Game Theory: Homework

Caio Figueiredo

December 1, 2019

1 Question 1

1.1 (a)

We can rewrite $V(\mu)$ as:

$$V(\mu) = (1 - \delta)V^*(\mu)$$

$$V^*(\mu) = \max_{a \in \{0,1\}} \{ (\mathbb{E}(y_t) - \frac{1}{2})a + \delta \mathbb{E}(V^*(\mu')) \}$$

$$= \max_{a \in \{0,1\}} \{ (\frac{1}{2}\mu - \frac{1}{4})a + \delta \mathbb{E}(V^*(\mu')) \}$$
(1)

where:

$$\mu' = \mu \text{ if } a = 0$$

$$\mu' = \frac{\frac{3}{4}\mu}{\frac{1}{4} + \frac{1}{2}\mu} \text{ if } a = 1, y = 1$$

$$\mu' = \frac{\frac{1}{4}\mu}{\frac{3}{4} - \frac{1}{2}\mu} \text{ if } a = 1, y = 0$$

Now we can use the standard Recursive Dynamic proof, define:

$$T(f)(x) = \max_{a \in \{0,1\}} \{ (\frac{1}{2}\mu - \frac{1}{4})a + \delta f(\mu') \}$$

T maps weakly increasing functions in weakly increasing functions because μ' is strictly increasing in μ and $(\frac{1}{2}\mu - \frac{1}{4})a$ is strictly increasing as long as a = 1 and constant as long as a = 0.

Therefore by the Contraction Mapping Theorem the fix point of T, which is V^* , is weakly increasing. Moreover, since V^* is weakly increasing and $(1 - \delta) > 0$, then V is weakly increasing.

$1.2 \quad (b)$

First notice that we can use the same argument of (a) to show that V^* is continuous. Now notice that for $\mu = 0$, $\mu' = 0 \ \forall a, y$ and for $\mu = 1$, $\mu' = 1 \forall a, y$, therefore:

$$V^*(0) = \max_{a \in \{0,1\}} \left\{ -\frac{1}{4}a + \delta V^*(0) \right\}$$

$$V^*(1) = \max_{a \in \{0,1\}} \left\{ \frac{1}{4}a + \delta V^*(1) \right\}$$

$$= \frac{\max_{a \in \{0,1\}} \left\{ -\frac{1}{4}a \right\}}{(1 - \delta)}$$

$$= 0$$

$$V(0) = 0$$

$$V^*(1) = \max_{a \in \{0,1\}} \left\{ \frac{1}{4}a + \delta V^*(1) \right\}$$

$$= \frac{\max_{a \in \{0,1\}} \left\{ \frac{1}{4}a \right\}}{(1 - \delta)}$$

$$= \frac{1}{4(1 - \delta)} > 0$$

$$V(1) = \frac{1}{4}$$

Since V is weakly increasing that must be $\mu^* \geq 0$ such that for for all $0 \geq \mu < \mu^*, V(\mu) = 0$, and for all $1 \geq \mu > \mu, V(\mu) > 0$.

Moreover, $0 \le \mu < \mu^*$, optimal a is 0 and for $\mu^* < \mu \le 1$, optimal a is 1. Since V^* is continuous at μ^* the agent is indifferent.

1.3 (c)

First notice that the statement is not true for $\mu = 1$, in this case the agent never update his belief and always choose a = 1.

However, for any other μ , such that $\mu^* < \mu < 1$, there exists finite number of bad signals in sequence that is enough to bring it down to a number below μ^* . To see that define: μ_0^n the belief after observing y = 0, n times in a row. It easy to show that:

$$\mu_0^n = \frac{\mu}{3^n - \sum_{i=0}^n (3^{i-1}2)\mu}$$

It is also simple to show that $\mu_0^n \to 0$ as $n \to \infty$. Therefore: we have for any $\epsilon > 0$, in particular, for $\epsilon = \mu^*, \exists n^* \in \mathcal{N}$ such that for any $n > n^*, \mu_0^n < \mu^*$.

