

PHYLOViZ Web Platform

A Modular and Web-Based Tool for Phylogenetic Analysis

Supervisors:

- Cátia Vaz, ISEL
- Alexandre P. Francisco, IST

48089 André Páscoa 48280 André Jesus 48287 Nyckollas Brandão

Table of contents

01 Introduction 02 Motivation

03 Architecture 04 Implementation

05 Technologies 06 Progress

07 Demo 08 Next Steps

Introduction

What's **Phylogenetic Analysis**?

Introduction

Phylogenetic Analysis is a field of biomedical research which allow to understand the evolution of bacterial and viral epidemics.

Phylogenetic Analysis

Alignment of genetic sequences

Application of typing methodology

Application of phylogenetic inference methods

Visualization

Motivation

Related Tools

PHYLOVIZ

Desktop application for Phylogenetic Analysis

FLOWVIZ

Workflow Manager

Phylolib

Library of Phylogenetic Analysis Algorithms

PHYLOVIZ Online

Web application for Phylogenetic Analysis

PhyloDB

Graph-Oriented Database

Problems

- Features in both versions of PHYLOViZ are not the same
- PHYLOViZ Online is not modular, which makes it difficult to extend and maintain
- Current solutions do not scale for large data analysis and visualization
- Results and optimizations are not stored for reuse

Solution: PHYLOViZ Web Platform

Modular Architecture

Advanced Data Management

Architecture

Implementation

Data Model

Phylogenetic Data

PhyloDB

Model and Database used for first deployment. Uses the graph database **neo4j**.

OpenStack S3

Object storage of OpenStack used for file storage.

Others

Other repositories can be easily used, even at the same time, because of metadata storage.

Metadata

Document based

Abstraction between application and data repositories. Stores general information of each resource and access information for each data representation.

Metadata Documents

Project

_id: ObjectId('6442f8da3903160faccddf54')

name: "Project1"
description: ""

ownerId: "914cc356-ac86-4ab4-909c-bd02d3776a7b"

Dataset

_id: ObjectId('6442fb1d3903160faccddf62')

projectId: "6442f8da3903160faccddf54"

name: "Dataset1"

description: "My first dataset."

typingDataId: "7a01d824-e9a7-49cc-8d9d-7dacdcb2e92c"

Typing Data

_id: ObjectId('645d60621199246130dc94ea')

name: "allele_profiles.txt"

typingDataId: "026dcfaa-127d-4863-9208-55c1c539b983"

projectId: "645d60417f92b75799a8c86d"

repositorySpecificData: Object

▼ s3: Object

url: "http://localhost:9444/phyloviz-web-platform/645d6041

originalFilename: "allele_profiles.txt"

▼ phylodb: Object

projectId: "01686wcfa29"

type: "ML"

Isolate Data

_id: ObjectId('645d60c91199246130dc94f0')

▼ repositorySpecificData: Object

▼ s3: Object

url: "http://localhost:9444/phyloviz-web-platform/645d60417f9

originalFilename: "isolates.txt"
projectId: "645d60417f92b75799a8c86d"

name: "isolates.txt"

isolateDataId: "ac4fd7cb-6a00-4755-a771-66b8e30ee027"

Metadata Documents

Distance Matrix

Tree

_id: ObjectId('645dfcf8ba62c99ef7a314c1')
projectId: "645d60417f92b75799a8c86d"
datasetId: "645d60427f92b75799a8c86e"
treeId: "a13123bd0-a33f-4262-8973-bd65c52d4"
name: "Tree a13123bd0-a33f-4262-8973-bd65c52d4"
sourceType: "algorithm_distance_matrix"
> source: Object
 repositorySpecificData: Object
 phylodb: Object
 projectId: "2j9dk461"
 datasetId: "3j18ddk2"
 inferenceId: "a863-a33f-4oi2-89g5-13vsees"

Tree View

_id: ObjectId('645dfcf8ba62c99ef7a31221')
projectId: "645d60417f92b75799a8c86d"
datasetId: "645d60a27f92b75799a8c86e"
 treeViewId: "940da957-9bbc-406c-98d5-2f564ca12979"
 name: "Tree View 940da957-9bbc-406c-98d5-2f564ca12979"
> source: Object
 layout: "force-directed"
> filters: Object
 nodeLabels: true
 edgeLabels: false
> repositorySpecificData: Object

Workflows

- Workflow and tool templates are managed by the system administrator and stored in a document database.
- Workflows and tools can be added, edited and removed during runtime.
- Ideally tool images are previously uploaded to the custom Docker image registry.

