Denavit-Hartenberg parameters of a 3DoF robotic arm

By Javier Barba Flores, a.129137@ulsa-noroeste.edu.mx, 2016-2017

The following four transformation parameters are known as Denavit-Hartenberg parameters:

- d: offset along previous z-axis to the common normal
- θ : angle about previous *z-axis*, from old *x-axis* to new *x-axis*
- a: length of the common normal. In a revolute joint, this is the radius about old z-axis.
- α : angle about common normal, from old *z-axis* to new *z-axis*.

First we have to define our axes and rotations:

Denavit-Hartenberg parameters of a 3DoF robotic arm

By Javier Barba Flores, a.129137@ulsa-noroeste.edu.mx, 2016-2017

For the used robot, we have the following table:

Joint i	$a_i(deg)$	a _i (mm)	d _i (mm)	θ_{i} (deg)
1	90	0	d ₁	θ1
2	0	a ₂	0	θ_2
3	0	аз	0	θ3

Which, using the values of the model, will result in:

Joint i	α _i (deg)	a _i (mm)	d _i (mm)	θ_{i} (deg)
1	90	0	17.5	θ1
2	0	65	0	θ_2
3	0	67.5	0	θ3