Programming Guidelines and Algorithms

- Programming Precepts and Program Development
- GNU programming tools
- Scientific Libraries
- Parallelisation and Benchmarking
- Algorithms
- Optimisation: Genetic Algorithm
- Optimisaiton: Ant Colony Optimisation

Jens Kleinjung, Juelich 05.10, 10. Progr. and Algo.

Programming Precepts

(adopted from Kruse, Tondo & Leung)

- Plan your program first, then write it
- Specify preconditions and postconditions of functions
- Document your code
- Give meaningful names to variables and functions
- One instruction per line, one task per function
- Test your program on a variety of input data
- Focus optimisation on the slowest functions
- Keep your algorithms as simple as possible
- Program in haste and debug forever

Programming Style

```
int main(args) {
 get args (args);
 function A(argA);
 return 0;
int function A(argA) {
 compute something (argA);
 return result;
```

make / Makefile

```
# MACROS
# compilers / flags
          = qcc
CC
ARCHFLAG = -m64 \# for 64bit version
         = -qqdb -Wall $(ARCHFLAG) # development binary
# GSL and math library
GSL HOME = /opt/local
INCLIBS = -I$(GSL HOME)/include
LDLIBS = -lm - L\$(GSL HOME)/lib - lqsl - lqslcblas
# program / object names
TARGET = pdbencode
OBJS
       = getpdb.o kabsch.o matrix.o parse args.o pdbencode.o putpdb.o putseq.o \
          safe.o structure.o vector.o getdssp.o fragments.o getfragments.o
#TARGETS
# compile source
%.d %.o: %.c
  $(CC) -c $(CFLAGS) $(INCLIBS) $<
# link objects
$(TARGET): $(OBJS)
  $(CC) -o $(TARGET) $(OBJS) $(LDLIBS) $(ARCHFLAG)
# make targets
all: $(TARGET)
clean:
    rm -f $(OBJS) $(DEPS) $(TARGET)
```

GNU Build System (autotools)


```
aclocal
autoheader
automake --add-missing --copy
autoconf
```

```
configure
make
make check
make install
make dist
...
```

configure.ac src/Makefile.am

```
AC PREREQ([2.63])
AC INIT(myprog, 1.0, me@gmail.com)
AC CONFIG SRCDIR([src/arg.c])
AC CONFIG HEADERS([src/config.h])
AM INIT AUTOMAKE ($PACKAGE, $VERSION)
AC SUBST(INTI CFLAGS)
AC SUBST(INTI LIBS)
# Checks for programs.
AC PROG CC
AC PROG LN S
# Checks for libraries.
AC CHECK LIB([m], [cos])
AC CHECK LIB([gslcblas],[cblas dgemm])
AC CHECK LIB([gsl],[gsl blas dgemm])
# Checks for header files.
AC FUNC ALLOCA
AC CHECK HEADERS([limits.h stdlib.h string.h])
# Checks for typedefs and structures
AC TYPE SIZE T
# Checks for library functions.
AC FUNC MALLOC
AC CHECK FUNCS([pow sqrt])
AC CONFIG FILES([Makefile]
                [src/Makefile]
                [tests/Makefile])
```

```
bin_PROGRAMS = myprog

AM_CPPFLAGS = $(INTI_CFLAGS)

myprog_SOURCES = \
    align_3D.c align_3D.h getpdb.c getpdb.h \
    kabsch.c kabsch.h matrix.c matrix.h

myprog_LDADD = $(INTI_LIBS)

EXTRA_DIST = doxygen.cfg

CLEANFILES = $(TARGET) *.o
DISTCLEANFILES = \
    libtool config.cache config.log
```

Wednesday, 12 May 2010 6

Profiling (gprof)

Compile with flag '-pg'. Run program, creates 'gmon'. Run 'gprof' to get information about performance.

Each sample counts as 0.01 seconds.

% C	umulative	self		self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
33.34	0.02	0.02	7208	0.00	0.00	open
16.67	0.03	0.01	244	0.04	0.12	offtime
16.67	0.04	0.01	8	1.25	1.25	memccpy
16.67	0.05	0.01	7	1.43	1.43	write
16.67	0.06	0.01				mcount
0.00	0.06	0.00	236	0.00	0.00	tzset
0.00	0.06	0.00	192	0.00	0.00	tolower
0.00	0.06	0.00	47	0.00	0.00	strlen
0.00	0.06	0.00	45	0.00	0.00	strchr
0.00	0.06	0.00	1	0.00	50.00	main
0.00	0.06	0.00	1	0.00	0.00	memcpy
0.00	0.06	0.00	1	0.00	10.11	print
0.00	0.06	0.00	1	0.00	0.00	profil
0.00	0.06	0.00	1	0.00	50.00	report

. . .

