Correction du TD

I | Diagramme E – pH de l'argent

On donne ci-dessous le diagramme potentiel-pH de l'argent, établi à 25 °C en tenant compte des espèces $Ag_{(s)}$, $Ag_2O_{(s)}$ et $Ag_{(aq)}^+$, et pour une concentration de tracé en ions argent égale à $c_t = 0.1 \text{ mol} \cdot \text{L}^{-1}$.

On superpose au diagramme les droites relatives aux couples $\rm H_2O_{(l)}/\rm H_{2(g)}$ et $\rm O_{2(g)}/\rm H_2O_{(l)}$, tracées pour $p_t=1$ bar. On donne $E^{\circ}(\rm Ag^+/\rm Ag)=0.80\, V$ et $E^{\circ}(\rm Ag_2O/\rm Ag)=1.17\, V$.

1) Établir l'équation de la frontière relative au couple Ag⁺/Ag.

Réponse

$$Ag_{(s)} = Ag_{(aq)}^{+} + e^{-}$$

$$\Rightarrow E = E^{\circ}(Ag^{+}/Ag) + 0.06 \log \frac{[Ag^{+}]}{c^{\circ}}$$

$$[Ag^{+}]_{front} = c_{t} \Rightarrow \qquad \boxed{E_{front} = E^{\circ}(Ag^{+}/Ag) - 0.06} \Rightarrow \underline{E_{front}} = 0.74 \text{ V}$$

2) Déterminer la pente de la frontière relative au couple Ag₂O/Ag.

– Réponse –

$$2 Ag_{(s)} + H_2O_{(l)} = Ag_2O_{(s)} + 2 H_{(aq)}^+ + 2 e^-$$

$$\Rightarrow E = E^{\circ}(Ag_2O/Ag) + \frac{0.06}{2} \log \frac{[H^+]^2}{c^{\circ 2}}$$

$$\Leftrightarrow E_{front} = E^{\circ}(Ag_2O/Ag) - 0.06pH$$

- Donc la pente est de -0.06 (et la frontière ne dépend pas de la convention de tracé).
- 3) Qu'observe-t-on si on élève le pH d'une solution d'ions argent sans variation de la concentration initiale en ions dans la solution? Écrire l'équation de la réaction correspondante.

– Réponse -

Supposons le potentiel rédox constant au cours de l'opération. On part initialement d'un système se trouvant dans le domaine de stabilité de Ag⁺. Lorsqu'on augmente le pH, on va rencontrer la frontière verticale et passer dans le domaine de stabilité de Ag₂O. On va donc observer l'apparition d'un **dépôt solide de Ag₂O** dans le fond du bécher. L'équation de la réaction s'écrit

$$2 Ag_{(aq)}^{+} + 2 HO_{(aq)}^{-} \longrightarrow Ag_{2}O_{(s)} + H_{2}O_{(l)}$$

4) L'argent est-il stable dans l'eau? Dans l'air?

- Réponse -

L'argent et l'eau ont un domaine de stabilité conjoint, donc l'argent est stable dans l'eau. En revanche, la droite relative au couple O_2/H_2O est toujours au-dessus du domaine de stabilité de Ag : l'argent n'est pas stable dans l'air. C'est pourquoi il s'oxyde à l'air libre.

Comment nettoyer l'argent

Avec ces connaissances, on peut trouver un moyen de rétablir le brillant de l'argent. Voir ce lien.

$oxdot{ ext{II}}oxdot{ ext{Diagramme}}E-oxdot{ ext{pH}}oxdot{ ext{du mercure}}$

L'allure du diagramme $E-\mathrm{pH}$ du mercure est donné ci-après. Les espèces prises en compte sont

$$HgO_{(s)} Hg_{(ag)}^{2+} Hg_{2(ag)}^{2+} Hg_{(l)}$$

La concentration de chaque espèce dissoute comportant l'élément mercure aux frontières est prise égale à $c_0 = 1,00 \,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

1) Attribuer un domaine à chaque espèce, en précisant s'il s'agit d'un domaine de prédominance ou d'existence.

