2017/2018 SEMESTER ONE EXAMINATION

Diploma in Electrical and Electronic Engineering 3rd Year Full Time

DIGITAL SIGNAL PROCESSING

<u>Time Allowed</u>: 2 Hours

<u>Instructions to Candidates</u>

- 1. The examination rules as set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 6 Short Questions, 10 marks each. Section B - 2 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. **ALL** questions are to be answered in the answer booklet.
- 5. This paper consists of **5** pages, including 2 pages of mathematical formulae.

2017/2018_S1 Page 1 of 5

SECTION A - SHORT QUESTIONS [10 marks each]

- A1 A DSP system with no anti-aliasing filter samples a 1.5 kHz sine wave signal with a sampling frequency of 2.5 kHz.
 - a) Sketch the magnitude spectrum of the sampled signal for $-5\,\mathrm{kHz} \le f \le 5\,\mathrm{kHz}$.

(7 marks)

- b) If a reconstruction filter with cutoff frequency at half sampling frequency is used to recover the original analog signal from the samples, what signal will be recovered? (3 marks)
- When a unit step function is applied to the input of a linear time-invariant digital system, it produces an output of $y(n) = \{2, 4, 8, 3, 2, 1, 1, 1, 1, 1, 1, \dots\}$. Determine the impulse response of this system. Hence, or otherwise, explain briefly whether the system is stable. (10 marks)
- A3 Given a digital system with an impulse response function, $h(n) = \left(0.8^n \cos\left[\frac{n\pi}{3}\right]\right)u(n)$, calculate the output y(n), if the input to the system is $x(n) = \left(0.4\right)^n u(n-1)$. (10 marks)
- A4 Evaluate the N = 4-point DFT for X(0) and X(2) if $x(n) = \{0, 2, 1, 2\}$. (10 marks)
- A5 The block diagram of a digital system is given as:

- a) Find the overall impulse response of the system, $h_T(n)$ in terms of $h_1(n)$, $h_2(n)$ and $h_3(n)$. (4 marks)
- b) If $h_1(n) = (0.5)^n u(n)$, $h_2(n) = (0.2)^n u(n)$, $h_3(n) = \delta(n)$ respectively, find the z-transform of $h_T(n)$, $H_T(z)$. (6 marks)
- A6 The system function of a digital system is given as:

$$X(z) = \frac{z^2 + 2z}{z^2 - 3z - 4}$$

Using partial fraction, find x(n).

(10 marks)

2017/2018_S1 Page 2 of 5

SECTION B - LONG QUESTIONS [20 marks each]

You are required to design a digital FIR low-pass filter to reject the high frequency noise found in a telemetry signal. The specifications of the filter are as follow:

Passband: 0 to 3 kHz Stopband: 4 to 20 kHz Sampling frequency: 8 kHz Peak approximation error: 0.002

To design this filter, determine

- (a) the width of transition band in π radians, (4 marks)
- (b) the windowing function that you would choose, (3 marks)
- (c) the number of tap coefficients that you would need, (5 marks)
- (d) the values of the first 2 and the last 2 tap coefficients. (8 marks)

B2

Figure B2

The digital network of a certain digital system is shown in figure B2.

- (a) Show that the system function, $H(z) = \frac{B 0.8Az^{-1}}{1 1.6Az^{-1} + A^2z^{-2}}$. (6 marks)
- (b) If A = B = 1, determine the impulse response of the system. (5 marks)
- (c) Assuming that A = B = 1, determine the frequency response of the system in terms of $e^{j\omega}$. (4 marks)
- (d) Based on the results in (c), or otherwise, find the gain of the system at 1024 Hz if the sampling frequency used is 10 kHz. (5 marks)

[*Hint*: $e^{-j0.2048\pi} = 0.8 - j0.6$]

-End of Paper-

2017/2018_S1 Page 3 of 5

Appendix

The *z*-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

	η=−∞
Sequence	Transform
$\delta[n]$	1
u[n]	1
	$\overline{1-z^{-1}}$
$\delta[n-m]$	<i>z</i> - ^m
$a^nu[n]$	1
	$\overline{1-az^{-1}}$
$na^nu[n]$	az^{-1}
	$(1-az^{-1})^2$
$[\cos \omega_0 n] u[n]$	$1-[\cos\omega_0]z^{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[\sin \omega_0 n] u[n]$	$[\sin \omega_0]z^{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[r^n \cos \omega_0 n] u[n]$	$1 - [r\cos\omega_0]z^{-1}$
, and the second	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$
$[r^n \sin \omega_0 n] u[n]$	$[r\sin\omega_0]z^{-1}$
	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$

Some <i>z</i> -transform properties:			
Sequence	Transform		
x[n]	X(z)		
$x_1[n]$	$X_1(z)$		
$x_2[n]$	$X_2(z)$		
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$		
x[n-m]	$z^{-m}X(z)$		

Some trigonometric identities:

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Series:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Discrete Fourier Transform:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$

Complex number theory:

$$z = a + jb = r \angle \theta = re^{j\theta}$$

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1} \frac{b}{a}$$

Quadratic equation solution:

$$If ax^2 + bx + c = 0$$

then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The characteristics of the different windowing functions:

Window Type	Peak approximation	Transition
	Error	Band
	$20 \log_{10} \delta dB$	$\Delta \omega$
Rectangular:	-21	4π
$\int_{\mathcal{M}(n)} \int_{-\infty} 1 0 \le n \le M$		$\overline{M+1}$
$w(n) = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		
Bartlett:	-25	8π
Bartlett: $w[n] = \begin{cases} \frac{2n}{M} & 0 \le n \le \frac{M}{2} \\ 2 - \frac{2n}{M} & \frac{M}{2} \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
$\begin{bmatrix} M & 2 \\ 0 & \text{otherwise} \end{bmatrix}$		
Hanning:	-44	8π
$w(n) = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		M
0 otherwise		
Hamming:	-53	8π
$w(n) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
0 otherwise		
Blackman:	-74	12π
$w(n) = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right) & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$		\overline{M}
0 otherwise		

The impulse response of an ideal low pass filter is:
$$h_d(n) = \frac{\sin\left(\omega_c\left[n - \frac{M}{2}\right]\right)}{\pi\left(n - \frac{M}{2}\right)}$$

2017/2018_S1 Page 5 of 5