Компьютерная графика

Курс лекций

Тема №3. Математические основы компьютерной графики.

Прямоугольная декартова система координат

Прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат ОХ — ось абсцисс, ОҮ — ось ординат, ОZ — ось аппликат.

Прямоугольная система координат описывается набором <u>ортов</u>, сонаправленных с осями координат. В трёхмерном случае такие орты обычно обозначаются **i j k** или **e**_x **e**_y **e**_z.

Прямоугольные системы координат

Координатный фрейм в трехмерном пространстве: точка начала отсчета и тройка линейно-независимых (как правило, взаимно перпендикулярных) единичных векторов

Полярная система координат

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} y/x$$

Цилиндрическая система координат

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1} y/x$$

Сферическая система координат

Сферические координаты - тройка $(ho, \ arphi, \ heta)$, где

- расстояние до зафиксированной точки,
- θ и arphi азимутальный и зенитный угол соответсвенно.

Закон преобразования координат от сферических к декартовым:

$$x = \rho \sin \varphi \cos \theta,$$

$$y = \rho \sin \varphi \sin \theta,$$

$$z = \rho \cos \varphi$$

Закон преобразования декартовых координат к сферическим:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

Барицентрические координаты

- Барицентрические координаты скалярные параметры, набор которых однозначно задаёт точку аффинного пространства
- точечный базис в n-мерном аффинном пространстве представляет собой систему из (n+1)-й точки, которые предполагаются аффинно независимыми

$$P = \sum_{i=1}^{n} \alpha_i P_i$$

$$\sum_{i=1}^{n} \alpha_i = 1$$

Векторное пространство

- определено понятие вектора;
- определены операции:
 - сложения векторов;
 - умножения вектора на скаляр;
- операции удовлетворяют аксиомам веторного (линейного) пространства:
 - коммутативность сложения;
 - ассоциативность сложения;
 - существование нейтрального элемента относительно сложения;
 - существование противоположного элемента относительно сложения;
 - ассоциативность умножения на скаляр;
 - унитарность: умножение на нейтральный (по умножению) элемент сохраняет вектор;
 - дистрибутивность умножения на вектор относительно сложения скаляров;
 - дистрибутивность умножения на скаляр относительно сложения векторов.

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

$$\vec{v} + \vec{0} = \vec{v}$$

$$\vec{v} + (-\vec{v}) = \vec{0}$$

$$(\alpha\beta)\vec{v} = \alpha (\beta\vec{v})$$

$$1 \cdot \vec{v} = \vec{v}$$

$$\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$$

$$(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}.$$

Линейная комбинация векторов

- Линейной комбинацией *m* векторов V₁, V₂,..., V_m называется вектор вида **W** = a 1 **V**₁+a 2 **V**₂+... + a_n **V**_m, где a₁ ,a₂,..., a_m скаляры.
- Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.
- Линейная комбинация векторов называется аффинной (барицентрической) комбинацией (affine combination), если сумма коэффициентов а₁, a₂,..., a_m равна единице.
- Линейная комбинация называется **сбалансированной**, сумма коэффициентов а₁, *а*₂,..., *а*_m равна нулю.
- Аффинная комбинация векторов называется выпуклой, если все коэффициенты данной комбинации неотрицательны.

Аффинное пространство

- определено понятие точки аффинного пространства и вектора соответствующего векторного пространства
- определена операция сложения точки и вектора, удовлетворяющая следующим аксиомам:
 - (P + v) + w = P + (v + w)
 - P + o = P
 - для любых двух точек P,Q существует единственный вектор **v** такой, что Q = P + **v**
- для аффинного пространства все точки являются равноправными (в частности, в нём не определено понятие *нулевой точки*, или начала отсчёта)

