Pumping Lemma Steps

The following are the steps of pumping lemma required for proving that a given set is not regular.

Step 1 Let us assume that the given language L is regular. Let n be the number of states in the corresponding finite automaton FA.

Step 2 Choose a string z such that $|z| \ge n$. Let us use pumping Lemma to write z = uvw, with condition $|uv| \le n$ and $|v| \ge 1$ or $|v| \ne 0$.

Solution

Step 1 Let us suppose L is regular language and if we get a contradiction then L is not regular. Suppose finite automaton has n states that accepts language L

Step 2 Let $z = 0^n 1^n$, then |z| = 2n > n. By pumping lemma we write z = uvw with $|uv| \le n$ and $|v| \le n$.

Step 3 Now we have to find i so that $uv^iw \notin L$ to get a contradiction. The string v can be any one of the three possible forms:

- (i) the string v is constructed by using only 0's, it means $v = 0^k$ for some $k \ge 1$
- (ii) the string v is constructed by using only 1's it means v = 1' for some $l \ge 1$
- (iii) the string v is constructed by using both symbols 0's and 1's. Then the string v will be of the form $v = 0^m 1^p$ for some $m \ge 1$ and $p \ge 1$

case (i) By pumping lemma we write

$$z = 0^{n}1^{n}$$

$$= \underbrace{0000000 \dots 00000}_{0^{n-k}} \underbrace{000000111111111 \dots 111111}_{0^{n-k}} = 0^{n-k}0^{k}1^{n}$$

$$\det u = 0^{n-k}, v = 0^{k} \text{ and } w = 1^{n}$$

we now consider $u = 0^{n-k}$, $v = 0^k$ and $w = 1^n$

By pumping lemma we write

$$z = 0^{n-k} (0^k)^i 1^n$$

for i = 0 we get

$$z = 0^{n-k}1^n$$

which is a contradiction because $0^{n-k}1^n \notin L$. In $0^{n-k}1^n$, the number of 0's are less than number of 1's as $k \ge 1$.

Case (ii) By pumping lemma we write

$$z=0^n1^n$$

$$=\underbrace{000000.....0000}_{0^n}\underbrace{1111111.....1}_{1^l}\underbrace{1111.....11111}_{1^{n-l}}=0^n0^l1^{n-1}$$

Here we considered $u = 0^n$, $v = 1^l$ and $w = 1^{n-l}$

By pumping lemma we write

$$z = 0^n (1^l)^i 1^{n-1}$$

for i = 0 we get

$$z = 0^n 1^{n-l}$$

which is a contradiction because $0^n 1^{n-l} \notin L$. In $0^n 1^{n-l}$ the number of 0's are more than the number

Case (iii) By pumping lemma we write

$$z = 0^{n}1^{n}$$

$$= \underbrace{000000 \dots 0000 \dots 0}_{0^{n-m}} \underbrace{001111 \dots 1}_{0^{m}1^{p}} \underbrace{11111 \dots 11111}_{1^{n-p}} = 0^{n-m}0^{m}1^{p}1^{n-p}$$

Here we considered $u = 0^{n-m}$, $v = 0^{\frac{1}{m}} 1^p$ and $w = 1^{n-p}$

By pumping lemma we write

$$z = 0^{n-m} (0^m 1^p)^i 1^{n-p}$$

For i = 0 we do not get a contradiction in this case, because for i = 0, $z = 0^{n-m} 1^{n-p}$, here $m_{\text{may b}}$ equal to p therefore no contradiction.

For i = 2 we get

$$z = 0^{n-m} (0^m 1^p)^2 1^{n-p}$$

$$= 0^{n-m} (0^m 1^p) (0^m 1^p) 1^{n-p}$$

$$= 0^n 1^p 0^m 1^n$$

which is a contradiction because $0^n 1^p 0^m 1^n \notin L$. In $0^n 1^p 0^m 1^n$, m occurrences of 0's occur after 1^n which is not supported by 0"1".

All three above cases prove that L is not regular.

Example 5.2

Prove that language $L = \{a^i b^j \mid i \neq j\}$ is not regular.

Solution We will prove that language $L = \{a^i b^j \mid i \neq j\}$ is not regular by using pumping lemma. We apply the following steps:

Step 1 Assume given language $L = \{a^i b^j | i \neq j\}$ is regular.

Step 2 By pumping lemma we write

$$z = a^i b^j = uvw$$
, such that $|v| \neq 0$ or $|v| \ge 1$.

Step 3 There are two cases:

- (i) i > j, in this case $v = a^{ij}$.
- (ii) $j \ge i$, in this case $v = b^{j-i}$.

