

February 2007

LM741 Single Operational Amplifier

Features

- Short Circuit Protection
- Excellent Temperature Stability
- Internal Frequency Compensation
- High Input Voltage Range
- Null of Offset

Description

The LM741 series are general purpose operational amplifiers. It is intended for a wide range of analog applications. The high gain and wide range of operating voltage provide superior performance in intergrator, summing amplifier, and general feedback applications.

Ordering Information

Part Number	Operating Temp. Range	Pb-Free	Package	Packing Method	Marking Code
LM741CN		YES	8-DIP	Rail	LM741CN
LM741CM	0 ~ +70°C	YES	8-SOP	Rail	LM741CM
LM741CMX		YES	8-SOP	Tape & Reel	LM741CM

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±18	V
V _{I(DIFF)}	Differential Input Voltage	30	V
VI	Input Voltage	±15	V
-	Output Short Circuit Duration	Indefinite	-
P _D	Power Dissipation	500	mW
T _{OPR}	Operating Temperature Range	0 ~ +70	°C
T _{STG}	Storage Temperature Range	-65 ~ +150	°C

2

Electrical Characteristics

(V_{CC} = 15V, V_{EE} = -15V, T_A = 25°C, unless otherwise specified)

Parameter		Symbol	Conditions		Min.	Тур.	Max.	Unit
Input Offset Voltage		V _{IO}	$R_S \le 10k\Omega$		-	2.0	6.0	mV
			$R_S \le 50\Omega$		-	-	-	
Input Offset Volta Adjustment Rang		V _{IO(R)}	V _{CC} = ±20V		-	±15	-	mV
Input Offset Curre	ent	I _{IO}	-		-	20	200	nA
Input Bias Currer	nt	I _{BIAS}	-		-	80	500	nA
Input Resistance	(Note1)	R _I	$V_{CC} = \pm 20V$		0.3	2.0	-	ΜΩ
Input Voltage Rai	nge	V _{I(R)}	-		±12	±13	-	V
Large Signal Voltage Gain		G _V	$R_L \ge 2k\Omega$	$V_{CC} = \pm 20V,$ $V_{O(P-P)} = \pm 15V$	-	-	-)//>/
		G _V		$V_{CC} = \pm 15V,$ $V_{O(P-P)} = \pm 10V$	20	200	-	- V/mV
Output Short Circuit Current		I _{SC}	-	•	-	25	-	mA
Output Voltage Swing		V _{O(P-P)}	$V_{CC} = \pm 20V$	$R_L \ge 10k\Omega$	-	-	-	V
				$R_L \ge 2k\Omega$	-	-	-	
			$V_{CC} = \pm 15V$	$R_L \ge 10k\Omega$	±12	±14	-	
				$R_L \ge 2k\Omega$	±10	±13	-	
Common Mode F	Rejection Ratio	CMRR	$R_S \le 10k\Omega$, V_0	_{CM} = ±12V	70	90	-	dB
		CIVIRR	$R_S \le 50\Omega$, $V_{CM} = \pm 12V$		-	-	-	ав
Power Supply Rejection Ratio		PSRR	V_{CC} = ±15V to V_{CC} = ±15V $R_S \le 50\Omega$		-	-	-	- dB
		FORK	$V_{CC} = \pm 15V$ to $V_{CC} = \pm 15V$ $R_S \le 10k\Omega$		77	96	-	
Transient	Rise Time	T _R	Unity Gain		-	0.3	-	μS
Response	Overshoot	OS			-	10	-	%
Bandwidth		BW	-		-	-	-	MHz
Slew Rate		SR	Unity Gain		-	0.5	-	V/μs
Supply Current		I _{CC}	$R_L = \infty \Omega$		-	1.5	2.8	mA
Power Consumption		D.	$V_{CC} = \pm 20V$		-	-	-	- mW
		P _C	$V_{CC} = \pm 15V$		-	50	85	

3

Note:

1. Guaranteed by design.

Electrical Characteristics (Continued)

($0^{\circ}C \le T_A \le 70^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise specified) The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM741C

