCbCr 4:4:4	12, 15, 18	dual-edge	Explicit	38	1, 8

Notes:

- 1. 4:4:4 data contains one Cr, one Cb, and one Y value for every pixel.
- 2. 4:2:2 data contains one Cr and one Cb value for every two pixels, and one Y value for every pixel.
- 3. Only these formats can be carried across the HDMI link, Refer to the HDMI Specification, Section 6.2.3. The link clock must be within the specified range of the HDMI receiver.
- 4. In YC MUX mode data is input on one 8/10/12-bit channel. A 2x clock is required.

XX

- 5. Embedded sync decoding extracts the syncs. A 2x clock is required. The DE generator may be needed to convert extracted sync timings to CEA-861D compliant timings.
- 6. A 2x clock can also be sent with 4:4:4 data. This is necessary for the receiver to reformat such a stream into 4:2:2 data or into a multiplexed YC MUX output format.
- 7. When sending a 2x clock the HDMI source must also send AVI InfoFrames with an accurate pixel replication field. Refer to the HDMI Specification, Section 6.4.
- 8. Dual-edge clocking is allowed for these video mappings.
- 9. The HDMI Specification requires that every HDMI source transmit an accurate Audio InfoFrame whenever it is transmitting audio. In addition, the HDMI Specification and the EIA/CEA-861D Specification require virtually every HDMI source to transmit an accurate AVI InfoFrame. Even in the rare cases where an AVI is not absolutely required, Silicon Image strongly recommends transmitting an AVI during every vertical blanking interval.

RGB and YCbCr 4:4:4 Formats with Separate Syncs

The pixel clock runs at the pixel rate and a complete definition of each pixel is input on each clock. The same timing format is used for YCbCr 4:4:4.

Table 24. 4:4:4 Mappings

Pin	24-bit	24-bit	30-bit	30-bit	36-bit	36-bit
Name						
	RGB	YCbCr	RGB	YCbCr	RGB	YCbCr
D0	GND	GND	GND	GND	B0	Cb0
D1	GND	GND	GND	GND	B1	Cb1
D2	GND	GND	B0	Cb0	B2	Cb2
D3	GND	GND	B1	Cb1	B3	Cb3
D4	B0	Cb0	B2	Cb2	B4	Cb4
D5	B1	Cb1	B3	Cb3	B5	Cb5
D6	B2	Cb2	B4	Cb4	B6	Cb6
D7	B3	Cb3	B5	Cb5	B7	Cb7
D8	B4	Cb4	В6	Cb6	B8	Cb8
D9	B5	Cb5	B7	Cb7	B9	Cb9
D10	В6	Cb6	B8	Cb8	B10	Cb10
D11	B7	Cb7	В9	Cb9	B11	Cb11
D12	GND	GND	GND	GND	G0	Y0
D13	GND	GND	GND	GND	G1	Y1
D14	GND	GND	G0	Y0	G2	Y2
D15	GND	GND	G1	Y1	G3	Y3
D16	G0	Y0	G2	Y2	G4	Y4
D17	G1	Y1	G3	Y3	G5	Y5
D18	G2	Y2	G4	Y4	G6	Y6
D19	G3	Y3	G5	Y5	G7	Y7
D20	G4	Y4	G6	Y6	G8	Y8
D21	G5	Y5	G7	Y7	G9	Y9
D22	G6	Y6	G8	Y8	G10	Y10
D23	G7	Y7	G9	Y9	G11	Y11
D24	GND	GND	GND	GND	R0	Cr0
D25	GND	GND	GND	GND	R1	Cr1
D26	GND	GND	R0	Cr0	R2	Cr2
D27	GND	GND	R1	Cr1	R3	Cr3
D28	R0	Cr0	R2	Cr2	R4	Cr4
D29	R1	Cr1	R3	Cr3	R5	Cr5
D30	R2	Cr2	R4	Cr4	R6	Cr6
D31	R3	Cr3	R5	Cr5	R7	Cr7
D32	R4	Cr4	R6	Cr6	R8	Cr8
D33	R5	Cr5	R7	Cr7	R9	Cr9
D34	R6	Cr6	R8	Cr8	R10	Cr10
D35	R7	Cr7	R9	Cr9	R11	Cr11
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
DE	DE	DE	DE	DE	DE	DE
DE	שעם	DΕ	שעם	DΕ	שעם	νu

