3 Séries numériques

I - Convergence

1 - Définitions

Définition 3.1 – Soit la suite $(u_n)_{n \in \mathbb{N}}$. On appelle **série de terme général** u_n la suite $(S_n)_{n \in \mathbb{N}}$ définie par

$$\forall n \in \mathbf{N}, \quad S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k.$$

La série de terme général u_n est notée $\sum_{n\geq 0}u_n$ ou parfois simplement $\sum u_n$.

Le réel $S_n = \sum_{k=0}^n u_k$ est appelé **la somme partielle d'indice** n de la série $\sum_{n\geq 0} u_n$.

Remarque 3.2 – Si la suite $(u_n)_{n\in\mathbb{N}}$ n'est définie qu'à partir d'un certain rang n_0 , la série de terme général u_n n'est également définie qu'à partir de n_0 , ce que l'on note $\sum_{n\geq n_0}u_n$. La suite des **sommes partielles** est alors

$$(S_n)_{n \ge n_0}$$
, avec $S_n = \sum_{k=n_0}^n u_k$.

Exemple 3.3 -

1. On considère la série $\sum_{n\geq 0} n$. Son **terme général** est $u_n = n$.

Les premières sommes partielles sont

$$S_0 = 0$$
, $S_1 = 0 + 1 = 1$, $S_2 = 0 + 1 + 2 = 3$, $S_3 = 0 + 1 + 2 + 3 = 6$, etc.

De manière générale, on peut montrer par récurrence sur $n \in \mathbb{N}$ que

$$\forall n \in \mathbf{N}, \quad S_n = \sum_{k=0}^n k = \frac{n(n+1)}{2}.$$

2. La série $\sum_{n\geq 1} \frac{1}{n}$ est appelée la **série harmonique**. Son **terme général** est $u_n = \frac{1}{n}$. Les premières sommes partielles sont

$$S_1 = 1$$
, $S_2 = 1 + \frac{1}{2} = \frac{3}{2}$, $S_3 = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$, $S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$, etc

Il n'existe pas de formule simple pour la somme partielle S_n d'indice n.

2 - Séries convergentes

La série $\sum_{n\geq 0} u_n$ étant une suite, on peut s'intéresser à sa convergence.

Définition 3.4 – Soit $\sum_{n\geq 0} u_n$ une série et S_n sa somme partielle d'indice n.

• Si la suite $(S_n)_{n\in\mathbb{N}}$ converge, on dit que la série $\sum_{n\geq 0}u_n$ est **convergente**. La limite S de la suite $(S_n)_{n\in\mathbb{N}}$ est alors appelée la **somme** de la série $\sum_{n\geq 0}u_n$ et on note

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left(\sum_{k=0}^n u_k \right) = \sum_{k=0}^{+\infty} u_k.$$

- Si la suite $(S_n)_{n \in \mathbb{N}}$ diverge, on dit que la série $\sum_{n \geq 0} u_n$ est **divergente**.
- Déterminer la **nature** de la série consiste à déterminer si elle est convergente ou divergente.

Remarque 3.5 -

- L'écriture $\sum_{k=0}^{+\infty} u_k$ n'a de sens que si la série **converge**! Alors que l'écriture $\sum_{n\geq 0} u_n$ a toujours un sens, puisqu'elle désigne une suite.
- Tout comme on ne confond pas la suite (u_n) , le n-ième terme u_n de cette suite et sa limite éventuelle ℓ , il convient de ne pas confondre la série $\sum_{n\geq 0} u_n$, la n-ième somme partielle $S_n = \sum_{k=0}^n u_k$ et la somme éventuelle $\sum_{k=0}^{+\infty} u_k$ de la série.
- Les sommes infinies ne se manipulent pas comme les sommes finies (puisqu'en réalité ce sont des limites, il faut donc toujours s'assurer de la convergence). C'est pourquoi on calculera (*presque*) toujours les sommes partielles, qui sont des sommes finies, avant de passer à la limite.

