AED3 > Clase 6 > AGM

Definición 11: Más tipos de grafos: Árboles

- 1. Grafo conectado y acíclico.
- 2. Si saco cualquier arista se desconecta.
- 3. Si agrego una arista cualquiera se forma un ciclo.

Definición 1:

Un árbol es un grafo conexo sin circuitos simples.

Definición 2:

Una arista e de G es un **puente** si G - $\{e\}$ tiene más componente que G. Es decir, si la saco desconecta.

Teorema: Equivalencias

- 1. *G* es un árbol (grafo conexo sin circuitos simples).
- 2. G es un grafo sin circuitos simples y e una arista tq $e \notin E$. $G+e=(V, E+\{e\})$ tiene exactamente un circuito simple, y ese circuito contiene a e. Es decir, si agrego una arista cualquiera se forma un ciclo.
- 3. \exists exactamente un camino simple entre todo par de nodos.
- 4. *G* es conexo, pero si se quita cualquier arista queda un grafo no conexo. *Es decir, si saco cualquier arista se desconecta, o toda arista es puente*.

Lema 1:

La unión entre dos caminos simples distintos entre u y v contiene un circuito simple.

 P_{uv} , Q_{uv} : Caminos simples

 $C: P_{uv} + Q_{vu}$: Circuito simple

Lema 2: Sea G = (V, E) un grafo conexo y $e=(v,u) \in E$.

 $G - e = (V, E \setminus \{e\})$ es conexo $\Leftrightarrow e \in C$: circuito simple de G.

($e=(v,u) \in E$ es puente $\Leftrightarrow e$ no pertenece a un circuito simple de G).

Demostración (\Rightarrow) :

G - e es conexo \Rightarrow

Existe un camino simple entre u y v (P_{uv}) que no usa e.

Si agrego e se forma un circuito simple $C: P_{uv} + e$

Lema 2: Sea G = (V, E) un grafo conexo y $e=(v,u) \in E$.

 $G - e = (V, E \setminus \{e\})$ es conexo $\Leftrightarrow e \in C$: circuito simple de G.

($e=(v,u) \in E$ es puente $\Leftrightarrow e$ no pertenece a un circuito simple de G).

Demostración (*⇐*):

Sea C un circuito simple que contiene a $e=(u, v) \Rightarrow$

 $C: P_{uv} + e$, tq P_{uv} no usa e.

G es conexo ⇒ Existe un camino entre todo par de vértices.

Si no usa e lo conservo en G-e.

Si usa e , la reemplazo por P_{uv} en G-e. \Rightarrow

Existe un camino entre todo par de vértices en G-e. \Rightarrow G-e es conexo

Teorema: Equivalencias

- 1. *G* es un árbol (grafo conexo sin circuitos simples).
- 2. G es un grafo sin circuitos simples y e una arista tq $e \notin E$. $G+e=(V, E+\{e\})$ tiene exactamente un circuito simple, y ese circuito contiene a e. Es decir, si agrego una arista cualquiera se forma un ciclo.
- 3. \exists exactamente un camino simple entre todo par de nodos.
- 4. *G* es conexo, pero si se quita cualquier arista queda un grafo no conexo. *Es decir, si saco cualquier arista se desconecta, o toda arista es puente*.

 $1 \Rightarrow 2$) G es un árbol (grafo conexo sin circuitos simples). $\Rightarrow G$ es un grafo sin circuitos simples y e una arista tq $e \notin E$. $G+e=(V, E+\{e\})$ tiene exactamente un circuito simple, y ese circuito contiene a e. Es decir, si agrego una arista cualquiera se forma un ciclo.

Demostración $(1 \Rightarrow 2)$:

Como G es conexo \Rightarrow Existe algún camino P_{uv} entre u y v.

Como G+e es conexo \Rightarrow Existe algún circuito $C: P_{uv} + e$.

 $1 \Rightarrow 2$) G es un árbol (grafo conexo sin circuitos simples). $\Rightarrow G$ es un grafo sin circuitos simples y e una arista tq $e \notin E$. $G+e=(V, E+\{e\})$ tiene exactamente un circuito simple, y ese circuito contiene a e. Es decir, si agrego una arista cualquiera se forma un ciclo.

Demostración $(1 \Rightarrow 2)$:

Como G es conexo \Rightarrow Existe algún camino P_{uv} entre u y v.

Como G+e es conexo \Rightarrow Existe algún circuito $C: P_{uv} + e$.

¿Por no existen más?

Supongo que existen dos C^P : $P_{uv} + e$ y C^Q : $Q_{uv} + e$ en G + e

 \Rightarrow Existe algún circuito C': $P_{uv} + Q_{vu}$ en G+e no usa e

 \Rightarrow Existe algún circuito C': $P_{\mu\nu} + Q_{\nu\mu}$ en G

;Absurdo!

