Summer 2018 Projects Summary

August 24th 2018

Projects

- Copy Number Plots
- Mutalyzer Lookup
- Allele Frequency Noise Plots
- Water Barcode Filter
- Myeloid Data Entry
- MSI Classification

Copy Number Plots

- Plots that show copy number irregularities
- Include a 'tooltip'
 - Gene and chromosome
 - Tile-level depth and z-score
 - Gene-level information
- More easily identify copy number irregularities, on both tile and gene level

Mutalyzer Lookup

 Query Mutalyzer to include HGVS nomenclature base change and amino acid change in variant report

Validation script

Already being added to the pipeline

Allele Frequency Noise Plots

- Quantify the frequency of each base at a user-entered chromosome and coordinate
 - Using 97 myeloid cases
- Visually appreciate noise at certain positions to make more informed variant calls

Water Barcode Filter

- Search for potential contamination of the water barcode
- Script maps water barcode reads to hg19 and Phix genome, filtering out mapped reads
- Returns Fastq file of unmapped reads for BLAST search

Myeloid Data Entry

 Add fields containing CALR, FLT3 and CEBPA results to myeloid data spreadsheet

More robust dataset for future analysis

Microsatellite Instability Classification by NGS

Microsatellite Instability

- Characterized by the "spontaneous loss or gain of nucleotides from repetitive DNA tracts"
 - Caused by defective mismatch repair
- Is a diagnostic phenotype for certain cancer types with clinical implications
 - Actionable marker for immune-checkpoint-blockade therapy (Hause et al. 2016)

Microsatellite Instability

- Develop a model that can accurately detect Microsatellite Instability using NGS data
- Add informative loci to the STAMP selector
 - Clinically relevant and actionable

Repeat Identification

Repeat Identification

- Flanking regions
 - Immediately adjacent to the mononucleotide repeat
 - 7 bases long
 - Long enough to be unique, identifiable in individual reads
 - Short enough to maximize usable reads

Repeat Identification

- Pull all reads containing bases in the region of the locus
 - Psyam
- Scan and find flanking regions
 - Ordered search
 - First flank must be found before the second
 - Brute-force partial string matching
 - Mismatch allowance = 2
- Validation: filter
 - Baseline = 90%
 - Modified for some loci
 - Those that contain a non-homogenous run

MSI Calling

- Binary classifier
 - Simplification of MSI-H and MSI-L
- Optimization
 - Accuracy
 - Sensitivity
 - Specificity

Machine Learning Approach

- TensorFlow
 - Python API developed by Google
- Develop a linear function that can separate the data into 2 categories
 - MSI or MSS
- Apply function to a data point to calculate its score
- Apply sigmoid function to calculate p(MSI)
 - Supervised learning
 - Classification problem

Google's 'ML Crash Course'

- Finding the best 'best-fit line' to distinguish two groups of data
 - Minimizing error

Google's 'ML Crash Course'

 Finding the best 'best-fit line' to distinguish two groups of data

Minimizing the error

Google's 'ML Crash Course'

- Finding the best 'best-fit line' to distinguish two groups of data
 - Minimizing the error
- ML allows expansion of this idea to n-dimensions

Machine Learning Approach

- Locus-based calls
 - Develop a linear model using ML for each locus individually
- Overall call based on the proportion of all 27 loci that are unstable
- Simplification
 - 7 loci with high number of BAMs with reads available, good depth at the loci
 - Initial proof of concept

MSI Calling - Features

- Number of lengths
 - [11, 12, 11, 13, 14] = 4
- Distance from mode
 - Average distance from MSS sample mode of all reads
- Standard deviation
- Average Length

Datasets

- All files
 - 602 BAM files with MSS, MSI-L or MSI-H annotation
 - 241 COAD-READ, 361 UCEC
 - 212 MSI, 390 MSS
- Mode training set
 - Randomly generated set of 100 BAM files with MSS status to generate mode length
 - 43 COAD-READ, 57 UCEC
 - 0 MSI, 100 MSS

Datasets (continued)

- Training Set
 - 300 BAM files of mixed status to train the model
 - 118 COAD-READ, 182 UCEC
 - 130 MSI, 170 MSS
- Validation Set
 - 100 BAM files of mixed status to validate the model
 - 44 COAD-READ, 56 UCEC
 - 40 MSI, 60 MSS
- Test Set
 - 102 remaining BAM files of mixed status to test the model
 - 36 COAD-READ, 66 UCEC
 - 42 MSI, 60 MSS

Datasets (continued)

- Randomly generated sets
 - Representative of both cancer types
- Low coverage problem
 - Low coverage at certain loci excludes some files from some locus analyses
 - Actual size of datasets vary based on individual BAM coverage at any given locus

Locus-Based Calling

- Generate ML model for each locus individually
 - Weight for each feature, bias
 - Sigmoid activation function to generate p(MSI) in range (0, 1)
- Choose loci with highest AUC
 - Exclude those that have no reads in many BAM files
 - Try different combinations of loci
- Determine MSI status based on number of loci with 'MSI' call

