For submission: 1 a, c, f, h, n 2 e, g, j, l, m, p, s, u, z 3 a, c, g, j, l, o, p, r, t, u 4 b, d 5 b, e, g, i, j, m, q, r, t, v, w 6 a, c 7 b 8 a

Definition of a limit

1. In each part: a. Determine the limit based on estimation/ intuition. b. Write out the definition of the limit appropriate to that part c. Use the definition of the limit to prove that your answer from part (a) is correct.

a.
$$\lim_{x \to 1} (4x-1)$$

a. $\lim_{x\to 1} (4x-1)$ b. $\lim_{x\to -2} (3x+11)$ c. $\lim_{x\to 0^{-}} e^{\frac{1}{x}}$ d. $\lim_{x\to 0^{+}} e^{\frac{1}{x}}$ e. $\lim_{x\to 0} e^{\frac{1}{x^{2}}}$

$$f. \quad \lim_{x \to 0^+} (\ln x)$$

f. $\lim_{x \to 0^+} (\ln x)$ g. $\lim_{x \to \infty} (\ln x)$ h. $\lim_{x \to -\infty} \frac{1}{\ln(x^2)}$ i. $\lim_{x \to +\infty} \frac{1 - 2^x}{1 + 2^x} = -1$ j. $\lim_{x \to -\infty} \frac{1 - e^x}{1 + e^x} = 1$

$$k. \lim_{x \to 1} \left(\frac{1}{1 + 2^{\frac{1}{x}}} \right)$$

1.
$$\lim_{x \to \frac{1}{2}} \left(\frac{1}{1 + 2^{\frac{1}{x}}} \right)$$

$$\mathbf{m.} \lim_{x \to \infty} \left(\frac{1}{1 + 2^{\frac{1}{x}}} \right)$$

k.
$$\lim_{x \to 1} \left(\frac{1}{1+2^{\frac{1}{x}}} \right)$$
 1. $\lim_{x \to \frac{1}{2}} \left(\frac{1}{1+2^{\frac{1}{x}}} \right)$ m. $\lim_{x \to \infty} \left(\frac{1}{1+2^{\frac{1}{x}}} \right)$ n. $\lim_{x \to 0^{+}} \left(\frac{1}{1+2^{\frac{1}{x}}} \right)$ o. $\lim_{x \to 0^{-}} \left(\frac{1}{1+2^{\frac{1}{x}}} \right)$

Limit Arithmetic

2. Calculate each (extended) limit or explain why it doesn't exist. If the limit doesn't exist, check if either or both of the one-sided limits exist, and if so calculate them.

(solve parts (a) – (d) where: (i) $a = \infty$ (ii) $a = -\infty$ (iii) a = 1)

a.
$$\lim_{x \to a} \frac{x+3}{(x-1)^2}$$

a. $\lim_{x\to a} \frac{x+3}{(x-1)^2}$ b. $\lim_{x\to a} \frac{x^2-x+3}{(x-1)^2}$ c. $\lim_{x\to a} \frac{x^3-x+3}{(x-1)^2}$ d. $\lim_{x\to a} \frac{x^3-3x+2}{(x-1)^2}$

e.
$$\lim_{x\to a} \frac{7x^2 - 2x - 5}{x^2 - 3x + 2}$$
 where: (i) $a = 1$ (ii) $a = 2^+$ (iii) $a = 2$ (iv) $a = -1$

f.
$$\lim_{x \to a} \frac{x^3 + 27}{x^2 - 9}$$
 where: (i) $a = 3$ (ii) $a = -3$ (iii) $a = \infty$ (iv) $a = -\infty$

g.
$$\lim_{x \to a} \frac{x^4 - 7x^3 + 2x^2 + 5x - 1}{x^3 + 2x^2 - x - 2}$$
 where: (i) $a = 2$ (ii) $a = 1$ (iii) $a = -1$ (iv) $a = -2$ (v) $a = -\infty$

h.
$$\lim_{x \to a} \frac{2x^3 + 12x^2 + 5x - 22}{-3x^4 - 2x^3 + 25x^2 + 28x - 12}$$
 where: (i) $a = -2$ (ii) $a = 3$ (iii) $a = \frac{1}{3}$ (iv) $a = -\infty$

