# ECON 0150 | Economic Data Analysis The economist's data analysis pipeline.

Part 3.4 | Testing Hypotheses

## Confidence Intervals Recap

We used the distribution of sample means to create confidence intervals around  $\bar{x}$ .

- Sample mean  $\bar{x}$  follows a normal distribution
- Centered at population mean μ
- Standard error =  $\frac{\sigma}{\sqrt{n}}$
- 95% of samples will have  $\bar{x}$  and  $\mu$  roughly 1.96 standard errors apart



- > in the wait time example, we asked "where is the true mean wait time?"
- > but what if we want to test a specific claim about the mean?

# Flipping The Question What if we want to test a specific claim about the mean?

- > "my boss claims the mean wait time is 10 minutes"
- > is our data consistent with that specific claim?
- > same math as last time, but a different question...
- > instead of finding where some  $\mu$  might be, we're testing a specific value of  $\mu$

# Testing a Specific Value *If* $\bar{x} = 10.85$ , *is that consistent with* $\mu_0 = 10$ ?

> let's simulate data where  $\mu = 10$  and see what sample means we'd get



> how "surprising" would our observed  $\bar{x}$  be if  $\mu$  actually was 10?

# Hypotheses and Confidence Intervals The math to answer this question is identical to confidence intervals.

If true mean is  $\mu_0 = 10$ :

$$\bar{x} \sim t_{n-1} \left( \mu_0, \frac{s}{\sqrt{n}} \right)$$

$$\bar{x} \sim t_{29} \left( 10, \frac{2.5}{\sqrt{30}} \right)$$

$$\bar{x} \sim t_{29}(10, 0.456)$$



A 95% confidence interval around  $\mu_0$  would be:

$$[10 - 2.045 \times 0.456, 10 + 2.045 \times 0.456]$$

[9.07, 10.93]

# Hypotheses and Confidence Intervals The math to answer this question is identical to confidence intervals.

If true mean is  $\mu_0 = 10$ :

$$\bar{x} \sim t_{29}(10, 0.456)$$

A 95% confidence interval around  $\mu_0$  would be:

[9.07, 10.93]



- > our observed mean ( $\bar{x} = 10.85$ ) is within this interval not surprising if  $\mu = 10$
- > but if we observed  $\bar{x} = 11.5$ , that would be outside the interval surprising!

The Null Hypothesis

We formalize this approach by setting up a "null hypothesis"

**Null Hypothesis**  $(H_0)$ : The specific value or claim we're testing

•  $H_0$ :  $\mu = 10$  (wait time is 10 minutes)

**Alternative Hypothesis** ( $H_1$  or  $H_a$ ): What we accept if we reject the null

•  $H_1: \mu \neq 10$  (wait time is not 10 minutes)

### **Testing Approach:**

- Calculate how "surprising" our data would be if  $H_0$  were true
- If sufficiently surprising, we reject  $H_0$

# Quantifying "Surprise": p-values The p-value measures how compatible our data is with the null hypothesis

**p-value**: The probability of observing a test statistic at least as extreme as ours, if the null hypothesis were true

### For our example:

- *Null:*  $\mu = 10$
- *Observed*:  $\bar{x} = 10.85$
- > How likely is it to get  $\bar{x}$  this far or farther from 10, if the true mean is 10?

# Calculating a p-value Use the sampling distribution to find the probability.

> How likely is it to get  $\bar{x}$  this far or farther from 10, if the true mean is 10?



- > interpretation: if  $\mu=10$ , we'd see  $\bar{x}$  this far from 10 about 6.4% of the time
- > often, we reject  $H_0$  if p-value < 0.05 (5%)
- > here, p-value > 0.05, so we don't reject the claim that  $\mu$ =10

### Test Statistic: The t-statistic

We can standardize our result for easier interpretation

The **t-statistic** measures how many standard errors our sample mean is from the null value:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Where:

- $\bar{x}$  is our sample mean (10.85)
- $\mu_0$  is our null value (10)
- *s is our sample standard deviation (2.5)*
- n is our sample size (30)

$$t = \frac{10.85 - 10}{2.5/\sqrt{30}} = \frac{0.85}{0.456} = 1.86$$

### The t-test

This example has become a formal hypothesis test.

### **One-sample t-test:**

- $H_0$  :  $\mu = 10$
- $H_1 : \mu \neq 10$
- *Test statistic:* t = 1.86
- Degrees of freedom: 29
- *p-value*: 0.064

#### **Decision rule:**

- If p-value < 0.05, reject  $H_0$
- ullet Otherwise, fail to reject  $H_0$

```
import numpy as np
 2 from scipy import stats
 4 # Sample data
  sample mean = 10.85
  pop mean = 10  # null hypothesis
7 std dev = 2.5
  sample size = 30
  # Calculate t-statistic
11 t stat = (sample mean - pop mean) / (std dev / np.sqrt
12
  # Calculate p-value
   p value = 2 * (1 - stats.t.cdf(abs(t stat), df=sample)
15
   print(f"t-statistic: {t stat:.3f}")
   print(f"p-value: {p value:.3f}")
```

t-statistic: 1.862 p-value: 0.073

> not all test statistics use a t-distribution — depends on the test and sample size



## Statistical vs. Practical Significance

A caution about hypothesis testing

### Statistical significance:

- Formal rejection of the null hypothesis (p < 0.05)
- Only tells us if the effect is unlikely due to chance

### **Practical significance:**

- Whether the effect size matters in the real world
- A statistically significant result can still be tiny
- > with large samples, even tiny differences can be statistically significant
- > always consider the magnitude of the effect, not just the p-value

# Common Misinterpretations What a p-value is NOT

- $\times$  The probability that  $H_0$  is true
- X The probability that the results occurred by chance
- $\times$  The probability that  $H_1$  is true
- **Correct**: The probability of observing a test statistic at least as extreme as ours, if  $H_0$  were true

## Looking Forward

The t-test framework extends to many scenarios

#### **Next time:**

- Comparing means between two groups
- Two-sample t-tests
- Paired t-tests

### **Coming soon:**

- This same framework underlies regression analysis
- Regression coefficients are tested using t-tests
- ANOVA uses the same fundamental approach
- > the hypothesis testing framework is foundational for modern science