Aliasing

Aliasing

- Aliasing is another source of error due to discretization.
- We have seen that the solutions of hyperbolic equations are basically waves. Each wave has a wavelength. However, we cannot resolve all these wavelengths.
 - Grid-based algorithms: finite spacing between points
 - Spectral-like methods: truncation at a finite number of wavenumbers/modes

Grid-Based Aliasing

 A grid has a maximum resolved wavenumber that is determined by the grid spacing:

$$k_{\text{max}} = \frac{2\pi}{2\Delta x}$$

 Higher wavenumbers (shorter wavelengths) cannot be resolved.

Example

• Waves $sin(i/2\pi)$ and $sin(2i/2\pi)$ can be distinguished on the grid:

Example (Continued)

• Waves $sin(i/2\pi)$ and $sin(5i/2\pi)$ might not be distinguishable on the grid:

Consequences of Aliasing

- Aliasing causes power to be fed back from higher, unresolved wavelengths into lower, resolved wavelengths.
- Nonlinear interactions between wavenumbers can cause power to reflect from unresolved wavenumbers into resolved ones.
- When severe, aliasing can cause the power in the unresolved wavenumbers to build up in the resolved wavenumbers, eventually leading to instability.

Controlling Aliasing

 The usual method to control aliasing error is to use a hyperviscosity. This is an artificial viscosity that is designed to suppress highwavenumber solutions.

Techniques for Multiple Dimensions/Operators

Operator Splitting

If we have a PDE that can be represented as

$$\frac{\partial u}{\partial t} = L(u)$$

Where L represents an operator, then if we can write L as

$$L(u)=L_1(u)+L_2(u)+...L_n(u)$$

we can solve the PDE by operator splitting

Operators

Specifically, we break each timestep into multiple steps

$$\frac{du}{dt} = L_1(u) \Rightarrow u = u_1$$

$$\frac{du_1}{dt} = L_2(u) \Rightarrow u = u_2$$

$$\vdots$$

$$\frac{du_n}{dt} = L_n(u) \Rightarrow u = u_n$$

- Boundary conditions must be applied for each subproblem.
- This method is first-order accurate in time so we use a first order timestepping method such as Euler or backwards Euler.

Example

• Step 1

$$\frac{u^{n+1/2} - u^n}{\Delta t} + L_1(u^{n+1/2}) = f^{n+1/2}$$

• Step 2

$$\frac{u^{n+1} - u^{n+1/2}}{\Delta t} + L_2(u^{n+1}) = 0$$

Partial-Timestep Splitting

 We can also advance through partial timesteps for each suboperator.

• Example:
$$\frac{\partial u}{\partial t} + L_1(u) + L_2(u) = 0$$

- We solve $u_t = -L_1(u)$ for t^n to $t^{n+1/2}$
- Then we solve $u_t = -L_2(u^{n+1/2})$ for $t^{n+1/2}$ to t^n
- This is second order in time so at minimum a second-order timestepping method (e.g. leapfrog or a predictor-corrector) must be used.

Example

• Step 1

$$\frac{u^{n+1/4} - u^n}{\Delta t / 2} + L_1(u^{n+1/4}) = f^{n+1/2}$$

- Step 2 $\frac{u^{n+1/2} u^{n+1/4}}{\Lambda t / 2} + L_2(u^{n+1/2}) = 0$
- Step 3

$$\frac{u^{n+1} - u^n}{\Delta t} + L(u^{n+1/2}) = f^{n+1/2}$$

Directional Splitting

 For spatial dimensions higher than two, we must use the higher-dimensional Taylor series to derive methods. In particular, the first few terms of a 2D Taylor series are

$$\begin{split} f(x,y) &= f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_o) \\ &+ \frac{(x - x_0)^2}{2} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{(y - y_0)^2}{2} \frac{\partial^2 f}{\partial y^2}(x_0, y_o) \\ &+ (x - x_0)(y - y_0) \frac{\partial^2 f}{\partial x \partial y}(x_0, y_o) \end{split}$$

Note the cross term f_{xy}

Cross Term

- There is no particular benefit to be gained from computing the cross term. Instead we usually use directional splitting and omit it.
- In general, we would update along each direction, then average the results. In two dimensions, with symmetric x and y discretizations, this is equivalent to averaging. We should also alternate directions, e.g. xy yx xy yx and so forth, but over a large number of timesteps (again, for 2D) this works out to pretty much the same thing as xy xy xy xy ...

Splitting

- First do x then y, or y then x, but apply the second directional operator to the result of the first, not to the original value of u.
- In particular:

$$u^* = [f - L_x(\Delta t)]u_{i,j}^n$$
$$u_{i,j}^{n+1} = [f - L_y(\Delta t)]u^*$$