<u>Задача 9-2</u>

Элемент **X** распространён в природе, входит в состав драгоценных и полудрагоценных камней. При высоких температурах **X** реагирует с водой *(р-ция 1)* и аммиаком *(р-ция 2)* с выделением одного и того же газа. В результате реакций, кроме газа **A**, также образуются вещества **Б** и **B**, соответственно.

идеализированная гексагональная элементарная ячейка **B** $a=b=3.021 \ \mathring{A},$ $c=5.082 \ \mathring{A}, \ \gamma=120^{\circ}$

Вещество **Ж** образуется при медленном нагревании 591 мг **X** со стехиометрическим количеством хлорида аммония **(р-ция 6)** до 350°C в атмосфере аргона (объем реакционного сосуда 30 мл, заполняли аргоном при н.у.). После завершения реакции плотность газовой смеси по аргону в реакционном сосуде составляет 0.0877. Вещество **Ж** представляет собой чувствительные к влаге кристаллы с ионной структурой, содержащие в составе однозарядные катион и анион. Плотность **Ж** составляет 3,434 г/см³, объём элементарной ячейки – 356,96 Å³, число формульных единиц на элементарную ячейку – 2.

Вопросы:

1) Назовите металл ${\bf X}$ и вещества ${\bf A}-{\bf E},$ состав подтвердите расчетом. Все соединения стехиометрические.

- 2) Напишите уравнения реакций 1-5.
- 3) Предложите состав \mathbf{W} . Ответ подтвердите расчётом. Изобразите схематично возможные изомеры катиона и аниона, если координационное число \mathbf{X} в катионе и анионе равно 6.
- 4) Запишите уравнение реакции образования **Ж** (*p-ция 6*) и взаимодействия **Ж** с водой (*p-ция 7*).
- 5) Рассчитайте давление в реакционном сосуде после завершения реакции образования Ж и охлаждения сосуда до 25 °C.
- 6) Вычислите плотность В.

Справочная информация:

a64, H=a63, где R - радиус сферы, описанной вокруг правильного тетраэдра, H - высота тетраэдра, a - длина ребра тетраэдра. $1\cdot 10^{-10}\,\mathrm{M}$

^{*} Необходимо для формирования нанотрубок, в реакции не участвует.

Решение задачи 9-2

 Определим неизвестный элемент X. Условия задачи предусматривают, как минимум, два варианта решения, основанные на количественной информации.

После завершения реакции **X** с хлоридом аммония в сосуде образовалась смесь газов со средней молярной массой:

$$M_{cp} = D_{Ar}M_{Ar} = 0,0877 * 39,948 = 3,50$$
 г/моль

Из столь малого значения средней молярной массы следует, что в ходе реакции выделяется водород. Определим мольные доли газов в образовавшейся смеси:

$$M_{cp} = M_{Ar} * \chi + M_{H_2} * (1 - \chi) = 39,948 * \chi + 2,016 - 2,016\chi = 3,50,$$
где χ — мольная доля аргона в смеси, тогда:

$$\chi(Ar) = 0.04; \ \chi(H_2) = 0.96$$

Найдём количество аргона, помещенное в сосуд до начала реакции и остававшееся постоянным:

$$PV = \nu RT \Longrightarrow \nu (Ar) = \frac{PV}{RT} = \frac{10^5 * 30 * 10^{-6}}{8,314 * 273,15} = 1,321 * 10^{-3}$$
 моль

Общее количество вещества газов после завершения реакции:

$$u_{\text{общ}} = \frac{\nu(Ar)}{\chi(Ar)} = \frac{1,321 * 10^{-3}}{0,04} = 0,033 \text{ моль}$$

Количество образовавшегося водорода:

$$\nu(H_2) = \nu_{\text{общ}} - \nu(Ar) = 0.033 - 1.321 * 10^{-3} = 0.032 \text{ моль}$$

Пусть из \boldsymbol{n} моль \mathbf{X} (молярная масса \mathbf{M}_{X} г/моль) образуется \boldsymbol{m} моль \mathbf{H}_{2} , тогда:

$$\frac{0.591}{M_X} = \frac{n}{m} * 0.032 \implies M_X = 18.47 \frac{m}{n}$$

n m	1	2	3	4	5
1	18,47	36,94	55,41	73,88	92,35
2	~Be	18,47	~Al	36,94	46,18
3	6,15	~C	18,47	~Mg	~P
4	4,62	~Be	~N	18,47	~Na
5	~Be	~Li	~B	14,78	18,47

Сопоставив полученные результаты с химией ${\bf X}$, описанной в задаче, делаем вывод, что ${\bf X}-{\rm Al}$.

