THU-70250403, Convex Optimization (Fall 2020)

Homework: 3

Convex Programming Problems

Lecturer: Li Li li-li@tsinghua.edu.cn

Student:

Problem 1

Problems involving l_{∞} and l_1 -norms. Formulate the following problems as Linear programming problems (LPs). Explain in detail the relation between the optimal solution of each problem and the solution of its equivalent LP.

Problem (a)

$$\min_{\boldsymbol{x}} |A\boldsymbol{x} - \boldsymbol{b}|_{1}
\text{s.t.} |\boldsymbol{x}|_{\infty} \le 1$$
(1)

s.t.
$$|\boldsymbol{x}|_{\infty} \le 1$$
 (2)

Problem (b)

$$\min_{\boldsymbol{x}} \quad |\boldsymbol{x}|_1 \tag{3}$$

s.t.
$$|A\boldsymbol{x} - \boldsymbol{b}|_{\infty} \le 1$$
 (4)

Problem (c)

$$\min_{\boldsymbol{x}} |A\boldsymbol{x} - \boldsymbol{b}|_1 + |\boldsymbol{x}|_{\infty} \tag{5}$$

The matrix $A \in \mathbb{R}^{m \times n}$ and the vector $\boldsymbol{b} \in \mathbb{R}^m$ are given.

Problem 2

 l_4 -norm approximation via QCQP Formulate the l_4 -norm approximation problem

$$\min_{\boldsymbol{x}} |A\boldsymbol{x} - \boldsymbol{b}|_4 = \left(\sum_{i=1}^m \left(\boldsymbol{a}_i^T \boldsymbol{x} - b_i\right)^4\right)^{1/4}$$
(6)

The matrix $A \in \mathbb{R}^{m \times n}$ (with rows \pmb{a}_i^T) and the vector $\pmb{b} \in \mathbb{R}^m$ are given.

Problem 3

Suppose real numbers $a \ge b \ge c \ge d > 0$, a + b + c + d = 1. Please apply Jensen's Inequality [1] to prove or disprove

$$a^a b^b c^c d^d \ge a^2 + b^2 + c^2 + d^2 \tag{7}$$

References

[1] http://en.wikipedia.org/wiki/Jensen's_inequality