Indrjo Dedej

Ultima revisione: 5 agosto 2025.

Indice

1	Pre	liminari	5
	1.1	Kernel e cokernel	
	1.2	Categorie preadditive	6
	1.3 Limiti e limiti		7
		1.3.1 Oggetti iniziali e terminali	7
		1.3.2 Prodotti e coprodotti	8
		1.3.3 Notazione matriciale	11
		1.3.4 Pullback e pushout	13
		1.3.5 Equalizzatori e coequalizzatori	14
2	Categorie esatte		15
	2.1	Coppie kernel-cokernel	15
	2.2 Stutture e categorie esatte		15

In queste note si assume almeno la Teoria delle Categorie che si può imparare da [Lei16]. Un altro validissimo testo è anche [Rie17]. Un vero e proprio classico che contiene anche nozioni sulle categorie preadditive è [Mac78]

1.1 Kernel e cokernel

Noi lavoreremo con categorie in cui sono presenti oggetti che sono sia terminali che iniziali. Oggetti di questo tipo sono detti *oggetti zero*. Non si tratta di categorie come **Set**, **Top** e **Ring**, ma è il caso di **Grp** e **Mod** $_R$, con R anello.

Definizione 1.1.1. Sia $\mathcal C$ una categoria con *oggetto zero* che indichiamo con 0. Per $a,b\in |\mathcal C|$, il *morfismo nullo* o *zero* da a a b è la composizione dei morfismi

$$a \xrightarrow{\exists !} 0 \xrightarrow{\exists !} b$$

Scriveremo questo morfismo come 0_a^b oppure, se dal contesto è chiaro, semplicemente 0.

Esempio 1.1.2. In casi come $\operatorname{Grp} \operatorname{e} \operatorname{Mod}_R$, il morfismo nullo è quello che manda tutti gli elementi del dominio nell'identità. Anche Ring possiede omomorfismi come questi; tuttavia in Ring l'oggetto iniziale è $\mathbb Z$ che non è terminale mentre i morfismi zero sono definiti attraverso oggetti zero.

Comporre con un morfismo nullo dà un morfismo nullo. Più precisamente:

Proposizione 1.1.3. Sia $\mathcal C$ una categoria con *oggetto zero* 0, e $a,b,c\in |\mathcal C|$. Allora per ogni $f:b\to c$ di $\mathcal C$ si ha

$$f \circ 0_a^b = 0_a^c$$

e per ogni $g:c\to a$ di $\mathcal C$ si ha

$$0_a^b \circ g = 0_c^b$$
.

Dimostrazione. Proviamo solo una delle due uguaglianze perché l'altra è simile. Consideriamo i morfismi

$$a \xrightarrow{\exists !} 0 \xrightarrow{\exists !} b \xrightarrow{f} c$$

Poiché 0 è iniziale, la composizione delle ultime due frecce è l'unica che può esserci. Quindi $f \circ 0_a^b$ è la composizione della freccia $a \to 0$ con la freccia $0 \to c$, ed abbiamo concluso.

6

Definizione 1.1.4 (Kernel e cokernel). In una categoria $\mathcal C$ con oggetto zero 0, il *kernel* di $f:a\to b$ è uno qualsiasi degli equalizzatori di

$$a \xrightarrow{f \atop 0_a^b} b$$

Dualmente, il cokernel di $f: a \to b$ è uno qualsiasi dei coequalizzatori della stessa coppia di morfismi.

Osservazione 1.1.5. Ricordiamo che in generale gli equalizzatori sono monomorfismi e i coequalizzatori sono epimorfismi. Questa informazione può dare delle indicazioni su come sono fatti i kernel e i cokernel in categorie in cui monomorfismo ed epimorfismo significano rispettivamente iniettivo e suriettivo.

Esempio 1.1.6 (Kernel di omomorfismi di moduli). In Algebra, si parla di *kernel* di morfismi in vari ambiti. Per esempio, se M e N sono due moduli su un fissato anello R e $f: M \to N$ è un omomorfismo, allora

$$\ker f := \{ x \in M \mid f(x) = 0_N \}$$

è un sottomodulo di *M*. Per entrare nel linguaggio della Teoria delle Cate-Gorie,

l'omomorfismo inclusione i : ker $f \hookrightarrow M$ è un equalizzatore della coppia di omomorfismi

$$M \xrightarrow{f \atop 0_M^N} N$$

Esempio 1.1.7 (Cokernel di omomorfismi di moduli). Se M e N sono due moduli su un fissato anello R e $f: M \to N$ è un omomorfismo, allora

$$\operatorname{coker} f \coloneqq \frac{N}{\operatorname{im} f}$$

è un sottomodulo di M chiamato cokernel di f. Questa nozione è il duale di kernel, nel senso che

l'omomorfismo di proiezione canonica al quoziente $\pi_N:N\to {\rm coker}\, f$ è un coequalizzatore della coppia di omomorfismi

$$M \xrightarrow{f \atop 0_M^N} N$$

Osservazione 1.1.8. In Algebra, kernel e cokernel sono degli oggetti, mentre tecnicamente come sono definiti qui sono dei morfismi.

