Course No: 20 Course Title: Introduction to Algorithms

Course Code: CSE 2101 Total marks: 100

Credit: 3.00 Pre-Requisites: CSE1103, CSE1201

Contact Hours: 3 Hours/Week Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08

Marks

11. Rationale:

Algorithms are the soul of computing. Algorithmic thinking, unlike the very young electronic machinery it brings alive, is rooted in ancient mathematics. It can be roughly described as creating "recipes" (well defined sequences of computational steps) for getting "things" (computational problems specifying an input-output relation) "successfully" (correctly) "done" (in finite steps and time). This course introduces basic methods for the design and analysis of efficient algorithms emphasizing methods useful in practice. Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures. The following important computational problems will be discussed: sorting, searching, elements of dynamic programming and greedy algorithms, advanced data structures, graph algorithms (shortest path, spanning trees, and tree traversals), string matching, elements of computational geometry, NP completeness.

11.2 Objectives:

Algorithm design and analysis provide the theoretical backbone of computer science and are a must in the daily work of the successful programmer. The goal of this course is to provide a solid background in the design and analysis of the major classes of algorithms. At the end of the course students will be able to develop their own versions for a given computational task and to compare and contrast their performance.

11.3 Course Learning Outcomes (CLO):

- 1. Understand theoretical and mathematical structures, concepts of computer algorithms,
- 2. Analyze the time complexity, space complexity, asymptotic performance of algorithms, worst, average and best-cases of algorithms.
- 3. Apply various sorting algorithms to determine the run-time and memory usage required to measure their efficiencies.
- 4. Demonstrate numerous algorithm design strategies including divide and conquer, greedy method, dynamic programming, backtracking, finding shortest paths, traversing salesman, hamiltonian cycle and implementing those algorithms.
- 5. Illustrate and analyze various search and graph algorithms, graph coloring, branch and bound algorithms.
- 6. Evaluate decision problems, the concept of P = NP, NP completeness and Cook's theorem.

	11.4	11.5	11.6	11.7
Uı	nit Learning Outcomes (ULO)	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define Algorithm	Introduction		Assignment,
b.	Define basic notations of algorithms	 What is an algorithm? Notation for programs Proof techniques	Lecture, Exercise	Quiz, Short Question.

		o Basics review: Sets -		
		Functions - Limits - Simple series		
a.	Discuss fundamental	Fundamentals		
	analysis of complexity	 Instances and problems Elementary operations. Efficiency Average and worst-case analysis Examples 	Lecture, Exercise	Assignment, Quiz, Short Question.
_	Define asymptotic	Asymptotic notation		
b.	notation Discuss different asymptotic notation	Introduction of A notation for "the order of"	Lecture, Exercise	Assignment, Quiz, Short
c.	Apply asymptotic notation to represent algorithm complexity.	 The omega notation o The theta notation The conditional asymptotic notation 		Question.
a.	Discuss Analysis of algorithms	Analysis of algorithms o Analyzing control structures	Lecture, Exercise	Assignment, Quiz, Short
b.	Apply different methods to analysis algorithms.	 Using a barometer Amortized analysis Solving recurrences		Question.
a.	Define Elementary	Data structures		
b.	Data Structures Discuss Arrays, stacks, queues, graphs, trees.	 Arrays, stacks and queues Records and pointers	Lecture, Exercise	Assignment, Quiz, Short
c.	Apply stacks, queues to different sorting and searching algorithms.	 Lists, graphs, trees and associative tables Heaps Disjoint set structures 		Question.
a.	Define Greedy algorithms	Greedy algorithms o Making change o General characteristics		
b.	Learn Graph MST, Kruskal's and Prim's algorithms, different shortest paths Algorithm, Knapsack problem	of Greedy algorithms o Graphs MST - Kruskal's and Prim's algorithms o Graphs: shortest paths o Knapsack problem o Scheduling	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Define Divide - and - Conquer approach of algorithm	 Divide - and - Conquer Multiplying large integers Binary search 	Lecture, Exercise	Assignment, Quiz, Short Question.
b.	Apply Divide and Conquer approach on different searching and sorting algorithms.	 Sorting by: merging and quicksort Finding the median Matrix multiplication Exponentiation Quick look at cryptography 	Lecture, Exercise	Assignment, Quiz, Short Question.

a.	Define Dynamic programming	Dynamic programming Making change Principles of optimality	Lecture, Exercise	Assignment, Quiz, Short Question.
b.	Apply Dynamic Programming approach on different algorithm to solve problems	 The knapsack problem Shortest paths - Floyd's algorithm Chained matrix multiplication 	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Define NP- Completeness	NP-Completeness o Polynomial time o Polynomial time		
b.	Discuss Cook's theorem and NP-Complete problem	verification NP-Completeness and reducibility NP-Completeness proofs NP-Complete Problem	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Learn to find the complexity of algorithms.	Introduction to computational complexity	Lecture, Exercise	Assignment, Quiz, Short Question.

	Authors	Book Name
1.	Thomas H. Cormen	Introduction to Algorithms
2.	Aho, Hopcroft and Ullman	The design and Analysis of Computer Algorithms
3	Ellis Horowitz &Sartaj	Fundamentals of Computer Algorithms
4.	D. E. Knuth	The Art of Computer Programming, Vol. 1, Fundamental Algorithms
5.	Sara Baase	Computer Algorithms: Introduction to Design and Analysis

Course No: 21 Course Title: Introduction to Algorithms Lab

Course Code: CSE 2102 Pre-Requisites: CSE1103, CSE1201

Credit: 1.5

Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks **Viva:** 30 Marks **Class Attendance:** 10 Marks

11.1 Rationale:

Algorithms are the soul of computing. Algorithmic thinking, unlike the very young electronic machinery it brings alive, is rooted in ancient mathematics. It can be roughly described as creating "recipes" (well defined sequences of computational steps) for getting "things" (computational problems specifying an input-output relation) "successfully" (correctly) "done" (in finite steps and time). This course introduces basic methods for the design and analysis of efficient algorithms emphasizing methods useful in practice. Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures. The following important computational problems will be discussed: sorting, searching, elements of dynamic programming and greedy algorithms, advanced data structures, graph algorithms (shortest path, spanning trees, and tree traversals), string matching, elements of computational geometry, NP completeness.

11.2 Objectives:

Algorithm design and analysis provide the theoretical backbone of computer science and are a must in the daily work of the successful programmer. The goal of this course is to provide a solid background in the design and analysis of the major classes of algorithms. At the end of the course students will be able to develop their own versions for a given computational task and to compare and contrast their performance

11.3 Course Learning Outcomes (CLO)

- 1. To have a collection of usable programs and data structures techniques that could make their future programming tasks/projects easier.
- 2. Able to implement recursive algorithms using user defined functions.
- 3. Understand how algorithms and the implemented programs can be applied in a broader context.
- 4. Develop an understanding of the value and appreciate the skills of algorithm and program performance analysis
- 5. Will have knowledge to convert a written algorithm or pseudocode to a high level programming languages like C++, JAVA etc.

