

Áttekintés

- Digitális képek
- Egyik legnépszerűbb tömörítési eljárás
- Veszteséges (lossy compression)

- JFIF, EXIF fájlformátum
- JPEG → eljárás
- JPEG Interchange Format (JIF)

IS0 120

Exif Version 0220

Date/Time Original 2016:09:20 10:01:21

Create Date

2016:09:20 10:01:21

Components Configuration Y, Cb, Cr, -

Exposure Compensation 0

Metering Mode
Center-weighted average

Light Source Other

Flash

No Flash

Focal Length

Színtér

- RGB-ből YCbCr-be színes esetén
- Chroma blue & Chroma red downsampling
 4:2:0

Egy színcsatorna három helyett

Előfeldolgozás

- Blokkokra vagy tile-okra bontás MCU (Minimum Coded Unit)
- Megvalósítás: 8 x 8
- Függ a downsampling mértékétől

 Kép méret nem 8 többszöröse → Padding Fix szín, szélső pixel ismétlése stb.

Érték középpontosítás, középre igazítás

$$(0 \sim 255) \longrightarrow (-128 \sim 127)$$

Diszkrét koszinusz transzformáció

- Koszinusz függvények képi reprezentációja
- Egy 8x8 tile reprezentálható
 64 különböző koszinusz fv.
 súlyozott (+ -) átlagával

$$G_{u,v} = rac{1}{4} lpha(u) lpha(v) \sum_{x=0}^{7} \sum_{y=0}^{7} g_{x,y} \cos iggl[rac{(2x+1)u\pi}{16} iggr] \cos iggl[rac{(2y+1)v\pi}{16} iggr]$$

- u és v index koszinusz frekvencia (0..1)
- α Scalingfunction, Basisfunction...

Diszkrét koszinusz transzformáció

- Egy DCT együttható nem 1 pixelre számolódik, hanem a teljes tile-ra
- DCT együttható: mekkora súllyal kell alkalmazni az adott helyen lévő adott horizontális és vertikális frekvenciájú koszinusz fv.-t, hogy az összes koszinusz függvény értékeinek ezzel a súllyal vett átlaga az eredeti képet adja vissza (jó közelítéssel).

$$G_{u,v} = rac{1}{4} lpha(u) lpha(v) \sum_{x=0}^{7} \sum_{y=0}^{7} g_{x,y} \cos iggl[rac{(2x+1)u\pi}{16} iggr] \cos iggl[rac{(2y+1)v\pi}{16} iggr]$$

DC együttható, AC együttható és szerepük

Kvantálás

- Nagy frekvenciájú koszinusz függvények sokkal kisebb súllyal
- Adott helyen lévő DCT együttható / adott helyen lévő kvantálási mátrix érték
- Cél → Kevesebb információ eltárolása a nagyfrekvenciás együtthatókról

- Veszteséges
- Kvantálási mátrix ~ Minőség (nagyobb értékek → 0)
- Legközelebbi egész számra kerekítés

Futamhossz kódolás

- Cikk-Cakk bejárás → rövidebb kód
- Futamhossz kódolás: Számpárok
 - < [0] darabszáma , nem [0] érték >
- Speciális számpár:
 - < 15 , 0 >
 - < 0 , 0 >
- Csak AC

0

Huffman kódolás

- Gyakoribb értékek → rövidebb kód
- Gyakorlatban Huffman-tábla a JFIF/EXIF fájlban

Ezzel hozható létre a fa

- Külön DC és AC
- Értéktartományokhoz rendelt kategóriák határoznak meg egy bitsorozatot
- Kategória kódszó + érték bitreprezentáció

Huffman kódolás

DC példa: -30

5. kategória: 110

Érték a tartományban: 00001

Végső kód: 11000001

-28 → 11000011

 $6 \rightarrow 100110$

- AC táblák jóval nagyobbak
- Párokhoz definiált kódok
- De ua. kategóriához tartozó kódszó + bitreprezent.

Range	Value Category	Bits for the value
0	0	일구
-1,1	1	0,1
-3,-2,2,3	2	00,01,10,11
-7,-6,-5,-4,4,5,6,7	3	000,001,010,011,100,101,110,111
-15,,-8,8,,15	4	0000,,0111,1000,,1111
-31,,-16,16,,31	5	00000,,01111,10000,,11111

Category	Code length	Code word
0	2	00
1	3	010
2	3	011
3	3	100
4	3	101
5	3	110
6	4	1110
7	5	11110
8	6	111110
9	7	1111110
10	8	11111110
11	9	111111110

Máthé Dávid György

Köszönöm szépen a figyelmet!