Unit 3: Trigonometry 3.3 Equivalent Trigonometric Expressions

Investigation

- 1. Sketch $\triangle ABC$ such that $\angle B$ is a right angle. Mark $\angle B$ as $\frac{\pi}{2}$.
- 2. Mark $\angle A$ as x. Use the sum of the interior angles of a triangle to derive an expression for the measure of $\angle C$ in terms of x.
- 3. Determine an expression for sin(x) in terms of the sides of the triangle, a, b and c.
- 4. Determine expressions for the sine, cosine, and tangent of $\angle C$ in terms of the sides of the triangle. Which of these is equal to $\sin(x)$?

- 5. You have shown that $\sin x$ and $\cos \left(\frac{\pi}{2} x \right)$ are equivalent trigonometric expressions. Does the relationship between these equivalent expressions depend on the value of x? Justify your answer.
- 6. What is the sum of x and $\left(\frac{\pi}{2} x\right)$? What name is given to a pair of angles such as x and $\left(\frac{\pi}{2} x\right)$?
- 7. Use \triangle ABC to determine equivalent trigonometric expressions for $\cos(x)$ and $\tan(x)$. Use \triangle ABC to determine equivalent trigonometric expressions for $\csc(x)$, $\sec(x)$, and $\cot(x)$.

8. Summarize the six relations among trigonometric functions in the table.

Co-Function Identities	
$\sin\left(\frac{\pi}{2} - x\right) =$	$\csc\left(\frac{\pi}{2} - x\right) =$
$\cos\left(\frac{\pi}{2} - x\right) =$	$\sec\left(\frac{\pi}{2} - x\right) =$
$\tan\left(\frac{\pi}{2} - x\right) =$	$\cot\left(\frac{\pi}{2} - x\right) =$

Other Co-Function Identities	
$\sin\left(\frac{\pi}{2} + x\right) =$	$\csc\left(\frac{\pi}{2} + x\right) =$
$\cos\left(\frac{\pi}{2} + x\right) =$	$\sec\left(\frac{\pi}{2} + x\right) =$
$\tan\left(\frac{\pi}{2} + x\right) =$	$\cot\left(\frac{\pi}{2} + x\right) =$

An identity involving trigonometric expressions is called a **trigonometric identity**. The trigonometric identities in the table in step 8 are known as the **co-function or co-related identities**.

Summary of the other identities are below.

More Co-Function Identities		
$\sin\left(\frac{3\pi}{2}-x\right)=$	$\csc\left(\frac{3\pi}{2} - x\right) =$	
$\cos\left(\frac{3\pi}{2}-x\right) =$	$\sec\left(\frac{3\pi}{2} - x\right) =$	
$\tan\left(\frac{3\pi}{2}-x\right)=$	$\cot\left(\frac{3\pi}{2}-x\right)=$	

More Co-Function Identities		
$\sin\left(\frac{3\pi}{2} + x\right) =$	$\csc\left(\frac{3\pi}{2} + x\right) =$	
$\cos\left(\frac{3\pi}{2} + x\right) =$	$\sec\left(\frac{3\pi}{2} + x\right) =$	
$\tan\left(\frac{3\pi}{2} + x\right) =$	$\cot\left(\frac{3\pi}{2} + x\right) =$	

Recall- Even and odd functions identity:

Reflection Identities		
$\sin(-x) = -\sin(x)$	$\csc(-x) = -\csc(x)$	
$\cos(-x) = \cos(x)$	$\sec(-x) = \sec(x)$	
$\tan(-x) = -\tan(x)$	$\cot(-x) = -\cot(x)$	

Examples

1. State an equivalent trigonometric expression for $\cos\left(\frac{\pi}{12}\right)$ using co-function identity.

2. Given that $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$, use an equivalent trigonometric expression to show that $\csc\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}}$.

3. Simplify the following expressions

a)
$$\frac{\cos\left(\frac{\pi}{2}-2x\right)}{\tan\left(\pi-2x\right)} + \frac{\csc\left(\frac{\pi}{2}-2x\right)}{\sec\left(2x+2\pi\right)}$$

b)
$$\frac{\sin(x-\pi)}{\cos(x+\pi)} - \frac{\csc(-x-\pi)}{\sec(\frac{\pi}{2}-x)}$$

