	<pre>Importando as bibliotecas necessárias import pandas as pd import matplotlib.pyplot as plt Lendo a planilha com os dados limpos dfs_file = pd.ExcelFile("Planilhas/MRV/DFs-MRV-Limpo.xlsx", engine="openpyxl") BP = pd.read_excel(dfs_file, "BP") DFC = pd.read_excel(dfs_file, "DFC") DRE = pd.read_excel(dfs_file, "DFC")</pre>
	COTACOES = pd.read_excel(dfs_file, "Ações") BP.dropna(how='all', axis='columns', inplace=True); DFC.dropna(how='all', axis='columns', inplace=True); DRE.dropna(how='all', axis='columns', inplace=True); COTACOES.dropna(how='all', axis='columns', inplace=True); # ; supress output Função para encontrar células nos DataFrames com base em DF, nome da conta e ano def getValue(df, nome_coluna_principal, ano, coluna_principal="MRV ON"):
In [5]:	Indicadores de Solvência de Curto Prazo Liquidez Corrente = Ativo Circulante Passivo Circulante Liquidez Seca = Ativo Circulante Passivo Circulante Liquidez Imediata = Caixa Passivo Circulante years = [2017, 2018, 2019, 2020]
	<pre>liquidezCorrente = [] liquidezImediata = [] for i in years: ativoCirculante = getValue(BP, 'Ativo Circulante', i) passivoCirculante = getValue(BP, 'Passivo Circulante', i) estoquesCP = getValue(BP, 'Estoques CP', i) caixa = getValue(BP, 'Caixa e Equivalentes', i) liquidezCorrente = ativoCirculante / passivoCirculante liquidezSeca = (ativoCirculante - estoquesCP) / passivoCirculante liquidezImediata = caixa / passivoCirculante</pre>
Out[5]:	<pre>liquidezCorrente.append(liquidezCorrente_) liquidezSeca.append(liquidezSeca_) liquidezImediata.append(liquidezImediata_) solvenciaCP = pd.DataFrame() solvenciaCP["Ano"] = years solvenciaCP["Liquidez Corrente"] = liquidezCorrente solvenciaCP["Liquidez Seca"] = liquidezSeca solvenciaCP["Liquidez Imediata"] = liquidezImediata solvenciaCP.set_index("Ano", inplace=True) solvenciaCP</pre>
In [6]:	Liquidez Corrente Liquidez Seca Liquidez Imediata Ano 2017
	plt.xticks(years) plt.title("Indicadores de Solvência de Curto Prazo", size=16) plt.grid(True) plt.legend() plt.show() Indicadores de Solvência de Curto Prazo 25
	1.5 ————————————————————————————————————
	Indicadores de Solvência de Longo Prazo $Endividamento\ Total = \frac{Passivo\ Total}{Ativo\ Total}$ $\text{Indice\ Divida/Capital\ Proprio} = \frac{Passivo\ Financeiro}{Patrimonio\ Liquido}$ $Multiplicador\ do\ PL = \frac{Ativo\ Total}{Patrimonio\ Liquido}$ $\text{Indice\ de\ Cobertura\ de\ Juros} = \frac{LAJIR}{Juros}$ $\text{Indice\ de\ Cobertura\ de\ Caixa} = \frac{LAJIDA}{Juros}$
In [7]:	<pre>indice de Endividamento/LAJIDA = Passivo Total years = [2017, 2018, 2019, 2020] endividamentoTotal = [] dividaPorCapitalProprio = [] multPatrimonioLiq = [] coberturaJuros = [] coberturaCaixa = [] endividamentoLAJIDA = [] for i in years: ativoTotal = getValue(BP, 'Ativo Total', i) passivoTotal = getValue(PP, 'Passivo Total', i)</pre>
