Chapter 3.4 SVM

What is the support vector machine

- 1. Task: Two class classification
- 2. Goal: Find optimal hyperplane to separate two groups
 - a. The optimum state is when the distances of the SVs of the two classes become maximum.

Why maximize margin?

Maximum margin solution: most stable under perturbations of the inputs

Decision rule

· Learning the SVM can be formulated as an optimization:

$$\max_{w} \frac{2}{\|w\|} \text{ subject to } w^T x_i + b \begin{cases} \geq 1 & \text{if } y_i = +1 \\ \leq -1 & \text{if } y_i = -1 \end{cases} \text{ for } i = 1 \dots N$$

Or equivalently

$$\min ||w||^2$$
 subject to $y_i(w^Tx_i + b) \ge 1$ for $i = 1 ... N$

What is the best normal vector w?

 The points can be linearly separated but there is a very narrow margin

 But possibly the large margin solution is better, even though one constraint is violated

Soft margin classification

Slack variable

The optimization problem becomes

$$\min_{w \in Rd, \xi_i \in R^+} ||w||^2 + c \sum_{i}^{N} \xi$$

subject to

$$y_i(w^Tx_i + b) \ge 1 - \xi_i$$
 for $i = 1 \dots N$

Optimization

Learning an SVM has been formulated as a constrained optimization problem over ${\bf w}$ and ${\boldsymbol \xi}$

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_i^N \xi_i \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b\right) \geq 1 - \xi_i \text{ for } i = 1 \dots N$$

The constraint $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1 - \xi_i$, can be written more concisely as

$$y_i f(\mathbf{x}_i) \geq 1 - \xi_i$$

which, together with $\xi_i \geq 0$, is equivalent to

$$\xi_i = \max(0, 1 - y_i f(\mathbf{x}_i))$$

Hence the learning problem is equivalent to the unconstrained optimization problem over \mathbf{w}

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$
regularization loss function

Non-separable problem

introduce slack variables

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

linear classifier not appropriate

??

Solution 1: Polar coordinate transformation

Solution 2: Feature space transformation

Kernel trick

Linear kernels $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{x}'$

Polynomial kernels
$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^d$$
 for any $d > 0$

Contains all polynomials terms up to degree d

Gaussian kernels
$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$$
 for $\sigma > 0$

Infinite dimensional feature space