RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 482 128

A1

DEMANDE DE BREVET D'INVENTION

21)

Nº 80 10103

64	Nouveaux tensio-actifs non ioniques, leur procédé de préparation et composition les contenant.						
61)	Classification internationale (Int. Cl. ³). C 11 D 1/86.						
2 3	Date de dépôt 6 mai 1980. Priorité revendiquée :						
41)	Date de la mise à la disposition du public de la demande						
Ø	Déposant : Société anonyme dite : L'OREAL, résidant en France.						
@	Invention de : Guy Vanlerberghe et Henri Sebag.						
· 3	Titulaire : Idem (71)						
4	Mandataire : Bureau D. A. Casalonga, 8, av. Percier, 75008 Paris.						

La présente invention a pour objet de nouveaux tensio-actifs non ioniques, leur procédé de préparation et les compositions les contenant.

Une des grandes préoccupations, au cours de ces dernières années, des laboratoires préparant des compositions destinées au soin et au traitement de la peau et des cheveux, est de trouver des agents tensio-actifs utilisables comme produits de base, comme véhiculeurs de produits actifs, comme excipients ou comme additifs, qui soient parfaitement bien tolérés par l'homme.

La demanderesse a, pour sa part déjà proposé un certain nombre de produits tensio-actifs, notamment des tensio-actifs non ioniques, présentant déjà des progrès par rapport aux produits existants.

Elle a décrit en particulier dans sa demande de brevet français N°2.401.187, la préparation de nouveaux oligomères séquencés tensio-actifs, constitués d'une succession de motifs lipophiles et d'une succession de motifs hydrophiles qui constituaient déjà un progrès sensible par rapport à l'état de la technique, notamment en ce qui concerne l'agressivité. Ces composés présentent également des propriétés de surface et de solubilité satisfaisantes pour les applications visées.

La demanderesse s'est rendue compte toutefois que, pour la mise au point de formules différentes, les propriétés obtenues avec ce type de composés étaient parfois nettement insuffisantes et plus précisément pour ce qui concerne le comportement dans l'eau ou en milieu hydroalcoolique.

On entend par comportement dans l'eau, la solubilité ou la facilité de dispersion dans ce milieu ou encore la formation de phases mésomorphes lyotropes plus homogènes et plus favorables à la préparation d'émulsions huile dans l'eau ou eau dans l'huile, ou de membranes lipidiques susceptibles de véhiculer des substances actives.

En particulier, pour certaines compositions cosmétiques ou pharmaceutiques, il est souvent très appréciable de pouvoir diminuer le taux de composés alcooliques de la formule en augmentant la solubilité dans l'eau des composés.

La demanderesse a découvert maintenant de nouveaux composés tensio-actifs présentant justement de ces points de vue des propriétés améliorées par rapport aux produits décrits précédemment.

Les composés selon l'invention sont en effet plus facilement dispersibles dans l'eau ou plus complètement solubles, et présentent généralement de meilleures propriétés émulsionantes.

Ils permettent par ailleurs, beaucoup plus facilement

40

5

10

15

20

25

30

35

la formation de membranes lipidiques, appropriées pour le transport de molécules actives. Pour des produits solubles en solutions hydroalcooliques, le degré alcoolique peut sensiblement être abaissé grâce à l'utilisation des composés selon l'invention.

Les composés selon l'invention comportent une partie lipophile constituée de deux chaînes grasses, reliée à une partie hydrophile comportant des groupements éther et hydroxyle et éventuellement thioéther et/ou sulfoxyde. La demanderesse a constaté qu'en séparant et en purifiant la partie lipophile constituée par les deux chaînes grasses, on obtenait des produits présentant des propriétés améliorées telles que celles indiquées ci-dessus et notamment en ce qui concerne la pureté et la solubilité, sans perte au niveau de l'activité de surface ni au niveau des propriétés biologiques par rapport à des composés du même type dont la partie lipophile comporte des chaînes grasses en nombres variables, ces nombres étant répartis statistiquement autour d'une valeur moyenne comprise entre 2 et 10.

La présente invention a donc pour objet de nouveaux tensio-actifs polyéthers polyhydroxylés à deux chaînes hydrocarbonées. Un autre objet de l'invention est constitué par le procédé de préparation de ces composés. L'invention concerne également les compositions cosmétiques ou pharmaceutiques destinées au soin et au traitement du corps ou de la chevelure contenant de tels composés tensio-actifs.

D'autres objets de l'invention ressortiront à la lumière de la description et des exemples qui suivent.

Les composés tensio-actifs selon l'invention sont essentiellement caractérisés par le fait qu'ils répondent à la formule I. $R-0 \longrightarrow \left[\begin{array}{cc} C_2H_3 & \text{(O Z)} \end{array}\right] - R_1 \qquad \text{(I)}$

dans laquelle R désigne un radical aliphatique linéaire ou ramifié, saturé ou insaturé comportant 4 à 20 atomes de carbone ;

R, désigne (1) un radical alcoyle de préférence linéaire,

- (2) un radical alcoxyméthyle linéaire ou ramifié
- (3) un radical alcényloxyméthyle,

les parties alcoyle ou alcényle de ces radicaux comportent de 4 à 20 atomes de carbone ;

dans laquelle \bar{n} désigne une valeur statistique moyenne de 2 à 20 et A désigne

a) le groupement OH,

5

10

. 15

20

25

30

35

b) le groupement - S - CH₂ - CH₂OH

dans lequel u désigne 0 ou 1

dans lequel u désigne 0 ou 1.

15

20

. 25

30

35

Les radicaux R1 et R doivent comporter au total un nombre d'atome de carbone compris entre 12 et 38 et de préférence entre 12 et 32,

R désigne de préférence un radical hydrocarboné linéaire ou ramifié et en particulier choisi parmi les groupements butyle, hexyle, octyle, décyle, dodécyle, tétradécyle, hexadécyle, octadécyle, éthyl-2-hexyle, hexyl-2 décyle etc.

R1 désigne de préférence un radical choisi parmi les groupements hexyle, octyle, décyle, dodécyle, tétradécyle, hexadécyle, octadécyle, les radicaux alcoxyméthyle dérivés des groupements précédents ou encore les radicaux éthyl-2 hexyloxyméthyle, hexyl -2 décyloxyméthyle ou octyl-2 dodécyloxyméthyle

Les composés de formule I sont préparés suivant un procédé en trois étapes. On prépare tout d'abord dans une première étape les composés de formule II

$$R = 0 - C_2 H_2(OH) - R_1$$
 (II)

dans laquelle R et R₁ ont les mêmes significations que celles indiquées ci-dessu en faisant réagir un alcool de formule ROH dans laquelle R à la même significat que celle indiquée ci-dessus avec un composé de formule.

dans laquelle le groupement R1 a la même signification que ce le indiquée ci-dessus. Cette réaction est réalisée en présence d'un catalyseur acide au sens de Lewis tels que le trifluorure de bore, le chlorure stammique ou le pentachlorure d'antimoine, dans les proportions de 0,2 à 5% en poids par rapport à la masse réactionnelle et à une température comprise entre 20 et 120°C et de préférence entre 50 et 100°C. Elle peut également être réalisée en présence d'un catalyseur alcalin tel que le sodium ou le potassium, le méthylate, éthylate ou tertiobutylate de sodium ou de potassium, dans des proportions de 0,2 à 15% par rapport à la masse réactionnelle et de préférence de 0,5 à 10%, à une température comprise entre 100 et 180°C et de préférence entre 100 et 150°C.

