

 "GIS is a computerized system for capturing, storing, checking, integrating, manipulating, analyzing, and displaying data related to positions on the Earth's surface."

What is G.I.S.?

some location in space)

Geographic: is for the where (majority of data collected is associated with

Information: is for the data attached to the where (tables, attributes, or the characteristics (data), can be used to symbolize and provide further insight into a given location)

Systems: many components working together to achieve a common goal (A seamless operation linking the information to the geography – which requires hardware, networks, software, data, and operational procedures

- Geographic Information System (GIS) is defined as an information system
 that is used to input, store, retrieve, manipulate, analyze and output
 geographically referenced data or geospatial data, in order to support
 decision making for planning and management of land use, natural
 resources, environment, transportation, urban facilities, and other
 administrative records.
- The term *Geographic Information System (GIS) first appeared in published literature* in the mid-1960s. But although the term is relatively new, many of its concepts have long been in existence. For example, the *map overlay concept, which is* one of the important tools used in GIS spatial analysis, was used by French cartographer Louis-Alexandre Berthier more than 200 years ago. He prepared and overlaid a series of maps to analyze troop movements during the American Revolution.
- GIS data can be assembled from existing databases; digitized or scanned from existing maps and plans; or collected using conventional surveying techniques, including GPS surveying techniques.

rhe ability to 'stack' layers in a GIS allows us to ask questions about the relationship between different objects of study

Maps

Attribute Database

Attribute data

Information about what can be found at a particular location

Map Data	Attribute Data
Soils	type texture pH erosion potential
Land-cover	dominant species size density
Hydrography	lakes streams watersheds gauging stations
Topography	elevation slope aspect

Map Data	Attribute Data
Ownership	address size zoning legal description
Streets	type width / length paving
Facilities	powerlines water sewer buried cables

Overlay - GIS

What residences lie beneath this toxic plume of ammonia?

What can I do with GIS?

View Imagery

Create 3D models

Create Maps

...and More!

- Calculate area and volume
- Join data based on a common attribute (ID, name, etc.) or its spatial location
- Find where data layers intersect
- Find the nearest features
- Perform surface analysis
 - Contour
 - Slope
 - Hillshade
 - Viewshed
 - Hydrology

Why a GIS

- Old Records/maps are poorly maintained
- Poorly Updated
- Inaccurate
- No Sharing
- No data retrieval service for maps

Benefits of GIS

Once a GIS is implemented, following benefits are expected:

- Better Maintained data
- Standard format
- Easy revision,
- Easy updation
- Easy Units conversion
- Easy to share
- Easier to search, analyze and represent
- Many value added products
- Enhance productivity of staff
- Time and Money saved
- Better Decision making

GIS Software

- ESRI: ARC/INFO, ARC VIEW, ARC GIS
- Intergraph: MGE
- Grass Information Centre: GRASS*
- Clark University: IDRISI
- AUTODESK: ARC MAP
- ILWIS: Integrated Land and Water Information System.

GIS as a Multi-Disciplinary Science

Combination of following traditional sciences

- Geography
- Statistics
- Cartography
- Remote Sensing
- Photogrammetry
- Computer Science
- Operation Research
- Mathematics
- Surveying
- Civil Engineering
- Geodesy
- Urban Planning
- Environmental Engineering, etc.

WHO USES GIS?

Business

- Banking and Financial Services
- Facilities Management
- Insurance
- Media and Press
- Real Estate
- Retail

Defense and Intelligence

- Defense and Force Health Protection
- Enterprise GIS
- Geospatial Intelligence
- Installations and Environment
- . Military Operations (C4ISR)

Education

- Libraries and Museums
- Schools (K-12)
- · Universities and Community Colleges

Government

- Federal, State, Local, Gov 2.0
- Architecture, Engineering and Construction (AEC)
- . Economic Development
- . Elections and Redistricting
- Land Administration
- Public Works
- Surveying
- Urban and Regional Planning

Health and Human Services

- Public Health
- Human Services
- Hospital and Health Systems
- Managed Care
- Academic Programs and Research

Mapping and Charting

- Aeronautical
- Cartographic
- Nautical
- Topographic

Natural Resources

- Agriculture
- Climate Change
- Conservation
- Environmental Management
- Forestry
- Marine and Coast
- = Mining
- Oceans
- Petroleum
- Water Resources

Public Safety

- Computer-Aided Dispatch
- Emergency/Disaster Management
- . Fire, Rescue, and EMS.
- . Homeland Security
- Law Enforcement
- Wildland Fire Management

Transportation

- Aviation
- = Highways
- Logistics
- Railways
- = Ports and Maritime
- » Public Transit

Utilities and Communications

- Electric
- « Gas
- Location-Based Services
- = Pipeline
- Telecommunications
- Water/Wastewater

UNDERSTANDING SPATIAL DATA

What is spatial data?

- Information about the locations and shapes of geographic features and the relationships between them, usually stored as coordinates and topology.
- Any data that can be mapped.

GIS Components

<u>^</u> Software

A technology for storing and analyzing location and attribute data

GIS Components

- Hardware
 - Bystems to support rapid graphic analysis and processing

GIS Personnel

▶ Data

▶ People

- Project coordinators
- □ Data analysts
- □ Programmers
 □
- Data and knowledge managers
 - Librarians

GIS Components

Methods

The analysis to be performed on the data

GIS Methods and Analysis

GIS is used to answer questions and support decisions

- The quality of the answer depends on:
 - # The METHODS chosen
 - The DATA (more on that later)

Modeling - Site Selection

Combining best conditions from multiple layers to come up with the best location for a proposed facility

Eg. Good slope drainage + enough distance from streams + access to roads = Best site

Health Care: Disease outbreak monitoring and modeling

SARS Mapping

GIS and Libraries

Community demographic analysis

