【解説】yukicoder No. 1321 塗るめた

FF256grhy

問題文

https://yukicoder.me/problems/no/1321

準備

A 元集合から B 元集合への全射の個数を S(A,B) と書くことにする。包除原理から、この値は

$$S(A, B) = \sum_{i \in [0, B]} (-1)^i {}_B C_i (B - i)^A$$

と表すことができる。特にこの式はA < Bである場合でも正しく0となる。

解法

先に色の使い方とボールの選び方を決め、それに対して条件を満たす色の塗り方を数える、という方針で計算する。

まず色の使い方が ${}_M\mathbf{C}_K$ 通りあり、ボールを L 個($L\in[0,N]$)選ぶ選び方が ${}_N\mathbf{C}_L$ 通りある。そしてこれらに対し、選ばなかった N-L 個のボールの色は自由なので M^{N-L} 通りの塗り方があり、選んだ L 個のボールには K 色すべてを使うので S(L,K) 通りの塗り方がある。

従って、この問題の答え ans は以下のように表せる。

ans =
$${}_{M}$$
C _{K} $\sum_{L \in [0,N]} {}_{N}$ C _{L} M^{N-L} $S(L,K)$
= ${}_{M}$ C _{K} $\sum_{L \in [0,N]} {}_{N}$ C _{L} M^{N-L} $\sum_{i \in [0,K]} (-1)^{i} {}_{K}$ C _{i} $(K-i)^{L}$ (前述の公式を適用)
= ${}_{M}$ C _{K} $\sum_{i \in [0,K]} (-1)^{i} {}_{K}$ C _{i} $\sum_{L \in [0,N]} {}_{N}$ C _{L} M^{N-L} $(K-i)^{L}$ (和の順序を変更)
= ${}_{M}$ C _{K} $\sum_{i \in [0,K]} (-1)^{i} {}_{K}$ C _{i} $(M+(K-i))^{N}$ (二項定理)

累乗の計算はバイナリ法を用いることで高速にできるので、最後の式に基づいて ans を計算をすれば実行制限時間には十分に間に合う。

以上。