BAY2F8 AS A HOST FOR LN IONS - OPTICAL PROPERTIES OF THE CRYSTAL AND SPEC. (U) MASSACHUSETTS INST OF TECH CAMBRIDGE CRYSTAL PHYSICS AND OPTI. H P CHRISTERSEN ET AL. JUN 83 TR-25 F/G 20/2 1/1 AD-A162 698 UNCLASSIFIED NL END FILMED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

The state of the s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Combridge, Massachusetts
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE &
CENTER FOR MATERIALS SCIENCE AND ENGINEERING
CRYSTAL PHYSICS AND OPTICAL ELECTRONICS LABORATORY

BQY₂F₈ AS A HOST FOR Ln IONS - OPTICAL PROPERTIES OF THE CRYSTAL AND SPECTRO-SCOPIC RESULTS FOR Pr, Dy, Ho, AND Er DOPING.

NO0014-81-K-0476

H. P. Christensen, H. P. Jenssen & D. Gabbe

[†]Present address:

Department of Electrophysics The Technical University of Denmark DK-2800 Lyngby, Denmark

TECHNICAL REPORT NO. 25

June 1983

THE FILE COPY

85 12 20 051

BAY₂F₈ AS A HOST FOR LN IONS. I: OPTICAL PROPERTIES OF THE CRYSTAL AND SPECTROSCOPIC RESULTS FOR PR. DY. Ho. AND ER DOPING.

H.P. Christensen, H.P. Jenssen, and D.R. Gabbe

Je mieros

The three refractive indices for the monoclinic crystal BaY₂F₈ have been measured as function of the wavelength from 275 nm to 2.65 nm, and the position of the index ellipsoid has been determined. Most energy levels with energy less than 25,000 cm have been determined from low-temperature spectroscopic data for $Pr^{(3+)}$, $Dr^{(3+)}$, and $Er^{(3+)}$ in this structure. Further, the room-temperature fluorescence lifetimes have been measured for some of the multiplets of these four doping ions.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justice

By
Dict ibation |

Availability Codes

Dist Special

COPY SPECTED 2

Bay₂F₈ is an interesting host crystal for rare-earth ions. The compound was first observed in the complicated BaF₂-YF₃ phase diagram in 1967 by Ippolitov et al.¹. Since then several quantum-electronic processes have been described for rare-earth ions in this structure. Johnson and Guggenheim have reported laser action for Er^{2,3}, Dy⁴, and Ho⁵. The crystal is especially interesting in the infrared wavelength region due to the weak phonon activity - i.e. slow multiphonon relaxation. Lasing at 3 µm has been obtained for both Dy⁴ and a Ho down-conversion laser⁶. Infrared to visible up conversion has been achieved for Yb-Er systems^{2,7}. Ultraviolet to visible energy transfer has also been reported for systems codoped with Eu²⁺ and a Ln³⁺ ion⁸.

published about the properties of rare-earth doped BaY₂F₈ crystals. The purpose of this series of papers is to investigate some general properties of the crystal and the behaviour of Ln³⁺ ions in this structure in order to get a better understanding of these systems. In this first paper the optical properties of the undoped crystal are given for wavelengths from the ultraviolet to the infrared. The energy levels below 25 000 cm⁻¹ are listed and discussed for the four doping ions Pr, Dy, Ho, and Er. Fluorescence lifetimes are also given for some of the multiplets of these ions.

II The BaY₂F₈ crystal structure

BaY2F8 single crystals belong to the monoclinic space group

 c_{2h}^3 (C2/m) $^{9-12}$. The lattice constants are 10,12 : a = 697.2 pm, b = 1050 pm, c = 426.0 pm, and $_{3}$ = 99.7°. Each unit cell contains two BaY₂F₈ formula units. The point symmetries at the different sites are 9 : Two Ba sites with c_{2h} symmetry, four Y sites and four F sites with c_{2h} symmetry, four F sites with c_{3} symmetry, and eight F ions at general sites. Each Y ion is surrounded by eight F ions.

