Slide #4. Proof sketch that |C| = |C + u| where u is any word in K^n (as usual, |A| denotes the number of elements of the set A). Let $\psi : C \to C + u$ be the map given by $\psi(c) = c + u$. Show that:

1. ψ is injective (i.e., one-to-one):

$$\psi(c_1) = \psi(c_2) \iff c_1 = c_2.$$

2. ψ is surjective (onto): Let y be an arbitrary element of C+u, i.e., y=c+u for some $c\in C$. Then $\psi(y+u)=y$.

Thus, ψ is bijective. The existence of a bijection between two finite sets shows that they have the same number of elements.

Proof sketch of that either

$$C + u = C + v$$
 or $(C + u) \cap (C + v) = \emptyset$:

Suppose there exists $z \in (C + u) \cap (C + v)$. Then $z = c_1 + u = c_2 + v$ for some $c_1, c_2 \in C$. Thus,

$$u = c_1 + c_2 + v = c_3 + v$$

where $c_3 \in C$. That is, $u = c_3 + v$ for some $c_3 \in C$. Now, one has

$$C + u = C + (c_3 + v) = \{c + c_3 + v \mid c \in C\} = C + v.$$

The above means that if cosets C + u and C + v have one element in common, then they must coincide.

* * *

Proof sketch of consequence #4 regarding the number of cosets of an(n,k) linear code C. Let M be the number of such cosets. The cosets partition the space K^n , meaning that K^n is a disjoint union of the M cosets of C:

$$K^n = \operatorname{coset}_1 \sqcup \operatorname{coset}_2 \sqcup \cdots \sqcup \operatorname{coset}_M$$
.

Each coset has the same number of elements as C, namely, 2^k . Thus,

$$2^n = 2^k \cdot M,$$

whence $M = 2^n/2^k = 2^{n-k}$. This is an important result to remember!