TAYLOR SPECTRUM

BILICH BORIS

- 1. Introduction
- 2. Preliminaries
- 2.1. **Notation.** In the article all algebras, including Lie algebras, are complex. For Lie algebra \mathfrak{g} we will use the notation $U\mathfrak{g}$ to denote its enveloping algebra. We will denote by \mathfrak{g} -mod and mod- \mathfrak{g} the categories of left and right \mathfrak{g} -modules respectively. We write $\hat{\mathfrak{g}}$ for the set of set of isomorphism classes of simple finitedimensional \mathfrak{g} -modules and \mathbb{C} for trivial bimodule. For \mathfrak{g} -module V can be defined vector spaces

$$(1) V^{\mathfrak{g}} = \{ v \in V : g \cdot v = 0 \ \forall g \in \mathfrak{g} \},$$

called invariants and

$$(2) V_{\mathfrak{a}} = V/gV,$$

called coinvariants. It is known , that $\Box^{\mathfrak{g}}$ and $\Box_{\mathfrak{g}}$ are actually functors from $\mathfrak{g}\text{-}\mathbf{mod}$ (or mod-g) to the category of vector spaces over \mathbb{C} , isomorphic to $\operatorname{Hom}_{\mathfrak{a}}(\mathbb{C},V)$ and $\mathbb{C} \otimes_{U\mathfrak{a}} V$ respectively.

2.2. Functors between categories of modules. For the rest of this section we will denote by g an arbitary finite-dimensional Lie algebra. We define two functors

 $\mathfrak{g}\text{-}\mathbf{mod}^{op} \to \mathbf{mod}\text{-}\mathfrak{g}$ and \square° : $\mathfrak{g}\text{-}\mathbf{mod} \to \mathbf{mod}\text{-}\mathfrak{g}$ as follows. The first \square^{*} , called duality functor, sends a-module V to it's dual vector space, on which the right action of \mathfrak{g} is defined as

$$(f \cdot g)(v) = f(g \cdot v)$$
, for all $f \in V^*$, $v \in V$, $g \in \mathfrak{g}$.

The second \square° , called antipode functor, sends V to itself as a vector space with right action

$$v \cdot g = -g \cdot v$$
, for all $v \in V$, $g \in \mathfrak{g}$.

These two functors define equivalence of categories g-mod, mod-g, g-mod^{op} and $\operatorname{\mathbf{mod-g}}^{op}$. We will also denote by \square^* and \square° functors from category of right \mathfrak{g} modules to left \mathfrak{g} -modules, defined the same way. It is easy to see, that $(\Box^*)^*$ and $(\Box^{\circ})^{\circ}$ are naturally isomorphic to the identity functor.

Another pair of very important functors are $\square \otimes_{\mathbb{C}} \square \colon \mathbf{mod} \cdot \mathfrak{g} \times \mathfrak{g} \cdot \mathbf{mod} \to \mathfrak{g} \cdot \mathbf{mod}$ and $\operatorname{Hom}_{\mathbb{C}}(\square,\square) \colon \mathfrak{g}\operatorname{-mod}^{op} \times \mathfrak{g}\operatorname{-mod} \to \mathfrak{g}\operatorname{-mod}$. If $V \in \operatorname{mod-}\mathfrak{g}$ and $W \in \mathfrak{g}\operatorname{-mod}$, then $V \otimes_{\mathbb{C}} W$ is the tensor product of V and W as vector space with action of \mathfrak{g} , fully determined by the formula

$$g \cdot v \otimes w = v \otimes (g \cdot w) - (v \cdot g) \otimes w$$
, for all $w \in W$, $v \in V$, $g \in \mathfrak{g}$

. The Hom functor is defined as

$$\operatorname{Hom}_{\mathbb{C}}(V,W) = V^* \otimes_{\mathbb{C}} W.$$

For $V, W \in \mathfrak{g}\text{-}\mathbf{mod}$ (resp. $\mathbf{mod}\text{-}\mathfrak{g}$), we will denote by $V \otimes W$ left $\mathfrak{g}\text{-}\mathbf{module}\ V^{\circ} \otimes_{\mathbb{C}} W$ (resp. $V \otimes_{\mathbb{C}} W^{\circ}$).

For $V \in \mathfrak{g}\text{-}\mathbf{mod}$ and $S \in \hat{\mathfrak{g}}$, we will write V_S for the $\mathfrak{g}\text{-}\mathbf{mod}$ ule $S \otimes_{\mathbb{C}} V$. If S is one-dimensional, it is fully determined by the character $\lambda \in (\mathfrak{g}/[\mathfrak{g},\mathfrak{g}])$ and in this case we will simply write V_{λ} for it. For example, \mathbb{C}_{λ} stands for one-dimensional module with action, given by $g \cdot s = \lambda(g)s$ for all $s \in \mathbb{C}_{\lambda}$ and $g \in \mathfrak{g}$. We will also use the notation V_{-S} for the module $S^* \otimes_{\mathbb{C}}$, which is motivated by the fact, that if S is again one-dimensional with character λ , then V_{-S} is isomorphic to $V_{-\lambda}$.