			Ré	ponse —				
			•	-	n.o.			
Espèce	$\mathrm{Hg}_{(\mathrm{l})}$	$\mathrm{Hg}^{2+}_{\mathrm{(aq)}}$	Hg ₂ ²⁺ (aq)	$\mathrm{HgO}_{\mathrm{(s)}}$	+II	$\mathrm{Hg}^{2+}_{\mathrm{(aq)}}$	${\rm HgO_{(s)}}$	
n.o.(Hg)	0	$+\Pi$	+I	+II	ŀ			
Domaine	D	A	\mathbf{C}	В	+I		$\mathrm{Hg_{2}}_{\mathrm{(aq)}}^{2+}$	
Type	Exist.	Prédom.	Prédom.	Exist.	ŀ			
					- 0		$\mathrm{Hg}_{(1)}$	
					ι			

On prouve le caractère acide de Hg^{2+} par une équation :

$${\rm Hg^{2+} + H_2O_{(l)} = HgO_{(s)} + 2\,H_{(aq)}^+}$$

– Réponse -

Dans l'eau sans oxygène, le mercure métal est stable. En revanche, en présence de dioxygène il est instable, et pourra former ${\rm Hg_2}^{2+}$ et ${\rm Hg^{2+}}$ pour un faible pH, ou le solide HgO pour pH $\gtrsim 2$. Les équations correspondantes sont :

$$2 Hg_{(l)} + O_{2(g)} + 4 H_{(aq)}^{+} = 2 Hg_{(aq)}^{2+} + 2 H_2 O_{(l)}$$
$$2 Hg_{(l)} + O_{2(g)} = 2 HgO_{(s)}$$

 et

3) Retrouver la constante de l'équilibre $Hg_{(aq)}^{2+} + 2HO_{(aq)}^{-} = HgO_{(s)} + H_2O_{(l)}$

– Réponse -

à la frontière

$$K = \frac{c^{\circ 3}}{[\mathrm{Hg^2 +}]_{\mathrm{eq}}[\mathrm{HO^-}]_{\mathrm{eq}}^2}$$

$$\Rightarrow pK = \underbrace{\log c_0}_{=0} - 2 \underbrace{\mathrm{pOH}_{\mathrm{front}}}_{\mathrm{p}K_e - \mathrm{pH}_{\mathrm{front}}}$$

$$\Leftrightarrow \boxed{K = 10^{2(\mathrm{pH}_{\mathrm{front}} - \mathrm{p}K_e)}} \Rightarrow \underline{K} = 10^{-24}$$

— Réponse –

Couple HgO/Hg₂²⁺

$$Hg_{2_{(aq)}}^{2+} + 2 H_{2}O_{(l)} = 2 HgO_{(s)} + 4 H_{(aq)}^{+} + 2 e^{-}$$

$$\Rightarrow E = E^{\circ}(HgO/Hg_{2}^{2+}) + \frac{0.06}{2} \log \frac{[H^{+}]^{4}}{[Hg_{2}^{2+}]c^{\circ 3}}$$

$$\Leftrightarrow E_{front} = E^{\circ}(HgO/Hg_{2}^{2+}) -0.012pH$$

— Réponse -

Au-delà de pH = 3, Hg2^{2+} n'est plus stable et il **se dismute** en $\text{HgO}_{(s)}$ et $\text{Hg}_{(l)}$. On écrit les équations associées :

Couple
$$Hg_2^{2+}/Hg$$
 $2Hg_{(1)} = Hg_{2(aq)}^{2+} + 2e^-$ (1)

Couple
$$HgO/Hg_2^{2+}$$
 $Hg_2^{2+} + 2 H_2O_{(l)} = 2 HgO_{(s)} + 4 H^+ + 2 e^-$ (2)

Réaction
$$Hg_{2_{(aq)}}^{2+} + H_{2}O_{(l)} = HgO_{(s)} + Hg_{(l)} + 2H_{(aq)}^{+}$$
 (3) = (2) - (1)

Lorsque l'on veut tester la présence d'ions mercure en solution aqueuse, on peut opérer de la manière suivante : « Déposer une goutte de la solution aqueuse acidifiée à tester sur une lame de cuivre préalablement polie. Attendre quelques instants et laver la lame à l'eau. S'il se forme un amalgame blanc brillant sur la lame de cuivre, la solution contient des ions mercure ».

On indique qu'un amalgame est un alliage de mercure Hg et d'un autre métal M, noté MHg. On donne $E^{\circ}(Cu^{2+}/Cu) = 0.34 \,\mathrm{V}$.

6) Pourquoi la solution à tester doit-elle être acidifiée? Pour quels ions du mercure ce protocole est-il valable? Écrire les équations bilans des réactions possibles en milieu acide.

– Réponse -

On a déterminé que les ions mercure n'existaient en solution que pour de faibles pH : on acidifie la solution pour éviter la précipitation en HgO.

