Продолжение введения в CNN

CNN – сверточные нейронные сети (convolutional neural network)

Recap: свертки

1	0	1
0	1	0
1	0	1

1,	1 _{×0}	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0,	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Что следует помнить:

- 1. Одно ядро свертки на один слой. То есть, если получаем из 3 каналов 70 каналов, будет 70 сверточных слоев и суммарно 70 ядер свертки.
- 2. Каждый слой отвечает за один паттерн. Чем больше слоев делаем, тем больше признаков можем выделить.
- 3. Ядра свертки параметры модели, т.е. они задаются случайным образом и впоследствии меняются в процессе обучения.

Recap: пример свертки в последних сверточных слоях

Recap: MaxPool

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

- Нужен для снижения размерности
- Вычленяет самые главные признаки

Новая информация – есть глобальный пулинг

MAX-POOLING

1	5	8	7	
1	3	4	2	5
3	2	1	4	 7
5	7	6	2	

GLOBAL MAX-POOLING

1	5	8	7	
1	3	4	2	
3	2	1	4	8
5	7	6	2	

Батч нормализация

- Заключается в придании **нормального вида** распределению признаков
- Помогает быстрее сходиться алгоритму оптимизации

Standard + BatchNorm

Батч нормализация: куда ставить?


```
1 from torch import nn

1 nn.BatchNorm1d()

Init signature:
nn.BatchNorm1d(
    num_features: int,
    eps: float = 1e-05,
    momentum: float = 0.1,
    affine: bool = True,
    track_running_stats: bool = True,
    device=None,
    dtype=None,
) -> None
```

Если сети глубокие, то есть проблемы

Проблема – затухающий градиент

Пример: 6 слоев: A, B, C, D, E, F. На выходе получаем лосс L.

Backwardpass

$$\frac{dL}{dx} = \frac{dL}{dz} \frac{dz}{dx}$$

$$\frac{dL}{dy} = \frac{dL}{dz} \frac{dz}{dy}$$

$$\frac{dL}{dz} = \frac{dL}{dz} \frac{dz}{dy}$$

Для последнего слоя
$$\frac{dL}{dF} = \frac{dL}{dF}$$
 все просто. Для Е слоя $\frac{dL}{dE} = \frac{dL}{dF} \cdot \frac{dF}{dE}$. Для А слоя $\frac{dL}{dA} = \frac{dL}{dF} \cdot \frac{dF}{dE} \cdot \frac{dE}{dD} \cdot \frac{dD}{dC} \cdot \frac{dC}{dB} \cdot \frac{dB}{dA}$

Затухающий градиент

Для A слоя
$$\frac{dL}{dA} = \frac{dL}{dF} \cdot \frac{dF}{dE} \cdot \frac{dE}{dD} \cdot \frac{dD}{dC} \cdot \frac{dC}{dB} \cdot \frac{dB}{dA}$$

Sigmoid Function

Если функция активации — сигмоида, то при |x|>4 градиент стремится к 0.

Если каждый слой будет линейный слой + сигмоида, то возможна такая ситуация, что:

Для А слоя $\frac{dL}{dA}=0.1\cdot0.1\cdot0.1\cdot0.1\cdot0.1\cdot0.1\cdot0.1$ 0.1 = 10^{-6} значение градиента, дошедшего до слоя А. То есть, фактически первые слои почти не обучаются.

Как бороться с затухающим градиентом?

Архитектуры нейросетей (VGG)

Архитектуры нейросетей (ResNet)

Transfer Learning

TRAINING FROM SCRATCH

TRANSFER LEARNING

Как использовать Transfer Learning

- 1. Замораживаем слои все слои исходной нейросети.
- 2. Удаляем последние слои
- 3. Добавляем нужные для нашей задачи слои (например, в исходной задаче было 1000 классов, а хотим предсказывать 2)
- 4. Тренируем только последние слои модифицированной нейросети.

Пример кода из документации

```
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False
# Parameters of newly constructed modules have requires grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model conv = model conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp lr scheduler = lr scheduler.StepLR(optimizer conv, step size=7, gamma=0.1)
```

Пишем код