

ტეხილი ხაზი

აზერბაიჯანი ცნობილია მისი ხალიჩებით. თქვენ დაგევალათ ახალი ხალიჩის, სახელად **ტეხილი ხაზი**, დიზაინის შექმნა.

ტეხილი ხაზი წარმოადგენს ორგანზომილებიან სიბრტყეზე განთავსებულ t რაოდენობის მონაკვეთების მიმდევრობას, რომელიც განისაზღვრება t+1 რაოდენობის წერტილების მიმდევრობით p_0,\ldots,p_t . ყოველი i-თვის ($0\leq i\leq t-1$) არსებობს მონაკვეთი, რომელიც აერთებს წერტილებს p_i და p_{i+1} .

დიზაინის შესაქმნელად თქვენ უკვე გაქვთ მოცემული სიბტყეზე მონიშნული n წერტილი. i წერტილის ($1 \le i \le n$) კოორდინატებია (x[i],y[i]). არც ერთ ორ წერტილს არ გააჩნია ერთი და იგივე ${\bf x}$ ან ერთი და იგივე ${\bf y}$ კოორდინატი .

თქვენ უნდა მოძებნოთ წერტილების მიმდევრობა $(sx[0],sy[0]),(sx[1],sy[1]),\ldots,(sx[k],sy[k])$, რომელიც განსაზღვრავს ტეზილ ხაზს, რომელიც

- ullet დაიწყება წერტილით (0,0) (ანუ sx[0]=0 და sy[0]=0),
- მოიცავს ყველა წერტილს (არა აუცილებლად ტეხილის შემადგენელი მონაკვეთების ბოლო წერტილებს)
- შედგება მხოლოდ ჰორიზონტალური ან ვერტიკალური სეგმენტებისგან (ტეხილი ხაზის ორ მიმდევრობით წერტილს გააჩნია ერთი და იგივე x ან y კოორდინატი).

ტეხილმა ხაზმა შეიძლება გადაკვეთოს ან გადაფაროს საკუთარი თავი, ანუ სიბრტყეზე მოცემული წერტილი შესაძლებელია ეკუთვნოდეს ტეხილის რამდენიმე მონაკვეთს.

ეს დავალება წარმოადგენს მხოლოდ გამოტანის ამოცანას ნაწილობრივი შეფასებით.

თქვენ მოცემული გაქვთ 10 შემავალი ფაილი, რომლებიც განსაზღვრავენ სიბრტყეზე მონიშნული წერტილების განლაგებას. ყოველი შემავალი ფაილისთვის თქვენ უნდა ატვირთოთ გამომავალი ფაილი, რომელიც აღწერს ამოცანით განსაზღვრულ ტეხილს. ყოველი ასეთი გამომავალი ფაილისთვის (რომელიც განსაზღვრავს დასაშვებ ტეხილს) თქვენი შეფასების ქულა დამოკიდებულია ტეხილ ხაზში შემავალ მონაკვეთების რაოდენობაზე (იხილეთ შეფასება).

ამოცანის ამოხსნა არ გულისხმობს პროგრამის კოდის ატვირთვას.

შეტანის ფორმატი

ყოველი შეტანის ფაილი მოცემულია შემდეგი ფორმატით:

- სტრიქონი 1: n
- ullet სტრიქონი 1+i (სადაც $1\leq i\leq n$): x[i] y[i]

გამოტანის ფორმატი

ყოველი გამოტანის ფაილი უნდა იყოს შემდეგი ფორმატით:

- ullet სტრიქონი $1\colon k$
- ullet სტრიქონი 1+i (სადაც $1\leq i\leq k$): sx[i] sy[i]

გაითვალისწინეთ, რომ მეორე სტრიქონი უნდა მოიცავდეს sx[1] და sy[1] (ანუ გამოტანა **არ უნდა მოიცავდეს** მონაცემებს sx[0] და sy[0]). ყოველი sx[i] და sy[i] უნდა იყოს მთელი რიცხვი.

მაგალითი

შეტანის მაგალითი:

```
4
2 1
3 3
4 4
5 2
```

შესაძლო დასაშვები გამოტანა:

```
6
2 0
2 3
5 3
5 2
4 2
4 4
```


ეს მაგალითი არ წარმოადგენს რეალურ შეტანის ფაილს და არ შეფასდება სისტემის მიერ.

შეზღუდვები

- 1 < n < 100000
- $1 \le x[i], y[i] \le 10^9$
- x[i] and y[i] მნიშვნელობები მთელია.
- არც ერთ ორ წერტილს არ გააჩნია ერთი და იგივე x ან ერთი და იგივე y კოორდინატი, ანუ $x[i] \neq x[j]$ **და** $y[i] \neq y[j]$ სადაც $i \neq j$.
- $-2 \cdot 10^9 \le sx[i], sy[i] \le 2 \cdot 10^9$
- ყოველი ატვირთული ფაილის ზომა (გამოტანის ან დაზიპული) არ უნდა აღემატებოდეს 15 MB.

შეფასება

ყოველ ტესტში შეგიძლიათ მიიღოთ მაქსიმუმ 10 ქულა. ტესტზე თქვენი გამოტანა მიიღებს 0 ქულას, თუ ის არ განსაზღვრავს ამოცანის პირობის თანახმად ტეხილ ხაზს. წინააღმდეგ შემთხვევაში თქვენი შედეგი განისაზღვრება კლებადი ქულების მიმდევრობით c_1,\ldots,c_{10} , ტესტების ნომრების თანახმად.

თუ თქვენი ამოზსნა წარმოადგენს დასაშვებ ტეზილ ზაზს, რომელიც მოიცავს k მონაკვეთს, მაშინ თქვენ მიიღებთ

- ullet i ქულას, თუ $k=c_i$ (სადაც $1\leq i\leq 10$),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ ქულას, თუ $c_{i+1} < k < c_i$ (სადაც $1 \leq i \leq 9$),
- ullet 0 ქულას, თუ $k>c_1$,
- ullet 10 ქულას, თუ $k < c_{10}.$

ყოველი ტესტისთვის ქვევით მოცემულია მიმდევრობა c_1,\dots,c_{10} .

ტესტი	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7607	75 336	108 430	138292	150475
c_3	40	674	5213	50671	72824	92801	100 949
c_4	37	651	5125	50 359	72446	92371	100500
c_5	35	640	5 081	50 203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100050
c_7	28	616	5020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100015
c 9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5003	50 003	72021	91 894	100 003

ვიზუალიზაცია

ამოცანისთვის მიბმულ ფაილში მოცემულია სკრიპტი, რომლის გაშვებით შეგიძლიათ შემავალი და გამომავალი ფაილების ვიზუალიზაცია.

შემავალი ფაილისთვის გამოიყენეთ ბრძანება:

```
python vis.py [input file]
```

ასევე შემავალი ფაილის შესაბამისად შეგიძლიათ მოახდინოთ თქვენი ამოხსნის ვიზუალიზაცია. ტექნიკური შეზღუდვების გათვალისწინებით შესაძლებელია მოახდინოთ გამომავალი ფაილის მზოლოდ პირველი 1000 სეგმენტის ვიზუალიზაცია.

```
python vis.py [input file] --solution [output file]
```

მაგალითი:

python vis.py examples/00.in --solution examples/00.out