ASSIGNMENT-6 PAPOULLIS PROBLEM

MARRI SATHVIKA Al21BTECH11020

30th May,2022

QUESTION

Show that if R is the correlation matrix of the random vector X : $[x_1, \dots, x_n]$ and R^{-1} is its inverse, then $E[X R^{-1}X^t] = n$

SOLUTION

If
$$R^{-1} = \begin{bmatrix} a_{11} \dots a_{1n} \\ a_{n1} \dots a_{nn} \end{bmatrix}$$
 then $\sum_{j} a_{ij} R_{ji} = 1$
Hence, $E[XR^{-1}X^{t}] = E[\sum_{n}^{i=1}\sum_{n}^{j=1} x_{i}a_{ij}x_{j}]$
 $= \sum_{n}^{i=1}\sum_{n}^{j=1} a_{ij}R_{ji}$
 $= \sum_{i=1}^{n} 1 = n$
 $\therefore E[XR^{-1}X^{t}] = n$