Temptation: Immediacy and Certainty

Lucas Reddinger

UCSB

11 November 2020

■ Ever make long-term goals, then fail to follow your plan?

- Ever make long-term goals, then fail to follow your plan?
- Often choose a short-term temptation: dynamically inconsistent behavior

- Ever make long-term goals, then fail to follow your plan?
- Often choose a short-term temptation: dynamically inconsistent behavior

■ Is an option less tempting when its consequence is uncertain?

- Ever make long-term goals, then fail to follow your plan?
- Often choose a short-term temptation: dynamically inconsistent behavior

Is an option less tempting when its consequence is uncertain?

 Time preferences, risk preferences, and their relationship are foundational to economics

- Ever make long-term goals, then fail to follow your plan?
- Often choose a short-term temptation: dynamically inconsistent behavior

Is an option less tempting when its consequence is uncertain?

■ Time preferences, risk preferences, and their relationship are foundational to economics

I study how a preference for immediacy is affected by uncertainty

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

Keren and Roelofsma (1995)

■ Decide between a smaller reward or a larger delayed reward

- Choose one:
 - \$50 today
 - \$55 in 1 month

Keren and Roelofsma (1995)

■ Decide between a smaller reward or a larger delayed reward

- Choose one:
 - \$50 today
 - \$55 in 1 month
- Choose one:
 - \$50 in 5 months
 - \$55 in 6 months

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

- Choose one:
 - \$50 today

modal

- \$55 in 1 month
- Choose one:
 - \$50 in 5 months
 - \$55 in 6 months

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

- Choose one:
 - \$50 today *modal*
 - \$55 in 1 month
- Choose one:
 - \$50 in 5 months
 - \$55 in 6 months *modal*

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

Choose one:

modal

\$50 today\$55 in 1 month

Choose one:

\$50 in 5 months

■ \$55 in 6 months *modal*

If coin-flip is heads:

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

■ Choose one: If coin-flip is heads:

■ \$50 today *modal*

■ \$55 in 1 month modal

Choose one:

\$50 in 5 months

■ \$55 in 6 months *modal modal*

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

■ Choose one: If coin-flip is heads:

■ \$50 today *modal*

■ \$55 in 1 month modal

Choose one:

\$50 in 5 months

■ \$55 in 6 months *modal modal*

■ The preference for immediacy is eliminated by uncertainty

Keren and Roelofsma (1995)

Decide between a smaller reward or a larger delayed reward

■ Choose one: If coin-flip is heads:

■ \$50 today *modal*

■ \$55 in 1 month modal

Choose one:

\$50 in 5 months

■ \$55 in 6 months *modal modal*

- The preference for immediacy is eliminated by uncertainty
- Little or no immediacy effect if consequence probability is 0.5 or 0.9

Hypothetical consequences:

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)
- Almost-hypothetical consequences:

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)
- Almost-hypothetical consequences:
 - Baucells and Heukamp (2010)

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)
- Almost-hypothetical consequences:
 - Baucells and Heukamp (2010) each decision paid with prob. 0.0008

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)
- Almost-hypothetical consequences:
 - Baucells and Heukamp (2010) each decision paid with prob. 0.0008
- These suggest highly-likely consequences necessary for present bias

- Hypothetical consequences:
 - Keren and Roelofsma (1995) results for the previous slide
 - Weber and Chapman (2005)
- Almost-hypothetical consequences:
 - Baucells and Heukamp (2010) each decision paid with prob. 0.0008
- These suggest highly-likely consequences necessary for present bias
- Yet to be tested using certain (or even somewhat likely) consequences

Background: Exponentially Discounted Utility model

Samuelson (1937)

$$U_t = \sum_{\tau=0} \delta^{\tau} u(c_{t+\tau})$$

Background: Exponentially Discounted Utility model

Samuelson (1937)

$$U_t = \sum_{\tau=0} \delta^{\tau} u(c_{t+\tau})$$

■ Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau$

Background: Exponentially Discounted Utility model

Samuelson (1937)

$$U_t = \sum_{\tau=0} \delta^{\tau} u(c_{t+\tau})$$

- Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau$
- Constant discount factor: $0 \le \delta \le 1$

(a) Value on Day 1: $U_1 = u(c_1) + \delta u(c_2) + \delta^2 u(c_3)$

(a) Value on Day 1: $U_1 = u(c_1) + \delta u(c_2) + \delta^2 u(c_3)$

- (a) Value on Day 1: $U_1=u(c_1)+\delta u(c_2)+\delta^2 u(c_3)$
- (b) Value on Day 2: $U_2 = u(c_2) + \delta u(c_3)$

- (a) Value on Day 1: $U_1 = u(c_1) + \delta u(c_2) + \delta^2 u(c_3)$
- (b) Value on Day 2: $U_2 = u(c_2) + \delta u(c_3)$

