

UNIVERSIDADE FEDERAL DE PELOTAS – UFPEL CENTRO DE DESENVOLVIMENTO TECNOLÓGICO (CDTec) CURSOS DE CIÊNCIA DA COMPUTAÇÃO E ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE PROGRAMAÇÃO DE SISTEMAS

PROFs.: Me. ANDERSON PRIEBE FERRUGEM

PRIMEIRO TRABALHO TÓPICO: SIMULADOR DE MÁQUINA.

> O TRABALHO SERÁ UMA APRESENTAÇÃO EM VÍDEO DO GRUPO COM TODOS PARTICIPANTES COM CÓDIGO DISPONIBILIZADO VIA GITHUB; O ENVIO É FEITO APENAS POR COMPONENTE DO GRUPO; A DURAÇÃO MÁXIMA DO VÍDEO DEVERÁ SER DE **20 MIN** COM **TOLERÂNCIA** DE <mark>5 MIN. (15-25)</mark> ;

A APRESENTAÇÃO DEVERÁ MOSTRAR:

1) INTERAÇÃO ENTRE OS COMPONENTES;

2)ARGUIÇÃO DO FUNCIONAMENTO E DAS TÉCNICAS USADAS.

A APRESENTAÇÃO NÃO DEVERÁ SER APENAS:

1) APRESENTAÇÃO DE SLIDES;

2) APRESENTAÇÕES INDIVIDUAIS DOS COMPONENTES DO GRUPO.

EM CASO DE DÚVIDAS SOBRE A APRESENTAÇÃO PROCUREM POSTAR NO E-AULAS (DESTA FORMA A RESPOSTA FICA DISPONÍVEL A TODOS).

FERRAMENTAS:

SOFTWARE:

JAVA OU C++ (Escolha do grupo) Apresentação gráfica da execução !!!

Projeto de um simulador de sistema computacional hipotético

Parte I

Projeto de um simuladro da Arquitetura de um Computador hipotético baseado na arquitetura do livro do Calingaert

Introdução

O trabalho descrito a seguir consiste em implementar um Emulador para um Computador Hipotético, conforme apresentado no livro do Calingaert (livro texto), com alterações e complementos de algumas funções. Tal sistema será composto de **dois** módulos que deverão operar de forma integrada: o **executor** (simulador propriamente dito) e uma **interface visual**.

O resultado do trabalho deverá ser entregue com toda a documentação (programas fontes, programa executável, documentação formal sucinta das estruturas de dados definidas, das funções desenvolvidas e estratégias adotadas) pelo Github e

A avaliação do trabalho será realizada com base nos seguintes aspectos:

- correção do programa,
- adequação das definições adotadas,
- uso das técnicas básicas de programação,
- autenticidade e domínio sobre o produto gerado,

Descrição Geral

1. Memória

A memória do computador é definida pelos seguintes atributos:

Tamanho da memória	Indefinido (não menor que 1 KB)		
Palavra de memória	16 bits		
Unidade de endereçamento	<u>Palavra</u>		
Bit de paridade	<na></na>		
Cache	<na></na>		
Observações adicionais: <na> significa "Não se aplica".</na>			

2. Registradores

Esta arquitetura apresenta um conjunto reduzido de 6 registradores, cujos tamanhos são de 16 bits e 8 bits, conforme especificado a seguir.

Registradores Básicos:

Os registradores de propósito pré-definido, que dão suporte às funcionalidades da arquitetura e são acessados apenas pela unidade de controle, estão listados a seguir em tabela de registradores básicos (primários).

Ident.	Registrador	Tamanho	Descrição
		(bits)	
PC	Contador de Instruções (<i>Program Counter</i>)		Mantém o endereço da próxima instrução a ser executada
SP	Ponteiro de Pilha (Stack Pointer)		Aponta para o topo da pilha do sistema; tem incremento/decremento automático (<i>push/pop</i>)

Demais Registradores:

A lista seguinte mostra os demais registradores implementados no computador hipotético e sua descrição.

Ident.	Registrador	Tamanho	Descrição	
		(bits)		
ACC	Acumulador	16	Armazena os dados (carregados e resultantes)	
			das operações da Unid. de Lógica e Aritmética	
MOP	Modo de Operação	8	Armazena o indicador do modo de operação,	
			que é alterado apenas por painel de operação	
			(via console de operação - interface visual)	
RI	Registrador de Instrução	16	Mantém o <i>opcode</i> da instrução em execução	
			(registrador interno)	
DE	Registrador de Endereço	16	Mantém o endereço de acesso à memória de	
RE	de Memória		dados (registrador interno)	

3. Modos de Endereçamento

Os vários modos de endereçamento disponíveis nessa arquitetura estão listados a seguir, juntamente com suas utilizações:

Modos de	Identificação e Utilização		
Endereçamento			
Direto	Trivial		
Indireto	Bit 5 e/ou 6 do código da instrução ligado (código da instrução = código básico [+ 32] [+ 64], conforme seja o primeiro e/ou o segundo operando); o operando indica onde está o endereço do dado ou da instrução		

Imediato	Bit 7 do código da instrução ligado (código da instrução = código			
	básico + 128); o operando é o próprio dado			
Indexado	<na></na>			
Observações adicionais:				
_				

4. Conjunto de Instruções

A seguir está definido o conjunto de instruções reconhecido pelo computador, acompanhado de todas as informações necessárias para sua implementação.

Cada código de instrução (*opcode*) e operando (opd1 ou opd2) ocupa uma palavra de memória. As ações dizem respeito aos registradores, conforme identificação definida na tabela de registradores e endereços de memória referenciados. As observações sinalizadas se são descritas na legenda abaixo do quadro.

Mnemônico	Cód. de	Tam. da	N° de	Ação (comentário) **	Modos de	Obser-
(Sugerido)	Máq.*	,	_		endereçamento	vações
	(opcode)	ão	ndos		(D/In/Im)	
ADD	02	(palavras)	1	ACC← ACC + opd1	D/In/Im	(#)
BR	00	2	1	PC← opd1	D/III/III	(11)
BRNEG	05	2	1	PC← opd1, se ACC < 0	D/In	
BRPOS	01	2	1	PC← opd1, se ACC >0	D/In	
BRZERO	04	2	1	PC← opd1, se ACC = 0	D/In	
CALL	15	2	1	[SP]← PC; PC← opd1	D/In	(%)
				(desvio para sub-rotina opd1)		
COPY	13	3	2	opd1← opd2	opd1: D/In	(#)
					opd2: D/In/Im	, ,
DIVIDE	10	2	1	ACC← ACC / opd1	D/In/Im	(#)
LOAD	03	2	1	ACC← opd1	D/In/Im	(#)
MULT	14	2	1	ACC← ACC * opd1	D/In/Im	(#)
READ	12	2	1	opd1← input stream	D/In	
RET	09	1	0	PC← [SP]	-	(%)
				(retorno de sub-rotina)		
STOP	11	1	0	término (fim) de execução	-	
STORE	07	2	1	opd1← ACC	D/In	
SUB	06	2	1	ACC← ACC - opd1	D/In/Im	(#)
WRITE	80	2	1	Output stream← opd1	D/In/Im	(#)

Legenda

- * O código de máquina (*opcode*) é alterado pelo modo de endereçamento indireto <u>ou</u> imediato.
- ** A referência "[SP]" representa um elemento a ser retirado da pilha (operação *pop*) e a referência "[SP]←" representa uma operação *push* na pilha.
- (#) Instruções que podem ter endereçamento imediato.
- (%) As instruções CALL e RET utilizam a "Pilha do Sistema" para tratamento dos endereços de retorno, conforme descrito no item específico sobre este tema.

5. Pilha do Sistema

Uma pilha é utilizada pelo sistema para armazenar os endereços de retornos de sub-rotinas, conforme indicado na seção sobre o "Conjunto de Instruções". Esta pilha do sistema é endereçada (acessada) através do registrador **SP** (ponteiro da pilha).

A pilha do sistema está localizada no início da memória física, a partir do **endereço 2** (**endereço base da pilha**), cujo conteúdo não pode se desempilhado e deve manter o seu tamanho máximo (*Stack Limit*). O valor inicial do SP é implicitamente carregado com zero ao "ligar a máquina virtual". O ponteiro da pilha somente pode crescer incrementando até seu limite, causando um desvio para o endereço 0 (zero), caracterizada como uma exceção de "*Stack Overflow*", caso haja uma tentativa de empilhar com a pilha cheia.

A estrutura da pilha é a seguinte:

6. Modos de operação e instruções privilegiadas

Não há instruções privilegiadas, nem diferenciação de modos de operação da CPU, quanto a privilégios.

O Emulador deve ser definido para trabalhar em três modos de operação alternativos:

- (0) modo contínuo sem interação com a interface (visual) de operação;
- (1) modo contínuo interagindo com a interface de operação a cada ciclo de instrução e
- (2) modo de depuração (passo a passo) interagindo com a interface de operação, que proporciona a execução de apenas uma instrução a cada comando da interface.

O modo de operação é definido quando a máquina é reiniciada, mas também pode ser alterado durante a operação no modo (2), ou no modo (1), se a interface proporcionar uma interrupção no processamento ("*break*" ou passagem temporária para o modo (2)).

7. Periféricos (I/O) - operações, interrupções

A técnica utilizada para as operações de I/O é descrita a seguir:

- as operações de entrada simplesmente recebem um número inteiro resultante do tratamento da seqüência de caracteres anteriores a um CR (código 13; ENTER) introduzida no console (teclado);
- as operações de saída mostram na posição corrente do console (tela) os caracteres numéricos correspondente a um número inteiro;
- não há instruções para verificação de status de periféricos;
- o papel de controlador do periférico pode ser desempenhado pelo módulo de implementação da interface visual.

Bibliografia

CALINGAERT, Peter. **Assemblers, Compilers, and Program Translation.** Potomac: Computer Science Press, Inc, 1979.

STALLINGS, Willian. **Computer Organization and Architecture**. 5.ed. New Jersey: Prentice Hall, 1999.

TANENBAUM, Andrew. **Structured Computer Organization.** 4.ed. New Jersey: Prentice Hall, 1999.