论文的题目

作者

2023年6月8日

摘要

这是论文的摘要

1 引言

1.1 研究背景

这是小四号的正文字体.

通过空一行实现段落换行,仅仅是回车并不会产生新的段落,

自定义一个命令 \red{文字} 可以加红文字, 在论文修改阶段方便标记.

这是一个引用的示例 [1] 和 [2-4].

这是中文与 English 混排. 标点统一使用英文的标点 (英文没有的除外). 这是一段文字。

这是一段文字。

1.2 列表的使用

这是一个计数的列表.

- 1. 第一项
 - (a) 第一项中的第一项
 - (b) 第一项中的第二项
- 2. 第二项
- 3. 第三项

这是一个不计数的列表.

- 第一项
 - 第一项中的第一项
 - 第一项中的第二项
- 第二项
- 第三项

1.3 文献引用

参考文献可采用 BibTeX 的方式生成(文献信息写在文件 reference.bib 中),参考文献的样式为 thuthesis-numeric (对应的引用格式可选 numbers 或 super) 和 thuthesis-author-year (对应的引用格式 authoryear),符合国家标准《信息与文献参考文献著录规则》GB/T 7714-2015,论文中引用和参考的文献必须列出.参考文献序号按所引文献在论文中出现的先后次序排列.引用文献应在论文中的引用处加注文献序号,并加注方括弧.

文献引用示例 [5] 和 [1, 2].

1.4 数学公式

数学公式的使用请参考《一份 (不太) 简短的 LaTeX 2ε 介绍》(Ishort-zh-cn), 更多的数学符号参考 The Comprehensive LaTeX Symbol List (symbols-a4).

自定义命令表示的几个数学符号 \mathbb{R} , \mathbb{C} , \mathcal{A} , i, \mathcal{A} . 微分符号 d 以及 dx, dt.

在文中行内公式可以这么写: $a^2 + b^2 = c^2$, 这是勾股定理, 它还可以表示为 $c = \sqrt{a^2 + b^2}$, 还可以让公式单独一段并且加上编号

$$\sin^2 \theta + \cos^2 \theta = 1. \tag{1.1}$$

还可以通过添加标签在正文中引用公式, 如等式 (1.1) 或者 1.1.

读者可能阅读过其它手册或者资料,知道 LaTeX 提供了 eqnarray 环境. 它按照等号左边一等号一等号右边呈三列对齐,但等号周围的空隙过大,加上公式编号等一些 bug,目前已不推荐使用. (摘自 lshort-zh-cn)

多行公式常用 align 环境, 公式通过 & 对齐. 分隔符通常放在等号左边:

$$a = b + c \tag{1.2}$$

$$= d + e. ag{1.3}$$

align 环境会给每行公式都编号. 我们仍然可以用 \notag 或 \nonumber 去掉某行的编号. 在以下的例子, 为了对齐等号, 我们将分隔符放在右侧, 并且此时需要在等号后添加一对括号 {} 以产生正常的间距:

$$a = b + c \tag{1.4}$$

= d + e + f + g + h + i + j

$$+m+n+o (1.5)$$

$$= p + q + r + s. \tag{1.6}$$

如果不需要按等号对齐,只需罗列数个公式,gather 将是一个很好用的环境:

$$a = b + c \tag{1.7}$$

$$d = e + f + g$$

$$h + i = j \tag{1.8}$$

align 和 gather 有对应不带编号的环境 align*和 gather*. 对于 align, gather, align*与 gather*等环境, 若添加命令 \allowdisplaybreaks 后 (已添加), 公式可以跨页显示.

多个公式组在一起公用一个编号, 编号位于公式的居中位置, amsmath 宏包提供了诸如 aligned、gathered 等环境, 与 equation 环境套用.

这个公式使用 aligned 环境 (推荐使用)

$$\begin{cases}
-\frac{d^2 u}{dx^2} + \frac{du}{dx} = \pi^2 \sin(\pi x) + \pi \cos(\pi x), & x \in [0, 1], \\
u(0) = 0, & u(1) = 0.
\end{cases}$$
(1.9)

其中方程的解析解为 $u = \sin(\pi x)$.

