Valorzinisegekkel kapisolators
Az előző jegyzet tetelének bizonyétasa: TETEL.
$A_1, A_2, A_3, \dots, A_k \in A$
$P(A_1 + A_2 + + A_n) = \sum_{k=1}^{n} (-1)^{k-1} S_k^{(n)}$
ZP(Ain Aiz Aig)
1≤ i, <i2 <="" iq="" n<="" td="" ≤=""></i2>
Magyaran pl.:
$N=2-12$ $\sum_{1\leq 1\leq 2\leq 2} P(A_1A_2)$ jelentebe: $\binom{2}{1}+\binom{2}{2}$ oraz:
$\bigcirc P(A_1) + P(A_2) \bigcirc P(A_1 A_2)$
$(-1)^{\circ}$ $(-1)^{1}$
Viss rakapjul az előző azonosságot.
Ez a tetel egy speciallis (r=o) esete a köretkező tételnek:
1 <i>E18</i> .
$\sqrt{\binom{n}{r}} = \sum_{\ell = 0}^{n-r} (-1)^{\ell r} \binom{r+\ell r}{\ell r} \binom{n}{r+\ell r}$
annale a valgszinnsege, hogy r-ile beovetbouk le
Meczi: A szummalyall addig adusk össze, ambg nem következett be a valrt esemény.
A sammaral wang want one job grant
Kwálasztjá a nem bolivetkezőket az összes közül.
111/1
Tovallevezet egy következő alsztralciós mintű problémara, Elhez par alepismeret azonban kell:
Minimalia exemelyalgebrat kestsing A, Az, An 102611.
Ez 2 ⁿ elemi esemelyt alalanos halmazelmelleti azaz: (2 ⁿ) ² esemelyt tastalmaz.
(2h) ² esemelyt tartalmaz.
2-t variableur (mivel ar a logkeverebb)
2-t variableur (nivel ar a engleeverebb) $\forall B \in A \Leftrightarrow P(A_{i_1}A_{i_2}) \in A \qquad B = \omega_1 + \omega_2 +$
Valamint $\omega = A_{i_1} A_{i_2} A_{i_3} A_{j_1} A_{j_n-q}$

Poir kombinatorikus minta (statisztikal) Maxwell-Bottzmann: Wfio's n targy hebyretet lehet veläg modellerni. $P_{2} = \binom{n}{2} \binom{1}{N}^{k} \left(1 - \frac{1}{N}\right)^{n-k}$ anni Quivalens ezzel: $\binom{n}{2} (N-1)^{n-k}$

Bose-Einstein: n forint N remelly

Fermi - Divac:
$$\frac{\binom{N-1}{n-1}}{\binom{N}{n}} = \frac{n}{N}$$
 (N elemből n elem)

Firihalban ressessas