Algebra SS16

Prof Wedhorn, Mitschrift von Daniel Kallendorf

2. November 2016

Inhaltsverzeichnis

3	Tensorprodukte		
	3.1	Erinnerung	2
		Multilineare Abbildungen	
	3.3		3
	3.4	Basiswechsel von Tensorprodukten	5
	3.5	Tensorprodukte von Algebren	7
$B\epsilon$	emerk	ung 1. $A[X_1,,X_n]$ ist ein freier A-Modul, wobei die Monome ei	ne
Вε	asis bi	lden.	

Satz 1 (Universaleigenschaft des Polynomrings). Sei $\phi:A\to B$ eine A-Algebra und seine $b_1,...,b_n\in B$ Elemente. Dann existiert genau ein A-Algebra-Homomorphismus $\psi:A[X_1,...,X_n]\to B$, so dass $\psi(x_i)=b_i$ für alle i=1,...,n, nämlich

$$\psi \left(\sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} X_1^{i_1} \cdot \dots \cdot X_n^{i_1} \right) = \underbrace{\sum_{i_1, \dots, i_n \ge 0} \phi(a_{i_1, \dots, i_n}) b_1^{i_1} \cdot \dots \cdot b_n^{i_n}}_{=f(b_1, \dots, b_n)}$$

Bemerkung 2.

$$\operatorname{Im}(\psi)=$$
kleinste A-Unteralgebra die $b_1,...,b_n$ enthält
$$=A[b_1,...,b_n]\subset B$$

Beispiel 1. Sei $\phi:A\to B$ eien A-Algebra, $b\in B.$ Es existiere ein $g\in A[X]$ mit g(b)=0. Sei g nomriert. Dann gilt

$$A[b] = \{ f(b) | f \in A[x], \deg(f) < \deg(g) \}$$

Beispiel 2. Sei $A = \mathbb{Q} \hookrightarrow \mathbb{C}, i \in \mathbb{C}$.

Dann gilt q(i) = 0 wobei $q = X^3 + X = X(X^2 + 1)$. Es folgt:

$$\mathbb{Q}[i] = \{a_0 + q_1 i + a_2 i^2 | a_0, a_1, a_2 \in \mathbb{Q}\}\$$

$$\mathbb{Q}[i] = \operatorname{Im}(\mathbb{Q}[X] \xrightarrow{\psi} \mathbb{C})$$

Dann $\tilde{g} \in \mathbb{Q}[X] : \psi(\tilde{g}) = 0 \Leftrightarrow \tilde{g}(i) = 0.$

Also $g \in \text{Ker}(\psi) \Rightarrow (g) \subseteq \text{Ker}(\psi)$.

In diesem Fall Ker $\psi = (X^2 + 1)$.

Begründung von 2.8:

$$(g) \subseteq \operatorname{Ker}\left(A[X] \xrightarrow{\psi} B\right)$$

Also ψ faktorisiert:

$$A[X]/(g) \xrightarrow{\overline{\psi}} A[b] \subseteq B$$

mit $\overline{\psi}$ surjektiv.

Proposition 1. Sei $g \in A[X]$ normiert. Dann ist

$$\{f \in A[X], \deg(f) < \deg(g)\} \hookrightarrow A[X] \to A[X]/(g)$$

bijektiv.

Beweis. Gilt, da für alle $f \in A[X]$ genau ein $r \in A[X]$ exitiert mit $\deg(r) < \deg(g)$ mit $f \in r + (g)$

3 Tensorprodukte

- (A) Tensorprodukte von Moduln
- (B) Tensorprodukte von Algebren und Basiswechsel
- (C) Exaktheitseigenschaften des Tensorprodukts

3.1 Erinnerung

Definition 1. A-Modul:= $(M,+,\cdot)$ wobei (M,+) abelsche Gruppe und $\cdot: A \times X \to M$ ein Skalarprodukt.

Bemerkung 3. Z-Modul=ablesche Gruppe

Beispiel 3. Sei I eine Menge

$$A^{(I)} = \{(a_i)_{i \in I} | a_i \in A, a_i = \text{0für fast alle } i \in I\}$$

A-Modul mit Addition und Skalarprodukt.

