

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА	А И СИСТЕМЫ УПРАВЛ	<u> RИНЗ</u>		
КАФЕДРА	АФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)				
НАПРАВЛЕН	ИИЕ ПОДГОТОВКИ 09.03.01	Информатика и вычисл	ительная техника		
	0	тчет			
	по лаборато	рной работе № 3	}		
	•	•			
Название:	Организация пам	Организация памяти конвейерных суперскалярных			
		ислительных машиі			
Дисциплин	а: Архитектура элек	Архитектура электронно-вычислительных систем			
Вариант:	15				
T	_				
(Студент гр. <u>ИУ7-55Б</u>		О.Н.Талышева		
		(Подпись, дата)	(И.О. Фамилия)		
]	Преподаватель		А.Ю. Попов		
	_	(Подпись, дата)	(И.О. Фамилия)		

Оглавление

Цель работы	3
- Эксперимент 1: «Исследования расслоения динамической памяти»	
- Эксперимент 2: «Сравнение эффективности ссылочных и векторных структур»	6
Эксперимент 3: «Исследование эффективности программной предвыборки»	7
Эксперимент 4: «Исследование способов эффективного чтения оперативной памяти»	8
Эксперимент 5: «Исследование конфликтов в кэш-памяти»	9
Уксперимент 6: «Сравнение алгоритмов сортировки»	
Идентификация процессора	
Контрольные вопросы	

Цель работы

Цель работы - освоение принципов эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство. Работа проводится с использованием программы для сбора и анализа производительности РСLAB.

В ходе работы необходимо ознакомиться с теоретическим материалом, касающимся особенностей функционирования подсистемы памяти современных конвейерных суперскалярных ЭВМ, изучить возможности программы РСLАВ, изучить средства идентификации микропроцессоров, провести исследования времени выполнения тестовых программ, сделать выводы о архитектурных особенностях используемых ЭВМ.

Эксперимент 1: «Исследования расслоения динамической памяти»

Цель эксперимента: определение способа трансляции физического адреса, используемого при обращении к динамической памяти.

Исходные данные: размер линейки кэш-памяти верхнего уровня; объем физической памяти.

Для проведения эксперимента необходимо задать изменяемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	1128	К	Максимальное расстояния между
			читаемыми блоками
№ 2	464	Б	Шаг увеличения расстояния между
			читаемыми 4-х байтовыми ячейками.
№ 3	116	M	Размер массива

Результаты эксперимента: количество банков динамической памяти; размер одной страницы динамической памяти; количество страниц в динамической памяти.

Рисунок 1 — Результат исследования расслоения динамической памяти (параметры: 64-128-2)

Рисунок 2 — Результат исследования расслоения динамической памяти (параметры: 64-32-2)

Вывод: мы узнали, что большой адресный шаг увеличивает время доступа, рандомный шаг даёт большее время доступа, чем последовательный; также мы увидели вживую принцип локальности.

Эксперимент 2: «Сравнение эффективности ссылочных и векторных структур»

Цель эксперимента: оценка влияния зависимости команд по данным на эффективность вычислений.

Для проведения эксперимента требуется задать следующие настраиваемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	120	M	Количество элементов в списке
№ 2	4500	K	Максимальная фрагментации списка
№ 3	110	K	Шаг увеличения фрагментации

Результаты эксперимента: отношение времени работы алгоритма, использующего зависимые данные, ко времени обработки аналогичного алгоритма обработки независимых данных.

Рисунок 3 — Результат исследования эффективности ссылочных и векторных структур (параметры: 2-128-2)

Список обрабатывался в 31,548105 раз дольше.

Вывод: вычислительная машина предусматривает обработку векторных структур и хуже работает со ссылочными.

Эксперимент 3: «Исследование эффективности программной предвыборки»

Цель эксперимента: выявление способов ускорения вычислений благодаря применению предвыборки данных.

Исходные данные: степень ассоциативности и размер TLB данных.

