Series 5

Sylvain Julmy

1

(a)

We know that the graph G=(V,E) is 3-regular. So, $\forall v \in V, deg(v)=3$. We also know that $\sum_{v \in V} deg(v)=2|E|$. Finally, we have $\sum_{v \in V} deg(v)=3|V|=2|E|$.

(b)

In the computation $\sum_{i=3}^{\infty} i * n_i$, every edges is counted twice because a segment can only separate the plane into two faces. So, we have $\sum_{i=3}^{\infty} i * n_i = 2|E|$, because the graph is 3-regular from the previous exercice, we know that 2|E| = 3|V|.

(c)

From previous exercice, we know that $\sum_{i=3}^{\infty} i * n_i = 3|V|$ and we assume that $\sum_{i=3}^{\infty} (6-i)n_i = 12$:

$$\left(\sum_{i=3}^{\infty} i * n_i\right) + \left(\sum_{i=3}^{\infty} (6-i)n_i\right) = \sum_{i=3}^{\infty} 6n_i - in_i + in_i = 12 + 3|V|$$

$$\sum_{i=3}^{\infty} 6n_i = 12 + 3|V|$$

$$\sum_{i=3}^{\infty} n_i = 2 + \frac{|V|}{2}$$

 $\sum_{i=3}^{\infty} n_i$ is the total number of faces f, so we have to prove that $f = \frac{|V|}{2} + 2$ for any 3-regular planar graph:

For a 3-regular graph, we know that 2|E| = 3|V|. Using the Euler's formula, we could deduce the formula for the number of faces :

$$\begin{aligned} |V| - |E| + f &= 2 \\ 2|V| - 2|E| + 2f &= 4 \\ 2|V| - 3|V| + 2f &= 4 \\ 2f - |V| &= 4 \\ 2f &= |V| + 4 \\ f &= \frac{|V|}{2} + 2 \end{aligned}$$

(d)

We know that the graph is 3-regular and its faces are only polygon or pentagon. So we can transform $\sum_{i=3}^{\infty} (6-i)n_i = (6-5)n_5 + \underbrace{(6-6)}_{0} n_6 = n_5 = 12$. The total number of pentagonal faces n_5 is 12.

2

(a)

We know that $|V| - |E| + f = 2 \implies |E| = |V| + f - 2$ and every faces have at least 4 edges (triangle-free graph) : $4f \le 2|E| \implies f \le \frac{|E|}{2}$. Finally, we have

$$|E| \le |V| + \frac{|E|}{2} - 2$$

 $\frac{|E|}{2} \le |V| - 2$
 $|E| \le 2|V| - 4$

(b)

 $K_{3,3}$ is triangle-free because it is bipartite, so his chromatic number is 2 so there is no triangle. $K_{3,3} = (V, E), |V| = 6, |E| = 9$ (count by hand) and we finally have :

$$9 \nleq 2 * 6 - 4 \implies 9 \nleq 8$$

(c)

No, for example the following graph is planar, 3-regular and on 6 vertices:

3

(a)

For any graph G = (V, E), if we do a subdivision of G obtain G', we could contract the added vertices and corresponding edges in order to recover G from G'. So, if G holds a subgraph G_{sub} isomorphic to a subdivision of H, denote H', we could delete all the vertices and edges which are not part of G_{sub} , then we use the contraction on edges, edges deletion and vertices deletion to obtain H.

(b)

We use the following Petersen graph:

The K_5 graph:

The Petersen graph is not a subdivision of $K_{3,3}$, because the subdivision could never delete edges. It only add a vertices v on an edges $e = \{v_1, v_2\}$ such that $E' = E \setminus \{v_1, v_2\} \cup \{\{v_1, v\}, \{v, v_2\}\}$ and $V' = V \cup \{v\}$.

So, we could never obtain the Petersen graph by successive subdivision because we can't produce a vertices of degree 3. We can't modify the degree of existing vertices and the vertices obtained by subdivision are always of degrees 2.

The Petersen graph has K_5 has a minor. We use the following contraction in order to obtain k_5 :

- contraction of a with f
- contraction of b with g
- contraction of c with h
- contraction of d with i
- contraction of e with j

(c)

The subgraph G', of the Petersen graph :

$$V = \{a,b,c,d,e,f,g,h,i,j\}$$

$$E = \{\{a,f\},\{a,c\},\{a,b\},\{i,d\},\{d,e\},\{i,g\},\{g,b\},\{i,f\},\{h,f\},\{h,c\},\{c,b\},\{h,j\},\{j,e\},\}\}$$

We can "see" the subdivision of the $K_{3,3}$ graph, the blue nodes are from the top groups, the red nodes are from the bottom groups and the gree nodes are the from the subdivision of $K_{3,3}$.

is isomorphic to the following subdivision of $K_{3,3}$: The graph $K_{3,3}$:

4

(a)

The bipartite graph we use :

Vertices ordering for the algorithm : (a, d, b, c) :

- 1. Vertices a: color 1.
- 2. Vertices d: color 1.
- 3. Vertices b: color 2.
- 4. Vertices c: color 3.

(b)

For this, we use a Crown graph on 200 vertices, the Crown graph is the complete bipartite graph from which the edges of a perfect mathching has been removed, for example, in the following $K_{4,4}$ graph:

We have to remove the edges $\{a,b\}$, $\{c,d\}$, $\{e,f\}$, $\{g,h\}$ (the edges from vertices at the same height) to obtain a crown graph. Then we use the ordering (a,b,c,d,e,f,\cdots) (in alphabetical order) so, on 200 vertices, the chromatic number of the graph would be 100.

(c)

The following graph is bipartite and 5-coloring

under the ordering (b, f, m, j, l, i, k, g, c, d, h, e, a).

5

(a)

We consider only the graph which has 1 interior vertex, because the property need to holds for every interior vertex, we can generalise this for any number of interior vertex. We also consider n exterior vertices $\{v_0, \dots, v_n\}$ which are adjacent to the interior vertex v. The n exterior vertices are adjacent and it would be 2 cases:

- n is even: we have the subgraph G'=(V',E') where $V'=V\setminus v$ and $E'=\{e|e=\{x,y\}\in E \land (x\neq v \land y\neq v)\}$. G' is 2-coloring, so G is 3-coloring because v is adjacent to vertices with color number 1 and 2 and n is even.
- n is odd: we have the subgraph G' = (V', E') where $V' = V \setminus v$ and $E' = \{e | e = \{x, y\} \in E \land (x \neq v \land y \neq v)\}$. G' is 3-coloring, so G is 4-coloring and n is odd.

So we avec to show that C_n is 2-coloring for n even and 3-coloring for n odd and $n \geq 3$. If n is even, the graph is bipartite so 2-coloring. If n is odd, we show that C_n is 3-coloring because we use C_{n-1} and we add a vertex between two already present one. We can only add a vertex between vertices of color 1 and 2, so C_n is 3-coloring if n is odd.

(b)

From previous exercice, if v has an odd number of adjacent vertices, it means that the C_n graph that is representing thos adjacent vertices is 3-coloring (or 2-coloring if $deg(v) \equiv 0 \mod 2$). So if deg(v) is even, G is 3-coloring.