### **Lecture 31 Beam Deflection**



### **Boundary Conditions**

| Туре                   | Symbol*        |  |  |
|------------------------|----------------|--|--|
| Fixed<br>End           | X=0            |  |  |
| Simple<br>Support      |                |  |  |
| Free<br>End            |                |  |  |
| Concentrated<br>Force  | P <sub>0</sub> |  |  |
| Concentrated<br>Couple |                |  |  |



1: 
$$y(0) = 0$$
,  $\theta(0) = y'(0) = 0$ ;

**2**: 
$$y(0) = 0$$
,  $\kappa(0) = M(0) = EIy''(0) = 0$ ;

**3**: 
$$M(0) = EIy''(0) = 0$$
,  $V(0) = EIy'''(0) = 0$ ;

4: 
$$M(0) = EIy''(0) = 0$$
,  $V(0) = EIy'''(0) = P_0$ ;

5: 
$$M(0) = EIy''(0) = -M_0$$
,  $V(0) = EIy'''(0) = 0$ ;

Equation of the Elastic Curve (II)  $EIy^{(iv)}(x) = -w(x)$ :

$$(1)V(x) = EIy'''(x) = \int_0^x -w(t_1)dt_1 + C_1$$
, so  $C_1 = V(0) = EIy'''(0)$ ;

(2) 
$$M(x) = EIy''(x) = \int_0^x \int_0^{t_2} -w(t_1)dt_1dt_2 + C_1x + C_2,$$
  
so  $C_2 = M(0) = EIy''(0);$ 

(3) 
$$EI\theta = EIy'(x) = \int_0^x \int_0^{t_3} \int_0^{t_2} -w(t_1)dt_1dt_2dt_3 + C_1\frac{x^2}{2} + C_2x + C_3,$$
  
so  $C_3 = EI\theta(0);$ 

(4) 
$$EIy(x) = \int_0^x \int_0^{t_4} \int_0^{t_3} \int_0^{t_2} -w(t_1)dt_1dt_2dt_3dt_4 + C_1\frac{x^3}{6} + C_2\frac{x^2}{2} + C_3x + C_4$$
, so  $C_4 = EIy(0)$ ;

**Remark:** In a given problem, one cannot know all four boundary conditions at one end. One can only find two boundary conditions at a given end.

#### **Example I**

 $[y_A = 0]$ 

 $[M_{\Lambda}=0]$ 



$$w(x) = w_0$$

$$w(x) = w_0 \qquad EIy^{(iv)} = -w_0$$

[Solution]

$$EIy''' = -w_0x + C_1$$

$$EIy'' = -\frac{w_0 x^2}{2} + C_1 x + C_2, \quad (C_2 = M(0) = 0)$$

Based on M(L) = 0,

$$\rightarrow -w_0 L^2/2 + C_1 L = 0, \rightarrow C_1 = \frac{1}{2} w_0 L = V(0)$$

$$EIy' = -\frac{w_0 x^3}{6} + \frac{w_0 L x^2}{4} + C_3$$

 $[y_B = 0]$ 

 $[M_B = 0]$ 

$$EIy(x) = -\frac{w_0 x^4}{24} + \frac{w_0 L x^3}{12} + C_3 x + C_4$$
  $y(0) = 0, \rightarrow C_4 = 0$ 

$$EIy(L) = -\frac{w_0 L^4}{24} + \frac{w_0 L^4}{12} + C_3 L = 0 \rightarrow C_3 = -\frac{w_0 L^3}{24} = \theta(0)$$

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$V(0) = \frac{w_0 l}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2}$$



$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left( 4x^3 - 6Lx^2 + L^3 \right) \frac{}{-\frac{l^3 w_0}{24EI}} \frac{}{\uparrow} \frac{l^3 w_0}{}$$

$$y(x) = -\frac{w_0}{24FL} \left[ x^4 - 2Lx^3 + L^3x \right]$$





**Example II** Find the deflection of a cantilever beam with constant bending moment.

B.C.: 
$$y(0) = 0$$
 and  $y'(0) = 0$ 

$$M(x) = -M_0$$

$$\frac{d^2y}{dx^2} = \frac{M(x)}{EI} = -\frac{M_0}{EI};$$

$$\frac{dy}{dx} = -\frac{M_0x}{EI} + C_1, \quad C_1 = 0.$$

$$y(x) = -\frac{M_0 x^2}{2EI} + C_2, \quad C_2 = 0.$$

This is not a circle!

#### Remark

(1) y(x) — the deflection of the beam at given location of a cross-section.

We made two approximations:

 $d\ell pprox dx$ 

$$y' = \tan \theta \approx \theta$$
, and  $\frac{d\theta}{d\ell} \approx \frac{d\theta}{dx} = y''$ 

- (2)  $y'(x) \approx \theta(x)$  the rotation at the specific cross section;
- (3)  $y''(x) \approx \kappa = 1/\rho$ —- the curvature at location x, which is related with  $EIy''(x) \approx M(x)$  the internal moment;

(4) 
$$V(x) = \frac{dM(x)}{dx} = EIy'''(x)$$
 — the internal shear force.

