Stock market prediction using LSTM

```
In [34]:
          import pandas as pd
          import numpy as np
          from tensorflow.keras.models import Sequential
          from tensorflow.keras.layers import LSTM
          from tensorflow.keras.layers import Dense
          from tensorflow.keras.layers import Flatten
          df=pd.read csv(r"C:\Users\Jaswanth Reddy\Downloads\MINDTREE.NS (1).csv")
          df.head()
Out[35]:
                   Date
                            Open
                                        High
                                                   Low
                                                            Close
                                                                   Adj Close
                                                                               Volume
           0 2018-12-24 848.799988 856.900024 834.150024 837.700012 776.659790
                                                                              690775.0
           1 2018-12-26 839.000000 859.849976 818.000000 854.049988
                                                                  791.818359 1128860.0
           2 2018-12-27 859.349976 872.900024 853.000000 861.849976 799.050049 1251109.0
           3 2018-12-28 863.000000 869.000000 858.049988 864.099976
                                                                 801.136047
                                                                              420544.0
           4 2018-12-31 870.000000 871.700012 861.549988 864.500000 801.506958
                                                                             317152.0
In [36]:
          df.isnull().sum()
Out[36]: Date
                        0
                        2
          0pen
          High
                        2
                        2
          Low
                        2
          Close
                        2
          Adi Close
                        2
          Volume
          dtype: int64
```

```
In [37]: df=df.dropna()
          df.shape
Out[37]: (491, 7)
In [108]: df1=df['Close']
          df1.head(30)
Out[108]: 0
                837.700012
                854.049988
          1
          2
                861.849976
           3
                864.099976
          4
                864.500000
          5
                863.400024
          6
                860.500000
          7
                834.799988
          8
                815.000000
          9
                835.349976
          10
                821.200012
          11
                823.450012
          12
                812.250000
          13
                832.000000
          14
                853.150024
          15
                854.500000
          16
                841.200012
          17
                867.849976
          18
                887.000000
          19
                881.750000
          20
                921.099976
          21
                906.549988
          22
                910.400024
          23
                886.099976
          24
                868.599976
          25
                903.599976
          26
                890.450012
          27
                894.049988
          28
                899.650024
          29
                889.799988
          Name: Close, dtype: float64
```

```
In [39]: import matplotlib.pyplot as plt
plt.plot(df['Close'])
```

Out[39]: [<matplotlib.lines.Line2D at 0x18b5067b040>]


```
In [40]: # Preparing dependent and independent data
def prepare_data(timeseries_data, n_features):
    X, y =[],[]
    for i in range(len(timeseries_data)):
        end_ix = i + n_features
        if end_ix > len(timeseries_data)-1:
            break
        seq_x, seq_y = timeseries_data[i:end_ix], timeseries_data[end_ix]
        X.append(seq_x)
        y.append(seq_y)
    return np.array(X), np.array(y)
```

```
In [62]: # define input sequence
    timeseries_data = np.array(df1)
    # number of time steps
    n_steps = 10
    # spliting into samples
    X, y = prepare_data(timeseries_data, n_steps)
```

In [63]: print(X)

```
[[ 837.700012 854.049988 861.849976 ... 834.799988 815.
  835.349976]
 [ 854.049988 861.849976 864.099976 ... 815.
                                                     835.349976
  821.200012]
 [ 861.849976 864.099976 864.5
                                     ... 835.349976 821.200012
  823.450012]
 [1437.949951 1442.699951 1452.300049 ... 1468.349976 1459.5
 1452.099976]
 [1442.699951 1452.300049 1456.
                                     ... 1459.5
                                                    1452.099976
 1476.099976]
 [1452.300049 1456.
                         1437.25
                                     ... 1452.099976 1476.099976
 1427.150024]]
```

In [64]: print(y)

