機械学習入門

杉山 将

本稿では、これまでに筆者が携わってきた機械学習の基礎技術と応用事例を紹介する、具体的には、非定常 環境適応学習、異常値検出、二標本検定、特徴選択、条件付き確率推定などの基本的な原理とそれらの応用 例を紹介する. 最後に、これらの機械学習技術はすべて密度比とよばれる量に基づいていることを述べ、密 度比推定の手法を紹介する.

キーワード:密度比推定、非定常環境適応、確率分布比較、相互情報量推定、条件付き確率推定

1. はじめに

近年、インターネットやセンサーを通して膨大な量 のデータが容易に入手できるようになり、大量のデー タからいかにして有用な知識を得るかが重要な研究課 題となっている。このような背景のもと、データの統 計的な性質を活用する統計的機械学習が、有望な情報 処理パラダイムの一つとして注目されている [1, 2, 3].

本稿では、これまでに筆者が携わってきた機械学習 の基礎技術と応用事例を紹介する.

2. 非定常環境適応学習

入力と出力が対になったデータの背後に潜んでいる入 出力関係を推定する問題を, 教師付き学習と呼ぶ (図 1). この名称は、入力が生徒の質問、出力が教師の答えに 例えられることによる. 未知の入出力関係を学習する ことができれば、学習に用いていない新しい入力に対 する出力を予測できるようになる. 未知の状況に対し て一般化できるということから、これを汎化能力と呼 ぶ. この汎化能力の獲得こそが、教師付き学習の目的 である.

汎化能力の獲得を保証するために, 学習に用いる訓 練データと将来予測を行いたいテストデータが同じ規 則に基づいて生成されているという条件が一般的に仮 定される. しかし, 近年の機械学習の多くの応用分野 では、この基本的な仮定が成り立たないことが多い。 例えば、脳波解析では脳の振る舞いが時間と共に変化 をするため、訓練データとテストデータの傾向が異な る. 一方, 訓練データとテストデータが全く別の規則 に基づいて生成されると、訓練データからテストデー

図1 教師付き学習.入力と出力が対になった訓練データ から、その背後に潜んでいる入出力関係を推定する.

タの情報を予測することは原理的に不可能である. し たがって、訓練データとテストデータをつなぐ何らか の仮定は必ず必要である.

共変量シフトは、そのような仮定の一つである [23]. 共変量とは入力データの別称であり、共変量シフトと は、入力データの生成規則が訓練時とテスト時で変化 するが、入出力関係は変化しないという状況を指す. 以 下では、ブレイン・コンピュータ・インターフェース (BCI) を例に、共変量シフトに対処するための適応学 習技術を紹介する.

BCI とは、脳波によって計算機に意志を伝える技術 であり [5], 手足を動かすことのできない人でもコン ピュータを操作できるようにするための重要な技術で ある (図 2). ここでは、脳波でマウスカーソルを左右 に動かすタスクを考えよう. 脳波パターンを実ベクト νx で表し、その脳波によって伝えようとしている意 志 (左か右か) を $y \in \{+1, -1\}$ で表す. 学習の目標 は、訓練データ $\{(x_i, y_i)\}_{i=1}^n$ からその背後に潜む入出 力関係 y = f(x) を獲得し、将来与えられるテスト入力 $\{x_i'\}_{i=1}^{n'}$ に対する出力 $\{y_i'\}_{i=1}^{n'}$ を正しく予測すること である. ただし脳の非定常性のため、訓練入力 $\{x_i\}_{i=1}^n$ とテスト入力 $\{x_i'\}_{i=1}^{n'}$ は一般に異なる確率分布に従う.

学習に最小二乗法を用いるならば、関数 f を

すぎやま まさし

東京工業大学 大学院情報理工学研究科 計算工学専攻 〒 152-8552 東京都目黒区大岡山 2-12-1

図2 ブレイン・コンピュータ・インターフェース. 脳波で コンピュータを直接操作する.

