Úvod do informačních technologií

počítačové sítě

Martin Trnečka

Katedra informatiky Univerzita Palackého v Olomouci

Motivace

- jak funguje Internet?
- Internet = největší systém vytvořený lidstvem
- Q: Lze jej jednoduše popsat? A: Ano.
 - popis hardware a software
 - popis komunikace
- spoustu technických detailů zamlčíme a některé aspekty výrazně zjednodušíme
 - ightarrow základní přehled jak to funguje

Počítačová síť

- počítačová síť obecně:
 - uzly
 - fyzické propojení uzlů (síťové rozhraní, přenosové médium, síťové prvky)
 - komunikace mezi uzly
 - realizace (síťových) služeb (sídelní hardware, software a dat, komunikace)
- příklad: počítačová síť Internet (WWW, DNS, e-mail)
- uzly
 - hostitelské uzly, hostitelé, koncové systémy
 - počítače, celá řada dalších zařízení
 - Internet of things (IoT)

Klasifikace počítačových sítí

- internet (psáno s malým "i")
 - vnější síť
 - propojení více různých sítí
- intranet
 - vnitřní síť
 - požadavky na bezpečnost
- extranet
 - část vnitřní sítě přístupná z internetu

Klasifikace počítačových sítí

Klasifikace počítačových sítí

- dle rozsahu (velikosti)
 - Personal Area Network (PAN)
 - Local Area Network (LAN)
 - Campus Area Network (CAN)
 - Metropolitan Area Network (MAN)
 - Wide Area Network (WAN)
- dle topologie (propojení)
 - hvězdicová
 - kruhová
 - sběrnicová
 - a další
- dle přenosového média
 - drátové (metalické, optické)
 - bezdrátové (radiový signál)
- dle rychlosti

Komunikace v počítačové síti

- veškeré síťové služby jsou realizovány prostřednictvím komunikace mezi uzly
- komunikace = zasílání zpráv
- uzel sítě komunikuje s jedním či více uzly
 - unicast uzel komunikuje s uzlem
 - multicast uzel komunikuje se skupinou uzlů
 - broadcast uzel komunikuje se všemi uzly v (lokální) síti
- realizace komunikace:
 - přepínání okruhů
 - přepínání paketů (Internet)
- poznámka: pojem paket budeme používat nepřesně
- obecně složitý proces → dělení na menší části

Přenos dat

- parametry
 - rychlost
 - spolehlivost
- zprávy jsou rozděleny na pakety
- pakety (fyzicky) přenášeny po bitech
- metoda ulož a odešli
 - dokud neobdržíme celý paket data ukládáme do bufferu → zpoždění
 - více zdrojů = fronta → zpoždění
 - zaplnění fronty = ztráta paketu
- odbočka: zpoždění šíření, zpoždění zpracování, . . .

Architektury služeb v počítačové síti

klient-server

- klient žádá server o poskytnutí služby
- nerovnocenné role
- centralizace → slabé místo
- proxy server = prostředím mezi klientem a serverem
- např. prohlížení webové stránky

Architektury služeb v počítačové síti

- peer-to-peer (P2P)
 - se serverem (hybridní) i bez
 - rovnocenné role uzlů
 - decentralizace
 - např. sdílení souborů přes tzv. torrent sítě

Síťový model

- abstrakce nad procesem komunikace
- rozdělení na menší části tzv. vrstvy (obecný designový princip)
- vrstva:
 - poskytuje služby vyšší vrstvě
 - používá služeb nižší vrstvy
- vrstvy popisují různé části komunikace
- nejběžnější modely:
 - OSI (abstraktní, referenční)
 - TCP/IP (Internet)
- abstrakce → klíčová
- lacktriangledown vrstvy jsou nezávislé ightarrow robustnost (implementace vrstvy je nezávislá na ostatních vrstvách)

Síťový model

aplikační vrstva prezenční vrstva relační vrstva transportní vrstva síťová vrstva linková vrstva fyzická vrstva

aplikační vrstva transportní vrstva internetová (IP) vrstva vrstva síťového rozhraní

