

FAKTORTUNGGAL dalam
RANCANGANACAK
KELOMPOK (RAK)

RANDOMIZED COMPLETE BLOCK DESIGN

Dosen: Dr. Utami Dyah Syafitri

Kapan Digunakan?

Adanya ketidakseragaman satuan percobaan

Diharapkan keragaman antar kelompok besar, sedangkan keragaman di dalam kelompok relatif kecil

Sumber Keragaman yang tidak dapat terkontrol						
Botani	Kondisi tanah yang berbeda (faktor kesuburan, ketinggian, unsur hara yang terkandung dalam tanah)					
Animal	Berat badan, kondisi dari binatang yang bersangkutan, jenis kelamin, usia, tahap reproduksi					

Bagaimana pengacakannya?

- Pemberian perlakuan terhadap unit percobaan dilakukan secara acak pada setiap kelompok, dengan batasan bahwa SETIAP PERLAKUAN MUNCUL SEKALI DALAM SETIAP KELOMPOK
- Pengacakan perlakuan dilakukan pada setiap kelompok

ILUSTRASI

- Suatu penelitian dilakukan untuk mengetahui pengaruh produktivitas tanaman dari tiga varietas (V1,V2, dan V3).
- · Jika tanah yang digunakan berasal dari 3 jenis tanah yang berbeda. Maka jenis tanah merupakan kelompok
- Terdapat tiga jenis tanah, dan masingmasing jenis tanah diletakkan pada tiga pot

Pengacakan dilakukan dengan bantuan komputer atau kertas undian

Prosedur kertas undian:

- 1. Siapkan 3 lembar kecil kertas kosong
- 2. Tuliskan "perlakuan 1", "perlakuan 2", dan "perlakuan 3"
- 3. Kemudian ambil secara acak satu lembar, dan berikan tanda pada S1 perlakuan apa yang tertulis pada lembar yang terambil.
- 4. Lakukan terus pengambilan lembaran kertas secara acak satupersatu sampai seluruh satuan percobaan mendapatkan perlakuan.
- 5. Ulangi hal yang sama untuk setiap kelompok

Pengacakan dengan komputer (Ms. Excel)

	Α	В	С	D	
1	Kelompok	Satuan percobaan	Perlakuan	Random	
2	1	S1	V1	0,07708	
3	1	S2	V2	0,25883	
4	1	S3	V3	0,41474	
5	Kelompok	Satuan percobaan	Perlakuan	Random	
6	2	S1	V1	0,34599	
7	2	S2	V2	0,05796	
8	2	S3	V3	0,68095	
9	Kelompok	Satuan percobaan	Perlakuan	Random	
10	3	S1	V1	0,82057	
11	3	S2	V2	0,53046	
12	3	S3	V3	0,33681	
12					

- Bagi satuan percobaan ke dalam 3 kelompok (banyaknyak kelompok)
- 2. Tuliskan satuan percobaan S1, S2, dan S3 serta perlakuan V1, V2, V3 pada masing-masing kelompok
- 3. Bangkitkan bilangan"=rand()"pada masing-masing kelompok
- 4. 4. Copy and paste as values

Fil	e Home Ins	ert Page Layout Formulas	Data Review	View JMP ♀ Te	ll me what you want to do
Get Ex	tternal New Query + 13 F	how Queries rom Table ecent Sources ransform Connections Connections	ties Z Sort	Filter Clear Reapply Advanced	Flash Fill Perconsolidate What-If Forecast Analysis's Sheet Forecast Outline An
0		Excel hasn't been activated. To kee	ep using Excel witho		
C2	-	: × ✓ fx V1			Sort ? X
OZ	Α	В	С	D	¹
1	Kelompok	Satuan percobaan	Perlakuan	Random	Column
2	1	S1	V1	0,07708	
3	1	S2	V2	0,25883	
4	1	\$3	V3	0,41474	
5	Kelompok	Satuan percobaan	Perlakuan	Random	
6	2	S1	V1	0,34599	OK Cancel
7	2	S2	V2	0,05796	
8	2	S3	V3	0,68095	Urutkan perlakukan dan
9	Kelompok	Satuan percobaan	Perlakuan	Random	Orotkan penakokan dan
10	3	S1	V1	0,82057	random berdasarkan
11	3	S2	V2	0,53046	
12	3	S3	V3	0,33681	random untuk masing-
13					
					Pnasing peritakoa fi ^{ains Data} , FN