	11.4	11.5	11.6	11.7
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define Algorithm	Introduction • What is an algorithm?		Assignment
b.	Define basic notations of algorithms	 Notation for programs Proof techniques Basics review: Sets - Functions - Limits - Simple series 	Lecture, Exercise	, Quiz, Short Question.
a.	Discuss fundamental analysis of complexity	Fundamentals	Lecture, Exercise	Assignment , Quiz, Short Question.
a.	Define asymptotic notation	Asymptotic notation o Introduction of A notation		Assismment
b.	Discuss different asymptotic notation	for "the order of" o The omega notation o The	Lecture, Exercise	Assignment , Quiz, Short
c.	Apply asymptotic notation to represent algorithm complexity.	theta notation o The conditional asymptotic notation		Question.
a.	Discuss Analysis of algorithms	Analysis of algorithms o Analyzing control structures	Lecture,	Assignment , Quiz,
b.	Apply different methods to the analysis algorithm.	Using a barometerAmortized analysisSolving recurrences	Exercise	Short Question.
a.	Define Elementary Data Structures	Data structures		
b.	Discuss Arrays, stacks, queues, graphs, trees.	 Arrays, stacks and queues Records and pointers Lists, graphs, trees and 	Lecture,	Assignment , Quiz,
c.	Apply stacks, queues to different sorting and searching algorithms.	associative tables O Heaps Disjoint set structures	Exercise	Short Question.
a.	Define Greedy algorithms	Greedy algorithms o Making change o General characteristics of	Lecture,	Assignment , Quiz,
b.	Learn Graph MST, Kruskal's and Prim's	Greedy algorithms O Graphs MST - Kruskal's and Prim's algorithms	Exercise	Short Question.

	algorithms, different shortest paths Algorithm, Knapsack problem	 Graphs: shortest paths Knapsack problem Scheduling		
a.	Define Divide - and - Conquer approach of algorithm	 Divide - and - Conquer Multiplying large integers Binary search Sorting by: merging and quicksort 	Lecture, Exercise	Assignment , Quiz, Short Question.
b.	Apply Divide and Conquer approach on different searching and sorting algorithms.	 Finding the median Matrix multiplication Exponentiation Quick look at cryptography 	Lecture, Exercise	Assignment , Quiz, Short Question.
a.	Define Dynamic programming	 Dynamic programming Making change Principles of optimality The knapsack problem 	Lecture, Exercise	Assignment , Quiz, Short Question.
b.	Apply Dynamic Programming approach on different algorithm to solve problems	 Shortest paths - Floyd's algorithm Chained matrix multiplication 	Lecture, Exercise	Assignment , Quiz, Short Question.
a.	Define NP- Completeness	NP-Completeness O Polynomial time O Polynomial time		
b.	Discuss Cook's theorem and NP-Complete problem	verification NP-Completeness and reducibility NP-Completeness proofs NP-Complete Problem	Lecture, Exercise	Assignment , Quiz, Short Question.
a.	Learn to find the complexity of algorithms.	Introduction to computational complexity	Lecture, Exercise	Assignment , Quiz, Short Question.

Authors Book Name

1. Thomas H. Cormen Introduction to Algorithms

2. Ellis Horowitz Fundamentals of Computer Algorithms

Course No. 22 Course Title: Object Oriented Programming

No: Course Code: CSE2103

Credit: 3.00
Contact Hours: 3 Hours/Week

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Semester Final 72 Class 20 Class 08
Exam: Marks Test: Marks Attendance: Marks

11. Rationale:

This course is designed to teach Object-Oriented programming concepts, techniques, and applications using the Java programming language.

$\frac{11}{2}$ Objectives:

- 1. The model of object oriented programming: abstract data types, encapsulation, inheritance and polymorphism.
- 2. Fundamental features of an object oriented language like Java: object classes and interfaces, exceptions and libraries of object collections.
- 3. How to take the statement of a business problem and from this determine suitable logic for solving the problem; then be able to proceed to code that logic as a program written in Java.
- 4. How to test, document and prepare a professional looking package for each business project using javadoc.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a. b.	Explain OOP Differentiate between OOP and structure language	Philosophy of Object Oriented Programming (OOP). Advantages of OOP over structured programming	Lecture	Essay Question
a.	Create class and object			
b.	Explain encapsulation Distinguish access modifier	Concepts of classes and objects, Encapsulation, access specifiers, static and	Lecture, Exercise	Short Question, Multiple Choice,
d.	Define static and no static member	non-static members		Assignment.
a.	Explain control structure Apply event handling in software development	JAVA applications; event handling; control structures.	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Differentiate constructor and destructor Apply single and	Methods; Overloaded Methods, Constructors,		Assignment, Quiz,
b.	multidimensional array in development Define overloaded	destructors, Single Multi- Dimension Arrays.	Lecture, Exercise	Short Question.
a.	Discuss interface in respect of OOP	Object Based Programming Object oriented Programming interface.	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Explain heritance			Assignment,
b.	Create inheritance based program	Inheritance: single and multiple inheritance.	Lecture, Exercise	Quiz, Short
c.	Apply inheritance			Question.
a.	Differentiate between method overload and override	Polymorphism: overloading, abstract classes, virtual	Lecture, Exercise	Assignment, Quiz,
b.	Contrast between abstract class and interface.	functions and overriding.	Dectare, Exercise	Short Question.
a.	Define exception Discuss different types of exception	Exceptions Handling	Lecture, Exercise	Assignment, Quiz,

c.	Create custom exception			Short Question.
a.	Define string			Assignment,
b.	Manipulate string operation	String manipulation.	Lecture, Exercise	Quiz, Short
c.	Create string processing algorithm			Question.
a.	Create GUI	Introduction to graphical		Assignment,
b.	Apply mouse and keyboard event	user interface; handling mouse and keyboard events.	Lecture, Exercise	Quiz, Short Question.
a.	Design multithread program			Assignment,
b.	Design client server program	Multi-Threading;Client Server programming	Lecture, Exercise	Quiz, Short
c.	Define thread			Question.

Authors Book Name

1. H. M. Deitel& P. J. JavaTM How to Program Deitel

2. Y. D. Liang Introduction to Java Programming, Comprehensive: International Edition

3. D. Objects First with Java: A Practical Introduction using BlueJ Barnes&M.Kolling

4. J. Farrell Programming Logic and Design, Comprehensive, 3rd edn

Course No: 23 Course Title: Object Oriented Programming Lab

Course Code: CSE2104 Pre-Requisites: Nil
Credit: 1.50
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Class 10 Marks Attendance: Marks

11. Rationale:

This course is designed to teach Object-Oriented programming concepts, techniques, and applications using the Java programming language.

11. Objectives:

- 1. The model of object oriented programming: abstract data types, encapsulation, inheritance and polymorphism.
- 2. Fundamental features of an object oriented language like Java: object classes and interfaces, exceptions and libraries of object collections.
- 3. How to take the statement of a business problem and from this determine suitable logic for solving the problem; then be able to proceed to code that logic as a program written in Java.
- 4. How to test, document and prepare a professional looking package for each business project using javadoc.