図3 重要度重み付き最小二乗法による共変量シフト適応.
(a) 通常の最小二乗法ではモデルを訓練データに適合させるため、テストデータが訓練データと異なる分布に従う場合はテストデータをうまく予想できない.
(b) テストデータに近い訓練データに強い重みをつけることにより、テスト出力に適合させる.

$$\min_{f} \sum_{i=1}^{n} \left(f(\boldsymbol{x}_i) - y_i \right)^2$$

によって求めるが、共変量シフト下では入力分布の変化のため適切な解が得られない。共変量シフト下では、訓練入力の確率密度関数 p(x) とテスト入力の確率密度関数 p'(x) の比 p'(x)/p(x) で重みをつけた最小二乗法を用いるのがよい(図 3):

$$\min_{f} \sum_{i=1}^{n} \frac{p'(\boldsymbol{x}_i)}{p(\boldsymbol{x}_i)} \left(f(\boldsymbol{x}_i) - y_i \right)^2$$

このような重要度重み付けによる共変量シフト適応は、 最小二乗法だけでなく損失関数を用いたあらゆる学習 法に適用できる.

共変量シフト適応は、BCI の性能向上に有用であることが示されている [25, 16, 13]. 他にも、ロボット制御における標本再利用 [7, 8] や最適データ収集 [4], 自

然言語処理におけるドメイン適合 [39], 顔画像からの 年齢予測における照明環境適合 [40], 加速度センサー からの行動識別におけるユーザ適合 [9], 話者識別にお ける声質適合 [47], 半導体露光装置の位置合わせ [26] など, 共変量シフト適応はさまざまな実問題に応用さ れている.

3. 確率分布比較

データ集合 $\{x_i\}_{i=1}^n$ に含まれる異常値を見つける問 題を, 異常値検出と呼ぶ. このような入力データだけ からの機械学習問題は、前述の教師付き学習と対比し て教師なし学習と呼ばれる. 一般に教師なし学習では, データ解析の目的があいまいなことが多い. 異常値検 出も例外ではなく、どういうデータを異常とみなすか を決めないと主観的な議論に陥ってしまう. しかしな がら、異常にはさまざまなパターンが存在しうるため、 あらかじめ異常とは何かを厳密に定義することは難し い、そこで、逆に正常とは何かを定義し、正常でない ものを異常とみなすことにする、具体的には、異常を 発見したいデータ集合 $\{x_i\}_{i=1}^n$ 以外に、正常データの 集合 $\{x_i'\}_{i=1}^{n'}$ が与えられると仮定し、 $\{x_i\}_{i=1}^n$ のうち $\{x_i'\}_{i=1}^{n'}$ から外れたものを異常値とみなす. この考え方 は、異常値検出したいデータ集合 $\{x_i\}_{i=1}^n$ の確率密度 関数 p(x) と正常データ $\{x_i'\}_{i=1}^{n'}$ の確率密度関数 p'(x)の比p'(x)/p(x)を考え、この比の値が1から大きく 離れたデータを異常値とみなすことにより実現できる (図4). このような方式に基づく異常値検出は、光学 部品の異常検出 [38] やローン顧客の審査 [10] などに応 用されている.

異常値検出は、二つの確率分布の一点を比較することに対応するが、二つの確率分布の全体を比較するこ

図 4 密度比に基づく異常値検出. p(x) の異常値を直接検出するのは困難だが (左下), 正常データの密度 (左上) との比を取ることにより, 異常値が強調され検出が容易になる (右).

図5 密度比に基づく変化検知. 過去の時系列データと現 在の時系列データの分布間の距離 $D(p_{\text{past}}, p_{\text{current}})$ を推定することにより、時系列の傾向の変化を捉え ることができる.

