Einführung in Sage - Einheit 5

Datencontainer, Lineare Abbildungen, Eigenwert und Eigenvektoren

Jochen Schulz

Georg-August Universität Göttingen

Aufbau

1 Datencontainer in Sage

2 Lineare Abbildungen

3 Eigenwerte und Eigenvektoren

Aufbau

1 Datencontainer in Sage

2 Lineare Abbildungen

3 Eigenwerte und Eigenvektoren

Folgen

- Folgen sind ein grundlegender Typ. Zum Beispiel werden Listen und Mengen aus Folgen aufgebaut.
- Folgen sind Sage-Ausdrücke vom Typ tuple.
- Eine Folge ist eine Aneinanderreihung beliebiger Sage-Objekte, welche durch Kommata getrennt sind.
- Wir kennen Folgen bereits durch die Eingabe mehrerer Befehle in einer Zeile.

Konstruktion von Folgen I

Einfache Definition

```
t=var('a,b,c,d,e');Folge1 = a,b,c; Folge2 = c,d,e;
Folge1 ; Folge2
```

```
(a, b, c)
(c, d, e)
```

Verbinden von Folgen

```
Folge3 = Folge1+Folge2; Folge3
```

```
(a, b, c, c, d, e)
```

Konstruktion von Folgen II

• Konstruktion durch tuple(): Der Aufruf tuple(range(a,b)+, für $a, b \in \mathbb{Z}$ erzeugt die Folge $a, a+1, \ldots, b-1$:

```
tuple(range(-1,7))
```

```
(-1, 0, 1, 2, 3, 4, 5, 6)
```

Der Aufruf tuple(Objekt(i)for i in range(m,n)) erzeugt die Folge
 Objekt(m), Objekt(m+1), ..., Objekt(n-1)

```
tuple(i^2 for i in range(2,8))
```

```
(4, 9, 16, 25, 36, 49)
```

```
tuple(x^i for i in range(4,8))
```

```
(x^4, x^5, x^6, x^7)
```

Konstruktion von Folgen III

• Erzeugen von *n* identischen Objekten

```
tuple(\sin(x) for i in range(0,5))

(\sin(x), \sin(x), \sin(x), \sin(x), \sin(x))
```

• Erzeugen von *n* funktionalen Objekten

```
x = tuple(sin(i) for i in range(1,5)); x
(sin(1), sin(2), sin(3), sin(4))
```

Konstruktion und Zugriff

• Erzeugen einer leeren Folge

```
folge = (); folge2 = folge,2,3; folge2

((), 2, 3)
```

Zugriff auf Elemente

```
x = 1,2,3,4; x[2]
```

3

```
x[2]; x[0:2]
```

```
3
(1, 2)
```

Listen

- Eine Liste ist eine geordnete Folge beliebiger Sage Objekte.
- In Sage ist eine Liste in eckigen Klammern eingeschlossen.
- Listen haben den Datentyp list.
- Matrizen werden als geschachtelte Liste definiert.
- Sie baut auf den eben beschriebenen Folgen auf.

Konstruktion von Listen

Konstruktion 'per Hand'

```
Liste = [1,[1,2], Set([1,2,3]),x]; Liste

[1, [1, 2], {1, 2, 3}, (1, 2, 3, 4)]
```

Listen können leer sein:

```
Liste = []; Liste
```

[]

• Erzeugen von Listen mit funktionalen Objekten

```
Liste = [2^i for i in range(1,9)]; Liste
```

```
[2, 4, 8, 16, 32, 64, 128, 256]
```

map

Mit Hilfe der Funktion map(<f>,<Liste>) kann eine Funktion f auf alle Elemente der Liste <Liste> angewendet werden. Erwartet eine Funktion mehrere Argumente, muss diese Funktion erst gekapselt werden.

```
map(sin,[x,1,0,pi,0.3])
```

```
[\sin(x), \sin(1), 0, 0, 0.295520206661340]
```

```
map(is_prime,[2,3,4,5,6,7])
```

```
[True, True, False, True, False, True]
```

map_threaded()

Eine erweiterte Funktion map_threaded(<f>,<Liste>) führt die gegebene Funktion <f> rekursiv auf alle Elemente in der Liste an.

```
map_threaded(sin,[x,[1,0],[pi,[0.3]]])
```

```
[\sin(x), [\sin(1), 0], [0, [0.295520206661340]]]
```

```
map(is_prime,[2,3,4,5,6,7])
```