11.3 11.4 11.5 11.0

	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Basic programming	Study basic concept of OOP	Exercise	Practice And Coding
a.	Write OOP program	Study access modifier, class creation, object creation	Exercise	Practice And Coding
a.	Simple logic implementation in OOP	Study different control structure, event handling	Exercise	Practice And Coding
a. b.	Create OOP program with OOP feature Learn Array programming	Study constructor, overloaded constructor, array programming	Exercise	Practice And Coding
a.	Implement interface in writing of OOP program	Study interface	Exercise	Practice And Coding
a.	Implement inheritance in OOP program	Study inheritance	Exercise	Practice And Coding
a.	Implement polymorphism in writing of OOP program	Study method overloading and method overload	Exercise	Practice And Coding
a.	Handling exception	Study different types of built in and custom exception	Exercise	Practice And Coding
a.	Apply string to solve big mathematical problem like big integer problem	Study string manipulation	Exercise	Practice And Coding
a.	Create GUI based program	Study GUI	Exercise	Practice And Coding
a.	Apply threading in writing advanced OOP program	Study threading and client server architecture	Exercise	Practice And Coding

Authors

1.	H. M. Deitel& P. J. Deitel	Java TM How to Program
2.	Y. D. Liang	Introduction to Java Programming, Comprehensive: International Edition
3.	D. Barnes&M.Kolling	Objects First with Java: A Practical Introduction using BlueJ
4.	J. Farrell	Programming Logic and Design, Comprehensive, 3rd edn

Book Name

Course No: 24 Course Title: Computer Architecture and Organization

Course Code: CSE2105

Credit: 3.00

Pre-Requisites: Nil
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final 72 Class 20 Class 08
Exam: Marks Test: Marks Attendance: Marks

11. Rationale:

To be a computer engineer one needs to know architectural design, organizational design and computer family and also to learn the performance factors.

11. Objectives:

- 1. To learn the distinguished features of computer architecture, organization and family.
- 2. To learn about RISC and CISC.
- 3. To know activities and architecture of DMA, cache, and memory mapping.
- 4. To learn the parallel computer architecture and performance (High performance computer).

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Describe hardware and software	Introduction to Computer		Short
b.	Analyze the relationship between hardware and software	Hardware and Software	Lecture	Question Quiz
a.	Explain stored computer concept	Von Neumann SISD	Lecture	Short
b.	Explain the distinguish features of RISC and CISC	organization. RISC and CISC Machines	Exercise Assignment	Question Quiz
a.	Describe of peripherals	Computer peripherals,	Lecture	Short Question
b.	Analyze the interrupts	Interrupts	Lecture	Quiz
a.	Define DMA	DMA Manager Out on institution		Short
b.	Describe of memory organization and design	DMA, Memory Organization, cache coherence, Cache coherence, Cache	Lecture Assignment	Answer Analytical Answer
c.	Describe the cache memory system	memory, Memory system design.	Assignment	Quiz Group Exercise
a.	Describe parallel computer	Parallelism in multiprocessors and Multicomputer; Pipelined		Short Answer
b.	Distinguish between parallel and serial computer	processor design: pipelining, super-pipelines, advanced pipelines, static and dynamic	Lecture Exercise Assignment	Analytical Answer Quiz
c.	Explain pipeline processor	scheduling, Concurrent processors, Vector processors		Group Exercise

d.	Analyze the relation among different parallel	and multiprocessors, Array processors		
	computers			
a.	Explain multicomputers	Compute-intensive processors		Short Answer
b.	Analyze the efficiency of multicomputers	and Multicomputers	Lecture	Analytical Answer
a.	Explain vectorization and hypercube systems	Automatic Vectorization, Hypercube systems and Key	Lacture	Short
b.	Analyze data flow and control flow computer	application, Data flow computation	Lecture	Answer

	Authors	Book Name
1.	J. P. Hayes	Computer Architecture and Organization
2.	M. Mano	Computer System Architecture
3.	Stone	Introduction to computer Architecture
4.	M. E. Sloan	Computer Hardware and Organization

Course No: 25 Course Title: Numerical Analysis

Course Code: CSE 2107
Credit: 3.00
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final 72
Exam: Marks Class Test: 20 Marks Class Attendance: 08
Marks

11. Rationale:

The goal of the course is to provide the students with a strong background on numerical approximation strategies and a basic knowledge on the theory that supports numerical algorithms.

11. Objectives:

- 1. Use numerical methods for solving a problem
- 2. Locate and use good mathematical software,
- 3. Get the accuracy you need from the computer,
- 4. Assess the reliability of the numerical results, and
- 5. Determine the effect of round off error or loss of significance.

11.3 Course Learning Outcomes (CLO)

- 1. Recall the algebraic and transcendental equations
- 2. Illustrate the Eigenvalue and Eigen matrix
- 3. Identify the roots using algorithms
- 4. Devise the matrix calculation algorithms
- 5. Examine the integration problems
- 6. Demonstrate the differential equations

11.4	11.5	11.6	11.7

I	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Explain the Solution of algebraic and transcendental equations	Numerical Solution of Algebraic & & Transcendental Equations: Bisection, False Position, Newton-Raphson, and Secant Method.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Compute the solution of Simultaneous Linear Non- Homogeneous Algebraic Equations	Simultaneous Linear Non-Homogeneous Algebraic Equations: Gauss Elimination, Gauss Jordan, Gauss Jacobi, and Gauss Sidel Method.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Calculate Eigen Values and Eigen Vectors	Eigen Values and Eigen Vectors: Introduction and concept of eigen value and eigen vector, Estimation of the size of Eigen values.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Discuss different Interpolation method	Interpolation: Newton Forward, Newton Backward, Gauss's Forward, Gauss's Backward, Stirling Interpolation, Bessel's Interpolation, and Laplace- Everett's Interpolation Formula, Maxima-Minima of Tabulated Function.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Compute Numerical Differentiation	Numerical Differentiation: Newton's Forward and Newton's Backward Difference Formula to Compute the Derivatives, Difference Formula to Compute the Derivatives, Maxima- Minima of Tabulated Function.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Compute Integration	Numerical Integration: Newton-Cotes, Trapezoidal, Simpson's One-Third, Simpson's Three-Eight Formula to Compute Integration. Numerical Double Integration.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Explain the solution of ordinary differential equations	Numerical Solution of Ordinary Differential Equations: Taylor Series, Taylor Series Method for Simultaneous First-Order and Second-Order Differential Equations, Picard's Method of Successive approximation. Euler's, Modified Euler's, and Improved Euler's Method. Runge-Kutta Methods for Simultaneous First order, Second order,	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution

Third order, and Fourth
order Differential
Equations. Predictor-
Corrector Method.

