
一元分析学习题答案(第一章)

习题 1.1

1.(1) 解 依题意有

$$\begin{cases} 1 < x - 1 < 2 \\ x - 1 > 0 \end{cases} \quad \overrightarrow{\boxtimes} \begin{cases} -2 < x - 1 < -1 \\ x - 1 < 0 \end{cases}$$

解不等式得 2 < x < 3 或 -1 < x < 0, 所以不等式的解的区间为 $(2,3) \cup (-1,0)$.

- 1.(2) 解 依题意有 $2k\pi + \frac{\pi}{4} \le x \le 2k\pi + \frac{3\pi}{4}, (k \in \mathbb{Z})$. 不等式的解的区间为 $[2k\pi + \frac{\pi}{4}, 2k\pi + \frac{3\pi}{4}], (k \in \mathbb{Z})$.
- 1.(3) 解 依题意有 $\frac{x}{1+x} < 0$,解之得 -1 < x < 0,所以不等式的解的区间为 (-1,0).
 - 2.(1) $\ni E = 1$, $\inf E = 0$.
- (a) 对 $\forall x \in E$, 有 $x \le 1$. 又对 $\forall \varepsilon > 0$ ($\varepsilon < 1$), 在 $(1 \varepsilon, 1)$ 间有无穷多个无理数, 取其一为 x_0 , 则 x_0 满足 $x_0 > 1 \varepsilon$, 所以 $\sup E = 1$.
- (b) 对 $\forall x \in E$, 有 $x \ge 0$. 又, 对 $\forall \varepsilon > 0$, $(\varepsilon < 1)$, 在 $(0, \varepsilon)$ 间有无穷多个无理数, 取其一为 x_1 , 则 $x_1 \in E$ 满足 $0 < x_1 < \varepsilon$, 所以 inf E = 0.
 - 2.(2) if $\sup E = 1$, $\inf E = 1 \frac{1}{2} = \frac{1}{2}$
- (a) 对 $\forall x \in E$, 有 $x \le 1$. 又对 $\forall \varepsilon > 0$ ($\varepsilon < 1$), 由 $1 \frac{1}{2^n} > 1 \frac{1}{n} > 1 \varepsilon$ 解得 $n > \frac{1}{\varepsilon}$. 取 $x_0 = 1 \frac{1}{2^N}$ ($N = [\varepsilon^{-1}] + 1$), 则 $x_0 \in E$ 且 $x_0 > 1 \varepsilon$. 故 $\sup E = 1$.
- (b) 对 $\forall x \in E$, 有 $x \geq \frac{1}{2}$. 又对 $\forall \varepsilon > 0$ $(\varepsilon < \frac{1}{2})$, 由 $\frac{1}{2} + \varepsilon > 1 \frac{1}{2^n} \geq \frac{1}{2}$ 解 得 $1 \leq n < \log_2^{\frac{2}{1-2\varepsilon}}$. 取满足如此条件的一个 n_1 , 则 $x_{n_1} \in E$ 且 $x_{n_1} < 1 \frac{1}{2^{n_1}}$. 故, inf $E = \frac{1}{2}$.
 - 2.(3) if $\sup E = 1$, $\inf E = \frac{1}{2}$.
- (a) 又对 $\forall \varepsilon > 0$ ($\varepsilon < 1$), 由 $1 \frac{1}{n+1} > 1 \frac{1}{n} > 1 \varepsilon$ 解得 $n > \frac{1}{\varepsilon}$. 取 $x_0 = 1 \frac{1}{2^N}$ ($N = [\varepsilon^{-1}] + 1$), 则 $x_0 \in E$ 且 $x_0 > 1 \varepsilon$. 故 $\sup E = 1$.
- (b) 对 $\forall x \in E$, 有 $x \ge \frac{1}{2}$. 又对 $\forall \varepsilon > 0$ ($\varepsilon < \frac{1}{2}$), 由 $\frac{1}{2} + \varepsilon > 1 \frac{1}{n+1} \ge \frac{1}{2}$ 解 得 $1 \le n < \frac{1+2\varepsilon}{1-2\varepsilon}$. 取满足如此条件的一个 n_1 , 则 $x_{n_1} \in E$ 且 $x_{n_1} < 1 \frac{1}{1+n_1}$. 故, inf $E = \frac{1}{2}$.
- 3. 证 "⇒" 因为 $\inf E = \xi$, 所以对 $\forall x \in E$, 都有 $x \geqslant \xi$. 又已知 $\xi \in E$, 所以 $\min E = \xi$.
- " \Leftarrow " 因为 $\min E = \xi$, 所以 $\forall x \in E, x \geqslant \xi$ 成立. $\forall \varepsilon > 0$, 取 $x_0 = \xi$, 则 $x_0 \in E$ 且 $x_0 < \xi + \varepsilon$). 故 $\inf E = \xi \in E$. 命题得证.

