Задача 1.

Доказать, что если три вектора линейно зависимы, то они компланарны.

Задача 2.

Будут ли компланарны векторы $\vec{a} = 2\vec{p} + 3\vec{q}$, $\vec{b} = 3\vec{q} - 5\vec{r}$, $\vec{c} = 2\vec{p} + 5\vec{r}$, если векторы \vec{p} , \vec{q} , \vec{r} , не компланарны?

Задача 3.

Существует ли вектор, который образует с координатными осями углы $\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{4}, \gamma = \frac{\pi}{6}$ и имеет длину $|\vec{a}| = 2$?

Задача 4.

Что можно сказать о векторах \vec{a} и \vec{b} , если $\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|$?

Задача 5

Чему равны скалярные произведения $\vec{b} \cdot \vec{a}$ и $\vec{b} \cdot (3\vec{a} - 2\vec{b})$, если $\vec{a} \cdot \vec{b} = -3$, $|\vec{a}| = 2, |\vec{b}| = 2$?

Задача 6.

Найти $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$, если $|\vec{a}| = 3$, $|\vec{b}| = 1$, $|\vec{c}| = 4$ и $\vec{a} + \vec{b} + \vec{c} = \vec{0}$.

Задача 7.

В пространстве задан базис $\{\vec{e}_1;\vec{e}_2;\vec{e}_3\}$, векторы которого имеют единичные длины и попарно образуют углы, равные $\frac{\pi}{3}$. Как выражается скалярное произведение $\vec{a}\cdot\vec{b}$ через координаты векторов $\vec{a}=\{x_1;y_1;z_1\}$ и $\vec{b}=\{x_2;y_2;z_2\}$ в базисе $\{\vec{e}_1;\vec{e}_2;\vec{e}_3\}$?

Задача 8.

При каком значении α векторы $\vec{a} = \vec{i} - 2\vec{j} + \alpha \vec{k}$ и $\vec{b} = \alpha \vec{i} + 6\vec{j} + 9\vec{k}$: а) ортогональны; б) коллинеарны?

Задача 9.

Какой угол образуют единичные векторы \vec{m} и \vec{n} , если векторы $\vec{p}=3\vec{m}-2\vec{n}$ и $\vec{q}=\vec{m}+\vec{n}$ ортогональны?

Задача 10.

При каком значении α треугольник ABC будет равнобедренным, если $\overrightarrow{AB} = 3\vec{i} - 4\vec{j} + 12\vec{k}$, $\overrightarrow{AC} = \alpha \vec{i}$?

Задача 11.

Найти вектор \vec{x} , образующий острый угол с осью Ox и удовлетворяющий условиям: $\vec{x} \parallel \vec{a} = 12\vec{i} - 16\vec{j} - 15\vec{k}$, $|\vec{x}| = 50$.

Задача 12.

Найти вектор \vec{x} , удовлетворяющий условиям: $\vec{x} \perp \vec{a} = 3\vec{i} + \vec{j} - \vec{k}$, $|\vec{x}| = 4\vec{j} + 2\vec{k}$, $|\vec{x}| = \sqrt{54}$.

Задача 13.

Равносильны ли равенства $\vec{a} = \vec{b}$ и $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$?

Задача 14.

Чему равны векторные произведения $\vec{b} \times \vec{a}$ и $\vec{b} \times (3\vec{a} - 2\vec{b})$, если $\vec{a} \times \vec{b} = -3\vec{i} + 2\vec{j} - \vec{k}$?

Задача 15.

Может ли быть справедливым равенство $\vec{a} \times \vec{b} = -3\vec{i} + 2\vec{j} - 3\vec{k}$, если $|\vec{a}| = 2, |\vec{b}| = 2$?

Задача 16[Олимп БГТУ2006].

Найти, если существует, вектор $\vec{x} = \vec{\alpha} \cdot \vec{i} + \vec{\beta} \cdot \vec{j} + \vec{\gamma} \cdot \vec{k}$, удовлетворяющий уравнению $\vec{a} \times \vec{x} = \vec{b}$, где $\vec{a} = \vec{2} \cdot \vec{i} + \vec{3} \cdot \vec{j} + \vec{6} \cdot \vec{k}$, $\vec{b} = \vec{3} \cdot \vec{i} - \vec{4} \cdot \vec{j} + \vec{k}$.

Задача 17.

Как с помощью векторного произведения вычислить площадь выпуклого четырехугольника, если векторы $\vec{a}, \vec{b}, \vec{c}$ совпадают с его сторонами?

Задача 18.

Показать, что векторы $\vec{a} = 7\vec{i} + 6\vec{j} - 6\vec{k}$ и $\vec{b} = 6\vec{i} + 2\vec{j} + 9\vec{k}$ могут быть ребрами куба и найти его третье ребро.

Задача 19.

Объем пирамиды V=5, три ее вершины находятся в точках $A(2;1;-1),\ B(3;0;1),\ C(2;-1;3),\$ а четвертая D - на оси Oy . Найти координаты D .

Задача 20.

Чему равно смешанное произведение $\vec{a} \times \vec{b} \cdot \vec{c}$, если $\vec{b} \times \vec{c} \cdot \vec{a} = 4$? Задача 21.

Чему равно смешанное произведение $\vec{a} \times \vec{b} \cdot \vec{c}$, если $\vec{b} \times \vec{a} \cdot \vec{c} = 5$? Задача 22.

Чему равно смешанное произведение $\vec{k} \times \vec{j} \cdot \vec{i}$?