

Packet Tracer. Конфигурирование и проверка IPsec VPN между двумя пунктами (site-to-site) с помощью интерфейса командной строки

Топология

Таблица адресации

Устройство	Интерфейс	ІР-адрес	Маска подсети	Шлюз по умолчанию	Порт коммутатора
R1	G0/0	192.168.1.1	255.255.255.0	Н/П	S1 F0/1
	S0/0/0 (DCE)	10.1.1.2	255.255.255.252	Н/П	Н/П
R2	G0/0	192.168.2.1	255.255.255.0	Н/П	S2 F0/2
	S0/0/0	10.1.1.1	255.255.255.252	Н/П	Н/П
	S0/0/1 (DCE)	10.2.2.1	255.255.255.252	Н/П	Н/П
R3	G0/0	192.168.3.1	255.255.255.0	Н/П	S3 F0/5
	S0/0/1	10.2.2.2	255.255.255.252	Н/П	Н/П
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1	S1 F0/2
РС-В	NIC	192.168.2.3	255.255.255.0	192.168.2.1	S2 F0/1
PC-C	NIC	192.168.3.3	255.255.255.0	192.168.3.1	S3 F0/18

Задачи

- Проверка связи в сети
- Настройка маршрутизатора R1 для поддержки сети Site-to-Site IPsec VPN с маршрутизатором R3

Исходные данные/сценарий

Топология сети включает три маршрутизатора. Ваша задача заключается в том, чтобы настроить маршрутизаторы R1 и R3 для поддержки сети site-to-site IPsec VPN (между двумя пунктами) при передаче трафика между соответствующими локальными сетями. Туннель IPsec VPN проходит от маршрутизатора R1 к маршрутизатору R3 через R2. Маршрутизатор R2 играет роль транзитного узла и не имеет информации о VPN. IPSec обеспечивает безопасную передачу конфиденциальной информации по незащищенным сетям, например по Интернету. IPSec функционирует на сетевом уровне и выполняет функцию как защиты, так и аутентификации IP-пакетов между соответствующими устройствами IPsec (узлами), такими как маршрутизаторы Cisco.

Параметры политики ISAKMP, фаза 1

Парамет	R1	R3	
Метод распределения ключей	Вручную или ISAKMP	ISAKMP	ISAKMP
Алгоритм шифрования	DES , 3DES или AES	AES 256	AES 256
Алгоритм хеширования	MD5 или SHA-1	SHA-1	SHA-1
Метод аутентификации	Общие ключи или RSA	pre-share	pre-share
Обмен ключами	Группа DH 1, 2 или 5	DH 5	DH 5
Время существования IKE SA	86 400 с или меньше	86400	86400
Ключ ISAKMP		vpnpa55	vpnpa55

Примечание. Полужирным шрифтом выделены параметры по умолчанию. Явно настраивать требуется только невыделенные параметры.

Параметры политики IPsec, фаза 2

Параметры	R1	R3
Имя набора преобразований	VPN-SET	VPN-SET
Шифрование преобразования ESP	esp-aes	esp-aes
Аутентификация преобразования ESP	esp-sha-hmac	esp-sha-hmac
ІР-адрес узла	10.2.2.2	10.1.1.2
Трафик, подлежащий шифрованию	access-list 110 (source 192.168.1.0 dest 192.168.3.0)	access-list 110 (source 192.168.3.0 dest 192.168.1.0)
Имя криптографической карты	VPN-MAP	VPN-MAP
Установление SA	ipsec-isakmp	ipsec-isakmp

На маршрутизаторах были предварительно настроены следующие параметры.

- Пароль для линии консоли: ciscoconpa55
- Пароль для линий VTY: ciscovtypa55
- Пароль привилегированного доступа: ciscoenpa55
- Имя пользователя и пароль SSH: SSHadmin/ciscosshpa55
- OSPF 101

Часть 1: Настройка параметров IPsec на маршрутизаторе R1

Шаг 1: Проверка связи.

Отправьте эхо-запрос с компьютера РС-А на компьютер РС-С.

Шаг 2: Включение пакета Security Technology.

- a. На маршрутизаторе R1 введите команду **show version** для просмотра сведений о лицензии Security Technology Package.
- b. Если пакет Security Technology не активирован, сделайте это с помощью следующей команды.

```
R1 (config) # license boot module c1900 technology-package securityk9
```

- с. Примите условия лицензионного соглашения с конечным пользователем.
- d. Сохраните текущую конфигурацию и перезагрузите маршрутизатор, чтобы активировать лицензию Technology Package.
- e. Убедитесь, что пакет Security Technology включен, с помощью команды show version.

Шаг 3: Определение «интересного» трафика на маршрутизаторе R1.

Настройте список ACL 110, чтобы идентифицировать как «интересный» трафик, направляющийся из локальной сети на маршрутизаторе R1 в локальную сеть на маршрутизаторе R3. Этот трафик будет инициировать создание сети IPsec VPN при наличии трафика между локальными сетями маршрутизаторов R1 и R3. Весь остальной трафик, исходящий из локальных сетей, не будет шифроваться. Из-за неявного условия **deny all** не нужно настраивать оператор **deny ip any any**.

```
R1 (config) # access-list 110 permit ip 192.168.1.0 0.0.0.255 192.168.3.0 0.0.0.255
```

Шаг 4: Настройка политики ISAKMP фазы 1 IKE на маршрутизаторе R1.

Настройте свойства **crypto ISAKMP policy 10** на маршрутизаторе R1 с общим ключом шифрования **vpnpa55**. Конкретные параметры для настройки см. в таблице ISAKMP, фаза 1. Значения по умолчанию настраивать не нужно. Следовательно, необходимо настроить только метод шифрования, метод обмена ключами и метод DH.

