Two Robots

You have a warehouse with M containers filled with an infinite number of candies. The containers are arranged in a single row, equally spaced to be ${\bf 1}$ meter apart. You also have ${\bf 2}$ robots that can pick up ${\bf 1}$ piece of candy and transport it between any two containers.

The robots take instructions in the form of *queries* consisting of two integers, M_a and M_b , respectively. To execute a query, a robot travels to container M_a , picks up 1 candy, transports it to container M_b , and then stops at M_b until it receives another query.

Calculate the *minimum total distance* the robots must travel to execute N queries *in order*.

Note: You choose which robot executes each query.

Input Format

The first line contains a single integer, T (the number of test cases); each of the T test cases is described over N+1 lines.

The first line of a test case has two space-separated integers, M (the number of containers) and N (the number of queries).

The N subsequent lines each contain two space-separated integers, M_a and M_b , respectively; each line N_i describes the i^{th} query.

Constraints

- $1 \le T \le 50$
- $1 < M \le 1000$
- $1 \le N \le 1000$
- $1 \leq a, b \leq M$
- $M_a \neq M_b$

Output Format

On a new line for each test case, print an integer denoting the *minimum total distance* that the robots must travel to execute the gueries in order.

Sample Input

3			
5 4			
1 5			
3 2			
4 1			
2 4			
4 2			
1 2			
4 3			
10 3			
2 4			
5 4			
9 8			

Sample Output

Explanation

In this explanation, we refer to the two robots as R_1 and R_2 , each container i as M_i , and the total distance traveled for each query j as D_j .

Note: For the first query a robot executes, there is no travel distance. For each subsequent query that robot executes, it must travel from the location where it completed its last query.

Test Case 0:

The minimum distance traveled is 11:

- $egin{aligned} \bullet & ext{Robot: } R_1 \ M_1
 ightarrow M_5 \ D_0 = |1-5| = 4 ext{ meters.} \end{aligned}$
- $egin{aligned} \bullet & \mathsf{Robot:} \ R_2 \ M_3 &
 ightarrow M_2 \ D_1 &= |\ 3-2\ | = 1 \ \mathsf{meter.} \end{aligned}$
- $egin{aligned} \bullet & ext{Robot: } R_1 \ M_5
 ightarrow M_4
 ightarrow M_1 \ D_2 = |5-4|+|4-1| = 1+3=4 ext{ meters.} \end{aligned}$
- $egin{aligned} \bullet & ext{Robot: } R_2 \ M_2
 ightarrow M_2
 ightarrow M_4 \ D_3 = \mid 2-2\mid +\mid 2-4\mid = 0+2=2 ext{ meters.} \end{aligned}$

Sum the distances traveled ($D_0+D_1+D_2+D_3=4+1+4+2=11$) and print the result on a new line.

Test Case 1:

- $egin{aligned} \bullet & ext{Robot: } R_1 \ M_1
 ightarrow M_2 \ D_0 = |1-2| = 1 ext{ meters.} \end{aligned}$
- $egin{aligned} \bullet & ext{Robot: } R_2 \ M_4
 ightarrow M_3 \ D_1 = |4-3| = 1 ext{ meters.} \end{aligned}$

Sum the distances traveled ($D_0+D_1=1+1=2$) and print the result on a new line.

Test Case 2:

- ullet Robot: R_1 $M_2 o M_4$ $D_0 = \mid 2-4 \mid = 2$ meters.
- $egin{aligned} \bullet & ext{Robot: } R_1 \ M_4
 ightarrow M_5
 ightarrow M_4 \ D_1 = |4-5|+|5-4| = 1+1=2 \ ext{meters.} \end{aligned}$ meters.
- $egin{array}{ll} oldsymbol{\circ} & {\sf Robot:} \ R_2 \ M_9
 ightarrow M_8 \end{array}$

$$D_2 = \mid 9-8 \mid = 1$$
 meters.

Sum the distances traveled ($D_0+D_1+D_2=2+2+1=5$) and print the result on a new line.