Abstract Algebra by Pinter, Chapter 17

Amir Taaki

Abstract

Chapter 17 on Rings

Contents

1	A. Examples of Rings	1
	1.1 Q1	
	1.2 Q2	. 3
	1.3 Q3	. 3
	1.4 Q4	. 4
	1.5 Q5	. 4
	1.6 Q6	. 5
	1.7 Q7	. 5
2	B. Ring of Real Functions	5
4	2.1 Q1	•
	2.2 Q2	-
	2.3 Q3	_
	2.4 Q4	
	2.1 %1	. 0
3	C. Ring of 2×2 Matrices	6
	3.1 Q1	. 6
	3.2 Q2	
	3.3 Q3	. 7
4	D. Rings of Subsets of a Set	7
	4.1 Q1	. 7
	4.2 Q2	
	4.3 Q3	
	4.4 Q4	
	$4.5 \tilde{Q5} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
5	E. Ring of Quaternions	8
	5.1 Q1	
	5.2 Q2	
	5.3 Q3	
	5.4 Q4	
	5.5 Q5	. 10
6	F. Ring of Endomorphisms	10
	6.1 Q1	. 10
	$6.2 ilde{ ext{Q2}} $	

1 A. Examples of Rings

Prove that the following are commutative rings with unity.

Indicate the zero element, the unity and the negative for an a.

Ring axioms:

1. $a \oplus b = b \oplus a$

2.
$$(a \otimes b) \otimes c = a \otimes (b \otimes c)$$

3. $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

Commutative:

1.
$$a \otimes b = b \otimes a$$

With unity:

1.
$$\exists 1' \in A : a \otimes 1' = a$$

1.1 Q1

$$a \oplus b = a+b-1$$
 $a \otimes b = ab-(a+b)+2$

Axiom 1 is self evident.

Using sage, we prove axioms 2 and 3.

```
sage: a = var('a')
sage: b = var('b')
sage: c = var('c')
sage: ab = a*b - (a + b) + 2
sage: ab_c = ab*c - (ab + c) + 2
sage: bc = b*c - (b + c) + 2
sage: a_bc = a*bc - (a + bc) + 2
sage: ab_c.full_simplify()
-(a - 1)*b + ((a - 1)*b - a + 1)*c + a
sage: a_bc.full_simplify()
-(a - 1)*b + ((a - 1)*b - a + 1)*c + a
sage: def mul(a, b):
         return a*b - (a + b) + 2
. . . . :
. . . . :
sage: def add(a, b):
....: return a + b - 1
sage: mul(a, add(b, c)).full_simplify()
(a - 1)*b + (a - 1)*c - 2*a + 3
sage: add(mul(a, b), mul(a, c)).full_simplify()
(a - 1)*b + (a - 1)*c - 2*a + 3
```

To calculate zero and unity:

$$a \oplus 0' = a$$

$$a + b - 1 = a$$

$$b = 1 = 0'$$

$$a \otimes 1' = a$$

$$ab - (a + b) + 2 = a$$

$$b = 2 = 1'$$

Lastly for the negative:

