

(11) Veröffentlichungsnummer: **0 584 660 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93112917.5

(51) Int. Cl. 5: H02M 1/12

(22) Anmeldetag: 12.08.93

(30) Priorität: 18.08.92 CH 2575/92

CH-8047 Zürich(CH)

(84) CH LI

(43) Veröffentlichungstag der Anmeldung:
02.03.94 Patentblatt 94/09

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT
Wittelsbacherplatz 2

D-80333 München(DE)

(84) BE DE DK ES FR GB GR IT LU NL SE AT

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(72) Erfinder: Gachnang, Marcel
Dorfstrasse 4
CH-8542 Wiesendangen(CH)

(71) Anmelder: SIEMENS-ALBIS
AKTIENGESELLSCHAFT
PV/Patente und Verträge
Postfach

(54) **Verfahren und Schaltungsanordnung zur Reduktion von Oberwellen.**

(57) Das Verfahren und die Schaltungsanordnung eignen sich zur Reduktion von störenden Oberwellenströmen, die z.B. durch Gleichrichtereinheiten (GE) verursacht und an das Stromversorgungsnetz abgegeben werden. Dabei geben zwei Drehstromtransformatoren (ET1, ET2) je zwei um den Phasenwinkel a bzw. b verschobene Spannungen ($u_1v_1w_1$, $x_1y_1z_1$ bzw. $u_2v_2w_2$, $x_2y_2z_2$) derart ab, dass sich die störenden Oberwellenströme am Eingang der Transformatoren (ET1, ET2) gegenseitig aufheben oder zumindest stark reduzieren.

Fig. 4

Die vorliegende Erfindung betrifft eine Schaltungsanordnung nach dem Oberbegriff des Patentanspruchs 1 bzw. 5.

Gleichrichtereinheiten, die in Stromversorgungsanlagen eingesetzt werden, erzeugen normalerweise Oberwellenströme, die zurück an das Versorgungsnetz abgegeben werden. Oberwellenströme können ferner auch durch weitere elektrische Bauteile oder Schaltungseinheiten erzeugt werden. Die maximal zulässigen Werte für diese Oberwellenströme sind in den nationalen und internationalen Vorschriften festgelegt und dürfen durch den Verbraucher nicht überschritten werden. Angaben über Oberwellenströme sowie deren Grenzwerte für das schweizerische Stromversorgungsnetz sind z.B. in der Schweizer Norm 413600 bzw. EN 60555 (SEV 3600 bzw. SEV 3601) enthalten. Zur Einhaltung der festgelegten Grenzwerte werden die Oberwellenströme in der Praxis zumeist mittels Oberwellenfiltern, Blindstromkondensatoren und Vorschalttdrosseln reduziert. Diese Reduktion der Oberwellenströme ist vielfach jedoch ungenügend, so dass der Verbraucher zusätzlich zu einer Reduktion der Leistungsentnahme aus dem Stromversorgungsnetz gezwungen wird. Ferner sind die erwähnten Filterelemente sehr teuer.

Aus der EP-OS 0 472 928 ist eine Schaltungsanordnung zur Reduktion von Oberwellenströmen bekannt, die die Ordnungszahl n aufweisen. Die Grundlage für dieses Verfahren liefert die Tatsache, dass bei einer Phasenschiebung der Grundwelle um den Winkel a die n -te Oberwelle um den n -fachen Winkel ($n \cdot a$) geschoben wird. Für bestimmte Phasenverschiebungen a lassen sich so Oberwellenströme unterdrücken. Werden z.B. Teile von $n \cdot 30^\circ$ phasenverschobenen Strömen addiert, lassen sich mehrere Oberwellenströme unterdrücken. In einem Dreiphasensystem lassen sich Phasenverschiebungen von z.B. 30° mittels Stern-Dreieck-Transformatoren relativ einfach realisieren.

