Exam

Disrete Mathematics.

Question 1:

$p \mid q_i$	p = g	p179,	q, 1 = q,	$(p \wedge \gamma q) = \gamma(q, \wedge \gamma q)$	() c=> ()
T T			<i>"</i>	T ,	T
FT	T	E	F	<u> </u>	T

Question 2:

- Base case: $4^{3\cdot 1} + \theta = 4^3 + \theta = 6u + \theta = 72$, which is divisible by g. \\

 Induction step: Let $n \in \mathbb{N}$.

 Assume $u^{3n} + \theta$ is divisible by g. So, $4^{3n} + \theta = g \cdot k$, where $k \in \mathbb{Z}$.

 Then, $4^{3(n+1)} + \theta = 4^{3n+3} + \theta = 4^{3n} \cdot 4^3 + \theta = 6u \cdot 4^{3n} + \theta = 4^{3n} + \theta + 63 \cdot 4^{3n}$.
 - $= gk + g \cdot 7 \cdot y^{3n} = g \cdot (k + 7 \cdot y^{3n}), \text{ which is divisible by g}$ because $k \in \mathbb{Z}$ and $n \in \mathbb{N} \cdot y^{n} = g \cdot (k + 7 \cdot y^{3n}), \text{ which is divisible by g}$ because $k \in \mathbb{Z}$ and $n \in \mathbb{N} \cdot y^{n} = g \cdot (k + 7 \cdot y^{3n}), \text{ which is divisible by g}$
- 6 Consider n = 7. Then $3^n = 3^7 = 2187 \neq 5040 = 7! = n!$.

Question 3:

- ⓐ False Consider $A=\{i\}$, $B=\{2\}$ and $C=\{i\}$. Then, $A\setminus C=\emptyset \subseteq \{2\}=B\setminus C$. However, $A \nsubseteq B$. So, the implication "<=" is not true. (Note that the implication "⇒" is true).
- b " $[g^n: nelN] \neq [3^n: nelN]$ "
 Consider x = 3.
 Then, $x \in [3^n: nelN]$ because x = 3'
 However, $x \notin [g^n: nelN]$, because $g^n \geqslant g$ for all nelN.

"la": $n \in \mathbb{N}$] $= \{3^n : n \in \mathbb{N}\}$ "

Let $x \in \{a^n : n \in \mathbb{N}\}$ Then, there exists an $n \in \mathbb{N}$ such that $x = g^n$ Hence, $x = g^n = (3^2)^n = 3^2n$.

Since $2n \in \mathbb{N}$ (because $n \in \mathbb{N}$), we have $x \in \{3^n : n \in \mathbb{N}\}$. \sqrt{n}

 \Box

Question 4:

(b) * Reflexive: No, consider $X = \{i\}$. Then $|X \setminus X| = |\phi| = 0 \neq i$. So, X R X.

* Symmetry: No, consider $X=\{1,2\}$ and $Y=\{1\}$. Then, $|X|Y|=|\{2\}|=1$. So, XRY. However, $|Y|X|=|\phi|=0\neq 1$. So, YRX.

* Transitivity: No, consider $X=\{1,2\}$, $Y=\{1\}$ and $Z=\emptyset$. Then, $|X(Y)=\{2\}\}=1$ So, XRY. And, $|Y|Z|=\{1,2\}\}=1$ So, YRZ. However, $|X(Z)|=\{1,2\}\}=2 \neq 1$. So, XRZ.

*Anti-symmetry: No, consider $X = \{1\}$ and $Y = \{2\}$.

Then, $|X|Y| = |\{1\}| = 1$. So, XRY.

But also $|Y|X| = |\{2\}| = 1$. So, YRX.

Note that: 5x+y is even

((xs even) and (y is even)) or ((x is odd) and (y is odd)).

Mence, R is an equivalence relation with two equivalence classes (namely, the even numbers and the odd numbers). So, 6

Question 5:

(1) We need to choose the positions for the 3 ones.

n=8 ん゠る repetition is not allowed order is not important

$$\binom{n}{k} = \binom{0}{3} = 56.$$

So, the answer is e.

