Computer Graphics I

Lecture 11: Numerical integration

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

Rendering equation

The fundamental rendering equation

- Reflection equation
 - Describe how an incident distribution of light at a point is transformed into an outgoing distribution

$$L_{o}(\mathbf{p}, \omega_{o}) = \int_{\mathbb{S}^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

- Scattering equation
 - More complex integral equation

$$L_{o}(\mathbf{p}_{o}, \omega_{o}) = \int_{A} \int_{\mathbb{H}^{2}(\mathbf{n})} S(\mathbf{p}_{o}, \omega_{o}, \mathbf{p}_{i}, \omega_{i}) L_{i}(\mathbf{p}_{i}, \omega_{i}) |\cos \theta_{i}| d\omega_{i} dA$$

- We need to evaluate the integral
 - Accurately
 - Efficiently

1. Traditional numerical integration

Review: fundamental theorem of calculus

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$f(x) = \frac{d}{dx}F(x)$$

$$F(x)$$

$$F(x)$$

$$F(a)$$

$$F(a)$$

$$x = a$$

Definite integral as "area under curve"

Simple case: constant function

Linear affine function

Affine function: f(x) = cx + d

$$\int_{a}^{b} f(x)dx = \frac{1}{2}(f(a) + f(b))(b - a)$$

Piecewise affine function

Sum of integrals of individual affine components

Piecewise affine function

If N-1 segments are of equal length: $h = \frac{b-a}{n-1}$

$$\int_a^b f(x)dx = \frac{h}{2}\sum_{i=0}^{n-1}(f(x_i) + f(x_{i+1}))$$

$$= h\left(\sum_{i=1}^{n-1}f(x_i) + \frac{1}{2}\left(f(x_0) + f(x_n)\right)\right)$$
Weighted combination of measurements.
$$= \sum_{i=0}^n A_i f(x_i)$$

$$x_0 = a \qquad x_1 \qquad x_2 \qquad x_3 \qquad x_4 = b$$

Polynomials?

Aside: interpolating polynomials

Consider n+1 measurements of a function f(x)

$$f(x_0), f(x_1), f(x_2), \cdots, f(x_n)$$

There is a unique degree \leq n polynomial that interpolates the points:

$$p(x) = \sum_{i=0}^{n} f(x_i) \prod_{j \neq i, j=0}^{n} \left(\frac{x - x_j}{x_i - x_j}\right)$$
 Lag

Note: $l_i(x)$ is 1 at x_i and 0 at all other measurement points

Lagrange polynomial

Gaussian quadrature theorem

If f(x) is a polynomial of degree of up to 2n+1, then its integral over [a,b] is computed <u>exactly</u> by a weighted combination of n+1 measurements in this range.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i}) \qquad A_{i} = \int_{a}^{b} l_{i}(x)dx$$

Where are these points?

Roots of degree n+1 polynomial q(x) where:

$$\int_{a}^{b} x^{k} q(x) dx = 0 \qquad 0 \le k \le n$$

Arbitrary function f(x)?

Trapezoidal rule

Approximate integral of f(x) by assuming function is piecewise linear

For equal length segments: $h = \frac{b-a}{n-1}$

Trapezoidal rule

Consider cost and accuracy of estimate as $n \to \infty$ (or $h \to 0$)

Work: O(n)

Error can be shown to be: $O(h^2) = O(\frac{1}{n^2})$

Integration in 2D

Consider integrating f(x,y) using the trapezoidal rule (apply rule twice: when integrating in x and in y)

$$\begin{split} \int_{a_y}^{b_y} \int_{a_x}^{b_x} f(x,y) dx dy &= \int_{a_y}^{b_y} \left(O(h^2) + \sum_{i=0}^n A_i f(x_i,y) \right) dy \\ &= O(h^2) + \sum_{i=0}^n A_i \int_{a_y}^{b_y} f(x_i,y) dy \\ &= O(h^2) + \sum_{i=0}^n A_i \left(O(h^2) + \sum_{j=0}^n A_j f(x_i,y_j) \right) \end{split}$$
 Second application
$$= O(h^2) + \sum_{i=0}^n \sum_{j=0}^n A_i A_j f(x_i,y_j)$$

Errors add, so error still: $O(h^2)$

But work is now: $O(n^2)$

(n x n set of measurements)

Must perform much more work in 2D to get same error bound on integral!