Линейная комбинация точек

- линейная комбинация точек аффинного пространства имеет смысл только в двух случаях:
 - барицентрическая (аффинная)
 комбинация: сумма коэффициентов равна единице (результат точка);
 - сбалансированная комбинация: сумма коэффициентов равна нулю (результат вектор);
- все коэффициенты аффинной комбинации неотрицательны, тогда и только тогда, когда точка лежит внутри выпуклой оболочки, построенной на точках, образующих аффинную комбинацию (на границе выпуклой оболочки всего два коэффициента ненулевые);

$$P = \sum_{i=1}^{n} \alpha_i P_i$$

$$\sum_{i=1}^{n} \alpha_i = 1$$

Формирование сцены и изображения

- положение и параметры объектов
- положение и атрибуты наблюдателя (камеры)
- положение и параметры источников света
- объем видимости, параметры проецирования и картинная плоскость

Графический конвейер

- отображение (rendering):
 - преобразования (transformation) задание местоположения;
 - определение видимости (visibility) область видимости (field of view) + нелицевые поверхности → отсечение (clipping);
 - проекция на картинную плоскость (projection);
 - растеризация (rasterization);
 - закраска (shading);
 - текстурирование (texturing).

Преобразования координат: этап 1

 модельно-видовые преобразования (преобразование координат моделей отдельных объектов, заданных в локальных системах координат, к некоторой единой (мировой) системе координат и учет положения наблюдателя) → мировые координаты

Модельное преобразование

- переводит модель, заданную в локальных (собственных) координатах, в глобальное (мировое пространство);
- сцена «собирается» из частей, с помощью модельных преобразований (обычно композиция переносов, поворотов, масштабирований);
- на выходе модель в единых мировых координатах.

Виртуальная камера

- определяет положение наблюдателя в пространстве
- параметры:
 - положение (точка) наблюдения;
 - направление взгляда;
 - направление «вверх»;
 - параметры проекции;
- положение, направление взгляда и направление «вверх» задают видовое преобразование.

Система координат камеры

$$\vec{w}_c = \frac{\vec{n}}{|\vec{n}|}$$

$$\vec{u}_c = \frac{\vec{v} \times \vec{w}_c}{|\vec{v} \times \vec{w}_c|}$$

$$\vec{v}_c = \vec{w}_c \times \vec{u}_c$$

Видовое преобразование

- «подгоняет» мир под стандартную камеру, преобразует мировую систему координат в видовые координаты (которые подходят для «стандартной» камеры);
- на выходе модель, готовая к проекции на экран.

Преобразования координат: этап 2

- преобразования проецирования (в т.ч. отсечение по объему видимости) → усеченные координаты
- преобразование нормализации (приведение координат к некоторому предопределенному интервалу, например, [-1.0; 1.0]) → нормализованные координаты
- преобразование к порту просмотра (преобразование рабочей станции - из аппаратно-независимой формы в координаты устройства) → оконные координаты

Преобразования координат (в графическом конвейере)

- локальные координаты → мировые координаты → усеченные координаты → нормализованные координаты → оконные координаты
- задачи:
 - определить набор базовых преобразований, достаточный для задания всех необходимых преобразований графического конвейера;
 - определить наиболее удобный способ их представления.

Базовые двумерные преобразования

- двумерный перенос;
- двумерный поворот;
- двумерное масштабирование;
- двумерный сдвиг.

Двумерный перенос

$$x' = x + t_x, \qquad y' = y + t_y.$$

$$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \qquad \mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \qquad \mathbf{T} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}.$$

$$\mathbf{P}' = \mathbf{P} + \mathbf{T}$$
.

Двумерный поворот

$$x' = x \cos \theta - y \sin \theta;$$

$$y' = x \sin \theta + y \cos \theta.$$

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P},$$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

$$x' = x_r + (x - x_r)\cos\theta - (y - y_r)\sin\theta;$$

$$y' = y_r + (x - x_r)\sin\theta + (y - y_r)\cos\theta.$$

Двумерное масштабирование

$$x' = x \cdot s_x, \qquad y' = y \cdot s_y.$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{S} \cdot \mathbf{P},$$

Двумерный сдвиг

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & s_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Двумерные преобразования

Нелинейные преобразования

 Произвольное преобразование точек модели М'=Т(М)

Линейные преобразования

• линейным преобразованием (линейным оператором, линейным отображением) векторного пространства является преобразование, удовлетворяющее свойству линейности:

$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$$
$$T(a\vec{v}) = aT(\vec{v})$$

- линейное преобразование (линейный оператор) в некотором базисе задаётся с помощью матрицы, столбцы которой представляют собой преобразованные векторы данного базиса;
- (*) в данном случае рассматривается эндоморфизм.

