§8 МЕТОД ПРОЕКЦИИ ГРАДИЕНТА

Пусть $X\subset\mathbb{R}^n$ — непустое выпуклое замкнутое множество. Для произвольной точки $a\in\mathbb{R}^n$ через $\Pi_X a$ обозначим проекцию точки a на множество X, т.е. такую точку $b\in X$, что $\|a-b\|=\inf_{x\in X}\|a-x\|$. Так как X — замкнутое множество, то такая точка b действительно существует. Единственность проекции следует из выпуклости множества X. Действительно, если $a\in X$, то в силу определения имеем $\Pi_X a=a$. Предположим, что $a\notin X$ и нашлись две различные ближайшие точки b_1 и $b_2\in X$. Тогда несложно видеть, что $\dfrac{b_1+b_2}{2}\in X$ и

$$||a - (b_1 + b_2)/2|| = ||(a - b_1)/2 + (a - b_2)/2|| < \frac{||a - b_1|| + ||a - b_2||}{2},$$

где последнее неравенство строгое, так как a не принадлежит прямой, проходящей через точки b_1 и b_2 . Далее, если это не вызывает разночтений, нижний индекс у отображения Π_X будем опускать, т.е. будем писать Π вместо Π_X .

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — дважды непрерывно дифференцируемая выпуклая функция. Рассмотрим следующую задачу выпуклой оптимизации

$$f(x) \to \inf_X$$
 (8.1)

Будем предполагать, что f(x) достигает минимума на X (последнее, например, будет следовать из теоремы Вейерштрасса, если множество X ограничено). Для решения задачи (8.1) в некоторых частных случаях множества X может быть применён метод проекции градиента, к описанию и анализу которого мы сейчас перейдём.

Пусть $x^0 \in X$ — заданное начальное приближение. Последовательность точек $(x^k)_{k \in \mathbb{N}_0}$ строится рекуррентным образом: $x^{k+1} = \Pi \big(x^k - t^k \nabla f(x^k) \big)$, где $(t^k)_{k \in \mathbb{N}_0}$ — некоторая последовательность положительных чисел.

Через $x^*=\arg\min_{x\in X}f(x)$ обозначим решение задачи (8.1). Вообще говоря, не для всякой последовательность $(t^k)_{k\in\mathbb{N}_0}$ будет иметь место сходимость $x^k\to x^*$ (или $f(x^k)\to f(x^*)$). Для построения последовательности $(t^k)_{k\in\mathbb{N}_0}$ будем использовать следующую модификацию процедуры BLS. Пусть $x\in X$ и $\beta\in(0,1)$. Для действительного числа t положим $x^+=\Pi\big(x-t\nabla f(x)\big)$ и $\Delta x^+=(x^+-x)/t$, т.е. $x^+=x+t\Delta x^+$. Начиная с t=1, будем последовательно уменьшать t, умножением на β , до тех пор пока не будет выполнено неравенство:

$$f(x + t\Delta x^{+}) \le f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} ||\Delta x^{+}||^{2}.$$
 (8.2)

Покажем, что t, удовлетворяющее неравенству (8.2), будет найдено за конечное число итераций. Действительно, пусть $K \stackrel{\text{def}}{=} \max\{\|\nabla^2 f(y)\| \colon y \in \overline{B}_1(x)\}$, где через $\overline{B}_1(x)$ обозначен единичный замкнутый шар с центром в x. При $t \in (0, \|\nabla f(x)\|^{-1})$

справедливо включение $x-t\nabla f(x)\in \overline{B}_1(x)$, а значит, и $x^+\in \overline{B}_1(x)$. Следовательно, верно неравенство

$$f(x + t\Delta x^{+}) \le f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t^{2}K}{2} \|\Delta x^{+}\|^{2}.$$

Таким образом, неравенство (8.2) будет выполнено при $t \leq \min(\|\nabla f(x)\|^{-1}, K^{-1})$.

