东南大学考试卷(A卷)

课程名称 概率论与数理统计 考试学期 21-22-3 得分

适用专业		全校		考试形式		闭卷	考试时间长度		120 分钟
	题号		1 1	11.1	四	五.	六	七	八
	得分								
	批阅人								

 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ 表示标准正态分布的分布函数,

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.064) = 0.025; P(T_{24} \ge 1.711) = 0.05;$
 $P(T_{25} \ge 2.060) = 0.025; P(T_{25} \ge 1.708) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$ $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 设 $A \cap B$ 为两随机事件,且 $A \subset B$, P(B) > 0. 则下列说法正确的是 ()
 - A) P(A|B) > P(A);

B) $P(A|B) \leq P(A)$;

C) $P(A|B) \ge P(A)$;

- D) $P(A|B) < P(A)_{\circ}$
- 2) 随机变量 X_1, X_2, X_3 相互独立,且都服从正态分布 $N(0, \sigma^2)$ 。则下列说法正确的是

()

()

A)
$$\frac{X_2^2 + X_3^2}{X_1^2 + X_2^2} \sim F(2,2)$$
;

B)
$$\frac{\sqrt{2}X_1}{\sqrt{X_2^2+X_3^2}} \sim t(2);$$

C)
$$X_1^2 + X_2^2 \sim \chi^2(2)$$
;

D)
$$\frac{X_1}{\sigma^2} \sim N(0, 1)$$

3) 设F(x)和G(x)是两个分布函数,其相应的概率密度函数f(x) 和 g(x)是连续函数,

则必为概率密度的是

A) f(x)g(x);

B) 2f(x)G(x);

C) 2g(x)F(x);

- D) f(x)G(x) + g(x)F(x).
- 4) 设总体 X 的均值为 θ , X_1 , X_2 , ..., X_n 是来自该总体的简单随机样本, \bar{X} 为样本均值。

现需要检验 $H_0: \theta = \theta_0$, $H_1: \theta < \theta_0$ 。 若检验水平 $\alpha = 0.1$ 和 $\alpha = 0.05$ 时拒绝域分别为

 $S_1 = \{\bar{X} < a\}$ 和 $S_2 = \{\bar{X} < b\}$ 。则以下结论正确的是

()

A) $a \leq b$;

B) $a \ge b$;

C) a = b;

D) 不能确定 a 和 b 的大小关系。

		体 X 服从指数分布 e(2), X ₁ , 口样本方差。下列结论中不正		来自该总体的样本,	$ar{X}$, S^2 分别表示样本
	A) <i>E</i>	$\overline{X} = \frac{1}{2};$		B) $cov(\bar{X}, S^2)=0;$	
 	C) <i>E</i>	$(X_1 X_2) = DX_1;$		$D) ES^2 = \frac{1}{4} .$	
; ; ;	二、填充				
 	1)	设事件A 和B相互独立,	事件 A和	C 互不相容, 且P(P(A) = P(B) = P(C) =
		$\frac{1}{4}, P(BC) = \frac{1}{8}, \square P(A \cup B \cup A)$	C) =		
	2)	设某检测设备的测量误差服	以均匀分布	<i>U</i> [-1,1]。现用该设行	备测量了 4 件产品。
		则四次检测中恰好有一次检	测误差超过	0.5 的概率是	°
	3)	设随机变量X服从泊松分布	P(2),则 EX	$X(X+4) = \underline{\hspace{1cm}}$	o
裁	4)	已知随机变量 X 和 Y 相互犯	虫立,且 <i>X~I</i>	$V(1,2), Y \sim N(3,4),$	则
		$P(2X - Y > 2\sqrt{12} - 1) =$	•		
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5)	随机变量 X 和 Y 的联合分	布律为: P(X	Y = -1, Y = 2) = 0.4	P(X = 1, Y = 2) =
型 !		0.2; P(X = -1, Y = 3) = 0.	3; P(X=1, Y)	Y=3)=0.1。 则 $E=0$	$\frac{X}{Y} = \underline{\qquad}$
· :	6)	若随机变量 X 和 Y 的相关系	数为0.2,且	DX = 2, $DY = 4$,	则
		$cov(X+Y,Y-2X) = \underline{\hspace{1cm}}$	o		
	7)	设随机变量序列 $\{X_n, n=1\}$,2,}独立同	分布于二项分布b(1	, 0.3)。
· :		则 $\frac{1}{n}(X_1^5 + X_2^5 + \dots + X_n^5)$	<i>p</i> ∘		
	8)	设随机变量 X 的分布函数为	$F(x) = \begin{cases} 0 \\ x^3 \\ 1 \end{cases}$	$ \begin{array}{c} x < 0 \\ 0 \le x < 1 \\ x \ge 1 \end{array} $	
沙 中		则 $P(0.5 < X < 1.5) =$	o		
州	9)	随机变量 X 的分布律为P(X	(=-1) = 0.3	$P(X=1) = 0.4, \ I$	P(X = -2) = 0.3。
		其分布函数为	o		
	10)	随机变量 X 的概率密度为f	$f(x) = \begin{cases} \sin(x) \\ 0 \end{cases}$	$0 < x < \frac{\pi}{2}$,则 $Y = -$ 其他	-2X + 1的密度
		函数为。			
1	11)	设 X_1, X_2 ,独立同分布,都服	从 <i>N</i> (0,4),贝	$\iint \frac{X_1}{ X_2 } \sim \underline{\hspace{1cm}} \circ$	
	12)	设某总体服从 $N(\mu, 25)$,有为 150,基于该样本的 μ 的			随机样本,样本均值 。

