BEN-GURION UNIVERSITY OF THE NEGEV

DATA STRUCTURES 202.1.1031

Assignment No. 4 - Solution

Authors:

Name 1 (I.D 1) Name 2 (I.D 2)

Publish date: 20.5.2023 Submission date: 10.06.2023

Contents

1	An example of Pseudo-Code 3							
2	Skip-List	3						
	2.1 Warm-Up and Familiarization	3						
		3						
		3						
	·	3						
	2.2 Order Statistics	4						
3	Hashing	5						
	3.1 Introduction	5						
	3.1.1 Hash Functions	5						
	3.2 Hash Implementations	5						
		5						
	3.3.1 Introduction	5						
	3.4 Theoretical Questions	6						
4	Designing a data structure according to given specifications	7						

Tasks and Questions

2.1	Answer															 									 			3
2.2	Answer															 									 			3
2.3	Answer																								 			3
2.4	Answer																								 			3
2.5	Answer																								 			3
2.6	Answer															 									 			3
2.7	Answer																								 			4
2.8	Answer																								 			4
2.9	Answer																								 			4
	Answer																								 			4
	Answer																								 			4
2.12	Answer																								 			4
3.1	Answer																								 			5
3.2	Answer																								 			5
3.3	Answer																								 			5
3.4	Answer																								 			5
3.5	Answer						•										•			•		•			 			5
3.6	Answer						•										•			•		•			 			5
3.7	Answer																								 			5
3.8	Answer																								 			5
3.9	Answer						•								•		•			•			•		 			5
	Answer																								 			5
-	Answer						•								•		•			•			•		 			5
	Answer																								 			6
	Answer	•					•										•			•					 			6
	Answer	•					•										•			•					 			6
	Answer	•					•										•			•			•		 			6
	Answer																•			•	٠				 			6
4.1	Answer															 									 			- 7

1 An example of Pseudo-Code

Remove this example:

Function: FindMax(L)

Input: A List L of n comparable values. Output: The maximal value within L

- 1: $max \leftarrow L[0]$
- 2: **for** $1 \le i < n$ **do**
- 3: **if** L[i] > max **then**
- 4: Update max value to L[i] // Remember that you can describe an action in words, as long as it is clear how to implement it.
- 5: end if
- 6: end for // This is a comment in the pseudo-code. Comments should not be included in it.
- 7: $\mathbf{return} \ max$

2 Skip-List

2.1 Warm-Up and Familiarization

2.1.1 Implementation of Abstract Functions

Answer 2.1: Implementation in code

2.1.2 Analysis of the Probabilistic Process

Answer 2.2: The tables are:

	${f p} = < {f Insert \ the \ value \ of } \ p \ {f here} >$												
x	$\hat{\ell}_1$	$\hat{\ell}_2$	$\hat{\ell}_3$	$\hat{\ell}_4$	$\hat{\ell}_5$	Expected Level $(E[\ell])$	Average delta $(\frac{1}{5} \cdot \sum_{i=1}^{5} (\hat{\ell}_i - E[\ell]))$						
10	?	?	?	?	?	?	?						
100	?	?	?	?	?	?	?						
1000	?	?	?	?	?	?	?						
10000	?	?	?	?	?	?	?						

Answer 2.3:

Answer 2.4:

2.1.3 Analysis of the operations

Answer 2.5: Implementation in code

Answer 2.6: The tables are:

$\mathbf{p} = \langle \mathbf{Insert} \ \mathbf{the} \ \mathbf{value} \ \mathbf{of} \ p \ \mathbf{here} \rangle$													
x	Average Insertion	Average Search	Average Deletion										
1000	?	?	?										
2500	?	?	?										
5000	?	?	?										
10000	?	?	?										
15000	?	?	?										
20000	?	?	?										
50000	?	?	?										

Answer 2.7: The graph is:

Answer 2.8:

Answer 2.9:

Answer 2.10:

Answer 2.11:

2.2 Order Statistics

Answer 2.12:

3 Hashing

3.1 Introduction

3.1.1 Hash Functions

Answer 3.1:

Answer 3.2:

3.2 Hash Implementations

Answer 3.3: Implementation in code

Answer 3.4: Implementation in code

Answer 3.5: Implementation in code

3.3 Hash Tables

3.3.1 Introduction

Answer 3.6: Implementation in code

Answer 3.7: Implementation in code

Answer 3.8: The results are:

Linear Probing												
$\max \alpha$	Average Insertion	Average Search										
1/2	?	?										
3/4	?	?										
7/8	?	?										
15/16	?	?										

Answer 3.9:

Answer 3.10: The results are:

Chaining												
$\mathbf{max} \ \alpha$	Average Insertion	Average Search										
1/2	?	?										
3/4	?	?										
1	?	?										
3/2	?	?										
2	?	?										

Answer 3.11:

Answer 3.12:

${\bf 3.4}\quad {\bf Theoretical~Questions}$

Answer 3.13:

Answer 3.14:

Answer 3.15:

Answer 3.16:

4 Designing a data structure according to given specifications

Answer 4.1:

Good Luck!