Section 1.4 – Inverse Matrices - Finding A^{-1}

Definition

The matrix A is invertible if there exists a matrix A^{-1} such that:

$$A^{-1}A = AA^{-1} = I$$

where A^{-1} read as "A inverse" and A has to be a square matrix.

Not all matrices have inverses.

- 1. The inverse exists *iff* elimination produces n pivots (row exchanges allow).
- **2.** The matrix A cannot have two different inverses.
- **3.** If A is invertible, the one and only one solution to Ax = B is $x = A^{-1}B$

$$AX = B$$

$$A^{-1}(AX) = A^{-1}B$$

$$Associate property$$

$$IX = A^{-1}B$$

$$X = A^{-1}B$$

- **4.** Suppose there is a *nonzero* vector x such that Ax = 0. Then A cannot have an inverse
- **5.** A 2 by 2 matrix is invertible iff ad bc is not zero.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 Only for 2 by 2 matrices

If ad - bc = 0 is the determinant, then A^{-1} doesn't exist

The Inverse of a Product AB

Theorem

If an $n \times n$ matrix has an inverse, that inverse is unique.

Proof

Suppose that A has an inverse A^{-1} and B is a matrix such that BA = I

$$B = BI$$

$$= B \left(AA^{-1} \right)$$

$$= \left(BA \right) A^{-1}$$

$$= IA^{-1}$$

$$= A^{-1}$$

Therefore, the inverse is unique

Theorem

If A and B are invertible then so is AB. The inverse of a product AB is $(AB)^{-1} = B^{-1}A^{-1}$

Proof

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$
$$= (AI)A^{-1}$$
$$= AA^{-1}$$
$$= I$$

Reverse Order

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$
$$(ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1}$$

Theorem

If A is invertible and n is a nonnegative integer, then:

- a) A^{-1} is invertible and $(A^{-1})^{-1} = A$
- b) A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$
- c) kA is invertible for any nonzero scalar k, and $(kA)^{-1} = k^{-1}A^{-1}$

Proof

$$(kA)(k^{-1}A^{-1}) = k^{-1}(kA)A^{-1}$$
$$= (k^{-1}k)AA^{-1}$$
$$= (1)I$$
$$= I$$

$$(k^{-1}A^{-1})(kA) = k^{-1}(kA^{-1})A$$
$$= (k^{-1}k)A^{-1}A$$
$$= (1)I$$
$$= I$$

Finding A^{-1} using Gauss-Jordan Elimination

$$\left\lceil A\middle|I\right\rceil \to \left\lceil I\middle|A^{-1}\right\rceil$$

Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -2 & 1 & 0 \\ 0 & 0 & -3 & -3 & 0 & 1 \end{bmatrix} - \frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & -3 & -3 & 0 & 1 \end{bmatrix} -\frac{1}{3}R_{3}$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 1 & 0 & -\frac{1}{3} \end{bmatrix} \quad \begin{bmatrix} R_1 - R_3 & & 1 & 0 & 1 & 1 & 0 & 0 \\ & R_2 - \frac{3}{2} R_3 & & 0 & 0 & -1 & -1 & 0 & \frac{1}{3} \\ & & 1 & 0 & 0 & 0 & 0 & \frac{1}{3} \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 \\ & 0 & -\frac{3}{2} & -\frac{3}{2} & 0 & \frac{1}{2} \\ & 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 1 & 0 & -\frac{1}{3} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -\frac{1}{3} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -\frac{1}{3} \end{bmatrix}$$

- ✓ Matrix A is *symmetric* across its main diagonal. So is A^{-1}
- Matrix A is *tridiagonal* (only three nonzero diagonals). But A^{-1} is a full matrix with no zeros. (another reason we don't compute A^{-1})

Singular versus Invertible

 A^{-1} exists when A has a full set of n pivots. (Row exchanges allowed)

- With *n* pivots, elimination solves all the equations $Ax_i = b_i$. The columns x_i go into A^{-1} . Then $AA^{-1} = I$ is at least a *right-inverse*.
- Elimination is really a sequence of multiplications.

