CCNA Security 2.0 Study Material – Chapter 6: Securing the Local Area Network

itexamanswers.net/ccna-security-2-0-study-material-chapter-6-securing-local-area-network.html

October 7, 2017

Chapter Outline:

- 6.0 Introduction
- **6.1 Endpoint Security**
- 6.2 Layer 2 Security Threats
- 6.3 Summary

Section 6.1: Endpoint Security

Upon completion of this section, you should be able to:

- Describe endpoint security and the enabling technologies.
- Explain how Cisco AMP is used to ensure endpoint security.
- Explain how Cisco NAC authenticates and enforces the network security policy.

Topic 6.1.1: Introducing Endpoint Security

Securing LAN Elements

Traditional Endpoint Security

The Borderless Network

Securing Endpoints in the Borderless Network

Post malware attack questions:

- Where did it come from?
- What was the threat method and point of entry?
- What systems were affected?
- What did the threat do?
- Can I stop the threat and root cause?
- How do we recover from it?
- How do we prevent it from happening again?

Host-Based Protection:

- Antivirus/Antimalware
- SPAM Filtering
- URL Filtering
- Blacklisting
- Data Loss Prevention (DLP)

Modern Endpoint Security Solutions

Hardware and Software Encryption of Local Data

Topic 6.1.2: Antimalware Protection

Advanced Malware Protection

AMP and Managed Threat Defense

Talos teams gather real-time threat intelligence from a variety of sources:

- 1.6 million deployed security devices, including firewall, IPS, web, and email appliances
- 150 million endpoints

They then analyze this data:

- 100 TB of security intelligence daily
- 13 billion web requests per day
- 35% of the world's enterprise email traffic

AMP for Endpoints

- **AMP for Endpoints** AMP for Endpoints integrates with Cisco AMP for Networks to deliver comprehensive protection across extended networks and endpoints.
- **AMP for Networks** Provides a network-based solution and is integrated into dedicated Cisco ASA Firewall and Cisco FirePOWER network security appliances.
- **AMP for Content Security** This is an integrated feature in Cisco Cloud Web Security or Cisco Web and Email Security Appliances to protect against email and webbased advanced malware attacks.

Topic 6.1.3: Email and Web Security

Securing Email and Web

Cisco Email Security Appliance

Features and benefits of Cisco Email Security solutions:

- Global threat intelligence
- Spam blocking
- Advanced malware protection
- Outbound message control

Cisco Web Security Appliance

Client Initiates Web Request

WSA Forwards Request

Reply Sent to WSA and Then To Client

Topic 6.1.4: Controlling Network Access

Cisco Network Admission Control

Cisco NAC Functions

Cisco NAC Components

Network Access for Guests

Three ways to grant sponsor permissions:

- to only those accounts created by the sponsor
- to all accounts
- to no accounts (i.e., they cannot change any permissions)

Cisco NAC Profiler

Section 6.2: Layer 2 Security Considerations

Upon completion of the section, you should be able to:

- Describe Layer 2 vulnerabilities.
- Describe CAM table overflow attacks.
- Configure port security to mitigate CAM table overflow attacks.
- Configure VLAN Truck security to mitigate VLAN hopping attacks.
- Implement DHCP Snooping to mitigate DHCP attacks.
- Implement Dynamic Arp Inspection to mitigate ARP attacks.
- Implement IP Source Guard to mitigate address spoofing attacks.

Topic 6.2.1: Layer 2 Security Threats

Describe Layer 2 Vulnerabilities

Switch Attack Categories

Topic 6.2.2: CAM Table Attacks

Basic Switch Operation

```
S1# show mac-address-table
          Mac Address Table
Vlan
        Mac Address
                             Туре
                                          Ports
                            DYNAMIC
DYNAMIC
                                          Fa0/4
Fa0/1
        0001.9717.22e0
        000a.f38e.74b3
        0090.0c23.ceca
                             DYNAMIC
                                          Fa0/3
        00d0.ba07.8499
                             DYNAMIC
                                          Fa0/2
Sw1#
```

