

Poisson Süreci

IST 108 Olasılık ve İstatistik Bahar 2016

Yrd. Doç. Dr. Ferhat Dikbıyık

Poisson ve Üssel Dağılım

- Poisson dağılım belirli bir zaman dilimi içerisinde gerçekleşen olay sayısını modellerken kullanılır.
- Üssel dağılım bir olay olduktan sonra diğer bir olay olana kadar geçen zamanı ifade ederken kullanılır.
- Bu iki dağılım arasında direk bir ilişki kurulabilir.

Poisson Rastgele Değişken

X bir Poisson rastgele değişken ise

$$P\{X=i\} = e^{-\lambda} \frac{\lambda^i}{i!}$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

Üssel Rastgele Değişken

X bir Üssel rastgele değişken ise

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$F(x) = 1 - e^{-\lambda x}$$

$$E[X] = 1/\lambda$$

$$Var(X) = 1/\lambda^2$$

Poisson Süreci (Poisson Varışlar)

- Belirli bir sisteme varışlar farklı kaynaklardan geliyorsa varışlar arası zaman sürekli bir rastgele değişken olan üssel rastgele değişken ile ifade edilebilir.
- Bu durumda belirli bir zaman dilimi içerisindeki toplam varışlar ise kesikli bir rastgele değişken olan Poisson rastgele değişken ile ifade etmek mümkündür.

Poisson Süreci (Poisson Varışlar)

Belirli bir zaman aralığındaki varış sayısı λ_2 parametresine sahip bir Poisson rastgele değişkendir. Eğer zaman birimleri aynı ise $\lambda_1 = \lambda_2$ olur.

Varışlar arası zamanların her biri (T_i değerleri) aynı λ₁ parametresine sahip birbirinden bağımsız ve aynı üssel dağılıma sahip sürekli rastgele değişkenlerdir.

 Varışlar arası zaman ortalama 5 ms'dir. 1 ms içerisindeki varışların ortalaması nedir?

Örnek 1

- Varışlar arası zaman ortalama 5 ms'dir. 1 ms içerisindeki varışların ortalaması nedir?
 - T: varışlar arası zaman (üssel rastgele değişken)
 - $E[T] = 1 / \lambda = 5 \text{ ms}$
 - $\lambda = 1/5 \text{ varış / ms}$
 - Yani 1 ms içerisinde ortalama 0,2 iş varır.

 Bir bankaya gelen müşterilerin sayısı 1 saat içerisinde ortalama 10 ise, bankaya bir müşteri vardıktan sonra bir sonraki müşteri varıncaya kadar geçen ortalama süre kaç dakikadır?

Örnek 2

- Bir bankaya gelen müşterilerin sayısı 1 saat içerisinde ortalama 10 ise, bankaya bir müşteri vardıktan sonra bir sonraki müşteri varıncaya kadar geçen ortalama süre kaç dakikadır?
 - Y: 1 saat içerisinde gelen müşteri sayısı (Poisson rastgele değişken)
 - $E[Y] = \lambda = 10$ müşteri/saat
 - X: iki müşteri gelişi arası geçen süre
 - $E[X] = 1 / \lambda = 0,1 \text{ saat} = 6 \text{ dakika}$

 Bir işlemciye 1 ms içerisinde ortalama 5 iş gelmektedir. Bu durumda mikroişlemciye bir iş geldikten sonra bir sonraki iş gelen kadar geçen sürenin 2 ms'den fazla olma ihtimali nedir?

Örnek 3

- Bir işlemciye 1 ms içerisinde ortalama 5 iş gelmektedir. Bu durumda mikroişlemciye bir iş geldikten sonra bir sonraki iş gelen kadar geçen sürenin 2 ms'den fazla olma ihtimali nedir?
 - Y: 1 ms içerisinde gelen iş sayısı (Poisson rastgele değişken)
 - $E[Y] = \lambda = 5 i \text{ş/ms}$
 - X: iki iş arası geçen süre
 - $P{X > 2} = 1 P{X \le 2} = 1 F_X(2) = e^{-10}$ = 4,54 x 10⁻⁵

- Bir durağa bir yolcu geldikten sonra bir sonraki yolcu gelene kadar geçen süre ortalama 20 sn'dir.
 Bu durumda 1 dakika içerisinde durağa gelen yolcu sayısının
 - En fazla bir olması ihtimali nedir?
 - 1 ile 3 arasında (1 ve 3 dahil) olması ihtimali nedir?
 - En az 2 olması ihtimali nedir?

- Bir durağa bir yolcu geldikten sonra bir sonraki yolcu gelene kadar geçen süre ortalama 20 sn'dir.
 Bu durumda 1 dakika içerisinde durağa gelen yolcu sayısının ...
 - X: iki yolcu arası varış süresi
 - $E[X] = 1 / \lambda = 20 \text{ sn} = 1/3 \text{ dakika}$
 - λ = 3 yolcu / dakika
 - Y: 1 dakika içinde gelen yolcu sayısı
 - Y: parametresi $\lambda = 3$ olan bir Poisson rastgele değişkendir.

Problem 1

- Bir durağa bir yolcu geldikten sonra bir sonraki yolcu gelene kadar geçen süre ortalama 20 sn'dir.
 Bu durumda 1 dakika içerisinde durağa gelen yolcu sayısının
 - En fazla bir olması ihtimali nedir?
 - Y: 1 dakika içinde gelen yolcu sayısı
 - Y: parametresi λ = 3 olan bir Poisson rastgele değişkendir.
 - $P{Y \le 1} = P{Y = 0} + P{Y = 1} = e^{-3} + 3e^{-3} = 0,199$

Problem 1

- Bir durağa bir yolcu geldikten sonra bir sonraki yolcu gelene kadar geçen süre ortalama 20 sn'dir.
 Bu durumda 1 dakika içerisinde durağa gelen yolcu sayısının
 - 1 ile 3 arasında (1 ve 3 dahil) olması ihtimali nedir?

•
$$P{1 \le Y \le 3} = P{Y = 1} + P{Y = 2} + P{Y = 3}$$

= $3e^{-3} + 4.5e^{-3} + 4.5e^{-3} = 0.5975$

Problem 1

- Bir durağa bir yolcu geldikten sonra bir sonraki yolcu gelene kadar geçen süre ortalama 20 sn'dir.
 Bu durumda 1 dakika içerisinde durağa gelen yolcu sayısının
 - En az 2 olması ihtimali nedir?

•
$$P{Y \ge 2} = 1 - P{Y \le 1} = 1 - 0.199 = 0.801$$