Edge Detection

Ying Wu

Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

What we've learnt

- Binary image analysis
- Basic image enhancement
- Image segmentation
 - Color-based segmentation
 - Region-based segmentation
 - Watershed segmentation
- So, what should we learn next?
- Rough → precise

Why Precise?

- Since we need
 - the precise localization of a target
 - ✓ 2D
 - **√** 3D
 - the precise shape of a target
 - ✓ 2D
 - **√** 3D
- Thus we need accurate visual features
- What are they?

You may want to know ...

- A picture is worth 1000 words
- An edge map preserves about arguably 90% information of an image

Outline

- Motivation
- What is image edge?
- Image gradient
 - DoG
 - Simple edge detectors
- Second order derivative methods
 - Zero-crossing
 - LoG
- Canny detector

Image Edge

- What is an edge?
 - A significant local change in the image intensities
- How is an edge produced?
 - Discontinuity in image intensities
 - ✓ depth discontinuity
 - ✓ material discontinuity
 - ✓ shading discontinuity
 - ✓ color discontinuity
 - Discontinuity in the $1\,\mathrm{st}$ order derivative of intensity

Edge

- Various types of edges
 - Step edge
 - Ramp edge
 - Line edge
 - Roof edge

Edge → Shape

- Edge point (or edge)
 - an image point where significant local changes present
- Edge fragment
- Edge detector
 - an algorithm that finds edge points
- Contour
 - a list of edge \leftarrow freeform
 - a curve that models the list of edge ← parametric form
- Edge linking
 - a process of forming an ordered list of edges
- Edge following
 - a process of searching the image to determine contours

Gradient

The gradient is a measure of the change of a function

Image Gradient

- Image gradient measures the intensity changes
- Definition

$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial I(x,y)}{\partial x} \\ \frac{\partial I(x,y)}{\partial y} \end{bmatrix}$$

- Properties:
 - $\nabla I(x,y)$ points to the direction of the max rate of increase of the image I(x,y)
 - Its magnitude

$$||\nabla I(x,y)|| = \sqrt{\left(\frac{\partial I(x,y)}{\partial x}\right)^2 + \left(\frac{\partial I(x,y)}{\partial y}\right)^2}$$

- Its direction

$$\theta(x,y) = \tan^{-1}\left(\frac{\partial I(x,y)}{\partial y}I\frac{\partial I(x,y)}{\partial x}\right)$$

An Example

$$I_v = (38-12) + 2(66-15) + (65-42) = 141$$

$$I_x = (65-38) + 2(64-14) + (42-12) = 157$$

$$\theta = \tan^{-1}(141/157) = 42^{\circ}$$

$$|\nabla I| = \text{sqrt}(141^2 + 157^2) = 211$$

Convolution kernel

1	2	1
0	0	0
-1	-2	-1
	G.,	

Simple detectors

Robert Cross operators

1	0	
0	-1	G,

$$\begin{array}{|c|c|c|} \hline 0 & -1 \\ \hline 1 & 0 & G_y \\ \hline \end{array}$$

Sobel operators

-1	0	1	
-2	0	2	G
-1	0	1	

Prewitt operators

-1	0	1	
-1	0	1	G
-1	0	1	

 G_{y}

Steps in edge detection

- Filtering → get rid of image noise
- Enhancement → get salient information
- Detection → extracting strong edge contents

DoG

- Filter out noise before edge enhancement
- Derivative of Gaussian
 - Filtering \leftarrow Gaussian kernel
 - Enhance ← 1st order derivative
 - Detection \leftarrow thresholding

$$h(x,y) = \nabla \left[g(x,y) \otimes I(x,y) \right] = \left[\nabla g(x,y) \otimes I(x,y) \right]$$

$$\nabla g(x,y) = \begin{bmatrix} -\frac{x}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \\ -\frac{y}{\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \end{bmatrix}$$

∇ vs. ∇^2

A threshold applies to the gradient to find the edges. → thick edge

Is it good enough?

What we need is the point that has a local maximum gradient!

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian operator

Approximation

$$\begin{split} &\frac{\partial^2 I(x,y)}{\partial y^2} = \frac{\partial I_y}{\partial y} = \frac{\partial (I(x,y+1) - I(x,y))}{\partial y} \\ &= \frac{\partial I(x,y+1)}{\partial y} - \frac{\partial I(x,y)}{\partial y} \\ &= [I(x,y+2) - I(x,y+1)] - [I(x,y+1) - I(x,y)] \\ &= I(x,y+2) - 2I(x,y+1) + I(x,y) \\ &\xrightarrow{recenter} I(x,y+1) - 2I(x,y) + I(x,y-1) \end{split}$$

$$\frac{\partial^{2} I(x,y)}{\partial x^{2}} = \frac{\partial I_{x}}{\partial x}$$

$$= I(x+1,y) - 2I(x,y) + I(x-1,y)$$

0	0	0
1	-2	1
0	0	0

Find zero-crossing

Ideal case

2	2	5	8	8
2	2	5	8	8
2	2	5	8	8
T()				

$$\nabla^2 I(x,y)$$

Non-Ideal case

2	2	2	8	8
2	2	2	8	8
2	2	2	8	8
	$I(\mathbf{v} \mathbf{v})$			

? Where is zerocrossi ng

 $\nabla^2 I(x,y)$

How to solve this problem?

