ZAKŁAD ELEKTRONICZNEJ APARATURY POMIAROWEJ "MERATRONIK" 02-325 Warszawa, ul. Białobrzeska 53

MULTIMETR CYFROWY typu V562

Instrukcja obsługi i serwisu IS-563

Producent przyrządu zastrzega sobie prawo wprowadzonia zmian konstrukcyjnych

Druk z metertelów przygotowanych przez Zleceniodawcą

:	PRZEZMACZENIE FPZYPZ4DU	. •
Z.	WYPGSAZENIE	. !
2.1	Wyposażenie podstawowe	. !
2.2	, wyposażenie dodatkowe ,	. :
3. I	DAME TECHNICZNE	. 7
3.1	Pomiar napięć stałych	, 7
5.2	. Pomier napięć przemiennych,	. 7
3.3	. Pomiar prądów stałych	. 6
) £.	. Pomlar pradów przemiennych	. 8
3.5	Pemiar rezystancji	. 8
	, Pamiar pojemności	
	. Tester złącz półprzewodnikowych	
	Układ kontroli ciągłości obwodu elektrycznego z sygnali-	
	zacją akustyczną	
3,9.	. Izolowane źród≩o prądowe IO mA	
), Cane ogólne	
4. B	BUDDWA I DZIAŁANIE PRZYRZĄDU	11
٤,1.	. Wiadomości wstępne	11
٠	. Przełącznik funkcji i przełącznik zakresów	12
4.3.	Dzielnik wejściowy i boczmiki prądowe	14
	Przetwornik analogowo-cyfrowy (A/C)	
	. Układ wyświetlania wyniku pomiara	
	Przetwornik rezystancji	
	Przetwornik naplęć przemiennych (AC/DC) z filtrem aktyw-	
	Пул,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21
3	Przetwornik pojemności (L	

: PRZEI KÖZENIE PRZYKZĄDU

(ditineth cyfrowy VSE? jest jozenośnym wielofunkcyjnym przytrądem pomiatokym, przezniczonym do dokonywania pomiarów
elektrycznych w lacobatoriach naukowo-dydaktycznych, warsztatach serwisowyth, zakladach przemysłowych oraz u użytkowników
sprzętu elektronicznego powszechnego użytku.

Multinetr pozwala na realizację następujących pomiarów:

- nagigole stałe 100 µV ... 650 V

- napiącie przemienna 100 µV ... 650 V; 40 Hz ... 100 kHz

- prac staly 100 nA ... 2 A

- prąd przemienny 100 mA ... 2 A ; 40 Hz ... 10 kHz

– rezystancja — 10 mΩ √... ZD MΩ

- pogemność 10 pF ... 20 μF

Przyrząd postada ponadto:

- układ testera złącz półprzewodnikowych, tzw. dioda test

 układ kontroli ciągłości obwodu elektrycznego z sygnalizacją akustyczną

 - 12015wane źródło prądowe 10 mA (pomiar małych rezystancji metorą czteropunktową).

Ptzy użyciu wyposażenia dodatkowego (p. 2.2.) można realizować następujące comiary:

- rapięcie międzyszczytowe p-p max. 650 V; 30Hz...10MHz (sonda V105)

- mapigois pozemienne max. 15 V; lkHz...1000MHz

(sonda VIO4)

max. 500V; 20kHz...1000MH.

(sonda V104 z dzielnikiem

M40_30)

3. DANE TECHNICZNE

3.1. Pomiar napięć stałych

Poozakres	pomisru Uchyb	Dopuszczalne na- pięcie wejściowe	Temp. dryft wskazania	Uwagi
200 mV 2 V 20 V 200 V 2000 V	1) ±0,5% w.m. ± 1 cyfra	+250 V 2) przez 20 s +650 V bez ogran, czaso- wych	±0,02% ₩.m./*C	na zakr. 2000 V max. nap. mierzo- ne 650 V

- rezystancja wejściowa:

- prąd wajściowy (w pełnym zakresie temp.

pracy);

 tłumienie zakłóceń w układzie wspólnym z rezystancję 1 k& w obwodzie zacisku "LO"

 tłumienie składowej zmiennej o częstotliwości 50 Hz + 1%

temperaturowy dryft wskazania zerowego

czas ustalania się wskazań

10 MQ +1%

> 80 d8³)

> 40 d8

← +0,05% wart. zakr./*C

6 T 3

3.2. Pomiar napięć przemiennych

Pod- zakres	Uchyb 40Hz20kdz		Oopuszczalne na- pięcie wejściowe	Temp, dryft wekazania	Üwagı
200 mV	+1% w.m. +5 cyfr	+1% w.m. T10 cyfr	+250 V przez 20 s	+0,1% w.m./*C	
2 V 20 V 200 V 2000 V	+1% w.m. + 5 cyfr	+5% w.m. <u>∓</u> 10 cyfr	+650 V Dez ogran, czasowych	+0,02% wart. Rońcowej zekr./°C	U-f < 2·10 ⁶ V·Hz na zekr.2000V max. nap. mierzone 650 V

- rezystancja wejściowa
- pojemność wejściowa
- tłumienie zakłóceń w układzie wspólnym z rezystancją 1 k@ w obwodzie zacisku "LO"
- temperaturowy dryft wskazania zerowego
 czas ustalania się wskazań
- 10 MΩ +1% ≤ 75 □F
- ≼ 60 dB³)
- < 0,05%wart.zakr./°C
 - 5 s

- l) w.m. – wartość mierzona
- wartość nepięcia stałego lub wartość skuteczna napięcia przemiennego; dotyczy to dopuszczalnych nadięć wejściowych będź przeciążeń prędowych dla wazystkich funkcji pomiarowych
- 3) dia napiecia stakego i napiecia przemiennego c częstotliwośc. sieci zasilającej (50 Hz +1%)

- SONDA MYSOKIEJ CZĘSTOTŁIWOŚCI TYP VIOA
Zakres mierzonych napięć: 50 mV ... 15 V
Zakres częstotliwości mierzonych

napięć: 1 kHz ... 1000 kHz

- SONDA MIĘDZYSZCZYTOWA TYP VIOSA

Max. hapięcie wejściowe: 1000 V p.p.

Zakres cząstotliwości mierzonych

napięć- 30 Hz ... 10 MHz

Min. czas trwanie mierzonych

tmpulsów: 0,5 µs

- OZIELNIK POJEMNOŚCIOWY TYP V40.30 (nakładka na sondę V104)

Podział: 100 : 1

Max. napięcie wejściowe: 500 V

Zakres częstotliwości: 20 kHz ... 1000 MHz

- TRÓCNIK POMIAROWY TYP V40,31 (dc sordy V104)

Standard złączy: N

Impedancja falowa: 50

₩ F S: msx. 1,2 przy 1000MH;

3. DANE TECHNICZNE

3.1. Pomiar napięć stałych

Poozakres	pomistn RepAp	Dopuszczalne na- pięcie wejściowe	Temp. dryft wskazeria	Uwagi
200 mV 2 V 20 V 200 V 2000 V	1) ±0,5% w.m. ± 1 cyfra	+250 V 2) przez 20 s +650 V bez ogran, czaso- wych	±0,02% ₩.m./*C	na zakr. 2000 V max. nap. mierzo- ne 650 V

rezystancja wejściowa:

prąd wajściowy (w pełnym zakresie temp.

pracy):

 tłumienie zakłóceń w układzie wspólnym z rezystancję 1 kQ w obwodzie zacisku "LO"

 tłumienie składowej zmiennej o częstotliwości 50 Hz + 1%

temperaturowy dryft wskazania zerowego

- czas ustalania się wskazań

10 MΩ +1%

4 100 pA

80 d8³⁾

40 d8

← +0,05% wart. zakr./*C

Pomiar napięć przemiennych

Pod- zakres	Uchyb 40Hz20kdz		Oopuszczalne na- pięcie wejściowe	Temp, dryft wekazania	Dwagı
200 mV	+1% w.m. +5 cyfr	+1% w.m. 	+250 V przez 20 s	+0,1% w.m./*C	
2 V 20 V 200 V 2000 V	+1% w.m. + 5 cyfr	+5% w.m. ≟10 cyfr	+650 V Bez ogran, crasowych	+0,02% wart. Rońcowej zekr./°C	U·f & 2·10 ⁶ V·Hz na zekr.2000V max. nap. mierzone 650 V

 rezystancja wejściowa - pojemność wejściowa tłumienie zakłóceń w układzie wspólnym z

rezystancją l k⊈ w obwodzie zacisku "LB"

 temperaturowy dryft wskazania zerowego - czas ustalania się wskazań

10 MΩ +1% 75 pF

 $60 d8^{3}$

<

0.05%wart.zakr. 5 s

1) w.m. – wartość mierzona

wartość napięcia stałego lub wartość skuteczna napięcia przemiennego; dotyczy to dopuszczalnych nadięć wejściowych będź przeciążeń prądowych dla wszystkich funkcji pomiarowych

³⁾ dia napiecia stakego i napiecia przemiennego c częstotliwośc. sieci zasilającej (50 Hz. +1%).