Zur Reduktion von Oberwellenströmen höherer Ordnung werden nach diesem bekannten Verfahren zwei Transformatoren mit einem weiteren Transformator zusammengeschaltet. Mit den ersten beiden Transformatoren werden Oberwellenströme mit den Ordnungszahlen 5, 7, 17 und 19 und mit dem dritten Transformator werden Oberwellenströme mit den Ordnungszahlen 11, 13, 23 und 25 unterdrückt. Nachteilig bei dieser Schaltungsanordnung ist, dass zur Unterdrückung von Oberwellenströmen höherer Ordnung ein zusätzlicher Transformator benötigt wird, was einen erheblichen zusätzlichen Kostenaufwand verursacht. Ferner ist die Verwendung eines zusätzlichen Transformatoren oft auch nicht möglich, weil nicht genügend Platz vorhanden ist.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Schaltungs-

anordnung anzugeben, die eine teilweise oder vollständige Reduktion von Oberwellenströmen höherer Ordnung erlauben, ohne dass ein zusätzlicher Transformator benötigt wird.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruchs 1 bzw. 5 angegebenen Massnahmen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.

Durch die erfindungsgemäßen verfahrens- und schaltungstechnischen Massnahmen lassen sich Oberwellenströme beliebiger Ordnungszahl mit einfachen Mitteln reduzieren, die nur geringe Kosten und keinen zusätzlichen Platzbedarf verursachen.

Die Erfindung wird nachfolgend anhand einer Zeichnung beispielsweise näher erläutert. Dabei zeigt:

- Fig. 1 eine bekannte Schaltungsanordnung zur Reduktion von Oberwellenströmen
- Fig. 2 ein Vektordiagramm der in der bekannten Schaltungsanordnung auftretenden Spannungen
- Fig. 3 eine bekannte Schaltungsanordnung zur Reduktion von Oberwellenströmen höherer Ordnung
- Fig. 4 ein Teil einer erfindungsgemäßen Schaltungsanordnung mit einem ersten Transformator
- Fig. 5 ein Vektordiagramm der am ersten Transformator auftretenden Spannungen
- Fig. 6 ein Vektordiagramm mit Spannungen für einen zum ersten Transformator komplementären zweiten Transformator
- Fig. 7 eine erfindungsgemäße Schaltungsanordnung mit zwei identischen Transformatorsystemen

In der Schaltungsanordnung nach Fig. 1 sind Versorgungsleitungen, die eine Dreiphasen-Spannung RST führen, einerseits mit den in Dreieck geschalteten Primärwicklungen I_p , III_p , II_p und andererseits mit den Mittelanzapfungen der Sekundärwicklungen III_s , I_s , I_s eines Drehstromtransformators DT verbunden. Durch die angegebene Beschaltung des Transformators DT ergeben sich Spannungen u_x , v_y , w_z an den Sekundärwicklungen III_s , I_s , I_s , deren Vektoren senkrecht zu den Vektoren der Spannungen stehen, die über die Versorgungsleitungen den entsprechenden Mittelanzapfungen der Sekundärwicklungen III_s , I_s , I_s zugeführt werden. Die Enden der Sekundärwicklungen I_s , I_s und III_s sind ferner mit Gleichrichtereinheiten GE1 bzw. GE2 verbunden.

Die Vektoren der vom Transformator DT an die Gleichrichtereinheiten GE1 bzw. GE2 abgegebenen Spannungen uvw und xyz sind in Fig. 2 aufgezeichnet. Daraus ist ersichtlich, dass der Vektor der

Spannung R senkrecht zum Vektor der Spannung an der Sekundärwicklung IIls steht und mit ihm in der Mitte verbunden ist. Aus Fig. 2 ist ferner ersichtlich, dass die Vektoren der Spannungen an den Primär- und Sekundärwicklungen Ip und Is bzw. IIp und IIls bzw. IIIp und IIIls die gleiche Richtung aufweisen. Wird die Übersetzung derart gewählt, dass die an die Gleichrichtereinheiten GE1 und GE2 abgegebenen Spannungen uvw, xyz bzw. deren Grundwellen um den Winkel α , z.B. um 30° phasenverschoben sind, ergibt sich eine Addition der pulsförmigen Ströme der Gleichrichtereinheiten GE1 und GE2, bei der die Oberwellenströme mit den Ordnungszahlen 5, 7, 17 und 19 unterdrückt werden.