- (a) Value on Day 1: $U_1 = u(c_1) + \delta u(c_2) + \delta^2 u(c_3)$
- (b) Value on Day 2: $U_2 = u(c_2) + \delta u(c_3)$
 - Plan of action is consistent over time

$$U_t = u(c_t) + \sum_{\tau=1} \beta \delta^{\tau} u(c_{t+\tau})$$

Laibson (1997)

$$U_t = u(c_t) + \sum_{\tau=1} \beta \delta^{\tau} u(c_{t+\tau})$$

■ Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau \in \mathbb{N}$

$$U_t = u(c_t) + \sum_{\tau=1} \beta \delta^{\tau} u(c_{t+\tau})$$

- Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau \in \mathbb{N}$
- Constant discount factor $0 \le \delta \le 1$

$$U_t = u(c_t) + \sum_{\tau=1} \beta \delta^{\tau} u(c_{t+\tau})$$

- Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau \in \mathbb{N}$
- Constant discount factor $0 \le \delta \le 1$
- \blacksquare Also discount all future periods by factor $0 \leq \beta \leq 1$

$$U_t = u(c_t) + \sum_{\tau=1} \beta \delta^{\tau} u(c_{t+\tau})$$

- Consumption utility flow $u(c_{t+\tau})$ at time $t+\tau \in \mathbb{N}$
- Constant discount factor $0 \le \delta \le 1$
- \blacksquare Also discount all future periods by factor $0 \leq \beta \leq 1$
- lacksquare Gives a preference for immediacy (present bias) if eta < 1

(a) Value on Day 1: $U_1 = u_1 + \beta \delta u_2 + \beta \delta^2 u_3$

(a) Value on Day 1: $U_1 = u_1 + \beta \delta u_2 + \beta \delta^2 u_3$

- (a) Value on Day 1: $U_1 = u_1 + \beta \delta u_2 + \beta \delta^2 u_3$
- (b) Value on Day 2: $U_2 = u_2 + \beta \delta u_3$

- (a) Value on Day 1: $U_1 = u_1 + \beta \delta u_2 + \beta \delta^2 u_3$
- (b) Value on Day 2: $U_2 = u_2 + \beta \delta u_3$

- (a) Value on Day 1: $U_1=u_1+\beta\delta u_2+\beta\delta^2 u_3$
- (b) Value on Day 2: $U_2 = u_2 + \beta \delta u_3$
 - Plan of action changes for immediate consumption

■ DU and QHD model consumption (utility) flows

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974$, SE = 0.009

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974$, SE = 0.009
 - For effort: $\hat{\beta}_{\text{effort}} = 0.888$, SE = 0.033

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974$, SE = 0.009
 - For effort: $\hat{\beta}_{\text{effort}} = 0.888$, SE = 0.033
- Imai, Rutter, Camerer (2020) review 220 present bias estimates

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974$, SE = 0.009
 - For effort: $\hat{\beta}_{\text{effort}} = 0.888$, SE = 0.033
- Imai, Rutter, Camerer (2020) review 220 present bias estimates
 - For money: $\bar{\beta}_{\text{money}} = 0.9943, \text{ SE} = 0.0020$

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974, \text{ SE} = 0.009$
 - For effort: $\hat{\beta}_{\text{effort}} = 0.888$, SE = 0.033
- Imai, Rutter, Camerer (2020) review 220 present bias estimates
 - For money: $\bar{\beta}_{\text{money}} = 0.9943, \text{ SE} = 0.0020$
 - For effort: $\bar{\beta}_{\text{effort}} = 0.9072, \text{ SE} = 0.0242$

- DU and QHD model consumption (utility) flows
- Monetary payments unlikely to demonstrate present bias
- Any liquidity suggests that the timing of monetary payments will differ from resultant consumption timing
- Augenblick, Neiderle, and Sprenger (2015) estimate present bias
 - For money: $\hat{\beta}_{\text{money}} = 0.974$, SE = 0.009
 - For effort: $\hat{\beta}_{\text{effort}} = 0.888$, SE = 0.033
- Imai, Rutter, Camerer (2020) review 220 present bias estimates
 - For money: $\bar{\beta}_{\text{money}} = 0.9943, \text{ SE} = 0.0020$
 - For effort: $\bar{\beta}_{\text{effort}} = 0.9072, \text{ SE} = 0.0242$
- \blacksquare This literature uses substantial risk (e.g., 1/20) to incentivize decisions

Unpleasant real-effort task that subjects want to smooth across days

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay
- Make choices at various price ratios

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay
- Make choices at various price ratios
- Choose 2 days before work

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay
- Make choices at various price ratios
- Choose 2 days before work
- Choose again on the first workday

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay
- Make choices at various price ratios
- Choose 2 days before work
- Choose again on the first workday
- Vary how these decisions are incentivized between treatments

- Unpleasant real-effort task that subjects want to smooth across days
- Subjects choose how many real-effort tasks to delay
- Make choices at various price ratios
- Choose 2 days before work
- Choose again on the first workday
- Vary how these decisions are incentivized between treatments
- How does the incentive mechanism affect present bias factor β ?

Questions:

- Questions:
 - Does uncertainty help people follow their plans?

- Questions:
 - Does uncertainty help people follow their plans?
 - Does certainty make an option more tempting?

- Questions:
 - Does uncertainty help people follow their plans?
 - Does certainty make an option more tempting?
- Methodology:

- Questions:
 - Does uncertainty help people follow their plans?
 - Does certainty make an option more tempting?
- Methodology:
 - Is present bias factor β moderated by risk?

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)
- Use consequences that are immediate (real-effort required now)

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

Methodology:

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)
- Use consequences that are immediate (real-effort required now)

Summary of findings:

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

Methodology:

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)
- Use consequences that are immediate (real-effort required now)

Summary of findings:

Individuals are far more present-biased if decisions are certainty implemented

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

Methodology:

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)
- Use consequences that are immediate (real-effort required now)

Summary of findings:

- Individuals are far more present-biased if decisions are certainty implemented
- Similar proportion of present-biased individuals; their bias is more severe

Questions:

- Does uncertainty help people follow their plans?
- Does certainty make an option more tempting?