3.3. Pomier predów stałych

Podzakres	Uchyb pomisru	Copuszczalne prze- ciążenie prądowe	Temp, dryft Wskazenia	Uwagi	
200 µA 2 mA 20 mA 200 mA	±0,5% w.m. ± 2 cyfry	5-krotne bez ogranicz, czasowych	±0,02%⊌.m./°C		
2 A	:	+2.5 A bez			

- zakresowy spadek napięcia

200 mV+ 800 mV

- czes ustalanie się wskazań

< 3 ṡ

3.4. Pomiar predów przemiennych

Pod zakres	Zakres czę- stotliwości	Dchyb pomieru	Dopuszczalne prze- ciążenie prądowe	Temp. driyt wakazanie	lwagi
280 µA 2 mA 20 mA 200 mA	40Hz10kHz	<u>+</u> 1% w.m. + 5 cyfr	5-krotne bez ogranicz. czasowych	±0,1% w.m./°C ±0,02% wart. końcowej	
2 A		,	2,5A bez ogt. czasowych	zakr./*C	

- zakresowy spadek napięcia

200 mV + 800 mV

- czas ustalania się wskazań

< 5 s

3.5. Pomiar rezystancji

Podzekres	Uchyb pomiaru	Dopuszczelne napięcie ra zaciskach HI LO	Temp. dryft wskazania	Uwegi
2052	<u>+</u> 0,5% ₩.რ.		_0,05%=.m./°C	metoda czte ropunktowe z wykorzy- staniem źr, 10 mA
200 Q 2 kQ 20 kQ 200 kQ 2 MQ 20 MQ	± 5 cyfr	+ 50 V bez cgr. czasowych +30 V +250 V przez 5 5	<u>+</u> 0,02%⊌.ສ./°C	metoda dwupunkto- wa

- zakresowy spadek napięcia ná rezystancji mierzonej

mętoda czteropunktowa

200 mV

metoda dwupunktowa

< 220 mV

- dopuszczalne napięcie na zaciskach źródła prądowego 10 mA (bez ograniczeń czasowych) $\leq \pm 20$ V

- czas ustalania się wskazań:

zakres 20 MQ

≤ 30 s

pozostałe zakresy

< 5 s

3.6. Pomiar pojemności

Pod-	Uchyb	Dopuszczalne na-	Temp. dryft	Uwagi
zakres	pomiaru	pięcie wajściowe	wskazania	
20 nF 200 nF 2 μF 20 μF	<u>+</u> 1% w.m. <u>+</u> 5 cyfr	±5 V DC przez 20 s	<u>+</u> 0,1% w.m./°C	przed po- miarem na- leży kon- densator rozładować

- temperaturowy dryft wskazenia zerowego

← +0,1%
ertoξci

zakresowej/°C

- czas ustalenia się wskazeń

≪ 3 s

3.7. Tester złącz półprzewodnikowych, tzw. dioda test

- prąd zwarciowy

0,25 яA <u>+</u>5%

- dopuszczalne mapięcie (przez 20 s)

<u>←</u> ±250 V

- czas ustalania się wskazań

⋖ 3 s

UWAGA: W celu włączenia funkcji dioda test należy wcisnąć klawisz — oraz 2 V.

3 B. Układ kontroli ciągłości obwodu elektrycznego z sygnelizacją akustyczną

- próg zacziałania:

wskazanie mniejsze od 99 jednostek na każdym podzakresie omomierza

UWAGA: Ukłąd kontroli ciągłości obwodu działa na dowolnym podzakresie omomierza po wciśnięciu klawisza AC.

3.9. Izolowane źródło prądowe 10 mA

- uchyb podstawowy wartości prądu wyjściowego +0.2%

- napięcie dopuszczalne (bez ograniczeń czasowych)≼ +20 V

3.10. Dane ogólne

- maksymalne wskazanie <u>+</u> 1999

- wskaźnik pomiaru siedmiosegmentowy, LEO

ze wskaźnikiem polaryzacji

- sygnalizacja przekroczenia

zakresu pomierowego 📉 i (znak zeleżnie od polary-

zacji sygnału, tylko dle V i A DC i dioda test; pozostałe cyfry wygaszone, zapalony

właściwy przecinek)

- częstatliwość powtarzania

pomiarów 3 pomiary/s

- warunki pracy I-sza grupa wg PN-77/T-06500/

/82

- temperatura otoczenia +5 ... +40°C (dopuszczalne

zmieny temperatury w ciągu 8 h nie powinny przekraczać

20°C)

- wilgotność względna 20 ... 80% (średnia wartość

wilgezności nie powinna prze-

kraczać 65%)

- wstępny czas wygrzewania maksymalne dopuszczalne napięcie (wertość skuteczna napięcia sinusoloalnie zmiennego lub napięcie stałe) jakie może być przyłożone między obudową a:

- zaciskiem źródła prądowego

- zaciskiem LO

30 V

ี 5 ควา

250 V

 stopień zabezpieczenia przed porażeniem elektrycznym

- zasilanie

- pobor macy

- គង់ទង

wymiary

< 10 VA

220 V +10%; 50 Hz

≤ 2.5 kg

220 mm - szerbkość

I klasa wg PN-76/T-06500/05

95 mm - wysokość

250 mm - głębokość

4. BUDGWA I DZIAŁANIE PRZYRZĄDU

4.1. <u>Wiadomości wstepne</u>

W układzie elektrycznym multimetru cyfrowego V562 można wyróżnić następujące bloki funkcjonalne:

- przełącznik funkcji i przełącznik zakresów,
- dzielnik wejściowy i boczniki prądowe,
- przetwornik analogowo-cyfrowy (A/C)
- układ wyświetlanie wyniku pomiaru
- przetwornik rezystancji (R/U)
- przetwornik napięć przemiennych (AC/GC) z filtrem aktywnym
- przetwornik pojemności (2.4)

- układ kontroli ciągłości obwodu elektrycznego z sygnalizacją akustyczną
- układ testera złącz półprzewodnikowych (dioda test)
- izolowane źródło prądowe 10 mA
- zasilacze (+5V, -5V, +5V_n)

Konstrukcja mechaniczna multimetru jest przedstwiona na rysunku części mechanicznych p. 14,

W skład przyrządu wchodzą 3 płytki drukowane - dolna (4), górna (8) i płytka wyświetlaczy (9). Płytka dolna i płytka górna są przykręcone do wsporników izolacyjnych (25) i połączone ze sobą za pomocą wiązki przewodów. Schemat połączeń elektrycznych między płytkami jest przedstawiony na rys p. 13.

Z płytką górną jest połączona w sposób trwały (elektrycznie 1 mechanicznie) płytka wyświetlaczy. Do tylnej płyty obudowy (14) jest przymocowany transformator sieciowy (3), stabilizator IC401 z radiatorem (23), wyłącznik sieciowy (5), oraz bezpieczniki sieciowe (37).

Na płycie tylnej znajdują się także gniazda izolowanego źródła prądowego 10 mA.

Zaciski pomiarowe multimetru (1, 2) znajdują się na płycie przedniej (13, 31) i podobnie jak cała część elektryczna są odizolowane od obudowy.

Całość przyrządy jest zamknięta w dwuczęściowej obudowie typu CB (6, 36).

4.2. Przeżącznik funkcji i przełącznik zakresów

Przy pomocy przełącznika funkcji reslizowana jest, właściwa dla danej funkcji pomiarowej konfiguracja połączeń _{liędzy} poszczególnymi blokami multimetru, a w szczególności:

- prozdział sygnałów wejściowych (napięcia DC i AC; prędy DC i AC; rezystancja i pojemność) dołęczenych do wspólnych dla wszystkich funkcji zacisków pomierowych "HI" "LO" i skierowanie ich do odpowiednich przetworników,
-) dołęczenie sygnału stałoprądowego z odpowiedniego przetwornika (AC/DC, R/U, C/U), będź wprost z dzielnika lub bocznika na wejście przetwornika A/C,
-) sterowanie wygaszeniem znaku <u>+</u> i AC w zeleżności od funkcji.
- Przy pomocy przełącznika zakresów dokonywane są przełączenia w obrębie dzielnika wejściowago i bocznika prądowego oraz sterowanie przecinkiem dziesiętnym.
- lapięcie stałe podawane jest z wejścia przyrządu bezpośednio na wejście przetwornika A/C (na podzakresie 200 mV IC) lub przez precyzyjny dzielnik wejściowy (na pozostaych podzakresach).
- apięcie przemienne podawane jest z wejścia przyrzącu ezpośrednio (podzakres 200 mV AC) lub przez precyzyjny, kompensowany częstotliwościowo dzielnik wejściowy (pozotałe podzakresy) na szeregowy kondensator odcinający skłatową stałą i dalej na przetwornik AC/OC.
- zielnik wejściowy jest wspólny dla napięć stałych i przeilennych.
- rędy stałe i przemienne podawane są na bodznik, właściwy la danego podząkresu pomiarowego. Rezystory bodznika są spólne dla prądów stałych i przemiennych. Dla prądów staych wyjście bodznika dołądzone jest bezpośrednio do wejścia

przetwornika A/C a dla prądów przemiennych przez kondensa tor odcinający składową stałę do wejścia przetwornika AC/DC.

