5

- 152 -

WHAT IS CLAIMED IS:

1. An oligomeric compound comprising a plurality of aminodial monomer subunits joined by linking groups, wherein each of said aminodial monomer subunits has one of the structures I, II, III, IV, V, VI, VII, VIII, IX, X, or XI;

wherein:

10

each x is, independently, 0 to 5;

na, nb and nc are each, independently, 0 to 2, where the sum of na, nb and nc is from 1 to 5;

R. is -T-L or a base labile protecting group;

T is a single bond, a methylene group or a group having formula:

$${ [CR_6R_7]_m - (R_5) - [CR_8R_9]_n - [C(R_{10})]_p - (E) - }_q -$$

wherein:

10

5 R_{10} is =0, =S, or =NR..;

 $$R_{5}$$ and E, independently, are a single bond, CH=CH, C=C, O, S, NR, or C,-C,4 aryl;

each R_{ϵ} , R_{5} , R_{8} , R_{9} , R_{11} , R_{12} and R_{13} are, independently, H, alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, or aryl having 7 to about 14 carbon atoms;

m and n, independently, are 0 to 5;

p is 0 or 1;

15 q is 1 to about 10;

L is H, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_1-C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, substituted or unsubstituted C_4 -C- carbocyclic alkyl, substituted or unsubstituted C₁-C₇ 20 carbocyclic alkenyl, substituted or unsubstituted C₁-C₇ carbocyclic alkynyl, substituted or unsubstituted C2-C1 aryl, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a nitrogen containing heterocycle, a sulfur containing heterocycle, an oxygen containing heterocycle, a 25 metal coordination group, a conjugate group, halogen, hydroxyl (OH), thiol (SH), keto (C=O), carboxyl (COOH), amide (CONR.), amidine (C(=NH)NR.R.), quanidine (NHC(=NH)NR. R_{12}), glutamyl $(R_{12}OOCCH(NR_{12}R_{13})(CH_{1})_{1}C(=0)$, nitrate $(ONO_{1})_{1}$ nitro (NO_1) , nitrile (CN), trifluoromethyl (CF_3) , trifluoromethoxy (OCF₃), O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aralkyl, Saralkyl, NH-aralkyl, amino (NH-), azido (N:), hydrazino

(NHNH₂), hydroxylamino (ONH₂), sulfoxide (SO), sulfone (SO₂),

sulfide (S-), disulfide (S-S), silyl, a nucleosidic base, an amino acid side chain, a carbohydrate, a biopharmaceutically active moiety, or group capable of hydrogen bonding where the substituent groups are selected from hydroxyl, amino, alkoxy, alcohol, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl, and alkynyl groups;

 R_1 is hydrogen or C_1-C_{10} alkyl;

 R_3 and R_4 are independently hydrogen, an acid labile hydroxyl protecting group, a linking group or a conjugate group, wherein said linking group has the formula:

wherein:

10

15

20

 J_1 is =0 or =S;

 J_{-} is OH or $N(Y_{c})T_{c}$;

 Y_0 is H or $[Q_0]_{\pi}-Z_0$;

 T_{0} is $[Q_{1}]_{\,k}\!-\!Z_{1}\text{,}$ or together Y_{0} and T_{0} are joined in a nitrogen heterocycle;

 Q_1 and Q_2 independently are C_2-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_4-C_7 carbocylo alkyl C_4-C_7 carbocylo alkenyl, a heterocycle, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a polyalkyl glycol, or C_7-C_{12} aralkyl;

j and k independently are 0 or 1;

 Z_1 and Z_2 independently are H, C_1 - C_2 alkyl, C_2 - C_{23}

alkenyl, C_1-C_{20} alkynyl, C_6-C_{14} aryl, C_7-C_{16} aralkyl, halogen, CH=O, OR_{12} , SR_{12} , $NR_{12}R_{13}$, C (=NH) $NR_{12}R_{13}$, CH ($NR_{12}R_{13}$), NHC (=NH) $NR_{12}R_{13}$, CH (NH_2) C (=O) OH, C (=O) $NR_{12}R_{13}$, C (=O) OR_{12} , a metal coordination group, a reporter group, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a

