ARTIFICIAL JOINT TO REPLACE THE HUMAN PATELLA

Patent number:

EP0691830

Publication date:

1996-01-17

Inventor:

KUBEIN-MEESENBURG DIETMAR (DE); NAEGERL

HANS (DE)

Applicant:

THEUSNER JOACHIM DR (DE); KUBEIN

MEESENBURG DIETMAR (DE); NAEGERL HANS (DE)

Classification:

- international:

A61F2/38; A61F2/38; (IPC1-7): A61F2/38

- european:

A61F2/38; A61F2/38P

Application number: EP19940908314 19940216

Priority number(s): DE19934310968 19930403; WO1994EP00434

19940216

Also published as:

WO9422396 (A US5738686 (A1 DE4310968 (A1

Report a data error he

Abstract not available for EP0691830 Abstract of corresponding document: US5738686 PCT No. PCT/EP94/00434 Sec. 371 Date Nov. 17, 1994 Sec. 102(e) Date Nov. 17, 1994 PCT Filed Feb. 16, 1994 PCT Pub. No. WO94/22396 PCT Pub. Date Oct. 13, 1994Artificial joint, especially endoprosthesis for the human patella joint, consisting of two joint bodies which move with respect to one another, one joint body (1) with two coincidental joint heads (2,3) and one joint body (6) with two coincidental joint sockets (7,8) which in each case have toroid joint surfaces (4,5; 9,10) which have functional surfaces (4,5; 9,10) which have a longitudinal plane and a corresponding transverse plane, in planes which are vertical with respect to one another, of differing, circular section contours. The curvature relationships of the functional surfaces (4,5; 9,10) are either concave-convex or convex-convex in each of the planes. The joint geometry of the functional surfaces (4,10; 5,9) which come into contact with one another, is determined by a link chain with two articulated axles, dimer link chains, with respect to one another in each of the two functional planes, which run through the middle point of the curve of the functional surfaces (4,5; 9,10) and are established by them.

Data supplied from the esp@cenet database - Worldwide

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 691 830 B1 (11)

(12)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 25.08.1999 Patentblatt 1999/34
- (21) Anmeldenummer: 94908314.1
- (22) Anmeldetag: 16.02.1994

- (51) Int. Cl.6: A61F 2/38
- (86) Internationale Anmeldenummer: PCT/EP94/00434
- (87) Internationale Veröffentlichungsnummer: WO 94/22396 (13.10.1994 Gazette 1994/23)

(54) KÜNSTLICHES GELENK ZUM ERSATZ DER MENSCHLICHEN KNIESCHEIBE

ARTIFICIAL JOINT TO REPLACE THE HUMAN PATELLA ARTICULATION ARTIFICIELLE PERMETTANT DE REMPLACER LA ROTULE CHEZ L'HOMME

- (84) Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
- (30) Priorität: 03.04.1993 DE 4310968
- (43) Veröffentlichungstag der Anmeldung: 17.01.1996 Patentblatt 1996/03
- (73) Patentinhaber:
 - · Theusner, Joachim, Dr. 80539 München (DE)
 - · Kubein-Meesenburg, Dietmar, Prof. Dr. 37547 Kreiensen (DE)
 - · Nägerl, Hans, Dr. 37130 Gleichen (DE)

- (72) Erfinder:
 - · KUBEIN-MEESENBURG, Dietmar, Prof. Dr. D-37547 Kreiensen (DE)
 - NÄGERL, Hans, Dr. D-37130 Gleichen/OT Kelin-Lengden (DE)
- (74) Vertreter:

Braun, Dieter, Dipl.-Ing. et al Hagemann, Braun & Held Patentanwälte, Hildesheimer Strasse 133 30173 Hannover (DE)

(56) Entgegenhaltungen:

WO-A-90/11062 US-A-3 964 106 US-A- 4 158 894 WO-A-93/11720 US-A-4 081 866

US-E- R E29 757

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

10

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein künstliches Gelenk als Endoprothese für das menschliche Kniescheiben-Gelenk.

[0002] Die US-Patentschrift US-A-3 964 106 offenbart ein Künstliches Gelenk als Endoprothese für das menschliche Kniescheiben-Gelenk, bestehend aus zwei zueinander sich bewegenden Gelenkkörpern, einem das Oberschenkel-Gelenkteil bildenden Gelenkkörper und einem das Patella-Gelenkteil bildenden Gelenkkörper.

[0003] Aus der deutschen Patentanmeldung DE-A-39 08 958, zu deren Patentfamilie auch die WO-A-9011062 gehört, ist ein kunstliches Gelenk zum Ersatz von 15 menschlichen Gelenken bekannt, bestehend aus mindestens zwei Gelenkteilen mit zueinander sich beweaenden. Funktionsflächen. sphärischen Krümmungsverhältnisse der eine kreisförmige Schnittkontur aufweisenden Funktionsflächen sind zueinander konvex-konvex, konvex-konkav oder konkav-konkav. und die Gelenkgeometrie ist durch eine Gelenkkette mit zwei Gelenkachsen, dimere Gelenkkette, bestimmt, die durch die Rotationszentren der Funktionsflächen verlaufen und durch die Zentren und deren Abstand definiert wird. Hierbei sind die Gelenkflächen kugelförmig ausgebildet, so daß eine Gelenkbewegung mit fünf Freiheitsgraden möglich ist.

[0004] Es hat sich jedoch gezeigt, daß ein derartiges Gelenk nicht geeignet ist, um die spezielle Gelenkfunktion, wie sie bei dem menschlichen Kniescheibengelenk vorhanden ist, nachzubilden.

