Predict Player Performance for an Optimal Fantasy Game Lineup

Tian Sang, Zhaoxi Wang 11/04/2019

Introduction

Before match day

52

14

33

Performance

calculated by a given

equation.

score

player 1:

player 2:

player 3:

Methods

Predict player score.

- Collect historical player statistics
- Data transformation & feature engineering
- Modeling

Form lineup given constriants.

- Generate Lineup by linear programming
- Diversity Constriants:

Predict player score.

Collect historical player statistics: stats.nba.com

#	PLAYER	GP	MIN	PTS	FGM	FGA	FG%
1	James Harden	78	36.8	36.1	10.8	24.5	44.2
2	Paul George	77	36.9	28.0	9.2	21.0	43.8
3	Giannis Antetokounmpo	72	32.8	27.7	10.0	17.3	57.8
4	Joel Embiid	64	33.7	27.5	9.1	18.7	48.4
5	Stephen Curry	69	33.8	27.3	9.2	19.4	47.2

Data transformation & feature engineering

- Time series features, e.g.
 "previous game points", "2nd previous game points" etc.
- Encode categorical feature team: winning rate, average points

H2OAutoML(max_models = 30, max_runtime_secs=150, seed = 1)

Predict player score.

Modeling: H2O autoML

- Automating training & tuning of hyper-parameters
- Often has good performance in practical.
- Returns a leaderboard with the best model.

model_id	mean_residual_deviance	rmse	mse	mae
StackedEnsemble_AllModels_AutoML_20191029_185211	97.465	9.87244	97.465	7.79825
GLM_grid_1_AutoML_20191029_185211_model_1	97.76	9.88736	97.76	7.80035
StackedEnsemble_BestOfFamily_AutoML_20191029_185211	97.8783	9.89335	97.8783	7.81343
XGBoost_grid_1_AutoML_20191029_185211_model_2	99.8868	9.99434	99.8868	7.88746
GBM_5_AutoML_20191029_185211	100.385	10.0192	100.385	7.9257

Stacking of all models has the lowest MAE!

Form lineup given constriants.

Generate Lineup by linear programming

Goal:
$$\sum_{p=1}^{N} f_p x_{pl}$$

Subject To:

$$\sum_{j=1}^{p} c_j x_{ij} \leq 5000, \quad ext{(budget constraint)}$$

$$\sum_{k=1}^{p} x_{ij} = 8$$
, (lineup size constraint)

position constriants:

$$1 \leq \sum_{j \in C} x_{ij} \leq 2$$

$$2 \leq \sum_{j \in (PG,SG)} x_{ij} \leq 3$$

$$2 \leq \sum_{j \in (PF,SF)} x_{ij} \leq 3$$

team constriants:

$$t_{il} \leq \sum_{k \in T_l} x_{ik}, \quad l = 1, \dots, N_T$$

$$\sum_{l=1}^{N_T} t_{il} \geq 3$$

$$t_{il} \in \{0,1\}, \quad l=1,\ldots,N_T$$

Form lineup given constriants.

Diversity Constriants:

Make sure lineup i has only a few overlap players from

lineup 1 to i-1

$$\sum_{p=1}^N x_{pk}^* x_{pl} \leq \gamma, k=1,\ldots,l-1$$

Evaluation

Sell lineup strategy (\$30 monthly subs fee expensive!)

draftkings_NBA_2019-02-01_players.csv draftkings_NBA_2019-02-02_players.csv draftkings_NBA_2019-02-03_players.csv draftkings_NBA_2019-02-04_players.csv draftkings_NBA_2019-02-05_players.csv draftkings_NBA_2019-02-06_players.csv draftkings_NBA_2019-02-07_players.csv draftkings_NBA_2019-02-08_players.csv draftkings_NBA_2019-02-09_players.csv draftkings_NBA_2019-02-10_players.csv draftkings_NBA_2019-02-11_players.csv

VS. Our prediction Avg. MAE:

FC's	Ours		
7.80	7.67		

Feb. 1 - Mar. 31, 2019

Evaluation

- Simulation on Feb.01
- 4 of our 49 lineups won

Conclusion

- A capable machine learning solution for selecting lineups
- Acceptable performance as a prototype
- Need to improve ROI in the future