In [1]:

```
import numpy as np
import pandas as pd
```

Obtain the train and test data

In [2]:

```
train = pd.read_csv('UCI_HAR_dataset/csv_files/train.csv')
test = pd.read_csv('UCI_HAR_dataset/csv_files/test.csv')
print(train.shape, test.shape)
(7352, 564) (2947, 564)
```

In [3]:

```
train.head(3)
```

Out[3]:

	tBodyAccmeanX	tBodyAccmeanY	tBodyAccmeanZ	tBodyAccstdX	tBodyAccstdY	tBodyAccs
0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	-0.913
1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0.960
2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-0.978

3 rows × 564 columns

In [4]:

```
# get X_train and y_train from csv files
X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_train = train.ActivityName
```

In [5]:

```
# get X_test and y_test from test csv file
X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_test = test.ActivityName
```

In [6]:

```
print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
```

```
X_train and y_train : ((7352, 561),(7352,))
X_test and y_test : ((2947, 561),(2947,))
```

Let's model with our data

Labels that are useful in plotting confusion matrix

```
In [7]:
labels=['LAYING', 'SITTING','STANDING','WALKING','WALKING_DOWNSTAIRS','WALKING_UPSTAIRS']
```

Function to plot the confusion matrix

In [7]:

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
plt.rcParams["font.family"] = 'DejaVu Sans'
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

Generic function to run any model specified

In [8]:

```
from datetime import datetime
def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_normalize=True,
                print_cm=True, cm_cmap=plt.cm.Greens):
   # to store results at various phases
   results = dict()
   # time at which model starts training
   train start time = datetime.now()
   print('training the model..')
   model.fit(X_train, y_train)
   print('Done \n \n')
   train_end_time = datetime.now()
   results['training_time'] = train_end_time - train_start_time
   print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
   # predict test data
   print('Predicting test data')
   test_start_time = datetime.now()
   y_pred = model.predict(X_test)
   test_end_time = datetime.now()
   print('Done \n \n')
   results['testing_time'] = test_end_time - test_start_time
   print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
   results['predicted'] = y_pred
   # calculate overall accuracty of the model
   accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
   # store accuracy in results
   results['accuracy'] = accuracy
   print('----')
   print('| Accuracy |')
   print('----')
   print('\n {}\n\n'.format(accuracy))
   # confusion matrix
   cm = metrics.confusion matrix(y test, y pred)
   results['confusion_matrix'] = cm
   if print cm:
       print('----')
       print('| Confusion Matrix |')
       print('----')
       print('\n {}'.format(cm))
   # plot confusin matrix
   plt.figure(figsize=(8,8))
   plt.grid(b=False)
   plot confusion matrix(cm, classes=class labels, normalize=True, title='Normalized confu
   plt.show()
   # get classification report
   print('----')
   print('| Classifiction Report |')
   print('----')
   classification_report = metrics.classification_report(y_test, y_pred)
```

```
# store report in results
results['classification_report'] = classification_report
print(classification_report)

# add the trained model to the results
results['model'] = model

return results
```

Method to print the gridsearch Attributes

In [9]:

```
def print_grid_search_attributes(model):
   # Estimator that gave highest score among all the estimators formed in GridSearch
   print('----')
   print('| Best Estimator |')
   print('----')
   print('\n\t{}\n'.format(model.best_estimator_))
   # parameters that gave best results while performing grid search
   print('----')
   print('| Best parameters |')
   print('----')
   print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best_params_))
   # number of cross validation splits
   print('----')
   print('| No of CrossValidation sets |')
   print('----')
   print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_splits_))
   # Average cross validated score of the best estimator, from the Grid Search
   print('----')
   print('| Best Score |')
   print('----')
   print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(model.b
```

1. Logistic Regression with Grid Search

In [10]:

```
from sklearn import linear_model
from sklearn import metrics
```

from sklearn.model_selection import GridSearchCV

In [12]:

0

0

[

0

0

0

0 22

3 409

8]

0 449]]

```
# start Grid search
parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11']}
log_reg = linear_model.LogisticRegression()
log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_jobs=-1)
log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_test, class
training the model..
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 1.2min finished
Done
training_time(HH:MM:SS.ms) - 0:01:25.843810
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.009192
-----
     Accuracy
______
   0.9626739056667798
-----
| Confusion Matrix |
[[537 0
               0
                       0]
   1 428 58
              0
                      4]
                  0
   0
      12 519
              1
                  0
                      01
0 495
   0
      0
                  1
                      0]
```


Classifiction Popont |

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.98	0.94	532
WALKING	0.95	1.00	0.97	496
WALKING_DOWNSTAIRS	1.00	0.97	0.99	420
WALKING_UPSTAIRS	0.97	0.95	0.96	471
avg / total	0.96	0.96	0.96	2947

