Spring 2023 - MATH 3501 Linear Algebra

HW2 - 3pt

Deadline is April 02, 2023, 23:59

Name of file: "Name Surname Spring 23_LA_HW2 CRN (xxx).pdf"

Subspaces

Task 1.	Determine w	whether or n	ot W is a s	ubspace of R ³	where W	consists	of all vector	rs (a, b, c)	in R ³
such th	at:								

(a) a = 3b(b) a≤b≤c (c) ab=0

(d) a+b+c=0

(e) $b=a^2(f) a=2b=3c$

Task 2. Let V be the vector space of n-square matrices over a field **R**. Show that W is a subspace of V if W consists of all matrices A[aii] that are

(a) symmetric ($A^T=A$ or $a_{ij}=a_{ji}$); (b) (upper) triangular; (c) diagonal;

(d) scalar

Task 3. Let AX=B be a nonhomogeneous system of linear equations in n unknowns; that is, B $\neq 0$. Show that the solution set is not a subspace of \mathbb{R}^n .

Task 4. Suppose U and W are subspaces of V for which $U \cup W$ is a subspace. Show that $U \subseteq W$ or $W \subseteq U$.

Task 5. Let V be the vector space of all functions from **R** into **R**. Show that W is a subspace of V where W consists of all: (a) bounded functions, (b) even functions. Recall that $f:R \to R$ is bounded if $\exists M \in R$ such that $\forall x \in \mathbb{R}$, we have $|f(x)| \leq M$; and f(x) is even if f(-x) = f(x), $\forall x \in \mathbb{R}$.

Linear Combinations, Linear Spans

Task 6. Write the polynomial $f(t)=at^2+bt+c$ as a linear combination of the polynomials

 $p_1(t)=(t-1)^2$, $p_2(t)=(t-1)$

 $p_3 = 1$

[Thus, p_1 , p_2 , p_3 span the space $P_2(t)$ of polynomials of degree ≤ 2 .]

Task 7. Show that (a) If $S \subseteq T$, then $Span(S) \subseteq Span(T)$. (b) Span(span(S)) = Span(S).

Basis and Dimension

Task 8. Find a subset of u_1 , u_2 , u_3 , u_4 that gives a basis for W=Span{ u_i } of \mathbb{R}^5 , where

(a) $u_1 = (1,0,1,0,1), u_2 = (1,1,2,1,0), u_3 = (2,1,3,1,1), u_4 = (1,2,1,1,1)$

(b) $u_1 = (1,0,1,1,1), u_2 = (2,1,2,0,1), u_3 = (1,1,2,3,4), u_4 = (4,2,5,4,6)$

Task 9. Consider the subspaces

$$U = \{(a, b, c, d) : b - 2c + d = 0\}$$
 and $W = \{(a, b, c, d) : a = d, b = 2c\}$ of \mathbb{R}^4 .

Find a basis and the dimension of

(a) U,

(b) W,

(c) U∩W).

Task 10. Determine the dimension of the vector space W of the following n-square matrices:

- (a) symmetric matrices, (b) antisymmetric matrices,
- (d) diagonal matrices, (c) scalar matrices.

Rank of a Matrix, Row and Column Spaces

Task 11. For k=1, 2, ..., 5,

1. Find the number n_k of linearly independent subsets consisting of k columns for each of the following matrices:

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 1 & 2 & 0 & 2 & 5 \\ 1 & 3 & 0 & 2 & 7 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 2 & 1 & 0 & 2 \\ 1 & 2 & 3 & 0 & 4 \\ 1 & 1 & 5 & 0 & 6 \end{bmatrix}$

2. For each k point out explicitly all linear independent columns

Task 12. For the matrix below, where C^1 , C^2 , ..., C^6 denote its columns

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 1 & 6 \\ 2 & 4 & 3 & 8 & 3 & 15 \\ 1 & 2 & 2 & 5 & 3 & 11 \\ 4 & 8 & 6 & 16 & 7 & 32 \end{bmatrix}$$

(i) Find a basis of the RS(A).

(ii) Find the columns that are linear combinations of preceding columns.

(iii) Find columns (excluding C⁶) that form a basis for the CS(A).

(iv) Express C⁶ as a linear combination of the basis vectors obtained in (iii).

Task 13. Determine which of the following matrices have the same row space:

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 3 & -4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 3 \\ 2 & -1 & 10 \\ 3 & -5 & 1 \end{bmatrix}$$

Task 14. Determine which of the following subspaces of \mathbb{R}^3 are identical:

$$\begin{split} U_1 &= \mathrm{span}[(1,1,-1),\ (2,3,-1),\ (3,1,-5)], & U_2 &= \mathrm{span}[(1,-1,-3),\ (3,-2,-8),\ (2,1,-3)] \\ U_3 &= \mathrm{span}[(1,1,1),\ (1,-1,3),\ (3,-1,7)] \end{split}$$

Task 15. Find a basis for (i) the row space and (ii) the column space of the matrix M:

$$M = \begin{bmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$$

Good luck!

Fuad bey, Javanshir bey