Figure 23. 4:4:4 RGB 36-Bit Timing Diagram

Figure 24. 4:4:4 YCbCr 36-Bit Timing Diagram

Figure 25. 4:4:4 RGB 30-Bit Timing Diagram

Figure 26. 4:4:4 YCbCr 30-Bit Timing Diagram

Figure 27. 4:4:4 RGB 24-Bit Timing Diagram

Figure 28. Figure 24. 4:4:4 YCbCr 24-Bit Timing Diagram

YC 4:2:2 Formats with Separate Syncs

The YC 4:2:2 formats input one pixel for every pixel clock period. A luma (Y) value is input for every pixel, but the chroma values (Cb and Cr) change only every second pixel. Pixel data can be 16-bit, 20-bit or 24-bit. HSYNC and VSYNC are input explicitly on their own pins. The DE high time must contain an even number of pixel clocks.

Table 25. YC 4:2:2 Separate Sync Pin Mappings

Pin Name	16-bit YC		11 0	it YC	24-bi	24-bit YC		
	Pixel #0	Pixel #1	Pixel #0	Pixel #1	Pixel #0	Pixel #1		
D0	GND	GND	GND	GND	GND	GND		
D1	GND	GND	GND	GND	GND	GND		
D2	GND	GND	GND	GND	GND	GND		
D3	GND	GND	GND	GND	GND	GND		
D4	GND	GND	GND	GND	Y0	Y0		
D5	GND	GND	GND	GND	Y1	Y1		
D6	GND	GND	Y0	Y0	Y2	Y2		
D7	GND	GND	Y1	Y1	Y3	Y3		
D8	GND	GND	GND	GND	Cb0	Cr0		
D9	GND	GND	GND	GND	Cb1	Cr1		
D10	GND	GND	Cb0	Cr0	Cb2	Cr2		
D11	GND	GND	Cb1	Cr1	Cb3	Cr3		
D12	GND	GND	GND	GND	GND	GND		
D13	GND	GND	GND	GND	GND	GND		
D14	GND	GND	GND	GND	GND	GND		
D15	GND	GND	GND	GND	GND	GND		
D16	Y0	Y0	Y2	Y2	Y4	Y4		
D17	Y1	Y1	Y3	Y3	Y5	Y5		
D18	Y2	Y2	Y4	Y4	Y6	Y6		
D19	Y3	Y3	Y5	Y5	Y7	Y7		
D20	Y4	Y4	Y6	Y6	Y8	Y8		
D21	Y5	Y5	Y7	Y7	Y9	Y9		
D22	Y6	Y6	Y8	Y8	Y10	Y10		
D23	Y7	Y7	Y9	Y9	Y11	Y11		
D24	GND	GND	GND	GND	GND	GND		
D25	GND	GND	GND	GND	GND	GND		
D26	GND	GND	GND	GND	GND	GND		
D27	GND	GND	GND	GND	GND	GND		
D28	Cb0	Cr0	Cb2	Cr2	Cb4	Cr4		
D29	Cb1	Crl	Cb3	Cr3	Cb5	Cr5		
D30	Cb2	Cr2	Cb4	Cr4	Cb6	Cr6		
D31	Cb3	Cr3	Cb5	Cr5	Cb7	Cr7		
D32	Cb4	Cr4	Cb6	Cr6	Cb8	Cr8		
D33	Cb5	Cr5	Cb7	Cr7	Cb9	Cr9		
D34	Cb6	Cr6	Cb8	Cr8	Cb10	Cr10		
D35	Cb7	Cr7	Cb9	Cr9	Cb11	Cr11		
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC		
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC		
DE	DE	DE	DE	DE	DE	DE		