とも重要である. これは、二つのデータ集合 $\{x_i\}_{i=1}^n$ $\{x_i'\}_{i=1}^{n'}$ が同じ確率分布から生成されたかどうかを判 定する問題に対応し、二標本検定と呼ぶ [28]. 二標本 検定は、二つの確率分布間の距離、例えば、カルバッ ク距離

$$\int p'(\boldsymbol{x}) \log \frac{p'(\boldsymbol{x})}{p(\boldsymbol{x})} \mathrm{d}\boldsymbol{x}$$

や、ピアソン距離

$$\int p(\boldsymbol{x}) \left(\frac{p'(\boldsymbol{x})}{p(\boldsymbol{x})} - 1 \right)^2 \mathrm{d}\boldsymbol{x}$$

がある閾値より大きいかどうかを判定することにより 実現できる1. 二標本検定は、共変量シフトが起こって いるかどうかの判定や、異なる状況で採取されたデー タを合併して処理してよいかどうかの判定などに用い ることができる.

また. 過去の時系列データと現在の時系列データが 従う分布間の距離を推定することにより(図5). 時系 列の傾向の変化検出を行うこともできる[14,17]. この ような変化検出手法は、生体信号からの状態推定 [14]、 画像中の注目領域の抽出 [49], 動画からのイベント抽 出[18]、ツイッターからのイベント抽出[17]などに応 用されている.

4. 相互情報量推定

入出力データ $\{(x_i, y_i)\}_{i=1}^n$ が与えられた時,入力 xと出力yに依存性があるかどうかを判定することによ り、さまざまなデータ解析が可能となる。例えば、入 力ベクトルの一部の要素が出力と独立であることがわ

図6 相互情報量に基づく独立性判定. 入出力間の独立性 判定により、特徴選択、特徴抽出、クラスタリングが 行え, 入力間の独立性判定により, 独立成分分析や オブジェクト適合が行える. また, 入力と残差の間 の独立性判定により、因果推論が行える.

かると、そのような要素は教師付き学習においては無 視することができる. これは、出力 y の予測に役立つ 入力変数ベクトルxの部分集合を求めることに対応 し、特徴選択と呼ぶ、特徴選択によりデータの解釈性 が高まるため、例えば遺伝子解析に応用することができ る [37]. 一方, 出力 y の予測の精度を向上させるため に、入力ベクトルxを低次元表現に変換することを特 徴抽出と呼ぶ. 特徴抽出は、出力 y との依存性が最大 の低次元表現を求めることにより実現できる[35,42].

入力データ $\{x_i\}_{i=1}^n$ だけが与えられる場合でも, $\{x_i\}_{i=1}^n$ と最も依存性が高い出力 $\{y_i \in \{1,\ldots,k\}\}_{i=1}^n$ を求めることにより、データのクラスタリングを行う ことができる [33, 15]. 他にも依存性の推定により、ブ ラインド信号源分離 [36], 異ドメイン間オブジェクト 適合 [45], 独立性検定 [27], 因果解析 [44] などさまざ まなデータ解析を行うことができる (図 6).

確率変数 $x \ge y$ の依存性(独立性)は、 $x \ge y$ の 同時確率密度 p(x,y) から x と y の周辺確率密度の積 p(x)p(y) までの距離によって見積ることができる. 例 えば、カルバック距離を用いた相互情報量

$$\int p(\boldsymbol{x}, \boldsymbol{y}) \log \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})} d\boldsymbol{x} d\boldsymbol{y}$$

や、ピアソン距離を用いた二乗損失相互情報量

$$\int p(\boldsymbol{x})p(\boldsymbol{y}) \left(\frac{p(\boldsymbol{x},\boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})} - 1\right)^2 d\boldsymbol{x} d\boldsymbol{y}$$

がよく用いられる.