Conclusion

- If A doesn't have n pivots, elimination will lead to a zero row.
- Elimination steps are taken by an invertible M. So a row of MA is zero.
- If AB = I then MAB = M. The zero row of MA, times B, gives a zero row of M.
- The invertible matrix M can't have a zero row! A must have n pivots if AB = I.

Elementary Matrices

Definition

Let e be an elementary row operation. Then the $n \times n$ elementary matrix E associated with e is the matrix obtained by applying e to the $n \times n$ identity matrix. Thus

$$E = eI$$

Example

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 \rightarrow Multiply R_2 of I by -3

b)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow Multiply the third row by -5$$

c)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow Interchange the first and second rows$$

d)
$$\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow Add - 3 times R_1 to R_2$$

Theorem

Let e be an elementary operation and let E be the corresponding elementary matrix E = e(I). Then for every $m \times n$ matrix A

$$e(A) = EA$$

That is, an elementary row operation can be performed on A by multiplying A on the left by the corresponding elementary matrix.

$Example m \times m$

Let
$$A = \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$
 $M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$

$$MA = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -4 & 6 & 2 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$

This result can be obtained from A by multiplying the first row by 2.

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -2 & 3 & 1 \\ -6 & 2 & 1 & 5 \\ 1 & 0 & 2 & 4 \end{bmatrix}$$

This result can be obtained from A by interchanging rows 2 and 3.

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ -6 & 2 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -2 & 3 & 1 \\ 1 & 0 & 2 & 4 \\ 0 & -4 & 10 & 8 \end{bmatrix}$$

This result can be obtained from *A* by adding 3 times row 1 to row 3.

Uniqueness of Echelon Form

Two matrices A and B are row-equivalent if and only if they have the same reduced echelon form.

Proof

If A and B have the same reduced echelon form E, then A is row-equivalent to E and E is row-equivalent to E. It follows that E is row-equivalent to E.

Now Suppose A and B are row-equivalent. Let E_1 be a reduced echelon form of A and E_2 be a reduced echelon form of B. Then E_1 and E_2 are row equivalent.

Suppose $E_1 = IF_1$ and $E_2 = IF_2$. Since E_1 and E_2 are row equivalent, $E_2 = CE_1$ for some matrix C. This means I = CI and $F_2 = CF_1$. But then C = I and $F_2 = F_1$.

Example

Show that the two matrices are row equivalent

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \quad \begin{aligned} R_1 + R_2 \\ R_2 - 2R_1 \\ = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix} \\ = B & | \end{aligned}$$

Definition

A relationship ~ (equivalent) between elements of a set is called an equivalence relation if

- ✓ $A \sim A$ is always true,
- ✓ $A \sim B$ always implies $B \sim A$,
- ✓ $A \sim B$ and $B \sim C$ always implies $A \sim C$.

Exercises Section 1.4 – Inverse Matrices - Finding A^{-1}

1. Apply Gauss-Jordan method to find the inverse of this triangular "Pascal matrix"

Triangular Pascal matrix
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}$$

2. If A is invertible and AB = AC, prove that B = C

3. If
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, find two matrices $B \neq C$ such that $AB = AC$

4. If A has row 1 + row 2 = row 3, show that A is not invertible

- a) Explain why Ax = (1, 0, 0) can't have a solution.
- b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b
- c) What happens to **row** 3 in elimination?

5. True or false (with a counterexample if false and a reason if true):

- a) A 4 by 4 matrix with a row of zeros is not invertible.
- b) A matrix with 1's down the main diagonal is invertible.
- c) If A is invertible then A^{-1} is invertible.
- d) If A is invertible then A^2 is invertible.

6. Do there exist 2 by 2 matrices A and B with real entries such that AB - BA = I, where I is the identity matrix?

7. If B is the inverse of A^2 , show that AB is the inverse of A.

8. Find and check the inverses (assuming they exist) of these block matrices.

$$\begin{bmatrix} I & 0 \\ C & I \end{bmatrix} \quad \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \quad \begin{bmatrix} 0 & I \\ I & D \end{bmatrix}$$