YC 4:2:2 Formats with Embedded Sync

Table 26. YC 4:2:2 Embedded Sync Pin Mappings

14010 201 1 0		it YC		it YC	24-bit YC		
Pin Name	Pixel #0	Pixel #1	Pixel #0	Pixel #1	Pixel #0 Pixel #1		
D0	GND	GND	GND	GND	GND	GND	
D1	GND	GND	GND	GND	GND	GND	
D2	GND	GND	GND	GND	GND	GND	
D3	GND	GND	GND	GND	GND	GND	
D3	GND	GND	GND	GND	Y0	Y0	
D5	GND	GND	GND	GND	Y1	Y1	
D6	GND	GND	Y0	Y0	Y2	Y2	
D7	GND	GND	Y1	Y1	Y3	Y3	
D8			GND	GND	Cb0		
D8	GND	GND GND			Cb0	Cr0	
D10	GND GND		GND	GND Cr0	Cb1	Cr1	
D10	GND	GND GND	Cb0 Cb1	Cr1	Cb2	Cr2 Cr3	
D12	GND	GND	GND	GND	GND	GND	
D13	GND	GND	GND	GND	GND	GND	
D14	GND	GND	GND	GND	GND	GND	
D15	GND	GND	GND	GND	GND	GND	
D16	Y0	Y0	Y2	Y2	Y4	Y4	
D17	Y1	Y1	Y3	Y3	Y5	Y5	
D18	Y2	Y2	Y4	Y4	Y6	Y6	
D19	Y3	Y3	Y5	Y5	Y7	Y7	
D20	Y4	Y4	Y6	Y6	Y8	Y8	
D21	Y5	Y5	Y7	Y7	Y9	Y9	
D22	Y6	Y6	Y8	Y8	Y10	Y10	
D23	Y7	Y7	Y9	Y9	Y11	Y11	
D24	GND	GND	GND	GND	GND	GND	
D25	GND	GND	GND	GND	GND	GND	
D26	GND	GND	GND	GND	GND	GND	
D27	GND	GND	GND	GND	GND	GND	
D28	Cb0	Cr0	Cb2	Cr2	Cb4	Cr4	
D29	Cb1	Cr1	Cb3	Cr3	Cb5	Cr5	
D30	Cb2	Cr2	Cb4	Cr4	Cb6	Cr6	
D31	Cb3	Cr3	Cb5	Cr5	Cb7	Cr7	
D32	Cb4	Cr4	Cb6	Cr6	Cb8	Cr8	
D33	Cb5	Cr5	Cb7	Cr7	Cb9	Cr9	
D34	Cb6	Cr6	Cb8	Cr8	Cb10	Cr10	
D35	Cb7	Cr7	Cb9	Cr9	Cb11	Cr11	
HSYNC	GND	GND	GND	GND	GND	GND	
VSYNC	GND	GND	GND	GND	GND	GND	
DE	GND	GND	GND	GND	GND	GND	

Figure 29. YC 4:2:2 12-Bit per Pixel Timing Diagram

Figure 30. YC 4:2:2 10-Bit per Pixel Timing Diagram

Figure 31. YC 4:2:2 8-Bit per Pixel Timing Diagram

Note: The val data is defined in various specifications to specific values.

YC Mux 4:2:2 Formats with Separate Syncs

The video data is multiplexed onto fewer pins than the mapping in Table 25, but a luma (Y) is provided for each pixel, and either a Cb or a Cr value for each pixel, since the clock rate is doubled. Figure 32 shows the 12-bit mode. The 10-and 8-bit mappings use fewer input pins for the pixel data. Note the explicit syncs.

Table 27. YC Mux 4:2:2 Mappings

	8-bit		10-bit		12-bit	
Pin Name	1 st Clk	2 nd Clk	1 st Clk	2 nd Clk	1 st Clk	2 nd Clk
D0	GND	GND	GND	GND	GND	GND
D1	GND	GND	GND	GND	GND	GND
D2	GND	GND	GND	GND	GND	GND
D3	GND	GND	GND	GND	GND	GND
D4	GND	GND	GND	GND	C0	Y0
D5	GND	GND	GND	GND	/C1	Y1
D6	GND	GND	C0	Y0	C2	Y2
D7	GND	GND	C1	Y1	C3	Y3
D8	GND	GND	GND	GND	GND	GND
D9	GND	GND	GND	GND	GND	GND
D10	GND	GND	GND	GND	GND	GND
D11	GND	GND	GND	GND	GND	GND
D12	GND	GND	GND	GND	GND	GND
D13	GND	GND	GND	GND	GND	GND
D14	GND	GND	GND	GND	GND	GND
D15	GND	GND	GND	GND	GND	GND
D16	C0	Y0	C2	Y2	C4	Y4
D17	C1	Y1	C3	Y3	C5	Y5
D18	C2	Y2	C4	Y4	C6	Y6
D19	C3	Y3	C5	Y5	C7	Y7
D20	C4	Y4	C6	Y6	C8	Y8
D21	C5	Y5	C7	Y7	C9	Y9
D22	C6	Y6	C8	Y8	C10	Y10
D23	C7	Y7	C9	Y9	C11	Y11
D24	GND	GND	GND	GND	GND	GND
D25	GND	GND	GND	GND	GND	GND
D26	GND	GND	GND	GND	GND	GND
D27	GND	GND	GND	GND	GND	GND
D28	GND	GND	GND	GND	GND	GND
D29	GND	GND	GND	GND	GND	GND
D30	GND	GND	GND	GND	GND	GND
D31	GND	GND	GND	GND	GND	GND
D32	GND	GND	GND	GND	GND	GND
D33	GND	GND	GND	GND	GND	GND
D34	GND	GND	GND	GND	GND	GND
D35	GND	GND	GND	GND	GND	GND
HSYNC	HSY	/NC	HS	YNC	HSY	NC
VSYNC	VSY	/NC	VSY	YNC	VSY	NC
DE	D	E	Б	ÞΕ	DI	Ξ