Однородные координаты

Определение. Однородными координатами точки $P=(x_1,...,x_n),P\in R^n$ называются координаты $P_{hom}=(wx_1,wx_2,...,wx_n,w),P_{hom}\in R^{n+1}$, причем хотя бы один элемент должен быть отличен от нуля.

Представление вектора в однородных координатах (идеальная точка):

$$V = (V_1, V_2, V_3, 0)$$

Представление точки в однородных координатах:

$$P=(p_1,p_2,p_3,1)$$

→проективное пространство

Матричное представление геометрических преобразований

- Координаты представляются вектором-столбцом
- Геометрическое преобразование задается матрицей, умножаемой справа на вектор-столбец координат

$$P' = M*P$$

• Матрица композиции преобразований является произведением матриц элементарных преобразований (матрицы перемножаются в обратном порядке): операция является ассоциативной, но в общем случае некоммутативной

$$M = M_2 * M_1$$

• Обратное преобразование задается обратной матрицей

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ m & n & p & q \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Типичные линейные преобразования

- общие линейные преобразования
 - w' != 1 (проективные, необходимо «перспективное деление»)
 - прямые переходят в прямые
- аффинные преобразования
 - w' = 1
 - сохраняется параллельность пиний
 - пример: сдвиг
- преобразование подобия
 - сохраняются углы
 - пример: равномерное масштабирование
- изометрия (движение)
 - сохраняются расстояния
 - пример: поворот, перенос

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ m & n & p & q \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Аффинные преобразования

Отображение $f:\mathbb{R}^n \to \mathbb{R}^n$ есть аффинное преобразование, если найдётся обратимая матрица M и вектор $v \in \mathbb{R}^n$ такие, что

$$f(x) = M \cdot x + v.$$

- прямая переходит в прямую, плоскость в плоскость;
- сохраняется параллельность прямых и плоскостей;
- конечные (истинные) точки отображаются в конечные;
- сохраняются относительные пропорции;
- сохраняются аффинные комбинации точек.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Трехмерный перенос

$$x' = x + \Delta x$$
$$y' = y + \Delta y$$
$$z' = z + \Delta z$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Трехмерное масштабирование

$$x' = ax$$
 $y' = by$
 $z' = cz$
 $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ y \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix}$
 $\begin{pmatrix} x \\ y$

частные случаи:

- равномерное (пропорциональное) масштабирование;
- отражение от координатной плоскости

Отражение от произвольной плоскости

$$\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$$

$$\vec{v}_{\parallel} = (\vec{v} \cdot \vec{n})\vec{n}$$

$$\vec{v}_{\perp} = \vec{v} - (\vec{v} \cdot \vec{n})\vec{n}$$

$$T_{ref}(\vec{v}) = T_{ref}(\vec{v}_{\parallel}) + T_{ref}(\vec{v}_{\perp}) = -\vec{v}_{\parallel} + \vec{v}_{\perp}$$

$$M = \vec{n}\vec{n}^{T} = \begin{bmatrix} n_{x}^{2} & n_{x}n_{y} & n_{x}n_{z} \\ n_{y}n_{x} & n_{y}^{2} & n_{y}n_{z} \\ n_{z}n_{x} & n_{z}n_{y} & n_{z}^{2} \end{bmatrix}$$

$$T_{ref}(\vec{v}) = \vec{v} - 2(\vec{v} \cdot \vec{n})\vec{n} = I\vec{v} - 2M\vec{v} = (I - 2M)\vec{v}$$

