I worked alone without getting any help, except asking questions on Piazza and reading the Notes of this course.

1 Polynomial Practice

(a)

(i) At least: **0**. At most: $\max(\deg(f), \deg(g))$

Since we can't guarantee that the resulting polynomial f + g always has a real root, so the least number of roots is 0.

WLOG, let $\deg(f) \leq \deg(g)$. Consider f+g, since it is non-zero, so it is a polynomial whose degree is at most $\deg(g)$, and since a polynomial with degree d has at most d roots, so f+g has at most $\deg(g)$ roots. Vice versa for the case of $\deg(f) > \deg(g)$, which gives us that the polynomial f+g has at most $\max(\deg(f), \deg(g))$ roots.

(ii) At least: **0**. At most: deg(f) + deg(g)

Consider $f = g = x^2 + 1$, so f, g have no roots, so $f \cdot g$ also have no roots, which implies that $f \cdot g$ is not guaranteed to have any roots, so the least number of roots is 0.

Let $a = \deg(f)$ and $b = \deg(g)$. Since $x^a \cdot x^b = x^{a+b}$, so the degree of the polynomial $f \cdot g$ is a+b, which is $\deg(f) + \deg(g)$. Again, using the property of polynomials, so $f \cdot g$ has at most $\deg(f) + \deg(g)$ roots.

(iii) At least: **0**. At most: deg(f) - deg(g)

Again, we can't guarantee that f/g always has a root. For example, let $f = x^2 + 1$ and g = 1, so $f/g = x^2 + 1$ does not have a root. So, the least number of roots is 0.

Let $a = \deg(f)$ and $b = \deg(g)$. Since $\frac{x^a}{x^b} = x^{a-b}$ and that we are given that f/g is a polynomial, so the degree of the polynomial f/g is a-b, which is $\deg(f) - \deg(g)$. Again, using the property of polynomials, so f/g has at most $\deg(f) - \deg(g)$ roots.

(b)

(i) No, it isn't.

We proceed by providing a counterexample. Consider p=2, f(x)=x, g(x)=x+1. For all $x\in GF(p)$, namely, $x_1=0$ or $x_2=1$, we have that when $x_1=0$, $f\cdot g(x)=0\cdot 1=0$; when $x_2=1$, $f\cdot g(x)=1\cdot 2\equiv 0\pmod 2$, which gives us that $f\cdot g=0$.

Yet, when x=1, $f(x)=1\neq 0$; when x=0, $g(x)=1\neq 0$, which implies that $f\neq 0$ and $g\neq 0$. Thus, this is a counterexample, so if f,g are polynomials over GF(p) and $f\cdot g=0$, it isn't necessarily true that either f=0 or g=0.

(ii) Direct Proof.

Proof. We proceed by a direct proof. Suppose f be a polynomial over GF(p), and that $\deg(f) \geq p$. Now, let $f(i) = y_i \ \forall i \in \{0, 1, ..., p-1\}$, which means that we have p pairs $(0, y_0), (1, y_1), ..., (p-1, y_{p-1})$ with all the x_i distinct. Thus, by Property 2 of polynomials, so there is a unique polynomial h(x) of degree (at most) p-1, which means that h is a polynomial with $\deg(h) \leq p-1 < p$ such that f(x) = h(x) for all $x \in \{0, 1, ..., p-1\}$, as desired. Thus, such a polynomial h exists. Q.E.D.

(iii) p^d

For a polynomial f with degree d < p, so $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0$, where

$$a_i \in \{0, 1, ..., p-1\} \ \forall \ i \in \mathbb{N}, i \le d.$$

Then, the only constraint on f is that $f(0) = a_0 = a$ where $a \in \{0, 1, ..., p-1\}$. So only one coefficient, a_0 , of f is set, which means that $\forall 1 \le i \le d, i \in \mathbb{N}$, we have that a_i could be any value in the set $\{0, 1, ..., p-1\}$. Thus, there are p possible values for each coefficient a_i of f, and there are d-many coefficients we could assign values arbitrarily (as long as they are in $\{0, 1, ..., p-1\}$), which implies that there are p^d -many such polynomials f.

(c) $f = 4x^2 + 1$. There are **25** such polynomial.

 $Part\ (1)\ Finding\ one\ such\ polynomial\ f$

We first use Lagrange interpolation to find one such f. So, we have that $8^{-1} \equiv 2 \pmod{5}$ with $8 \cdot 2 = 16 = 5 \cdot 3 + 1$, and similarly, $(-4)^{-1} \equiv 1 \pmod{5}$ with $-4 \cdot 1 = -4 = 5 \cdot (-1) + 1$.

Thus, using Lagrange interpolation, we have:

$$\Delta_1(x) = \frac{(x-2)(x-4)}{(0-2)(0-4)} = \frac{x^2 - 6x + 8}{8} = 2(x^2 - 6x + 8) = 2x^2 - 12x + 16$$

$$\Delta_2(x) = \frac{(x-0)(x-4)}{(2-0)(2-4)} = \frac{x^2 - 4x}{-4} = 1(x^2 - 4x) = x^2 - 4x$$

$$\Delta_3(x) = \frac{(x-0)(x-2)}{(4-0)(4-2)} = \frac{x^2 - 2x}{8} = 2(x^2 - 2x) = 2x^2 - 4x$$

Thus, the polynomial f(x) is therefore given by:

$$f(x) = 1 \cdot \Delta_1(x) + 2 \cdot \Delta_2(x) + 0 \cdot \Delta_3(x) = 1(2x^2 - 12x + 16) + 2(x^2 - 4x) + 0(2x^2 - 4x) = (2+2)x^2 + (-12-8)x + 16 = 4x^2 - 20x + 16$$

Since f is a polynomial over GF(5), and that we have $-20 = 5 \cdot (-4) + 0$, $16 = 5 \cdot 3 + 1$, which gives us that $-20 \equiv 0 \pmod{5}$, $16 \equiv 1 \pmod{5}$, so we have that $f(x) = 4x^2 + 1$.

Part (2) Showing that there are 25 such polynomials

Since we define f over GF(5), so the value of x is also confined within $\{0,1,2,3,4\}$. Now, since f(0)=1, f(2)=2, f(4)=0, so we only have x=1, x=3 that we can arbitrarily assign values to, with f(x) still confined within $\{0,1,2,3,4\}$. So, we have $5\cdot 5=25$ different combinations of value assignments to $f(x), 0 \le x \le 4$. Then, by the property of polynomials, we can construct a unique polynomial based on each of these assignments, which means that there are 25 different such polynomials.