GIF-2000

ÉLECTRONIQUE POUR INGÉNIEURS INFORMATICIENS

EXAMEN FINAL H2019 SOLUTION

Problème no. 1 (25 points)

a)

<u>Déterminer</u> et <u>tracer</u> en fonction du temps la tension de sortie v_o(t). (12 points)

On écrit l'équation de courants au noeud v₁:

$$i_A + i_B = i_C$$

$$\frac{v_s}{10k\Omega} + \frac{-5V}{20k\Omega} \,=\, \frac{-v_o}{10k\Omega}$$

On déduit:

$$v_o = -v_s + 2.5V$$

b)

Déterminer et **tracer** en fonction du temps la tension de sortie v₀(t). (13 points)

La tension $v_o(t)$ est donnée par la relation suivante: $v_o(t) = \frac{-1}{RC} \int_0^t v_s dt + V_C(0)$

On a: $RC \ = \ 10k\Omega \times 0.1 \mu F \ = \ 0.001$

Alors: $v_o(t) = (-1000) \int_0^t v_s dt + 6$ pour 0 < t < 0.3 ms

 $v_o(t) = -6$ pour 0.3 < t < 0.7 ms

 $v_o(t) = 1000 \int_0^t v_s dt - 34$ pour 0.7 ms < t < 1.0 ms

Problème no. 2 (25 points)

a)

- <u>Déterminer</u> la fonction de transfert $H(s) = \frac{V_o(s)}{V_i(s)}$ <u>du filtre</u>. (6 points)

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{-Z_2}{Z_1} = \frac{-\left(\frac{R_2}{R_2C_2s+1}\right)}{\left(\frac{R_1C_1s+1}{C_1s}\right)} = \frac{-R_2C_1s}{(R_1C_1s+1)(R_2C_2s+1)}$$

$$H(s) = \frac{-0.001s}{(5 \times 10^{-4} s + 1)(5 \times 10^{-5} s + 1)} = \frac{-(s/1000)}{[(s/2000) + 1][(s/20000) + 1]}$$

- Tracer la réponse en fréquence (amplitude et phase) du filtre utilisant les diagrammes de Bode. (7 points)

b)

- <u>Déterminer</u> et <u>tracer</u> la caractéristique de transfert de l'amplificateur (la tension de sortie v_o en fonction de la tension d'entrée v_s). (6 points)
- Lorsque la tension de sortie v_o est dans la plage (-20 V, +0.7 V), le gain de l'amplificateur est égal à -1.
- Lorsque la tension de sortie $v_{\rm o}$ est supérieure à +0.7 V, le gain de l'amplificateur est égal à -0.5.

- <u>Déterminer</u> et <u>tracer</u> en fonction du temps la tension de sortie v_o(t). (6 points)

Problème no. 3 (20 points)

a)

Déterminer la puissance dissipée dans le chip en régime statique (5 points)

La puissance dissipée (en régime dynamique) dans le chip pour une fréquence de fonctionnement de 700 MHz est égale à:

$$P_{dynamique(700MHz)} = P_{T(1.2GHz)} - P_{T(500MHz)} = 85W - 54W = 31W$$

La puissance dissipée en régime dynamique de 1.2 GHz est égale à:

$$P_{dynamique(1.2GHz)} \,=\, P_{dynamique(700MHz)} \times \frac{1200}{700} \,=\, 31\,W \times \frac{1200}{700} \,=\, 53.14\,W \,.$$

La puissance dissipée dans le chip en régime statique est égale à:

$$P_{\text{statique}} = P_{\text{T}(1.2\text{GHz})} - P_{\text{dynamique}(1.2\text{GHz})} = 85\text{W} - 53.14\text{W} = 31.86\text{W}$$

On suppose que 75% des portes logiques sont actifs. **Déterminer** la valeur moyenne des condensateurs de charge C_L dans ce chip (5 points)

Le nombre des portes logiques actifs est:

$$N_{portes} = 0.75 \times 10^6 = 750000$$

La puissance moyenne dissipée dans une porte en régime dynamique (1.2 GHz) est égale à:

$$P_{\rm I} = \frac{53.14 \, \rm W}{750000} = 70.85 \, \mu \rm W \, .$$

Cette puissance représente l'énergie d'une charge et d'une décharge du condensateur C_L durant une période de:

$$T = \frac{1}{1.2GHz} = 0.8333ns$$

La puissance dissipée durant une charge du condensateur C_{L} est égale à:

$$P_{CL} = \frac{70.85 \mu W}{2} = 35.425 \mu W = \frac{1}{2} C_L V_{CC}^2 \times f$$

La valeur du condensateur C_L est égale à:

$$C_L = \frac{2 \times 35.425 \mu W}{V_{CC}^2 \times f} = \frac{2 \times 35.425 \mu W}{\left(2.5 V\right)^2 \times \left(1.2 \times 10^9\right)} = 9.447 \times 10^{-15} F = 9.447 fF$$

b) On désire réaliser la fonction logique suivante en utilisant des circuits CMOS:

$$Y = \overline{A + B(C + D)}$$

Tracer le circuit logique CMOS résultant. (10 points)

Problème no. 4 (30 points)

a)

- <u>Déterminer</u> l'erreur de quantification et le temps de conversion de ce convertisseur. (5 points)

Le convertisseur A/N à 8 bits divise l'échelle de tension 10 V en $2^8 = 256 \text{ niveaux}$.