In K-D, let
$$N=n^k$$

Error goes as:
$$O\left(\frac{1}{N^{2/k}}\right)$$

Look at the rendering equation again

The reflection and scattering equations

$$L_{o}(\mathbf{p}, \omega_{o}) = \int_{\mathbb{S}^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

$$L_{o}(p_{o}, \omega_{o}) = \int_{A} \int_{\mathcal{H}^{2}(\mathbf{n})} S(p_{o}, \omega_{o}, p_{i}, \omega_{i}) L_{i}(p_{i}, \omega_{i}) |\cos \theta_{i}| d\omega_{i} dA$$

- Very high dimensional
 - Consider the tracing process: infinite dimensional
 - Conventional numerical integration becomes prohibitive in computation

How to do realistic rendering?

How to evaluate the integral efficiently?

- Rendering equations are usually high dimensional, hard to directly evaluate
- Sampling? How many samples needed?
- Convergence?

2. Monte-Carlo integration

Monte-Carlo integration

A technique for numerical integration

- Using random numbers (probabilistic rather than deterministic)
- Algorithm gives the correct value of integral "on average"
- Particularly useful for higher-dimensional integrals
- Statistically very similar to the true answer

Random variable X

- A variable whose value is chosen by a random process
- Applying function f to a random variable X results in a new random variable Y = f(X)

Probability Pr

The measure of the likelihood that an event will occur

Cumulative distribution function (CDF)

$$P(x) = Pr\{X \le x\}$$

Continuous random variables x

A random variable taking values over ranges of continuous domains

Probability density function (PDF)

 The relative likelihood for the random variable to take on a given value (non-negative)

$$p(x) = \frac{\mathrm{d}P(x)}{\mathrm{d}x}$$

For uniform random variables

$$p(x) = \begin{cases} 1 & x \in [0, 1) \\ 0 & \text{otherwise} \end{cases}$$

Computing probability from PDF

The probability that a random variable lies inside the interval

$$P(x \in [a, b]) = \int_{a}^{b} p(x) dx$$

Expected value

 Average value of a function over some distribution of values p(x) over its domain

$$E_p[f(x)] = \int_D f(x) \ p(x) \ dx$$

Variance

The expected deviation of the function from its expected value

$$V[f(x)] = E\left[\left(f(x) - E[f(x)]\right)^2\right]$$

Properties

$$E[af(x)] = aE[f(x)]$$

$$E\left[\sum_{i} f(X_{i})\right] = \sum_{i} E[f(X_{i})]$$

$$V[af(x)] = a^{2}V[f(x)]$$

$$V[f(x)] = E\left[(f(x))^{2}\right] - E[f(x)]^{2}$$

$$\sum_{i} V[f(X_{i})] = V\left[\sum_{i} f(X_{i})\right]$$

Joint distribution function

 Give the probability that each of X, Y, ... falls in any particular range of values specified for that variable

Marginal density function

 The probabilities of various values of the variables in the subset without reference to the values of the other variables

 $p(x) = \int p(x, y) \, \mathrm{d}y$

Conditional probability

 A measure of the probability of an event given that another event has occurred

 $p(y|x) = \frac{p(x, y)}{p(x)}$

- Approximate the value of an arbitrary integral
 - The foundation of the light transport algorithms
- 1D evaluation
 - A one-dimensional integral $\int_a^b f(x) dx$
 - Given a supply of uniform random variables $X_i \in [a, b]$, the expected value of the integral estimator

$$F_N = \frac{b-a}{N} \sum_{i=1}^{N} f(X_i)$$

Expected value

Equal to the integral

$$E[F_N] = E\left[\frac{b-a}{N} \sum_{i=1}^N f(X_i)\right]$$

$$= \frac{b-a}{N} \sum_{i=1}^N E\left[f(X_i)\right]$$

$$= \frac{b-a}{N} \sum_{i=1}^N \int_a^b f(x) p(x) dx$$

$$= \frac{1}{N} \sum_{i=1}^N \int_a^b f(x) dx$$

$$= \int_a^b f(x) dx.$$

More general

- An arbitrary non-zero distribution function f(x)
- Random variables X_i drawn from arbitrary PDF p(x)

