Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Modelska analiza 2

4. naloga - Hartree-Fockova metoda

Študent: Pšeničnik Tomaž

31. marec 2019

Helijev atom

Energija enega prostega elektrona v Coulombskem potencialu jedra z nabojem Z se glasi

$$E = \int_0^\infty \psi \left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{4\pi\epsilon_0} \right] \psi 4\pi r^2 dr,,$$

kjer je v oglatem oklepaju hamiltonian H. Uporabimo nastavek za valovno funkcijo $\psi(r)=\frac{1}{4\pi}\frac{R(r)}{r}$

$$E = \int_0^\infty \left[-\frac{\hbar^2}{2m} \frac{R''}{r} \cdot \frac{R}{r} - \frac{Ze^2}{4\pi\epsilon_0} \right] 4\pi r^2 dr,$$

uporabimo per partes za kinetični del hamiltoniana in dobimo

$$E = -\frac{-\hbar^2}{2m}R \cdot R' \bigg|_0^{\infty} + \int_0^{\infty} \left(\frac{-\hbar^2}{2m}R'^2 - \frac{Ze^2}{4\pi\epsilon_0}\frac{R^2}{r}\right) dr.$$

Ker mora za valovno funkcijo veljati

$$R(0) = R(\infty) = 0,$$

Dobimo za končno energijo enega elektrona

$$E = \int_0^\infty \left(\frac{-\hbar^2}{2m} R'^2 - \frac{Ze^2}{4\pi\epsilon_0} \frac{R^2}{r} \right) dr.$$
 (1)

Če bi imeli dva neodvisna elektrona, bi bila njuna energija enaka 2E, ker pa upoštevamo še njun medsebojni odboj $\frac{e_0^2}{4\pi\epsilon_0|r_1-r_2|}$ in je v hamiltonijanu pozitiven, bo energija dveh elektronov večja od 2E. Sistem, kjer upoštevamo odboj, pa lahko zapišemo drugače. Rečemo, da je naboj jedra senčen. Senčenje zapakiramo v korelacijsko funkcijo Φ . Z uvedbo spremenljivk $x=r/r_b,\ e=E/E_0$ v enačbi (1), upoštevanje dveh elektronov in upoštevanje korelacijske funkcije, dobimo zvezo za energijo dveh elektronov v spremenljivki x:

$$E = 2E_0 \int dx \left[R'(x)^2 - \frac{2Z}{x} R(x)^2 - \Phi(x) R^2 \right] dx.$$
 (2)

Zapišimo enačbo (2) malenkost drugače

$$E = \int \mathcal{L}(x)dx,$$

kjer je \mathcal{L} neke vrste gostota energije po x. Enačbo variiramo po valovni funkciji R(x).

$$\delta E = \int dx \left[\frac{\partial \mathcal{L}}{\partial R} \delta R + \frac{\partial \mathcal{L}}{\partial R'} \delta R' \right],$$

upoštevamo zvezo

$$\frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial R'} \delta R \right) = \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial R'} \right) \delta R + \left(\frac{\partial \mathcal{L}}{\partial R'} \right) \frac{\partial}{\partial x} \delta R$$

in $\delta R' = \frac{d}{dx} \delta R$ in dobimo enačbo za variacijo energije po valovni funkciji R:

$$\delta E = \int_0^\infty dx \left[\left(\frac{\partial \mathcal{L}}{\partial R} - \frac{\partial}{\partial x} \frac{\mathcal{L}}{\partial R'} \right) \delta R + \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial R'} \delta R \right) \right], \tag{3}$$

pri čemer zadnji člen izgine, saj moramo imeti na robovih fiksirano funkcijo in velja $\delta R(0) = \delta R(\infty) = 0$. To niso nič drugega kot Euler-Lagrangeve enačbe.

