Zadanie 64.

Wiązka zadań Obrazki

Bit parzystości ciągu złożonego z zer i jedynek jest równy 0, gdy w ciągu tym występuje parzysta liczba jedynek, w przeciwnym razie bit parzystości jest równy 1.

Czarno-biały obrazek rozmiaru $n \times n$ składa się z n wierszy po n pikseli. Każdy wiersz pikseli reprezentujemy jako ciąg zer i jedynek, każdy biały piksel reprezentujemy przez 0, czarny — przez 1. Na końcu każdego wiersza dodany jest bit parzystości, podobnie pod ostatnim wierszem obrazka dołączony jest wiersz bitów parzystości każdej z n kolumn. **Bitów parzystości nie traktujemy jako części obrazka.**

Przykład: Poniżej podajemy obrazek rozmiaru 5 × 5 oraz jego reprezentację, wraz z odpowiednimi bitami parzystości (bity parzystości zostały podkreślone):

Obrazek

0	1	1	0	1	<u>1</u>	
1	1	1	0	1	0	
1	1	1	1	1	<u>1</u>	
0	1	1	0	0	0	
1	1	0	1	1	0	
1	1	0	0	0		
Reprezentacja						

Plik dane_obrazki.txt składa się z opisu 200 czarno-białych obrazków o rozmiarze 20×20 pikseli. Sąsiednie obrazki oddzielone są w pliku pustym wierszem.

Napisz program(-y), który poda odpowiedzi na pytania postawione w poniższych zadaniach. Odpowiedzi zapisz w pliku wyniki_obrazki.txt. Odpowiedź do każdego zadania rozpocznij w nowym wierszu, poprzedzając ją numerem zadania.

64.1.

Obrazek nazywamy *rewersem*, jeśli liczba występujących w nim pikseli czarnych jest większa od liczby pikseli białych.

Przykład: W obrazku z powyższego przykładu występuje 18 pikseli czarnych i 7 pikseli białych. Zatem jest on rewersem.

Podaj, ile jest w pliku obrazków, które są rewersami. Podaj też największą liczbę pikseli czarnych występujących w jednym obrazku.

64.2.

Obrazek rozmiaru $n \times n$ będziemy nazywać *rekurencyjnym*, jeśli n jest parzyste oraz obrazek składa się z 4 kopii tego samego obrazka rozmiaru $\frac{n}{2} \times \frac{n}{2}$.

Przykład

Poniżej podajemy 3 obrazki rozmiaru 6 × 6, które są rekurencyjne.

Natomiast poniższe obrazki nie są rekurencyjne:

Podaj liczbę obrazków rekurencyjnych w pliku wejściowym. Ponadto podaj opis pierwszego obrazka rekurencyjnego występującego w pliku. W opisie obrazka pomiń bity parzystości (pamiętaj, że obrazek składa się z 20 wierszy po 20 pikseli, które reprezentujemy jako ciąg zer i jedynek).

64.3.

Obrazek nazywamy *poprawnym*, jeśli wszystkie bity parzystości są w nim poprawne (zarówno w wierszach, jak i kolumnach). Obrazek nazywamy *naprawialnym*, jeśli nie jest poprawny, a jednocześnie co najwyżej jeden bit parzystości wiersza i co najwyżej jeden bit parzystości kolumny jest w nim niepoprawny.

Natomiast *nienaprawialnym* nazywamy obrazek, który nie jest poprawny i nie jest naprawialny.

Przykład

Poniżej podajemy przykłady obrazków poprawnych, naprawialnych i nienaprawialnych rozmiaru 5×5 . Niepoprawne bity parzystości w obrazkach zostały wyróżnione podkreśleniem.

11011 11 <u>1</u> 00	11000	11000	<u>0</u> 1000	
110011 110110	110110	110110	110110	
011000 011000	011000	01100 <u>1</u>	01100 <u>1</u>	
111111 $11111\overline{1}$	$11111\overline{1}$	$11111\overline{1}$	$11111\overline{1}$	
111010 11101 <u>1</u>	11101 <u>1</u>	11101 <u>1</u>	11101 <u>1</u>	
011000 011011	011011	011011	011011	

Podaj liczbę obrazków poprawnych, liczbę obrazków naprawialnych oraz liczbę obrazków nienaprawialnych. Ponadto podaj największą liczbę błędnych bitów parzystości występujących w jednym obrazku.

64.4.

W obrazku naprawialnym wystarczy zmienić jedną wartość, aby uzyskać obrazek poprawny. Dokładniej, jeśli niepoprawne są bity parzystości *i*-tego wiersza i *j*-tej kolumny, wystarczy zmienić *j*-ty piksel w *i*-tym wierszu. Jeśli niepoprawny jest dokładnie jeden bit parzystości (wiersza **albo** kolumny), wystarczy zmienić ten bit parzystości.

Przykład

Rozważmy następujące dwa obrazki naprawialne rozmiaru 5×5 (niepoprawne bity parzystości w obrazkach zostały podkreślone).

Obraz 1:	Obraz 2:
011011	011011
11 1 01 1	11101 <u>1</u>
111111	111111
011000	011000
110110	110110
11 1 00	11000

Zmieniając trzecią jedynkę w drugim wierszu pierwszego obrazka, uzyskamy obrazek poprawny (niepoprawne były bity parzystości trzeciej kolumny i drugiego wiersza). Zmieniając niepoprawny bit parzystości w drugim wierszu drugiego obrazka z 1 na 0, również uzyskamy obrazek poprawny.

Podaj numery obrazków naprawialnych, przyjmując, że numery kolejnych obrazków w pliku to 1, 2, 3 itd. Przy numerze każdego obrazka naprawialnego podaj numer wiersza i kolumny wartości, którą wystarczy zmienić, aby uzyskać obrazek poprawny.

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