[0005] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein künstliches Gelenk zu schaffen, das geeignet ist zum Ersatz des menschlichen kniescheibengelenks, wobei die natürlichen Verhältnisse im wesentlichen nachgebildet werden.

[0006] Erfindungsgemäß wird dies durch ein künstliches Gelenk gemäß den Merkmalen des Anspruchs 1 erreicht.

[0007] Die Erfindung beruht somit auf der Erkenntnis, daß die Gelenkbahnen des menschlichen kniescheibengelenks durch jeweils toroidförmige Flächen der Schnittkonturen in den zueinander senkrechten Ebenen ersetzt werden können.

[0008] Die hierbei auftretenden Druckbeanspruchungen können durch die Verwendung entsprechend fester Materialien beherrscht werden. Es wird somit ein künstliches Gelenk geschaffen, das eine besondere Bewegungsfreiheit in einer Gelenkebene besitzt, und das gleichzeitig eine hohe mechanische Stabilität mit einer großen Variationsbreite zur Anpassung an die individuellen Gegebenheiten aufweist sowie zusätzlich eine leichte Beweglichkeit in den zur Längsebene senkrechten Querebenen nach lateral aufgrund spezieller Konstruktionsmerkmale.

[0009] Vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen enthalten.

[0010] Anhand der in den beiliegenden Zeichnungen dargestellten Ausführungsbeispiele wird die Erfindung näher erläutert. Es zeigen:

- Fig. 1 eine perspektivische Ansicht eines erfindungsgemäßen Gelenkkörpers mit zwei zusammengefaßten Gelenkköpfen,
 - Fig. 2 eine perspektivische Ansicht eines erfindungsgemäßen Gelenkkörpers mit zwei zusammengefaßten Gelenkofannen,
 - Fig. 3 einen Längsschnitt durch ein erfindungsgemäßes Gelenk im Bereich des lateralen Gelenkteils,
 - Fig. 4 einen Querschnitt gemäß der Schnittlinie IV-IV in Fig. 3 in der Querebene,
- Fig. 5 einen Längsschnitt durch ein erfindungsgemäßes Gelenk im medialen Gelenkteil,
 - Fig. 6 einen Schnitt entlang der Schnittlinie VI-VI in Fig. 5 in der Querebene,
 - Fig. 7 einen Längsschnitt durch ein erfindungsgemäßes Gelenk, zusammengesetzt aus den Gelenken gemäß Fig. 3 und 5.
- Fig. 8 eine perspektivische Ansicht einer weiteren Ausführungsform eines erfindungsgemäßen Gelenkkörpers mit zwei zusammengefaßten Gelenkpfannen.
- 65 [0011] In Fig. 1 ist eine perspektivische Darstellung eines Teils des Oberschenkels, Femur, gezeigt, mit an dessen Gelenkkörper befestigten Oberschenkelgelenkteil 1, das aus zwei nebeneinanderliegenden Gelenkköpfen besteht, und zwar einem lateralen Gelenkkopf 2 und einem medialen Gelenkkopf 3. Die beiden Gelenkköpfe 2, 3 besitzen toroidförmig ausgebildete Funktionsflächen 4, 5, und zwar die laterale Funktionsfläche 4 und die mediale Funktionsfläche 5, wie sich dies im einzelnen aus der nachfolgenden Beschreibung ergibt.
- [0012] Fig. 2 zeigt in perspektivischer Ansicht das zum Oberschenkelgelenkteil 1 zugehörige Patella-Gelenkteil 6, das aus zwei zusammengefaßten Gelenkpfannen besteht, und zwar einer medialen Gelenkpfanne 7 und einer lateralen Gelenkpfanne 8. Die beiden Gelenkpfannen 7, 8 besitzen wiederum toroidförmig gekrümmt ausgebildete Funktionsflächen 9, 10 und zwar die mediale Funktionsfläche 9 und die laterale Funktionsfläche 10. Die nähere Ausgestaltung ergibt sich aus der folgenden Beschreibung. Der laterale Gelenkkopf 2 und die laterale Gelenkpfanne 8 bilden ein erfindungsgemäßes Lateral-Gelenk und die mediale Gelenkpfanne 7 und der mediale Gelenkkopf 3 bilden ein erfindungsgemäßes Medial-Gelenk.

[0013] Wie sich aus Fig. 3 ergibt, besitzt die laterale Funktionsfläche 4 des lateralen Gelenkkopfes 2 in der sagitalen Schnittebene, d.h. in der Längsebene, eine kreisbogenförmige, konvexe Schnittkontur, deren Rotationszentrum M1 ist und die den Radius R1 besitzt. Die laterale Gelenkpfanne 8 besitzt eine Funktionsfläche 10 mit einer kreisförmigen, konkaven Schnittkontur mit dem Rotationszentrum M2 und dem Radius R2. Hierbei ist eine derartige Anordnung vorgesehen, daß diese Rotationszentren M₁ und M₂ innerhalb des Gelenkteils mit der konvexen Schnittkontur liegen und die Gelenkachsenbahnen der Rotationszentren einen Radius RL = R2 - R1 besitzen. Hierbei ist R2 derart bemessen, daß R2 größer ist als R1, somit stellt diese Anordnung eine überschlagene, druckstabile dimere Gelenkkette dar.

