- 1. Find the numerically greatest term in the expansion of $\left(1+\frac{2x}{3}\right)^{15}$, when x=1.
 - (a) $\binom{15}{6} (\frac{2}{3})^6$
 - (b) $\binom{15}{7} (\frac{2}{3})^6$

 - (c) $\binom{15}{6} (\frac{2}{3})^7$ (d) $\binom{15}{5} (\frac{2}{3})^7$
- 2. In quadrilateral ABCD if $sin(\frac{A+B}{2})cos(\frac{A-B}{2}) + sin(\frac{C+D}{2})cos(\frac{C-D}{2}) = 2$, then find the value of $sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}sin\frac{D}{2}$ is :
 - (a) $\frac{1}{2}$
 - (b) $\frac{1}{4}$
 - (c) $\frac{1}{9}$
 - (d) $\frac{1}{16}$
- 3. If $sin^2\theta_1 + sin^2\theta_2 + sin^2\theta_3 = 0$, then which of the following is not the possible value of $cos\theta_1 + cos\theta_2 + cos\theta_3$ is
 - (a) 3
 - (b) -3
 - (c) -1
 - (d) -2
- 4. The number of distinct solutions of equation $sin^4x + \frac{5}{4}cos^22x + cos^4x + sin^6x + cos^6x =$ 2 in the interval $[0, 2\pi]$ is:
 - (a) 4
 - (b) 5
 - (c) 6
 - (d) 8
- 5. If $\lim_{x\to 1} \frac{x+x^2+x^3+\dots x^n-n}{x-1}=45$; $n\in \mathbb{N}$ then the value of n is equal to
 - (a) 1
 - (b) 3
 - (c) 10
 - (d) 9
- 6. A differentiable function satisfies the relation $f(x+y) = f(x) + f(y) + 2xy 1 \forall x \in \mathbb{R}$. If f'(0) = 2, then value of f(2) is
 - (a) 1

- (b) 2
- (c) 9
- (d) 11

7. If $9^7 + 7^9$ is divisible by 2^n then the greatest value of n is

- (a) 1
- (b) 2
- (c) 6
- (d) 3

8. If $|z_1 z_2| = |2\cos\frac{\pi}{4} - 2i\sin\frac{\pi}{4}|$ and $arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{3}$, then $z_1^2 z_2^2$ is

- (a) $2(-1+i\sqrt{3})$
- (b) i
- (c) 2
- (d) $2(-1 i\sqrt{3})$