ABSTRACT ALGEBRA

- A Quick Guide -

Huan Q. Bui

Colby College

PHYSICS & MATHEMATICS Statistics

Class of 2021

September 11, 2019

Preface

Greetings,

Abstract Algebra: A Quick Guide to is compiled based on my MA333: Abstract Algebra notes with professor Tamar Friedmann. This guide is almost entirely based on Contemporary Abstract Algebra, Fourth edition by Gallian and my class notes with professor Friedmann.

Enjoy!

Contents

	Preface	 													2	2
1	GROUPS														ţ	5

4 CONTENTS

Chapter 1

GROUPS

1.1 Definition

A group is always defined under some binary operation. What is a binary operation? Let a set G be given. A binary operation on G is a function that assigns to each ordered pair of elements of G an element of G.

A group, then is defined as follows. Let a (nonempty) set G be given with a binary operation that assigns to each ordered pair (a,b) where $a,b \in G$ an element $ab \in G$. G is a group under this operation if the following properties are satisfied:

- 1. Associativity: The operation is associative, i.e, a(bc) = (ab)c.
- 2. Identity: There exists an element e, called the identity, in G such that $ae=ea=a \forall a \in G$.
- 3. Inverses: $\forall a \in G, \exists b \in G \text{ s.t. } ab = ba = e$. We call b the inverse of a, denoted a^{-1} .

We note that the binary operation associated with each group is not necessarily commutative. A commutative group is called *Abelian*. A non-commutative group is called *non-Abelian*.

1.2 Elementary Properties

1.2.1 Uniqueness of Identity

In a group G, there is only one identity element. The proof of this is quite simple. Let a group G be given. Suppose ae = a and ae' = e'a = a for all $a \in G$. Then we have ae = ea = a = ae' = ea'. If a = e then we immediately have ee' = e = e'e = e'. So e = e'. Thus, the identity is unique.

1.2.2 Cancellation

In a group G, the right and left cancellation laws hold, i.e, $ab = ac \implies b = c$, and $ba = ca \implies b = c$. The proof of this is also quite simple. We simply multiply both sides of each equation from the appropriate direction with a^{-1} . By associativity, the a vanishes from both sides, leaving b = c.

1.2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G such that ab = ba = e. We once again prove by supposing there are two distinct inverses of a, say b and b'. Then we have ab = ab' = e. By cancellation, we have b = b'.

1.2.4 Socks-Shoes Property

$$(ab)^{-1} = b^{-1}a^{-1}. (1.1)$$

Chapter 2

FINITE GROUPS & SUBGROUPS