GNU Scientific Library (C)

http://www.gnu.org/software/gsl/

- * Introduction
- * Using the library
- * Error Handling
- * Mathematical Functions
- * Complex Numbers
- * Polynomials
- * Special Functions
- *Vectors and Matrices
- * Permutations
- * Combinations
- * Sorting
- * BLAS Support
- * Linear Algebra
- * Eigensystems
- * Fast Fourier Transforms

- * Numerical Integration
- * Random Number Generation
- * Quasi-Random Sequences
- * Random Number Distributions
- * Statistics
- * Histograms
- * N-tuples
- * Monte Carlo Integration
- * Simulated Annealing
- * Ordinary Differential Equations
- * Interpolation
- * Numerical Differentiation
- * Chebyshev Approximations
- * Series Acceleration
- *Wavelet Transforms
- * Discrete Hankel Transforms

- * One dimensional Root-Finding
- * One dimensional Minimization
- * Multidimensional Root-Finding
- * Multidimensional Minimization
- * Least-Squares Fitting
- * Nonlinear Least-Squares Fitting
- * Basis Splines
- * Physical Constants
- * IEEE floating-point arithmetic
- * Debugging Numerical Programs
- * Contributors to GSL
- * Autoconf Macros
- * GSL CBLAS Library

```
#include <gsl/gsl_vector_double.h>
#include <gsl/gsl_matrix_double.h>

gsl_vector *eval = gsl_vector_alloc(3);
gsl_matrix *R = gsl_matrix_alloc(3,3);

gsl_vector_set_zero(eval);
gsl_wector_set_zero(R);

gsl_vector_free(eval);
gsl_wector_free(eval);
gsl_matrix_free(R);
```

EMBOSS (C)

http://emboss.sourceforge.net/

EMBOSS is "The European Molecular Biology Open Software Suite". EMBOSS is a free Open Source software analysis package specially developed for the needs of the molecular biology (e.g. EMBnet) user community.

Acd
Alignment consensus
Alignment differences
Alignment dot plots
Alignment global
Alignment local
Alignment
Display
Edit
Enzyme kinetics
Feature tables
HMM
Information
Menus

Nucleic codon usage
Nucleic composition
Nucleic CpG islands
Nucleic gene finding
Nucleic motifs
Nucleic mutation
Nucleic primers
Nucleic profiles
Nucleic repeats
Nucleic restriction
Nucleic RNA folding
Nucleic transcription
Nucleic translation
Phylogeny consensus
Phylogeny continuous characters

Phylogeny discrete characters Phylogeny distance matrix Phylogeny gene frequencies Phylogeny molecular sequence Phylogeny tree drawing Protein 2d structure Protein 3d structure Protein composition Protein motifs Protein mutation Protein profiles Test	
Protein mutation Protein profiles	
lest Utils database creation Utils database indexing Utils misc	

Nucleic 2d structure

BIOPERL

http://www.bioperl.org/wiki/Main_Page

Pages in category "Modules"

The following 200 pages are in this category, out of 1,452 total.

- * Module:Bio::Tools::Run::StandAloneBlast
- * Module:Bio::Tools::Run::RemoteBlast
- * Module:Bio::SearchIO
- * Module:Bio::Search::HSP::HSPI
- * Module:Bio::Search::Result::ResultI
- * Module:Bio::AlignIO
- * Module:Bio::SimpleAlign
- * Module:Bio::TreelO
- * Module:Bio::Search::Hit::Hitl
- * Module:Bio::SearchIO::blast
- * Module:Bio::SearchIO::blasttable
- * Module:Bio::SearchIO::blastxml
- * Module:Bio::SearchIO::fasta
- * Module:Bio::SearchIO::hmmer
- * Module:Bio::SearchIO::wise
- * Module:Bio::SearchIO::sim4
- * Module:Bio::SearchIO::psl
- * Module:Bio::SearchIO::axt
- * Module:Bio::SearchIO::waba
- * Module:Bio::TreelO::newick

- * Module:Bio::TreelO::nexus
- * Module:Bio::TreelO::nhx
- * Module:Bio::TreelO::lintree
- * Module:Bio::TreelO::treecluster
- * Module:Bio::TreelO::pag
- * Module:Bio::TreelO::tab
- * Module:Bio::TreelO::svggraph
- * Module:Bio::Search::HSP::GenericHSP
- * Module:Bio::Search::HSP::FastaHSP
- * Module:Bio::Search::HSP::BlastHSP
- * Module:Bio::Search::HSP::HMMERHSP
- * Module:Bio::Search::HSP::PSLHSP
- * Module:Bio::Search::HSP::WABAHSP
- * Module:Bio::Search::HSP::PsiBlastHSP
- * Module:Bio::Tools::Tmhmm
- * Module:Bio::Tools::Run::Alignment::StandAloneFasta
- * Module:Bio::Tools::Run::TribeMCL
- * Module:Bio::Tools::Run::Alignment::Blat
- * Module:Bio::Tools::Run::Phylo::PAML::Baseml
- * Module:Bio::Tools::Run::Phylo::PAML::Codeml
- * Module:Bio::Tools::Run::Phylo::PAML::Yn00
- * Module:Bio::Tools::Run::Phylo::PAML::Evolver
- * Module:Bio::Tools::Phylo::PAML
- * Module:Bio::PrimarySeql