Obrázek: Porovnání modelů OSI a TCP/IP

Protokol

- vrstvy jsou tvořeny protokoly
- protokol = množina jasně daných pravidel
- analogie protokolu v lidské komunikaci (např. "dobré chování")
- komunikace pouze mezi sousedními vrstvami
- standardy a standardizace
- Internetové síťové standardy RFC (Request For Comments), dostupné na https://www.rfc-editor.org/

TCP/IP

- Transmission Control Protocol/Internet Protocol
- počítačová síť → TCP/IP architektura
- TCP/IP dělení na 4 vrstvy
 - aplikační
 - transportní
 - internetová
 - síťového rozhraní

TCP/IP: Komunikace

- analogie: poslání zprávy mezi aplikacemi na dvou počítačích = poslání dopisu (zpráva) obyvatelem (aplikace) jednoho domu (počítač) obyvateli (jiná aplikace) jiného domu (jiný počítač)
- potřebujeme zajistit (zjednodušeno):
 - formát vyměňovaných dat
 - identifikaci (adresaci) komunikujících aplikací
 - adresaci uzlů v síti
 - identifikaci konkrétních síťových rozhraní
 - přenos dat skrze síť

TCP/IP: Komunikace

TCP/IP: Komunikace mezi vrstvami

- hlavička a patička = data potřebná pro funkci dané vrstvy
- "balení" a "vybalování"
- na koncových uzlech i síťových zařízeních

Aplikační vrstva

- aplikační protokoly
- popisují formát (podobu) vyměňovaných dat a další
- řeší zabezpečení (ostatní vrstvy řeší pouze okrajově)
 - TCP/IP původně neřešila bezpečnost vůbec
 - dodatečně "záplatováno"
 - − → Internet je nebezpečný
- aplikační protokol = služba
- např. HTTP(S), DNS, (S)FTP, SSH, IMAP(S), SMTP(S), ...
- napojení na aplikace: implementace protokolu + síťový soket (poskytovaný OS)
- příklad: e-mailový klient
- k aplikačním protokolům se vrátíme později

Transportní vrstva

- předávání dat mezi aplikacemi (identifikace aplikací v rámci uzlu)
- port
 - číslo 0-65535
 - − ≤ 1023 vyhrazené (privilegované), dáno standardy
 - například: 80 pro webovou službu
- dva typy služeb:
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)
- TCP i UDP identifikace pomocí portu
- značení: číslo/tcp
- zabezpečení SSL/TLS (mezivrstva mezi transportní a aplikační vrstvou)

Protokol TCP

- lacksquare data ve formě segmentů o segmentace dat
- spolehlivá spojová služba
 - navazuje a udržuje spojení mezi uzly (režie, potvrzování) \to spojení musí být ukončeno
 - zajišťuje doručení dat (řeší ztráty segmentů, potvrzení přijetí segmentu a další)
- klient-server architektura
- zajišťuje řízení toku sítě
- zajišťuje integritu dat → kontrolní součet
- hlavička protokolu: zdrojový a cílový port, číslo segmentu, číslo potvrzeného segmentu, příznaky (a další)

Protokol TCP: Segmentace

- převádí data z aplikační vrstvy na segmenty
- proud dat, segmentace

Protokol UDP

- data ve formě datagramů (nutnost manuálního dělení na aplikační vrstvě)
- nespolehlivá nespojová služba
 - nevytváří spojení
 - nezajišťuje doručení dat
 - nelze řídit tok dat
- nízká režie
- hlavička protokolu: zdrojový a cílový port (a další)

Internetová (IP) vrstva

- identifikace uzlů v síti → IP adresa
- směrování mezi nesousedními uzly (skrze internet)
- data se přenáší ve formě (IP) paketu
- služební protokoly pro hlášení chyb a diagnostiku (ICMP)

