

CIS 581 001 – COMPUTATIONAL LEARNING

MIDTERM PROJECT

POLYNOMIAL CURVE FITTING REGRESSION FOR WORKING-AGE DATA

NAME : SURYA SUBRAMANI

UMID : 69499602

DATE OF

SUBMISSION : 03-13-2023

NAME: SURYA SUBRAMANI || UMID: 69499602 || COURSE: CIS 581 001 || PROJECT: MIDTERM Polynomial Curve-Fitting Regression for Working-Age Data

1. The averages of the RMSE values obtained during the 6-fold CV for each case

Sum of RMSE AVERAGE CV = 6	Degree							
Lambda	0	1	2	3	4	5		
0	1.016	1.084	0.775	0.783	0.493	0.570		
e ⁻²⁵	1.016	1.084	0.775	0.783	0.493	0.570		
e ⁻²⁰	1.016	1.084	0.775	0.783	0.493	0.570		
e ⁻⁷	1.016	1.084	0.776	0.783	0.494	0.571		
e ⁻¹⁴	1.016	1.084	0.775	0.783	0.493	0.570		
e ⁻³	1.035	1.097	0.795	0.812	0.550	0.642		
1	2.168	2.178	2.974	3.173	3.002	3.074		
e ³	23.98	24.287	23.427	23.609	25.006	25.303		
e ⁷	63.68 1	63.713	61.974	62.093	58.273	58.478		
	Degree							
Sum of RMSE AVERAGE CV			Deg	ree				
Sum of RMSE AVERAGE CV = 6 Lambda	7	8	Deg	ree 10	11	12		
= 6	7 0.188	8 0.146			11 0.626	12 0.687		
= 6 Lambda			9	10				
= 6 Lambda	0.188	0.146	9 0.236	0.165	0.626	0.687		
= 6 Lambda 0 e ⁻²⁵	0.188	0.146 0.146	9 0.236 0.236	0.165 0.165	0.626	0.687		
= 6 Lambda 0 e-25 e-20	0.188 0.188 0.188	0.146 0.146 0.146	9 0.236 0.236 0.236	0.165 0.165 0.165	0.626 0.626	0.687 0.687 0.687		
= 6 Lambda 0 e ⁻²⁵ e ⁻⁷	0.188 0.188 0.188 0.185	0.146 0.146 0.146 0.133	9 0.236 0.236 0.236 0.191	0.165 0.165 0.165 0.127	0.626 0.626 0.626 0.099	0.687 0.687 0.687		
= 6 Lambda 0 e ⁻²⁵ e ⁻⁷ e ⁻¹⁴	0.188 0.188 0.188 0.185 0.142	0.146 0.146 0.146 0.133 0.188	9 0.236 0.236 0.236 0.191 0.146	0.165 0.165 0.165 0.127 0.236	0.626 0.626 0.626 0.099 0.165	0.687 0.687 0.687 0.432 0.624		
= 6 Lambda 0 e-25 e-20 e-7 e-14 e-3	0.188 0.188 0.188 0.185 0.142 0.238	0.146 0.146 0.146 0.133 0.188	9 0.236 0.236 0.236 0.191 0.146 0.461	0.165 0.165 0.165 0.127 0.236 0.242	0.626 0.626 0.626 0.099 0.165 0.305	0.687 0.687 0.687 0.432 0.624 0.469		

NAME: SURYA SUBRAMANI || UMID: 69499602 || COURSE: CIS 581 001 || PROJECT: MIDTERM Polynomial Curve-Fitting Regression for Working-Age Data

2. The optimal degree d* and regularization parameter $\lambda*$ obtained via the 6-fold CV

$$d^* = 11$$
, $\lambda^* = e^{-7}$
RMSE Average is **0.0987**

3. The coefficient-weights of the d*-degree polynomial and the λ *-regularized 12-degree learned on all the training data

Weights for d* = 11, $\lambda * = e^{-7}$, all training data

w0	w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11
65.469	0.500	5.303	-0.218	-6.615	0.558	3.222	-0.494	-0.880	0.224	0.107	-0.036

Weights for d = 12, $\lambda * = e^{-7}$, all training data

w0	w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11	w12
65.472	0.510	5.202	-0.315	-6.076	0.800	2.276	-0.733	-0.166	0.326	-0.135	-0.052	0.030

4. The training and test RMSE of that final, learned polynomials

Weights and RMSE for optimal Model d* = 11, $\lambda * = e^{-7}$, all training data

w0	w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11
65.469	0.500	5.303	-0.218	-6.615	0.558	3.222	-0.494	-0.880	0.224	0.107	-0.036

RMSE for Training: 0.06626 RMSE for Test: 0.3944

Weights and RMSE for d = 12, $\lambda * = e^{-7}$, all training data

w0	w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11	w12
65.472	0.510	5.202	-0.315	-6.076	0.800	2.276	-0.733	-0.166	0.326	-0.135	-0.052	0.030

RMSE for Training: 0.06766 RMSE for Test: 0.5594

5. The 2 plots containing all the training data along with the resulting polynomial curves for d* and $\lambda*$, for the range of years 1968-2023 as input

Combined Graph: (Scatter plot is training data and line plot is polynomial curve)

Polynomal curve d = 12 fitted with training data

NAME: SURYA SUBRAMANI || UMID: 69499602 || COURSE: CIS 581 001 || PROJECT: MIDTERM Polynomial Curve-Fitting Regression for Working-Age Data

6. Brief discussion of your findings and observations.

From the data and the graph, we can able to observe that for every 20 years the age indicator goes to the peak and starts descending. This repeats for every 30 years with an increase in indicator.

Criteria	Year	True Values		
count	42	42		
mean	1994.80952	65.70398		
std	15.209493	1.181847		
min	1970	61.93886		
25%	1981.25	65.35731		
50%	1995	65.98761		
75%	2005.75	66.36326		
max	2021	67.29843		

(the above shown Data is before scaling)

To reduce the standard deviation, which can affect the model training, The input matrix is scaled to minimum values using (X-mean)/std.

Criteria	Year	True Values
count	42.00	42.00
mean	0.00	65.70
std	1.00	1.18
min	-1.63	61.94
25%	-0.89	65.36
50%	0.01	65.99
75%	0.72	66.36
max	1.72	67.30

(the above shown Data is after scaling)

To train model and calculate weights I have used the below equation

$$W = (X^T.X + lambda*I).X^T.y$$

Which is the derivation of

$$L(\mathbf{w}) = \frac{1}{2} \sum_{l=1}^{m} \left(y^{(l)} - \sum_{i=0}^{d} w_i \left(x^{(l)} \right)^i \right)^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

Exp(7) gives higher RMSE a

As you can see from the above graph the optimal degree is 11 for the I2 penalty exp(7).