Locus-Based Calling (continued)

- Loci examined
 - BAT-26
 - MSI-07
 - MSI-09
 - H-06
 - MSI-06
 - MSI-04
 - HSPH1-T17

- Threshold: 0.500000
- Min no. loci: 4
- Total files: 93
- Correct predictions: 78
 - True pos: 24
 - True neg: 54
 - False pos: 2
 - False neg: 13
- Accuracy: 0.838710
- Sensitivity: 0.648649
- Specificity: 0.964286

Probability-Based Calling

- Generate ML model for each locus individually
 - As before
- Choose loci with highest AUC
 - As before
- Determine MSI status based on average p(MSI) across loci examined

Probability-Based Calling (example)

- BAM file: TCGA-00-0000
 - BAT-26
 - p(MSI) = 0.998
 - MSI-07
 - p(MSI) = 0.488
 - MSI-09
 - p(MSI) = 0.478
 - H-06
 - p(MSI) = 0.499
 - MSI-06
 - p(MSI) = 0.898
 - MSI-04
 - p(MSI) = 0.978
 - HSPH1-T17
 - p(MSI) = 0.408

- Locus-based call: MSS
 - 3 MSI, 4 MSS
- Probability-based call: MSI
 - Avg p(MSI): 0.678

Probability-Based Calling (continued)

- Loci examined
 - BAT-26
 - MSI-07
 - MSI-09
 - H-06
 - MSI-06
 - MSI-04
 - HSPH1-T17

- Threshold: 0.500000
- Total files: 93
- Correct predictions: 78
 - True pos: 23
 - True neg: 55
 - False pos: 1
 - False neg: 14
- Accuracy: 0.838710
- Sensitivity: 0.621622
- Specificity: 0.982143

Probability-Based Calling (continued)

- Problem: some loci may be more indicative of MSI status than others
 - Need weights assigned to each measure at each locus individually

A Bigger ML Problem

- Solution: instead of individually looking at one locus with m features, consider all n loci with all m features at once
 - Machine learning problem in n x m dimensions
- Exclude loci with too few usable files

Benefits

- Can report a probability instead of a binary call
- Easy to add new loci
 - Will be considered relative to other loci
- Easy to choose the most relevant loci
 - Defining a selector for STAMP

Machine Learning v2 – Setup

- 21 loci x 4 features each
 - 84-dimensional model
- Training Set
 - 266 cases
 - 124 MSI, 142 MSS
- Validation Set
 - 87 cases
 - 33 MSI, 52 MSS
- Test Set
 - 93 cases
 - 38 MSI, 55 MSS

Machine Learning v2 - Results

Learning rate = 0.01 Steps = 200,000 Batch size = 10

Machine Learning v2 - Results

Learning rate = 0.01 **Steps = 100,000** Batch size = 10

Machine Learning v2 – Test Set

- Loci examined
 - MSI-11
 - MSI-14
 - H-10
 - HSPH1-T17
 - BAT-26
 - BAT-25
 - MSI-04
 - MSI-06
 - MSI-07
 - MSI-01
 - MSI-03
 - MSI-09
 - H-09
 - H-08
 - H-01
 - H-03
 - H-02
 - H-04
 - H-07
 - H-06
 - H-05

- Threshold: 0.500000
- Total files: 93
- Correct predictions: 76
 - True pos: 28
 - True neg: 48
 - False pos: 7
 - False neg: 10
- Accuracy: 0.817204
- Sensitivity: 0.736842
- Specificity: 0.872727

Machine Learning v2 – Test Set

Summary

- Best AUC of ≈90%
 - Measures the predictive ability of the model
- Maximum accuracy of ≈82% on test set
- Machine learning using all loci and all features is likely the best option
 - More samples with better depth to train on

Further Investigations Improve Existing Model

- Get more BAM files
 - Training, validation and test sets are stale
 - Get BAM files with better coverage for more accurate results, better prediction
- Research clinical relevance of MSI diagnosis
 - Fine-tune parameters to favor either false positives or false negatives
- Regularization
 - L2 regularization
 - Penalizes any weight that is too large, drives weights asymptotically to 0
 - L1 regularization
 - Penalizes total weight of all features, drives non-informative weights to 0

Further Investigations Expand Existing Model

- Add features
 - Earth mover distance
- Add a label for 'MSI-L' and 'MSI-H'
- Investigate more loci
 - Hause et al. used 223,082 microsatellite loci to develop a MSI calling method with 96.6% accuracy
- Train using matched normal samples
 - Detect low, baseline level of MSI in tumor samples

Further Investigations Investigate New Models

- Linear classifier models using different features
 - Feature crosses
- Neural nets
 - Multi-class neural nets
 - Require more training, validation and test data, overfitting concern