Programmable devices have existed for centuries. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Following a consistent programming style often helps readability. Techniques like Code refactoring can enhance readability. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. There are many approaches to the Software development process. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Normally the first step in debugging is to attempt to reproduce the problem. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Ideally, the programming language best suited for the task at hand will be selected. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Programming languages are essential for software development.