INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI

Proba E. d)

Simulare Examen de bacalaureat 2024

FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10 **A. MECANICĂ**

SUBIECTUL I (5 x 3 puncte = 15 puncte)

Nr subiect	1	2	3	4	5
Varianta corectă	a	b	d	c	b

SUBIECTUL II. (15 puncte) Soluție, rezolvare Punctaj Reprezentarea corectă a forțelor 3p 3p $m_1 a = T - m_1 g$ 1p $m_2a = m_2g - T$ 1p $a = \frac{g(m_2 - m_1)}{m_1 + m_2}$ 4p 1p 1p $a = 2 \text{ m/s}^2$ $m_1(a+g) = m_2(g-a) = T$ 1p $T = \frac{2m_1 m_2 g}{m_1 + m_2}$ T = 2,4 N4p 2p 1p $F_{elastica} = 2T$ 2p $F_{elastica} = k \Delta l$ 1p 4p $\Delta l = 4.8 \text{ cm}$ 1p

SUBIECTUL III. (15 puncte) Soluție, rezolvare Punctai $mg = T\cos\alpha$, $F = T\sin\alpha$ 2p $F = mg tg \alpha$ 4p 1p F = 0.87 N1p $T = \sqrt{F^2 + (mg)^2}$, sau $T = \frac{F}{\sin \alpha} = \frac{mg}{\cos \alpha}$ 2p 3p 1p Conservarea energiei mecanice a bilei: $E_A = E_B$ c. 1p $\frac{mv^2}{2} = mgh$ 1p 4p $h = l(1 - \cos\alpha)$ 1p 1p $v = 1.41 \,\mathrm{m/s}$ Legea conservării impulsului pentru sistemul de bile: $\overrightarrow{p_l} = \overrightarrow{p_f}$ 1p 2p $mv = 2mv_f$ 4p 1p $v_f = 0.71 \, \text{m/s}$

INSPECTORATUL ȘCOLAR JUDEȚEAN IAȘI

Simulare Examen de bacalaureat 2024 Proba E. d)

FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10

B. ELEMENTE DE TERMODINAMICĂ

SUBIECTUL I				$(5 \times 3 \text{ puncte} = 15 \text{ punct})$			
Nr subject	1	2	3	4	5		
Varianta corectă	a	a	С	d	b		

SUB	IECTUL II.	(15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru:	
	$v = \frac{N}{N_A}$	3p
	rezultat final $N = 12,04 \cdot 10^{23}$ molecule	_
b.	Pentru:	
	$T = \frac{pV}{\nu R}$	9 4p
	rezultat final $T = 250 \mathrm{K}$)
c.	Pentru:	
	$\left(p'(V + \Delta x \cdot S) = \nu R \cdot 2T \right)$	9
	$\int p'(V - \Delta x \cdot S) = \nu R \cdot T$	p 4p
	rezultat final $\Delta x = 5,54$ cm	9
d.	Pentru:	
	$\int p''V = v''R \cdot 2T$	p
	$\int p''V = \nu R \cdot T$	2 4p
	$v'' = v - \Delta v$	
	rezultat final $\Delta v = 1 \text{mol}$	9

SUB	SIECTUL III.	15 puncte)
	Soluție, rezolvare	Punctaj
a.	Pentru figurarea corectă în (p,V):	
	1-2 comprimare izotermă	2
	2-3 destindere/încălzire izobară	3p
	3-1 răcire izocoră	
b.	Pentru:	
	$L_{23} = vR(T_3 - T_2)$	
	$\Delta U_{23} = \nu C_{\nu} (T_3 - T_2)$	
	$\Delta U_{23} = C_V$	4p
	$\frac{\Delta U_{23}}{L_{23}} = \frac{C_V}{R}$	
	rezultat final $\Delta U_{23} = 300 \text{ J}$	
c.	Pentru:	
	$Q_{31} = \nu C_{\nu} (T_1 - T_3)$	
	$T_2 = T_1$	
	$Q_{31} = C_{\nu}$	тР
	rezultat final $Q_{31} = -300 \text{ J}$	
d.	Pentru:	
	$L_{t} = \rho_{2}V_{2}\ln\frac{V_{2}}{V_{1}} + L_{23} + L_{31}$	
	l III	
	$L_{31} = 0$	
	$V_1 = V_3 = \frac{L_{23}}{\rho_2} + V_2$	
	rezultat final $L_t = 62 \text{ J}$	

