[a] M: $x^{2}+y^{2} \leq 4$, $x \leq 0$, $y \leq 0$.

(a)
$$(-a,0)$$
 M $(0,-a)$

(b) Evaluate
$$\iint_{M} (x^2 + y^2)^{3/a} dx dy$$
.

Use polar coordinates $x = r\cos\theta, \ y = r\sin\theta$ $\Rightarrow (x^{2} + y^{2})^{3/2} = (r^{2})^{3/2} = r^{3}$ Now $0 \le r \le 2, \quad \pi \le \theta \le \frac{3\pi}{2}$

$$\Rightarrow \iint_{M} (x^{2} + y^{2})^{3/2} dx dy = \int_{0}^{2} \int_{X}^{3\pi/2} r^{3} \cdot r d\theta dr$$

$$= \int_{0}^{2} \int_{X}^{3\pi/2} r^{4} d\theta dr$$

$$= \int_{0}^{2} \left[r^{4} \theta \right]_{\theta=\pi}^{\theta=\frac{3\pi}{2}} dr$$

$$= \frac{\pi}{2} \int_{0}^{2} r^{4} dr$$

$$= \frac{\pi}{2} \left[\frac{1}{5} r^{5} \right]_{r=0}^{r=2}$$

$$= \left(\frac{\pi}{2} \right) \left(\frac{3a}{5} \right)$$

$$= \frac{16\pi}{2}$$

[Q2] D:
$$\chi^2 - y^2 = 1$$
, $\chi^2 - y^2 = 4$, $\frac{\chi^2}{4} + y^2 = 1$, $\frac{\chi^2}{4} + y^2 = 4$, 1st quadrant.

(a)
$$y = 1$$

 $(0,1)$
 $x^{3} + y^{2} = 1$
 $(0,1)$
 $x^{3} + y^{2} = 1$
 $(0,1)$
 $x^{3} + y^{2} = 1$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,1)$
 $(0,$

Intersections in 1st quadrant

B
$$\frac{x^2 + y^2 = 4}{4} = \frac{5x^2}{4} = 5 \Rightarrow x^2 = 4 \Rightarrow x = 2$$

$$x^2 - y^2 = 1$$
and $y^2 = 4 - 1 = 3 \Rightarrow y = \sqrt{3}$

$$B = (2, \sqrt{3})$$

(b) *Find
$$x(u,v)$$
, $y(u,v)$ if $u=x^2-y^2$, $v=\frac{x^2}{4}+y^2$.
 $u=x^2-y^2$ $\Rightarrow \frac{5x^2}{4}=u+v$ $\Rightarrow x^2=\frac{4}{5}(u+v)$
 $v=\frac{x^2}{4}+y^2$ and $y^2=x^2-u=\frac{4}{5}(u+v)-u=-\frac{u}{5}+\frac{4v}{5}=\frac{1}{5}(-u+4v)$

* Find domain D*

* Find domain
$$D^*$$
Method 1: Map boundary curves $u=x^2-y^2$, $v=\frac{x^2}{4}+y^2$

$$x^{2}-y^{2}=1 \qquad u=1$$

$$x^{2}-y^{2}=4 \qquad u=4$$

$$\frac{x^{2}}{4}+y^{2}=1 \qquad V=1$$

$$\frac{x^{2}}{4}+y^{2}=4 \qquad V=4$$

(%y)	(4,0)	_
A (2/10, V/T)	(1, 1)	4
B (2, \3')	(1,4)	a
C (450 1215)	(4,4)	1234
E (2,0)	(4,1)	

* Find Jacobian for mapping

Method 1:

$$\det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \det \begin{bmatrix} \frac{1}{\sqrt{5}\sqrt{u+v}} & \frac{1}{\sqrt{5}\sqrt{u+v}} \\ \frac{-1}{2\sqrt{5}\sqrt{-u+4v}} & \frac{2}{\sqrt{5}\sqrt{-u+4v}} \end{bmatrix}$$

$$= \frac{2}{5}\sqrt{u+v}\sqrt{-u+4v} + \frac{1}{10}\sqrt{-u+4v}\sqrt{u+v}$$

$$= \frac{1}{2}\sqrt{u+v}\sqrt{-u+4v}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = \det \begin{bmatrix} 2x & -2y \\ \frac{x}{2} & 2y \end{bmatrix}$$

$$= 4xy + xy$$
$$= 5xy$$

$$= \frac{1}{5 \cdot \sqrt{5}}$$

$$= \frac{1}{5} \cdot \sqrt{5} \cdot \sqrt{5}$$

$$= \frac{1}{2\sqrt{u+v}} \cdot \sqrt{5} \cdot \sqrt{-u+4v}$$

$$= \frac{1}{2\sqrt{u+v}} \sqrt{-u+4v}$$

$$\iint_{0}^{\infty} \frac{x^{3}y}{y^{2}-x^{2}} dx dy$$

$$= \int_{1}^{4} \int_{1}^{4} \frac{8}{5\sqrt{5}} (u+v)^{3/2} \cdot \frac{1}{\sqrt{5}} \sqrt{-u+4v} \cdot \frac{1}{2\sqrt{u+v}} du dv$$

$$= -8 \int_{1}^{4} \int_{1}^{4} \frac{u+v}{u} du dv$$

$$=\frac{-4}{25}\int_{1}^{4}\int_{1}^{4}\frac{1+V}{u}\,du\,dv$$

$$= -\frac{4}{25} \int_{1}^{4} \left[u + v \log(u) \right]_{u=1}^{u=4} dv$$

$$= -\frac{4}{25} \int_{1}^{4} (4 + \sqrt{\log(4)}) - (1 + \sqrt{\log(6)}) dV$$

$$=\frac{-\mu}{25}\int_{1}^{4} 3 + v \log(4) dV$$

$$= \frac{-4}{25} \left[3V + \frac{1}{2} V^{2} \log(4) \right]_{V=1}^{V=4}$$

$$= \frac{-4}{25} \left[\left(12 + 8 \log (4) \right) - \left(3 + \frac{1}{2} \log (4) \right) \right]$$

$$=-\frac{36}{9}=\frac{6}{9}\log(4)$$

$$=-\frac{36}{35}-\frac{12}{5}\log(2)$$

$$B: Z = -\sqrt{\lambda - x^2 - y^2}$$

Q3 B:
$$Z = -\sqrt{2-x^2-y^2}$$
, xy plane, $x \ge 0$, $y \ge 0$, $z \le 0$

(b) Mass B =
$$\iiint u \, dV$$
 where $u = \frac{x^4}{1 + (x^2 + y^2 + z^2)^{7/2}} g(cm^3)$

Use sphencal coordinates

$$=) x^{2} + y^{2} + z^{2} = r^{2}$$

$$\Rightarrow y = \frac{r + \sin 4\theta \cos 4\theta}{1 + r^7}$$

Hence

Mass B =
$$\int_{0}^{\sqrt{2}} \int_{0}^{\pi/2} \int_{\pi/2}^{\pi} \frac{r^{4} \sin^{4}\theta \cos^{4}\theta}{1+r^{7}} \cdot r^{2} \sin\theta \, d\theta \, d\theta \, dr$$

$$= \left(\int_{0}^{\sqrt{2}} \frac{r^{6}}{1+r^{7}} \, dr\right) \left(\int_{0}^{\pi/2} \cos^{4}\theta \, d\theta\right) \left(\int_{\pi/2}^{\pi} \sin^{5}\theta \, d\theta\right)$$

Evaluating integrals separately

$$\frac{1}{4} \int_{0}^{\sqrt{2}} \frac{r^6}{1+r^7} dr$$

$$= \left[\frac{1}{7} \log (u)\right] \frac{u=1+8\sqrt{2}}{u=1}$$

Hence

Mass B =
$$\frac{1}{7} \log(1+8\sqrt{2}) \cdot \frac{3\pi}{16_2} \cdot \frac{81}{15_5}$$

= $\frac{1}{70} \pi \log(1+8\sqrt{2})$ grams.

Q4 R:
$$Z = 4 - \sqrt{x^2 + y^2}$$
, $Z = \frac{1}{9}(x^2 + y^2)$

(a) Intersection

Let
$$p = \sqrt{x^2 + y^2}$$

$$= 36 - 9p = p^2$$

$$\beta = -12, 3 \Rightarrow \beta = 3$$

$$\Rightarrow x^2 + y^2 = 9 \text{ and } z = 1.$$

(b) Use cylindrical coordinates $x = p\cos \phi$, $y = p\sin \phi$, z = z

=)
$$p = \sqrt{24y2}$$
, $Jacobian = p$

NOW $\frac{1}{q}(x^2+y^2) \le Z \le 4-\sqrt{x^2+y^2} \implies \frac{p^2}{q} \le Z \le 4-p$ $0 \le p \le 3$

Find Moment of inerna Iz if N=y+Z $I_{z} = \iiint (x^{2} + y^{2}) \rho(x_{i}y_{i} \neq 0) dV$ $= \int_0^3 \int_0^{2\pi} \int_0^{4-p} \rho^2 (\rho \sin \phi + z) \rho dz d\phi d\rho$ = \int_0 \int_0 2\pi \int_0 \rightarrow \frac{4-p}{p^4 \sin \phi + p^3 \text{2}} d\text{2} d\phi dp $= \int_{0}^{3} \int_{\delta}^{2\pi} \left[\rho^{4} \sin \phi + \frac{\rho^{3} z^{2}}{2} \right]^{\frac{3}{2} = 4 - \rho} d\phi d\rho$ $= \int_{0}^{3} \int_{0}^{2\pi} \left[g^{4}(4-p) \sin \phi + \frac{p^{3}}{2} (4-p)^{2} - \frac{p^{6}}{4} \sin \phi - \frac{p^{7}}{162} \right] d\phi dp$ $= \int_{0}^{3} \left[-p^{4}(4-p)\cos\phi + \frac{p^{3}}{2}(4-p)^{2}\phi + \frac{p^{6}}{9}\cos\phi - \frac{p^{7}}{16a}\phi \right] \phi = \lambda \pi dp$ (ancels $= \int_{0}^{3} \pi \rho^{3} (4-\rho)^{2} - \frac{\rho^{7}\pi}{3!} d\rho$ = 1 p3 (16-8p+p2) - p7 dp $= \pi \int_{D}^{3} 16p^{3} - 8p^{4} + p^{5} - \frac{p^{7}}{81} dp$ $= \pi \left[4p^4 - \frac{8}{5}p^5 + \frac{1}{6}p^6 - \frac{p^8}{648} \right]_{p=8}^{p=3}$ $= \pi \left[324 - \frac{1944}{5} + \frac{729}{6} - \frac{6561}{648} \right]$ $= \pi \left[324 - \frac{1944}{5} + \frac{243}{2} - \frac{21}{8} \right]$ $= \pi \left[12960 - 15552 + 4860 - 405 \right]$