

PICO-PI-IMX6UL

NXP i.MX6Ultralite

February 24, 2017

TABLE OF CONTENTS

1.	PICO-PI-IMX6UL Product Overview	3
	1.1. PICO-IMX6UL System-on-Module Overview	4
	1.2. PICO-PI-IMX6UL Carrier Baseboard Overview	5
2.	Core Components	6
	2.1. NXP i.MX6Ultralite Cortex-A7 Processor	6
	2.2. NXP PF3000 Power Management IC (PMIC)	7
	2.3. Memory (SKHynix)	8
	2.4. eMMC Storage (Kingston)	8
	2.5. Broadcom BCM4343W WiFi/Bluetooth SiP Module	9
3.	PICO-PI-IMX6UL Interfaces and Connectors	.12
	3.1. Power Input Connector	.12
	3.2. System RESET Button	.12
	3.3. Fast Ethernet	.13
	3.4. Audio Interface	.14
	3.5. Universal Serial Bus (USB) Host Interface	.15
	3.6. Universal Serial Bus (USB) OTG Interface	.15
	3.7. Debug Interface	.16
	3.8. Serial Boot or eMMC Boot Control Pins	.17
	3.9. Expansion Header Pins	.18
	3.10. Display and Touch Connector	.21
4.	Booting up the PICO-PI-IMX6UL	.24
	4.1.1. Overview	.24
	4.1.2 i.MX6UL boot process details	.24
	4.1.3 Changing PICO-PI-IMX6UL boot mode	.24
	4.1.4 Preparing a bootable software image	.26
	4.1.4.1 Procedure overview	.26
	4.1.4.2 eMMC boot overview	.26
	4.1.4.3 Preparing an OS image	.26
	4.1.4.4 Creating the image file from a block device	.27
	4.2. Programming PICO-PI-IMX6UL using a Windows host	.28
	4.2.1. Preparing the setup	.28
	4.2.2. Using sb_loader	.29
	4.2.3. Using WinDiskImager to flash the eMMC	.31
	4.3. Programming PICO-PI-IMX6UL eMMC using a Linux host	.32
	4.3.1. Using imx_usb tool and flashing the eMMC	.32
	4.3.2. Copying files to eMMC without an image file	.32
5.	PICO-IMX6UL Compute Module Pin Assignment	.33
6.	PICO-IMX6UL Compute Module Pinmux Overview	40
7.	Disclaimer and Important Notice	.43
8.	Schematics	.44

1. PICO-PI-IMX6UL Product Overview

The PICO-PI-IMX6UL is a 2 board development board consisting of a System-on-Module and a carrier baseboard and optimized for the Internet-of-Things (IoT).

Figure 1 - PICO-PI-IMX6UL IC Identification and Overview

Figure 2 - PICO-PI-IMX6UL Connector Overview

RGB TTL Display interface

Display Selection Switch

33 pin Camera FPC (not available on i.MX6UL)

Figure 3 – PICO-PI-IMX6UL Bottom Side Connector Overview

1.1. PICO-IMX6UL System-on-Module Overview

The PICO-IMX6UL System-on-Module (PICO-IMX6UL-EMMC) has 3 Hirose high-speed 70 pin board-to-board connectors and integrates the NXP i.MX6Ultralite, Memory, eMMC, Power Management IC (PMIC) and WiFi / Bluetooth on the module.

Figure 4 - PICO-IMX6UL System-on-Module

Figure 5 - PICO-IMX6UL System-on-Module Signal Overview

1.2. PICO-PI-IMX6UL Carrier Baseboard Overview

The PICO-PI-IMX6UL Carrier Baseboard (PICO-PI-FL) has 3 Hirose high-speed 70 pin board-to-board connectors that connect to the System-on-Module and provides the real-world interfaces such as audio, network, USB and a large number of signals on the various pin headers.

Figure 6 - PICO-PI-FL Carrier Board

2. Core Components

2.1. NXP i.MX6Ultralite Cortex-A7 Processor

The i.MX 6UltraLite is an ultra-efficient processor family with featuring Freescale's advanced implementation of the single ARM Cortex®-A7 core, which operates at speeds of up to 528 MHz.

- The device is composed of the following major subsystems:
 - Single-core ARM Cortex-A7 MPCoreTM Platform
 - o 32 KBytes L1 Instruction Cache
 - o 32 KBytes L1 Data Cache
 - o Private Timer and Watchdog
 - TrustZone support
 - Cortex-A7 NEON MPE (Media Processing Engine) Co-processor
- PXP—PiXel Processing Pipeline for imagine resize, rotation, overlay and CSC. Offloading key pixel processing operations are required to support the LCD display applications.

Figure 7 - NXP i.MX6Ultralite Processor Blocks

2.2. NXP PF3000 Power Management IC (PMIC)

The PICO-IMX6UL has on onboard NXP PF3000 power management integrated circuit (PMIC) that features a configurable architecture supporting the numerous outputs with various current ratings as well as programmable voltage and sequencing required by the components on the PICO-IMX6UL-Compute Module.

To perform a hard-reset of the PICO-IMX6UL a software reset signal can be implemented.

CPU BALL	CPU PAD NAME	Pinmux (mode)	Signal	٧	1/0	Description
E9	LCD_RESET	Icdif.RESET (mode0)	RESET	3V3	I	Connected to the PWRON signal of PMIC

The PICO-IMX6UL Compute Module as well has an RESET signal routed on connector E1_36 this pin is connected to the RESET Button on the PICO-PI-IMX6UL. Simply pressing this button will RESET the PICO-PI-IMX6UL.

Connector	Signal	٧	1/0	Description
E1_36	RESET	3V3	-	Connected to the PWRON signal of PMIC on the PICO Compute Module. Connected to the RESET Button on the PICO-PI-IMX6UL.

Figure 8 - PICO-PI-IMX6UL Reset Button Location

2.3. Memory (SKHynix)

The PICO-IMX6UL integrates 512MB (4Gbit) Double Data Rate III (DDR3) Synchronous DRAM in a single (16 bit) channel configuration.

SK Hynix 4Gbit low power Double Data Rate III (DDR3L) Synchronous DRAM, ideally suited for the main memory applications which requires large memory density, high bandwidth and low power operation at 1.35V.

More information can be retrieved from SKHynix.

2.4. eMMC Storage (Kingston)

The PICO-IMX6UL onboard 4GB eMMC device is connected on the SD1 pins of the i.MX6Ultralite processor in an 8 bit width configuration.

Kingston e•MMC[™] products follow the JEDEC e•MMC[™] 4.5 standard. It is an ideal universal storage solutions for many electronic devices, including smartphones, tablet PCs, PDAs, eBook readers, digital cameras, recorders, MP3, MP4 players, electronic learning products, digital TVs and set-top boxes. E•MMC[™] encloses the MLC NAND and e•MMC[™] controller inside as one JEDEC standard package, providing a standard interface to the host. The e•MMC[™] controller directly manages NAND flash, including ECC, wear-leveling, IOPS optimization and read sensing.

The Kingston NAND Device is fully compatible with the JEDEC Standard Specification No.JESD84-B45.

More information can be retrieved from Kingston.

2.5. Broadcom BCM4343W WiFi/Bluetooth SiP Module

The PICO-IMX6UL comes with an onboard WiFI/Bluetooth SIP module. The 802.11bgn + BT SiP module is a small sized BGA mounted module that provides full function of 802.11bgn and Bluetooth class 4.0 +HS

The small size & low profile physical design make it easier for system design to enable high performance wireless connectivity without space constrain. The low power consumption and excellent radio performance make it the best solution for OEM customers who require embedded Wi-Fi + Bluetooth features.

The SIP module is based on Broadcom BCM4343W chipset which is a WiFi + BT SOC. The Radio architecture & high integration MAC/BB chip provide excellent sensitivity with rich system performance.

In addition to WEP 64/128, WPA and TKIP, AES, CCX is supported to provide the latest security requirement on your network.

The SiP module is designed to operate with a single antenna for WiFi and Bluetooth to be connected to the u.FL connector (separate purchase, SKU: "WBANTENNAKIT")

Table 1 - WiFi Signal Description

CPU BALL	PAD NAME	Pinmux (mode)	Signal	I/O	Description
D7	NAND_DATA00	usdhc2.DATA0 (mode1)	SDIO_D0	I/O	MMC/SDIO Data bit 0
B7	NAND_DATA01	usdhc2.DATA1 (mode1)	SDIO_D1	I/O	MMC/SDIO Data bit 1
A7	NAND_DATA02	usdhc2.DATA2 (mode1)	SDIO_D2	I/O	MMC/SDIO Data bit 2
D6	NAND_DATA03	usdhc2.DATA3 (mode1)	SDIO_D3	1/0	MMC/SDIO Data bit 3
C8	NAND_WE_B	usdhc2.CMD (mode1)	SDIO_CMD	I/O	MMC/SDIO Command
D8	NAND_RE_B	usdhc2.CLK (mode1)	SDIO_CLK	I/O	MMC/SDIO Clock
C6	NAND_DATA04	gpio4.IO[6] (mode5)	WL_HOST_WAKE	0	General purpose interface pin. This pin is high-impedance on power up and reset. Subsequently, it becomes an input or output through software control. This pin has a programmable weak pull-up/down.
A6	NAND_DATA06	gpio4.IO[8] (mode5)	WL_REG_ON	-	Used by PMU (OR-gated with BT_REG_ON) to power up or power down internal BCM4339 regulators used by the WLAN section. This pin is also a low-asserting reset for WLAN only (Bluetooth is not affected by this pin).

