Решение систем линейных уравнений

М.Д. Малых, РУДН

22 сентября 2022 г.

Содержание

1.	Решение системы линейных уравнений	1
2.	Случай, когда ранг равен числу неизвестных	2
3.	Случай, когда ранг меньше числа неизвестных	9
4.	Теорема о существовании поля частных	12
	4.1. Отношение эквивалентности	12
	4.2. Построение поля частных	13
5 .	Линейные системы уравнений над полиномиальными коль-	
	цами	15
6.	Задания	18
1.	Решение системы линейных уравнений	
За	дача 1. Дана система линейных уравнений над целостным кольцом	A.
Тр	ебуется найти решение это системы в кольце B , содержащем кольцо	A.
	Задача решается в два этапа:	
1) приведение системы к треугольному виду,	

2) решение треугольной системы.

На первом этапе наша функция triangulation может вернуть не только систему линейных уравнений (левые части которых — многочлены степени 1), но и уравнение вида 1=0. В этом случае исходная система не имеет решений, какое бы мы не брали расширение B исходного кольца A. В противном случае мы получим r уравнений, число которых, вообще говоря, может отличаться от числа неизвестных.

Определение 1. Число уравнений треугольной системы называется ее рангом (rank). Под рангом произвольной системы линейных уравнений понимают ранг эквивалентной ей треугольной системы.

2. Случай, когда ранг равен числу неизвестных

Обычно на первом этапе получается система наибольшего ранга, то есть число уравнений в треугольной системе совпадает с числом неизвестных. В этом случае старшие мономы линейных многочленов из треугольной системы

$$T=(f_1,\ldots,f_n)$$

должны быть все различны, а всего линейных мономов имеется n, поэтому

$$lm(f_i) = x_i.$$

Это означает, что уравнения треугольной системы устроены следующим образом:

$$\begin{cases} a_1 x_1 + \dots = 0 \\ a_2 x_2 + \dots = 0 \\ \dots \\ a_n x_n + b_n = 0 \end{cases}$$

В поле частных кольца A последнее уравнение однозначно определяет x_n :

$$x_n = -\frac{b_n}{a_n}.$$

После подстановки этого значения вместо x_n предпоследнее уравнение определяет x_{n-1} и т.д.

Теорема 1. Пусть A — целостное кольцо. Треугольная система n линейных уравнений из $A[x_1, \ldots, x_n]$ имеет и притом единственное решение в поле частных кольца A.

Algorithm 1 Решение треугольной системы наибольшего ранга

```
def tsolve(T):
    T.reverse()
    D={}
    while T!=[]:
        g=T[0]
        D[g.lm()] = -(g-g.lt())/g.lc()
        T=[t.subs(D) for t in T[1:]]
    return D
```

Описанный примем можно реализовать в Sage. Для этого следует заметить, что все формулы для вычисления x_i можно записать при помощи вычислений стерших членов, мономов и коэффициентов. В самом деле, пусть наша треугольная система задана уравнениям

$$g_1=0,\ldots,g_n=0.$$

По условию

$$g_n = a_n x_n + b_n,$$

поэтому

$$x_n = -\frac{g_n - \operatorname{lt}(g_n)}{\operatorname{lc}(g_n)}$$

Выбросим последнее уравнение из системы, и подставим это значение в оставившие многочлены. Тогда

$$g_{n-1} = a_{n-1}x_{n-1} + b_{n-1}.$$

Поэтому

$$x_{n-1} = -\frac{g_{n-1} - \operatorname{lt}(g_{n-1})}{\operatorname{lc}(g_{n-1})}$$

и т.д. Сказанное не трудно реализовать в виде функции в Sage (см. алгоритм 1).

Напр.,

```
sage: var('x,y,z')
                                                           1
(x, y, z)
                                                           2
sage: K=QQ[x,y,z]
                                                           3
sage: S = [x+2*y+z-3, x+y, 8*x+2*y+1]
                                                           4
sage: T=triangulation([K(s) for s in S])
                                                           5
sage: D=tsolve(T)
                                                           6
sage: D
                                                           7
\{z: 17/6, y: 1/6, x: -1/6\}
                                                            8
```

Проверка:

Теорема 1 позволяет отыскать решение системы в поле частных F исходного кольца, причем такое решение имеется только одно. Если кольцо A вложено в некоторое кольцо B, содержащее поле частных кольца A, то поиск решений в кольце B новых корней не даст. В самом деле, мы мы последовательно определяем неизвестные из уравнений вида

$$ax_i = b, \quad a, b \in A,$$

поэтому они заведомо принадлежат полю частных кольца A.

