PSET3

Student: Ryan Baldwin, rbaldwi2@swarthmore.edu

Professor: Dr. Hsu **Collaborators:** Ara

Peer Reviewers: Ara, Adil Due Date: February 14, 2025

Artin Chapter 2: 6.2

 \Diamond Describe all homomorphisms $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$. Determine which are injective, which are surjective, and which are isomorphisms.

Proof. Let $\varphi : \mathbb{Z}^+ \to \mathbb{Z}^+$ be a homomorphism. Since \mathbb{Z}^+ is generated by 1, the homomorphism φ is completely determined by $\varphi(1)$. Let $\varphi(1) = K$ for some $K \in \mathbb{Z}^+$. Then for any $n \in \mathbb{Z}^+$, we have

$$\varphi(n) = \varphi(1 + 1 + \dots + 1) = \varphi(1) + \varphi(1) + \dots + \varphi(1) = nK.$$

Similarly, if we were to take the negation of n, it is true then that

$$\varphi(-n) = \varphi(-1 - 1 - \dots - 1) = -\varphi(1) - \varphi(1) - \dots - \varphi(1) = -nK.$$

Thus, every homomorphism φ must be of the form $\varphi(n) = \pm nK$ for some $K \in \mathbb{Z}^+$.

Given that the general structure of the homomorphism φ is $\pm nK$, we can further characterize φ based on the value of K.

Case I: K = 0.

If K=0, then $\varphi(n)=n\cdot 0=0$ for all $n\in\mathbb{Z}^+$. This is a trivial homomorphism.

Case II: K > 0.

If K > 0, then $\varphi(n) = nK$. Which leads us to investigate the value of $\varphi(a) = \varphi(b)$. Since $\varphi(a) = \varphi(b)$ is equivalent to aK = bK, for K > 0 we can divide by K to get a = b. This argument holds for K < 0 as the characterization of the homomorphism is not dependent on the sign. Thus, φ is indeed injective.

For φ to be surjective implies that for every $m \in \mathbb{Z}^+$, there must exist an $n \in \mathbb{Z}^+$ such that $\varphi(n) = \pm nK = m$. The only nonzero integer K that would satisfy $\pm nK = m$ is K = 1 which would further imply that $\pm n = m$, making φ surjective. However, for all K > 1 there is no nonzero n that would guarantee in $\pm nK = m$. Thus, φ is surjective if and only if K = 1.

Therefore, due to the restrictions of K, our homomorphism φ can only be isomorphic if and only if it is both injective and surjective. This means that φ is an isomorphism if and only if K = 1 (when φ is $\varphi(n) = \pm n$).

Therefore, the homomorphisms of $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ are of the form $\varphi(n) = \pm nK$ for some $K \in \mathbb{Z}^+$. φ is the *trivial homomorphism* when K = 0. φ is *injective* if K > 0. φ is *surjective* if and only if K = 1. And finally, φ is an *isomorphism* if and only if K = 1.

Artin Chapter 2: 6.9

 \Diamond Prove that a group G and it's opposite group G° are isomorphic.

Proof. Construct a bijective homomorphism $\varphi:(G,*)\to (G^\circ,\circ)$ such that $\varphi(z)=z^{-1}$ for all $z\in G$, and the operation of G° is defined as $x\circ y=y*x$ for all $x,y\in G^\circ$.

Consider the elements $a, b \in G$ which must also be in G° . We prove that the map between the two groups is indeed a homomorphism under φ .

$$\varphi(a*b) = (a*b)^{-1} = b^{-1}*a^{-1} =$$

$$= a^{-1} \circ b^{-1} = \varphi(a) \circ \varphi(b)$$

$$\varphi(a*b) = \varphi(a) \circ \varphi(b).$$

With both sides being equal, φ is indeed a homomorphism.

Furthermore, the map $\varphi(a) = a^{-1}$ must be bijective as every element in G has a unique inverse, and the inverse function is itself its own inverse.

Therefore, φ is indeed homomorphic and bijective, proving that $G \cong G^{\circ}$.

Artin Chapter 2: M.2(a)

♦ Prove that every group of even order contains an element of order 2.

Proof. Assume we have a group G such that it has an even number of elements.

Consider the set $G - \{e\}$, which has an odd number of unique elements.

We partition this set as follows. Have each subset contain either an element that is its own inverse or a pair of two distinct elements with its corresponding inverse.

Since there are an odd number of elements in $G - \{e\}$, if we remove all pairs of elements with a corresponding inverse that is distinct we will have a remainder of one element. That is, removing an even number of elements from an odd number of elements leaves a leftover element we shall denote as a. Let a be the element that is its own inverse other than the identity such that

$$G = \{e\} \cup \{a\} \cup \{b, b^{-1}, c, c^{-1}, d, d^{-1}, \ldots\}.$$

Further considering the element a that is its own inverse, we see that

$$a = a^{-1}$$
$$(a)a = (a)a^{-1}$$
$$a^{2} = e.$$

Thus, every group of even order contains an element of order 2.

Artin Chapter 2: Additional Problem 1

♦ Show that a group with no proper nontrivial subgroups is cyclic.

Proof. To prove that the above statement holds, we shall divide this investigation into two cases where our group G is of different orders.

Case I:
$$|G| = 1$$
.

Consider the case where the order of G is 1. The only element of G must be the identity element. The identity element is indeed a generator that can generate the whole group comprised of the identity element.

Case II:
$$|G| \geq 2$$
.

Furthermore, consider the case where the order of G is greater than or equal to 1. There must then exists a nontrivial $a \in G$ that can serve as a generator for multiple elements including the identity element in G. This element $a \in G$ must generate the entire group G given that the group cannot have a nonproper nontrivial subgroup. Thus, $G = \langle a \rangle$ is indeed cyclic.