Figure 32. YC Mux 4:2:2 Timing Diagram

Note: The val data is defined in various specifications to specific values.

YC Mux 4:2:2 Embedded Sync Formats

This mode is similar to the one on page 34, but with embedded syncs. It is similar to SMTPE 293 in embedding the syncs, but also multiplexes the luma (Y) and chroma (Cb and Cr) onto the same pins on alternating pixel clock cycles. Normally this mode is used only for 480i, 480p, 576i, and 576p modes. Input clock rate is twice the pixel clock rate. SAV code is shown before rise of DE. EAV follows fall of DE. 480p 54 MHz input can be achieved if the input clock is 54 MHz.

Table 28. YC Mux 4:2:2 Embedded Sync Pin Mapping

1 able 26. TC	8-1		10-		12-bit		
Pin Name	1 st Clk	2 nd Clk	1 st Clk	2 nd Clk	1 st Clk	2 nd Clk	
D0	GND	GND	GND	GND	GND	GND	
D1	GND	GND	GND	GND	GND	GND	
D2	GND	GND	GND	GND	GND	GND	
D3	GND	GND	GND	GND	GND	GND	
D4	GND	GND	GND	GND	C0	Y0	
D5	GND	GND	GND	GND	C1	Y1	
D6	GND	GND	C0	Y0	C2	Y2	
D7	GND	GND	C1	Y1	C3	Y3	
D8	GND	GND	GND	GND	GND	GND	
D9	GND	GND	GND	GND	GND	GND	
D10	GND	GND	GND	GND	GND	GND	
D11	GND	GND	GND	GND	GND	GND	
D12	GND	GND	GND	GND	GND	GND	
D13	GND	GND	GND	GND	GND	GND	
D14	GND	GND	GND	GND	GND	GND	
D15	GND	GND	GND	GND	GND	GND	
D16	C0	Y0	C2	Y2	C4	Y4	
D17	C1	Y1	C3	Y3	C5	Y5	
D18	C2	Y2	C4	Y4	C6	Y6	
D19	C3	Y3	C5	Y5	C7	Y7	
D20	C4	Y4	C6	Y6	C8	Y8	
D21	C5	Y5	C7	Y7	C9	Y9	
D22	C6	Y6	C8	Y8	C10	Y10	
D23	C7	Y7	C9	Y9	C11	Y11	
D24	GND	GND	GND	GND	GND	GND	
D25	GND	GND	GND	GND	GND	GND	
D26	GND	GND	GND	GND	GND	GND	
D27	GND	GND	GND	GND	GND	GND	
D28	GND	GND	GND	GND	GND	GND	
D29	GND	GND	GND	GND	GND	GND	
D30	GND	GND	GND	GND	GND	GND	
D31	GND	GND	GND	GND	GND	GND	
D32	GND	GND	GND	GND	GND	GND	
D33	GND	GND	GND	GND	GND	GND	
D34	GND	GND	GND	GND	GND	GND	
D35	GND	GND	GND	GND	GND	GND	
HSYNC	GN	ID .	GND		GND		
VSYNC	GN	ID	GN	ND	GN	D	
DE	GN	1D	GN	ND	GND		

Figure 33. YC Mux 4:2:2 Embedded Sync Encoding Timing Diagram

Note: The val data is defined in various specifications to specific values. The DE generator may be needed to convert extracted sync timings to CEA-861D timings. See the ITU-R BT656 Specification.

