F6/

Eksempel A.8 Det inverse problem for 3-2-1 Eulervinkler,:

Gitt R_b^n finn vinklene, har løsningen (Craig 1989, s. 47)

$$\theta_{1} = \operatorname{atan2}(r_{32}/c_{\theta_{2}}, r_{33}/c_{\theta_{2}})$$

$$\theta_{2} = \operatorname{atan2}\left(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}}\right)$$

$$\theta_{3} = \operatorname{atan2}(r_{21}/c_{\theta_{2}}, r_{11}/c_{\theta_{2}})$$
(A- 39)

Vi løser først for θ_2 . For $\theta_2 = \pm 90^\circ$ har vi singularitet og bare summen av θ_1 og θ_3 kan beregnes.

Vinkel-akserepresentasjon av RKM

Teorem A.9 Eulers rotasjonsteorem

En vilkårlig retningskosinmatrise R_p^q kan fås ved å rotere p-systemet en vinkel θ om aksen $\underline{k}^q = [k_1^q, k_2^q, k_3^q]$ ($\|\underline{k}^q\| = 1$). Dvs vi har :

$$R_p^q = R_{\underline{k}^q} (\theta) \tag{A-40}$$

Denne representasjonen kalles for vinkel-akse representasjon.

Teorem A.10 Det direkte problem for vinkel-akse

Når vinkel-akserepresentasjonen er gitt kan retningskosinmatrisa beregenes på følgende måte:

$$R_p^q = R_{\underline{k}}(\theta) = I + S(\underline{k}^q) \sin \theta + S^2(\underline{k}^q)(1 - \cos \theta)$$

$$= I \cos \theta + S(\underline{k}^q) \sin \theta + \underline{k}^q (\underline{k}^q)^T (1 - \cos \theta)$$
(A-41)
$$(A-42)$$

Fortegnet til θ bestemmes ut fra høgrehåndsregelen.

Teorem A.11 Det inverse problem for vinkel-akse

 $Gitt\ retningskosin matrise$

$$R_p^q = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{221} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(A-43) No prod.

da er vinkel-akserepresentasjonen gitt ved

$$\theta = \arccos(\frac{r_{11} + r_{22} + r_{33} - 1}{2}); \quad \underline{k}^q = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$
(A- 44)

Vi får her en $\theta \in [0^{\circ}, 180^{\circ})$, det finns en annen løsning $(-\underline{k}^{q}, -\theta)$ som gir samme retningskosinmatrise. NB: for små vinkler θ kan de numeriske feilene ved bestemmelse av \underline{k}^{q} bli store.

Eulers symmetriske parameterrepresentasjon av RKM

Med utgangspunkt i vinkel-akse representasjonen av RKM R_p^q kan vi definere følgende parametre:

Definisjon A.12 Eulers symmetriske parametre

Vha vinkel-akse representasjonen kan vi definere en 4-parameter representasjon på følgende måte

$$\underbrace{\frac{k}{2}}_{k_{2}} \left\{ \begin{array}{c} \xi_{1} \\ k_{2} \\ k_{3} \end{array} \right\} \left\{ \begin{array}{c} \varepsilon_{1} = k_{1} \sin(\theta/2) & \varepsilon_{3} = k_{3} \sin(\theta/2) \\ \varepsilon_{2} = k_{2} \sin(\theta/2) & \varepsilon_{0} = \cos(\theta/2) \end{array} \right\} \Rightarrow \varepsilon_{0}^{2} + \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + \varepsilon_{3}^{2} = 1 \qquad (A-45)$$

$$= \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{2} + \zeta_{3} \end{array} \right)}_{k_{1}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} + \zeta_{3} \end{array} \right)}_{k_{2}} \underbrace{\left(\begin{array}{c} \zeta_{1} + \zeta_{2} + \zeta_{3} + \zeta_{3} \\ \zeta_{1} + \zeta_{3} + \zeta_{$$

