Lecture 6a: Maximum Likelihood

Chris Conlon

Sunday 5th October, 2025

NYU Stern

Introduction

Consider a linear regression with $\varepsilon_i \mid X_i \sim \mathcal{N}(0, \sigma^2)$

$$Y_{it} = X_i \, \beta + \varepsilon_i$$

We've discussed the least squares estimator:

$$\begin{split} \hat{\beta}_{ols} &= \arg\min_{\beta} \sum_{i=1}^{N} (Y_i - X_i \beta)^2 \\ \hat{\beta}_{ols} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \end{split}$$

Review: What is a Likelihood?

Suppose we write down the joint distribution of our data (y_i,x_i) for $i=1,\dots,n$.

$$\Pr(y_1,\dots,y_n,x_1,\dots,x_n\mid\theta)$$

If (y_i, x_i) are I.I.D then we can write this as:

$$\Pr(y_1, \dots, y_n, x_1, \dots, x_n \mid \theta) = \prod_{i=1}^N \Pr(y_i, x_i \mid \theta) \propto \prod_{i=1}^N \Pr(y_i \mid x_i, \theta) = \mathbb{L}(\mathbf{y} \mid \mathbf{x}, \theta)$$

We call this $\mathbb{L}(\mathbf{y} \mid \mathbf{x}, \theta)$ the likelihood of the observed data.

MLE: Example

If we know the distribution of ε_i we can construct a maximum likelihood estimator

$$(\hat{\beta}_{MLE}, \hat{\sigma}_{MLE}^2) = \arg\min_{\beta, \sigma^2} \mathbb{L}(\beta, \sigma^2)$$

Where

$$\begin{split} \mathbb{L}(\beta,\sigma^2) &= \prod_{i=1}^N \Pr(y_i \mid x_i,\beta,\sigma^2) \\ &= \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(Y_i - X_i\beta)^2\right] \\ \ell(\beta,\sigma^2) &= \sum_{i=1}^N -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^N (Y_i - X_i\beta)^2 \end{split}$$

Take the FOC's of:
$$\ell(\beta,\sigma^2) = -\frac{N}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^N(Y_i-X_i\beta)^2:$$

$$\frac{\partial\ell(\beta,\sigma^2)}{\partial\beta} = \frac{1}{\sigma^2}\sum_{i=1}^NX_i'(Y_i-X_i\beta) = 0 \to \hat{\beta}_{MLE} = \hat{\beta}_{OLS}$$

$$\frac{\partial\ell(\beta,\sigma^2)}{\partial\sigma^2} = -N\frac{1}{2\sigma^2} - \frac{1}{2\sigma^4}\sum_{i=1}^N(Y_i-X_i\beta)^2 = 0$$

$$\sigma_{MLE}^2 = \frac{1}{N}\sum_{i=1}^N(Y_i-X_i\beta)^2$$

Note: the unbiased estimator uses $\frac{1}{N-K-1}$.

MLE: General Case

- 1. Start with the joint density of the data Z_1,\dots,Z_N with density $f_Z(z,\theta)$
- 2. Construct the likelhood function of the sample z_1,\dots,z_n

$$\mathbb{L}(\mathbf{z}\mid\boldsymbol{\theta}) = \prod_{i=1}^N f_Z(z_i,\boldsymbol{\theta})$$

3. Construct the log likelihood (this has the same arg max)

$$\ell(\mathbf{z}\mid\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln f_Z(z_i,\boldsymbol{\theta})$$

4. Take the FOC's to find $\hat{\theta}_{MLE}$ that solves

$$\frac{\partial \ell(\theta)}{\partial \theta} = 0 \text{ or } \nabla_{\theta} \ell(\theta) = 0 \text{ or } \sum_{i=1}^N \frac{\partial \ln f_Z(z_i,\theta)}{\partial \theta} = 0.$$

MLE in Detail

Basic Setup: we know $F(z\mid\theta_0)$ but not $\theta_0.$ We know $\theta_0\in\Theta\subset\mathbb{R}^K.$

- \blacktriangleright Begin with a sample of z_i from $i=1,\dots,N$ which are I.I.D. with CDF $F(z|\theta_0).$
- ▶ The MLE chooses

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \ell(\theta) = \arg\max_{\theta} \sum_{i=1}^{N} \ln f_Z(z_i, \theta)$$

In practice the computer always minimizes negative log-likelihood so that $\hat{\theta}_{MLE} = \arg\min_{\theta} -\ell(\theta).$

MLE: Technical Details

1. Consistency. When is it true that for $\epsilon > 0$?

$$\lim_{N \rightarrow \infty} \Pr \left(\left\| \hat{\theta}_{MLE} - \theta_0 \right\| > \varepsilon \right) = 0$$