 $2 \Rightarrow 3$) G es un grafo sin circuitos simples y e una arista tq $e \notin E$. $G+e=(V, E+\{e\})$ tiene exactamente un circuito simple, y ese circuito contiene a e. Es decir, si agrego una arista cualquiera se forma un ciclo. $\Rightarrow \exists$ exactamente un camino simple entre todo par de nodos.

Demostración $(2 \Rightarrow 3)$:

Existe algún circuito $C: P_{yy} + e$. en G+e

- \Rightarrow Existe algún camino P_{uv} entre u y v en G+e-e
- \Rightarrow Existe P_{uv} entre todo par de vértices

¿Por no existen más?

Ídem $1 \Rightarrow 2$

 $3 \Rightarrow 4) \exists$ exactamente un camino simple entre todo par de nodos. $\Rightarrow G$ es conexo, pero si se quita cualquier arista queda un grafo no conexo. *Es decir, si saco cualquier arista se desconecta, o toda arista es puente.*

Demostración $(3 \Rightarrow 4)$:

Existe P_{uv} entre todo par de vértices \Rightarrow G es conexo

 P_{uv} es único \Rightarrow Si saco cualquier arista $e \in P_{uv}$ se desconeta

 $4 \Rightarrow 1$) G es conexo, pero si se quita cualquier arista queda un grafo no conexo. Es decir, si saco cualquier arista se desconecta, o toda arista es puente. \Rightarrow G es un árbol (grafo conexo sin circuitos simples).

Demostración $(4 \Rightarrow 1)$:

G es conexo

Si existe $e \operatorname{tq} C : P_{uv} + e \operatorname{es} \operatorname{circuito} \operatorname{simple} \operatorname{en} G$

 \Rightarrow Si saco *e* no se desconecta.

Absurdo!

 \Rightarrow G es conexo y sin circuitos simples (un árbol)

Árboles: Definiciones

Árbol: T

Hoja: $u \operatorname{tq} d(u) = 1$

Raíz: Algún vértice elegido

Bosque: Conjunto de árboles

Árbol trivial: $T \operatorname{con} n = 1 \operatorname{y} m = 0$

Lema 3: Todo árbol no trivial tiene al menos dos hojas

Demostración:

 $P: v_1 \dots v_k$ es un camino simple <u>maximal</u> en T (no lo puedo extender más).

q.v.q.
$$v_1$$
 y v_k son hojas, es decir que $d(v_1) = 1$ y $d(v_k) = 1$

$$d(v_k) > 0$$
 porque conecta con v_{k-1}

$$d(v_k) > 1 ??$$

No puedo agregar un vértice porque era maximal

No puedo ir a uno existente porque formo un circuito.

$$\Rightarrow d(v_k) = 1 \ (idem \ v_1)$$

Lema 4: Sea G = (V, E) un árbol $\Rightarrow m = n - 1$

Demostración: Inducción en *n*.

Caso base: n=1 y m=0

<u>Hipótesis inductiva</u>: T' con k' vértices (k' < k) tiene k' - l aristas

<u>Paso inductivo</u>: Sea *u* una hoja (sabemos que tiene por Lema 2).

$$T' = T - u = (V \setminus \{u\}, E \setminus \{(u,v) \in E, \forall v \in V\}$$

T'es conexo y sin circuitos con k' = k - 1 vértices < k

 \Rightarrow (Hip. ind.) tiene k - 2 aristas

Como *u* era una hoja \Rightarrow d(u)=1 \Rightarrow T tiene k - 2+1=k - 1 aristas

Árboles: Definiciones

Corolario 1: Sea G un bosque con c c.c. $\Rightarrow m = n - c$

Árboles: Definiciones

Corolario 1: Sea G un bosque con c c.c. $\Rightarrow m = n - c$

Corolario 2: Sea G un grafo con c c.c. $\Rightarrow m \ge n - c$

Teorema 2: Equivalencias

- 1. *G* es un árbol (grafo conexo sin circuitos simples).
- 2. G es un grafo sin circuitos simples y m = n 1
- 3. G es un grafo conexo y m = n 1

Demostración $(1 \Rightarrow 2)$:

(Por Lema 4)

 $1 \Rightarrow 2$) G es un árbol (grafo conexo sin circuitos simples). $\Rightarrow G$ es un grafo sin circuitos simples y m = n - 1

Demostración $(2 \Rightarrow 3)$:

Si tiene c c.c. $\Rightarrow m = n - c = n - 1 \Rightarrow c = 1 \Rightarrow G$ conexo

Demostración $(3 \Rightarrow 1)$:

Si G tiene un circuito simple, G conexo

$$\Rightarrow$$
 (por Lema 2) G-e conexo y $m_{G-e} = n - 2$ (porque $m_{G} = n - 1$)

¡Absurdo!

