

Friday, 8 April 2022 21:49

FUNDAMENTOS DE COMPUTACIÓN TRABAJO ENTREGABLE 2 ABRIL 2022

Este trabajo tiene un puntaje de 5 puntos, y debe ser realizado en forma INDIVIDUAL. Se debe subir a Aulas antes del 10/4/22 a las 21hs.

El conectivo implica tiene la siguiente tabla de verdad:

b1	b2	b1 >> b2
False	False	True •
False	True	True .
True	False	False
True	True	True .

y se define en Haskell como la siguiente función:

(>>)::Bool -> Bool -> Bool

(>>)::Bool -> Bool -> Bool (>>)=\b1 b2 -> case b1 of {False -> True ; True -> b2}

SE PIDE:

1) Demuestre que ($\forall x :: Bool$) ($\forall y :: Bool$) ($\forall z :: Bool$) x >> (y >> z) = (x && y) >> z, donde (&&) :: Bool -> Bool -> Bool se define como:

(&&) = \b1 -> \b2 -> case b1 of {False -> False ; True -> b2}.

2) Defina en Haskell, <u>sin usar funciones auxiliares</u>, la negación del implica como la función (*):: Bool -> Bool, que tiene la siguiente tabla de verdad:

b1b2b1 * b2TrueTrueFalseTrueFalseTrueFalseTrueFalseFalseFalseFalse

3) Demuestre que (∀x::Bool) (∀y::Bool) x * y = not (x >> y), donde: not :: Bool -> Bool se define como: not = \b -> case b of {False -> True ; True -> False}.

ENTREGA:

Se deberá subir un único archivo a Aulas, que puede ser escrito en máquina o en papel y escaneado.
En caso de que sea lo segundo, pedimos que el documento sea *legible*. Si utilizan fotos, se

recomienda utilizar alguna aplicación para escanearlas y generar archivos pdf.

2)

1)
$$(\forall x :: Bool) (\forall y :: Bool) (\forall z :: Bool)$$

 $(\forall x :: Bool) (\forall y :: Bool) (\forall z :: Bool)$
 $(\forall x :: Bool) (\forall y :: Bool) (\forall z :: Bool)$

Demostración par casos X:: Bool

▶ X = True

True >>>
$$(y >>> 2)$$
 = $(true dd y) >>> 2$

def >>> , P, core

def dd , P, core

o
$$y = \text{True}$$

True >> $\left(\text{true} >> 2\right) = \text{Twe} >> 2$

oy = Folse

True
$$>>(False>>>2)$$
 = $(true flot False)>>>2$
Let $>> P$ conc $>> True$ = $False>>>2$
Let $>> P$ conc

0 7 = Tre

· Z = False

False >>
$$(y >> 2)$$
 = False >> 2

· 2 - False

· y = False

• 2= False

$$X * Y = NOT (X >> Y)$$

Demostración por cojoj

·X= trul

False = False