Rezystancja - jest mierzona w układzie tzw. omomierza sto sunkowego przy bezpośrednim wykorzystaniu obwodu przetwornika A/C (p. 4.6.). Zmiana podzakresu odbywa się przez zmianę rezystancji wzorcowej. Jako rezystory wzorcowe wykorzystano rezystory dzielnika wejściowego.

Pojemność - jest mierzona w układzie przetwornika C/U złożonym z generatora taktującego, źródła prądowego i komparatora z układem kluczy (p. 4.8.). Zmiena podzakresu odbywa się przez zmianę rezystora wzorcowego w źródle prądowym, a co za tym idzie przez odpowiednią zmianę prądu ładującego kondensator.

Jako rezystory wzorcowe wykorzystano rezystory dzielnika wejściowego.

4.3. <u>Dzielnik wejściowy i boczniki prądowe</u>

Dzielnik wejściowy i boczniki prądowe stanowią zespół szeregowo połączonych precyzyjnych rezystorów R181 ÷ R189 o wartościach od 9 MΩ do 0,1Ω

Dzielnik umożliwia podzieł napięcia w następującym stosunku:

- 1 : 10 (podzakres 2V)

- 1 · 100 (podzakres 28 V)

- 1 : 1000 (podzakres 200 V)

- 1 : 18000 (podzakres 2000 V)

Dla wszystkich w.w podźlełow dzielnik jest kompensowany częstotliwościowa op pmożliwie podzież nepięd przemiennyc

W odpowiednim układzie połączeń rezystory dzielnika pełnią funkcję wzorców rezystancji w układzie omomietza oraz rezystorów wzorcowych w źródle prądowym przetwornika C/U.
Rezystory R105 + R109 pełnią funkcję bocznika prądowego.

4.4. Przetwornik analogowo-cyfrowy (A/C)

Przetwornik analogowo-cyfrowy stanowi monolityczny uklas scalony wykonany w technice CMOS (ICL 7107) wraz z dołączonymi do niego elementami zewnętrznymi (Rys. 1.). Przetwornik ten pracuje w oparciu o metodę podwójnego całkowania. Pełny cykl pracy przetwornika obejmuje 3 fazy:

- zerowanie
- całkowanie nepięcia mierzonego
- całkowanie napięcia wzorcowego.

W fazie zerowania wejście pomiarowe IN LO (wypr. 30) połączone na stałe z wypr. COMMON (wypr. 32) i masą analogową multimetru (L A) jest zwierane przez wewnątrzny układ kluczy z wejściem pomiarowym IN HI (wypr. 31).
Zamknięta pętla "auto-zera" powoduje doładowywanie kondensatorą C208 do wartości równej napięciu niezrównoważenia części analogowej przetwornika (tzn. wzmacniacza-bufora, integratora i komparatora). W następnych fazach pomiarowych napięcie to, dołączone do odwracającego wejścia integratora, kompensuje przesunięcie zera przetwornika.
Kondensator C210 (C_{REF}) dołączony jest do napięcia wzorcowego.

W orugiej fazze wejście pomiarowe przetwornika IN HI,
IN LO połączone są przez wewnętrzny wzmacniacz - bufor

Rys. 1, Unlad przetwornika analogowo-cyfrowego ICL 710

z wejściami integratora, który całkuje napięcić mierzone w przedziałe czasu określonym przez zliczenie w części cyfrowej 4000 impulsów generatora zegarowego.

w trzeciej fazie wejścia IN HI i IN LO dołączone są przez wewnątrzny układ kluczy do kondensatora C210 (C_{REF}) naładowanego do napięcia wzorcowego. Polaryzacja tego napięcia jest przeciwna do polaryzacji napięcia mierzonego. Następuje całkowanie napięcia wzorcowego przez integrator aż do poziomu zerowego.

Czas trwania trzeciej fazy a więc i także zliczanych w tej fazie impulsów zegarowych są proporcjonalne do wartości mierzonego napięsia.

Nacięcie wzorcowe jest uzyskiwane przez podział na precyzyjnym, regulowanym dzielniku , złożonym z rezystorów R244, R245, R246, napięcia +5V będącego częścią napięcia U_{RFF} stabilizatora IC103 (UL 7523).

Przez ustawienie wartości napięcia wzorcowego 100 mV przy pomocy potencjometru R246 dokonuje się kalibracji przetwornika A/C (p. 6.3.2.).

Generator zegarowy zbudowany jest z wewnętrznej części cyfrowej i dolączonych do niej elementów zewnętrznych R249, C212, C213, które ustalają częstotliwość pracy generatora. Częstotliwość pracy generatora powinna wynosić 5C kHz, co zapewnia maksimum tłumienia zakłóceń szeregowych pochodzących od sieci 50 Hz. Częstotliwość generatora można ustawiać przy pomocy trymara C212, w sposób opisany w p. 6.3.3.

Klucze analogowe (IC206) sterowane napięciowo z przełączni ka funkcji służę do przyłączania do wyprowadzeń REF HI(36) i REF LO (35) rapięcia wzorcowego 100 mV przy pomiarze przez przetwornik napięć stałych (klucze IC206e, IC206c) lub do dołączania rezystora wzorcowego przy pomiarze rezystancji (klucze IC206b, IC206d). Klucze sę załęczane napięciem +5 V względem masy układu.

Rezystory R242, R243 stanowią zabezpieczenie przetwornika przed przeciążeniem a wraz z kondensatorem C209 tworzę filtr dolnoprzepustowy.

Wyprowadzenie TEST połączone jest wewnętrznie pizez rezystor 500% z masą cyfrową układu. Przez chwilowe zwarcie tego wyprowadzenia z napięciem +5 V uzyskuje się wskazanie - 1888, co umożliwia szybkie sprawdzenie układu
wyświetlania wyniku

4.5, Układ wyświetlania wyniku pomiaru

Wynik pomiaru wyświatlany jest w sposób równoległy, statyczny.

Wyjścia 2 + 20, 22 + 25 przetwornika ICi 7107 przez wzmacniacze prądowe UCY 7417 (IC210 + IC213) sterują wyś+. wietlaczami siedmiosegmentowymi typu LED ze wspólną anodą (W301 + W304). Prąd płynący przez każdy z segmentów wyś-wietlaczy ograniczony jest przy pomocy osobnego rezystora. Segmenty przecinków dziesiętnych sterowane są przez rezystory, bezpośrednio z przeżącznika zakresów.

Rys. 2. Schemat ideowy układu wyświetlania wymiku pomiaru

4.6. Przetwornik rezystancji

Uproszczony schemat układu pomiaru rezystancji przedstawiony jest na rys. 3.

Rezystor mierzony Rx połączony jest szeregowo z rezystorem wzorcowym R_N, złożonym z odpowiednich rezystorów dzielnika oraz ze źródłem napięcia ok. 0,3 V uzyskanym przez podział napięcia +5 V przy pomocy dzielnika R252, R253.

Rezystor mierzony Rx dołączony jest do wejść pomiarowych IN MI, IN LO przetwornika, zaś rezystor wzorcowy R_N przez rezystory zabezpieczające i klucze IC206b, IC206d do wejść REF MI, REF LO.

Poniar rezystancji realizowany jest przez pomiar stosunku napięć na rezystorze wzorcowym i mierzonym z uwzględnieniem skali przetwarrania.

Tranzystory [207 + T210, bezpiecznik WI102 oraz rezystory R247, R248 zabezpieczają układ przetwornika i rezystor wzorcowy R_R przed uszkodzeniem w przypadku pojawienia sir na zaciskach wejściowych przyrządu dużego napięcia zewnętrznego.

Rys. 3. Schemat ideowy układu pomiaru rezystancji

- 4.7. Przetwornik napięć przemiennych (AC/DC) z filtrem aktywnym Przetwornik napięć przemiennych (AC/DC) akłada się z trzech cześci:
 - wtórnika wejściowego
 - prostownika operacyjnego
 - aktywnego filtru dolnoprzepustowego.

wtórnik wejściowy zbudowany jest z tranzystora polowego typu FET T105 (8F 245A) i tranzystora bipolarnego T106 (8C416C). Zastosowanie tranzystora typu FET zapewnia dużą rezystancję wejściową przetwornika. Tranzystory T101+T104 (8C 413B) służą do polaryzacji wtórnika a jednocześnie wraz z rezystorem R110 tworzą układ zabezpieczający przetwornik przed uszkodzeniem w przypadku dołączania do niego zbyt dużego napięcia mierzonego.

Wtórnik jest połączony przez kondensator C197 z układem prostownika.

Jednopołówkowy prostownik operacyjny pracujący w układzie odwracającym zbudowany jest w operciu o wzmacniacz operacyjny IC 101 (ULY 7701), Wzmocnienie napięciowe układu jest ckreślone przez wartości rezystorów R114+R116 i R119+R122. Kalibrację przetwornika przeprowadza się przez zwieranie rezystors R115 i regulację potencjometrem R116. Trymer C108 umożliwia kształtowanie charakterystyki częstotliwościowej w przedziale 40 + 100 kHz. Stałoprądową stabilność układu zapewnia pętla R117, R116, C118.