Теорема 2. Если ранг системы линейных уравнений над целостным кольцом A совпадает с числом неизвестных, и все ее решения из кольца B, содержащего поле частных F кольца A, принадлежит F^n .

В частности, система линейных уравнений максимального ранга с целыми коэффициентами имеет и притом единственное решение, которое всегда принадлежит полю рациональных чисел.

Пример 1. Создадим список из 10 линейных уравнений со случайными целыми коэффициентами:

```
sage: x=var(['x'+str(n) for n in range(10)])
                                                      11
sage: K=QQ[x]
                                                       12
sage: S=[K(sum([ZZ.random_element()*t for t in x]) +
                                                      13
   ZZ.random_element()) for tt
                                 in x]
sage: S
                                                       14
[-2*x0 + 2*x1 + x2 - 6*x3 + x4 - x6 - x7 - 10*x8 +
                                                      15
  2*x9 + 1, -x0 - x1 + x2 - 3*x3 + x4 + 5*x6 - 2*x7
  + x8 + x9 - 12, x0 - x1 - 2*x2 + x3 - 4*x4 - x5 +
  x6 - 24*x7 - x8 + 2*x9 - 1, 4*x0 + x1 - x2 + x3 -
  2*x4 + x8 + x9, 9*x0 + x1 - x2 - 7*x3 - x4 + x7 +
  3*x8 - x9 - 55, -6*x0 + x2 + x3 - 24*x5 - 2*x7 +
  x8 - 7, x0 - x1 - 11*x2 - 136*x3 + x4 + 2*x5 - x6
  +4*x7 + 2*x9, -x0 + 2*x2 - x4 + x5 - x6 - 3*x7 -
  x8 - 1, x0 + x2 + x4 - x5 + x6 + 2*x7 - 4*x8 - 6*
  x9 - 17, 38*x1 - 2*x2 + x3 + 103*x4 + 4*x6 + x7 -
  x8 + 9*x9 - 4
```

Триангуляция дает:

```
sage: triangulation(S)
[-2*x0 + 2*x1 + x2 - 6*x3 + x4 - x6 - x7 - 10*x8 + 17
2*x9 + 1, 38*x1 - 2*x2 + x3 + 103*x4 + 4*x6 + x7 - x8 + 9*x9 - 4, 3*x2 + 4*x3 + 7*x4 + 2*x5 - x6 + 49*x7 + 12*x8 - 6*x9 + 1, 750*x3 - 156*x4 - 54*x5 + 30*x6 - 1050*x7 - 222*x8 + 108*x9 - 24, -838152*x4 + 50832*x5 - 1002240*x6 + 1463400*x7 - 723024*x8 - 227664*x9 + 2198592, -419537556000*x5 + 3056410908000*x6 - 10630088460000*x7 - 1602566856000*x8 + 1919607012000*x9 -
```

```
6962559120000, 713931827375981088000000*x6 -
400972074067488672000000*x7 +
197655169479332544000000*x8 +
372128723211551040000000*x9 +
1613361578156106912000000,
-218643057922885522141473061495285708800000000000000*
x7 -
6320766287064113275050520951764344832000000000000*
x8 +
874840600392091355946466688525485056000000000000*
x9 -
678293373800766050212558697227915246136785288711490937851
x8 +
191047236155616196600359688150488703274214902484418841450
x9 +
252681403981229568010680651177806054710076946023896099850
-33154839569362509363388052890995987760318875560718501833
x9 +
147108479086919852553001229650169938526765896254908285022
```

Обратите внимание на гигантские коэффициенты последнего уравнения. Тем не менее, эта система имеет единственное решение:

```
sage: D=tsolve(triangulation(S))
sage: D

{x9: 68817960677/15509972368, x8:
    -11196915013/2908119819, x7:
```

```
-8756501947/46529917104, x6:
-168080561765/46529917104, x5:
-145867687135/46529917104, x4:
1285987017/150582256, x3:
-14654387339/46529917104, x2:
390584032357/46529917104, x1:
-362309855255/15509972368, x0:
141225295009/11632479276}
```

В таком виде ответ трудно обозрим, поэтому его удобно перевести в десятичные дроби:

```
sage: [RR(xi.subs(D)) for xi in x] 21
[12.1406014709499, -23.3598001762088, 22
8.39425592536512, -0.314945485637674,
8.54009662997744, -3.13492256624846,
-3.61231165293761, -0.188190791903372,
-3.85022478779785, 4.43701375116467]
```

Проверка:

При рассмотрении систем с большим числом неизвестных часто возникает желание работать в поле \mathbb{R} . Однако метод Гаусса и в особенности описанная реализация накапливает ошибку округления.

