

Universidade Eduardo Mondlane

Exame:	Química	Nº Questões:	59
Duração:	120 minutos	Alternativas por questão:	5

<u>INSTRUÇÕES</u>

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim A, se a resposta escolhida for A
- **3.** A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à **esferográfica**.

1	Qual é a massa (em gr	amas) de permanganato	o de potássio (KMno	O ₄) que fornece 58,5 g de p	otássio? (Massas atómicas	
	em u.m.a.: K – 39,10; M	In – 54,94; O – 16,00)?				
	A. 158,04	B. 39,10	C . 14,47	D. 236,45	E. 58,5	
2					sou 3,164 g e o CO ₂ formado	
	pesou 1,386 g. Calcule	as percentagens dos co	omponentes. (massa	s atómicas, em g/mole: C	Ca - 40,08; $S - 32,07$; $C - 12,01$;	
	O – 16,00)					
	A. CaCO ₃ – 31,52%; 0			$_3 - 53,82\%$; Ca(OH) $_2 - 46,18$		
	C. CaCO ₃ – 43,81%;		D. CaCO	$_3 - 64,09\%$; Ca(OH) $_2 - 35,91$	1%	
	E. CaCO ₃ – 55,82%; 0					
3	A primeira tabela perió					
	A. Newlands	B. Doebereiner	C. Molesey	D. Mendeleev	E. Chancourtois	
4				lhantes às do oxigénio (ni	ímero atómico do O = 16). O	
		seguinte configuração e				
	A. $1s^2 2s^2 2p^6 3s^2$		$s^2 2s^2 2p^6 3s^2 3p^1$	C . $1s^2 2s^2 2p^6$	3s ² 3p ⁴	
	D . $1s^2 2s^2 2p^6$		$1 s^2 2 s^2 2 p^6 3 s^2 3 p^3$			
5					ental a seguinte configuração	
		completo; nivel 2 - co	mpieto; nivei 3 - 4	electroes. A alternativa o	que indica corretamente esse	
	elemento é:	$\mathbf{p} \text{Alternative } (7 - 12)$	C Onicánia (7 – 0	D France (7 - 26)	E Nita - (7 - 7)	
	A. Silício (Z = 14)	B. Alumínio (Z = 13)	C. Oxigénio ($Z = 8$		E. Nitogénio (Z = 7)	
6	Considere um determinado elemento químico cujo subnível mais energético é o 5s². O seu número atómico e o grupo em que está localizado na Tabela Periódica são, respectivamente:					
	A. 38; IIA	B. 38; IA	C. 20; IA	D. 39; IIA	E. 20; IIA	
7				o, diferem entre si, quanto		
′	A. de protões e de neut		le protões e de electrô		s e de neutrões	
	D . atómico e ao raio iô:		itómico e de oxidação		s e de ficultoes	
8				sse metal terá a fórmula:		
Ü	A. M_2SO_3	B. MS	C . MSO ₄	D. MSO ₃	$\mathbf{E}_{\bullet} \mathrm{M}_2 \mathrm{S}$	
9		baixo é melhor exemplo				
	A. SnCl ₄	B. CCl ₄	C . BF ₃	D. CaCl ₂	E. SiCl ₄	
10	Quando numa reacção	verifica-se que, a uma	dada temperatura, a	soma das entalpia dos pr	odutos é maior que a soma da	
		, diz-se que a reacção é:			-	
	A. Isotérmica	B. Espontânea	C. Endotérmica	D. Exotérmica	E. Não espontânea	
11	A expressão matemátic	ca que relaciona K _p e K _c	para o equilíbrio 21	$N_2O_{5(g)} \leftrightarrows 4NO_{2(g)} + O_{2(g)}$	o) é:	
	A. $K_p = K_c \times (RT)^5$				E. $K_p = K_c \times (RT)^3$	
12	Considere a solução ao	uosa de uma substânci	a de fórmula HA, n	a qual existe o equilíbrio:		
	$HA_{(aq)} \leftrightarrows H^+_{(aq)} + A^{(aq)}$	_{aq)} . Sabe-se que HA ten	n a cor vermelha e q	ue A- tem cor amarela, a ac	lição de:	
	A. Sumo de limão deix			de limão deixa a solução am	•	
	C. Sumo de limão dei:		D. Soda	ı cáustica deixa a solução ver	melha	
	E. Soda cáustica deixa					