G no tiene un circuito simple, G conexo (es un árbol)

Lema 2: Sea G = (V, E) un grafo conexo y $e=(v,u) \in E$.

 $G - e = (V, E \setminus \{e\})$ es conexo $\Leftrightarrow e \in C$: circuito simple de G.

 $(e=(v,u) \in E \text{ es puente} \Leftrightarrow e \text{ no pertenece a un circuito simple de } G).$

Raíz: Algún vértice elegido

Hoja: $u \operatorname{tq} d(u) = 1$

Árbol enraizado: Árbol con raíz

Raíz: Algún vértice elegido

Hoja: u tq d(u) = 1

Árbol enraizado: Árbol con raíz

Vértices internos: Ni hojas ni raíces

Raíz: Algún vértice elegido

Hoja: $u \operatorname{tq} d(u) = 1$

Árbol enraizado: Árbol con raíz

Vértices internos: Ni hojas ni raíces

Altura (h): De la raíz a la hoja más lejana.

Raíz: Algún vértice elegido

Hoja: u tq d(u) = 1

Árbol enraizado: Árbol con raíz

Vértices internos: Ni hojas ni raíces

Altura (h): De la raíz a la hoja más lejana.

Árbol m-ario: Donde m es el número máximo de hijos un nodo (si todos los vértices v tienen $d(v) \le m + 1$ y la raíz r tiene $d(r) \le m$).

Raíz: Algún vértice elegido

Hoja: $u \operatorname{tq} d(u) = 1$

Árbol enraizado: Árbol con raíz

Vértices internos: Ni hojas ni raíces

Altura (h): De la raíz a la hoja más lejana.

Árbol m-ario: Donde m es el número máximo de hijos un nodo (si todos los vértices v tienen $d(v) \le m + 1$ y la raíz r tiene $d(r) \le m$).

Nivel: "Altura" de un vértice o distancia a la raíz.

Raíz: Algún vértice elegido

Hoja: u tq d(u) = 1

Árbol enraizado: Árbol con raíz

Vértices internos: Ni hojas ni raíces

Altura (h): De la raíz a la hoja más lejana.

Árbol m-ario: Donde m es el número máximo de hijos un nodo (si todos los vértices v tienen $d(v) \le m + 1$ y la raíz r tiene $d(r) \le m$).

Nivel: "Altura" de un vértice o distancia a la raíz.

Árbol balanceado: Todas sus hojas están a nivel h (o h-l).

Teorema 3:

- 1. T es m-ario de altura $h \Rightarrow$ tiene a lo sumo $l=m^h$ hojas
- 2. T es m-ario con l hojas \Rightarrow tiene $h \ge \lceil log_m(l) \rceil$ hojas

Demostración (1):

$$h=1 \Rightarrow l \leq m = m^{l}$$

$$h=2 \Rightarrow l \leq m*m^1 = m^2$$

$$h=3 \Rightarrow l \leq m*m^2 = m^3$$

$$h=4 \Rightarrow l \leq m*m^3 = m^4$$

$$\Rightarrow l \leq m * m^{h-1} = m^h$$

Demostración (2):

 $l \leq m^h$

 $log(l) \leq log(m^h)$

 $log(l) \le h*log(m)$

 $log(l)/log(m) \le h$

 $log_m(l) \le h$

 $\lceil log_m(l) \rceil \le h \text{ (por ser entero)}$

$$h=1 \Rightarrow l \leq m = m^{l}$$

$$h=2 \Rightarrow l \leq m*m^1 = m^2$$

$$h=3 \Rightarrow l \leq m*m^2 = m^3$$

$$h=4 \Rightarrow l \leq m*m^3 = m^4$$

$$\Rightarrow l \leq m * m^{h-l} = m^h$$

AED3 > Clase 6 > AGM

Árbol Generador (AG)

Definición:

Un árbol generador (AG) de un grafo G es un subgrafo que tiene el mismo conjunto de vértices y es un árbol.

Árbol Generador (AG)

Teorema 4:

- 1. Todo G conexo tiene al menos un AG.
- 2. Si G conexo. G tiene <u>un sólo</u> AG sii G es un árbol.
- 3. $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Árbol Generador (AG)

Demostración (1):

Por construcción,

G conexo, ejecuto BFS o DFS y obtengo un AG.

