Convolutional Neural Network using TensorFlow

Youngjae Yu (yj.yu@vision.snu.ac.kr)
Seil Na (seil@vision.snu.ac.kr)
Junhyug Noh (jh.noh@vision.snu.ac.kr)

Contents

- Dataset: notMNIST
- TensorFlow Basics
- Softmax Regression
- Neural Network
- Regularization
- Convolutional Neural Network
- Saving and Restoring

- Similar to MNIST, but much more complex
- 10 classes with letters A to J

- Each image has 28 x 28 = 784 pixels.
- Consists of two parts
 - Large (Train): ~500k uncleaned images
 - Small (Test): ~19k hand-cleaned images
- http://commondatastorage.googleapis.com/books1000/
 - notMNIST_large.tar.gz
 - notMNIST_small.tar.gz

- Download compressed files (tar.gz)
- Extract and get the dataset
 - notMNIST_{large|small}/{A-J}/
 - Each directory contains images
- Save images as 3-D array
 - Scale the pixel values (-0.5 to 0.5)
 - Remove invalid images
- Merge and make train/validation/test sets
 - Set the manageable size of each dataset
 - Distribute labels uniformly (train/validation from large, test from small)

Let's check the code.

1_dataprocess.ipynb

- Graph
 - A TensorFlow computation, represented as a dataflow graph
 - Contains a set of Operation and Tensor objects.
- Session
 - Encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

```
g = tf.Graph()
with g.as_default():
    # Define operations and tensors in `g`

with tf.Session(graph=g) as sess:
    sess.run(...)
```

- Tensor
 - Represents a value produced by an Operation.
- Operation
 - Represents a graph node that performs computation on tensors.

Graph example

Graph example

Constant

- tf.constant(value, dtype, ...)
- e.g. tf.constant([1, 2, 3])

Variable

- tf.Variable(initial-value, ...)
- e.g. tf. Variable (tf. zeros (shape=(2,2)))

Placeholder

- tf.placeholder(dtype, shape, ...)
- e.g. tf.placeholder(tf.float32, shape=(10, 10))

- Session
 - Encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.
 - When you launch the graph, variables have to be explicitly initialized.
 - Placeholder tensor's value must be fed using the feed_dict optional argument to Session.run(), Tensor.eval(), or Operation.run().

```
with tf.Session(graph=g) as sess:
   tf.initialize_all_variables().run()
   feed_dict = {x: [1]}
   y, z = sess.run([y, z], feed_dict=feed_dict)
```

Let's check the code.

2_tfbasics.ipynb

- Binary classification (logistic regression)
 - Logistic function: $\sigma(t) = \frac{e^t}{1+e^t} = \frac{1}{1+e^{-t}}$

- $t = \alpha + \beta x$
- $h_{\theta}(x) = \sigma(\alpha + \beta x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} = \frac{1}{1 + e^{-(\alpha + \beta x)}}$
- May regard $e^{\alpha+\beta x}$ as point for y=1, $\theta=(\alpha,\beta)$ (1 for y=0)
 - If we normalize (divide) it by sum of all points, we can get the probability.

- Two-class classification (logistic regression)
 - **Cost function**
 - Cross entropy (negative log-likelihood)
 - $J(\theta) = -\sum_{i=1}^{n} (y_i \log h_{\theta}(x_i) + (1 y_i) \log(1 h_{\theta}(x_i))$
 - $\hat{\theta}^{MLE} = \underset{\theta}{\operatorname{argmin}} J(\theta)$
 - Need to optimize it using gradient

$$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$$

- Multinomial logistic regression
 - Model

$$h_{\theta}(x) = \begin{bmatrix} P(y=1|x;\theta) \\ P(y=2|x;\theta) \\ \vdots \\ P(y=K|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}x)} \begin{bmatrix} \exp(\theta^{(1)\top}x) \\ \exp(\theta^{(2)\top}x) \\ \vdots \\ \exp(\theta^{(K)\top}x) \end{bmatrix}$$

Cost function

$$J(\theta) = -\left[\sum_{i=1}^{m} (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) + y^{(i)} \log h_{\theta}(x^{(i)})\right]$$
$$= -\left[\sum_{i=1}^{m} \sum_{k=0}^{1} 1\left\{y^{(i)} = k\right\} \log P(y^{(i)} = k|x^{(i)}; \theta)\right]$$

$\left[\theta^{(1)\top}x,\theta^{(2)\top}x,\cdots,\theta^{(K)\top}x\right]$

Multinomial logistic regression

Softmax

Model

$$\begin{aligned} & \mathsf{Model} \\ & h_{\theta}(x) = \begin{bmatrix} P(y=1|x;\theta) \\ P(y=2|x;\theta) \\ \vdots \\ P(y=K|x;\theta) \end{bmatrix} = \underbrace{\frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}x)} \begin{bmatrix} \exp(\theta^{(1)\top}x) \\ \exp(\theta^{(2)\top}x) \\ \vdots \\ \exp(\theta^{(K)\top}x) \end{bmatrix}}_{\vdots} \end{aligned}$$

Cost function

$$J(\theta) = -\left[\sum_{i=1}^{m} (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) + y^{(i)} \log h_{\theta}(x^{(i)})\right]$$
$$= -\left[\sum_{i=1}^{m} \sum_{k=0}^{1} 1\left\{y^{(i)} = k\right\} \log P(y^{(i)} = k|x^{(i)}; \theta)\right]$$

Multinomial logistic regression

- Example: K = 4
 - True label: y = 2
 - if we represent it as one-hot encoding, y = [0, 1, 0, 0]
 - Prediction result
 - $\theta^T x = [-5.0, 4.0, 1.0, -3.0]$
 - $softmax(\theta^T x) = [1.17e 04, 9.51e 01, 4.73e 02, 8.67e 04]$
 - $log(softmax(\theta^T x)) = [-9.04, -0.05, -3.05, -7.05]$
 - Cost function
 - $-y * log(softmax(\theta^T x)) = [0, 1, 0, 0] * [9.04, 0.05, 3.05, 7.05]$

Let's check the code.

3_softmax_nn.ipynb

• XOR Problem

• If only with linear classifier (e.g. logistic regression model), ...

• But if we combine them, ...

- Put hidden layer between input and output layer!
- Consists of fully-connected layers in which neurons between two adjacent layers are fully pairwise connected.
- Neurons within a single layer share no connections.

Activation Functions

1.0

• tf.nn.relu(features, ...)


```
with graph.as_default():
    ...

weights_1 = tf.Variable(tf.truncated_normal([image_size]
biases_1 = tf.Variable(tf.zeros([size_of_hidden]))
    logits_1 = tf.matmul(tf_train_dataset, weights_1) + bi
    output_1 = tf.nn.relu(logits_1)
```

Let's check the code again.

3_softmax_nn.ipynb

- Let's make the model which explains the data below.
- $y = f(x) + \epsilon$

Three candidates

Need to choose one of them... Which one is the best?

Three candidates

Need to choose one of them... Which one is the best?

Overfitting problem

- Several methods to avoid overfitting problem
 - L2 regularization
 - Dropout
 - •

- L2 regularization
 - Add L2 penalty (λw^2) to cost function
 - tf.nn.12 loss(t, ...)

```
with graph.as_default():
    ...

loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits,
    + 12_lambda * tf.nn.12_loss(weights)
    ...
```

- Dropout
 - Sampling a Neural Network within the full Neural Network, and only updating the parameters of the sampled network based on the input data

(a) Standard Neural Net

(b) After applying dropout.

- Dropout
 - tf.nn.dropout(x, keep prob, ...)
 - keep prob: The probability that each element is kept

Learning Rate

- When training a model, it is often recommended to lower the learning rate as the training progresses.
- Here, we apply exponential decay function to a initial learning rate.

 $learning_rate = initial_learning_rate * decay_rate^{global_step/decay_steps}$

Let's check the code.

