

Chipotle Location Data Management

Nick Videtti

IST-769 Advanced Big Data Management Final Project Fall 2022

Data

The data used for this project were the data found on Kaggle for Chipotle locations in the United States. The key to this is having the user download the data file to a file on their computer. The data file can be found attached to this assignment or at https://www.kaggle.com/datasets/jeffreybraun/chipotle-locations.

Two files are included in these data. One of the files is a CSV file with Chipotle store locations, and the other is a JSON file containing locations of state borders for states with Chipotle locations. Both will be used in this project.

Project Goals

This project will cover the following topics. Each of these steps will be discussed and brief descriptions/reflections will be included. Full Python code can be found in the Jupyter Notebook attached to this assignment.

- 1. Configure PySpark session for both MongoDB and Elasticsearch
- 2. Use PySpark to read in raw data from downloaded files
- 3. Write raw data to MongoDB, then read it back into PySpark
- 4. Use PySpark to clean the raw data
- 5. Write cleaned data to MongoDB, then read it back into PySpark
- 6. Use PySpark to combine the two cleaned data sets
- 7. Create PySpark data frames for only coordinate data from the combined cleaned data, the cleaned location data, and the cleaned state borders data
- Write the data frames created in steps 6 and 7 to MongoDB, then read them back into PySpark
- 9. Write all 8 data frames to Elasticsearch, then read them back into PySpark
- 10. Use Drill to guery the cleaned location data using a few gueries
- 11. Create a Kibana Map visualization using the coordinate-only location data

1 - Configure PySpark session for both MongoDB and Elasticsearch

Configuring a PySpark session for both MongoDB and Elasticsearch involved the following configuration options:

- MongoDB
 - .config("spark.mongodb.input.uri",
 "mongodb://admin:mongopw@mongo:27017/admin?authSource=admin")
 - .config("spark.mongodb.output.uri",
 "mongodb://admin:mongopw@mongo:27017/admin?authSource=admin")
 - .config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector _2.12:3.0.1")\
- Elasticsearch
 - .config("spark.es.nodes", "elasticsearch") \
 - .config("spark.es.port","9200") \

This was different from other assignments during the course due to needing to configure for multiple databases. I first attempted separate PySpark sessions for each of the two databases, then attempted to consolidate to one PySpark session, and ultimately took that latter approach.

2 - Use PySpark to read in raw data from downloaded files

Both of the files were read into PySpark via local system files downloaded from Kaggle. The CSV file needed the "header" option set to "True". After the data were read in, the first 10 rows of each resulting data frame were displayed to prove that the data were successfully read into PySpark. The JSON file with state borders was named "RAW_CHIPOTLE_STATE_BORDERS" and the CSV file with locations was named "RAW_CHIPOTLE_LOCATIONS".

First 10 rows of RAW CHIPOTLE STATE BORDERS read in from downloaded file

First 10 rows of RAW_CHIPOTLE_LOCATIONS read in from downloaded file

```
+-----+
 state location
                  address latitude
+-----+
|Alabama| Auburn|346 W Magnolia Av...|32.606812966051244|-85.48732833164195|
Alabama Birmingham 300 20th St S Bir... 33.509721495414745 -86.80275567068401
|Alabama|Birmingham|3220 Morrow Rd Bi...| 33.59558141391436|-86.64743684970283|
|Alabama|Birmingham|4719 Highway 280 ... | 33.42258214624579 | -86.6982794650297 |
|Alabama| Cullman|1821 Cherokee Ave...| 34.15413376734492|-86.84122007667406|
|Alabama| Hoover|1759 Montgomery H...|33.378958029568594|-86.80380210088629|
|Alabama|Huntsville|5900 University D...|34.742319254429496| -86.6657204641674|
|Alabama| Mobile|3871 Airport Blvd...|30.675337809949887| -88.143753929995|
|Alabama| Mobile|7765 Airport Blvd...| 30.68273057569605|-88.22499815689844|
|Alabama|Montgomery|2560 Berryhill Rd...| 32.35917687650774|-86.16225285227608|
+-----+
only showing top 10 rows
```

3 - Write raw data to MongoDB, then read it back into PySpark

Both RAW_CHIPOTLE_STATE_BORDERS and RAW_CHIPOTLE_LOCATIONS were written to MongoDB into a database named "project" under the collections "raw_chipotle_state_borders" and "raw_chipotle_locations", respectively. Then, the data were read back into PySpark from MongoDB and the first 10 rows of each data frame were displayed to prove that the data were successfully read into PySpark.

