

DOT HS 808 300

October 1993

Final Report

Final Report of a 1992 Dodge Ram B250 Van Rear Impact CNG Fuel Tank Integrity

Transportation Research Center Inc. does not endorse or certify products of manufacturers. The manufacturer's name appears solely to identify the test article. Transportation Research Center Inc. assumes no liability for the report or use thereof. It is responsible for the facts and the accuracy of the data presented herein. This report does not constitute a standard, specification, or regulation.

This publication is distributed by the U. S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

LUGJ		rechinear Report Bocamenation rage
031. Report No. DOT HS 808 300	2. Government Accession No.	3. Recipient's Catalog No. VRTC-83-0307
4. Title and Subtitle FINAL REPORT OF A 1992 DO REAR IMPACT CNG FUEL TANK INTEGRITY	DDGE RAM B250 VAN	5. Report Date OCTOBER 1993 6. Performing Organization Code
7. Author(s) K. W. Looker, Project Eng	gineer, TRC	8. Performing Organization Report No. 930925
9. Performing Organization Name and Address National Highway Traffic Vehicle Research and Test P. O. BOX 37 East Liberty, OH 43319	Safety Admin.	10. Work Unit No. (TRAIS) 11. Contract or Grant No. DTNH22-88-C-07292
12. Sponsoring Agency Name and Address U. S. Department of Trans National Highway Traffic 400 Seventh St., S.W.		13. Type of Report and Period Covered FINAL REPORT SEPT NOV. 1993
Washington, DC 20590		14. Sponsoring agency Code DOT/NHTSA/VRTC

16. Abstract

This 30 mph rear impact test was conducted at Transportation Research Center Inc. on September 25, 1993. The subject vehicle, a Dodge Ram 250 Model B van, VIN 2B4HB25TXNK135503 was impacted in the rear by the FMVSS 301 moving barrier at 29.3 mph. The purpose of this test was to investigate and demonstrate the practicality of the proposed FMVSS 303 test procedure for evaluating the fuel system integrity of a CNG fueled vehicle.

DEPARTMENT OF TRANSPORTATION

OCT 1 7 1995

NASSIF BRANCH LIBRARY

17. Key Words CNG Fuel System Integrit	гу	18. Distribution Statement Document is available public through the Technical Information Springfield, VA	National ion Service,
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22 Price
UNCLASSIFIED	UNCLASSIFIED	60	

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
1.0	PURPOSE AND TEST PROCEDURE	1-1
2.0	REAR IMPACT TEST SUMMARY	2-1
3.0	CAMERA INFORMATION	4-1
APPENDIX A	PHOTOGRAPHS	A-1
APPENDIX B	DATA PLOTS	B-1

LIST OF TABLES

NUMBER	TITLE	PAGE
1	CRASH TEST SUMMARY	2-4
2	TEST VEHICLE INFORMATION	2-5
3	POST-IMPACT DATA	2-8
4	POST-IMPACT DUMMY/VEHICLE DATA	2-10
5	VEHICLE ACCELEROMETER LOCATIONS AND DATA SUMMARY	2-13
6	MOVING BARRIER ACCELEROMETER LOCATIONS AND DATA SUMMARY	2-15
7	FUEL SYSTEM DATA	2-16
8	MOTION PICTURE CAMERA INFORMATION	3-3

LIST OF FIGURES

NUMBER	TITLE	PAGE
1	IMPACT VELOCITY MEASUREMENT SYSTEM	2-9
2	VEHICLE CRUSH	2-11
3	VEHICLE ACCELEROMETER PLACEMENT	2-12
4	MOVING BARRIER ACCELEROMETER PLACEMENT	2-14
5	CAMERA POSITIONS	3-2