5. 条件付き確率推定

回帰と呼ばれる教師付き学習では、連続値をとる出 力変数 y の、入力 x が与えられたもとでの条件付き 期待値を推定する. しかし、出力 y の条件付き分布が 多峰性や非対称性を持つときは、回帰分析では十分な 情報が得られないため、条件付き密度 p(y|x) そのも のを推定することが重要である (図 7(a)). このよう

¹ カルバック距離やピアソン距離は非対称で三角不等式を 満たさないため、数学的な意味での距離ではない.しかし、 常に非負の値を取り、ゼロになるのは二つの分布が等しい 場合に限られるため、二つの分布の何らかの近さの尺度と して用いることはできる.

(a) 条件付き密度推定

(b) 確率的パターン認識

図7 条件付き確率推定. (a) 出力変数 y が連続値を取るとき、条件付き密度の推定に対応する. これは、条件付き期待値を推定する回帰分析の一般化になっており、出力の条件付き分布が多峰性や非対称性を持つときに有用である. (b) 出力変数 y がカテゴリ値を取るとき、確率的パターン認識とよばれ、カテゴリの予測だけでなく予測の信頼度も同時に得ることができる.

な条件付き密度の推定は、データの可視化や、移動ロボットの状態遷移確率 [32] などに応用できる.

一方,出力がカテゴリ値 $y \in \{1,\dots,k\}$ をとるとき,条件付き確率 p(y|x) はカテゴリの事後確率を表し,これを最大にするカテゴリを選ぶことによりパターン認識を行うことができる(図 7(b)).このようなパターン認識法には,カテゴリの予測だけでなく予測の信頼度も同時に得られるという特徴があり,顔画像からの年齢予測 [41] や加速度センサーからの行動識別 [9] などに応用されている.

条件付き確率は、その定義から

$$p(\boldsymbol{y}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})}$$

と確率密度比の形で表すことができ、この形式を利用することにより精度よく推定できる [32, 22].

6. 密度比推定

ここまで、筆者が携わってきた機械学習の基礎的な技術とその応用例をいくつか紹介してきたが、これらの技術はすべて確率密度の比の推定に基づいている[29]. そこで本節では、密度比推定の手法を紹介することにする.

確率密度 p(x) を持つ確率分布に独立に従う標本 $\{x_i\}_{i=1}^n$ と,確率密度 p'(x) を持つ確率分布に独立に従う標本 $\{x_i'\}_{i=1}^{n'}$ から,確率密度比

$$r(\boldsymbol{x}) = \frac{p'(\boldsymbol{x})}{p(\boldsymbol{x})}$$

を推定する問題を考える.

 $\{x_i\}_{i=1}^n$ と $\{x_j'\}_{j=1}^{n'}$ から p(x) と p'(x) をそれぞれ 推定し、それらの比をとれば密度比を推定することが できる。しかし、このような素朴な方法では、必ずし

図8 密度比推定. 分母と分子の密度 p(x), p'(x) がわかればそれらの比 r(x) もわかるが、密度比 r(x) がわかったとしてもそれぞれの密度はわからない. したがって、分子と分母の密度を個別に推定するよりも、密度比を直接推定する方がやさしいと考えられる.

も精度よく密度比を推定できるとは限らない (図 8). 以下では、密度比を直接推定する手法を紹介する.

6.1 確率的分類法

確率的分類法では、p(x) と p'(x) から生成された標本に、ラベル y=+1、-1 をそれぞれ割り当てる [20]. このとき、p(x) と p'(x) を

$$p(x) = p(x|y = +1), p'(x) = p(x|y = -1)$$

と表すことができ、ベイズの定理より、密度比を

$$r(x) = \frac{p(y=+1)}{p(y=-1)} \frac{p(y=-1|x)}{p(y=+1|x)}$$

と表現できる.ここで,ラベルの事前確率 p(y) の比を標本数の比で近似し,ラベルの事後確率 p(y|x) を $\{x_i\}_{i=1}^n$ と $\{x_j'\}_{j=1}^{n'}$ に対する確率的分類器 $\hat{p}(y|x)$ (例えば,ロジスティック回帰や最小二乗確率的分類により求める)で近似すれば,密度比の近似を求めることができる.

