Stable model

Let Π be a Datalog Program.

- Let $\mathcal{B}(\Pi)$ be the set of all facts of the form $R(a_1, \ldots, a_n)$, where R is a n-ary relation in Π and a_1, \ldots, a_n are constants appearing in Π .
- **ground**(Π), the *ground instance* of Π , is obtained by instantiation the rules from Π with all possible combinations of constants from Π .
- The reduct of program Π with respect to a set $S \subseteq \mathcal{B}(\Pi)$ is a Datalog⁺ program obtained from $ground(\Pi)$ by deleting
 - (i) each rule that has a negative subgoal $\neg A$ in its body, where $A \in S$, and
 - (ii) all negative subgoals of the remaining rules.
- A set $S \subseteq \mathcal{B}(\Pi)$ is a *stable model* of Π iff S is the unique minimal model of the reduct of Π with respect to S.
- A program may have more than one stable model.

Example 1

```
Consider the rule win(X) \leftarrow move(X, Y), \neg win(Y) and the input \mathcal{E}(move) = \{(a, b), (b, c), (c, d)\}.
move(a, b) \leftarrow true
move(b, c) \leftarrow true
```

$$move(b,c) \leftarrow true$$
 $move(c,d) \leftarrow true$
 $win(a) \leftarrow move(a,a), \neg win(a)$
 $win(a) \leftarrow move(a,b), \neg win(b)$
 $win(a) \leftarrow move(a,c), \neg win(c)$
 $win(a) \leftarrow move(a,d), \neg win(d)$
 $win(b) \leftarrow move(b,c), \neg win(c)$
 $win(c) \leftarrow move(c,d), \neg win(d)$

 $win := \{a, c\}$ is the only stable model.

Example 2

Consider the same rule $win(X) \leftarrow move(X, Y), \neg win(Y)$ and the input $\mathcal{E}(move) := \{(a, b), (b, c), (a, c)\}.$

$$move(a, b) \leftarrow true$$
 $move(b, c) \leftarrow true$
 $move(a, c) \leftarrow true$
 $move(a, c) \leftarrow true$
 $win(a) \leftarrow move(a, a), \neg win(a)$
 $win(a) \leftarrow move(a, b), \neg win(b)$
 $win(a) \leftarrow move(a, c), \neg win(c)$
 \vdots
 $win(b) \leftarrow move(b, c), \neg win(c)$
 \vdots
 $win(a) \leftarrow move(a, c), \neg win(c)$
 \vdots

 $win = \{a, b\}$ is the only stable model.

Example 3

Consider the rule $win(X) \leftarrow move(X, Y), \neg win(Y)$ and the input $\mathcal{E}(move) := \{(a, b), (b, a)\}.$

$$win(a) \leftarrow move(a, b), \neg win(b)$$

 $win(b) \leftarrow move(b, a), \neg win(a)$
:

- There is only one well-founded model which makes both win(a) and win(b) undefined.
- There are two stable models, namely win(a) and win(b).

what to do when there is more than one stable model for a program?

- Decide the program has no semantics, respectively many possible semantics.
- Chose nondeterministically one of the stable models and call it the programs semantics.

The latter case is attractive when we do not care which of the many models to select.

3-colorability of a graph

Let a graph with node-relation vertex and edge-relation edge be given. Let Π be the program:

$$color(V, blue) \leftarrow vertex(V), \neg color(V, green), \neg color(V, red)$$

 $color(V, green) \leftarrow vertex(V), \neg color(V, blue), \neg color(V, red)$
 $color(V, red) \leftarrow vertex(V), \neg color(V, green), \neg color(V, blue)$
 $noncoloring \leftarrow edge(V, U), color(V, C), color(U, C)$

Any stable model of Π which does not contain noncoloring is a solution of the 3-colorability problem.

Answer set programming: Representing search problems by logical rules. The stable models correspond to the solutions.