Authors Book Name

1. Canale, P. Raymon Numerical Methods for Engineers and Chapra, C. Steven

2. J.F. Steffensen Interpolation

3. Santosh Gupta Numerical Methods for

4. Richard Hamming Numerical Methods for Scientists and Engineers

Course No: 26 Course Title: Numerical Analysis Lab

Course Code: CSE 2108

Credit: 1.00
Contact Hours: 2 Hours/Week

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

Lab Final Exam: 60 Marks Viva: 30 Class 10 Marks Attendance: Marks

11. Rationale:

Numerical methods, based upon sound computational mathematics, are the basic algorithms underpinning computer predictions in modern systems science. Such methods include techniques for simple optimization, interpolation from the known to the unknown, linear algebra underlying systems of equations, ordinary differential equations to simulate systems, and stochastic simulation under random influences. The objective of the lab work is to familiarize students with implementation of numerical methods using Python Programming Language.

11. Objectives:

- 1. Using Python to code, including design of codes
- 2. Engineering computations
- 3. Error analysis and relations to methods used
- 4. Organization of computations
- 5. Understanding the implications of approximations

11.3 Course Learning Outcomes (CLO)

- 1. Implement algebraic and transcendental equations
- 2. Experiment the Eigenvalue and Eigen matrix
- 3. Implement the roots using algorithms
- 4. Implement the matrix calculation algorithms
- 5. Experiment the integration problems
- 6. Experiment the differential equations

	11.4	11.5	11.6	11.7
Learning Outcomes		Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a	Implementation of different algorithms of Numerical	Numerical Solution of Algebraic and Transcendental	Lecture, Discussion,	Assignment, Home Work,

a.	Solution of Algebraic and Transcendental Equations using computer programming language Implementation of different algorithms of Simultaneous Linear Non-Homogeneous Algebraic Equationsusing computer programming language Implementation of different algorithms Eigen Values and Eigen Vectors using	Equations: Bisection, False Position, Newton- Raphson, and Secant Method. Simultaneous Linear Non-Homogeneous Algebraic Equations: Gauss Elimination, Gauss Jordan, Gauss Jacobi, and Gauss Sidel Method. Eigen Values and Eigen Vectors: Introduction and concept of eigen value	Case studies Lecture, Discussion, Case studies Lecture, Discussion,	Quiz, Problem- Solution Assignment, Home Work, Quiz, Problem- Solution Assignment, Home Work,
	computer programming language	and eigen vector, Estimation of the size of Eigen values. Interpolation: Newton	Case studies	Quiz, Problem- Solution
a.	Implementation of different algorithms of Interpolation using computer programming language	Forward, Newton Backward, Gauss's Forward, Gauss's Backward, Stirling Interpolation, Bessel's Interpolation, and Laplace-Everett's Interpolation Formula, Maxima-Minima of Tabulated Function.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Implementation of different algorithms of NumericalDifferentiationus ing computer programming language	Numerical Differentiation: Newton's Forward and Newton's Backward Difference Formula to Compute the Derivatives, Difference Formula to Compute the Derivatives, Maxima- Minima of Tabulated Function.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Implementation of different algorithms Numerical Integration using computer programming language	Numerical Integration: Newton- Cotes, Trapezoidal, Simpson's One-Third, Simpson's Three-Eight Formula to Compute Integration. Numerical Double Integration.	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution
a.	Implementation of different algorithms of Numerical Solution of Ordinary Differential Equations using computer programming language	Numerical Solution of Ordinary Differential Equations: Taylor Series, Taylor Series Method for Simultaneous First-Order and Second-Order Differential Equations, Picard's Method of Successive approximation. Euler's, Modified Euler's, and Improved Euler's	Lecture, Discussion, Case studies	Assignment, Home Work, Quiz, Problem- Solution

Method. Runge-Kutta	
Methods for	
Simultaneous First	
order, Second order,	
Third order, and Fourth	
order Differential	
Equations. Predictor-	
Corrector Method.	

Authors Book Name

1. Canale, P. Raymon Numerical Methods for Engineers and Chapra, C. Steven

2. J.F. Steffensen Interpolation

3. Santosh Gupta Numerical Methods for

4. Richard Hamming Numerical Methods for Scientists and Engineers

Course No: 27 Course Title: Software Development Project Laboratory-1

Course Code: CSE 2110 Pre-Requisites: Nil Credit: 3.00

Contact Hours: 2 Hours/Week

Total Marks: 100

Mark Distribution:

Lab Final Exam:60 MarksViva:30 MarksClass 10 MarksMarksAttendance:Marks

11. Rationale:

Computer Engineers should be competent in Application software through Object oriented language. This C#.net /ASP.net/Java Programming Knowledge is valuable to both beginners and advanced developers that already have experience in developing applications software.

$\frac{11}{2}$ Objectives:

1. Create and populate Windows Forms.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	To Apply OOP Knowledge	C#.NET Language Basics Data Types, Type Conversion, Boxing & Unboxing, Conditional Statements, Looping, Methods in C#, Properties, Arrays, Indexers, Structures, Enumerations	Group Assignment, Panel Discussion, Problem based Learning	Matching Type, Peer- Rating
a.	To Apply OOP Knowledge	Memory Management: Garbage Collector, Stack and Heap, System. GC Class.	Problem Based Learning, Project, Inquiry –based Learning	Practical Exam, Matching Type
a.	To Apply OOP Knowledge	OOP Concepts: Encapsulation, Inheritance,Polymorphism,Class and Object Constructors, Dynamic types, Optional parameters,Names & optional arguments,Covariant generic type parameters, Destructors,MethodoverloadingMethod overriding,Early binding, Late	Group Assignment,Pan el Discussion	Observation

		Binding, Abstract Classes, Abstract Methods, Interfaces, Multiple Inheritance, Generic classes, Static classes, Static constructors, Object initialize		
a.	To Apply OOP Knowledge	Exception Handling: System Defined Exceptions, Custom Exceptions, Try, Catch, Finally, Throwing exceptions	Group Assignment,Pan el Discussion	Observation
a.	To Apply OOP Knowledge	Delegate: Function Pointers, Multi cast delegates, File Handling System. IO namespace, File stream, Stream Reader, Stream writer, File info, Directory info, Drive Info	Problem-based Learning, Demonstration, Project /Assignment	Group Exercise, Observation, Inventories
a.	To Apply .NET Knowledge	Applications for Windows (Visual C#.NET) □ Creating a Form □ Adding Controls to a Form □ Creating an Inherited Form □ Organizing Controls on a Form □ Creating MDI Application Working with Controls □ Creating an Event Handler fora Control □ Using Windows Forms Controls □ Using Dialog Boxes □ Application □ Adding Controls at Run Time □ Creating Menus □ Validating User Input Using Data in Windows Forms Applications □ Adding ADO.NET □ Objects to and □ Configuring ADO.NET □ Objects in a Windows □ Forms Application □ Accessing and Modifying Data by Using DataSets □ Binding Data to Controls □ Overview of XML Web □ Services □ Persisting Data	Problem-based Learning, Demonstration, Project /Assignment	Group Exercise, Observation, Inventories
a.	To Apply .NET Knowledge	Developing Microsoft.NET Applications for Windows (Visual C#.NET) □ Printing and Reporting in Windows Forms □ Applications Lessons □ Printing From a □ Windows Forms Application □ Using the Print Preview, Page Setup, and □ Print Dialogs □ Constructing Print Document Content by Using GDI+ □ Creating Reports by Using Crystal Reports □ Deploying Windows Forms Applications • .NET Assemblies	Problem-based Learning, Demonstration, Project /Assignment	Group Exercise, Observation, Inventories
a.	To Apply Database Knowledge	Introduction to LINQ and ADO.NET Entity Framework. LINQ expressions Using via extension methods, Filtering, Sorting,	Problem-based Learning, Demonstration, Project	Group Exercise, Observation, Inventories

