Analiza funkcjonalna wykład

Roman Pol

10 marca 2013

Notatki Grzegorza Bokoty

Jeśli ktoś uważa, że czegoś brakuje (np rysunków, nie umiem ich szybko texować) to proszę o informacje. Największą szansę na uwzględnienie mają gotowe kawałki kodu. W wypadku rysunku wystarczy on w jakiejś formie. Postaram się wtedy stexować.

Spis treści

1	Prz	estrzenie Banacha i ograniczone operatory liniowe	2
	1.1	Rzeczywiste i zespolone przestrzenie liniowe	2
	1.2	Przestrzenie unormowane	2
		1.2.1 Przykłady przestrzeni unormowanych	2
		1.2.2 Metryka generowana przez normę	2
		1.2.3 Przestrzeń funkcji ciągłych	2
	1.3	Twierdzenie Hahna-Banacha	3
	1.4	Twierdzenie o reprezentacji Riesza dla nieujemnych funkcjonałów liniowych na C[a,b]	5
	1.5	Ograniczone operatory liniowe	6

1 Przestrzenie Banacha i ograniczone operatory liniowe

1.1 Rzeczywiste i zespolone przestrzenie liniowe

Niech $\mathbb K$ oznacza ciało liczb rzeczywistych $\mathbb R$ lub $\mathbb C$ liczb zespolonych.

Niech X będzie przestrzenią liniowa nad \mathbb{R} lub \mathbb{C} . Niech $A, B \subset X$, $s, t \in K$ wtedy:

$$sA + tB = \{su + tv : u \in A, v \in B\}$$

 $u_1, \ldots, u_n \in X$. $\lim\{u_1, \ldots, u_n\} = \mathbb{K}u_1 + \ldots + \mathbb{K}u_n \text{ gdzie } \mathbb{K}u = \{tu : t \in \mathbb{K}\}$ Niech $g: X_{\mathbb{R}} \to \mathbb{R}$ funkcjonał liniowy. Wówczas $f: X \to \mathbb{C}$, f(x) = g(x) - ig(ix), f jest liniowe $(f(\alpha x) = \alpha f(x))$. Wówczas $\text{Ker} f = \text{Ker} g \cap i\text{Ker} g$

1.2 Przestrzenie unormowane

X – przestrzeń liniowa nad \mathbb{K} . Normą nazywamy funkcję $\|\cdot\|: X \to [0, +\infty)$ taką, że:

- i. $||x|| = 0 \Leftrightarrow x = 0$
- ii. $\|\alpha x\| = |\alpha| \|x\|, \ \alpha \in \mathbb{K}, x \in X$
- iii. $||x + y|| \le ||x|| + ||y||$

 $(X,\|\cdot\|)$ – przestrzeń unormowana jest przestrzenią liniową nad X z normą $\|\cdot\|$

1.2.1 Przykłady przestrzeni unormowanych

 $(l_{\infty}(S,K), \|\cdot\|_{\infty})$: Niech S będzie zbiorem. Wtedy $l_{\infty}(S,K)$ jest zbiorem funkcji ograniczonych $X:S\to K$ z dodawaniem i mnożeniem przez skalary po współrzędnych.

Niech $||X||_{\infty} = \sup\{|x(s): s \in S\} < \infty.$

Przyjmujemy $(l_{\infty}, \|\cdot\|_{\infty}) = (l_{\infty}(\mathbb{N}, \mathbb{C}), \|\cdot\|_{\infty})$ – przestrzeń ciągów zespolonych z normą "supremum".

 $(c_0, \|\cdot\|)$: podprzestrzeń $(l_\infty, \|\cdot\|)$ złożona z ciągów zespolonych zbieżnych do zera.

 $(l_1, \|\cdot\|_1)$: przestrzeń ciągów zespolonych $x=(x_1, x_2, \ldots)$, że szereg $\sum_n x_n$ jest zbieżny bezwzględnie. $\|x\|_1 = \sum_n |x_n|$

1.2.2 Metryka generowana przez normę

Niech $(X, \|\cdot\|)$ będzie przestrzenią z normą. Metrykę w tej przestrzeni definiujemy wzorem: $d(x, y) = \|x - y\|$.

Mówiąc o tolopogii w $(X, \|\cdot\|)$ mamy na myśli topologię wyznaczoną przez metrykę.

