Appendix 2

Definitions of Aerodynamic Stability and Control Derivatives

Notes

- (i) The derivatives given in Tables A2.5–A2.8 are all referred to generalised body axes and, $U_e = V_0 \cos \theta_e$ and $W_e = V_0 \sin \theta_e$. In the particular case when the derivatives are referred to wind axes $\theta_e = 0$ and the following simplifications can be made, $U_e = V_0$, $W_e = 0$, $\sin \theta_e = 0$ and $\cos \theta_e = 1$.
- (ii) The equivalent algebraic expressions in Tables A2.5–A2.8 were derived with the aid of the computer program *Mathcad* which includes a facility for symbolic calculation.
- (iii) In Tables A2.5—A2.8 normalised mass and inertias are used which are defined as follows:

$$m' = \frac{m}{\frac{1}{2}\rho V_0 S}$$

$$I'_x = \frac{I_x}{\frac{1}{2}\rho V_0 S b}$$

$$I'_y = \frac{I_y}{\frac{1}{2}\rho V_0 S \bar{c}}$$

$$I'_z = \frac{I_z}{\frac{1}{2}\rho V_0 S b}$$

$$I'_{xz} = \frac{I_{xz}}{\frac{1}{2}\rho V_0 S b}$$

 Table A2.1
 Longitudinal aerodynamic stability derivatives

Dimensionless	Multiplier	Dimensional
$X_{\iota\iota}$	$\frac{1}{2}\rho V_0 S$	$\overset{\circ}{X_u}$
X_w	$\frac{1}{2}\rho V_0 S$	$\overset{\circ}{X_{w}}$
$X_{\dot{w}}$	$\frac{1}{2}\rho S\overline{\overline{c}}$	$\overset{\circ}{X_{\dot{w}}}$
X_q	$\frac{1}{2} \rho V_0 S \overline{\overline{c}}$	$\overset{\circ}{X_q}$
Z_u	$\frac{1}{2}\rho V_0 S$	$\overset{\circ}{Z_u}$
Z_w	$\frac{1}{2}\rho V_0 S$	$\overset{\circ}{Z_w}$
$Z_{\dot{w}}$	$\frac{1}{2}\rho S\overline{\overline{c}}$	$\overset{\circ}{Z_{\dot{w}}}$
Z_q	$\frac{1}{2}\rho V_0 S\overline{\overline{c}}$	$\overset{\circ}{Z_q}$
M_u	$\frac{1}{2}\rho V_0 S \overline{\overline{c}}$	$\stackrel{\circ}{M_u}$
M_{w}	$\frac{1}{2}\rho V_0 S\overline{\overline{c}}$	$\overset{\circ}{M_w}$
$M_{\dot{w}}$		$\overset{\circ}{M_{\dot{w}}}$
M_q	$\frac{\frac{1}{2}\rho S\overline{\overline{c}}^{2}}{\frac{1}{2}\rho V_{0}S\overline{\overline{c}}^{2}}$	$\overset{\circ}{M_q}$

 Table A2.2
 Longitudinal control derivatives

Dimensionless	Multiplier	Dimensional
X_{η}	$\frac{1}{2}\rho V_0^2 S$	$\overset{\circ}{X_{\eta}}$
Z_{η}	$ \frac{\frac{1}{2}\rho V_0^2 S}{\frac{1}{2}\rho V_0^2 S} $ $ \frac{\frac{1}{2}\rho V_0^2 S\bar{c}}{} $	$\overset{\circ}{Z_{\eta}}$
M_{η}	$\frac{1}{2}\rho V_0^2 S\bar{\bar{c}}$	$\overset{\circ}{M_{\eta}}$
X_{τ}	1	$\overset{\circ}{X_{\tau}}$
$Z_{ au}$	1	$\overset{\circ}{Z_{\tau}}$
$M_{ au}$	$\overline{\overline{c}}$	$\overset{\circ}{M_{\tau}}$