Пример 2. Рассмотрим систему из прошлого примера над \mathbb{R} :

sage:
$$S2=[RR[x](f) \text{ for } f \text{ in } S]$$

Триангуляция дает:

```
28
 6.0000000000000000 \times x3 + x4 - x6 - x7 -
 10.00000000000000 * x8 + 2.0000000000000 * x9 +
 1.000000000000000, 38.0000000000000*x1 -
 2.0000000000000000 * x5 - x6 + 49.000000000000 * x7 +
 12.00000000000000*x8 - 6.0000000000000*x9 +
 1.000000000000000, 750.000000000000*x3 -
 156.0000000000000*x4 - 54.000000000000*x5 +
 30.00000000000000*x6 - 1050.0000000000*x7 -
 222.0000000000000*x8 + 108.00000000000*x9 -
 24.00000000000000, -838152.000000000*x4 +
 50832.00000000000 * x5 - 1.00224000000000e6 * x6 +
 1.46340000000000006*x7 - 723024.000000000*x8 -
 227664.000000000*x9 + 2.19859200000000e6
 -4.19537556000000e11*x5 + 3.05641090800000e12*x6 -
  1.06300884600000e13*x7 - 1.60256685600000e12*x8 +
  1.91960701200000e12*x9 - 6.96255912000000e12,
 7.13931827375982e23*x6 - 4.00972074067489e23*x7 +
 1.97655169479333e23*x8 + 3.72128723211551e23*x9 +
 1.61336157815611e24, -2.18643057922886e49*x7 -
 6.32076628706412e48*x8 + 8.74840600392094e47*x9 -
 3.23327118318164e49, 6.78293373800767e96*x8 +
 1.91047236155614e95*x9 + 2.52681403981230e97
 -3.31548395693626e193*x9 + 1.47108479086920e194
```

Огромные коэффициенты ведут к ответу, который не всегда совпадает с найденным выше точным:

```
sage: D2=tsolve(T2)

sage: D2

{x9: 4.43701375116466, x8: -3.85022478779785, x7: 31
    -0.188190791903372, x6: -3.61231165293760, x5:
    -3.13492256624846, x4: 8.54009662997743, x3:
    -0.314945485637674, x2: 8.39425592536511, x1:
    -23.3598001762088, x0: 12.1406014709499}
```

Подстановка найденного корня в исходную систему тоже не проясняет ситуацию:

```
sage: [RR[x](f).subs(D) for f in S]
[1.24344978758018e-14, 0, -3.55271367880050e-15,
    -6.21724893790088e-15, 7.10542735760100e-15,
    1.77635683940025e-15, -1.77635683940025e-15,
    -8.88178419700125e-16, 0, -5.68434188608080e-14]
sage: [RR[x](f).subs(D2) for f in S]
[-1.42108547152020e-14, -3.55271367880050e-15,
    1.42108547152020e-14, -7.10542735760100e-15,
    -8.52651282912120e-14, 6.03961325396085e-14,
    7.28306304154103e-14, -1.64313007644523e-14,
    -2.13162820728030e-14, 4.97379915032070e-14]
```

3. Случай, когда ранг меньше числа неизвестных

Если триангуляция приводит к системе $T = (t_1, \ldots, t_r)$, ранг которой меньше n, то те неизвестные, которые не входят в $(\operatorname{lm}(t_1), \ldots \operatorname{lm}(t_r))$, можно доопределить произвольным образом. Если поле частных — бесконечное, то система имеет бесконечно много значений.

Избавится от этой неопределенности можно, добавив к системе еще n-r линейных уравнений. Напр., мы можем добавить уравнения вида

 $x_i - a_i = 0$, где x_i — неизвестные, которые не входят в $(\text{lm}(f_1), \dots \text{lm}(f_r))$, и получить диагональную систему наибольшего ранга, которая имеет единственное решение.