Demostración (2):

(\Leftarrow) G es un árbol. (Hip. Abs.) Si tuviese dos AG significa que hay dos formas de conectar u y v en G \Rightarrow hay un circuito en G \Rightarrow G no es un árbol. ¡Absurdo!

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E).

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol)

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol).

Por Teorema 1, se forma un único circuito.

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Demostración (3):

 $T=(V, E_p)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol).

Por Teorema 1, se forma un único circuito.

Sea f una arista del único circuito que se forma al agregar e (de T+e)

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

P

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol).

Por Teorema 1, se forma un único circuito.

Sea f una arista del único circuito que se forma al agregar e (de T+e)

$$T' = T + e - f = (V, E \cup \{e\} \setminus \{f\})$$

 $T = (V, E_T) \text{ es } AG \text{ de } G = (V, E). \text{ Sea } e = E \setminus E_T \text{ (no está en el árbol) tq } T' = T + e - f = (V, E \cup \{e\} \setminus \{f\}) \text{ con } f \text{ una arista del único circuito que se forma al agregar } e \text{ (de } T + e \text{)} \Rightarrow T' \text{ es otro } AG \text{ de } G.$

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol).

Por Teorema 1, se forma un único circuito.

Sea f una arista del único circuito que se forma al agregar e (de T+e)

$$T' = T + e - f = (V, E \cup \{e\} \setminus \{f\})$$

T' es conexo por Lema 2

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Lema 2: Sea G = (V, E) un grafo conexo y $e=(v,u) \in E$.

 $G - e = (V, E \setminus \{e\})$ es conexo $\Leftrightarrow e \in C$: circuito simple de G.

 $(e=(v,u) \in E \text{ es puente } \Leftrightarrow e \text{ no pertenece a un circuito simple de } G).$

Demostración (3):

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol).

Por Teorema 1, se forma un único circuito.

Sea f una arista del único circuito que se forma al agregar e (de T+e)

$$T' = T + e - f = (V, E \cup \{e\} \setminus \{f\})$$

T' es conexo por Lema 2

T' tiene los mismos vértices que $G \Rightarrow$ es subgrafo generador

T' tiene n-l aristas \Rightarrow es árbol generador (AG)

 $T=(V, E_T)$ es AG de G=(V, E). Sea $e=E \setminus E_T$ (no está en el árbol) tq $T'=T+e-f=(V, E \cup \{e\}\setminus \{f\})$ con f una arista del único circuito que se forma al agregar e (de T+e) \Rightarrow T' es otro AG de G.

Teorema 2: Equivalencias

- 1. *G* es un árbol (grafo conexo sin circuitos simples).
- 2. G es un grafo sin circuitos simples y m = n 1
- 3. G es un grafo conexo y m = n 1

Árbol Generador Mínimo (AGM)

Árbol Generador Mínimo (AGM) = Minimum Spanning Tree (MST).

Dado un grafo G=(V, E, w) con $w: E \rightarrow R$

- Costo: $w(T) = \sum_{T} w(e)$... Como un abuso de notación se usa w tanto para el costo de una arista como de todo el árbol.
- AGM es el AG para el cual $\sum_{T} w$ es mínima.
- Para los grafos no pesados todo AG es AGM porque w=1 $\Rightarrow \sum_{T} w = m = n-1$
- También puede haber varios AGM.

Árbol Generador Mínimo (AGM)

Prim (1957)

Kruskal (1956)

1. Subestructura óptima.

La solución óptima del problema contiene las soluciones óptimas a los subproblemas.

2. Elección golosa.

En cada paso se busca el óptimo local...

podría no ser el óptimo global

(en general no lo es \Rightarrow heurísticas)

1. Subestructura óptima.

→ AGM

2. Elección golosa.

 \rightarrow Elijo e=(u,v) tq $u \in S$, $v \in V$ -S, y w(e) es el mínimo de las aristas que cruzan el corte.

$$\Rightarrow e \in (algún) AGM$$

Demostración (Elección golosa).

Sea TAGM de G.

1. Si $e \in T \Rightarrow LISTO$

2. Si $e \notin T \Rightarrow$

elijo f=(x,y) tq $x \in S$, $y \in V$ -S, y $f \in P_{uv}$ (está en la rama que conecta u con v)

 \Rightarrow T' = T - f + e también es AG de G (Teorema 4)

¿T' es AGM?

Demostración (Correctitud).

Sea *TAGM* de *G*.

