7/27/2018

Project Report

BATCH 39 - PHD

Kunal Ray

Problem Description

Air travel is becoming increasingly complex with multiple variables impacting the same. The flight delay is one of such variables that impacts carrier, Airport and passenger and may result in significant commercial loss or reputation loss to all the stakeholders and thus huge cost on the economy. Thus, prediction of delay is crucial not only from view point of customer from time management perspective and carrier for retention of customer faith but also from Airport point of view for managing the traffic more efficiently to optimize the number of arriving flights by appropriate adjustment of schedules. The contribution of weather conditions has been identified to be the very important contributor of these delays.

It is of the utmost interest of one of the participants of ecosystem to predict flight delays based on the flights details and predicted weather conditions by a good predictive model, which you are going to build, to take the necessary corrective and preventive actions to improve business as well as service.

Data Provided

The historical data containing scheduled departure and arrival times, date, origin, destination and weather data is available, and the data scientists can predict if delay can happen or not using the flight data and aviation weather data for a specific flight.

Every single flight is observed as per their scheduled departure and arrival timestamps, to record the details of trips made, traffic conditions, etc. Flight details like Origin, destination, date of flight, scheduled departure and scheduled arrival time stamps etc. Weather stations data details like station id along with its linked AirportID, ground height etc. Hourly aviation weather conditions data also provided for 2 years etc. Origin, Destination details in flight data can be mapped to the AirportID in other datasets.

Train.csv: Flight Trip Details		
Attribute Name	Data Type	Description
FlightNumber	ID	ID
Year	Date	Travel Year
Month	Date	Travel Month
DayofMonth	Date	Travel Date – day of Travel Month
DayofWeek	Categorical	Day of week (1 to 7)
ScheduledDepTime	Time Stamp	Scheduled flight departure time at Origin
ScheduledArrTime	Time Stamp	Scheduled flight arrival time at Destination
ScheduledTravelTime	Integer	Scheduled travel time in minutes
Origin	ID	Flight starting location code
Destination	ID	Flight destination location code
Distance	Integer	Distance in miles b/w origin & destination
ActualArrivalTimeStamp	Date Time	Flight Actual Arrival TimeStamp

Weather Data (*hourly.txt)		
Attribute Name	Data Type	Description
WeatherStationID	ID	ID
YearMonthDay	Date	Date
Time	Time	Reported as Local Standard Time
SkyConditions	Categorical	SkyConditions
Visibility	Numeric	Visibility measured in Statuet Miles (SM)
DBT	Numeric	Dry Bulb Temperature – reported in deg C
DewPointTemp	Numeric	In deg C
RelativeHumidityPercent	Numeric	In %age
WindSpeed	Numeric	Reported in knots
WindDirection	Numeric	Direction from which wind blows. Reported to nearest
		degree, from true north
WindGustValue	Numeric	Maximum 5-second peak wind speed measured
StationPressure	Numeric	The pressure felt at that station or spot, but not adjusted
		to an equivalent at sea level

Precipitation Data (*hpd.txt)			
Attribute Name Data Type Description			
WeatherStationID	ID	ID	
YearMonthDay	Date		
Time	Time Stamp	Reported as Local Standard Time	
HourlyPrecip	Numeric	Precipitation to measure rain fall amount (in mm)	

AllStationsData_PHD.txt		
Attribute Name	Data Type	Description
WeatherStationID	ID	ID
AirportID	ID	ID
GroundHeight	Numeric	GroundHeight
StationHeight	Numeric	StationHeight
BarometerHeight	Numeric	BarometerHeight
Latitude	Numeric	Measure for precise location
Longitude	Numeric	Measure for precise location
TimeZone	Categorical	TimeZone

Approach & Data Consolidation

In order to solve the afore – mentioned problem, disparate data sources need to be aggregated separately and then combined. Pre – processing has to be done multiple times and new features related to the industry need to be generated from existing ones.

A few additional openly available variables from verified sources could be added to improve the accuracy further.

Fig1: Flight routes across all data rows from Train.csv

Step 1: Finding list of Weather Stations which are closest to each other.

To start with, load the file "AllStationData_PHD.txt" into R. There are various information points which together uniquely identify any weather station. Calculate the distance between each Weather Station & Every Other Weather Station based on Latitude, Longitude, Ground Height, Station Height, Barometer Height & Time Zone.

After individual distances have been calculated, order them in ascending order and pick top 5 and add these Weather Station IDs as the 5 closest Weather Station IDs. These 5 closest Weather Stations shall be used in the next step for imputing missing values.

