1-D' Balance Eg.		
· mass balance (continuity JO + V. DV = 0 timerate convetive mass of change transfer In density (mass)		
avg over area 15dA		
2 <0> + 2 <pvz> =0</pvz>		not massweighted mean note «V2>> - <pv2>> Ep></pv2>
if p = p is	uniform in A	
3/7 + 3/2 P <v2>=0</v2>		
· energy equation		
$\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \vec{v}) = -\nabla \cdot \frac{\partial \rho_i}{\partial t}$ enthalpy	2 + DP - T:	VV + 2
	pain pisunifo	cm in A
10<1>+ 20<1Vz>=	-) <9z>	axial conduction
timerate energy of change transfer of enthalpy by convection	+ \{k\g''\ A	Ex heated Derimeter g"u= h(Tw-T) → wall heat flux
	+ 0 <p></p>	energy increase due to pressure
	+<2>	heat generation

· momentum equation 200 + V.pVV = -VP - V.2+ Pg avg over area, again p is uniform in A 10<V2> + 2 P<V2V2> = -2<P> pressure - d<tzz> normal shear wall (fpV/V) -4 Zw gravity driver + 1992

1-D Balance Applied to Reactor System integrate over primary system · mass balance -> 0 over system Piviai = prvrar · momentum equation comps. 8 20<Vz>dz = 5 pidVz, li timerate of change of momentum thru ith component δ ∂ρ<√2/≥ dt = 0 convective acceleration 8-XPdz = DPpump. delta pressure & F. PV. IV. Id = = \(\int (F, V. IV. I)\) 8 22 = 0 & pgzidz = [pgl-pgBoTln) = 0 + pabathlh
Th-Tc Epidvil: = Afrimp + E(pgl-pgBATln); - S(fl+k), (Pivi)

100 + V-pVV - - VP - V-2 + PS $\frac{\partial \rho \cdot V_z}{\partial t} + \frac{\partial \rho \cdot V_z V_z}{\partial z} = -\frac{DP}{Dt}$ pressure drop normal shear -9<525 wall shear = = PUN - 42m gravity driver + pag2 integrate over primary system change in Momentum in comp. i & dp Vz dz = Z(p; dvi Li) & dp Vz dz = 0 convective acceleration 8 200 dz = 0 Friction loss due to internal fluid momentum bases

6 + plz/2 dz = - > (fl. The component friction bases) $\delta \rho dz = \Sigma (\rho gl - \rho g\beta \Delta T l_h); = 0 - \rho g\beta \Delta T h l_h$ $\Sigma(\rho, \frac{dV_i}{d+}l_i) = \Delta P - \Sigma(fl+k), PV_i |V_i| + \rho g \beta \Delta T_h l_h$

Dopolet	Heat Transfer
Annular (mist)	BWRCHF
Churn-Turbulent	evaporation
Slug Flow	saturated/bulk boiling
bubbly (saturated boiling) So on bubbly (subcooled boiling)	PWRCHF onset of nucleate boiling
single phase liguid	Single phase convection

Drag Force

drag is resistance opposed by a medium to anything moving through it

Fo = & COAPMVr2

Fo = Drag Force
Go: Drag Coefficient
A = cross-sectional area

perpendicular to flow
pm = density of medium
Vr = velocity to the body
relative to the medium

Drag coefficient expression

Drag 1 FB Buoyancy Force

Force T

V FG Gravity Force

Fo + Fg = FB \(\frac{1}{2} \text{CoAnmir} + \hat{n} \text{bubble} \text{gV} = \hat{nmgV} \)

Co = \(\frac{1}{2} \left(\hat{n} - \hat{n} \text{bubble} \right) \text{gV} \)

\(\hat{n} \text{AV}^2 \)