

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Maquinas de Combustión Interna		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo	311083	102

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Conocer el funcionamiento, características, criterios de diseño y utilizar los fundamentos de los motores de combustión interna, para establecer el diagnóstico y las acciones correctivas de las averías en los motores de combustión interna.

TEMAS Y SUB-TEMAS

1.Introducción

- 1.1 Antecedentes de los motores de combustión interna alternativos
- 1.2Clasificación y características principales

2.Parámetros básicos

- 2.1 Parámetros geométricos
- 2.2 Parámetros de funcionamiento

3. Ciclos de trabajo

- 3.1 Definición, Clasificación
- 3.2 Perdidas de calor
- 3.3 Perdidas mecánicas
- 3.4 Flujos en conductos de admisión y escape
- 3.5 Sobre alimentación

4.Combustión

- 4.1 Termodinámica de la combustión
- 4.2 Combustibles
- 4.3 Requerimientos y formación de la mezcla en motores de encendido provocado
- 4.4 Formación de la mezcla en motores de encendido por compresión
- 4.5 Combustión en MEC

5. Modelado de motores

- 5.1 Clasificación de motores
- 5.2 Modelado sistemas de motor

6.Cinemática dinámica y balanceo

- 6.1 Cinemática del mecanismo biela-manivela
- 6.2 Dinámica del mecanismo biela-manivela
- 6.3 Balanceo de motores
- 6.4 Técnicas experimentales
- 6.5 Curvas características

7. Criterios de diseño y tendencias

- 7.1 Motores y medio ambiente
- 7.2 Análisis de los motores de las diferentes marcas de autos en el mercado

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y software especializado.

Promover una investigación relacionada con los herramentales utilizados en la manufactura de autopartes.

Organizar prácticas para diseñar y desarrollar moldes para el conformado de plásticos y troqueles para el conformado de láminas

metálicas.

Organizar prácticas para verificar el correcto desempeño de los herramentales diseñados a través del semestre.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO

Básica:

Payri, F., Muñoz, M. Motores de combustión interna alternativos. Sección de publicaciones de la ETS de ingenieros Industriales. 1998 Manual de mantenimiento y reparación de vehiculos. Valbuena. Alfaomega. 2008

Consulta:

Norton. Diseño de maguinaria. Síntesis y análisis de máquinas y mecanismos, McGraww Hill, 4Ta edición, 2009

PERFIL PROFESIONAL DEL DOCENTE

El docente debe tener el perfil de licenciatura en Ingeniería Mecánica Automotriz, con el posgrado de maestría en Mecánica o preferentemente doctorado, y con alguna especialidad en las áreas mencionadas anteriormente. La experiencia mínima en lo docente es de un (1) año.

Vo. Bo

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA

71%2

AUTORIZO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACÁDEMICO

JEFATURA DE CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