Lecture 3: Transformations 1

CS 174A: Introduction to Computer Graphics

Motivation

- Many graphics concepts need basic math, such as linear algebra
 - Vectors (dot products, cross products,...)
 - Matrices (matrix matrix, matrix vector mult., ...)
 - Operations like translation, or rotation of the points that forman object are most efficiently performed as a matrixvector multiply
 - Thus, we will go out of our way to write everything as a matrixvector multiply
- Chapters 2.4 (vectors) and 5.2 (matrices)
 - Fundamentals of Computer Graphics by Shirley and Marschner
 - Worthwhile to read all of chapters 2 and 5
- Should be refresher on very basic material for most of you

Lecture 2 - Recap

- Vectors.
 - Vector Basics
 - Vector Addition, Subtraction
 - Vector Multiplication
 - Dot product
 - Cross product
 - Constructing Coordinate Frames
- Matrix
 - Matrix Basics
 - Matrix Addition
 - Matrix Multiplication
 - Matrix Properties
- Points vs Vectors
- Lines and Planes

Vectors: Addition and Multiplication

Addition $\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 & \cdots & x_n + y_n & \cdots & x_N + y_N \end{bmatrix}^T$ $1 \le n \le N$

Multiplication with scalar (scaling)

 $a\mathbf{x} = \begin{bmatrix} ax_1 & \cdots & ax_n & \cdots & ax_N \end{bmatrix}^T \quad a, x_n \in \mathfrak{R}$

Properties

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 commutative
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 associative
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}, \quad a \in \Re$$
 distributive
$$\mathbf{u} - \mathbf{u} = 0$$
 inverse

Special Cases

Linear combination

• $\mathbf{w} = a_1 \mathbf{v}_1 + ... + a_m \mathbf{v}_m$, $a_1, ..., a_m$ in R

Affine combination:

• A linear combination for which $a_1 + ... + a_m = 1$

Convex combination

An affine combination for whicha_i ≥ 0 for i = 1,...,m

•Vectors $\mathbf{v}_1, ..., \mathbf{v}_m$ are called *linearly independent*, if $a_1 \mathbf{v}_1 + ... + a_m \mathbf{v}_m = 0$ **iff** $a_1 = a_2 = ... = a_m = 0$

Dot Product

 $\mathbf{a}, \mathbf{b} \in \mathfrak{R}^N$ Definition:

$$\mathbf{a} \cdot \mathbf{b} = \sum_{n=1}^{N} a_n b_n = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

Properties 1. Symmetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

2. Linearity: $(a + b) \cdot c = a \cdot c + b \cdot c$

3. Homogeneity: $(s\mathbf{a}) \cdot \mathbf{b} = s(\mathbf{a} \cdot \mathbf{b})$

4. $|b|^2 = b \cdot b$

5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Vectors: Dot (Scalar) Product

Motivation:

- Find angle between two vectors
 - e.g. cosine of angle between light source and surface for shading
- Finding projection of one vector on another
 - •e.g. coordinates of a point in various coordinate frameworks -- object coordinate framework, world coordinate framework, camera coordinate framework, image coordinate framework
- •Advantage: computed easily in cartesian components

Cross (vector) product

- Motivation: Useful in constructing coordinate systems (later)
 - Problem: Construct aorthonormal camera coordinate frame into which to transform world objects, givena (viewing direction), and a second vector **b** (up direction of camera)
- Cross product is a vector orthogonal to the two initial vectors
- Direction determined by right-hand rule

Cross Product

Geometric Definition:

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

$$\|\mathbf{a} \times \mathbf{b}\|$$
 parallelogram area

$$\mathbf{a} \times \mathbf{b}$$
 perpendicular to parallelogram

Properties of the Cross Product

- 1. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$
- 2. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 3. Linearity: $a \times (b + c) = a \times b + a \times c$
- 4. Homogeneity: $(sa) \times b = s(a \times b)$
- 5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$
- 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$

Cross Product

Defined only for 3D vectors and with respect to the standard unit vectors

Algebraic Definition:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Generators and Base Vectors

How many vectors are needed to generate a vector space?

