Reconstructing Propositional Proofs in Type Theory

Jonathan Prieto-Cubides Advisor: Andrés Sicard-Ramírez

> Master in Applied Mathematics Universidad EAFIT Medellín, Colombia

Research

Goal

Formalization in type theory of the classical propositional derivations generated by the Metis theorem prover

Research

Goal

Formalization in type theory of the classical propositional derivations generated by the Metis theorem prover

Topics

- ► Automatic reasoning using automatic theorem provers (ATPs) (e.g., Metis, EProver)
- ▶ Interactive proving using Proof-assistants (e.g., Agda, Coq)
- ▶ Formal methods to verify outputs of ATPs in Proof-assistants

Related Work

In type theory:

- ► Kanso2012 in [Kanso2012] reconstructs in Agda propositional proofs generated by EProver and Z3
- foster2011integrating in [foster2011integrating] describe proof-reconstruction in Agda for equational logic of Waldmeister prover
- ▶ Bezem2002 in [Bezem2002] transform a proof produced by the first-order prover Bliksem in a Coq proof-term

In classical logic:

- paulson2007source in [paulson2007source] introduce SledgeHammer, a tool ables to reconstructs proofs of well-known ATPs: EProver, Vampire, among others using SystemOnTPTP server
- ► Hurd1999 in [Hurd1999] integrates the first-order resolution prover Gandalf prover for HOL proof-assistant
- kaliszyk2013 in [kaliszyk2013] reconstruct proofs of different ATPs for HOL Light

Proof Reconstruction: Overview

Metis Theorem Prover

Metis is an automatic theorem prover for first-order logic with equality.

- ▶ Open source implemented
- ▶ Reads problems in TPTP format
- ▶ Outputs detailed proofs in TSTP format
- ▶ For the propositional logic, Metis has only three inference rules:

$$\frac{}{\Gamma \vdash \varphi_1 \vee \cdots \vee \varphi_n} \text{ axiom } \varphi_1, \cdots, \varphi_n \\ \\ \frac{}{\Gamma \vdash \varphi \vee \neg \varphi} \text{ assume } \varphi$$

$$\frac{\Gamma \vdash \varphi_1 \vee \dots \vee l \vee \dots \vee \varphi_n \qquad \Gamma \vdash \psi_1 \vee \dots \vee \neg l \vee \dots \vee \psi_m}{\Gamma \vdash \varphi_1 \vee \dots \vee \varphi_n \vee \psi_1 \vee \dots \vee \psi_m} \text{ resolve } l$$

Inference Rules of Metis

TSTP derivations by Metis exhibit the following inferences:

Metis rule	Purpose
strip	Strip a goal into subgoals
conjunct	Takes a formula from a conjunction
resolve	A general form of the resolution theorem
canonicalize	Normalization of the formula
clausify	Performs clausification
simplify	Simplify definitions and theorems

Metis Refutation Strategy

```
 \begin{array}{l} \textbf{procedure} \ \ \textbf{METIS} \\ \textbf{input:} \ \ \textbf{a} \ \ goal \ \ \text{and} \ \ \textbf{a} \ \ \textbf{set} \ \ \textbf{of} \ \ premises} \ a_i \\ \textbf{output:} \ \ \text{maybe} \ \ \textbf{a} \ \ \text{derivation} \ \ \text{when} \ \{a_i\} \vdash goal, \ \ \text{otherwise} \ \ \text{nothing.} \\ \textbf{Strip} \ \ \ \text{the goal into a list of} \ \ subgoals. \\ \textbf{for} \ \ \ \text{each subgoal} \ \ s_i \ \ \ \textbf{do} \\ \textbf{Try} \ \ \ \ \text{to} \ \ \text{find by a refutation of} \ \ \neg s_i \\ \textbf{end for} \\ \textbf{end procedure} \\ \end{array}
```

Proof Reconstruction

Stripping a Goal

Splitting a Conjunct

Resolution

Canonicalize

Clausification

Simplification

Formalization Challenges

- ▶ Terminating of functions to reconstruct inference rules
- ▶ Intuitionistic logic implementation

Complete Example

The problem¹:

$$(p \Rightarrow q) \land (q \Rightarrow p) \vdash (p \lor q) \Rightarrow (p \land q)$$

In TPTP syntax:

```
\label{eq:fof_a_1} \begin{array}{ll} \text{fof(a_1, axiom, (p $\Rightarrow$ q) $\land$ (q $\Rightarrow$ p)).} \\ \text{fof(goal, conjecture, (p $\lor$ q) $\Rightarrow$ (p $\land$ q)).} \end{array}
```

Its TSTP solution using Metis:

```
fof(a<sub>1</sub>, axiom, (p \Rightarrow q) \land (q \Rightarrow p)).
fof(goal, conjecture, (p \lor q) \Rightarrow (p \land q))).
fof(s<sub>1</sub>, (p \lor q) \Rightarrow p, inf(strip, goal)).
fof(s<sub>2</sub>, ((p \lor q) \land p) \Rightarrow q, inf(strip, goal)).
...
```

