

Progress in Pixelless Electron-Finding

Jim Pivarski

Cornell University

21 July, 2006

Pixelless Electrons — Jim Pivarski (1/15)

last time: submitted dummy producer and object (SiStripElectronProducer and SiStripElectron)

implemented simple "band" algorithm

Pixelless Electrons — Jim Pivarski (2/15)

last time: submitted dummy producer and object

(SiStripElectronProducer and SiStripElectron)

implemented simple "band" algorithm

today: added useful features to algorithm

output TrackCandidates and fit tracks

(KFFinalFit with material)

produced diagnostic plots

Pixelless Electrons — Jim Pivarski (3/15)

last time: submitted dummy producer and object

(SiStripElectronProducer and SiStripElectron)

implemented simple "band" algorithm

today: added useful features to algorithm

output TrackCandidates and fit tracks

(KFFinalFit with material)

produced diagnostic plots

however: tracking efficiency is 3%

electrons and fitted tracks are not yet associated

Band Algorithm

- ightharpoonup plot hit ϕ versus hit radius (mentally)
- project a line from SuperCluster position and energy
- ightharpoonup count hits within a $\Delta \phi$ band

New Features in SiStripElectronProducer

- ▶ linear fit z(r) of stereo hits determine vertex z and η
- $ightharpoonup \Delta z$ window provides more hit discrimination
- ▶ linear fit to $\phi(r)$ yields ϕ_0 , average p_T , and χ^2
- we try both charge hypotheses but accept only one
- hits associated with each SuperCluster are disjoint sets
- output hits and trajectory as a TrackCandidate for fitting

Pixelless Electrons — Jim Pivarski (6/15)

Sample .cfg excerpt

```
# Find the electrons
include "RecoEgamma/EgammaElectronProducers/data/findElectronsInSiStrips.cfi"
# TrackProducer
include "RecoTracker/TrackProducer/data/CTFFinalFitWithMaterial.cfi"
replace CTFWMaterial.src = "findElectronsInSiStrips"
# Associate fitted tracks with SiStripElectrons to make reco:: Electrons (future)
include "RecoEgamma/EgammaElectronProducers/data/buildElectronObjects.cfi"
path p = {
    findElectronsInSiStrips,
    CTFWMaterial.
    buildElectronObjects
                               # (future)
  }
                    reco::SiStripElectrons
   SiStripElectronProduce
                                                        SiStripElectronAssociator - reco::Electrons
                     TrackCandidates → TrackProducer → reco::Tracks
                                                            (future)
```


Diagnostic Plots

- Using Chris Jones's new FWCore/TFWLiteSelector
- lacksquare 50 GeV, $\eta=$ 0 electron gun, $\Delta\phi$ band width = 0.01 rad
- ▶ 400 events, 378 identified electrons, 11 fitted tracks

Late-breaking news:

I brought this up at the tracking meeting, and they pointed out two things:

- ▶ We need to sort hits given to the tracker.
- ▶ We need to reduce the number of noise hits.

This will probably make a difference.

Before track fitting (reco::SiStripElectrons)

Linear fit of hits to $\phi(r)$ yields ϕ_0 and average p_T

pT of identified electron

fitted ϕ_0 – true ϕ_0

fitted p_T for 50 GeV

After track fitting (reco::Tracks)

Full track-fit, evaluated at the closest point to the origin

fitted p_T for 50 GeV

Before track fitting (reco::SiStripElectrons)

Linear fit of stereo hits to z(r) yields z_0 and η

fitted η for $\eta = 0$

After track fitting (reco::Tracks)

Full track-fit, evaluated at the closest point to the origin

fitted η for $\eta = 0$

What units is the vertex in, anyway?

```
module VtxSmeared = VertexGenerator {
   string type = "IOMC/EventVertexGenerators/GaussianEventVertexGenerator"
   double SigmaX = 0.015
   double SigmaY = 0.015
   double SigmaZ = 53.0 // in mm (as in COBRA/OSCAR)
}
```

Output of HepMC::GenParticle::CreationVertex().z():

χ^2 values are very poor

 $log_{10}(\chi^2/N_{dof})$ of linear fit (reco::SiStripElectrons)

$$\log_{10}(\chi^2/N_{\rm dof})$$
 of full fit (reco::Tracks)

Next steps

Track seeding

- Ask tracking experts about track-fitting failures
- Ask Ursula and Claude how they are seeding tracks
- Write track-electron associator

Hit matching

- ► Apply it to multi-electron (physics!) events, QCD
- Study hit distributions and track efficiency in a realistic environment
- Improve electron identification algorithm