Asymptotic Complexity

O: upper bound

I : lower bound

0: tight bound

*Note: Big-0 + "worst case" and Big-Omega + "best case"

A function can run in n^2 time, and O(n!) is still a valid upper bound

Geometric:
$$X^{u} = X^{0}L_{u-1}$$

$$\frac{\int_{0}^{u} L(x)}{\int_{0}^{u} L(x)} = \int_{0}^{u} L(x)$$

$$1+2+3+...+n-1+n=\frac{n(n+1)}{2}=\theta(n^2)$$

* simplify expressions before dropping terms

Asymptotic Complexity Comparisons

(b) In each of the following, indicate whether f = O(g), $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

Briefly justify each of your answers. Recall that in terms of asymptotic growth rate, logarithmic columnials appropriate appropriate G< polynomial < exponential.

< polynomiai < exponentiai.					\					
		f(n)	g(n)	4.0			400ev	pounded	by	a'
	(i)	$\log_3 n$	$\log_4(n)$	•	•	2	at he.	•	. 1	J
	(ii)	$n \log(n^4)$	$n^2 \log(n^3)$							
	(iii)	\sqrt{n}	$(\log n)^3$							
	(iv)	$n + \log n$	$n + (\log n)^2$							

i) change of base formula

nange of base formula
$$\log_3 n = \frac{\log n}{\log^3} \quad \log_4 n = \frac{\log n}{\log 4} \qquad f = \theta(g)$$

$$\text{constants } \mathcal{I}$$

ii)
$$f(n) = 4n\log n$$
 $g(n) = 3n^2\log n$
 $f = O(g)$

iii) polynomials dominate logs $f = \Omega(g)$

$$f = \Theta(d)$$

 $f = \Theta(v) \quad d = \Theta(v)$

2 Bit Counter

Consider an *n*-bit counter that counts from 0 to $2^n - 1$. As it moves from x to x + 1, it tracks how many bits were flipped from x.

When n = 5, the counter has the following values:

For example, the last two bits flip when the counter goes from 1 to 2. Using $\Theta(\cdot)$ notation, find the growth of the total number of bit flips (the sum of all the numbers in the "# Bit-Flips" column) as a function of n.

times ith bit from left flips:
$$2^{i}$$

$$\sum_{i=1}^{n} (2^{i}) = 2^{i} + 2^{2} + ... + 2^{n-i} + 2^{n} = \Theta(2^{n})$$

3 Asymptotic Bound Practice

Prove that for any $\epsilon > 0$ we have $\log x \in O(x^{\epsilon})$.

Prove that for any
$$\epsilon > 0$$
 we have $\log x \in O(x^{\epsilon})$.

want to show: $\lim_{X \to \infty} \frac{\log x}{X^{\epsilon}} = 0$, aka X^{ϵ} grows asymptotically faster than $\log x$

$$\lim_{X \to \infty} \frac{\log x}{X^{\epsilon}} = \lim_{X \to \infty} \frac{\frac{d}{dx} \log x}{\frac{d}{dx} X^{\epsilon}} \quad \text{using 1'Hôpital's rule for } \infty$$

$$= \lim_{X \to \infty} \frac{1}{e^{x}} \frac{1}{e^{x}} = 0$$

$$= \lim_{X \to \infty} \frac{1}{e^{x}} \frac{1}{e^{x}} = 0$$

Divide and Conquer

"top down"

ex: binary search

- do work that influences your split

- answer at the end

"bottom up"

ex: merge sort

- split into subproblems first

- work is done as you combine smaller problems

4 Hadamard matrices

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix [1]
- For $k > 0, H_k$ is the $2^k \times 2^k$ matrix

$$H_k = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}$$

(a) Write down the Hadamard matrices H_0 , H_1 , and H_2 .

(b) Compute the matrix-vector product $H_2 \cdot v$ where H_2 is the Hadamard matrix you found above,

$$v = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

Note that since H_2 is a 4×4 matrix, and the vector has length 4, the result will be a vector of length 4.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix}$$

(c) Now, we will compute another quantity. Take v_1 and v_2 to be the top and bottom halves of v respectively. Therefore, we have that

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Compute $u_1 = H_1(v_1 + v_2)$ and $u_2 = H_1(v_1 - v_2)$ to get two vectors of length 2. Stack u_1 above u_2 to get a vector u of length 4. What do you notice about u?

$$u_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix} = H_2 \vee$$

(d) Suppose that

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

is a column vector of length $n=2^k$. v_1 and v_2 are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2}=2^{k-1}$. Write the matrix-vector product H_kv in terms of H_{k-1} , v_1 , and v_2 (note that H_{k-1} is a matrix of dimension $\frac{n}{2}\times\frac{n}{2}$, or $2^{k-1}\times 2^{k-1}$). Since H_k is a $n\times n$ matrix, and v is a vector of length n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product $H_k v$, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time. You do not need to prove correctness.

2 subproblems, each half the size
$$T(n) = 2T(\frac{n}{2}) + O(n)$$

O(n) time to find vectors
$$v_1 + v_2$$
 and $v_1 - v_2$

$$T(n) = \Delta T([n/b]) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b \alpha \\ O(n^d \log_b \alpha) & \text{if } d < \log_b \alpha \end{cases}$$

$$O(n^{\log_b \alpha}) & \text{if } d < \log_b \alpha$$

5 Extra Divide and Conquer Practice: Sorted Array

Given a sorted array A of n (possibly negative) distinct integers, you want to find out whether there is an index i for which A[i] = i. Devise a divide-and-conquer algorithm that runs in $O(\log n)$ time.

Binary fearch

- if A empty: return False
- if $A\left[\frac{n}{2}\right] = i$:
 return True
- 许月分了>空
 - gearch left half
- 许 A[学]〈学

search right half

3 Asymptotic Bound Practice

Prove that for any $\epsilon > 0$ we have $\log x \in O(x^{\epsilon})$.

4 Hadamard matrices

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix [1]
- For k > 0, H_k is the $2^k \times 2^k$ matrix

$$H_k = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}$$

- (a) Write down the Hadamard matrices H_0 , H_1 , and H_2 .
- (b) Compute the matrix-vector product $H_2 \cdot v$ where H_2 is the Hadamard matrix you found above, and

$$v = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

Note that since H_2 is a 4×4 matrix, and the vector has length 4, the result will be a vector of length 4.

(c) Now, we will compute another quantity. Take v_1 and v_2 to be the top and bottom halves of v respectively. Therefore, we have that

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Compute $u_1 = H_1(v_1 + v_2)$ and $u_2 = H_1(v_1 - v_2)$ to get two vectors of length 2. Stack u_1 above u_2 to get a vector u of length 4. What do you notice about u?

(d) Suppose that

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

is a column vector of length $n=2^k$. v_1 and v_2 are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2}=2^{k-1}$. Write the matrix-vector product $H_k v$ in terms of H_{k-1} , v_1 , and v_2 (note that H_{k-1} is a matrix of dimension $\frac{n}{2} \times \frac{n}{2}$, or $2^{k-1} \times 2^{k-1}$). Since H_k is a $n \times n$ matrix, and v is a vector of length n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product $H_k v$, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time. You do not need to prove correctness.

5 Extra Divide and Conquer Practice: Sorted Array

Given a sorted array A of n (possibly negative) distinct integers, you want to find out whether there is an index i for which A[i] = i. Devise a divide-and-conquer algorithm that runs in $O(\log n)$ time.