

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Localization

Global Localization

Bastian Lampe

Institute for Automotive Engineering

Overview

Global Localization aims to estimate the vehicle pose in a global reference frame

It is crucial for automated and connected vehicles to ...

- ... plan a route from the actual vehicle position to a desired target with respect to a given map.
- ... make use of additional information from digital maps for guidance and control.

Common Approaches:

- Global Navigation Satellite Systems (GNSS) (e.g. GPS, GLONASS, Galileo or BeiDou)
- Landmark Based Localization

Strengths and Weaknesses of Global Localization Approaches:

- + No accumulations of errors
- + High accuracies are possible

- Inconsistent accuracy
- Dependence on external elements

Overview

Global Localization aims to estimate the vehicle pose in a global reference frame

It is crucial for automated and connected vehicles to ...

- ... plan a route from the actual vehicle position to a desired target with respect to a given map.
- ... make use of additional information from digital maps.

Common Approaches:

- Global Navigation Satellite Systems (GNSS) (e.g. GPS, GLONASS, Galileo or BeiDou)
- Landmark Based Localization

Strengths and Weaknesses of Global Localization Approaches:

- + No accumulations of errors
- + High accuracies are possible

- Inconsistent accuracy
- Dependence on external elements

Global Reference Systems

- Earth is *nearly* spherical
- Earth is even better resembled by a spheroid model
- Different spheroid models are characterized by their choice of a and b
- In both models, a point P can be defined by $P = (\varphi, \lambda, h)^T$
 - φ : latitude (e.g. 50.786742°)
 - λ : longitude (e.g. 6.046399°)

Global Reference Systems

- Earth is nearly spherical
- Earth is even better resembled by a spheroid model
- Different spheroid models are characterized by their choice of a and b
- In both models, a point P can be defined by $P = (\varphi, \lambda, h)^T$

• φ : latitude (e.g. 50.786742°)

• λ : longitude (e.g. 6.046399°)

h: vertical position

- The World Geodetic System 1984 (WGS84) is typically used as the basis for GNSS-Applications
 - Its origin is located within the earth's center of mass

The UTM Reference System

- Need for an additional reference system due to inconvenience of WGS84 coordinates
- The Universal Transverse Mercator (UTM) is a Map Projection System that can project spheroid coordinates onto a 2D plane
- Divides earth's surface into60 zones and 24 longitude bands
 - Optimized projection for each zone of ~ 6° latitude

Image: wikipedia

The UTM Reference System

- Need for an additional reference system due to inconvenience of WGS84 coordinates
- The Universal Transverse Mercator (UTM) is a Map Projection System that can project spheroid coordinates onto a 2D plane
- Divides earth's surface into60 zones and 24 longitude bands
 - Optimized projection for each zone of ~ 6° latitude

UTM Easting (e.g. 291,816.82 m)

UTM Northing (e.g. 5,630,269.40 m)

UTM Gridzone (e.g. 32U)

Image: wikipedia

Global Navigation Satellite Systems (GNSS)

Key Principles:

- Distance estimate to a satellite based on time of flight and constant speed of light.
- GNSS Signals are sent over frequency band L1 (1575,42 MHz) and/or L2 (1227,60 MHz)
- Multilateration can be used to compute the position.

Global Navigation Satellite Systems (GNSS)

Key Principles:

- Distance estimate to a satellite based on time of flight and constant speed of light.
- GNSS Signals are sent over frequency band L1 (1575,42 MHz) and/or L2 (1227,60 MHz)
- Multilateration can be used to compute the position.

GNSS System	Country	Precision (public)
Global Positioning System (GPS)	United States of America	5-10 m
GLONASS	Russia	4,5 – 7,4 m
Galileo	Europe	4 m
BeiDou	China	10 m

GNSS – Methods to Enhance Accuracy

Dual frequency receivers

If both L1 and L2 are used, ionospheric delay errors can be computed → Accuracy: ~5 m

GNSS-Augmentation

- Basic Idea
 - Estimate error by comparing calculated position with known position of base stations
 - Transmit error estimate from base stations to receiver
 - Subtract error from calculated position

RWTHAACHEN UNIVERSITY

GNSS – Methods to Enhance Accuracy

Dual frequency receivers

If both L1 and L2 are used, ionospheric delay errors can be computed → Accuracy: ~5 m

GNSS-Augmentation

- Basic Idea
 - Estimate error by comparing calculated position with known position of base stations
 - Transmit error estimate from base stations to receiver
 - Subtract error from calculated position

Types

- Ground-based: Send signals via radio signals to receivers close to the base stations
 - Examples: GBAS, LAAS
- Satellite-based: Send signals via satellite to receivers
 - Examples: EGNOS, WAAS
- Internet-based: Send signals via Internet to receivers
 - Examples: NTRIP

RWTHAACHEN UNIVERSITY

GNSS – Methods to Enhance Accuracy

Dual frequency receivers

If both L1 and L2 are used, ionospheric delay errors can be computed → Accuracy: ~5 m

GNSS-Augmentation

- Basic Idea
 - Estimate error by comparing calculated position with known position of base stations
 - Transmit error estimate from base stations to receiver
 - Subtract error from calculated position

Types

- Ground-based: Send signals via radio signals to receivers close to the base stations
 - Examples: GBAS, LAAS
- Satellite-based: Send signals via satellite to receivers
 - Examples: EGNOS, WAAS
- Internet-based: Send signals via Internet to receivers
 - Examples: NTRIP

Real Time Kinematics (RTK)

- Based on real time communication between base stations and receiver
- Takes into account the phase of received signal

→ Allows centimeter precision

- Pose estimation based on a given map with various landmarks
 - Landmarks are fixed objects in the environment that can be detected by a vehicle's sensors
 - By matching detected landmarks with the same landmarks referenced in a map, a pose can be estimated

- Pose estimation based on a given map with various landmarks
 - Landmarks are fixed objects in the environment that can be detected by a vehicle's sensors
 - By matching detected landmarks with the same landmarks referenced in a map, a pose can be estimated

RWTHAACHEN UNIVERSITY

- Preexisting vs. localization-specific landmarks:
 - Preexisting landmarks
 - Objects that don't primarily exist for the purpose of localization
 - Examples: road signs, traffic lights, lane markings, buildings, utility poles
 - Localization-specific landmarks
 - Objects that are placed in the environment for the purpose of localization → Fiducial Marker
 - Examples: RFID tags, QR codes, ArUco markers

Image: ika, Raudszus2020

RWTHAACHEN UNIVERSITY

- Preexisting vs. localization-specific landmarks:
 - Preexisting landmarks
 - Objects that don't primarily exist for the purpose of localization
 - Examples: road signs, traffic lights, lane markings, buildings, utility poles
 - Localization-specific landmarks
 - Objects that are placed in the environment for the purpose of localization → Fiducial Marker
 - Examples: RFID tags, QR codes, ArUco markers

Image: ika, Raudszus2020