Предположим, что существуют такие неотрицательные числа m и M, что для всех $x \in X$ верно $mI \preceq \nabla^2 f(x) \preceq MI$. Так как матрица $\nabla^2 f(x)$ неотрицательно определена, то левая часть неравенства выполнена, например, при m=0. Если X — ограниченное множество, то существование постоянной M следует из непрерывности $\nabla^2 f$. Из проведённых рассуждений, в частности, следует, что t, найденное согласно BLS, удовлетворяет неравенству $t \geq \min(1, \beta/M)$. В силу сделанных предположений при $x_1, x_2 \in X$ справедливы неравенства

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^{\mathsf{T}} (x_2 - x_1) + \frac{m}{2} ||x_2 - x_1||^2,$$
 (8.3)

$$f(x_2) \le f(x_1) + \nabla f(x_1)^{\mathsf{T}} (x_2 - x_1) + \frac{M}{2} ||x_2 - x_1||^2.$$
 (8.4)

Для произвольных $z \in X$ и $t \in \mathbb{R}$ имеет место неравенство

$$0 \ge (z - x^+, x - t\nabla f(x) - x^+). \tag{8.5}$$

Действительно, если $x-t\nabla f(x)\in X$, т.е. $x^+=x-t\nabla f(x)$, то скалярное произведение в (8.5) равно 0. В противном случае точки z и $x-t\nabla f(x)$ находятся по разные стороны от опорной гиперплоскости, проходящей через x^+ перпендикулярно вектору $x-t\nabla f(x)-x^+$. Следовательно угол между векторами $z-x^+$ и $x-t\nabla f(x)-x^+$ не меньше 90°.

Преобразуем неравенство (8.5), подставив $x^+ = x + t\Delta x^+$. После подстановки получаем $0 \ge (z - x - t\Delta x^+, -t\Delta x^+ - t\nabla f(x))$. Сокращая на -t, имеем

$$0 \le (z - x, \Delta x^{+}) + \nabla f(x)^{\mathsf{T}} (z - x) - t \|\Delta x^{+}\|^{2} - t \nabla f(x)^{\mathsf{T}} \Delta x^{+}. \tag{8.6}$$

Перейдём к оценке с верху значения $f(x^+)$:

$$f(x+t\Delta x^{+}) \stackrel{(8.2)}{\leq} f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} \|\Delta x^{+}\|^{2} \leq$$

$$\stackrel{(8.3)}{\leq} f(z) - \nabla f(x)^{\mathsf{T}} (z-x) - \frac{m}{2} \|z-x\|^{2} + t\nabla f(x)^{\mathsf{T}} \Delta x^{+} + \frac{t}{2} \|\Delta x^{+}\|^{2} \leq$$

$$\stackrel{(8.6)}{\leq} f(z) + (z-x, \Delta x^{+}) - \frac{t}{2} \|\Delta x^{+}\|^{2} - \frac{m}{2} \|z-x\|^{2}.$$

$$(8.7)$$

При z=x из (8.7) следует, что $f(x^+) \leq f(x) - \frac{t}{2} \|\Delta x^+\|^2$. При $z=x^*$ из (8.7) следует, что

$$f(x^+) - f(x^*) \le (x^* - x, \Delta x^+) - \frac{t}{2} ||\Delta x^+||^2 - \frac{m}{2} ||x^* - x||^2.$$

Так как
$$(x^* - x, \Delta x^+) - \frac{t}{2} \|\Delta x^+\|^2 = \frac{1}{2t} (\|x - x^*\|^2 - \|x^+ - x^*\|^2)$$
. То
$$f(x^+) - f(x^*) \le \frac{1}{2t} \cdot (\|x - x^*\|^2 - \|x^+ - x^*\|^2) - \frac{m}{2} \|x - x^*\|^2,$$

где $t_{\min} = \min(1, \beta/M)$. Если m > 0, то в силу того, что $0 \le f(x^+) - f(x^*)$, следует неравенство $\|x^+ - x^*\|^2 \le (1 - mt_{\min}) \|x - x^*\|^2$. Поэтому для элементов последовательности $(x^k)_{k \in \mathbb{N}_0}$ справедлива оценка:

$$||x^k - x^*|| \le c^k ||x^0 - x^*||$$
, где $c = \sqrt{1 - mt_{\min}}$,

из которой следует, что $x^k \to x^*$.

Если же m = 0, то имеют место неравенства:

$$f(x^k) - f(x^*) \le \frac{1}{2t_{\min}} (\|x^{k-1} - x^*\|^2 - \|x^k - x^*\|^2),$$

$$f(x^1) - f(x^*) \le \frac{1}{2t_{\min}} (\|x^0 - x^*\|^2 - \|x^1 - x^*\|^2).$$

Таким образом, $f(x^k) - f(x^*) \le \frac{1}{k} \sum_{i=1}^k \left(f(x^i) - f(x^*) \right) \le \frac{\|x^0 - x^*\|^2}{2t_{\min}k}$, а значит, $f(x^k) \to f(x^*)$.

