Portfolio

INTRO

이운기 Lee Woon-Gi

순천향대학교 컴퓨터 공학과 졸업 2012.02 ~ 2019.02

Android #Unity #C #C++ #VirtualReality #Open CV

#Starcraft #Soccer #RealMadrid

mynamewoon@gmail.com

https://github.com/leewoongi https://mynamewoon.tistory.com/

ABOUT

- / 이운기, Lee Woon Gi
- / 1992년 08월 30일
- / 경기도 안양시 동안구 경수대로 609번길 26, 201동 1206호
- / 광양제철고등학교 졸업 순천향대학교 컴퓨터공학과 졸업
- / 순천향대학교 컴퓨터공학과 영상처리연구실 활동 삼성 sds 알고리즘 강의 수료 프로그라피 6기 수료

/ 2012.7 ~ 2014.4 육군 만기 제대

Projects

2016

자율주행 차량을 위한 차선 이탈 검출 애플리케이션 시각 장애인을 위한 사물인식 애플리케이션

2017

스마트 미러 자동분리수거 장치

2018

MARKER 추적 기반 IoT 디바이스 제어 증강현실 인터페이스 인지장애환자 치료를 위한 VR 애플리케이션

2019

교육용 VR 애플리케이션

2020

플레이지 축구 플랫폼

자율 주행 차량을 위한 차선 이탈 검 출 애플리케이션

#2016 #OpenCV #Android

- / 차량에 설치한 안드로이드 핸드폰을 통해 도로 정보를 수집
- / 수집된 정보를 실시간으로 소실점과 기울기 영 역을 계산하여 이탈 판별
- / 차선 이탈 시 경고 표시를 출력하여 보다 안전 한 운행을 유도

- -- 수행 역할
- # 영상이 들어올 때, 관심(ROI) 영역 설정
- # 관심영역을 토대로 소실점 추출
- # 소실점까지 관심영역 내에 특정 기울기에 해당 시 차선으로 인식

컴퓨터공학과 지도교수: 천인국

20124072 김명수 20114098 송민근 20134114 <u>방주이</u> 20134078 <u>이은지</u> 20134071 박소은 20144617 장혜린 20134087 이영재 20124116 이운기

배경 및 목적

- 최근 자율주행 차량과 무인주행 차량의 개발로 차선 검출과 차선 이탈 방지의 필요성이 증가
- 실시간 주행 중 졸음운전, 운전미숙 등 차선을 검출 하여 이탈 알림을 주어 사고를 예방

● 순서도

Development Tools

● 후보차선 결정

- 데이터에서 샘플 수집 후 중복제거
- ✓ HoughLine 함수를 통해 수집된 데이터를 기반으로 예비자선 후보군 결정
 ✓ 기울기 판단 알고리즘을 통해 예비자선
- 기술기 근근 글고디금을 중에 에비자한 후보군에서 최종차선 검출
 ✓ 관심 영역내의 최종 검출 차선이 이탈 알고리즘에 적합 판별시 이탈경고
- ✓ 관심영역 내의 최종 예비차선이 존재하면 정상주행 판단 후 차선검출 진행
- 또는 올바르지 않은 차선을 달리고 있다면 경고표시와 함께 경고음 전달
- 녹화영상을 통해 지금까지의 녹화된 영상으로 블랙박스의 기능과 더불어 자신의 주행영상을 확인 할 수 있다

최근 인공지능 기술의 발달로 AlphaGo 와 <u>구글카</u> (무인자동차) 등 과학분야의 연구가 이루어 지고 있다. 그에 따른 무인자동차와 관련된 부가 기술들의 수요가 증가되고 있다. 그 중 차선검출과 이탈인식이 필수요소로서 무인자동차 주행이 진행 될 수 있기 때문에 본 작품의 시스템을 기반<mark>의로 되고</mark> 차물추행(국립)

시각 장애인을 위한 사물인식 애플 리케이션

#2016 #OpenCV #Android # Google Cardboard

- / 안드로이드 핸드폰 카메라를 통해 실시간으로 영상 수집
- / 수집된 영상을 이진화 시켜 WATERSHED 함수를 사용하여 사물의 윤곽선을 추출

- -- 수행 역할
- # OPENCV를 이용해 영상의 이진화 작업
- # 이진화 된 영상에 모폴리지 알고리즘을 사용하여 노이즈 제거
- # 카메라를 통해 들어오는 영상의 외곽선 추출

SCH

시각 장애인을 위한 사물인식 애플리케이션

컴퓨터공학과 지도교수 : 천인국

20124072 김명수 20134114 방주이 20134078 이은지 20134071박소은 20144617 장혜린 20134087 이영재 20124116 이운기

● 실시간 영상을 이용한 앱 개발

✓ 안드로이드의 카메라를 이용하여

코드를 연동하기 위해 NDK 사용

실시간 화면을 받아와 영상을 처리해 줌. ✓ 네이티브 언어로 작성된 영상 처리

✓ 구글에서 제공되는 cardboard

● 영상 처리된 실시간 프리뷰를 cardboard

라이브러리를 사용하여 2분할 화면 출력. 개발 결과

배경 및 목적

- 잔존 시력이 남아있는 시각장애인들을 위해 사물의 외곽선을 검출하여 사물 인식을 도와줌.
- 최근 각광받는 기술인 AR에 cardboard 를 접목시켜 현실적인 체험을 할 수 있음.
- 현재 출시된 스마트 안경은 고가의 비용을 필요로 하여 상용화에 어려움이 있음.

