МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Параллельная обработка данных»

Сортировка чисел на GPU. Свертка, сканирование, гистограмма.

Выполнил: А. Ю. Голов

Группа: М8О-401

Преподаватель: А.Ю. Морозов

Условие

Цель работы. Ознакомление с фундаментальными алгоритмами GPU: свертка (reduce), сканирование (blelloch scan) и гистограмма (histogram). Реализация одной из сортировок на CUDA. Использование разделяемой и других видов памяти. Исследование производительности программы с помощью утилиты nvprof.

Программное и аппаратное обеспечение

Видеокарта: NVIDIA GeForce RTX 2060 Mobile

- Compute Capability: 7.5
- Графическая память: 6 ГБ GDDR6, с 192-битной шиной и пропускной способностью 336 ГБ/с
- Разделяемая память: до 64 КБ на мультипроцессор
- Константная память: 64 КБ
- Количество регистров на блок: 65 536
- Максимальное количество блоков на мультипроцессор: 16
- Максимальное количество нитей на мультипроцессор: 1 024
- Количество мультипроцессоров (SM): 30

Процессор: Intel Core i7-9750H имеет следующие характеристики:

• Количество ядер: 6

• Количество потоков: 12

• Техпроцесс: 14 нм

Оперативная память:

Объём: 16 ГБ

_

• Тактовая частота: 3500 MHz

• Поколение: DDR4

Жёсткий лиск:

Объём: 512 ГБФормат: SSD M2Программное обеспечение:

• Операционная система: Ubuntu 24.04 LTS

IDE: Lunar Vim

Метод решения

Методика решения основана на комбинации битонической сортировки и сортировки подсчётом. Сначала выполняется битоническая сортировка, разбивая массив на блоки и упорядочивая их параллельно. Затем с помощью чередующихся сравнений и обменов формируется битоническая последовательность, а после — глобальное слияние отсортированных частей.

После предварительной сортировки применяется сортировка подсчётом. Потоки параллельно вычисляют частоту элементов, затем определяют их финальные позиции с помощью префиксной суммы и записывают отсортированные значения в итоговый массив.

Для эффективной работы алгоритма данные распределяются по блокам, минимизируя конфликты доступа. Используется синхронизация на критических этапах, а нагрузка распределяется динамически в зависимости от размера массива.

Описание программы

```
__device__ void MergeStep(int* data, int size, int left, int right, int step, int posX)
  __shared__ int sharedMem[SIZE_OF_BLOCKS];
  int*tmp = data;
  for (int i = left; i < right; i += step)
  {
    int idx;
    tmp = data + i;
    if (posX \ge SIZE_OF_BLOCKS / 2) {
      idx = SIZE\_OF\_BLOCKS * 3 / 2 - 1 - posX;
    }
    else {
      idx = posX;
    }
    if (posX \ge SIZE_OF_BLOCKS / 2) {
       sharedMem[posX] = tmp[idx];
    }
    else {
       sharedMem[posX] = tmp[posX];
    }
    __syncthreads();
```

```
{
      unsigned int XOR = posX ^ j;
                      if (XOR > posX)
      {
                             if ((posX & SIZE_OF_BLOCKS) != 0)
                                     if (sharedMem[posX] < sharedMem[XOR]){
                                            thrust::swap(sharedMem[posX], sharedMem[XOR]);
           }
                             }
         else
                                     if (sharedMem[posX] > sharedMem[XOR]){
                                            thrust::swap(sharedMem[posX], sharedMem[XOR]);
           }
                             }
                      }
       __syncthreads();
    }
    tmp[posX] = sharedMem[posX];
  }
}
Выполняет один шаг битонического слияния. Загружает элементы в разделяемую память,
упорядочивает их с помощью итеративных сравнений и обменов, затем записывает результат
обратно.
__global__ void BitonicMerge(int* data, int size, bool isOdd)
  unsigned int posX = threadIdx.x;
  int blockId = blockIdx.x;
```

