Def. 1 Пусть $X = \{x_i\}_{i=1}^{\infty}$ - множество переменных, $C = \{c_i\}_{i=1}^{\infty}$ - множество констант. \mathbb{F} -множество формул, такое что:

- 1. $c_i \in \mathbb{F}$;
- $2. x_i \in \mathbb{F};$
- 3. $\forall f, g \in \mathbb{F} \Rightarrow \forall (f, g), \land (f, g), \bar{f} \in \mathbb{F}.$

Def. 2 Уравнением e называется пара (f_1, f_2) , где $f_1, f_2 \in \mathbb{F}$.

Е- множество всех уравнений.

Уравнение называется **простейшим**, если оно имеет вид (x_i, f) , где f - произвольная формула или (c_i, f) , где $f != x_i, \forall j \in \mathbb{N}$.

Def. 3 *P*-множество предикатов, такое что:

- 1. $f == g \in P$;
- $2. f \subset g \in P;$
- 3. $f = !! g \in P$.

Def. 4 *U*- множество условий, таких что:

- 1. $p \in U$, где $p \in P$;
- 2. $\forall u_1, u_2 \in U \Rightarrow \lor(u_1, u_2), \land(u_1, u_2), \bar{u}_1 \in U.$

Def. 5 Деревом называется $T=(V,\phi,\psi,\alpha,\beta)$, где:

V - множество вершин,

- $\phi: V \to (V \times V) \cup V$ функция потомков;
- $\phi: V \to V$ функция предков;
- $\alpha:V o U$ функция условия;
- $\beta: V \to \{e_i\}_{i=1}^n, n \in \mathbb{N}, e \in E$ функция уравнений.

Алгоритм 1 Алгоритм сведения уравнения к системе простейших уравнений:

Шаг 1. а) Если $e = (\land (f,g), \land (u,v))$, то выполняем шаг 1 для $e_1 = (f,u)$ и $e_2 = (g,v)$. Результат решений объединяем;

- б) Если $e=(\vee(f,g),\vee(u,v)),$ то выполняем шаг 1 для $e_1=(f,u)$ и $e_2=(g,v).$ Результат решений объединяем;
 - в) Если $e = (\bar{f}, \bar{u})$, то выполняем шаг 1 для $e_1 = (f, u)$;
 - г) Если e -простейшее, то результат e;
 - д) Если $e = (f, x_i)$, то результат (x_i, f) ;
 - е) Если $e = (f, c_i)$, то результат (c_i, f) ;

ж) Если не выполнены пункты а) — е), то результатом является \emptyset .

```
Def. 6 Vars: F \rightarrow 2^X, такая что:

1. Vars(x_i) = \{x_i\};

2. Vars(c_i) = \emptyset;

3. Vars(\lor(f,g)) = Vars(f) \cup Vars(g);

4. Vars(\land(f,g)) = Vars(f) \cup Vars(g);

5. Vars(\bar{f}) = Vars(f).
```

Def. 7 $Len: F \longrightarrow \mathbb{N}$ такая что:

```
1. Len(x_i) = 1;
```

2.
$$Len(c_i) = 1$$
;

3.
$$Len(\lor(f,g)) = Len(f) + Len(g);$$

4.
$$Len(\land(f,g)) = Len(f) + Len(g);$$

5.
$$Len(\bar{f}) = Len(f)$$
.

Def. 8 Простейшее уравнение называется **разрешимым** если:

```
1. e = (c_i, c_i), \forall i \in \mathbb{N};
2. e = (x_i, f) \Leftrightarrow x_i \notin Vars(f).
```

Алгоритм 2 Алгоритм подстановки переменной (x_i, f) в другое уравнение g:

```
Шаг 1. а) Если g = x_i, то ответ f;
```

```
б) Если g=\bar{u}, то ответ \bar{l}, где l - подстановка (x_i,f) в u;
```

в)
$$\vee(f,g)$$
, то ответ $\vee(l,t)$, где l - подстановка (x_i,f) в u,t - подстановка (x_i,f) в $g;$

```
г)\wedge(f,g), то ответ \wedge(l,t), где l - подстановка (x_i,f) в u,t - подстановка (x_i,f) в g;
```

```
д) Если g = c_i, то ответ c_i;
```

e) Если
$$g = x_j, i \neq j$$
, то ответ x_j .

