Mobile Roboter Blatt 1

Marian Pollak, Manuel Vogel

Frage 1: Welche Eingaben und Ausgaben hat ein Modul? Welche eine Gruppe?

- Ein- und Ausgaben können Sensordaten oder Kontrolldaten sein
- Module
 - o besitzen mehrere Ports (meistens Datenports)
 - o Input: wird genutzt um Daten zu empfangen
 - Output: wird genutzt um Daten auszugeben
 - Neben Datenports gibt es auch rpc Ports, welche Client Verbindungen handhaben

Gruppen

- o besitzen eigene Interfaces
- o Gruppen bestehen aus mehreren in Gruppen platzierten Modulen
- Input und Output wie bei Modulen

Frage 2: Worum handelt es sich bei einem Config file?

 Es handelt sich um eine xml-Datei, in der man die Standardwerte für Parameter definieren und ändern kann ohne den Code nach jeder Änderung neu zu kompilieren.

Frage 3: Wie werden Parameter in Finstruct angezeigt und manipuliert?

- In Finstruct kann angezeigt werden welche Parameter aus welcher config file gelesen werden, außerdem kann man die Verbindungen der config file mit den Parametern ändern und die Werte der Parameter manipulieren.
- Durch Parameter-connect kann man die Config File mit den Parametern verbinden, und diese werden dann durch Linien verbunden visualisiert. Zusätzlich kann man im Port Data View die Werte der Parameter ändern.

Frage 4: Wo wird angegeben, welche Komponenten eine Gruppe enthält?

- im Konstruktor der Gruppe
- in Finstruct (im Component Graph, wenn die Gruppe ausgewählt ist, dort erhält man ein Baumdiagramm mit vorhandenen Komponenten und deren Verbindungen)

Mobile Roboter Blatt 3

Marian Pollak, Manuel Vogel

- 1)
- b) 0-1000 je nach Entfernung, je näher desto höher der Wert
- c) max. Reichweite 30cm
- d) Keine Messung mehr möglich
- e) Ausschläge wenn sich der Stift vor der Laserdiode befindet

f)

Wert in Abhängigkeit von der Entfernung[cm]

- 1.2)
 - a) solange der Gegenstand davor ist kann man eine Messung feststellen, solange nicht vor dem Sensor ist wird keine Messung festgestellt.

b)

Roundtriptime[s] in Abhängigkeit der Entfernung[cm]

2)

- a) -Color Map funktioniert normal (jedoch mit hoher Latenz)
 - -Confidence gibt uns random Werte
 - -Depth gibt lediglich ein schwarzes Bild aus
 - -Point Cloud wird nicht angezeigt
- b) Wissen wir nicht, da keine Daten zur Überprüfung vorliegen
- c) Der Sensor kann kein Glas erkennen und keine Objekte, deren Oberfläche zu wenig Texture hat.

2.1)

- c) Koncept-Detection:
 - -Detect 'Street' boundaries, try to detect if something within the street boundaries is sticking out ('Obstacle') → irregularity detected
 - → Obstacle detected

Koncept-Avoidance:

- -Detect Obstacle → State machine
- -get Obstacle width
- -square Obstacle width to create 'safety cube' arround the obstacle
- -set the center point of 'safety cube' to center of detected object
- -detect nearest Boundry to Obstacle
- -vehicle shall hug other Boundry (furthest to Obstacle) for a certain period of time

d)
 Objekte konnten erkannt werden, jedoch konnte nicht unterschieden werden zwischen verschiedenen Objekte. Außerdem konnte bei der Reichweite nur bis 2 Meter zuverlässig Objekte erkannt werden, oberhalb der 2 Meter Marke wurde der

Boden als Objekt mit erkannt. Durch bessere Kalibrierung könnte man dies jedoch herausfiltern.

Verbessern:

- -Bilderkennung
 - -trainieren von NN
- -Einbeziehen von Bedingungen:
 - -Farblicher Abgleich
 - -räumlicher Abgleich

Mobile Roboter Blatt 4

Marian Pollak, Manuel Vogel

Aufgabe 1a

Saturation: Farbstärke des Bildes

ISO: Multiplikator der Helligkeit

Constrast: Unterschiede zwischen verschiedenen Helligkeiten. Beeinflusst Differenz

zwischen Farben

Sharpness: Schärfegrad (ob es weichgezeichnet ist oder klare Kanten hat)

Brightness: Beeinflusst die Helligkeit (Gamma*) des Bildes

1c

$$U = 0.493 * (B-Y)$$

$$V = 0.877 * (R-Y)$$

$$R = Y + (1/0.877) * (V -128)$$

$$G = Y - (0.3455 * (U - 128)) - (0.7169 * (V-128))$$

$$B = Y + (1/0.493) * (U-128)$$

Formel link

Farbe	RGB	YUV
Weiß	255, 255, 255	255, 128, 128
Grau	128, 128,128	128, 128, 128
Rot	254, 0, 0	76,85,255
Grün	0, 255 , 0	149, 43, 21
Blau	0, 0, 255	29, 255, 107
Hellblau	98, 128, 254	134,196,103

Aufgabe 2

Color Blob von Cones

Aufgabe 3Bild mit Helligkeitsveränderung und beispielhaftem Rechteck.

Aufgabe 4

a)

Die einzelnen Farben unterscheiden sich nur im U und V Wert. Hierbei liegen die Primärfarben nicht an den Ecken des Farbbereichs.

b)

RGB Vorteile:

- am intuitivsten
- nahe der menschlichen Wahrnehmung
- additive Farbmischung möglich
- gut geeignet für Monitore und Displays

YUV Vorteile:

- zieht die Physiologie menschlichen Sehens mit ein
- sparsamer an Bandbreite als RGB
 - Da nur Schwarzweißbild voll aufgelöst werden muss (Y-Channel) und die andern Channels können niedriger aufgelöst übertragen werden.
 - Fehlende Grüninformation kann nachträglich berechnet werden.

HSI Vorteile:

- einfache Auswahl einer bestimmten Farbe
- Gut geeignet für Bildbearbeitung, da eine Farbe gewählt werden kann und dann ihre Sättigung und Helligkeit angepasst werden kann.