		Aggregation, Skip and Take operators,	/Assignment	
		Joins, Query, Lambda expressions.	C	
		Data Projection		
		Single result value, Existing types,		
		Anonymous types, Grouping		
		ASP.NET INTRODUCTION Difference Between ASP and		
		ASP.NET ,Architecture		
		Inline Technique & Code-Behind		
		Technique,Code Render Blocks		
		Server Controls ,Page Basics, Page		
		lifecycle, Post back Request View State, Directives		
		PROGRAMMING WITH		
		SERVER CONTROLS		
		Web Server Controls		
		Basic Web Controls, List Controls,		
		Data Controls, Adv Controls, User		
		Controls, Master Page and Content Page.		
		Validation Controls		
		Understanding Validation		
		Client or Server Site Validation		
		Required Filed Validator		
		Rang Validator, Regular Expression Validator, Compare Validator,		
		Custom Validator		
		Validator Summary.		
		CONTENT	Problem-based	
	To Apply	Developing Microsoft.NET	Learning,	Group
a.	ASP.NET	Applications for Web (ASP.NET using C#.NET)	Demonstration,	Exercise,
	Knowledge	STATE MANAGEMENT WITH	Project	Observation, Inventories
		ASP.NET	/Assignment	m, emedies
		Context, View State, Cookie State		
		Session State,		
		Session Tracking Application Object,		
		Session and Application Events		
		ADO.NET AND ASP.NET		
		Working with Data Controls,		
		GridView,		
		-Inserting, Updating, Deleting,- Sorting in Data Grid		
		-Paging in Data Grid,		
		DataSourceControls, Dataset, Details		
		View		
		FormView,DataList,Repeater		
		Control, Crystal Reports ADO.NET PROGRAMMING		
		Architecture, DataReaders and		
		DataSets, Command Object		
		Transaction Programming		
		Procedure Execution		
		Data Adapter and Data Set, Data		
		Tables, Data Relation, Data Views Updating Dataset		
		Opdamig Dataset	Problem-based	
			Learning,	Group Exercise,
a.	Project	Project, Review & Exam	Demonstration,	Observation,
			Project	Inventories
			/Assignment	

Authors Book Name

W3school.com
 On line tutorial

Course No: 28 Course Title: Business Studies for Engineers

Course Code: BUS 2101
Credit: 2.00
Credit: 2.00
Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Semester Final 72
Exam: Marks

Class Test: 20
Marks

Attendance: Marks

11.1 Rationale:

An introduction to the business and management aspects of the engineering profession, project management, prioritization of resource allocation, intellectual property protection, management of technical projects, and product/production management.

11. Objectives:

In this course, student will work in groups to learn about strategy, marketing, finance, project management and people management and will practice writing concise persuasive analyses and action plans and verbally defending their ideas. After completing this course, student will be prepared to be a working professional like engineer, manager, entrepreneur or other professional over the years.

11.3		11.4	11.5	11.6
I	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a. b.	Explain accounting principles Apply cash book, trial balance, balance	Basic accounting principles, Cash book, Trial Balance, Balance Sheet, Bank Reconciliation	Lecture, Assignment, Demonstration	Assignment , Short Answer,
a.	sheet, reconciliation statement Define and explain cost accounts	Cost Accounts and objectives;	Lecture,	Assignment Shout
b.	Apply direct cost and overhead allocation	Elements of a costs; Direct cost, Overhead allocation.	Assignment, Demonstration	, Short Answer, Essay
a.	Prepare a cost sheet	Preparation of a cost sheet,		
b.	Compute breakeven point	Computation of breakeven point. Standard Costing. job order	Lecture, Assignment,	Assignment , Short
c.	Define, explain and compare different costing.	costing, Process costing, Cost Variance.	Demonstration	Answer, Essay
a.	Define and explain administration, management, organization, authority, responsibility and scientific management.	Administration, Management and organization. Authority and responsibility. Scientific management. Organization structure, organization chart. Span of control. Selection and recruitment of employees; training and its types, promotion,	Lecture, Assignment, Demonstration	Assignment , Short Answer, Essay
b.	Compare different types of training.	wage system and incentive; job- evaluation and merit rating. Plant		

c.	Evaluate and rate jobs	layout, layout of physical		
d.	Define and explain material handling, maintenance, production control.	facilities. Transportation and storage. Material handling, Maintenance, Maintenance policy. Production control in intermittent and continuous		
e.	Analyze purchasing procedures	manufacturing industry, functions of production control. Purchasing		
f.	Identify factors affecting inventory build-up, economic lot size and reorder point.	procedures: Inventory- need and methods of control, Factors affecting inventory building-up. Economic lot size and reorder point.		
a.	Define and explain law of contract	Law of contract: Elements of a valid contract, consideration,		
b.	Compare laws and acts	parties component to contract. Sale of goods, hire and purchase. Negotiable instrument Act. Patent right and validity. Industrial laws in Bangladesh: factories Act, Industrial Relation Ordinance, Workmen's compensation act.	Lecture, Assignment, Demonstration	Assignment , Short Answer, Essay

	Authors	Book Name			
1.	Pyle and White	"Principle of Accounting"			
2.	Pyle and Larson	"Principle of Accounting"			
3.	Herold Koontz	"Management"			
4.	W. H. Newman	"Administrative Action"			
5.	Terry &Frankin	"Principle of Management"			
6.	W. J. Stevenson	"Management Science"			

Course No: 29 Course Title: Design and Analysis of Algorithms

Course Code: CSE 2201 Total marks: 100
Credit: 3.00 Pre-Requisites: Nil
Contact Hours: 3 Hours/Week Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11. Rationale:

A student, after successfully passing this course will be able to understand the fundamental data structures and Abstract Data Types, the main sorting and searching algorithms and recursion, analyze the time and space complexity of a given algorithm, stacks and queues, process the linked list and tree structures, and the graph terminology and perform basic graph operations.

