Broad band continuum spectra of accreting pulsars around and above the critical luminosity

Katja Pottschmidt

University of Maryland, Baltimore County NASA Goddard Space Flight Center

M.T. Wolff, P.B. Hemphill, D.M. Marcu-Cheatham, M. Kühnel, A.M. Gottlieb, F.-W. Schwarm, S. Falkner, R. Ballhausen, P.A. Becker, F. Fürst, K.S. Wood, J. Wilms, M.C. Brumback, R.C. Hickox, M. Bachetti, J.A. Tomsick, on behalf of the Magnet & NuSTAR Binaries Collaborations

"Breaking the Limits", Arbatax, Italy, September 19-23, 2016

Accreting Pulsars

- persistent O, B wind accretors or Be transients
- young (~ 70 MW, 70 SMC, 15 LMC, M82, M31)
- $B_{\rm NS}\sim {\rm a~few}\,10^{12}\,{\rm G}$

 $r_{\rm Alfvén} \sim 1800 \, {\rm km}$

Changing Deceleration

$$L_{\rm crit} = 1.5 \times 10^{37} \, {\rm erg/s} \left(\frac{\Lambda}{0.1}\right)^{-7/5} w^{-28/15} \left(\frac{M_{\rm NS}}{1.4 \, M_{\odot}}\right)^{29/30} \left(\frac{R_{\rm NS}}{10 \, {\rm km}}\right)^{1/10} \left(\frac{B_{\rm NS}}{10^{12} \, {\rm G}}\right)^{16/15}$$

Becker+12; alternatives see Mushtukov+15, Postnov+15

$L_{ m X} \ll L_{ m coul}$	$L_{ m coul} < L_{ m X} < L_{ m crit}$	$L_{ m X} \gtrsim L_{ m crit}$
Free fall, surface impact	Coulomb braking	Radiation braking
Pencil beam (a)	"Fancil" beam	Fan beam (d)
$L_{\rm X} \uparrow \rightarrow h, B, E_{\rm cyc} const.$	$L_{\rm X} \uparrow \rightarrow h \downarrow \rightarrow B, E_{\rm cvc} \uparrow$	$L_{\rm X} \uparrow \rightarrow h \uparrow \rightarrow B, E_{\rm cyc} \downarrow$

E_{cvc} dependencies on L observed!, e.g., Staubert+07, Mowlavi+06

Typical Spectrum

Hard, cutoff powerlaw:

$$\frac{\textit{E}^{-\Gamma}}{1+\exp((\textit{E}-\textit{E}_{\rm cut})/\textit{E}_{\rm fold})}$$
 Absorption:

 \lesssim 3 keV

Fe K line(s): 6.4–7.0 keV

Cyclotron line(s): 10–100 keV

Observed spectral changes?

XTE J1946+274, *Suzaku* Marcu-Cheatham+15

Changing Continuum

GRO J1008-57, RXTE, Suzaku, NuSTAR, Kühnel+16, subm.

- + hardening/saturation for 6 pulsars (RXTE/ASM, Postnov+15)
- reflection (Postnov+15) or reaching L_{crit} ?

Physical Continuum Model

 $L_{\rm X}\gtrsim L_{\rm crit}$: Radiation dominated radiative shock Solve t-indep. cylindrical plane-parallel radiative transport equation

Analytical Solution

Column integrated flux is the sum of three Comptonized seed components:

$$F(E) = (4\pi D)^{-1} \left[\Phi^{\mathsf{ff}}(E) + \Phi^{\mathsf{cyc}}(E) + \Phi^{\mathsf{bb}}(E) \right]$$

- Becker & Wolff 05a, 05b, 07, including "spectral fits by eye"
- Ferrigno+09, proof of concept statistical fit
- xspec models: Wolff+16, Ferrigno ('16, priv. comm.)