Трехмерный сдвиг

$$x' = x + ay$$
$$y' = y + bx$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & a & 0 & 0 \\ b & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Трехмерный поворот (относительно одной из осей)

$$R_{OZ} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{OY} = \begin{pmatrix} \cos \varphi & 0 & \sin \varphi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{OX} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Трехмерный поворот

• Эйлер: комбинация любого числа поворотов всегда эквивалентна единственному повороту вокруг фиксированной оси

Трёхмерный поворот (относительно произвольной оси)

$$M_{arb} = M_x^{-1}(\alpha)M_y^{-1}(\beta)M_z(\theta)M_y(\beta)M_x(\alpha)$$

$$c = \cos \theta$$

$$s = \sin \theta$$

$$M_{arb} = \begin{bmatrix} c + (1-c)a_x^2 & (1-c)a_xa_y - sa_z & (1-c)a_xa_z + sa_y \\ (1-c)a_xa_y + sa_z & c + (1-c)a_y^2 & (1-c)a_ya_z - sa_x \\ (1-c)a_xa_z - sa_y & (1-c)a_ya_z + sa_x & c + (1-c)a_z^2 \end{bmatrix}$$

Трёхмерный поворот (относительно произвольной оси) (2)

$$\vec{w}_{\parallel} = (\vec{a} \cdot \vec{w})\vec{a}$$

$$\vec{w}_{\perp} = \vec{w} - (\vec{a} \cdot \vec{w})\vec{a}$$

$$\vec{w}_{r} = (\vec{w} - (\vec{a} \cdot \vec{w})\vec{a})\cos\theta + (\vec{a} \times \vec{w}_{\perp})\sin\theta$$

$$(\vec{a} \cdot \vec{w})\vec{a} = (\vec{a} \otimes \vec{a})\vec{w} = \begin{bmatrix} a_{x}^{2} & a_{x}a_{y} & a_{x}a_{z} \\ a_{y}a_{x} & a_{y}^{2} & a_{y}a_{z} \\ a_{z}a_{x} & a_{z}a_{y} & a_{z}^{2} \end{bmatrix} \vec{w}$$

$$\vec{a} \times \vec{w} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix} \vec{w} = C_{a}\vec{w}$$

$$T_{rot}(\vec{w}) = M_{rot}\vec{w} = (I\cos\theta + (\vec{a}\otimes\vec{a})(1-\cos\theta) + C_a\sin\theta)\vec{w}$$

Перемещение и ориентация

- положение объекта в пространстве задаётся с помощью шести параметров (6DoF, six degrees of freedom):
 - связанные с перемещением:
 - вперёд / назад (surging);
 - влево / вправо (swaying);
 - вверх / вниз (heaving);
 - связанные с поворотом:
 - крен (roll) : поворот вокруг продольной оси;
 - тангаж (pitch) : поворот вокруг поперечной оси;
 - рыскание (yaw) : поворот относительно вертикальной оси;
- описание поворотов:
 - углы Эйлера (определяют три угла поворота системы, которые позволяют привести исходное положение к текущему) → Gimbal lock;
 - кватернионы (Slerp: spherical linear interpolation).

Вращение с использованием кватернионов

$$\hat{q} = (\cos \theta, \vec{u} \sin \theta)$$
$$\hat{v} = (0, \vec{v})$$

 $T(\hat{v}) = \hat{q}\hat{v}\hat{q}^{-1}$ rotates \vec{v} around the axis \vec{u} through an angle 2θ $\hat{q} = (a, \vec{w}) = (a, b, c, d)$

$$R(\hat{q}) = \begin{bmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & a^2 - b^2 - c^2 + d^2 \end{bmatrix}$$

• Slerp:
$$\hat{q}(t) = \frac{\sin(1-t)\theta}{\sin\theta}\hat{q}_1 + \frac{\sin t\theta}{\sin\theta}\hat{q}_2$$

