Feature importance introduction

Sijin Zhang

Gini importance Permutation importance

Gini importance

Can be only used for random forest

Permutation importance

Can be used by any types of model

Gini importance

Can be only used for random forest
Less intuitive, based on Gini impurity decrease

Permutation importance

Can be used by any types of model

More intuitive, capable of using any metrics such as POD, ACC etc.

Gini importance

Can be only used for random forest

Less intuitive, based on Gini impurity decrease

Not that easy to understand

Permutation importance

Can be used by any types of model

More intuitive, capable of using any metrics such as POD, ACC etc.

Very easy to understand

Gini importance

Can be only used for random forest

Less intuitive, based on Gini impurity decrease

Not that easy to understand

N/A

Permutation importance

Can be used by any types of model

More intuitive, capable of using any metrics such as POD, ACC etc.

Very easy to understand

Can only be used for one particular trained model

Gini importance

Can be only used for random forest

Less intuitive, based on Gini impurity decrease

Not that easy to understand

N/A

If RF is overfitting, then the importance does not mean much

Require less dataset

Very cheap to run

Permutation importance

Can be used by any types of model

More intuitive, capable of using any metrics such as POD, ACC etc.

Very easy to understand

Can only be used for one particular trained model

Less chance of "overfitting" since it uses independent dataset

Require more dataset (e.g., need to split and shuffle dataset)

Relatively more expensive

Gini importance

Can be only used for random forest

Less intuitive, based on Gini impurity decrease

Not that easy to understand

N/A

If RF is overfitting, then the importance does not mean much

Require less dataset

Very cheap to run

Permutation importance

Can be used by any types of model

More intuitive, capable of using any metrics such as POD, ACC etc.

Very easy to understand

Can only be used for one particular trained model

Less chance of "overfitting" since it uses independent dataset

Require more dataset (e.g., need to split and shuffle dataset)

Relatively more expensive

Both methods are not very good when features are correlated (e.g., if two features are similar, then they may share the importance, so the importance for both features will be underestimated)