6.2 積率適合法

積率適合法では、密度比のモデル g(x) を用いて、g(x)p(x) の積率を p'(x) の積率に最小二乗適合させる [6, 12]. 例えば一次の積率(すなわち期待値)を適合させる場合は、次式を解く:

$$\min_{x} \|\mathbb{E}_p[oldsymbol{x}g(oldsymbol{x})] - \mathbb{E}_{p'}[oldsymbol{x}]\|^2$$

ただし、 $\|\cdot\|$ はユークリッドノルム、 $\mathbb E$ は期待値を表す。真の密度比を正しく求めるためにはすべての次数の積率を適合させる必要がある。 ガウス核などの普遍再生核 K(x,x') を用いれば、これを効率よく実現することができる:

$$\min_{g} \left\| \mathbb{E}_p[K(oldsymbol{x},\cdot)g(oldsymbol{x})] - \mathbb{E}_{p'}[K(oldsymbol{x},\cdot)] \right\|_{\mathcal{H}}^2$$

ただし、 $\|\cdot\|_{\mathcal{H}}$ は K(x,x') が属するヒルベルト空間の ノルムを表す。実際には、期待値を標本平均で近似し た規準を最小化することにより解を求める。

6.3 密度適合法

密度適合法では,一般化カルバック距離のもとで p'(x) に g(x)p(x) を適合させる [31, 19]:

$$\min_{g} \mathbb{E}_{p'} \left[\log \frac{p'(oldsymbol{x})}{g(oldsymbol{x}) p(oldsymbol{x})}
ight] + \mathbb{E}_{p} \left[g(oldsymbol{x})
ight]$$

ただし、実際の推定には期待値を標本平均で近似した 規準を用いる. q(x) として、線形モデル [31, 19]、対 数線形モデル [39]、混合モデル [43, 48] を用いた手法 が提案されている.

6.4 密度比適合法

密度比適合法では、密度比モデル g(x) を真の密度 比r(x) に最小二乗適合させる[11]:

$$\min_{g} \mathbb{E}_{p} \left[(g(\boldsymbol{x}) - r(\boldsymbol{x}))^{2} \right]$$

ただし、実際の推定には期待値を標本平均で近似した 規準を用いる. q(x) として線形モデルを用いれば、密 度比適合法の解は解析的に求められる. 更に非負拘束 と ℓ_1 正則化項を加えた場合は、すべての正則化パラ メータに対する解が効率よく計算できる.

6.5 統一的枠組み

上記の最小二乗密度比適合法を一般化し、ブレグマ ン距離のもとで g(x) を r(x) に適合させる [30]:

$$\min_{\boldsymbol{g}} \mathbb{E}_{\boldsymbol{p}}[f(r(\boldsymbol{x})) - f(g(\boldsymbol{x})) - \nabla f(g(\boldsymbol{x}))(r(\boldsymbol{x}) - g(\boldsymbol{x}))]$$

ただし、f(t) は微分可能な強凸関数であり、 $\nabla f(t)$ は その微分を表す、f(t)を変えることにより、さまざま な密度比推定法が表現できる.

- ロジスティック回帰: $t \log t (1+t) \log(1+t)$
- 再生核積率適合:(t-1)²/2
- カルバック密度適合:t log t − t
- 最小二乗密度比適合: (t − 1)²/2
- ロバスト密度比適合: $(t^{1+\alpha}-t)/\alpha$, $(\alpha>0)$

6.6 次元削減付き密度比推定

ベクトルx を線形射影によりuとvに分解したと きに、v成分がp(x)とp'(x)で共通、すなわち、ある 共通のp(v|u)を用いて、p(x)とp'(x)が

$$p(\mathbf{x}) = p(\mathbf{v}|\mathbf{u})p(\mathbf{u}), \quad p'(\mathbf{x}) = p(\mathbf{v}|\mathbf{u})p'(\mathbf{u})$$