[0014] In Fig. 4 ist zu erkennen, daß auch in der Querebene die lateralen Funktionsflächen 4, 10 kreisförmige Schnittkonturen besitzen, wobei die kreisförmige konvexe Schnittkontur der Funktionsfläche 4 den Radius R₁₁ und den Mittelpunkt bzw. das Rotationszentrum M₁₁ besitzt und die kreisförmige, konkave Funktionsfläche 10 den Radius R₂₂ sowie den Mittelpunkt M₂₂ aufweist. Hierbei liegen beide Rotationszentren M₁₁ und M₂₂ im Körper mit der konvexen Funktionsfläche 4 und die Gelenkachsenbahn der Rotationszentren hat einen Radius $RL_1 = R_{22} - R_{11}$, wobei R_{22} größer ist als R_{11} , so daß diese Anordnung eine überschlagene, druckstabile dimere Gelenkkette darstellt. Weiterhin ist in den Fig. 3 und 4 zu erkennen, daß die Mittelpunkte M₁₁ und M₂₂ nicht mit den Rotationszentren M₁ bzw. M₂ zusammenfallen, was vorteilhaft ist. Mo liegt vorteilhafterweise in der Position des gestreckten Beines gegenüber M1 nach hinten (kaudal) versetzt, während M22 in bezug auf M₁₁ nach außen versetzt ist.

In Fig. 5 ist wiederum ein Schnitt durch die [0015] Längsebene bzw. in der sagitalen Ebene des erfindungsgemäßen Medial-Gelenks dargestellt. Der mediale Gelenkkopf 3 besitzt die Funktionsfläche 5, die toroidförmig ausgebildet ist und eine kreisförmige, konvexe Schnittkontur besitzt, wobei diese kreisförmige Schnittkontur den Mittelpunkt bzw. das Rotationszentrum M3 und den Radius R3 besitzt. Die mediale Gelenkpfanne 7 besitzt eine Funktionsfläche 9, die in der Längsebene eine kreisförmige, konkave Schnittkontur aufweist, die den Mittelpunkt M4 und den Radius R4 besitzt. Wie dargestellt ist, liegen die Rotationszentren M₃ und M₄ jeweils im Körper mit der konvexen Schnittkontur der Funktionsfläche und die Gelenkachsenbahn der Rotationszentren M3 und M4 besitzt einen Radius $RM = R_4 - R_3$, wobei $R_4 > R_3$ ist, so daß sich eine druckstabile, dimere Gelenkkette ergibt.

[0016] In Fig. 6 ist der Schnitt gemäß der Frontalebene, Querebene, zu der Darstellung in Fig. 5 gezeigt. Hierbei ist zu erkennen, daß auch in dieser Schnittebene die Funktionsflächen 5, 9 jeweils kreisförmige Schnittkonturen besitzen. Die Funktionsfläche 5 des medialen Gelenkkopfes 3 weist dabei eine kreisförmige Schnittkontur mit dem Mittelpunkt M_{33} mit dem Radius R_{31} auf. Die Funktionsfläche 9 der medialen Gelenkpfanne besitzt in der Querebene eine kreisförmige, konvexe Schnittkontur mit dem Rotationszentrum M_{44} und dem Radius R_{41} . Hierbei liegen die Rotationszentren M_{33} und M_{44} jeweils innerhalb des zugehörigen Gelenkkörpers 3, 7 und die Gelenkachsenbahn der Rotationszentren M_{33} und M_{44} besitzt einen Radius $RM_1 = R_{31} + R_{41}$.

[0017] Die Rotationszentren M3 und M33 müssen nicht zusammenfallen. Das Zentrum M4 kann bezogen auf M3 nach distal, hinten, und nach unten, kaudal, versetzt sein, wie das Rotationszentrum M44, bezogen auf M₃₃ nach vorne und nach außen, lateral, versetzt sein kann. Das derart ausgebildete mediale Gelenkteil des erfindungsgemäßen Kniescheibengelenks soll die natürliche Artikulation zwischen dem inneren Gelenkteil des Oberschenkels (Femur) und dem inneren Anteil der Kniescheibe (Patella) ersetzen. Hierbei weist dieses Gelenk in der sagitalen Ebene (der Längsebene) eine überschlagene druckkraftschlüssige dimere Kette auf und in der oder den dazu senkrechten Querebenen eine nichtüberschlagene druckkraftschlüssige Gelenkkette. Wegen der toroidförmigen Ausformung der Gelenkflächen ist eine gute Bewegungsfreiheit unter Kraftschluß in der Längsebene und eine weitgehend eingeschränkte in der Querebene gegeben.

Wie sich aus den Fig. 1 und 2 ergibt, sind jeweils die medialen und lateralen Gelenkteile derartig miteinander verbunden, daß jeweils eine starre Verbindung zwischen den Gelenkköpfen und den Gelenkpfannen gegeben ist. Hierbei ist es vorteilhaft, daß in der oder in den Querebenen die konvexen Gelenkköpfe 2, 3 durch eine abgestimmte konkave Struktur verbunden sind und in der oder in den Querebenen die Gelenkpfannen 7, 8 durch eine abgestimmte konvexe Struktur verbunden sind. Hierbei ist es zweckmäßig, wenn der Radius der verbindenden konvexen Struktur zwischen den Gelenkköpfen 2, 3 nicht identisch ist mit den Radien R44 und R22. Der Radius, der die Gelenkpfannen 7, 8 verbindenden konvexen Struktur kann größer sein als der der konkaven verbindenden Struktur der Gelenkköpfe 2, 3. Durch die Kopplung der Gelenkköpfe und der Gelenkpfannen ist der mediale und der laterale Gelenkteil zueinander so angeordnet, daß die Drehachsen senkrecht zur Langsebene parallel zueinander verlaufen und so zueinander angeordnet sind, daß die medialen Drehachsen hinter den jeweiligen lateralen Drehachsen angeordnet sind und in der Längsebene als Funktionsrichtung erfindungsgemäß ein Gelenkviereck geschaffen wird. Die Drehachsen der toroidförmigen Flächen können auch schräg zueinander gestellt sein.

