Outliers in Time Series

Amirhosein "Emerson" Azarbakht, Michael Dumelle, Camden Lopez & Tadesse Zemicheal

March 10, 2016

Outline

- Motivating example
- Models to describe four types of outliers
- Estimating outlier effects using linear regression
- Using estimated effects to detect outliers
- ▶ R function tsoutliers::tso

 Transportation Services Index (TSI): monthly measure of volume of services provided by for-hire transportation sector

- The tso function in the tsoutliers package automatically detects and fits a model to the series with outlier effects removed
 - We'll describe how this works
- Two outliers detected:
 - ► Temporary Change outlier in Sept. 2001
 - ▶ Level Shift outlier in Dec. 2008

tso_output\$outliers

```
## type ind time coefhat tstat
## 1 TC 21 2001:09 -5.889364 -5.928143
## 2 LS 108 2008:12 -3.884195 -3.633127
```

plot(tso_output)

- ► Fitting ARIMA(1, 1, 0) model...
- ▶ Model fit without adjusting for outliers:
 - $\hat{\alpha}_1 = -0.165952$
 - $\hat{\sigma}_2 = 1.425164$
- Model fit after adjusting for outliers:
 - $\hat{\alpha}_1 = -0.2159957$
 - $\hat{\sigma}_2 = 1.1362642$
- Failing to adjust for outliers can result in
 - Wrong model or biased parameter estimates
 - Increased forecasting error

ightharpoonup ARIMA(p, d, q) process

$$X_t = \frac{\theta(B)}{\alpha(B)\phi(B)} Z_t$$

- ▶ Roots of $\theta(B)$, $\phi(B)$ outside unit circle
- $\alpha(B) = (1 B)^d$
- ▶ $Z_t \sim_{iid} \text{Normal}(0, \sigma^2)$

Observed series

$$X_t^* = X_t + \text{ outlier effect}$$

- ▶ Four models for outlier effect:
 - Additive outlier (AO)
 - ► Level shift (LS)
 - ► Temporary change (TC)
 - ► Innovational outlier (IO)

AO:
$$X_t^* = X_t + \omega I_t(t_1)$$
LS:
$$X_t^* = X_t + \frac{1}{1 - B} \omega I_t(t_1)$$
TC:
$$X_t^* = X_t + \frac{1}{(1 - \delta B)} \omega I_t(t_1)$$
IO:
$$X_t^* = X_t + \frac{\theta(B)}{\alpha(B)\phi(B)} \omega I_t(t_1)$$

$$= \frac{\theta(B)}{\alpha(B)\phi(B)} [Z_t + \omega I_t(t_1)]$$

Outlier Estimation

lacktriangle Obtain residuals \hat{e}_t from the observed series X_t^* by applying

$$\pi(B) = \frac{\alpha(B)\phi(B)}{\theta(B)} = 1 - \pi_1 B - \pi_2 B^2 - \pi_3 B^3 - \dots$$

- (Remember $X_t = \frac{\theta(B)}{\alpha(B)\phi(B)}Z_t$)
- ▶ If there were no outliers, result is white noise: $\pi(B)X_t = Z_t$
- When outlier present at $t=t_1$, residuals $\hat{e}_t=\pi(B)X_t^*$ for $t=t_1,\ldots,n$ reveal outlier effect

Outlier Estimation

Residuals for each type of outlier:

IO:
$$\hat{\mathbf{e}}_t = \omega I_t(t_1) + Z_t$$
AO:
$$\hat{\mathbf{e}}_t = \omega \pi(B)I_t(t_1) + Z_t$$
LS:
$$\hat{\mathbf{e}}_t = \omega \frac{\pi(B)}{1 - B}I_t(t_1) + Z_t$$
TC:
$$\hat{\mathbf{e}}_t = \omega \frac{\pi(B)}{1 - \delta B}I_t(t_1) + Z_t$$

▶ All have the form of simple linear regression (w/o intercept):

$$\hat{\mathbf{e}}_t = \omega \mathbf{x}_t + \mathbf{Z}_t$$

Outlier Estimation

► Least-squares estimate:

$$\hat{\omega} = \frac{\sum_{t=t_1}^{n} \hat{e}_t x_t}{\sum_{t=t_1}^{n} x_t^2}$$

Divide by standard error:

$$\hat{\tau} = \frac{\hat{\omega}}{\hat{\sigma}/\sqrt{\sum_{t=t_1}^n x_t^2}}$$

▶ Approximately ~ Normal(0, 1)

Outlier Detection

- ▶ At each t = 1, ..., n, for each outlier type (AO, LS, TC, IO),
 - **E**stimate outlier effect $\hat{\omega}$ and calculate $\hat{\tau}$
 - ▶ Large $|\hat{\tau}|$ (> C) indicates an outlier
- Once outlier is detected, estimated effect can be subtracted to obtain adjusted series

Outlier Detection

- Iterative procedure for detecting outliers, adjusting series, and fitting (seasonal) ARIMA model:
 - Chen, C. and Liu, Lon-Mu (1993), "Joint Estimation of Model Parameters and Outlier Effects in Time Series," *Journal of the American Statistical Association*, 88, 284–297.
- 1. Estimate model parameters, then locate outliers one-by-one, biggest $|\hat{\tau}|$ first, adjusting series each time
- 2. Re-estimate model parameters, drop any outliers where $|\hat{\tau}|$ no longer big enough after accounting for other outlier effects
- 3. Estimate final model parameters, repeat (1) and (2) using fixed parameters to get final set of outliers and effects

Outlier Detection

▶ Implemented in tso function in tsoutliers R package

```
tso(y, cval = NULL, delta = 0.7,
    types = c("AO", "LS", "TC"),
    maxit = 1, maxit.iloop = 4,
    tsmethod = c("auto.arima", "arima", "stsm"),
    args.tsmethod = NULL)
```

The End

- ► Thank you
- ▶ "Please clap" Jeb Bush