Wenn nach einer ersten Reduktion kritischer Oberwellenströme weitere Oberwellenströme unterdrückt werden sollen, so werden nach diesem bekannten Verfahren, wie z.B. in Fig. 3, gezeigt, mehrere Transformatoren DTa, DTb und DTc zusammengeschaltet. Falls durch die Verwendung der zwei Transformatoren DTa und DTb z.B. die Oberwellenströme mit den Ordnungszahlen 5, 7, 17 und 19 unterdrückt wurden, können verbleibende störende Oberwellenströme in einem weiteren Schritt nur durch Zuschaltung des Transformators DTc unterdrückt werden. Die Phasenverschiebung b der an die Transformatoren DTa und DTb durch den Transformator DTc abgegebenen Spannungen wird dann entsprechend den Ordnungszahlen der weiterhin zu reduzierenden Oberwellenströme gewählt. Für z.B. $b = 15^\circ$ werden die Oberwellenströme mit den Ordnungszahlen 11, 13, 23 und 25 unterdrückt.

Mit der teilweise in Fig. 4 dargestellten erfindungsgemässen Schaltungsanordnung kann zur Reduktion weiterer Oberwellenströme auf einen dritten Transformator DTc verzichtet werden. Diese erfindungsgemässen Schaltungsanordnung besteht aus zwei Transformatoren ET1 und ET2, denen primär- und sekundärseitig eine Spannung RST zugeführt wird und denen je zwei Dreiphasen-Spannungen u1v1w1; x1y1z1 bzw. u2v2w2; x2y2z2 entnommen werden. Die Primärwicklungen Ip, IIp und IIIp dieser Transformatoren ET1 und ET2 sind je in Dreieck geschaltet. Die Sekundärwicklungen ts1, ts2, ts3; sr1, sr2, sr3 und rt1, rt2, rt3 sind mit der Versorgungsspannung RST derart verbunden, dass pro Phase R, S oder T zwei Wicklungsenden vorgesehen sind, an denen zwei vorzugsweise zumindest annähernd betragsgleiche phasenverschobene Spannungen u1v1w1, x1y1z1 bzw. u2v2w2; x2y2z2 abgreifbar sind. Zur übersichtlicheren Darstellung sind in Fig. 4 nur die zur Bildung der Spannungen u1 und x1 notwendigen Sekundärwicklungen verschaltet. Die Wahl der zusammenzuschaltenden Wicklungen und die Festlegung deren Windungszahlen ist weiter unten näher beschrie-

ben.

Die beiden durch das Zusammenschalten der entsprechenden Sekundärwicklungen gebildeten Sekundärspannungen u1v1w1, x1y1z1 bzw. u2v2w2; x2y2z2 sind um einen Winkel a gegeneinander verschoben. Wie oben erwähnt werden für den Winkel $a = 30^\circ$ die Oberwellenströme mit den Ordnungszahlen 5, 7, 17 und 19 in den beiden Transformatoren ET1 und ET2 reduziert. Ferner ist vorgesehen, dass die Sekundärspannung u1v1w1 bzw. x1y1z1 des ersten Transformators ET1 derart gegenüber der Sekundärspannung u2v2w2 bzw. x2y2z2 des zweiten Transformators ET2 verschoben ist, dass sich zwischen diesen Spannungen u1v1w1 und u2v2w2 bzw. x1y1z1 und x2y2z2 eine Phasenverschiebung b ergibt, die vorzugsweise $a/2$ ist. Falls der Winkel b z.B. $= 15^\circ$ gewählt wird, so werden zusätzlich die Oberwellenströme mit den Ordnungszahlen 11, 13, 23 und 25 unterdrückt. Spannungen mit unterschiedlicher Phasenlage werden erzielt, indem der Spannung RST bzw. den entsprechenden drei Vektoren weitere Spannungen unterschiedlicher Phasenlage bzw. weitere Vektoren unterschiedlicher Richtung zugefügt werden. Durch das Zusammenschalten von Sekundärwicklungen unterschiedlicher Windungszahl und Phasenlage lassen sich beliebige Phasenverschiebungen einer Spannung erzielen, ohne dass sich diese betragsmäßig ändert. D.h., ein vorgegebener Vektor kann mittels Vektoraddition beliebig gedreht werden. Die Beträge der Sekundärspannungen u1v1w1, x1y1z1 bzw. u2v2w2; x2y2z2 werden daher vorzugsweise gleich dem Betrag der Spannung RST gewählt. Einfachheitshalber werden die Beträge aller Sekundärspannungen u1v1w1, x1y1z1 bzw. u2v2w2; x2y2z2 jedoch auf einen zumindest annähernd gleichen Wert eingestellt, der vom Betrag der Spannung RST in noch zulässiger Weise abweicht. Dadurch wird eine optimale Unterdrückung der störenden Oberwellenströme bei gleichzeitig bescheidenem Aufwand gewährleistet. Die genaue Angleichung der Beträge aller Sekundärspannungen u1v1w1, x1y1z1 bzw. u2v2w2; x2y2z2 an den Betrag der Spannung RST ist leicht möglich, erfordert jedoch eine zusätzliche Sekundärwicklung.