[821.200012	823.450012	812.25	832.	853.150024	854.5
_	841.200012	867.849976	887.	881.75	921.099976	906.549988
	910.400024	886.099976	868.599976	903.599976	890.450012	894.049988
	899.650024	889.799988	887.900024	897.299988	899.299988	891.549988
	918.049988	900.299988	897.	895.5	868.599976	887.299988
	903.950012	898.799988	902.75	907.75	907.25	898.700012
	908.799988	932.849976	915.650024	917.099976	920.200012	921.700012
	927.	917.400024	923.900024	950.099976	947.400024	962.5
	943.299988	950.650024	939.	940.75	950.5	943.150024
	941.25	944.950012	946.650024	943.799988	943.5	952.950012
	957.299988	962.200012	970.25	976.650024	975.650024	979.650024
	972.450012	968.5	976.200012	975.400024	979.400024	989.400024
	975.849976	981.25	981.400024	970.200012	981.75	979.950012
	980.5	980.450012	975.349976	979.099976	975.200012	977.049988
	980.349976	981.799988	980.049988	980.099976	981.900024	979.849976
	980.049988	979.599976	980.099976	980.099976	980.099976	977.900024
	981.25	971.799988	965.150024	969.549988	975.5	978.549988
	975.	974.799988	971.099976	969.200012	973.099976	971.549988
	974.5	968.5	964.099976	952.450012	935.950012	945.5
	927.400024	903.650024	912.75	905.5	899.049988	888.549988
	769.25	772.450012	758.5	759.450012	752.150024	759.950012
	748.400024	750.700012	690.650024	667.599976	681.950012	692.599976
	686.549988	695.150024	689.950012	700.450012	711.75	716.299988
	691.950012	704.599976	707.599976	712.299988	745.299988	747.799988
	752.150024	721.450012	708.650024	699.799988	702.200012	708.299988
	700.849976	693.299988	709.049988	706.25	680.700012	677.099976
	687.549988	688.599976	684.299988	680.450012	694.400024	685.5
	682.75	679.650024	670.349976	676.650024	681.799988	681.
	699.950012	690.950012	713.650024	722.900024	718.349976	700.400024
	696.299988	707.849976	707.799988	720.900024	720.049988	711.700012
	721.200012	723.5	724.5	724.900024	730.549988	725.349976
	743.400024	729.400024	735.700012	729.200012	718.450012	718.200012
	718.700012	713.	711.200012	712.799988	720.349976	714.349976
	710.049988	705.099976	707.25	693.799988	689.599976	682.549988
	689.549988	693.25	703.700012	705.049988	716.25	710.150024
	708.200012	714.849976	698.400024	701.5	703.349976	699.849976
	705.25	717.099976	746.799988	763.5	741.299988	749.400024
	737.549988	754.799988	752.849976	763.950012	761.	772.400024
	766.799988	764.400024	783.450012	777.650024	775.799988	792.450012
	786.849976	799.700012	800.150024	811.75	813.75	815.549988

824.099976	846.25	852.150024	827.049988	830.849976	839.900024	
864.349976	887.849976	897.599976	883.549988	892.75	897.75	
906.25	900.75	892.75	885.049988	876.	886.549988	
888.099976	887.900024	902.75	907.599976	909.75	902.349976	
921.799988	920.299988	926.950012	922.849976	936.549988	959.900024	
981.950012	997.	1013.599976	1049.5	1015.549988	1050.300049	
1029.400024	985.700012	944.	998.099976	989.049988	990.5	
961.599976	977.599976	905.150024	891.099976	816.	859.549988	
831.950012	853.	804.299988	720.5	842.450012	733.900024	
792.049988	822.200012	837.650024	825.650024	846.400024	828.700012	
753.5	701.099976	735.75	732.099976	733.75	739.650024	
771.900024	776.849976	752.650024	783.049988	736.349976	731.5	
765.049988	780.349976	879.650024	867.299988	881.599976	915.950012	
903.400024	875.299988	907.849976	877.700012	891.099976	890.599976	
887.400024	885.650024	835.849976	852.150024	879.549988	918.900024	
904.400024	882.	890.700012	881.799988	891.450012	896.5	
894.599976	892.400024	920.400024	908.349976	935.349976	919.150024	
918.599976	895.950012	909.099976	918.700012	914.	923.	
912.450012	906.849976	907.400024	915.099976	909.049988	928.049988	
924.400024	916.700012	949.099976	930.700012	925.650024	923.700012	
937.400024	945.150024	960.599976	982.049988	988.299988	988.150024	
1007.950012	1007.799988	978.150024	975.5	1008.900024	1022.	
1026.800049	1009.200012	1013.099976	1011.150024	1021.	1050.099976	
1052.050049	1062.75	1083.800049	1083.400024	1126.949951	1125.900024	
1140.300049	1142.75	1152.25	1142.199951	1116.75	1133.300049	
1149.300049	1135.949951	1163.400024	1166.75	1171.699951	1174.650024	
1162.550049	1153.099976	1137.349976	1171.75	1149.349976	1184.699951	
1155.75	1141.300049	1194.150024	1205.800049	1194.150024	1205.300049	
1186.949951	1172.5	1175.699951	1183.800049	1221.699951	1251.699951	
1260.599976	1274.699951	1272.5	1271.199951	1307.699951	1297.849976	
1248.150024	1268.900024	1285.75	1323.5	1338.5	1336.300049	
1349.449951	1371.949951	1388.199951	1461.150024	1504.25	1562.349976	
1585.199951	1551.900024	1424.849976	1329.150024	1341.75	1426.349976	
1354.050049	1388.349976	1393.300049	1391.949951	1381.449951	1327.25	
1318.650024	1327.599976	1317.849976	1317.800049	1335.25	1357.900024	
1356.699951	1370.599976	1312.	1329.650024	1342.099976	1347.599976	
1342.099976	1334.300049	1319.300049	1357.449951	1395.849976	1412.150024	
1376.099976	1391.599976	1417.300049	1411.599976		1441.699951	
1437.949951	1442.699951	1452.300049	1456.	1437.25	1436.75	
1437.050049	1468.349976	1459.5	1452.099976	1476.099976	1427.150024	
1525.050049]						

```
In [127]: # fit model
       model.fit(X, y, epochs=300, verbose=1)
       16/16 [============ ] - 0s 12ms/step - loss: 31.4750
       Epoch 293/300
       16/16 [=========== ] - 0s 10ms/step - loss: 27.1738
       Epoch 294/300
       Epoch 295/300
       Epoch 296/300
       16/16 [========== ] - 0s 13ms/step - loss: 21.4785
       Epoch 297/300
       16/16 [========== ] - 0s 13ms/step - loss: 21.8275
       Epoch 298/300
       16/16 [=========== ] - 0s 14ms/step - loss: 30.6590
       Epoch 299/300
       16/16 [========== ] - 0s 10ms/step - loss: 19.9293
       Epoch 300/300
       16/16 [=========== ] - 0s 16ms/step - loss: 22.4484
Out[127]: <tensorflow.python.keras.callbacks.History at 0x18b75847640>
In [106]: x input.shape
```