Methodology:

- Is present bias factor β moderated by risk?
- Use decisions that are risk-free (they matter with certainty)
- Use consequences that are immediate (real-effort required now)

Summary of findings:

- Individuals are far more present-biased if decisions are certainty implemented
- Similar proportion of present-biased individuals; their bias is more severe
- $\ddot{\beta}=0.93$ under risk, but $\ddot{\beta}=0.69$ under certainty

Roadmap

■ Experimental design

Roadmap

- Experimental design
 - Overview

Roadmap

- Experimental design
 - Overview
 - Details for baseline treatment

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention
 - Non-parametric results

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention
 - Non-parametric results
 - Introduce model

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention
 - Non-parametric results
 - Introduce model
 - Parametric results

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention
 - Non-parametric results
 - Introduce model
 - Parametric results
 - Robustness

- Experimental design
 - Overview
 - Details for baseline treatment
 - Treatment differences
- Results
 - Subject recruitment and retention
 - Non-parametric results
 - Introduce model
 - Parametric results
 - Robustness
- Conclusion

Experimental design

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5		Choose 0 to 360 at various price ra		Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks;	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov h	Choose 0 to 360 at various price ra	-	Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5		Choose 0 to 360 at various price ra		Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks;	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 bt various price ra	-	Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks; make decisions;	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 at various price ra		Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks; make decisions; one decision sele		Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Novb	Choose 0 to 360 at various price ra		Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks; make decisions; one decision sele		Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov 6	ed tasks Choose 0 to 360 at various price ra	-	Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks; make decisions; one decision sele work implement		Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 at various price ra	-	Nov 9

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28 work 10 tasks; make decisions	Oct 29	Oct 30 work 10 tasks; make decisions;	Oct 31	Nov 1	Nov 2
Nov 3	Nov 4	Nov 5	Nov h		-	Nov 9
			work 10 tasks; work implement	ed tasks		

■ Longitudinal experiment conducted on Amazon Mechanical Turk

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
	work 10 tasks;		work 10 tasks;			
	make decisions		make decisions;			
į.			one decision sele	ected;		į.
i			work implement	ed tasks		
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 at various price ra		Nov 9
 			work 10 tasks; work implement	ed tasks		1

■ First session: \$1.50 Second: \$1.50 Third: \$6.50

Longitudinal experiment conducted on Amazon Mechanical Turk

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
	work 10 tasks;		work 10 tasks;			i
1	make decisions		make decisions;			1
į			one decision sele	ected;		į
			work implement	ed tasks		
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 at various price ra		Nov 9
			work 10 tasks; work implement	ed tasks		1
Ĺ						L

■ First session: \$1.50 Second: \$1.50 Third: \$6.50

■ Subjects removed upon failure to complete a day's session

Longitudinal experiment conducted on Amazon Mechanical Turk

Sun	Monday	Tuesday	Wednesday	Thursday	Friday	Sat
Oct 27	Oct 28	Oct 29	Oct 30	Oct 31	Nov 1	Nov 2
	work 10 tasks;		work 10 tasks;			
1	make decisions		make decisions;			
			one decision sele	ected;		į į
			work implement	ed tasks		
Nov 3	Nov 4	Nov 5	Nov 6	Choose 0 to 360 at various price ra	-	Nov 9
			work 10 tasks; work implement	ed tasks		
L						L i

■ First session: \$1.50 Second: \$1.50 Third: \$6.50

Subjects removed upon failure to complete a day's session

■ Ten decisions total: treatments vary probability of implementation

Allocate real effort between Day 2 and Day 9

Allocate real effort between Day 2 and Day 9

$$e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$$

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	
Allocate at R_1 (prob 1/10)	
Allocate at R_2 (prob $1/10$)	
Allocate at R_3 (prob $1/10$)	
Allocate at R_4 (prob $1/10$)	
Allocate at R_5 (prob $1/10$)	

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob 1/10)	Allocate at R_1 (prob $1/10$)
Allocate at R_2 (prob $1/10$)	Allocate at R_2 (prob $1/10$)
Allocate at R_3 (prob $1/10$)	Allocate at R_3 (prob $1/10$)
Allocate at R_4 (prob $1/10$)	Allocate at R_4 (prob $1/10$)
Allocate at R_5 (prob $1/10$)	Allocate at R_5 (prob $1/10$)

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0
Allocate at R_1 (prob 1/10)
Allocate at R_2 (prob 1/10)
Allocate at R_3 (prob 1/10)
Allocate at R_4 (prob 1/10)
Allocate at R_5 (prob $1/10$)

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

```
Day 0

Allocate at R_1 (prob 1/10)

Allocate at R_2 (prob 1/10)

Allocate at R_3 (prob 1/10)

Allocate at R_4 (prob 1/10)

Allocate at R_5 (prob 1/10)
```

 Just before Day 2 decisions, informed that a coin flip has selected only Day 2 decisions to matter

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob $1/10$)	Allocate at R_1 (prob $1/5$)
Allocate at R_2 (prob $1/10$)	Allocate at R_2 (prob $1/5$)
Allocate at R_3 (prob $1/10$)	Allocate at R_3 (prob $1/5$)
Allocate at R_4 (prob $1/10$)	Allocate at R_4 (prob $1/5$)
Allocate at R_5 (prob $1/10$)	Allocate at R_5 (prob $1/5$)