[0019] In der Ausführungform gemäß den Fig. 1 bis 6 sind die Radien R₁, R₂, R₃ und R₄ so gewählt, daß sie weitgehend harmonisch in die Führungsstrukturen des Kniegelenks übergehen. Hier ist weiterhin bei der Bemessung der Radien vorgesehen, daß sie gewährlei-

sten, daß die Kontaktpunkte, die sich um M₁ bewegen, einen deutlich größeren Weg beschreiben als die Kontaktpunkte, die sich um M3 bewegen. Hierbei stellen die Kontaktpunkte jeweils die Berührungspunkte der gegenüberliegenden Funktionsflächen dar. Weiterhin sind die Mittelpunkte M1 und M2 zueinander und die Mittelpunkte M2 und M4 zueinander genauso wie M2 und M₄ zu M₁ und M₂ so gewählt, daß in der Startposition des Standes des menschlichen Knies die Kontaktpunkte im lateralen wie im medialen Gelenkteil weitgehend in einer nahezu horizontalen Querebene liegen. Mit zunehmender Beuge liegen die Kontaktpunkte in verschiedenen Querebenen und der Kontakt läuft auf dem lateralen Gelenkteil der Patella schneller nach kranial als auf den medialen Teil der Patella. Umgekehrt laufen die Kontaktpunkte mit zunehmender Beuge auf den medialen Gelenkkopfteil schneller nach kaudal, um in tiefer Beuge den Kontakt zu verlieren.

[0020] Fig. 7 zeigt einen Längsschnitt durch ein aus dem Medialgelenk und dem Lateralgelenk zusammengesetztes erfindungsgemäßes Gelenk, wobei das Medialgelenk hinter dem Lateralgelenk angeordnet ist. Gezeigt ist die Gelenkstellung zu Beginn einer Kniebeuge. Im übrigen sind gleiche Teile, wie in den Fig. 3 und 5, mit denselben Bezugsziffern versehen. Hierbei ist zu erkennen, daß das Lateralgelenk in der Längsebene gesehen nach vorne versetzt ist. Ebenfalls ist es möglich, das Lateralgelenk nach vorne und nach unten gegenüber dem Medialgelenk zu versetzen.

[0021] In Fig. 8 ist eine weitere Ausführungsform der Gelenkpfannen 9, 10 des Patella-Gelenkteils 6 dargestellt. Hierbei ist zu erkennen, daß die Funktionsfläche der medialen Gelenkpfanne und der lateralen Gelenkpfanne jeweils in zwei übereinanderliegende Teil-Funktionsflächen 9a, 9b und 10a, 10b unterteilt sind. Die grundsätzliche geometrische Form der Funktionsflächen 9a, 9b und 10a, 10b entspricht derjenigen der Funktionsflächen 9 und 10 gemäß den Fig. 2 bis 4. Hierbei ergibt sich ein buckelförmiger Übergang zwischen den Teilfunktionsflächen. Die Mittelpunkte der kreisförmigen Schnittkonturen der lateralen Funktionsflächen 10a, 10b liegen in derselben Ebene. Das gleiche gilt für die Mittelpunkte der medialen Funktionsflächen 9a und 9b. Sofern es sich um die kreisbogenförmige Schnittkontur in der Querebene der Funktionsflächen handelt. so tritt hier keine Änderung gegenüber der Ausführungsform in den Fig. 2 bis 6 auf. In den Darstellungen der Fig. 2 und 8 ist der Mittelgrad 12 zwischen den Funktionsflachen 9 und 10 bzw. 9a, 9b und 10a, 10b jeweils medial verbogen dargestellt, d.h. die jeweiligen Enden sind nach lateral versetzt. Es liegt ebenfalls im Rahmen der Erfindung, diesen Mittelgrad gradlinig verlaufend auszubilden.

[0022] Des weiteren liegt es im Rahmen der Erfindung, wenn in Abweichung des Ausführungsbeispiels der Fig. 6 die Funktionsfläche 9 in der Querebene eine konkave, kreisbogenförmige Schnittkontur besitzt, so daß sich eine druckstabile dimere Gelenkkette ausbil-

det, wobei der Radius der Gelenkachsenbahn RM $_1$ = R $_{41}$ - R $_{31}$ ist, mit R $_{41}$ > R $_{31}$, wobei die Mittelpunkte M $_{33}$ und M $_{44}$ im Gelenkkörper mit der konvexen Schnittkontur liegen. Eine entsprechende Ausbildung kann auch für die Funktionsflächen 9a, 9b, in Fig. 8 vorgesehen sein.