LIST OF PHOTOGRAPHS

DESCRIPTION	<u>FIGURE</u>
PRE-TEST FRONT VIEW	A-1
POST-TEST FRONT VIEW	A-2
PRE-TEST LEFT SIDE VIEW	A-3
POST-TEST LEFT SIDE VIEW	A-4
PRE-TEST REAR VIEW	A-5
POST-TEST REAR VIEW	A-6
PRE-TEST RIGHT SIDE VIEW	A-7
POST-TEST RIGHT SIDE VIEW	A-8
PRE-TEST RIGHT FRONT THREE-QUARTER VIEW	A-9
POST-TEST RIGHT FRONT THREE-QUARTER VIEW	A-10
PRE-TEST RIGHT REAR THREE-QUARTER VIEW	A-11
POST-TEST RIGHT REAR THREE-QUARTER VIEW	A-12
PRE-TEST LEFT FRONT THREE-QUARTER VIEW	A-13
POST-TEST LEFT FRONT THREE-QUARTER VIEW	A-14
PRE-TEST LEFT REAR THREE-QUARTER VIEW	A-15
POST-TEST LEFT REAR THREE-QUARTER VIEW	A-16
PRE-TEST OVERHEAD VIEW	A-17
PRE-TEST FUEL TANK - VIEW 1	A-18
PRE-TEST FUEL TANK - VIEW 2	A-19
POST-TEST FUEL TANK VIEW	A-20
PRE-TEST FRONT UNDERBODY VIEW	A-21
POST-TEST FRONT UNDERBODY VIEW	A-22
PRE-TEST REAR UNDERBODY VIEW	A-23
POST-TEST REAR UNDERBODY VIEW	A-24

SECTION 1.0

PURPOSE AND TEST PROCEDURE

PURPOSE

This 30 mph moving barrier rear impact test was conducted for Vehicle Research and Test Center by Transportation Research Center Inc. (TRC). The purpose of this test was to investigate and demonstrate the practicality of the proposed FMVSS 303 test procedure for evaluating the fuel system integrity of a CNG fueled vehicle. The subject vehicle for this test was a Dodge Ram 250 Model B van.

TEST PROCEDURE

This test was conducted in accordance with the applicable portions of NHTSA's Office of Vehicle Safety Compliance (OVSC) Laboratory Test Procedure No. TP-301-00, with the addition of vehicle accelerometers. Data was obtained relative to fuel system integrity.

The test vehicle was instrumented with six (6) accelerometers to measure longitudinal, lateral, and vertical axis accelerations, three (3) thermocouples to measure tank, tube, and ambient temperatures, and a pressure transducer to measure fuel system pressure. The moving barrier was instrumented with three (3) accelerometers to measure longitudinal, lateral, and vertical axis accelerations. The moving barrier impacted the test vehicle's rear in the specified impact velocity range of 28.9 to 29.9

The test vehicle contained two (2) uninstrumented Part 572 B 50th percentile adult anthropomorphic test devices (dummies) positioned in the front outboard designated seating positions. The fuel system was filled with nitrogen gas at 3000 psi at 70° F.

The eight (8) acceleration data channels were multiplexed and recorded on a 14-track tape drive. The acceleration data was digitally sampled at 8000 samples per second and processed according to SAE J211 OCT88. The pressure and temperature data was recorded by a Fluke 2625A Data Logger. The data logger sampled the data at 2.7 sec/sample.

The crash event was recorded by one (1) real-time panning motion picture camera and seven (7) high-speed motion picture cameras. The pre-test and post-test conditions were recorded by one (1) real-time motion picture camera.

The rear impact data are presented in Section 2.0. The camera information is presented in Section 3.0. Appendix A contains the still photographic prints. Appendix B contains the vehicle and moving barrier data plots.

SECTION 2.0

REAR IMPACT TEST SUMMARY

TEST RESULTS SUMMARY

This rear impact moving barrier test was conducted at TRC on September 25,

The test vehicle, a 1992 Dodge Ram B250 van, appeared to comply with the proposed performance requirements of FMVSS 303 in the rear moving barrier impact mode. No gas appeared to leak from the vehicle's fuel system following the impact.

The test vehicle was equipped with a 5.2-liter inline engine, automatic transmission, power steering, and power brakes. The vehicle's test weight was 5711 pounds. The vehicle's maximum static crush was 7.2 inches. The moving barrier's test weight was 3989 pounds. The moving barrier's impact speed was 29.3 mph.

DATA ACQUISITION EXPLANATIONS

The vehicle center of gravity X-axis acceleration, VCGXG1, recorded anomalous data after 54 milliseconds.

The vehicle center of gravity Y-axis acceleration, VCGYG1, recorded a questionable data spike at 7 milliseconds.

The vehicle center of gravity Z-axis acceleration, VCGZG1, recorded a questionable data spike at 7 milliseconds.

