

Nombre:	Fecha:
ARELLANO GRANADOS ANGEL	06 / 10 / 2021
MARIANO	
Actividad 3.1	Espacio, subespacio vectorial y
	conjunto generador

Instrucciones: contesta lo que se te solicita en cada pregunta con el uso del editor de ecuaciones de Word, recuerda que también puedes pegar la imagen de tu procedimiento realizado a mano en hojas blancas en el espacio destinado para la respuesta. No olvides anotar la justificación a cada uno de tus procesos para que tu respuesta sea válida. Recuerda que trabajos fuera de tiempo e incompletos no son revisados.

1. Escribe 3 ejemplos de espacios vectoriales, escribe la justificación de cada uno de ellos.

EJEMPLO 1:

Matrices triangulares inferiores:

$$\begin{aligned} & \mathsf{u} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \quad \mathsf{v} = \begin{bmatrix} 4 & 0 \\ -3 & 1 \end{bmatrix} \quad \mathsf{u} + \mathsf{v} = \begin{bmatrix} 5 & 0 \\ -1 & 4 \end{bmatrix} \quad \therefore \begin{bmatrix} 5 & 0 \\ -1 & 4 \end{bmatrix} \in \mathsf{V} \\ & \mathsf{u} + \mathsf{0} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \quad \therefore \text{hay un elemento 0} \\ & \mathsf{u} + (-\mathsf{u}) = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ -2 & -3 \end{bmatrix} \quad = \mathsf{0} \quad \therefore \text{existe el elemento opuesto} \\ & \mathsf{c} = \mathsf{4} \quad \mathsf{cu} = \begin{bmatrix} 4 & 0 \\ 8 & 12 \end{bmatrix} \quad \therefore \begin{bmatrix} 4 & 0 \\ 8 & 12 \end{bmatrix} \in \mathsf{V} \end{aligned}$$

EJEMPLO 2:

Vectores de R⁴:

$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \\ 4 \\ -1 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} -4 \\ -2 \\ -8 \\ 2 \end{pmatrix} \quad \mathbf{u} + \mathbf{v} = \begin{pmatrix} -2 \\ -1 \\ -4 \\ 1 \end{pmatrix} \quad \therefore \begin{pmatrix} -2 \\ -1 \\ -4 \\ 1 \end{pmatrix} \in V$$

$$\mathbf{u} + \mathbf{0} = \begin{pmatrix} 2 \\ 1 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \\ -1 \end{pmatrix} \quad \therefore \text{hay un elemento 0}$$

$$\mathbf{u} + (-\mathbf{u}) = \begin{pmatrix} 2 \\ 1 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \therefore \text{existe el elemento opuesto}$$

$$c=5 \quad cu = \begin{pmatrix} 10 \\ 5 \\ 20 \\ -5 \end{pmatrix} \quad \therefore \begin{pmatrix} 10 \\ 5 \\ 20 \\ -5 \end{pmatrix} \in V$$

EJEMPLO 3:

Matrices 2x3:

$$\begin{aligned} & \mathsf{u} = \left| \begin{array}{cccc} 5 & 0 & 3 \\ -2 & 1 & 0 \end{array} \right| \ \ \mathsf{v} = \left| \begin{array}{cccc} 2 & 2 & -6 \\ 8 & -1 & 4 \end{array} \right| \ \ \mathsf{u} + \mathsf{v} = \left| \begin{array}{cccc} 7 & 2 & -3 \\ 6 & 0 & 4 \end{array} \right| \ \ \dot{:} \left| \begin{array}{cccc} 7 & 2 & -3 \\ 6 & 0 & 4 \end{array} \right| \in \mathsf{V} \\ & \mathsf{u} + \mathsf{0} = \left| \begin{array}{cccc} 5 & 0 & 3 \\ -2 & 1 & 0 \end{array} \right| + \left| \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right| = \left| \begin{array}{cccc} 5 & 0 & 3 \\ -2 & 1 & 0 \end{array} \right| \ \ \ \dot{:} \ \ \mathsf{hay} \ \mathsf{un} \ \mathsf{elemento} \ \mathsf{0} \\ & \mathsf{u} + (-\mathsf{u}) = \left| \begin{array}{cccc} 5 & 0 & 3 \\ -2 & 1 & 0 \end{array} \right| + \left| \begin{array}{cccc} -5 & 0 & -3 \\ 2 & -1 & 0 \end{array} \right| = \left| \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right| \quad \ \ \dot{:} \ \mathsf{existe} \ \mathsf{el} \ \mathsf{elemento} \ \mathsf{opuesto} \\ & \mathsf{c} = 1/2 \ \ \mathsf{cu} = \left| \begin{array}{ccccc} 5/2 & 0 & 3/2 \\ -1 & 1/2 & 0 \end{array} \right| \quad \ \dot{:} \left| \begin{array}{cccccccc} 5/2 & 0 & 3/2 \\ -1 & 1/2 & 0 \end{array} \right| \in \mathsf{V} \end{aligned}$$