这个公式使用 array 环境

$$\begin{cases}
-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} = \pi^2 \sin(\pi x) + \pi \cos(\pi x), & x \in [0, 1], \\
u(0) = 0, & u(1) = 0.
\end{cases}$$
(1.10)

aligned 与 equation 环境套用, 公式间距自动调节, 如果有分式, 分式也是行间显示. 如果用 array 与 equation 环境套用, 需要手动调整公式行间距和行间显示.

1.5 定理环境

定义 1.1. 这是一个定义.

命题 1.1. 这是一个命题.

引理 1.1 (Lemma). 这是一个引理.

定理 1.1 (Theorem). 这是一个定理.

证明: 这是证明环境.

推论 1.1. 这是一个推论.

命题 1.2 (Proposition). 这是一个命题.

引理 1.2. (参考文献 [5]) 假设单步法具有 p 阶精度, 且增量函数 $\varphi(x_n,u_n,h)$ 关于 u 满足 Lipschitz 条件

$$|\varphi(x, u, h) - \varphi(x, \bar{u}, h)| \leqslant L_{\varphi}|u - \bar{u}|. \tag{1.11}$$

定理 1.2. 假设单步法具有 p 阶精度, 且增量函数 $\varphi(x_n,u_n,h)$ 关于 u 满足 Lipschitz 条件

$$|\varphi(x, u, h) - \varphi(x, \bar{u}, h)| \leqslant L_{\varphi}|u - \bar{u}|. \tag{1.12}$$

证明 由定理 1.2 和 (1.9) 式可以推出以上结论.

推论 1.2. 假设单步法具有 p 阶精度, 且增量函数 $\varphi(x_n,u_n,h)$ 关于 u 满足 Lipschitz 条件

$$|\varphi(x, u, h) - \varphi(x, \bar{u}, h)| \leqslant L_{\varphi}|u - \bar{u}|. \tag{1.13}$$

注 1.1. 这是一个 remark.

例1. 这是一个例子.

1.6 算法环境

如下是算法 1.

算法 1 Euclid's algorithm

1: **procedure** Euclid(a, b)

⊳ The g.c.d. of a and b

2: $r \leftarrow a \mod b$

3: **while** $r \neq 0$ **do**

 \triangleright We have the answer if r is 0

4: $a \leftarrow b$

5: $b \leftarrow r$

6: $r \leftarrow a \mod b$

7: end while

8: **return** b \triangleright The gcd is b

9: end procedure

如下是算法 2, 算法宽度可以通过 minipage 宏包调节.

算法 2 算法的名字

输入: input parameters A, B, C

输出: output result

1: some description 算法介绍

2: for condition do

3: ...

4: **if** condition **then**

5: ...

6: **else**

7: ...

8: end if

9: end for

10: while condition do

11: ...

12: end while

13: return result

2 微分方程的数值方法

本章我们考虑具有以下微分方程:

$$\begin{cases}
Lu = -\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} + qu = f, & a < x < b, \\
u(a) = \alpha, & u(b) = \beta.
\end{cases}$$
(2.1)

其中 q, f 为 [a, b] 上的连续函数, $q \ge 0$; α, β 为给定常数. 这是最简单的椭圆方程第一边值问题.

问题 (2.1) 存在唯一解 (参考文献 [5]).

2.1 有限差分方法

在偏微分方程的数值解法中,有限差分法数学概念直观,推导自然,是发展较早且比较成熟的数值方法.由于计算机只能存储有限个数据和做有限次运算,所以任何一种用计算机解题的方法,都必须把连续问题(微分方程的边值问题、初值问题等)离散化,最终化成有限形式的线性代数方程组.

2.1.1 数值格式

将区间 [a,b] 分成 N 等份, 分点为

$$x_i = a + ih, \quad i = 0, 1, \dots, N,$$

其中 h = (b - a)/N. 于是我们得到区间 I = [a, b] 的一个网格剖分. x_i 称为网格的节点, h 称为步长.

