Machine Learning

Session 1 Introduction

- Subject Description and evaluation
- Introduction ML and AI
- Building Blocks: Data, Model and Learning Algorithm
- Paradigms and types of ML problems
- Example: Polynomial Regression (generalization, cross-validation, curse of dimensionality)
- ML in the Real World: Design Cycle
- Organization of the course

Bibliography:

From Bishop , CM Pattern Recognition and Machine Learning. Springer 2006.

Chap 1: 1.1, 1.3, 1.4,

https://scikit-learn.org/dev/user_guide.html

Organization

Theory sessions and lab sessions (seminars and practicals)

G1 English: Miguel Ángel Cordobés, Antoine Moulin, Ludovic Schwartz **G2 Català**: Vicenç Gómez, Emma Fraxanet, Mari Celi Morales, Manuel Portela, MA Cordobés Groups cannot be changed unless well justified reasons

- Follow Aula Global for updates
- Evaluation:

```
Theory (T): Exam, Midterm and a deliverable. Exam \geq 4

T = 0.7 * Exam + 0.2 * Midterm + 0.1 * Deliverable
```

Midterm: May 12

Deliverable: Jun 14/15 Jun 8

Midterm and Deliverable can not be recovered

Project (P): Programming, in pairs

Only if $P \ge 5$, the student is eligible for Exam

Final Grade =
$$0.7 * T + 0.3 * P$$

Organization

Theory sessions and lab sessions (seminars and practicals)

G1 English: Miguel Ángel Cordobés, Antoine Moulin, Ludovic Schwartz **G2 Català**: Vicenç Gómez, Emma Fraxanet, Mari Celi Morales, Manuel Portela, MA Cordobés
Groups cannot be changed unless well justified reasons

- Follow Aula Global for updates
- Evaluation:

Resit evaluation:

Missing or failed projects can *not* be recovered in July July: 2^{nd} chance ExamJuly ≥ 5

Final Grade July = Max(ExamJuly, 0.7 * TJ + 0.3 * P)

TJ = 0.7 * ExamJuly + 0.2 * Midterm + 0.1 * Deliverable

Machine Learning (motivation)

 How would you write a program to classify images like these into corresponding digits?

 Machine learning is the data-driven approach to generate "intelligent" behavior

Machine Learning & Data Science & More

A Moore's law for Data

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Main challenges

- ► How to build intelligence from these data?
- Paradigm shift: data is generated with limited control

Machine Learning

Applications: almost everywhere

Speech Recognition:

- Virtual Personal Assistants:
 - Microphone records acoustic signal
 - Speech Signal is classified into phonemes and/or words

Character Recognition

- Automated mail sorting
- Scanner captures image of the text
- Image is converted into text format

Machine Vision

- Visual Inspection
- Imaging device detects ground target
- Classification cats or dogs
- Video segmentation
- Self-driving cars

Computer Aided Diagnosis

- Medical imaging, EEG, ECG, ...
- Designed to assist (not replace) physicians

Product Recommendation:

- Store personalized historical data
- suggest possible products

Building blocks

Core elements:

- Data
- Model
- Learning Algorithm

- A dataset is a collection of instances
- Example: the MNIST dataset:

- Each instance represents one out of ten digits
- More than 70,000 instances
- The attributes are binary pixels representing the digit image

- A dataset is a collection of instances
- Example: the IRIS dataset:

- Each instance is taken from one out of 3 classes of Iris plant
- Contains 50 instances of each class: 150 examples
- Each example contains 4 (real valued) attributes

- A dataset is a collection of instances
- Example: the Boston Housing dataset:

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	CAT MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24	0
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6	
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	1
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	- 1
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2	- 1
0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7	0
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9	0
0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1	0
0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5	0
0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9	0
0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15	0
0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9	0
0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7	.0
0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4	0
0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2	0

Elements n

Each instance is a sold house

- 506 examples
- 13 attributes describe the house:
- MEDV is the response (continuous) variable

Table 5.3: Description of Variables for Boston Housing Example

CRIM	Per capita crime rate by town				
ZN	Proportion of residential land zoned for lots over 25,000 ft ²				
INDUS	Proportion of nonretail business acres per town				
CHAS	Charles River dummy variable (= 1 if tract bounds river; = 0 otherwise)				
NOX	Nitric oxide concentration (parts per 10 million)				
RM	Average number of rooms per dwelling				
AGE	Proportion of owner-occupied units built prior to 1940				
DIS	Weighted distances to five Boston employment centers				
RAD	Index of accessibility to radial highways				
TAX	Full-value property-tax rate per \$10,000				
PTRATIO	Pupil/teacher ratio by town				
В	$1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town				
LSTAT	% Lower status of the population				
MEDV	Median value of owner-occupied homes in \$1000s				