Recall

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$

In general

$$\theta = \frac{dy}{d\ell}$$
 and  $\tan \theta = \frac{dy}{dx} \rightarrow \theta = \tan^{-1} y'$ 



$$d\ell = \sqrt{dx^2 + dy^2} = \sqrt{1 + (y')^2} dx$$

## Remark: Example II





$$\rho d\theta = d\ell$$
 
$$\kappa = \frac{1}{\rho} = \frac{d\theta}{d\ell} = \frac{d\theta}{dx} \frac{dx}{d\ell} = \cos\theta \frac{d\theta}{dx}$$

$$\rightarrow \cos\theta d\theta = \kappa dx \sin\theta = \kappa x + C_1$$

Consider 
$$x = 0, y'(0) = 0 \rightarrow C_1 = 0.$$

Since 
$$\frac{dy}{dx} = \tan \theta = \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{\kappa x}{\sqrt{1 - (\kappa x)^2}}$$

which leads to

$$y(x) = \frac{1}{\kappa} \sqrt{1 - (\kappa x)^2} + C_2$$

Consider  $x = 0, y(0) = 0 \rightarrow C_2 = -\rho$ . This leads to

$$x^{2} + (y + \rho)^{2} = \frac{1}{\kappa^{2}} = \rho^{2}$$

A Circle!

### 1. What is the bending moment in this beam?

$$M = \frac{EI}{R + h/2}$$



#### Golden Gate Bridge



$$y(0) = 0, y'(0) = 0$$

$$w_0$$

 $V(0) = \frac{w_0 L}{2}$ 

$$y(L) = 0, y'(L) = 0$$



$$EIy^{(iv)} = -w_0$$

$$EIy''' = -w_0x + C_1$$

$$C_1 = \frac{w_0 L}{2}$$

$$EIy'' = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} + C_2,$$

$$EIy' = -\frac{w_0 x^3}{6} + \frac{w_0 L x^2}{4} + C_2 x + C_3 \qquad y'(0) = 0 \to C_3 = 0$$

$$y'(0) = 0 \to C_3 = 0$$

$$-\frac{w_0 L^3}{6} + \frac{w_0 L^3}{4} + C_2 L = 0 \rightarrow C_3 = -\frac{w_0 L^2}{12}$$

$$EIy(x) = -\frac{w_0 x^4}{24} + \frac{w_0 L x^3}{12} - \frac{w_0 L^2 x}{12} + C_4$$

$$y(0) = 0 \to C_4 = 0$$

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} - \frac{w_0 L^2}{12}$$

$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left( 4x^3 - 6Lx^2 + 2L^2x \right)$$

$$y(x) = -\frac{w_0}{24EI} \left( x^4 - 2Lx^3 + L^2x^2 \right)$$



$$y_{max} = -\frac{w_0 l^4}{384EI}$$



# **Compare**

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$V(0) = \frac{w_0 l}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2}$$



$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left( 4x^3 - 6Lx^2 + L^3 \right) \frac{1}{24EI} \frac{1}{1} \frac{1}{24EI} \frac{1}{1} \frac{1}{24EI} \frac{1}{1} \frac{1}{$$

$$y(x) = -\frac{w_0}{24EI} \left[ x^4 - 2Lx^3 + L^3x \right]$$





$$x=0, y(0) = 0;$$
  
 $x=0, M(0) = 0$ 



$$M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 L x}{2}$$





$$M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2} - \frac{w_0 L^2}{12}$$

For the same external load, the statistically indeterminant system has lower value of the maximum internal force. However, ....



$$y(x) = -\frac{w_0}{24EI} [x^4 - 2Lx^3 + L^3x]$$

$$y_{max} = -\frac{5w_0 L^4}{(16 \times 24)EI}$$

$$= -\frac{5M_{max} L^2}{48EI}$$

$$M_{max} = w_0 L^2/8$$

$$M_{max} = 9.6|y_{max}|EI/L^2$$



$$y(x) = -\frac{w_0}{24EI} \left( x^4 - 2Lx^3 + L^2x^2 \right)$$

$$y_{max} = -\frac{w_0 L^4}{(16 \times 24)EI}$$

$$= -\frac{M_{max} L^2}{EI}$$

$$M_{max} = w_0 L^2 / 24$$

$$M_{max} = 16|y_{max}|EI/L^2$$

For the same maximum deflection, the statistically determinant system has lower value of the maximum internal force.

# San Francisco 1989 Earthquake



**Golden Gate Bridge** 



Oakland Bay Bridge

.....whereas for the golden gate bridge, its flexible suspension structure might have been its salvation, .....