Преобразование нормалей

• преобразования вершин и нормалей совпадают в том случае, когда преобразование задано ортогональной матрицей (например, повороты)

$$M = (M^{-1})^T$$

Преобразования в графическом конвейере OpenGL

Функции операций с матрицами преобразований в OpenGL

• Выбор матрицы преобразований для изменения:

• Основные операции над матрицами:

```
void glLoadIdentity(); M=I void glLoadMatrixd(GLdouble m[16]); void glMultMatrixd(GLdouble m[16]);
```

$$V = C \cdot \begin{bmatrix} m[0] & m[4] & m[8] & m[12] \\ m[1] & m[5] & m[9] & m[13] \\ m[2] & m[6] & m[10] & m[14] \\ m[3] & m[7] & m[11] & m[15] \end{bmatrix} \cdot \begin{bmatrix} v[0] \\ v[1] \\ v[2] \\ v[3] \end{bmatrix}$$

Стек матриц в OpenGL

```
{f E}
glLoadIdentity();
glTranslated(...); —
glPushMatrix();
glRotated(...); —
                                  T*R1
glPopMatrix();
glPushMatrix();
glRotated(...);
glPopMatrix();
                                  T*R2
```

Определение глубины стека: glGetIntegerv (GL_MAX_MODELVIEW_STACK_DEPTH)
Определение текущей глубины стека: glGetIntegerv (GL_MODELVIEW_STACK_DEPTH)

Функции геометрических преобразований в OpenGL

- преобразования объектов и камеры в OpenGL производятся с помощью умножения векторов координат на *текущую матрицу* в момент определения координат вершин
- при определении преобразования умножение матриц производится аналогично функции glMultMatrixd(), следовательно, преобразования необходимо задавать в обратном порядке.

Видовое преобразование в OpenGL

- стандартная камера в OpenGL:
 - наблюдатель в (0, 0, 0)
 - смотрит по направлению (0, 0, -1)
 - верх (0, 1, 0)

```
gluLookAt( eye<sub>x</sub>, eye<sub>y</sub>, eye<sub>z</sub>,

aim_x, aim_y, aim_z,

up_x, up_y, up_z)
```

- еуе координаты наблюдателя
- aim координаты «цели» (центра сцены)
- up направление «вверх»

Вызывать команду gluLookAt() имеет смысл *перед* определением преобразований объектов, когда модельно-видовая матрица равна единичной

Проективное преобразование и проекция

- проективное преобразование: реализует 3D преобразование, подготавливая модель к переходу к 2D (координата Z сохраняется);
- проекция: переход к двумерной системе координат;
- после проективного преобразования необходимо отбросить координату z и получить значения в оконных координатах;
- объём видимости: ограничивает видимую область пространства;

Проекции

основные понятия:

- проецирующие лучи (проекторы)
- поверхность проекции, плоскость проекции
- центр проекции
- главная ось: ось координат
- перспективное искажение, точки схода
- коэффициент укорачивания

Классификация проекций

- параллельная:
 - ортогональная, ортографическая*;
 - аксонометрическая:
 - прямоугольная *:
 - изометрия;
 - диметрия;
 - триметрия;
 - косоугольная **:
 - кавалье / военная перспектива (горизонтальная изометрия);
 - кабинетная (фронтальная диметрия);
- перспективная (центральная):
 - одноточечная;
 - двухточечная;
 - трехточечная;

Параллельные проекции

Уравнение плоскости (1): $\mathbf{n} \cdot (Q - B) = 0$

Проецируемая точка (2): P + dt:

$$p = P + \mathbf{d} \frac{\mathbf{n} \cdot (B - P)}{\mathbf{n} \cdot \mathbf{d}}.$$

условия $\mathbf{n} = (0, 0, 1).$ B = (0, 0, 0).

$$p = \left(P_x - d_x \frac{P_z}{d_z}, P_y - d_y \frac{P_z}{d_z}, 0\right).$$

$$\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\frac{d_x}{d_z} & 0 \\ 0 & 1 & \frac{-d_y}{d_z} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}.$$