1. Si
$$e \in T \Rightarrow LISTO$$

2. Si
$$e \notin T \Rightarrow ... \Rightarrow T$$
' también es AG de G

¿T' es AGM?

$$w(T') = \sum_{T'} w = \sum_{T} w - w(f) + w(e) = w(T) - w(f) + w(e)$$

Como $w(e) \le w(f)$ (elección golosa)

$$w(T') = \sum_{T'} w = \sum_{T} w - w(f) + w(e) = w(T) - w(f) + w(e) \le w(T)$$

 \Rightarrow T' es AGM


```
PRIM ( r , G ):
    for u in V:
    u.key = Inf
u.parent = None
   r.key = 0
    Q = 0
    for u in G.V
    INSERT(Q,u) # Cola de prioridad (key)
    while Q :
       u = EXTRACT-MIN(Q)
       for v in Adj[u]:
       if (v in Q) AND (w(u,v) < v.key):
```

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [r]

<u>Hipótesis inductiva</u>: T_S , es AGM de S' (INVARIANTE)

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [r]

<u>Hipótesis inductiva</u>: T_S es AGM de S' (INVARIANTE)

<u>Paso inductivo</u>: Agrego e=(u,v) tq $u \in S'$, $v \in V-S'$, y w(e) es el mínimo de las aristas que cruzan el corte.

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [r]

<u>Hipótesis inductiva</u>: T_S , es AGM de S' (INVARIANTE)

<u>Paso inductivo</u>: Agrego e=(u,v) tq $u \in S$, $v \in V$ -S, y w(e) es el mínimo de las aristas que cruzan el corte.

 T_S es AGM de S por propiedad golosa (demo anterior)

... Hasta completar el grafo.


```
 \begin{array}{lll} key & = \{a:0,\,b:Inf,\,c:Inf,\,d:Inf,\,e:Inf,\,f:Inf,\,g:Inf,\,h:Inf,\,i:Inf\} \\ parent & = \{a:None,\,b:None,\,c:None,\,d:None,\,e:None,\,e:None,\,g:None,\,h:None,\,i:None\} \\ Q & = [a,b,c,d,e,f,g,h,i] \end{array}
```

```
PRIM ( r , G ):
     for u in V:
         u.key = Inf
u.parent = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                   v.parent = u
                  v.key = w(u,v)
                   DECREASE-KEY(Q, v, w(u,v))
```

```
u = a

key = {a:0, b:Inf, c:Inf, d:Inf, e:Inf, f:Inf, g:Inf, h:Inf, i:Inf}

parent = {a:None, b:None, c:None, d:None, e:None, f:None, g:None, h:None, i:None}

Q = [b, c, d, e, f, g, h, i]
```

```
PRIM ( r , G ):
    for u in V:
        u.key = Inf
         u.parent = None
    r.key = 0
    0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
    while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
               if (v in Q) AND (w(u,v) < v.key):
                v.parent = u
                v.key = w(u,v)
                   DECREASE-KEY(Q, v, w(u,v))
```



```
u = a

key = {a:0, b:4, c:Inf, d:Inf, e:Inf, f:Inf, g:Inf, h:8, i:Inf}

parent = {a:None, b:a, c:None, d:None, e:None, f:None, g:None, h:a, i:None}

Q = [b, h, c, d, e, f, g, i]
```

```
PRIM ( r , G ):
       for u in V:
       u.key = Inf
u.parent = None
       r.key = 0
       0 = 0
       for u in G.V
              INSERT(Q,u) # Cola de prioridad (key)
       while Q:
              u = EXTRACT-MIN(Q)
    for v in Adj[u] :
| if (v in Q) AND (w(u,v) < v.key):
| v.parent = u
| v.key = w(u,v)
| DECREASE-KEY(Q, v, w(u,v))
```



```
u = b

key = {a:0, b:4, c:Inf, d:Inf, e:Inf, f:Inf, g:Inf, h:8, i:Inf}

parent = {a:None, b:a, c:None, d:None, e:None, f:None, g:None, h:a, i:None}

Q = [h, c, d, e, f, g, i]
```

```
PRIM ( r , G ):
     for u in V:
         u.key = Inf
         u.parent = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
               if (v in Q) AND (w(u,v) < v.key):
                    v.parent = u
                 v.key = w(u,v)
                    DECREASE-KEY(Q, v, w(u,v))
```



```
\begin{array}{lll} u &= b \\ \text{key} &= \{a:0,\,b:4,\,c:8,\,d:Inf,\,e:Inf,\,f:Inf,\,g:Inf,\,h:8,\,i:Inf\} \\ \text{parent} &= \{a:None,\,b:a,\,c:b,\,d:None,\,e:None,\,f:None,\,g:None,\,h:a,\,i:None\} \\ Q &= [c,\,h,\,d,\,e,\,f,\,g,\,i] \end{array}
```

```
Prim ( r , G ) :
      for u in V:
      u.key = Inf
u.parent = None
      r.key = 0
      0 = Ø
      for u in G.V
            INSERT(Q,u) # Cola de prioridad (key)
      while Q:
            u = EXTRACT-MIN(Q)
            for v in Adj[u] :
    | if (v in Q) AND (w(u,v) < v.key):
| v.parent = u
| v.key = w(u,v)
| DECREASE-KEY(Q, v, w(u,v))
```



```
u = c
key = {a:0, b:4, c:8, d:Inf, e:Inf, f:Inf, g:Inf, h:8, i:Inf}
parent = {a:None, b:a, c:b, d:None, e:None, f:None, g:None, h:a, i:None}
Q = [h, d, e, f, g, i]
```

```
PRIM ( r , G ):
     for u in V:
          u.key = Inf
         u.parent = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
               if (v in Q) AND (w(u,v) < v.key):
                    v.parent = u
                  v.key = w(u,v)
                    DECREASE-KEY(Q, v, w(u,v))
```



```
u = c
key = {a:0, b:4, c:8, d:7, e:Inf, f:4, g:Inf, h:8, i:2}
parent = {a:None, b:a, c:b, d:c, e:None, f:c, g:None, h:a, i:c}
Q = [i, f, d, h, e, g]
```

```
PRIM ( r , G ):
      for u in V:
           u.key = Inf
           u.parent = None
      r.key = 0
      0 = Ø
      for u in G.V
            INSERT(Q,u) # Cola de prioridad (key)
      while Q:
            u = EXTRACT-MIN(Q)
            for v in Adj[u] :
          if (v in Q) AND (w(u,v) < v.key):
| v.parent = u
| v.key = w(u,v)
| DECREASE-KEY(Q, v, w(u,v))
```



```
Prim (1957; versión CLRS cap. 21)
```

```
u = i
key = {a:0, b:4, c:8, d:7, e:Inf, f:4, g:Inf, h:8, i:2}
parent = {a:None, b:a, c:b, d:c, e:None, f:c, g:None, h:a, i:c}
Q = [f, d, h, e, g]
```

```
PRIM ( r , G ):
     for u in V:
          u.key
                   = Inf
          u.parent
                     = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                     v.parent = u
                    v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```



