Reg. No.: Name :

$Mid\text{-}Term\ Examinations - August\ 2021$

Programme	: B. Tech, Computer Science and Engineering	Semester	:	Interim 2021-2022
Course	: Artificial Intelligence	Code	:	CSE3007
Faculty	: Simi V.R.	Slot/ Class No.	:	C11/ 0040
Time	: 1 ½ hours	Max. Marks	:	50

Answer all the Questions

Q. No.	Sub. Sec.	Question Description	
1		Demonstrate the working of the Heuristic search strategy on a real problem.	10
2	(a)	Suppose, X is a set of values and Y is the corresponding membership function, $Y = \frac{1}{e^{c(x-k)}}$. Graphically analyze the impact of the values of k and c on the fuzzy membership function for a given set $X = \{1, 2, 3, \dots, 100\}$	5
	(b)	Consider the given fuzzy set, $A = \{(1, 0.1), (2, 0.5), (3, 0.8), (4, 1.0), (5, 0.7), (6, 0.2)\}$, find the α -cuts, strong α -cuts, support and core for the fuzzy set A .	5
3		Suggest a real-world decision-making problem that can be solved with the help of machine learning. Propose a machine learning model (algorithm) for solving the suggested problem and explain it.	10
4		Design a MINIMAX algorithm for a game of your choice. Construct a game tree for the same. What may be the optimal strategies that can be applied in each player's moves to obtain the best outcomes?	10
5		Perform Breadth-First Search (BFS) on the graph given below. Find three different solutions. What kind of Data Structure (DS) is used to store the vertices of the graph in a BFS algorithm? How effective is your suggested DS for tracking the solutions?	

10