为了方便起见, 令 $q_i = q(x_i)$, $f_i = f(x_i)$. 方程 (2.1) 的差分方程为

$$L_h u_i = -\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + \frac{u_{i+1} - u_{i-1}}{h} + q_i u_i = f_i, \quad 1 \leqslant j \leqslant N - 1,$$
 (2.2)

其中 L_h 为差分算子, u_i 为 u(x) 在 $x = x_i$ 处的近似解即差分解.

差分方程 (2.2) 对于 $i=1,2,\cdots,N-1$ 都成立, 加上边值条件 $u_0=\alpha,u_N=\beta$, 就得到如下线性方程组:

$$\begin{cases}
L_h u_i = -\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + \frac{u_{i+1} - u_{i-1}}{2h} + q_i u_i = f_i, & i = 1, \dots, N - 1, \\
u_0 = \alpha, & u_N = \beta.
\end{cases}$$
(2.3)

2.1.2 矩阵形式

定义向量 u:

$$\boldsymbol{u} = (u_1, u_2, \cdots, u_{N-1})^{\mathrm{T}}.$$

差分格式可以写为矩阵形式:

$$Au = f$$
.

其中矩阵 A、向量 f 的定义如下, 注意向量 f 的首尾元素已包含了 x = a 和 x = b处的边界条件.

条件.
$$A = \begin{bmatrix} \frac{2}{h^2} + q_1 & \frac{1}{2h} - \frac{1}{h^2} \\ -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_2 & \frac{1}{2h} - \frac{1}{h^2} \\ & \ddots & \ddots & \ddots \\ & & -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_{N-2} & \frac{1}{2h} - \frac{1}{h^2} \\ & & & -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_{N-1} \end{bmatrix}$$
 个矩阵用了 bmatrix 环境, 也可以使用 array 环境.

上一个矩阵用了 bmatrix 环境, 也可以使用 array 环境.

$$\mathbf{A} = \begin{bmatrix} \frac{2}{h^2} + q_1 & \frac{1}{2h} - \frac{1}{h^2} \\ -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_2 & \frac{1}{2h} - \frac{1}{h^2} \\ & \ddots & \ddots & \ddots \\ & -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_{N-2} & \frac{1}{2h} - \frac{1}{h^2} \\ & & -\frac{1}{2h} - \frac{1}{h^2} & \frac{2}{h^2} + q_{N-1} \end{bmatrix}$$
(2.5)

3 插图环境

3.1 图的使用

XeLaTeX 环境下可以插入 EPS、PDF、PNG、JPEG、BMP 格式的图片, 也可以用绘图包 (如 tikz 宏包) 直接在 LaTeX 中绘制图形. 值得注意的是 figure 环境一个浮动体环境, LaTeX 不总是浮动体放在你想要的地方, 但是 LaTeX 总是保证浮动体的相对顺序, 所以对图片 \label 和 \ref 的交叉引用就显得尤为重要。

3.2 插图示例

插入一个图形并居中放置,如图 3.1.

图 3.1: 函数 $y = \sin(x)$ 的图像

两个图左右并排放置,共用一个标题,如图 3.3.

图 3.2: 左: 图一的描述; 右: 图二的描述

使用 minipage 排版并排插图, 每个图都有单独的标题. 通过 autoref 引用图片: 图 3.3 与 图 3.4.

使用 subfig 宏包实现多图并排, 如图 3.5.

图 3.5: 六个图并排

4 表格环境

4.1 表的使用

LaTeX 的 table 环境是一个浮动体环境, 排版与 figure 环境类似. 作为书籍, 推荐使用三线表进行排版. 一般的三线表, 标题前后有横线, 表格最后有横线.

本文基于 tabularx 宏包定义了新的的左中右 (LCR) 格式, tabularx 环境需要先定义表格的总宽度, LCR 三个格式根据表格的总宽度自行控制列宽, 且其宽度相等. 本模板还定义了命令 P{}, 它设置某一列宽度且内容居中 (如 P{1cm} 控制某一列的宽度为 1cm), 实际上 P{} 命令是在 p{} 命令的基础上增加了居中功能.

4.2 表格示例

如下表格: 表 4.1. 通过 autoref 引用表格: 表 4.1.

