

Gustavo Müller Nunes

January 2014

Sumário

1	Objetivo	4
2	Teoria	
	2.1 Momento	
	2.2 Momentos invariantes em translação, rotação e escala	
	2.2.1 Introdução	
3	Como chamar esse capítulo ?	
	3.1 Câmera IR	
	3.2 Construção da câmera IR	

Lista de Tabelas

Lista de Figuras

1.1	Kinect, da Microsoft, e a câmera da Creative com parceria da Intel
3.1	Webcam sem modificações
3.2	Webcam sem modificações
3.3	Webcam sem modificações
3.4	Webcam sem modificações
3.5	Webcam sem modificações
3.6	Webcam sem modificações

Capítulo 1

Objetivo

O objetivo do trabalho é discutir as principais técnicas para reconhecimento de gestos e poses de mão em um ambiente automotivo. Os algoritmos e metodologias hoje utilizados para segmentar e extrair características de imagens e vídeos devem ser estudados e verificados se atingem seu propósito em um ambiente automotivo. Esse ambiente apresenta uma forte variação de luz e ausência de controle nas características da mão e do braço do motorista (cor de pele, braço com ou sem vestimentas e vestimentas de cores e estampas diferentes). As características extraídas são utilizadas como entrada em um classificador responsável por reconhecer gestos e poses de mão, e assim, permitir uma interação com o veículo traduzindo os gestos em comandos para o carro.

Reconhecimento de gestos baseado em visão é um assunto bastante popular e pesquisado. A busca por mecanismos que tornem a interação entre homem e máquina mais intuitiva e natural é constante e vem aumentando com o lançamento de plataformas que auxiliam os desenvolvedores nos complexos algoritmos que envolvem essa área. O lançamento do Kinect, da Microsoft [3], e da plataforma de desenvolvimento da Intel, chamada Intel Perceptual Computing [4] (ambas com câmeras de profundidade) vem popularizando o desenvolvimento de aplicativos e revolucionando o jeito que interagimos com os jogos e computadores.

Figura 1.1: Kinect, da Microsoft, e a câmera da Creative com parceria da Intel

O uso de câmeras em carros e caminhões também tem aumentando nos últimos anos. Sistemas de segurança capazes de verificar se o motorista esta saindo indevidamente da faixa, ou se o veículo esta em rota de colisão com algum outro automóvel ou objeto e até mesmo monitorando o stress do motorista já são comuns em vários modelos de veículos. Mas pouco vimos o uso dessas câmeras para interação do motorista com a grande quantidade de controles que temos no carro. Aumentar ou diminuir o volume do rádio, trocar de faixa de música, dar zoom no mapa do sistema de navegação são alguns exemplos de comandos que poderia ser dados através de gestos. O sistema de gestos também pode ser usado como um complemento ao sistema de reconhecimento de voz, bastante comum hoje nos carros e que funciona muito bem.

As condições gerais dentro do automóvel inclui uma grande variação de iluminação, mudança de usuário e fundos não uniformes. Além disso, a aceitação do usuário é um item bastante importante, portanto coisas como uma iluminação artificial visível, restrição de vestimentas e calibração extensiva

não pode ser tolerado. Tento isso em mente, alguns critérios e requisitos para o sistema podem ser estabelecidos:

- robustez contra ambientes ruidosos
- $\bullet\,$ iluminação invisível
- independente de usuário
- sem calibração ou treinamento pelo usuário
- pequeno e compreensível conjunto de gestos
- reação do sistema com o mínimo de latência

Capítulo 2

Teoria

- 2.1 Momento
- 2.2 Momentos invariantes em translação, rotação e escala
- 2.2.1 Introdução

Translação, rotação e escala (abreviado como TRS, do inglês *Translation, rotation and scaling*) são as transformações de coordenadas espacial mais simples. TRS é uma transformada de 4 parâmetros, que pode ser descrita como

$$x' = sR \cdot x + t$$

NOTA: Verificar link.http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/moments/moments.ht

Capítulo 3

Como chamar esse capítulo?

3.1 Câmera IR

NOTA: Escrever um pouco sobre as câmeras IR

3.2 Construção da câmera IR

NOTA: Um pouco de texto

Figura 3.1: Webcam sem modificações

Figura 3.2: Webcam sem modificações

Figura 3.3: Webcam sem modificações

Figura 3.4: Webcam sem modificações

Figura 3.5: Webcam sem modificações

Figura 3.6: Webcam sem modificações

Referências Bibliográficas

- [1] Zobl, M., Nieschulz, R., Geiger, M., Lang M., Rigoll, G., Gesture Components for Natural Interaction with In-Car devices, 2003.
- [2] Akyol, S., Canzler, U., Bengler, K., Hahn, W.: Gesture control for use in auto-mobiles. In: Proceedings, MV A 2000 Workshop on Machine Vision Applications, Tokyo, Japan, November 28-30, 2000, IAPR, ISBN 4-901122-00-2 (2000)
- [3] http://www.microsoft.com/en-us/kinectforwindows/develop/
- [4] http://software.intel.com/en-us/vcsource/tools/perceptual-computing-sdk