Conceptos de Arquitectura de Computadoras

Clase 1

Régimen de cursado

- Los Trabajos Prácticos son con registro de asistencia (Miércoles y Viernes).
- Cada Trabajo Práctico tendrá actividades en aula y en sala de PC.
- Aprobación
 - Promoción
 - Con Examen Final

Aprobación de cursada

- Se realizarán 2 evaluaciones parciales de trabajos prácticos con dos fechas de recuperación.
- Las 2 evaluaciones parciales deben ser Aprobadas.
- Las evaluaciones se tomarán en horarios de cursada.
- Para rendir las evaluaciones: 66 % de asistencia.
- En la segunda fecha de recuperación de evaluaciones, optarán por rendir el Parcial 1, el Parcial 2 o ambos.

Promoción

- Se deberá Aprobar, con valoración equivalente o superior a nota 4 (cuatro), una evaluación corta de teoría durante la cursada y en fecha definida en cronograma.
- Se deberán Aprobar, los 2 parciales de prácticas en la primera fecha prevista.
- Cumplidas las dos condiciones anteriores, se deberá Aprobar, con nota 6 (seis) o superior una evaluación teórica que se tomará antes del 2º recuperatorio de parciales de práctica. La nota obtenida es la nota de Promoción.
- Las evaluaciones se tomarán en horarios de cursada.

Bibliografía

- Organización y Arquitectura de Computadoras Diseño para optimizar prestaciones, Stallings W., Editorial Prentice Hall.
- Organización de Computadoras, Tanenbaum A., Editorial Prentice Hall.
- Arquitectura de Computadores Un enfoque cuantitativo, Hennessy & Patterson., Editorial Mc Graw Hill.
- Diseño y evaluación de arquitecturas de computadoras, Beltrán M. y Guzmán A., Editorial Prentice Hall.
- Computer Organization and Embedded Systems, 6th ed. Hamacher C., Vranesic Z., Zaky S., Manjikian N., Editorial Mc Graw Hill
- Computer Organization and Architecture, 10/E. Stallings W., Editorial Pearson

Temas de clase

- Temas básicos
 - Programas
 - Arquitectura Von Neumann
 - Repertorio de instrucciones
 - Ciclo de instrucción
 - Simulador
- Subrutinas
 - Pasaje de argumentos

Concepto de programa

Antes se tenían sistemas cableados

 Programación en hardware: cuando cambiamos las tareas, debemos cambiar el hardware

Concepto de programa (2)

Ahora Códigos de instrucción Intérprete de instrucción Señales de control **Datos** Resultados **Funciones** aritmético/lógicas

 Programación en software: en cada paso se efectúa alguna operación sobre los datos

Concepto de programa (3)

- Para cada paso se necesita un nuevo conjunto de señales de control.
- Las instrucciones proporcionan esas señales de control.
- Aparece el nuevo concepto de programación.

No hay que cambiar el hardware !!!

Arquitectura Von Neumann

- La unidad central de procesamiento (CPU) está constituida por la unidad de control (UC) y la unidad aritmético-lógica (ALU).
- Datos e instrucciones deben introducirse en el sistema y los resultados se proporcionarán mediante componentes de entrada/salida (E/S).
- Se necesita almacenar temporalmente datos e instrucciones:
 - Memoria Principal

Componentes de una computadora

Memoria

Instrucción		
Instrucción		
Instrucción		
Datos		

PC = Contador de programa

IR = Registro de instrucción

MAR = Registro de dirección de memoria

MBR = Registro de buffer de memoria

E/S AR = Registro de dirección de E/S

E/S BR = Registro buffer de E/S

Repertorio de instrucciones

- Es el conjunto completo de instrucciones que se realizan en una CPU.
 - Código máquina
 - Binario
- Representado simbólicamente por un conjunto de códigos de ensamblaje
 - de operaciones:
 - ADD (sumar), SUB (restar), LOAD (cargar datos en un registro)
 - de operandos:
 - ADD BX, PEPE; sumar contenidos de reg BX y dirección PEPE, el resultado se guarda en reg BX

Alto nivel a máquina

CAC - Clase 1

Elementos de una instrucción

- Código de operación ("Cod Op")
- Referencia a operandos fuentes
- Referencia al operando resultado
- Referencia a la siguiente instrucción

¿Dónde se almacenan operandos?

