Neparametarski pristup

Regresija: parametarski pristup

• Parametarski pristup: $h_{\theta}(x)$ je u potpunosti definisana (konačnim brojem) fiksnih parametara θ

 Videli smo da je izbor obeležja od velike važnosti za dobre preformanse algoritma

ullet Za fiksno ullet postoji granica do koje model može biti fleksibilan

Neparametarski pristup

- Postoje i neparametarski pristupi
 - Izbor obeležja nije kritičan problem
 - Jednostavni su za implementaciju
 - Ovi modeli su ekstremno fleksibilni
 - Sa povećanjem podataka se povećava i kompleksnost modela
 - Jednostavan pristup koji je u praksi zapanjujuće teško pobediti

 Međutim, sve ovo zavisi od toga da li imamo dovoljno podataka da koristimo ovakav pristup

Globalno fitovanje modela

Lokalno fitovanje modela

Regresiona funkcija

Mana procene h(x) = E(Y|X = x)

• Najčešće, za određenu tačku x imamo malo (ili čak 0) opservacija za koje važi X=x

• Posledica je da ne možemo izračunati E(Y|X=x)

• Zato ćemo malo relaksirati definiciju:

$$\hat{h}(x) = Ave(Y|X \in \mathcal{N}(x))$$

gde $\mathcal N$ označava susedstvo (neighborhood) tačke x

Najbliži susedi (lokalno uprosečavanje)

Ovo se zove nearest neighbors ili local averaging

