El problema aparecido en la casuística anterior se debe al solapamiento entre las ventanas de emisión y de recepción. Para evitar este problema, el tamaño máximo de la ventana no debería ser mayor que la mitad del rango de los números de secuencia. Así, en el escenario anterior se evitarían las ambigüedades si se permitiera que sólo estuvieran pendientes de confirmación 4 tramas. En general, para un campo de números de secuencia de k bits, es decir, para un rango igual a 2^k , el tamaño máximo de la ventana se limita a 2^{k-1} .

7.3. CONTROL DEL ENLACE DE DATOS DE ALTO NIVEL (HDLC)

El protocolo de control del enlace de datos más importante es HDLC (*High-level Data Link Control*, ISO 3009, ISO 4335). No sólo porque es ampliamente utilizado, sino también porque es la base de otros importantes protocolos de control del enlace, en los que se usan los mismos o similares formatos y los mismos procedimientos que los empleados en HDLC.

CARACTERÍSTICAS BÁSICAS

Para satisfacer las demandas de diversas aplicaciones, HDLC define tres tipos de estaciones, dos configuraciones del enlace y tres modos de operación para la transferencia de los datos. Los tres tipos de estaciones son:

- Estación primaria: es la responsable de controlar el funcionamiento del enlace. Las tramas generadas por la estación primaria se denominan órdenes.
- Estación secundaria: funciona bajo el control de la estación primaria. Las tramas generadas por la estación secundaria se denominan respuestas. La primaria establece un enlace lógico independiente con cada una de las secundarias presentes en la línea.
- Estación combinada: combina las características de las primarias y de las secundarias, pudiendo generar tanto órdenes como respuestas.

Las dos posibles configuraciones del enlace son:

- Configuración no balanceada: está formada por una estación primaria y una o más secundarias. Permite tanto transmisión full-duplex como half-duplex.
- Configuración balanceada: consiste en dos estaciones combinadas. Permite igualmente transmisión full-duplex y half-duplex.

Los tres modos de transferencia de datos son:

- Modo de respuesta normal (NRM, Normal Response Mode): se utiliza en la configuración no balanceada. La estación primaria puede iniciar la transferencia de datos hacia la secundaria, pero la secundaria sólo puede transmitir datos en base a respuestas a las órdenes emitidas por la primaria.
- Modo balanceado asíncrono (ABM, Asynchronous Balanced Mode): se utiliza en la configuración balanceada. En este modo, cualquier estación combinada puede iniciar la transmisión sin necesidad de recibir permiso por parte de la otra estación combinada.
- Modo de respuesta asíncrono (ARM, Asynchronous Response Mode): se utiliza en la configuración no balanceada. La estación secundaria puede iniciar la transmisión sin tener permiso explícito de la primaria. La estación primaria sigue teniendo la responsabilidad del

funcionamiento de la línea, incluyendo la iniciación, la recuperación de errores y la desconexión lógica.

El modo NRM se usa en líneas que disponen de múltiples conexiones, en las que se conectan varios terminales a un computador central; el computador sondea cada una de las entradas correspondientes a los distintos terminales. NRM también se usa a veces en enlaces punto a punto, principalmente si el enlace conecta un terminal u otros periféricos a un computador. ABM es el más utilizado de los tres modos; puesto que en ABM no se precisa realizar sondeos, la utilización de enlaces punto a punto full-duplex resulta más eficiente con este modo. ARM se utiliza en contadas ocasiones, pudiendo usarse en ciertas situaciones particulares en las que la estación secundaria necesita iniciar la transmisión.

ESTRUCTURA DE TRAMA

HDLC emplea transmisión síncrona. Todos los intercambios se realizan en base a tramas, siendo suficiente un único formato de trama para todos los tipos de intercambios de datos e información de control.

En la Figura 7.7 se muestra la estructura de la trama HDLC. Los campos de delimitación, de dirección y de control, que preceden al campo de información, se denominan cabecera. Los campos FCS y de delimitación, que están a continuación del campo de datos, se denominan cola.