13	Tem-se a seguinte rea	cção redox: NaI + Cl ₂	\rightarrow NaCl + I ₂ . O a	gente oxidante é:		
	A. I_2	B. NaCℓ	C. C l 2	D. São os reagentes	E. NaI	

14	A fórmula geral dos alcinos é:
	A. C_nH_{n+2} B. C_nH_{2n} C. C_nH_{2n+2} D. C_nH_{2n-2} E. Todas opções anteriores estão erradas
15	^ // ⁰
	CH ₂ CH-C
	A tentialanina, , e utilizada em adoçantes dieteticos e retrigerantes do tipo "light". Pode-se concluir que
	a fenilalanina é um: A. Lípido B. Aminoácido C. Glicídio D. Aldeído E. Ácido carboxílico
16	—CH ₂ CH-CH ₂ CH-
	O "Orlon", CN CN CN CN , um polímero obtido por adição e utilizado em materiais têxteis, tem como monómero o composto:
	A. CH ₃ —CH=CN B. CH ₃ —CN—CH ₃ C. CH ₂ =CH—CN
	D. CN—CH=CH—CN E. CH ₃ —CH ₂ —CN
17	As fórmulas para os compostos bicarbonato de sódio, sulfato férrico e sulfito de cálcio são:
	A. NaHCO ₃ , Fe ₂ (SO ₄) ₃ , CaSO ₃ B. NaHCO ₃ , FeSO ₄ , CaSO ₃ C. NaHCO ₃ , Fe ₂ (SO ₃) ₃ , CaSO ₄
18	D. Na ₂ CO ₃ , FeSO ₄ , CaSO ₃ E. Na ₂ CO ₃ , Fe ₂ (SO ₄) ₃ , CaSO ₅ Se um electrão se move de um nível de energia para um outro mais afastado do núcleo do mesmo átomo, pode afirmar-se
10	que:
	A. Não há variação de energia B. O número de oxidação do átomo varia
	C. Há emissão de energia D. Há absorção de energia
19	E. Há emissão de luz de um comprimento de onda definido Num subnível de número quântico azimutal igual a 2, os valores que o número quântico magnético pode ter são:
17	A. 0 e 1
20	Dados os elementos Be (Z = 4); Mg (Z = 12); Ca (Z = 20) e Sr (Z = 38). A ordem crescente dos raios atómicos destes
20	elementos é:
	A. Be, Ca, Sr e Mg B. Be, Mg, Ca, e Sr C . Sr, Ca, Mg e Be D. Sr, Ca, Be e Mg E. Mg, Be, Ca e Sr
21	A configuração electrónica que corresponde a um gás nobre é:
	A. 1s ² 2s ² 2p ⁶ 3s ² 3p ² B. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ C. 1s ² 2s ² 2p ⁶ 3s ² 3p ³ D. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² E. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²
22	Os átomos pertencentes à família dos metais alcalino-terrosos e dos halogênios adquirem configuração electrónica de gases
	nobres quando, respectivamente, formam iões com número de carga:
0.2	A2 e -2 B. +1 e -2 C. +1 e -1 D1 e +2 E. +2 e -1
23	As fórmulas Fe, KF e F ₂ representam, respectivamente, substâncias com ligações químicas dos tipos: A. Covalente, covalente e metálica B. Iónica, iónica e covalente C. Metálica, iónica e covalente
	D. Iónica, metálica e metálica E. Metálica, covalente e iónica
24	Assinale o grupo que só contém bases fortes:
	A. KOH, NaOH, Ca(OH) ₂ , Al(OH) ₃ B. Ca(OH) ₂ , KOH, NaOH, Ba(OH) ₂ C. Zn(OH) ₂ , Pb(OH) ₂ , Ca(OH) ₂ , Ni(OH) ₂
	D. Ba(OH) ₂ , Zn (OH) ₂ , AgOH, Pb(OH) ₂ E. Nenhuma das respostas é correcta
25	Quatro átomos são rotulados de D, E, F e G. As suas electronegatividades (χ) são as seguintes: χD = 3,8, χE = 3,3,
	χ F = 2,8 e χ G = 1,3. Se os átomos destes elementos formarem moléculas DE, DG, EG e DF, de que modo disporia estas moléculas por ordem crescente de ligação covalente?