$$a \oplus b = 0'$$
$$a + b - 1 = 1$$
$$b = -a$$

1.2 Q2

```
a \oplus b = a + b + 1 a \otimes b = ab + a + b
sage: def add(a, b):
. . . . :
           return a + b + 1
. . . . :
sage: def mul(a, b):
          return a*b + a + b
. . . . :
Axiom 1: a \oplus b = b \oplus a
Self-evident
Axiom 2: (a \otimes b) \otimes c = a \otimes (b \otimes c)
sage: bool(mul(mul(a, b), c) == mul(a, mul(b, c)))
True
Axiom 3: a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)
sage: bool(mul(a, add(b, c)) == add(mul(a, b), mul(a, c)))
True
Commutative: a \otimes b = b \otimes a
Self-evident
Zero:
sage: solve(add(a, b) - a, b)
[b == -1]
sage: add(a, -1)
a
Unity:
sage: solve(mul(a, b) - a, b)
[b == 0]
sage: mul(a, 0)
Negative a:
sage: solve(add(a, b) + 1, b)
[b == -a - 2]
sage: add(a, -a -2)
-1
1.3
     Q3
                                         (a,b) \oplus (c,d) = (a+c,b+d)
                                       (a,b)\otimes(c,d)=(ac-bd,ad+bc)
sage: c = var('c')
sage: d = var('d')
sage: e = var('e')
sage: f = var('f')
sage: def add(ab, cd):
           a, b = ab
. . . . :
. . . . :
           c, d = cd
. . . . :
           return (a + c, b + d)
. . . . :
sage: def mul(ab, cd):
\dots: a, b = ab
           c, d = cd
. . . . :
           return (a*c - b*d, a*d + b*c)
. . . . :
. . . . :
```

```
Axiom 1: a \oplus b = b \oplus a
sage: bool(add((a, b), (c, d)) == add((c, d), (a, b)))
True
Axiom 2: (a \otimes b) \otimes c = a \otimes (b \otimes c)
sage: bool(mul(mul((a, b), (c, d)), (e, f)) == mul((a, b), mul((c, d), (e, f))))
True
Axiom 3: a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)
sage: bool(mul((a, b), add((c, d), (e, f))) == add(mul((a, b), (c, d)), mul((a, b), (e, f))))
True
Commutative: a \otimes b = b \otimes a
Self-evident
Zero:
sage: ab_plus_cd = add((a, b), (c, d))
sage: solve(ab_plus_cd[0] - a, c)
[c == 0]
sage: solve(ab_plus_cd[1] - b, d)
[d == 0]
sage: add((a, b), (0, 0))
(a, b)
Unity:
sage: ab_mul_cd = mul((a, b), (c, d))
sage: solve([ab_mul_cd[0] - a, ab_mul_cd[1] - b], c, d)
[[c == 1, d == 0]]
sage: mul((a, b), (1, 0))
(a, b)
Negative a:
```

1.4 Q4

$$A = \{x + y\sqrt{2} : x, y \in \mathbb{Z}\}\$$

Since normal algebraic operations are defined on A, then 1, 2 and 3 pass. It is also commutative.

Zero: 0

Unity: 1

Negative: $-x - y\sqrt{2}$

1.5 Q5

Prove the ring in part 1 is an integral domain.

We show that it has the cancellation property.

Assume $a \otimes b = a \otimes c$.

$$ab - (a + b) + 2 = ac - (a + c) + 2$$

 $ab - b = ac - c$

Therefore b = c, and the ring has the cancellation property.

Since 0' = (0,0) then the negative for (a,b) is simply (-a,-b).

1.6 Q6

Prove the ring in part 2 is a field.

A field is a commutative ring with unity in which every nonzero element is invertible.

$$0' = -1$$
$$1' = 0$$

Thus

$$a \otimes b = 1'$$
$$ab + a + b = 0$$

We solve for b as follows

```
sage: def mul(a, b):
....:     return a*b + a + b
....:
sage: solve(mul(a, b), b)
[b == -a/(a + 1)]
```

(Excluding the 0' element which is equal to -1)

1.7 Q7

Find the inverse for the ring in part 3.

```
sage: def mul(ab, cd):
....:    a, b = ab
....:    c, d = cd
....:    return (a*c - b*d, a*d + b*c)
....:
sage: ab_mul_cd = mul((a, b), (c, d))
sage: solve([ab_mul_cd[0] - 1, ab_mul_cd[1]], c, d)
[[c == a/(a^2 + b^2), d == -b/(a^2 + b^2)]]
```

2 B. Ring of Real Functions

2.1 Q1

Let $a, b \in \mathcal{F}(\mathbb{R})$

Ring axioms:

- 1. ab = ba
- 2. (ab)c = a(bc)
- 3. a(b+c) = ab + ac

Commutative:

1. ab = ba

Zero: f(x) = 0

Unity: f(x) = 1

Negative: -f(x)

2.2 Q2

Divisors of zero, are any two functions which when $f(x) \neq 0$ then g(x) = 0 but in general $f(x) \neq 0$ and $g(x) \neq 0$.

See more here

2.3 Q3

Any functions which are one to one and have an inverse. That is $f(x) = x^3$ but not $f(x) = x^2$.

2.4 Q4

A field must have every element invertible. So the ring is not a field.

Ring has divisors of zero, so it does not have the cancellation property \implies ring is not an integral domain.