Grâce à une échelle en E° , on voit que ce protocole est valable pour **les deux ions du mercure**. Les équations associées sont :

$$\begin{aligned} & \operatorname{Hg2_{(aq)}^{2+}} + \operatorname{Cu_{(s)}} = 2\operatorname{Hg_{(l)}} + \operatorname{Cu_{(aq)}^{2+}} \\ & 2\operatorname{Hg_{(aq)}^{2+}} + 2\operatorname{Cu_{(s)}} = 2\operatorname{Hg_{(l)}} + 2\operatorname{Cu_{(aq)}^{2+}} \end{aligned}$$

et

III Eau de Javel

On dit souvent qu'il ne faut pas mélanger les produits ménagers, en particulier l'eau de Javel et un acide. Essayons de comprendre pourquoi.

Le dichlore est un gaz toxique irritant, pouvant entraîner de graves problèmes pulmonaires en cas d'inhalation. Une solution aqueuse de dichlore $\operatorname{Cl}_{2(aq)}$ peut libérer du dichlore gazeux $\operatorname{Cl}_{2(g)}$. L'eau de Javel est une solution aqueuse comportant du chlorure de sodium $(\operatorname{Na}_{(aq)}^+;\operatorname{Cl}_{(aq)}^-)$ et de l'hypochlorite de sodium $(\operatorname{Na}_{(aq)}^+;\operatorname{ClO}_{(aq)}^-)$ en quantité équimolaire. Le diagramme potentiel-pH simplifié de l'élément chlore est représenté ci-contre, pour les espèces chimiques $\operatorname{HClO}_{(aq)}$, $\operatorname{ClO}_{(aq)}^-$, $\operatorname{Cl}_{2(aq)}$ et $\operatorname{Cl}_{(aq)}^-$. La convention de tracé est fixée à $c_t = 0.1 \, \mathrm{mol} \cdot \mathrm{L}^{-1}$.

Oxydants

À 298 K et pH = 0,
$$E^{\circ}(HClO_{(aq)}/Cl_{2(aq)}) = 1,60 \text{ V}$$
 et $E^{\circ}(Cl_{2(aq)}/Cl_{(aq)}^{-}) = 1,39 \text{ V}$.

1) Indiquer les espèces chimiques auxquelles correspondent les domaines notés A, B, C et D.

			Ré	eponse —	n.o. ♠			
Espèce	HClO _(aq)	$ClO_{(aq)}^-$	$\text{Cl}_{2(aq)}$	$\mathrm{Cl}^{\mathrm{(aq)}}$	$ _{+\mathrm{I}}$	HClO _(aq)	ClO _(aq)	7
n.o.(Cl) Domaine	$+\mathrm{I} \\ \mathrm{A}$	$+\mathrm{I} \\ \mathrm{D}$	0 B	-I C	0	$\mathrm{Cl}_{2(\mathrm{aq})}$		
					- -I	Cl	(aq)] → pH

On prouve le caractère acide de HClO par une équation :

$$HClO_{(aq)} + H_2O_{(l)} = ClO_{(aq)}^- + H_3O_{(aq)}^+$$
 K_A

2) Retrouver graphiquement la valeur du p K_A du couple acido-basique $\mathrm{HClO}_{\mathrm{(aq)}}/\mathrm{ClO}_{\mathrm{(aq)}}^-$ et tracer le diagramme de prédominance de ce couple. Quelle est l'espèce prédominante en milieu acide?

- Réponse -

Pour des espèces acido-basiques dissoutes, par la relation de HENDERSON on a

$$\boxed{\mathrm{pH}_{\mathrm{front}} = \mathrm{p}K_A} \Rightarrow \underline{\mathrm{p}K_A} = 7,25$$

3) En utilisant le diagramme E-pH, prévoir l'évolution d'un mélange contenant les espèces A et C lors du passage en milieu très acide (pH < 2,5). Écrire alors l'équation bilan de la réaction correspondante. Comment s'appelle une telle réaction? Calculer sa constante d'équilibre à 298 K.

- Réponse -

À faible pH, le HClO et les ions Cl⁻ auront des domaines disjoints : ils vont réagir ensemble pour former du Cl₂. C'est une **médiamutation**, qu'on peut représenter par le diagramme en E° ci-contre.

Réaction $HClO_{(aq)} + H_{(aq)}^{+} + Cl_{(aq)}^{-} = Cl_{2(aq)} + H_{2}O_{(l)}$ (3) = [(2) - (1)]/2

Lycée Pothier 4/8 MPSI3 – 2023/2024

IV. Autour du chrome

Constante

$$K^{\circ} = 10^{\frac{1}{0.06}|\Delta E^{\circ}|} \Rightarrow \underline{K^{\circ}} = 10^{3.50}$$

Elle est donc totale. On fait attention au nombre totale d'électrons échangés, ici avec le choix de nombres stœchiométriques on a bien 1 seul électron échangé.

