		D 40	.		
1.	По кръгов проводник, с радиус на кръга $R = 10$ cm, протича ток $I = 5$ A. Пресметнете магнитната				
	индукция на полето в център	ра на кръга.			
2.	Праволинеен проводник с дължина 50 см, по който протича ток с големина 4 А, се намира в				
	еднородно магнитно поле с индукция 500 mT. С каква сила действа магнитното поле върху				
	проводника, ако той е разположен успоредно на магнитните силови линии?				
	a) 0 N. b)	40 mN.	c) 1 N.	d) 1 kN.	
3.	Определете магнитния пото	к през кръг с радиус	R = 1 cm, ако магнитна	га индукция на полето, с	
	големина $B=1$ T, сключва ъгъл $\alpha=30^\circ$ с равнината на кръга.				
4.	Заредена частица се движи с постоянна скорост в еднородно магнитно поле. Напишете формулата,				
	изразяваща магнитната сила, която действа върху тази частица и пояснете участващите величини.				
5.	С колко трябва да се промен	ни магнитния поток пр	оез даден затворен контур	за да се индуцира в него	
	електродвижещо напрежение с големина 10 V за време 10^{-2} s ?				
6.	Соленоид, с дължина 25 ст	и напречно сечение 10	0 cm² , има 50 навивки. Оп	пределете индуктивността	

7. Пресметнете периода на математично махало, в което масата на тялото е 100 g, а дължината на

8. Определете максималната кинетична енергия на тяло с маса *m*, което извършва хармонични

11. Интерференция на светлината може да се наблюдава, ако има наслагване (суперпозиция) на

12. Върху тесен процеп с широчина a = 2 μ m перпендикулярно на равнината на процепа пада светлинна вълна с дължина на вълната 500 nm. Определете ъгъла ϕ , съответстващ на втория дифракционен

14. С колко ще се промени дължината на вълната на максимума на излъчвателната способност на

15. Да се определи дължината на вълната на дьо Бройл за протон, който се ускорява в електрично поле с

а) 2,07.10⁻¹² m; b) 3,2 m; c) 2,07.10⁻¹⁰ m; d) 3,2.10⁻¹² m.

16. Как е свързана вероятността да намерим микрочастица в даден обем от пространството с вълновата

19. Изведете формулата за връзка между фазовата скорост на основната вълна от вълнов пакет и

20. Върху платинова пластинка (A_1 =5,32 eV) падат ултравиолетови лъчи и предизвикват външен фотоефект. За да се прекрати фотоефектът е необходимо да се приложи задържащо напрежение 3,55 V. Ако пластинката от платина се замени с друг метал, задържащата потенциална разлика трябва да се увеличи до 3,75 V. Да се определи отделителната работа A_2 на електроните от повърхността на

b) $\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = 0$; c) $x = A\sin(\omega t + \varphi)$; d) $x = A_0 e^{-\beta t}\cos(\omega t + \varphi)$.

b) монохроматични източници;

(4 точки)

(4 точки)

d) кохерентни източници.

9. Законът за движение на трептяща система, извършваща затихващи трептения е:

13. Формулирайте закона на Брюстер за поляризация при отражение и пречупване.

17. Формулирайте съотношенията за неопределеност на Хайзенберг.

абсолютно черно тяло, ако температурата му се повиши от 1727°C на 3727°C?

10. Колко е интензитетът на вълна, ако тя пренася енергия $50 \, \mathrm{J}$ през площ $20 \, \mathrm{cm}^2$ за време $5 \, \mathrm{s}$?

нишката е 9,8 ст.

светлинни вълни от:

с) точкови източници;

напрежение **200** V.

функция на микрочастицата?

18. Формулирайте постулатите на Бор.

групова скорост на вълновия пакет.

а) източници на бяла светлина;

a) F = -kx:

минимум.

този метал.

трептения по закона $x = A \sin(\omega t + \varphi)$.

Електрична константа $\varepsilon_0 = 8,85.10^{-12}$ F/m Магнитна константа $\mu_0 = 4\pi.10^{-7}$ H/m Маса на електрона в покой $m_e = 9,1.10^{-31}$ kg Маса на протона в покой $m_p = 1,6.10^{-27}$ kg Константа на Планк $h = 6.62.10^{-34}$ J.s

Скорост на светлината във вакуум $c = 3.10^8$ m/s Елементарен електричен заряд $e = 1,6.10^{-19}$ С Константа на Вин $b = 2,9.10^{-3}$ m.K Константа на Стефан–Болцман $\sigma = 5,7.10^{-8}$ W/(m².K⁴)

Указания за попълване на изпитния тест

Максималният брой точки за въпросите от №1 до №18 е 2.

Въпроси с избираем отговор.

Ако въпросът е за разпознаване на закон, формула или дефиниция, за получаване на 2 точки се изисква само отбелязване на верния отговор.

Ако въпросът е с изчисления, за получаване на 2 точки се изисква отбелязване на верния отговор и решение. При липса на решение точки не се дават. При неточности в решението се дава 1 точка.

Въпроси със свободен отговор.

При въпроси от дефиниции, формулировки и закони 2 точки се дават за пълен отговор. Пълният отговор включва словесна формулировка, запис на съответното уравнение, поясняване на физичните величини, влизащи в него, като и привеждане на съответните мерни единици там, където е необходимо.

До 1 точка се отнема, ако:

отговорът е непълен;

има малки неточности във формулировките.

При въпроси с приложения в числени примери 2 точки се дават при пълно решение, получен числен резултат и приведени мерни единици. При въпроси, решавани на две стъпки (с използване на два закона), за вярно решение само на едната стъпка се дава 1 точка. 0,5 точки се отнемат, ако:

не са записани правилно мерните единици;

има правилно буквено решение, но има грешки в изчисленията.

Максималният брой точки за въпроси №19 и №20 е 4.

При въпроси от изводи на основни физични зависимости 4 точки се дават при пълен извод в рамките на предаденото по време на лекции. Ако изводът не е направен докрай, точки се дават пропорционално на изпълнената част. За правилно записани изходни уравнения или за направо записан краен резултат се дава 1 точка.

При въпроси с решаване на кратка задача 4 точки се дават при пълно решение, получен числен резултат и привеждане на съответните мерни единици. При липса на пълно решение по 1 точка се дава за:

правилно записани изходни уравнения;

вярно решение на всяка стъпка от задачата.

До 1 точка се отнема, ако:

не са записани правилно мерните единици;

има грешки в изчисленията.

Минималните точки, необходими за съответната оценка на изпитния тест, са:

Среден 3.00	17 т.
Добър 4.00	26 т.
Мн. добър 5.00	33 т.
Отличен 6.00	39 т.