第 13 回 ARCH・GARCH 過程

村澤 康友

2023年1月10日

今日のポイント	2	ARCH 過程	2	
	2.1	ARCH 過程	2	
1. 確率過程(特に金融時系列)の標準偏差を	2.2	自己回帰条件付き不均一分散	2	
	2.3	共分散定常性	4	
ボラティリティという. $\mathrm{var}(Y X)$ が X に依存することを条件つき不均一分散と	2.4	ARCH 過程と AR 過程	4	
いう.ボラティリティの変動を自己回帰	3	GARCH 過程	5	
条件付き不均一分散としてモデル化する.	3.1	GARCH 過程	5	
2. $ARCH(q)$ 過程は任意の t について $w_t =$	3.2	自己回帰条件付き不均一分散	5	
$\sigma_t z_t $	3.3	共分散定常性	5	
$\alpha_q w_{t-q}^2$. ただし $\{z_t\}$ は IID(0,1) で $c>$	3.4	GARCH 過程と ARMA 過程	6	
$0, \; \alpha_1, \ldots, \alpha_q \; \geq \; 0. \; \left\{ w_t ight\} \; が \; \mathrm{I}(0) \; なら \; \; ight $				
$\alpha_1 + \cdots + \alpha_q < 1. \{w_t\} $	4	モデルの定式化と推定	6	
なら $\left\{w_t^2\right\}$ は $\operatorname{AR}(q)$.	4.1	ラグ次数の選択	6	
3. $GARCH(p,q)$ 過程は任意の t について	4.2	条件付き ML 推定	6	
$w_t = \sigma_t z_t \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5	今日のキーワード	6	
ただし $\{z_t\}$ は $\mathrm{IID}(0,1)$ で $c > 0$,	6	次回までの準備	6	
$\beta_1, \ldots, \beta_p, \alpha_1, \ldots, \alpha_q \geq 0. \{w_t\} \; $				
なら $\beta_1 + \cdots + \beta_p + \alpha_1 + \cdots + \alpha_q < $	1 ボ	ラティリティ		
1. $\{w_t\}$ が $\mathrm{GARCH}(p,q)$ なら $\{w_t^2\}$ は	1.1 金	金融時系列		
$ARMA(\max\{p,q\},p).$	$\{y_t\}$	を株価の対数階差系列(=収益率)とす	る.	
4. ラグ次数はモデル選択基準で選んでもよ	株式市場が効率的なら将来の株価の超過収益率は予			
いが,無条件に GARCH(1,1) を仮定する	測でき	ない.すなわち任意の t について		
ことが多い.		$E_t(y_{t+1}) = \mu$		
		$E_t(g_{t+1}) = \mu$		
国次	ただし	ただし μ は安全利子率 $+$ リスク・プレミアム.		
	補題 1. 任意の t について			
ガラティリティ 1		$\mathrm{E}(y_t) = \mu$		
1.1 金融時系列		$E(g_t) = \mu$		
1.2 不均一分散 2	証明. 糺	繰り返し期待値の法則より,任意の t k	こつ	

いて

$$E(y_t) = E(E_{t-1}(y_t))$$

$$= E(\mu)$$

$$= \mu$$

定理 1. 任意の $s \ge 1$ について

$$cov(y_t, y_{t-s}) = 0$$

証明. 補題と繰り返し期待値の法則より、任意の s>1 について

$$\begin{aligned} \text{cov}(y_t, y_{t-s}) &:= \mathbf{E}((y_t - \mathbf{E}(y_t))(y_{t-s} - \mathbf{E}(y_{t-s}))) \\ &= \mathbf{E}((y_t - \mu)(y_{t-s} - \mu)) \\ &= \mathbf{E}(\mathbf{E}_{t-1}((y_t - \mu)(y_{t-s} - \mu))) \\ &= \mathbf{E}((\mathbf{E}_{t-1}(y_t) - \mu)(y_{t-s} - \mu)) \\ &= \mathbf{E}((\mu - \mu)(y_{t-s} - \mu)) \\ &= 0 \end{aligned}$$

注 1. $\{y_t\}$ は系列無相関だが iid とは限らない.例 えば $\{y_t^2\}$ は系列相関をもつかもしれない.

例 1. NYSE 総合指数(週次)の対数階差のコレログラム(図 1)と対数階差の2乗のコレログラム(図 2).

定義 1. 確率過程(特に金融時系列)の標準偏差を ボラティリティという.

