⇔ Ly	A.S.: 2024/2025							
Matière: Mathématiques	Niveau: TS2	Date: 09/12/2024	Durée : 4 heures					
Correction du devoir n° 1 Du 1 ^{er} Semestre								

Exercice 1 : $0,5 \times 8 = 4$ points

- 1 Énoncer le théorème des valeurs intermédiaires.
- 2 Énoncer le théorème d'existence et d'unicité d'une solution.
- 3 Énoncer le théorème de l'inégalité des accroissements finis (IAF).

4 Si
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a \ (a \neq 0) \text{ alors } \dots$$

5 Si
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$$
 alors ...

6 Si
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$$
 alors ...

7 Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = \beta \in \mathbb{R}^*$ et $\lim_{x \to +\infty} [f(x) - \beta x] = +\infty$ alors ...

8 Si f est continue et strictement décroissante sur $]-\infty;b]$, alors $f(]-\infty;b])=...$

Exercice 2: 4 points

1 Calculons les limites suivantes : $(3 \times 1 \text{ pt})$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\sin x}{\sin 2x \left(\sqrt{1 + \sin x} + 1\right)}$$
$$= \lim_{x \to 0} \frac{\frac{\sin x}{x}}{\frac{2\sin 2x}{2x}} \times \frac{1}{\left(\sqrt{1 + \sin x} + 1\right)}$$
$$= \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{4}$$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} = \frac{1}{4}$$
 0,25 points

$$\lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} = \lim_{x \to 0} \frac{\cos x - 1}{x^2(x+1)}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{x^2} \times \frac{1}{x+1}$$

$$= -\frac{1}{2} \times 1$$

$$= -\frac{1}{2}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} = -\frac{1}{2}$$
 0,25 points

$$\lim_{x \to 1} \frac{\sqrt{x+3} - \sqrt{5-x}}{\sqrt{2x+7} - \sqrt{10-x}} = \lim_{x \to 0} \frac{\left(\sqrt{x+3} - \sqrt{5-x}\right)\left(\sqrt{x+3} + \sqrt{5-x}\right)\left(\sqrt{2x+7} - \sqrt{10-x}\right)}{\left(\sqrt{2x+7} - \sqrt{10-x}\right)\left(\sqrt{2x+7} - \sqrt{10-x}\right)\left(\sqrt{x+3} - \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{\left[x+3 - (5-x)\right]\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{\left[2x+7 - (10-x)\right]\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{2(-1+x)\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3(x-1)\left(\sqrt{x+3} + \sqrt{5}-x\right)}$$

$$= \lim_{x \to 1} \frac{2(x-1)\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3(x-1)\left(\sqrt{x+3} + \sqrt{5}-x\right)}$$

$$= \lim_{x \to 1} \frac{2\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3\left(\sqrt{x+3} + \sqrt{5}-x\right)}$$

$$= \frac{2}{3} \times \frac{6}{4}$$

$$\lim_{x \to 1} \frac{\sqrt{x+3} - \sqrt{5-x}}{\sqrt{2x+7} - \sqrt{10-x}} = 1$$
0,25 points

Donnons les primitives des fonctions f et g respectivement sur \mathbb{R} et $\mathbb{R} \setminus \{1; 2\}$. (2 × 0,5 pt)

$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3$$

$$F(x) = \frac{1}{8}(3x^2 - 2x + 3)^4 + k$$

$$\lim_{x \to 1} F(x) = \frac{1}{8} (3x^2 - 2x + 3)^4 + k$$
 0,25 points

$$g(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}.$$

$$\lim_{x \to 1} G(x) = \frac{1}{3(x^3 - 3x + 2)} + k$$
 0,25 points

Correction: 12 points

Partie A:

Soit f la fonction définie par :

$$f(x) = x - 2 - \sqrt{x^2 - 2x}.$$

1 Déterminons
$$D_f$$
. (0,5 pt) $f \exists \sin x^2 - 2x \ge 0$

$$Posons \ x^2 - 2x \ge 0 = 0$$

$$x^2 - 2x \ge 0 = 0 \implies x = 0 \text{ ou } x = 2$$

Donc $D_f =]-\infty;0] \cup [2;+\infty[$

a Les limites en $-\infty$ et en $+\infty$

en $-\infty$:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x - 2 - \sqrt{x^2 - 2x} = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty \quad \textbf{0,25 points}$$