Aus Fig. 5 und 6 ist das Vektordiagramm der Spannungen der in Dreieck geschalteten Primärwicklungen Ip, IIp und IIIp ersichtlich, in dem die Spannungen Uts, Urt bzw. Usr senkrecht zu den Spannungen R, S bzw. T stehen. Aufgrund der an die Primärwicklungen Ip, IIp, IIIp angelegten Spannungen Uts, Usr und Urt entstehen an den entsprechenden Sekundärwicklungen ts, sr und rt Spannungen Uts1, Uts2, Uts3; Usr1, Usr2, Usr3 bzw. Urt1, Urt2, Urt3. Durch die Vektoraddition dieser (gruppenweise) um 120° gegeneinander phasenverschobenen Spannungen mit der Spannung R, S

bzw. T , die nebst den Primärwicklungen I_p , II_p , III_p auch den Sekundärwicklungen ts ; sr ; rt der Transformatoren ET_1 , ET_2 zugeführt wird, lassen sich die Spannungen u_{1v1w1} , x_{1y1z1} bzw. u_{2v2w2} , x_{2y2z2} mit der geforderten Phasenverschiebung und einem gewünschten Betrag erzeugen. Z.B. durch die Addition der Vektoren R , U_{ts2} und $-U_{sr3}$ entsteht der Vektor u_1 , der vom gleichen Betrag wie der Vektor x_1 oder R ist und relativ zum Vektor R um $22,5^\circ$ (zurück-) gedreht ist. Die gewünschten Beträge und Phasenverschiebungen a , b der Spannungen u_{1v1w1} , x_{1y1z1} bzw. u_{2v2w2} , x_{2y2z2} lassen sich daher durch entsprechende Vektoradditionen erzielen.

Nachfolgend wird für die komplexen Spannungen die übliche Darstellungsform $U = U^*e^{ik}$ verwendet. U ist eine komplexe Spannung, U^* ist der Betrag dieser Spannung und k bestimmt deren Phasenwinkel. Die erforderlichen Längen der zu addierenden Vektoren bzw. die erforderlichen Beträge der an den Sekundärwicklungen ts , sr , rt auftretenden Spannungen, die aufgrund der primärseitigen Dreieckschaltung gegenüber der Spannung $R = R^*e^{j0^\circ}$ um $+/- 30^\circ$, 90° , 150° , 210° , oder 330° phasenverschoben sind, lässt sich einfach berechnen wie dies am Beispiel der Spannung u_1 nachfolgend gezeigt wird. Die komplexe Spannung u_1 , die einen Phasenwinkel ($p'a$) aufweist, entsteht durch die vorzeichenrichtige Addition der komplexen Spannung R , U_{ts2} und U_{sr3} :

$$u_1 = R + U_{ts2} - U_{sr3} \text{ bzw.}$$

$$u_1^*e^{-j(p'a)} = R^*e^{j0^\circ} + U_{ts2}^*e^{-j90^\circ} - U_{sr3}^*e^{j30^\circ}$$

