

MOS INTEGRATED CIRCUIT μ PD42S4260, 424260

4 M-BIT DYNAMIC RAM 256 K-WORD BY 16-BIT, FAST PAGE MODE, BYTE READ/WRITE MODE

Description

The μ PD42S4260, 424260 are 262,144 words by 16 bits dynamic CMOS RAMs. The fast page mode and byte read/write mode capability realize high speed access and low power consumption.

Besides, the μ PD42S4260 can execute $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ self refresh.

These are packaged in 44-pin plastic TSOP (II) and 40-pin plastic SOJ.

Features

- 262,144 words by 16 bits organization
- Single +5.0 V ±10 % power supply
- · Fast access and cycle time

Part number	Power consumption Active (MAX.)	Access time (MAX.)	R/W cycle time (MIN.)	Fast page mode cycle time (MIN.)
μPD42S4260-60, 424260-60	880.0 mW	60 ns	110 ns	40 ns
μPD42S4260-70, 424260-70	880.0 mW	70 ns	130 ns	45 ns
μPD42S4260-80, 424260-80	797.5 mW	80 ns	150 ns	50 ns

• The μ PD42S4260 can execute $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ self refresh

Part number	Refresh cycle	Refresh	Power consumption at standby (MAX.)
μPD42S4260	512 cycles / 128 ms	CAS before RAS self refresh, CAS before RAS refresh, RAS only refresh, Hidden refresh	0.825 mW (CMOS level input)
μPD424260	512 cycles / 8 ms	CAS before RAS refresh, RAS only refresh, Hidden refresh	5.5 mW (CMOS level input)

• Multiplexed address inputs ... Row address: A0 to A8, Column address: A0 to A8

The information in this document is subject to change without notice.

***** Ordering Information

Part number	Access time (MAX.)	Package	Refresh
μPD42S4260G5-60-7JF	60 ns	44-pin Plastic TSOP (II)	CAS before RAS self refresh
μPD42S4260G5-70-7JF	70 ns	(400 mil)	CAS before RAS refresh
μPD42S4260G5-80-7JF	80 ns		RAS only refresh Hidden refresh
μPD42S4260LE-60	60 ns	40-pin Plastic SOJ	
μPD42S4260LE-70	70 ns	(400 mil)	
μPD42S4260LE-80	80 ns		
μPD424260G5-60-7JF	60 ns	44-pin Plastic TSOP (II)	CAS before RAS refresh
μPD424260G5-70-7JF	70 ns	(400 mil)	RAS only refresh
μPD424260G5-80-7JF	80 ns		Hidden refresh
μPD424260LE-60	60 ns	40-pin Plastic SOJ	
μPD424260LE-70	70 ns	(400 mil)	
μPD424260LE-80	80 ns		

Pin Configurations (Marking Side)

44-pin Plastic TSOP (II) (400 mil) 40-pin Plastic SOJ (400 mil)

A0 to A8 : Address Inputs
I/O1 to I/O16 : Data Inputs/Outputs
RAS : Row Address Strobe

UCAS : Column Address Strobe (upper)
LCAS : Column Address Strobe (lower)

WE : Write Enable
OE : Output Enable
Vcc : Power Supply

GND : Ground

NC : No Connection

ц Ц

Line Up

Block Diagram

Input/Output Pin Functions

The μ PD42S4260, 424260 have input pins \overline{RAS} , \overline{CAS}^{Note} , \overline{WE} , \overline{OE} , A0 to A8 and input/output pins I/O1 to I/O16.

Pin name	Input/ Output	Function
RAS (Row address strobe)	Input	RAS activates the sense amplifier by latching a row address (A0 to A8) and selecting a corresponding word line. It refreshes memory cell array of one line selected by the row address (A0 to A8). It also selects the following function. CAS before RAS refresh
CAS (Column address strobe)	Input	CAS activates data input/output circuit by latching column address (A0 to A8) and selecting a digit line connected with the sense amplifier.
A0 to A8 (Address input)	Input	9-bit address bus. Input total 18-bit of address signal, upper 9-bit and lower 9-bit in sequence (address multiplex method). Therefore, one word (16-bit) is selected from 262,144-word by 16-bit memory cell array. In actual operation, latch row address by specifying row address and activating RAS. Then, switch the address bus to column address and activate CAS. Each address is taken into the device when RAS and CAS are activated. Therefore, the address input setup time (tash, task) and hold time (trah, tcah) are specified for the activation of RAS and CAS.
WE (Write enable)	Input	Write control signal. Write operation is executed by activating RAS, CAS and WE.
OE (Output enable)	Input	Read control signal. Read operation can be executed by activating RAS, CAS and OE. If WE is activated during read operation, OE is to be ineffective in the device. Therefore, read operation cannot be executed.
I/O1 to I/O16 (Data input/ output)	Input/ Output	16-bit data bus. I/O1 to I/O16 are used to input/output data.

