Time Series Analysis for Forecasting Sales for First Quarter of 2018

Presentation by Sidhant Ahluwalia

Part 1:
Project Description

Store Item Demand Forecasting

Background and Problem Introduction

- The business has ten stores selling fifty kinds of different items
- It has a five-year whole stores inventory sales dataset with 913000 records
- It needs to forecast the next three months of sales based on this historical records (From 2018: Jan to 2018: Mar)

Dataset Description

In the provided dataset there are four variables date, store_id, Item_id and sales:

Date: The date variable stores every calendar date when transactions happen. It starts on Jan 1, 2013, and ends on Dec 31, 2017. Since every store and item has its own record of sales, each individual date appears multiple times in the dataset.

Store: The store variable stores the store id. There is ten unique id for each store which is labeled from 1 to 10.

Item: The Item variable stores a unique id for each item. There is fifty unique id for each item labeled from 1 to 50.

Sales: The sale variable stores the total number of items sold on the respective store at the given date.

Data Description (Cont.)

Variable Names	Data Type	Description
Date	Date	Date of the sale data. There are no holiday effects or store closures
Store	Factor	Store ID
Item	Factor	Item ID
Sales	Int	Number of items sold at a particular store on a particular date

1	date	store	item	sales
2	1/1/2013	1	1	13
3	1/2/2013	1	1	11
4	1/3/2013	1	1	14
5	1/4/2013	1	1	13
6	1/5/2013	1	1	10
7	1/6/2013	1	1	12

* The first six rows of the dataset as an example of how the data is structured

Project Work Plan

- Tool
 - Python platform for overall forecasting of future sales
- Purpose
 - Pattern detection within time series of sales data
 - Sales forecasting with factors of location and category
- Expectation
 - Find the best structure to manipulate the data
 - Dimensions of aggregate data
 - Find the best model to forecast
 - Naive
 - ARIMA

Part 2: Exploring the dataset in Python

Exploring Dataset

- The figure displays the Time series graph of consolidated weekly sales of all the items in all the 10 stores.
- All Stores shows similar patterns.

Figure 1: Daily weekly sales of all stores from 2013 to 2017.

- The time series displays similar sales pattern with sales increasing till mid yr and then decreasing with the spike at the end of the year.
- The scale of the sales can be observed to be increasing representing a trend in the timeseries.
- The similar repeating patterns represent seasonality.

Figure 2: Daily sales of Item1 store 1 from 2013 to 2017.

- The time series displays sales pattern for the year 2013.
- Daily sales keeps on increasing for the first half of the year then decrease during fall with spike in beginning of December.
- The occasional spikes and a pattern indicate the time series is not stationary.

Figure 3: Daily sales of Item1 store 1 in 2013.

- The box-plot displays sales for each month.
- The months of July and November records the highest sales.
- Outliers represent special events such as holidays or store closures.

Figure 5: Sales by each month for Item1 store 1.

- The box-plot displays sales on each day of the week from monday to sunday. (monday = 0)
- Maximum sales happen on the weekend.
- Outliers represent special events such as holidays or store closures.

Figure 4: Sales by each day of Item1 store 1.

The decomposition graph depicts a similar pattern, rising trend and a seasonality in the time series. As a result we can confirm that the time series is not stationary.

The results of the test are : p-value = 0.0361. The series is likely not stationary. Test statistic -2.987278 p-value 0.036100 No. of lags 20.000000 No. of observations 1805.000000 Crtical value (1%) -3.433978 Crtical value (5%) -2.863143 Crtical value (10%) -2.567623 dtype: float64

The variation of the mean in the time series graph further validates the point that the time series is not stationary .

The significant spikes in the acf and pacf plots also validates that there is a trend and seasonality in the time series.

Part 3: Arima Model Selection

Arima Model

- ARIMA is an acronym for AutoRegressive Integrated Moving Average
- It is a combination of Auto regressive(p), differencing(d) and Moving average(q)
- It is represented as Arima (p,d,q) (P,D,Q)m
- p & q represents order of autoregressive and moving average part.
- P & Q represents seasonal order of autoregressive and moving average part.
- D & d represents seasonal and simple differencing.
- m represents the number of observations per year.

Check for Stationarity

seven_diff = train_1_1.sales - train_1_1.sales.shift(7)
seven_diff.head()

After seasonal differencing we see that the mean has become constant and the time series has become stationary.

The results of the test are :

p-value = 0.0000. The series is likely stationary.

Test statistic -1.260596e+01
p-value 1.695680e-23
No. of lags 2.000000e+01
No. of observations 1.798000e+03
Crtical value (1%) -3.433992e+00
Crtical value (5%) -2.863149e+00
Crtical value (10%) -2.567626e+00

Check for Stationarity

- The significant spikes in the ACF and PACF plots of the differenced time series have reduced.
- ACF plot has significant spike at lag 7 and lag 1
- PACF graph has significant exponential decays at periodic intervals of(7,14,21..) and a significant spike at lag 1.

