

General Description

The MAX6029 micropower, low-dropout bandgap voltage reference combines ultra-low supply current and low drift in a miniature 5-pin SOT23 surface-mount package that uses 70% less board space than comparable devices in an SO package. An initial accuracy of 0.15% and a 30ppm/°C (max) temperature coefficient make the MAX6029 suitable for precision applications. This series-mode voltage reference sources up to 4mA and sinks up to 1mA of load current. A wide 2.5V to 12.6V supply range, ultra-low 5.25µA (max) supply current, and a low 200mV dropout voltage make these devices ideal for battery-operated systems. Additionally, an internal compensation capacitor eliminates the need for an external compensation capacitor and ensures stability with load capacitances up to 10µF.

The MAX6029 provides six output voltages of 2.048V, 2.5V, 3V, 3.3V, 4.096V, and 5V. The MAX6029 is available in a 5-pin SOT23 package and is specified over the extended temperature range (-40°C to +85°C).

Applications

Battery-Powered Systems Hand-Held Instruments **Precision Power Supplies** A/D and D/A Converters

Features

- ♦ Ultra-Low 5.25µA (max) Supply Current
- ♦ ±0.15% (max) Initial Accuracy
- ♦ 30ppm/°C (max) Temperature Coefficient
- ♦ 4mA Output Source Current
- ♦ 1mA Output Sink Current
- ♦ 2.5V to 12.6V Supply Range
- ♦ Low 200mV Dropout
- ♦ Stable with Capacitive Loads Up to 10µF
- ♦ No External Capacitors Required
- ♦ Miniature 5-Pin SOT23 Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX6029EUK21-T	-40°C to +85°C	5 SOT23-5	AEHD
MAX6029EUK25-T	-40°C to +85°C	5 SOT23-5	AEHF
MAX6029EUK30-T	-40°C to +85°C	5 SOT23-5	AEHH
MAX6029EUK33-T	-40°C to +85°C	5 SOT23-5	AEHN
MAX6029EUK41-T	-40°C to +85°C	5 SOT23-5	AEHJ
MAX6029EUK50-T	-40°C to +85°C	5 SOT23-5	AEHL

Pin Configuration

Selector Guide

PART	PIN-PACKAGE	OUTPUT VOLTAGE (V)
MAX6029EUK21-T	5 SOT23-5	2.048
MAX6029EUK25-T	5 SOT23-5	2.500
MAX6029EUK30-T	5 SOT23-5	3.000
MAX6029EUK33-T	5 SOT23-5	3.300
MAX6029EUK41-T	5 SOT23-5	4.096
MAX6029EUK50-T	5 SOT23-5	5.000

MIXIM

ABSOLUTE MAXIMUM RATINGS

IN to GND0.3V to +13V OUT to GND0.3V to the lower of +6V and $(V_{IN} + 0.3V)$ Output to GND Short-Circuit DurationContinuous Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Operating Temperature Range40°C to +85°C Storage Temperature Range65°C to +150°C Lead Temperature (soldering, 10s)+300°C
5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6029_21 (Vout = 2.048V)

 $(V_{IN}=2.5V,\,I_{OUT}=0,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)\,(Note\,1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОUТРUТ						
Output Voltage	Vout	$T_A = +25^{\circ}C$	2.0449	2.0480	2.0511	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.5V to 12.6V		27	200	μV/V
Load Regulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.22	0.7	\//
Load Regulation	Δ l $_{ m OUT}$	$I_{OUT} = 0$ to $-1mA$		2.4	5.5	μV/μΑ
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV_{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS			·			
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz		30		μV _{P-P}
Noise Voltage	eout	f = 10Hz to $1kHz$		115		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 2.5V \pm 200 \text{mV}, f = 120 \text{Hz}$		43		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		450		μs
INPUT						
Supply Voltage Range	VIN		2.5		12.6	V
Supply Current	I _{IN}				5.25	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$V_{IN} = 2.5V$ to 12.6V			1.5	μΑ/V

ELECTRICAL CHARACTERISTICS—MAX6029_25 (VOUT = 2.500V)

