King County House Price Predictions.

Background.

King County is one of three Washington counties that are included in the Seattle–Tacoma–Bellevue metropolitan statistical area. It covers an area of $5980km^2$ with a total of 39 towns and cities. According to wikipedia, the population as at 2020 was 2,269,675.

Business Understanding

There are many households who would like to purchase houses around King County, but due to the information asymmetry in the market they go into it blindly. Therefore to mitigate that gap in the market, we are going to study some data on the sale of houses that took place between the year 2014 to 2015, within King County.

Our project aims at providing consultation to a real estate agency that helps households purchase houses. And through studying the data we will provide a way in which one can predict the prices of the houses.

Data Understanding.

In [177]: ▶

```
# importing Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import statsmodels.api as sm
from scipy import stats
from statsmodels.formula.api import ols
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error, mean_squared_error,r2_score
from sklearn.preprocessing import PolynomialFeatures, StandardScaler, OneHotEncoder
```

In [80]: ▶

```
# Loading the data
data = pd.read_csv("data/kc_house_data.csv")
data
```

Out[80]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	w
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 21 columns

In [81]: ▶

data.tail()

Out[81]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	w
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

5 rows × 21 columns

In [82]: ▶

```
# Check on the information of the daraframe
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

Data	COLUMNIS (COLAL	ZI COIUIIIIS).	
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(9), object	t(6)
mamar	N 112300 3 54 N	ИR	

memory usage: 3.5+ MB

In [83]:

```
# Obtain a statistical summary of the dataframe data.describe()
```

Out[83]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	2
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	
4							•

```
H
In [84]:
# shape of the dataframe
data.shape
Out[84]:
(21597, 21)
                                                                                               H
In [85]:
# check for null values
data.isnull().sum()
Out[85]:
id
                     0
date
                     0
price
                     0
bedrooms
                     0
                     0
bathrooms
sqft_living
                     0
sqft_lot
                     0
floors
                     0
waterfront
                 2376
                    63
view
condition
                     0
                     0
grade
sqft_above
                     0
sqft_basement
                     0
yr_built
                     0
yr_renovated
                  3842
zipcode
                     0
lat
                     0
                     0
long
sqft_living15
                     0
sqft_lot15
                     0
dtype: int64
```

Data Preparation.

Data preparation is the process of cleaning and transforming raw data prior to processing and analysis.

```
# drop the rows with null values
df = data.dropna(axis=0, how='any')
df.isnull().sum()
```

Out[86]:

```
id
                 0
date
                 0
price
                 0
bedrooms
                 0
bathrooms
                 0
                 0
sqft_living
sqft_lot
                 0
                 0
floors
waterfront
                 0
                 0
view
condition
                 0
                 0
grade
sqft_above
                 0
sqft_basement
yr_built
                 0
yr_renovated
                 0
                 0
zipcode
lat
                 0
                 0
long
sqft_living15
                 0
                 0
sqft_lot15
dtype: int64
```

Drop columnss that will not be useful in our analysis.

```
In [87]: ▶
```

```
# drop the id column
df = df.drop(columns = ["id",'lat','long','date','sqft_living15', 'sqft_lot15'])
df
```

Out[87]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	conditi
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Avera
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	V Gc
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Avera
5	1230000.0	4	4.50	5420	101930	1.0	NO	NONE	Avera
6	257500.0	3	2.25	1715	6819	2.0	NO	NONE	Avera
21591	475000.0	3	2.50	1310	1294	2.0	NO	NONE	Avera
21592	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Avera
21593	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Avera
21594	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Avera
21596	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Avera

15762 rows × 15 columns

localhost:8888/notebooks/student.ipynb#

```
# drop the rows in sqft_basement with a '?'
df = df.drop(df[df.sqft_basement == '?'].index)
df
```

Out[88]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	conditi
1	538000.0	3	2.25	2570	7242	2.0	NO	NONE	Avera
3	604000.0	4	3.00	1960	5000	1.0	NO	NONE	V Gc
4	510000.0	3	2.00	1680	8080	1.0	NO	NONE	Avera
5	1230000.0	4	4.50	5420	101930	1.0	NO	NONE	Avera
8	229500.0	3	1.00	1780	7470	1.0	NO	NONE	Avera
21591	475000.0	3	2.50	1310	1294	2.0	NO	NONE	Avera
21592	360000.0	3	2.50	1530	1131	3.0	NO	NONE	Avera
21593	400000.0	4	2.50	2310	5813	2.0	NO	NONE	Avera
21594	402101.0	2	0.75	1020	1350	2.0	NO	NONE	Avera
21596	325000.0	2	0.75	1020	1076	2.0	NO	NONE	Avera
4=400									

15429 rows × 15 columns

```
In [89]:

# Check if there are any duplicates.
df.drop_duplicates(subset = ['sqft_above'], keep = 'first', inplace = True)
```

```
In [90]:

# Confirm that all the duplicates have been dropped.
df.duplicated().sum()
```

Out[90]:

a

Replace the strings with integers depending on the intensities of the strings.