CAM Table Operation Example

CAM Table Attack

Intruder Runs Attack Tool

Fill CAM Table

Switch Floods All Traffic

Attacker Captures Traffic

CAM Table Attack Tools

```
macof -i eth1
36:a1:48:63:81:70 15:26:8d:4d:28:f8 0.0.0.0.26413 > 0.0.0.0.49492: S 1094191437:1094191437(0) win 512
16:e8:8:0:4d:9c da:4d:bc:7c:ef:be 0.0.0.61376 > 0.0.0.0.47523: S 446486755:446486755(0) win 512
18:2a:de:56:38:71 33:af:9b:5:a6:97 0.0.0.20086 > 0.0.0.6728: S 105051945:105051945(0) win 512
e7:5c:97:42:ec:1 83:73:1a:32:20:93 0.0.0.45282 > 0.0.0.0.24898: S 1838062028:1838062028(0) win 512
62:69:d3:1c:79:ef 80:13:35:4:cb:d0 0.0.0.11587 > 0.0.0.0.7723: S 1792413296:1792413296(0) win 512
c5:a:b7:3e:3c:7a 3a:ee:c0:23:4a:fe 0.0.0.0.19784 > 0.0.0.0.57433: S 1018924173:1018924173(0) win 512
88:43:ee:51:c7:68 b4:8d:ec:3e:14:bb 0.0.0.0.283 > 0.0.0.0.11466: S 727776406:727776406(0) win 512
b8:7a:7a:2d:2c:ae c2:fa:2d:7d:e7:bf 0.0.0.0.32650 > 0.0.0.11324: S 605528173:605528173(0) win 512
e0:d8:1e:74:1:e 57:98:b6:5a:fa:de 0.0.0.0.36346 > 0.0.0.0.55700: S 2128143986:2128143986(0) win 512
```

Topic 6.2.3: Mitigating CAM Table Attacks

Countermeasure for CAM Table Attacks

Port Security

Enabling Port Security

```
S1(config) # interface f0/1
S1(config-if) # switchport port-security
Command rejected: FastEthernet0/1 is a dynamic port.
S1(config-if) # switchport mode access
S1(config-if) # switchport port-security
S1(config-if) # end
S1#
```

Verifying Port Security

```
S1# show port-security interface f0/1
 ort Security
Port Status
                        : Secure-shutdown
Violation Mode
                         : Shutdown
Aging Time
                       : 0 mins
Aging Type
                        : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses
Total MAC Addresses
Configured MAC Addresses : 0
Sticky MAC Addresses : 0
Last Source Address:Vlan : 0000.0000.0000:0
Security Violation Count
                         : 0
```

Port Security Options

```
S1(config) # interface f0/1
S1(config-if) # switchport port-security ?
aging Port-security aging commands
mac-address Secure mac address
maximum Max secure addresses
violation Security violation mode
<cr>
S1(config-if) # switchport port-security
```

Enabling Port Security Options

Setting the Maximum Number of Mac Addresses

```
Switch(config-if)

switchport port-security maximum value
```

Manually Configuring Mac Addresses

```
Switch(config-if)

switchport port-security mac-address mac-address {vlan | {access | voice}}}
```

Learning Connected Mac Addresses Dynamically

```
Switch(config-if)
switchport port-security mac-address sticky
```

Port Security Violations

Security Violation Modes:

- Protect
- Restrict
- Shutdown

Security Violation Modes				
Violation Mode	Forwards Traffic	Sends Syslog Message	Increases Violation Counter	Shuts Down Port
Protect	No	No	No	No
Restrict	No	Yes	Yes	No
Shutdown	No	Yes	Yes	Yes

Port Security Aging

Port Security with IP Phones

```
F0/1
PC B
```

```
S1(config) # interface f0/1
S1(config-if) # switchport mode access
S1(config-if) # switchport port-security
S1(config-if) # switchport port-security maximum 3
S1(config-if) # switchport port-security violation shutdown
S1(config-if) # switchport port-security aging time 120
S1(config-if) #
```

SNMP MAC Address Notification

Topic 6.2.4: Mitigating VLAN Attacks

VLAN Hopping Attacks

VLAN Double-Tagging Attack

Step 1 – Double Tagging Attack

Step 2 – Double Tagging Attack

Step 3 – Double Tagging Attack

Mitigating VLAN Hopping Attacks

PVLAN Edge Feature

Verifying Protected Ports

Switch# show interfaces gigabitethernet1/0/1 switchport Name: G1/0/1 Switchport: Enabled Administrative Mode: dynamic auto Operational Mode: static access Administrative Trunking Encapsulation: negotiate Operational Trunking Encapsulation: native Negotiation of Trunking: On Access Mode VLAN: 1 (default) Trunking Native Mode VLAN: 1 (default) Voice VLAN: none <output omitted > Operational private-vlan: none Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Unknown unicast blocked: disabled Unknown multicast blocked: disabled Voice VLAN: none (Inactive) Appliance trust: none

Private VLANs

Topic 6.2.5: Mitigating DHCP Attacks

DHCP Spoofing Attack

DHCP Starvation Attack

Attacker Initiates a Starvation Attack

DHCP Server Offers Parameters

Client Requests all Offers

DHCP Server Acknowledges All Requests

Mitigating VLAN Attacks

The switch will deny packets containing specific information:

- Unauthorized DHCP server messages from an untrusted port
- Unauthorized DHCP client messages not adhering to the snooping binding table or rate limits
- DHCP relay-agent packets that include option-82 information on an untrusted port

