Project Group S13

Ankur Garg & Sanket Shahane

Classification of Brain Wave (EEG) Data

Background

- Objective Classification of signal into one of the three classes:
 - Thinking of moving left arm,
 - Thinking of moving right arm,
 - Generation of words beginning with same random letter.

Part of the BCI III Competition

Dataset

- 3 Subjects. 4 Sessions.
- 9 sessions used for training and 3 sessions for testing.
- Approximately 3500 data samples for each session

- Training samples for
 - Subject 1: 10528
 - Subject 2: 10400
 - Subject 3: 10288
- Testing samples: 3504, 3472, 3488 respectively.

Dataset

• No Class Imbalance problem in the dataset.

Proportion of data per Class

Dataset – Correlation among attributes

Dataset - Dimensionality

• High dimensional – 96 features

- Used Principal component Analysis to reduce dimensionality.
 - 40 components for Subject 1
 - 50 components for Subject 2
 - 60 components for Subject 3

Methodology

• Baseline: Results from the competition.

-> Note: The expected accuracy, if classification is made by chance, is 33.33%. <-

#.	contributor	psd	acc	s1	s2	s3	research lab
1.	Ferran Galan	у	68.65	79.60	70.31	56.02	University of Barcelona
2.	Xiang Liao	У	68.50	78.08	71.66	55.73	University of Electronic Science and Technology of China (UESTC)
3.	Walter	у	65.90	77.85	66.36	53.44	???
4.	Xiaomei Pei	у	65.67	76.03	69.36	51.61	Institute of Biomedical Engineering of Xi'an Jiaotong University
5.	Irene Sturm	у	64.91	78.08	63.83	52.75	Fraunhofer FIRST (IDA), Berlin
6.	Stephan Uray	У	64.60	81.05	73.04	39.68	TU Graz
7.	Julien Kronegg	У	64.04	76.06	64.83	51.18	University of Geneva
8.	John Q. Gan	у	63.91	77.40	63.83	50.46	University of Essex, Colchester
	Shiliang Sun	n	62.83	74.31	62.32	51.99	Tsinghua University, Beijing
10.	J. Ignacio Serrano M. D. del Castillo	y	62.61	75.80	61.75	50.23	Instituto de Automatica Industrial. CSIC. Madrid

http://bbci.de/competition/iii/results/index.html#martigny

Methodology

- Initial set of Classifiers:
 - Random Forest Classifier
 - Support Vector Machines
 - Linear Discriminant Analysis

 Next we compare the accuracies of these models on raw data and after using PCA

Initial Results

LDA

Subject	Raw Data	After PCA
Subject 1	71.46%	73.26%
Subject 2	58.12%	61.34%
Subject 3	49.17%	50.54%

LDA gives better performance compared to RF and SVM.

Using PCA further improves the accuracies.

SVM

Subject	After PCA
Subject 1	73.11%
Subject 2	56.13%
Subject 3	49.60%

Random Forest

Subject	After PCA
Subject 1	73.14%
Subject 2	60.88%
Subject 3	47.70%

Initial Results

We stand 11th as of now

Subject 1: 73.26 Subject 2: 61.34 Subject 3: 50.54

10. J. Ignacio Serrano M. D. del Castillo	у	62.61	75.80	61.75	50.23	Instituto de Automatica Industrial. CSIC. Madrid
11. Changshui Zhang	у	60.47	72.15	59.22	50.00	Tsinghua University, Beijing
12. Douglas Rofes	у	59.81	72.52	59.85	46.99	University of Geneva

Methodology Contd.

Data samples are not independent.

Sequential relationship exists among the samples.

• Initial classification approaches don't model this relationship.

Methodology

- Sequential relationship motivated us to consider methods like:
 - Hidden Markov Model
 - Feed Forward Neural Network
 - Structured Perceptron
 - LSTM

Hidden Markov Model

- Approach for training HMM:
 - Number of states = 3 (from data).
 - Transition Probabilities Calculated from data
 - Emission Probabilities Gaussian distribution on features.
- Use Viterbi algorithm For predicting class for test sample

• Package: hmmlearn

Surprise by HMM!

Accuracy for HMM:

• Subject 1: 51.38

• Subject 2: 50.49

• Subject 3: 38.46

• Even lower than non-sequential methods we tried earlier.

Feed Forward Neural Network

 Feed forward network does not remember previous inputs and results.

• However, we design our problem and the network in such a way that it considers data from previous 8 time steps.

 Regenerated training data by horizontally stacking previous 8 samples to the current sample and pass it to the NN.

Feed Forward NN – Stacked Vector Approach

Design and parameters:

- Number of epochs = 500,
- Batch Size = 150,
- Layers sizes = [12, 8, 3]

Feed Forward NN - Results

Accuracy:

• Subject 1: 76.2%

• Subject 2: 63.56%

• Subject 3: 47.21%

Rank improved by couple of places.

• To avoid overfitting, parameters chosen by observing elbow plot of training error.

Feed Forward NN - Overfitting

Structured Perceptron

Discriminative Training Method for HMM

Uses the perceptron algorithm to estimate the parameters of HMM

 Reference: Michael Collins. Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. 2002

Package: seqlearn

Structured Perceptron - Results

Accuracies:

• Subject 1: 88.27 %

• Subject 2: 80.21 %

• Subject 3: 57.97 %

• This approach gave us the best results.

LSTM Neural Network

Represent data into #rows X 8 X #dimensions

LSTM Neural Network - Design

Parameters:

- Number of Epochs = 50
- Batch Size = 150

Results:

Subject 1: 75.99%

Subject 2: 63.2 %

Subject 3: 45.31%

Post Processing

• Smoothening: Predictions by the models were smoothened to remove noise.

Marginal improvement in accuracy

Final Results

Best accuracy by Structured Perceptron:

• Subject 1: 88.27 %

• Subject 2: 80.21 %

• Subject 3: 57.97 %

 Comparison with Competition results: Better accuracies than all submissions.

#. contributor psd acc s1 s2 s3 research lab

1. Ferran Galan y 68.65 79.60 70.31 56.02 University of Barcelona

2. Xiang Liao y 68.50 78.08 71.66 55.73 University of Electronic Science and Technology of China (UESTC)

3. Walter y 65.90 77.85 66.36 53.44 ???

4. Xiaomei Pei y 65.67 76.03 69.36 51.61 Institute of Biomedical Engineering of Xi'an Jiaotong University

Conclusions

- Hidden Markov Models and LSTM networks perform better than algorithms like Random Forest, SVM, which do not capture sequential relationship.
- Using PCA to reduce dimensionality helped improve accuracy.
- Subject 3 data contains some noise as most models perform worst on it.
- LSTM Networks require large amounts of data to train nicely.
- Perceptron preferred if large amount of training data not available.

Challenges

• Designing feed forward network to handle sequential relationships.

Formatting the data to be usable in LSTM

Thank You