

US007005415B1

(12) United States Patent

Imamura et al.

(54) HEPARIN-BINDING PROTEINS MODIFIED WITH SUGAR CHAINS, METHOD OF PRODUCING THE SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME

(75) Inventors: Toru Imamura, Tokyo (JP); Masahiro Asada, Ibaraki (JP); Syuichi Oka, Ibaraki (JP); Masashi Suzuki, Ibaraki (JP); Atsuko Yoneda, Ibaraki (JP); Keiko Ota, Ibaraki (JP); Yuko Oda, Ibaraki (JP); Kazuko Miyakawa, Ibaraki (JP); Noriko Orikasa, Ibaraki (JP); Chie Asada, Ibaraki (JP); Tetsuhito Kojima,

Aichi (JP)

(73) Assignee: Director-General Agency of Industrial Science and Technology, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/121,017

(22) Filed: Jul. 22, 1998

(30) Foreign Application Priority Data

Nov. 10, 1997 (JP) 9-307721

(51) Int. Cl.

A61K 38/16 (2006.01) A61K 38/18 (2006.01) C07K 14/435 (2006.01) C07K 14/475 (2006.01) (10) Patent No.:

US 7,005,415 B1

(45) Date of Patent:

Feb. 28, 2006

(52) **U.S. Cl.** **514/8**; 530/395; 530/396; 530/399; 530/402; 530/404; 530/411

(56) References Cited

U.S. PATENT DOCUMENTS

4,280,953	Α		7/1981	Guillemin et al.	
4,478,746				Kim et al.	
5,360,896	A	*	11/1994	Senoo et al	530/399
5,486,599	A	*	1/1996	Saunders et al	530/395 -

FOREIGN PATENT DOCUMENTS

JP	2227075	9/1990
WO	8801647	3/1988
WO	9116335	10/1991

OTHER PUBLICATIONS

Jaye et al., Science, vol. 233, pp. 541-545 (Aug. 1986). Imamura, et al., Science, vol. 249, pp. 1567-1570 (Sep. 1990).

* cited by examiner

Primary Examiner—David Saunders (74) Attorney, Agent, or Firm—Davidson, Davidson & Kappel, LLC

(57) ABSTRACT

A heparin-binding protein functionalized by covalently bonding thereto a sugar chain, a method for producing the protein and a pharmaceutical composition containing the protein as an active ingredient, as well as a method for functionalizing a natural protein having no sugar chain by covalently bonding thereto a sugar chain.

5 Claims, 9 Drawing Sheets

1) Chondroitin sulfate/(GlcA-GalN)n

Dermatan sulfate/(IdoA/GlcA-GalN)n 7

3) Heparan sulfate/(GlcA/IdoA-GlcN)n

$$\frac{\text{COOH}}{\text{OSO}_3} \frac{\text{CH}_2\text{OR}}{\text{HNR}} = -\text{SO}_3 \text{ / -COCH}_3$$

4) Heparin/(IdoA/GlcA-GlcN)n

5) Keratan sulfate/(Gal-GlcN)n

6) Hyaluronic acid/(GlcA-GlcN)n

7) Dextran sulfate/(Glc-Glc)n

FIG. 2

1) High Mannose Type

$$\begin{array}{c} \text{Man}\alpha 1 \longrightarrow 2\text{Man}\alpha 1 \\ & 6\\ \text{Man}\alpha 1 \longrightarrow 2\text{Man}\alpha 1 \end{array} \\ \begin{array}{c} 6\\ 3\\ \text{Man}\beta 1 \longrightarrow 4\text{GlcNAc}\beta 1 \longrightarrow 4\text{GlcNAc}\beta 1 \longrightarrow 4\text{Sn}\\ \text{Man}\alpha 1 \longrightarrow 2\text{Man}\alpha 1 \longrightarrow 2\text{Man}\alpha 1 \end{array}$$

2) Complex Type

$$Sia\alpha 2 \rightarrow 3Gal\beta 1 \rightarrow 4GlcNAc\beta 1 \\ \searrow 6\\ Man\alpha 1 \\ \searrow 6\\ Man\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow Asn$$

$$Sia\alpha 2 \rightarrow 3Gal\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 2Man\alpha 1 \\ \searrow 6\\ Man\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow Asn$$

$$Sia\alpha 2 \rightarrow 3Gal\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 2Man\alpha 1 \\ \searrow 6\\ Man\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow Asn$$

$$Sia\alpha 2 \rightarrow 3Gal\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 2Man\alpha 1 \searrow 6\\ Man\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow Asn\\ SO_4 \rightarrow 4GalNAc\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 2Man\alpha 1 \nearrow$$

Fuc
$$\alpha$$
1 6

Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Man α 1 6

Man β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4Sr

Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Man α 1 7

The second seco

3) Hybrid Type

$$\begin{array}{c} \text{Man}\alpha 1 & \pm \text{GlcNAc}\beta 1 \\ & 6 \\ \text{Man}\alpha 1 & 4 \\ & 4 \\ \text{Man}\alpha 1 & 4 \\ & 6 \\ \text{Man}\beta 1 - 4 \\ \text{GlcNAc}\beta 1 - 4 \\ \text{GlcNAc}\beta 1 - 2 \\ \text{Man}\alpha 1 & 3 \\ \end{array}$$

Type III Core

3

GalNAcαl → Ser/Thr Galβ1-4GlcNAcβ1/3 NeuAca2

NeuAcα2→3Galβl→4GlcNAcβl→3GalNAcαl→Ser/Thr

Fucal

Feb. 28, 2006

4) Type IV Core

NeuAcα2-3Galβ1-4GlcNAcβ1

Fucal

[™]6GalNAcα1→Ser/Thr

(→8NeuGco2)n

5) Type V Core

Gala1+4Galβ1+4Galβ1+4GlcNAcβ1

SalNAcal -3GalNAcal -Ser/Thr

NeuAco2-3Galβ1/3

NeuAcα2-3Galβ1-4GlcNAcβ1 (GalNAcα1-Ser/Thr

NeuAcc2→3Gal\$1

GalNAca1 → Ser/Thr

NeuAca2→6GalNAca1→Ser/Thr Galβ1→3GalNAcα1→Ser/Thr 1) Type I Core

NeuAcα2→3Galβl→3GalNAcα1→Ser/Thr

Galβ1→3GalNAcα1→Ser/Thr Neu Aca 2 NeuAca2

NeuGcα2_ GalNAcαI →Ser/Thr

GaINAch1-4GaINAch1-3Gaih1-4Gaih1 NeuGco2

2) Type II Core

SDS-Denatured Electrophoregrams of N-FGF-1a-IV and · **(a** A) SDS-Denatured Electrophoregram of S/FGF-1a-11 Protein

O-FGF-1a Proteins

80 k

34 k

N-FGF-6/1a-11 treated with peptide N-glycosidase F to remove N-linked sugar chains FGF-1a produced in E. coli Lane b: Lane a:

N-FGF-6/1a-II Lane c:

Lane d:

FIG. 7

FIG. 8

Concentration of FGF-Like Proteins (ng/ml)

E. coli-Derived FGF-1a/with heparin

E. coli-Derived FGF-1a/without heparin

N-FGF-6/1a-IV/with heparin

N-FGF-6/1a-IV/without heparin

Salt Concentration

Absorbance (280 nm)

1

HEPARIN-BINDING PROTEINS MODIFIED WITH SUGAR CHAINS, METHOD OF PRODUCING THE SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME

BACKGROUND OF THE INVENTION

The present invention relates to a heparin-binding protein functionalized by covalently bonding thereto sugar chain(s), a method for producing the protein and a pharmaceutical composition containing the protein.

It has been known that heparin-binding proteins, among all, those proteins classified into the fibroblast growth factor (hereinafter, referred to as "FGF") family and fibroblast 15 growth factor homologous factors strongly bind to heparin and heparan sulfate (sulfated polysaccharides) by a non-covalent bond. It has been also known that when a heparinbinding protein such as fibroblast growth factor is mixed with a sulfated polysaccharide such as heparin, the biological 20 activity and physical properties of the heparin-binding protein are altered to change its function; sometimes, such a heparin-binding protein may acquire higher function. However, even if a sulfated polysaccharide was mixed with, the expected functionalization of the protein has been limited. 25 Besides, when such a mixture is used as a pharmaceutical composition, unfavorable physiological activity attributable to a free sulfated polysaccharide has caused a problem. To date, there has been reported no protein in which a heparinbinding protein is joined with sulfated polysaccharide(s) by a 30 covalent bond for the purpose of functionalization of the heparin-binding protein.

In addition, it has never been known to date that artificial addition of asparagine-linked sugar chain(s) (hereinafter, referred to as "N-linked sugar chain(s)") or serine/threonine- 35 linked sugar chain(s) (hereinafter, referred to as an "O-linked sugar chain(s) ") to a heparin-binding protein, particularly a protein of the FGF family or a fibroblast growth factor homologous factor, by covalent bond(s) can functionalize the protein. Furthermore, the general effect which N-linked sugar 40 chain(s) or O-linked sugar chain(s) could give has not been known. Exceptionally, with respect to FGF-6, the role of the N-linked sugar chain(s) it naturally has was suggested in an in vitro translation system, but has not been proved directly. To date, there has been reported no example of joining a heparin- 45 binding protein with N-linked or O-linked sugar chain(s) by covalent bond(s) for the purpose of functionalizing the heparin-binding protein.

It is an object of the present invention to improve the function of heparin-binding proteins. It is another object of 50 the invention to establish a heparin-binding protein to which sugar chain(s) are covalently bonded and a method for producing the protein. It is still another object of the invention to provide a pharmaceutical composition containing the above protein.

SUMMARY OF THE INVENTION

The present inventors have made intensive and extensive researches toward the solution of the above problems. As a 60 result, the inventors have noted the fact that sulfated polysaccharide(s), glycosaminoglycan(s), N-linked sugar chain(s) and O-linked sugar chain(s) are individually synthesized in living animal bodies as sugar chain(s) of a glycoprotein. Then, the inventors have found that it is possible to produce a 65 heparin-binding protein having in its molecule sulfated polysaccharide(s), glycosaminoglycan(s), N-linked sugar

2

chain(s) or O-linked sugar chain(s) covalently bonded thereto by ensuring that a cDNA coding for a peptide to which any of the above sugar chains can be added is ligated to a cDNA coding for the heparin-binding protein, and by then allowing an animal cell to produce the gene product of the ligated cDNA. Furthermore, the inventors have confirmed that the function of the resultant sugar chain(s)-added heparin-binding protein is improved. Thus, the present invention has been achieved based on these findings.

The present invention provides a heparin-binding protein functionalized by covalently bonding thereto sugar chain(s). The sugar chain(s) may be selected from the group consisting of sulfated polysaccharide(s), glycosaminoglycan(s), N-linked sugar chain(s), O-linked sugar chain(s) and a combination thereof. The heparin-binding protein may be a factor belonging to the FGF family or its allied factor. The heparin-binding protein may be covalently bonded to the sugar chain(s) through a peptide to which the sugar chain(s) can be added. For example, the heparin-binding protein to which the sugar chain(s) are to be covalently bonded may be the following (a) or (b):

- (a) a protein consisting of the amino acid sequence of SEQ ID NO: 1, 3, 5, 17, 19, 21, 23, 25, 27 or 29;
- (b) a protein which consists of the amino acid sequence of SEQ ID NO:1, 3, 5, 17, 19, 21, 23, 25, 27 or 29 having deletion, substitution, addition or modification of one or several amino acids, which has FGF activity and to which the sugar chain can be added.

In the heparin-binding protein of the invention, the sugar chain(s) may be bonded to the heparin-binding protein at a site forming a turn in the secondary structure or a site near one of the ends, or a site which would not change the tertiary structure of the protein greatly by addition of the sugar chain(s).

The present invention also provides a method for producing a heparin-binding protein functionalized by covalently bonding thereto sugar chain(s), comprising the following steps:

- (a) a step in which a cDNA coding for a peptide to which sugar chain(s) can be added is ligated to a cDNA coding for a heparin-binding protein;
- (b) a step of incorporating the resultant ligated cDNA into an expression vector;
- (c) a step of introducing the expression vector into a host cell having sugar chain(s) addition pathway; and
- (d) a step of expressing in the host cell a heparin-binding protein to which sugar chain(s) are covalently bonded through the peptide to which the sugar chain(s) can be added.