	Α	В	С	D
1	Kelompok	Satuan percobaan	Perlakuan	Random
2	1	S1	√ V3	0,41474
3	1	S2	V2	0,25883
4	1	55	V1	0,07708
5	Kelompok	Satua er baan	Perlakuan	Random
6	2		V3	0,68095
7	2	S2	V1	0,34599
8	2	S3	V2	0,05796
9 <	Ke' m, ok	Satuan percobaan	Perlakuan	Random
(5)		S1	V1	0,82057
1)	3	S2	V2	0,53046
∘B 12	3	S3	V3	0,33681

Salah satu contoh hasil pengacakan

Penting: Setiap orang kemungkinan akan menghasilkan hasil pengackan yang berbeda

Kelebihan dan Kelemahan RAKL

KELEBIHAN RAKL	KELEMAHAN RAKL
Error (galat) percobaan akan berkurang → ketepatan perbandingan antar perlakuan akan meningkat	Missing value dapat menyebabkan problem dalam analisis statistika.
Untuk beberapa percobaan sangat bijaksana untuk melakukan blok terhadap waktu	Jika unit percobaan relatif homogen, maka RAL lebih efisien dibandingkan dengan RAKL
Ketika percobaan tidak dapat dilakukan secara lengkap dalam satu hari, maka dapat dilakukan blok by day	Jika jumlah perlakuannya besar, maka tidak memungkinkan untuk menempatkan dalam blok yang uniform dimana terdapat segugus perlakuan yang besar dan lengkap → Incomplete blok design

Contoh kasus

- Suatu percobaan melibatkan tiga varietas baru (V2, V3, V4) dan satu varietas standar (V1)
- Dengan mempertimbangkan lahan yang digunakan, peneliti memutuskan menggunakan rancangan acak kelompok lengkap dengan jumlah blok sebanyak tiga
- Respon yang diukur adalah produktivitas

Sumber: lewer, AG & Scarisbrick, DH. 2001. Practical Statistics and Experimental Design for Plant and Crop Science. John Wiley & Sons.

Pengacakan

Bagan percobaan (the field layout)

Data yang diperoleh

Blok 1

V₃ (7,3)

V4 (9,5)

V2 (9,8)

V1 (7,4)

Blok 2

V2 (6,8)

V1 (6,5)

V₃ (6,1)

V₄ (8,0)

Blok 3

V4 (6,4)

V2 (6,2)

V1 (5,6)

V₃ (6,4)

Tabulasi Data

Wele made.		Perlal	cuan	Total	Datasa	
Kelompok	V1	V2	V3	V4	Total	Rataan
1	7,40	9,80	7,30	9,50	34,00	8,50
2	6,50	6,80	6,10	8,00	27,40	6,85
3	5,60	6,20	6,40	7,40	25,60	6,40
Total	19,50	22,80	19,80	24,90	87,00	
Rataan	6,50	7,60	6,60	8,30		7,25

