

30 Rotational Diffusion of an E-coli Bacteria/?

Mohammad Charsooghi

Under Supervision of:

Dr Khalesi Dr Golestanian

Rotational Diffusion of an &-coli Bacteria

Table of contents

- What is an E-coli Bacteria?
 - -Biology points of view
 - -Physics points of view
- A Colloidal Particle
 - -What is a colloid?
 - -Why Colloids are important
- Diffusion and Rotational Diffusion
 - -Physical definition and concepts
 - -MATLAB Program to calculate diffusion
- 3D particle tracking of an Ellipsoid
 - -Others works on 3D particle tracking
 - -Our approach in 2D
 - -Controlling PI using MATLAB
 - -2D Tracker
 - -Two candidate approach for 3D
- Concolusion

What is an E-coli Bacteria

Biological points of view

What is E-Coli?

E-coli is a bacteria which normally lives inside your intestines.

E-coli is a prokaryotic cell.

What is inside E-Coli?

- •DNA
- •Cytoplasm
- •Cell Membrane
- •Flagellum

What is an E-coli Bacteria

Physical points of view

Why E-Coli Bacteria is important?

- grown easily and rapidly (20 min)
- its genetics are simple and easilymanipulated
- long history of laboratory culture
- Safty

Physical properties of an E-coli:

- rod-shaped
- about 2 μm long and 0.5 μm in diameter.
- cell volume of $0.6 0.7 \,\mu\text{m}^3$.
- Its DNA is more than 300 times longer. So, the DNA is tightly coiled and twisted to fit inside.
- Optimal growth of *E. coli* occurs at 37°C

Colloidal Particle

What is a Colloid?

What is a colloidal particle?

Have a length scale in at least one direction, about tens of nm to tens of um

Colloidal Particle

Why Colloids are Important?

Why the colloids are important?

- The size of the particles are sufficiently large to observe via usual microscopy techniques
- The size of the is as tiny as enough to have a Brownian motion.
- So they can transfer energy and cause physical system to reach equilibrium.
- Like many physical system have different kinds of phases.
- Can consider as a good model to interpret many kinds of physical situations.

Physical Definitions and Concepts

A brief physical concept of Random Walk and Diffusion

Diffusion is the movement of particles from an area of high concentration to an area of low concentration until it is evenly distributed.

In cell biology, diffusion is a main form of transport for necessary materials such as amino acids within cells.

Diffusion of a fluid (anything that moves like a liquid) through a partially permeable membrane is classified as **osmosis**.

Diffusion from a Mathematical Point

Calculate Diffusion Coefficient Theory

The relations to calculate Diffusion:

Einstein's Eq.
$$D = \frac{K_B T}{\gamma}$$

$$\gamma = 6\pi \eta r$$

Stokes' Eq. $F = \gamma v$

 $\text{Reynolds' number } \quad \mathfrak{Re} = \frac{\rho VL}{n}$

MATLAB Program to Calculate Diffusion

$$\Delta \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} (t) = \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} (t+\tau) - \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} (\tau)$$
$$\langle (\Delta x)^2 \rangle - (\langle \Delta x \rangle)^2 = 2Dt$$
$$\Delta \theta(t) = \theta(t+\tau) - \theta(\tau)$$

MATLAB Program to Calculate Diffusion

MATLAB Program to Calculate Diffusion

A Graphical User Interface (GUI) Version of Our Diffusion Program

Other Works on 3D Particle Tracking

Sang-Hyuk Lee,¹ Yohai Roichman,¹ Gi-Ra Yi,² Shin-Hyun Kim,³ Seung-Man Yang,³ Alfons van Blaaderen,⁴ Peter van Oostrum,⁴ and David G. Grier¹

Other Works on 3D Particle Tracking

Mingming Wu · John W. Roberts · Mark Buckley

Three-dimensional fluorescent particle tracking at micron-scale using a single camera

Our Approach in 2D

How we determine the position of a colloidal particle

Subpixel resolution

Controlling Piezo Electric using MATLAB

General Command Set (GCS) System

ONL 1 SVO A1 MOV A30.450 POS? A

Some important MATLAB command to control PI

```
76 -
        ID = serial('COM1', 'BaudRate', 57600);
77 -
        fopen(ID)
78
79 -
        fprintf(ID, 'ONL 1'); pause(0.5)
80
        fprintf(ID, 'SVO A1 B1'); pause(0.5)
81 -
       fprintf(ID, 'DCO A1 B1'); pause(0.5)
82 -
       fprintf(ID, 'VCO A1 B1'); pause(0.5)
83 -
84
       fprintf(ID, 'VEL A50 B50'); pause(0.5)
85 -
       fprintf(ID,'MOV A100.000 B100.000'); pause(0.5)
86 -
```

Safety Notes

2D Tracker and Results

The mechanism of our 2D tracker

2D Tracker and Results

Spherical Polystyrene Bead 2.1 microns in Diameter Temperature = $20 \, ^{\circ}\text{C}$ Density_{water} = $1000 \, \text{kg/m}^3$ Density_{bead} = $1050 \, \text{kg/m}^3$ Viscosity_{water} = $10^{-3} \, \text{Pa.S}$

2D Tracker and Results

The result in x-y plane

2D Tracker and Results

Diffusion Statistics

2D Tracker and Results

30 Particle Tracking of an Esphere

Two Candidate Approach for 3D

Candidate 1

Calibration of contrast respect to focus position

Candidate 2

Auto contrast detection

Conclusion: The (Dis) Advantages of this Method

Advantages:

- We will have the position of particle online
- There is no limit in the range of tracking, the only limit is you PI range
- In comparison with other methods, it doesn't need any heavy data and image analysis
- The model is very simple

Disadvantages:

- The effect of PI motion on the velocity of particle
- The piezo stage is not inexpensive

Thank you

