Stochastic of Finance Lecture 1

Contents

1 Recap 1

2 Content 1

1 Recap

2 Content

Definition 1

Axiomatic definition of probability spaces

Let Ω be the set of all possible outcomes of a random experiment. Let $\mathcal{F} \subseteq 2^{\Omega}$ be a σ -algebra on Ω , i.e., the following hold:

- 1. $\Omega \in \mathcal{F}$.
- $2. A \in \mathcal{F} \implies \Omega \setminus A \in \mathcal{F}.$
- 3. \mathcal{F} is closed under countable union, that is, if $A_i \in \mathcal{F}$ for i = 1, 2, ..., then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Let P be a function (measure) $P: \mathcal{F} \to [0,1]$ such that the following hold:

- 1. $P(A) \ge 0$ (trivially holds due to range).
- 2. P is σ -additive, i.e., if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ is a countable collection of disjoint subsets, then we have $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.
- 3. $P(\Omega) = 1$.

Then (Ω, F, P) is a probability space.

The classical probability comes from the formal definition when Ω is finite, $|\Omega| = n$, $P(\{\omega\}) = \frac{1}{n}$ where $\omega \in \Omega$, \mathcal{F} is the power set of Ω , which also turns out to be a σ -field on Ω .

Definition 2

Random variables:

Given a probability space (Ω, \mathcal{F}, P) , if $X : \Omega \to \mathbb{R}$ is a function such that $X^{-1}((-\infty, x]) \in \mathcal{F} \ \forall x \in \mathbb{R}$, then X is a random variable, or a measurable function w.r.t. \mathcal{F} .

Example 1

If F is the largest σ -field (power set but maybe for infinite sets), then any real-function is a random variable.

Example 2

A constant function is always a random variable.

Definition 3

Stochastic processes:

A stochastic process $\{X(t), t \in T\}$ is a collection of random variables defined on the probability space (Ω, \mathcal{F}, P) .

Example 3

Examples of real-life stochastic processes:

- 1. Price of some stock at the end of the day.
- 2. Number of trades made every second.
- 3. Market index at time t.
- 4. Number of companies registered in stock market at the end of the week.
- 5. Variance in a stock price in a day measure on the random variables (since computed from the data). Usually we call observed information (and not computed information) a random variable. Note also time series. Nothing wrong with calling this a random variable, but this won't be the focus of the course.

Some stochastic processes have some important properties, as follows:

- 1. Independence (mutual, not pairwise) can verify such assumptions.
- 2. Stationary many times we can assume that data is stationary. Two types:
 - (a) Wide sense
 - (b) Strict sense (by default)
- 3. Memoryless property.
- 4. Martingale property also useful with conditional expectations.

For more, revisit MTL106. Time homogeneous is similar to stationary.

Example 4

Poisson process

 $\{N(t), t \geq 0\}$ - number of events occurring upto and including time t. Suppose $N(t) \sim \mathcal{P}(\lambda t)$ where \mathcal{P} is the Poisson distribution, and λ is a fixed parameter. This stochastic process is called a Poisson process. Some properties:

- 1. Increments are independent.
- 2. Increments are stationary.
- 3. Satisfies the memoryless property.
- 4. Doesn't satisfy the martingale property.

We can derive a random variable that satisfies the martingale property from any random variable.

Example 5

Brownian motion/Wiener process

Let $\{W(t), t \geq 0\}$ be a stochastic process which satisfies the following conditions:

- 1. W(0) = 0
- 2. For fixed t, $W(t) \sim \mathcal{N}(0, t)$
- 3. Increments are independent.
- 4. Increments are stationary.