Работу выполнил Бурнышев Павел, 676 гр.

Маршрут Х № 1

под руководством

15 сентября 2017 г.,

Алескерова И.А.

Лабораторная работа № 3.6.1:

Спектральный анализ электрических сигналов

Цель работы: изучение спетрального состава периодических электрических сигналов.

В работе используются: анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

Теория

В работе используется спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

Спектральный анализ

Рассмотрим функцию вида:

$$f(t) = A_1 * cos(\omega_1 * t - \alpha_1) + \dots + A_n * cos(\omega_N * t - \alpha_N)$$

или, что то же самое:

$$f(t) = \sum_{n=1}^{N} A_n * cos(\omega_n * t - \alpha_n),$$

где A_n, ω_i, α_i - постоянные константы. Множество пар $(\omega_1, A_1), (\omega_2, A_2)... + (\omega_N, A_N)$ называется спектром функции f(t).

Периодический сигнал

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Φ урье.

Если задана функция f(t), причем она периодически повторяется с заданной частотой $\Omega_1 = \frac{2\Pi}{T}$, где T – период. Тогда её разложение в ряд Фурье имеет вид:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)] = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
 (1)

где $\frac{a_0}{2}$ - среднее значение функции. Постоянные a(n) и b(n), коэффициенты косинусных и синусных членов разложения, определяются выражениями:

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt;$$
 (2)

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt;$$
 (3)

Причем точка t_1 выбирается произвольно. Амплитуда A_n и фаза ψ_n n-ой гармоники выражаются через коэффициенты a_n и b_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \ \psi_n = \arctan \frac{b_n}{a_n}$$
 (4)

Выражение (1) можно представить в комплексной форме с помощью замещения косинуса экспонентами:

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2} \tag{5}$$

В итоге получаем выражение:

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} A_1 e^{in\Omega_1 t},\tag{6}$$

где $A_1 = A_n e^{-i\psi_n}$.

Принцип работы спектроанализатора

В работе используется анализатор спектра СК4-56.

Восстановление спектрального состава входного сигнала f(t) происходит периодически с некоторым заданным периодом. Линейно нарастающее во времени напряжение с генератора разверстки подается на гетеродин, который генерирует переменное напряжение с частотой пропорциональной этому напряжению, но с постоянной амплитудой.

Исследуемый сигнал f(t) и переменное напряжение подается на смеситель. Для анализа используется только разностный сигнал (сигнал разностной частоты).

Со смесителя сигнал поступает на фильтр. Таким образом, мы получаем из спектра f(t) переменное напряжение с частотой равной разности частот гетеродина и фильтра ($\nu_{filter}=128~\mathrm{k}\Gamma\mathrm{g}$).

Затем эти колебания подаются на вертикальный вход электронно-лучевой трубки (далее ЭЛТ). Сигнал с генератора развёртки подаётся на горизонтальный вход ЭЛТ. Таким образом, получаем график $A(\nu)$, то есть фурье-спектр сигнала f(t).

Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов

Теория

Рассмотрим последовательность прямоугольных импульсов, с определенными характеристиками: V_0 - амплитуда сигналов, τ - длительность, $\Omega_1=\frac{2\pi}{T}$ - период повторения сигналов.

Согласно формуле (2) находим:

$$\langle V \rangle = \frac{a}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 dt = V_0 \frac{\tau}{T}$$
 (7)

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt \sim \frac{\sin(x)}{x}$$
(8)

Так как функция четная, то все коэффициенты синусоидальных гармоник, $b_n = 0$.

В случае, если T кратно τ , то Δw (ширина спектра – расстояние от главного максимума до первого нуля огибающей). При этом получим соотношение неопределенности:

$$\Delta \tau \le 2\Pi \Leftrightarrow \Delta \nu \Delta t = 1 \tag{9}$$

Наша цель состоит в исследовании зависимости ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса.

Экспериментальная установка для исследования спектра периодической последовательности прямоугольных спектров представлена на рисунке 2.

Рис. 1: Схема для исследования спектра периодической последовательности прямоугольных сигналов

Сигнал с выхода генератора прямоугольных импульсов Γ 5-54 подается на вход анализатора спектра и одновременно — на вход Y осциллографа. С генератора импульсов на осциллограф подается также сигнал синхронизации, запускающий ждущую развертку осциллографа. На экране осциллографа наблюдаем последовательность прямоугольных импульсов, на экране ЭЛТ анализатора — распределение амплитуд спектральных составляющих.

Задания

- 1. Соберем схему согласно инструкции, подготовим все приборы к работе.
- 2. Установим на анализаторе спектра режим работы с однократной разверткой и получите на экране спектр импульсов с параметрами $f_{rep}=10^3~\Gamma$ ц, $\tau=25$ мкс; частотный масштаб $m_x=5~{\rm K}\Gamma$ ц/дел.
 - (a) Проанализируем как изменился спектра при увеличении au вдвое при неизменном $f_{rep}=10^3$ Гц.

au=25мкс, $f_{rep}=10^3$ Гц

au=50мкс, $f_{rep}=10^3$ Гц

Рис. 2:

По рисунку видно, что при увеличении τ в два раза $\Delta \nu$ (расстояние между спектрами) уменьшается вдвое из-за соотношения неопределенности ($\Delta \nu \Delta t \simeq 1$), а $\delta \nu$ (длина волны) не меняется.