First 10 rows of RAW_CHIPOTLE_STATE_BORDERS read in from MongoDB

4 - Use PySpark to clean the raw data

Both data frames were duplicated as temporary views and then Spark SQL was used to generate cleaned datasets, named CHIPOTLE_STATE_BORDERS and CHIPOTLE LOCATIONS. The following transformations were made.

- RAW CHPOTLE STATE BORDERS -> CHIPOTLE STATE BORDERS
 - Select only "geometry" and "properties" columns
 - Explode columns until no rows are nested
 - Rename fields "COORDINATES" and "STATE"
- RAW CHIPOTLE LOCATIONS -> CHIPOTLE LOCATIONS
 - Select "state", "location", "location" and ", " and "state" concatenated, "address", "longitude" and " " and "latitude concatenated, "longitude", and "latitude"
 - Rename columns listed above to "STATE", "CITY", "CITY_STATE",
 "ADDRESS", "LON", "LAT", "LON_LAT", respectively

Schema of RAW_CHIPOTLE_STATE_BORDERS

First 10 rows of CHIPOTLE_STATE_BORDERS

1	
COORDINATES	STATE
+	+
[-134.499322,57.0	Alaska
[-151.116359,59.7	Alaska
[-162.14144,66.07	Alaska
[-160.837928,70.3]	Alaska
[-155.881297,19.0	Hawaii
[-75.972737,39.55]	Maryland
[-77.018833,38.44]	Maryland
[-88.416346,47.37]	Michigan
[-117.498899, 37 0	alifornia
[-80.381674, 27.7	Florida
+	+
only showing top 10 row	IS

First 10 rows of CHIPOTLE_LOCATIONS

STATE						LON_LAT		LA
Alabama						-85.4873283316419		
						-86.8027556706840		
						-86.6474368497028	•	•
Alabama	Birmingham	Birmingham,	Alabama	4719	Highway 280	-86.6982794650297	-86.6982794650297	33.4225821462457
Alabama	Cullman	Cullman,	Alabama	1821	Cherokee Ave	-86.8412200766740	-86.84122007667406	34.1541337673449
Alabama	Hoover	Hoover,	Alabama	1759	Montgomery H	-86.8038021008862	-86.80380210088629	33.37895802956859
Alabama	Huntsville	Huntsville,	Alabama	5900	University D	-86.6657204641674	-86.6657204641674	34.74231925442949
Alabama	Mobile	Mobile,	Alabama	3871	Airport Blvd	-88.143753929995,	-88.143753929995	30.67533780994988
Alabama	Mobile	Mobile,	Alabama	7765	Airport Blvd	-88.2249981568984	-88.22499815689844	30.6827305756966
Alabama	Montgomery	Montgomery,	Alabama	2560	Berryhill Rd	-86.1622528522760	-86.16225285227608	32.3591768765077
+			+				+	+

5 - Write cleaned data to MongoDB, then read it back into PySpark

Both CHIPOTLE_STATE_BORDERS and CHIPOTLE_LOCATIONS were written to MongoDB into a database named "project" under the collections "chipotle_state_borders" and "chipotle_locations", respectively. Then, the data were read back into PySpark from MongoDB and the first 10 rows of each data frame were displayed to prove that the data were successfully read into PySpark.