Am Beispiel der Sekundärspannungen x_1 und u_1 wird nachfolgend beschrieben, wie bei der Bemessung der entsprechenden Sekundärwicklungen ts bzw. ts und sr am einfachsten vorzugehen ist. Die Sekundärwicklung ts_1 wird derart bemessen, dass durch die Addition der daran auftretenden Spannung $-U_{ts1}$ mit der Spannung R die Spannung x_1 entsteht, die der Spannung R um $7,5^\circ$ vorausseilt. Da die Spannungen x_1 und R nur um wenige Grad phasenverschoben sind, ist der Betrag der Spannung x_1 nur minimal grösser als der Betrag der Spannung R . Obwohl sich die Beträge der Spannungen durch die Addition mit einer weiteren phasenverschobenen Spannung (U_{rt}) angleichen lassen, wird aufgrund der minimalen Differenz zwischen den Beträgen vorzugsweise auf eine weitere Korrektur verzichtet. Die Spannung u_1 , die um $-22,5^\circ$ gegenüber der Spannung R phasenverschoben sein soll, kann auf gleiche Weise wie die Spannung x_1 , nämlich durch die Addition der Spannung R mit der an der Sekundärwicklung ts_2 auftretenden Spannung U_{ts2} erzeugt werden. Durch die relativ grosse Phasenverschiebung von $22,5^\circ$ ergeben sich dabei jedoch spürbare Abwei-

chungen zwischen den Beträgen der Spannungen R bzw. x_1 und u_1 . Durch die Addition mit einer weiteren Spannung $-U_{sr3}$ wird daher die Übereinstimmung der Beträge der Spannungen x_1 und u_1 angestrebt. D.h., der Betrag der Spannung u_1 wird vorzugsweise gleich dem Betrag der Spannung x_1 gewählt.

Als besonders vorteilhaft haben sich die in Fig. 5 und 6 für die Transformatoren ET_1 und ET_2 gewählten Phasenverschiebungen von $a = 30^\circ$ und $b = 15^\circ$ erwiesen. Die auf die oben beschriebene Weise durch Vektoraddition gebildeten Spannungen u_{1v1w1} , x_{1y1z1} bzw. u_{2v2w2} , x_{2y2z2} sind relativ zur Spannung RST um die Phasenwinkel $q'a$ bzw. $p'a$ derart vor- bzw. zurückverschoben, dass zwischen den Spannungen u_{1v1w1} und x_{1y1z1} bzw. u_{2v2w2} und x_{2y2z2} der Phasenwinkel $q'a + p'a = (q+p)^\circ a = a$ und zwischen den Spannungen x_{1y1z1} und x_{2y2z2} bzw. u_{1v1w1} und u_{2v2w2} der Phasenwinkel b ($b = 2*p'a$) auftritt. In Fig. 5 und 6 sind die Spannungen x_{2y2z2} und x_{1y1z1} um $0,75 * 30^\circ$ bzw. $0,25 * 30^\circ$ gegenüber der Spannung RST vor- und die Spannungen u_{1v1w1} und u_{2v2w2} um $0,75 * 30^\circ$ bzw. $0,25 * 30^\circ$ gegenüber der Spannung RST zurückverschoben. Durch das Übereinanderlegen der in Fig. 5 und 6 gezeigten Vektordiagramme lässt sich dieser Sachverhalt überprüfen.