$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}$$

$$E[F_N] = E\left[\frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}\right]$$

$$= \frac{1}{N} \sum_{i=1}^N \int_a^b \frac{f(x)}{p(x)} p(x) dx$$

$$= \frac{1}{N} \sum_{i=1}^N \int_a^b f(x) dx$$

$$= \int_a^b f(x) dx.$$

Multi-dimensional function estimation

- N samples X_i are taken from a multidimensional PDF
- The estimator is applied as in 1D

Consider 3D integral

$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{z_0}^{z_1} f(x, y, z) \, dx \, dy \, dz$$

- Assuming separable joint distribution
 - The estimator

$$\frac{(x_1 - x_0)(y_1 - y_0)(z_1 - z_0)}{N} \sum_{i} f(X_i)$$

3. Sampling of random variables

- Inversion method
 - Discrete case
 - Probability function

Cumulative distribution function

1				p_4
			p_3	p_3
		p_2	p_2	p_2
	p_1	p_1	p_1	p_1

Inversion method

A canonical uniform random variable on vertical axis

The inverse based on ξ value conforms to the desired distribution

Inversion method

Application to continuous random variables

• 1. Compute the CDF
$$P(x) = \int_0^x p(x') dx'$$

- 2. Compute the inverse $P^{-1}(x)$
- 3. Obtain a uniformly distributed random number ξ
- 4. Compute $X_i = P^{-1}(\xi)$

Inversion method

Piecewise-constant 1D functions over [0,1]

$$f(x) = \begin{cases} v_0 & x_0 \le x < x_1 \\ v_1 & x_1 \le x < x_2 \\ \vdots & & \end{cases}$$

– The integral $\int f(x) dx$

$$c = \int_0^1 f(x) \, dx = \sum_{i=0}^{N-1} \Delta v_i = \sum_{i=0}^{N-1} \frac{v_i}{N} \qquad p(x) = f(x)/c$$

Inversion method

Computing cumulative distribution function

$$P(x_0) = 0$$

$$P(x_1) = \int_{x_0}^{x_1} p(x) dx = \frac{v_0}{Nc} = P(x_0) + \frac{v_0}{Nc}$$

$$P(x_2) = \int_{x_0}^{x_2} p(x) dx = \int_{x_0}^{x_1} p(x) dx + \int_{x_1}^{x_2} p(x) dx = P(x_1) + \frac{v_1}{Nc}$$

$$P(x_i) = P(x_{i-1}) + \frac{v_{i-1}}{Nc}$$

- Inversion method
 - Compute the inverse

Rejection method

Problem with inversion method

- Sometimes difficult to compute the CDF integral
- Sometimes unable to obtain function inverse

Rejection method

- A dart-throwing approach
- Find a PDF p(x) from which we know how to sample
- -p(x) must satisfy

Rejection method

Random sample generation

- Start loop
 - Sample x from p's distribution
 - Choose a random variable ξ
 - If $\xi < f(x)/(cp(x))$ then Return x

- Efficiency
 - Depends on how close cp(x) bounds f(x)
- Rejection method isn't used in Monte-Carlo method for rendering

- A sampling technique with remarkable property
 - Generate samples from any non-negative function f
 - Distributed proportional to f's value
 - Only require the ability to evaluate f
 - Can efficiently generate samples from a wider variety of functions

Basic algorithm

- Generate a set of samples X_i from a function f defined over an arbitrary dimensional space Ω
 - Select the first sample X₀
 - Each sample Xi is generated using a random mutation to Xi-1 to compute a proposed sample X'
 - In order to compute X', we must compute a tentative transition function $T(X \rightarrow X')$: the transition probability
 - Compute the acceptance probability a(X → X')

$$a(X \to X') = \min\left(1, \frac{f(X') T(X' \to X)}{f(X) T(X \to X')}\right) \qquad \qquad a(X \to X') = \min\left(1, \frac{f(X')}{f(X)}\right)$$