Пример 3. Рассмотрим систему:

Триангуляция дает только два уравнения:

Старшими мономами будут

Поэтому x_3 и x_4 мы можем брать любыми. Напр.,

sage: tsolve(
$$T+[K(x2-1),K(x3-2)]$$
)

{x3: 2, x2: 1, x1: 5/4, x0: -1/2}

Следует заметить, что переменным x_3 и x_4 в этом примере можно придать нерациональные значения. Поэтому система линейных уравнений с целыми коэффициентами может иметь нерациональные решения, наряду

с бесконечным числом рациональных решений (ср. с теоремой 2).

Можно добавлять и уравнения более сложного вида, лишь бы при приведении новой системы к треугольному виду получалась система наибольшего ранга. Так получится, если добавлять уравнения, коэффициенты которых не удовлетворяют особым условиям, приводящим к нулевой, а не первого степени при применении метода Гаусса. Такие уравнения получаются, напр., если брать коэффициенты случайным образом.

Определение 2. Наименьшее число линейных уравнений, которое необходимо добавить к системе линейных уравнений над A с тем, чтобы она имела единственное решение в поле частных кольца A, называют размерностью множества решений этой системы.

Теорема 3. Пусть A — целостное кольцо. Размерность множества решений системы линейных уравнений из $A[x_1, \ldots, x_n]$ ранга r равна n-r.

Из самого определения размерности ясно, что она не зависит от способа приведения системы к треугольному виду.

Как это часто бывает в python, наша функция tsolve работает и в том случае, когда число уравнений меньше числа неизвестных.

Пример 4. Для системы из прошлого примера мы имеем:

$$\{x1: 3/4*x2 + 1/2, x0: 3/2*x2 - x3\}$$

Иными словами,

$$x_0 = \frac{3}{2}x_2 - x_3, \quad x_1 = \frac{3}{4}x_2 + \frac{1}{2} \quad \forall x_2, x_3 \in \mathbb{Q}.$$

Такую форму описания множества решений системы называют общим решением. Подставляя сюда какие угодно частные значения x_2, x_3 , мы получим частное решение системы.

За множеством решений системы алгебраических уравнений закрепилось название многообразие, за множеством решений линейной системы —

линейное многообразие. Многообразие размерности 1 называют линией, размерности 2— поверхностью, линейные многообразия размерности 1 называют прямой линией, размерности 2— плоскостью.

4. Теорема о существовании поля частных

В этом разделе мы покажем, что любое целостное кольцо можно вложить в поле частных. Поэтому выше в формулировках теорем мы не оговаривали существование поля частных у рассматриваемого кольца.

4.1. Отношение эквивалентности

Определение 3. Отношение эквивалентности (\sim) на множестве M- это бинарное отношение, для которого при любых $a,b,c\in M$ выполнены следующие условия:

- 1) рефлексивность: $a \sim a$;
- 2) симметричность: если $a \sim b$, то $b \sim a$;
- 3) транзитивность: если $a \sim b$ и $b \sim c$, то $a \sim c$.

Запись вида « $a \sim b$ » читается как «a эквивалентно b».

Определение 4. Классом эквивалентности [a] элемента $a \in X$ называется подмножество элементов, эквивалентных a; то есть,

$$[a] = \{ x \in X \mid x \sim a \}.$$

Если $b \in [a]$, то [b] = [a]. Два класса эквивалентности или совпадают, или не имеют общих элементов.

Определение 5. Любой элемент класса [a] называется представителем этого класса.

Для задания класса достаточно указать одного его представителя.

Определение 6. Классом эквивалентности [a] элемента $a \in X$ называется подмножество элементов, эквивалентных a; то есть,

$$[a] = \{ x \in X \mid x \sim a \}.$$

Определение 7. Фактормножество — множество всех классов эквивалентности заданного множества X по заданному отношению \sim , обозначается X/\sim .

4.2. Построение поля частных

Поле частных целостного кольца A, если оно существует, прежде всего является множеством. Чтобы построить поле, в котором решаются любые линейные уравнения

$$ax = b$$
, $a, b \in A$, $a \neq 0$,

достаточно рассмотреть множество, элементами которого являются такие уравнения.

Поскольку каждое уравнение задается парой элементов из кольца A, рассмотрим множество A^2 всех упорядоченных пар элементов этого кольца. Пару будем обозначать как (b,a). Тонкость в том, что два различных элемента A^2 могут соответствовать двум уравнениям, которые имеют одинаковые корни.

Теорема 4. Два линейных уравнения

$$ax = b$$
 и $a'x = b'$, $(a, a' \neq 0)$

над полем F имеют один тот же корень тогда и только тогда, когда

$$ab' = a'b$$
.

