Homework 5

Andrew Tindall Analysis I

October 11, 2019

Problem 1. Let Λ be a metric space, E a Banach space, and let $F: \Lambda \times E \to E$ be a function such that

$$\exists \kappa < 1 \forall \lambda \in \Lambda \forall x, y \in E \| F(\lambda, x) - F(\lambda, y) \| \le \kappa \| x - y \|.$$

Prove that:

- (i) For every $\lambda \in \Lambda$ there exists a unique $x(\lambda) \in E$ such that $x(\lambda) = F(\lambda, x(\lambda))$,
- (ii) For every $\lambda \in \Lambda, y \in E$, one has:

$$||x(\lambda) - F(\lambda, y)|| \le \frac{\kappa}{1 - \kappa} ||y - F(\lambda, y)||$$

$$||y - x(\lambda)|| \le \frac{1}{1 - \kappa} ||y - F(\lambda, y)||$$

Proof. (i) We show that for each λ , the function $F_{\lambda}: x \mapsto F(\lambda, x)$ has a unique fixed point $x(\lambda)$. Fix an arbitrary λ ; then for any $x, y \in E$,

$$||F_{\lambda}(x) - F_{\lambda}(y)|| \le k ||x - y|| < \frac{k+1}{2} ||x - y||.$$

Because $\frac{k+1}{2} < 1$, this makes F_{λ} a contraction mapping. E is Banach, so it is in particular complete, so the Brouwer fixed-point theorem gives a unique $x(\lambda)$ such that $F_{\lambda}(x(\lambda)) = x(\lambda)$. Because λ was arbitrary, this holds for every λ $in\Lambda$.

(ii) Using the fixed-point equality $x(\lambda) = F_{\lambda}(x(\lambda))$, and the existence of the almost-contraction-constant κ , we see:

$$||x(\lambda) - F_{\lambda}(y)|| = ||F_{\lambda}(x(\lambda)) - F_{\lambda}(y)||$$

$$\leq \kappa ||x(\lambda) - y||$$

$$\leq \kappa (||y - F_{\lambda}(y)|| + ||x(\lambda) - F_{\lambda}(y)||)$$

$$= \kappa (||y - F_{\lambda}(y)|| + ||F_{\lambda}(x(\lambda)) - F_{\lambda}(y)||)$$

Therefore,

$$||F_{\lambda}(x(\lambda)) - F_{\lambda}(y)|| \le \kappa(||y - F_{\lambda}(y)|| + ||F_{\lambda}(x(\lambda)) - F_{\lambda}(y)||),$$

Or, rearranging,

$$||F_{\lambda}(x(\lambda)) - F_{\lambda}(y)|| \le \frac{\kappa}{1 - \kappa} ||y - F_{\lambda}(y)||,$$

which was to be shown.

Now, we show the second inequality to be true. Again using the constant κ and the fixed-point $x(\lambda)$,

$$||y - x(\lambda)|| \le ||y - F_{\lambda}(y)|| + ||F_{\lambda}(y) - x(\lambda)||$$

$$= ||y - F_{\lambda}(y)|| + ||F_{\lambda}(y) - F_{\lambda}(x(\lambda))||$$

$$\le ||y - F_{\lambda}(y)|| + \kappa ||y - x(\lambda)||$$

Which, rearranging, gives us

$$||y - x(\lambda)|| \le \frac{1}{1+\kappa} ||y - F_{\lambda}(y)||,$$

which was to be shown.

Problem 2. Let $f_1: E \to F_1$ and $f_2: E \to F_2$ be two differentiable mappings between Banach spaces E, F_1, F_2 . Define $f: E \to F_1 \times F_2$ by $f(x) = (f_1(x), f_2(x))$. Prove that f is differentiable and find its derivative. (Here $F_1 \times F_2$ is the Banach space equipped with the norm $\|(y_1, y_2)\| = \|y_1\|_{F_1} + \|y_2\|_{F_2}$).