for (int $j = SIZE_OF_BLOCKS / 2$; j > 0; j /= 2)

```
int shift = gridDim.x;
  if (isOdd) {
    MergeStep(data, size, (SIZE_OF_BLOCKS / 2) + blockId * SIZE_OF_BLOCKS, size -
SIZE_OF_BLOCKS, shift * SIZE_OF_BLOCKS, posX);
  }
  else {
    MergeStep(data, size, blockId * SIZE_OF_BLOCKS, size, shift * SIZE_OF_BLOCKS, posX);
  }
Запускает MergeStep для параллельного слияния блоков. Определяет, какие части массива
обрабатываются в текущем шаге, учитывая размер сетки.
__global__ void SortStep(int* data, int j, int k, int size)
  __shared__ int sharedMem[SIZE_OF_BLOCKS];
  int*tmp = data;
  unsigned int posX = threadIdx.x;
  int blockId = blockIdx.x;
  int shift = gridDim.x;
  for (int i = blockId * SIZE_OF_BLOCKS; i < size; i += shift * SIZE_OF_BLOCKS)
    tmp = data + i;
    sharedMem[posX] = tmp[posX];
    __syncthreads();
    for (j = k / 2; j > 0; j /= 2)
      unsigned int XOR = posX ^ j;
      if (XOR > posX)
      {
```

```
if ((posX \& k) != 0)
           if (sharedMem[posX] < sharedMem[XOR]) \{\\
              thrust::swap(sharedMem[posX], sharedMem[XOR]);
            }
         }
         else
           if (sharedMem[posX] > sharedMem[XOR]){
              thrust::swap(sharedMem[posX], sharedMem[XOR]);
            }
         }
       }
       __syncthreads();
       tmp[posX] = sharedMem[posX];
     }
  }
Реализует битоническую сортировку внутри блоков. Копирует элементы в разделяемую
память, выполняет сортировку с чередованием направлений, затем записывает результат
обратно.
void BitonicSort(int* devData, int partitionSize)
{
  for (int i = 2; i \le partitionSize; i *= 2)
  {
    if (i > SIZE\_OF\_BLOCKS){
       break;
     }
    for (int j = i / 2; j > 0; j /= 2)
     {
```

```
SortStep <<<NUM_OF_BLOCKS, SIZE_OF_BLOCKS>>> (devData, j, i, partitionSize);

CSC(cudaGetLastError());
}

for (int i = 0; i < 2 * (partitionSize / SIZE_OF_BLOCKS); ++i)
{

BitonicMerge <<<NUM_OF_BLOCKS, SIZE_OF_BLOCKS>>> (devData, partitionSize, (i % 2 == 0));

CSC(cudaGetLastError());
}

CSC(cudaGetLastError());
}
```

Запускает битоническую сортировку и последовательное слияние блоков. Поэтапно увеличивает размер сортируемых частей, затем объединяет отсортированные фрагменты.

Результаты

Результаты замеров производительности программ в зависимости от размера сортируемого массива. Данные представлены в секундах.

Размер массива	GPU + Parallel	CPU
1000	0.00054	0.000555764
10000	0.000652603	0.0107603
100000	0.0109739	0.0951744
1000000	0.37084	1.22396

Ниже приведены выводы утилиты nvprof при сортировке массива из 10 элементов.

```
→ lab5 git:(main) X nvprof ./a.out
1.
2.
3.
      ==7147== NVPROF is profiling process 7147, command: ./a.out
      Sorting 10 elements took 0.00750193 seconds
4.
      ==7147== Profiling application: ./a.out
5.
      ==7147== Profiling result:
6.
7.
             Type Time(%)
                              Time
                                                              Max Name
                                      Calls
                                               Ava
                                                      Min
       GPU activities: 87.21% 15.935us
                                               6 2.6550us 2.3680us 2.9430us
SortStep(int*, int, int, int)
                                        1 1.4080us 1.4080us 1.4080us [CUDA
9.
                  7.71% 1.4080us
memcpy DtoH]
10.
                  5.08%
                            928ns
                                        1
                                             928ns
                                                       928ns
                                                                928ns [CUDA
memcpy HtoD]
```

11. API call	ls: 92.7	3% 171.13ms	1	171.13ms	171.13ms	171.13ms
cudaMalloc						
12.	3.96%	7.3002ms	6	1.2167ms	2.2580us	7.2851ms
cudaLaunchKernel						
13.	3.13%	5.7749ms	114	50.656us	127ns	3.2898ms
cuDeviceGetAttribute						
14.	0.12%	217.80us	2	108.90us	23.724us	194.08us
cudaMemcpy						
15.	0.05%	89.428us	1	89.428us	89.428us	89.428us
cudaFree						
16.	0.01%	21.183us	1	21.183us	21.183us	21.183us
cuDeviceGetName						
17.	0.00%	4.9770us	1	4.9770us	4.9770us	4.9770us
cuDeviceGetPCIBusId						
18.	0.00%	1.8670us	3	622ns	152ns	1.5000us
cuDeviceGetCount						
19.	0.00%	1.7260us	2	863ns	130ns	1.5960us
cuDeviceGet						
20.	0.00%	677ns	6	112ns	60ns	346ns
cudaGetLastError						
21.	0.00%	617ns	1	617ns	617ns	617ns
cuDeviceTotalMem						
22.	0.00%	310ns	1	310ns	310ns	310ns
cuModuleGetLoadingMode						
23.	0.00%	283ns	1	283ns	283ns	283ns
cuDeviceGetUuid						