Quaternion representation of DCM

A quaternion (here we use those with length 1) can represent the DCM Rp it it is defined using Euler symmetrical parameter in the following way:

$$\begin{aligned} \mathcal{E}_{p}^{q} &= \mathcal{E}_{0} + \mathcal{E}_{1} \, \text{ii} + \mathcal{E}_{2} \, \text{j} + \mathcal{E}_{3} \, \text{k} \\ & \left\| \mathcal{E}_{p}^{q} \right\| = \left(\frac{3}{2} \, \mathcal{E}_{1}^{2} \right) = 1 \end{aligned}$$

$$|| (|| = || || = || k || = -1$$

$$|| = || \text{le interpreted as complex numbers}$$

$$|| (|| = -|| || = || k || = -|| = || || \text{le interpreting ii, } || \text{and } || \text{k as vectors}$$

$$|| k = -k || = || \text{in } || \text{3D (0.h) and the product of two of them as the cross product}$$

$$|| k || = -|| k || = ||$$

The determinant of $\mathbb{R}_{p}^{q} : |\mathbb{R}_{p}^{q}| = 1$, this corresponds to $|\mathbb{E}_{p}^{q}| = 1$ Report adisability of \mathbb{E}_{p}^{q} is simpler than renormalisation of \mathbb{R}_{p}^{q} $(|\mathbb{R}_{p}^{q}| = 1 =) \mathbb{R}_{+}^{q} \perp \mathbb{R}_{+}^{q} \perp \mathbb{R}_{+}^{q}$

4

Rule of calculations to quaternions

$$R_{c}^{a} = R_{b}^{a}R_{c}^{b} \iff \mathcal{E}_{c}^{a} = \mathcal{E}_{c}^{b}\mathcal{E}_{b}^{a}$$

$$R_{b}^{a}\Gamma^{b} \iff \mathcal{E}_{c}^{a} = \mathcal{E}_{c}^{b}\mathcal{E}_{b}^{a}$$

$$\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[- \mathcal{E}_{2} \right] \right\} - \mathcal{E}_{3} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[\mathcal{E}_{1} \right] \right\} - \mathcal{E}_{2} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} = \left\{ \mathcal{E}_{0} - \mathcal{E}_{1} \left[\mathcal{E}_{1} \right] \right\} - \mathcal{E}_{2} \right\} \\
\left(\left\{ \mathcal{E}_{b}^{a} \right\}^{\dagger} + \mathcal{E}_{1} \left\{ \mathcal{E}_{1} \right\} - \mathcal{E}_{2} \left\{ \mathcal{E}_{1} \right\} - \mathcal{E}_$$

Parametrisering	Notasjon	Fordel	Ulempe	Vanilige anvendelser
RKM	C_p^q	Ingen singulariteter, ingen trigonometriske funk- sjoner, enkel produktregel for suksesive rotasjoner	Seks redundante parametre	I analysen, for å transformere vektorer fra et k.s. til et annet
Eulervinkler	φ, θ, ψ	Ingen redundante parametre, klar fysisk tolkning	Trigonometriske funksjoner, singulariteter for visse vinkler, ingen enkel produktregel for suksessive rotasjoner	Analytiske studier, 3-akset stillingskontrol av legemer
Vinkel-akse	\underline{k}, θ	Klar fysisk tolkning	En redundant parameter, aksen er udefinert når $\sin \theta = 0$, trigonometriske funksjoner	Reorienteringsmanøvre (slew)
Kvaternioner	ε	Ingen singulariteter, ingen trigonometriske funk- sjoner, enkel produktregel for suksessive rotasjoner	En redundant parameter, ingen klar fysisk tolkning	Treghetsnavigasjonsberegninger

F6-TEK4040

A3 Alline space

Definisjon A.14 Affint rom

La \mathcal{A} være en ikke-tom mengde av punkter, og la \mathcal{V} være et vektorrom over skalarkroppen \mathbb{K} . Anta at for vilkärlige punkt $P \in \mathcal{A}$ og $\vec{a} \in \mathcal{V}$ er det definert en addisjon $P + \vec{a} \in \mathcal{A}$ som tilfredstiller følgende betingelser :

- 1. $P + \vec{0} = P \ (\vec{0} \ er \ nullvektoren \ i \ V)$
- 2. $(P + \vec{a}) + \vec{b} = P + (\vec{a} + \vec{b})$ for $\forall \vec{a}, \vec{b} \in \mathcal{V}$
- 3. For enhver $Q \in A$ eksisterer en entydig vektor $\vec{a} \in V$ slik at $Q = P + \vec{a}$ Da er A et affint rom.

