Homework #6 Algorithms I 600.463 Spring 2017

Due on: Thursday, April 6th, 11:59pm
Late submissions: will NOT be accepted
Format: Please start each problem on a new page.
Where to submit: On Gradescope under HW6
Please type your answers; handwritten assignments will not be accepted.
To get full credit, your answers must be explained clearly, with enough details and rigorous proofs.

March 30, 2017

Problem 1 (20 points)

Suppose you are given an undirected graph ${\cal G}$ with weighted edges and a minimum spanning tree ${\cal T}$ of ${\cal G}$.

- Design an algorithm to update the minimum spanning tree when the weight of a single edge *e* is *increased*.
- Design an algorithm to update the minimum spanning tree when the weight of a single edge *e* is *decreased*.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should modify T so that it is still a minimum spanning tree. Analyze the running time of your algorithms and prove the correctness.

Problem 2 (20 points)

Problem 2.1 (10 points)

Let G=(V,E) be a directed, weighted graph with weight function $w:E\to\mathbb{R}$. Give an O(VE)-time algorithm to find, for each vertex $v\in V$, the value $\delta^*(v)=\min_{u\in V}\{\delta(u,v)\}$, where $\delta(u,v)$ is the *shortest-path weight* from u to v defined in the textbook.

Problem 2.2 (10 points)

Let G=(V,E) be a directed, weighted graph with nonnegative weight function $w:E\to\{1,2,\ldots,W\}$ for some nonnegative integer W. Devise an algorithm to compute the shortest path distances from a given source vertex s in O(WV+E) time.