작품 내용 및 설명

● OpenCV를 이용한 외곽선 검출

✓ OpenCv watershed를 이용한 외곽선 검출

-모폴리지를 연산을 통한 노이즈 제거

-Watershed의 특징인 침식과 팽창을 이용

-팽창 시 침식과의 대비 조정하여 선

Edge Detection

를 통하여 본 화면.

견로 및 화요 반이

- 잔존 시력이 남아 있는 시각 장애인들의 보행과 사물인식에 도움을 줄 수 있음.
- cardboard와 스마트폰을 이용하여 시각 장애인들을 위한 스마트 안경을 보다 저렴한 비용으로 제공.
- 더 나아가 오디오 안내 기능을 탑재하여 착용자가 보는 사람이나 사물에 대해 더 많은 정보를 제공.

CE 004

제25회 공과대학 학술제

src = cvRetrieveFrame(capture);
//Display the image
imshow("Original Image", src);

Mat bw; Mat bw1; cvtColor(src, bw, COLOR_BGR2GRAY); cvtColor(src, bw1, COLOR_BGR2GRAY); // threshold(gray,binary,60,255,THF

threshold(bw, bw, 0, 255, CV_THRESH_

//Display the binary image imshow("Binary Image", bw);

Mat karnel = Mat::ones(Size(3, 3), CV_BUC1);
Mat opening, sure_bg, sure_fg = bw, unknown;

morphologyEx(bw, opening, MORPH_OPEN, karnel, Point(-1, -1), 3);

dilate(opening, sure_bg, karnel, Point(-1, -1), 3);
//imshow("Binary Image", bw);

imshow("sure lmage", opening);
imshow("fg lmage", sure_fg);
subtract(sure_bg, sure_fg, unknown);
imshow("unknown lmage", unknown);

엣지면산.mp4

그레이영성

addWeighted(bw1, 0.3, unknown, 0.7, 0.0, result);
imshow("result", result);

SMART MIRROR

#2017 #Raspberry Pi #Arduino # Node.js

- / Node.js를 이용하여 schema 해당하는 api key 삽입
- / 음성인식을 통하여 사용자가 원하는 영상 및 날씨 전철 위치, 스케줄과 같은 기능을 탑재

- -- 수행 역할
- # 라즈베리파이를 이용해 환경 설정
- # PM1001 분진센서와 아두이노를 이용하여 미세먼지 측정
- # 스마트미러에 사용되는 날씨, 시간, 달력, 유투브 등 api 사용하여 추가
- # 카메라를 통해 들어오는 영상의 외곽선 추출


```
"calendar": {
    "icale": [
        "https://calendar.google.com/calendar/ical/88rpvlbh4sumpj51fq51a2utvsf48group.calendar.google.com/public/basic.ics"
],
    "maxResults": 9,
    "maxResults": 9,
    "shouCalendarHames": true
},
    "shouCalendarHames": true
},
    "giphy": {
        "key": "dc6zaT0xf3mzC"
},
        "lastfm": {
        "refreshInterval": 0.6
},
        "youtube": {
        "key": "AlzaSyCz2vboOx#h18VzqtY3X0f-83nlrxQxYck"
}
```

```
UNO_PM1001_rev0 §
#include <SoftwareSerial.h>
                                                       // RX 13, TX 11
SoftwareSerial mySerial(13, 11);
unsigned char Send_data[4] = {0x11,0x01,0x01,0xED};
unsigned char Receive_Buff[16];
                                                      // data buffer
unsigned long PCS:
                                                      // 수량 저장 변수
 float ug:
                                                      // 농도 저장 변수
unsigned char recv_cnt = 0;
 void Send_CMD(void)
                                                       // COMMAND
 for(i=0; i<4; i++)
   mySerial.write(Send_data[i]);
   delay(1); // Don't delete this line !!
 unsigned char Checksum_cal(void)
                                                       // CHECKSUM
  unsigned char count, SUM=0;
  for(count=0; count<15; count++)
    SUM += Receive_Buff[count];
  return 256-SUM;
 void setup() {
 pinHode(13, INPUT);
 pinHode(11, OUTPUT);
 Serial.begin(9600):
 while (!Serial) :
  mySerial.begin(9600)
 while (!mySerial);
```

자동분리수거장치

#2017 #Arduino # Matlab

- / 마이크와 모터 센서를 설치
- / 유리판에 분리수거를 하고 싶은 물체를 떨어트릴 때, 생기는 소리를 마이크를 통해 소리를 받음
- / 들어온 소리는 Matlab으로 전달되어 주파수를 분석
- / 분석된 주파수의 결과로 모터를 작동
- -- 수행 역할
- # 하드웨어 제작
- # Matlab의 FFT 함수를 사용하여 물체가 떨어졌을 때 발생하는 소리의 주파수를 구하여 아두이노에 전송

MARKER 추적 기 반 IOT 디바이스 제어 증강현실 인 터페이스

#2018 #Unity #OpenCV #Arduino # Node.js #Rabbit MQ / OPENCV내에 구현되어 있는 ARUCO MARKER 를

디바이스에 할당

- / 안드로이드 핸드폰으로 MARKER 인식
- / 실시간으로 들어오는 MARKER는 이진화, 외곽선 추출 작업 후 캘리브레이션 작업을 거쳐 MARKER 의 고유 ID값을 추출
- / 추출된 ID 값은 서버로 전달되어 해당 디바이스의 증강현실 컨트롤러로 나타나고, 디바이스 제어 가능
- -- 수행 역할
- # MARKER의 이진화, 외곽선 검출, MARKER의 고유 ID값 추출
- # MARKER 기반 AR 시스템을 하기 위한
 MARKER 인식을 통하여 카메라를 위치를 추정
- # AR 카메라와 메인 카메라 통합

인지장애환자 치료를 위한 VR 애플리케이션

#2018 #Unity #Steam VR

- / 인지장애환자들의 치료 목적으로 제작
- / 작업치료학과 협업
- / 특정한 이벤트 (전화 받기, 신발정리, 세탁기 돌리기)와 같은 이벤트를 수행하면 다음 단계 이벤트를 진행 할 수 있도록 제작
- / 반복, 숙달 통해 일상생활에 필요한 행동을 인지하게 도움을 줌

- -- 수행 역할
- # VIVE를 이용한 VR 환경 구축
- # UNITY를 이용한 인지장애환자들이 체험할 환경 구축
- # 불 끄고 켜기, 신발 정리, 세탁기 구동하기와 같은 이벤트 추가
- # 장면 전환 이벤트 추가

교육용 VR 애플리 케이션

#2019 #Unity #Gear VR #Oculus GO / 360도 카메라로 촬영해 온 영상을 편집

/ 편집한 영상을 이용하여, 분기점에서 특정 영상으로 이동, 소리 재생과 같은 이벤트 발생

- # 영상편집
- # 분기점에서 특정 장면으로 이동 외 이벤트 추가
- # GEAR VR, OCULUS GO에 맞는 APK 빌드
- # 완성 후 학생들에게 강의

축구 플랫폼 플레이지

#2020 #Android #Node.Js **#DeepLearning**

/ 언제나 어디서나 쉽게 축구를 즐길 수 있다라는 슬로건을 가진 축구 플랫폼 애플리케이션

/ 팀과 개인으로 나눠져있고, 매치를 생성 및 신청 을 하고 신청내역을 알람으로 알려줌

- -- 수행 역할
- # Material Design을 사용해 UI 생성
- # 카카오 로그인, 지도 API 사용
- # Retrofit 라이브러리 사용하여 통신

안양

안양fc 이운기

안양fc 이운기

- # FCM을 이용한 푸쉬 알람
- # 애니메이션 등록

Prize

2017 공과대학 학술제, 동상, - 스마트 분리수거 장치

공대 제 2017-098호

동상

품 명: 스마트 분리수거 장치

과 : 컴퓨터공학과

명: 안승훈, 이운기, 이영재, 구은예, 이에녹

지 도 교 수 : 천인국

위 학생은 제26회 순천향대학교 공과대학 학술제에서 창의적인 아이디어와, 부단한 노력으로 우수한 성적을 거두었기에 본 상을 드립니다.

2017년 11월 8일

순천향대학교 공과대학장 공학박사 이 인 형

2017 공과대학 학술제, 동상, - 음성인식 스마트미러

공대 제 2017- 096호

동상

작 품 명: 음성인식 스마트미러

약 과 : 컴퓨터공약과

성 명: 김명수, 장예린, 이운기

지 도 교 수: 천인국

위 학생은 제26회 순천향대학교 공과대학 학술제에서 창의적인 아이디어와, 부단한 노력으로 우수한 성적을 거두었기에 본 상을 드립니다.

2017년 11월 8일

순천향대학교 공과대학장 공학박사 이 인 형

2018 공과대학 학술제, 은상, - MARKER 추적기반 IoT 디바이스 제어 증강 현실 인터페이스

공대 제 2018-00362호

은상

작 _ 풉 _ 명 : MARKER 추적기반 IOT 디바이스 제어 증강 현실 인터페이스

학 과 : 컴퓨터공학과

성 명: 안승훈,이운기,황대영,이에녹,고급주,오진선,임지은

지 도 교 수 : 천인국

위 학생은 제27회 순천향대학교 공과대학 학술제에서 창의적인 아이디어로 공학 발전에 기여하고, 부단한 노력으로 우수한 성적을 거두었기에 본 상을 드립니다.

2018 년 11 월 14일

순천향대학교 공과대학장 공학박사 안

감사합니다