Patentansprüche

EP 0 691 830 B1

- 1. Künstliches Gelenk als Endoprothese für das menschliche Kniescheiben-Gelenk, bestehend aus zwei zueinander sich bewegenden Gelenkkörpern, einem das Oberschenkel-Gelenkteil bildenden Gelenkkörper (1) mit zwei zusammengefaßten nebeneinander liegenden Gelenkköpfen, und zwar einem lateralen Gelenkkopf (2) und einem medialen Gelenkkopf (3) und einem das Patella-Gelenkbildenden Gelenkkörper (6) mit zwei zusammengefaßten, nebeneinander liegenden Gelenkpfannen, und zwar eine lateralen Gelenkpfanne (8) und einer medialen Gelenkpfanne (7), die jeweils toroidförmige Funktionsflächen (4, 5; 9, 10) mit in zueinander senkrechten Ebenen - einer Längs - und einer entsprechenden Querebene unterschiedlichen kreisförmigen Schnittkonturen besitzen, wobei die laterale Funktionsfläche (4) des lateralen Gelenkkopfes (2) in der Längsebene eine kreisbogenförmige, konvexe Schnittkontur mit dem Rotationszentrum M1 und dem Radius R1 besitzt und in der Längsebene gesehen das mediale Gelenk einen medialen Gelenkkopf (3) mit einer kreisförmigen, konvexen Schnittkontur mit dem Rotationszentrum M3 und dem Radius R3 besitzt und die laterale Gelenkpfanne (8) in der Längsebene gesehen eine Funktionsfläche (10) mit einer kreisförmigen, konkaven Schnittkontur mit dem Rotationszentrum M2 und dem Radius R2 aufweist und die mediale Gelenkpfanne (7) eine Funktionsfläche (9) mit einer in der Längsebene gesehen kreisförmigen, konkaven Schnittkontur mit dem Mittelpunkt M4 und dem Radius R4 besitzt, und die Radien R₁, R₂, R₃ und R₄ so gewählt sind, daß gewährleistet ist, daß die Kontaktpunkte, die sich um das Rotationszentrum M1 bewegen, einen deutlich größeren Weg beschreiben als die Kontaktpunkte, die sich um das Rotationszentrum M3 bewegen, wobei die Kontaktpunkte jeweils die Berührungspunkte der gegenüberliegenden Funktionsflächen darstellen und die Gelenkgeometrie der in Kontakt tretenden Funktionsflächen (4, 10; 5, 9) zueinander in jeder der beiden Funktionsebenen durch eine Gelenkkette mit zwei Gelenkachsen, dimere Gelenkkette, bestimmt ist, die durch die Krümmungsmittelpunkte M₁, M₂; M₃, M₄; M₁₁, M₂₂; M₃₃, M₄₄ der Funktionsflächen (4, 5; 9, 10) verlaufen und durch diese festgelegt sind.
- 2. Künstliches Gelenk nach Anspruch 1,

10

30

dadurch gekennzeichnet, daß die Rotationszentren M1 und M2 innerhalb des Gelenkteils mit der konvexen Schnittkontur liegen und die Gelenkachsenbahn der Rotationszentren einen Radius $RL = R_2 - R_1$ besitzen, wobei R_2 größer ist als R_1 . 5

3. Künstliches Gelenk nach Anspruch 1 oder 2, dadurch gekennzeichnet,

daß in der Querebene die laterale Funktionsfläche (4) des lateralen Gelenkkopfes (2) und die laterale Funktionsfläche (10) der Gelenkpfanne (8) eine kreisförmige Schnittkontur besitzen, wobei die kreisförmige, konvexe Schnittkontur der Funktionsfläche (4) den Radius R₁₁ und den Mittelpunkt M₁₁ besitzt und die kreisförmige, konkave Funktionsfläche (10) den Radius R₂₂ sowie den Mittelpunkt M₂₂ aufweist, und die Rotationszentren M_{11} und M_{22} im Körper mit der konvexen Funktionsfläche (4) liegen, und die Gelenkachsenbahn der Rotationszentren einen Radius RL₁ = R₂₂ - R₁₁ besitzt, wobei R₂₂ 20

4. Künstliches Gelenk nach Anspruch 2 oder 3. dadurch gekennzeichnet.

daß die Mittelpunkte M_{11} und M_{22} nicht mit den Rotationszentren M₁ bzw. M₂ zusammenfallen und M₂ vorteilhafterweise in der Position des gestreckten Beines gesehen gegenüber M1 nach hinten versetzt ist, während M22 in bezug auf M11 nach außen versetzt ist.

- 5. Künstliches Gelenk nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet. daß die Rotationszentren M_3 und M_4 jeweils im Körper mit der konvexen Schnittkontur der Funktionsflächen liegen und die Gelenkachsenbahn der Rotationszentren M3 und M4 einen Radius $RM = R_4 - R_3$ aufweist, wobei $R_4 > R_3$ ist.
- Künstliches Gelenk nach Anspruch 5, dadurch gekennzeichnet,

daß im Schnitt durch die Querebene die Funktionsfläche (5) des Gelenkkopfes (3) und die Funktionsfläche (9) der Gelenkpfanne (7) jeweils kreisförmige Schnittkonturen aufweisen, wobei die Funktionsfläche (5) dabei eine konvexe Schnittkontur mit dem Mittelpunkt M33 und dem Radius R31 besitzt, und die Funktionsfläche (9) der medialen Gelenkpfanne eine kreisförmige, konvexe Schnittkontur mit dem Rotationszentrum M44 und dem Radius M₄₁ besitzt, wobei die Rotationszentren M₃₃ und M₄₄ jeweils innerhalb des zugehörigen Gelenkkörpers (3, 7) sich befinden und die Gelenkachsenbahn der Rotationszentren M₃₃ und M₄₄ einen Radius RM 1 = R 31 + R 41 besitzt.

