§§ 束一的性質 Colligative properties

粒子の数(モル分率)に依存する性質

溶質 B が, 溶媒 A に溶けるとき, 溶媒 A の化学ポテンシャル $\mu_{\scriptscriptstyle A}$ は $\mu_{\scriptscriptstyle A}^{\it pure}$ よりも 減少する.

すなわち

$$\mu_A^{pure}$$
 $\xrightarrow{B$ が溶媒和に溶ける $}$ $\mu_A^{mix} = \mu_A^{pure} + RT \ln x_A$, ここで、 $\ln x_A < 0$, $x_A < 1$ $x_A = 1$ は純粋液体

その結果 沸点上昇,凝固点降下,浸透圧などの現象を引き起こす.

溶質 B は固体中に溶けないので μ_{solid} は不変 溶質 B は気体中に無いとして μ_{gas} も不変 μ_{liquid} は溶質が溶媒に溶けることで低下する。 \to 凝固点降下,沸点上昇が起こる \to ※ でもなぜ??

§ 沸点上昇 elevation of boiling point

溶媒: solvent = A 溶質: solute = B とする.

Aの気体とBがAに溶けた溶液(液体)が平衡している.

溶液の A の化学ポテンシャル: $\mu_{A \, liq}$ は、 x_{A} を溶媒組成(モル分率)として

$$\mu_{A liq} = \mu_{A liq}^{pure} + RT \ln x_A \qquad \leftarrow \text{Raoul}$$

溶液と気体 A は平衡、しているので

$$\mu_{A liq} = \mu_{A gas}^{pure}$$

$$\therefore \quad \mu_{A \ gas}^{pure} = \mu_{A \ liq}^{pure} + RT \ln x_A$$

$$\downarrow \leftarrow x_{A} = 1 - x_{B}$$
 \leftarrow 溶質の組成(モル分率 x_{B})に書き換えて

$$\mu_{A \text{ gas}}^{pure} = \mu_{A \text{ liq}}^{pure} + RT \ln(1 - x_B)$$

$$\ln(1 - \mathbf{x}_{B}) = \frac{1}{RT} \left(\mu_{A \ gas}^{pure} - \mu_{A \ liq}^{pure} \right) \equiv \frac{\Delta_{vap} G}{RT}$$

$$\downarrow \leftarrow \Delta_{vap} G = \Delta_{vap} H - T \Delta_{vap} S$$

 $\downarrow \leftarrow x_{\scriptscriptstyle B} \equiv 0$ とする. 純粋な溶媒 A のみとなる. そして $T \equiv T^{\scriptscriptstyle pure}$ とおける.

$$\ln(1) = 0 = \frac{\Delta_{vap}H}{RT^{pure}} - \frac{\Delta_{vap}S}{R}$$
 (2)

$$(1) - (2) \, \, \sharp \, \, \mathcal{I} \, \, \ln(1 - \frac{x_B}{R}) = \frac{\Delta_{vap} H}{R} \left(\frac{1}{T} - \frac{1}{T^{pure}} \right)$$

$$\downarrow \leftarrow x_B <<1 \ \succeq \ \cup \ \subset, \ \ln(1-x_B) \approx -x_B$$

$$\therefore \quad \mathbf{x}_{B} = \frac{\Delta_{vap} H}{R} \left(\frac{T - T^{pure}}{T \ T^{pure}} \right)$$

$$\downarrow \leftarrow TT^{pure} \equiv \left(T^{pure}\right)^2 \succeq \downarrow \tau$$

$$x_B = \frac{\Delta_{vap}H}{R} \frac{T - T^{pure}}{(T^{pure})^2} \equiv \frac{\Delta_{vap}H}{R} \frac{\Delta T}{(T^{pure})^2}$$

溶媒の性質で定数が決まり、溶質モル分率 x_{R} で決まる.

例 水

水蒸気
$$H_{gas}$$
 潜熱 $\Delta_{vap}H = 539[cal/g] = 2557[J/g]$ H_{liq} 水

§ 凝固点降下 freezing point depression

溶媒 = $A(\ell)$, 溶質 = B とする. A(s) は固体である. 平衡条件は, $\mu_{\scriptscriptstyle A}^{\scriptscriptstyle pure}(\mathbf{s}) = \mu_{\scriptscriptstyle A}^{\scriptscriptstyle pure}(\ell) + RT \ln x_{\scriptscriptstyle A}$ これを前頁と同様に展開すると, 式(3)で $\Delta_{vap}H \rightarrow \Delta_{fus}H$, $T-T^{pure} \rightarrow T_A^{pure}-T$ と置換して

$$\Delta T = T_A^{pure} - T = \frac{R \cdot (T_A^{pure})^2}{\Delta_{fits} H} \mathbf{x}_B \equiv K_f' \mathbf{x}_B > 0$$
 (4)

 $T_A^{pure} > T$ (T_A^{pure} は純粋 A の融点: $T_{mel\ A}^{pure}$, $\Delta_{fus}H$ は融解熱)

凝固点降下が起こる、溶質が何であるかは触れていない。

溶媒の性質で定数が決まり、溶質モル分率 x_{R} で決まる.

