

Overview

Exploring our dataset

WHAT WE HAD

- Date: year-month-day
- Hour Hour of the day
- Temperature-Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10m
- Dew point temperature Celsius
- Solar radiation MJ/m2
- Rainfall mm
- Snowfall cm
- Seasons Winter, Spring, Summer, Autumn
- Holiday Holiday/No holiday
- Functional Day NoFunc(Non Functional Hours), Fun(Functional hours)

OUR GOAL

 Study the impact of all the variables on the number of rented bikes

Exploring our dataset

2 GENRES OF VARIABLES

Temporal ones:

Date

Hour

Holiday

Functional Day

Meteorological ones :

Temperature

Humidity

Windspeed, Visibility

Dew point temperature

Solar radiation

Rainfall

Snowfall

WHAT WE HAVE DONE

- Fixing our target: Rented Bike count
- No NaNs values
- Rename columns
- New variables: day, month, year, Moment_of_day and bike_affluence
- Correction of the season label

Visualisation

TEMPORAL VARIABLES

Visualisation

METEOROLOGICAL VARIABLES

• Less influence : Humidity, Rainfall

More Influence : Wind speed,
 Temperature, Snowfall

Visualisation

METEOROLOGICAL VARIABLES

• Less influence : Humidity, Rainfall

More Influence : Wind speed, Temperature, Snowfall

Inès PEREZ & Mathilde SALAÜN – DIA 5

CORRELATION BETWEEN VARIABLES

• Temperature: 0.53

Hour: 0.45

- Dew point temperature: 0.36
- -> but extremely correlated with temperature (0.91)
- Seasons extremely correlated to month (0.91)

DROP

- Moment_of_day
- Functioning_day
- Year
- Seasons
- Dew point temperature
- Date

DROP

- Moment_of_day
- Functioning_day
- Year
- Seasons
- Dew point temperature
- Date

ENCODER

• Seasons

BINARIZER

Holiday

NORMALIZE

 All predicators for classification

Modeling

REGRESSION MODELS

- KNN Regressor
- Hist Gradient Boosting Regressor
- Gradient Boosting Regressor
- Bagging Regressor
- Extra Trees Regressor
- Random Forest Function
- LGBM Regressor

CLASSIFICATION MODELS

- LGBM Classifier
- Random Forest
- Extra Trees
- KNN Classifier

Modeling

FINDING THE BEST HYPERPARAMETERS

- GridSearch()
- Comparison between defaults and optimal hyperparameters

Mardi 2 février 20XX Exemple de Texte de Pied de page

Modeling: Comparison - Accuracy

	Regressor	Classifier
Multiple Linear Regression	50.78%	-
KNN	57.52%	58%
Gradient Boosting	86.59%	-
Bagging	86.76%	-
Random Forest	87.38%	78.25%
Extra Trees	88.25%	78.35%
LGBM	88.60%	78.82%
Hist Gradient Boosting	89.77%	-

Conclusion

- Hour and Temperature seem to influence the demand for bike a lot
- Our best model is:
 Hist Gradient Boosting Regressor
 (HGBR) ~89.77%
- Our second best model is:
 Light Gradient Boosting Machine Regressor
 (LGBMR) ~88.60%

API - Flask

LGBMR model