Dzięki kondensatorom separującym ClO7, Cil7 i Cli2 parametry stałoprądowe wtórnika i wzmacniacza nie mają wpływu na stabilność wyniku pomiaru. Konfiguracja filtru aktywnego zbudowanego w oparciu o wzmacniacz opracyjny IC 102 (UuY7701) zapewnia uniezależnienie wwwiku pomiaru od stałopiędowych parametrów tego wzmachiacza:

Fig. 4 Fizebiegi w u-Padzje przetwornika AC/GC (zaktes 200 m. 48. Uwe ± 190 mV; 1 kHz)

4.8. Przetwornik pojemności C/U

Przetwornik pojemności na napięcie stałe C/U składa się.

- z trzech podstawowych bloków:
 - generatora taktującego
 - precyzyjnego, kluczowanego źródła pradowego
 - komparatora sterującego zespołem kluczy.

Cykl pracy przetwornika jest wyznaczony przez generator taktujący. Generator ten, zbudowany w oparciu o wzmacniacz operacyjny IC 203 (ULY 7701), wytwarza niesymetryczny przebieg prostokątny o częstotliwości ok. 100 Hz (Rys. 5a). Początek cyklu pomiarowego jest określony przez narastające zbocze sygnału generatora taktującego.

Napięcie to powoduje załączenie kluczem IC 205d precyzyjnego źródła prądowego zbudowanego m.in. ze wzmacniacza IC 202 (ULY 7701) oraz tranzystorów T202, T201 (BC 416C). Rozwarty zostaje klucz T284 (BC 413C) zwierający uprzednio kondensator mierzony dołączony do wyprowadzenia 18.

W wyniku załączenia źródła prądowego następuje ładowanie mierzonego kondensatora prądem stałym. Napięcie na tym kondensatorze połączonym z wejściem odwracającym komparatora zmienia się liniowo (Rys. 5b.) aż do momentu zrówniania się z napięciem na wejściu nieodwracającym komparatora. W chwili zrównania się tych napięć następuje ujemny skok napięcia na wyjściu komparatora, klucz IC 205c zostaje zwarty do masy, przy pomocy klucza T204 zostaje zwarty kondensator mierzony a przez rozwarcie klucza IC 205d następuje wyłączenie źródła prądowego. W przypadku przekroczenia zakresu mierzonej polemności opadające zbocze generatora taktującego powoduje siekt identyczny jak wyżej opisany.

Rys. 5. Przebiegi w układzie przetwornika C/U (zakres 200 µF. pojemność mierzona 190 nF)

Czas ładowania kondensatora mierzonego a tym samym wybełnienie przebiegu komparatora są wprost proporcjonalne do pojemności wspomnianego kondensatora. Przebieg na wejściu kluczy ID 205b, IC 205c o stabilnej wartości amplitudy (+5 V) i wypełnieniu równym wypełnieniu przebiegu komparatora po dopasowaniu napięciowym w układzie dzielnika R237 i R238 jest filtrowany przez filtr aktywny użyty w przetworniku AC/DC a napięcie stałe propocjonalne do mierzonej pojemności podawane jest do przetwornika A/C.

Potencjometr R232 i rezystory R233, R235, R236 tworzą wraz z dzielnikiem R237, R238 układ do stawiania zera przetwornika.

Kalibracji przetwornika dokonuje się przy pomocy rezystorów R210 + R212 potencjometrem R208 zmieniając wartość prądu źródła.

Zmiany zakresów pomiarowych odbywają się przez załączenie do układu źródła odpowiednich rezystorów z dzielnika wejściowego a tym samym zmianę prądu źródła w stosunku 1 : 10 : 100 : 1000.

4.9. Układ kontroli ciągłości obwodu elektrycznego z sygnalizacją akustyczną

Układ kombinacyjny złożony z funktorów IC 208d, IC 209c oraz IC 209a wykrywa wskazanie mniejsze od 100 jednostek (wygaszona jedynka – segmenty 1b, c; oraz zapalone zero na drugiej pozycji – zgaszony segment 2g a zapalony 2d). Pojawia się wówczas stan wysoki na wyjściu bramki IC 209a i wyzwalany jest generator akustyczny zbudowany z bramek IC 208c, IC 209b sterujący przez tranzystor 7211 przetwornikiem piezoelektrycznym.

4.10. Układ testera złącz półprzewodnikowych

Układ testera złącz półprzewodnikowych tzw. dioda test umożliwia pomiar napięcia na złączu półprzewodnikowym spoleryzowanym napięciem +5 V przez rezystor ograniczający 20 kg . Pomier odbywa się na zakresie 2 V przy wciśniętym klawiszu - -

... 1. Izcicwane źródło prądowe 10 mA

Izolowane źródło prądowe zbudowane jest na bazie stabilizatora scalonego BL 7523 (IC 201), pracującego jako stabilizator prądu.

Wewnętrzne źródło odniesienia V_{REF}, określa potencjał nieodwracającego wejścia wzmacniacza błędu; prąd wyjściowy płynący między zaciskami z wyjścia w/w wzmacniacza przez rezystor wzorcowy R202 i połączone z nim rezystory kalibracji R203 + R207 utrzymuje na wejściu nieodwracającym potencjał taki jak na wejściu odwracającym.

W rezultacie - bez względu na rezystancję dołądzoną między, zaciski wyjściowe, prąd wyjściowy jest stały, równy 10 mA i określony jedynia przez wartość V_{REF} i wartość rezystan-i cji wzorcowej.

4.12. Zasilacze

Do zasilenia układu wyświetlania wyniku pomieru, układów cyfrowych oraz do polaryzacji złącz przy funkcji dieda test, służy zasilacz +5 V_D zbudowany ze stabilizatora UL 7505 (IC 401).

Do zasilania układów analogowych, w tym również przetwornika A/C użyte są dwa precyzyjne zasilacze +5 V, +5 V zbudowane w poarpiu o stabilizatory UL 7523 (IC 103, IC 104). Maksymalny prąd wyjściowy tych zasilaczy ograniczeny jest do ok 60 m4

5. <u>OGÓLNE WYTYCZNE EKSPLOATACJI I BEZPIECZEŃSTWA OBSLUGI PRZY-</u> RZADU

Pod względem warunków pracy przyrząd może być eksploatowany w znamionowych warunkach pracy określonych PN-77/T-06500/02 dla przyrządów I-szej grupy tzn.

- temperatura pracy +5 ... +40°C (dopuszczalne zmiany temperatury w ciągu 8 h nie powinny przekraczać 20°C)
- wilgotność względna 20 ... 80% (średnia wilgotność nie powinna przekraczać 65%)
- wibracje pomijalnie małe
- środowisko o pomíjalnie małej zawartości piasku, pyłu, soli, wody i gazów w powietrzu.

Pod względem zabezpieczenia przed porażeniem elektrycznym przyrząd wykonany jest w I-szej klasie ochronności wg PN-76///T-06500/05 tzn. jest wyposażony w 3 żyłowy kabel z przewodem ochronnym uziemienia. Może być eksplostowany po dołączeniu do sieci energetycznej wyposażonej w uziemienie. Pod względem bezpieczeństwa może być eksplostowany w warunkach lokalizacji bezpiecznej i niebezpiecznej.

- N przyrządzie poza napięciem sieci zasilającej doprowadzonej do bezpieczników, transformatora sieciowego i wyłącznika,
 napięcia niebezpieczne nia występują. Jednak napięcia takie
 mogą być doprowadzone z zewnątrz jako sygnały pomiarowe.
 Podczas pomiarów napięć powyżej 24 V należy zachować szczególną catrożność i pamiętać że:
 - maksymalne dopuszczalne napięcie jakie może być dołączone pomiędzy zaciski "wejściowe" nie może przekraczać wartości podanych w p. 3.1. + 3.9.,
- maksymalne dopuszczalne napięcie jakie może być dołączone
 między zacisk "LO" a obudowe nie może przekraczać 250 V,

- podrzas dołączania mierzonych sygnażów do zaciaków pomierowych przyrządu w pierwszej kolejności należy dołączyć zacisk niskiego potencjału "LD",
- w przypadku uszkodzenia połączeń w układzie pomiarowym jak też przeciążenia wejścia przyrządu, potencjał niebezpieczny może wystąpić na każdym z zacisków wejściowych,
- podczas pomiarów nie należy dotykać żadnych elementów będących pod napięciem.

Wszelkich napraw należy dokonywać przy wyłączonym napięciu zasilającym oraz odłączonym napięciu wejściowym.

6. KONSERWACJA I NAPRAWY

6.1. Wskazania ogólne

閉びCCWを作品。

Kontrola okreaowa przyrządu i ewentualne regulacje powinny być przeprowadzone raz na 12 miesięcy wg.p. 6.3.

Przed regulacjami i kalibracją, przyrząd powinien być włądzony do sieci zasilającej przez co najmniej 30 min.