凝固点降下定数 沸点上昇定数 (質量モル濃度当たり)

	$K_f[Kkg/mol]$	$K_b[Kkg/mol]$
Benzene C ₆ H ₆	5.12	2.53
樟脳 C ₁₀ H ₁₆ O	40	
Phenol C ₆ H ₅ OH	7.27	3.04
水	1.86	0.51

氷水に食塩を混ぜると、 $R=8.31447[\mathrm{J/(K}\,mol)]$, $T_{m,k}=273.15[\mathrm{K}]$,

$$\Delta T = T_{mel \, \star} - T = \; rac{R \cdot (T_{m \, \star})^2}{\Delta_{fus} H_{\star}} \; x_{NaCl} = K_f^{'} \; x_{NaCl} \; \;$$
 の凝固点降下が生じる.計算してみよう.

 $\downarrow \qquad \Delta_{\mathit{flus}} H_{\#} = 79.68 [\mathit{cal} \, / \, \mathsf{g}] = 79.68 [\mathit{cal} \, / \, \mathsf{g}] \times 4.184 [\mathrm{J} / \mathit{cal}] \times 18.016 [\mathrm{g} / \mathit{mol}] = 6006 [\mathrm{J} / \mathit{mol}] \, \text{fs.} \, \mathcal{O} \, \text{C},$

$$\downarrow \leftarrow K'_{f} = \frac{R \cdot (T_{m \cdot \text{th}})^{2}}{\Delta_{\text{fis}} H_{\text{th}}} = \frac{8.3144 [\text{J/K} mol] \times (273.15 [\text{K}])^{2}}{6006 [\text{J/mol}]} = 103.3 [\text{K}]$$

 \downarrow ← $x_{\rm R} = x_{\rm NaCl} = 0.099$ ←0°Cにおける食塩の水への溶解度(実測値)

 $\Delta T = K_f^{'} \cdot x_{NaCl} = 103.3 \mathrm{[K]} \times 0.099 = 10.2 \mathrm{[K]}$ 約 10° C融点が下がる 実際はこの倍ほど低下する! why?

§ 溶解度 solubility

固体の溶質 B を溶媒 A に接触させる \rightarrow 溶液が飽和するまで B が溶け込む B の化学ポテンシャルを考える.

 $\mu_{\scriptscriptstyle D}^{\scriptscriptstyle pure}$ (固体) : 純粋な固体溶質 B の化学ポテンシャル

 $\mu_{\scriptscriptstyle D}(A$ 溶液中): 溶液中の B の化学ポテンシャル とする.

 $\mu_B(A 溶液中) = \mu_B^{pure}(液体) + RT \ln x_B$ ←Raoul

↓←飽和状態では, $\mu_{\scriptscriptstyle R}(A溶液中) = \mu_{\scriptscriptstyle R}^{\scriptscriptstyle pure}$ (固体)

$$\therefore \quad \left| \mu_B^{pure} (\boxtimes \Phi) = \mu_B^{pure} (\overline{\kappa} \Phi) + RT \ln x_B \right| \tag{5}$$

以下に温度T の時の溶液中のB のモル分率 x_B を求める。式(5)より

$$\ln x_{B} = \frac{1}{RT} \left(\mu_{B}^{pure} (\text{固体}) - \mu_{B}^{pure} (\text{液体}) \right)$$

$$= -\frac{1}{RT} \left(G_{B}^{pure} (\text{液体}) - G_{B}^{pure} (\text{固体}) \right) \equiv -\frac{\Delta_{fus} G}{RT}$$

$$\downarrow \qquad \qquad \Delta_{fus} G = \Delta_{fus} H - T \Delta_{fus} S,$$

$$\downarrow \leftarrow \qquad \therefore \qquad \frac{\Delta_{fus} G}{RT} = \frac{\Delta_{fus} H}{RT} - \frac{\Delta_{fus} S}{R} \qquad \text{ここで,} \quad \Delta_{fus} H \text{ は B } \text{ o } \text{ in } x_{B} = -\left(\frac{\Delta_{fus} H}{RT} - \frac{\Delta_{fus} S}{R} \right)$$

$$\therefore \qquad \ln x_{B} = -\left(\frac{\Delta_{fus} H}{RT} - \frac{\Delta_{fus} S}{R} \right)$$