2. Asymptotic Normality. What else do we need to show?

$$\sqrt{N} \left(\hat{\theta}_{MLE} - \theta_0 \right) \overset{d}{\longrightarrow} \mathcal{N} \left(0, - \mathbb{E} \left[\frac{\partial^2 \log f(Z_i, \theta_0)}{\partial \theta \partial \theta'} \right]^{-1} \right)$$

3. Optimization. How to we obtain $\hat{\theta}_{MLE}$ anyway?

MLE: Example #1

 $ightharpoonup Z_i \sim \mathcal{N}(\theta_0, 1)$ and $\Theta = (-\infty, \infty)$. In this case:

$$\ell(\theta) = -N \cdot \ln(2\pi) - \sum_{i=1}^{N} \left(z_i - \theta\right)^2/2$$

- \blacktriangleright MLE is $\hat{\theta}_{MLE}=\overline{z}$ which is consistent for $\theta_0=\mathbb{E}[Z_i]$
- \blacktriangleright Asymptotic distribution is $\sqrt{N}(\overline{z}-\theta_0)\sim \mathcal{N}(0,1).$
- ► Calculating mean is easy!

MLE: Example # 2

- $ightharpoonup Z_i = (Y_i, X_i)$ where X_i has finite mean and variance (but arbitrary distribution)
- $\blacktriangleright \ (Y_i|X_i=x) \sim \mathcal{N}(x'\beta_0,\sigma_0^2)$

$$\begin{split} \hat{\beta}_{MLE} &= (X'X)^{-1}X'Y \\ \hat{\sigma}_{MLE}^2 &= \frac{1}{N}\sum (y_i - x_i\hat{\beta}_{MLE})^2 \end{split}$$

▶ We already have shown consistency and AN for linear regression with normally distributed errors...

MLE: Example #3

- $ightharpoonup Z_i = (Y_i, X_i)$ where X_i has finite mean and variance (but arbitrary distribution)
- $\blacktriangleright \ \Pr(Y_i=1|X_i=x)=\frac{e^{x'\theta_0}}{1+e^{x'\theta_0}}$
- ► Solution is the logit model.
- ▶ No simple MLE solution, establishing properties is not obvious...

Jensen's Inequality

Let $\phi(z)$ be a convex function.

Then $\mathbb{E}[\phi(Z)] \geq \phi(\mathbb{E}[Z])$, with equality only in the case of a linear function.

More Technical Details

Define Y as the ratio of the density at θ to the density at the true value θ_0 both evaluated at Z

$$Y = \frac{f_Z(Z;\theta)}{f_Z(Z;\theta_0)}$$

- $\blacktriangleright \ \ {\rm Let} \ g(a) = -\ln(a) \ {\rm so} \ {\rm that} \ g'(a) = \frac{-1}{a} \ {\rm and} \ g''(a) = \frac{1}{a^2}.$
- $\blacktriangleright \ \, \text{Then by Jensen's Inequality} \, \mathbb{E}[-\ln Y] \geq -\ln \mathbb{E}[Y].$
- ▶ This gives us

$$\mathbb{E}_{z}\left[-\ln\left(\frac{f_{Z}(Z;\theta)}{f_{Z}\left(Z;\theta_{0}\right)}\right)\right]\geq -\ln\left(\mathbb{E}_{z}\left[\frac{f_{Z}(Z;\theta)}{f_{Z}\left(Z;\theta_{0}\right)}\right]\right)$$

▶ The RHS is

$$\mathbb{E}_{z}\left[\frac{f_{Z}(Z;\theta)}{f_{Z}\left(Z;\theta_{0}\right)}\right] = \int \frac{f_{Z}(z;\theta)}{f_{Z}\left(z;\theta_{0}\right)} \cdot f_{Z}\left(z;\theta_{0}\right) dz = \int f_{Z}(z;\theta) dz = 1$$

More Technical Details

Because $\log(1) = 0$ this implies:

$$\mathbb{E}_{z}\left[-\ln\left(\frac{f_{Z}(Z;\theta)}{f_{Z}\left(Z;\theta_{0}\right)}\right)\right]\geq0$$

Therefore

$$\begin{split} -\mathbb{E}\left[\ln f_Z(Z;\theta)\right] + \mathbb{E}\left[\ln f_Z\left(Z;\theta_0\right)\right] &\geq 0 \\ \mathbb{E}\left[\ln f_Z\left(Z;\theta_0\right)\right] &\geq \mathbb{E}\left[\ln f_Z(Z;\theta)\right] \end{split}$$

- \blacktriangleright We maximize the expected value of the log likelihood at the true value of $\theta!$
- $lackbox{Helpful to work with } \mathbb{E}[\log f(z;\theta)]$ sometimes.

