

IV. országos magyar matematikaolimpia XXXI. EMMV

országos szakasz, Kolozsvár, 2022. április 20-23.

VIII. osztály

1. feladat (10 pont). Péternek és Jánosnak összesen 40 kisautója van. Mindketten ráírják az összes saját autójukra a szerencseszámukat. A János autóin levő számok összege kétszer nagyobb, mint a Péter autóin található számok összege. Ha Jánosnak annyi autója lenne, mint amennyi Péternek van, akkor az autóin található számok összege 36-tal kevesebb lenne, mint amennyi a Péter autóira írt számok összege. Ha Péternek lenne annyi autója, mint amennyi Jánosnak van, akkor a Péter autóin levő számok összege 84-gyel lenne több, mint amennyi a János autóin szereplő számok összege. Hány autójuk van a fiúknak külön-külön és mennyi a szerencseszámuk?

Császár Sándor, Csíkszereda

Első megoldás. Jelöljük x-szel a Péter és y-nal a János autóinak számát, illetve a-val a Péter és b-vel a János szerencseszámát. Péternek és Jánosnak összesen 40 kisautója van, ezért x+y=40. A János autóin lévő számok összege $y \cdot b$, ez a szám kétszer nagyobb, mint a Péter autóin lévő számok összege, ami $x \cdot a$. Ezért

$$y \cdot b = 2 \cdot x \cdot a. \tag{2 pont}$$

Ha Jánosnak annyi autója lenne, mint amennyi Péternek van, akkor az autóin található számok összege 36-tal kevesebb lenne, mint amennyi a Péter autóin levő számok összege, ezért

$$x \cdot b = x \cdot a - 36.$$

Ha Péternek lenne annyi autója, mint amennyi Jánosnak van, akkor a Péter kisautóin található számok összege 84-gyel lenne több, mint amennyi a János autóira írt számok összege, ezért

$$y \cdot a = y \cdot b + 84$$
.

Az előbbi két összefüggés a következő egyenletrendszerhez vezet:

$$\begin{cases} x \cdot b - x \cdot a = -36 \\ y \cdot b - y \cdot a = -84. \end{cases}$$
 (1 pont)

Összeadva a megfelelő oldalakat, a kapott összefüggést rendre az alábbi ekvivalens alakokba írhatjuk:

$$b \cdot (x+y) - a \cdot (x+y) = -120,$$

$$(b-a)(x+y) = -120.$$

Felhasználva, hogy x+y=40, az utóbbi összefüggésből következik, hogy a=b+3. (2 pont) Az a=(b+3)-at behelyettesítve az $x\cdot b=x\cdot a-36$ egyenlőségbe kapjuk, hogy

$$x \cdot b = x \cdot (b+3) - 36,$$

vagyis 3x = 36, ahonnan Péter kisautóinak a száma x = 12 és János kisautóinak a száma pedig y = 40 - 12 = 28. (2 pont)

Ezeket az értéket behelyettesítve az $y \cdot b = 2 \cdot x \cdot a = 2 \cdot x \cdot (b+3)$ összefüggésbe, következik, hogy

$$28 \cdot b = 2 \cdot 12 \cdot (b+3),$$

ahonnan b=18. Tehát János szerencseszáma b=18, Péteré pedig a=b+3=21. (2 pont) Hivatalból (1 pont)

Második megoldás. Az első megoldás gondolatmenetét követjük addig, ameddig eljutunk az alábbi összefüggésekig:

$$x + y = 40,$$

$$y \cdot b = 2 \cdot x \cdot a,$$

$$x \cdot (a - b) = 36,$$

$$y \cdot (a - b) = 84.$$
(3 pont)

Ezek alapján $x, y, a - b \neq 0$. Elosztva az utolsó két összefüggés megfelelő oldalait, az

$$\frac{x}{y} = \frac{3}{7} \tag{1 pont}$$

összefüggéshez jutunk. Innen származtatással következik, hogy $\frac{x+y}{y} = \frac{3+7}{7}$, vagyis $\frac{40}{y} = \frac{10}{7}$, ahonnan János autóinak a száma y=28 és Péter autóinak a száma pedig x=40-28=12. (3 pont) A kapott értékeket behelyettesítve az $x\cdot(a-b)=36$, illetve $y\cdot b=2\cdot x\cdot a$ egyenlőségekbe következik, hogy a-b=3 és 7b=6a, ahonnan $\frac{b}{a}=\frac{6}{7}$ és származtatással kapjuk, hogy

$$\frac{b}{a-b} = \frac{6}{7-6}.$$

Innen következik, hogy $\frac{b}{3}=6$, tehát János szerencseszáma b=18 Péteré pedig a=b+3=21.

(2 pont)

Hivatalból (1 pont)

- **2. feladat** (10 pont). Az ABCDA'B'C'D' kockában E az AD', F az AB', G a B'C és H a D'C szakasz felezőpontja. Igazold, hogy
 - a) az ACB'D' szabályos tetraéder;
 - b) az E, F, G és H pontok egy síkban vannak, és négyzetet alkotnak;
 - c) az EFGH négyzet középpontja egybeesik a kocka középpontjával!

Simon József, Csíkszereda

Megoldás. a) A tetraéder minden éle a kocka valamelyik lapjának átlója, tehát a tetraéder összes éle kongruens, ezért az ACB'D' szabályos tetraéder. (2 pont)

b) Az E és H pontok az D'A, illetve D'C szakaszok felezőpontjai, ezért az EH szakasz a D'AC háromszög középvonala, ahonnan $EH \parallel AC$ és $EH = \frac{1}{2}AC$. Az F és G pontok az B'A, illetve B'C szakaszok felezőpontjai, ezért az FG szakasz a B'AC háromszög középvonala, ahonnan $FG \parallel AC$ és $FG = \frac{1}{2}AC$.

Az $E\tilde{H} \parallel AC$ és $FG \parallel AC$ párhuzamosságok alapján $EH \parallel FG$, ezért az E, F, G, H pontok egy síkban vannak. (1 pont)

Mivel $EH \parallel FG$ és $EH = FG = \frac{1}{2}AC$, ezért az EFGH négyszög paralelogramma. (1 pont) Hasonlóan EF és HG az AD'B', illetve CD'B' háromszögek középvonalai, ezért $EF = HG = \frac{1}{2}D'B'$. Az AC és B'D' a kocka lapjainak átlói, ezért AC = B'D'. Tehát FG = EF, ezért EFGH egy rombusz. (1 pont)

Az $AC \perp BD$ és $BD \parallel B'D' \parallel EF$, $AC \parallel FG$, ezért $EF \perp FG$, tehát EFGH négyzet. (1 pont)

c) Jelölje O' az EFGH négyzet középpontját, tehát $EG \cap FH = \{O'\}$, ahol O' az EG szakasz felezőpontja. (1 pont)

Az ABC'D' paralelogrammában $BD'\cap AC'=\{O\}$, ahol O pont a kocka középpontja, tehát O felezi a D'B szakaszt.

A D'EBG paralelogrammában D'B és EG átlók tehát felezik egymást, ahonnan az EG és D'B felezőpontjai egybeesnek, tehát O = O'. (1 pont)

Hivatalból (1 pont)

- 3. feladat (10 pont). Az ABCDEFGH téglatestben $AB=20\,\mathrm{cm},\,BC=15\,\mathrm{cm}$ és $AE=12\sqrt{3}\,\mathrm{cm}.$
 - a) Számítsd ki az E pont távolságát a BD egyenestől!
 - b) Határozd meg az (EBD) és (FDB) síkok által meghatározott szög mértékét!
- c) HaMés Na CD,illetve CGélek felezőpontjai, akkor számítsd ki az Mpont távolságát az (NDB) síktól!

Papp Ilonka, Brassó Máthé Attila-István, Sepsiszentgyörgy

Megoldás. a) Az (ABD) síkban legyen L az A pontból a BD egyenesre bocsájtott merőleges talppontja, azaz $L \in BD$ és $AL \perp BD$.

Az E pontra és az (ABD) síkban található BD egyenesre alkalmazzuk a három merőleges tételét: $EA \perp (ABD), AL \perp BD, AL, BD \subset (ABD),$ ezért $EL \perp BD,$ ahonnan az E pont távolsága a BD egyenestől d(E,BD)=EL. (1 pont)

Az ABD háromszögben $\widehat{A}=90^\circ$, így Pitagorász tétele alapján $BD^2=AB^2+AD^2$, ahonnan $BD=25\,\mathrm{cm}$. A fent említett háromszögben AL az átfogóhoz tartozó magasság, tehát $AL=\frac{AB\cdot AD}{BD}=\frac{20\cdot 15}{25}=12\,\mathrm{cm}$.

Az EAL háromszögben $\widehat{A}=90^\circ$, így Pitagorász tétele alapján $EL^2=EA^2+AL^2$, ahonnan

$$EL = \sqrt{(12\sqrt{3})^2 + 12^2} = 24 \,\mathrm{cm}.$$

Tehát az E pont távolsága a BD egyenestől $d(E, BD) = EL = 24 \,\mathrm{cm}$. (1 pont)

b) A $H \in (FDB)$ és DBFH téglalap. Az L ponton keresztül a HD-vel párhuzamosan húzott egyenes a HF egyenest a P pontban metszi, azaz $PL \parallel HD$, $P \in HF$. Ekkor $PL \perp BD$.

Mivel az (EBD) és (FDB) síkok a BD egyenesben metszik egymást, az (EBD) sík EL egyenese merőleges a BD-re és az (FDB) sík PL egyenese merőleges a BD-re, ezért az (EBD) és (FDB)síkok hajlásszöge megegyezik az EL és PL egyenesek által bezárt szöggel, vagyis az \widehat{ELP} -gel.

(**2** pont)

Mivel EALP téglalap, $\widehat{EPL} = 90^{\circ}$ és $PL = EA = 12\sqrt{3}\,\mathrm{cm}$, az EPL háromszögben $\widehat{P} = 90^{\circ}$ és $PE=\frac{1}{2}EL=12\,\mathrm{cm},$ így az \widehat{ELP} mértéke $30^\circ,$ tehát az (EBD)és (FDB)síkok hajlásszöge $30^\circ.$

(1 pont)

c) Az M ponton keresztül párhuzamost húzunk a BD egyenessel, amely a BC egyenest az Spontban metszi. Mivel $MS \parallel BD$ és $BD \subset (NDB)$, következik, hogy $MS \parallel (NDB)$. Legyen $Q \in BD$ pont úgy, hogy $CQ \perp BD$, a CQ az MS középvonalat a T pontban metszi, tehát T egyben a CQ szakasz felezőpontja is. A fentiek alapján d(M, (NDB)) = d(T, (NDB)). Az N pontra és a (DBC) síkban található BD egyenesre $(NC \perp (DBC), CQ \perp BD, CQ, BD \subset$ (DBC)) alkalmazva a három merőleges tételét kapjuk, hogy $NQ \perp BD$.

Felvesszük az $R \in NQ$ pontot úgy, hogy $TR \perp NQ$. Mivel $TR \perp NQ$, $NQ \perp BD$, $TQ \perp BD$ (mivel $CQ \perp BD$) a három merőleges (kiegészített) fordított tétele alapján $TR \perp (NDB)$, tehát a T pont távolsága az (NDB) síktól d(T, (NDB)) = TR.

A QRT és QCN háromszögekben $\widehat{QRT}=\widehat{QCN}=90^\circ$ és \widehat{Q} közös szög, ezért $QRT_\triangle\sim QCN_\triangle,$ ahonnan $\frac{QT}{QN}=\frac{RT}{CN}$. Mivel $CQ=AL=12\,\mathrm{cm}$ és T a CQ szakasz felezőpontja, ezért $QT=TC=6\,\mathrm{cm}$.

Az N a CG felezőpontja, így $CN = NG = 6\sqrt{3}\,\mathrm{cm}$. Az NCQ háromszögben $\widehat{C} = 90^{\circ}$, Pitagorász tétele alapján $NQ^2 = NC^2 + CQ^2$, ahonnan $NQ = \sqrt{(6\sqrt{3})^2 + 12^2} = 6\sqrt{7}$ cm.