Vorteilhaft ist insbesondere, dass sich die in Fig. 5 und 6 gezeigten Phasenverschiebungen mit nur wenigen Sekundärwicklungen und zwei identischen Transformatoren ET_1 und ET_2 erreichen lassen. In Fig. 4 ist der Transformator ET_1 gezeigt, der pro Phase eine Primärwicklung I_p , II_p bzw. III_p und drei Sekundärwicklungen ts_1 , ts_2 , ts_3 bzw. sr_1 , sr_2 , sr_3 bzw. rt_1 , rt_2 , rt_3 aufweist. Von den Sekundärwicklungen ts_1 , ts_2 , ts_3 ; sr_1 , sr_2 , sr_3 ; rt_1 , rt_2 , rt_3 sind zum Zweck der übersichtlicheren Darstellung nur die zur Erzeugung der Spannungen x_1 und u_1 notwendigen Wicklungen ts_1 , ts_2 und sr_3 verschaltet. Dabei ist dargestellt wie die Primär- und Sekundärwicklungen zu beschalten sind, damit die gewünschte Phasenverschiebung zwischen den Spannungen x_1 bzw. u_1 und R eintritt. Die Primärwicklungen I_p , II_p und III_p sind in Dreieck geschaltet. Die Anschlüsse der Primärwicklung III_p werden mit den Spannungen S und T verbunden, wodurch in den zugehörigen Sekundärwicklungen ts_1 , ts_2 und ts_3 die Spannungen U_{ts1} , U_{ts2} und U_{ts3} induziert werden, die senkrecht zur Spannung R stehen, die einem gemeinsamen Abgriff der Wicklungen ts_1 und ts_2 zugeführt wird. Die Spannung x_1 wird dabei durch die Addition der Spannungen R und $-U_{ts1}$ gebildet. Die Spannung u_1 ergibt sich durch die Addition der Spannungen R , U_{ts2} und $-U_{sr3}$.

Die in den Figuren 5 und 6 gezeigten Diagramme gehen durch die Spiegelung an einer Achse

ineinander über, die entlang dem Vektor R, S oder T verläuft. Diese Spiegelung lässt sich einfach durch Vertauschen der Phasen S und T erzielen. Erfnungsgemäss lassen sich daher zwei identisch beschaltete Transformatoren ET verwenden. Dem ersten Transformator wird dabei die Spannung RST und dem zweiten Transformator die Spannung RTS zugeführt, bei der im Vergleich zur Spannung RST zwei Phasen (RS, ST oder TS) vertauscht sind.

In Fig. 7 ist eine vereinfachte Schaltungsanordnung mit zwei identischen Transformatorschaltern mit zwei identischen Transformatoren ET3 und ET4 gezeigt, die pro Phase je einen einzelnen Transformator T1, T2 bzw. T3 aufweisen. Selbstverständlich können jedoch auch in diesem Fall zwei identische Drei-Phasen-Transformatoren verwendet werden. Da in dieser vereinfachten Schaltungsanordnung auf einen betragsmässigen Abgleich der Sekundärspannungen u_{1v1w1} ; x_{1y1z1} ; u_{2v2w2} ; x_{2y2z2} verzichtet wird, sind nur zwei Sekundärwicklungen unterschiedlicher Windungszahl pro Transformator T erforderlich. Durch die entsprechende Wahl der Windungszahl der Sekundärwicklungen treten wiederum die gewünschten Phasenverschiebungen zwischen den Spannungen u_{1v1w1} , x_{1y1z1} bzw. u_{2v2w2} , x_{2y2z2} auf. Die Unterdrückung der Oberwellenströme ist in diesem Fall nicht optimal, aber für verschiedene Anwendungsfälle genügend. Um die gewünschten gegenseitigen Phasenverschiebungen aller Sekundärspannungen u_{1v1w1} , x_{1y1z1} bzw. u_{2v2w2} , x_{2y2z2} für diese zwei identischen Transformatoren ET3, ET4 zu erreichen, wird vorgesehen, dass die in den primärseitigen Dreieckschaltungen der Transformatoren ET3, ET4 entstehenden Spannungen U_{ts}, U_{sr}, U_{rt} bzw. U_{st}, U_{tr}, U_{rs} einen gegenläufigen Umlaufsinn aufweisen. Dies wird auf einfache Weise erreicht, indem zwei Phasen der z.B. dem Transformator ET4 zugeführten Versorgungsspannung vertauscht werden.