Calcul de constantes

On peut démontrer cette expression :

Couple
$$\text{HClO}_{(aq)}/\text{Cl}_{2(aq)}E_{1} = E^{\circ}(\text{HClO/Cl}_{2}) + \frac{0.06}{2}\log\left(\frac{p_{\text{Cl}_{2}}e^{\circ 4}}{p^{\circ}[\text{HClO}]^{2}[\text{H}^{+}]^{2}}\right)$$

Couple $\text{Cl}_{2(aq)}/\text{Cl}_{(aq)}^{-}$
 $E_{2} = E_{2}^{\circ}(\text{Cl}_{2(aq)}/\text{Cl}_{(aq)}^{-}) + \frac{0.06}{2}\log\left(\frac{p^{\circ}[\text{Cl}^{-}]^{2}}{p_{\text{Cl}_{2}}}\right)$

Unicité potentiel $\Leftrightarrow E_{1} = E_{2}^{\circ} \Leftrightarrow E_{2}^{\circ} = \frac{0.06}{2}\log\left(\frac{p^{\circ}[\text{Cl}^{-}]^{2}}{p^{\circ}[\text{HClO}]^{2}[\text{H}^{+}]^{2}[\text{Cl}^{-}]^{2}}\right)$
 $\Leftrightarrow K = 10^{\frac{1}{0.06}}(E_{1}^{\circ} - E_{2}^{\circ})$

– Réponse -

On voit que ClO^- en milieu acide donne HClO, et on vient de démontrer qu'en milieu très acide HClO et Cl^- formaient du $Cl_{2(aq)}$, donnant lui-même du dichlore gazeux très toxique!

Autour du chrome

On donne le diagramme E-pH du chrome auquel se superpose celui de l'eau. On étudie $\operatorname{Cr}_{(aq)}^{2+}$, $\operatorname{CrO}_{4(aq)}^{2-}$, $\operatorname{CrO}_{2(aq)}^{-}$, $\operatorname{Cr}_{2(aq)}^{3+}$, $\operatorname{Cr}_{2(aq)}^{2-}$, $\operatorname{Cr}_{3(aq)}^{2-}$, \operatorname

1) D	ns cette question, on ne prend en compte que les espèces $\operatorname{Cr}_{(aq)}^{2+}, \operatorname{CrO}_{2(aq)}^{-}, \operatorname{Cr}_{(aq)}^{3+}, \operatorname{Cr}_{(s)}$ et $\operatorname{Cr}(\operatorname{OH})_{3(aq)}$	s) •
Ir	liquer pour chacun des domaines numérotés de 1 à 5 sur le diagramme à quelle espèce chimique	il
co	respond, ainsi que la nature du domaine.	

solu

2) Déduire par lecture du diagramme la valeur de la concentration de tracé c_t , concentration de chaque espèce dissoute contenant l'élément chrome à la frontière.

_____ Réponse ______ solu _____ 🔷 _____

3) Déduire du diagramme le p K_s de $Cr(OH)_{3(s)}$ ainsi que la constante de la réaction de dissolution de $Cr(OH)_{3(s)}$ en milieu basique.

solu — Réponse — Solu — 💠 — Solu — S

solu

4) On souhaite compléter le diagramme E – pH du chrome en prenant en compte, en plus des espèces précédentes, les ions chromates $\operatorname{CrO_4^{2-}_{(aq)}}$ et dichromates $\operatorname{Cr_2O_7^{2-}_{(aq)}}$. Indiquer à quelle espèce chimique correspond chacun des domaines numérotés 6 et 7.

IV/B Étude de réactions du chrome et de ses composés

- 5) Sur le diagramme précédent, on a également porté les droites délimitant le domaine de stabilité thermodynamique de l'eau.
 - a Quels sont les composés du chrome au degré d'oxydation +VI qui sont stables en solution aqueuse? Pour ceux qui seraient instables, on donnera l'équation de la réaction à laquelle ils donnent lieu.

solu

Solu

Solu

b – Les ions $Cr_{(aq)}^{3+}$ sont-ils stables en solution aqueuse? Quelle(s) réaction(s) peuvent-ils donner avec l'eau?

solu

- 6) On étudie l'action du dichromate sur le fer II, en milieu de pH < 6. Dans ces conditions, les potentiels des couples sont :
 - \Rightarrow pH < 1,33 : $E^{\circ}(\text{Fe}_{(aq)}^{3+}/\text{Fe}_{(aq)}^{2+}) = 0.77 \text{ V};$
 - \Diamond 1,33 < pH < 6,5 : $E^{\circ}(\text{Fe(OH)}_{3(s)}/\text{Fe}_{(aq)}^{3+}) = 1,01 0,18$ pH (en volts).