$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$

Model Linier Aditif

$$i = 1, 2, ..., 6 dan j=1, 2,...,r$$

 Y_{ij} = Pengamatan pada perlakuan ke-i dan kelompok ke-j

 $\mu = Rataan umum$

 τ_i = Pengaruh perlakuan ke-I, dimana $\sum \alpha_i = 0$

 β_{i} = Pengaruh kelompok ke-j, dimana $\sum \beta_{j} = 0$

 ε_{ij} = Pengaruh acak pada perlakuan ke-i dan kelompok ke-j $\varepsilon_{ij} \sim N(0, \sigma^2)$

$$\varepsilon_{ij} = Y_{ij} - \mu - \tau_i - \beta_j = Y_{ij} - \mu - (\mu_i - \mu) - (\mu_j - \mu) = Y_{ij} - \mu - \mu_i - \mu_j$$

Hipotesis

Pengaruh perlakuan:

 H_0 : $\tau_1 = ... = \tau_t = 0$ (perlakuan tidak berpengaruh terhadap respon yang diamati)

 H_1 : paling sedikit ada satu i dimana $\tau_i \neq 0$

Pengaruh pengelompokan:

 H_0 : $\beta_1 = ... = \beta_r = 0$ (kelompok tidak berpengaruh terhadap respon yang diamati)

 H_1 : paling sedikit ada satu j dimana $\beta_i \neq 0$

Penguraian jumlah kuadrat

$$\hat{\mu} = \bar{Y}_{..}$$
; $\hat{\mu}_{i.} = \bar{Y}_{i.}$; $\hat{\mu}_{.j} = \bar{Y}_{.j}$; $\hat{\varepsilon}_{ij} = e_{ij} = Y_{ij} - \hat{Y}_{ij}$

$$Y_{ij} - \bar{Y}_{..} = (\bar{Y}_{i.} - \bar{Y}_{..}) + (\bar{Y}_{.j} - \bar{Y}_{..}) + (Y_{ij} - \bar{Y}_{i.} - \bar{Y}_{.j} + \bar{Y}_{..})$$

Jika kedua ruas dikuadratkan:

$$(Y_{ij} - \overline{Y}_{i})^{2} = (\overline{Y}_{i} - \overline{Y}_{i})^{2} + (\overline{Y}_{j} - \overline{Y}_{i})^{2} + (Y_{ij} - \overline{Y}_{i} - \overline{Y}_{i} - \overline{Y}_{i})^{2} + A$$

Uraikan A?

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = \sum_{i} \sum_{j} (\overline{Y}_{i.} - \overline{Y}_{..})^{2} + \sum_{i} \sum_{j} (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^{2}$$

$$JKT = JKP + JKB + JKG$$

Tabel Sidik Ragam

Sumber keragaman	Derajat bebas (Db)	Jumlah Kuadrat (JK)	Kuadrat Tengah (KT)	F-hitung
Perlakuan	t-1	JKP	KTP	KTP/KTG
Blok	r-1	JKB	КТВ	KTB/KTG
Galat	(t-1)(r-1)	JKG	KTG	
Total	Tr-1	JKT		

RUMUS HITUNG

UNTUK MEMPERMUDAH PERHITUNGAN JUMLAH KUADRAT DAPAT DILAKUKAN LANGKAH-LANGKAH PERHITUNGAN SEBAGAI BERIKUT:

- Hitung Faktor Koreksi (FK)
- Hitung Jumlah Kuadrat Total (JKT)
- Hitung Jumlah Kuadrat Perlakuan (JKP)
- Hitung Jumlah Kuadrat Blok (JKB)
- Hitung Jumlah Kuadrat Galat (JKG)

$$FK = \frac{Y^2}{N}, \ N = tb$$

$$JKT = \sum_{i=1}^{t} \sum_{j=1}^{b} Y_{ij}^{2} - FK$$

$$JKP = \sum_{i=1}^{t} \frac{Y_{i.}^2}{b} - FK$$

$$JKB = \sum_{j=1}^{b} \frac{Y_{.j}^2}{t} - FK$$

$$JKG = JKT - JKP - JKB$$

Pertanyaan

- Berapa nilai untuk ($\hat{\mu}$; $\hat{\tau}_i$; $\hat{\beta}_j$)?
- Berapa nilai e_{ij} ?
- · Bagaimana menguji apakah keempat varietas
- tersebut mempunyai rataan produktivitas yang berbeda?
- Bagaimana menguji apakah ketiga kelompok yang dibuat memberikan rataan produktivitas yang berbeda?

