Lezione del 4 Ottobre di Gandini.

Esercizio 0.1 (Topologia di Zariski).

Sia \mathbb{K} un campo e $\mathfrak{F} \subseteq \mathbb{K}[x_1,\ldots,x_n]$ allora definiamo

$$V(\mathfrak{F}) = \{(a_1, \dots, a_n) \in \mathbb{K}^n \mid f(a_1, \dots, a_n) = 0 \quad \forall f \in \mathfrak{F}$$

ovvero \mathfrak{F} è una famiglia di polinomi in n indeterminate con coefficienti in \mathbb{K} e $V(\mathfrak{F}$ è il luogo di zeri della famiglia di polinomi.

Definiamo una topologia su \mathbb{K}^n nel seguente modo

$$C \subseteq \mathbb{K}^n \ chiuso \quad \Leftrightarrow \quad \exists \mathfrak{F} \subseteq \mathbb{K}[x_1, \dots, x_n] \quad C = V(\mathfrak{F})$$

ovvero i chiusi sono tutti e soli i luoghi di zeri di famiglie di polinomi. Mostriamo che è una topologia

- $\emptyset = V(1)$ ovvero del polinomio sempre costante ad 1 $\mathbb{K}^n = V(0)$ ovvero del polinomio costantemente nullo
- $\bullet \quad \bigcap_{i \in I} V(\mathfrak{F}_i) = V\left(\bigcup_{i \in I} \mathfrak{F}_i\right)$
- $V(\mathfrak{F}_1) \cup V(\mathfrak{F}_2) = V(\mathfrak{F}_1 \cdot \mathfrak{F}_2)$ dove $\mathfrak{F}_1 \cdot \mathfrak{F}_2 = \{f_1 f_2 \mid f_1 \in \mathfrak{F}_1, f_2 \in \mathfrak{F}_2\}$ $\subseteq Sia \ a \in V(\mathfrak{F}_1) \cup V(\mathfrak{F}_2)$ allora

$$f_1(a) = 0 \quad \forall f_1 \in \mathfrak{F}_1 \quad f_2(a) = 0 \quad \forall f_2 \in \mathfrak{F}_2 \quad \Rightarrow \quad (f_1 f_2)(a) = 0 \quad \forall f_1 \in \mathfrak{F}_1 \ \forall f_2 \in \mathfrak{F}_2$$

 $\supseteq Sia \ a \in \mathbb{K}^n \backslash (V(\mathfrak{F}_1) \cup V(\mathfrak{F}_2) \ allora$

$$\exists f_1 \in \mathfrak{F}_1 \ f_1(a) \neq 0 \quad \exists f_2 \in \mathfrak{F}_2 \ f_2(a) \neq 0 \quad \Rightarrow \quad (f_1 f_2)(a) \neq 0 \quad \Rightarrow \quad a \notin V(\mathfrak{F}_1 \mathfrak{F}_2)$$

Osservazione 1.

$$D(f) = \{ a \in \mathbb{K}^n \mid f(a) \neq 0 \}$$

È un aperto in quanto $D(f) = \mathbb{K}^n \backslash V(f)$

Una base per questa topologie è

$$\{D(f) \mid f \in \mathbb{K}[x_1, \dots, x_n]\}$$

infatti
$$\mathbb{K}^n \backslash V(\mathfrak{F}) = \bigcup_{f \in \mathfrak{F}} D(f)$$

Osservazione 2. Se prendiamo $\mathbb{K} = \mathbb{R}$ allora la topologia di Zariski è meno fine della topologia euclidea infatti le funzioni polinomiali sono continue nella topologia quindi

$$D(f) = f^{-1}(\mathbb{R}\setminus\{0\})$$
 ora $\mathbb{R}\setminus\{0\}$ è un aperto quindi $D(f) \in \tau_{eucl}$

Osservazione 3. Per n=1 la topologia di Zariski è la topologia cofinita

Se C è un chiuso nella topologia cofinita diverso da \mathbb{K} allora C è finito ovvero $C = \{a_1, \ldots, a_n\}$.

Presa $\mathfrak{F} = \{x - a_1, \dots, x - a_n\}$ otteniamo $C = V(\mathfrak{F} \text{ dunque è un chiuso in Zariski.})$

Sia C un chiuso nella topologia di Zariski diverso da \mathbb{K} allora $C=V(\mathfrak{F})$ allora per $f\in\mathfrak{F}$ abbiamo V(f) finito infatti f ha al più deg f radici

Esercizio 0.2. \mathbb{R} con la topologia di Sorgenfray è primo-numerabile ma non secondo-numerabile Sia $x \in \mathbb{R}$ allora

$$\mathfrak{B}_x = \left\{ \left[x, x + \frac{1}{n} \right) \mid n \in \mathbb{N} \right\}$$

è un sistema fondamentale di intorni per x numerabile.

Mostriamo che \mathbb{R}_S non è secondo numerabile.

Sia \mathfrak{B} una base di \mathbb{R}_S

Sia $a \in \mathbb{R}$ allora [a, a + 1) è aperto dunque è unione di elementi di \mathfrak{B} ovvero

$$\exists B_a \in \mathfrak{B} \quad a \in B_a \subseteq [a, a+1)$$

dunque $\mathfrak{B} \supset B' = \{B_a \mid a \in \mathbb{R}\}\$ ora \mathfrak{B}' non è numerabile essendo i B_a disgiunti dunque anche \mathfrak{B} non è numerabile

Osservazione 4. Abbiamo anche dimostrato che \mathbb{R}_s non è metrizzabile, se X è metrico: X primo-numerabile $\Rightarrow X$ secondo-numerabile

Osservazione 5. La topologia cofinita su un insieme più che numerabile non soddisfa il primo assioma di numerabilità.

