Restriction Enzyme Cleavage Activity Near DNA Termini

Enzyme	Oligo Sequence	Chain Length (bp)	┌──% Cleavage ───	
			2 hours	20 hours
Acc I	GGTCGACC	8	0	0
	CGGTCGACCG	10	0	0
	CCGGTCGACCGG	12	0	0
Afl III	CACATGTG	8	0	0
	CCACATGTGG	10	>90	>90
	CCCACATGTGGG	12	>90	>90
Acs I	GGCGCGCC	8	>90	>90
	AGGCGCGCCT	10	>90	>90
	TTGGCGCGCCAA	12	>90	>90
Ava I	CCCCGGGG	8	50	>90
	CCCCGGGGG	10	>90	>90
	CGCGGATCCGCG	12	>90	>90
BamH I	CGGATCCG	8	10	25
	CGGGATCCCG	10	>90	>90
	CGCGGATCCGCG	12	>90	>90
Bgl II	CAGATCGTG	8	0	0
29	GAAGATCTTC	10	75	>90
	GGAAGATCTTCC	12	25	>90
BssH II	GGCGCGCC	8	0	0
D3311 II	AGGCGCGCCT	10	0	0
	TTGGCGCGCAA	12	50	>90
BstE II	GGGT(A/T)ACCC	9	0	10
BstX I	AACTGCAGAACCAATGCATTGG	22	0	0
DSIAI		24	-	50
	AAAACTGCAGCCAATGCATTGGAA	24 27	25 25	>90
CI- I	CTGCAGAACCAATGCATTGGATGCAT		0	
Cla I	CATCGATG	8		0
	GATCGATC	8	0	0
	CCATCGATGG	10	>90	>90
5 D.	CCCATCGATGGG	12	50	50
EcoR I	GGAATTCC	8	>90	>90
	CGGAATTCCG	10	>90	>90
	CCGGAATTCCGG	12	>90	>90
Hae III	GGGGCCCC	8	>90	>90
	AGCGGCCGCT	10	>90	>90
	TTGCGGCCGCAA	12	>90	>90
Kpn I	GGGTACCC	8	0	0
	GGGGTACCCC	10	>90	>90
	CGGGGTACCCCG	12	>90	>90
Mlu I	GACGCGTC	8	0	0
	CGACGCGTCG	10	25	50
Nco I	CCCATGGG	8	0	0
	CATGCCATGGCATG	14	50	75
Nde I	CCATATGG	8	0	0
	CCCATATGGG	10	0	0
	CGCCATATGGCG	12	0	0
	GGGTTTCATATGAAACCC	18	0	0
	GGAATTCCATATGGAATTCC	20	75	>90
	GGGAATTCCATATGGAATTCCC	22	75	>90
Nhe I	GGCTAGCC	8	0	2
iviie i				
iviie i	CGGCTAGCCG	10	10	25

Restriction Enzyme Cleavage Activity Near DNA Termini, continued

Enzyme	Oligo Sequence	Chain Length	% Cleavage —	
		(bp)	2 hours	20 hours
Not I	TTGCGGCCGCAA	12	0	0
7701	ATTTGCGGCCGCTTTA	16	10	10
	AAATATGCGGCCGCTATAAA	20	10	10
	ATAAGAATGGGCCGCTAAACTAT	24	25	90
	AAGGAAAAAGCGGCCGCAAAAGGAAAA	28	25	>90
Nsi I	TGCAGGCATGCA	12	10	>90
11311	CCAATGCATTGGTTCTGCAGTT	22	>90	>90
Pac I	TTAATTAA	8	0	0
	GTTAATTAAC	10	0	25
	CCTTAATTAAGG	12	0	>90
Pme I	GTTTAAAC	8	0	0
	GGTTTAAACC	10	0	25
	GGGTTTAAACCC	12	0	50
	AGCTTTAAACCC	24	75	>90
Dat I		8	75 0	>90 0
Pst I	GCTGCAGC TGCACTGCAGTGCA	o 14	10	0 10
		22		· ·
	AACTGCAGAACCAATGCATTGG		>90	>90
	AAAACTGCAGCCAATGCATTGGAA	24	>90	>90
0 1	CTGCAGAACCAATGCATTGGATGCAT	26	0	0
Pvu I	CCGATCGG	8	0	0
	ATCGATCGAT	10	10	25
	TCGCGATCGCGA	12	0	10
Sac I	CGACGTCG	8	10	10
Sac II	GCCGCGGC	8	0	0
	TCCCCGCGGGGA	12	50	>90
Sal I	GTCGACGTCAAAAGGCCATAGCGGCCGC	28	0	0
	GCGTCGACGTCTTGGCCATAGCGGCCGCGG	30	10	50
	ACGCGTCGACGTCGGCCATAGCGGCCGCGGAA		10	75
Sca I	GAGTACTC	8	10	25
	AAAAGTACTTTT	12	75	75
	CCCGGG	6	0	10
	CCCCGGGG	8	0	10
	CCCCGGGGG	10	10	50
	TCCCCGGGGGA	12	>90	>90
Spe I	GACTAGTC	8	10	>90
	GGACTAGTCC	10	10	>90
	CGGACTAGTCCG	12	0	50
	CTAGACTAGTGTAG	14	0	50
Sph I	GGCATGCC	8	0	0
	CATGCATGCATG	12	0	25
	ACATGCATGCT	14	10	30
Stu I	AAGGCCTT	8	>90	>90
	GAAGGCCTTC	10	>90	>90
	AAAAGGCCTTTT	12	>90	>90
Xba I	CTCTAGAG	8	0	0
	GCTCTAGAGC	10	>90	>90
	TGCTCTAGAGCA	12	75	>90
	CTAGTCTAGACTAG	14	75	>90
Xho I	CTCGAGG	8	0	0
	CCCTCGAGGG	10	10	25
	CCGCTCGAGCGG	12	10	75
Xma I	CCCCGGGG	8	0	0
Allia I	CCCCGGGGG	10	25	75
	CCCCCGGGGGG	12	50	>90