注 2. 金融資産のリスクを表す. 市場が効率的なら収益率は予測できないが, ボラティリティの変動は 予測できることが多い.

1.2 不均一分散

(Y,X) を確率ベクトルとする. Y の X 上への古 典的線形回帰モデルは

$$E(Y|X) = \alpha + \beta X$$
$$var(Y|X) = \sigma^2$$

すなわち古典的線形回帰モデルでは $\mathrm{E}(Y|X)$ のみ X に依存し、 $\mathrm{var}(Y|X)$ は X に依存しないと仮定する.

定義 2. var(Y|X) が X に依存せず、一定であることを条件つき均一分散という.

定義 3. var(Y|X) が X に依存することを**条件つき** 不均一分散という.

2 ARCH 過程

П

2.1 ARCH 過程

 $\{y_t\}$ を ARMA 過程とする. すなわち任意の t に ついて

$$\phi(\mathbf{L})(y_t - \mu) = \theta(\mathbf{L})w_t$$
$$\{w_t\} \sim WN(\sigma^2)$$

 $\operatorname{var}_{t-1}(y_t) = \operatorname{var}_{t-1}(w_t)$ の変動を表したい.

定義 4. q 次の自己回帰条件付き不均一分散(AR conditional heteroskedasticity, ARCH)過程は、任意の t について

$$w_t = \sigma_t z_t$$

$$\sigma_t^2 = c + \alpha_1 w_{t-1}^2 + \dots + \alpha_q w_{t-q}^2$$

$$\{z_t\} \sim \text{IID}(0, 1)$$

ただしc > 0, $\alpha_1, \ldots, \alpha_q \ge 0$.

注 3. ARCH(q) と書く.

注 4. $c>0,\ \alpha_1,\dots,\alpha_q\geq 0$ より任意の t について $\sigma_t^2>0.$

注 5. 時点 t-1 で σ_t^2 は既知.

2.2 自己回帰条件付き不均一分散

 $\{w_t\}$ & ARCH(q) とする.

補題 2. 任意の t について

$$E_{t-1}(w_t) = 0$$

証明. 時点 t-1 で σ_t^2 は既知, $\{z_t\}$ は $\mathrm{IID}(0,1)$ なので, 任意の t について

$$E_{t-1}(w_t) = E_{t-1}(\sigma_t z_t)$$

$$= \sigma_t E_{t-1}(z_t)$$

$$= \sigma_t E(z_t)$$

$$= 0$$

自己相関係数(ACF) Id_close

偏自己相関係数(PACF) Id_close

図1 NYSE 総合指数(週次)の対数階差のコレログラム

自己相関係数(ACF) sq_ld_close

偏自己相関係数(PACF) sq_ld_close

図 2 NYSE 総合指数(週次)の対数階差の 2 乗のコレログラム

定理 2. 任意の t について

$$var_{t-1}(w_t) = \sigma_t^2$$

証明. 補題より、任意のtについて

$$\operatorname{var}_{t-1}(w_t) = \operatorname{E}_{t-1}(w_t^2)$$

$$= \operatorname{E}_{t-1}(\sigma_t^2 z_t^2)$$

$$= \sigma_t^2 \operatorname{E}_{t-1}(z_t^2)$$

$$= \sigma_t^2 \operatorname{E}(z_t^2)$$

$$= \sigma_t^2 \operatorname{var}(z_t)$$

$$= \sigma_t^2$$

注 6. すなわち任意の t について

$$\operatorname{var}_{t-1}(w_t) = c + \alpha_1 w_{t-1}^2 + \dots + \alpha_q w_{t-q}^2$$

これは q 次の自己回帰条件付き不均一分散.

2.3 共分散定常性

 $\{w_t\}$ が I(0) であるためには $\alpha_1, \ldots, \alpha_q \geq 0$ に制約が必要.