When the sugar chain(s) are sulfated polysaccharide(s) or glycosaminoglycan(s), the peptide to which the sugar chain(s) can be added may be a proteoglycan core protein or a part thereof. When the sugar chain(s) are N-linked sugar 55 chain(s), the peptide to which the sugar chain(s) can be added may be a peptide comprising N-linked sugar chain(s)-added amino acid sequence. When the sugar chain(s) are O-linked sugar chain(s), the peptide to which the sugar chain(s) can be added may be a peptide comprising O-linked sugar chain(s)added amino acid sequence. The present invention also provides a method for producing a heparin-binding protein functionalized by covalently bonding thereto sugar chain(s), comprising a step of allowing the sugar chain(s) to bind to the heparin-binding protein by a chemical binding method. The sugar chain(s) may be selected from the group consisting of sulfated polysaccharide(s), glycosaminoglycan(s), N-linked sugar chain(s), O-linked sugar chain(s) and a combination

thereof, and the heparin-binding protein may be a factor belonging to the FGF family or its allied factor. The present invention further provides a pharmaceutical composition containing, as an active ingredient, a heparin-binding protein functionalized by covalently bonding thereto sugar chain(s). 5 The present invention also provides a method for functionalizing a natural protein having no sugar chain(s) by covalently bonding thereto sugar chain(s).

The novel sugar chain(s)-added heparin-binding protein of the invention is excellent in stabilities such as thermostability, 10 acid resistance, alkali resistance and resistance to proteolytic enzymes. Thus, by using the sugar chain(s)-added heparinbinding protein of the invention in a pharmaceutical product, it is possible to design such a pharmaceutical product that is excellent in in vivo stabilities, in particular acid resistance and 15 alkali resistance, and applicable to an oral medicine.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows typical examples of sulfated polysaccharide 20 from the beginning. and glycosaminoglycan sugar chains.

FIG. 2 shows typical examples of N-linked sugar chains.

FIG. 3 shows typical examples of O-linked sugar chains.

FIG. 4A shows SDS-denatured electrophoregrams of S/FGF-1a-II Protein.

FIG. 4B shows SDS-denatured electrophoregrams of N-FGF-1a-IV and O-FGF-1a Proteins.

FIG. 5A shows the DNA synthesis promoting activity on HUVEC of S/FGF-1a-II.

FIG. 5B shows the DNA synthesis promoting activity on 30 HUVEC of E. coli-derived FGF-1a.

FIG. 6A shows the thermostability, acid resistance and alkali resistance of S/FGF-1a-II.

FIG. 6B shows the thermostability, acid resistance and alkali resistance of E. coli-derived FGF-1a.

FIG. 7 shows the resistance to trypsin of S/FGF-1a-II and E. coli-derived FGF-1a.

FIG. 8 shows the DNA synthesis promoting activity on HUVEC of N-FGF-6/1a-IV and E. coli-derived FGF-1a.

FIG. 9 shows the heparin affinity of S/FGF-1a-II.

DESCRIPTION OF PREFERRED **EMBODIMENTS**

detail.

In the present invention, the heparin-binding protein to which sugar chain(s) are to be covalently bonded is a protein having heparin binding property. For example, factors teins with heparin-binding property but without structural similarity to the former proteins may be enumerated. Examples of the other proteins include, but are not limited to, heparin-binding epidermal growth factor-like factor (HB-EGF) and platelet-derived growth factor (PDGF). As specific 55 examples of the factors belonging to the FGF family or allied factors, FGF-1 to -10 and FHF (fibroblast growth factor homologous factor)-1 to -4 are known. The heparin-binding protein of the invention may be covalently bonded to sugar chain(s) through a peptide to which the sugar chain(s) can be 60 added. For example, the heparin-binding protein to which the sugar chain(s) are to be covalently bonded may be the following (a) or (b):

(a) a protein consisting of the amino acid sequence of SEQ ID NO: 1, 3, 5, 17, 19, 21, 23, 25, 27 or 29;

(b) a protein which consists of the amino acid sequence of SEQ ID NO: 1, 3, 5, 17, 19, 21, 23, 25, 27 or 29 having

deletion, substitution, addition or modification of one or several amino acids, which has FGF activity and to which the sugar chain(s) can be added.

Proteins having the amino acid sequences of SEQ ID NOS: 1, 3, 5, 17, 19, 21, 23, 25, 27 and 29 are encoded by, for example, the DNA sequences of SEQ ID NOS: 2, 4, 6, 18, 20, 22, 24, 26, 28 and 30, respectively. These proteins contain a peptide sequence to which sugar chain(s) can be added and a sequence for a signal peptide in addition to a peptide sequence for a factor belonging to the FGF family. The heparin-binding protein of the present invention includes not only the protein primarily defined by a cDNA shown in the sequence listing but also a protein in which a peptide sequence for secretion (called the signal peptide) located at the amino terminal when secreted from cells is cut off. The utility of a heparin-binding protein which is contained in the pharmaceutical composition of the invention as an active ingredient will not vary even if the protein is produced in a form lacking the signal peptide

The sugar chain(s) to be covalently bonded to the heparinbinding protein may be any sugar chain(s) as long as the protein is functionalized by covalently bonding the sugar chain(s). Examples of the sugar chain(s) include, but are not limited to, sulfated polysaccharides such as heparan sulfate, chondroitin sulfate, glycosaminoglycans, N-linked sugar chains and O-linked sugar chains. The term "functionalize" used herein means increasing the activity of a protein of interest. As an example of functionalization, there may be given a case in which the residual activity of a protein after treatment with heat, acid or alkali is increased by adding sugar chain(s) to the protein by covalent bond(s). The "sulfated polysaccharide(s)" used herein is a general term for various sugar chain structures which are elongating from xylose linked to a serine residue present in the primary structure of proteins or elongating on the non-reducing end side of N-linked sugar chains or O-linked sugar chains to be described later, or which are present in a free form.

Many of such sugar chains are composed of repeating disaccharides of aminosugar and uronic acid (or galactose), and some of their hydroxyl groups or amino groups are substituted with sulfate groups. Glycosaminoglycans are polysaccharides having a structure similar to those described Hereinbelow, the present invention will be described in 45 above, but they include those which do not have any substitution with sulfate groups. All of the above-mentioned polysaccharides are designated herein generically "sulfated polysaccharides or the like".

Their specific structures are described, for example, in belonging to the FGF family or allied factors, or other pro- 50 Destiny of Sugar Chains in Cells, Nagai, Hakomori and Kobata (Eds.), Kodansha Scientific Co. FIG. 1 shows their typical sugar chain sequences. The "N-linked sugar chain(s)" used herein is a general term for various sugar chain(s) structures elongating from N-acetylglucosamine linked to an asparagine residue present in the primary structure of proteins. Their specific structures are described, for example, in Destiny of Sugar Chains in Cells, Nagai, Hakomori and Kobata (Eds.), Kodansha Scientific Co. FIG. 2 shows their typical sugar chain sequences. The "O-linked sugar chain(s)" used herein is a general term for various sugar chain(s) structures elongating from N-acetylgalactosamine linked to a serine or threonine residue present in the primary structure of proteins. Their specific structures are described, for example, in Destiny of Sugar Chains in Cells, Nagai, Hakomori and Kobata (Eds.), Kodansha Scientific Co. FIG. 3 shows their typical sugar chain sequences. These sulfated polysaccharides or the like, N-linked sugar chains and O-linked sugar

5

chains may have addition, deletion, substitution or modification in a part of their sugar chain sequences as long as they retain their functions.

When sugar chain(s) are attached to a heparin-binding protein, the sugar chain(s) alone may be covalently bonded to 5 the heparin-binding protein directly. Alternatively, a peptide chain of any length to which sugar chain(s) are covalently bonding may be covalently bonded to a heparin-binding protein.

In order to produce the heparin-binding protein of the invention to which sugar chain(s) are covalently bonded (hereinafter, referred to as the "sugar chain(s)-added heparin-binding protein"), first, a cDNA coding for a peptide to which sugar chain(s) can be added is ligated to a cDNA coding for a heparin-binding protein. The ligated cDNA is incorporated into an appropriate expression vector, which is then introduced into a host cell having sugar chain(s) addition pathway to thereby express sugar chain(s)-added heparin-binding protein.

cDNAs coding for various heparin-binding proteins can be obtained by designing appropriate primers from a sequence registered in a gene bank such as DDBJ (DNA Data Bank of Japan) and performing RT-PCR (reverse transcription PCR) with the primers and mRNA from the relevant tissue of the relevant animal.

In order to produce a sulfated polysaccharide or the like-added heparin-binding protein, first, a cDNA coding for a heparin-binding protein is ligated to a cDNA coding for a peptide which is known to undergo addition of a sulfated polysaccharide or the like. The ligated cDNA is incorporated into an appropriate host cell expression vector, which is then introduced into a host cell to thereby express the sulfated polysaccharide or the like-added heparin-binding protein. As the peptide which is known to undergo addition of a sulfated polysaccharide or the like, the core protein or a part thereof of various proteoglycans (e.g. syndecan, glypican, perlecan) may be used. As a part of the core protein of a proteoglycan, a peptide comprising a Ser-Gly repeat sequence (which is believed to be the sugar chain(s) addition site in proteoglycans) may be used.

In order to produce an N-linked sugar chain(s)-added heparin-binding protein, first, a cDNA coding for a heparin-binding protein is ligated to a cDNA coding for a peptide which is known to undergo addition of N-linked sugar chain(s). The ligated cDNA is incorporated into an appropriate host cell expression vector, which is then introduced into a host cell to thereby express the N-linked sugar chain(s)-added heparin-binding protein. Specific examples of the peptide which is known to undergo addition of N-linked sugar chain(s) include Asn-X-Thr and Asn-X-Ser (wherein X is any amino acid except proline).

In order to produce O-linked sugar chain(s)-added heparinbinding protein, first, a cDNA coding for a heparin-binding protein is ligated to a cDNA coding for a peptide which is known to undergo addition of O-linked sugar chain(s). The ligated cDNA is incorporated into an appropriate host cell expression vector, which is then introduced into a host cell to thereby express the O-linked sugar chain(s)-added heparinbinding protein. As a specific examples of the peptide which is known to undergo addition of O-linked sugar chain(s), and the peptide which is known to undergo addition of O-linked sugar chain(s).

By introducing a vector recombinant DNA into a host call.

As the site to which sugar chain(s) are bonded, a site forming a turn in the secondary structure of a heparin-binding protein or a site near one of the ends, or a site which would not change the tertiary structure of the protein greatly by addition of the sugar chain(s) is preferable.

6

One example of the method for producing sugar chain(s)-added heparin-binding protein of the invention will be described below.

First, an oligonucleotide coding for a secretion signal and a peptide which is known to undergo addition of sugar chain(s) is synthesized or amplified by PCR. The resultant oligonucleotide is incorporated at the 5' end of a plasmid coding for a heparin-binding protein.

As the secretion signal and the peptide which is known to undergo addition of sugar chain(s), an amino terminal of a typical secretion-type glycoprotein may be used, for example. Specifically, the amino acid consisting of the N terminal 40 residues of mouse FGF-6 may be used.

The plasmid coding for a heparin-binding protein can be prepared by incorporating a DNA coding for the heparin-binding protein into an appropriate plasmid. As the plasmid into which a DNA coding for a heparin-binding protein is to be incorporated, any plasmid may be used as long as it is replicated and maintained in a host. For example, pBR322 and pUC18 from *E. coli* and pET-3c which was constructed based on these plasmids may be enumerated.

As a method for incorporating the above-described oligonucleotide into the plasmid coding for a heparin-binding protein, the method described in T. Maniatis et al.: *Molecular Cloning*, Cold Spring Harbor Laboratory, p. 239 (1982) may be given, for example.

From the thus prepared plasmid, a region comprising a nucleotide sequence coding for a secretion signal, a peptide which is known to undergo addition of sugar chain(s) and a heparin-binding protein (hereinafter, referred to as a "region comprising a nucleotide sequence coding for sugar chain(s)-added heparin-binding protein") is cut out. This region is ligated to the downstream of a promoter in a vector suitable for expression to thereby obtain an expression vector.

The above-described region comprising a nucleotide sequence coding for sugar chain(s)-added heparin-binding protein may have ATG at its 5' end as a translation initiation codon and TAA, TGA or TAG at its 3' end as a translation termination codon. In order to express the protein encoded in the coding region, a promoter is ligated to the upstream of the region. As the promoter to be used in the present invention, any promoter may be used as long as it is appropriate to the host used for the expression of the gene. When the host to be transformed is a *bacillus*, SPO1 promoter, SPO2 promoter, penP promoter or the like may be used. When the host is a yeast, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter or the like may be used. When the host is an animal cell, a promoter from SV40 or a promoter from a retrovirus may be used.

As the plasmid into which the thus constructed recombinant DNA comprising a nucleotide sequence coding for sugar chain(s)-added heparin-binding protein is to be incorporated, any plasmid may be used as long as it can be expressed in the host cell. For example, those vectors which were constructed based on *E. coli*-derived pBR322 and pUC18 may be given.

As a method for incorporating the recombinant DNA into a plasmid, the method described in T. Maniatis et al.: *Molecular Cloning*, Cold Spring Harbor Laboratory, p. 239 (1982) may be given, for example.

By introducing a vector comprising the above-described recombinant DNA into a host cell, a transformant carrying the vector is prepared.

As the host cell, any cell may be used as long as it has sugar chain(s) addition pathway. Specific examples include, but are not limited to, bacilli (e.g. *Bacillus subtilis* DB105), yeasts (e.g. *Pichia pastoris, Saccharomyces cerevisiae*), animal

cells (e.g. COS cell, CHO cell, BHK cell, NIH3T3 cell, BALB/c3T3 cell, HUVE cell, LEII cell) and insect cells (e.g. Sf-9 cell, Tn cell).

The above-mentioned transformation may be performed by a conventional method commonly used for each host. 5 Alternatively, an applicable method may be used though it is not commonly used. For example, when the host is a yeast, a vector comprising the recombinant DNA is introduced into competent cells (prepared by the lithium method or the like) the host is an animal cell, a vector comprising the recombinant DNA is introduced into cells at the logarithmic growth phase or the like by the calcium phosphate method, lipofection or electroporation.

By culturing the thus obtained transformant in a medium, a 15 sugar chain(s)-added heparin-binding protein is produced. As the medium for culturing the transformant, a conventional medium commonly used for each host may be used. Alternatively, an applicable medium may be used even if it is not commonly used. For example, when the host is a yeast, YPD 20 medium or the like may be used. When the host is an animal cell, Dulbecco's MEM supplemented with animal serum, or the like may be used. The cultivation may be performed under conditions commonly employed for each host. Alternatively, applicable conditions may be used even if they are not com- 25 monly used. For example, when the host is a yeast, the cultivation is carried out at about 25-37° C. for about 12 hours to 2 weeks. If necessary, aeration or agitation may be carried out. When the host is an animal cell, the cultivation is carried out at about 32-37° C. under 5% CO₂ and 100% humidity for 30 about 24 hours to 2 weeks. If necessary, the conditions of the gas phase may be changed or agitation may be carried out.

In order to obtain a sugar-chain(s) added heparin-binding protein from the culture of the above-described transformant, the protein released into the culture fluid may be directly 35 recovered from a supernatant after centrifugation. Alternatively, when the protein is to be extracted from the cultured microorganisms or cells, the protein may be obtained by disrupting the cultured microorganisms or cells with a homogenizer, a French press, ultrasonic waves, lysozyme 40 and/or by freeze-thawing to thereby elute the protein of interest to the outside of the cells, and then recovering the protein from soluble fractions. If the protein of interest is contained in insoluble fractions, insoluble fractions may be recovered by centrifugation after disruption of the microorganisms or cells 45 and then solubilized with a buffer containing guanidine hydrochloride or the like, to thereby recover the protein of interest from the resultant soluble fractions. Alternatively, the cultured microorganisms or cells may be disrupted by a direct such as guanidine hydrochloride to thereby elute the protein of interest to the outside of the cells.

In order to purify a sugar chain(s)-added heparin-binding protein from the above-mentioned supernatant, known separation/purification methods may be used in an appropriate 55 combination. Specific examples of these known separation/ purification methods include salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration, SDS-polyacrylamide gel electrophoresis, ion exchange chromatography, affinity chromatography, reversed phase high performance 60 liquid chromatography and isoelectric focusing. Further, affinity chromatography using heparin sepharose as a carrier may be applicable to a large number of heparin-binding proteins.

The thus obtained sample may be dialyzed and freeze- 65 dried to obtain dry powder if the activity of the sugar chain(s)-added heparin-binding protein is not damaged by

such processing. Further, in storing the sample, addition of serum albumin to the sample is effective for preventing adsorption of the sample to the container.

The inclusion of an extremely small amount of a reducing agent in the purification process or the storing process is preferable for preventing oxidation of the sample. As the reducing agent, β-mercaptoethanol, dithiothreitol, glutathione or the like may be used.

The sugar chain(s)-added heparin-binding protein of the by the temperature shock method or electroporation. When 10 invention may also be produced by attaching sugar chain(s) to a heparin-binding protein by a chemical method. As the specific method, the following a) or b), or a combination thereof may be used.

a) For example, first, sugar chain(s) are completed by a biological method, a chemical synthesis method or a combination thereof. At that time, a residue appropriate for protein binding may be introduced at one end of the sugar chain(s). For example, an aldehyde group is formed by reducing and partially oxidizing the reducing end of the completed sugar chain(s). Then, this aldehyde group is attached to an amino group in a protein by an amino bond to thereby complete the joining of the sugar chain(s) and the protein.

b) For example, first, an aldehyde group is formed by reducing and partially oxidizing the reducing end of a monosaccharide or a residue appropriate for protein binding which is bound to a monosaccharide. Then, this aldehyde group is attached to an amino group in a protein by an amino bond to thereby complete the joining of the monosaccharide and the protein. An additional monosaccharide or sugar chain(s) are attached to a hydroxyl group or the like of the above monosaccharide to thereby complete sugar chain(s). For this attachment, a biological method, a chemical synthesis method or a combination thereof may be considered.

A heparin-binding protein functionalized by covalently bonding thereto sugar chain(s) can be used as a medicine. For example, the sugar chain(s)-added heparin-binding protein of the invention regulates the physiological function of FGF. Specifically, the physiological function of FGF is to promote or inhibit the growth of fibroblast, vascular endothelial cell, myoblast, cartilage cell, osteoblast and glia cell. Therefore, the sugar chain(s)-added heparin-binding protein of the invention is effective for promoting cell growth and tissue regeneration in liver or the like; for curing wounds and regulating nervous function; and for regulating the growth of fibroblast or the like. The protein of the invention is useful for preventing or treating various diseases such as fibroblastoma, angioma, osteoblastoma, death of neurocytes, Alzheimer's disease, Parkinson's disease, neuroblastoma, amnesia, demensia and myocardial infarction. The protein of the inventreatment with a buffer containing a protein denaturing agent 50 tion can also be used as a trichogenous agent or a hairgrowing agent.

The sugar chain(s)-added heparin-binding protein obtained as described above may be formulated into pharmaceutical compositions such as liquid, lotions, aerosols, injections, powder, granules, tablets, suppositories, enteric coated tablets and capsule, by mixing the protein with pharmaceutically acceptable solvents, vehicles, carriers, adjuvants, etc. according to conventional formulation methods.

The content of the sugar chain(s)-added heparin-binding protein, which is an active ingredient, in the pharmaceutical composition may be about 0.000000001 to 1.0% by weight.

The pharmaceutical composition can be administered parenterally or orally to mammals, e.g. human, mouse, rat, rabbit, dog, cat, etc. in a safe manner. The dose of the pharmaceutical composition may be appropriately changed depending on the dosage form, administration route, conditions of the patient and the like. For example, for administra-

10

tion to mammals including human, 0.0001 to 100 mg of the sugar chain(s)-added heparin-binding protein may be applied to the diseased part several times a day.

The present invention has been described so far taking heparin-binding proteins as an example. However, it should 5 be noted that besides the heparin-binding proteins, natural proteins having no sugar chain(s) can also be functionalized by covalently bonding thereto sugar chain(s).

Deposit of Microorganisms

Clones of E. coli DH5 \alpha carrying plasmids incorporating genes coding for the sugar chain(s)-added heparin-binding proteins of the invention (having the DNA sequences of SEQ IDNOS: 2, 4, 18, 20, 22, 24, 26, 28 and 30, respectively) were 15 deposited at the National Institute of Bioscience and Humantechnology, Agency of Industrial Science and Technology under Accession Numbers of FERM BP-6428, FERM BP-6424, FERM BP-6427, FERM BP-6431, FERM BP-6429, FERM BP-6430, FERM BP-6423, FERM 20 3) Construction of N-FGF6/1a-IV Plasmid BP-1625 and FERM BP-6426 on Sep. 10, 1997.

Hereinbelow, the present invention will be described specifically with reference to the following Example. However, the present invention is not limited to this Examples.

EXAMPLE 1

1) Construction of S/FGF-1a-II Plasmid

1. Preparation of a Human Ryudocan cDNA Fragment phR7A8 is a plasmid obtained by inserting a human ryudocan cDNA (PCR product) into the EcoR V site of pBluescript II (KS+) cloning vector. This plasmid contains a partial sequence from position 7 to position 2610 in the mRNA sequence shown under Accession No. D13292 (see 35 B.B.R.C. Vol. 190, No. 3, pp. 814-822, 1993).

This plasmid was digested with Pvu II. Using the resultant DNA fragment of 2,232 base pairs as a template, a PCR (polymerase chain reaction) was performed. As primers, #109 (5'-TTG TCG ACC CAC CAT GGC CCC CGC CCG TCT-3') (SEQ ID NO: 7) and #111 (5'-TTG ATA TCT AGA GGC ACC AAG GGA TG-3')(SEQ ID NO: 8) were used. The specifically amplified 276 bp band was separated by electrophoresis. After extraction, this fragment was double-digested with EcoR V and Sal I. The resultant 268 bp band was separated, extracted and then used in the ligation described below.

2. FGF-1a/pBluescript Π (KS+)

A PCR was performed using human FGF-1 cDNA as a template and #967 (5'-GCG TCG ACA GCG CTA ATT ACA AGA AGC CCA AAC TC-3') (SEQ ID NO: 9) and #630 50 (5'-CCG AAT TCG AAT TCT TTA ATC AGA AGA GAC TGG-3')(SEQ ID NO: 10) as primers. The specifically amplified 434 bp band was separated by electrophoresis. After extraction, this fragment was double-digested with EcoR I and Sal I. The resultant 422 bp band was separated, extracted 55 and then inserted into pBluescript II (KS+) cloning vector (2934 bp) double-digested with EcoR I and Sal I, where upon FGF-1a/pBluescript 1a/pBluescript II (KS+) was produced.

FGF-1a/pBluescript II (KS+) was digested with Aor51H I and Sal I in this order. The resultant 2626 bp band was sepa- 60 rated, extracted and then used in the ligation described below.

3. Preparation of S/FGF-1a-II Chimeric Gene EcoR V/Sal I fragment (a PCR product from human ryudocan) and Aor51H I/Sal I fragment from FGF-1a/pBluescript II (KS+) were subjected to a DNA ligation to produce S/FGF-1a-II/ 65 pBluescript II (KS+) vector. Subsequently, this vector was double-digested with EcoR I and Sal I to give a 678 bp band,

which was then separated and extracted. The resultant fragment was inserted into pMEXneo expression vector (5916 bp) double-digested with EcoR I and Sal I, where upon S/FGF-1a-II/pMEXneo was produced. This expression vector comprises the nucleotide sequence shown in SEQ ID NO:

2) Expression of S/FGF-1a-II

The resultant S/FGF-1a-II/pMEXneo was transferred into CHO-K1 cells (Chinese hamster ovary cell K1 substrain) by lipofection. Then, the cells were cultured in the presence of Geneticin to select gene-transferred cells. The selected cells were grown until the culture plate became almost full. Then, the medium was exchanged with a serum-free medium to increase the substance productivity of the cells. Thereafter, the medium was exchanged with a fresh one every two days. The resultant conditioned medium was subjected to low speed centrifugation, and the resultant supernatant was stored at 4° C.

1. Preparation of a Mouse FGF-6 cDNA Fragment

A PCR was performed using mouse FGF-6 cDNA as a template and #1048 (5'-GCG TCG ACC CAC CAT GTC CCG GGG AGC AGG ACG TGT TCA GGG CAC GCTGCA 25 GGC TCT CGT CTT C-3')(SEQ ID NO: 11) and #968 (5'-GCG ATA TCC AGT AGC GTG CCG TTG GCG CG-3') (SEQ ID NO: 12) as primers. The specifically amplified 138 bp band was separated by electrophoresis. After extraction, this fragment was double-digested with EcoRV and Sal I. The resultant 130 bp band was separated, extracted and then used in the ligation described below.