Jawaban no 1

Volompok		Perlal	kuan	Total	Dataan	rsity	
Kelompok	V1	V2	V3	V4	Total	Rataan	
1	7,40	9,80	7,30	9,50	34,00	8,50	
2	6,50	6,80	6,10	8,00	27,40	6,85	
3	5,60	6,20	6,40	7,40	25,60	6,40)
Total	19,50	22,80	19,80	24,90	87,00		
Rataan	6,50	7,60	6,60	8,30		7,25	

$$\hat{\mu} = \bar{y}_{..} = 7,25$$

$$\hat{\tau}_{1} = \hat{\mu}_{1.} - \hat{\mu} = 6,50 - 7,25 = -0,75$$

$$\hat{\beta}_{1} = \hat{\mu}_{.1} - \hat{\mu} = 8,50 - 7,25 = 1,25$$

$$\hat{\tau}_{2} = \hat{\mu}_{2.} - \hat{\mu} = 7,60 - 7,25 = 0,35$$

$$\hat{\beta}_{2} = \hat{\mu}_{.2} - \hat{\mu} = 6,85 - 7,25 = -0,40$$

$$\hat{\tau}_{3} = \hat{\mu}_{3.} - \hat{\mu} = 6,60 - 7,25 = -0,65$$

$$\hat{\beta}_{3} = \hat{\mu}_{.3} - \hat{\mu} = 6,40 - 7,25 = -0,85$$

Jawaban no 2

$$\varepsilon_{ij} = Y_{ij} - \mu - \mu_i - \mu_j \\
e_{ij} = Y_{ij} - \hat{Y}_{ij} \\
\hat{Y}_{ij} = \bar{Y}_{i.} + \bar{Y}_{,j} - \bar{Y}_{..}$$

Kelompok	Perlakuan	Υ	Yduga	eij
1	Vı	7,40	7,75	-0,35
1	V2	9,80	8,85	0,95
1	V ₃	7,30	7,85	-0,55
1	V ₄	9,50	9,55	-0,05
2	V٦	6,50	6,10	0,40
2	V2	6,80	6,20	0,60
2	V ₃	6,10	6,20	-0,10
2	V ₄	8,00	7,90	0,10
3	V٦	5,60	5,65	-0,05
3	V2	6,20	6,75	-0,55
3	V ₃	6,40	5,75	0,65
3	V ₄	7,40	7,45	-0,05

Perhitungan JKP, JKB, JKG, JKT

Kalamak		Perlal	kuan		Total	Dotoon	rsity
Kelompok	V1	V2	V3	V4	Total	Rataan	
1	7,40	9,80	7,30	9,50	34,00	8,50	
2	6,50	6,80	6,10	8,00	27,40	6,85	
3	5,60	6,20	6,40	7,40	25,60	6,40	
Total	19,50	22,80	19,80	24,90	87,00		
Rataan	6,50	7,60	6,60	8,30		7,25	

$$FK = \frac{Y_{..}^{2}}{tr} = \frac{87^{2}}{(4)(3)} = 630,25$$

$$JKT = \sum_{i=1}^{4} \sum_{j=1}^{3} y_{ij}^{2} - FK = (7,40^{2} + \dots + 7,40^{2}) - 630,25$$

$$= 649,56 - 630,25 = 18,81$$

Departemen Statistika dan Sains Data, FMIPA IPB

Perhitungan JKP, JKB, JKG, JKT

Malamanak.		Perlal	kuan		Total	Datasu	rsity
Kelompok	V1	V2	V3	V4	Total	Rataan	
1	7,40	9,80	7,30	9,50	34,00	8,50	
2	6,50	6,80	6,10	8,00	27,40	6,85	
3	5,60	6,20	6,40	7,40	25,60	6,40	
Total	19,50	22,80	19,80	24,90	87,00		
Rataan	6,50	7,60	6,60	8,30		7,25	

