Chapter 4:

使用 actuarial symbol 包输入精算符号

庄源

2023年12月12日

目录

1	引言																					2
2	actuar	ials	symbo	1 的使	則																	2
	2.1 ac	tuar	rials	ymbol	L符号	寻的 常	常见约	吉构				 		 	 			 				2
	2.1	1.1	普通	型符号	<u> </u>							 		 	 			 				2
	2.1	1.2	包裹	型符号	<u>コ</u> ・							 		 	 			 				3
	2.1	1.3	带有	两个儿	及以」	上字七	母的:	E符	号.			 		 	 			 				3
	2.1	1.4	定期	寿险的	内拐角	有和	"何日	付给个	付"	标	识	 		 	 			 				3
3	常见精質	算符	号速查	查表																		4
	3.1 人	寿保	是险的	精算班	値							 		 	 			 				4
	3.2 年	金保	是险的	精算班	値							 		 	 			 				5
	3.3 生	存分	布与	生命ま	÷ .							 		 	 			 				Ę

1 引言

从大学开始学《寿险精算》这门课开始,我便有一个问题:这么复杂的精算符号,都是如何打出来的?众所周知,精算是一门"符号科学",要是没有了五花八门的精算符号,精算师得花非常多的时间向同行说明自己到底在算什么。10 年前, $\mathbb{E} T_{\mathbf{E}} \mathbf{X}$ 是精算人员编写精算教材的唯一选择,但从细节上看,由于没有专门的包执行功能,这些符号仍有不小的错位问题,多生命的编写更是让人头大。Word 中的公式编辑器更是根本达不到精算人员的要求,因为精算符号用到的"小拐角"(没错,就是 $A_{\mathbf{z}:n}$ 中的这个"小拐角"!)会让整个公式变得极其臃肿,多生命保险和多生命死亡率的表示法就更加让人难受了。

精算行业的不断扩张让精算科研人员和实务工作者们意识到了使用 LATEX 快速打出精算符号并进行有效沟通的重要性。终于,在 2012 年 10 月 18 号,actuarialangle 包横空出世:这个包让精算中常见的那个"小拐角"拥有了表示方法,是精算符号在 LATEX 上标准化的第一步。到了 2017 年 4 月 13 号,常用精算符号的 actuarial symbol 包终于上线,彻底终结了精算人员"无包可用"的历史。

作为精算系的学生,把这个包作为第一个 LATEX 包学习非常有意义:通过这个包的学习,一个 LATEX 初学者可以学会如何在 CTAN 上寻找相应的帮助文档并进行包体的自我学习过程。

现在我们做一个练习:打开CTAN,看看你能否找得到 actuarial symbol 这个包的帮助文档?这个帮助文档是不是和这个超链接中展示的一样?

2 actuarial symbol 的使用

想要使用这个包,直接运行下列代码即可:

\usepackage{actuarialsymbol}

你可以使用 Axmath、KLatexFormula 等公式编辑软件将生成的精算符号放到 Word 文档中去。

2.1 actuarial symbol 符号的常见结构

actuarial symbol 中的很多常用符号都有自己的简洁语法,但在接触这些简洁语法之前,我们得先知道一个一般的 actuarial symbol 符号如何表示出来,以免碰到例外情况。

2.1.1 普通型符号

一个普通的符号可以使用以下方式打出:

\actsymb[左下角标][左上角标]{中间的符号}{右下角标}[右上角标]

参数排列的顺序可以很像一个字母 "N"。这样子,我们就可以轻松地打出像 A_x $_nA_x$ $_n^2A_x$ $_n^2A_x^{(m)}$ 这样的符号来了。它们的代码很简单,现在就试试!

需要注意的是, 传统的上下标和精算符号中的对齐方式是不一样的, 尝试运行下面代码:

我们得到了下列符号:

 $_{n}^{2}A_{x}^{(m)}$ $_{n}^{2}A_{x}^{(m)}$

你看到了不同吗?

2.1.2 包裹型符号

有时,我们需要表示"某某保险的保费"或者"某某年金的准备金"这样的概念,这就意味着需要有字母在外部包裹住精算符号,如: $_{k}V^{\{1\}}(\bar{A}_{x})$ 。对于这种复杂的包裹型符号,我们有专门的解决方案:

\actsymb[左下角标][左上角标]{外部包裹用符号,默认为P}{中间的符号}{右下角标}[右上角标]

尝试运行下列代码,你就可以得到 $_{k}V^{\{1\}}(\bar{A}_{x})$ 这个符号:

2.1.3 带有两个及以上字母的主符号

增额保险 (IA) 其实是用两个字母组成的主符号,如果我们用 \mathbb{E}^{T} 中的默认操作 \$IA\$ 来生成这个符号,就会出现非常大的间距: IA^{1} 。为了避免这种大间距的情况出现,actuarial symbol 刚好制定了\twoletsymb 这个方案:

\twoletsymb[间距长度]{第一个字母}{第二个字母}

注意观察右边这两个符号,看看两个字母之间的间距有何不同: (IA) (IA) 我们使用这样的代码来设置间距:

2.1.4 定期寿险的拐角和"何时给付"标识

你一定注意到过,Term Life、Pure Endowment、Endowment 的 n 旁边有一个小拐角,并且"1"的位置会被用来表示给付的时间。在 actuarial symbol 中,我们通常使用\angln 来输入带拐角的 n;如果我们想要把"1"标注在对应的数字上方,我们可以用\nthtop 操作。下面的代码可以用来生成 $A_{x:\overline{n}}^1$ $A_{xy:\overline{n}}^1$:

 $\actsymb{A}{x:\nthtop{1}{\angln}} \quad$

到这里,我们已经学习完 actuarial symbol 最核心的部分了。事实上,actuarial symbol 的强大之处还远不止于此,你可以通过查询官方文档来进行更深入的学习。下面一节中,我们将介绍更多的 actuarial symbol 快捷操作,帮助教材编写者和精算报告写作者们远离苦痛的精算排版。

¹看起来根本就是两个字母,而不是一个符号了。

3 常见精算符号速查表

本速查表主要以中国精算师协会考试教材《寿险精算》2的前三章为蓝本编制,涵盖了精算学基础内容。

3.1 人寿保险的精算现值

精算符号	输入方法
A_x	\Ax{x}
$ar{A}_x$	\Ax*{x}
$A_x^{(m)}$	\Ax{x}[(m)]
$A^1_{x:\overline{n} }$	\Ax{\termxn}
$A^{1}_{20:\overline{30}}$	$\actsymb{A}{\nthtop{1}{20}:\angl{30}}$
$\bar{A}^1_{x:\overline{n} }$	\Ax*{\termxn}
$ar{A}_{20:\overline{30}}^{1}$	$\actsymb{\bar{A}}{\nthtop{1}{20}:\ang1{30}}$
$A_x \cdot \frac{1}{ n }$	\Ax{\pureendowxn}
$A_{20:\overline{30}}$	$\actsymb{A}{20:} \nthtop{1}{\angl{30}}}$
$A_{x:\overline{n} }$	\Ax{\endowxn}
$A_{20:\overline{30}}$	$\actsymb{A}{20:\ang1{30}}$
$ar{A}_{x:\overline{n} }$	\Ax*{\endowxn}
$ar{A}_{20:\overline{30}}$	\actsymb{\bar{A}}}{20:\ang1{30}}
$_{10 }A_{20:\overline{30 }}^{1}$	\actsymb[10][]{A}{\nthtop{1}{20}:\angl{30}}
$(IA)_x$	\IA_x
$(I\bar{A})_x$	\IA*_x
$(\bar{I}\bar{A})_x$	\IbA*_x
$(I^{(m)}\bar{A})_x$	\ImA*_x
$(IA)^1_{x:\overline{n} }$	\IA_{\termxn}
$(DA)^1_{x:\overline{n} }$	\DA_{\termxn}
$_{10 }(I^{(m)}A)^{1}_{20:\overline{30}}$	\actsymb[10][]{\twoletsymb{I{(m)}}{A}}}{\nthtop{1}{20}:\angl{30}}

表 1: 生命保险相关符号(如未出现在本表中可以直接使用一般方法)

 $^{^{2}}$ 主编: 张连增,审稿: 李晓林,2010 年 10 月第一版。

3.2 年金保险的精算现值

精算符号	输人方法
a_x	a_x
$a_{\overline{20}}$	\ax{\ang1{20}}
$\bar{a}_{\overline{20 }}$	\ax*{\ang1{20}}
$\ddot{a}_{\overline{20 }}$	$\ax**{\angl{20}}$
$\ddot{a}_x^{(m)}$	\ax**{x}[(m)]
$\mathring{a}_x^{(m)}$	\aringx{x}[(m)]
$\bar{a}_{\overline{x:\overline{n} }}$	\ax*{\joint\endowxn}
$\bar{a}_{\overline{10:\overline{20}}}$	$\ax*{\joint{10:\angl{20}}}}$
$_{n }a_{x}$	$\ax[n] \{x\}$
$\ddot{s}_{x:\overline{n} }$	\sx**{\endowxn}

表 2: 年金保险相关符号(如未出现在本表中可以直接使用一般方法)

年金保险的输入与人寿保险的非常相似,在使用一般方法时,可以使用\bar 和\ddot 的方法为图表头顶加上横杠与两点。

3.3 生存分布与生命表

精算符号	输人方法
ℓ_x	$\label{eq:lx} \$
$\ell_{[x]+k}$	$lx{[x] + k}$
$_tp_x$	$\px[t]{x}$
$_tq_x$	$\qx[t]{x}$
$_{t m}q_x$	$\qx[t m]{x}$
\mathring{e}_x	$\ensuremath{\mbox{\tt eringx\{x\}}}$
$\mathring{e}_{x:\overline{n} }$	\eringx{\endowxn}
$\mathring{e}_{20:\overline{50}}$	$\texttt{\eringx} \{20: \texttt{\angl} \{50\}\}$
$e_{20:\overline{50}}$	$e_{20:\ang1{50}}$

表 3: 人寿保险相关符号(如未出现在本表中可以直接使用上下标方法)