Nondeterministic Finite Automata

Jan C. Bierowiec

The language $\{w \in \{0,1\}^* \mid \text{the number of 0s in } w \text{ is even}\}.$

1 State Diagram

Below is the state diagram of the NFA that accepts strings with an even number of 0s:

2 Formal Description

The NFA can be described as a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where:

$$Q = \{q_0, q_1, q_2\}$$
 the set of states $\Sigma = \{0, 1\}$ the input alphabet q_0 the start state $F = \{q_1\}$ the set of accepting states δ the transition function:

How the NFA Works

The NFA starts in state q_0 , which transitions to q_1 via an ε -transition. From q_1 , reading a 1 causes the automaton to stay in q_1 , and reading a 0 transitions it to q_2 . From q_2 , reading a 1 causes it to stay in q_2 , and reading a 0 transitions it back to q_1 . Thus, the automaton toggles between q_1 and q_2 on every 0. The NFA accepts if it ends in state q_1 , which corresponds to having read an even number of 0s.

Example Strings and Traces

Accepted Strings $\varepsilon,$ 1, 11, 0011, 1010 Rejected Strings: 0, 10, 011, 000

Trace for 1010:

$$q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_2 \xrightarrow{0} q_1 \quad \text{Accepted}$$

3 Context-Free Grammar (CFG)

The CFG that generates the same language (even number of 0s) is defined as:

$$G = (V, \Sigma, R, S)$$

where:

 $V = \{S, A\}$ the set of variables

 $\Sigma = \{0, 1\}$ the set of terminal symbols

S the start symbol

R the set of production rules

Production rules:

$$S \rightarrow 1S \mid 0A \mid \varepsilon$$

$$A \rightarrow 1A \mid 0S$$

This CFG generates all strings over $\{0,1\}^*$ with an even number of 0s.

4 Regular Expression

Since the language is regular, it can also be described by the following regular expression:

$$(1^*(01^*01^*)^*)^*$$

This expression generates all strings with pairs of 0s, possibly separated by 1s.