- Computer Organization
 - Carl Hamacher, ZvonkoVranesic and Safwat Zaky
 - Fifth Edition, Tata McGraw-Hill.

- Computer Organization and Architecture: Designing for Performance
 - William Stallings
 - Eighth Edition, Pearson

- 8086/8088 family: Design Programming and Interfacing
 - John Uffenbeck
 - Pearson Education

- Microprocessor and Interfacing
 - Douglas Hall
 - TMH Publication

Course Objective

- 1. Conceptualize the basics of organizational and architectural issues of a digital computer.
- 2. Analyze processor performance improvement using instruction level parallelism.
- 3. Learn the function of each element of a memory hierarchy.

Course Objective

- 4. Study various data transfer techniques in digital computer.
- 5. Articulate design issues in the development of processor or other components that satisfy design requirements and objectives.
- 6. Learn microprocessor architecture and study assembly language programming

Chapter 1

Introduction

Overview

Why to study computer organization and architecture?

Design better programs, including system software such as compilers, operating systems, and device drivers.

- Optimize program behavior.
- Evaluate (benchmark) computer system performance.
- Understand time, space, and price tradeoffs.

Overview

- Computer organization
 - physical aspects of computer systems.
 - E.g., circuit design, control signals, memory types.
 - How does a computer work?
- Computer architecture
 - Logical aspects of system as seen by the programmer.
 - E.g., instruction sets, instruction formats, data types, addressing modes.
 - How do I design a computer?

Computer Component

- At the most basic level, a computer is a device consisting of three pieces:
 - A processor to interpret and execute programs
 - A memory to store both data and programs
 - A mechanism for transferring data to and from the outside world.

Architecture & Organization

 All Intel x86 family share the same basic architecture

 The IBM System/370 family share the same basic architecture

- This gives code compatibility
 - At least backwards

Organization differs between different versions

Structure & Function

 Structure is the way in which components relate to each other

 Function is the operation of individual components as part of the structure

Function

- All computer functions are:
 - Data processing
 - Data storage
 - Data movement
 - Control

Operations (1) Data movement

Operations (2) Storage

Operation (3) Processing from/to storage

Operation (4) Processing from storage to I/O

Structure

The Computer

- CPU
 - Controls the operation of the computer and performs its data processing functions.
- Main memory
 - Stores data
- I/O
 - Moves data between the computer and its external environment
- System interconnection
 - Provides for communication among CPU, main memory, and I/O

Structure - Top Level

Structure - The CPU

Structure - The Control Unit

