Usi (meno scontati) della visita DFS

lezione basata sul capito 3 del libro Algorithms, di Dasgupta, Papadimitriou, Vazirani, McGraw-Hill

Informazioni utili: tenere il tempo

```
procedura visitaDFSRicorsiva(vertice \ v, albero \ T)
       marca e visita il vertice y
                                  | pre(v)=clock
       for each ( arco (v, w) ) do
                                      clock=clock+1
2.
3.
          if (w non è marcato) then
              aggiungi l'arco (v, w) all'albero T
4.
5.
              visitaDFSRicorsiva(w, T)
       post(v)=clock; clock=clock+1
    algoritmo visitaDFS(vertice\ s) \rightarrow albero
       T \leftarrow \text{albero vuoto}
6.
       visitaDFSRicorsiva(s,T)
7.
8.
       return T
                        pre(v): tempo in cui viene "scoperto" v
```

post(v): tempo in cui si "abbandona" v

quando non tutti i nodi sono raggiungibili dal punto di partenza

VisitaDFS (grafo G)

- 1. **for each** nodo *v* **do** imposta *v* come *non marcato*
- 2. clock=1
- 3. $F \leftarrow$ foresta vuota
- 4. **for each** nodo v **do**
- 5. **if** ($v \ge non\ marcato$) **then**
- 6. $T \leftarrow$ albero vuoto
- 7. visitaDSFRicorsiva(v,T)
- 8. aggiungi T ad F
- 9. **return** *F*

pre(v) post(v)

proprietà

per ogni coppia di nodi u e v, gli intervalli [pre(u),post(u)] e [pre(v),post(v)] o sono disgiunti o l'uno è contenuto nell'altro

u è antenato di v nell'albero DFS, se
 pre(u) < pre(v) < post(v) < post(u)
condizione che rappresentiamo così:</pre>

possiamo usare i tempi di visita per riconoscere il tipo di un generico arco (u,v) del grafo?

...riconoscere i tipi di arco

cicli, DAG e ordinamenti topologici

riconoscere la presenza di un ciclo in un grafo diretto

Algoritmo:

fai una visita DFS e controlla se c'è un arco all'indietro

Proprietà

Un grafo diretto 6 ha un ciclo se e solo se la visita DFS rivela un arco all'indietro.

 (\Leftarrow) : se c'è arco all'indietro, chiaramente G ha un ciclo

 (\Rightarrow) : se c'è ciclo $\langle v_0, v_1, ..., v_k = v_0 \rangle$

sia vi è il primo nodo scoperto nella visita

poiché v_{i-1} è raggiungibile da v_i , visito v_{i-1} prima di terminare la visita di v_i

allora (v_{i-1}, v_i) è un arco all'indietro

Definizione

Un grafo diretto aciclico (DAG) è un grafo diretto G che non contiene cicli (diretti).

Definizione

Un ordinamento topologico di un grafo diretto G=(V,E) è una funzione biettiva $\sigma:V \to \{1,2,...,n\}$ tale che per ogni arco $(u,v) \in E$, $\sigma(u) \cdot \sigma(v)$

reti "delle dipendenze"

nodi: compiti da svolgere arco (u,v): u deve essere eseguito prima di v

problema:

trovare un ordine in cui eseguire i compiti in modo da rispettare le dipendenze

quali grafi (diretti) ammettono un ordinamento topologico?

