第四节 矩阵求逆与单纯形表

一、高斯消元法求逆矩阵

(1) 基本方法

设矩阵B和单位矩阵I组成一个增广矩阵:(B,I),则对增广矩阵左乘 B^{-1} ,有

$$B^{-1}(B, I) = (I, B^{-1})$$

矩阵左乘等价于运用高斯消元将增广矩阵(B,I)变换为(I, B^{-1}),则原来单位矩阵I所在的位置,就相应变成了矩阵B的逆矩阵 B^{-1} 。

例,求矩阵 $\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$ 的逆。

通过高斯消元将原矩阵变为单位矩阵,伴随高斯消元的单位矩阵就变成了原矩阵的逆矩阵:

$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ 6 & 8 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 1/2 \\ 0 & 1 & 3/4 & -1/4 \end{bmatrix}$$
所以
$$\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1/2 \\ 3/4 & -1/4 \end{bmatrix}$$

(2) 关于单位伴随矩阵各列的摆放位置

伴随矩阵的单位列向量的元素"1"可能并非正好位于单位阵对角线、单位矩阵的列也不一定正好相邻:

$$\begin{bmatrix} 2 & 4 & 0 & a & 1 \\ 6 & 8 & 1 & b & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1/2 & c & -1 \\ 0 & 1 & -1/4 & d & 3/4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1/2 \\ 3/4 & -1/4 \end{bmatrix}$$

向量 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 所在位置对应逆矩阵第一列, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 对应第二列……

(3) 关于原矩阵各列的摆放位置

假设有一个单纯形增广矩阵:

c_{B}	$\mathbf{x}_{\mathbf{B}}$	b	$x_1(\mathbf{p}_1)$	$x_2(\mathbf{p}_2)$	$x_3(\mathbf{p}_3)$	$x_4(\mathbf{p}_4)$
			2	1	2	1
• • •	x_2	• • •	6	2	1	0

在单纯形迭代过程中,表中基变量是(x3,x2),那么对应

的基矩阵就是[
$$\mathbf{p}_3$$
, \mathbf{p}_2] = $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ 。

现在需要用高斯消元法求 $[P_3, P_2]^{-1} = ?$

$\mathbf{x}_{\mathbf{B}}$	\mathbf{p}_2	p ₃	I ₁	I ₂	-	X _B				
x_3	1	2	1	0	\Longrightarrow	x_3	1	0	-1/3	2/3 -1/3
x_2	2	1	0	1	_	x_2	0	1	2/3	-1/3
									1	

X _B	p ₂	\mathbf{p}_3	\mathbf{I}_1	\mathbf{I}_2	_	X _B				
x_3	1	2	1	0	\Longrightarrow	x_3	0	1	2/3	-1/3
x_2	2	1	0	1		x_2	1	0	-1/3	2/3

◇ <u>答案</u>: 若以(x_3 , x_2)为基变量——对应基矩阵[\mathbf{p}_3 , \mathbf{p}_2],为 求基矩阵[\mathbf{p}_3 , \mathbf{p}_2]的逆矩阵,则应将 \mathbf{p}_3 的第一个元素变成1,其余为0,而将 \mathbf{p}_2 的第二个元素变成1,其余为0。

$$x_B$$
 p_2
 p_3
 I_1
 I_2
 I_2
 I_2
 x_3
 1
 2
 1
 0
 \Rightarrow
 0
 1
 2/3
 -1/3

 x_2
 2
 1
 0
 1
 0
 -1/3
 2/3

$$[\mathbf{p}_{3}, \mathbf{p}_{2}]^{-1}\mathbf{p}_{2} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$[\mathbf{p}_{3}, \mathbf{p}_{2}]^{-1}\mathbf{p}_{3} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

◆ 若以(x_2 , x_3)为基变量——对应基矩阵[\mathbf{p}_2 , \mathbf{p}_3],为求基变量基矩阵[\mathbf{p}_2 , \mathbf{p}_3]的逆矩阵,则应将 \mathbf{p}_2 的第一个元素变成1,其余为0,而将 \mathbf{p}_3 的第二个元素变成1,其余为0。

$$x_B$$
 p_2
 p_3
 I_1
 I_2
 x_2
 1
 2
 1
 0
 \Rightarrow
 1
 0
 $-1/3$
 2/3

 x_3
 2
 1
 0
 1
 2/3
 $-1/3$

$$[\mathbf{p}_{2}, \mathbf{p}_{3}]^{-1}\mathbf{p}_{2} = \begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$[\mathbf{p}_{2}, \mathbf{p}_{3}]^{-1}\mathbf{p}_{3} = \begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

