Dr. Benjamin Roth, Nina Poerner

CIS LMU München

Heute

- 9:15 10:00: RNN Basics
- 10:15 11:45: Übungen: PyTorch, Word2Vec
- Statt Übungsblatt bis nächste Woche durcharbeiten:
 - http://www.deeplearningbook.org/contents/rnn.html (Abschnitte 10.0 10.2.1 (inclusive), 10.7, 10.10)
 - ► LSTM: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - ► GRU: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be/
- Nächste Woche:
 - ▶ 9:15 10:15: "Journal Club" zu LSTM und GRU
 - ▶ 10:30 11:45: Intro Keras

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, video frames, audio frames, ...

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, video frames, audio frames, ...
- Basic idea: For time step t, compute representation $\mathbf{h}^{(t)}$ from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, video frames, audio frames, ...
- Basic idea: For time step t, compute representation $\mathbf{h}^{(t)}$ from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- ullet $oldsymbol{x}^{(t)}$ can be embeddings, one-hot, output of some previous layer ...
- Question: By recursion, what does $\mathbf{h}^{(t)}$ depend on?

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, video frames, audio frames, ...
- Basic idea: For time step t, compute representation $\mathbf{h}^{(t)}$ from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- $oldsymbol{x}^{(t)}$ can be embeddings, one-hot, output of some previous layer ...
- **Question:** By recursion, what does $\mathbf{h}^{(t)}$ depend on?
 - ▶ all previous inputs $\mathbf{x}^{(1)} \dots \mathbf{x}^{(t)}$
 - ► the initial state **h**⁽⁰⁾ (typically all-zero, but not necessarily, c.f. encoder-decoder)
 - ightharpoonup the parameters heta
- Question: How does this compare to an n-gram based model?

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, video frames, audio frames, ...
- Basic idea: For time step t, compute representation $\mathbf{h}^{(t)}$ from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- \bullet $\mathbf{x}^{(t)}$ can be embeddings, one-hot, output of some previous layer ...
- **Question:** By recursion, what does $\mathbf{h}^{(t)}$ depend on?
 - ▶ all previous inputs $\mathbf{x}^{(1)} \dots \mathbf{x}^{(t)}$
 - ► the initial state **h**⁽⁰⁾ (typically all-zero, but not necessarily, c.f. encoder-decoder)
 - \blacktriangleright the parameters θ
- Question: How does this compare to an n-gram based model?
 - ▶ N-gram based models have limited memory, the RNN has theoretically (!) unlimited memory

Parameter Sharing

• Going from a time step t-1 to t is parameterized by the same parameters θ for all t!

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

• Question: Why is parameter sharing a good idea?

Parameter Sharing

• Going from a time step t-1 to t is parameterized by the same parameters θ for all t!

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- Question: Why is parameter sharing a good idea?
 - Fewer parameters
 - Can learn to detect features regardless of their position
 - ★ "i went to nepal in 2009" vs. "in 2009 i went to nepal"
 - ► Can generalize to longer sequences than were seen in training

Graphical Notation: Unrolling

- Compact notation (left):
 - All time steps conflated.
 - ▶ indicates "delay" of 1 time unit.
- Unrolled notation (right):
 - ▶ Like a very deep feed-forward NN with parameter sharing across layers

Source: Goodfellow et al.: Deep Learning.

Any questions so far?

 The output at time t is typically computed from the hidden representation at time t:

$$\mathbf{o}^{(t)} = f(\mathbf{h}^{(t)}; \theta_o)$$

- Typically a linear transformation: $\mathbf{o}^{(t)} = \theta_o^T \mathbf{h}^{(t)}$
- Some RNNs compute $\mathbf{o}^{(t)}$ at every time step, others only at the last time step $\mathbf{o}^{(T)}$

Sentiment polarity, topic classification, grammaticality ...

POS tagging, NER tagging, Language Model ...

POS tagging, NER tagging, Language Model \dots

$Sequence \\ 2 \\ Sequence$

Machine Translation, Summarization, Image captioning (encoder CNN) ...