On opère avec des proportions stoechiométriques d'alcool ROH et de composé époxyde ou de préférence en présence d'un excès de l'un des deux réactifs. Quand l'alcool est utilisé en excès, l'alcool qui n'a pas réagi est éliminé par distillation. Dans le cas inverse où l'époxyde est en excès, il réagit complètement en donnant des composés alcools à plusieurs chaînes lipophiles.

Il est éventuellement possible d'utiliser un hydrocarbure aliphatique ou aromatique comme solvant bien que généralement cela ne soit pas nécessaire. Dans tous les cas, les composés de formule (II) sont purifiés par distillation classique sous pression réduite ou par distillation moléculaire.

Selon le sens d'ouverture du groupement époxyde on obtient deux structures , possibles pour les composés de formule (II) $R - 0 - CH_2 - CH - R_1$ $R - 0 - CH - R_1$

он сн₂он

(IIA) (IIB)

Dans la seconde étape les composés de formule (Iv) $R - O = c_2H_3O Y - R_1 \qquad (IV)$

dans laquelle R et Rl ont les significations indiquées ci-dessus et Y désigne un enchaînement polyéther de formule

$$- \underbrace{ c_2 H_3 o \left(c H_2 B \right) - \frac{7}{n} }$$

. 5

10

15

20

25

30

35

40

dans laquelle B désigne un atome d'halogène ou un groupement tertio-butoxy, n ayant la même signification que ci-dessus, sont obtenus en procédant à une plyaddition d'épihalohydrine ou de tertiobutyl glycidyléther avec un alcool gras à deux chaînes lipophiles de formule II, ces composés : intermédiaires étant transformés suivant des procédés connus en eux-mêmes pour obtenir les composés de formule (I).

Plus particulièrement on prépare les composés de formule (IV) en faisant réagir des alcools à deux chaînes lipophiles de formule (II) avec <u>n</u> molécules d'épichlorhydrine, dépibromhydrine ou de tertiobutyl glycidyléther en présence d'un catalyseur acide et éventuellement d'un solvant. Les catalyseurs acides sont choisis de préférence parmi les acides au sens de Lewis, tels que le trifluorure de bore, le chlorure standque ou le pentachlorure d'antimoine, dans des proportions de 0,2 à 5% en poids par rapport à la masse réactionnelle et à une température comprise entre 20 et 120°C, et de préférence entre 50 et 100°C.

Les solvants lorsqu'ils sont utilisés, sont choisis plus particulièrement parmi les hydrocarbures aromatiques tels que le benzène, le toluène ou le xylène ou les hydrocarbures aliphatiques comme l'hexane ou l'heptane. De préférence, la préparation des composés de formule (IV) se déroule en l'absence de solvant.

2482128

Il est possible dans le cas de l'utilisation du tertiobutyl glycidyléther, de procéder à la polyaddition en présence d'un catalyseur alcalin tel que par exemple les méthylate, éthylate ou tertiobutylate de sodium ou de potassium à une température de 120 à 180°C.

Les \underline{n} molécules d'épihalohydrine ou de tertio-butyl glycidyléther donnent lieu à la formation de mélanges de composés comportant un nombre de motifs halogénés ou tertio butoxy inférieur, égal ou supérieur à la valeur n, celle-ci représentant une valeur statistique moyenne en nombre.

Au cours de cette réaction, selon le sens d'ouverture du groupement époxyde on peut obtenir deux structures pour le motif halogéné représentées toutes les deux par la formule globale :

et par les formules développées :

5

10

15

20

25

30

35

Bien que la proportion de motifs ayant la structure (V) soit la plus probable, il peut exister une certaine quantité de motifs de . structure VI.

Selon la troisième étape, la préparation des composés de formule I à partir des composés de formule (IV) est effectuée lorsque A désigne le groupement OII;

(1) soit par chauffage des composés halogénés en présence d'acétate de sodium ou de potassium dans un solvant du type glycol ou éther de glycol, tels que par exemple l'éthylène le propylène ou le butylène glycol, le diéthylène ou le dipropylène glycol, ou le butyléther du diéthylène glycol à une température de 180°C à 190°C pendant 3 à 6 heures, puis après filtration des sels minéraux et élimination des solvants sous/pression réduite, par saponification en présence de soude ou de potasse concentrée ou par alcoolyse dans le méthanol ou l'éthanol absolu en présence de méthylate ou d'œhylate de sodium ou de potassium,

(2) soit par chauffage des dérivés polytertio butoxy en présence d'acide fort comme des acides sulfo carboxyliques, l'acide sulfurique ou paratoluène sulfonique à 80-110°C.

Les composés de l'invention dans lesquels le groupement A désigne (b) ou (c) sont obtenus par réaction du thioéthanol ou du thioglycérol avec les composés polyhalogénés en présence de soude ou de potasse, de solvants tels que l'éthanol, l'isopropanol, le propanol, le butanol, l'éthylène, le propylène ou le butylène glycol, le monométhyl, éthyl ou butyléther de l'éthylèneglycol et éventuellement l'œu. Les composés polythioéther polyhydroxylés peuvent ensuite être oxydés avec de l'eau oxygénée à une température de 25 à 50°C en présence éventuellement d'acide acétique ou lactique.

Il résulte des deux types de structure (.V) et (VI) les deux formules développées pour les motifs de formule (I)

5

10

15

20

25

30

35

40

La présence simultanée de deux types de structure n'est en rien préjudiciable quant aux propriétés des produits selon l'invention.

Les composés de formule (I) selon l'invention se présentent généralement sous la forme d'huile, de pâte ou de cire. Ces composés seront, suivant le nombre d'atomes de carbone de R et Rl et selon le nombre de motifs moyens n, plutôt lipophiles, dispersibles dans l'eau ou complètement solubles. Ainsi, moins le nombre d'atomes de carbone est grand et plus n est élevé, plus les produits seront hydrophiles.

L'hydrophilie et la solubilité dans l'eau des composés selon l'invention peuventêtre augmentés soit en éliminant par distillation moléculaire les termes les plus lipophiles, soit en faisant réagir de l'oxyde d'éthylène ou du glycidol avec les groupements hydroxyles, cette réaction pouvant être réalisée dans les conditions habituelles en présence de catalyseurs acide ou alcalin et éventuellement de solvants.

Les composés selon l'invention peuvent être utilisés seuls ou en mélange, en solution ou dispersion aqueuse ou hydroalcoolique, sous forme d'émulsion eau dans l'huile ou huile dans l'eau, sous forme de cire ou en aérosol, dans les proportions de 0,05 à 80% et de préférence de 0,5 à 50% par rapport au poids total de la composition.

