

Intro to Python Part 1

QLS-MiCM mission statement: deliver quality workshops designed to help biomedical researchers develop the skills they need to succeed.

Location: 550 Sherbrooke Street, Montreal, Quebec

Scan the QR code to sign up for our **mailing list**

Workshop Series

Workshop	Date	Location	Registration
How to think in Code	Jan. 28 1PM-3PM	EDUC 133	Closed
Intro to Git & GitHub	Jan. 30 1PM-5PM	EDUC 133	Closed
Intro to Unix	Feb. 61PM-5PM	EDUC 133	Closed
Intro to Python (Part 1)	Feb. 11 1PM-5PM	EDUC 133	<u>Open</u>
Intro to R (Part 1)	Feb. 13 1PM-5PM	EDUC 133	<u>Open</u>
Exploring MATLAB	Feb. 18 1PM-5PM	EDUC 133	<u>Open</u>
Statistics in R (Part 2)	Feb. 20 1PM-5PM	EDUC 133	<u>Open</u>
Data Processing in Python	Feb. 25 1PM-5PM	EDUC 133	<u>Open</u>
Intro to Machine Learning	Mar. 13 1PM-5PM	EDUC 133	TBA
Intro to R (Part 1)	TBA	EDUC 133	TBA
Intro to Python (Part 1)	TBA	EDUC 133	TBA

https://www.mcgill.ca/micm/training/workshops-series

Outline

1. Module 1 – Modules and Packages (40 minutes)

- a. Using Modules
- b. A Brief Intro to Package Management
- c. Exercise

Module 2 – Introduction to NumPy Arrays (50 minutes)

- a. Introduction to Arrays
- b. Introducing NumPy
- c. Array Operations
- d. Exercise

Outline

3. Module 3 – Visualising Data with Matplotlib (50 minutes)

- a. Creating Plots with Matplotlib
- b. Exploring the Matplotlib Documentation
- c. Exercise

4. Module 4 – Intro to Tabular Data with Pandas (30 minutes)

- a. Fundamentals of pandas
- b. Exploring the pandas Documentation

5. Module 5 – A Brief Guide to Exploring the Unknown (10 minutes)

- a. What to learn next? How?
- b. How to get help and how not to get help
- c. Other cool programming topics

Interactive Workshop!

 That's pretty much all that will be in the slides... For the rest, we'll go to a Jupyter Notebook:

To the repository!

Module 2 Introduction to NumPy Arrays

my_array

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Shape: (5;6)McGill

my_array[0]?

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

my_array[0]

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Shape: (5,6)McGill

Quantitative Life Sciences quantitatives Sciences du vivant

my_array[:, 0]?

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Shape: (5;6)McGill

Quantitative Life Sciences quantitatives Sciences du vivant

my_array[:, 0]

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

my_array[1:3, 2:4]?

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

my_array[1:3, 2:4]

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

my_array[0:5:2]?

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Shape: (556) McGill

my_array[0:5:2]

(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)
(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)

Shape: (556) McGill

my_array

Module 4 Intro to Tabular Data with pandas

By name: my_df.loc

	Series 0	Series 1	Series 2
Row 0	["row 0",	["row 0",	["row 0",
	"series 0"]	"series 1"]	"series 2"]
Row 1	["row 1",	["row 1",	["row 1",
	"series 0"]	"series 1"]	"series 2"]
Row 2	["row 2",	["row 2",	["row 2",
	"series 0"]	"series 1"]	"series 2"]

By numerical index: my_df.iloc

	Series 0	Series 1	Series 2
Row 0	[0, 0]	[0, 1]	[0, 2]
Row 1	[1, 0]	[1, 1]	[1, 2]
Row 2	[2, 0]	[2, 1]	[2, 2]

To summarize

- ✓ Functions allow us to package up behaviour to use over and over.
- ✓ Data classes and enumerations help us easily represent the real world in code.
- ✓ NumPy arrays allow easily storing many numbers and performing operations without having to loop.
- ✓ Matplotlib can be used to generate many different types of plots.

Now you are ready to:

- Define your own functions to simplify important tasks.
- Define new classes to help represent new types of data.
- Use NumPy arrays to perform large calculations.
- Use Matplotlib to easily visualise your results.

Acknowledgements

- Thank you to QLS-MiCM for giving me this opportunity and for helping me along the way.
- Thank you to the professors from the McGill School of Computer Science for helping me along my programming journey and for inspiring me to share my programming experience with others.
- Thank you to Professor Mathieu Blanchette, whose COMP 204 course helped introduce me to Python (back in Fall 2018).
- Thank you to the Python, NumPy, Matplotlib and pandas communities!