Any questions so far?

- Loss function:
 - ► Several time steps: $\mathcal{L}(y^{(1)}, \dots y^{(T)}; \mathbf{o}^{(1)} \dots \mathbf{o}^{(T)})$
 - ▶ Last time step: $\mathcal{L}(y; \mathbf{o}^{(T)})$

- Loss function:
 - ► Several time steps: $\mathcal{L}(y^{(1)}, \dots y^{(T)}; \mathbf{o}^{(1)} \dots \mathbf{o}^{(T)})$
 - ▶ Last time step: $\mathcal{L}(y; \mathbf{o}^{(T)})$
- Example: POS Tagging
 - ightharpoonup Output $\mathbf{o}^{(t)}$ is predicted distribution over POS tags
 - \star $\mathbf{o}^{(t)} = P(\mathsf{tag} = ?|\mathbf{h}^{(t)})$
 - * Typically: $\mathbf{o}^{(t)} = \operatorname{softmax}(\theta_o^T \mathbf{h}^{(t)})$

- Loss function:
 - ► Several time steps: $\mathcal{L}(y^{(1)}, \dots y^{(T)}; \mathbf{o}^{(1)} \dots \mathbf{o}^{(T)})$
 - ▶ Last time step: $\mathcal{L}(y; \mathbf{o}^{(T)})$
- Example: POS Tagging
 - ightharpoonup Output $\mathbf{o}^{(t)}$ is predicted distribution over POS tags
 - \star $\mathbf{o}^{(t)} = P(\mathsf{tag} = ?|\mathbf{h}^{(t)})$
 - * Typically: $\mathbf{o}^{(t)} = \operatorname{softmax}(\theta_o^T \mathbf{h}^{(t)})$
 - Loss at time t: negative log-likelihood (NLL) of true label $y^{(t)}$

$$\mathcal{L}^{(t)} = -\log P(\mathsf{tag} = y^{(t)}|\mathbf{h}^{(t)}; \theta_o)$$

- Loss function:
 - ► Several time steps: $\mathcal{L}(y^{(1)}, \dots y^{(T)}; \mathbf{o}^{(1)} \dots \mathbf{o}^{(T)})$
 - ▶ Last time step: $\mathcal{L}(y; \mathbf{o}^{(T)})$
- Example: POS Tagging
 - Output $\mathbf{o}^{(t)}$ is predicted distribution over POS tags
 - \star $\mathbf{o}^{(t)} = P(\mathsf{tag} = ?|\mathbf{h}^{(t)})$
 - * Typically: $\mathbf{o}^{(t)} = \operatorname{softmax}(\theta_o^T \mathbf{h}^{(t)})$
 - ▶ Loss at time t: negative log-likelihood (NLL) of true label $y^{(t)}$

$$\mathcal{L}^{(t)} = -\log P(\mathsf{tag} = y^{(t)} | \mathbf{h}^{(t)}; \theta_o)$$

Overall Loss for all time steps:

$$\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}^{(t)}$$

Graphical Notation: Including Output and Loss Function

Source: Goodfellow et al.: Deep Learning.

Any questions so far?

Backpropagation through time

• We have calculated loss $\mathcal{L}^{(T)}$ at time step T and want to update parameters θ_i with gradient descent.

Backpropagation through time

- We have calculated loss $\mathcal{L}^{(T)}$ at time step T and want to update parameters θ_i with gradient descent.
- For now, imagine that we have time step-specific "dummy"-parameters $\theta_i^{(t)}$, which are identical copies of θ_i
- ullet the unrolled RNN looks like a feed-forward-neural-network!
- ullet o we can calculate $rac{\partial \mathcal{L}^{(T)}}{\partial heta_i^{(t)}}$ using standard backpropagation

Backpropagation through time

- We have calculated loss $\mathcal{L}^{(T)}$ at time step T and want to update parameters θ_i with gradient descent.
- For now, imagine that we have time step-specific "dummy"-parameters $\theta_i^{(t)}$, which are identical copies of θ_i
- ullet o the unrolled RNN looks like a feed-forward-neural-network!
- ullet we can calculate $rac{\partial \mathcal{L}^{(T)}}{\partial heta_i^{(t)}}$ using standard backpropagation
- To calculate $\frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i}$, add up the "dummy" gradients:

$$\frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i^{(t)}}$$

Truncated backpropagation through time

ullet Simple idea: Stop backpropagation through time after k time steps

$$\frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i} = \sum_{t=T-k}^{T} \frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i^{(t)}}$$

• Question: What are advantages and disadvantages?

