Actividad 5. Movimiento armónico simple: Péndulo

Rosa Luz Zamora Peinado

Febrero de 2016

Introducción

En esta actividad se realizó un programa utilizando la función scipy.integrate.odeint de Python para resolver la ecuación diferencial que describe el movimiento de un péndulo simple y un péndulo amortiguado. Se presentan, más adelante, el código y las gráficas obtenidas.

El péndulo es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física (elasticidad, por ejemplo) y que está configurado por una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, u otro dispositivo que sirve para medir el tiempo.

Figura 1: Diagrama de péndulo simple.

Una simplificación del péndulo, valga la redundancia, es el péndulo simple; el cual tiene de las siguientes características.

- La cuerda en la que el péndulo se balancea no tiene masa, no se estira y permanece tensa.
- La lenteja es una masa puntual.
- El movimiento ocurre solo en dos dimensiones, i.e. la lenteja no traza una elipse sino un arco.

- El movimiento no pierde energía por fricción o por la resistencia del aire.
- El campo gravitacional es uniforme.
- El soporte no se mueve.
- La ecuación diferencial que representa el movimiento de un péndulo simple es:

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0\tag{1}$$

donde g es la aceleración de la gravedad, l es la longitud de la cuerda y θ el desplazamiento angular.

en esta práctica se trabajó también con el péndulo amortiguado, el cual obedece a la ecuación (1) pero con un componente extra de amortiguamiento b. Utilizamos la siguiente ecuación

$$\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + \frac{g}{l}\sin\theta = 0 \tag{2}$$

Resulta que solucionando (2) para theta, encontramos un movimiento periódico que con b>0 muestra decaimientos exponenciales en la velocidad angular y el ángulo de abertura del péndulo. A continuación se presenta el código base utilizado:

```
#Forma de la ecuación diferencial
#theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0

#theta'(t) = omega(t)
#omega'(t) = -b*omega(t) - c*sin(theta(t))
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def pend(y, t, b, c):
    theta, omega = y
    dydt = [omega, -b*omega - c*np.sin(theta)]
    return dydt

b = 0.15 #Coeficiente de amortiguamiento
g= 9.8 #Aceleración de la gravedad
l= 1 #Longitud del péndulo
c=g/l

y0 = [np.pi/6, 3] #[ángulo inicial, velocidad inicial]
```

t = np.linspace(0, 40, 1000) #generación de puntos

```
sol = odeint(pend, y0, t, args=(b, c)) #solución a la ecuación diferencial

plt.plot(t, sol[:, 0], 'teal', label='theta(t)') #gráfica de theta vs t
plt.plot(t, sol[:, 1], 'mediumvioletred', label='omega(t)') #gráfica de omega vs
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```

A continuación se presentan las gráficas obtenidas para ambos tipos de péndulo: simple y amortiguado, las cuales concuerdan con la intuición física y con lo aprendido en los cursos de Mecánica II y Ecuaciones Diferenciales.

Péndulo Simple: b = 0

Figura 2: Péndulo simple: $\theta=0,\,\omega=0,0\frac{rad}{s}$

Figura 3: Péndulo simple: $\theta=0,\!0,\,\omega=0,\!5\frac{rad}{s}$

Figura 4: Péndulo simple: $\theta=\pi,\,\omega=1,\!5\frac{rad}{s}$

Péndulo Amortiguado: $b \neq 0$

Figura 5: Péndulo amortiguado: $b=0,\!1,\,\theta=\frac{\pi}{3},\,\omega=0,\!5\frac{rad}{s}$

Figura 6: Péndulo amortiguado: $b=0.25,\,\theta=\frac{\pi}{3},\,\omega=0.5\frac{rad}{s}$

Figura 7: Péndulo amortiguado: $b=0{,}15,\,\theta=\frac{\pi}{6},\,\omega=3{,}0\frac{rad}{s}$

Bibliografía

- [1] Física Computacional(2016-2) Actividad 5. Recuperado el 01 de marzo de 2016 de http://computacional1.pbworks.com/w/page/105233358/Actividad%205% 20(2016-1))
 - [2] Wikipedia *Mathematical Pendulum*. Recuperado el 01 de marzo de 2016 de https://en.wikipedia.org/wiki/Pendulum_%28mathematics%29