Pregunta 1 (2,5 puntos)

Sean \mathcal{H} un espacio prehilbertiano real y $x, y \in \mathcal{H}$. Demuestre que x e y son ortogonales si y sólo si $||x + \alpha y|| \ge ||x||$ para todo $\alpha \in \mathbb{R}$.

Pregunta 2 (2,5 puntos)

Sea F el subespacio de $\mathcal{H} = \ell^2$, definido mediante

$$F = \{ \mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \ell^2 \colon x_1 = x_2 \}.$$

Demuestre que F es cerrado en \mathcal{H} y calcule la distancia mínima de \mathbf{f} a F, siendo $\mathbf{f} = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert separable, $\{x_n\}_{n=1}^{\infty}$ una base ortonormal de \mathcal{H} y $\mathcal{A} = \operatorname{span}\{x_n\}_{n=1}^{\infty}$. Sean $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}}$ y $T : \mathcal{A} \longrightarrow \mathcal{H}$ el operador lineal tal que $T(x_n) = \alpha_n x_n$ para todo $n \in \mathbb{N}$.

- a) Demuestre que T es acotado si y sólo si $\alpha \in \ell^{\infty}$.
- b) ¿Bajo qué condiciones se puede asegurar que T se extiende a una proyección ortogonal $\overline{T} \colon \mathcal{H} \longrightarrow \mathcal{H}$?

Pregunta 4 (2,5 puntos)

- a) Demuestre, usando la transformada de Fourier, que no existe ninguna función h en $L^1(\mathbb{R})$ tal que f * h = f para todo $f \in L^1(\mathbb{R})$.
- b) Resuelva en $L^1(\mathbb{R})$ la ecuación f*f=f.

Nota: El símbolo * indica el operador de convolución.