Proof. We show that, for any $x \in E$, the map $Df : x \mapsto (Df_1(x), Df_2(x))$ is linear, and that it satisfies the definition of the derivative,

$$\lim_{\|h\| \to 0} \frac{f(x+h) - f(x) - Df(x)h}{\|h\|} = 0.$$

Expanding the functions f and Df by their definitions, the above limit is the same as

$$\lim_{\|h\|\to 0} \frac{(f_1(x+h), f_2(x+h)) - (f_1(x), f_2(x)) + (Df_1(x)h, Df_2(x)h)}{\|h\|}.$$

Now, using the componentwise definition of addition in the vector space $F_1 \times F_2$, this limit is equal to the following:

$$\lim_{\|h\| \to 0} \left(\frac{f_1(x+h) - f_1(x) + Df_1(x)h}{\|h\|}, \frac{f_2(x+h) - f_2(x) + Df_2(x)h}{\|h\|} \right);$$

The inner two limits exist and are equal to zero by the fact that f_1 and f_2 are differentiable. We finally need only see that convergence to 0 in $F_1 \times F_2$ under the given norm is equivalent

to componentwise convergence to 0 in F_1 and F_2 , and that the product of two linear functions into F_1 and F_2 is itself linear.

First, we show that componentwise convergence implies convergence. Let x^i be a sequence in $F_1 \times F_2$ such that the sequences of components x_1^i and x_2^i independently converge to 0. Let $\varepsilon > 0$. Then there exist N_1 , N_2 such that for all $i > N_1$, $||x_1^i||_{F_1} < \varepsilon/2$, and for all $j > N_2$, $||x_2^j||_{F_2} < \varepsilon/2$. Then, for all $i > \max(N_1, N_2)$,

$$||x^i|| = ||x_1^i||_{F_1} + ||x_2^i||_{F_2}$$
$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

So the sequence x^i converges in $F_1 \times F_2$.

Now, we show that Df(x) is a linear map for all x - more generally, that given any two linear maps $L_1: E \to F_1$, and $L_2: E \to F_2$, the product map $L_1 \times L_2: E \to F_1 \times F_2$ is also linear

• $(L_1 \times L_2)(\alpha x) = \alpha(L_1 \times L_2)(x)$:

$$(L_1 \times L_2)(\alpha x) = (L_1(\alpha x), L_2(\alpha x))$$

$$= (\alpha L_1(x), \alpha L_2(x))$$

$$= \alpha (L_1(x), L_2(x))$$

$$= \alpha (L_1 \times L_2)(x)$$

• $(L_1 \times L_2)(x+y) = (L_1 \times L_2)(x) + (L_1 \times L_2)(x)$: $(L_1 \times L_2)(x+y) = (L_1(x+y), L_2(x+y))$ $= (L_1(x) + L_1(y), L_2(x) + L_2(y))$ $= (L_1(x), L_2(x)) + (L_1(y), L_2(y))$ $= (L_1 \times L_2)(x) + (L_1 \times L_2)(y)$

So the product of any two linear maps is linear; in particular, the map $Df(x) = Df_1(x) \times Df_2(x)$ is linear. Since it satisfies the limit definition of the derivative, it is the derivative of f at x.

Because f is differentiable at every point x of E, it is a differentiable map. Therefore, the product $f_1 \times f_2$ of any two differentiable maps into any two spaces is itself differentiable. \square

Problem 3. Let E, F, G be normed spaces and let $\varphi : E \times F \to G$ be a bilinear map (i.e. such that both maps $\varphi(\cdot, y) : E \to G$ and $\varphi(x, \cdot) : E \to F$ are linear, for every $x \in E$ and $y \in F$).

(i) Prove that φ is continuous if and only if it is bounded; that is:

$$\exists C > 0 \forall x \in E \forall y \in F \ \|\varphi(x,y)\| \le C \cdot \|x\| \cdot \|y\|,$$

(ii) Let $\mathcal{L}(E, F; G)$ be the linear space of all continuous bilinear mappings φ , as above. Prove that it is a normed space, with the norm defined as:

$$\|\varphi\| : \sup \{\|\varphi(x,y)\| ; \|x\| \le 1, \|y\| \le 1\}.$$

(iii) Prove that if G is Banach then $\mathcal{L}(E, F; G)$ is also Banach.

Proof. Some of the following ideas were found in the lecture notes [1].

(i) First, assume that φ is continuous. If it were not bounded, there would exist some sequence (x_n, y_n) of points in $E \times F$ whose norm under φ was unbounded - that, say, $\|\varphi(x_n, y_n)\| > n^2 \|x_n\| \cdot \|y_n\|$.

Now, we can use these points to construct a convergent sequence in $E \times F$ whose values under φ diverge, contradicting continuity. Define the following sequences:

$$\bar{x}_n = \frac{x_n}{n \|x_n\|}$$
 and $\bar{y}_n = \frac{y_n}{n \|y_n\|}$

Then $\bar{x}_n \to 0$ and $\bar{y}_n \to 0$, but the value of $\|\varphi(\bar{x}_n, \bar{y}_n)\| > n^2 \frac{\|x_n\|}{n\|x_n\|}$.

