Úkol

- 1. Zpracujte přibližně 50 událostí z detektoru ATLAS programem HYPATIA.
- 2. Pomocí programu ROOT zobrazte histogram invariantních hmotností pro různě velké statistické soubory.
- 3. Identifikujte výrazné píky a přiřaď te je očekávaným částicím.
- 4. Zjistěte chybu střední hodnoty invariantní hmotnosti Z bozonu pro různě velké statistické soubory.
- Vyneste zjištěné chyby do grafu jako funkci počtu událostí a srovnejte je s očekávanou závislostí.
- 6. Interpretujte výsledky statistického testu pro nové částice a rozhodněte, jestli byl učiněn objev.

Teorie

V tomto praktiku se zabýváme zpracováním dat z experimentu ATLAS v CERNu, který stál za objevem Higgsova bosonu. Právě na detekci Higgsova bosonu společně s Z bosonem se tato úloha zaměřuje. Pro práci využijeme program Hypatia, jehož popis lze nalézt ve studijním textu [1].

Zkoumáme rozpadové produkty po čtyřech druzích částic: Higgsovu bosonu, Z bosonu, částici J/Ψ a částici Υ , jejichž invariantní hmotnosti jsou uvedeny v tabulce 1. Z boson se rozpadá mimo jiné na pár elektron-pozitron nebo na pár mion-antimion, Higgsův boson se rozpadá na pár $ZZ^{(*)}$, přičemž každé Z se poté rozpadá jak je psáno výše, nebo na dvě částice γ . Rozpad na pár leptonů nebo částic γ lze pozorovat i u zbývajících uvedených částic.

Částice	Invariantní hmotnost
J/Ψ	3,096 900
Υ	9,4603
Z	91,188
H	125,09

Tabulka 1: Částice, kterých se týká toto praktikum

Kritérium pro objevení nové částice je $p < 3 \times 10^{-7}$, popř. hodnota signifikance > 5.

Výsledky

Pomocí programu Hypatia byly zpracovány události ze dvou souborů, výsledek ukazují histogramy v příloze 1. Kvůli velmi nízkému počtu zpracovaných událostí je jediným smysluplným závěrem přítomnost píku odpovídající Z bozonu v histogramu detekce leptonových párů (graf uprostřed nahoře).

Větší vypovídací hodnotu mají histogramy v příloze 2, které shrnují výsledky zpracování více než tisíc událostí. Levý horní graf ukazuje zřejmé píky částic J/Ψ a Υ (podle tabulky 1) a prostřední horní graf opět obsahuje dobře definovaný pík Z bosonu. Histogram vpravo obsahuje píky v oblasti $1000\,{\rm GeV/c^2}$ a $1500\,{\rm GeV/c^2}$, které jsou pravděpodobně zapříčiněny vnesením fiktivních dat a neodpovídají známým částicím.

Histogram detekce fotonových párů(ve třetí řadě vlevo) ukazuje, že i přes značný počet událostí není možné rozlišit pík Higgsova bosonu vůči pozadí (fit píku je dokonce záporný).

V příloze 3 lze nalézt histogramy zobrazující pík Z bosonu pro různý počet zpracovaných událostí. Chyby s_{μ} určení polohy píků μ byly přeneseny z grafů do tabulky 2 a zobrazeny v závislosti na počtu zpracovaných událostí v grafu na obrázku 1. Hodnoty byly proloženy fitem podle rovnice

$$s_{\mu} = \frac{a}{\sqrt{N}}, \quad a = 3.8 \pm 0.6.$$

$\overline{}$	s_{μ}
50	0,360
100	$0,\!550$
200	0,340
500	$0,\!183$
1000	$0,\!137$
1647	$0,\!112$

Tabulka 2: Závislost hodnoty chyby pozice píku Z bozonu na počtu měření

Obrázek 1: Závislost hodnoty chyby pozice píku Z bozonu na počtu měření

Příloha 4 ukazuje grafy objevování nových částic. Ačkoliv v histogramu detekce párů elektronů ($p \approx 2 \times 10^{-6}$) a párů fotonů (pík není výrazný) nedosahuje hodnota p a signifikance potřebných hodnot pro objev nové částice v oblasti $1000\,\mathrm{GeV/c^2}$, hodnota $p=2\times 10^{-10}\,\mathrm{v}$ grafu detekce párů mionů dostačuje k objevu. V oblasti $1500\,\mathrm{GeV/c^2}$ je nejzřetelnější pík v histogramu detekce párů fotonů, ale jeho hodnota $p\approx 4\times 10^{-4}$ nestačí k objevu.

Diskuse

Vzhledem ke značně teoretickému rázu úlohy byla diskuse provedena vždy v odpovídající sekci výsledků zpracování.

Závěr

Bylo provedeno zpracování událostí ze dvou souborů (asi 95 událostí) v programu Hypatia. Výsledné histogramy byly diskutovány. Průběh závislosti hodnoty chyby polohy píku Z bosonu na počtu měření uspokojivě popisuje závislost

$$s_{\mu} = \frac{a}{\sqrt{N}}, \quad a = 3.8 \pm 0.6.$$

Došlo k objevu částice v oblasti 1500 GeV/ c^2 v histogramu detekce párů mionů ($p = 2 \times 10^{-10}$).

Reference

[1] Pokyny k měření "Objevování částic v detektoru ATLAS v CERN", dostupné z https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_401.pdf, 4.12.2019