Table 2 - Bluetooth Signal Description

CPU BALL	PAD NAME	Pinmux (mode)	Signal	I/O	Description
M16	GPIO1_IO04	uart5.TX (mode8)	BT_UART_RXD	I	Bluetooth UART Serial Input. Serial data input for the HCI UART Interface
M17	GPIO1_IO05	uart5.RX (mode8)	BT_UART_TXD	Ο	Bluetooth UART Serial Output. Serial data output for the HCI UART Interface.
M15	GPIO1_IO09	uart5.CTS_B (mode8)	BT_UART_CTS	I/O	Bluetooth UART Clear to Send. Active-low clear-to- send signal for the HCI UART interface.
N17	GPIO1_IO08	uart5.RTS_B (mode8)	BT_UART_RTS	I/O	Bluetooth UART Request to Send. Active-low request-to-send signal for the HCI UART interface.
N14	JTAG_TRST_B	sai2.TX_DATA (mode2)	BT_PCM_IN	I	PCM data input
M14	JTAG_TCK	sai2.RX_DATA (mode2)	BT_PCM_OUT	0	PCM data output
N16	JTAG_TDI	sai2.TX_BCLK (mode2)	BT_PCM_CLK	I/O	PCM clock
N15	JTAG_TDO	sai2.TX_SYNC (mode2)	BT_PCB_SYNC	I/O	PCM sync signal
N9	SNVS_TAMPER8	gpio5.IO[8] (mode5)	BT_WAKE	I	Bluetooth device wake-up: Signal from the host to the module indicating that the host requires attention. • Asserted: Bluetooth device must wake-up or remain awake. • Deserted: Bluetooth device may sleep when sleep criteria are met. The polarity of this signal is software configurable and can be asserted high or low.
R6	SNVS_TAMPER9	gpio5.IO[9] (mode5)	BT_RST_N	I	Low asserting reset for BT core
B6	NAND_DATA05	gpio4.IO[7] (mode5)	BT_HOST_WAKE	0	Host UART wake up. Signal from the module to the host indicating that the module requires Attention. • Asserted: Host device must wake-up or remain awake. • Deserted: Host device may sleep when sleep criteria are met. The polarity of this signal is software configurable and can be asserted high or low.

3. PICO-PI-IMX6UL Interfaces and Connectors

3.1. Power Input Connector

The PICO-PI-IMX6UL can be easily powered over the USB Type-C cable.

Figure 10 – PICO-PI-IMX6UL USB Type-C Location

3.2. System RESET Button

Figure 11 – PICO-PI-IMX6UL Reset Button Location

3.3. Fast Ethernet

The PICO-PI-IMX6UL features a 10/100 Mbit/s Fast Ethernet MAC compliant with the IEEE802.3-2002 standard. The MAC layer provides compatibility with half- or full-duplex 10/100 Mbit/s Ethernet LANs.

Figure 12 - PICO-PI-IMX6UL RJ-45 Network Connector Location

3.4. Audio Interface

The PICO-PI-IMX6UL comes with an Audio jack which is compliant with the CTIA standard. A standard mobile phone headset will work.

Figure 13 - PICO-PI-IMX6UL Audio Jack Location

Figure 14 - PICO-PI-IMX6UL Audio I²S Signal Location

Detail	Description				
9109011 2129dV	Since the PICO-PI-MX6UL only has a single I ² S channel.				
and soccoccess.	Please select the jumpers as the picture.				

3.5. Universal Serial Bus (USB) Host Interface

The PICO-PI-IMX6UL features a standard USB 2.0 Host Connector.

Figure 15 - PICO-PI-IMX6UL USB HOST Connector Location

3.6. Universal Serial Bus (USB) OTG Interface

The PICO-PI-IMX6UL incorporates a single USB Host/OTG controller which also function as the system power input.

The signals are routed to a USB Type-C connector.

Figure 16- PICO-PI-IMX6UL USB OTG Type-C Connector Location

3.7. Debug Interface

The PICO-PI-IMX6UL serial debug interface can be easily connected with a micro-USB cable.

The debug interface can be found on the PICO-PI-IMX6UL at the following physical location and in software can be accessed over UART6.

Figure 17 – PICO-PI-IMX6UL Serial Debug Location

3.8. Serial Boot or eMMC Boot Control Pins

The PICO-PI-IMX6UL has a number of pins to override the default boot media (eMMC) and enter in Serial Boot Loader mode.

Figure 18 - PICO-PI-IMX6UL Boot Control Pins

3.9. Expansion Header Pins

The PICO-PI-IMX6UL has a number of expansion headers that can be used to connect sensors, motors, and external devices.

PIN	i.MX6UL	CPU PAD NAME	Signal	V	1/0	Description
JP1_1			NC			Not Connected
JP1_2	PMIC	RESET	RESET	3V3		Reset power signal
JP1_3			NC			Not Connected
JP1 4	J16	UART2 RXD	ECSPI3 SCLK	3V3	0	Serial Peripheral
JF 1_4	310	UAINTZ_INAD	LCGF13_GCLK	373	O	Interface clock signal
						Serial Peripheral
JP1_5	J15	UART2_RTS	ECSPI3_MISO	3V3	I	Interface master input
						slave output signal
						Serial Peripheral
JP1_6	H14	UART2_CTS	ECSPI3_MOSI	3V3	0	Interface master output
						slave input signal
JP1_7			3V3 Power	3V3	Р	3V3 Power
JP1_8			GND		Р	Ground

PIN	i.MX6UL	CPU PAD NAME	Signal	V	1/0	Description
JP2_1	F14	ENET1_TX_CLK	PWM7_OUT	3V3	I/O	General Purpose Input Output with PWM control
JP2_2	E4	CSI_DATA00	GPIO4_IO21	3V3	I/O	General Purpose Input Output
JP2_3	H16	UART3_RXD	UART3_RX	3V3	I	Universal Asynchronous Receive Transmit receive data signal
JP2_4	H17	UART3_TXD	UART3_TXD	3V3	0	Universal Asynchronous Receive Transmit transmit data signal
JP2_5	F17	UART5_TXD	I2C2_SCL	3V3	I/O	I ² C bus clock line
JP2_6	G13	UART5_RXD	I2C2_SDA	3V3	I/O	I ² C bus data line
JP2_7			5V Power	5V	Р	5V Power
JP2_8			GND		Р	Ground

Figure 20 - PICO-PI-IMX6UL Expansion Header Location

PIN	i.MX6UL	CPU PAD NAME	Signal	V	I/O	Description
JP8_1			3V3 Power	3V3	Р	3V3 Power
JP8_2			5V Power	5V	Р	5V Power
JP8_3	G13	UART5_RXD	I2C2_SDA	3V3	I/O	I ² C bus data line
JP8_4			5V Power	5V	Р	5V Power
JP8_5	F17	UART5_TXD	I2C2_SCL	3V3	I/O	I ² C bus clock line
JP8_6			GND		Р	Ground
JP8_7	G14	UART3_RTS	UART3_RTS	3V3	0	Universal Asynchronous Receive Transmit request to send signal
JP8_8	H17	UART3_TXD	UART3_TXD	3V3	0	Universal Asynchronous Receive Transmit transmit data signal
JP8_9			GND		Р	Ground
JP8_10	H16	UART3_RXD	UART3_RXD	3V3	I	Universal Asynchronous Receive Transmit receive data signal
JP8_11	F14	ENET1_TX_CLK	PWM7_OUT	3V3	I/O	General Purpose Input Output with PWM control
JP8_12	H15	UART3_CTS	UART3_CTS	3V3	0	Universal Asynchronous Receive Transmit clear to send signal
JP8_13	D15	ENET1_RX_ER	PWM8_OUT	3V3	I/O	General Purpose Input Output with PWM control
JP8_14			GND		Р	Ground
JP8_15			NC			Not Connected
JP8_16	F16	ENET1_RXD0	CAN1_TX	3V3	I/O	CAN (controller Area Network) transmit signal
JP8_17			3V3 Power	3V3	Р	3V3 Power
JP8_18	E17	ENET1_RXD1	CAN1_RX	3V3	I/O	CAN (controller Area Network) receive signal
JP8_19	H14	UART2_CTS	ECSPI3_MOSI	3V3	0	Serial Peripheral Interface master output slave input signal
JP8_20			GND		Р	Ground

PICO-PI-IMX6UL HARDWARE MANUAL – VER 1.00 – FEB 24 2017

JP8_21	J15	UART2_RTS	ECSPI3_MISO	3V3	I	Serial Peripheral Interface master input slave output signal
JP8_22			NC			Not Connected
JP8_23	J16	UART2_RXD	ECSPI3_SCLK	3V3	0	Serial Peripheral Interface clock signal
JP8_24			NC			Not Connected
JP8_25			GND		Р	Ground
JP8_26	J17	UART2_TXD	ECSPI3_SS0	3V3	I/O	Serial Peripheral Interface Chip Select 1 signal
JP8_27	K16	UART1_RXD	I2C3_SDA	3V3	I/O	I ² C bus data line
JP8_28	K14	UART1_TXD	I2C3_SCL	3V3	I/O	I ² C bus clock line
JP8_29	E4	CSI_DATA00	GPIO4_IO21	3V3	I/O	General Purpose Input Output
JP8_30			GND		Р	Ground
JP8_31	E3	CSI_DATA01	GPIO4_IO22	3V3	I/O	General Purpose Input Output
JP8_32	E1	CSI_DATA03	GPIO4_IO24	3V3	I/O	General Purpose Input Output
JP8_33	E2	CSI_DATA02	GPIO4_IO23	3V3	I/O	General Purpose Input Output
JP8_34			GND		Р	Ground
JP8_35	F2	CSI_VSYNC	GPIO4_IO19	3V3	I/O	General Purpose Input Output
JP8_36	P11	SNVS_TAMPER2	GPIO5_IO02	3V3	I/O	General Purpose Input Output
JP8_37	K15	UART1_CTS	GPIO4_IO18	3V3	I/O	General Purpose Input Output
JP8_38	E16	ENET1_RX_EN	CAN2_TX	3V3	I/O	CAN (controller Area Network) transmit signal
JP8_39			GND		Р	Ground
JP8_40	E15	ENET1_TXD0	CAN2_RX	3V3	I/O	CAN (controller Area Network) receive signal

3.10. Display and Touch Connector

The PICO-PI-IMX6UL features a Touch and RGB TTL Display interface that can be connected directly to a multi-touch 24-bit LCD panel.

