

Overview

Exploring our dataset

WHAT WE HAD

- Date: year-month-day
- Hour Hour of the day
- Temperature-Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10m
- Dew point temperature Celsius
- Solar radiation MJ/m2
- Rainfall mm
- Snowfall cm
- Seasons Winter, Spring, Summer, Autumn
- Holiday Holiday/No holiday
- Functional Day NoFunc(Non Functional Hours), Fun(Functional hours)

OUR GOAL

 Study the impact of all the variables on the number of rented bikes

Exploring our dataset

2 TYPES OF VARIABLES

• Temporal ones:

Date

Hour

Holiday

Functional Day

Meteorological ones :

Temperature

Humidity

Windspeed, Visibility

Dew point temperature

Solar radiation

Rainfall

Snowfall

WHAT WE HAVE DONE

- New variables: day, month, year, Moment_of_day and bike_affluence
- Correction of the season label

Visualisation

TEMPORAL VARIABLES

Visualisation

METEOROLOGICAL VARIABLES

• No matter much : Temperature, Humidity, Dew point temperature, Rainfall, Snowfall

Matter: Wind speed, Visibility, Solar radiation

Visualisation

METEOROLOGICAL VARIABLES

 No matter: Temperature, Humidity, Dew point temperature, Rainfall, Snowfall

Matter: Wind speed, Visibility, Solar radiation

DROP

- Moment_of_day
- Functioning_day
- 2017 year

DROP

- Moment_of_day
- Functioning_day

1500

1250

S 1000

500

• 2017 year

Rented bike count by functioning/non_functioning day

CORRELATION BETWEEN VARIABLES

• Temperature: 0.53

• Hour: 0.45

• Dew point temperature: 0.36

-> but extremely correlated with temperature (0.91)

ENCODER

Seasons

BINARIZER

Holiday

NORMALIZE

 All predicators for classification

Modeling

REGRESSION MODELS

- KNN Regressor
- Hist Gradient Boosting Regressor
- Gradient Boosting Regressor
- Bagging Regressor
- Extra Trees Regressor
- Random Forest Function
- LGBM Regressor

CLASSIFICATION MODELS

- LGBM Classifier
- Random Forest
- Extra Trees
- KNN Classifier

Modeling: Comparison - Accuracy

	Regressor	Classifier
Multiple Linear Regression	50.78%	-
KNN	57.52%	58%
Gradient Boosting	86.59%	-
Bagging	86.76%	-
Random Forest	87.38%	78.25%
Extra Trees	88.25%	78.35%
LGBM	88.60%	78.82%
Hist Gradient Boosting	89.77%	-

Conclusion

Our best model is:
 Hist Gradient Boosting Regressor
 (HGBR) ~89.77%

- Our second best model is:
 Light Gradient Boosting Machine Regressor
 (LGBMR) ~88.60%
- Hour and Temperature are the two variables that influe the most on the number of rented bikes

API - Flask

LGBMR model