Przy naprawach i kalibracji zalecana jest pozycja robocza multimetru wg rys. 6., w której płytka górna wraz ze wakażnikiem jest obrócona wokół krawędzi, do której lutowana jest wiązka, o 180° i w tej pozycji przykręcona do waporników. Pozwala to na swobodny dostęp do wszystkich elementów, bez przerywania połączeń elektrycznych.

Część sieciowa multimetru jest zasadniczo zabezpieczona przed przypadkowym dotknięciem, niemniej przed włączemiem do sieci zasilającej należy sprawdzić, czy osłony bolców sieciowych transformatora, osłona wyłącznika sieciowego ltp. znajdują się na swoich miajscach i są prawidłowo za-

Rys. 6. Pozycja robocza multimetru podczas uruchamiania

W trakcie strojenia podzakreséw pomieru napięć stałych i przemiennych, na gnieździe wejściowym oraz części elementów wewnętrznych (przelącznik, rezystor R101) znajdują się napięcia niebezpieczne. Należy zachować ostrożność.
Naprawy przyrządy powinny być dokonywane – poza wymianą bezpieczników – tylko przez wysokokwalifikowany personel w operciu o załączone schematy ideowe, opis działania, rymunki montażowe płytek drukowanych oraz wykaz elementów i części zamiennych.

Przy naprawach niezbędna jest znajomość techniki cyfrowej 1 budowy przyrządów, których działanie oparte jest o zasadę prztwarzania analogowo-cyfrowego.

Ponadto konieczna jest znajomość mikroelektronicznych układów scalonych, w tym również wykonanych w technice CMOS. W przypadku konieczności wymiany jakiegokolwiek elementu należy wymienić go na zgodny z wykazem elementów zamiestczonym w miniejszej instrukcji, a w przypadku elementu selekcjo nowanego należy go wstępnie pomierzyć w sposób określony w niniejszej instrukcji.

₩ przypadku dokonywania istotnych naprew przyrzędu należ przeprowadzić pełnę kalibrację i regulację przyrzędu zgod nie z niniejszą instrukcję.

Ze względu na obecność układów typu CMBS (IC 205 + IC 205 przy wszelkich pracech neleży zechować środki ostrożności zalecane przez producenta przy stosowaniu w/w ukłedów.

6.2. Elementy selekcjonowane w procesie produkcji

6.2.1. Tranzystory zabezpieczenia przetwornika AC/OC i omomierz W układach zabezpieczenia przetwornika AC/OC i omomierz zastosowano po cztery selekcjonowane tranzystory bipola ne BC <13B (T101 + T 104 - przetw. AC/OC; T207 + T210 omomierz), wykorzystując właściwości złącza baza - emiti w kierunku przewodzenia.

> Selekcji tranzystorów dokonuje się ze wzplędu na wartoś prądu bazy w kierunku przewodzenia (I_{BE}) dla U_{BE} = 150 i i na pręd wsteczny bazy (I_{BEO}) dla U_{BE} = −150 mV w układ dzie jak na rys. 7.

Rys. 7. Układ do pomiaru prądu $I_{\rm BE}$ dle $U_{\rm BE}$ = 150 mV

Podczas pomiaru należy uwzględnić to, że wartość U_{SE} jest równa wskazaniu woltomierza pomniejszonemu o spadek napięcia na rezystancji pikoamperomierza.

w układzie zabezpieczenia przetwornika AC/OC mogą być stosowane tranzystory, dla których $I_{BE} < 50$ pA i $I_{BEO} < 50$ pA a w zabezpieczeniu omomierza tranzystory o prączie $I_{BE} < 200$ pA i $I_{BEO} < 200$ pA.

6.2.2. Diogy zabezpieczenia amperomierza

w układzie zabezpieczenia amperomierza zastosowano cztery selekcjonowane diody SY 351/2 (D101 + D104).

Selekcji diod dokonuje się ze względu na prąd w kierunku przewodzenia (I_F) dla U_F = 100 mV oraz prąd wsteczny (I_R) dla U_R =-100 mV w układzie przedstawionym na rys. 8.

Rys. 8. Układ do pomiaru I_F dla U_F * 108 mV

Podczas pomiaru należy uwzględnić to, że wartość napięcia $U_{\rm F}$ jest równa wskazaniu woltomierza pomniejszonemu o spadek napięcia na rezystancji nanoamperomierza.

W układzie zabezpieczenie andercmierza mogą być stosoware dłody, dla których $I_{\rm F} \leqslant$ 50 nA i $I_{\rm R} \leqslant$ 50 nA.

o.3. Kalibracja i regulacja

Kelibracja przyrządu, ze względu na jego wielofunkcyjność oraz wzajemne zależności regulacji, powimna być dokomana w miżej przedstawionej kolejności.

Pozmieszczenie elementów służących do kalibracji i regulac przedstawione jest na rysunku p. 12.

e 3.1. Regulacja napięć zasilających

Przed przystąpieniem do kalibracji należy dokonać regulacji napięć +5 V i +5 V. Przez zwieranie pól kontaktowych pod rezystorami RI31, RI32 i przez końcową regulacji potencjometrem RI33 (USTAWIENIE + 5 V) ustawić napięcie +5 V +0,2%.

Podobnie , przez zwieranie pola kontaktowego pod rezysto rem R138 i przy pomocy potencjometru R139 (USTAWIENIE -5) ustawić napięcie -5 V <u>+</u>0,2%.

6.3.2. Kalibracja przetwornika analogowo-cyfrowego i sprawdzenie układu woltomierza

Kalibracji przetwornika A/C dokonuje się na zakresie 200 mV DC. Sposób postępowania jest następujący:

- a) do zacisków wejściowych przyrządu "HI" i "LO" dołączyć sygnał wzorcowy 190,0 mV o polaryzacji dodatniej.
- b) przy pomocy potencjometru R246 (KAL. BC) ustawić wskazanie równe sygnałowi wzorcowemu,
- c) zmienić polaryzację sygnału na ojemną, sprawdzić wskazanie – powinno wynosić ~190,0 +2 cyfry.
- d) po dokonaniu w/w kalibracji sprawdzić wskazanie na pozostałych podzakresach pomiaru napięć stałych, dla sygmału wzorcowego równego 0,95 odpowiednich wartości zakresowych.

- 6.3.3. Ustawienie częstotliwości generatora zegarowego
 Przy włączonym podzakresie 200 mV OC dołączyć do zacisków
 wejściowych przyrządu napięcie przemienne 1 V; 50 Hz a
 następnie trymerem C212 ustawić wskazanie tak, by oscylacje wokół wartości ±0.00 nie przekraczały ±3 cyfr.
- 6.3.4. Kelibracja układu amperomierza Kalibracji amperomierza dokonuje się jedynie na podzakreeach 2A i 200 mA DC. Należy postępować w sposób następujący:
 - a) włączyć podzakres 2 A DC, do zacisków wejściowych przyrządu doprowadzić prąd stały o wartości 1,5 + 1,9A a następnie przez zmianę położenia wyprowadzeń napięciowych rezystora R109 ustawić wskazanie równe sygnałowi wzorcowemu,
 - b) włączyć podzakres 200 mA DC, do zacisków wejściowych doprowadzić prąd stały o wartości 150 + 190 mA a następnie przez zmianę położenia wyprowadzeń napięciowych rezystora R108 ustawić właściwe wskazanie,
 - c) sprawdzić wskazanie na pozostałych podzakresach pomiaru prądów stałych dla sygnału równego 0,75 + 0,95 edpowiedniej wartości zakazanej.
- 6.3.5. Kalibracja układu omomierza

Kalibracji omomiarza dokonuje się tylko na podzakresie $200\,\Omega$.

W tym celu należy do zacisków wejściowych przyrządu dolączyć rezystancję wzorcową 190Ω i ustawić właściwe wskazanie przez zmianę głębokości wlutowania rezystota R140. Przy kalibracji należy uwzględnić rezystancję przewodów połączeniowych. Po dokonaniu w/w kalibracji nalaży spraw dzić dokładność pomiatu na pozostałych podzakresach omomierza dla rezystancji wzorcowej równej 0,75 + 0,95 odpowiedniej wartości zakresowej.

- 6.3.6. Zerowanie przetwornika C/U
 Zerowanie przetwornika C/U dokonuje się przy pomocy potencjometru R232 na podzakresie 28 nF przy rozwartych
 zaciskach pomiarowych przyrządu.
- 6.3.7. Kalibracja przetwornika C/U można dokonywać na dowolnym podzakrasie. W tym celu należy do zacisków pomiarowych przyrządu dożączyć pojamność wzorcową równą 0,75 + 0,95 odpowiedniej wartości zakresowej a następnie przez zwieranie pół kontaktowych pod rezystorami R210 + R212 i koń-cową regulację potencjometrem R208 (KAŁ. C/U) uzyskać wskazanie równe pojemności wzorcowej.

Po dokonaniu w/w kalibracji sprawdzić dokładność pomiaru na pozostałych podzakrasach dla pojemności wzorcowej równej 0,75 ÷ 0,95 odpowiedniej wartości zakresowej.

