2N3903 2N3904

NPN SILICON TRANSISTOR

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N3903 and 2N3904 types are NPN silicon transistors designed for general purpose amplifier and switching applications. PNP complementary types are 2N3905 and 2N3906.

MAXIMUM RATINGS: (T _A =25°C)	SYMBOL		UNITS
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	V_{CEO}	40	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Continuous Collector Current	I_{C}	200	mA
Power Dissipation	P_{D}	625	mW
Operating and Storage Junction Temperature	T _J , T _{stg}	-65 to +150	°C
Thermal Resistance	$\Theta_{\sf JA}$	200	°C/W

ELECTRICAL	CHARACTERISTICS: (T _A =25°C)	2N3	903	2N3	904	
SYMBOL	TEST CONDITIONS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MIN	MAX	MIN	MAX	UNITS
ICEV	V_{CE} =30V, V_{EB} =3.0V	-	50	-	50	nA
BV _{CBO}	I _C =10μA	60	-	60	-	V
BV _{CEO}	I _C =1.0mA	40	-	40	-	V
BVEBO	I _E =10μA	6.0	-	6.0	-	V
V _{CE} (SAT)	I _C =10mA, I _B =1.0mA	-	0.2	-	0.2	V
V _{CE(SAT)}	I _C =50mA, I _B =5.0mA	-	0.3	-	0.3	V
V _{BE} (SAT)	I _C =10mA, I _B =1.0mA	0.65	0.85	0.65	0.85	V
V _{BE} (SAT)	I _C =50mA, I _B =5.0mA	-	0.95	-	0.95	V
h _{FE} ` ´	V_{CE} =1.0V, I_{C} =0.1mA	20	-	40	-	
hFE	V _{CE} =1.0V, I _C =1.0mA	35	-	70	-	
hFE	V _{CE} =1.0V, I _C =10mA	50	150	100	300	
h _{FE}	V_{CE} =1.0V, I_{C} =50mA	30	-	60	-	
hFE	V_{CE} =1.0V, I_{C} =100mA	15	-	30	-	
h _{fe}	V_{CE} =10V, I_{C} =1.0mA, f=1.0kHz	50	200	100	400	
f _T	V_{CE} =20V, I_{C} =10mA, f=100MHz	250	-	300	-	MHz
C _{ob}	V_{CB} =5.0V, I_{E} =0, f=100kHz	-	4.0	-	4.0	pF
C _{ib}	V_{EB} =0.5V, I_{C} =0, f=100kHz	-	8.0	-	8.0	pF
NF	V_{CE} =5.0V, I_{C} =100 μ A, R_{S} =1.0 $k\Omega$					
	f=10Hz to 15.7kHz	-	6.0	-	5.0	dB
t _{on}	V_{CC} =3.0V, $V_{BE(OFF)}$ =0.5V, I_{C} =10mA					
	I _{B1} =1.0mA	-	70	-	70	ns
t _{off}	V _{CC} =3.0V, I _C =10mA, I _{B1} =I _{B2} =1.0mA	-	225	-	250	ns

R2 (12-October 2011)

2N3903 2N3904

NPN SILICON TRANSISTOR

TO-92 CASE - MECHANICAL OUTLINE

DIMENSIONS							
	INCHES		MILLIMETERS				
SYMBOL	MIN	MAX	MIN	MAX			
A (DIA)	0.175	0.205	4.45	5.21			
В	0.170	0.210	4.32	5.33			
С	0.500	_	12.70	-			
D	0.016	0.022	0.41	0.56			
Е	0.100		2.54				
F	0.050		1.27				
G	0.125	0.165	3.18	4.19			
Н	0.080	0.105	2.03	2.67			
	0.015		0.38				

TO-92 (REV: R1)

LEAD CODE:

- 1) Emitter 2) Base 3) Collector

MARKING:

R1

FULL PART NUMBER

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Central Semiconductor: 2N3903 2N3904