Section S.2

Definition S.2.1 A basis is a linearly independent set that spans a vector space.

The standard basis of \mathbb{R}^n is the set $\{\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n\}$ where

$$\vec{\mathbf{e}}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad \qquad \vec{\mathbf{e}}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad \qquad \cdots \qquad \qquad \vec{\mathbf{e}}_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

For
$$\mathbb{R}^3$$
, these are the vectors $\vec{\mathbf{e}}_1 = \hat{\imath} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{\mathbf{e}}_2 = \hat{\jmath} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\vec{\mathbf{e}}_3 = \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Observation S.2.2 A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.

For example, in many calculus courses, vectors in \mathbb{R}^3 are often expressed in their component form

$$(3, -2, 4) = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$$

or in their standard basic vector form

$$3\vec{e}_1 - 2\vec{e}_2 + 4\vec{e}_3 = 3\hat{\imath} - 2\hat{\jmath} + 4\hat{k}.$$

Since every vector in \mathbb{R}^3 can be uniquely described as a linear combination of the vectors in $\{\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \vec{\mathbf{e}}_3\}$, this set is indeed a basis.

Activity S.2.3 (\sim 15 min) Label each of the sets A, B, C, D, E as

- SPANS \mathbb{R}^4 or DOES NOT SPAN \mathbb{R}^4
- LINEARLY INDEPENDENT or LINEARLY DEPENDENT
- BASIS FOR \mathbb{R}^4 or NOT A BASIS FOR \mathbb{R}^4

by finding RREF for their corresponding matrices.

$$A = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\} \qquad B = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix} \right\}$$

$$C = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\} \qquad D = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\5 \end{bmatrix} \right\}$$

$$E = \left\{ \begin{bmatrix} 5\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\1\\3 \end{bmatrix} \right\}$$

Activity S.2.4 ($\sim 10 \ min$) If $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3, \vec{\mathbf{v}}_4\}$ is a basis for \mathbb{R}^4 , that means RREF[$\vec{\mathbf{v}}_1 \vec{\mathbf{v}}_2 \vec{\mathbf{v}}_3 \vec{\mathbf{v}}_4$] doesn't have a non-pivot column, and doesn't have a row of zeros. What is RREF[$\vec{\mathbf{v}}_1 \vec{\mathbf{v}}_2 \vec{\mathbf{v}}_3 \vec{\mathbf{v}}_4$]?

Fact S.2.5 The set
$$\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_m\}$$
 is a basis for \mathbb{R}^n if and only if $m = n$ and $\text{RREF}[\vec{\mathbf{v}}_1 \dots \vec{\mathbf{v}}_n] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$.

That is, a basis for \mathbb{R}^n must have exactly n vectors and its square matrix must row-reduce to the so-called **identity matrix** containing all zeros except for a downward diagonal of ones. (We will learn where the identity matrix gets its name in a later module.)

Observation S.2.6 Recall that a subspace of a vector space is a subset that is itself a vector space.

One easy way to construct a subspace is to take the span of set, but a linearly dependent set contains "redundant" vectors. For example, only two of the three vectors in the following image are needed to span the planar subspace.

Activity S.2.7 (~10 min) Consider the subspace $W = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix} \right\} \text{ of } \mathbb{R}^4.$

Part 1: Mark the part of RREF $\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$ that shows that W's spanning set is linearly dependent.

Part 2: Find a basis for W by removing a vector from its spanning set to make it linearly independent.

Fact S.2.8 Let $S = {\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_m}$. The easiest basis describing span S is the set of vectors in S given by the pivot columns of RREF[$\vec{\mathbf{v}}_1 \dots \vec{\mathbf{v}}_m$].

Put another way, to compute a basis for the subspace span S, simply remove the vectors corresponding to the non-pivot columns of $RREF[\vec{\mathbf{v}}_1 \dots \vec{\mathbf{v}}_m]$.

Activity S.2.9 ($\sim 10 \text{ min}$) Let W be the subspace of \mathbb{R}^4 given by

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 4\\5\\3\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\2\\1 \end{bmatrix} \right\}$$

Find a basis for W.

Activity S.2.10 ($\sim 10 \text{ min}$) Let W be the subspace of \mathcal{P}^3 given by

$$W = \mathrm{span}\left\{x^3 + 3x^2 + x - 1, 2x^3 - x^2 + x + 2, 4x^3 + 5x^2 + 3x, 3x^3 + 2x^2 + 2x + 1\right\}$$

Find a basis for W.