

Zadanie 2

- Zadanie a bodovanie je k dispozícii na dokumentovom serveri v AIS
- Máte sa naučiť:
 - 1. Používať validačnú množinu
 - 2. Vedieť identifikovať podtrénovanie/ pretrénovanie
 - 3. Sledovať a regulovať proces trénovania siete
 - 4. Trénovať Stroj s podpornými vektormi
- Dataset:
 - dostupný v AIS
 - testovacia množina je oddelená, aby sa dali systémy navzájom porovnávať
 - popisy stĺpcov podľa Spotify API

Obsah tejto prezentácie

- Stroj s podpornými vektormi:
 - Trénovanie
 - Kernely
 - Parametre

- Vzorová neurónka (opäť), dokumentácie
- O týždeň Zadanie 3

Metóda podporných vektorov - intuícia

- Učenie s učiteľom
- Hľadá hyperroviny oddeľujúce triedy (klasifikácia) / približnú funkciu (regresia) podobné neurónkam
- Hľadá váhy w pre rovnice, ktorých kombinácia so vstupmi predikuje výstup podobné neurónkam
- Predstavuje koncept podporných vektorov, ktoré pomáhajú hľadať dobré hyperroviny optimalizujem pre "ťažké" vstupy, nie pre všetky
- Vyberáme hyperparametre:
 - Druh kernelu
 - (
 - Gamma
 - Stupeň (pri polynomiálnom kerneli)

Kriteriálna funkcia/trénovanie

- Hinge loss:

$$L(\boldsymbol{w}, b) = \sum_{i}^{n} max(0, 1 - y_{i}(\boldsymbol{w}^{T}\boldsymbol{x_{i}} + b)) + \lambda \|\boldsymbol{w}\|^{2};$$

$$y = \pm 1$$

- Resp.: $\min_{w,b} \|w\|^2$ ak platí $y_i(oldsymbol{w}^Toldsymbol{x_i}+b) \geq 1$

Parabola má jedno minimum :)

Hard a soft margin

Zmeníme:

$$\min_{w,b} ||w||^2$$
$$y_i(\boldsymbol{w}^T \boldsymbol{x_i} + b) \ge 1$$

na:

$$\min_{w,b} ||w||^2 + C \sum_{i=1}^{n} \xi_i$$
$$y_i(\boldsymbol{w}^T \boldsymbol{x_i} + b) \ge 1 - \xi_i; \xi_i \ge 0$$

a do hyperparametrov pribudne *cost* C.

Hyperparametre - C

- Určuje počet správne klasifikovaných vzoriek vs maximalizovanie rozdeľovacej hranice
- Vysoká hodnota C = väčšia hranica
- Nízka hodnota C = nízka hranica

Kernelový trik

Hyperparametre - druh kernelu

- Lineárny kernel
- Polynomiálny kernel
- RBF kernel

Linear Kernel

C hyperparameter

Polynomial Kernel

C plus gamma, degree and coefficient hyperparameters

RBF Kernel

C plus gamma hyperparameter

Hyperparametre - γ

- Súvisí so šírku RBF funkcií
- Určuje, aký "ďaleký dosah" má jedna vzorka
- Čím nižšia hodnota y, tým väčší dosah majú vzorky

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Hyperparameter - stupeň

- Pri polynomiálnom kerneli
- Vyšší stupeň dlhší čas trénovania, väčšia komplexnosť

Viac-triedne rozpoznávanie - one vs all

Viac-triedne rozpoznávanie - one vs one

Poznámky

- Čím komplexnejší model, tým dlhší čas trénovania a tým väčšia možnosť pretrénovania
- SVM sa dá lepšie trénovať na malej množine ako ANN (pretrénovanie) ale pozor na outliers a nereprezentatívnu množinu
- SVM obvykle rýchlejšie ako ANN
- Takisto vie riešiť aj regresné problémy

