A SEARCH FOR SOME CONTRIVED SUSY MODEL

2	Thaddeus Q. Student
3	A DISSERTATION
4	in
5	Physics and Astronomy
6	Presented to the Faculties of The University of Pennsylvania
7	in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
8	2018 Last compiled: December 11, 2018
9 10	Gerald Advisor, Associate Professor, Physics
11	Supervisor of Dissertation
12	
13	Joshua Klein, Professor, Physics
14	Graduate Group Chairperson
	Discontinu Constitute
15	<u>Dissertation Committee</u>
16	(Committee Prof. 1), Professor, Physics
17	(Committee Prof. 2), Associate Professor, Physics
18	(Committee Prof. 3), Professor, Physics
19	(Committee Prof. 4), Professor, Physics
20	Gerald Advisor, Associate Professor, Physics

A SEARCH FOR SOME CONTRIVED SUSY MODEL

22	COPYRIGHT
23	2018
24	Thaddeus O. Student

21

25 All rights reserved.

Acknowledgements

- 27 I'd like to thanks the Ghosts of Penn Students Past for providing me with such an amazing thesis
- 28 template.

26

ABSTRACT A SEARCH FOR SOME CONTRIVED SUSY MODEL Thaddeus Q. Student G. Advisor

This is the abstract text.

Contents

35	Acknowledgements								
36	Abstract								
37	Contents	v							
38	8 List of Tables								
39	List of Figures	viii							
40	Preface	ix							
41	1 Introduction	2							
42	2 Theoretical Framework	3							
43	2.1 Introduction to the Standard Model	3							
44	2.2 Electroweak Mixing and the Higgs Field	3							
45	3 LHC and the ATLAS Detector	4							
46	3.1 The Large Hadron Collider	4							
47	3.2 The ATLAS Detector	4							
48	3.2.1 The Inner Detector	4							
49	3.2.1.1 Pixel Detector	4							
50	3.2.1.2 Semiconductor Tracker	4							
51	3.2.1.3 Transition Radiation Tracker	4							
52	3.2.2 The Calorimeters	5							

	Contents		vi
53	3.2.2.1	Liquid Argon Calorimeters	5
54	3.2.2.2	Tile Calorimeters	5
55	4 Conclusion		6
56	Bibliography		7

List of Tables

T •	·C	T			
${f List}$	\mathbf{OI}	$\mathbf{F}1$	\mathbf{g}	ur	es

58

	9 1	Comonal		of the A	ATLAS detector.			E
59	-3. l	General	cut-away view	or the P	ALLAS detector.	 	 	

Preface

This is the preface. It's optional, but it's nice to give some context for the reader and stuff.

60

62

T. Q. Student Philadelphia, April 20XX Preface 1

FUCK BITCHE\$ GET MONEY

Introduction

64

65

The Standard Model $(SM)^1$ has been remarkably successful...

¹Here's a footnote.

Theoretical Framework

69 (Some example introductory text for this chapter)...

2.1 Introduction to the Standard Model

- 71 Modern particle physics is generally interpreted in terms of the Standard Model (SM). This is a
- quantum field theory which encapsulates our understanding of the electromagnetic, weak, and strong
- 73 interactions...

67

68

74 2.2 Electroweak Mixing and the Higgs Field

- When the theory of the electroweak interaction was first developed [1, 2], the W and Z bosons were
- 76 predicted to be massless (a typical mass term in the Lagrangian would violate the SU(2) symmetry).
- 77 However, these were experimentally observed to have masses...

LHC and the ATLAS Detector

80 3.1 The Large Hadron Collider

81 The Large Hadron Collider (LHC) [3] is...

82 3.2 The ATLAS Detector

78

79

83 ATLAS is a general-purpose particle detector...

84 3.2.1 The Inner Detector

85 The Inner Detector serves the primary purpose of measuring the trajectories of charged particles...

86 3.2.1.1 Pixel Detector

87 The Pixel detector consists of four cylindrical barrel layers and three disk-shaped endcap layers...

88 3.2.1.2 Semiconductor Tracker

- 89 The Semiconductor Tracker uses the same basic technology as the Pixels, but the fundamental unit
- 90 of silicon is a larger "strip"...

91 3.2.1.3 Transition Radiation Tracker

The Transition Radiation Tracker is the outermost component of the ID...

Figure 3.1: General cut-away view of the ATLAS detector [4].

93 3.2.2 The Calorimeters

- 94 ATLAS includes two types of calorimeter system for measuring electromagnetic and hadronic show-
- ers. These are the Liquid Argon (LAr) calorimeters and the Tile calorimeters. Together, these cover
- the region with $|\eta| < 4.9...$

97 3.2.2.1 Liquid Argon Calorimeters

98 The Liquid Argon system consists of...

99 3.2.2.2 Tile Calorimeters

100 The Tile calorimeter provides coverage for hadronic showers...

Conclusion

103 Here's where you wrap it up.

104 Looking Ahead

101

102

105

Here's an example of how to have an "informal subsection".

Bibliography

```
    [1] S. L. Glashow, The Renormalizability of Vector Meson Interactions, Nucl. Phys. 10 (1959)
    107–117. 2.2
```

107

- 110 [2] A. Salam and J. C. Ward, Weak and Electromagnetic Interactions, Nuovo Cimento 11 (1959) 568–577. 2.2
- [3] L. R. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.
 https://cds.cern.ch/record/1129806. This report is an abridged version of the LHC Design
 Report (CERN-2004-003). 3.1
- [4] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3
 (2008) S08003. 3.1