The following LCD displays have been tested:

Manufacturer	Partnumber	Description
TachNavian	TDD0500T000400DCAD	5 INCH 800 x 480 PCAP MULTI TOUCH LCD
TechNexion	TDP0500T800480PCAP	PANEL INCLUDING TOUCH CABLE
TachNavian	TDP0700T800480PCAP	7 INCH 800 x 480 PCAP MULTI TOUCH LCD
TechNexion		PANEL INCLUDING TOUCH CABLE

Figure 21 - PICO-PI-IMX6UL LCD Display FPC Connector Location

PIN	i.MX6UL	CPU PAD NAME	Signal	V	I/O	Description
LCD1 1			VLED+	21V7		LED Backlight Voltage
LCD1 2			VLED+	21V7		LED Backlight Voltage
LCD1 3			VLED-	GND	Р	Ground
LCD1 4			VLED-	GND	Р	Ground
LCD1 5			GND		Р	Ground
LCD1 6			VCOM	4V09		Common Voltage
LCD1 7			DVDD	3V3		Power for Digital Circuit
LCD1 8			MODE	3V3		DE/SYNC mode select
	Do	LOD ENABLE				LCD dot enable pin
LCD1_9	B8	LCD_ENABLE	LCDIF_ENABLE	3V3	0	signal
LCD1 10	C9	LCD VCVNC	LODIE VOVNO	21/2	0	LCD Vertical
LCD1_10	C9	LCD_VSYNC	LCDIF_VSYNC	3V3	0	Synchronization
LCD1 11	D9	TCD HEAVIC	I CDIE HOVNO	3V3	0	LCD Horizontal
LCD1_11	Da	LCD_HSYNC	LCDIF_HSYNC	373	0	Synchronization
LCD1_12	D11	LCD_DATA7	LCDIF_DATA7	3V3	0	LCD Pixel Data bit 7
LCD1_13	A10	LCD_DATA6	LCDIF_DATA6	3V3	0	LCD Pixel Data bit 6
LCD1_14	B10	LCD_DATA5	LCDIF_DATA5	3V3	0	LCD Pixel Data bit 5
LCD1_15	C10	LCD_DATA4	LCDIF_DATA4	3V3	0	LCD Pixel Data bit 4
LCD1_16	D10	LCD_DATA3	LCDIF_DATA3	3V3	0	LCD Pixel Data bit 3
LCD1_17	E10	LCD_DATA2	LCDIF_DATA2	3V3	0	LCD Pixel Data bit 2
LCD1_18	A9	LCD_DATA1	LCDIF_DATA1	3V3	0	LCD Pixel Data bit 1
LCD1_19	B9	LCD_DATA0	LCDIF_DATA0	3V3	0	LCD Pixel Data bit 0
LCD1_20	D13	LCD_DATA15	LCDIF_DATA15	3V3	0	LCD Pixel Data bit 15
LCD1_21	A12	LCD_DATA14	LCDIF_DATA14	3V3	0	LCD Pixel Data bit 14
LCD1_22	B12	LCD_DATA13	LCDIF_DATA13	3V3	0	LCD Pixel Data bit 13
LCD1_23	C12	LCD_DATA12	LCDIF_DATA12	3V3	0	LCD Pixel Data bit 12
LCD1_24	D12	LCD_DATA11	LCDIF_DATA11	3V3	0	LCD Pixel Data bit 11
LCD1_25	E12	LCD_DATA10	LCDIF_DATA10	3V3	0	LCD Pixel Data bit 10
LCD1_26	A11	LCD_DATA9	LCDIF_DATA9	3V3	0	LCD Pixel Data bit 9
LCD1_27	B11	LCD_DATA8	LCDIF_DATA8	3V3	0	LCD Pixel Data bit 8
LCD1_28	B16	LCD_DATA23	LCDIF_DATA23	3V3	0	LCD Pixel Data bit 23
LCD1_29	A14	LCD_DATA22	LCDIF_DATA22	3V3	0	LCD Pixel Data bit 22
LCD1_30	B14	LCD_DATA21	LCDIF_DATA21	3V3	0	LCD Pixel Data bit 21
LCD1_31	C14	LCD_DATA20	LCDIF_DATA20	3V3	0	LCD Pixel Data bit 20
LCD1_32	D14	LCD_DATA19	LCDIF_DATA19	3V3	0	LCD Pixel Data bit 19
LCD1_33	A13	LCD_DATA18	LCDIF_DATA18	3V3	0	LCD Pixel Data bit 18
LCD1_34	B13	LCD_DATA17	LCDIF_DATA17	3V3	0	LCD Pixel Data bit 17
LCD1_35	C13	LCD_DATA16	LCDIF_DATA16	3V3	0	LCD Pixel Data bit 16
LCD1_36			GND	-> /-	Р	Ground
LCD1_37	A8	LCD_CLK	LCDIF_CLK	3V3	0	LCD Pixel Clock
LCD1_38			GND	0) (0	P	Ground
LCD1_39			L/R	3V3		Left / Right Selection
LCD1_40			U/D	3V3		Up / Down Selection
LCD1_41			VGH	16V0	P	Gate ON Voltage
LCD1_42			VGL	-6V0	Р	Gate OFF Voltage
LCD1_43		DECET	AVDD	10V4	P	Power for Analog Circuit
LCD1_44		RESET	RESET	3V3	ı	Reset power signal
LCD1_45			NC	0) (0		Not Connected
LCD1_46			VCOM	3V3	1	Common voltage
LCD1_47			DITHB	3V3	1	Dithering function
LCD1_48			GND		Р	Ground
LCD1_49			NC			Not Connected
LCD1_50			NC			Not Connected

Figure 22 - PICO-PI-IMX6UL Touch Panel Connector Location

PIN	i.MX6UL	CPU PAD NAME	Signal	V	1/0	Description
TOUCH_1	L17	GPIO1_IO03	I2C1_SDA	3V3	0	I ² C bus data line
TOUCH_2	L14	GPIO1_IO02	I2C1_SCL	3V3	I/O	I ² C bus clock line
TOUCH_3			3V3 Power	3V3	Р	3V3 Power
TOUCH_4	G16	UART4_RXD	GPIO4_IO29	3V3	I/O	General Purpose Input Output
TOUCH_5	E1	CSI_DATA03	GPIO4_IO24	3V3	I/O	General Purpose Input Output
TOUCH_6			GND		Р	Ground

4. Booting up the PICO-PI-IMX6UL

4.1.1. Overview

The boot mode for the PICO-PI-IMX6UL is controlled with jumpers on the baseboard. Normally, the board is intended to boot from the on-board eMMC flash, but sometimes the board needs to be booted from an external source. This can happen for example if the eMMC contains a faulty bootloader. This document guides how the on-board eMMC flash of a PICO-PI-IMX6UL can be flashed from a host PC.

4.1.2 i.MX6UL boot process details

When the boot jumpers are set to eMMC boot, the ROM code will attempt to boot from eMMC. If there is no bootable software present, the board will revert to "serial download mode". The name "serial download mode" is slighlty misleading, since the mode has grown past UART communication and nowadays is a way to access the board over an USB OTG port, or in the case of PICO-PI-IMX6UL, the USB type C port.

4.1.3 Changing PICO-PI-IMX6UL boot mode

To force the board into serial download mode using a PICO-PI-IMX6UL, change the boot mode jumpers J1 to 1-2 and jumper J4 to 2-3, as pictured below.

With this jumper setting, the board will not even attempt to boot from eMMC, but always expect it to be programmed over the USB type C connector.

To set the boot mode to eMMC, restore the jumpers J1 to 2-3 and jumper J4 to 1-2 (as pictured below).

In this mode the board will attempt to boot from eMMC, but can in some circumstances revert to serial download mode. This can happen for instance if the eMMC is not bootable. Note that "half-booting" software, like a u-boot that does not initialize memory timings for correct operation, will be interpreted as booting. More technically, if the ROM code finds the correct signature 1kB into the eMMC, it considers the board bootable from eMMC. To verify your PICO-PI-IMX6UL is in serial download mode, connect a USB cable between the host PC and the PICO-PI-IMX6UL. Power up the board. If a USB device with name "Freescale Semiconductor in Recovery Mode" appears, the board is in serial download mode.

4.1.4 Preparing a bootable software image

This section explains how software should be laid out inside the eMMC for a successful boot. There are also steps how to prepare software to be programmed into the PICO-PI-IMX6UL eMMC.

4.1.4.1 Procedure overview

The procedure recommended here for programming the board is:

- 1. Prepare a file containing a bit-by-bit copy of what should be in eMMC (an "image" file). The layout of such files is described in sections 4.1.4.2 and 4.1.4.3.
- 2. Booting the board in serial download mode
- 3. Accessing the eMMC as a mass storage device (see chapters 4.2 and 4.3)
- 4. Copying the eMMC image file to the board
- 5. Booting the image

4.1.4.2 eMMC boot overview

This section describes how to use a Linux computer to prepare an image file of eMMC content. This step can be omitted, but is useful for creating image files which are easily distributable (since it is a all-in-one file).

A conventional Linux image consists of

- u-boot bootloader
- kernel
- devicetree
- root filesystem
- and sometimes, an initial ramdisk

The usual set up is that the kernel, device tree and the optional RAM disk is placed in a FAT partition as the first partition, and the OS filesystems occupies the remaining partitions. Linux systems usually occupy just the second partition, and in case a swap partition, also the third partition, but other operating systems can make use of more advanced partition schemes.

Convenient ways to prepare an image using a Linux computer is using a block device (like a USB stick or an SD card) or a loopback device. It is also possible to access the eMMC as a mass storage device and manually place the data in the right place. See section 4.3.x.