Note $\overline{\text{CAS}}$ means $\overline{\text{UCAS}}$ and $\overline{\text{LCAS}}$.

Electrical Specifications

- · All voltages are referenced to GND.
- After power up (Vcc ≥ Vcc (MIN.)), wait more than 100 μs (RAS, CAS inactive) and then, execute eight CAS before
 RAS or RAS only refresh cycles as dummy cycles to initialize internal circuit.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	VT		-1.0 to +7.0	V
Supply voltage	Vcc		-1.0 to +7.0	V
Output current	lo		50	mA
Power dissipation	Po		1	W
Operating ambient temperature	TA		0 to +70	°C
Storage temperature	T _{stg}		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	V
High level input voltage	Vıн		2.4		Vcc +1.0	V
Low level input voltage	VIL		-1.0		+0.8	V
Operating ambient temperature	TA		0		70	°C

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	C _{I1}	Address			5	pF
	C ₁₂	RAS, CAS, WE, OE			7	pF
Data input/output capacitance	Cı/o	I/O			7	pF

DC Characteristics (Recommended Operating Conditions unless otherwise noted)

	Par	ameter	Symbol	Test condition	า	MIN.	TYP.	MAX.	Unit	Notes
*	Operating of	current	Icc1	RAS, CAS cycling	trac = 60 ns			160	mA	1, 2, 3
				$t_{RC} = t_{RC \text{ (MIN.)}}, I_O = 0 \text{ mA}$	trac = 70 ns			160		
					trac = 80 ns			145		
	Standby	μPD42S4260	Icc2	\overline{RAS} , $\overline{CAS} \ge V_{IH (MIN.)}$, $Io = 0 m.$	A			2	mA	
	current			$\overline{\text{RAS}}$, $\overline{\text{CAS}} \ge \text{Vcc} - 0.2 \text{ V, Io} =$	0 mA			0.15		
		μPD424260		\overline{RAS} , $\overline{CAS} \ge V_{IH (MIN.)}$, $Io = 0 m.$	A			2		
				$\overline{RAS},\overline{CAS} \ge Vcc - 0.2\;V,Io =$	0 mA			1		
*	RAS only re	efresh current	Іссз	\overline{RAS} cycling, $\overline{CAS} \ge V_{IH (MIN.)}$	trac = 60 ns			160	mA	1, 2, 3, 4
				trc = trc (MIN.), lo = 0 mA	trac = 70 ns			160		
					trac = 80 ns			145		
*	Operating of	current	Icc4	$\overline{RAS} \le V_{IL (MAX.)}, \overline{CAS} \text{ cycling}$	trac = 60 ns			140	mA	1, 2, 5
	(Fast page	mode)		$t_{PC} = t_{PC (MIN.)}, lo = 0 mA$	trac = 70 ns			140		
					trac = 80 ns			130		
*	CAS before		Icc5	RAS cycling	trac = 60 ns			160	mA	1, 2
	refresh current			trc = trc (MIN.), lo = 0 mA	trac = 70 ns			160		
					trac = 80 ns			145		
	CAS before		Icc ₆	CAS before RAS refresh:	tras ≤ 200 ns			200	μΑ	1, 2
	long refresh (512 cycles			$\frac{t_{RC} = 250.0 \ \mu s}{RAS, CAS}$						
		μPD42S4260)		Vcc $-0.2 \text{ V} \leq \text{Vih} \leq \text{Vih(MAX.)}$						
				$0\mathrm{V} \leq \mathrm{V}_{1L} \leq 0.2\mathrm{V}$						
				Standby:	tras ≤ 1 μs			300	μΑ	1, 2
				RAS, CAS ≥ Vcc − 0.2 V Address: ViH or ViL						
				WE, OE: VIH						
				Io = 0 mA						
	Self refresh		Ісст	RAS, CAS:				150	μΑ	2
	(CAS before refresh, onl			$t_{RASS} = 5 \text{ ms}$						
	μPD42S426			$Vcc - 0.2 \text{ V} \leq Vih \leq Vih \text{ (MAX.)}$ $0 \text{ V} \leq Vil \leq 0.2 \text{ V}$						
	·	,		Io = 0 mA						
	Input leaka	ge current	I _{I(L)}	V _I = 0 to 5.5 V		-10		+10	μΑ	
				All other pins not under test = 0 V						
	Output leak	age current	lo(L)	Vo = 0 to 5.5 V		-10		+10	μΑ	
	High lovel o	output voltogo	Ven	Output is disabled (Hi-Z)		2.4			V	
		output voltage	Voн	lo = -2.5 mA		2.4		0.4	•	
	Low level o	utput voltage	Vol	Io = +2.1 mA				0.4	V	