INSPECTORATUL ȘCOLAR JUDEȚEAN IAȘI

Simulare Examen de bacalaureat 2024 Proba E. d)

FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10 **C. PRODUCEREA SI UTILIZAREA CURENTULUI CONTINUU**

SUBIECTUL I $(10 \times 3 \text{ puncte} = 15 \text{ p})$					
Nr subiect	1	2	3	4	5
Varianta corectă	С	b	b	С	С

SUB	SIECTUL II.	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	Pentru:	2p	_
	$R_{\rm e} = 4R$	1p	3p
	rezultat final $R_e = 8 \Omega$	•	_
b.	Pentru:		
	$U_0 = E_0 - r_0 \cdot I_A$	1p	
	$2E_0 = (R_e + 2r_0) \cdot I_A$	1p 2p	4p
	rezultat final $U_0 = 4 \text{ V}$	1p	
c.	Pentru:		
	$U_V = \left(R + \frac{R}{2}\right) \cdot I$	1p	
	$I = \frac{E_{\rm e}}{R_{\rm e}' + 2r_0}$	1p	4p
	$R'_{e} = 3R + \frac{R}{2}$	1p	
	rezultat final $U_V = \frac{27}{8} \text{ V} \cong 3,4 \text{ V}$	1p	
d.	Pentru:		
	$2E_0 = (3R + 2r_0) \cdot I' + (R + R_1) \cdot I_1$	1p	
	$(R+R_1)\cdot I_1 = R\cdot I_A'$	1p	4p
	$I'=I_1+I'_A$	1p	
	rezultat final I' _A =0,9 A	1p	

SUB	IECTUL III.	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	Pentru:		-
	$W = P \cdot \Delta t$	2p	3p
	rezultat final: $W = 3600J$	1p	·
b.	Pentru:		
	$\eta = \frac{P}{EI}$	3p	4n
	$^{\prime\prime}$ \overline{EI}	1p	4p
	rezultat final: $\eta = 93,75\%$	r	
c.	Pentru:		
	$P = U_{12} \cdot I$	1p	
	$I = I_1 + I_2$	1p	4p
	$U_{12} = R_2 \cdot I_2$	1p	1
	rezultat final: $R_2 = 25\Omega$	1p	
d.	Pentru:		
	$r = \frac{E - U_{12}}{I}$	2p	
	I	1p	4
	$P_{\text{max}} = \frac{E^2}{4r}$	- P	4p
	$r_{\text{max}} = \frac{1}{4r}$	1p	
	rezultat final: $P_{\text{max}} = 512 \text{ W}$	·P	

INSPECTORATUL ȘCOLAR JUDEȚEAN IAȘI

Simulare Examen de bacalaureat 2024 Proba E. d)

FIZICĂ – BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10 **D. OPTICĂ**

SUBIECTUL I $(10 \times 3 \text{ puncte} = 15 \text{ pu})$					
Nr subject	1	2	3	4	5
Varianta corectă	c	b	a	b	c