	<pre>passivoTotal = getValue(BP, 'Passivo Total', i) patrimonioLiquido = getValue(BP, 'Patrimônio Líquido Consolidado', i) financiamentoCP = getValue(BP, 'Financiamento CP', i) financiamentoLP = getValue(BP, 'Financiamento LP', i) debenturesCP = getValue(BP, 'Debêntures CP', i) debenturesLP = getValue(BP, 'Debêntures LP', i) dividaTotal = financiamentoCP + financiamentoLP + debenturesCP + debenturesLP lajir = getValue(DRE, '(=) LAJIR', i) lajida = lajir + getValue(DFC, 'Depreciação, Amortização e Exaustão', i) juros = getValue(DRE, '(-) Despesas Financeiras', i) endividamentoTotal_ = passivoTotal / ativoTotal dividaPorCapitalProprio_ = dividaTotal / patrimonioLiquido multPatrimonioLiq_ = ativoTotal / patrimonioLiquido coberturaJuros = lajir / juros</pre>
	<pre>coberturaCaixa_ = lajida / juros endividamentoLajida_ = passivoTotal / lajida endividamentoTotal.append(endividamentoTotal_) dividaPorCapitalProprio.append(dividaPorCapitalProprio_) multPatrimonioLiq.append(multPatrimonioLiq_) coberturaJuros.append(coberturaJuros_) coberturaCaixa.append(coberturaCaixa_) endividamentoLAJIDA.append(endividamentoLajida_) solvenciaLP = pd.DataFrame() solvenciaLP["Ano"] = years solvenciaLP["Endividamento Total"] = endividamentoTotal solvenciaLP["Dívida/Capital Próprio"] = dividaPorCapitalProprio</pre>
Out[7]:	solvencialP["Multiplicador do PL"] = multPatrimonioLiq solvencialP["Cobertura de Juros"] = coberturaJuros solvencialP["Cobertura de Caixa"] = coberturaCaixa solvencialP["Endividamento LAJIDA"] = endividamentoLAJIDA solvencialP.set_index("Ano", inplace=True) solvencialP Endividamento Total Dívida/Capital Próprio Multiplicador do PL Cobertura de Juros Cobertura de Caixa Endividamento LAJIDA Ano 2017
In [8]:	2019 0.652140 0.626794 2.874717 12.744128 14.243862 11.569320 2020 0.665896 0.770812 2.993083 6.576445 7.587520 14.605861 fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(22, 6)) ax1.plot(years, endividamentoTotal, 'o', label="Endividamento Total") ax1.plot(years, dividaPorCapitalProprio, 'o', label="Índice Dívida/Capital Próprio") ax1.set_xticks(years) ax1.grid(True) ax1.legend() ax2.plot(years, multPatrimonioLiq, 'o', label="Multiplicador do PL", color="red") ax2.set_title("Indicadores de Solvência de Longo Prazo", size=16) ax2.set_xticks(years) ax2.grid(True)
	ax2.legend() ax3.plot(years, coberturaJuros, 'o', label="índice de Cobertura de Juros", color="green") ax3.plot(years, coberturaCaixa, 'o', label="índice de Cobertura de Caixa", color="purple") ax3.set_xticks(years) ax3.grid(True) ax3.legend() plt.show() Indicadores de Solvência de Longo Prazo Indice Divida/Capital Próprio Indice de Cobertura de Juros
	Indicadores de Gestão de Ativos ou de Giro $Giro\ do\ Estoque = \frac{Custo\ dos\ Produtos\ Vendidos}{Estoque}$
In [9]:	$Prazo\ M\'edio\ de\ Estocagem\ (PME) = rac{365\ dias}{Giro\ do\ Estoque}$ $Giro\ de\ Contas\ a\ Receber = rac{Vendas}{Contas\ a\ Receber}$ $Prazo\ M\'edio\ de\ Recebimento\ (PMR) = rac{365\ dias}{Giro\ de\ Contas\ a\ Receber}$ $Giro\ do\ Ativo\ Total = rac{Vendas}{Ativo\ Total}$ $years = [2017,\ 2018,\ 2019,\ 2020]$ $giroEstoque = []$ $pmE = []$