Patentansprüche

1. Verfahren zur Reduktion von Oberwellenströmen, die über Transformatoren an Versorgungsleitungen abgegeben werden, dadurch gekennzeichnet, dass an den Sekundärwicklungen zweier Transformatoren (ET1, ET2) je zwei Spannungen (u_{1v1w1} , x_{1y1z1} ; u_{2v2w2} , x_{2y2z2}) abgegeben werden, von denen die beiden Spannungen (u_{1v1w1} , x_{1y1z1}) bzw. (u_{2v2w2} , x_{2y2z2}) jedes Transformators (ET1; ET2) einen Phasenwinkel a und zweimal zwei je aus beiden Transformatoren (ET1, ET2) gepaarte Spannungen (u_{1v1w1} , u_{2v2w2}) bzw. (x_{1y1z1} , x_{2y2z2}) einen Phasenwinkel b einschliessen.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Spannungen (u_{1v1w1} , x_{1y1z1} ; u_{2v2w2} , x_{2y2z2}) derart phasenverschoben werden, dass jeweils zwei Spannungen (u_{1v1w1} , x_{2y2z2}) bzw. (x_{1y1z1} bzw. u_{2v2w2}) symmetrisch zur Versorgungsspannung (RST) liegen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Erzeugung der einzelnen Spannungen (u_{1v1w1} , ..., x_{2y2z2}) je mindestens eine, vorzugsweise aber zwei Sekundärwicklungen der Transformatoren (ET1, ET2) derart gewählt und mit einer Phase (R, S oder T) zusammengeschaltet werden, dass zumindest annähernd betragsgleiche Spannungen (u_{1v1w1} , x_{1y1z1} , u_{2v2w2} , x_{2y2z2}) entstehen, die um vorgewählte Phasenwinkel a, b gegeneinander verschoben sind.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Sekundärwicklungen der Transformatoren (ET1, ET2) derart gewählt und zusammengeschaltet werden, dass die Spannungen (u_{1v1w1} , x_{1y1z1} , u_{2v2w2} , x_{2y2z2}) je einen vorgewählten Betrag annehmen und um vorgewählte Phasenwinkel a, b gegeneinander verschoben sind.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Phasenwinkel a, b entsprechend den Ordnungszahlen der zu unterdrückenden Oberwellenströme gewählt sind.
6. Schaltungsanordnung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass zwei Drehstromtransformatoren (ET1, ET2) mit in Dreieck geschalteten Primärwicklungen und mit mindestens zwei Sekundärwicklungen pro Phase vorgesehen sind, dass die die Versorgungsspannung (RST) führenden Versorgungsleitungen primärseitig mit den in Dreieck geschalteten Primärwicklungen (Ip, Iip, IIip) und sekundärseitig je mit zwei Sekundärwicklungen (ts1, ts2; sr1, sr2; rt1, rt2) derart verbunden sind, dass die Spannung (RST) senkrecht zu den an diesen Sekundärwicklungen (ts1, ts2; sr1, sr2; rt1, rt2) anliegenden Spannungen steht und dass den Sekundärwicklungen (ts1, sr1, rt1) oder ihnen nachgeschalteten Sekundärwicklungen die Spannung (x_{1y1z1} ; u_{2v2w2}) und den Sekundärwicklungen (ts2, sr2, rt2) oder ihnen nachgeschalteten Sekundärwicklungen die Spannung (u_{1v1w1} ; x_{2y2z2}) entnehmbar ist.

7. Schaltungsanordnung nach Anspruch 6, **dadurch gekennzeichnet**, dass die Anzahl zusammengeschalteter Sekundärwicklungen, deren Windungszahl und Phasenzugehörigkeit entsprechend der gewünschten Phasenverschiebung der Spannungen ($u_1v_1w_1$, $x_1y_1z_1$, $u_2v_2w_2$, $x_2y_2z_2$) zur Spannung (RST) sowie entsprechend dem vorgesehenen Betrag der Spannungen ($u_1v_1w_1$, $x_1y_1z_1$, $u_2v_2w_2$, $x_2y_2z_2$) gewählt sind. 5
10
8. Schaltungsanordnung nach Anspruch 6 oder 7, **dadurch gekennzeichnet**, dass die Transformatoren (ET1, ET2) identische Primär- und Sekundärwicklungen aufweisen. 15
9. Schaltungsanordnung nach Anspruch 6, 7 oder 8, **dadurch gekennzeichnet**, dass die Spannungen ($u_1v_1w_1$, $x_1y_1z_1$, $u_2v_2w_2$, $x_2y_2z_2$) führenden Sekundärwicklungen mit Gleichrichtereinheiten oder mit weiteren Elementen verbunden sind, die Oberwellenströme erzeugen. 20
10. Schaltungsanordnung nach einem der vorhergehenden Ansprüche 6 bis 9, **dadurch gekennzeichnet**, dass die Transformatoren (ET1, ET2) identisch beschaltet sind und dass zwei Phasen der Versorgungsspannung (RST) bei einem dieser Transformatoren (ET1, ET2) vertauscht angeschlossen sind. 25
30
11. Schaltungsanordnung nach einem der vorhergehenden Ansprüche 6 bis 10, **dadurch gekennzeichnet**, dass die Transformatoren (ET1, ET2) je aus drei einzelnen Transformatoren bestehen, denen die Phasen (TS; SR; RT) zugeführt werden. 35