 $frac||y_n||n||y_n||$, meaning the value of $\varphi(\bar{x}_n, \bar{y}_n)$ cannot converge to the value $0 = \varphi(0,0)$. Thus φ cannot be continuous.

Now, We show the reverse implication. Let φ be a bounded bilinear mapping $E \times F \to G$ with bounding constant C, and let $x_n \to x$ and $y_n \to y$ be convergent sequences in E and F. We show that $\varphi(x_n, y_n) \to \varphi(x, y)$.

By convergence of the sequences x_n , y_n , there is some upper bound to the norms $||x_n||$ and $||y_n||$; say M. Then

$$\|\varphi(x_{n}, y_{n}) - \varphi(x, y)\| = \|\varphi(x_{n}, y_{n}) - \varphi(x_{n}, y) + \varphi(x_{n}, y) - \varphi(x, y)\|$$

$$\leq \|\varphi(x_{n}, y_{n}) - \varphi(x_{n}, y)\| + \|\varphi(x_{n}, y) - \varphi(x, y)\|$$

$$= \|\varphi(x_{n}, y_{n} - y)\| + \|\varphi(x_{n} - x, y)\|$$

$$\leq C \cdot \|x_{n}\| \cdot \|y_{n} - y\| + C \cdot \|x_{n} - x\| \cdot \|y\|$$

$$\leq CM \cdot \|x_{n} - x\| + CM \cdot \|y_{n} - y\|,$$

which converges to 0 because $||x_n - x||$ and $||y_n - y||$ do. Therefore φ is continuous.

(ii) We show that the function

$$\|\varphi\| = \sup \{\|\varphi(x,y)\|; \|x\| \le 1, \|y\| \le 1\},$$

defined on bounded bilinear maps $E \times F \to G$, is a norm. We first note that this function is equivalent to a supremum defined on the whole of $E \times F$:

$$\|\varphi\| = \sup \left\{ \frac{\|\varphi(x,y)\|}{\|x\| \cdot \|y\|}; x \in E, y \in F \right\}.$$

• $\|\varphi + \psi\| \le \|\varphi\| + \|\psi\|$: This follows from the pointwise inequality

$$\|\varphi(x,y) + \psi(x,y)\| \le \|\varphi(x,y)\| + \|\psi(x,y)\|,$$

which holds at all points (x, y) of $E \times F$ by the triangle inequality in G.

• $\|\alpha\varphi\| = |\alpha| \cdot \|\varphi\|$: This also follows pointwise, from the norm properties of G:

$$\|(\alpha\varphi)(x,y)\| = \|\alpha(\varphi(x,y))\|$$
$$= |\alpha| \cdot \|\varphi(x,y)\|$$

- If $\|\varphi\| = 0$, then φ is the 0 function: if $\|\varphi\| = 0$, then $\|\varphi(x,y)\| = 0$ at each point (x,y), which implies that $\varphi(x,y) = 0$ for all (x,y).
- (iii) Assume that G is Banach, and let $\{\varphi_n\}$ be a Cauchy sequence of functions in $\mathcal{L}(E, F; G)$, i.e. the norms $\|\varphi_n \varphi_m\|$ go to zero. Because the norm in this space is the supremum of pointwise norms, then for any point (x, y), the norms $\|\varphi_n(x, y) \varphi_m(x, y)\|$ must go to 0 as n, m go to ∞ . Because G is Banach, the values $\varphi_n(x, y)$ must converge to a unique point, which we define as $\varphi(x, y)$. This gives a well-defined set-function $E \times F \to G$, and it is the only possible function that φ_n may converge to. We now show that it is a bounded bilinear function.

First, bilinearity. By symmetry in x and y, it suffices to show that $\varphi(\cdot, y)$ is linear on E for any fixed $y \in F$.

