

DEVELOPINGAN AUTOMOTIVE SAFETY (SLAD)

Vehicle Architecture Trends

Electrification

ADAS / Autonomy

Connectivity

Increased compute requirements

Increased software content

Safety remains paramount

Security becoming critical

Consolidation of compute resources

Drive for standardisation

Discrete ECUs

Domain Controllers

Zonal Controllers

Vehicle Architecture Trends

Electrification

ADAS / Autonomy

Connectivity

Increased compute requirements

Increased software content

Safety remains paramount

Security becoming critica

Consolidation of compute resources

Drive for standardisa

Discrete ECUs

Domain Controllers

Zonal Controllers

Functional safety

Compliance with Safety Standards

Failure Avoidance and Detection

Risk Reduction and Hazard Analysis

System Reliability and Redundancy

FuSa ensures reliable and safe operation

Real-Time CPU

Deterministic Execution

Interrupt Handling

Task Scheduling

Fast Context Switching

Low Latency I/O

Predictable Performance

Example Safety Island SoC

Freedom From Interference requires that a failure in the 'Rest of SoC' (ASIL-B) must not be able to cause a failure in the Safety Island (ASIL-D)

Timing and execution

- Execution of an ASIL-B function being blocked must not block an ASIL-D function executing
- Made easier as only ASIL-D functions run on the Safety Island
- Safety Island code must not block waiting on an action from ASIL-B software

Memory

- Memory corrupted by faulty execution on the ASIL-B side must not affect Safety Island software
- Generally, use separate memories with no access to the Safety Island memory from Rest Of SoC
- Any shared buffers should be in a constrained area in the Safety Island side
 - If accessibility from Rest of SoC is programmable, must be configured by Safety Island software

Exchange of information

- Safety Island software must treat any data from the Rest-Of-SoC as unreliable (maybe in shared buffer)
- Validate integrity, ensure corrupted data does not cause failure

The Safety Island

Characteristics

- Physically Isolated (power and clock) from Rest of SoC (to provide protection from common mode failures)
- Keep as simple as possible less components, easier to analyse, less opportunity for failures
- Real time CPU (Typically TCMs and no MMU)

Functions

- General ASIL-D workloads
- Control reset and clocks for Rest of SoC
- Monitor the rest of the SoC for safety failures
- Provide resilient communication to other ECUs
- Coordinate in-service BIST
- Security monitoring

Summary

Industry trends driving move to more compute, and much more software

Architecture moving from separate ECUs, to Domain controllers, to Zonal /Centralised controllers

Increased need to mix safety criticality on a single SoC

Best achieved using a high-safety Island

THANK YOU

September 23 10