(b) So, we have 2 bars and 10 stars.

For example, the solution x=3, y=4, Z=3 corresponds with *** **** ***

n=3 k= 10

repetition is allowed order is not important

$$((n-1)+k) = (2+10) = (12) = 66$$

So, the answer is 2

Denote U: set of passwords made from capital letters and lower case letters.

X: set of passwords made from lower case letters.

We need to calculate | U/X|.

|U| = (26+26) = 380204032.

|X| = 265 = 11881376.

|U(X)| = |U(1-|X|) = 368322656

So, the answer is

Question 6:

O. True. Proof: Take x = -1. Let $y \in \mathbb{Z}$ and let $z \in \mathbb{Z}$.

Assume x=yz. So, assume yz=-1.

Then, since y and z are both integers, we know y=1 and z=-1, or the other thay around.

 \Box

(b) True.

Proof: Let nel.

Consider $X = \phi$.

Note that $X \in P(IN)$ because $\emptyset \leq IN$.

Then, |X| = 0 < n, because neW and thus $n \ge 1$.

 \square

The statement (a odd) n (b odd) => (ab² odd) is being proved. Hence, its contrapositive (ab² even) => (a even) v(b even) is also being proved to, the answer is d.

Question 7:

Consider y=0e2

We will show that $(\forall x \in Z)$ $(f(x) \neq y)$. Suppose there is an $x \in Z$ such that f(x) = 0.

So, 3x2+2x+1=0 However, since $2^2-4\cdot 3\cdot 1=-0<0$, there is no solution.

Hence, there is no xEZ, such that f(x)=0.

As a result f is not surjective. (Note that f is injective).

(5) Consider $f^{-1}: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{3\}$ defined by $f^{-1}(x) = \frac{6x-7}{3x-1}$

Let $x \in \mathbb{R} \setminus \frac{13}{3}$, then $\int_{-\infty}^{\infty} (f(x))^2 = \frac{0 \cdot ux - 7}{2x - b} - 7 = \frac{2ux - uz - 1ux + uz}{2x - 1u} = \frac{10x}{10} = x$ $\int_{-\infty}^{\infty} (f(x))^2 = \frac{10x}{2x - b} = \frac{2ux - uz - 1ux + uz}{2x - 1u} = \frac{10x}{10} = x$

 $2 \cdot \frac{4x-7}{2x-6} - 4$

Let $x \in \mathbb{R} \setminus \frac{12}{12}$, then $\int (f'(x)) = \frac{4 \cdot 6x - 7}{2x - 4} - 7 = \frac{24x - 20 - 14x + 20}{12x - 14 - 12x + 24} = \frac{10x}{10} = x$

 $2 \cdot \frac{6x-7}{2x-4} - 6$ So, the answer is $\frac{d}{d}$.

C Note that $f(1) = \frac{1}{2} + \frac{1 - (-1)^{1}}{2} = \frac{1}{2} + \frac{1 - (-1)^{2}}{2} = 1 + 0 = 1$. So, f is not injective.

for is surjective. Let $y \in \mathbb{Z}$. Take x = 2y (Note that $2y \in \mathbb{Z}$, because $y \in \mathbb{Z}$). Then $f(x) = f(y) = \frac{2y}{2} + \frac{1 - (-1)^{\frac{2y}{3}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{3}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{3}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{3}}}{4}$

 $=y+\frac{1-1}{4}=y+0=y$

So, the answer is [

Question d:

- a. The cinsuer is \boxed{b} .

 Counter example: $A = \{\{2,3,4\}\}$ and $B = \{\{2,3\}\}$. Then, $A \lor B = \emptyset$.

 The following statement would be correct: $(\{2,3,4\} \subseteq A \text{ and } \{2,3\} \subseteq B) = (\{4\} \subseteq A \lor B)$.
- 6. All four statements are true, so the answer is e.