ИЗПИТ

по Математически анализ, специалност "Приложна математика" 7 февруари 2005г., група А

Име:..... Фак.номер:.....

1. Напишете тройния интеграл, даващ обема на множеството

$$K = \{(x, y, z) \in \mathbb{R}^3 : 2 \le x^2 + y^2 \le 3, \frac{1}{4} \le z, z(1 + x^2 + y^2) \le 1\}.$$

Представете получения интеграл като повторен по два начина: с двукратен външен интеграл и с еднократен външен интеграл. Няма нужда да пресмятате интеграла.

2. Разгледайте множеството

$$A = \{(x, y) \in [0, 1] \times [0, 1] : x \in \mathbb{Q}\},\$$

където \mathbb{Q} е множеството на рационалните числа.

- (а) Напишете дефиницията на множество, пренебрежимо по Лебег. Формулирайте основните свойства на тези множества.
- (б) Докажете, че множеството A е пренебрежимо.
- (в) Намерете контура (границата) на A, множеството ∂A . Това множество пренебрежимо ли е? Обосновете отговора си.
- (г) Формулирайте дефиницията на множество, измеримо по Пеано-Жордан. Множеството *А* измеримо ли е по Пеано-Жордан? Използвайте резултата от подточка (в).
- 3. Да разгледаме гладкото векторно поле

$$F(x) = x \cos ||x||,$$

където $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

- (a) Пресметнете $\operatorname{\mathbf{div}} F(x)$ и $\operatorname{\mathbf{rot}} F(x)$.
- (б) Напишете дефиницията на потенциално векторно поле. Формулирайте условия, еквивалентни на условието за потенциалност.
- (в) Формулирайте необходимото условие за потенциалност (в \mathbb{R}^3) и условие върху областта, при което необходимото условие е и достатъчно.
- (г) Използувайте подточки (а) и (в), за да отговорите обосновано на въпроса потенциално ли е полето F.
- 4. Пресметнете повърхнинния интеграл от първи род

$$\int_{S^+} z \mathrm{d}s$$

където $S^+ = \{(x,y,z) \in \mathbb{R}^3: x^2 + y^2 + z^2 = 9, z \geq 0\}$ е горната полусфера с радиус 3. (Упътване: Параметризирайте полусферата, като използувате стандартните сферични координати.) Напишете външната и вътрешната нормали към S^+ . Коя от тях е съгласувана с параметризацията?

5. Формулирайте и докажете формулата на Гаус- Остроградски за област, която е цилиндрично тяло по трите променливи едновременно.