DRAFT Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE (S) EXAMINATION, May 2023

	51/(1)	.I SLIVILS I L.		se Code: CST	EXAMINATION, N	1ay 2023	
		Cour			IG IN PYTHON		
Max	Max. Marks: 100 Duration: 3 Ho					Hours	
				DADTA			
		Ans	swer all que	PART A estions, each c	arries 3 marks.		Marks
1	Output:	$0,1,2,3 + J_1$					(3)
2	Multiwa	y-if Syntax -	1.5				(3)
	elif <cond <seque else:</seque </cond 	nce of statement	s-n>				
	Semanti	es - 1.5		false true false sequence of statements	sequence of statements sequence of statements		
3	Definition	ons of names	pace, scope	and lifetime -	1*3 =3		(3)
4	Mutable	and immutab	le propertie	es of Python da	ta structures -1		(3)
	Any mu	table Data str	ucture (eg.]	List, Dictionar	y etc) -1		
	Any imr	nutable data s	tructure (eg	g. string, intege	r, tuple etc) - 1		
5	Attribute	es of a turtle o	bject- 3				(3)
	1. Locat	ion					
	2. Orien	tation (or dire	ction), and				
	3. Pen (with attribute	es color, wi	dth, and on/off	state)		
6	Advanta	ges of GUI b	ased progra	ms over termin	al based programs.	3*1 =3	(3)
	1.The us	er is not cons	trained to e	nter inputs in a	particular order.		
	2. Runni	ng different d	lata sets do	es not require r	e-entering all of the	data.	
	3. As the	number of c	ommand op	otions increases	and the		

		information to be presented grows in quantity and complexity GUI becomes more useful.				
7		Abstraction mechanism Explanation -2	(3)			
		- They simplify design and controlling the complexity of solutions.				
		- It gives user an exteranl view of a resource, showing what it does and how it can				
		be used				
		-Programmer shouldn't be concerned with how a resource performs its task.				
		Example -1				
8		Definitions of accessors & mutators - 1.5 each	(3)			
		- Methods that allow a user to observe but not change the state of an				
		object are called accessors				
		- Methods that allow a user to modify an object's state are called				
		mutators .				
9		import os	(3)			
		file_exists = exists(path_to_file)				
		OR				
		import os				
		file_exists=os.path.isfile('./final_data.csv')				
10		Flask is a web application framework written in Python. + Explanation -1.5	(3)			
		Flask is based on the Werkzeg WSGI toolkit and the Jinja2 template engine. +				
		Explanation -1.5				
	PART B					
	Answer one full question from each module, each carries 14 marks. Module I					
11	a)	Input reading - 1	(7)			
		Real roots implementation – 3				
		Imaginary root implementation -2				
		Display of output - 1				
	b)	Input reading - 1	(7)			
			(1)			

		Armstong number logic implementation -5	
		Display of output - 1	
		OR	
12	a)	Input reading - 1	(7)
12	<i>a)</i>	Logic implementation for Sum of odd numbers between a programmer specified	(/)
		upper and lower limit – 5	
		Display of output - 1	
	b)	Input reading - 1	(7)
		Series sum logic implementation – 5	
		Display of output - 1	
		Module II	
13	a)	Encryption: 3.5	(7)
		<pre>plainText = input("Enter a one-word, lowercase message: ") distance = int(input("Enter the distance value: ")) code = "" for ch in plainText: ordvalue = ord(ch) cipherValue = ordvalue + distance if cipherValue > ord('z'): cipherValue = ord('a') + distance - \</pre>	
		<pre>Decryption: 3.5 code = input("Enter the coded text: ") distance = int(input("Enter the distance value: ")) plainText = "" for ch in code: ordvalue = ord(ch) cipherValue = ordvalue - distance if cipherValue < ord('a'): cipherValue = ord('z') - \</pre>	
	b)	count = 0 inputFile = open("myfile.txt", 'r')	(7)
		for line in inputFile: wordlist = line.split() for word in wordlist: if len(word) == 4: count += 1	
		print("There are", count, "lines.") Counting -3	

```
OR
14
    a)
         1. def mean(lyst):
                                                                                               (7)
           theSum = 0
           if len(lyst) == 0
             return 0
           for number in lyst:
              theSum += number
                                                                               -2
           return theSum / len(lyst)
         2. mode
         def mode(lyst)
           if len(lyst) == 0
              return 0
           lyst.sort()
           midpoint = len(lyst) // 2
           print("The median is", end = " ")
            if len(lyst) \% 2 == 1:
               return(lyst[midpoint])
            else:
               return((lyst[midpoint] + lyst[midpoint - 1]) / 2)
                                                                               -3
         3. Mode
         def mode(lyst):
          counts = \{\}
          for item in lyst:
             if item in counts:
               counts[item] += 1
               counts[item] = 1
          return [key for key in counts.keys() if counts[key] == max(counts.values())]
                                                                              -2
                                                OR
         lyst = [10, 30, 50, 10, 50, 80, 50]
         print("Mode of lyst is % s" % (max(set(lyst), key = lyst.count))
                                                                               -2
```

```
# Using loop + list slicing
     b)
                                                                                                     (7)
         test_list = [5, 6, 3, 8, 2, 1, 7, 1]
         sublist = [8, 2, 1]
         res = False
         for idx in range(len(test list) - len(sublist) + 1):
             if test list[idx : idx + len(sublist)] == sublist:
               res = True
               break
         print("Is sublist present in list ?:" + str(res))
                                                                             -7
                                                    OR
         # using all()
         test_list = [9, 4, 5, 8, 10]
         sub_list = [10, 5, 4]
         flag = 0
         if(all(x in test_list for x in sub_list)):
            flag = 1
         if (flag):
            print("Yes, list is subset of other.")
         else:
            print("No, list is not subset of other.")
                                                                            -7
                                               Module III
                                                                                                     (7)
15
         import turtle
     a)
         t = turtle.Turtle()
         t.fillcolor("red")
         t.pencolor("black")
         t.begin fill()
         for count in range(6):
           t.forward(length)
           t.left(60)
         t.end fill()
         turtle.exitonclick()
                                                                                    - 4
```

```
turtle object methods used in the code
                                                                        -3
                                                                                         (7)
        def blackAndWhite(image):
         blackPixel = (0, 0, 0)
         white Pixel = (255, 255, 255)
         for y in range(image.getHeight()):
             for x in range(image.getWidth()):
               (r, g, b) = image.getPixel(x, y)
                average = (r + g + b) // 3
                if average < 128:
                 image.setPixel(x, y, blackPixel)
                else:
                 image.setPixel(x, y, whitePixel)
        from images import Image
        def main(filename = "smokey.gif"):
         image = Image(filename)
         print("Close the image window to continue.")
         image.draw()
         blackAndWhite(image)
         print("Close the image window to quit.")
         image.draw()
        if _name_ = " main ":
        main()
                                                             - 4
        Explanation of methods
                                                             - 3
                                             OR
                                                                                        (10)
16
    a)
        1) init method with
                                                                     - 6
          Easy frame init call
          Two addLabel and addFloatField method calls
          Two addButton method calls
```

