Ex 1: Développer les expressions suivantes

$$A = (2x + 3)^2$$
 $B = (5 - 2x)^2$ $C = (x + 4)(x - 4)$

Correction:

$$A = (2x)^{2} + 2(2x)(3) + (3)^{2} = 4x^{2} + 12x + 9$$

$$B = (5)^{2} - 2(5)(2x) + (2x)^{2} = 25 - 20x + 4x^{2}$$

Ex 2: Factoriser les expressions suivantes

$$D = 4(2x-1)(x-1) - 3x(x-1)$$

$$E = 2(x+2)(x^2-9)+2(x+3)(x+2)(x-2)$$

$$F = x^2 - 4 - (x - 2)(4 - 3x)$$

Correction:

$$D = (x-1)[4(2x-1)-3x] = (x-1)(8x-4-3x) = (x-1)(5x-4)$$

$$E = 2(x+2)(x+3)(x-3) + 2(x+3)(x+2)(x-2) =$$

$$= 2(x+2)(x+3)[(x-3) + (x-2)] =$$

$$= 2(x+2)(x+3)(x-3+x-2) =$$

$$= 2(x+2)(x+3)(2x-5)$$

$$F = (x+2)(x-2) - (x-2)(4-3x) =$$

$$= (x-2) [(x+2) - (4-3x)] =$$

$$= (x-2) (x+2-4+3x) = (x-2)(4x-2) =$$

$$= 2(x-2)(2x-1)$$

Ex 3: Réscudre les équations suivantes

1.
$$5x-4 = 2(x-1)$$

$$2.5x^2 - 4x = 0$$
 $3.x^2 - 3x = 0$

4.
$$\frac{1}{2}x^2 = \frac{1}{3}x$$
 5. $x^2 - 4 = 0$ 6. $x^2 + 4 = 0$

7.
$$2x^2 + 3x - 20 = 0$$
 8. $-9x + x^2 = 22$

9.
$$2x^4 - 12x^2 + 16 = 0$$

Correction:

1.
$$5x-4=2x-2 => 5x-2x=-2+4$$

 $(=> 3x=2 => x=\frac{3}{2} => S=\{\frac{3}{2}\}$

2.
$$5x^2 - 4x = 0$$

1er méthode: Factorisation

$$5x^2-hx=0 \iff x(5x-4)=0 \Rightarrow \text{Equation produit}$$

$$x=0 \quad \text{ou} \quad 5x-h=0$$

$$x=\frac{4}{5}$$

=>
$$S = \{0; \frac{4}{5}\}$$

$$2^{eme}$$
 méthode: Équation 2^{rd} degré $a\chi^2 + b\chi + c = 0$

$$5\chi^2 - 4\chi = 0 \qquad \alpha = 5 \qquad b = -4 \qquad c = 0$$

$$\Delta = b^2 - 4\alpha c = (-4)^2 - 4(5)(\alpha) = 16$$

$$\Delta > 0 = > 2 \text{ solutions}$$

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-4) - \sqrt{16}}{2(5)} = \frac{4 - 4}{10} = 0$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-4) + \sqrt{16}}{2(5)} = \frac{4 + 4}{10} = \frac{8}{10} = \frac{4}{5}$$

$$\Rightarrow S = \left\{0, \frac{4}{5}\right\}$$

3.
$$x(x-3)=0 \rightarrow \text{Eq. produit}$$
 $x=0 \text{ ou } x-3=0$
 $x=3 = 5 = \{0;3\}$

4.
$$\frac{1}{z}x^2 - \frac{1}{3}x = 0 \iff x\left(\frac{1}{z}x - \frac{1}{3}\right) = 0 \implies \text{Eq. produit}$$

$$x = 0 \quad \text{ou} \quad \frac{1}{z}x - \frac{1}{3} = 0$$

$$x = \frac{2}{3}$$

$$\Rightarrow S = \int \sigma; \frac{2}{3}\xi$$

5.
$$x^{2}-4=0$$
 1^{er} nithode: Factorisation

 $x^{2}-4=0 => (x+2)(x-2)=0 -> \xi q. \text{ produit}$
 $x+2=0 \text{ ou } x-2=0$
 $x=-2 \qquad x=2 => S= \{-2; 2\}$

$$2^{emi}$$
 méthode: Éq. 2^{nd} degré $x^2 - h = 0$ $a = 1$ $b = 0$ $c = -h$

$$\Delta = 0^2 - h(1)(-h) = 16 > 0 \rightarrow 2 \text{ solutions}$$

$$x_1 = \frac{-0 - \sqrt{16}}{2(1)} = \frac{-4}{2} = -2$$

$$x_2 = \frac{-0 + \sqrt{16}}{2(1)} = \frac{h}{2} = 2$$

6.
$$x^2 + 4 = 0$$

1er mithode:

Je remarque que x²+h est strictement paritif pour toutes valeurs de x.

Il est donc impossible que x²+4 soit nul. L'équation x²+4=0 n'a pas de solution.

$$\Rightarrow$$
 $S = \phi$

2ère méthode: Éq. 2nd degré

$$x^{2}+4=0$$
 $\alpha=1$ $b=0$ $c=4$

$$\Delta = 0^2 - 4(1)(4) = -16$$

 $\Delta LO => pas de solution => S = \phi$

7.
$$2x^2 + 3x - 20 = 0 \implies \xi q$$
. 2^{nd} de gré $\alpha = 2$ $b = 3$ $c = -20$

$$\Delta = (3)^2 - 4(2)(-20) = 9 + 160 = 169$$

$$x_1 = \frac{-3-43}{4} = \frac{-16}{4} = -4$$

$$x_2 = \frac{-3+13}{4} = \frac{10}{4} = \frac{5}{2}$$
 => $S = \left[-4, \frac{5}{2}\right]$

8.
$$-9x + x^2 = 22$$
 => $x^2 - 9x - 22 = 0$ -> $\neq q$. 2^{nd} degré $a = 1$ $b = -9$ $c = -22$

$$\Delta = (-9)^2 - 4(1)(-22) = 169$$

$$x_1 = \frac{9-13}{2} = \frac{-h}{2} = -2$$

$$x_2 = \frac{9+13}{2} = \frac{22}{2} = 11$$

$$x_3 = \frac{9+13}{2} = \frac{22}{2} = 11$$

9.
$$2x^4 - 12x^2 + 16 = 0$$

Changement de variable:

$$X = x^2 \Rightarrow X^2 = x^4 \text{ et } X \ge 0$$

L'équation devient:

$$2 \times^{2} - 12 \times + 16 = 0 \rightarrow \text{ Eq. 2}^{\text{rd}} \text{ degré pour } \times \alpha = 2 \quad b = -12 \quad c = 16$$

$$\Delta = (-12)^2 - 4(2)(16) = 144 - 128 = 16$$

$$X_1 = \frac{12-4}{4} = \frac{8}{4} = 2$$
 $X_2 = \frac{12+4}{4} = \frac{16}{4} = 4$

On cherche les valeurs de x:

$$x^{2} = 2$$
 $\langle = \rangle$ $x = \pm \sqrt{2}$
 $x^{2} = 4$ $z = 2$ $z = 2$ $z = 2$ $z = 2$ $z = 2$

Ex4: Résoudre les inéquations suivantes

1.
$$(3x-1)(x-2) > 0$$

2.
$$(2x-1)(3-x)<0$$

3.
$$(x-5)(2-3x) \leq 0$$

4.
$$(2-3x)(4x+1) > 2$$

5.
$$4x + 18 + x^2 \le 0$$
 6. $2x - x^2 - \frac{3}{4} > 0$

$$7. \ 4x-x^2>0$$

7.
$$4x-x^2>0$$
 8. $4x^2-4x+1\leq 0$

$$3. \quad x^2 + 5x + 7 \leq 0$$

10.
$$(2-x)(1-hx^2)>0$$

11.
$$(x^2-3x-4)(x^2-25)<0$$

12.
$$\frac{2-4x}{x^2+x+2} > 0$$
 13. $\frac{x^2-4x-5}{(1-x)(-2x+3)^2} > 0$

14.
$$\frac{2}{x^2+1}$$
 - 1 > 0 15. $\frac{x}{x+2}$ < 5

Correction

1.
$$(3 \times -1)(\times -2) > G$$

$$3x-1>0 \iff x>\frac{4}{3} \implies \frac{x-x}{3x-1} - \phi +$$

*	- 🔊	2	+00
X-2	_	ф	+

×	- 00	1/3	2	+00
37-1	_	ϕ	+	
γ- Z		-	ф	+
$(3\times -1)(x-2)$	+	Ф	- •	+

$$S = \int -\infty$$
; $\frac{4}{3} \left[\cup \int 2$; $+\infty \right[$

*		- <u>b</u>	+00
ax+b	oppsé	sign(a) ϕ	signe(a)

2.
$$(2x-1)(3-x) \angle 0$$

$$2x-1>0 \iff x>\frac{1}{2}$$
 $3-x>0 \iff -x>-3 \iff x \in 3$

×	-00	1/2	3	+00
2x-1		ф	+	
3-X		+	—	_
(2x-1)(3-x)	_	ф	+ •	_

3.
$$(x-5)(2-3x) \leq 0$$

· x	- 🔊	2/3	5	+00
x-5		_	•	+
2-3x	+	- ϕ	_	
Produit	_	- 💠	+	_

4.
$$(2-3x)(4x+1) > 2$$

 $8x+2-12x^2-3x > 2$
 $-12x^2+5x+2-2 > 0$
 $-12x^2+5x > 0$
 $x(-12x+5) > 0$
 $x>0 \mid -12x+5>0 \Leftarrow > -12x>-5 \Leftarrow > x \le \frac{5}{12}$
 $x \mid -\infty \qquad 0 \qquad \frac{5}{12} + \infty \mid -\frac{5}{12} + \infty$

$$S = \left[0, \frac{5}{12}\right]$$

5.
$$4x + 18 + x^2 \leq 0$$

$$x^{2} + 4x + 18 \leq 0$$

$$x^{2} + 4x + 18 \leq 0$$
 $a = 1$ $b = 4$ $c = 18$

Tobleau de signe pour ax2+bx+c:

Δ>0	$\frac{x - \infty}{signe(\alpha)}$ $\frac{x}{signe(\alpha)}$ $\frac{x}{signe(\alpha)}$ $\frac{x}{signe(\alpha)}$
Δ =0	signe(a) ϕ signe(a)
710	x -00 +00 Signe(a)