The vehicle center of gravity resultant acceleration, VCGRG1, calculation was affected by the above anomalies.

The fuel tank pressure recorded an anomalous step down in the data at 34 minutes after impact.

All of the temperature channels recorded anomalous spikes at 5 minutes and at 8 minutes after impact.

TABLE 1 CRASH TEST SUMMARY

TEST TYPE: Rear Moving Barrier Impact

TEST DATE: 09/25/93 TEST TIME: 1230 AMBIENT TEMP. (°F): 60

VEHICLE: 1992 Dodge Ram B250 van

VEHICLE TEST WEIGHT (LBS.): 5711

MOVING BARRIER TEST WEIGHT (LBS.): 3989

IMPACT ANGLE¹ (DEG): 180

IMPACT VELOCITY² (MPH): PRIMARY = 29.3 SECONDARY = 28.7

MAXIMUM STATIC CRUSH (IN): 7.3

DUMMIES: Driver Passenger

TYPE: Part 572 B Part 572 B

LOCATION: Left front Right front

RESTRAINT: Three-point unibelt Three-point unibelt

NUMBER OF DATA CHANNELS: 16

NUMBER OF CAMERAS: HIGH-SPEED 7 REAL-TIME 1

^{&#}x27;With respect to tow track centerline.

²Speed trap measurement (± .05 mph accuracy)

TABLE 2 TEST VEHICLE INFORMATION

VEHICLE MANUFACTURER: Chrysler Corporation

MAKE/MODEL: Dodge/Ram B250 VIN: 2B4HB25TXNK135503

BODY STYLE: VAN MODEL YEAR: 1992

COLOR: Blue

ENGINE DATA: TYPE: Inline CYLINDERS: 8 DISPLACEMENT: 5.2 liters

TRANSMISSION DATA: 3 SPEED, ___MANUAL, X_AUTOMATIC, ___FWD, X_RWD,__4WD

DATE VEHICLE RECEIVED: NA ODOMETER READING: 1870

DEALER'S NAME AND ADDRESS: NA

ACCESSORIES:

POWER STEERING Yes AUTOMATIC TRANSMISSION Yes POWER BRAKES Yes AUTOMATIC SPEED CONTROL No TILTING STEERING WHEEL POWER SEATS No POWER WINDOWS Yes TELESCOPING STEERING WHEEL NO TINTED GLASS Yes AIR CONDITIONING Yes ANTI-SKID BRAKE RADIO Yes No CLOCK Yes REAR WINDOW DEFROSTER Yes OTHER None

REMARKS:

- 1. IS THE VEHICLE STOCK THROUGHOUT? No1
- 2. DOES VEHICLE SHOW EVIDENCE OF PRIOR ACCIDENT HISTORY? NO
- 3. DOES VEHICLE SHOW ANY SIGNIFICANT CORROSION? NO
- 4. CONDITION OF THE FRONT/REAR BUMPER AND FRAME: Good

CERTIFICATION DATA FROM VEHICLE'S LABEL:

VEHICLE MANUFACTURED BY: Chrysler Corporation

DATE OF MANUFACTURE: 03/92

VIN: 2B4HB25TXNK135503

GVWR: 6400 LBS.

GAWR: FRONT: 3300 LBS. REAR: 3700 LBS.

The vehicle was modified to operate on compressed natural gas.

TABLE 2 TEST VEHICLE INFORMATION, CONT'D.

TIRES ON VEHICLE (MFR., LINE, SIZE): Michelin, XW4, P235/75R15 XW4

TIRE PRESSURE WITH MAXIMUM CAPACITY VEHICLE LOAD: FRONT: 44 PSI

REAR: 44 PSI

SPARE TIRE (MFR., LINE, SIZE): NA

TYPE OF SEATS: FRONT: Bucket

REAR: Bench

TYPE OF FRONT SEAT BACKS: Manually adjustable

WHEELBASE: 127.5 INCHES

LOCATION OF LABEL STATING TIRE & CAPACITY DATA:

The label was located on the driver's B-pillar.

TIRE & CAPACITY DATA FROM VEHICLE'S LABEL:

RECOMMENDED TIRE SIZE: P235/7515XL

RECOMMENDED COLD TIRE PRESSURE: FRONT: 35 PSI; REAR: 41 PSI

DESIGNATED SEATING CAPACITY: ---FRONT ---REAR ---TOTAL

VEHICLE CAPACITY WEIGHT: --- LBS.

