A Book of Abstract Algebra (2nd Edition)

Bookmark

Show all steps: ON

Problem

Prove that each of the following is true in a nontrivial ring.

If $a \neq \pm 1$ and $a^2 = 1$, then a + 1 and a - 1 are divisors of zero.

Step-by-step solution

Step 1 of 3

Consider an arbitrary nontrivial ring R. Suppose that $a \in R$ along with the certain conditions:

$$a \neq \pm 1$$
 and $a^2 = 1$.

Objective is to show that a+1 and a-1 both are divisors of zero.

A nonzero element $x \in R$ is said to be a divisors of zero if there exists a nonzero $y \in R$ such that the product

$$xy = 0$$

where zero stands for the zero element of the ring.

Comment

Step 2 of 3

The condition $a^2 = 1$ implies that

$$a^{2}-1=0$$

 $(a-1)(a+1)=0$.

Note that neither a-1=0 nor a+1=0 because if so then $a=\pm 1$, a contradiction of the hypothesis that $a \neq \pm 1$.

So, from the condition (a-1)(a+1)=0, it conclude that 0 is the product of 2 nonzero elements. This fulfils the definition of divisors of zero.

	Step 3 o	3	
Hence, both $a+1$ and	a-1 are divisors of zero.		
Comment			