

Seminar Presentation: Recent Advances in 3D Computer Vision

Outline

- 1. Introduction of the problem
- 2. Approach
- 3. Results
- 4. Personal comments
- 5. Summary

Traditional 3D reconstruction

-> Multiple images are required as an input at test time

• Traditional 3D reconstruction

Learning-based 3D reconstruction

-> Multiple images are required as an input at test time

- -> Learn the 3D shape
- -> 3D reconstruction from a single input

Common output representation of Learning-based 3D Reconstruction methods

<u>Voxels:</u>

- -> Discretize into a grid
 - High memory consumption

Common output representation of Learning-based 3D Reconstruction methods

<u>Voxels:</u>

- -> Discretize into a grid
 - High memory consumption

Meshes:

- -> Regress into vertices & faces
 - Non-watertight reconstructions
 - Often require deforming a template

Common output representation of Learning-based 3D Reconstruction methods

Voxels:

- -> Discretize into a grid
 - High memory consumption

Meshes:

- -> Regress into vertices & faces
 - Non-watertight reconstructions
 - Often require deforming a template

Point Clouds:

source [6]

- -> Predict the coordinates of 3D points
 - Limited number of points
 - Topological relations are lost

Neural Implicit Representation

- No discretization of the 3D space
- No topological restrictions
- Independent of the camera viewpoint

- -> Represent the 3D shape implicitly
- -> Surface <=> Decision boundary of a non-linear classifier

Neural Implicit Representation

- No discretization of the 3D space
- No topological restrictions
- Independent of the camera viewpoint

$$f_{ heta}: \mathbb{R}^3 imes \mathcal{X} o [0,1]$$

- -> Represent the 3D shape implicitly
- -> Surface <=> Decision boundary of a non-linear classifier

Problems with previous works

Problems with previous works

- Local details are not preserved
- Overly smooth reconstruction
- No Translation Equivariance
- Mainly for simple objects

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

2D Method

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

Decoder

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- Process the Feature Plane (space)
 - -> 2D U-Net
 - +Integrate global information
 - +Translation equivariance

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- Process the Feature Plane (space)
 - -> 2D U-Net
 - +Integrate global information
 - +Translation equivariance

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- 1. Process the Feature Plane (space)
 - -> 2D U-Net
 - +Integrate global information
 - +Translation equivariance

- 1. Query a 3D point
 - -> Use interpolation
 - -> Predict the Occupancy Prob.

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- Process the Feature Plane (space)
 - -> 2D U-Net
 - +Integrate global information
 - +Translation equivariance

- 1. Query a 3D point
 - -> Use interpolation
 - -> Predict the Occupancy Prob.

- 1. Refine features
 - -> 2D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

- 1. Process the Feature Plane (space)
 - -> 2D U-Net
 - +Integrate global information
 - +Translation equivariance

- 1. Query a 3D point
 - -> Use interpolation
 - -> Predict the Occupancy Prob.

3D Method - Volumetric Repr.

- 1. Refine features
 - -> 3D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

3D Method - Volumetric Repr.

Input x Point Cloud PointNet Encoder 3D Feature Volume

- 1. Refine features
 - -> 3D PointNet
 - +Preserves local information
- 2. Project to canonical plane
 - -> Aggregate local neighbors
 - +Preserves local information
 - +Not depend on a global frame

3D Feature Volume

- 1. Process the Feature Plane (space)
 - -> 3D U-Net
 - +Integrate global information
 - +Translation equivariance

Occupancy Prediction

- 1. Query a 3D point
 - -> Use interpolation
 - -> Predict the Occupancy Prob.

Training

- Train the Occupancy network
 - Sample query points p from 3D objects using the train set

Binary Cross-Entropy Loss

$$\mathcal{L}(\hat{o}_{\mathbf{p}}, o_{\mathbf{p}}) = -[o_{\mathbf{p}} \cdot \log(\hat{o}_{\mathbf{p}}) + (1 - o_{\mathbf{p}}) \cdot \log(1 - \hat{o}_{\mathbf{p}})]$$

True occupancy prob.

Predicted occupancy prob.

Training

- Train the Occupancy network
 - Sample query points p from 3D objects using the train set
 - The Encoder is pre-trained / task-specific: classf. & segm.
 - \blacksquare feature space is ready to use (ψ)

Binary Cross-Entropy Loss

$$\mathcal{L}(\hat{o}_{\mathbf{p}}, o_{\mathbf{p}}) = -[o_{\mathbf{p}} \cdot \log(\hat{o}_{\mathbf{p}}) + (1 - o_{\mathbf{p}}) \cdot \log(1 - \hat{o}_{\mathbf{p}})]$$

True occupancy prob.

Predicted occupancy prob.

Rendering - Generate a 3D Mesh

Multiresolution IsoSurface Extraction (MISE)

- 1. Partition the 3D space
 - Build octree incrementally
- 2. Query the occupancy network

Datasets - 4 in total

ShapeNet

Synthetic Indoor Scene Dataset

Matterport3D

ScanNet v2

Object Instances

Metrics

-> Volumetric IoU

$$IoU(\mathcal{M}_{pred}, \mathcal{M}_{GT}) \equiv \frac{|\mathcal{M}_{pred} \cap \mathcal{M}_{GT}|}{|\mathcal{M}_{pred} \cup \mathcal{M}_{GT}|}$$