First 10 rows of CHIPOTLE_STATE_BORDERS read in from MongoDB

Cleaned JSON file from	MongoDB	
+		+
COORDINATES	STATE	_id
+		+
[-134.499322,57.0	Alaska	{63a105e1b40f1b1d
[-151.116359,59.7	Alaska	{63a105e1b40f1b1d
[-162.14144,66.07]	Alaska	{63a105e1b40f1b1d
[-160.837928,70.3	Alaska	{63a105e1b40f1b1d
[-155.881297,19.0	Hawaii	{63a105e1b40f1b1d
[-75.972737,39.55	Maryland	{63a105e1b40f1b1d
[-77.018833,38.44	Maryland	{63a105e1b40f1b1d
[-88.416346,47.37]	Michigan	{63a105e1b40f1b1d
[-117.498899, 37 0	California	{63a105e1b40f1b1d
[-80.381674, 27.7	Florida	{63a105e1b40f1b1d
+		+
only showing top 10 row	VS	

First 10 rows of CHIPOTLE LOCATIONS read in from MongoDB

	ADDRESS	CITY	CI	TY_STATE	LAT	LON	LON_LAT	STATE	_id
	+	+							+
346	W Magnolia Av	Auburn	Auburn,	Alabama	32.606812966051244	-85.48732833164195	-85.4873283316419	Alabama	{63a105e6b40f1b1d
300	20th St S Bir	Birmingham	Birmingham,	Alabama	33.509721495414745	-86.80275567068401	-86.8027556706840	Alabama	{63a105e6b40f1b1d
3220	Morrow Rd Bi	Birmingham	Birmingham,	Alabama	33.59558141391436	-86.64743684970283	-86.6474368497028	Alabama	{63a105e6b40f1b1d
4719	Highway 280	Birmingham	Birmingham,	Alabama	33.42258214624579	-86.6982794650297	-86.6982794650297	Alabama	{63a105e6b40f1b1d
1821	Cherokee Ave	Cullman	Cullman,	Alabama	34.15413376734492	-86.84122007667406	-86.8412200766740	Alabama	{63a105e6b40f1b1d
1759	Montgomery H	Hoover	Hoover,	Alabama	33.378958029568594	-86.80380210088629	-86.8038021008862	Alabama	{63a105e6b40f1b1d
5900	University D	Huntsville	Huntsville,	Alabama	34.742319254429496	-86.6657204641674	-86.6657204641674	Alabama	{63a105e6b40f1b1d
3871	Airport Blvd	Mobile	Mobile,	Alabama	30.675337809949887	-88.143753929995	-88.143753929995,	Alabama	{63a105e6b40f1b1d
7765	Airport Blvd	Mobile	Mobile,	Alabama	30.68273057569605	-88.22499815689844	-88.2249981568984	Alabama	{63a105e6b40f1b1d
2560	Berryhill Rd	Montgomery	Montgomery,	Alabama	32.35917687650774	-86.16225285227608	-86.1622528522760	Alabama	{63a105e6b40f1b1d
	+	+							h

6 - Use PySpark to combine the two cleaned data sets

Both CHIPOTLE_STATE_BORDERS and CHIPOTLE_LOCATIONS were duplicated as temporary views. Then, Spark SQL was used to UNION both data frames. Columns that did not exist in both data frames needed to be added as NULL columns in the data where they did not exist, and some columns needed to be renamed and/or transformed in one data frame to match the other. The resulting data frame was named CHIPOTLE_COMBINED_DATA. This resulting data frame was validated by looking at the three columns that should not be null in any records, "LON", "LAT", and "LON_LAT" and returning the number of rows with null values in any of those 3 columns. The result was indeed 0, as was expected.