- Notes 1. Icc1, Icc3, Icc4, Icc5 and Icc6 depend on cycle rates (trc and trc).
 - 2. Specified values are obtained with outputs unloaded.
 - 3. Icc1 and Icc3 are measured assuming that address can be changed once or less during $\overline{RAS} \le V_{IL\ (MAX.)}$ and $\overline{CAS} \ge V_{IH\ (MIN.)}$.
 - 4. Icc3 is measured assuming that all column address inputs are held at either high or low.
 - 5. lcc4 is measured assuming that all column address inputs are switched only once during each fast page cycle.

★ AC Characteristics (Recommended Operating Conditions unless otherwise noted)

AC Characteristics Test Conditions

(1) Input timing specification

(2) Output timing specification

(3) Output load condition

Common to Read, Write, Read Modify Write Cycle

Paramet		Cumbal	trac =	60 ns	trac =	70 ns	trac =	80 ns	Unit	Notes
Paramet	er	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Onit	notes
Read/Write cycle time		trc	110	-	130	1	150	-	ns	
RAS precharge time		t RP	40	-	50	-	60	-	ns	
CAS precharge time		t CPN	10	1	10	1	10	1	ns	
RAS pulse width		t ras	60	10,000	70	10,000	80	10,000	ns	1
CAS pulse width		tcas	15	10,000	20	10,000	20	10,000	ns	
RAS hold time		t rsh	15	1	20	1	20	1	ns	
CAS hold time		t csH	60	ı	70	ı	80	1	ns	
RAS to CAS delay time		t RCD	20	45	20	50	20	60	ns	2
RAS to column address	delay time	t rad	15	30	15	35	15	40	ns	2
CAS to RAS precharge t	ime	t CRP	10	ı	10	ı	10	1	ns	3
Row address setup time		t asr	0	-	0	ı	0	-	ns	
Row address hold time		t rah	10	-	10	ı	10	-	ns	
Column address setup ti	me	t asc	0	-	0	_	0	-	ns	
Column address hold tim	ne	t cah	15	-	15	ı	15	-	ns	
OE lead time referenced	to RAS	toes	0	-	0	-	0	-	ns	
CAS to data setup time		tclz	0	ı	0	ı	0	1	ns	
OE to data setup time	OE to data setup time		0	-	0	ı	0	-	ns	
OE to data delay time		t oed	15	-	15	-	20	-	ns	
Masked byte write hold time referenced to \overline{RAS}		tmrh	0	-	0	_	0	-	ns	
Transition time (rise and	fall)	t⊤	3	50	3	50	3	50	ns	
Refresh time	μPD42S4260	tref	-	128	-	128	-	128	ms	4
	μPD424260		-	8	-	8	-	8	ms	

Notes 1. In $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycles, tras (MAX.) is 100 μ s.

If 10 μ s < tras < 100 μ s, $\overline{\text{RAS}}$ precharge time for $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ self refresh (trps) is applied.

2. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from RAS
$t_{RAD} \le t_{RAD \ (MAX.)} \ and \ t_{RCD} \le t_{RCD \ (MAX.)}$	trac (MAX.)	trac (max.)
trad >trad (MAX.) and trcd \leq trcd (MAX.)	taa (max.)	trad + taa (max.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (max.)

