Понятие о линейной зависимости вектор-столбцов

Лекция 4

Пусть даны m вектор-столбцов размера $n \times 1$

$$\mathbf{a}_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, \qquad \mathbf{a}_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \qquad \mathbf{a}_{m} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}$$

и m скаляров $\lambda_1 \lambda_2, \ldots, \lambda_m$.

Умножим первый столбец на λ_1 , второй столбец на λ_2 и, наконец, m-й столбец λ_m . Рассмотрим сумму

$$\mathbf{a} = \lambda_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + \lambda_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \lambda_{m} \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix} = \begin{bmatrix} \lambda_{1}a_{11} + \lambda_{2}a_{12} + \dots + \lambda_{m}a_{1m} \\ \lambda_{1}a_{21} + \lambda_{2}a_{22} + \dots + \lambda_{m}a_{2m} \\ \vdots \\ \lambda_{1}a_{n1} + \lambda_{2}a_{n2} + \dots + \lambda_{m}a_{nm} \end{bmatrix}.$$

Определение. Вектор-столбец **a** называется линейной комбинацией вектор-столбцов **a**₁, **a**₂,..., **a**_m . Числа λ_1 , λ_2 ,..., λ_m называются коэффициентами линейной комбинации.

Пример

$$\mathbf{a} = \lambda_{1} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 2 \\ -1 \\ 0 \\ 4 \end{bmatrix} + \lambda_{3} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} \lambda_{1} + 2\lambda_{2} + \lambda_{3} \\ 2\lambda_{1} - \lambda_{2} + \lambda_{3} \\ 3\lambda_{1} + \lambda_{3} \\ 4\lambda_{2} - 2\lambda_{3} \end{bmatrix}.$$

Определение. Вектор-столбцы \mathbf{a}_1 , \mathbf{a}_2 ,..., \mathbf{a}_m называются линейно зависимыми, если найдутся такие числа λ_1 , λ_2 ,..., λ_m , не равные нулю одновременно, такие что имеет место равенство

$$\mathbf{a} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \lambda_m \mathbf{a}_m = \mathbf{0},$$

где 0 — нулевой вектор-столбец размера $n \times 1$.

Если соотношение (1.41) выполняется лишь тогда, когда все $\lambda_1, \lambda_2, ..., \lambda_m$ равны нулю одновременно, то вектор-столбцы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ называются **линейно независимыми**.

Пример 1:
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$, линейно зависимы, так как

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 = \lambda_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} \lambda_1 + 3\lambda_2 \\ 2\lambda_1 + 6\lambda_2 \end{bmatrix} = \mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \Rightarrow \lambda_1 = -3\lambda_2 \Rightarrow 0$$

$$\lambda_1 = -3, \ \lambda_2 = 1$$

Пример 2:
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$\lambda_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + \lambda_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda_{1} + 2\lambda_{2} \\ \lambda_{2} \\ \lambda_{1} - \lambda_{2} + \lambda_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda_1+2\lambda_2=0$$
 $\lambda_1=0$ $\lambda_2=0$ $\Rightarrow \lambda_2=0$ \Rightarrow линейно независимые. $\lambda_1-\lambda_2+\lambda_3=0$ $\lambda_3=0$

Теоремы о линейной зависимости.

Теорема 1. Если система вектор столбцов содержит нулевой столбец, то они линейно зависимы.

Доказательство. Пусть, например, $\mathbf{a}_1 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

Тогда, имеем:
$$1 \cdot \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \ldots + 0 \cdot \mathbf{a}_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0},$$

Следовательно, столбцы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы.

Теорема доказана.

Теорема 2. Если какие-нибудь k из m вектор-столбцов линейно зависимы, то все вектор-столбцы линейно зависимы.

Доказательство.

Пусть, например, столбцы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_k$ линейно зависимы.

Тогда существуют числа $\lambda_1, \lambda_2, ..., \lambda_k$ не равные нулю одновременно, такие что

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_k \mathbf{a}_k = \mathbf{0}.$$

Следовательно, для системы из т столбцов имеем

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \ldots + \lambda_k \mathbf{a}_k + 0 \cdot \mathbf{a}_{k+1} + \ldots + 0 \cdot \mathbf{a}_m = \mathbf{0},$$

что и означает, что столбцы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы.

Теорема доказана.

