Дифференциальные уравнения. Задания 2.

1. Найдите все решения следующих ДУ. Найдите то из них, которое удовлетворяет указанному начальному данному.

(a)
$$x' = (1 - 2t)x^2$$
, $x(0) = -\frac{1}{6}$;

(b)
$$x' = (1 - 2t)x^2$$
, $x(0) = 0$;

(c)
$$y' = 2x/(y + x^2y)$$
, $y(0) = -2$;

(d)
$$x' = tx^3(1+t^2)^{-1/2}$$
, $x(0) = 1$;

(e)
$$y' = (3x^2 - e^x)/(2y - 5)$$
, $y(0) = 1$;

(f)
$$y' = 4\sqrt[5]{y^4}$$
, $y(2) = 0$;

(g)
$$xy' = y(y-1), \quad y(1) = \frac{1}{2};$$

(h)
$$3y^2y' + 16x = 2xy^3$$
, $y(0) = 1$.

Уравнения, приводимые к уравнению с разделяющимися переменными ДУ $\dot{x} = f(t;x)$ часто можно упростить при помощи замены переменных u = g(t;x). Выберем такую функцию g, что переменная x может быть выражена как x = h(u;t). Дифференцируя u получим равенства

$$\dot{u}(t) = g_t(t; x) + g_x(t; x)\dot{x} = g_t(t; h(t; u)) + g_x(t; h(t; u))f(t; h(t; u)).$$

Например, рассмотрим уравнение вида

$$\dot{x} = f(at + bx).$$

Рассмотрим переменную u = at + bx ($x = \frac{u-at}{b}$). Проделывая эту замену переменных (упражнение), получим уравнение с разделяющимися переменными:

$$\dot{u} = a + b\dot{x} = a + bf(u) := p(u);$$

3. Используя замену координат вида u = at + bx решите ДУ:

(a)
$$\dot{x} = \frac{1}{2t+3x}$$
,

(b)
$$\dot{x} = \frac{t+2x}{1+t+2x}$$
,

(c)
$$y' = y + 2x - 3$$

(d)
$$y' = \left(\frac{1}{x+2y}\right)^2$$

(e)
$$y' = \sqrt{4x + 2y - 1}$$

(f)
$$y' = \cos(y - x)$$

4. Рассмотрим ДУ $\dot{x} = f(t;x)$. Если функция f при любом $\lambda \neq 0$ удовлетворяет равенству $f(t;x) = f(\lambda t;\lambda x)$, то мы будем называть ДУ однородным. В таком случае функция f может быть представлена в виде f(t;x) = F(x/t) при $t \neq 0$.

Решите следующие однородные уравнения при помощи замены u = x/t.

- (a) $\dot{x} = \frac{t-x}{t+x}$,
- (b) $2t^3\dot{x} = x(2t^2 x^2),$
- (c) $(t^2 + x^2)\dot{x} = 2tx$,
- (d) $t\dot{x} = x + te^{x/t}$
- (e) $\dot{x} = \frac{5t^2 xt + x^2}{t^2}$
- (f) $\dot{x} = \frac{x}{t-1} + \frac{x^2}{(t-1)^2}$.
- 5. Иногда ДУ не является однородным, но может быть сведено к однородному при помощи замены вида $u=x^{\alpha}$. Такие уравнения называются квазиоднородными. Решите следующие ДУ.
 - (a) $2\dot{x} + t = 4\sqrt{x}$,
 - (b) $2x + (t^2x + 1)t\dot{x} = 0$.
 - (c) При каких α и β ДУ $y'=ax^{\alpha}+by^{\beta}$ приводится к однородному при помощи замены $y=z^{\gamma}.$

Дифференциальные уравнения. Занятие 1.

- 1. Постройте при помощи метода изоклин интегральные кривые следующих дифференциальных уравнений
 - (a) $\dot{x} = t^2 + x^2$;
 - (b) $\dot{x} = t e^x$;
 - (c) $\dot{x} = \frac{x-t}{x^2+1}$;
 - (d) $\dot{x} = \frac{x}{x+t}$;
 - (e) $\dot{x} = t^2 + x$;
 - (f) $\dot{x} = \frac{1-xt}{t}$.
- 2. Постройте дифференциальные уравнения для следующих семейств решений
 - (a) $x = e^{Ct}$,
 - (b) $x = Ct^3$,
 - (c) $x = C(t C)^2$,
 - (d) $x = \sin(t + C)$,
 - (e) $Cx = \sin Ct$,
 - (f) $x^2 + Cy^2 = 2y$,
 - (g) $y^2 + Cx = x^3$,
 - (h) все параболы, ось которых параллельна оси ординат, касающиеся оси абсцисс и прямой x=t.
- 3. **Для подготовки к следующему занятию.** Найдите все решения, следующих дифференциальных уравнений (хотя понятие решения пока не было определено). Найдите то из них, которое удовлетворяет указанному начальному данному.
 - (a) $x' = (1 2t)x^2$, $x(0) = -\frac{1}{6}$;
 - (b) $y' = 2x/(y + x^2y)$, y(0) = -2;
 - (c) $x' = tx^3(1+t^2)^{-1/2}$, x(0) = 1;
- 4. Угадайте решения следующих дифференциальных уравнений.
 - (a) $\dot{x} = x^a$. При каких значениях a у решения есть странные свойства?
 - (b) Найдите все решения при a=0.5.
 - (c) Докажите, что при a>1 функция x не может быть задана на всем R.
 - (d) $\dot{x} = sign(x)$
 - (e) $\dot{x} = -\text{sign}(x)$
 - (f) $\dot{x} = -\text{sign}(x) + 0.5$