- uložena v hlavičce IP protokolu
- IPv4 (32 bitů), IPv6 (128 bitů)
- příklad (phoenix.inf.upol.cz):
 - -158.194.80.13
 - 2001:718:1401:50:0:0:0d, zkrácený formát 2001:718:1401:50::0d
- Internet je síť sítí \rightarrow hierarchie
- lokální adresy (používané v lokálních sítích) a veřejné adresy (ostatní)
- IP adresa sítě a IP adresa uzlu
 - logické a praktické rozdělení
 - hierarchické směrování

- maska sítě = rozdělení na adresu sítě a adresu v sítí (adresa síťového rozhraní)
- příklad:
 - adresa sítě 192.168.1.0
 - maska sítě: 255.255.25.0
 - adresy v sítí: 192.168.1.1-192.168.1.254
 - 192.168.1.255 vyhrazena pro broadcast
- používanější CIDR (Classless Inter-Domain Routing) formát 192.168.1.0/24

adresa sítě 192.168.1.0/24

			192									16	88							1	ı							C)			
Ī	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

maska sítě

				25	55							25	55							25	55							()			
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

první adresa v síti 192.168.0.0/16

Г				19	92							16	88							()							1				
1	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

. . .

poslední adresa v síti 192.168.0.0/16

			19	92							16	8							25	55							25	54			
1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

broadcast v síti 192.168.0.0/16

ſ				19	92							16	68							25	55							2	55			
	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Odbočka: Princip tvorby podsítí

- sítě lze dále dělit na podsítě
- sítě lze spojovat do větších sítí (agregace)
- manipulace s maskou sítě

adresa sítě 192.168.0.0

	192 168											()							()										
1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

původní maska sítě /16

			25	55							25	55							()							()			
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

nová (prodloužená) maska sítě /18

	- "		21	55							25	55							10	92							_	1			
_				-	_							,,,						_	_	_	_		_	<u> </u>	_	_		_		_	_
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Speciální IP Adresy

IP adresa	popis
127.0.0.1	zpětná smyčka (loopback)
10.0.0.0/8	adresa lokální sítě
172.16.0.0/12	adresa lokální sítě
192.168.0.0/16	adresa lokální sítě
192.168.0.0/24	adresa lokální sítě

Odbočka: Omezení IPv4

- omezený (teoretický) maximální rozsah ($2^{32} = 4294967296$)
- pro lokální sítě dostatečný
- správa veřejných adres:
 - Internet Assigned Numbers Authority (IANA)
 - Regional Internet registry (RIR)
 - provideři
- IPv4 adresy již došli (na několika úrovních)
- IPv6: obtížně zapamatovatelné, IP adresy vnitřní a vnější sítě lze oddělit (NAT), poskytovatelé neinvestují do infrastruktury
- poznámka: IPv6 nepoužívá masku, ale délku prefixu (zkráceně prefix), jinak stejné

Odbočka: Přidělení IP adresy uzlu

- statické
 - manuální konfigurace
- dynamické
 - DHCP protokol
 - klient-server služba
 - server zašle uzlu údaje pro konfiguraci síťového rozhraní

Vrstva síťového rozhraní

- řeší fyzický přenos dat a přenosová média
- linková část (přenos v rámci LAN pomocí rámců) a fyzická část (přenos signálu po jednotlivých bitech)
- různé typy přenosu (analogový, digitální)
- identifikace fyzického rozhraní: MAC adresa
- například 01:23:45:67:89:ab
- lze změnit
- přenosové medium:
 - kroucená dvojlinka (Cat 5e, Cat 6, Cat 6a, Cat 7 a další, konektor RJ45)
 - optické vlákno
 - prostor

Struktura počítačové sítě

- uzly sítě
- přenosové médium
- repeatery (opakovače)
- huby (rozbočovače)
- switche (přepínače)
- routery (směrovače)
- modemy
- a další

Hub

- "rozbočení" komunikace
- každý komunikuje s každým (nelze jinak)
- nebezpečí odposlechu
- funguje na fyzické části vrstvy síťového rozhraní (přenáší data po bitech)
- repeater = "jednoportový hub"