TEST VEHICLE ATTITUDE (ALL MEASUREMENTS ARE IN INCHES):

DELIVERED ATTITUDE: LF 31.0; RF 31.6; LR 30.8; RR 31.1

FULLY LOADED ATTITUDE: LF 30.4; RF 31.3; LR 30.0; RR 30.5

PRE-TEST ATTITUDE: LF 30.4; RF 30.8; LR 30.8; RR 30.8

POST-TEST ATTITUDE: LF 30.2; RF 31.0; LR 31.1; RR 31.3

TABLE 2 TEST VEHICLE INFORMATION, CONT'D.

WEIGHT OF TEST VEHICLE AS RECEIVED (WITH MAXIMUM FLUIDS):

RIGHT FRONT 1339 LBS. RIGHT REAR 1141 LBS.

LEFT FRONT 1409 LBS. LEFT REAR 1202 LBS.

TOTAL FRONT WEIGHT 2748 LBS. (54.0% OF TOTAL VEHICLE WEIGHT)

TOTAL REAR WEIGHT 2343 LBS. (46.0% OF TOTAL VEHICLE WEIGHT)

TOTAL DELIVERED WEIGHT 5091 LBS.

CALCULATION OF TEST VEHICLE'S TARGET TEST WEIGHT:

RCLW1 = RATED CARGO AND LUGGAGE WEIGHT

UDW = UNLOADED DELIVERED WEIGHT (5091 LBS.)

VCW1 = VEHICLE CAPACITY WEIGHT (LBS.)

 DSC^1 = DESIGNATED SEATING CAPACITY ()

 $RCLW^{1} = VCW - 150 (DSC) = 300$

TARGET TEST WEIGHT = UDW + RCLW1+ (NO. OF HYBRID II DUMMIES X 164 LBS./DUMMY)

TARGET TEST WEIGHT = 5719 LBS.

WEIGHT OF TEST VEHICLE WITH REQUIRED DUMMIES AND 292 LBS. OF CARGO WEIGHT:

RIGHT FRONT 1580 LBS. RIGHT REAR 1249 LBS.

LEFT FRONT 1305 LBS. LEFT REAR 1577 LBS.

TOTAL FRONT WEIGHT 2885 LBS. (50.5% OF TOTAL VEHICLE WEIGHT)

TOTAL REAR WEIGHT 2826 LBS. (49.5% OF TOTAL VEHICLE WEIGHT)

TOTAL TEST WEIGHT 5711 LBS. (0.1% UNDER TARGET TEST WEIGHT)

WEIGHT OF BALLAST SECURED IN VEHICLE: 150 LBS.

COMPONENTS REMOVED TO MEET TARGET TEST WEIGHT: None

CG = 63.1 INCHES REARWARD OF FRONT WHEEL CENTERLINE

'Cargo weight for multipurpose passenger vehicles, trucks, and buses is the vehicle's rated cargo and luggage weight from the vehicle's label or 300 pounds, whichever is less.

TABLE 3 POST-IMPACT DATA

TEST NUMBER: 930925

TEST DATE: 09/25/93 TEST TIME: 1230

TEST TYPE: Rear Moving Barrier Impact IMPACT ANGLE: 180°

AMBIENT TEMPERATURE AT IMPACT AREA: 60° F

TEMPERATURE IN OCCUPANT COMPARTMENT: 60° F

IMPACT VELOCITY: PRIMARY = 29.3 MPH SECONDARY = 28.7 MPH

(SPECIFIED RANGE = 28.9 TO 29.9 MPH)

DISTANCE FROM VEHICLE TO BARRIER: ENTERING VELOCITY TRAP = 14.0 IN.

EXITING VELOCITY TRAP = 2.0 IN.

TEST VEHICLE STATIC CRUSH (ALL MEASUREMENTS ARE IN INCHES):

OVERALL LENGTH OF TEST VEHICLE: PRE-TEST: L 199.5; C 199.0; R 199.2

POST-TEST: L 193.8; C 193.2; R 193.8

TOTAL CRUSH: L 5.7; C 5.8; R 5.4

AVERAGE CRUSH: 5.6

FIGURE 1 IMPACT VELOCITY MEASUREMENT SYSTEM

The final vane clears emitter/receiver two inches before impact.

