DS 3 : Chimie & Lois du frottement solide & Thermodynamique des systèmes ouvert Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-07	Chimie		
01-03	Structure du silicium		
1	électron de cœur : $1s^22s^22p^6$ électron de valence : $3s^23p^2$	1	
2	n=3 donc 3ieme période, 4 électrons de valence donc colonne IV	1	
	ou $4+10 = 14$		
	Le carbone C qui a 4 électron de valence. C est plus électronégatif		
	car au dessus.		
3	le nombre d'oxydation est à chaque fois $+IV$	1	
04-07	Production du nitrure de silicium		
4	$2N_2(g) + 3 \operatorname{Si}(s) = \operatorname{Si}(s)$	1	
5	Elles sont nulles car il s'agit de corps pur dans leur état standard	1	
	de référence. On utilise la loi de Hess $\Delta_r H^{\circ} = \Delta_f H^{\circ}(Si_3N_4)$ –		
	$2 \times 0 - 3 \times 0 = -744 \text{ kJ.K}^{-1}.\text{mol}^{-1}$		
6	transformation adiabatique et isobare donc $\Delta H = 0$ donc	1	
	$\xi_f \Delta_r H^{\circ}(T_i) + \sum_{\text{especes}} n_f c_p^{\circ}(T_f - T_i) = 0$ on fait un tableau		
	d'avancement aux proportions stœchiométriques donc à l'état ini-		
	$ \text{tial } n_i(N_2) = 2\xi_f, \ n_i(Si) = 3\xi_f \text{ et } n_i(Si_3N_4) = 0, \ \text{à l'état}$		
	final $n_i(N_2)=0,\ n_i(Si)=0$ et $n_i(Si_3N_4)=\xi_f$. On en dé-		
	duit $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(Si_3N_4)(T_f - T_i) = 0$ donc $T_f = T_i -$		
	$\frac{\Delta_r H^{\circ}}{c_n^{\circ}(Si_3N_4)} = 8130 \text{ K. Cette température ne peut être atteinte}$		
	$\frac{1}{c_p^{\circ}(Si_3N_4)}$ – 3150 K. Cettle temperature ne peut etre attente		
	dans une enceinte car les matériaux fondent.		

7	On refait un tableau d'avancement avec $n_f(N_2) = 0, 9n_i(N_2)$ donc	1	
	$n_i(N_2) - 2\xi_f = 0,9n_i(N_2)$ d'où $n_f(N_2) = 0,9n_i(N_2) = 0,9 \times$		
	$\frac{2}{0.1}\xi_f = 18\xi_f$ et on ajoute le réactif restant à la somme sur les		
	espèces d'où $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(S_{i3}N_4)(T_f - T_i) + 18\xi_f c_p^{\circ}(N_2)(T_f - T_i)$		
	$T_i) = 0$ d'où $T_f = T_i - \frac{\Delta_r H^{\circ}}{c_p^{\circ}(Si_3N_4) + 18c_p^{\circ}(N_2)} = 1543 \text{ K}$		

08-22	Machine de Wehner et Schulze		
8		1	
9		1	
10		1	
11		1	
12		1	
13		1	
14		1	
15		1	
16		1	
17		1	
18		1	
19		1	
20		1	
21		1	
22		1	

23-30	Propulsion par un réacteur d'avion		
23-25	Premier principe pour un système ouvert		
23	Σ système fermé donc sa masse se conserve $m_{\Sigma}(t+dt)=m_{\Sigma}(t)$, or	1	
	t on remarque sur le schéma $m_{\Sigma}(t) = m_{pc}(t) + dm_e$ et à $t + dt$ on		
	remarque que $m_{\Sigma}(t+dt) = m_{pc}(t+dt) + dm_s$, donc $m_{pc}(t+dt) + dm_s$		
	$dm_s = m_{pc}(t) + dm_e$. Le régime est permanent donc $m_{pc}(t+dt) = 0$		
	$m_{pc}(t)$ d'où $dm_e=dm_s$, on en déduit que $D_m=rac{dm_e}{dt}=rac{dm_s}{dt}$		
24	On applique le premier principe au système fermé Σ entre t et	1	
	$t + dt \operatorname{donc} dE_c + dU = W + Q \operatorname{devient} E_{c,\Sigma}(t + dt) - E_{c,\Sigma}(t) + dt$		
	$U_{\Sigma}(t+dt) - U_{\Sigma}(t) = \delta W + \delta Q.$		
	Puis on exprime les différents termes en fonction des entrées et		
	sorties:		
	$E_{c,\Sigma}(t+dt) - E_{c,\Sigma}(t) = E_{c,pc} + \delta E_{c,s} - E_{c,pc} - \delta E_{c,e} = \delta E_{c,s} - \delta E_{c,e}$		
	puis		
	$U_{\Sigma}(t+dt) - U_{\Sigma}(t) = U_{pc} + \delta U_s - U_{pc} - \delta U_e = \delta U_s - \delta U_e$ puis		
	$\delta Q = 0$ car les parois sont calorifugés puis		
	$\begin{cases} \delta W = \delta W_p + \delta W_{fc} + \delta W_i \text{ avec} \\ \delta W_{fc} = -E_{p,\Sigma}(t+dt) + E_{p,\Sigma}(t) = -E_{p,pc} - \delta E_{p,s} + E_{p,pc} + \delta E_{p,e} = 0 \end{cases}$		
	$\delta W_p = -P_s S_s dl_s + P_e S_e dl_e \text{ enfin}$		
	$(\delta E_{c,s} + \delta E_{p,s} + \delta U_s + P_s S_s dl_s) - (\delta E_{c,e} + \delta E_{p,e} + \delta U_e + P_e S_e dl_e) =$		
	δW_{\cdot}		
25	On exprime tout en grandeur massique	1	
	$(e_{c,s}\delta m_s + e_{p,s}\delta m_s + u_s\delta m_s + P_s v_s\delta m_s) - (e_{c,e}\delta m_e + e_{p,e}\delta m_e + e_{p,e}\delta m_e)$		
	$u_e \delta m_e + P_e v_e \delta m_e) = \omega_i \delta m$		
	on utilise $\delta m = \delta m_e = \delta m_s$		
	$(e_{c,s} + e_{p,s} + u_s + P_s v_s) - (e_{c,e} + e_{p,e} + u_e + P_e v_e) = \omega_i$		
	puis on reconnait $h = u + Pv$, on a $e_c = \frac{1}{2} \frac{\delta m}{\delta m} c^2$, et on a seulement		
	le poids comme énergie potentielle donc $e_p = \frac{\delta m}{\delta m} gz$ d'où		
	$\left(\frac{1}{2}c_s^2 + gz_s + h_s\right) - \left(\frac{1}{2}c_e^2 + gz_e + h_e\right) = \omega_i$		
26-30	Force de poussée du réacteur - Étude de la tuyère		
26	l'air traversant la tuyère est un gaz parfait subissant une trans-	1	
	formation adiabatique et réversible donc on peut utiliser la loi de		
	Laplace $P_s^{1-\Gamma}T_s^{\Gamma} = P_e^{1-\Gamma}T_e^{\Gamma}$ donc $T_s = \left(\frac{P_e}{P_s}\right)^{(1-\Gamma)/\Gamma} \times T_e$ d'où		
	$\theta_s = \left(\frac{P_e}{P_s}\right)^{(1-\Gamma)/\Gamma} \times (\theta_e + 273) - 273 = 547 ^{\circ}\text{C}$		

