Algebra a diskrétna matematika Prehľad z 11. týždňa

Algebraické štruktúry s jednou binárnou operáciou

Binárna operácia φ na množine M je zobrazenie $\varphi: M \times M \to M$. Poznámka: Binárna operácia je vždy uzavretá; $\forall x, y \in M : \varphi(x, y) \in M$.

Neprázdna množina M spolu s jednou alebo viacerými binárnymi operáciami tvorí **algebraickú štruktúru**.

Grupoid

Nech M je neprázdna množina a * binárna operácia na M. Potom dvojicu (M,*) nazývame **grupoid**.

Ak M je konečná, jedná sa o konečný grupoid; inak nekonečný.

Rád grupoidu je veľkosť množiny M; označujeme ho |M|.

V prípade, že je operácia * komutatívna, tak hovoríme, že grupoid je **komutatívny**, alebo **abelovský**.

Pologrupa

Pologrupa je grupoid (M,*), v ktorom je binárna operácia * asociatívna.

<u>Príklad 1</u>: Rozhodnite, či sú nasledujúce štruktúry pologrupy.

- a) $(\mathbb{N}, +)$
- b) (\mathbb{N}, \cdot)
- c) $(\mathbb{Z}, -)$
- d) $(\mathbb{Q}, +)$
- e) (\mathbb{Q}, \cdot)
- f) $(\mathbb{R} \{0\}, \cdot)$
- $g) (\mathbb{R} \{0\}, /)$
- h) $(\mathbb{C},+)$

Odpoveď: a) áno, b) áno, c) nie d) áno e) áno, f) áno, g) nie, h) áno

Príklad 2:

- a) Štruktúra ($\mathbb{N},*$), kde $\forall m,n\in\mathbb{N}:m*n=\max\{m,n\}$, je abelovská pologrupa.
- b) Príklad nekomutatívnej pologrupy je štruktúra (M_X, \circ) , kde M_X je množina všetkých funkcií $f: X \to X$ a operácia \circ je skladanie funkcií.

Príklad 3:

Nech množina $M = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, n \in \mathbb{N} \right\}$ a operácia * je násobenie matíc.

Dvojica (M,*) je komutatívna pologrupa, pretože násobenie matíc je asociatívna operácia a navyše pre tento typ matíc platí aj komutativita.

Monoid

Nech (M,*) je pologrupa.

Prvok $e \in M$ sa nazýva **neutrálny** (jednotkový), ak

$$\forall x \in M: x * e = e * x = x$$

Pologrupa (M,*), ktorá má neutrálny prvok, sa nazýva **monoid**.

Príklad 4: Overte, či sa jedná o monoidy.

- a) $(\mathbb{N}, +)$
- b) (\mathbb{N}, \cdot)
- c) $(2^{\mathbb{N}}, \bigcup)$
- d) $(2^{\mathbb{N}}, \bigcap)$

Odpoveď: a) nie, b) áno, c) áno, d) áno

<u>Príklad 5</u>: Zistite, či sú nasledujúce štruktúry monoidy a overte ich komutativitu.

- a) $(\{0,1,2,3\},*)$, kde $m*n = \max\{m+n,3\}$
- b) $(\{0,1,2,3\},*)$, kde $m*n = \min\{m+n,3\}$
- c) (M, \cdot) , kde $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{Z} \right\}$

Odpoveď: a) nie je algebraická štruktúra, b) komutatívny monoid c) nie je monoid

Tvrdenie 1: Ak v monoide existujú neutrálne prvky e_1 a e_2 , potom $e_1 = e_2$.

Dôkaz:

Predokladajme, že monoid (M,*) má dva neutrálne prvky e_1, e_2 .

Platí, že $e_1 * e_2 = e_2$, lebo e_1 je neutrálny prvok.

Taktiež $e_1 * e_2 = e_1$, lebo e_2 je neutrálny prvok.

Dostali sme, že $e_1 = e_2$.

Dôsledok: Každý monoid má práve jeden neutrálny prvok.

Grupa

Nech (M,*) je monoid s neutrálnym prvkom e.

Nech $x \in M$. Prvok $y \in M$ sa nazýva **inverzný** k prvku x, ak platí

$$x * y = y * x = e$$

Monoid (M,*), v ktorom ku každému prvku existuje inverzný prvok, sa nazýva **grupa**.

<u>Príklad 6:</u> Overte, či sa jedná o grupy.

- a) $(\mathbb{Z}, +)$
- b) $(\mathbb{Z} \{0\}, \cdot)$
- c) (\mathbb{Q}^+,\cdot)
- $d) (\mathbb{R} \{0\}, \cdot)$

Odpoveď: a) áno, b) nie, c) áno, d) áno

Tvrdenie 2: Ak v grupe (M, *) existujú k prvku $x \in M$ inverzné prvky y_1 a y_2 , potom $y_1 = y_2$.

Dôkaz:

Predokladajme, že prvok $x \in M$ má v grupe (M,*) dva inverzné prvky $y_1,y_2 \in M$, t. j. $x*y_1=y_1*x=e$ a $x*y_2=y_2*x=e$. Potom platia nasledujúce rovnosti

$$y_1 = y_1 * e = y_1 * (x * y_2) = (y_1 * x) * y_2 = e * y_2 = y_2$$

Dostali sme teda, že $y_1 = y_2$.

Dôsledok: Každý prvok grupy má práve jeden inverzný prvok.

Inverzný prvok k prvku x označujeme x^{-1} .

<u>Príklad 7</u>: Množinu celých čísel si rozdeľme do dvoch množín podľa parity.

P = množina všetkých celých párnych čísel

N = množina všetkých celých nepárnych čísel

Uvažujme množinu $M = \{P, N\}$ s operáciou sčítania (aplikovanou medzi každou dvojicou čísel z daných množín). Dvojica (M, +) tvorí grupu. Neutrálny prvok je P a inverzný prvok k N je N.

Príklad 8: Uvažujme nasledujúce množiny

$$A = \{\dots, -15, -12, -9, -6, -3, 0, 3, 6, 9, 12, 15, \dots\}$$

$$B = \{\dots, -14, -11, -8, -5, -2, 1, 4, 7, 10, 13, 16, \dots\}$$

$$C = \{\dots, -13, -10, -7, -4, -1, 2, 5, 8, 11, 14, 17, \dots\}$$

Dvojica $(\{A,B,C\},+)$ tvorí grupu. Jej neutrálnym prvkom je A a platí, že $B^{-1}=C$, teda aj $C^{-1}=B$.

Pre každé prirodzené čislo k označme

$$\mathbb{Z}_k = \{ n \in \mathbb{Z}_0^+, n < k \} = \{ 0, 1, 2, \dots, k - 1 \}$$

Množinu \mathbb{Z}_k nazývame **množinou zvyškových tried modulo** k, alebo triedami reziduí.

Definujme operáciu \oplus na množine \mathbb{Z}_k nasledovne:

 $\forall a, b \in \mathbb{Z}_k : a \oplus b \text{ je zvyšok po delení } (a+b) : k.$

Operácia \oplus je na \mathbb{Z}_k asociatívna.

Neutrálny prvok vzľadom na \oplus je e = 0.

Pre každé $a \in \mathbb{Z}_k, a \neq 0$ je inverzný prvok $a^{-1} = k - a$, lebo $a \oplus a^{-1} = a \oplus (k - a) \equiv 0 \pmod{k}$.

Dvojica (Z_k, \oplus) tvorí **abelovskú grupu**.

Zapisujeme ju jednoducho $(Z_k, +)$.

V tejto grupe sa namiesto a^{-1} zvykne písať -a, pretože k-a je v rovnakej zvyškovej triede ako -a.

