一. 填空题

- 1. 事件 A、 B 相互独立,且 P(B) = 0.5, P(B A) = 0.2 则 P(A B) = ()。
- 2. 随机变量 X 服从标准正态分布。 则 $E[(Xe^{2X}] = ($)。
- 3. 设X 服从 $N(\mu, \sigma^2)$; $X_1, X_2, ..., X_n$ 是取自总体X的简单随机样本,

则检验问题 $H_0: \sigma^2 = 1$; $H_1: \sigma^2 \neq 1$ 通常所用的统计量为 ()。

- 4. 随机变量 $X \times Y$ 的方差分别为 1 和 4; 相关系数为 -0.5,则随机变量 3X Y 的方差为 ()。
- 5. 设 $X_1, X_2, \dots, X_n (n > 1)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,

记统计量
$$Y = \sum_{i=1}^{n} X_i^2$$
 , 则 $D(Y) = ($)。

6.设(X, Y)服从正态分布N(1,0;4,4;0), 则 $E(X^2Y^2)=($)。

二. 单项选择题

- 1. 设 $f_1(x)$ 、 $f_2(x)$ 分别为 X_1, X_2 的概率分布密度,则下列选项中一定为某一随机变量概率分布密度的是()。
- (A) $f_1(x)f_2(x)$; (B) $2f_1(x) f_2(x)$; (C) $f_1(x) + f_2(x)$; (D) $\frac{1}{3}f_1(x) + \frac{2}{3}f_2(x)$
- 2. 设 X_1, X_2 的概率分布列都为: $\begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$,且 $Cov(X_1, X_2) = -\frac{1}{9}$

则概率 $P\{X_1^2 + X_2^2 = 1\} = ($)。

(A)0; (B)
$$\frac{1}{3}$$
; (C)1; (D) $\frac{2}{3}$.

3. 随机变量 $X \sim b(3, p)$, $Y \sim b(2, p)$ 。如果 $P\{X \ge 1\} = \frac{19}{27}$

则
$$P\{Y = 1\} = ($$
)。

(A)	$\frac{2}{9}$;	(B)	$\frac{1}{3}$;		(C)	$\frac{4}{9}$;	(L	$\frac{5}{9}$	o		
4. 设	总体】	X 服力	从 $N(0,$, $oldsymbol{\sigma}^2)$,	X_1	$,X_{2},$, X	7 , 是:	来自总	总体 X	的简单	单随机机	洋本,
则当	otin n ightharpoons	→∞时	\uparrow , Y_n	$=\frac{1}{n}$	$\sum_{i=1}^{n} X$	' ³ 依村	既率业	女敛∃	戶 ()。		
(A)	0:		(B) <i>c</i>	$\boldsymbol{\tau}^2$:	(C	() o	τ ³ ;	((D) 1	. 0			

5. 总体 X 服从区间[$1-\theta$, $\theta+1$]上的均匀分布, $\theta>0$ 为未知参数;

 X_1, X_2, \dots, X_n 是来自总体的简单随机样本。

则下面选项中**不是统计量**的是()。

(A)
$$\overline{X} + 2$$
; (B) $\sum_{i=1}^{n} X_i^2 - D(X)$; (C) $n(\overline{X})^2$; (D) $\overline{X} + E(X)$

6. 一批产品共 10 件,其中 2 件次品,从中随机抽取 3 次,每次抽 1 件,抽后不放回,则第 3 次才抽到正品的概率为 ()。

(A)
$$\frac{1}{45}$$
 ; (B) 0.2 ; (C) $\frac{7}{45}$; (D) 1.

三. 计算题

(一) 设X 的分布列为 $P\{X = 1\} = P\{X = 2\} = 0.5$; 在X = k的条件下,Y服从区间[0, k]上的均匀分布(k = 1,2), 试求Y的分布函数 $F_{v}(y)$ 和Y概率分布密度 $f_{v}(y)$ 。

(二)设二维随机变量(X,Y)的密度函数为

$$f(x, y) = \begin{cases} cxe^{-y}, & 0 < x < 1,0 < y < +\infty, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

1.求常数c 2. 求出X、Y的边际分布密度

3.说明 X、Y 是否独立,为什么? 4. 求 $E(X^2Y)$

(三) 总体 X 的概率分布函数为:

$$F(x) = \begin{cases} 1 - e^{-\frac{(x-b)}{\theta}}, & x \ge b \\ 0, & \text{其它}. \end{cases}$$

