# Wild Pig Maze by Nob Yoshigahara

An algorithmic approach

Do Xuan Anh Le Quang Dung Hoang Anh Quan Trinh Huy Vu

December 8, 2020

#### Table of content

- 1. Problem statements
- 2. Algorithm
- 3. Results

# **Problem statements**

#### **Problem statements**



Figure 1: Nob Yoshigahara, Puzzles 101: A PuzzleMasters Challenge

# Algorithm

#### Overview

- 1. Creating a (0,1) matrix from the image of the maze.
- 2. Changing matrix to a directed graph.
- 3. Find a path of the directed graph and draw it to the image.

# Step 1: Creating a (0,1) - matrix from the image of the maze

Consist of THREE main stages:

1) Using PIL package to save the pixels of the image as a (0,1) - matrix.



Figure 2: The bordered maze.

2) Determining coordinates of four corners of the maze.

#### Step 1: Creating a (0,1) - matrix from the image of the maze

3) Shrinking the above (0,1) - matrix into a smaller one (the desired matrix).

We have two approaches:

• Measure the width of the path.



Figure 3: Error corresponding to the path's width.

# Step 1: Creating a (0,1) - matrix from the image of the maze

• Determine the suitable size of the matrix.



Figure 4: The horizontal sum and vertical sum.

#### Step 2: Changing matrix to a directed graph

- Create a graph G.
- For each position which is empty, we add four vertices to the graph, which imply the position from the previous step.
- Add nodes to the graph which follow some rules.

#### Step 3: Find a path of the directed graph and visualize it

- Find a path of the directed graph which is output of Step 2.
- Visualize the path by using the matplotlib package in Python.

#### Results

#### Path in the maze



#### **Statistics**

- 379 lines of code.
- Commits counter:
  - Do Xuan Anh: 11
  - Le Quang Dung: 27
  - Hoang Anh Quan: 11
  - Trinh Huy Vu: 11

#### What we have learned

- Version control system: Git/Github.
- Packages in Python: matplotlib, networkx, numpy, PIL.
- Teamwork management.