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{IO}	$R_S \le 50\Omega$		-	-	-	- mV
		$R_S \le 10k\Omega$		-	-	7.5	
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$	-		-	-		μV/°C
Input Offset Current	I _{IO}	-		-	-	300	nA
Input Offset Current Drift	$\Delta I_{IO}/\Delta T$	-		-	-		nA/°C
Input Bias Current	I _{BIAS}	-		-	-	0.8	μΑ
Input Resistance (Note1)	R _I	$V_{CC} = \pm 20V$		-	-	-	ΜΩ
Input Voltage Range	$V_{I(R)}$	-		±12	±13	-	V
Output Voltage Swing	V _{O(P-P)}	V _{CC} =±20V	$R_S \ge 10 k\Omega$	-	-	-	V
			$R_S \ge 2k\Omega$	-	-	-	
		V _{CC} =±15V	$R_S \ge 10 k\Omega$	±12	±14	-	
			$R_S \ge 2k\Omega$	±10	±13	-	
Output Short Circuit Current	I _{SC}	<u> </u> -		10	-	40	mA
Common Mode Rejection Ratio	CMRR	$R_S \le 10$ kΩ, $V_{CM} = \pm 12$ V 70 $R_S \le 50$ Ω, $V_{CM} = \pm 12$ V -		90	-	40	
				-	-	-	dB
Power Supply Rejection Ratio	PSRR	V _{CC} = ±20V to ±5V	$R_S \le 50\Omega$	-	-	-	- dB
			$R_S \le 10k\Omega$	77	96	-	
Large Signal Voltage Gain	G _V	$R_S \ge 2k\Omega$	$V_{CC} = \pm 20V,$ $V_{O(P-P)} = \pm 15V$	-	-	-	V/mV
			$V_{CC} = \pm 15V,$ $V_{O(P.P)} = \pm 10V$	15	-	-	
			$V_{CC} = \pm 15V,$ $V_{O(P-P)} = \pm 2V$	-	-	-	

Note:

1. Guaranteed by design.

Typical Performance Characteristics

Figure 1. Output Resistance vs Frequency

Figure 2. Input Resistance and Input Capacitance vs Frequency

Figure 3. Input Bias Current vs Ambient Temperature

Figure 4. Power Consumption vs Ambient Temperature

Figure 5. Input Offset Current vs Ambient Temperature

Figure 6. Input Resistance vs Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 7. Normalized DC Parameters vs Ambient Temperature

Figure 9. Frequency Characteristics vs Supply Voltage

Figure 11. Transient Response

Figure 8. Frequency Characteristics vs
Ambient Temperature

Figure 10. Output Short Circuit Current vs Ambient Temperature

Figure 12. Common-Mode Rejection Ratio vs Frequency

Typical Performance Characteristics (Continued)

Figure 1. Voltage Follower Large Signal Pulse Response

Figure 2. Output Swing and Input Range vs Supply Voltage

Package

Dimensions in millimeters

8-DIP

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOP

UniFET™

 VCX^{TM}

Wire™

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FACT Quiet Series™ OCX^{TM} SILENT SWITCHER® OCXPro™ ActiveArray™ GlobalOptoisolator™ SMART START™ OPTOLOGIC® GTO™ SPM™ Bottomless™ OPTOPLANAR™ HiSeC™ Build it Now™ Stealth™ I^2C^{TM} PACMANTM CoolFET™ SuperFET™ РОР™ $CROSSVOLT^{\rm TM}$ i-Lo™ SuperSOT™-3 Power247™ DOME™ ImpliedDisconnect™ SuperSOT™-6 EcoSPARK™ PowerEdge™ SuperSOT™-8 IntelliMAX™ E²CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™ PowerTrench® ТСМ™ EnSigna™ LittleFET™ FACT[®] $\mathsf{MICROCOUPLER}^{\mathsf{TM}}$ QFET® TinyBoost™ $\mathsf{FAST}^{\mathbb{R}}$ QSTM TinyBuck™ MicroFET™ FASTr™ QT Optoelectronics™ TinyPWM™ MicroPak™ Quiet Series™ FPS™ MICROWIRE™ TinyPower™ RapidConfigure™ FRFET™ TinyLogic[®] MSX™ MSXPro™ RapidConnect™ TINYOPTO™ μSerDes™ Across the board. Around the world.™ TruTranslation™ ScalarPump™ **UHC®**

The Power Franchise®

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPE-CIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete Not In Production		This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 122