Model Selection

Based on the findings in the ACF and PACF plots we can have following possible ARIMA models.

	р	d	q	Р	D	Q
Model_1	0	0	0	0	1	1
Model_2	1	0	0	0	1	1
Model_3	0	0	1	0	1	1
Model_1	1	0	1	0	1	1

Model Selection

```
cnt = 0
for p in p values:
    for q in q values:
            try:
                mod = sm.tsa.statespace.SARIMAX(y,order=(p,d,q),
                                               seasonal order=(P,D,Q,s),
                                               enforce_stationarity=False,
                                               enforce invertibility=False
                results = mod.fit()
                cnt += 1
                if cnt % 50:
                    print('Current Iter - {}, ARIMA{}x{}X{} & {}x{}x7 - AIC:{}'.format(cnt, p, d, q, P, D, Q, results.aic)
            except:
                continue
Current Iter - 1, ARIMA0x0X0 & 0x1x1x7 - AIC:11041.103684371203
Current Iter - 2, ARIMA0x0X1 & 0x1x1x7 - AIC:11003.387863193702
Current Iter - 3, ARIMA1x0X0 & 0x1x1x7 - AIC:11001.229636140988
```

```
Current Iter - 4, ARIMA1x0X1 & 0x1x1x7 - AIC:10744,26501132096
```

```
p values = range(0,2)
q_values = range(0,2)
d = 0
5 = 7
P = 0
D = 1
0 = 1
y = train_1_1.sales[:"2017-10-01"]
#x = train 1 1.sales[:"09-30-2017"]
```

Model Selection

Statespace Model Results

```
Dep. Variable:
                                      sales
                                            No. Observations:
                                                                           1826
                                            Log Likelihood
Model:
                SARIMAX(1, 0, 1)x(0, 1, 1, 7)
                                                                       -5368.133
Date:
                            Thu, 25 Apr 2019
                                            AIC
                                                                      10744.265
Time:
                                                                      10766.269
                                   16:02:21
                                             BIC
Sample:
                                             HOIC
                                                                      10752.385
                                     - 1826
Covariance Type:
______
                                           P> z
                                                     [0.025
               coef
                      std err
                                                                0.9751
ar.L1
                       0.003
                               301.544
                                           0.000
             0.9912
                                                      0.985
                                                                0.998
ma.L1
            -0.8860
                       0.013
                              -69.930
                                           0.000
                                                   -0.911
                                                               -0.861
ma.S.L7
            -1.0071
                       0.007
                              -144.061
                                           0.000
                                                  -1.021
                                                               -0.993
sigma2
            21.4353
                        0.698
                                 30.701
                                           0.000
                                                     20.067
                                                                22.804
Liung-Box (0):
                                42.39 Jarque-Bera (JB):
                                                                     29.28
Prob(0):
                                 0.37 Prob(JB):
                                                                      0.00
Heteroskedasticity (H):
                                 1.32 Skew:
                                                                      0.20
Prob(H) (two-sided):
                                 0.00
                                       Kurtosis:
                                                                      3.48
Warnings:
```

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Testing Residuals

Forecasting Using the selected Model

```
begin = 1733
stop = 1825
train_1_1['forecast_1'] = arima_model_1.predict(start = begin, end = stop, dynamic=True)
train_1_1.tail()
```

	date	store	item	sales	year	month	day	weekday	forecast_1
1821	2017-12-27	1	1	14	2017	12	27	2	21.532563
1822	2017-12-28	1	1	19	2017	12	28	3	22.169574
1823	2017-12-29	1	1	15	2017	12	29	4	23.887625
1824	2017-12-30	1	1	27	2017	12	30	5	25.724053
1825	2017-12-31	1	1	23	2017	12	31	6	26.480575

Measuring Accuracy

mape_smape(train_1_1[1733:1826]['sales'],train_1_1[1733:1826]['forecast_1'])

MAPE: 32.25 % SMAPE: 24.57 %

Benchmark: Naive

Naive model is the benchmark of our model selection, every valid forecasting model should have a better accuracy rate than the Naive method.

Accuracy Summary - Item1@Store1 from 2013 to 2017

	MAPE	SMAPE
Naive Forecast	35.25 %	31.34 %
Arima_model1_Forecast	32.25 %	24.57 %

Modifying Dataset to capture special events

holiday_bool	month_1	month_2	month_3	 holiday_Presidents Day (Washingtons Birthday)	holiday_Thanksgiving Day	holiday_Veterans Day	weekday_0	weekday_1	weekday_2
1	1	0	0	 0	0	0	0	1	0
0	1	0	0	 0	0	0	0	0	1
0	1	0	0	 0	0	0	0	0	0
0	1	0	0	 0	0	0	0	0	0
0	1	0	0	 0	0	0	0	0	0