Вообще говоря, нахождение проекций точек на выпуклое множество является сложной задачей. К счастью, для некоторых выпуклых множеств, которые часто встречаются на практике, эта задача может быть решена эффективно и даже аналитически. Рассмотрим такие множества.

Пример 8.1 (Шар). Пусть $X = \{x \colon \|x - a\| \le R\}$, тогда

$$\Pi y = \begin{cases} y, & \text{если} \quad y \in X, \\ a + \frac{R}{\|y - a\|} (y - a) & \text{иначе.} \end{cases}$$
 (8.8)

Пример 8.2 (Параллелепипед). Пусть $X = \{x : a_i \le x_i \le b_i, 1 \le i \le n\}$, тогда *i*-я координата вектора Пy, которую обозначим как $[\Pi y]_i$, определяется равенством:

$$[\Pi y]_i = \begin{cases} a_i, & \text{если} \quad y_i < a_i; \\ y_i, & \text{если} \quad a_i \leq y_i \leq b_i; \\ b_i & \text{иначе.} \end{cases}$$

Пример 8.3 (Симплекс). Пусть $X=\{x\colon x_i\geq 0, \sum\limits_{i=1}^n x_i\leq 1\}$. Нетрудно видеть, что если $y_i<0$, то $[\Pi y]_i=0$, а значит, $\Pi y=\Pi\widetilde{y}$, где вектор \widetilde{y} получен из y обнулением

отрицательных компонент. Если $\sum\limits_{i=1}^n \widetilde{y}_i \leq 1$, то $\Pi\widetilde{y}=\widetilde{y}$. Предположим, что $\sum\limits_{i=1}^n \widetilde{y}_i > 1$. Тогда $x=\Pi\widetilde{y}$ — решение следующей задачи выпуклой оптимизации:

$$\begin{cases} \frac{1}{2} \|x - \widetilde{y}\|^2 \to \min, \\ \sum_{i=1}^{n} x_i \le 1, \\ x_i \ge 0, \quad 1 \le i \le n. \end{cases}$$

$$(8.9)$$

Для задачи (8.9) рассмотрим функцию Лагранжа $\mathcal{L}(x;\lambda,\mu) = \frac{1}{2}\|x-\widetilde{y}\|^2 + \lambda^\mathsf{T}(-x) + \mu\left(\sum_{i=1}^n x_i - 1\right)$. Подберём такие x,λ и $\mu \geq 0$, что

$$x_i - \widetilde{y}_i - \lambda_i + \mu = 0, \quad 1 \le i \le n; \quad \lambda^{\mathsf{T}} x = 0;$$

$$\mu\left(\sum_{i=1}^n x_i - 1\right) = 0; \quad \sum_{i=1}^n x_i \le 1.$$
(8.10)

Тогда из теоремы Куна - Таккера будет следовать, что x — решение задачи (8.9). Выберем μ как решение уравнения $\sum\limits_{i=1}^n (\widetilde{y}_i - \mu)_+ = 1$, где $(z)_+ \stackrel{\mathrm{def}}{=} \max(0,z)$. Указанное уравнение может быть решено бинарным поиском. Положим $x_i = (\widetilde{y}_i - \mu)_+$ и $\lambda_i = x_i - (\widetilde{y}_i - \mu)$. Нетрудно видеть, что тройка $(x; \lambda, \mu)$ удовлетворяет уравнениям (8.10). Таким образом,

$$\Pi y = \begin{cases} (y)_+, & \text{если} \quad (y)_+ \in X; \\ (y-\mu)_+ & \text{иначе}. \end{cases}$$

Упражнения

- 20. Пусть $X \subset \mathbb{R}^n$ выпуклое замкнутое множество, а $f\colon X \to \mathbb{R}$ непрерывно дифференцируемая функция. Докажите, что
 - (a) если $x^* \in X$ локальный минимум фукнции f, то для произвольного $\alpha \ge 0$ справедливо равенство $x^* = \Pi(x^* \alpha \nabla f(x^*));$
 - (b) если фукнция f выпуклая, то точка $x^* \in X$ локальный минимум функции f тогда и только тогда, когда для произвольного $\alpha \geq 0$ справедливо равенство $x^* = \Pi(x^* \alpha \nabla f(x^*))$.
- 21. Пусть Λ множество допустимых точек задачи (3.11). Разработайте алгоритм вычисления проекции $\Pi_{\Lambda}\lambda$ для произвольной точки $\lambda \in \mathbb{R}^N$, использующий не более $O(N\log N)$ арифметических операций.