		2) 2 event handling methods - 4			
		To compute amount in Euro from amount in Rupees			
		To compute amount in Rupees from amount in Euros			
	b)	Attributes: -2	(4)		
		title (an empty string by default)			
		width and height in pixels			
		resizability (true by default)			
		background color (white by default)			
		Changing the attributes: -2			
		Any two out of the following three ways			
		1.through _init method			
		2. reset them in the window's attribute dictionary			
		3. run a method included in the EasyFrame class			
		Module IV			
17	a)	Rectangle Class defenition with constructor to set height, width - 3	(7)		
		Two member functions to find area, and perimeter $-2 + 2$			
	b)	Inheritance implementation -Explanantion+ Illustration -4	(7)		
		Each class below the topmost one inherits attributes and behaviors from its			
		ancestors and extends these with additional attributes and behavior.			
		class <new class="" name="">(<existing class="" name="" parent="">):</existing></new>			
		Polymorphism implementation - Explanantion+ Illustration-3			
		Two methods that have the same header but have different definitions in different			
		classes.			
		OR			
18	a)	Student class definition with constructor for receiving name and roll number. 2	(7)		
		Methods to :			
		1. Display - It should display all informations of the student1			
		2. setAge - It should assign age to student -2			
		3. setTestMarks - It should assign marks of a test to the student2			
	b)	Exceptions Explanation and common exceptions in Python-2	(7)		

		Illustartion - 2			
	Module V				
19	a)	1. $arr2d[:2] = > [[1, 2, 3],$	(8)		
		[4, 5, 6]]			
		2. $arr2d[:2, 1:] = > [[2, 3],$			
		[5, 6]]			
		3. $arr2d[1, :2] \Rightarrow [4, 5]$			
		4. $arr2d[:2, 1:] = 0 \implies [[1, 0, 0],$			
		[4, 0, 0],			
		[7, 8, 9]] 2*4=8			
	b)	import csv	(6)		
		Call III NATIONALIS AND AND CONTRACTOR OF THE CALL			
		fields = ['Reg. No', 'Name', 'Semester', 'College', 'CGPA'] - reading 3			
		rows = [['ABC123', 'Ganesh Kumar', 'S8', 'ABC', '9.8'] ['ECH265', 'John Mathew', 'S7', 'ECH', '9.9'], all data rows to be written here in this format filename = "university_topper.csv" with open(filename, 'w') as csvfile: - writing 3 csvwriter = csv.writer(csvfile) csvwriter.writerow(fields) csvwriter.writerows(rows)			
	OR				
20	a)	Import panda and read csv - 2	(4)		
		Number of rows and columns => use shape() -1			
		First five rows => use head() -1			
	b)	Import required libraries, matplotlib library for visualization and importing csv	(10)		
		library for reading CSV data.			
		 Open the file using open() function with 'r' mode (read-only) from CSV library and read the file using csv.reader() function. Read each line in the file using for loop. Append required columns of the CSV file into lists. 			

	4. After reading the whole CSV data, plot the required data as scatter/plot using plt functions. 5*2 =10	