	A. EG< DF< DE B. DE< DG< EG < DF C. DG < EG < DF
	D . DG< DF< DE < EG
26	Se se dissolver 12,25 g de sacarose (C ₁₂ H ₂₂ O ₁₁) em 250 g de água pura, a concentração percentual em peso e molar serão
	respectivamente, assumindo que a densidade da água é 1 g/cm3: (massas atómicas, em g/mole: H – 1,01; C – 12,01; O – 16,00)
	A. 4.67% ; 49 mole/ ℓ B. 4.90% ; 49 mole/ ℓ C. $4,67\%$; 0.14 mole/ ℓ
	D. 4.90%; 1.43 × 10 ⁻⁴ mole/ℓ
27	A equação da reação que corresponde a neutralização total que ocorre entre o ácido fosfórico e hidróxido de cálcio é:
	A. $2H_2PO_3 + 3Ca(OH)_2 \rightarrow Ca(PO_3)_2 + 6H_2O$ B. $2H_2PO_4 + 3Ca(OH)_2 \rightarrow Ca_2(PO_4)_2 + 6H_2O$ C. $2H_3PO_3 + 3Ca(OH)_2 \rightarrow Ca_3(PO_3)_2 + 6H_2O$ D. $2H_3PO_4 + 3CaOH \rightarrow Ca_3PO_4 + 3H_2O$
	E. $2H_3PO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 6H_2O$
28	Derramando-se acetona na mão, tem-se uma sensação de frio, porque:
	 A. A evaporação da acetona é um processo exotérmico B. A acetona foi previamente aquecida D. A acetona reage exotermicamente com a pele
	C. A acetona sublima D. A acetona reage exotermicamente com a pele E. A evaporação da acetona é um processo endotérmico
29	Qual é a entalpia de conversão da grafite a diamante: C(grafite) → C(diamante), sabendo que a entalpia de formação de
	CO_2 a partir da grafite é de – 393,5 kJ/mole e C(diamante) + $O_{2(g)} \rightarrow CO_{2(g)} \Delta H_{reac}$ = - 395,4 kJ?
30	A. -1.9 kJ B. -788.9 kJ C. $+788.9 \text{ kJ}$ D. $+1.9 \text{ kJ}$ E. $+393.5 \text{ kJ/mole}$ O octano, C_8H_{18} , é o constituinte primário da gasolina. Ele queima ao ar de acordo com a reacção: $C_8H_{18(1)} + 25/2 O_{2(g)} \rightarrow$
50	8 CO _{2(g)} + 9 H ₂ O _(l) . Supondo que uma amostra de 1,00 g de octano seja queimada num calorímetro que contém 1,20 kg de
	água, e a temperatura da água e do calorímetro aumenta de 25,00 °C para 33,20 °C, e a capacidade da calorímetro,
	C _{calorímetro} , seja igual a 837 J/K e da água 4,18 J/g.K, o calor produzido durante a combustão será:

	A. −48,1 kJ B. −	41,2 kJ	C.	48,1 kJ		D. 6,86 kJ		E. 41,2 kJ	
31	Em condições reaccionais idê	nticas e utiliza	ndo r	nassas iguais	de ma	adeira em lasca	a e em tor	os, verifica-s	e que a madeira
	em lasca queima com maior v								
	A. Temperatura	B.	Sup	erfície de conta	cto	C. En	nergia de ac	tivação	
	D. Concentração	E.	Pres	são					
32	Arrhenius define ácido como	sendo:							
	A. A substância que recebe ur	n par de electrõe	:S		В.	A substância qu	ie cede um	par de electro	ões
	C. A substância que em soluç	ão aquosa produ	z iões	H^+	D.	Todas as afirm:	ações estão	correctas	
	E. A espécie que cede protõe	s H+ a uma base							
33	Dados os seguintes sais: NaC					as destes sais s	serão, resp	oectivamente	::
	A. ácida, neutra, ácida			tra, ácida, ácida	ı	C. No	eutra, básic	a, ácida	
	D. Neutra, neutra, básica			a, básica, ácida					
34	O pH de uma solução de NaC)H obtida pela	disso	lução de 0,400	57 g d	esta base em á	gua pura s	suficiente pa	ra produzir 250
