

## **COMSATS** University Islamabad

## Lahore Campus

## Final Exam-Fall 2021

| Course Title:   | Calculus and Analytical Geometry                     |          | Course Co      | de: MTH104       | Credit Hours: | 3(3,0) |  |
|-----------------|------------------------------------------------------|----------|----------------|------------------|---------------|--------|--|
|                 | ada a sa            |          |                | Program<br>Name: |               |        |  |
| Semester:       |                                                      | Section: | A, B, C        | Date:            | 05-01- 2022   | 2      |  |
| Time Allowed:   | 180 minutes                                          |          | Maximum Marks: |                  | : 50          |        |  |
| Student's Name: |                                                      |          | Reg.No         |                  |               | 5      |  |
|                 | ctions / Guidelines:<br>ns carry equal marks. (10*5) | )=5()    |                |                  |               |        |  |

Note: Attempt all questions

Q.1. (a) Solve inequality and show its solution set on real line  $|2x-5| \le 7$ 

(b) Find the interval on which the function f(x) is increasing or decreasing. If

$$f(x) = 2x^2 - 2x - 12$$

Q.2. Solve integral by tabular method or by integration by parts

$$\int (2x^4 - 8x^3)e^{-3x} dx$$

Q.3 Solve integral by partial fraction method if  $\int \frac{x^2}{(2x+1)(x+2)^2} dx$ 

Q.4. Determine whether the sequence  $\{a_n\}$  converges or diverges, if it converges find its limit

$$a_n = \frac{e^n + e^{-n}}{e^n - e^{-n}}$$

Q.5. Find the sum of the infinite series

$$\sum_{k=1}^{\infty} \left[ \frac{1}{7^{k-1}} \right]$$

Q.6. Determine convergence or divergence of the series by Integral Test.

$$\sum_{k=1}^{\infty} \frac{1}{(2k+1)(3k+1)}$$

Q.7. (a) Solve by using L-Hospital rule,

$$\lim_{x \to 1} \frac{\ln x}{x - \sqrt{x}}$$

(b) Solve Limit by indeterminate form method,

$$\lim_{x\to 0} x^{4x}$$

Q.8. Determine whether the series Converges or Diverges by Ratio Test.

$$\sum_{k=1}^{\infty} \frac{(-1)^k \ k^2 \ k!}{(2k)!}$$

Q.9. Determine whether the series Convergence or divergence by Root Test.

$$\sum_{k=0}^{\infty} \frac{(5)^k}{(3)^{k+2}}$$

Q.10.(a) Find center, the radius of convergence and interval of convergence for

$$\sum_{k=0}^{\infty} \frac{3^k (x-5)^{2k}}{k^2}$$

(b) Find the Maclaurin series for  $f(x) = \cos(5x)$  at x = 0.