$$FK = \frac{Y^2}{tr} = \frac{87^2}{(4)(3)} = 630,25$$

$$JKP = \sum_{i=1}^{4} \frac{y_{i.}^{2}}{3} - FK = \left(\frac{19,5^{2} + 22,8^{2} + 19,8^{2} + 24,9^{2}}{3}\right) - 630,25$$

$$= 637,38 - 630,25 = 6,63$$

Departemen Statistika dan Sains Data, FMIPA IPB

Perhitungan JKP, JKB, JKG, JKT

Volemensk		Perlakuan			Total	Detece	iversity
Kelompok	V1	V2	V3	V4	Total	Rataan	
1	7,40	9,80	7,30	9,50	34,00	8,50	
2	6,50	6,80	6,10	8,00	27,40	6,85	
3	5,60	6,20	6,40	7,40	25,60	6,40	
Total	19,50	22,80	19,80	24,90	87,00		
Rataan	6,50	7,60	6,60	8,30		7,25	

$$FK = \frac{Y_{..}^{2}}{tr} = \frac{87^{2}}{(4)(3)} = 630,25$$

$$JKB = \sum_{j=1}^{3} \frac{y_{.j}^{2}}{4} - FK = \left(\frac{34^{2} + 27,4^{2} + 25,6^{2}}{4}\right) - 630,25$$

$$= 649,53 - 630,25 = 7,78$$

$$JKG = JKT - JKP - JKB = 18,81 - 6,63 - 9,78 = 2,4$$

Departemen Statistika dan Sains Data, FMIPA IPB

Sumber						
keragaman	db	JK	KT	Fhit	Ftabe:	1
Perlakuan	3	6,63	2,21	5 , 525	F(0,05;3;6)	4,76
Kelompok	2	9,78	4,89	12,225	F90,05;2;6)	5,14
Galat	6	2,4	0,4			
Total	11	18,81				

ANOVA yang diperoleh sbb:

- 1. Pengaruh perlakuan: Karena Fhit = $5,525 > F_{0.05(3,6)}$ =4,76 maka tolak H0, perlakuan mempunyai pengaruh yang berbeda pada rata-rata respon
- 2. Pengaruh kelompok: Karena Fhit = $12,225 > F_{0.05(2,6)} = 5.14$ maka tolak H0, kelompok mempunyai pengaruh yang berbeda pada ratarata respon

$$s = \sqrt{0.4} = 0.624$$
; $cv = kk = \frac{s}{\bar{y}_{..}}x100\% = \frac{0.6425}{7.25}x100\% = 8.724\%$

Pengolahan data dengan excel

Output Excel

Deskripsi Data

EFISIENSI RELATIF (ER) RAK TERHADAP RAL

$$ER = \frac{(db_b + 1)(db_r + 3)}{(db_b + 3)(db_r + 1)} x \frac{\hat{\sigma}_r}{\hat{\sigma}_b}$$

$$db_b = \text{derajat bebas galat RAK}$$

$$db_r = \text{derajat bebas galat RAL}$$

$$db_r = \text{derajat bebas galat RAL}$$

$$t = \text{banyaknya perlakuan}$$

$$t = \text{banyaknya ulangan}$$

ER=3 [] banyaknya ulangan pada RAL = 3X pada RAK

Koefisien Keragaman (KK) [] mencerminkan keheterogenan unit percobaan

$$KK = \frac{\hat{\sigma}}{\overline{Y}} x 100\% = \frac{KTG}{\overline{Y}} x 100\%$$