補題 3. 任意の t について

$$E(w_t) = 0$$

証明. 前補題と繰り返し期待値の法則より,任意のtについて

$$E(w_t) = E(E_{t-1}(w_t))$$

補題 4. 任意の t について

$$\operatorname{var}(w_t) = \operatorname{E}(\sigma_t^2)$$

証明. 補題と繰り返し期待値の法則より,任意の t について

$$var(w_t) = E(w_t^2)$$

$$= E(E_{t-1}(w_t^2))$$

$$= E(var_{t-1}(w_t))$$

$$= E(\sigma_t^2)$$

定理 3. $\{w_t\}$ が I(0) なら

$$\alpha_1 + \dots + \alpha_q < 1$$

証明、補題より、任意のtについて

$$\operatorname{var}(w_{t}) = \operatorname{E}\left(\sigma_{t}^{2}\right)$$

$$= \operatorname{E}\left(c + \alpha_{1}w_{t-1}^{2} + \dots + \alpha_{q}w_{t-q}^{2}\right)$$

$$= c + \alpha_{1}\operatorname{E}\left(w_{t-1}^{2}\right) + \dots + \alpha_{q}\operatorname{E}\left(w_{t-q}^{2}\right)$$

$$= c + \alpha_{1}\operatorname{var}(w_{t-1}) + \dots + \alpha_{q}\operatorname{var}(w_{t-q})$$

$$= c + \alpha_{1}\operatorname{var}(w_{t}) + \dots + \alpha_{q}\operatorname{var}(w_{t})$$

$$= c + (\alpha_{1} + \dots + \alpha_{q})\operatorname{var}(w_{t})$$

すなわち

$$(1 - \alpha_1 - \cdots - \alpha_q) \operatorname{var}(w_t) = c$$

$$\operatorname{var}(w_t), c > 0 \ \sharp \ \mathfrak{h}$$

$$1 - \alpha_1 - \dots - \alpha_q > 0$$

2.4 ARCH 過程と AR 過程

任意の t について $v_t := w_t^2 - \sigma_t^2$ とすると

$$w_t^2 \equiv \sigma_t^2 + v_t$$

= $c + \alpha_1 w_{t-1}^2 + \dots + \alpha_q w_{t-q}^2 + v_t$

 $\{v_t\}$ がホワイト・ノイズなら $\{w_t^2\}$ は AR(q).

補題 5. 任意の t について

$$E_{t-1}(v_t) = 0$$

証明. 任意のtについて

$$\begin{aligned} \mathbf{E}_{t-1}(v_t) &= \mathbf{E}_{t-1} \left(w_t^2 - \sigma_t^2 \right) \\ &= \mathbf{E}_{t-1} \left(w_t^2 \right) - \sigma_t^2 \\ &= \mathbf{var}_{t-1}(w_t) - \sigma_t^2 \\ &= \sigma_t^2 - \sigma_t^2 \\ &= 0 \end{aligned}$$

系 1. 任意の t について

 $E(v_t) = 0$

証明. 繰り返し期待値の法則より,任意のtについて

$$E(v_t) = E(E_{t-1}(v_t))$$
$$= 0$$

系 2. 任意の t と $s \ge 1$ について

$$cov(v_t, v_{t-s}) = 0$$

証明. 繰り返し期待値の法則より、任意の t と $s \ge 1$ について

$$cov(v_t, v_{t-s}) = E(v_t v_{t-s})$$

$$= E(E_{t-1}(v_t v_{t-s}))$$

$$= E(E_{t-1}(v_t) v_{t-s})$$

$$= 0$$

注 7. $\mathrm{E}\left(w_t^4\right)<\infty$ なら $\mathrm{var}(v_t)<\infty$ となり $\{v_t\}$ はホワイト・ノイズ. 詳細は略.

3 GARCH 過程

3.1 GARCH 過程

定義 5. (p,q) 次の一般化 ARCH (generalized ARCH, GARCH) 過程は、任意の t について

$$w_t = \sigma_t z_t$$

$$\sigma_t^2 = c + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

$$+ \alpha_1 w_{t-1}^2 + \dots + \alpha_q w_{t-q}^2$$

$$\{z_t\} \sim \text{IID}(0, 1)$$

ただしc > 0, $\beta_1, \ldots, \beta_p, \alpha_1, \ldots, \alpha_q \ge 0$.

注 8. GARCH(p,q) と書く.

注 9. c > 0, $\beta_1, \ldots, \beta_p, \alpha_1, \ldots, \alpha_q \ge 0$ より任意 の t について $\sigma_t^2 > 0$.

注 10. σ_t^2 は時点 t-1 で既知.

3.2 自己回帰条件付き不均一分散

簡単化のため $\{w_t\}$ を GARCH(1,1) とする. 逐 次代入より任意の t について

$$var_{t-1}(w_t)$$

$$= \sigma_t^2$$

$$= c + \beta \sigma_{t-1}^2 + \alpha w_{t-1}^2$$

$$= c + \beta \left(c + \beta \sigma_{t-2}^2 + \alpha w_{t-2}^2 \right) + \alpha w_{t-1}^2$$

$$= \dots$$

$$= \left(1 + \beta + \beta^2 + \dots \right) c$$

$$+ \alpha \left(w_{t-1}^2 + \beta w_{t-2}^2 + \beta^2 w_{t-3}^2 + \dots \right)$$

これは無限次の自己回帰条件付き不均一分散.