V enačbi 2 nastopa potencial enega elektrona $\phi(x)$, ki zadošča Poissonovi enačbi

$$abla^2 \phi(x) = \frac{R^2}{x^2}, \qquad \phi = \varphi(x)/x, \qquad \varphi''(x) = \frac{R^2}{x},$$

ki jo rešimo z enojno integracijo:

$$\phi(x) = -\frac{1}{x} \int_0^x R^2(y) dy - \int_x^\infty \frac{R^2(y)}{y} dy.$$
 (4)

Z dodano omejitvijo $\int_0^\infty |R^2| dx = 1$ variiramo malenkost spremenjeno enačbo 2

$$E = E_0 \int dx \left[R'(x)^2 - \frac{2Z}{x} R(x)^2 - \Phi(x) R^2 \right] dx - 2\mathcal{E}E_0 \left(\int R^2 dx - 1 \right)$$
 (5)

in dobimo

$$\left[-\frac{d^2}{dx^2} - \frac{2Z}{x} - \frac{2\varphi(x)}{x} - \mathcal{E} \right] R(x) = 0.$$
 (6)

Reševanja problema se lotimo tako, da vzamemo začetni približek za R(x). Poznamo pogoje, da mora biti $R(0)=R(\infty)=0$. Tako za začetni približek vzamemo

$$\alpha x e^{-\lambda x}$$
.

Funkcija mora biti normirana $\int_0^\infty R^2 dx=1$. obimo, da velja $\alpha=2\lambda^{3/2}$. Iz tega sledi, da je naš začetni približek enak

$$2(Z^*)^{3/2}xe^{-Z^*x}, (7)$$

kjer smo zamenjali le $\lambda \to Z^*$. Iz minimizacije energije (2) po Z^* , nam da za vrednost $Z^*=Z-\frac{5}{16}$. Tako imamo prvi približek

$$R_0(x) = 2\left(Z - \frac{5}{16}\right)^{3/2} e^{-(Z - 5/16)x},\tag{8}$$

ki ga vstavimo v enačbo (4) in dobimo $\phi(x)$ in posredno $\varphi(x)$:

$$\phi(x) = e^{-2Z^*x} (1 - e^{2Z^*x} + Z^*x)/x,$$

$$\varphi(x) = \phi(x) \cdot x = e^{-2Z^*x} (1 - e^{2Z^*x} + Z^*x).$$

Funkciji sta narisani na sliki 1.

Slika 1: Funkciji $\phi(x)$ in $\varphi(x)$.

Kot pričakovano sta funkciji $\phi(x)$ in $\varphi(x)$ negativni, kar v enačbi za energijo (2) pomeni, da bomo imeli višjo energijo E (še vedno pričakujemo E < 0 za vezano stanje).

Z metodo *Numerova* poiščemo lastno energijo \mathcal{E} . Za Inicializacijo metode uporabimo enak nastavek kot pri prejšnji nalogi $R(x) = a_1x + a_2x^2 + \ldots$ in dobimo koeficiente

$$a1 = 1,$$
 $a_2 = -Z + \varphi,$ $a_3 = \frac{1}{6} (-\mathcal{E} + 2\varphi(\varphi + 2Z))$
 $a_4 = \frac{1}{18} (2\mathcal{E}(\varphi + Z) - \varphi^2(\varphi - 3Z))$

Praktično bomo uporabili le prvi tri koeficiente, četrtega in višje pa bomo zanemarili. Želimo dobiti le zadosti dober približek prvih dveh točk. Reševanja se lotimo po postopku:

• Začetni približek R(x) vstavimo v enačbo (4) in dobimo $\phi(x)$ in $\varphi(x)$.

- $\varphi(x)$ vstavimo v enačbo (6) in s postopkom *Numerova* dobimo nov približek za R(x).
- R(x) renormaliziramo.
- Ponavljamo postopek z izboljšanimi približki za R(x), dokler ne dosežemo željene natančnosti
- Na koncu rešitev R(x) vstavimo v enačbo (2) in dobimo energijo.

Najprej si poglejmo, kakšen je smiselen korak za uporabo Numerova, integracije in na splošno v vseh numeričnih postopkih, ki jih bomo uporabili pri nalogi. V prejšnji nalogi smo uporabili korak h=0.0001, sumimo pa, da bo za naše potrebe dovolj dober tudi korak h=0.001. Za začetek poglejmo, kako kakšna je napaka in kako se ujema analitična funkcija ϕ z numerično izračunano. Rezultat je prikazan na sliki 2

Slika 2: Funkcija $\phi(x)$ in napaka med analitično in numerično izračunano funkcijo.

