Worksheet 6 for October 6th and 8th

1. Determine a basis for each of the following subspaces:

(i)
$$H = \left\{ \begin{bmatrix} 4s \\ -3s \\ -t \end{bmatrix} : s, t \in \mathbb{R} \right\},$$

(ii) $K = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a - 3b + c = 0 \right\},$
(iii) $Col \left\{ \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \right\},$
(iv) $Nul \left\{ \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \right\}.$

2. Determine the rank of A and the dimension of Nul(A), Col(A), $Nul(A^T)$, and $Col(A^T)$ where

$$A := \left[\begin{array}{ccccc} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{array} \right].$$

- **3.** Let A, B be two 4×3 matrices. Let $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ be the columns of A and let $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ be the columns of B.
 - (i) Suppose that $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are linearly independent. Find a basis for $\operatorname{Col}(A)$ and a basis for $\operatorname{Nul}(A)$. What are the dimensions of $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$?
 - (ii) Suppose that \mathbf{b}_1 , \mathbf{b}_2 are linearly independent and $\mathbf{b}_3 = 2\mathbf{b}_1 + 7\mathbf{b}_2$. Find a basis for $\operatorname{Col}(B)$ and a basis for $\operatorname{Nul}(B)$.
- **4.** Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and let $\mathcal{B} = \{ \mathbf{u}_1, \mathbf{u}_2 \}$.
 - (i) Let $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Express \mathbf{v} in terms of the basis \mathcal{B} (i.e., realize \mathbf{v} as a linear combination of the vectors from \mathcal{B}). What is the coordinate vector $\mathbf{v}_{\mathcal{B}}$ of \mathbf{v} in terms of the basis \mathcal{B} .
 - (ii) Let $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Express \mathbf{w} in terms of the basis \mathcal{B} . What is the coordinate vector $\mathbf{w}_{\mathcal{B}}$ of \mathbf{w} in terms of the basis \mathcal{B} .
- **5.** Consider the vector space \mathbb{P}_2 of polynomials of degree at most 2. Let $\mathcal{B} = \{t^2 + t + 1, t + 1, 1\}$. (a) Check that \mathcal{B} is a basis for \mathbb{P}_2 .

- (a) Suppose $p(t) \in \mathbb{P}_2$ has coordinate vector $p(t)_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$. What is p(t)?
- **6.** Which of the following mappings T are linear? Justify your answer!

 - (a) $T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = x_1 x_2$. (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ z \end{bmatrix}$.
 - (c) $T: \mathbb{R} \to \mathbb{R}$ defined by $T(x) = e^x$.
 - (d) $T: \mathbb{P}_3 \to \mathbb{P}_3$ defined by $T(f(t)) = \frac{d}{dt}f(t)$, where \mathbb{P}_3 is the space of all polynomials of degree at most 3.
 - (e) $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\mathbf{v}) = \mathbf{v} + \mathbf{v}_0$, for some fixed $\mathbf{v}_0 \neq \mathbf{0} \in \mathbb{R}^n$.
- 7. Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$L\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\8\\4\end{bmatrix}, \quad L\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\0\\1\end{bmatrix}.$$

What is
$$L\left(\begin{bmatrix} 2\\1\end{bmatrix}\right)$$
?

8. Consider the following eight vectors in \mathbb{R}^8 :

$$\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} w = \begin{bmatrix} 100 \\ 200 \\ 44 \\ 50 \\ 20 \\ 20 \\ 20 \\ 4 \\ 2 \end{bmatrix}$$

- (1) Show that \mathcal{B} is a basis of \mathbb{R}^8 .
- (2) Calculate $\mathbf{w}_{\mathcal{B}}$.
- (3) Suppose Alice needs to inform Bob about \mathbf{w} . However, Alice can transmit only four non-zero numbers (and not eight) to Bob; that is Alice can only send Bob a vector in \mathbb{R}^8 which has at most four non-zero entries. Luckily Bob does not need to know the exact values in \mathbf{w} , a good approximation suffices. Using your result in (2), which vector should Alice communicate to Bob?

The following may be useful in the above problems:

Definition. The **nullspace** of an $m \times n$ matrix A, written Nul(A), is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In other words, $\text{Nul}(A) = \{\mathbf{x} : \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0}\}.$

Definition. The **column space** of an $m \times n$ matrix A, written Col(A), is the set of all linear combinations of columns of A. In other words, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$, then $Col(A) = \mathrm{span}\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$.

Definition. A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in a vector space V is a basis if

- (1) $V = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$, and
- (2) the vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly independent.

Definition. A vector space has **dimension** d if it has a basis consisting of d vectors.

Definition. Let V and W be vector spaces. A map $T: V \to W$ is a linear transformation if

$$T(c\mathbf{x} + d\mathbf{y}) = cT(\mathbf{x}) + dT(\mathbf{y})$$

for all $c, d \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.