Thought about SupCP

Jiaxin Hu

May 21, 2021

1 SupCP performance

In simulation, SupCP performs better as the number of available feature matrices increases, which is counterintuitive. A possible reason to this phenomena is that the valid space for the fitted values of STD becomes smaller due to more "supervision". Here we only consider the Gaussian data. Let $\mathcal{Y} \in \mathbb{R}^{d \times d \times d}$, $\mathbf{X}_k \in \mathbb{R}^{d \times p}$, $k \in [3]$. Consider the tucker rank $\mathbf{r} = (3, 3, 3)$ and CP rank R. The dimension of \mathbf{M}_k can be obtained by the context.

First, we start with the unsupervised case. Recall the STD and SupCP model.

$$STD$$
 : $\mathcal{Y} = \mathcal{C} \times \{M_1, M_2, M_3\} + \mathcal{E}$
 $SupCP$: $\mathcal{Y} = [A_1, A_2, A_3] + \mathcal{E}$.

The estimation problem of \mathcal{Y} in STD and SupCP can be formulated in the same form

$$\min_{\text{vec}(\hat{\mathcal{Y}}) \in \mathcal{P}} \left\| \mathcal{Y} - \hat{\mathcal{Y}} \right\|_F^2,$$

where the space \mathcal{P} depends on the model structure. Particularly,

$$\mathcal{P}_{STD} = \{ [\langle \mathcal{C}, \boldsymbol{M}_{1i} \circ \boldsymbol{M}_{2j} \circ \boldsymbol{M}_{3k} \rangle], i, j, k \in [d] \mid \mathcal{C} \in \mathbb{R}^{r \times r \times r}, \boldsymbol{M}_k \in \mathbb{R}^{d \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = r \}$$

$$= \{ \operatorname{span}(\boldsymbol{M}_1 \otimes \boldsymbol{M}_2 \otimes \boldsymbol{M}_3) \mid \boldsymbol{M}_k \in \mathbb{R}^{d \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = r \}, \quad \text{what does it mean?}$$

where the second equation holds since \mathcal{C} is free, and

CP factor has no orthogonality constraints.

$$\mathcal{P}_{SupCP} = \{ [\langle \mathcal{I}_R, \mathbf{A}_{1i} \circ \mathbf{A}_{2j} \circ \mathbf{A}_{3k} \rangle], i, j, k \in [d] \mid \mathbf{A}_k \in \mathbb{R}^{d \times R}, \mathbf{A}_k^T \mathbf{A}_k = R \}$$
$$= \{ \operatorname{span}([\mathbf{A}_1 \odot \mathbf{A}_2 \odot \mathbf{A}_3] \mathbf{1}_R) \mid \mathbf{A}_k \in \mathbb{R}^{d \times R}, \mathbf{A}_k^T \mathbf{A}_k = R \}$$

where \mathcal{I}_R is the identity tensor with entries $I_{R,iii} = 1, i \in [R]$ and other entries 0, and \odot is the Khatri-Rao product (column-wise Kronecker product).

Note that the space $\mathcal{P}_{SupCP} \subset \mathcal{P}_{STD}$ if $R < r^3$ since CP decomposition is a special case of Tucker decomposition. Therefore, if the true signal tensor is generated from Tucker decomposition, our Tucker-based STD outperforms CP-based SupCP. how about R>> r^3 verify in experimental case of Tucker decomposition.

Next, we use the same idea above for the supervised case, i.e., compare the space \mathcal{P}_{SupCP} , \mathcal{P}_{STD} with feature matrix. For simplicity, we ignore the extra noise \mathcal{E}' in SupCP and consider the completely supervised $A_1 = X_1 B$.