4. Determine a value of b such that $\csc\left(2b + \frac{\pi}{8}\right) = \sec\left(3b - \frac{\pi}{8}\right)$.

3.3 Practice

1. Write each of the following in terms of the co-function identity:

(a)
$$\sin\left(\frac{5\pi}{8}\right)$$

(b)
$$\csc\left(\frac{5\pi}{18}\right)$$

(c)
$$\cos\left(\frac{\pi}{9}\right)$$

(d)
$$\cos\left(\frac{7\pi}{36}\right)$$

2. Find the exact value of special angles using equivalent trigonometric expressions.

a)
$$\cot\left(\frac{-5\pi}{3}\right)$$
 b) $\csc\left(\frac{4\pi}{3}\right)$ c) $\sin\left(\frac{10\pi}{3}\right)$

b)
$$\csc\left(\frac{4\pi}{3}\right)$$

c)
$$\sin\left(\frac{10\pi}{3}\right)$$

d)
$$\sec\left(\frac{2\pi}{3}\right)$$

e)
$$\sin\left(\frac{-7\pi}{6}\right)$$

e)
$$\sin\left(\frac{-7\pi}{6}\right)$$
 f) $\cot\left(\frac{\pi}{2} - x\right)\cot(x)$

3. Express each of the following as a single trigonometric ratio, and then evaluate the ratio.

a)
$$\sec^2(\frac{7\pi}{6})\cot^2(\frac{7\pi}{6})$$

b)
$$\csc^2(\frac{3\pi}{4})\tan^2(\frac{3\pi}{4})$$

a)
$$\sec^2(\frac{7\pi}{6})\cot^2(\frac{7\pi}{6})$$
 b) $\csc^2(\frac{3\pi}{4})\tan^2(\frac{3\pi}{4})$ c) $\cos\left(\frac{4\pi}{3}\right)-\csc\left(\frac{5\pi}{6}\right)$

- 4. Determine a value for c such that $\tan \left(2c + \frac{\pi}{3}\right) \cot \left(3c \frac{\pi}{4}\right) = 0$.
- 5. Determine a value for θ that satisfies $\sin\left(2\theta \frac{\pi}{3}\right) = \cos\left(\frac{5\pi}{4} 3\theta\right)$.
- 6. Given $\sin\left(x + \frac{3\pi}{2}\right) = \frac{2}{2}$ where $\pi < x < \frac{3\pi}{2}$, determine the exact value of $\sin(x)$.
- 7. Simplify.

(a)
$$\cos(-\theta) + \cos(180^{\circ} - \theta) - \cos(180^{\circ} + \theta)$$

(b)
$$\frac{\cos(\pi+x)+\sin(\pi-x)}{\sin(2\pi-x)-\cos(\pi-x)}$$

(c)
$$\sin(\pi+x)\cos(\frac{\pi}{2}-x)-\cos(\pi+x)\sin(x+\frac{3\pi}{2})$$

(d)
$$\frac{\cos(-x)\sin\left(\frac{\pi}{2}-x\right)+\cos\left(\frac{3\pi}{2}-x\right)\csc(-x)}{\sin\left(\frac{\pi}{2}+x\right)-\cos\left(x-\frac{\pi}{2}\right)+\sin\left(\frac{3\pi}{2}-x\right)}$$

8. Fill in the blanks with the appropriate trig function name:

(a)
$$\sin \frac{2\pi}{3} = \underline{\qquad} \left(\frac{-\pi}{6}\right)$$

(b)
$$\frac{11\pi}{60} = \sin\frac{19\pi}{60}$$

(c)
$$\cos \frac{7\pi}{18} = \frac{1}{\frac{\pi}{9}}$$

9. For right triangle ABC:

- (a) If $\sin A = \frac{\sqrt{3}}{3}$, what is the value of cos B?
- (b) If $\cos A=0.109$, what is $\sin\left(\frac{\pi}{2}-A\right)$?
- (c) If $\cos \frac{11\pi}{180} = 0.9816$, what is $\sin \frac{79\pi}{180}$?

Warm-up

1. Find without using calculators, the value of

$$\tan\left(\frac{5\pi}{4}\right) - \tan\left(\frac{\pi}{9}\right) \cot\left(\frac{\pi}{9}\right) - \sec\left(\frac{\pi}{6}\right) \csc\left(\frac{\pi}{3}\right) - \sin\left(\frac{11\pi}{6}\right) + \sin\left(\frac{\pi}{2}\right)$$

2. Given $A = \frac{\pi}{6}$, $B = \frac{\pi}{4}$, $C = \frac{\pi}{3}$, **find the value of** $\sin^2(A) - \cos^2(C) + 2\tan(B) - \sec^2(B)$.