Switch

- řízené "rozbočení" komunikace (switch se sám naučí)
- funguje na linkové části vrstvy síťového rozhraní (data se přenáší po rámcích)
- každý komunikuje s každým (lze nastavit)
- promiskuitní režim síťového rozhraní
- poznámka: bridge

Router

- obsahuje obvykle switch (přesněji, zařízení pracující na Internetové vrstvě)
- umožňuje směrovat komunikaci mimo lokální síť

Komunikace v síti

- směrování v lokální síti
 - na úrovni linkové vrstvy = stačí MAC adresa
 - známe IP adresu \rightarrow musíme získat MAC adresu (protokol ARP)
- směrování mimo lokální síť
 - na úrovni internetové vrstvy = IP adresa
 - směrovací tabulka určuje kam poslat IP paket dál tzv. next hop
 - statická a dynamická změna tabulky

Odbočka: Připojení počítačů do lokální sítě

- fyzické propojení
- stejná adresa sítě (statická či dynamická konfigurace)
- různé adresy v sítí (statická či dynamická konfigurace)
- různé MAC adresy
- přístup k internetu (Internetu) výchozí brána (gateway)
- překlad doménových jmen (vysvětlíme později)

Ochrana lokální sítě

- firewall
 - filtrace síťové komunikace
 - na základě IP
 - na základě čísla portu
 - obvykle součást OS, případně speciální zařízení

- Network Address Translation (NAT)
 - adresy v síti jsou maskovány za adresu přístupového bodu do nadřazené sítě

Virtual Private Network (VPN)

- sifrované propojení sítí či klienta a sítě skrze nebezpečnou síť
- klient je součástí lokální sítě → výhody
- komunikace je šifrována (nikoliv anonymní)
- vlastní, případně řada poskytovatelů (pozor na bezpečnost)

Wi-Fi

- WLAN
- z pohledu TCP/IP → vrstva síťového rozhraní
- jiný typ rámce
- sdílené medium
 - problém s kolizemi
 - různé metody řešení
- protokol: 802.11, různé verze (např. b, g, n, ac, ax): rychlost, parametry sítě, podpora zařízení \to složité, zavedení Wi-Fi X, X \in $\{5,6,6E,7\}$

Wi-Fi router

- router, běžněji access point (AP)
- navíc bezdrátové síťové rozhraní
- běžné zařízení
- různá kvalita, různá cena
- počet klientů
- základní Wi-Fi routery → rozsáhlé nastavení
 - jméno sítě
 - parametry sítě (přenos, šifrování)
 - dynamická konfigurace
 - firewall

Název sítě

- SSID
- například: eduroam
- název sítě lze skrýt, uživatel musí znát, aby se připojil (možnost hide SSID)
- skryté SSID ≠ zabezpečení

Parametry sítě (fyzický přenos)

- pásmo:
 - 2,4 GHz, 5 GHz, 6 GHz
 - vyšší frekvence = rychlejší přenos, menší dosah, náchylnější na rušení
- kanál:
 - počet kanálů závisí na zemi
 - 2,4 GHz, 13 překrývajících se kanálů
 - 5 GHz, (ČR) 25 nepřekrývajících se kanálů
 - výběr \rightarrow chceme volný kanál, nepřekrývající se kanál, kanál s co nejméně AP

Obrázek: Rozložení kanálů v 2.4 GHz.

Parametry sítě (fyzický přenos)

- šířka kanálu: 20 MHz, 40 MHz, 80 MHz (5 GHz), 160 MHz (6 GHz), větší šířka → větší propustnost, některé zařízení nemusí podporovat)
- výkon vysílače (ne vždy lze ovlivnit)
- signál/šum (jednotka -dBm, 0–100), typicky: -60dBm/-90dBm, čím blíže 0 tím lépe (u šumu naopak)
- kvalita signálu (SNR) rozdíl mezi signálem a šumem (jednotka dB): 40dB a více kvalitní signál (čárky na ikoně)

Ukázka

- Wi-Fi Analyzer (Windows)
- řada nástrojů pro různé OS (Windows, Linux, macOS, Android, ...)
- specializovaný hardware

Obrázek: Wi-Fi sítě v pásmu 2,4 GHz.

