Z real poles, $C(\frac{P_2}{P_1})$ $t_5 = \frac{C(\frac{P_2}{A})}{|P_1|}$

"2nd Order" Step Responses

ÿ(t)+d, ÿ(t)+d, y(t) = Bou(t) => G(s) = Bo

Z poles, both stable if d,>0, do>0.

3 possibilities for poles:

- (1) of 2 < 4 do => P, Pz complex conjugates
 - (2) 0/2=400 => P_=Pz repeated real
- (3) oli2>4do => Pi, Pz real, non-repeated

Case (1) is most interesting (and complicated)
tackle this after the other two

Useful Observation (Case 1)

$$P_1 = \sigma + j \omega_d$$
 $\omega_d = Im \{P_i\}$ Note slight Change of notation. $\omega \rightarrow \omega_d$ $S^2 + \alpha_1 S + \alpha_0 = (s - P_i)(s - P_i)$

$$= S^2 - (P_i + \overline{P_i})s + P_i \overline{P_i}$$

$$= 5^2 - 2\sigma s + (\sigma^2 + \omega_d^2)$$

Hence:

$$\Delta_1 = -Z\sigma = -2Re\{p\}$$

$$\Delta_0 = \sigma^2 + \omega_d^2 = |p|^2$$

Rapidly identify pole location from coefs.

2nd Order Response, Case!

$$Y(s) = \frac{\beta_0}{5(s-\overline{p_i})(s-\overline{p_i})} = \frac{A_1}{5} + \frac{A_2}{(s-\overline{p_i})} + \frac{\overline{A_2}}{(s-\overline{p_i})}$$

$$A_{s} = [SY(s)]_{s=0} = \frac{\beta_{o}}{P_{s}P_{s}} = \frac{\beta_{o}}{\alpha_{o}} = G(o)$$

$$A_{2} = \left[(s-P_{i})Y(s) \right]_{S=P_{i}} = \frac{\beta_{o}}{P_{i}(P_{i}-\overline{P}_{i})} = \frac{\beta_{o}}{(\sigma+j\omega_{d})(z_{j}\omega_{d})}$$

$$A_{2} = \left[(s - P_{1})Y(s) \right]_{S=P_{1}} = \frac{\beta_{0}}{P_{1}(P_{1} - \overline{P}_{1})} = \frac{\beta_{0}}{(\sigma + j\omega_{d})(2j\omega_{d})}$$

$$= \left(\frac{\beta_{0}}{2\alpha_{0}} \right) \left(\frac{\alpha_{0}}{(\sigma + j\omega_{d})(j\omega_{d})} \right) - B$$

So:

$$y(t) = G(0) + 2|A_2| e^{\sigma t} cos(\omega_d t + A_2)$$
or:

$$y(t) = G(0) \left[1 + 1B| e^{\sigma t} cos(\omega_d t + A_2) \right]$$

General Observations

- (1) ylt) continually oscillates about its steady-state value ys=G(\$)
- (2) tc = time steady-state is first crossed
- 3) / st oscillation is largest, and creates an initial overshoot past the steady-state.
- (4) This initial overshoot has peak value yp, and occurs at time tp
- (5) Settling time to defined where response enters + 2% tolerance band and remains within it for times thereofter Must learn to rapidly quantify these!

$$y(t) = G(0) \left[1 + |B|e^{ot} cos(\omega_{\lambda}t + xB) \right]$$

Where:
$$B = \frac{\alpha_0}{(j\omega_d)(\sigma + j\omega_d)} = \frac{1P_1I^2}{(j\omega_d)P_1}$$

=> Transient features completely determined by location of pole P, = or +jwd in complex plane

$$|B| = \frac{|P_1|^2}{|j\omega_d| \cdot |P_1|} = \frac{|P_1|}{|\omega_d|}$$

$$XB = XP(1^2 - (X(j\omega_d) + XP))$$

50:

$$AB = -(\frac{\pi}{2} + 4p_i) = -(\frac{\pi}{2} + (\pi - \nu))$$

$$= -\frac{3\pi}{2} + \nu$$

$$y(t) = G(0) \left[1 + \left(\frac{|P_1|}{\omega_d} \right) e^{\sigma t} \cos(\omega_d t - \frac{3\pi}{2} + \lambda) \right]$$

Need to understand how D depends on P.