2. Escribe 3 ejemplos de subespacios vectoriales, con su debida justificación.

EJEMPLO 1:

Sea V los vectores (a, b) en R²

W es un subconjunto talque a + b = 0

$$u = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \quad v = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \quad u + v = \begin{pmatrix} 5 \\ -5 \end{pmatrix} \quad \therefore \mathbf{a} + \mathbf{b} = \mathbf{0}$$
$$u = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \quad c = 4 \quad cu = \begin{pmatrix} 8 \\ -8 \end{pmatrix} \quad \therefore \mathbf{a} + \mathbf{b} = \mathbf{0}$$

EJEMPLO 2:

Sea V las matrices 2x2

W es un subconjunto talque todos sus componentes sean divisibles entre 2

$$u = \begin{vmatrix} 4 & 6 \\ 2 & 8 \end{vmatrix}$$
 $v = \begin{vmatrix} 10 & 8 \\ 2 & -2 \end{vmatrix}$ $u + v = \begin{vmatrix} 14 & 14 \\ 4 & 6 \end{vmatrix}$ \therefore sus componentes son divisibles entre 2 $u = \begin{vmatrix} 4 & 6 \\ 2 & 8 \end{vmatrix}$ $c = 3$ $cu = \begin{vmatrix} 12 & 18 \\ 6 & 24 \end{vmatrix}$ \therefore sus componentes son divisibles entre 2

EJEMPLO 3:

Sea V los vectores (a, b) en R²

W es un subconjunto talque el primer componente es 0

$$u = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
 $v = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ $u + v = \begin{pmatrix} 0 \\ 8 \end{pmatrix}$: el primer componente es 0

$$u = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
 $c = 7$ $cu = u = \begin{pmatrix} 0 \\ 21 \end{pmatrix}$: el primer componente es 0

- 3. Determina si los siguientes conjuntos son espacios vectoriales:
 - a) Matrices diagonales

$$\begin{aligned} & \mathsf{u} = \left| \begin{matrix} 6 & 0 \\ 0 & 9 \end{matrix} \right| \ \ \mathsf{v} = \left| \begin{matrix} 4 & 0 \\ 0 & 1 \end{matrix} \right| \ \ \mathsf{u} + \mathsf{v} = \left| \begin{matrix} 10 & 0 \\ 0 & 10 \end{matrix} \right| \ \ \therefore \left| \begin{matrix} 10 & 0 \\ 0 & 10 \end{matrix} \right| \ \in \mathsf{V} \\ & \mathsf{u} + \mathsf{0} = \left| \begin{matrix} 6 & 0 \\ 0 & 9 \end{matrix} \right| + \left| \begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix} \right| = \left| \begin{matrix} 6 & 0 \\ 0 & 9 \end{matrix} \right| \quad \ \therefore \text{hay un elemento 0} \\ & \mathsf{u} + (-\mathsf{u}) = \left| \begin{matrix} 6 & 0 \\ 0 & 9 \end{matrix} \right| + \left| \begin{matrix} -6 & 0 \\ 0 & -9 \end{matrix} \right| \quad = \mathsf{0} \quad \ \therefore \text{existe el elemento opuesto} \\ & \mathsf{c} = -3 \quad \mathsf{cu} = \left| \begin{matrix} -18 & 0 \\ 0 & -27 \end{matrix} \right| \quad \ \therefore \left| \begin{matrix} -18 & 0 \\ 0 & -27 \end{matrix} \right| \in \mathsf{V} \\ \end{aligned}$$

b) Matrices triangulares superiores cuyos elementos son enteros positivos.

