INE5403 - Fundamentos de Matemática Discreta para a Computação

- 6) Relações de Ordenamento
 - 6.1) Conjuntos Parcialmente Ordenados (Posets)
 - 6.2) Extremos de Posets
 - 6.3) Reticulados
 - 6.4) Álgebras Booleanas Finitas

Definição: Um poset (L,≤) é chamado de <u>reticulado</u> se <u>todo</u> par de elementos {a,b} possui tanto uma menor cota superior (LUB) como uma maior cota inferior (GLB).

- Reticulados possuem muitas propriedades especiais.
- São usados em muitas aplicações diferentes tais como modelos de fluxo de informação.
- Eles também têm um papel importante em álgebra booleana.
- Observação: denota-se LUB({a,b}) por a√b (operação de junção) e denota-se GLB({a,b}) por a∧b (operação de encontro).

<u>Exemplo</u>: Determine se os posets representados por cada um dos diagramas de Hasse abaixo são reticulados.

- Os posets (A) e (C) s\u00e3o reticulados, pois cada par de elementos tem tanto uma LUB como uma GLB.
- Já o poset (B) não é um reticulado, pois os elementos b e c não possuem menor cota superior → note que d, e, f são cotas superiores, mas nenhum destes 3 elementos precede os outros 2 com respeito ao ordenamento deste poset.

Exemplo: Determine se (P(S),⊆) é um reticulado, onde S é um conjunto.

- Sejam A e B dois subconjuntos de S. Então:
 - a LUB (junção) de A e B é a sua união A∪B e
 - a GLB (encontro) de A e B é a sua intersecção A∩B
 - logo, (P(S),⊆) é um reticulado.

<u>Exemplo</u>: Considere o poset (\mathbf{Z}^+,\leq), onde a \leq b se e somente se a|b. Então (\mathbf{Z}^+,\leq) é um reticulado em que as operações de junção e encontro de a e b são, respectivamente:

$$a \lor b = mmc(a,b)$$
 e $a \land b = mdc(a,b)$

<u>Exemplo</u>: Determine se os posets ({1,2,3,4,5},|) e ({1,2,4,8,16},|) são reticulados.

Solução:

- Uma vez que 2 e 3 não possuem cotas superiores em ({1,2,3,4,5},|), eles certamente não têm uma menor cota superior e <u>o primeiro poset não é um reticulado</u>.
- Cada 2 elementos do segundo poset possuem tanto uma menor cota superior como uma maior cota inferior.
 - → LUB de 2 elementos neste poset: maior deles
 - → GLB de 2 elementos neste poset: menor deles
 - → logo, *o 2º poset é um reticulado*.

Teorema: Se (\mathbf{L}_1, \leq_1) e (\mathbf{L}_2, \leq_2) são reticulados, então (\mathbf{L}, \leq_3) é um reticulado, onde $L = L_1 \times L_2$ e a ordem parcial \leq_3 é a *ordem parcial produto* definida por

$$(a,b) \leq_3 (a',b')$$
, se $a \leq_1 a'$ em L_1 e $b \leq_2 b'$ em L_2 .

• Exemplo: Sejam L_1 e L_2 os reticulados representados pelos diagramas de Hasse abaixo:

• Exemplo (cont.): Então $\mathbf{L} = \mathbf{L}_1 \times \mathbf{L}_2$ é o reticulado:

Sub-reticulados (sublattices)

Definição: Seja (L, \leq) um reticulado. Um subconjunto S de L, S \subseteq L, é chamado de um <u>sub-reticulado</u> de L se a \vee b \in S e a \wedge b \in S sempre que a \in S e b \in S.

<u>Exemplo</u>: Os reticulados (D_n ,|), de todos os divisores de n com a relação de divisibilidade, são sub-reticulados do reticulado (\mathbf{Z}^+ ,|).

Sub-reticulados (sublattices)

<u>Exemplo</u>: Considere o reticulado L mostrado na fig. (a).