A Crystal growth

The samples used for the experiments were cut from large crystals of good optical quality. The crystals were grown by the Czochralskimethod in an argon atmosphere. The pulling was controlled by a mini computer, and smooth cylindrical rods with a diameter of approximately 2 cm were cb tained. Due to nonuniform thermal expansion during cooling the crystals cleave easily after the growth. Purified starting materials were used, but still very weak fluorescence from several rare-earth ions could be seen even in the undoped crystal.

B Index of refraction

BaY $_2$ F $_8$ has good optical properties. In addition to the excellent infrared behaviour, (infrared absorption edge at 9 μ m) the crystal is transparent through the visible to beyond 200 nm in the ultraviolet. As a biaxial crystal three refractive indices are needed to describe the dielectric properties of BaY $_2$ F $_8$. The refractive indices have been measured as function of the wavelength in the spectral region 275 nm - 2.65 μ m by the method described by Bond 13 . This method gives in addition to the numerical values of the indices the direction of the main axes x, y, and z of the index ellipsoid with re-

spect to the crystallographic axes a, b, and c as shown in figure 1. The obtained values for the indices and the angle ρ between the c and z axes are given in table I. and figure 2. Determination of ρ by this method gives poor accuracy unless the angle is large. Visual inspection between crossed polarizers gives a value for ρ around 23° .

C Micro hardness

The surface hardness of the crystal was measured with an "LL" Tukon Microhardness Tester, and the results are given in table II. On the Mohs scale the hardness corresponds to a value close to 5.

III SPECTROSCOPIC RESULTS

Trivalent rare-earth ions enter the Y sites 14 in BaY₂F₈ substitutionally. The symmetry at this site is so low that the crystal field totally lifts the degeneracy of the multiplets for ions with an even number of electrons. For ions with an odd number of electrons all levels are doublets. The overall symmetry of the crystal makes six different polarized optical spectra possible. If only electric-dipole transistions are important, only three different spectra will be observed. For ions with an odd number of electrons there are no selection rules for transition probabilities. For ions with an even number of electrons the energy levels are separated into two sets, and transitions of electric-dipole nature between two levels of the same set are seen only for Elb, whereas transitions between levels of different sets are seen only for Elb.

The energy levels were determined from absorption

5

and emission spectra at 10 K and slightly higher temperatures. A CARY 17DK instrument was used for absorption measurements. The emission spectra were obtained with a computer-controlled set up with a 1/3 meter McPherson monochromator and an argon laser for excitation. Polarized spectra were recorded for the ions with an even number of electrons. The fluorescence lifetimes were determined at room temperature. A pulsed dye laser was used for excitation. Lifetimes longer than 100 µs were processed in a TMC computer of average transients. Shorter lifetimes were measured directly from the screen of a storage oscilloscope.

A Praseodymium

Most of the energy levels of the ground configuration of \Pr^{3+} in $\operatorname{BaY}_2\mathbb{F}_8$ have been determined and are listed in table III. Energy levels have been obtained for all multiplets except $^1\mathrm{S}_0$, where the only level is very high in energy. For five multiplets $(^3\mathrm{P}_2,\ ^3\mathrm{P}_0,\ ^1\mathrm{D}_2,\ ^3\mathrm{F}_4,\ \mathrm{and}\ ^3\mathrm{F}_2)$ all levels have been determined, whereas some are missing for the remaining multiplets, of which most have high J numbers and therefore many levels. It has not been possible to separate $^1\mathrm{I}_6$ and $^3\mathrm{P}_1$. Transitions to the upper levels of several multiplets were phonon broadened prohibiting an exact determination af the energy of these levels. The accuracy on the levels of $^1\mathrm{G}_4$ is also less than for the other levels, since absorption to this multiplet is very weak.

Polarized spectra were recorded only in absorption, so it has not been possible to give a symmetry assignment to those few levels involved only in emission – i.e. some levels of the 3 H multiplets. For absorption to 3 F $_4$ and 3 F $_3$

Only the lifetime of the ³P₀ multiplet has been determined and is given in table VII.