От множества A^2 нам нужно перейти к другому множеству, в котором бы уравнениям с общим корням отвечал один элемент. С этой целью введем отношение эквивалентности так: пара (n,m) эквивалентна (n',m'), если

$$nm' = n'm$$
.

Покажем, что это действительно эквивалентность:

- 1) рефлексивность: $(n,m) \sim (n,m)$, поскольку nm = nm
- 2) симметричность: если $(n,m) \sim (n',m')$, то $(n',m') \sim (n,m)$, поскольку из nm' = n'm следует n'm = nm';
- 3) транзитивность: если $(n,m) \sim (n',m')$ и $(n',m') \sim (n'',m'')$, то $(n,m) \sim (n'',m'')$, поскольку из nm'=n'm и n'm''=n''m' следует

$$n' \cdot nm'' = n \cdot n'm'' = nn''m' = n'' \cdot nm' = n'' \cdot n'm = n' \cdot n''m$$

то есть

$$n'(nm'' - n''m) = 0,$$

откуда, в силу отсутствия делителей нуля,

$$nm'' = n''m$$
.

Класс эквивалентности [(n,m)] будем кратко обозначать как (n:m). В таком случае уравнениям ax = b, имеющим общий корень, соответствует один элемент (b:a) фактормножества \mathbb{A}^2/\sim . Только нужно заметить, что элементу (n:0) соответствующие уравнение 0x = n, которое не имеет решения. Удалив из фактормножества \mathbb{A}^2/\sim два элемента (1:0) и (0:0), получим некоторое новое множество, которое мы обозначим как F.

Теорема 5. Пусть уравнение ax = b над полем F имеет корень c, а a'x = b' — корень c'. Тогда c + c' является корнем уравнения

$$aa'x = a'b + ab',$$

а cc' — корнем уравнения

$$aa'x = bb'$$
.

Введем на нем арифметические операции:

1)
$$(b:a) + (b':a') = (ab' + a'b:aa'),$$

2)
$$(b:a) \cdot (b':a') = (bb':aa')$$
.

Тогда F является полем, поскольку выполнены все аксиомы определения кольца и поля. Более того, (0:1) является нулем, а (1:1)—единицей. Противоположным к (b:a) будем (-b:a), а обратным к $(b:a) \neq (1:0)$ — элемент (a:b). Это поле содержит A, если отождествить элемент $a \in A$ с классом (a:1).

Всякий элемент (b:a) поля F является корнем уравнения

$$(a:1)x = (b:1)$$

или просто ax = b, это поле является полем частных кольца A.

Теорема 6. Для любого целостного кольца существует поле частных.

5. Линейные системы уравнений над полиномиальными кольцами

До сего момента мы рассматривали системы линейных уравнений над кольцом \mathbb{Z} , однако часто требуется решить систему линейных уравнений, коэффициенты которых зависят от некоторых параметров. Напр., мы можем систему уравнений

$$x + ty = 1, \quad tx + y = t^2$$
 (1)

относительно неизвестных x,y, полагая, что ее коэффициенты принадлежат кольцу многочленов Z[t]. Ее решение мы, конечно, ищем в поле частных этого кольца. Чтобы применять развитую выше теорию, нужно доказать, что полиномиальные кольца — целостные.

Теорема 7. Если кольцо A — целостное, то для любых многочленов $p,q\in A[x_1,\ldots,x_n]$ верно

$$\operatorname{lt}(p)\operatorname{lt}(q) = \operatorname{lt}(pq).$$

Доказательство. При умножении p на q, взятых в нормальной форме, мы получим сумму произведений входящих в них членов. Пусть m и m'—

старшие мономы в р и q. При умножении рq получается член

$$lc(p) lc(q)mm'$$
,

который не может быть равен нулю, поскольку кольцо — целостное и, следовательно, lc(p) lc(q) не может быть равно нулю. Не может этот член сократиться с другими. В самом деле, пусть n и n' — любые другие в p и q. Тогда

$$m > n$$
, $m' > n'$

и поэтому в силу определения мономиального порядка

$$mm' > nm' > nn'$$
.

Это означает, что при умножении ра получается член

старше члена при nn' и не может с ним сократиться. Более того, он старше любого другого члена в pq.

Теорема 8. Если кольцо A — целостное, то кольцо $A[x_1, \ldots, x_n]$ тоже является целостным.

