Nom:

Considereu la funció definida per

$$f(x) = \log\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right) .$$

- 1. Determineu el domini i el recorregut de f.
- 2. Digueu si f és injectiva.

Justifiqueu detalladament les respostes.

Solució:

1. Càlcul del domini de f: La funció f és la composició de les tres funcions elementals

$$f_1(x) = \sqrt{x}$$
, $f_2(x) = \frac{1+x}{1-x}$ i $f_3(x) = \log x$,

és a dir, $f(x) = (f_3 \circ f_2 \circ f_1)(x) = f_3(f_2(f_1(x))).$

Per tant, el domini de f, D(f), és el conjunt dels nombres $x \in \mathbb{R}$ que compleixen les tres condicions següents:

- (a) $x \in D(f_1) = [0, +\infty)$, és a dir, $x \ge 0$.
- (b) $\sqrt{x} = f_1(x) \in D(f_2) = \mathbb{R} \setminus \{1\}$, és a dir, $x \neq 1$.
- (c) $\frac{1+\sqrt{x}}{1-\sqrt{x}} = f_2(f_1(x)) \in D(f_3) = (0,+\infty)$, és a dir, $\frac{1+\sqrt{x}}{1-\sqrt{x}} > 0$. Això vol dir que $1-\sqrt{x} > 0$, ja que $1+\sqrt{x} > 0$. En definitiva, aquesta condició diu que $\sqrt{x} < 1$, o equivalentment, $(0 \le)x < 1$.

En conseqüència, $D(f) = \{ x \in \mathbb{R} : 0 \le x < 1 \} = [0, 1).$

Càlcul del recorregut de f: Ho farem per dos mètodes:

Mètode 1: Observeu que

$$R(f) = \{ f(x) : x \in D(f) = [0,1) \} = f([0,1)) = f_3(f_2(f_1([0,1)))),$$

ja que $f(x) = f_3(f_2(f_1(x)))$. La gràfica de la funció f_1 , que és la funció arrel quadrada, mostra que $f_1([0,1)) = [0,1)$. Per tant, $f_2(f_1([0,1))) = f_2([0,1))$. Ara $f_2(x) = \frac{1+x}{1-x} = \frac{2}{1-x} - 1$, i en conseqüència

$$f_2([0,1)) = \left\{ \frac{2}{1-x} - 1 : x \in [0,1) \right\} = \left\{ \frac{2}{t} - 1 : t \in (0,1] \right\} = \left\{ 2s - 1 : s \in [1,+\infty) \right\} = [1,+\infty).$$

(Aqui hem utilitzat les gràfiques de les funcions g(x) = 1 - x, h(t) = 1/t i r(s) = 2s - 1.) Finalment, obtenim que $R(f) = f_3([1, +\infty)) = \log([1, +\infty)) = [0, +\infty)$ (mireu la gràfica de la funció logaritme).

Mètode 2: El recorregut de f, R(f), és el conjunt dels $y \in \mathbb{R}$ tals que existeix $x \in D(f) = [0, 1)$ amb f(x) = y. Ara f(x) = y significa que y és el logaritme de $\frac{1+\sqrt{x}}{1-\sqrt{x}}$, és a dir, $e^y = \frac{1+\sqrt{x}}{1-\sqrt{x}}$, o equivalentment $e^y(1-\sqrt{x}) = 1+\sqrt{x}$, que es pot escriure com a $e^y-1=(e^y+1)\sqrt{x}$. Així doncs, f(x) = y equival a $\sqrt{x} = \frac{e^y-1}{e^y+1}$ (i, en particular, $x = (\frac{e^y-1}{e^y+1})^2$).

Per tant, com que $\sqrt{x} \ge 0$, si $y \in R(f)$, llavors $\frac{e^y-1}{e^y+1} \ge 0$, és a dir, $e^y-1 \ge 0$, ja que $e^y+1>0$, o equivalentment $e^y\ge 1$, és a dir, $y\ge 0$.

Recíprocament, si $y \ge 0$ aleshores $0 \le e^y - 1 < e^y + 1$, per tant $0 \le \frac{e^y - 1}{e^y + 1} < 1$ i en conseqüència $x = (\frac{e^y - 1}{e^y + 1})^2$ compleix que $x \in [0, 1)$ i $\sqrt{x} = \frac{e^y - 1}{e^y + 1}$, i això significa que $y = f(x) \in R(f)$.

En conclusió, hem demostrat que $R(f) = [0, +\infty)$.

2. Veurem que f és injectiva per dos mètodes:

Mètode 1: Provarem que si $x_1, x_2 \in D(f) = [0, 1)$ i $f(x_1) = f(x_2)$, llavors $x_1 = x_2$. En efecte, siguin $x_1, x_2 \in D(f) = [0, 1)$. Si $f(x_1) = f(x_2)$ aleshores

$$\frac{2}{1 - \sqrt{x_1}} - 1 = \frac{1 + \sqrt{x_1}}{1 - \sqrt{x_1}} = e^{f(x_1)} = e^{f(x_2)} = \frac{1 + \sqrt{x_2}}{1 - \sqrt{x_2}} = \frac{2}{1 - \sqrt{x_2}} - 1,$$

per tant $\frac{2}{1-\sqrt{x_1}} = \frac{2}{1-\sqrt{x_2}}$, en conseqüència $\frac{1-\sqrt{x_1}}{2} = \frac{1-\sqrt{x_2}}{2}$, és a dir, $\sqrt{x_1} = \sqrt{x_2}$, i deduïm que $x_1 = (\sqrt{x_1})^2 = (\sqrt{x_2})^2 = x_2$.

Mètode 2: En el mètode 2 del càlcul del recorregut de f hem provat que per a cada $y \in R(f)$ existeix un únic $x \in D(f)$ $(x = (\frac{e^y-1}{e^y+1})^2)$ tal que f(x) = y. I això vol dir que f és injectiva (i la seva inversa és $f^{-1}(y) = (\frac{e^y-1}{e^y+1})^2$!!).