- 6.3.8. Kalibracja przetwornika AC/CC

 Kalibracji przetwornika AC/CC dokonuje się na podzakresię 200 mY AC. W tym celu należy do zacisków wajściowych

 przyrządu dołączyć sygnał wzorcowy 190 mV; 1 kHz a nastęgo
 nie przy powocy potencjometru R116 (KAL. AC) ustawić

 wskazania równe sygnałowi wzorcowemu.
- 6.3.9. Kompensacja częstotliwościowa przetwornika AC/GC Do zacisków pomiatowych przyrządu z włączonym podzakresam 200 mV AC dożączyć sygnał 190 mV; 160 kHz a następnie

przy pomocy trymera C108 (KOMP. AC) ustawić wskazanie równe wzorcowemu.

Po dokonaniu w/w kompensacji sprawdzić dodatkowo wskazanie dla 40 Hz; 20 kHz i 50 kHz.

- 6.3.10. Kompensacja częstotliwościowa dzielnika wejściowego na zakresach ZV, ZO V, ZOO V, ZOOO V (650 V) AC Kompensacji częstotliwościowej dzielnika należy dckonywać z przykręconym ekranem pod płytkę dolną. Kolejność czynności jest następująca:
 - a) przy włączonym podzakresie 2 V AC dołączyć do zecisków wejściowych przyrządu sygnał wzorcowy 1,9 V; 10 kHz a następnie przez dobór odpowiedniej wartości kondensatora Clūz i regulację trymerem Clūzb ustawić wskazanie równe wzorcowemu; sprawdzić również wskazanie dla częstotliwości 1 kHz, 20 kHz i 100 kHz,
 - b) na podzakresie 20 V AC kompensacji dokonuje się przy sygnale wzorcowym 19 V; 10 kHz przez dobór odpowiednich wartości kondensatorów Clo3 i Clo3a oraz regulację trymerem Clo3b; po dokonaniu kompensacji sprawdzić wskazanie dla częstotliwości 1 kHz, 20 kHz i lo0 kHz,
 - c) na podzakresie 200 V AC przy sygnale 190 V; 10 kHz należy tak dobrać wartość kondensatorów C104 i C1043 aby uzyskać odpowiednie wskazanie. Po dokonaniu kompensacji sprawdzić wskazanie dla częstotliwości l kHz, oraz dla 100 V, 20 kHz,
 - d) na podzakresie 2000 v AC kompensacji dokonuje się przy sygnale wzorcowym 650 V; 3 kHz przez dobór odpo-

wiednich wertości kondensatorów C105 i C105e; po dokonaniu kompensacji sprawdzić wskazanie dla częstotliwoś. ci l kHz.

6.3.11. Kalibracje źródła prądowego 10 mA

W celu dokonania kalibracji źródła prądowego należy dołączyć do zacisków wyjściowych na płycie tylnej wzorcowy miernik prądu o zakresie 10 mA. Następnie przez zwieranie pół kontaktowych pod rezystorami R203, R204 i R205 i regułację potencjometrem R207 (KAL. 10 mA) ustawić właściwe wskazanie.

6.3.12. Uwagi końcowe

Wszystkie podzakresy pomiaru napięć stałych i przemiennych z wyjątkiem podzakresu 200 mV DC i AC; podzakresy pomiaru prądów stałych i przemiennych z wyjątkiem podzakresów 200 mA DC i 2 DC praz podzakresy pomiaru rezystancji z wyjątkiem podzakresu 200% nie posiadają odrębnych elementów kalibracyjnych. Uzyskiwanie na nich założonych dokładności wynika z dokonania w/w kalibracji (p. 6.3.1.+6.3.11.) praz z dokładności rezystorów dzielnika wejściowego 1 boczników prądowych. Wymagana dokładność poszczególnych podzakresów pomiaru pojemności wynika z kalibracji przetwornika C/U (p. 6.3.7.) praz z dokładności rezystorów dzielnika wejściowego.

6.4. Wykaz przyrządów do napraw i kalibracji

- Miernik uniwersalny , np. multimetr V640.
- Oscyloskop dwukanałowy o czułości 5 mV/cm i peśmie do 10 MHz, np. OS-710 z wkładkami X-701 i Y-701.

- 3. Sonda napięciowa do oscyloskopu o współczynniku podziału
 1 : 10 i rezystancji 10 MQ , np. P-701.
 - 4. Multimetr cyfrowy α czułości napięciowej 10 μV/cyfrę, dokładności 0,1% dla napięć stałych i paśmie do 10 kHz dla napięć przemiennych, np. V560.
 - 5. Miernik prądu z zakresem pomiarowym 0,1 nA, np. V623.
 - Kalibrator napięć stażych o zakresie 1 mV ... 650 V i dokładności 0,85%, np. 33200 f-my FLUKE.
 - Kalibrator prądów stażych o zakresie 150 μA ... 1,5 A i dokładności 0,1%, np. 51008 f-my FLUKE.
 - 8. Kalibrator napięć przemiennych o zakresie 1 mV ... 650 V; 40 Hz ... 100 kHz i dokładności 0,1%, np. 5200A ze vzmac+ niaczem 5215A 1-my FLUKE.
 - .9. Zestaw rezystorów wzorcowych o wartościach: 198Ω ; 1,9 kΩ ; 19 kΩ ; 190 kΩ ; 1,9 MΩ ; 19 MQ i dokładności 0,05%.
 - Zestaw pojemności wzorcowych o wartościach:
 19 nF; 190 nF; 1,9 μF; 19 μF i dokładności 0,1%.

7. <u>SYLADOWANIE I TRANSPORT</u>

Przyrząd powinien być pakowany, przechowywany i transportowany zgodnie z PN-76/T-06500/08.

Powinien być składowany w pomieszczeniach czystych i wentylowanych o temperaturze nie niższej niż +5°C i wilgotności nie większej niż 80%. Oc przechowywania przez czas krótszy niż 6 miesięcy wyroby mogą być zapakowane w opakowaniu transportowym, natomiast przechowywanie dłuższe powinno odbywać się bez opakowań transportowych np. na regałach. Przyrzęd może być przewożony dowolnym środkiem transportu, pi czym skrzymie z wyrobami przy otwartych środkach transportu powinny być zabezpieczone i przykryte. Transport może odbywad się w temperaturze -25°C do +55°C, wilgotności względnej do 95%, ciśnieniu atmosferycznym od 600 do 1060 mbar.

inedopuszczalny jest transport śrockami przewszu, k**tóre sę ze** nieczyszczone aktywnie działającymi chemikaliami, pyłem węglo wym, cementowym lub innym.

	n Lagrand agent in			<u>,</u>	
	-	Opportune agementum	ia	Ornsez. School	Omaczenie cirpustou
	1.1.	BYKAZ ELEMENTÓN Płytka dolna	2 1	0101	SY 351/2 **
タンカ連 メンカ連	10101	WLT 7701 H	2 1	D162	EY 351/2 40
	IC102	BLY 7791 H	2 3	0183	5Y 351/2 ***
34	TC 103	₩. 7523 M	2 4	D104	5Y 351/2 **
	10104	UL 7523 N	5 >	D105	BAYP 35
•	,		2 s	0104	BAYP 95
			2 1	0107	BYP 481-50
•			2 *	8108	BYP 401-50
,			2 ,	0109	8YP 401-50
1.	T181	BC 413 8 **	3.	0110	BYP 401-50
11	T102	BC +13 8	3 1	0111	BYP 401-50
11	7103	BC 413 8 **	3:	0112	BYP 401-50
1:	T104	BC 413 8	3,		
1 4	7105	BF 245 A	34		
. [7104	8C 416 C	3s		
1.			34		
11			37		
11	 -}		3.		
11			30		
2 *			••		· ·

4

.