Для проведения эксперимента необходимо задать изменяемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	14096	Б	Шаг увеличения расстояния между
			читаемыми данными
№ 2	48192	K	Размер массива

Результаты эксперимента: отношение времени последовательной обработки блока данных ко времени обработки блока с применением предвыборки; время и количество тактов первого обращения к странице данных.

Рисунок 4 — Результат исследования эффективности предвыборки (параметры: 512-128)

Обработка без загрузки таблицы страниц в TLB производилась в 1,6890643 раз дольше.

Период выбросов ~4К.

Вывод: получение дескриптора страницы это трудозатратная операция и кэширование данных перед обработкой ускорит последующую работу.

Эксперимент 4: «Исследование способов эффективного чтения оперативной памяти»

Цель эксперимента: исследование возможности ускорения вычислений благодаря использованию структур данных, оптимизирующих механизм чтения оперативной памяти.

Исходные данные: Адресное расстояние между банками памяти, размер буфера чтения.

Для проведения эксперимента необходимо задать изменяемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	14	M	Размер массива
№ 2	1128	1	Количество потоков данных

Результаты эксперимента: отношение времени обработки блока памяти неоптимизированной структуры ко времени обработки блока структуры, обеспечивающей эффективную загрузку и параллельную обработку данных.

Рисунок 5 — Результат исследования оптимизирующих структур данных (параметры: 2-32)

Неоптимизированная структура обрабатывалась в 1,0534861 раз дольше.

Вывод: программировать надо не объектно или процедурно, а пакетно, чтобы ускорить время работы. Если в дальшейшем нужно использовать весь блок памяти, а в данный момент только его часть, эффективнее прочитать сразу весь блок.

Эксперимент 5: «Исследование конфликтов в кэш-памяти»

Цель эксперимента: исследование влияния конфликтов кэш-памяти на эффективность вычислений.

Исходные данные: Размер банка кэш-памяти данных первого и второго уровня, степень ассоциативности кэш-памяти первого и второго уровня, размер линейки кэш-памяти первого и второго уровня.

Для проведения эксперимента необходимо задать изменяемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	1256	К	Размер банка кэш-памяти
№ 2	1128	б	Размер линейки кэш-памяти
№ 3	2512	1	Количество читаемых линеек

Результаты эксперимента: отношение времени обработки массива с конфликтами в кэш-памяти ко времени обработки массива без конфликтов.

Рисунок 6 — Результат исследования конфликтов в кэш-памяти (параметры: 128-128-32)

Чтение с конфликтами банков производилось в 2,8232292 раз дольше.

Вывод: не стоит размещать и ходить по памяти с одинаковым, но длинным шагом, чтобы на уменьшать использованную область кэш-памяти.

Эксперимент 6: «Сравнение алгоритмов сортировки»

Цель эксперимента: исследование способов эффективного использования памяти и выявление наиболее эффективных алгоритмов сортировки, применимых в вычислительных системах.

Исходные данные: количество процессоров вычислительной системы, размер пакета, количество элементов в массиве, разрядность элементов массива.

Для проведения эксперимента необходимо задать изменяемые параметры:

Параметр	Диапазон	Масштаб	Описание
№ 1	120	M	Количество 64-х разрядных элементов массивов
№ 2	41024	K	Шаг увеличения размера массива

Результаты эксперимента: отношение времени сортировки массива алгоритмом QuickSort ко времени сортировки алгоритмом Radix-Counting Sort и ко времени сортировки Radix-Counting Sort, оптимизированной под 8-процессорную вычислительную систему.

Рисунок 7 – Результат исследования алгоритмов сортировки (параметры: 20-1024)

QuickSort работал в 3,8834998 раз дольше Radix-Counting Sort. QuickSort работал в 5,6224092 раз дольше Radix-Counting Sort, оптимизированного под 8-процессорную ЭВМ.