4_regularization.ipynb

Input $I: [W_I, H_I, D_I] \in \mathbb{R}^3$

Filter $F: [W_F, H_F, D_F, K] \in \mathbb{R}^4$

• Stride

• Stride

Padding

0	0	0	0
0	0	0	0
0	1	4	0
0	2	5	0
0	3	6	0
0	0	0	0
0	0	0	0

6	3	6	3
5	2	5	2
4	1	4	1
5	2	5	2
6	3	6	3
5	2	5	2
4	1	4	1

2	2	5	5
1	1	4	4
1	1	4	4
2	2	5	5
3	3	6	6
3	3	6	6
2	2	5	5

Zero

Reflect

Symmetric

Pooling

Input $I: [W_I, H_I, D_I] \in \mathbb{R}^3$

Filter $F: [W_F, H_F, D_F] \in \mathbb{R}^3$

Pooling

Max:
$$O_{x,y} = \max_{i,j} I_{x+i,y+j}$$

Average:
$$O_{x,y} = \frac{1}{W_F \times H_F} \sum_{i}^{W_F} \sum_{j}^{H_F} I_{x+i,y+j}$$

- tf.nn.conv2d(input, filter, strides, padding, ...)
 - input: 4-D Tensor with shape [batch, in_height, in_width, in_channels]
 - filter: 4-D Tensor with shape [filter_height,
 filter_width, in_channels, out_channels]
 - stride: The stride of the sliding window for each dimension of input.
 - padding: "SAME" or "VALID"

• tf.nn.conv2d(input, filter, strides, padding, ...)

```
with graph.as default():
  layer1 weights = tf.Variable(tf.truncated normal([patch si:
  layer1 biases = tf.Variable(tf.zeros([out channel]))
  def model(data):
    conv = tf.nn.conv2d(data, filter=layer1 weights, strides
    hidden = tf.nn.relu(conv + layer1 biases)
    pool = tf.nn.max pool(hidden, ksize=[1, 2, 2, 1], stride
    dropped = tf.nn.dropout(x=pool, keep prob=keep prob)
```

- tf.nn.max_pool(value, ksize, strides, padding, ...)
 - value: 4-D Tensor with shape [batch, height, width, channels]
 - ksize: The size of the window for each dimension of the input tensor
 - strides: The stride of the sliding window for each dimension of the input tensor
 - padding: "SAME" or "VALID"

• tf.nn.max pool(value, ksize, strides, padding, ...)

```
with graph.as default():
  layer1 weights = tf. Variable(tf. truncated normal([patch si:
  layer1 biases = tf.Variable(tf.zeros([out channel]))
  def model(data):
    conv = tf.nn.conv2d(data, filter=layer1 weights, strides
    hidden = tf.nn.relu(conv + layer1 biases)
    pool = tf.nn.max pool(hidden, ksize=[1, 2, 2, 1], stride
    dropped = tf.nn.dropout(x=pool, keep prob=keep prob)
```

Let's check the code.

5_cnn.ipynb

The easiest way to save and restore a model is to use a
 tf.train.Saver object. The constructor adds save and
 restore ops to the graph for all, or a specified list, of the
 variables in the graph.

Saving

```
with graph.as_default():
    ...
    saver = tf.train.Saver()

with tf.Session(graph=graph) as session:
    ...
    saver.save(session, ckpt_path, global_step=step)
```

• The easiest way to save and restore a model is to use a tf.train.Saver object. The constructor adds save and restore ops to the graph for all, or a specified list, of the variables in the graph.

Restoring

```
with graph.as_default():
    ...
    saver = tf.train.Saver()

with tf.Session(graph=graph) as session:
    ...
    saver.restore(session, ckpt_path)
```

Let's check the code.

6_save_restore.ipynb

Reference

TensorFlow official webpage

https://www.tensorflow.org/

Stanford CS class - CS231n

http://cs231n.github.io/

Udacity - Deep learning course

https://www.udacity.com/course/deep-learning--ud730

Q&A

Thank You!