The vanes have one-foot spacing.

TABLE 4 POST-IMPACT DUMMY/VEHICLE DATA

VISIBLE DUMMY CONTACT POINTS:

	DRIVER	PASSENGER
HEAD	AN	NA
CHEST	АИ	NA
ABDOMEN	AN	NA
LEFT KNEE	АИ	NA
RIGHT KNEE	АИ	NA
DOOR OPENING:		
	LEFT	RIGHT
FRONT	Opened easily	Opened easily
REAR	АИ	Opened easily
SEAT MOVEMENT:		
	SEAT BACK FAILURE	SEAT SHIFT
FRONT	Both back seats failed	No
REAR	No	Мо
GLAZING DAMAGE:	The rear window and two side w	vindows broke during
	the crash.	
OTHER NOTABLE IMPA	CT EFFECTS:	
	None	
	,,one	

FIGURE 2 VEHICLE CRUSH

NOTES: L is pre-test length of contact surface.
Cl through C6 are spaced equally apart.
CL is vehicle centerline.

All measurements are in inches.

		Vehicle _	Dodge Ram B2	50 van		
	PRE-TEST		POST-TEST		CRUSH	
L	75.0					
C1	199.5	C1	193.8	cl	5.7	
C2	201.1	C2	193.8	C2	7.3	
С3	199.0	C3	193.2	c3	5.8	
C4	199.2	C4	193.2	_ C4	6.0	
C5	201.0	C5	193.8	C5	7.2	
С6	199.2	C6	193.8	c6	5.4	
CL	199.0	CL	193.2	CL	5.8	

FIGURE 3 VEHICLE ACCELEROMETER PLACEMENT

SIDE VIEW

BOTTOM VIEW

GR\093382\0100

TABLE 5

VEHICLE ACCELEROMETER LOCATIONS AND DATA SUMMARY

TEST NUMBER 930925

No. LOCATION	*	**	POSI DIRE Z* MAX	POSITIVE DIRECTION MAX G MSEC	NEGATIVE DIRECTION MAX G MSE	NEGATIVE DIRECTION MAX G MSEC
		ļ				
1 FRONT FRAME	190.6	0.0	39.0			
CROSSMEMBER			1		6	נ
LONGITUDINAL			41.2	34.8	23.4	57.0
LATERAL			4.9	32.8	5.3	75.0
VERTICAL			22.9	26.6	17.5	34.1
RESULTANT			44.5	34.5		
2 VEHICLE CENTER	136.0	0.0	23.9			
OF GRAVITY						
LONGITUDINAL'				1 1	 	1
LATERAL 1			4.8	1.0	112.6	6.9
VERTICAL ¹			214.7	7.5	6.7	92.3
RESULTANT 1			1	1 1		

* ALL MEASUREMENTS OF ACCELEROMETER LOCATIONS ARE IN INCHES.

REFERENCE: X: + FORWARD FROM REAR BUMPER
Y: + LEFTWARD FROM VEHICLE CENTERLINE
Z: + UPWARD FROM GROUND LEVEL

1 See DATA ACQUISITION EXPLANATIONS

FIGURE 4 MOVING BARRIER ACCELEROMETER PLACEMENT

TOP VIEW

SIDE VIEW

GR\093382\ACC0101

TABLE 6

MOVING BARRIER ACCELEROMETER LOCATIONS AND DATA SUMMARY

TEST NUMBER 930925

NEGATIVE DIRECTION MAX G MSEC	32.2 20.6 5.8 32.9 20.1 15.4
POSITIVE DIRECTION Z* MAX G MSEC	1.4 66.4 3.0 11.3 16.4 21.1 36.1 20.9
γ	74.8 0.0 12.6
*	74.8
No. LOCATION	1 CENTER OF GRAVITY LONGITUDINAL LATERAL VERTICAL RESULTANT

* ALL MEASUREMENTS OF ACCELEROMETER LOCATIONS ARE IN INCHES.