Теорема 3. Если столбцы линейно зависимы, то один из них равен линейной комбинации остальных.

Доказательство. Если столбцы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ линейно зависимы, то существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_m$, что

$$\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \lambda_m \mathbf{a}_m = \mathbf{0}$$

причем не все λ_i равны нулю.

Пусть, например, $\lambda_1 \neq 0$.

Тогда имеем

$$\mathbf{a}_1 = -\frac{\lambda_2}{\lambda_1} \mathbf{a}_2 - \dots - \frac{\lambda_m}{\lambda_1} \mathbf{a}_m,$$

что и требовалось доказать.

Ранг матрицы

Рассмотрим прямоугольную матрицу \mathbf{A} размера $m \times n$:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k -го порядка.

Определитель этой матрицы M_k будет называть **минором** k -го порядка матрицы \mathbf{A} .

Очевидно, что матрица \mathbf{A} обладает минорами любого порядка от 1 до наименьшего из чисел m и n .

Если не все элементы матрицы равны нулю, то всегда можно указать целое число r, такое, что у матрицы \mathbf{A} имеется минор \mathbf{M}_r \mathbf{r} -го порядка, отличный от нуля. Определение. Натуральное число \mathbf{r} называется рангом матрицы \mathbf{A} , если:

- 1) существует минор M_r матрицы A порядка r , отличный от нуля;
- 2) все имеющиеся миноры порядка r+1 и выше, если это возможно, равны нулю.

Ранг матрицы обозначается одним из следующих символов:

$$r = rang(A) = Rang(A) = Rank(A) = r(A)$$
.

Очевидно, что $Rang(\mathbf{0}) = 0$.

Если $\mathbf{A} \neq \mathbf{0}$, т $0 < \text{Rang}(\mathbf{A}) < \min(m,n)$.

Если r = Rang(A), то любой ненулевой минор порядка r назовем *базисным* минором матрицы A, а строки и столбцы матрицы A, на пересечении которых расположен базисный минор, назовем *базисными строками и столбцами*

Определение. Всякий минор матрицы A порядка r, отличный от нуля, называется **базисным** минором. Столбцы и строки матрицы, пересечением которых образован базисный минор, называются **базисными столбцами и базисными столбцами**.

•

Пример 1. Вычислить ранг матрицы
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix}$$
.

В этой матрице отличен от нуля только один минор второго порядка,

$$M_2 = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1$$
. Все миноры третьего порядка равны нулю, поскольку содержат

нулевую строку или нулевой столбец. Тогда то Rang(A)=2.

Первая и третья строки являются базисными строками, а первый и второй столбцы являются базисными столбцами.

Пример 2. Вычислить ранг матрицы $\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$. Так как существует

$$M_2 = \begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix} = -3 \neq 0$$
, а единственный $M_3 = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{vmatrix} = 0$, то Rang(A)=2.

Первая и вторая строки являются базисными строками, а первый и второй столбцы являются базисными столбцами.

Рассмотрим методы вычисления ранга матрицы.

Пусть M_k - минор k-го порядка матрицы A. Выберем строку с номером i и столбец с номером j, которые не проходят через минор M_k . Тогда минор порядка k+1, проходящий через k строк и столбцов минора M_k и также i-ю строку и j-й столбец назовем минором, окаймляющим минор M_k .

Метод окаймляющих миноров.

Поскольку $\mathbf{A} \neq \mathbf{0}$, то $rang\mathbf{A} \geq 1$, т.е. существует ненулевой минор первого порядка $a_{ij} \neq \mathbf{0}$.

Если все миноры второго порядка матрицы **A**, окаймляющие a_{ij} , равны нулю, то rang **A** = 1. В противном случае выберем ненулевой минор второго порядка \mathbf{M}_2 , окаймляющий a_{ij} . Опять имеем две возможности.

Если все миноры третьего порядка матрицы **A**, окаймляющие минор \mathbf{M}_2 , равны нулю, то $rang\mathbf{A}=2$. В противном случае выберем ненулевой минор третьего порядка \mathbf{M}_3 , окаймляющий, и т.д.

Продолжая подобным образом, получим, что либо на некотором шаге для ненулевого минора \mathbf{M}_k все окаймляющие миноры k+1 -го порядка равны нулю, и тогда $rang\mathbf{A} = k$, либо дойдем до ненулевого минора \mathbf{M}_l максимально возможного порядка, равного $l = \min(n,m)$, тогда $rang\mathbf{A} = l$.