Z uporabljenim korakom h=0.001 smo precej zadovolnji in ga bomo skozi nalogo uporabljali. Omenimo še, da bomo za integracijo uporabili Simpsonovo metodo, za izračun odvodov pa povprečni odvod v željeni točki

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}.$$

Sedaj si lahko pogledamo, kako se spreminjajo funkcije R(x) z vsako iteracijo. Rezultat prikazuje slika 3. Vidimo, da dobimo že po prvi iteraciji zelo dober približek končne funkcije R(x). Iteracijo smo končali, ko sta se lastni vrednosti funkcij R_i in R_{i+1} ujemali na 4 decimalna mesta. Kljub dokaj strogi natančnosti, smo potrebovali le 7 iterativnih korakov. Metoda zelo hitro konvergira za dober začetni približek.

Slika 3: Spreminjanje R(x) funkcije z vsako iteracijo. R_0 je začetni približek.

Pogledali smo si še, kakšne so lastne vrednosti funkcije R_i vse do i=6. Lastne vrednosti smo določili s postopkom *Numerova* s pomočjo bisekcije na 10^{-5} natančno. Slika 4 prikazuje spreminjanje lastnih vrednosti z vsako iteracijo.

Slika 4: Lastne vrednosti za funkcije R_i .

Preostane nam le še poračunati energijo. Dobljeno energijo prikazuje tabela 1.

Не	Račun	Meritev
E [eV]	-78.49	-78.88

Tabela 1: Izračunana energija

Litijev anion (Li⁺)

Za izračun litijevega aniona uporabimo isto kodo, kot smo računali že za helijev atom. Sprememba je le ta, da za začetni približek vzamemo že znano funkcijo zZ=3. Podobno smo analizirali konvergenco, kot pri helijevem atomu. Rezultate prikazujeta sliki 5 in 6, izračunana energija pa je podana v tabeli 2.

Slika 5: Spreminjanje R(x) funkcije z vsako iteracijo. R_0 je začetni približek.

Slika 6: Lastne vrednosti za funkcije R_i .

Li ⁺	Račun	Meritev
E [eV]	-199.25	-198.04

Tabela 2: Izračunana energija za litij

Opazimo, da za litijev anion metoda še hitreje konvergira, kot v prejšnjem primeru za helijev atom.

Vodikov ion (H⁻)

Poskusimo isto metodo še na vodiku H $^-$. Metoda za Z=1 ni uspešna, saj stvari pričnejo divergirati. To je razvidno iz slik 7, 8 in 9. Lastne vrednostni vsake posamezne R_i , prikazane na sliki 8, divergirajo v dve skrajnosti. Tako dobimo dvoje rešitev funckij R_i . Te rešitve so prikazane na sliki 7. Kot pričakovano tudi te rešitve divergirajo v dve skrajnosti, kot lastne vrednosti. Dobimo vedno bolj vezana stanja in vedno manj vezana stanja in na koncu nevezano stanje za E>0. Spreminjanje energije je razvidno s slike 9. Zaključimo Metoda ni stabilna za Z=1

Slika 7: Spreminjanje R(x) funkcije z vsako iteracijo za $Z=1.\ R_0$ je začetni približek.

Slika 8: Lastne vrednosti za funkcije R_i za ${\cal Z}=1.$

Slika 9: Izračunane energije za ${\cal R}_i$ za ${\cal Z}=1.$

Želimo ugotoviti, za kateri Z je metoda stabilna. Tukaj bomo malenkost poguljufali z informacijo iz predavanj, da je metoda še stabilna okoli Z=1.06. Izkaže se, da je naš napisan algoritem stabilen še za Z=1.05, za Z=1.04 pa ne več. Pri Z=1.05 je konvergenca že zelo počasna in s slik 10,11 in 12 praktično neopazna. Na videz dobimo dve rešitvi, ki pa zelo počasi konvergirata k eni skupni.

Slika 10: Spreminjanje R(x) funkcije z vsako iteracijo za $Z=1.05.\ R_0$ je začetni približek.

Slika 11: Lastne vrednosti za funkcije R_i za $Z=1.05. \label{eq:rednosti za funkcije}$

Slika 12: Izračunane energije za R_i za Z=1.05.

Za konec še poskusimo oceniti energijo za vodikov ion (H $^-$). Poračunali smo, kakšne energije dobimo za Z od 2 do 1.08, na te podatke fitali polinom 6-stopnje in eksponentno funkcijo in izračunali vrednost naših fitanih funkcij za Z=1. Fit prikazuje slika 13. Dobimo za

polinom: E = -12.4194 eV

funkcija: E = -12.1569 eV

kar pa se še vedno razlikuje dosti od prave vrednosti.

Slika 13: Fit k energiji