$\begin{array}{c} {\rm HOMEWORK~6} \\ {\rm CS~205-Fall~2016} \\ {\rm due~SUNDAY,~NOVEMBER~13th,~5am.} \end{array}$

Please remember the rules of precedence for regular expression interpretation: alternation (|), concatenation, and star behave the same way as plus, times and exponentiation in arithmetic¹ Therefore 8 (9 | Λ) 8*9 is actually (((8 (9 | Λ)) 8*)9), when parenthesized from left to right.

- 1. For each of the following strings, explain precisely why (why not) they belong to the language denoted by the regular expression 8 (9 | Λ) 8*9:
 - 8989
 - 889
 - 989
 - 89

To help in the explanations call the parts of the regular expression by name as follows: 8 is A, $(9 \mid \Lambda)$ is B, 8^* is C, and 9 is D.

- 2. In each of the cases below, write the *shortest/clearest* regular expression over the alphabet $\Sigma = \{b, c\}$, whose language contains exactly the sentences described. Explain why your answer is correct (i.e., why it has all the required strings, and no extra ones.) ²
 - (a) sentences with an odd number of c's and no b's
 - (b) sentences with an even number of b's
 - (c) sentences with every b followed by exactly two c's (so, among others, "bcb" and "bccc" cannot occur as substrings of any sentence in the language).
- 3. Dealing with \emptyset . (Recall that $\mathcal{L}(\emptyset)$ is the empty set $\{\}$.)
 - What is the shortest regular expression over the alphabet $\Sigma = \{5\}$, equivalent to $\emptyset \mid (5(\emptyset)^*)$ ["Equivalent to" in this assignment means "has the same language as".]. Give a short explanation of your answer.
 - (Challenging) Define a function elimE which takes as argument an arbitrary regular expression, and returns an equivalent one that has at most one occurrence of \emptyset . In other words $\mathcal{L}(R) = \mathcal{L}(elimeE(R))$ but elim(R) has at most one occurrence of the symbol \emptyset . (Hint: Recall that REs are defined by structural induction. So of course, elimE is defined by structural induction. In addition, think about what happens if \emptyset is used as the RE in various places in the recursive definition.) You will find it useful to use "if then else" expressions (e.g., if (3 > 2) then 7 else 5 has value 7) And you can assume that you have available an equality sign = for regular expressions, which is just structural identity; so $0 \mid 1 = 0 \mid 1$ is true but $0 \mid 1 = 1 \mid 0$ is false, even though the languages of $0 \mid 1$ and $1 \mid 0$ are the same.
 - (Less challenging) In case you find the above too hard, for partial credit try this much simpler problem: define a function *erase*8 that takes a regular expression as an argument and returns another one that has the property that
 - $\mathcal{L}(erase8(R)) = \{ w \mid \text{there is string z in } \mathcal{L}(R) \text{ such that w is z with all 8's replaced by the null string, i.e., 8's are erased in z} \}$

For example erase8(898) could be 9, or $\Lambda9\Lambda$, among others.

4. Given arbitrary regular expression R, prove formally in detail, or disprove with the smallest counter-example, each of the following 3 hypotheses³. In formal proofs, please use the definition of star which says that $w \in S^*$ if and only if $w \in S^j$ for some integer j, j > 0, with $S^0 = \Lambda$.

Remember that $xy + z^3$ in arithmetic is interpreted as $((xy) + (z^2))$, and $x + yz^3$ is interpreted as $(x + (y(z^2)))$.

²As explained in class, we will not be able to grade complicated regular expressions.

³In the equations below, we should have written more carefully $\mathcal{L}(R^*) = \mathcal{L}(R^*R^*)$, but we'll take regular expressions to stand for the set of strings that is their language, so you can write " $w \in R$ " instead of " $w \in \mathcal{L}(R)$.

- (a) $R^*S^* == (RS)^*$
- (b) $R^* == R^* R^*$
- (c) $(RS^*)^* = \Lambda \mid R(R \mid S)^*$ (Challenging)

(Hint: Try out the above with R and S being just single letters 8 and 9. But your proof must work in the general case, so it should contain no digits! And remember that the equality proofs will have to have two parts: (a) pick arbitrary string w in the language of the LHS regexp, $\mathcal{L}(LHS)$, and show it belongs to $\mathcal{L}(RHS)$; (b) pick arbitrary string v in $\mathcal{L}(RHS)$ and show it belongs to $\mathcal{L}(LHS)$. Check out the third containment proof in the lecture notes.