Пример. Найти методом окаймления миноров ранг матрицы $\begin{pmatrix} 1 & 2 & -1 & -2 \\ 2 & 4 & 3 & 0 \\ -1 & -2 & 6 & 6 \end{pmatrix}$

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) $M_1 = 1$, расположенный в первой строке и первом столбце. Окаймляя при помощи **второй** строки и **третьего** столбца, получаем минор $M_2 = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$, отличный от нуля.

Переходим теперь к минорам 3-го порядка, окаймляющим M₂. Их всего два (можно добавить второй столбец или четвертый). Вычисляем:

$$\begin{vmatrix} 1 & 2 & -1 \\ 2 & 4 & 3 \\ -1 & -2 & 6 \end{vmatrix} = 0, \begin{vmatrix} 1 & -1 & -2 \\ 2 & 3 & 0 \\ -1 & 6 & 6 \end{vmatrix} = 0.$$

Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Свойства ранга матрицы.

- 1. Ранг матрицы не изменится при умножении всех элементов столбца или строки на отличное от нуля число.
- 2. Ранг матрицы не изменится при перестановке её строк или столбцов.
- 3. При транспонировании матрицы её ранг не меняется.
- 4. Ранг матрицы не изменится, если к одному из её столбцов (строке) прибавить другой столбец (строку), умноженный на некоторое число.
- 6. Ранг матрицы не изменится, если удалить из неё столбец (строку), который является линейной комбинацией других столбцов (строк).

Элементарные преобразования матрицы.

Вычисление ранга матрицы

Рассмотрим теперь другой метод вычисления ранга матрицы, а именно метод элементарных преобразований.

Для матриц большой размерности вычисление всех миноров затруднительно, в этом случае матрицу преобразуют к так называемому **треугольному** виду (когда элементы, стоящие ниже a_{ii} , равны 0), воспользовавшись операциями, не изменяющими ранг матрицы (эквивалентными преобразованиями).

Определение. Элементарными преобразованиями называются следующие преобразования матриц:

- 1. Перестановка двух любых столбцов (строк) матрицы.
- 2. Умножение столбца (строки) на отличное от нуля число.

- 3. Прибавление к одному столбцу (строке) линейной комбинации других столбцов (строк).
- 4. Транспонирование матрицы

Из свойств ранга матрицы вытекает, что элементарные преобразования матрицы не меняют её ранг.

Определение. Две матрицы A и B называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований.

Эквивалентность матриц обозначается с помощью символов А ~ В.

Из определения вытекает, что эквивалентные матрицы не являются равными, но имеют одинаковый ранг.

Определение. Матрица вида $\begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$ называется

канонической.

Ранг канонической матрицы равен, очевидно, числу единиц ${\bf r}$, стоящих на её диагонали.

Алгоритм:

- **Шаг 1.** Если $a_{11} \neq 0$, то умножаем первую строку матрицы **A** на $\frac{1}{a_{11}}$, в результате получим $a'_{11} = 1$. В противном случае вначале перестановкой строк и/или столбцов матрицы **A** добиваемся, чтобы $a_{11} \neq 0$, а затем применяем указанное выше преобразование.
- **Шаг 2.** С помощью $a'_{11} = 1$ получаем **нули в первом столбце** посредством следующих элементарных преобразований:
- ко второй строке прибавляем первую строку, предварительно умноженную на $-a_{21}$;
- к третьей строке прибавляем первую строку, предварительно умноженную $-a_{31}$, и так далее;

- к m-й строке прибавляем первую строку, предварительно умноженную — a_{m1} , и так далее;

В результате получаем матрицу
$$\begin{bmatrix} 1 & a'_{12} & ... & a'_{1n} \\ 0 & & & \\ \vdots & & \mathbf{A'} & \\ 0 & & & \end{bmatrix}$$

Далее аналогичный алгоритм применяем к матрице \mathbf{A}'

Пример. Определить ранг матрицы
$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$
 Ранг равен 2

Пример. Определить ранг матрицы

$$A = \begin{pmatrix} -2 & 3 & 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & -1 & 3 & 4 \\ -1 & 3 & 3 & 0 & 4 & 4 \\ -3 & 3 & -1 & 2 & -2 & -4 \end{pmatrix}.$$

У матрицы \mathbf{A} существуют миноры до 4-го порядка включительно, поэтому $r(\mathbf{A})$ ≤ 4

1) Поменяем местами 1-ю и 2-ю строки, чтобы элемент a_{11} стал равным 1:

$$\mathbf{A} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 3 & 4 \\ -2 & 3 & 1 & 1 & 1 & 0 \\ -1 & 3 & 3 & 0 & 4 & 4 \\ -3 & 3 & -1 & 2 & -2 & -4 \end{pmatrix}$$

.

