

3. előadás | Függvények tulajdonságai. Sorozatok határértéke. A rendőrelv. Határérték és műveletek.

Dr. Veres Antal

Magyar Agrár- és Élettudományi Egyetem Matematika és Természettudományi Alapok Intézet

Definíció. Az f függvény alulról korlátos, ha van olyan $k \in \mathbb{R}$, hogy bármely $x \in D_f$ esetén $k \leq f(x)$. Ekkor a k számot f egy alsó korlátjának nevezzük.

Definíció. Az f függvény felülről korlátos, ha van olyan $K \in \mathbb{R}$, hogy bármely $x \in D_f$ esetén $f(x) \leq K$. Ekkor a K számot f egy felső korlátjának nevezzük.

Definíció. Az f függvény korlátos, ha alulról és felülről is korlátos.

Definíció. Az f függvény (szigorúan) monoton nő, ha tetszőleges $x, y \in D_f, x < y$ esetén

$$f(x) \le f(y) \quad (f(x) < f(y)).$$

Definíció. Az f függvény (szigorúan) monoton csökken, ha tetszőleges $x,y\in D_f,\, x< y$ esetén

$$f(x) \ge f(y) \quad (f(x) > f(y)).$$

Definíció. Az f függvény konvex (konkáv) az $]a;b[\subset D_f$ intervallumon, ha bármely $c,d\in]a;b[$ és bármely $x\in]c;d[$ esetén az f grafikonjának (x,f(x)) pontja a (c,f(c)) és (d,f(d)) pontokat összekötő szakasz alatt (felett) vagy a húron van.

Megjegyzés. Az f függvény grafikonja a (c, f(c)) és (d, f(d)) pontokat összekötő szakasz alatt vagy a húron halad, ha $\forall t \in [0; 1]$ esetén

$$f(tc + (1-t)d) \le tf(c) + (1-b)f(d).$$

FÜGGVÉNYEK TULAJDONSÁGAI 4/16. PERIODIKUSSÁG, PARITÁS

Definíció. Az f függvényt periodikusnak nevezzük, ha létezik olyan $t \in \mathbb{R}$, hogy bármely $x \in D_f$ esetén $(x + t) \in D_f$ és f(x + t) = f(x).

Definíció. Legyen f függvény, és tegyük fel, hogy $x \in D_f$ esetén $(-x) \in D_f$. Ekkor az f függvényt

- 1. párosnak nevezzük, ha f(-x) = f(x),
- 2. páratlannak nevezzük, ha f(-x) = -f(x).

Megjegyzés. A páros függvények szimmetrikusak az y tengelyre, a páratlanok pedig az origóra.

Augustin-Louis Cauchy (1789–1857)

- francia matematikus,
- határérték precíz definiálása,
- számelmélettől komplex függvénytanon át a mechanikáig közel 800 cikk.

Definíció. Az olyan a függvényt, amelynek értelmezési tartománya a természetes számok halmaza, sorozatnak nevezzük, azaz

$$D_a = \mathbb{N}, \quad n \mapsto a(n) =: a_n.$$

Az a_n értéket a sorozat n-edik tagjának nevezzük. A sorozat jelölése: (a_n) , $\{a_n\}$.

SOROZATOK TULAJDONSÁGAI 6/16. SOROZATOK KORLÁTOSSÁGA ÉS MONOTONITÁSA

Definíció. Az (a_n) sorozatot

- 1. felülről korlátosnak nevezzük, ha létezik olyan K szám, hogy $a_n \leq K, \quad \forall n \in \mathbb{N},$
- 2. alulról korlátosnak nevezzük, ha létezik olyan k szám, hogy $k \leq a_n, \quad \forall n \in \mathbb{N}.$

Megjegyzés. Az (a_n) sorozat korlátos, ha alulról és felülről is korlátos.