Ортографическая проекция (виды)

Ортографическая проекция: пример

вид спереди (front view)

вид слева (side view)

$$\boldsymbol{M}_{z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{M}_{x} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{M}_{y} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

вид сверху (top view)

$$M_{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Прямоугольные аксонометрические проекции

$$[T][U] = [T] egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix} = egin{pmatrix} x_x^* & x_y^* & x_z^* \ y_x^* & y_y^* & y_z^* \ 0 & 0 & 0 \ 1 & 1 & 1 \end{pmatrix} \qquad f_x = \sqrt{x_x^{*2} + y_x^{*2}}, \ f_y = \sqrt{x_y^{*2} + y_y^{*2}}, \ f_z = \sqrt{x_z^{*2} + y_z^{*2}}. \ \end{cases}$$
 коэффициенты искажения вдоль главных осей

$$f_x = \sqrt{x_x^{*2} + y_x^{*2}}, \ f_y = \sqrt{x_y^{*2} + y_y^{*2}}, \ f_z = \sqrt{x_z^{*2} + y_z^{*2}}.$$

$$[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\varphi & 0 & \sin\varphi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\varphi & 0 & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Диметрия

$$\theta = \arcsin(\pm f_z/\sqrt{2}).$$
 $\phi = \arcsin(\pm f_z/\sqrt{2-f_z^2}).$

Изометрия

$$heta=\pm 35, 26^\circ$$
 $\phi=\pm 45^\circ$

Изометрия и диметрия: пример

$$[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\varphi & 0 & \sin\varphi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\varphi & 0 & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos\varphi & 0 & \sin\varphi & 0 \\ \sin\varphi\sin\theta & \cos\theta & -\cos\varphi\sin\theta & 0 \\ \sin\varphi\cos\theta & -\sin\theta & -\cos\varphi\cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Косоугольные аксонометрические проекции

- Направление проецирования $(l\cos\alpha, l\sin\alpha, -1)$
- Угол между косыми проекторами и плоскостью проекции $\beta = arcctg(l)$
- Военная проекция (кавалье) $\beta = arcctg(1) = 45^{\circ}$
- Кабинетная проекция $\beta = arcctg(1/2) = 63.435^{\circ}$

$$[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -l*\cos\alpha & 0 \\ 0 & 1 & -l*\sin\alpha & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\frac{d_x}{d_z} & 0 \\ 0 & 1 & \frac{-d_y}{d_z} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}.$$

Фронтальная диметрия (Cabinet)

 плоскость проецирования перпендикулярна оси Z

(b)

Горизонтальная изометрия (Cavalier, военная перспектива)

• плоскость проецирования перпендикулярна оси Ү

Горизонтальная изометрия и фронтальная диметрия: пример

$$[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -l*\cos\alpha & 0 \\ 0 & 1 & -l*\sin\alpha & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -l*\cos\alpha & 0 \\ 0 & 1 & -l*\sin\alpha & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Центральные (перспективные) проекции

Центральные проекции

параллельных прямых, не параллельных плоскости проекции будут сходиться в точке схода, количество которых (для прямых, параллельных осям координат), зависит от числа координатных осей, которые пересекает плоскость проекции

$$[T] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ p & q & r & 1 \end{pmatrix}$$

Перспективная проекция: матричное представление

$$\frac{x_p}{d} = \frac{x}{z+d}, \frac{y_p}{d} = \frac{y}{z+d},$$

$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix}$$

$$x_{p} = \frac{d \cdot x}{z + d} = \frac{x}{(\frac{z}{d}) + 1}$$

$$y_{p} = \frac{d \cdot y}{z + d} = \frac{y}{(\frac{z}{d}) + 1}$$

Перспективная проекция: пример

одноточечная

$$M_{1P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

• двухточечная • трёхточечная

$$M_{2P} = \begin{pmatrix} 0.87 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1.73 & 1 \\ 0.5 & 0 & -0.87 & 2 \end{pmatrix}$$