4.1.4.3 Preparing an OS image

This section describes how to prepare the eMMC contents so the system can boot. This is intended for those wanting to prepare their own image, and not to use an image already provided by someone else.

The device is assumed to be a block device (like USB stick or SD card), but can beneficially be the eMMC itself (see chapter 4.2 and 4.3 on how to access the eMMC as a block device on a host PC). Here the block device is denoted /dev/sdX; care must be taken that the right device is used.

First, partition your device. Leave the first 1MB (or so) unpartitioned so that the first partition starts about 1MB into the device. The reason for this is that the u-boot bootloader needs to reside in unpartitioned space in the beginning of the block device.

The first partition is usually a FAT partition containing the Linux kernel as a zImage and the device tree blob (dtb) file. If an initial ramdisk is used, the initrd files can also reside in the FAT partition.

The second partition is usually the Linux root file system. Keep in mind when partitioning that the eMMC is limited in size to approximately 4GB, and not let your image become too large to fit.

Then copy your bootloader (u-boot) 1kB into the image. On a Linux host, the following command can be used. Remember to replace /dev/sdX with the appropriate device or image file.

dd if=u-boot.imx of=/dev/sdX bs=1k seek=1 conv=notrunc oflag=dsync

Thereafter format the additional partitions, with the expected file systems, copy the files there.

4.1.4.4 Creating the image file from a block device

As a last step create the image file from your block device. This can be done using the following Linux commands: First list the partitions in the block device:

fdisk -lc /dev/sdX

The output looks something like:

Disk /dev/sdX: 3965 MB, 3965190144 bytes 122 heads, 62 sectors/track, 1023 cylinders

Units = cylinders of 7564 * 512 = 3872768 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x0005ffff

Device Boot	Start	End	d Blocks Id System
/dev/sdX1	2	4	8192+ 83 FAT12
/dev/sdX2	4	85	307200 83 Linux
/dev/sdX3	85	363	1048576 82 Linux swap

To extract the OS image from this issue the command

dd if=/dev/sdX of=image.img bs=3872768 count=85

The blocksize (bs= parameter) is taken from the line "Units = cylinders of 7564 * 512 = 3872768 bytes" and the count parameter is the end of the last non-swap partition, /dev/sdX2.

4.2. Programming PICO-PI-IMX6UL using a Windows host

This section guides on how to use a Windows 7 computer to access the eMMC on a PICO-PI-IMX6UL, and how to program an image file to the eMMC.

Tools needed:

- sb loader imx6ul.exe (or similar)
- a "bootbomb" file that can be dropped on the board, enabling it to be accessible as a USB Mass Storage device
- Windiskimager or similar tool that allows raw writing of block devices.
- An eMMC image file to be programmed to the eMMC flash of the board.
- And optionally, a serial terminal emulator program

For convenience, there is a downloadable tool package containing the three first items at:

http://www.wandboard.org/downloads/hobbit/hobbitboard_tools-20160322.zip

4.2.1. Preparing the setup

First attach a USB Type C peripheral cable to the board, and the other end to the host PC. Set the boot jumpers to serial download mode, power up the board, and verify that a "SE Blank 6UL" device appears (as below):

Next, download the tools package. Copy the folder inside the ZIP file to the Desktop.

4.2.2. Using sb_loader

Then start a command prompt by clicking on the start menu, and in the "Search programs and files" box enter "cmd" (see below):

In the command line interface, navigate to the PICO-PI-IMX6UL tools package and the sb_loader folder inside it by typing the following commands:

- cd Desktop
- cd hobbitboard_tools-20160322
- cd windows
- cd sb_loader

(see screenshot below)

Next run sb_loader to boot the image on the board. Issue the command:

sb_loader_imx6ul.exe -f ..\..\bootbomb-20160306.imx

The loader will push the image to the board, and a mass storage device will appear (in the example below it gets the letter F:)

4.2.3. Using WinDiskImager to flash the eMMC

Start win32diskimager, and open the image file that is to be used. In the image below the file pico-imx6ul-buildroot-2016030.img is used as an example.

NOTE: It is important that you use the mass storage device that appeared when using sb_loader, using the wrong device might corrupt your hard drive!

After WinDiskImager finishes, power off the board, set the boot jumpers back to eMMC boot and power up the board.

4.3. Programming PICO-PI-IMX6UL eMMC using a Linux host

This section describes how to program the eMMC using a Linux computer. The description below is less verbose as the one for Windows systems.

Tools needed are:

- imx usb loader
- a "bootbomb" file that can be dropped on the board, enabling it to be accessible as a USB Mass Storage device
- And, preferrably, an eMMC image file to be programmed to the eMMC flash of the board.

As above, the two first items are included in the tools package at:

http://www.wandboard.org/downloads/hobbit/hobbitboard_tools-20160322.zip

4.3.1. Using imx_usb tool and flashing the eMMC

Boot the board in serial download mode. Connect the USB type C cable to the board and the other end to the host PC.

It is possible to use the command 'lsusb' to verify that the board really is in serial download mode. If so, then there is a "Freescale Semiconductor" device present in the list:

Bus 002 Device 033: ID 15a2:007d Freescale Semiconductor, Inc.

Then drop the boot image on the board with the command

./imx_usb bootbomb.imx

After a few seconds a USB Mass Storage Device appears.

Now it is possilble to use commands like 'dd' to program the eMMC on the board, for instance copying an operating system image file to the board can be done with:

dd if=image.img of=/dev/sdX bs=1M oflag=dsync

where sdX is the mass storage device corresponding to the PICO-PI-IMX6UL EMMC.

After this, change the jumpers back to eMMC boot and reboot the board.

4.3.2. Copying files to eMMC without an image file

It is also possible to assemble an image directly in the eMMC of the PICO-PI-IMX6UL. To do so, perform the steps in chapter 4.1.4.3 using the Mass Storage block device presented after running the **imx_usb** tool.

5. PICO-IMX6UL Compute Module Pin Assignment

Want to make your own carrier baseboard and want to use the PICO-IMX6UL Compute Module.

Here is the complete pinout.

PIN	CPU BALL	CPU PAD NAME	Signal	٧	1/0	Description
E1_1			GND		Р	Ground
E1_2			VSYS		Р	System input power (4.0 to 5.25V)
E1_3	K13	GPIO1_IO00	USB_OTG1_PWR	3V3	ı	USB OTG ID Pin
E1_4			VSYS		Р	System input power (4.0 to 5.25V)
E1_5			GND		Р	Ground
E1_6			VSYS		Р	System input power (4.0 to 5.25V)
E1_7			NC			Not Connected
E1_8			3V3		Ρ	System 3.3V Output
E1_9			GND		Ρ	Ground
E1_10			3V3		Ρ	System 3.3V Output
E1_11			GND		Р	Ground
E1_12			1V8		Р	System 1.8V Output (same as E1 connector I/O voltage levels)
E1_13			GND		Ρ	Ground
E1_14			VSYS		Р	System input power (4.0 to 5.25V)
E1_15			GND		Р	Ground
E1_16	U15	USB_OTG1_DP	USB_OTG_DP	USB	I/O	Universal Serial Bus differential pair positive signal

PIN	CPU BALL	CPU PAD NAME	Signal	V	1/0	Description
E1_17	R8	ONOFF	SRC_RESET_B	3V3	I	Power ON button input signal
E1_18	T15	USB_OTG1_DN	USB_OTG1_DN	USB	I/O	Universal Serial Bus differential pair negative signal
E1_19	L15	GPIO1_IO01	GPIO1_IO01	1V8	I	Over current detect input pin to monitor USB power over current
E1_20	T12	USB_OTG1_VBUS	USB_OTG1_VBUS	5V	I/O	Universal Serial Bus power
E1_21	K17	GPIO1_IO06	USB_OTG_ PWR_WAKE	USB	I	Universal Serial Bus power enable
E1_22	E5	CSI_PIXCLK	UART6_RX	1V8	I	Universal Asynchronous Receive Transmit receive data signal
E1_23			NC			Not Connected
E1_24	F2	CSI_VSYNC	GPIO4_IO19	1V8	I/O	General Purpose Input Output
E1_25	F3	CSI_HSYNC	GPIO4_IO20	1V8	I/O	General Purpose Input Output
E1_26	E4	CSI_DATA00	GPIO4_IO21	1V8	I/O	General Purpose Input Output
E1_27	F5	CSI_MCLK	UART6_TX	1V8	0	Universal Asynchronous Receive Transmit transmit data signal
E1_28	E3	CSI_DATA01	GPIO4_IO22	1V8	I/O	General Purpose Input Output
E1_29			NC			Not Connected
E1_30	E2	CSI_DATA02	GPIO4_IO23	1V8	I/O	General Purpose Input Output
E1_31			NC			Not Connected
E1_32	E1	CSI_DATA03	GPIO4_IO24	1V8	I/O	General Purpose Input Output
E1_33	D15	ENET1_RX_ER	PWM8_OUT	1V8	I/O	General Purpose Input Output with PWM control
E1_34	K15	UART1_CTS	GPIO4_IO18	1V8	I/O	General Purpose Input Output
E1_35	F14	ENET1_TX_CLK	PWM7_OUT	1V8	I/O	General Purpose Input Output with PWM control
E1_36	PMIC	RESET	RESET	1V8	ı	Reset power signal
E1_37			NC			Not Connected
E1_38			NC			Not Connected
E1_39			NC NC			Not Connected
E1_40 E1_41	F47	LIADTE TVD	NC I2C2_SCL	1V8	I/O	Not Connected I ² C bus clock line
E1_41	F17 G17	UART5_TXD UART4_TXD	GPIO4_IO28	1V8	1/0	General Purpose Input Output
E1_43	G13	UART5_RXD	I2C2_SDA	1V8	I/O	I ² C bus data line
E1_44	G16	UART4_RXD	GPIO4_IO29	1V8	1/0	General Purpose Input Output
E1_45	K14	UART1_TXD	I2C3_SCL	1V8	I/O	I ² C bus clock line

