基于多智能体协作的异构配送仿真系统

无人机、无人车、机器狗协同配送建模与实现

崔迪生, 黄皓凌, 岑岱, 李梓琳, 李家龙

cuidsh@mail2.svsu.edu.cn

中山大学

系统科学与工程学院 指导老师: 李雄

2024.12.25

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

 - 2.5. 环境建模

- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 椎
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标 3.3. 协作效果分析
 - 3.4. 系统可视化展示
 - 3.4. 系统可优化供加
- 4. 总结与展望
- 5. 附录

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测证
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

研究背景与动机

Figure 1: 配送系统场景

现实挑战

- 城市交通拥堵严重
- 配送需求指数增长
- 复杂地形配送困难
- 单一载具效率有限

技术机遇

- 多智能体技术成熟
- 异构协作潜力巨大
- 分布式决策鲁棒
- 智能算法优化效率

研究目标

核心目标:构建异构智能体协作的城市配送仿真系统

技术价值:

• 提高配送效率

- 降低运营成本
- 增强容错能力
- 支持应急救援

1. 系统概述

- 1.1. 研究背景与动机
- 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 梢
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

多智能体系统技术基础

核心技术领域

多智能体协作 分布式决策、任务分配、协商机制路径规划算法 A* 算法、动态路径重规划、启发式搜索异构系统融合 不同能力智能体的优势互补与协同实时仿真技术 高频更新、可视化渲染、性能监控

技术创新点

- 双策略决策机制: 直达与中转策略智能选择
- 战争迷雾探索: 有限视野下的协作式地图构建
- 紧急度权重算法: 基于任务优先级的动态调度
- 异构载具建模: 真实物理特性的精确仿真

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

- 1. 系统概述
 - 1.1. 研究背景与动机
- 1.2. 相关技术综述 2. 建模思路
- -- 建误心品 2.1. 异构智能体设计
- 2.2. 双策略决策机制
- 2.3. 路径规划算法
- 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标 3.3. 协作效果分析
 - 3.3. 炒作双木刀侧
 - 3.4. 系统可视化展示
- 4. 总结与展望
- D. 門茅

三种智能体类型

智能体能力对比

智能体	速度	载重	地形适应	特殊能力
无人机 (Drone)	15.0	10kg	全地形	飞行、跨水域
无人车 (Car)	5.0	50kg	仅道路	大载重运输
机器狗 (RobotDog)	7.0	30kg	陆地全地形	爬坡、攀爬

核心能力

- 自主路径跟踪与移动
- 有限视野环境探索 (半径 =5)
- 状态管理: idledeliveringreturning
- 实时位置与任务状态上报

协作机制

- 共享环境知识发现
- 动态任务分配与重分配
- 中转站协作配送
- 智能返回路径选择

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测i
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

智能决策策略

双策略决策机制

系统为每个任务计算两种策略的成本:

1. 直达策略: 智能体直接从仓库配送到目标

2. 中转策略: 通过中转站进行两段式配送

决策算法核心

$$\mathsf{Strategy} = \begin{cases} \mathsf{Direct} & \mathsf{if} \ C_{direct} \leq C_{relay} \\ \mathsf{Relay} & \mathsf{if} \ C_{direct} > C_{relay} \end{cases} \tag{1}$$

其中: $C = \frac{\mathbf{B} \hat{\mathbf{C}} \mathbf{K} \mathbf{A}}{\mathbf{S} \hat{\mathbf{B}} \mathbf{E} \mathbf{V} \mathbf{B}}$

紧急度权重机制

- $\bullet \ \mathsf{urgency_weight} = 1 + \mathsf{task.urgency}$
- total_cost = path_cost / urgency_weight
- 高紧急度任务获得优先执行权
- 动态权重调整优化资源分配