Exemple 3.6 -

• Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 0$. Alors, la somme partielle d'indice n est

$$S_n = \sum_{k=0}^n 0 = 0.$$

La suite $(S_n)_{n \in \mathbb{N}}$ est donc clairement convergente et sa limite vaut 0, donc la série $\sum_{n \geq 0} 0$ converge

et
$$\sum_{k=0}^{+\infty} 0 = 0$$
.

• Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 1$. Alors, la somme partielle d'indice n est

$$S_n = \sum_{k=0}^n 1 = n + 1.$$

La suite $(S_n)_{n\in\mathbb{N}}$ diverge, donc la série $\sum_{n\geq 0}1$ diverge.

3 - Premiers exemples

1. On considère la série $\sum_{n\geq 0} \left(\frac{1}{2}\right)^n$. Son terme général est $u_n = \left(\frac{1}{2}\right)^n$. La **somme partielle d'indice** n est

$$S_n = \sum_{k=0}^{n} \left(\frac{1}{2}\right)^k = 1 \times \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right).$$

La série $\sum_{n\geq 0} \left(\frac{1}{2}\right)^n$ est donc la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad S_n = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right).$$

Or,
$$\frac{1}{2} \in]-1;1[$$
 donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ donc $\lim_{n \to +\infty} S_n = 2$.

La série $\sum_{n\geq 0} \left(\frac{1}{2}\right)^n$ est donc **convergente** et on a $\sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^k = 2$.

2. On considère la série $\sum_{n\geq 1} \frac{1}{n(n+1)}$.

Son terme général est $u_n = \frac{1}{n(n+1)}$. La somme partielle d'indice n est

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$$

$$= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1}$$

$$= \sum_{k=1}^n \frac{1}{k} - \sum_{j=2}^{n+1} \frac{1}{j}$$

$$= 1 + \sum_{k=2}^n \frac{1}{k} - \left(\sum_{j=2}^n \frac{1}{j} + \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}.$$

La série $\sum_{n\geq 1} \frac{1}{n(n+1)}$ est donc la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbf{N}, \quad S_n = 1 - \frac{1}{n+1}.$$

Or
$$\lim_{n \to +\infty} \frac{1}{n+1} = 0$$
 donc $\lim_{n \to +\infty} S_n = 1$.

La série $\sum_{n\geq 1} \left(\frac{1}{n(n+1)}\right)$ est donc convergente et on a $\sum_{k=1}^{+\infty} \left(\frac{1}{k(k+1)}\right) = 1$.

3. On reprend l'exemple de la série harmonique.

Nous verrons dans les exercices que cette série est divergente.

4 - Opérations sur les séries

Les opérations sur les sommes finies se transposent, sous certaines conditions, aux séries.

Théorème 3.7

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles et λ un réel non nul.

• Les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} \lambda u_n$ sont de même nature (c'est-à-dire qu'elles sont ou bien toutes les deux convergentes, ou bien toutes les deux divergentes). Si elles sont convergentes, on a alors

$$\sum_{k=0}^{+\infty} \lambda u_k = \lambda \sum_{k=0}^{+\infty} u_k.$$

• Si les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ sont toutes les deux convergentes, alors la série $\sum_{n\geq 0} (u_n+v_n)$ est également convergente, et on a

$$\sum_{k=0}^{+\infty} (u_k + v_k) = \sum_{k=0}^{+\infty} u_k + \sum_{k=0}^{+\infty} v_k.$$

ATTENTION! La réciproque du second point n'est pas vraie! La convergence de la série $\sum_{n\geq 0} (u_n+v_n)$ n'assure pas <u>du tout</u> la convergence des séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$.

Exemple 3.8 – Par exemple, si l'on pose pour tout $n \ge 1$, $u_n = \frac{1}{n}$ et $v_n = -\frac{1}{n}$, alors la série $\sum_{n \ge 0} (u_n + v_n)$ converge alors que ni $\sum_{n \ge 0} u_n$ ni $\sum_{n \ge 0} v_n$ ne convergent (voir les exemples précédents).

