Chapter 1

指数関数と対数関数

1.1 指数関数

1.1.1 同じ数のかけ算の指数による表記

1.1.2 指数法則

指数を「かける回数」と捉えれば、いくつかの法則が当たり前に成り立つことがわかる。

「かける回数」の和

例えば、a ϵ m 回かけてから、続けて a ϵ n 回かける式を書いてみると、a は m+n 個並ぶことになる。

$$\overbrace{a \times a \times a}^{a^3} \times \overbrace{a \times a}^{a^2} = \overbrace{a \times a \times a \times a \times a \times a}^{a^5}$$

「かける回数」の差

例えば、 $a \in m$ 回かけたものを、 $a \in n$ 回かけたもので割ると、m-n個のaの約分が発生する。

$$\underbrace{\frac{a \times a \times a \times a \times a \times a \times a}{a \times a \times a \times a \times a}}_{a^{2}} = \underbrace{a \times a \times a}^{a^{3}}$$

「かける回数」の積

例えば、[aem回かけたもの]emundedであると、<math>[aumnded]emundedであると、<math>[aumnded]emundedであると、[aumnded]emundedであると、<math>[aumnded]emundedであると、[aumnded]emundedを[aumnded]emundedemunded

$$(a^2)^3 = \underbrace{a \times a \times a \times a \times a \times a \times a}_{a^6} \underbrace{a^2 \times a \times a \times a \times a}_{a^6}$$

1.1.3 指数の拡張と指数関数

底を固定して、指数を変化させる関数を考えたい。

指数部分に入れられる数を拡張したいが、このとき、どんな数を入れても指数法則が成り立つよ うにしたい。 1.1. 指数関数 3

0の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、m = 0 の場合を考える。

$$a^0 \times a^n = a^{0+n}$$

$$a^0 \times a^n = a^n$$

この式が成り立つためには、 a^0 は1である必要がある。

そもそも、指数法則 $a^m \times a^n = a^{m+n}$ は、「指数の足し算が底のかけ算に対応する」ということを表している。

- 「何もしない」足し算は +0
- 「何もしない」かけ算は ×1

なので、 $a^0 = 1$ は「何もしない」という観点で足し算とかけ算を対応づけたものといえる。

負の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、正の数 n を負の数 -n に置き換えたものを考える。

$$a^m \times a^{-n} = a^{m-n}$$

さらに、指数法則 $\frac{a^m}{a^n} = a^{m-n}$ も成り立っていてほしいので、

$$a^m \times a^{-n} = \frac{a^m}{a^n}$$

この式は、 $a^{-n} = \frac{1}{a^n}$ とすれば、当たり前に成り立つものとなる。

有理数の指数

指数法則 $a^m \times a^n = a^{m+n}$ において、指数 m,n を $\frac{1}{2}$ に置き換えたものを考える。

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2}} = a$$

 $a^{\frac{1}{2}} \times a^{\frac{1}{2}}$ は、 $(a^{\frac{1}{2}})^2$ とも書けるので、

$$(a^{\frac{1}{2}})^2 = a$$

つまり、 $a^{\frac{1}{2}}$ は、2乗すると a になる数 (a の平方根) でなければならない。

$$a^{\frac{1}{2}} = \sqrt{a}$$

同様に、 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ を考えてみると、

$$a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}} = a^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = a$$

 $a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}}$ は、 $(a^{\frac{1}{3}})^3$ とも書けるので、

$$(a^{\frac{1}{3}})^3 = a$$

つまり、 $a^{\frac{1}{3}}$ は、3乗するとaになる数 (aの3乗根) でなければならない。

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$

このようにして、 $a^{\frac{1}{n}}$ は、n乗するとaになる数 (aのn乗根) として定義すればよい。

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

さて、分子が1ではない場合はどうだろうか?