PIN	CPU BALL	CPU PAD NAME	Signal	V	I/O	Description	
E1_46	H17	UART3_TXD	UART3_TXD	1V8	0	Universal Asynchronous Receive Transmit transmit data signal	
E1_47	K16	UART1_RXD	I2C3_SDA	1V8	I/O	I ² C bus data line	
E1_48	P11	SNVS_TAMPER2	GPIO5_IO02	1V8	I/O	General Purpose Input Output	
E1_49			NC			Not Connected	
E1_50	D2	CSI_DATA06	SAI1_RX_DATA	1V8	I	Integrated Interchip Sound (I ² S) channel receive data line	
E1_51			NC			Not Connected	
E1_52	D3	CSI_DATA05	SAI1_TX_BCLK	1V8	0	Integrated Interchip Sound (I ² S) channel word clock signal	
E1_53	J17	UART2_TXD	ECSPI3_SS0	1V8		Serial Peripheral Interface Chip Select 1 signal	
E1_54	D4	CSI_DATA04	SAI1_TX_SYNC	1V8	0	Integrated Interchip Sound (I ² S) channel frame synchronization signal	
E1_55	J16	UART2_RXD	ECSPI3_SCLK	1V8	0	Serial Peripheral Interface clock signal	
E1_56	D1	CSI_DATA07	SAI1_TX_DATA	1V8	0	Integrated Interchip Sound (I ² S) channel transmit data line	
E1_57	H14	UART2_CTS	ECSPI3_MOSI	1V8	0	Serial Peripheral Interface master output slave input signal	
E1_58			NC			Not Connected	
E1_59	J15	UART2_RTS	ECSPI3_MISO	1V8	I	Serial Peripheral Interface master input slave output signal	
E1_60			NC			Not Connected	
E1_61	H16	UART3_RXD	UART3_RX	1V8	I	Universal Asynchronous Receive Transmit receive data signal	
E1_62			NC			Not Connected	
E1_63	G14	UART3_RTS	UART3_RTS	1V8	0	Universal Asynchronous Receive Transmit request to send signal	
E1_64			NC			Not Connected	
E1_65	H15	UART3_CTS	UART3_CTS	1V8	0	Universal Asynchronous Receive Transmit clear to send signal	
E1_66			NC			Not Connected	
E1_67			NC			Not Connected	
E1_68			NC			Not Connected	
E1_69			NC			Not Connected	
E1_70			NC			Not Connected	

X1	PIN	CPU BALL	CPU PAD NAME	Signal	V	1/0	Description
X1_3	X1_1			GND		Р	Ground
X1,4	X1_2					Р	Ground
X1 5	X1_3						
X1 6							Not Connected
X1	X1_5						Not Connected
X1_8	X1_6						Not Connected
X1_9						Р	
X1_10	X1_8	B16	LCD_DATA23		3V3	0	LCD Pixel Data bit 23
X1_11	X1_9						
X1_12		A14	LCD_DATA22		3V3	0	LCD Pixel Data bit 22
X1_13							
X1_14		B14	LCD_DATA21		3V3		LCD Pixel Data bit 21
X1_15						Р	
X1_16		C14	LCD_DATA20		3V3	0	LCD Pixel Data bit 20
X1_17							
X1_18		D14	LCD_DATA19		3V3	0	
X1_19							Not Connected
X1_20		A13	LCD_DATA18	LCDIF_DATA18	3V3	0	LCD Pixel Data bit 18
X1_21	X1_19			GND		Р	
X1_22		B13	LCD_DATA17	LCDIF_DATA17	3V3	0	LCD Pixel Data bit 17
X1_23	X1_21			NC			Not Connected
X1_24	X1_22	C13	LCD_DATA16	LCDIF_DATA16	3V3	0	LCD Pixel Data bit 16
X1_25	X1_23			NC			Not Connected
X1_26 A12 LCD_DATA14 LCDIF_DATA14 3V3 O LCD Pixel Data bit 14 X1_27 NC Not Connected X1_28 B12 LCD_DATA13 LCDIF_DATA13 3V3 O LCD Pixel Data bit 13 X1_29 NC Not Connected X1_30 C12 LCD_DATA12 LCDIF_DATA12 3V3 O LCD Pixel Data bit 12 X1_31 GND P Ground X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 Management data X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B1	X1_24	D13	LCD_DATA15	LCDIF_DATA15	3V3	0	LCD Pixel Data bit 15
X1_27	X1_25			GND		Р	Ground
X1_28 B12 LCD_DATA13 LCDIF_DATA13 3V3 O LCD Pixel Data bit 13 X1_29 NC Not Connected X1_30 C12 LCD_DATA12 LCDIF_DATA12 3V3 O LCD Pixel Data bit 12 X1_31 GND P Ground X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data clock reference X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 10 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5		A12	LCD_DATA14	LCDIF_DATA14	3V3	0	LCD Pixel Data bit 14
X1_29 NC Not Connected X1_30 C12 LCD_DATA12 LCDIF_DATA12 3V3 O LCD Pixel Data bit 12 X1_31 GND P Ground X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 Synchronous	X1_27			NC			Not Connected
X1_30 C12 LCD_DATA12 LCDIF_DATA12 3V3 O LCD Pixel Data bit 12 X1_31 GND P Ground X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 </td <td>X1_28</td> <td>B12</td> <td>LCD_DATA13</td> <td>LCDIF_DATA13</td> <td>3V3</td> <td>0</td> <td>LCD Pixel Data bit 13</td>	X1_28	B12	LCD_DATA13	LCDIF_DATA13	3V3	0	LCD Pixel Data bit 13
X1_31 GND P Ground X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_ REF_CLK2 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3	X1_29			NC			Not Connected
X1_32 D12 LCD_DATA11 LCDIF_DATA11 3V3 O LCD Pixel Data bit 11 X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_ REF_CLK2 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3<	X1_30	C12	LCD_DATA12	LCDIF_DATA12	3V3	0	LCD Pixel Data bit 12
X1_33 F15 ENET1_TXEN ENET2_MDIC 3V3 Management data clock reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_ REF_CLK2 3V3 O LCD Pixel Data bit 6 X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 <td>X1_31</td> <td></td> <td></td> <td>GND</td> <td></td> <td>Р</td> <td>Ground</td>	X1_31			GND		Р	Ground
X1_33 F15 ENET1_IXEN ENET2_MDIC 3V3 reference X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_ REF_CLK2 3V3 O LCD Pixel Data bit 6 X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_RX_EN 3V3 O	X1_32	D12	LCD_DATA11	LCDIF_DATA11	3V3	0	LCD Pixel Data bit 11
X1_34 E12 LCD_DATA10 LCDIF_DATA10 3V3 O LCD Pixel Data bit 10 X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 O LCD Pixel Data bit 5 X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3	X1_33	F15	ENET1_TXEN	ENET2_MDIC	3V3		
X1_35 E14 ENET1_TXD1 ENET2_MDIO 3V3 Management data X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 O LCD Pixel Data bit 5 X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3	X1 34	E12	LCD DATA10	LCDIF DATA10	3V3	Ω	
X1_36 A11 LCD_DATA9 LCDIF_DATA9 3V3 O LCD Pixel Data bit 9 X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 O LCD Pixel Data bit 5 X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid			_	_	_		
X1_37 D16 ENET2_RXER GPIO2_IO15 3V3 Ethernet reset X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid						0	
X1_38 B11 LCD_DATA8 LCDIF_DATA8 3V3 O LCD Pixel Data bit 8 X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid							
X1_39 N11 SNVS_TAMPER6 GPIO5_IO06 3V3 Ethernet interrupt output X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid				_		0	
X1_40 D11 LCD_DATA7 LCDIF_DATA7 3V3 O LCD Pixel Data bit 7 X1_41 L16 GPIO1_IO07 ANATOP_ENET_REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid							
X1_41 L16 GPIO1_IO07 ANATOP_ENET_ REF_CLK2 3V3 Synchronous Ethernet recovered clock X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid						Ο	
X1_42 A10 LCD_DATA6 LCDIF_DATA6 3V3 O LCD Pixel Data bit 6 X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid				ANATOP_ENET_			Synchronous Ethernet
X1_43 B15 ENET2_TXEN ENET2_TX_EN 3V3 RMII transmit enable X1_44 B10 LCD_DATA5 LCDIF_DATA5 3V3 O LCD Pixel Data bit 5 X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid	X1 42	Δ10	LCD DATA6		3\/3	0	
X1_44B10LCD_DATA5LCDIF_DATA53V3OLCD Pixel Data bit 5X1_45B17ENET2_CRS_DVENET2_RX_EN3V3RMII receive data valid						0	
X1_45 B17 ENET2_CRS_DV ENET2_RX_EN 3V3 RMII receive data valid			_			0	
				_	_		1
	X1_45 X1_46	C10	LCD DATA4	LCDIF DATA4	3V3	0	LCD Pixel Data bit 4

