Shortest tour

https://www.hackerrank.com/contests/sda-2019-2020-exam-2e3nr4rr/challenges/shortest-tour/problem

Намирате се в град с N на брой туристически атракции и много странна пътна инфраструктура. Знаете, че измежду атракциите има M на брой еднопосочни улички с равна дължина. Вие сте си набелязали K на брой атракции $X_1,\,X_2,\,\ldots,\,X_K$ в точната последователност, в която искате да ги обиколите за възможно най-кратко време. От вас се иска да намерите най-краткия път от X_1 до X_K , минаваща през всяка една от атракциите $X_2,\,\ldots,\,X_{K-1}$.

Забележка: Искате да обходите атракциите точно в последователността, която сте си избрали. Първото срещане на всяко X_i не трябва да се среща преди първото срещане на X_{i-1} . Забележете, че един връх може да участва по повече от веднъж в търсения път, а всяка атракция може да се посети пак след като е посетена първоначално.

Входен формат

От първия ред на стандартния вход се въвеждат N и M - съответно броя на върховете и броя на ребрата в графа. На следващите M на брой реда се въвеждат по 2 променливи a_i и b_i - определящи ребро с начало a_i и край b_i . На следващия ред се въвежда K. На последния ред от стандартния вход се въвеждат K на брой числа - номерата на върховете X_1,\ldots,X_K .

Ограничения

- $N \le 10^3$
- $M. K < 10^4$
- $0 \le a_i, b_i, X_i < N$

Изходен формат

Извежда се едно число - дължината на искания най-кратък път. Ако такъв път не съществува изведете -1.

Примерен вход	Очакван изход	Пояснение
5 7 0 1 1 4 0 2 2 3 3 4 4 1 3 2 3 0 4 1	4	Пътят, който търсим е $0 \to 2 \to 3 \to 4 \to 1$ и е с дължина 4. Забележете, че има път $0 \to 1 \to 4 \to 1$, който е с дължина 3, но той не минава по атракциите в зададения ред, а минава през 1 преди през 4.