	ml de solução será: A. 1,39 B. 1	2 70	C	12,01		D 1.00		E 1271	
25						D. 1,99	T O+ TZ	E. 12,61	E 1 //:
35	O fenol, C ₆ H ₅ OH, é um ácido	organico fraco	C_6H	$_{5}OH_{(aq)} + H_{2}C$) ₍₁₎ →	$C_6H_5O_{(aq)} + H_5$	13O ⁺ (aq), K	$a = 1.3 \times 10^{-10}$.	Embora toxico
	para humanos, é usado na des suficiente para produzir 125 m								
	- 12,01)	n de sonição, q	uare	o pri da soiuç	aor (massas atomic	as, em g/i	mole: H – 1,0	71; O – 10,00; C
	A. 8,17 B. 1	77	C	7,33		D. 5,83		E. 9,89	
36	Numa solução de hidróxido d				ı-se o				
	$Mg(OH)_2 \Rightarrow Mg^{2+}_{(aq)} +$	_				_		le magnésio	é de 3×10−3. A
	concentração das espécies de							g	
		,5 ×10-6M		2,7 ×10 ⁻⁴ M		D. 1,5 ×10-4N	Л	E. 1,5 ×10 ⁻²	M
37	Seleccione a opção correcta:								
	A. A base conjugada de ur	n ácido fraco é u	ıma ba	ase forte					
	B. O ácido água funciona								
	C. A base conjugada de ur	n ácido forte é u	ma ba	ise forte					
	D. Um ácido e a sua base o				gua				
	E. Nenhuma das alíneas a								
38	Qual das seguintes frases é a						favorecido	o pela reacçã	o redox tem"
	A. um ΔG^0 nulo e um \mathcal{E}^0 nulo			$\Delta G^0 > 0$ e um e			$\Delta G^0 < 0$	e um $\mathcal{E}^{o} > 0$	
	D. um $\Delta G^0 > 0$ e um $\mathcal{E}^0 > 0$			huma das alter					
39	Dados os compostos seguinte)2. A S	sequencia corre	ecta para o	os numeros o	ie oxidação dos
	elementos nestes compostos s A. -3/+1; +1/+2/-2; +1/+6,		mente	e :	B	+3/-1; +1/+2/	/ 2. ⊥1 /⊥6	:/ 2· ⊥ 2 / 1 / ·	2
	C. -1/+3; +1/+2/-2; +1/+6					+3/-1; +1/+2/			
	E. +3/-1; +1/+2/-2; +1/+6				Δ.	15/ 1, 11/ 12/	, <u>,</u> , , , , ,	,, <u>2</u> , . <u>2</u> , . <u>2</u> ,	_
40	Sabendo-se que os álcoois for	mados na hidra	tacão	de dois alcen	os sã	o respectivame	nte 2-met	il-2-pentano	l e 1-etil-
	ciclopentanol, quais os nomes							n 2 pentano	e e e e e e
	A. 2-metil-3-penteno e 1-etil-0							ciclopenteno	
	C. 2-metil-1-penteno e 2-etil-0					2-metil-2-pente			
	E. 2-metil-2-penteno e 1-etil-	ciclopenteno				•		•	
41	A estrutura primária de uma p	roteína é deter	mina	da:					
	A. Pela sequência dos ami		eia pep	otídica					
	B. Pela divisão das estrutu								
	C. Pela sua disposição esp		ela int	eração da cade	ia pep	tídica			
	D. Pela quantidade de colá	0 1			1/				
40	E. Por sua forma tridimen							/ 000/ 1	C C . 1 /1:
42	Os ossos possuem 65% de su (Ca ₃ (PO ₄) ₂) e 20% de carban								
	esqueleto te		de), cuie a	1112	30 0	1:	12 \	ium adunto cujo
		2,50 kg		30,97 kg	and should man	D. 36,00 kg		E. 26,00 kg	
43	Quantos gramas de sulfato de				oir 50		hário 75º		sulfato de sódio
10	excessivo? (massas atómicas,							o puro com	sunuto de sodio
	A. 20,82 B. 5	-	_	37,5	, 51	D. 42,03	-,	E. 23,34	
44	O metanol (CH ₃ OH) é um c				te. Po		pela reac		le monóxido de
•	carbono (CO) e hidrogénio (I								
	metanol podem ser obtidos? (, 1	3
	A. 32,05 B. 8			95,20		D. 0,16	•	E. 0,14	