PIN	CPU BALL	CPU PAD NAME	Signal	٧	I/O	Description
X1_47			GND		Р	Ground
X1_48	D10	LCD_DATA3	LCDIF_DATA3	3V3	0	LCD Pixel Data bit 3
X1_49	D17	ENET2_TXCLK	ENET2_TX_CLK	3V3	0	RMII transmit clock
X1_50	E10	LCD_DATA2	LCDIF_DATA2	3V3	0	LCD Pixel Data bit 2
X1_51	A15	ENET2_TXD0	ENET2_TX_DATA0	3V3	0	RMII transmit data 0
X1_52	A9	LCD_DATA1	LCDIF_DATA1	3V3	0	LCD Pixel Data bit 1
X1_53	A16	ENET2_TXD1	ENET2_TX_DATA1	3V3	0	RMII transmit data 1
X1_54	B9	LCD_DATA0	LCDIF_DATA0	3V3	0	LCD Pixel Data bit 0
X1_55			NC			Not Connected
X1_56	N8	SNVS_TAMPER5	GPIO5_IO05	3V3	0	LCD backlight enable/disable
X1_57			NC			Not Connected
X1_58	D9	LCD_HSYNC	LCDIF_HSYNC	3V3	0	LCD Horizontal Synchronization
X1_59			GND		Р	Ground
X1_60	B8	LCD_ENABLE	LCDIF_ENABLE	3V3	0	LCD dot enable pin signal
X1_61			NC			Not Connected
X1_62	C9	LCD_VSYNC	LCDIF_VSYNC	3V3	0	LCD Vertical Synchronization
X1_63	C17	ENET2_RXD0	ENET2_RX_DATA0	3V3		RMII receive data 0
X1_64	A8	LCD_CLK	LCDIF_CLK	3V3	0	LCD Pixel Clock
X1_65	C16	ENET2_RXD1	ENET2_RX_DATA1	3V3		RMII receive data 1
X1_66	B4	NAND_ALE	PWM3_OUT	3V3	0	LCD Backlight brightness Control
X1_67			NC		Not Connected	
X1_68	P14	JTAG_TMS	GPIO1_IO11	3V3	0	LCD Voltage On
X1_69			NC			Not Connected
X1_70			GND		Р	Ground

				Description	
	GND		Р	Ground	
X2_2 G	SND		Р	Ground	
X2_3 T10 BOOT_MODE0 B	OOT_MODE0	1V8	ı	Boot Select pin	
X2_4 N	IC			Not Connected	
X2_5 U10 BOOT_MODE1 B	OOT_MODE1	1V8	ı	Boot Select pin	
X2_6 N	IC			Not Connected	
X2_7 B12 LCD_DATA13 B	ST_CFG13	1V8	ı	Boot Select pin	
	GND		Р	Ground	
	BT_CFG14	1V8	ı	Boot Select pin	
_	IC			Not Connected	
	SND		Р	Ground	
_	IC			Not Connected	
	2C1_SCL	3V3	I/O	I ² C bus clock line	
	SND		Р	Ground	
	2C1_SDA	3V3	I/O	I ² C bus data line	
_	IC			Not Connected	
	GND		Р	Ground	
X2_18 N	IC			Not Connected	
X2_19 F16 ENET1_RXD0 C	CAN1_TX	3V3	I/O	CAN (controller Area Network) transmit signal	
X2_20 G	SND		Р	Ground	
				CAN (controller Area	
X2_21	CAN1_RX	3V3	I/O	Network) receive signal	
X2 22 N	IC			Not Connected	
_	GND		Р	Ground	
	IC		•	Not Connected	
		-1.4-		CAN (controller Area	
	CAN2_TX	3V3	I/O	Network) transmit signal	
X2_26 G	SND		Р	Ground	
X2_27 E15 ENET1_TXD0 C	CAN2_RX	3V3	I/O	CAN (controller Area Network) receive signal	
X2_28 N	IC			Not Connected	
	SND		Р	Ground	
	IC			Not Connected	
	IC			Not Connected	
X2_32 G	GND		Р	Ground	
	IC			Not Connected	
	IC			Not Connected	
	IC			Not Connected	
X2_36 N	IC			Not Connected	
	IC			Not Connected	
	GND		Р	Ground	
	IC			Not Connected	
	IC			Not Connected	
	IC			Not Connected	
	IC			Not Connected	
	IC			Not Connected	
_	GND		Р	Ground	
	IC			Not Connected	

PIN	CPU BALL	CPU PAD NAME	Signal	٧	1/0	Description	
X2_46	T13	USB_OTG2_DN	USB_OTG2_DN 3V3 I/O d s		Universal Serial Bus differential pair negative signal		
X2_47			NC			Not Connected	
X2_48	U13	USB_OTG2_DP	USB_OTG2_DP	3V3	I/O	Universal Serial Bus differential pair positive signal	
X2_49			NC			Not Connected	
X2_50	U12	USB_OTG2_VBUS	USB_OTG2_VBUS	5V	I/O	Universal Serial Bus power	
X2_51			GND		Р	Ground	
X2_52	R10	SNVS_TAMPER0	GPIO5_IO00	3V3	1	Active low input, to inform USB overcurrent condition (low = overcurrent detected)	
X2_53			NC			Not Connected	
X2_54			GND		Р	Ground	
X2_55			NC			Not Connected	
X2_56			NC			Not Connected	
X2_57			NC			Not Connected	
X2_58			NC			Not Connected	
X2_59			NC			Not Connected	
X2_60			GND		Р	Ground	
X2_61			NC			Not Connected	
X2_62			NC			Not Connected	
X2_63			NC			Not Connected	
X2_64			NC	Not Connected			
X2_65			NC		Not Connected		
X2_66			GND		Р	Ground	
X2_67			NC			Not Connected	
X2_68			NC			Not Connected	
X2_69					Not Connected		
X2_70			NC			Not Connected	

6. PICO-IMX6UL Compute Module Pinmux Overview

Many signals on the PICO-IMX6UL can be configured to support other interfaces. The table below gives an overview of all pins that can be modified.

The default operation mode which is compatible with other PICO Compute Modules has been highlighted.

PIN	CPU BALL	PADNAME	MODE0	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	MODE8
E1_3	K13	GPIO1_IO00	i2c2.SCL	gpt1.CAPTU RE1	usb.OTG1_P WR	anatop.ENET _REF_CLK1	mqs.RIGHT	gpio1.IO[0]	enet1.1588_ EVENT0_IN	wdog3.WDO G B
E1_17	R8	ONOFF	src.RESET_ B						-	
E1_19	L15	GPIO1_IO01	i2c2.SDA	gpt1.COMPA RE1	usb.OTG1_O C	anatop.ENET _REF_CLK2	mqs.LEFT	gpio1.IO[1]	enet1.1588_ EVENT0_OU T	wdog2.WDO G_B
E1_21	K17	GPIO1_IO06	enet1.MDIO	anatop.ENET REF CLK1	usb.OTG_P WR_WAKE	csi.MCLK	usdhc2.WP	gpio1.IO[6]	enet2.1588_ EVENT1_IN	uart1.CTS_B
E1_22	E5	CSI_PIXCLK	csi.PIXCLK	usdhc2.WP	rawnand.CE 3 B	i2c1.SCL	weim.OE	gpio4.IO[18]	enet1.MDC	uart6.RX
E1_24	F2	CSI_VSYNC	csi.VSYNC	usdhc2.CLK	sim1.PORT1 _CLK	i2c2.SDA	weim.RW	gpio4.IO[19]	enet2.MDIO	uart6.RTS_B
E1_25	F3	CSI_HSYNC	csi.HSYNC	usdhc2.CMD	sim1.PORT1 PD	i2c2.SCL	weim.LBA_B	gpio4.IO[20]	enet2.MDC	uart6.CTS_B
E1_26	E4	CSI_DATA00	csi.DATA[2]	usdhc2.DAT A0	sim1.PORT1 _RST_B	ecspi2.SCLK	weim.AD[0]	gpio4.IO[21]	wdog3.WDO G B	uart5.TX
E1_27	F5	CSI_MCLK	csi.MCLK	usdhc2.CD_ B	rawnand.CE 2_B	i2c1.SDA	weim.CS0_B	gpio4.IO[17]	enet1.MDIO	uart6.TX
E1_28	E3	CSI_DATA01	csi.DATA[3]	usdhc2.DAT A1	sim1.PORT1 _SVEN	ecspi2.SS0	weim.AD[1]	gpio4.IO[22]	sai1.MCLK	uart5.RX
E1_30	E2	CSI_DATA02	csi.DATA[4]	usdhc2.DAT A2	sim1.PORT1 _TRXD	ecspi2.MOSI	weim.AD[2]	gpio4.IO[23]	sai1.RX_SY NC	uart5.RTS_B
E1_32	E1	CSI_DATA03	csi.DATA[5]	usdhc2.DAT A3	sim2.PORT1 _PD	ecspi2.MISO	weim.AD[3]	gpio4.IO[24]	sai1.RX_BCL K	uart5.CTS_B
E1_33	D15	ENET1_RXE R	enet1.RX_E R	uart7.RTS_B	pwm8.OUT	csi.DATA[23]	weim.CRE	gpio2.IO[7]		global wdog
E1_34	K15	UART1_CTS	uart1.CTS_B	enet1.RX_CL K	usdhc1.WP	csi.DATA[4]	kpp.ROW[1]	gpio1.IO[18]	src.INT_BOO T	usdhc2.WP
E1_35	F14	ENET1_TXC LK	enet1.TX_CL K	uart7.CTS_B	pwm7.OUT	csi.DATA[22]	anatop.ENET _REF_CLK2	gpio2.IO[6]		gpt1.CLK
E1_41	F17	UART5_TXD	uart5.TX	enet2.CRS	i2c2.SCL	csi.DATA[14]	kpp.ROW[7]	gpio1.IO[30]	csu.CSU_AL ARM_AUT[0]	ecspi2.MOSI
E1_42	G17	UART4_TXD	uart4.TX	enet2.TDAT A[2]	i2c1.SCL	csi.DATA[12]	kpp.ROW[6]	gpio1.IO[28]	csu.CSU_AL ARM_AUT[2]	ecspi2.SCLK
E1_43	G13	UART5_RXD	uart5.RX	enet2.COL	i2c2.SDA	csi.DATA[15]	kpp.COL[7]	gpio1.IO[31]	csu.CSU_IN T_DEB	ecspi2.MISO
E1_44	G16	UART4_RXD	uart4.RX	enet2.TDAT A[3]	i2c1.SDA	csi.DATA[13]	kpp.COL[6]	gpio1.IO[29]	csu.CSU_AL ARM_AUT[1]	ecspi2.SS0
E1_45	K14	UART1_TXD	uart1.TX	enet1.RDAT A[2]	i2c3.SCL	csi.DATA[2]	kpp.ROW[0]	gpio1.IO[16]	snvs_hp_wra pper.VIO_5_ CTL	spdif.OUT
E1_46	H17	UART3_TXD	uart3.TX	enet2.RDAT A[2]	uart2.RTS_B	csi.DATA[1]	kpp.ROW[4]	gpio1.IO[24]	gpt1.COMPA RE3	anatop.OTG 1_ID
E1_47	K16	UART1_RXD	uart1.RX	enet1.RDAT A[3]	i2c3.SDA	csi.DATA[3]	kpp.COL[0]	gpio1.IO[17]	snvs_hp_wra pper.VIO_5	spdif.IN
E1_48	P11	SNVS_TAM PER2	snvs_lp_wra pper.TAMPE R[2]					gpio5.IO[2]		
E1_50	D2	CSI_DATA06	csi.DATA[8]	usdhc2.DAT A6	sim2.PORT1 _SVEN	ecspi1.MOSI	weim.AD[6]	gpio4.IO[27]	sai1.RX_DA TA	usdhc1.RES ET B
E1_52	D3	CSI_DATA05	csi.DATA[7]	usdhc2.DAT A5	sim2.PORT1 _RST_B	ecspi1.SS0	weim.AD[5]	gpio4.IO[26]	sai1.TX_BCL K	usdhc1.CD_ B
E1_53	J17	UART2_TXD	uart2.TX	enet1.TDAT A[2]	i2c4.SCL	csi.DATA[6]	kpp.ROW[2]	gpio1.IO[20]	gpt1.CAPTU RE2	ecspi3.SS0
E1_54	D4	CSI_DATA04	csi.DATA[6]	usdhc2.DAT A4	sim2.PORT1 _CLK	ecspi1.SCLK	weim.AD[4]	gpio4.IO[25]	sai1.TX_SYN C	usdhc1.WP
E1_55	J16	UART2_RXD	uart2.RX	enet1.TDAT A[3]	i2c4.SDA	csi.DATA[7]	kpp.COL[2]	gpio1.IO[21]	gpt1.COMPA RE1	ecspi3.SCLK
E1_56	D1	CSI_DATA07	csi.DATA[9]	usdhc2.DAT A7	sim2.PORT1 _TRXD	ecspi1.MISO	weim.AD[7]	gpio4.IO[28]	sai1.TX_DAT A	usdhc1.VSE LECT
E1_57	H14	UART2_CTS	uart2.CTS_B	enet1.CRS	can2.RX	csi.DATA[8]	kpp.ROW[3]	gpio1.IO[22]	gpt1.CLK	ecspi3.MOSI
E1_59	J15	UART2_RTS	uart2.RTS_B	enet1.COL	can2.TX	csi.DATA[9]	kpp.COL[3]	gpio1.IO[23]	gpt1.COMPA RE2	ecspi3.MISO
E1_61	H16	UART3_RXD	uart3.RX	enet2.RDAT A[3]	uart2.CTS_B	csi.DATA[0]	kpp.COL[4]	gpio1.IO[25]	caam_wrapp er.RNG_OS C OBS	epit1.OUT
E1_63	G14	UART3_CTS	uart3.CTS_B	enet2.RX_CL K	can1.RX	csi.DATA[10]	kpp.ROW[5]	gpio1.IO[26]	ccm.WAIT	epit2.OUT
E1_65	H15	UART3_RTS	uart3.RTS_B	enet2.TX_ER	can1.TX	csi.DATA[11]	kpp.COL[5]	gpio1.IO[27]	ccm.STOP	wdog1.WDO G B