 Table A2.3
 Lateral aerodynamic stability derivatives

Dimensionless	Multiplier	Dimensional
Y_{ν}	$\frac{1}{2}\rho V_0 S$	$\overset{\circ}{Y_{ u}}$
Y_p	$\frac{1}{2}\rho V_0Sb$	$\overset{\circ}{Y_p}$ $\overset{\circ}{Y_r}$
Y_r	$\frac{1}{2}\rho V_0Sb$	
L_{ν}	$\frac{1}{2}\rho V_0Sb$	$\overset{\circ}{L_{v}}$
L_p	$\frac{1}{2}\rho V_0 S b^2$ $\frac{1}{2}\rho V_0 S b^2$	$\overset{\circ}{L_p}$
L_r	$\frac{1}{2}\rho V_0 Sb^2$	
$N_{ u}$	$\frac{1}{2}\rho V_0Sb$	$\stackrel{\circ}{N_{ u}}$
N_p	$\frac{1}{2}\rho V_0 S b^2$ $\frac{1}{2}\rho V_0 S b^2$	$\stackrel{\circ}{N_p}$
N_r	$\frac{1}{2}\rho V_0 Sb^2$	$\H{N_r}$

 Table A2.4
 Lateral aerodynamic control derivatives

Dimensionless	Multiplier	Dimensional
Y_{ξ}	$\frac{1}{2}\rho V_0^2 S$	$\overset{\circ}{Y_{\xi}}$
L_{ξ}	$\frac{1}{2}\rho V_0^2 Sb$ $\frac{1}{2}\rho V_0^2 Sb$ $\frac{1}{2}\rho V_0^2 S$	$Y_{m{\xi}} \ \hat{L}_{m{\xi}} \ \hat{N}_{m{\xi}}$
N_{ξ}	$\frac{1}{2}\rho V_0^2 Sb$	$\overset{\circ}{N_{\xi}}$
Y_{ζ}	$\frac{1}{2}\rho V_0^2 S$	$\overset{\circ}{Y_{\zeta}}$
L_{ζ}	$\frac{1}{2}\rho V_0^2 Sb$ $\frac{1}{2}\rho V_0^2 Sb$	$\overset{\circ}{Y_{\zeta}}$ $\overset{\circ}{L_{\zeta}}$ $\overset{\circ}{N_{r}}$
N_{ζ}	$\frac{1}{2}\rho V_0^2 Sb$	$\overset{\circ}{N_{\zeta}}$

