Licenciatura em Engenharia Informática (LEI) 2024/2025

Matemática Computacional (MATCP)

CAPÍTULO 2

Estatística Descritiva

EXERCÍCIOS

CARACTERIZAÇÃO, ORGANIZAÇÃO E REPRESENTAÇÃO DOS DADOS. MEDIDAS DESCRITIVAS.

1. Realizou-se um estudo de uma amostra de 104 doentes renais, registando-se, para cada um, o tempo (meses) de hemodiaise antes da realização do transplante, obtendo-se a tabela de frequências de dados classificados:

Tempo hemodiálise	Freq. abs.	Freq. rel.
0 - 15	9	8.7%
15 - 30	35	33.7%
30 - 45	20	19.2%
45 - 60	20	19.2%
60 - 75	7	6.7%
75 - 90	4	3.8%
90 - 105	5	4.8%
105 - 120	1	1%
120 - 135	1	1%
135 - 150	2	1.9%
Total	104	100%

Faça um programa que calcule, em média, o número de meses que os pacientes têm de esperar para a realização do transplante. O programa deverá ler,

- do teclado, o limite inferior e superior da primeira classe e o número de classes;
- ullet de um ficheiro Excel~(.csv) as frequências absolutas para cada classe.

O programa deverá ter como saída a média pedida (com uma casa decimal).

2. A tabela mostra a distribuição de cargas máximas (em toneladas) suportadas por um tipo de cabos fabricados por uma companhia. Sem recorrer à programação em Python, responda à perguntas.

Carga máxima (toneladas)	Número de cabos
20 - 20.5	25
20.5 - 21	48
21 - 21.5	60
21.5 - 22	53
22 - 22.5	28
22.5 - 23	18
23 - 23.5	9
23.5 - 24	6
24 - 24.5	2
24.5 - 25	1
Total	250

2.1 Determine:

- i. A média, a mediana e a classe modal.
- ii. A variância, o desvio padrão e o coeficiente de variação.
- 2.2 A partir da análise da tabela de frequências e sem efetuar qualquer cálculo, indique o sinal do coeficiente de assimetria e justifique.
- 2.3 Determine o valor do coeficiente de curtose e interprete o resultado obtido.

3. Uma empresa pretende determinar se o grau de satisfação dos seus clientes é aceitável. Para isso, encomendou um estudo para analisar, entre outros parâmetros, o tempo (em segundos) entre reclamações que chegam à sua central telefónica. Os dados recolhidos estão no ficheiro "Dados_Cap2_Exercicio3_csv.csv".

- 3.1 Classifique a variável em estudo quanto ao tipo: qualitativa/quantitativa, discreta/contínua.
- 3.2 Determine o valor máximo e o valor mínimo do conjunto de dados.
- 3.3 Escolha o número de classes pretendido.
- 3.4 Estime a amplitude das classes e decida o seu valor.
- 3.5 Proceda à organização dos dados construindo uma tabela frequências (dados classificados) contendo as frequências absolutas, relativas e absolutas acumuladas.
- 3.6 Para o número de classes obtido, obtenha um histograma que representa graficamente os dados da tabela.

3.7 Determine:

- i. A média, a mediana e os quartis q_1 e q_3 .
- ii. A variância, o desvio padrão e o coeficiente de variação.
- 3.8 Determine os valores dos coeficientes de assimetria e de curtose e interprete os resultados obtidos.
- 3.9 Crie uma boxplot associada aos dados e retire as principais conclusões sobre o conjunto de dados que são evidentes na boxplot.

4. Um governo europeu, estando a pensar reformular a política de Saúde Pública do seu país, comparou os custos médios diários (em euros) do tratamento de doentes internados, em 100 dos seus maiores hospitais. O resgisto dos dados obtidos foi feito no ficheiro "Dados_Cap2_Exercicio4_csv.csv".

4.1 Obtenha histogramas que representam graficamente os dados da tabela, para 4, 8 e 16 classes. Mostre os histogramas em linha com o título identificativo do número de classes.

4.2 Determine:

- i. A média, a mediana, a moda e a amplitude interquartil.
- ii. A variância, o desvio padrão e o coeficiente de variação.
- 4.3 Determine os valores dos coeficientes de assimetria e de curtose e interprete os resultados obtidos.
- 4.4 Crie uma boxplot associada aos dados e retire as principais conclusões sobre o conjunto de dados que são evidentes na boxplot.
- 5. O ficheiro "Dados_Cap2_Exercicio5_csv.csv" contém as variações de cotação das ações de um grupo de 100 empresas cotadas numa Bolsa de Valores, de uma cidade europeia.
 - 5.1 Obtenha um histograma que representa graficamente os dados da tabela (com número de classes automático).
 - 5.2 Determine a média, a mediana e a moda.
 - 5.3 Determine o percentil p_{10} e interprete o resultado.
 - 5.4 Crie uma *boxplot* associada aos dados e retire as principais conclusões sobre o conjunto de dados que são evidentes na *boxplot*.