11. Objectives:

- 1. Analyze the asymptotic performance of algorithms.
- 2. Write rigorous correctness proofs for algorithms.
- 3. Demonstrate a familiarity with major algorithms and data structures.
- 4. Apply important algorithmic design paradigms and methods of analysis.
- 5. Synthesize efficient algorithms in common engineering design situations.
- 6. Analyze the asymptotic performance of algorithms.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define complexity			Assignment,
b.	Distinguish among different types of problem	Computationalcomplexity	Lecture, Exercise	Quiz, Short Question.
a.	Discuss parameterized complexity	Parameterized complexity	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Define optimization problem			
b.	Discuss different optimization algorithm	Algorithms for combinatorial optimization	Lecture, Exercise	Assignment, Quiz, Short
c.	Apply optimization algorithm to solve real life problem			Question.
a.	Define heuristic algorithm	Practical computing and heuristics	Lecture, Exercise	Assignment, Quiz, Short
b.	Apply it in practical problem			Question.
a.	Define Approximation algorithm			
b.	Learn different approximation algorithm	Approximation algorithms	Lecture, Exercise	Assignment, Quiz, Short Question.
c.	Apply approximation algorithm to solve problem			Question.
a.	Define Linear programming	Linear Programming based	T	Assignment,
b.	Learn LP based algorithm	approximation algorithms	Lecture, Exercise	Quiz, Short Question.
a.	Discuss different randomized algorithm	Randomized algorithms	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Learn experimental algorithm	Experimental algorithmic	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Apply algorithm in different filed	Algorithms in state-of-the- art fields like Bioinformatics, Grid	Lecture, Exercise	Assignment, Quiz, Short
b.	Create new idea to solve problem	Computing, VLSI design		Question.

Authors Book Name

1. Thomas H. Cormen <u>Introduction to Algorithms</u>

2. Ellis Horowitz Fundamentals of Computer Algorithms &Sartaj

Course No: 30 Course Title: Design and Analysis of Algorithms Lab

Course Code: CSE 2202 Pre-Requisites: Nil

Credit: 1.5 Contact Hours: 3 Hours/Week

Total Marks: 100

Mark Distribution:

Lab Final Exam:60 MarksViva:30 MarksClass Marks10 Marks

11. Rationale:

A student, after successfully passing this course will be able to understand the fundamental data structures and Abstract Data Types, the main sorting and searching algorithms and recursion, analyze the time and space complexity of a given algorithm, stacks and queues, process the linked list and tree structures, and the graph terminology and perform basic graph operations.

$\frac{11}{2}$ Objectives:

- 1. Analyze the asymptotic performance of algorithms.
- 2. Write rigorous correctness proofs for algorithms.
- 3. Demonstrate a familiarity with major algorithms and data structures.
- 4. Apply important algorithmic design paradigms and methods of analysis.
- 5. Synthesize efficient algorithms in common engineering design situations.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define complexity	Computational		Assignment,
b.	Distinguish among different types of problem	complexity	Lecture, Exercise	Quiz,Short Question.
a.	Discuss parameterized complexity	Parameterized complexity	Lecture, Exercise	Assignment, Quiz,Short Question.
a.	Define optimization problem			
b.	Discuss different optimization algorithm	Algorithms for combinatorial	Lecture, Exercise	Assignment, Quiz,Short
c.	Apply optimization algorithm to solve real life problem	optimization		Question.
a.	Define heuristic algorithm	Practical computing and		Assignment,
b.	Apply it in practical problem	heuristics	Lecture, Exercise	Quiz,Short Question.
a.	Define Approximation algorithm			
b.	Learn different approximation algorithm	Approximation algorithms	Lecture, Exercise	Assignment, Quiz,Short
c.	Apply approximation algorithm to solve problem	argoriumis		Question.
a.	Define Linear programming	LP based approximation	Lecture,Exercise	Assignment, Quiz,Short
b.	Learn LP based algorithm	algorithms		Question.
a.	Discuss different randomized algorithm	Randomized algorithms	Lecture,Exercise	Assignment, Quiz,Short Question.

a.	Learn experimental algorithm	Experimental algorithmic	Lecture,Exercise	Assignment, Quiz,Short Question.
a.	Apply algorithm in different filed	Algorithms in state-of- the-art fields like	Lasterna Establish	Assignment,
a.	Create new idea to solve problem	Bioinformatics, Grid Computing, VLSI design	Lecture, Exercise	Quiz,Short Question.

Authors Book Name

1. Thomas H. Cormen Introduction to Algorithms

2. Ellis Horowitz Fundamentals of Computer Algorithms

Course No: 31 Course Title: Database Management System

Course Code: CSE2203 Pre-Requisites: Nil
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11. Rationale:

A computer engineer needs to know the fundamentals of database architecture, database management systems, and database systems, principles and methodologies of database design, and techniques for database application development.

11. Objectives:

- 1. An understanding of the needs for and uses of database management systems in business;
- 2. An understanding of the context, phases and techniques for designing and building database information systems in business;
- 3. An understanding of the components of a computerized database information system (application)
- 4. An ability to correctly use the techniques, components and tools of a typical database management system -- such as Access 2000 or Oracle 8i -- to build a comprehensive database information system (application);
- 5. An ability to design a correct, new database information system for a business functional area and implement the design in either Access 2000 or Oracle 8i;
- 6. An introductory understanding of some advanced topics in database management, e.g., object-relational databases and design, distributed databases, database administration (security, backup and restore, tuning) and data warehousing.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Define Database			
b.	Explain advantage of Database over file system	Database Concepts: Files and Databases, Database Management systems, Data	Lecture, Exercise	Assignment, Quiz, Short
c.	Describe different data model	models		Question.

a.	Explain Relational Data model			A asi an man4
b.	Apply RDM in DB design	Relational Data Model: Relations, Domains, Attributes and Tuple	Lecture, Exercise	Assignment, Quiz, Short
c.	Describe different types of attribute	Attributes and Tuple		Question.
a.	Evaluate anomalies in DB design			
b.	Identify different normal form	Anomalies, Functional Dependency, First, Second	Lecture,	Assignment, Quiz,
c.	Apply normalization in DB design	and third normal forms, Boyce-Codd Normal form	Exercise	Short Question.
d.	Convert one normal form to another normal			
		Relational Calculus Based Languages: SQL, Relational algebra and Set operations.	Lecture, Exercise	Assignment, Quiz, Short Question.
a. b.	Explain decomposition and synthesis algorithm Define lossless	Relational Database Design: Relational design criteria, Lossless decomposition, decomposition algorithms,	Lecture, Exercise	Assignment, Quiz, Short
	decomposition	synthesis algorithms.		Question.
a.	Define OODD Describe advantage of	Advance Database Concepts:	T	Assignment,
b.	OODD Differentiate fourth and	Fourth and fifth normal forms, Object-oriented databases.	Lecture, Exercise	Quiz, Short Question.
c.	fifth normal form			
b.	Define entity Relationship, relationship set.	Entity-Relationship (ER) approach: The ER model and its constructs, ER modeling in	Lecture, Exercise	Assignment, Quiz, Short
c.	Apply E-R approach to DB design	logical database design.	Exercise	Question.
a.	Explain transformation of ER model to SQL	Transformation of the ER model to SQL	Lecture, Exercise	Assignment, Quiz, Short Question.
a.	Architecture of DDBMS		T	Assignment,
b.	Advantage of DDBMS	Distributed database design.	Lecture, Exercise	Quiz, Short
c.	Explain pitfalls of DDBMS			Question.
a.	Evaluation of relational queries	Optimization and evaluation of relational queries: conjunctive query optimization, optimization of queries involving union and difference operators, algorithms for performing joins.	Lecture, Exercise	Assignment, Quiz, Short Question.

