INTERACTION CURVES FOR COLUMN

CHART 29 OF BS8110-3:1985

Output : percentage of steel (100Asc/bh)

• Input for the Interactive Curve :

Design of column for axial load and uniaxial BM Enter the values in these cells only Column dimensions D/H =0.90 Breadth, 'b' = 250 mm D=H*0.90

Breadth, 'b' =	250	mm
Depth, 'H' =	400	mm
Concrete grade, 'fck' =	30	Мра
Yield strength of steel, fy	460	N/mm ²
Concrete cover to main bars	25	mm

Details of Reinforcement

Row ₁₋₆	los. of ba	ar Dia (mr	Ast (mm²	d ₁₋₆ (mm)	-6 from CL (mm)
1	2	32	1608.50	41	159
6	2	32	1608.50	359	-159
		Total A _{st} =	3242.00	mm ²	

$$\begin{split} &If \ \frac{x_u}{D} * D \leq D \\ &P_u = f_{ck} * b * D * \left(C_1 * \frac{x_u}{D} + \sum \frac{P_i(f_{si} - f_{ci})}{f_{ck}}\right) * 10^{-3} \\ &If \ \frac{x_u}{D} * D < D \\ &P_u = f_{ck} * b * D * \left(C_1 + \sum \frac{P_i(f_{si} - f_{ci})}{f_{ck}}\right) * 10^{-3} \\ &If \ \frac{x_u}{D} * D \leq D \\ &M_u = f_{ck} * b * D^2 * \{C_1 * \frac{x_u}{D} * \left(0.5 - C_2 * \frac{x_u}{D}\right) + \sum \frac{p_i * (f_{si} - f_{ci})}{f_{ck}} * \frac{y_i}{D}\}^* 10^{-3} \\ &If \ \frac{x_u}{D} * D < D \end{split}$$

$$M_u = f_{ck} * b * D^2 * \{C_1 * (0.5 - C_2) + \sum_{i=1}^{\infty} \frac{p_i * (f_{si} - f_{ci})}{f_{ck}} * \frac{y_i}{D}\}^* 10^{-3}$$

$$If \ \frac{x_u}{D} * D \le \frac{D}{2} - y_i$$

$$\frac{p_i * (f_{si} - f_{ci})}{f_{ck}} = \frac{y_1 * (-f_{si} - f_{ci})}{b * D * f_{ck}}$$

If
$$\frac{x_u}{D} * D > \frac{D}{2} - y_i$$

$$\frac{p_i * (f_{si} - f_{ci})}{f_{ck}} = \frac{y_1 * (f_{si} - f_{ci})}{b * D * f_{ck}}$$

If
$$\frac{x_u}{D} \leq 1$$
,

$$C_1 = 0.446 * (1 - \frac{4}{21})$$

If
$$\frac{x_u}{D} > 1$$
,

If
$$\frac{x_u}{D} > 1$$
,
$$(1 - 4 * (\frac{4}{7 * \frac{x_u}{D} - 3})^2$$

$$C_1 = 0.446 * \frac{21}{21}$$

If
$$\frac{x_u}{D} \le 1$$
,

$$C_2 = \frac{\frac{0.446}{2} - 8 * \frac{0.446}{49}}{\frac{x_u}{D}}$$

If
$$\frac{x_u}{D} > 1$$
,

$$C_2 = \frac{\frac{0.446}{2} - 8 * 0.446 * \frac{(\frac{4}{7 * (\frac{x_u}{D} - 3)})^2}{\frac{x_u}{2}}$$

$$If \frac{D}{2} - y_i \le \frac{3D}{7}$$

$$fs_i = 0.446 * f_{ck}$$

$$If \frac{D}{2} - y_i > \frac{3D}{7}$$

$$fs_i = 0.446 * f_{ck} - \frac{0.446 * f_{ck} * (y_i - \frac{3D}{7})}{(\frac{x_u}{D} * D - \frac{3D}{7})^2}$$

$$If \frac{x_u}{D} * D \le D$$

$$es_i = 0.0035 * \frac{\frac{x_u}{D} * D - \frac{D}{2} + y_i}{\frac{x_u}{D} * D}$$

If
$$\frac{x_u}{D} * D > D$$

$$es_i = 0.002 * \frac{\frac{x_u}{D} * D - \frac{D}{2} + y_i}{\frac{x_u}{D} * D - \frac{3D}{7}}$$

STRESS - STRAIN RELATIONSHIP OF STEEL BARS							
Stress	Mild Steel bars		Cold Worked bars				
Level	f _y = 250 N/mm ²		f _y = 415 N/mm ²		$f_y = 500 \text{ N/mm}^2$		
	Strain	Stress N/mm ²	Strain	Stress N/mm ²	Strain	Stress N/mm ²	
0.80 f _{yd}	0.00087	174.000	0.00144	288.7	0.00174	347.8	
0.85 f _{yd}	0.00092	184.875	0.00163	306.7	0.00195	369.6	
0.90 f _{yd}	0.00098	195.750	0.00192	324.8	0.00226	391.3	
0.95 f _{yd}	0.00103	206.625	0.00241	342.8	0.00277	413.0	
0.975 f _{yd}	0.00106	212.062	0.00276	351.8	0.00312	423.9	
1.0 f _{yd}	0.00109	217.500	0.00380	360.9	0.00417	434.8	

Note: 1.0 f_{vd} = 0.87 f_v, Linear interpolation is done for intermediate values.