Teorema

Un grafo diretto 6 ammette un ordinamento topologico se e solo se 6 è un DAG

dim (⇒)

per assurdo: sia σ un ordinamento topologico di G

e sia
$$\langle v_0, v_1, ..., v_k = v_0 \rangle$$
 un ciclo
allora $\sigma(v_0) \langle \sigma(v_1) \langle ... \langle \sigma(v_{k-1}) \rangle \langle \sigma(v_k) = \sigma(v_0) \rangle$

(⇐): ...adesso diamo un algoritmo costruttivo.

calcolare ordinamento topologico

Algoritmo:

fai una visita DFS e restituisci i nodi in ordine decrescente rispetto ai tempi di fine visita post(v)

OrdinamentoTopologico (grafo G)

- 1. top=n; $L \leftarrow lista vuota$;
- chiama visita DFS ma:
 - 1. quando hai finito di visitare un nodo v (quando imposti post(v)):
 - 2. $\sigma(v)$ =top; top=top-1;
 - 3. aggiungi v in testa alla lista L
- **3. return** *L* e σ

Complessità temporale: se G è rappresentato con liste di adiacenza

 $\Theta(n+m)$

correttezza

per ogni coppia di nodi u e v, gli intervalli [pre(u),post(u)] e [pre(v),post(v)] o sono disgiunti o l'uno è contenuto nell'altro

non ci possono essere archi all'indietro

Un algoritmo alternativo

algoritmo ordinamentoTopologico $(grafo\:G) \to lista$ $\widehat{G} \leftarrow G$

 $ord \leftarrow$ lista vuota di vertici

- while (esiste un vertice u senza archi entranti in \widehat{G}) do appendi u come ultimo elemento di ord rimuovi da \widehat{G} il vertice u e tutti i suoi archi uscenti
- (*) if (\widehat{G} non è diventato vuoto) then errore il grafo G non è aciclico return ord
- (*) perché altrimenti in \hat{G} ogni vertice deve avere almeno un arco entrante, e quindi posso trovare un ciclo percorrendo archi entranti a ritroso, e quindi G non può essere aciclico)

Tempo di esecuzione (con liste di adiacenza): $\Theta(n+m)$ (dimostrare!)

F C A

F

(C)

A

B

F

C

A

В

D

G

C A B

C A B D

componenti fortemente connesse

una componente fortemente connessa di un grafo G=(V,E) è un insieme massimale di vertici C⊆V tale che per ogni coppia di nodi u e v in C, u è raggiungibile da v e v è raggiungibile da u

massimale: se si aggiunge un qualsiasi vertice a C la proprietà non è più vera

grafo delle componenti fortemente connesse di G

è sempre un DAG!

come si possono calcolare le componenti fortemente connesse di un grafo diretto?

Proprietà 1: se si esegue la procedura visitaDFSricorsiva a partire da un nodo u la procedura termina dopo che tutti i nodi raggiungibili da u sono stati visitati

Idea: eseguire una visita a partire da un nodo di una componente pozzo, "eliminare" la componente e ripetere

come trovo una componente pozzo?

Proprietà 2: se C e C' sono due componenti e c'è un arco da un nodo in C verso uno in C', allora il più grande valore post() in C è maggiore del più alto valore di post() di C'

dim: se la DFS visita prima C' di C: banale. se visita prima C, allora si ferma dopo che ha raggiunto tutti i nodi di C e C' e termina su un nodo di C.

Proprietà 3: il nodo che riceve da una visita DFS il valore più grande di post() appartiene a una componente sorgente

B,E C,F

ma avevamo bisogno di una componente pozzo?

idea: invertiamo gli archi!

VisitaDFS (grafo G)

- 1. calcola G^R
- 2. esegui DFS(G^R) per trovare valori post(v)
- 3. **return** CompConnesse(G)

CompConnesse (grafo G)

- 1. **for each** nodo *v* **do** imposta *v* come *non marcato*
- 2. Comp $\leftarrow \emptyset$
- 3. **for each** nodo v in ordine decrescente di post(v) **do**
- 4. **if** ($v \ge non\ marcato$) **then**
- 5. $T \leftarrow$ albero vuoto
- 6. visitaDSFRicorsiva(v,T)
- 7. aggiungi *T* a *Comp*
- 8. **return** *Comp*

Complessità temporale: se G è rappresentato con liste di adiacenza $\Theta(n+m)$