[→] lab5 git:(main) X nvprof --print-gpu-trace ./a.out

==7220== NVPROF is profiling process 7220, command: ./a.out

Sorting 10 elements took 0.000424398 seconds

==7220== Profiling application: ./a.out

==7220== Profiling result:

Start Duration Grid Size **Block Size** Regs* SSMem* DSMem* Size Throughput SrcMemType DstMemType Device Context Stream Name 3.17090s 928ns 40B 41.107MB/s 7 [CUDA memcpy HtoD] Pageable Device NVIDIA GeForce 1 3.17122s 3.0400us 16 4.0000KB (16 1 1) $(1024\ 1\ 1)$ 0B 7 SortStep(int*, int, int, int) [127] - NVIDIA GeForce 3.17123s 2.7840us $(16\ 1\ 1)$ $(1024\ 1\ 1)$ 16 4.0000KB 0B - NVIDIA GeForce 7 SortStep(int*, int, int, int) [129] 3.17123s 2.4630us (16 1 1) $(1024\ 1\ 1)$ 16 4.0000KB - NVIDIA GeForce 7 SortStep(int*, int, int, int) [131] 3.17123s 2.6240us $(1024\ 1\ 1)$ 16 4.0000KB (16 1 1)- NVIDIA GeForce 7 SortStep(int*, int, int, int) [133]

```
3.17124s 2.6240us
                          (16\ 1\ 1)
                                     (1024\ 1\ 1)
                                                    16 4.0000KB
                                                                     0B
             - NVIDIA GeForce
                                           7 SortStep(int*, int, int, int) [135]
3.17124s 2.6240us
                          (1611)
                                     (1024\ 1\ 1)
                                                    16 4.0000KB
                                           7 SortStep(int*, int, int, int) [137]
              - NVIDIA GeForce
3.17125s 1.4080us
                                                              40B 27.093MB/s
Device Pageable NVIDIA GeForce
                                              7 [CUDA memcpy DtoH]
```

Regs: Number of registers used per CUDA thread. This number includes registers used internally by the CUDA driver and/or tools and can be more than what the compiler shows.

SSMem: Static shared memory allocated per CUDA block.

DSMem: Dynamic shared memory allocated per CUDA block.

SrcMemType: The type of source memory accessed by memory operation/copy DstMemType: The type of destination memory accessed by memory operation/copy

Выводы

Область применения

Битоническая сортировка предназначена для параллельных вычислений и эффективна в условиях GPU, где важно минимизировать зависимости между потоками. Она используется в задачах обработки больших массивов данных, в том числе в высокопроизводительных вычислениях, финансовом анализе и машинном обучении.

Типовые задачи

Этот алгоритм полезен в реальном времени при обработке данных на GPU, например, в графике, моделировании физических процессов и финансовых вычислениях. Он обеспечивает детерминированную сортировку, что важно в системах с жесткими временными ограничениями.

Сложность программирования и возникшие проблемы

Реализация битонической сортировки на GPU сложнее, чем на CPU, из-за необходимости работы с разделяемой памятью, синхронизации потоков и оптимизации доступа к памяти. При разработке возникли ошибки выхода за границы массива и некорректного обращения к памяти GPU, которые потребовали дополнительной обработки.

Сравнение и объяснение результатов

Замеры показывают, что GPU быстрее CPU на больших массивах, но на маленьких входных данных задержка вызова ядер CUDA и операций cudaMemcpy нивелирует преимущество параллельных вычислений.

- Для 1000 элементов разница между CPU и GPU минимальна, так как накладные расходы CUDA слишком велики.
- Для 10⁶ элементов GPU оказывается почти в 3 раза быстрее, демонстрируя эффективность параллелизма.
- Выводы nvprof показывают, что основное время работы уходит на выполнение SortStep, а затраты на cudaMemcpy становятся значимыми при малых данных.

В целом, GPU-версия превосходит CPU при больших объемах данных, но на малых массивах оправданнее использовать CPU-реализацию из-за меньших накладных расходов.