 $t_{RAD\,(MAX.)}$ and $t_{RCD\,(MAX.)}$ are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (t_{RAC} , t_{AA} or t_{CAC}) is to be used for finding out when output data will be available. Therefore, the input conditions $t_{RAD} \ge t_{RAD\,(MAX.)}$ and $t_{RCD} \ge t_{RCD\,(MAX.)}$ will not cause any operation problems.

- 3. tcrp (MIN.) requirement is applied to RAS, CAS cycles.
- **4.** This specification is applied only to the μ PD42S4260.

Read Cycle

Parameter	Symbol	trac =	60 ns	trac =	70 ns	trac =	80 ns	Unit	Notes
ralametei	Syllibol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Oi iii	Notes
Access time from RAS	t rac	-	60	-	70	-	80	ns	1
Access time from CAS	t cac	-	15	-	20	-	20	ns	1
Access time from column address	t AA	-	30	-	35	-	40	ns	1
Access time from OE	t oea	-	15	-	20	-	20	ns	
Column address lead time referenced to RAS	t ral	30	-	35	-	40	-	ns	
Read command setup time	trcs	0	-	0	-	0	-	ns	
Read command hold time referenced to RAS	t rrh	0	-	0	-	0	-	ns	2
Read command hold time referenced to CAS	t rch	0	-	0	-	0	-	ns	2
Output buffer turn-off delay time from OE	toez	0	15	0	15	0	20	ns	3
Output buffer turn-off delay time from CAS	toff	0	15	0	15	0	20	ns	3

Notes 1. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from RAS
$t_{RAD} \leq t_{RAD \ (MAX.)} \ and \ t_{RCD} \leq t_{RCD \ (MAX.)}$	trac (Max.)	trac (max.)
trad >trad (MAX.) and trcd ≤ trcd (MAX.)	taa (max.)	trad + taa (max.)
trcd > trcd (MAX.)	tcac (MAX.)	trcd + tcac (MAX.)

 $t_{RAD\,(MAX.)}$ and $t_{RCD\,(MAX.)}$ are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (t_{RAC} , t_{AA} or t_{CAC}) is to be used for finding out when output data will be available. Therefore, the input conditions $t_{RAD} \ge t_{RAD\,(MAX.)}$ and $t_{RCD} \ge t_{RCD\,(MAX.)}$ will not cause any operation problems.

- 2. Either trch (MIN.) or trrh (MIN.) should be met in read cycles.
- 3. toff (MAX.) and toez (MAX.) define the time when the output achieves the condition of Hi-Z and is not referenced to Voh or Vol.

Write Cycle

Parameter	Symbol	trac = 60 ns		trac = 70 ns		trac = 80 ns		Unit	Notes
i arameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Offic	110103
WE hold time referenced to CAS	twcн	15	-	15	-	15	-	ns	1
WE pulse width	twp	10	-	15	-	15	-	ns	1
WE lead time referenced to RAS	trwL	15	-	20	-	20	-	ns	
WE lead time referenced to CAS	tcwL	15	-	15	-	20	-	ns	
WE setup time	twcs	0	-	0	-	0	-	ns	2
OE hold time	t oeh	0	-	0	-	0	-	ns	
Data-in setup time	tos	0	_	0	-	0	-	ns	3
Data-in hold time	tон	15	-	15	-	20	-	ns	3

- Notes 1. twp (MIN.) is applied to late write cycles or read modify write cycles. In early write cycles, twch (MIN.) should be met.
 - 2. If twcs ≥ twcs (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.
 - 3. tos (MIN.) and toh (MIN.) are referenced to the $\overline{\text{CAS}}$ falling edge in early write cycles. In late write cycles and read modify write cycles, they are referenced to the $\overline{\text{WE}}$ falling edge.

Read Modify Write Cycle

Parameter	Symbol	trac = 60 ns		trac = 70 ns		trac = 80 ns		Unit	Note
Falametei	Syllibol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Offic	Note
Read modify write cycle time	trwc	150	-	175	-	200	1	ns	
RAS to WE delay time	trwd	80	-	90	-	105	-	ns	1
CAS to WE delay time	tcwp	35	-	40	-	45	-	ns	1
Column address to WE delay time	tawd	50	-	55	-	65	-	ns	1

Note 1. If twcs ≥ twcs (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.