30 polyether group, or a polyethylene glycol group; and

- 155 -

provided that at least one of said aminodiol monomer subunits in said oligomeric compound does not have structure III. $^{^{\prime}}$

- 2. The oligomeric compound of claim 1 wherein said J_1 is =0 or =S and said J_2 is OH.
 - 3. The oligomeric compound of claim 1 wherein said J_1 is =0, said J_2 is $N(Y_0)\,T_0$ and at least two of said $N(Y_0)\,T_0$ are the same.
- 4. The oligomeric compound of claim 1 wherein said J_1 is =0, said J_1 is $N(Y_2)T_2$ and wherein at least two of said $N(Y_2)T_2$ are different.
 - 5. The oligomeric compound of claim 1 wherein each of said $R_{\rm i}$ are the same.
- $\hbox{6.} \quad \hbox{The oligomeric compound of claim 1 wherein at least} \\ 15 \quad \hbox{two of said R_1 are different.}$
 - 7. The oligomeric compound of claim 1 wherein each of said aminodiol monomer subunits are the same.
 - 8. The oligomeric compound of claim 1 wherein at least two of said aminodiol monomer subunits are different.

9. A library of oligomers, each of said oligomers comprising a plurality of aminodiol monomer subunits joined by linking groups, said aminodiol monomer subunits, each of said subunits having structure I, II, III, IV, V, VI, VII, VIII, IX, X, or XI;

wherein:

10

each x is, independently, 0 to 5;

na, nb and nc are each, independently, 0 to 2, where the sum of na, nb and nc is from 1 to 5;

 R_1 is -T-L or a base labile protecting group;

T is a single bond, a methylene group or a group having formula:

$${ [CR_6R_7]_m - (R_5) - [CR_8R_9]_n - [C(R_{10})]_p - (E) - }_q -$$

wherein:

15

 R_{10} is =0, =S, or =NR₁.;

 R_5 and E, independently, are a single bond, CH=CH, C=C, O, S, NR₁₁, or C₂-C₁₄ aryl;

each R_6 , R_7 , R_6 , R_9 , R_{11} , R_{12} and R_{13} are,

independently, H, alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, or aryl having 7 to about 14 carbon atoms;

m and n, independently, are 0 to 5;

p is 0 or 1;

q is 1 to about 10;

L is H, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted C_1-C_{10} alkynyl, substituted or unsubstituted C_2-C_{10} 20 C- carbocyclic alkyl, substituted or unsubstituted C₄-C₇ carbocyclic alkenyl, substituted or unsubstituted C₁-C₁ carbocyclic alkynyl, substituted or unsubstituted C:-C1: aryl, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a nitrogen containing heterocycle, a sulfur containing heterocycle, an oxygen containing heterocycle, a metal coordination group, a conjugate group, halogen, hydroxyl (OH), thiol (SH), keto (C=O), carboxyl (COOH), amide (CONR₁₋), amidine (C(=NH)NR₁₋R₁₋₃), guanidine (NHC(=NH)NR₁₋R₁₋₃), glutamyl $(R_{12}OOCCH(NR_{12}R_{13})(CH_{1})_{1}C(=0)$, nitrate (ONO_{1}) , nitro (NO₁), nitrile (CN), trifluoromethyl (CF₁), trifluoromethoxy (OCF3), O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aralkyl, Saralkyl, NH-aralkyl, amino (NH₁), azido (N₃), hydrazino (NHNH-), hydroxylamino (ONH-), sulfoxide (SO), sulfone (SO-),