```
Prim (1957; versión CLRS cap. 21) 

key = {a:0, b:4, c:8, d:7, e:Inf, f:4, g:6, h:7, i:2} parent Q = {a:None, b:a, c:b, d:c, e:None, f:c, g:i, h:i, i:c} = [f, g, h, d, e]
```

=i

u

```
PRIM ( r , G ):
      for u in V:
           u.key = Inf
           u.parent = None
      r.key = 0
      0 = Ø
      for u in G.V
             INSERT(Q,u) # Cola de prioridad (key)
      while Q:
             u = EXTRACT-MIN(Q)
            for v in Adj[u] :
          | if (v in Q) AND (w(u,v) < v.key):
| v.parent = u
| v.key = w(u,v)
| DECREASE-KEY(Q, v, w(u,v))
```



```
Prim (1957; versión CLRS cap. 21) key pare
```

```
\begin{array}{lll} u & = f \\ key & = \{a:0,\,b:4,\,c:8,\,d:7,\,e:Inf,\,f:4,\,g:6,\,h:7,\,i:2\} \\ parent & = \{a:None,\,b:a,\,c:b,\,d:c,\,e:None,\,f:c,\,g:i,\,h:i,\,i:c\} \\ Q & = [g,\,h,\,d,\,e] \end{array}
```

```
PRIM ( r , G ):
     for u in V:
                   = Inf
          u.key
          u.parent
                     = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                    v.parent = u
                    v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```



```
PRIM ( r , G ):
     for u in V:
          u.key = Inf
          u.parent
                       = None
     r.key = 0
                                                                         11
     0 = Ø
     for u in G.V
           INSERT(Q,u) # Cola de prioridad (key)
     while Q:
           u = EXTRACT-MIN(Q)
           for v in Adj[u] :
                 if (v in Q) AND (w(u,v) < v.key):
                    v.parent = u
v.key = w(u,v)
DECREASE-KEY(Q, v, w(u,v))
```

= f

u

```
PRIM ( r , G ):
     for u in V:
          u.key
                   = Inf
          u.parent
                     = None
     r.key = 0
                                                                   11
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                     v.parent = u
                     v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```

```
PRIM ( r , G ):
     for u in V:
          u.key = Inf
          u.parent = None
     r.key = 0
                                                                         11
     0 = Ø
     for u in G.V
           INSERT(Q,u) # Cola de prioridad (key)
     while Q:
           u = EXTRACT-MIN(Q)
           for v in Adj[u] :
                 if (v in Q) AND (w(u,v) < v.key):
                      v.parent = u
v.key = w(u,v)
DECREASE-KEY(Q, v, w(u,v))
```