9. For which three numbers c is this matrix not invertible, and why not?

$$A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$$

10. Find A^{-1} and B^{-1} (if they exist) by elimination.

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

11. Find A^{-1} using the Gauss-Jordan method, which has a remarkable inverse.

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find the inverse, if exists, of

$$12. \quad \begin{bmatrix} 6 & -4 \\ -3 & 2 \end{bmatrix}$$

23.
$$A = \begin{pmatrix} 2 & 4 \\ 3 & -1 \end{pmatrix}$$

$$\mathbf{34.} \quad A = \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix}$$

$$13. \quad \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix}$$

24.
$$A = \begin{pmatrix} -1 & 3 \\ 2 & -1 \end{pmatrix}$$

35.
$$A = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix}$$

$$14. \quad \begin{bmatrix} -3 & 6 \\ 4 & 5 \end{bmatrix}$$

25.
$$A = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}$$

36.
$$A = \begin{pmatrix} -3 & \frac{1}{2} \\ 6 & -1 \end{pmatrix}$$

15.
$$A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

$$26. \quad A = \begin{pmatrix} 4 & 6 \\ 2 & 3 \end{pmatrix}$$

$$\mathbf{37.} \quad A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0 \end{bmatrix}$$

$$16. \quad A = \begin{bmatrix} 10 & -2 \\ -5 & 1 \end{bmatrix}$$

28.
$$A = \begin{pmatrix} -2 & 7 \\ 0 & 2 \end{pmatrix}$$

27. $A = \begin{pmatrix} -6 & 9 \\ 2 & -3 \end{pmatrix}$

38.
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 5 & 3 \\ 2 & 4 & 3 \end{bmatrix}$$

$$17. \quad A = \begin{bmatrix} -2 & 3 \\ -3 & 4 \end{bmatrix}$$

29.
$$A = \begin{pmatrix} 4 & -16 \\ 1 & -4 \end{pmatrix}$$

$$\mathbf{39.} \quad A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

19.
$$A = \begin{bmatrix} -2 & a \\ 4 & a \end{bmatrix}$$

18. $A = \begin{bmatrix} a & b \\ 3 & 3 \end{bmatrix}$

30.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

40.
$$A = \begin{bmatrix} -2 & 5 & 3 \\ 4 & -1 & 3 \\ 7 & -2 & 5 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} 4 & 4 \\ b & a \end{bmatrix}$$

32.
$$A = \begin{pmatrix} b & 3 \\ b & 2 \end{pmatrix}$$

31. $A = \begin{pmatrix} 2 & 1 \\ a & a \end{pmatrix}$

41.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$

$$\mathbf{21.} \quad A = \begin{pmatrix} -1 & 2 \\ -2 & 1 \end{pmatrix}$$

33.
$$A = \begin{pmatrix} 1 & a \\ 3 & a \end{pmatrix}$$

$$22. \quad A = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$

42.
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -2 & 1 \\ -2 & -3 & 0 \end{pmatrix}$$

43.
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 1 & -1 & 0 \end{pmatrix}$$

44.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix}$$

45.
$$A = \begin{pmatrix} 3 & 3 & 1 \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$

46.
$$A = \begin{pmatrix} -3 & 1 & -1 \\ 1 & -4 & -7 \\ 1 & 2 & 5 \end{pmatrix}$$

47.
$$A = \begin{pmatrix} 1 & 1 & -3 \\ 2 & -4 & 1 \\ -5 & 7 & 1 \end{pmatrix}$$

48.
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 5 & 3 \\ 2 & 4 & 3 \end{pmatrix}$$

49.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\mathbf{50.} \quad A = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{4}{5} & \frac{1}{10} \end{pmatrix}$$

51.
$$A = \begin{pmatrix} \sqrt{2} & 3\sqrt{2} & 0 \\ -4\sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

52.
$$A = \begin{pmatrix} -8 & 17 & 2 & \frac{1}{3} \\ 4 & 0 & \frac{2}{5} & -9 \\ 0 & 0 & 0 & 0 \\ -1 & 13 & 4 & 2 \end{pmatrix}$$

53.
$$A = \begin{bmatrix} -2 & -3 & 4 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 4 & -6 & 1 \\ -2 & -2 & 5 & 1 \end{bmatrix}$$

54.
$$A = \begin{bmatrix} 1 & -14 & 7 & 38 \\ -1 & 2 & 1 & -2 \\ 1 & 2 & -1 & -6 \\ 1 & -2 & 3 & 6 \end{bmatrix}$$

