

Steve Hornyak, Victor Hui, and Joshua Williams

Part I: Survey of Papers

Problem Statement

- Task Scheduling in the OS
- Many trade-offs
 - Resource utilization
 - Energy consumption
 - Operating cost
 - Scalability
 - Execution time
- Using AI/ML to provide better results
 - Moving away from simple algorithms (like RR)

Introduction to Papers Surveyed

[1] Deep and Reinforcement Learning for Automated Task Scheduling in Large-Scale Cloud Computing Systems

- By Rjoub Gaith, Jamal Bentahar, Omar Abdel Wahab, Ahmed Saleh Bataineh
- 4 different ML techniques for optimizing CPU and RAM utilization
 - Deep Reinforcement Learning with Long short-term Memory (DRL-LSTM)
 - Reinforcement Learning (RL)
 - Deep Q-Networks (DQN)
 - Recurrent Neural Network Long Short-Term Memory (RNN-LSTM)

[2] H2O-Cloud: A Resource and Quality of Service-Aware Task Scheduling Framework for Warehouse-Scale Data Centers - A Hierarchical Hybrid DRL (Deep Reinforcement Learning) based Approach

- By Mingxi Cheng, Ji Li, Paul Bogdan, and Shahin Nazarian
- Cloud computing for larger scale data centers
- Optimizing quality of service (QoS) and energy consumption
- Uses a Hierarchical Hybrid Deep Reinforcement Learning method

[3] DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers

- By Mingxi Cheng, Ji Li, and Shahin Nazarian
- Designed for larger scale data centers
- Optimize for energy consumption, rejection rate and runtime
- Uses the Novel Deep Reinforcement Learning method

Comparison of the Methods

	DRL-LSTM	H2O-Cloud	DRL-Cloud
Algorithm Type	Machine Learning	Machine Learning	Machine Learning
Learning Type	 Reinforcement Learning (RL) Deep Q-Networks (DQN) Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) Deep Reinforcement Learning with LSTM (DRL-LSTM) 	 Hierarchical Hybrid Deep Reinforcement Learning Deep Q-Network 	Novel Deep Reinforcement Learning
Metrics of Opt.	CPU usage cost, RAM usage cost	Energy cost efficiency, Energy efficiency, Reward rate	Energy cost efficiency, Rejection rate, Runtime
Runtime/Complexity Worst		Best	Better
Data/Tool Used Google cluster dataset		Google cluster usage traces	Google cluster usage traces
Trade-off Longer Execution Time		Not exceptional in low variance, small sets of data	Not optimal for small data sets
Published 2020		2019	2018
Journal Concurrency and Computation		TCAD	ASP-DAC
Paper Number [1]		[2]	[3]

Weighing the Options

- Each method had its advantages and drawbacks
 - Dependent on what is being optimized in the study
- Input affects the output results, i.e. large vs small amount of data, large vs minimal variance, CPU dependent data vs I/O dependent data
- The best task scheduling implementation is dependent on circumstances:
 - What are the inputs?
 - What must be optimized?
 - What can be sacrificed (trade-offs)?

Part II: ML Implementation

Our ML Implementation

- Many AI/ML scheduling papers are about burst time estimation
 - Difficult to determine how long a task needs to run
 - Tasks do not provide burst time in a RTOS
- Our greedy turnaround time algorithm is a function of burst time
 - Optimal average turnaround time: priority is the inverse of remaining burst time
 - Sorted next-fit Greedy approach
- Our ML algorithm: burst time by job type
 - Use ML to guess job type
- Fun way to apply what we learned in our limited time

Examining different Classification Models

Dataset

Time	ParentID	TaskID	JobType	NrmlTaskCores	NrmlTaskMem
90000	757745334	1488529826	0	0	0.0311296
90000	975992247	1488529821	0	0	0
90000	1468458091	1488529832	1	0.021875	0.00235309
90000	1460281235	1488529840	0	0	0
90000	1164728954	1488529835	0	0.003125	0.0016384
90000	1288997448	1488529848	0	0.003125	0.0049152
90000	1488529845	1488529847	1	0.003125	0.000719232
90000	1263655469	1488529844	2	0 0	

- The Google Cluster Data consists of 4 job types (0-3)
- Features: NrmlTaskCores and NrmlTaskMem
- New Burst Time Calculation:

Classification Models

- Examples: Logistic Regression, K Nearest Neighbors, State Vector Machines, Perceptron.
- Given a feature vector X and a qualitative response Y, the task of a classification model is to build a function C(X) that takes as input the feature vector X and predict its value for Y
- We need to perform Multiclass Classification.
- Models tested: Multiclass Logistic Regression, K Nearest Neighbors, Decision Tree Classifier
- Implemented using Sklearn

Train, validation, test data split

Training data	Validation data	Testing data
40%	30%	30%

- Since we have an abundance of data points, we can afford to split our dataset three-way
- The dataset is split in the following way:
 - Denote "JobType 0" data as J0, "JobType 1" data as J1, etc. Select the first 40% of J0, 40% of J1, 40% of J2, and 40% of J3 and place it in the training set.
 - Split the remainder into the validation and testing set.
 - Note: this does not mean the classes are balanced in the sets. We will explore this later

Multinomial Logistic Regression

	Precision	Recall
Training	0.56575	0.9751997
Validation	0.5671757	0.9646386

 The ROC curve shows the model has no discrimination capacity to distinguish between positive class and negative class, i.e. we need to find a different model.

