

МЕТОДЫ УПРАВЛЕНИЯ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ

Готовец Мария Алексеевна

Задача об экономическом росте технологического последователя

$$J(x,u) = \int_0^z e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max,$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t)),$$

$$x(0) = x_0,$$

$$\dot{y}(t) = \nu y(t),$$

$$y(0) = y_0, u(t) \in [0, b].$$

где b,γ,ρ,ν,κ — положительные параметры, $\gamma<1;\;x_0$ и y_0 — положительные начальные состояния фазовых переменных.

Алгоритм решения стратегией МРС

- ullet Измерение текущего состояния объекта $x_{t_i}.$
- ullet Вычисление оптимального программного управления $ar{u}$: $[t_i,t_{i+T}] o \mathbb{R}^n.$
- Управление $u^*(t) := \bar{u}(t)$ на интервале $[t_i, t_i + \delta]$ применяется к объекту, (оставшееся управление $\bar{u}(t)$, $t \geq t_i + \delta$ отбрасывается).

Алгоритм решения стратегией МРС

Процедура повторяется, как показано на рисунке, для следующего момента t_{i+1} (индекс i увеличивается на одну единицу). В результате получим управление обратной связи.

Задача об экономическом росте технологического последователя

$$J(x,u) = \int_0^z e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max,$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t)),$$

$$x(0) = x_0,$$

$$\dot{y}(t) = \nu y(t),$$

$$y(0) = y_0, u(t) \in [0, b].$$

где $b, \gamma, \rho, \nu, \kappa$ — положительные параметры, $\gamma < 1$; x_0 и y_0 — положительные начальные состояния фазовых переменных.

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.5$ b = 1, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 2, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

Спасибо за внимание!