Доказательство. Если бы кольцо $A[x_1,\dots,x_n]$ имело делители нуля, то имелись бы $p,q\neq 0$ такие, что

$$pq = 0$$

и в то же время

$$lt(p) lt(q) \neq 0,$$

что невозможно.

Эта теорема позволяет утверждать, что всякую линейную систему над кольцом $\mathbb{Z}[t_1, \dots t_m]$ можно привести к треугольному виду и, в случае, если ранг совпадает с числом неизвестных, отыскать решение в поле частных этого кольца, то есть представить неизвестные как рациональные функции параметров $t_1, \dots t_m$.

Пример 5. Обратимся к системе (1).

Рассмотрим ее как систему уравнений над $\mathbb{Z}[t]$ и приведем к треугольному виду:

Чтобы решить эту систему в рациональных функциях, нужно перейти от кольца $\mathbb{Z}[t]$ к его полу частных:

На практике решение в рациональных функциях параметров t_1, \ldots, t_m используется как «формула», при подстановке в которую значений параметров из полей $\mathbb Q$ или $\mathbb R$ получается решение системы в этих полях. Это обстоятельство кажется очевидным и легко выводится из того, что подстановку и арифметические действия можно менять местами. Однако следует иметь ввиду два обстоятельства.

1. Таким путем получается одно из решений, хотя их может быть бесконечно много. Напр., система (1) при t=1 имеет вид

$$x + y = 1, \quad x + y = 1$$

и поэтому имеет бесконечно много решений в Q. Однако формула, найден-

ная в примере 5, дает лишь одно из них

$$x = 3/2, \quad y = -1/2.$$

2. При подстановке знаменатель рациональных функции может обратиться в нуль и тогда никакого решения «формула» не дает. Так будет, напр., для формулы, найденной для решения системы (1), при t=-1.

6. Задания

Теоретические задания.

- 1) Дайте определения ранга системы линейных уравнений.
- 2) Дайте определение размерности множества решений системы линейных уравнений.
- 3) Что такое многообразие? Линия? Поверхность?
- 4) Опишите алгоритм решения системы линейных уравнений.

Практические задания.

1) Дана система уравнений

$$x - 5y + z = 3$$
, $3x - 2y + 2z = 1$, $2y + 2z = -3$

Найдите ее решение в поле Q.

2) Проверьте, что решение системы

$$x - 5y + z = 3$$
, $3x - 2y + 2z = 1$, $2y + 2z = -3$

не зависит от выбора мономиального порядка на $\mathbb{Z}[x,y,z]$?

3) Определите ранг системы

a)
$$x - 5y + z = 3$$
, $3x - 2y + 2z = 1$, $8y + 2z = -3$

6)
$$x - 5y + z = 3$$
, $3x - 2y + 2z = 1$, $-7x - 4y - 4z = 3$

B)
$$x - 5y + z = 3$$
, $3x - 2y + 2z = 1$, $-7x - 4y - 4z = 4$

$$\Gamma$$
) $x - 5y + z = 3$, $3x - 2y + 2z = 1$

из $\mathbb{Z}[x,y,z]$. Укажите, в каком случае система имеет бесконечно много решений в \mathbb{Q} .

- 4) Создайте систему линейных 15 уравнений с 15 неизвестными и случайными целыми коэффициентами. Найдите ее решение в поле Q и в реализации поле R. Сравните ответы.
- 5) Укажите какое-нибудь решение системы

$$x + y + z = 1$$
, $x - y + z = 2$, $2x + 2z = 3$

- а.) в поле \mathbb{Q} , b.) в поле \mathbb{R} , но не рациональное.
- 6) Сколько уравнений нужно добавить к системе

$$x + y + z + u = 1$$
, $x - y + z + 2u = 2$, $2x + 2z + 3u = 3$

из $\mathbb{Z}[x,y,z,u]$ для того, чтобы она имела единственное решение?

7) В трехмерном пространстве xyz опишите множество точек пересечения плоскостей

a.)
$$x + y + z = 1$$
, $x - y + 2z = 2$, $2x + 3z = 3$,

b.)
$$x + y + z = 1$$
, $x - y + 2z = 2$, $2x + 3z = 4$.

8) Найдите решение системы

$$x + ty + z = 1, tx + y - z = t^{2}, x + y + z = t$$

в поле частных кольца $\mathbb{Z}[t]$. Найдите, какое решение получается из этой формулы при подстановке t=1. Сколько решений эта система имеет при t=1 в поле \mathbb{Q} ?