In [13]:

```
plt.figure(figsize=(8,8))
plt.grid(b=False)
plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels, cmap=plt.cm
plt.show()
```



```
In [14]:
```

```
# observe the attributes of the model
print_grid_search_attributes(log_reg_grid_results['model'])
    Best Estimator
       LogisticRegression(C=30, class_weight=None, dual=False, fit_intercep
t=True,
         intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
         penalty='12', random_state=None, solver='liblinear', tol=0.0001,
         verbose=0, warm start=False)
    Best parameters
       Parameters of best estimator :
       {'C': 30, 'penalty': '12'}
  No of CrossValidation sets
       Total numbre of cross validation sets: 3
-----
 Best Score
-----
       Average Cross Validate scores of best estimator :
       0.9461371055495104
```

2. Linear SVC with GridSearch

```
In [15]:
```

```
from sklearn.svm import LinearSVC
```

```
In [16]:
```

```
parameters = {'C':[0.125, 0.5, 1, 2, 8, 16]}
lr_svc = LinearSVC(tol=0.00005)
lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
lr_svc_grid_results = perform_model(lr_svc_grid, X_train, y_train, X_test, y_test, class_la
training the model..
Fitting 3 folds for each of 6 candidates, totalling 18 fits
[Parallel(n_jobs=-1)]: Done 18 out of 18 | elapsed: 24.9s finished
Done
training_time(HH:MM:SS.ms) - 0:00:32.951942
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.012182
   Accuracy
   0.9660671869697998
| Confusion Matrix |
------
[[537
                       01
      0
            0 0
                  0
   2 426 58
               0
                      5]
                   0
   0 14 518
               0
                  0
                      0]
      0 0 495
                  0
                      1]
       0 0 2 413
                      5]
   0
         0 12
                  1 458]]
```

| Classifiction Report |

	precision	recall	f1-score	support			
LAYING	1.00	1.00	1.00	537			
SITTING	0.97	0.87	0.92	491			
STANDING	0.90	0.97	0.94	532			
WALKING	0.97	1.00	0.99	496			
WALKING_DOWNSTAIRS	1.00	0.98	0.99	420			
WALKING_UPSTAIRS	0.98	0.97	0.97	471			
avg / total	0.97	0.97	0.97	2947			

```
In [17]:
print_grid_search_attributes(lr_svc_grid_results['model'])
   Best Estimator |
      LinearSVC(C=8, class_weight=None, dual=True, fit_intercept=True,
    intercept_scaling=1, loss='squared_hinge', max_iter=1000,
    multi_class='ovr', penalty='12', random_state=None, tol=5e-05,
    verbose=0)
-----
 Best parameters
      Parameters of best estimator :
      {'C': 8}
_____
 No of CrossValidation sets
      Total numbre of cross validation sets: 3
_____
Best Score
      Average Cross Validate scores of best estimator :
```

3. Kernel SVM with GridSearch

0.9465451577801959

In [18]:

```
from sklearn.svm import SVC
parameters = {'C':[2,8,16],\
             'gamma': [ 0.0078125, 0.125, 2]}
rbf_svm = SVC(kernel='rbf')
rbf_svm_grid = GridSearchCV(rbf_svm,param_grid=parameters, n_jobs=-1)
rbf_svm_grid_results = perform_model(rbf_svm_grid, X_train, y_train, X_test, y_test, class_
training the model..
Done
training_time(HH:MM:SS.ms) - 0:05:46.182889
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:05.221285
-----
    Accuracy
-----
   0.9626739056667798
| Confusion Matrix |
------
[[537 0 0 0
                 0
                     0]
   0 441 48
              0
                 0
                     2]
      12 520 0
   0
                 0
                     0]
                2
0
      0
         0 489
                     5]
      0 0 4 397 19]
0
          0 17
                 1 453]]
```


Classifiction Popont

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING STANDING	0.97 0.92	0.90 0.98	0.93 0.95	491 532
WALKING	0.96	0.99	0.97	496
WALKING_DOWNSTAIRS WALKING_UPSTAIRS	0.99 0.95	0.95 0.96	0.97 0.95	420 471
avg / total	0.96	0.96	0.96	2947

```
In [19]:
print_grid_search_attributes(rbf_svm_grid_results['model'])
   Best Estimator |
      SVC(C=16, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.0078125, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)
-----
 Best parameters
      Parameters of best estimator :
      {'C': 16, 'gamma': 0.0078125}
_____
 No of CrossValidation sets
      Total numbre of cross validation sets: 3
_____
Best Score
      Average Cross Validate scores of best estimator :
      0.9440968443960827
```

4. Decision Trees with GridSearchCV

In [20]:

```
from sklearn.tree import DecisionTreeClassifier
parameters = {'max_depth':np.arange(3,10,2)}
dt = DecisionTreeClassifier()
dt_grid = GridSearchCV(dt,param_grid=parameters, n_jobs=-1)
dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class_labels=lat
print_grid_search_attributes(dt_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:00:19.476858
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.012858
-----
    Accuracy
-----
   0.8642687478791992
| Confusion Matrix |
------
[[537 0 0 0
                 0
                      0]
   0 386 105 0
                  0
                     0]
      93 439 0
                  0
                     0]
      0
         0 472 16
0
                     8]
      0 0 15 344 61]
[
   0
```

