5-12-14-0-01

13193-2US MJS/LF

TES PATENT AND TRADEMARK OFFICE

PLICANT:

Germain FOURNIER et al.

Serial No.

09/942,682

Filed:

August 31, 2001

Title:

"Turning Device for Lumber and the Like"

Group Art Unit:

3722

PETITION FOR GRANT OF PRIORITY

UNDER 35 USC 119

Assistant Commissioner for Patents WASHINGTON, D.C. 20231

Dear Sir:

TECHNOLOGY CENTER R3700
Applicants hereby petition for grant of priority of the present Application on the basis of the following prior filed foreign Applications:

COUNTRY

SERIAL NO.

FILING DATE

CANADA

2,327,601

December 5, 2000

To perfect Applicant's claim to priority, a certified copy of the above listed prior filed Application is enclosed.

Acknowledgment of Applicant's perfection of claim to priority is accordingly requested.

December 3, 2001

(date)

MICHEL SOFIA

Agent of the Applicant Registration No. 37,017

Respectfully submitted,

OGILVY RENAULT 1981 McGill College Avenue **Suite 1600** Montreal, Quebec, Canada H3A 2Y3

Tel: (514) 845-7126

Office de la propeté intellectuelle du Canada

Un organisme d'Industrie Canada

Canadian Intellectual Property Office

An Agency of Industry Canada

Bureau canadien des brevets

Certification

Canadian Patent
Office

Certification

La présente atteste que les documents ci-joints, dont la liste figure ci-dessous, sont des copies authentiques des documents déposés au Bureau des brévets. This is to certify that the documents attached hereto and identified below are time copies of the documents on file in the Patent Office.

Specification and Drawings, as originally filed, with Application for Patent Serial No: 2,327,601, on December 5, 2000, by 2635 5727 QUEBEC INC., assignee of Germain Fournier and Claude Goulet, for "Turning Device for Lumber and the Like".

RECEIVED

DEC 1 7 2001
TECHNOLOGY CENTER R3700

Agent certificateur/Certifying Officer
October 29, 2001

t, Date 1 :

TURNING DEVICE FOR LUMBER AND THE LIKE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to lumber handling devices and, more particularly, to a highspeed lumber turning device having turning hooks.

2. Description of the Prior Art

In the art of handling of lumber, such as boards, planks, battens, etc., it is often necessary 10 to turn the pieces of lumber upstream of a planing machine or the like to have the most irregular shape side of each piece (flash sides) facing upward to optimize the planing of the wood piece. This upward orientation is due to the fact that, in saw mills, the thickest layer is removed from the top due to the adjustment of the cutting tools of the planing machines. Presently, because of the absence of adequate, reliable and efficient systems able to operate at high speeds, lumber industries frequently use manual labor to turn the wood pieces. This process has incurred many problems relating to the employees, such as tendinitis and the like, and to employers (quality of the work, profitability).

25

30

35

20

SUMMARY OF THE INVENTION

It is therefore an aim of the present invention to provide a turning device for selectively turning wood pieces or the like to a desired position on a high-speed conveyor.

Therefore in accordance with the present invention, there is provided a turning device for use in concert with a conveyor adapted to feed elongated wood pieces one-by-one to the turning device, comprising:

1

20

25

at least one turning member moveable between a resting position and a striking position; and

a sensor device located upstream of said turning member, for scanning the wood pieces on the conveyor;

wherein said at least one turning member is selectively moved from said resting position to said striking position for turning a wood piece to a 10 desired position according to a signal from said sensor device.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof, and in which:

Fig. 1 is a fragmented side elevational view of an embodiment of the turning device in accordance with the present invention;

Fig. 2 is a top plan view of the turning device of Fig. 1;

Fig. 3 is a rear end elevational view of the turning device of Fig. 1, and

Fig. 4 is a fragmented side elevational view of the turning device similar to Fig. 1 but showing a wood piece in the process of being turned.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the present invention, Figs. 1 to 4 illustrate a turning device 10 operating in parallel with a chain conveyor 12 comprising a plurality of stoppers 14 carrying a lumber piece 16 between each pair of successive stoppers 14 generally in abutment with the downstream stopper thereof. The turning device 10 comprises a first chain 18 defining a closed circuit and in operative contact with

10

15

25

35

primary gears 20 and 22. The primary gear 22 is idle and free to rotate, while the primary gear 20 and a secondary gear 24 are fixedly mounted on a common shaft 26, as best shown in Fig. 2, such that both gears 20 and 24 rotate in concert. The secondary gear 24 is operatively connected to a second chain 28, which is driven by a secondary gear 30. The secondary gear 30 is rotatively engaged to a drive shaft 32, further driving the chain conveyor 12.