Zugriff auf Listen

Der Zugriff funktioniert genau wie bei Folgen. Beispiele:

```
Liste = [(x,i) for x in range(1,4) for i in range(0,x)];
   Liste
```

$$[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2)]$$

```
Liste[3], Liste[5]
```

```
((3, 0), (3, 2))
```

Liste
$$[5] = 42$$
; Liste

```
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), 42]
```

Weitere Befehle für Listen I

Entfernen eines Elements aus der Liste

```
Liste = [a,b,c]; del Liste[1]; Liste
```

[a, c]

Anhängen von Elementen mittels append

```
Liste.append([3,4,5]); print Liste
```

```
[a, c, [3, 4, 5]]
```

Weitere Befehle für Listen II

• Zusammenfügen von Listen mit dem +- und *-Operator.

```
Liste2 = Liste+[3,4,5]; Liste2
```

Sortieren von Listen mit sort

Inklusionen

Mit <Objekt> in <Liste> kann geprüft werden, ob ein Objekt <Objekt> in der Liste <Liste> enthalten ist.

```
Liste = [x+1,a,x+1,sin(b)]
x+1 in Liste
```

True

Mit <Liste>.index(<Objekt>) erhält man die Position des Objektes in der Liste. Ist es nicht vorhanden, bekommt man eine enstprechende Meldung.

```
Liste.index(sin(b))
```

3

select

- Mittels select(Liste, Funktion, Parameter) können Objekte mit bestimmten Eigenschaften aus einer Liste ausgewählt werden.
- Dabei fungiert eine Funktion Funktion als Auswahlkriterium. Sie muss Boolsche Werte zurückliefern.
- Die Parameter sind Eingabewerte für die Funktion Funktion
- Der Befehl select funktioniert auch für Mengen, Dictionaries oder Ausdrücken.

Beispiele für select

```
select([a+2,x,y,z,sin(a)],has,a)
[a + 2, sin(a)]
```

```
x (x - 1)
```

zip

Mittels zip(<Liste1>, <Liste2>) werden die Elemente zweier Listen paarweise zu einer neuen Liste verknüpft.

```
Liste1 = [a,b,c]; Liste2 = [e,f,g]
zip(Liste1,Liste2)
```

```
[(a, e), (b, f), (c, g)]
```

Wörterbücher (Dictionaries)

- Eine Dictonary besteht aus einer Ansammlung von "Assoziationen" der Form <Index>:<Wert>. Indizes und Werte können dabei (fast) beliebige Sage Objekte sein.
- Dictionaries haben den Typ dict.
- Dictionaries sind Datenstrukturen, die für das Speichern großer Datenmengen gut geeignet sind.
- In Sage ist der indizierte Zugriff auf einzelne Elemente sehr schnell, da intern nicht die gesamte Datenstruktur durchsucht wird.
- der Index ist eindeutig

Konstruktion von Dictionaries I

Monstruktion: (Index>:<Wert>, ... <Index>:<Wert>, ...)
T = {a: b, c: d}; T

```
{c: d, a: b}
```

Konstruktion von Dictionaries II

• Einträge können durch Zuweisungen der Form <Dict>[<Index>] = <Wert> erzeugt oder verändert werden.

```
T[f(x)] = sin(x); T[1,2] = 5
T[1,2,3] = [a,b,c]; T[a] = d;
T
```

```
{(1, 2): 5, f: sin(x), c: d, a: d, (1, 2, 3): [a, b, c]}
```

Erzeugen eines leeren Dictionaries

```
T1 = {}; T1
```


Konstruktion und Zugriff

Zugriff auf ein Dictionary

```
T[a],T[1,2],T[c]
(d, 5, d)
float(T[f](4))
```

-0.7568024953079282

Wird ein Index nicht gefunden, gibt es eine Fehlermeldung

Löschen von Einträgen

```
del T[a]
```

Befehle wie bei Listen

in	Es wird überprüft, ob ein Index in einem
	Dictionary vorkommt.
filter	Filtert ein Dictionary nach Kriterien. Prüft
	sowohl Werte als auch Indizes.
map	Wendet eine Funktion auf die Werte an.

Beispiele

in prüft ob a oder b als Index in einem Dictionary auftaucht.

```
Z = {}; Z[a] = b; Z[c] = d; Z[x] = b
a in Z, b in Z
```

```
(True, False)
```

a taucht als Index auf, b nur als Wert. filter prüft ebenfalls nur den Index.

$$f(y) = y == c; filter(f,Z)$$

[c]

Dictonaries - Nachtrag

• Dictionaries können aneinander gehängt werden:

```
T={1:a,2:b}; S={3:c,4:d}
T.update(S); T
```

```
{1: a, 2: b, 3: c, 4: d}
```

Vorsicht: Doppelt auftretenden Indizes werden überschrieben!