7. Künstliches Gelenk nach einem der Ansprüche 1 bis 6, dadurch gekennzelchnet.

daß das Rotationszentrum M4 bezogen auf das Rotationszentrum M₃ nach distal, d.h. nach hinten und nach unten, kaudal, versetzt ist sowie das Rotationszentrum M₄₄ bezogen auf das Rotationszentrum M33 nach vorne und nach außen, lateral,

Künstliches Gelenk nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet.

daß in der oder in den Querebenen die konvexen Gelenkköpfe (2, 3) durch eine abgestimmte konkave Struktur verbunden sind und in der oder in den Querebenen die Gelenkpfannen (7, 8) durch eine abgestimmte konvexe Struktur verbunden sind. wobei vorteilhafterweise der Radius der verbindenden konkaven Struktur zwischen den Gelenkköpfen (2, 3) nicht identisch ist mit den Radien Rad und Rag und der Radius der die Gelenkpfannen (7, 8) verbindenden konvexen Struktur größer ist als der der konkaven verbindenden Struktur der Gelenkköpfe (2, 3).

9. Künstliches Gelenk nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet,

daß die Mittelpunkte M1 und M2 zueinander und die Mittelpunkte M2 und M4 zueinander, ebenso wie die Mittelpunkte M2 und M4 zu den Mittelpunkten M1 und M2 so gewählt sind, daß in der Startposition des Standes des menschlichen Knies die Kontaktpunkte im lateralen wie im medialen Gelenkteil weitgehend in einer nahezu horizontalen Querebene liegen.

10. Künstliches Gelenk nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,

daß die Gelenkpfanne (9, 10) des Patella-Gelenkteils (6) Funktionsflächen aufweist, die jeweils in zwei übereinanderliegende Teil-Funktionsflächen (9a, 9b) und (10a, 10b) unterteilt sind, wobei die kreisförmige Schnittkontur dieser Teilfunktionsflächen derjenigen der entsprechenden Funktionsfläche (9, 10) entspricht.

11. Künstliches Gelenk nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,

daß die Funktionsfläche (9) in der Querebene gesehen eine konkave, kreisbogenförmige Schnittkontur besitzt, wobei der Radius der Gelenkachsenbahn $RM_1 = R_{41} - R_{31}$ ist mit $R_{41} > R_{31}$, wobei die Mittelpunkte M₃₃ und M₄₄ im Gelenkkörper mit der konvexen Schnittkontur liegen.

Claims

55 1. Artificial joint as endoprosthesis for the human patellar joint, consisting of two joint components which move in relation to one another, a joint component (1) forming the femoral joint part, having two

joint heads combined and lying alongside one another, namely a lateral joint head (2) and a medial joint head (3), and a joint component (6) forming the patellar joint part, having two joint sockets combined and lying alongside one another, namely a lateral joint socket (8) and a medial joint socket (7), which each have toroidal functional surfaces (4, 5; 9, 10), respectively, with different circular sectional contours in mutually perpendicular planes, a longitudinal plane and a corresponding transverse plane, the lateral functional surface (4) of the lateral joint head (2) having in the longitudinal plane a circular arc-shaped, convex sectional contour with centre of rotation M1 and radius R1, and, viewed in the longitudinal plane, the medial joint having a medial joint head (3) with a circular, convex sectional contour with centre of rotation M3 and radius R₃, and the lateral joint socket (8), viewed in the longitudinal plane, having a functional surface (10) with a circular, concave sectional contour with centre of rotation M2 and radius R2, and the medial joint socket (7) having a functional surface (9) with, viewed in the longitudinal plane, a circular, concave sectional contour with centre point M4 and radius R_4 , and the radii R_1 , R_2 , R_3 and R_4 are chosen in such a way as to ensure that the contact points which move about the centre of rotation M₁ describe a considerably greater path than the contact points which move about the centre of rotation M₃, the contact points in each case representing the points where opposite functional surfaces touch, and the joint geometry of the functional surfaces (4, 10; 5, 9) coming into contact with one another is determined in each of the two functional planes by a joint chain, a dimeric joint chain, with two joint axes running through the centres of curvature M_1 , M_2 ; M_3 , M_4 ; M_{11} , M_{22} ; M_{33} , M_{44} of the functional surfaces (4, 5; 9, 10) and fixed by these.

- Artificial joint according to Claim 1, characterized in that the centres of rotation M₁ and M₂ lie within the joint part having the convex sectional contour, and the joint axis path of the centres of rotation has a radius RL = R₂ - R₁, where R₂ is greater than R₁.
- 3. Artificial joint according to Claim 1 or 2, characterized in that, in the transverse plane, the lateral functional surface (4) of the lateral joint head (2) and the lateral functional surface (10) of the joint socket (8) have a circular sectional contour, the circular, convex sectional contour of the functional surface (4) having radius R₁₁ and centre point M₁₁, and the circular, concave functional surface (10) having radius R₂₂ and centre point M₂₂, and the centres of rotation M₁₁ and M₂₂ lie in the component with the convex functional surface (4), and the joint axis path of the centres of rotation has a radius RL₁ = R₂₂ R₁₁, where R₂₂ > R₁₁.