B_ Dysprosium

All energy levels below 25 000 cm⁻¹ except the one of 6 F_{1/2} and two of the ground multiplet $^{6}\mathrm{H}_{15/2}$ have been determined for Dy³⁺ in BaY₂F₈ and are listed in table IV. The agreement with the energy levels reported by Johnson and Guggenheim 4 is good, although there are a few significant differences. They report levels of the ground multiplet at 39.5 cm⁻¹ and 590 cm⁻¹. Although two levels of $^{6}\text{H}_{15/2}$ are missing in our scheme, it is very unlikely that one of these should be at 39.5 cm⁻¹. Both should probably be found at energies higher than 200 cm⁻¹, since phonon activity, as for Pr3+, smears out transitions to the upper levels of some multiplets. ${}^6\mathrm{F}_{1/2}$ is not seen, since transitions from the ground multiplet to this level are strictly forbidden because $\Delta J > 6$. The accuracy of the levels of the three upper multiplets is less than for the other multiplets, since it was not possible at these wavelengths to resolve the weak transitions from the two lowest levels of the ground multiplet.

Only the lifetimes of the ${}^4\mathrm{F}_{9/2}$ and ${}^6\mathrm{H}_{13/2}$ multiplets have been measured at room temperature. The lifetime of ${}^6\mathrm{H}_{13/2}$

was also measured af 77 K. The measured values are given in table VII as are values reported earlier by Johnson and Guggenheim⁴. The agreement is within experimental accuracy.

C Holmium

The large number of levels in many of the multiplets of Ho3+ prevented a complete determination of the energy levels of the lowest multiplets for this ion in BaY,F. Those levels obtained are listed in table V. Johnson and Guggenheim 5 report some energy levels of four multiplets. The agreement with our results is rather good except for the ground multiplet, where they have a level at 20 cm⁻¹, which we do not see at all. Kurkin et al. 14 have determined a level at 0.24 cm from ESR spectra. Polarized absorption spectra are of little value, since the two levels of the ground state quasi doublet belong to different symmetry sets. Polarized emission spectra are also difficult to explain due to many levels with little separation, so no symmetry asignments are given in table VII. Except for the two lowest multiplets, the accuracy for Ho3+ is also less than for the other ions due to the large number of lines, which are often grouped very closely. The upper levels of the ground multiplet are poorly determined because of phonon interaction. No transitions to the 514 multiplet were seen.

The lifetimes of the observed excited multiplets except 5I_5 are listed in table VII. The lifetimes of 5F_4 and 5S_2 are thermally coupled at room temperature. Johnson and Guggenheim have reported room-temperature lifetimes for the two lowest excited multiplets that are, within experimental accuracy.

the same as measured here. Their 5F_5 value of 70 µs at 77 K compares to our room temperature value of 39 µs. With a concentration lower than 1 % Ho they observe longer lifetimes. Antipenko et al. 6 report for 0.5% doping a lifetime for 5I_7 of 9.5 ms and for 5I_6 of 4.2 ms. For 5% doping they give the lifetimes of 9.1 ms and 2.5 ms, respectively. All of these values are lower than the ones reported here.

D Erbium

All the energy levels below 25 000 cm $^{-1}$ except one have been determined for Er $^{3+}$ in BaY $_2$ F $_8$ and are listed in table VI. Johnson and Guggenheim 2 , have reported the energy levels of two multiplets and a few other levels. Their crystal-field splittings of 4 F $_{9/2}$ and 4 I $_{15/2}$ are within the experimental accuracy equal to the splittings reported here. As for the other ions the accurate positions of the upper levels of the ground multiplet were difficult to determine. The absorption to 4 I $_{9/2}$ is weak, so one level of this multiplet is missing, and the accuracy for the other levels as well as for 4 I $_{11/2}$ and 2 H $_{9/2}$ ·is less than for the other multiplets.

The lifetimes for four of the Er³⁺ multiplets are given in table VII. The values reported by Johnson and Guggenheim³ are included for comparison.

IV CONCLUSION

Bay₂F₈ is in many ways comparable to the well known laser host LiYF₄; the crystal can be grown the same way, and the mechanical and chemical properties are almost the same. But

there are important differences. BaY $_2$ F $_8$ has lower symmetry, what makes everything a little more complicated. However, the infrared properties are better than for LiYF $_4$, which makes the crystal a promising laser host in this region. It is hoped that lasing at 4 μ m should be possible - maybe even at 6 μ m.