$$u = \begin{vmatrix} 2 & 4 \\ 0 & 5 \end{vmatrix}$$
 $c = -2$ $cu = \begin{vmatrix} -4 & -8 \\ 0 & -10 \end{vmatrix}$ $\therefore \begin{vmatrix} -4 & -8 \\ 0 & -10 \end{vmatrix}$ no son enteros positivos

c) Polinomios de grado menor o igual a tres.

$$u= x^3-2x^2+x+3$$
 $v=-x^3+2x^2-x-5$ $u+v=-2$: -2 no es un polinomio de grado <= 3

- En los siguientes ejercicios W no es un subespacio vectorial. Comprueba lo anterior con un ejemplo específico que viole la prueba para subespacio vectorial.
 - a) W es el conjunto de todos los vectores en ℝ³cuya tercera componente es -1

$$u = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \quad v = \begin{pmatrix} 8 \\ 3 \\ -1 \end{pmatrix} \quad u + v = \begin{pmatrix} 9 \\ 5 \\ -2 \end{pmatrix} \quad \therefore \begin{pmatrix} 9 \\ 5 \\ -2 \end{pmatrix}$$
 la tercera componente no es -1

b) W es el conjunto de todos los vectores en \mathbb{R}^2 cuya segunda componente es 1.

$$u=\begin{pmatrix} 2\\1 \end{pmatrix}$$
 $v=\begin{pmatrix} 5\\1 \end{pmatrix}$ $u+v=\begin{pmatrix} 7\\2 \end{pmatrix}$ $\therefore \begin{pmatrix} 9\\5 \end{pmatrix}$ la segunda componente no es 1

c) W es el conjunto de todos los vectores en \mathbb{R}^2 cuyos componentes son números racionales.

$$u=\begin{pmatrix} 5\\3 \end{pmatrix}$$
 $c=\pi$ $cu=\begin{pmatrix} 5\pi\\3\pi \end{pmatrix}$ $cu=\begin{pmatrix} 5\pi\\3\pi \end{pmatrix}$ no es un número racional

d) W es el conjunto de todos los vectores en \mathbb{R}^2 cuyos componentes son números enteros.

$$u=\binom{2}{3}$$
 c=1/5 cu= $\binom{2/5}{3/5}$:: $\binom{2/5}{3/5}$ no es un número entero

- 5. Determine si los siguientes conjuntos generan al espacio vectorial indicado.
 - a) $S = \{(2,1), (-1,2)\}$

$$\det S = 5 \quad S^{-1} = \frac{1}{5} \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \quad S^{-1} = \begin{vmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{2a+b}{5} \binom{2}{1} + \frac{-a+2b}{5} \binom{-1}{2} = \binom{a}{b}$$

∴ S si genera a R²

b)
$$S = \{(1, -1), (2, 1)\}$$

$$\det S = 3 \quad S^{-1} = \frac{1}{3} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \quad S^{-1} = \begin{vmatrix} \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{a-2b}{3} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{a+b}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

∴ S si genera a R²

c)
$$S = \{(5,0), (5,-4)\}$$

$$\det S = -25 \quad S^{-1} = \frac{1}{-25} \begin{vmatrix} -4 & -5 \\ 0 & 5 \end{vmatrix} \quad S^{-1} = \begin{vmatrix} \frac{4}{25} & \frac{1}{5} \\ 0 & -\frac{1}{5} \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{4a}{25} + \frac{b}{5} {5 \choose 0} + -\frac{b}{5} {5 \choose -4} = {a \choose b}$$

d)
$$S = \{(2,0), (0,1)\}$$

$$\det S = 2 \quad S^{-1} = \frac{1}{2} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} \quad S^{-1} = \begin{vmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \frac{a}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

∴ S si genera a R²

e)
$$S = \{(4,7,3), (-1,2,6), (2,-3,5)\}$$

$$\det S = 228$$

$$\begin{vmatrix} 4 & -1 & 2 \\ 7 & 2 & -3 \\ 3 & 6 & 5 \end{vmatrix} \begin{vmatrix} a \\ b \\ c \end{vmatrix} F1(\frac{1}{4}) = F1$$

$$F1(-7) + F2 = F2$$

$$\begin{vmatrix} 1 & -\frac{1}{4} & \frac{1}{2} \\ 0 & \frac{15}{4} & -\frac{13}{2} \\ 0 & \frac{27}{4} & \frac{7}{2} \end{vmatrix} \begin{vmatrix} \frac{a}{4} \\ -\frac{7a}{4} + b \end{vmatrix} F2\left(\frac{1}{4}\right) + F1 = F1$$