1.2 Categorie preadditive

Definizione 1.2.1. Una categoria preadditiva è una categoria $\mathcal C$ in cui:

1. Per ogni $a,b \in |\mathcal{C}|$ la classe $\mathcal{C}(a,b)$ è dotata di un'operazione interna

$$+_{a,b}: \mathcal{C}(a,b) \times \mathcal{C}(a,b) \to \mathcal{C}(a,b)$$

e ha un elemento $0_a^b: a \to b$ che lo rendono un gruppo abeliano.

2. Per ogni $a, b, c \in |\mathcal{C}|$ e $f : a \to b$ di \mathcal{C} , le funzioni

$$f_* := \mathcal{C}(c, f) : \mathcal{C}(c, a) \to \mathcal{C}(c, b)$$
$$f^* := \mathcal{C}(f, c) : \mathcal{C}(b, c) \to \mathcal{C}(a, c)$$

sono omomorfismi di gruppi abeliani.

Richiamo 1.2.2. Ricordiamo che $f_*(g) := f \circ g$ mentre $f^*(h) := h \circ f$.

Spesso scriveremo semplicemente + senza pedici, perché in genere è chiaro di quali frecce stiamo sommando.

Inoltre, come nei primi teoremi di Algebra, il morfismo zero è l'unico elemento neutro e per ogni $f: a \to b$ è unico l'opposto. In coerenza con la notazione additiva indichiamo con -f l'opposto di $f: a \to b$.

Esempio 1.2.3 (Mod_R). [Scrivere esempio.]

Un'altra osservazione da fare è questa. Il simbolo 0_a^b in una categoria $\mathcal C$ con oggetto zero indica il morfismo zero $a \to b$. Se $\mathcal C$ è preaddittiva, non sono notazioni in conflitto? No.

Proposizione 1.2.4. In una categoria preadditiva $\mathcal C$ con oggetto zero 0, il morfismo nullo è elemento neutro.

Dimostrazione. Poiché 0 è iniziale, C(0,b) è banale e in particolare 0_0^b è elemento neutro. L'omomorfismo

$$\left(0_a^0\right)^*: \mathcal{C}(0,b) \to \mathcal{C}(a,b)$$

manda l'elemento neutro del dominio in quello del codominio, che è

$$(0_a^0)^*(0_0^b) = 0_0^b \circ 0_a^0 = 0_a^b.$$

Osservazione 1.2.5. A tal proposito è utile osservare che se \mathcal{C} è una categoria preadditiva, anche il suo duale $\mathcal{C}^{\mathrm{op}}$ lo è. La conseguenza più pratica per noi è che dimezza le dimostrazioni: una volta dimostrato un enunciato, quello duale è automatico.

1.3 Limiti e limiti

Ora parleremo di alcune peculiarità dei limiti e dei colimiti in categorie preadditive.

1.3.1 Oggetti iniziali e terminali

Proposizione 1.3.1. In un categoria preadditiva $\mathcal C$ gli oggetti terminali sono iniziali e viceversa.

Quindi in una categoria preadditiva gli oggetti terminali e iniziali sono oggetti zero.

Dimostrazione. Sia t un oggetto terminale di C. Se riusciamo a mostrare che C(t, a) è un gruppo banale per ogni oggetto a di C, allora possiamo concludere. Prendiamo un $f: t \to a$ qualsiasi in C e guardiamo l'omomorfismo di gruppi

$$f_* = \mathcal{C}(t, f) : \mathcal{C}(t, t) \to \mathcal{C}(t, a).$$

Il dominio è un gruppo banale perché t è terminale; in particolare, $1_t = 0_t^t$. Inoltre, trattandosi di omomorfismo,

$$\underbrace{f_*\left(\mathbf{1}_t\right)}_{=f} = f \circ 0_t^t = 0_t^a.$$

1.3.2 Prodotti e coprodotti

Vediamo i prodotti e i coprodotti finiti ora.

A proposito di notazioni, seguiamo [Lei16] e [Rie17]. Più precisamente, il morfismo $c \to a \times b$ che fa commutare il diagramma

è indicato con (f, g); invece, il morfismo $a + b \rightarrow c$ che fa commutare

è indicato con [f, g].

Più in là avremo modo di introdurre una notazione "matriciale", che è quella che usa [Büh09] e consente di fare alcuni conti molto più facilmente.

Proposizione 1.3.2. Sia $\mathcal C$ una categoria preadditiva con oggetto zero 0 e

$$a \stackrel{p_a}{\longleftarrow} a \times b \stackrel{p_b}{\longrightarrow} b$$

un prodotto in \mathcal{C} . Introduciamo anche le frecce

$$i_a := (1_a, 0_a^b) : a \to a \times b$$

$$i_b := (0_b^a, 1_b) : b \to a \times b$$
(1.3.1)

Allora

$$a \xrightarrow{i_a} a \times b \xleftarrow{i_b} b$$

è coprodotto in \mathcal{C} . Dualmente, se

$$a \xrightarrow{i_a} a + b \xleftarrow{i_b} b$$

è un coprodotto e se introduciamo anche i morfismi

$$p_a := \begin{bmatrix} 1_a, 0_b^a \end{bmatrix} : a + b \to a$$

$$p_b := \begin{bmatrix} 0_a^b, 1_b \end{bmatrix} : a + b \to b$$
(1.3.2)

allora

$$a \stackrel{p_a}{\longleftrightarrow} a + b \stackrel{p_b}{\longrightarrow} b$$

è un prodotto in \mathcal{C} .

