

기계이상진단을 위한 인공지능 학습 기법

제 6강 데이터 증강과 이상치 노출

한국과학기술원 전기및전자공학부

최정우 jwoo@kaist.ac.kr

KAIST EE

목차

- 데이터 전처리 기법
 - 데이터 증강 기법 (data augmentation)
- 이상진단을 위한 분류 태스크 성능 향상 기법
 - Outlier Exposure
 - Mixup

Lack of training data

- New production model
- Human resources are required for data collection
- High-variability of normal data depending on the operating condition

- Insufficiency in machine condition measurements
 - One cannot measure enough data before the activation of a new plant

Lack of training data

• In self-supervised training

Example of overfitted model

- Adversarial attack examples
 - Adding small noise

Images from https://arxiv.org/pdf/1602.02697.pdf

MNIST example

- Training dataset: 600 samples (out of 24,000 samples)
 - Normal: digits 0 − 4
 - Anomalies: digits 7,8,9

8	7	7	9	Ч	9	6	1	6	4
5	5	2	6	3	7	9	7	2	3
6	1	2	5	フ	8	1	0	8	6
6	0	5	Ø	5	2	3	9	3	٦
9	7	9	4	2	6	3	4	6	5
0	3	9	6	4	3	8	1	f	2
6	5	7	1	3	0	7	8	8	2
0	6	<u> </u>	0	0	<u> </u>	8	4	5	2
9	<u> </u>	3	5	2	8	7	0	7	2
a	7 .	4	9	\mathcal{O}	3	6	l	8	0

Model

- Pretext: classification task
- Conv 2D classification model (3 conv 2D layers + one linear)
- Anomaly score: maximum softmax probability
- Label smoothing: 0.2
- Test over 3584 samples

Problems with small dataset

Overfitting

- Big gap between performances for the training & validation datasets
- Model only works well for the training data

Problems with small dataset

Low AD performance

Even cannot recognize (unseen) normal data

Problems with small dataset

Scattered samples in feature space

Augmentation

- Increasing the size of training data
 - Using proper transforms

- Image: translation, rotation, flip, zoom, ...
- What is a 'proper transform'?
 - Relies on the human's prior knowledge
 - T(normal data) ∈ normal data

Data Augmentation

• Examples of augmented data (rotation $<\pm30^\circ$, pixel shift $<\pm2$ px)

Training with augmented dataset

Training performance

smaller gap between train & validation losses

- Smaller gap between training & validation losses
- Anomaly scores for normal & abnormal data are more distinguishable

Training with augmented dataset

High AD performance

Training with augmented dataset

More separation in feature space

Code review

Augmentation part

```
# define transforms for augmentation
                                                              declare augmentation transform object
tfs = TF.Compose([
                    TF.RandomAffine(degrees=0, translate=(0.1,0.1)),
                    TF.RandomRotation(degrees=(-30, 30))
# get small sized dataset

    Sample 600 data from MNIST train dataset

# Sample the data in same proportion of labels
from sklearn.model_selection import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(n_splits=1, train_size=train_dataset_num, random_state=0)
indices = list(range(len(mnist train))) # gen list 0, ..., len(mnist train)
labels = [y for _, y in mnist_train] # get labels from mnist
train_idx = [idx for idx, _ in sss.split(indices, labels)] # separate indices
train subset = Subset(mnist train, train idx[0]) # get subset
```

Code review

Augmentation part

```
# Begin augmentation
# init dataset list with original dataset
aug_dataset = [getSubset(train_subset)]

if not NAUG==0:
# repeat random augmentation NAUG-1 times
for ii in range(NAUG-1):
aug_dataset.append(getSubset(train_subset, transform=tfs_)) 	Apply augmentation and attach to list

# concatenate datasets using ConcatDataset function
train_dataset = torch.utils.data.ConcatDataset(aug_dataset) 	Unify datasets using ConcatDataset

train_dataloader = DataLoader(train_dataset, batch_size=BATCH, shuffle=True)
```

Code review

getSubset: customized class for building sub-dataset with transforms

```
class getSubset(TensorDataset):
    def __init__(self, subset, transform=None, target_transform=None):
        self.subset = subset

    get the transform for data

        self.transform = transform
        self.target_transform = target_transform
                                                                 —— get the transform for labels
    def __getitem__(self, index):

    extract subset

        x, y = self.subset[index]
        if self.transform:

    Apply transform to data

           x = self.transform(x)
        if self.target_transform:
            y = self.target_transform(y)

    Apply transform to labels

        return x, y
    def __len__(self):
        return len(self.subset)
```

Limitation of Data Augmentation

- Augmentation is not a fundamental solution (rather a sidekick)
 - Transformed normal data are still normal
 - Cannot make complex modifications: possible expressions are limited

Some transforms can yield confusion between labels

Injection of outlier examples to model

Prior knowledge of anomalies

- Some data can never be normal
- Exposing a model to out-of-distribution (OOD) examples entirely disjoint from normal data (auxiliary data)
- Learning cues for whether an input is modeled / unmodeled

Benefits

- Learn effective heuristics for detecting OOD samples
- Enabling the detection of novel forms of anomalies

How to

- Train normal & outlier data together in the same batch

Loss function

- λ: controls relative weight between two losses
- Example: MNIST
 - Convolutional Classifier: same model
 - Label smoothing: 0.2
 - No augmentation, full training set

Hyperparameters

```
EPOCHS = 5  # Number of epochs to train

BATCH = 32  # Minibatch size

ORGCLASS_NUM = 10  # Num of original classes (10: 0 to 9)

ANOMALY_NUM = [7,8,9]  # (list) Digits will be used as anomalous data

NORMAL_NUM = [0,1,2,3]  # (list) Digits used as normal data

OUTLIER_NUM = [4,5,6]  # (list) Digits used as ouliter

TEMPSC = 1.0  # temperature parameter (for temperature scaling)

LBSMOOTH = 0.2  # label smoothing parameter

SCORE_MODE = 0  # Anomaly score : 0 for 1-MSP, 1 for H(u;.)
```

Dataloader

```
train_dataloader = DataLoader(train_dataset, batch_size=BATCH, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH)

# outlier dataset
outlier_idx = [i for i,v in enumerate(mnist_train) if v[1] in OUTLIER_NUM]
outlier_dataset = Subset(mnist_train,outlier_idx)
outlier_dataloader = DataLoader(outlier_dataset, batch_size=BATCH, shuffle=True)
```

Anomaly score

```
loss_fn = nn.CrossEntropyLoss(label_smoothing=LBSMOOTH) # CCE
vdef anomaly_score(logits, mode=0): # mode = 0 :
     if mode == 0:
       # Anomaly score = 1 - MSP
       softmaxprob = torch.softmax(logits, dim=1)
       MSP = torch.max(softmaxprob, dim=1).values
       return torch.tensor(1) - MSP
      if mode == 1:
       # Anomaly score = -H(u, .)
       uni = torch.ones(logits.shape[0],logits.shape[1]).float().to(device)/₩
        torch.tensor(len(NORMAL_NUM)).float().to(device) # make uniform distribution
       score = -F.cross_entropy(logits,uni,reduction='none') # -CCE (negative since anomaly
       #print(score)
       return score
 optimizer = torch.optim.Adam(model.parameters(), Ir=1e-3) # Adam as optimizer
```

Trainer 1

```
# Here, outlier_dataloader is added. More GPU memory is required for Outlier exposure.
def train(dataloader, outlier_dataloader, model, loss_fn, optimizer):
    model.train()
   size = len(dataloader.dataset)
    losses = []
   in_losses = []
   oe_losses = []
                                                                 make a tuple of two minibatches from train, outlier dataset
   batch = 0
    for indist, oedist in zip(dataloader, outlier dataloader):
                                                                                 # each dist is tuple of (img, label)
        # unzip tuple
                                      get (image, label) of training data
       in_image, in_idx = indist
                                      get (image, label) of outlier data
       oe_image, oe_idx = oedist
       # in distribution dataset (normal data) same as before
        logits, _ = model(in_image.to(device))
                                                                    # logit (batch, class)
       p = F.one_hot(in_idx,ORGCLASS_NUM)[:,NORMAL_NUM]
       p = p.float().to(device)
        in dist loss = loss fn(logits, p)
        in_losses.append(in_dist_loss.cpu().detach())
```

• Trainer 2

Outlier exposure: result

Outlier exposure: result

Outlier prediction probability (seen outlier data during training)

Outlier exposure: result

• t-SNE plot

Other pretext tasks

1. Reconstruction

2. Classification

3. Mixup

mixup: Beyond Empirical Risk Minimization

https://arxiv.org/abs/1710.09412

Overfitting problem

Empirical risk minimization (ERM)

- DNN model minimizes expected risk at the observed points
 - Empirical risk minimization
- To minimize ERM, a model can memorize the training data
 - Vulnerable to unseen data
- What if we can find a virtual featuretarget pair in the vicinity of the training pair?
 - Empirical vicinal risk minimization!

Mixup

- Mix two classes
 - Mix up both input and target probability

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```


- Not just an augmentation (target probability is redefined)
- Model is trained to predict mixed probability y

Mixup

- Choice of λ
 - λ is sampled from Beta distribution

$$\lambda \sim \text{Beta}(\alpha, \alpha)$$

- α controls the strength of interpolation
- Beta distribution (Beta(a,b))

Mixup: result

MNIST dataset

- Without label mixing, Normal: [0,..., 3], Anomaly:[7, 8, 9]

