Aula 20 - RIP, OSPF, BGP

Diego Passos

Universidade Federal Fluminense

Redes de Computadores I

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Revisão da Última Aula...

• Roteamento baseado em Vetor de Distâncias:

- Ideia: melhor caminho até destino composto por enlace até vizinho e melhor caminho do vizinho até destino.
- Nós anunciam suas estimativas de custo até cada destino.
- Ao receber novas estimativas, nó atualiza suas próprias.
- Processo iterativo, converge para melhores rotas.
- Algoritmo **distribuído**: nós precisam conhecer apenas vizinhança.

• Contagem ao infinito:

- Potencial problema, ocorre em caso de grandes pioras nos custos dos enlaces.
- Solução (parcial): envenenamento reverso.

Roteamento Hierárquico:

- Dois níveis: dentro e fora de Sistemas Autônomos.
 - Intra-AS e Inter-AS.
- Tabela de roteamento construída por colaboração dos dois processos.
- Reduz escopo, complexidade do roteamento.
- Nem sempre é globalmente ótimo!

• Roteamento batata-quente:

 Tirar datagrama do AS o mais rápido possível. Roteamento Intra-AS

Roteamento Intra-AS

- Também conhecido como IGP (Interior Gateway Protocols).
- Protocolos mais conhecidos desta categoria:
 - RIP: Routing Information Protocol.
 - OSPF: Open Shortest Path First.
 - IGRP: Interior Gateway Routing Protocol (Proprietário da Cisco).

RIP (Routing Information Protocol)

- Incluído no BSD-UNIX em 1982.
- Baseado em Vetor de Distâncias.
 - Métrica de roteamento: # de saltos (máximo = 15), cada enlace tem custo 1.
 - Vetores de distância anunciados a cada 30 segundos.
 - Cada anúncio: lista de até 25 sub-redes de destino.

RIP: Exemplo (I)

tabela de roteamento no roteador D

sub-rede destino	próx. salto	# saltos
W	Α	2
у	В	2
Z	В	7
X		1
		••••

RIP: Exemplo (II)

tabela de roteamento no roteador D

sub-rede destino	próx. salto	# saltos
W	Α	2
у	В Д	2 5
Z	B	7
X		1
		••••

RIP: Falha de Enlaces, Recuperação

- Se nenhum anúncio é ouvido após 180 segundos, vizinho/enlace declarado morto.
 - Rotas através daquele vizinho são invalidadas.
 - Novos anúncios enviados aos demais vizinhos.
 - Vizinhos, por sua vez, enviam outros anúnicios (se suas tabelas mudaram).
 - Informação de falha de enlaces se propaga rapidamente (?) pela rede toda.
 - Envenenamento reverso usado para previnir loops em ping-pong (distância infinita = 16 saltos).

RIP: Processamento da Tabela de Roteamento

- Tabela de roteamento no RIP é gerenciada por um processo no nível da aplicação chamado de route-d (daemon).
- Anúncios são enviados em **pacotes UDP**, periodicamente repetidos.

OSPF (Open Shortest Path First)

- "open": publicamente disponível.
- Utiliza roteamento baseado em Estado de Enlace.
 - Disseminação de mensagem de estado dos enlaces locais.
 - Mapa da topologia mantido locamente em cada nó.
 - Rotas computadas através do Algoritmo de Dijkstra.
- Anúnicios do OSPF carregam uma entrada para cada vizinho do nó.
- Anúncios inundados para o AS inteiro.
 - Transportados em mensagens OSPF diretamente sobre IP (ao invés de TCP ou UDP).
- Protocolo **IS-IS**: praticamente idêntico ao OSPF.

Funcionalidades "Avançadas" do OSPF (Não Encontradas no RIP)

- **Segurança:** todas as mensagens são autenticadas (para previnir ataques).
- multipath: múltiplos caminhos de mesmo custo são permitidos (RIP seleciona um único).
- Para cada enlace, múltiplas métricas para diferentes valores de ToS.
 - *e.g.*, enlaces de satélite tem custo "baixo" para tráfego de melhor esforço, mas alto para tráfego de tempo real.
- Suporte integrado para roteamento *multicast*:
 - OSPF Multicast (MOSPF) usa as mesmas informações de topologia usadas pelo OSPF.
- OSPF Hierárquico: para execução em grandes domínios.

OSPF Hierárquico (I)

OSPF Hierárquico (II)

- Hierarquia em dois níveis: área local e backbone.
 - Anúncios de estado de enlace apenas dentro da área.
 - Cada nó conhece detalhadamente a topologia da sua área, mas conhece apenas a direção (caminho mais curto) para redes em outras áreas.
- Roteadores de borda de área: "resume" distâncias para redes na própria área, anunciam para outros Roteadores de Borda de Área.
- Roteadores de backbone: executam o OSPF limitado ao backbone.