In breve: in categorie preadditive si ha $a \times b \cong a + b$.

Dimostrazione. Possiamo limitarci a dimostrare solo il primo fatto. Consideriamo un qualsiasi oggetto con morfismi

$$a \xrightarrow{f} c \xleftarrow{g} b$$

e cerchiamo un modo di costruire un morfismo $a \times b \to c$. Le frecce $f \circ p_a$ e $g \circ p_b$ sono di questo tipo, ma non vanno bene per i nostri scopi. Invece la somma sì, perché il diagramma

commuta.

Definizione 1.3.3. Un *biprodotto* in una categoria preadditiva consta di oggetti e frecce

$$a \stackrel{p_a}{\longleftrightarrow} c \stackrel{p_b}{\longleftrightarrow} b$$

tali che

$$p_a \circ i_a = 1_a \tag{1.3.3}$$

$$p_b \circ i_b = 1_b \tag{1.3.4}$$

$$i_a \circ p_a + i_b \circ p_b = 1_c \tag{1.3.5}$$

Osservazione 1.3.4. Dalle identità 1.3.3, 1.3.4 e 1.3.5 discendono

$$p_a \circ i_b = 0_b^a \tag{1.3.6}$$

$$p_b \circ i_a = 0_a^b \tag{1.3.7}$$

Proviamo solo la prima visto che l'altra si fa similmente.

$$p_{a} = p_{a} \circ (i_{a} \circ p_{a} + i_{b} \circ p_{b}) = p_{a} + p_{a} \circ i_{b} \circ p_{b}$$
(1.3.3)

da cui

$$p_a \circ i_b \circ p_b = 0_c^a$$
.

Postcomponendo con i_b e usando (1.3.4), concludiamo $p_a \circ i_b = 0_b^a$.

Un'altra proprietà utile per il futuro è questa.

Proposizione 1.3.5. I morfismi i_a e i_b della Definizione 1.3.3 sono monici. I morfismi p_a e p_b invece sono epici.

Dimostrazione. Ad esempio, sia $i_a \circ f = i_a \circ g$. Precomponendo ambo i mebri con p_a , a causa di (1.3.3), si ha f = g. Sia ora $k \circ p_a = h \circ p_a$. Postcomponendo ambi membri per i_a , sempre a causa di (1.3.3), si arriva a h = k.

I biprodotti sono prodotti e coprodotti binari.

Proposizione 1.3.6. In una categoria preadditiva con oggetto zero 0

consideriamo il biprodotto

$$a \stackrel{p_a}{\longleftrightarrow} c \stackrel{p_b}{\longleftrightarrow} b$$

allora la coppia di frecce p_a e p_b è prodotto e la coppia i_a e i_b è coprodotto. In particolare, presi $d \in |\mathcal{C}|$ e una coppia di frecce uscenti $a \xleftarrow{f} c \xrightarrow{g} b$,

$$(f,g) = i_a \circ f + i_b \circ g.$$

Invece presi $e \in |\mathcal{C}|$ e una coppia di morfismi $a \xrightarrow{h} c \xleftarrow{k} b$,

$$[h,k] = h \circ p_a + k \circ p_b.$$

Infine, notare anche che $c \cong a \times b \cong a + b$.

Dimostrazione. Facciamo solo la parte che riguarda il prodotto, perché l'altra si fa con un ragionamento non tanto diverso. Grazie a (1.3.3) e (1.3.6) abbiamo

$$p_a \circ (i_a \circ f + i_b \circ g) = f$$
$$p_b \circ (i_a \circ f + i_b \circ g) = g$$

Ora se $h: d \to c$ è tale che $p_a \circ h = f$ e $p_b \circ h = g$, allora

$$h = 1_c \circ h = (i_a \circ p_a + i_b \circ p_b) \circ h = i_a \circ f + i_b \circ g.$$

Possiamo quindi concludere che le frecce p_a e p_b formano un prodotto.

Vale anche il viceversa.

Proposizione 1.3.7. In una categoria preadditiva con oggetto zero 0, un prodotto

$$a \stackrel{p_a}{\longleftarrow} a \times b \stackrel{p_b}{\longrightarrow} b$$

dà un biprodotto

$$a \xrightarrow[i_a]{p_a} a \times b \xrightarrow[i_b]{p_b} b$$

in cui i_a e i_b sono introdotti come in (1.3.1). Dualmente, un coprodotto

$$a \xrightarrow{i_a} a + b \xleftarrow{i_b} b$$

dà un biprodotto

$$a \xrightarrow[i_a]{p_b} a + b \xrightarrow[i_b]{p_b} b$$

in cui p_a e p_b sono introdotti come in (1.3.2).

