Output tables for 1xN statistical comparisons.

May 16, 2022

1 Average rankings of Friedman test

Average ranks obtained by each method in the Friedman test.

Algorithm	Ranking
GaussianNB:ENANE	2.2222
GaussianNB:ENN	2.4722
GaussianNB:LSSm	2.9722
GaussianNB:base	2.3333

Table 1: Average Rankings of the algorithms (Friedman)

Friedman statistic (distributed according to chi-square with 3 degrees of freedom): 3.55. P-value computed by Friedman Test: 0.314335.

2 Post hoc comparison (Friedman)

P-values obtained in by applying post hoc methods over the results of Friedman procedure.

algorithm $z = (R_0 - R_i)/SE$ GaussianNB:LSSm 1.742843 GaussianNB:ENN 0.580948 GaussianNB:base 0.258199

Table 2: Post Hoc comparison Table for $\alpha = 0.05$ (FRIEDMAN)

3 Adjusted P-Values (Friedman)

Adjusted P-values obtained through the application of the post hoc methods (Friedman).

$p_{H ochberg}$	0.244083	0.796253	0.796253
unadjusted p	0.081361	0.561276	0.796253
algorithm	GaussianNB:LSSm	GaussianNB:ENN	GaussianNB:base
	1	2	က

Table 3: Adjusted p-values (FRIEDMAN) (I)

unadjusted p	0.081361	0.561276	0.796253
algorithm	GaussianNB:LSSm	GaussianNB:ENN	GaussianNB:base
	П	2	3

Table 4: Adjusted p-values (FRIEDMAN) (II)