Two Useful Parameters

=> purely theoretical! We is physical frequency of transient oscillations

Define:
$$S = \frac{|\sigma|}{\omega_n} = \frac{|\sigma|}{|\sigma^2 + \omega_d^2|}$$
"Damping ratio"

=> A normalized measure of the number of transient oscillations observed before amplified becomes negligible

$$\nu = t\alpha n^{-1} \left(\frac{1}{1\sigma i} \right)$$

$$\nu = \sin^{-1}\left(\frac{\omega_d}{\omega_n}\right)$$

$$D = \cos^{-1}\left(\frac{|\sigma|}{\omega_n}\right) = \cos^{-1}\xi \iff \text{very useful}$$

Thus finally, the Case 1 step response is:

$$y(t) = G(0) \left[1 - \left(\frac{\omega_n}{\omega_d} \right) e^{\sigma t} \sin(\omega_d t + \cos^{-t} t) \right]$$

We can now solve for important transient parameters

=> t_c : Solve for first $t > 0$ such that

=>
$$\frac{1}{4}$$
: Solve for f rist f >0 such that
$$y(t) = \frac{1}{5}(t) = G(0)$$
=> $\sin(\omega_4 t + \cos^2 t) = 0$

$$= \frac{1}{C} = \frac{\pi - \cos^{-1} \xi}{\omega_d}$$

or:
$$f_c = \frac{\pi - \rho}{\omega_d}$$

Substituting:

$$y_{p} = y(t_{p}) = G(0)[1 + C^{-\pi/\omega_{4}}]$$

$$M_{P} = C_{(2\pi/m^{4})}$$

then:

Peak Overshoot

$$\Rightarrow M_{P} \text{ is the Normalized peak overshoot}$$

$$y_{P} = G(o)[1+M_{P}] \Longrightarrow M_{P} = \frac{y_{P} - G(o)}{G(o)} = \frac{y_{P} - y_{SS}}{y_{SS}}$$

$$\Rightarrow$$
 Mp is entirely determined by damping ratio {
$$M_p = \exp\left[\frac{\sigma\pi}{\omega_d}\right]$$

$$= GXD \left[\frac{(-\xi n^{\nu})u}{(-\xi n^{\nu})u} \right]$$

OR

$$M_{P} = exp \left[\frac{-\xi \pi}{\sqrt{1-\xi^{2}}} \right]$$

0/005 = 100×MP

Summary: Case I step response;
$$P_1 = \sigma + j\omega_d$$

"Natural" frequency: $\omega_n = \sqrt{\sigma^2 + \omega_d^2} = /P_1/2$

Damping ratio: $\xi = \frac{/\sigma/2}{\omega_n}$

$$\frac{\int_{-\infty}^{\infty} \frac{d\sigma}{d\sigma} d\sigma}{\int_{-\infty}^{\infty} \frac{d\sigma}{d\sigma}} = \frac{\pi - \omega}{\omega_d}, \quad \xi = \cos \omega$$

$$\frac{\int_{-\infty}^{\infty} \frac{d\sigma}{d\sigma}}{\int_{-\infty}^{\infty} \frac{d\sigma}{d\sigma}} = \exp\left[\frac{\sigma \pi}{\omega_d}\right] = \exp\left[\frac{-\varepsilon \pi}{\sqrt{1-\varepsilon^2}}\right]$$

Mormalized overshoot: $M_p = \exp\left[\frac{\sigma \pi}{\omega_d}\right] = \exp\left[\frac{-\varepsilon \pi}{\sqrt{1-\varepsilon^2}}\right]$

$$M_{p} = \left[\frac{Y_{p} - Y_{ss}}{Y_{ss}} \right]$$

Settling Time

As usual, we can use the approximation

But to a actually a Sunction of & also here:

$$\frac{C(\{\})}{\sqrt{\sigma/2}}$$

with
$$3 \le C(\xi) \le 5$$
 for most $0 \le \xi \le 0.9$

50 4 is an "average" value for C({)

Complex poles - C({) } +s = C({)

A few more observations

$$\xi = \frac{|\sigma|}{\omega_n} \Longrightarrow \sigma = -\xi \omega_n \quad \text{(Stable System Assumed)}$$

$$\omega_n = \sqrt{\sigma^2 + \omega_d^2}$$

=>
$$W_{d}^{2} = W_{n}^{2} - \sigma^{2} = W_{n}^{2} - (-\xi w_{n})^{2} = w_{n}^{2}(1 - \xi^{2})$$