On entend par solution hydroalcoolique, des solutions

2482128

7

d'eau et d'un alcool inférieur qui peut être de l'éthanol, un glycol ou un éther de glycol.

5

10

15

20

25

30

35

Les composés selon l'invention peuvent notamment être introduits comme agent tensio-actif de base ou comme additif dans des compositions cosmétiques ou pharmaceutiques qui peuvent se présenter sous forme de solution ou de dispersion aqueuse ou hydroalcoolique, de crème, de laît, de compact de sticks ou conditionnés sous forme d'aérosols.

Ils peuvent être utilisés comme agent nettoyant pour la peau ou pour la chevelure, comme mouillant, émulsionnant, dispersant, solubiliaant, surgraissant, émollient, comme excipient doux et inerte ou comme lipides susceptibles de véhiculer des substances actives.

A titre d'exemple de compositions cosmétiques, on peut citer notamment des shampooings, des rinses, des lotions de mise en plis, des produits pour brushing, des compositions de permanentes ou de colorations, des fonds de teints, des lotions démaquillantes pour les yeux, des laits démaquillants, des laits corporels, des bases de maquillage, des compositions antisolaires, des crèmes antitranspirantes ou déodorantes, etc...

Dans le cas où les composés selon l'invention sont utilisés dans la préparation de vésicules lipidiques, ils peuvent être ou non associés en vue de modifier la perméabilité de ces vésicules à des alcools ou des diols à longue chaîne, à des stérols comme le cholestérol ou du sitostérol et éventuellement bien que souvent cela ne soit pas nécessaire à des substances chargées positivement ou négativement, comme par exemple, le dicétyl phosphate de sodium ou le chlorure ou bromure de diémthyl dioctadécyl ammonium.

Le fait que l'on puisse réaliser des vésicules lipi-

diques entièrement non ioniques représente une grande originalité des composés de l'invention.

Les compositions cosmétiques ou pharmaceutiques contenant un ou plusieurs produits selon l'invention peuvent contenir en outre d'autres constituants tels que des agents de surface non ioniques, anioniques cationiques ou amphotères bien connus de l'état de la technique, des huiles animales, minérales ou végétales, des résines anioniques, cationiques non ioniques ou amphotères habituellement utilisées en cosmétique, des filtres solaires, des épaississants, des opacifiants, des conservateurs, des parfums, des colorants, des solvants alcooliques inférieurs, des agents de modification du pH, des sels minéraux, des substances actives pouvant avoir une action au niveau du traitement, du soin ou de la protection de la peau ou des cheveux. Les exemples suivants sont destinés à illustrer l'invention sans pour autant présenter un caractère limitatif.

EXEMPLES DE PREPARATION DES COMPOSES.

Préparation du composé de l'exemple 2A

10

15

25

30

35

40

a) Préparation du composé représenté par la formule $C_{12}H_{25} - 0 + C_{2}H_{3}$ -OH $\frac{1}{2} - CH_{2} - 0 - C_{12}H_{25}$ (exemple 2 du tableau 1) A 558g de dodécanol-1 (3 moles) vendu sous le nom d'Alfol 12, on ajoute 17g de liqueur méthanolique de méthylate de sodium à 6 meq/g. Le méthanol est éliminé par chauffage à 120°C sous pression réduite. On ajoute ensuite en 1h30 à 150°C, sous atmosphère d'azote, 242g de dodécyl glycidyl éther(1 mole) Après 4 heures de chauffage le taux de réaction, déterminé par dosage des groupements époxyde restants, est pratiquement quantitatif. La masse réactionnelle est lavée avec 3 fois 800 ml d'eau à 90°C. On ajoute 170 ml d'isopropanol pour faciliter la décantation. La phase organique est ensuite chauffée sous pression réduite. Après élimination du dodécanol en excès, le composé alcool à deux chaînes lipophiles est distillé par distillation moléculaire à 160°C sous une pression de $10^{-3}_{\rm mm}$ de mercure.

Il se présente sous la forme d'une cire blanche de point de fusion 40-41°C.

R - 0 — C₂H₃O — C₂H₃O (CH₂OH)) R₁ (exemple 2A des tableaux 3 et 4)

R désigne C₁₂H₂₅
R₁ désigne C₁₂H₂₅ -0-CH₂-

n désigne une valeur statistique égale à 5.

A 107g de composé préparé précédement (0,25mole) on ajoute 0,7g d'éthérate de BF₃ puis, goutte à goutte, à 70°C en 2 heures, 115,5g d'épichlorhydrine(1,25 mole).

Le chauffage est maintenu encore pendant une heure après l'addition. Le dérivé polyhalogené est ensuite lavé 3 fois avec 250ml d'eau bouillante, puis déshydraté.

Le produit obtenu est ensuite repris avec 190g de dipropylène glycol et 106g d'acétate de potassium (1,07mole) et chauffé à 185°C sous atmosphère d'azote pendant 6 heures. Après filtration du chlorure de potassium et distillation du solvant, le produit est saponifié en présence d'un excès de soude à 40% et lavé 3 fois avec 200ml d'eau bouillante en présence de butanol primaire pour faciliter la séparation de la phase organique. Après distillation des solvants sous pression réduite, on obtient un produit qui se présente sous la forme d'une huile brune soluble dans l'huile de vaseline (H.V.) et dispersible dans l'eau.

Le point de trouble mesuré à une concentration de matière active de 5% dans du butyl diglycol(BDG) à 25% dans l'eau est de 82°C.

Préparation du composé de l'exemple 5A

5

10

15

20

30

$$c_{12}^{H_{25}} - o_{CH_{2}}^{CH_{2}} - cH_{2} - cH_{2}^{CH_{2}} - cH_{2}^{CH_{2}}$$

A 48,4g (0,1 mole) de composé intermédiaire 5 fondu, obtenu selon le procédé décrit dans le tableau 1, on ajoute 0,54 ml de SnCl₄. On chauffe à 100°C, puis on ajoute goutte à goutte, 57,5g d'épichlorhydrine(0,6mole). On maintient à 100°C pendant encore 1h30 après la fin de l'addition. La réaction est alors pratiquement complète.

A 101g de produit polychloré ainsi obtenu (580meq en chlore) on ajoute 100g de cellosolve et 63g de thioglycérol (0,58mole). On chauffe la masse réactionnelle à 100°C puis on ajoute, goutte à goutte 58g de soude à 40% (0,58mole).

Après 3 heures de chauffage à 100-105°C, on ajoute 230g de n-butanol-1 et lave la masse réactionnelle 2 fois avec environ 500ml d'eau bouillante.

La phase organique est ensuite chauffée sous pression réduite pour éliminer les solvants.

On obtient ainsi une pâte ambrée, dispersible dans l'eau. Le point de trouble mesuré à 5% de matières actives dans du B.D.G. à 25% dans l'eau est supérieur à 100°C.