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

A* 路径规划算法

路径规划特性

- 基于共享知识地图的启发式搜索
- 支持不同智能体的地形适应性约束
- 处理未知区域的探索惩罚机制
- 8 方向搜索优化路径长度

地形通行规则

- 无人机: 所有地形通行, 未知区域 +10 惩罚
- 无人车: 仅道路通行, 自动寻找最近道路
- 机器狗: 陆地通行, 山地 +2 惩罚, 陡峭 +5 惩罚
- 水域约束: 只有无人机可以跨越

算法优化

- 启发式函数结合地形成本
- 动态权重调整
- 路径平滑处理
- 最终距离阈值检查

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述

2. 建模思路

- 2.1. 异构智能体设计
- 2.2. 双策略决策机制
- 2.3. 路径规划算法
- 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测证
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

协调系统架构

MultiAgentCoordinationSystem 核心功能

• 任务队列管理: 基于优先队列的紧急度排序

• 智能体状态监控: 实时追踪所有智能体状态

• 路径规划服务: 为智能体提供最优路径计算

• 中转站协调: 管理两阶段协作配送流程

协调循环 (50FPS)

- 智能体状态更新
- 中转任务分配
- 主队列任务处理
- 系统性能监控

日志记录

- 任务分配记录
- 路径执行轨迹
- 完成时间统计
- JSON 格式输出

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述

2. 建模思路

- 2.1. 异构智能体设计
- 2.2. 双策略决策机制
- 2.3. 路径规划算法
- 2.4. 多智能体协调

2.5. 环境建模

- 2.6. 可视化与日志
- 3. 模型测记
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

地图系统设计

Map 类功能

• 程序化地形生成: 使用 Perlin 噪声创建真实地形

• 多层次地形: 道路、水域、山地、建筑、植被 6 种类型

• 动态天气系统: 晴天、雨天、雪天影响智能体性能

• 战争迷雾机制: 智能体有限视野逐步探索

Shared Knowledge Map

- 共享环境知识库
- 实时更新机制
- 未知区域标记
- 批量信息更新

探索机制

- 探索半径: 5 单位
- 即时信息共享
- 未知区域惩罚
- 渐进式地图构建

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述

2. 建模思路

- 2.1. 异构智能体设计
- 2.2. 双策略决策机制
- 2.3. 路径规划算法
- 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附泵

实时可视化系统

DelivervVisualizer 功能

• 高性能动画: Matplotlib 动画, blit=True 优化

• 多层渲染: 地形、智能体、路径、任务分层显示

• 状态监控: 实时显示任务进度和智能体状态

• 交互控制: 支持暂停、继续、速度调整

视觉元素

- 智能体颜色标识
- 任务路径实时高亮
- 地形类型色彩编码
- 动态信息面板

日志系统

- LogEntry 结构化记录
- 任务生命周期追踪
- JSON 格式导出
- 性能分析支持

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

测试数据概览

实验配置

• 地图规模: 100Œ100 单位复杂地形环境

• 智能体配置: 3 架无人机、2 辆无人车、2 只机器狗 • 任务负载: 22 个原始配送任务, 45 个执行子任务

• 运行时长: 约 75 秒完整配送周期

任务分布特征

- 重量范围: 3.0kg 49.9kg
- 紧急度分级: 1-5 级优先级
- 地形分布: 河流、山地、开阔地带
- 距离跨度: 短距离和长距离混合

测试重点

- 策略选择效果验证
- 多智能体协作效率
- 系统负载承受能力
- 异常情况处理能力

- 1. 系统概述
 - 1.1. 研究背景与动机 1.2. 相关技术综述
- 2 建增田吹
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

系统性能概览

Figure 2: 策略分布饼图: 中转 vs 直达策略占比

策略选择分析

- 中转配送占比 81.8%,验证了系 统智能地优先选择协作策略
- 直达策略仅占 18.2%, 主要用于紧急且重量适中的任务
- 策略选择准确率达到 100%,每 项任务均选择最优配送方式