 Table A2.5
 Concise longitudinal aerodynamic stability derivatives

Concise derivative	Equivalent expressions in terms of dimensional derivatives	Equivalent expressions in terms of dimensionless derivatives
x_u	$\frac{\overset{\circ}{X}_{u}}{m} + \frac{\overset{\circ}{X}_{\overset{\circ}{w}}\overset{\circ}{Z}_{u}}{m\left(m - \overset{\circ}{Z}_{\overset{\circ}{w}}\right)}$	$\frac{X_u}{m'} + \frac{\frac{\overline{c}}{\overline{V}_0} X_{\dot{w}} Z_u}{m' \left(m' - \frac{\overline{c}}{\overline{V}_0} Z_{\dot{w}}\right)}$
z_u	$\frac{\overset{\circ}{Z_{u}}}{m-\overset{\circ}{Z_{\dot{w}}}}$	$\frac{Z_u}{m'-\frac{\bar{c}}{V_0}Z_{\dot{w}}}$
m_u	$\frac{\overset{\circ}{M}_{u}}{I_{y}} + \frac{\overset{\circ}{Z_{u}\overset{\circ}{M}_{\dot{w}}}}{I_{y}\left(m - \overset{\circ}{Z}_{\dot{w}}\right)}$	$\frac{M_u}{I_y'} + \frac{\frac{\overline{\bar{c}}}{\overline{V_0}} M_{\dot{w}} Z_u}{I_y' \left(m' - \frac{\overline{\bar{c}}}{\overline{V_0}} Z_{\dot{w}}\right)}$
x_w	$\frac{\overset{\circ}{X}_{w}}{m} + \frac{\overset{\circ}{X}_{\overset{\circ}{w}}\overset{\circ}{Z}_{w}}{m\left(m - \overset{\circ}{Z}_{\overset{\circ}{w}}\right)}$	$\frac{X_w}{m'} + \frac{\frac{\overline{\bar{c}}}{\overline{V_0}} X_{\dot{w}} Z_w}{m' \left(m' - \frac{\overline{\bar{c}}}{\overline{V_0}} Z_{\dot{w}}\right)}$
Z_W	$\frac{\overset{\circ}{Z_{w}}}{m-\overset{\circ}{Z_{\dot{w}}}}$	$\frac{Z_w}{m' - \frac{\bar{c}}{V_{\sim}} Z_{\dot{w}}}$
m_w	$\frac{\mathring{M}_{w}}{I_{y}} + \frac{\mathring{Z}_{w}\mathring{M}_{\dot{w}}}{I_{y}\left(m - \mathring{Z}_{\dot{w}}\right)}$	$\frac{M_w}{I_y'} + \frac{\frac{\overline{\overline{c}}}{\overline{V_0}} M_{\dot{w}} Z_w}{I_y' \left(m' - \frac{\overline{\overline{c}}}{\overline{V_0}} Z_{\dot{w}}\right)}$
x_q	$\frac{\left(\overset{\circ}{X}_{q}-mW_{e}\right)}{m}+\frac{\left(\overset{\circ}{Z}_{q}+mU_{e}\right)\overset{\circ}{X}_{\dot{w}}}{m\left(m-\overset{\circ}{Z}_{\dot{w}}\right)}$	$\frac{\overline{\overline{c}}X_q - m'W_e}{m'} + \frac{\left(\overline{\overline{c}}Z_q + m'U_e\right)\frac{\overline{\overline{c}}}{V_0}X_{\dot{w}}}{m'\left(m' - \frac{\overline{\overline{c}}}{V_0}Z_{\dot{w}}\right)}$
z_q	$\frac{\left(\overset{\circ}{Z}_q + mU_e\right)}{m - \overset{\circ}{Z}_{\dot{w}}}$	$\frac{\overline{\overline{c}}Z_q + m'U_e}{m' - \frac{\overline{\overline{c}}}{V_0}Z_{\dot{w}}}$
m_q	$\frac{\overset{\circ}{M}_{q}}{I_{y}} + \frac{\left(\overset{\circ}{Z}_{q} + mU_{e}\right)\overset{\circ}{M}_{\dot{w}}}{I_{y}\left(m - \overset{\circ}{Z}_{\dot{w}}\right)}$	$\frac{\overline{\overline{c}}M_q}{I'_y} + \frac{\left(\overline{\overline{c}}Z_q + m'U_e\right)\frac{\overline{\overline{c}}}{V_0}M_{\dot{w}}}{I'_y\left(m' - \frac{\overline{\overline{c}}}{V_0}Z_{\dot{w}}\right)}$
$x_{ heta}$	$-g\cos\theta_e - rac{\overset{\circ}{X}_{\dot{w}}g\sin\theta_e}{m - \overset{\circ}{Z}_{\dot{w}}}$	$-g\cos\theta_{e} - \frac{\frac{\overline{c}}{V_{0}}X_{\dot{w}}g\sin\theta_{e}}{m' - \frac{\overline{c}}{V_{0}}Z_{\dot{w}}}$
$z_{ heta}$	$-\frac{mg\sin\theta_e}{m-\overset{\circ}{Z}_{\dot{w}}}$	$-\frac{m'g\sin\theta_e}{m'-\frac{\bar{c}}{\bar{V}_0}\hat{Z}_w}$
$m_{ heta}$	$-\frac{\stackrel{\circ}{M} mg \sin \theta_e}{I_y \left(m - \stackrel{\circ}{Z_w}\right)}$	$-\frac{\frac{\bar{c}}{V_0}M_{\dot{w}}m'g\sin\theta_e}{I'_y\left(m'-\frac{\bar{c}}{V_0}Z_{\dot{w}}\right)}$