25 Préparation du composé de l'exemple 5B

A 50 g (171meq en groupement thioéther) de produit décrit selon l'exemple N°5A dissous dans 50ml de méthanol, on ajoute, goutte à goutte, 12,2ml d'eau oxygénée à 158,6 volumes.

On maintient la température entre 30 et 45°C pendant lh30 après la fin de l'addition.

Après 24h à température ambiante, on ajoute 200 mg de SO_3Na_2 pour détruire l'eau oxygénée qui n'a pas réagi, puis on distille sous pression réduite le méthanol et l'eau.

40 Le produit ainsi obtenu est une pâte translucide, soluble dans l'eau.

Préparation du composé de l'exemple 6A

10

15

20

$$c_{4}H_{9} - O CH_{2}$$
 $c_{8}H_{17} - CH - O CH_{2} - CH - O$
 $CH_{2}OH$
 $CH_{2}OH$

A 34,5 g (0,15m) de composé intermédiaire préparé selon le procédé décrit pour l'exemple 2, on ajoute 3ml d'une solution de méthylate de sodium dans le méthanol à 6meq/g (18meq).

Le méthanol est distillé sous pression réduite puis on porte la température à 155°C. On ajoute ensuite, goutte à goutte, 78g (0,6mole) de tertiobutyl-glycidyl éther. Après la fin de l'addition, on laisse encore 3/4d'heure à 160°Ç puis on lave le produit obtenu 3 fois avec son poids d'eau en présence d'HCl dilué. On deshydrate par chauffage, sous pression réduite. On ajoute ensuite lg d'acide sulfoacétique et on chauffe à 100° - 110°C pendant 2h30. On note un dégagement gazeux d'isobutylène.

Le produit obtenu est mis/en solution dans 70g de butanol-l puis lavé 2 fois avec 150ml d'eau bouillante.

Après deshydratation, par chauffage sous pression réduite, on obtient un liquide brun, soluble dans l'eau.

La solution aqueuse obtenue à 5% de matières actives et limpide et visqueuse. Le point de trouble mesuré à 0,5% dans l'eau déminéralisée est de 70°C.

On prépare de la même façon que dans les exemples de préparation indiqués ci-dessus les composés signalés dans les tableaux qui suivent dont les caractéristiques sont représentées dans les tableaux l à 4.

Les tableaux 1 et 2 ont pour objet la préparation de composés répondant à la formule II. Dans ces tableaux figurent la nature, le poids et la quantité molaire de l'alcool et du composé de formule III utilisés, la nature du catalyseur et sa quantité, la température de réaction et les caractéristiques du produit répondant à la formule générale II ainsi obtenu.

Le tableau 3 a pour objet la préparation des composés répondant à la formule I en passant par l'intermédiaire du composé de formule IV. Ce tableau définit la nature, le poids et la quantité molaire du composé II et de l'époxyde utilisés, la valeur moyenne n du nombre de motifs halogéné ou tertio-butoxy, la nature du catalyseur, la quantité utilisée et la température de réaction, le catalyseur d'hydrolyse dans le cas de groupements tertiobutoxy, le solvant et le type de traitement (alcoolyse ou saponification pour les dérivés polyhalogénés.

Le tableau 4 regroupe les propriétés physiques des composés de formule (I) obtenus selon l'un des procédés décrits dans les exemples de préparation des composés 2A, 5A ou 6A.

Dans ces tableaux, les abréviations et signes ont les significations suivantes :

MeONa désigne le méthylate de sodium en solution méthanolique à 6mea/g: iso C₈H₁₇ désigne un groupement éthyl-2 hexyle; iso C₁₆H₃₃ désigne un groupement hexyl-2 décyle; épi désigne l'épichlorhydrine; S désigne soluble;

I désigne insoluble;

30 D désigne dispersible;

5

10

15

35

40

L désigne louche.

* point de trouble à 5% dans le butyl diglycol à 25% dans l'eau,

** point de trouble à 0,5% dans l'eau,

S * désigne soluble après élimination des composés volatils par distillation moléculaire,

BDG désigne le butyldiglycol, DEG désigne le diéthylèneglycol DPG désigne le dipropylèneglycol Pe indique le point d'ébullition Pf indique le point de fusion.

•		meq/g Tou	2,3	2,4	2,2			
	iquès .	en Pf	!	. 15	13	√-1 0	41	
	Caractéristiquès	Pe en ec	160/10-3	165/10-3	160-185/5.10 ²	165/5.102	²¹⁰ /1ō ³	
	en c		1:50	150	150	150	140	
		Poids	13,5	17	6,8	10,2	17	
•	(III) Catalyseur	Nature	(1) MeONa	MeoNa	MeONa	меола	MeONa	
osés II	(III)	Mole	8,0	H		9,0	-	
1 - Сотр	R CH CH2	Poids (g)		242	186	111,5	242	
TABLEAU 1 - Composés II			C16H33 O-CHZ	172-0-92-	180 C8H1-0CH 186	. =	12Hz-0-CH2	
· .		Mole	2,1	.m	7	& f	en .	
		Poids	271	558	485.	435,5	726	
	КОН	ĸ	C ₈ H ₁₇	. C ₁₂ H ₂₅	C16 H33	tso C ₁₆ H ₃₃	C16 H33	,
•	ដ		,	2	m	7	ĸ	