ROC curve is a curve of probability distribution

Decision Tree Classification

- By plotting features against each other, it seems like a decision tree classifier would be an ideal classification model
- Example by simply eyeballing

Decision Tree Classification

	Precision	Recall
Training	0.72941	0.8104
Validation	0.72008	0.61993

- Training ROC outperforms Multinomial Logistic Regression but Validation ROC is still undesirable
- It is known that trees generally do not have the same level of predictive accuracy as other classification approaches, since they tends to over simplify.

Higher area under curve = better

0.8

1.0

K Nearest Neighbors K = 3

- Since we are only using 2 features, we do not need to worry about the curse of dimensionality when dealing with high dimensional data
- K = 3 performance comparable to Decision Tree Classifier, slightly superior performance with Validation data

	Precision	Recall
Training	0.74759	0.82414
Validation	0.72354	0.6270

Higher area under curve = better

KNN after resampling

- As we mentioned previously, classes are imbalanced, since 0.4J0 is significantly larger than 0.4J2 and 0.4 J3.
- We can attempt to resample the data by either downsampling or upsampling.
- Here, we downsamples J0, J1, and J3 to the size of J2/2 (which has the lowest number of samples).
- Since the size of the dataset is so large, J2 has also been down sized to J2/2 to avoid overfitting.
- There are other sampling techniques such as SMOTE which could be explored in the future

3 Nearest Neighbors (Downsampled)

K Nearest Neighbors K = 5

- Finally, we opted for a K Nearest Model with 5 neighbors.

	Precision	Recall
Training	0.74779	0.89924
Validation	0.68185	0.80725
Testing	0.96367	0.80805

Combining with Greedy Algorithm

Changes to Code

- Add the KNN ML to predict job type
- Modified the burst time calculation
- Changed the VM resources
 - Original resources had no rejections
 - One setup with a small number of soft rejections
 - One setup with a large number of soft rejections
- Modified the turnaround time Greedy
 Algorithm
 - Priority based on predicted burst time remaining

```
Function that initializes the task data using ML
ef init df ml(df):
  train0 = df[df["JobType"]==0].head((int)(len(df[df["JobType"]==0])*.4))
  train1 = df[df["JobType"]==1].head((int)(len(df[df["JobType"]==1])*.4))
  train2 = df[df["JobType"]==2].head((int)(len(df[df["JobType"]==2])*.4))
  train3 = df[df["JobType"]==3].head((int)(len(df[df["JobType"]==3])*.4))
  train = train0.append(train1)
  train = train.append(train2)
  train = train.append(train3)
  xtrain = train[["NrmlTaskCores", "NrmlTaskMem"]]
  ytrain = train["JobType"]
  #training a 5NN Classifier with 0.4J
  KNN = KNeighborsClassifier(n_neighbors=5)
  KNN.fit(xtrain, ytrain)
  X = df[["NrmlTaskCores", "NrmlTaskMem"]]
  y = df["JobType"]
  new y = KNN.predict(X)
  df["JobType_pred"] = new_y
  job types = df['JobType pred'].values
  task_burst_time = [(job_type + 1) * TIME_QUANTUM for job_type in job_types]
  df['ML burst time'] = task burst time
  return df
```


Results

Round Robin Stats: Total Energy: 127582064.5843506 Total Cost: 75819357.26554874 Total Turn Around Time (sum of the turn around time of every task): 2639356500 Total Soft Rejections: 2103451 Algorithm Execution Time (in seconds): 49.051570415496826 Greedy Turn Around Time Stats: Total Energy: 127458970.2850342 Total Cost: 75725799.40269472 Total Turn Around Time (sum of the turn around time of every task): 2194308000 Total Soft Rejections: 619956 Algorithm Execution Time (in seconds): 27.50543713569641 Naive Classification + Greedy Turn Around Time Stats: Total Energy: 127420566.91589357 Total Cost: 75697179.36676027 Total Turn Around Time (sum of the turn around time of every task): 2183164500 Total Soft Rejections: 582811 Algorithm Execution Time (in seconds): 107.00152063369751

	Setup 1	Setup 2
CPU Units	16	12
VM Memory Units	22	18
Total Turnaround Time	2183164500	3687246300
Total Soft Rejections	582811	5596417
Execution Time	107.001	188.721
TTT Improvement (RR)	17.28%	61.69%
Soft Rejection Impr. (RR)	72.29%	77.95%
TTT Improvement (Greedy)	0.51%	4.31%
Soft Rejection Impr. (Greedy)	5.99%	9.00%

Questions?