- The Data Source:
 - Using mathematical notation, we write a dataset $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)}, t^{(n)} \right) \right\}_{n=1}^{N}$

where

- $\mathbf{x}^{(n)}$ is the vector of D attributes of the n-th instance $\mathbf{x}^{(n)} = [x_1, x_2, \dots, x_D]^{\mathsf{T}}$
- $t^{(n)}$ is the response/target/label variable of the n-th instance
- We often consider a $N \times D$ design matrix X and a $N \times 1$ output vector
 - Example (N = 5 instances, D = 3 attributes):

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} \\ x_1^{(3)} & x_2^{(3)} & x_3^{(3)} \\ x_1^{(4)} & x_2^{(4)} & x_3^{(4)} \\ x_1^{(5)} & x_2^{(5)} & x_3^{(5)} \end{bmatrix}, \qquad \mathbf{t} = \begin{bmatrix} t^{(1)} \\ t^{(2)} \\ t^{(3)} \\ t^{(4)} \\ t^{(5)} \end{bmatrix}$$

Geometrical interpretation of the input space

Feature vector

Feature vector: the combination of D features is a column vector (row of design matrix)

Feature space: the D-dimensional space defined by the feature vector Instances are represented a points in feature space

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_D \end{bmatrix}$$

$$\mathbf{X}_3$$

$$\mathbf{X}_3$$

$$\mathbf{Class 3}$$

$$\mathbf{X}_4$$

$$\mathbf{X}$$

Feature space (3D)

Scatter plot (2D)

Geometrical interpretation of the input space

Feature vector: the combination of D features is a column vector (row of design matrix)

Feature space: the D-dimensional space defined by the feature vector

Instances are represented a points in feature space

3D feature space of the Iris Dataset (only three out of four features)

Geometrical interpretation of the input space

Feature vector: the combination of D features is a column vector (row of design matrix)

Feature space: the *D*-dimensional space defined by the feature vector

Instances are represented a points in feature space

Higher dimensions:

"To deal with a 14-dimensional space, visualize a 3D space and say 'fourteen' to yourself very loudly. Everyone does it."

Geoff Hinton

What makes a "good" feature vector?

- The quality of a feature vector is related to its ability to discriminate examples from different classes
 - Examples from the same class should have similar feature values
 - Examples from different classes have different feature values

More feature properties

Non-linear separability

Highly correlated features

Multi-modal

The Data Source

- We assume that data is generated from an *unknown* process P(x,t)
- Generates instances according to some
 - unknown input probability distribution P(x)
 - unknown noisy target function P(t|x)
- Important Assumptions:
- 1. The instances are independent and identically distributed (i.i.d.)
- 2. The distribution P(x,t) does not change (stationary)

Building blocks: The Model

A function that maps inputs to outputs (discriminative)

A model can also be a processes that generates data (generative)

The Goal of Machine Learning is to learn the Model from Data

Building blocks: The Model

The Model

- Makes predictions t^{N+1} for an unseen data instance x^{N+1}
- We write y(x, w) to indicate dependence on model parameters w
- Example: a linear model

$$y(x, w) = \sum_{d=1}^{D} w_d x_d + w_0 = w^{\mathsf{T}} x + w_0$$

Challenge

— What is the correct model we need for our application?

Building blocks: The Model

- Model capacity
 - A measure of the complexity of a model to represent patterns
- Example:

Data in **blue**, **model** in black
(left) Constant model (low capacity)
(middle) Quadratic model (intermediate capacity)
(right) Arbitrary non-linear model (high capacity)

- The Learning Algorithm
 - A model can be trained (learn) from data through parameters w

Learning as Optimization → Minimize an error (loss) function

Example: quadratic loss. For a data instance ($x^{(n)}$, $t^{(n)}$)

$$E_n(\mathbf{w}) = \left(t^{(n)} - y(\mathbf{x}^{(n)}, \mathbf{w})\right)^2$$

The Learning Algorithm

Learning as Optimization → Minimize an error (loss) function

Example: quadratic loss.

For a dataset $D = \{(x^{(n)}, t^{(n)})\}_{n=1}^{N}$, we sum individual errors (i.i.d. assumption)

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \sum_{n=1}^{N} \left(t^{(n)} - y(\mathbf{x}^{(n)}, \mathbf{w}) \right)^2$$

Find w such that E(w) is minimized: $w^* = \operatorname{argmin}_w E(w)$ Also known as *training* or *parameter estimation*

The Learning Algorithm

The goal of a learning algorithm is generalization:

From training data D, find parameters \mathbf{w}^* such that the model $y(\mathbf{x}, \mathbf{w}^*)$ performs well on **unseen** data

Challenges

- How do we search over the space of parameters w?
- How do we measure good performance in unseen data?

- The Learning Algorithm
 - Batch Learning
 - Looks at all the N data points in the dataset to train a model
 - Unfeasible if N is large

- The Learning Algorithm
 - Online (sequential) Learning
 - Processes an instance at a time and then discards
 - Ideal for streaming applications

Approaches to Machine Learning

Supervised Learning

The data source provides inputs $\mathbf{x}^{(n)}$ outputs $t^{(n)}$ pairs

The task is to generalize and predict outputs from unseen input

Unsupervised Learning

The data source provides one inputs $x^{(n)}$ The task is to learn about the data generation process

Reinforcement Learning

The data source (environment) provides feedback (reward) to actions
The task is to find the actions that maximize long-term reward

Types of ML problems

Classification

- The output is an integer or a probability distribution
 - Classifying cats vs dogs, genre of a song, SPAM, faces, ...

