

I. E. S. "SAN ISIDRO"

Calificación

 $=\frac{1+\frac{2}{n}-1}{2}=\frac{1}{n}=f(\frac{n+2}{n}).$

pellidos Nomb

13. Sea D=D(0,2). dExiste alguna función holomorfa en D que $Verifique f(in) = -\frac{1}{n^2}$ y $f(\frac{n+2}{n}) = \frac{1}{n}$ $\forall n > 4$?

Supongamos que existe.

 $(on sidera mos gh(z) = z^2$ y $g(z) = \frac{z-1}{2}$ funciones enteras

Se tiene que $h(\frac{i}{n}) = -\frac{1}{h^2} = f(\frac{i}{n})$ y $g(\frac{n+2}{n}) = \frac{n+2}{n} - 1 = \frac{n+2}{2}$

h coindide con f en los punlos de la

sucesión { i } que tiene un punto de acomoleción en D (e10).

Por el principio de identidad hit en D.

Anémogramente q coincide con f en los pontos de la sucesión {\frac{n+2}{n}} \langle que liene un pontode acomulación en D (el 1).

Por el principio de identidad g=fenD.

Pero claramente g = h en D par lo que no prede existir una función bolomorta que verifique eso.