Now we have the spaces

$$\mathcal{P}_{STD} = \{ [\langle \mathcal{C}, (\boldsymbol{X}_1 \boldsymbol{M}_1)_i \circ (\boldsymbol{X}_2 \boldsymbol{M}_2)_j \circ (\boldsymbol{X}_3 \boldsymbol{M}_3)_k \rangle], i, j, k \in [d] \mid \mathcal{C} \in \mathbb{R}^{r \times r \times r}, \boldsymbol{M}_k \in \mathbb{R}^{p \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = r \}$$

$$= \{ \operatorname{span}(\boldsymbol{X}_1 \boldsymbol{M}_1 \otimes \boldsymbol{X}_2 \boldsymbol{M}_2 \otimes \boldsymbol{X}_3 \boldsymbol{M}_3) \mid \boldsymbol{M}_k \in \mathbb{R}^{p \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = r \}, \text{ \subset R^{?}} \}$$

and

$$\begin{split} \mathcal{P}_{SupCP} &= \{ [\langle \mathcal{I}_R, (\boldsymbol{X}_1 \boldsymbol{B})_i \circ \boldsymbol{A}_{2j} \circ \boldsymbol{A}_{3k} \rangle], i, j, k \in [d] \mid \boldsymbol{B} \in \mathbb{R}^{p \times R}, \boldsymbol{A}_k \in \mathbb{R}^{d \times R}, \boldsymbol{A}_k^T \boldsymbol{A}_k = R \} \\ &= \{ \mathrm{span}([\boldsymbol{X}_1 \boldsymbol{B} \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3] \boldsymbol{1}_R) \mid \boldsymbol{B} \in \mathbb{R}^{p \times R}, \boldsymbol{A}_k \in \mathbb{R}^{d \times R}, \boldsymbol{A}_k^T \boldsymbol{A}_k = R \}, \quad \text{Text} \end{split}$$

What do you mean by "\subset"? First space is a vector space of dimension d^3. Second space is a vectors space of dimension d^3. Second space is a vectors space of dimension d^3. Second space is a vectors space of dimension d^3. Second space is a vector space of dimposition d^3. Second space is a vector space of dimension d^3. S

- 1. Consider $X_2, X_3 = I_d$. If $R \leq r$, then $\mathcal{P}_{SupCP} \subset \mathcal{P}_{SupCP}$; if R > r, there exists a vector $v \in \mathcal{P}_{SupCP}/\mathcal{P}_{STD}$, since $\operatorname{span}(X_1B) \nsubseteq \operatorname{span}(X_1M_1)$, for all full rank $M_1 \in \mathbb{R}^{d \times r}$ and full rank $B \in \mathbb{R}^{d \times R}$ under this case.
- I did not continue reading, because all following seems to have error "in purple".

$$(\boldsymbol{X}_1\boldsymbol{M}_1\otimes\boldsymbol{X}_2\boldsymbol{M}_2\otimes\boldsymbol{X}_3\boldsymbol{M}_3)=(\boldsymbol{X}_1\otimes\boldsymbol{X}_2\otimes\boldsymbol{X}_3)(\boldsymbol{M}_1\otimes\boldsymbol{M}_2\otimes\boldsymbol{M}_3).$$

Then $\operatorname{span}(X_1M_1\otimes X_2M_2\otimes X_3M_3)\subset \operatorname{span}(X_1\otimes X_2\otimes X_3)$, and thus \mathcal{P}_{STD} becomes smaller when feature matrices are available on more modes and each matrix contains fewer information. I do not under the logic. Both sides (*) have X. Specify which is for # feature = 3, which is for # feature = 1

for # feature =1
Meanwhile, no matter $R \leq r$ or R > r, it is possible that $\mathcal{P}_{SupCP} \nsubseteq \mathcal{P}_{STD}$, since there is no supervised constraints on the last two factors A_2, A_3 .

Have you verified from experiment?

Generate from CP then fit two models?

- 3. Therefore, there always exists model misspecification if the true signal is generated from the STD model. That's the reason why STD outperforms than SupCP.
- 4. When there is no information or only 1 feature matrix available with $R \leq r$, \mathcal{P}_{SupCP} is a subset of \mathcal{P}_{STD} and it is likely that the true signal does not fall in the space \mathcal{P}_{SupCP} . When there is more information, \mathcal{P}_{STD} becomes smaller, and it is more likely for \mathcal{P}_{SupCP} to cover the true signal, particularly when R > r. An extreme example is $r = 1, R \geq 2$. Another example is $r = 2, R \geq 8$ and X_1, X_2, X_3 are available. In both examples, \mathcal{P}_{STD} is a subset of \mathcal{P}_{SupCP} .

References