MA

TD polynômes et fractions rationnelles

Ex 1

Soit P =
$$X^6 + 2X^5 + 4X^4 + 4X^3 + 4X^2 + 2X + 1$$

On pose $j = e^{\frac{2i\pi}{3}}$

- 1. Montrer que j est une racine multiple de P .
- 2. Factoriser P dans C[X].
- 3. Factoriser P dans R[X].

Ex 2

- 1. Montrer que pour tout $n \in N$, $X^{4n} 1$ est divisible par $X^4 1$.
- 2. En déduire que le polynôme $P = X^{4a+3} + X^{4b+2} + X^{4c+1} + X^{4d}$ avec a,b,c et d'entiers naturels, est divisible par $Q = X^3 + X^2 + X + 1$.

Ex3

On considère le couple de polynômes à coefficients réels

$$P = X^3 - X^2 - X - 2$$
 et $Q = X^3 - 1$

- 1. Utiliser l'algorithme d'Euclide pour calculer le PGCD (P,Q).
- 2. Décomposer P et Q en facteurs irréductibles dans R[X].
- 3. Retrouvez le résultat de la question 1.
- 4. Décomposer P en facteur irréductible dans C[X].

Ex 4

Soit $P = X^5 + X^4 + 2X^3 + 2X^2 + X + 1$ et $P' = 5X^4 + 4X^3 + 6X^2 + 4X + 1$

- 1. Calculer le PGCD de P et P'.
- 2. Quelles sont les racines communes à P et P'? Quelles sont les racines multiples de P dans C?
- 3. Montrer que $(X^2 + 1)^2$ divise P.
- 4. Factoriser P dans R[X].

Ex 5

Soit $P \in C[X]$ un polynôme tel que XP(X - 1) = (X - 2).P(X)

- 1. Montrer que 0 et 1 sont les racines de P.
- 2. Soit *a* une racine de P .

Si $a \neq 0$, montrer que a - 1 est une racine.

Si $a \neq 1$, montrer que a + 1 est une racine.

3. On suppose que P n'est pas le polynôme nul. Montrer que 0 et 1 sont les seules racines de P .

Indication:

S'il existe une racine a telle que Re(a)< 1 différente de 0 ($a \neq 0$), montrer qu'il y a une infinité de racines.

S'il existe une racine a telle que Re(a) > 0 différente de 1 ($a \ne 1$), montrer qu'il y a une infinité de racines.

- 4. En déduire que P est de la forme $\alpha X^k(X-1)^l$ avec $\alpha \in C[X], k \in N^*$ et $l \in N^*$.
- 5. Quel est l'ensemble des polynômes de $P \in C[X]$ tels que XP(X 1) = (X 2).P(X)