Roteamento Inter-AS

Roteamento Inter-AS na Internet: BGP

- BGP (Border Gateway Protocol): o padrão de facto para roteamento inter-domínios.
 - "A cola que mantém a Internet junta".
- BGP provê a cada AS uma maneira de:
 - eBGP: obter informações sobre sub-redes alcançáveis de ASs vizinhos.
 - **iBGP**: propagar informações de sub-redes externas alcançáveis para todos os roteadores do AS.
 - Determinar "boas" rotas para outras redes com base nas informações das sub-redes alcançáveis e políticas diversas.
- Permite a uma sub-rede anunciar sua existência para o resto da Internet: "estou aqui!"

BGP: Conceitos Básicos

- Sessão BGP: dois roteadores BGP ("peers") trocam mensagens BGP.
 - Anunciam **caminhos** para vários prefixos de sub-redes diferentes (protocolo baseado em "vetor de caminhos").
 - Trocadas sobre conexões TCP semi-permanentes.
- Quando o AS3 anuncia um prefixo para o AS1:
 - AS3 se compromete a encaminhar datagramas em direção àquele prefixo.
 - AS3 pode agregar prefixos nos seus anúnicios.

BGP: Distribuindo Informação de Caminhos

- Usando a sessão eBGP entre 3a e 1c, AS3 envia prefixos alcançáveis para o AS1.
 - 1c pode, então, usar o iBGP para distribuir novas informações de prefixos conhecidos para todos os roteadores no AS1.
 - 1b pode, então, re-anunciar a informação de prefixos alcançáveis para o AS2 através da sessão eBGP entre 1b e 2a.
- Quanto roteador aprende um novo prefixo, ele cria uma entrada para o prefixo na sua tabela de roteamento.

Atributos de Caminhos e Rotas BGP

- Prefixos anunciados incluem atributos BGP.
 - prefixo + atributos = "rota".
- Dois atributos importantes:
 - AS-PATH: contém lista de ASs pelos quais o anúncio do prefixo passou: e.g., AS 67, AS 17.
 - NEXT-HOP: indica roteador do AS de próximo salto (que pode estar a vários saltos do AS atual).
- Roteador gateway que recebe anúncios utiliza política de importação para aceitá-los ou não.
 - *e.g.*, nunca encaminhe para o AS x.
 - Roteamento baseado em políticas.

BGP: Seleção de Rota

- Roteador pode aprender múltiplas rotas para um AS de destino. Seleção é baseada em:
 - 1. Valor do atributo Local Preference: decisão baseada em política.
 - 2. AS-PATH mais curto.
 - 3. Roteador NEXT-HOP mais próximo: roteamento batata-quente.
 - 4. Critérios adicionais.

Mensagens BGP

- Mensagens BGP trocadas entre peers sobre conexão TCP.
- Mensagens BGP:
 - **OPEN:** abre conexão TCP para o *peer* e autentica transmissor.
 - **UPDATE:** anuncia novo caminho (ou anula anúnicio antigo).
 - **KEEPALIVE:** mantém a conexão aberta em caso de inatividade prolongada; também serve de ACK para mensagem OPEN.
 - **NOTIFICATION:** reporta erros na mensagem anterior; também usada para fechar conexão.

Juntando Tudo

- Como uma entrada é colocada na tabela de roteamento de um roteador?
 - Resposta é complicada!
 - Junta Roteamento Hierárquico, BGP e OSPF.
 - Provê boa visão geral do funcionamento do BGP!

Como a Entrada é Inserida na Tabela de Roteamento? (I)

Como a Entrada é Inserida na Tabela de Roteamento? (II)

• Visão de alto nível:

- 1. Roteador passa a conhecer o prefixo.
- 2. Roteador determina a porta de saída para alcançar o prefixo.
- 3. Roteador insere mapeamento porta-prefixo na tabela de roteamento.

Roteador Passa a Conhecer o Prefixo

- Mensagem BGP contém "rotas".
- "Rota" é um prefixo, mais seus atributos: AS-PATH, NEXT-HOP, ...
- Exemplo de rota BGP:
 - Prefixo: 138.16.64/22.
 - AS-PATH: AS3 AS131.
 - NEXT-HOP: 201.44.13.125.

Roteador Pode Receber Múltiplas Rotas

- Roteador pode receber múltiplos anúncios de rotas para um mesmo prefixo.
- Precisa selecionar um.

