End-Semester Exam DM, Monsoon 2021

Duration : 120 mins Max marks : 25+1

- 1. (3 marks) Determine the number of subgraphs of the complete bipartite graph $K_{3,3}$ which are isomorphic to the cycle C_6 .
- 2. (3 marks) For each positive integer n, define the integers a_n and b_n by

$$(1+\sqrt{2})^n = a_n + b_n \sqrt{2}.$$

For instance, since $(1+\sqrt{2})^3 = 7+5\sqrt{2}$, we have $a_3 = 7, b_3 = 5$. Prove that $gcd(a_n, b_n) = 1$ for each positive integer n.

- 3. (3 marks) Determine the number of equivalence relations on the set $\{1, 2, ..., 8\}$ which contain precisely 2 distinct equivalence classes.
- 4. (3 marks) What is the remainder when

$$12^{34^{56^{78}}}$$

is divided by 80?

5. (3 marks) Prove that

$$\frac{(3+\sqrt{13})^n - (3-\sqrt{13})^n}{\sqrt{13}}$$

is an integer divisible by 2^n for each nonnegative integer n.

- 6. (3 marks) Let a_n denote the number of surjective (onto) functions $f:\{1,2,\ldots,n\} \longrightarrow \{1,2,3\}$ such that f(1) < f(2). Give a Θ estimate for a_n .
- 7. (3 marks) Give a combinatorial proof that

$$\sum_{k=0}^{n} \binom{n}{k} \binom{k}{\ell} 2^k = \binom{n}{\ell} 2^{\ell} 3^{n-\ell}.$$

- 8. (4 marks) An engineer designs at least one robot a day for 30 days. If a total of 45 robots have been designed, then show that there must have been a series of consecutive days when exactly 14 robots were designed.
- 9. (1 mark (bonus)) Show that $\sqrt[5]{5}$ is irrational by using the well ordering principle.