Unidad IV: Relaciones

Clase 08

IIC 1253

Prof. Jorge Salas

¿cómo se definen los números naturales?

Para todo conjunto A considere el operador:

$$\sigma(A) = A \cup \{A\}$$

El conjunto de los números naturales se puede definir como sigue:

$$\begin{array}{lll} 0 & = & \varnothing \\ \\ 1 & = & \sigma(0) = \sigma(\varnothing) = \varnothing \cup \{\varnothing\} = \{\varnothing\} = \{0\} \\ \\ 2 & = & \sigma(1) = \sigma(\{\varnothing\}) = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\} = \{0, 1\} \\ \\ 3 & = & \sigma(2) = \sigma(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}\} \cup \{\{\varnothing, \{\varnothing\}\}\} \\ \\ & = & \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\} = \{0, 1, 2\} \\ \\ & : \end{array}$$

¿cuál es el significado del operador σ en \mathbb{N} ?

¿cómo modelamos redes con teoría de conjuntos?

¿cómo modelamos redes con teoría de conjuntos?

¿cómo modelamos las conecciones entre los nodos?

Grafos como conjuntos

Definición

Un grafo G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Ejemplo

- $V = \{a, b, c, d, e, f, g\}$
- $E = \{ \{a,b\}, \{a,c\}, \{a,d\}, \{a,g\}, \{b,e\}, \{c,d\}, \{d,e\}, \{d,f\}, \{e,f\}, \{e,g\} \}$

Grafos como conjuntos

Definición

Un grafo G sobre el dominio V es un subconjunto $E \subseteq \mathcal{P}(V)$ tal que para todo $e \in E$ se cumple que |e| = 2.

Notación

- Los elementos en *V* los llamaremos los vértices o nodos del grafo.
- Los elementos en *E* los llamaremos las aristas del grafo.

Teoría de grafos será muy útil durante el curso ...

Tablas o relaciones

Nombre	Curso
Marcelo	Tópicos avanzados en CS
Juan	Lógica
Jorge	Matemáticas Discretas
Cristian	Matemáticas Discretas

¿cómo representamos esta estructura con conjuntos?

Necesitamos relaciones

Una relación es una correspondencia de objetos de distintos dominios.

Varios ejemplos en matemáticas como:

■ 'menor que', 'subconjunto', 'igualdad', ...

Relaciones nos darán orden a nuestros objectos

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Pares ordenados

Definición (informal)

Una pareja de objetos (a, b) es un par ordenado si se distingue un **primer** elemento y un **segundo** elemento.

¿cómo definimos pares ordenados con teoría de conjuntos?

Pares ordenados

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{\{a\},\{a,b\}\}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si $a = c$ y $b = d$

Demostración.

En particular,
$$(a, b) \neq (b, a)$$
 para $a \neq b$.

Pares ordenados (generalización)

Definición

■ Para tres elementos a, b, c se define el triple ordenado (a, b, c) como:

$$(a,b,c) = ((a,b),c)$$

■ En general, para $a_1, ..., a_n$, se define una n-tupla ordenada como:

$$(a_1, a_2, \ldots, a_n) = ((a_1, a_2, \ldots, a_{n-1}), a_n)$$

Proposición

$$(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$$
 si, y solo si $a_i = b_i$ para todo $i \le n$

Demostración: ejercicio.

Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$

■ En general, para conjuntos $A_1, ..., A_n$ se define el **producto cartesiano generalizado**:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Ejemplos

- $\blacksquare \mathbb{R} \times \mathbb{R}$
- \blacksquare $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$

Producto cartesiano

Algunas preguntas

- 1. $i A \times B = B \times A$?
- 2. $\iota(A \times B) \times C = A \times (B \times C)$?

Ejemplo

- $(\{1\} \times \{1\}) \times \{1\} = \{1\} \times (\{1\} \times \{1\}) ?$

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

¿qué relaciones binarias conocen?

Relaciones (ejemplos)

Ejemplo

Nombre	Curso
Marcelo	Tópicos Avanzados en CS
Jorge	Matemáticas Discretas
Juan	Lógica
Cristian	Matemáticas Discretas

Considere los siguientes conjuntos A y B:

Una relación que modela la tabla anterior es:

$$R_1 = \{(Marcelo, TACS), (Jorge, MD), (Juan, Lógica), (Cristian, MD)\}$$

¿cuál es la diferencia entre una "tabla" y una relación?

Relaciones (notación)

Definición

Para una relación R y un par (a,b) usaremos la siguiente notación:

Más ejemplos de relaciones.

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Representación de relaciones

1. Grafos dirigidos.

Grafos dirigidos

Definición

Un grafo dirigido G es un par (V, E) donde:

- *V* es un conjunto (vertices),
- $E \subseteq V \times V$ es una relación binaria sobre V (aristas).

Ejemplo

- $V = \{1, 2, 3, 4\}$
- $E = \{(1,4), (2,1), (2,3), (3,3), (3,4)\}$

Grafos dirigidos

Propiedad

Toda relación binaria R sobre A se puede ver como un grafo dirigido $G_R = (A, R)$.

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Outline

Producto cartesiano

Relaciones

Representación

Operaciones

Sea A un conjunto y R una relación sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ **Proyección 1**: $\pi_1(R)$ son todos los elementos que estan en la primera componente de R.

$$x \in \pi_1(R)$$
 ssi existe un $y \in A$ tal que $(x, y) \in R$

■ **Proyección 2**: $\pi_2(R)$ son todos los elementos que estan en la segunda componente de R.

$$y \in \pi_2(R)$$
 ssi existe un $x \in A$ tal que $(x, y) \in R$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

- ¿cuál es el conjunto $\pi_1(R)$?
- ¿cuál es el conjunto $\pi_2(R)$?

¿a qué corresponde $\pi_1(R)$ en la representación de grafo dirigido?

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

■ Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

- ¿cuál es la relación R^{-1} ?
- ¿cuál es la relación R ∘ R?

¿a qué corresponde R^{-1} y $R \circ R$ en la representación de **grafo dirigido**?

Caminos en grafos dirigidos

Sea G = (V, E) un grafo dirigido.

Definición

- Un camino en G es una secuencia v_0, v_1, \ldots, v_n tal que:
 - $v_i \in V$ para todo $0 \le i \le n$.
 - $(v_i, v_{i+1}) \in E$ para todo $0 \le i < n$.
- Un camino simple en G es un camino donde todos los nodos son distintos en la secuencia.
- El largo de un camino v_0, v_1, \ldots, v_n es igual a n, esto es, el al largo de la secuencia menos uno.

Caminos en grafos dirigidos

Ejemplo

- ¿cuál es un camino de largo 2? ¿y de largo 3?
- ¿cuál es un camino simple de largo 4? ¿y de largo 5?

¿qué significa el grafo de $R \circ R$? ¿y de $R \circ R \circ R$?