Basic sampling pseudo-code

The recorded X sequence will be used for integration

Choosing mutation strategies

- More freedom
- Subject to being able to compute the tentative transition density $T(X \rightarrow X')$

Several choices

Local perturbation

$$x'_{i} = x_{i} \pm s \xi$$
 $x'_{i} = x_{i} \pm b e^{-\log(b/a)\xi}$

- Global uniform random

$$x_i = \xi$$

Match some part of the function being sampled

$$T(X \to X') = p(X')$$

Estimating integrals with Metropolis sampling

- We can apply Metropolis algorithm
 - Evaluate integrals

$$\int f(x)g(x) d\Omega$$

Standard Monte-Carlo estimator

$$\int_{\Omega} f(x)g(x) d\Omega \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)g(X_i)}{p(X_i)}$$

 Apply Metropolis sampling to generate samples from a density function that is proportional to f(x)

$$\int_{\Omega} f(x)g(x) d\Omega \approx \left[\frac{1}{N} \sum_{i=1}^{N} g(X_i)\right] \cdot \int_{\Omega} f(x) d\Omega$$

Function of a random variable

- Suppose we are given random variable X_i with PDF $p_x(x)$
- Given $Y_i = y(X_i)$, the following equality satisfies

$$Pr\{Y \le y(x)\} = Pr\{X \le x\}$$
 $P_y(y) = P_y(y(x)) = P_x(x)$

Differentiating

$$p_y(y)\frac{\mathrm{d}y}{\mathrm{d}x} = p_x(x)$$
 $p_y(y) = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{-1} p_x(x)$

- Usually we know $p_v(y)$ (and P(y)), how to sample y?

$$y(x) = P_y^{-1} \left(P_x(x) \right)$$

Transformation in multiple dimensions

- Let n-dimensional random variable X with density function $p_x(x)$
- Let Y=T(X), T is a bijective mapping

$$p_y(y) = p_y(T(x)) = \frac{p_x(x)}{|J_T(x)|}$$

Jacobian:

$$\begin{pmatrix} \partial T_1/\partial x_1 & \cdots & \partial T_1/\partial x_n \\ \vdots & \ddots & \vdots \\ \partial T_n/\partial x_1 & \cdots & \partial T_n/\partial x_n \end{pmatrix}$$

Example

Polar coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$

- Suppose we draw samples from some density $p(r,\theta)$
- Computing the Jacobian

$$J_T = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

- The determinant: $r(\cos^2 \theta + \sin^2 \theta) = r$
- So

$$p(x, y) = p(r, \theta)/r$$
 \longrightarrow $p(r, \theta) = r p(x, y)$

Example

Spherical coordinates

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

- Computing the Jacobian determinant: $|J_T| = r^2 \sin \theta$
- The corresponding density function

$$p(r, \theta, \phi) = r^2 \sin \theta \ p(x, y, z)$$

- Solid angle defined with spherical coordinates $d\omega = \sin\theta \ d\theta \ d\phi$
- If we have a density function defined over a solid angle

$$p(\theta, \phi) d\theta d\phi = p(\omega) d\omega \implies p(\theta, \phi) = \sin \theta \ p(\omega)$$

2D joint density function p(x,y)

We wish to draw samples (X,Y) from

Sometimes separable

$$p(x, y) = p_x(x) p_y(y)$$

- Random variable (X,Y) can be found independently
- Many useful densities aren't separable

Basic idea

- Compute the marginal density to isolate one particular variable, and draw sample with 1D technique
- Compute the conditional probability and draw a sample from that distribution

Example

- Sampling a unit disk uniformly
 - Wrong approach: $r = \xi_1, \theta = 2\pi \xi_2$
 - PDF p(x,y) by normalization is: $p(x, y) = 1/\pi$
 - Transform into polar coordinate: $p(r, \theta) = r/\pi$ $p(r, \theta) = r \ p(x, y)$
 - Compute the marginal and conditional densities

$$p(r) = \int_0^{2\pi} p(r, \theta) d\theta = 2r$$
$$p(\theta|r) = \frac{p(r, \theta)}{p(r)} = \frac{1}{2\pi}$$

