Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - 5x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -5 & 0 \end{bmatrix}$$

Standard A2.

Mark:

Determine if $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - 3c$ is a linear transformation or not.

Standard M1.	Mark:

Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Determine which of the six products AB, AC, BA, BC, CA, CB can be computed, and compute them.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 3 & 9 & 11 & 1 \\ 0 & 0 & 7 & 2 \\ -2 & -6 & -5 & 0 \end{bmatrix}$$

Determine if the matrix
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix}$$
 is invertible.

Solution:

RREF
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since it is row equivalent to the identity matrix, it is invertible.

Standard M3.

Mark:

Find the inverse of the matrix $\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 4 & -3 \\ 8 & -13 & 10 \\ 13 & -24 & 18 \end{bmatrix}$$

Additional Notes/Marks