

Principais aplicações

- ✓ componentes para substituição total ou parcial da anca (cabeça e acetábulo);
- ✓ revestimento de implantes metálicos;
- ✓ enchimento de defeitos ósseos (traumáticos ou patológicos);
- ✓ cimento ósseo;
- ✓ próteses da córnea;
- ✓ implantes dentários; braquetes em aparelhos dentários;
- √ scaffolds....

Cerâmicos usados em medicina:

- ✓ alumina e zircónia;
- ✓ biovidros e vidros cerâmicos (vitrocerâmicas);
- ✓ fosfatos de cálcio: hidroxiapatite (HA) e fosfato tricálcico (TCP);
- ✓ carbono.

Materiais cerâmicos quase inertes

- √ não formam qualquer ligação química ou biológica com os tecidos adjacentes;
- √ desenvolvimento de cápsula fibrosa;
- ✓ ex: cerâmicos não porosos, densos e inertes (alumina, zircónia e carbono).

Materiais cerâmicos bioativos

- ✓ material que induz crescimento tecidual; materiais porosos (50 150 μm);
- ✓ a interface ocorre através de tecido vivo que cresce dentro dos poros existentes no revestimento do implante;
- ✓ a elevada área interfacial (devida à porosidade) é favorável à vascularização do tecido;
- ✓ ex: materiais cerâmicos porosos: hidroxiapatite, compostos de fosfato de cálcio, biovidros.

Materiais cerâmicos reabsorvíveis

- ✓ materiais que são reabsorvidos pelo organismo;
- ✓ permitem o crescimento de tecido à medida que se degradam;
- ✓ ex: fosfato tricálcico (na forma porosa ou em partículas): cerâmico reabsorvível de eficiência comprovada e hidroxiapatite (reabsorção lenta).

Alumina (Al₂O₃) e zircónia (ZrO₂)

- √ são os biocerâmicos estruturais mais usados;
- ✓ aplicação em componentes da prótese da anca (cabeça e acetábulo) e implantes dentários;
- ✓ o coeficiente de fricção das superfícies alumina-alumina é próximo dos valores exibidos pela articulação natural;
- ✓ elevada resistência ao desgaste.

Comparação das taxas de desgaste

Da esquerda para direita: metal/polietileno, metal/polietileno reticulado, metal/metal e cerâmica/cerâmica.

Aplicações odontológicas:

- ✓ Restauração dentária (coroas, pontes, …)
- ✓ Ortodontia (braquetes)
- ✓ Revestimento de implantes

Outras aplicações:

- ✓ Implantes do ouvido interno (implantes cocleares)
- ✓ Implantes oculares, óculos

Comparação de propriedades da alumina e zircónia

Property	Alumina	Zirconia
Chemical composition	A1,0, + MgO	$ZrO_2 + MgO + Y_2O_3$
Purity (%)	99.9	95~97
Density (g/cm³)	> 3.97	5.74~6.0
Porosity (%)	< 0.1	< 0.1
Bending strength (MPa)	> 500	500~1 000
Compression strength (MPa)	4100	2000
Young's modulus (GPa)	380	210
Poisson's ratio	0.23	0.3
Fracture toughness (MPa m ^{1/2})	4	up to 10
Thermal expansion coefficient (×10 ⁻⁶ /K)	8	11
Thermal conductivity (W/m/K)	30	2
Hardness (HV0. 1)	up to 2200	1200
Contact angle (°)	10	50

A zircónia podia ser um candidato para a substituição da alumina, mas....

- ✓ possível redução da resistência do material quando submetido a meios fisiológicos;
- √ desgaste mais acentuado em ambiente fisiológico;
- ✓ radioatividade do material: presença de impurezas radioativas.

Biovidros e Vidros cerâmicos (vitrocerâmicos)

➤ Bioglass ® e Ceravital® foram desenvolvidos para implantes.

Type	Code	SiO ₂	CaO	Na ₂ O	P_2O_5	MgO	K_2O
Bioglass							
0.50	42S5.6	42.1	29.0	26.3	2.6	57 6	\$ 10
	(45S5)46S5.2	46.1	26.9	24.4	2.6	 	
	49S4.9	49.1	25.3	23.0	2.6	<u> </u>	
	52S4.6	52.1	23.8	21.5	2.6	155 8	
	55S4.3	55.1	22.2	20.1	2.6	133 16	
	60S3.8	60.1	19.6	17.7	2.6	F1476	175
Cervital*							
	Bioactive	40.0-50.	30.0-35.0	5.0-10.0	10.0-15.0	2.5-5.0	0.5 - 3.0
	**Nonbioactive	30.0-35.0	25.0-30.0	3.5-7.5	7.5 - 12.0	1.0-2.5	0.5 - 2.0

^{*}The Ceravital composition is in weight % while the Bioglass compositions are in mol %.

^{**}In addition Al_2O_3 (5.0–15.0), $TiO_2(1.0-5.0)$ and Ta_2O_5 (5.0–15.0) are added.