Parametry sítě (bezpečnost)

- šifrování:
 - žádné (veřejné Wi-Fi) → velmi nebezpečné
 - WEP → prolomitelné = nedostatečné
 - WPA \rightarrow bezpečnostní problémy, lze prolomit slovníkovým útokem
 - WPA2 → bezpečnostní problémy, lze prolomit slovníkovým útokem
 - WPA3 → malá podpora, bezpečnostní problémy

heslo:

- TKIP (WPA)
- AES (WPA2)

autentifikace:

- PSK (heslo)
- EAP (autentifikační server, obvykle firemní infrastruktura, některé Wi-Fi routery nepodporují)

WPS

- tlačítko na Wi-Fi routeru
- automatické připojení do Wi-Fi sítě pomocí PIN
- lacktriangle velice nebezpečné (zejména u starších routerů) ightarrow lze odposlechnout a prolomit

Odbočka: Jak vylepšit signál?

- opakovače
- mesh
- kabel

Doménové jméno

- IP adresy
 - obtížně zapamatovatelné
 - zachycují fyzickou strukturu
- logická struktura → doménové jméno
- příklad: phoenix.inf.upol.cz
- služba DNS
 - překlad doménového jména na IP adresu (a obráceně, bezpečnost)
 - phoenix.inf.upol.cz \rightarrow 158.194.80.13
 - decentralizovaná služba (systém DNS)
 - řeší resolver (součást OS), který předává řízení DNS resolver serveru
- struktura: standardně ASCII znaky, omezená délka, oddělovač: . (tečka), běžně:
 1. řádu, 2. řádu, . . .
- nákup doménových jmen

Hierarchie doménových jmen

Obrázek: Hierarchie doménových jmen

- doména (zóna) spravována jmenným serverem
- top-level domény (generické a národní): edu, com, gov, org, info, ...

DNS servery

- primární:
 - každá doména má právě 1 primární server
 - autoritativní odpověď o dané doméně
- sekundární:
 - záloha primárního
 - každá doména má alespoň 1 sekundární server
 - autoritativní odpověď o dané doméně
- cache:
 - často součástí primárních a sekundárních, ale mohou být i samostatné
 - neautoritativní odpověď

Překlad doménového jména na IP

- formou dotazu
- dotazování:
 - klient (řeší resolver)
 - klient žádá DNS resolver server
- dva typy dotazů:
 - rekurzivní (vyřešení dotazu)
 - nerekurzivní (předání na jiný server)

Překlad doménového jména

Překlad jména (řešení dotazu)

- klient chce zjistit IP adresu ke jménu www.example.com, klient prohledá svoji
 cache zda nezná odpověď
- ① klient pošle *rekurzivní dotaz* na DNS resolver (musí být nastaven), pokud DNS resolver zná odpověď (má ji v chache) pošle jí klientovi
- ② pokud lokální jmenný server nezná odpověď pošle *nerekurzivní dotaz* na kořenový jmenný server
- ③ kořenový jmenný server nezná odpověď, ale ví kdo je zodpovědný za doménu com v dotazu, pošle DNS resolveru jeho adresu
- 4 DNS resolver pošle nerekurzivní dotaz na jmenný server spravující doménu example.com

Překlad jména (řešení dotazu)

- 5 jmenný server zodpovědný za doménu example.com nezná odpověď, ale ví kdo je zodpovědný za doménu example.com, pošle DNS resolveru jeho adresu
- 6 DNS resolver pošle *nerekurzivní dotaz* na jmenný server spravující doménu example.com
- j jmenný server spravující doménu example.com zná odpověď (1.2.3.4) a pošle ji DNS resolveru
- ® DNS resolver předá 1.2.3.4 klientovi a uloží si údaje do cache
- (9) klient uloží 1.2.3.4 do cache a kontaktuje 1.2.3.4

