代表的 2022 年 10 月 24 日高中数学作业

未命名

一、单选题					
1. 若函数 $f(x) = \pi^x - \pi^{-x} + 2021x$,则不等式 $f(x+1) + f(2x-4) \ge 0$ 的解集为 ()					
A. [1,+∞)		B. (-∞,1]			
C. (0,1]		D. [-1,1]			
2. 对任意实数 $a < 1$ 且 $a \neq 0$ 关于 x 的函数 $y = (1-a)^x + 4$ 图象必过定点()					
A. (0,4)	. (0,1)	C. (0,5)	D. (1,5)		
3. 若函数 $y = (m^2 - m - 1) \cdot m^x$ 是指数函数,则 m 等于()					
A1或2		B1			
C. 2		D. $\frac{1}{2}$			
二、填空题					
4. 函数 $f(x)=ax^{+1}+1$ ($a>0$ 且 $a\ne 1$)的图象恒过定点					

5. 已知实数a > 0且 $a \ne 1$,不论a取何值,函数 $y = a^{x-4} + 2$ 的图像恒过一个定点,这个

三、解答题

定点的坐标为____.

6. 证明: 当a > 1, s < 0时, $0 < a^s < 1$ 恒成立.

参考答案:

1. A

【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可

【详解】 f(x) 的定义域为 R,

因为
$$f(-x) = \pi^{-x} - \pi^{x} - 2021x = -(\pi^{x} - \pi^{-x} + 2021x) = -f(x)$$
,

所以f(x)是奇函数,

所以不等式 $f(x+1)+f(2x-4) \ge 0$ 可化为 $f(x+1) \ge f(4-2x)$,

因为 $y = \pi^x$, $y = -\pi^{-x}$, y = 2021x 在 R 上均为增函数,

所以f(x)在R上为增函数,

所以 $x+1 \ge 4-2x$,解得 $x \ge 1$,

故选: A.

2. C

【分析】根据指数函数过定点(0,1)可求解.

【详解】:: $a < 1 且 a \neq 0$, :: $1-a > 0 且 1-a \neq 1$, 故函数 $y = (1-a)^x$ 是指数函数, 过定点(0,

1), 则 $y = (1-a)^x + 4$ 过定点(0, 5).

故选: C.

3. C

【分析】根据题意可得出关于实数m的等式与不等式,即可解得实数m的值.

故选: C.

4. (-1,2)

【解析】由解析式可直接得出.

【详解】由解析式可得当x = -1时, $f(-1) = a^0 + 1 = 2$,

 $\therefore f(x)$ 恒过定点(-1,2).

故答案为: (-1,2).

5. (4,3)

【分析】根据指数函数过定点问题求解.

【详解】令x-4=0,

得 x=4, 此时 y=3,

所以函数 $y = a^{x-4} + 2$ 的图像恒过的定点坐标为(4,3),

故答案为: (4,3)

6. 证明见解析

【分析】根据指数函数的单调性证明即可.

【详解】当a > 1时, $y = a^x$ 单调递增,

曲 s < 0 得 $a^s < a^0 = 1$,

又因为 $a^s > 0$

所以 $0 < a^s < 1$ 恒成立