

Practical experience from a Swedish Micro Grid project

Anders Lindskog, Researcher, Measurement Technology

SP, Technical Research Institute of Sweden

Practical experience from a Swedish Micro Grid Project

PV powered DC micro grid with battery storage ...on a farm

Sötåsen Farming High School – Smart Grid demonstration

- Boarding school with 200 students
- Research farm
- Local 400V AC grid
- District heating system
- Production of biogas for heat and electricity production (CHP)
- PV production with electric energy storage and DC grid
- Measurement infrastructure with a large database

Sötåsen is a Smart Grid living lab and an open test bed

The DC Micro Grid research system

DC distribution grid (3 kW Load)

Energy storage (20 kWh) and measurement/control system

Why PV and electric energy storage?

- Energy storage combined with renewable energy sources are important in smart grid research
- There was a desire to add a flexible research platform to Sötåsen
- Gain practical experience from dayto-day operation of an electric energy storage
- Supply "real life" data for research purpose

Why a <u>DC</u> micro grid?

- In the planning and design process it became evident that a DC grid would be much more efficient.
- It is easier to connect different loads and production sources to a electric energy storage when using DC.
- Even if the need for DC micro grids in Sweden is low it is still a valid research topic and the technology is interesting for many parts of the world.
- DC has been widely used over 100 years and has many positive features that almost has been forgotten. It is time to renew and add to the DC system knowledge...

PV power fluctuations short and long term

Battery usage

Practical experience from Sötåsen

- The system at Sötåsen has been running with no failures and minimal service for over two years in a challenging environment.
- It is more cost and energy efficient to use DC instead of AC when building a micro grid with PV production and electric energy storage.
- The system was build from commercial off the shelf products.
- There are a massive amount of products that can run on DC, but very few of them are certified to do so. This creates a warranty issue...and limited selection possibilities.
- Using a system voltage in the level of 300-400V will decrease the system cost, increase the efficiency and increase the possibility to find suitable components.
- The battery and management system is the most critical and complicated part of the system.
- Detailed knowledge of the power and energy demand is vital for the system planning stage.
- Multiple types of energy sources will increase the performance of the system.

Some other reflections

- If we would rebuild our electric grids from the beginning again, with todays knowledge, I bet it would be DC rather than AC grids.
- Today it is difficult to find solid business cases for electric energy storage in a region with a well developed electric grid (and massive amounts of hydro power...)
- DC micro grids with energy storage is probably a good choice in developing economies where the electric grid infrastructure is not developed.
- The DC micro grid system voltage should probably be higher than 200V

THANK YOU!

Anders Lindskog Anders.Lindskog@sp.se

