Równanie Schrödingera zależne od czasu

5 listopada 2023

1

Elektron (masa $m=0.067m_0$ jak poprzednio) uwięziony jest w potencjale oscylatora harmonicznego $V(x)=\frac{m\omega^2x^2}{2}$. Operator energii $H=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x)$. Energia oscylatora $\hbar\omega=5$ meV.

Do rozwiązania problemu ewolucji funkcji falowej wewnątrz potencjału $i\hbar \frac{\partial \Psi(x,t)}{\partial t} = H\Psi(x,t)$, wykorzystamy metodą Askara $\Psi(x,t+dt) = \Psi(x,t-dt) + \frac{2dt}{i\hbar}H\Psi(x,t)$. Drugą pochodną zastąpimy ilorazem różnicowym, jak poprzednio.

2

Pracujemy w pudle $x\in[-100,100]$ nm, na 201 punktach. Na ostatnim i pierwszym trzymamy warunek brzegowy $\Psi(\pm 100 \mathrm{nm},t)=0$. Interesuje nas przedział czasowy $t\in[0,5T]$, gdzie $T=\frac{2\pi}{\omega}$. Liczymy z krokiem czasowym dt=1 [w jednostkach atomowych]. Jednostka atomowa czasu: 2.42×10^{-5} ps.

Wstawiamy jako warunek początkowy funkcję $\Psi(x,t=0)=C\exp(-m\omega x^2/2)e^{ikx}$, gdzie $k=m\omega x_0$. Funkcję proszę unormować (wyznaczyć C) jak na zajęciach z iteracji w czasie urojonym. Dla $\Psi(x,t=dt)$ przyjmiemy $\Psi(x,t=dt)=\Psi(x,t=0)\times \exp(-i\frac{\omega dt}{2})$ (to nie jest dokładny wynik).

3

Przyjąć $x_0=30$ nm. Narysować $|\Psi(x,t)|^2$. Uwaga: wyprowadzać np. co 500 albo co 1000 krok czasowy. (40 pkt)

4

Policzyć wartość oczekiwaną położenia $\langle x \rangle(t)$ porównać z wynikiem klasycznym dla położenia cząstki punktowej $x(t)=x_0\sin(\omega t)$ (dla przyjętej funkcji falowej przy t=0 średnie położenie elektronu wynosi 0). (30 pkt)

5

Zmienić warunek początkowy na $x_0=0$. Jak zmienia się w czasie gęstość prawdopodobieństwa (20 pkt) ?

6

Zostawiamy potencjał oscylatora jak wyżej. Ustawiamy jako stan początkowy stan podstawowy nieskończonej studni potencjału: $\cos(\pi x/L)$ i normujemy go (L=200 nm). Jak zmienia się w czasie gęstość prawdopodobieństwa (10 pkt) ?

Uwaga, jeśli schemat Askara jest napisany poprawnie, nie trzeba normować funkcji falowej w każdym kroku czasowym.