2. Прибавим к третьей строке первую, ко второй — удвоенную первую, к четвертой — первую, умноженную на 3. Тогда все элементы 1-го столбца, кроме a_{11} , окажутся равными нулю:

$$\mathbf{A} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 3 & 4 \\ 0 & 3 & 5 & -1 & 7 & 8 \\ 0 & 3 & 5 & -1 & 7 & 8 \\ 0 & 3 & 5 & -1 & 7 & 8 \end{pmatrix}.$$

Вычтем вторую строку полученной матрицы из третьей и четвертой строк:

и вычеркнем нулевые строки:

$$\mathbf{A} \sim \begin{pmatrix} 1 & 0 & 2 & -1 & 3 & 4 \\ 0 & 3 & 5 & -1 & 7 & 8 \end{pmatrix}.$$

Итак, ранг матрицы **A** равен рангу полученной матрицы размера 2×6 , т.е. $r(A) \le 2$. Минор

$$\begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} = 3 \neq 0,$$

следовательно, r(A) = 2.

Вопросы:

- **1.**Как изменится определитель n-го порядка, если транспонировать его матрицу?
- **2.** Как изменится определитель n-го порядка, если поменять местами его две строки?
- **3.**Чему равен определитель n-го порядка с двумя пропорциональными столбцами?
- **4.**Как изменится определитель n-го порядка, если к первой его строке прибавить сумму всех остальных строк?
- 5. Верно ли, что определитель суммы матриц равен сумме определителей?

- 6. Верно ли, что определитель произведения матриц равен произведению определителей?
- 7. Сформулируйте метод окаймляющих миноров вычисления ранга матрицы.
- **8.**Сформулируйте метод элементарных преобразований вычисления ранга матрицы.
- 9. Чему равен ранг невырожденной матрицы порядка п&
- **10.** Если матрица порядка n имеет ранг n, то означает ли это, что матрица невырожденная?
- **11.** Верно ли, что обратная матрица к невырожденной матрице также является невырожденной матрицей?

- 12. Сформулируйте метод вычисления обратной матрицы через вычисление
- 13. присоединенной матрицы.
- **14.** Сформулируйте метод вычисления обратной матрицы через присоединение
- 15. единичной матрицы

Теория к коллоквиуму

- 1.Понятие матрицы. Равенство матриц. Виды матриц (вектор-столбец, вектор-строка, нулевая, диагональная, скалярная, симметричная).
- 2. Алгебраические операции над матрицами: сложение и разность матриц. Свойства с доказательством.

- 3. Алгебраические операции над матрицами: умножение матрицы на число. Свойства с доказательством. Транспонирование матриц.
- 4. Алгебраические операции над матрицами: Произведение матриц. Свойства (без доказательств
- 5. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц. Свойства.
- 6. Определители. Определение, свойства+следствия.
- 7. Определение линейной зависимости строк (столбцов) матрицы. Доказать теорему: Если система вектор столбцов содержит нулевой столбец, то они линейно зависимы.
- **8.Определение линейной зависимости строк (столбцов) матрицы.** Доказать теорему: Если какие-нибудь к из т вектор-столбцов линейно зависимы, то все вектор-столбцы линейно зависимы.

- 9.Определение линейной зависимости строк (столбцов) матрицы. Доказать теорему: Если столбцы линейно зависимы, то один из них равен линейной комбинации остальных.
- 10. Обратная матрица(определение). Доказать теорему: Если матрица А имеет обратную матрицу, то она единственная.
- 11. Обратная матрица (определение). Свойства.
- 12. Обратная матрица(определение). Способы вычисления обратной матрицы.
- 13. Ранг матрицы. Определение. Свойства. Методы вычисления.