CO 250 Spring 2023: Tutorial 4 problems Due: Friday June 2

In this tutorial, we practise nonlinear programming formulations, outcomes of LPs and LPs in SEF.

T4-1. We are required to draw rectangles $R_1,...,R_n$ (without rotations) on a rectangular sheet, such that no two rectangles intersect but can potentially touch. For i=1,...,n the rectangle R_i has size $a_i \times b_i$.

Formulate an NLP to find a rectangular sheet of smallest possible area such that all rectangles can be drawn on it without intersections.

T4-2. Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, consider the following LP.

$$\begin{array}{ll}
\min & c^T x \\
\text{subject to} \\
A x \ge b \\
x \ge \mathbf{0},
\end{array}$$

Let $b \leq \mathbf{0}$ and let there exist a vector $z \in \mathbb{R}^m$, $z \geq \mathbf{0}$ such that $c \geq A^T z$. Determine the outcome of the above LP and prove correctness of your answer.

T4-3. Given $c \in \mathbb{R}^n$, $r \in \mathbb{R}^m$, $b \in \mathbb{R}^q$, $d \in \mathbb{R}^g$, $A \in \mathbb{R}^{q \times n}$, $B \in \mathbb{R}^{q \times m}$, $C \in \mathbb{R}^{g \times n}$, $D \in \mathbb{R}^{g \times m}$, convert the following LP into Standard Equality Form.

min
$$c^T x + r^T y$$
 (P) subject to
$$Ax + By \ge b$$
 $Cx + Dy \le d$ $x \le \mathbf{0}, y \text{ free },$

where $x = (x_1, x_2, ..., x_n)^T$ and $y = (y_1, y_2, ..., y_m)^T$.

Call the new LP from part (that is in SEF): (P'). Given a feasible solution of (P') show how to obtain the corresponding feasible solution of (P). Further, given a feasible solution of (P) show how to obtain a corresponding feasible solution of (P').