Aufbau

Datencontainer in Sage

2 Lineare Abbildungen

3 Eigenwerte und Eigenvektoren

Lineare Abbildungen

Seien K-Vektorräume V und W gegeben. Eine Abbildung

$$F: V \rightarrow W$$

heißt linear, falls für $v, w \in V$ und $\lambda \in K$ gilt:

(L1)
$$F(v+w) = F(v) + F(w)$$

(L2)
$$F(\lambda \cdot v) = \lambda \cdot F(v)$$

Ist F bijektiv, so heißt F Isomorphismus.

Gilt V = W, so spricht man von einem Endomorphismus. Im Falle von V = W und Bijektivität spricht man von einem Automorphismus.

Bemerkungen

- Sei $(v_i)_{i \in I}$ eine Basis in V und $(w_i)_{i \in I}$ seien Vektoren in W. Dann gibt es genau eine lineare Abbildung $F: V \to W$ mit $F(v_i) = w_i$ für alle $i \in I$.
- Das Bild von F ist $Im(F) = F(V) := \{F(v), v \in V\}.$
- Der Kern von F ist $Ker(F) := \{ v \in V \mid F(v) = 0 \}$
- Kern und Bild sind Untervektorräume.
- Dimensionsformel:

$$\dim V = \dim F(V) + \dim Ker(F)$$

• Die Menge der linearen Abbildungen von V nach W wird mit $\operatorname{Hom}_{\mathcal{K}}(V,W)$ bezeichnet. Sie ist ein Vektorraum durch punktweise Addition und Skalarmultiplikation.

Lineare Abbildungen und Matrizen

• Jeder Matrix $A \in K^{m \times n}$ läßt sich durch

$$L_A: K^n \to K^m, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

eine lineare Abbildung zuordnen.

• Es gilt $\dim(L_A(K^m)) = \operatorname{Rang}(A)$.

Koordinatenvektor

Sei V ein K-Vektorraum mit Basis $V = (v_1, \ldots, v_n)$.

• Die lineare Abbildung $\Phi_{\mathcal{V}}: \mathcal{K}^n \to V$ mit

$$\Phi_{\mathcal{V}}(x_1,\ldots,x_n)=x_1v_1+\cdots+x_nv_n$$

ist ein Isomorphismus. Man nennt $\Phi_{\mathcal{V}}$ ein Koordinatensystem in V und $x=(x_1,\ldots,x_n)=\Phi_{\mathcal{V}}^{-1}(v)$ den Koordinatenvektor zu $v\in V$.

• Ist $\mathcal Z$ eine weitere Basis in V, so erhält man die Basiswechselabbildung von $\mathcal V$ nach $\mathcal Z$ durch $\mathcal T:=\Phi_{\mathcal Z}^{-1}\circ\Phi_{\mathcal V}.$

Isomorphismus

Seien K-Vektorräume V und W mit Basen $\mathcal{V}=(v_1,\ldots,v_n)$ und $\mathcal{W}=(w_1,\ldots,w_m)$ gegeben.

Für eine Matrix $A \in K^{m \times n}$ wird durch

$$F(v_1) := a_{11}w_1 + \cdots + a_{m1}w_m$$

$$\vdots : \vdots$$

$$F(v_n) := a_{1n}w_1 + \cdots + a_{mn}w_m$$

eine lineare Abbildung F definiert. Dies ergibt einen Isomorphismus

$$L_{\mathcal{W}}^{\mathcal{V}}: K^{m \times n} \to \operatorname{Hom}_{K}(V, W), A \mapsto F.$$

Kanonisches Beispiel

Seien K^n und K^m mit den kanonischen Basen K_n und K_m versehen.

- Die Abbildungen $\Phi_{\mathcal{K}_n}$ und $\Phi_{\mathcal{K}_m}$ sind Identitäten.
- ullet Die Abbildung $L_{\mathcal{K}_m}^{\mathcal{K}_n}$ ist gegeben durch

$$L_{\mathcal{K}_m}^{\mathcal{K}_n}(A)(x) = Ax, \ x \in K^n.$$

• Die Spaltenvektoren von A sind die Bilder der Einheitsvektoren unter der Abbildung $L_{\mathcal{K}_m}^{\mathcal{K}_n}(A)$.

