Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

1. (currently amended) A method to form an air gap interconnect structure

comprising:

a. forming a multi-layer interconnect adjacent a substrate layer, the

interconnect comprising conductive layers positioned in at least two

conductive vertical series, the conductive vertical series isolated from

each other by sacrificial dielectric material;

b. forming a protective layer adjacent the interconnect;

c. patterning the protective layer to expose portions of the sacrificial

dielectric material;

d. decomposing portions of the sacrificial dielectric material to form a

sacrificial dielectric decomposition product; and

e. removing portions of the sacrificial dielectric decomposition product to

form air gaps between the conductive layers.

(original) The method of claim 1 wherein forming a multi-layer interconnect

comprises

a. forming a first layer of sacrificial dielectric material, forming trenches in the

first layer, and filling the trenches with conductive material to form at least

two conductive layers isolated from each other by sacrificial dielectric material; and

b. forming a second layer of sacrificial dielectric material adjacent the at least

two conductive layers and first layer, forming trenches in the second layer

in substantial vertical alignment with the trenches of the first layer, and

filling the trenches with conductive material to form at least two additional

conductive layers isolated from each other by sacrificial dielectric material.

3. (original) The method of claim 1 wherein forming a multi-layer interconnect

comprises forming between about 2 and about 6 conductive layers in each

conductive vertical series.

4. (currently amended) The method of claim 2 wherein decomposing comprises

decomposing substantially all of the sacrificial dielectric material between each of

the vertical series at approximately the same time.

5. (original) The method of claim 4 wherein removing comprises removing

substantially all of the sacrificial dielectric material between each of the vertical

series.

6. (original) The method of claim 1 wherein decomposing comprises introducing a

chemical agent comprising hydrofluoric acid.

- 7. (original) The method of claim 1 wherein removing comprises introducing water.
- 8. (original) The method of claim 1 wherein removing comprises introducing a carrier plasma.
- 9. (original) The method of claim 1 wherein conductive layers comprise copper.
- 10. (original) The method of claim 1 wherein the sacrificial dielectric material comprises a material selected from the group consisting of silicon dioxide, silicon oxynitride, and silicon oxyfluoride.
- 11. (original) The method of claim 1 wherein the protective layer comprises silicon carbide.
- 12. (currently amended) The method of claim [[1]] 2 further comprising forming vertical support structures peripheral to the conductive vertical series, wherein removing portions of the sacrificial dielectric decomposition product further forms air gaps between the vertical support structures and the conductive vertical series.
- 13. (currently amended) The method of claim 12 further comprising forming, above air gaps between the conductive layers, a first capping layer to contact the vertical support structures and surfaces of the most highly positioned conductive

layers within each conductive vertical series or the protective layer on each

conductive vertical series.

14. (original) The method of claim 13 further comprising forming a second capping layer

adjacent the first capping layer.

15. (original) The method of claim 14 further comprising forming a third capping layer

adjacent the second capping layer.

16. (original) The method of claim 15 further comprising forming a contact structure

through the protective layer and first, second, and third capping layers to contact

an underlying conductive layer.

17. (original) The method of claim 13 wherein the first capping layer comprises

polyimide or a benzocyclobutene-based polymer.

18. (original) The method of claim 14 wherein the second capping layer comprises a

material selected from the group consisting of silicon dioxide, silicon nitride, and

silicon oxynitride.

19. (original) The method of claim 15 wherein the third capping layer comprises

polyimide or a benzocyclobutene-based polymer.

- 20. (currently amended) The method of claim 16 wherein the contact structure comprises a metallic C4 structure.
- 21. (canceled)
- 22. (currently amended) An air gap interconnect structure The structure of claim 21, further comprising:
 - a. a substrate layer;
 - at least two conductive vertical series adjacent the substrate layer, each
 conductive vertical series comprising a plurality of conductive layers,
 wherein the conductive vertical series are isolated from each other by air
 gaps defined by side walls of the conductive vertical series;
 - <u>c</u> [[a]]. vertical support structures peripheral to the conductive vertical series <u>and</u> <u>isolated from the conductive vertical series by air gaps;</u> and
 - d [[b]]. a capping layer adjacent to and above upper surfaces of the vertical support structures and the conductive vertical series.
- 23. (original) The structure of claim 22 wherein each conductive vertical series comprises between about 2 and about 6 conductive layers.

- 24. (original) The structure of claim 22 wherein the vertical support structures peripheral to the conductive vertical series protrude slightly more from the plane of the substrate layer than the uppermost conductive layer in the conductive vertical series.
- 25. (original) The structure of claim 22 further comprising a contact structure extending through the capping layer to contact an underlying conductive layer of a conductive vertical series.
- 26. (new) The method of claim 1, further comprising:
- positioning a first capping layer adjacent to the surfaces of the conductive vertical series furthest from the substrate layer; and
- pushing, after positioning the first capping layer, the first capping layer toward the substrate layer.
- 27. (new) The method of claim 26, further comprising applying a tensile load in a direction substantially parallel to the substrate layer to the first capping layer while the first capping layer is positioned.
- 28. (new) An air gap interconnect structure comprising:

a substrate layer;

a first conductive vertical series adjacent the substrate layer having a plurality of

conductive layers, and having a first side wall and a second side wall,

each side wall extending substantially perpendicularly from the substrate

layer;

a second conductive vertical series adjacent the substrate layer having a plurality

of conductive layers, and having a first side wall and a second side wall,

each side wall extending substantially perpendicularly from the substrate

layer;

layers of silicon nitride on each of the first and second side walls of the first

conductive vertical series and the first and second side walls of the

second conductive vertical series; and

at least one peripheral vertical support structure, wherein no peripheral vertical

support structure is between the first and second conductive vertical

series.

Page 8 of 8

Attorney's Docket No.: P15032 Application No.: 10/621,696