LinearRegression fits a linear model with coefficients $w=(w_1,...,w_p)$ to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:

$$\min_{w} ||Xw - y||_2^2$$

LinearRegression will take in its fit method arrays X, y and will store the coefficients W of the linear model in its coef_member:

```
>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> clf.coef_
array([ 0.5,  0.5])
```

However, coefficient estimates for Ordinary Least Squares rely on the independence of the model terms. When terms are correlated and the columns of the design matrix \boldsymbol{X} have an approximate linear dependence, the design matrix becomes close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the observed response, producing a large variance. This situation of *multicollinearity* can arise, for example, when data are collected without an experimental design.