Ingeniería Informática, 24-01-2006

PRIMER PARCIAL

Cálculo para la Computación

ONI:	Grupo:
Apellidos y Nombre:	

- 1. (2,5 p.) Responda o resuelva razonadamente las siguientes cuestiones:
 - a) Exprese en forma binómica $e^{2-\pi i}$
 - b) Dado el polinomio $P(x)=x^4+6x^2+25$, obtenga la factorización de P(x) en $\mathbb C$ e igualmente su factorización en $\mathbb R$
 - c) Si $z,w\in\mathbb{C}$ y $z=\log(e^w)$ ¿puede ocurrir que $z\neq w$?
 - d) Demuestre que si $z,w\in\mathbb{C}$, $\sin z\cos w=rac{1}{2}(\sin(z+w)+\sin(z-w))$
- 2. (1,5 p.) Calcule los siguientes límites:

a)
$$\lim (\sqrt[5]{n+2}-\sqrt[5]{n-2})$$
 b) $\lim \frac{1}{n}\sqrt[n]{(n+1)(n+2)\dots(n+n)}$

3. (1.5 p.) Estudie el carácter y sume si es posible las siguientes series numéricas:

$$\text{a) } \sum_{n=1}^{\infty} \frac{(-1)^n}{n2^n} \qquad \text{b) } \sum_{n=1}^{\infty} \frac{1}{(1+\log n)^2}$$

- 4. (1,5 p.) Consideremos la sucesión de funciones $f_n(x) = rac{x}{1+n^4x^2}$
 - a) Estudie la convergencia puntual y uniforme de $f_n(x)$.
 - b) Estudie la convergencia puntual y uniforme de $\sum f_n(x)$
- 5. (1 p.) Calcule el polinomio de Taylor de orden 8 en el punto $x_0=0$ de la función

$$f(x) = (e^{x^2} - 1) \operatorname{sen}(x^3)$$

- 6. (2 p.) Considere la función periódica de periodo 2, definida como f(x)=(x-2) en [1,3]. Se pide:
 - a) Calcular su desarrollo en serie de Fourier.
 - b) Usar el apartado a) para sumar la serie $\sum_{k=2}^{\infty} rac{(-1)^k}{2k-1}$
 - c) Usar el apartado a) para obtener el desarrollo en serie de Fourier de la función periódica de periodo 2, definida como $f(x) = x^2 4x$ en [1,3] (sin utilizar la definición de los coeficientes de la serie de Fourier).