12/15/18-Bit DMO RGB and YCbCr Formats

The pixel clock runs at the pixel rate and a complete definition of each pixel is input on each clock. One clock edge latches in half the pixel data on 12, 15, or 18 pins (depending on the input data width). The opposite clock edge latches in the remaining half of the pixel data on the same 12, 15, or 18 pins. Figure 34 shows RGB data. The same timing format is used for YCbCr 4:4:4, as listed in Table 24. Control signals (DE, HSYNC, and VSYNC) must change state to meet the setup and hold times with respect to the first edge of IDCK. Figure 34 shows IDCK latching input data when the EDGE bit is set to 1. DE, VSYNC, and HSYNC must change state while meeting the setup and hold times specified for 12-bit, dual-edge mode. Refer to page 18 for more details.

Table 29. 12/15/18-Bit Input 4:4:4 Mappings

			bit		30-bit				36-bit			
Pin	RGB		YCbCr		RO	ЗB	YC	bCr	RO	GB	YC	bCr
Name	First Edge	Second Edge										
D0	GND	GND	GND	GND	GND	GND	GND	GND	В0	G6	Cb0	Y6
D1	GND	GND	GND	GND	GND	GND	GND	GND	B1	G7	Cb1	Y7
D2	GND	GND	GND	GND	В0	G5	Cb0	Y5	B2	G8	Cb2	Y8
D3	GND	GND	GND	GND	B1	G6	Cb1	Y6	В3	G9	Cb3	Y9
D4	В0	G4	Cb0	Y4	B2	G7	Cb2	Y7	B4	G10	Cb4	Y10
D5	B1	G5	Cb1	Y5	В3	G8	Cb3	Y8	B5	G11	Cb5	Y11
D6	B2	G6	Cb2	Y6	В4	G9	Cb4	Y9	В6	R0	Cb6	Cr0
D7	В3	G7	Cb3	Y7	B5	R0	Cb5	Cr0	В7	R1	Cb7	Cr1
D8	B4	R0	Cb4	Cr0	В6	R1	Cb6	Cr1	В8	R2	Cb8	Cr2
D9	B5	R1	Cb5	Cr1	B7	R2	Cb7	Cr2	B9	R3	Cb9	Cr3
D10	В6	R2	Cb6	Cr2	В8	R3	Cb8	Cr3	B10	R4	Cb10	Cr4
D11	В7	R3	Cb7	Cr3	В9	R4	Cb9	Cr4	B11	R5	Cb11	Cr5
D12	GND	GND	GND	GND	GND	GND	GND	GND	G0	R6	Y0	Cr6
D13	GND	GND	GND	GND	GND	GND	GND	GND	G1	R7	Y1	Cr7
D14	GND	GND	GND	GND	G0	R5	Y0	Cr5	G2	R8	Y2	Cr8
D15	GND	GND	GND	GND	G1	R6	Y1	Cr6	G3	R9	Y3	Cr9
D16	G0	R4	Y0	Cr4	G2	R7	Y2	Cr7	G4	R10	Y4	Cr10
D17	G1	R5	Y1	Cr5	G3	R8	Y3	Cr8	G5	R11	Y5	Cr11
D18	G2	R6	Y2	Cr6	G4	R9	Y4	Cr9	GND	GND	GND	GND
D19	G3	R7	Y3	Cr7	GND	GND	GND	GND	GND	GND	GND	GND
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE

Figure 34. 12-Bit Input DMO Timing Diagram

Design Guidelines

Power Supplies

Voltage Ripple Regulation

Excessive noise on PVCC1 or PVCC2 can cause improper PLL operation as it tries to stay locked on the incoming video clock. Make sure to keep PVCC1 and PVCC2 noise below the maximum allowable value of 100 mV. If the ripple on PVCC1 or PVCC21 is higher than 100 mV, Silicon Image recommends that a separate power source be used to supply these pins. A voltage regulator that can supply 50 mA is sufficient for PVCC1 and PVCC2. Refer to the schematic on page 42.

Decoupling

Designers should include decoupling and bypass capacitors at each power pin in the layout. These capacitors are shown schematically in Figure 35. Place them as close as possible to the SiI9134 device pins, and avoid routing through vias if possible, as shown in Figure 36, which represents the various types of power pins on the transmitter.

Note: Figure 36 shows the decoupling and bypass capacitor placement for the TQFP package.

Figure 35. Decoupling and Bypass Schematic

Figure 36. Decoupling and Bypass Capacitor Placement

Pins in each of the groups AVCC33, AVCC18, CVCC18, and IOVCC33 can share C2, C3, and L1, with each pin having a separate C1 placed as close to the pin as possible.

