Devang Patel Institute of Advance Technology & Research Department of Computer Science & Engineering

Subject Name & Code: Design and Analysis of Algorithms (CS358)

Semester: 5

Practical List

Analysis of Program should contain following sub heading(s).

- 1. Impact of Input Size on the Performance of Program. Make Table and Draw graph of Input Size Vs Running Time/Total No of Instructions. Take at least Five Input of Different Size.
- 2. Impact of Input Quality on the Performance of Program. Make Table and Draw graph of Best Case, Worst Case and Average Case Input Quality Vs Running Time/ Total No. of Instructions.
- 3. Rate of Growth of Program. Make Table and Draw Graph of Input Size Vs Instruction(s) Running Maximum No of Time in the Program.
- 4. Conclusion from the above graph or Data Table
- 5. For all Test cases, add column for output, calculate the answer and write the answer in the output column and verify with the output of the program.

Exp. No.	Name of Experiment	Hours	LO	PO	PEO
1.	Implement and analyze algorithms given below.	04	1	1,3,7	2,4
	1.1 Factorial (Iterative and Recursive)			, ,	,
	1.2 Euclidean algorithm				
	1.3 Matrix Addition and Matrix Multiplication (Iterative)				
	Find a subset of a given set S = {s1,s2,,sn} of n positive integers whose sum is equal to a given positive integer d. For example, if S= {1, 2, 5, 6, 8} and d = 9 there are two solutions {1,2,6} and {1,8}. A suitable message is to be displayed if the given problem instance doesn't have a solution.				
2.	Implement and analyze algorithms given below. (Compare them)	02	1	1,3,7	2,4
	2.1 Bubble Sort				
	2.2 Selection Sort				
	2.3 Insertion Sort				
3.	Divide and Conquer Strategy	04	1,2	1,3,4,7	2,4
	3.1 Implement and perform analysis of worst case of Merge Sort				
	and Quick sort. Compare both algorithms. 3.2 Implement the program to find X^Y using divide and conquer.				
	implement the program to find it I using divide and conquer				
	strategy and print the total number of multiplications required				
	to find X^Y. Test the program for following test cases:				
	Test X Y Case 1 2 6 2 7 25 3 5 34				

4.	Gree	edy Appr	roach			04	1,2	1,3,4, 5,7,8	2,4		
	4.1	many ti with dif the prog to find a number	er at any mall need mes in a day. Cas ferent denomination gram for a cashier to a change of a parti- of coins required owing test cases:	available nplement required the total							
		Test Case		ations C	Amount A						
		1	₹1, ₹2, ₹3	3	₹ 5						
		$\frac{2}{3}$	₹18, ₹17, ₹5 ₹100, ₹25, ₹10								
		Is the o	utput of Test case	2 is optim	nal? Write yourd	bservation	1.				
	4.2	fraction	e a collection of obj al knapsack proble jects with total wei	that can							
		Test Case	S	profit-	weight values	W					
		1	{A,B,C}	Profit:(1 Weight:	(2,3,4)	5					
		2	$\{A,B,C,D,E,F,G\}$	Weight:	(2,3,5,7,1,4,1)						
		3	{A,B,C,D,E,F,G}	C:(8,5),), B:(10,6), D:(11,7),), F:(7,1), G:(9,6)	18					
	4.3	and Fini Implem	e you want to sched ish time of activities ent the program to tum activities should	tivity.							
		Test Case	Number of activities (N)								
		1	9								
		2),(0,6),(3,8),(5,7) (0), (8,12),(8,11) (2,13)						
5.									1,2	1,3,4,	2,4
	Dyn 5.1		gramming ent a program whic	es two	06	1,2	7,5,8	<i>2</i> ,⊤			
			ers n and k and ret								

imp	lementatio	efficient C(n, k). Connumber of the control of the	plementation						
	t C e	res n as 1 5 2 11 3 12	2 6 5						
_		program 4.2 using Dy ynamic approach.	namic Prograi	ming.Co	ompare				
5.3 Giv mat pare num	en a chain rix Ai v enthesize t nber of sca	of < A1, A2,,An> ovith dimensions. In the product A1,A2, alar multiplications. A s for all possible combined.	nplement the An in a way Iso calculate	e progr y that i the num	am to fully minimizes the				
t	es n as	Matrices with o							
	1 3 6	A1: 3*5, A2: 5* A1: 30*35, A2: 35*1 A4:5*10, A5: 10 20*25	15, A3: 15*5,						
_	-	program to print the ing strings:	longest comm	nonsubs	equence				
	Test Case 1 2 3	ABCDAB EXPONENTIAL LOGARITHM	String2 BDCABA POLYNOMIA ALGORITHN						
								1.0.4	
Graph	ita o progre	om to datact avalas in s	directed gran	sh.		06	1,2	1,3,4, 7,5,8	2,4
6.2 Fro	m a given	vertex in a weighted get to other vertices using	graph, implem	nent a pr	rogram to find				
	est Ac	ljacency Matrix of gr	raph Start Vertex						

	1	1 1									1				1	1
				0	1	2	3 4	5	6	7	1					
			0				2									
			1						7							
			2				3	:								
			3	2												
			4			3			1	7						
			5						9							
			6		7		1	9								
			7				7									
		2		0				_		-	3					
			_		<u>'</u>		<u> </u>	7	•							
			0			2										
			1	6	_											
			2	3	8		5									
			3		9											
			4						1							
			5				7									
			6			9	4			3						
			7					1	6							
7.	l													1,2	1,3,4,	2,4
'	Back	tracking	g										02	1,2	5,7,8	
	7.1	Implem	ent :	a nr	ogr	am 1	to nr	int s	11 n	ermii	tations of	a givenstring.				
	7.1	Implem	ioni (u pr	og.	uiii	to pr	1111	· P	CIIIIG	iuiions o	a givensumg.				
					Tes			Str	ing							
				(Cas	se		۸.	71							
					$\frac{1}{2}$				CT TE							
								NO	112							
8.	Strin	a Motol	ina	Δlα	ori	thm	<u> </u>						02	1,2	131	2,4
o.	Strin	ig Match	nng	Aig	OFI	UIIIII	l						UZ	1,2	1,3,4, 5,7,8	2,4
	8.1	Suppos	e vo	011 a	re	give	en a	SOU	rce	strin	g S [0	.n – 1] of length n,			2,7,0	
												ou are given a pattern				
												f symbols a, b, and *,				
		_	_		_	•	_				_	ne symbol * is a "wild				
		card" s	ymb	ol, v	whi	ch r	natcl	nes a	a sin	igle s	ymbol, e	ither a or b. The other				
									_			utput a sorted list M of				
												S such that pattern P				
		matche	s the	sub	stri	ing S	S [jj	i + I	P -]	l]. Fo	r examp	e, if $S = ababbab$ and				
		P = a straight	.b↑, forw	tne ard	n na	tne	qtuo algor)Ut ithm	M Mo	shou solve	Id be [the prob	o, 2]. Implement a em.				
		Saugni	1 O1 W	ar u,	, 11a	.1 1 0 (uigui	141111	110	JO1 V C	The prob	VIII.				
	8.2 Implement Rabin karp algorithm and test it on the following test cases:															
		Tes					5	Strir	ıg			Pattern				
		Case	2			7250	<u>)U22</u>	1/115	(267	3992	1	31415				
1	ĺ				4	ررر_	1043	1417	<i>∠</i> ∪ /	ンフサム	1				1	
												u-13				
		2		AB	AA	AB	CDB	BA	BCI	DDEE	BCABC	q=13 ABC q=101				