

Figure 1

Figure 2

Figure 3

Figure 4

R_1	R_2	R_3 H : vinylbenzyl (molar ratio)	n
methyl	benzyl	0:100	3
methyl	benzyl	5:95	3
methyl	benzyl	60:40	3
methyl	benzyl	40:60	3
methyl	benzyl	20:80	3

Figure 5

Additive	Addition amount (wt%)	Annealing (°C)	Dielectric properties (at 2 GHz)		Insulation resistance (Ω · cm)	Remarks
			ε	Q		
Example 1 MnCO ₃	0.15	1000	10.71	304	5.5×10^{13}	Added to/mixed with finely milled powder
Comparative Example 1 Bi ₂ O ₃	1.0	1000	14.43	290	4.5×10^{11}	Added to/mixed with finely milled powder
Comparative Example 2 SiO ₂	1.0	1000	11.36	335	2.9×10^{11}	Added to/mixed with finely milled powder
Comparative Example 3 CaCO ₃	1.0	1000	11.85	270	2.0×10^{11}	Added to/mixed with finely milled powder
Comparative Example 4 None	—	1000	9.33	312	3.1×10^0	—

Figure 6

	Additive	Addition amount (wt%)	Annealing (°C)	Dielectric properties (at 2 GHz)		Insulation resistance (Ω · cm)	Remarks
				ε	Q		
Example 2	MnCO ₃	0.15	1100	12.10	355	9.9×10^{13}	Added to/mixed with finely milled powder
Example 1	MnCO ₃	0.15	1000	10.71	304	5.5×10^{13}	Added to/mixed with finely milled powder
Comparative Example 5	Bi ₂ O ₃	1.0	1100	13.17	368	2.6×10^{11}	Added to/mixed with finely milled powder
Comparative Example 1	Bi ₂ O ₃	1.0	1000	14.43	290	4.5×10^{11}	Added to/mixed with finely milled powder
Comparative Example 6	SiO ₂	1.0	1100	10.80	365	1.4×10^{12}	Added to/mixed with finely milled powder
Comparative Example 2	SiO ₂	1.0	1000	11.36	335	2.9×10^{11}	Added to/mixed with finely milled powder
Comparative Example 7	CaCO ₃	1.0	1100	11.92	310	1.4×10^{11}	Added to/mixed with finely milled powder
Comparative Example 3	CaCO ₃	1.0	1000	11.85	270	2.0×10^{11}	Added to/mixed with finely milled powder
Comparative Example 8	None	—	1100	11.58	359	2.6×10^{10}	—
Comparative Example 4	None	—	1000	9.33	312	3.1×10^{10}	—

10/535477

Figure 7

Figure 8A

Figure 8B

Figure 9A

Figure 9B

Figure 9C

Figure 10A

Figure 10B

Figure 11

Additive	Addition amount (wt%)	Annealing (°C)	Dielectric properties (at 2 GHz)		Insulation resistance (Ω · cm)	Remarks
			ε	Q		
MnCO ₃	0.05	1100	11.73	354	2.7×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.10	1100	11.44	351	3.4×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.15	1100	12.10	355	9.9×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.20	1100	11.47	352	4.6×10^{13}	Added to/mixed with finely milled powder

Figure 12

Additive	Addition amount (wt%)	Annealing (°C)	Dielectric properties (at 2 GHz)		Insulation resistance	Remarks
			ϵ	Q	($\Omega \cdot \text{cm}$)	
MnCO ₃	0.05	1150	12.18	363	2.6×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.10	1150	12.07	359	2.2×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.15	1150	12.21	358	3.3×10^{13}	Added to/mixed with finely milled powder
MnCO ₃	0.20	1150	11.64	347	2.4×10^{13}	Added to/mixed with finely milled powder

10/535477

Figure 13

	Composition (wt%)				Additive (wt%)	Powder type	Spher-icity	Specific surface area (m^2/g)	Electric resistivity ($\Omega \cdot \text{cm}$)	Remarks
	BaO	Nd_2O_3	TiO_2	Bi_2O_3						
1	18.93	41.19	39.88	—	—	Spherical powder	0.97	0.459	7.7×10^{10}	Without MnO in final composition
2	18.93	41.19	39.88	—	—	Spherical powder	0.98	3.436	5.1×10^{10}	Without MnO in final composition
3	18.93	41.19	39.88	—	—	Spherical powder	0.85	2.688	1.0×10^{11}	Without MnO in final composition
4	16.6	38.86	41.7	—	—	Spherical powder	0.92	3.097	6.1×10^{12}	Without MnO in final composition
5	18.93	41.19	39.88	—	—	Spherical powder	0.88	1.824	5.8×10^9	Without MnO in final composition
6	18.93	41.19	39.88	—	—	Spherical powder	0.99	1.702	5.3×10^{10}	Without MnO in final composition
7	18.93	41.19	39.88	—	—	Spherical powder	0.92	2.097	6.1×10^{10}	Without MnO in final composition
8	18.93	41.19	39.88	—	—	Spherical powder	0.83	1.570	1.1×10^{11}	Without MnO in final composition
9	18.93	41.19	39.88	—	—	Spherical powder	0.81	2.235	3.1×10^{11}	Without MnO in final composition
10	18.93	41.19	39.88	—	—	Spherical powder	0.96	2.092	2.0×10^{11}	Without MnO in final composition
11	18.93	41.19	39.88	—	—	Crushed powder	0.72	1.600	4.3×10^{13}	Without MnO in final composition
12	18.93	41.19	39.88	—	—	Crushed powder	0.63	1.819	3.1×10^{13}	Without MnO in final composition
13	18.93	41.19	39.88	—	—	Spherical powder	0.94	0.465	2.6×10^{10}	Without MnO in final composition
14	18.93	41.19	39.88	—	Bi_2O_3 0.15	Spherical powder	0.87	0.798	2.6×10^{11}	Without MnO in final composition
15	16.6	38.86	41.7	2.751	0.088	—	Crushed powder	0.61	1.617×10^{13}	With MnO in final composition
16	16.6	38.86	41.7	2.751	0.088	—	Spherical powder	0.83	0.426×10^{13}	With MnO in final composition
17	18.93	41.19	39.88	—	MnCO_3 0.15	Spherical powder	0.90	0.454	9.9×10^{13}	With MnO in final composition

Figure 14

Figure 15A
Crushed powder

Figure 15B
Spherical powder

10/535477

Figure 16

Annealing (°C)	Dielectric properties (at 2 GHz)		Insulation resistance	Remarks
	ϵ	Q		
1000	11.76	359	4.5×10^{13}	MnCO ₃ added when mixing