Lipschitz-bounded Feed-through Networks (TBD)
Anonymous ECCV 2024 Submission
Paper ID #****
Abstract. TBD
Keywords: Lipschitz networks \cdot NeRF \cdot Third keyword
1 Introduction

$\mathbf{2}$ Lipschitz-bounded Feed-through Networks

representation

Feed-through Networks

2.1

We consider an
$$L$$
-layer feed-through networks of the form

$$z_k = \sigma(W_k z_{k-1} + U_k x + b_k), \quad y = \sum_{k=1}^L Y_k z_k + b_y$$
 (1)

where
$$z_k \in \mathbb{R}^{m_k}$$
 with $z_0 = 0$ are the hidden variables, $x \in \mathbb{R}^{n_x}, y \in \mathbb{R}^{n_y}$ are the input and output variables, respectively. Here U_k, W_k, Y_k and b_k, b_y are the learnable weights and biases, respectively. The above model has a compact

$$z = \sigma(Wz + Ux + b), \quad y = Yz + b_y \tag{2}$$

where
$$z = \begin{bmatrix} z_1^\top & \cdots & z_L^\top \end{bmatrix}^\top$$
, $b = \begin{bmatrix} b_1^\top & \cdots & b_L^\top \end{bmatrix}^\top$, and

$$W = \begin{bmatrix} 0 \\ W_2 & 0 \\ & \ddots & \ddots \\ & & W_L & 0 \end{bmatrix}, \quad U = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_L \end{bmatrix}, \quad Y = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_L \end{bmatrix}.$$

Theorem 1. The neural network (2) is
$$\gamma$$
-Lipschitz if there exists a $\Lambda \in \mathbb{D}_+^m$, where \mathbb{D}_+^m is the set of positive diagonal matrices, such that the following condition holds:

$$2\Lambda - \Lambda W - W^{\top} \Lambda \succeq \frac{1}{\gamma} (\Lambda U U^{\top} \Lambda + Y^{\top} Y). \tag{3}$$

Let Θ be the set of all $\theta = \{\Lambda, U, W, Y\}$ such that Condition (3) holds. Since it is generally not scalable to train a model with SDP constraints, we instead construct a smooth direct parameterization $\mathcal{M}: \mathbb{R}^N \to \Theta$ such that $\mathcal{M}(\mathbb{R}^N) = \Theta$. With such parameterization, we can use standard unconstrained optimization algorithms to train the free parameter $\phi \in \mathbb{R}^N$.

To construct \mathcal{M} , we first introduce the free parameter

$$\phi = \{d, F_k^a, F_k^b, F^q, F^*\}, \quad k = 1, \dots, L$$
 (4)

(5)

where
$$d \in \mathbb{R}^m$$
, $F_k^a \in \mathbb{R}^{m_k \times m_k}$, $F_k^b \in \mathbb{R}^{m_{k-1} \times m_k}$, $F^q \in \mathbb{R}^{m \times n}$ and $F^* \in \mathbb{R}^{n \times n}$

where
$$d \in \mathbb{R}^m$$
, $F_k^a \in \mathbb{R}^{m_k \times m_k}$, $F_k^b \in \mathbb{R}^{m_{k-1} \times m_k}$, $F^q \in \mathbb{R}^{m \times n}$ and $F^* \in \mathbb{R}^{n \times n}$
with $m_0 = 0$ and $n = n_x + n_y$. Then, we compute some intermediate variables $\Psi = \operatorname{diag}(e^{\psi})$ and

$$\begin{bmatrix} A_k^{\top} \\ B_{-}^{\top} \end{bmatrix} = \text{Cayley}\left(\begin{bmatrix} F_k^a \\ F_b^b \end{bmatrix} \right), \quad \begin{bmatrix} Q \\ \star \end{bmatrix} = \text{Cayley}\left(\begin{bmatrix} F^q \\ F^{\star} \end{bmatrix} \right)$$

where Cavlev: $\mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$ with $n \geq p$ is defined by