Reálně

- situace je mnohem komplikovanější
- řada typů jmenných serverů
- časové omezení na vyřešení dotazu
- update informací na serverech
- problém s cache
- věřejné DNS resolvery
 - 8.8.8.8 (Google)
 - 1.1.1.1 (Cloudflare)
 - 193.17.47.1 a 185.43.135.1 (cz.nic)

Elektronická pošta

- odesílání a příjem e-mailu
- mailbox
- odeslání: SMTP(S) (Simple Mail Transfer Protocol)
- příjem: IMAP4(S) (Internet Message Access Protocol), zastaralý POP3 (Post Office Protocol)
- hlavička e-mailu
- bezpečnost, spam

Vzdálené přihlašování

- SSH (Secure Shell)
 - použití: ssh [user@]hostname[:port]
 - PuTTY (pro Windows)

```
ssh phoenix.inf.upol.cz
ssh trnecka@phoenix.inf.upol.cz
```

- SCP (Secure Copy)
 - použití: scp zdroj cil
 - adresace [user@]hostname:cesta
 - WinSCP (grafická varianta pro Windows)

```
scp trnecka@phoenix.inf.upol.cz:/~ ./soubor.txt
scp ./soubor.txt trnecka@phoenix.inf.upol.cz:/~
```

- RDP (Remote Desktop Protocol, Windows), vzdálená plocha, grafický
- VNC, vzdálená plocha, grafický

Základní nástroje

- program ping
 - odezva uzlu v síti
 - může být blokován
 - ping www.inf.upol.cz
- program traceroute (Linux) a tracert (Windows)
 - analýza cesty v síti

Základní nástroje

```
trneckam — -zsh — 80x24
Last login: Thu Mar 18 07:52:04 on console
[trneckam@Martin-MacBook-Air ~ % ping 158.194.80.13
PING 158.194.80.13 (158.194.80.13): 56 data bytes
64 bytes from 158.194.80.13: icmp seg=0 ttl=59 time=4.159 ms
64 bytes from 158.194.80.13: icmp_seq=1 ttl=59 time=3.566 ms
64 bytes from 158.194.80.13: icmp_seq=2 ttl=59 time=3.528 ms
64 bytes from 158.194.80.13: icmp seg=3 ttl=59 time=3.497 ms
--- 158.194.80.13 ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 3.497/3.688/4.159/0.273 ms
trneckam@Martin-MacBook-Air ~ % traceroute 158.194.80.13
traceroute to 158.194.80.13 (158.194.80.13), 64 hops max, 52 byte packets
 1 10.144.32.1 (10.144.32.1) 16.435 ms 20.397 ms 14.479 ms
 2 158.194.2.65 (158.194.2.65) 3.199 ms 3.451 ms 3.104 ms
 3 158.194.110.1 (158.194.110.1) 18.926 ms 19.984 ms 24.312 ms
 4 ugw-idp1-m510.upol.cz (158.194.254.65) 14.877 ms 22.472 ms 27.248 ms
 5 prf-aw.upol.cz (158.194.203.126) 4.856 ms 5.181 ms 8.065 ms
 6 phoenix.inf.upol.cz (158.194.80.13) 4.219 ms 3.957 ms 3.548 ms
trneckam@Martin-MacBook-Air ~ %
```

CESNET2

- národní vysokorychlostní počítačová síť pro vědu a vzdělávání
- www.cesnet.cz

Obrázek: Mapa sítě CESNET2, 2018.

CZ.nic

- správce CZ domény
- nic.cz

Síť Internet

- Internet = síť sítí
- lokální síť (uživatelé)
- uživatelé propojeni přes ISP (Internet Service Provider)
- více úrovní ISP (přístupové, regionální, globální)
- propojení skrze PoP (Points of Presence)
- propojení více ISP na stejné úrovni = peering
- IXP (internet Exchange Point), peeringové centrum, např. nix.cz
- poskytovatelé obsahu