First 10 rows of CHIPOTLE COMBNED DATA

STA	TE	CITY		TY_STATE		DDRESS		LON_LAT	LON	
Californ									-117.95959350000001	
Californ	ia Los	Angeles	Los Angeles,	Cali	7660 W Sunset	Blv	-118.356905	212680	-118.35690521268083	34.0978471129027
Flor	da Coral	Springs	Coral Spring	s, Fl	1775 N Univers	ity	-80.2523191	679101	-80.25231916791013	26.252865595198628
Id	wa	Ankeny	Anke	ny, Iowa	2125 SE Delawa	re	-93.5807689	589128	-93.5807689589128	41.709325487080214
New Yo	rk Eas	t Meadow	East Meadow,	New	2312 Hempstead	Tp	-73.5505444	434707	-73.55054444347071	40.72452263660088
orth Carol	na Faye	tteville	Fayetteville	, Nor	4715 Ramsey St	Fa	-78.879958,	35.12	-78.879958	35.125971
Tex	as	Austin	Austi	n, Texas	610 E Stassney	Ln	-97.7684819	999999	-97.76848199999999	30.201279
Vermo	nt Bu	rlington	Burlington,	Vermont	580 Shelburne	Rd	-73.208072,	44.44	-73.208072	44.448782
Virgin	ia	Fairfax	Fairfax,	/irginia	9506 Main St N	0 2	-77.2721522	, 38.8	-77.2721522	38.842982
Wiscons	in	null		null		null	-87.189511,	44.96	-87.189511	44.969211
	+			+						+

Number of rows in CHIPOTLE_COMBINED_DATA with nulls for "LON", "LAT", or "LON LAT"

7 - Create PySpark data frames for only coordinate data from the combined cleaned data, the cleaned location data, and the cleaned state borders data

Three PySpark data frames were created by selecting only the "LON_LAT" column (which was renamed from "COORDINATES" to "LON_LAT" for CHIPOTLE_STATE_BORDERS) from CHIPOTLE_STATE_BORDERS, CHIPOTLE_LOCATIONS, and CHIPOTLE_COMBINED_DATA. These were named CHIPOTLE_STATE_COORDINATES, CHIPOTLE_LOCATION_COORDINATES, and CHIPOTLE_ALL_COORDINATES, respectively.

(See attached Jupyter Notebook for full code)

8 - Write the data frames created in steps 6 and 7 to MongoDB, then read them back into PySpark

CHIPOTLE_COMBINED_DATA, CHIPOTLE_ALL_COORDINATES, CHIPOTLE_STATE_COORDINATES and CHIPOTLE_LOCATION_COORDINATES were written to MongoDB into a database named "project" under the collections "chipotle_combined_data", "chipotle_all_coordinates", "chipotle_state_coordinates" and "chipotle_location_coordinates", respectively. Then, the data were read back into PySpark from MongoDB and the first 10 rows of each data frame were displayed to prove that the data were successfully read into PySpark.

First 10 rows of CHIPOTLE COMBINED DATA read in from MongoDB

Combined Data from Mongo	DB						
+		+	+			++	+
ADDRESS	CITY	CITY_STATE	LAT	LON	LON_LAT	STATE	_id
+	+	+	+			+ -	+
15495 Valley Blvd Ci	ty Of Industry Cit	y Of Industry,	34.0219656	-117.95959350000001	-117.959593500000	California	{63a1060fb40f1b1d
7660 W Sunset Blv	Los Angeles Los	Angeles, Cali	34.0978471129027	-118.35690521268083	-118.356905212680	California	{63a1060fb40f1b1d
1775 N University	Coral Springs Cor	al Springs, Fl	26.252865595198628	-80.25231916791013	-80.2523191679101	Florida	{63a1060fb40f1b1d
2125 SE Delaware	Ankeny	Ankeny, Iowa	41.709325487080214	-93.5807689589128	-93.5807689589128	Iowa	{63a1060fb40f1b1d
2312 Hempstead Tp	East Meadow Eas	t Meadow, New	40.72452263660088	-73.55054444347071	-73.5505444434707	New York	{63a1060fb40f1b1d
4715 Ramsey St Fa	Fayetteville Fay	etteville, Nor	35.125971	-78.879958	-78.879958, 35.12	North Carolina	{63a1060fb40f1b1d
610 E Stassney Ln	Austin	Austin, Texas	30.201279	-97.76848199999999	-97.7684819999999	Texas	{63a1060fb40f1b1d
580 Shelburne Rd	Burlington Bu	rlington, Vermont	44.448782	-73.208072	-73.208072, 44.44	Vermont	{63a1060fb40f1b1d
9506 Main St No 2	Fairfax	Fairfax, Virginia	38.842982	-77.2721522	-77.2721522, 38.8	Virginia	{63a1060fb40f1b1d
null	null	null	44.969211	-87.189511	-87.189511, 44.96	Wisconsin	{63a1060fb40f1b1d
+						++	
only showing top 10 rows							
, , ,							