序号	年龄	身高	体重
001	15	156	42
002	16	158	45
003	14	162	48
004	15	163	50
平均	15	159.75	46.25

表 4.1: 某校学生升高体重样本

表 4.2: 论文进度安排

论文起止时间	论文筹备过程		
20xx.xx – 20xx.xx	论文定题,整理相关文献		
20xx.xx – 20xx.xx	审查、修改、完成开题报告		
20xx.xx – 20xx.xx	对论文排版、初步完成论文初稿		
20xx.xx – 20xx.xx	毕业论文预答辩		
20xx.xx – 20xx.xx	论文定稿		
20xx.xx – 20xx.xx	毕业论文答辩		

基于 tabular 环境设置一些格式: 上下表格线加粗, 如表 4.3.

表 4.3: 数值误差与收敛速率示例

degree	step-size h	L^2 -errors	order	H^1 -errors	order	L^{∞} -errors	order
1	1/128	9.18E-06	2.02	7.70E-03	1.01	6.46E-07	2.02
	1/256	2.29E-06	2.01	1.92E-03	1.00	1.61E-07	2.01
	1/512	5.70E-07	2.00	9.56E-04	1.00	4.01E-08	2.00
2	1/128	1.39E-08	3.01	1.15E-05	2.01	3.48E-12	4.02
	1/256	1.73E-09	3.01	2.88E-06	2.01	3.27E-13	3.94
	1/512	2.17E-10	3.00	7.24E-06	2.00	6.66E-13	1.55
3	1/32	2.28E-09	4.05	6.92E-07	3.04	1.45E-15	8.21
	1/64	1.42E-10	4.03	8.65E-08	3.02	2.06E-14	3.85
	1/128	8.91E-12	4.01	1.08E-08	3.01	3.86E-14	0.91

基于 tabularx 环境设置一些格式, 如表 4.4.

表 4.4: 数值误差示例

N	A	В	С	D	Е	F
2	9.20E-05	9.90E-05	1.00E-06	8.00E-06	1.50E-05	6.70E-05
4	9.80E-05	8.00E-05	7.00E-06	1.40E-05	1.60E-05	7.30E-05
6	4.00E-06	8.10E-05	8.80E-05	2.00E-05	2.20E-05	5.40E-05
8	8.50E-05	8.70E-05	1.90E-05	2.10E-05	3.00E-06	6.00E-05
10	8.60E-05	9.30E-05	2.50E-05	2.00E-06	9.00E-06	6.10E-05
12	1.70E-05	2.40E-05	7.60E-05	8.30E-05	9.00E-05	4.20E-05
14	2.30E-05	5.00E-06	8.20E-05	8.90E-05	9.10E-05	4.80E-05
16	7.90E-05	6.00E-06	1.30E-05	9.50E-05	9.70E-05	2.90E-05
18	1.00E-05	1.20E-05	9.40E-05	9.60E-05	7.80E-05	3.50E-05
20	1.10E-05	1.80E-05	1.10E-04	7.70E-05	8.40E-05	3.60E-05

参考文献

- [1] Adams R A, Fournier J J F. Sobolev spaces[M]. 2nd ed. Amsterdam: Elsevier, 2003.
- [2] Shen J. Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials[J]. SIAM J. Sci. Comput., 1994, 15(6):1489-1505.
- [3] Tadmor E. A review of numerical methods for nonlinear partial differential equations[J]. Bull. Amer. Math. Soc., 2012, 49(4):507-554.
- [4] Trefethen L N, Weideman J A C. The exponentially convergent trapezoidal rule[J]. SIAM Rev., 2014, 56(3):385-458.
- [5] 李荣华, 刘播. 微分方程数值解法[M]. 第四版. 北京: 高等教育出版社, 2009.

A 这是第一个附录

A.1 附录 A 的小节

这里是附录环境. 附录公式及编号

$$a^2 + b^2 = c^2. (A.1)$$

附录的插图: 如图 A.1.

图 A.1: 函数 $y = \sin(x)$ 的图像

附录的表格: 表 A.1. 通过 autoref 引用表格: 表 A.1.

表 A.1: 某校学生升高体重样本

序号	年龄	身高	体重
001	15	156	42
002	16	158	45
003	14	162	48
004	15	163	50
平均	15	159.75	46.25