		•	,	_	<u> </u>
Lø	Oznaci. ácitem	Ountzenie elementow	ĹĢ	Otnocz. echem	Osmesenie elementou
4.1			۱ ،	#112	HLT-0,254-12k <u>+</u> 5%-435
4 1	#101	RNX- ^{3/} 8W-8,87M <u>+</u> 8,5%- -TWR100	62	8113	HLT-0,258-9,1k +55-43
4,		MFR-0,25W-51,1k <u>+</u> 2%- -TWR100	63	R114	RMP-0,125W-9,09k +0,58
4.		MFR-0,25W-75k +2%-TWR100		R115	RWP-0,125W-255 +1%- TWR100
4.5		MFR-0,25W-100k <u>+</u> 2%-TWR100	63	R116	CT19AH-0,58-330 ±20%
48	R101a	MFR-0,25W-127k <u>±</u> 2%-TWR100	6 :	R117	RWP-0,125W-68k +2%- TWR100
47		MFR-0,25W-154k <u>+</u> 2%-TWR100	6 1	R118	MLT-0,25W-180k +5%-43
43		MFR-0,25W-178k <u>+</u> 2%-TWR100	6 6	R119	RWP-0,25W-20.3k 0,2%- TWR50
4.6		MFR-0,25W-205k <u>+</u> 2%-TWR100	6,	#120	RWP-0,125W-9,09k ±0,5 TWR50
54	R102	RWP-8,5W-900k±82%-TWR25	7 .	R121	RWP-0,125W-7,09k ±0,5 TWR50
51			7 i	R122	RWP-0,25W-20,3k <u>+</u> 0, 2% Twr50
5 .	R103	RWP-0,25W±90k ±0,2%-TWR25	7 3	R123	MLT-0,25W-109k ±5%-43
5 3	R104	RWP-0,25W-9k ±0,2%-TWR25	7 3	R124	MLT-0,25W-1,5k +5%-43
54	R105	RWP-D,25W-900 ±0,2%-TWR25	7. 4	R125	MLT-0,25W-180k ±5%-435
5 \$	R106	RWP-0,25W-90 ±0,2%-TWR25	7 s	R126	HLT-0,25W-51k ±5%-435
5 🖣	R107	RWP-0,25W-9 <u>+</u> B,2%-TWR25	7 0	R127	MET-0,25%-10 <u>*</u> 5%-435
5 -	8108	Rezystor drutowy 0,9 wo rys 0-30-6636	7 7	R128	MLT-0,25W-1,5k ±58-43
51		Rezystor drutowy 0,1 wg rys 0-30-6551	7.	R129	RWP-0,25W-7,15K ±0,2%- TWR50
52	R110	MLT-2W-20k ±5%-435	7 6	R130	RMP-0,25%-4,12k ±0,2%- TMR50
6.	R111	MLT-0,25W-12K <u>+</u> 5%-435	8 .	R131	RWP-0,125W-1,8k 1%-THR

		Omerzenie elementour	Lp	Ozuscz. sebem	Ozasczenia siementom
	#132	RWP-0,125W-536 ±1%-	19 ¹		KSF-020-510pF <u>+</u> 2%-25V-567
•	1 133	CM10.1-0,5W-680 +20%	10 2	C103	KSF-020-560pF <u>+</u> 2%-25V-567
	#134	MLT-0,25W-10 ±5%-435	10 3		KSF-020-620pF±2%-567
	X1 35	MLT-0,25W-1,5k +5%-435	104		KSF-028-22pF±20%-630V- -567
	\$136	RWP-0,25W-2,15k +0,2%- TWR50	105	C103e	KSF-02B-47pF±10\$-630V- -567
•.	R137	RWP-0,25W-4,12K +0,2%- TWR50	105		KSF-020-68pF-+10%-630V-
**	R138	RWP-0,125-1,0k ±1%-TWR100	107	С10 2 Р	KCOps-H750-10-d-10/40pF- -250V-656
35	R137	CN10.1-0,5W-1,5k +2C#	100		KSF-020-5,6nF <u>+</u> 2%-567
	R140	Rezystor drutowy drut MMMs 0,15 30mm	100	C104	KSF-020-6,2mF <u>+</u> 2%-25V-567
•			10%		KSF-020-6,8nF+2%-25V-567
•		-	11:		KSF-020-10pF <u>+</u> 20%-630V- -567
91			112		K5F-020-22pF+20#-630V-
9.			113		KSF-020-47pF±10%-630V- -567
7.	; ; i.e.		114	C104B	KSF-D20-82pF <u>+</u> 10%-630V- -567
*,	C101	KCP-18-C-6-5,6pf-0- -2000V-656	11,		KSF-020-150pF+5%-400V- -567
7.		KCP-18-H-8-22DF-G-16DV-	115		KSF-020-270pF±5%-400V- -567
71	C102	KCP-18-N-8-24pF-G-160V-	11-,		KSF-020-560pF+2%-25V-567
7 9		KCP -18-N-8-27pF-G-160V-	31=		KFPm-2C-10x10-47nF-M-63
94	Ciera	KCP-18-M-6-15pF-J-160V-	119	C105	-455 KFPm-2C-10×10-56nF-M-63-
16 .	Class	KCOps-N47-10-d-3/10pf- 25QV-656	1 2n	C105a	KSF-020-10F+5%-25V-567;

			. – –		
Lp	Omers	Oznesieme elementom	Lp	Uzseca e-bros	Oznacyesky elebertica
121		KSF-020-1,8nF+5%-25V-	14:	£122	196D-10µF <u>+</u> 20 %- 16¥
122	C165a	KSF-020-3,3nF±5%-25Y-5e7	14 2	C123	KFP-28-6-150pF-M-160V-
123		KSF-020-5,6nF <u>+</u> 2 %- 25V- 5 67	14 3	C124	typ 2-04/U-220µF/16¥
12:		KSF-020-10nF <u>+</u> 5%-25V-567	14 ,	C125	HKSE-018-02-109nF±20%
12:	C106	MKSE-018-02-0,047µF±10%- 400Y	14 "		
12	C107	1960-100μF <u>+</u> 2 0% -16V	14 ⁶		
127	C108	KCD-N750-7-d-4/20pf-160- 656	14 7	_	
1'2 :	E109	KSF-020-270pF±5%-400V	14 2		
12 •	C110	KFPm-2C-10x10-1μF-M-63- -455	149	WT131	WTA-T-N-250/40mA
130	C111	1960-4,7µF <u>+</u> 2 0%-3 5V	15 9	₩Т202	WTA-T-N-250/1,6A
131	C112	1960-10µF+20%-16V	151		
13 1	Γ113	KSF-020-180pF±5%-400V	15 2		
13 :	C114	MKSE-018-B2-1,5pF <u>+</u> 20%- -100V	151	8.2.	Płytka górna
13%	C115	MKSE-010-02-1,5μF±20%- 100V	15+	IC201	UL 7523 N
13 5	L116	KSF-020-33pF <u>+</u> 10%-630V-567	15,	IC202	ULY 7701 N
13 •	C117	AFPπ-2C-10x10-1μF-M-63-	15 :	10203	ULY 7701 N
13 5	C118	1960-10µF <u>+</u> 20%-16V	15 -	IC204	ULY 7701 N
13 .	C119	KFP-28-6-150pF-M-160V-658	15	10205	MCY 74066 N
13 •	C120	typ 2-04/U-220µF/16V	15,	10206	MCY 74066 A
14.	ClZI	typ 2-02/E-2200µF/16V	160	IC207	ICL 7107 CPL
 -	 	<u> </u>	<u></u>	<u> </u>	

	Sparce. schep.	Ozmereba, ejemespur	L-p	Ganeca sulurm	Ornanzmaje ejezgentiju
161	E208	MCY 74011 N	18 ;	7210	BC 413 B *
16;	IC209	NCY 74023 N	18,	T211	8C 413 C
16:	IC210	UCY 7417 N	16,		
26 4	IC211	UEY 7417 N	16 ,		
16 5	IC212	UCY 7417 N	18,		
16.	IC213	UCY 7417 N	18 6		
16 7			18,		
16,			18 g	0201	BYP 401-50
16 •			16	D202	BZP 683-£5V6
17 0			19 0	0203	BAYP 95
17 1			19 1	D204	AAP 152
17 =	T201	8C 416 C	19 :	- -	· · - -
17 ;	T202	BC 416 C	19 1		
17 4	T203	8C 416 C	19 4		
17 3	T204	8C 413 C	19 5		
17 .	7205	BC 413 B	19 6		
17,	T206	8C 413 B	19 -	R201	MLT-2W-200 45%-435
17	T207	8C 413 E +	19	R202	RWP-0,125W-816 -8,23-
17 .	T20E	BC 413 8 =	19 6	R203	RWP-0 125W-11,5k ±0,5%-
18 •	1209	8C 413 B +	20 0	R204	RWP-0,125W-22,9k <u>→</u> 0,5%- TWR50

		-	. -	,	,
Lp 1	Oznarz "	Ostako bie fili i k	Lp	Oznecz echelo	t) magzenie en wentot
201	K205	RWF-B,125W-46,7× ±±%- TWR198	221	R227	RMP-0,125W-24,9k ±0,29 TWR50
20:	R20a	RWP-0,125W-8,15k <u>-</u> 1%- TWR100	224	R225	RWP-8,125W-36,5k ±0,29 TWR50
203	6207	CN10.1-0,5W-2,2K 478%	223	R229	MLT-D, 25W-1M ±5%-435
264	R208	CT19AH-B,5W-1k #20%	22,	R230	MLT-0,259-5.1k #5%-43
265	R209	RWP-0,125W-14,7k ±0,2%-	225	8231	MET-0,25W-1M ±5%-435
25e	9 210	RWF-0,125W-787 +2%-TWR100	226	R232	CN10,1-0,5W-1M +20%
207	R211	RWF-0_115W-1,54K +1%- TWR100	227	R233	MLT-0,25W-820k +5%-43
258	£212	RWP-D,125W-3,01k ±0,5%- TWR50	222	R235	HET-D.5H-4.3M ±5%-435
20 9	R214	RWP-0,125W-178k +0,2%- TWR50	2 29	R236	MET-0,25W-100k ±5%-43
210	P216	MLT-0,25W-15k -5%-435	230	R237	RWP-0,125W-90,9k +8,2 TWR50
21,	R217	RWF-D,125W-15,4k ±0,2%- TWR50	23	R238	RWP-0,125W-5,11k ±0,25
213	R218	RWP-0,125W-1,2k ±0,2%- TWR50	232	R239	MLT-0,25M-1,6M +5%-43
21:	R219	RWP-0,125W-36,5k <u>+</u> 0,2%- TWR50	233	R240	мът-0,25₩-186k <u>+</u> 5%-43
214	R220	RWP-0,125W-17,4k ±0,2%- TWR5D	23,	R241	RMP-0,125W-47k <u>+</u> 0,5%- TWR50
21,	R221	MLT-0.25W-1,BM <u>+</u> 5%-435	235	R247	MLY-0,5W-310k +5%-435
21e	R222	MLT-0,25W-6,8k ±5%-435	236	R243	MŁT-0,5W-510k <u>+</u> 5%-435
217	F223	MET-0,25W-8,7k ±5%-435	23	R244	RMP-0,25W-182k +C,2%- TWR50
2 <u>L</u> s	8224	MLT-0,25N+25A +5%-435	238	R245	RWP-0,25W-3,65k ±0,2% TWR50
2 19	P225	MET-0,254-10 <u>*</u> 54-435	236	R246	CT19AH-0,5W-100 +20%
7 46	R226	MŁT-8 25₩-1,5x <u>+</u> 5%-435	249	R247	MET-0,5W-120k ±5%-435

