1. A town has an initial population of 70000. The town's population for the next 9 years is provided below. Which type of function would be most appropriate to model the town's population?

Year									
Pop	69977	69965	69937	69925	69897	69885	69857	69845	69817

2. For the information below, construct a linear model that describes the total time T spent on the path in terms of the distance of a particular part of the path if we know that all parts of the path are equal length.

A bicyclist is training for a race on a hilly path. Their bike keeps track of their speed at any time, but not the distance traveled. Their speed traveling up a hill is 6 mph, 10 mph when traveling down a hill, and 8 mph when traveling along a flat portion.

3. For the information provided below, construct a linear model that describes her total budget, B, as a function of the number of months, x she is at UF.

Aubrey is a college student going into her first year at UF. She will receive Bright Futures, which covers her tuition plus a \$600 educational expense each year. Before college, Aubrey saved up \$10000. She knows she will need to pay \$1200 in rent a month, \$50 for food a week, and \$48 in other weekly expenses.

4. What is the **best** way to describe the domain of the scenario below?

Chemists commonly create a solution by mixing two products of differing concentrations together. A 10% and 30% solution can make an acid solution of some value between these, such as a 24% acid solution. The chemist wants to make differing solution percentages of 7 liters each.

5. What is the **best** way to describe the domain of the scenario below?

Hannah plans to pay off a no-interest loan from her parents. Her loan balance is \$1,000. She plans to pay \$35 at the end of every week until her balance is \$0. How many weeks will it be until she has paid off her loan?

6. For the information provided below, construct a linear model that describes her total costs, C, as a function of the number of months, x she is at UF.

Aubrey is a college student going into her first year at UF. She will receive Bright Futures, which covers her tuition plus a \$400 educational expense each year. Before college, Aubrey saved up \$10000. She knows she will need to pay \$1200 in rent a month, \$80 for food a week, and \$56 in other weekly expenses.

7. For the information provided below, construct a linear model that describes the total distance of the path, D, in terms of the time spent on a particular path if we know that the time spent on each path was equal.

A bicyclist is training for a race on a hilly path. Their bike keeps track of their speed at any time, but not the distance traveled. Their speed traveling up a hill is 6 mph, 10 mph when traveling down a hill, and 7 mph when traveling along a flat portion.

8. Using the situation below, construct a linear model that describes the cost of the coffee beans C(h) in terms of the weight of the high-quality coffee beans h.

Veronica needs to prepare 210 of blended coffee beans selling for \$4.00 per pound. She has a high-quality bean that sells for \$4.83 a pound and a low-quality bean that sells for \$2.88 a pound.

9. A town has an initial population of 40000. The town's population for the next 9 years is provided below. Which type of function would be most appropriate to model the town's population?

Year	1	2	3	4	5	6	7	8	9
Pop	40018	40046	40058	40086	40098	40126	40138	40166	40178

10. Using the situation below, construct a linear model that describes the cost of the coffee beans C(h) in terms of the weight of the high-quality coffee beans h.

Veronica needs to prepare 200 of blended coffee beans selling for \$4.23 per pound. She has a high-quality bean that sells for \$5.06 a pound and a low-quality bean that sells for \$2.53 a pound.