	<pre>giroContasAReceber = [] PMR = [] giroAtivoTotal = [] for i in years: CMV = getValue(DRE, '(-) Custo dos Produtos Vendidos', i) estoque = getValue(BP, 'Estoques CP', i) giroEstoque = CMV / estoque PME = 365 / giroEstoque vendas = getValue(DRE, '(+) Receita Líquida Operacional', i) contasAReceber = getValue(BP, 'Contas a Receber CP', i) giroContasAReceber = vendas / contasAReceber</pre>
	<pre>PMR_ = 365/giroContasAReceber_ ativoTotal = getValue(BP, 'Ativo Total', i) giroAtivoTotal_ = vendas / ativoTotal giroEstoque.append(giroEstoque_) PME.append(PME_) giroContasAReceber.append(giroContasAReceber_) PMR.append(PMR_) giroAtivoTotal.append(giroAtivoTotal_) gestaoAtivos = pd.DataFrame()</pre>
Out[9]:	<pre>gestaoAtivos["Giro do Estoque"] = giroEstoque gestaoAtivos["PME"] = PME gestaoAtivos["Giro de Contas a Receber"] = giroContasAReceber gestaoAtivos["PMR"] = PMR gestaoAtivos["Giro do Ativo Total"] = giroAtivoTotal gestaoAtivos.set_index("Ano", inplace=True) gestaoAtivos Giro do Estoque</pre>
In [10]:	2019
	ax2.grid(True) ax2.legend() plt.show() 4.0 3.5 3.0 Giro de Estoque Giro do Ativo Total 1.5
In [11]:	Retorno sobre o Ativo (ROA) = $\frac{Lucro\ Liquido}{Ativo\ Total}$ Retorno sobre o PL (ROE) = $\frac{Lucro\ Liquido}{Patrimônio\ Liquido}$ years = [2017, 2018, 2019, 2020] margemBruta = [] margemLAJIDA = [] margemLiquida = [] ROA = [] ROE = []
	<pre>for i in years: vendas = getValue(DRE, '(+) Receita Líquida Operacional', i) lucroBruto = getValue(DRE, '(=) Lucro Bruto', i) margemBruta_ = lucroBruto / vendas lajir = getValue(DRE, '(=) LAJIR', i) lajida = getValue(DFC, 'Depreciação, Amortização e Exaustão', i) + lajir margemLAJIDA_ = lajida / vendas lucroLiquido = getValue(DRE, '(=) Lucro Líquido', i) margemLiquida = lucroLiquido / vendas</pre>
	<pre>ativoTotal = getValue(BP, 'Ativo Total', i) ROA_ = lucroLiquido / ativoTotal patrimonioLiquido = getValue(BP, 'Patrimônio Líquido Consolidado', i) ROE_ = lucroLiquido / patrimonioLiquido margemBruta.append(margemBruta_) margemLAJIDA.append(margemLAJIDA_) margemLiquida.append(margemLiquida_) ROA.append(ROA_) ROE.append(ROE_)</pre>
Out[11]:	<pre>lucratividade["Ano"] = years lucratividade["Margem Bruta"] = margemBruta lucratividade["Margem LAJIDA"] = margemLAJIDA lucratividade["Margem Líquida"] = margemLiquida lucratividade["ROA"] = ROA lucratividade["ROE"] = ROE lucratividade.set_index("Ano", inplace=True) lucratividade</pre> <pre>Margem Bruta Margem LAJIDA Margem Líquida ROA ROE Ano</pre> 2017 0.338693 0.150360 0.147067 0.048084 0.120754
In [12]:	2018 0.331889 0.148664 0.139904 0.055595 0.155528 2019 0.304219 0.136704 0.123499 0.050923 0.146390 2020 0.282010 0.123897 0.093433 0.034381 0.102906
	plt.grid(True) plt.legend() plt.show() Medidas de Lucratividade 0.35 0.30 0.25 Margem Bruta Margem Liquida
	0.15 0.10 0.05 2017 2018 2019 2020 Medidas de Valor de Mercado
In [13]:	$indice\ Preço/Lucro = rac{Preço\ por\ Ação}{Lucro\ por\ Ação}$ $indice\ Valor\ de\ Mercado/Valor\ Contábil = rac{Valor\ de\ Mercado\ por\ Ação}{Valor\ Contábil\ por\ Ação}$ $ years = [2017,\ 2018,\ 2019,\ 2020] $ $ precoLucro = [] $ $ mercadoContabil = [] $ $ for i in years: $ $ precoPorAcao = getValue(COTACOES, 'Preço por\ Ação (Fechamento do Ano)', i) $