Information Matrix Equality

We can relate the Fisher Information to the Hessian of the log-likelihood

$$\mathcal{I}\left(\theta_{0}\right)=-\mathbb{E}\left[\frac{\partial^{2}\ln f}{\partial\theta\partial\theta}\left(z;\theta_{0}\right)\right]=\mathbb{E}\left[\frac{\partial\ln f}{\partial\theta}\left(z;\theta_{0}\right)\times\frac{\partial\ln f}{\partial\theta}\left(z;\theta_{0}\right)'\right]$$

- ▶ This is sometimes known as the outer product of scores.
- ► This matrix is negative definite
- \blacktriangleright Recall that $\mathbb{E}\left[\frac{\partial\ln f}{\partial\theta}\left(z;\theta_{0}\right)\right]\approx0$ at the maximum

$$1 = \int_z f_Z(z;\theta) dz \Rightarrow 0 = \frac{\partial}{\partial \theta} \int_z f_Z(z;\theta) dz$$

With some regularity conditions

$$0 = \int_z \frac{\partial f_Z}{\partial \theta}(z;\theta) dz = \underbrace{\int_z \frac{\partial \ln f_Z}{\partial \theta}(z;\theta) \cdot f_Z(z;\theta) dz}_{\mathbb{E}\left[\frac{\partial \ln f_Z}{\partial \theta}(z;\theta_0)\right]}$$

- ▶ This gives us the FOC we needed.
- Can get information identity with another set of derivatives.

The Cramer-Rao Bound

We can relate the Fisher Information to the Hessian of the log-likelihood

$$\mathcal{I}(\theta) = -\mathbb{E}\left[\frac{\partial^2 \ln f}{\partial \theta \partial \theta'}(Z|\theta)\right]$$

It turns out this provides a bound on the variance

$$\mathrm{Var}(\hat{\theta}(Z)) \geq \mathcal{I}\left(\theta_0\right)^{-1}$$

Because we can't do better than Fisher Information we know that MLE is most efficient estimator!

MLE: Discussion

Tradeoffs

- ▶ How does this compare to GM Theorem?
- ▶ If MLE is most efficient estimate, why ever use something else?

Examples

We are going to practice writing down the:

- \blacktriangleright Likelihood $L(\theta) = \Pr(z_1, \dots, z_n; \theta) = \prod_{i=1}^N f(z_i; \theta).$
- $\blacktriangleright \log \text{likelihood } \ell(\theta) = \sum_{i=1}^N \ln f(z_i;\theta) = \sum_{i=1}^N \ell_i(z_i;\theta).$
- $\blacktriangleright \ \operatorname{Scores} \mathcal{S}_i(z_i,\theta) = \tfrac{\partial \ln f(z_i;\theta)}{\partial \theta} = \tfrac{\partial \ell_i(z_i;\theta)}{\partial \theta}.$
- \blacktriangleright Hessian contribution $\mathcal{H}_i(z_i,\theta) = \frac{\partial^2 \ell_i(z_i;\theta)}{\partial \theta \partial \theta'}.$
- $\blacktriangleright \text{ Information Matrix } \mathcal{I}(z_i,\theta) = \mathbb{E}_z[-\mathcal{H}_i(z_i,\theta)] = \mathbb{E}_z[\mathcal{S}_i(z_i,\theta)\mathcal{S}_i(z_i,\theta)^T]$
- $lackbox{ Variance }V(\theta)\geq [\mathcal{I}(z_i,\theta)]^{-1}$ (Cramer-Rao Lower Bound).

Exponential Example

- lacksquare Suppose we have data that are exponentially distributed $Y_i \sim \operatorname{Exp}(\lambda)$. The goal is to estimate the parameter λ via MLE and $f(y_i|\lambda) = \lambda e^{-\lambda y_i}$ so that $\mathbb{E}[y_i] = \frac{1}{\lambda}$.
- lacktriangle Sometimes we want to parameterize the rate $\lambda_i=x_i'eta$ with covariates.
- ► Example: Time until next customer arrives varies with time of day, day of week, etc. Time until default might depend on credit score, debt-to-income, market conditions, etc.

