

Understanding Latency and Throughput Constraints for Geo-Distributed Data in the National Science Data Fabric

CONSUTING A B

Jakob Luettgau¹, Heberth Martinez¹, Giorgio Scorzelli²,

Glenn Tarcia³, Valerio Pascucci², Michela Taufer¹

¹University of Tennessee Knoxville, ²University of Utah, ³University of Michigan,

Motivation

- Sharing and transferring research data across geographically distributed sites is increasingly important
- Setting up infrastructure to support data movements often comes with unexpected challenges especially for science teams without strong technical expertise
- We are designing the National Science Data Fabric (NSDF) to resolve and automate common tuning parameters to allow optimizing data placement, throughput and latency

Lessons Learned from Observations

- Our testbed setup includes 8 hosts deployed across three different academic cloud providers (Chameleon Cloud, CloudLab, and Jetstream2) as well as a physical node at the University of Michigan (UMich).
- To connect these 8 hosts, we rely on significant amounts of existing infrastructure: In particular, we observe more than 210 regularly occurring network hops through which traffic is routed.
- About half of the observed routes include Internet2
 (93) or ESnet (13) and are thus using the fast
 backbone networks to route across state boundaries.
- Depending on how the resources are provisioned and how network interfaces are configured, setting up infrastructure can be a large burden to science teams:
- While all platforms allowed us to use containerized deployments, only instances on Cloudlab could be automatically configured to always connect NSDF services, the PerfSonar testpoints, as well as our containerized XRootD client and server.
- Hosts connected through networks utilizing Network
 Address Translation (NAT) such as Jetstream2,
 Chameleon Cloud, and our hardware testbed at UMich,
 can pose challenges and problems that may be hard to
 troubleshoot especially for science teams that may
 not enjoy a lot of technical support.

Network Monitoring with PerfSonar

We use PerfSonar as a containerized sidecar in our NSDF Entry Points to monitor health and point-to-point performance metrics such as latency and throughput. Depending on how the IP addresses are exposed and if Network Address Translation (NAT) is used different metrics can be obtained without manual configuration. In particular, hosts behind NAT can usually serve as clients (e.g., consuming tasks) but often not as server:

		THROUGHPUT]		LATENCY										TRACE & Round Trip Time (RTT)									
		DESTINATION										DESTINATION								,		DESTINATION								
		CloudLab Utah	CloudLab Wisconsin		CloudLab Massachu setts	CloudLab APT Utah	1	Chameleon Cloud TACC	Chameleon Cloud UC			CloudLab Utah	1	CloudLab Clemson	CloudLab Massachu setts	CloudLab APT Utah	Jetstream Indiana	Chameleon Cloud TACC	Chameleon Cloud UC			CloudLab Utah	CloudLab Wisconsin	CloudLab Clemson	CloudLab Massachu setts	CloudLab APT Utah		Chameleon Cloud TACC	Chameleon Cloud UC	
3	CloudLab Utah	NA	ok	ok	ok	ok	fails	fails	fails		CloudLab Utah	NA	ok	ok	ok	fails fails fails	fails		CloudLab Utah	NA	ok	ok	ok	ok	ok	ok	ok			
	CloudLab Wisconsin	ok	NA	ok	ok	ok	fails	fails	fails		CloudLab Wisconsin	ok	NA	ok	ok	fails	fails	fails	fails		CloudLab Wisconsin	ok	NA	ok	ok	ok	ok	ok	ok	
	CloudLab Clemson	ok	ok	NA	ok	ok	fails	fails	fails		CloudLab Clemson	ok	ok	NA	ok	fails	fails	fails	fails		CloudLab Clemson	ok	ok	NA	ok	ok	ok	ok	ok	
	CloudLab Massachusetts	ok	ok	ok	NA	ok	fails	fails	fails	S O U R C E	CloudLab Massachusetts	ok	ok	ok	NA	fails	fails	fails	fails	S 0 U	CloudLab Massachusetts	ok	ok	ok	NA	ok	ok	ok	ok	
	CloudLab APT Utah	ok	ok	ok	ok	NA	fails	fails	fails		CloudLab APT Utah	ok	ok	ok	ok	NA	fails	fails	fails	R C E	CloudLab APT Utah	ok	ok	ok	ok	NA	ok	ok	ok	
	Jetstream2 Indiana	ok	ok	ok	ok	ok	NA	fails	fails		Jetstream2 Indiana	fails	fails	fails	fails	fails	NA	fails	fails		Jetstream2 Indiana	not allowed	not allowed	not allowed	not allowed	not allowed	NA	not allowed	not allowed	
	Chameleon Cloud - TACC	ok	ok	ok	ok	ok	fails	NA	fails		Chameleon Cloud - TACC	fails	fails	fails	fails	fails	fails	NA	fails		Chameleon Cloud - TACC	ok	ok	ok	ok	ok	ok	NA	ok	
	Chameleon Cloud - UC	ok	ok	ok	ok	ok	fails	fails	NA		Chameleon Cloud - UC	fails	fails	fails	fails	fails	fails	fails	NA		Chameleon Cloud - UC	ok	ok	ok	ok	ok	ok	ok	NA	

Routing and Performance Analysis

Over a period of one month we collected 39.528 measurements of different metrics such as latency, throughput and routes taken between the different endpoints in our testbed:

In addition, to continuously taking measurements to understand performance variability over time we developed a special benchmark suite with differently structured project directories. The use cases are designed to allow inquiry on how different transfer services are parallelizing transfers. The following plots summarize parameter sweeps that allow NSDF to determine XRootD transfer parameters for different project structures (1 GiB, split into 1, 100, 1000 files):

Take-away Message

Using continuous performance monitoring and a co-designed suite of benchmarks, NSDF can help science teams improve transfer performance matching their workflows data as well as team and resource locations.

Find out more about NSDF on: nationalsciencedatafabric.org

This research was supported by the National Science Foundation (NSF) under grant numbers #1841758, #2028923, #2103845, and #2138811; the Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS) program, under allocation TG-CIS210128; Chameleon Cloud under allocation CHI-210923; and IBM through a Shared University Research Award.

