Matemáticas

ÁLGEBRA LINEAL

Hoja 6: Espacio dual.

- **1.** Sea $T: \mathbb{R}_3[x] \longrightarrow \mathbb{R}$ la aplicación lineal definida por $T(p(x)) = \int_{-1}^1 p(t) dt$. Calcula las coordenadas de T respecto de la base dual de $\{1, x, x^2, x^3\}$.
- **2.** Encuentra una base $\mathcal{B} = \{v_1, v_2, v_3\}$ de \mathbb{R}^3 , respecto de la cual v_1^* (el dual de v_1 respecto de \mathcal{B}) coincida con la aplicación lineal f(x, y, z) = x y.
- **3.** Sea $f: \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}^3$ la aplicación lineal dada por

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b, 0, d)$$

- (i) Encuentra bases de Ker(f) y de Im(f). Comprueba la fórmula de la dimensión.
- (ii) Sea $\{v_1^*, v_2^*, v_3^*\}$ la base dual de $\{v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)\}$ y f^* la aplicación dual. Calcula $f^*(v_3^*)$.
- (iii) Calcula la matriz de f^* respecto de las bases canónicas.
- (iv) Describir el núcleo de f^* y el anulador de Im(f).
- (v) Describir el anulador de Ker(f) y la imagen de f^* .
- 4. Sea $f: \mathcal{P}_2 \to \mathbb{R}^2$ la aplicación lineal definida por f(p(x)) = (p(0), p'(0)). Calcula:
 - (i) La matriz de f respecto de las bases canónicas y la de f^* respecto de sus duales.
 - (ii) La matriz de f respecto de las bases $\mathcal{B}_1 = \{1 + x, 1, x^2\}$ y $\mathcal{B}_2 = \{v_1 = (1, 0), v_2 = (1, 1)\}$ y la de f^* respecto de sus duales.
- **5.** Sean $f: V \to W$ y $g: W \to T$ dos aplicaciones lineales.
 - (i) Demuestra que $(g \circ f)^* = f^* \circ g^*$.
 - (ii) Si f es biyectiva, demuestra que $(f^*)^{-1} = (f^{-1})^*$.
 - (iii) Sea M una matriz invertible de orden n. Demuestra que $(M^{-1})^t = (M^t)^{-1}$.
 - (iv) Demuestra que det $f = \det f^*$.
- **6.** Expresa cada uno de los siguientes subespacios de \mathbb{R}^n como conjunto de soluciones de un sistema lineal adecuado.
 - (i) $V = \langle v_1 = (1, -1, 2), v_2 = (2, 1, -1) \rangle \subset \mathbb{R}^3$;
 - (ii) $E = \langle v_1 = (1, 1, 1, 3), v_2 = (1, 1, 3, 2), v_3 = (1, 3, 2, 1) \rangle \subset \mathbb{R}^4$;

(iii)
$$F = \langle v_1 = (3, 1, 1, 1), v_2 = (2, 3, 1, 1), v_3 = (1, 2, 3, 1) \rangle \subset \mathbb{R}^4;$$

(iv)
$$E \cap F \subset \mathbb{R}^4$$
;

(v)
$$G = \langle v_1 = (1, 1, 1, 1, 2), v_2 = (1, 1, 1, 2, 2), v_3 = (1, 1, 2, 2, 2) \rangle \subset \mathbb{R}^5;$$

(vi)
$$H = \langle v_1 = (2, 1, 1, 1, 1), v_2 = (2, 2, 1, 1, 1), v_3 = (2, 2, 2, 1, 1) \rangle \subset \mathbb{R}^5;$$

(vii)
$$G \cap H \subset \mathbb{R}^5$$
.