Question Answering System

-Sneha Kotha B00839933

INTRODUCTION

Problem statement: Given a paragraph and a unambiguous question about the paragraph, the system is trained to answer the question with appropriate solution.

Dataset: SQuAD

Training: dev data 8:1 ratio

The remaining is used as the testing set.

Many of the successful model till now have a common structure based on layers:

- -Embedding layer: word embeddings
- -Attention layer.
- -Modeling layer
- -Output layer

RELATED WORK

SQUAD let to significant amount of papers in the last two years.

- Wang & Jiang (2016b) Answer Boundaries.
- Seo et al. (2016) introduce Bi-directional attention flow networks.
- ©Xiong et al. (2016) propose *Dynamic co-attention networks*.
- ©RNET(2018) uses *Gated attention* between the question and context and *Self attention layer*.

DATASET & EMBEDDING LAYERS

Features:

- length of paragraph, questions, answer span.
- And to choose the architecture

Example: 20 common words in question -paragraph we can use word embeddings using glove with 100 dimensions.

Also if there are too many word embeddings it causes overfitting.

Word embeddings: we are using pertained word vector (GLOVE[4])

Contextual embedding layer: Uses Long Short-Term Memory Network (LSTM) on top of the embeddings.

Attention Flow layer: This layer is important as to allows information from question and passage to be encapsulated within context word representation.

Types of Attention layers:

- + BiDAF
- + Contention
- * Self attention

Combining self-attention and BiDaf_[2] - F1 Score increased by 1%.

Modeling layer:

- Consists of two layers of bi-directional LSTM, with the output size of 'd' for each direction.
- BiDAF approximately gives 2% raise on the baseline.
- Prediction algorithm increased the start and end probabilities of the answer.
- Range of the answer length-Increase the F1 score by 2%

Output Layer:

Provides an answer to the query. M is passed to another bidirectional LSTM layer and obtain M2. Then we use M2 to obtain the probability distribution of the end index.

ARCHITECTURE

Input - Context and Question text

Embedding layer- Word embed

Contextual layer - bi directional LSTM and is concatenated.

Attention layer: - bi-attention feeds through-> self attention and is concatenated with the output.

And then finally to the modelling layer with 2 LSTMs

Figure 1: BiDirectional Attention Flow Model (best viewed in color)

EXPERIMENTS

Model	Dev EM	Dev F1	Test EM	Test F
BiDAF Attention + BidaF decoder (Ours)	64.427	74,444	65.593	75.142
BiDAF Attention + Answer Pointer decoder (Ours)	63.652	74.024	64.597	74.364
BiDAF Attention + Self Attention (Ours)	63.500	73.638	-	
BiDAF Attention + Self Attention + Answer Pointer decoder (Ours)	63.954	74.051	-	-
Coattention Only (Ours)	53.955	64.171		
Coattention with BidaF decoder (Ours)	58.079	69.008	-	
Coattention with Answer Pointer decoder (Ours)	58.543	69.390		-
BiDAF		76.3		76.9
DCN	65.4	75.6	66.2	75.9
SQUAD Baseline(Ours)	34.853	44.117		
Human (Rajpurkar et al., 2016)	81.4	91.0	82.3	91.2

Best score = 75%

RESULTS

Question Type	F1 (%)	EM (%)		
When		82.95	76.56	
Who		76.41	70.35	
How		74.44	65.21	
What		73.08	63.05	
Where		72.83	62.11	
Why		59.84	37.86	

This model achieved 75.11% F1 and 64.75% EM on the dev set.

Where is it used?

- Legal documents
- Banking & Insurance
- Do we have any flight?
- Network issues

FUTURE WORK

- Implementing Character level CNN can improve performance on out-of-vocabulary words.
- Using association of models and more word features.
- Dynamic co-attention Networks[3]
- Dynamic Pointer Decoders.

References:

- [1] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, Squad: 100,000+ questions for machine comprehension of text, arXiv preprint arXiv:1606.05250, 2016.
- [2] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, Bidirectional attention flow for machine comprehension, arXiv preprint arXiv:1611.01603, 2016.
- [3] C. Xiong, V. Zhong, and R. Socher, Dynamic coattention networks for question answering, arXiv preprint arXiv:1611.01604, 2016.
- [4] J. Pennington, R. Socher, and C. D. Manning, Glove: Global vectors for word representation., in EMNLP, vol. 14,pp. 15321543, 2014.

Any Question ?? Answering

THANK YOU:)