Tarea 12

Jesua Villacis

Link al notebook con las celdas de python para la resolucion de los ejercicios

https://github.com/JesuaVAlc/Deberes-Metodos-Numericos/blob/main/Tarea12_JesuaVillacis.ipynb

1. Use el método de Euler para aproximar las soluciones para cada uno de los siguientes problemas de valor inicial.

a)
$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, con $h = 0.5$

b)
$$y' = 1 + (t - y)^2$$
, $2 \le t \le 3$, $y(2) = 1$, con $h = 0.5$

c)
$$y' = 1 + \frac{y}{t}$$
, $1 \le t \le 2$, $y(1) = 2$, con $h = 0.25$

```
t_i w_i (Aprox. Euler)
0 1.00000 2.00000
1 1.25000 2.75000
2 1.50000 3.55000
3 1.75000 4.39167
4 2.00000 5.26905
```

d)
$$y' = \cos 2t + \sin 3t$$
, $0 \le t \le 1$, $y(0) = 1$, $\cos h = 0.25$

t_i	w_i	(Aprox. Euler)
0.00000		1.00000
0.25000		1.25000
0.50000		1.63981
0.75000		2.02425
1.00000		2.23646
	t_i 0.00000 0.25000 0.50000 0.75000 1.00000	0.00000 0.25000 0.50000 0.75000

2. Las soluciones reales para los problemas de valor inicial en el ejercicio 1 se proporcionan aquí. Compare el error real en cada paso.

a)
$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$$

Tabla de comparación:

	t_i	w_i (Aprox. Euler)	$y(t_i)$ (Valor Real)	Error Relativo
0	0.00000	0.00000	0.00000	0.00000
1	0.50000	0.00000	0.28362	1.00000
2	1.00000	1.12042	3.21910	0.65195

b)
$$y(t) = t + \frac{1}{1-t}$$

Tabla de comparación;:

	t_i	w_i (Aprox. Euler)	$y(t_i)$ (Valor Real)	Error Relativo
0	0.00000	0.00000	1.00000	1.00000
1	0.50000	0.50000	2.50000	0.80000
2	1.00000	1.00000	inf	NaN

$$\mathbf{c)} \ y(t) = t \ln t + 2t$$

Tabla de comparación:

	t_i	w_i (Aprox. Euler)	y(t_i) (Valor Real)	Error Relativo
0	1.00000	2.00000	2.00000	0.00000
1	1.25000	2.75000	2.77893	0.01041
2	1.50000	3.55000	3.60820	0.01613
3	1.75000	4.39167	4.47933	0.01957
4	2.00000	5.26905	5.38629	0.02177

d)
$$y(t) = \frac{1}{2}\sin 2t - \frac{1}{2}\cos 3t + \frac{4}{3}$$

Tabla de comparación:

	t_i	w_i (Aprox. Euler)	y(t_i) (Valor Real)	Error Relativo
0	0.00000	1.00000	1.00000	0.00000
1	0.25000	1.25000	1.32915	0.05955
2	0.50000	1.63981	1.73049	0.05240
3	0.75000	2.02425	2.04147	0.00843
4	1.00000	2.23646	2.11798	0.05594

3. Utilice el método de Euler para aproximar las soluciones para cada uno de los siguientes problemas de valor inicial

a)
$$y' = \frac{y}{t} - (\frac{y}{t})^2$$
, $1 \le t \le 2$, $y(1) = 1$, con $h = 0.1$

Resultados de Euler:

t_i w_i

- 0 1.00000 1.00000
- 1 1.10000 1.00000
- 2 1.20000 1.00826
- 3 1.30000 1.02169
- 4 1.40000 1.03851
- 5 1.50000 1.05767
- 6 1.60000 1.07846
- 7 1.70000 1.10043
- 8 1.80000 1.12326
- 9 1.90000 1.14672
- 10 2.00000 1.17065
- **b)** $y' = 1 + \frac{y}{t} + (\frac{y}{t})^2$, $1 \le t \le 3$, y(1) = 0, con h = 0.2