$$F2\left(\frac{1}{4}\right) + F1 = F1$$

$$F2\left(-\frac{27}{4}\right) + F3 = F3$$

$$\begin{vmatrix} 1 & \frac{15}{4} & -\frac{13}{2} \\ -\frac{7a}{4} + b \end{vmatrix} = F2\left(\frac{1}{4}\right) + F1 = F1$$

$$\left| 0 \quad \frac{27}{4} \quad \frac{7}{2} \right| \left| -\frac{3a}{4} + c \right| F2\left(-\frac{27}{4} \right) + F3 = F3$$

$$\begin{vmatrix} 1 & 0 & \frac{1}{15} \end{vmatrix} \begin{vmatrix} \frac{2a}{15} + \frac{b}{15} \end{vmatrix} \qquad F3\left(\frac{5}{76}\right) = F3$$

$$\begin{vmatrix} 1 & 0 & \frac{1}{15} \\ 0 & 1 & -\frac{26}{15} \\ 0 & 0 & \frac{76}{5} \end{vmatrix} \begin{vmatrix} \frac{2a}{15} + \frac{b}{15} \\ -\frac{7a}{15} + \frac{4b}{15} \\ \frac{12a}{5} - \frac{9b}{5} + c \end{vmatrix} F3\left(\frac{5}{76}\right) = F3$$

$$F3\left(\frac{5}{76}\right) = F3$$

$$F3\left(\frac{1}{15}\right) + F1 = F1$$

$$F3\left(\frac{26}{15}\right) + F2 = F2$$

$$0 \quad 0 \quad \frac{76}{5} \left| \frac{12a}{5} - \frac{9b}{5} + c \right| \quad F3\left(\frac{26}{15}\right) + F2 = F2$$

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} -\frac{18a}{125} + \frac{103b}{375} - \frac{26c}{225} \\ \frac{843a}{125} - \frac{1928b}{375} + \frac{676c}{225} \\ \frac{104a}{25} - \frac{78b}{25} + \frac{26c}{15} \end{vmatrix}$$

∴ S si genera a R^3

f)
$$S = \{(6,7,6), (3,2,-4), (1,-3,2)\}$$

 $\det S = -184$

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{6} \\ 0 & -\frac{3}{2} & -\frac{25}{6} \\ 0 & -7 & 1 \end{vmatrix} \begin{vmatrix} \frac{a}{6} \\ -\frac{7a}{6} + b \\ -a + c \end{vmatrix} F2\left(-\frac{1}{2}\right) + F1 = F1$$

$$F2(7) + F3 = F3$$

$$\begin{vmatrix} 1 & 0 & \frac{9}{4} \\ 0 & 1 & -\frac{25}{9} \\ 0 & 0 & -\frac{169}{6} \end{vmatrix} \begin{vmatrix} \frac{5a}{9} + \frac{b}{3} \\ -\frac{7a}{9} - \frac{2b}{3} \\ -\frac{58a}{9} - \frac{14b}{3} + c \end{vmatrix} F3\left(-\frac{9}{25}\right) + F1 = F1$$

$$F3\left(\frac{25}{9}\right) + F2 = F2$$

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \frac{a+b+c}{19} \\ 32a+6b-25c \\ \hline 190 \\ 34a-42b+15c \\ \hline 190 \end{vmatrix}$$

∴ S si genera a R^3

- 6. Determine cuál de las expresiones es verdadera o falsa. Si la expresión es verdadera, proporcione una razón o cite un resultado adecuado. Si la expresión es falsa, proporcione un ejemplo que muestre que la expresión no es cierta en todos los casos o cite un resultado adecuado.
 - El conjunto de todos los enteros es un espacio vectorial.
 FALSO:

ii. El conjunto de todas las tercias ordenadas (x, y, z) de números reales donde y \ge 0, en \mathbb{R}^3 es un espacio vectorial.

FALSO:

$$u = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$
 $c = -2$ $cu = \begin{pmatrix} -4 \\ -8 \\ -6 \end{pmatrix}$:-8 no es menor o igual a 0

iii. Para demostrar que un conjunto no es un espacio vectorial, es suficiente demostrar que uno de los axiomas no se cumple.

