

Convolutional Neural Networks

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on cross-correlation vs. convolution

Convolution in math textbook: Night working and the extbook are extracted. And the extbook are extracted and the extbook are extracted and the extbook are extracted as a subject to the extracted and the extracted are extracted as a subject to thi

정확히 말하면 우리가 한건 convolution이 아니라 crosscorrelation이었음. 근데 딥러닝에서는 그냥 구분없이 쓴다.

	\mathcal{A}					
2	3	7 ⁵	4	6	2	
6	6	94	8	7	4	
3	4	83	3	8	9	
7	8	3	6	6	3	
4	2	1	8	3	4	
3	2	4	1	9	8	

*

 $(A \times B) \times C = A \times (B \times C)$

flipping을 적용하는 컨벌루션은 이러한 associativity 특성을 만족하며 이 특성은 어떤 시그널 프로세싱 애플리케이션에 대해 nice한 경우가 있어서 많이 쓰인다. 근데 딥러닝에서는 상관없음