Comment corriger efficacement les typos dans les mots de passe

Nikola K. Blanchard

Institut de Recherche en Informatique Fondamentale, Université Paris Diderot

Petit cours de cuisine: comment faire une tapenade?

Les mots de passe aujourd'hui

En moyenne:

- Une utilisatrice a \sim 100 comptes
- Elle créé 50 MDP par an
- · Pas de méthode générale à cause des contraintes

En conséquence:

- Fréquente réutilisation (75% des utilisateurs)
- Partage des MDP (40% des utilisateurs)
- Perte très fréquent (40% à 60% tous les trois mois)

Les mots de passe aujourd'hui

En moyenne:

- Une utilisatrice a \sim 100 comptes
- Elle créé 50 MDP par an
- · Pas de méthode générale à cause des contraintes

En conséquence:

- Fréquente réutilisation (75% des utilisateurs)
- Partage des MDP (40% des utilisateurs)
- Perte très fréquent (40% à 60% tous les trois mois)

Sécurité des mots de passe

Attaquer le mot de passe:

- "123456" est toujours le plus fréquent
- Les contraintes sont contre-productives
- La longueur bat la complexité

Attaquer le serveur:

- Les vulnérabilités principales viennent du phishing et de la réutilisation
- · Rarement hachés ou salé
- Rarement avec une bonne fonction de hachage (pas SHA-256)
- · Tout devrait avoir lieu côté client

Sécurité des mots de passe

Attaquer le mot de passe:

- "123456" est toujours le plus fréquent
- Les contraintes sont contre-productives
- La longueur bat la complexité

Attaquer le serveur:

- Les vulnérabilités principales viennent du phishing et de la réutilisation
- · Rarement hachés ou salé
- Rarement avec une bonne fonction de hachage (pas SHA-256)
- Tout devrait avoir lieu côté client

Pourquoi corriger les typos?

Pourquoi corriger les typos?

Elles gênent les utilisateurs

- Très frustrant
- Fréquent (3% des essais de login)
- Plus prévalent sur les longs mots de passe

Corriger ne réduit pas la sécurité

- Pas d'effet sur les attaques hors-ligne
- Les mots de passe courant sont loins les uns de autres
- · Cela permet de limiter la fréquence de login

Pourquoi corriger les typos?

Elles gênent les utilisateurs

- Très frustrant
- Fréquent (3% des essais de login)
- Plus prévalent sur les longs mots de passe

Corriger ne réduit pas la sécurité

- Pas d'effet sur les attaques hors-ligne
- Les mots de passe courant sont loins les uns de autres
- · Cela permet de limiter la fréquence de login

Types de typos (recalculé depuis [Chatterjee et al., 2016])

Catégorie de typo	Proportion de mauvais MDP	
Substitution simple	29.7	
AZERTY \ voisin numpad	14.0	
Single shift	8.5	
Suppression simple	19.4	
Caps lock	14.7	
Insertion simple	13.1	
Espace	2.0	
Lettre dupliquée	3.8	
Transposition simple	3.9	
Autres	19.0	
	•	

Contraintes

Securité: ne pas introduire de nouvelles vulnérabilités

Faible coût:

- Compatible avec le hachage
- simple à implémenter
- Pas trop de calcul/stockage sur le serveur

Corriger autant de typos légitimes que possible (32% chez [Chatterjee et al., 2016])

Contraintes

Securité: ne pas introduire de nouvelles vulnérabilités

Faible coût:

- · Compatible avec le hachage
- simple à implémenter
- Pas trop de calcul/stockage sur le serveur

Corriger autant de typos légitimes que possible (32% chez [Chatterjee et al., 2016])

Contraintes

Securité: ne pas introduire de nouvelles vulnérabilités

Faible coût:

- · Compatible avec le hachage
- simple à implémenter
- Pas trop de calcul/stockage sur le serveur

Corriger autant de typos légitimes que possible (32% chez [Chatterjee et al., 2016])

Stocker tout en clair... : problème de sécurité

Stocker toutes les typos possibles : problème de coût

Envoyer toutes les corrections de typos possibles : problème de communication

Stocker tout en clair... : problème de sécurité

Stocker toutes les typos possibles : problème de coût

Envoyer toutes les corrections de typos possibles : problème de communication

Stocker tout en clair... : problème de sécurité

Stocker toutes les typos possibles : problème de coût

Envoyer toutes les corrections de typos possibles : problème de communication

Stocker tout en clair... : problème de sécurité

Stocker toutes les typos possibles : problème de coût

Envoyer toutes les corrections de typos possibles : problème de communication

Corriger les substitutions

Corriger les substitutions

Extensions aux autres typos

Transposition:

- · Enlever deux lettres avant de hacher
- Encoder chaque lettre avec deux permutations différentes

Insertion:

- Combiner les deux méthodes précédentes
- Enlever deux lettres après en insérer une donne un haché de substitution

Extensions aux autres typos

Transposition:

- · Enlever deux lettres avant de hacher
- Encoder chaque lettre avec deux permutations différentes

Insertion:

- Combiner les deux méthodes précédentes
- Enlever deux lettres après en insérer une donne un haché de substitution

Comparaison des méthodes

Algorithm	Substitution	Transposition	Insertion	Complet
Calcul,# de				
Permutations	n	4n — 4	4n — 4	$\max(4(n-1),60)$
Hachés	n + 1	n	n	$\max(n+1,17)$
Nombres	$n \times k$	$(n-1)\times 4k$	$(n-1)\times 4k$	$\max(4(n-1)k,60k)$
Stockage, # de				
Hachés	n + 1	n	2n	$\max(2n+1,33)$
Nombres	n	4n	5 <i>n</i>	max(5 <i>n</i> , 80)
Typos corrigées				
Strict	24.2 %	28.4 %	34.5 %	50.2 %
Tolérant	24.2 %	28.4 %	42.2 %	57.7 %

Algorithme générique basé sur le logarithme disret

Système de coordonnées du clavier

Algorithme générique basé sur le logarithme disret

Pour de petits nombres premiers p_i , le mot de passe est codé comme

$$X(P) = \prod_{1 \le i \le n} p_i^{x_i} \times p_{i+n}^{y_i} \times p_{i+2n}^{z_i}$$

Envoyer $g^{X(P)}$ pour un g aléatoire dans un grand groupe.

Pour un MDP tapé avec une typo P':

$$\mathsf{Si}\,\mathsf{P}'pprox\mathsf{P}:\quad g^{\mathsf{X}(\mathsf{P}')}=(g^{\mathsf{X}(\mathsf{P})})^{p_i}\quad\mathsf{OU}\quad (g^{\mathsf{X}(\mathsf{P}')})^{p_i}=g^{\mathsf{X}(\mathsf{P})}$$

Propriétés de l'algorithme basé sur le log discret

Positif

- · Très haute sécurité
- Stockage et commmunication asymptotiquement optimaux

Négatif:

- Ne marche que sur les substitutions
- Coût très élevé (potentiellement plusieurs secondes)

Résumé du framework principal

Securisé:

- Même résistance resistance en ligne que [Chatterjee et al., 2017]
- Speed-up < 1.5 hors ligne sur des données réelles.

Bas coût:

- Pas de calculs supplémentaires par le serveur en espérance
- Les communications tiennent dans un paquet standard
- Compatible with previous systems

Corrige 57% des typos soit 91% des typos légitimes.