と表現できるならば、密度比r(x)をp'(u)/p(u)と簡 略化することができる. したがって, u が属する部分 空間(異分布部分空間と呼ぶ)を特定すれば、高次元の 密度比推定問題を低次元の問題に還元できる. 異分布

部分空間の探索は、局所フィッシャー判別分析 [21] な どの教師付き次元削減手法により $\{x_i\}_{i=1}^n$ と $\{x_i'\}_{i=1}^{n'}$ を最もよく分離する部分空間を求める [24], あるいは, $p'(\mathbf{u})$ から $p(\mathbf{u})$ へのピアソン距離を最大にする部分空 間を求める [34,46] ことにより行う.

7. まとめ

本稿では、これまでに筆者が携わってきた機械学習 の基礎技術とその応用例を紹介した. そして, これら さまざまな機械学習タスクが、密度比推定により統一 的に解決できることを示した. 密度比推定の精度や計 算効率を向上させれば、密度比推定に基づくすべての 機械学習アルゴリズムの性能を改善できるため、密度 比推定技術の今後の更なる発展が望まれる. また. 密 度比推定により解決できる新たな機械学習タスクを開 拓することも重要な研究課題である.

密度比推定に関する論文やソフトウェアが、著者の ホームページ

http://sugiyama-www.cs.titech.ac.jp/~sugi/ からダウンロードできる。また、密度比推定に関するよ り詳細な説明は、文献 [29] にまとめられている. 興味 を持って下さった方は、ご覧いただければ幸いである.

参考文献

- [1] C. M. ビショップ (著) 元田浩, 栗田多喜夫, 樋口知之, 松本裕治, 村田昇 (訳). パターン認識と機械学習 (上): ベイズ理論による統計的予測. シュプリンガー・ジャパン, 東京, 2007.
- [2] C. M. ビショップ (著) 元田浩, 栗田多喜夫, 樋口知之, 松本裕治, 村田昇(訳). パターン認識と機械学習(下): ベイズ理論による統計的予測. シュプリンガー・ジャパン. 東京. 2008.
- [3] 杉山将. 統計的機械学習―生成モデルに基づくパターン 認識. オーム社, 東京, 2009.
- [4] T. Akiyama, H. Hachiya, and M. Sugiyama. Efficient exploration through active learning for value function approximation in reinforcement learning. Neural Networks, Vol. 23, No. 5, pp. 639-648, 2010.
- [5] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, editors. Toward Brain Computer Interfacing. MIT Press, Cambridge, MA, USA, 2007.
- [6] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Covariate shift by kernel mean matching. In Dataset Shift in Machine Learning, chapter 8, pp. 131-160. MIT Press, Cambridge, MA, USA, 2009.
- [7] H. Hachiya, T. Akiyama, M. Sugiyama, and J. Peters. Adaptive importance sampling for value function approximation in off-policy reinforcement learning. Neural Networks, Vol. 22, No. 10, pp. 1399-1410, 2009.
- [8] H. Hachiya, J. Peters, and M. Sugiyama. Reward