 - d On opère en général à pH voisin de 0.

	i.	Écrire l'équation de la réaction dans ce cas.	
		solu	Réponse —
	ii.	Commenter le choix du pH.	_
		solu	Réponse — — — — — — — — — — — — — — — — — — —
	iii.	aux questions précédentes?	ons est-elle en contradiction avec les résultats obtenus
		solu	Réponse — — — — — — — — — — — — — — — — — — —
	$\overline{\mathbf{V}}$	Dosage du glucose	•
I_{2t} co c_t O_t les	ances (aq) , aq	ne l'allure du diagramme E — pH relatif au iodées. On se limite aux espèces suivantes : le es ions iodate $IO_{3(aq)}^-$ et les ions iodure $I_{(a)}^-$ ration de chacune des espèces iodées est é $0 \text{ mol} \cdot L^{-1}$ sur les frontières. que que le $I_{2(aq)}$ a une coloration brune en so es espèces iodées sont incolores. téresser à un protocole permettant de détentité de glucose dans une cannette de $Redbu$ ci-dessous le protocole expérimental du dosa	diiode I_{aq} . La I_{aq}
\sim		atroduit dans un erlenmeyer un volume V_1 $0.050\mathrm{mol}\cdot\mathrm{L}^{-1}$;	$=20,0\mathrm{mL}$ d'une solution de diiode de concentration
		oute dans l'erlenmeyer 5 mL d'une solution lution se décolore.	d'hydroxyde de sodium $(Na_{(aq)}^+; HO_{(aq)}^-)$ à $2.5 \text{ mol} \cdot L^{-1}$
\sim	_	oute au mélange précédent un volume $V_0 = 2.0$ ouche l'erlenmeyer, on l'agite et on laisse agir	mL de $Redbull$, de concentration en glucose c_0 inconnue 30 minutes dans l'obscurité.
		cette attente, on ajoute dans l'erlenmeyer 1 loration brune réapparait.	$0\mathrm{mL}$ d'acide chlorhydrique (H_{(aq)}^+; \mathrm{Cl}_{(aq)}^-) à $2\mathrm{mol}{\cdot}\mathrm{L}^{-1}$
	dans	une burette. On titre le contenu de l'erlenme	$O_{3(aq)}^{2-}$) de concentration $c_2 = 0.10 \mathrm{mol \cdot L^{-1}}$ est introduité eyer en présence d'empois d'amidon. On observe alors volume verse de thiosulfate de sodium noté $V_{2,\mathrm{eqv}}$.
,		tion de cette réaction et nommer de type de	
	solu		ponse
		de l'étape $\widehat{\mathfrak{J}}$, le glucose $C_6H_{12}O_{6(aq)}$ est oxy- lieu basique. Écrire la réaction bilan qui se p	
	solu	Ré	ponse

3)	À la lumière du diagramme E – pH de l'iode, quelle réaction s'est produite lors de l'étape $\textcircled{4}$? Écrire l'équation de cette réaction et nommer de type de réaction.
	Réponse —
	solu 🔷 —
4)	Écrire l'équation de la réaction de titrage correspondant à l'étape (5). On indique que $E^{\circ}(S_4O_6^{2-}/S_2O_3^{2-}) = 0.09 \mathrm{V}$ et $E^{\circ}(I_2/I^-) = 0.62 \mathrm{V}$.
	——————————————————————————————————————
	solu
	<u></u>
	près avoir répété ce protocole trois fois, l'expérimentatrice mesure un volume moyen $V_{2,eqv} = 15,4 \text{ mL}$.
	Exprimer littéralement, en fonction de c_1 , V_1 , c_2 et $V_{2,\text{eqv}}$ la quantité d'ions iodates n_3 ayant réagi avec le glucose (étape ③). En supposant cette réaction totale, et en considérant que le glucose est le réactif limitant de cette réaction, en déduire la quantité de glucose n_0 ayant réagi. Calculer numériquement c_0 .
	Réponse
	solu
	<u></u>
	Déduire de la question précédente la masse de glucose présente dans une canette de $Redbull$ de volume $V=250\mathrm{mL}$. La masse molaire du glucose est de $180\mathrm{g\cdot mol}^{-1}$.
	Réponse
	solu