- O subconjunto parcialmente ordenado (b) não é um sub-reticulado de L pois a∧b∉S_b e a∨b∉S_b.
- O subconjunto parcialmente ordenado (c) não é um sub-reticulado de L pois a∨b=c ∉S_b → entretanto, S_c é um reticulado por si mesmo.
- O subconjunto parcialmente ordenado (d) é um sub-reticulado de L.

Isomorfismo entre reticulados

Definição:

Se $f:L_1 \rightarrow L_2$ é um isomorfismo do poset (L_1, \leq_1) para o poset (L_2, \leq_2) , então L_1 é um reticulado se e somente se L_2 for um reticulado (aplicação de teorema visto).

- De fato, se a e b são elementos de L₁, então f(a∧b)=f(a)∧f(b) e f(a∨b)=f(a)∨f(b)
- L₁ e L₂ são reticulados isomórficos.

- Relembrando os significados de a√b e a∧b:
- 1. $a \le a \lor b$ e $b \le a \lor b$ ($a \lor b$ é uma cota superior de a e de b);
- se a≤c e b≤c, então a∨b≤c (a∨b é a <u>menor</u> cota superior de a e de b);
- Analogamente:
- 1'. $a \land b \le a \in a \land b \le b$ ($a \land b \notin a \in a \in b$);
- 2'. se c≤a e c≤b, então c≤a∧b (a∧b é a *maior* cota inferior de a e de b).

Teorema: Seja L um reticulado. Então, para todo a e b em L:

- a) $a \lor b = b \iff a \le b$
- b) $a \land b = a \iff a \le b$
- c) $a \land b = a \Leftrightarrow a \lor b = b$

Prova (a):

- (→) suponha que $a \lor b = b$. Como $a \lor b$ é o LUB({a,b}), tem-se que $a \le a \lor b = b$;
- (←) como a ≤ b, temos que b é uma cota superior de {a,b} e, pela definição de LUB, temos que a∨b≤b. Mas como também a∨b é uma cota superior de {a,b}, temos que b≤a∨b e portanto a∨b=b.

Teorema: Seja L um reticulado. Então, para todo a e b em L:

- a) $a \lor b = b \iff a \le b$
- b) $a \land b = a \iff a \le b$
- c) $a \land b = a \Leftrightarrow a \lor b = b$

Prova (b):

- (→) suponha que $a \land b = a$. Como $a \land b \notin o$ GLB($\{a,b\}$), tem-se que $a = a \land b \le b$;
- (←) como a ≤ b, temos que a é uma cota inferior de {a,b} e, pela definição de GLB, temos que a ≤ a∧b. Mas como também a∧b é uma cota inferior de {a,b}, temos que a∧b≤a e portanto a∧b=a.

Teorema: Seja L um reticulado. Então, para todo a e b em L:

- a) $a \lor b = b \iff a \le b$
- b) $a \land b = a \iff a \le b$
- c) $a \land b = a \iff a \lor b = b$

Prova (c):

De (a) temos que $a \lor b = b \Leftrightarrow a \le b$, mas por (b) $a \le b \Leftrightarrow a \land b = a$, portanto:

$$a \wedge b = a \iff a \vee b = b$$

Teorema: Seja L um reticulado. Então:

a)	a∨a = a	Idempotência
b)	a∧a = a	
a)	a∨b = b∨a	Comutatividade
b)	a∧b = b∧a	
a)	$a\lor(b\lor c)=(a\lor b)\lor c$	Associatividade
b)	$a \land (b \land c) = (a \land b) \land c$	
a)	a∨(a∧b) = a	Absorção
b)	a∧(a∨b) = a	

Teorema: Seja L um reticulado. Então para todo a,b,c ∈ L:

- 1. Se a≤b, então
 - a) $a \lor c \le b \lor c$
 - b) $a \land c \le b \land c$
- 2. $a \le c \ e \ b \le c \iff a \lor b \le c$
- 3. $c \le a \ e \ c \le b \iff c \le a \land b$
- 4. Se a≤b e c≤d, então
 - a) $a \lor c \le b \lor d$
 - b) $a \land c \le b \land d$

Definição: Um reticulado L é dito <u>limitado</u> se L tem um maior elemento **I** e um menor elemento **O**.