• Integrating and inverting to find P(r), P⁻¹(r), P(θ), and P⁻¹(θ)

$$r = \sqrt{\xi_1}$$
$$\theta = 2\pi \, \xi_2$$

Example

- Uniformly sampling a hemisphere
 - Uniform sampling means $p(\omega) = c$
 - Normalization:

$$\int_{\mathbb{H}^2} p(\omega) \, d\omega = 1 \Rightarrow c \int_{\mathbb{H}^2} d\omega = 1 \Rightarrow c = \frac{1}{2\pi} \longrightarrow p(\omega) = 1/(2\pi) \longrightarrow p(\theta, \phi) = \sin \theta / (2\pi)$$

• Consider sampling θ :

$$p(\theta) = \int_0^{2\pi} p(\theta, \phi) d\phi = \int_0^{2\pi} \frac{\sin \theta}{2\pi} d\phi = \sin \theta$$

• Compute the conditional density for φ :

$$p(\phi|\theta) = \frac{p(\theta,\phi)}{p(\theta)} = \frac{1}{2\pi}$$

Example

- Uniformly sampling a hemisphere
 - Use 1D inversion technique to sample:

$$P(\theta) = \int_0^{\theta} \sin \theta' \, d\theta' = 1 - \cos \theta$$
$$P(\phi|\theta) = \int_0^{\phi} \frac{1}{2\pi} \, d\phi' = \frac{\phi}{2\pi}$$

Inversion is straightforward

$$\theta = \cos^{-1} \xi_1$$

$$\phi = 2\pi \xi_2.$$

$$x = \sin \theta \cos \phi = \cos (2\pi \xi_2) \sqrt{1 - \xi_1^2}$$

$$y = \sin \theta \sin \phi = \sin (2\pi \xi_2) \sqrt{1 - \xi_1^2}$$

$$z = \cos \theta = \xi_1$$

Cosine-weighted hemisphere sampling

- It is useful to have a cosine distribution over the hemisphere (the incident cosine term)
- We require: $p(\omega) \propto \cos \theta$
- Derive as before:

$$\int_{\mathcal{H}^2} c \ p(\omega) \ d\omega = 1 \qquad d\omega = \sin \theta \ d\theta \ d\phi \qquad p(\theta, \phi) = \sin \theta \ p(\omega)$$

$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} c \cos \theta \sin \theta \ d\theta \ d\phi = 1$$

$$c \ 2\pi \int_0^{\pi/2} \cos \theta \sin \theta \ d\theta = 1$$

$$c \ 2\pi \int_0^{\pi/2} \cos \theta \sin \theta \ d\theta = 1$$

$$c = \frac{1}{\pi}$$

- Cosine-weighted hemisphere sampling
 - Malley's method
 - Sampling a unit disk and project onto the sphere

Why Malley's method works?

– Let (r, ϕ) be polar coordinates on disk, we know

$$p(r, \phi) = r/\pi$$

- Vertical projection gives: $\sin \theta = r$
- To complete the (r , ϕ)→(sin θ , ϕ) transformation, we need the determinant of the Jacobian

$$|J_T| = \begin{vmatrix} \cos \theta & 0 \\ 0 & 1 \end{vmatrix} = \cos \theta$$

– Therefore:

$$p(\theta, \phi) = |J_T| p(r, \phi) = \cos \theta r / \pi = (\cos \theta \sin \theta) / \pi$$

4. Sampling efficiency

Estimating efficiency

- Variance in Monte-Carlo ray tracing
 - Manifest as image noise
- Efficiency of an estimator

$$\epsilon[F] = \frac{1}{V[F]T[F]}$$

- V[F]: sampling variance
- T[F]: running time to compute

Different sampling rate

- Improve efficiency
 - Importance sampling

Stratified sampling

Stratified sampling

- Subdivide the integration domain into n non-overlapping regions Λ_{i}
- We draw n_i samples from each region Λ_i according to density p_i inside each region
- Suffer from "curse of dimensionality"

Quasi Monte-Carlo sampling

Low-discrepancy sampling

- Poisson disk / best-candidate sampling
- Foundation of a branch of Monte-Carlo sampling

Advantage

- Quasi Monte-Carlo converges asymptotically faster
- Generally better for smooth integrand

Disadvantage

Asymptotic convergence rate is not applicable to discontinuous integrand

Another approach of variance reduction

- Introduce bias into the computation
- Sacrifice for larger error in expected value for variance reduction

Unbiased estimator

The expected value is equal to the correct answer

Bias estimation

$$\beta = E[F] - \int f(x) \, \mathrm{d}x$$

Why bias is sometimes desirable?