Just before Day 2 decisions, informed that a coin flip has selected only Day 2 decisions to matter

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob $1/10$)	Allocate at R_1 (prob $1/5$)
Allocate at R_2 (prob $1/10$)	Allocate at R_2 (prob $1/5$)
Allocate at R_3 (prob $1/10$)	Allocate at R_3 (prob $1/5$)
Allocate at R_4 (prob $1/10$)	Allocate at R_4 (prob $1/5$)
Allocate at R_5 (prob $1/10$)	Allocate at R_5 (prob $1/5$)

- Just before Day 2 decisions, informed that a coin flip has selected only Day 2 decisions to matter
- One of these five decisions is implemented randomly

Treatment: certain price, risky day

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	
Allocate at R_1 (prob 0)	
Allocate at R_2 (prob $1/2$)	
Allocate at R_3 (prob 0)	
Allocate at R_4 (prob 0)	
Allocate at R_5 (prob 0)	

Treatment: certain price, risky day

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob 0)	Allocate at R_1 (prob 0)
Allocate at R_2 (prob $1/2$)	Allocate at R_2 (prob $1/2$)
Allocate at R_3 (prob 0)	Allocate at R_3 (prob 0)
Allocate at R_4 (prob 0)	Allocate at R_4 (prob 0)
Allocate at R_5 (prob 0)	Allocate at R_5 (prob 0)

Treatment: certain price, risky day

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 2
Allocate at R_1 (prob 0)
Allocate at R_2 (prob $1/2$)
Allocate at R_3 (prob 0)
Allocate at R_4 (prob 0)
Allocate at R_5 (prob 0)

• One of these two decisions is implemented randomly

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

	Day 0
٠	Allocate at R_1 (prob 0)
	Allocate at R_2 (prob $1/2$)
	Allocate at R_3 (prob 0)
	Allocate at R_4 (prob 0)
	Allocate at R_5 (prob 0)
-	

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

```
Day 0

Allocate at R_1 (prob 0)

Allocate at R_2 (prob 1/2)

Allocate at R_3 (prob 0)

Allocate at R_4 (prob 0)

Allocate at R_5 (prob 0)
```

Just before Day 2 decisions, informed that a coin flip has selected only the Day 2 decision to matter

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob 0)	Allocate at R_1 (prob 0)
Allocate at R_2 (prob $1/2$)	Allocate at R_2 (prob 1)
Allocate at R_3 (prob 0)	Allocate at R_3 (prob 0)
Allocate at R_4 (prob 0)	Allocate at R_4 (prob 0)
Allocate at R_5 (prob 0)	Allocate at R_5 (prob 0)

Just before Day 2 decisions, informed that a coin flip has selected only the Day 2 decision to matter

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Day 0	Day 2
Allocate at R_1 (prob 0)	Allocate at R_1 (prob 0)
Allocate at R_2 (prob $1/2$)	Allocate at R_2 (prob 1)
Allocate at R_3 (prob 0)	Allocate at R_3 (prob 0)
Allocate at R_4 (prob 0)	Allocate at R_4 (prob 0)
Allocate at R_5 (prob 0)	Allocate at R_5 (prob 0)

- Just before Day 2 decisions, informed that a coin flip has selected only the Day 2 decision to matter
- This one decision is implemented with certainty

Overview of treatments

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2

Treatment	Day 0	Day 2
Risky Price, Risky Day	Allocate at R_1 (prob 1/10)	Allocate at R_1 (prob 1/10)
	Allocate at R_2 (prob $1/10$)	Allocate at R_2 (prob $1/10$)
	Allocate at R_3 (prob 1/10)	Allocate at R_3 (prob 1/10)
	Allocate at R_4 (prob 1/10)	Allocate at R_4 (prob 1/10)
	Allocate at R_5 (prob 1/10)	Allocate at R_5 (prob 1/10)
Risky Price, Certain Day	Allocate at R_1 (prob 1/10)	Allocate at R_1 (prob 1/5)
	Allocate at R_2 (prob $1/10$)	Allocate at R_2 (prob $1/5$)
	Allocate at R_3 (prob 1/10)	Allocate at R_3 (prob 1/5)
	Allocate at R_4 (prob 1/10)	Allocate at R_4 (prob 1/5)
	Allocate at R_5 (prob 1/10)	Allocate at R_5 (prob 1/5)
Certain Price, Risky Day	Allocate at R_1 (prob 0)	Allocate at R_1 (prob 0)
	Allocate at R_2 (prob $1/2$)	Allocate at R_2 (prob $1/2$)
	Allocate at R_3 (prob 0)	Allocate at R_3 (prob 0)
	Allocate at R_4 (prob 0)	Allocate at R_4 (prob 0)
	Allocate at R_5 (prob 0)	Allocate at R_5 (prob 0)
Certain Price, Certain Day	Allocate at R_1 (prob 0)	Allocate at R_1 (prob 0)
	Allocate at R_2 (prob $1/2$)	Allocate at R_2 (prob 1)
	Allocate at R_3 (prob 0)	Allocate at R_3 (prob 0)
	Allocate at R_4 (prob 0)	Allocate at R_4 (prob 0)
	Allocate at R_5 (prob 0)	Allocate at R_5 (prob 0)