- weighted regression with sample reuse. Neural Computation, Vol. 11, No. 23, pp. 2798–2832, 2011.
- [9] H. Hachiya, M. Sugiyama, and N. Ueda. Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition. *Neurocomputing*, Vol. 80, pp. 93–101, 2012.
- [10] S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori. Statistical outlier detection using direct density ratio estimation. *Knowledge and Information* Systems, Vol. 26, No. 2, pp. 309–336, 2011.
- [11] T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, Vol. 10, pp. 1391–1445, Jul. 2009.
- [12] T. Kanamori, T. Suzuki, and M. Sugiyama. Statistical analysis of kernel-based least-squares density-ratio estimation. *Machine Learning*, Vol. 86, No. 3, pp. 335–367, 2012.
- [13] M. Karasuyama, N. Harada, M. Sugiyama, and I. Takeuchi. Multi-parametric solution-path algorithm for instance-weighted support vector machines. *Machine Learning*, 2012. to appear.
- [14] Y. Kawahara and M. Sugiyama. Sequential changepoint detection based on direct density-ratio estimation. Statistical Analysis and Data Mining, Vol. 5, No. 2, pp. 114–127, 2012.
- [15] M. Kimura and M. Sugiyama. Dependence-maximization clustering with least-squares mutual information. Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 15, No. 7, pp. 800–805, 2011.
- [16] Y. Li, H. Kambara, Y. Koike, and M. Sugiyama. Application of covariate shift adaptation techniques in brain computer interfaces. *IEEE Transactions on Biomedical Engineering*, Vol. 57, No. 6, pp. 1318–1324, 2010.
- [17] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point detection in time-series data by relative density-ratio estimation. Technical Report 1203.0453, arXiv, 2012.
- [18] M. Matsugu, M. Yamanaka, and M. Sugiyama. Detection of activities and events without explicit categorization. In Proceedings of the 3rd International Workshop on Video Event Categorization, Tagging and Retrieval for Real-World Applications (VECTaR2011), pp. 1532–1539, Barcelona, Spain, Nov. 13 2011.
- [19] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions* on *Information Theory*, Vol. 56, No. 11, pp. 5847– 5861, 2010.
- [20] J. Qin. Inferences for case-control and semiparametric two-sample density ratio models. *Biometrika*, Vol. 85, No. 3, pp. 619–630, 1998.
- [21] M. Sugiyama. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. *Journal of Machine Learning Research*, Vol. 8, pp. 1027–1061, May 2007.
- [22] M. Sugiyama. Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting. *IEICE Transactions on Information and Systems*, Vol. E93-D, No. 10, pp. 2690–2701, 2010.

- [23] M. Sugiyama and M. Kawanabe. Machine Learning in Non-Stationary Environments: Introduction to Covariate Shift Adaptation. MIT Press, Cambridge, MA, USA, 2012.
- [24] M. Sugiyama, M. Kawanabe, and P. L. Chui. Dimensionality reduction for density ratio estimation in high-dimensional spaces. *Neural Networks*, Vol. 23, No. 1, pp. 44–59, 2010.
- [25] M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by importance weighted cross validation. *Journal of Machine Learning Research*, Vol. 8, pp. 985–1005, May 2007.
- [26] M. Sugiyama and S. Nakajima. Pool-based active learning in approximate linear regression. *Machine Learning*, Vol. 75, No. 3, pp. 249–274, 2009.
- [27] M. Sugiyama and T. Suzuki. Least-squares independence test. *IEICE Transactions on Information* and Systems, Vol. E94-D, No. 6, pp. 1333–1336, 2011.
- [28] M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, and M. Kimura. Least-squares two-sample test. *Neu*ral *Networks*, Vol. 24, No. 7, pp. 735–751, 2011.
- [29] M. Sugiyama, T. Suzuki, and T. Kanamori. Density Ratio Estimation in Machine Learning. Cambridge University Press, Cambridge, UK, 2012.
- [30] M. Sugiyama, T. Suzuki, and T. Kanamori. Density ratio matching under the Bregman divergence: A unified framework of density ratio estimation. *Annals of the Institute of Statistical Mathematics*, 2012. to appear.
- [31] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance estimation for covariate shift adaptation. *Annals of the Institute of Statistical Mathematics*, Vol. 60, No. 4, pp. 699–746, 2008.
- [32] M. Sugiyama, I. Takeuchi, T. Suzuki, T. Kanamori, H. Hachiya, and D. Okanohara. Least-squares conditional density estimation. *IEICE Transactions on In*formation and Systems, Vol. E93-D, No. 3, pp. 583– 594, 2010.
- [33] M. Sugiyama, M. Yamada, M. Kimura, and H. Hachiya. Information-maximization clustering based on squared-loss mutual information. Technical Report 1112.0611, arXiv, 2011.
- [34] M. Sugiyama, M. Yamada, P. von Bünau, T. Suzuki, T. Kanamori, and M. Kawanabe. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. *Neural Networks*, Vol. 24, No. 2, pp. 183–198, 2011.
- [35] T. Suzuki and M. Sugiyama. Sufficient dimension reduction via squared-loss mutual information estimation. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS2010), pp. 804–811, Sardinia, Italy, May 13–15, 2010.
- [36] T. Suzuki and M. Sugiyama. Least-squares independent component analysis. *Neural Computation*, Vol. 23, No. 1, pp. 284–301, 2011.
- [37] T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese. Mutual information estimation reveals global associations between stimuli and biological processes. *BMC Bioinformatics*, Vol. 10, No. 1, p. S52, 2009.
- [38] M. Takimoto, M. Matsugu, and M. Sugiyama.

