1 Exercies 3.B

Problem 7: Let V have dimension 2, and W have some dimension greater than or equal to 2. Let T be a non-injective non-zero linear map $T:V\to W$. We know that null T is a subspace of V. Also, null $T\neq\{0\}$ since it is not injective, thus dim null T>0. Since, we restricted V to have dimension 2 and null T is nonzero it must have exactly dimension 1. There exists a subspace U of V such that $V=\text{null }T\oplus U$. Therefore, dim U=1. Let S be another non-zero non-injective linear map $S:V\to W$ such that null S=U. Now we have the case that for $v\in V$,

$$(S+T)(v) = Sv + Tv$$

But for any non-zero $v \in V$ it is either in null S or null T but not both. So, the null $(S+T)=\{0\}$, which means that S+T is injective. Therefore, it is not a subspace of $\mathcal{L}(U,V)$ since it is not closed under addition.

Problem 15: Assume for contradiction that T is a valid linear map. Given that T is a map $T: \mathbb{R}^5 \to \mathbb{R}^2$, we must have that rank T=2 and nullity T=3. By

$$\dim \mathbb{R}^5 = 5 = \operatorname{rank} + \operatorname{nullity} = 2 + 3$$

We then observe that the null space defined as follows has dimension 2.

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$$

We claim that the vectors (3,1,0,0,0),(0,0,1,1,1) span the null space. Observe for some arbitrary coefficients $a,b \in \mathbb{F}$ the linear combination of the vectors a(3,1,0,0,0)+b(0,0,1,1,1)=(3a,a,b,b,b). This holds the required property that $3x_2=x_1$ and that $x_3=x_4=x_5$. Thus, it spans our null space and we have a contradiction, since we found a spanning list that has length less than a linearly independent list.

Problem 19: We know that for a linear map $T \in \mathcal{L}(V, W)$ the dimension of the range is less than or equal to the codomain. That is,

$$\operatorname{rank} T \leq \dim W$$

Suppose, this was not the case then we could find a $v \in V$ such that $Tv \notin W$ and that is not a linear map. Then, we also have that dim null $T = \dim U$. It then follows directly that

$$\dim V = \operatorname{rank} T + \dim \operatorname{null} T = \operatorname{rank} T + \dim U$$

$$\dim V - \operatorname{rank} T = \dim U$$

Therefore, from our first inequality

$$\dim U \ge \dim V - \dim W$$

Problem 26:

2 Exercises 3.C

Problem 2: For $\mathcal{P}_3(\mathbb{R})$ let the basis be the following basis $1, x, x^2, x^3$ in this order. And for $\mathcal{P}_2(\mathbb{R})$ let the basis be $3x^2, 2x, 1$ for this order. $1, x, x^2, x^3$ is clearly a basis since it is just the standard basis reorganized, more formally the linear

combination will still only be zero for all zero coefficients, since addition is commutative in \mathbb{R} . For $3x^2, 2x, 1$ any linear combination is only zero when all the coefficients are zero since each term has a different degree.

Problem 3: We want a matrix that basically has 1s in the diagonal up to the rank T and 0s everywhere else. So, we begin with the null T. We know that null T is a subspace of V. So let $t_1, ..., t_m$ be a basis for null T. Then, since $t_1, ..., t_m$ is a linearly independent list and is less than or equal to the length of the basis of V we can extend it to form a basis of V. Note that nullity T = m Let $v_1, ..., v_n$ be the additional vectors we add to extend our list to be a basis of V. Note that rank T = n. So, $t_1, ..., t_m, v_1, ..., v_n$ is a basis of V. Because we collected all the vectors that are equal to zero we know that $Tv_i = w_i$ for some $w_i \in W$ for $i \in \{1, ..., n\}$. Now we can show these $w_1, ..., w_n$ are linearly independent. We begin with $a_1w_1+...+a_nw_n=0$ for some coefficients a_i . We can substitute the Tv_i to get $a_1Tv_1 + ... + a_nTv_n = 0$. Collecting the terms we have $T(a_1v_1 + ... + a_nv_n) = 0$. We know that $v_1, ..., v_n$ are linearly independent since it is formed by dropping vectors from the basis of V. Then, $a_1v_1 + ... + a_nv_n = 0$ only when all the coefficients are zero. So, we know all the a_i are zero, thus $w_1, ..., w_n$ is linearly independent. Then we can finally extend $w_1, ..., w_n$ to form a basis for W. Now we basically our done since we have shown that we have a basis for which $Tv_i = w_i$ for $i \in \{1, ..., \text{rank } T\}$. So, we can make our desired matrix since everything else is supposed to be zero because it is in the null space.

Problem 4: In a very roundabout way this question is asking if there is a vector v in every basis of V such that for every $T \in \mathcal{L}(V,W)$ it is that Tv = w for some w in the basis of W. The stright forward case is if for some v in the basis of V if Tv = 0 then put that v at the start of the basis list, so that the column can be all zeros and satisfy the condition. The second also straight forward case if if for some v in the basis of V we happen to have a basis for W such that Tv = w for w in the basis, then we are done as well, by moving both v and w to start of their respective basis lists. The last case is we can always construct a basis such that the condition is met, by just adding Tv = w to the basis of W and then removing all the vectors that are multiples of w. Then we will be left with a linearly independent list that we can always extend to form a basis of W.