ascading of Inverter: जीडन (रूक के बाद रुक) A B A

$$A = 0$$

$$B = 1$$

$$C = 0$$

$$C = 0$$

$$B = \overline{A}$$

$$Y = \overline{B} = \overline{A} = A$$

$$Y = A$$

input = output : Buffer gate

If we cascade 2 Invertex in a series then it will act like a Buffer

$$O = A$$

 $L = A$

$$B = \overline{A}$$

$$C = \overline{B}$$

$$Y = \overline{A}$$

$$Y = \overline{A}$$

output is Complement of Supert => Y=A

* If we cancade 3 inverters in a series then it will act like an Inverter

Observation:

Lifeven number of Not gates are Connected in Cocide then it behaves like a buffer.

-> But it generates a delay of sin tol

Lift odd number of Not gates are Connected in Cascade then it behave like an inverter

-> But it generates a delay of 2n+1 ted

Graph of two inverters in Cascade A= 0 t=0 A=P A=1 A= 0

Graph of three inverters in Cascade $\frac{1}{A}$ t=0, A=1 **/-**0 \$=0, A=0 0 = A 0 -> 4=0

Touth Table					
A	B	4- A.B			
O	0	0			
0	1	0			

Three Input AND gate

Two Input AND gate in Cascale

A	B	C	Y= A·B·C
O	0	0	0
0	0	1	0
0	1	0	0
0	1	1	Ó
1	0	0	0
1	0	1	0
1	1	0	O
1			1

3 inputs -> 23 Combinations = 8

* Output is high if and only if all inputs are high

* It is Similar to Dot Product

Y= AXBXC

