Day 13 – DBSCAN Clustering (Unsupervised Learning)

Today's Highlights

We learned about **DBSCAN** (**Density-Based Spatial Clustering of Applications with Noise**) — a clustering technique used in unsupervised learning to find groups of data points in large datasets.

Unlike K-Means or Hierarchical Clustering, **DBSCAN** does not require you to specify the number of clusters. It is also capable of identifying noise and outliers effectively.

\square What is DBSCAN?

DBSCAN groups together points that are close to each other based on a **distance** measurement (usually Euclidean) and a minimum number of points (min_samples).

***** Core Concepts:

- **eps**: The maximum distance between two samples for them to be considered as in the same neighborhood.
- min_samples: The number of samples in a neighborhood for a point to be considered a core point.
- Core Points, Border Points, and Noise: Based on these two parameters, DBSCAN labels points accordingly.

■ Dataset Used: Mall_Customers.csv

The dataset contained details of mall customers:

- Age
- Annual Income (k\$)
- Spending Score (1–100)
- Gender (converted into numeric: 0 = Male, 1 = Female)

Step-by-Step Implementation

$ot \sim 1$. Import Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
```

✓ 2. Load and Clean Data

```
df = pd.read_csv('/content/Mall_Customers (1).csv')
df.drop(columns=['CustomerID'], inplace=True)
df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1})
```

M Exploratory Data Analysis (EDA)

```
sns.scatterplot(x='Age', y='Annual Income (k$)', data=df)
plt.show()
sns.boxplot(x='Gender', y='Age', data=df)
plt.show()
```

 We visualized distribution and relationships between features like age, income, and gender.

Feature Scaling

DBSCAN is distance-based, so we scaled the features between 0 and 1.

```
scaler = MinMaxScaler()
df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] =
scaler.fit_transform(
    df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
)
```

Q Choosing the Right Epsilon (eps)

We used **K-Nearest Neighbors** (KNN) to determine the best value of eps.

```
knn = NearestNeighbors(n_neighbors=6)
nbrs = knn.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-
100)']])
distances, indices = nbrs.kneighbors(df[['Age', 'Annual Income (k$)',
'Spending Score (1-100)']])

# Plot sorted distances
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
plt.plot(distances)
plt.show()
```

 \star The elbow in the graph helped us select **eps** = **0.13**

```
dbscan = DBSCAN(eps=0.13, min_samples=5, metric='euclidean')
df['cluster'] = dbscan.fit_predict(df[['Age', 'Annual Income (k$)',
'Spending Score (1-100)']])
```

- Clusters are labeled numerically.
- Points labeled -1 are considered **noise/outliers**.

% Visualizing Clusters

```
df_filtered = df[df['cluster'] != -1]  # Exclude noise

plt.figure(figsize=(10, 8))
sns.scatterplot(
    data=df_filtered,
    x='Annual Income (k$)', y='Spending Score (1-100)',
    hue='cluster', palette='Set2'
)
plt.title("DBSCAN Clustering Result")
plt.show()
```

Outputs

Results & Observations

- DBSCAN successfully grouped dense regions and excluded noisy points.
- It does not require a pre-defined number of clusters.
- It was able to **detect outliers** that other clustering methods might miss.

▶ Sample Cluster Labels:

```
df['cluster'].value_counts()
```

Performance Metric – Silhouette Score

A higher silhouette score indicates better-defined clusters.

Conclusion

- Implemented **DBSCAN Clustering** using Mall Customer data.
- Used **KNN plot** to identify the best eps value for DBSCAN.
- Detected natural groupings and **outliers** without defining cluster count.
- Learned how **density-based clustering** is different from centroid or tree-based methods.
- Gained hands-on experience in advanced unsupervised learning techniques.