Regression

- The output is a real-value number or vector
 - Predicting the temperature, the share value of a firm, the location σ_j α τοροί, ...

Clustering

- The result is a grouping of the data in some meaningful way
 - Grouping products by some similarity, organizing life forms into a taxonomy of species, ...

Structure Learning

- The result is a structured representation of the input in terms of primitives
 - Parsing a sentence, obtaining a symbolic description of an image, ...

Dimensionality Reduction

- The result is a more compact representation of the input
 - Getting rid of non-informative input dimensions, eliminating redundant variables, ...

-	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
ntinuous	regression	dimensionality reduction

Machine Learning Problems

- Approximate N datapoints (x_n, t_n) , n = 1, ..., N using a polynomial function
- In this case, we create our data source as
 - One-dimensional input in the rage $x \in [0,1]$
 - Sinusoidal target plus small Gaussian noise

$$t_n = \sin(2\pi x_n) + \epsilon_n$$
, $\epsilon_n \sim \text{Gaussian}(0,0.3)$

Note this notation for polynomials

- Approximate N datapoints (x_n, t_n) , n = 1, ..., N using a **polynomial function**
- Our polynomial function for one instance $x^{(n)}$

$$y(x_n, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

= $\sum_{j=0}^{M} w_j x^j$

- M is the degree of the polynomial (it is a hyper-parameter)
 - Large M means more features and a complex model (more parameters)
 - Small M means less features and a simple model (less parameters)

Which polynomial should we use?

Images from Christopher M Bishop: Pattern Recognition and Machine Learning (PRML)

- Think about the error for each value of M
- Is the solution with less error the best one?

Which polynomial should we use?

Images from Christopher M Bishop: Pattern Recognition and Machine Learning (PRML)

- Challenge: How to choose M?
 - Too small M is too restricted to capture the underlying data generator
 - Too large M is too flexible and can easily overfit to the seen data

- Challenge: How to choose M?
 - Too small M is too restricted to capture the underlying data generator
 - Too large M is too flexible and can easily overfit to the seen data
- Best generalization occurs at an intermediate value of M
- Performance on training is not a good indicator for generalization
- Consider a separate test set not used during training

Root mean square (RMS) error

$$E_{RMSE}(\mathbf{w}) = \sqrt{\sum_{n=1}^{N} \frac{(y(\mathbf{x}^{(n)}, \mathbf{w}) - t^n)^2}{N}}$$

What is our best model in this case? -> M=3
Why? The most simple with the minimum error

- Challenge: How to choose M?
 - Too small M is too restricted to capture the underlying data generator
 - Too large M is too flexible and can easily overfit to the seen data
- Cross-Validation: A technique to assess generalization
 - 1. Split full dataset in *S* folds
 - 2. Train with S-1 and test with S
 - 3. Repeat *S* times
 - 4. Take the mean of the *S* performances
- Example: S = 4

- Challenge: How does our problem scale with D?
- The curse of dimensionality: the difficulty increases exponentially with an increasing number of variables

- In practice, real data
 - is often confined to a region having lower effective dimensionality
 - Local Smoothness: does not change much locally
- Machine Learning systems exploit these two properties

Machine Learning system in the real-world

A basic machine learning system contains

- A sensing device (receives input data)
- A preprocessing mechanism
- A feature extraction mechanism (manual or automated)
- A statistical model for outputs (classification or regression)
- A set of examples (training set) already labeled

A Machine Learning design cycle

Data Collection

- Ideally select data which is informative for the task
- Number of training examples, balanced vs non-balanced dataset, number of classes, etc., ...
- Challenges: sometimes task is not even known at the data collection time

Preprocessing

- Feature selection, dimensionality reduction, ...
- Critical to the success (good data vs big data)
- Prior knowledge can be used if available

Main Approach

- What model to use?
- What are the parameters, hyper-parameters?

Training

- Adapt the parameters to better explain the data and to predict unobserved data
- What is the error function or likelihood to optimize?

Evaluation

- How well does the trained model perform in unseen data?
- Overfitting vs Generalization
- How to measure performance? ROC curves, f1score, ... (relate with the error function above)
- Possibly refine: collect new data, modify model, etc, ...

Organization

Contents:

T1: Introduction

T2: Unsupervised Methods: clustering

T3: Generative Models: the Gaussian

T4: Mixture of Gaussians

T5: Principal Component Analysis

T6: Ensemble Methods for Classification

T7 : Support vector machines and kernel methods

T8: Linear models for regression. Regularization

T9: Linear models for classification

T10: Deep learning 1

T11: Deep learning 2

T12 : Deep learning 3