Recitation Session 10

Problem

1. Sample Average. Suppose $\{X_1, \dots, X_n\}$ are n independent identically distributed (they are of the same distribution) random variables with finite expectation μ , variance σ^2 , and cdf $F_X(x)$. Denote the sample average as

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- a. Compute the expectation of \overline{X}_n .
- b. Compute the variance of \overline{X}_n .
- c. Use (a) and (b) to compute the mean and variance of $F_n(x)$ for any fixed x. The answer should be written in terms of $F_X(x)$.
- 2. Convergence. Given the empirical cdf

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1\{X_i \le x\}$$

where $\{X_i\}_{i=1}^n$ are n i.i.d. random variables with cdf $F_X(x)$.

- a. Show that for any fixed x, $F_n(x)$ converges to $F_X(x)$ in mean squares error as $n \to \infty$.
- b. Use (a) to show that $F_n(x)$ converges to $F_X(x)$ in probability as $n \to \infty$.
- $3.\ Sample\ Variance.$ Consider the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

where $\{X_i\}_{i=1}^n$ are n i.i.d. random variables. Denote $\mu = \mathrm{E}(X_i)$ and $\sigma^2 = \mathrm{Var}(X_i)$.

a. Show that

$$\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 = \sum_{i=1}^{n} X_i^2 - n \overline{X}_n^2.$$

- b. Compute $E(S_n^2)$.
- c. Suppose $\mathrm{E}\,X_i^4<\infty$. Justify why S_n^2 converges to σ^2 in probability.