FLUIDOS - HOJA DE FORMULAS

Q_{Entra} = Q_{Sale}
$$N_{e.S_{e}} - N_{s.S_{s}}$$
 \longrightarrow ECUACION DE CONTINUIDAD

Donde El Tubo Es

MAS ANGOSTO, LA

VELOCIDAD ES MAS

Caudal que

entra (N₁S₁) Sale (N₂S₂)

Cardal que

Sale (N₂S₂)

Mayor Sección, menor velocidad $\Rightarrow N_1 < N_2 < N_3$

Pe+
$$\frac{1}{2} S N_e^2 = P_S + \frac{1}{2} S N_S^2$$
 ECUACION DE
BERNOULI PARA
TUBOS HURIZONTALES

 P_{ent} = Presión a la entrada. Va en Pascales = N/m^2

Psal = Presión en la salida. Va en Pascales = N/m²

Delta: (d) Es la densidad del líquido. Va en Kg/m³

Vent = Velocidad del líquido a la entrada. Va en m/s

V_{sa} = Velocidad del líquido en la salida. Va en m/s

g: Aceleración de la gravedad (= 10 m/s²)

hent = Altura del líquido a la entrada. Va en m.

hsal = Altura del líquido a la salida. Va en m.

RECORDAR

MAYOR VELOCIDAD,
MENOR PRESION

Mayor velocidad, menor presión => P3 < P2 < P1

Mayor Sección, mayor presión => S1>S2>S3 => P1>P2>P3

$$R = \frac{8 \, \text{m.} \, \text{L}}{\pi \, \text{C4}} \iff \text{RESISTENCIA} \\ \text{HIDRODINAMICA} \qquad \left[R \right] = \frac{Pa}{m^3} \cdot \text{Seg} \quad \text{DE } \underline{R} \cdot \text{NIDADES}$$

$$[R] = \frac{Pa}{m^3}$$
. Seg UNIDADES DE R.

$$\Delta p = RQ$$
 \leftarrow Ley de Poiseuille

Resistenci as en serie:

$$R_{\tau} = R_1 + R_2$$

$$L = E_{\text{nerg}} = \text{Pot} \times \Delta t$$

$$L = E_{\text{nerg}} = \Delta P. \text{ Vol}$$

$$Pot = Q. \Delta P$$

$$(EN WATTS)$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = R_H \times Q^2$$

$$Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad Pot = \frac{(\Delta P)^2}{R_H} \quad \text{or} \quad$$