2022年秋学期

化学2 (K2)

第6回目 2022年11月2日(水)

本日の目標

★化合物の立体的な形を考える

- ・ 環状の化合物は立体的にはどのような形状だろう?
- ・ シクロヘキサンはなぜ安定なのだろう?
- axial & equatorial

前回の復習

・立体異性体には大きく、	ع		がある。
・二重結合を挟んで、同じ・鏡で写したように対象と・4つの置換基が全て異なる	なっている異性体を	るものが、、反対側に	こついているものが
・置換基の立体配置が完全 ・置換基の立体配置が一部		性体をという。	という。
・エナンチオマーの物理化 ・ジアステレオマーの物理		· · · · · · · · · · · · · · · · · · ·	
・エナンチオマーの等量混 ・ <i>R</i> 体/ <i>S</i> 体、(+)/(-), <i>d/ l</i> , [。 ·区別するための表現法	₹である 。

小テストの解答

1. 次のそれぞれの組の化合物は、互いに構造異性体か、エナンチオマーか、ジアステレオマーか、あるいは同一分子か答えよ。

重なるように反転させると 立体配置が 逆になっているのが分かる →エナンチオマー

原子の結合順序がそもそも違う →構造異性体

小テストの解答

2.次の化合物の立体中心の立体配置(Ror S)を答えよ。

考え方

立体中心がある炭素に注目し、 置換基の優先順位をつける。 優先順位は、原子番号が大きいものほど高い。 \downarrow 最も優先順位が低い原子(この場合水素) が奥側になるような角度から分子を見る。 \downarrow 優先順位が高い順に置換基をチェックしたとき、 時計回りならR,反時計回りならS。

答え:*S*

本日の内容

- ①立体配座とは?
 - ・立体配座と立体配置
 - ・配座異性体
 - ・Newman投影式と安定性
- ②環状化合物シクロアルカンの立体と安定性 シクロヘキサンはとても安定 axialとequatorial

前回の補足:異性体の種類

配置と配座の違い

立体配置と立体配座

とてもよく似た言葉だが、いったいどう違うのだろう?

配置(configuration)

一度結合を切らないと変換できないかたち

$$H_{3}$$
 $C = C$
 H_{3}
 H_{3}
 H_{3}
 H_{4}
 H_{4}
 H_{5}
 H_{5}

配座(conformation)

結合の回転によって変換できるかたち

おまけ:配座異性体

前回の復習

二重結合は単結合と違って回転できないので、シストランス異性体が生じる

π結合を切るには エネルギーが必要

では単結合では異性体は生じないのだろうか??

→<u>単結合が自由に回転できない</u>とき、異性体が生じる!→**配座異性体**

配座異性体ってどんなもの?

灰色の部分と水色の部分が単結合でつながっているが…

- →灰色の部分と水色の部分が大きいため、かさばって上手く回転できない
- →配座異性体

配座を考えると…

⇒物質が安定な状態か、不安定な状態か分かる!

左のメチル基は下向き 右のメチル基は上向き ⇒ぶつかりにくい=安定

左のメチル基は上向き 右のメチル基も上向き ⇒ぶつかりやすい=不安定

配座を考えるには…

~配座を考えるコツ~

特定の結合だけに着目して、抜き出して考える

→Newman投影法の活用

この結合に注目して 配座を考えたい…

Newman投影図の描き方

図 6-4 ニューマン投影図

Newman投影図を描くと…

どのような立体配座が安定か分かる!

Newman投影図を書いてみよう

何番のブタンが一番安定だろうか?

Newman投影図でブタンの立体配座の安定性を考える

本日の内容

- ①立体配座とは?
 - ・立体配座と立体配置
 - ・配座異性体
 - ・Newman投影式と安定性
- ②環状化合物シクロアルカンの立体と安定性 シクロヘキサンはとても安定 axialとequatorial

環状構造は平面か?立体的か?

参考:炭素数と命名

炭素数

1	メタン (methane)	$\mathrm{CH_{4}}$
2	エタン(ethane)	C_2H_6
3	プロパン(propane)	C_3H_8
4	ブタン (butane)	C_4H_{10}
5	ペンタン(pentane)	C_5H_{12}
6	ヘキサン(hexane)	C_6H_{14}
7	ヘプタン(heptane)	C_7H_{16}
8	オクタン(octane)	C_8H_{18}

環構造はなぜ折れ曲がっているのか?

そもそも… sp3炭素の結合角は 109.5°

シクロアルカンは 折れ曲がることで ねじれ形の配座を 取れるため安定となる

折れ曲り形

図 6-9 シクロブタンの立体配座

どのシクロアルカンが安定なのか?

※ひずみエネルギー

原子の結合により生じた ひずみによるエネルギー。 大きいと分子は不安定になる。

<u>シクロヘキサン</u>は ひずみエネルギーが小さく とても安定な化合物である

sp3炭素の結合角は109.5° 結合角が109.5°に近いほど 無理なく原子が結合できる

なぜシクロヘキサンはひずみエネルギーが小さいのか?

シクロブタン

シクロペンタン

シクロヘキサン

全ての水素がねじれ形配座!

Axial水素とequatorial水素

シクロヘキサンの構造を書いて、Hを構造中に示してみよう

シクロヘキサンを書いてみよう

Axial

→垂直方向に伸びた結合

Equatorial

→環と並行方向に伸びた結合

Ha→axial水素 He→equatorial水素

axialとequatorialと安定性

$$\begin{array}{c}
\mathsf{CH}_{3} \\
-\mathsf{C}-\mathsf{CH}_{3} \\
\mathsf{CH}_{3}
\end{array}$$

とてもかさ高いtert-ブチル基は、axialとequatorialどちらにあるのが安定だろう?

環の反転とaxial/equatorial

シクロヘキサンの環が反転すると、axialとequatorialも反転する

本日のまとめ

- ・結合の回転によって変換できるかたちを配座という
- ・一度結合を切らないと変換できないかたちを配置という
- ・配座を考えるとき、Newman投影法が便利である。
- ・Newman投影法では、着目する結合を手前から奥へ配置することによって、 置換基同士の角度を考慮する方法である。
- ・Newman投影法では、ねじれ形配座と重なり型配座がある。
- ・ねじれ形配座は安定で、重なり型配座は不安定である。
- ・シクロアルカンについて、ひずみエネルギーが小さいほどその分子は安定である。
- ・最もひずみエネルギーが小さいシクロアルカンはシクロヘキサンである。
- ・シクロヘキサンにはいす形配座と舟形配座があり、いす形配座が安定である。
- ・シクロヘキサンのいす形配座において、垂直方向の結合をaxial, 水平方向の結合をequatorialという。
- ・equatorialの方がaxialよりも安定である。
- ・環が反転した場合、結合のaxial/equatorialは逆になる。