Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development
Final results

Media Informatic Systems Image recognition task

Carlos Sánchez Páez

7th December 2018

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development
Final results

- Description of the task
 - 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Description of the task

reprocessing tructure of the net eural network developm inal results

- Description of the task
- 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Description of the task

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development

- Convolutional neural network.
- Weras framework with TensorFlow backend.
- **9** Python 3.6.
- NVIDIA 960M GPU (1 505 GFLOPS).

Description of the task

Dataset

Prenyncessing

- reprocessing tructure of the net eural network developme nal results
- Description of the tas
- 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network development

Final results

1 60 000 32x32 colour images (RGB).

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network developments

Final results

- **1** 60 000 32x32 colour images (RGB).
- 2 100 classes.

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network developme

Final results

- **1** 60 000 32x32 colour images (RGB).
- 2 100 classes.
- 600 images per class.

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network developments

Final results

- **1** 60 000 32x32 colour images (RGB).
- 2 100 classes.
- 600 images per class.
 - 500 training.

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network development

Final results

- **1** 60 000 32x32 colour images (RGB).
- 2 100 classes.
- 600 images per class.
 - 500 training.
 - 2 100 testing.

Description of the task

Dataset

Preprocessing

Structure of the net

Neural network development

Final results

- **1** 60 000 32x32 colour images (RGB).
- 2 100 classes.
- 600 images per class.
 - 500 training.
 - 2 100 testing.
- Best accuracy: 75.72%

Classes in the dataset

aquatic mammals	beaver, dolphin, otter, seal, whale
fish	aquarium fish, flatfish, ray, shark, trout
flowers	orchids, poppies, roses, sunflowers, tulips
food containers	bottles, bowls, cans, cups, plates
fruit and vegetables	apples, mushrooms, oranges, pears, sweet peppers
household electrical devices	clock, computer keyboard, lamp, telephone, television
household furniture	bed, chair, couch, table, wardrobe
insects	bee, beetle, butterfly, caterpillar, cockroach
large carnivores	bear, leopard, lion, tiger, wolf
large man-made outdoor things	bridge, castle, house, road, skyscraper
large natural outdoor scenes	cloud, forest, mountain, plain, sea
large omnivores and herbivores	camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals	fox, porcupine, possum, raccoon, skunk
non-insect invertebrates	crab, lobster, snail, spider, worm
people	baby, boy, girl, man, woman
reptiles	crocodile, dinosaur, lizard, snake, turtle
small mammals	hamster, mouse, rabbit, shrew, squirrel
trees	maple, oak, palm, pine, willow
vehicles 1	bicycle, bus, motorcycle, pickup truck, train
vehicles 2	lawn-mower, rocket, streetcar, tank, tractor

Description of the task

Preprocessing

itructure of the net

- 1 Description of the task
- 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Preprocessing (I)

Description of the task

Preprocessing

ire of the net

leural network developme inal results

Augmented Images

Preprocessing (II)

Description of the task
Dataset
Preprocessing
Intructure of the net
deural network development
linal results

```
datagen = ImageDataGenerator(
   featurewise_center=False,
   samplewise_center=False,
   featurewise_std_normalization=False,
   samplewise_std_normalization=False,
   zca_whitening=False,
   rotation_range=0,
   width_shift_range=0.1,
   height_shift_range=0.1,
   horizontal_flip=True,
   vertical_flip=True)
```

Description of the task

tructure of the net leural network developm

- 1 Description of the task
 - 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Description of the task
Dataset
Preprocessing
Structure of the net
Jeural network development
Jinal results

Convolutional layer (128 filters)

Description of the task
Dataset
Preprocessing
Structure of the net
Veural network developmen

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)

Description of the task
Dataset
Preprocessing
Structure of the net
Veural network developmen

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development
Final results

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

Convolutional layer (512 filters)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)
- Dropout layer

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Flatten layer

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Flatten layer
- Fully connected layer (1024 neurons)

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)
- Dropout layer
- Flatten layer
- Fully connected layer (1024 neurons)
- Dropout layer

- Convolutional layer (128 filters)
- Convolutional layer (128 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Convolutional layer (256 filters)
- Convolutional layer (256 filters)
- Max Pooling layer (2x2)
- Oropout layer

- Convolutional layer (512 filters)
- Convolutional layer (512 filters)
- Max Pooling layer (2x2)
- Oropout layer
- Flatten layer
- Fully connected layer (1024 neurons)
- Dropout layer
- Output layer (10 neurons)

```
model = Sequential()
model.add(Conv2D(128, (3, 3), padding='same',
                 input_shape=x_train.shape[1:], activation='elu'))
model.add(Conv2D(128, (3, 3), activation='elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(256, (3, 3), padding='same', activation='elu'))
model.add(Conv2D(256, (3, 3), activation='elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(512, (3, 3), padding='same', activation='elu'))
model.add(Conv2D(512, (3, 3), activation='elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(parameters.NUM_CLASSES, activation='softmax'))
                                        4□ → 4□ → 4 □ → 1 □ → 9 Q (~)
```

Description of the task

eprocessing ructure of the net rural network developmental results

- 1 Description of the task
 - 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Neural network development

Description of the task

reprocessing

ucture of the net

inal results

Calibration of parameters.

Neural network development

Description of the task

tructure of the net

ructure or the net

Final results

- Calibration of parameters.
 - Learning rate.

Neural network development

Description of the task
Dataset
Preprocessing
Structure of the net
Reural network development

- Calibration of parameters.
 - Learning rate.
 - Number of epochs.

Neural network development

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development
Final results

- Calibration of parameters.
 - Learning rate.
 - Number of epochs.
 - 8 Batch size.

Neural network development

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network developmen
Final results

- Calibration of parameters.
 - Learning rate.
 - Number of epochs.
 - Batch size.
- Find the maximum global accuracy.

Description of the task
Dataset
Preprocessing
tructure of the net
deural network development
linal results

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network development

Description of the task
Dataset
Preprocessing
Structure of the net
Jeural network development
Tinal results

Description of the task
Dataset
Preprocessing
itructure of the net
Jeural network development
linal results

Index

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network developm

- Description of the task
 - 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network develops

Validation accuracy: 0.6187 %

2 Validation loss: 1.5597 %

Index

Description of the task
Dataset
Preprocessing
Structure of the net
Neural network developme

- 1 Description of the task
- 2 Dataset
- 3 Preprocessing
- 4 Structure of the net
- 5 Neural network development
- 6 Final results
- Examples

Crocodile prediction

Description of the task
Dataset
Preprocessing
Structure of the net
Veural network development

Bee prediction

Description of the task

reprocessing

ucture of the net

inal results

Porcupine prediction

Description of the task

reprocessing ructure of the net

Structure of the net Neural network develo

Bear prediction

Description of the task Dataset

tructure of the net

Final results

Thanks for your attention!

Source code available at http://www.github.com/csp98