Authors Book Name

1. Korth and Silverchatz

Database System Concepts

2. O. William Principle of Database Systems

3. Jeffrey Ullman Relational Database Management System

Course No: 32 Course Title: Database Management System Lab

Course Code: CSE2204 Pre-Requisites: Nil
Credit: 1.50
Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

Lab Final Exam: 60 Marks **Viva:** 30 **Class** 10 Marks **Attendance:** Marks

11. Rationale:

A computer engineer needs to know the fundamentals of database architecture, database management systems, and database systems, principles and methodologies of database design, and techniques for database application development.

$\frac{11}{2}$ Objectives:

- 1 An understanding of the needs for and uses of database management systems in . business.
- 2 An understanding of the context, phases and techniques for designing and building database information systems in business.
- 3 An understanding of the components of a computerized database information . system.
- 4 An ability to correctly use the techniques, components and tools of a typical database management system -- such as Access 2000 or Oracle 8i -- to build a comprehensive database information system (application).
- 5 An ability to design a correct, new database information system for a business . functional area and implement the design in either Access 2000 or Oracle 8i.
- 6 An introductory understanding of some advanced topics in database management, e.g., object-relational databases and design, distributed databases, database administration (security, backup and restore, tuning) and data warehousing.

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	learn system configuration	Configure system for database programming	Exercise	Practice And Coding
a.	apply database basic function	Create Database, table ,learn data types	Exercise	Practice And Coding
a.	Demonstrate SQL	Learn SQL	Exercise	Practice And Coding
a.	Apply SQL to write database program	Apply SQL to retrieve, insert, update and delete data	Exercise	Practice And Coding
a.	Demonstrate advance SQL and apply it	Learn Advanced SQL	Exercise	Practice And Coding
a.	Design large database model with proper table organization	Learn normalization	Exercise	Practice And Coding
a.	Apply database triggering	Learn database triggering	Exercise	Practice And Coding
a.	Develop database design	Learn database design	Exercise	Practice And Coding

Authors Book Name

1. Korth and Silverchatz

2. O. William Principle of Database Systems

3. Jeffrey Ullman Relational Database Management System

Course No: 33 Course Title: Data Communication

Course Code: CSE-2205 Pre-Requisites: Nil Credit: 3.00

Contact Hours: 3 Hours/Week

Total Marks: 100

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11. Rationale:

A computer science engineer needs to know the communication model, different network layer, transmission medium and technique to fulfill his CSE degree.

11. Objectives:

1. Build an understanding of the fundamental concepts of Data communication.

- 2. Learn how computer network hardware and software operate
- 3. Investigate the fundamental issues driving network design
- 4. Learn about dominant network technologies

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a. b.	Discuss Communication model, task, network standards and organizations Draw Protocol architecture	Introduction: Data Communication, Fundamental characteristics, Components, Data representation, Data Flow, Network and its criteria, point-to-point and	Lecture	Essay Short Question
c.	Discuss different protocol layer	multipoint connection, different topologies, Network Models, Protocols and standards		
a.	Discuss Network Model, Tasks, ISO, OSI Model, TCP/IP Protocol	Network Model: different tasks in network model, peer-to-peer communication, characteristics and usage area of different layers in OSI model, fundamental properties of different layers of TCP/IP protocol, physical, logical and port address.	Lecture Tutorial	Essay Short Question
a.	Define Physical layer and media, Illustrate Analog and digital data and signal,	Physical Layer: Analog and digital data and signal, period, frequency, phase, wavelength, time and frequency domain,	Lecture Exercise	Short Question Assignment

	transmission technique and its impairments, Data rate limit for both noisy and noiseless channel.	bandwidth, transmission of digital signal, attenuation, distortion, noise, SNR, Nyquist bit rate, Shannon's capacity performance parameters.		
a.	Discuss various Digital transmission techniques.	Digital transmission: Line coding techniques NRZ, RZ, Manchester, and differential Manchester encoding, AMI, Block coding, analog to digital conversion based on PCM, delta modulation, etc.	Lecture Exercise Assignment	Quiz Short Question Assignment
a.	Discuss various Analog transmission techniques.	Analog transmission: ASK, FSK, PSK, QPSK, QAM encodings, AM, PM,FM, etc.	Lecture Exercise Assignment	Essay Quiz Short Question Assignment
a.	Discuss and characterize different data transmission techniques.	DataTransmission:Synchronousandasynchronousdatatransmission techniques.	Lecture Exercise Assignment	Essay Quiz Short Question
a.	Discuss and characterize different multiplexingtechniqu es.	Multiplexing: FDM, international FDM carrier standards, synchronous TDM, international TDM carrier standards, statistical time division multiplexing	Lecture Exercise Assignment	Essay Quiz Short Question Assignment
a.	Discuss and characterize different spread spectrum techniques.	Frequency hopping spread spectrum, direct sequence spread spectrum, code division multiple access.	Lecture	Short Question Essay
a.	Discuss and characterize different transmission medium.	Transmission Medium: Characteristics and applications of various types of guided medium.	Lecture Exercise Assignment	Quiz Short Question
a.	Explain Different wireless transmission technique. Compute path loss.	Wireless Transmission: Characteristics and applications of wireless transmission-terrestrial and satellite microwave, radio waves, propagation	Lecture	Essay Quiz
c.	Distinguish slow and fast fading Define inter symbol interference and VSAT	mechanism, free space propagation, land propagation, path loss, slow fading, fast fading, delay spread, inter symbol interference, VSAT.	Exercise Assignment	Short Question
a.	Discuss and Explain switching, different switching techniques and various switches	Switching: Switch, Taxonomy of switched network, Circuit switched network, three phases and efficiency and delay calculation, datagram network and its routing table, delay and efficiency calculation, virtual circuit network and its three phase, delay and efficiency calculation, structure of	Lecture	Essay Short Question

a.	Discuss error detection and correction methods, forward and backward detection, checksum	space division switch, crossbar switch, multistage switch, banyan switch, batcher banyan switch. Data Link Layer: Error Detection and Correction; parity check, CRC, forward error correction technique, linear block code, hamming code, etc.	Lecture Exercise	Short Question Essay
a.	Examine data link layer design issues, Generalize error detection and correction, Describe elementary data link & sliding window protocols Deduce Protocol verification	The data link layer: data link layer design issues, error detection and correction, elementary data link protocols, sliding window protocols, protocol verification, example data link protocols	Lecture Discussion	Assignment Group Exercise Multiple Choice
a.	Discuss wireless channel, multiple access protocol, random access and controlled access protocol	Multiple Access: Random access, ALOHA, Pure ALOHA, CSMA, CSMA/CA, Controlled access, reservation, token passing, polling, poll function, Channelization protocols, FDMA, TDMA and CDMA technology	Lecture Exercise Assignment	Essay Quiz Short Question Assignment

Behrouz A. Forouzan

Recommended books And Feriodicals				
	Authors	Book Name		
1.	William Stallings	Data and Computer Communication		
2.	Hajkins	Data Communication		
3.	Taub	Data Communication		

Data Communications and networking.