40

45

50

55

6

Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 584 660 A3

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 93112917.5

⑮ Int. Cl. 5: H02M 1/12, H01F 27/38,
H02M 7/48

⑭ Anmeldetag: 12.08.93

⑯ Priorität: 18.08.92 CH 2575/92

⑰ Anmelder: SIEMENS-ALBIS
AKTIENGESELLSCHAFT
PV/Patente und Verträge
Postfach
CH-8047 Zürich (CH)

⑱ CH LI

⑯ Veröffentlichungstag der Anmeldung:
02.03.94 Patentblatt 94/09

⑲ Anmelder: SIEMENS AKTIENGESELLSCHAFT
Wittelsbacherplatz 2
D-80333 München (DE)

⑳ BE DE DK ES FR GB GR IT LU NL SE AT

⑯ Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

㉑ Erfinder: Gachnang, Marcel
Dorfstrasse 4
CH-8542 Wiesendangen (CH)

㉒ Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 31.08.94 Patentblatt 94/35

㉓ Verfahren und Schaltungsanordnung zur Reduktion von Oberwellen.

㉔ Das Verfahren und die Schaltungsanordnung eignen sich zur Reduktion von störenden Oberwellenströmen, die z.B. durch Gleichrichtereinheiten (GE) verursacht und an das Stromversorgungsnetz abgegeben werden. Dabei geben zwei Drehstromtransformatoren (ET1, ET2) je zwei um den Phasenwinkel a bzw. b verschobene Spannungen ($u_1v_1w_1$, $x_1y_1z_1$ bzw. $u_2v_2w_2$, $x_2y_2z_2$) derart ab, dass sich die störenden Oberwellenströme am Eingang der Transformatoren (ET1, ET2) gegenseitig aufheben oder zumindest stark reduzieren.

Fig. 4

EP 0 584 660 A3

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 93 11 2917

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrieb Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CLS)
A	US-A-4 870 557 (E.J. STACEY) * Spalte 5, Zeile 50 - Spalte 8, Zeile 24; Abbildungen 1-4 *	1	H02M1/12 H01F27/38 H02M7/48
D, A	EP-A-0 472 928 (SIEMENS AG) * Spalte 4, Zeile 24 - Spalte 5, Zeile 38; Abbildungen 2-4 *	1	
A	EP-A-0 012 742 (UNITED TECHNOLOGIES CORP.)	---	
A	US-A-4 112 403 (E.S. FRIEDLANDER)	---	
A	DE-A-38 10 870 (K.K. TOSHIBA)	-----	

RECHERCHIERTE
SACHGEBIETE (Int.CLS)

H02M
H01F
H02J

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt

Recherchenort DEN HAAG	Abschlußdatum der Recherche 4. Juli 1994	Prüfer Albertsson, E
KATEGORIE DER GENANNTEN DOKUMENTE		
X : von besonderer Bedeutung allein betrachtet	T : der Erfindung zugrunde liegende Theorien oder Grundsätze	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist	
A : technologischer Hintergrund	D : in der Anmeldung angeführtes Dokument	
O : nichtschriftliche Offenbarung	I : aus andern Gründen angeführtes Dokument	
P : Zwischenliteratur	& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	