Исходя из условия задачи вещество ${\bf B}$ образуется при взаимодействии элемента ${\bf X}$ с аммиаком, а значит, в его состав наряду с элементом ${\bf X}$ должен входить азот. Используя параметры ячейки приведённые в условии задачи элемент ${\bf X}$ можно определить следующим образом.

Рассмотрим изображенную структуру. Для удобства обозначим некоторые атомы латинскими буквами.

В основании элементарной ячейки лежит ромб, причём т.к. угол $\gamma = 120$ °, другой угол равен 60°, а значит треугольник RZQ является правильным,

и TRQZ — правильный тетраэдр, причём ZQ = b = 3,021Å. Разумно предположить, что длины всех связей между атомами одинаковые, а значит **G** является центром описанной вокруг тетраэдра сферы. Согласно приведенной формуле радиус GT сферы, описанной около тетраэдра TRQZ равен: $GT = \frac{ZQ*\sqrt{6}}{4} = \frac{3,021*\sqrt{6}}{4} = 1,85$ Å, что соответствует сумме ионных радиусов атомов, соединенных на рисунке

отрезком GT. Одним из этих атомов по условиям получения является азот с координационным числом 4, табличное значение ионного радиуса для N^{3-} с к.ч. 4 равен 0,39 Å. Тогда ионный радиус атома \mathbf{X} : 1,85-0,39=1,46Å. Из соотношения атомов в ячейке 1:1 можно сделать вывод, что нужно искать трёхзарядный катион с к.ч. = 4. Всем этим условиям соответствует ион Al^{3+} .

Кроме того, из описания метода получения **Б** следует, что элемент **X** образует амфотерный гидроксид **Д**, из состава продукта взаимодействия **X** с аммиаком ясно, что элемент **X** образует нитрид состава **X**N, т.е. образует трёхзарядные катионы. Упоминание в начале задачи о распространенности элемента почти не оставляет других вариантов кроме **X** – это Al. Что, однако, необходимо подтвердить одним из расчётных способов.

Таким образом, X - Al, $A - H_2$, $B - Al_2O_3$, B - AlN.

Рассмотрим описанный в задаче синтез нанотрубок оксида алюминия*. При добавлении щёлочи к раствору соли алюминия выпадает гидроксид Д - Al(OH)₃. В избытке щёлочи он растворяется, а при нагревании из щелочного раствора кристаллизуется **E**, причём, при его разложении образуется оксид алюминия, а значит **E** не содержит катионов натрия. **E** не может быть гидроксидом, т.к. гидроксид обозначен буквой Д, значит **E** – оксогидроксид AlOOH.

Рассчитаем молярную массу Γ в расчёте на 1 атом алюминия:

$$\mathrm{M}(\Gamma) = \frac{m_{\Gamma} \cdot \eta}{2 \cdot v(\mathrm{Al_2O_3})} = \frac{0,991 \cdot 0,86}{2 \cdot \left(0,180 \middle/_{101,961}\right)} = 241,38 \frac{\Gamma}{\mathrm{моль}} \; ,$$

что соответствует гидрату хлорида алюминия. Γ – AlCl₃·6H₂O.

Таким образом, Γ – AlCl₃·6H₂O, Π – Al(OH)₃, \mathbf{E} – AlOOH.

2. Уравнения реакций:

1)
$$2 \text{ Al} + 3 \text{ H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2$$

2)
$$2 \text{ Al} + 2 \text{ NH}_3 \rightarrow 2 \text{ AlN} + 3 \text{H}_2$$

^{*} Kuang, Dai-Bin, Yueping Fang, Hanqin Liu, Christoph Frommen and Dieter Fenske,

[&]quot;Fabrication of boehmite AlOOH and γ -Al₂O₃ nanotubes via a soft solution route" // Journal of Materials Chemistry, 2003, V. 13, P. 660-662, DOI: 10.1039/B212885C

3)
$$AlCl_3 + 3 NaOH \rightarrow Al(OH)_3 + 3 NaCl$$

4)
$$Al(OH)_3 + NaOH \rightarrow Na[Al(OH)_4]$$

5)
$$Na[Al(OH)_4] \xrightarrow{t^{\circ}C} AlOOH + NaOH + H_2O$$

3. Найдём молярную массу W исходя из данных о плотности вещества (ρ) , объёме элементарной ячейки $(V\mathfrak{s})$ и числе формульных единиц (Z):

$$ho = \frac{m}{V} = \frac{Z \cdot M}{N_A \cdot V_{\text{H}}} = > M = \frac{\rho \cdot V_{\text{H}} \cdot N_A}{Z} =$$

$$= \frac{3.434 \cdot 356.96 \cdot 10^{-24} (\text{cm}^3) \cdot 6,02 \cdot 10^{23}}{2} = 368.97 \text{ г/моль}$$