X: + FORWARD FROM REAR POINT OF FRAME + LEFTWARD FROM BARRIER CENTERLINE REFERENCE:

+ UPWARD FROM GROUND LEVEL

2-15

TABLE 7 FUEL SYSTEM DATA

MAKE/MODEL: Dodge/Ram B250

FUEL SYSTEM CAPACITY: 150.7 LITERS (FROM OWNER'S MANUAL)

RATED SERVICE PRESSURE: 3000 PSI AT 70° F

ACTUAL TEST PRESSURE: 2980 PSI AT 64° F

TEST GAS TYPE: NITROGEN

DETAILS OF FUEL SYSTEM: Two fuel tanks were located behind the rear axle

and one fuel tank was located outside of the left frame rail. The fuel

filler neck was located on the left side of the vehicle. The fuel

lines followed the right frame rail to the engine compartment.

ELECTRIC FUEL PUMP: NA

FUEL INJECTION: Yes

DOES ELECTRIC FUEL PUMP OPERATE WITH IGNITION SWITCH "ON" AND THE ENGINE NOT

OPERATING? NA

SECTION 3.0

CAMERA INFORMATION

FIGURE 5

CAMERA POSITIONS

TABLE 8 MOTION PICTURE CAMERA INFORMATION

CAMERA NUMBER		TYPE	LENS (MM)	SPEED (FPS)	PURPOSE OF CAMERA DATA
1	Left wide	Photosonic	13	500	Vehicle crush
2	Right wide	Photosonic	13	513	Vehicle crush
3	Onboard Mvg. Bar.	Photosonic	13	500	Vehicle crush
4	Pit - rear	Photosonic	8.5	948	Vehicle crush
5	Pit - mid	Photosonic	17	800	Vehicle crush
6	Pit - front	Photosonic	25	800	Vehicle crush
7	Overhead wide	Photosonic	17	800	Vehicle crush
8	Right panning	Beaulieu	12-120	24	Real-time panning

APPENDIX A

PHOTOGRAPHS

Figure A-1. PRE-TEST FRONT VIEW

Figure A-2. POST-TEST FRONT VIEW

Figure A-3. PRE-TEST LEFT SIDE VIEW

Figure A-4. POST-TEST LEFT SIDE VIEW

Figure A-5. PRE-TEST REAR VIEW

Figure A-6. POST-TEST REAR VIEW

Figure A-7. PRE-TEST RIGHT SIDE VIEW

Figure A-8. POST-TEST RIGHT SIDE VIEW

Figure A-9. PRE-TEST RIGHT FRONT THREE-QUARTER VIEW

Figure A-10. POST-TEST RIGHT FRONT THREE-QUARTER VIEW

Figure A-11. PRE-TEST RIGHT REAR THREE-QUARTER VIEW

Figure A-12. POST-TEST RIGHT REAR THREE-QUARTER VIEW

PRE-TEST LEFT FRONT THREE-QUARTER VIEW Figure A-13.

Figure A-15. PRE-TEST LEFT REAR THREE-QUARTER VIEW

Figure A-16. POST-TEST LEFT REAR THREE-QUARTER VIEW

Figure A-17. PRE-TEST OVERHEAD VIEW

Figure A-18. PRE-TEST FUEL TANK - VIEW 1

Figure A-19. PRE-TEST FUEL TANK - VIEW 2

Figure A-20. POST-TEST FUEL TANK VIEW

Figure A-21. PRE-TEST FRONT UNDERBODY VIEW

Figure A-22. POST-TEST FRONT UNDERBODY VIEW

Figure A-23. PRE-TEST REAR UNDERBODY VIEW

Figure A-24. POST-TEST REAR UNDERBODY VIEW

APPENDIX B

DATA PLOTS

1992 DODGE B250 VAN REAR IMPACT FUEL TANK PRESSURE CNG FUEL TANK INTEGRITY

1992 DODGE B250 VAN REAR IMPACT FUEL TEMPERATURE CNG FUEL TANK INTEGRITY

1992 DODGE B250 VAN REAR IMPACT TUBE TEMPERATURE CNG FUEL TANK INTEGRITY

1992 DODGE B250 VAN REAR IMPACT VEHICLE AMBIENT TEMPERATURE CNG FUEL TANK INTEGRITY

1992 DODGE B250 VAN REAR IMPACT OUTSIDE AMBIENT TEMPERATURE CNG FUEL TANK INTEGRITY