45	Considere um elemento cujo	Z=56. O grupo			ncia c	leste elemento	são respe	ctivamente i	guais a:
	· ·	V A,4°, I	_	IIA, 6°, II		D. VIB, 2°, II	_	E. VIA, 2°,	-
46	Um elemento que apresenta 5	electrões na co	mad	a de valência o	leve r	ertencer an or	uno.		
TU	A. VI B. V			VII	acve j	D. III	_	E. II	
	, _,		٠.						

47	Dadas as configurações electrónicas dos seguintes átomos no seu estado fundamental: I. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ II. 1s ² 2s ² 2p ⁶ 3s ² III. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ IV. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ .
	I. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ II. 1s ² 2s ² 2p ⁶ 3s ² III. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ IV. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ . É ERRADO afirmar que:
	A. O átomo III tem a maior afinidade electrónica
	B. O ganho de um electrão pelo átomo IV ocorre com a libertação de energia
	C. O átomo IV é um halogênio
	D. O átomo I tem o maior potencial de ionização
	E. A perda de 2 electrões pelo átomo II leva a formação do catião Mg ²⁺
48	Para tratamento de um paciente com uma patologia denominada "úlcera péptica duodenal", o médico prescreveu um
	medicamento que contém um hidróxido metálico, classificado como uma base fraca. Esse metal pertence, de acordo com
	a tabela periódica, ao seguinte grupo:
	A. Zero B. VIIA C. IIIA D. VIA E. IA
49	Dadas as substâncias: cloreto de sódio, óxido de potássio, ácido nítrico e hidróxido de cálcio, as fórmulas que as
	representam são, respectivamente:
	A. NaC l ; K ₂ O ₂ ; HNO ₂ ; Ca(OH) ₂ B. K ₂ O; Ca(OH) ₂ ; NaC l ; HNO ₃ C. Ca(OH) ₂ ; HNO ₂ ; K ₂ O ₂ e NaC l
	D. NaC ℓ ; K ₂ O; HNO ₃ ; Ca(OH) ₂ E. Ca(OH) ₂ ; HNO ₃ ; K ₂ O e NaC ℓ
50	A ligação química existente entre os átomos de iodo e de hidrogénio na molécula de HI é predominantemente:
	A. Dativa B. Metálica C. van der Waals D. Covalente E. Iónica
51	O ácido sulfúrico concentrado (H ₂ SO ₄) tem a densidade de 1.84 g/cm ³ e é 98.0% por peso de ácido. Qual é a molaridade
31	do ácido? (massas atómicas, em g/mole: $H - 1.01$; $S - 32.07$; $O - 16.00$)
5 2	
52	Aquece-se 800 ml de solução 0,02 mol/l de fosfato de sódio até que o volume da solução seja reduzido até 600 ml . A concentração molar da solução final é:
	A. $1,5 \times 10^{-3} \text{mole}/\ell$ B. $5,0 \times 10^{-3} \text{mole}/\ell$ C. $2,0 \times 10^{-3} \text{mole}/\ell$
F 2	D. $1.0 \times 10^{-2} \text{mole}/\ell$ E. $8.0 \times 10^{-2} \text{mole}/\ell$
53	Os soldados aquecem suas refeições prontas, contidas dentro de uma bolsa plástica com água, a qual possui no seu
	interiror o metal magnésio, que se combina com a água e forma o hidróxido de magnésio, conforme a equação: Mg(s) +
	$2H_2O_{(1)} \rightarrow Mg(OH)_{2(s)} + H_{2(g)}$. Sabendo que a $\Delta H^{\circ}_{f}H_2O_{(1)} = -285.8 \text{ kj/mole e a } \Delta H^{\circ}_{f}Mg(OH)_{2(s)} = -924.5 \text{ kj/mole, qual}$
	é a variação de entalpia dessa reacção, em kj/mole?