- 158 -

sulfide (S-), disulfide (S-S), silyl, a nucleosidic base, an amino acid side chain, a carbohydrate, a biopharmaceutically active moiety, or group capable of hydrogen bonding where the substituent groups are selected from hydroxyl, amino, alkoxy, alcohol, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl, and alkynyl groups;

 R_2 is hydrogen or C_1-C_{10} alkyl;

 R_3 and R_4 are independently hydrogen, an acid labile hydroxyl protecting group, a linking group or a conjugate group, wherein said linking group has the formula:

$$-\frac{J_1}{J_2}$$

wherein:

10

15

20

 J_1 is =0 or =S;

J is OH or $N(Y_0)T_0$;

 Y_0 is H or $[Q_0]_{s}-Z_0$;

 T_{o} is $\left[Q_{1}\right]_{\kappa}-Z_{1}\text{, or together }Y_{\text{o}}$ and T_{o} are joined in a nitrogen heterocycle;

 Q_1 and Q_2 independently are C_2-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_4-C_7 carbocylo alkyl C_4-C_7 carbocylo alkenyl, a heterocycle, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a polyalkyl glycol, or C_7-C_{13} aralkyl;

j and k independently are 0 or 1;

 Z_1 and Z_2 independently are H, C_1 - C_2 alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_4 - C_{14} aryl, C_7 - C_{15} aralkyl, halogen, CH=O, OR_{12} , SR_{12} , $NR_{12}R_{13}$, C (=NH) $NR_{12}R_{13}$, CH ($NR_{12}R_{13}$), NHC (=NH) $NR_{12}R_{13}$, CH (NH_2) C (=O) OH, C (=O) $NR_{12}R_{13}$, C (=O) OR_{12} , a metal coordination group, a reporter group, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a polyether group, or a polyethylene glycol group; and

- 159 -

provided that at least one of said aminodiol monomer subunits in each oligomeric compound of said library does not have structure III.

10. The library of claim 9 wherein said J_1 is =0 or =S and said J_2 is OH.

5

- 11. The library of claim 9 wherein said J_1 is =0, said J_2 is $N(Y_0)\,T_0$ and at least two of said $N(Y_0)\,T_0$ are the same.
- 12. The library of claim 9 wherein said J_1 is =0, said J_2 is $N(Y_0)\,T_0$ and at least two of said $N(Y_0)\,T_0$ are different.
- 10 13. The library of claim 9 wherein each of said R_1 is the same.
 - 14. The library of claim 9 wherein at least two of said $\ensuremath{R_{1}}$ are different.
- 15. A method for preparing an oligomer comprising:

 (a) selecting an aminodiol monomer subunit having the structure I , II, III, IV, V, VI, VII, VIII, IX, X, or

 XI;

$$R_{4} - O \bigvee_{X} \bigcap_{X} R_{3}$$

$$R_{4} - O \bigvee_{X} \bigcap_{X} R_{4}$$

$$R_{4$$

wherein:

5

10

each x is, independently, 0 to 5;

na, nb and nc are each, independently, 0 to 2, where the sum of na, nb and nc is from 1 to 5;

R: is a base labile amino protecting group;

 R_i is hydrogen or C_i-C_{ii} alkyl;

one of R_3 or R_4 is hydrogen or an activated phosphite group and the other of R_3 or R_4 is an acid labile hydroxyl protecting group;

(b) attaching said aminodiol monomer subunit to a

5

solid support to form a solid support bound aminodiol monomer subunit;

- (c) treating said acid labile hydroxyl protecting group with a dilute acid to form a free hydroxyl group;
- (d) reacting said free hydroxyl group with a further aminodiol monomer subunit having structure I, II, III, IV, V, VI, or VII, VIII, IX, X, or XI thereby forming an oligomeric compound bound to said solid support, said oligomeric compound containing a phosphite linkage;
- (e) optionally iteratively repeating steps (c) and(d) to increase the length of the oligomeric compound bound to said solid support;
- (d) oxidizing said phosphite linkage to form a phosphate

 linking group wherein said linking groups are selected having formula:

$$- \stackrel{\mathsf{J}_1}{\mathsf{J}_2}$$

wherein:

20

 J_1 is =0 or =S;

 J_2 is OH or $N(Y_0)T_0$;

 Y_0 is H or $[Q_0]_{i}$ - Z_0 ;

 T_0 is $[Q_1]_{\,\kappa}\!-\!Z_1\text{,}$ or together Y_0 and T_0 are joined in a nitrogen heterocycle;

- Q_1 and Q_2 independently are $C_2 C_{12}$ alkyl, $C_2 C_{12}$
- alkenyl, C_2 - C_{10} alkynyl, C_4 - C_7 carbocylo alkyl C_4 - C_7 carbocylo alkenyl, a heterocycle, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a polyalkyl glycol, or C_7 - C_{12} aralkyl;
 - j and k independently are 0 or 1;
- Z₁ and Z₂ independently are H, C_1-C_2 alkyl, C_2-C_{20}

5

10

25

30

alkenyl, C_1-C_{11} alkynyl, C_4-C_{14} aryl, C_5-C_{16} aralkyl, halogen, CH=O, OR_{12} , SR_{12} , $NR_{12}R_{13}$, $C(=NH)NR_{11}R_{13}$, $CH(NR_{12}R_{13})$, NHC(=NH)NR₁₂R₁₃, $CH(NH_1)C(=O)CH$, $C(=O)NR_{12}R_{13}$, $C(=O)CR_{12}$, a metal coordination group, a reporter group, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a polyether group, or a polyethylene glycol group;

(g) prior to step (e) or after step (f) contacting said solid support bound aminodic monomer subunit or said support bound oligomeric compound with a base to remove said base labile amino protecting group to form the solid support bound aminodic monomer subunit or support bound oligomeric compound having a free amine, and derivatizing said free amine with a group of the formula: wherein:

T is a single bond, a methylene group or a group having formula:

$$\{ [CR_6R_7]_m - (R_5) - [CR_8R_9]_n - [C(R_{10})]_p - (E) - \}_q - (E) - (E)$$

where:

20 R_{10} is =0, =S, or =NR₁₁;

 R_{ϵ} and E, independently, are a single bond, CH=CH, C=C, O, S, NR₁₁, or C_{\epsilon}-C_{14} aryl;

each R_6 , R_7 , R_8 , R_9 , R_{11} , R_{12} and R_{13} are, independently, H, alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, or aryl having 7 to about 14 carbon atoms;

m and n, independently, are 0 to 5;

p is 0 or 1;

q is 1 to about 10;

L is H, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted C_4-C_{10} alkynyl, substituted or unsubstituted C_4 -

C- carbocyclic alkyl, substituted or unsubstituted C₂-C₇ carbocyclic alkenyl, substituted or unsubstituted C₁-C₋ carbocyclic alkynyl, substituted or unsubstituted C:-C1, aryl, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a nitrogen containing heterocycle, a sulfur containing heterocycle, an oxygen containing heterocycle, a metal coordination group, a conjugate group, halogen, hydroxyl (OH), thiol (SH), keto (C=O), carboxyl (COOH), amide $(CONR_{12})$, amidine $(C(=NH)NR_{12}R_{13})$, guanidine $(NHC(=NH)NR_{12}R_{13})$, 10 glutamyl $(R_{12}OOCCH(NR_{12}R_{13})(CH_{2})_{2}C(=0)$, nitrate (ONO_{2}) , nitro (NO-), nitrile (CN), trifluoromethyl (CF.), trifluoromethoxy (OCF₃), O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aralkyl, Saralkyl, NH-aralkyl, amino (NH₂), azido (N₃), hydrazino (NHNH₂), hydroxylamino (ONH₂), sulfoxide (SO), sulfone (SO₂), 15 sulfide (S-), disulfide (S-S), silyl, a nucleosidic base, an amino acid side chain, a carbohydrate, a biopharmaceutically active moiety, or group capable of hydrogen bonding where the substituent groups are selected from hydroxyl, amino, alkoxy, alcohol, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, 20 alkyl, aryl, alkenyl, and alkynyl groups;