First 10 rows of CHIPOTLE ALL COORDINATES read in from MongoDB

First 10 rows of CHIPOTLE_STATE_COORDINATES read in from MongoDB

First 10 rows of CHIPOTLE LOCATION COORDINATES read in from MongoDB

```
Location Coordinates from MongoDB

| LON_LAT| __id|
|-85.4873283316419...|{63a1061eb40f1b1d...|
|-86.8027556706840...|{63a1061eb40f1b1d...|
|-86.6474368497028...|{63a1061eb40f1b1d...|
|-86.6982794650297...|{63a1061eb40f1b1d...|
|-86.8412200766740...|{63a1061eb40f1b1d...|
|-86.8038021008862...|{63a1061eb40f1b1d...|
|-86.6657204641674...|{63a1061eb40f1b1d...|
|-88.143753929995,...|{63a1061eb40f1b1d...|
|-88.2249981568984...|{63a1061eb40f1b1d...|
|-86.1622528522760...|{63a1061eb40f1b1d...|
|-86.1622528522760...|
```

MongoDB Databases

MongoDB Collections in project Database

9 - Write all 8 data frames to Elasticsearch, then read them back into PySpark

RAW_CHIPOTLE_STATE_BORDERS, RAW_CHIPOTLE_LOCATIONS, CHIPOTLE_STATE_BORDERS, CHIPOTLE_LOCATIONS, CHIPOTLE_COMBINED_DATA, CHIPOTLE_ALL_COORDINATES, CHIPOTLE_STATE_COORDINATES and CHIPOTLE_LOCATION_COORDINATES were written to Elasticsearch under the indices "raw_chipotle_state_borders", "raw_chipotle_locations", "chipotle_state_borders", "chipotle_locations", "chipotle_locations", "chipotle_all_coordinates", "chipotle_state_coordinates" and "chipotle_location_coordinates", respectively. Then, the data were read back into PySpark from Elasticsearch and the first row of each data frame was displayed to prove that the data were successfully read into PySpark.

First row of RAW CHIPOTLE STATE BORDERS read in from Elasticsearch

```
raw_chipotle_state_borders
UNABLE TO READ "raw_chipotle_state_borders" FROM ELASTICSEARCH DUE TO FORMATTING/SCHEMA ISSUES
```

First row of RAW_CHIPOTLE_LOCATIONS read in from Elasticsearch

First row of CHIPOTLE_STATE_BORDERS read in from Elasticsearch

```
chipotle_state_borders
+------+
| COORDINATES| STATE|
+-----+
|[-131.426759,55.2...|Alaska|
+-----+
only showing top 1 row
```

First row of CHIPOTLE_LOCATIONS read in from Elasticsearch

First row of CHIPOTLE_COMBINED_DATA read in from Elasticsearch

First row of CHIPOTLE_ALL_COORIDNATES read in from Elasticsearch

First row of CHIPOTLE_STATE_COORDINATES read in from Elasticsearch

```
chipotle_state_coordinates
+-----+
|COORDINATES| LON_LAT|
+-----+
| null|[-134.953908,58.4...|
+-----+
only showing top 1 row
```

First row of CHIPOTLE_LOCATION_COORIDNATES read in from Elasticsearch

Elasticsearch Indices

10 - Use Drill to query the cleaned location data using a few queries

Drill queries were run on the chipotle_locations collection from MongoDB to answer the following 3 data questions.