3 C. Ring of 2×2 Matrices

3.1 Q1

```
sage: a = var('a')
sage: b = var('b')
sage: c = var('c')
sage: d = var('d')
sage: r = var('r')
sage: s = var('s')
sage: t = var('t')
sage: u = var('u')
sage: w = var('w')
sage: x = var('x')
sage: y = var('y')
sage: z = var('z')
sage:
sage: def add(abcd, rstu):
. . . . :
                              a, b, c, d = abcd
                              r, s, t, u = rstu
. . . . :
                              return (a + r, b + s, c + t, d + u)
. . . . :
sage: def mul(abcd, rstu):
. . . . :
                              a, b, c, d = abcd
                              r, s, t, u = rstu
. . . . :
                              return (a*r + b*t, a*s + b*u, c*r + d*t, c*s + d*u)
. . . . :
Axiom 1:
Self evident.
Axiom 2:
sage: bool(mul((a,b,c,d), mul((r,s,t,u), (w,x,y,z))) == mul(mul((a,b,c,d), (r,s,t,u)), (w,x,y,z))
....: )))
True
Axiom 3:
sage: bool(mul((a,b,c,d), add((r,s,t,u), (w,x,y,z))) == add(mul((a,b,c,d), (r,s,t,u)), mul((a,b,c,d), (r,s,t,u)), mul((a,b,c,d), (r,s,t,u)), mul((a,b,c,d), (r,s,t,u), (r,s,t,u)), mul((a,b,c,d), (r,s,t,u), (r
\dots; ,c,d), (w,x,y,z))))
True
3.2
                  \mathbf{Q2}
sage: bool(mul((a,b,c,d), (r,s,t,u)) == mul((r,s,t,u), (a,b,c,d)))
False
Unity: (a, b, c, d)(r, s, t, u) = (a, b, c, d)
sage: solve([x_mul_y[0] - a, x_mul_y[1] - b, x_mul_y[2] - c, x_mul_y[3] - d], r,s,t,u)
[[r == 1, s == 0, t == 0, u == 1]]
```

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.3 Q3

Matrices don't have the cancellation property.

For example $ar_1 + bt_1 = ar_2 + bt_2$ does not imply that $r_1 = r_2$ and $t_1 = t_2$.

Thus is not an integral domain.

Not all matrices are invertible, for example when det(A) = 0. See more info here. Hence they $\mathcal{M}_2(\mathbb{R})$ is not a field either.

4 D. Rings of Subsets of a Set

$$A + B = (A - B) \cup (B - A)$$
$$AB = A \cap B$$

4.1 Q1

Ring axioms:

1.

$$A + B = (A - B) \cup (B - A)$$
$$= B + A$$

2.

$$(AB)C = (A \cap B) \cap C = A \cap (B \cap C) = A(BC)$$

3.

$$A(B+C) = A \cap [(B-C) \cup (C-B)]$$

$$= [A \cap (B-C)] \cup [A \cap (C-B)]$$

$$= (AB-AC) \cup (AC-AB)$$

$$AB+AC = (AB-AC) \cup (AC-AB)$$

Commutativity:

$$AB = A \cap B = BA$$

Unity:

$$AB = A \implies B = D$$

Zero:

$$A + B = A \implies B = \emptyset$$

4.2 Q2

All elements of \mathcal{P}_D with non-overlapping regions are divisors of zero.

$$X \in P_D, X^2 = \emptyset$$

4.3 Q3

$$1' = D$$

$$AB = D \implies A \cap B = D$$

Thus A = D and B = D

4.4 Q4

There exist non-zero non-invertible elements in P_D , hence it is *not* a field.

AB = AC does not imply B = C, hence cancellation property does not hold, and P_D is not an integral domain.

4.5 Q5

$$e = \emptyset$$

$$a = \{a\}$$

$$b = \{b\}$$

$$c = \{c\}$$

$$ab = \{a, b\}$$

$$ac = \{a, c\}$$

$$bc = \{b, c\}$$

$$abc = \{a, b, c\}$$

\oplus	e	a	b	$^{\mathrm{c}}$	ab	ac	bc	abc
е	e	a	b	c	ab	ac	$_{\mathrm{bc}}$	abc
a	a	e	ab	ac	b	\mathbf{c}	abc	bc
b	b	ab	e	bc	a	abc	\mathbf{c}	ac
$^{\mathrm{c}}$	c	ac	bc	e	abc	a	b	ab
ab	ab	b	a	abc	e	bc	ac	\mathbf{c}
ac	ac	\mathbf{c}	abc	a	bc	e	ab	b
bc	bc	abc	\mathbf{c}	b	ac	ab	e	a
abc	abc	bc	ac	ab	\mathbf{c}	b	a	e
\otimes	e	a	b	\mathbf{c}	ab	ac	bc	abc
<u>⊗</u> e	e e	a a	b b	c	ab ab	ac ac	bc bc	abc abc
e	e	a	b	c	ab	ac	bc	abc
e a	e a	a a	b ab	c ac	ab ab	ac ac	bc abc	abc abc
e a b	e a b	a a ab	b ab b	c ac bc	ab ab ab	ac ac abc	bc abc bc	abc abc abc
e a b c	e a b c	a a ab ac	b ab b bc	c ac bc e	ab ab ab abc	ac ac abc a	bc abc bc b	abc abc abc abc
e a b c ab	e a b c ab	a ab ac ab	b ab b bc ab	c ac bc e abc	ab ab ab abc ab	ac ac abc a abc	bc abc bc bc abc	abc abc abc abc abc

