M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L , -85L, -10L , -12L, -70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification. Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5V208 is 2,097,152-bit CMOS static RAM organized as 262,144-words by 8-bit which is fabricated using high-performance quadruple-polysilicon and double metal CMOS technology. The use of thin film transistor(TFT) load cells and CMOS periphery results in a high density and low power static RAM. The M5M5V208 is designed for memory applications where high reliability, large storage, simple interfacing and battery back-up are important design objectives.

The M5M5V208VP,RV,KV,KR are packaged in a 32-pin thin small outline package which is a high reliability and high density surface mount device(SMD). Two types of devices are available.

VP,KV(normal lead bend type package),RV,KR(reverse lead bend type package). Using both types of devices, it becomes very easy to design a printed circuit board.

FEATURE

	Access	Power sup	ply current
Туре	time (max)	Active (max)	Stand-by (max)
M5M5V208FP,VP,RV,KV,KR-70L	70ns		
M5M5V208FP,VP,RV,KV,KR-85L	85ns		60µA
M5M5V208FP,VP,RV,KV,KR-10L	100ns		(Vcc=3.6V)
M5M5V208FP,VP,RV,KV,KR-12L	120ns	27mA	
M5M5V208FP,VP,RV,KV,KR-70LL	70ns	(Vcc=3.6V)	
M5M5V208FP,VP,RV,KV,KR-85LL	85ns		10µ A
M5M5V208FP,VP,RV,KV,KR-10LL	100ns		(Vcc=3.6V)
M5M5V208FP,VP,RV,KV,KR-12LL	120ns		

- Single 2.7 ~ 3.6V power supply
- Operating temperature of 0 to +70°C
- No clocks, No refresh
- All inputs and outputs are TTL compatible.
- Easy memory expansion and power down by S1 & S2
- Data retention supply voltage=2.0V
- Three-state outputs: OR-tie capability
- OE prevents data contention in the I/O bus
- Common Data I/O
- · Battery backup capability
- Small stand-by current · · · · · · · 0.3µA(typ.)

PACKAGE

M5M5V208FP : 32 pin 525 mil SOP

M5M5V208VP,RV: 32pin 8 X 20 mm2 TSOP M5M5V208KV,KR: 32pin 8 X 13.4 mm2 TSOP

APPLICATION

Small capacity memory units Battery operating system Handheld communication tools

<u>'97.3.21</u> MITSUBISHI LSIs

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L , -85L, -10L , -12L, -70LL, -85LL, -10LL, -12LL

PRELIMINARY

Notice: This is not a final specification. Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M5V208 <u>is</u> determined <u>by a</u> combination of the device control inputs S_1 , S_2 , \overline{W} and \overline{OE} . Each mode is summarized in the function table.

A write cycle is executed whenever the low level W overlaps with the low level \overline{S}_1 and the high level S_2 . The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of \overline{W} , \overline{S}_1 or S_2 , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level,the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting \overline{W} at a high level and OE at a low level while $\overline{S_1}$ and S_2 are in an active state ($\overline{S_1}$ = L , $\overline{S_2}$ = H).

When setting S_1 at a high level or S_2 at a low level, the chips are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by \overline{S}_1 or S_2 . The power supply current is reduced as low as the stand-by current which is specified as lcc3 or lcc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

S ₁	S ₂	\overline{W}	OE	Mode	DQ	Icc		
Х	L	Х	Х	Non selection	High-impedance	Standby		
Н	Х	Х	Х	Non selection	High-impedance	Standby		
L	Н	L	Х	Write	Dın	Active		
L	Н	Н	L	Read	D _{OUT}	Active		
L	Н	Н	Н		High-impedance	Active		

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L, -85L, -10L, -12L, -70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification. Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		- 0.5*~4.6	V
Vı	Input voltage	With respect to GND	- 0.5* ~ Vcc + 0.5 (Max 4.6)	V
Vo	Output voltage		0 ~ Vcc	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr Tstr	Operating temperature		0 ~ 70	°C
Tstr	Storage temperature		− 65 ~150	°C

 $^{^*}$ –3.0V in case of AC (Pulse width $\,$ 30ns)

DC ELECTRICAL CHARACTERISTICS

(Ta=0~70°C, Vcc= 2.7 ~ 3.6V, unless otherwise noted)

	.	Took oon dikinga				Limits			
Symbol	Parameter	Test conditions			Min	Тур	Max	Unit	
VIH	High-level input voltage				2.0		Vcc +0.3V	V	
VIL	Low-level input voltage				-0.3*		0.6	V	
V _{OH1}	High-level output voltage 1	lон= −0.5m.	4		2.4			V	
V _{OH2}	High-level output voltage 2	Іон= −0.05mA			Vcc -0.5V			V	
Vol	Low-level output voltage	IoL=2mA					0.4	V	
h	Input current	Vi=0 ~ Vcc					±1	μA	
lo	Output current in off-state	S ₁ =V _{IH} or S ₂ =V _{IL} or \overline{OE} =V _{IH} V _{I/O} =0 ~ Vcc					±1	μA	
lcc1	Active supply current	\overline{S}_1 0.2V, S_2 Vcc-0.2V, other inputs 0.2V		f= 10MHz		20	25	mA	
	(CMOS-level Input)	or Vcc-0.2V,output-	pen	f= 5MHz		10	13		
lcc2	Active supply current	S1=VIL,S2=VIH,		f= 10MHz		22	27		
1002	(TTL-level Input)	other inputs=V _{IH} or V _{IL} output-open		f= 5MHz		12	15	mA	
		1) S ₂ 0.2V or	-L	-20 ~ +70°C			60		
lcc3	Stand-by current	2) S ₁ Vcc-0.2V,		-20 ~ +70°C			10	•	
Icc3	Stand-by current	S ₂ Vcc-0.2V	-LL	-20 ~ +40°C			1	μA	
		other inputs=0 ~ Vcc		+25°C		0.3	0.6		
Icc4	Stand-by current	S₁=V _{IH} or S₂=V _{IL} ,other	inpu	its=0 ~ Vcc			0.33	mA	

