Variant annotation

Approaches and resources

Annotate variant statistics

How to compute and annotate variant statistics and flags

Useful statistics to consider for variant annotation

Possible useful metrics to annotate in a multi-sample VCF for QC

INFO/AC	Number:A	Type:Integer	Allele count in genotypes
INFO/AN	Number:1	Type:Integer	Total number of alleles in called genotypes
INFO/AF	Number:A	Type:Float	Allele frequency (AC/AN)
INFO/MAF	Number:A	Type:Float	Minor Allele frequency
INFO/ExcHet	Number:A	Type:Float	Test excess heterozygosity; 1=good, 0=bad
INFO/END	Number:1	Type:Integer	End position of the variant
INFO/F MISSING	Number:1	Type:Float	Fraction of missing genotypes
INFO/HWE	Number:A	Type:Float	HWE test (PMID:15789306); 1=good, 0=bad
INFO/NS	Number:1	Type:Integer	Number of samples with data
INFO/TYPE	Number:.	Type:String	The record type (REF, SNP, MNP, INDEL, etc)
INFO/MEDIAN DP	Number:1	Type:Float	The median depth observed across all genotypes
INFO/MEDIAN GQ	Number:1	Type:Float	The median GQ observed across all genotypes
FORMAT/VAF	Number:A	Type:Float	The fraction of reads with the alternate allele
			requires FORMAT/AD

Variant metrics - AF vs MAF

BCFTOOLS +fill-tags plugin

```
Usage: bcftools +fill-tags [General Options] -- [Plugin Options]
```

Basic usage

bcftools +fill-tags input_file.vcf.gz -- -t AC,AN,AF,MAF

Simply provide the desired tag(s) to annotate your VCF (-1 to see a list of available tags)

Computation of custom tags

bcftools +fill-tags in.bcf -- (-t 'DP=sum(FORMAT/DP)'

Many functions implemented like:

- *N_PASS*: number of samples passing a condition
- *F_PASS*: fraction of samples passing a condition
- MEDIAN, MEAN
- SUM, COUNT

See documentation on expression for a full list

Any custom value can be computed using the format 'TAG_NAME=formula'

This allows to combine information from multiple tags to generate a new value

See the official tool documentation here

BCFTOOLS +fill-tags plugin

Computation of per-group statistics

bcftools +fill-tags in.bcf -- -t AC, AN, AF -S groups.tsv

Tags can be computed per group by providing a aroupina table

Example grouping file

Sample1

Group1

Sample2

Group1, Group2

Sample3

Group2

Resulting INFO tags

AC Group1

AC Group2

AN Group1

AN Group2

Useful to compute population specific values or specific values for cases and controls

Consequences on gene

Understand the impact of variant on known genes / transcripts

Gene consequences

Gene consequences - available gene definition sources

Database	Present Release	Number of transcripts	Type of data
RefSeq	227	207,289	Computational prediction, experimental validation
Ensembl	113	387,944	Computational prediction, experimental validation, large RNA-Seq, GENCODE Basic subset
GENCODE	24	Basic: 158,338 Complete: 385,659	Manual and automated annotation from EST, RNA-seq, curated projects

Transcript structure information define coordinates for exons, introns, and UTRs and influence how gene consequences are defined for a given genetic variant.

Gene consequences - The GTF / GFF formats

Gene consequences - the problem of multiple impacts

Gene consequences - most-severe approach

For each variant, pick the most severe consequence across all impacted transcripts

Gene consequences - Curated selection of transcripts

MANE select

Very few curated transcripts per gene

Ensembl canonical

Only a single transcript per gene

https://www.ncbi.nlm.nih.gov/refseq/MANE/
DDI: 10.13140/RG.2.2.30201.26723

Gene consequences - Filter by canonical or MANE transcripts

For each gene, a representative transcript is identified and tagged

Gene consequences - multi-nucleotide polymorphism (MNP)

Gene consequences - evaluate an impact in the context of transcript expression

Transcript expression varies across tissues and some transcripts may be spurious and rarely observed

Add custom annotations

How to annotate your variants with information from external sources

Annotate a variant with information from external sources

Add useful annotations to variants based on the overlap or exact match with external annotations

Annotate small variants - BCFTOOLS ANNOTATE

Usage: bcftools annotate [options] VCF/BCF

Argument	Description
-a	VCF file or tabix-indexed FILE with annotations
-с	Columns (TSV/BED) or INFO/FORMAT fields (VCF/BCF) from the annotation file to use in annotation
-I	Set ID column using a `bcftools query`-like expression
min-overlap	Required overlap as a fraction of variant in the -a file (ANN), the VCF (:VCF), or reciprocal (ANN:VCF)
-x	List of annotations (e.g. ID,INFO/DP,FORMAT/DP,FILTER) to remove
-h	Lines which should be appended to the VCF header

Annotate small variants - VCFANNO

Usage: vcfanno config.toml input.vcf > annotated.vcf

BED

0-based coordinates

mandatory fields: CHROM, START, END

Header ignored

Accepted inputs

1-based coordinates

mandatory fields: CHROM, POS (or FROM/TO)