Figura 7.7. Estructura de la trama HDLC.

Campos de delimitación

Los campos de delimitación están localizados en los dos extremos de la trama y ambos corresponden al patrón de bits 01111110. Se puede usar un único delimitador como final de trama y comienzo de la siguiente simultáneamente. A ambos lados de la interfaz usuario-red, los receptores estarán continuamente intentando detectar la secuencia de delimitación para sincronizarse con el comienzo de la trama. Mientras se está recibiendo una trama, la estación sigue intentando detectar esa misma secuencia para determinar el final de la trama. Debido a que el protocolo permite cualquier combinación de bits (es decir, no se impone restricción alguna en el contenido de los campos), no hay garantía de que la combinación 01111110 no aparezca en algún lugar dentro de la trama, destruyendo de este modo la sincronización de las mismas. Para evitar este problema, se utiliza un procedimiento denominado inserción de bits. En la transmisión de los bits existentes entre los delimitadores de comienzo y de fin, el emisor insertará un 0 extra siempre que se encuentre con la aparición de cinco 1 consecutivos. El receptor, tras la detección del delimitador de comienzo, monitorizará la cadena de bits recibida de tal manera que cuando aparezca una combinación de cinco 1 seguidos, el sexto bit se analiza como sigue. Si dicho bit es 0, se eliminará sin más. Si el sexto bit es un 1 y el séptimo es un 0, la combinación se considera como un delimitador. Si los bits sexto y séptimo son ambos igual a 1, se interpreta como una indicación de cierre generada por el emisor.

El empleo del procedimiento de inserción de bits permite que en el campo de datos aparezca cualquier combinación arbitraria de bits. Esta propiedad se denomina **transparencia en los datos**.

En la Figura 7.8 se muestra un ejemplo de inserción de bits. Obsérvese que el 0 extra no es estrictamente necesario para los dos primeros casos, pero se necesita para el buen funcionamiento

Patrón original:

1111111111111011111101111110

Tras la inserción de bits:

11111011111011011111010111111010
(a) Ejemplo

Figura 7.8. Inserción de bits.

del algoritmo. En esta figura también se muestran situaciones no deseadas que dan lugar a errores en la delimitación al considerar la inserción de bits. Cuando se usa un solo delimitador para el final y el comienzo, un simple error en un bit causaría que las dos tramas se fundieran en una. Del mismo modo, la aparición de un error en un solo bit dentro de la trama podría partir ésta en dos.

Campo de dirección

El campo de dirección identifica la estación secundaria que ha transmitido o va a recibir la trama. Este campo no se necesita en enlaces punto a punto, aunque se incluye siempre por cuestiones de uniformidad. El campo de dirección consta normalmente de 8 bits, si bien, tras una negociación previa, se puede utilizar un formato ampliado en el que la dirección es múltiplo de siete bits. El bit menos significativo de cada octeto será 1 o 0 en función de si es o no, respectivamente, el último octeto del campo de dirección. Los siete bits restantes de cada octeto constituyen la dirección propiamente dicha. Un octeto de la forma 11111111 se interpreta como una dirección que representa a todas las estaciones, tanto en el formato básico como en el ampliado. Este tipo de direccionamiento se utiliza cuando la estación primaria quiere enviar una trama a todas las secundarias.

Campo de control

En HDLC se definen tres tipos de tramas, cada una de ellas con un formato diferente para el campo de control. Las **tramas de información** (tramas-I) transportan los datos generados por el usuario (esto es, por la lógica situada en la capa superior, usuaria de HDLC). Además, en las tramas de información se incluye información para el control ARQ de errores y de flujo. Las **tramas de supervisión** (tramas-S) proporcionan el mecanismo ARQ cuando no se usa la incorporación de las confirmaciones en las tramas de información (*piggybacking*). Las **tramas no numeradas** (tramas-U, del inglés *unnumbered*) proporcionan funciones complementarias para controlar el enlace. El primero o los dos primeros bits del campo de control se utilizan para identificar el tipo de trama. Los bits restantes se organizan en subcampos como se indica en las Figuras 7.7c y d. Su utilización se explicará posteriormente en este mismo capítulo al estudiar el funcionamiento de HDLC.

