Roll No	
MCA (8-9)/D-14	10378
DESIGN AND ANALYSIS OF ALGORITHMS	
Paper-MCA-303	
Time Allowed: 3 Hours] [Maximum Mar	
Note: Attempt five questions in all, selecting at least one question from each Unit. Ques 1 is compulsory.	tion N0.
Compulsory Question	
1. Write in brief the following (3 marks each):	
(a) Define 'Divide and conquer' strategy.	
(b) Define 'Backtracking' with an example.	
(c) Define P and NP problem.	
(d) Write '3' examples for NP Hard and NP complete problems.	
(e) Explain various free-traversal methods.	
(f) Using the basic definition of 6-notation, prove that max $(f(n), g(n) = 9 (f(n) + g(n)))$	
(g) Show that the total running time of merge sort is O(n log n).	
(h) What is advantage of doubly linked list over singly linked list?	X8=24
UNIT-I	
2. (a) Demonstrate the execution of the dynamic programming algorithm for longest con	nmon
subsequence on the following example:	
$X = \langle A B C D E \rangle$	
$Y = \langle C A B E \rangle$.	7
What is the final LCS and its length?	
(b) Write an algorithm to. insert a node in the beginning of the linked list.	7
3. (a) Write an algorithm to implement DFSI. How is DFS different from BFS?	7
(b) Define Hashing. Discuss any for 'Hashing' functions. UNIT-II	7
4. (a) Describe any four features of Bottom-up approach to olgorithm design.	7
(b) Define Linear and Quadrative problems using an example.	7
5. (a) Discuss Cook's theorem with an example.	7
(b) What is the space bound for 'cl' dimensional range trees?	7
UNIT—III	
6. (a) What is Spanning tree and Minimum Spanning tree? Write Prim's algorithm With	an
example.	7
(b) Discuss the impact of threaded binary tree on the tree traversal procedure.	7
7. (a) Construct an expression tree for the expression $(((a/b) + c) - (cl * e))$ and give the	e pre-
order and post-order traversals.	7
(b) Define Program verification how is useful for designing a Perfect algorithm.	7
UNIT—IV	·
8. (a) Prove that the Hamiltonian cycle problem is Polynomial time verifiable.	7
(b) Discuss any technique for algebraic problems in detail. Provide an example for the	
(1) 11 11 11 11 11 11 11 11 11 11 11 11 1	,
9. Write short notes on any two:	7X2=14
(a) Recurrence Relation	

- (b) Oracle and Adversary arguments(c) Dijkstra's algorithm.