- 书面作业讲解
  - DH第5章练习4、6、8、9、10、11、12、13、14
  - UD第20章问题4、8、9、10
  - UD第21章问题7、9、10、11、16、17、18、19
  - UD第22章问题1、2、3、6、9
  - UD第23章问题2、3、10

#### DH第5章: 算法partially correct的证明

- 不是用文字去复述算法的过程,而是:
  - 1. 设置checkpoint
    - start后和end前各一个
    - 每个回路上至少一个(通常是第一次进入回路时)
  - 2. 为每个checkpoint设置invariant
    - 最后一个invariant是算法期望的结果
  - 3. 检查所有checkpoint之间的路径,说明为什么路径起点的invariant成立 时,路径终点的invariant也成立





#### 举例: DH第5章练习14



## UD第20章问题9b

- Let A and B be disjoint sets. If A and B are finite, then A ∪ B is finite.
  - 如果A、B均非空集
  - 由Problem 20.9(a)和Theorem 20.6,立即得证
  - 但是,还有2种情况
    - A、B有一个为空集
    - A、B均为空集

## UD第21章问题16a

- :: *A*有限
- $\therefore \exists 双射 f: A \rightarrow \{1, ..., n\}$
- $\therefore \exists \dot{\mathbb{P}} f |_{B} : B \to \{1, \dots, n\}$
- $\therefore$  ∃双射 $g: B \rightarrow ran(f|_{B})$

$$|B| = |ran(f|_B)| = |\{1, \dots, n\}| - |\{1, \dots, n\}| \cdot ran(f|_B)| \le |\{1, \dots, n\}| = |A|$$

(利用Problem 21.12a的结论)

# UD第22章问题9

|   | 1             | 2             | 3                           | 4                          | 5                       | б                 | 7                                                             | 8                                                                  |  |
|---|---------------|---------------|-----------------------------|----------------------------|-------------------------|-------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--|
| 1 | 1/1           | 1 _           | $\frac{1}{3}$               | $\frac{1}{4}$ —            | $\frac{1}{5}$           | $\frac{1}{6}$     |                                                               |                                                                    |  |
| 2 | $\frac{2}{1}$ | 2 K           | $\frac{2}{3}$               | 2 K                        | $\frac{2}{5}$           | 2 K               | <del>2</del> <del>7</del>                                     | 2 8                                                                |  |
| 3 | 3 1           | $\frac{3}{2}$ | 13 7                        | $\frac{3}{4}$              |                         | 3 6 4 6 5 6 6 7 6 | 1<br>7<br>2<br>7<br>3<br>7<br>4<br>7<br>5<br>7<br>6<br>7<br>7 | 1<br>8<br>2<br>8<br>3<br>8<br>4<br>8<br>5<br>8<br>8<br>8<br>8<br>8 |  |
| 4 | 4             | <b></b>       | $\frac{4}{3}$               | 4 K                        | 3 5 4 5 5 5 6 5 7 5 8 5 | 4 6               | 47                                                            | 4 8                                                                |  |
| 5 | 5             | $\frac{5}{2}$ | $\frac{5}{3}$ $\frac{1}{3}$ | 5<br>4<br>6<br>4<br>7<br>4 | <u>5</u>                | <u>5</u>          | 5                                                             | <u>5</u><br>8                                                      |  |
| ő | <u>6</u> 1    | \$ K          | 1 S                         | <u>6</u><br>4              | <u>6</u><br>5           | <u>6</u>          | <u>6</u><br>7                                                 | <u>6</u><br>8                                                      |  |
| 7 | $\frac{7}{1}$ | $\frac{7}{2}$ | 7<br>7<br>3<br>8<br>3       | $\frac{7}{4}$              | 7/5                     | $\frac{7}{6}$     |                                                               | 7 8                                                                |  |
| 8 | 8             | 2<br>8<br>2   | 8 3                         | 8 4                        | <u>8</u><br>5           | 8 6               | 8 7                                                           | 8                                                                  |  |
| ÷ | :             |               |                             |                            |                         |                   |                                                               |                                                                    |  |