So:
$$W_d = W_n \sqrt{1 - \xi^2}$$

Then note:
$$S^2 + \alpha_1 S + \alpha_0 = (S - p)(S - \bar{p})$$

= $S^2 - 2\sigma S + (\sigma^2 + \omega_d^2)$

$$=5^2+2\xi\omega_n s+\omega_n^2$$

The Mose Dossille coses

The three possible cases for 2nd order Step responses can be Categorized by {: Case 1 (complex poles): 0 = {<1 <12<4d0 => (2ξωη)2<4ωη2 / $\propto (2 \times \omega_n)^2 = 4 \omega_n^2$ Case 3 (distinct real poles): {>I

Note:

The three possible cases for 2nd order Step responses can be Categorized by {: Case 1 (Complex poles): $0 \le 5 < 1$ "underdamped" $\propto (2 \{ \omega_n \}^2 < 4 \omega_n^2)$ Case Z (repeated real poles): 3 = 1 "critically damped" $\propto (2 = 4 d_0 =)$ $(2 \% \omega_n)^2 = 4 \omega_n^2$ Case 3 (distinct real poles): {>1 "overdamped" ~,2>4~ => 4 ξ2ω,2>4ω,2~

$$\{->\emptyset=>\emptyset=>\emptyset=-\{\omega_n\to\emptyset\Rightarrow P_i=j\omega_d \text{ (Pure imaginary)}\}$$

Overshoot $M_p=e^{(\sigma\pi/\omega_d)}\to 1$ (100% OS)

Settling time:
$$t_s \approx \frac{4}{101} = \infty$$

Never settles!

Response oscillates infinitely between
$$\emptyset$$
 and $2G(\emptyset)$ with frequency $W_d = W_n \sqrt{1-\xi^2} = W_n$

"Undamped"

$$\{-1\} = \sigma = -\{\omega_n \rightarrow -\omega_n\}$$

Response does Not oscillate!

Overshoot:
$$M_P = e^{(rT)}\omega_d = -\omega_n T/\omega = \emptyset$$

No overshoot

$$\frac{\int_{S^{+}}^{S^{+}} crossing:}{t_{c}} = \frac{TT - cos^{-1} \Gamma}{\omega_{d}} = \frac{T\sqrt{2}}{\phi} = \infty$$

Settling: Ls & 6 here

Graphical Interpretation of {:

Lines of constant { Lie on rays in upper left quadrant of complex plane:

- => 1st and 2nd order step responses are
 "building blocks" by which we can Understand
 response of more Complex systems
- => each real pole introduces a new decaying exponential into transpent response.
- => each complex pole pair introduces a decaying oscillation into the transient
- => An arbitrary number of poles of different types
 will typically require numerical simulation to quantify
 yp, tc, tp,ts
- => However in some cases we can still accurately predict these features.

Suppose: $G(s) = \frac{K}{(s-p_i)(s^2+2\gamma\omega_n s+\omega_n^2)}$ with {<1 $= \frac{K}{(5-P_1)(5-P_2)(5-P_2)}$ For a unit step input u(t) = II(t) we Know $y_{ss} = G(0) = \frac{K}{-\omega_{n}^{2}P_{i}}$ But what can we say about Yp, tp, tc, ts? In general, Not much Unless either 1P,1>5/Re [P] or |Re [P] >5/P,1

i.e. if one of the modes is dominant.

Dominant modes revisited

When a single mode is dominant, we can approximate the features of the response using just that made

An arbitrarily complex system can be well approximated in this fashion.

Effect of zeros

Stepresponsed

$$G(s) = \frac{\beta_1 s + \beta_0}{s^2 + \alpha_1 s + \alpha_0}$$
 Zero at
$$Z_1 = -\beta_0/\beta_1$$

3 important effects:

- (1) "Input absorbing" property
- 2. Transient suppression
- 3. Transient amplification Yes

Depending on System

For unit step response of stable system

$$\gamma_{ss}(t) = G(\phi)$$

Suppose
$$2_1 = -\beta_0/\beta_1 = \phi \implies \beta_0 = \phi$$

Zero at origin

$$G(s) = \frac{\beta_1 s}{5^2 + 4_1 s + 4_0}$$

Then
$$y_{ss}(t) = G(\emptyset) = \emptyset \iff Steady-State is zero$$

response contains only transient terms

In fact, y(t) is the impulse response of $G_1(s) = \frac{B_1}{5^2 + \alpha_1 s + \alpha_0}$

$$\frac{\left(\int_{1}^{s}(s)=\int_{1}^{s}\left(\int_{1}^{s}(s)\right)}{S^{2}+\lambda_{1}^{2}S^{2}\lambda_{0}}$$