# From classical to good quantum LDPC codes.

D. Ponarovsky<sup>1</sup>

Master-Exam-Huji.

Faculty of Computer Science Hebrew University of Jerusalem

• Brif Review of Coding.

 $\bullet\,$  Brif Review of Coding. Tanner and Expander codes.

- Brif Review of Coding. Tanner and Expander codes.
- Quantum Error Correction Codes.

- Brif Review of Coding. Tanner and Expander codes.
- Quantum Error Correction Codes.
- Good Classical Locally Testabile Codes and Good Qauntum LDPC.











#### Classical:

 $|{\color{red}0}{11}\rangle$ 



### Quantum:



#### Classical:

 $|{\color{red}0}11
angle$ 

#### Quantum:



#### Classical:

|O>

 $|011\rangle$ 

#### Quantum:











In the asymptotic regime, can we encode quantum states in codes robust against many errors, as the our original massage grows? And in what costs?

## Quantum Encoding.

# Quantum Encoding.

## Quantum Encoding.

Idea I - (Uncertainty) Clouds as States.

## CSS Code.

'Idea II' - Tanner Checks are 'Too Much' Interdependence.

'Idea III' - Impossibility of Both  $C_X$ ,  $C_Z$  being Good.

### **Quantum Tanner Code Construction.**

## **Proving Strategy.**