Class 13: RNA-Seq analysis mini-project

Emily Rodriguez

Differential Expression Analysis

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeighted

Loading required package: Biobase

```
Welcome to Bioconductor
```

```
Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile)
  head(colData)
                condition
         id
1 SRR493366 control sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369
                 hoxa1_kd
5 SRR493370
                 hoxa1_kd
6 SRR493371
                 hoxa1_kd
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
                   918
                               0
ENSG00000186092
                                         0
                                                   0
                                                              0
                                                                        0
ENSG00000279928
                   718
                               0
                                         0
                                                  0
                                                            0
                                                                        0
```

ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

To remove the first column I can use the -1 trick for the columns

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData) > 0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357

ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
nrow(countData)
```

[1] 15975

Set up and run DESeq

```
library(DESeq2)
  dds = DESeqDataSetFromMatrix(countData=countData,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
```

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

NA's

1237

```
summary(res$log2FoldChange[res$padj < 0.1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.9029 -0.6135 -0.1066 -0.0166 0.5626 8.8221</pre>
```

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"</pre>
```

```
# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01 ) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col= mycols, xlab="Log2(FoldChange)", ylab="-Log</pre>
```


Annotate results

I need to add annotation to my results including gene symbols and entrezids etc.

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)

[1] "ACCNUM" "AL]

[6] "ENTREZID" "ENZ
```

```
"ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                 "ENSEMBLTRANS"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
                                                                 "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
                                                                 "MAP"
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                                                                 "PFAM"
                    "ONTOLOGY"
[21] "PMID"
                                   "REFSEQ"
                                                                 "UCSCKG"
                    "PROSITE"
                                                  "SYMBOL"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></cl<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpl	ha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like n	ucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin l	homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqua	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Save results

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file = "myresults.csv")
```

Volano Plot

plot(res\$log2FoldChange, -log(res\$padj))

Pathway Analysis

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                           "151531" "1548"
                                                              "1549"
                                                                       "1551"
                                 "10941"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                               "26289"
                                                                        "270"
 [33] "2272"
                                                     "2618"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                                                               "318"
                                                                        "3251"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
 [57] "353"
                                            "377841" "471"
                                                               "4830"
               "3614"
                         "3615"
                                  "3704"
                                                                        "4831"
 [65] "4832"
                         "4860"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
               "4833"
                                  "4881"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
 [81] "5141"
               "5142"
                         "5143"
                                  "5144"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                                                        "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
```

```
[97] "51728" "5198"
                        "5236"
                                 "5313"
                                          "5315"
                                                   "53343"
                                                            "54107"
                                                                     "5422"
[105] "5424"
               "5425"
                        "5426"
                                 "5427"
                                          "5430"
                                                   "5431"
                                                            "5432"
                                                                     "5433"
[113] "5434"
               "5435"
                        "5436"
                                 "5437"
                                          "5438"
                                                   "5439"
                                                            "5440"
                                                                     "5441"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                          "5558"
                                                   "55703"
                                                            "55811"
                                                                     "55821"
[129] "5631"
               "5634"
                                 "56953"
                                          "56985"
                                                   "57804"
                                                            "58497"
                                                                     "6240"
                        "56655"
[137] "6241"
               "64425"
                        "646625" "654364" "661"
                                                   "7498"
                                                            "8382"
                                                                     "84172"
[145] "84265" "84284"
                        "84618"
                                 "8622"
                                          "8654"
                                                   "87178"
                                                            "8833"
                                                                     "9060"
                        "953"
                                          "954"
                                                   "955"
                                                            "956"
                                                                     "957"
[153] "9061"
               "93034"
                                 "9533"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                                  51232
                                             2034
                         1465
                                                       2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                         p.geomean stat.mean
                                                                    p.val
                                      8.995727e-06 -4.378644 8.995727e-06
hsa04110 Cell cycle
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
                                                       36 9.424076e-05
```

0.007586381

hsa03030 DNA replication

```
144 1.375901e-03
hsa03013 RNA transport
                                      0.073840037
hsa03440 Homologous recombination
                                                       28 3.066756e-03
                                    0.121861535
hsa04114 Oocyte meiosis
                                                      102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/emilyrodriguez/Desktop/BIMM 143/class13
Info: Writing image file hsa04110.pathview.png
  # A different PDF based output of the same data
  pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/emilyrodriguez/Desktop/BIMM 143/class13
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
```

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")