Header mandatory

1-based coordinates

Indexes for columns to use in annotation -

Names to use in the annotated file -

REF/ALT allele will be

matched when REF and ALT columns are present

INFO field to use in annotation -

Operation to apply when multiple annotations are present

- max, min, mean, sum
- uniq: list of distinct values
- flag: true/false
- self: report value as it is

config.toml

```
[[annotation]]
file="my regions.bed.gz"
columns = [4, 5]
ops=["flag", "unig"]
names=["ISREGION","REGION NAME"]
[[annotation]]
file="ReMM score.tsv.qz"
columns = [3]
ops=["max"]
-names=["ReMM"]
[[annotation]]
file="qnomad.vcf.qz"
·fields = ["AF", "NFE AF", "AFR AF"]
ops=["max", "max", "max"]
names=["gnomad af", "gnomad eur af""gnomad afr af"]
```

See documentation at https://github.com/brentp/vcfanno

Annotate structural variants - AnnotSV and SVAfotate

A C C C T G T A A C T A G T G A T A C A T T T G A A C A C T G A G A G T T C

- AnnotSV: annotate any bed like file based on overlap
- **SVAFotate**: annotate AF from reference populations

Reciprocal overlap is used to decide annotations Generally, >= 50% accepted

Annotate structural variants - SVAFotate

Select annotation events based on a minimum overlap with annotation intervals

Overlap fraction product (OFP) Identify the most similar events

Annotate fraction of variant covered

How much of the variant is covered by annotation sources

Annotate maximum AF

Select max AF across possible overlaps

Popular useful annotations

- population allele frequencies
- low-complexity regions
- deleteriousness predictors
- splicing impact predictions
- non-coding variants predictions
- conservation scores
- constrained regions
- regulatory regions

Population allele frequencies

Large sequencing studies provide estimation on the variability of human genome and precise estimation of allele frequencies in different populations

• <u>1000G</u> 2,504 whole-genome

• <u>gnomAD v4</u> 730,947 exomes and 76,215 genomes

<u>TopMed</u>
 138,000 whole-genome

• Population-specific projects UK10K, GO-NL, UKBB...

- identify rare vars
- compare AF for QC
- find population specific variants

Previously characterized variants

Is a variant already characterized and associated to a phenotype of interest?

Variant deleteriousness predictions

1.00

computational scores developed to predict the functional impact of variants, especially for missense

- prioritizeimpactful variants
- remove neutral variants

Popular available predictors: <u>CADD</u>, <u>REVEL</u>, <u>PolyPhen</u>, <u>M-CAP</u>, <u>EVE</u>, <u>PrimateAI-3D</u>, <u>AlphaMissense</u>

Splice impact predictions

predict impact on splicing - disruption of existing splicing sites or creation of cryptic splicing events

SpliceAl method

Training on sequence-gene expression paired dataset

Predict splicing impact for new SNVs or small INDELs

Jaganathan et al., 2019

Non-coding variant impact prediction

ML models trained on non-coding variants, either disease-causing or eQTL variants

Possible training sets

Limitations

- low-effect moderate frequency variants
- may be tagging variants
- mostly cis eQTLs

- DeepSEA
- Phen-Gen
- FIRE
- ncER
- ReMM
- LinSight
- <u>FATHMM-NC</u>

Promoter

Disease-associated variants

- low number available
- mostly in promoters/introns

Shared

- effect is often context specific
- Regulatory elements are tolerant to point mutations

Target

- prioritize variants outside protein-coding genes
- identify variants more likely to have an effect on gene expression

Evolutionary conservation of sequence

Sequence conservation based on large multi-species alignments identify important DNA positions

• GERP++

Range -12 to +6 (Constraint site > 2) Higher value ⇒ More conserved.

PhyloP

Range -20 to +10 (Conserved site < 0) Lower value ⇒ More conserved.

PhastCons

Range 0 to 1. Higher value ⇒ More conserved.

Target

- prioritize functionally relevant variants
- identify species-specific relevant variants

Gene mutation constraint scores

Rank genes based on their tolerance to functional or regulatory variants. Intolerance indicates functionally relevant genes

Popular scores: RVIS, GDI, LOEUF, pLOF

Target

- prioritize medical relevant genes
- evaluate impact of selected variants

Regulatory regions - functional elements that control gene expression

Transcription factor binding sites (TFBS), Enhancer / Silencer, Promoter regions, Insulators, DNasel hypersensitive sites, CpG methylated regions, eQTLs.

- ENCODE cCRE/DNase/TFBS
- <u>FANTOM5</u> promoters/enhancers
- Roadmap epigenomics project
- GTeX eQTLs

- prioritize variants outside genes
- connect non-coding variants to genes (e.g. for burden tests)

Additional region-based annotations

Regions where mapping and variant calling may be unreliable, useful for QC:

- Segmental Duplications
- Low mappability and low complexity regions

Additional functional regions of interest

- TargetScan miRNA interaction
- InterPro and PFAM for protein domains

- identify FP/FN variants
- prioritize project-specific functional regions