VERDADERO

iv. El conjunto de todos los polinomios de primer grado es un espacio vectorial.

VERDADERO:

u= x+2 v=2x-1 u+v=3x+1
$$\therefore$$
3x+1 es un polinomio de grado 1
u+0=x+2 \therefore hay un elemento 0
u+(-u)=x+2+(-x-2)=0 \therefore existe el elemento opuesto
c=4 cu=4x+8 \therefore 4x+8 es un polinomio de grado 1

v. El conjunto de todos los pares de números reales de la forma (0, y) con las operaciones estándar en \mathbb{R}^2 es un espacio vectorial.

VERDADERO:

$$u = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \quad v = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad u + v = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \quad \therefore (0,3) \in V$$

$$u + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \quad \therefore \text{hay un elemento 0}$$

$$u + (-u) = \begin{pmatrix} 0 \\ 4 \end{pmatrix} + (\begin{pmatrix} 0 \\ -4 \end{pmatrix}) = 0 \quad \therefore \text{ existe el elemento opuesto}$$

$$c = 4 \quad cu = \begin{pmatrix} 0 \\ 16 \end{pmatrix} \quad \therefore (0,16) \in V$$

vi. W es el conjunto de todos los vectores en \mathbb{R}^2 cuyas componentes son números naturales.

FALSO:

$$u = {3 \choose 5}$$
 $c = 1/2$ $cu = {3/2 \choose 5/2}$ $cu = {3/2 \choose 5/2}$ no son numeros naturales

FALSO:

$$u = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix} \quad c = -1 \quad cu = \begin{pmatrix} -5 \\ -4 \\ -3 \end{pmatrix} \quad \therefore \begin{pmatrix} -5 \\ -4 \\ -3 \end{pmatrix}$$
 son negativas

VERDADERO:

$$C_1\begin{pmatrix} 1\\3 \end{pmatrix} + C_2\begin{pmatrix} 2\\3 \end{pmatrix} + C_3\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} a\\b \end{pmatrix}$$
$$\begin{pmatrix} 1C1\\3C1 \end{pmatrix} + \begin{pmatrix} 2C2\\3C2 \end{pmatrix} + \begin{pmatrix} 1C3\\2C3 \end{pmatrix} = \begin{pmatrix} a\\b \end{pmatrix}$$

 $c_1+2c_2+c_3=a$

 $3c_1+23_2+2c_3=b$

$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} F1(-3) + F2 = F2$$

$$\begin{vmatrix} 1 & 2 & 1 \\ 0 & -3 & -1 \end{vmatrix} \begin{vmatrix} a \\ -3a + b \end{vmatrix} \frac{F2\left(-\frac{1}{3}\right) = F2}{F2(-2) + F1 = F1}$$

$$\begin{vmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} \end{vmatrix} \begin{vmatrix} \frac{-3a + 2b}{3} \\ \frac{3a - b}{3} \end{vmatrix} F2\left(-\frac{1}{3}\right) = F2$$

$$F2(-2) + F1 = F1$$

$$\begin{pmatrix} \frac{-3a+2b}{3} - \frac{1}{3}C3 \\ \frac{3a-b}{3} - \frac{1}{3}C3 \\ C3 \end{pmatrix}$$

 $\therefore los \ vectores \ si \ generan \ R^2$

ix. Los vectores (1,2,3), (1,3,9) genera a \mathbb{R}^3 .

FALSO:

$$\begin{vmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 9 \end{vmatrix} \begin{vmatrix} a \\ b \\ c \end{vmatrix} F1(-2) + F2 = F2$$

$$\begin{vmatrix} 1 & 2 \\ 0 & -1 \\ 0 & 3 \end{vmatrix} \begin{vmatrix} a \\ -2a + b \\ -3a + c \end{vmatrix} F2(-1) = F2$$

$$\begin{vmatrix} 1 & 0 \\ -3a + b \\ 2a - b \\ 0 & 0 \end{vmatrix} \begin{vmatrix} -3a + b \\ 2a - b \\ -9a + 3b + c \end{vmatrix}$$

∴El sistema no tiene soluciones y no genera a R³

x. El conjunto de polinomios 1 + x, 2 + 2x genera a P_2 .

$$\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix}$$

 $\det S = 0$:: El sistema no tiene soluciones y no genera a P_2