	<pre>lucroLiquido = getValue(DRE, '(=) Lucro Líquido', i) quantidadeAcoes = getValue(COTACOES, 'Quantidade de Ações', i) lucroPorAcao = lucroLiquido / quantidadeAcoes precoLucro_ = precoPorAcao / lucroPorAcao valorMercado = precoPorAcao * quantidadeAcoes bookValue = getValue(BP, "Patrimônio Líquido Consolidado", i) mercadoContabil_ = valorMercado / bookValue precoLucro.append(precoLucro_) mercadoContabil.append(mercadoContabil))</pre>
Out[13]:	<pre>mercado = pd.DataFrame() mercado["Ano"] = years mercado["P/E"] = precoLucro mercado["Valor de Mercado / Valor Contábil"] = mercadoContabil mercado.set_index("Ano", inplace=True) mercado P/E Valor de Mercado / Valor Contábil Ano 2017 6.702724 0.809379</pre>
In [14]:	2018 6.554879 1.019470 2019 12.415461 1.817500 2020 14.555448 1.497836 plt.figure(figsize=(10, 6)) plt.plot(years, precoLucro, 'o', label="P/E") plt.plot(years, mercadoContabil, 'o', label="EquityValue/BookValue") plt.xticks(years) plt.grid(True) plt.title("Medidas de Valor de Mercado", size=16) plt.legend() plt.show()
	Medidas de Valor de Mercado 14 P/E EquityValue/BookValue 10 8
In [15]:	Função para juntar todos os DataFrames de Indicadores em um só def mergeAllMetrics(dfs): output = pd.DataFrame(columns=["Ano", 2017, 2018, 2019, 2020]) output.set index("Ano", inplace=True)
In [16]:	<pre>for df in dfs: output = output.append(df.T) return output Gerando o arquivo Excel de saída dfs = [solvenciaCP, solvenciaLP, gestaoAtivos, lucratividade, mercado] metrics = mergeAllMetrics(dfs) writer = pd.ExcelWriter("Planilhas/MRV/Indicadores-MRV.xlsx", engine="openpyxl") metrics.to_excel(writer, sheet_name="Indicadores") writer.save() writer.close()</pre>
In [17]:	<pre>metrics_horizontal = pd.DataFrame() metrics_horizontal[2017] = (metrics[2017] / metrics[2017] * 100).round(2) metrics_horizontal[2018] = (metrics[2018] / metrics[2017] * 100).round(2) metrics_horizontal[2019] = (metrics[2019] / metrics[2017] * 100).round(2) metrics_horizontal[2020] = (metrics[2020] / metrics[2017] * 100).round(2) metrics_horizontal.to_excel(writer, sheet_name="Analise Horizontal") writer.save() writer.close()</pre> <pre> DuPont</pre>
In [18]:	<pre>ROE = Margem Liquida · Giro do Ativo · Multiplicador do PL duPont = pd.DataFrame() duPont["Ano"] = years duPont["Margem Liquida"] = margemLiquida duPont["Giro do Ativo"] = giroAtivoTotal duPont["Multiplicador do PL"] = multPatrimonioLiq duPont["ROE"] = ROE # Lucro Liquido / PL duPont["ROE DuPont"] = duPont["Margem Liquida"] * duPont["Giro do Ativo"] * duPont["Multiplicador do P L"] duPont.set_index("Ano", inplace=True) duPont.round(4)</pre>
Out[18]: In [19]:	Margem Líquida Giro do Ativo Multiplicador do PL ROE ROE DuPont Ano 2017
	<pre>ax1.plot(years, giroAtivoTotal, 'o', label="Giro do Ativo") ax1.plot(years, ROE, 'o', label="ROE") ax1.set_xticks(years) ax1.grid(True) ax1.legend() ax2.plot(years, multPatrimonioLiq, 'o', label="Multiplicador do PL") ax2.set_xticks(years) ax2.grid(True) ax2.legend() fig.suptitle('Decomposição do ROE conforme DuPont', size=16) plt.show()</pre> <pre> Decomposição do ROE conforme DuPont</pre>
