Super Maximum Cost Queries

Victoria has a tree, T, consisting of N nodes numbered from 1 to N. Each edge from node U_i to V_i in tree T has an integer weight, W_i .

Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight (W) for any edge in the unique path from node X to node Y.

Victoria wants your help processing Q queries on tree T, where each query contains $\mathbf 2$ integers, L and R, such that $L \leq R$. For each query, she wants to print the number of different paths in T that have a cost, C, in the inclusive range [L,R].

It should be noted that path from some node X to some other node Y is considered same as path from node Y to X i.e $\{X,Y\}$ is same as $\{Y,X\}$.

Input Format

The first line contains ${f 2}$ space-separated integers, ${f N}$ (the number of nodes) and ${f Q}$ (the number of queries), respectively.

Each of the N-1 subsequent lines contain ${\bf 3}$ space-separated integers, $U,\,V$, and W, respectively, describing a bidirectional road between nodes U and V which has weight W.

The $oldsymbol{Q}$ subsequent lines each contain $oldsymbol{2}$ space-separated integers denoting $oldsymbol{L}$ and $oldsymbol{R}$.

Constraints

- $1 \le N, Q \le 10^5$
- $1 \leq U, V \leq N$
- $1 \le W \le 10^9$
- $1 < L < R < 10^9$

Scoring

- $1 \leq N, Q \leq 10^3$ for 30% of the test data.
- $1 \leq N, Q \leq 10^5$ for 100% of the test data.

Output Format

For each of the Q queries, print the number of paths in T having cost C in the inclusive range [L,R] on a new line.

Sample Input

5 5
123
1 4 2
1 2 3 1 4 2 2 5 6 3 4 1
3 4 1
11
12
2 3
2 5

Sample Output

```
1
3
5
5
10
```

Explanation

```
\begin{array}{l} Q_1\colon \{3,4\} \\ Q_2\colon \{1,3\}, \{3,4\}, \{1,4\} \\ Q_3\colon \{1,4\}, \{1,2\}, \{2,4\}, \{1,3\}, \{2,3\} \\ Q_4\colon \{1,4\}, \{1,2\}, \{2,4\}, \{1,3\}, \{2,3\} \\ \dots \text{etc.} \end{array}
```