 $(V_{IN} = 2.7V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	·		•			•
Output Voltage	Vout	T _A = +25°C	2.4963	2.5000	2.5038	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.7V to 12.6V		30	230	μV/V
Land Danielation	42/ /41	I _{OUT} = 0 to 4mA		0.1	0.6	
Load Regulation	ΔV _{OUT} /Δl _{OUT}	I _{OUT} = 0 to -1mA		2.5	6.2	μV/μΑ
Drangut Voltage (Note E)	\/\/	I _{OUT} = 0			100	m\/
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200 mV	IIIV
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS	3					
Noise Voltage	00117	f = 0.1Hz to 10Hz		39		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		137		μV _{RMS}
Ripple Rejection	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.7V ±200mV, f = 120Hz		34		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		700		ms
INPUT						
Supply Voltage Range	VIN		2.7		12.6	V
Supply Current	I _{IN}				5.75	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 2.7V to 12.6V			1.5	μA/V

ELECTRICAL CHARACTERISTICS—MAX6029_30 (VOUT = 3.000V)

 $(V_{IN} = 3.2V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
ОИТРИТ	OUTPUT						
Output Voltage	Vout	T _A = +25°C	2.9955	3.0000	3.0045	V	
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C	
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 3.2V to 12.6V		15	250	μV/V	
Load Degulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.1	0.6	\ / / ^	
Load Regulation	Δ lout	I _{OUT} = 0 to -1mA		2.4	6.5	μV/μΑ	
Dropout Voltage (Note 5)	\/\/	I _{OUT} = 0			100	m)/	
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200 mV	IIIV	
Output Short-Circuit Current	Isc			60		mA	
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm	
Thermal Hysteresis		(Note 4)		140		ppm	
DYNAMIC CHARACTERISTICS							
Noise Voltage	00117	f = 0.1Hz to 10Hz		39		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz		161		μV _{RMS}	
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.2V \pm 200 \text{mV}, f = 120 \text{Hz}$		37		dB	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		775		μs	
INPUT							
Supply Voltage Range	VIN		3.2		12.6	V	
Supply Current	I _{IN}				6.75	μΑ	
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 3.2V to 12.6V			1.5	μA/V	

ELECTRICAL CHARACTERISTICS—MAX6029_33 (VOUT = 3.300V)

 $(V_{IN} = 3.5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	•					•
Output Voltage	Vout	$T_A = +25^{\circ}C$	3.2951	3.3000	3.3050	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 3.5V to 12.6V		30	270	μV/V
Load Pagulation	A\/\0\17/A\\0\17	I _{OUT} = 0 to 4mA		0.1	0.6	\//^
Load Regulation	ΔV _{OUT} /Δl _{OUT}	$I_{OUT} = 0$ to -1mA		2.4	7	μV/μΑ
Dropout Voltago (Noto 5)	VINI VOLIT	I _{OUT} = 0			100	mV
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200	200
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS						
Noise Voltage	00117	f = 0.1Hz to 10Hz		56		μV _{P-P}
Thoise voitage	eout	f = 10Hz to 1kHz		174		μVRMS
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 3.5V ±200mV, f = 120Hz		38		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		1		ms
INPUT						
Supply Voltage Range	VIN		3.5		12.6	V
Supply Current	I _{IN}				7.25	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 3.5V to 12.6V			1.5	μA/V

ELECTRICAL CHARACTERISTICS—MAX6029_41 (V_{OUT} = 4.096V)

 $(V_{IN} = 4.3V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ						
Output Voltage	Vout	$T_A = +25$ °C	4.0899	4.0960	4.1021	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$V_{IN} = 4.3V$ to 12.6V		30	310	μV/V
Load Degulation	A)//Al	I _{OUT} = 0 to 4mA		0.1	0.6	\ / / ^
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	I _{OUT} = 0 to -1mA		2.5	8.5	μV/μΑ
Dropout Voltage (Note 5)	VINI VOLIT	I _{OUT} = 0			100	mV
Dropout voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200	IIIV
Output Short-Circuit Current	I _{SC}			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS						
Noise Voltage	00117	f = 0.1Hz to 10Hz		72		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		210		μVRMS
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 4.3V \pm 200 \text{mV}, f = 120 \text{Hz}$		36		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		1.2		ms
INPUT						
Supply Voltage Range	VIN		4.3		12.6	V
Supply Current	I _{IN}				8.75	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 4.3V to 12.6V			1.5	μA/V