Zdefiniujmy dwa przydatne oznaczenia:

 $B_X = \{x \in X : ||x|| \le 1\}$ – Kula jednostkowa domknięta

 $S_X = \{x \in X : ||x|| = 1\}$ – Sfera jednostkowa

Oczywiście można przesuwać je w przestrzeni. Dla $x \in X$ i $r \in \mathbb{K}$ $x + rB_X = \{y \in X : d(x,y) \leq r\}$ jest domkniętą kulą o promieniu r i środku w x.

1.2.3 Przestrzeń funkcji ciągłych

 $(C_b(S,\mathbb{K}),\|\cdot\|_{\infty})$

Niech S będzie przestrzenią topologiczną, $C_b(S, \mathbb{K}) = \{x \in l_{\infty}(S, \mathbb{K}) : x \text{ jest ciągła}\}$

 $C_b(S, \mathbb{K})$ jest domknięta w $l_{\infty}(S, \mathbb{K})$. Jeśli S zwarta, to $(C(S), \|\cdot\|_{\infty}) := (C_b(S, \mathbb{R}), \|\cdot\|_{\infty})$

W unormowanej przestrzeni $(X, \|\cdot\|)$ odległość wektora $x \in X$ i zbioru $A \subset X$ dana jest wzorem $\operatorname{dist}(x, A) = \inf\{\|x - y\| : y \in A\}$

Lemat 1.2.4. $(X, \|\cdot\|)$ – unormowana nad ciałem \mathbb{K} . $Y \subset X$ podprzestrzeń liniowa domknięta. $u \in X \setminus Y$

- (i) $||y + \lambda u|| \ge |\lambda| \cdot \operatorname{dist}(u, Y), \ y \in Y, \lambda \in \mathbb{K}$
- (ii) $y_n \in Y$, $\lambda_n \in \mathbb{K}$ $(\exists z \in X : y_n + \lambda_n u \to z) \Leftrightarrow (\exists y \in Y \exists \lambda \in \mathbb{K} : y_n \to y, \lambda_n \to \lambda)$
- (iii) $Y + \mathbb{K}u$ przestrzeń domknieta w X

Dowód. (i) $y \in Y$ i $\lambda \in \mathbb{K} \setminus \{0\}$ mamy $||y + \lambda u|| = |\lambda| \cdot ||u - \frac{-y}{\lambda}|| \geqslant |\lambda| \cdot \operatorname{dist}(u, Y)$.

- (ii) \Rightarrow . Niech $y_n + \lambda_n u \to z$ wtedy $(y_n + \lambda_n u)_n$ jest ciągiem Cauchego. Z (i) wynika, że $(\lambda_n)_n$ też jest ciągiem Cauchego. $(\|(y_n + \lambda_n u) (y_m + \lambda_m u)\| = \|(y_n y_m) (\lambda_m \lambda_n)u\| \ge |\lambda_n \lambda_m| \operatorname{dist}(u, Y))$ Z zupełności $\mathbb{K} : \lambda_n \to \lambda$. Zatem: $\lambda_n u \to \lambda u$ co oznacza $y_n \to z \lambda u$. Ponieważ Y jest domkniętą podprzestrzenią to $y = z \lambda u \in Y$
- (iii) Wynika natychmiast z (ii).

Twierdzenie 1.2.5. $(X, \|\cdot\|)$ – przestrzeń unormowana nad ciałem \mathbb{K} .

- (i) Jeśli $Y \subset X$ domknięta, linowa, $Z \subset X$ skończenie wymiarowa to Y + Z jest domknieta.
- (ii) Jeśli X jest n-wymiarowa, to $(X, \|\cdot\|)$ jest linowo-homeomorficzna $z(\mathbb{K}^n, \|\cdot\|_{max})$.

Dowód. (i) $Z = \mathbb{K}u_1 + \ldots + Ku_n$, $Y + Z = (Y + \mathbb{K}u_1) + (\mathbb{K}_u 2 \ldots + \mathbb{K}u_n)$ wynika przez indukcję z lematu 1.2.4.

