vsis

Lehrveranstaltung	Grundlagen von Date	WS 2013/14	
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 1: B-Bäume

[11 P.]

[5 P.]

Die B-Bäume sind im Folgenden stets gemäß der vereinfachten Darstellungsart aus der Vorlesung abgebildet.

a) Nehmen Sie den (Standard-)Split-Faktor 1 an und fügen Sie in den unten abgebildeten **B-Baum** der Klasse $\tau(1,h)$ die Datensätze mit den Schlüsselwerten **42**, **6**, **12** und **25** in dieser Reihenfolge ein. Nennen Sie jeweils die durchgeführten Maßnahmen (Splitten, einfaches Einfügen) und zeichnen Sie den Baum nach jedem Split-Vorgang neu.

Lösungsvorschlag:

42, einfaches Einfügen

6, Split

- 12, einfaches Einfügen
- 25, Split unter Ebene, Split Ebene darüber

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

b) Löschen Sie aus dem unten abgebildeten B-Baum der Klasse $\tau(2,h)$ die Datensätze mit den Schlüsselwerten 17, 29, 49, 7 und 4 (in dieser Reihenfolge). Geben Sie jeweils kurz an, welche konkrete Maßnahme Sie durchgeführt haben (Mischen, Ausgleichen, einfaches Löschen) und zeichnen Sie den Baum nach jedem Mischen und Ausgleichen neu. Für Ausgleichs- und Mischoperationen sollen nur direkt benachbarte Geschwisterknoten (bevorzugt der rechte) herangezogen werden.

[6 P.]

17, Ausgleichen

29, Mischen

- 49, Einfaches Löschen
- 7, Ausgleichen

4, Mischen

11 13 38 50

	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
Aufgabenzettel 6 (Lösung Gesamtpunktzahl 40		6 (Lösungsvorschläge)		
		40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 2: Berechnungen in B-Bäumen

[10 P.]

a) Gegeben ist ein B-Baum der Klasse $\tau(2,2)$.

[4 P.]

i) Wieviele Einträge kann der B-Baum minimal und wieviele maximal enthalten?

Lösungsvorschlag:

Maximal 1*4+5*4=24 Datensätze. Minimal 1*1+2*2=5 Datensätze.

ii) Wieviele Knoten (Seiten) müssen durchschnittlich (d.h. im Erwartungswert) gelesen werden, um einen Eintrag zu finden, wenn der Baum maximal belegt ist (Anmerkung: die Lösung darf als Bruch angegeben werden)?

Lösungsvorschlag:

Es gibt insgesamt 6 Knoten. 1 Knoten ist direkt erreichbar, die anderen 5 im zweiten Schritt. D.h. es müssen durchschnittlich $(1*1+5*2)/6=11/6\approx 1.83$ Seiten gelesen werden, um einen Datensatz zu finden.

b) Gegeben ist ein B-Baum der Klasse $\tau(3, h)$ mit 100 Datensätzen.

[6 P.]

i) Bestimmen Sie, welche Höhe h der B-Baum mindestens haben muss, um alle 100 Datensätze fassen zu können. (Tipp: Berechnen Sie die maximale Belegung von Bäumen dieser Klasse mit unterschiedlicher Höhe h. Betrachten Sie h aufsteigend und beginnend bei h=1).

Lösungsvorschlag:

h = 1: 1 Knoten, je 6 Einträge = 6 Einträge

h=2: zusätzlich: 7 Knoten, je 6 Einträge = 42 Einträge, d.h. insgesamt: 42+6=48 Einträge

h=3: zusätzlich: 7*7=49 Knoten, je 6 Einträge = 294 Einträge, d.h. insgesamt: 294+48=342 Einträge

Der Baum besitzt also mindestens eine Höhe von h = 3.

vsis

Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

ii) Bestimmen Sie, welche Höhe h der B-Baum maximal haben kann (Tipp: Berechnen Sie die minimale Belegung von Bäumen dieser Klasse mit unterschiedlicher Höhe h. Betrachten Sie h aufsteigend und beginnend bei h=1).

Lösungsvorschlag:

```
h = 1: 1 Knoten, je 1 Datensatz = 1 Eintrag
```

$$h = 2$$
: zusätzlich: 2 Knoten, je 3 Einträge = 6 Einträge; insgesamt: $1 + 6 = 7$ Einträge

$$h=3$$
: zusätzlich: $2\cdot 4=8$ Knoten, je 3 Einträge = 24 Einträge; insgesamt: $7+24=31$ Einträge

$$h=4$$
: zusätzlich: $8\cdot 4=32$ Knoten, je 3 Einträge = 96 Einträge; insgesamt: $31+96=127$ Einträge

Der Baum besitzt höchstens eine Höhe von h = 3.

