Table S1. Theoretical and empirical patterns of reproductive phenology, reproductive output, and offspring performance with latitude (Low = Equatorial or Subtropical; High = Temperate or Polar) or environmental seasonality (low to high) in marine taxonomic orders. Studies on anadromous fish (†) or terrestrial taxa (‡) are noted separately. Estimates of fecundity that were measured at the clutch level in iteroparous species (e.g. gonadosomatic index) are represented as clutch size. Offspring provisioning measurements were proxied by egg volume and diameter. Latitudinal patterns in

traits are denoted as linear positive (+), linear negative (-), no correlation (ns), or unimodal (*).

Trait		Literature	Present Study	Interspecific variation	Intraspecific variation			
		Low → High	Low → High		Chordata	Arthropoda	Mollusca	Other
Reproductive phenology	Season length			(-) 301 fish spp. ⁴² (-) 11 Decapod spp. ⁴³ (-) Sygnathiformes spp. ⁴⁴ (-) Balanomorpha spp. ⁴⁵	(+) Scombriformes ²⁹ (-) Acanthuriformes ²⁷ (-) Atheriniformes ¹⁰ ,12 (-) Centrarchiformes ³⁷ (-) Cypriniformes ¹⁴ (-) Cyprinodontiformes ¹⁵ (-) Perciformes ^{16,17,18} (ns) Perciformes ^{36†}	(-) Decapoda ^{30,35}	(-) Cardiida ⁴¹ (-) Cardiida ^{32, 33} (-) Venerida ³⁴ (ns) Venerida ⁵⁵ (ns) Pectinida ⁵⁵ (ns) Mytilida ⁵⁴	(–) Scleractinia ³⁸
	Clutch number	> ((-) 11 Decapod spp. ⁴³ (-) 272 Rodent spp. ^{47‡} (-) Marine invertebrates ⁵²	(+) Clupeiformes ^{13†}		(–) Mytilida ⁵⁴	
	Clutch size	<u> </u>		(+) 1458 avian spp. ^{49‡} (-) 11 Decapod spp. ⁴³ (ns) Sygnathiformes spp. ⁴⁴ (ns) Balanomorpha spp. ⁴⁵	(+) Acanthuriformes ²⁷ (+) Clupeiformes ^{13†} (+) Perciformes ^{17,18} (-) Perciformes ¹⁶ (-) Atheriniformes ^{10,11} (*) Centrarchiformes ³⁷	(+) Decapoda ^{3,4,5,6,8,28,30} (-) Decapoda ⁷ (+) Canuelloida ^{1,2} (ns) Decapoda ⁹ (*) Decapoda ³⁹	(+) Chitonida ²⁶ (+) Neogastropoda ²² (+) Trochida ⁴⁰	(*) Actiniaria ³¹ (ns) Echinoida ²⁵ (ns) Scleractinia ³⁸
Reproductive output	Fecundity			(-) Marine invertebrates ⁵² (ns) Scleractinia spp. ⁵³	(+) Atheriniformes ^{10,11} (+) Perciformes ¹⁹ (+) Salmoniformes ^{20†,21†} (-) Clupeiformes ^{13†}			
Offspring performance	Offspring size			(+) Sygnathiformes spp. 44 (+) Marine/freshwater spp. 50		(+) Decapoda ⁷		
	Offspring provisioning			(+) Sygnathiformes spp. 44 (+) 278 fish spp. 46 (+) 39 arthropod spp. 51 (+) Marine invertebrates 52 (ns/+) 10 teleost families 48 (ns) Scleractinia spp. 53	(+) Perciformes ^{17,23} (-) Salmoniformes ^{20†,21†} (ns) Atheriniformes ¹⁰	(+) Isopoda ²⁴ (+) Decapoda ^{5,6,7,8,9,28} (-) Decapoda ³ (ns) Decapoda ^{3,39}		

¹Lonsdale and Levinton 1985, ²Lonsdale and Levinton 1986, ³Baldzani et al. 2018, ⁴Lardies and Wehrtmann 1997, ⁵Lardies and Wehrtmann 2001, ⁶Lardies and Castilla 2001, ⁷Lardies et al. 2010, ⁸Gorney et al. 1992, ⁹Brante et al. 2004, ¹⁰Conover 1992, ¹¹Sosebee 1991, ¹²Middaugh and Hemmer 1992, ¹³Leggett and Carscadden 1978, ¹⁴Cowell and Resico 1975, ¹⁵Conover and Present 1990, ¹⁶Slesinger et al. 2021, ¹⁷Kokita 2003, ¹⁸Kokita 2004, ¹⁹Richardson et al. 1997, ²⁰Fleming and Gross 1990, ²¹Beacham and Murray 1993, ²²Waite et al. 2024, ²³Johnston and Leggett 2002, ²⁴Clarke and Gore 1992, ²⁵Lester et al. 2007, ²⁶Alvarez-Garcia et al. 2024, ²⁷Zarco-Perello et al. 2022, ²⁸Bezerra Ribeiro et al. 2023, ²⁹Domínguez-Petit et al. 2022, ³⁰Defeo and Cardoso 2002, ³¹Ryan and Miller 2019, ³²Verdelhos et al. 2011, ³³Mahony et al. 2020, ³⁴Livore et al. 2019, ³⁵Bauer and Rivera Vega 1992, ³⁶Ishikawa and Kitano 2020, ³⁷Stocks et al. 2015, ³⁸de Putron and Smith 2011, ³⁹Stanski et al. 2018, ⁴⁰Martone and Micheli 2012, ⁴¹Patiño et al. 2021, ⁴²Vila-Gispert et al. 2002, ⁴³Bauer 1992, ⁴⁴Foster and Vincent 2004, ⁴⁵Barnes and Barnes 1968, ⁴⁶Kasimatis and Ringos 2016, ⁴⁷Heldstab 2021, ⁴⁸Thresher 1988, ⁴⁹Boyer et al. 2010, ⁵⁰Marshall et al. 2018, ⁵¹Thatje and Hall 2016, ⁵²Thorson 1950, ⁵³Gutierrez-Isaza et al. 2022, ⁵⁴Oyarzún et al. 2018, ⁵⁵Uribe et al 2012