

SEQUENCE LISTING

<110> Le, Junming
Vilcek, Jan
Daddona, Peter
Ghrayeb, John
Knight, David
Siegel, Scott

<120> Anti-TNF Antibodies and Peptides of
Human Tumor Necrosis Factor

<130> 0975.1005-038

<140>
<141>

<150> US 09/756,301
<151> 2001-01-08

<150> U.S. 09/133,119
<151> 1998-08-12

<150> U.S. 08/570,674
<151> 1995-12-11

<150> U.S. 08/324,799
<151> 1994-10-18

<150> U.S. 08/192,102
<151> 1994-02-04

<150> U.S. 08/192,861
<151> 1994-02-04

<150> U.S. 08/192,093
<151> 1994-02-04

<150> U.S. 08/010,406
<151> 1993-01-29

<150> U.S. 08/013,413
<151> 1993-02-02

<150> U.S. 07/943,852
<151> 1992-09-11

<150> U.S. 07/853,606
<151> 1992-03-18

<150> U.S. 07/670,827
<151> 1991-03-18

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 157
<212> PRT
<213> Homo sapiens

<400> 1
Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val
1 5 10 15
Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg
20 25 30
Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu
35 40 45
Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe
50 55 60
Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
65 70 75 80
Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala
85 90 95
Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys
100 105 110
Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys
115 120 125
Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
130 135 140
Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
145 150 155

<210> 2
<211> 321
<212> DNA
<213> Mus Balb/c

<220>
<221> CDS
<222> (1) . . . (321)

<400> 2
gac atc ttg ctg act cag tct cca gcc atc ctg tct gtg agt cca gga 48
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
1 5 10 15
gaa aga gtc agt ttc tcc tgc agg gcc agt cag ttc gtt ggc tca agc 96
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
20 25 30
atc cac tgg tat cag caa aga aca aat ggt tct cca agg ctt ctc ata 144
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
35 40 45
aag tat gct tct gag tct atg tct ggg atc cct tcc agg ttt agt ggc 192
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60
agt gga tca ggg aca gat ttt act ctt agc atc aac act gtg gag tct 240

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
 65 70 75 80

gaa gat att gca gat tat tac tgt caa caa agt cat agc tgg cca ttc 288
 Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
 85 90 95

acg ttc ggc tcg ggg aca aat ttg gaa gta aaa 321
 Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
 100 105

<210> 3
<211> 107
<212> PRT
<213> Mus Balb/c

<400> 3
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
 1 5 10 15
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
 20 25 30
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
 35 40 45
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
 65 70 75 80
Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
 85 90 95
Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
 100 105

<210> 4
<211> 357
<212> DNA
<213> Mus Balb/c

<220>
<221> CDS
<222> (1) . . . (357)

<400> 4
gaa gtg aag ctt gag gag tct gga gga ggc ttg gtg caa cct gga gga 48
Glu Val Lys Leu Glu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

tcc atg aaa ctc tcc tgt gtt gcc tct gga ttc att ttc agt aac cac 96
Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His
 20 25 30

tgg atg aac tgg gtc cgc cag tct cca gag aag ggg ctt gag tgg gtt 144
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
 35 40 45

gct gaa att aga tca aaa tct att aat tct gca aca cat tat gcg gag 192

Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu			
50	55	60	
tct gtg aaa ggg agg ttc acc atc tca aga gat gat tcc aaa agt gct			240
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala			
65	70	75	80
gtc tac ctg caa atg acc gac tta aga act gaa gac act ggc gtt tat			288
Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr			
85	90	95	
tac tgt tcc agg aat tac tac ggt agt acc tac gac tac tgg ggc caa			336
Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln			
100	105	110	
ggc acc act ctc aca gtc tcc			357
Gly Thr Thr Leu Thr Val Ser			
115			

<210> 5
<211> 119
<212> PRT
<213> Mus Balb/c

<400> 5			
Glu Val Lys Leu Glu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly			
1	5	10	15
Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His			
20	25	30	
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val			
35	40	45	
Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu			
50	55	60	
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala			
65	70	75	80
Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr			
85	90	95	
Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln			
100	105	110	
Gly Thr Thr Leu Thr Val Ser			
115			

<210> 6
<211> 8
<212> PRT
<213> Homo sapiens

<400> 6			
Gly Thr Leu Val Thr Val Ser Ser			
1	5		

<210> 7
<211> 7
<212> PRT

<213> Homo sapiens

<400> 7
Gly Thr Lys Leu Glu Ile Lys
1 5

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 8
cctggatacc tgtgaaaaga 20

<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 9
cctggtacct tagtcaccgt ctcctca 27

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 10
aatagatatac tccttcaaca cctgcaa 27

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 11
atcgggacaa agttggaaat a 21

<210> 12
<211> 16

<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 12
ggcggtctgg taccgg

16

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 13
gtcaacaaca tagtcatca

19

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 14
cacaggtgtg tccccaaagga aaa

23

<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 15
aatctgggggt aggcacaa

18

<210> 16
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 16
agtgtgtgtc cccagg 17

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 17
cacagctgcc cgcccaggtg gcat 24

<210> 18
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 18
gtcgccagtg ctccctt 17

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 19
atcggacgtg gacgtgcaga 20

<210> 20
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Partial sequence of pHc707

<400> 20
Ile Glu Pro Gly Thr Leu Val Thr Val Ser Ser
1 5 10

<210> 21
<211> 46

<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pHC707

<400> 21
cacaggtatc caggcctggc accttagtca ccgtctccctc aggtaa 46

<210> 22
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pHC707

<400> 22
cacaggtatc caggca 16

<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Partial sequence of pHC707

<400> 23
Pro Gly Thr Leu Val Thr Val Ser Ser
1 5

<210> 24
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pHC707

<400> 24
cctggtagttt tagtcaccgt ctcctcaggt aa 32

<210> 25
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC871

<400> 25
Val Glu Gly Asp Ile Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> 26
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC871

<400> 26
tttgcaggtg ttgaaggaga tatcgggaca aagttggaaa taaaacgtaa gt 52

<210> 27
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC671

<400> 27
Val Glu Gly Asp
1

<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC671

<400> 28
tttgcaggtg ttgaaggaga t 21

<210> 29
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC671

<400> 29
Ile Gly Thr Lys Leu Glu Ile Lys
1 5

<210> 30
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Partial sequence of pLC671

<400> 30
atcgggacaa agttggaaat aaaacgtaaag t 31