 Table A2.6
 Concise longitudinal control derivatives

Concise derivative	Equivalent expressions in terms of dimensional derivatives	Equivalent expressions in terms of dimensionless derivatives
x_{η}	$rac{\overset{\circ}{X_{\eta}}}{m}+rac{\overset{\circ}{X_{\dot{w}}}\overset{\circ}{Z_{\eta}}}{m\left(m-\overset{\circ}{Z_{\dot{w}}} ight)}$	$\frac{V_0 X_{\eta}}{m'} + \frac{\frac{\overline{c}}{\overline{c}} X_{\dot{w}} Z_{\eta}}{m' \left(m' - \frac{\overline{c}}{V_0} Z_{\dot{w}}\right)}$
z_{η}	$\frac{\overset{\circ}{Z_{\eta}}}{m-\overset{\circ}{Z_{\dot{w}}}}$	$\frac{V_0 Z_{\eta}}{m' - \frac{\bar{\bar{c}}}{V_0} Z_{\dot{w}}}$
m_η	$\frac{m - \mathring{Z}_{\dot{w}}}{I_{y}} + \frac{\mathring{M}_{\dot{w}} \mathring{Z}_{\eta}}{I_{y} \left(m - \mathring{Z}_{\dot{w}}\right)}$	$\frac{V_0 M_{\eta}}{I_y'} + \frac{\overline{\overline{c}} M_{\dot{w}} Z_{\eta}}{I_y' \left(\underline{m}' - \frac{\overline{\overline{c}}}{V_0} Z_{\dot{w}} \right)}$
x_{τ}	$\frac{\overset{\circ}{X_{\tau}}}{m} + \frac{\overset{\circ}{X_{\dot{w}}}\overset{\circ}{Z_{\tau}}}{m\left(m - \overset{\circ}{Z_{\dot{w}}}\right)}$	$\frac{V_0 X_{\tau}}{m'} + \frac{\frac{\bar{c}}{\bar{V}_0} X_{\dot{w}} Z_{\tau}}{m' \left(m' - \frac{\bar{c}}{\bar{V}_0} Z_{\dot{w}}\right)}$
$z_{ au}$	$\frac{\overset{\circ}{Z_{\tau}}}{m-\overset{\circ}{Z_{\dot{w}}}}$	$\frac{V_0 Z_{\tau}}{m' - \frac{\bar{\bar{c}}}{V_0} Z_{\dot{w}}}$
$m_{ au}$	$rac{\mathring{M}_{ au}}{I_{y}}+rac{\mathring{M}_{\dot{w}}\mathring{Z}_{\dot{ au}}}{I_{y}\left(m-\mathring{Z}_{\dot{w}} ight)}$	$\frac{V_0 M_{\tau}}{I'_y} + \frac{\overline{c} M_{\dot{w}} Z_{\tau}}{I'_y \left(m' - \frac{\overline{c}}{V_0} Z_{\dot{w}}\right)}$