27	On applique le premier principe $(\frac{1}{2}c_s^2+gz_s+h_s)-(\frac{1}{2}c_e^2+gz_e+h_e)=$ ω_i ,	1	
	on remarque qu'il n'y a pas de travail $\omega_i = 0, z_s = z_e$, et $c_e = 0$		
	d'où		
	$\frac{1}{2}c_s^2 + h_s - h_e = 0$ d'où $c_s = \sqrt{2(h_e - h_s)} = \sqrt{2c_p(T_e - T_s)} = 0$		
	$\sqrt{2c_p(\theta_e - \theta_s)} = 841 \text{ m.s}^{-1}$		
28	On doit calculer une force donc on écrit la seconde loi de Newton	1	
	au système fermé Σ , $\frac{dp_{\Sigma}}{dt} = \vec{\Pi}_{\to \Sigma}$, avec \vec{p}_{Σ} la quantité de mou-		
	vement. On fait un bilan de quantité de mouvement avec cette		
	équation comme on l'a fait pour l'énergie.		
	on l'écrit comme un bilan entre t et $t+dt$		
	$ \vec{p}_{\Sigma}(t+dt) - \vec{p}_{\Sigma}(t) = \Pi_{\to \Sigma} dt$		
	on décompose selon la partie commune et les entrée et sorties		
	$\vec{p}_{pc}(t+dt) + \delta\vec{p}_s - \vec{p}_{pc}(t) - \delta\vec{p}_e = \vec{\Pi}_{\to \Sigma}dt$		
	on utilise le caractère permanent de l'écoulement $\vec{p}_{pc}(t+dt) =$		
	$ec{p}_{pc}(t)$ d'où		
	$\delta \vec{p}_s - \delta \vec{p}_e = \vec{\Pi}_{\to \Sigma} dt$		
	puis on introduit les grandeurs massiques $\delta \vec{p} = \delta m \vec{c}$ et $dt = \frac{\delta m}{D_m}$		
	$\delta m_s ec{c}_s - \delta m_e ec{c}_e = ec{\Pi} rac{\delta m}{D_m}$		
	puis la conservation de la masse $\delta m_s = \delta m_e = \delta m$ d'où		
	$\vec{\Pi}_{\to\Sigma} = D_m \left(\vec{c}_s - \vec{c}_e \right)$		
	On vient d'exprimer la force de poussée sur le système fermé de		
	gaz qui s'écoule à travers le réacteur, donc on vient de calculer la		
	force exercée par le réacteur sur l'air. Mais ce qui nous intéresse $\vec{\Pi}$		
	c'est la force de l'air sur le réacteur, donc par principe de l'action		
	et de la réaction (3ième loi de Newton)		
	$ \vec{\Pi} = -\vec{\Pi}_{\to\Sigma} = D_m (\vec{c}_e - \vec{c}_s) \text{ et } \Pi = D_m c_s = 70 \text{ kN}$		

29	$ma = \Pi \operatorname{donc} \frac{a}{g} = \frac{1}{mg}\Pi = \frac{D_m c_s}{mg} = 6$	1	
30	L'accélération est constante donc $\ddot{x} = a$ donc $x(t) = \frac{a}{2}t^2 + \dot{x}(0)t +$	1	
	$\begin{cases} x(0), \text{ on prend } \dot{x}(0) = 0 \text{ et } x(0) = 0, \text{ donc } x(\tau) = l \text{ et } \tau = \sqrt{\frac{2l}{a}} = 3 \end{cases}$		