(ii) u_1, \ldots, u_n – baza w przestrzeni linowej $X, X_i = \lim\{u_1, \ldots, u_i\}$ $X_i + \mathbb{K}u_{i+1}$, to z Lematu: jeśli $y_n \in X_i$ to $y_n + \lambda_n u_{i+1} \to z \Leftrightarrow y_n \to y_0, \lambda_n \to \lambda_0$ Zatem przez indukcję (po m - to są indeksy) $(\lambda_1^m u_1 + \ldots + \lambda_k^m u_k \to z \text{ w } X_k) \Leftrightarrow \Lambda_j^m \to \lambda_j, \forall j \leqslant k$ Zatem: jeśli $T: X \to \mathbb{K}^n$ jest izomorfizmem $T(\lambda_1 u_1 + \ldots + \lambda_n u_n) = (\lambda_1, \ldots, \lambda_n)$ to T jest homeomorfizmem.

Twierdzenie 1.2.6 (Lemat Riesza). Y – domknięta $podprzestrzeń przestrzeni unormowanej <math>(X, \|\cdot\|)$ $Y \neq X$, $\varepsilon > 0$. Wówczas istnieje $x \in S_X$ taki, że $\operatorname{dist}(x, Y) \geqslant 1 - \varepsilon$

 $\begin{array}{l} \textit{Dow\'od.} \; \text{Niech} \; u \in X \setminus Y. \; \textit{dist}(u,Y) = \delta > 0. \; \varepsilon > 0 \; \text{ustalony,} \; \varepsilon \in (0,1), \; \text{wybieramy} \; \eta > 0 \; \text{takie,} \\ \dot{z}e \; \frac{\delta}{\delta + \eta} = 1 - \varepsilon. \; \text{Istnieje} \; v \in Y \; \text{takie,} \; \dot{z}e: \; \delta \leqslant \|u - v\| \leqslant \delta + \eta. \; \text{Niech} \; x = \frac{u - v}{\|u - v\|} \in S_X \; \text{Niech} \\ y \in Y, \, \|x - y\| = \left\| \frac{u - v}{\|u - v\|} - y \right\| = \frac{1}{\|u - v\|} \|u - v - \|u - v\| y\| = \frac{1}{\|u - v\|} \|u - (v + \|u - v\| y)\| \geqslant \frac{\text{dist}(u,Y)}{\|u - v\|} \geqslant \frac{\delta}{\delta + \eta} = 1 - \varepsilon \end{array}$

Wniosek 1.2.7. W każdej nieskończenie wymiarowej przestrzeni unormowanej $(X, \|\cdot\|)$ istnieją wektory $x_1, x_2, \ldots \in S_X$ takie, że $\|x_i - x_j\| \geqslant \frac{1}{2}$ dla $i \neq j$.

Dowód. Niech y_1, y_2, \ldots będą liniowo niezależne. Wtedy $Y_i = \lim\{y_1, \ldots, y_i\}$ są domknięte. Z lematu Riesza istnieje $x_{i+1} \in Y_{i+1} \cap S_X$ takie, że $\operatorname{dist}(x_{i+1}, Y_i) \geqslant \frac{1}{2}$. Jednocześnie $Y_i \subset Y_{i+1}$ Czyli dla x_1, x_2, \ldots mamy $\|x_i - x_j\| \geqslant \frac{1}{2}$ gdy j < i

1.3 Twierdzenie Hahna-Banacha

Twierdzenie Hahna-Banacha mówi o przedłużaniu ciągłych funkcji liniowych z podprzestrzeni na całe przestrzenie.

Twierdzenie 1.3.1. $(X, \|\cdot\|)$ – przestrzeń unormowana nad \mathbb{K} . Funkcjonal liniowy $f: X \to \mathbb{K}$ jest ciągły wtedy i tylko wtedy, gdy ker f jest domkniętą podprzestrzenią X.