 Table A2.7
 Concise lateral aerodynamic stability derivatives

Concise derivative	Equivalent expressions in terms of dimensional derivatives	Equivalent expressions in terms of dimensionless derivatives
y_v	$\frac{\overset{\circ}{Y}_{v}}{m}$	$\frac{Y_{\nu}}{m'}$
y_p	$\frac{\stackrel{\circ}{Y}_p + mW_e}{m}$	$\frac{(bY_p + m'W_e)}{m'}$
y_r	$\frac{\left(\stackrel{\circ}{Y}_r - mU_e\right)}{m}$	$\frac{(bY_r - m'U_e)}{m'}$
y_{ϕ}	$g\cos heta_e$	$g\cos\theta_e$
y_{ψ}	$g\sin heta_e$	$g\sin heta_e$
l_{ν}	$\frac{\left(I_z \overset{\circ}{L}_v + I_{xz} \overset{\circ}{N}_v\right)}{(I_x I_z - I_{xz}^2)}$	$\frac{(I_z'L_v + I_{xz}'N_v)}{(I_x'I_z' - I_{xz}'^2)}$
l_p	$\frac{\left(I_z \overset{\circ}{L}_p + I_{xz} \overset{\circ}{N}_p\right)}{(I_x I_z - I_{xz}^2)}$	$\frac{(I_z'L_p + I_{xz}'N_p)}{(I_x'I_z' - I_{xz}'^2)}$
l_r	$\frac{\left(I_z \overset{\circ}{L}_r + I_{xz} \overset{\circ}{N}_r\right)}{(I_x I_z - I_{xz}^2)}$	$\frac{(I_z'L_r + I_{xz}'N_r)}{(I_z'I_z' - I_{yz}'^2)}$
l_{ϕ}	0	0
l_{ψ}	0	0
$n_{\scriptscriptstyle \mathcal{V}}$	$\frac{\left(I_x \overset{\circ}{N}_v + I_{xz} \overset{\circ}{L}_v\right)}{(I_x I_z - I_{xz}^2)}$	$\frac{(I'_x N_v + I'_{xz} L_v)}{(I'_x I'_z - I'^2_{xz})}$
n_p	$\frac{\left(I_x \stackrel{\circ}{N}_p + I_{xz} \stackrel{\circ}{L}_p\right)}{\left(I_x I_z - I_{xz}^2\right)}$	$\frac{(I_x'N_p + I_{xz}'L_p)}{(I_x'I_z' - I_{xz}'^2)}$
n_r	$\frac{\left(I_{x}\overset{\circ}{N}_{r}+I_{xz}\overset{\circ}{L}_{r}\right)}{(I_{x}I_{z}-I_{xz}^{2})}$	$\frac{(I_x'N_r + I_{xz}'L_r)}{(I_x'I_z' - I_{xz}'^2)}$
n_{ϕ}	0	0
n_{ψ}	0	0

 Table A2.8
 Concise lateral control derivatives

Equivalent expressions in terms of dimensional derivatives	Equivalent expressions in terms of dimensionless derivatives
$\frac{\mathring{Y}_{\xi}}{}$	$\frac{V_0Y_{\xi}}{m'}$
$\begin{pmatrix} m \\ (I_z \mathring{L}_{\xi} + I_{xz} \mathring{N}_{\xi}) \end{pmatrix}$	m' $V_0(I_z'L_\xi + I_{xz}'N_\xi)$
$(I_x I_z - I_{xz}^2)$	${(I'_xI'_z-I'^2_{xz})}$
$(I_xI_z-I_{xz}^2)$	$\frac{V_0(I'_xN_\xi + I'_{xz}L_\xi)}{(I'_xI'_z - I'^2_{xz})}$
m	$\frac{V_0 Y_{\zeta}}{m'}$
$\frac{\left(I_z L_\zeta + I_{xz} N_\zeta\right)}{\left(I_x I_z - I_{yz}^2\right)}$	$\frac{V_0(I_z'L_\zeta + I_{xz}'L_\zeta)}{(I_x'I_z' - I_{yz}'^2)}$
$\frac{\left(I_x \overset{\frown}{N}_\zeta + I_{xz} \overset{\frown}{L}_\zeta\right)}{\left(I_x I_z - I_{xz}^2\right)}$	$\frac{V_0(I_z'N_{\zeta} + I_{xz}'L_{\zeta})}{(I_z'I_z' - I_{zz}'^2)}$
	of dimensional derivatives $ \frac{\overset{\circ}{Y}_{\xi}}{m} \\ \frac{\left(I_{z}\overset{\circ}{L}_{\xi} + I_{xz}\overset{\circ}{N}_{\xi}\right)}{(I_{x}I_{z} - I_{xz}^{2})} \\ \frac{\left(I_{x}\overset{\circ}{N}_{\xi} + I_{xz}\overset{\circ}{L}_{\xi}\right)}{(I_{x}I_{z} - I_{xz}^{2})} \\ \frac{\overset{\circ}{Y}_{\zeta}}{m} \\ \frac{\left(I_{z}\overset{\circ}{L}_{\zeta} + I_{xz}\overset{\circ}{N}_{\zeta}\right)}{(I_{x}I_{z} - I_{xz}^{2})} $