SYMPLECTIC GEOMETRY AND KHÄLER MANIFOLDS: AN INTRODUCTION

JEFFREY JIANG

LINEAR ALGEBRA

As typical when studying smooth manifolds, we first look at the linear algebra that will be non-linearized. To discuss Khäler manifolds (and consequently, Khäler vector spaces), we will need to assemble several mutually compatible structures – an inner product, a symplectic form, and a complex structure.

Definition 0.1. An *inner product space* is a vector space V equipped with a bilinear map $g: V \times V \to V$ that is symmetric and positive definite. In the case that V is a complex vector space, we replace the bilinear condition with the *sesquilinear* condition – conjugate linear in the first term, and linear in the second term. In this case, g is often referred to as a *hermitian inner product*.

You're probably familiar with these, so we won't delve into them.

Definition 0.2. A *symplectic vector space* is a vector space V equipped with a nondegenerate skew symmetric bilinear form $\omega : V \times V \to V$.

Nondegeneracy here means that if for some v, $\omega(v,w)=0$ for all $w\in V$, then v=0. In other words, the form ω gives an isomorphism $V\to V^*$ via the mapping

$$v \mapsto \omega(v, \cdot)$$

We note that the positive definite condition on an inner product g implies nondegeneracy, so that also defines an analogous isomorphism. An equivalent formulation of nondegeneracy for ω is that the wedge product $\omega \wedge ... \wedge \omega$ with itself n/2 times gives a nonzero volume form for V.

Example 0.3. \mathbb{R}^{2n} with coordinates (x_i, y_i) comes with a symplectic structure given by

$$\tilde{\omega} = \sum_{i} dx^{i} \wedge dy^{i}$$

which can be expressed in coordinates by

$$\tilde{\omega}(v, w) = v^T \Omega w$$

where

$$\Omega = \begin{pmatrix} 0 & \mathrm{id}_{\mathbb{R}^n} \\ -\mathrm{id}_{\mathbb{R}^n} & 0 \end{pmatrix}$$

In some sense, this is the *only* symplectic vector space, which should be made clear very soon.

Theorem 0.4. Every symplectic vector space (V, ω) admits a symplectic basis $\{e_i, f_i\}$ where

$$\omega(e_i, e_j) = 0$$
 $\omega(e_i, f_i) = \delta_{ij}$

Corollary 0.5. Every symplectic vector space is **symplectomorphic** to $(\mathbb{R}^{2n}, \tilde{\omega})$. That is, there exists a linear isomorphism $\varphi: (V, \omega) \to (\mathbb{R}^{2n}, \tilde{\omega})$ where $\varphi^* \tilde{\omega} = \omega$.

Proof. Let $\{f_i, g_i\}$ be a symplectic basis for V on \mathbb{R}^n and consider the map $\varphi : V \to \mathbb{R}^{2n}$ given by mapping $f_i \mapsto e_i$ and $g_i \mapsto e_{n+i}$

Definition 0.6. A *complex structure* on a vector space V is an automorphism $J: V \to V$ such that $J^2 = -\operatorname{id}_V$

Given a complex structure J and an \mathbb{R} -vector space V, we can make V a \mathbb{C} -vector space by defining the action of $i \in \mathbb{C}$ by $i \cdot v = Jv$. We can then extend this to arbitrary complex numbers $\alpha + \beta i$ by $(\alpha + \beta i) \cdot v = \alpha v + \beta Jv$.

If you know some linear algebra, you might know that there is another way to turn a \mathbb{R} -vector space into a complex one.

1

2 JEFFREY JIANG

Definition 0.7. Given an \mathbb{R} -vector space V, define its complexification $V_{\mathbb{C}}$ as $V \otimes_{\mathbb{R}} \mathbb{C}$.

Note that adding a complex structure to a vector space is *not* the same as complexifying it. If we find some $J \in GL(V)$ such that $J^2 = -\operatorname{id}_V$, we haven't changed the dimension of V, but complexifying V doubles its dimension over \mathbb{R} . Despite this, the concepts are quite similar. If we have a vector space V with complex structure J, then if we complexify V, then J extends to a map $V_{\mathbb{C}} \to V_{\mathbb{C}}$, where J(v+iw) = Jv + iJw. This gives a decomposition

$$V_{\mathbb{C}} = V^+ \oplus V^-$$

where $V^+ = \{v + iJv : v \in V\}$ and $V^- = \{v - iJv : v \in V\}$, and we get an isomorphism of C-vector spaces $V \to V^{\pm}$ where $v \mapsto v \pm iJv$, using the fact that $J^2v = -v$.

Now that we have defined all of these, we would like to define when these structures are compatible, and see what results

Definition 0.8. A complex structure *J* is *compatible* with a symplectic form ω if $\omega(Jv, Jw) = \omega(v, w)$.

An analogous definition is used for an inner product *g*.

Theorem 0.9. Given a vector space V with complex structure J, given a J-compatible inner product g, we obtain a symplectic form ω where $\omega(v,w)=g(Jv,w)$. Likewise, given a J-compatible symplectic form ω , we obtain an inner product g where $g(v,w)=\omega(Jv,w)$. Symplectic forms/inner products obtained in this manner are said to be **compatible** with the other.

Definition 0.10. A vector space V is $K\ddot{a}hler$ if it has compatible structures J, g, ω .