```
In [91]:

df['view1'] = df['view'].replace({'NONE': 0,'FAIR':1,'AVERAGE': 2,'GOOD':3, 'EXCELLENT':4})
```

```
In [92]:

df['waterfront1'] = df['waterfront'].replace({'YES': 0, 'NO':1})

In [93]:

df['condition1'] = df['condition'].replace({'Poor': 0, 'Fair':1,'Average':2,'Good':3,'Very})
```

Split the grade column to a new column which only has the grade value in numbers. This will now make it easier when carrying out statistical measurements.

```
In [94]:

df["Grade1"] = df["grade"].str.split().apply(lambda x: x[0])
# Convert the Grade1 column to an integer.
df["Grade1"] = pd.to_numeric(df["Grade1"])
```

Drop the colums that will not be quite useful.

```
In [96]:

df = df.drop(columns = ['waterfront', 'view', 'grade'])
df[:10]
```

Data Modeling

We'll conduct a test to check on the level of correlation of the features with the 'price'

```
In [70]:

df.corr()['price'].sort_values(ascending = False)
```

```
Out[70]:
```

```
price
                 1.000000
sqft_living
                0.792749
saft above
                0.724267
Grade1
                 0.682691
bathrooms
                0.671431
view1
                0.494763
bedrooms
                0.416373
                 0.217050
floors
yr renovated
                0.168015
sqft lot
                0.127459
condition1
                0.053972
zipcode
               -0.048096
yr_built
               -0.048597
waterfront1
               -0.331173
Name: price, dtype: float64
```

We find out that sqft living,sqft above,Grade1 and bathrooms have the highest correlation with price.

In [151]:

```
fig, ax = plt.subplots(1, 2,figsize=(7,6))
sns.histplot(df['price'], ax=ax[0])
ax[0].set_title('Original')
sns.histplot(np.log(df['price']), ax=ax[1])
ax[1].set_title('Adjusting log')
plt.show()
```


The original price is skewed to the left, and after the adjustment we can see how the normal distribution is to the price.

Correlation between sqft_living and views to price.

We will evaluate a liner regression model using sqft_living and views.

In [154]:

sns.scatterplot(data =df,x = 'sqft_living',y= 'price',hue ='view1');

The graph shows us that the sqft_living is positively correlated to price and it also helps us to conclude that the better the view, the more expensive it is.

In [181]:

```
a = df[['sqft_living','view1']]
b= df[['price']]
model = sm.OLS(b, a)

result = model.fit()
result.summary()
```

Out[181]:

OLS Regression Results

Dep. Variable: price R-squared (uncentered): 0.812 Model: OLS Adj. R-squared (uncentered): 0.812 Method: Least Squares F-statistic: 1790. Date: Fri, 30 Sep 2022 Prob (F-statistic): 3.46e-301 Time: 11:13:31 Log-Likelihood: -12038. No. Observations: 829 AIC: 2.408e+04 **Df Residuals:** 827 BIC: 2.409e+04 Df Model: 2 **Covariance Type:** nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 sqft_living
 269.2437
 5.856
 45.974
 0.000
 257.749
 280.739

 view1
 2.009e+05
 1.81e+04
 11.114
 0.000
 1.65e+05
 2.36e+05

 Omnibus:
 593.820
 Durbin-Watson:
 1.912

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 13141.967

 Skew:
 2.969
 Prob(JB):
 0.00

 Kurtosis:
 21.580
 Cond. No.
 3.53e+03

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 3.53e+03. This might indicate that there are strong multicollinearity or other numerical problems.

The P-value is less than 0.05, so we reject the null hypothesis. That means, the model is statistically significant.

Correlation between bathrooms and grade to price.

In [179]:

```
sns.scatterplot(data =df,x = 'bathrooms',y= 'price',hue ='Grade1');
```


The graph shows us that the number of bathrooms is positively correlated to price and it also helps us to conclude that the better the grade of a house, the more expensive it is.