Definíció. Az (a_n) sorozat monoton növő (csökkenő) valamely n indexétől kezdve, ha bármely $k\in\mathbb{N},\,k>n$ esetén

$$a_n \le a_{n+1} \quad (a_n \ge a_{n+1}).$$

SOROZATOK TULAJDONSÁGAI 7/16. HATÁRÉRTÉK

Példa. Tekintsük az

$$a_n := \frac{n+2}{2n-3}$$

sorozatot. A sorozat tagjai

n	1	1000	10 000	100 000
a_n (közelítőleg)	-4	0,502253	0,500225	0,500002

SOROZATOK HATÁRÉRTÉKE 8/16. A HATÁRÉRTÉK DEFINÍCIÓJA

Definíció. Az (a_n) sorozat határértéke $A \in \mathbb{R}$, ha bármely $\varepsilon > 0$ esetén létezik olyan $N(\varepsilon) > 0$ küszöbindex, hogy bármely $n > N(\varepsilon)$ esetén

$$|a_n - A| < \varepsilon.$$

Jelölése: $\lim_{n\to\infty} a_n = A$, vagy $a_n \to A \ (n \to \infty)$.

SOROZATOK HATÁRÉRTÉKE 9/16. HATÁRÉRTÉK M<u>EGHATÁROZÁSA DEFINÍCIÓ ALAPJÁN</u>

Példa. Igazoljuk definíció szerint, hogy

$$\lim_{n \to \infty} \frac{n+1}{2n-1} = \frac{1}{2}.$$

Adjunk meg küszöbindexet az $\varepsilon := 0.01$ értékhez. Általánosan, alkalmazva a definíciót az

$$\left| \frac{n+1}{2n-1} - \frac{1}{2} \right| < \varepsilon,$$

paraméteres abszolútértékes egyenlőtlenséget kell megoldani. Közös nevezőre hozással, és átrendezéssel

$$\frac{3 + 2\varepsilon}{4\varepsilon} < n$$

adódik, így a küszöbindex

$$N(\varepsilon) = \left\lceil \frac{3 + 2\varepsilon}{4\varepsilon} \right\rceil.$$

SOROZATOK HATÁRÉRTÉKE 10/16. KONVERGENS ÉS DIVERGENS SOROZATOK

Definíció. Az (a_n) sorozatot konvergensnek nevezzük, ha létezik $A \in \mathbb{R}$, hogy A a sorozat határértéke. A nem konvergens sorozatot divergensnek nevezzük.

Állítás. A határérték egyértelmű, azaz konvergens sorozatnak pontosan egy határértéke van.

Definíció. Az (a_n) sorozat határértéke végtelen, ha bármely K>0 esetén létezik olyan N(K)>0, hogy bármely n>N(K) esetén

$$a_n > K$$
.

Jelölése: $\lim_{n\to\infty} a_n = \infty$, vagy $a_n \to \infty \ (n \to \infty)$.

Megjegyzés. Azon divergens sorozatokra, amelyeknek a határértéke nem végtelen, gyakran használjuk a valódi divergens kifejezést.

SOROZATOK HATÁRÉRTÉKE 11/16. KONVERGEN<u>S SOROZATOK KORLÁTOSSÁGA</u>

Tétel. Konvergens sorozat korlátos.

Bizonyítás. Mivel (a_n) konvergens, így létezik $a \in \mathbb{R}$, amelyre $a_n \to a$.

Legyen $\varepsilon := 1$. Ekkor a definíció szerint létezik olyan $N(1) \in \mathbb{N}$, hogy bármely $n \in \mathbb{N}$, n > N(1) esetén

$$|a_n - a| < 1,$$

azaz $a - 1 < a_n < a + 1$.

Megjegyzés. A tétel megfordítás nem igaz, hiszen az

$$a_n := (-1)^n$$

sorozat korlátos, de nem konvergens.

$$a_n \le b_n \le c_n$$
.

Ekkor $b_n \to a$.