For this exercise, R packages 'sp' and 'rgeos' was used. First closest, 2nd closest, 3rd closest etc. stations were identified separately and then merged with the Weather Station data frame.

Results are saved in 'closestation.rds' and code chunk can be found in 'StationData.r'.

```
library(sp)
library(rgeos)
stationdata$WeatherStationID<-as.factor(stationdata$WeatherStationID)
stationdata$GroundHeight<-as.numeric(stationdata$GroundHeight)
stationdata$StationHeight<-as.numeric(stationdata$StationHeight)
stationdata$BarometerHeight<-as.numeric(stationdata$BarometerHeight)
stationdata$TimeZone<-as.numeric(stationdata$TimeZone)</pre>
sp.stndata <- stationdata
coordinates(sp.stndata) <- ~GroundHeight+StationHeight+BarometerHeight+Latitude+Longitude+TimeZone
class(sp.stndata)
d <- gDistance(sp.stndata, byid=T)</pre>
# Finding closest match
min.d <- apply(d, 1, function(x) order(x, decreasing=F)[2])</pre>
newdata1 <- cbind(stationdata, stationdata[min.d,], apply(d, 1, function(x) sort(x,decreasing=F)[2]))</pre>
colnames(newdata1) <- c(colnames(stationdata), 'ClosestWS', 'n.AirportID', 'n.GroundHeight',</pre>
                        'n.StationHeight', 'n.BarometerHeight', 'n.Latitude', 'n.Longitude',
                        'n.TimeZone','distance')
```

Fig 2: Distance calculation b/w Weather Stations & Finding Closest Matches

Step 2: Loading & Imputing Precipitation Data

HPD data is loaded from files '2004*.txt' & '2005*.txt' into R environment. Using R's 'lubridate' package, the dates are converted to required formats and changed to factor. Minute level time data is converted to two – hourly time slots thus giving 12 slots per day.

After that, precipitation is aggregated by Weather Station, Year Month Day, Time Slot to give an average value and remove any minute level NULL values.

At this point, the existing data frame is merged with the file 'closestation.rds' which is derived in the previous step. If the precipitation information is missing for any Weather Station, Date & Time Slot combination, it is attempted to be filled by the mean values from the 5 closest Weather Stations.

The same step is followed for all months separately for Train as well as for Test Data months. Post this, the consolidated precipitation data is saved externally in the file 'hpd.rds' and 'hpdTest.rds' for Train & Test respectively. The relevant code files are as follows:

Month	Train	Test
January	hpd01.R	N/A
March	hpd03.R	hpd03Test.R
May	hpd05.R	N/A
July	hpd07.R	hpd07Test.R
September	hpd09.R	hpd09Test.R
November	hpd11.R	hpd11Test.R
Consolidated	hpd.R	hpdTest.R

```
# Merging with Closest Weather Stations
rm(hpd200401) # Free up memory
temp<-hpd0401
names(hpd0401)[names(hpd0401) == "AvgPrecip"] = "OrigPrecip"
hpd0401<-sqldf('select a.*, b.AvgPrecip from hpd0401 a left join (select Key0, AvgPrecip from temp) b
           on a.Key1=b.Key0')
names(hpd0401) [names(hpd0401) == "AvgPrecip"] = "ClosestPrecip"
hpd0401<-sqldf('select a.*, b.AvgPrecip from hpd0401 a left join (select Key0, AvgPrecip from temp) b
           on a.Key2=b.Key0')
names(hpd0401)[names(hpd0401) == "AvgPrecip"] = "Closest2ndPrecip"
hpd0401<-sqldf('select a.*, b.AvgPrecip from hpd0401 a left join (select Key0, AvgPrecip from temp) b
           on a.Key3=b.Key0')
names(hpd0401)[names(hpd0401) == "AvgPrecip"] = "Closest3rdPrecip"
gc()
hpd0401<-sqldf('select a.*, b.AvgPrecip from hpd0401 a left join (select Key0, AvgPrecip from temp) b
           on a.Key4=b.Key0')
names(hpd0401)[names(hpd0401) == "AvgPrecip"] = "Closest4thPrecip"
hpd0401<-sqldf('select a.*, b.AvgPrecip from hpd0401 a left join (select Key0, AvgPrecip from temp) b
           on a.Key5=b.Key0')
names(hpd0401)[names(hpd0401) == "AvgPrecip"] = "Closest5thPrecip"
qc()
# Check for null values & impute using closest neighbours
rm(temp) # Remove temp file
rm(closestation) # Remove unrequired file
colSums(is.na(hpd0401)) # NA values in OrigPrecip column
hpd0401$0rigPrecip<-ifelse(is.na(hpd0401$0rigPrecip),rowMeans(hpd0401[,c("ClosestPrecip", "Closest2ndPrecip",
                                                                  "Closest3rdPrecip","Closest4thPrecip",
"Closest5thPrecip")], na.rm=TRUE),
                        hpd0401$OrigPrecip)
```