i.
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{x}$$
 j. $\lim_{x \to 0} \frac{\sqrt{x^2 + 3x + 1} - 1}{x}$ k. $\lim_{x \to -\infty} \left(\sqrt{x^2 + 1} + x\right)$ l. $\lim_{x \to -\infty} \left(\sqrt{x^2 + 3x} + x\right)$

m.
$$\lim_{x \to -3} \frac{\sqrt{x^2 + 2x + 6} - \sqrt{2x^2 - 9}}{1 - \sqrt{x + 4}}$$
 n. $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2x + 6} - \sqrt{2x^2 - 9}}{1 - \sqrt{x + 4}}$ o. $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2x + 6} - \sqrt{x^2 + x + 3}}{1 - \sqrt{x + 4}}$

p.
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 3x + 8}}{2x + 3}$$
 q. $\lim_{x \to \infty} \frac{\sqrt{3x^2 + 5x + 8} - \sqrt{x^2 - 3x + 6}}{4 - 5x}$ r. $\lim_{x \to \infty} \left(\sqrt{x^2 + 3x + 8} + \sqrt{x^2 + 1} \right)$

s.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x + 8} - \sqrt{x^2 + 1} \right)$$
 t. $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt[3]{1 + x} - \sqrt[3]{1 - x}}$ (Use the identity: $A^3 - B^3 = 1$

$$(A-B)(A^2+AB+B^2)) \quad \text{u.} \quad \lim_{x\to +\infty} \left(\sqrt{(x+a)(x+b)} - x \right) \quad a,b \in \Re \quad \text{v.} \quad \lim_{x\to +\infty} \left(\sqrt{x+\sqrt{x+\sqrt{x}}} - \sqrt{x} \right)$$

w.
$$\lim_{x \to +\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$$
 x. $\lim_{x \to +\infty} \frac{7+6\log x}{-4+3\log x}$ y. $\lim_{x \to 0+} \frac{7+6\log x}{-4+3\log x}$ z. Given the function f :

$$f(x) = \begin{cases} 2x^3 - 5x^2 - \frac{3}{x} &: x < 3\\ 4 &: x = 3\\ \frac{x+5}{(x-4)^2} &: x > 3 \end{cases}$$

calculate the limits: $\lim_{x\to 0} f(x)$, $\lim_{x\to 2} f(x)$, $\lim_{x\to 3} f(x)$, $\lim_{x\to 4} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$

3. Use the limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and prove that $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$. Using these two limits and trigonometric identities, calculate the following limits:

a.
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$
 b. $\lim_{x \to 0} \frac{1 - \cos 3x}{1 - \cos 5x}$ c. $\lim_{x \to 0} \frac{\tan 4x \cos 5x}{\sin 3x}$ d. $\lim_{x \to 0} \frac{\sin 8x - \sin 3x}{\sin 6x}$

e.
$$\lim_{x \to 0} \frac{1 - \cos 10x}{\sin 3x}$$
 f. $\lim_{x \to 0} \frac{1 - \cos 10x}{4x \sin 3x}$ g. $\lim_{x \to 0} \frac{1 - \cos 10x}{\sin^2 3x}$ h. $\lim_{x \to 0} \frac{\sin 3x - \sin 3x \cos 4x}{7x^2}$

i.
$$\lim_{x \to +\infty} \left(x \cdot \tan \frac{1}{x} \right)$$
 j. $\lim_{x \to 0} \frac{x^2 \cdot \sin \frac{1}{x}}{\sin x}$ k. $\lim_{x \to -2} \frac{x^2 - 4}{\tan(x + 2)}$ l. $\lim_{x \to \frac{\pi}{2}} \frac{\cos 3x}{\left(\frac{\pi}{2} - x\right)}$ m. $\lim_{x \to 0} \frac{\cos^2 x}{\sin 3x}$

n.
$$\lim_{x\to 0} \frac{\sqrt{1+\sin 3x}-1}{\sin 5x}$$
 o. $\lim_{x\to +\infty} \frac{2x+5\sin x}{5x-2}$ p. $\lim_{x\to 0} \frac{2x+5\sin x}{5x-2}$ q. $\lim_{x\to \pi} \frac{2x+5\sin x}{5x-2}$