- Given a vector space Rⁿ we can prove that we need minimum n vectors to generate all vectors v in Rⁿ
- Any set of vectors that generate a vector space is called a generator set
- A generator set with minimum size is called a basis for the given vector space

Matrix Addition

Addition:

$$\mathbf{A}_{m \times n} + \mathbf{B}_{m \times n} = (a_{ij} + b_{ij})$$

Properties:

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. f(A + B) = fA + fB
- 4. Transpose: $\mathbf{A}^T = (a_{ij})^T = (a_{ji})$

Matrix Order Matters For Multiplication

 $AB \neq BA$

Example

$$\begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -5 & -3 \\ 2 & 2 \end{bmatrix} =$$

$$\begin{bmatrix} -5 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} =$$

Matrix Multiplication

Definition:

$$\mathbf{C}_{m \times r} = \mathbf{A}_{m \times n} \mathbf{B}_{n \times r}$$

$$(C_{ij}) = (\sum_{k=1}^{n} a_{ik} b_{kj})$$

Properties:

1. $AB \neq BA$

Matrix order matters

2. A(BC) = (AB)C

Multiplication order does NOT matter

3.
$$f(AB) = (fA)B$$

4.
$$A(B+C) = AB + AC$$
,
 $(B+C)A = BA + CA$

5.
$$(AB)^T = B^T A^T$$

Multiplication Order Does NOT Matter

 Note the order of the matrices has not changed only which multiplication is performed first has changed

$$(AB)C = A(BC)$$

Example

$$\left(\begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -5 & -3 \\ 2 & 2 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix} \left(\begin{bmatrix} -5 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix} \right)$$

Vector Multiplication in Matrix Form

Dot product?

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_2 \\ b_3 \end{bmatrix} = (a_1b_1 + a_2b_2 + a_3b_3) = \sum_{n=1}^{N} a_nb_n = \mathbf{a} \cdot \mathbf{b}$$

Cross product?

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{bmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{bmatrix} = \mathbf{A} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

A is the dual matrix of vector a

N-≺A,B,C>

Summary: Planes

Plane equations

$$F(x, y, z) = Ax + By + Cz + D = 0 = \mathbf{N} \bullet P + D$$
Points on Plane $F(x, y, z) = 0$

Points on Plane F(x, y, z) = 0

Explicit $z = -(A/C)x - (B/C)y - D/C, C \neq 0$

Parametric.

$$Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$$

 P_0, P_1, P_2 , not collinear

 $Plane(s,t) = P_0 + sV_1 + tV_2$, where V_1, V_2 are basis vectors

convex combination defines a triangle

$$Plane(s,t) = (1-s-t)P_0 + sP_1 + tP_2$$

Summary: Lines

Representations of a line (in 2D)

 Explicit - we have one dependent variable on the lefthand side of an equation, and all the independent variables and constants on the right and side of the equation

$$y = \frac{dy}{dx}(x - x_0) + y_0$$

 Implicit - An implicit equation is an algebraic line/curve formed by points that satisfy an equation. Implicits TEST their (x,y) input values and return true if the implicit relationship is satisfied. The general solution of implicit equa tions requires a search!

$$F(x,y) = (x - x_0)dy - (y - y_0)dx$$

 $\begin{array}{ll} \text{if} \quad \theta\left(x,y\right) = 0 \quad \text{then} \quad \left(x,y\right) \text{ is on line} \\ \theta\left(x,y\right) > 0 \quad \left(x,y\right) \text{ is helow line} \\ \theta\left(x,y\right) < 0 \quad \left(x,y\right) \text{ is above line} \end{array}$

 Parametric - also called generating functions, they generate coordinate pairas output, given parameter values as input.

$$x(t) = x_0 + t(x_1 - x_0)$$

$$y(t) = y_0 + t(y_1 - y_0)$$

$$t \in [0, 1]$$

$$P(t) = P_0 + t(P_1 - P_0)$$
, or $P(t) = (1 - t)P_0 + tP_1$

Transformations

Modeling

Geometric Primitives

- Points
- Lines
- Planes
- Polygons
- Parametric surfaces
- Implicit surfaces
- Etc.