Integração do Bioglass com o osso.....

Aplicações

- ✓ reparação e substituição de osso (enchimento ósseo);
- ✓ componente em cimento ósseo;
- ✓ compósitos para reparação dentária;
- ✓ revestimento de superfícies.

Vantagens / limitações

- ✓ excelentes propriedades mecânicas;
- ✓ elevada bioatividade (propriedades osteogénicas: formação de uma camada à superfície do implante equivalente em composição e estrutura à fase mineral do osso);
- ✓ material muito frágil.

Fosfatos de cálcio

- ✓ hidroxiapatite $(Ca_{10}(PO_4)_6(OH)_2)$ e fosfato tricálcico $(Ca_3(PO_4)_2)$;
- ✓ estrutura química semelhante à fase mineral do osso e dentes;
- ✓ elevada biocompatibilidade e bioatividade;
- ✓ materiais reabsorvíveis:
 - TCP (6 15 semanas)
 - HA (4 5 anos)

HA

Aplicações clínicas:

✓ produção de osso artificial; substituto ósseo (granular ou bloco);

✓ reparação de defeitos ósseos em ortopedia e odontologia;

✓ recobrimento de superfícies metálicas;

√ componente em cimento ósseo;

✓ scaffolds (cerâmicos porosos)...

Carbonos

Properties of Various Types of Carbon

diamante (cristalino

grafite

❖ carbono vítreo (não cristalino)

		Types of carbon	
Properties	Graphite	Glassy	Pyrolytica
Density (g/cm³)	1.5-1.9	1.5	1.5-2.0
Elastic modulus (GPa)	24	24	28
Compressive strength (MPa)	138	172	517 (575°)
Toughness (mN/cm3)	6.3	0.6	4.8

^{21.0} w/o Si-alloyed pyrolytic carbon, Pyrolite® (Carbomedics, Austin, TX)

❖ carbono pirolítico (parcialmente cristalino): utilizado na área biomédica

Aplicações:

- ✓ revestimento de superfícies;
- ✓ excelente compatibilidade com os tecidos e com o sangue (faz com que o carbono pirolítico seja depositado em válvulas cardíacas e paredes dos vasos sanguíneos);
- ✓ melhorar dispositivos médicos: tesouras cirúrgicas.....
- ✓ componente em materiais compósitos.

 $^{^{}b}1 \text{ m-N/cm}^{3} = 1.45 \times 10^{-3} \text{ in-lb/in}^{3}$.

Vantagens/limitações dos materiais cerâmicos

- elevada estabilidade em meio fisiológico
- quimicamente inertes
- de biocompatibilidade e bioatividade
- elevada resistência ao desgaste
- reabsorção *in vivo* (HA, TCP)
- 🕠 frágeis

Principais aplicações

- ✓ Obturação dentária (resinas compósitas);
- ✓ Cimento ósseo e implantes ortopédicos;
- ✓ Material diverso como cateteres, luvas ...

 (micro ou nano partículas de prata podem ser incorporadas em materiais poliméricos por forma a prevenir a colonização bacteriana).

Resinas compósitas

matriz polimérica: BIS-GMA, bis(4-hidroxifenol), dimetilmetano e glicidil-metacrilato

elementos de reforço: partículas de vidro de bário ou sílica (quartzo, SiO₂)

Partículas translucidas

Table 8-2. Composition and Shear Modulus of Dental Composites

Name	Fillers	Filler amount (w/o)	Particle size (µm)	G (GPa), 37°C
Adaptic	quartz	78	13	5.3
Concise	quartz	77	11	4.8
Nuva-fil	barium glass	79	7	<u> </u>
Isocap	colloidal silica	33	0.05	9 <u>29</u>
Silar	colloidal silica	50	0.04	2.3

Cimento ósseo

matriz polimérica: polimetil metacrilato (PMMA)

elementos de reforço: fibras de carbono (melhores propriedades mecânicas; aumento da viscosidade) ou partículas de fosfato de cálcio, hidroxiapatite (melhoram a bioatividade e biocompatibilidade).

- > não é necessário dar forma à cavidade;
- > ótimo contacto entre osso e implante;
- boa biocompatibilidade e bioatividade;
- preparação realizada durante a cirurgia.

Implantes ortopédicos

matriz polimérica: polietileno (UHMWPE)

elementos de reforço: fibras de carbono

Table 8-4. Properties of Carbon-Reinforced UHMWPE

Fiber amount (%)	Density (g/cm ³)	Young's modulus (GPa)	Flexural strength (MPa)
0	0.94	0.71	14
10	0.99	1.01	20
15	1.00	1.4	23
20	1.03	1.5	25

Compósito dentário. As partículas são sílica (SiO₂) e a matriz polimérica.

Compósito de fibra de vidro e resina epoxídica fraturado.

Compósito do tipo laminado com camadas de fibra alternadas.

BOM ESTUDO!

(mjmoura@isec.pt)