

Patent Claims

- Sub B2*
1. A computer for analyzing data from nuclear magnetic resonance, whereby the data contains at least one relaxation signal of a sample, characterized in that the computer operates with at least one analyzing means that separates the data into at least two parts that are differently dependent on an echo time T_E .
 2. The computer according to Claim 1, characterized in that the analyzing means separates the data into at least one part that is dependent on an echo time T_E and into at least one more component that is not dependent on the echo time T_E and whereby the analyzing means acquires the signals that are dependent on an echo time T_E as activation signals.
- Sub A1*
3. A nuclear magnetic resonance tomograph characterized in that it comprises at least one computer according to one of Claims 1 or 2.
- Sub B2*
4. A method to analyze data from nuclear magnetic resonance, whereby at least one relaxation signal of a sample is detected, characterized in that the data is separated into at least two parts having a different dependence on an echo time T_E .
 5. The method according to Claim 4, characterized in that the intensity values of the measured data are acquired and separated into at least two different dependences on the echo time T_E .
 6. The method according to Claim 5, characterized in that a measure of a statistical variation of the intensities is determined.
 7. The method according to Claim 6, characterized in that a standard deviation of the intensities is ascertained.

Sub A2

8. The method according to one of Claims 4 through 7, characterized in that the relaxation signal is divided into at least one part that is dependent on the echo time T_E and into at least one part that is not dependent on the echo time T_E .

9. The method according to one of Claims 4 through 8, characterized in that at least one signal is determined that is proportional to $T_E \exp(-T_E / T_2^*)$.

Sub B2

10. The method according to Claim 9, characterized in that T_2^* is ascertained with the formula $S = S_0 \exp(-T_E / T_2^*) + g$.

Sub A3

11. The method according to one or more of Claims 4 through 10, characterized in that statistical fluctuations of ΔT_2^* are ascertained.

Sub B2

12. The method according to Claim 11, characterized in that a standard deviation $\sigma(\Delta T_2^*)$ is ascertained.

13. The method according to Claim 12, characterized in that a quotient $\sigma(\Delta T_2^*) / T_2^*$ is formed and acquired as a measure of an activity.

Sub A4

14. The method according to one of Claims 4 through 13, characterized in that a statistical deviation of an initial intensity S_0 is ascertained.

Sub B2

15. The method according to Claim 14, characterized in that a standard deviation $\sigma(\Delta S_0)$ is ascertained.

16. The method according to Claim 15, characterized in that a quotient $\sigma(\Delta S_0) / \Delta S_0$ is ascertained.

Sub A5

17. The method according to one of Claims 4 through 16, characterized in that a statistical fluctuation of a noise signal g is ascertained.

Sub B2

18. The method according to Claim 17, characterized in that a standard deviation $\sigma(g)$ of g is formed.

Sub A6

19. The method according to one of Claims 4 through 18, characterized in that the recorded data is acquired in an at least two-dimensional field, whereby a field axis (DTE) acquires echo times T_E and whereby another field axis (DTR) reproduces repetitions of excitations at a time interval T_R .

20. The method according to Claim 19, characterized in that $\sigma(\Delta T_2^*)$ and $\sigma(g)$ are determined by means of the following steps:

- (i) adaptation of signals averaged over DTR to an exponential decay as a function of DTE and determination of S_0 and T_2^* ;
- (ii) calculation of $\sigma(\Delta S_0)$, $\sigma(\Delta T_2^*)$ and $\sigma(g)$ for several voxels and different T_E , followed by averaging of these values over at least one region of interest (ROI);
- (iii) adaptation of

$$\frac{\sigma(\Delta S)}{S_0} = \left\{ \left[\left(\frac{T_E}{T_2^*} \right)^2 \left(\frac{\sigma(\Delta T_2^*)}{T_2^*} \right)^2 + \left(\frac{\sigma(\Delta S_0)}{S_0} \right)^2 - 2 \frac{T_E}{T_2^*} \frac{\langle \Delta S_0 \Delta T_2^* \rangle}{S_0 T_2^*} \right] e^{-2 \frac{T_E}{T_2^*}} + \left(\frac{\sigma(g)}{S_0} \right)^2 \right\}^{1/2}$$

and determination of $\sigma(\Delta S) / S_0$ as a function of T_E .

21. The method according to Claim 20, characterized in that the expression $\langle \Delta S_0 \Delta T_2^* \rangle = 0$ is used for the adaptation of $\sigma(\Delta S_0) / S_0$.