Dimostrazione. Questa è una prosecuzione della dimostrazione della Proposizione 1.3.2. Verifichiamo ad esempio che i prodotti danno biprodotti. Le identità (1.3.3), (1.3.4), (1.3.6) e (1.3.7) discendono direttamente da come sono introdotte i_a e i_b . Consideriamo ora il morfismo

$$i_a\circ p_a+i_b\circ p_b:a\times b\to a\times b.$$

Componendo una volta con p_a e l'altra con p_b si ha

$$p_{a} \circ (i_{a} \circ p_{a} + i_{b} \circ p_{b}) = \underbrace{p_{a} \circ i_{a}}_{=1_{a}} \circ p_{a} + \underbrace{p_{a} \circ i_{b}}_{=0_{b}^{a}} \circ p_{b} = p_{a}$$

$$p_{b} \circ (i_{a} \circ p_{a} + i_{b} \circ p_{b}) = \underbrace{p_{b} \circ i_{a}}_{=0_{a}^{b}} \circ p_{a} + \underbrace{p_{a} \circ i_{b}}_{=0_{b}^{a}} \circ p_{b} = p_{b}$$

Per la proprietà universale di prodotto, si può concludere che

$$i_a \circ p_a + i_b \circ p_b = 1_{a \times b}$$
.

La morale della storia è che in categorie preadditive esiste un modo piuttosto compatto di esprimere prodotti e coprodotti (che sono la stessa cosa) senza passare per le proprietà universali. E poiché $a \times b \cong a + b$, si decide di indicare uno qualsiasi di questi oggetti con $a \oplus b$.

Definizione 1.3.8. Una *categoria additiva* è una categoria che ha oggetto zero e che per ogni coppia di oggetti a e b possiede biprodotto

$$a \stackrel{p_a^{ab}}{\underset{i_a^{ab}}{\longleftarrow}} a \oplus b \stackrel{p_b^{ab}}{\underset{i_b^{ab}}{\longleftarrow}} b$$

Spesso è ovvio dal contesto e quindi scriveremo semplicemente p_a al posto di p_a^{ab} e così via.

Vedendo $a\oplus b$ come $a\times b$, presi due morfismi $f:a\to b$ e $g:c\to d$, definiamo $f\oplus g:a\oplus c\to b\oplus d$ come $f\times g$, cioè come l'unica freccia $a\oplus c\to b\oplus d$ che fa commutare

$$\begin{array}{ccc}
 & a & \stackrel{p_a^{ac}}{\longleftarrow} & a \oplus c & \stackrel{p_c^{ac}}{\longrightarrow} & c \\
f \downarrow & & \downarrow & & \downarrow g \\
b & \stackrel{p_b^{bd}}{\longleftarrow} & b \oplus d & \stackrel{p_d^{bd}}{\longrightarrow} & d
\end{array}$$

Sfruttando questa volta la proprietà universale di coprodotto, vedendo $a \oplus b$ come a + b, si può definire $f \oplus g$ come f + g.

1.3.3 Notazione matriciale

Esempio 1.3.9. In generale, se R è un anello, possiamo considerare il modulo

$$R^n := \underbrace{R \oplus \dots \oplus R}_{n \text{ volte}}.$$

Allora per ogni funzione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$, esiste un'unica matrice A ad entrate in R di tipo $n \times m$ tale che

$$f(x) = Ax$$
 per ogni $x \in R^m$.

(Vedi [Alu21].) Le entrate di A_{ij} sono elementi di R, ma non è un problema reimmaginare A_{ij} come la funzione lineare

$$R \to R$$
, $x \to A_{ij}x$.

Di conseguenza, A diventa una tabella di funzioni lineari $A_{ij}: R \to R$. In tale caso, se si hanno due matrici A e B di tipo $m \times n$ e $n \times r$ e si vuole moltiplicarle, allora il prodotto $A_{ij}B_{jk}$ di elementi di R può essere reinterpretato come composizione di due funzioni lineari.

Nell'esempio precedente abbiamo usato come R-moduli oggetti del tipo R^n . Tuttavia la notazione matriciale potrebbe essere esportata in un caso più generale, in cui le entrate delle matrici non sono endomorfismi di R, ma in generale morfismi.

È questo quello che facciamo adesso, almeno per matrici piccole, del tipo 1×2 , 2×1 e 2×2 , e lo facciamo da subito in una categoria additiva $\mathcal C$ qualsiasi.

Prima di tutto, se dati due morfismi $a \stackrel{f}{\longleftarrow} c \stackrel{g}{\longrightarrow} b$, rinominiamo $(f,g): c \rightarrow a \oplus b$ come una *matrice colonna*

$$\begin{pmatrix} f \\ g \end{pmatrix}$$
.

Similmente, presi due morfismi $a \xrightarrow{f} c \xleftarrow{g} b$ riscriviamo $[f,g]: a \oplus b \to c$ come una $matrice\ riga$

In particolare, notiamo che (vedi Proposizione 1.3.2)

$$p_{a} = \begin{pmatrix} 1_{a} & 0_{b}^{a} \end{pmatrix}$$

$$p_{b} = \begin{pmatrix} 0_{b}^{b} & 1_{b} \end{pmatrix}$$

$$i_{a} = \begin{pmatrix} 1_{a} \\ 0_{a}^{b} \end{pmatrix}$$

$$i_{b} = \begin{pmatrix} 0_{b}^{a} \\ 1_{b} \end{pmatrix}$$

Ora consideriamo i morfismi

Qui possiamo costruire le frecce

$$[f_{ac}, f_{bc}] : a \oplus b \to c$$
$$[f_{ad}, f_{bd}] : a \oplus b \to d$$

da cui se ne origina un'altra

$$([f_{ac}, f_{bc}], [f_{ad}, f_{bd}]) : a \oplus b \rightarrow c \oplus d.$$

Una notazione migliore è una matrice:

$$\begin{pmatrix} f_{ac} & f_{bc} \\ f_{ad} & f_{bd} \end{pmatrix} : a \oplus b \to c \oplus d.$$

Usando la definizione di biprodotto, si osserva facilmente che valgono le usuali regole di addizione e moltiplicazione. Nello specifico [continuare?]

