10 -3

5112

Flow Networks

Ford-Fulkerson Algerithm

Start with Zero flow f: f(e) =0 He = F. Suppose I have an s-E path P. Let botheneck (P) = min Ce August & to get a flow s'.

f'(e) = & bottle neck (P) if cep
otherwise Capacity: Can cEP $f'(e) = b_0 H | eneck(P)$ = min Cg gep Conservation: Every vertex on P Case cep is easy has on else in and me else out < c. ✓

=> same Plow in and out. /

Starting with a flow
$$f$$
 "Residual" graph G_f
 $C_e = C_e - f(e)$

Augment f with P :

 $f'(e) = \{f(e) + b_o t | lunede(P) \}$

Otherwise

Capacity:

Capacity:

Case $e \notin P$ $f(e) + b_o t | lunech(P) = f(e) + min C_g
 $g \in P$

Case $e \notin P$ $f(e) \setminus f(e) + c_g$
 $f(e) + c_g$$

Conservation:
$$f$$
 is already a flar set f in $(v) = f$ out (v) .

What about f ?

Care $v \in P$: f in $(v) = \sum_{e \text{ info}} f(e) = \sum_{e \text{ info}} f(e) + \sum_{e \text{ info}} f(e)$

entry

eff $e \text{ info}$
 f in $(v) = f$ in $(v) + b$ thereox (P) ,

 $e \notin P$
 e

= fin(v) - b. Hleneck(P).

Use flis path P with bottleneck(P) = 20. to get a How f.

In the restdual graph, in path from s to t.

Have a flas
$$f_1$$
 and a simple $s-t$ path P in G_2 .

Offine $f': f'(e) = \begin{cases} f(e) + b \text{ Henck}(P) & e \text{ is a forwallye in } P \\ f(e) - b \text{ Henck}(P) & e \text{ is a boxward elge in } P \end{cases}$

Define bottleneck $f'(e)$ to be the minimal residual expacity among $g \in P$.

Capacity: Case e is a borward elge.

 $f'(e) = f(e) + b \text{ offleneck}(P) = Ce$

Gue e is a backward edge
$$f'(e) = f(e) - b$$

$$\Rightarrow f(e) - f(e) = 0.$$

The residual graph Gg: The vertices of Gg are the same as G. The edges of Gz are

1. forward edges: edges of G wigh

remaining capacity (i.e. f(e) # Ce)

- labelled with Ce-f(e) 2. brokund edges: revesed edges of G with non-zero flow. -labellal with fle).