Assignment 5

Problem Statement: Clustering of the iris dataset

Objective:

- 1. Perform clustering of the iris dataset based on all variables using Gaussian mixture models.
- 2. Use PCA to visualize clusters.

```
#IMPORTING LIBRARIES

import pandas as pd
import numpy as np
import seaborn as sns

from sklearn import preprocessing #for scaling data to fit
from sklearn.mixture import GaussianMixture #for implementing Guassian Mix
import matplotlib
import matplotlib.pyplot as plt #for plotting graphs
from sklearn.decomposition import PCA #for PCA
from sklearn.metrics.cluster import adjusted_rand_score #for calculating :

#LOADING THE DATASET

iris = pd.read_csv('/content/Iris (1).csv')
iris
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2

iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
مرير بالدام	Cl+C4/4\	: -+ C1/1\	<u> </u>

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

iris.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	Petal
count	150.000000	150.000000	150.000000	150.000000	15
mean	75.500000	5.843333	3.054000	3.758667	
std	43.445368	0.828066	0.433594	1.764420	
min	1.000000	4.300000	2.000000	1.000000	
25%	38.250000	5.100000	2.800000	1.600000	
50%	75.500000	5.800000	3.000000	4.350000	
75%	112.750000	6.400000	3.300000	5.100000	
max	150.000000	7.900000	4.400000	6.900000	

#DROPPING UNWANTED COLUMN

iris.drop('Id', axis=1, inplace=True)
iris

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Sı
0	5.1	3.5	1.4	0.2	Iris-
1	4.9	3.0	1.4	0.2	Iris-
2	4.7	3.2	1.3	0.2	Iris-
3	4.6	3.1	1.5	0.2	Iris-
4	5.0	3.6	1.4	0.2	Iris-
145	6.7	3.0	5.2	2.3	Iris-v
146	6.3	2.5	5.0	1.9	Iris-v
147	6.5	3.0	5.2	2.0	Iris-v
148	6.2	3.4	5.4	2.3	Iris-v
149	5.9	3.0	5.1	1.8	Iris-v
150 ro	ws × 5 columns				

#CHECKING IF NULL VALUES PRESENT

iris.isnull().sum()

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

#Split data into features (x) and labels(y)

X = iris.iloc[:, 0:4]
Y = iris.iloc[:, -1]

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8
150 rc	ws × 4 columns			

Υ

```
0
          Iris-setosa
1
          Iris-setosa
2
          Iris-setosa
3
          Iris-setosa
4
          Iris-setosa
      Iris-virginica
145
146 Iris-virginica
      Iris-virginica
147
      Iris-virginica
148
149
      Iris-virginica
Name: Species, Length: 150, dtype: object
```

▼ Visualize Data

iris['Species'].value_counts()

Iris-versicolor 50
Iris-virginica 50
Iris-setosa 50

Name: Species, dtype: int64

sns.scatterplot(iris['SepalLengthCm'], iris['SepalWidthCm'], hue=iris['Spears.scatterplot(iris['SepalLengthCm'], iris['SepalWidthCm'], hue=iris['SepalLengthCm']

sns.scatterplot(iris['PetalLengthCm'], iris['PetalWidthCm'], hue=iris['SpetalLengthCm']

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: Fu

Species are nearly linearly separable with petal size, but sepal sizes are more mixed. So plotting a scatter matrix showing each pair of features in the data.

sns.pairplot(iris, hue="Species", diag_kind="hist");

This shows how similar versicolor and virginica are, at least with the given features. But there could be features that you didn't measure that would more clearly separate the species.

We recall to have the right featured to constitute the groups in the half to

Feature Scaling

The data is unbalanced (eg sepallength ~4x petalwidth), so should do feature scaling, otherwise the larger features will dominate the others in clustering, etc.