2. Preparation of N-FGF6/1a-IV Chimeric Gene

EcoR V/Sal I fragment (a PCR product from mouse FGF-6) and Aor51H I/Sal I fragment from FGF-la/pBluescript II (KS+) were subjected to a DNA ligation to produce N-FGF-6/1a-IV/pBluescript II (KS+) vector. Subsequently, this vector was double-digested with EcoR I and Sal I to give a 540 bp band, which was then separated and extracted. The resultant fragment was inserted into pMEXneo expression vector (5916 bp) double-digested with EcoR I and Sal I, where upon N-FGF-6/1a-IV/pMEXneo was produced. This expression vector comprises the nucleotide sequence shown in SEQ ID NO: 4.

4) Expression of N-FGF-6/1a-IV

N-FGF-6/1a-IV was secreted into a culture supernatant by transferring N-FGF-6/1a-IV/pMEXneo into CHO-K1 cells in the same manner as described above for S/FGF6/1a-II.

5) Construction of O-FGF-6/1a Plasmid

1. Preparation of N-FGF6/1a<NQ> Chimeric Gene

A PCR was performed using N-FGF6/1a/pBluescript II (KS+) vector as a template and #105 (5'-GCG TCG ACC CAC CAT GTC-3') (SEQ ID NO: 13) and #124 (5'-GCG ATA TCC AGT AGC GTG CCT TGG GCG CG-3')(SEQ ID NO: 14) as primers. The specifically amplified 138 bp band was separated by electrophoresis. After extraction, this fragment was double-digested with EcoRV and Sal I. The resultant 130 bp band was subjected to the ligation described below together with Aor51H I/Sal I fragment from FGF-1a/pBluescript II (KS+), to thereby yield N-FGF-6/1a<NQ>/pBluescript Π (KS+) vector.

2. Preparation of O-FGF-6/1a Chimeric Gene

A primary PCR was performed using N-FGF6/1a<NQ>/ pBluescript II (KS+) vector as a template and #098 (5'-GCT GGA GGA GGC TGC TAC TCC AGC TTC AAA CCA TTA CA-3') (SEQ ID NO: 15) and #116 (5=-GCC GCT CTA GAA CTA GTG GAT-3') (SEQ ID NO: 16) as primers. The

specifically amplified 210 bp band was purified. Using this PCR product and #115 (5'-AAC AAA AGC TGG GTA CCG GG-3') as primers, a secondary PCR was performed. The specifically amplified 631 bp band was separated by electrophoresis. After extraction and purification, this fragment was 5 double-digested with EcoR I and Sal I. The resultant 558 bp band was separated, extracted and then inserted into pMEXneo expression vector (5916 bp) double-digested with EcoR I and Sal I, to thereby yield O-FGF-6/1a/pMEXneo. This expression vector comprises the nucleotide sequence shown 10 (lane b); N-FGF6/1a-IV (lane c) and O-FGF-6/1a (lane d). in SEQ ID NO: 6.

11

6) Expression of O-FGF-6/1a

O-FGF-6/1a was secreted into a culture supernatant by transferring O-FGF6/1a/pMEXneo into CHO-K1 cells in the same manner as described above for S/FGF-1a-II.

7) Expression of FGF-1a in E. coli

The fragment from human FGF-1a cDNA obtained by double digestion with Eco RI and Sal I as described above was incorporated into an E. coli expression vector pET3c. E. coli 20 BL21 (DE3)pLysS was transformed with the resultant vector. Subsequently, the transformant at the logarithmic growth phase was stimulated with IPTG (isopropylthio- β -galactoside) to induce the expression of the transferred gene. The cells were collected and sonicated for disruption to thereby 25 release FGF-1a, which was then recovered in a centrifugation

8) Removal of N-Linked Sugar Chains by Peptide N-Glycosidase F Treatment

N-FGF6/1a-II concentrated with heparin-Sepharose beads 30 was boiled and eluted in an electrophoresis buffer, as will be described later (see Test Example 1). To a part of the resultant solution, NP-40 (final concentration: 1%), Tris-HCl buffer (pH 7.5) and peptide N-glycosidase F (0.3 U) were added and the mixture was kept at 37° C. overnight. Then, the solution 35 ner (FIG. 5). was heated at 100° C. for 3 min to terminate the enzyme reaction. This reaction solution was analyzed by SDS-denatured electrophoresis, as will be described later.

Various S/FGF-1a and N-FGF-6/1a genes can be prepared by appropriately altering the PCR primers (#111 and #968) 40 used in "1. Preparation of a Human Ryudocan cDNA Fragment" and "1. Preparation of a Mouse FGF-6 cDNA Fragment" in the above Example and by replacing the restriction enzyme EcoR V with an appropriate enzyme which would shown in SEQ ID NOS: 8, 20, 22, 24, 26 and 28.

Various O-FGF-6/1a genes can be prepared by replacing the template used in the PCR in "2. Preparation of O-FGF-6/ 1a Chimeric Gene" above with S/FGF-1a-II/pBluescript II (KS+), N-FGF6/1a-IV/pBluescript II (KS+) or the like, or by 50 appropriately altering the PCR primers (#098, #116 and #115), or by a combination of the both methods. An example of such a cDNA sequence is shown in SEQ ID NO: 30.

TEST EXAMPLE 1

SDS-Denatured Electrophoresis

Heparin Sepharose beads added to conditioned media of various FGF-1a-like proteins-secreting cells were individu- 60 ally washed and then boiled directly with an electrophoresis buffer (containing SDS and 2-' mercaptoethanol). The eluted protein was used as a sample. This sample was electrophoresed on 12.5% acrylamide gel in the presence of SDS and 2-mercaptoethanol. After being electrically transferred onto a 65 beads. S/FGF-1a-II was eluted using NaCl density gradient. nitrocellulose membrane, the protein was stained with anti-FGF-1 monoclonal antibody and horseradish peroxidase-la-

belled anti-mouse IgG antibody, followed by detection by the chemiluminescence method (FIG. 4). In the Figure, the arrows at the left side indicate the locations of standard proteins with known molecular weights and their molecular weights (in daltons). Panel A) shows an SDS-denatured electrophoregram of S/FGF-1a-II. Panel B) shows SDS-denatured electrophoregrams of FGF-1a produced in E. coli (lane a); N-FGF-1a-IV obtained by treating N-FGF-6/1a-IV with

12

TEST EXAMPLE 2

peptide N-glycosidase F for removal of N-linked sugar chains

DNA Synthesis Promoting Activity

The cell cycle of HUVEC (human umbilical cord-derived vascular endothelial cell) stops even in the presence of 15% serum if growth factors such as FGF are lacking. S/FGF-1a-II, N-FGF6/1a-IV, O-FGF-6/1a, or FGF-1a produced in E. coli was added to HUVEC in such a state. Eighteen hours later, radio-labelled thymidine was allowed to be taken up for 6 hours. The amount of radioactivity taken up into DNA during this period was regarded as indicating the amount of the newly synthesized DNA.

1. DNA Synthesis Promoting Effect (Heparin Non-Dependent) of S/FGF-1a-II on Human Vascular Endothelial Cell

A conditioned medium was prepared from a serum-free medium of S/FGF-1a-II gene-transferred cells. This conditioned medium was dialyzed against PBS and then added to HUVEC in the presence (5 µg/ml) or absence of heparin, for examining the DNA synthesis promoting activity of S/FGF-1a-II on HUVEC (FIG. 5A). As a result, unlike FGF-1a produced in E. coli(FIG. 5B), S/FGF-1a-II promoted the DNA synthesis of HUVEC in a non-heparin-dependent man-

2. DNA Synthesis Promoting Effect of N-FGF6/1a-IV on Human Vascular Endothelial Cell

A conditioned medium was prepared from a serum-free medium of N-FGF-6/1a-IV gene-transferred cells. This conditioned medium was dialyzed against PBS and then added to HUVEC in the presence (5 µg/ml) or absence of heparin, for examining the DNA synthesis promoting activity of N-FGF6/ la-IV on HUVEC. As a result, like FGF-1a produced in E=coli, N-FGF6/1a-IV promoted the DNA synthesis of generate a blunt end. Examples of such cDNA sequences are 45 HUVEC. However, its heparin dependency was weak, and N-FGF6/1a-IV exhibited stronger DNA synthesis promoting activity than FGF-1a from E=coli in the absence of heparin (FIG. 8).

TEST EXAMPLE 3

Heparin Affinity Chromatography

The heparin affinity of S/FGF-1a-II obtained in 2) in the 55 above Example was examined. Heparin-Sepharose beads were added to a conditioned medium of S/FGF-1a-II-secreting cells and agitated at 4° C. for 2 hours or more. Beads precipitating by low speed centrifugation were recovered and washed sufficiently in physiological PBS (phosphate buffered saline, pH 7.4), followed by elution of the protein bound to heparin-fixed beads with PBS containing 2.5 M NaCl. After addition of distilled water to lower the salt concentration, this eluate was again applied to a high performance liquid chromatography column packed with heparin affinity

While FGF-1a from E. coli was eluted at about 1.0 M NaCl, S/FGF-1a-II was eluted at about 0.4 M NaCl. Thus, it appears

14

that affinity to the fixed heparin is lowered in S/FGF-1a-II (FIG. 9). The small peak seen around 1.0 M NaCl in FIG. 9 is considered to be a degradation product from S/FGF-1a-II as analyzed by SDS-denatured electrophoresis.

TEST EXAMPLE 4

Thermostability of FGF-1a-Like Proteins

Conditioned media of various FGF-1a-like protein-secreting cells were individually dialyzed against PBS sufficiently. A part of each of the resultant media was retained in PBS kept at 56° C. or 70° C. for 30 minutes, or retained at room temperature for 12 hours. Thereafter, the medium was redialyzed against PBS at 4° C. to prepare a sample. The stability of S/FGF-1a-II was determined by subjecting it to DNA synthesis promoting activity test on HUVEC after various treatments and then comparing the resultant activity with the activity of an S/FGF-1a-II sample dialyzed against PBS at 4° C. for 12 hours (FIG. 6A).

After retention at room temperature for 12 hours, even the activity of *E. coli*-derived FGF-1a was protected by heparin, but the activity of S/FGF-1a-II was protected regardless of the presence or absence of heparin (FIG. 6A).

After heat treatment at 56° C. for 30 minutes, *E. coli*-25 derived FGF-1a was almost deactivated, but S/FGF-1a-II retained about 50% of the activity. Thus, it was considered that its thermostability was improved (FIG. 6B).

TEST EXAMPLE 5

Acid Resistance and Alkali Resistance of FGF-1a-Like Proteins

Conditioned media of various FGF-1a-like protein-secreting cells were individually dialyzed against PBS sufficiently. A part of each of the resultant media was dialyzed in a citrate

buffer (pH 4.0) or a sodium carbonate buffer (pH 10.0) for 12 hours and then re-dialyzed against PBS at 4° C. to prepare a sample. The stability of S/FGF-1a-II was determined by subjecting it to DNA synthesis promoting activity test on HUVEC after various treatments and then comparing the resultant activity with the activity of an S/FGF-1a-II sample dialyzed against PBS at 4° C. for 12 hours.

The activity of S/FGF-1a-II decreased little even after acid treatment at pH 4.0 regardless of the presence or absence of heparin; thus, an improvement in acid resistance was recognized (FIG. 6A). After alkali treatment at pH 10.0, E. coliderived FGF-1a was almost deactivated, but S/FGF-1a-II retained about 50% of the activity; thus, an improvement was also recognized in alkali resistance (FIGS. 6A and 6B).

TEST EXAMPLE 6

Stability of FGF-1a-Like Proteins Against Proteolytic Enzymes

Conditioned media of various FGF-1a-like protein-secreting cells were individually dialyzed against PBS sufficiently. To a part of each of the resultant media, trypsin solutions of varying concentrations (0.0001–0.1%) were added and kept at 37° C. for 1 hour. The thus obtained sample was subjected to the SDS-denatured electrophoresis described previously. The intensity of the remaining band was compared to the intensity of the band generated by the sample before trypsin treatment to give an indicator of stability.

As a result, as shown in FIG. 7, 88% and 35% of the band intensity remained in S/FGF-1a-II after 0.001% and 0.01% trypsin treatment, respectively; however, the band intensity of E. coli-derived FGF-1a decreased to 58% and even to 6% after 0.001% and 0.01% trypsin treatment, respectively. Thus, it was considered that the resistance of S/FGF-1a-II to proteolytic enzymes was increased (FIG. 7).