Алгоритм 3 Алгоритм выражения переменных через константы и другие переменные:

Шаг 1. Применяем Алгоритм 1, в случае \emptyset , выразить ничего нельзя. Переходим к шагу 2.

Шаг 2. Если среди уравнений вида: $e = (c_i, f), \forall i \in \mathbb{N}$, все разрешимые, то удаляем их из системы и переходим к шагу 3, иначе ничего нельзя выразить.

- Шаг 3. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_i, f)$, то удаляем e_2 , переходим к шагу 3, иначе переходим к шагу 4.
- Шаг 4. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_i, g)$, то удаляем e_2 , и переходим к шагу 1 для уравнения $e_3 = (g, f)$. Иначе переходим к шагу 5.
- Шаг 5. Если оставшиеся уравнения разрешимы, то переходим к шагу 6, иначе ничего нельзя выразить.
- Шаг 6. Если у нас есть уравнения вида: $e_1 = (x_i, f)$ и $e_2 = (x_j, g)$,где $x_j \in Vars(f)$, то по Алгоритму 2, подставляем в уравнение e_1 выражение для x_j и переходим к шагу 5.

Иначе выводим систему выражения переменных.

Def. 9 Пусть TRUE - истина, FALSE - ложь, NOTDEF - неопределенность.

Алгоритм 4 Алгоритм проверки синтаксического равенства f == g при известных $X_i = \{x_{i_1}, \dots, x_{i_n}\}$:

Шаг 1. Решаем уравнение (f,g) по Алгоритму 1. Получаем $T=\{t_i\}_{i=1}^n$ - систему простейших. Если $T=\emptyset$, то FALSE.

Шаг 2. $\forall i$ удаляем $c_i = c_i$;

 $\forall i$ удаляем $x_i = x_i$

Если $\exists x_j \in X_i$, то по Алгоритму 2 подставляем x_j в уравнение $e = (x_j, f)$ и переходим к шагу 1 Алгоритма 4 для e. Результат объединяем, иначе переходим к шагу 3.

Шаг 3. Если $T=\emptyset$ - TRUE, иначе NOTDEF

Алгоритм 5 Алгоритм проверки подформульного предиката $f \subset g$ при известных $X_i = \{x_{i_1}, \dots, x_{i_n}\}$:

Шаг 0. Если Len(f) > Len(g), то FALSE, иначе переходим к шагу 1.

Шаг 1. Применяем Алгоритм 4 к f == g. Пусть q_1 её результат. Если $q_1 = NOTDEF$, то выводим q_1 .

Если $q_1 = TRUE$, то $f \subset g$, иначе переходим к шагу 2.

Шаг 2.а) Если $g = c_i$, то выводим q_1 ;

- б) Если $q = x_i$, то выводим q_1 ;
- в) Если $g = \bar{h}$, то применяем Алгоритм 5 к $f \subset h$ и получаем результат q_2 . Если $q_2 = NOTDEF$, то выводим q_2 , иначе q_1
- г) Если $g = \vee (h_1h_2)$ или $g = \wedge (h_1h_2)$, то применяем Алгоритм 5 к $f \subset h$ и получаем результат q_2 . Если $q_2 = TRUE$, то выводим q_2 ,

иначе применяем Алгоритм 5 к $f \subset h_2$ и получаем результат q_3 . Если $q_3 = TRUE$, то выводим q_3 . Если одна из $q_1q_2 = NOTDEF$, то выводим NOTDEF. Иначе, выводим FALSE.