6. Na tabela seguinte mostra-se o número de filhos que os 46 presidentes dos Estados Unidos tiveram (de George Washington - 1789 a 1797, sem filhos a Joe Biden - desde 2021, com quatro filhos).

0	5	6	0	2	4	0	4	10	14
0	6	2	3	0	4	5	4	8	7
3	5	3	5	2	6	3	3	0	2
2	6	1	2	3	2	2	4	4	4
6	1	2	2	5	4				

- 6.1 Classifique a variável em estudo quanto ao tipo: qualitativa/quantitativa, discreta/contínua.
- 6.2 Suponha que se opta por 15 classes (0, 1, ..., 14).
 - i. Crie uma tabela de frequências absolutas e relativas.
 - ii. Obtenha o gráfico de barras que representa os dados da tabela.
- 7. Uma conhecida marca de automóveis encomendou um estudo de mercado para se concluir qual a cor preferida dos portugueses para os seus automóveis de entre as cinco cores: {branco, preto, vermelho, verde, cinzento}. O resultado do inquérito a 200 portugueses foi registado no ficheiro "Dados_Cap2_Exercicio7_csv.csv".
 - 7.1 Classifique a variável em estudo quanto ao tipo: qualitativa/quantitativa, discreta/contínua.
 - 7.2 Crie uma tabela de frequências.
 - 7.3 Obtenha o gráfico circular que representa os dados da tabela.

SOLUÇÕES DOS EXERCÍCIOS

1. $\bar{x} = 43.0 \text{ meses}$; 2.1.i $\bar{x} \approx 21.55$, $\tilde{x} \approx 21.43$,

classe modal: [21,21.5]; **2.1.ii** $s^2 \approx 0.80$, $s \approx 0.90$, $c_v \approx 0.04$; **2.2** Como a distribuição de frequências é enviesada à direita ou assimétrica positiva, $a_3 > 0$; **2.3** $a_4 \approx 3.49$, valor superior a 3, logo a distribuição é mais esguia, caudas mais pesadas do que a distribuição Normal; **3.1** Variável quantitativa contínua;

3.2 Valor máximo = 164, valor mínimo = 1; 3.3 O número de classes = 8; 3.4 Amplitude = 20.4; 3.5

Classes	Freq. abs.	Freq. rel.	Freq. rel. acum.
1.0-21.4	61	40.7%	61
21.4 – 41.8	58	38.7%	119
41.8 – 62.2	13	8.7%	132
62.2 – 82.6	7	4.7%	139
82.6 – 103.0	3	2.0%	142
103.0 – 123.4	2	1.3%	144
123.4 – 143.8	3	2.0%	147
143.8 – 164.2	3	2.0%	150

 $\mathbf{3.6}$ 3.7. $\mathbf{i}\ ar{x} pprox 33.5,\ \widetilde{x} pprox 24.0,$

 $q_1 = 14.0, q_3 = 38.2; \mathbf{3.7.ii} \ s^2 \approx 1051.6, s \approx 32.4, c_v \approx 1.0;$

3.8 $a_3 = 2.1645 > 0$, assim a distribuição de frequências é ensiesada à direita (como é evidente no histograma),

 $a_4=8.0360>3$, assim a distribuição de frequências é mais achatada do que a distribuição Normal;

3.9 A análise do gráfico confirma que 50% das observações estão entre $q_1 = 14.0$ e $q_3 = 38.2$, confirma o valor da mediana e identifica num número significativo de pontos isolados (outliers), este facto também é confirmado pelo valor elevado do desvio padrão;

4.2.i $\bar{x} \approx 317.6$, $\tilde{x} \approx 309.5.0$, Moda = 283, amplitude interquartil $q_3 - q_1 = 59.8$; **4.2.ii** $s^2 \approx 1179.9$, $s \approx 34.4$, $c_v \approx 0.1$; **4.3** $a_3 = 0.4162 > 0$, assim a distribuição de frequências é ensiesada à direita, $a_4 = 2.3924 < 3$, assim a distribuição de frequências é mais esguia do que a distribuição Normal;

4.4

5.1

5.2 $\bar{x} \approx 0.1$, $\tilde{x} \approx 0.065$, Moda = 0.25,

 ${\bf 5.3}~p_{10}=-0.409,$ significa que 10% das observações são menores que -0.409;

5.4

6.1 Variável quantitativa discreta;

6.2.i

${f N}^o$ Filhos	Freq. abs.	Freq. rel.	
0	6	13.0%	
1	2	4.3%	
2	10	21.7%	
3	6	13.0%	
4	8	17.4%	
5	5	10.9%	
6	5	10.9%	
7	1	2.2%	
8	1	2.2%	
10	1	2.2%	
14	1	2.2%	

 $2024/2025 \hspace{1.5cm} \mathrm{MATCP(LEI)}$

Cores	Freq. abs.	Freq. rel.
branco	73	36.5%
preto	42	21.0%
vermelho	33	16.5%
verde	25	12.5%
cinzento	27	13.5%