PICO-PI-IMX6UL HARDWARE MANUAL – VER 1.00 – FEB 24 2017

PIN X1_8	CPU BALL B16	PADNAME LCD_DATA2	MODE0 lcdif.DATA[2	MODE1 uart8.RTS_B	MODE2 ecspi1.MISO	MODE3 csi.DATA[15]	MODE4 weim.DATA[MODE5 gpio3.IO[28]	MODE6 src.BT_CFG[MODE8 usdhc1.DAT
X1_10	A14	LCD_DATA2	3] lcdif.DATA[2	uart8.CTS_B	ecspi1.MOSI	csi.DATA[14]	15] weim.DATA[gpio3.IO[27]	31] src.BT_CFG[A3 usdhc1.DAT
X1_12	B14	LCD_DATA2	2] lcdif.DATA[2	uart8.RX	ecspi1.SS0	csi.DATA[13]	14] weim.DATA[gpio3.IO[26]	src.BT_CFG[usdhc1.DAT
X1_14	C14	1 LCD_DATA2	1] lcdif.DATA[2	uart8.TX	ecspi1.SCLK	csi.DATA[12]	13] weim.DATA[gpio3.IO[25]	src.BT_CFG[A1 usdhc1.DAT
X1_16	D14	0 LCD_DATA1	0] lcdif.DATA[1	uart7.RTS_B	global wdog	csi.DATA[11]	12] weim.DATA[gpio3.IO[24]	28] src.BT_CFG[A0 usdhc1.CLK
X1_18	A13	9 LCD DATA1	9] lcdif.DATA[1	uart7.CTS B	ca7_platform	csi.DATA[10]	11] weim.DATA[gpio3.IO[23]	27] src.BT_CFG[usdhc1.CMD
X1_20	B13	8 LCD_DATA1 7	8] lcdif.DATA[1 7]	uart7.RX	.EVENTO ca7_platform .TRACE_CT	csi.DATA[0]	10] weim.DATA[9]	gpio3.IO[22]	26] src.BT_CFG[25]	usdhc1.DAT A7
X1_22	C13	LCD_DATA1	Icdif.DATA[1 6]	uart7.TX	L ca7_platform .TRACE_CL	csi.DATA[1]	weim.DATA[8]	gpio3.IO[21]	src.BT_CFG[24]	usdhc1.DAT A6
X1_24	D13	LCD_DATA1	Icdif.DATA[1	sai3.TX_DAT	K ca7_platform	csi.DATA[23]	weim.DATA[gpio3.IO[20]	src.BT_CFG[usdhc1.DAT
X1_26*	A12	5 LCD_DATA1	5] lcdif.DATA[1	sai3.RX_DA	.TRACE[15] ca7_platform	csi.DATA[22]	7] weim.DATA[gpio3.IO[19]	src.BT_CFG[A5 usdhc1.DAT
X1_28*	B12	4 LCD_DATA1	4] lcdif.DATA[1	TA sai3.TX_BCL	.TRACE[14] ca7_platform	csi.DATA[21]	6] weim.DATA[gpio3.IO[18]	src.BT_CFG[A4 usdhc1.RES
X1_30	C12	3 LCD_DATA1	3] lcdif.DATA[1	K sai3.TX_SYN	.TRACE[13] ca7_platform	csi.DATA[20]	5] weim.DATA[gpio3.IO[17]	13] src.BT_CFG[ET_B ecspi1.RDY
X1_32	D12	2 LCD DATA1	2] lcdif.DATA[1	C sai3.RX BCL	.TRACE[12] ca7_platform	csi.DATA[19]	4] weim.DATA[gpio3.IO[16]	12] src.BT_CFG[can2.RX
X1_33	F15	1 ENET1_TXE	1] enet1.TX EN	K uart6.RTS B	.TRACE[11] pwm6.OUT	csi.DATA[21]	3] enet2.MDC	gpio2.IO[5]	11]	mgs.LEFT
X1_34	E12	N LCD DATA1	Icdif.DATA[1	sai3.RX SY	ca7_platform	csi.DATA[18]	weim.DATA[gpio3.IO[15]	src.BT_CFG[can2.TX
X1_35	E14	0 ENET1_TXD	0] enet1.TDAT	NC uart6.CTS B	.TRACE[10] pwm5.OUT	csi.DATA[20]	2] enet2.MDIO	gpio2.IO[4]	10]	GPIO1 IO04
	A11	1	A[1]	_	ca7 platform				src.BT CFG[_
X1_36		LCD_DATA0 9	Icdif.DATA[9]	sai3.MCLK	.TRACE[9]	csi.DATA[17]	weim.DATA[1]	gpio3.IO[14]	9]	can1.RX
X1_37	D16	ENET2_RXE R	enet2.RX_E R	uart8.RTS_B	sim2.PORT0 _SVEN	ecspi4.SS0	weim.ADDR[25]	gpio2.IO[15]		global wdog
X1_38	B11	LCD_DATA0 8	Icdif.DATA[8]	spdif.IN	ca7_platform .TRACE[8]	csi.DATA[16]	weim.DATA[0]	gpio3.IO[13]	src.BT_CFG[8]	can1.TX
X1_39	N11	SNVS_TAM PER6	snvs_lp_wra pper.TAMPE R[6]					gpio5.IO[6]		
X1_40	D11	LCD_DATA0 7	Icdif.DATA[7]	pwm8.OUT	ca7_platform .TRACE[7]	enet2.1588_ EVENT3_OU T	spdif.EXT_C LK	gpio3.IO[12]	src.BT_CFG[7]	ecspi1.SS3
X1_41	L16	GPIO1_IO07	enet1.MDC	anatop.ENET _REF_CLK2	usb.OTG_H OST_MODE	csi.PIXCLK	usdhc2.CD_ B	gpio1.IO[7]	enet2.1588_ EVENT1_OU T	uart1.RTS_B
X1_42	A10	LCD_DATA0 6	Icdif.DATA[6]	pwm7.OUT	ca7_platform .TRACE[6]	enet2.1588_ EVENT3_IN	spdif.LOCK	gpio3.IO[11]	src.BT_CFG[6]	ecspi1.SS2
X1_43	B15	ENET2_TXE N	enet2.TX_EN	uart8.RX	sim2.PORT0 CLK	ecspi4.MOSI	weim.ACLK_ FREERUN	gpio2.IO[13]		usb.OTG2_O C
X1_44	B10	LCD_DATA0 5	Icdif.DATA[5]	pwm6.OUT	ca7_platform .TRACE[5]	enet2.1588_ EVENT2_OU T	spdif.OUT	gpio3.IO[10]	src.BT_CFG[5]	ecspi1.SS1
X1_45	B17	ENET2_CRS DV	enet2.RX_E N	uart7.TX	sim1.PORT0 RST B	i2c4.SCL	weim.ADDR[26]	gpio2.IO[10]		usb.OTG1_P WR
X1_46	C10	LCD_DATA0	Icdif.DATA[4]	pwm5.OUT	ca7_platform .TRACE[4]	enet2.1588_ EVENT2 IN	spdif.SR_CL K	gpio3.IO[9]	src.BT_CFG[4]	sai1.TX_DAT A
X1_48	D10	LCD_DATA0	Icdif.DATA[3]	pwm4.OUT	ca7_platform .TRACE[3]	enet1.1588_ EVENT3_OU	i2c4.SCL	gpio3.IO[8]	src.BT_CFG[3]	sai1.RX_DA TA
X1_49	D17	ENET2_TXC LK	enet2.TX_CL	uart8.CTS_B	sim2.PORT0	ecspi4.MISO	anatop.ENET REF CLK1	gpio2.IO[14]		anatop.OTG 2 ID
X1_50	E10	LCD_DATA0	Icdif.DATA[2]	pwm3.OUT	_RST_B ca7_platform	enet1.1588_	i2c4.SDA	gpio3.IO[7]	src.BT_CFG[sai1.TX_BCL
X1_51	A15	ENET2_TXD	enet2.TDAT	uart7.RX	.TRACE[2] sim1.PORT0	EVENT3_IN i2c4.SDA	weim.EB_B[2	gpio2.IO[11]	2]	K usb.OTG1_0
X1_52	A9	LCD_DATA0	A[0] Icdif.DATA[1]	pwm2.OUT	_SVEN ca7_platform .TRACE[1]	enet1.1588_ EVENT2_OU	i2c3.SCL	gpio3.IO[6]	src.BT_CFG[1]	sai1.TX_SYN C
X1_53	A16	ENET2_TXD	enet2.TDAT	uart8.TX	sim2.PORT0	T ecspi4.SCLK	weim.EB_B[3	gpio2.IO[12]		usb.OTG2_P
X1_54	B9	LCD_DATA0	A[1] Icdif.DATA[0]	pwm1.OUT	_TRXD ca7_platform	enet1.1588_	i2c3.SDA	gpio3.IO[5]	src.BT_CFG[WR sai1.MCLK
X1_56	N8	SNVS_TAM PER5	snvs_lp_wra pper.TAMPE		.TRACE[0]	EVENT2_IN		gpio5.IO[5]	0]	
X1_58	D9	LCD_HSYN C	R[5] Icdif.HSYNC	lcdif.RS	uart4.CTS_B	sai3.TX_BCL K	wdog3.WDO G_RST_B_D	gpio3.IO[2]		ecspi2.SS1
X1_60	B8	LCD_ENABL	Icdif.ENABLE	lcdif.RD_E	uart4.RX	sai3.TX_SYN	EB weim.CS3_B	gpio3.IO[1]		ecspi2.RDY
X1_62	C9	E LCD_VSYNC	lcdif.VSYNC	Icdif.BUSY	uart4.RTS_B	C sai3.RX_DA	wdog2.WDO	gpio3.IO[3]		ecspi2.SS2
X1_63	C17	ENET2_RXD 0	enet2.RDAT A[0]	uart6.TX	sim1.PORT0 _TRXD	TA i2c3.SCL	G_B enet1.MDIO	gpio2.IO[8]		wdog1.WDO G_RST_B_D
X1_64	A8	LCD_CLK	Icdif.CLK	lcdif.WR_RW N	uart4.TX	sai3.MCLK	weim.CS2_B	gpio3.IO[0]		EB wdog1.WDO G_RST_B_D
X1_65	C16	ENET2_RXD	enet2.RDAT A[1]	uart6.RX	sim1.PORT0 _CLK	i2c3.SDA	enet1.MDC	gpio2.IO[9]		EB wdog2.WDO G_RST_B_D
X1_66	B4	NAND_ALE	rawnand.ALE	usdhc2.RES	qspiA_DQS	pwm3.OUT	weim.ADDR[gpio4.IO[10]	1	EB ecspi3.SS1
X1_68	P14	JTAG_TMS	sjc.TMS	ET_B gpt2.CAPTU	sai2.MCLK	ccm.CLKO1	17] ccm.WAIT	gpio1.IO[11]	sdma.EXT_E	epit1.OUT
A1_00		01/10_1WO	SJO. TIVIO	RE1	JUIZ.IVIOLIX	JOIN. JENOT	COMMAN	gpioTilO[11]	VENT[1]	срит.001

PICO-PI-IMX6UL HARDWARE MANUAL – VER 1.00 – FEB 24 2017

PIN	CPU BALL	PADNAME	MODE0	MODE1	MODE2	MODE3	MODE4	MODE5	MODE6	MODE8
X2_3	T10	BOOT_MOD E0	src.BOOT_M ODE[0]					gpio5.IO[11]		
X2_5	U10	BOOT_MOD E1	src.BOOT_M ODE[1]					gpio5.IO[12]		
X2_7*	B12	LCD_DATA1 3	lcdif.DATA[1 3]	sai3.TX_BCL K	ca7_platform .TRACE[13]	csi.DATA[21]	weim.DATA[5]	gpio3.IO[18]	src.BT_CFG[13]	usdhc1.RES ET_B
X2_9*	A12	LCD_DATA1 4	lcdif.DATA[1 4]	sai3.RX_DA TA	ca7_platform .TRACE[14]	csi.DATA[22]	weim.DATA[6]	gpio3.IO[19]	src.BT_CFG[14]	usdhc1.DAT A4
X2_13**	L14	GPIO1_IO02	i2c1.SCL	gpt1.COMPA RE2	usb.OTG2_P WR	anatop.ENET _REF_CLK_ 25M	usdhc1.WP	gpio1.IO[2]	enet1.1588_ EVENT1_IN	uart1.TX
X2_15**	L17	GPIO1_IO03	i2c1.SDA	gpt1.COMPA RE3	usb.OTG2_O C	osc32k.32K_ OUT	usdhc1.CD_ B	gpio1.IO[3]	enet1.1588_ EVENT1_OU T	uart1.RX
X2_19	F16	ENET1_RXD 0	enet1.RDAT A[0]	uart4.RTS_B	pwm1.OUT	csi.DATA[16]	can1.TX	gpio2.IO[0]		usdhc1.LCTL
X2_21	E17	ENET1_RXD 1	enet1.RDAT A[1]	uart4.CTS_B	pwm2.OUT	csi.DATA[17]	can1.RX	gpio2.IO[1]		usdhc2.LCTL
X2_25	E16	ENET1_CRS _DV	enet1.RX_E N	uart5.RTS_B	osc32k.32K_ OUT	csi.DATA[18]	can2.TX	gpio2.IO[2]		usdhc1.VSE LECT
X2_27	E15	ENET1_TXD 0	enet1.TDAT A[0]	uart5.CTS_B	anatop.24M_ OUT	csi.DATA[19]	can2.RX	gpio2.IO[3]		usdhc2.VSE LECT
X2_52	R10	SNVS_TAM PER0	snvs_lp_wra pper.TAMPE R[0]					gpio5.IO[0]		

NOTE*: Pin X1_26 and X1_28 are also routed to pin X2_7 and X2_9

NOTE**: Pin $X2_13$ and $X2_15$ can only be used for I^2C function and should not be used in another pinmux mode.

7. Disclaimer and Important Notice

Wandboard.org reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Wandboard.org terms and conditions of sale supplied at the time of order acknowledgment.

Wandboard.org warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Wandboard.org standard warranty. Testing and other quality control techniques are used to the extent Wandboard.org deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Wandboard.org assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Wandboard.org components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Wandboard.org does not warrant or represent that any license, either express or implied, is granted under any Wandboard.org patent right, copyright, mask work right, or other Wandboard.org intellectual property right relating to any combination, machine, or process in which Wandboard.org products or services are used. Information published by Wandboard.org regarding third-party products or services does not constitute a license from Wandboard.org to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Wandboard.org under the patents or other intellectual property of Wandboard.org.

Wandboard.org products are not authorized for use in safety-critical applications (such as life support) where a failure of the Wandboard.org product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Wandboard.org products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Wandboard.org. Further, Buyers must fully indemnify Wandboard.org and its representatives against any damages arising out of the use of Wandboard.org products in such safety-critical applications.

Wandboard.org products are neither designed nor intended for use in military/aerospace applications or environments unless the Wandboard.org products are specifically designated by Wandboard.org as military grade or "enhanced plastic." Only products designated by Wandboard.org as military-grade meet military specifications. Buyers acknowledge and agree that any such use of Wandboard.org products which Wandboard.org has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Wandboard.org products are neither designed nor intended for use in automotive applications or environments unless the specific Wandboard.org products are designated by Wandboard.org as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, Wandboard.org will not be responsible for any failure to meet such requirements.

8. Schematics

WANDBOARD DESIGN AND DISCLAIMER

These design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference design. "Community" support is available via resources at Wandboard.org forums.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE DESIGN MATERIALS "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCEOF THE DESIGN MATERIALS IS WITH YOU. SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

This board was designed as an evaluation and development tool. It was not designed with any other application in mind. As such, these design materials may or may not be suitable for any other purposes. If used, the design material becomes your responsibility as to whether or not it meets your specific needs or your specific applications and may require changes to meet your requirements.

On the following pages, you will find the schematics of the PICO-IMX6UL-EMMC Compute Module and the PICO-PI Carrier Baseboard.

Components marked with -x are not populated.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Wandboard: PICO-PI-IMX6UL