Exemplos:

- Z⁺, sob a ordem parcial de divisibilidade, tem um menor elemento mas não tem um maior elemento ⇒ não limitado.
- Z, sob a ordem parcial "menor ou igual a" não tem nem maior nem menor elemento ⇒ não limitado.
- O reticulado (2^S,⊆), de todos os subconjuntos de um conjunto finito S, é limitado:

- Nota: Se L é um reticulado limitado, então, ∀a ∈ L:
 - a) $\mathbf{O} \le a \le \mathbf{I}$
 - b) $a \vee 0 = a$
 - c) $a \wedge 0 = 0$
 - d) $a \vee I = I$
 - e) $a \wedge I = a$

Teorema: Seja L= $\{a_1,a_2,a_3,...,a_n\}$ um reticulado finito. Então L é limitado.

- Prova:
 - O maior elemento de L é $a_1 \lor a_2 \lor a_3 \lor ... \lor a_n$
 - O menor elemento de L é $a_1 \land a_2 \land a_3 \land \dots \land a_n$

Definição: Um reticulado é chamado <u>distributivo</u> se, para quaisquer elementos a,b,c ∈ L, valem as seguintes regras:

a)
$$a \land (b \lor c) = (a \land b) \lor (a \land c)$$

b)
$$a\lor(b\land c) = (a\lor b)\land(a\lor c)$$

Nota: As leis distributivas valem quando quaisquer 2 dos elementos a, b, ou c são iguais, ou quando qualquer 1 dos elementos é **O** ou **I**.

- Esta observação reduz o número de casos que devem ser verificados na determinação da distributividade de um reticulado.
- Entretanto, a verificação da distributividade é geralmente trabalhosa.

Reticulados distributivos

- Exemplo: O reticulado mostrado abaixo é distributivo:
 - a lei de distributividade vale para todos os trios ordenados escolhidos entre os elementos a,b,c,d,e,f.

Reticulados distributivos

<u>Exemplo</u>: Mostre que os reticulados mostrados abaixo não são distributivos:

Reticulados distributivos

- Exemplo (cont.): Mostre que os reticulados não são distributivos:
- Reticulado (a):
 - Temos: $a \land (b \lor c) = a \land \mathbf{I} = a$
 - enquanto: $(a \land b) \lor (a \land c) = b \lor \mathbf{O} = b$
- Reticulado (b):
 - Observe que: $a_{\land}(b_{\lor}c) = a_{\land}\mathbf{I} = a$
 - enquanto: $(a \land b) \lor (a \land c) = \mathbf{O} \lor \mathbf{O} = \mathbf{O}$

Teorema: Um reticulado L é não-distributivo se e somente se contiver um sub-reticulado que seja isomórfico a um dos 2 reticulados do exemplo anterior.

Definição: Seja L um reticulado limitado com maior elemento **I** e menor elemento **O**, e seja a∈ L. Um elemento a'∈ L é chamado de um <u>complemento</u> de a se:

$$a \vee a' = I$$
 e $a \wedge a' = O$.

- Observe que O' = I e I' = O.
- Exemplo: O reticulado (2^S,⊆) é tal que todo elemento tem um complemento, pois se A∈2^S, então o seu complementar tem as propriedades:

$$A \lor A' = S (=I)$$
 e $A \land A' = \{ \} (=O)$

 ele também é distributivo, pois as operações de união e intersecção satisfazem às leis de distributividade para reticulados.

• <u>Exercício</u>: Determine se o diagrama de Hasse abaixo representa um reticulado.

- <u>Exercício</u>: Determine se o poset A={2,3,6,12,24,36,72}, sob a relação de divisibilidade (|), representa um reticulado.
- <u>Exercício</u>: Determine se o reticulado abaixo é distributivo e também se os seus elementos possuem complementos.