ELECTRICAL CHARACTERISTICS—MAX6029_50 (VOUT = 5.000V)

 $(V_{IN} = 5.2V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	•		·			
Output Voltage	Vout	T _A = +25°C	4.9925	5.0000	5.0075	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 5.2V to 12.6V		34	375	μV/V
Load Degulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.3	0.8	\ / / ^
Load Regulation	Δ lout	I _{OUT} = 0 to -1mA		3.3	9	μV/μΑ
Dropout Voltage (Note 5)	VIII VOLIT	I _{OUT} = 0			100	mV
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200	IIIV
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV_{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS	6					
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz		90		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		245		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 5.2V ±200mV, f = 120Hz		38		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		1.4		ms
INPUT						
Supply Voltage Range	V _{IN}		5.2		12.6	V
Supply Current	I _{IN}				10.5	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 5.2V to 12.6V			1.5	μΑ/V

- Note 1: MAX6029 is 100% production tested at TA = +25°C and is guaranteed by design for TA = TMIN to TMAX as specified.
- **Note 2:** Temperature coefficient is defined by box method: $(V_{MAX} V_{MIN})/(\Delta T \times V_{+25} \circ C)$.
- Note 3: Not production tested. Guaranteed by design.
- Note 4: Thermal hysteresis is defined as the change in T_A = +25°C output voltage before and after temperature cycling of the device (from T_A = T_{MIN} to T_{MAX}). Initial measurement at T_A = +25°C is followed by temperature cycling the device to T_A = +85°C then to T_A = -40°C and another measurement at T_A = +25°C is compared to the original measurement at T_A = +25°C.
- Note 5: Dropout voltage is the minimum input voltage at which V_{OUT} changes by 0.1% from V_{OUT} at rated V_{IN} and is guaranteed by Load Regulation Test.

Typical Operating Characteristics

 $(V_{IN} = 2.5V \text{ for MAX6029EUK21}, V_{IN} = 3.2V \text{ for MAX6029EUK30}, \text{ and } V_{IN} = 5.2V \text{ for MAX6029EUK50}, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

SOURCE CURRENT (mA)

OUTPUT CURRENT (mA)

SOURCE CURRENT (mA)

Typical Operating Characteristics (continued)

 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_{A}=+25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_A=+25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_{A}=+25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_A=+25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	IN	Positive Voltage Supply
2	GND	Ground
3, 4	N.C.	No Connection. Leave unconnected or connect to ground.
5	OUT	Reference Output

Applications Information

Input Bypassing

The MAX6029 does not require an input bypass capacitor. For improved transient performance, bypass the input to ground with a $0.1\mu F$ ceramic capacitor. Place the capacitor as close to IN as possible.

Load Capacitance

The MAX6029 does not require an output capacitor for stability. The MAX6029 is stable driving capacitive loads from 0 to 100pF and 0.1µF to 10µF when sourcing current and from 0 to 0.4µF when sinking current. In applications where the load or the supply can experience step changes, an output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Many applications do not require an external capacitor, and the MAX6029 offers a significant advantage in applications where board space is critical.

Supply Current

The quiescent supply current of the series-mode MAX6029 is very small, 5.25µA (max), and is very stable against changes in the supply voltage with only 1.5µA/V (max) variation with supply voltage. The MAX6029 family draws load current from the input volt-

age source only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

Output Thermal Hysteresis

Output thermal hysteresis is the change of the output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the device.

Temperature Coefficient vs. Operating Temperature Range for a 1LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 1 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (T_{MAX} - T_{MIN}) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

Turn-On Time

These devices turn on and settle to within 0.1% of their final value in less than 1ms. The turn-on time increases when heavily loaded and operating close to dropout.

Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Typical Operating Circuit

_Chip Information

TRANSISTOR COUNT: 30 PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.