NYCU Introduction to Machine Learning, Homework 5

My result on public leaderboard:

8	109704011	4	0.99820	30	3d
9	109550158		0.99800	16	19h
10	109550134	9	0.99800	3	1s
Your Best Entry Your most recent submission scored 0.99800, which is the same as your previous score. Keep trying!					
11	109550164	9	0.99780	9	19h
12	109550111	9	0.99740	6	7h
13	109550155	9	0.99720	4	10h

Weight link:

https://drive.google.com/drive/folders/1dJCdBKAHEQ3CDslUKRUI6nF-PI4Pu60a?usp=sharing

Environment details:

• Python version: 3.7.12

• Pytorch version: 1.11.0+cpu

Accelerator: GPU T4 x2

• Trained on kaggle

Implementation details:

- Model architecture:
 - o resnet18(pretrain = true)
 - Modify fc layer in resnet18 :
 - Task1 = nn.Linear(512, 10)
 - Task2 = nn.Linear(512, 72)
 - Task3 = nn.Linear(512, 144)
 - optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
 - o loss_fn
 - Task1 = nn.CrossEntropyLoss()
 - Task2 & Task3 = nn.MultiLabelSoftMarginLoss()
- Hyperparameters:
 - o Task1:
 - Data preprocessing using torchvision.transforms:
 - Resize(100)

- Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
- Train : Val = 7 : 3
- Batch_size = 200
- Epoch = 30
 - Save the best weights when epoch >= 15
- Task2:
 - Data preprocessing using torchvision.transforms:
 - Resize(250)
 - Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
 - Train : Val = 8 : 2
 - Batch_size = 100
 - Epoch = 30
 - Save the best weights when epoch >= 15
- Task3:
 - Data preprocessing using torchvision.transforms:
 - Resize(275)
 - Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
 - Train : Val = 9 : 1
 - Batch size = 75
 - Epoch = 30
 - Save the best weights when epoch >= 15
- Used deep learning framework: Pytorch
- Other:
 - Used one-hot encoding to deal with tasks with multiple character inputs (Task2 & Task3)