

Vision and Cognitive Systems:

Vehicle detection and counting Using YOLO architecture

members

David Alejandro Altamirano Coello Stefano Rafael Meza Anzules

2023-2024

Outline

Introduction

Detecting and Counting

Very important for making informed decisions and ensuring safe navigation

Develop a algorithm capable of detecting different objects in a given frame.

Stablish a method capable of counting objects in a video.

Distinguish different classes of objects.

Fig. 1.1: Car detection .

Packages

YOLOv8n

New features

Anchor free detection

New convolution

Mosaic augmentation

Packages

Tracking and counting

Region A (incoming)

Set a line for counting objects

Region B (outcoming)

TRACKER function follows object throughout frames for avoiding double counting

Center point of each object

Approach A

Dataset

8-classes dataset: van, car, SUV, big-truck, truck, bus, motorcycle, pickup 2592 images in total divided in training (70%), validation (20%), test (10%)

Fig. 3.1: Dataset with corresponding bounding boxes and labels.

Approach A

Training

Fig. 3.2: Approch A training parameters using yolov8n.yaml

Fig. 3.3: Approach A confussion matrix

Approach A

Results

Ex1. Original

Ex1. Validation

Fig. 3.4: Approch A testing with validation set

Num. vehicles: 8

Num. vehicles: 1

Num. vehicles: 3

Fig. 3.6: Approch A testing with test set

Approach B

Dataset

4-classes dataset: car, bus, trucks, motorcycle

cars: 1286 buses: 503

trucks: 832 motorcyles: 555

3176 images in total

Fig.4.1: Dataset with corresponding bounding boxes and labels.

Approach B

Training

Fig.4.2: Approah B training parameters using yolov8n.yaml

Fig.4.3: Approach B confussion matrix

Approach B

Results

Ex1. Validation

Fig. 4.4: Approch B testing with validation set

Num. vehicles: 4

Num. vehicles: 7

Num. vehicles: 7

Fig. 4.6: Approah B testing with test set

Approach C

Coco Dataset

The COCO (Common Objects in Context) dataset is a large-scale image recognition dataset which contains over 330,000 images, each annotated with 80 object categories.

YOLO has a pretrained model for all size versions, here it was used YOLOv8n.pt

Num. vehicles: 23

Num. vehicles: 41

Fig. 5.1: Approch C testing with test set

Num. vehicles: 24

Results I

One-way

4 classes in total without taking into account the direction of the vehicle.

Cars: 29

Motorbikes: 0

Autobuses: 1

Trucks: 6

Results I

One-way

Results I

One-way

Results II

Two-way

4 classes in total taking into account the direction of the vehicle.

Vehicle detection and counting using pre-trained model (COCO)

Results II

Two-way

Results II

Two-way

Final remarks

Next updates

- YOLO is one of the best architectures for first timers
- YOLOv8n.pt was the most accurate model for detecting and counting vehicles.
- Aerial recognition did not work properly probably for lack of a more acurate dataset
- Improve dataset and train for more epochs

Suplementary

approach	cars	relative	
	detected	error	
True	37		
A	12	0.66	
В	10	0.72	
С	37	0	

	cars	motorycles	buses	trucks
heavy	165	0	0	1
fast	234	0	0	18
mixed	82	7	3	17
aerial	0	0	0	0

	direction	cars	motorcycles	buses	trucks
heavy	in	24	0	0	0
	out	114	0	0	1
fast	in	80	0	0	6
	out	64	0	0	6
mixed	in	82	7	3	17
	out	31	0	1	7
aerial	in	0	0	0	0
	out	0	0	0	0