Pu (kN)	Mu (kN.m)	Mu\bh^2	Pu/bh	1062.72	212.77	5.31925	10.6272
Pu (KIN)	iviu (KIV.III)	IVIU (DIT2	Pu/bii	1139.57	203.85	5.09625	11.3957
				1213.11	195.23	4.88075	12.1311
1207 120710	•	•	42.07420740	1283.66	186.86	4.6715	12.8366
-1287.439749	0	0	-12.87439749	1351.48	178.71	4.46775	13.5148
-563.55	117.73	2.94325	-5.6355	1416.84	170.71	4.26775	14.1684
-327.17	155.41	3.88525	-3.2717	1479.94	162.85	4.07125	14.7994
			1 4622	1540.99	155.1	3.8775	15.4099
-146.22	184.06	4.6015	-1.4622	1599.92	147.45	3.68625	15.9992
-9.22	205.48	5.137	-0.0922	1655.26 1709.29	140.15 132.83	3.50375 3.32075	16.5526 17.0929
100.28	222.32	5.558	1.0028	1762.08	125.49	3.13725	17.6208
101 49	226.01	E 0003E	1.0140	1813.72	118.1	2.9525	18.1372
191.48	236.01	5.90025	1.9148	1855.58	111.78	2.7945	18.5558
249.26	244.17	6.10425	2.4926	1893.32	106.08	2.652	18.9332
276.34	247.22	6.1805	2.7634	1927.52	100.91	2.52275	19.2752
303.42	250.04	6.251	3.0342	1958.62	96.19	2.40475	19.5862
				1987.03	91.89	2.29725	19.8703
330.49	252.64	6.316	3.3049	2013.06	87.94	2.1985	20.1306
357.57	255.02	6.3755	3.5757	2037	84.3	2.1075	20.37
384.65	257.17	6.42925	3.8465	2059.08	80.94	2.0235	20.5908
384.03			3.0403	2079.51	77.84	1.946	20.7951
411.73	259.09	6.47725	4.1173	2098.45	74.95	1.87375	20.9845
438.81	260.79	6.51975	4.3881	2116.07 2132.49	72.26 69.76	1.8065 1.744	21.1607
465.89	262.26	6.5565	4.6589	2147.83	67.42	1.6855	21.3249 21.4783
				2162.19	65.22	1.6305	21.6219
492.97	263.51	6.58775	4.9297	2175.66	63.17	1.57925	21.7566
520.04	264.54	6.6135	5.2004	2188.32	61.23	1.53075	21.8832
547.12	265.33	6.63325	5.4712	2200.23	59.41	1.48525	22.0023
				2211.46	57.68	1.442	22.1146
574.2	265.91	6.64775	5.742	2222.07	56.06	1.4015	22.2207
613.49	264.31	6.60775	6.1349	2232.11	54.52	1.363	22.3211
713.8	252.79	79 6.31975	7.138	2241.61	53.06	1.3265	22.4161
				2250.62	51.68	1.292	22.5062
808.24	241.97	6.04925	8.0824	2259.18	50.36	1.259	22.5918
897.51	231.76	5.794	8.9751	2267.32	49.11	1.22775	22.6732
982.17	222.05	5.55125	9.8217	2275.07 2282.45	47.92 46.79	1.198 1.16975	22.7507 22.8245
				2282.45	45.7	1.1425	22.8245
				2203.43	75.7	1.1743	22.0343

2302.65	43.67	1.09175	23.0265
2308.8	42.73	1.06825	23.088
2314.7	41.82	1.0455	23.147
2320.34	40.95	1.02375	23.2034
2325.76	40.11	1.00275	23.2576
2330.97	39.31	0.98275	23.3097
2335.97	38.53	0.96325	23.3597
2340.78	37.79	0.94475	23.4078
2345.4	37.08	0.927	23.454
2349.86	36.39	0.90975	23.4986
2354.15	35.72	0.893	23.5415
2358.29	35.08	0.877	23.5829
2418.13	25.8	0.645	24.1813
2452.87	20.39	0.50975	24.5287
2475.52	16.85	0.42125	24.7552
2491.44	14.35	0.35875	24.9144

2296.22 44.67 1.11675 22.9622

