

第1章 各種基板の素材、用途、製造工程 を知ろう!

プリント基板の種類と特徴

漆谷 正義 Masayoshi Urushidani

プリント基板は、PCB (Printed Circuit Board) (注1) とも呼ばれ、電子部品を固定し、相互の配線を行うという重要な役割を果たします.

小は携帯電話から大はプラズマ・テレビに至る電子 機器,洗濯機や冷蔵庫などの白物家電,自動車や船舶・航空機などの電装品,工場のFA設備…と,電子 回路と名の付くものでプリント基板が使われない場面 はほとんど皆無と言ってよいでしょう.

プリント基板の種類と用途

図1は、過去5年間の国内におけるプリント基板の 生産量の推移です。片面基板は海外生産への移行によ り減少の一途をたどり、代わりに両面基板が増加して います。

また、モジュール基板が伸びていますが、これは BGA (p.117 参照) など、IC パッケージへの需要が伸び ているためと思われます。生産量では、両面基板とフレキシブル基板が群を抜いており、4 層基板がこれに 次いでいます。全体として基板の多層化が大きな流れとなっています。

プリント基板を使うメリットは?

電子部品をねじ止めしてワイヤを使って配線するという方法は、プリント基板の実用化以前はごく当たり前のことでした.しかし、その工数は回路が複雑になるほど涂方もなく増加します.

注1: JIS(p.115参照)の定義では、プリント基板単体をプリント 配線板(printed wiring board: PWB)、これに部品が載ったも のをプリント回路板(PCB)と区別している。設計の現場では両 者を混用することが多いので、ここではまとめてPCBと表記す る。 そこで、配線を印刷によって実現する方法が考え出されました。この方法は、ICやトランジスタなどの半導体製造と同じ考え方です。

プリント基板を使うメリットは,次のようなものが あげられます.

- (1) 自動挿入機やリフロー (p.119 参照) による電子 回路製造の自動化 (コスト・ダウン)
- (2) 部品保持性に優れ、品質が均一なことによる信頼性の向上
- (3) 高密度配線による機器の小型・軽量化
- (4) 基板のユニット化によるサービス性の向上

● プリント基板の種類と用途

プリント基板の種類を大別すると,

- (1) 紙フェノール
- (2) ガラス・エポキシ

に分けることができます. 紙フェノール基板(写真1)

図1 プリント配線板生産量の過去5年間の推移(経済産業省統計より計算)

両面基板とフレキシブル基板が群を抜いている

Keywords

プリント基板, PCB, PWB, プリント配線板, プリント回路板, 紙フェノール, ガラス・エポキシ, XPC, FR-3, FR-4, CEM-3, 誘電正接, フレキシブル・プリント配線板, オンス, 多層基板, ビルドアップ基板, 加算法, 減算法, エッチング, 定尺

特集*体験!プリント基板の設計と製作

写真1 紙フェノール基板(XPC)の外観

は、紙基材を油脂を含んだフェノール樹脂で固めて作られています。電気的特性や耐熱性ではガラス・エポキシに劣りますが、価格が安いため民生用に多用されており、海外を含めた生産量は最大です。

ガラス・エポキシ(通称ガラエポ)基板(**写真2**)は、グラス・ファイバで織った布をエポキシ樹脂で固めて、強度と絶縁性、難燃性をもたせたもので、高周波や高信頼性が求められる回路に使われます.

プリント基板の材料はこのほかにもいろいろあります。紙とガラス基材を混合したコンポジット基板,プラステック・フィルムを基材として折り曲げが可能な(可撓性があると言う)フレキシブル基板などがありま

写真2 ガラス・エポキシ(FR-4)基板の外観

す. また、ハイブリッド IC(p.121 参照) や SAW フィルタ (p.125 参照) のようにセラミック基板が使われることもあります.

プリント基板の種類は、多くの場合、難燃性のグレードで示されます.特に、FR-○などのNEMA/ANSI記号が使われます(NEMA: National Electrical Manufacturers Association. ANSI: American National Standards Institute, Inc. FR: Flame Retardant、耐炎性という意味).

紙フェノール基板はXPC、紙エポキシはFR-3、

表1 釒	桐張積層板の種類と	と特性
------	-----------	-----

種類	NEMA 記号	XPC	FR - 3	CEM - 3	FR - 4
	材質→	紙フェノール	紙エポキシ	ガラス・コンポジット	ガラス・エポキシ
項目	単位↓	私ノエノール	私エハイン	カラス・コンホンット	カラス・エホイン
連続使用温度	$^{\circ}$	120	120	130	130
はんだ耐熱性(260℃)	秒	7以上	58 以上	60 以上	60 以上
体積抵抗率	Ω·cm	6.4×10^{10}	8.7×10^{13}	5×10^{14}	2.6×10^{14}
絶縁抵抗	Ω	3.0×10^{10}	1.5×10^{14}	1 × 10 ¹⁴	1 × 10 ¹⁴
比誘電率(@1MHz)	-	4.64	4.12	4.7	4.73
誘電正接(@1 MHz)	_	0.0673	0.0342	0.02	0.02
吸水率	%	1.11	0.27	0.15	0.15

用語解説─1 アキシャル

円筒状の部品をアキシャル部品と言います. また, そのリード線が, 図Aのように円筒の軸方向に出ている場合,アキシャル・リードと呼ばれます.

抵抗、コンデンサ、インダクタなどアキシャル部品の種類は豊富です.

プリント基板に実装するにはリード線のフォーミングが 必要ですが、実装後の部品高さを低くできる利点がありま す. 反面、基板面積はやや大きくなります.

リード線の出し方には、このほかにラジアル・リードがあります。

図A アキシャル部品の形状