SUB	IECTUL II.	(1	15 puncte)
	Soluție, rezolvare		Punctaj
a.	$y_1 - \frac{1}{x_1}, y_1 - \frac{1}{y_1}, y_1 - \frac{1}{x_2} - \frac{1}{x_1}$	l p	-
	$\beta_1' = \frac{{x_2}'}{{x_1}'}, \beta_1' = \frac{{y_2}'}{{y_1}}, \beta_1' = -2, {x'}_2 = -2{x_1}'$	l p	5 p
	$\left \frac{x_2}{x_2} - \frac{x_1}{x_1} - \frac{x_1}{f_1}, \frac{x_2}{x_2'} - \frac{x_1}{x_1'} - \frac{x_1}{f_1}, \frac{x_1}{x_1} - \frac{x_1}{x_1} - \frac{x_1}{f_1' - \beta_1}\right $	2 p	
	$f_1 = 20 \text{ cm}$	l p	
b.	$f_1 = \frac{1}{(n-1)(\frac{1}{R_1} - \frac{1}{R_2})}, n = 1 + \frac{1}{f_1(\frac{1}{R_1} - \frac{1}{R_2})}$	l p	2 p
	n = 1,50	l p	
c.	$\begin{bmatrix} x_1 - & & & \\ & \beta_1 & & \end{bmatrix}$	l p l p	
	1x = -4x $x = 100$ cm	l p	
		lр	5 p
	$\left \frac{1}{x_{2}"} - \frac{1}{x_{1}"} = \frac{1}{f_{2}}, x_{2}" = \frac{f_{2}x_{1}"}{f_{2} + x_{1}"} \right $	P	
		l p	
	$x_2'' = 15 \text{ cm}$	_	
d.	$\beta_1 = \frac{y_2}{y_1} = \frac{x_2}{x_1}, \beta_1 = -4$	l p	
	$x_{2}'' = 15 \text{ cm}$ $\beta_{1} = \frac{y_{2}}{y_{1}} = \frac{x_{2}}{x_{1}}, \beta_{1} = -4$ $\beta_{2} = \frac{x_{2}''}{x_{1}''}, \beta_{2} = -1,5$ $0,$	5 p	3 p
	$\beta = \beta_1 \cdot \beta_2, \beta = 6$	бр	
	$\beta = \frac{y_2}{y_1}, y_2'' = \beta \cdot y_1, y_2'' = 3 \text{ cm} = 30 \text{ mm}$	l p	

SUB	IECTUL III.	(1	5 puncte)
	Soluție, rezolvare		Punctaj
a.	$\lambda_1 D D L_1$	1 p	
	$i_1 = \frac{\lambda_1 D}{2l}, \frac{D}{2l} = \frac{i_1}{\lambda_1}$		
	$x_k = \frac{k\lambda D}{2l}, k=1, x_1 = \frac{\lambda_2 D}{2l}$	2 p	5 p
	$\lambda_2 = \frac{x_1 2l}{D}, \lambda_2 = \frac{x_1 \lambda_1}{i_1}, \lambda_2 = 600 \text{ nm}$	2 p	
b.	$x_{k1} = \frac{k_1 \lambda_1 D}{2l}, x_{k2} = \frac{k_2 \lambda_2 D}{2l}$	2 p	
	$x_{k1} = x_{k2}, \frac{k_1 \lambda_1 D}{2l} = \frac{k_2 \lambda_2 D}{2l}$	1 p	5 p
	$k_1 \lambda_1 = k_2 \lambda_2, k_1 = 6, k_2 = 5$	1 p	
	$x = k_1 i_1, x = 6 \text{ mm}$	1 p	
c.	$\Delta \nu = \nu_1 - \nu_2, \Delta \nu = \frac{c}{\lambda_1} - \frac{c}{\lambda_2}, \Delta \nu = c(\frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2})$	2 p	3 p
	$\Delta u = 10^{14} \mathrm{Hz}$	1 p	3 p
d.	$\delta_1 = \frac{2lh}{d}, \delta_2 = \frac{2lx}{D}, \delta_1 = \delta_2, x = \frac{hD}{d}, x = 4 \text{ mm}$	1 p	2 p
	Maximul central se deplasează în sens contrar sensului în care se deplasează sursa.	1 p	- P