MAT-10364 – Mathématiques de l'ingénieur II Examen type III, H08

Question 1

Soit S la portion du paraboloïde

$$z = x^2 + y^2, \quad z \le 1.$$

Si r désigne la longueur du vecteur position $\vec{r} = (x, y, z)$ et si $\phi = r^2$, calculer le flux du champ

$$\vec{v} = \nabla \phi$$
,

à travers S dans la direction de la normale dont la troisième composante est négative.

Question 2

Soit $\alpha \in [0, \frac{\pi}{2}]$ et h > 0. On considère la surface d'équation

$$\vec{r}(u,v) = (u\cos v, u\sin v, h - u\cot \alpha), \ u \in [0, h\tan \alpha], \ v \in [0, 2\pi].$$

Soit
$$\vec{a} = (0, 0, h)$$
 et $\vec{w} = \nabla \times (\vec{a} \times \vec{r})$.

Calculer le flux de \vec{w} à travers la surface dans la direction de la normale dont la troisième composante est positive.

Question 3

On considère le solide K délimité par

- la portion P du paraboloïde $z=x^2+y^2-4$ correspondant à $z\in[-4,0];$
- le disque $D z = 0, x^2 + y^2 \le 4$.

Soit
$$\vec{W} = \nabla \times ((y\vec{i} + x\vec{j} + z\vec{k}) \times (z\vec{i} + y\vec{j} + x\vec{k})).$$

Sans faire aucune paramétrisation de surface, calculer les flux de \vec{W}

- 1. à travers P dans la direction intérieure à K;
- 2. à travers D dans la direction extérieure à K;
- 3. à travers la paroi de K, dans la direction extérieure.

Question 4

On désigne par Σ la portion de cône

$$z = 2 - \sqrt{x^2 + y^2}, \quad 1 \le x^2 + y^2 \le 4,$$

et par \vec{n} la normale à Σ dont la troisième composante est négative. Calculer le flux de $\vec{v} = (0, x^2, yz)$ à travers Σ dans la direction de \vec{n} .

Question 5

On considère une plaque homogène D située dans le plan xOy et délimitée par une courbe simple fermée C. On suppose connue les quantités géométriques et physiques suivantes:

- masse surfacique (densité): σ ,
- \bullet aire :A,
- position du centre de gravité: (\bar{x}, \bar{y})
- moment d'inertie polaire $:J_0$.

Evaluer l'intégrale curviligne suivante en fonction de ces quantités:

$$I = \int_C \left(-yx^2 + \frac{3}{2}y^2 \right) dx + (x^2 + xy^2 + x) dy.$$

Question 6

On désigne par Σ la portion du paraboloïde

$$z = 1 - (x^2 + y^2),$$

pour laquelle $z \in [0,1]$. Si \vec{n} désigne la normale à Σ dont la troisième composante est positive, calculer le flux du rotationnel de

$$\vec{a} = (x, y + x, zx),$$

à travers Σ dans la direction \vec{n} .

Question 7

Parmi les énoncés suivants, identifier ceux qui sont vrais et ceux qui sont faux. Pour ce faire, ne répondre que vrai ou faux à chacune des questions.

- a) Le travail d'un champ conservatif sur une courbe C est toujours nul.
- b) Si \vec{F} est défini et dérivable sur $D = \mathbb{R}^3 \setminus \{(0,0,0)\}$ et si son rotationnel est nul sur D, alors \vec{F} est conservatif sur D.
- c) Si \vec{u} est défini et dérivable sur un domaine D de \mathbb{R}^3 , le flux de rot (\vec{u}) à travers une surface fermée, contenue dans D, est nul.
- d) La divergence d'un champ conservatif est toujours nulle.
- e) Soit \vec{F} dérivable sur \mathbb{R}^3 tel que son rotationnel est constant et égal à \vec{a} . Si $\vec{a} \cdot \vec{k} \neq 0$, alors pour tout domaine D du plan xy on a

Aire(D) =
$$\frac{1}{|\vec{a} \cdot \vec{k}|} \left| \int_{\partial D} \vec{F} \cdot d\vec{r} \right|$$
,

où ∂D est la frontière de D.

- f) Si le travail d'un champ dérivable \vec{F} entre deux points quelconques de son domaine est independant du chemin qui les relie, le flux de rot (\vec{F}) à travers n'importe quelle surface est nul.
- g) Si le travail d'un champ dérivable \vec{G} sur une courbe fermée C de \mathbb{R}^3 est nul, alors rot $(\vec{G}) = (0,0,0)$. Qualifier de vrai ou de faux (uniquement) les énoncés qui suivent. Comme d'habitude, \vec{r} dénote le vecteur position $\vec{r} = (x,y,z)$ et $\vec{i},\ \vec{j},\ \vec{k}$ les vecteurs unitaires des trois axes Ox, Oy et Oz.

Qualifier de vrai ou de faux (uniquement) les énoncés qui suivent. Comme d'habitude, \vec{r} dénote le vecteur position $\vec{r} = (x, y, z)$ et \vec{i} , \vec{j} , \vec{k} les vecteurs unitaires des trois axes Ox, Oy et Oz.

a) Si $K\subset\mathbb{R}^3$ est un solide quelconque dont la parois est une surface notée S et que la normale extérieure à S est notée \vec{n} , alors on a

$$\iint_{S} \vec{r} \cdot \vec{n} \, dA = 2 \text{Vol}(K).$$

b) Soit D un domaine du plan yOz (c'est-à-dire x=0) dont la frontière est une courbe fermée C. Soit $\vec{v}=(1,1,1)\times\vec{r}$. On a

$$\int_{C} \vec{v} \cdot d\vec{r} = \pm 2 \operatorname{Aire}(D).$$

c) Soit C une courbe fermée de \mathbb{R}^2 et D le domaine délimité par C. On a

Aire
$$(D) = \frac{1}{2} \int_C (y, x) \cdot d\vec{r}$$
.

- d) Soit $T=x^2+y^2+z^2$ et $\vec{v}=\nabla T$. Si on pose $\vec{w}=\vec{v}\times\vec{k}$, alors le travail de \vec{w} sur toutes les courbes fermées de \mathbb{R}^3 est nul.
- e) Si \vec{F} est un champ de vecteurs dérivable partout sur \mathbb{R}^3 pour lequel

$$\iint\limits_{S} \vec{F} \cdot \vec{n} \, dA = 0$$

pour toutes les sphères S centrées en (0,0,0), alors la divergence div (\vec{F}) est nulle partout sur \mathbb{R}^3 .