3.3 共分散定常性

 $\{w_t\}$ を GARCH(p,q) とする. $\{w_t\}$ が I(0) であるためには $\beta_1,\ldots,\beta_p,\alpha_1,\ldots,\alpha_q\geq 0$ に制約が必要.

定理 4. $\{w_t\}$ が I(0) なら

$$\beta_1 + \dots + \beta_n + \alpha_1 + \dots + \alpha_n < 1$$

証明. 任意のtについて

$$\operatorname{var}(w_{t})$$

$$= \operatorname{E}(\sigma_{t}^{2})$$

$$= c + \beta_{1} \operatorname{E}(\sigma_{t-1}^{2}) + \dots + \beta_{p} \operatorname{E}(\sigma_{t-p}^{2})$$

$$+ \alpha_{1} \operatorname{E}(w_{t-1}^{2}) + \dots + \alpha_{q} \operatorname{E}(w_{t-q}^{2})$$

$$= c + \beta_{1} \operatorname{var}(w_{t-1}) + \dots + \beta_{p} \operatorname{var}(w_{t-p})$$

$$+ \alpha_{1} \operatorname{var}(w_{t-1}) + \dots + \alpha_{q} \operatorname{var}(w_{t-q})$$

$$= c + \beta_{1} \operatorname{var}(w_{t}) + \dots + \beta_{p} \operatorname{var}(w_{t})$$

$$+ \alpha_{1} \operatorname{var}(w_{t}) + \dots + \alpha_{q} \operatorname{var}(w_{t})$$

$$= c + (\beta_{1} + \dots + \beta_{p} + \alpha_{1} + \dots + \alpha_{q}) \operatorname{var}(w_{t})$$

すなわち

$$(1 - \beta_1 - \dots - \beta_p - \alpha_1 - \dots - \alpha_q) \operatorname{var}(w_t) = c$$

$$1 - \beta_1 - \dots - \beta_p - \alpha_1 - \dots - \alpha_q > 0$$

3.4 GARCH 過程と ARMA 過程

任意の t について $v_t := w_t^2 - \sigma_t^2$ とする.

定理 5. $\{w_t\}$ が GARCH(p,q) で $\{v_t\}$ がホワイト・ノイズなら $\{w_t^2\}$ は $ARMA(\max\{p,q\},p)$.

証明. $r := \max\{p,q\}$ とすると、任意の t について

$$\begin{split} w_t^2 &\equiv \sigma_t^2 + v_t \\ &= c + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2 \\ &\quad + \alpha_1 w_{t-1}^2 + \dots + \alpha_q w_{t-q}^2 + v_t \\ &= c + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2 \\ &\quad + \alpha_1 w_{t-1}^2 + \dots + \alpha_r w_{t-r}^2 + v_t \\ &= c + (\alpha_1 + \beta_1) w_{t-1}^2 + \dots + (\alpha_r + \beta_r) w_{t-r}^2 \\ &\quad + v_t - \beta_1 \left(w_{t-1}^2 - \sigma_{t-1}^2 \right) - \dots \\ &\quad - \beta_p \left(w_{t-p}^2 - \sigma_{t-p}^2 \right) \\ &= c + (\alpha_1 + \beta_1) w_{t-1}^2 + \dots + (\alpha_r + \beta_r) w_{t-r}^2 \\ &\quad + v_t - \beta_1 v_{t-1} - \dots - \beta_p v_{t-p} \end{split}$$

4 モデルの定式化と推定

4.1 ラグ次数の選択

ラグ次数はモデル選択基準で選んでもよいが、無 条件に GARCH(1,1) を仮定することが多い.

4.2 条件付き ML 推定

ARCH・GARCH モデルの厳密な ML 推定は煩雑なので、条件つき ML 推定が普通. また係数に対する制約を考慮する必要がある. 詳細は略.

5 今日のキーワード

ボラティリティ,条件つき均一分散,条件つき不 均一分散,自己回帰条件付き不均一分散(ARCH) 過程,一般化 ARCH(GARCH)過程

6 次回までの準備

提出 宿題 13

復習 復習テスト 13

予習 特になし