!	!												
	I OH	, ,	·.·		2,4	2,4	2,5				2,2		
lques	e Pfc	_	97	67	54	20	29	. 58	69		•	-	
Caractérist	o. He	98/10 ⁻²	165/5.10-2	193-205/8.10 ⁻²	190/5.10 ⁻²	190/5.10 ⁻²	190-205/10 ⁻¹	210-215/103	245/3.10-1	200/10 ⁻³		250/10 ⁻³	187/10 ⁻³
9 en, c		100 .	150	150	145	140	145	145	145	150	150	145	145.
	Poids(g)	⊭⊣	01	8,5	8,5	12,8	8,5	4,5	8,5	8,5	8,5	'n	12
Catalyseu	Nature	Na	t.Bu k	MeONa	MeoNa	MeoNa	MeoNa	MeoNa	MeONa	MeONa	MeONa.	MeONa	MeONa
	Mole			·	F-1	1,5	H	5,0	-	. 5'0	8 0	9,0	0,4
• •	Poids(g)	156	184	268	268	360	212	135	240	106	147	162	107
R1 —— GR	Rī	C8 H17	C10 H21	C16 H33	C16 H33	C14 H 29	C12 H 25	C16 H 33	C14 H 29	C12.H25	C10 H 21	C H 16 33	с н 16 33
	Mole	٧.	m	м	m	4,5	m .	1,5	ю	1,5	2,4	8,	1,2
	Poids	370	7.4	390	390.	711	558	279	642	363	879	435,5	. 290
кон	R	C, Hg	C ₁₀ H ₂₁	C8 H7	iso C ₈ H ₇	CloH21	C12 25	C12 25	C14 29	iso C ₁₆ 33	C ₁₈ H37	C16 33	180 C _{16 33}
ង			7	φ	6	10	11	12	. 13	14	15	16	17
	ROH ROH CH - CH (III) Catalyseur	ROH ROH RI CH - CH Catalyseur θ en.C Caractéristiques Ri Poids(g) Mole Nature Poids(g) θ mmHg en θ	ROH R Poids Mole Ri Poids(g) Mole Nature Poids(g) Pe-en °C C4-R 370 5 C8H17 156 1 Na 1 100 98/10 ⁻²	R Poids Mole Ri Poids(g) Mole Nature Poids(g) Pe, en°C Caractéristiques C4 R 370 5 C8 H17 156 1 Na 1 100 98/10 ⁻² C10 ^H 21 474 3 C10 ^H 21 184 1 t.Bu k 10 150 165/5.10 ⁻² 46	R Poids Mole RI Poids (g) Mole Nature Poids (g) Pe.en °C Caractéristiques CHR 370 5 C ₈ H ₁₇ 156 1 Na 1 100 98/10 ⁻² Clo ^H 21 474 3 C ₁₀ H ₂₁ 184 1 t.Bu k 10 150 165/5.10 ⁻² 46 C ₈ H ₁₇ 390 3 C ₁₆ H ₃₃ 268 1 MeONa 8,5 150 193-205/8.10 ⁻² 49	ROH ROH RI CH CH CH CH CHI) Catalyseur Hein Caractéristiques R Poids Mole RI Foids G Mole Nature Poids B C Caractéristiques C4 R 370 5 C8 H 7 156 1 Na 1 100 98/10 ⁻² C10H21 474 3 C10H21 184 1 L.Bu K 10 150 165/5.10 ⁻² 46 1so C8 H 7 390 3 C16 H 33 268 1 MeONA 8,5 145 190/5.10 ⁻² 24	RD Foliation Folia	ROH ROH RI CH-CH2 (III) Catalyseur en.°C Caractéristiques C4Rg 370 5 C8H17 156 1 Nature Poids(g) FF C P P P P P P P P P P P P P P P P P	ROH RI CH CH	R Poids RI CH $^{\circ}$ CH $^{\circ}$ (III) Catalyseur 0 en.°C Caractéristiques C_4 Rg 370 5 C_8 H $^{\circ}$ 156 1 Nature Poids (p) 7 Pre-en °C Pre-en °C <td>RA CH CH CH TIII CATALIN CATALINSEUT A chalos A chalos</td> <td>RD PO1dS RI CAP_CH2 (III) Catalyseur 9 en. C Caractéris riques C4R8 Po1dS RD RI Po1ds (g) Nature Po1ds (g) PP-en °C In Pf-en °C PP-en °C In Pf-en °C</td> <td>R Poids Mole Ri Rotate (TIX) Catalyseur 6 en'C Caracteristiques C4R 370 5 C₈H₁7 156 1 Mature Poids (9) 1 100 94/10² C5L0H₁1 474 390 3 C₁₀H₂1 184 1 L.Bu R 10 150 165/5.10² 46 1so C₈H₁7 390 3 C₁₆H₃3 268 1 MeGNa 8,5 145 190/5.10² 24 C1R 39 C₁H₂ 390 3 C₁₆H₃3 268 1 MeGNa 8,5 145 190/5.10² 24 C1R 39 C₁H₂ 390 1 S C₁₆H₃ 360 1,5 MeGNa 8,5 145 190/5.10² 24 C1R 25 279 1,5 C₁₆H₃ 350 1,5 MeGNa 8,5 145 190/5.10² 59 C1R 30 C₁H₂ 342 3 C₁₆H₃ 350 0,5 MeGNA 8,5 145 200/10⁻³ 59 1so C₁H₃3 363 1,5 C₁₂H₂5 106 0,5 MeGNA 8,5 150 200/10⁻³ C1H₃3 435,5 1,8 C₁H₃3 165 0,6 MeGNA 8,5 145 250/10⁻³</td>	RA CH CH CH TIII CATALIN CATALINSEUT A chalos A chalos	RD PO1dS RI CAP_CH2 (III) Catalyseur 9 en. C Caractéris riques C4R8 Po1dS RD RI Po1ds (g) Nature Po1ds (g) PP-en °C In Pf-en °C PP-en °C In Pf-en °C	R Poids Mole Ri Rotate (TIX) Catalyseur 6 en'C Caracteristiques C4R 370 5 C ₈ H ₁ 7 156 1 Mature Poids (9) 1 100 94/10 ² C5L0H ₁ 1 474 390 3 C ₁₀ H ₂ 1 184 1 L.Bu R 10 150 165/5.10 ² 46 1so C ₈ H ₁ 7 390 3 C ₁₆ H ₃ 3 268 1 MeGNa 8,5 145 190/5.10 ² 24 C1R 39 C ₁ H ₂ 390 3 C ₁₆ H ₃ 3 268 1 MeGNa 8,5 145 190/5.10 ² 24 C1R 39 C ₁ H ₂ 390 1 S C ₁₆ H ₃ 360 1,5 MeGNa 8,5 145 190/5.10 ² 24 C1R 25 279 1,5 C ₁₆ H ₃ 350 1,5 MeGNa 8,5 145 190/5.10 ² 59 C1R 30 C ₁ H ₂ 342 3 C ₁₆ H ₃ 350 0,5 MeGNA 8,5 145 200/10 ⁻³ 59 1so C ₁ H ₃ 3 363 1,5 C ₁₂ H ₂ 5 106 0,5 MeGNA 8,5 150 200/10 ⁻³ C1H ₃ 3 435,5 1,8 C ₁ H ₃ 3 165 0,6 MeGNA 8,5 145 250/10 ⁻³

	<u></u>											
	; ; ; ; ; ; ; ; ; ;	alcolyse spontforion		saponif.	alcoolyse	=	=	•			Oxydation	
	HYDROLYSE	solvant		BDG	DEG	=	=	=	. •	,	Меон	Ţ.
	E HYD	catalyser	acide sulfopal- mitique 1,5%	•	ı			1 "	acide sul-	. 2,5%	•	erice sulfo sectique
	0°6		150	. 70	75	75	75	75 150	150	. 100	=	155
	rseur	o (8)	4	0,7	0,4	0,15	1,2	1,2 0,2	9	9,54	.=	m
	CATALYSEUR	Nature	Meona	BF3	BF.	BF3.	BF3	BF ₃ MeONa	t -BuOK	SnC14		Meona
	iα		œ	'n	. m	, 10 ,	ω	80 ×7	m	9	=	4
		moles		1,25	9,0	0,35		1	0,24	9,0	=	9,0
	БРОХУДЕ	o (8)	260	115,5	55,5	32,5	185	185	31,2	57,5	=	78
	FPO	Nom	TBGE	Epi	Epi	: Epi	Ept	Ept Ept E	TBGE	Ēpi		TBGE
		moles	0,25	0,25	0,2	0,07	0,25	0,25	90,0	0,1	È	0,15
	COMPOSE II	(8)	107	107	95,5	30,8	110	110	34,2	48,4	=	34,5
	COMP	ă	r ;	6	m	m	m	m [']	4	5	ın.	9
	EX		1A	2A	. 3A	33	30	30	. 4A	. 5A	53	. 6A

