Procesamiento Digital de Imágenes

Pablo Roncagliolo B.

Nº 4

Orden de las clases...

CAPTURA, DIGITALIZACION Y
ADQUISICION DE IMAGENES

TRATAMIENTO ESPACIAL DE IMAGENES

TRATAMIENTO
EN FRECUENCIA DE IMAGENES

RESTAURACION DE IMAGENES

OPERACIONES MORFOLOGICAS

PROCESAMIENTO
DE IMÁGENES EN COLORES

COMPRESION DE IMAGENES

REPRESENTACION Y DESCRIPCION

SEGMENTACION DE IMAGENES

TOPICOS AVANZADOS

prb

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

4

prb

a b

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

TABLE 2.1 Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3(L = 8)	4(L = 16)	5(L = 32)	6(L = 64)	7 (L = 128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

256

512

1024

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

prb

'Muestreo' sin interpolación (resampled): Res. Espacial

a b c d e f

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

'Muestreo' con interpolación

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Resolución en Frecuencia

FIGURE 2.21

(Continued)
(e)–(h) Image
displayed in 16, 8,
4, and 2 gray
levels. (Original
courtesy of
Dr. David
R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

funciones sobre el nivel de gris o "funciones de contraste"

a b

FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

funciones sobre el nivel de gris o "funciones de contraste"

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.

funciones sobre el nivel de gris o "funciones de contraste"

a b

FIGURE 3.4 (a) Original

digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)

funciones de corrección Gamma

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Matlab:

B=imadjust(A,[],[],gamma)

funciones de corrección Gamma

a b c d

FIGURE 3.7

- (a) Linear-wedge gray-scale image.
- (b) Response of monitor to linear wedge.
- (c) Gammacorrected wedge.
- (d) Output of monitor.

funciones de corrección Gamma

FIGURE 3.8

(a) Magnetic resonance (MR) image of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and}$ 0.3, respectively. (Original image for this example courtesy of Dr. David Ř. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Čenter.)

prb

17

funciones de corrección Gamma

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

funciones específicas sobre el contraste

c d

FIGURE 3.11

(a) This transformation highlights range [A, B] of gray levels and reduces all others to a constant level. (b) This transformation highlights range [*A*, *B*] but preserves all other levels. (c) An image. (d) Result of using the transformation in (a).

HISTOGRAMA

0	2	2	
3	0	2	
0	0	1	

Tratamiento de Imágenes: Ecualización del Histograma

%En Matlab con Toolbox H=imhist(A,256);

Bright image Low-contrast image High-contrast image

Dark image

Imágenes: Gonzalez&Wood

prb