Truncated backpropagation through time

• Simple idea: Stop backpropagation through time after k time steps

$$\frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i} = \sum_{t=T-k}^{T} \frac{\partial \mathcal{L}^{(T)}}{\partial \theta_i^{(t)}}$$

- Question: What are advantages and disadvantages?
 - Advantage: Faster and parallelizable
 - ▶ Disadvantage: If k is too small, long-range dependencies are hard to learn

Any questions so far?

Vanilla RNN

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta) = anh(\mathbf{U}\mathbf{x}^{(t)} + \mathbf{W}\mathbf{h}^{(h-1)} + \mathbf{b})$$
 $heta = \{\mathbf{W}, \mathbf{U}, \mathbf{b}\}$

• W: Hidden-to-hidden

• U: Input-to-hidden

• b: Bias term

Vanilla RNN

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta) = \tanh(\mathbf{U}\mathbf{x}^{(t)} + \mathbf{W}\mathbf{h}^{(h-1)} + \mathbf{b})$$
 $ext{} ext{} ext{}$

- W: Hidden-to-hidden
- U: Input-to-hidden
- b: Bias term
- Vanilla RNN in keras:

```
vanilla = SimpleRNN(units=10, use_bias = True)
vanilla.build(input_shape = (None, None, 30))
print([weight.shape for weight in vanilla.get_weights()])
[(30, 10), (10, 10), (10,)]
```

• Question: Which shape belongs to which weight?

Bidirectional RNNs

- Conceptually: Two RNNs that run in opposite directions over the same input
- Typically, each RNN has its own set of parameters
- Results in two sequences of hidden vectors: $\mathbf{h}^{(1)} \dots \mathbf{h}^{(T)}$, $\mathbf{h}^{(1)} \dots \mathbf{h}^{(T)}$

- Before being passed to downstream layers, $\hat{\mathbf{h}}$ and $\hat{\mathbf{h}}$ are typically concatenated into one representation $\hat{\mathbf{h}}$, s.t. $\dim(\hat{\mathbf{h}}) = \dim(\hat{\mathbf{h}}) + \dim(\hat{\mathbf{h}})$.
- **Question:** Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?

• Before being passed to downstream layers, $\overset{\rightarrow}{\mathbf{h}}$ and $\overset{\leftarrow}{\mathbf{h}}$ are typically concatenated into one representation \mathbf{h} , s.t.

$$\dim(\mathbf{h}) = \dim(\overset{\rightarrow}{\mathbf{h}}) + \dim(\overset{\leftarrow}{\mathbf{h}}).$$

- **Question:** Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?

 - ▶ Because these are the vectors that have "read" the entire sequence

- Before being passed to downstream layers, $\overset{\rightarrow}{\mathbf{h}}$ and $\overset{\leftarrow}{\mathbf{h}}$ are typically concatenated into one representation \mathbf{h} , s.t.
- $\dim(\mathbf{h}) = \dim(\mathbf{h}) + \dim(\mathbf{h}).$
- **Question:** Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?
 - $\mathbf{h} = \mathbf{h}^{\stackrel{\rightarrow}{(T)}} || \mathbf{h}^{\stackrel{\leftarrow}{(1)}}$
 - ▶ Because these are the vectors that have "read" the entire sequence
- **Question:** Which hidden vectors should we concatenate in sequence tagging (e.g., to predict POS for word w_t)?