TABLEAU 3 - Composés I

	I																
		alcoolyse saparification	alcoolyse	:	=	Ξ	=		= !	saponif.	=	alcoolyse	saponif.	alcoolyse	saponif.	=	alcoolyse
	HYDROLYSE	solvant	DPG	=	, =	DEG	DPG	DPG	= 1	DEG	BDG	DPG	DPG	=	DPG	=	DPG
		catalyæur		•	ı	;		ı	:	,	1;	ı	•	1	1.	•	
	၁့မ		75	92	70	75	75	7.5	75 150	. 55	. 55	75	55	75	55	100	55
I (suft	SEUR	<u>⊗</u>	9,0	9,0	1,3	0,1	0,1	6,5	0,5	9,0	9,0	. 5 0	1	7,0	1,2	2,5	1,8
composés I (sufte)	CATALYSEUR	nature	BF.	BF ₃	BF ₃	BF.3	BF.3	BF3	BF Meona	BF3	BF3	BF3	BF3	BF3	BF3 .	SnC14	BF3
TABLEAU 3 c	ı g		7	٠.	01	m	ī,	60	8 _	2	. 4	•	7	∞	6	01.	12
		moles	1,2	1,25	1,7	0,15	0,2	8,0	0,8	. 8,0	1,2	H	1,75	1,2	2,25	. 24	3,6
TAI	EPOXYDE	(g)	111	115,5	157,3	13,8	18,5	74	74 51,8	72	111	92,5	162	111.	208	185	333
	EPO	nom	Epi	Epi	Epi	Epi	Epi	. iqi	Epi glycidol	řģ	P. Ept	Ept	Epi	PQ.	jģ	Įģ.	Epi
		moles	0,3	0,25	0,17	0,05	80.0	0,1	0,1	4,0	6,0	0,2	0,25	0,15	0,25	0,2	0,3
	COMPOSE II	0 (8)	102,5	5,99	67,5	21,3	17	42,5	42,5	1.59	119,5	79	99,5	59,2	99,5	79,5	119,5
	COND	EX		∞	. ά	6	თ.	6	o,	10	2	10	10	10	10	10	10
	Ħ		7A	8A	88	98	9.8	26	α6	. 10 A	108	100	100	10E	10F	106	10н

TABLEAU 3 - Composés I (suite)

ļ		F;							
1 	alcoolyse	saponincarion	alcoolyse	. =	=	. =	saponif.	1	alcoolyse
HYDROLYSE	eolivant		DPG	 =	DPG	=	=	,	DPG
	catalyseur sowart			ı	1	1	ı	aci.sulf.	paminane 2,5%
່ວູຍ			.02	. 70	75	75	55	150	09
SEUR	Q(g)		9,0	9,0	4,0	0,2	4,0	2,4	. 5.0.
CATALYSEUR	nature	1	BF.	BF3	BF	BF3	BF.	Meona	BF3
រជ			·	9	9			. 4	7
	Moles		1,5	1,2	9,0	0,33	0,78	9.0	0,7
ÐE	Q(g)		138,7	111	52,5	30,6	72,2	78	62,5
БРОХУDE	Nom		Epi	Epi	Epi	Epi	Epi	TBGE	Ep1
1 1 1 1 1	Moles		e, 0	0,2	0,1	0,055	0,13	0,15	0,1 Ept
COMPOSE II	Q(g)		119,5	90,8	45,5	. 25	59	76,5	49,5
COMP	ă	1	=	. 12	ដ	14	15	16	17A 17 49
ă			118	12A	13A	14A	15A	16A	17A