Kommutierendes Diagramm

Seien K-Vektorräume V und W mit Basen $\mathcal{V}=(v_1,\ldots,v_n)$ und $\mathcal{W}=(w_1,\ldots,w_m)$ und eine lineare Abbildung F gegeben. Dann gilt das folgende kommutierende Diagramm:

Drehung und Spiegelung I

Drehung um den Winkel α - Drehmatrix G:

$$G(\alpha) := \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

```
var('a,b'); A = matrix([[cos(a),-sin(a)],[sin(a),cos(a)]])
A(a=pi/2)*vector([1,1])
```

```
(-1, 1)
```

Drehung und Spiegelung II

Spiegelung bezüglich der Ebene

$$H(a) := \{x \in \mathbb{R}^3 | x^T a = 0\}, ||a|| = 1$$

durch

$$S(a) := I - 2aa^{T}.$$

```
a = matrix(3,1,[1,2,3])
a = a/norm(a)
I_n = identity_matrix(3)
S = I_n - 2*a*a.transpose()
norm(S*S-I_n)
```

0.0

Aufbau

Datencontainer in Sage

2 Lineare Abbildungen

3 Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren

Sei $A \in K^{n \times n}$. Ein Element $\lambda \in K$ heißt Eigenwert von A, wenn ein $x \in K^n \setminus \{0\}$ existiert,

$$Ax = \lambda x$$

gilt. Der Vektor $x \in K^n$ heißt Eigenvektor zum Eigenwert λ .

• Die Eigenwerte sind die Nullstellen des charakteristischen Polynoms

$$p(t) := \det(A - t I_n).$$

• Es gibt höchstens *n* Eigenwerte.

Bemerkungen

- Eigenvektoren zu paarweise verschiedenen Eigenwerten sind linear unabhängig.
- Gibt es eine Basis aus Eigenvektoren, so ist A diagonalisierbar, d.h. man kann die Abbildung L_A bei geeigneter Basiswahl durch eine Diagonalmatrix repräsentieren.
- Jeder Endomorphismus eines komplexen Vektorraums läßt sich durch eine Matrix in Jordanscher Normalform darstellen.

Eigenwerte in Sage

Bestimmung von Eigenwerten

```
_=var('al');A = matrix([[cos(al), sin(al)],[sin(al),-
    cos(al)]])
[ m.full_simplify() for m in A.eigenvalues()]
```

```
[-1, 1]
```

Bestimmung von Eigenvektoren

```
A.eigenvectors_right()
```

Eigenwerte in Sage

Bestimmung des charakteristischen Polynoms

```
E = identity_matrix(2)
p = (A-x*E).det(); p

(x - cos(al))*(x + cos(al)) - sin(al)^2

[m.full_simplify() for m in solve(p==0,x)]
```

```
[x == -1, x == 1]
```

Lineare Gleichungssysteme (LGS)

Sei $A \in K^{m \times n}$ und $b \in K^m$. Gesucht ist die Menge der Lösungen (Lösungsraum):

$$\{x \in K^n \mid Ax = b\}$$

- Ist b = 0, so spricht man von einem homogenen System. Ansonsten spricht man von einem inhomogenen System.
- Der Lösungsraum W des homogenen Systems bildet einen Untervektorraum des K^n . Die Dimension ist

$$\dim(W) = n - \operatorname{rang}(A).$$

Struktur des Lösungsraums

• Die Lösungen des inhomogenen Systems $(b \neq 0)$ bilden einen affinen Unterraum des K^n . $X \subset K^n$ heißt affiner Unterraum, wenn ein Unterraum W von K^n und ein $v \in K^n$ existiert, so dass

$$X = v + W$$

gilt. Der Unterraum W ist durch X eindeutig bestimmt, v kann jeder Vektor aus X sein.

- Ist W der Lösungsraum des homogenen Systems und $v \in K^n$ eine beliebige Lösung von Ax = b, dann ist der Lösungsraum X von Ax = b gegeben durch X = v + W.
- Zwei Lösungen des inhomogenen Systems unterscheiden sich durch eine Lösung des homogenen Systems.

Lösbarkeit

- Das inhomogene System ist genau dann für alle b lösbar, wenn rang(A) = m gilt.
- Das homogene bzw. das inhomogene System besitzt höchstens eine Lösung, genau dann wenn rang(A) = n gilt.
- Der Lösungsraum des inhomogenen Systems ist genau dann nicht leer, wenn rang(A) = rang(A, b) gilt.
- Praktisch kann ein LGS mit dem Gausschen Eliminationsverfahren gelöst werden.

LGS in Sage

Berechnung der Lösungen von Ax = b:

```
A = matrix([[1,2,3],[4,5,6],[7,8,9]])
b1 = vector([0,0,0])
b2 = vector([1,0,0])
b3 = A*b2
print A\b1
print A\b3
```