<u>Príklad 9</u>: Inverzné prvky v grupe $(\mathbb{Z}_{11}, \oplus)$ sú nasledovné:

$$-1 = 10, -10 = 1$$

$$-2 = 9, -9 = 2$$

$$-3 = 8, -8 = 3$$

$$-4 = 7, -7 = 4$$

$$-5 = 6, -6 = 5$$

Príklad 10: Nájdite všetky riešenia každej z daných rovníc.

a)
$$7 + x \equiv 5 \pmod{9}$$

b)
$$3x \equiv 4 \pmod{8}$$

c)
$$4x \equiv 6 \pmod{7}$$

d)
$$2x \equiv 3 \pmod{6}$$

Odpoveď: a) $x=7+9k, k\in\mathbb{Z}$; b) $x=4+8k, k\in\mathbb{Z}$, c) $x=5+7k, k\in\mathbb{Z}$ d) nemá riešenie

Rád prvku a grupy (M,*) je najmenšie kladné celé číslo n také, že

$$a^n = e$$
,

kde a^n znamená n-krát aplikovanú operáciu * na prvok <math display="inline">a.

Označuje sa |a|.

Ak také n neexistuje, hovoríme, že a má **nekonečný rád**.

Príklad 11: Určte rády daných prvkov v zodpovedajúcich grupách.

a) všetkých prvkov v $(\mathbb{Z}_6, +)$

- b) prvku 4 v $(\mathbb{Z}, +)$
- c) komplexnej jednotky $i \vee (\mathbb{C} \{(0,0)\},\cdot)$

Odpoveď: a) rád 0 je 1 (jedná sa o neutrálny prvok), rády prvkov 1, 2, 3, 4, 5 sú 6,3,2,3,6 v zodpovedajúcom poradí; b) ∞ , c) 4

Množina **generátorov** grupy je taká podmnožina grupy, že každý prvok grupy sa dá vyjadriť ako "súčin" mocnín týchto generátorov.

Prezentácia grupy pomocou generátorov: (generátory | relácie)

Cyklická grupa je grupa, ktorá je generovaná jedným prvkom g, t. j. je to množina všetkých mocnín prvku g.

Zapisuje sa $\langle g|g^n=e\rangle$, skrátene $\langle g\rangle$.

Grupa z príkladu 7 je cyklická grupa (\mathbb{Z}_2 , +) a grupa z príkladu 8 je (\mathbb{Z}_3 , +).

 $\underline{\mathrm{Príklad}\ 12}\mathrm{:}\ \mathrm{N\'{a}jdite}\ \mathrm{gener\'{a}tory}\ \mathrm{gr\'{u}p}\ \ (\mathbb{Z}_5,+), (\mathbb{Z}_6,+), (\mathbb{Z}_5-\{0\},\odot), (\mathbb{Z},+).$

Odpoved':

$$\overline{(\mathbb{Z}_5, +)} = \langle 1 \rangle = \langle 2 \rangle = \langle 3 \rangle = \langle 4 \rangle$$

$$(\mathbb{Z}_6, +) = \langle 1 \rangle = \langle 5 \rangle$$

$$(\mathbb{Z}_5 - \{0\}, \odot) = \langle 2 \rangle$$

$$(\mathbb{Z},+) = \langle 1 \rangle$$

Grupa symetrií pravidelného $\it n$ -uholníka sa nazýva **dihedrálna grupa**.

Označuje sa D_n

Jej rád je $|D_n|=2n\ (n\ {
m osových}\ {
m symetri}$ í a $n\ {
m otočen}$ í)

Neutrálny prvok e je identita.

Prezentácia: $D_n = \langle r, s | r^n = e, s^2 = e, rs = sr^{-1} \rangle$

r – rotácia o $2\pi/n$ stupňov

 \boldsymbol{s} – symetria podľa pevnej osi symetrie