SEQUENCE LISTING

											-	con	tinı	ued		
				85					90					95		
Cys	Ser	Asn	Gly 100	Gly	His	Phe	Leu	Arg 105	Ile	Leu	Pro	Asp	Gly 110	Thr	Val	
Asp	Gly	Thr 115	Arg	Asp	Arg	Ser	Asp 120	Gln	His	Ile	Gln	Leu 125	Gln	Leu	Ser	
Ala	Glu 130	Ser	Va1	Gly	Glu	Val 135	Tyr	Ile	Lys	Ser	Thr 140	Glu	Thr	Gly	Gln	
Tyr 145	Leu	Ala	Met	Asp	Thr 150	Asp	G1y	Leu	Leu	Tyr 155	Gly	Ser	Gln	Thr	Pro 160	
Asn	Glu	Glu	Сув	Leu 165	Phe	Leu	Glu	Arg	Leu 170	G1u	Glu	Asn	His	Tyr 175	Asn	
Thr	Tyr	Ile	Ser 180	Lys	Lys	His	Ala	Glu 185	Lys	Asn	Trp	Phe	Va1 190	Gly	Leu	
Lys	Lys	Asn 195	Gly	Ser	Cys	Lys	Arg 200	G1y	Pro	Arg	Thr	Ніs 205	Tyr	G1y	Gln	
Lys	Ala 210	Ile	Leu	Phe	Leu	Pro 215	Leu	Pro	Va1	Ser	Ser 220	Asp				
<211 <212 <213 <220 <223	> Li !> T! !> O! !> O! !> O! se f:	ENGTH (PE: RGANI EATUR THER equer ibrol	SM: RE: INF(nce 1	Art: ORMAT For a	rion:	: De	Seque scrip f hur tor 1	otion								ion of
<222	!> L(CAT	ION:	(1)	(60	53)										
atg	gcc	ccc	gcc	cgt	ctg Leu	ttc Phe	gcg Ala	ctg Leu	ctg Leu 10	ctg Leu	ttc Phe	ttc Phe	gta Val	ggc Gly 15	gga Gly	48
gtc Val	gcc Ala	gag Glu	tcg Ser 20	atc Ile	cga Arg	gag Glu	act Thr	gag Glu 25	gtc Val	atc Ile	gac Asp	ccc Pro	cag Gln 30	gac Asp	ctc Leu	96
cta Leu	gaa Glu	ggc Gly 35	cga Arg	tac Tyr	ttc Phe	tcc Ser	gga Gly 40	gcc Ala	cta Leu	cca Pro	gac Asp	gat Asp 45	gag Glu	gat Asp	gta Val	144
gtg Val	ggg G1y 50	ccc Pro	Gly ggg	cag G1n	gaa Glu	tct Ser 55	gat Asp	gac Asp	ttt Phe	gag Glu	ctg Leu 60	tct Ser	ggc Gly	tct Ser	gga Gly	192
gat Asp 65	Leu	gat Asp 	gac Asp	t tg Leu	gaa Glu 70	Asp	tcc Ser	atg Met	Ile	ggc Gly 75	cct Pro	gaa Glu	gtt Val	gtc Val	cat His 80	240
ccc Pro	ttg Leu	gtg Val	cct Pro	cta Leu 85	gat Asp	gct Ala	aat Asn	tac Tyr	aag Lys 90	aag Lys	ccc Pro	aaa Lys	ctc Leu	ctc Leu 95	Tyr	288
tgt Cys	agc Ser	aac Asn	ggg Gly 100	ggc Gly	cac His	ttc Phe	ctg Leu	agg Arg 105	atc Ile	ctt Leu	ccg Pro	gat Asp	ggc Gly 110	aca Thr	gtg Val	336
gat Asp	ggg	aca Thr 115	agg Arg	gac Asp	agg Arg	agc Ser	gac Asp 120	cag Gln	cac His	att Ile	cag Gln	ctg Leu 125	cag Gln	ctc Leu	agt Ser	384
gcg Ala	gaa Glu 130	Ser	gtg Val	ggg Gly	gag Glu	gtg Val 135	tat Tyr	ata Ile	aag Lys	agt Ser	acc Thr 140	gag Glu	act Thr	ggc Gly	cag Gln	432
tac Tyr 145	ttg Leu	gcc Ala	atg Met	gac Asp	acc Thr 150	gac Asp	ggg Gly	ctt Leu	tta Leu	tac Tyr 155	Gly	tca Ser	cag Gln	aca Thr	cca Pro 160	480

aat Asn	gag Glu	gaa Glu	tgt Cys	ttg Leu 165	ttc Phe	ctg Leu	gaa Glu	agg Arg	ctg Leu 170	gag Glu	gag Glu	aac Asn	cat His	tac Tyr 175	aac Asn	528
			tcc Ser 180													576
			ggg ggg													624
			ttg Leu													663
<211 <212 <213 <220	> LE ?> T'\ !> OF !> OF !> OT	ENGTI PE: RGAN: EATUI THER eque	ISM: RE: INFO	Art: ORMA! For a	rion a pai	: De:	scrip f mou	otion	ibro	bla	st g	rowtl			: fusion 6 and	of
<400)> SI	EQUE	NCE:	3												
Met 1	Ser	Arg	G1y	Ala 5	Gly	Arg	Val	Gln	Gly 10	Thr	Leu	Gln	Ala	Leu 15	Va1	
Phe	Leu	Gly	Val 20	Leu	Val	Gly	Met	Va1 25	Val	Pro	Ser	Pro	Ala 30	Gly	Ala	
Arg	Ala	Asn 35	Gly	Thr	Leu	Leu	Asp 40	Ala	Asn	Tyr	Lys	Lys 45	Pro	Lys	Leu	
Leu	Tyr 50	Cys	Ser	Asn	Gly	G1y 55	His	Phe	Leu	Arg	Ile 60	Leu	Pro	Asp	Gly	
Thr 65	Va1	Asp	Gly	Thr	Arg 70	Asp	Arg	Ser	Asp	Gln 75	His	Ile	Gln	Leu	Gln 80	
Leu	Ser	Ala	Glu	Ser 85	Val	Gly	Glu	Va1	Tyr 90	Ile	Lys	Ser	Thr	G1u 95	Thr	
Gly	Gln	Tyr	Leu 100	Ala	Met	Asp	Thr	Asp 105	Gly	Leu	Leu	Tyr	Gly 110	Ser	Gln	
		115	G1u				120					125				
	130		Tyr			135					140					
145			Lys		150	·				155					160	
Gly	Gln	Lys	Ala	11e 165		Phe	Leu	Pro	Leu 170	Pro	Val	Ser	Ser	Asp 175		
<21 <21 <22 <22 <22 <22	1> L 2> T 3> 0 0> F 3> 0' s a 1> N 2> L	ENGT YPE: RGAN EATU THER eque par AME/ OCAT	INF	Art ORMA for hum CDS (1)	TION a pa an f	: De rt o ibro	scri f mo	ptio use	fibr	obla	st g	rowt	Sequ h fa	ence ctor	: fusion 6 and	ı of
atg Met 1	Ser	cgg Arg	gga Gly	gca Ala 5	Gly	cgt Arg	gtt Val	cag Gln	ggc Gly 10	acg Thr	ctg Leu	cag Gln	gct Ala	ctc Leu 15	gtc Val	48

	_															
									gtg Val							96
									aat Asn							144
ctc Leu	tac Tyr 50	tgt Cys	agc Ser	aac Asn	Gly ggg	ggc Gly 55	cac His	ttc Phe	ctg Leu	agg Arg	atc Ile 60	ctt Leu	ccg Pro	gat Asp	ggc Gly	192
aca Thr 65	gtg Val	gat Asp	G1y ggg	aca Thr	agg Arg 70	gac Asp	agg Arg	agc Ser	gac Asp	cag Gln 75	cac His	att Ile	cag Gln	ctg Leu	cag Gln 80	240
									tat Tyr 90							288
									ggg Gly							336
									gaa Glu							384
									gca Ala							432
									cgc Arg							480
									ctg Leu 170							525
<21 <21 <21 <22	1 > Li 2 > T 3 > 0i 0 > Fi 3 > 0' 5 c a	EATU THER eque	H: 10 PRT ISM: RE: INFO	81 Art ORMA' for	a pa	: De	scrij £ mo	ptionuse	fibr	obla	st g	rowt	h fa	ctor	: fusior 6, ificial	n of
<40	0> S	EQUE	NCE:	5												
Met 1	Ser	Arg	Gly	A1a 5	Gly	Arg	Val	Gln	Gly 10	Thr	Leu	Gln	Ala	Leu 15	Val	
Phe	Leu	G1y	Va1 20	Leu	Val	Gly	Met	Va1 25	Va1	Pro	Ser	Pro	Ala 30	Gly	Ala	
Arg	Ala	Gln 35	Gly	Thr	Leu	Leu	Asp 40	Ala	Asn	Tyr	Lys	Lys 45	Pro	Lys	Leu	
Leu	Tyr 50		Ser	Asn	Gly	G1y 55	His	Phe	Leu	Arg	11e 60	Leu	Pro	Asp	Gly	
Thr 65		Asp	Gly	Thr	Arg 70	Asp	Arg	Ser	Asp	G1n 75	ніѕ	Ile	G1n	Leu	G1n 80	
Leu	Ser	Ala	G1u	Ser 85	Val	Gly	Glu	Val	Туг 90	Ile	Lys	Ser	Thr	G1 u 95	Thr	
Gly	Gln	Tyr	Leu 100	Ala	Met	Asp	Thr	Asp 105	Gly	Leu	Leu	Tyr	Gly 110		Gln	
Thr	Pro	Asn 115	Glu	Glu	Сув	Leu	Phe 120	Leu	G1u	Arg	Leu	G1u 125		Ala	Ala	
														•		

Thr Pro Ala Pro Asn His Tyr Asn Thr Tyr Ile Ser Lys Lys His Ala

		-continued
130	135	140
Glu Lys Asn Trp 145	Phe Val Gly Leu 150	eu Lys Lys Asn Gly Ser Cys Lys Arg 155 160
Gly Pro Arg Thr	His Tyr Gly Gln 165	n Lys Ala Ile Leu Phe Leu Pro Leu 170 175
Pro Val Ser Ser 180.		
<220> FEATURE: <223> OTHER INFO sequence	Artificial Sequentificial Sequentificial Sequentifor: Descriptor a part of months human fibroblas	quence ription of Artificial Sequence: fusion of house fibroblast growth factor 6, est growth factor 1 and an artificial
<400> SEQUENCE:	6	
atg tcc cgg gga Met Ser Arg Gly 1	gca gga cgt gtt Ala Gly Arg Val 5	t cag ggc acg ctg cag gct ctc gtc 48 al Gln Gly Thr Leu Gln Ala Leu Val 10 15
ttc tta ggc gtc Phe Leu Gly Val 20	cta gtg ggc atg Leu Val Gly Met	gg gtg gtg ccc tca cct gcc ggc gcc 96 et Val Val Pro Ser Pro Ala Gly Ala 25 30
		ac gct aat tac aag aag ccc aaa ctc 144 sp Ala Asn Tyr Lys Lys Pro Lys Leu 45
ctc tac tgt agc Leu Tyr Cys Ser 50	aac ggg ggc cac Asn Gly Gly His	ac ttc ctg agg atc ctt ccg gat ggc 192 is Phe Leu Arg Ile Leu Pro Asp Gly 60
aca gtg gat ggg Thr Val Asp Gly 65	aca agg gac agg Thr Arg Asp Arg 70	ng agc gac cag cac att cag ctg cag 240 ng Ser Asp Gln His Ile Gln Leu Gln 75 80
ctc agt gcg gaa Leu Ser Ala Glu	agc gtg ggg gag Ser Val Gly Glu 85	ag gtg tat ata aag agt acc gag act 288 lu Val Tyr Ile Lys Ser Thr Glu Thr 90 95
ggc cag tac ttg Gly Gln Tyr Leu 100	gcc atg gac acc Ala Met Asp Thr	cc gac ggg ctt tta tac ggc tca cag nr Asp Gly Leu Leu Tyr Gly Ser Gln 105 110
aca cca aat gag Thr Pro Asn Glu 115	gaa tgt ttg ttc Glu Cys Leu Phe 120	cc ctg gaa agg ctg gag gag gct gct 384 ne Leu Glu Arg Leu Glu Glu Ala Ala 20 125
act cca gct cca Thr Pro Ala Pro 130	aac cat tac aac Asn His Tyr Asr 135	ac acc tat ata tcc aag aag cat gca 432 sn Thr Tyr Ile Ser Lys Lys His Ala 140
gag aag aat tgg Glu Lys Asn Trp 145	ttt gtt ggc cto Phe Val Gly Lev 150	tc aag aag aat ggg agc tgc aaa cgc 480 eu Lys Lys Asn Gly Ser Cys Lys Arg 155 160
ggt cct cgg act Gly Pro Arg Thr	cac tat ggc cag His Tyr Gly Glr 165	ag aaa gca atc ttg ttt ctc ccc ctg 528 ln Lys Ala Ile Leu Phe Leu Pro Leu 170 175
cca gtc tct tct Pro Val Ser Ser 180	. yeb	543
<210> SEQ ID NO		