• $\varphi(\alpha x, y) = \alpha \varphi(x, y)$: by the definition of $\varphi(x, y)$, we see

$$\varphi(\alpha x, y) = \lim_{n \to \infty} \varphi_n(\alpha x, y)$$

$$= \lim_{n \to \infty} \alpha \varphi(x, y)$$

$$= \alpha \lim_{n \to \infty} \varphi(x, y)$$

$$= \alpha \varphi(x, y)$$

• $\varphi(x_1 + x_2, y) = \varphi(x_1, y) + \varphi(x_2, y)$:

$$\varphi(x_1 + x_2, y) = \lim_{n \to \infty} \varphi_n(x_1 + x_2, y)$$

$$= \lim_{n \to \infty} (\varphi_n(x_1, y) + \varphi_n(x_2, y))$$

$$= \left(\lim_{n \to \infty} \varphi_n(x_1, y)\right) + \left(\lim_{n \to \infty} (x_2, y)\right)$$

$$= \varphi(x_1, y) + \varphi(x_2, y)$$

Now, we show that φ is bounded: that there exists some global bound C such that, for any $(x,y) \in E \times F$,

$$\|\varphi(x,y)\| \le C \cdot \|x\| \cdot \|y\|.$$

Because the functions φ_n converge in the norm on $\mathcal{L}(E, F; G)$, the bounds of each φ_n converge to some number C:

$$\lim_{n \to \infty} (\sup \{ \|\varphi_n(x, y); \|x\| \le 1, \|y\| \le 1 \| \}) = C < \infty.$$

We show that C is a bound for φ . Let $(x,y) \in E \times F$. Then

$$\|\varphi(x,y)\| = \left\|\lim_{n\to\infty} \varphi_n(x,y)\right\|$$

By continuity of the norm, we have

$$\left\| \lim_{n \to \infty} \varphi_n(x, y) \right\| = \lim_{n \to \infty} \|\varphi_n(x, y)\|$$

$$= \frac{\lim_{n \to \infty} \|\varphi_n(x, y)\|}{\|x\| \cdot \|y\|} \cdot \|x\| \cdot \|y\|$$

$$\leq \lim_{n \to \infty} \sup \left\{ \frac{\|\varphi_n(x, y)\|}{\|x\| \cdot \|y\|} x \in E, y \in F \right\} \cdot \|x\| \cdot \|y\|$$

$$= C \cdot \|x\| \cdot \|y\|$$

Thus, φ is an element of $\mathcal{L}(E, F; G)$. We have shown that any Cauchy sequence converges to an element of this normed vector space; thus it is Banach.

Problem 4. For $p \in (0,1)$ define l_p and $\|\cdot\|_{l_p}$ by the standard formula. Show that $\|\cdot\|_{l_p}$ is not a norm.

Proof. The definition we use is that l_p is the space of all sequences of real numbers $\{x_i\}$ such that

$$\sum_{i=1}^{\infty} |x_i|^p$$

is less than ∞ , with the norm $\|x\|_{l_p}$ defined as

$$||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$$

This function works well with scalars, and takes 0 to 0, but it does not satisfy the triangle inequality, because the function $x \mapsto |x|^p$ is not convex for $p \in (0,1)$. For example, let $p \in (0,1)$, and let x be the sequence $\{2^{1/p},0,0,\dots\}$, and y the sequence $\{0,2^{1/p},0,\dots\}$. Then ||x|| = ||y|| = 2, but $||x + y|| = 4^{1/p}$, which is greater than 2 + 2 for any $p \in (0,1)$. \square

Problem 5. Give an example of a discontinuous linear map between normed spaces, so that:

- (i) Its graph is closed and its target space is Banach,
- (ii) Its graph is closed and its domain space is Banach.

Proof. (i) Let A be the space of real-valued smooth functions on [0,1] with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, let B be the Banach space \mathbb{R} , and let $T: A \to B$ be the map $f \mapsto f'(0)$. The derivative map is well-known to be linear, and its target space \mathbb{R} is Banach. Further, the graph of T is closed: if $\{f_i\}$ is a sequence of smooth functions on [0,1] which is Cauchy, and the sequence $\{f'_i(0)\}$ is also Cauchy, then the sequence $\{(f_i, f'_i(0))\}$ in $A \times B$ converges to the value (f, f'(0)), where f is the limit of the f_i in the space A.

However, the derivative-at-0 operator is not continuous. Let $\{f_n\}$ be the sequence of functions $f_n(x) = \frac{\sin(n^2x)}{n}$. This sequence converges in the supremum norm to 0, but the derivative at 0 grows without bound - $f'_n(0) = n$.

(ii) Incomplete.

j++*į*

References

 $\left[1\right]$ Vesely, Libor. Continuity of Bilinear Mappings. Università degli Studi di Milano, 2017.