

PROIECT DE SEMESTRU LA DISCIPLINA TEHNICI CAD 2023

Profesori îndrumători:

Decan Prof.dr.ing. Pop Ovidiu Aurel

Adelina Ilies

Realizat de:

Roșca David-Sorin

An II, Seria A, Grupa E.2121, Semigrupa II

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Cuprins

1.	. CERINȚĂ	3
2.	DATE DE PROIECTARE	3
3.	SCHEMA BLOC A CIRCUITULUI	4
4.	. SCHEMA ELECTRICĂ A CIRCUITULUI	5
5.	. BREVIAR DE CALCUL	6
	5.1 Oglinda de curent	6
	5.2 Repertorul de tensiune	9
	5.3 Amplificatorul diferențial	9
	5.4 Comparatorul inversor	12
	5.5 Led şi rezistenţă	15
	5.6 Releul.	16
	5.7 Vref1	18
	5.8 Vref2	19
6.	. TESTAREA CIRCUITULUI	20
	6.1 Modelarea Ledului	20
	6.2 Variația tensiunii de la bornele senzorului	25
	6.3 Variația tensiunii după amplificator	27
	6.4 Variația tensiunii după comparator	28
	6.5 Analiza Monte-Carlo	30
7	BIRLIOGRAFIE	21

1. CERINȚĂ

Să se proiecteze un sistem de control al nivelului de apă dintr-un rezervor. Știind că senzorul de nivel folosit poate să măsoare nivelul de lichid liniar, valoarea maximă fiind **440 [cm]**, sistemul se va proiecta astfel încât nivelul din rezervor să se mențină în intervalul **80-380 [cm]**. Senzorul de nivel se va polariza în curent. Variația liniară a rezistenței electrice a senzorului cu nivelul de lichid este **13k-23k[cm]**. și trebuie convertită într-o variație de tensiune în domeniul **[0 – (Vcc-2V)]**. În rezervor, nivelul de apă este menținut în domeniul specificat cu ajutorul unei pompe comandată de un comparator și un releu electromagnetic. Ansamblul pompă – releu se va modela cu ajutorul unui rezistor. Starea pompei (pornit/oprit) este semnalizată de un LED de culoare **portocalie**.

2.DATE DE PROIECTARE

Nivel maxim de măsură	440[cm]
Domeniul nivelului de lichid din rezervor	80-380[cm]
Rezistenţa senzorului [Ω]	13k-23k
VCC [V]	13
Culoare LED de semnalizare	portocaliu

Tabel 1.

3. SCHEMA BLOC A CIRCUITULUI

4. SCHEMA ELECTRICĂ A CIRCUITULUI

Figura.1

5. BREVIAR DE CALCUL

5.1 Oglinda de curent

Senzorul este un dispozitiv care măsoară o mărime fizică și o transformă într-un semnal care poate fi citit de către un observator printr-un instrument sau poate fi prelucrat.

Pentru a realiza polarizarea în curent a senzorului, voi folosi o oglindă de curent cu tranzistoare BC170A de tip npn.

Pentru a afla variația senzorului voi dimensiona oglinda de curent:

$$I_C = I_{C_1} = \frac{V_{CC} - V_{BE}}{R_{17}}$$

$$Vm = Vcc - Rsenzor * Ic1 = Vce > 2V$$

Dacă Vm(minim) atunci Rsenzor * Ic1 = Vmaxim, dar Vmaxim îi Vcc - 2V, adică 11V, astfel putem afla curentul Ic1.

$$Ic1 = \frac{11V}{Rsenzor(maxim)} = \frac{11V}{23k} = 0.478mA = 478\mu A$$

Rsenzor(minim) *
$$Ic1 = 13k * 478\mu A = 13 * 10^3 * 478 * 10^{-6} = 6214 * 10^{-3} = 6.2V$$

Pentru a afla Vmăsură la ieșirea de pe senzor voi calcula astfel:

$$Vm = Vcc - Rsenzor(minim) * Ic1 = 13V - 6.2V = 6.8V$$

Deci variația senzorului la ieșirea din oglindă este:

$$Vm \in [2; 6.8][V]$$

În final voi calcula rezistența R17, deoarece cunoaștem curentul $Ic1 = 478\mu\text{A}$, tensiunea de alimentare Vcc = 13V și tensiunea bază-emitor Vbe = 0.65V.

$$Ic1 = \frac{Vcc - Vbe}{R17}$$

$$R17 = \frac{VCC - Vbe}{Ic1} = \frac{13V - 0.65V}{478\mu A} = 25.5k\Omega$$

să aleg o valoare standard din E96 pentru rezistența R17=24.9k În progamul orcad variația senzorului îmi dă în intervalul: [2.1V;6.8V].

Pentru o precizie mai bună în progam mi-am adaugat jos la oglindă două rezistențe de 1k.

robe Cursor												
					$\overline{}$							
	Trace Color	Trace Name	Y1	Y2	Y1 - Y2		Y1(Cursor1)	- Y2(Cursor2)	0.000			
		X Values	13.000K	13.000K	0.000		Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg `	
	CURSOR 1,2	V(U1:+)	6.8616	6.8616	0.000		0.000	0.000	6.8616	6.8616	6.861	
		MIN(V(Q4:c))	2.1663	2.1663	0.000		-4.6953	-4.6953	2.1663	2.1663	2.166	

Figura 1. Variația senzorului în OrCad

5.2 Repertorul de tensiune

Pentru a realiza adaptarea de impedanță am adăugat un repetor de tensiune:

Figura 2. Repertor de tensiune

5.3 Amplificatorul diferențial

Am folosit un amplificator diferențial pentru a extinde domeniul senzorului la 0-VCC-2V.

Totodată am dimensionat circuitul pentru a afla rezistențele.

Figura 3. Amplificator diferențial

 $VoutAO \in [0,11][V]$

 $Vsenzor \in [2V; 6.8V]$

La un AO dif. $V^+ = V^-$

$$V^+ = \frac{R16}{R16 + R3} * Vsenzor$$

Cu ajutorul T.Millman:
$$v^- = \frac{\frac{Vref_1}{R4} + \frac{Vout}{R_{16}}}{\frac{1}{R4} + \frac{1}{R_{16}}} \Rightarrow \frac{R5}{R5 + R4} *$$

$$Vsenzor = \frac{\frac{Vref1}{R4} + \frac{Vout}{R_{16}}}{\frac{1}{R4} + \frac{1}{R_{16}}}$$

$$\Rightarrow Vout = \frac{R5}{R4} * (Vsenzor - Vref1)$$

Până la urmă o să-mi iasă două ecuații de ordinul 1. Voi afla vref1 și rezistențele de la AO.

$$\begin{cases} 11 = \frac{R5}{R4} * (6.8V - Vref1) \\ 0 = \frac{R5}{R4} * (2V - Vref1) \end{cases} \Rightarrow \\ 0 = \frac{R5}{R4} * (6.8V - Vref1) * \frac{R5}{R4} - 2 * \frac{R5}{R4} + Vref1 * \frac{R5}{R4} \end{cases}.$$

$$11 = \frac{R5}{R4} * (6.8V - 2V)$$

$$11 = 4.8 * \frac{R5}{R4} \Rightarrow \frac{R5}{R4} = \frac{11}{4.8} = 2.29k$$

$$0 = 2.29 * (2V - Vref1) \Rightarrow 0 = 2.29 * 2 - 2.29 *$$

$$Vref1 \Rightarrow 0 = 4.58 - 2.29 * Vref1 \Rightarrow Vref1 = \frac{4.58}{2.29} = 2V$$

$$\frac{R5}{R4} = 2.29$$

Alegem: R4=10.2k

$$R5 = 10.2k * 2.29 = 23.358\Omega$$

Din tabelul cu rezistențe standard E96 aleg R5=22.1k La un amplificator diferențial în cazurile practice, se folosesc: R3=R4 și R5=R16

$$\begin{cases}
R3 = R4 = 10.2k \\
R5 = R16 = 22.1K
\end{cases} \Rightarrow E96$$

5.4 Comparatorul inversor

În rezervor, nivelul de apă este menținut în domeniul specificat cu ajutorul unei pompe comandată de un comparator.

Figura 4. Comparator inversor

Pentru a afla tensiunile de prag ale comparatorului, voi efectuamai întâi un calcul pentru a afla cu cât V/cm variază domeniul.

