Variables Aleatorias Continuas

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Distribución Uniforme

Consideremos dos numeros reales a < b. Luego la variable aleatoria X se distribuye uniforme, si su función de densidad es:

$$f_X(x) = \begin{cases} \frac{1}{b-a} &, \text{ si } a \le x \le b \\ 0 &, \text{ si } x \notin [a,b] \end{cases}$$

la cual es denotada por

$$X \sim \mathcal{U}(a,b)$$

Y su función de distribución viene dada por

$$F_X(x) = \begin{cases} 0, & \text{si } x < a \\ \frac{x-a}{b-a}, & \text{si } a \le x < b \\ 1, & \text{si } x \ge b \end{cases}$$

La esperanza y la varianza de esta distribución estan dadas por:

$$\mathbb{E}(X) = \frac{a+b}{2}$$

$$\mathbb{V}(X) = \frac{(b-a)^2}{12}$$

Distribución Exponencial

Suponga que los enventos suceden aleatoriamente a lo largo del tiempo, con un tiempo esperado entre eventos $\beta > 0$. Sea X la variable aleatoria que cuenta el tiempo para el siguiente evento, luego una variable aleatoria definida de esta forma sigue una distribución Exponencial y su función densidad viene dada por:

$$f_X(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} &, \text{ si } x > 0\\ 0 &, \text{ si } x \le 0 \end{cases}$$

la cual se denota por:

$$X \sim exp(\beta)$$

y su función de distribución $F_X(x)$ viene dada por:

$$F_X(x) = \begin{cases} 0, & \sin x < 0 \\ 1 - e^{-x/\beta}, & \sin x \ge 0 \end{cases}$$

La esperanza y varianza de esta distribución estan dados por:

$$\mathbb{E}(X) = \beta$$

$$\mathbb{V}(X) = \beta^2$$

esta distribución aparece generalmente cuando se trata de estudiar la durabilidad de mecanismos bajo el supuesto de que el sistema no se desgasta a lo largo del tiempo.

Para precisar el concepto de desgaste, decimos que la distribución de la v.a. X no tiene desgaste cuando a > 0 y b > 0 se tiene:

$$\mathbb{P}\left(X\geq a+b\mid X\geq a\right)=\mathbb{P}\left(X\geq b\right)$$

 $\LaTeX 2_{\varepsilon}$

Es decir, el proceso No tiene memoria del tiempo que esta funcionando, pues que funcione hasta el tiempo a + b dado que ha durado hasta el tiempo a es igual a que dure el tiempo b, es decir el mecanismos mientras funciona lo hace como si fuese nuevo.

También la propiedad de desgaste se conoce como Propiedad de falta de memoria.

Distribución Normal

Sea X una v.a.continua, se dice que X se distribuye Normal de parámetros $\mu \in \mathbb{R}$ y $\sigma \in \mathbb{R}^+$ si su función de densidad es:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, \ \forall x \in \mathbb{R}$$

La cual se denota por:

$$X \sim N(\mu, \sigma^2)$$

y su función de distribución $F_X(x)$ viene dada por:

$$F_{X}\left(x\right) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right\} dt , \ \forall x \in \mathbb{R}$$

La esperanza y varianza de esta distribución estan dadas por:

$$\mathbb{E}(X) = \mu$$
$$\mathbb{V}(X) = \sigma^2$$

Obs: si Z es una variable aleatoria normal de parámetros $\mu = 0$ y $\sigma^2 = 1$ diremos que Z se distribuye en formal **Normal Estándar**, es decir:

$$Z \sim N(0,1)$$

Distribución Gamma

Se dice que una v.a. continua X se distribuye según una distribución Gamma de parámetros $\alpha>0$ y $\beta>0$ si su función de densidad es:

$$f_X(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} &, \text{ si } x \ge 0\\ 0 &, \text{ si } x < 0 \end{cases}$$

donde:

$$\Gamma\left(\alpha\right) = \int_{0}^{\infty} t^{\alpha - 1} e^{-t} dt$$

es la función Gamma.

Integrando por partes se puede demostrar que $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$ y como $\Gamma(1)=1$, luego para todo natural n se cumple $\Gamma(n)=(n-1)!$. Con lo cual se tiene que la función Gamma es una generalización del factorial de un numero natural.

Su función de distribución viene dada por:

$$F_X(x) = \mathbb{P}(X \le x) = \begin{cases} 0, & \text{si } x < 0 \\ \int_0^x \frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\beta t} dt, & \text{si } x \ge 0 \end{cases}$$

se denota por:

$$X \sim \Gamma(\alpha, \beta)$$

La esperanza y varianza de esta distribución estan dadas por:

$$\mathbb{E}(X) = \frac{\alpha}{\lambda}$$

$$\mathbb{V}(X) = \frac{\alpha}{\lambda^2}$$

 $AT_{FX} 2_{\varepsilon}$

Distribución Beta

Se dice que una v.a. continua X se distribuye según una distribución Beta de parámetros r>0 y s>0 si su función de densidad es:

$$f_X(x) = \begin{cases} \frac{x^{r-1} (1-x)^{s-1}}{\beta(r,s)}, & \text{si } 0 < x < 1\\ 0, & \text{e.o.c.} \end{cases}$$

donde:

$$\beta(r,s) = \int_0^1 x^{r-1} (1-x)^{s-1} dx$$

es la funci'on~Beta.

Se puede demostrar que

$$\beta(r,s) = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$$

Su función de distribución viene dada por:

$$F_X(x) = \mathbb{P}(X \le x) = \begin{cases} 0, & \text{si } x < 0 \\ \int_0^x \frac{t^{r-1} (1-t)^{s-1}}{\beta(r,s)} dt, & \text{si } 0 \le x < 1 \\ 1, & \text{si } x \ge 1 \end{cases}$$

se denota por:

$$X \sim \beta(r,s)$$

La esperanza y varianza de esta distribución estan dadas por:

$$\mathbb{E}(X) = \frac{r}{r+s}$$

$$\mathbb{V}(X) = \frac{rs}{(r+s)^2 (r+s+1)}$$

Distribución Rayleigh

Se dice que una v.a.continua X tiene una distribución Rayleigh de parámetros $\alpha > 0$ si su función de densidad es:

$$f_X(x) = \begin{cases} \frac{x}{\alpha^2} \exp\left(-\frac{x^2}{2\alpha^2}\right), & \text{si } x > 0\\ 0, & \text{e.o.c.} \end{cases}$$

Su función de distribución viene dada por:

$$F_X(x) = \begin{cases} 0, & \text{si } x < 0 \\ 1 - \exp\left(-\frac{x^2}{2\alpha^2}\right), & \text{si } x \ge 0 \end{cases}$$

se denota por:

$$X \sim Rayleigh(\alpha)$$

La esperanza y varianza de esta distribución estan dadas por:

$$\mathbb{E}\left(X\right) = \sqrt{\frac{\pi}{2}}\alpha$$

$$\mathbb{V}\left(X\right) = \left(2 - \frac{\pi}{2}\right)\alpha^{2}$$