TOPIC: A GESTURE BASED TOOL FOR STERILE BROWSING OF RADIOLOGY IMAGES

TITLE	AUTHOR NAME	YEAR OF PUBLICATION	JOURNAL NAME	DESCRIPTION
A Gesture-	Juan P. Wachs,	2008	Journal of	The use of doctor-computer
based Tool for Sterile Browsing of Radiology Images	Phd, Helman I. Stern, Phd, Yael Edan, Phd, Michael Gillam, Md, Jon Handler, Md, Craig Feied, Md, Phd, Mark Smith, Md		the American Medical Informatics Associatio n, Volume 15, Issue 3	interaction devices in the operation room (OR) requires new modalities that support medical imaging manipulation while allowing doctors' hands to remain sterile, supporting their focus of attention, and providing fast response times. This paper presents "Gestix," a vision-based hand gesture capture and recognition system that interprets in real-time the user's gestures for navigation and manipulation of images in an electronic medical record (EMR) database. This paper presents a video-based hand gesture capture and recognition system used to manipulate magnetic resonance images (MRI) within a graphical user interface

	<u>, </u>			
Recognition by Using a Touchless Sensor for Controlling Images in Sa Wa	nataratah a-nguannarm , ongwit enavongse , neekapun naroenpong, aiyot atsoontorn	2019	IEEE Xplore, International Electrical Engineering Congress	To operate under sterilization condition in operating room help to reduce infection rate in patient. Therefore, surgeons cannot control computer by using mouse, or keyboard. In this paper, we proposed a method to controlling images in operating room by using a touchless sensor. This method consists of four step. First, hand motion is sensed by a touchless sensor as Leap motion. Second, hand position is detected. Third, hand gesture is recognized by using movement direction. Finally, image is shown and processed relating with hand gesture command. To test the performance of the proposed method, twenty subjects used this device to control an images. This method controls images with two gestures and eight commands: waiting, selection, searching left image, searching right image, increasing brightness, reducing brightness, zooming in and out, and left or right rotation commends. Accuracy rate of commands interpretation is 87.67%. The performance of the proposed method is effective for real-world applications. This is an alternative method for controlling image in an operation room.

[T	00:-		Tana 20 20 20 20 20 20 20 20 20 20 20 20 20
Hand gesture recognition using a dedicated geometric descriptor	Jean-Franc,ois Collumeau , Remy Leconge , Bruno Emile and Hel´ene Laurent	2012	IEEE Xplore, 3 rd International Conference on Image Processing Theory.	A high proportion of hospital-acquired diseases are transmitted nowadays during surgery despite existing asepsis preservation measures. These are quite drastic, prohibiting surgeons from interacting directly with non-sterile equipment. Indirect control is presently achieved through an assistant or a nurse. Gesture-based Human-Computer Interfaces constitue a promising approach for giving direct control over such equipment to surgeons. This paper introduces a novel hand descriptor based on measurements extracted from hand contour convex and concave extrema. Using a 9750-picture database created especially for this purpose, it is compared with three state-ofthe-art description methods, namely Hu moments, and both SIFT and HOG features. Effects of large amounts of hand rotation are also studied on each rotation axis independently. Obtained results give HOG features as
				and HOG features. Effects of large amounts of hand rotation are also studied on each rotation axis independently. Obtained results give HOG features as best in recognizing hands from our database, closely followed by the proposed descriptor. Performance
				comparison when facing rotated hands shows our descriptor as the most robust to rotations, outperforming the other descriptors by a wide margin.

		•		
An Efficient Approach for the Recognition of Hand Gestures from Very Low Resolution Images	D.K. Vishwakarma, Rockey Maheshwari, Rajiv Kapoor	2015	IEEE Xplore, Fifth International Conference on Communication Systems and Network Technologies	In this paper, a simple and effective approach for the recognition of hand gestures from very low resolution images is proposed. Enhancement of the low resolution images has always been the key focus in the processing of the digital images. Images with resolution as low as [50×50 pixels] are also considered for recognition. The gestures under consideration here are the number of fingers (one, two, three, four or five) raised by the person. The low resolution gesture image captured from web camera, mobile phone, or low cost cameras is processed systematically to output the number of fingers raised. Simple concepts of the geometry of the hand have been used for the recognition of hand gesture from the input low resolution images. The proposed method extracts the hand gesture directly from the low resolution image without the need of reconstruction to a high resolution image or use of any classifier. The proposed method is based on the generation of a mask for the image which is critical in the recognition of the hand gesture.