Seleção da Melhor Rota BGP para o Prefixo

- Roteador seleciona rota com base no AS-PATH mais curto.
- Por exemplo:
 - AS2 AS17 para alcançar 138.16.64/22 (selecionada).
 - AS3 AS131 AS201 para alcançar 138.16.64/22.
- E se ocorrer um empate? Voltaremos a este ponto em breve!

Encontrar Melhor Rota Interna para a Rota BGP

- Use o atributo NEXT-HOP da rota selecionada.
 - É o endereço IP da interface do roteamento que inicia o AS PATH.
- Exemplo:
 - AS-PATH: AS2 AS17; NEXT-HOP: 111.99.86.55.
- Roteador usa OSPF para encontrar caminho mais curto de 1c para 111.99.86.55.

Roteador Identifica Porta para Rota

- Identifica porta no caminho mais curto apontado pelo OSPF.
- Adiciona entrada mapeamento o prefixo à porta na sua tabela de roteamento.
 - (183.16.64/22, porta 4).

Roteamento Batata-Quente

- Suponha que haja duas ou mais melhores rotas BGP.
- Então escolha aquela com o NEXT-HOP mais próximo.
 - Use o OSPF para determinar qual gateway está mais próximo.
 - Pergunta: de 1c, escolher AS3 AS131 ou AS2 AS17?
 - Resposta: rota AS3 AS 131, já que NEXT-HOP é mais próximo.

Como uma Entrada é Inserida na Tabela de Roteamento?

- Sumário:
 - 1. Roteador passa a conhecer o prefixo.
 - Através de anúncios BGP de outros roteadores.
 - 2. Determina porta de saída para o prefixo.
 - Usa seleção de rotas BGP para encontrar a melhor rota BGP.
 - Usa OSPF para encontrar melhor rota interna ao AS que leva o pacote até o início da melhor rota BGP.
 - Roteador identifica porta de saída para esta rota.
 - 3. Insere o mapeamento (prefixo, porta) na tabela de roteamento.

BGP: Políticas de Roteamento (I)

- A, B e C são redes de provedores.
- X, W, e Y são consumidores (clientes dos provedores).
- X é **dual-homed**: se conecta à Internet por dois provedores diferentes.
 - X não quer rotear pacotes de B para C.
 - ...logo, X não irá anunciar para B uma rota para C.

BGP: Políticas de Roteamento (II)

- A anuncia caminho AW para B.
- B anuncia caminho BAW para X.
- B deve anunciar caminho BAW para C?
 - Claro que não! B não lucra roteando CBAW, já que nem W nem C são clientes de B.
 - B quer forçar C a rotear para W por A.
 - B quer rotear apenas tráfego de e para seus clientes!

Por que Roteamentos Diferentes Intra- e Inter-AS?

Políticas:

- Inter-AS: administrador quer controle sobre como seu tráfego é roteado, quem roteia pela sua rede.
- Intra-AS: único administrador, não são necessárias decisões políticas.

• Escala:

• Roteamento hierárquico reduz tamanho das tabelas, reduz tráfego de atualização de rotas.

• Desempenho:

- Intra-AS: foco no desempenho.
- Inter-AS: políticas podem dominar decisões.

Resumo da Aula...

Roteamento Intra-AS:

- Critério: desempenho.
- Principais protocolos: OSPF, RIP, IGRP.
- Também conhecido como IGP.

• RIP:

- Vetor de Distâncias.
- Entradas para sub-redes.
- Métrica: número de saltos.
- Distância máxima: 16.
- Envenenamento reverso.
- Roda sobre UDP.

• OSPF:

- Estado de Enlace.
- Mais moderno que o RIP.
- Considera segurança, múltiplos caminhos, hierarquia, ...
- Roda diretamente sobre IP.

• Roteamento Inter-AS:

- Orientado a políticas.
- Principal protocolo: BGP.

• BGP:

- "Vetor de Caminhos".
- Sessões BGP: TCP.
- Anúncios: compromisso de rotear.
- eBGP vs. iBGP.
- BGP: rotas.
 - Possuem atributos.
 - e.g., AS-PATH.
 - e.g., NEXT-HOP.
- BGP: seleção de rotas.
 - Baseada em políticas.
 - AS-PATH mais curto.
 - NEXT-HOP mais próximo: roteamento batata-quente.

34 / 35

Outros critérios.

Próxima Aula...

- Última aula de conteúdo!
- Ainda discutiremos roteamento, mas ao invés de comunicação unicast:
 - Roteamento broadcast.
 - Roteamento multicast.