

M54/74HC245/640/643 M54/74HC245/640/643

OCTAL BUS TRANSCEIVER (3-STATE): HC245 NON INVERTING HC640 INVERTING, HC643 INVERTING/NON INVERTING

- HIGH SPEED
- $t_{PD} = 10 \text{ ns (TYP.)}$ at $V_{CC} = 5V$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \, ^{\circ}\text{C}$
- HIGH NOISE IMMUNITY

 V_{NIH} = V_{INL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITÝ 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN)
- BALANCED PROPAGATION DELAYS

 tpi H = tpHi
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS245/640/643

DESCRIPTION

The M54/74HC245, HC640 and HC643 utilise silicon gate C2MOS technology to achive operating speeds equivalent to LSTTL devices.

Along with the low power dissipation and high noise immunity of standards C^2MOS integrated circuit, it possesses the capability to drive 15 LSTTL loads. These IC's are intended for two-way asynchronous communication between data buses, and the direction of data trasmission is determined by DIR input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated.

All input are equipped with protection circuits against static discharge and transient discharge and transient excess voltage.

IT IS PROHIBITED TO APPLY A SIGNAL TO A BUS TERMINAL WHEN IT IS IN OUTPUT MODE AND WHEN A BUS THERMINAL IS FLOATING (HIGH IMPEDANCE STATE), IT IS REQUESTED TO FIX THE INPUT LEVEL BY MEANS OF EXTERNAL PULL DOWN OR PULL UP RESISTOR.

PIN CONNECTION (top view)

October 1993 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	DIR	Directional Control
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs/Outputs
18, 17, 16, 15, 14, 13, 12, 11	B1 to B8	Data Inputs/Outputs
19	G	Output Enabel Input (Active LOW)
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

INF	PUT	FUNC	TION	OUTPUT		
G	DIR	A BUS	B BUS	HC245	HC640	HC643
L	L	OUTPUT	INPUT	A = B	$A = \overline{B}$	A = B
L	Н	INPUT	OUTPUT	B = A	$B = \overline{A}$	$B = \overline{A}$
Н	X	Z	Z	Z	Z	Z

X: "H" or "L"

Z: High impedance

LOGIC DIAGRAM (HC640)

NOTE: IN CASE OF HC245 OR HC643, INPUT INVERTERS MARKED* AT A BUS AND B BUS ARE ELIMINATED RESPECTIVELY

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
l _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
Ιο	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \equiv 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
Тор	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C °C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions		Value								
Symbol Parameter		V _{CC}				_A = 25 ^o C and 7			85 °C HC	1	125 °C HC	Unit
		()			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		V
		6.0	or		5.9	6.0		5.9		5.9		
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VIH	I ₀ = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
loz	3 State Output Off State Current	6.0		$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5.0	μА		_
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions		Value								
Symbol Parameter		V _{CC}	C _L			_A = 25 ^c C and 7		1	85 °C HC		125 °C HC	Unit
		(۷)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				25	60		75		90	
t _{THL}	Time	4.5	50			7	12		19		18	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation	2.0				33	90		115		135	
t _{PHL}	Delay Time	4.5	50			12	18		23		27	ns
		6.0				10	15		20		23	
		2.0	150			48	120		150		180	
		4.5				16	24		30		36	ns
		6.0				14	20		26		31	
t_{PZL}	Output Enable	2.0				48	150		190		225	
t _{PZH}	Time	4.5	50	$R_L = 1K\Omega$		16	30		38		45	ns
		6.0				14	26		32		38	
		2.0				63	180		225		270	
		4.5	150	$R_L = 1K\Omega$		21	36		45		54	ns
		6.0				18	31		38		46	
t _{PLZ}	Output Disable	2.0				37	150		190		225	
t _{PHZ}	Time	4.5	50	$R_L = 1K\Omega$		17	30		38		45	ns
		6.0				15	26		32		38	
C _{IN}	Input Capacitance			DIR, G		5	10		10		10	pF
C _{I/OUT}	Output Capacitance			An, Bn		13						pF
C _{PD} (*)	Power Dissipation Capacitance			HC245 C640/643		39 37						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/8 (per circuit)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

CPD CALCULATION

 C_{PD} is to be calculated with the following formula by using the measured value of I_{CC} (Opr.) in the test circuit opposite.

$$C_{PD} = \frac{I_{CC}(Opr.)}{f_{IN} \times V_{CC}}$$

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Ceramic DIP20 MECHANICAL DATA

DIM.		mm		inch				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			25			0.984		
В			7.8			0.307		
D		3.3			0.130			
Е	0.5		1.78	0.020		0.070		
e3		22.86			0.900			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
I	1.27		1.52	0.050		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N1			4° (min.),	15° (max.)				
Р	7.9		8.13	0.311		0.320		
Q			5.71			0.225		

SO20 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45°	(typ.)		
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