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

$$Vvariația = \frac{11V}{440cm} = 0.025V/cm$$

Pragurile se află cu ajutorul domeniului nivelului de lichid din rezervor 80-380[cm].

$$\{VpragSus = 380 * 0.025 = 9.5V \ VpragJos = 80 * 0.025 = 2V \}$$

Și la comparator vom afla rezistențele și tensiunea de referință dacă știm tensiunea de la alimentarea comparatorului care este plus și minus Vcc, dar și pragurile acestuia.

$$\begin{cases} V^{-} = Vamp_dif \\ V^{+} = \frac{Vref2}{R7} + \frac{Vout}{R8} \\ \frac{1}{R7} + \frac{1}{R8} \end{cases}$$

$$\frac{Vout}{R8} + \frac{Vref2}{R7} = Vamp_dif(\frac{1}{R7} + \frac{1}{R8}) \Rightarrow$$

$$Vprag = Vref2 * \frac{R8}{R8 + R7} + Vout * \frac{R7}{R7 + R8}$$

$$\begin{cases} 9.5 = Vref2 * \frac{R8}{R8 + R7} + 13 * \frac{R7}{R7 + R8} \\ 2 = Vref2 * \frac{R8}{R8 + R7} - 13 * \frac{R7}{R7 + R8} \end{cases} \Rightarrow$$

$$7.5V = Vref2 * \frac{R8}{R8+R7} + 13 * \frac{R7}{R7+R8} - Vref2 * \frac{R8}{R8+R} + 13 * \frac{R7}{R7+R8}$$

$$7.5 = \frac{R7}{R7 + R8} * 2 * 13 \Rightarrow \frac{R7}{R7 + R8} = 0.29$$

Aleg: R7 E96: 10k

$$\frac{10k}{10k + R8} = 0.29 \Rightarrow 2.9 + 0.29R8 = 10k$$

$$0.29 * R8 = 7.1 \Rightarrow R8 = \frac{7.1}{0.29} = 24.5k$$

Aleg R8 din E96: 24.3k

Acuma putem afla valoare referinței:

$$2 = Vref2 * 0.96 - 13 * 0.4 \Rightarrow 2 = 0.96 * Vref2 - 5.2$$

 $\Rightarrow Vref2 = 7.5V$

5.5 Led și rezistență

Starea pompei (pornit/oprit) este semnalizată de un LED de culoare portocalie. Daca nivelul de lichid trece din domeniul specificat ledul se aprinde.

Figura 5. Led și rezistență

Pentru a afla rezistența am căutat tensiunea pe led Vled=2.2V și curentul prin Led iLed=30mA

$$R9 = \frac{Vout - Vled}{iLed} = \frac{13V - 2.2V}{30mA} = 360\Omega$$

Aleg R9 din tabelul E96: 365Ω

5.6 Releul

În rezervor, nivelul de apă este menținut în domeniul specificat cu ajutorul unei pompe comandată de un releu electromagnetic. Ansamblul pompă – releu se va modela cu ajutorul unui rezistor.

Figura 6. Releul

Pentru releu am luat din foaia de catalog rezistența R11=402 Ω și curentul Ireleu=30mA, $\beta = 100$, iar cu ajutorul PSF-ului voi calcula R10.

$$Vcc = R11 * Ireleu + Vce$$

$$Vin = Ibaza * R10 + Vbe$$

$$Ireleu = \beta * Ibaza$$

$$\begin{cases} Vce = Vcc - Ireleu * R11 \\ Vce = 13V - 30m * 402 = 1V \\ Ireleu = \beta * Ibaza \Rightarrow Ibaza = \frac{Ireleu}{\beta} = \frac{30m}{100} = 0.3mA \\ Vin = Ibaza * R10 + Vbe \\ Ibaza = \frac{Vin - Vbe}{R10} \Rightarrow 0.3mA = \frac{13 - 0.7}{R10} \\ R10 = \frac{13 - 0.7}{0.3m} = 41000\Omega \\ E96: R10 = 41.2k\Omega \end{cases}$$

5.7 Vref1

La amplificatorul diferențial voi face un divizor de tensiune pentru Vref1, astfel pot să aflu cele două rezistențe.

Figura 7. Vref1

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

$$\begin{cases} Vref1 = 2V \\ Vcc = 13V \\ R13 \end{cases} \Rightarrow \\ Vref1 = \frac{R13}{R13 + R12} * Vcc \end{cases} \Rightarrow \begin{cases} 2 = \frac{R13}{R13 + R12} * 13 \\ \frac{R13}{R13 + R12} = \frac{2}{13} \\ \frac{R12 = \frac{0.85}{0.15} * R13}{0.15} * R13 \\ E96: R13 = 1K \\ R12 = 5.6K \Rightarrow E96: R12 = 5.62k \end{cases}$$

5.8 Vref2

La fel am făcut și pentru comparatorul inversor. Am făcut un divizor de tensiune pentru Vref2.