 $en +\infty$:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - 2 - \sqrt{x^2 - 2x}$$

$$= \lim_{x \to +\infty} \frac{(x - 2)^2 - (x^2 - 2x)}{x - 2 + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to +\infty} \frac{x^2 - 4x + 4 - x^2 + 2x}{x - 2 + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to +\infty} \frac{-2x + 4}{x - 2 + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to +\infty} \frac{x \left(-2 + \frac{4}{x}\right)}{x \left(1 - \frac{2}{x} + \sqrt{1 - \frac{2}{x}}\right)}$$

$$= \lim_{x \to +\infty} \frac{(-2 + \frac{4}{x})}{\left(1 - \frac{2}{x} + \sqrt{1 - \frac{2}{x}}\right)}$$

$$= -1$$

$$\lim_{x \to +\infty} f(x) = -1$$
 0,25 points

b La branche infinie de (C_f) en $-\infty$

Comme
$$\lim_{x \to -\infty} f(x) = -\infty$$
 Cherchons $\lim_{x \to -\infty} \frac{f(x)}{x}$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x - 2 - \sqrt{x^2 - 2x}}{x}$$

$$= \lim_{x \to -\infty} \frac{x - 2}{x} - \frac{\sqrt{x^2 - 2x}}{x}$$

$$= 1 - \lim_{x \to -\infty} \frac{\sqrt{x^2 - 2x}}{x}$$

$$= 1 - \lim_{x \to -\infty} \frac{-x\sqrt{1 - \frac{2}{x}}}{x}$$

$$= 1 - \lim_{x \to -\infty} -\sqrt{1 - \frac{2}{x}}$$

$$= 2$$

$$\lim_{x \to -\infty} f(x) - 2x = \lim_{x \to -\infty} x - 2 - \sqrt{x^2 - 2x} - 2x$$

$$= \lim_{x \to -\infty} -x - 2 - \sqrt{x^2 - 2x}$$

$$= \lim_{x \to -\infty} \frac{(-x - 2)^2 - (x^2 - 2x)}{(-x - 2) + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to -\infty} \frac{x^2 + 4x + 4 - (x^2 - 2x)}{(-x - 2) + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to -\infty} \frac{6x + 4}{(-x - 2) + \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to -\infty} \frac{x(6 + \frac{4}{x})}{x\left[(-1 - \frac{2}{x}) - \sqrt{1 - \frac{2}{x}}\right]}$$

$$= \lim_{x \to -\infty} \frac{(6 + \frac{4}{x})}{\left[(-1 - \frac{2}{x}) - \sqrt{1 - \frac{2}{x}}\right]}$$

$$= -3$$

Donc (C_f) admet une asymptote verticale y = 2x - 2 au voisinage de $-\infty$

- C On a $\lim_{x\to -\infty} f(x) = 0$ Donc y = -1 est A.H à (\mathcal{C}_f) au voisinage de $-\infty$
- Étudions la dérivabilité de la fonction f à droite de 2 et à gauche de 0, puis interprétons géométriquement les résultats obtenus.
 En 2⁺:

$$\lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{+}} \frac{x - 2 - \sqrt{x^{2} - 2x}}{x - 2}$$

$$= \lim_{x \to 2^{+}} \frac{x - 2}{x - 2} - \frac{\sqrt{x^{2} - 2x}}{x - 2}$$

$$= 1 - \lim_{x \to 2^{+}} \frac{\sqrt{x^{2} - 2x}}{x - 2}$$

$$= 1 - \lim_{x \to 2^{+}} \frac{x(x - 2)}{(x - 2)(\sqrt{x^{2} - 2x})}$$

$$= 1 - \lim_{x \to 2^{+}} \frac{x}{(\sqrt{x^{2} - 2x})}$$

$$\lim_{x\to 2^+} f(x) = -\infty \quad \textbf{0,25 points}$$

Interprétation: f n'est pas dérivable en 0 mais admet au point A(2; 0 = f(2)) une demi-tangente verticale orientée vers le bas.

 $En 0^{-}$:

$$\lim_{x \to 0^{-}} \frac{f(x) - f(2)}{x} = \lim_{x \to 0^{-}} \frac{x - 2 - \sqrt{x^{2} - 2x} + 2}{x}$$

$$= \lim_{x \to 0^{-}} \frac{x - \sqrt{x^{2} - 2x}}{x}$$

$$= \lim_{x \to 0^{-}} 1 - \frac{\sqrt{x^{2} - 2x}}{x}$$

$$= 1 - \lim_{x \to 0^{-}} \frac{\sqrt{x^{2} - 2x}}{x}$$

$$= 1 - \lim_{x \to 0^{-}} \frac{x(x - 2)}{\sqrt{x^{2} - 2x}}$$

$$= 1 - \lim_{x \to 0^{-}} \frac{(x - 2)}{\sqrt{x^{2} - 2x}}$$

$$\lim_{x \to 0^{-}} f(x) = +\infty \quad \textbf{0,25 points}$$

Interprétation: f n'est pas dérivable en 0 mais admet au point A(0; -2 = f(0)) une demi-tangente verticale orientée vers le bas.