Fig 3: Aggregation & Imputation of Hourly Precipitation Data

Step 3: Loading & Imputing Weather Data

HLY data for 2004 & 2005 is loaded via files '2004*hourly.txt' and '2005*hourly.txt' respectively. Following pre – processing steps are carried out on each hourly file:

- 1. Visibility column has a unit 'SM' attached to it, making it factor. Units are first removed and then it is converted to numeric.
- 2. The column 'Sky Condition' has several levels such as BKN*, CLR, OVC*, VV*, SCT* etc. Search on the web shows that these levels are codes for heights of cloud layers¹. For example: BKN022 indicates a broken (over half the sky) cloud layer with its base at 2200 ft. The lowest BKN or OVC layer specifies the cloud ceiling. If the code is VV*, it means that clouds cannot be seen because of fog or heavy precipitation, so vertical visibility is given instead. Clear Sky means that there are no clouds below 12000 ft.

To consolidate, if any OVC, BKN or VV cases are observed below 12000 ft. that height is considered as the cloud ceiling else 12000 ft. is taken as the cloud ceiling.

¹ https://en.wikipedia.org/wiki/METAR

Fig 4: Deriving cloud ceiling based on Sky Condition

- 3. The next step is deriving Time Slots after the Year Month Day information has been converted to date format using 'lubridate'.
- 4. Post this, all weather data is aggregated by Weather Station, Year Month Day, Time Slot as average values to ensure removal of any minute level NULL values.
- 5. This is followed by merging with the file 'closestation.rds' derived from Step #1 and Weather Data across same time slot, date and closest location(s) are merged with the original data frame. In case any weather information is missing for any of the station date time slot combinations, it can be imputed using the means of the closest 5 stations for the same station date & time slot combinations.

Same steps are followed for each of the Train & Test months one by one and then consolidated. Following are the files which are used for this.

Month	Train	Test
January	hly01.R	N/A
March	hly03.R	hly03Test.R
May	hly05.R	N/A
July	hly07.R	hly07Test.R
September	hly09.R	hly09Test.R
November	hly11.R	hly11Test.R
Consolidated	hly.R	hlyTest.R

Step 4: Pre - processing Train & Test & Merging

Train & Test Files are loaded. Scheduled date is derived using Year, Month & Date. Scheduled arrival time is loaded and converted to timestamp. Similarly, actual arrival timestamp is obtained.

Fig 5: Derivation of Target (Dependent) Variable

The target variable is derived by finding the difference between the scheduled and actual arrival time stamps and selecting those cases where time difference is at least 15 minutes.

In the next step, Scheduled Departure & Scheduled Arrival Times are converted to two hourly time slots. Bureau of Transport Statistics (BTS) which provides the carrier, tail number and flight number information. This data is available openly for download² and is added to the train data frame.

Day of Week & Month are converted to factors and finally the precipitation and weather data from Step 2 & Step 3 are merged with Train & Test Data to derive a consolidated data structure stored in 'flight.rds' & 'flighttest.rds' respectively.

Fig 6: Merger of train data with weather information for origin & destination

Visualization

Fig 7: Instances of flight delay are observed more in some origin airports compared to others

² BTS Data can be found here: https://transtats.bts.gov/DL SelectFields.asp **OR** https://drive.google.com/drive/folders/1_guRqrP__cYQkOlgXpdSruteMCANzfBO

Fig: 8 Instances of flight delay are observed more in some destination airports compared to others

Fig 9: Flight delay is observed less when departure slot is b/w 4AM-6AM, 6PM-8PM or 2AM-4AM

Fig 10: Flight delay is observed less when arrival slot is b/w 8PM-10PM, 6AM-8AM, 10PM-Midnight or 4AM-6AM

Fig 11: Some carriers are found to be more prone to delays than others

Visualization of Weather Data

Further Pre – processing based on Visualization & Feature Engineering

Read in 'flight.rds' and 'flighttest.rds' as derived in the previous step. Following features were generated