Für $i \in I : e_i \in A^{(I)}$ mit

$$e_i = \begin{cases} 1 \text{ an der i-ten Stelle} \\ 0 \text{ sonst} \end{cases}$$

Definition 2. Ein A-Modul heißt frei, falls $M \cong A^{(I)}$ für eine Menge I

Definition 3. Sei M,N A-Modul. Dann heißt $u:M\to N$ A-linear oder Homomorphismus von A-Moduln, falls

$$u(am + m') = au(m) + u(m') \forall a \in A, m, m' \in M$$

Bemerkung 4. Sei I eine Menge, M ein A-Modul $\underline{m} = (m_i)_{i \in I}$ ein Tupel von Elementen $m_i \in M$. Dann Existiert genau eine Abbildung:

$$A^{(I)} \xrightarrow{u_{\underline{m}}} M$$

mit $u_m(e_i) = m_i$.

 $(m_i)_i = \underline{m}$ heißt linear Unabhängig/ Erzeugende-System/ Basis, falls u_m injektiv/ surjektiv / bijektiv ist.

Bemerkung 5. Der A-Modul M ist endlich erzeugt, genau dann wenn ein $n \in \mathbb{N}$ und eine A-lineare Surjektion $A^m \to M$ existieren.

3.2 Multilineare Abbildungen

Definition 4. Sei $r \in \mathbb{N}_0, M_1, ..., M_r, P$ A-Moduln.

Eine Abbildung $\alpha: M_1 \times ... \times M_r \to P$ heißt <u>r-multilinear</u>, falls sie in jeder Komponente linear ist, d.h. Für alle i = 1, ..., r gilt:

$$\alpha(m_1,...,am_i+m_i',m_{i+1},...,m_r)=a\alpha(m_1,...,m_i,...,m_r)+\alpha(m_1,...,m_i',...,m_r)$$

Für alle $m_i \in M_i, m_i \in M_i, a \in A$. (r = 1: linear, r = 2: bilinear)

3.3 .

Definition 5. Sei $r \geq 2, M_1, ..., M_r$ A-Moduln.

Dann existiert ein A-Modul $M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$ und eine r-multilineare Abbildung $\tau: M_1 \times ... \times M_r \to M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$, sodass für jede r-multilineaer Abbildung:

$$\alpha M_1 \times ... \times M_r \to P$$

wobei P ein A-Modul, genau ein A-lineare Abbildung

$$\overline{\alpha}: M_1 \otimes_A ... \otimes_A M_r \to P$$

existiert.

$$M_1 \times ... \times M_r^{\text{ir-multilinear}} > P$$

$$M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$$

Satz 2 (Eindeutigkeit des Tensorprodukts). Seien $(T, \tau: M_1 \times ... \times M_r \to T)$ und (T', τ') Tensorprodukte:

u existiert aufgrund der universellen Eigenschaft von (T,τ) . v existiert aufgrund der universellen Eigenschaft von (T',τ') . Ferner kommutiert

Die Universelle Eigschaft von (T, τ) zeigt, dass $v \circ u = id_T$, genauso $u \circ v = id_T$.

Satz 3 (Existenz des Tensorprodukts). 1. Suche einen A-Modul N und eine Abbildung $c: M_1 \times ... \times M_r \to R$, sodass

$$\operatorname{Hom}_A(N,P) \xrightarrow[u \mapsto u \circ \tau]{} \operatorname{Abb}(M_1 \times ... \times M_r, P)$$

Für alle A-Moduln P.

2. Wir wollen, dass $(am_1 + m'_1, m_2, ..., m_r)$ und $a(m_1, ..., m_r) + (m'_1, ..., m_r)$ auf das gleiche Element abgebildet werden. Sei $Q \subseteq N$ der von

$$e_{(m_1,\ldots,m_{i-1},am_i+m'_i,m_{i+1},\ldots,m_r)} - \left(ae_{(m_1,\ldots,m_i,\ldots,m_r)} + e_{(m_1,\ldots,m'_i,\ldots,m_r)}\right)$$

für alle i=1,...,r und $m_i,m_i'\in M_i$ und $a\in A$ erzeugt Untermodul. Dann setze T:=N/Q. Dann gilt

$$\operatorname{Hom}_{A}(T, P) = \{ u \in \operatorname{Hom}(N, P) | u(Q) = 0 \}$$

= $L_{A}(M_{1}, ..., M_{r}, P)$

mit
$$\tau: M_1 \times ... \times M_r \to N \to N/Q$$
.

Bemerkung 6. 3.4

 $e_{(m_1,\ldots,m_r)} \in A^{(M_1 \times \ldots \times M_r)}$ bilden ein Erzeugndensystem.

Also bilden auch die $\tau(m_1,...,m_r)=:m_1\otimes...\otimes m_r$ eine Erzeugenden-System des A-Moduls $M_1\otimes...\otimes M_r$.

Aber: Nicht jedes Element von $M_1 \otimes ... \otimes M_r$ ist in dieser Form.

