HMIN318M

Imagerie (médicale) 3D

Recalage (1/2)

Noura Faraj noura.faraj@umontpellier.fr

Source Gérard Subsol

Recalage

- Intérêt et nécessité du recalage
- Imagerie multi-modale dans différents domaines
- Informations complémentaires
- Prétraitement pour la fusion
- Plus d'information et meilleures décisions

Modalités en imagerie médicale

Mono-modale

- Une série d'images avec la même modalité d'acquisition (CT/CT/ IRM/IRM...)
- Acquisitions à des moments différents (mois, années) et/ou différents points de vue
- Alignement des images pour détecter les changements subtiles en intensité ou forme

Exemple: recalage rigide monomodal d'images 3D

- Opération d'un torticolis
- Scanner X préopératoire 8 ans
- Scanner X postopératoire 9 ans

Comment aligner au mieux les informations des 2 images pour voir les différences ?

Logiciel MedINRIA http://med.inria.fr (module Registration / Linear BM algorithm)

Modalités en imagerie médicale

Multi-modale

- Informations anatomiques et fonctionnelles complémentaires pour améliorer le diagnostic
- Exemple : PET et PSECT (informations fonctionnelles base résolution) nécessite un IRM ou CT (information anatomique haute-résolution) pour avoir une information structurelle

Fusion d'information : recalage et combinaison en une seule représentation (PET/CT)

Modalités en imagerie médicale

- CT, IRM, PET et Ultrasons
- →images 3D volumineuses
- Inter-modalité: combinaison de modalités
- →informations supplémentaires
- Intra-modalité: images répétées dans le temps avec la même modalité

→ Les images doivent être recalées spatialement

Before Registration

Two brain MRI images of the same patient (3 orthogonal views).

One of the images is taken prior to the operation, in order to plan it; the second while the patient is having the operation: the 6 white dots are the stereotactic frame screwed into the patient's skull.

In this case, a rigid transform suffices

After Registration

This shows the situation after the pre-op and inter-op images have been aligned.

Typically, a rigid registration algorithm applied to brain images will be accurate to 1/10 of a voxel and 0.1 degrees of rotation

Example: rigid CT/MR registration

Exemple 2 : recalage rigide multimodal d'images 3D

- Traumatisme crânien suite à un accident de voiture
- Scanner X pour observer les structures osseuses
- IRM pour observer les tissus mous cérébraux

Comment fusionner les informations des 2 modalités pour établir un diagnostic (le signal d'un même tissu est différent en scan et en IRM) ou repérer une voie opératoire ?

- Logiciel 3D Slicer: http://www.slicer.org/ (module Rigid Registration)
- Logiciel MedINRIA http://med.inria.fr/ (module Registration / optimus algorithm)

Applications

Diagnostic

Combinaison d'informations de plusieurs modalités

Etude de la progression d'une pathologie

• Surveiller les changements dans le temps en taille, forme, position ou intensité dans l'image

• Chirurgies guidées par l'image ou radiothérapie

 Représenter les images et le plan pré-opératoire dans le repère physique du patient

Comparaison de patient ou construction d'un atlas

Relation entre l'anatomie d'un individu à une base standardisée

Qu'est ce que le recalage d'images ?

= registration

Le recalage est

- Transformation spatiale établissant la correspondance entre les points d'une images vers les points d'une autre image
 - Faire en sorte que les points correspondant aux même région physiques de l'objet acquis soient au même endroit

Le recalage est

- Transformation spatiale établissant la correspondance entre les points d'une images vers les points d'une autre image
 - Rigide
 - Rotations et translations
 - Affine
 - Oblique et mise à l'échelle
 - Déformable
 - Transformation de forme libre (Free-form)

Le recalage est

Mise en correspondance spatiale

Formulation générale

$$\min_{\mathbf{t}\in T} f(I_1, t(I_2))$$

- I_1 et I_2 images à recaler (ou informations extraites de ces images)
- *t* : transformation
- T: ensemble des transformations possibles / admissibles
- f : critère de dissimilarité (min) ou de similarité (max)

Processus de recalage

Processus de recalage

- Nature de la transformation (t et son domaine de définition T)
- primitives utilisées (sur quoi portent t et f)
- Critère de similarité f
- Méthode d'optimisation