Lehrveranstaltung		Grundlagen von Date	nbanken	WS 2013/14
(XXX)	Aufgabenzettel	6 (Lösungsvorschläge)		
(VSIS)	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 3: B*-Bäume

[12 P.]

[6 P.]

Die B*-Bäume sind im Folgenden stets gemäß der vereinfachten Darstellungsart aus der Vorlesung abgebildet.

a) Nehmen Sie den (Standard-)Split-Faktor 1 an und fügen Sie in den unten abgebildeten **B*-Baum** der Klasse $\tau(1,2,h)$ die Datensätze mit den Schlüsselwerten **64**, **3**, **6** und **80** in dieser Reihenfolge ein. Nennen Sie jeweils die durchgeführten Maßnahmen (Splitten, einfaches Einfügen) und zeichnen Sie den Baum nach jedem Split-Vorgang neu.

vsis

Lehrveranstaltung	Grundlagen von Date	WS 2013/14	
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

6, einfaches Einfügen

80, Split

Lehrveranstaltung	Grundlagen von Date	WS 2013/14	
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

b) Löschen Sie aus dem unten abgebildeten B*-Baum der Klasse $\tau(1,1,h)$ die Datensätze mit den Schlüsselwerten 14, 38, 12 und 44 (in dieser Reihenfolge). Nennen Sie jeweils die durchgeführten Maßnahmen (Mischen, Ausgleichen, einfaches Löschen) und zeichnen Sie den Baum nach jedem Löschvorgang neu. Für Ausgleichs- und Mischoperationen sollen nur direkt benachbarte Geschwisterknoten (bevorzugt der rechte) herangezogen werden.

[6 P.]

Lehrveranstaltung	Grundlagen von Date	WS 2013/14	
Aufgabenzettel	6 (Lösungsvorschläge)		
Gesamtpunktzahl	40		
Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

44, Mischen auf unterer Ebene und Mischen auf nächsthöherer Ebene

vsis	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
	Aufgabenzettel	6 (Lösungsvorschläge)		
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

Aufgabe 4: Normalformenlehre

[7 P.]

Gegeben ist die Relation R mit den Attributen A, B, C, D und E, sowie der Menge F an funktionalen Abhängigkeiten

$$F = \{FA_1, FA_2, FA_3, FA_4, FA_5\}.$$

Die Wertebereiche der Attribute sind alle atomar.

R(A,B,C,D,E)

 $FA_1=B\to E$

 $FA_2 = B \rightarrow D$

 $FA_3=B\to A$

 $FA_4 = A,D \to C$

 $FA_5 = A,D \to B$

i) Bestimmen Sie die Schlüsselkandidaten von R bezüglich F.

[2 P.]

Lösungsvorschlag:

Schlüsselkandidat 1: A, D Schlüsselkandidat 2: B

ii) Bestimmen Sie die Nicht-Primärattribute (Nicht-Schlüsselattribute) von R bezüglich F.

[2 P.]

Lösungsvorschlag:

Nicht-Primärattribut 1: C

Nicht-Primärattribut 2: E

vsis	Lehrveranstaltung	Grundlagen von Datenbanken		WS 2013/14
	Aufgabenzettel	6 (Lösungsvorschläge)		
	Gesamtpunktzahl	40		
	Ausgabe	Mi. 08.01.2014	Abgabe	Do. 23.01.2014

iii) Nehmen Sie an, dass einer der in Aufgabenteil i) ermittelnden Schlüsselkandidaten als Primärschlüssel verwendet wird. In welchen Normalformen befindet sich das Relationenschema R bezüglich F? Begründen Sie Ihre Antwort, indem Sie darlegen, warum sich das Relationenschema in genau diesen Normalformen befindet und warum die anderen Normalformen nicht vorliegen.

(Anmerkung: Betrachten Sie dabei lediglich die 1., 2. und 3. Normalform.)

Lösungsvorschlag:

Das Relationenschema befindet sich in der 3. Normalform, denn:

- Attributwerte sind atomar => 1. NF
- Keines der Nicht-Primärattribute C oder E hängt partiell von einem der Schlüsselkandidaten ab =>
 NF
- Keines der Nicht-Primärattribute C oder E hängt transitiv von einem der Schlüsselkandidaten ab
 3. NF