- 4. Artificial joint according to Claim 2 or 3, characterized in that the centre points M₁₁ and M₂₂ do not coincide with the centres of rotation M₁ and M₂, and M₂ is advantageously offset rearwards in relation to M₁, viewed in the extended position of the leg, while M₂₂ is offset outwards in relation to M₁₁.
- 5. Artificial joint according to one of Claims 1 to 4, characterized in that the centres of rotation M₃ and M₄ each lie in the component having the convex sectional contour of the functional surfaces, and the joint axis path of the centres of rotation M₃ and M₄ has a radius RM = R₄ R₃, where R₄ > R₃.
- Artificial joint according to Claim 5, characterized in that, in the section through the transverse plane, the functional surface (5) of the joint head (3) and the functional surface (9) of the joint socket (7) each have circular sectional contours, the functional surface (5) in this case having a convex sectional contour with centre point M₃₃ and radius R₃₁, and the functional surface (9) of the medial joint socket having a circular, convex sectional contour with centre of rotation M₄₄ and radius M₄₁, where the centres of rotation M₃₃ and M₄₄ are each located within the associated joint component (3, 7) and the joint axis path of the centres of rotation M₃₃ and M₄₄ has a radius RM₁ = R₃₁ + R₄₁.
- Artificial joint according to one of Claims 1 to 6, characterized in that the centre of rotation M₄ is offset distally in relation to the centre of rotation M₃, i.e. rearwards and downwards, or caudal, and the centre of rotation M₄₄ is offset forwards and laterally outwards in relation to the centre of rotation M₃₃.
 - 8. Artificial joint according to one of Claims 1 to 7, characterized in that, in the transverse plane or planes, the convex joint heads (2, 3) are connected by an adapted concave structure and in the transverse plane or planes the joint sockets (7, 8) are connected by an adapted convex structure, the radius of the connecting concave structure between the joint heads (2, 3) being advantageously non identical to the radii R₄₄ and R₂₂, and the radius of the convex structure connecting the joint sockets (7, 8) being greater than that of the concave connecting structure of the joint heads (2, 3).
- Artificial joint according to one of Claims 1 to 8, characterized in that the centre points M₁ and M₂ are chosen in relation to one another, and the centre points M₂ and M₄ are chosen in relation to one another, and the centre points M₂ and M₄ are chosen in relation to the centre points M₁ and M₂, in such a way that in the starting position of the standing human knee, the contact points in the lateral joint part and the contact points in the medial joint

45

20

part lie substantially in an almost horizontal transverse plane.

- 10. Artificial joint according to one of Claims 1 to 9, characterized in that the joint socket (9, 10) of the patellar joint part (6) has functional surfaces which are each divided into two subsidiary functional surfaces (9a, 9b) and (10a, 10b) lying one above the other, the circular sectional contour of these subsidiary functional surfaces corresponding to that of the corresponding functional surface (9, 10).
- 11. Artificial joint according to one of Claims 1 to 10, characterized in that the functional surface (9), viewed in the transverse plane, has a concave, circular arc-shaped sectional contour, where the radius of the joint axis path RM₁ = R₄₁ R₃₁, with R₄₁ > R₃₁, the centre points M₃₃ and M₄₄ lying in the joint component with the convex sectional contour.

Revendications

1. Articulation artificielle utilisée comme endoprothèse pour l'articulation du genou humain, composée de deux corps d'articulation mobiles l'un par rapport à l'autre, dont un corps d'articulation (1) qui forme la partie de l'articulation côté cuisse et qui possède deux têtes d'articulation regroupées disposées l'une à côté de l'autre, à savoir, une tête d'articulation latérale (2) et une tête d'articulation médiale (3), et un corps d'articulation (6) qui forme la partie d'articulation côté rotule et qui possède deux cuvettes d'articulation regroupées disposées l'une à côté de l'autre, à savoir une cuvette d'articulation latérale (8) et une cuvette d'articulation médiale (7) qui possèdent chacune des surfaces fonctionnelles toroïdales (4, 5; 9, 10) qui, dans des plans perpendiculaires entre eux - un plan longitudinal et un plan transversal correspondant - possèdent des profils en coupe circulaires différents, la surface fonctionnelle latérale (4) de la tête d'articulation latérale (2) possédant, dans le plan longitudinal, un profil en coupe en arc de cercle, convexe, de centre de rotation M₁ et de rayon R₁, et l'articulation médiale possédant, vue dans le plan longitudinal. une tête d'articulation médiale (3) qui possède un profil en coupe circulaire, convexe, de centre de rotation M₃ et de rayon R₃, et la cuvette d'articulation latérale (8) présentant, vue dans le plan longitudinal, une surface fonctionnelle (10) qui possède un profil en coupe circulaire, concave, de centre de rotation M2 et de rayon R2 tandis que la cuvette d'articulation médiale (7) présente une surface fonctionnelle (9) qui possède, vue dans le plan longitudinal, un profil en coupe circulaire, concave, de centre M₄ et de rayon R₄, et les rayons R₁, R₂, R₃, R₄ étant choisis de manière qu'il soit garanti que les

points de contact qui se déplacent autour du centre de rotation M_1 décrivent un trajet beaucoup plus grand que les points de contact qui se déplacent autour du centre de rotation M_3 , et les points de contact représentant chacun les points de contact matériel des surfaces fonctionnelles opposées, et la géométrie d'articulation des surfaces fonctionnelles (4, 10; 5, 9) qui entrent en contact étant déterminée, l'une par rapport à l'autre dans chacun des deux plans fonctionnels, par une chaîne d'articulations possédant deux axes d'articulations, des chaînes d'articulation dimères, qui passent par les centres de courbure (M_1 , M_2 ; M_3 , M_4 ; M_{11} , M_{22} ; M_{33} , M_{44}) des surfaces fonctionnelles (4, 5; 9, 10) et sont déterminés par ces dernières.