A $\frac{QT}{QN} = \frac{RT}{CN}$ arányból kapjuk, hogy $\frac{6}{6\sqrt{7}} = \frac{RT}{6\sqrt{3}}$, következik, hogy $RT = \frac{6\sqrt{3}}{\sqrt{7}} = \frac{6\sqrt{21}}{7}$ cm, a T pont távolsága az (NDB) síktól $d(T,(NDB)) = \frac{6\sqrt{21}}{7}$ cm, tehát $d(M,(NDB)) = \frac{6\sqrt{21}}{7}$ cm. (1 pont)

Hivatalból (1 pont)

- **4. feladat** (10 pont). Adottak az a < b < c prímszámok, amelyekre $\sqrt{a} + \sqrt{b} + \sqrt{c} \le 335$.
 - a) Igazold, hogy $6 \le \sqrt{a+6-\sqrt{8a}} + \sqrt{b+12-\sqrt{12b}} + \sqrt{c+6-\sqrt{20c}} < 337$.
 - b) Határozd meg az a,b,cszámok értékét úgy, hogy

$$\frac{2022}{\sqrt{a+6-\sqrt{8a}} + \sqrt{b+12-\sqrt{12b}} + \sqrt{c+6-\sqrt{20c}}} \in \mathbb{N}.$$

Mátéfi István, Marosvásárhely

Megoldás. a) Legyen $A = \sqrt{a+6-\sqrt{8a}} + \sqrt{b+12-\sqrt{12b}} + \sqrt{c+6-\sqrt{20c}}$. A gyökökben teljes négyzeteket alakítunk ki, és kapjuk, hogy

$$\sqrt{a+6-\sqrt{8a}} = \sqrt{(\sqrt{a}-\sqrt{2})^2+4},$$

$$\sqrt{b+12-\sqrt{12b}} = \sqrt{(\sqrt{b}-\sqrt{3})^2+9},$$

$$\sqrt{c+6-\sqrt{20c}} = \sqrt{(\sqrt{c}-\sqrt{5})^2+1}.$$
(1 pont)

Ekkor

$$A = \sqrt{(\sqrt{a} - \sqrt{2})^2 + 4} + \sqrt{(\sqrt{b} - \sqrt{3})^2 + 9} + \sqrt{(\sqrt{c} - \sqrt{5})^2 + 1} \ge 2 + 3 + 1 = 6.$$
 (1 pont)

A jobb oldali egyenlőtlenség igazolásához felhasználjuk a $\sqrt{x^2+y^2} \le x+y$ egyenlőtlenséget, amely teljesül minden $x,y\ge 0$ esetén. Mivel $a\ge 2,\ b\ge 3$ és $c\ge 5$, kapjuk, hogy

$$\sqrt{(\sqrt{a} - \sqrt{2})^2 + 4} \le \sqrt{a} - \sqrt{2} + 2 < \sqrt{a} + 1,$$

$$\sqrt{(\sqrt{b} - \sqrt{3})^2 + 9} \le \sqrt{b} - \sqrt{3} + 3 < \sqrt{b} + 2,$$

$$\sqrt{(\sqrt{c} - \sqrt{5})^2 + 1} \le \sqrt{c} - \sqrt{5} + 1 < \sqrt{c} - 1.$$
(2 pont)

Ahonnan összegzés után kapjuk, hogy $A < \sqrt{a} + \sqrt{b} + \sqrt{c} + 2 \le 337$, tehát $6 \le A < 337$. (1 pont)

b) Az előző alpontban bevezetett jelölést felhasználva $\frac{2022}{A} \in \mathbb{N}$. Ez akkor és csakis akkor teljesül, ha $A \in \{1, 2, 3, 6, 337, 674, 1011, 2022\}$. (1 pont)

Tudjuk, hogy $6 \le A < 337$, így A = 6,

(1 pont)

vagyis

$$\sqrt{(\sqrt{a} - \sqrt{2})^2 + 4} + \sqrt{(\sqrt{b} - \sqrt{3})^2 + 9} + \sqrt{(\sqrt{c} - \sqrt{5})^2 + 1} = 2 + 3 + 1,$$

tehát

$$(\sqrt{a} - \sqrt{2})^2 = (\sqrt{b} - \sqrt{3})^2 = (\sqrt{c} - \sqrt{5})^2 = 0,$$

amely pontosan akkor igaz, ha a=2,b=3,c=5.

(**2** pont)

Hivatalból (1 pont)