- Memoria principal
 - o memoria virtual o en memoria cache

- Registro de la CPU
- Dispositivo de E/S

Alternativas de almacenamiento

Almacenamiento tipo Pila

Almacenamiento tipo Memoria - Memoria

Almacenamiento tipo Acumulador

Almacenamiento tipo Registro-Registro

Tipos de instrucciones

- Procesamiento de datos:
 - instrucciones aritmético-lógicas
- Almacenamiento de datos:
 - instrucciones de memoria
- Transferencia de datos:
 - instrucciones de E/S
- Control:
 - instrucciones de testeo y flujo del programa

¿Cuántas direcciones?

- Más direcciones por instrucción
 - Instrucciones más complejas
 - Más registros:
 - Las operaciones entre los registros son más rápidas.
 - Menos instrucciones por programa
- Menos direcciones por instrucción
 - Instrucciones menos complejas
 - Más instrucciones por programa
 - La captación/ejecución de las instrucciones es más rápida

Decisiones en el diseño del conjunto de instrucciones (1)

- Tipos de operandos (datos)
- Repertorio de operaciones
 - ¿Cuántas operaciones se considerará?
 - ¿Cuáles operaciones se realizarán?
 - ¿Cuán compleja será cada una de ellas?
- Formatos de instrucciones:
 - Longitud de instrucción
 - Número de direcciones
 - Tamaño de los campos

Decisiones en el diseño del conjunto de instrucciones (2)

- Registros
 - Número de registros de la CPU referenciables
 - ¿En qué registros se pueden ejecutar qué operaciones?
- Modos de direccionamiento
 - ¿cómo es especificada la ubicación de un operando o una instrucción?
- RISC contrapuesto a CISC

(Computadora de conjunto reducido de instrucciones) a (Computadora de conjunto complejo de instrucciones)

Tipos de operandos

- Direcciones
- Números
 - punto fijo ó punto flotante
- Caracteres
 - ASCII, EBCDIC ...etc.
- Datos lógicos
 - Bits (1 ó 0)
 - Ej: flags o indicadores

Orden de los bytes

Supongamos una memoria direccionable de a byte

 ¿En qué orden se leen aquellos números que ocupan más de un byte?

Ejemplo:

La palabra doble 98765432H (32 bits) se puede almacenar en 4 bytes consecutivos de las siguientes 2 formas:

Orden de los bytes (2)

Orden de los bytes (3)

Dir. de byte	Forma 1	Forma 2
00	98	32
01	76	54
02	54	76
03	32	98

¿cuál forma uso?

Big endian: el byte más significativo en la dirección con valor numérico más bajo

Little endian: el byte menos significativo en la dirección con valor numérico más bajo

Problema

- Intel 80x86, Pentium y VAX son "little-endian".
- IBM S/370, Motorola 680x0 (Mac) y la mayoría de los RISC son "big-endian".

Incompatibilidad !!!

Accesos a la memoria

CAC - Clase 1

Problema

 Si se permiten, los accesos no alineados son mas lentos!!!!

Tipos de operaciones

- Transferencias de datos
- Aritméticas
- Lógicas
- Conversión
- Entrada/Salida
- Control del sistema
- Control de flujo

Transferencia de datos

- Debe especificarse:
 - Ubicación del operando fuente
 - Ubicación del operando destino
 - Tamaño de los datos a ser transferidos
 - Modo de direccionamiento
- Diferentes movimientos ->diferentes instrucciones
 - Reg-Reg, Reg-Mem o Mem-Reg
- O una instrucción y diferentes direcciones
 - MOV destino, fuente ; copia fuente a destino

Aritméticas

- Operaciones básicas:
 - Add, Substract, Multiply y Divide
 - Números enteros sin/con signo.
 - ¿Números en punto flotante?
- Pueden incluirse otras operaciones ...
 - **Inc**rement o **Dec**rement (en 1 el operando)
 - Negate: cambia el signo del operando (Ca2).
 - Absolute: toma el valor absoluto del operando.
 - Shift left/right: desplaza bits a izq/der un lugar

Lógicas - Conversión

Operaciones que manipulan bits individualmente

- Operaciones Booleanas.
 AND, OR, XOR, NOT
- Otras operaciones
 - Rotate left/right: rota las posiciones de los bits a izq/der

Operaciones para cambiar formatos de datos

Conversión de binario a decimal o de EBCDIC a ASCII

Entrada/Salida

- Pocas instrucciones pero de acciones específicas
 - IN ó OUT
- Se pueden realizar utilizando instrucciones de movimiento de datos
 - MOVE
- Se pueden realizar a través de un controlador aparte: DMA (Direct Memory Access)