To get a better understanding of the crystal-field potential in this structure, the energy levels presented here together with experimental magnetic data for rareearth doped crystals will be used to determine the crystal-field parameters. These results will be presented in some following papers. Calculated energy levels will also help to make the interpretation of the optical spectra, especially for Ho, more accurate, and permit symmetry assignments for the levels of this ion.

ACKNOWLEDGMENTS

The authors wish to thank N.W. Rhodes for preparing the samples and H. Chou for doing most of the lifetime measurements on Dy. This work was supported by the Department of the Navy, Office of Naval Research under Contract Number N00014-81-K-0476.

References

- ¹E.G. Ippolitov, L.S. Garashina, and B.M. Zhigarnovskii, Dokl. Akad. Nauk SSSR <u>173</u>, 101 (1967)
- 2L.F. Johnson and H.J. Guggenheim, Appl. Phys. Lett. 19,
 44 (1971)
- 3L.F. Johnson and H.J. Guggenheim, Appl. Phys. Lett. 20, 474 (1972)
- ⁴L.F. Johnson and H.J. Guggenheim, Appl. Phys. Lett. <u>23</u>, 96 (1973)
- ⁵L.F. Johnson and H.J. Guggenheim, IEEE J. Quantum Elec. QE-10, 442 (1974)
- ⁶B.M. Antipenko, B.V. Sinitsyn, and T.V. uvaravo, Kvant. Elektron. <u>7</u>, 2019 (1980) (Sov. J. Quantum. Elec. <u>10</u>, 1168 (1980))
- ⁷Y. Mita, E. Nagasawa, K. Shiroki, Y. Ohno, and T. Mat-subara, Appl. Phys. Lett. <u>23</u>, 173 (1973)
- 8B. Latourrette, F. Guillen, and C. Fouassier, Mat. Res. Bull. 14, 865 (1979)
- 90.E. Izotova and V.B. Aleksandrov, Dokl. Akad. Nauk SSSR 192, 1037 (1970) (Sov. Phys. Dokl. 15, 525 (1970))
- 10 E.G. Ippolitov and A.G. Maklachkov, Izv. Akad. Nauk SSSR Neorg. Mater. 6, 146 (1970) (Inorg. Mat. 6, 124 (1970))
- 110.E. Izotova, L.S. Garashina, and B.P. Sobolev, Kristallografiya 15, 580 (1970) (Sov. Phys. Cryst. 15, 496
 (1970))

¹³w.L. Bond, J. Appl. Phys. <u>36</u>, 1674 (1965)

14 I.N. Kurkin, K.P. Chernov, and Yu.K. Chirkin, Fiz.
. Tverd. Tela 21, 937 (1979) (Sov. Phys. Solid St. 21, 549 (1979))

Table I: Refractive indices n_{x} , n_{y} , and n_{z} and the angle ρ between the c and z axes for BaY₂F₈ as function of the wavelength λ . Accuracy on n: 0.0001. Accuracy on ρ : 1°. Accuracy on λ : 1%.

(nm)	n _x	n _y	n _z	(°)
275	1.5556	1.5703	1.5457	17
300	495	631	396	19
325	435	574	339	-
350	398	530	303	20
400	338	466	244	22
450	298	421	207	23
500	270	391	179	21
600	232	3 53	142	21
700	208	330	120	23
8 00	194	314	106	21
10 00	174	294	087	22
1165	160	2 80	074	20
1565	139	258	053	21
1965	118	239	035	20
2400	096	215	013	20
2650	1.5 082	1.5201	1.5000	21

Table T: Micro hardness in Knoop numbers for Bay F8.

100	face	ИÞ	:	250
		U C	:	275
010	face	ll a	:	350
		11 0	:	310
001	face	ll a	:	350
		llь	:	235

STATES Decises Received Services

Table III. Energy levels in cm⁻¹ for Pr³⁺ in BaY₂F₈ at 10 K. The accuracy is is ± 2 cm⁻¹ except for $^{1}G_{4}$ with ± 5 cm⁻¹. Symmetry "1" and "2" correspond to Γ_{1} and Γ_{2} m respectively.

