Brief considerations about forward/backward muons with time of flight (TOF)

Samip Basnet and Andrea Giammanco

June 18, 2020

Outline

- Comparison with Mariaelena's results
 - Golden Track Selected Data with 4 stations from (Runs: #915-18 and #929) BLU detector used to produced here
 - Boards selection criteria
 - raw TDC difference
 - lacktriangle measured TOF distributions for both views with and without the ϕ -cut
- Some considerations

Figure: Y and Z hits positions in Station 1 and Station 4

- Boards in the X-views (i.e., #1, #13) were selected a logical "AND" of gray boxes
- Similarly, a logical "AND" of pink boxes was used to select Y boards (i.e., #2, #14)

Raw TDC Difference in the selected regions

Figure: Blue histgrams represent overall raw TDC difference while red ones represent those after making the boards selection

 \rightarrow We were puzzled by the "shoulders" that appear in the Y view (never in the X view), and that Mariaelena did not see with her selection

measured TOF calculations for X and Y views

$$TOF_{mes} = \frac{(T_i - T_i^0)}{E_i} - \frac{(T_j - T_j^0)}{E_j}$$
 (1)

→ Using Texp parameters for relevant X-boards

$$TOFX_{mes} = \frac{(T_1 - 538.0)}{7.25} - \frac{(T_4 - 597.0)}{7.91}$$
 (2)

→ Using Texp parameters for relevant Y-boards

$$TOFY_{mes} = \frac{(T_1 - 494.7)}{6.73} - \frac{(T_4 - 566.5)}{7.05} \tag{3}$$

→ Minimization function used:

$$\sum_{i} [\Delta T_i(p)]^2, \text{ where,}$$

$$\Delta T_i(p) = \frac{T_1}{F_1} - \frac{T_4}{F_4} - p - \Delta T_{exp}$$
(4)

Minimization results comparison of the free-parameter, p

	This work	Mariaelena's prior work
p (X-view)	-3.97	-3.59
p (Y-view)	3.73	5.39

Table: Free parameters obtained from prior and this work

 \rightarrow Since the result for Y-view seemed off, we examined the selection criteria used for both studies more closely.

measured TOF distributions for X and Y views

Figure: measured TOF (without delay) for both views after relevant boards selection with and without the ϕ -cut: (90 < ϕ < 270)

 \rightarrow Then we realized that our selection was not really the same: we were missing a 90 $< \phi <$ 270 cut that she applies for the purpose of this study!

Some considerations

- Currently, in the reconstruction software, the "raw" elevation angle θ is used to classify the muon as forward or backward: if $\theta<0$, $\theta\to-\theta$ and $\phi\to\phi+180$
- However, a negative raw value of θ can also happen for a forward muon that scattered in the ground before reaching the detector; in that case, we would consider more appropriate to keep $\theta < 0$
- once TOF calibration will be considered final and validated, it should be possible to replace the previous criterion with a TOF criterion, i.e.:
 - if $TOF \ge 0$, θ and ϕ stay as they are (i.e., allowing $\theta < 0$)
 - \bullet else, heta o - heta and $\phi o \phi + 180$
- We believe that this new definition will be more intuitive and less confusing
- In addition, we currently only have access to reconstructed θ , ϕ ; it would be interesting also to have a look at raw θ , ϕ distributions in future studies

■ Any comments, feedback, and suggestions are most welcome.

Thank you for your attention