(b) Увеличим теперь f_{rep} вдвое при неизменном $\tau = 25$ мкс.

 $\tau = 25$ мкс, $f_{rep} = 10^3 \ \Gamma$ ц

au=25мкс, $f_{rep}=2\cdot 10^3$ Гц

Рис. 3:

Из рисунка видно, что при увеличении частоты сигнала вдвое $\Delta \nu$ неизменна, а расстояние между спектрами $\delta \nu$ увеличивается.

3. Проведем измерения зависимости ширины спектра от длительности импульса, увеличивая период сигнала при $f_{rep}=1$ к Γ ц. После чего по набранным данным построим график $\Delta \nu(\frac{1}{\tau})$:

Пропишем погрешности измерений: $\sigma(x)=0.1\Rightarrow\sigma(\frac{1}{\tau})=500$ Гц.

Таблица 1: Зависимость $\Delta \nu$ от $\frac{1}{\tau}$

τ , MKC	25	35	75	95	125	155	195
x, клеток	9	7,4	2,5	2,0	1,5	1,4	0,8
$\Delta \nu$, к Γ ц	45	37	12,5	10	7,5	7	4
$\frac{1}{\tau}$, к Γ ц	40	28,5	13,4	10,6	8,0	6,5	5,1

Рис. 4: График $\Delta \nu(\frac{1}{\tau})$

Таблица 2: Погрешности, найденные методом наименьших квадратов

		Final set of parameters	Asymptotic Standard Error
ſ	a	1.2333	+/- $0.07133~(5.783%)$
ſ	b	-2.17892	+/- $1.436~(65.89%)$

Посчитаем погрешность : $\varepsilon=\sqrt{\varepsilon_{sys}^2+\varepsilon_{ran}^2}=6.7\%\Rightarrow\sigma k=0.09.$ Тогда коэффициент наклона k прямой лежит

в диапазоне (1.23 ± 0.09). Мы доказали соотношение неопределенности: $\frac{\Delta w \tau}{2\Pi} = \Delta \nu \Delta t = 1 \approx k$.

Б. Исследование спектра периодической последовательности цугов гармонических колебаний

Теория

Рассмотрим периодическую последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T. Ссылаясь на (3), получаем:

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt$$
(10)

Мы исследуем зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

Экспериментальная установка. Исследование спектра периодически чередующихся цугов гармонических колебаний происходит по схеме, изображенной на рисунке ??. Генератор Γ 6-34 вырабатывает синусоидальные колебания высокой частоты. На вход AM этого генератора подаются прямоугольные импульсы с генератора Γ 5-54, а на выходе мы получаем высокочастотные модулированные колебания в виде отдельных кусков синусоиды — uyzos. Эти цуги с входа генератора Γ 6-34 поступают на вход спектроанализатора и одновременно на вход Y осциллографа. Сигнал синхронизация подаётся на вход X осциллографа с генератора импульсов.

Puc. 5: схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

Задания

- 1. Соберем схему согласно инструкции и подготовим приборы к работе.
- 2. Установим частоту несущей $\nu_0=25~\mathrm{k}\Gamma$ ц и посмотрим как изменится вид спектра при изменении длительности импульса и при изменении частоты несущей.
 - (a) Увеличим длительность импульса вдвое при $f_{rep} = 1 \ {
 m k} \Gamma {
 m d}.$

 $f_{rep}=1$ к Γ ц, $\nu_0=25$ к Γ ц, au=50 мкс

 $f_{rep}=1$ к Γ ц, $\nu_0=25$ к Γ ц, au=100 мкс

Рис. 6:

Из рисунка видно, что с увеличением длительности спектра уменьшается ширина спектра, что прямым образом следует из соотношения неопределенности.

(b) Изменим частоту несущей, что, как мы убедимся из рисунка, приведет к смещению спектра на экране осциллографа.

 $f_{rep}=1$ к Γ ц, $u_0=10$ к Γ ц, au=50 мкс

 $f_{rep}=1$ к Γ ц, $\nu_0=40$ к Γ ц, au=100 мкс

Рис. 7:

- 3. При фиксированной длительности импульсов $\tau = 50$ мкс исследуем зависимость расстояния $\delta \nu$ между соседними спектральными компонентами от периода T(частоты повторения импульсов f_{rep} в диапазоне 1-8 к Γ п).
- 4. Рассмотрим спектры цугов с параметрами $\tau=100$ мкс, $m_x=5$ к Γ ц/дел и различными периодами импульса.

Таблица 3: Данные, для снятия зависимости $\delta\nu(f_{rep})$

f_{rep} , к Γ ц	1	2	3	4	5	6	7	8
х, дел	3	3	3	3	9	10	10	10
$\delta \nu$, к Γ ц	0.9	1.7	2.65	3.6	4.8	5.45	6.55	7.2

 $f_{rep}=1$ к Γ ц, $m_x=5$ к Γ ц/дел, au=100 мкс

 $f_{rep}=2$ к
Гц, $m_x=5$ к Гц/дел, $\tau=100$ м
кс

Рис. 8:

5. По результатам измерений из пункта 3Б построим график зависимости и проверим соотношение неопределенности.