Przypominienie definicji: $(X, \|\cdot\|)$ - przestrzeń unormowana. Zbiór $C \subset X$ jest wypukły wtedy i tylko wtedy gdy $\forall x_1, \ldots, x_n \in C, t_1, \ldots t_n \in [0,1]$ takich, że $\sum_i t_i = 1$ to $\sum_i t_i x_i \in C$

Uwaga 1.3.2. (\mathbb{R}^2 , $\|\cdot\|_{max}$). Niech $B \subset \mathbb{R}^2$ – otwarty, wypukły zbiór taki, że zero nie należy do B. Wtedy, w \mathbb{R}^2 istnieje prosta przechodząca przez zero i omijająca B

 $\begin{array}{l} \textit{Dow\'od.} \;\; \text{Rzeczywi\'scie. Niech} \; S = \{(t_1,t_2) \in \mathbb{R}^2; t_1^2 + t_2^2 = 1\} \\ p : \mathbb{R}^2 \setminus \{0\} \to S \;\; p(t_1,t_2) = \frac{(t_1,t_2)}{\sqrt{t_1^2 + t_2^2}}; \; p(B) \; - \; \text{jest zbiorem otwartym, sp\'ojny zbi\'or} \; \text{w} \; S \; \text{otwarty} \\ \text{luk bez \'zadnych punkt\'ow antypodalnych. Niech} \; z \; \text{b\'edzie na brzegu} \; p(B) \; \text{wtedy prosta} \; \mathbb{R}z \; \text{jest rozl\'aczna} \; z \; B. \end{array}$

Rysunek 1: Przykład do uwagi 1.3.2 p(B) jest reprezentowane przez czerwoną przerywaną linię.

Uwaga 1.3.3. Hiperplaszczyzna (ang. hyper \overline{F}) H w przestrzeni unormowanej $(X, \|\cdot\|)$ jest zbiorem H = x + Y. Gdzie Y jest podprzestrzenią liniową X kowymiaru 1. Jeśli Y jest linowe, to \overline{Y} też. Zatem H jest domknięta lub gęsta w X. Skoro $\overline{H} = x + \overline{Y}$ i kowymiar Y = 1, to albo $\overline{Y} = Y$ albo $\overline{Y} = X$.

Twierdzenie 1.3.4 (S. Mazur). Niech $(X, \|\cdot\|)$ przestrzeń unormowana. $L \subset X$ – podprzestrzeń liniowa. $C \subset X$ otwarty wypukły zbiór w X rozdzielny z L. Wtedy istnieje zamknięta hiperplaszczyzna H zawierająca L rozdzielna z C.

Dowód. Niech \mathcal{L} będzie rodziną wszystkich podprzestrzeni liniowych X zawierających L i rozłącznych z C. Wtedy $L \in \mathcal{L}$. Jeśli $\varphi \subset \mathcal{L}$ jest łańcuchem w (\mathcal{L}, \subseteq) , wtedy $\bigcup \varphi \in \mathcal{L}$. Z Lematu Kuratowskiego–Zorna istnieje element maksymalny M w (\mathcal{L}, \subseteq) .

(A) Jeśli $(X, \|\cdot\|)$ jest nad \mathbb{R} . Wtedy M jest domkniętą hiperplaszczyzną. Domkniętość $M \colon M \in \mathcal{L}$ więc $\overline{M} \in \mathcal{L}$ więc z maksymalności $M = \overline{M}$. Kowymiar M = 1 przypuśćmy przeciwnie. Wówczas istnieje przestrzeń liniowa $E \subset X$ taka, że dim E = 2 i $E \cap M = \{0\}$ Wtedy $B = (C + M) \cap E$ nie zawiera 0. B jest zbiorem wypukłym i otwartym w E (z konstrukcji B w powyższym wierszu). Więc istnieje $F \subset E$ – jednowymiarowa podprzestrzeń taka, że $B \cap F = \emptyset$. Wtedy $(M + F) \cap C = \emptyset$ $(m + f = c, c - m = f, c - m \in M + C$ nie możliwe). Zatem $M + F \in \mathcal{L}$ i M + F jest ściśle większe od M w sensie inkluzji.

(B) $(X, \|\cdot\|)$ jest nad \mathbb{C} . Rozważmy $X_{\mathbb{R}}$ opisaną w (A), wtedy M jest hiperpłaszczyzną w $X_{\mathbb{R}}$. Zatem $H = M \cap iM$ jest hiperpłaszczyzną w X, rozdzielną z C. $L \subset H$ ponieważ iL = L.