Difficultés liées

- à la complexité des problèmes
 à la discrétisation des images
- à l'évaluation de la qualité du recalage

Note

- non indépendants entre eux
- non indépendants du type d'images, des modalités, et du problème de recalage posé

Classification des méthodes

- Dimensionalité
 - 2D-2D, 3D-3D, 2D-3D
- Nature de la base du recalage
 - Basé sur l'image
 - Extrinsèque, intrinsèque
 - Non-basé sur l'image
- Nature de la transformation
 - Rigide, Affine, Projective, Libre
- Interaction
 - Interactive, semi-automatique, Automatique
- Modalités impliquées
 - Mono-modale, multi-modale, modalité à un modèle

- Sujet
 - Intrasujet, intersujet, atlas
- Domaine de la transformation
 - Local, global
- Procédure d'optimisation

Modèles de déformation

Méthode utilisée pour trouvé la transformation

Rigide et affine

- Ancres
- Arêtes
- Intensité de de voxel
- Théorie de l'information
- Non-rigide
 - Fonctions de base
 - Splines
 - Physique (flux optique, élasticité...)

Transformations admissibles

Rigide : uniquement translation et rotation

$$X^{\mathsf{t}} = RX + T$$

Affine : transforme des lignes parallèles en lignes parallèles

$$X^{\mathsf{t}} = SRX + T$$

- Projective : met en correspondance des lignes non parallèles
- Déformable : transforme des lignes droites en courbes
 - transformations polynomiales
 - fonctions de base (combinaison) : polynômes, splines...
 - déformations de forme libre
 - déformations élastiques

$$\mu \nabla^2 u(x, y, z) + (\lambda + \mu) \nabla (\nabla u^{\cdot}(x, y, z)) + f(x, y, z) = 0$$

u(x, y, z) : champ de déformation, f : forces externes, λ et μ : constantes d'élasticité

transformations fluides (u est remplacé par le champ de vélocité)

Modèle global / local

modèle global

modèle par morceaux (régional)

modèle local

Rééchantillonnage

Transformation directe:

Rééchantillonnage

Transformation inverse (mieux):

Interpolation

- Plus proche voisin
- Linéaire

$$f(x,y)[(1-\Delta x)(1-\Delta y)] + f(x+1,y)[\Delta x(1-\Delta y)] +$$

$$f(x,y+1)[(1-\Delta x)\Delta y] + f(x+1,y+1)[\Delta x\Delta y]$$

Ordre supérieur

Recalage = problème d'alignement

Pixel location in first image

Homologous pixel location in second image

Pixel location mapping function

Recalage = problème d'alignement

$$\mathbf{p} = (x, y)^T$$

$$\mathbf{\Theta} = (s, t_x, t_y)^T$$

$$\mathbf{T}(\mathbf{p}; \mathbf{\Theta}) = \begin{pmatrix} sx + t_x \\ sy + t_y \end{pmatrix}$$

Pixel scaling and translation

Ancres

- Identifier des points correspondants dans les 2 images et en déduire la transformation
- Types d'ancres
 - Extrinsèques
 - Objets artificiels attachés au patient
 - Marqueurs
 - Calibration des systèmes d'acquisition
 - Intrinsèques
 - Extraites de l'image (Structures anatomiques internes)
 - Intensités des voxels
- Calcul de la moyenne des « centroïdes » de chaque groupe de points
 Translation
- Tourner ce nouvel ensemble de point jusqu'à ce que la somme des distances au carré entre chaque paire de point soit minimisée

Fonction de similarité/dissimilarité

Choix : modalités, influence sur le critère de similarité

- recherche du point le plus proche
- minimisation de la distance entre points de repère
- maximisation de l'aire d'intersection de surfaces alignement des axes d'inertie
- corrélation entre les deux images (spatial / Fourier)
- fonction de similarité quadratique
- minimisation de la variance des rapports d'intensité

•

Fonction de similarité/dissimilarité

- minimisation de la variance dans des partitions de l'image de référence projetées sur l'image à recaler
- maximisation de l'information mutuelle de l'histogramme conjoint
- minimisation de la dispersion de l'histogramme conjoint comptage des changements de signe
- minimisation de la médiane du carré des erreurs
- minimisation de mesures fondées sur la matrice de cooccurrence utilisation de la transformée de distances
- critères bayésiens