5 E. Ring of Quaternions

5.1 Q1

```
Unity:
sage: a = var('a')
sage: b = var('b')
sage: c = var('c')
sage: d = var('d')
sage: matrix([[a + b*I, c + d*I], [-c + d*I, a - b*I]])
[a + I*b c + I*d]
[-c + I*d a - I*b]
sage: alpha = matrix([[a + b*I, c + d*I], [-c + d*I, a - b*I]])
sage: matrix([[1, 0], [0, 1]]) * alpha
[a + I*b c + I*d]
[-c + I*d a - I*b]
Distributive law:
sage: bb = var('e f g h')
sage: cc = var('i j k l')
sage: def make_matrix(xx):
         return matrix([[xx[0] + I*xx[1], xx[2] + xx[3]*I], [-xx[2] + xx[3]*I, xx[0] - xx[1]*I]))
```

```
sage: bool(alpha*(make_matrix(bb) + make_matrix(cc)) == (alpha*make_matrix(bb) + alpha*make_matrix(cc))
True
```

Non-commutative:

sage: bool(alpha*make_matrix(bb) == make_matrix(bb)*alpha) False

5.2 $\mathbf{Q2}$

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$\alpha = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
$$= \begin{pmatrix} a + bi & c + di \\ -c + di & a - bi \end{pmatrix}$$

5.3 Q3

True

 $\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} = \mathbf{i}$

```
sage: ii = matrix([[I, 0], [0, -I]])
sage: ii*ii
\begin{bmatrix} -1 & 0 \end{bmatrix}
[0 -1]
sage: -ii*ii
[1 \ 0]
[0 1]
sage: jj = matrix([[0, 1], [-1, 0]])
sage: jj*jj
[-1 \ 0]
[0 -1]
sage: kk = matrix([[0, I], [I, 0]])
sage: kk*kk
\begin{bmatrix} -1 & 0 \end{bmatrix}
[0 -1]
sage: bool(ii**2 == jj**2)
True
sage: bool(ii**2 == kk**2)
True
ij = -ji = k
sage: bool(ii*jj == -jj*ii)
sage: bool(ii*jj == kk)
```

For the formula $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$

```
sage: bool(jj*kk == -kk*jj)
True
sage: bool(jj*kk == ii)
True
ki = -ik = j
sage: bool(kk*ii == -ii*kk)
True
sage: bool(kk*ii == jj)
True
```

5.4 Q4

$$\bar{\alpha} = \begin{pmatrix} a - bi & -c - di \\ c - di & a + bi \end{pmatrix}$$

$$||\alpha|| = a^2 + b^2 + c^2 + d^2 = t$$

Show that

$$\bar{\alpha}\alpha = \alpha\bar{\alpha} = \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix}$$

Note that $(a+ib)(a-ib) = a^2 + b^2$ and the same for c and d.

Earlier we found the identity is

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus the multiplicative inverse (both on the left and right) such that $\alpha\beta = \beta\alpha = 1$ is given by $(1/t)\bar{\alpha}$.

5.5 Q5

From part 4 we show there is a multiplicative inverse. Thus by the definition, \mathcal{L} is a skew field.

6 F. Ring of Endomorphisms

6.1 Q1

Let $f, g, h \in End(G)$

- 1. f + g = g + f
- 2. $(f \cdot g) \cdot h = f \cdot (g \cdot h)$
- 3. $f \cdot (g+h) = f \cdot g + f \cdot h$

6.2 Q2

For a homomorphism f(0) = 0

Applying the rule f(a+b) = f(a) + f(b)

$$e = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$a = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 2 & 0 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 3 & 2 & 1 \end{pmatrix}$$

$$c = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

+	e	\mathbf{a}	b	\mathbf{c}
е	a	b	c	е
a	b	$^{\mathrm{c}}$	e	\mathbf{a}
b	c	\mathbf{e}	\mathbf{a}	b
\mathbf{c}	e	a	b	\mathbf{c}
×	e	a	b	\mathbf{c}
	e e	a	b b	$\frac{c}{c}$
e	е	a	b	c