Also genüt es eine lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ auf den erzeugdnesn $m_1 \otimes ... \otimes m_r$ mit $(m_i \in M_i)$ anzugeben.

Umgekehrt sei P ein A-mOdul und es seien elemente $u(m_1 \otimes ... \otimes m_r) \in P$ gegeben für alle $m_i \in M_i$.

Genau dann existiert eine A-lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ mit $m_1 \otimes ... \otimes m_r \mapsto u(m_1 \otimes ... \otimes m_r)$, wenn für alle $i = 1, ..., r, a \in A, m_j \in M_j$ und $m_i' \in M_i$ gilt:

$$u(m_1 \otimes ... \otimes am_i + m_i' \otimes ... \otimes m_r) = au(m_1 \otimes ... \otimes m_i \otimes ... \otimes m_r) + u(m_1 \otimes ... \otimes am_i' \otimes ... \otimes m_r)$$

Satz 4 (Tensorprodukt linearer Abbildungen). Seien M, M', N, n' A-Moduln, $u: M \to M', v: N \to N'$ A-lineare Abbildungen. Dann definiert

$$M \otimes_A N \to M' \otimes AN'$$

 $m \otimes n \mapsto u(m) \otimes u(n)$

eine A-lineare Abbildung bezüglich $u \otimes v : M \otimes N \to M' \otimes N$.

Beweis. Zu zeigen: $u(am + m') \otimes v(n) = a(u(m) \otimes v(n)) + u(m') \otimes v(n)$ Es gilt da das Tensorprodukt r-linear ist.

$$u(am + m') \otimes v(n) = (au(m) + u(n)) \otimes v(n)$$
$$= (au(m) \otimes v(n)) + u(m') \otimes v(n)$$

Außerdem zu zeigen:
$$u(m) \otimes v(an+n') = a(u(m) \otimes v(n)) + u(m) \otimes v(n)$$
 $(\rightarrow$ Genauso.)

Bemerkung 7. 3.6

- 1. $A \otimes_A M \cong M$
 - $u:a\otimes m\mapsto am$

 $v: 1 \otimes m...m$ Dabei ist u wohldefiniert, d.h. $(a, m) \to am$ ist bilinear.

- 2. $M \otimes_A N \xrightarrow{\sim} N \otimes_A M, m \otimes n \mapsto n \otimes m$ ist ... von A-Moduln. Zu zeigen: Wohldefineirtheit
- 3. $M \otimes_A N \otimes_A P \simeq (M \otimes_A N) \otimes_A P$ $m \otimes n \otimes p \mapsto (m \otimes n) \otimes p$ $m \otimes n \otimes p \mapsto m \otimes (n \otimes p)$

Proposition 2. 3.7 Sei $(M_i)_{i \in I}$ eine Familie von A-Moduln, N ein A-Modul:

$$\left(\bigotimes_{i\in I} M_i\right) \otimes_A N \xrightarrow{\sim} \bigotimes_{i\in I} (M_1 \otimes_A N)$$
$$(m_i)_{i\in I} \otimes n \mapsto (m_i \otimes n)_{i\in I}$$

Beweis. Umkehrabbildung gegeben durch:

$$Inhalt..m_i \otimes n \mapsto (m_i)_{i \in I} \otimes n$$

3.4 Basiswechsel von Tensorprodukten

Satz 5. 1. Sei M ein A-Modul. Dann wird

$$\varphi^*(M) := B \otimes_A M$$

zu einerm B-Modul mit dem Skalarprodukt

$$B \times (B \otimes_A M) \to B \otimes_A M$$

 $(b, b' \otimes m) \mapsto bb' \otimes m$

2. Sei $U:M\to M'$ ein Homomorphismus von A-Moduln. Dann ist

$$id_B \otimes u : B \otimes M \to B \otimes_A M'$$

 $b \otimes m \mapsto b \otimes u(m)$

eine B-lineare Abbildung.S

Proposition 3. Sei $\varphi: A \to B$ eine A-Algebra. Sei M ein freier A-Modul. Dann ist $B \otimes_A M$ ein freier B-Modul und

$$\vartheta_A(M) = \vartheta_B(B \otimes_A M)$$

Beweis. Sei Mein freier A-Modul. Dazu ist äquivalent, dass $M \simeq A^{(I)}.$ Daraus folgt, dass

$$B \otimes_A M \simeq B \otimes_A A^{(I)}$$

$$\simeq B \otimes_A \left(\bigoplus_{i \in I} A\right)$$

$$\simeq \left(\bigoplus_{i \in I} B \otimes_A A\right)$$

$$\simeq \bigoplus_{i \in I} B$$

$$= B^{(I)}$$

Also ist $B \otimes_A M$ frei.