55.
$$A = \begin{bmatrix} 10 & 20 & -30 & 15 \\ 3 & -7 & 14 & -8 \\ -7 & -2 & -1 & 2 \\ 4 & 4 & -3 & 1 \end{bmatrix}$$

56. Show that *A* is not invertible for any values of the entries

$$A = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix}$$

57. Prove that if A is an invertible matrix and B is row equivalent to A, then B is also invertible.

58. Determine if the given matrix has an inverse, and find the inverse if it exists. Check your answer by multiplying $A \cdot A^{-1} = I$

a)
$$\begin{bmatrix} 2 & 3 \\ -3 & -5 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 3 & 5 \end{bmatrix}$

- **59.** Show that the inverse of $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is $\begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix}$
- **60.** If the product C = AB is invertible (and A & B are square matrices), find a formula for A^{-1} that involves C^{-1} and B.

Hence, it is not possible to multiply a non-invertible matrix by another matric and obtain an invertible matrix as a result.

- **61.** Prove that if A is an $m \times n$ matrix, there is an invertible matrix C such that CA is in reduced rowechelon form.
- 62. Prove that $2 m \times n$ matrices A and B are row equivalent if and only if there exists a nonsingular matrix P such that B = PA
- **63.** Let *A* and *B* be 2 $m \times n$ matrices. Suppose *A* is row equivalent to *B*. Prove that *A* is nonsingular if and only if *B* is nonsingular.
- **64.** Show that if A and B are two $n \times n$ invertible matrices then A is row equivalent to B.
- **65.** Prove that a square matrix A is nonsingular if and only if A is a product of elementary matrices.
- **66.** Show that if $A \sim B$ (that is, if they are row equivalent), then EA = B for some matrix E which is a product of elementary matrices.
- 67. Show that if EA = B for some matrix E which is a product of elementary matrices, then $AC \sim BC$ for every $n \times n$ matrix C.
- **68.** Let $A\vec{x} = 0$ be a homogeneous system of *n* linear equations in *n* unknowns that has only the trivial solution. Show that of *k* is any positive integer, then the system $A^k \vec{x} = 0$ also has only trivial solution.
- **69.** Let $A\vec{x} = 0$ be a homogeneous system of *n* linear equations in *n* unknowns, and let *Q* be an invertible $n \times n$ matrix. Show that $A\vec{x} = 0$ has just trivial solution if and only if $(QA)\vec{x} = 0$ has just trivial solution.

- 70. Let $A\vec{x} = b$ be any consistent system of linear equations, and let \vec{x}_1 be a fixed solution. Show that every solution to the system can be written in the form $\vec{x} = \vec{x}_1 + \vec{x}_0$ where \vec{x}_0 is a solution to $A\vec{x} = 0$. Show also that every matrix of this form is a solution.
- 71. If A and B are $n \times n$ matrices satisfying $A^2 = B^2 = (AB)^2 = I_n$. Prove that AB = BA.
- 72. Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0 \end{pmatrix}$. Verify that $A^3 = 5I$, then find A^{-1} in term of A.
- 73. Consider B(A, I) = (BA, B), thus if B is the inverse of A, then (BA, B) becomes (I, A^{-1}) . On the other hand B is a product of elementary matrices since it is invertible. This indicates that the inverse of A can be obtained by applying elementary row operations to (A, I) to get (I, A^{-1}) .

Find the inverses of

a)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a & b & c & d \end{pmatrix}$

74. Let $A, B, C, X, Y, Z \in M_n(\mathbb{C}), A$ and C are invertible. Find

a)
$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^{-1}$$
 b)
$$\begin{pmatrix} I & X & Y \\ 0 & I & Z \\ 0 & 0 & I \end{pmatrix}^{-1}$$

75. Suppose that A, B, and A - B are invertible $n \times n$ matrices. Show that

$$(A-B)^{-1} = A^{-1} + A^{-1} (B^{-1} - A^{-1})^{-1} A^{-1}$$

- **76.** Suppose *P* is invertible and $A = PBP^{-1}$. Solve for *B* in terms of *A*.
- 77. Suppose (A-B)C=0, where A and B are $m \times n$ matrices and C is invertible. Show that A=B.