Overview of treatments

- Allocate real effort between Day 2 and Day 9
 - $e_i^{\text{Day 2}} + R_i e_i^{\text{Day 9}} = 360$
 - Choose for each possible trade-off rate (price) $R_i \in \{1.5, 1.25, 1, 0.75, 0.5\}$
- Decide on Day 0 and then again on Day 2
- Probability of implementation of e_2 made that day:

Treatment	On Day 0	On Day 2
Risky Price, Risky Day	1/10	1/10
Risky Price, Certain Day	1/10	1/5
Certain Price, Risky Day	1/2	1/2
Certain Price, Certain Day	1/2	1

Results

■ 220 subjects completed a comprehension check

- 220 subjects completed a comprehension check
- 208 completed Day 0

- 220 subjects completed a comprehension check
- 208 completed Day 0
- 192 completed Day 2

- 220 subjects completed a comprehension check
- 208 completed Day 0
- 192 completed Day 2
- 180 completed Day 9

- 220 subjects completed a comprehension check
- 208 completed Day 0
- 192 completed Day 2
- 180 completed Day 9
- Retained 87% of subjects from Day 0 to Day 9

- 220 subjects completed a comprehension check
- 208 completed Day 0
- 192 completed Day 2
- 180 completed Day 9
- Retained 87% of subjects from Day 0 to Day 9
- No evidence of selective attrition

Results: extent of present bias by treatment

• Compare only choices made at the $R_2 = 1.25$ price ratio:

Number of present-biased subjects		
Treatment	Risky Day	Certain Day
Risky Price Certain Price	12 of 30 9 of 32	6 of 29 9 of 30
Certain 1 fice	9 01 32	9 01 30

Results: effort-share chosen at $R_2 = 1.25$ by treatment

Results: effort-share chosen at $R_2 = 1.25$ by treatment

Results: treatment effects by day

	Effort-share choices $arphi_{i,d}$	
	On Day $d=0$	On Day $d=2$
Certain Price	-0.1747**	-0.2154***
	(0.0806)	(0.0811)
Certain Day	-0.0436	-0.0512
	(0.0368)	(0.0493)
Certain Price and Day	0.0669	-0.0231
	(0.0908)	(0.1166)
$\ln R_i$	-0.6848***	-0.5907***
	(0.0738)	(0.0869)
Constant	0.4887***	0.4451***
	(0.0339)	(0.0344)
N (Decisions)	540	357
G (Subjects)	180	121
N_l (Left-censored)	92	68
N_u (Uncensored)	391	257
N_r (Right-censored)	57	32

■ Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- \blacksquare Simply compare present bias factor β between treatments

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- Simply compare present bias factor β between treatments
- \blacksquare CRRA periodic convex effort costs: $c(e)=(e+10)^{\alpha}$

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- Simply compare present bias factor β between treatments
- CRRA periodic convex effort costs: $c(e) = (e+10)^{\alpha}$
- On decision-day d, minimize quasi-hyperbolic-discounted effort costs:

$$\min_{e_{i,d}^{\dagger}} \beta^{\mathbb{1}(d=0)} (e_{i,d}^{\mathsf{Day}\; 2} + 10)^{\alpha} + \beta \delta^{7} (e_{i,d}^{\mathsf{Day}\; 9} + 10)^{\alpha}, \text{ s.t. } e_{i}^{\mathsf{Day}\; 2} + R_{i} e_{i}^{\mathsf{Day}\; 9} = 360$$

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- Simply compare present bias factor β between treatments
- CRRA periodic convex effort costs: $c(e) = (e+10)^{\alpha}$
- On decision-day d, minimize quasi-hyperbolic-discounted effort costs:

$$\min_{e_{i,d}^{t}} \beta^{\mathbb{1}(d=0)} (e_{i,d}^{\mathsf{Day}\; 2} + 10)^{\alpha} + \beta \delta^{7} (e_{i,d}^{\mathsf{Day}\; 9} + 10)^{\alpha}, \; \text{s.t.} \; \; e_{i}^{\mathsf{Day}\; 2} + R_{i} e_{i}^{\mathsf{Day}\; 9} = 360$$

Euler equation:

$$\left(\frac{e_{i,d}^{\mathsf{Day}\;2} + 10}{e_{i,d}^{\mathsf{Day}\;9} + 10}\right)^{\alpha - 1} = \frac{\beta^{\mathbb{1}(d = 2)}\delta^7}{R_i}$$

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- Simply compare present bias factor β between treatments
- lacktriangle CRRA periodic convex effort costs: $c(e)=(e+10)^{lpha}$
- On decision-day *d*, minimize quasi-hyperbolic-discounted effort costs:

$$\min_{\substack{e_{i,d}^t \\ e_{i,d}^t}} \beta^{\mathbb{1}(d=0)} (e_{i,d}^{\mathsf{Day}\; 2} + 10)^\alpha + \beta \delta^7 (e_{i,d}^{\mathsf{Day}\; 9} + 10)^\alpha, \text{ s.t. } e_i^{\mathsf{Day}\; 2} + R_i e_i^{\mathsf{Day}\; 9} = 360$$

Euler equation:

$$\left(\frac{e_{i,d}^{\mathsf{Day}\;2} + 10}{e_{i,d}^{\mathsf{Day}\;9} + 10}\right)^{\alpha - 1} = \frac{\beta^{\mathbb{1}(d=2)}\delta^7}{R_i}$$

