Álgebra I. Examen parcial 2 (repetido) Universidad de El Salvador, 15/06/2019

Ejercicio 1 (2 puntos). Determine cuáles de las siguientes afirmaciones son ciertas. Justifique sus respuestas (encuentre una prueba o contraejemplo).

- a) Todo elemento en el grupo diédrico D_n tiene orden $\leq n$.
- b) Toda permutación $\sigma \in S_5$ tiene orden ≤ 5 .
- c) Si G es un grupo abeliano y $g, h \in G$ tienen orden finito, entonces el producto gh también tiene orden finito.
- d) El grupo de matrices reales invertibles $GL_2(\mathbb{R})$ no tiene subgrupos abelianos distintos de $\{1\}$.

Ejercicio 2 (2 puntos). Consideremos el polinomio

$$f := X^4 - 10 X^2 + 1 \in \mathbb{Q}[X].$$

- a) Demuestre que f no tiene factores lineales en $\mathbb{Q}[X]$.
- b) Demuestre que f no se factoriza en dos polinomios cuadráticos en $\mathbb{Z}[X]$.
- c) Deduzca de b) que f tampoco se factoriza en dos polinomios quadráticos en $\mathbb{Q}[X]$. (Sugerencia: use el contenido.)
- d) Deduzca de a), b), c) que f es irreducible en $\mathbb{Q}[X]$.

Ejercicio 3 (2 puntos). Encuentre un isomorfismo de anillos cociente

$$\mathbb{F}_3[X]/(X^2+1) \cong \mathbb{F}_3[X]/(X^2+X+2).$$

Ejercicio 4 (2 puntos). Demuestre que si C es un subgrupo cíclico de S_n , entonces $|C| < 2^n$.

Ejercicio 5 (2 puntos). Consideremos el grupo aditivo \mathbb{Q} y dos subgrupos $A, B \subset \mathbb{Q}$ tales que $A, B \neq 0$. Demuestre que $A \cap B \neq 0$.