2 2-3-3-2-	و و و		,	Т —	
	Damert.	Охинстевне віезисиния	Le	Oznecz Betresi	Oxnacjenie viemskiog.
24,	#248	MLT-0,5W-12DK ±5%-435	26	C204	MK5E-018-02-1µF±5%-100V
24.2	R249	RMP-0,125M-100k +0,5%- TWR50	262	C205	KSF-020-33pF <u>+</u> 10%630V-567
24,	R250	MLT-D,25W-1M +5%-435	265	C286	KSF-020-75pF±10%-630V-567
24.4	R251	MLT-0,25W-1M +5%-435	261	C207	MK5E-018-02-0,22µF±5%-
24.5	R252	MLT-19-20k ±5%-435	261	C208	MKSE-818-02-0,47µF <u>+</u> 5%-
24 4	R253	MET-2W-1,2k ±5%-435	266	C209	MKSE-018-02-0,047µF-±10%
24 7	R254	MET-0,25W-1M ±5%-435	267	E210	MKSE-018-02-0,47µF±5%-
245	R255	MLT-0,25W-1M ±5%-435	260	C211	MKSE-018-02-0,047µF±10%-
24 >	R256	MET-0,25W-1M ±5%-435	260	C212	KCD-N1500-7-d/35pF-160- 656
25 •	R257	MLT-0,25W-47k ±5%-435	270	6213	KSF-020-91pF <u>+</u> 5%-630V- 567
25 2	R258	MLT-0,25W-5,1k <u>+</u> 5%+435	271	C214	KSF-020-1,8aF <u>+</u> 5%-25V- 567
25 1	R\$59	MLT-2W-20k +5%-435	272		
25 \$			273		
25 4			274		
25 ;			27.		
25 .			2 75		
25 T			2 <i>T</i>	WT201	WTA-T-N-250/40mA
25 ,	C291	typ 2-04/U-108pF/25V	278	WT202	WTA-T-N-250/40mA
25,	C202	KFP-28-6-470pF-M-160V- 658	27,		
26 *	C203	KSF-020-33pF-±10%-630V- -567	284		

87.7

Ĺр	Ozuacz zahenu	Ospacione vienda	i] 1,⊅	Umaci achen	Connected to Pleasentics
22:			30:	R311	ML1-0,25W-220 ±5%-435
	5 3	Płytka wyświetlaczy	302	2312	MLT-0,25W-22D -5%-435
7º 3	w30:	CQVP 33	303	R313	MLT-8,25N-330 +5X-435
 2 ĉ ₄	w302	CEVP 31	30 4	F314	MLT-0.25W-22G ±5%-425
283	W303	CGVP 31	30 s	R315	MLT-0,25W-220 +5%-435
28 4	W304	CDVP 31	30 c	R316	MET-0,25%-220 ±5%-435
227			30 ;	F317	MLT-0,25%-220 -5%-435
28+	2301	CDP 441 C	3G 5	P318	MET-0,25%-220 ±5%-435
25,			30,	R319	MLT-0,25W-22G ±5%-435
296			31 0	R320	MET-0,25%-223 ±5%-435
29,	R301	MET-0,25W-330 ±5%-435	31;	F321	MLT-0,25W-330 +5%-435
29 :	R302	ML 7-0,25%-220 ±5%-435	31,	P322	MLT-0,25W-226 +5%-435
29 3	R303	MLT-0,25W-220 ±5%-435	31,	R323	MLT-0,25W-22D +5%-435
294	R35.	MET-0.25W-100 ±5%-435	31,	R324	MLT-0,25W-220 +5%-435
29 5	R 305	MLT-0,25W-33G +5%-435	31 -	R325	MLT-0,25W-22D +5%-435
29 4	!R306	MET-0,15W-22D +5%-435	31 5	R326	MLT-0,25W-220 ±5%-435
29.7	R307	MLT-0,25W-220 ±5%-435	31 -	₩327 1	MLT-DL15W-220 -5%-435
298	830 8	MLI-0,25w-220 _5%-435	3/1	R328	MET-0,25W-220 -5%-435
2°*	£30°	ME 1-0,25W-22C ±5%-435	312	•	elementy dobierane
±0°	# 3.1 L	NET-0,25%-220 ±5%-405	32 0	••	elementy selektjonom w procesie produkcj

8. WYKAZ CZĘŚCI ZAMIENNYCH

Lp.	Nazwa części Wr rysunku lub ożna- czenie		llosc szt,w wyro- bie	Ilość szt.ja- ko za- pasowa do 30 napraw	Uwapi
1	2	3	4	5	6
	Elementy elektroniczne wg wykazu elementów zamiesz- czonego w nipiejszej ins- trukcji			l Zest.	
1.	Zacisk laboratoryjny	E104-12-13-2	1	5	-
2.	Zacisk laboratoryjny	E104-12-13-4	1	5	
3.	Transformator	C-31-275B	1	2	
4,	PLytka dolna	B-31-2757	1	¦ - ,	
5.	Zespół wyłącznika		1	2	
6.	Oslena górna	A-30-3498	ì	-	Í :
7.	Sznur sieciowy	C-30-5478-4	1	3	wyk.kraj
-	Sznur sieciowy – szuko	C-30-5495-4	1	3	wyk DDR `
8.	Płytka górna	8-30-6608	1	_	<u> </u>
9.	Płytka wyświetlaczy	8-30-6607	1	-	j
10.	Przełącznik funkcji	C-30-6615	1	· -	
11.	Przeżącznik zakresów	C-30-6614	1	-	1
12.	Frzetwornik elektroakus- tyczny PCA 1-01	WT-86/LS-404] 1	-	,
13.	Plyta czolowa	C-19-2552	1	2	j '
14.	Plyta tylna	J-19-2546	1	-	
15.	Fizepust gumowy	0-17-497	1 1	2	
16.	Móżka gumowa	C-17-496	2	-	
17.	Dehwyt - wapornik	5-16-762	ı.	-	
18.	Gežona grizazdka	D-14-4G3-3	1	2	czerwona
-	Ostone gniezdka	0-11-403	, ,	2	
19.	Tulejka	D-14-4C4	2	2	

1	2	3	4	. 5	6
20.	Remka	C-14-937-12	12	6	
21.	Gkienko	C-14-958	1	2	
22.	Osłona	Ũ-14 ~1782	1	2	
23.	Ødstępnik	D-14-1783	2	4	
24.	Néžka przednia	C-14-1833	2	-	
25	Wsparnik	C-14-2009	4	10	
26.	Maskownica	C-14-2011	1	2	
27.	Zwieracz	C-12-3482	2	4	
26.	Nakrętka pływająca M3	C-12+3448	4	16	
29.	į1stwa	B-12-4766	2	-	,
30.	Listwa	D-12-4767-4	2	-	
31.	Płyta montażowa	C-11-2417-2	1	-	į
32.	Zacisk ochronny	D-10-2831	1	1	
33.	Nakrętka	D-10-2837	1	1	
34.	Gniazdo	8005 23500 0	2	-	
35.	-	-	-	-	
36.	Osłona dolna	A-30-5254	1	-	
37	Bezpiecznik aparatowy GPA zm 250/63	PN-77/E-06170	2	3	
38	Nit 2 x 5 Al	PN-70/M-82952	2	4	
39.	Nit I x 4 Al	PN-70/M-82954	2	4	
-	Suwak wymienny kompl. współzależny 6 bieg.	70-4114-03	-	6	
-	Suwak wymienny kompl. niezależny 6 bieg	78-4113-03	-	2	
-	Suwak wymienny kompl. współzależny 8 bieg.	70-4114-C4	-	2	
			:		
			1	1	

PŁYTKA WYŚWIETLACZY

UKŁAD ELEMENTÓW REGULACYJNYCH (widok od strony elementów)