^{* -3.0}V in case of AC (Pulse width 30ns)

CAPACITANCE

(Ta=0 \sim 70°C, Vcc= 2.7 \sim 3.6V, unless otherwise noted)

Cumbal	Parameter	Test conditions		I I a la		
Symbol		rest conditions	Min	Тур	Max	Unit
Cı	Input capacitance	VI=GND, VI=25mVrms, f=1MHz			7	pF
Со	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			9	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

^{2:} Typical value is for Vcc = 3V, Ta = 25°C

'97.3.21 MITSUBISHI LSIs

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L , -85L, -10L , -12L, -70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification. Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS

(Ta =0 \sim 70°C, Vcc= 2.7 \sim 3.6V, unless otherwise noted)

(1) MEASUREMENT CONDITIONS

Vcc ----- 2.7 ~ 3.6V

Input pulse level VIH=2.2V, VIL=0.4V

Input rise and fall time ---- 5ns

Reference level VoH=VoL=1.5V Output loads Fig.1,CL=30pF

CL=5pF (for ten,tdis)

Transition is measured ±500mV from steady

state voltage. (for ten,tdis)

Fig.1 Output load

(2) READ CYCLE

		Limits								
Symbol	Parameter	-70	Ļ,LL	-851	_,LL	-10L	,LL	-12L	,LL	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
t cr	Read cycle time	70		85		100		120		ns
ta(A)	Address access time		70		85		100		120	ns
ta(S ₁)	Chip select 1 access time		70		85		100		120	ns
ta(S ₂)	Chip select 2 access time		70		85		100		120	ns
ta(OE)	Output enable access time		35		45		50		60	ns
tdis(S1)	Output disable time after \$\overline{S}_1\$ high		25		30		35		40	ns
tdis(S ₂)	Output disable time after S ₂ low		25		30		35		40	ns
tdis(OE)	Output disable time after OE high		25		30		35		40	ns
ten(S ₁)	Output enable time after \$\overline{S}_1\$ low	10		10		10		10		ns
ten(S ₂)	Output enable time after S ₂ high	10		10		10		10		ns
ten(OÉ)	Output enable time after OE low	5		5		5		5		ns
t∨(A)	Data valid time after address	10		10		10		10		ns

(3) WRITE CYCLE

		Limits								
Symbol	Parameter	-70	<u>L,LL</u>	-85	L,LL	-10	L,LL	-12	L,LL	Unit
,		Min	Max	Min	Max	Min	Max	Min	Max	
tcw	Write cycle time	70		85		100		120		ns
t _w (W)	Write pulse width	55		60		75		85		ns
tsu(A)	Address setup time	0		0		0		0		ns
tsu(A-WH)	Address setup time with respect to W	65		70		85		100		ns
tsu(S1)	Chip select 1 setup time	65		70		85		100		ns
tsu(S2)	Chip select 2 setup time	65		70		85		100		ns
tsu(D)	Data setup time	30		35		40		45		ns
t _h (D)	Data hold time	0		0		0		0		ns
trec(W)	Write recovery time	0		0		0		0		ns
tdis(W)	Output disable time from W low		25		30		35		40	ns
tdis(OE)	Output disable time from OE high		25		30		35		40	ns
ten(W)	Output enable time from W high	5		5		5		5		ns
ten(OE)	Output enable time from OE low	5		5		5		5		ns

'97.3.21 MITSUBISHI LSIs

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L , -85L, -10L , -12L, -70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification. Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification Some parametric limits are subject to change

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

Write cycle (S1 control mode)

Write cycle (S2 control mode)

- Note 3: Hatching indicates the state is "don't care".
 4: Writing is executed while S2 high overlaps S1 and W low.
 - 5: When the falling edge of W is simultaneously or prior to the falling edge of S1
 - or rising edge of S2, the outputs are maintained in the high impedance state.
 - 6: Don't apply inverted phase signal externally when DQ pin is output mode.

'97.3.21 MITSUBISHI LSIs

M5M5V208FP,VP,RV,KV,KR -70L, -85L, -10L, -12L,

-70L, -85L, -10L, -12L, -70LL, -85LL, -10LL, -12LL

Notice: This is not a final specification. Some parametric limits are subject to change.

2097152-BIT (262144-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS

(Ta = $0 \sim 70^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VCC (PD)	Power down supply voltage		2			V
VI (S1)	Chip select input S ₁		2.0			V
VI (S2)	Chip select input S ₂				0.2	V
		Vcc = 3.0V S ₂ 0.2V or -L			50	
ICC (PD)	Power down supply current	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.3	8 (Note 7)	μA

Note7: ICC (PD) = $0.5\mu A$ (Max.) in case of Ta = $+25^{\circ}C$

(2) TIMING REQUIREMENTS

(Ta = $0 \sim 70^{\circ}$ C, unless otherwise noted)

	_		Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms

(3) POWER DOWN CHARACTERISTICS

S₁ control mode

S₂ control mode