- Articulation artificielle selon la revendication 1, caractérisée en ce que les centres de rotation M₁ et M₂ se trouvent à l'intérieur de la partie d'articulation qui possède le profil en coupe convexe, et la trajectoire d'axe d'articulation des centres de rotation possède un rayon RL = R₂ - R₁, où R₂ est plus grand que R₁.
- 3. Articulation artificielle selon la revendication 1 ou 2. 25 caractérisée en ce que, dans le plan transversal, la surface fonctionnelle latérale (4) de la tête d'articulation latérale (2) et la surface fonctionnelle latérale (10) de la cuvette d'articulation (8) possèdent un profil en coupe circulaire, le profil en coupe circulaire, convexe de la surface fonctionnelle (4) possédant le rayon R₁₁ et le centre M₁₁, et la surface fonctionnelle circulaire, concave (10) possédant le rayon R₂₂ ainsi que le centre M₂₂, et les centres de rotation M₁₁ et M₂₂ se trouvent dans le corps possédant la surface fonctionnelle convexe (4), et la trajectoire d'axe d'articulation des centres de rotation possède un rayon RL₁ = R₂₂-R₁₁, où R₂₂ >
 - 4. Articulation artificielle selon la revendication 2 ou 3, caractérisée en ce que les centres M₁₁ et M₂₂ ne coîncident pas avec les centres de rotation M₁ et M₂ respectivement, et, dans la position de la jambe étendue, M₂ est avantageusement déporté vers l'arrière par rapport à M₁, tandis que M₂₂ est déporté vers l'extérieur par rapport à M₁₁.
 - Articulation artificielle selon une des revendications
 1 à 4, caractérisée en ce que les centres de rotation
 M₃ et M₄ se trouvent chacun dans le corps possédant le profil en coupe convexe des surfaces fonctionnelles, et la trajectoire d'axe d'articulation des centres de rotation M₃ et M₄ présente un rayon
 RM = R₄ -R₃, où R₄ est > R₃.
 - Articulation artificielle selon la revendication 5, caractérisée en ce qu'en coupe dans le plan trans-

50

versal, la surface fonctionnelle (5) de la tête d'articulation (3) et la surface fonctionnelle (9) de la cuvette d'articulation (7) présentent chacune un profil en coupe circulaire, la surface fonctionnelle (5) possédant ici un profil en coupe convexe de centre M_{33} et de rayon R_{31} et la surface fonctionnelle (9) de la cuvette d'articulation médiale possédant un profil en coupe circulaire, convexe, de centre de rotation M_{44} et de rayon R_{41} , les centres de rotation M_{33} et M_{44} se trouvant chacun à l'intérieur du corps d'articulation correspondant (3, 7) et la trajectoire d'axe d'articulation des centres de rotation M_{33} et M_{44} possédant un rayon $RM_{1} = R_{31} + R_{41}$.

7. Articulation artificielle selon une des revendications 1 à 6, caractérisée en ce que par rapport au centre de rotation M₃, le centre de rotation M₄ est déporté dans la direction distale, c'est-à-dire vers l'arrière et vers le bas, dans la direction caudale, tandis que, par rapport au centre de rotation M₃₃, le centre de rotation M₄₄ est déporté vers l'avant et vers l'extérieur, dans la direction latérale.

8. Articulation artificielle selon une des revendications 1 à 7, caractérisée en ce que, dans le plan transversal ou les plans transversaux, les têtes d'articulation convexes (2, 3) sont reliées par une structure concave accordée et, dans le plan transversal ou les plans transversaux, les cuvettes d'articulation (7, 8) sont reliées par une structure convexe accordée, et, dans un mode avantageux, le rayon de la structure concave de liaison entre les têtes d'articulation (2, 3) n'est pas identique aux rayons R₄₄ et R₂₂, et que le rayon de la structure convexe qui relie les cuvettes d'articulation (7, 8) est plus grand que celui de la structure concave de liaison des têtes d'articulation (2, 3).

9. Articulation artificielle selon une des revendications 1 à 8, caractérisée en ce que les centres M1 et M2. l'un par rapport à l'autre, et les centres M2 et M4, l'un par rapport à l'autre, de même que les centres M2 et M4 par rapport aux centres M1 et M2, sont choisis de manière que, dans la position de départ de la position debout du genou humain, les points de contact dans la partie latérale comme dans la partie médiale de l'articulation se trouvent dans une large mesure dans un plan transversal presque horizontal.

10. Articulation artificielle selon une des revendications 1 à 9, caractérisée en ce que la cuvette d'articulation (9, 10) de la partie d'articulation côté rotule (6) présente des surfaces fonctionnelles qui sont divisées chacune en deux surfaces fonctionnelles partielles (9a, 9b) et (10a, 10b) placées l'une audessus de l'autre, le profil en coupe circulaire de ces surfaces fonctionnelles partielles correspondant à celui de la surface fonctionnelle correspondante (9, 10).

11. Articulation artificielle selon une des revendications 1 à 10, caractérisée en ce que, vue dans un plan transversal, la surface fonctionnelle (9) possède un profil en coupe concave, en forme d'arc de cercle, le rayon de la trajectoire d'axe d'articulation est RM ₁ = R ₄₁ - R ₃₁, avec R₄₁ > R₃₁, les centres M₃₃ et M₄₄ se trouvant à l'intérieur du corps d'articulation qui possède le profil en coupe convexe.

15

8

FIG.8