◆ 单位向量的位置

以(x3,x2)为基变量,若右边单位矩阵的位置为:

$\mathbf{x}_{\mathbf{B}}$	p ₂	I_2	p ₃	p	\mathbf{I}_1
	1		2		1
x_2	2	1	1	b	0

经过变换:

$\mathbf{x}_{\mathbf{B}}$	\mathbf{p}_2	I ₂	\mathbf{p}_3	p	I_1	_	↓蕴涵[p ₃ , p ₂] ⁻¹ ↓							
x_3	1	0	2	a	1	\Longrightarrow	0	-1/3	1	С	2/3 -1/3			
x_2	2	1	1	b	0	_	1	2/3	0	d	-1/3			

$$[\mathbf{p}_3, \mathbf{p}_2]^{-1} = \begin{bmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{bmatrix}$$

练习, 求矩阵的逆矩阵:

$$egin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \ 1 & 0 & 0 \ 4 & 0 & 1 \ 0 & 1 & 0 \ \end{bmatrix}$$

首先摆放单位矩阵——可以利用原来的两个单位列向量,

增加单位列向量
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
,得到(列的位置可以打乱):

$$\begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{e}_1 & \mathbf{p}_3 \\ 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

高斯消元的任务:

原矩阵的第一列 \mathbf{p}_1 应该变为 $(1,0,0)^T$; 原矩阵的第二列 \mathbf{p}_2 应该变为 $(0,1,0)^T$; 原矩阵的第三列 \mathbf{p}_3 应该变为 $(0,0,1)^T$ 。 经高斯消元变换为:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -4 & 1 \end{bmatrix}$$

原矩阵中单位列向量: 0 、 1 、 0 所在的位置,分别对应

逆矩阵的第1、2、3列,因此

$$\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -4 & 1 & 0 \end{bmatrix}$$

二、单纯形表中的逆矩阵

对于单纯 形表,若初始 基矩阵是单位 矩阵,则新的 基矩阵的逆矩 阵就能在单纯 形表中找到。

i. 如果<u>当前基变量</u>的顺序不同

$c_j \rightarrow 1$				15	12	0	0	0							
C _B	XB	b	x_1	x_2	x_{3r}	x_4	x_5	x_6	1						
0	$ x_4 $	9	5	3	1	1	0	0							
0	$ x_5 $	15	-5	6	15	0	1	0	\vdash						
0	$ x_6 $	5	2	1	1	0	0	1	\						
	$[\mathbf{p}_2, \mathbf{p}_1, \mathbf{p}_6]^{-1}$														
$c_i \rightarrow$				10	15	12			0	0	0				
$c_{B_{I}}$	XB	, k)	x_1	x_2	x_3			۲ ₄	χ_5	x_6				
10	$ x_2 $	8/	′3	0	1		16/9		/9	1/9	0				
15	$ x_1 $	1/	' 5	1	0	-13	/15	2	15	-1/15	0				
0	$ x_6 $	29/	15	0	0	43/45		/45 -17		1/45	1				

ii. 如果初始基变量的顺序不同

$c_j \rightarrow$		10	15	12	0	0	0			2, F	$[\mathbf{p}_1, \mathbf{p}_6]^-$	-1		
$\mathbf{c}_{\mathbf{B}}$	X	В	b	x_1	x_2	x_3	x_4	x_5	x_6	1	1/		1/9	0
0	x_{5}	5	9	-5	6	15	0	1	0		-1/	15	2/15	0
0	χ_{λ}	4	15	5	3	1	1	0	0		1/4	45	-17/45	1
0	x_{ϵ}	6	5	2	1	1	0	0	1					
						L								
	¢	j -	\rightarrow		10	15	1	2		0	0	0		
$c_{B_{I}}$	X	B	t)	x_1	x_2	χ	3	2	V ₄	<i>x</i> ₅	x_6	_	
10	χ_2		8/	′3	0	1		5/9	1	/9	1/9	0	_	
15	x_{2}	1	1/	′5	1	0	-13	3/15	$\frac{1}{2}$	15	-1/15	0		
0	x_{ϵ}	5	29/	15	0	0	43,	/45	-17	7/45	1/45	1	_	