Control de flujo

Modifican el valor contenido en el registro PC

- Salto Incondicional
 - JMP equis ; saltar a la posicion 'equis'
- Salto Condicional
 - JZ equis ; saltar a la posición 'equis', si bandera Z=1
- Salto con retorno o llamada a subrutina
 - CALL subrut ;saltar a la posición `subrut'

Para retornar al programa que llamó, se debe utilizar la instrucción **RET** como última instrucción del cuerpo de subrutina

CAC - Clase 1

Formatos de instrucción

Modos de direccionamiento

- Inmediato
- Directo de memoria o Absoluto
- Directo de Registro
- Indirecto de memoria (en desuso)
- Indirecto con registro
- Indirecto con Desplazamiento
 - basado, indexado o relativo al PC
 - Pila (o relativo al SP)

MDD Inmediato

CAC - Clase 1 36

MDD Directo o Absoluto (de memoria)

CAC - Clase 1

MDD Directo de Registro

CAC - Clase 1

MDD Indirecto con desplazamiento

CAC - Clase 1

Ciclo de instrucción básico

- Dos pasos:
 - Captación
 - Ejecución

Ciclo de captación

- La dirección de la instrucción que se debe captar se encuentra en el registro Contador de Programa (PC)
- La UC capta la instrucción desde la Memoria
 - La instrucción va al registro de instrucción (IR)
- El registro PC se incrementa
 - a no ser que se indique lo contrario.
- La UC interpreta la instrucción captada y debe lleva a cabo la acción requerida

Ciclo de ejecución

Acciones posibles:

- Procesador memoria
 - Transferencia de datos CPU Memoria.
- Procesador E/S
 - Transferencias de datos CPU y módulo de E/S.
- Procesamiento de datos
 - Alguna operación aritmética o lógica con los datos.
- Control
 - Alteración de la secuencia de ejecución.
 - Instrucción de salto

ó combinación de las acciones anteriores

Diagrama de estados del ciclo de instrucción

Ruta de Datos

Simulador MSX88

CAC - Clase 1

Simulador VonSim (https://vonsim.github.io/)

VonSim: inst. de transferencia

1	MOV dest,fuente	Copia fuente en dest	(dest)←(fuente)
2 2 2	PUSH fisente	Carga fuente en el tope de la pila	$(SP)\leftarrow(SP)-2;[SP+1:SP]\leftarrow(fuente)$
	POP dest	Desapila el tope de la pila y lo carga en dest	$(fuente) \leftarrow [SP+1:SP]; (SP) \leftarrow (SP)+2$
	PUSHF	Apila los flags	$(SP)\leftarrow(SP)-2;[SP+1:SP]\leftarrow(flags)$
	POPF	Desapila los flags	$(flags)\leftarrow[SP+1:SP], (SP)\leftarrow(SP)+2$
3	IN dest, fuente	Carga el valor en el puerto fuente en dest	(dest)←(fuente)
4	OUT dest,fuente	Carga en el puerto dest el valor en fuente	(dest)←(fuente)

- 1. dest/fuente son: reg/reg, reg/mem, reg/op.inm, mem/reg, mem/op.inm. mem puede ser una etiqueta (dir.directo) o [BX] (dir.indirecto).
- 2. dest y fuente solo pueden ser registros de 16 bits.
- 3. dest/fuente son: AL/mem, AX/mem, AL/DX, AX/DX.
- 4. dest/fuente son: mem/AL, mem/AX, DX/AL, DX/AX.

 mem debe ser dirección entre 0 y 255. Puede ser un operando inmediato o una etiqueta.

Inst. aritméticas y lógicas

1	ADD dest,fuente	Suma fuente y dest	$(dest) \leftarrow (dest) + (fuente)$
1	ADC dest fuente	Suma fuente, dest y flag C	$(dest)\leftarrow (dest)+(fixente)+C$
1	SUB dest,fuente	Resta fuente a dest	$(dest) \leftarrow (dest) \cdot (fuente)$
1	SBB dest_fivente	Resta fuente y flag C a dest	$(dest)\leftarrow (dest)$ - $(fuente)$ - C
1	CMP dest_fuente	Compara fuente con dest	(dest)-(fuente)
5	NEG dest	Negativo de dest	$(dest) \leftarrow CA2(dest)$
5	INC dest	Incrementa dest	$(dest) \leftarrow (dest) + 1$
	DEC dest	Decrementa dest	$(dest) \leftarrow (dest)-1$
1	AND dest fuente	Operación fuente AND dest bit a bit	(dest)← (dest) AND (fuente)
1	OR dest,fuente	Operación fuente OR dest bit a bit	(dest)← (dest) OR (fuente)
1	XOR dest fuente	Operación fuente XOR dest bit a bit	(dest)← (dest) XOR (fuente)
5	NOT dest	Complemento a 1de dest	$(dest) \leftarrow CA1(dest)$

- 1. dest/fuente son: reg/reg, reg/mem, reg/op.inm, mem/reg, mem/op.inm.
- 5. dest solo puede ser mem o reg.

mem puede ser una etiqueta (dir.directo) o [BX], siendo (BX) una dirección de memoria (dir.indirecto).