第 2 页 共 5 页-

卷无

效

銰

짺

- 13) 设总体 X 的概率分布律为 $P(X = 1) = \theta$, $P(X = 2) = 1 2\theta$, $P(X = 3) = \theta$, 其中 θ 是未知参数。若 1, 3, 2, 1, 2, 3 是来自该总体的简单随机样本的观测值,则 θ 的矩估计值为
- 三、(15) 设随机变量(X,Y) 的联合概率密度为

$$f(x,y) = \begin{cases} a & -1 < y < -x^2 \\ 0 &$$
其他

求(1)常数a;(2) X 的边缘密度函数;(3)条件概率P(-0.75 < Y < -0.15 | X = 0.5)。

四、(10') 设一盒子中有两个白球,三个红球。现在再往盒子中加入两个球(其中含白球数各种情况等可能),然后从盒子中任意取出一球。(1) 求取出的球是白球的概率;(2) 若已知取出的球为白球,求加入盒子中的两个球都是白球的概率。

此

姓名

自

$$\chi_1 + \chi_2 + \cdots + \chi_{100} \sim N(100 \times 0.2, 100 \times 0.2) = N(20,20)$$

$$P\left(\chi_{1}+\cdots+\chi_{100}\leq25\right)=P\left(\frac{\chi_{1}+\cdots+\chi_{100}-20}{\sqrt{20}}\leq\frac{25-20}{\sqrt{20}}\right)$$

$$= \overline{\Phi}(\frac{s}{s})$$

此

答

卷无

效

| | |张 七、(10') 设总体 $X\sim N(\mu,2),Y\sim N(2\mu,4),X,Y$ 相互独立。现有来自这两个总体容量分别为m 和 n 的简单随机样本 $X_1,...,X_m$ 以及 $Y_1,...,Y_n$ 。(1)求参数 μ 的最大似然估计量 $\hat{\mu}$ 。(2) $\hat{\mu}$ 是否是 μ 的无偏估计量,说明理由。

$$L(\mu) = \int_{X_{1}}^{1} (x_{1}, \mu) \int_{X_{2}}^{1} (x_{2}, \mu) - \int_{X_{m}}^{1} (x_{m}, \mu) \int_{Y_{1}}^{1} (y_{1}, \mu) - \int_{Y_{n}}^{1} (y_{n}, \mu)$$

$$= \frac{1}{(2 \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (x_{i} - \mu)^{2}}{4}} \frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{(2 \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{8}}$$

$$= \frac{1}{(2 \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (x_{i} - \mu)^{2}}{4}} \frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{(2 \sqrt{1} \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{8}}$$

$$= \frac{1}{(2 \sqrt{1} \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{4}} \frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{(2 \sqrt{1} \sqrt{1} \sqrt{1})^{m}} e^{-\frac{\sum_{i=1}^{m} (y_{i} - \mu)^{2}}{8}} e^{-\frac{\sum_{i=1}^{m} (y_$$

(2)
$$\frac{(n+1)S^2}{\sigma^2} \sim \chi^2(n+1)$$
 $\frac{24S^2}{\sigma^2} \sim \chi^2 \omega 4$