Найдем погрешности измерений: $\sigma(x)=0.1\Rightarrow\sigma(\frac{1}{ au})=500$ Гц.

Рис. 9: График $\Delta \nu(\frac{1}{\tau})$

Таблица 4: Погрешности, найденные методом наименьших квадратов

	Final set of parameters	Asymptotic Standard Error
a	0.92381	+/- 0.02848 (3.082%)
b	-0.0246429	+/- 0.1438 (583.5%)

Найдем полную порешность, получающуюся из систематической и случайной: $\varepsilon = \sqrt{\varepsilon_{sys}^2 + \varepsilon_{ran}^2} = \sqrt{3.1^2 + 11.1^2} = 11.7\% \Rightarrow \sigma k = 0.11$. Тогда коэффициент наклона k прямой лежит в диапазоне (0.92 ± 0.11) . Мы доказали соотношение неопределенности: $\frac{\Delta w \tau}{2\Pi} = \Delta \nu \Delta t = 1 \approx k$.

В. Исследование спектра гармонических сигналов, модулированных по амплитуде

Теория

Рассмотрим гармонические колебания частоты ω_0 , амплитуда которых меняется по гармоническому закону с частотой $\Omega(\Omega_0 \ll \omega_0)$.

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega_0 t) \tag{11}$$

Коэффициент m называют глубиной модуляции и может быть представлен в виде:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{12}$$

Из 11 тригонометрическим преобразованием можно получить формулу

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t, \tag{13}$$

где первое слагаемое – исходное колебание с основной несущей частотой ω_0 и амлитудой $a_{base}=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям.

Наша цель состоит в исследовании зависимости отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

Экспериментальная установка для исследования ампилтудно-модулированного сигнала представлена на рисунке 4. Модуляционный генератор встроен в левую часть генератора сигналов Г6-54. Синусоидальный сигнал с частотой модуляции f=1 к Γ ц подается с генератора на вход амплитудная модуляция(AM) генератора, вырабатывающее синусоидальный сигнал высокой частоты (частота $\nu_0=25$ к Γ ц). Ампитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра

Анализатор спектра СК4-56

Рис. 10: Схема для исследования спекта высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

Задания

- 1. Соберем схему согласно инструкции.
- 2. Изменяя глубину модуляции, исследуем зависимость ампилитуды боковой линии спектра к ампидитуде основной линии (a_{side}/a_{base}) от глубины модуляции m. Для измерения m применяем формулу (12).

Измерения, полученные при изменении глубины модуляции:

Таблица 5: Зависимость $\frac{a_{side}}{a_{base}}$ от глубины модулуляции

			ouse			
$2A_{min}$, дел	$2A_{max}$, дел	m	a_{side} , дел	a_{base} , дел	$\frac{a_{side}}{a_{base}}$	$\sigma \frac{a_{side}}{a_{base}}$
0	2.1	1	3	6.1	0.5	0.02
0.3	2.4	0.77	2.3	6	0.38	0.03
1.1	1.1	0	0	7	0	0
0.5	1.6	0.53	1.7	6.5	0.26	0.02
0.3	1.9	0.72	2.2	6.3	0.34	0.02
3.2	4.2	0.25	1.1	9.6	0.12	0.01

3. Построим график по данным из предыдыдущего пункта.

Найдем погрепности измерений:
$$\sigma(A_{max}) = \sigma(A_{min}) = 0.1 \Rightarrow \sigma(A_{max} - A_{min}) =$$

$$= \sigma(A_{max} + A_{min}) = \sqrt{2(\sigma(A_{max})^2)} = 0.14 \Rightarrow \sigma(m) = m\sqrt{(\frac{\sigma(A_{max} - A_{min})}{A_{max} - A_{min}})^2 + (\frac{\sigma(A_{max} + A_{min})}{A_{max} + A_{min}})^2}$$

Рис. 11: График $(a_{side}/a_{base}(m)$

Таблица 6: Погрешности, найденные методом наименьших квадратов

	Final set of parameters	Asymptotic Standard Error
a	0.493428	+/- 0.00977 (1.972%)
b	-0.00334151	+/- 0.006249 (187%)

Найдем полную погрешность, получающуюся из систематической и случайной: $\varepsilon_k = \sqrt{\varepsilon_{sys}^2 + \varepsilon_{ran}^2} = \sqrt{2^2 + 4^2} = 4.5\% \Rightarrow \sigma k = 0.026 \approx 0.03$. Тогда коэффициент наклона k прямой лежит в диапазоне (0.49 ± 0.03) . Данный результат согласовывается с теоретической формулой, устанавливающей зависимость между отношением амлитуд спектральных линий синусоидального сигнала и коэффициента модуляции.

Вывод

В первых двух экспериментах мы с довольно высокой точностью проверили соотношение неопределенности. Погрешность возникает в основном из-за неточной шкалы деления приборов.

В третьем эксперименте мы проверили зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции.