随机变量的独立性

§4随机变量的独立性

设(X, Y)是二维随机变量,其联合分布函数为F(x, y),又随机变量X的分布函数为 $F_{X}(x)$,随机变量Y的分布函数为 $F_{Y}(y)$. 如果对于任意的x, y, 有

$$F(x, y) = F_X(x) \cdot F_Y(y)$$

则称X, Y是相互独立的随机变量.

说明

§4随机变量的独立性

(1). 由于

$$F(x, y) = P\{X \le x, Y \le y\}$$

以及
$$F_X(x) = P\{X \le x\}, \quad F_Y(y) = P\{Y \le y\}$$

可知,随机变量 X 与 Y 相互独立,实际上是指:

对于任意的x, y, 随机事件

$$\{X \le x\} \quad = \{Y \le y\}$$

相互独立.

说明

§ 4随机变量的独立性

(2). 如果随机变量 X与Y相互独立,则由

$$F(x, y) = F_X(x)F_Y(y)$$

可知,

二维随机变量(X, Y)的联合分布函数 F(x, y)可由其边缘分布函数 $F_X(x)$ 与 $F_Y(y)$ 唯一确定.

例

§ 4随机变量的独立性

设二维随机变量(X, Y)的联合分布函数为

$$F(x, y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan \frac{x}{5} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{10} \right)$$
$$(-\infty < x < +\infty, -\infty < y < +\infty)$$

试判断X与Y是否相互独立?

解:

X的边缘分布函数为

例 1 (续)

§ 4随机变量的独立性

$$F_X(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \lim_{y \to +\infty} \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan \frac{x}{5} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{10} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{5} \right) \quad \left(x \in (-\infty, +\infty) \right)$$

Y的边缘分布函数为

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y)$$

$$= \lim_{x \to +\infty} \frac{1}{\pi^{2}} \left(\frac{\pi}{2} + \arctan\frac{x}{5}\right) \left(\frac{\pi}{2} + \arctan\frac{y}{10}\right)$$

例 1 (续)

§ 4随机变量的独立性

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{10} \right) \qquad \left(y \in \left(-\infty, +\infty \right) \right)$$

所以,对于任意的实数x,y,有

$$F(x, y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan \frac{x}{5} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{10} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{5} \right) \cdot \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{10} \right) = F_X(x) F_Y(y)$$

所以X与Y是相互独立的随机变量.

离散型随机变量的独立性

§ 4随机变量的独立性

设(X, Y)是二维离散型随机变量,其联合分布律为 $p_{ij} = P\{X = x_i, Y = y_i\}$ (i, j = 1, 2, ...)

又随机变量 X的分布律为

$$p_{i} = P\{X = x_i\}$$
 $(i = 1, 2, \dots)$

随机变量Y的分布律为

$$p_{.j} = P\{Y = y_j\}$$
 $(j = 1, 2, ...)$

如果对于任意的i, j $p_{ij} = p_{i}$. $p_{\cdot j}$

则称 X, Y是相互独立的随机变量.

例 2

§ 4随机变量的独立性

设二维离散型随机变量(X, Y)的联合分布律为

Y	1	2	3
1	<u>1</u> 6	<u>1</u> 9	<u>1</u> 18
2	$\frac{1}{3}$	α	β

试确定常数 α , β 使得随机变量X与Y相互独立.

解:

由表,可得随机变量 X与Y的边缘分布律为

第三章 随机变量及其分布

例 2 (续)

§ 4随机变量的独立性

X	1	2	3	$p_{i\cdot}$
1	<u>1</u> 6	1/9	<u>1</u> 18	<u>1</u> 3
2	$\frac{1}{3}$	α	β	$\frac{1}{3} + \alpha + \beta$
$p_{\cdot j}$	$\frac{1}{2}$	$\frac{1}{9} + \alpha$	$\frac{1}{18} + \beta$	

如果随机变量X与Y相互独立,则有

$$p_{ij} = p_{i}.p_{.j}$$
 ($i = 1, 2; j = 1, 2, 3$)

由此得

例 2 (续)

§ 4随机变量的独立性

$$\frac{1}{9} = P\{X = 1, Y = 2\} = P\{X = 1\}P\{Y = 2\} = \frac{1}{3} \cdot \left(\frac{1}{9} + \alpha\right)$$

由此得 $\alpha = \frac{2}{9}$;

又由

$$\frac{1}{18} = P\{X = 1, Y = 3\} = P\{X = 1\}P\{Y = 3\} = \frac{1}{3} \cdot \left(\frac{1}{18} + \beta\right)$$

由此得 $\beta = \frac{1}{9}$.

而当 $\alpha = \frac{2}{9}$, $\beta = \frac{1}{9}$ 时,联合分布律及边缘分布律为

第三章 随机变量及其分布

例 2 (续)

§ 4随机变量的独立性

X	1	2	3	$p_{i\cdot}$
1	<u>1</u> 6	<u>1</u> 9	<u>1</u> 18	1/3
2	$\frac{1}{3}$	<u>2</u> 9	<u>1</u> 9	$\frac{2}{3}$
$p_{\cdot j}$	1/2	<u>1</u> 3	<u>1</u> 6	

可以验证, 此时有

$$p_{ij} = p_{i} \cdot p_{\cdot j}$$
 $(i = 1, 2; j = 1, 2, 3)$

因此当 $\alpha = \frac{2}{9}$, $\beta = \frac{1}{9}$ 时, X = 5 相互独立.

返回主目录

例 3

§ 4随机变量的独立性

将两个球等可能地放入编号为1,2,3的三个盒子中.

令: X: 放入1号盒中的球数;

Y: 放入2号盒中的球数.

试判断随机变量 X 与 Y 是否相互独立?解:

X的可能取值为0,1,2; Y的可能取值为0,1,2.

由 §3.1知 X 与 Y 的联合分布律及边缘分布律为

第三章 随机变量及其分布

例 3 (续)

§ 4随机变量的独立性

Y	0	1	2	$p_{i\cdot}$
0	<u>1</u> 9	<u>2</u> 9	<u>1</u> 9	4/9
1	<u>2</u> 9	<u>2</u> 9	0	<u>4</u> 9
2	<u>1</u> 9	0	0	<u>1</u> 9
$p_{\cdot j}$	4/9	4/9	<u>1</u> 9	
$P\{X=1, Y=2\} = 0 \neq P\{X=1\}P\{Y=2\} = \frac{4}{9} \cdot \frac{1}{9}$				

随机变量X与Y不独立.

鱼 返回主目录

连续型随机变量的独立性

§ 4随机变量的独立性

设(X, Y)是二维连续型随机变量,其联合密度函数为f(x, y),

又随机变量X的边缘密度函数为 $f_X(x)$,随机变量Y的边缘密度函数为 $f_Y(y)$,如果对于几乎所有的x,y 有,

$$f(x, y) = f_X(x)f_Y(y)$$

则称 X, Y是相互独立的随机变量.

特别地,上式对f(x, y)的所有连续点(x, y)必

须成立.

◎ 返回主目录

说明

§ 4随机变量的独立性

这里所谓的"对几乎所有的x, y"是指:

那些使得等式

$$f(x, y) = f_X(x)f_Y(y)$$

不成立的全体点(x, y)所构成集合的"面积"为0.

例 4

§ 4随机变量的独立性

设二维随机变量(X, Y)的密度函数为

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy & 0 \le x \le 1, \ 0 \le y \le 2 \\ 0 & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

试判断随机变量 X 与 Y 是否相互独立?解:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{2} \left(x^2 + \frac{1}{3}xy\right) dy = 2x^2 + \frac{2}{3}x$$

例 4 (续)

§ 4随机变量的独立性

所以, 随机变量 X 的密度函数为

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x & 0 \le x \le 1 \\ 0 & \text{#}\dot{c} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} \left(x^2 + \frac{1}{3}xy\right) dx = \frac{1}{3} + \frac{1}{6}y$$

所以,随机变量Y的密度函数为

例 4 (续)

§ 4随机变量的独立性

$$f_{Y}(y) = \begin{cases} \frac{1}{3} + \frac{1}{6}y & 0 \le y \le 2\\ 0 & 其它 \end{cases}$$

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x & 0 \le x \le 1\\ 0 & \text{#} \\ \vdots \end{cases}$$

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy & 0 \le x \le 1, \ 0 \le y \le \\ 0 & \text{#} \\ \vdots \end{cases}$$

由于当0 < x < 1,0 < y < 2时,

$$f(x, y) \neq f_X(x) f_Y(y)$$

所以,随机变量X与Y不独立.

例 5

§ 4随机变量的独立性

甲、乙两人约定在某地相会,假定每人的到达时间 是相互独立的,且均服从中午12时到下午1时的均匀 分布. 试求先到者需等待10分钟以内的概率.

解:

设甲于12时 *X* 分到达,设乙于12时 *Y* 分到达.则随机变量 *X* 与 *Y* 相互独立,且都服从区间[0,60]上的均匀分布.

所以,(X, Y)的联合密度函数为

第三章 随机变量及其分布

例 5 (续)

§ 4随机变量的独立性

$$f(x, y) = \begin{cases} \frac{1}{3600} & 0 \le x \le 60, 0 \le y \le 60 \\ 0 & \text{#$\dot{\Xi}$} \end{cases}$$

设: $A = \{$ 先到者等待时间不超过10分钟 $\}$

则有,
$$A = \{|X - Y| \le 10\}$$

满足上述条件的点为图中直线

$$x - y = 10$$

与直线

$$x - y = -10$$

之间的部分.