```
In [187]:

X = df[['sqft_living','sqft_above','bathrooms','bedrooms','Grade1','view1']]
y = df['price']

In [188]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

In [189]:

sqft = LinearRegression()
sqft.fit(X_train[['sqft_living']], y_train)
sqft.score(X_train[['sqft_living']], y_train)
y_hat_train = sqft.predict(X_train[['sqft_living']])
y_hat_test = sqft.predict(X_test[['sqft_living']])
```

In [190]: ▶

```
plt.figure(figsize=(10,6))
plt.subplot(1,2,1)
plt.scatter(X_train[['sqft_living']], y_train, color = "blue")
plt.plot(X_train[['sqft_living']] ,y_hat_train)
plt.xlabel('sqft_living')
plt.ylabel('price')
plt.title('train')

plt.subplot(1,2,2)
plt.scatter(X_test[['sqft_living']], y_test, color = "green")
plt.plot(X_test[['sqft_living']] ,y_hat_test)
plt.xlabel('sqft_living')
plt.ylabel('price')
plt.title('test');
```


The train and the test sets both have a linear relationship to price.

Check the correlation of the other features and price.

In [191]: ▶

```
df_pairplot = df[['price','sqft_living','sqft_above','Grade1', 'view1','bathrooms']]
sns.pairplot(df_pairplot)
plt.show()
```


We can conclude the the features which have the highest correlation with price are sqft_living, sqft_above, grade1, and bathrooms.

Multiple Linear Regression.

```
H
In [192]:
reg = sm.add_constant(X, has_constant='add')
model = sm.OLS(, X)
result1 = model.fit()
result1.summary()
Out[192]:
OLS Regression Results
                                       R-squared (uncentered):
     Dep. Variable:
                             price
                                                                    0.833
           Model:
                             OLS Adj. R-squared (uncentered):
                                                                    0.832
          Method:
                     Least Squares
                                                    F-statistic:
                                                                    683.8
            Date: Fri, 30 Sep 2022
                                              Prob (F-statistic):
                                                                9.89e-316
            Time:
                          12:17:04
                                               Log-Likelihood:
                                                                  -11990.
 No. Observations:
                                                         AIC: 2.399e+04
                              829
     Df Residuals:
                                                          BIC: 2.402e+04
                              823
         Df Model:
                                6
 Covariance Type:
                         nonrobust
```

The p-value is less than 0.05, so we reject the null hypothesus. That means that the model is statistically significant. The R-Squared is 0.833, meaning almost 83% can be explained by the model.

```
In [197]: ▶
```

```
h = np.log(df['price'])
reg = sm.add_constant(X, has_constant='add')
model = sm.OLS(h, X)
result2 = model.fit()
result2.summary()
```

Out[197]:

OLS Regression Results

Dep. Variable:	price	R-squared (uncentered):	0.987
Model:	OLS	Adj. R-squared (uncentered):	0.987
Method:	Least Squares	F-statistic:	1.064e+04
Date:	Fri, 30 Sep 2022	Prob (F-statistic):	0.00
Time:	12:21:27	Log-Likelihood:	-1512.6
No. Observations:	829	AIC:	3037.
Df Residuals:	823	BIC:	3066.
Df Model:	6		
Covariance Type:	nonrobust		

	coer	sta err	τ	P> t	[0.025	0.975]
sqft_living	-0.0004	0.000	-3.717	0.000	-0.001	-0.000
sqft_above	-0.0010	0.000	-7.975	0.000	-0.001	-0.001
bathrooms	0.0626	0.098	0.641	0.521	-0.129	0.254
bedrooms	0.7466	0.065	11.486	0.000	0.619	0.874
Grade1	1.6434	0.033	50.348	0.000	1.579	1.707
view1	0.1021	0.060	1.706	0.088	-0.015	0.220

 Omnibus:
 53.032
 Durbin-Watson:
 1.894

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 70.507

 Skew:
 0.550
 Prob(JB):
 4.89e-16

 Kurtosis:
 3.912
 Cond. No.
 8.58e+03

Notes:

[1] R² is computed without centering (uncentered) since the model does not contain a constant.

D>I+I [0.025 0.075]

- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 8.58e+03. This might indicate that there are strong multicollinearity or other numerical problems.

When the data is normally distributed, the model explains 98.7% of the price.

Evaluation.

Check normality and residual pattern.

```
In [195]:

qqplot = sm.qqplot(result1.resid,line ='s',dist=stats.norm)
```



```
In [198]:

qqplot = sm.qqplot(result2.resid,line ='s',dist=stats.norm)
```



```
# Check residual pattern
fitted = result1.predict()

resid = result1.resid
pred = result1.predict(X)
fig = plt.scatter(pred, resid, s=3)

plt.xlabel('Fitted values')
plt.ylabel('Residual')

plt.show()
```

The data satisfies normality.

In []:

H

In []:
result1.pvalues

The p-values are less than 0.05, so we reject the null hypothesis. Therefore we can say that the model is statistically significant.

Summary on evaluation.

The models that we have constructed has given us a more in depth understanding on the association of the various house features and the prices. The models explain around 83.3% of the sales prices. Most of the households that would love to purchase houses in King County can now have a general idea of the criteria of house pricing.

Conclusion.

The biggest contributors to pricing in a house is the square footage of the living space, square footage of the house excluding the basement and the grade of the house.