CAC - Clase 1

Inst. transf. de control

6	CALL etiqueta	Llama a subrutina cuyo inicio es etiqueta		
6	RET	Retorna de la subrutina		
6	JZ ettqueta	Salta si el último valor calculado es cero	Si Z=1, (IP)←mem	
6	JNZ etiqueta	Salta si el último valor calculado no es cero	Si Z=0, (IP)←mem	
•	JS ettqueta	Salta si el último valor calculado es negativo	Si S=1, (IP)←mem	
6	JNS etiqueta	Salta si el último valor calculado no es negativo	Si S=0, (IP)←mem	
6	JC ettqueta	Salta si el último valor calculado produjo carry	Si C=1, (IP)←mem	
6	JNC ettqueta	Salta si el último valor calculado no produjo carry	Si Z=1, (IP)←mem	
6	JO etiqueta	Salta si el último valor calculado produjo overflow	Si O=1, (IP)←mem	
6	JNO ettqueta	Salta si el último valor calculado no produjo overflow	Si O=0, (IP)←mem	
6	JMP etiqueta	Salto incondicional a ettqueta	(IP)←mem	

6. mem es la dirección de memoria llamada etiqueta.

Subrutinas

- Innovación en lenguajes de programación
- Programa auto-contenido
- Puede invocarse desde cualquier punto de un programa
 - mediante instrucción CALL
- Brinda economía (código usado varias veces) y modularidad (subdivisión en unidades pequeñas).
- Requiere pasaje de argumentos (parámetros)
 - por valor (copia de una variable)
 - por referencia (dirección de la variable)

Pasaje de argumentos a subrutinas

- Vía registros
 - El número de registros es la principal limitación
 - Es importante documentar que registros se usan
- Vía memoria
 - Se usa un área definida de memoria (RAM).
 - Difícil de estandarizar

Pasaje de argumentos a subrutinas

- Vía pila (stack)
 - Es el método más ampliamente usado.
 - El verdadero "pasaje de parámetros".
 - Independiente de memoria y registros.
 - Hay que comprender bien como funciona porque la pila (stack) es usada por el usuario y por el sistema.

En x86, SP apunta al último lugar usado

Funcionamiento de una pila

- El operando está (de forma implícita) en la cabeza de la pila
- Se requiere un registro Puntero de Pila (SP)
 - Contiene la dirección de la cabeza de la pila
- Operaciones sobre la pila
 - **PUSH** ; operación de Apilar
 - POP ; operación de Desapilar
 - Son inversas entre sí

Operaciones de apilar/desapilar

- Secuencia de dos acciones:
 - 1- Movimiento de datos Reg-Mem ó Mem-Reg
 - 2- Modificación del puntero antes/después de la anterior
- Tener en cuenta:
 - dónde apunta el puntero
 - cómo crece la pila

Funcionamiento de la pila

PUSH

POP

Ejemplo en Assembly

Ejemplo: ORG 2000H MOV BX, 3000H AX, [BX] MOV PUSH AX MOV BX, 3002H MOV CX, [BX] PUSH CX POP AX POP CX HLT 3000H ORG 55h, 33h, 44h, 22h datos DB **END**

Definición del procedimiento

Nombre Proc

...
Cuerpo del procedimiento
Ret

Nombre Endp

Llamada al procedimiento

En programa principal

. . .

Push Parametro 1

Push Parametro 2

Call Nombre

• • •

. . .