Beberapa poin lain dalam RAKL

I. Asusmi antara kelompok dan perlakuan saling bebas – cek dengan Plot interaksi

Polanya kecenderungan relatif mirip antara kelompok 1 dan kelompok 2, sedangkan kelompok 3 cenderung linier. Perlu dilakukan uji untuk melihat apakah asumsi keaditifan model $\underset{\mathsf{Departemen Statistika dan Sains Data, FMIPAIPB}{\mathsf{terpenuhi}}-materi~UAS$

II. Pendugaan data hilang

$$Y_{ij} = \frac{(rB + tT - G)}{(r - 1)(t - 1)}$$

Dimana:

r = jumlah kelompok

t = jumlah perlakuan

B = total kelompok pada data yang hilang

T = total perlakuan pada data yang hilang

G = Total pengamatan (Y..)

Contoh pendugaan data hilang

— KNO									
Valamanak		Perla	kuan	Total	Datas				
Kelompok	V1	V2	V3	V ₄	Total	Ratan			
Kel 1	7,40	9,80	7,30	9,50	34,00	8,50			
Kel 2	6,50	6,80	6,10	8,00	27,40	6,85			
Kel 3	5,60		6,40	7,40	19,40	6,47			
Total	19,50	16,60	19,80	24,90	80,80				
Rataan	6,50	8,30	6,60	8,30		7,27			

Misalkan Y23 tidak ada datanya

$$Y_{23} = \frac{(3*16,6+4*19,4-80,8)}{(3-1)(4-1)} = 7,767$$

Tabulasi data yang baru & output excel

			kuan				PB University — Bogor Indonesia —		
Kelompok	V1	V2	V3	٧4	Total	Ratan			
Kel 1	7,400	9,800	7,300	9,500	34, 000	8,500			
	_		•	•		6.0			
Kel 2	6,500	6,800	6,100	8,000	27,400	6 , 850			
Kolo	5,600	7 767	6,400	7.400	27.167	6 702			
Kel 3	5,000	7,767	6,400	7,400	27,167	6,792			
Total	19,500	24,367	19,800	24,900	88,567				
Rataan	6,500	8,122	6,600	8,300		7,381			

	Anova: Tw	o-Factor V	Vithout Re				
	SUMMARY	Count	Sum	Average	Variance		
	Kel 1	4	34	8,5	1,78		
	Kel 2	4	27,4	6,85	0,67		
	Kel 3	4	27,167	6,79175	0,96494		
	V1	3	19,5	6,5	0,81		
	V2	3	24,367	8,12233	2,3447		
	V3	3	19,8	6,6	0,39		
	V4	3	24,9	8,3	1,17		
	ANOVA						
	ce of Varia	SS	df	MS	F	P-value	F crit
	Rows	7,52535	2	3,76267	11,8569	0,00823	5,14325
	Columns	8,34077	3	2,78026	8,76111	0,01302	4,75706
	Error	1,90404	6	0,31734			
Departemen Statist	ik <mark>texta</mark> h Sain	s 157,707 /	IIPA IPB 11				

III. Jumlah kelompok (r)

- Minimal 2 kelompok
- Jumlah kelompok direkomendasikan pada saat minimal derajat bebas galat (db_g) adalah 12. Pada RAKL, db_g = (t-1)(r-1)
- * $r \geq \frac{(2 x t_{(0,025;dbg)}^2 x \sigma^2)}{\delta^2}$, dimana δ^2 =perbedaan rataan maksimal yang diinginkan antara perlakuan dengan kontrol
- $r \ge \frac{(2 x t_{(0,025;dbg)}^2 x kk^2)}{q^2}$, dimana kk = koefifien keragaman (%) dan q = ukuran perbedaan antara perlakuan yang dicobakan dengan kontrol dalam bentuk %.

Sumber: lewer, AG & Scarisbrick, DH. 2001. Practical Statistics and Experimental Design for Plant and Crop Science. John Wiley & Sons.

Thank you