例 5 (续)

所以, 所求概率为

$$P(A) = P\{|X - Y| \le 10\}$$

$$= \iint_{|x - y| \le 10} f(x, y) dx dy$$

$$=\frac{3600-50\times50}{3600}=\frac{11}{36}$$

§ 4随机变量的独立性

例6 (Buffon投针问题)

平面上画有等距离为 a 的一些平行线,向此平面上任意投一根长度为 L(L < a)的针,试求该针与任一平行直线相交的概率.

解:

设: X: 针的中心到最近一条 平行线的距离;

 φ : 针与X所在投影线的夹角.

例 6 (续)

§ 4随机变量的独立性

则随机变量
$$X$$
服从区间 $\left[0, \frac{a}{2}\right]$ 上的均匀分布;

随机变量 φ 服从区间[0, π]上的均匀分布;

并且随机变量X与 φ 相互独立.

所以二维随机变量 (X, φ) 的联合密度函数为

$$f(x, y) = \begin{cases} \frac{2}{\pi a} & 0 \le x \le \frac{a}{2}, \ 0 \le y \le \pi \\ 0 & \text{ if } \end{cases}$$

例 6 (续)

§ 4随机变量的独立性

设:
$$A =$$
 针与任一直线相交

则
$$A = \left\{ \frac{X}{\sin \varphi} < \frac{L}{2} \right\} = \left\{ X < \frac{L}{2} \sin \varphi \right\}$$

所以,

$$P(A) = P\left\{X < \frac{L}{2}\sin\varphi\right\} = \iint_{x < \frac{L}{2}\sin y} f(x, y) dx dy$$

$$= \int_{0}^{\pi} dy \int_{0}^{\frac{L}{2}\sin y} \frac{2}{\pi a} dx = \frac{2}{\pi a} \int_{0}^{\pi} \frac{L}{2}\sin y dy = \frac{2L}{\pi a}$$

说明

§ 4随机变量的独立性

由本题的答案

$$P(A) = \frac{2L}{\pi a}$$

我们有圆周率π的近似计算公式:

$$\pi = \frac{2L}{a} \cdot \frac{1}{P(A)}$$

若我们投针N次,其中有n次与平行线相交,则以

 $\frac{n}{N}$ 作为P(A)的近似值代入上式,得

$$\pi \approx \frac{2L}{a} \cdot \frac{N}{n}$$

第三章 随机变量及其分布

说明

§ 4随机变量的独立性

历史上,确有些学者做过此项实验,下表就是一些有关资料 (其中把a折算为1):

实验者	年 份	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218.5	3.1554
De Morgan	1860	1.0	600	382.5	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1759

说明

§ 4随机变量的独立性

上述的计算方法就是一种概率方法,它概括起来就是:首先建立一个概率模型,它与我们感兴趣的某些量

(如上面的常数π)有关.

然后设计适当的随机试验,并通过这个试验的结果来确定这些量.

现在,随着计算机的发展,已按上述思路建立起一 类新的计算方法——Monte-Carlo方法.

第三章 随机变量及其分布

例 7(正态随机变量的独立性)

§ 4随机变量的独立性

设二维随机变量
$$(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$$

则(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}$$

$$\cdot \exp \left\{ -\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

又随机变量 X 的边缘密度函数为

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad (-\infty < x < +\infty)$$

例 7 (续)

§ 4随机变量的独立性

随机变量Y的边缘密度函数为

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma_{2}}} e^{-\frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}}} \qquad (-\infty < y < +\infty)$$

所以,当r=0时,(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$= f_X(x) \cdot f_Y(y)$$

这表明,随机变量X与Y相互独立;

☆ 返回主目录

例 7 (续)

§ 4随机变量的独立性

反之,如果随机变量X与Y相互独立,则对任意的实数x, y, 有

$$f(x, y) = f_X(x) \cdot f_Y(y)$$

特别地,我们有

$$f(\mu_1, \mu_2) = f_X(\mu_1) \cdot f_Y(\mu_2)$$

即,

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} = \frac{1}{\sqrt{2\pi}\sigma_1} \cdot \frac{1}{\sqrt{2\pi}\sigma_2}$$

例 7 (续)

§ 4随机变量的独立性

由此得, r=0.

综上所述,我们有以下重要结论:

二元正态随机变量 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$ 相互独立的充分必要条件为:

$$r=0$$
.

n维随机变量的独立性

§ 4随机变量的独立性

设 (X_1, X_2, \dots, X_n) 是n维随机变量,其联合 分布函数为 $F(x_1, x_2, ..., x_n)$,又随机变量 X_i 的分布函数为 $F_{X_i}(x_i)$, (i=1, 2, ..., n). 如果 对于任意的n维实数组 $(x_1, x_2, ..., x_n)$,有 $F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2)\cdots F_{X_n}(x_n)$ 则称 X_1 , X_2 , …, X_n 是相互独立的随机变量

注意: 若 X,Y 独立, f(x),g(y) 是连续函数,则 f(X),g(Y) 也独立。