Why Study Transforms? Transforms are useful for modeling objects. Transforms can be used place objects at correct location in the world Transforms can describe relative position of connected body parts Transforms can scale, rotate, etc. objects Viewing World coordinates to camera coordinates Parallel / perspective projections from 3D to 2D The math for doing all these things Represent transformations using matrices and matrix-vector multiplications. ch 6 -- worthwhile but not essential

Modeling Transformations Assembly

Lecture Outline

- 2D Linear Transforms
- Homogeneous Coordinates
- 2D Affine Transforms
- Composite Transforms

Transformations

- transforming an object = transforming all its points
- transforming a polygon = transforming its vertices

Scaling

- scaling a coordinate means multiplying each of its components by a scalar
- uniform scaling means this scalar is the same for all components:

What Are Transforms?

- Just functions acting on points
- (x',y',z') = F(x,y,z)
- **P**' = F(**P**)

Scaling

non-uniform scaling: different scalars per component:

how can we represent this in matrix form?

Scaling

scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

• or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix

Reflection

reflect across x axismirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Reflection

- reflect across x axis
 - mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} ? \\ ? \end{bmatrix}$$

Shear

- shear along x-axis
 - push points to right in proportion to height

$$\begin{bmatrix} y \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$$

Shear

- shear along x-axis
 - push points to right in proportion to height

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Rotation Matrix

$$x' = x \cos(\theta) - y \sin(\theta)$$
$$y' = x \sin(\theta) + y \cos(\theta)$$

easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} =$$

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

- even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ .
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y

Linear Transforms in Matrix Form

$$x' = a x + b y$$
$$y' = c x + d y$$

$$\left[\begin{array}{c} x'\\ y' \end{array}\right] = \left[\begin{array}{cc} a & b\\ c & d \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right]$$

$$x' = M x$$

2D Rotations

- Linear $R(\theta_1 + \theta_2) = R(\theta_1) + R(\theta_2)$
- 2D rotations are Commutative
- 3D Rotations are NOT Commutative (next lecture)

2D Coordinate Systems

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} a & b\\ c & d\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

$$\left[\begin{array}{c} a \\ c \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right]$$

$$\begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 Can interpret the columns of the matrix as the x and y axes of the coordinate system

2D Translation

vector addition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix}$$

Linear Transformations

- linear transformations are combinations of elementary transformations:
 - scale
 - shear

$$\begin{bmatrix} x' \end{bmatrix} = \begin{bmatrix} a & b \end{bmatrix}$$

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$x' = ax + by$$
$$y' = cx + dy$$

rotation
$$\begin{vmatrix} y' \end{vmatrix} - \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} y \end{vmatrix}$$

- properties of linear transformations
 - satisifes T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

2D Translation

vector addition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

2D Translation

vector addition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix}$$

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

scaling matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Translation as a multiplication matrix??

Lecture Outline

- 2D Linear Transforms
- Homogeneous Coordinates
- 2D Affine Transforms
- Composite Transforms

Challenge

- matrix multiplication
 - for everything except translation
 - how to do everything with multiplication?
 - If every transform is a matrix multiplication then one can creat composite transformations which are just a series of matrix multiplications, no special cases
- solution: homogeneous coordinates
 - represent 2D coordinates (x,y) with 3-tuple (x,y,1)

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation as a multiplication matrix!

Homogeneous Coordinates

- may seem unintuitive, but they make graphics operations much easier
- allow all transformations to be expressed through matrix multiplication
 - Specifically, we can express translations as a matrix multiplication
 - we'll see even more later...
- use 3x3 matrices for 2D transformations
 - use 4x4 matrices for 3D transformations

Points vs Vectors

What is the difference?

- Points have location, but no size or direction
- Vectors have size and direction, but no location

Problem: Yet, we represent both as triplets!

Switching Representations

Normal to homegeneous:

$$\mathbf{v} = \left[egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight]
ightarrow \left[egin{array}{c} v_2 \ v_3 \ 0 \end{array}
ight]$$

Point: append as fourth coordinate 1

$$P = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \to \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix}$$

Convention

Vectors and Points are represented as column matrices

$$P = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{bmatrix}$$

Switching Representations

Homegeneous to normal:

 Vector: remove fourth coordinate (0)

$$\mathbf{v} = \left[egin{array}{c} v_1 \ v_2 \ v_3 \ 0 \end{array}
ight]
ightarrow \left[egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight]$$