4. 证 (1) 设 $\xi_1 = \sup E_1, \xi_2 = \sup E_2$, 则对 $\forall x \in E_1$, 有 $x \leq \xi_1$; 对 $\forall y \in E_2$, 有 $y \leq \xi_2$. 于是, 对 $\forall z \in E_1 + E_1$, z = x + y, 有 $z \leq \xi_1 + \xi_2$.

又因为对 $\forall \varepsilon > 0$, $\exists x_0 \in E_1$, 使得 $x_0 > \xi_1 - \frac{\varepsilon}{2}$; 同时 $\exists y_0 \in E_2$, 使得 $y_0 > \xi_2 - \frac{\varepsilon}{2}$. 取 $z_0 = x_0 + y_0$, 则 $z_0 \in E_1 + E_2$, 且使得 $z_0 > \xi_1 + \xi_2 - \varepsilon$.

综上所述, 由上确界的定义可知, $\sup(E_1 + E_2) = \xi_1 + \xi_2$, 即 $\sup(E_1 + E_2) = \sup E_1 + \sup E_2$.

(2) 设 $\eta_1 = \inf E_1$, $\eta_2 = \inf E_2$, 则对 $\forall x \in E_1$, 有 $x \ge \eta_1$; 对 $\forall y \in E_2$, 有 $y \ge \eta_2$. 所以对 $\forall z \in E_1 + E_2$, z = x + y, 有 $z \ge \eta_1 + \eta_2$.

又因为对 $\forall \varepsilon > 0$, $\exists x_1 \in E_1$, 使得 $x_1 < \eta_1 + \frac{\varepsilon}{2}$; 同时, $\exists y_1 \in E_2$, 使得 $y_1 < \eta_2 + \frac{\varepsilon}{2}$. 取 $z_1 = x_1 + y_1$, 则 $z_1 \in E_1 + E_2$, 且使得 $z_1 < \eta_1 + \eta_2 + \varepsilon$.

综上所述, 由上确界的定义可知, $\inf(E_1 + E_2) = \eta_1 + \eta_2$, 即 $\inf(E_1 + E_2) = \inf E_1 + \inf E_2$.

习题 1.2

$$1.(1) \, \mathfrak{M} \quad \begin{cases} \cos 2x \geqslant 0 \\ 16 - x^2 \geqslant 0 \end{cases} \Longrightarrow \begin{cases} k\pi - \frac{\pi}{4} \leqslant x \leqslant k\pi + \frac{\pi}{4} \\ -4 \leqslant x \leqslant 4 \end{cases}, (k \in \mathbb{Z})$$

$$\Longrightarrow x \in \left[-\frac{5\pi}{4}, -\frac{3\pi}{4}\right] \bigcup \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \bigcup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right].$$

- 1.(2) 解 依题意有 $\sin(\frac{\pi}{x}) > 0$,解之得 $2k\pi < \frac{\pi}{x} < (2k+1)\pi$,即 $\frac{1}{2k+1} < x < \frac{1}{2k}$,其中 $k \in \mathbb{Z}$,并记 $\frac{1}{0} = +\infty$.
 - 1.(3) \mathbf{M} $x \in \mathbb{R}$.
- 2. 解 以 C 为原点作数轴, 设宿舍为 D 点, D 点坐标为 x, 往返总路程为 y. 则 y=x-(-3)+8+5+|x|=x+|x|+16. 所以当 $x\leqslant 0$, 即当 x+|x|=0 时, 有 $y_{\min}=16$. 故, 宿舍应该在超市和学校之间能使往返路程最短.
 - 3. 解 $f(g(x)) = \begin{cases} e^{g(x)}, & g(x) < 1, \\ g(x), & g(x) \ge 1. \end{cases}$ 让 g(x) < 1 的 x 值的范围是: x < -1(此时 g(x) = x + 2) 与 $0 \le x < \sqrt{2}$ (此时 $g(x) = x^2 1$).