$$\mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$$
 with $n \ge p$ is defined by
$$J = \text{Cayley}\left(\begin{bmatrix} G \\ H \end{bmatrix}\right) := \begin{bmatrix} (I+Z)(I-Z)^{-1} \\ -2V(I-Z)^{-1} \end{bmatrix}$$

where
$$Z = G^{\top} - G + H^{\top}H$$
. It is easy to verify that $J^{\top}J = I$ for any $G \in \mathbb{R}^{p \times p}$ and $H \in \mathbb{R}^{(n-p) \times p}$. We do the following matrix partition:

$$Q = \begin{bmatrix} Q_x \ Q_y \end{bmatrix} = \begin{bmatrix} Q_{x,1} \ Q_{y,1} \\ \vdots \ \vdots \\ Q_{x,L} \ Q_{y,L} \end{bmatrix}$$

We finally construct
$$\theta = \mathcal{M}(\phi)$$
 as follows:

$$\Lambda_k = 1/2\Psi_k^2, \quad W_k = 2\Psi_k^{-1}B_kA_{k-1}^{\top}\Psi_{k-1},$$

$$U_{k} = 2\sqrt{\gamma}\Psi_{k}^{-1}(A_{k}Q_{x,k} - B_{k}Q_{x,k-1}),$$

$$Y_k = \sqrt{\gamma} (A_k Q_{y,k} - B_k Q_{y,k-1})^\top \Psi_k$$
 where $B_1 = 0$, $Q_{x,0} = 0$ and $Q_{y,0} = 0$. The following proposition shows that we

can learn the free parameter
$$\phi$$
 without any loss of model expressivity.

Proposition 1. Let \mathcal{M} be defined by (4) and (5). We have $\mathcal{M}(\mathbb{R}^N) = \Theta$.

Proposition 1. Let
$$\mathcal{M}$$
 be defined by (4) and (5). We have $\mathcal{M}(\mathbb{R}^N) = \Theta$.

Modular forward computation

We rewrite (1) as follows
$$(2L^{-1}R_{1}A^{T}_{2}A^{T}_{2}A^{T}_{3}A^{T}_{$$

$$z_k = \sigma(2\Psi_k^{-1}B_k A_{k-1}^{\top} \Psi_{k-1} z_{k-1} + 2\sqrt{\gamma} \Psi_k^{-1} (A_k Q_{x,k} - B_k Q_{x,k-1}) x + b_k)$$

$$y = \sum_{k=0}^{L} \sqrt{\gamma} (A_k Q_{y,k} - B_k Q_{y,k-1})^{\mathsf{T}} \Psi_k z_k + b_y$$

- Note that the model parameters are shared by neighborhood layers. To make the implementation in a modular way, we introduce
- $\hat{b} = \Psi b, \ \hat{x} = \sqrt{2\gamma} Q_x x, \ h_k = \sqrt{2} A_k^{\top} \Psi_k z_k \hat{x}_k, \ q_k = \sqrt{2} B_k^{\top} \Psi_k z_k, \ \hat{y}_k = h_k q_{k+1}$
- with $g_{L+1} = 0$. Then, the proposed network (1) can be rewritten as

$$\begin{bmatrix} h_k \\ g_k \end{bmatrix} = \sqrt{2} R_k^{\top} \hat{\sigma} \left(\sqrt{2} R_k \begin{bmatrix} \hat{x}_k \\ h_{k-1} \end{bmatrix} + \hat{b}_k \right) - \begin{bmatrix} \hat{x}_k \\ 0 \end{bmatrix}$$

$$y = \sqrt{\gamma/2} Q_y^{\top} (\hat{x} + \hat{y}) + b_y$$
(6) 053

- where $R_k = [A_k B_k]$. Here $\hat{\sigma}(x) := \Psi \sigma(\Psi^{-1}x)$ is a monotone and 1-Lipschitz
- activation with learnable scaling Ψ . Note that for ReLU activation we have $\hat{\sigma}(\cdot) = \sigma(\cdot)$, i.e. no need to learn the scaling factor Ψ .
- Related Work
- Conclusion

4 ECCV 2024 Submission #****

059 References 059