¹Problem No. 13 in Disjunction Section in [Prieto-Cubides2017]

```
fof(s_1, (p \vee q) \Rightarrow p, inf(strip, goal)).
fof(s_2, ((p \vee q) \wedge p) \Rightarrow q, inf(strip, goal)).
fof(neg<sub>1</sub>, \neg ((p \lor q) \Rightarrow p), inf(negate, s<sub>1</sub>)).
fof(n00, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n01, \neg q \lor p, inf(conjunct, n00)).
fof(n02, \neg p \land (p \lor q), inf(canonicalize, neg<sub>1</sub>)).
fof(n03, p \vee q, inf(conjunct, n02)).
fof(n04, \neg p, inf(conjunct, n02)).
fof(n05, q, inf(simplify, [n03, n04])).
cnf(r00, \neg q \lor p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, \neg p, inf(canonicalize, n04)).
cnf(r04, \perp, inf(resolve, p, [r02, r03])).
fof(neg<sub>2</sub>, \neg (((p \lor q) \land p) \Rightarrow q), inf(negate, s2)).
fof(n10, \neg q \land p \land (p \lor q), inf(canonicalize, neg<sub>2</sub>)).
fof(n11, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n12, \neg p \lor q, inf(conjunct, n11)).
fof(n13, \perp, inf(simplify,[n10, n12])).
cnf(r10, \perp, inf(canonicalize, n13)).
```

TSTP Refutation of Subgoal No. 1

```
fof(s_1, (p \vee q) \Rightarrow p, inf(strip, goal)).
fof(neg<sub>1</sub>, \neg ((p \lor q) \Rightarrow p), inf(negate, s<sub>1</sub>)).
fof(n00, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n01, \neg q \lor p, inf(conjunct, n00)).
fof(n02, \neg p \land (p \lor q), inf(canonicalize, neg<sub>1</sub>)).
fof(n03, p \vee q, inf(conjunct, n02)).
fof(n04, \neg p, inf(conjunct, n02)).
fof(n05, q, inf(simplify, [n03, n04])).
cnf(r00, \neg q \lor p, inf(canonicalize, n01)).
cnf(r01, q, inf(canonicalize, n05)).
cnf(r02, p, inf(resolve, q, [r01, r00])).
cnf(r03, \neg p, inf(canonicalize, n04)).
cnf(r04, \perp, inf(resolve, p, [r02, r03])).
```

Tree for the Subgoal No. 1: $(p \lor q) \Rightarrow p$

```
fof(a_1, axiom, (p \Rightarrow q) \land (q \Rightarrow p)).
fof(n00, (\neg p \lor q) \land (\neg q \lor p), inf(canonicalize, a_1)).
fof(n01, \neg q \lor p, inf(conjunct, n00)).
                                                       \frac{ \frac{}{\Gamma \vdash (p \Rightarrow q) \land (q \Rightarrow p)} \text{ axiom } a_1}{ \frac{}{\neg s_1 \vdash (p \Rightarrow q) \land (q \Rightarrow p)} \text{ weaken}}
                                                       \frac{\frac{1}{\neg s_1 \vdash (\neg p \lor q) \land (\neg q \lor p)}}{\neg s_1 \vdash \neg q \lor p} \text{ canonicalize} \\ \frac{}{\neg s_1 \vdash \neg q \lor p} \text{ conjunct}
                    (\mathcal{D}_1)
```

```
fof(s_1, (p \lor q) \Rightarrow p, inf(strip, goal)).
fof(neg<sub>1</sub>, \neg ((p \lor q) \Rightarrow p), inf(negate, s<sub>1</sub>)).
. . .
fof(n02, \neg p \land (p \lor q), inf(canonicalize, neg<sub>1</sub>)).
fof(n03, p \vee q, inf(conjunct, n02)).
fof(n04, \neg p, inf(conjunct, n02)).
. . .
                                          (\mathcal{D}_2)
                                        \frac{\frac{\neg s_1 \vdash \neg s_1}{\neg s_1 \vdash \neg p \land (p \lor q)}}{\frac{\neg s_1 \vdash \neg p \land (p \lor q)}{\neg s_1 \vdash \neg p}} \underset{}{\operatorname{canonicalize}}
                   (\mathcal{D}_3)
```

$$(\mathcal{D}_4) \qquad \qquad \frac{\frac{\mathcal{D}_2}{\neg s_1 \vdash p \lor q} - \frac{\mathcal{D}_3}{\neg s_1 \vdash \neg p}}{\neg s_1 \vdash q} \text{ simplify}$$

$$(\mathcal{R}_1) \ \frac{ \frac{\mathcal{D}_1}{\neg s_1 \vdash \neg q \lor p} \quad \frac{\mathcal{D}_4}{\neg s_1 \vdash q}}{\frac{\neg s_1 \vdash p}{\neg s_1 \vdash \bot}} \text{ resolve } q \quad \frac{\mathcal{D}_3}{\neg s_1 \vdash \neg p} \text{ resolve } p \\ \frac{\frac{\neg s_1 \vdash \bot}{\Gamma \vdash s_1} \text{ RAA}}{}$$