Chaque niveau de tension est égal à:
$$\Delta V = \frac{5V}{256} = 19.5 \text{ mV}.$$

L'erreur de quantification est donc égale à 19.5 mV.

Le temps de conversion d'un convertisseur A/N à approximation successive à 8 bits est constant et égal à:

$$8 \times t_{CLK} = 8 \times 0.1 \mu s = 0.8 \mu s$$

- <u>Expliciter</u> les étapes du processus d'approximation successive et <u>donner</u> le résultat numérique de la conversion pour une tension analogique de 3.845 V. (5 points)

La conversion A/N à approximation successive à 8 bits comporte 8 étapes de comparaison comme illustré dans le tableau suivant pour une tension analogique $V_a = 3.845 \text{ V}$.

Étape	Test	Résultat	Valeur numérique
1	$V_a \ge \frac{5}{2}$	Oui	b7 = 1
2	$V_a \ge \frac{5}{2} + \frac{5}{4}$	Oui	b6 = 1
3	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{8}$	Non	b5 = 0
4	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{16}$	Non	b4 = 0
5	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{32}$	Non	b3 = 0
6	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{64}$	Oui	b2 = 1
7	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{64} + \frac{5}{128}$	Non	b1 = 0
8	$V_{a} \ge \frac{5}{2} + \frac{5}{4} + \frac{5}{64} + \frac{5}{256}$	Non	b0 = 0

Alors, le résultat de la conversion est 11000100 (ou 0xC4 en hexadécimal)

b)

- Déterminer la valeur numérique des variables va et vb dans l'Arduino (3 points)

Les tensions $V_{\rm A}$ et $V_{\rm B}$ sont calculées par la loi du diviseur de tension:

$$V_A = \frac{4.7k\Omega + 1.5k\Omega}{4.7k\Omega + 1.5k\Omega + 1k\Omega} \times 5V = 4.3056 V$$

$$V_{B} = \frac{1.5k\Omega}{4.7k\Omega + 1.5k\Omega + 1k\Omega} \times 5V = 1.0417 V$$

La valeur numérique de la variable va dans l'Arduino est le résultat de la conversion A/N à 10 bits:

$$va = INT \left(\frac{4.3056V}{5V} \times 1023 \right) = 880$$

La valeur numérique de la variable vb dans l'Arduino est le résultat de la conversion A/N à 10 bits:

$$vb = INT \left(\frac{1.0417V}{5V} \times 1023 \right) = 213$$

- <u>Déterminer</u> le rapport cyclique de la tension V₅. (3 points)

La valeur numérique de (va – vb)/4 est envoyée au pin D5 qui est une sortie PWM:

$$\frac{(va - vb)}{4} = INT(\frac{880 - 213}{4}) = 166$$

Le rapport cyclique de la tension V_5 est égal à: $\alpha_5 = \frac{166}{255} = 0.651$

- <u>Tracer</u> en fonction du temps la tension $V_{\underline{5}}$ et la tension $V_{\underline{5}\underline{F}}$ (3 points)

- <u>Calculer</u> la valeur moyenne et l'ondulation de la tensions V_{5F}. (3 points)

La période du signal V_5 est égale à: $T = \frac{1}{976.56 \text{Hz}} = 1024 \mu \text{s}$

Le temps t_{on} est égal à: $t_{on} = \alpha_5 \times T = 0.651 \times 1024 \mu s = 667 \mu s$

La valeur moyenne de la tension V_{5F} est égale à:

$$V_{5F}(moy) = \alpha_5 \times 5V = 0.651 \times 5V = 3.255 V$$

Pendant t_{on} , le condensateur est chargé avec un courant égal à: $I_c = \frac{5V - 3.255V}{24k\Omega} = 72.71 \mu A$

L'ondulation de la tension V_{5F} est égale à: $\Delta V = \frac{I_c \times t_{on}}{C} = \frac{72.71 \mu A \times 667 \mu s}{0.27 \mu F} = 0.1796 V$

c)

- $\underline{\text{Tracer}}$ en fonction du temps le courant $\underline{\text{I}}_{\text{D1}}$ dans $\underline{\text{LED1}}$ ($\underline{\textit{Note}}$: bien indiquer les valeurs particulières). (2 points)

- Calculer la valeur moyenne du courant I_{D1}. (2 points)

La valeur moyenne du courant I_{D1} est égale à:

$$I_{D1}(moy) = \frac{t_{off}}{T} \times 36mA = (1 - \alpha_5) \times 36mA = 0.349 \times 36mA = 12.56 mA$$

- $\underline{\text{Tracer}}$ en fonction du temps le courant $\underline{\text{I}_{\text{D2}}}$ dans LED2 (Note: bien indiquer les valeurs particulières). (2 points)

- <u>Calculer</u> la valeur moyenne du courant I_{D2}. (2 points)

La valeur moyenne du courant I_{D2} est égale à:

$$I_{D2}(moy) = \frac{t_{on}}{T} \times 21.33 \text{ mA} = \alpha_5 \times 21.33 \text{ mA} = 0.651 \times 21.33 \text{ mA} = 13.89 \text{ mA}$$