In reference to Fig. 1, the first chain defines a generally horizontal obround shape and has a top side 34 extending parallel and at a same level as a top side 36 of the chain conveyor 12. The lumber pieces 16 are carried by the stoppers 14 on the top side 36 of the chain conveyor 12.

As best seen in Fig. 4, the turning device 10 further comprises hooks 38. Each of the hooks 38 comprises a tip 39 at a free end thereof and an opposed end 40 provided with a bearing that is pivotally mounted to the first chain 18 by means of a bolt and nut assembly 42 thereby allowing the hook 38 to pivot with respect to the first chain 18. The bearing may be a ball bearing or the like. Each of the hooks 38 further comprises a guide pin 44 laterally projecting therefrom.

A template 46 is disposed adjacent and parallel the closed circuit defined by the first chain 18. The template 46 defines a guide track 47 comprising a generally oblong main section 48 and a by-pass section 50. The pins 44 of the hooks 38 are slidably engaged in the guide track 47 of the template 46, whereby the pins 44 of the hooks 38 slide along the guide track 47 when driven by the first chain 18.

A lever 52 is fixed at a lower end thereof to a shaft 54. An opposed upper end of the lever 52 comprises a deflector 56. The lever 52 is positioned 10

15

20

25

30

35

such that, as a in result of a counterclockwise rotation of the shaft 54, the deflector 56 will obstruct the guide track 47 to deflect the pin 44 of a selected of hook 38 from the main section 48 into the by-pass section 50. As best shown in Figs. 2 and 3, the shaft 54 has a fixed flange 58 radially projecting therefrom in cooperating engagement with a trunnion 60 located at an end of a shaft 62 of a pneumatic cylinder 64, whereby a retraction of the shaft 62, upon actuation of the cylinder 64, causes a pivot of the flange 58 and thus a partial rotation of the shaft 54, thereby raising the deflector 56.

The closed circuits defined by the first and second chains 18 and 28 are sized and positioned such that the tips 39 of the hooks 38 may move upward from the top side 36 of the chain conveyor 12 slightly before each stopper 14 if the pins 44 thereof become engaged in the by-pass section 50, as depicted in Fig. 4. For instance, the primary gears 20 and 22 and the secondary gears 24 and 30 of the present turning device 10 may have the same specifications to provide a 1:1 ratio, whereby the first chain 18 and the chain conveyor 12 move at the same speed and in the same direction.

A sensor device 66 as known in the art, located upstream of the turning device 10, scans the lumber pieces 16 carried by the stoppers 14 of the chain conveyor 12 for analyzing whether the most irregular side of the scanned lumber piece 16 faces upward or downward. If the lumber piece 16 is not in the desired position, a signal is sent from the sensor device 66 to a controller (not shown) wherefrom the lever 52 of the turning device 10 is actuated, as described above, to deflect the pin 44 of an appropriate hook 38 in the engagement by-pass section 50. The tip 39 of the hook 38 so engaged in the by-pass section 50 strikes the downward facing

side of the lumber piece 16 (see Fig. 4), thereby turning it by 180° to achieve the desired position of the lumber piece 16. The deflector 56 will continue to obstruct the main section 48 as long as the sensor 66 detects successive lumber pieces 16 which need to be flipped over. The hooks 38 are positioned with respect to the stoppers 14 such as to ensure a proper rotation of the wood pieces 16.

The turning device 10 is generally used upstream of a planing machine to optimize the planing of the wood pieces by positioning the flash side thereof upwardly, or downstream of the planing machine classify the pieces in different categories. The turning device 10 is simple and its small size allows for an easy adaptation to a chain conveyor. The speed of operation of the turning device 10 may vary (e.g. 30 to 200 pieces per minute). The turning device 10 may be used with wood pieces of varying specifications (e.g. range of width: 2.5 to 6", and of thickness: 1 to 2").

Such a turning device increases the efficiency, the speed and the productivity of the wood turning process. Furthermore, it provides a considerable ergonomical aspect as its use allows for a decrease in the manual work which is a source of tendinitis and other diseases.

WE CLAIM:

 A turning device for use in concert with a conveyor adapted to feed elongated wood pieces
 one-by-one to the turning device, comprising:

at least one turning member moveable between a resting position and a striking position; and

a sensor device located upstream of said 10 turning member, for scanning the wood pieces on the conveyor;

wherein said at least one turning member is selectively moved from said resting position to said striking position for turning a wood piece to a desired position according to a signal from said sensor device.

III 05/12/2000	
TI 02/15/5000 10/1:18 1-4/214 599 9399 (3/14/21/20)	