Todos los formatos posibles del campo de control contienen el bit sondeo/fin (P/F, poll/final), cuya utilización es dependiente del contexto. Normalmente, en las tramas de órdenes se denomina bit P y se fija a valor 1 para solicitar (sondear) una trama de respuesta a la entidad HDLC par. En las tramas de respuesta, este bit se denomina F y se fija a valor 1 para identificar la trama de respuesta devuelta tras la recepción de una orden.

Obsérvese que el campo de control básico en las tramas-S y en las tramas-I utiliza números de secuencia de 3 bits. Mediante una orden que fije el modo adecuado, en estas tramas se puede hacer uso de un campo de control ampliado en el que los números de secuencia sean de 7 bits. Las tramas-U tienen siempre un campo de control de 8 bits.

Campo de información

El campo de información sólo está presente en las tramas-I y en algunas tramas-U. Este campo puede contener cualquier secuencia de bits, con la única restricción de que el número de bits sea igual a un múltiplo entero de octetos. La longitud del campo de información es variable y siempre será menor que un valor máximo predefinido.

Campo de secuencia de comprobación de trama

La secuencia de comprobación de trama (FCS, Frame Check Sequence) es un código para la detección de errores calculado a partir de los bits de la trama, excluyendo los delimitadores. El código que se usa normalmente es el CRC-CCITT de 16 bits definido en la Sección 7.2. También se puede utilizar un campo FCS de 32 bits, que haga uso del polinomio CRC-32, si así lo aconseja la longitud de la trama o las características de la línea.

FUNCIONAMIENTO

El funcionamiento de HDLC consiste en el intercambio de tramas-I, tramas-S y tramas-U entre dos estaciones. En la Tabla 7.1 se definen las órdenes y respuestas posibles para los distintos tipos de tramas. Estos tres tipos de tramas se explicarán a través de la descripción del funcionamiento de HDLC.

Tabla 7.1. Órdenes y respuestas HDLC.

Nombre	Órdenes/ respuesta	Descripción
Información (I)	C/R	Intercambio de datos de usuario
Supervisión (S)		
Receptor preparado (RR)	C/R	Confirmación positiva; preparado para recibir tra- mas I
Receptor no preparado (RNR)	C/R	Confirmación positiva; no preparado para recibir
Rechazo (REJ)	C/R	Confirmación negativa; vuelta atrás N
Rechazo selectivo (SREJ)	C/R	Confirmación negativa; rechazo selectivo
No numerada (N)		
Establecimiento de modo de respuesta nor- mal/ampliado (SNRM/SNRME)	С	Establecimiento de modo, ampliado = números de secuencia de 7 bits
Establecimiento de modo de respuesta asín- crono normal ampliado (SARM/SARME)	С	Establecimiento de modo, ampliado = números de secuencia de 7 bits
Establecimiento de modo asíncrono balan- ceado normal/ampliado (SABM/SABME)	С	Establecimiento de modo, ampliado = números de secuencia de 7 bits
Establecimiento de modo inicialización (SIM)	С	Inicialización de las funciones de control del enla- ce en las estaciones especificadas en la dirección
Desconexión (DISC)	C	Finalización de la conexión lógica del enlace
Confirmación no numerada (UA)	R	Aceptación de confirmación de una de las órde- nes de establecimiento de modo
Modo desconectado (DM)	R	La estación que responde se encuentra en el mo- do desconectado
Solicitud de desconexión (RD)	R	Solicitud de una orden DISC
Solicitud de modo de inicialización (RIM)	R	Se necesita inicializar; solicitud de la orden SIM
Información no numerada (UI)	C/R	Usada para intercambiar información de control
Sondeo no numerado (UP)	C	Usada para solicitar información de control
Reset (RSET)	С	Usada para recuperación, reinicia N(R) y N(S)
Identificación de intercambio (XID)	C/R	Usada para soliticar/informar el estado
Test (TEST)	C/R	Intercambio de campos de información idénticos para test
Rechazo de trama (FRMR)	R	Informa de la recepción de una trama inaceptable