- Before being passed to downstream layers, $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$ are typically concatenated into one representation \mathbf{h} , s.t. $\dim(\mathbf{h}) = \dim(\overleftarrow{\mathbf{h}}) + \dim(\overleftarrow{\mathbf{h}})$.
- Question: Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?
 - $\mathbf{h} = \mathbf{h}^{\stackrel{\rightarrow}{(T)}} || \mathbf{h}^{\stackrel{\leftarrow}{(1)}}$
 - ▶ Because these are the vectors that have "read" the entire sequence
- **Question:** Which hidden vectors should we concatenate in sequence tagging (e.g., to predict POS for word w_t)?
 - $\mathbf{h}^{(t)} = \overset{\rightarrow}{\mathbf{h}^{(t)}} || \overset{\leftarrow}{\mathbf{h}^{(t)}}$
 - Left context, right context (including t)

- Before being passed to downstream layers, $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$ are typically concatenated into one representation \mathbf{h} , s.t. $\dim(\mathbf{h}) = \dim(\overleftarrow{\mathbf{h}}) + \dim(\overleftarrow{\mathbf{h}})$.
- Question: Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?
 - $\mathbf{h} = \mathbf{h}^{\stackrel{\rightarrow}{(T)}} || \mathbf{h}^{\stackrel{\leftarrow}{(1)}}$
 - ▶ Because these are the vectors that have "read" the entire sequence
- **Question:** Which hidden vectors should we concatenate in sequence tagging (e.g., to predict POS for word w_t)?
 - $\mathbf{h}^{(t)} = \overrightarrow{\mathbf{h}^{(t)}} || \overrightarrow{\mathbf{h}^{(t)}}$
 - ▶ Left context, right context (including t)
- **Question:** Which hidden vectors should we concatenate to predict symbol w_t (i.e., in a bidirectional language model)?

• Before being passed to downstream layers, $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$ are typically concatenated into one representation \mathbf{h} , s.t.

$$\dim(\mathbf{h}) = \dim(\overset{\rightarrow}{\mathbf{h}}) + \dim(\overset{\leftarrow}{\mathbf{h}}).$$

- **Question:** Which hidden vectors should we concatenate if we want to compute a single output (e.g., predict sentiment of sentence)?
 - $h = \mathbf{h}^{\stackrel{\rightarrow}{(T)}} || \mathbf{h}^{\stackrel{\leftarrow}{(1)}}$
 - ▶ Because these are the vectors that have "read" the entire sequence
- **Question:** Which hidden vectors should we concatenate in sequence tagging (e.g., to predict POS for word w_t)?
 - $\mathbf{h}^{(t)} = \mathbf{h}^{(t)} || \mathbf{h}^{(t)}$
 - ▶ Left context, right context (including t)
- **Question:** Which hidden vectors should we concatenate to predict symbol w_t (i.e., in a bidirectional language model)?
 - $\mathbf{h}^{(t-1)}||\mathbf{h}^{(t+1)}|$
 - Left context, right context (excluding t)

Multi-Layer RNNs

• Conceptually: A stack of L RNNs, such that $\mathbf{x}_{i}^{(t)} = \mathbf{h}_{i-1}^{(t)}$.

Feeding outputs back

- What do we do if the input sequence $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$ is only given at training time, but not at test time?
- Examples: Machine Translation decoder, (generative) language model

Example: Machine Translation

Example: Machine Translation

Example: Machine Translation

Oracle

- Give Neural Network a signal that it will not have at test time
- Can be useful during training (e.g., mix oracle and predicted signal when training a generative language model)
- Can be used to establish upper bounds of modules
 - ► Example: How much better do Neural MT systems become when they take the translation of the previous sentence into account?
 - If we don't see improvements, this could be because
 - \star the previous sentence contains no useful information in general
 - * the translation of the previous sentence was not good enough to have a positive effect
 - lackrowtail ightarrow provide gold translation of previous sentence as oracle to find upper bound

Gated RNNs: Teaser

- Vanilla RNNs are not frequently used, because
 - Vanishing/exploding gradients make them difficult to train
 - ► They tend to forget past information quickly
- Instead: LSTM, GRU, ... (next week!)