$$\boldsymbol{M}_{1P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \qquad \boldsymbol{M}_{2P} = \begin{pmatrix} 0.87 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1.73 & 1 \\ 0.5 & 0 & -0.87 & 2 \end{pmatrix} \qquad \boldsymbol{M}_{3P} = \begin{pmatrix} 0.87 & 0 & 0.5 & 0 \\ -0.09 & 0.98 & 0.15 & 0 \\ 0.98 & 0.35 & -1.7 & 1 \\ 0.49 & 0.17 & -0.85 & 2 \end{pmatrix}$$

Центральная перспектива

искаженная перспектива

- выбор центра проецирования для достижения желаемого эффекта при восприятии
- несоответствие положения наблюдателя и центра проекции

Нормализованные координаты

$$M_{per} = \begin{bmatrix} \frac{-2z_n}{w_r - w_l} & 0 & \frac{w_r + w_l}{w_r - w_l} & 0 \\ 0 & \frac{-2z_n}{w_t - w_b} & \frac{w_t + w_b}{w_t - w_b} & 0 \\ 0 & 0 & \frac{z_n + z_f}{z_n - z_f} & -\frac{2z_n z_f}{z_n - z_f} \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad \begin{array}{l} \bullet \quad \text{интерполяция c} \\ \text{учётом} \\ \text{перспективы} \\ \frac{1}{z_2} = (1-s)\frac{1}{z_1} + s\frac{1}{z_3} \\ \frac{c_2}{z_2} = (1-s)\frac{c_1}{z_1} + s\frac{c_3}{z_3} \\ \end{array}$$

$$\frac{1}{z_2} = (1 - s)\frac{1}{z_1} + s\frac{1}{z_3}$$

$$\frac{c_2}{z_2} = (1 - s)\frac{c_1}{z_1} + s\frac{c_3}{z_3}$$

Нелинейная перспектива

Пространство изображений:

а – линейное,

б – нелинейное.

Сферическая перспектива (сохраняет угловые размеры объектов)

Ортографическое проективное преобразование в OpenGL

void **glOrtho** (GLdouble *left*, GLdouble *right*, GLdouble *bottom*, GLdouble *top*, GLdouble *near*, GLdouble *far*)

void **gluOrtho2D** (GLdouble *left*, GLdouble *right*, GLdouble *bottom*, GLdouble *top*)

// near = -1, far = 1

Определяет параллелепипед видимости, ребра которого направлены вдоль осей координат, с точкой наблюдения в (0, 0, 0), используется левосторонняя система координат. Параметры команды задают точки (left, bottom, znear) и (right, top, zfar), которые отвечают левому нижнему и правому верхнему углам окна вывода. Параметры near и far задают расстояние до ближней и дальней плоскостей отсечения по удалению от точки (0,0,0) и могут быть отрицательными.

Матрица ортографического проективного преобразования в OpenGL

$$\begin{bmatrix}
\frac{2}{right-left} & 0 & 0 & t_{\chi} \\
0 & \frac{2}{top-bottom} & 0 & t_{y} \\
0 & 0 & \frac{-2}{far-near} & t_{z} \\
0 & 0 & 0 & -1
\end{bmatrix}$$

$$t_{x} = -\frac{right + left}{right - left}$$

$$t_{y} = -\frac{top + bottom}{top - bottom}$$

$$t_{z} = -\frac{far + near}{far - near}$$

Определяет параллелепипед видимости, ребра которого направлены вдоль осей координат, с точкой наблюдения в (0, 0, 0), используется левосторонняя система координат.

