Многокритериальная оптимизация полости охлаждения в поршне дизельного двигателя

Зенкин В.А. Комарова М.Г. Кулабухов М.А.

ВВЕДЕНИЕ

Двигатель внутреннего сгорания (ДВС) — разновидность теплового двигателя, в котором топливная смесь сгорает непосредственно в рабочей камере (внутри) двигателя **Дизельный двигатель** — поршневой двигатель внутреннего

сгорания, работающий по принципу самовоспламенения распылённого топлива

Продольный разрез дизельного двигателя

Поршень дизельного двигателя

ПРОБЛЕМЫ ВО ВРЕМЯ ЭКСПЛУАТАЦИИ

Поршень в разрезе

Примеры разрушения поршня

ПУТИ РЕШЕНИЯ ПРОБЛЕМ

Составной поршень

Полость охлаждения

Материалы поршней			
Серые и ковкие чугун	CY 24-44, CY 28-48, CY 32-52		
Алюминиевые сплавы	АЛ1, АК2, АК4, ЖЛС		
Жаропрочная сталь	20Х3МВФ, 03Н18К9М5Т		

МЕТОДЫ ПРОЕКТИРОВАНИЯ

Поверочный расчет

Испытание

МАТЕМЕТИЧЕСКАЯ МОДЕЛЬ

- OpenFOAM (OF) свободно распространяемый инструментарий вычислительной гидродинамики, задач теплопроводности в твёрдом теле, прочностных расчетов для операций с полями (скалярными, векторными и тензорными);
- SolidDisplacementFoam (SDF) решатель для расчета напряжений для упругого твердого тела, применимый как к стационарному состоянию, так и для переходных процессов.

На первом этапе определялось поле температур, путем решения стационарного уравнения теплопроводности:

$$\Delta(T) = 0$$

где T — поле температур, К.

Далее итерационно (для учета взаимной связи компонентов вектора перемещений) находилось решение уравнения перемещений:

$$((2 \cdot \mu + \lambda) \cdot D) + div(\sigma) - grad((3\lambda + 2\mu) \cdot \alpha_T \cdot T) = 0$$

где D — вектор перемещений, м;

 λ, μ — коэффициенты Ламэ, Па;

 $lpha_{\mathrm{T}}$ — коэффициент линейного расширения, 1/К.

Тензорное поле напряжений (σ) определялось из обобщенного уравнения Гука по формуле:

$$\sigma = 2\mu\varepsilon + \lambda tr(\varepsilon)I$$

где

 ε =1/2[∇u + (∇u) T] — тензор деформаций.

Верификация SolidDisplacementFoam

ПАРАМЕТРЫ ПОРШНЯ

Параметр	Значение	
Диаметр поршня	84 мм	
Высота поршня	71 MM	
Высота жарового пояса	9.75 мм	
Форма камеры сгорания	Омега-образная	
Диаметр камеры сгорания	41.7 mm	
Глубина камеры сгорания	8.9 мм	
Количество колец	3	
Материал поршня	Алюминиевый сплав	
Плотность	2712 кг/м³	
Коэффициент Пуассона	0.34	
Модуль упругости 1-го рода	7е10 Па	
Удельная теплоемкость	880 Дж/(кг*К)	
Теплопроводность	160 Bt/(m*K)	
Коэффициент линейного расширения	2.4e-5 1/K	

ГРАНИЧНЫЕ УСЛОВИЯ

pl №	α_w , $Bm/M^2 \cdot K$	<i>T, K</i>	pl №	α_w , $Bm/M^2 \cdot K$	<i>T, K</i>	pl №	α_w , $Bm/M^2 \cdot K$	<i>T, K</i>
1	425	1165.5	11	15500	418	21	115	353
2	440	1165.5	12	500	418	22	115	353
3	570	1165.5	13	500	418	23	1160	363
4	790	1165.5	14	0	418	24	1160	363
5	900	1165.5	15	11012	418	28	2500	428
6	910	1165.5	16	500	418	29	2500	428
7	570	1165.5	17	500	418	30	2500	428
8	225	573	18	0	413	31	2500	428
9	600	418	19	1500	413	32	2500	428
10	0	418	20	2000	393	33	2500	428

Граничные условия:

- Боковым поверхностям присваивается условие симметрии;
- Расчетная модель представляет собой сектор с углом $\pi/12$;
- Поверхность 21 зафиксирована от вертикальных перемещений.

Верификация SolidDisplacementFoam

Сравнение распределения эквивалентных напряжений

Сравнение температурных полей

Сравнение распределения эквивалентных напряжений

Сравнение температурных полей

Верификация SolidDisplacementFoam

5.7e+07

5e+7

4.5e+7

4e+7

3.5e+7

3e+7

2.5e+7

2e+7

1.5e+7

1e+7 5e+6

2.7e+04

5.5e+02

540

530

520 510

500

490

470

460

450

440

430 420

4.1e+02

ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ

Независимые параметры:

Параметр	min	max
а	24	35
b	4	13
Α	6	12
В	2	4

Целевые функции:

- Максимальная температура вблизи первого поршневого кольца;
- Максимальное эквивалентное напряжение в контрольной области.

Алгоритм решения - NSGA2

ПРОВЕРКА СЕТОЧНОЙ СХОДИМОСТИ

Max Thermally Induced Stress, Pa

Обозначение	Кол-во ячеек	Размер ячейки (k)	Длительность расчета
Не показан	1000	2 мм	8 c.
0	3200	1 mm	15 c.
+	11800	0,5 мм	59 c.
Х	32900	0,3 мм	219 c.

k=1.0 mm

3200 cell

k=0.5 mm

11800 cell

k=0.3 mm

32900 cell

ΦΡΟΗΤ ΠΑΡΕΤΟ

Целевые функции:

- Значение максимальной температуры верхнего поршневого кольца;
- Максимальное эквивалентное напряжение в контрольной области.

Max Thermally Induced Stress, Pa

РЕЗУЛЬТАТЫ

СТРУКТУРНАЯ СХЕМА РЕАЛИЗАЦИИ РАСЧЕТНОЙ МЕТОДИКИ

ЗАКЛЮЧЕНИЕ

- Проведена верификация SDF, показывающая приемлемость использования данного решателя для задач ТНДС;
- Предложен подход к анализу конфликтующих факторов в поршне дизельного двигателя на основе проведения многокритериальной оптимизации;
- Предложенная методика может быть применена и для других объектов исследования.