<210> SEQ ID NO 7 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<pre><220> FEATURE: <223> OTHER INFORMATION: Description of Artificial S</pre>	equence:primer for
<400> SEQUENCE: 7	
ttgtcgaccc accatggccc ccgcccgtct	30
<pre><210> SEQ ID NO 8 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial SPCR</pre>	equence:primer for
<400> SEQUENCE: 8	
ttgatatota gaggoaccaa gggatg	
<210> SEQ ID NO 9 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial SPCR	equence:primer for
<400> SEQUENCE: 9	
gcgtcgacag cgctaattac aagaagccca aactc	35
<pre><210 SEQ ID NO 10 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial SPCR</pre>	equence:primer for
<400> SEQUENCE: 10	
ccgaattcga attctttaat cagaagagac tgg	3'3
<210> SEQ ID NO 11 <211> LENGTH: 64 <212> TYPE: ENA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial SPCR	equence:primer for
<400> SEQUENCE: 11	
gegtegaece accatgtece ggggageagg aegtgtteag ggeaeget	
cttc	64
<pre><210> SEQ ID NO 12 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial SPCR</pre>	Gequence:primer for
<400> SEQUENCE: 12	
gcgatatcca gtagcgtgcc gttggcgcg	29
<210> SEQ ID NO 13 <211> LENGTH: 18	

<210> SEQ ID NO 1 <211> LENGTH: 18 <212> TYPE: DNA

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:primer for
     PCR
<400> SEQUENCE: 13
                                                                       18
gcgtcgaccc accatgtc
<210> SEQ ID NO 14
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:primer for
<400> SEQUENCE: 14
                                                                       29
gegatateca gtagegtgee ttgggegeg
<210> SEQ ID NO 15
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:primer for
<400> SEQUENCE: 15
gctggaggag gctgctactc cagctccaaa ccattaca
                                                                       38
<210> SEQ ID NO 16
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:primer for
<400> SEQUENCE: 16
                                                                       21
gccgctctag aactagtgga t
<210> SEQ ID NO 17
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: fusion of
      sequence for a part of human ryudocan and a part of human
      fibroblast growth factor 1
<400> SEQUENCE: 17
Met Ala Pro Ala Arg Leu Phe Ala Leu Leu Phe Phe Val Gly Gly
Val Ala Glu Ser Ile Arg Glu Thr Glu Val Ile Asp Pro Gln Asp Leu
Leu Glu Gly Arg Tyr Phe Ser Gly Ala Leu Pro Asp Asp Glu Asp Val
Val Gly Pro Gly Gln Glu Ser Asp Asp Phe Glu Leu Ser Gly Ser Gly
                         55
Asp Ala Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser Asn Gly Gly 65 70 75 80
His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly Thr Arg Asp
Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu Ser Val Gly
```

				-con	tinued	
	100		105		110	
Glu Val Tyr 115	Ile Lys S	Ser Thr Glu 120		Gln Tyr Leu 125	Ala Met	Asp
Thr Asp Gly 130	Leu Leu 1	Tyr Gly Ser 135	Gln Thr	Pro Asn Glu 140	Glu Cys	Leu
Phe Leu Glu 145		Glu Glu Asn 150	his Tyr	Asn Thr Tyr 155	Ile Ser	Lys 160
Lys His Ala	Glu Lys 1 165	Asn Trp Phe	val Gly	Leu Lys Lys	Asn Gly 175	Ser
Cys Lys Arg	Gly Pro <i>1</i> 180	Arg Thr His	Tyr Gly 185	Gln Lys Ala	Ile Leu 190	Phe
Leu Pro Leu 195	Pro Val :	Ser Ser Asp 200				
	: 600 DNA SM: Arti: E: INFORMAT: ce for a last grov EY: CDS ON: (1).	ION: Descri part of hu wth factor	iption of ıman ryudo	Artificial can and a p	Sequence art of h	: fusion of uman
atg gcc ccc Met Ala Pro	gcc cgt (ctg ttc gcg Leu Phe Ala	g ctg ctg a Leu Leu	ctg ttc ttc Leu Phe Phe	gta ggc Val Gly	gga 48 Gly
1	5		10		15	
gtc gcc gag Val Ala Glu	tcg atc Ser Ile 20	cga gag act Arg Glu Thi	t gag gtc r Glu Val 25	atc gac ccc Ile Asp Pro	cag gac Gln Asp 30	ctc 96 Leu
cta gaa ggc Leu Glu Gly 35	cga tac Arg Tyr	ttc tcc gga Phe Ser Gly 40	y Ala Leu	cca gac gat Pro Asp Asp 45	Glu Asp	gta 144 Val
gtg ggg ccc Val Gly Pro . 50	ggg cag Gly Gln	gaa tot gat Glu Ser Asp 55	t gac ttt p Asp Phe	gag ctg tct Glu Leu Sen 60	ggc tct Gly Ser	gga 192 Gly
gat gct aat Asp Ala Asn 65	tac aag Tyr Lys	aag ccc aaa Lys Pro Lys 70	a ctc ctc s Leu Leu	tac tgt age Tyr Cys Sei 75	aac ggg Asn Gly	ggc 240 Gly 80
cac ttc ctg His Phe Leu	agg atc Arg Ile 85	ctt ccg gai Leu Pro Asi	t ggc aca p Gly Thr 90	gtg gat ggg Val Asp Gly	aca agg Thr Arg 95	Asp
ägg ägc gac Arg Ser Asp	cag cac Gln His 100	att cag cto	g cag ctc u Gln Leu 105	agt gcg gaa Ser Ala Gl	a agc gtg 1 Ser Val 110	ggg 336
gag gtg tat Glu Val Tyr 115	ata aag Ile Lys	agt acc gag Ser Thr Gli 120	u Thr Gly	cag tac tte Gln Tyr Let 12	ı Ala Met	gac 384 Asp
acc gac ggg Thr Asp Gly 130	ctt tta Leu Leu	tac ggc tca Tyr Gly Se: 135	a cag aca r Gln Thr	cca aat gag Pro Asn Gl	g gaa tgt 1 Glu Cys	ttg 432 Leu
ttc ctg gaa Phe Leu Glu 145	Arg Leu	gag gag aa Glu Glu Asi 150	c cat tac n His Tyr	aac acc ta Asn Thr Ty: 155	t ata tco r Ile Ser	: aag 480 : Lys 160
aag cat gca Lys His Ala	gag aag Glu Lys 165	aat tgg tt Asn Trp Ph	t gtt ggc e Val Gly 170	ctc aag aa Leu Lys Ly	g aat ggg s Asn Gly 175	Ser
tgc aaa cgc	ggt cct	cgg act ca	c tat ggc	cag aaa gc	a atc ttg	f ttt 576

