ECE 417/598: Homework 2

Due on Feb 4th, 2021, before class, 12:59 PM.

1 Jan 26 Lecture

Problem 1 In class we proved the Rodrigues formula that converts from axis-angle representation $(\theta, \hat{\mathbf{k}})$, where θ is the angle of rotation and $\hat{\mathbf{k}}$ is the axis of rotation. Let $\mathbf{K} = [\hat{\mathbf{k}}]_{\times}$ be the cross product matrix of $\hat{\mathbf{k}}$. The corresponding rotation matrix is given by,

$$R(\theta, \hat{\mathbf{k}}) = \mathbf{I} + \sin \theta \mathbf{K} + (1 - \cos \theta) \mathbf{K}^2. \tag{1}$$

An exponential of a square matrix ${\bf M}$ is defined as

$$\exp(\mathbf{M}) = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{M}^k = \mathbf{I} + \frac{1}{1!} \mathbf{M} + \frac{1}{2!} \mathbf{M}^2 + \dots$$
(2)

Recall the series expansion of $\sin \theta$, and $\cos \theta$,

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots \tag{3}$$

$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{3!} - \dots \tag{4}$$

- 1. First prove that $\mathbf{K}^3 = -\mathbf{K}$. (10 marks, 10 minutes)
- 2. Using the expansion of $\sin \theta$ and $\cos \theta$, prove that $R(\theta, \hat{\mathbf{k}}) = \exp(\theta \mathbf{K})$. (30 marks, 30 minutes)

Problem 2 Write a pair of functions in C++ that converts rotation matrix from axis-angle representation and vice versa. Recall that

$$R(\theta, \hat{\mathbf{k}}) = \mathbf{I} + \sin \theta \mathbf{K} + (1 - \cos \theta) \mathbf{K}^2. \tag{5}$$

and to get axis-angle back from a given rotation matrix

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \tag{6}$$

we have

$$\theta = \cos^{-1}\left(\frac{tr(R) - 1}{2}\right) \tag{7}$$

$$\hat{\mathbf{k}} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} \quad if \ \theta \neq 0 \quad or \ \pi. \tag{8}$$

If $\theta = 0$ or π , then

$$\hat{\mathbf{k}} = \pm \begin{bmatrix} \sqrt{(r_{11} + 1)/2} \\ \sqrt{(r_{22} + 1)/2} \\ \sqrt{(r_{33} + 1)/2} \end{bmatrix}$$
(9)

(30 marks. Estimated time: 30 min)

2 Jan 31 Lecture

Problem 3 Recall the definition of Denavit-Hartenberg parameters from the video. Recall that transformation between two joints for the defined parameters d, θ, r, α is given by,

$$T = T_z(\theta, d)T_x(\alpha, r), \tag{10}$$

where

$$T_x(\alpha, r) = \begin{bmatrix} 1 & 0 & 0 & r \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(11)

$$T_z(\theta, d) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & d\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(12)

For the robot given below find transformation matrix from joint 4 to joint 1 assuming the joint angles to be θ_1 , θ_2 , θ_3 respectively. Write the expression for ${}^3T_4(\theta_3)$, ${}^2T_3(\theta_2)$, ${}^1T_2(\theta_1)$ and then ${}^1T_4(\theta_1,\theta_2,\theta_3)$ in terms of the first three transformations.

- 4. Evidence: Do they any experiments or proof that their approach/contributions work?
- 5. Results: Are the results of the paper justified by evidence and a direct result of the contibutions?

3 ECE 598 only

Write a short review of the following paper On continuity of rotation representations in Neural networks. We have not covered all the concepts covered in this paper; you can skip the parts that you do not understand. In the review answer the following questions evaluating the paper,

- 1. Problem: What problem is the paper trying to solve?
- 2. Approach: What is the proposed approach to solve the problem?
- 3. Contribution: What is the paper's novel contribution?