Примечание. В настоящее время Packet Tracer поддерживает группы DH с номером не выше 5. В производственной сети потребуется настроить, как минимум, DH14.

```
R1 (config) # crypto isakmp policy 10
R1 (config-isakmp) # encryption aes 256
R1 (config-isakmp) # authentication pre-share
R1 (config-isakmp) # group 5
R1 (config-isakmp) # exit
R1 (config) # crypto isakmp key vpnpa55 address 10.2.2.2
```

Шаг 5: Настройка политики IPsec фазы 2 IKE на маршрутизаторе R1.

а. Создайте набор преобразований VPN-SET, чтобы использовать esp-aes и esp-sha-hmac.

```
R1(config) # crypto ipsec transform-set VPN-SET esp-aes esp-sha-hmac
```

b. Создайте криптографическую карту VPN-MAP, связывающую друг с другом все параметры фазы 2. Используйте порядковый номер 10 и определите его как карту ipsec-isakmp.

```
R1(config)# crypto map VPN-MAP 10 ipsec-isakmp
R1(config-crypto-map)# description VPN connection to R3
R1(config-crypto-map)# set peer 10.2.2.2
R1(config-crypto-map)# set transform-set VPN-SET
R1(config-crypto-map)# match address 110
R1(config-crypto-map)# exit
```

Шаг 6: Настройка криптографической карты на исходящем интерфейсе.

Привяжите криптографическую карту VPN-MAP к исходящему интерфейсу Serial 0/0/0.

```
R1(config) # interface s0/0/0
R1(config-if) # crypto map VPN-MAP
```

Часть 2: Настройка параметров IPsec на маршрутизаторе R3

Шаг 1: Включение пакета Security Technology.

- а. На маршрутизаторе R3 введите команду **show version**, чтобы проверить, активирована ли лицензия Security Technology Package.
- b. Если нет, активируйте пакет и перезагрузите маршрутизатор R3.

Шаг 2: Настройка маршрутизатора R3 для поддержки сети site-to-site VPN с маршрутизатором R1.

Настройте соответствующие параметры на маршрутизаторе R3. Настройте список ACL 110, чтобы идентифицировать как «интересный» трафик, направляющийся из локальной сети на маршрутизаторе R3 в локальную сеть на маршрутизаторе R1.

```
R3(config)# access-list 110 permit ip 192.168.3.0 0.0.0.255 192.168.1.0 0.0.0.255
```

Шаг 3: Настройка свойств ISAKMP фазы 1 IKE на маршрутизаторе R3.

Настройте свойства криптополитики ISAKMP 10 на маршрутизаторе R3 с общим ключом шифрования vpnpa55.

```
R3(config) # crypto isakmp policy 10
R3(config-isakmp) # encryption aes 256
R3(config-isakmp) # authentication pre-share
R3(config-isakmp) # group 5
R3(config-isakmp) # exit
R3(config) # crypto isakmp key vpnpa55 address 10.1.1.2
```

Шаг 4: Настройка политики IKE фазы 2 IPsec на маршрутизаторе R3.

а. Создайте набор преобразований VPN-SET, чтобы использовать esp-aes и esp-sha-hmac.

```
R3(config)# crypto ipsec transform-set VPN-SET esp-aes esp-sha-hmac
```

b. Создайте криптографическую карту VPN-MAP, связывающую друг с другом все параметры фазы 2. Используйте порядковый номер 10 и определите его как карту ipsec-isakmp.

```
R3(config)# crypto map VPN-MAP 10 ipsec-isakmp
R3(config-crypto-map)# description VPN connection to R1
R3(config-crypto-map)# set peer 10.1.1.2
R3(config-crypto-map)# set transform-set VPN-SET
R3(config-crypto-map)# match address 110
R3(config-crypto-map)# exit
```

Шаг 5: Настройка криптографической карты на исходящем интерфейсе.

Привяжите криптографическую карту VPN-MAP к исходящему последовательному интерфейсу 0/0/1. **Примечание.** Этот шаг не оценивается.

```
R3(config)# interface s0/0/1
R3(config-if)# crypto map VPN-MAP
```

Часть 3: Проверка IPsec VPN

Шаг 1: Проверка туннеля до передачи «интересного» трафика.

Введите команду **show crypto ipsec sa** на маршрутизаторе R1. Обратите внимание, что количество инкапсулированных, зашифрованных, декапсулированных и дешифрованных пакетов установлено на 0.

Шаг 2: Создание «интересного» трафика.

Отправьте эхо-запрос на компьютер РС-С с компьютера РС-А.

Шаг 3: Проверка туннеля после передачи «интересного» трафика.

Введите снова команду **show crypto ipsec sa** на маршрутизаторе R1. Обратите внимание, что количество пакетов больше 0, и это означает, что туннель IPsec VPN работает.

Шаг 4: Создание «неинтересного» трафика.

Отправьте эхо-запрос на компьютер PC-B с компьютера PC-A. **Примечание**. Отправка эхо-запроса с маршрутизатора R1 на компьютер PC-C или с маршрутизатора R3 на компьютер PC-A представляет собой «неинтересный» трафик.

Шаг 5: Проверка туннеля.

Снова введите команду **show crypto ipsec sa** на маршрутизаторе R1. Обратите внимание, что количество пакетов не изменилось, что означает, что «неинтересный» трафик не зашифрован.

Шаг 6: Проверка результатов.

Вы полностью выполнили задание. Нажмите **Check Results (Проверить результаты)** для просмотра отзыва и проверки завершенных обязательных компонентов.