

Mecanismos de interconexão Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

▶ Por que são necessários mecanismos de interconexão?

- Por que são necessários mecanismos de interconexão?
 - Para suportar a transferência de dados entre os dispositivos da plataforma, como processador, memória ou periféricos de E/S

O BARRAMENTO É UMA DAS PRINCIPAIS FORMAS
DE INTERCONEXÃO DOS COMPONENTES DA PLATAFORMA

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações
 - Escalabilidade
 - ✓ Baixo custo

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações

 - ✓ Escalabilidade X Gargalo (congestionamento)
- Baixo custo X Concorrência (retenção)

- Modos de operação de barramento
 - Síncrono
 - Com uma referência de tempo (horários de aulas), os dispositivos sincronizam a transferência de dados

13:00	Aula 1
15:00	Aula 2
17:00	AULA 3

- Modos de operação de barramento
 - Síncrono
 - Com uma referência de tempo (horários de aulas), os dispositivos sincronizam a transferência de dados

- Assíncrono
 - Através de um protocolo de comunicação (semáforo de trânsito), são definidas as etapas da comunicação

- Papel dos dispositivos no barramento
 - Iniciador: iniciam ou solicitam as transações para o barramento, como o processador ou DMA
 - ► **Atendedor**: atendem ou respondem as transações do barramento, como a memória ou periférico

- Papel dos dispositivos no barramento
 - Iniciador: iniciam ou solicitam as transações para o barramento, como o processador ou DMA
 - ► **Atendedor**: atendem ou respondem as transações do barramento, como a memória ou periférico

As transações de escrita e leitura de dados no barramento são atômicas

- Sinais de reinicialização e sincronismo
 - Reinicialização (reset)
 - Restaura uma condição ou estado inicial do sistema
 - Pode ser utilizado para limitação de tempo (timeout) ou de recuperação de falha (fail recovery)

- Sinais de reinicialização e sincronismo
 - Reinicialização (reset)
 - Restaura uma condição ou estado inicial do sistema
 - Pode ser utilizado para limitação de tempo (timeout) ou de recuperação de falha (fail recovery)
 - Sincronismo (clock)
 - Simplifica o projeto de circuitos digitais através de uma referência de ciclo de relógio para todas as operações
 - Implementado como uma onda quadrada de 1 bit com período igual ao inverso da frequência

$$T = \frac{1}{f} = \frac{1}{4 \text{ GHz}} = \frac{1}{4 \times 10^9} = 0,25 \text{ ns}$$

Diagrama de tempo

Especifica o comportamento de sinais no tempo

► A estrutura lógica do barramento é composta por linhas para operações de controle e transmissão de dados

- Linha de controle
 - Define que operação será realizada pela transação
 - Escrita e leitura de memória (código e dados) ou de dispositivos conectados ao barramento (E/S)
 - Gerenciamento de interrupção

- Linha de controle
 - Define que operação será realizada pela transação
 - Escrita e leitura de memória (código e dados) ou de dispositivos conectados ao barramento (E/S)
 - ► Gerenciamento de interrupção
 - Sequência de controle de uma transação
 - Requisição de operação (request)
 - Concessão de permissão (grant)
 - Reconhecimento de requisição (acknowledgement)

- Linha de endereço
 - Armazena o endereço de origem ou de destino do dispositivo que será acessado no barramento

# BITS	FAIXA DE ENDEREÇOS
8	Ø×ØØ
	<-> ØxFF
	ØXI I
16	Ø×ØØØØ
	<->
	ØxFFFF
32	Ø×ØØØØØØØØ
	<->
	ØxFFFFFFF
64	Ø×ØØØØØØØØØØØØØØØØØ
	<->
	ØxFFFFFFFFFFFF

- Linha de dados
 - ▶ É o caminho para transferência dos dados entre os componentes da plataforma, com principal parâmetro a quantidade de bits que podem ser transmitidos ou a largura do barramento

- Linha de dados
 - ▶ É o caminho para transferência dos dados entre os componentes da plataforma, com principal parâmetro a quantidade de bits que podem ser transmitidos ou a largura do barramento
 - Apesar do fluxo bidirecional, a recepção e transmissão podem não acontecer simultaneamente
 - Iniciador → Atendedor (escrita)
 - ► Iniciador ← Atendedor (leitura)

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo iniciador no barramento, o que pode causar inconsistências em acessos concorrentes

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo iniciador no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - 1. Um dos dispositivos iniciador ganha exclusividade para acesso do barramento, bloqueando os demais (*lock*)

- Arbitração de barramento
 - ► É necessário quando existe no sistema mais de um dispositivo iniciador no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - 1. Um dos dispositivos iniciador ganha exclusividade para acesso do barramento, bloqueando os demais (*lock*)
 - 2. É feita a transferência dos dados entre os dispositivos

- Arbitração de barramento
 - ► É necessário quando existe no sistema mais de um dispositivo iniciador no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - 1. Um dos dispositivos iniciador ganha exclusividade para acesso do barramento, bloqueando os demais (*lock*)
 - 2. É feita a transferência dos dados entre os dispositivos
 - 3. Com o término da transação, o barramento é liberado para acesso dos outros dispositivos iniciadores (*unlock*)

Método centralizado de arbitração

Define a prioridade dos dispositivos Iniciadores para acessar o Barramento

Método descentralizado de arbitração

- ► A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)

- A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - ▶ Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)
 - Em linhas compartilhadas, é utilizada a técnica de multiplexação para chaveamento de função