1.1. 指数関数 5

 $(a^m)^n = a^{mn}$ において、m を $\frac{m}{n}$ に置き換えたものを考えると、

$$(a^{\frac{m}{n}})^n = a^{\frac{m}{n} \times n} = a^m$$

となるので、 $a^{\frac{m}{n}}$ は、n乗したら a^{m} になる数として定義すればよい。

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

実数への拡張

有理数は無数にあるので、指数 x を有理数まで許容した関数 $y = a^x$ のグラフを書くと、十分に繋がった線になる。

指数が無理数の場合は、まるでグラフ上の点と点の間を埋めるように、有理数の列で近似してい くことで定義できる。

これで、xを実数とし、関数 $y = a^x$ を定義できる。

1.1.4 指数関数の底の変換

用途に応じて、使いやすい指数関数の底は異なる。

- e: 微分積分学、複素数、確率論など
- 2:情報理論、コンピュータサイエンスなど

● 10:対数表、音声、振動、音響など

よって、これらの底を互いに変換したい場面もある。

指数の底を変えることは、指数の定数倍で実現できる。

例えば、底が4の指数関数 4^x を、底が2の指数関数に変換したいとすると、

$$4^x = (2^2)^x = 2^{2x}$$

のように、指数部分を2倍することで、底を4から2へと変換できる。

当たり前だが、この変換は、 $4=2^2$ という関係のおかげで成り立っている。

「4は2の何乗か?」がすぐにわかるから、4から2への底の変換が簡単にできたのだ。

より一般に、 a^x と b^X において、 $a = b^c$ という関係があるとする。 つまり、a は b の c 乗だとわかっているなら、

$$a^x = (b^c)^x = b^{cx}$$

のように、底eaからbへと変換できる。

指数	女関	数0	D底	の変	变換	1																	
指数	女を	定数	女倍	する	るこ	.と	は、	底	を変	え	るこ	と	と同] U:	操作	ミに	なる) _o					
a =	b^c	とい	いう	関係	系か	あ	るな	ら、	次	の 3	変換	」が)	或り	立.	つ。								
														_									
											G	ι^x	=	b^c	x								

ここで重要なのは、指数関数の底を変換するには、「a は b の何乗か?」がわかっている必要があるということだ。

次章では、 $a = b^c$ となるような c を表す道具として、対数を導入する。

1.2 対数関数

1.2.1 対数:指数部分を関数で表す

指数関数は、 $\lceil a \in x$ 乗したら γ になる」という関係を表現するものだった。

1.2. 対数関数 7

ここで、逆に「y は a の何乗か?」という関係を表現するものとして、対数関数を定義する。 これは、y から x を導き出す関数であるから、指数関数 $y = a^x$ の逆関数といえる。

対数は、指数関数の指数部分を表す。

 $a^y = x$ の y に、y = $\log_a x$ を代入することで、次のような式にまとめることもできる。

1.2.2 対数の性質

指数法則を対数に翻訳することで、対数の性質を導くことができる。

真数のかけ算は log の足し算

 $x_1 = a^m, x_2 = a^n$ として、指数法則 $a^m \times a^n = a^{m+n}$ を考える。

$$x_1 x_2 = a^m \times a^n$$
$$= a^{m+n}$$

対数は指数部分を表すので、 $m+n=\log_a(x_1x_2)$ がいえる。

また、
$$x_1 = a^m$$
 より $m = \log_a x_1$ 、 $x_2 = a^n$ より $n = \log_a x_2$ と表せるから、

$$m + n = \log_a x_1 + \log_a x_2 = \log_a(x_1 x_2)$$

真数の割り算は log の引き算

 $x_1 = a^m, x_2 = a^n$ として、指数法則 $\frac{a^m}{a^n} = a^{m-n}$ を考える。

$$\frac{x_1}{x_2} = \frac{a^m}{a^n}$$
$$= a^{m-n}$$

対数は指数部分を表すので、 $m-n=\log_a\left(\frac{x_1}{x_2}\right)$ がいえる。 また、 $x_1=a^m$ より $m=\log_a x_1$ 、 $x_2=a^n$ より $n=\log_a x_2$ と表せるから、

$$m - n = \log_a x_1 - \log_a x_2 = \log_a \left(\frac{x_1}{x_2}\right)$$

1.2. 対数関数 9

真数の冪乗は log の指数倍

 $x = a^m$ として、指数法則 $(a^m)^n = a^{mn}$ を考える。

$$x^n = (a^m)^n$$
$$= a^{mn}$$

対数は指数部分を表すので、 $mn = \log_a x^n$ がいえる。 また、 $x = a^m$ より $m = \log_a x$ と表せるから、

$$mn = n \log_a x \log_a x^n$$

1.2.3 常用対数と桁数

1.2.4 指数関数の底の変換:対数を用いた表現

指数関数の底aからbに変換するには、「aはbの何乗か?」がわかっている必要があった。

REVIEW

 $a = b^c$ という関係があるなら、

$$a^x = b^{cx}$$

今では、 $a = b^c$ となるような c を、対数で表すことができる。

$$b^c = a \iff c = \log_b a$$