- Consider computing estimation of the mean value of a distribution X_i ~ p over [0,1]
- Two estimators
 - 1. $\frac{1}{N} \sum_{i=1}^{N} X_i$
 - 2. $\frac{1}{2} \max(X_1, X_2, \dots, X_N)$
- The first estimator has variance O(N⁻¹)

- Why bias is sometimes desirable?
 - The second estimator's expected value

$$0.5 \frac{N}{N+1} \neq 0.5$$

- It is biased, but it is variance is $O(N^{-2})$
- For large value of N, the second estimator is preferred

Consider again image reconstruction

Consider a Monte-Carlo estimate of

$$I(x, y) = \iint f(x - x', y - y') L(x', y') dx' dy'$$

 Assume we take image samples uniformly: constant probability density (unbiased, larger variance):

$$I(x, y) \approx \frac{1}{Np_c} \sum_{i=1}^{N} f(x - x_i, y - y_i) L(x_i, y_i)$$

– The practical realization (biased, less variance):

$$I(x, y) = \frac{\sum_{i} f(x - x_{i}, y - y_{i}) L(x_{i}, y_{i})}{\sum_{i} f(x - x_{i}, y - y_{i})}$$

5. Importance sampling

Importance sampling

- Importance sampling is a variance reduction technique
 - Monte-Carlo estimator

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

- The fact
 - If samples are taken from distribution p(x) that is similar to function f(x), the convergence will be much faster
 - Can increase variance if p(x) is bad
- Basic idea
 - Concentrate work where the values of the integrand is relatively high

Importance sampling

The practical case

- The integrand is the product of more than one function
- Finding p(x) similar to one of the multiplicands can be helpful
- Especially important in rendering

Stratified uniform sampling

Importance sampling based on BRDF

We are frequently faced with integrals with two or more function

$$\int f(x)g(x) dx$$

- Importance sampling strategy for both f(x) and g(x), which to choose?
- Assume we are not able to combine two sampling to compute a PDF proportional to f(x)g(x)
- A bad choice of sampling distribution can be much worse than uniform distribution

Consider direct lighting integral evaluation

$$L_{o}(\mathbf{p}, \omega_{o}) = \int_{\mathbb{S}^{2}} f(\mathbf{p}, \omega_{o}, \omega_{i}) L_{d}(\mathbf{p}, \omega_{i}) |\cos \theta_{i}| d\omega_{i}$$

– We can perform importance sampling based on either $L_{\rm d}$ or f, one of these will often perform poorly

Consider a near-mirror BRDF

- The value of integrand will be close to 0 for angles off the reflection angle
- Sampling L_d will lead to large variance

Sampling from light distribution

Consider a near-mirror BRDF

- Sampling BRDF could be much better
- However, for diffuse and glossy BRDFs, sampling form BRDF will lead to similar problem

Sampling from BRDF

How to solve?

- Try to match either of them
- Weighting scheme
 - If two sampling distributions p_f and p_g are used to estimate the value of

$$\int f(x)g(x) dx$$

The new Monte-Carlo estimator is given by

$$\frac{1}{n_f} \sum_{i=1}^{n_f} \frac{f(X_i)g(X_i)w_f(X_i)}{p_f(X_i)} + \frac{1}{n_g} \sum_{j=1}^{n_g} \frac{f(Y_j)g(Y_j)w_g(Y_j)}{p_g(Y_j)}$$

- n_f: number of samples taken from p_f distribution
- n_q : number of samples taken from p_q distribution

- Weighting function
 - Balance heuristic

$$w_s(x) = \frac{n_s p_s(x)}{\sum_i n_i p_i(x)}$$

• Effectively proven to reduce variance

Next lecture: Sampling and reconstruction