Reduced form:

$$\underbrace{\ln \frac{e_{i,d,s}^{\mathsf{Day}\,2} + 10}{e_{i,d,s}^{\mathsf{Day}\,9} + 10}}_{E_{i,d,s}} = \underbrace{\frac{\ln \delta}{\alpha - 1}}_{\theta_{\mathsf{delay}}} 7 + \underbrace{\frac{-1}{\alpha - 1}}_{\theta_{\mathsf{Inrate}}} \ln R_i + \underbrace{\frac{\ln \beta}{\alpha - 1}}_{\theta_{\mathsf{present}}} \mathbbm{1}(d = 2) + \varepsilon_{i,d,s}$$

- Assume Expected Utility with Quasi-Hyperbolic Discounting (ANS 2015)
- \blacksquare Simply compare present bias factor β between treatments
- CRRA periodic convex effort costs: $c(e) = (e+10)^{\alpha}$
- On decision-day d, minimize quasi-hyperbolic-discounted effort costs:

$$\min_{e_{i,d}^t} \beta^{\mathbb{1}(d=0)} (e_{i,d}^{\mathsf{Day}\; 2} + 10)^\alpha + \beta \delta^7 (e_{i,d}^{\mathsf{Day}\; 9} + 10)^\alpha, \; \text{s.t.} \; \; e_i^{\mathsf{Day}\; 2} + R_i e_i^{\mathsf{Day}\; 9} = 360$$

Euler equation:

$$\left(\frac{e_{i,d}^{\mathsf{Day}\,2} + 10}{e_{i,d}^{\mathsf{Day}\,9} + 10}\right)^{\alpha - 1} = \frac{\beta^{1(d = 2)}\delta^7}{R_i}$$

Reduced form:

$$\underbrace{\ln \frac{e_{i,d,s}^{\mathsf{Day}\,2} + 10}{e_{i,d,s}^{\mathsf{Day}\,9} + 10}}_{E} = \underbrace{\frac{\ln \delta}{\alpha - 1}}_{\theta_{\mathsf{delay}}} 7 + \underbrace{\frac{-1}{\alpha - 1}}_{\theta_{\mathsf{Inrate}}} \ln R_i + \underbrace{\frac{\ln \beta}{\alpha - 1}}_{\theta_{\mathsf{present}}} \mathbb{1}(d = 2) + \varepsilon_{i,d,s}$$

Recovery:

$$\alpha = 1 - \theta_{\text{ligrate}}^{-1}, \quad \beta = \exp(-\theta_{\text{present}}\theta_{\text{ligrate}}^{-1}), \quad \delta = \exp(-\theta_{\text{delay}}\theta_{\text{ligrate}}^{-1})$$

Model: pooled estimation

■ Let's allow for different treatment-by-day effects:

$$\begin{split} E_{i,d,s} &= \theta_{\mathsf{delay}} 7 + \theta_{\mathsf{Inrate}} \ln R_i + \theta_{\mathsf{present}} \mathbb{1}(\mathsf{pr})_d + \theta_{\mathsf{pr-cp}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cp})_s \\ &+ \theta_{\mathsf{pr-cd}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cd})_s + \theta_{\mathsf{pr-cp-cd}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cp})_s \mathbb{1}(\mathsf{tr-cd})_s \\ &+ \theta_{\mathsf{tr-cp}} \mathbb{1}(\mathsf{tr-cp})_s + \theta_{\mathsf{tr-cd}} \mathbb{1}(\mathsf{tr-cd})_s + \theta_{\mathsf{tr-cp-cd}} \mathbb{1}(\mathsf{tr-cp})_s \mathbb{1}(\mathsf{tr-cd})_s + \varepsilon_{i,d,s} \end{split}$$

Model: pooled estimation

■ Let's allow for different treatment-by-day effects:

$$\begin{split} E_{i,d,s} &= \theta_{\mathsf{delay}} 7 + \theta_{\mathsf{Inrate}} \ln R_i + \theta_{\mathsf{present}} \mathbb{1}(\mathsf{pr})_d + \theta_{\mathsf{pr-cp}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cp})_s \\ &+ \theta_{\mathsf{pr-cd}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cd})_s + \theta_{\mathsf{pr-cp-cd}} \mathbb{1}(\mathsf{pr})_d \mathbb{1}(\mathsf{tr-cp})_s \mathbb{1}(\mathsf{tr-cd})_s \\ &+ \theta_{\mathsf{tr-cp}} \mathbb{1}(\mathsf{tr-cp})_s + \theta_{\mathsf{tr-cd}} \mathbb{1}(\mathsf{tr-cd})_s + \theta_{\mathsf{tr-cp-cd}} \mathbb{1}(\mathsf{tr-cp})_s \mathbb{1}(\mathsf{tr-cd})_s + \varepsilon_{i,d,s} \end{split}$$

