Honors Calculus, Math 1450, Assignment &, Solutions

$$(1) \frac{1}{(1)^{2}} = \frac{1}{(13)^{2}} = \frac{1}{3} \cdot \frac{1}{(13+1)} = \frac{3+\sqrt{3}}{6}$$

$$(0) \frac{1}{(13)^{2}} = \frac{1}{(13+1)} = \frac{3+\sqrt{3}}{3} \cdot (13+1)(13+1) = \frac{3+\sqrt{3}}{6}$$

$$\left(\sum_{n=0}^{\infty} q_{0}r^{n} = \frac{q_{0}}{1-r} \text{ for } |r| < 1\right)$$

(2) By geometric series, we have
$$\sum_{n=0}^{\infty} a_0 r^n \frac{a_0}{1-r}$$
 for $|r| < 1$.
Given $|x| < 1$ we have $|x|^2 < 1$. Lot $|r| = x^2$, $|a_0| = 1$, then

$$\frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} 1 (-x^2)^n = 1 + (-x^2)^2 + (-x^2)^2 + (-x^2)^3 + 11 + (-x^2)^4 +$$

For
$$\sum_{n=0}^{\infty} (-1)^n (\frac{1}{4})^{2n+1} = \sum_{n=0}^{\infty} \frac{1}{4} (+1)^n (\frac{1}{4})^n = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (\frac{1}{4$$

(3) Given $\ln(n)$. By integral test, since $\int_{1}^{\infty} \frac{\ln(x)}{x} dx = \lim_{n \to \infty} \left(\frac{u^{2}}{z}\right)_{1}^{n} diverges$ Thus $\sum_{n\geq 1} \frac{f_n(n)}{n} diverges.$ (b) Given $\sum_{n\geq 1} \frac{3n(n-1)}{n^2+1}$, By divergent test, Since $\lim_{n \to \infty} \frac{3n(n+1)}{n^2+1} = 3 \pm 0$, thus $\sum_{n > 1} \frac{3n(n+1)}{n^2+1}$ diverges (c) Given $\frac{8}{1+1} \frac{\cos(\pi i)}{j^2}$, since $\cos(\pi i) = (-1)^3$ for $j \in \mathbb{N}$. Then $\frac{10}{5} \frac{\cos(\pi t)}{12} = \frac{10}{52}$. By alternating series test,

Since $\frac{1}{J^2} > 0$ as $\frac{1}{J^2} > 0$. Then $\frac{2}{J^2}$ converges abs. Or and $\frac{1}{J^2} > \frac{1}{(J+1)^2} \left(\frac{b_n}{b_n} > \frac{b_n}{b_n} + 1\right)$ for another $\frac{1}{N^2}$ and $\frac{1}{N^2}$ by stare.

(d) Given $\frac{2}{N+1}$ let $\frac{1}{N+1}$ and $\frac{1}{N+1}$ and $\frac{1}{N^2}$ by stare.

Since lim $\frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n}} = 1 > 0$ and $\frac{\infty}{n} = \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$

converges by p-series test, so by limit comparison lest, $\frac{80}{1171}$ converges.

(a) distance + + 2 H+ 2 F3 H+ 1111

(b) since the falling distance $h = \frac{1}{2}gt^2$, then $t = \left|\frac{2h}{2}\right|$

Then, by (a), the total time is 12+ +2/24r+2/34r2+1111

(c) Since $-\frac{dx}{dt^2} = -9$ $\Rightarrow \frac{dx}{dt} = -9t + v_0$ $\Rightarrow x = -9\frac{t^2}{2} + v_0 t + x_0$ and v = +gt where $t = -9\frac{t^2}{2} + v_0 t + x_0$

(4)
(b) Given = nIm(n). By integral test, Since $\int_{1}^{\infty} \frac{dx}{x \ln(x)} = \lim_{b \to \infty} \lim_{a \to \infty} (\ln(\ln x))_{a}^{b} diverges, then \sum_{b \to \infty} \frac{1}{n \ln(n)} diverges,$ (c) Given $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$. By integral Lest, since $\int_{1}^{\infty} \frac{dx}{x \cdot \ln(x)^{2}} = \int_{1}^{\infty} \frac{dx}{x \cdot z \cdot \ln(x)} = \frac{1}{z} \int_{1}^{\infty} \frac{dx}{x \cdot \ln(x)} diverges, then \frac{2}{x \cdot x \cdot \ln(x)} diverges, then \frac{2}{x \cdot x \cdot \ln(x)} diverges$ (a) Given $\frac{8}{N^2}\frac{1}{N^27}$. Let $an = \frac{1}{N^27}$, $bn = \frac{1}{N^2}$, $since <math>\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{h^2}{h^2n} = 1>0$ and $\sum_{N=3}^{\infty} \frac{1}{N^2}$ converges by p-series, then by comparison test, N=3 N=7 converges (b) Given $\frac{N}{n=1}$ $\frac{N}{N+2}$. Let $a_{1}=\frac{N}{N+2}$, $b_{1}=\frac{1}{N^{3}}$. (or $\frac{N}{N+2} \leq \frac{1}{N^{3}}$) then use direct comparison STAL lum $\frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{h}{n+2}}{h^3} = 1 > 0$, and $\frac{10}{n+1} = \frac{1}{13}$ converges by p-series test, then by limit Comparison test. N=1 N42 converges.

.(c) Given $\sum_{n=1}^{\infty} \frac{N^2}{e^n}$. Let $a_n = \frac{n^2}{e^n}$, since, by notion text, $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)^2}{e^{n+1}}\frac{e^n}{n^2}=\lim_{n\to\infty}\frac{\left(\frac{n+1}{n}\right)^2}{e^n}=\int_{-\infty}^\infty <1.$ So mi en converges (d) Given $\sum_{n=1}^{M} \frac{z^n+3}{3^n+n}$. By comparison test, since $0 < \frac{2^{N}+3}{3^{N}+1} < \frac{2^{N}+3}{3^{N}} < \frac{2^{N}+2^{N}}{3^{N}} = 2! \left(\frac{2}{3}\right)^{N}$ and $\sum_{n=1}^{\infty} 2(\frac{2}{3})^{n}$ converges Thus = 34n cohverges (e) Given $\frac{M}{N+1} \frac{N}{(N^2+N)^2}$. Let $2N = \frac{N}{(N^2+N)^2}$. By a comparison text $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dh}{h^{-3}} = \lim_{n \to \infty} \frac{h}{(n^{3}+h)^{\frac{1}{2}}} = \frac{1}{n} > 0$ and $\sum_{n=1}^{\infty} \frac{n}{(n^3)^{\frac{1}{2}}} diverges (by p-series), then$ N=1 (N3HN) 2 diverges. (f) Given $\stackrel{\times}{\sim} \frac{e^{h}}{n}$. Let $a_{n} = \frac{e^{h}}{n}$, $b_{n} = h$. By limit comparison test

Since lum an = lum in = lum en = 1 > 0 and sirenges, Thus $\frac{2}{n}$ diverges.