Out[106]: (1, 10, 1)

```
In [118]: # prediction for next 10 days
          x input = np.array([1442.69, 1437.94, 1452.30, 1456.0, 1437.25, 1436.75, 1437.05, 1468.34, 1459.5, 1452.09, 1476.
          #x input=np.array([815.3,821.200012 ,823.450012, 812.25 , 832. ,
                                                                                       853.150024 , 854.5,841.200012, 867
          temp input=list(x input)
          lst output=[]
          i=0
          while(i<15):</pre>
              if(len(temp input)>3):
                  x input=np.array(temp_input[1:])
                  print("{} day input {}".format(i,x input))
                  x input = x input.reshape((1, n steps, n features))
                  yhat = model.predict(x input, verbose=0)
                  print("{} day output {}".format(i,yhat))
                  temp input.append(yhat[0][0])
                  temp input=temp input[1:]
                  lst output.append(yhat[0][0]) # storing output values
                  i=i+1
              else:
                  x input = x input.reshape((1, n steps, n features))
                  yhat = model.predict(x input, verbose=0)
                  print(yhat[0])
                  temp input.append(yhat[0][0])
                  lst output.append(yhat[0][0])
                  i=i+1
          print(lst output)
          0 day input [1437.94 1452.3
                                         1456.
                                                  1437.25 1436.75 1437.05 1468.34 1459.5
           1452.09 1476.099]
          0 day output [[1453.7325]]
          1 day input [1452.3
                                     1456.
                                                   1437.25
                                                                 1436.75
                                                                               1437.05
           1468.34
                         1459.5
                                                                   1453.73254395]
                                       1452.09
                                                     1476.099
          1 day output [[1446.1445]]
          2 day input [1456.
                                     1437.25
                                                   1436.75
                                                                 1437.05
                                                                               1468.34
           1459.5
                         1452.09
                                       1476.099
                                                     1453.73254395 1446.14453125]
          2 day output [[1445.3861]]
          3 day input [1437.25
                                                   1437.05
                                                                 1468.34
                                                                               1459.5
                                     1436.75
           1452.09
                         1476.099
                                       1453.73254395 1446.14453125 1445.3861084 ]
          3 day output [[1445.1527]]
          4 day input [1436.75
                                     1437.05
                                                                               1452.09
                                                   1468.34
                                                                 1459.5
           1476.099
                         1453.73254395 1446.14453125 1445.3861084 1445.15270996
```

```
4 day output [[1446.4323]]
5 day input [1437.05
                          1468.34
                                         1459.5
                                                       1452.09
                                                                     1476.099
1453.73254395 1446.14453125 1445.3861084 1445.15270996 1446.43225098]
5 day output [[1446.7557]]
6 day input [1468.34
                          1459.5
                                         1452.09
                                                       1476.099
                                                                     1453.73254395
1446.14453125 1445.3861084 1445.15270996 1446.43225098 1446.7557373
6 day output [[1447.4006]]
                           1452.09
7 day input [1459.5]
                                         1476.099
                                                       1453.73254395 1446.14453125
1445.3861084 1445.15270996 1446.43225098 1446.7557373 1447.40063477]
7 day output [[1445.2279]]
8 day input [1452.09
                           1476.099
                                         1453.73254395 1446.14453125 1445.3861084
 1445.15270996 1446.43225098 1446.7557373 1447.40063477 1445.22790527
8 day output [[1443.3448]]
9 day input [1476.099
                          1453.73254395 1446.14453125 1445.3861084 1445.15270996
 1446.43225098 1446.7557373 1447.40063477 1445.22790527 1443.34484863]
9 day output [[1442.185]]
10 day input [1453.7325 1446.1445 1445.3861 1445.1527 1446.4323 1446.7557 1447.4006
1445.2279 1443.3448 1442.185 ]
10 day output [[1439.3645]]
11 day input [1446.1445 1445.3861 1445.1527 1446.4323 1446.7557 1447.4006 1445.2279
1443.3448 1442.185 1439.3645]
11 day output [[1438.1947]]
12 day input [1445.3861 1445.1527 1446.4323 1446.7557 1447.4006 1445.2279 1443.3448
1442.185 1439.3645 1438.1947]
12 day output [[1437.4111]]
13 day input [1445.1527 1446.4323 1446.7557 1447.4006 1445.2279 1443.3448 1442.185
1439.3645 1438.1947 1437.4111]
13 day output [[1436.6111]]
14 day input [1446.4323 1446.7557 1447.4006 1445.2279 1443.3448 1442.185 1439.3645
1438.1947 1437.4111 1436.6111]
14 day output [[1435.6958]]
[1453.7325, 1446.1445, 1445.3861, 1445.1527, 1446.4323, 1446.7557, 1447.4006, 1445.2279, 1443.3448, 1442.18
5, 1439.3645, 1438.1947, 1437.4111, 1436.6111, 1435.6958
```