0 0 73 29 369]]

| Classifiction Report |

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.81	0.79	0.80	491
STANDING	0.81	0.83	0.82	532
WALKING	0.84	0.95	0.89	496
WALKING_DOWNSTAIRS	0.88	0.82	0.85	420
WALKING_UPSTAIRS	0.84	0.78	0.81	471
avg / total	0.86	0.86	0.86	2947

Best Estimator

DecisionTreeClassifier(class_weight=None, criterion='gini', max_dept
h=7,

max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')

```
Parameters |

Parameters of best estimator :

{'max_depth': 7}

No of CrossValidation sets |

Total numbre of cross validation sets: 3

Best Score |

Average Cross Validate scores of best estimator :

0.8369151251360174
```

5. Random Forest Classifier with GridSearch

In [21]:

```
from sklearn.ensemble import RandomForestClassifier
params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
rfc = RandomForestClassifier()
rfc_grid = GridSearchCV(rfc, param_grid=params, n_jobs=-1)
rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, class_labels=1
print_grid_search_attributes(rfc_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:06:22.775270
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.025937
-----
    Accuracy
-----
   0.9131319986426875
| Confusion Matrix |
-----
[[537 0 0 0
                 0
                      0]
   0 427 64
              0
                  0
                     0]
      52 480
              0
                  0
                     0]
      0
         0 484 10
0
                     2]
      0 0 38 332 50]
[
   0
       0 0 34
                  6 431]]
```


| Classifiction Popont |

C	la	S	si	f:	ic	t	io	n	R	eŗ	0	r	t			
 		_				_						_	_	_	_	_

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING STANDING	0.89 0.88	0.87 0.90	0.88	491 532
WALKING WALKING_DOWNSTAIRS	0.87 0.95	0.98 0.79	0.92 0.86	496 420
WALKING_UPSTAIRS	0.89	0.92	0.90	471
avg / total	0.92	0.91	0.91	2947

Best Estimator |

RandomForestClassifier(bootstrap=True, class_weight=None, criterion
='gini',

max_depth=7, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=70, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

6. Gradient Boosted Decision Trees With GridSearch

In [22]:

0

1

```
from sklearn.ensemble import GradientBoostingClassifier
param_grid = {'max_depth': np.arange(5,8,1), \
            'n estimators':np.arange(130,170,10)}
gbdt = GradientBoostingClassifier()
gbdt_grid = GridSearchCV(gbdt, param_grid=param_grid, n_jobs=-1)
gbdt_grid_results = perform_model(gbdt_grid, X_train, y_train, X_test, y_test, class_labels
print_grid_search_attributes(gbdt_grid_results['model'])
training the model..
Done
training_time(HH:MM:SS.ms) - 0:28:03.653432
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.058843
------
     Accuracy
_____
   0.9222938581608415
______
| Confusion Matrix |
-----
[[537
        0
           0
               0
                  0
                      0]
   0 396 93
              0
                  0
                      2]
      37 495
0
              0
                      01
       0
          0 483
                  7
   0
                      6]
0
           0 10 374
                     361
 [
```

6 433]]

0 31

| Classifiction Report |

Best Estimator

Clussification Report							
	precision	recall	f1-score	support			
LAYING	1.00	1.00	1.00	537			
SITTING	0.91	0.81	0.86	491			
STANDING	0.84	0.93	0.88	532			
WALKING	0.92	0.97	0.95	496			
WALKING_DOWNSTAIRS	0.97	0.89	0.93	420			
WALKING_UPSTAIRS	0.91	0.92	0.91	471			
avg / total	0.92	0.92	0.92	2947			

GradientBoostingClassifier(criterion='friedman_mse', init=None,
 learning_rate=0.1, loss='deviance', max_depth=5,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=140,
 presort='auto', random_state=None, subsample=1.0, verbose=0,
 warm_start=False)

7. Comparing all models

In [23]:

```
print('\n
                      Accuracy Error')
                      ----')
print('
100-(log_reg_grid_results['accuracy'] * 1
print('Linear SVC
              : {:.04}% {:.04}% '.format(lr_svc_grid_results['accuracy']
                                             100-(lr_svc_grid_results['accuracy'
print('rbf SVM classifier : {:.04}%
                                 {:.04}% '.format(rbf_svm_grid_results['accuracy']
                                               100-(rbf_svm_grid_results['accura
print('DecisionTree : {:.04}% '.format(dt grid results['accuracy'] * 10
                                             100-(dt_grid_results['accuracy'] *
                                 {:.04}% '.format(rfc_grid_results['accuracy'] * 1
print('Random Forest : {:.04}%
                                                100-(rfc_grid_results['accuracy'
print('GradientBoosting DT : {:.04}%
                                 {:.04}% '.format(rfc grid results['accuracy'] * 1
                                             100-(rfc_grid_results['accuracy'] *
```

	Accuracy	Error
Logistic Regression	: 96.27%	3.733%
Linear SVC	: 96.61%	3.393%
rbf SVM classifier	: 96.27%	3.733%
DecisionTree	: 86.43%	13.57%
Random Forest	: 91.31%	8.687%
GradientBoosting DT	: 91.31%	8.687%

We can choose Logistic regression or Linear SVC or rbf SVM.

Conclusion:

In the real world, domain-knowledge, EDA and feature-engineering matter most.