Numerical Solution

• xspec models: Farinelli+12, Farinelli+16

Physical Continuum: Hercules X-1

$$L_{\rm X} = 4.9 \times 10^{37} \, {\rm erg/s}$$

 $L_{\rm crit} = 7.3 \times 10^{36} \, {\rm erg/s}$

$$\begin{split} kT_e &= 4.58^{+0.07}_{-0.07} \, \text{keV} \\ r_{\rm col} &= 107.0^{+1.7}_{-1.8} \, \text{m} \\ \sigma_\parallel/\sigma_{\rm T} &= 5.2(1) \, 10^{-5} \\ \bar{\sigma}/\sigma_{\rm T} &= 3.5(2) \, 10^{-4} \end{split}$$

(Flux, distance: \dot{M}) (Absorption: $N_{\rm H}$)

(2 Fe lines)

(Cyclotron line: B)

 $(\sigma_{\perp} = \sigma_{\mathrm{T}})$

 $\chi^2_{\rm red} = 1.2$ similar to empirical description by Fürst+13.

Her X-1, *NuSTAR* Wolff+16

Physical Continuum: V 0332–53

V 0332+53 in 2005, RXTE, Hemphill+16, to be subm.

$$L_{\rm X} = 15.5 - 41.2 \times 10^{37} \, {\rm erg/s}$$

The brightest Galactic accreting pulsar transient.

The fun begins:

- fit 2× 1-column
- derive h, redshift continuum & E_{cvc}
- replace the σ s:

$$\xi \sim 4.1\,t_{
m sh}/t_{
m esc} = 1.15$$
 fixed $\delta = y_{
m bulk}/y_{
m therm}$

•
$$\dot{M}$$
 fixed – or – \dot{M} tied to $r_{\rm col}$

 \Rightarrow Free parameters kT_e , M, and δ .

Work in Progress

	$L_{\rm X}~(0.1100~{ m keV}) \ 10^{37}~{ m erg~s^{-1}}$		kT _e keV	$r_{ m col} \ { m m}$	σ_\parallel $10^{-5}\sigma_{ m T}$	$ar{\sigma}$ $10^{-4}\sigma_{ m T}$	
Cen X-3		4	$3.1^{+0.4}_{-0.1}$	65^{+12}_{-4}	$2.8^{+0.2}_{-0.2}$	$1.6^{+0.6}_{-0.3}$	S, Gottlieb/KP
Her X-1		5	$4.6_{-0.1}^{+0.1}$	107^{+2}_{-2}	$5.2^{+0.1}_{-0.1}$	$3.5^{+0.2}_{-0.2}$	N, Wolff+16
V 0332+53	2	× 20	$4.6_{-0.3}^{+0.4}$	746	5.1	3.8	R, Hemphill
LMC X-4		35	$5.6^{+0.1}_{-0.5}$	1218^{+21}_{-14}	5.4	$16.2^{+0.3}_{-0.3}$	S, Marcu/KP
SMC X-1		105	6.0	3500	0.5	4.6	N, KP/Wolff

S, N, R: Suzaku, NuSTAR, RXTE

V 0332: $r_{\rm col}$, σ s derived, errors of fit parameters well behaved

LMC X-4: within 10% of superorbital peak

SMC X-1: within 40% of superorbital peak (T-scattering?), very preliminary

Farinelli+16: Her X-1, Cen X-3, 4U 0115+63

Good fits, comparable to empirical continua.

Outlook

More Applications

Sources/code comparisons, treatment of superorbital periods, mapping to empirical parameters, \dots

New Observations

E.g., recent NuSTAR ToO of SMC X-3 at $L_{\rm X}=84\times10^{37}\,{\rm erg/s}$ (ATel 9404).

Model Development

Include resonant scattering, add light bending, allow for pencil beam, ...

Additioal Reading

Contributions to 2016 HEAD Special Session: http://www.sternwarte.uni-erlangen.de/wiki/doku.php?id=head16:start