MILTPLET	SYMETRY	ENERGY	MULTIPLET	SYMETRY	e e e e e e e e e e e e e e e e e e e
3 _{P2}	1	22 828 ^a	³ F ₃	(2)	6 702
	2	721	ļ	(2)	678
	1	647	1	(1)	631
	1	558		(1)	550
	2	. 22 464		(2)	517
¹ 16- ³ P1	2	21 891 ^a		(1)	6 423
0 1	2	776	3 _{F2}	1	5 352
	1	600	-	2	285
	2	472		1	273
	1	467		2	188
	2	334		1	5 167
	1	241			
	2	215	?	2	5 049
	1	21 194	3 _H 6		4 464
³ _{P0}	1	20 836		2	415
	•	20 050		ı	397
¹ D ₂	1	17 042 ^a		1	372
	1	16 945 ^a	Ţ		4 314
	2	745	1 3		а
	2	737	³ H ₅		2 736 ^a
	1	16 736			420 ^a 371 ^a
¹G ₄	2	9 971		•	285
4	1	743			253
	2	9 712	_		241
	2	, , 12			2 229
³ F ₄	(1)	7 247 ^a			
4	(2)	179	3 _{H4}		618 ^a
	(1)	138	_		315
	(2)	110			268
	(1)	092		1	90
	(2)	6 971	1	1	9
	(1)	961		2	0
	(2)	947	L		
	(1)	6 936			
			a) Only an ap	proximate valu	e

CONTRACT CONTRACT CONTRACTOR

35511200

All levels are doublets. The accuracy is 1 cm -1 Table IV: Energy levels in cm⁻¹ for Ly^{3+} in BaY_2F_8 at 10 K. except for $^4\text{G}_{11/2}$, $^4\text{I}_{15/2}$, and $^4\text{F}_{9/2}$ with $^\pm$ 5 cm⁻¹

628^a

579 555 531516

193 118

831^a

674^a

MULTIPLET	ENERGY	MULTIPLET	DNOKEY	MUMIPLET	PARTEY	MUNITERE	
				y			
² 611/2	23 719	PF 3/2	13 276	F11/2-H9/2	8 072ª	6 _{1,1,7}	m
	579	i ?	13 269		019 ^a		
	540	1			7 914ª		
	518	6F5/2	12 542		854		
	479	;	453		841		
	23 428		12 423		797		
4		<u>.</u>	321 11		772		m
115/2	22 370	1/2			702	•	
	312		129		989	6H15/2	
	284	-			644	<u>.</u>	
	246		10 998	·····	7 604		
	133		B007 01				
	074	⁴ 5/2	075 01	6H ₁₁ /2	6 044		
	020		חדק		015		
	22 018		797 07		5 950		
4		6Fg/7-6H7/7	9 428ª		892		
F9/2	/14 17	7/1	304ª		855		
	180		262 ^a		5 850		
	113	.	221				
	020		183				
			177				
6F1/2	13 657		081	a) only an approximate value	oroximate	value	
			000				
			8 958				

STATE STATE OF THE STATE OF THE

Table V: Energy levels in cm⁻¹ for ${\rm Ho}^{3+}$ in ${\rm BaY}_2{\rm F}_8$ at 10 K. The accuracy is \pm 5 cm⁻¹ except for ${}^5{\rm I}_7$ and ${}^5{\rm I}_8$ with \pm 1 cm⁻¹.