- (h) optionally repeating steps (c) and (d)
 followed by step (g) to increase the length of the oligomeric
 compound bound to said solid support;
- (i) treating said oligomeric compound bound to 25 said solid support with acid to deprotect any protecting groups; and
 - (j) cleaving said oligomeric compound from said solid support.
- 16. The process of claim 15 wherein said step (g) is conducted after said step (b).
 - 17. The process of claim 15 wherein said step (g) is conducted prior to step (d) for the addition of at least one monomeric subunit to said oligomeric compound.

- 164 -

- 18. The process of claim 15 wherein said step (g) is conducted prior to each iteration of said step (d).
- 19. The process of claim 15 wherein said step (g) is conducted only after at least one iteration of said step (e).
- 20. The process of claim 15 wherein said step (g) is conducted after said step (f) for the addition of at least one monomeric subunit to said oligomeric compound.
 - 21. A method for preparing a combinatorial library comprising:
- 10 (a) selecting a plurality of aminodiol monomer subunits having the structure I, II, III, IV, V, VI, VII, VIII, IX, X, or XI:

. ; ; !

wherein:

5

10

each x is, independently, 0 to 5;

na, nb and nc are each, independently, 0 to 2, where the sum of na, nb and nc is from 1 to 5;

R₁ is a base labile amino protecting group;

 R_i is hydrogen or C_i - C_{i0} alkyl;

one of R_3 or R_4 is hydrogen or an activated phosphite group and the other of R_3 or R_4 is an acid labile hydroxyl protecting group;

(b) attaching said aminodiol monomer subunits to a

solid support to form a solid support bound aminodiol monomer subunits;

- (c) treating said acid labile hydroxyl protecting groups with a dilute acid to form a free hydroxyl groups;
- (d) reacting said free hydroxyl groups with further aminodiol monomer subunits having structure I, II, III, IV, V, VI, VII, VIII, IX, X, or XI thereby forming an oligomeric compound bound to said solid support, said oligomeric compound containing a phosphite linkage;
- (e) optionally iteratively repeating steps (c) and(d) to increase the length of the oligomeric compound bound to said solid support;
- (f) optionally, prior to step (c) or after step
 (d) oxidizing said phosphite linkage to form phosphate
 linking groups having formula:

wherein:

20

25

5

 J_1 is =0 or =S;

J- is OH or $N(Y_0)T_0$;

 Y_0 is H or $[Q_0]_0 - Z_0$;

 T_{0} is $[Q_{1}]_{\kappa}-Z_{1},$ or together Y_{0} and T_{0} are joined in a nitrogen heterocycle;

 Q_1 and Q_2 independently are C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_4-C_7 carbocylo alkyl C_4-C_7 carbocylo alkenyl, a heterocycle, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a polyalkyl glycol, or C_7-C_{14} aralkyl;

j and k independently are 0 or 1;

 Z_1 and Z_2 independently are H, $C_1 - C_2$ alkyl, $C_2 - C_{20}$

30 alkenyl, C_1-C_{10} alkynyl, C_4-C_{14} aryl, C_7-C_{15} aralkyl, halogen,

CH=O, \tilde{OR}_{11} , SR_{12} , $NR_{11}R_{13}$, $C(=NH)NR_{12}R_{13}$, $CH(NR_{11}R_{13})$, $NHC(=NH)NR_{11}R_{13}$, $CH(NH_1)C(=O)OH$, $C(=O)NR_{11}R_{13}$, $C(=O)OR_{11}$, a metal coordination group, a reporter group, a nitrogen-containing heterocycle, a purine, a pyrimidine, a phosphate group, a polyether group, or a polyethylene glycol group;