```
Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala Ile Leu Phe
                                                                      600
ctc ccc ctg cca gtc tct tct gat
Leu Pro Leu Pro Val Ser Ser Asp
       195
<210> SEQ ID NO 19
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: fusion of
      sequence for a part of human ryudocan mutant and a part of human
      fibroblast growth factor 1
<400> SEQUENCE: 19
Met Ala Pro Ala Arg Leu Phe Ala Leu Leu Phe Phe Val Gly Gly
Val Ala Glu Ser Ile Arg Glu Thr Glu Val Ile Asp Pro Gln Asp Leu
Leu Glu Gly Arg Tyr Phe Ser Gly Ala Leu Ser Asp Asp Glu Asp Val
Val Gly Pro Gly Gln Glu Ser Asp Asp Phe Glu Leu Ser Gly Ser Gly
Asp Ala Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser Asn Gly Gly 65 70 75 80
His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly Thr Arg Asp
Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu Ser Val Gly
Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr Leu Ala Met Asp
Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn Glu Glu Cys Leu
Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr Tyr Ile Ser Lys
Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys Asn Gly Ser
Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala Ile Leu Phe
Leu Pro Leu Pro Val Ser Ser Asp
        195
<210> SEQ ID NO 20
<211> LENGTH: 600
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: fusion of
      sequence for a part of human ryudocan mutant and a part of human
      fibroblast growth factor 1
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(600)
<400> SEQUENCE: 20
48
Met Ala Pro Ala Arg Leu Phe Ala Leu Leu Phe Phe Val Gly Gly
gtc gcc gag tcg atc cga gag act gag gtc atc gac ccc cag gac ctc Val Ala Glu Ser Ile Arg Glu Thr Glu Val Ile Asp Pro Gln Asp Leu
                                                                       96
```

												con	tin	ıed		
cta Leu	gaa Glu	ggc Gly 35	cga Arg	tac Tyr	ttc Phe	tcc Ser	gga Gly 40	gcc Ala	cta Leu	tca Ser	gac Asp	gat Asp 45	gag Glu	gat Asp	gta Val	144
gtg Val	G1y 50	ccc Pro	ggg Gly	cag G1n	gaa Glu	tct Ser 55	gat Asp	gac Asp	ttt Phe	gag Glu	ctg Leu 60	tct Ser	ggc Gly	tct Ser	gga Gly	192
					aag Lys 70											240
					ctt Leu											288
					att Ile											336
					agt Ser											384
					tac Tyr											432
ttc Phe 145	ctg Leu	gaa Glu	agg Arg	ctg Leu	gag G1u 150	gag Glu	aac Asn	cat His	tac Tyr	aac Asn 155	acc Thr	tat Tyr	ata Ile	tcc Ser	aag Lys 160	480
aag Lys	cat His	gca Ala	gag Glu	aag Lys 165	aat Asn	tgg Trp	ttt Phe	gtt Val	ggc Gly 170	ctc Leu	aag Lys	aag Lys	aat Asn	ggg Gly 175	agc Ser	528
tgc Cys	aaa Lys	cgc Arg	ggt Gly 180	cct Pro	cgg Arg	act Thr	cac His	tat Tyr 185	ggc Gly	cag Gln	aaa Lys	gca Ala	atc Ile 190	ttg Leu	ttt Phe	576
					tct Ser											600
<21 <21 <21 <22	1 > L 2 > T 3 > 0 0 > F 3 > 0 s	EATU THER eque	H: 2 PRT ISM: RE: INF	Art ORMA for	ific TION a pa: owth	: De:	scri f hw	ption	n of ryudd	Art ocan	ific and	ial a p	Sequ art	ence of h	: fus uman	ion of
<40	0> S	EQUE	NCE:	21												
1				5	Leu			•	10		-			15		
Val	Ala	G1u	Ser 20	Ile	Arg	G1u	Thr	Glu 25	Val	Ile	Asp	Pro	Gln 30	Asp	Leu	
Leu	G1 u	Gly 35		Туr	Phe	Ser	Gly 40		Leu	Pro	Asp	Asp 45	Glu	Ąsp	Va1	
	50					55					60				Gly	
Asp 65		Asp	Asp	Leu	G1u 70	Asp	Ser	Met	Ile	G1y 75	Pro	Glu	Val	Va1	His 80	
Pro	Leu	Va1	Pro	Leu 85		Asn	His	Ile	Pro 90	G1u	Arg	Ala	Gly	Ser 95	Gly	
Ser	Gln	val	Pro 100		Glu	Pro	Lys	Lys 105		G1u	Glu	Asn	Glu 110		Ile	

Pro Lys Arg Ile Ser Pro Val Ala Asn Tyr Lys Lys Pro Lys Leu Leu

	•	-continued	
115	120	125	
Tyr Cys Ser Asn Gly	Gly His Phe Leu Arg	rg Ile Leu Pro Asp Gly Thr	
130	135	140	
Val Asp Gly Thr Arg	Asp Arg Ser Asp Gln	ln His Ile Gln Leu Gln Leu	
145	150	155 160	
Ser Ala Glu Ser Val 165		le Lys Ser Thr Glu Thr Gly 70 175	
Gln Tyr Leu Ala Met	Asp Thr Asp Gly Leu	eu Leu Tyr Gly Ser Gln Thr	•
180	185	190	
Pro Asn Glu Glu Cys	Leu Phe Leu Glu Arg	rg Leu Glu Glu Asn His Tyr	
195	200	205	
Asn Thr Tyr Ile Ser	Lys Lys His Ala Glu	lu Lys Asn Trp Phe Val Gly	
210	215	220	
Leu Lys Lys Asn Gly	Ser Cys Lys Arg Gly	ly Pro Arg Thr His Tyr Gly	
225	230	235 240	
Gln Lys Ala Ile Leu 245	Phe Leu Pro Leu Pro 250		
sequence for	ATION: Description of a part of human ryud cowth factor 1	of Artificial Sequence: fusion of udocan and a part of human	
Met Ala Pro Ala Arg	g Leu Phe Ala Leu Leu	etg ctg ttc ttc gta ggc gga 48 eu Leu Phe Phe Val Gly Gly 10 15	
gtc gcc gag tcg atc	c cga gag act gag gto	tc atc gac ccc cag gac ctc 96	
Val Ala Glu Ser Ilo	e Arg Glu Thr Glu Val	al Ile Asp Pro Gln Asp Leu	
20	25	30	
cta gaa ggc cga tad	c ttc tcc gga gcc cta	ta cca gac gat gag gat gta 144	
Leu Glu Gly Arg Ty:	r Phe Ser Gly Ala Leu	eu Pro Asp Asp Glu Asp Val	
35	40	45	
gtg ggg ccc ggg cag	g gaa tot gat gao ttt	ett gag etg tet gge tet gga 192	
Val Gly Pro Gly Gli	n Glu Ser Asp Asp Phe	Phe Glu Leu Ser Gly Ser Gly	
50	55	60	
gat ctg gat gac tt	g gaa gac tcc atg atc	atc ggc cct gaa gtt gtc cat 240	
Asp Leu Asp Asp Le	u Glu Asp Ser Met Ile	fle Gly Pro Glu Val Val His	
65	70	75 80	
ccc ttg gtg cct ct Pro Leu Val Pro Le 8	u Asp Asn His Ile Pro	oct gag agg gca ggg tot ggg 288 Pro Glu Arg Ala Gly Ser Gly 90 95	
age caa gte eee ac	c gaa ccc aag aaa cta	cta gag gag aat gag gtt atc 336	
Ser Gln Val Pro Th	r Glu Pro Lys Lys Let	Leu Glu Glu Asn Glu Val Ile	
100	105	110	
ccc aag aga atc tc	a ccc gtt gct aat tac	tac aag aag ccc aaa ctc ctc 384	
Pro Lys Arg Ile Se	r Pro Val Ala Asn Ty:	Tyr Lys Lys Pro Lys Leu Leu	
115	120	125	
tac tgt agc aac gg	g ggc cac ttc ctg agg	agg atc ctt ccg gat ggc aca 432	
Tyr Cys Ser Asn Gl	y Gly His Phe Leu Arg	Arg Ile Leu Pro Asp Gly Thr	
130	135	140	
gtg gat ggg aca ag	g gac agg agc gac cag	cag cac att cag ctg cag ctc 480	
Val Asp Gly Thr Ar	g Asp Arg Ser Asp Gli	Sin His Ile Gin Leu Gin Leu	
145	150	155 160	

			-contir	nued
agt gcy gaa ag Ser Ala Glu Se	c gtg ggg gag r Val Gly Glu 165	gtg tat ata Val Tyr Ile 170	aag agt acc ga Lys Ser Thr Gl	g act ggc 528 1 Thr Gly 175
	a Met Asp Thr		tta tac ggc tca Leu Tyr Gly Se: 19	r Gln Thr
			ctg gag gag aad Leu Glu Glu Ass 205	
		His Ala Glu	aag aat tgg tt Lys Asn Trp Pho 220	
			cct cgg act ca Pro Arg Thr Hi 235	
			gtc tct tct ga Val Ser Ser As	
sequence	281 T : Artificial FORMATION: De	scription of f human ryudo	Artificial Seq ocan and a part	uence: fusion of of human
<400> SEQUENCE	: 23			
Met Ala Pro Al 1	a Arg Leu Phe 5	Ala Leu Leu 10	Leu Phe Phe Va	1 Gly Gly 15
Val Ala Glu Se 2		Thr Glu Val 25	Ile Asp Pro Gl	
Leu Glu Gly Ar 35	g Tyr Phe Ser	Gly Ala Leu 40	Pro Asp Asp G1 45	u Asp Val
Val Gly Pro Gl 50	y Gln Glu Ser 55		Glu Leu Ser Gl 60	y Ser Gly
Asp Leu Asp As 65	p Leu Glu Asp 70	Ser Met Ile	Gly Pro Glu Va 75	l Val His 80
Pro Leu Val Pr	o Leu Asp Asr 85	His Ile Pro 90	Glu Arg Ala Gl	y Ser Gly 95
Ser Gin Val Pr 10		Lys Lys Leu 105	Glu Glu Asn Gl	u Val Ile O
Pro Lys Arg Il 115	e Ser Pro Val	. Glu Glu Ser 120	·Glu·Asp Val Se 125	r Asn Lys -
Val Ser Met Se 130	r Ser Thr Val		Asn Ile Phe Gl 140	u Arg Thr
Glu Val Ala As 145	n Tyr Lys Lys 150	Pro Lys Leu	Leu Tyr Cys Se 155	r Asn Gly 160
Gly His Phe Le	u Arg Ile Leu 165	Pro Asp Gly 170	Thr Val Asp Gl	y Thr Arg 175
Asp Arg Ser As		e Gln Leu Gln 185	Leu Ser Ala G1 19	u Ser Val O
Gly Glu Val Ty 195	r Ile Lys Sei	Thr Glu Thr 200	Gly Gln Tyr Le 205	u Ala Met
Asp Thr Asp Gl 210	y Leu Leu Tyr 219		Thr Pro Asn G1 220	u Glu Cys

													COIL	C.E111	,		
	Leu 225	Phe	Leu	Glu	Arg	Leu 230	Glu	Glu	Asn	His	Tyr 235	Asn	Thr	Tyr	Ile	Ser 240	
Ī	Ĺys	Lys	His	Ala	G1u 245	Lys	Asn	Trp	Phe	Va1 250	Gly	Leu	Lys	Lys	Asn 255	G1y	
	ser	Cys	Lys	Arg 260	Gly	Pro	Arg	Thr	His 265	Туr	Gly	Gln	Lys	Ala 270	Ile	Leu	
	Phe	Leu	Pro 275	Leu	Pro	Val		Ser 280	Asp								
	<211 <212 <213 <220 <223	> Li > T: > OI > FI > O: 5 FI > OX 5 FI > NA	EATUR PHER equer brok ME/F	H: 84 DNA ISM: RE: INFO nce: class KEY:	Art: ORMAS For a t gre CDS	rion a pa:	: De: rt o: fac	Seque scrip f hur tor 1	otion								ion of
	<400)> SI	EQUE	ICE:	24												
								gcg Ala									48
								act Thr									96
								gga Gly 40									144
	gtg Val	ggg Gly 50	ccc Pro	ggg Gly	cag Gln	gaa Glu	tct Ser 55	gat Asp	gac Asp	ttt Phe	gag Glu	ctg Leu 60	tct Ser	ggc Gly	tct Ser	gga Gly	192
	gat Asp 65	ctg Leu	gat Asp	gac Asp	ttg Leu	gaa Glu 70	gac Asp	tcc Ser	atg Met	atc Ile	ggc Gly 75	cct Pro	gaa Glu	gtt Val	gtc Val	cat His 80	240
	ccc Pro	ttg Leu	gtg Val	cct Pro	cta Leu 85	gat Asp	aac Asn	cat His	atc Ile	cct Pro 90	gag Glu	agg Arg	gca Ala	ggg Gly	tct Ser 95	ggg ggg	288
								aag Lys									336
	ccc Pro	aag Lys	aga Arg 115	atc Ile	tca Ser	ccc Pro	gtt Val	gaa Glu 120	gag Glu	agt Ser	gag Glu	gat Asp	gtg Val 125	tcc Ser	aac Asn	aag Lys	384
	gtg Val	tca Ser 130	atg Met	tcc Ser	agc Ser	act Thr	gtg Val 135	cag Gln	ggc Gly	agc Ser	aac Asn	atc Ile 140	ttt Phe	gag Glu	aga Arg	acg Thr	432
	gag Glu 145	gtc Val	gct Ala	aat Asn	tac Tyr	aag Lys 150	Lys	ccc Pro	aaa Lys	ctc Leu	ctc Leu 155	tac Tyr	tgt Cys	agc Ser	aac Asn	ggg Gly 160	480
	ggc Gly	cac His	ttc Phe	ctg Leu	agg Arg 165	Ile	ctt Leu	ccg Pro	gat Asp	ggc Gly 170	Thr	gtg Val	gat Asp	ggg Gly	aca Thr 175	Arg	528
	gac Asp	agg Arg	agc Ser	gac Asp 180	Gln	cac His	att Ile	cag Gln	ctg Leu 185	Gln	ctc Leu	agt Ser	gcg Ala	gaa Glu 190	Ser	gtg Val	576
	ggg G1y	gag Glu	gtg Val 195	tat Tyr	ata [le	aag Lys	agt Ser	acc Thr 200	Glu	act Thr	ggc Gly	cag Gln	tac Tyr 205	Leu	gcc Ala	atg Met	624
	gac	acc	gac	ggg	ctt	tta	tac	ggc	tca	cag	aca	cca	aat	gag	gaa	tgt	672

to the Company of the
Low the Leu Glu Arg Leu Glu Glu Aen His Tyr Aen Thr Tyr II e Ser 235 236 237 238 238 239 230 237 238 238 239 240 239 240 240 240 240 240 240 240 24
age tge aaa ege ggt cet egg act cac tat gge cag aaa gea atc ttg Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Cly Gln Lys Ala Ille Leu 265 265 270 Ltt cto coc ctg cca gte tet tet gat Phe Leu Pro Val Ser Ser Asp 270 Lundrin: 172 280 281 280 283 2843 2843 2843 285 286 286 270 Lundrin: 172 280 280 280 280 280 280 280 2
SEC Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys Ala Ile Leu 265 Ett etc ecc etg cea git etct tot gat Phe Leu Pro Leu Pro Val Ser Ser Asp 275 2210 - SEQ ID NO 25 <2110 - SEQ ID NO 25 <2111 - LENGTH: 172 <2112 - TYPE: PRT <2112 - TYPE: PRT <2113 - DREAMISH: Artificial Sequence <2213 - OTERMINE: PRT <2123 - OTERMINE: PRT <2124 - TYPE: PRT <2125 - TYPE: PRT <2125 - TYPE: PRT <2126 - TYPE: PRT <2127 - TYPE: PRT <2127 - TYPE: PRT <2128 - TYPE: PRT <2128 - TYPE: PRT <2129 - TYPE: PRT <2129 - TYPE: PRT <2120 - TYPE: PRT <2121 - TYPE: PRT <2120 - TYPE: PRT <2121 - TYPE: PRT <2122 - TYPE: PRT <2122 - TYPE: PRT <2122 - TYPE: PRT <2123 - TYPE: PRT <2123 - TYPE: PRT <2124 - TYPE: PRT <2125 - TYPE: PRT <2125 - TYPE: PRT <2125 - TYPE: PRT <2126 - TYPE: PRT <2126 - TYPE: TYPE: PRT <2127 - TYPE: TYPE: PRT <2127 - TYPE: TYP
the tot occ ctg cca gtc tot tot gat Phe Leu Pro Leu Pro Leu Pro Val Ser Ser Asp 275 2210 > SeQ ID NO 25 <211 > LENGTH: 172 <212 > TYPE: PRT <212 > TYPE: PRT <212 > TYPE: PRT <213 > ORGANISM: Artificial Sequence <220 > TEATURE: PROPOMENTION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 <pre> 4400 > SEQUENCE: 25</pre> Met Ser Arg Gly Ala Gly Arg Val Gln Gly Thr Leu Gln Ala Leu Val 1
<pre><210> SEQ ID NO 25 <211> LENCTH: 172 <212> TYPE: PRT 213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 1 </pre> <pre><400> SEQUENCE: 25 Met Ser Arg Gly Ala Gly Arg Val Gln Gly Thr Leu Gln Ala Leu Val</pre>
Met Ser Arg Gly Ala Gly Arg Val Gln Gly Thr Leu Gln Ala Leu Val 1