Pentru a afla cele două rezistențe am să mă folosesc de Vref2 calculat la punctul anterior, 7.5V și de alimentare.

Figura 8. Vref2

$$\begin{cases} 7.5V = \frac{R15}{R15 + R14} * 13\\ \frac{R15}{R15 + R14} = 0.57\\ \frac{ALEG\ R15}{R14} = 750\Omega \in E96 \end{cases}$$

6. TESTAREA CIRCUITULUI

6.1 Modelarea Ledului

Pașii ce i-am urmat în modelarea ledului meu portocaliu sunt:

1. Am căutat o foaie de catalog și am extras graficul FORWARD VOLTAGE / FORWARD CURRENT.

Orange (GaAsP/CaP λ P = 635nm)

20

2. Deschidem Model Editor.

3. File \rightarrow New \rightarrow Model \rightarrow New \rightarrow Bifăm Use Device Characteristic Curves.

4. Completăm tabelul Vfwd și Ifwd de pe graficul de foaia de catalog. Apoi apăsăm Tools \rightarrow Extract Parametres \rightarrow Save.

5. Viwe Edit Model (Vom şterge tot de sub Rs, rămâne doar Is, N, Rs).

6. Punem în proiectul orcad unde este circuitul o componentă Dbreak. Dăm click dreapta pe această componentă și la Implementation Path ne punem fișierul .lib creat în model editor.

- 7. Revenim la diodă și modificăm numele "Dbreak" cu numele modelului create "LedOr".
- 8. Facem o simulare, iar în profilul de simulare adăugăm la Configuration Files fișierul .lib, apoi apăsăm Add to Design, apoi Apply și Ok.

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

9. Rezultatul final al modelări diodei:

6.2 Variația tensiunii de la bornele senzorului

Analiză în timp

Facem o analiză în timp pentru 5s în functie de parametrul r pentru valorile de 13k și 23k.

După cum vedem și în imagine vom varia parametrul r cu ajutorul *Parametric Sweep în domeniul transient*.

După rularea analizei putem observa valoarea tensiunii în timp pentru valorile de 13k și 23k.

Tensiunea pe sensor variază de la 2.1V până la 6.8V.

2. Analiza DC sweep

Facem o analiză DC Sweep în funcție de parametrul r unde vom baleea valoarea rezistenței senzorului de la 13k la 23k cu pas de 1k. În urma analizei observăm că tensiunea variază între [2.1V;6.8V].

6.3 Variația tensiunii după amplificator

Analiza DC sweep

Facem o analiză DC Sweep în funcție de parametrul r unde vom baleea valoarea rezistenței senzorului de la 13k la 23k cu pas de 1k. Noi trebuie să extindem domeniul până la 0-VCC-2V.

Observăm că domeniul s-a extins până la 0-VCC-2V, deci circuitul funcționează corect. Zero nu o să fie niciodată, deoarece în practică nu o să avem acest aspect.

6.4 Variația tensiunii după comparator

Analiza DC Sweep

Facem o analiză DC Sweep în funcție de parametrul r unde vom baleea valoarea rezistenței senzorului de la 13k la 23k cu pas de 1k. Vom observa o histereza ce ne arată pragul de sus, dar și de jos.

Dacă în simulare am pus prima dată rezistența de 13k vom observa pragul de jos.

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Dacă schimbăm ordindea în simulare a rezistențelor, vom observa pragul de sus a comparatorului.

6.5 Analiza Monte-Carlo

Analiza Monte-Carlo este un mod de analiză statistică pentru a vedea cum se comportă circuitul, după amplificare la variații ale valorilor componentelor în funcție de domeniul de toleranță.

Afișăm tensiunea maximă la ieșirea circuitului după amplificare.

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

7. BIBLIOGRAFIE

- 1. Carte: The Art of Electronics, PAUL HOROWITZ WINFIELD HILL
- 2. *Cursuri:* Dispozitive Electronice de Ovidiu Pop, Amplificatoare Operaționale.

Circuite Electronice Fundamentale de Ovidiu Pop, Oglinzi de curent.

3. Link-uri: E96-Series (electronicsplanet.ch)