Model Evaluation

```
p_values = range(0,2)
q_values = range(0,2)
d = 0
s = 7
P = 0
D = 1
Q = 1
y = train_1_1_d.sales[:begin]
x = exog_data[:begin]
```

```
Current Iter - 1, ARIMAOx0X0 & 0x1x1x7 - AIC:10106.066690161462

Current Iter - 2, ARIMAOx0X1 & 0x1x1x7 - AIC:10101.798781855738

Current Iter - 3, ARIMA1x0X0 & 0x1x1x7 - AIC:10107.376011214357

Current Iter - 4, ARIMA1x0X1 & 0x1x1x7 - AIC:10104.078963320386
```

Measuring Accuracy

Statespace Model Results

Dep. Variable:	sales	No. Observations:	1735
Model:	SARIMAX(0, 0, 1)x(0, 1, 1, 7)	Log Likelihood	-5015.899
Date:	Thu, 25 Apr 2019	AIC	10101.799
Time:	19:55:04	BIC	10292.531
Sample:	01-01-2013	HQIC	10172.369
	- 10-01-2017		

Testing Residuals

Measuring Accuracy

Measuring Accuracy

MAPE: 25.23 % SMAPE: 20.94 %

Benchmark: Naive

Naive model is the benchmark of our model selection, every valid forecasting model should have a better accuracy rate than the Naive method.

Accuracy Summary - Item1@Store1 from 2013 to 2017

	MAPE	SMAPE
Naive Forecast	35.25 %	31.34 %
Arima_model1_Forecast	32.25 %	24.57 %
Arima_model2_Forecast	25.23 %	20.94 %

Part 4:
Forecasting 3 Months of Item Sales

```
for i in range(1,51):
    storeid = s
    itemid = i
   train = train df[train df['store']==storeid]
   train = train[train['item']==itemid]
   test = test df[test df['store']==storeid]
   test = test[test['item']==itemid]
   test.set index('id')
   test.drop('id',axis = 1, inplace=True)
   test['sales'] = np.NAN
   df = pd.concat([train,test], axis = 0, join='outer')
   df['date'] = pd.to datetime(df['date'])
   df['year'] = df['date'].dt.year - 2012
   df['month'] = df['date'].dt.month
   df['day'] = df['date'].dt.dayofyear
   df['weekday'] = df['date'].dt.weekday
    df = df.merge(holiday, how='left', on='date')
    df['holiday bool'] = pd.notnull(df['holiday']).astype(int)
    df = pd.get dummies(df, columns = ['month', 'holiday', 'weekday']), prefix = ['month', 'holiday', 'weekday'])
    exog data 2 = df[column list]
    exog data 2 = exog data 2.set index('date')
    df = df.set index('date')
    begin = '2018-01-01'
    stop = '2018-03-30'
    stop1 = '2018-03-31'
    arima model 4 = sm.tsa.statespace.SARIMAX(endog=df.sales[:begin], exog=exog data 2[:begin], order=(0,0,1),
                                      seasonal order=(0,1,1,7),enforce stationarity=False,enforce invertibility=False).fi
    df['forecast'] = arima model 4.predict(start=pd.to datetime(begin), end = pd.to_datetime(stop1),
                                          exog=exog data 2[begin:stop], dynamic=True)
    forecast.append(df[begin:stop][['store','item','forecast']])
    print('item:',i,'store:',s,'Finished.')
```

forecast = []

for s in range(1,11):

Forecast

[89 rows x 3	columns],		store	item	forecast	_						
date							[89 rows x 3	3 columns	5],		store	item	forecast
2018-01-01	3	4	18.287411				date						
2018-01-02	3	4	21.015472				2018-01-01	6	1	12.137933			
2018-01-03	3	4	20.737005				2018-01-02	6	1	14.536071			
2018-01-04	3	4	22,273677				2018-01-03	6	1	12.642259			
		- :					2018-01-04	6	1	14.152696			
2018-01-05	3	4	25.316212				2018-01-05	6	1	15.064946			
2018-01-06	3	4	26.084417				2018-01-06	6	1	16.453739			
2018-01-07	3	4	27.554290				2018-01-07	6	1	17.164566			
2018-01-08	3	4	17.324563				2018-01-08	6	1	10.703893			
2018-01-09	3	4	20.218420				2018-01-09	6	1	13.089127			
2018-01-10	3	4	20.524243				2018-01-10	6	1				
2018-01-11	3	4	22.060915				2018-01-11	6	1				
2018-01-12	3	4	25.103449				2018-01-12	6	1				
2018-01-13	3	4	25.871654				2018-01-13	6	1				
2018-01-14	3	4	27.341527				2018-01-14	6	1				
	_						2018-01-15	6	1	10.604914			
2018-01-15	3	4	17.111801					_	1				
							2018-01-16	6	1	14.327603			

Reference List

- Data Resource: https://www.kaggle.com/c/demand-forecasting-kernels-only/
- Forecasting: Principles and Practice: https://otexts.com/fpp2/
- Python