If trwb ≥ trwb (MIN.), tcwb ≥ tcwb (MIN.), tawb ≥ tawb (MIN.) and tcpwb ≥ tcpwb (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Fast Page Mode

Doromotor	Cumbal	trac = 60 ns		trac = 70 ns		trac = 80 ns		Unit	Nata
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Offit	Note
Fast page mode cycle time	t PC	40	-	45	-	50	-	ns	
Access time from CAS precharge	tacp	-	35	-	40	_	45	ns	
RAS pulse width	trasp	60	125,000	70	125,000	80	125,000	ns	
CAS precharge time	tcp	10	-	10	-	10	-	ns	
RAS hold time from CAS precharge	trhcp	35	-	40	-	45	-	ns	
Read modify write cycle time	tprwc	80	-	85	_	100	-	ns	
CAS precharge to WE delay time	tcpwd	55	_	60	-	70	-	ns	1

Note 1. If twcs ≥ twcs (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.

If trwb ≥ trwb (MIN.), tcwb ≥ tcwb (MIN.), tawb ≥ tawb (MIN.) and tcpwb ≥ tcpwb (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Refresh Cycle

Dorometer	Cumbal	trac = 60 ns		trac = 70 ns		trac = 80 ns		Unit	Note
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Uniil	Note
CAS setup time	t csr	10	-	10	-	10	-	ns	
CAS hold time (CAS before RAS refresh)	t chr	10	-	15	-	15	-	ns	
RAS precharge CAS hold time	t rpc	10	-	10	-	10	-	ns	
RAS pulse width	trass	100	-	100	-	100	-	μs	1
(CAS before RAS self refresh cycle)									
RAS precharge time	t RPS	110	-	130	-	150	-	ns	1
(CAS before RAS self refresh cycle)									
CAS hold time	t chs	-50	-	- 50	-	- 50	-	ns	1
(CAS before RAS self refresh cycle)									
WE hold time (hidden refresh cycle)	twhr	10	-	15	-	15	-	ns	

Note 1. This specification is applied only to the μ PD42S4260.

Read Cycle

Upper Byte Read Cycle

Remark L I/O: Hi-Z

Lower Byte Read Cycle

Remark U I/O: Hi-Z

Early Write Cycle

Remark OE: Don't care

Upper Byte Early Write Cycle

Remark OE, L I/O: Don't care

Lower Byte Early Write Cycle

Remark OE, U I/O: Don't care

Late Write Cycle

Upper Byte Late Write Cycle

Remark L I/O: Don't care

Lower Byte Late Write Cycle

Remark U I/O: Don't care

Read Modify Write Cycle

Upper Byte Read Modify Write Cycle

Remark In this cycle, the input data to Lower I/O is ineffective. The data out of that remains Hi-Z.

Lower Byte Read Modify Write Cycle

Remark In this cycle, the input data to Upper I/O is ineffective. The data out of that remains Hi-Z.

Fast Page Mode Read Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.

Fast Page Mode Byte Read Cycle

- Remarks 1. In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.
 - 2. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random.

Fast Page Mode Early Write Cycle

Remarks 1. OE: Don't care

2. In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.

Fast Page Mode Byte Early Write Cycle

Remarks 1. OE: Don't care

- 2. In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.
- 3. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random.

Fast Page Mode Late Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.

Fast Page Mode Byte Late Write Cycle

- Remarks 1. In the fast page mode, read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.
 - 2. This cycle can be used to control either $\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$ only. Or, it can be used to control $\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$ simultaneously, or at random.

Fast Page Mode Read Modify Write Cycle

Remark In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.

Fast Page Mode Byte Read Modify Write Cycle

- Remarks 1. In the fast page mode, read, write and read modify write cycles are available for each of the consecutive $\overline{\text{CAS}}$ cycles within the same $\overline{\text{RAS}}$ cycle.
 - 2. This cycle can be used to control either UCAS or LCAS only. Or, it can be used to control UCAS or LCAS simultaneously, or at random.

CAS Before RAS Self Refresh Cycle (Only for the mPD42S4260)

Remark Address, WE, OE: Don't care L I/O, U I/O: Hi-Z

Cautions on Use of CAS Before RAS Self Refresh

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ self refresh can be used independently when used in combination with distributed $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ long refresh; However, when used in combination with burst $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ long refresh or with long $\overline{\text{RAS}}$ only refresh (both distributed and burst), the following cautions must be observed.