Course No: 35 Course Title: Mobile Application Development Lab

Course Code: CSE 2210 Pre-Requisites: Nil
Credit: 3.00 Total Marks: 100

Contact Hours: 2 Hours/Week

Mark Distribution:

4.

Lab Final Exam: 60 Wiva: 30 Class 10 Marks Attendance: Marks

11. Rationale:

Computer Engineers should be competent in mobile app and game development. This development Knowledge is valuable to both beginners and advanced developers that already have experience in developing mobile apps.

11. Objectives:

1. Create and populate mobile applications and games.

11.3 11.4 11.5	11.6
----------------	------

	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	To Apply OOP Knowledge for Android and/or iOS app development	Getting started with Android and iOS	Group Assignment, Panel Discussion, Problem based Learning	Matching Type, Peer- Rating
b.	Create UI for Android and/or iOS app	Building simple User Interface	Problem Based Learning, Project, Inquiry –based Learning	Practical Exam, Matching Type
c.	To apply knowledge of handling files in Android and iOS	Handling files in Android and iOS	Group Assignment,Pa nel Discussion	Observation
d.	Create mid-level application in Android and/or iOS	Course Project	Group Assignment,Pa nel Discussion	Observation

Authors Book Name

W3school.com
 On line tutorial

Course No: 36 Course Title: Probability and Statistics

Course Code: MATH 2201
Credit: 3.00
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11. Rationale:

To be a computer Engineer one has to be expert at Probability distribution and Statistical methods.

$\frac{11}{2}$ Objectives:

1. To achieve knowledge for solving stochastic world problems.

2. To know about Statistics and application of Statistics

	11.3	11.4	11.5	11.6
	Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy
a.	Explain probability distribution	Probability: Probability theory, discrete and		Assignment
b.	Sampling distribution	continuous probability distributions, sampling	Lecture Exercise	Essay Exercise
c.	Test of hypothesis, Correlation, Regression	theory and estimation, test of hypothesis, regression		Short Answer

	Find the relation	and correlation analysis,		
d.	between Correlation and	analysis of variance,		
	Regression	decision making using		
	Write down the different	probabilities, decision trees, application of game		
e.	measures of central	theory		
	tendency	theory		
c	Establish the relation			
f.	between AM, GM, HM			
	Explain frequency			
a.	distribution	Statistics: Introduction and introductory concepts,		
	Measuring Mean, Mode,	Variable and Frequency		
b.	Median values from	distribution. Central		
	frequency distribution	tendency & its measures,		
	Standard Deviation	Dispersion & its measures,		Assignment
c.	techniques	nature and shape of	Lecture	Essay
d.	Variable and attributes	frequency distribution, Probability and	Exercise	Exercise Short Answer
	Define Skewness and	Probability Theory,		
e.	Kurtosis	Regression and		
	Solve problems using	correlation, Sampling and		
f.	different measures of	sample survey, Test of hypothesis.		
	central tendency	ny poutesis.		

Authors Book Name

1. Murray R. Spiegel Statistics

2. Ahmed and Bhuiya Methods of Statistics

Shil and Debnath An Introduction to Theory of Statistics
 Md. Abu Yusuf Mathematical Method and tensor Analysis

Course No: 37 Course Title: Business Psychology

Course Code: BUS 2201
Credit: 3.00
Credit: 3.00
Total Marks: 100

Contact Hours: 3 Hours/Week

Mark Distribution:

Semester Final Exam: 72 Marks Class Test: 20 Marks Class Attendance: 08 Marks

11.1 Rationale:

This is an undergraduate course in linear algebra for students of engineering, science, and mathematics. Linear algebra is the study of linear systems of equations, vector spaces, and linear transformations. Solving systems of linear equations is a basic tool of many mathematical procedures used for solving problems in science and engineering.

11.2 Objectives:

- Build an understanding of the fundamental concepts of Linear Algebra.
- Learn how to solve linear equations, performing matrix algebra, calculating determinants, and finding eigenvalues and eigenvectors
- Learn about the applications of linear algebra applications

11.3	11.4	11.5	11.6
Learning Outcomes	Course Content	Teaching Strategy/ Learning Experience	Assessment Strategy

Understanding fundamental of psychology Learning perspective of Psychology Defining importance of psychology in business	Fundamentals: Definition of Psychology, Subfields of Psychology, Major Perspectives of Psychology, Psychology in Business	Lecture	Essay Short Question
Understanding Job Analysis	Job Analysis: Joboriented Approach, Person-oriented Approach, Purposes of Job Analysis, Methods of Job Analysis, Job Evaluation	Lecture Tutorial	Essay Short Question
Learning assessment methods for selection and placement	Assessment Methods for Selection and Placement: Psychological Tests: Ability Test, Personality Test, Intelligence Test, Vocational Interest Test	Lecture Exercise	Short Question Assignment
Defining training and development	Training and Development: Training Need Analysis, Training Designs, Training Methods, Evaluation of Training	Lecture Exercise	Quiz Short Question Assignment
Learning theories of employee motivation	Theories of Employee Motivation: Need Theories, Reinforcement Theory, Expectancy Theory, Goal Setting Theory	Lecture Exercise Assignment	Essay Quiz Short Question Assignment
Learning job attitude and emotion	Job Attitude and Emotion: Nature of Job Satisfaction, Assessment of Job Satisfaction, Antecedents of Job Satisfaction, Potential Effects of Job Satisfaction, Organizational Commitment, Emotion at work	Lecture Exercise Assignment	Essay Quiz Short Question
Learning Productive and Counterproductive Employee Behavior	Productive and Counterproductive Employee Behavior: Productive Behavior, Job Performance; Counterproductive Behavior, Withdrawal, Aggression, Mistreatment, Sabotage, and Theft	Lecture Exercise	Essay Quiz Short Question Assignment
Understanding Occupational Health Psychology	Occupational Health Psychology: Occupational Health and Safety, Work Schedules, Occupational Stress, Work-Family Conflict, Burnout, Hawthorne Studies;	Lecture	Short Question Essay
Understanding Leadership	Leadership: Approaches to the Understanding of	Lecture	Quiz Short Question

Learning Leader Behavior Approach	Leadership Trait Approach, Leader Behavior Approach, Contingency Theory, Path-Goal Theory, Leader- Member Exchange (LMX) Theory, Transformational Leadership Theory	Lecture	Essay Quiz Short Question
Understanding Organizational Development and Theory	Organizational Development and Theory: Organizational Development Employee Acceptance of Change, Management by Objectives, Survey Feedback, Team Building, T-Group	Lecture	Essay Short Question
Learning Effectiveness of Organizational Development	Effectiveness of Organizational Development: Organizational Theories, Bureaucracy, Theory X and Theory Y, Open System Theory, Sociotechnical System Theory.	Lecture	Short Question Essay

Authors

Book Name

Paul E. Industrial and Organizational Psychology
Spector

Course No. 38 Course Title: Viva Voce

No:

Course Code: CSE 2200
Credit: 1.00
Contact Hours:

Pre-Requisites: Nil
Total Marks: 100

Mark Distribution:

1.

Viva voce 100 Marks