Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-51

Махньов О. I.

Перевірив:

доц. Короткий \in B.

1. Дослідження суматора напруги на резисторі

а. Під час лабораторного заняття було складено суматор напруги за наступною схемою:

У якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. R було вибрано 75 кОм, як значно більші за внутрішній опор джерел. Напруги джерел було налаштовано наступним чином:

Щуп вольтметру Analog Discovery було підключено до точки V_{out} . Результати вимірювань склали -524 мВ, що з урахуванням похибок, відповідає теоретичним передбаченням:

b. Симуляція суматора в LTspice для постійного сигналу

 $V_1 = -2V$

 $V_2 = 1V$

 $V_{out} = -0.5V$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

На суматор було подано два сигналу – імпульсний, амплітудою 2В, частотою 1 кГц та коефіцієнтом заповнення 50%, та синусоїдальний, амплітудою 2В та частотою 2 кГц. До виходу суматора було під'єднано один зі входів осцилографу, інший вхід було підключено до виходу генератора:

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

Налаштування осцилографу: 1В/клітинка, 500 мкс/клітинка вертикальне зміщення 0.5В, - 0.5В для каналів відповідно.

d. Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження. Отриманий вихідний сигнал відповідає за формою сигналу з лабораторних досліджень:

2. Дослідження RC-ланцюжка.

а. Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами:

$$C = 82 \text{ н}\Phi$$

$$R = 3.9 \text{ kOm}$$

b. Тривалість заряду/розряду до 99% складає:

$$t = 5\tau = 5 \times R \times C = 5 \times 82 \times 10^{-9} \times 3.9 \times 10^{3} = 1.6 \text{ mc}$$

с. На вхід RC-ланцюжка подали імпульсний сигнал з частотою 200 Гц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка, параметри осцилографа: 200 мкс/клітинку, 0.5 В/клітинку:

Точка 1.6 мс після фронту вхідного сигналу відповідає 99% заряду/розряду конденсатору, що відповідає теоретичним очікуванням.

d. Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3. Дослідження RC-фільтру низької частоти

а. Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

$$C = 82 \text{ H}\Phi$$

$$R = 3.9 \text{ kOm}$$

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3,14 \times 3,9 \times 10^3 \times 82 \times 10^{-9}} \approx 497 \Gamma \mu$$

b. Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery. Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3 дБ) знаходиться на частоті 455 Гц, що, з урахуванням похибки, відповідає очікуванням.

Швидкість спадання AЧX - -20дБ/дек. також спостерігається у виміряній AЧX, що відповідає очікуванням:

с. Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , Гц	К _и теоретичне	К _и експеримент.	Похибка, %
1	0	1	1-0	-
2	100	0,980	0,972	0,82
3	200	0,927	0,912	1,62
4	300	0,854	0,832	2,58
5	400	0,779	0,750	3,72
6	497	0,707	0,674	4,67
7	500	0,705	0,671	4,82
8	600	0,638	0,598	6,27
9	700	0,579	0,543	6,22
10	800	0,528	0,499	5,49

Виділено K_u на частоті зрізу. Аналіз похибки вимірювань свідчить про коректність отриманих даних.

d. Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було виконано дослідження роботи суматору на резисторах та RC-ланцюжка в умовах роботи з гармонійним і імпульсним сигналом. Під час роботи зняли вихідну осцилограму суматора при постійних та змінних сигналах на вході, частотну та перехідну характеристики RC-фільтру. Проведенні експерименти повторили у симуляторі та порівняли результати. Збіжність даних симуляції та експерименту підтверджують коректність експериментів при урахуванні деякої похибки вимірювань.