```
Prim (1957; versión CLRS cap. 21)  \begin{array}{ll} u & = h \\ \text{key} & = \{a:0, b:4, c:8, d:7, e:10, f:4, g:2, h:1, i:2\} \\ \text{parent} & = \{a:\text{None, b:a, c:b, d:c, e:f, f:c, g:f, h:g, i:c}\} \\ Q & = [d, e] \end{array}
```

```
PRIM ( r , G ):
     for u in V:
          u.key
                   = Inf
          u.parent = None
     r.key = 0
                                                                   11
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                     v.parent = u
                     v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```

= h

u

```
PRIM ( r , G ):
    for u in V:
       u.key = Inf
       u.parent = None
    r.key = 0
    0 = Ø
    for u in G.V
        INSERT(Q,u) # Cola de prioridad (key)
    while Q:
        u = EXTRACT-MIN(Q)
        for v in Adj[u]:
```



```
Prim (1957; versión CLRS cap. 21)  \begin{array}{ll} u & = d \\ key & = \{a:0, b:4, c:8, d:7, e:10, f:4, g:2, h:1, i:2\} \\ parent \\ Q & = [e] \end{array}
```

```
PRIM ( r , G ):
     for u in V:
                   = Inf
          u.key
          u.parent
                     = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                     v.parent = u
                    v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```


= d

```
PRIM ( r , G ):
    for u in V:
       u.key = Inf
       u.parent = None
    r.key = 0
    0 = Ø
    for u in G.V
        INSERT(Q,u) # Cola de prioridad (key)
    while Q:
        u = EXTRACT-MIN(Q)
        for v in Adj[u]:
```



```
Prim (1957; versión CLRS cap. 21)

key = {a:0, b:4, c:8, d:7, e:9, f:4, g:2, h:1, i:2} parent = {a:None, b:a, c:b, d:c, e:d, f:c, g:f, h:g, i:c}
```

```
PRIM ( r , G ):
     for u in V:
          u.key
                   = Inf
          u.parent
                     = None
     r.key = 0
     0 = Ø
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                     v.parent = u
                     v.key = w(u,v)
                     DECREASE-KEY(Q, v, w(u,v))
```



```
PRIM ( r , G ):
      for u in V:
           u.key = Inf
           u.parent = None
      r.key = 0
      0 = Ø
      for u in G.V
             INSERT(Q,u) # Cola de prioridad (key)
      while Q:
            u = EXTRACT-MIN(Q)
            for v in Adj[u] :
          | if (v in Q) AND (w(u,v) < v.key):
| v.parent = u
| v.key = w(u,v)
| DECREASE-KEY(Q, v, w(u,v))
```



```
key = {a:0, b:4, c:8, d:7, e:9, f:4, g:2, h:1, i:2} parent = {a:None, b:a, c:b, d:c, e:d, f:c, g:f, h:g, i:c} Q = []
```

```
PRIM ( r , G ):
     for u in V:
          u.key = Inf
          u.parent = None
     r.key = 0
     0 = 0
     for u in G.V
          INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q)
          for v in Adj[u]:
               if (v in Q) AND (w(u,v) < v.key):
                    v.parent = u
                    v.key = w(u,v)
                    DECREASE-KEY(Q, v, w(u,v))
```


Prim (1957; versión CLRS cap. 21)

```
PRIM ( r , G ):
     for u in V:
         u in V:
u.key = Inf
u.parent = None
     r.key = 0
     0 = Ø
     for u in G.V
                                                          Min-Heap: O(V)
           INSERT(Q,u) # Cola de prioridad (key)
     while Q:
          u = EXTRACT-MIN(Q) Min-Heap: O(log(V))
                                                         Min-Heap: O(V*log(V))
          for v in Adj[u]:
                if (v in Q) AND (w(u,v) < v.key):
                                                                          Min-Heap: O(E*log(V))
                     v.parent = u
                   v.key = w(u,v)
                      DECREASE-KEY(Q, v, w(u,v)) Min-Heap: O(log(V))
```

Min-Heap: O(V + V*log(V) + E*log(V)) = O(E*log(V))

Prim (1957; versión CLRS cap. 21)

```
PRIM ( r , G ) :
     for u in V:
          u.key = Inf
u.parent = None
     r.key = 0
     0 = Ø
     for u in G.V
                                                            Fibonacci-Heap: O(1)
           INSERT(Q,u) # Cola de prioridad (key)
     while Q:
           u = EXTRACT-MIN(Q) Fibonacci-Heap: O(log(V))
                                                           Fibonacci-Heap: O(V*log(V))
           for v in Adj[u]:
                 if (v in Q) AND (w(u,v) < v.key):
                                                                             Fibonacci-Heap: O(E)
                       v.parent = u
                      v.key = w(u,v)
                       DECREASE-KEY(Q, v, w(u,v)) Fibonacci-Heap: O(1)
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x. UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores. FIND-SET ( x ) , devuelve el representante de x. UNION ( f, i )
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x. UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores. FIND-SET ( x ) , devuelve el representante de x. FIND-SET ( i ) \rightarrow f (representante) FIND-SET ( i ) == FIND-SET ( f ) \rightarrow VERDADERO FIND-SET ( i ) != FIND-SET ( e ) \rightarrow VERDADERO
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.

UNION ( f, i )
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.

UNION ( f, i ) UNION ( h, i )
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.

UNION ( f, i )

UNION ( h, i )

UNION ( h, i )
```



```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET ( x ) , devuelve el representante de x.

UNION ( f, i )

UNION ( f, i )

UNION ( f, e )
```

Disjoint-set Opt. Path Compression (CLRS cap. 19)


```
MAKE-SET ( x ) , crea un SET con un único elemento x.

UNION ( x, y ) , asigna un único representante a ambos
SET Sx y Sy. Puede o no ser uno de los representantes
anteriores.

FIND-SET ( x ) , devuelve el representante de x.

UNION ( f, i )
UNION ( h, i )
UNION ( b, e )
UNION ( f, e )
```


MAKE-SET (x), crea un SET con un único elemento x.

UNION (x, y) , asigna un único representante a ambos SET Sx y Sy. Puede o no ser uno de los representantes anteriores.

FIND-SET (x) , devuelve el representante de x.

¿Aplicaciones?

Ciclos,

Conjuntos conexos,

AGM,

DISJOINT-SET me genera muchos conjuntos,

Busco la arista de menor w que una cualquiera dos conjuntos distintos.

DISJOINT-SET me genera muchos conjuntos,

Busco la arista de menor w que una cualquiera dos conjuntos distintos.

DISJOINT-SET me genera muchos conjuntos,

Busco la arista de menor w que una cualquiera dos conjuntos distintos.

Y sigue la misma idea...

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [s]

<u>Hipótesis inductiva</u>: T_k es bosque de AGM de G (INVARIANTE)

<u>Paso inductivo</u>: Agrego e=(u,v) y w(e) es el mínimo de las aristas que cruzan cualquier corte.

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [s]

<u>Hipótesis inductiva</u>: T_k es bosque de AGM de G (INVARIANTE)

<u>Paso inductivo</u>: Agrego e=(u,v) y w(e) es el mínimo de las aristas que cruzan cualquier corte.

Defino *S*' tq $u \in S$ ', y *V-S*' tq $v \in V$ -*S*'

$$S = S' \cup \{v\}$$
, $T_S = (V_S, E_{TS}, +e)$

 T_S es AGM de S por propiedad golosa (demo goloso)

Demostración (Correctitud). (Inducción sobre las iteraciones)

Caso base: S = [s]

<u>Hipótesis inductiva</u>: T_k , es bosque de AGM de G (INVARIANTE)

<u>Paso inductivo</u>: Agrego e=(u,v) y w(e) es el mínimo de las aristas que cruzan cualquier corte.

Defino S' tq $u \in S'$, y V-S' tq $v \in V$ -S'

$$S = S \cup \{v\}$$

 T_S es AGM de S por propiedad golosa (demo goloso)

Si
$$T_{SET-1}=(V_{SET-1'}\ E_{SET-1'})$$
 era AGM de $SET-1$ y $T_{SET-2}=(V_{SET-2'}\ E_{SET-2'})$ era AGM de $SET-2$ \Rightarrow

$$T = (V_{SET-1} + V_{SET-2}, E_{SET-1} + \{e\} + E_{SET-2})$$
 era AGM

 $O(V + sort(E) + E * \alpha(V)) \sim O(sort(E) + E * log(V))$

Prim (1957; versión CLRS cap. 16, 21)

```
Grafos ralos E \sim V: Min-Heap \sim Fibonacci-Heap: O(V^*log(V))
Grafos densos E \sim V^2 Fibonacci-Heap: O(V^2), Min-Heap O(V^2 * log(V))
```

Kruskal (1956; versión CLRS cap. 16, 19, 21)

```
Grafos ralos E \sim V: O(V * log(V))
Grafos densos E \sim V^2: O(V^2 * log(V))
```