•

Similarité entre points en correspondance

Hypothèses:

- même nombre de points n
- correspondance entre x_i et y_i connue
- dimension quelconque
- pas de points aberrants (robuste au bruit gaussien)

Définition du critère :

$$E = \sum_{i=1}^{n} ||x_i - (r(y_i) + t)||^2$$

Translation optimale : mise en correspondance des centres d'inertie des deux ensembles de points

Rotation optimale : formule directe en 2D, méthode des quaternions en 3D

Basé sur des surfaces

- Méthode :
 - Extraction de surfaces correspondantes
 - Calculer la transformation en minimisant une mesure de distance entre les surfaces
- Algorithmes utilisés :
 - Le « Head and Hat »
 - L'Iterative Closest Point
 - Les lignes de crête

ICP

Similarités entre intensité

(recalage mono-modal)

Quadratique:

$$E(\Theta) = \sum_{x} \left[I_{ref}(x) - I_{rec}(T_{\Theta}(x)) \right]^{2}$$

Quadratique avec normalisation d'intentité :

$$E(\Theta) = \sum_{x} \left[\frac{\bar{I}_{rec}}{\bar{I}_{ref}} I_{ref}(x) - I_{rec}(T_{\Theta}(x)) \right]^{2}$$

Corrélation:

$$R(\Theta) = \frac{\sum_x [I_{ref}(x) - \bar{I}_{ref}][I_{rec}(T_{\Theta}(x)) - \bar{I}_{rec}]}{\sqrt{\sum_x [I_{ref}(x) - \bar{I}_{ref}]^2 \sum_x [I_{rec}(T_{\Theta}(x)) - \bar{I}_{rec}]^2}}$$

(maximum de corrélation pour la bonne transformation)

Similarité robuste :

$$E(\Theta) = \sum_{x} \rho [I_{ref}(x) - I_{rec}(T_{\Theta}(x))]$$

 ρ = M-estimateur

Similarités entre intensités

(recalage multi-modal)

Uniformité inter-images : partition de l'image de référence en régions homogènes et projection (spatiale) sur l'image à recaler, puis minimisation de :

$$E(\Theta) = \sum_{regions\ g} \frac{N_g}{N} \frac{\sigma_g(T_{\Theta}(x))}{\mu_g(T_{\Theta}(x))}$$

$$\sigma_g(T_{\Theta}(x)) = \sqrt{\sum_{x, I_{ref}(x) = g} [I_{rec}(T_{\Theta}(x)) - \mu_g(T_{\Theta}(x))]^2}$$

$$\mu_g(T_{\Theta}(x)) = \frac{1}{N_g} \sum_{x, I_{ref}(x) = g} I_{rec}(T_{\Theta}(x))$$

Exploitation de l'histogramme conjoint : maximisation de l'information mutuelle

$$E(\Theta) = -\sum_{g} \sum_{k} p(g, k) \log \frac{p(g, k)}{p(g)p(k)}$$

Similarité robuste :

$$E(\Theta) = \sum_{regionsg} \frac{N_g}{N} \tilde{\sigma}_g(T_{\Theta}(x))$$

Basés sur l'intensité

- Méthodes
 - Calculer la transformation en optimisant une mesure sur les voxels
- Algorithmes utilisés
 - Recalage en minimisant la différence d'intensité
 - Technique de la corrélation
 - Uniformité du ration de l'image
 - Uniformité de l'intensité partitionnée

Image 1

Images de différence

Basés sur l'intensité

- Comparer les patterns d'intensité dans l'image à l'aide d'une mesure de corrélation
- Somme des différences au carré
- Corrélation croisée normalisée
- Information mutuelle

Basé sur les caractéristiques

- Trouver les correspondances entre les caractéristiques de l'image (points, lines et contours)
- Distance entre les points correspondants
- Métrique de similarité
 - E.g. recalage basé sur la courbure

Théorie de l'information

- Recalage doit maximiser la quantité d'information partagée dans les 2 images
 - Réduire la quantité d'information dans l'image combinée
- Algorithmes utilisés
 - Entropie conjointe
 - Mesure la quantité d'information des images combinées
 - Information mutuelle
 - Mesure déterminant à quelle point une image explique l'autre → maximum pour l'alignement optimal
 - Information mutuelle normalisée

Not registered

Registered

Information mutuelle

$$MI(I,J|T) = \sum_{i,j} p_{i,j} \log \frac{p_{i,j}}{p_i p_j}$$

- L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste.
 - MI ≥ 0

→ Maximisation du critère = images corrélées au mieux (= alignées).

