Autor: Dominika Piętka

Prowadzący: Dominika Piętka

Geometria Posejdona

Teoria

- kąty w okręgu
- punkty w trójkącie: H, g, O, I, I_A
- okrąg opisany na trójkącie prostokątnym
- czworokąt wpisany w okrąg
- twierdzenie o trójliściu i trójzębie
- twierdzenie Talesa

Zadania

- 1. Punkt H jest ortocentrum $\triangle ABC$. Wykaż, że ortocentrum $\triangle BHC$ znajduje się na okręgu opisanym na ABC.
- 2. Wykazać, że punkty symetryczne do punktu H względem prostych AB,BC,CA leżą na okręgu opisanym na $\triangle ABC$.
- 3. Dany jest trójkąt ABC, oraz punkty P, Q na boku AB, takie że $BC = AP = PQ = QB = \frac{1}{3}AB$. Punkt M jest środkiem boku AC. Udowodnij, że $?PMQ = 90^{\circ}$
- 4. Dany jest trójkąt ostrokątny ABC. Punkty D, E, F leżą odpowiednio na bokach BC, CA, AB przy czym $\not EDF = \not BAC, \not DEF = \not ABC$ Wykazać, że punkt przecięcia wysokości trójkąta DEF pokrywa się ze środkiem okręgu opisanego na trójkącie ABC.
- 5. Niech H będzie ortocentrum trójkąta ostrokątnego ABC. Prosta AH przecina prostą BC w punkcie D, zaś okrąg opisany na trójkącie ABC w punkcie $K \neq A$. Udowodnij, że DH = DK.
- 6. Sformułować i udowodnić twierdzenie o trójzębie dla dwusiecznej kąta zewnętrznego.
- 7. Czworokąt ABCD jest wpisany w okrąg ω . Punkt I jest środkiem okręgu wpisanego w trójkąt ABC, prosta AI przecina okrąg ω w punkcie $M \neq A$. Punkt J jest środkiem okręgu wpisanego w trójkąt ADC, prosa AJ przecina okrąg ω w punkcie $N \neq A$. Wykaż, że jeśli MI = NJ, to $\not BAC = \not DAC$
- 8. Wysokości nierównoramiennego, ostrokątnego trójkąta ABC przecinają się w punkcie H. Punkt S jest środkiem tego łuku BC okręgu opisanego na trójkącie BCH, który zawiera punkt H. Wyznaczyć miarę kąta BAC, jeśli spełniona jest równość |AH| = |AS|.
- 9. Punkt I jest środkiem okręgu wpisanego w trójkąt ABC. Prosta AI przecina odcinek BC w punkcie D. Symetralna odcinka AD przecina proste BI oraz CI odpowiednio w punktach P i Q. Dowieść, że wysokości trójkąta PQD przecinają się w punkcie I.

