

IE 582 Statistical Learning for Data Mining

Instructor: Mustafa Gökçe Baydoğan

Office: M4082

mustafa.baydogan@boun.edu.tr www.mustafabaydogan.com blog.mustafabaydogan.com

Statistical inference

■ A quantitative response (Y) and p predictors $(X_1, X_1, ..., X_p)$

$$Y = f(X) + \epsilon.$$

Estimation of f

- Two main reasons
 - Prediction: estimate \hat{Y} given predictors

$$\hat{Y} = \hat{f}(X)$$

$$E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2$$

$$= \underbrace{[f(X) - \hat{f}(X)]^2}_{\text{Reducible}} + \underbrace{\text{Var}(\epsilon)}_{\text{Irreducible}}$$

- Inference: understand how Y is affected with the change in predictors
 - Which predictors are associated with the response?
 - What is the relationship between the response and each predictor?
 - Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

How to estimate *f*

- Parametric (model-based) approaches
 - i.e. linear regression

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

- Estimation of the parameters
 - Also referred to as fitting or training the model

How to estimate f

- Non-parametric approaches
 - No assumption of a particular functional form for f
 - Do not reduce the problem of estimating f to a small number of parameters
 - Large number of observations is required to obtain an accurate estimate for f.

How to evaluate quality of the fit

Accuracy

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- Training and test data
 - Interested in the accuracy of the predictions on previously unseen test data

Two competing objectives Bias and variance of estimators

Expected test MSE

 average test MSE if we repeatedly estimated f using a large number of training sets, and tested each at observation x₀

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

Classification and regression

- Distribution of Y
 - Regression: i.e. gaussian, exponential, ...
 - Forecasting daily demand
 - Predicting annual income
 - Classification: i.e. bernouilli (or binomial), multinomial
 - Predicting churn
 - Predicting credit default
- Function *f* approximates population (distribution) parameters

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p$$

Test Set

Regression vs Classification

- Basic difference
 - In classification, we have dependent variables that are categorical and unordered.
 - In regression, we have dependent variables that are continuous values or ordered whole values.
- All regression approaches can be used to solve the classification problem. How?
- □ From my viewpoint, the classification problem is all about drawing the "right" decision boundary.

Using linear regression for classification

Minimizing sum of square error

Suppose we have the following two-class
classification problem

X1	X2	Class
7.40	1.91	BLUE
3.92	0.24	ORANGE
2.15	1.08	ORANGE
-2.36	0.70	BLUE
•	•	•
•	•	•
•	•	•
0.09	-1.75	ORANGE
0.71	0.67	BLUE

Classification Using linear regression for classification

Linear Regression of 0/1 Response

ORANGE

 $\{x: x^T \hat{\beta} > 0.5\}$

Decision boundary

$$\{x: x^T \hat{\beta} = 0.5\}$$

X1	X2	Class
7.40	1.91	0
3.92	0.24	1
2.15	1.08	1
-2.36	0.70	0
•	•	•
•	•	•
•		•
0.09	-1.75	1
0.71	0.67	0

(BLUE = 0, ORANGE = 1),

Using linear regression for classification

- Potential problems?
 - Assumption of linear regression
 - i.e. Normally distributed residuals
 - Effects of multicollinearity (i.e. correlated predictors) -> unstable regression coefficients
 - Works only for 2-class classification
 - Requires extension for multi-class cases
 - Categorical and ordinal predictors?
 - Requires binary representation (i.e. introducing "dummy" variables)
 - Nonlinear representation
 - \square Addition of polynomial terms (i.e. X^2)
 - Addition of interaction terms (i.e. XY)
 - Requires the setting of the threshold in practice

Logistic regression

- Why preferable to linear regression?
 - e is not normally distributed because Y takes on only two values

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j + \text{error } (e)$$

- The predicted probabilities can be greater than 1 or less than 0
- Logistic regression result is in the range [0,1]

$$\Pr(G = 1|X = x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)},$$
$$\Pr(G = 2|X = x) = \frac{1}{1 + \exp(\beta_0 + \beta^T x)}.$$

Logistic regression

Logistic regression versus linear regression

linear regression

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j.$$

logistic regression

$$\Pr(G = 1|X = x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)}$$

$$\Pr(G = 2|X = x) = \frac{1}{1 + \exp(\beta_0 + \beta^T x)}$$

Classification Logistic vs Linear illustration

R codes on Moodle

Classification Nonlinear cases

What if a linear boundary does not work?

- Introduction of nonlinear terms
 - What are the possibilities?
- Methods that can handle nonlinear relations
 - There are many of them
 - Let's start with Nearest Neighbor (NN) classifier

Nearest-Neighbor

Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

- Requires three things
 - The set of stored records
 - Similarity measure to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Nearest-Neighbor

□ The *k*-nearest neighbor fit is

$$\hat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i,$$

 $N_k(x)$ is the neighborhood of the instance x defined by the k closest points (instances) in the training data

- Equation is the average of the outputs of the closest points
 - A solution to regression
- What to do for classification?
 - Mode?
- What about the weighted average?
 - How?

- How to select *k*?
 - We cannot use sum-of-squared errors on the training, why?
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest-Neighbor

Sample decision boundaries for orangeblue classification problem

1-Nearest Neighbor Classifier

15-Nearest Neighbor Classifier

- Lazy learner
 - There is no model
 - Not interpretable
 - For each test data, similarity computation to each training data point is required
 - Problematic for <u>real-time</u> applications
 - Especially if the training data size is large
 - Also referred to as <u>instance-based</u> approach (see supplementary slides at the end)
 - Not memory efficient
 - Requires storage of the training data
- Requires a <u>similarity measure</u>
 - Problematic when the number of features is large (i.e. curse of dimensionality)
- Handles nonlinear decision boundaries

- Scaling issues
 - Features may have to be scaled to prevent similarity measures from being dominated by one of the features
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 40kg to 120kg
 - income of a person may vary from \$10K to \$1M
- A big problem for the approaches that uses the notion of similarity

- Example: NN Classification on time series
 - R codes on Moodle
 - ECG dataset from
 - http://www.cs.ucr.edu/~eamonn/time_series_data/
 - 2-class (binary) classification problem to distinguish patients with Cardiac dysrhythmia (also known as arrhythmia or irregular heartbeat) based on their Electrocardiography records
 - 100 training instances with 96 observations
 - 100 test instances