```
scaler = preprocessing.StandardScaler()
scaler.fit(X)
X_scaled_array = scaler.transform(X)
X_scaled = pd.DataFrame(X_scaled_array, columns = X.columns)
X_scaled.sample(5)
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
8	-1.748856	-0.356361	-1.341272	-1.312977
40	-1.021849	1.032057	-1.398138	-1.181504
83	0.189830	-0.819166	0.762759	0.527645
87	0.553333	-1.744778	0.364699	0.133226
2	-1.385353	0.337848	-1.398138	-1.312977
0.5	34 30	4	• 4	.5.

X scaled

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	-0.900681	1.032057	-1.341272	-1.312977
1	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.385353	0.337848	-1.398138	-1.312977
3	-1.506521	0.106445	-1.284407	-1.312977
4	-1.021849	1.263460	-1.341272	-1.312977

```
Υ
```

```
0
          Iris-setosa
1
          Iris-setosa
2
          Iris-setosa
3
          Iris-setosa
4
          Iris-setosa
145
      Iris-virginica
146
      Iris-virginica
147
      Iris-virginica
148
      Iris-virginica
149
      Iris-virginica
Name: Species, Length: 150, dtype: object
```

1. Perform clustering of the iris dataset based on all variables using Gaussian mixture models.

```
nclusters = 3
gmm = GaussianMixture(n_components=nclusters)
gmm.fit(X_scaled)
```

GaussianMixture(covariance_type='full', init_params='kmeans', max_it means_init=None, n_components=3, n_init=1, precisior random_state=None, reg_covar=1e-06, tol=0.001, verbc verbose_interval=10, warm_start=False, weights_init=

2) Using PCA to visualize clusters.

predict the cluster for each data point

```
ndimensions = 2

pca = PCA(n_components=ndimensions, random_state=142)
pca.fit(X_scaled)

X_pca_array = pca.transform(X_scaled)

X_pca = pd.DataFrame(X_pca_array, columns=['PC1','PC2']) # PC=principal columns=['PC1','PC2'])
```

```
      PC1
      PC2

      143
      2.043308
      0.864685

      3
      -2.304197
      -0.575368

      17
      -2.190179
      0.514304

      98
      -0.457013
      -1.539465

      68
      1.215303
      -1.633356
```

```
y_id_array = pd.Categorical(iris['Species']).codes

df_plot = X_pca.copy()

df_plot['ClusterGMM'] = y_cluster_gmm

df_plot['SpeciesId'] = y_id_array # also add actual labels so we can use

df_plot.sample(5)
```

	PC1	PC2	ClusterGMM	SpeciesId
44	-2.133373	1.171432	0	0
62	0.551634	-1.772582	2	1
144	2.001691	1.048550	1	2
93	-0.373628	-2.017932	2	1
440	4.050007	1 167201	4	2

So now we can make a 2d scatterplot of the clusters first define a plot fn.

```
def plotData(df, groupby):
    "make a scatterplot of the first two principal components of the data
    # making a figure with just one subplot.
    fig, ax = plt.subplots(figsize = (7,7))
    # color map
    cmap = matplotlib.cm.get_cmap('prism')
    # Using pandas to plot each cluster on the same graph.
   for i, cluster in df.groupby(groupby):
        cluster.plot(ax = ax, # need to pass this so all scatterplots are
                     kind = 'scatter',
                     x = 'PC1', y = 'PC2',
                     color = cmap(i/(nclusters-1)), # cmap maps a number
                     label = "%s %i" % (groupby, i),
                     s=30) # dot size
    ax.grid()
    ax.axhline(0, color='black')
    ax.axvline(0, color='black')
    ax.set title("Principal Components Analysis (PCA) of Iris Dataset");
```

```
df_plot['ClusterGMM'] = y_cluster_gmm
plotData(df_plot, 'ClusterGMM')
```


#Checking score

score = adjusted_rand_score(Y, y_cluster_gmm)
score

0.45666038938324494

Conclusion:

GMM clustering matched the true labels closely.

