

Bangalore Institute of Technology K.R. ROAD, BENGALURU-560004.

Department of Computer Science and Engineering

Automata Theory and Computability 18CS54

Assignment

Submitted by AKASH JAIN 1BI19CS011 SEM - 5 SEC - A

Faculty In-charge N.Thanuja

Tracing of machines:

1)Obtain a DFSM such that, $L = \{ w \in \{a,b\}^* : w \text{ contains the substring ending with abb} \}$

Step 1: For a machine to end with abb as a substring, 4 states are required.

Step 2: Mark the initial state

Step 3: Mark the final state showing that machine accepts substring abb.

Step 4: Since there are two input alphabets, each state should make transition upon those two input alphabets.

Step 5: The final DFSM for a machine to accept strings of a's and b's and contain a substring ending with abb is

Consider few strings of the following inputs showing whether the machine accept/reject the string

Accept

Reject

Accept

Reject

2)Obtain a DFSM for the language $L = \{w \in \{a, b\}^*: w \text{ does not contain the string aab}\}$

Step 1: For the DFSM to not contain aab as substring we need three states. Type your text

Step 2:Mark q0 as initial state.

Step 3: For the language to contain no aab as a substring we make the transitions as following..

Step 4: Mark q0,q1 and q2 as final states.

Step 5: The final DFSM is

Consider few strings of the following inputs showing whether the machine accept/reject the string

ACCEPT

REJE

EP

REJE

Grammars:

1)Convert the given grammar to Chomsky Normal Form

S -> aACa

 $A \rightarrow B|a$

 $B \rightarrow C | c$

 $C \rightarrow cC \mid \epsilon$

Step 1: Remove ε productions

Step 2: Remove unit productions

Step 3: Remove mixed productions

Step 4: CNF

2)Convert the given grammar to Chomsky Normal Form

S -> aSa

 $S \rightarrow B$

 $B \mathrel{->} bbC \mid bb \; C$

 $-> \epsilon |cC$

Step 1: Remove ε productions

Step 2: Remove unit productions

Step 3: Remove mixed productions