El funcionamiento de HDLC implica tres fases. En primer lugar, uno de los dos extremos inicia el enlace de datos, de manera que las tramas se puedan intercambiar de una forma ordenada. Durante esta fase se acuerdan las opciones que se usarán en el intercambio posterior. Tras la iniciación, los dos extremos intercambian datos de usuario e información de control para llevar a cabo los procedimientos de control de flujo y de errores. Finalmente, uno de los dos extremos indicará la finalización de la transmisión.

Inicio

El inicio lo puede solicitar cualquiera de los dos extremos en base a la transmisión de una de las seis órdenes previstas para fijar el modo. Esta orden tiene tres objetivos:

- 1. Avisa al otro extremo sobre la solicitud de la iniciación.
- 2. Especifica cuál de los tres modos (NRM, ABM, ARM) se está solicitando.
- 3. Indica si se van a utilizar números de secuencia de 3 o de 7 bits.

Si el otro extremo acepta la solicitud, la entidad HDLC transmitirá una trama de confirmación no numerada (UA, *Unnumbered Acknowledgment*) al extremo iniciante. Si la solicitud se rechaza, se envía una trama de modo desconectado (DM, *Disconnected Mode*).

Transferencia de datos

Cuando la iniciación haya sido solicitada y aceptada, se habrá establecido una conexión lógica. A partir de entonces, ambos extremos pueden comenzar a enviar datos mediante el uso de tramas-I, empezando por el número de secuencia 0. Los campos N(S) y N(R) de una trama-I contendrán los números de secuencia con los que se lleva a cabo el control de flujo y de errores. La entidad HDLC numerará la secuencia de tramas-I de forma ordenada módulo 8 o módulo 128, dependiendo de si se utilizan, respectivamente, 3 o 7 bits; para ello se usará el campo N(S). El campo N(R) se utiliza para llevar a cabo la confirmación de las tramas-I recibidas; de esta forma, se facilita que la entidad HDLC indique al otro extremo el siguiente número de trama-I que espera recibir.

Las tramas-S también se usan para controlar el flujo y los errores. La trama RR (receptor preparado) confirma la última trama-I recibida mediante la indicación de la siguiente trama-I que se espera recibir. La trama RR se usa cuando no hay tráfico (tramas-I) en sentido contrario en el que se puedan incluir las confirmaciones. La trama RNR (receptor no preparado) confirma una trama-I, como lo hace la RR, pero a la vez solicita a la entidad situada al otro extremo del enlace que suspenda la transmisión de tramas-I; cuando la entidad que envió la trama RNR esté de nuevo preparada, enviará una RR. La trama REJ (rechazo) sirve para iniciar el procedimiento ARQ con vuelta atrás N. A través de ella se indica que la última trama-I recibida se ha rechazado y, en consecuencia, se solicita la retransmisión de todas las tramas-I con números de secuencia posteriores a N(R). La trama SREJ (rechazo selectivo) se usa para solicitar la retransmisión de una única trama.

Desconexión

Cualquiera de las dos entidades HDLC pares puede iniciar la desconexión, tanto por iniciativa propia (si es que ha habido algún tipo de fallo) como tras la petición cursada por capas superiores. HDLC lleva a cabo la desconexión mediante el envío de una trama DISC (desconexión, *DISConnect*). La entidad remota puede aceptar dicha desconexión mediante la devolución de una trama UA, e informando a su capa 3 sobre la finalización de la conexión. Cualquier trama-I pendiente de confirmación puede perderse, en cuyo caso será responsabilidad de las capas superiores su recuperación.