1.3.4 Pullback e pushout

Parliamo dei pullback e dei pushout ora. Sia $\mathcal C$ una categoria additiva e consideriamo in essa il quadrato commutativo

$$\begin{array}{ccc}
 & a & \xrightarrow{f} & b \\
f' \downarrow & & \downarrow g \\
c & \xrightarrow{g'} & d
\end{array}$$

e "schiacciamo" il tutto in questo modo

$$a \xrightarrow{(f,f')} b \oplus c \xrightarrow{[g,-g']} d$$

Il motivo per cui è [g,-g'] e non [g,g'] viene spiegato subito. Grazie alla Proposizione 1.3.6, abbiamo un'espressione esplicita per (f,f') e [g,-g'] e quindi:

$$[g,-g'] \circ (f,f') = (g \circ p_b + (-g') \circ p_c) \circ (i_b \circ f + i_c \circ f') =$$

$$= g \circ f - g' \circ f' = 0_a^d.$$

Quindi c'è la possibilità di inserirsi in un discorso in cui partecipano pullback/pushout e kernel/cokernel.

Proposizione 1.3.10. In una categoria additiva $\mathcal C$ il quadrato

$$\begin{array}{ccc}
 & a & \xrightarrow{f} & b \\
f' \downarrow & & \downarrow g \\
 & c & \xrightarrow{g'} & d
\end{array}$$

è di pullback se e solo se (f, f') : $a \to b \oplus c$ è kernel di [g, -g'] : $b \oplus c \to d$.

Dimostrazione. (⇒) In questo parte del lavoro è già fatto. Sia quindi

$$e \xrightarrow{h} b \oplus c \xrightarrow[0_{b \oplus c}^{[g,-g']}]{} d$$

commutativo. Abbiamo cioè $[g, -g'] \circ h = g \circ p_b \circ h - g' \circ p_c \circ h = 0_e^d$, vale a dire commuta il quadrato esterno in

Per la proprietà universale di pullback, esiste un unico $k: e \rightarrow a$ per cui $f \circ k = p_b \circ h$ e $f' \circ k = p_c \circ h$. Rimane quindi da verificare che $(f, f') \circ k = h$:

$$(f, f') \circ k = i_b \circ \underbrace{f \circ k}_{=p_b \circ h} + i_c \circ \underbrace{f' \circ k}_{=p_c \circ h} =$$

$$= \underbrace{(i_b \circ p_b + i_c \circ p_c)}_{1_{b \oplus c}} \circ h = h$$

k è l'unico a fare ciò. Se $k':e \to a$ è tale che $(f,f')\circ k'=h$, allora precomponendo una volta per p_b e un'altra per p_c , abbiamo $f\circ k'=p_b\circ h$ e $f'\circ k=p_c\circ h'$. Ma questo, per la proprietà universale di pullback significa che k=k'. (\Leftarrow) Verifichiamo anzitutto che il quadrato è commutativo. Poiché (f,f') è kernel di [g,-g'], allora $[g,-g']\circ (f,f')=0^d_a$, e questo è un conto che abbiamo già fatto. Prendiamo ora un qualsiasi quadrato commutativo

$$\begin{array}{ccc}
e & \xrightarrow{s} & b \\
\downarrow s' & & \downarrow g \\
c & \xrightarrow{g'} & d
\end{array}$$

Come abbiamo visto sopra, possiamo ottenere $[g, -g'] \circ (r, r') = 0_e^d = 0_{b \oplus c}^d \circ (h, h')$. Per la proprietà universale di equalizzatore, abbiamo che esiste uno e un solo $s: e \to a$ tale che $(f, f') \circ s = (r, r')$. Da qui, per concludere è sufficiente precomporre una volta con p_b e un'altra con p_c .

1.3.5 Equalizzatori e coequalizzatori

Parliamo ora di equalizzatori e coequalizzatori. Il discorso è piuttosto semplice.

Proposizione 1.3.11. In una categoria preadditiva $\mathcal C$ con oggetto zero 0, gli equalizzatori di

$$a \xrightarrow{f} b$$

sono equalizzatori di

$$a \xrightarrow{f-g} b$$

e viceversa. Analogamente vale per i coequalizzatori.

Quindi un (co)equalizzatore di una coppia di morfismi è un (co)kernel della differenza dei due.

Dimostrazione. Basta osservare che

$$e \xrightarrow{i} a \xrightarrow{f} b$$

commuta se e solo se commuta

$$e \xrightarrow{i} a \xrightarrow{f-g} b$$

In questo capitolo raccogliamo una serie di risultati elementari sulle successioni esatte corte, seguendo da vicino la trattazione che si può trovare in [Büh09].