В состав соединения могут входить Al, N, Cl, H, причём алюминий входит как в состав катиона, так и в состав аниона, его к.ч. рано шести в обоих случаях, катион и анион однозарядные, т.е. состав катиона [AlCl₂...]⁺, а состав аниона [AlCl₄...]⁻. Исходя из этого в

состав \mathbf{W} должно входить ещё 6 нейтральных частиц: \mathbf{W} – $[Al(NH_3)_4Cl_2][Al(NH_3)_2Cl_4]^*$, что согласуется с вычисленной молярной массой. Данное соединение чувствительно к влаге воздуха и при взаимодействии с водой гидролизуется с образованием гидроксида алюминия и аммиака.

Для катиона и аниона возможно по два изомера цис- и транс-:

$$\begin{bmatrix} CI \\ H_3N & I_{M_{1}} & I_{M_{2}} \\ H_3N & I_{M_{3}} & I_{M_{3}} \\ \end{bmatrix} + \begin{bmatrix} CI \\ H_3N & I_{M_{1}} & I_{M_{2}} \\ I_{M_{3}} & I_{M_{3}} & I_{M_{3}} \\ \end{bmatrix} + \begin{bmatrix} CI \\ CI & I_{M_{1}} & I_{M_{2}} \\ I_{M_{3}} & I_{M_{3}} & I_{M_{3}} \\ I_{M_{3}} & I_{M_{3}}$$

^{*}Stephan Bremm, Gerd Meyer, «Metallampullen als Mini-Autoklaven: Synthese und Kristallstrukturen der Ammoniakate [Al(NH₃)₄Cl₂][Al(NH₃)₂Cl₄] und (NH₄)₂[Al(NH₃)₄Cl₂][Al(NH₃)₂Cl₄]Cl₂» // Zeitschrift für anorganische und allgemeine Chemie, 2001, 627(3):407-410

4. Уравнения реакций:

6)
$$2 \text{ Al} + 6 \text{ NH}_4\text{Cl} = [\text{Al}(\text{NH}_3)_4\text{Cl}_2][\text{Al}(\text{NH}_3)_2\text{Cl}_4] + 3 \text{ H}_2$$

7)
$$[Al(NH_3)_4Cl_2][Al(NH_3)_2Cl_4] + 6H_2O = 2Al(OH)_3 + 6NH_4Cl_2$$

5. В п.1 решения данной задачи приведён расчёт общего количества вещества газов в реакционном сосуде после завершения реакции.

$$\nu_{\text{общ}} = 0.033$$
 моль

Давление в сосуде рассчитываем по уравнению Менделеева-Клапейрона:

$$P = \frac{\nu_{
m oбщ}*R*T}{V} = \frac{0{,}033*8.314*298.15}{30*10^{-6}} = 2726701~\Pi a pprox 27~{\rm arm}$$

6. Для вычисления плотности необходимо найти объём ячейки и её массу:

$$V = \frac{\sqrt{3}}{2}\alpha^2 \cdot c = \frac{\sqrt{3}}{2} \cdot 3.021^2 \cdot 5.082 = 40.167 \text{Å}^3 = 40.167 \cdot 10^{-24} \text{cm}^3$$

$$m = \frac{M}{N_A} Z = \frac{40.989}{6.02 \cdot 10^{23}} \cdot 2 = 13.62 \cdot 10^{-23} \text{ r}$$

$$\rho = \frac{m}{V} = \frac{13.62 \cdot 10^{-23}}{40.167 \cdot 10^{-24}} = 3.391 \text{ }^{\Gamma}/_{\text{CM}^3}$$

Система оценивания:

1	Металл $X - 1$ балл		
	Расчёт (любой вариант подтверждения X) – 2 балла	7 баллов	
	Вещества $A - E$ по 0,5 балла — 3 балла		
	Расчёт молярной массы $\Gamma - 1$ балл		
2	Уравнения реакций 1 – 5 по 1 баллу	5 баллов	
3	Расчёт молярной массы $\mathbf{W} - 1$ балл		
	Состав $\mathbf{W} - 1$ балл	4 балла	
	Изомеры – 2 балла		
4	Реакции 6 и 7 по 1 баллу	2 балла	
5	Расчёт давления в сосуде	1 балл	
6	Плотность В	1 балл	
	ИТОГО:20 балло		