Question 1

We first need to define the formulas for forward propagation. By propagating forward, our model generates a prediction about our classes.

 $\mathbf{a}^L = \mathbf{g}(\mathbf{W}^L \mathbf{a}^{L-1} + \mathbf{b}^L)$ is the formula for computing the activations. \mathbf{a}^L is the activation of layer L, \mathbf{g} is the activation function, \mathbf{W}^L is the weights of layer L, \mathbf{a}^{L-1} is the activations of layer L-1 and \mathbf{b}^L is the bias for layer L.

By using the formula, we can create our neural network as follows:

Input layer(X, N) =>
$$\alpha^1 = g(X + b^1)$$

First hidden layer(N, N') => $\alpha^2 = g(W^2\alpha^1 + b^2)$
Second hidden layer(N', N'') => $\alpha^3 = g(W^3\alpha^2 + b^3)$
Output layer(N'', 2) => $\alpha^4 = g*(W^4\alpha^3 + b^4)$

$$g(x) = ReLU = max(0, x)$$

 $g*(x) = Sigmoid = 1 / (1 + e^{-x})$

The last step is backward propagation. This step is used for recalculating the weights. The model evaluates its predictions based on a cost function. Then by calculating partial derivative of the cost function with respect to weights, we basically find how much a change in weights would affect our predictions.

As a cost function binary cross entropy(BCE) would be a great choice since we have two classes.

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

Where y is the actual label and y(hat) is the predicted label.

For backward propagation we define

$$z^{L} = \sum W^{L} a^{(L-1)} + b^{L}$$
 to make calculations easier.

The last step is to find partial derivative of the cost function with respect to weights. Here we use chain rule:

$$\frac{dBCE}{dW^L} = \frac{dBCE}{da^L} \frac{da^L}{dz^L} \frac{dz^L}{dW^L}$$

If we take respective derivatives in the formula, we get:

$$\frac{dBCE}{dW^{L}} = \left(\frac{dBCE}{da^{(L+1)}} * W^{(L+1)}\right) \left(g'(z^{L})\right) \left(a^{(L-1)}\right)$$

Question 2

Graph1. Accuracy plot for training and validation iterations

Graph2. Loss plot for training and validation iterations

Confusion matrix for the test set:

[[37. 0. 0. 0. 0. 0.] [0. 43. 0. 0. 0.] [0. 0. 92. 0. 0.] [0. 0. 0. 40. 0.] [0. 1. 0. 0. 27.]]

Accuracy: 100%

Question 3

Graph3. Accuracy plot for training and validation iterations of MLP

Graph4. Loss plot for training and validation iterations of MLP

Image1. Weight visualization for MLP