3) Sea el vector posición \vec{r} que varía con respecto el tiempo de la siguiente forma.

$$\vec{r}$$
(t)=(c Cos³ (t), c Sin³(t))

R1x = Plot[c * Cos[t]
3
 /. c \rightarrow 2, {t, 0, 4 Pi}]

R1y = Plot[$c * Sin[t] ^3 /. c \rightarrow 2$, {t, 0, 4 Pi}, PlotStyle $\rightarrow Red$]

La velocidad de las componentes de *R* esta definida como la derivada con respecto al tiempo de sus componentes entonces tenemos lo siguiente.

$$\vec{V(t)} = \frac{d\vec{r(t)}}{dt} = \frac{d}{dt} \left(c \cos^3(t), c \sin^3(t) \right) = \left(\frac{d(c \cos^3(t))}{dt}, \frac{d(c \sin^3(t))}{dt} \right) = \left(-c \operatorname{3} \operatorname{Sin}(t) \operatorname{Cos}^2(t), c \operatorname{3} \operatorname{Cos}(t) \operatorname{Sin}^2(t) \right) = \vec{V}(t)$$

$$V1x = Plot[-3 Sin[t] * Cos[t]^2 * c/. c \rightarrow 2, \{t, 0, 4 Pi\}];$$

 $Show[V1x, AxesLabel \rightarrow \{HoldForm[Tiempo[s]], HoldForm[HoldForm[Velocidad[\frac{m}{s}]]]\},$

PlotLabel → "Velocidad en X"]

V1y = Plot[3 Cos[t] * Sin[t] 2 * c /. c \rightarrow 2, {t, 0, 4 Pi}, PlotStyle \rightarrow Red]; Show[V1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Velocidad[$\frac{m}{\epsilon}$]]}, PlotLabel → HoldForm[Velocidad en Y], LabelStyle → {GrayLevel[0]}

Continuamos ahora con la aceleración, tenemos la siguiente formula y desarrollo.

$$\vec{a} = \frac{d\vec{V}}{dt} = \frac{d}{dt} \left(-c \operatorname{3} \operatorname{Sin}(t) \operatorname{Cos}^{2}(t), c \operatorname{3} \operatorname{Cos}(t) \operatorname{Sin}^{2}(t) \right) = \left(\frac{d \left(-c \operatorname{3} \operatorname{Sin}(t) \operatorname{Cos}^{2}(t) \right)}{dt}, \frac{d \left(c \operatorname{3} \operatorname{Cos}(t) \operatorname{Sin}^{2}(t) \right) \right)}{dt} \right) = \left(\operatorname{c3} \left(2 \operatorname{Cos}(t) - 3 \operatorname{Cos}^{3}(t) \right), \operatorname{c3} \left(2 \operatorname{Sin}(t) - 3 \operatorname{Sin}^{3}(t) \right) \right) = \vec{a}$$

A1x = Plot[3 c * (2 Cos[t] - 3 Cos[t] ^3) /. $c \rightarrow 2$, {t, 0, 4 Pi}]

Show[A1x, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Aceleración[$\frac{m}{s^2}$]]}, $PlotLabel \rightarrow HoldForm[Aceleración en X], LabelStyle \rightarrow \{GrayLevel[0]\}]$

 $Aly = Plot[3c*(2Sin[t]-3Sin[t]^3) /. c \rightarrow 2, \{t, 0, 4Pi\}, PlotStyle \rightarrow Red]$ Show[A1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Aceleración[$\frac{m}{c^2}$]]}, PlotLabel → HoldForm[Aceleración en Y], LabelStyle → {GrayLevel[0]}]