Proposition 4. Sei $\mathfrak{a} \subseteq A$ ein Ideal, M ein A-Modul.Setze

$$\begin{split} \mathfrak{a} \cdot M &= \left\langle \{am | a \in \mathfrak{a}, m \in M \right\} \\ &= \left\{ \sum_{i=1}^m a_i m_i \mid n \in \mathbb{N}_0, a_i \in \mathfrak{a}, m_i \in M \right\} \\ &\subset M \quad \text{Untermodul} \end{split}$$

Dann ist

$$A/\mathfrak{a} \otimes_A M \xrightarrow{\sim} M/\mathfrak{a}M$$
$$\overline{a} \otimes m \mapsto \overline{am}$$

ein Homomorphismus von A/\mathfrak{a} -Moduln.

Beweis. $\overline{a} \oplus m \mapsto \overline{am}$ ist wohldefiniert: Zu zeigen:

- 1. Sei $a' \in A$ mit $\overline{a'} = \overline{a} \in A/\mathfrak{a}$. Dann ist $\overline{am} = \overline{a'm} \in M/\mathfrak{a}M$. Es gilt $\overline{a'} = \overline{a}$ gena dann wenn es ein $x : \mathfrak{a}$ gibt sodass a' = a + x. Daruas folgt, dass a'm = am + xm, und da $xm \in \mathfrak{a}M$ folgt $\overline{a'm} = \overline{am}$.
- 2. \overline{am} is linear in a, d.h.

$$\overline{(ba+a')m} = b\overline{am} + a'\overline{m}$$
 für $a, a' \in A, b \in A$

3. \overline{am} ist linear in m, d.h.

$$\overline{a(bm+m')} = b\overline{am} + \overline{am'}$$
 für $m, m' \in M, b \in A$

Proposition 5. Eine Umkehrabbildung ist gegeben durch

$$v: M \to A/\mathfrak{a} \otimes_A M$$
$$m \mapsto 1 \otimes m$$

Beweis. Zu zeigen: $\mathfrak{a}M \subseteq Ker(v)$, also für alle $x \in \mathfrak{a}, m \in M$ gilt v(xm) = 0.

$$v(xm) = 1 \otimes xm = \overline{x} \otimes m = 0$$

 $\mathrm{da}\ \overline{x} = \overline{0} \in A/\mathfrak{a}.$

Noch zu zeigen:: v ist Umkehrabbildung zu $\overline{a} \otimes m \mapsto \overline{am}$.

3.5 Tensorprodukte von Algebren

Definition 6. Sei $A \to B_1$, $A \to B_2$ A-Algebran.

Dann definieren wir auf dem A-Modul $B_1 \otimes_A B_2$ eine Multiplikation:

$$(B_1 \otimes B_2) \times (B_1 \otimes B_2) \to B_1 \otimes B_1 \otimes B_2$$
$$(a_1 \otimes b_2, b'_1 \otimes b'_2) \mapsto b_1 b'_1 \otimes b_2 b'_2$$

und erhalten die A-Algebra $B_1 \otimes_A B_2$.

Beispiel 4. Sei $A \xrightarrow{\varphi} B$ eine A-Algebra und sei $C = A[X_1,...,X_n]/(f_1,...,f_r)$ und $f_i \in A[X-1,...,X_n]$. Dann ist

$$B \otimes_A A[X-1,...,X_n]/(f_1,...,f_r) = B[X_1,...,X_n]/(\tilde{f}_1,...,\tilde{d}_r)$$

wobei

$$f_i = \sum_{j \in \mathbb{N}_0^n} a_{\underline{j}} X^{\underline{j}} \to \tilde{f}_i = \sum_j \varphi(a_j)$$

1. Sei
$$A = \mathbb{Q}$$
, $C = \mathbb{Q}[i] = \{a + b_i | a, b \in \mathbb{Q}\} = \mathbb{Q}[X]/(X^2 + 1)$

2.
$$\mathbb{R} \otimes_Q Q[i] = \mathbb{R}[X]/(X^2 + 1) = \mathbb{C}$$

3.
$$C \otimes_Q Q[i] = C[X]/(X^2+1) = \mathbb{C}[X]/(X+i) \times \mathbb{C}[X]/(X-i) \simeq \mathbb{C} \times \mathbb{C}$$

Beispiel 5.
$$A[X] \otimes_A A[Y] = (A[X])[Y] = A[X,Y]$$
 mit $f \otimes g \mapsto fg$