Case (i) $z = uv^k w$

$$z = a^i b^j = a^j (a^{i-j})^k b^j$$

for k = 0, we have $z = a^{j}b^{j}$, which is a contradiction as we can see that number a's are equal to number of b's, therefore the language L = 0. of b's, therefore the language $L = \{a^i b^j \mid i \neq j\}$ is not regular.

Case (ii)
$$z = uv^k w$$

$$z = a^i b^j = a^i (b^{j-i})^k b^i$$

for k = 0, we have $z = a^i b^i$, which is a contradiction as we can see that number a's are equal to number of b's, therefore the language $L = \{a^i b^i\}_{i=1}^n$ is of b's, therefore the language $L = \{a^ib^j \mid i \neq j\}$ is not regular.

Step 1 Let us suppose L is regular language and if get a contradiction then L is not regular. Let n be $\frac{1}{1}$ number of states in the finite automaton accepting language L.

Step 2 Let p be the prime number greater than n. By pumping lemma, we have $z = 0^p = uvw$ and |z|

By using pumping lemma, we can write z = uvw, with $|uv| \le n$ and $|v| \ge 1$. u, v, w are the strings of $=|nw|=|0^p|=p.$ 0's. Therefore, $v = 0^m$ for some $n \ge m \ge 1$. So |v| = m.

Step 3 Let i = p + 1. Then,

$$|uv^{i}w| = |uvw| + |v^{i-1}|$$

= $p + (i-1)m$
= $p + (i+1-1)m$ by $i = p + 1$
= $p + pm$
= $p(1+m)$.

By pumping lemma $uv^iw \notin L$ with i = p + 1, because $|uv^iw| = p(1 + m)$, and p(1 + m) is not a prime number, since it is divisible by p and (1 + m) where $|(1 + m)| \ge 2$. Here we get a contradiction to say that L is not regular.

Example 5.4

By using pumping lemma show that the language $L = \{a^{n^2} \mid n > 1\}$ is not

Solution

Step 1 Let us assume that $L = \{a^{n^2} | n > 1\}$ is regular. If the language $L = \{a^{n^2} | n > 1\}$ is regular then by mathematical induction $L = \{a^{(m-1)^2} \mid m > 0\}$ is also regular. Let us assume n = m + 1

Step 2 Let
$$z = a^{(m+1)^2}$$
 then $|z| = (m+1)^2$

By pumping lemma we write

z = uvw such that $|uv| \le (m+1)^2$ and $|v| \ge 1$.

Step 3 As the string $a^{(m+1)^2}$ contains occurrences of a's we have

$$z = a^{(m+1)^2} = a^{m^2 + 2m + 1} = a^{m^2} a^{2m} a$$

Let $u = a^{m^2}$, $v = a^{2m}$, and w = a, then by pumping lemma, we have

$$z = a^{m^2} \left(a^{2m} \right)^i a$$

for i = 0

$$z = a^{m^2} a = a^{m^2 + 1}$$

which is a contradiction, because $m^2 + 1$ can never be complete square for m > 0. In other words

$$m^2 < m^2 + 1 < (m+1)^2$$

Therefore, L is not regular.

Solution

Step 1 Let us assume that $L = \{a^n b^k \mid n > k \ge 0\}$ is regular.

Step 2 By pumping lemma we write

$$z = a^n b^k$$

z = uvw such that $|uv| \le n + k$, and $|v| \ge 1$.

Step 3 The part 'v' may contain

- (i) only a's such that $v = a^{n-k}$ with $n k \neq 0$.
- (ii) Both a's and b's such that $v = a^m b^l$, with $m, l \neq 0$.

Case (i) By pumping lemma we write

$$z = a^n b^k$$
$$= a^k a^{n-k} b^k$$

Here we assume $u = a^k$, $v = a^{n-k}$, and $w = b^k$, then by pumping lemma, we have $z = a^k (a^{n-k})^i b^k$

for
$$i = 0$$

$$z = a^k b^k$$

which is a contradiction because $a^k b^k \notin L$ for any k. In $a^k b^k$ the number of a's and b's are same.

Case (ii) By pumping lemma we write

$$z = a^n b^k$$

$$= a^{n-m} a^m b^l b^{k-l}$$

Here we assume $u = a^{n-m}$, $v = a^m b^l$, and $w = b^{k-l}$, then by pumping lemma, we have

$$z = a^{n-m} (a^m b^l)^i b^{k-l}$$

For
$$i = 2$$
 we get

$$z = a^{n-m} (a^m b^l)^2 b^{k-l}$$

$$=a^{n-m}(a^mb^l)(a^mb^l)b^{k-l}$$

$$=a^nb^la^mb^k$$

Which is a contradiction because $a^nb^la^mb^k \notin L$. In $a^nb^la^mb^k$, some occurrences of b's are followed by a's, which is not the property of language L.