Идентификация процессора

Vendor ID: "GenuineIntel"; CPUID level 32

Дополнительные функции Intel:

Верисия 000b06a2:

Type 0 - Original OEM

Family 6 - Pentium Pro

Model 10 -

Stepping 2

Reserved 44

Extended brand string: "13th Gen Intel(R) Core(TM) i5-13500H"

CLFLUSH instruction cache line size: 8

Initial APIC ID: 25

Hyper threading siblings: 64

Feature flags bfcbfbff:

0	FPU	Присутствует	Математический сопроцессор

1 VME Поддержка расширенных возможностей обработки прерываний в режиме виртуального i8086

	-	- ·
2	DE	Поддержка отладки

- 3 PSE Поддержка страниц размером 4 MB
- 4 TSC Счетчик меток реального времени
- 5 MSR Поддержка команд rdmsr и wrmsr
- 6 РАЕ Поддержка физического адреса более 32 бит
- 7 МСЕ Поддержка исключений 18 об аппаратных ошибках
- 8 CX8 Поддержка инструкции cmpxchg8b
- 9 APIC Микропроцессор содержит программно доступный контроллер прерываний
 - 11 SEP Поддержка инструкций быстрых системных вызовов

sysenter и s	sysexit	
12	MTRR	Поддержка регистра mtrr_cap (относится к MSR-
регистрам)	
13	PGE	Поддержка глобальных страниц
14	MCA	Поддержка архитектуры машинного контроля
15	CMOV	Поддержка инструкций условной пересылки cmov,
femovee, fo	comi	
16	PAT	Процессор поддерживает таблицу атрибутов страницы
17	PSE-36	Процессор поддерживает 4 МВ страницы, которые
способны	адресовать	физическую память до 64 GB
19	CLFLSH	Поддержка инструкции CLFLUSH
22	ACPI	Управление охлаждением процессора с помощью пустых
циклов в за	ависимости	от температуры
23	MMX	Поддержка ММХ
24	FXSR	Поддержка инструкций FXSAVE и FXRSTOR
25	SSE	Поддержка SSE
26	SSE2	Поддержка SSE2
27	SS	Управление конфликтующими типами памяти
28	HTT	Поддержка Hyper-Threading
29	TM	Поддержка автоматического мониторинга температуры
31	SBF	Сигнал Останова при FERR

TLB and cache info:

ff: unknown TLB/cache descriptor

fe: unknown TLB/cache descriptor

f0: unknown TLB/cache descriptor Processor serial: 000B-06A2-BFCB-FBFF-FFFA-F38B

Контрольные вопросы

- 1. Назовите причины расслоения оперативной памяти.
- Повышение скорости доступа к памяти за счет одновременного обращения к разным банкам памяти.
- Уменьшение задержек при последовательных операциях чтения/записи.
- Оптимизация работы с памятью при параллельной обработке данных.
- 2. Как в современных процессорах реализована аппаратная предвыборка.

Аппаратная предвыборка в современных процессорах реализована с использованием специализированных механизмов предсказания обращения к памяти, которые анализируют паттерны доступа к данным. Эти механизмы заранее загружают данные в кэш из основной памяти, основываясь на прошлых обращениях, что снижает задержки при доступе к данным.

3. Какая информация храниться в TLB.

TLB хранит отображение виртуальных адресов в физические. Для каждого виртуального адреса сохраняется соответствующий физический адрес, а также атрибуты доступа (например, права на чтение/запись, наличие данных в кэше, и т.д.).

4. Какой тип ассоциативной памяти используется в кэш-памяти второго уровня современных ЭВМ и почему.

В кэш-памяти второго уровня чаще всего используется частично ассоциативная (set-associative) память. Это компромисс между полностью ассоциативной и прямой памятью, позволяющий снизить вероятность конфликтов при одновременном доступе к одному и тому же набору данных, сохраняя при этом высокую производительность.

5. Приведите пример программной предвыборки

Программная предвыборка может быть реализована с помощью инструкций, которые явно загружают данные в кэш до их фактического использования. Например, в языке С это может быть реализовано с использованием инструкции __builtin_prefetch(), которая заранее загружает данные из памяти в кэш, чтобы минимизировать задержки при дальнейшем доступе к ним.