Twierdzenie 1.3.5 (Hahn–Banach). $(X, \|\cdot\|)$ – przestrzeń unormowana nad \mathbb{K} . Niech $Y \subset X$ będzie podprzestrzenią liniową i $f: Y \to \mathbb{K}$ będzie odwzorowaniem liniowym takim, że $|f(y)| \leq \|y\|$ dla $y \in Y$. Wtedy istnieje funkcjonał liniowy $\tilde{f}: X \to \mathbb{K}$ taki, że $\tilde{f}|_Y = f$ i $|\tilde{f}(x)| \leq \|x\|$

Dowód. Jeśli f=0 to $\tilde{f}=0$. Jeśli $f\neq 0$ to weźmy $u\in Y$ takie, że f(u)=1.

Niech $C = \{x \in X : ||x - u|| < 1\}$. Pokażemy, że $C \cap \ker f = \emptyset$.

Weźmy $y \in Y$. $|f(y) - f(u)| = |f(y - u)| \le ||y - u||$. Jeśli $y \in C$ to $f(y) \ne 0$. Z twierdzenia Mazura(1.3.4) istnieje w X hiperpłaszczyzna H taka, że ker $f \subset H$ i $H \cap C = \emptyset$. Kontynuując dowód, ponieważ $u \in C$ to $u \notin H$ więc $X = H \oplus \mathbb{K}u$. Niech $\tilde{f}(x + \lambda u) = \lambda$ dla $x \in H$ i $\lambda \in \mathbb{K}$. Wtedy \tilde{f} jest przedłużeniem f.

Ponadto, wiemy, że $||x + \lambda u|| \ge |\lambda| = |\tilde{f}(x + \lambda u)|$ Co znaczy, że $||x|| \ge |f(x)|$ dla $x \in X$

Uwaga 1.3.6. Niech $(X, \|\cdot\|)$ – unormowana przestrzeń rzeczywista. Niech $Y \subset X$ będzie podprzestrzenią liniową. $C \subset X$ – otwarty wypukły podzbiór X taki że $C \cap Y$ not = \emptyset Niech $f: Y \to \mathbb{R}$ funkcjonal liniowy taki, ze f jest dodatni na $C \cap Y$. Wtedy istnieje $\tilde{f}: X \to \mathbb{R}$ który jest przedłużeniem f i \tilde{f} jest ściśle dodatni na C.

Dowód. Będziemy używać twierdzenia Mazura: Niech $L = Y \cap \ker f$ wtedy $L \cap C = \emptyset$. Istnieje hiperpłaszczyzna H w X taka, że $L \subset H$ i $H \cap C = \emptyset$. Weźmy $u \in C \cap Y$. Wtedy $Y = \ker f \oplus \mathbb{R}u$ i $X = H \oplus \mathbb{R}u$. Zdefiniujmy $\tilde{f} = (h + \lambda u) = \lambda f(u)$. I jest dobrze.

1.4 Twierdzenie o reprezentacji Riesza dla nieujemnych funkcjonałów liniowych na C[a,b]

C[a,b] – przestrzeń funkcji ciągłych na [a,b] w \mathbb{R} . Liniowy funkcjonał $\varphi:C[a,b]\to\mathbb{R}$ jest nieujemny jeśli $\varphi(f)\geqslant 0$ dla $f\geqslant 0$)

Twierdzenie 1.4.1 (F. Riesz). Niech $\varphi: C[a,b] \to \mathbb{R}$ liniowy, nieujemny funkcjonal. Istnieje wtedy miara Borelowska μ na [a,b] taka, $\dot{z}e$ $\varphi(f) = \int_{[a,b]} f d\mu$ dla $f \in C[a,b]$

Dla ułatwienia skupimy się teraz na $\left[a,b\right]=\left[0,1\right]$

Lemat 1.4.2. Niech $F: [0,1] \to [0,+\infty)$ będzie funkcją niemalejącą. Niech $F_l(t) = \lim_{s \to t^-} F(s)$ dla $t \in [0,1]$. Istnieje wtedy miara Borelowska μ na [0,1]i taka, że $\mu([0,t)) = F_l(t)$ i $\mu([0,1)) = F(1)$

Dowód. Niech $G: [0, F(1)] \to [0, 1]$ będzie funkcją zdefiniowaną wzorem: $G(y) = \inf\{x : F(x) \ge y\}$. Jak łatwo zauważyć funkcja G jest niemalejąca oraz $[0, F_l(t)) \subset G^{-1}[0, t) \subset [0, F_l(t)]$. Zdefiniujmy μ na [0, 1] przez $\mu(A) = \lambda(G^{-1}(A))$ gdzie λ jest miarą Lebesgua.

Uwaga 1.4.3. Niech I = [0,1], $\psi : l_{\infty}(I,\mathbb{R}) \to \mathbb{R}$ liniowy, nieujemny funkcjonał. Istnieje wtedy przeliczalny zbiór $J \subset I$ i miara Borelowska μ na I taka, że $\psi\left(\chi_{[0,t)}\right) = \mu[0,t)$ $\psi\left(\chi_{[s,t)}\right) = \mu[s,t)$ i $\psi(\chi_{[0,1]} = \psi(1) = \mu(0,1)$

Dowód. Niech $F(t) = \psi\left(\chi_{[0,t)}\right)$ dla t < 1 i $F(1) = \psi(1)$. Jeśli s < t to $\chi_{[0,s)} \leqslant \chi_{[0,t]}$ więc $\phi\left(\chi_{[0,s)}\right) \leqslant \phi\left(\chi_{[0,t)}\right)$ Ponieważ ψ jest nieujemne to F jest niemalejące i mamy μ jak w poprzednim lemacie (1.4.2).

Niech $J = \{t: F_l(t) < F(t)\}$ – zbiór punktów skoku jest przeliczalny. Wtedy μ i J mają takie własności jakie chcieliśmy.

Uwaga 1.4.4. Niech $\varphi: C[0,1] \to \mathbb{R}$ jest liniowym, nieujemnym funkcjonalem i $\varphi \neq 0$ wtedy $\varphi(f) > 0$ dla każdego f > 0

5

Dowód. Każdą funkcję $u \in C[0,1]$ można przedstawić jako różnicę $u = u^+ - u^-$ nieujemnych funkcji ciągłych $u^+ = \max(u,0)$ i $u^- = \max(-u,0)$. Dlatego, jeśli $\varphi \neq 0$ istnieje $v \geqslant 0$ dla którego $\varphi(v) > 0$. Weźmy f > 0 gdzie inf $f = \delta > 0$. Mamy $\frac{\delta}{\|v\|} v \leqslant f$. Z liniowości φ mamy $\varphi(f) \geqslant \frac{\delta}{\|v\|} \varphi(v) > 0$

Dowód twierdzenia Riesza. $\varphi: C[0,1] \to \mathbb{R}$, nieujemny, linowy funkcjonał. $(C[0,1], \|\cdot\|_{\infty}) \subset (l_{\infty}(I,\mathbb{R}), \|\cdot\|_{\infty}) C = \{u \in l_{\infty}(I,\mathbb{R}) : \inf_{t \in I} u(t) > 0 - \text{zbiór wypukły i otwarty. } C \cap C[0,1] = \{f \in C[0,1] : f > 0\}.$

 $\varphi:C[0,1]\to\mathbb{R}$ liniowy nieujemny wtedy φ jest dodatnie na $C\cap C[0,1]$. Z Uwagi 1.3.6. istnieje ciągłe liniowe rozszerzenie $\psi:{}_{\infty}(I,\mathbb{R})\to R$ dodatni na C.

Zauważmy: jeśli $v \ge 0$ ($v \in l_{\infty}(I, \mathbb{R})$ wtedy $\psi(v) > 0$. Niech μ będzie miarą jak w Lemacie 1.4.3. Musimy sprawdzić dla $f \in C[0, 1]$, ze $\varphi(f) = \int_{[0, 1]} f d\mu$. Ustalmy $\varepsilon > 0$. Dopóki f jest jednostajnie ciągła możemy zastąpić [0, 1] przez punkty $0 < t_1 < \ldots < t_n < 1[\ldots]$ g jest funkcją schodkową

$$g = f(0) \cdot \chi_{[0,t_1)} + \sum_{i=1}^{n-1} f(t_i) \chi_{[t_i,t_{i+1}} + f(t_n) \chi_{[t_n,1]}$$

Wtedy
$$\left| \varphi(f) - \int_{[0,1]} f d\mu \right| = \left| \psi(f) - \psi(g) + \psi(g) - \int_{[0,1]} \left| \leqslant |\psi(f-g)| + \left| \int_{[0,1]} g d\mu - \int_{[0,1]} \right| \dots \right| \Box$$

1.5 Ograniczone operatory liniowe