Chapitre 5

Vecteurs

I. Vecteur

1) Translation

Définition:

Soit *A* et *B* deux points distincts du plan.

La translation du plan qui transforme A en B est appelé translation de vecteur \overrightarrow{AB} .

Le vecteur \overrightarrow{AB} a pour **direction** celle de la droite (AB), pour **sens** celui de A vers B et pour **norme** la longueur AB.

Exemple:

Image D d'un point C par la translation de vecteur \overrightarrow{AB} .

 1^{er} cas: $C \notin (AB)$

D est le point tel que ABDC est un parallélogramme.

 2^{e} cas: $C \in (AB)$

D est le point de (AB) tel que AB = CD et tel que le sens de C vers D soit le même que celui de A vers B.

2) Notion de vecteur

La notation \$\overline{AB}\$ se lit « vecteur \$AB\$ ».
Le vecteur \$\overline{AB}\$ est représenté par une flèche.
A est l'origine du vecteur et B son extrémité.

• Si A et B sont confondus, \overrightarrow{AB} s'écrit \overrightarrow{AA} . On dit que \overrightarrow{AA} est le **vecteur nul** noté $\overrightarrow{0}$. Ainsi $\overrightarrow{AA} = \overrightarrow{0}$. Le vecteur nul n'a pas de direction.

3) Égalité de vecteurs

Définition:

L'égalité de deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} non nuls se définit en disant qu'ils ont :

- même direction : (AB) et (CD) sont parallèles
- même sens
- même longueur

Propriété:

Deux vecteurs non nuls \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si le quadrilatère AB**D**C est un **parallélogramme** (éventuellement aplati).

Remarques:

- $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow [AD]$ et [BC] ont même milieu.
- On peut aussi utiliser une lettre pour désigner un vecteur.

Si \vec{u} est représenté par un vecteur \vec{AB} , on écrit $\vec{u} = \vec{AB}$ \vec{u} désignera tous les vecteurs égaux à \vec{AB} .

$$\vec{u} = \overrightarrow{AB} = \overrightarrow{CD}$$

 \overrightarrow{AB} , \overrightarrow{CD} sont des représentants de \vec{u} .

Propriété:

Soit trois points A, I et B.

 $\overrightarrow{AI} = \overrightarrow{IB}$ si, et seulement si, *I* est le milieu de [*AB*].

II. Somme de vecteurs

1) <u>Définition</u>

Définition:

Soient \vec{u} et \vec{v} deux vecteurs.

La somme des deux vecteurs \vec{u} et \vec{v} est le vecteur associé à la translation résultant de l'enchaînement des translations de vecteur \vec{u} et de vecteur \vec{v} .

Exemple:

En enchaînant ces deux translations, un point A a pour image le point B vérifiant $\overline{AB} = \vec{u}$ et le point B a pour image le point C avec $\overline{BC} = \vec{v}$.

Par définition, le point C est l'image du point A par la translation de vecteur $\vec{u} + \vec{v}$.

2) Relation de Chasles

Propriété:

Quels que soient les points A, B et C du plan, on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Exemple:

Soient M, N et P trois points quelconques.

- $\overrightarrow{MN} + \overrightarrow{NP} = \overrightarrow{MP}$
- $\overrightarrow{MP} + \overrightarrow{PN} + \overrightarrow{NM} = \overrightarrow{MN} + \overrightarrow{NM} = \overrightarrow{MM} = \overrightarrow{0}$

3) Règle du parallélogramme

Propriété:

Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs de même origine A.

On a $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ si, et seulement si, D est le point tel que ABDC soit un parallélogramme.

Démonstration:

• Si ABDC est un parallélogramme on a $\overrightarrow{AC} = \overrightarrow{BD}$, en utilisant la relation de Chasles, on en déduit que :

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

• Réciproquement, si $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, comme $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$, alors $\overrightarrow{BD} = \overrightarrow{AC}$ et ABDC est un parallélogramme.

Propriétés:

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

4) Opposé d'un vecteur

Définition:

L'**opposé** du vecteur \vec{u} est le vecteur, noté $-\vec{u}$, tel que $\vec{u} + (-\vec{u}) = \vec{0}$.

Un vecteur non nul et son opposé ont la même direction, le même norme, mais ont des sens contraires.

Exemple:

Soient A et B deux points.

On a $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$, ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{BA} sont opposés.

On a $\overrightarrow{BA} = -\overrightarrow{AB}$.

Remarque:

La différence $\vec{u} - \vec{v}$ est le vecteur $\vec{u} + (-\vec{v})$.

Propriété:

Si une symétrie centrale de centre O transforme un point A en un point A' et un point B en un point B', alors $\overline{A'B'} = -\overline{AB}$

III. Vecteur et coordonnées

Le plan est muni d'un repère (O; I, J).

En posant $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$, le repère (O; I, J) peut aussi s'écrire (O; \overrightarrow{i} , \overrightarrow{j}).

1) Coordonnées d'un vecteur

Définition:

Les **coordonnées d'un vecteur** \vec{u} sont celles du point M tel que $\overrightarrow{OM} = \vec{u}$.

Exemple:

Les coordonnées de M sont (3; 2) donc, par définition, les coordonnées de \vec{u} sont $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

5

Remarque:

Pour tout vecteur \vec{u} dans un repère (O; \vec{i} , \vec{j}), il existe un unique couple de réel (x; y) tel que $\vec{u} = x \vec{i} + y \vec{j}$

 \vec{u} $\begin{pmatrix} x \\ y \end{pmatrix}$ signifie que les coordonnées de \vec{u} sont (x; y). On utilise aussi la notation \vec{u} (x; y).

Remarques:

- Le vecteur nul $\vec{0}$ a pour coordonnées $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- Si $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors : $\vec{u} = \vec{v} \iff x = x'$ et y = y'

Propriété :

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$, les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

On note $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Démonstration:

Par définition, les coordonnées de \overrightarrow{AB} sont $\begin{pmatrix} x_M \\ y_M \end{pmatrix}$ où M est le point tel que $\overrightarrow{OM} = \overrightarrow{AB}$.

Il s'agit donc de prouver que :

$$x_M - x_O = x_M = x_B - x_A$$
 et $y_M - y_O = y_M = y_B - y_A$

Or OMBA est un parallélogramme, donc [AM] et [OB] ont le même milieu K.

Comme K est le milieu de [AM], $2x_K = x_M + x_A$.

De plus, K est le milieu de [OB] donc $2x_K = x_B + x_O = x_B + 0 = x_B$.

On a donc $x_M + x_A = x_B$ et, par conséquent, $x_M = x_B - x_A$

On montre de même que $y_M = y_B - y_A$

Exemple:

Soient A(3;-4) et B(5;-1), on a donc $x_B-x_A=5-3=2$ et $y_B-y_A=-1-(-4)=3$ donc:

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

2) Propriétés

Propriétés :

- Deux vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont égaux si, et seulement si leurs coordonnées sont égales.
- ABCD est un parallélogramme $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow x_B x_A = x_C x_D$ et $y_B y_A = y_C y_D$.

3) Somme de vecteurs

Propriétés :

Le plan est muni d'un repère (O; \vec{i} , \vec{j}).

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

La somme des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} = \vec{u} + \vec{v}$ de coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

<u>Démonstration :</u>

Soient
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On choisit un point $A(x_A; y_A)$ et les points $B(x_B; y_B)$ et $C(x_C; y_C)$ tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$.

On a:
$$x = x_B - x_A \quad \text{et } y = y_B - y_A$$
$$x' = x_C - x_B \quad \text{et } y' = y_C - y_B$$

On additionne les coordonnées de \vec{u} et \vec{v} :

$$x + x' = (x_B - x_A) + (x_C - x_B) = x_B - x_A + x_C - x_B = x_C - x_A$$

$$y + y' = (y_B - y_A) + (y_C - y_B) = y_B - y_A + y_C - y_B = y_C - y_A$$

On obtient les coordonnées du vecteur \overrightarrow{AC} , c'est-à-dire celles du vecteur $\overrightarrow{u}+\overrightarrow{v}$.

Exemples:

- Soit $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 4 \\ 7 \end{pmatrix}$. $\vec{w} = \vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} 2+4 \\ -5+7 \end{pmatrix}$ soit $\vec{w} \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.
- Soit A(-2;4) et B(3;-2). Le vecteur \overline{AB} a pour coordonnées : $x_{\overline{AB}} = x_B - x_A = 3 + 2 = 5$ et $y_{\overline{AB}} = 3 + 2 = 5$

donc
$$\overrightarrow{AB} = x_B - x_A = 3 + 2 = 5$$
 et $y_{\overrightarrow{AB}} = y_B - y_A = -2 - 4 = -6$ donc $\overrightarrow{AB} = 0$ et \overrightarrow{BA} a pour coordonnées 0 .