一方,B の融点
$$T_{B\ melt}^{pure}$$
では, μ_{B}^{pure} (液体) $=\mu_{B}^{pure}$ (固体)であるから,

$$\Delta_{fus}G = G_B^{pure}($$
液体 $) - G_B^{pure}($ 固体 $) = \mu_B^{pure}($ 液体 $) - \mu_B^{pure}($ 固体 $) = 0$

$$\therefore \frac{\Delta_{\mathit{fus}}G}{RT_{\mathit{B melt}}^{\mathit{pure}}} = \frac{\Delta_{\mathit{fus}}H}{RT_{\mathit{B melt}}^{\mathit{pure}}} - \frac{\Delta_{\mathit{fus}}S}{R} = 0, \quad \mathsf{こ00} \, \mathsf{を足すことでエントロピーを消去して},$$

$$\therefore \quad \ln x_B = -\left(\frac{\Delta_{fus}H}{RT} - \frac{\Delta_{fus}S}{R}\right) + \left(\frac{\Delta_{fus}H}{RT_{B\ melt}^{pure}} - \frac{\Delta_{fus}S}{R}\right)$$

$$= -\frac{\Delta_{fus}H}{R}\left(\frac{1}{T} - \frac{1}{T_{B\ melt}^{pure}}\right)$$

$$\therefore x_{B} = \exp\left(-\frac{\Delta_{fus}H}{R}\left(\frac{1}{T} - \frac{1}{T_{B\,melt}^{pure}}\right)\right)$$

$$= \exp\left(-\frac{\Delta_{fus}H}{RT}\left(1 - \frac{T}{T_{B\,melt}^{pure}}\right)\right) \xrightarrow{T \to 0} 0$$

水に対する食塩の溶解度 (実測)

T/K	X _{NaCl}	m _{NaCl} /g
273.15	0.09902	35.65
283.15	0.09920	35.72
293.15	0.09962	35.89
303.15	0.10012	36.09
313.15	0.10082	36.37
323.15	0.10162	36.69
333.15	0.10249	37.04
343.15	0.10353	37.46
353.15	0.10469	37.93
363.15	0.10602	38.47
373.15	0.10730	38.99

5

§ 浸透圧 osmotic pressure

半透膜: 溶媒 A は通すが, 溶質 B は通さない膜 □: 浸透圧

ふたをとると↑

半透膜を隔てて平衡して釣り合っているので

$$\mu_A^{pure}(P) = \mu_A^{mix}(P + \Pi)$$

9回目 式(9)より

$$\mu_A^{mix}(P+\Pi) = \mu_A^{pure}(P+\Pi) + RT \ln x_A$$
 ←理想溶液 Raoult's law

$$\therefore RT \ln x_A = \mu_A^{mix}(P+\Pi) - \mu_A^{pure}(P+\Pi) = \mu_A^{pure}(P) - \mu_A^{pure}(P+\Pi)$$

$$dG = VdP - SdT$$
 において $dT = 0$ として $dG = VdP$ これを P のときに $\mu_A^{pure}(P)$ を基準として積分すると $\mu_A^{pure}(P+\Pi) = \mu_A^{pure}(P) + \int\limits_P V_m dP$ 、 V_m は A のモル体積

$$\therefore$$
 $-RT \ln x_A = \int\limits_P^{P+\Pi} V_m dP$
$$\downarrow \leftarrow \frac{\ln x_A = \ln(1-x_B) \approx -x_B \quad for \quad x_B \ll 1}{\downarrow \leftarrow V_m$$
は圧力に依存しないとする

$$\therefore RT x_{R} = V_{m}\Pi$$

$$\therefore \quad \Pi = RT \frac{x_B}{V_{\cdots}}$$

$$\downarrow \qquad \qquad x_B = \frac{N_B}{N_A + N_B} \approx \frac{N_B}{N_A} \quad for \quad N_B << N_A$$

$$\downarrow \leftarrow \qquad \therefore \quad \frac{x_B}{V_m} = \frac{N_B}{N_A V_m} \approx \frac{N_B}{V} \quad \text{ここでV は溶媒の全体積} \qquad N_A V_m \approx V, \quad \because N_A \gg N_B$$

$$\therefore \quad \Pi = RT \frac{N_B}{V} \quad \text{ここで} \frac{N_B}{V} \left[mol / m^3 \right] \text{は溶質のモル濃度} \quad \text{van't Hoff o式} \leftarrow \text{希薄溶液}$$
 (7)

$$cf PV = NRT$$

$$\downarrow \leftarrow P \rightarrow \Pi, N \rightarrow N_B, (N_B \ll N_A)$$

$$\Pi V = N_B RT$$

https://www.youtube.com/watch?v=7-68YglboEM ← van't Hoff の式は絵で描ける

§§ 活量 activity

実在気体の理想**気体**からのずれ→ $\mu(P) = \mu^0 + RT \ln \frac{f}{P^0}$ f: fugacity として考える.

