10.3 望远镜的分辨本领

由近及远的车灯

望远镜

"哈勃"望远镜 长13.3米, 直径4.3米

FAST望远镜

500米口径球面射电望远镜
Five hundred meters Aperture Spherical
Radio Telescope,简称FAST

1 圆孔夫琅禾费圆孔衍射

—— 平行单色光入射圆孔__直径**D** 圆孔波面上各点发出子波经透镜会聚在焦平面

P点光的振幅
$$E = \int_{S} C \frac{A(Q)K(\theta)}{r} \cos(\omega t - \frac{2\pi r}{\lambda}) ds$$

计算得到中央是亮斑(爱里斑),强度约占入射光强的84%

爱里斑的半角宽度 $\theta_0 \approx \sin \theta_0 = 1.22 \frac{\lambda}{D}$

2 瑞利判据 —— 光学仪器的分辨本领

瑞利判据——两个强度相同的不相干点光源 一个光源的爱里斑的中心刚好落在 另一光源衍射图样的第一级极小处

光学系统刚好分辨两个点光源 ❖

两个点光源的爱里斑的角距离 $\theta_0 = 1.22 \frac{\lambda}{D}$

望远镜的最小分辨角 $\delta\theta = 1.22 \frac{\lambda}{D}$

望远镜的分辨本领 人

$$R = \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$$

如何提高光学仪器的分辨本领?

$$R = \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$$

望远镜 增大物镜的直径

显微镜

减小波长

电子显微镜

用加速的电子束代替光束,分 辨率可达0.1nm,可用于观察

分子结构

电子显微镜下的影像

流行感冒病毒

乙肝病毒

人类X染色体和Y染色体

花粉

灯泡钨丝

光盘表面

暈 最小分辨角
$$\delta\theta = 1.22 \frac{\lambda}{D}$$

—— 月球上相距为d的两点 对望远镜中心的张角

$$\delta\theta = \frac{d}{s} = 1.22 \frac{\lambda}{D}$$

$$d = 1.22 \frac{\lambda}{D} s = 51.8 m$$

作业: W6 单缝衍射 圆孔衍射