 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本。

- 1. 当b = 0时,求参数 θ 的矩估计 $\hat{\theta}$ 。
- 2. 当 $\theta = 1$ 时,求参数b的极大似然估计 \hat{b} 。
- 3. 当 $\theta = 1$ 时,求出极大似然估计 \hat{b} 的概率密度函数。
- 四. 总体 X 服从 $N(0,3^2)$, X_1,X_2,\cdots,X_{18} 为来自总体 X 的简单随机样本

记
$$Y = \frac{(X_1^2 + X_2^2 + \dots + X_9^2)}{(X_{10} + X_{11} + \dots + X_{18})^2}$$
。证明: Y 服从 $F(9,1)$

2016 秋答案

一. 填空题

1.
$$0.3$$
; 2. $2e^2$; 3. $(n \ 0 \ 1)S^2$; 4. 19 ; 5. $2nv^4$; 6. 20

二. 单选题

三.(一)解:据题意

$$X @ 1$$
时: $P\{Y f y | X @ 1\}$ @ $\overset{\mathsf{CO}}{\overset{\mathsf{A}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}{\overset{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}$

$$P\{Y \ f \ y\} \ @ \ {\bf \hat{1}}^2_{i \, @ \, 1} P \Big\{ \! X \ @ \ i \Big\} \! P \Big\{ \! Y \ f \ y \Big| X \ @ \ i \Big\}$$

$$= \frac{1}{2} P\{Y \ f \ y | X @ 1\} + \frac{1}{2} P\{Y \ f \ y | X @ 2\}$$

(二)解

(1)
$$\mathbf{G} = \sum_{0 = 0}^{\infty} \mathbf{E} f(x, y) dx dy @ 1$$

$$c @ 2$$
 $f(x,y) @ \overset{\mathbb{C}}{\tilde{n}}_{0},$ $0 ? x ? 1,0 ? y ? . ^ \mathbb{n},$ 其它。

(2)
$$X$$
 的边际分布密度 $f_X(x)$ @ $\mathbf{\hat{E}}^{\mathbb{Z}} f(x,y) dy$ @ $\mathbf{\hat{n}}$ 0 其它

(3) G
$$f(x, y)$$
 @ $f_x(x)f_y(y)$ 所以 X 、 Y 独立,

(4)
$$E(X^2Y) \otimes EX^2EY \otimes \frac{1}{2}$$

(三)

解: 1. 当 b @ 0 时, X 的分布函数

$$F(X)$$
 @ $\overset{\mathbf{C}}{\tilde{\mathbf{n}}}$ 0 $e^{0\frac{X}{t}}$, X , 0 $t \to 0$,

$$X$$
 密度函数 $f(x)$ @ $\overset{\overset{\overset{\longleftarrow}{c}}{\tilde{n}}t}{\tilde{n}}e^{\circ\frac{x}{t}}, x$, 0 t A 0, $\overset{\overset{\longleftarrow}{c}}{\tilde{o}}$ 0, 其它。

2. 当 t @ 1 时, X 的分布函数

$$F(x)$$
 @ $\stackrel{\mathsf{Cl}}{\tilde{\mathbf{n}}}$ 0 $e^{-(x\,\mathbf{0}\,b)}$, x , b $\overset{\mathsf{D}}{\tilde{\mathbf{n}}}$ $\overset{\mathsf{D}}{\tilde{\mathbf{n}}}$, 其它。

$$X$$
密度函数 $f(x)$ @ $\overset{\mathsf{C}e}{\overset{\mathsf{O}(x \circ b)}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}}{\overset{\mathsf{O}}}}}}}}}, X , b$

b的极大似然估计b @ $\min(X_1, X_2, \mathbf{B}, X_n)$

3. 当*t* @ 1时, *X* 的分布函数

$$F(x)$$
 @ $\stackrel{\mathsf{Cl}}{\mbox{\'n}}$ 0 $e^{-(x \circ b)}$, x , b $\stackrel{\mathsf{Cl}}{\mbox{\'o}}$ 0, 其它。

$$b \otimes \min(X_1, X_2, B, X_n)$$

b 的分布函数

$$F_b'(x)$$
 @ 1 0 [1 0 $F(x)$] " @ $\stackrel{\mathsf{Cl}}{\tilde{\mathbf{n}}}$ 0 $e^{-\mathbf{n}(x \circ b)}$, x , b 数0, 其它。

四.证明: 略