10. DENEY RAPORU

Adı ve Soyadı: £14 Na+11 Bullbul

Öğrenci No: 21.25.3.080

Bölüm: Bigisayar Muhendisliği Sube No: 23.

Deneyden Önce Yapılanlar: Deney videosunu izleyip kılavuzu okudum.

Deneyin adı: Manyetik Kuvvet

Deneyin amacı: Dilagila bir manyetik alan içinde akın taşıyan netken bir

tele etkiyen lorenta (monyetik) kuvvetini incelemek.

Araç-gereç: Ayarlanabilit Dr. gua kaynaşı, dijital terazi, miknatislar başlantı kablaları, teslametre, çeşitli kalınlık, uzunluk ve sarım sayısına sahip U setline sahip Kılavuzda verilen deneyle ilgili teorik bilgi ve deneyin yapılışı bölümlerine çalışılmıştır. Tietken tellet

Deney Saatinde Yapılanlar:

Mıknatıs kutupları arasındaki manyetik alan şiddeti: Bölçülen = mT olarak ölçülmüştür.

$L = \dots 2 \dots \text{cm}$ $I(A) m \text{ (gr)}$		<i>d</i> = cm	
m (gr)	m (kg)	F (N)	
0.09			
047			
0.27			
0,36			
0,45			
0,54			
		and the same	
	m (gr)	m (gr) m (kg)	

9- Tablodaki verilerden F(I) grafiği çizilmiş ve bu grafiğin en iyi eğimi:

eğim =
$$m = \frac{\Delta F}{\Delta I} = \frac{5.4 - 0.9}{1.8 - 0.3} = .3$$
 Aly. olarak hesaplanmıştır.

Hesaplanan eğim değeri kullanılarak ortamın manyetik alan şiddet değeri $B_{\text{hesaplanan}} = \frac{m}{L} = \frac{3}{0.02} = 150 \text{ m} \text{ T}$ şeklinde hesaplanmış ve bu değer $B_{\text{olçulen}} = .146 ... \text{ m.T.}$ değer ile karşılaştırılmıştır.