Information mutuelle

Relation de dépendance statistique : Information mutuelle

$$IM(\tilde{I}_{ref}|\tilde{I}_{reca}(h)) = \sum_{i} \sum_{j} p_{i,j} \log \left(\frac{p_{i,j}}{p_i \times p_j}\right)$$

οù

- $\rightarrow p_i$ (resp. p_j) est la probabilité pour un pixel de l'image \tilde{I}_{ref} (resp. \tilde{I}_{reca}) d'avoir l'intensité i (resp. j),
- $\rightarrow p_{i,j}$ est la probabilité pour un même pixel d'avoir l'intensité i dans \tilde{I}_{ref} et j dans $\tilde{I}_{reca}(h)$.
- \rightarrow IM = 0 : les deux images sont indépendantes.
- → plus IM augmente, plus les deux images partagent d'information (donc mieux elles sont recalées).

L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste (IM ≥ 0).

→ Maximisation du critère = images corrélées au mieux (= alignées).

Roger Woods' heuristic observation

Images perfectly aligned

2mm displacement of one image to the side

5mm displacement of one image to the side

Heuristic observation is that when the images are aligned, the joint histogram appears "sharpest": "Woods' criterion"

Why this should be the case is still not certain!

Registration by maximising mutual information

Derek Hill et. al., Physics in Medicine and Biology, 46, 2001

Optimisation

- Algorithmes classiques d'optimisation (gradient, gradient conjugué, Powell, simplexe, ...)
- Minima locaux → importance de l'initialisation
 - connaissance de la position du patient en imagerie médicale, des paramètres d'acquisition, ou autres informations a priori
 - axes d'inertie
 - essais à partir de quelques positions et choix du meilleur résultat
- Autres solutions pour sortir des minima locaux : diminution progressive du pas, optimisation stochastique, ...
- Méthodes adaptées à la fonction de coût (exemple : ICP)
- Multi-échelles, multi-résolutions : convergence plus rapide, moins de problèmes de minima locaux

Interactivité?

- Automatique : souvent visé mais pas toujours souhaitable
- Interactif (assistance par logiciel de visualisation) : lourd, surtout en 3D, peu reproductible
- **Semi-automatique**: interaction
 - soit au niveau de l'initialisation (d'où réduction de l'espace de recherche, position initiale proche de la solution donc moins de problèmes de minima locaux)
 - soit au niveau du contrôle

Validation et évaluation

Accès à la vérité?

• Critères :

- précision intrinsèque de l'algorithme
- précision de la mesure, robustesse, fiabilité
- ressources requises
- complexité algorithmique
- vérification des hypothèses
- utilisation en pratique (exemple : contraintes particulières de la routine clinique)

Souvent trois niveaux de tests :

- simulations
- fantômes
- données réelles

Problèmes des objets de test : idéaux, pas de cas rares ou pathologiques.

Exemple d'études en recalage d'images médicales : Vanderbilt

Recalage anatomo-fonctionnel

Recalage anatomo-fonctionnel

SOMESTHESIE: Somatotopie des doigts

Distance entre doigt ~ 0.9 cm Distance I - V ~ 1.5 cm

Un exemple de recalage non linéaire

(thèse d'Oscar Camara)

Un exemple de recalage non linéaire

(thèse d'Oscar Camara)

Un exemple de recalage non linéaire

(thèse d'Oscar Camara)

Sources

- Cours Gérard Subsol (https://lirmm.fr/~subsol)
- Cours Isabelle Bloch (https://perso.telecom-paristech.fr/bloch/)
- Jayaram K. Udupa of Univ. of Penn., MIPG
- Sir M. Brady's Lecture Notes (Oxford University)
- Darko Zikic's MICCAI 2010 Tutorial
- Bagci's CV Course 2015 Fall.
- K.D. Toennies, Guide to Medical Image Analysis,