Перспективное проективное преобразование в OpenGL (определение пирамиды видимости)

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble znear, GLdouble zfar);

$$egin{pmatrix} 2 & \text{near} & 0 & A & 0 \\ \text{right-left} & 0 & A & 0 \\ 0 & rac{2 & \text{near}}{\text{top-bottom}} & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$A = \frac{right + left}{right - left}$$

$$B = \frac{top + bottom}{top - bottom}$$

$$C = -\frac{far + near}{for - near}$$

$$D = -\frac{2 \ far \ near}{far \ near}$$

Определяет пирамиду видимости, расположенную вдоль оси Z с вершиной в точке (0, 0, 0), используется левосторонняя система координат.

$$r = \frac{far}{near}$$

В силу операции перспективного деления, данное соотношение определяет точность операций с глубиной.

Перспективное проективное преобразование в OpenGL

Преобразование рабочей станции и порт просмотра

Мировое окно – та часть сцены, которую необходимо отобразить **Порт просмотра** – область, в которую проецируется мировое окно

Усеченные координаты: $(xc, yc, zc, wc)^T$

Нормализованные координаты (перспективное деление): $(xn, yn, zn)^T = (xc/wc, yc/wc, zc/wc)^T$

Оконные координаты (нормализованные координаты приведены к диапазону [-1;1]): $(xw, yw, zw)^T = ((px/2) xn + ox, (py/2) yn + oy, [(f-n)/2] zn+(n+f)/2)^T$, где px=width, py=height ox=x+width/2, oy=y+height/2 (оконные координаты центра области вывода) n и f задают минимальную и максимальную глубину точки в окне

Преобразование порта просмотра в OpenGL

$$V = egin{pmatrix} \dfrac{w}{2} & 0 & 0 & x_{left} + \dfrac{w}{2} \\ 0 & \dfrac{h}{2} & 0 & y_{bottom} + \dfrac{h}{2} \\ 0 & 0 & \dfrac{d}{2} & z_{near} + \dfrac{d}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Задание порта просмотра:

glViewPort (GLint *x*, GLint *y*, GLint *width*, GLint *height*)
Определение значений п и f (по умолчанию равны 0 и 1 соответственно): **glDepthRange** (GLclampd *n*, GLclampd *f*)

Получение образа и прообраза точки в OpenGL

```
int gluProject( GLdouble objx, GLdouble objx, GLdouble objz, const GLdouble modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble *winz);
```

```
int gluUnProject( GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble *objz );
```


Лабораторная работа № 2 / 3

- Определить параметризованную модель объекта сцены (в соответствии с вариантом). Для лабораторной работы №2 в качестве объекта использовать куб.
- 2. Определить преобразования, позволяющие получить заданный вид проекции (в соответствии с вариантом). Для демонстрации проекции добавить в сцену куб (в стандартной ориентации, не изменяемой при модельновидовых преобразованиях основного объекта).
- 3. Реализовать изменение ориентации и размеров объекта (навигацию камеры) с помощью модельно-видовых преобразований (без gluLookAt). Управление производится интерактивно с помощью клавиатуры и/или мыши.
- 4. Предусмотреть возможность переключения между каркасным и твердотельным отображением модели (glFrontFace / glPolygonMode).

Вопросы к экзамену

- Линейные преобразования. Матричное представление преобразований. Однородные координаты. Аффинные преобразования и их свойства. Комбинирование и инвертирование преобразований. Преобразование нормали.
- Графический конвейер и преобразование координат. Модельные преобразования. Видовые преобразования. Виртуальная камера. Проективные преобразования.
- Двумерные преобразования и их матричное представление. Однородные координаты.
- Базовые трехмерные преобразования и их матричное представление.
 Однородные координаты.
- Отражение точки (вектора) от произвольной плоскости.
- Трёхмерный поворот относительно произвольной оси. Ориентация объекта.
- Классификация проекций. Виды параллельных проекций. Матричное представление ортографической проекции, аксонометрических косоугольных проекций.
- Классификация проекций. Виды параллельных проекций. Матричное представление аксонометрических прямоугольных проекций.
- Классификация проекций. Виды перспективных проекций. Матричное представление проективного преобразования.
- Нормализованные координаты и преобразование рабочей станции.
- Графический конвейер OpenGL и геометрические преобразования.