Definitions

1. If f is a scalar function that is defined on a smooth curve C which is parametrized by $\alpha(t)$ with $a \le t \le b$, then the line integral of f along C is given by

$$\int_{C} f ds = \int_{a}^{b} (f \circ \alpha) \cdot |\alpha'(t)| dt$$

We sometimes call this the line integral of f along C with respect to arc length

- 2. The following are called the line integrals of f along C with respect to x and y respectively
 - $\int_C f(x,y)dx = \int_a^b f(x(t),y(t))x'(t)dt$
 - $\int_C f(x,y)dy = \int_a^b f(x(t),y(t))y'(t)dt$
- 3. If F is a continuous **vector field** that is defined on a smooth curve C which is parametrized by $\alpha(t)$ with $a \le t \le b$, then the **line integral of F along C** is given by

$$\int_{C} F \cdot dr = \int_{a}^{b} (F \circ \alpha) \cdot \alpha'(t) dt$$

4.
$$\int_C F \cdot dr = \int_C P dx + Q dy \text{ if } F(x, y) = (P, Q)$$

Questions

0.1 Line integral of scalar function f along smooth C

Compute the following line integrals

1.
$$\int_C 2xds$$
, where C is the curve $y = 9 - x^2$ from $x = -1$ to $x = 2$

2. $\int_C y^2 - 10xyds$, where C is the left half of the circle with radius 6

Compute the following line integrals

1. $\int_C 2xds$, where C is the line segment from (1,0) to (0,1), then followed by the circle of radius 1 from (0,1) to (1,0) counterclockwise.

2. $\int_C 2xds$, where C is triangle with vertices (0,0),(1,0),(0,1), starting at (0,0) in the counterclockwise direction.

0.3 Line integral of f with respect to x, y and z

Compute the following line integrals

1. $\int_C xdy - xydx$ where C is the circle of radius 1 from (0,1) to (0,-1) in the clockwise direction.

2. $\int_C z^2 dx + x^2 dy + y^2 dz$, where C is the line segment from (1,0,0) to (4,1,2)

0.4 Line integral of vector field F along smooth C

Compute the following line integrals

1.
$$\int_C F \cdot dr$$
 where C is the line segment from $(1,3)$ to $(4,5)$, and $F(x,y) = (y^2, x - 2y)$

2. $\int_C F \cdot dr$ where C is the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ from the positive y-axis to the negative x-axis in the clockwise direction.

0.5 Some difficulty when computing a line integral by definition

Try to compute the following line integrals and what difficulty do you get? (You will learn a better method to solve it next week, called the fundamental theorem for line integrals)

1.
$$\int_C F \cdot dr$$
 where C is the curve given by $\alpha(t) = (e^t sint, e^t cost)$ with $0 \le t \le \pi$, and $F(x, y) = (3 + 2xy, x^2 - 3y^2)$ is a vector field.

Instead, use the following theorem to compute the line integral by first finding a suitable scalar function f. Recall the idea of convervative vector field we talked about.

Theorem 1. Let C be a smooth curve parametrized by $\alpha(t)$, with $a \leq t \leq b$. Let f be a differentiable function of two variables whose gradient vector ∇f is continuous on C. then

$$\int_{C} \nabla f \cdot dr = f(r(b)) - f(r(a))$$