Cloud Computing Applications and Services

(Aplicações e Serviços de Computação em Nuvem)

Guide 0: Warm-Up

Context

The University of Minho hired you to deploy and manage <u>Swap</u>, a service for students swapping practical shifts.

Context

Road Map

Road Map

Goal

Cloud Provider

• Use Vagrant to create and configure 5 VMware virtual machines

Type 1

node1

RAM: 1024

CPU: 2

OS: Ubuntu 24.04

<u>myvm</u>

RAM: 1024

CPU: 2

OS: Ubuntu 24.04

Type 2

<u>controlplane</u>

RAM: 2048

CPU: 2

OS: Ubuntu 24.04

monitor

RAM: 2048

CPU: 2

OS: Ubuntu 24.04

Useful Tools and Concepts

VIVIare

- VMware is a virtualization software for running multiple operating systems in a single host.
- Want to know more about virtualization and virtual machines? Stay tuned for theoretical classes!

Vagrant

- <u>Vagrant</u> is a software for building and maintaining portable virtual software development environments (e.g., for VMware, VirtualBox, etc).
- Vagrant uses base images (known as boxes) to quickly clone a VM.
 - E.g., the box "bento/ubuntu-24.04" provides a base image of Ubuntu 24.04.
- The type of virtual machines and the tasks of how to configure and provision them are defined in a <u>Vagrantfile</u>.

Vagrant Useful Commands

Start the VMs:

- vagrant up
- vagrant up <vm_name>

Stop the VMs:

- vagrant halt
- vagrant halt <vm_name>

Output the <u>status</u> of the VMs:

- vagrant status
- vagrant status <vm_name>

- Provision the VMs (forces reprovisioning of the VMs):
 - vagrant provision
 - vagrant provision <vm_name>
- Clean up the VMs (stops and deletes the VMs):
 - vagrant destroy
 - vagrant destroy -f
 - vagrant destroy <vm_name>
 - vagrant destroy -f <vm_name>

Virtual Networks

Internet

NAT (Public network)

 VMs access the Internet through (masked as) the Host IP

Mathematical Methods Mathematical Methods Mathematical Methods

 Only the Host and VMs can communicate with each other

SSH

- SSH (secure shell) is a <u>network protocol</u> that allows <u>secure remote</u> <u>access</u> to systems over an unsecured network.
- SSH uses a <u>client-server</u> model, where the client connects to the server and establishes a secure channel for communication.
 - SSH Server (sshd): program that runs on the remote system and listens for incoming SSH connections.
 - SSH Client (ssh): program used to initiate an SSH connection to a remote server.

SSH

- SSH keys: SSH uses public-key cryptography to authenticate and establish secure connections.
 - The **private key (id_rsa)** is <u>secret</u>, known only to the user, and should remain stored safely (e.g., in the user's laptop accessing the remote server).
 - The public key (id_rsa.pub) can be shared freely with any SSH server to which the user wishes to connect (e.g., VM).
 - The authorized Keys (file ~/.ssh/authorized_keys on the server) specifies the SSH public keys that can be used for logging into the remote server.

SSH Useful Commands

• Generate <u>new SSH keys</u>:

- ssh-keygen
- Copy the Pub key to a remote server:
 - ssh-copy-id <username>@<vm_ip>
- Connect to a remote server:
 - ssh <username>@<vm_ip>
- Copy a file from local to remote:

- Copy a folder from local to remote:
- Copy a file from remote to local:
- Copy a folder from remote to local:
 - scp -r
 <username>@<vm_ip>:<remote_fold
 er_path> <local_dst_path>

SSH

Note: Step 1 needs to be done manually. Step 2 is specified at the Vagrantfile.

Example: For accessing *node1*, one should run ssh vagrant@192.168.56.101 at the host's terminal (step 3).