■ This will permit recovery of different β and δ for each treatment:

$$\begin{split} &\alpha = 1 - \theta_{\mathsf{Inrate}}^{-1} \\ &\delta = \exp \frac{\theta_{\mathsf{delay}}}{-\theta_{\mathsf{Inrate}}} \qquad \delta_{\mathsf{cp}} = \exp \frac{\theta_{\mathsf{delay}} + \theta_{\mathsf{tr-cp}}}{-\theta_{\mathsf{Inrate}}} \\ &\delta_{\mathsf{cd}} = \exp \frac{\theta_{\mathsf{delay}} + \theta_{\mathsf{tr-cd}}}{-\theta_{\mathsf{Inrate}}} \qquad \delta_{\mathsf{cp-cd}} = \exp \frac{\theta_{\mathsf{delay}} + \theta_{\mathsf{tr-cp}} + \theta_{\mathsf{tr-cd}} + \theta_{\mathsf{cp-cd}}}{-\theta_{\mathsf{Inrate}}} \\ &\beta = \exp \frac{\theta_{\mathsf{present}}}{-\theta_{\mathsf{Inrate}}} \qquad \beta_{\mathsf{cp}} = \exp \frac{\theta_{\mathsf{present}} + \theta_{\mathsf{pr-cp}}}{-\theta_{\mathsf{Inrate}}} \\ &\beta_{\mathsf{cd}} = \exp \frac{\theta_{\mathsf{present}} + \theta_{\mathsf{pr-cd}}}{-\theta_{\mathsf{Inrate}}} \qquad \beta_{\mathsf{cp-cd}} = \exp \frac{\theta_{\mathsf{present}} + \theta_{\mathsf{pr-cp}} + \theta_{\mathsf{pr-cd}} + \theta_{\mathsf{pr-cp-cd}}}{-\theta_{\mathsf{Inrate}}} \end{split}$$

lacksquare Restrict δ to be the same for all treatments

- lacksquare Restrict δ to be the same for all treatments
- My ex ante specification before seeing the data

- lacksquare Restrict δ to be the same for all treatments
- My ex ante specification before seeing the data

- \blacksquare Restrict δ to be the same for all treatments
- My ex ante specification before seeing the data

Param. θ	Estimate	H_0 : $\theta = 1$
β	1.0069	p = 0.8965
$eta_{\sf cd}$	0.9237	p = 0.1766
$eta_{\sf cp}$	0.6822	p = 0.0033
$eta_{\sf cp-cd}$	0.5833	p = 0.0001
δ	0.9857	p = 0.0006
α	1.2824	p = 0.0000

Notes: N=897 observations from G=180 clusters, with $N_l=160$ leftand $N_r=89$ right-censored observations. Standard errors are clustered on subject, using a two-limit Tobit regression model.

Param. θ	Estimate	H_0 : $\theta = 1$
β	0.9283	p = 0.0294
$eta_{\sf cd}$	0.8978	p = 0.0558
$\beta_{\sf cp}$	0.8873	p = 0.2314
$eta_{\sf cp-cd}$	0.6882	p = 0.0020
δ	0.9970	p = 0.7603
$\delta_{\sf cd}$	0.9415	p = 0.3417
$\delta_{\sf cp}$	0.6822	p = 0.0136
$\delta_{\sf cp-cd}$	0.7461	p = 0.0157
α	1.2824	p = 0.0000

Notes: N=897 observations from G=180 clusters, with $N_l=160$ leftand $N_r=89$ right-censored observations. Standard errors are clustered on subject, using a two-limit Tobit regression model.

Param. θ	Estimate	H_0 : $\theta = 1$
β	0.9283	p = 0.0294
$eta_{\sf cd}$	0.8978	p = 0.0558
$\beta_{\sf cp}$	0.8873	p = 0.2314
$eta_{\sf cp-cd}$	0.6882	p = 0.0020
δ	0.9970	p = 0.7603
$\delta_{\sf cd}$	0.9415	p = 0.3417
$\delta_{\sf cp}$	0.6822	p = 0.0136
$\delta_{\sf cp-cd}$	0.7461	p = 0.0157
α	1.2824	p = 0.0000

Notes: N=897 observations from G=180 clusters, with $N_l=160$ leftand $N_r=89$ right-censored observations. Standard errors are clustered on subject, using a two-limit Tobit regression model.

Suggests a significant interaction between immediacy and certainty

Results: attrition and continuation probability

- Of subjects who completed Day 2, 93.75% completed Day 9
- Pooled estimate of $\hat{\delta}^7 = 90.39\%$, 95% CI of (85.15%, 95.63%)
- Fail to reject that subjects are sophisticated regarding their own attrition

Model: within-subject estimation of β_s and δ_s

■ Reduced form:

$$\underbrace{\ln \frac{e_{i,d,s}^{\mathsf{Day}\,2} + 10}{e_{i,d,s}^{\mathsf{Day}\,9} + 10}}_{E_{i,d,s}} = \underbrace{\frac{\ln \delta_s}{\alpha - 1}}_{\theta_{\mathsf{delay},s}} 7 + \underbrace{\frac{-1}{\alpha - 1}}_{\theta_{\mathsf{Inrate}}} \ln R_i + \underbrace{\frac{\ln \beta_s}{\alpha - 1}}_{\theta_{\mathsf{present},s}} \mathbbm{1}(d = 2) + \varepsilon_{i,d,s}$$

Model: within-subject estimation of eta_s and δ_s

Reduced form:

$$\underbrace{\ln \frac{e_{i,d,s}^{\mathsf{Day}\,2} + 10}{e_{i,d,s}^{\mathsf{Day}\,9} + 10}}_{E_{i,d,s}} = \underbrace{\frac{\ln \delta_s}{\alpha - 1}}_{\theta_{\mathsf{delay},s}} 7 + \underbrace{\frac{-1}{\alpha - 1}}_{\theta_{\mathsf{Inrate}}} \ln R_i + \underbrace{\frac{\ln \beta_s}{\alpha - 1}}_{\theta_{\mathsf{present},s}} \mathbbm{1}(d = 2) + \varepsilon_{i,d,s}$$