Calculus I: Exercise 2 (Limit of a Function) r. $\lim_{x \to \pi} \frac{\sin 3x}{\sin 4x}$ s. $\lim_{x \to +\infty} \frac{\sin x}{x}$ t. $\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}$ u. $\lim_{x \to 0} \tan 4x \cot 7x$

r.
$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 4x}$$

s.
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

t.
$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$$

V.
$$\lim_{x \to \frac{\pi}{4}} \tan(2x) \tan\left(\frac{\pi}{4} - x\right)$$

4) Use the Sandwich Theorem to calculate (NOTE: square brackets indicate the whole number function, e.g., [2.4] = 2, [5] = 5, [-1.4] = -2):

a.
$$\lim_{x\to 0} x[x]$$
 b. $\lim_{x\to 0} \left(x\left[\frac{7}{x}\right]\right)$ c. $\lim_{x\to 0} \left(x\sin\frac{1}{x}\right)$ d. $\lim_{x\to 0} \left(x\sqrt{3-2\cos\frac{1}{x}}\right)$

5) Calculate the following limits. If a limit doesn't exist, calculate the one-sided limits if they exist. You may use the limits: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$, $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^{\frac{1}{x}} = e$, $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^{\frac{1}{x}} = e$, and $\lim_{x \to +\infty} a^x = \begin{cases} +\infty & : a > 1\\ 0 & : 0 < a < 1 \end{cases}$

Note that you can use substitutions (see question 8) to reduce each part to applications of the rules of limit arithmetic to one of the above limits.

a.
$$\lim_{x\to 0} (1+2x)^{\frac{3}{4x}}$$
 b. $\lim_{x\to 0} (1-2x)^{\frac{3}{4x}}$ c. $\lim_{x\to \infty} \left(1+\frac{3}{4x}\right)^{5x}$ d. $\lim_{x\to \infty} \left(1-\frac{7}{4x}\right)^{5x}$

e.
$$\lim_{x \to -\infty} \left(1 - \frac{4}{2x - 1} \right)^{6x - 3}$$
 f. $\lim_{x \to \infty} \left(1 + \frac{m}{x} \right)^{nx} \quad (m, n \in \mathbb{Q})$ g. Prove that: $\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x + 1} = e$

and $\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^{x+1} = e^{-1}$ [Calculate each of the following limits after writing the base in

the form
$$1 + \frac{1}{t}$$
.] h. $\lim_{x \to +\infty} \left(\frac{x+4}{x+3}\right)^x$ i. $\lim_{x \to +\infty} \left(\frac{x+4}{x+5}\right)^x$ j. $\lim_{x \to +\infty} \left(\frac{2x+5}{2x+1}\right)^{2x-3}$

k.
$$\lim_{x \to +\infty} \left(\frac{2x+3}{2x+6} \right)^{2x-1}$$
 l. $\lim_{x \to +\infty} \left(\frac{2x+3}{2x-1} \right)^{3x+4}$ m. $\lim_{x \to +\infty} \left(2 + \frac{1}{x} \right)^x$ (HINT: Use the equation $\left(2 + \frac{1}{x} \right)^x = \left(2 \left(1 + \frac{1}{2x} \right) \right)^x = 2^x \left(1 + \frac{1}{2x} \right)^x$) n. $\lim_{x \to +\infty} \left(1.00001 + \frac{1}{x} \right)^x$

o. $\lim_{x \to +\infty} \left(0.99999 + \frac{1}{x} \right)^x$ p. Prove that if for some real number a, $\lim_{x \to a} g(x) = +\infty$, and there exists a real number l such that $\lim_{x \to a} (f(x)) = l$ then: $\lim_{x \to a} (f(x))^{g(x)} = \begin{cases} +\infty & : l > 1 \\ 0 & . \end{cases}$ (HINT: Use the Sandwich Theorem.)

