Lab Content Course: CSE3112 (Computer Architecture and Organization Lab)

• Experiment 1

• Experiment 1	
Title	Synchronous Data Transfer
Outline	To design and implement a digital circuit to transfer data
	serially
	At the sender end the parallel data is converted to serial
	data to transfer the data to receiver using a single data
	line.
	At the receiver end the serial data will be reconstructed
	to its parallel form.
	Both sender and receiver circuits should be synchronized
	using a single clock.
Apparatus	• 4-bit Binary Counter, 74LS161
Tipparatas	
	• 8-input Multiplexer, 74LS151
	• 8-bit Serial-in Parallel-out Shift Register, 74LS164
	• Octal D-type Flip-Flop, 74LS374
	• Hex Inverter, 74LS04
	Digital IC Trainer
Circuit Diagram	2.8
2 / 4	1
	1
CLK A III P O DAD	
JUL 2 CLK	13
O T T END	7 6 12 11 614
6 D3 Q3 11 12	9 CLK OE
4 D2 Q1 13	10 B 17 Q7 19 D0
D0 Q0 14 74LS161	12 A D6 Q6 15 D7
D7 D 74LS161	13 X7
D5 D4 D	14 X5 5 7 D2 Q2 6 5 D5 D6 X4
D3 D2 D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D1 D	3 X1
	74S151
1 2	8 C1/->
	9 N R SRG8
	74LS164
	÷
Task	Design of the digital circuit
	Implementation of the design Tasting of the givenity
	• Testing of the circuit
	Report writing
	 Name of the experiment
	o Objective
	o Apparatus
	Design of the circuit
	9
	Detail design methodology Truth table (if we revised)
	• Truth table (if required)
	o Circuit Diagram
	 Experimental data
	 Result and discussion
	o Precautions
Mode of Evaluation	Experiment, Viva and Report
Percentage of Weight	
L PARCANTAGA OF WALGET	16%

Task	Design of the digital circuit	
	Implementation of the design	
	Testing the circuit	
	Report writing	
	Name of the experiment	
	o Objective	
	o Apparatus	
	 Design of the circuit 	
	 Detail design methodology 	
	Truth table (if required)	
	o Circuit Diagram	
	 Experimental data 	
	 Result and discussion 	
	 Precautions 	
Mode of Evaluation	Experiment, Viva and Report	
Percentage of Weight	15%	

• Experiment 3	
Title	Frequency counter
Outline	 To design and implement a frequency counter. The input frequency will be divided by a constant divisor N (N=1, 2,, 15) before feeding it to desired frequency counter. The output of the frequency counter should be show on a 7-segment display Design a circuit for dividing the input frequency by a constant divisor N, where N is integer and variable. N should be easily changeable. Design a circuit to count frequency and show the output on a 7-segment display.
Task	 Design of the digital circuit Implementation of the design Testing the circuit Report writing Name of the experiment Objective Apparatus Design of the circuit Detail design methodology Truth table (if required) Circuit Diagram Experimental data Result and discussion Precautions

• Experiment 4

• Experiment 4	
Title	Analog to Digital Convertion
Outline	 To design and implement a circuit to convert analog signal (potential difference) into digital data by using an Analog to Digital Converter than store the data in a latch and display the converted digital data using LED Design a circuit with controls to initialize the conversion process. Decode port if multiple input analog input lines available on ADC IC and required to digitize multiple analog input signals. Design circuit to store digital signal in a letch automatically. (Required to synchronized with ADC IC) 8-bit µP Compatible A/D Converter ADC0809
	 Octal D-type Letch, 74LS373 Digital IC Trainer
Circuit Diagram	2-8-00110 1101101
Single Pulse 6 7 9 10 11 12 16	INO ADD A IN1 ADD B 24 IN2 ADD C IN3 ALE IN4 IN5 104 IN5 2-1MSB 21 IN6 2-2 20 17 IN7 2-3 IN8 IN7 2-4 8 8 8 8 START 2-5 EOC 2-6 COUTPUT ENABLE CLOCK 2-8LSB VCC GND VREF(+) VREF(-) DC0809
Task	 Design of the digital circuit Implementation of the design Testing the circuit Report writing Name of the experiment Objective Apparatus Design of the circuit Detail design methodology Truth table (if required) Circuit Diagram Experimental data Result and discussion Precautions
Mode of Evaluation	Experiment, Viva and Report
Percentage of Weight	14%
I CICCILLAGE OF WEIGHT	IT/U

