# Gelijkstroomtheorie

# 1.1 Knooppuntspanningsmethode

De eerder besproken oplossingsmethoden kunnen niet voor alle netwerken gebruikt worden. Bekijk het netwerk in figuur 1.1. Op geen enkele wijze is een combinatie van weerstanden te vereenvoudigen als serie- of parallelweerstand. Dat betekent dat technieken als spanningsdeling en stroomdeling niet kunnen worden toegepast<sup>1</sup>.



Figuur 1.1: Netwerk met spanningsbron en weerstanden.

We zoeken dus naar een methode die systematisch het netwerk beschrijft. Met de *knooppuntspanningsmethode* gaan we uit van de stroomwet van Kirchhoff en de wet van Ohm. Een *knooppunt* is een punt waar twee of meer netwerkelementen met elkaar verbonden zijn. We nemen één knooppunt als referentiepunt. In principe kan elk knooppunt als referentiepunt dienen, maar het is handig om een uiteinde van een onafhankelijke spanningsbron te kiezen (we zullen later zien waarom). De andere knooppunten hebben een bekende of onbekende spanning t.o.v. het referentieknooppunt. Vervolgens stellen we voor elk knooppunt met een onbekende spanning de stroomwet van Kirchhoff op:

Overigens is dit netwerk wel met behulp van een Thévenin-vervangingsschema door te rekenen maar dat kost veel rekenwerk.

2

alle stromen naar een knooppunt toe zijn opgeteld 0, maar voor deze methode is het handiger om de stroomwet iets anders te definiëren: alle stromen van een knooppunt af zijn opgeteld 0. We krijgen zo een stelsel vergelijkingen met bekende en onbekende spanningen dat op te lossen is met behulp van matrixrekenkunde. Het voordeel van deze methode is dat elk netwerk door te rekenen is, ongeacht de complexiteit. Verder is deze methode te implementeren in een computerprogramma, bijvoorbeeld in een netwerksimulatieprogramma.

De knooppuntspanningsmethode werkt vooral goed voor netwerken met stroombronnen. Als er in het netwerk spanningsbronnen zijn die tussen twee onbekende spanningen zijn geplaatst, moet het stelsel van vergelijkingen worden uitgebreid. De stroom die de spanningsbron levert is namelijk onbekend, dus die kan niet zonder meer gebruikt worden in de stroomvergelijkingen. Er zijn dan extra (spannings-)vergelijkingen nodig om tot een oplosbaar stelsel van vergelijkingen te komen.

### 1.1.1 Onafhankelijke stroombronnen

Onafhankelijke stroombronnen kunnen zonder problemen in een netwerk ingepast worden. In de vergelijkingen die het netwerk beschrijven, komen dan de stromen van de stroombronnen te staan. Bij onafhankelijke stroombronnen zijn de stromen constant. Voor het berekenen van de knooppuntspanningen moeten we eerst een referentieknooppunt kiezen. Dit is het knooppunt onderaan het netwerk. Daarna geven we elk knooppunt een nummer en een bijbehorende (onbekende) spanning. In figuur 1.2 is een netwerk te zien met twee onafhankelijke stroombronnen en vier weerstanden. De spanningen zijn respectievelijk  $U_1$  (knooppunt 1),  $U_2$  (knooppunt 3) en  $U_3$  (knooppunt 3).



Figuur 1.2: Netwerk met onafhankelijke stroombronnen.

Er is geen enkele spanning op voorhand bekend,  $U_1$ ,  $U_2$  en  $U_3$  zijn allemaal onbekend. Er zijn dus drie vergelijkingen nodig om het netwerk te beschrijven, voor elk knooppunt één. Voor een knooppunt moet gelden dat alle wegvloeiende stromen opgeteld 0 zijn. De vergelijking voor knooppunt 1 is dus:

$$I_a + I_b + I_c = 0 (1.1)$$

Nu is  $I_a$  gelijk aan  $-I_1$  (let op de richting van de stromen). De stroom  $I_b$  wordt gevonden door de spanning over  $R_1$  te delen door  $R_1$ . De stroom  $I_c$  wordt gevonden door de

spanning over  $R_5$  te delen door  $R_5$ . De vergelijking voor knooppunt 1 wordt dan:

$$-I_1 + \frac{U_1 - U_2}{R_1} + \frac{U_1 - U_3}{R_5} = 0 ag{1.2}$$

De vergelijking voor knooppunt 2 is:

$$I_d + I_e + I_f = 0 (1.3)$$

Na invullen van de spanningen, weerstanden en stroombron krijgen we:

$$\frac{U_2 - U_1}{R_1} + \frac{U_2 - 0}{R_3} - I_2 = 0 ag{1.4}$$

De vergelijking voor knooppunt 3 is:

$$I_g + I_h + I_i = 0 (1.5)$$

Na invullen krijgen we:

$$I_2 + \frac{U_3 - 0}{R_4} + \frac{U_3 - U_1}{R_5} = 0 ag{1.6}$$

We vatten het stelsel van vergelijkingen even samen:

Knooppunt 1: 
$$-I_1 + \frac{U_1 - U_2}{R_1} + \frac{U_1 - U_3}{R_5} = 0$$
Knooppunt 2: 
$$\frac{U_2 - U_1}{R_1} + \frac{U_2 - 0}{R_3} - I_2 = 0$$
Knooppunt 3: 
$$I_2 + \frac{U_3 - 0}{R_4} + \frac{U_3 - U_1}{R_5} = 0$$
(1.7)

We herschrijven de vergelijkingen zodanig dat de onbekende spanningen links van het isgelijkteken staan en de bekende stromen rechts van het isgelijkteken staan:

$$\left(\frac{1}{R_1} + \frac{1}{R_5}\right) U_1 \qquad -\frac{1}{R_1} U_2 \qquad -\frac{1}{R_5} U_3 = I_1 
-\frac{1}{R_1} U_1 + \left(\frac{1}{R_1} + \frac{1}{R_3}\right) U_2 \qquad = I_2 
-\frac{1}{R_5} U_1 \qquad + \left(\frac{1}{R_4} + \frac{1}{R_5}\right) U_3 = -I_2$$
(1.8)

Merk op dat in de vergelijking voor knooppunt 2 geen term met spanning  $U_3$  voorkomt. Dit komt omdat de stroom van knooppunt 3 naar knooppunt 2 bekend is, namelijk  $-I_2$  (maar rechts van het isgelijkteken natuurlijk  $I_2$ ). In de vergelijking voor knooppunt 3 komt de spanning  $U_2$  niet voor vanwege dezelfde stroombron, maar de stroom  $I_2$  is nu positief gesteld (gaat van het knooppunt af, rechts van het isgelijkteken  $-I_2$ ).

We kunnen het stelsel vergelijkingen in (1.8) in de matrixnotatie schrijven:

$$\begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_5} & -\frac{1}{R_1} & -\frac{1}{R_5} \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_3} & 0 \\ -\frac{1}{R_5} & 0 & \frac{1}{R_4} + \frac{1}{R_5} \end{bmatrix} \times \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ -I_2 \end{bmatrix}$$
(1.9)

Merk op dat in de coëfficiëntenmatrix (links in de vergelijking) steeds de omgekeerden (of *reciproken*) van de weerstanden voorkomen. De omgekeerde van de weerstandswaarde wordt geleiding genoemd. De coëfficiëntenmatrix wordt daarom ook wel de geleidingsmatrix genoemd. De vector met de spanningen wordt de onbekendenvector genoemd en de vector met de stromen (het rechterlid) wordt de bekendenvector genoemd. Als de matrixvorm van het stelsel van vergelijkingen is opgesteld, kunnen we gebruik maken van de matrixrekenkunde om tot een oplossing te komen. Zie hiervoor bijlage ??.

# Voorbeeld 1.1: Netwerk met onafhankelijke stroombronnen

In figuur 1.3 is een netwerk te zien met twee onafhankelijke stroombronnen en vier weerstanden. Bepaal de spanningen op de knooppunten en de vermogens van de stroombronnen.



Figuur 1.3: Netwerk met onafhankelijke stroombronnen.

We kunnen voor het berekenen van de knooppuntspanningen de vergelijkingen van (1.8) gebruiken:

$$\left(\frac{1}{820} + \frac{1}{680}\right) U_1 \qquad -\frac{1}{820} U_2 \qquad -\frac{1}{680} U_3 = 10 \times 10^{-3} 
-\frac{1}{820} U_1 + \left(\frac{1}{820} + \frac{1}{470}\right) U_2 \qquad = 5 \times 10^{-3} 
-\frac{1}{680} U_1 \qquad + \left(\frac{1}{1200} + \frac{1}{680}\right) U_3 = -5 \times 10^{-3}$$
(1.10)

We rekenen de coëfficiënten links van de isgelijktekens uit:

$$2,69 \times 10^{-3} U_1 -1,22 \times 10^{-3} U_2 -1,47 \times 10^{-3} U_3 = 10 \times 10^{-3}$$

$$-1,22 \times 10^{-3} U_1 +3,35 \times 10^{-3} U_2 = 5 \times 10^{-3}$$

$$-1,47 \times 10^{-3} U_1 +2,30 \times 10^{-3} U_3 = -5 \times 10^{-3}$$
(1.11)

Door gebruik te maken van de matrixrekenkunde (zie hiervoor bijlage ??) volgt dat:

$$U_1 = 6,60 \,\text{V} \quad U_2 = 3,90 \,\text{V} \quad U_3 = 2,05 \,\text{V}$$
 (1.12)

We kunnen nu de vermogens van de stroombronnen uitrekenen. Hierbij moeten we letten op de stroomrichting van  $I_1$  en  $I_2$ :

$$P_{I1} = (U_1 - 0) \cdot I_1 = 6,60 \cdot 10 \times 10^{-3} = 6,60 \times 10^{-2} \text{ W} = 66,0 \text{ mW}$$

$$P_{I2} = (U_2 - U_3) \cdot I_2 = 1,86 \cdot 5 \times 10^{-3} = 9,28 \times 10^{-3} \text{ W} = 9,28 \text{ mW}$$
(1.13)

### 1.1.2 Onafhankelijke spanningsbronnen

In figuur 1.4 is een netwerk te zien met een onafhankelijke spanningsbron en vijf weerstanden. We kiezen de '--'-uiteinde van de spanningsbron als referentieknooppunt. In de figuur is dit het knooppunt onderaan. Vervolgens geven we de knooppunten een nummer en een bijbehorende bekende of onbekende spanningswaarde. De spanning op knooppunt 1 is bekend; die is U V. De spanningen op de knooppunten 2 ( $U_2$ ) en 3 ( $U_3$ ) zijn onbekend. Er zijn twee onbekende spanningen dus we moeten twee vergelijkingen opstellen.



Figuur 1.4: Netwerk voor knooppuntspanningsmethode.

We stellen nu de stroomvergelijkingen op voor de knooppunten 2 en 3. De vergelijking voor knooppunt 2 is.

$$I_a + I_b + I_c = 0 ag{1.14}$$

We kunnen de stroom  $I_a$  uitdrukken in de spanningen  $U_1$  en  $U_2$  en de weerstand  $R_1$ . Iets dergelijks geldt ook voor  $I_b$  en  $I_c$ . Dus geldt:

$$I_a = \frac{U_2 - U_1}{R_1}$$
  $I_b = \frac{U_2 - U_3}{R_2}$   $I_c = \frac{U_2 - 0}{R_3}$  (1.15)

We vullen dit in en krijgen dan:

$$\frac{U_2 - U_1}{R_1} + \frac{U_2 - U_3}{R_2} + \frac{U_2 - 0}{R_3} = 0 ag{1.16}$$

De vergelijking voor knooppunt 3 is:

$$I_d + I_e + I_f = 0 (1.17)$$

met:

$$I_d = \frac{U_3 - U_2}{R_2}$$
  $I_e = \frac{U_3 - 0}{R_4}$   $I_f = \frac{U_3 - U_1}{R_5}$  (1.18)

De vergelijking voor knooppunt 3 is dus:

$$\frac{U_3 - U_2}{R_2} + \frac{U_3 - 0}{R_4} + \frac{U_3 - U_1}{R_5} = 0 ag{1.19}$$

We hebben nu een stelsel van twee vergelijkingen en twee onbekenden ( $U_2$  en  $U_3$ ,  $U_1$  is een bekende spanning):

$$\frac{U_2 - U_1}{R_1} + \frac{U_2 - U_3}{R_2} + \frac{U_2 - 0}{R_3} = 0$$

$$\frac{U_3 - U_2}{R_2} + \frac{U_3 - 0}{R_4} + \frac{U_3 - U_1}{R_5} = 0$$
(1.20)

We schrijven de onbekende spanningen nu expliciet op als functie van de weerstanden en brengen alle bekende stromen naar de rechterkant van het isgelijkteken:

$$\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) U_2 \qquad -\frac{1}{R_2} U_3 = \frac{U_1}{R_1} 
-\frac{1}{R_2} U_2 + \left(\frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_5}\right) U_3 = \frac{U_1}{R_5}$$
(1.21)

Dit stelsel vergelijkingen is op te lossen met technieken uit de matrixrekenkunde, zie hiervoor bijlage  $\ref{eq:continuous}$ . Nadat de spanningen  $U_2$  en  $U_3$  berekend zijn, kunnen de stromen en vermogens in het netwerk berekend worden.

#### Voorbeeld 1.2: Netwerk voor berekenen knooppuntspanningen

Gegeven is het netwerk in figuur 1.5. Bereken de spanningen  $U_2$  en  $U_3$  en de stroom die door de spanningsbron geleverd wordt.



Figuur 1.5: Netwerk met spanningsbron en weerstanden.

We stellen eerst de stroomwet op voor knooppunt 2:

$$\frac{U_2 - 12}{1200} + \frac{U_2 - 0}{1000} + \frac{U_2 - U_3}{1500} = 0 ag{1.22}$$

En voor knooppunt 3:

$$\frac{U_3 - U_2}{1500} + \frac{U_3 - 0}{2200} + \frac{U_3 - 12}{1800} = 0 ag{1.23}$$

We herschrijven de twee vergelijkingen zodat  $U_2$  en  $U_3$  expliciet worden:

$$\left(\frac{1}{1200} + \frac{1}{1500} + \frac{1}{1000}\right)U_{2} - \frac{1}{1500}U_{3} = \frac{12}{1200} - \frac{1}{1500}U_{2} + \left(\frac{1}{2200} + \frac{1}{1800} + \frac{1}{1500}\right)U_{3} = \frac{12}{1800} \tag{1.24}$$

We rekenen alle bekende waarden uit:

$$\begin{array}{lll} 2,500\,00\times 10^{-3}U_2 & -0,666\,67\times 10^{-3}U_3 & = 10,000\,00\times 10^{-3}\\ -0,666\,67\times 10^{-3}U_2 & +1,676\,77\times 10^{-3}U_3 & = 6,666\,67\times 10^{-3} \end{array}$$

Met behulp van matrixrekenmethoden vinden we voor  $U_2 = 5,660\,\mathrm{V}$  en  $U_3 = 6,226\,\mathrm{V}$ . Om de stroom die de spanningsbron levert te bepalen, moeten we de stromen uitrekenen door de weerstanden van  $1200\,\Omega$  en  $1800\,\Omega$ :

$$I_{12V} = I_{2200\Omega} + I_{1800\Omega} = \frac{12 - 5,660}{1200} + \frac{12 - 6,226}{1800}$$

$$= 5,283 \times 10^{-3} + 3,208 \times 10^{-3}$$

$$= 8,491 \text{ mA}$$
(1.26)

We hebben nu gezien dat een onafhankelijke spanningsbron met één uiteinde aan de referentie ervoor zorgt dat het aantal benodigde vergelijkingen met één verminderd wordt. Als er echter een "zwevende" spanningsbron in het netwerk geplaatst is, een spanningsbron tussen twee onbekende knooppuntspanningen, dan is er een extra vergelijking nodig voor het vinden van de knooppuntspanningen. Die extra vergelijking is nodig omdat de stroom die de spanningsbron levert onbekend is.

In figuur 1.6 is een netwerk te zien met een zwevende spanningsbron. Geen van de uiteinden van de bron is verbonden met het referentieknooppunt. Dat betekent dat alle spanningen in het netwerk onbekend zijn. Verder is de stroom die de bron levert onbekend. Deze stroom stellen we  $I_x$ . Merk op dat  $I_x$  gezien moet worden als een bronstroom en dat de referentierichting van de bronstroom van de '+' naar de '-' is genomen.



Figuur 1.6: Netwerk voor knooppuntspanningsmethode.

We stellen nu de stroomvergelijkingen op voor de knooppunten. Voor knooppunt 1:

$$\frac{U_1 - 0}{R_6} + \frac{U_1 - U_3}{R_5} - I_x = 0 ag{1.27}$$

Voor knooppunt 2:

$$\frac{U_2 - 0}{R_3} + \frac{U_2 - U_3}{R_2} + I_x = 0 ag{1.28}$$

Voor knooppunt 3:

$$\frac{U_3 - U_1}{R_5} + \frac{U_3 - U_2}{R_2} + \frac{U_3 - 0}{R_4} = 0 ag{1.29}$$

We hebben nu drie vergelijkingen maar er zijn vier onbekenden:  $U_1$ ,  $U_2$ ,  $U_3$  en  $I_x$ . Er is dus nog één vergelijking nodig om tot een oplossing te komen. We weten wel wat de spanning is tussen  $U_2$  en  $U_1$ : die is U V. De vierde vergelijking is dus:

$$U_2 - U_1 = U (1.30)$$

Merk op dat deze laatste vergelijking geen stroomvergelijking is maar een spanningsvergelijking. Het stelsel van vergelijkingen wordt dus:

$$\left(\frac{1}{R_6} + \frac{1}{R_5}\right) U_1 \qquad -\frac{1}{R_5} U_3 \quad -I_x = 0 
\left(\frac{1}{R_3} + \frac{1}{R_4}\right) U_2 \qquad -\frac{1}{R_2} U_3 \quad +I_x = 0 
-\frac{1}{R_5} U_1 \qquad -\frac{1}{R_2} U_2 \quad +\left(\frac{1}{R_5} + \frac{1}{R_2} + \frac{1}{R_4}\right) U_3 \qquad = 0 
-U_1 \qquad +U_2 \qquad = U$$
(1.31)

In matrixnotatie wordt dit:

$$\begin{bmatrix} \frac{1}{R_6} + \frac{1}{R_5} & 0 & -\frac{1}{R_5} & -1 \\ 0 & \frac{1}{R_3} + \frac{1}{R_4} & -\frac{1}{R_2} & 1 \\ -\frac{1}{R_2} & -\frac{1}{R_2} & \frac{1}{R_5} + \frac{1}{R_2} + \frac{1}{R_4} & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ I_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ U \end{bmatrix}$$
(1.32)

Merk op dat niet alle elementen uit de coëfficiëntenmatrix nu de dimensie geleiding hebben, maar dat enkele elementen dimensieloos zijn. Door de keuze van de richting van  $I_x$  is de matrix echter wel symmetrisch ten opzichte van de hoofddiagonaal. In de onbekendenvector is naast onbekende spanningen ook een onbekende stroom te vinden.

# Voorbeeld 1.3: Netwerk met zwevende, onafhankelijke spanningsbron

In figuur 1.7 is een netwerk te zien met een zwevende spanningsbron. Er zijn drie onbekende spanningen en één onbekende bronstroom. Er zijn dus vier vergelijkingen nodig voor het vinden van de onbekende spanningen en stroom.



Figuur 1.7: Netwerk voor knooppuntspanningsmethode.

We stellen direct de matrixvergelijking uit het netwerk op:

$$\begin{bmatrix} \frac{1}{4} + \frac{1}{6} & -\frac{1}{6} & 0 & 1 \\ -\frac{1}{6} & \frac{1}{6} + \frac{1}{5} + \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} + \frac{1}{3} & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ I_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix}$$
(1.33)

Met behulp van de matrixrekenkunde vinden we voor de spanningen en de stroom:  $U_1 = 7,30 \text{ V}, U_2 = -1,30 \text{ V}, U_3 = -4,70 \text{ V}$  en  $I_x = -3,26 \text{ A}$ . Merk op dat de bronstroom  $I_x$  negatief is door de keuze van de richting van de stroom.

#### 1.1.3 Gestuurde bronnen

# Voorbeeld 1.4: Operational amplifier

De *operational amplifier*, afgekort tot *op amp* (Engels) of *opamp* (Nederlands), is een bijzonder nuttige component in de elektrotechniek. Het wordt gebruikt in signaalverwerkende elektronica. Het gedrag van een opamp kan zeer goed benaderd worden door drie netwerkelementen: een ingangsweerstand, een uitgangsweerstand en een spanningsgestuurde spanningsbron. Wat een opamp in feite doet is de spanning tussen de twee ingangsklemmen, waartussen de ingangsweerstand is geplaatst, een groot aantal keer versterken. In het uitgangsnetwerk is de uitgangsweerstand opgenomen. Het symbool en het model zijn te vinden in figuur 1.8.



Figur 1.8: Symbool en het vereenvoudigd model van een opamp.

We gaan dit model gebruiken in het netwerk in figuur 1.9. Voor het opstellen van de vergelijkingen is het handig om met geleiding te werken en niet met weerstanden. Bij het gebruik van weerstanden krijgen we steeds breuken, bij gebruik van geleidingen niet. Verder moet opgemerkt worden dat de '—'-ingang van de ingangsweerstand met  $U_x$  verbonden is en de '+'-ingang met de referentie.



Figuur 1.9: Een netwerk van een vereenvoudigd model van een opamp.

We willen graag weten wat de uitgangsspanning  $U_2$  is voor een bepaalde ingangsspanning  $U_1$ . We stellen eerst de vergelijkingen op die nodig zijn om dit netwerk te beschrijven.

Voor het knooppunt bij  $U_x$  geldt:

$$(U_x - U_1)G_1 + (U_x - 0)G_{in} + (U_x - U_2)G_2 = 0 (1.34)$$

Voor het knooppunt bij  $U_2$  geldt:

$$(U_2 - U_x)G_2 + (U_2 - U_y)G_{out} = 0 (1.35)$$

Verder is direct te zien dat de spanning op het knooppunt bij  $U_y$  wordt gerealiseerd door de gestuurde spanningsbron:

$$U_{y} = aU_{in} = a(0 - U_{y}) = -aU_{y}$$
(1.36)

Als we het stelsel vergelijkingen nu opschrijven en  $U_y$  invullen dan krijgen we:

$$(G_1 + G_{in} + G_2)U_x -G_2U_2 = G_1U_1 (-G_2 + aG_{out})U_x + (G_2 + G_{out})U_2 = 0$$
(1.37)

Door toepassing van de regel van Cramer vinden we voor  $U_2$ :

$$U_2 = \frac{-G_1(-G_2 + aG_{out})}{(G_1 + G_{in} + G_2)(G_2 + G_{out}) + G_2(-G_2 + aG_{out})} U_1$$
(1.38)

Door teller en noemer te delen door  $-G_2 + aG_{out}$  en het minteken bij  $G_1$  voor de breuk te schrijven, krijgen we voor  $U_2$ :

$$U_2 = -\frac{G_1}{(G_1 + G_{in} + G_2) \left(\frac{G_2 + G_{out}}{-G_2 + aG_{out}}\right) + G_2} U_1$$
(1.39)

Hierbij moet opgelet worden dat de term  $-G_2 + aG_{out}$  niet 0 mag worden, anders wordt er gedeeld door 0. In dat geval moeten we (1.38) gebruiken en dan vinden we dat  $U_2 = 0$ .

We kunnen (1.39) nog anders opschrijven door de term  $G_1 + G_{in} + G_2$  te vermenigvuldigen én te delen door  $G_2$ :

$$U_{2} = -\frac{G_{1}}{G_{2} \left(\frac{G_{1} + G_{in} + G_{2}}{G_{2}}\right) \left(\frac{G_{2} + G_{out}}{-G_{2} + aG_{out}}\right) + G_{2}} U_{1}$$
(1.40)

We halen  $G_1$  en  $G_2$  nu naar voren, zodat volgt dat:

$$U_{2} = -\frac{G_{1}}{G_{2}} \times \frac{1}{1 + \left(\frac{G_{1} + G_{in} + G_{2}}{G_{2}}\right) \left(\frac{G_{2} + G_{out}}{-G_{2} + aG_{out}}\right)} U_{1}$$
(1.41)

We bekijken nu de term:

$$\left(\frac{G_1 + G_{in} + G_2}{G_2}\right) \left(\frac{G_2 + G_{out}}{-G_2 + aG_{out}}\right)$$
(1.42)

We kunnen de invloed van deze term willekeurig klein maken door aan de parameters van de opamp eisen te stellen, de weerstanden  $R_1$  en  $R_2$  zijn door de ontwerper in te stellen. Zo kunnen we ervoor zorgen dat de uitgangsweerstand  $R_{out}$  klein is (dus  $G_{out}$  is groot). Verder kunnen we ervoor zorgen dat de ingangsweerstand zeer groot is zodat  $G_{in}$  zeer klein is en zorgen we ervoor dat a groot is. Dan volgt voor de term in (1.42):

$$\left(\frac{G_1 + G_{in} + G_2}{G_2}\right) \left(\frac{G_2 + G_{out}}{-G_2 + aG_{out}}\right) \approx 0$$
(1.43)

Daarmee vereenvoudigt (1.41) zich tot:

$$U_2 = -\frac{G_1}{G_2}U_1 \tag{1.44}$$

of uitgedrukt in de weerstandswaarden:

$$U_2 = -\frac{R_2}{R_1}U_1 \tag{1.45}$$

De spanning  $U_2$  kan dus met alleen de weerstanden  $R_1$  en  $R_2$  vastgelegd worden. Een zeer praktische schakeling! Merk wel op dat  $U_2$  negatief is bij een positieve spanning voor  $U_1$  en positief is bij een negatieve spanning voor  $U_1$ . Deze schakeling wordt de *inverterende versterker* genoemd. Overigens kunnen we  $U_x$  ook vinden door toepassen van de regel van Cramer:

$$U_{x} = \frac{G_{1}(G_{2} + G_{out})}{(G_{1} + G_{in} + G_{2})(G_{2} + G_{out}) + G_{2}(-G_{2} + aG_{out})} U_{1}$$
(1.46)

We zien in de de versterkingsfactor *a* alleen in de noemer voorkomt. Aangezien *a* groot is zal volgen dat:

$$U_{r} \approx 0 \tag{1.47}$$

We hebben nu een *virtueel aardpunt* gemaakt. De spanningsbron U "ziet" dus alleen de weerstand  $R_1$  omdat de spanning  $U_x$  ongeveer 0 V is.

In de praktijk hebben we te maken met niet-ideale opamps. Zo is de gestuurde spanningsbron een actief netwerkelement en moet ergens zijn (elektrische) energie vandaan halen. Daarom is er voor een opamp altijd een voeding nodig. Meestal is dit een zogenoemde duale voeding omdat de opamp ook negatieve spanningen kan versterken. Een veel gebruikte waarde voor de voedingsspanningen is  $+15\,\mathrm{V}$  en  $-15\,\mathrm{V}$ . Dat heeft als consequentie dat de uitgangsspanning binnen het bereik van de voedingsspanning zal blijven. Door de opbouw van de opamp moeten we daar nog enkele volts vanaf trekken (positieve voedingsspanning) en bij optellen (negatieve voedingsspanning). De versterkingsfactor a is in de regel zeer groot, maar alleen voor gelijkspanning. Bij wisselspanning neemt de versterking af bij toenemende frequentie. De versterking volgt het gedrag van een laagdoorlaatfilter waarbij het kantelpunt tussen de  $10\,\mathrm{Hz}$  en  $100\,\mathrm{Hz}$  ligt. In tabel  $1.1\,\mathrm{zijn}$  enkele parameters gegeven.

Tabel 1.1: Enige kenmerken van opamps (bij gelijkstroom).

| Type    | $R_{in}(\Omega)$    | а                   | $R_{out}$ ( $\Omega$ ) | Ingangstype |
|---------|---------------------|---------------------|------------------------|-------------|
| μΑ741   | $200 \times 10^3$   | $200 \times 10^{3}$ | 75                     | bipolair    |
| NE5534  | $300 \times 10^{3}$ | $100 \times 10^{3}$ | $0,3^{1}$              | bipolair    |
| LF411   | $1 \times 10^{12}$  | $200 \times 10^{3}$ | $1^2$                  | FET         |
| TL072   | $1 \times 10^{12}$  | $200 \times 10^{3}$ | 200                    | FET         |
| LT1028  | $300 \times 10^{3}$ | $20 \times 10^{6}$  | 80                     | bipolair    |
| OPA177E | $200 \times 10^{6}$ | $12 \times 10^{6}$  | 60                     | FET         |

<sup>&</sup>lt;sup>1</sup> Bij een versterking van 1000.