 Point: remove fourth coordinate (1)

Purth
$$P = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

Relationship Between Points and Vectors

A difference between two points is a vector:

$$Q - P = v$$

We can consider a point as a base point plus a vector offset:

$$Q = P + v$$

Homogeneous Representation: Points & Vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$$

$$P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$
 $P = [\mathbf{a} \ \mathbf{b} \ \mathbf{c} \ O]$

 p_3

$$P = [\mathbf{a} \ \mathbf{b} \ \mathbf{c} \ O]$$

Coordinate Frames

Coordinate Frame defined by the matrix:

[a b c O]

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$$

$$P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

Does the Homogeneous Representation Support Operations?

- Valid operation if the last coordinate is 0 or a 1
 - vector + vector = vector
 - point point = vector
 - point + vector = point
 - point + point = ??

Linear Combination of Points

Points P, Q scalars f, g:

$$fP+gQ = f [p_1, p_2, p_3, 1]^T + g[q_1, q_2, q_3, 1]^T$$

$$= [fp_1+gq_1, fp_2+gq_2, fp_3+gq_3, f+g]^T$$

What is this?

•If (f+g) = 0 then vector!

•If (f+g) = 1 then point!

Affine Combinations of Points

Definition:

Points P_i : i = 1,...,nScalars f_i : i = 1,...,n

$$f_1P_1 + ... + f_nP_n$$
 iff $f_1 + ... + f_n = 1$

Example: $0.5P_1 + 0.5P_2$

Geometric Explanation

Homogeneous Coordinates Geometrically

· point in 2D cartesian

Homogeneous Coordinates Geometrically

homogeneous

cartesian

$$(x, y, w) \xrightarrow{/w} (\frac{x}{w}, \frac{y}{w})$$

- point in 2D cartesian + weight w = point P in 3D homog. coords
- multiples of (x,y,w)
 - · form a line L in 3D
 - all homogeneous points on L represent same 2D cartesian point
 - example: (2,2,1) = (4,4,2) = (1,1,0.5)

Lecture Outline

- 2D Linear Transforms
- Homogeneous Coordinates
- 2D Affine Transforms
- Composite Transforms

Homogeneous Coordinates Geometrically

homogeneous

cartesian

- $(\frac{\lambda}{w}, \frac{y}{w})$
 - homogenize to convert homog. 3D point to cartesian 2D point:
 - · divide by w to get (x/w, y/w, 1)
 - projects line to point onto w=1 plane
 - · like normalizing, one dimension up
 - when w=0, consider it as direction
 - points at infinity
 - · these points cannot be homogenized
 - lies on x-y plane
 - · (0,0,0) is undefined

Affine Transformations

• Affine transformation = linear transformation + translation Rotation, Scale.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

• Affine transformation using homogenous coordinates is only a matrix multiplication:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

General Form of 2D Affine Transformation

Points:

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Vectors:

$$\begin{bmatrix} W_x \\ W_y \\ 0 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ 0 \end{bmatrix}$$

All Elementary Affine Transformations

Scale, shear, rotation, translation

$$x' = Mx$$

$$\mathbf{M}_{scale} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{shear_x} = \begin{bmatrix} 1 & shx & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{shear_x} = \begin{bmatrix} 1 & shx & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{rotation} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{translation} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$$

· Translation uses rightmost column

Linear Transformation → **Affine Transformation**

 Rewrite linear transforms written for a cartesian coordinate system to transforms for the homogeneous coordinate svstem:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \qquad \begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & 0 \\ d & e & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{M}_{scale} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{shear_x} = \begin{bmatrix} 1 & shx & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{shear_x} = \begin{bmatrix} 1 & shx & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{rotation} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

General Form of 2D Affine Transformations

Transformation as a matrix multiplication

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} m_{13} \\ m_{23} \\ 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

$$Q = \mathbf{M}P$$

Inverse of a Transformation

Inverse transformation: q = Mp, $p = M^{-1}q$

We can use Cramer's rule to invert **M**, or we can be smarter about it

Inverse of Scaling

$$\mathbf{q} = \mathbf{M}(s_x, s_y)\mathbf{p}$$

$$\mathbf{p} = \mathbf{M}^{-1}(s_x, s_y)\mathbf{q} = \mathbf{M}(\frac{1}{s_x}, \frac{1}{s_y})\mathbf{q}$$

$$\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse of Translation

$$q = M(t)p$$

$$\mathbf{p} = \mathbf{M}^{-1}(\mathbf{t})\mathbf{q} = \mathbf{M}(-\mathbf{t})\mathbf{p}$$

$$\left[\begin{array}{ccc} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{array}\right]^{-1} = \left[\begin{array}{ccc} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{array}\right]$$