TABLEĀU IV

ASPECT Pt de Trouble huile de vaseline EAU 1A Pâte brun foncé	EX	IADUL		SIQUES DES COMPOSES	I
1A		ASPECT	Pt de Trouble	SOLUBILI huile de vaseline	res Eau .
3A	1A	Pate brun foncé			
3B Ruile brune 88% L D	2A	Huile brune	82 X	s	ם
3C	3 A	Huile jaune	67 ≭ ·	s	I
3D	3в	Huile brune	88₹	L	D.
4A Huile noire 5A Pâte molle ambrée 5B Pâte jaune claire 6A Huile brune 7A Huile brune 80% 8A Pâte brun clair 86 Pâte brune 80% 8B Pâte brune 9A HulleBrun clair 9B Huile Brun clair 9C Pâte jaune 9D Pâte ambrée 10A HulleBrun clair 10B Huile ambrée 10C Pâte brune 10D Pâte brune	3C	Pâte brun clair	>.100¥	peu S	ם .
5A Pâte molle ambrée > 100% D 5B Pâte jaune claire 70%% I S 6A Huile brune 80% S I 7A Huile brune 80% S I 8A Pâte brun clair 86% peu S D 8B Pâte brune > 100% I S 9A HuileBrun clair 72% S I 9B Huile Brun clair 87% S D 9C Pâte jaune > 100% peu S D 9D Pâte ambrée > 100% peu S D 10A Huile Brun clair (I%) S I 10A Huile Brun clair (I%) S I 10A Huile Brun clair (I%) S I 10B Huile ambrée 74% S D 10C Pâte brune 93% S D 10D Pâte brune >100% D D 10G Pâte brune >100% D D </td <td>3D</td> <td>Pâte brun clair</td> <td>} 100xx</td> <td>I</td> <td>S .</td>	3D	Pâte brun clair	} 100 xx	I	S .
### Pate jaune claire 6A	4A	Huile noire	61₩		I
7A Huile brune 80% S I 8A Pâte brun clair 86% peu S D 8B Pâte brune > 100% I S 9A Huile Brun clair 72% S I 9B Huile Brun clair 87% S D 9C Pâte jaune > 100% peu S D 9D Pâte ambrée > 100% I S I 10A Huile Brun clair (I%) S I I 10B Huile ambrée 74% S D D 10C Pâte brune 87% S D D 10D Pâte brune > 100% Peu S D D 10F Pâte brune clair > 100% Peu S D D 10G Pâte brune > 100% I D D 10H Pâte brune > 100% I S D 10A Pâte brune > 100% I S D 10A Pâte brune			> 100¥		· · · · · · · · · · · · · · · · · · ·
## Raile brune 86% peu S D ### Pâte brune \$100% I S ### Pâte brune \$100% F #### Pâte brune \$100% F #### Pâte brune \$100% F #### Pâte brune \$100% F ##### Pâte brune \$100% F ################################	6A	Huile brune	70 %%	Ī	s
8B	7A .	Huile brune	80 %	s	III
9A HulleBrun clair 72¥ S I 9B Hulle Brun clair 87¥ S D 9C Pâte jaune > 100¥ peu S D 9D Pâte ambrée > 100¾ I S 10A HulleBrun clair (I¾) S I 10B Huile ambrée 74¾ S D 10C Pâte brune 87¾ S D 10D Pâte brune 93¾ S D 10E Pâte brune > 100¾ D 10F Pâte brune > 100¾ D 10G Pâte brune > 100¾ D 10G Pâte brune > 100¾ D 10G Pâte brune > 100¾ I D 10H Pâte brune > 100¾ I S 11A Pâte brune > 100¾ S D 12A Pâte brune > 100¾ S D	8A	Pâte brun clair	86 x	peu S	D
9B Hatle Brun clair 87% S D 9C Pâte jaune > 100% peu S D 9D Pâte ambrée > 100%% I S 10A HadleBrun clair (I%) S I 10B Huile ambrée 74% S D 10C Pâte brune 87% S D 10D Pâte brune 93% S D 10E Pâte brune > 100% D 10F Pâte brune > 100% D 10G Pâte brune > 100% D 10G Pâte brune > 100% I D 10G Pâte brune > 100% I S 11A Pâte brune > 100% S D 12A Pâte brune > 100% S D	8B	Pate brune	> 100 XX	ı ı	S :
9C Pâte jaune > 100# peu S D 9D Pâte ambrée > 100## I S 10A HulleBrun clair (I**) S I 10B Huile ambrée 74# S D 10C Pâte brune 87# S D 10D Pâte brune 93# S D 10E Pâte brune > 100# Peu S D 10F Pâte brune > 100# Peu S D 10G Pâte brune > 100# I D 10H Pâte brune > 100# I S 11A Pâte brune > 100# S D	9A	HulleBrun clair	72 X	s	. I
9D Pâte ambrée > 100% I S 10A HulleBrun clair (I%) S I 10B Huile ambrée 74% S D 10C Pâte brune 87% S D 10D Pâte brune 93% S D 10E Pâte brune > 100% Pate brune D 10G Pâte brune > 100% Pate brune D 10G Pâte brune > 100% I D 10H Pâte brune > 100% I S 11A Pâte brune > 100% S D 11A Pâte brune > 100% S D	• 9в	Hulle Brun clair	87 x	S	D.
10A HulleBrun clair (IX) S I 10B Huile ambrée 74X S D 10C Pâte brune 87X S D 10D Pâte brune 93X S D 10E Pâte brune >100X peu S D 10F Pâte brune >100X peu S D 10G Pâte brune >100X I D 10H Pâte brune >100X I S 11A Pâte brune 2100X S D	9C	Pâte jaune	> 100 x	peu S	. D
10R Huile ambrée 74% S D 10C Pâte brune 87% S D 10D Pâte brune 93% S D 10E Pâte brune >100% D D 10F Pâte brune >100% Peu S D 10G Pâte brune >100% I D 10H Pâte brune >100% I S 11A Pâte brune 2100% S D	9D	Pâte ambrée	> 100 XX	. I .	s
10C Pate brune 87% S D 10D Pate brune 93% 8 D 10E Pate brune 9100% D 10F Pate brune 9100% Peu S D 10G Pate brune 9100% I D 10H Pate brune 9100% I S 11A Pate brune 9100% S D	10A	HulleBrun clair	(1¥) ,	s	I
100 Pâte brune 93% 8 D 10E Pâte brune >100% D 10F Pâte brun clair >100% peu S D 10G Pâte brune >100% I D 10H Pâte brune >100% I S 11A Pâte brune 2100% S D	10В	Huile ambrée	74 X	S	D
10E Pâte brune >100% D 10F Pâte brun clair >100% peu S D 10G Pâte brune >100% I D 10H Pâte brune >100% I S 11A Pâte brune D D 12A Pâte brune 2100% S D	10C	Pâte brune	87 X	S	D
10F Pâte brun clair >100% peu S D 10G Pâte brune >100% I D 10H Pâte brune >100% I S 11A Pâte brune D 12A Pâte brune \$\frac{1}{2}\$100% \$\frac{1}{2}\$	100	Pâte brune	93≭	. 8	D
10G Pate brune	10E	Pate brune	>100¥		D
10H Pâte brune \$100% I S 11A Pâte brune D 12A Pâte brune \$100% S D	10F	Pâte brun clair	>100¥	peu S	D .
11A Pâte brune D 12A Pâte brune S D	10G	Pate brune	>100¥	I	D
12A Pate brune 2:100% S	10H	Pâte brune	>100 x	I	s
	11A	Pate brune			D
13A Pate brun clair 94% S	12A	Pâte brune	2 100 x	s	D
	13A	Pâte brun clair	94 x	s	D

TABLEAU IV (Suite)

EX	' PROPRIETES PHYSIQUES							
:	: ASPECT	Pt de Trouble	SOLU HUILE DE VASELINE	BILITES EAU				
14A	Pâte brune	91 x	·S	· D				
15A	Pâte brune	93품	s	D.				
16A	Cire marron	>100¥	·	I				
17A	Pâte brum clair	`90≭_	peu S	D .				

	• •		-102120
	Les exemples suivan	ts sont destinés à i	illustrer l'utilisation
	des composés selon l'invention dans d COMPOSITION 1	es formulations cost	nétiques .
			• • • • • • • • • • • • • • • • • • • •
	Base de maquillage H/E		·
5	huile de formule	•••••	22 g
	с ₁₅ н ₃₁ соо сн ₂ - снон - сн ₂ - о - с	н ₂ - сн - с ₄ н ₉	
	•	с ₂ н ₅	
•	Composé de l'exempl	e 3C de formule	7 g
10	$c_{16}H_{33}O - c_{2}H_{3}O - c_{2}H_{3}O(CH_{2}OH)$	_	
	Parfum et conservateur		n = 8
	Eau déminéralisée stérile		qsp 100g
	COMPOSITION 2		
15	Crème de nuit E/H		•
	hyristate d'isopropyle		40 g
	Composé de l'exemple 9B de formule		10 g
		\(c\u0000\u000\u00	СП
	$c_4 H_9 - cH - cH_2 O - c_2 H_3 O - c_2 H_3 O$	n (th ₂ 0h)/ _n (h) -y	_
20	C ₂ H ₅	•	$\bar{n} = 5$
	Parfum et conservateur		QS
	Eau déminéralisée stérile	•••••	qsp 100 g
	COMPOSITION 3		
	Lait corporel H/E		•
25	Huile de vaseline Codex		30 g
	Composé de l'exemple 8A de formule	•••••	7 g
	с ₈ н ₁₇ о — с ₂ н ₃ о — с ₂ н ₃ о(сн ₂ он) 7	(H) $\frac{7}{16}$ $c_{16}^{H}_{33}$	n = 5
	parfum et conservateur	•	QS
30	Eau déminéralisée stérile		qsp 100g
	COMPOSITION 4 Crème de soin H/E		
	Huile d'amande douce		
	Composé de l'exemple 10D de formule		;10 g
	с ₁₀ H ₂₁ - о _ с ₂ H ₃ о /с ₂ H ₃ о (сн ₂ OH)/ _п (н) 7 C _{1A} H ₂₀	
35	10 71 52 52 5 H		$\bar{n} = 7$
	Parfum et conservateur		QS
•	Eau déminéralisée stérile		qsp 100 g
	•		

