Comprehensive Study Guide for Advanced Machine Learning

Eshaan Arora

Contents

1	Overview and Recap 1.1 Data Science Lifecycle	
	· · · · · · · · · · · · · · · · · · ·	
2	Advanced Multivariate Regression	
	2.1 Basis Function Expansion	
	2.2 Regularization Techniques	
	2.3 Bias-Variance Tradeoff	
	2.4 Polynomial Regression	
3	Neural Networks and Optimization	
	3.1 Activation Functions	
	3.2 Stochastic Gradient Descent (SGD)	
	3.3 Backpropagation	
	3.4 Multi-Layer Perceptrons (MLPs)	
	3.5 Transfer and Multi-task Learning	
4	Loss Functions and Regularization	
	4.1 Huber Loss	
	4.2 Regularization in Ridge Regression	
5	Dimensionality Reduction and PCA	
	5.1 Principal Component Analysis (PCA)	
	5.2 t-SNE and Visualization	
6	Probabilistic Models and Bayesian Networks	
7	Classifier Calibration and Decision Theory	
8	Ensemble Methods and Transformers	
	8.1 Bagging and Boosting	
	9.9 The profession and	

9	9 Data Pre-Processing and Metrics		
	9.1	Data Transformations	1.
	9.2	Imputation and Handling Outliers	1.
	9.3	Performance Metrics	1.

1 Overview and Recap

1.1 Data Science Lifecycle

- Iterative steps: Problem Definition \rightarrow Data Collection \rightarrow Preprocessing \rightarrow Exploratory Data Analysis \rightarrow Model Building \rightarrow Evaluation \rightarrow Deployment.
- Emphasis on feedback loops for continuous improvement.
- Maximum Likelihood (ML) Principle:

$$\hat{\theta} = \arg\max_{\theta} L(\theta|X) = \arg\max_{\theta} \prod_{i=1}^{N} P(x_i|\theta),$$

where $L(\theta|X)$ is the likelihood function for parameter θ given data X.

• No Free Lunch Theorem: No universally best model exists; trade-offs must be understood.

1.2 Predictive Analytics

- Descriptive Analytics: Summarizes past data to find patterns.
- **Predictive Analytics:** Uses models like regression and classification to predict unknown or future outcomes.
- Prescriptive Analytics: Suggests actions, often involving reinforcement learning.

2 Advanced Multivariate Regression

2.1 Basis Function Expansion

• Allows non-linear relationships by transforming input features, e.g.,

$$\phi_1(x) = x$$
, $\phi_2(x) = x^2$, $\phi_3(x) = \sin(x)$.

2.2 Regularization Techniques

• Ridge Regression:

$$\min_{w} \left\{ \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda ||w||_2^2 \right\}.$$

• Lasso Regression:

$$\min_{w} \left\{ \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda ||w||_1 \right\}.$$

• Elastic Net Regularization: Balances Ridge and Lasso penalties for feature selection and coefficient shrinkage.

2.3 Bias-Variance Tradeoff

 $Error = Bias^2 + Variance + Irreducible Error.$

- High bias indicates underfitting; high variance indicates overfitting.
- \bullet Learning curves help identify bias-variance issues.

2.4 Polynomial Regression

• Fits non-linear relationships using polynomial terms like x, x^2, x^3 .

3 Neural Networks and Optimization

3.1 Activation Functions

- ReLU: Efficient but may suffer from the dying ReLU problem.
- Leaky ReLU: Allows a small slope for negative inputs to address dying ReLUs.
- Sigmoid and Tanh: Useful for smooth outputs but suffer from vanishing gradients.

3.2 Stochastic Gradient Descent (SGD)

- Iteratively minimizes loss functions.
- Weight update rule:

$$w_{t+1} = w_t - \eta \frac{\partial L(w_t)}{\partial w},$$

where η is the learning rate.

- Momentum-based SGD accelerates convergence by incorporating past updates.
- Applications of SGD:
 - Large datasets where batch gradient descent is computationally expensive.
 - Streaming data or non-stationary problems.

3.3 Backpropagation

- Efficiently computes gradients for multi-layer networks using the chain rule.
- Steps:
 - 1. Forward pass to compute predictions.
 - 2. Compute the error at the output.
 - 3. Propagate the error backward to update weights.

3.4 Multi-Layer Perceptrons (MLPs)

- Universal approximators capable of modeling continuous functions.
- Use non-linear activations in hidden layers for expressiveness.
- Softmax function ensures output probabilities sum to 1 in classification tasks.

3.5 Transfer and Multi-task Learning

- Transfer Learning: Sequentially reuses pre-trained models for related tasks.
- Multi-task Learning: Simultaneously learns related tasks by sharing features.

4 Loss Functions and Regularization

4.1 Huber Loss

Combines MSE for small residuals and MAE for large residuals:

$$L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2, & \text{if } |r| \leq \delta, \\ \delta(|r| - \frac{\delta}{2}), & \text{if } |r| > \delta. \end{cases}$$

4.2 Regularization in Ridge Regression

- Increasing regularization (λ) reduces variance but increases bias.
- At $\lambda \to \infty$, weights shrink to zero except the intercept, leading to MSE = Var(y).

5 Dimensionality Reduction and PCA

5.1 Principal Component Analysis (PCA)

- Identifies principal components that capture maximum variance.
- Reconstruction: Original data can be reconstructed as:

$$\mathbf{X} \approx \mathbf{Z} \mathbf{V}^{\mathsf{T}}$$
,

where \mathbf{Z} are PCA scores and \mathbf{V} are eigenvectors.

5.2 t-SNE and Visualization

 $\bullet\,$ t-SNE maps high-dimensional data into 2D or 3D spaces, preserving local structure for visualization.

6 Probabilistic Models and Bayesian Networks

- Bayesian Belief Networks: Models conditional dependencies.
- Probabilities are calculated using conditional probability tables (CPTs).
- Example:

$$P(C,S,\neg R|\neg W) = \frac{P(C)P(S|C)P(\neg R|C)P(\neg W|S,\neg R)}{P(\neg W)}.$$

7 Classifier Calibration and Decision Theory

- Calibration Curves: Evaluate how predicted probabilities align with observed outcomes.
- Decision Boundaries: Logistic regression defines boundaries as hyperplanes, e.g.,

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \log\left(\frac{P(C_1)}{1 - P(C_1)}\right).$$

8 Ensemble Methods and Transformers

8.1 Bagging and Boosting

- Bagging: Combines models to reduce variance.
- Boosting: Sequentially focuses on errors to improve bias.

8.2 Transformers

• Includes attention mechanisms for sequential data:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V.$$

9 Data Pre-Processing and Metrics

9.1 Data Transformations

• Scaling, normalization, and logarithmic transformations improve model performance.

9.2 Imputation and Handling Outliers

- Imputation strategies include mean, median, mode, and k-NN.
- Outliers are handled via thresholds, distance-based methods, or statistical rules.

9.3 Performance Metrics

• Metrics include Accuracy, Precision, Recall, F1-Score, ROC-AUC.