北京师范大学 2023--2024 学年第二学期高等代数期中考试试题

课程名称:_	高等代数 II			任课老儿		ol.	闭卷
卷面总分:	分	考试时长:_	100	_ 分钟	考试类别		717 6
院 (系):		专业:			年 级	-	
姓 名:		学号:		· THE STATE			

1. (15 分) 设 V 是有理数域 \mathbb{Q} 上的 3 维向量空间, α_1 , α_2 , α_3 是 V 的一组基. 令 σ 是 V 上的线性变换且 σ 关于基 α_1 , α_2 , α_3 的矩阵为

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}.$$

设 $\beta_1 = -\alpha_1 + \alpha_3$, $\beta_2 = \alpha_1 + \alpha_2$, $\beta_3 = -\alpha_1 - \alpha_2 + \alpha_3$ 是 V 的另一组基.

- (1) 求 σ 关于基 β_1 , β_2 , β_3 的矩阵;
- (2) 设 $\xi = \alpha_1 + \alpha_2 + \alpha_3$. 求 $\sigma(\xi)$ 关于基 β_1 , β_2 , β_3 的坐标.
- 2. $(13 \ \mathcal{O})$ 设 σ 是域 F 上向量空间 V 的一个线性变换. 如果 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, 并且 V_1, V_2, \ldots, V_k 都是 V 的 σ -不变子空间. 证明: $\sigma(V) = \sigma(V_1) \oplus \sigma(V_2) \oplus \cdots \oplus \sigma(V_k)$.
- 3. $(15\ f)$ 设 σ 是复数域 \mathbb{C} 上 n 维向量空间 V 的一个线性变换, 在基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 下的 矩阵是

$$A = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \end{pmatrix}$$

- (1) 设 $i \in \{1, 2, ..., n-1\}$, 分别求 $Ker(\sigma^i)$ 和 $Im(\sigma^i)$;
- (2) 证明 A 和 A^T 相似.
- 4. (17分) 设实矩阵

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 5 & -2 \\ -2 & 4 & -1 \end{pmatrix}$$

求实可逆矩阵 P, 使得 $P^{-1}AP$ 为对角矩阵; 并写出该对角矩阵

5. $(20 \, \mathcal{O})$ 设 $A \in M_n(\mathbb{R})$ 一个非零矩阵, $p(x) \in \mathbb{R}[x]$ 是 A 的极小多项式. 令

$$W = \{g(A) \mid g(x) \in \mathbb{R}[x]\}.$$

证明:

- (1) W 是 $M_n(\mathbb{R})$ 的子空间.
- (2) $\dim(W) = \deg p(x)$, 即 W 的维数等于多项式 p(x) 的次数.
- **6.** (20 分) 设 A 是一个 n 阶实矩阵且有 n 个两两不同的实特征值. 令

$$\sigma: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R}),$$

$$B \longmapsto AB - BA,$$

是一个映射.

- (1) 证明: σ 是 $M_n(\mathbb{R})$ 上的一个线性变换;
- (2) 问: σ是否可对角化?并给出理由.