Elektromotorni pogoni

Osnovne relacije:

Translacijsko gibanje			Rotacijsko gibanje		
Udaljenost	S	m	Kutni pomak	α	rad
Brzina	$v = \frac{ds}{dt}$	m/s	Kutna brzina	$\omega = \frac{d\alpha}{dt}$	rad/s
Ubrzanje	$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$	m/s ²	Kutno ubrzanje	$\varepsilon = \frac{d\omega}{dt} = \frac{d^2\alpha}{dt^2}$	rad/s²
Masa	m	kg	Moment tromosti	J	kgm²
Sila	$F = ma = m \frac{dv}{dt}$	N	Zakretni moment ili moment vrtnje	M=Jε	Nm
Mehanički rad	$W = \int F ds$	Nm	Mehanički rad	$W = \int M d\alpha$	Nm
Kinetička energija	$W_k = \frac{1}{2}mv^2$	Ws	Kinetička energija	$W_k = \frac{1}{2}J\omega^2$	Ws
Snaga	$P = \frac{dW}{dt} = Fv$	W	Snaga	$P = \frac{dW}{dt} = M\omega$	W

Lorentzova sila : $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

E – vektor električnog polja

v – vektor brzine

B – vektor gustoće magnetske indukcije

Vodič u magnetskom polju : $U = (v \times B)L$

Vodič protjecan strujom : $\mathbf{F} = I(\mathbf{L} \times \mathbf{B})$

U- inducirani napon L- duljina vodiča

I – struja kroz vodič

Istosmjerni strojevi:

Inducirani napon stroja : $E=k_e\Phi n$

Nezavisna uzbuda

Brzina vrtnje motora: $n=rac{U-I_a(R_a+R_p)-\Delta U_{\check{c}}}{k_e \Phi}$

Moment motora: $M_m = k_m \Phi I_a$

Vanjska karakteristika: $n = \frac{U}{c_e} - M_m \frac{R_a + R_p}{c_e c_m}$

Prazni hod: $M_t = 0$, $I_a = 0$, E = U

Brzina vrtnje P.H. : $n_0 = \frac{U}{k_e \Phi}$

Kratki spoj: n = 0, E = 0

Konstante : $c_e=rac{2\pi}{60}c_m$, $c_{e/m}=k_{e/m}\Phi$ $k_e=rac{pz}{60a}$, $k_m=rac{pz}{2\pi a}$, $\Delta U_{\c c}=2\ V$

p – broj pari polova

a – broj pari paralelnih grana

z – broj vodiča armature

Serijska uzbuda

Brzina vrtnje motora: $n=rac{U-I_a(R_a+R_p+R_u)-\Delta U_{\xi}}{k_e \Phi}$

Na nižem opterećenju:
$$\Phi=k_{\Phi}I_{a}$$
, $M_{m}=k_{m}k_{\Phi}I_{a}^{2}$
$$n=\frac{U}{k_{e}\sqrt{\frac{k_{\Phi}}{k_{m}}M_{m}}}-\frac{R_{a}+R_{p}+R_{u}}{k_{e}k_{\Phi}}$$

Na većem opterećenju (zasićenje):

$$n = \frac{U}{k_e \Phi_z} - \frac{M_m (R_a + R_p + R_u)}{k_e k_m \Phi_z^2}$$

R_u - otpor uzbudnog namota

 R_a - otpor armature

 R_p - predotpor

Izmjenični strojevi:

Inducirani napon: $E = 4.44Nf\Phi$

Sinkrona brzina: $n_{\scriptscriptstyle S}=\frac{60f}{p}$

Snaga motora: $P = 3U_f I_f cos(\varphi)$

Asinkroni motor

Klizanje: $s = \frac{n_s - n}{n_s}$

Nadomjesna shema AM:

Momentna karakteristika:

$$M = \frac{m_s U_s^2 R_r'}{\omega_s s \left[\left(R_s + \sigma_s \frac{R_r'}{s} \right)^2 + (X_{\sigma s} + \sigma_s X_{\sigma r}')^2 \right]}$$
$$\sigma_s = \frac{X_{\sigma s} + X_m}{X_m}$$

Klossova formula:

$$\frac{M}{M_{max}} = \frac{2 + \beta}{\frac{S}{S_{max}} + \frac{S_{max}}{S} + \beta}$$

$$\beta = \frac{2R_s}{\sqrt{R_s^2 + (X_{\sigma s} + \sigma_s X_{\sigma r}')^2}}$$

uvrštavanjem $\beta=0$ dobije se pojednostavljena Klossova formula.

N – broj zavoja m_s – broj faza statora Energetska bilanca AM:

Korisnost: $\eta = \frac{P_2}{P_1}$

Inducirani napon rotora: $E_r = E_{0r}s$

Frekvencija rotorskih struja: $f_r = f_s s$

Preračunavanje rotorskih veličina na stator:

$$L_{m} = \frac{3}{2}L_{xsxs}, \quad x = a, b \text{ ill } c$$

$$\omega_{s} = 2\pi f_{s}$$

$$U'_{r} = \frac{N_{s}f_{ns}}{N_{r}f_{nr}}U_{r}$$

$$I'_{r} = \frac{m_{r}}{m_{s}}\frac{N_{r}f_{nr}}{N_{s}f_{ns}}I_{r}$$

$$R'_{r} = \frac{m_{s}}{m_{r}}\left(\frac{N_{s}f_{ns}}{N_{r}f_{nr}}\right)^{2}R_{r}$$

$$L'_{\sigma r} = \frac{m_{s}}{m_{r}}\left(\frac{N_{s}f_{ns}}{N_{r}f_{nr}}\right)^{2}L_{\sigma r}$$

Sinkroni motor

Nadomjesna shema SM s cilindričnim rotorom:

$$U = I_s R_s + j I_s X_s + E$$

Nadomjesna shema SM s istaknutim polovima:

$$U = I_s R_s + j I_d X_d + j I_q X_q + E$$

Sinkrona snaga: $P_s = 3 \frac{UE}{X_d} sin(\delta)$

Sinkroni moment: $M_s = \frac{P_s}{\omega_s}$

Reaktivna snaga: $P_r = 3 \frac{U^2 sin(2\delta)}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right)$

Reaktivni moment: $M_r = \frac{P_r}{\omega_s}$

Snaga i moment SM s cilindričnim rotorom:

$$P = P_s$$

$$M = M_s$$

Snaga i moment SM s istaknutim polovima:

$$P = P_s + P_r$$

$$M = M_s + M_r$$

Dinamičko kočenje pogona sa sinkronim motorom

$$k_{\omega} = \frac{\omega_m}{\omega_s}$$

Struja kočenja:
$$I_k = \frac{k_\omega E}{\sqrt{R_k^2 + (k_\omega X_S)^2}}$$

Snaga kočenja:
$$P_k = 3I_k^2 R_k$$

Moment kočenja:
$$M_k = \frac{3k_\omega E^2}{\omega_s(R_k^2 + (k_\omega X_s)^2)}R_k$$

za
$$R_k \ll X_{\scriptscriptstyle S}$$
 vrijedi: $M_k = rac{3E^2}{\omega_{\scriptscriptstyle S} X_{\scriptscriptstyle S}^2} R_k$

δ – kut opterećenja

R_s – statorski otpor

R_k – otpornik za kočenje

X_d – reaktancija u direktnoj osi

X_q – reaktancija u poprečnoj osi

 ω_m – brzina motora

ω_s – sinkrona brzina