••

BIOPYTHON

http://biopython.org/wiki/Main_Page

- * Seq and SeqRecord objects
- * Bio.SeqIO sequence input/output
- * Bio.AlignIO alignment input/output
- * Bio.PopGen population genetics
- * Biopython's BioSQL interface

П

SEQAN

http://www.seqan.de/

SeqAn is an open source C++ library of efficient algorithms and data structures for the analysis of sequences with the focus on biological data.

Alignments

Align An alignment of sequences.

AlignCols Pseudo columns container for row-based alignment classes.

AlignConfig The AlignConfig class encapsulates how DP is carried out.

Gaps Stores the gaps in a gapped sequences.

Blast

BlastHit Object for storing Blast hits.

BlastHsp Object for storing Blast HSPs.

BlastReport Object for storing Blast report information.

...

Parallelisation

Coarse grained

- use many computers (cluster)
- use multi-core for different jobs

Fine grained

Thread (fork)

terminate

 Message Passing Interface initialise distribute jobs communicate results assign results

MPI

```
#include <stdio.h>
#include <mpi.h>
int main (int argc, char* argv[])
  int rank, size;
  MPI_Init (&argc, &argv);
  MPI_Comm_rank (MPI_COMM_WORLD, &rank);
  MPI_Comm_size (MPI_COMM_WORLD, &size);
  printf( "Hello world from process %d of %d\n", rank, size );
  MPI_Finalize();
  return 0;
Hello world from process 0 of 3
Hello world from process 1 of 3
Hello world from process 3 of 3
```

Benchmarking with ROCR

visualizing classifier performance in R, with only 3 commands

http://rocr.bioinf.mpi-sb.mpg.de/

Algorithms

Definition of 'algorithm' A set of instructions to accomplish a task.

Time Complexity

Upper bound of run time dependent on problem size N: O(log N) [logarithmic], O(N) [linear], $O(N^2)$ [square], ...

Memory versus CPU

Memory can be saved at the cost of more CPU time and vice versa. Example: Storing or computing the traceback in Dynamic Programming.

Pointers in Algorithms

Pointers are very efficient in algorithms (see next slide).

A Pointer Algorithm

17

Merge Sort

Complexity O(n log n), stable

Genetic Algorithm

Idea: Encode parameters as 'genes', let many genomes compete, select the best ones and breed new generation. The result is a near-optimal parameter combination.

Iteration 1	Iteration 5 Ite	ration 8
0: [5 5 8 5 1] 153.68	0: [5 5 8 3 1] 154.90	0: [5 5 8 3 1] 154.90
1: [3 8 6 4 0] 153.64	1: [5 4 8 2 2] 154.68	1: [5 4 8 3 2] 154.90
2: [4 6 6 3 0] 153.33	2: [5 4 8 2 2] 154.68	2: [5 4 8 3 2] 154.90
3: [7 2 8 0 2] 153.25	3: [5 4 8 2 0] 154.64	3: [5 4 8 2 2] 154.90
4: [4 6 7 4 2] 153.03	4: [5 4 8 3 0] 154.64	4: [5 4 8 3 2] 154.90
5: [3 8 7 1 8] 152.48	5: [4 5 8 3 3] 154.44	5: [5 4 8 3 2] 154.90
6: [6 3 8 2 5] 152.37	6: [4 5 8 3 0] 154.39	6: [5 4 8 3 2] 154.90
7: [6 5 3 3 0] 152.37	7: [4 5 8 3 0] 154.39	7: [5 4 8 3 2] 154.90
8: [6 4 5 3 3] 152.30	8: [4 5 8 3 0] 154.39	8: [5 4 8 2 2] 154.90
9: [7 7 8 0 1] 152.01	9: [4 4 8 3 2] 154.35	9: [5 4 8 3 2] 154.90
10: [5 5 4 5 2] 151.91	10: [5 5 8 3 <u>0</u>] 154.32	10: [5 4 8 3 2] 154.90

Ant Colony Optimisation

Set parameters, initialize pheromone trails

SCHEDULE_ACTIVITIES

ConstructAntSolutions

DaemonActions {optional}

UpdatePheromones

END_SCHEDULE_ACTIVITIES

Ant Colony Optimisation

Wednesday, 12 May 2010 21

Learning Outcomes

- Program Design
- Profiling
- Usage of Scientific Libraries
- Parallelisation with MPI
- Benchmarking with ROCR
- Sorting
- Concept of Genetic Algorithm
- Concept of Ant Colony Optimisation