PROBLEM SET 4 – Tutorial Week 6 (September 12-15)

Deadline: 11:59 p.m. two days before your tutorial. Please submit a PDF in groups of 2–3 within your tutorial group. On the first page, write your full names (as on the roster) in alphabetical order. Start each question on a new page. Name your PDF "PSet # – LastName LastName," e.g., "PSet 4 – Banerjee Duflo Kremer." Points will be deducted for not adhering to the instructions.

QUESTION 1

Suppose Dug's preferences for peanut butter (x) and bacon (y) can be represented by the utility function $U(x,y) = \sqrt{x} + y$.

- (a) Use Excel to draw the indifference curves associated with U(x,y) = 8 and U(x,y) = 8.5. Indicate on your graph whether the indifference curves will intersect the *x*-axis, the *y*-axis, both axes, or neither axis. Include a screenshot of your Excel calculations.
- (b) Assuming we have an interior solution, show that the demand for *x* does not depend on income.

Suppose Dug has income M=\$30 and $p_{\nu}=\$4$. Suppose p_{x} falls from \$2 to \$1.

- (c) Calculate the compensating variation of the fall in p_x .
- (d) Calculate the equivalent variation of the fall in p_x .

QUESTION 2

Consider an economy with only two consumers, Russell and Kevin, who consume only chocolate (x_1) and balloons (x_2) . Russell's preferences are given by $U^R = \min\{x_1^R, x_2^R\}$ while Kevin's preferences are given by $U^K = \min\{x_1^K, x_2^K\}$. Russell has 3 pieces of chocolate (x_1) and 5 balloons (x_2) while Kevin has 5 pieces of chocolate (x_1) and 3 balloons (x_2) .

- (a) Draw an Edgeworth box with x_1 on the horizontal axis and x_2 on the vertical axis. Position Russell on the bottom left corner and Kevin on the top right corner. Indicate the total number of units of x_1 and x_2 . Label the endowment allocation. Show Russell's and Kevin's indifference curves.
- (b) In your graph in (a), draw the contract curve. Write the equation of the contract curve, $x_2^R(x_1^R)$.
- (c) Consider allocation C, ((8,8), (0,0)). Is it Pareto efficient? Why or why not?
- (d) Consider allocation D, ((8,0), (0,8)). Is it Pareto efficient? Why or why not?
- (e) Consider allocation E, ((2,2), (6,6)). Is moving from the endowment allocation ω to allocation E a Pareto improvement?
- (f) Consider allocation F, ((5,1), (3,7)). Is moving from allocation F to the endowment allocation ω a Pareto improvement?

EC2101 Semester I, 2022/23

QUESTION 3

Charles and Muntz consume only mangoes (x_1) and pineapples (x_2) . Charles' preferences are described by $U^C = x_1^C + 3x_2^C$ while Muntz's preferences are described by $U^M = x_1^M$. Collectively, Charles and Muntz have a total of 6 mangoes and 6 pineapples.

- (a) Draw an Edgeworth box with x_1 on the horizontal axis and x_2 on the vertical axis. Position Charles on the bottom left corner and Muntz on the top right corner. Indicate the total number of units of x_1 and x_2 . Show Charles' and Muntz's indifference curves.
- (b) Consider allocation B, ((0,0), (6,6)). Is it Pareto efficient? Why or why not?
- (c) Consider allocation C, ((6,0),(0,6)). Is it Pareto efficient? Why or why not?
- (d) Consider allocation D, ((6,6), (0,0)). Is it Pareto efficient? Why or why not?
- (e) Consider allocation E, ((0,6), (6,0)). Is it Pareto efficient? Why or why not?
- (f) In your graph in (a), draw the contract curve. Write the equation of the contract curve, $x_2^c(x_1^c)$.

QUESTION 4

Carl has 7 arepas (x_1) and 2 empanadas (x_2) while Ellie has 3 arepas (x_1) and 3 empanadas (x_2) . They have the same utility function, $U^i = \ln(x_1^i) + 2\ln(x_2^i)$, where i = C, E.

- (a) Draw an Edgeworth box with x_1 on the horizontal axis and x_2 on the vertical axis. Position Carl on the bottom left corner and Ellie on the top right corner. Indicate the total number of units of x_1 and x_2 . Label the endowment allocation.
- (b) Is the endowment allocation Pareto efficient? Why or why not?
- (c) Derive the equation of the contract curve, i.e., find $x_2^c(x_1^c)$. In your graph in (a), draw the contract curve.