ここで,上付き添え字 0 は基準状態,例えば標準状態の値を示す

実在溶液の理想**溶液**からのずれ→ $\mu(P) = \mu^{pure} + RT \ln \frac{a}{P^{pure}}$ **a**: activity として考える.

§ 溶媒 A の活量

一般の化学ポテンシャル

$$\mu_A = \mu_A^{pure} + RT \ln \frac{P_A}{P_A^{pure}} \quad P_A$$
は混合状態の A の蒸気圧 (8)

理想溶液

$$\mu_A = \mu_A^{pure} + RT \ln x_A \qquad \qquad \mu_A = \mu_A^{pure} + RT \ln \frac{a_A}{a_A} \tag{9}$$

(ラウールの法則) i.e.,
$$a_{\scriptscriptstyle A} = \frac{P_{\scriptscriptstyle A}}{P_{\scriptscriptstyle A}^{pure}}$$
: 実効モル分率 (10)

問題 373[K]=100[°C]における KNO $_3$ (aq), 0.500[M] の H_2 O の蒸気圧は 99.95 [kPa]である. 373[K]での水溶液中の水の活量を求めよ.

解

$$a_{H_2O} = \frac{P_{H_2O}}{P_{H_2O}^{pure}} = \frac{99.95[k\text{Pa}]}{1[atm]} = \frac{99.95[k\text{Pa}]}{101.325[k\text{Pa}]} = \frac{0.98643}{101.325[k\text{Pa}]}$$

$$\mu_{H_2O} = \mu_{H_2O}^{pure} + RT \ln a_{H_2O} = \mu_{H_2O}^{pure} - 0.01369 \times RT$$

§ 溶質 B の活量

理想希薄溶質
$$x_{B}$$
 << 1 実在溶質
$$\mu_{B} = \mu_{B}^{pure} + RT \ln \frac{P_{B}}{P_{B}^{pure}}$$

$$\downarrow \leftarrow P_{B} = K_{B} x_{B} ; \sim \vee \cup - \emptyset \times \mathbb{I}$$

$$= \mu_{B}^{pure} + RT \ln \frac{K_{B} x_{B}}{P_{B}^{pure}}$$

$$= \mu_{B}^{pure} + RT \ln \frac{K_{B}}{P_{B}^{pure}} + RT \ln x_{B}$$

$$\downarrow \leftarrow \mu_{B}^{pure} + RT \ln \frac{K_{B}}{P_{B}^{pure}} \equiv \mu_{B}^{\dagger} : \text{新たな標準化学 potential } \text{として}$$

$$\mu_{B} = \mu_{B}^{\dagger} + RT \ln x_{B}$$

$$\text{(11)}$$

$$\text{ここで} \quad x_{B} \rightarrow a_{B} \text{ とすると}, \qquad \mu_{B} = \mu_{B}^{\dagger} + RT \ln a_{B}$$

Aceton(C₃H₆O)と Chloroform(CHCl₃)の混合溶液の蒸気圧

XC	P _c /kPa	P _A /kPa	P _C +P _A /kPa
0.0	0.0	46.3	46.3
0.2	4.7	33.3	38.0
0.4	11.0	22.0	33.0
0.6	18.8	12.3	31.1
0.8	26.9	4.9	31.8
1.0	36.4	0.0	36.4

溶媒としての Chloroform の活量は $a_{\mathit{Chl}} = \frac{P_{\mathit{Chl}}}{P_{\mathit{Chl}}^{\mathit{pure}}}$ $P_{\mathit{Chl}}^{\mathit{pure}} = 36.4 [\mathit{kPa}], \; K_{\mathit{Chl}} = 22.0 [\mathit{kPa}]$

x_{Chl}	$a_{Chl} = P_{Ch} / P_C^{pure}$	$a_{Chl}=P_{Chl}/K_{Chl}^{pure}$	P_{Chl}/k Pa
0.0	0.000	0.000	0.0
0.2	0.129	0.214	4.7
0.4	0.302	0.500	11.0
0.6	0.516	0.855	18.8
0.8	0.739	1.223	26.9
1.0	1.000	1.655	36.4

ラウール ヘンリー P_{ch}^{pure} =36.4 K_{ch}^{pure} =22.0 クロロホルムを溶 クロロホルムを 媒とみなす 溶質とみなす