Exponential Regression Example (Careful: two parameterizations here!)

$$\text{For } y_i>0, \quad f_{y|x}(y_i\mid x_i,\beta)=(x_i\,\beta)e^{-(x_i\beta)\,y_i} \quad \text{ so that } \mathbb{E}[y_i]=\frac{1}{x_i\,\beta}$$

With log likelihood

$$\ell(\beta) = \sum_{i=1}^{N} \ln f_{y \mid x} \left(y_i \mid x_i, \beta \right) = \sum_{i=1}^{N} \log(x_i' \beta) - (x_i' \beta) \ y_i$$

And Score, Hessian, and Information Matrix:

$$\begin{split} \frac{\partial \,\ell_i}{\partial \,\theta} &= \mathcal{S}_i(y_i, x_i, \beta) = x_i' \left(\frac{1}{x_i \,\beta} - y_i\right) \\ \frac{\partial^2 \,\ell_i}{\partial \,\theta^2} &= \mathcal{H}_i(y_i, x_i, \beta) = -\frac{x_i' \,x_i}{(x_i' \,\beta)^2} \\ \mathcal{I}\left(\beta_0\right) &= \sum_i \frac{x_i' x_i}{(x_i \,\beta)^2} \end{split}$$

Computing Maximum Likelihood

5

Estimators

Newton's Method for Root Finding

Consider the Taylor series for $f(\boldsymbol{x})$ approximated around $f(\boldsymbol{x}_0)$:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) \cdot (x - x_0)^2 + o_p(3)$$

Suppose we wanted to find a root of the equation where $f(x^*) = 0$ and solve for x:

$$0 = f(x_0) + f'(x_0) \cdot (x - x_0)$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

This gives us an iterative scheme to find x^* :

- 1. Start with some \boldsymbol{x}_k . Calculate $f(\boldsymbol{x}_k), f'(\boldsymbol{x}_k)$
- 2. Update using $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$
- 3. Stop when $|x_{k+1}-x_k|<\epsilon_{tol}.$

Newton-Raphson for Minimization

We can re-write optimization as root finding;

- $\blacktriangleright \ \ \text{We want to know} \ \widehat{\theta} = \arg\max_{\theta} \ell(\theta).$
- $lackbox{}{}$ Construct the FOCs $rac{\partial \ell}{\partial heta} = 0
 ightarrow$ and find the zeros.
- \blacktriangleright How? using Newton's method! Set $f(\theta) = \frac{\partial \ell}{\partial \theta}$

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 \ell}{\partial \theta^2}(\theta_k)\right]^{-1} \cdot \frac{\partial \ell}{\partial \theta}(\theta_k)$$

The SOC is that $\frac{\partial^2 \ell}{\partial \theta^2} > 0$. Ideally at all θ_k .

This is all for a single variable but the multivariate version is basically the same.

Start with the objective $Q(\theta) = -\ell(\theta)$:

- \blacktriangleright Approximate $Q(\theta)$ around some initial guess θ_0 with a quadratic function
- lacktriangle Minimize the quadratic function (because that is easy) call that $heta_1$
- ▶ Update the approximation and repeat.

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1} \frac{\partial Q}{\partial \theta}(\theta_k)$$

- \blacktriangleright The equivalent SOC is that the Hessian Matrix is positive semi-definite (ideally at all θ).
- ▶ In that case the problem is globally convex and has a unique maximum that is easy to find.

Newton's Method

We can generalize to Quasi-Newton methods:

$$\theta_{k+1} = \theta_k - \lambda_k \underbrace{\left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1}}_{A_k} \underbrace{\frac{\partial Q}{\partial \theta}(\theta_k)}$$

Two Choices:

- lacksquare Step length λ_k
- \blacktriangleright Step direction $d_k = A_k \frac{\partial Q}{\partial \theta}(\theta_k)$
- lackbox Often rescale the direction to be unit length $\frac{d_k}{\|d_k\|}.$
- \blacktriangleright If we use A_k as the true Hessian and $\lambda_k=1$ this is a full Newton step.

Newton's Method: Alternatives

Choices for ${\cal A}_k$

- $lackbox{ }A_k=I_k$ (Identity) is known as gradient descent or steepest descent
- ▶ BHHH. Specific to MLE. Exploits the Fisher Information.

$$\begin{split} A_k &= \left[\frac{1}{N} \sum_{i=1}^N \frac{\partial \ln f}{\partial \theta} \left(\theta_k\right) \frac{\partial \ln f}{\partial \theta'} \left(\theta_k\right)\right]^{-1} \\ &= -\mathbb{E}\left[\frac{\partial^2 \ln f}{\partial \theta \partial \theta'} \left(Z, \theta^*\right)\right] = \mathbb{E}\left[\frac{\partial \ln f}{\partial \theta} \left(Z, \theta^*\right) \frac{\partial \ln f}{\partial \theta'} \left(Z, \theta^*\right)\right] \end{split}$$

- lacktriangle Alternatives SR1 and DFP rely on an initial estimate of the Hessian matrix and then approximate an update to A_k .
- Usually updating the Hessian is the costly step.
- ▶ Non invertible Hessians are bad news.

Thanks!