We already stablish that one below μ^* the agent always choose a = 0, which implies he don't update his belief anymore and therefore always choose a = 0. Since n^* is a finite number the probability of observing the bad signal n^* times is positive and this part of the statement is proven.

We are left to prove that there is a probability that the belief never falls below μ^* .

I now define a new state:

$$s_t = (\# \text{ Good Signals}) - (\# \text{ Bad Signals})$$

Also define $P_{\infty}(s)$ as the probability that at state s the agent only plays a=1 forever. Notice that by the same argument as above, as $s \to \infty$ the belief goes to 1 and therefore $P_{\infty}(\infty) = 1$. We have:

$$P_{\infty}(s) = P(y=1)P_{\infty}(s+1) + P(y=0)P_{\infty}(s-1)$$

Which follows from the definition of P_{∞} . Moreover, since $\theta=1, P(y=1)=\frac{3}{4}$ and $P(y=0)=\frac{1}{4}$. For simplification we further assume that the prior μ is such that at s=0 one bad return is enough to bring our belief below μ^* , which implies that $P_{\infty}(-1)=0$. Therefore:

$$\begin{split} P_{\infty}(0) &= \frac{3}{4}P_{\infty}(1) \\ &= \frac{3}{4}(\frac{3}{4}P_{\infty}(2) + \frac{1}{4}P_{\infty}(0)) \\ \frac{13}{16}P_{\infty}(0) &= \frac{13}{9}P_{\infty}(2) \\ \text{Therefore:} \\ P_{\infty}(1) &= \frac{4}{3}P_{\infty}(0) \\ P_{\infty}(2) &= \frac{13}{9}P_{\infty}(0) \end{split}$$

Moreover:

$$\begin{split} P_{\infty}(n) &= \frac{3}{4} P_{\infty}(n+1) + \frac{1}{4} P_{\infty}(n-1) \\ &\frac{3}{4} P_{\infty}(n+1) = P_{\infty}(n) - \frac{1}{4} P_{\infty}(n-1) \\ &P_{\infty}(n+1) = \frac{4}{3} P_{\infty}(n) - \frac{1}{3} P_{\infty}(n-1) \\ &P_{\infty}(n+1) - \frac{1}{3} P_{\infty}(n) = P_{\infty}(n) - \frac{1}{3} P_{\infty}(n-1) \\ &= P_{\infty}(2) - \frac{1}{3} P_{\infty}(1) \\ &= \frac{13}{9} P_{\infty}(0) - \frac{1}{3} \frac{3}{4} P_{\infty}(0)) \\ &P_{\infty}(0) = P_{\infty}(n+1) - \frac{1}{3} P_{\infty}(n) \end{split}$$

As
$$n \to \infty$$
:

$$P_{\infty}(0) = \frac{2}{3} P_{\infty}(\infty)$$

$$P_{\infty}(0) = \frac{2}{3}$$

Therefore the probability of playing a=1 forever when s=0, that is the initial state, is $\frac{2}{3}$ which concludes our proof.

1.4 (d)

We can use the very same technique as before. Redefine $P_{\infty}(s)$ as the probability that the agent eventually takes action 0 forever. Remember, $P_{\infty}(-\infty) = 1$.

$$P_{\infty}(n) = \frac{1}{4}P_{\infty}(n+1) + \frac{3}{4}P_{\infty}(n-1)$$

$$P_{\infty}(n+1) = 4P_{\infty}(n) - 3P_{\infty}(n-1)$$

$$P_{\infty}(n+1) - P_{\infty}(n) = 3(P_{\infty}(n) - P_{\infty}(n-1))$$

2 Question 2

$$\begin{split} |V^c(\delta,\theta) - V(\delta,\theta)| &= \left| \sum_{t=0}^{\infty} \delta^t a_t^c \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) \right| \\ &\leq \left| \sum_{t=0}^{\infty} \delta^t a_t^c \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i \mu(y_i | y_1, \dots, y_t) \right) \right| + \\ &\left| \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i \mu(y_i | y_1, \dots, y_t) \right) \right| \\ &\leq 2 \left(\sum_{t=0}^{\infty} \delta^{2t} \max_{y \in Y} y^2 \left(\sum_{i=1}^{\infty} |P_{\theta^*}(y_i | y_1, \dots, y_t) \mu(y_i | y_1, \dots, y_t) \right) \right|^2 \right)^{1/2} + \\ &\leq 2 \max_{y \in Y} |y|^2 \left(\sum_{t=0}^{\infty} \delta^{2t} \right)^{1/2} \left(\sum_{t=0}^{\infty} \sup_{y \in Y} \left\{ P_{\theta^*}(y | y_1, \dots, y_t) \mu(y | y_1, \dots, y_t) \right\}^2 |y| \right)^{1/2} \\ &\leq \frac{2|y|^{1/2} \max_{y \in Y} |y|^2}{(1 - \delta^2)^{1/2}} \left(\sum_{t=0}^{\infty} \frac{1}{2} K L(\theta^* | \mu) \right)^{1/2} \\ &\leq \frac{2|y|^{1/2} \max_{y \in Y} |y|^2}{(1 - \delta^2)^{1/2}} \left(\sum_{t=0}^{\infty} - \ln e^{-(1 - \delta)^{2(t+1)}} \right)^{1/2} \\ &= \frac{2|y|^{1/2} \max_{y \in Y} |y|^2}{(1 - \delta^2)^{1/2}} \left(\frac{1 - \delta}{(1 + \delta)(1 - (1 - \delta)^2)} \right)^{1/2} \end{split}$$

Finally, notice that $1 - \delta \to 0$ as $\delta \to 1$ while $(1 + \delta)(1 - (1 - \delta)^2) \to 2$. Therefore

$$\lim_{\delta \to 1} V^c(\delta, \theta) - V(\delta, \theta)) = 0$$

3 Question 3

For simplification:

$$\begin{split} P_{\gamma}(y) &= \mu P_{\gamma}(y|\theta=1) + (1-\mu)P_{\gamma}(y|\theta=-1) \\ P_{\gamma}(1) &= \mu(1/2+\gamma) + (1-\mu)(1/2\gamma) \\ &= 1/2 + \gamma(2\mu-1) \\ P_{\gamma}(0) &= 1/2 - \gamma(2\mu-1) \end{split}$$

Notice:

$$\lim_{\gamma \to 0} P_{\gamma}(0) = \lim_{\gamma \to 0} P_{\gamma}(1) = \frac{1}{2}$$

The Baseyian updates are:

$$\mu_{\gamma}(1) = \frac{(1/2 + \gamma)\mu}{P_{\gamma}(1)}$$
$$\mu_{\gamma}(0) = \frac{(1/2 - \gamma)\mu}{P_{\gamma}(0)}$$

Therefore:

$$\lim_{\gamma \to 0} \mu_{\gamma}(0) = \lim_{\gamma \to 0} \mu_{\gamma}(1) = \mu$$

and:

$$\lim_{\gamma \to 0} V(\mu_{\gamma}(0)) = \lim_{\gamma \to 0} V(\mu_{\gamma}(1)) = V(\mu)$$

Finally:

$$V_{\gamma}(\mu) = P_{\gamma}(0)V(\mu_{\gamma}(0)) + P_{\gamma}(1)V(\mu_{\gamma}(1))$$

= $(1/2 + \gamma(2\mu - 1))V(\mu_{\gamma}(1)) + (1/2 - \gamma(2\mu - 1))V(\mu_{\gamma}(0))$

and:

$$\lim_{\gamma \to 0} V_{\gamma}(\mu) = V(\mu)$$

Whice make the question identity equals the derivative of V_{γ} in relation to γ :

$$\frac{\partial V_{\gamma}(\mu)}{\partial \gamma} = \lim_{\gamma \to 0} \frac{V_{\gamma}(\mu) - V(\mu)}{\gamma}$$