Ciren the frame $f_1 = \{Q_1, \overline{d}_2, \overline{d}_3, \overline$

A32 Coordinate systems and hames

Definisjon A.15 Affine koordinater

La \mathcal{A} være et n-dimensjonalt affint rom og la $\mathcal{F}^e = (O_e; \vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ være en ramme, hvor O_e , kallt origo, er et punkt i \mathcal{A} , og vektorene $\{\vec{e}_i\}$ er et sett basisvektorer for for det tilhørende vektorrom \mathcal{V} . Da er de inhomogene koordinatene til et vilkårlig punkt $P \in \mathcal{A}$ med hensyn til ramma \mathcal{F}^e gitt av n-tuppelet $\{p_1^e, p_2^e, \dots, p_n^e\}$ (vi vil sette disse sammen til en algebraisk vektor, p^e), hvor $P = O_e + \sum_{i=1}^n p_i^e \vec{e}_i$. Dersom \mathcal{A} også har strukturen til et Euclidsk rom (se nedefor) og vi lar ramma $\mathcal{F}^e = (O_e; \vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ bestå av ortogonale basisvektorer sier vi at vi har et rektangulært koordinatsystem (eller ortogonalt k.s.), dersom basisvektorer har lengde $1, \langle \vec{e}_i, \vec{e}_j \rangle = \delta_{ij}$, kalles k.s. for kartesisk. Generelt vil $\langle \vec{e}_i, \vec{e}_j \rangle = c_{ij}$ og vi sier vi har et oblikt koordinatsystem (eller ikke-ortogonalt k.s.). Dersom vi har en oblik ramme hvor lengden på basisvektorene er $\langle \vec{e}_i, \vec{e}_i \rangle = 1$ er vinkelen mellom basisvektoren gitt av $c_{ij} = \cos \angle \vec{e}_i \vec{e}_j$

A33 Matrix representation of points and vectors

In homogenous representation

Det A. 17 Position vector

Geometrical eq.
$$P = \overline{P_{4P}} + \overline{P_{4P}}$$

Algebraic $P = \overline{P_{4P}} + \overline{P_{4P}} + \overline{P_{4P}}$

e.g. $P = \overline{P_{4P}} + \overline{P_{4P}} + \overline{P_{4P}}$

F6-TEK4040

We see that when we represent points in two different frames the coordinates tansform as:

But vectors in vector spaces transform as:

Homogenuos representation of points woodinates

$$\begin{bmatrix} C_{p}^{q} = C_{qp}^{q} + R_{p}^{q} P_{p} \end{bmatrix}$$

Define: $\widetilde{\Gamma}_{p}^{f} = [\underline{\Gamma}_{p}^{q}; 1] \quad | \text{iden radix}$ rep. of thePP = [Pr, 1] | point P in Fi and FP

We get:

We get:

(b)
$$\Gamma = T_p \Gamma_p$$
 $\Gamma_p = T_p \Gamma_p$
 $\Gamma_p = \Gamma_p \Gamma$

For normal vectors (not representation of points) we have

Define:
$$\widetilde{V}^{q} = [\underline{V}^{q}; 0]$$

$$\widetilde{V}^{p} = [\underline{V}^{p}; 0]$$

In that case the 4 dim matrises transform as:

$$\frac{a}{a} = a + a + b = a$$

A.4 Time in vector space and offine space

Up to now we have used points and vectors as static.

Given the voctorspace V and frome to we can define a time varying vector:

$$\vec{\chi}(4) = \sum_{i=1}^{n} \chi_{i}^{a}(4) \vec{\alpha}_{i}$$

Given the affine space of worth frame $\bar{f}_{\alpha} = \{0_{\alpha}, \bar{\alpha}_{1}, \bar{\alpha}_{2}, ..., \bar{\alpha}_{n}\} \text{ then } \alpha$ time varying point can be defined as:

$$P(t) = O_{\alpha} + \sum_{i=1}^{r} \chi_{i}^{\alpha}(t) \overrightarrow{d}_{i}$$