Use part (p) to calculate the limits: q. $\lim_{x \to +\infty} \left(\frac{2x+3}{x-4}\right)^{3x-5}$ r. $\lim_{x \to +\infty} \left(\frac{2x+1}{3x-2}\right)^{4x-3}$ s. $\lim_{x \to 0^+} \left(\frac{2x+3}{x+4}\right)^{\frac{3}{x}}$

t.
$$\lim_{x \to 0^{-}} \left(\frac{2x+3}{x+4} \right)^{\frac{3}{x}}$$
 u. $\lim_{x \to 1^{+}} 2^{\frac{1}{1-x}}$ v. $\lim_{x \to 1^{-}} 2^{\frac{1}{1-x}}$

w. Note that in part (p) we didn't address the case $\lim_{x\to a} (f(x)) = 1$ and $\lim_{x\to a} g(x) = +\infty$. That's because in this case, computing $\lim_{x\to a} (f(x)^{g(x)})$ requires additional work, as we saw in parts (a)-(o). Find three examples of functions f and g for which this limit takes three different values. HINT: Use the definition of the number e, and parts (a)-(o).

6) Prove the following limits:

a.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1} \quad (n \in \mathbb{N}, a \in \mathbb{R})$$

(Use the factorization $x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + ... + xa^{n-2} + a^{n-1})$)

b.
$$\lim_{x \to a} \frac{x^{-n} - a^{-n}}{x - a} = -na^{-n-1} \quad (n \in \mathbb{N}, a \in \mathbb{R})$$

c.
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \cos a$$

(Use an identity to turn the difference of sines into a product, or substitute x = a + t.)

d.
$$\lim_{x \to a} \frac{\cos x - \cos a}{x - a} = -\sin a$$

e.
$$\lim_{x \to a} \frac{\tan x - \tan a}{x - a} = \frac{1}{\cos^2 a}$$

f.
$$\lim_{x \to a} \frac{\cot x - \cot a}{x - a} = -\frac{1}{\sin^2 a}$$

7) Prove the following rules of limit arithmetic:

Let $l \in \mathbb{R} \setminus \{0\}$ and $a \in \mathbb{R}$. Prove:

a. If
$$\lim_{x\to a} f(x) = l < 0$$
 and $\lim_{x\to a} g(x) = -\infty$ then $\lim_{x\to a} [f \cdot g](x) = +\infty$.

b. If
$$\lim_{x \to -\infty} f(x) = l < 0$$
 and $\lim_{x \to -\infty} g(x) = -\infty$ then $\lim_{x \to -\infty} [f \cdot g](x) = +\infty$.

c. If
$$\lim_{x\to a} f(x) = +\infty$$
 and $\lim_{x\to a} f(x) = -\infty$ then $\lim_{x\to a} \frac{1}{f(x)} = 0$.

Is it also true that if $\lim_{x\to a} f(x) = 0$ then $\lim_{x\to a} \frac{1}{f(x)} = +\infty$ or $\lim_{x\to a} \frac{1}{f(x)} = -\infty$?

8) (Challenge) Read and understand the claims even if you don't prove them.

In each part, $a \in \mathbb{R}$ and $l \in \mathbb{R}$ or $l = \pm \infty$. In proving each claim it suffices to assume $l \in \mathbb{R}$.

a. From the limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$ we concluded that: $\lim_{x\to \pi} \frac{\sin(x-\pi)}{x-\pi} = 1$. Is this valid?

Prove: If $\lim_{x\to a} f(x) = l$ then $\lim_{x\to a\to 0} f(x) = l$, i.e., we can substitute t = x-a and obtain $\lim_{t\to 0} f(t+a) = l$.

b. From the limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$ we concluded that: $\lim_{x\to 0} \frac{\sin 7x}{7x} = 1$. Is this valid?

Prove: If $\lim_{x\to a} f(x) = l$ then $\lim_{x\to 0} f(ax) = l$ when $a \ne 0$.

c. From the limit $\lim_{x\to 0} (1+x)^{1/x} = e$ we concluded that $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$ and also $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e$. Is this valid?

Prove: $\lim_{x\to 0+} f(x) = l$ iff $\lim_{x\to +\infty} f\left(\frac{1}{x}\right) = l$, and $\lim_{x\to 0-} f(x) = l$ iff $\lim_{x\to -\infty} f\left(\frac{1}{x}\right) = l$.