Phe Leu Gly Val Leu Val Gly Met Val Val Pro Ser Pro Ala Gly Ala 20 Arg Ala Asn Gly Ser Ala Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys 45 Ser Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp 50 Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala 65 Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala 75 Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr 95 Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn 100 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 165 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 **210> SEQ ID NO 26 **2210> SEQ ID NO 26 **2211> LENGTH: 516 **2122- TYPE: DNA **213- ORGANISM: Artificial Sequence **2203- CHTMER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 **221> NAME/KEY: CDS ***222> LOCATION: (1)(516)
Arg Ala Asn Gly Ser Ala Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys 15 40 45 Ser Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp 50 55 60 Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala 65 70 80 Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr 85 90 95 Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn 100 105 110 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 120 125 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 135 140 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 150 150 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <a href="</td">
Ser Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp 50 Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala 65 Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr 85 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170
Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala 65 70 70 75 80 Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr 85 90 90 100 Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn 100 100 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 120 125 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 135 140 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 150 160 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <pre> </pre> C210 SEQ ID NO 26 C211 LENGTH: 516 C212 TyrE: DNA C210 SEQ ID NO 26 C211 LENGTH: 516 LENGTH: 516 C212 TyrE: DNA C213 ORGANISM: Artificial Sequence C223 OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 C221 NAME/KEY: CDS C222 NAME/KEY: CDS
Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr 85 Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn 100 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 <pre> </pre>
Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln Thr Pro Asn 100 Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 140 Lys Asn Gly Ser Cys Lys Arg Gly Pro You Thr His Tyr Gly Gln Lys 150 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 160 <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pr< td=""></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn His Tyr Asn Thr 115 120 125 Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 135 140 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 150 155 160 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <pre> </pre> <pre> <210> SEQ ID NO 26 <211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: </pre> <220> FEATURE: <221> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 <221> NAME/KEY: CDS <222> LOCATION: (1)(516)
Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys 130 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <pre> <210> SEQ ID NO 26 <211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 </pre> <221> NAME/KEY: CDS <222> LOCATION: (1)(516)
Lys Asn Gly Ser Cys Lys Arg Gly Pro Arg Thr His Tyr Gly Gln Lys 145 150 155 160 Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <210> SEQ ID NO 26 <211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 <221> NAME/KEY: CDS <222> LOCATION: (1)(516)
Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 165 170 <210> SEQ ID NO 26 <211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6 and a part of human fibroblast growth factor 1 <221> NAME/KEY: CDS <222> LOCATION: (1)(516)
<pre></pre>
<pre><211> LENGTH: 516 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of</pre>

											-	con	tin	ued			
Met 1	Ser	Arg	Gly	Ala 5	Gly	Arg	Val	Gln	G1y 10	Thr	Leu	Gln	Ala	Leu 15	Va1		•
ttc Phe	tta Leu	ggc Gly	gtc Val 20	cta Leu	gtg Val	ggc Gly	atg Met	gtg Val 25	gtg Val	ccc Pro	tca Ser	cct Pro	gcc Ala 30	ggc Gly	gcc Ala	96	
					gct Ala											144	
					ttc Phe											192	
	Thr				agc Ser 70											240	
					gtg Val											288	
t tg Leu	gcc Ala	atg Met	gac Asp 100	acc Thr	gac Asp	ggg Gly	ctt Leu	tta Leu 105	tac Tyr	ggc	tca Ser	cag Gln	aca Thr 110	cca Pro	aat Asn	336	
gag Glu	gaa Glu	tgt Cys 115	ttg Leu	ttc Phe	ctg Leu	gaa Glu	agg Arg 120	ctg Leu	gag Glu	gag Glu	aac Asn	cat His 125	tac Tyr	aac Asn	acc Thr	384	
tat Tyr	ata Ile 130	tcc Ser	aag Lys	aag Lys	cat His	gca Ala 135	gag Glu	aag Lys	aat Asn	tgg Trp	ttt Phe 140	gtt Val	ggc Gly	ctc Leu	aag Lys	432	
aag Lys 145	Asn	ggg	agc Ser	tgc Cys	aaa Lys 150	cgc Arg	ggt Gly	cct Pro	cgg Arg	act Thr 155	cac His	tat Tyr	ggc Gly	cag Gln	aaa Lys 160	480	
					ccc Pro											516	
<21 <21 <21 <22	0> F: 3> 0'	ENGTI YPE: RGAN EATU THER eque	H: 2 PRT ISM: RE: INF nce	10 Art ORMA for	ific TION a pa an f	: De	scri; f mo	ptio use	n of fibr	obla	ific st g	ial rowt	Sequ h fa	ence ctor	: fus: 6 and	ion of i	
<40	0> S	EQUE	NCE:	27													
Met	Ser	Arg	Gly	Ala 5	Gly	Arg	Va1	Gln	Gly 10		Leu	Gln	Ala	Leu 15	Val		
· Phe	Leu	G1y	Val 20		Val	Gly	Met	Va1 25		Pro	Ser	Pro	A1a 30	Gly	Ala		
Arg	Ala	Asn 35		Thr	Leu	Leu	Asp 40		Arg	Gly	Trp	Gly 45	Thr	Leu	Leu		
	50					55					. 60				Trp		
65	i				70					75					Lys 80		
				85					90					95	Leu		
Pro	Asp	G1y	Thr 100		Asp	Gly	Thr	Arg 105		arg	ser	ASP	110	nis	Ile		

Gln Leu Gln Leu Ser Ala Glu Ser Val Gly Glu Val Tyr Ile Lys Ser 115 120 125

				-continu	<u></u>	
Thr Glu Thr	Gly Gln Tyr	Leu Ala Met 135		sp Gly Leu 40	Leu Tyr	
Gly Ser Gln '	Thr Pro Asn 150	Glu Glu Cys	Leu Phe Le 155	eu Glu Arg	Leu Glu 160	
Glu Asn His '	Tyr Asn Thr 165	Tyr Ile Ser	Lys Lys H	is Ala Glu	Lys Asn 175	
Trp Phe Val	Gly Leu Lys 180	Lys Asn Gly 185	Ser Cys Ly	ys Arg Gly 190	Pro Arg	
Thr His Tyr (Gly Gln Lys	Ala Ile Leu 200	Phe Leu P	Pro Leu Pro 205	Val Ser	
Ser Asp 210						
sequen	: 630 DNA SM: Artific E: INFORMATION DE for a pa: of human f EY: CDS	: Description rt of mouse f ibroblast gro	fibroblast		ence: fusion of ctor 6 and	•
<400> SEQUEN		30)				
atg tcc cgg (Met Ser Arg (cgt gtt cag Arg Val Gln				48
		ggc atg gtg Gly Met Val 25				96
		ctg gac tcc Leu Asp Ser 40				
		cta gct gga Leu Ala Gly 55	Glu Ile S			
gaa agc ggc Glu Ser Gly 65					3 3	240
ccc aaa ctc Pro Lys Leu	ctc tac tgt Leu Tyr Cys 85	agc aac ggg Ser Asn Gly	Gly His P	he Leu Arg	Ile Leu	288
Pro Asp Gly	aca gtg gat Thr Val Asp 100	ggg aca agg Gly Thr Arg 105	Asp Arg S	agc gac cag Ser Asp Gln	His Ile	336
cag ctg cag Gln Leu Gln 115	ctc agt gcg Leu Ser Ala	gaa agc gtg Glu Ser Val 120	ggg gag g Gly Glu V	gtg tat ata Val Tyr Ile 125	J	384
acc gag act Thr Glu Thr	gge cag tac Gly Gln Tyr	ttg gcc atg Leu Ala Met 135	Asp Thr A	gac ggg ctt Asp Gly Leu 40	tta tac Leu Tyr	132
ggc tca cag Gly Ser Gln 145	aca cca aat Thr Pro Asn 150	gag gaa tgt Glu Glu Cys	ttg ttc c Leu Phe L 155	ctg gaa agg Leu Glu Arg	ctg gag Leu Glu 160	490
gag aac cat Glu Asn His	tac aac acc Tyr Asn Thr 165	tat ata tcc Tyr Ile Ser	aag aag c Lys Lys H 170	cat gca gag His Ala Glu	aag aat Lys Asn 175	528
Trp Phe Val	ggc ctc aag Gly Leu Lys 180	aag aat ggg Lys Asn Gly 185	Ser Cys L	aaa cgc ggt Lys Arg Gly 190		576

624 act cac tat ggc cag aaa gca atc ttg ttt ctc ccc ctg cca gtc tct Thr His Tyr Gly Gln Lys Ala Ile Leu Phe Leu Pro Leu Pro Val Ser 200 630 tct gat Ser Asp 210 <210> SEQ ID NO 29 <211> LENGTH: 180 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6, a part of human fibroblast growth factor 1 and an artificial sequence <400> SEQUENCE: 29 Met Ser Arg Gly Ala Gly Arg Val Gln Gly Thr Leu Gln Ala Leu Val Phe Leu Gly Val Leu Val Gly Met Val Val Pro Ser Pro Ala Gly Ala Arg Ala Asn Gly Thr Leu Leu Asp Ala Asn Tyr Lys Lys Pro Lys Leu Leu Tyr Cys Ser Asn Gly Gly His Phe Leu Arg Ile Leu Pro Asp Gly Thr Val Asp Gly Thr Arg Asp Arg Ser Asp Gln His Ile Gln Leu Gln Leu Ser Ala Glu Ser Val Gly Glu Val Tyr Ile Lys Ser Thr Glu Thr Gly Gln Tyr Leu Ala Met Asp Thr Asp Gly Leu Leu Tyr Gly Ser Gln 105 110 Thr Pro Asn Glu Glu Cys Leu Phe Leu Glu Arg Leu Glu Glu Asn Ala Thr Pro Ala Pro His Tyr Asn Thr Tyr Ile Ser Lys Lys His Ala Glu Lys Asn Trp Phe Val Gly Leu Lys Lys Asn Gly Ser Cys Lys Arg Gly 150 Pro Arg Thr His Tyr Gly Gln Lys Ala Ile Leu Phe Leu Pro Leu Pro Val Ser Ser Asp 180 <210> SEQ ID NO 30 <211> LENGTH: 540 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: fusion of sequence for a part of mouse fibroblast growth factor 6, a part of human fibroblast growth factor 1 and an artificial sequence <221> NAME/KEY: CDS <222> LOCATION: (1)..(540) <400> SEQUENCE: 30 48 atg too ogg gga goa gga ogt gtt cag ggo acg otg cag got oto gto Met Ser Arg Gly Ala Gly Arg Val Gln Gly Thr Leu Gln Ala Leu Val 96 tto tta ggc gtc cta gtg ggc atg gtg gtg ccc tca cct gcc ggc gcc Phe Leu Gly Val Leu Val Gly Met Val Val Pro Ser Pro Ala Gly Ala

											-	con	tin	ued				
			20					25					30		_			
	gcc Ala															144		
	tac Tyr 50															192		
	gtg Val															240		
ctc Leu	agt Ser	gcg Ala	gaa Glu	agc Ser 85	gtg Val	ggg	gag Glu	gtg Val	tat Tyr 90	ata Ile	aag Lys	agt Ser	acc Thr	gag Glu 95	act Thr	288		
	cag Gln															336		
	cca Pro															384		
	cca Pro 130															432		
	aat Asn					Leu										480		•
cct Pro	cgg Arg	act Thr	cac His	tat Tyr 165	G1y	cag Gln	aaa Lys	gca Ala	atc Ile 170	ttg Leu	ttt Phe	ctc Leu	ccc Pro	ctg Leu 175	cca Pro	528	,	
_	tct Ser		_													540		
<21 <21 <21 <22		ENGT YPE: RGAN EATU	H: 2 DNA ISM: RE:	0 Art			_			Art	ific	ial	Sequ	ence	:prime	er for		
<40	0> S	EQUE	NCE :	31														
																0.0		

What is claimed is:

aacaaaagct gggtaccggg

heparin-binding protein and at least one sugar chain covalently bonded thereto,

said at least one covalently bonded sugar chain being selected from the group consisting of a sulfated polysaccharide, a glycosaminoglycan and an O-linked sugar 55

said heparin-binding protein comprising (a) a proteoglycan core protein or a part thereof, to which said sugar chain is bonded, and (b) the portion of the amino acid sequence of SEQ ID NO: 1 starting with Asn at number 88 and 60 ending with Asp at number 221,

wherein the DNA synthesis promoting activity of the heparin-binding protein is increased by adding the at least one covalently bonded sugar chain.

2. The functionalized heparin-binding protein of claim 1, 1. A functionalized heparin-binding protein comprising a 50 wherein the at least one sugar chain is heparan sulfate:

20

- 3. The functionalized heparin-binding protein of claim 1, wherein the functionalized heparin-binding protein has improved stability over an unmodified heparin-binding protein.
- 4. The functionalized heparin-binding protein of claim 3, wherein the stability is chosen from among the group consisting of thermostability, acid resistance, alkalai resistance and resistance to proteolytic enzymes.
- 5. A pharmaceutical composition containing the functionalized heparin-binding protein of claim 1 as an active ingre-