Workflow and Tool Documents

Workflow Template

```
_id: ObjectId('64458b392fdc05eb5b625c36')
 name: "compute-distance-matrix"
 description: "Compute Distance Matrix Workflow"
▼ arguments: Object
  ▶ datasetId: Object
  ▼ function: Object
      type: "string"
    ▼ allowedValues: Array
        0: "hamming"
        1: "levenshtein"
▼ tasks: Arrav
  ▶ 0: Object
  ▼ 1: Object
      taskId: "distanceCalculation"
      tool: "phylolib"
    ▼ action: Object
        command: "distance ${function} --dataset=ml:/phvl
    ▶ children: Array
  ▶ 2: Object
```

Tool Template

```
_id: ObjectId('6435c0997b1e5ce5a2527ec3')
▼ general: Object
    name: "phylolib"
    description: "The phylolib library"
▼ access: Object
    _type: "library"
  ▼ details: Object
      address: "localhost"
      dockerUrl: "unix://var/run/docker.sock"
      dockerImage: "localhost:5000/phylolib"
      dockerAutoRemove: "never"
      dockerNetworkMode: "bridge"
      dockerApiVersion: "auto"
    ▼ dockerVolumes: Array
      ▼ 0: Object
          source: "/mnt/phyloviz-web-platform/${projectId}/${workflowId}/"
          target: "/phyloviz-web-platform"
          type: "bind"
▶ librarv: Arrav
```


Workflow and Tool Documents

Workflow Instance

```
_id: ObjectId('6442895f0889c2017a34045f')
 type: "compute-distance-matrix"
▼ workflow: Object
    name: "compute-distance-matrix-6442895f0889c2017a34045f"
    description: "A test workflow for Phylolib"
    startDate: 2023-04-21T12:02:23.671+00:00
  ▼ tasks: Array
    ▶ 0: Object
    ▼ 1: Object
        _id: "distanceCalculation"
        tool: "phylolib-6442895f0889c2017a34045f"
      ▼ action: Object
          command: "distance hamming --dataset=ml:/phyloviz-web-platfc
      ▶ children: Array
    ▶ 2: Object
▼ data: Object
    distanceMatrixId: "dd1f2032-c8c0-4deb-8fcb-4a81bea70f85"
```


Technologies

Backend Technologies

Spring

Gateway and Microservices

Redis

Session Storage

Java

Programming Language

Keycloak

Authorization Server

Backend Technologies

OpenStack

S3 Buckets for Big Data and VMs

Docker

Containerization Platform

MongoDB

Metadata Storage

Python

Language used for some starter compute tools

Frontend Technologies

React

User Interface

Material UI

React Library

TypeScript

Programming Language

Webpack

Module bundling

Cosmos

Tree Visualization

Progress

Progress

Feb 20th to Mar 13rd

- Study and analyze related tools
- Design architecture

Mar 14th to Apr 10th

- Definition of API
- Definition of metadata schemas
- Implementation of Gateway and Administration Microservice
- Implementation of several pages in the frontend application

Challenges

- Learn and work with many different technologies and tools
- Many configurations needed in order to execute the application and tools
- Design a modular architecture

Progress

Apr 11th to Apr 23rd

Implementation of Compute and Visualization Microservices
Continued frontend

- development
 - Beginning of the development of the frontend tree visualization

Apr 24th to May 15th

- Backend improvements
- Continuing frontend development
- Testing

Challenges

- Render the tree view
- Some tools are very expensive on computer resources
- Changes needed to be made in PhyloDB's code to integrate it more easily and allow for more flexibility of use

Demo

Next Steps

Next Steps

May 25th to Jun 5th

- Partial visualization of phylogenetic tree
- More filters in tree visualization and more layouts
- More tests
- Finish frontend application
- First deployment
- Prepare beta

Jun 5th to Jun 15th

Final details and delivery

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