(g) prior to step (e) or after step (f) contacting said solid support bound aminodiol monomer subunits or said support bound oligomeric compounds with a base to remove said base labile amino protecting groups to form the solid support bound aminodiol monomer subunits or support bound oligomeric compounds having a free amine, and derivatizing said free amine with a group of the formula

-T-L

wherein:

T is a single bond, a methylene group or a group having formula:

$$\{ [CR_6R_7]_m - (R_5) - [CR_8R_9]_n - [C(R_{10})]_p - (E) - \}_q - [C(R_{10})]_p - (E) - \}_q - [C(R_{10})]_p - (E) - [C(R_{10})]_p$$

where:

10

25

30

20 R_{10} is =0, =S, or =NR.,;

 R_5 and E, independently, are a single bond, CH=CH, C=C, O, S, NR $_{11},$ or C_6-C_{14} aryl;

each R_6 , R_7 , R_8 , R_9 , R_{11} , R_{12} and R_{13} are, independently, H, alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, or aryl having 7 to about 14 carbon atoms;

m and n, independently, are 0 to 5;

p is 0 or 1;

g is 1 to about 10;

L is H, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted C_4-C_{10} alkynyl, substituted or unsubstituted C_4 -

C- carbocyclic alkyl, substituted or unsubstituted C_4 - C_7 carbocyclic alkenyl, substituted or unsubstituted C_4 - C_7 carbocyclic alkynyl, substituted or unsubstituted C_7 - C_{14} aryl, an ether having 2 to 10 carbon atoms and 1 to 4 oxygen or sulfur atoms, a nitrogen containing heterocycle, a sulfur containing heterocycle, an oxygen containing heterocycle, a metal coordination group, a conjugate group, halogen, hydroxyl (OH), thiol (SH), keto (C=O), carboxyl (COOH), amide (CONR₁₂), amidine (C(=NH)NR₁₂R₁₃), guanidine (NHC(=NH)NR₁₂R₁₃), glutamyl (R₁₂OOCCH(NR₁₂R₁₃) (CH₂)₂C(=O), nitrate (ONO₂), nitro

5

- glutamyl $(R_{12}OOCCH(NR_{12}R_{13})(CH_2)_2C(=0)$, nitrate (ONO_2) , nitro (NO_2) , nitrile (CN), trifluoromethyl (CF_3) , trifluoromethoxy (OCF_3) , O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aralkyl, S-aralkyl, NH-aralkyl, amino (NH_2) , azido (N_3) , hydrazino $(NHNH_2)$, hydroxylamino (ONH_2) , sulfoxide (SO), sulfone (SO_2) ,
- sulfide (S-), disulfide (S-S), silyl, a nucleosidic base, an amino acid side chain, a carbohydrate, a biopharmaceutically active moiety, or group capable of hydrogen bonding where the substituent groups are selected from hydroxyl, amino, alkoxy, alcohol, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl, and alkynyl groups;
 - (h) optionally repeating steps (c) and (d)
 followed by step (g) to increase the length of the oligomeric
 compounds bound to said solid support;
- (h) treating said oligomeric compounds bound to 25 said solid support with acid to deprotect any protecting groups; and
 - $\hspace{1.5cm} \hbox{(i)} \hspace{0.5cm} \hbox{cleaving said oligomeric compounds from said solid support.} \\$
- The process of claim 21 wherein said step (g) is conducted after said step (b).
 - 23. The process of claim 21 wherein said step (g) is conducted prior to step (e) for the addition of at least one monomeric subunit to each of said oligomeric compounds.

- 169 -

- 24. The process of claim 21 wherein said step (g) is conducted prior to each iteration of said step (e).
- 25. The process of claim 21 wherein said step (g) is conducted only after at least one iteration of said step (e).
- 26. The process of claim 21 wherein said step (g) is conducted after said step (f) for the addition of at least one monomeric subunit to each of said oligomeric compounds.

100

MOD !