	COMPOSITION 5 Lotion démaquillante pour les yeux		
•		4 g	
	с ₈ н ₁₇ - о — с ₂ н ₃ о — с ₂ н ₃ о (сн ₂ он) п	н) / с ₁₆ н ₃₃	
	_	n = 10	
5	Hexylène glycol	1 g	
	Allantoine	0,05 g	
	Dihydrogénophosphate de potassium	0,1 g	
	Hydrogénophosphate de dipotassium 3H,0		
	Ethyl mercurithiosalycilate de sodium		
10		qsp 100	g
	Parfum	qs	
	COMPOSITION 6		
	Composition humectante	•	
15	On mélange 2g de composé de l'exemple 100	à 5g d'une solution aqueuse à	3%
	de glycérol.		
	Après homogénéisation pendant 30 minutes	à l'aide d'un ultra-disperseur,	on
	obtient une dispersion de sphérules.	•	
	COMPOSITION 7		

20 Composition antisolaire

On mélange intimement, à la température de 90°C, 4,8g de composés 13A et 3,2g de cholestérol.

On ajoute ensuite 20 g d'une solution aqueuse à 4% d'acide para-aminobenzoïque polyoxyéthyléné à 25 moles d'oxyde d'éthylène.

On laisse revenir le mélange à température ordinaire sous agitation, puis on ajoute à nouveau 72g de solution aqueuse à 4% d'acide para-aminobenzo que à 25 moles d'oxyde d'éthylène.

Après homogénéisation pendant 30 minutes à l'aide d'un ultra-disperseur; on obtient des petites sphérules dont la taille moyenne est voisine du micron.

REVENDICATIONS

1. Mélange de composés tensio actifs non-ioniques, caractérisés par le fait qu'ils répondent à la formule

$$R - O \longrightarrow C_2H_3 (O Z) \longrightarrow R_1$$
 (1)

dans laquelle R désigne un radical aliphatique linéaire ou ramifié, saturé ou insaturé comportant 4 à 20 atomes de carbone;

R, désigne (1) un radical alcoyle de préférence linéaire,

- (2) un radical alcoxyméthyle linéaire ou ramifié,
- (3) un radical alcènyloxyméthyle,
- 10 les parties alcoyle ou alcényle de ces radicaux comportent de 4 à 20 atomes

Z désigne un enchaînement polyéther répondant à la formule
$$(C_2H_3O)$$
 (CH_2A) II

dans laquelle n désigne une valeur statistique moyenne de 2 à 20 et A dési-15 gne

dans lequel u désigne 0 ou 1

5

35

dans lequel u désigne 0 ou 1,

- les radicaux R et R, comportant au total entre 12 et 38 atomes de carbone et les 25 dérivés des composés ci-dessus résultant de la réaction d'oxyde d'éthylène ou de glycidol avec læ groupements OH.
- 2. Mélange de composés selon la revendication 1, caractérisés par le fait que les radicaux R sont choisis parmi les groupements butyle, hexyle, octyle, décyle, dodécyle, tétradécyle, hexadécyle, octadécyle, 30 éthyl-2 hexylc, hexyl-2 décyle et que les radicaux R, sont choisis parmi les groupements hexyle, octyle, décyle, dodécyle, tétradécyle, hexadécyle, octadécyle, les radicaux alcoxyméthyle dérivés de ces groupements ou parmi les groupements éthyl-2 hexyloxyméthyle, hexyl-2 décyloxy-méthyle, octyl-2 dodécyloxyméthyle.
 - 3. Composition destinée à être utilisée en cosmétique ou en pharmacie caractérisée par le fait qu'elle contient au moins un composé tel que défini dans les revendications let2 comme agent tensio-actif.

- 4. Composition sclon la revendication 3, caractérisée par le fait qu'elle contient en plus un ou plusieurs adjuvants utilisables en cosmétique et/ou en pharmacie choisis par mi les tensio-actifs non ioniques, anioniques cationiques ou amphotères, les huiles minérales, animales ou végétales, les résines anioniques, cationiques, non-ioniques ou amphotères, les filtres solaires, les épaississants, les opacifiants, les conservateurs, les parfums, les colorants, les solvants alcooliques, les agents de modification du pH, les sels minéraux, les substances actives ayant une action au niveau du traitement, du soin ou de la protection de la peau et des cheveux.
- 5. Composition selon la revendication 3 se présentant sous forme de dispersion de vésicules lipidiques, dont la paroi est constituée d'au moins un composé tel que défini dans les revendications 1 et 2, pouvant véhiculer des substances actives en pharmacie ou cosmétique.
- 6. Composition selon la revendication 5, caractérisée par le 15 fait que les composés de formule I sont associés à des alcools ou des diols à longue chaîne, à des stérols et éventuellement des substances chargées positivement ou négativement.
 - 7. Procédé de préparation des composés de formule (I) de la revendication 1, caractérisé par le fait :
- 20 1) quel'on procède à une phyaddition de n moles d'épihalogénure ou de TBGE par mole d'alcool gras de formule (II)

$$R - O - C_2H_3 (OH) - R_1$$
 (II)

où R et R_1 ont les significations indiquées dans la revendication 1 pour former un_composé de formule (IV)

où Y désigne un enchaînement polyéther de formule : $\frac{1}{1000} C_2 H_3 O (CH_2 B) \frac{1}{1000}$

où B désigne halogène ou tertiobutoxy, n, R et R_1 ont les significations 30 indiquées dans la revendication 1, et on fait réagir le thioéthanol

ou le thioglycérol avec le composé intermédiaire IV dans lequel B désigne halogène, en présence de soude ou de potasse et d'un solvant; les composés polythioéther polyhydroxylés étent éventuellement oxydés avec de l'eau oxygénée en présence éventuelle d'acide lactique ou acétique.

8. Procédé de préparation selon la revendication 7, caractérisé par le fait que l'on procède dans un premier temps à la réaction d'un alcool de formule ROH avec un composé à groupement époxyde terminal de formule

10

15

20

dans lesquelles R et R₁ ont les significations indiquées ci-dessus en présence d'un catalyseur acide ou basique pour préparer le composé de formule II.

9. Procédé de préparation selon les revendications 7 ou 8, caractérisé par le fait que pour augmenter l'hydrophilie des composés de formule (I) de la revendication 1, on effectue une plyaddition d'oxyde d'éthylène ou de glycidol à un composé de formule I en présence d'un catalyseur acide ou basique et éventuellement de solvants.

10. Procédé selon la revendication 7, caractérisé par le fait que dans la première étape on additionne l'épihalohydrine ou le TBGE à l'alcool de formule (II) en présence d'un catalyseur acide de Lewis, à une température comprise entre 20 et 120°C en présence éventuellement de solvant.

11. Procédé selon la revendication 7, caractérisé par le fait que dans la première étape on additionne le TBGE à l'alcool de formule (II) en présence d'un catalyseur alcalin à une température comprise entre 120 et 180°C.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.