<sup>&</sup>lt;sup>2</sup> Bij een versterking van 100.

We vullen voor de weerstandswaarden en versterkingsfactor nu enkele praktische waarden in. We nemen voor de opamp-parameters de waarden van de bekende  $\mu$ A741. Van deze opamp is  $R_{in} = 200 \,\mathrm{k}\Omega$ ,  $R_{out} = 75 \,\Omega$  en  $a = 200 \times 10^3$ . Verder nemen we  $R_1 = 10 \,\mathrm{k}\Omega$ ,  $R_2 = 20 \,\mathrm{k}\Omega$ . We nemen voor het gemak een bronspanning van  $U_1 = 1 \,\mathrm{V}$ .

Als we de waarden invullen in (1.41), dan vinden we  $U_2 = -1,999\,968\,884\,V$ . Voor de term in (1.42) vinden we 1,555 $\,812\,529\times10^{-5}$ . Voor  $U_x$  vinden we 10,037 $\,344\,\mu V$ . Nu heeft het weinig zin om getallen in zoveel decimalen te schrijven maar het geeft wel goed aan hoe nauwkeurig de versterking van  $U_1$  naar  $U_2$  is. We kunnen dus stellen dat  $U_2 = -2\,V$  en dat  $U_x = 0\,V$  is. Uiteraard is dit een theoretisch model en zal de uitgangsspanning iets afwijken van de berekende waarden. Om een realistischer beeld te krijgen van de spanningen en stromen moeten we een netwerksimulator gebruiken.

# 1.1.4 Opstellen van de vergelijkingen

De algemene gedaante voor het stelsel van vergelijkingen met onafhankelijke stroombronnen is:

$$\begin{bmatrix} G_{11} & G_{12} & G_{13} & \cdots & G_{1n} \\ G_{21} & G_{22} & G_{23} & \cdots & G_{2n} \\ G_{31} & G_{32} & G_{33} & \cdots & G_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ G_{n1} & G_{n2} & G_{n3} & \cdots & G_{nn} \end{bmatrix} \times \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ \vdots \\ U_n \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ \vdots \\ I_n \end{bmatrix}$$

$$(1.48)$$

De kracht van de matrixnotatie komt goed naar voren bij het opstellen van de vergelijkingen:

- Er zijn evenveel vergelijkingen nodig als dat er onbekende spanningen zijn;
- Elke regel bevat de vergelijking voor het betreffende knooppunt;
- Voor de elementen op de hoofddiagonaal ( $G_{11}$ ,  $G_{22}$ ,  $G_{33}$  tot en met  $G_{nn}$ , van linksboven naar rechtsonder) geldt dat dit de som is van de geleidingen die direct met het knooppunt van de onbekende spanning verbonden zijn;
- Voor de elementen niet op de hoofddiagonaal geldt dat dit de geleiding is die rechtstreeks tussen twee onbekende spanningen is verbonden en is altijd negatief. Deze elementen komen altijd in paren voor, gespiegeld in de hoofddiagonaal: zo is de waarde van knooppunt  $G_{32}$  hetzelfde als de waarde van  $G_{23}$ . De coëfficiëntenmatrix is dus symmetrisch t.o.v. de hoofddiagonaal;
- Een element niet op de hoofddiagonaal kan 0 zijn; er is dan geen geleiding tussen de twee knooppunten;
- Het elementen van het rechterlid van het stelsel (de bekendenvector) worden gevormd door de som van de stromen naar het desbetreffende knooppunt toe.

Als de matrixvorm van het stelsel van vergelijkingen is opgesteld, kunnen we gebruik maken van de matrixrekenkunde om tot een oplossing te komen. Zie hiervoor bijlage ??.