让 $g(x) \ge 1$ 的 x 值的范围是:

$$-1 \leqslant x < 0(此时 g(x) = x + 2) 与 x \geqslant \sqrt{2}(此时 g(x) = x^2 - 1).$$

$$\begin{cases} e^{x+2}, & x < -1, \\ x+2, & -1 < x < 0. \end{cases}$$

故,
$$f(g(x)) = \begin{cases} e^{x+2}, & x < -1, \\ x+2, & -1 \le x < 0, \\ e^{x^2-1}, & 0 \le x < \sqrt{2}, \\ x^2-1, & x \ge \sqrt{2}. \end{cases}$$

4. 解 令 x = y = 0, 则 $f(0) = f(0) + 2f(0)^2$, 解得 f(0) = 0. 令 x = 0, y = 1, 则 $f(1) = f(0) + 2f(1)^2$. 因为 $f(1) \neq 0$, 所以解得 $f(1) = \frac{1}{2}$. 所以有 $f(x + 1) = \frac{1}{2}$.

$$f(x) + 2f(1)^2 = f(x) + \frac{1}{2}$$
. 因此

$$f(2010) = f(2009) + \frac{1}{2} = f(2008) + 2 \cdot \frac{1}{2} = \dots = \frac{2010}{2} = 1005.$$

5. 解 因为 $f(x) = \frac{x}{x-1}$, 所以 $\frac{1}{f(x)} = \frac{x-1}{x}$. 于是,

$$f(f(x)) = \frac{\frac{x}{x-1}}{\frac{x}{x-1} - 1} = x,$$
 $f(\frac{1}{f(x)}) = \frac{\frac{x-1}{x}}{\frac{x-1}{x} - 1} = 1 - x.$

因此 f(f(f(f(x)))) = x.

6. 解 由
$$y = \frac{ax+b}{cx+d}$$
 解得 $x = -\frac{dy-b}{cy-a}$, 所以 $x = f^{-1}(y) = -\frac{dy-b}{cy-a}$.

两个函数相同必须要求它们有相同的定义域, 由此得到 a = -d. 经验证, 这也是这两个函数 $x = f^{-1}(x)$ 与 y = f(x) 对应法则相同的条件.

- 7. 解 (1) 因为 f(1) = 2, 所以 $f(1) = f(\frac{1}{2})^2$. 又因为 $f(\frac{1}{2}) = f(\frac{1}{4})^2 \ge 0$, 所以 $f(\frac{1}{2}) = \sqrt{2}$. $f(\frac{1}{4}) = f(\frac{1}{8})^2 \ge 0$, 所以 $f(\frac{1}{4}) = \sqrt[4]{2}$.
- (2) 因为 f(x) 的图像关于直线 x = 1 对称, 所以 f(1+x) = f(1-x). 又 f(x) 为偶函数, f(x) = f(-x), 所以 f(1-x) = f(x-1). 于是,f(x+1) = f(x-1), 即 f(x) = f(x+2), 而的 f(x) 定义域为 \mathbb{R} , 所以 f(x) 是以 2 为周期的周期函数.

8.
$$\mathbf{f}(1-x) = \frac{1-x+|1-x|}{2} = \begin{cases} 0, & x \ge 1, \\ 1-x, & x < 1. \end{cases}$$

$$f(1+x) = \frac{1+x+|1+x|}{2} = \begin{cases} x+1, & x > -1, \\ 0, & x \le -1. \end{cases}$$

所以
$$y = \begin{cases} 1 - x^2, & -1 < x < 1, \\ 0, & x \le -1, x \ge 1. \end{cases}$$

- 9. 证 (1) 令 y=0, 则因为 f(0)=0, 所以 $|f(x)|=|x|, f^2(x)=x^2$, 于是, 由 $|f(x)-f(y)|^2=|x-y|^2$ 得到 $f^2(x)-2f(x)f(y)+f^2(y)=x^2-2xy+y^2$. 故, f(x)f(y)=xy.
- (2) 由 (1) 得 $f^2(x) = x^2$, 所以 f(x) = x 或 f(x) = -x. 若 f(x) = x, f(y) = -y, 则 |f(x) f(y)| = |x + y| = |x y|, 得 x = 0 或 y = 0. 因此, $\forall x \in \mathbb{R}$, $f(x) \equiv x$; 或者 $f(x) \equiv -x$. 故, f(x + y) = f(x) + f(y).
- 10. 证 对 $\forall x_1 \in A$, 则 $f(x_1) = x_1$, 从而有 $f(f(x_1)) = f(x_1) = x_1$, 所以 $x_1 \in B$. 于是 $A \subseteq B$.

另一方面, 对 $\forall x_2 \in B$, 有 $f(f(x_2)) = x_2$. 令 $y = f(x_2)$, 则 $f(y) = x_2$. 若 $y > x_2$, 由 f(x) 是单调增加的函数, 得到 $f(y) \geqslant f(x_2)$, 即 $x_2 \geqslant y$, 产生矛盾. 同理, 对 $y < x_2$ 也产生矛盾. 因此, $y = x_2$, 即 $f(x_2) = x_2$. 于是, $x_2 \in A$, 即 $B \subseteq A$. 综上, 得 A = B.

11. 证 a = b 时, 结论成立. 不妨设 a < b, 对任意给定的 n, 将区间 [a, b] 等分为 n 个小区间, 分点依次为

$$a, a + \frac{b-a}{n}, a+2 \cdot \frac{b-a}{n}, \cdots, a+n \cdot \frac{b-a}{n} = b.$$

于是,

$$\begin{split} |f(b)-f(a)| &= \Big| \sum_{k=1}^n \Big\{ f \big[a + \frac{k}{n} (b-a) \big] - f \big[a + \frac{k-1}{n} (b-a) \big] \Big\} \Big| \\ &\leqslant \sum_{k=1}^n \Big| f \big[a + \frac{k}{n} (b-a) \big] - f \big[a + \frac{k-1}{n} (b-a) \big] \Big| \\ &\leqslant \sum_{k=1}^n \frac{|b-a|^2}{n^2} \\ &= \frac{|b-a|^2}{n}. \end{split}$$

12. 证 因为 $(a^x b^y)(b^x c^y)(c^x a^y) = (abc)^3$, 即 $(abc)^{x+y} = (abc)^3$, 所以 x+y=3. 记 $A = \ln a$, $B = \ln b$, $C = \ln c$, 则

$$Ax + By = Bx + Cy = Cx + Ay = A + B + C \neq 0.$$

将
$$y = 3-x$$
 代入上式,得到
$$\left\{ \begin{array}{l} Ax + B(3-x) = A+B+C \\ Bx + C(3-x) = A+B+C \end{array} \right. ,$$
 推出
$$\left\{ \begin{array}{l} (A-B)x = A-2B+C \\ (B-C)x = A+B-2C \end{array} \right.$$
 消去 x 并整理,得到

$$A^{2} + B^{2} + C^{2} - AB - BC - CA = \frac{1}{2}[(A - B)^{2} + (B - C)^{2} + (C - A)^{2}] = 0.$$

故, A = B = C, 即 a = b = c.

13. 略去.

14. 证 设 $\varphi(x) = a^{-x} f(x)$, 其中 a 为一待定正常数. 由 f(x+T) = kf(x) $(x \in \mathbb{R})$ 得到 $f(x+T) = ka^x \varphi(x)$. 又, $f(x+T) = a^{x+T} \varphi(x+T)$. 于是

$$a^{x+T}\varphi(x+T) = ka^x\varphi(x). \tag{eq1}$$

令 $a = k^{1/T}$, 则 $k = a^T$. 由式 (eq1) 得到 $\varphi(x + T) = \varphi(x)$ $(x \in \mathbb{R})$. 证毕.

15. 略去.

16.
$$\overrightarrow{\text{if}}$$
 (1) $f(x) = \cos x, x \in [0, +\infty)$. $M(x) \equiv 1, m(x) = \begin{cases} \cos x, & 0 \le x \le \pi, \\ -1, & x > \pi. \end{cases}$

(2) $f(x) = x^2, x \in [-1, +\infty).$

$$m(x) = \begin{cases} x^2, & -1 \le x \le 0, \\ 0, & x > 0; \end{cases} \qquad M(x) = \begin{cases} 1, & -1 \le x < 1, \\ x^2, & x \ge 1. \end{cases}$$