Hand-gesture-based Touchless Exploration of Medical Images with Leap Motion Controller	Safa Ameur, Anouar Ben Khalifa, Med Salim Bouhlel	2021	IEEE Xplore, 17th International Multi- Conference on Systems, Signals & Devices	Hand gesture recognition has become one of the most interesting means of contactless human-computer interaction. There is significant importance for commanding medical images during surgical procedures by the mean of touchless hand gestures for reducing the time of surgery and the risk of contamination. In this work, we used the Leap Motion Controller as an acquisition device, with different classification methods, to recognize 11 hand gestures dedicated to manipulating medical images through a touchless graphical user interface. This framework was trained and tested on a benchmark dataset called LeapGestureDB.
Hand-gesture- based sterile interface for the operating room using contextual cues for the navigation of radiological images	Mithun George Jacob, Juan Pablo Wachs, Rebecca A Packer	2012	National Centre for Biotechnology Information	This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance.

An Improved Hand Gesture Recognition With Two-Stage Convolution Neural Networks Using A Hand Color Image And Its Pseudo-Depth Image	Jiaqing Liu , Kotaro Furusawa , Tomoko Tateyama , Yutaro Iwamoto , Yen-Wei Chen.	2019	IEEE Xplore, IEEE International Conference on Image Processing	In this paper, we propose a two-stage deep convolutional neural network (CNN) architecture for accurate color-based hand gesture recognition. The first stage performs generation of pseudodepth hand images from color images and the second stage recognizes hand gesture classes using both the color image and its pseudo-depth hand image. The generation stage architecture is based on an image-to-image translation network. In the recognition stage, a two-stream CNN architecture with color image and its pseudo depth image is proposed to improve the color image-based recognition performance. We also propose two strategies in two-stream fusion: feature fusion and committee fusion. To validate our approach, we construct a new dataset called MaHG-RGBD dataset,
A Gesture Recognition Algorithm for Hand-Assisted Laparoscopic Surgery	Carmen López- Casado , Enrique Bauzano , Irene Rivas-Blanco , Carlos J. Pérez- del-Pulgar and Víctor F. Muñoz	2019	National Centre for Biotechnology Information	Minimally invasive surgery (MIS) techniques are growing in quantity and complexity to cover a wider range of interventions. More specifically, hand-assisted laparoscopic surgery (HALS) involves the use of one surgeon's hand inside the patient whereas the other one manages a single laparoscopic tool. In this scenario, those surgical procedures performed with an additional tool require the aid of an assistant. Furthermore, in the case of a human–robot assistant pairing a fluid communication is mandatory. This human–

				machine interaction must
				combine both explicit orders and implicit information from
				the surgical gestures. In this
				context, this paper focuses on the development of a hand
				gesture recognition system
				for HALS. The recognition is
				based on a hidden Markov model (HMM) algorithm with
				an improved automated
				training step, which can also learn during the online
				surgical procedure by means
				of a reinforcement learning
Enhancement of	Yongwon Cho,	2018	Computer methods	process. Contactless operating room
Gesture	Areum Lee,		and programs in	(OR) interfaces are important
Recognition for Contactless	Jongha Park, Bemseok Ko, and		biomedicine, Volume 161	for computer-aided surgery, and have been developed to
Interface Using	Namkug Kim.		Volume 101	decrease the risk of
a Personalized	_			contamination during surgical
Classifier in the Operating Room				procedures. Methods: In this study, we used Leap
				Motion™, with a personalized
				automated classifier, to enhance the accuracy of
				gesture recognition for
				contactless interfaces. This
				software was trained and tested on a personal basis
				that means the training of
				gesture per a user. We used
				30 features including finger and hand data, which were
				computed, selected, and fed
				into a multiclass support vector machine (SVM), and
				Naïve Bayes classifiers and
				to predict and train five types
				of gestures including hover, grab, click, one peak and two
				peaks