Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$E_0 = m \cdot v_0^2 / 2$ $v_0 = \sqrt{2 \cdot E_0 / m}$
	$v_0 = \sqrt{2 \cdot E_0 / m}$
	Rezultat final: $v_0 = 20 m/s$
b.	
	$E_{cA} = m \cdot v_A^2 / 2$
	Rezultat final: $E_{cA} = 100 J$
C.	
	$E_B - E_A = L_f$ unde: $E_B = m \cdot g \cdot h$; $v_B = 0$; $E_A = E_{cA}$
	$L_f = -F_f \cdot d; \ F_f = \mu \cdot m \cdot g \cdot \cos \alpha; \ d = h/\sin \alpha$
	$h = E_A / [m \cdot g(1 + \mu \cdot ctg\alpha)]$
	Rezultat final: $h = 4 m$
d.	
	$E_B - E_0 = L_{fTotal}$
	Rezultat final: $L_{fTotal} = -320 J$