Dimostrazione. Sia $x \in X$ e supponiamo che $\{U_n\}_{n \in \mathbb{N}}$ sia un sistema fondamentale di intorni dunque $X \setminus U_n$ è finito infatti

 U_n intorno $\Rightarrow \exists A_n \subseteq U_n$ aperto $\Rightarrow X \setminus A_n$ chiuso dunque finito

Ora $X \setminus A_n \subseteq X \setminus U_n$ dunque finito.

$$X \setminus U_n$$
 finito $\Rightarrow \bigcup_{n \in \mathbb{N}} X \setminus U_n$ numerabile

Ora essendo X più che numerabile esiste y nel complementare di $\bigcup_{n\in\mathbb{N}} X\backslash U_n$.

 $X \setminus \{y\}$ è un aperto che contiene x dunque è un intorno di x da cui

$$\exists n \ U_n \subset U$$

Inoltre $y \in X \setminus U \subseteq X \setminus U_n$

$$X \backslash U = \{y\} \subseteq X \backslash U_n \not\ni y$$

ma ciò è un assurdo

1 Intorni e continuità

Definizione 1.1. Sia $f: X \to Y$ una funzione tra spazi topologici e sia $x_0 \in X$. f si dice continua in x_0 se

$$\forall V \text{ intorno di } f(x_0) \quad \exists U \text{ intorno di } x_0 \quad f(U) \subseteq V$$

ovvero

$$\forall V$$
 intorno di $f(x_0)$ $f^{-1}(V)$ è intorno di x_0

Proposizione 1.1.

f continua \Leftrightarrow f continua in ogni suo punto

dove f continua è intesa con la definizione "La controimmagine di aperti è un aperto" Dimostrazione. \Leftarrow Sia V un aperto

$$f^{-1}(V)$$
 aperto $\Leftrightarrow f^{-1}(V) \in I(x) \quad \forall x \in f^{-1}(V)$

infatti A è aperto se e solo se è intorno di ogni suo punto. $\forall x \in f^{-1}(V)$

$$V \text{ aperto } \Rightarrow V \in I(f(x)) \Rightarrow f^{-1}(V) \in I(x)$$

 \Rightarrow Sia $x_0 \in X$.

Sia $V \in I(f(x_0))$ dobbiamo provare che $f^{-1}(V) \in I(x_0)$

$$V \in I(f(x_0)) \implies \exists V' \subseteq Y \text{ aperto} \quad f(x_0) \in V' \subseteq V$$

Ora $f^{-1}(V')$ essendo f continua è un aperto quindi

$$x_0 \in f^{-1}(V') \subset f^{-1}(V) \implies f^{-1}(V) \in I(x_0)$$

Definizione 1.2. Sia X uno spazio topologico e $\{x_n\}_{n\in\mathbb{N}}$ una successione allora

$$\{x_n\}$$
 converge a $x \in X$ se $\forall V$ intorno di $x = \exists n_0 = t. \ c. \ x_n \in V = \forall n \geq n_0$

Proposizione 1.2. Sia X primo-numerabile e sia $C \subseteq X$ allora

 $C \ chiuso \quad \Leftrightarrow \quad per \ ogni \ successione \ \{x_n\} \subseteq C \ convergente \ a \ x \in X \ allora \ x \in C$

Dimostrazione.

$$\overline{C} = \{ x \in X \mid U \cap C \neq \emptyset \quad \forall U \in I(x) \}$$

 \Rightarrow sia $\{x_n\}$ convergente a $x_0 \in X$.

Basta dimostrare che $x_0 \in C = \overline{C}$ ovvero che $U \cap C \neq \emptyset$ con $U \in I(x_0)$.

Dalla definizione di convergenza

$$\forall U \in I(x_0) \quad \exists n_0 \quad x_n \in U \quad \forall n \ge n_0$$

dunque $x_n \in U$ per infiniti n, ora la successione ha valori in C dunque $U_n \cap C \neq \emptyset$ \Leftarrow Sia $x \in \overline{C}$, vediamo che $x \in C$.

Per ipotesi basta costruire una successione $\{x_n\} \subseteq C$ convergente a x.

Sia $\{U_n\}_{n\in\mathbb{N}}$ un sistema fondamentale numerabile di intorni di x_0 .

$$V_n = \bigcap_{i=1}^n U_i \implies \{V_n\}$$
 è un sistema fondamentale di x_0 con $V_1 \supseteq V_2 \supseteq \dots$

Poichè $x \in \overline{C}$ allora $V_n \cap C \neq \emptyset \quad \forall n \in \mathbb{N}$.

Sia $x_n \in V_n \cap C$ e sia $\{x_n\}$ la successione così costruita allora

- $\{x_n\}\subseteq C$
- $\{x_n\}$ converge a x infatti

$$\forall U \in I(x) \quad \exists n_0 \quad V_{n_0} \subseteq U \text{ allora } x_n \in V_n \subseteq V_{n_0} \subseteq U \quad \forall n \ge n_0$$

Proposizione 1.3. Sia X primo-numerabile e sia $A \subseteq X$ allora

A aperto \Leftrightarrow per ogni successione $\{x_n\} \subseteq X$ convergente a $x \in A$ allora $x_n \in A$ $\forall n \geq n_0$

Proposizione 1.4. Siano X, Y spazi topologici primo-numerabile $e f: X \to Y$

f continua $\Leftrightarrow \forall \{x_n\} \subseteq X$ convergente a $x \in X$ allora $\{f(x_n)\} \subseteq \dot{e}$ convergente a $f(x) \in Y$

4