- (1) Normal Combined Use of CAS Before RAS Self Refresh and Burst CAS Before RAS Long Refresh
 When CAS before RAS self refresh and burst CAS before RAS long refresh are used in combination, please
 perform CAS before RAS refresh 512 times within an 8 ms interval just before and after setting CAS before RAS
 self refresh.
- (2) Normal Combined Use of CAS Before RAS Self Refresh and Long RAS Only Refresh
 When CAS before RAS self refresh and RAS only refresh are used in combination, please perform RAS only refresh 512 times within an 8 ms interval just before and after setting CAS before RAS self refresh.
- (3) If trass (MIN.) is not satisfied at the beginning of CAS before RAS self refresh cycles (tras < 100 μs), CAS before RAS refresh cycles will be executed one time.</p>
 If 10 μs < tras < 100 μs, RAS precharge time for CAS before RAS self refresh (trans) is applied.</p>
 And refresh cycles (512/128 ms) should be met.

For details, please refer to How to use DRAM User's Manual.

CAS Before RAS Refresh Cycle

Remark Address, WE, OE: Don't care L I/O, U I/O: Hi-Z

RAS Only Refresh Cycle

Remark WE, OE: Don't care L I/O, U I/O: Hi-Z

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Write)

Remark OE: Don't care

Package Drawings

44 PIN PLASTIC TSOP(II) (400 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	18.63 MAX.	0.734 MAX.
В	0.93 MAX.	0.037 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	$0.32^{+0.08}_{-0.07}$	0.013±0.003
Е	0.1±0.05	0.004±0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
Н	11.76±0.2	0.463±0.008
- 1	10.16±0.1	0.400±0.004
J	0.8±0.2	0.031+0.009
K	0.145 ^{+0.025} _{-0.015}	0.006±0.001
L	0.5±0.1	$0.020^{+0.004}_{-0.005}$
М	0.13	0.005
N	0.10	0.004
Р	3°+7° -3°	3°+7° -3°

S44G5-80-7JF4

40 PIN PLASTIC SOJ (400 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
В	26.29 ^{+0.2} _{-0.35}	1.035+0.008
С	10.16	0.400
D	11.18±0.2	0.440±0.008
Е	1.08±0.15	$0.043^{+0.006}_{-0.007}$
F	0.7	0.028
G	3.5±0.2	0.138±0.008
Н	2.4±0.2	$0.094^{+0.009}_{-0.008}$
- 1	0.8 MIN.	0.031 MIN.
J	2.6	0.102
K	1.27(T.P.)	0.050(T.P.)
М	0.40±0.10	0.016+0.004
N	0.12	0.005
Р	9.40±0.20	0.370±0.008
Q	0.15	0.006
Т	R0.85	R0.033
U	$0.20^{+0.10}_{-0.05}$	$0.008^{+0.004}_{-0.002}$

P40LE-400A-2

Recommended Soldering Conditions

The following conditions (see tables below and next page) must be met when soldering μ PD42S4260, 424260.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Types of Surface Mount Device

μ PD42S4260G5-7JF, 424260G5-7JF: 44-pin plastic TSOP (II) (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: MAX. 2 Exposure limit: 7 daysNote (10 hours pre-baking is required at 125 °C afterwards) Cautions 1. After the first reflow process, cool the package down to room temperature, then start the second reflow process.	IR35-107-2
	2. After the first reflow process, do not use water to remove residual flux (water can be used in the second process).	
VPS	Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit: 7 days ^{Note} (10 hours pre-baking is required at 125 °C afterwards) Cautions 1. After the first reflow process, seed the package down to room tempera-	VP15-107-2
	After the first reflow process, cool the package down to room temperature, then start the second reflow process.	
	2. After the first reflow process, do not use water to remove residual flux (water can be used in the second process).	
Partial heating method	Terminal temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package).	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

μ PD42S4260LE, 424260LE: 40-pin plastic SOJ (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: MAX. 2 Exposure limit: 7 daysNote	IR35-207-2
VPS	Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 2 Exposure limit: 7 daysNote (20 hours pre-baking is required at 125 °C afterwards) Cautions 1. After the first reflow process, cool the package down to room temperature, then start the second reflow process. 2. After the first reflow process, do not use water to remove residual flux (water can be used in the second process).	VP15-207-2
Partial heating method	Terminal temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package).	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".