ESc201: Introduction to Electronics

Frequency Domain Response

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Time domain vs. Frequency domain analysis

Signal

Suppose the capacitor is reduced to ~21pF. 760k 20.93p 760k 75.000m 50.000m 25.000m 0.000m -25.000m

It is hard to find out what impact the change in capacitor has on circuit behavior

24.000u

16.000u

-50.000m 0.000u

8.000u

T (Secs)

40.000u

32.000u

Frequency domain analysis

Measure response at many different frequencies for a constant input amplitude

Measure response at many different frequencies for a constant input amplitude

f=1000KHz

Plot the amplitude and phase as a function of frequency

One can clearly see the frequency selective (often called a filter) nature of the circuit

Phase as a function of frequency

Suppose the capacitor is reduced to ~21pF.

Analysis of signals and systems in frequency domain often provides useful insight into their behavior.

Frequency domain analysis

Transfer function is a useful tool for finding the frequency response of a system

Transfer Function:
$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

Transfer function has a magnitude and a phase

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

$$\mathbf{H}(\omega) = \text{Voltage gain } = \frac{\mathbf{V}_o(\omega)}{\mathbf{V}_i(\omega)}$$

$$\mathbf{H}(\omega) = \text{Current gain } = \frac{\mathbf{I}_o(\omega)}{\mathbf{I}_i(\omega)}$$

$$\mathbf{H}(\omega) = \text{Transfer Impedance } = \frac{\mathbf{V}_o(\omega)}{\mathbf{I}_i(\omega)}$$

$$\mathbf{H}(\omega) = \text{Transfer Admittance } = \frac{\mathbf{I}_o(\omega)}{\mathbf{V}_i(\omega)}$$

Because of the wide dynamic range of frequency, plotting frequency on log axis is often more revealing!

Logarithmic frequency scale

No. of decades =
$$log_{10}(\frac{f_2}{f_1})$$

No. of octaves =
$$\log_2(\frac{f_2}{f_1}) = \frac{\log_{10}(\frac{f_2}{f_1})}{\log_{10}(2)}$$

Decibel scale often reveals more information about

behavior

1M

100K

10M

The magnitude of transfer function is often specified in decibels

$$G_{dB} = 10\log_{10}(\frac{P_2}{P_1})$$

Because power is proportional to V² or I², voltage gain and current gain in decibels is specified as

$$G_{dB} = 20\log_{10}(\frac{V_2}{V_1})$$

$$G_{dB} = 20\log_{10}(\frac{I_2}{I_1})$$

Decibel Scale

H	20Log ₁₀ (H)
1000	60
100	40
10	20
2	6
√2	3
1	0
1/√2	-3
0.5	-6
0.1	-20
0.01	-40

dB Scale

A plot of the decibel magnitude of transfer function versus frequency using a logarihmic scale for frequency is called a **Bode plot**

How to determine the transfer function?

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$\phi(\omega) = -\tan^{-1}(\omega CR)$$

Plot Magnitude

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$H_{dB} = -20 \log_{10} \sqrt{1 + (\omega RC)^2}$$

$$\omega_{3dB} = \frac{1}{RC}$$

$$\omega_{3dB} = \frac{1}{RC}$$

$$H_{dB} = -20 \log_{10} \sqrt{1 + \left(\frac{\omega}{\omega_{3dB}}\right)^2}$$

$$\omega \ll \omega_{3dB}$$

$$H_{dB} \approx -20 \log_{10}(1) = 0$$

$$\omega >> \omega_{3dB}$$

$$\omega >> \omega_{3dB}$$
 $H_{dB} \approx -20 \log_{10} \left(\frac{\omega}{\omega_{3dB}}\right)$

$$\omega >> \omega_{3dB}$$

$$H_{dB} \approx -20 \log_{10} \left(\frac{\omega}{\omega_{3dB}} \right)$$

ω	H _{dB}
ω_{3dB}	0
$10 \omega_{3dB}$	-20
100 ω_{3dB}	-40

-20 dB per decade

 $\log_{10} 10 = 1$

3dB point

$$\omega_{3dB} = \frac{1}{RC}$$

Example

$$H(j\omega) = \frac{10}{1 + j\omega 10^{-3}}$$

$$\omega_{3dB} = 10^{3}$$

$$H_{dB} = 20 \left(-20 \log_{10} \sqrt{1 + \left(\frac{\omega}{10^{3}}\right)^{2}}\right)$$

$$\omega << 10^{3} : 0dB$$

$$\omega >> 10^{3} : -20 \log_{10} \frac{\omega}{10^{3}}$$

$$10^{3} \qquad 0$$

$$-20 dB/decade$$

Adding more RC stages, makes the characteristics sharper