Tree for the Subgoal No. 2: $((p \lor q) \land p) \Rightarrow q$

```
fof(s<sub>2</sub>, ((p \vee q) \wedge p) \Rightarrow q, inf(strip, goal)).
fof(neg<sub>2</sub>, \neg (((p \vee q) \wedge p) \Rightarrow q), inf(negate, s2)).
fof(n10, \neg q \wedge p \wedge (p \vee q), inf(canonicalize, neg<sub>2</sub>)).
fof(n11, (\neg p \vee q) \wedge (\neg q \vee p), inf(canonicalize, a<sub>1</sub>)).
fof(n12, \neg p \vee q, inf(conjunct, n11)).
fof(n13, \bot, inf(simplify,[n10, n12])).
cnf(r10, \bot, inf(canonicalize, n13)).
```

Summarizing the Example

The problem was:

$$(p \Rightarrow q) \land (q \Rightarrow p) \vdash (p \lor q) \Rightarrow (p \land q)$$

Its TSTP solution using Metis was:

fof(a₁, axiom, (p
$$\Rightarrow$$
 q) \land (q \Rightarrow p)).
fof(goal, conjecture, (p \lor q) \Rightarrow (p \land q))).
fof(s₁, (p \lor q) \Rightarrow p, inf(strip, goal)).
fof(s₂, ((p \lor q) \land p) \Rightarrow q, inf(strip, goal)).
...

The proof is:

$$\begin{tabular}{c} $\frac{\mathcal{R}_1}{\Gamma \vdash s_1} & \frac{\mathcal{R}_2}{\Gamma \vdash s_2} \\ \hline \frac{\Gamma \vdash (s_1 \land s_2) \Rightarrow \mathsf{goal}}{\Gamma \vdash \mathsf{goal}} & \xrightarrow{} \land \mathsf{-intro} \\ \hline \end{tabular}$$

Results

Academic results: paper (work in progress)
Software related results:

- ▶ Athena²: a translator tool for Metis proofs to Agda in Haskell
- ► Agda libraries:
 - ▶ Agda-Metis³: Metis prover reasoning for propositional logic
 - ► Agda-Prop⁴: intuitionistic propositional logic with PEM
- ▶ Bugs found in Metis: see issues No. 2, No. 4, and commit 8a3f11e in Metis official repository⁵

In parallel, we develop:

- ▶ Online-ATPs⁶: a client for the TPTP world in Haskell This tool allowed us to use Metis without installing it
- Prop-Pack⁷: Compendium of TPTP problems in classical propositional logic used to test Athena

²https://github.com/jonaprieto/athena.

 $^{^3 {\}tt https://github.com/jonaprieto/agda-metis}.$

⁴https://github.com/jonaprieto/agda-prop.

⁵https://github.com/gilith/metis.

⁶https://github.com/jonaprieto/online-atps.

⁷https://github.com/jonaprieto/prop-pack.

Future Work

Further research directions include, but are not limited to:

- ▶ improve the performance of the canonicalize rule
- extend the proof-reconstruction presented in this paper to
 - support the proposition logic with equality of Metis
 - support other ATPs for propositional logic like EProver or Z3.
 See Kanso's Ph.D. thesis [Kanso2012]
 - support Metis first-order proofs

References I

TPTP Syntax

Thousands of Problems for Theorem Provers

- ▶ Is a language⁸ to encode problems
- ▶ Is the input of the ATPs
- ▶ Annotated formulas with the form

language(name, role, formula).

```
language FOF or CNF
```

name to identify the formula within the problem role axiom, definition, hypothesis, conjecture

formula in TPTP format

⁸http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html.

TSTP Syntax

A TSTP derivation9

- Is a Directed Acyclic Graph where leaf is a formula from the TPTP input node is a formula inferred from parent formula root the final derived formula
- Is a list of annotated formulas with the form

```
language(name, role, formula, source [,useful info]).
```

where source typically is an inference record

inference(rule, useful info, parents).

 $^{^{9} \}mathtt{http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html.}$

TSTP Example

 $lackbox{ Proof found by Metis for the problem } p \vdash p$

```
$ metis --show proof problem.tptp
fof(a, axiom, p).
fof(goal, conjecture, p).
fof(subgoal_0, plain, p),
  inference(strip, [], [goal])).
fof(negate_0_0, plain, ~ p,
  inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, ~ p,
  inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, p,
  inference(canonicalize, [], [a])).
fof(normalize_0_2, plain, $false,
  inference(simplify, [],
    [normalize_0_0, normalize_0_1])).
cnf(refute 0 0, plain, $false,
    inference(canonicalize, [], [normalize_0_2])).
```

DAG Example

By refutation, we proved $p \vdash p$:

$$\frac{\frac{\neg p}{\neg p} \text{ assume}}{\text{strip}} \frac{\frac{p}{p} \text{ axiom}}{\text{sanonicalize}}$$

$$\frac{\perp}{\parallel} \text{ canonicalize}$$