- Visual inspection of precision instruments by leastsquares outlier detection. In Proceedings of the Fourth International Workshop on Data-Mining and Statistical Science (DMSS2009), pp. 22-26, Kyoto, Japan, Jul. 7-8 2009.
- [39] Y. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama. Direct density ratio estimation for largescale covariate shift adaptation. Journal of Information Processing, Vol. 17, pp. 138-155, 2009.
- [40] K. Ueki, M. Sugiyama, and Y. Ihara. Lighting condition adaptation for perceived age estimation. IEICE Transactions on Information and Systems, Vol. E94-D, No. 2, pp. 392–395, 2011.
- [41] K. Ueki, M. Sugiyama, Y. Ihara, and M. Fujita. Multi-race age estimation based on the combination of multiple classifiers. In Proceedings of the First Asian Conference on Pattern Recognition (ACPR2011), pp. 633-637, Beijing, China, Nov. 28-30 2011.
- [42] M. Yamada, G. Niu, J. Takagi, and M. Sugiyama. Computationally efficient sufficient dimension reduction via squared-loss mutual information. In C.-N. Hsu and W. S. Lee, editors, Proceedings of the Third Asian Conference on Machine Learning (ACML2011), pp. 247-262, Taoyuan, Taiwan, Nov. 13-15, 2011.
- [43] M. Yamada and M. Sugiyama. Direct importance estimation with Gaussian mixture models. IEICE Transactions on Information and Systems, Vol. E92-D, No. 10, pp. 2159-2162, 2009.
- [44] M. Yamada and M. Sugiyama. Dependence mini-

- mizing regression with model selection for non-linear causal inference under non-Gaussian noise. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI2010), pp. 643-648, Atlanta, Georgia, USA, Jul. 11–15, 2010. The AAAI Press.
- [45] M. Yamada and M. Sugiyama. Cross-domain object matching with model selection. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS2011), pp. 807-815, Fort Lauderdale, Florida, USA, Apr. 11–13, 2011.
- [46] M. Yamada and M. Sugivama, Direct density-ratio estimation with dimensionality reduction via heterodistributional subspace analysis. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI2011), pp. 549-554, San Francisco, California, USA, Aug. 7-11, 2011. The AAAI Press.
- [47] M. Yamada, M. Sugiyama, and T. Matsui. Semisupervised speaker identification under covariate shift. Signal Processing, Vol. 90, No. 8, pp. 2353–2361, 2010.
- [48] M. Yamada, M. Sugiyama, G. Wichern, and J. Simm. Direct importance estimation with a mixture of probabilistic principal component analyzers. IEICE Transactions on Information and Systems, Vol. E93-D, No. 10, pp. 2846–2849, 2010.
- [49] M. Yamanaka, M. Matsugu, and M. Sugiyama. Automatic detection of regions of interest based on density ratio estimation. In Proceedings of 2011 Annual Conference of IEE of Japan, pp. 143-149, Okinawa, Japan, Sep. 6-8, 2011.