	0.40 0.35 0.30 0.25 0.20 0.15
	2017 2018 2019 2020 3.0 Multiplicador do PL 2.9 2.8
In [20]:	mergeAllMetrics([duPont.round(4)]).to_excel(writer, sheet_name="Analise DuPont") writer.save() writer.close() Fluxo de Caixa
In [21]:	Fluxo de Caixa Operacional $FCO = EBIT + Depreciação - Impostos Correntes$ Fluxo de Caixa dos Ativos $FC(A) = FCO - Gastos de Capital - Variação do CCL$ $years = [2019, 2020]$ $FCA = []$ $FCO = []$ $CAPEX = []$ $VARCOL = []$
	<pre>varCCL = [] for i in years: EBIT = getValue(DRE, '(=) LAJIR', i) depre = getValue(DFC, 'Depreciação, Amortização e Exaustão', i) impostos = getValue(DRE, '(-) IR e CSLL', i) FCO_ = EBIT + depre - impostos CAPEX_ = -getValue(DFC, 'Compra Ativo Imobilizado e Intangível', i) # no excel o valor está negativ o, pois é uma saída de caixa para a empresa atualCCL = getValue(BP, 'Ativo Circulante', i) - (getValue(BP, 'Passivo Circulante', i) - getValue(BP, 'Financiamento CP', i) - getValue(BP, 'Debêntures CP', i))</pre>
	<pre>anteriorCCL = getValue(BP, 'Ativo Circulante', i - 1) - (getValue(BP, 'Passivo Circulante', i - 1) - getValue(BP, 'Financiamento CP', i - 1) - getValue(BP, 'Debêntures CP', i - 1)) varCCL_ = atualCCL - anteriorCCL FCA_ = FCO CAPEX varCCL_ FCA.append(FCA_) FCO.append(FCO_) CAPEX.append(CAPEX_) varCCL.append(varCCL_) FCA_DF = pd.DataFrame() FCA_DF["Ano"] = years FCA_DF["FCO"] = FCO</pre>
Out[21]:	
In [22]:	Fluxo de Caixa dos Credores FC(B) = Despesas Financeiras - Mudança de Divida CP e LP FCB = [] for i in years: juros = getValue(DRE, '(-) Despesas Financeiras', i) dividaTotalAtual = getValue(BP, 'Financiamento CP', i) + getValue(BP, 'Financiamento LP', i) + getV alue(BP, 'Debêntures CP', i) + getValue(BP, 'Debêntures LP', i) dividaTotalAnterior = getValue(BP, 'Financiamento CP', i - 1) + getValue(BP, 'Financiamento LP', i - 1) + getValue(BP, 'Debêntures CP', i - 1) + getValue(BP, 'Debêntures LP', i - 1)
	- 1) + getValue (BP, 'Debêntures CP', i - 1) + getValue (BP, 'Debêntures LP', i - 1) mudancaDivida = dividaTotalAtual - dividaTotalAnterior FCB_ = juros - mudancaDivida FCB.append (FCB_) Fluxo de Caixa dos Acionistas FC(S) = Dividendos + Recompra de Ações - Novas Emissões de Ações FC(S) = Lucro Liquido - Variação PL
In [23]:	<pre>for i in years: varResLucros = getValue(BP, 'Reserva de Lucros', i) - getValue(BP, 'Reserva de Lucros', i - 1) varResCap = getValue(BP, 'Reservas de Capital', i) - getValue(BP, 'Reservas de Capital', i - 1) varPL = varResCap + varResLucros FCS_ = getValue(DRE, '(=) Lucro Líquido', i) - varPL FCS.append(FCS_) fluxoCaixa = pd.DataFrame() fluxoCaixa["Ano"] = years</pre>
Out[24]:	fluxoCaixa["FC(A)"] = FCA fluxoCaixa["FC(B)"] = FCB fluxoCaixa["FC(S)"] = FCS fluxoCaixa["Check"] = fluxoCaixa["FC(A)"] == (fluxoCaixa["FC(B)"] + fluxoCaixa["FC(S)"]) fluxoCaixa.set_index("Ano", inplace=True) fluxoCaixa FC(A) FC(B) FC(S) Check Ano 2019 457941.0 -281021.0 738911.0 False 2020 534600.0 -1340844.0 200334.0 False