- ► A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)
 - Em linhas compartilhadas, é utilizada a técnica de multiplexação para chaveamento de função
 - Na comunicação paralela, todos os bits são transmitidos simultaneamente, enquanto que na transmissão serial, os bits são enviados um bit por vez

- ► Tipos de linhas físicas de interconexão
 - Dedicadas
 - São meios físicos exclusivas para certos tipos de dados
 - Apresenta baixa retenção e grande vazão de dados, porém com área física e custos de produção maiores

- ► Tipos de linhas físicas de interconexão
 - Dedicadas
 - São meios físicos exclusivas para certos tipos de dados
 - Apresenta baixa retenção e grande vazão de dados, porém com área física e custos de produção maiores
 - Multiplexadas
 - Permitem por um tempo determinado o compartilhamento do meio físico de transmissão
 - Possui área física e custo reduzidos, entretanto, o compartilhamento reduz o desempenho

- Linhas de dados dedicadas ou paralelas
 - ► Controle (1) + Endereço (32) + Dados (32 + 32)

COMUNICAÇÃO FULL-DUPLEX COM 97 LINHAS DEDICADAS

Linhas de dados dedicadas ou paralelas

- Linhas multiplexadas ou seriais
 - ► Controle (1) + Endereço/dados (32)

► Linhas multiplexadas ou seriais

Barramento síncrono

► A sincronização é feita pelo relógio (clock)

Barramento síncrono

- Serial Peripheral Interface (SPI)
 - Diagrama de blocos

COMUNICAÇÃO FULL-DUPLEX SERIAL

Serial Peripheral Interface (SPI)

- Comunicação síncrona
 - Vantagens
 - ✓ Alto desempenho
 - ✓ Menor complexidade

- Comunicação síncrona
 - Vantagens
 - ✓ Alto desempenho
 - √ Menor complexidade
 - Desvantagens
 - X Menor flexibilidade de uso
 - X Taxa fixa de transmissão

Aplicações

- Padrões síncronos de comunicação
 - ► Inter-Integrated Circuit (I2C)
 - Projetado pela Philips
 - Conexão e controle de periféricos com baixa velocidade (SDRAM, DAC/ADC, LCD, ...)
 - Controller Area Network (CAN)
 - Desenvolvido pela Bosch
 - Utilizado em componentes eletrônicos da indústria automotiva (Direção elétrica, airbags, ABS, ...)
 - Local Interconnect Network (LIN)
 - Criado por BMW, VW, Volvo e Daimler-Chrysler
 - Alternativa mais barata ao CAN

A comunicação é sinalizada por protocolo

- Recommended Standard 232 (RS-232)
 - Diagrama de blocos

COMUNICAÇÃO FULL-DUPLEX SERIAL

Recommended Standard 232 (RS-232)

Recommended Standard 232 (RS-232)

Recommended Standard 232 (RS-232)

- Comunicação assíncrona
 - Vantagens
 - ✓ Flexibilidade de uso
 - √ Taxa variável de transmissão

- Comunicação assíncrona
 - Vantagens
 - √ Flexibilidade de uso
 - √ Taxa variável de transmissão
 - Desvantagens
 - X Maior complexidade
 - X Menor vazão de dados

Aplicações

- Padrões assíncronos de comunicação
 - Recommended Standard 232 (RS-232)
 - ► Foi desenvolvido pela Electronic Industries Association
 - Ainda é utilizado em aplicações industriais, científicas e de telecomunicações
 - Universal Serial Bus (USB)
 - Criado por consórcio Compaq, DEC, IBM, Intel, Microsoft, NEC e Nortel
 - Padronização de interface para conexão, cabos e comunicação de dispositivos
 - Fthernet
 - Desenvolvido pela Xerox PARC
 - Adotado em redes de computadores e os dados são agrupados em quadros (frames)

 O barramento possui o objetivo principal de interconectar todos os componentes do sistema

EficiEncia + Escalabilidade + Padronização

- Apesar da escalabilidade ser um requisito importante, um número grande de componentes interconectados geram alguns problemas
 - ► + Conexões → + Extensão física
 - Maior atraso na propagação dos sinais elétricos
 - Redução de desempenho da comunicação

- Apesar da escalabilidade ser um requisito importante, um número grande de componentes interconectados geram alguns problemas
 - ► + Conexões → + Extensão física
 - Maior atraso na propagação dos sinais elétricos
 - Redução de desempenho da comunicação
 - Diferentes dispositivos no mesmo barramento
 - Tráfego excessivo por dispositivos de alto desempenho
 - Periféricos lentos causam grande retenção

- O que é hierarquia de barramento?
 - ► É a utilização de múltiplos barramentos, com diferentes especificações, interconectados por pontes (*bridges*)
 - Menor extensão física
 - √ Isolamento do tráfego
 - √ Tempo mais uniforme

Sistema com múltiplos barramentos

- Padrões de barramento hierárquico
 - ► Industry Standard Architecture (ISA)
 - Comunicação paralela
 - ► Taxa máxima de 16 MB/s e uso industrial (PC-104)
 - Peripheral Component Interconnect Express (PCI-Express)
 - Comunicação serial
 - Taxa máxima de 32 GB/s com diversos usos
 - Advanced Microcontroller Bus Architecture (AMBA)
 - Comunicação paralela
 - ► Uso embarcado em *System-on-Chip* (SoC)
 - **.**..

Interconexão em rede

- Network-on-Chip (NoC)
 - Comunicação baseada em pacotes com interfaces síncronas e assíncronas, baseado em redes mesh

- Maior escalabilidade
- √ Flexibilidade de projeto
- Redução de potência