HATÁRÉRTÉK ÉS MŰVELETEK 13/16. MŰVELETI SZABÁLYOK VÉGES HATÁRÉRTÉKEKRE

Tétel. Legyen (a_n) , (b_n) tetszőleges sorozatok, amelyekre $a_n \to a$ és $b_n \to b$, $a, b \in \mathbb{R}$. Ekkor

- 1. $\lim_{n\to\infty} ca_n = ca$,
- $2. \lim_{n \to \infty} (a_n + b_n) = a + b,$
- $3. \lim_{n \to \infty} (a_n b_n) = ab,$
- 4. ha $a_n \neq 0$ minden $n \in \mathbb{N}$ esetén, és $a \neq 0$, akkor

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a},$$

5. ha $a_n \geq 0$ minden $n \in \mathbb{N}$ esetén, és $k \in \mathbb{N}$ $(k \neq 1)$, akkor

$$\lim_{n \to \infty} (\sqrt[k]{a_n}) = \sqrt[k]{a}.$$

Megjegyzés. Bizonyításoknál gyakran használjuk a konvergencia igazolásához az $N(\varepsilon)$ küszöbindex megkeresése helyett, hogy "megfelelően nagy indexekre az $|a_n - A|$ tetszőlegesen kicsi".

Bizonyítás.

2. A határérték definícióját alkalmazva, elegendően nagy $n \in \mathbb{N}$ indexre

$$|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b|$$

 $\le \varepsilon + \varepsilon = 2\varepsilon,$

$$azaz (a_n + b_n) \to (a + b)$$

3. Mivel (a_n) konvergens, így korlátos. A határérték definícióját alkalmazva, elegendően nagy $n \in \mathbb{N}$ indexre

$$|(a_nb_n) - (ab)| = |a_nb_n - a_nb + a_nb - ab|$$

$$\leq |a_nb_n - a_nb| + |a_nb - ab| \leq |a_n||b_n - b| + |b||a_n - a|$$

$$\leq K\varepsilon + |b|\varepsilon = (K + |b|)\varepsilon,$$

azaz
$$(a_n b_n) \to (ab)$$
.

HATÁRÉRTÉK ÉS MŰVELETEK 15/16. MŰVELETI SZABÁLYOK VÉGTELEN HAT<u>ÁRÉRTÉKEKRE</u>

Tétel. Legyen (a_n) , (b_n) , (c_n) tetszőleges sorozatok, amelyekre $a_n \to \infty$, $b_n \to \infty$ és $c_n \to c$, $c \in \mathbb{R}$. Ekkor

- 1. $\lim_{n \to \infty} (a_n + c_n) = \infty,$
- $2. \lim_{n \to \infty} (a_n + b_n) = \infty,$
- 3. $\lim_{n \to \infty} (a_n b_n) = \infty,$
- 4. ha c > 0, akkor $\lim_{n \to \infty} (c_n a_n) = \infty$,
- 5. ha $a_n \neq 0$ minden $n \in \mathbb{N}$ esetén, akkor

$$\lim_{n \to \infty} \frac{1}{a_n} = 0,$$

6. ha $c_n > 0$ minden $n \in \mathbb{N}$ esetén és c = 0, akkor

$$\lim_{n \to \infty} \frac{1}{c_n} = \infty$$

HATÁRÉRTÉK ÉS MŰVELETEK 16/16. KRITIKUS HATÁRÉRTÉKEK

Példa. Legyen $a_n := n$, $b_n := n^2$ és $c_n := 2n$. Mindhárom sorozat határértéke végtelen, ugyanakkor

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0,$$

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} = \infty,$$

$$\lim_{n \to \infty} \frac{c_n}{a_n} = \lim_{n \to \infty} \frac{2n}{n} = \lim_{n \to \infty} 2 = 2.$$

Megjegyzés. Könnyen megadhatóak olyan végtelenbe tartó sorozatok, amelyek különbségének határértéke tetszőlegesen adott értékhez konvergálnak.

Megjegyzés. A "kritikus" határértékek:

$$\frac{\infty}{\infty}$$
, $\frac{0}{0}$, $\infty \cdot 0$, $\infty - \infty$, 1^{∞} .