2.1 Coppie kernel-cokernel

Definizione 2.1.1. Una coppia kernel-cokernel in una categoria additiva $\mathcal C$ consiste di due morfismi consecutivi

$$a \xrightarrow{i} b \xrightarrow{p} c$$

tali che i è un kernel di p e p è un cokernel di i.

Esempio 2.1.2. Sia in \mathbf{Mod}_R un omomorfismo $f:M\to N$ e consideriamo la proiezione al quoziente

$$\pi: M \to M/\ker f$$
.

Come si è visto (Esempio 1.1.6) il kernel è $\ker \pi = \ker f$ con l'inclusione. Viceversa

$$i : \ker f \hookrightarrow M$$

ha come cokernel π (Esempio 1.1.7). Quindi

$$\ker f \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{\ker f}$$

è una coppia ker-coker in $\mathbf{Mod}_R.$ In generale, se H è un sottomodulo di M, allora

$$H \hookrightarrow M \xrightarrow{\pi_H} \frac{M}{H}$$

è una coppia ker-coker.

Osservazione 2.1.3. Ricordiamo che i kernel sono certi equalizzatori, quindi sono monomorfismi. Dualmente, i cokernel sono dei coequalizzatori, quindi sono epimorfismi.

I seguenti lemmi sono in preparazione alla successiva definizione.

Lemma 2.1.4. In una categoria additiva C,

$$0 \xrightarrow{\exists !} a \xrightarrow{1_a} a$$

è una coppia ker-coker.

Dimostrazione. Il diagramma

$$0 \xrightarrow{\exists !} a \xrightarrow{1_a} a$$

commuta perché $\mathcal{C}(0,a)$ è banale, essendo 0 iniziale. Sia $i:e\rightarrow a$ tale che

$$e \xrightarrow{i} a \xrightarrow{1_a} a$$

commuta, cio
è $i=0^a_e$. Essendo 0 terminale, c'è esattamente un
 $e\to 0$. Il triangolo

commuta per come sono definiti i morfismi nulli. Verifichiamo ora che 1_a è cokernel di $0 \to a$. Anzitutto

$$0 \xrightarrow{\exists !} a \xrightarrow{1_a} a$$

commuta poichè C(0, a) è banale (0 è iniziale). Sia $j : a \rightarrow q$ tale che

$$0 \xrightarrow{\exists !} a \xrightarrow{j} q$$

commuta. Esiste uno e una sola freccia $a \rightarrow q$ che fa commutare

ed è *j* stessa. □

Lemma 2.1.5. In una categoria additiva $\mathcal C$ considerare il biprodotto

$$a \stackrel{p_a}{\longleftarrow} a \oplus b \stackrel{p_b}{\longleftarrow} b$$

Allora

$$a \xrightarrow{i_a} a \oplus b \xrightarrow{p_b} b$$

$$b \xrightarrow{i_b} a \oplus b \xrightarrow{p_a} a$$

sono coppie ker-coker.

Dimostrazione. Facciamo la dimostrazione solo la prima coppia, la dimostrazione dell'altra è simile. Il diagramma

$$a \xrightarrow{i_a} a \oplus b \xrightarrow[0_{a \oplus b}]{p_b} b$$

commuta, vedi Definizione 1.3.3. Consideriamo ora il diagramma commutativo

$$c \xrightarrow{j} a \oplus b \xrightarrow{p_p} b$$

Essendo i_a un monomorfismo, allora è sufficiente mostrare costruire un morfismo $c \to a$ che fa commutare

$$\begin{array}{c}
a \xrightarrow{i_a} a \oplus b \\
\downarrow \\
c
\end{array}$$

Ciò che possiamo prendere in esame con quello che abbiamo è

$$p_a \circ j : c \xrightarrow{j} a \oplus b \xrightarrow{p_a} a$$

Infatti

$$j = \mathbf{1}_{a \oplus b} \circ j = (i_a \circ p_a + i_b \circ p_b) \circ j =$$

$$= i_a \circ p_a \circ j + i_b \circ p_b \circ j = i_a \circ p_a \circ j.$$

Lemma 2.1.6. Siano in una categoria additiva ${\cal C}$

$$a \xrightarrow{f} b \xrightarrow{g} c$$
$$a' \xrightarrow{f'} b' \xrightarrow{g'} c'$$

con f e f' kernel di g e g' rispettivamente. Allora $f \oplus f' : a \oplus a' \to b \oplus b'$ è kernel di $g \oplus g' : b \oplus b' \to c \oplus c'$. Dualizzando, si ha che se g e g' sono cokernel di f e f' rispettivamente, allora $g \oplus g'$ è cokernel di $f \oplus f'$. In particolare, se i diagrammi qui sopra sono coppie ker-coker, allora anche

$$a \oplus a' \xrightarrow{f \oplus f'} b \oplus b' \xrightarrow{g \oplus g'} c \oplus c'$$

lo è.