LoG

- 2nd order derivative is sensitive to noise
- Solution?
 - Filter out noise before edge enhancement
- Laplacian of Gaussian
 - Filtering \leftarrow Gaussian kernel
 - Enhance ← 2nd order derivative
 - Detection ← zero-crossing

Mexican hat

$$h(x,y) = \nabla^{2}[g(x,y) \otimes I(x,y)] = [\nabla^{2}g(x,y)] \otimes I(x,y)$$

$$\nabla^{2}g(x,y) = \left(\frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}}\right)e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

- Filtering → get rid of image noise
- Enhancement → get salient information
- Detection → extracting strong edge contents

$A \ review: idea \ III$ $IDEA_3: \ \nabla^2 + zero\text{-crossing}$ $Old \ problems: \\ \bullet \ How \ to \ find \ the \ best \ threshold? \\ \hline \checkmark \ thin \ vs. \ thick \ edge? \\ \bullet \ Noise?$ $New \ problems: \\ \bullet \ Computationally \ more \ intensive \\ \hline \checkmark \ to \ find \ zero\text{-crossing} \\ \bullet \ Very \ sensitive \ to \ noise$

Research starts from here ...

- Before you have a new idea, you need to:
 - Have a deep understanding of the existing work
 - Analyze their pros and cons
 - ✓ theoretical analysis
 - ✓ or just try
 - Distinguish "great", "very good" and "good"
 - ✓ what you should keep or discard
 - Question their assumptions
 - ✓ break our common senses
 - ✓ find what they may have overlooked

These needs experiences

So ...

- What are very good/good in the previous methods?
 - \checkmark ∇^2 seems not so good, due to zero-xing
 - \checkmark ∇ seems to be a better one: simple and less sensitive to noise
- What does it assume?
 - ✓ thresholding
 - → why thresholding? Why not finding the peaks directly?
 - ✓ using ONE threshold
 - → You may think: why ONE, but not TWO or more?
- What may it have overlooked?
 - ✓ NO neighborhoods used (i.e., pixel by pixel)!
 - → why don't we use it?

Overview

- 1. Gaussian smoothing
- 2. Calculating image gradient
- 3. Suppressing non-maxima
- 4. Finding two thresholds
- 5. Edge linking

1. Gaussian Smoothing

$$S(x,y)=G(x,y)\otimes I(x,y)$$

```
function S = GaussSmoothing(I, N, sigma)
% N = 3;
% Sigma = 3;
Gmask = fspecial('gaussian', [N,N], sigma);
S = conv2(I, Gmask, 'same');
```

Lena

Gaussian smoothing

2. Image Gradient

- Whatever.
- as long as you can find:
 - $M(x,y) \leftarrow magnitudes of \nabla S(x,y)$
 - $T(x,y) \leftarrow \text{direction of } \nabla S(x,y)$

Lena

Gaussian smoothing

Robert-cross

3. Suppressing non-Maxima

- Only find local maxima (i.e., the "ridges")
 - ✓ what do you experience when you walking along a ridge?
 - ✓ Oh, yes. The stuff on my both "sides" are lower.
- So, two things:
 - The direction of the "ridge"
 - The "sides" of the ridge
- You've got the idea now ...
 - find the two side pixels
 - identify non-maxima
 - set them to 0

Method I: LUT

Digital thinking \leftarrow recall our first lecture

→ how many possible combinations??

		/	
	\	/	
		/	
_	<u> </u>		
	1 1	₹ /	
	\	<u> </u>	
	4 2 1	1-1-	
	6	7 0	
	<u> </u>		
	/		

	dx	dy
1	0	1
2	-1	1
3	-1	0
4	-1	-1
5	0	-1
6	1	-1
7	1	0
8	1	1

Method II: interpolation

$$p_1 = [0,1]$$
 $p_2 = [-1,1]$
 $\alpha = 1 - |tg \theta|$

$$p_1 = [-1,1] p_2 = [-1,0]$$

$$\alpha = \left| \frac{1}{tg \theta} \right|$$

$$p_1$$

$$p_2$$

$$p_1 = [1, -1] \quad p_2 = [1, 0]$$

$$\alpha = \left| \frac{1}{tg \theta} \right|$$

$$p_1 = [-1,1]$$
 $p_2 = [0,-1]$
 $\alpha = |tg\theta|$

Lena

Robert-cross

Non-maxima suppressing

4. Two thresholds

5.Edge Linking

- Pick a starting point
- Recursively check its 8-neighbor in strong edges

```
if the neighbor is an endpoint
  return;
else
  continue recursion;
```

For the end point, check weak edges, until the edge ends or it connects to a strong edge

```
if the neighbor is an endpoint, or a strong edge return; else
```

Note: you may end up with a stack overflow!

set(0, 'RecursionLimit', 2000); in matlab