核心性能指标

• 任务完成率: 100%

• 平均执行时长: 3.12 秒

• 协作效率提升: 约 35%

智能体任务分配与时长分析

任务执行时长分布 16 14 12 -执行时长 (秒)

Figure 3: 智能体任务分配统计

Figure 4: 任务执行时长分布

任务特性与执行效率关系

Figure 5: 任务重量与执行时长散点图 (颜色表示紧急度)

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

中转策略与直达策略对比

策略对比分析

- 中转策略平均时长: 3.06 秒
- 直达策略平均时长: 3.48 秒
- 中转策略中位数更低。表明协作 机制整体更稳定
- 策略选择正确率: 100%

协作优势验证

- 协作效率提升: 约 35%
- 适应性更强: 跨越复杂地形
- 载重匹配优化:充分发挥各智能 体特长

任务时间轴与执行流程

Figure 7: 任务执行时间轴(横轴为时间,纵轴为各智能体)

调度特点

- 智能体任务持续率: 85.7%
- 任务间平均切换时间: 0.85 秒
- 峰值并发任务数: 7 个

典型案例分析

案例: M07_MOUNTAIN_BEACON 任务

- 第一阶段: car_2 执行, 3.12 秒
- 第二阶段: robot_dog_1 执行, 2.88 秒
- 载重: 20kg, 地形: 山地, 距离: 101 单位

系统性能指标汇总

系统性能指标汇总

指标	数值	说明	
任务完成率	100. 0%	55/55任务成功	
原始任务数	29个	用户定义的配送任务	
执行子任务数	55个	包含中转分段任务	
平均执行时长	3. 03秒	范围: 0.09-8.77秒	
时长标准差	2. 24秒	执行时长稳定性指标	
中转策略占比	89. 7%	26/29使用中转	
直达策略占比	10.3% 3/29使用直达		
中转策略均时	5. 95秒	两阶段总时长均值	
直达策略均时	3. 97秒	单阶段执行时长均值	

智能体性能对比分析

智能体性能对比

智能体类型	任务数量	平均时长(秒)	总工作时长(秒)	工作负载占比
无人车	20	3. 88	77. 64	46. 6%
无人机	18	1. 82	32. 75	19. 7%
机器狗	17	3. 31	56. 23	33. 7%

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 模型测试
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录

系统运行可视化截图 (1)

Figure 10: 初始状态

Figure 11: 任务分配

Figure 12: 协作配送

Figure 13: 多智能体协作配送系统运行过程可视化 (第一阶段)

系统运行可视化截图 (2)

Figure 14: 中转执行

Figure 15: 任务完成

Figure 16: 多智能体协作配送系统运行过程可视化 (第二阶段)

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 栲
 - 3.1. 测试场景设计
 - 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
 - 5. 附录

项目总结与贡献

主要技术贡献

- **异构智能体协作框架**:设计了三种载具的协同工作机制
- 双策略智能决策算法: 实现了直达与中转的最优策略选择
- 战争迷雾探索系统: 建立了有限视野下的协作式地图构建
- 实时仿真平台: 开发了高性能可视化与监控系统

应用前景

- 智慧城市物流配送
- 应急救援物资投送
- 偏远地区服务覆盖
- 多机器人系统研究

未来工作

- 强化学习优化决策
- 动态环境事件处理
- 能耗模型与充电规划
- 大规模系统扩展验证

谢谢大家!欢迎交流讨论

- 1. 系统概述
 - 1.1. 研究背景与动机
 - 1.2. 相关技术综述
- 2. 建模思路
 - 2.1. 异构智能体设计
 - 2.2. 双策略决策机制
 - 2.3. 路径规划算法
 - 2.4. 多智能体协调

- 2.5. 环境建模
- 2.6. 可视化与日志
- 3. 樗
 - 3.1. 测试场景设计 3.2. 关键性能指标
 - 3.3. 协作效果分析
 - 3.4. 系统可视化展示
- 4. 总结与展望
- 5. 附录