- What are the addresses of the Chipotle locations in Rochester, NY?
- How many Chipotle locations are there in each state, for states with at least 75 locations?
- What are the top 10 cities in the United States for most Chipotle locations, and how many Chipotle locations do those cities have?

Drill Query for Locations in Rochester, NY

```
Query

1 SELECT
2 ADDRESS
3 FROM
4 MONGO.PROJECT.chipotle_locations
5 WHERE
6 CITY_STATE = 'Rochester, New York'
```

ADDRESS 1360 Mount Hope Ave Rochester, NY 14620 US 1495 E Ridge Rd Rochester, NY 14621 US 1847 W Ridge Rd Rochester, NY 14615 US 3349 Monroe Ave Rochester, NY 14618 US 640 Jefferson Rd Rochester, NY 14623 US 4 Showing 1 to 5 of 5 entries

Drill Query for Number of Locations per STATE for states with 75 or more locations

```
Query

1 SELECT
2 STATE,
3 COUNT(*) LOCATIONS
4 FROM
5 MONGO.PROJECT.chipotle_locations
6 GROUP BY
7 STATE
8 HAVING
9 COUNT(*) >= 75
```

\$\phi\$	LOCATIONS
Arizona	85
California	421
Colorado	79
Florida	177
Illinois	144
Maryland	94
New York	160
Ohio	193
Pennsylvania	96
Texas	226
Virginia	107
Showing 1 to 11 of 11 entries	

Drill Query for Top 10 CITY_STATE by Number of locations

```
Query
   1 SELECT
   2 *
   3 FROM
   4
        (SELECT
   5
            RANK() OVER(ORDER BY LOCATIONS DESC) RANK,
   6
            CITY_STATE,
   7
            LOCATIONS
   8
        FROM
   9
       (SELECT
  10
               CITY_STATE,
               COUNT (*) LOCATIONS
  11
  12
            FROM
  13
                MONGO.PROJECT.chipotle locations
  14
            GROUP BY
            CITY_STATE))
  15
  16 WHERE
  17
         RANK <= 10
```

RANK \$	CITY_STATE	LOCATIONS
1	New York, New York	52
2	Chicago, Illinois	36
3	Houston, Texas	31
4	Washington DC, Washington DC	21
5	Los Angeles, California	20
6	Phoenix, Arizona	19
6	Columbus, Ohio	19
6	Dallas, Texas	19
6	Las Vegas, Nevada	19
10	Cincinnati, Ohio	17
Showing 1 to 10 of 10 entries		

	CITY_STATE
1	New York, New York
2	Chicago, Illinois
3	Houston, Texas
4	Washington DC, Washington DC
5	Los Angeles, California
6	Phoenix, Arizona
6	Columbus, Ohio
6	Dallas, Texas
6	Las Vegas, Nevada
10	Cincinnati, Ohio

CITY_STATE	\$	LOCATIONS
New York, New York		52
Chicago, Illinois		36
Houston, Texas		31
Washington DC, Washington DC		21
Los Angeles, California		20
Phoenix, Arizona		19
Columbus, Ohio		19
Dallas, Texas		19
Las Vegas, Nevada		19
Cincinnati, Ohio		17

11 - Create a Kibana Map visualization using the coordinate-only location data

Using the chipotle_location_coordinates index, an index pattern was created in order to give a data source for a Kibana Map visualization. A geographic field was needed for the location coordinates, but "LON_LAT" was a string field. Kibana requires an array of two doubles, and needs reversed order from the data source since latitude needs to be before longitude in Kibana. Once this was achieved, the map visualization was created.

Calculation script for geo-point field

```
emit(
Double.parseDouble(
doc['LON_LAT.keyword']
.value
.substring(
doc['LON_LAT.keyword']
.value
.indexOf(',')+1))
,
Double.parseDouble(
doc['LON_LAT.keyword']
.value
.substring(0,
doc['LON_LAT.keyword']
.value
.substring(0,
doc['LON_LAT.keyword']
.value
.indexOf(','))))
```

Kibana Index Patterns

Kibana geo_point field for Map

Kibana Map