54	A. +352,9 B1.496,1 C. +1.496,1 D352,9 E638,7
34	Considere a reacção A ≒ B. Sabendo-se que as energias de activação para as reacções de formação e de decomposição de
	B, representadas nos sentidos (→) e (←) na equação acima, são 25,0 e 30,0 kj/mole, respectivamente. A variação de
	energia para a reacção directa, em kj/mole, será: A. -2.5 B. +2,0 C. +5,0 D. -5.0 E. +3,0
55	A2,5 B. +2,0 C. +5,0 D5,0 E. +3,0 Na reacção de formação da água a partir dos gases H ₂ e O ₂ , registou-se que a velocidade de consumo de oxigénio foi de 4
55	mole/min. Qual é a velocidade de consumo de hidrogénio, em mole/min?
	A. 6 B. 3 C. 8 D. 2 E. 4
56	Qual das seguintes reacções de adição de hidrogénio ao etino é correcta?
00	A. $C_2H_2 + 2H_2 \rightarrow C_2H_4$ B. $C_2H_2 + 2H_2 \rightarrow C_2H_8$ C. $C_2H_2 + 2H_2 \rightarrow C_2H_{18}$
57	D. $C_2H_2 + 2H_2 \rightarrow C_2H_2$ E. $C_2H_2 + 2H_2 \rightarrow C_2H_6$ Quais são os produtos da reacção de combustão completa de um alcano?
	A. Monóxido de carbono e peróxido de hidrogénio B. Monóxido de carbono e água
	C. Dióxido de carbono e peróxido de hidrogénio D. Dióxido de carbono e água
	E. Monóxido de carbono e dióxido de carbono
58	Considere as constantes de ionização dos ácidos I, II e III: $K_I = 7.0 \times 10^{-5}$ $K_{II} = 1.0 \times 10^{-7}$ $K_{III} = 2.0 \times 10^{-9}$. Colocando-os em
	ordem crescente de acidez, tem-se:
	A. III, I e II
	D . I, III e II E. II, III e I
59	A 500°C, a constante de equilíbrio, K _c , para a reacção de fixação do nitrogénio para a produção de amoníaco, 3H _{2 (g)} + N ₂
	(g) ≒ 2NH _{3(g)} , tem um valor de 6,0×10 ⁻² 1 ² /mole ² . Se num reactor particular a esta temperatura há 0,250 mole/1 de H ₂ e
	0,0500 mole/1 de NH ₃ presentes no equilíbrio, qual é a concentração de N ₂ ?
	A. $0.10 \text{ mole}/\ell$ B. $3.33 \text{ mole}/\ell$ C. $2.67 \text{ mole}/\ell$ D. $0.17 \text{ mole}/\ell$ E. $0.06 \text{ mole}/\ell$
	, , , , , , , , , , , , , , , , , , , ,