Configuring DHCP Snooping

Configuring DHCP Snooping Example

DHCP Snooping Reference Topology

Configuring a Maximum Number of MAC Addresses

```
S1(config)# ip dhcp snooping
S1(config)#
S1(config)# interface f0/1
S1(config-if)# ip dhcp snooping trust
S1(config-if)# exit
S1(config)#
S1(config)# interface range f0/5 - 24
S1(config-if-range)# ip dhcp snooping limit rate 6
S1(config-if-range)# exit
S1(config)#
S1(config)#
S1(config)# ip dhcp snooping vlan 5,10,50-52
S1(config)#
```

Verifying DHCP Snooping

```
S1# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
5,10,50-52
DHCP snooping is operational on following VLANs:
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is enabled
   circuit-id default format: vlan-mod-port
   remote-id: 0cd9.96d2.3f80 (MAC)
Option 82 on untrusted port is not allowed
Verification of hwaddr field is enabled
Verification of giaddr field is enabled
DHCP snooping trust/rate is configured on the following Interfaces:
Interface
                           Trusted
                                      Allow option
                                                      Rate limit (pps)
                                                      unlimited
FastEthernet0/1
                           yes
                                      yes
 Custom circuit-ids:
FastEthernet0/5
                           no
                                      no
 Custom circuit-ids:
FastEthernet0/6
                           no
                                      no
  Custom circuit-ids:
<output omitted>
```

Configuring a Maximum Number of MAC Addresses

S1# show ip dhcp snooping binding					
MacAddress	IpAddress	Lease (sec)	Туре	VLAN	Interface
00:03:47:B5:9F:AD	192.168.10.10	193185	dhcp-snooping	5	FastEthernet0/5

Topic 6.2.6: Mitigating ARP Attacks

ARP Spoofing and ARP Poisoning Attack

Mitigating ARP Attacks

Dynamic ARP Inspection:

Configuring Dynamic ARP Inspection

Configuring DHCP Snooping Example

ARP Reference Topology

Configuring Dynamic ARP Inspection

```
S1(config) # ip dhcp snooping
S1(config) #
S1(config) # ip dhcp snooping vlan 10
S1(config) # ip arp inspection vlan 10
S1(config) #
S1(config) #
S1(config) # interface fa0/24
S1(config-if) # ip dhcp snooping trust
S1(config-if) # ip arp inspection trust
S1(config-if) #
```

Checking Source, Destination, and IP

```
S1(config) # ip arp inspection validate ?
  dst-mac Validate destination MAC address
           Validate IP addresses
  src-mac Validate source MAC address
S1(config) # ip arp inspection validate src-mac
S1(config) # ip arp inspection validate dst-mac
S1(config) # ip arp inspection validate ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate ip
S1(config)#
S1(config) # ip arp inspection validate src-mac dst-mac ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate src-mac dst-mac ip
S1(config)#
```

Topic 6.2.7: Mitigating Address Spoofing Attacks

Address Spoofing Attack

Mitigating Address Spoofing Attacks

For each untrusted port, there are two possible levels of IP traffic security filtering:

- Source IP address filter
- Source IP and MAC address filter

Configuring IP Source Guard

IP Source Guard Reference Topology

Configuring IP Source Guard

```
S1(config)# interface range fastethernet 0/1 - 2
S1(config-if-range)# ip verify source
S1(config-if-range)# end
S1#
```

Checking IP Source Guard

S1# show ip verify source					
Interface	Filter-type	Filter-mode	IP-address	Mac-address	Vlan
F0/1 F0/2 S1#	ip ip	active active	192.168.10.10 192.168.10.11		10 10

Topic 6.2.8: Spanning Tree Protocol

Introduction to the Spanning Tree Protocol

STP Port Roles

STP Root Bridge

STP Path Cost

802.1D BPDU Frame Format

Field Number	Bytes	Field
1-4	2	Protocol ID
	1	Version
	1	Message type
	1	Flags
5-8	8	Root ID
	4	Cost of path
	8	Bridge ID
	2	Port ID
9-12	2	Message age
	2	Max age
	2	Hello time
	2	Forward delay

BPDU Propagation and Process

Extended System ID

Select the Root Bridge

Topic 6.2.9: Mitigating STP Attacks

STP Manipulation Attacks

Spoofing the Root Bridge

Successful STP Manipulation Attack

Mitigating STP Attacks

Configuring PortFast

Configuring BDPU Guard

Configuring Root Guard

Configuring Loop Guard

Section 6.3: Summary

Chapter Objectives:

- Explain endpoint security.
- Describe various types of endpoint security applications.
- Describe Layer 2 vulnerabilities.

Download Slide PowerPoint (pptx):

[sociallocker id="54558"]

CCNASv2_InstructorPPT_CH6 5.70 MB 2085 downloads

•••

Download

[/sociallocker]