-> Chamfer Distance

$$\operatorname{Accuracy}(\mathcal{M}_{\operatorname{pred}}|\mathcal{M}_{\operatorname{GT}}) \equiv \frac{1}{|\partial \mathcal{M}_{\operatorname{pred}}|} \int_{\partial \mathcal{M}_{\operatorname{pred}}} \min_{\mathbf{q} \in \partial \mathcal{M}_{\operatorname{GT}}} \|\mathbf{p} - \mathbf{q}\| d\mathbf{p}$$

$$\operatorname{Chamfer-} L_1(\mathcal{M}_{\operatorname{pred}}, \mathcal{M}_{\operatorname{GT}}) = \int \operatorname{Completeness}(\mathcal{M}_{\operatorname{pred}}|\mathcal{M}_{\operatorname{GT}}) \equiv \frac{1}{|\partial \mathcal{M}_{\operatorname{GT}}|} \int_{\partial \mathcal{M}_{\operatorname{GT}}} \min_{\mathbf{p} \in \partial \mathcal{M}_{\operatorname{pred}}} \|\mathbf{p} - \mathbf{q}\| d\mathbf{q}$$

$$\frac{1}{2} (\operatorname{Accuracy}(\mathcal{M}_{\operatorname{pred}}|\mathcal{M}_{\operatorname{GT}}) + \operatorname{Completeness}(\mathcal{M}_{\operatorname{pred}}|\mathcal{M}_{\operatorname{GT}}))$$

-> Normal Consistency

Normal-Con.
$$(\mathcal{M}_{pred}, \mathcal{M}_{GT}) \equiv \frac{1}{2 |\partial \mathcal{M}_{pred}|} \int_{\partial \mathcal{M}_{pred}} |\langle n(\mathbf{p}), n(\text{proj}_2(\mathbf{p})) \rangle| d\mathbf{p}$$

 $+ \frac{1}{2 |\partial \mathcal{M}_{GT}|} \int_{\partial \mathcal{M}_{GT}} |\langle n(\text{proj}_1(\mathbf{q})), n(\mathbf{q}) \rangle| d\mathbf{q}$

-> F-Score

$$F-Score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Object-Level 3D Reconstruction

Reconstruction from Point Clouds

Object-Level 3D Reconstruction

Reconstruction from Point Clouds

- Baseline: PointConv
 - PointNet++ encoder
 - Remove canonical planes
 - Instead of the 2D decoder and interpolation
 - Gaussian regression

Object-Level 3D Reconstruction

Reconstruction from Point Clouds

- Convolutional Occupancy Networks
 - Reconstruction of complex shapes
 - Faster convergence

Object-Level 3D Reconstruction

Voxel Super-Resolution

Object-Level 3D Reconstruction

Voxel Super-Resolution

- Convolutional Occupancy Networks
 - Recover high-resolution details
 - Three planes perform similar to the volumetric encoder while consuming 37% of the GPU
 - The single-plane approach is not powerful

Scene-Level Reconstruction

Synthetic dataset evaluation

- Occupancy Networks
 - Can not scale to bigger scenes
- SPSR
 - Requires the normals of the points
 - Noisy results

Scene-Level Reconstruction

Trained on synthetic and transfer to ScanNet v2

-> All previous methods mostly fail on this task

Large-Scale Reconstruction

Trained on synthetic and transfer to Matterport3D

- -> Trained on synthetic crops
- -> During inference, use sliding window
- -> 3D CNN performed the best

Large-Scale Reconstruction

Trained on synthetic and transfer to Matterport3D

- -> Trained on synthetic crops
- -> During inference, use sliding window
- -> 3D CNN performed the best
- -> The authors do not explain how to merge the patches
 - What happens with the artifacts of the overlapping windows?

1. Shared 2D U-Nets?

- 1. Shared 2D U-Nets?
- 2. Use shallow Neural Net instead of sum?

- 1. Shared 2D U-Nets?
- 2. Use shallow Neural Net instead of sum?
- 3D Location \mathbf{p} Occupancy Probability $f_{\theta}(\mathbf{p}, \psi(\mathbf{p}, \mathbf{x}))$ Bilinear Interpolation \mathbf{p} Occupancy Network \mathbf{p} Network
- 3. Average or max pooling aggregation?

- Shared 2D U-Nets?
- 2. Use shallow Neural Net instead of sum?
- 3. Average or max pooling aggregation?

4. Formulate as End to End Learning?

5. Summary

- Conv. Occupancy Networks can be transferred to noisy real large-scale scenes
- Incorporate global and local information
- Faster training

5. Summary

- Conv. Occupancy Networks can be transferred to noisy real large-scale scenes
- Incorporate global and local information
- Faster training
- But
 - Translation equivariant w.r.t to multiples translations of the voxel size
 - No rotation equivariant
 - Reality gap is still present

Thank you for the attention! Questions?

References

- [1] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, "Convolutional Occupancy Networks Computer", in ECCV, 2020
- [2] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, "Occupancy networks: Learning 3d reconstruction in function space", in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019
- [3] https://www.cvlibs.net/talks/talk_oxford_2020_04_27.pdf
- [4] https://www.gamersnexus.net/gg/762-voxels-vs-vertexes-in-games
- [5]https://www.researchgate.net/figure/3D-mesh-triangles-with-different-resolution-3D-Modelling-for-programmers-Available-at_fig2_322096 576
- [6] https://www.revopoint3d.com/point-cloud-and-3d-image/
- [7] A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, "Shapenet: An information-rich 3d model repository", in arXiv.org 1512.03012, 2015
- [8] A. Dai, A. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Niessner, "Scannet: Richly-annotated 3d reconstructions of indoor scenes", in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017
- [9] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and Y. Zhang, "Matterport3D: Learning from RGB-D data in indoor environments", in Proc. of the International Conf. on 3D Vision (3DV), 2017