~	1/1 points
1.	
Prior	is said to be conjugate to a likelihood function if:
0	the prior, the likelihood function and the posterior would be in a same family of distributions
0	the posterior would stay in the same family of distributions as prior
_	
	rrect sterior and prior are both distributions over $ heta$, so they can lie in the same family
0	the prior is from the same family of distributions as the likelihood
0	the prior lies in the same family of distributions as the likelihood
~	1/1 points
2.	
Finding a conjugate prior is useful because:	
	It leads to a better MAP estimate
_	
Ur	-selected is correct
	We can perform analytical inference and find posterior distribution instead of taking point MAP estimate
	rrect
Sir	ce posterior lies in a known family of distributions, we will be able to perform analytical inference
	It is the only prior for which it is possible to perform analytical inference
Ur	-selected is correct
	As long as posterior will stay in the same family with prior, the integral $p(x_{new} \mid x) = \int p(x_{new} \mid \theta) p(\theta \mid x) d\theta$ which is used for prediction is also tractable
	rrect is integral is called the evidence and it can be computed analytically if prior, likelihood and posterior are known
✓ 3.	1/1 points

Out of the following pairs of priors and likelihood functions, choose those that are conjugate:
$\Gamma(\lambda \mid \alpha, \beta) \text{ prior over parameter } \lambda \text{ of } Exp(x \mid \lambda) \text{ likelihood } (\Gamma(x, \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \text{ and } Exp(x \mid \lambda) = \lambda e^{-\lambda x})$
Correct Multiplying these distribution and grouping the terms will lead to gamma distribution again
$igsqcup \mathcal{N}(\mu_1 m,s^2)$ prior over parameter μ_1 for $\mathcal{N}(X \mu_1,\sigma_1^2)$ likelihood
Correct This example was discussed in a lecture
$\ \ \ \ \ \Gamma(\sigma_1^2 lpha,eta)$ prior over parameter σ_1^2 of $\mathcal{N}(X \mu_1,\sigma_1^2)$ likelihood
Un-selected is correct
$igcap \mathcal{N}(\sigma_1^2 m,s^2)$ prior over parameter σ_1^2 of $\mathcal{N}(X \mu_1,\sigma_1^2)$ likelihood
Un-selected is correct
✓ 1/1 points
4.
4. Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$?
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mu,\sigma^2)$?
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)(\sigma^2)^{-\alpha-1} \exp\left(-\frac{\beta}{\sigma^2}\right)}$ Correct
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)(\sigma^2)^{-\alpha-1} \exp\left(-\frac{\beta}{\beta^2}\right)}$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^2}{\Gamma(\alpha)(\sigma^2)^{-\alpha-1} \exp\left(-\frac{\beta}{\sigma^2}\right)}$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution $Exp(\sigma^2 \mid \lambda) = \lambda e^{-\lambda \sigma^2}$ Un-selected is correct Scaled inverse chi-squared with pdf $f(\sigma^2 \mid \nu, \tau) = \frac{(\tau^2 \nu/2)^{\gamma/2} \exp\left(-\frac{\tau^2}{\nu/2}\right)}{\Gamma(\nu/2)} \frac{(\sigma^2)^{1+\alpha/2}}{(\sigma^2)^{1+\alpha/2}}$
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)(\sigma^2)^{-\alpha-1} \exp\left(-\frac{\beta}{\beta}\right)}$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution $Exp(\sigma^2 \mid \lambda) = \lambda e^{-\lambda \sigma^2}$ Un-selected is correct
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)(\sigma^2)^{-\alpha-1}} \exp\left(-\frac{\beta}{\sigma^2}\right)$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution $Exp(\sigma^2 \mid \lambda) = \lambda e^{-\lambda \sigma^2}$ Un-selected is correct Scaled inverse chi-squared with pdf $f(\sigma^2 \mid \nu, \tau) = \frac{(\tau^2 \nu \nu)^{\gamma/2}}{\Gamma(\nu/2)} \exp\left(-\frac{\nu^2}{\sigma^2}\right)$
Which of the following prior distributions over parameter σ^2 are conjugate to likelihood $\mathcal{N}(x \mid \mu, \sigma^2)$? Inverse gamma with pdf $p(\sigma^2 \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)(\sigma^2)^{\alpha-1}\exp(-\frac{\beta}{2})}$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution $Exp(\sigma^2 \mid \lambda) = \lambda e^{-\lambda \sigma^2}$ Un-selected is correct Scaled inverse chi-squared with pdf $f(\sigma^2 \mid \nu, \tau) = \frac{(\tau^2 \nu/2)^{\alpha/2} \exp(-\frac{\nu^2}{2})}{\Gamma(\nu/2)}$ Correct Multiplying these distribution and grouping the terms will lead to normal distribution

5.
Choose the correct statements:
For arbitrary likelihood and prior pair, we can always perform inference and compute posterior analytically
Un-selected is correct
Although not for every pair of prior and likelihood there is an analytical expression for posterior, we can always find a conjugate prior in some simple family and compute posterior analytically
Un-selected is correct
Putting initial knowledge into prior distribution is an advantage of Bayesian approach
Correct That's the one
For some problems conjugate prior may be inadequate Correct That's true
✓ 1/1 points
6.
Imagine that you want to pat your friend's cat Becky. Cats are really random creatures.
Becky might get grumpy and scratch you with probability p or curl up and start purring (with prob. $1-p$). You don't know Becky well yet, so you estimate prior on p to be distributed as $Beta(2,2)$. Within one evening, Becky has scratched you 6 times and only 2 times she purred. What will be the parameters for posterior distribution over p ? What is the MAP-estimate for p ?
Enter your answers separated by comma: e.g. if you think that correct answer is $Beta(1,0.2)$ and MAP is 3, you should enter 1,0.2,3. Express real numbers as decimals with dot as delimiter.
Enter answer here
Correct Response