a Justifions la dérivabilité de la fonction sur $]-\infty,0[\cup]2,+\infty[$

 $x\mapsto x-2$ est dérivable sur \mathbb{R} , comme fonction polynome, en particulier sur $]-\infty,0[\cup]2,+\infty[$ $x\mapsto -\sqrt{x^2-2x}$ est dérivable sur $]-\infty,0[\cup]2,+\infty[$, comme fonction irrationnelle

Par somme, $x \mapsto x - 2 - \sqrt{x^2 - 2x}$ est dérivable sur $]-\infty,0] \cup]2,+\infty[$.

Montrons que pour tout
$$x \in]-\infty, 0[\cup]2, +\infty[: f'(x) = \frac{\sqrt{x^2 - 2x} - (x - 1)}{\sqrt{x^2 - 2x}}.$$
 (1,5 pt)

En effet $f(x) = x - 2 - \sqrt{x^2 - 2x}$

$$f'(x) = 1 - \frac{2x - 2}{2\sqrt{x^2 - 2x}} = 1 - \frac{x - 1}{\sqrt{x^2 - 2x}} = \frac{\sqrt{x^2 - 2x} - (x - 1)}{\sqrt{x^2 - 2x}}$$

b Montrons que : $\forall x \in]-\infty,0], f'(x)>0$ et $\forall x \in]2,+\infty[,f'(x)<0.$ (1 **pt**) Le signe de f' dépend du numérateur.

Supposons que $\sqrt{x^2 - 2x} - (x - 1) < 0$

$$\sqrt{x^2 - 2x} - (x - 1) < 0 \implies \sqrt{x^2 - 2x} < (x - 1) \implies \begin{cases} x^2 - 2x \ge 0 \\ x - 1 \ge 0 \\ x^2 - 2x < (x - 1)^2 \end{cases} \implies \begin{cases} x^2 - 2x \ge 0 \\ x - 1 \ge 0 \\ 0 < 1 \end{cases}$$

Posons
$$\begin{cases} x^2 - 2x = 0 \\ x - 1 = 0 \end{cases} \implies \begin{cases} x = 0 \text{ ou } x = 2 \\ x = 1 \end{cases}$$

x	$-\infty$		0	2		$+\infty$
$x^2 - 2x$		+	0	0	+	
x-1		_	0	0	+	

x	$-\infty$	6	8		$+\infty$
f(x)	_			+	
g(x)	_			+	

Donc pour que $\sqrt{x^2-2x}-(x-1)<0$ il faut que $x\in]2,+\infty[$ Ainsi, si $x\in]-\infty,0[$ alors $\sqrt{x^2-2x}-(x-1)>0$ Donc $\forall x\in]-\infty,0],f'(x)>0$ et $\forall x\in]2,+\infty[,f'(x)<0$

c Dressons le tableau de variations de la fonction f. (1,25 pt)

Figure 1: Courbe de (Cf)

Clique ici pour voir la figure sur géogébra

Partie B:

On considère la fonction g la restriction de la fonction f sur $[2,+\infty[$:

- Montrons que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on déterminera . (0,5 pt) g est continue et strictement décroissante sur $[2, +\infty[$ vers [-1, 0] donc g est bijectif. Donc admet aussi une bijection réciproque de [-1, 0] vers $[2, +\infty[$
- **b** Calculons $g^{-1}(2-2\sqrt{2})$. (On donne : $g(4)=(2-2\sqrt{2})$. (0,75 pt) $g(4)=(2-2\sqrt{2}) \implies g^{-1}(2-2\sqrt{2})=4$
- c Déterminons $g^{-1}(x)$ pour tout $x \in J$. (0,5 pt) Pour déterminer $g^{-1}(x)$, résolvons g(x) = y

$$g(x) = y \implies x - 2 - \sqrt{x^2 - 2x} = y \implies \sqrt{x^2 - 2x} = x - 2 - y$$

$$\implies x^2 - 2x = (x - 2 - y)^2$$

$$\implies x^2 - 2x = (x - 2)^2 - 2(x - 2)y + y^2$$

$$\implies x^2 - 2x = x^2 - 4x + 4 - 2xy + 4y + y^2$$

$$\implies 2x + 2xy = 4 + 4y + y^2$$

$$\implies x(2 + 2y) = 4 + 4y + y^2$$

$$\implies x = \frac{4 + 4y + y^2}{2(1 + y)}$$

Donc
$$g^{-1}(x) = \frac{4+4x+x^2}{2(1+x)}$$

Figure 2: Courbe de (Cf)

Clique ici pour voir la figure sur géogébra