Ejemplo con subrutina

ORG 1000H

subrutina: NEG AX

RET

ORG 2000H

MOV BX, 0

MOV AX, dato

PUSH AX

CALL subrutina

POP BX

HLT

ORG 3000H

dato: DB 55H

END

Analizar la pila y los valores

finales de AX y BX

Posibles pasos en un procedimiento

- 1. Salvar el estado de BP (viejo BP)
- 2. Salvar estado de SP (BP=SP)
- 3. Reservar espacio para datos locales (opcional)
- 4. Salvar valores de otros registros (opcional)
- 5. Acceder a parámetros
- 6. Escribir sentencias a ejecutar
- 7. Retornar parámetro (opcional)
- 8. Regresar correctamente del procedimiento

Pasos... (1)

• El procedimiento comenzaría con:

push BP mov BP, SP

 Esto establece a BP como puntero de referencia y es usado para acceder a los parámetros y datos locales en la pila. SP no puede ser usado para éste propósito porque no es un registro base ó índice. El valor de SP puede cambiar pero BP permanece 'quieto'.

Pasos... (2)

- Así la primera instrucción salva BP y la segunda carga el valor de SP en BP (en el momento de entrar al procedimiento).
- BP es el puntero al área de la pila asignada al procedimiento (frame pointer).
- Para acceder a los datos se deberá sumar un desplazamiento fijo a BP.

Pasos... (3) (Opcional)

- Reservar espacio para variables locales
 - se decrementa SP, reservando lugar en la pila sub SP, 2
 - Este ej. reserva 2 bytes para datos locales.
- El sistema puede utilizar al SP sin escribir sobre el área de trabajo (o frame) del procedimiento.

SP y BP al entrar a SUBR 1

SP y BP después de paso 3

CAC - Clase 1

Pasos... (4) (Opcional)

- Salvar otros registros
 - por ej. DI

push DI

 Si el procedimiento no cambia el valor de los registros, éstos no necesitan ser salvados. Normalmente los registros son salvados después de establecer el puntero (frame pointer) y los datos locales.

CAC - Clase 1

Pasos... (5) acceso a los parámetros

- En general el desplazamiento de BP para acceder a un parámetro es igual a:
- 2 (es el tamaño de BP apilado) + tamaño de dirección de retorno + total de tamaño de parámetros entre el buscado y BP
- Para acceder al Parámetro 1 deberá ser:
 mov CX, [BP + 8]

CAC - Clase 1

Salida del procedimiento (1)

- Los registros salvados en la pila deben ser descargados en orden inverso.
- Si se reservó espacio para variables locales, se debe reponer SP con el valor de BP que no cambió durante el procedimiento.
- Reponer BP.
- Volver al programa que llamó al procedimiento con RET.

Salida del procedimiento (2)

En nuestro ej.

```
pop DI
mov SP, BP
pop BP
ret
```

Sin parámetro de retorno

Con parámetro de retorno

CAC - Clase 1

Anidamiento de subrutinas

ORG 1000H

rutina1: NEG AX

PUSH AX

CALL rutina2

POP AX

RET

ORG 1020H

rutina2: INC AX

RET

ORG 2000H

PPIO: MOV BX, 0

MOV AX, dato

PUSH AX

CALL rutina1

POP BX

HLT

ORG 3000H

dato: **DB** 55H

END

Para el simulador

 Declaración del procedimiento nombre: instrucción

•

En lugar de BP se usa BX

Ejemplo para simulador

ORG 1000H

NUM1 **DW** 5H

NUM2 **DW** 3H

RES **DW** ?

ORG 3000H

MUL: PUSH BX

MOV BX,SP

PUSH CX

PUSH AX

PUSH DX

ADD BX,6

MOV CX,[BX]

ADD BX,2

....

MOV AX,[BX]

SUMA: ADD DX,AX

DEC CX

JNZ SUMA

SUB BX,4

MOV AX,[BX]

MOV BX,AX

MOV [BX],DX

POP DX

POP AX

POP CX

POP BX

RET

CAC - Clase 1

ORG 2000H

MOV AX, NUM1

PUSH AX

MOV AX,NUM2

PUSH AX

MOV AX,OFFSET RES

PUSH AX

MOV DX,0

CALL MUL

POP AX

POP AX

POP AX

HLT

END

Bibliografía e información

- Organización y Arquitectura de Computadoras. W. Stallings, 5ta Ed.
 Repertorios de instrucciones
 - Capítulo 9: características y funciones
 - Capítulo 10: modos de direccionamiento y formatos
 - Apéndice 9A: Pilas

Ciclo de instrucción:

- Capítulo 3 apartado 3.2.
- Capítulo 11 apartados 11.1. y 11.3.

Organización de los registros

Capítulo 11 apartado 11.2.

Formatos de instrucciones

- Capítulo 10 apartado 10.3. y 10.4.
- Simulador VonSim (https://vonsim.github.io/)
 - Documentación: (https://vonsim.github.io/docs/)

Link de interés: www.williamstallings.com