COMP 540 Homework 2

Peiguang Wang, Xinran Zhou

Due: February 2, 2018

Part 1: Gradient and Hessian of $NLL(\theta)$ for logistic regression

1. Let $g(z) = \frac{1}{1 - e^{-z}}$. Show that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$.

Proof.

$$\frac{\partial g(z)}{\partial z} = -\frac{e^{-z}}{(1-e^{-z})} = \frac{1}{1+e^{-z}}(1-\frac{1}{1+e^{-z}}) = g(z)(1-g(z))$$

2. Using the previous result and the chain rule of calculus, derive the following expression for the gradient of the negative log likelihood function $NLL(\theta)$ for logistic regression.

$$\frac{\partial}{\partial \theta} NNL(\theta) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}$$

Proof. Let h_{θ} denote $h_{\theta}(x^{(i)})$. Then the $NLL(\theta)$ is:

$$NLL(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_{\theta}) + (1 - y^{(i)}) log(1 - h_{\theta})$$

Then

$$\frac{\partial}{\partial(\theta x)} NNL = -\sum_{i=1}^{m} y^{(i)} \frac{h_{\theta}(1 - h_{\theta})}{h_{\theta}} + (-1)(1 - y^{(i)} \frac{h_{\theta}(1 - h_{\theta})}{1 - h_{\theta}})$$

Simplify the equation above

$$\frac{\partial}{\partial(\theta x)}NNL = -\sum_{i=1}^{m} y^{(i)}(1 - h_{\theta}) + (y^{(i)} - 1)h_{\theta} = -\sum_{i=1}^{m} y^{(i)} - h_{\theta}$$

Derive $\frac{\partial}{\partial(\theta)}NNL$ from $\frac{\partial}{\partial(\theta x)}NNL$:

$$\frac{\partial NNL}{\partial \theta} = \frac{\partial NLL}{\partial (\theta x)} \frac{\partial (\theta x)}{\partial \theta} = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

3. The Hessian or second derivative of the $NLL(\theta)$ can be written as $H = X^T S X$ where

$$S = diag(h_{\theta}(x^{(1)})(1 - h_{\theta}(x^{(1)})), ..., h_{\theta}(x^{(m)})(1 - h_{\theta}(x^{(m)})))$$

Show that H is positive definite. You may assume that $0 < h_{\theta}(x^{(i)}) < 1$, so the elements of S are strictly positive and that X is full rank.

Proof. For any given vector u, compute $u^T H u$:

$$u^T H u = u^T X^T S X u$$

Let vector $v = (v_1, v_2, ... v_m)$ denote $X\dot{u}$. since X is full rank, then v is not a zero vector.

$$u^T H u = v^T S v = \sum_{i=1}^{n} m v_i^2 S_{ii}$$

Since the elements of S are strictly positive, then $u^T H u > 0$. So H is positive definite.

Part 2: Properties of L2 regularized logistic regression

1. (True or False) $J(\theta)$ has multiple locally optimal solutions.

Solution. This statement is **False**. Since $J(\theta)$ is a convex function, it only have one global optimal point.

2. (True or False) Let $\theta^* = argmin_{\theta}J(\theta)$ be a global optimum. θ^* is sparse (has many zero entries).

Solution. This statement is **False**. Since in this regression problem, we use L2 regularization, it won't make θ^* become sparse. L2 norm will make θ have small values. If L1 norm is used, then θ^* will become sparse.

3. (True or False) If the training data is linearly separable, then some coefficients θ_j might become infinite if $\lambda = 0$.

Solution. This statement is **True**. When the plain is

4. (True of False) The first term of $J(\theta)$ always increases as we increase λ .

Solution. This statement is **True**. When adding λ , the cross-entropy loss

$$J = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))$$

will become larger to prevent overfitting.