

Human Activity Segmentation Challenge

AALTD'23, 18.09.2023, Turin, Italy Arik Ermshaus

Human Activity Recognition (HAR)

- Human activity recognition (HAR) is a research area, goal: identify human motions with machine learning (ML) workflows
- Recordings with cameras, environmental sensors or wearable devices, capture and process the behaviour
- Valuable insights into health status, fitness or personal security, relevant in many domains

Lara, O. D., & Labrador, M. A. (2012). A survey on human activity recognition using wearable sensors. IEEE communications surveys & tutorials, 15(3), 1192-1209.

Time Series Data from Wearable Devices

- Mobile devices contain sensors that observe human behaviour in long highresolution time series (TS) data
- Interesting for HAR: Activity data from wearable sensors; informative, comparable and readily available
- Accelerometer (ACC), gyroscope (GYRO) and magnetometer (MAG) capture acceleration, angular velocity and orientation

Elkader, S. A., Barlow, M., & Lakshika, E. (2018, October). Wearable sensors for recognizing individuals undertaking daily activities. In Proceedings of the 2018 ACM International Symposium on Wearable Computers (pp. 64-67).

HAR workflows for Mobile Sensing Data

- HAR systems: sequence of complex processing steps, classify small segments of sensor data with activities
- Classification quality depends on size of the sensor segment, from which characteristic features are learned
- Problem: optimal segment size depends on the captured activity, should be adaptable in HAR systems

Ahad, M. A. R., Antar, A. D., & Ahmed, M. (2021). IoT Sensorbased Activity Recognition: Human Activity Recognition. Springer.

Problem: Which segment size should you choose?

Predictions

Time Series Segmentation (TSS)

- TSS: unsupervised learning task, splits a (multivariate) TS at increasing offsets into meaningful partitions which form the segmentation
- HAR systems can use TSS to learn variable-sized segments, constitute single activities with characteristic properties
- Impact: HAR can learn features from single activity segments and inbetween transitions (instead of fixed windows of 1-10s)

Selective Literature Overview

Algorithm	Publication		
BOCD	arXiv (2007)		
PELT	Journal of the American Statistical Association (2012)		
AutoPlait	SIGMOD (2014)		
Wild Binseg	The Annals of Statistics (2014)		
HOG-1D	WACV (2016)		
IGTS	Pervasive and Mobile Computing (2017)		
FLUSS	ICDM (2017)		
ESPRESSO	Interact. Mob. Wearable Ubiquitous Technol. (2020)		
TS-CP2	WWW (2021)		
ClaSP	CIKM (2021)		

... and some more

Most TSS algorithms can only handle medium-sized **preprocessed data sets**

Data Set	Publication		
PAMAP	ISWC (2012)		
MHEALTH	ISWC (2012)		
Opportunity	Pattern Recognit. Lett. (2013)		

... and many more

Most HAR data sets use a **laboratory setup** with intrusive specialised devices

Human Activity Segmentation Challenge

- New data set: 10.7 hours of multivariate real-world sensor data (250 TS) from 15 bachelor students, diverse motion sequences
- Daily setting with ordinary smartphones, capture 100 activities in variety of behaviours, realistic setting, sensor noise
- ECML Discovery Challenge: Partition multivariate sensor signals into unknown amount of variable-sized activity segments

Ermshaus, A., Schäfer, P., Leser, U., Bagnall, A., Tavenard, R., Leverger, C., Lemaire, V., Malinowski, S., Guyet, T. & Ifrim, G. (2023, April). Human Activity Segmentation Challenge. ECML/PKDD 2023 Discovery Challenge. Turin, Italy.

Data Set Design

- Participants: 2 groups of 8 and 7 CS bachelor students, semester project at HU Berlin, 10 males, 5 females between 21 and 42 years old
- 3 long motion sequences (per group): sport (indoor / outdoor), household, mall shopping, commuting to uni (train / bike)
- Technical setup: 5 smartphones, each worn in front right pocket, recording ACC, GYRO, MAG, LAT, LONG, speed with <u>Physics Toolbox Sensor Suit</u> app

Data Collection and Preprocessing

- Data Collection: preparation phase, recording, follow-up phase, ground truth activities captured by another camera
- Preprocessing workflow: retrieve annotated, cut and resampled recordings at 50 Hertz
- 1 recording includes: 12-dimensional sensor signals, list of activities and transitions, meta information
- Challenge data: 250 cut recordings + sample rate, no labels, no meta information

Train Commute Recording Example

Outdoor Sport Recording Example

Outdoor Sport Cuts Example

Data Set Examples

Data Set Overview

- In total: **10.7 hours of 100 activities** (250 12-dimensional TS at 50 Hz) from 16 participants performing 6 motion sequences
- TS capture between 7s and 14 min (median 100s) of data; 1 to 15 potentially recurring activities
- Challenge data is freely available on GitHub: https://github.com/patrickzib/human activity segmentation challenge

Challenge data

Challenge Organisation

- Kaggle community competition: information, communication and leaderboard; GitHub Repo for data, code and baselines
- Submissions: CSV files with predicted activity transitions for each of 250 TS, automatically scored/ranked by Kaggle
- Co-located with AALTD@ECML workshop, top-3 competitors rewarded with workshop publication, talk and free tickets

Submission Evaluation

- Challenge: Predict amount and location of activity transition offsets for 250 12-dimensional TS
- Besides TS / sample rate, no additional information provided, fully unsupervised setting, no hand-labelling / training or external data
- public / private leaderboard (with 125 TS each), solutions ranked by F1 score, 3 submissions per day

Compute intersection over union for actual S and predicted \hat{S} activities

Determine confusion matrix for given threshold $t \in [0,5...1]$

Calculate F1-score for each threshold *t* and report average

Private Leaderboard Results

#	Δ	Team	Members	Score	Entries	Last	Solution
1	- 4	gh		0.51455	46	3mo	
2	+1	Koular		0.50709	12	3mo	
3	- 7	Panos		0.49811	14	4mo	
4	- 4	infoxin	•	0.49811	15	4mo	
5	- 4	kojimar		0.49811	7	4mo	
6	^ 1	Shayekh Islam	•	0.49811	4	5mo	
7	- 4	fuge	•	0.49811	5	4mo	
8	~ 2	laffrent		0.49811	11	4mo	
1		ClaSP		0.49602			
9	- 6	pjmathematician		0.49569	16	4mo	
10	- 2	ALLAccept	•	0.49094	11	3mo	

- Top-8 approaches improve on best baseline ClaSP
- Competition winners (top-2) reach over 50% F1-score
- Very hard unsupervised problem: More research needed (data available!)

Challenge Winners

Rank	F1-Score	Name	Country	Publication
1	51,46 %	Grzegorz Haranczyk	Poland	Change points detection in multivariate signal applied to human activity segmentation
2	50,71 %	Qi-Le Zhou	China	Change Point Detection via Synthetic Signals

Winning solutions will be published in this year's AALTD proceedings

Challenge Conclusion

- New mobile sensing data set, 250 multivariate motion recordings of 15 human subjects performing 100 daily activities
- Challenge winners outperform current baselines, performance increase is however limited, papers and code are online
- Performance must still be improved, future work should study multivariate segmentation of large real-world TS

Data and Python loader are available on our challenge website:

/patrickzib/human_activity_segmentation_challenge

Thanks for listening!

TSS algorithms are implemented in open source libraries:

ClaSPy

Any questions? Feel free to contact me at ermshaua@informatik.hu-berlin.de