DSCE Theory: Digital Scent Comparison Engine

1. Introduction

DSCE (Digital Scent Comparison Engine) is a theoretical model designed to analyze and predict interactions between two groups of digital wolves, where each wolf emits a binary-coded scent representing behavioral traits. This theory aims to simulate interactions based on scent similarity and derive boolean outcomes (e.g., approach or retreat).

2. Core Concepts

- Each digital wolf has a 24-bit binary scent code.
- A group consists of 10 wolves.
- Two groups (Group A and Group B) are placed in a virtual environment.
- Based on scent interactions, a result (True/False) is recorded.
- A dataset of such interactions (e.g., 1000 records) forms the training base.

3. Objective

The goal is to train an analytical model or rule-based engine that can:

- Predict the outcome (boolean) of new unseen group combinations.
- Analyze the contribution of individual wolves based on position, neighboring scents, and historical data.
- Propose a reduced symbolic system for efficient processing and learning.

4. Mathematical Vision

The DSCE aims to approximate the behavioral impact of each wolf using dimensional analysis:

FN = f(position, neighbors, opposing group, outcome)

DSCE Theory: Digital Scent Comparison Engine

Where FN is a multi-dimensional representation of each wolf's influence in the result.

Over time, FN values can be compared and evolved.

5. Ownership

This document represents the intellectual conception of DSCE by the author. Date: 2025-07-11 13:22:42.

It is intended to establish a timestamped record of innovation.