BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis

(Li et al., Medical Image Analysis, 2021)

Nils Krehl Master Data and Computer Science

Seminar **Deep Learning for Biomedical Image Analysis**Summer semester 2022

PD Dr. Karl Rohr Biomedical Computer Vision Group (BMCV) BioQuant, IPMB, Heidelberg University

Agenda

- 1. Introduction
- 2. Approach
- 3. Experiments and results
- 4. Discussion
- 5. Conclusion

1. Introduction

- Brain = complex system
- Modern neuroscience: understanding the brain
- Especially: Connection of brain regions to
 - neurological disorders
 - cognitive stimuli

2. Approach2.1. Pipeline

Nils Krehl

2. Approach2.2. fMRI

- Functional magnetic resonance imaging (fMRI)
- Measures blood flow changes
- Blood flow and neural activity are coupled
 - Brain region in use → blood flow increases
- fMRI measures activity of different brain regions

fMRI image: color indicates activity [Hellyer et al., The Journal of neuroscience 2014]

2.3. Preprocessing

- (1) Series of consecutive fMRI images
- (2) Which brain areas (voxels) should be grouped?
 - Brain parcellation by an atlas → Clustered voxels
 - Each cluster = one region of interest (ROI)
- (3) Each ROI is represented by one time series
- (4) Pairwise correlations between all time series

2.4. Graph construction

Toy example steps (3) – (5):

2.5. Graph Neural Networks

2.6. Brain GNN architecture

(6) Brain GNN Architecture:

[Li et al., Medical Image Analysis 2021]

2.7. Brain GNN: convolutional layer

Layers in detail: Ra-GConv

- Basis: One feature vector describes each node
- Goal: Learn new feature vectors (encoding the relationship between different ROIs)
- Intuition:

 Forward pass node feature vector update (Schlichtkrull et al. (2018)) e.g. new feature vector for node "Parietal":

2.7. Brain GNN: convolutional layer

Layers in detail: Ra-GConv

- Improvements of Brain GNN:
 - 1) Different embedding weights for each ROI
 - Weights = encode community membership for each node

$$\text{vec}(W_i^{(l)}) = \sum_{u=1}^{K^{(l)}} (\alpha_{iu}^{(l)}) \cdot \boldsymbol{\beta}_u^{(l)} + \boldsymbol{b}^{(l)}$$

- -a = Is ROI i member of community u?
- $-\beta$ = Community Basis vector

e.g. weight vector for node "Parietal.1": $\alpha_{i=Parietal.1,u=u1} * \beta_{u=u1} + \alpha_{i=Parietal.1,u=u2} * \beta_{u=u2}$

$$0 * \beta_{u=u1} + 1 * \beta_{u=u2}$$

2) Include edge weight: node feature vector * edge weight → strongly coupled neighbors have stronger influence

2.8. Brain GNN: pooling layer

Layers in detail: R-Pool

- Goal: Dimensionality reduction of the graph
- some ROIs more indicative for predicting neurological disorders (Kaiser et al., 2010; Baker et al., 2014)
- Dimensionality reduction: keep indicative ROIs; remove other ROIs
- Approach from Cangea et al. (2018), Gao and Ji (2019)
- Intuition:

[Li et al., Medical Image Analysis 2021]

2.9. Brain GNN: loss functions

Loss functions:

Cross entropy loss: classification loss

- Unit loss: learned pooling vector is unique
- Group-level consistency loss: select similar ROIs in R-Pool layer for different input instances
- TopK pooling loss: improve node selection in R-Pool layer (indicative and unselected ROIs should have significantly different scores)
- Final combined loss:

$$L_{total} = L_{ce} + \sum_{l=1}^{L} L_{unit}^{(l)} + \lambda_1 \sum_{l=1}^{L} L_{TPK}^{(l)} + \lambda_2 L_{GLC}$$

2. Approach 2.10. Results

Brain GNN results:

- (7) Prediction: e.g. healthy vs. disease
- (8) Biomarkers: Evaluation by adapting Group-level consistency loss

Level	Goal	Strenght of GLC
group-level biomarkers	characteristic patterns of a disease	+
individual-level biomarkers	individual-level biomarkers needed for precision medicine	-

14

(9) Communities: detected as part of the graph convolutional layers

Nils Krehl

3. Experiments and results (1/3)

Datasets

- (a) Biopoint Autism Study Dataset (Biopoint)
 - Binary classification: Autism vs. healthy
- (b) Human Connectome Project (HCP)
 - Multi class classification: gambling, language, motor, relational, social, working memory (WM), emotion

Prediction

		SVM	Random Forest	MLP	BrainNetCNN	GAT	GraphSAGE	PR-GNN	BrainGNN
	Accuracy (%)	62.80(4.92) a	68.60(3.58)	58.80(1.79)	75.20(3.49)	77.40(3.51)	78.60(5.90)	77.10(8.71)	79.80(3.63) ^c
	F1 (%)	60.08(3.91)	63.97(4.95)	55.25(9.49)	65.58(14.48)	75.08(5.19)	75.55(7.03)	75.20(7.01)	75.80(6.03)
Biopoint	Recall (%)	60.20(4.49)	71.11(8.12)	61.00(4.85)	66.20(10.85)	71.60(6.07)	75.20(6.46)	78.26(10.28)	72.60(5.64)
	Precision (%)	60.00(3.81)	67.80(5.36)	53.40(12.52)	65.60(17.95)	79.40(8.02)	76.20(8.11)	76.50(14.32)	79.60(8.59)
	Parameter (k) b	3	3	138	1438	16	6	6	41
НСР	Accuracy (%)	90.00(8.20)	90.20(4.15)	67.20(34.40)	90.60(4.04)	78.60(10.45)	89.80(12.51)	91.20(8.28)	94.40(4.04)*
	F1 (%)	90.20(5.81)	90.14(5.55)	63.49(41.80)	90.96(3.50)	77.00(11.58)	88.60(13.19)	91.09(8.35)	94.34(3.27)*
	Recall (%)	89.57(8.04)	90.06(7.35)	67.97(41.66)	91.12(4.13)	78.60(10.45)	89.43(12.43)	91.00(8.95)	94.29(3.73)*
	Precision (%)	90.85(9.35)	90.22(4.77)	62.97(42.47)	90.81(3.27)	91.20(3.32)	87.80(14.02)	91.14(8.52)	94.40(3.59)*
	Parameter (k)	36	36	713	4547	34	12	12	96

[Li et al., Medical Image Analysis 2021]

3. Experiments and results (2/3)

Interpretability of BrainGNN

(1) Biomarkers: Which brain regions are relevant for the prediction task?

→ suitable Biomarkers for Autists found

[Li et al., Medical Image Analysis 2021]

3. Experiments and results (3/3)

Interpretability of BrainGNN

(2) Communities: Which brain regions form communities?

(a) Biopoint

(b) HCP

- Based on Ra-GConv layer
- Number of communities = 8
- Not the same communities for (a) & (b)
 - → Communities are task specific

4. Discussion

Limitations and future work

Nils Krehl

5. Conclusion

Ra-GConv layers: assign unique weights to each ROI encoding the communities

Regularization terms
(unit loss, GLC loss and TPK loss) for pooling operations: only keep indicative ROIs

Thanks for your attention! Questions?