• Experiment 5								
Title	Arithmetic	circuit	contro	l desig	gn			
Outline	• To design and implement arithmetic circuits with variable $S_0 \& S_1$ and operand A (4 bits), B (4 bits) generates the following operations:							
			S ₁	$C_{in}=0$)	C _{in} =		
		0		=A+B		F=A+B		
		0		=A		F=A+1		
		1		=B'		F=B'+1		
		1	1 F:	=A+B'		F=A+B	i'+1	
	Construct equationsImplemer equations	for the ot the c	e arith ircuit f	metic of acc	circui ordin	t.		
Apparatus	• 4-bit Bina	-						
	• Quad 2-in	-	_					
	• Quad 2-in	-	_	74LS3	2			
	• Hex Inver			OB		41.001		
	• Quad 2-in			e-OR ga	ate, 7	4LS86		
Truth Table	Digital IC	raine	r Inp	nut		O114	put	
Truur rabic		S ₀	S ₁	λι A _i	Bi	Xi	Y _i	
		0	0	0	0	0	0	
		0	0	0	1	0	1	
		0	0	1	0	1	0	
		0	0	1	1	1	1	
		0	1 1	0	0	0	0	
		0	1	1	0	1	0	
		0	1	1	1	1	0	
		1	0	0	0	0	1	
		1	0	0	1	0	0	
		1	0	1	0	0	1	
		1	<u>0</u> 1	0	0	0	0	
		1	1	0	1	0	0	
		1	1	1	0	1	1	
		1	1	1	1	1	0	
V Man	X _i :		S ₀ 'S ₁ '	S ₀ '	C.	S ₀ S ₁	S ₀ S ₁ '	
К-Мар		A _i 'B _i '	0	0		0	0	1
		A _i 'B _i	0	0		0	0	-
		A_iB_i	1	1		1	0	
	1	A _i B _i '	1	1		1	0	
				$X_i = (S_0$	'+ S ₁)A	$\mathbf{A}_{\mathbf{i}}$		
	Y _i :		S ₀ 'S ₁ '	S_0	S_1	S_0S_1	S_0S_1	
		A _i 'B _i '	0	0		1	1]
	1	A _i 'B _i	1	1		0	0]
		A _i B _i	1	1		0	0	_
	4	A _i B _i '	0	(C) (1	1]
			Y i =	$= (S_0 + S_0)$	51 J(B _i	⊕ 20]		

• Experiment 6	
Title	Arithmetic circuit control design
Outline	• To design and implement arithmetic circuits with selection variable S ₀ & S ₁ and operand A (4 bits), B (4 bits) & C _{in} that generates the following operations:
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	1 0 F=B-A-1 F=B-A 1 1 F=A+B F=A+B+1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	 Construct truth table and K-Map to generate Boolean equations for the arithmetic circuit. Implement the circuit for according to the Boolean equations.
Apparatus	• 4-bit Binary Full Adder, 74LS283
	• Quad 2-input AND gate, 74LS08
	• Quad 2-input OR gate, 74LS32
	• Hex Inverter, 74LS04
	• Quad 2-input Exclusive-OR gate, 74LS86
	Digital IC Trainer
Truth Table	Input Output
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 0 1 1 1 0
	0 1 0 0 0 1
	0 1 0 1 0 0
	0 1 1 0 1 1
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1 1 0 0 0 0
	1 1 0 1 0 1
	1 1 1 0 1 0
К-Мар	X _i : S ₀ 'S ₁ ' S ₀ 'S ₁ S ₀ S ₁ S ₀ S ₁ '
F	$A_i'B_i'$ 0 0 0 1
	$A_i' B_i$ 0 0 1
	A_iB_i 1 1 0
	$A_{i}B_{i}' \qquad \boxed{1 \qquad \boxed{1 \qquad \boxed{1 \qquad \boxed{0}}}$ $X_{i} = S_{0}S_{1}' \bigoplus A_{i}$
	$A_i - 3031 \bigoplus A_i$
	Y_i : $S_0'S_1'$ $S_0'S_1$ S_0S_1 S_0S_1'
	$A_i'B_i'$ 0 1 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$A_{i}B_{i}$ 0 0 1 1 1 $A_{i}B_{i}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$A_iB_i' \qquad 0 \qquad 1 \qquad 0 \qquad 0$ $Y_i = (S_0 + S_1)(S_0'S_1 \oplus B_i)$
	1; - (30 + 31)(30 31 Di)

• Experiment 7

• Experiment 7			
Title	ALU design		
Outline	 To design and implement a BCD Adder circuit. A BCD Adder is a digital combinational circuit that is used for the addition of two numbers in BCD arithmetic's. Generate Boolean equations for the circuit. Implement the circuit for according to the Boolean 		
Apparatus	 equations. 4-bit Binary Full Adder, 74LS283 Quad 2-input AND gate, 74LS08 Quad 2-input OR gate, 74LS32 Digital IC Trainer 		
Circuit Diagram	▼ Digital IC Hallici		
Circuit Diagram			
Task	 Design of the digital circuit Implementation of the design Testing the circuit Report writing Name of the experiment Objective Apparatus Design of the circuit Detail design methodology Truth table (if required) Circuit Diagram Experimental data Result and discussion Precautions 		
Mode of Evaluation	Experiment, Viva and Report		
Percentage of Weight	10%		
To the state of the spire	1 / 0		