5 - Suites et séries

Théorème 3.9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Alors, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si la série $\sum_{n\geq 0} (u_{n+1}-u_n)$ est convergente. Dès lors, si $(u_n)_{n\in\mathbb{N}}$ est convergente, et en notant ℓ sa limite, on a :

$$\sum_{k=0}^{+\infty} (u_{k+1} - u_k) = \ell - u_0.$$

Théorème 3.10

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si la série $\sum_{n\geq 0}u_n$ converge, alors $\lim_{n\to +\infty}u_n=0$.

ATTENTION! La réciproque est fausse! $\lim_{n\to+\infty}\frac{1}{n}=0$ et pourtant, la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge.

Corollaire 3.11

Si une suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, alors la série $\sum_{n\geq 0}u_n$ est divergente.

Exemple 3.12 – Les séries
$$\sum_{n\geq 0} (-1)^n$$
, $\sum_{n\geq 0} \frac{n^2}{n+1}$ et $\sum_{n\geq 0} \frac{3^n}{2^n-3^n}$ sont divergentes.

6 - Convergence absolue

Définition 3.13 – Soit $(u_n)_{n \in \mathbb{N}}$ une suite. On dit que la série $\sum_{n \geq 0} u_n$ est **absolument convergente** si la série $\sum_{n \geq 0} |u_n|$ est convergente.

Théorème 3.14

Toute série absolument convergente est convergente.

ATTENTION! La réciproque de ce théorème est fausse.

En effet, la série $\sum_{n\geq 1} \frac{(-1)^n}{n}$ est convergente, mais elle n'est pas absolument convergente.

II - Séries de référence

1 - Série géométrique

Définition 3.15 – Pour tout réel q, la série $\sum_{n\geq 0} q^n$ s'appelle série géométrique de raison q.

On a vu précédemment que la série géométrique de raison $\frac{1}{2}$ converge et que sa somme vaut 2. En fait, plus généralement, on a le résultat suivant.

Théorème 3.16

La série $\sum_{n\geq 0}q^n$ est convergente si et seulement si |q|<1. Dans ce cas, on a

$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q}.$$

2 – Série exponentielle

Définition 3.17 – Soit $x \in \mathbb{R}$. La série de terme général $\frac{x^n}{n!}$ est appelée série exponentielle.

Théorème 3.18

Pour tout $x \in \mathbb{R}$, la série exponentielle $\sum_{n \ge 0} \frac{x^n}{n!}$ converge et

$$\sum_{k=0}^{+\infty} \frac{x^k}{k!} = e^x.$$

Exemple 3.19 –

•
$$\sum_{k=0}^{+\infty} \frac{1}{k!} = \sum_{k=0}^{+\infty} \frac{1^k}{k!} = e$$
.

•
$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} = e^{-1}$$
.

•
$$\sum_{k=1}^{+\infty} \frac{\left(\ln(5)\right)^k}{k!} = \sum_{k=0}^{+\infty} \frac{\left(\ln(5)\right)^k}{k!} - \frac{\left(\ln(5)\right)^0}{0!} = e^{\ln(5)} - \frac{1}{1} = 5 - 1 = 4.$$

Ω_{Ω}

Méthode 3.20 – Étudier la nature d'une série $\sum_{n\geq 0} u_n$ et/ou calculer sa somme éventuelle

- 1. On regarde si le terme général tend vers 0.
 - Si la réponse est **non**, la série est **divergente**.
 - Si la réponse est oui, on ne peut pas conclure, il faut poursuivre l'étude.
- 2. On essaie d'exprimer la série sous la forme d'une série de référence (géométrique ou exponentielle).
- 3. Sinon, on poursuit l'étude en écrivant la somme partielle $S_n = \sum_{k=0}^n u_k$.

On regarde si on peut simplifier S_n , en utilisant des changements d'indices, une mise en facteur ou par « téléscopage des termes ». Puis on conclut à l'aide des résultats du cours.