Lecture1: Introduction

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Welcome!

- Electronic Circuits
 - Code: EC3207
 - Lecture 3, no experiment, credit 3
- Prerequisite
 - Electric Circuit Theory
- Instructor, Sung-Min Hong
 - School of Information and Communications (정보통신공학부)

Textbook

- Fundamentals of Microelectronics
 - An excellent book by B. Razavi
 - Second edition
- Coverage in this course
 - CMOS-oriented lecture!

Lecture

- Basic information
 - Mon/Wed 13:00-14:15, GIST SIC B, Room 206
 - Handwriting on blackboard(/chalkboard)
 - Supplemented by slides (Just like this!)

- G-Class will be actively used.
 - Please check your e-mail address!

Office hour

Office hour

- My office is located at Room 208, SIC Building A.
- Special sessions are available by appointment.

Evaluation

- Attendance (10%)
 - In addition to 10%, there is the "2/3 rule", dictated by the college.
- Homework (30%)
 - Every week (10 times?) & EDISON
- Midterm (30%)
- Final (30%)
 - Covering the whole semester
- For students from other concentrations
 - No S/U registration
 - No advantage/disadvantage rule

Highlights (1)

Band structure of silicon (Band gap ~ 1.12eV)

(J. R. Chelikowsky and M. L. Cohen, PRB, vol. 14, p. 556, 1976)

Highlights (2)

- The phosphorus atom has 5 valence electrons.
 - Additional electron (e⁻ in the right figure) serves as a charge carrier.

Pure silicon

Silicon with "impurity" atom (For example, phosphorus)

Highlights (3)

- Directly affects the DC current
 - At low electric fields, the linear relationship is valid.
 - At high electric fields, the velocity saturation starts to occur. The saturation velocity of Si is about 10⁷ [cm/sec].

Velocity-field relationship in Si at 300K

(Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices)

GIST Lecture on March 2, 2016 (Internal use only)

Highlights (4)

- Ion implantation for source/drain formation
 - Arsenic, dose=5e15<cm-2>, energy=<40keV>

Highlights (5)

Forward bias

- We can easily guess that the depletion width will be reduced.
- Potential barrier is lowered. (Equilibrium and 0.5 V)

Electric potential [V]

Position [µm]
GIST Lecture on March 2, 2016 (Internal use only)

Highlights (6)

Idealized model

Highlights (7)

A diode-resistor combination

- Consider two cases, $V_A > 0$ and $V_A < 0$.
- ← Draw the IV curve.

Highlights (8)

A system (You know what it actually represents.)

$$V_{in} \longrightarrow I_{out} = I_s \exp \frac{V_{in}}{V_T} \longrightarrow I_{out}$$

Highlights (9)

- TEM image of a MOSFET
 - 32nm node
 - (somewhat old…)

(Packan et al., IEDM 2009)

Highlights (10)

- Threshold behavior
 - Physical reason? (See p. 248)

A door threshold and a dog (Google images)

← A typical Id-Vg curve

Highlights (11)

- Current usually increases as the voltage increases...
- Recall (6.3).

$$Q = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (6.3)

- What happens when $V(x) = V_G V_{TH}$?
- "Saturation region"

← Instead, the current is saturated. (Red lines)

Voltage

Highlights (12)

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

Recall that

$$Q = WC_{ox}[V_G - V(x) - V_{TH}]$$

Highlights (13)

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Highlights (14)

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Highlights (15)

- How to apply the small-signal input
 - Use a capacitor!

Highlights (16)

Let's draw the small-signal model together!

Highlights (17)

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Highlights (18)

A resistor placed in series with the source terminal

Highlights (19)

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Highlights (20)

- Bipolar junction transistor (BJT)
 - Three doped regions forming a sandwich

Highlights (21)

- IV curves for the BJT
 - Collector and base currents

Simulated Gummel plot of a HBT (Taken from Hong, JCE, vol. 8, p. 225, 2009)

Fig. 19 Gummel plot. $V_{CB} = 0.1 \text{ V}$

Highlights (22)

- You can easily imagine that
 - There is a common-emitter configuration.

Highlights (23)

- When the output becomes 0?
 - Only when the input is high.
 - You have seen it before!

Vin	Vout
0	1
1	0

Highlights (24)

- Numeric calculation can be done with a binary system.
- Inverters and NAND gates are important.
- And, the NMOS inverter was introduced.

 V_{in}

GIST Lecture on March 2, 2016 (Internal use only)

Highlights (25)

- Guess the charging speed.
 - In other words, the PMOS current $(I_{PMOS} = C_L \frac{dV_{out}}{dt})$
 - At the beginning, the PMOS is in the saturation.
 - Later, the PMOS is in the triode. V_{DD} – When does the transition happen? $V_{in} - V_{DD} - V_{TH2} = V_{out} - V_{DD}$ - Therefore, when $V_{out} = -V_{TH2}$ V_{out}

Highlights (26)

- Load capacitor of 20 fF
 - 1 GHz signal