2.3. Homology and cohomology of Lie algebras. In this paragraph we recall the definitions of Lie algebra cohomology, which can be found in any related textbook.

Definition 1. For $V \in \mathfrak{g}\text{-}\mathbf{mod}$ and for all $k \in \mathbb{Z}_{\geq 0}$ the homology functors are defined as

(3)
$$H_k(\mathfrak{g}, V) = \operatorname{Tor}_k^{U\mathfrak{g}}(\mathbb{C}, V),$$

and, dually, the cohomology as

(4)
$$H^{k}(\mathfrak{g}, V) = \operatorname{Ext}_{U\mathfrak{g}}^{k}(\mathbb{C}, V).$$

The homology can be computed using Chevalley-Eilenberg free resolution of the trivial \mathfrak{g} module \mathbb{C} . It has $F_k = U\mathfrak{g} \otimes_{\mathbb{C}} \bigwedge^k \mathfrak{g}$ in degree k with the differential given by

$$d(u \otimes g_1 \wedge \cdots \wedge g_p) = \sum_{i=1}^p (-1)^{i+1} u g_i \otimes g_1 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge g_p +$$

(5)
$$+\sum_{i \leq j} (-1)^{i+j} u \otimes [g_i, g_j] \wedge \cdots \wedge \hat{g}_i \cdots \wedge \hat{g}_j \cdots \wedge g_p$$
, where $u \in U\mathfrak{g}, g_i \in \mathfrak{g}$.

The following fact about homology will be used in the text.

Theorem 1. Let $V \in \mathbf{mod}$ - \mathfrak{g} and $W \in \mathfrak{g}$ - \mathbf{mod} . Then

$$\operatorname{Tor}_{k}^{U\mathfrak{g}}(V,W) \cong \operatorname{Tor}_{k}^{U\mathfrak{g}}(\mathbb{C},V\otimes_{\mathbb{C}}W) = H_{k}(\mathfrak{g},V\otimes_{\mathbb{C}}W),$$

for all $k \in \mathbb{Z}_{>0}$.

Proof. Since functors $\mathbb{C} \otimes_{U\mathfrak{g}} (\square \otimes_{\mathbb{C}} W)$ and $\square \otimes_{U\mathfrak{g}} W$ are naturally isomorphic, it suffices to show, that if $P_{\bullet} \to V$ is a flat resolution of V, then $P_{\bullet} \otimes_{\mathbb{C}} W$ is a flat resolution of $V \otimes_{\mathbb{C}} W$.

By definition, flatness of P_k means exactness of functor $P_k \otimes_{U\mathfrak{g}} \square$. Using properties of tensor product we obtain an isomorphism of functors $(P_k \otimes_{\mathbb{C}} W) \otimes_{U\mathfrak{g}} \square$ and $P_k \otimes_{U\mathfrak{g}} (W \otimes_{\mathbb{C}} \square)$. The last fucntor is the composition of exact functors, so it is also exact, hence $P_k \otimes_{\mathbb{C}} W$ is flat.

A useful variation of Poincare duality holds for finite dimensional Lie algebras. Let $n = \dim \mathfrak{g}$. We endow one-dimensional vector space $\bigwedge^n \mathfrak{g}$ with structure of left \mathfrak{g} -module, which extends adjoint action by Leibnitz rule.

Theorem 2 (Poincare duality). For $0 \le k \le n$ and any left \mathfrak{g} -module V, there are vector space isomorphism

$$H^k(\mathfrak{g}, V^*) \cong H_k(\mathfrak{g}, V)^*,$$

ref weibel

ref weibel, guichardet and

$$H^k(\mathfrak{g},V)\cong H_{n-k}(\mathfrak{g},(\bigwedge^n\mathfrak{g})^*\otimes_{\mathbb{C}}V),$$

natural in V. Consequently

$$H^k(\mathfrak{g},V^*)\cong H^{n-k}(\mathfrak{g},\bigwedge^n\mathfrak{g}\otimes_{\mathbb{C}}W)^*.$$

Proof. Theorem 6.10 in

cite knapp

3. Taylor spectrum of \mathfrak{g} -module

Let $\mathfrak g$ be an arbitary Lie algebra and E be a left $\mathfrak g$ -module. We will denote by $\hat{\mathfrak g}$ the set of isomorphism classes of simple finite dimensional $\mathfrak g$ -modules.

Definition 2. The Taylor spectrum of E is the set, defined as

$$\sigma(E) = \{ V \in \hat{\mathfrak{g}} \mid \exists k \colon \operatorname{Tor}_{k}^{U\mathfrak{g}}(V^*, E) \neq 0 \}.$$

From it follows, that the definition above coincides with the original Taylor's prove it definition in case of abelian g.

- 4. Case of semisimple Lie algebra
- 5. Spectrum of one-dimensional extensions
 - 6. Case of solvable Lie algebra
 - 7. Case of Nilpotent Lie algebra
- 8. Case of Borel Subalgebra of Semisimple Lie Algebra