1. US Holiday Lists for 2004³ & 2005⁴ were downloaded and a new column (number of days from nearest holiday was generated). Code snapshot is given below.

```
# Deriving column days from nearest holiday for 2004

x<-1:nrow(flight) # Calculating number of rows
y<-1:nrow(hols04) # Calculating number of rows

flight$nrsthol<-365
flight$nrsthol<-as.integer(flight$nrsthol)
flight$SchedDate<- as.POSIXct(flight$SchedDate, format="%Y-%m-%d",tz = 'GMT')

for (i in seq_along(x)) {
   for (j in seq_along(y)) {
     temp1<-flight[i,c('nrsthol')]
     temp2<-difftime(flight[i,c('SchedDate')], hols04[j,c('Date')],units = "days")
     temp2<-abs(as.integer(temp2))
     temp1<-ifelse(temp2<temp1,temp2,temp1)
     flight[i,c('nrsthol')]<-temp1
}
</pre>
```

Fig 12: Derivation of 'nrsthol' column for 2004

Fig 13: Distribution of Days from Nearest Holiday vs Delay Status

2. Impute any remaining missing values using Central Imputation from DMwR.

³ US 2004 Holiday List: https://www.timeanddate.com/holidays/us/2004

⁴ US 2005 Holiday List: https://www.timeanddate.com/holidays/us/2005

- 3. Reduce the number of levels in Origin & Destination based on Visualization keeping the most important ones and tagging rest as 'Others'.
- 4. Similarly, reduce the number of levels in Scheduled Departure & Scheduled Arrival time slots.
- 5. **Dew Point Temperature Dry Bulb Temperature Ratio:** The dew point in relation to the temperature gives the pilots information about the humidity and can affect visibility. If the dew point is close to the temperature, humidity is high, which can cause hazy conditions or even fog.⁵ Keeping this in mind, the ratio of Dry Point Temperature & Dew Point Temperature was created as an additional feature.

```
# Creating DewPtTemp DBT Ratio

flight$OrigDPTDBTRat<-flight$OrigDewPtTemp/flight$OrigDBT
flight$DestPTDBTRat<-flight$DestDewPtTemp/flight$DestDBT

flighttest$OrigDPTDBTRat<-flighttest$OrigDewPtTemp/flighttest$OrigDBT
flighttest$DestPTDBTRat<-flighttest$DestDewPtTemp/flighttest$DestDBT

# Calculating MaxDewPtTempDBTRatio

flight$DEwPTTempDBTRatMax<-apply(flight[,c('OrigDPTDBTRat','DestPTDBTRat')],1,max)
flighttest$DEwPTTempDBTRatMax<-apply(flighttest[,c('OrigDPTDBTRat','DestPTDBTRat')],1,max)

flight$OrigDPTDBTRat<-NULL
flight$DestPTDBTRat<-NULL
flighttest$OrigDPTDBTRat<-NULL
flighttest$DestPTDBTRat<-NULL
flighttest$DestPTDBTRat<-NULL
```

Fig 14: Creation of Feature DewPtTemp/DBT

- 6. **Density Altitude:** Air density is perhaps the single most important factor affecting aircraft performance. It has a direct bearing on.
 - a) Lift generated by the wing
 - b) Efficiency of a propeller or rotor
 - c) The power output of any engine etc.⁶

Therefore, with the existing available features, the density altitude was derived as an additional feature using the following formula:

$${
m DA} = (145442.16~{
m ft}) imes \left(1 - \left[rac{(17.326~{
m ^{\circ}F/inHg}) imes P}{459.67~{
m ^{\circ}F} + T}
ight]^{0.235}
ight)$$

⁵ https://aviation.stackexchange.com/questions/25231/why-do-pilots-need-the-ceiling-time-and-dew-point-in-the-atis

⁶ https://en.wikipedia.org/wiki/Density altitude

```
# Calculating Density Altitude

flight$OrigDBTF<-flight$OrigDBT*1.8+32
flight$DestDBTF<-flight$DestDBT*1.8+32

flighttest$OrigDBTF<-flighttest$OrigDBT*1.8+32

flighttest$DestDBTF<-flighttest$DestDBT*1.8+32

flight$OrigDA<-145442.16*(1-((17.326*flight$OrigStnPres)/(459.67+flight$OrigDBTF))^0.235)

flight$DestDA<-145442.16*(1-((17.326*flight$DestStnPres)/(459.67+flight$DestDBTF))^0.235)

flighttest$OrigDA<-145442.16*(1-((17.326*flighttest$OrigStnPres)/(459.67+flighttest$OrigDBTF))^0.235)

flighttest$DestDA<-145442.16*(1-((17.326*flighttest$OrigStnPres)/(459.67+flighttest$OrigDBTF))^0.235)

flighttest$DestDA<-145442.16*(1-((17.326*flighttest$DestStnPres)/(459.67+flighttest$DestDBTF))^0.235)

flight$MaxDA<-apply(flight[,c('OrigDA', 'DestDA')],1,max)
flighttest$MaxDA<-apply(flighttest[,c('OrigDA', 'DestDA')],1,max)
```