High-Speed TMDS Signals

ESD Protection

The transmitter chip can withstand electrostatic discharge to 2kV HBM. In applications where higher protection levels are required, ESD-limiting components can be placed on the differential lines coming out of the chip. These components typically have a capacitive effect, reducing the signal quality at higher clock frequencies on the link. Use the lowest capacitance devices possible. In no case should the capacitance value exceed 5 pF.

Transmitter Layout Guidelines

The layout guidelines below help to ensure signal integrity, and Silicon Image encourages the board designer to follow them if possible. An example of routing is shown in Figure 37.

- Place the output connector that carries the TMDS signals as close as possible to the chip.
- Route the differential lines as directly as possible from the connector to the device.
- Route the two traces of each differential pair together.
- Minimize the number of vias through which the signal lines are routed.
- Lay out the two traces of each differential pair with a controlled differential impedance of 100Ω

Because Silicon Image HDMI transmitters are tolerant of skews between differential pairs, spiral skew compensation for path length differences is not required.

Figure 37. Transmitter to HDMI Connector Routing-Top View

Protection for I²C Port

Both the local (CSCL/CSDA) and master DDC (DSCL/DSDA) I²C pins on the transmitter chip are 5 V tolerant, although the CSCL and CSDA pins are typically tied to 3.3 V. When no VCC is applied to the chip, the CSCL and CSDA pins can continue to draw a small current and prevent the 1²C master from communicating with other devices on the I²C bus. Therefore, do not remove VCC unless the local I²C bus is completely idle. The same requirement does not

apply to the DSCL and DSDA pins, which have true open-drain connections that enter a high-impedance state when the chip is powered off, as long as the 5 volt reference voltage signal for these I/Os, DDCPWR5V, continues to be supplied.

Hot Plug Signal Conditioning

The HDMI interface provides a hot plug signal back to the host side from the display. This signal is generated by routing a 5 V source from the host through the cable to the display, and back. The specification defines the minimum HIGH level for the hot plug as 2.0 volts at the connector pin. The HPD pin is 5 V tolerant and can be directly connected to the SiI9134 transmitter. However, an external pull-down resistor of 47 k Ω is required to guarantee that this CMOS input is not floating, as shown in Figure 39 on page 43.

HDMI Design Considerations

HDMI CTS Test ID 7-4: TMDS Differential Rise and Fall Time

The HDMI CTS requires that the differential rise and fall time of the TMDS signals be ≥ 75 ps, with all measurements taken at the highest supported TMDS clock frequency. The HDMI CTS Specification lists three different oscilloscopes that can be used to measure this parameter.

- Tektronix TDS7404 (can only be used up to 148.5 MHz.)
- Tektronix DPO70804 (no frequency limitation)
- Agilent DSO80000B (no frequency limitation)

The Tektronix TDS7404 scope is the same scope listed in the previous HDMI 1.2 CTS. When this scope is used, the SiI9134 transmitter passes with rise and fall times greater than 75 ps. However, when using the Agilent DSO80000B scope, Silicon Image has found the rise and fall time of the transmitter can be faster than 75 ps. The difference is due to the higher bandwidth of the Agilent DSO80000B, giving a more accurate measurement. Silicon Image has done no testing with Tektronix DPO70804.

Recommendation to pass Test ID 7-4

Adding common components, such as common-mode filters and ESD suppression devices, increase the capacitance slightly, slowing down the rise and fall time to well within the specification. If these devices are not in your design, adding a discrete capacitor of approximately 1 pF from the signal to ground can also solve this compliance issue. The following external components have been tested on the Silicon Image CP9034/9134 reference design and proven to comply with the HDMI CTS Specification:

- Common Mode Filter: TDK ACM2012H
- ESD Suppression Diode: Semtech Rclamp 0514M. California Micro Devices (CMD) also makes a similar device which Silicon Image has not tested but from which we expect similar compliance performance.

Components with similar characteristics can also be used.

EMI Considerations

Electromagnetic interference is a function of board layout, shielding, receiver component operating voltage, frequency of operation, and other factors. When attempting to control emissions, it is important not to place any passive components on the differential signal lines other than any essential ESD protection, as described earlier. The differential signaling used in HDMI is inherently low in EMI, as long as the routing recommendations noted in the Transmitter Layout Guidelines section on page 40 are followed.

The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as possible, with all ground pins of the chip using a common ground.

Typical Circuit

Representative circuits for applications of the SiI9134 transmitter chip are shown in Figure 38 through Figure 41. For a detailed review of your intended circuit implementation, contact your Silicon Image representative.

Power Supply Decoupling

Figure 38. Power Supply Decoupling and PLL Filtering Schematic

The ferrites shown in Figure 38 should have an impedance of 10Ω or more in the frequency range 1–2 MHz.

HDMI Port TMDS Connections

Figure 39. HDMI Port TMDS Connections Schematic

The transmitter is on the left in Figure 39. The specific value for R_EXT_SWING is specified on page 16.

Figure 40. HDMI Port ESD Protection Schematic

Control Signal Connections

Figure 41. Controller Connections Schematic

Packaging

100-pin TQFP Package Dimensions and Marking Specification

JEDEC Package Code MS-026-AED

Item	Description	typ	max
A	Thickness	7	1.20
A1	Stand-off	_	0.15
A2	Body thickness	1.00	1.05
D1	Body size	14.00	_
E1	Body size	14.00	_
F1	Footprint	16.00	_
G1	Footprint	16.00	_
L1	Lead length	1.00	7
L	Foot length	0.60	0.75
b	Lead width	0.22	0.27
С	Lead thickness	(-)	0.20
e	Lead pitch	0.50	

Package: SiI9134CTU				
Legend	Description			
LLLLLL,LLLL	Lot number			
YY	Year of manufacture			
WW	Week of manufacture			
TTTTTT	Trace code			
М	Maturity code = 0: engineering samples = 1: pre-production > 1: production			

Dimensions in millimeters.

Overall thickness A = A1 + A2.

Figure 42. Package Diagram

Ordering Information

Production Part Numbers:

Device	Part Number
Standard	SiI9134CTU

References

Standards Documents

Table 30 lists the abbreviations used in this document. Contact the responsible standards groups listed in Table 31 for more information on these specifications.

Table 30. Referenced Documents

Abbreviation	Standards Publication, Organization, and Date			
HDMI	High Definition Multimedia Interface, Revision 1.4, HDMI Consortium, June 2009			
HCTS	HDMI Compliance Test Specification, Revision 1.3a, HDMI Consortium, November 2006			
HDCP	High-bandwidth Digital Content Protection, Revision 1.3, Digital Content Protection, LLC, December 2006			
E-EDID	Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA, Feb. 2000			
E-DID IG	VESA EDID Implementation Guide, VESA, June 2001			
CEA-861-D	A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA, July 2006			
EDDC	Enhanced Display Data Channel Standard, Version 1.1, VESA, March 2004			

Table 31. Standards Groups Contact Information

Standards Group	Web URL	e-mail	Phone
ANSI/EIA/CEA	http://global.ihs.com	global@ihs.com	800-854-7179
VESA	http://www.vesa.org	-	408-957-9270
HDCP	http://www.digital-cp.com	info@digital-cp.com	-/-
DVI	http://www.ddwg.org	ddwg.if@intel.com	
HDMI	http://www.hdmi.org	admin@hdmi.org	+

Silicon Image Documents

Table 32 lists Silicon Image documents that are available from your Silicon Image sales representative.

Table 32. Silicon Image Publications

Document	Title
SiI-PR-0039	SiI9034/9134 HDMI Transmitter Programmer's Reference

Disclaimers

These materials are provided on an "AS IS" basis. Silicon Image, Inc. and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Silicon Image, Inc. and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials.

Silicon Image, Inc. and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

Notwithstanding the foregoing, these materials shall not, in the absence of authorization under U.S. and local law and regulations, as required, be used by or exported or re-exported to (i) any U.S. sanctioned or embargoed country, or to nationals or residents of such countries; or (ii) any person, entity, organization or other party identified on the U.S. Department of Commerce's Denied Persons or Entity List, the U.S. Department of Treasury's Specially Designated Nationals or Blocked Persons List, or the Department of State's Debarred Parties List, as published and revised from time to time; (iii) any party engaged in nuclear, chemical/biological weapons or missile proliferation activities; or (iv) any party for use in the design, development, or production of rocket systems or unmanned air vehicles.

Products and Services

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Silicon Image, Inc. and/or its affiliates are provided on as "AS IS" basis, except to the extent that Silicon Image, Inc. and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, SILICON IMAGE, INC. AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY SILICON IMAGE, INC. AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY. FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW, DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com Silionide Citonide Ci

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com