Recovery:

$$\alpha = 1 - \theta_{\mathsf{Inrate}}^{-1}, \quad \beta_s = \exp(-\theta_{\mathsf{present},s}\theta_{\mathsf{Inrate}}^{-1}), \quad \delta_s = \exp(-\theta_{\mathsf{delay},s}\theta_{\mathsf{Inrate}}^{-1})$$

Results: within-subject estimation of eta_s

Number of subjects with $\hat{eta}_s < 1$		
Treatment	Risky Day	Certain Day
Risky Price Certain Price	15 of 29 7 of 30	12 of 29 9 of 29

Results: within-subject estimation of β_s

$$E_{i,d} \coloneqq \ln \frac{e_{i,d}^{\mathsf{Day}\; 2} + \omega}{e_{i,d}^{\mathsf{Day}\; 9} + \omega}, \quad \text{with background effort }\; \omega$$

Results for various levels of background effort give similar results

$$E_{i,d} \coloneqq \ln \frac{e_{i,d}^{\mathrm{Day}\; 2} + \omega}{e_{i,d}^{\mathrm{Day}\; 9} + \omega}, \quad \text{with background effort } \ \omega$$

- Results for various levels of background effort give similar results
- Levels of ω validated: 10, 100, 1000, 10000

$$E_{i,d} := \ln \frac{e_{i,d}^{\mathsf{Day}\; 2} + \omega}{e_{i,d}^{\mathsf{Day}\; 9} + \omega}, \quad \text{with background effort }\; \omega$$

- Results for various levels of background effort give similar results
- lue Levels of ω validated: 10, 100, 1000, 10000

All regressions show significant convexity in effort-cost

$$E_{i,d} := \ln \frac{e_{i,d}^{\mathsf{Day}\; 2} + \omega}{e_{i,d}^{\mathsf{Day}\; 9} + \omega}, \quad \text{with background effort }\; \omega$$

- Results for various levels of background effort give similar results
- Levels of ω validated: 10, 100, 1000, 10000

- All regressions show significant convexity in effort-cost
- On average, subjects prefer to smooth effort between days

Conclusion

Clear evidence that present bias is diminished by uncertainty

- Clear evidence that present bias is diminished by uncertainty
- The extent of present-biasedness seems roughly unaffected

- Clear evidence that present bias is diminished by uncertainty
- The extent of present-biasedness seems roughly unaffected
- Present bias is attenuated by two types of risk:

- Clear evidence that present bias is diminished by uncertainty
- The extent of present-biasedness seems roughly unaffected
- Present bias is attenuated by two types of risk:
 - Risk between decisions made on different days (implies dynamic inconsistency)

- Clear evidence that present bias is diminished by uncertainty
- The extent of present-biasedness seems roughly unaffected
- Present bias is attenuated by two types of risk:
 - Risk between decisions made on different days (implies dynamic inconsistency)
 - Risk between decisions made at different prices (standard probability weighting)

- Clear evidence that present bias is diminished by uncertainty
- The extent of present-biasedness seems roughly unaffected
- Present bias is attenuated by two types of risk:
 - Risk between decisions made on different days (implies dynamic inconsistency)
 - Risk between decisions made at different prices (standard probability weighting)
- Slightly underpowered to find differences for intermediate levels of risk

Risk and time preferences: a foundation of microeconomics

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination
- Implications for consumer behavior:

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination
- Implications for consumer behavior:
 - Savings and spending behavior may be affected by risk

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination
- Implications for consumer behavior:
 - Savings and spending behavior may be affected by risk
 - Temptation goods' value may be affected by risk

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination
- Implications for consumer behavior:
 - Savings and spending behavior may be affected by risk
 - Temptation goods' value may be affected by risk
- Implications for economic methodology:

- Risk and time preferences: a foundation of microeconomics
 - Supports recent theory linking certainty and immediacy
 Baucells and Heukamp (2012); Epper and Fehr-Duda (2018); Chakraborty,
 Halevy, and Saito (2020)
- Implications for worker behavior:
 - Ride-hail drivers' labor supply may be significantly affected by risk
 - Uncertainty regarding wage rate or ride length may affect procrastination
- Implications for consumer behavior:
 - Savings and spending behavior may be affected by risk
 - Temptation goods' value may be affected by risk
- Implications for economic methodology:
 - Beware of decision risk confounding measures of present bias

■ Test the probability-delay rank-dependent utility model

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)
 - Epper and Fehr-Duda (2018)

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)
 - Epper and Fehr-Duda (2018)
 - Chakraborty, Halevy, and Saito (2020)

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)
 - Epper and Fehr-Duda (2018)
 - Chakraborty, Halevy, and Saito (2020)
- Are the present-biased decision-makers also non-EUT?

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)
 - Epper and Fehr-Duda (2018)
 - Chakraborty, Halevy, and Saito (2020)
- Are the present-biased decision-makers also non-EUT?
- Disentangle complexity from risk and time preferences

- Test the probability-delay rank-dependent utility model
 - Baucells and Heukamp (2012)
 - Epper and Fehr-Duda (2018)
 - Chakraborty, Halevy, and Saito (2020)
- Are the present-biased decision-makers also non-EUT?
- Disentangle complexity from risk and time preferences
 - Bernheim and Sprenger (2020)

Thank you!

Please send any comments to reddinger@ucsb.edu