Fig 15: Calculating Density Altitude

7. This was followed by splitting the data into Train & Validation and then Standardization of numerical features.

Model Building

1. **Logistic Regression:** The first model built on the train data was Logistic Regression using Step AIC. After removing multi – collinearities, the final model emerged with the following ROC Curve.

Following are the performance metrics of the model:

Metric	Train	Validation
Accuracy	0.8449	0.8485
Sensitivity/Recall	0.326	0.346
Precision	0.6977	0.708
F1 Score	0.4448	0.465

2. **Decision Trees – CART:** Following are the important features and performance metrics on Validation Data.

DEWPTTempDBTRatMax	OrigRelHumPerc	DestRelHumPerc	OrigVis
211.7488803	149.7313904	99.0939060	69.6231826
DestSkyCond	OrigPrecip	OrigSkyCond	SchDepSlot
66.8187516	45.5390075	42.6171986	13.1025865
DestVis	Origin	OrigDBT	SchArrSlot
11.1245245	9.5427039	8.2176088	5.8049434
DestPrecip	OrigDewPtTemp	OrigWindDir	MaxDA
2.6631225	2.0348365	1.7246125	0.9063118
Distance	OrigWindSp	DestDewPtTemp	
0.3976127	0.1658555	0.1325376	

Validation Performance of basic CART Model		
Accuracy 0.8356		
Sensitivity	0.3393	
Specificity 0.9522		
F1 Score 0.3533		

Model tuning by changing cp

Validation Performance of tuned CART Model		
Accuracy 0.8378		
Sensitivity	0.3710	
Specificity	0.9474	
F1 Score	0.3768	

3. **Random Forest:** Following is a summary of important variables and performance on Validation Data.

Validation Performance of basic RF Model		
Accuracy 0.858		

Sensitivity	0.4118
Specificity	0.9628
F1 Score	0.4483

Model tuning using mtry

Validation Performance of tuned RF Model		
Accuracy	0.8597	
Sensitivity	0.4186	
Specificity	0.9633	
F1 Score	0.4561	

4. **C5.0 with Cross Validation:** Following are the performance metrics on Validation Data.

Accuracy	0.8386
Sensitivity	0.4977
Specificity	0.9187
F1 Score	0.4429

Feature Selection using CARET 'rfe'

Large Subset: Visibility at Origin, Origin Sky Conditions, Visibility at Destination, Dew Point Temperature DBT Ratio, Destination Relative Humidity Percentage, Origin Relative Humidity Percentage, Destination Sky Conditions, Origin Dew Point Temperature, Origin Station Pressure, Origin Precipitation, Origin DBT, Destination Dew Point Temperature, Density Altitude, Destination DBT, Destination Precipitation, Distance.

Small Subset: Visibility at Origin, Origin Sky Conditions, Visibility at Destination, Dew Point Temperature DBT Ratio, Destination Relative Humidity Percentage

5. **ADA Boost with Large Subset Feature Selection:** Following are the performance metrics on Validation Data.

Accuracy	0.8438
Sensitivity	0.3914
Specificity	0.9501
F1 Score	0.4024

6. **Neural Net with Large Subset Feature Selection:** Following are the performance metrics on Validation Data.

Accuracy	0.8231
Sensitivity	0.3937
Specificity	0.9240
F1 Score	0.3562

7. **C5.0 with Small Subset Feature Selection:** Following are the performance metrics on Validation Data.

Accuracy	0.8382
Sensitivity	0.3213
Specificity	0.9596

8. **ADA Boost with Small Subset Feature Selection:** Following are the performance metrics on Validation Data.

Accuracy	0.8391
Sensitivity/Recall	0.3801
Specificity	0.9469
Карра	0.3849

9. **Random Forest with Small Subset Feature Selection:** Following are the performance metrics on Validation Data.

Accuracy	0.8305
Sensitivity	0.3823
Specificity	0.9357
Карра	0.3662