Resultados de Euler:

t_i w_i

- 0 1.00000 0.00000
- 1 1.20000 0.20000
- 2 1.40000 0.43889
- 3 1.60000 0.72124
- 4 1.80000 1.05204
- 5 2.00000 1.43725
- 6 2.20000 1.88426
- 7 2.40000 2.40227
- 8 2.60000 3.00284
- 9 2.80000 3.70060
- 10 3.00000 4.51428

c)
$$y' = -(y+1)(y+3)$$
, $0 \le t \le 2$, $y(0) = -2$, con $h = 0.2$

Resultados de Euler:

t_i w_i

- 0 0.00000 -2.00000
- 1 0.20000 -1.80000
- 2 0.40000 -1.60800
- 3 0.60000 -1.43873
- 4 0.80000 -1.30174
- 5 1.00000 -1.19925
- 6 1.20000 -1.12749
- 0 1.20000 1.12/13
- 7 1.40000 -1.07975
- 8 1.60000 -1.04912 9 1.80000 -1.02995
- 10 2.00000 -1.01815

d)
$$y' = -5y + 5t^2 + 2t$$
, $0 \le t \le 1$, $y(0) = \frac{1}{3}$, con $h = 0.1$

Resultados de Euler:

- 0 0.00000 0.33333
- 1 0.10000 0.16667
- 2 0.20000 0.10833
- 3 0.30000 0.11417
- 4 0.40000 0.16208
- 5 0.50000 0.24104
- 6 0.60000 0.34552
- 7 0.70000 0.47276
- 8 0.80000 0.62138
- 9 0.90000 0.79069
- 10 1.00000 0.98035
- **4.** Aquí se dan las soluciones reales para los problemas de valor inicial en el ejercicio 3. Calcule el error real en las aproximaciones del ejercicio 3.

a)
$$y(t) = \frac{t}{1 + \ln t}$$

	t_i	w_i (Aprox. 3a)	y(t_i) (Valor Real)	Error Relativo
0	1.00000	1.00000	1.00000	0.00000
1	1.10000	1.00000	1.00428	0.00426
2	1.20000	1.00826	1.01495	0.00659

3	1.30000	1.02169	1.02981	0.00789
4	1.40000	1.03851	1.04753	0.00861
5	1.50000	1.05767	1.06726	0.00899
6	1.60000	1.07846	1.08843	0.00916
7	1.70000	1.10043	1.11066	0.00920
8	1.80000	1.12326	1.13365	0.00917
9	1.90000	1.14672	1.15723	0.00908
10	2.00000	1.17065	1.18123	0.00896

b) $y(t) = t \tan(\ln t)$

	t_i	w_i (Aprox. 3b)	y(t_i) (Valo	r Real)	Error	Relativo
0	1.00000	0.00000		0.00000		0.00000
1	1.20000	0.20000		0.22124		0.09602
2	1.40000	0.43889		0.48968		0.10373
3	1.60000	0.72124		0.81275		0.11259
4	1.80000	1.05204		1.19944		0.12289
5	2.00000	1.43725		1.66128		0.13485
6	2.20000	1.88426		2.21350		0.14874
7	2.40000	2.40227		2.87655		0.16488
8	2.60000	3.00284		3.67848		0.18367
9	2.80000	3.70060		4.65867		0.20565
10	3.00000	4.51428		5.87410		0.23149

c)
$$y(t) = -3 + \frac{2}{1 + e^{-2t}}$$

	t_i	w_i (Aprox. 3c)	y(t_i) (Valor Real)	Error Relativo
0	0.00000	-2.00000	-2.00000	0.00000
1	0.20000	-1.80000	-1.80262	0.00146
2	0.40000	-1.60800	-1.62005	0.00744
3	0.60000	-1.43873	-1.46295	0.01655
4	0.80000	-1.30174	-1.33596	0.02562
5	1.00000	-1.19925	-1.23841	0.03162
6	1.20000	-1.12749	-1.16635	0.03331
7	1.40000	-1.07975	-1.11465	0.03131
8	1.60000	-1.04912	-1.07833	0.02709
9	1.80000	-1.02995	-1.05319	0.02207
10	2.00000	-1.01815	-1.03597	0.01720

d)
$$y(t) = t^2 + \frac{1}{2}e^{-5t}$$

	t_i	w_i (Aprox. 3d)	y(t_i) (Valor Real)	Error Relativo
0	0.00000	0.33333	0.33333	0.00000
1	0.10000	0.16667	0.21218	0.21449
2	0.20000	0.10833	0.16263	0.33385
3	0.30000	0.11417	0.16438	0.30546
4	0.40000	0.16208	0.20511	0.20978
5	0.50000	0.24104	0.27736	0.13095
6	0.60000	0.34552	0.37660	0.08252
7	0.70000	0.47276	0.50007	0.05460
8	0.80000	0.62138	0.64611	0.03827
9	0.90000	0.79069	0.81370	0.02828
10	1.00000	0.98035	1.00225	0.02185

