Z1-PU7 WYDANIE N1 Strona 1 z 3		Z1-PU7		Strona 1 z 3
--------------------------------	--	--------	--	--------------

KARTA PRZEDMIOTU

(pieczęć wydziału)

1. Nazwa przedmiotu:BAZY DANYCH2. Kod przedmiotu:BD

3. Karta przedmiotu ważna od roku akademickiego: 2019/20

4. Forma kształcenia: studia pierwszego stopnia

5. Forma studiów: studia stacjonarne

6. Kierunek studiów: INFORMATYKA (SYMBOL WYDZIAŁU) RMS

7. Profil studiów: praktyczny

8. Specjalność: WSZYSTKIE

9. Semestr: IV

10. Jednostka prowadząca przedmiot: Instytut Matematyki

11. Prowadzący przedmiot: dr inż. Mariusz Pleszczyński

12. Przynależność do grupy przedmiotów: Wybrane działy informatyki

13. Status przedmiotu: obowiązkowy

14. Język prowadzenia zajęć: polski

15. Przedmioty wprowadzające oraz wymagania wstępne: podstawowa umiejętność programowania co najmniej w jednym z języków: C++, C#, PHP.

16. Cel przedmiotu: Zapoznanie się z podstawowymi pojęciami i koncepcjami technologii systemów baz danych. Zapoznanie się z podstawowymi zasadami modelowania i projektowania baz danych, relacyjnym modelem danych, standardowym językiem baz danych SQL, normalizacją baz danych oraz logiczną organizacją i podstawowymi strukturami fizycznymi danych wykorzystywanymi w systemach baz danych.

17. Efekty kształcenia

Student który zaliczy przedmiot:

Nr	Opis efektu kształcenia	Metoda	Forma	Odniesienie
		sprawdzenia	prowadzenia	do efektów
		efektu	zajęć	dla kierunku
		kształcenia		studiów
1	zna i rozumie podstawowe pojęcia związane z	egzamin,	wykład,	K1P_W14,
	zasadami modelowania i projektowania baz danych,	projekt	laboratorium	K1P_U26, K1P_K04
2	zna i potrafi stosować podstawowe pojęcia związane z normalizacją baz danych,	egzamin	wykład	K1P_U26
3	potrafi zaimplementować strukturę bazy danych przy użyciu języka SQL,	projekt, kolokwium	laboratorium	K1P_W14
4	potrafi modyfikować dane w bazie danych przy użyciu języka SQL,	egzamin, projekt, kolokwium	wykład laboratorium	K1P_W14, K1P_U11
5	potrafi formułować zapytania wydobywające dane do baz danych przy użyciu języka SQL,	egzamin, kolokwium, projekt	wykład laboratorium	K1P_W14, K1P_U11,

6	rozumie idee transakcji, widoków, wyzwalaczy,	egzamin,	wykład,	K1P_U16,
	użytkowników.	projekt	laboratorium	K1P W14

18. Formy zajęć dydaktycznych i ich wymiar (liczba godzin)

Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
30		30		

19. Treści kształcenia:

Wykład:

Wprowadzenie do tematyki baz danych. System zarządzania bazą danych. Architektura systemów baz danych. Popularne serwery baz danych. Modelowanie danych zgodnie z modelem związków encji oraz modelowanie UML. Relacyjny model danych. Algebra relacyjna i rachunek relacji. Operacje unarne: selekcja i projekcja. Relacyjny rachunek krotek, relacyjny rachunek dziedzin. Język SQL. Zapytania języka SQL. Polecenia INSERT, DELETE i UPDATE. Funkcje agregujące. Programowanie baz danych. Zależności funkcyjne i postaci normalne relacyjnych bazach danych. Algorytmy projektowania relacyjnych baz danych. Problematyka przetwarzania transakcji. Obsługa transakcji w języku SQL. Użycie diagramów UML w projektowaniu baz danych. Administracja bazami danych – użytkownicy i prawa dostępu do obiektów bazy.

Laboratorium:

Wprowadzenie do języka SQL – omówienie podstawowych poleceń wyszukiwania danych: SELECT, WHERE, ORDER BY. Omówienie funkcji SQL: operujących na pojedynczych wierszach, obliczających agregaty (SUM, MIN, MAX, AVG, COUNT). Złączenia tabel. Podzapytania proste i skorelowane. Język manipulowania danymi (DML). Wstawienie, modyfikacja i usunięcie danych z tabeli – polecenia INSERT, UPDATE i DELETE. Język definiowania danych (DDL). Mechanizm zarządzania współbieżnym wykonywaniem transakcji. Import i eksport danych. Tworzenie kopii bezpieczeństwa oraz odzyskiwanie danych.

20. Egzamin: tak

21. Literatura podstawowa:

- 1. R. Elmasri, S.B. Navathe, Wprowadzenie do systemów baz danych, Helion 2005.
- 2. J.D. Ullman, J. Widom, Podstawowy wykład z systemów baz danych, WNT, Warszawa 2000. do dyspozycji prowadzącego

22. Literatura uzupełniająca:

- 1. W. Dudek, Bazy danych SQL. Teoria i praktyka. Helion 2006.
- 2. R. Coburn, SQL dla każdego, Helion 2003.

23. Nakład pracy studenta potrzebny do osiągnięcia efektów kształcenia Liczba godzin Forma zajęć Lp. kontaktowych / pracy studenta 1 Wykład 30/10 2 Ćwiczenia 30/40 3 Laboratorium /40 4 Projekt 5 Seminarium / 3/7 6 Inne: konsultacje i egzamin 63/97 Suma godzin 24. Suma wszystkich godzin 160 25. Liczba punktów ECTS 5 26. Liczba punktów ECTS uzyskanych na zajęciach z bezpośrednim 5 udziałem nauczyciela akademickiego 27. Liczba punktów ECTS uzyskanych na zajęciach o charakterze 4 praktycznym (laboratoria, projekty) 28. Uwagi: Egzamin 40 pkt., kolokwium 20 pkt., projekt 40 pkt. Do zaliczenia przedmiotu konieczne jest uzyskanie powyżej 40 pkt. w tym co najmniej 12 punktów z egzaminu i co najmniej 30% punktów z każdego efektu kształcenia. Zatwierdzono: (data i podpis dyrektora instytutu/kierownika katedry/ (data i podpis prowadzącego) Dyrektora Kolegium Języków Obcych/kierownika lub

dyrektora jednostki międzywydziałowej)