Tree building pseudo - code

מייצגת קדקודי העץ אם – d_i , $d_1,d_2,...,d_{n-1},d_n$ מייצגת סדרת מספרים – d_i , $d_1,d_2,...,d_{n-1},d_n$ מייצגת קדקודי העץ אם ורק אם מתקיים שוויון

$$\sum_{i=1}^{n} d_{i} = 2(n-1) \quad (*)$$

הכרחיות. אם T הוא עץ אז מספר קדקודיו גדול באחד ממספר צלעותיו וסכום דרגות הקדקודים שווה

$$\sum_{i=1}^{n}d_{i}=2^{*}|E|=2(n-1)$$
 לפעמיים מספר צלעות.. לכן

מספקיימת את השוויון ($d_i \in N$) , $d_1, d_2, \ldots, d_{n-1}, d_n$ מספקיימת הספרים נתונה סדרת מספרים

. צריך להוכיח כי הסדרה מייצגת קדקודי העץ.
$$\sum_{i=1}^{n} d_i = 2(n-1)$$

הוכחה. באינדוקציה לפי מספר הקדקודים.

בסיס. n=1, אז d₁=0 - לעץ יש ר קדקוד אחד ודרגתו שווה 0 והתנאי מתקיים. • d₁=0 בסיס.

ניקח לדוגמה גם n=2 התנאי מתקיים, הניקח לדוגמה גם n=2 הבטענה נכונה עבור $n \ge 1$ הטענה נכונה עבור מונה שינדוקציה הטענה נכונה עבור מונה שינדו מונה מונה שינדו מונה שינ

$$\int_{1}^{n+1} d_i = 2n$$
) n+1 שלב האינדוקציה נוכיח את הטענה עבור

 $d_1 \ge d_2 \ge ... \ge d_{n-1} \ge d_n \ge d_{n+1}$ נמיין את מערך הדרגות בסדר יורד, מגדול לקטן

: n ידועה שלכל עץ יש לפחות שני עלים. אז בטוח: d_{n+1} =1. בונים סדרה חדשה בגודל יש לפחות שני עלים. אז בטוח:

 d_1 -1, d_2 ,...,+ d_{n-1} , d_n ולפי הנחת האינדוקציה ניתן לבנות עץ שדרגתם הם

עכשיו נבנה עץ בעל 1+n קדקודים: נוסיף לקדקוד 1 עלה (קדקוד מספר 1+n), דרגה שלו יגדל ב-1,

$$\mathbf{d}_{i}$$
...+d_{n-1}+d_n+1 = $\sum_{i=1}^{n+1} d_{i} = 2n$ וסכום הדרגות יהי

יצירת העץ לפי הדרגות הנתונות ומקיימות את התנאי (*).

 $.d_1 \geq d_2 \geq \ldots \geq d_{n-1} \geq d_n$ נמיין את מערך הדרגות בסדר יורד, מגדול לקטן

 d_2 בונים כוכב, שדרגת מרכז הכוכב הוא d_1 , ניקח עלה אחד ונהפוך אותו למרכז הכוכב בדרגה d_2 , ניקח עלה אחד ונהפוך אותו למרכז הכוכב בדרגה d_3 , ונחזור לפעולה זו עד של לא נבנה את כל קדקודי החץ.

.(*). דוגמא: יהי 4,3,2,1,1,1,1, n=8 סדרת הדרגות, המקיימת את תנאי


```
Input: Array of degrees: d [n]: \sum_{i=1}^{n} d_i = 2(n-1), n – number of vertices
```

Output: tree - graph as adjacency matrix

```
public static ArrayList<Integer>[] treeBuilding(int deg[]){
      int n = deg.length;
      ArrayList<Integer>[] tree = new ArrayList[n];
      for (int i = 0; i < n; i++) {
            tree[i] = new ArrayList<Integer>();
      int first_1 = 0;
      while(deg[first_1]>1) first_1++;
      int vertex = 0, numV = 1;
      if (n >= 3){
            while(vertex < first_1) {</pre>
                  for (int j = 0; j < deg[vertex]; j++) {</pre>
                         tree[vertex].add(numV);
                         tree[numV].add(vertex);
                         numV++;
                  }
                  vertex++;
                  deg[vertex]--;
            }
      else if (n==2){
            tree[0].add(1);
            tree[1].add(0);
      return tree;
}
```