- ${f 5.}$ Utilice los resultados del ejercicio 3 y la interpolación lineal para aproximar los siguientes valores de (). Compare las aproximaciones asignadas para los valores reales obtenidos mediante las funciones determinadas en el ejercicio 4.
- **a)** y(0.25) y y(0.93)

	Valor Solicitado	Valor Interpolado	Valor Real	Error Relativo
0	y(1.25)	1.01498	1.02196	0.00683
1	y(1.93)	1.15390	1.16439	0.00901

b) \$ y(1.25) y y(1.93) \$

	Valor Solicitado	Valor Interpolado	Valor Real	Error Relativo
0	y(1.25)	0.25972	0.28365	0.08437
1	y(1.93)	1.30243	1.49023	0.12602

c) y(2.10) y y(2.75)

	Valor Solicitado	Valor Interpolado	Valor Real	Error Relativo
0	y(0.25)	-1.75200	-1.75508	0.00176
1	y(0.93)	-1.23512	-1.26941	0.02701

d) y(0.54) y y(0.94)

	Valor Solicitado	Valor Interpolado	Valor Real	Error Relativo
0	y(0.54)	0.28283	0.31400	0.09926
1	y(0.94)	0.86655	0.88663	0.02265

6. Use el método de Taylor de orden 2 para aproximar las soluciones para cada uno de los siguientes problemas de valor inicial.

a)
$$y' = te^{3t} - 2y, \quad 0 \le t \le 1, \quad y(0) = 0, \quad \text{con } h = 0.5$$

t_i Taylor 02 Valor Real 0 0.00000 0.00000 0.00000 1 0.50000 0.12500 0.28362 2 1.00000 2.02324 3.21910

b)
$$y' = 1 + (t - y)^2, \quad 2 \le t \le 3, \quad y(2) = 1, \quad \text{con } h = 0.5$$

t_i Taylor 02 Valor Real 0 2.00000 1.00000 1.00000 1 2.50000 1.75000 1.83333 2 3.00000 2.42578 2.50000

c)
$$y' = 1 + \frac{y}{t}, \quad 1 \le t \le 2, \quad y(1) = 2, \quad \text{con } h = 0.25$$

t_i Taylor O2 Valor Real 2.00000 0 1.00000 2.00000 1 1.25000 2.78125 2.77893 2 1.50000 3.61250 3.60820 3 1.75000 4.48542 4.47933 4 2.00000 5.39405 5.38629

d)
$$y' = \cos 2t + \sin 3t$$
, $0 \le t \le 1$, $y(0) = 1$, $\cos h = 0.25$

t_i Taylor 02 Valor Real 0.00000 1.00000 1.00000 1 0.25000 1.34375 1.32915 2 0.50000 1.77219 1.73049 3 0.75000 2.11068 2.04147 4 1.00000 2.20164 2.11798 7. Repita el ejercicio 6 con el método de Taylor de orden 4

a)
$$y' = te^{3t} - 2y, \quad 0 \le t \le 1, \quad y(0) = 0, \quad \text{con } h = 0.5$$

a)

--- Comparación de Métodos de Taylor (Ejercicio 6a) ---

t_i Taylor 02 Taylor 04 Valor Real 0 0.00000 0.00000 0.00000 0.00000 1 0.50000 0.12500 0.23437 0.28362 2 1.00000 2.02324 2.94147 3.21910

b)

--- Comparación de Métodos de Taylor (Ejercicio 6b) ---

t_i Taylor 02 Taylor 04 Valor Real 0 2.00000 1.00000 1.00000 1.00000 1 2.50000 1.75000 1.81250 1.83333 2 3.00000 2.42578 2.48592 2.50000

c)

Comparación de Métodos de Taylor (Ejercicio 6c)						
	t_i	Taylor 02	Taylor 04	Valor Real		
0	1.00000	2.00000	2.00000	2.00000		
1	1.25000	2.78125	2.77897	2.77893		
2	1.50000	3.61250	3.60827	3.60820		
3	1.75000	4.48542	4.47942	4.47933		
4	2.00000	5.39405	5.38640	5.38629		

d)

Comparación de Métodos de Taylor (Ejercicio 6d)						
	t_i	Taylor 02	Taylor 04	Valor Real		
	0.00000	1.00000	1.00000	1.00000		
	1 0.25000	1.34375	1.32894	1.32915		
	2 0.50000	1.77219	1.72967	1.73049		
	3 0.75000	2.11068	2.03993	2.04147		
	4 1.00000	2.20164	2.11599	2.11798		