Inverse of a Shear in x

$$\mathbf{q} = \mathbf{M}_{\text{shear in } \mathbf{x}}(a)\mathbf{p}$$

$$\mathbf{p} = \mathbf{M}_{\text{shear in } \mathbf{x}}^{-1}(a)\mathbf{q} = \mathbf{M}_{\text{shear in } \mathbf{x}}(-a)\mathbf{q}$$

$$\left[\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]^{-1} = \left[\begin{array}{ccc} 1 & -a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Inverse of Rotation

$$\mathbf{q} = \mathbf{M}(\theta)\mathbf{p}$$

$$\mathbf{p} = \mathbf{M}^{-1}(\theta)\mathbf{q} = \mathbf{M}(-\theta)\mathbf{p}$$

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Lecture Outline

- 2D Linear Transforms
- Homogeneous Coordinates
- 2D Affine Transforms
- Composite Transforms

Affine Transformations

- Any affine transformation is a combination of
 - translation and/or
 - linear transformations:
 - scale, shear, rotation

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - relative ratios of points on a line are preserved
 - closed under composition combination of affine transformations is an affine transform

Composing 2D Affine Transformations

Composing two affine transformations produces an affine transformation

$$\mathbf{q} = T_2(T_1\mathbf{p}))$$

In matrix form:

$$\mathbf{q} = \mathbf{M}_2(\mathbf{M}_1\mathbf{p}) = (\mathbf{M}_2\mathbf{M}_1)\mathbf{p} = \mathbf{M}\mathbf{p}$$

Which transformation happens first?

Inverting Composite Transforms

Say I want to invert a combination of 3 transforms

$$\mathbf{x'} = (\mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1) \mathbf{x} = \mathbf{M} \mathbf{x}$$

- Option 1: Find composite matrix, invert $\mathbf{x} = \mathbf{M}^{-1}\mathbf{x}'$
- Option 2: Invert each transform and swap order

$$\mathbf{x'} = \mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{x}$$

$$\mathbf{M}_{3}^{-1} \mathbf{x'} = \left(\mathbf{M}_{3}^{-1} \mathbf{M}_{3}\right) \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{x}$$

$$\mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1} \mathbf{x'} = \left(\mathbf{M}_{2}^{-1} \mathbf{M}_{2}\right) \mathbf{M}_{1} \mathbf{x}$$

$$\mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1} \mathbf{x'} = \left(\mathbf{M}_{1}^{-1} \mathbf{M}_{1}\right) \mathbf{x}$$

$$\mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1} \mathbf{x'} = \mathbf{x}$$

$$\mathbf{M}^{-1} = \left(\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}\right)^{-1} = \mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1}$$

transformation game.jar

Composite 2D Transformations

The following are composite 2D transformations:

- ■Rotation about an arbitrary pivot point
- Scaling around an arbitrary point
- Reflection
- Reflection about a tilted line

Main Points

Any affine transformation can be performed as series of elementary transformations

Affine transformations are the main modeling tool in graphics

Make sure you understand the order

Example of 2D Composite Transformation

Rotate -90 deg around an arbitrary point O:

Rotate Around an Arbitrary Point

Rotate Around an Arbitrary Point

We know how to rotate around the origin

Rotate Around an Arbitrary Point

...but that is not what we want to do!

So What Do We Do?

Transform it to the Known Case

Translate $(-O_x, -O_y)$

Second Step: Rotation

Translate $(-O_x, -O_y)$ Rotate(-90)

Finally, Put Everything Back

Push the following

Rotation About Arbitrary Point

Composite transformation representation:

 $\mathbf{M} = \mathbf{T}(O_{x}, O_{y}) \ \mathbf{R}(-90) \ \mathbf{T}(-O_{x}, -O_{y})$ Order is IMPORTANT!