Dimostrazione. Verifichiamo che

$$a \oplus a' \xrightarrow{f \oplus f'} b \oplus b' \xrightarrow[0_{b \oplus b'}]{g \oplus g'} c \oplus c'$$

commuta. Poiché $\oplus: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ è un bifuntore [scrivere di questa cosa nell'introduzione], infatti

$$(g \oplus g') \circ (f \oplus f') = (g \circ f) \oplus (g' \circ f) = 0^{c \oplus c'}_{a \oplus a'}$$

Consideriamo ora un diagramma commutativo

$$d \xrightarrow{h} b \oplus b' \xrightarrow[0_{b \oplus b'}]{g \oplus g'} c \oplus c'$$

e troviamo un modo di costruire una freccia $d \rightarrow a \oplus a'$ in modo che commuti

$$a \oplus a' \xrightarrow{f \oplus f'} b \oplus b'$$

Abbiamo le frecce

$$p_b^{bb'} \circ h : d \to b$$
$$p_{b'}^{bb'} \circ h : d \to b'$$

che rendono commutativi i diagrammi

$$d \xrightarrow{p_b^{bb'} \circ h} b \xrightarrow{g} c$$

e

$$d \xrightarrow{p_{b'}^{bb'} \circ h} b' \xrightarrow{g'} c'$$

rispettivamente. Per la proprietà universale di equalizzatore, esistono unici $i:d\to a$ e $j:d\to a'$ tali che

$$f \circ i = p_b^{bb'} \circ h$$
$$f' \circ j = p_{b'}^{bb'} \circ h.$$

La proprietà universale di prodotto ci permette di introdurre $(i,j):d\to a\oplus a'.$ Calcoliamo ora:

$$\begin{aligned} p_b^{bb'} &\circ (f \oplus f') \circ (i,j) = f \circ p_a^{aa'} \circ (i,j) = f \circ i = p_b^{bb'} \circ h \\ p_{b'}^{bb'} &\circ (f \oplus f') \circ (i,j) = f' \circ p_{a'}^{aa'} \circ (i,j) = f' \circ j = p_b^{bb'} \circ h \end{aligned}$$

Quindi, sempre per la proprietà universale di prodotto, possiamo concludere che

$$(f \oplus f') \circ (i, j) = h.$$

La parte dell'unicità della freccia $d \to a \oplus a'$ è immediata: $f \oplus f'$ è un monomorfismo essendo f oppure f' – in questo caso entrambi – monici (ricorda che i kernel sono equalizzatori e quindi sono monomorfismi).

2.2 Stutture e categorie esatte

Definizione 2.2.1. Una *struttura esatta* per una categoria additiva $\mathcal C$ è una classe $\mathcal E$ di coppie ker-coker in $\mathcal C$ con le seguenti proprietà:

(E1) Per ogni $a \in |\mathcal{C}|$, le coppie ker-coker

$$a \xrightarrow{1_a} a \xrightarrow{*} *$$

stanno in \mathcal{E} .

(E2) Per ogni $a \in |\mathcal{C}|$, le coppie ker-coker

$$* \xrightarrow{*} a \xrightarrow{1_a} a$$

stanno in \mathcal{E} .

(E3) Se ${\mathcal E}$ contiene le coppie ker-coker

$$a \xrightarrow{f} b \xrightarrow{*} *$$

$$b \xrightarrow{g} c \xrightarrow{*} *$$

allora contiene anche le coppie ker-coker

$$a \xrightarrow{g \circ f} c \xrightarrow{*} *$$

(E4) Se ${\mathcal E}$ contiene le coppie ker-coker

$$* \xrightarrow{*} a \xrightarrow{f} b$$
$$* \xrightarrow{*} b \xrightarrow{g} c$$

allora anche le coppie ker-coker

$$* \xrightarrow{*} a \xrightarrow{g \circ f} c$$

stanno in \mathcal{E} .

(E5) Se

$$a \xrightarrow{i} b \xrightarrow{*} *$$

sta in \mathcal{E} e $f:a\to a'$ è in \mathcal{C} , il pushout di i lungo f esiste in \mathcal{C} e, indicandolo con $i':a'\to b'$, anche le coppie ker-coker

$$a' \xrightarrow{i'} b' \xrightarrow{*} *$$

stanno in \mathcal{E} .

(E6) Se

$$* \xrightarrow{*} a \xrightarrow{p} b$$

sta in $\mathcal E$ e $f:c'\to c$ è in $\mathcal C$, il pullback di p lungo f esiste in $\mathcal C$ e, indicandolo con $p':b'\to c'$, anche le coppie ker-coker

$$* \xrightarrow{*} a' \xrightarrow{p'} b'$$

stanno in \mathcal{E} .

Una categoria esatta è una coppia (C, \mathcal{E}) come sopra e gli elementi di \mathcal{E} si chiamano sequenze esatte corte.

Primi esempi di sequenze esatte corte derivano coinvolgono le identità.

Proposizione 2.2.2. Sia (C, \mathcal{E}) una categoria esatta. Sono successioni

esatte corte

$$0 \xrightarrow{\exists !} a \xrightarrow{1_a} a$$
$$a \xrightarrow{1_a} a \xrightarrow{\exists !} 0$$

In \mathbf{Mod}_R questo vuol dire una cosa piuttosto semplice: il kernel dell'omomorfismo $\mathbf{1}_M: M \to M$ è banale, mentre il cokernel è M stesso.

Dimostrazione. Grazie al Lemma 2.1.4, le due coppie sono ker-coker. Poi si invocano Definizione 2.2.1-E1 e Definizione 2.2.1-E2. □

Richiamo 2.2.3. In generale, in una categoria $\mathcal C$ con oggetto terminale 1 un pullback di

$$b \xrightarrow{\exists !} 1$$

è un prodotto di a e b. Dualmente, se C è una categoria con oggetto iniziale 0, allora un pushout di

$$0 \xrightarrow{\exists!} a$$

$$b$$

è un coprodotto di a e b.

Proposizione 2.2.4. Sia $(\mathcal{C},\mathcal{E})$ una categoria esatta e sia

$$a \stackrel{p_a}{\longleftrightarrow} a \oplus b \stackrel{p_b}{\longleftrightarrow} b$$

un biprodotto. Allora

$$a \xrightarrow{i_a} a \oplus b \xrightarrow{p_b} b$$

$$b \xrightarrow{i_b} a \oplus b \xrightarrow{p_a} a$$

sono sequenze esatte corte, cioè coppie ker-coker in ${\cal E}.$

Il Lemma 2.1.5 ci dava queste due coppie ker-coker. Questo proposizione invece dice che ogni struttura esatta contiene queste coppie ker-coker.

Dimostrazione. Per il richiamo appena fatto,

$$\begin{array}{ccc}
a \oplus b & \xrightarrow{p_a} a \\
\downarrow p_b & & \downarrow \exists! \\
b & \xrightarrow{\exists!} 0
\end{array}$$

è un quadrato di pushout. Inoltre per la Proposizione 2.2.2, la base di questo diagramma è parte della sequenza esatta corta $b \xrightarrow{1_b} b \xrightarrow{\exists !} 0$. Possiamo appellarci a Definizione 2.2.1-E6 ora: il pullback di $b \to 0$ lungo $a \to 0$, va a dire p_a , è tale che le coppie ker-coker

$$* \xrightarrow{*} a \oplus b \xrightarrow{p_a} a$$

stanno in $\mathcal{E}.$ Il Lemma 2.1.5 ci dà quella che ci serve.

Richiamo 2.2.5. In generale, in una categoria $\mathcal C$ con oggetto terminale 1, se

$$a \stackrel{p_a}{\longleftarrow} a \times 1 \stackrel{p_1}{\longrightarrow} 1$$

è un prodotto, allora l'unico morfismo $a \rightarrow a \times 1$ che fa commutare

è un isomorfismo. Quindi, se $\mathcal C$ è anche preadditiva, allora questo isomorfismo è $i_a:a\to a\oplus 0$ che ha inversa $p_a:a\oplus 0\to a$.

Proposizione 2.2.6. "In una categoria esatta corta la somma di sequenze esatte corte è esatta corta". Vale a dire: in una categoria esatta (C, \mathcal{E}) , se

$$a \xrightarrow{f} b \xrightarrow{g} c$$
$$a' \xrightarrow{f'} b' \xrightarrow{g'} c'$$

sono sequenze esatte corte, allora anche

$$a \oplus b \xrightarrow{f \oplus g} a' \oplus b' \xrightarrow{f' \oplus g'} a'' \oplus b''$$
 (2.2.1)

lo è.

Quindi \mathcal{E} è chiusa rispetto alla somma di sequenze esatte corte.

Dimostrazione. Il piano per la dimostrazione si struttura su questa osservazione: se riusciamo a dimostrare che

$$a \oplus b \xrightarrow{f \oplus 1_{b}} a' \oplus b \xrightarrow{f' \circ p_{a'}^{a'b}} a''$$

$$a' \oplus b \xrightarrow{1_{a} \oplus g} a' \oplus b' \xrightarrow{g' \circ p_{b'}^{a'b}} b''$$

$$(2.2.2)$$

sono esatte corte allora, a causa di Definizione 2.2.1-E4 sono sequenze esatte le coppie ker-coker

$$a \oplus b \xrightarrow{f \oplus g} a' \oplus b' \xrightarrow{*} *$$

A questo punto Lemma 2.1.6 permette di concludere l'opera.

Mostriamo solo che la prima delle (2.2.2) è esatta corta, perché l'altra si fa similmente. A causa del Lemma 2.1.5 e della Definizione 2.2.1-E4, è sufficiente dimostrare che la prima delle 2.2.2 è una coppia ker-coker. Il Lemma 2.1.6 ci dà una coppia ker-coker che coinvolge $f \oplus 1_b$:

$$a \oplus b \xrightarrow{f \oplus 1_b} a' \oplus b \xrightarrow{f' \oplus 0_b^0} a'' \oplus 0$$

Ricordando ora che $p_{a''}^{a''0}: a\oplus 0 \to a$ è un isomorfismo e che $p_{a''}^{a''0}\circ (f'\oplus 0_b^0)=f\circ p_{a'}^{a'b}$, abbiamo finito.

Adesso riprendiamo un discorso che avevamo iniziato nella Proposizione 1.3.10.

Bibliografia

- [Alu21] P. Aluffi. Algebra: Notes from the Underground. Cambridge University Press, 2021.
- [Büh09] Theo Bühler. Exact Categories. 2009. URL: https://arxiv.org/abs/0811.1480.
- [Lei16] Tom Leinster. *Basic Category Theory*. 2016. URL: https://arxiv.org/abs/1612.09375.
- [Mac78] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer New York, NY, 1978. DOI: 10.1007/978-1-4757-4721-8.
- [Rie17] E. Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publications, 2017. URL: https://math.jhu.edu/~eriehl/context/.