We are left to prove that this derivative is zero at $\gamma = 0$:

$$\begin{split} \frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(\gamma) &= (2\mu - 1)V(\mu_{\gamma}(1)) + \frac{\partial V(\mu_{\gamma}(1))}{\partial \gamma}(1/2 + \gamma(2\mu - 1)) - \\ &\qquad \qquad (2\mu - 1)V(\mu_{\gamma}(0)) + \frac{\partial V(\mu_{\gamma}(0))}{\partial \gamma}(1/2 - \gamma(2\mu - 1)) \\ \frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(0) &= (2\mu - 1)V(\mu) + \frac{\partial V(\mu_{0}(1))}{\partial \gamma}(1/2) - (2\mu - 1)V(\mu) + \frac{\partial V(\mu_{0}(0))}{\partial \gamma}(1/2) \\ &= 1/2\left(\frac{\partial V(\mu_{0}(0))}{\partial \gamma} + \frac{\partial V(\mu_{0}(1))}{\partial \gamma}\right) \end{split}$$

But:

$$\begin{split} V(\mu_{\gamma}(1)) &= \mu_{\gamma} u(a_{1}^{*},1) + (1-\mu_{\gamma}) u(a_{1}^{*},-1) \\ &= P_{\gamma}(1)^{-1}[(1/2+\gamma)\mu u(a_{1}^{*},1) + \gamma(2\mu-2)\mu u(a_{1}^{*},-1)] \\ \frac{\partial V(\mu_{\gamma}(1))}{\partial \gamma} &= P_{\gamma}(1)^{-1}[\mu u(a_{1}^{*}) + (2\mu-2)u(a_{1}^{*},-1)] + \\ &\qquad \qquad \frac{1-2\mu}{(1/2+\gamma(2\mu-1))^{2}}[(1/2+\gamma)\mu u(a_{1}^{*},1) + \gamma(2\mu-2)u(a_{1}^{*},-1)] \\ \frac{\partial V(\mu_{0}(1))}{\partial \gamma} &= 2[\mu u(a_{1}^{*}) + (2\mu-2)u(a_{1}^{*},-1)] + (4-8\mu)[1/2\mu u(a_{1}^{*},1)] \end{split}$$

where a_1^* is the argmax of V for $\gamma = 0$ and:

$$\begin{split} V(\mu_{\gamma}(0)) &= P_{\gamma}(0)^{-1}[(1/2-\gamma)\mu u(a_{0}^{*},1)-\gamma(2\mu-2)\mu u(a_{0}^{*},-1)] \\ \frac{\partial V(\mu_{\gamma}(0))}{\partial \gamma} &= P_{\gamma}(0)^{-1}[-\mu u(a_{0}^{*})-(2\mu-2)u(a_{0}^{*},-1)] + \\ \frac{2\mu-1}{(1/2-\gamma(2\mu-1))^{2}}[(1/2-\gamma)\mu u(a_{0}^{*},1)-\gamma(2\mu-2)u(a_{0}^{*},-1)] \\ \frac{\partial V(\mu_{0}(0))}{\partial \gamma} &= 2[-\mu u(a_{0}^{*})-(2\mu-2)u(a_{0}^{*},-1)] + (8\mu-4)[1/2\mu u(a_{0}^{*},1)] \end{split}$$

and since $a_1^* \to a_0^*$ as $\gamma \to 0$, by what we have seem before, we have:

$$\frac{\partial V(\mu_0(0))}{\partial \gamma} + \frac{\partial V(\mu_0(1))}{\partial \gamma} = 0$$
$$\frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(0) = 0$$
$$\lim_{\gamma \to 0} \frac{V_{\gamma}(\mu) - V(\mu)}{\gamma} = 0$$

3.1 b

From (a) we can conclude: