Playing with Signals: Compressing Source Symbols

Sibi Raj B Pillai srbpteach@gmail Subject:EE113-RollNo

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59

2	3	6	7	10
11	14	15	18	19
22	23	26	27	30
31	34	35	38	39
42	43	46	47	50
51	54	55	58	59

4	5	6	7	12
13	14	15	20	21
22	23	28	29	30
31	36	37	38	39
44	45	46	47	52
53	54	55	60	*

Card 1

8	9	10	11	12
13	14	15	24	25
26	27	28	29	30
31	40	41	42	43
44	45	46	47	56
57	58	59	60	•

Card 2

	_	- 1	_	
57	58	59	60	Y
52	53	54	55	56
31	48	49	50	51
26	27	28	29	30
21	22	23	24	25
16	17	18	19	20

Card 3

32	33	34	35	36
37	38	39	40	41
42	43	44	45	46
47	48	49	50	51
52	53	54	55	56
57	58	59	60	•
		_		

Card 4

Card 5

$$X = \begin{bmatrix} 6 & 5 & 4 & 3 & 2 \\ & & & & & \end{bmatrix}$$

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59

2	3	6	7	10
11	14	15	18	19
22	23	26	27	30
31	34	35	38	39
42	43	46	47	50
51	54	55	58	59

4	5	6	7	12
13	14	15	20	21
22	23	28	29	30
31	36	37	38	39
44	45	46	47	52
53	54	55	60	*

			-
	ar	~	
<u> </u>	aı	u	

8	9	10	11	12
13	14	15	24	25
26	27	28	29	30
31	40	41	42	43
44	45	46	47	56
57	58	59	60	•

Card 2

	_	- 1		
57	58	59	60	Y
52	53	54	55	56
31	48	49	50	51
26	27	28	29	30
21	22	23	24	25
16	17	18	19	20

Card 3

37	38	39	40	41		
31	50	33	+0	1 71		
42	43	44	45	46		
42	43	44	45	40		
47	48	49	50	51		
41	40	43	50	31		
52	53	54	55	56		
32	55	54	55	50		
57	58	59	60	•		
31	50	39	00	-		

Card 4

Card 5

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59

2	3	6	7	10
11	14	15	18	19
22	23	26	27	30
31	34	35	38	39
42	43	46	47	50
51	54	55	58	59

Card 2

4	5	6	7	12
13	14	15	20	21
22	23	28	29	30
31	36	37	38	39
44	45	46	47	52
53	54	55	60	*

Card 1

16	17	18	19	
21	22	23	24	
26	27	28	29	
31	48	49	50	
52	53	54	55	
E 7	F0	FΛ	-	

Card 3

25 30 51 56 58 | 59 | 60 |

Card 4

Card 5

$$X = \begin{bmatrix} 6 & 5 & 4 \\ & & & \end{bmatrix}$$

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59

2	3	6	7	10		
11	14	15	18	19		
22	23	26	27	30		
31	34	35	38	39		
42	43	46	47	50		
51	54	55	58	59		
Card 2						

4	5	6	7	12
13	14	15	20	21
22	23	28	29	30
31	36	37	38	39
44	45	46	47	52
53	54	55	60	*

\sim $^{-1}$	-
1 224	
Card	- 1

16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	48	49	50	51
52	53	54	55	56

Card 3

	_	-		
57	58	59	60	•
44	45	46	47	56
31	40	41	42	43
26	27	28	29	30
13	14	15	24	25
8	9	10	11	12

0 0 10 11 10

Card 4

Card 5

6	5	4	3	2	1
0	1	1	0	1	1

1	3	5	7	9
11	13	15	17	19
21	23	25	27	29
31	33	35	37	39
41	43	45	47	49
51	53	55	57	59

10 | 11 | 12

24 25

29 | 30

2	3	6	7	10
11	14	15	18	19
22	23	26	27	30
31	34	35	38	39
42	43	46	47	50
51	54	55	58	59

4	5	6	7	12
13	14	15	20	21
22	23	28	29	30
31	36	37	38	39
44	45	46	47	52
53	54	55	60	*

\sim $^{-1}$	-
1 224	
Card	- 1

Card 2

			_	
57	58	59	60	Y
52	53	54	55	56
31	48	49	50	51
26	27	28	29	30
21	22	23	24	25
16	17	18	19	20

Card 3

		<u> </u>	1.6	
57	58	59	60	•
52	53	54	55	56
47	48	49	50	51
42	43	44	45	46
37	38	39	40	41
32	33	34	35	36

Card 4

8

13

26

31 | 40 | 41 | 42 | 43

44 | 45 | 46 | 47 | 56

57 | 58 | 59 | 60

Information:
$$H(X) \leq \log_2 |\mathcal{X}|$$
 bits

Compressing Sequences

Compressing Sequences

17 4 10 5 18 24 30 1 7 0 0 6 17 15 15 4 10 (Run Length Coding)

Compressing Sequences

17 4 10 5 18 24 30 1 7 0 0 6 17 15 15 4 10 (Run Length Coding)

1 3 0 6 2 2 0 5 1 1 2 1 0 3 0 4 0 0 0 6 5 10 1 0 0 7 1 0 9 2 1 3 1 4 0 3 4 4 1 0 0 0 3 0 0 0 5 3 0 3 5 10 1 6 3 0 5 (Run Length Coding)

9 Ball Game

Suppose there are 9 balls, look alike, but one of them is heavier than the rest (GOLD!). With two weighings (measurements) on a common balance, can you identify the odd one.

9 Ball Game

Suppose there are 9 balls, look alike, but one of them is heavier than the rest (GOLD!). With two weighings (measurements) on a common balance, can you identify the odd one.

9 Ball Game

Suppose there are 9 balls, look alike, but one of them is heavier than the rest (GOLD!). With two weighings (measurements) on a common balance, can you identify the odd one.

Balls and Sources

- Suppose we repeatedly perform the first experiment, using a statistical machine that shuffles the golden ball
- ➤ The random variable representing the output of the machine is called a *source*.
- ▶ Every time a source symbol $S_i \in \mathcal{X}$ occurs, we will convey its branch labels.

Question: For a given source and a label-alphabet,

what is the **optimal** tree?

Binary Number System

A binary tree representation for numbers.

- If the source is fair, this indeed is the **optimal** tree.
- ▶ This also gives the simple principle

$$Info(X) \le \log_D |\mathcal{X}| + 1$$
 DiTs

Suppose $\mathcal{X} = \{0, 1, \dots, 8\}$ with $p_0 \ge p_1 \ge \dots \ge p_8$.

▶ Suppose $\mathcal{X} = \{0, 1, \dots, 8\}$ with $p_0 \ge p_1 \ge \dots \ge p_8$.

▶ Suppose $\mathcal{X} = \{0, 1, \dots, 8\}$ with $p_0 \ge p_1 \ge \dots \ge p_8$.

Suppose $\mathcal{X} = \{0, 1, \dots, 8\}$ with $p_0 \ge p_1 \ge \dots \ge p_8$.

➤ 'Shorter codes to more frequent symbols' seems to be the key to compression, we seek the best code tree for a given probability distribution on the symbols.

Let
$$p_1 = 0.47$$
, $p_2 = 0.18$, $p_3 = 0.15$, $p_4 = 0.1$, $p_5 = 0.1$ and $p_{ij} \stackrel{\triangle}{=} p_i + p_j$.

 p_1

p2

*p*₃

 p_4

*p*₅

Let $p_1 = 0.47$, $p_2 = 0.18$, $p_3 = 0.15$, $p_4 = 0.1$, $p_5 = 0.1$ and $p_{ij} \stackrel{\triangle}{=} p_i + p_j$.

 p_1 p_2 p_3 p_4 p_5

Let $p_1 = 0.47$, $p_2 = 0.18$, $p_3 = 0.15$, $p_4 = 0.1$, $p_5 = 0.1$ and $p_{ij} \stackrel{\triangle}{=} p_i + p_j$.

Collapse (delete) the dashed lines to get the highlighted tree.

Source	S_1	S_2	S_3	S_4	S_5	S_6	<i>S</i> ₇	<i>S</i> ₈	S_9	S_{10}	S_{11}	S ₁₂	<i>S</i> ₁₃	
Pr(S)	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	$\frac{1}{9}$	<u>1</u> 9	1 27	$\frac{1}{27}$	<u>1</u> 27	1 27	1 27	$\frac{1}{27}$	

Source													S ₁₃
Pr(S)	$\frac{1}{9}$	$\frac{1}{9}$	<u>1</u> 9	$\frac{1}{9}$	$\frac{1}{9}$	<u>1</u> 9	$\frac{1}{9}$	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{1}{27}$
	•	•	•	•	•	•	•	•	•	•	•	•	<u> </u>

Source	S_1	S_2	S_3	S_4	S_5	S_6	S ₇	<i>S</i> ₈	S_9	S ₁₀	S ₁₁	S ₁₂	S ₁₃
Pr(S)	<u>1</u> 9	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27						
	•	•	•	•	•	•	•	•			•	↓	,

Source	S_1	S_2	<i>S</i> ₃	S ₄	S_5	S_6	S ₇	S ₈	S_9	S ₁₀	S ₁₁	S ₁₂	S ₁₃
Pr(S)	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27
	•	•	•	•	•	•							•

Source	S_1	S_2	<i>S</i> ₃	S ₄	S_5	<i>S</i> ₆	S ₇	<i>S</i> ₈	S ₉	S ₁₀	S ₁₁	S ₁₂	S ₁₃
Pr(S)	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27	<u>1</u> 27
	•	•	•										,

Huffman Coding

- ▶ We will describe **Huffman Coding** when $A = \{0,1\}$ (binary).
- ▶ Let all labels be empty, and let $m = |\mathcal{X}|$.
 - 1. Rearrange sources such that $p_1 \ge p_2 \ge \cdots \ge p_m$.
 - 2. Append labels 0 and 1 respectively to the last two sources.
 - 3. Merge the last two sources to form a new source X'_{m-1} , having probability $p_{m-1} + p_m$.
 - 4. Put $m \leftarrow m-1$ and go to step 1, using the new source set.
- ▶ Terminate by assiging 0 and 1 to the two remaining sources.

Lossy Source Coding (JPEG/MPEG)

- ► Taking a block of data and apply a sparsifying Transform.
- ▶ Throw away the not so relevant values (based on demand).
- Store the remaining small set of values losslessly.
- JPEG uses Discrete Cosine Transfrom (DCT) and zig-zag run length coding to compress by ≈ 30 for similar visual quality.