Multiplet Energy 5 _{F3} 20 78 77 76 67 20 64 5 _{F4} 18 74 71 71	12 19 15 12 17 2
5 _{F4} 18 74	19 i5 12 i7
77 76 67 20 64 5 _{F4} 18 74 71	5 2 17 2
67 20 64 5 _{F4} 18 74 71	2 2
20 64 5 _{F4} 18 74 71	2
5 _{F4} 18 74	2
71	l l
71	7 I
	' !
70	7
69	9
68	6
65	0
59	6
18 58	9
⁵ s ₂ 18 55	0
54	6
53:	2
504	4
18 50	0
⁵ F ₅ 15 71	3
69	7
68	5
654	4
, 62°	L
579	•
529	•
499	,
15 49	5
⁵ 1 ₅ 11 310	,
287	, [
285	5
280)
273	3
262	2
11 254	1

Multiplet	Energy
⁵ 1 ₆	8 855
	757
	753
	746
	739
	717
	711
	704
	700
	696
	8 687
⁵ 1 ₇	5 356
. •	275
	. 271
	266
	253
	227
	213
	196
•	188
	180
	175
	5 171
⁵ 18	386 ^a
8	377 ^a
-	349 ^a
	321 ^a
	311 ^a
	272 ^a
	238 ^a
	119
	88
	57
	54
	39
•	37
	0p

a) only an approximate value

b) a quasi doublet with 0.24 cm⁻¹ separation¹⁴⁻

Table vI: Energy levels in cm⁻¹ for Er³⁺ in BaY₂F₈ at 10 K.

The accuracy is ± 1 cm⁻¹ except for 2 H_{9/2}, 4 I_{9/2}, and 4 I_{11/2} with ± 2 cm⁻¹. All levels are doublets.

Multiplet	energy
² H _{9/2}	24 769
3/2	727
	672
	597
	24 531
⁴ F _{7/2}	20 723
., -	659
	600
	20 579
² H _{11/2}	19 371
/-	350
	331
	233
	200
	19 168
4s _{3/2}	18 518
3/2	18 449
⁴ s _{3/2} ⁴ F _{9/2}	15 502
•	423
	391
	337
	15 315

		_
Multiplet	energy	
⁴ 1 _{9/2}	12 687	
9/2	618	;
•	581	
	12 486	1
⁴ I _{11/2}	10 347	i
·	332	
	320	
	307	
ļ	270	
	10 226	
⁴ I _{13/2}	6 780	
1, -	745	
	738	
	694	
	606	
1	581	
	6 530	
⁴ I _{15/2}	408 ^a	
1 20,2	367 ^a	
	324 ^a	
	285 ^a	
	103	
}	46	
	25	
!	0	

a) only an approximate value

Table VII: Fluorescent lifetimes for Pr^{3+} , Dy^{3+} , Er^{3+} and Ho^{3+} in BaY_2F_8 .

Ion and Multiplet	Concentration	Temperature	Lifetime (µs) This Work	[a]
Pr ³⁺ : ³ P _o	0.5%	300K	54 ± 3	
$Dy^{3+}: {}^{4}F_{9/2}$	1 \$	300K	1280 ± 30	
⁶ H _{13/2}	1 %	- 300K	1500	1300 ²
		77K	8000	7000 ²
Ho ³⁺ : ⁵ F ₃	1 %	300K	2.3±0.1	
¹⁵ F ₄ . ⁵ S ₂	1 %	300K	263± 15	
. 5 _{F5}	1 %	300K	39 ± 2	
_		77K		70 ⁵
⁵ I ₆	1 \$	300K	5400±250	7000 ⁵
	÷	300K		4200 ⁶
	5 %	300K		2500 ⁶
⁵ 1 ₇	1 %	300K	1700 ± 1500	16000 ⁵
	4 8	300K		9500 ⁶
	5 %			9100 ⁶
⁴ S _{3/2}	1 %	300K	530 ± 30	
Er ³⁺		77K		830 ³
⁴ F _{9/2}	1 %	300K	390 ± 30	
⁴ I _{11/2}	1 %	300K	9300 ± 700	
, -	20 %	77K		67003
⁴ I _{13/2}	1 % 20 %	300K 77K	11700 ± 700	8300 ³

[[]a] Superscripts denote references.

soide x, y, and z with respect to the crystal-Figure 1: The position of the axes of the index elliplographic axes a, b, and c in BaY_2^Fg .

Figure 2: The refractive indices n_x , n_y , and n_z and the angle ρ between the c and z axes for BaY2F8 as function of the wavelenght λ .

END

FILMED

1-86

DTIC