In [109]:

df.tail(18)

Out[109]:

	Date	Open	High	Low	Close	Adj Close	Volume
475	2020-11-26	1379.900024	1402.000000	1348.650024	1391.599976	1391.599976	759889.0
476	2020-11-27	1410.000000	1426.900024	1383.449951	1417.300049	1417.300049	1354040.0
477	2020-12-01	1417.300049	1423.949951	1391.000000	1411.599976	1411.599976	712194.0
478	2020-12-02	1411.599976	1421.500000	1394.000000	1414.300049	1414.300049	672487.0
479	2020-12-03	1414.000000	1444.500000	1414.000000	1441.699951	1441.699951	1001572.0
480	2020-12-04	1443.000000	1454.099976	1428.099976	1437.949951	1437.949951	734335.0
481	2020-12-07	1440.000000	1466.000000	1433.650024	1442.699951	1442.699951	892569.0
482	2020-12-08	1456.000000	1472.000000	1428.800049	1452.300049	1452.300049	1174551.0
483	2020-12-09	1465.400024	1472.000000	1450.300049	1456.000000	1456.000000	813977.0
484	2020-12-10	1455.000000	1455.000000	1428.150024	1437.250000	1437.250000	631499.0
485	2020-12-11	1444.000000	1451.800049	1422.050049	1436.750000	1436.750000	371319.0
486	2020-12-14	1436.599976	1445.099976	1417.550049	1437.050049	1437.050049	273214.0
487	2020-12-15	1439.449951	1470.000000	1431.000000	1468.349976	1468.349976	695656.0
488	2020-12-16	1475.050049	1484.000000	1455.050049	1459.500000	1459.500000	895448.0
489	2020-12-17	1470.000000	1472.500000	1446.250000	1452.099976	1452.099976	573057.0
490	2020-12-18	1465.000000	1484.800049	1436.050049	1476.099976	1476.099976	1836980.0
491	2020-12-21	1476.099976	1491.750000	1399.699951	1427.150024	1427.150024	1613406.0
492	2020-12-22	1436.000000	1530.000000	1430.550049	1525.050049	1525.050049	2779116.0

```
In [119]: # Based on the last 10 day results, predicted the further values
plt.plot(lst_output)
```

Out[119]: [<matplotlib.lines.Line2D at 0x18b6e73b3d0>]

In []: