

Question 52:

Area of sector AOB
=
$$\pi r^2 \times \frac{60^\circ}{360^\circ} = \frac{\pi \times 35 \times 35}{6}$$
 am²

$$=\frac{3.14\times35\times35}{6}$$
 cm²

Area of
$$\triangle AOB = \frac{\sqrt{3}}{4} \times r^2 = \frac{\sqrt{3}}{4} \times 35 \times 35 \text{ cm}^2$$

$$= 530.425 \text{ cm}^2$$

Area of segment APB = (641.083 = 530.425) cm² = 110.658 cm²

Area of design (shaded area) = 6
$$\times$$
 110.658 cm² = 663.948 cm²

$$= 663.95 \text{ cm}^2$$

Question 53:

In \triangle ABC, \angle A = 90°, AB = 6cm, BC = 10 cm BC² = AC² + AB²

$$AC^2 = BC^2 - AB^2 = 10^2 - 6^2 = 100 - 36 = 64$$

: AC = 8 cm

Area of ABC = $\frac{1}{2}$ x AC x AB = $\frac{1}{2}$ x 8 x 6 cm³ = 24 cm²

Let r be the radius of circle of centre O

Area of $\triangle OCB = \frac{1}{2} \times 10 \times r \text{ cm}^2 = 5r \text{ cm}^2$

Area of $\triangle OAB = \frac{1}{2} \times 6 \times r \text{ cm}^2 = 3r \text{ cm}^2$

Area of $\triangle OCA = \frac{1}{2} \times 8 \times r \text{ cm}^2 = 4r \text{ cm}^2$

Area of $(\triangle OCB + \triangle OAB + \triangle OCA)$ = Area of $\triangle ABC$

5r + 3r + 4r = 24

or 12r = 24 :: r = 2 cm

:. Area of indirde = πr^2 = 3.14 x 2 x 2 cm²

 $= 12.56 \text{ cm}^2$

 \Rightarrow Shaded area = Area of \triangle ABC - Area of incircle

$$= (24 - 12.56) \text{ cm}^2 = 11.44 \text{ cm}^2$$

Question 54:

Area of equilateral triangle ABC = $49\sqrt{3}$ cm²

Let a be its side

$$\therefore \frac{\sqrt{3}}{4} a^2 = 49\sqrt{3}$$

or
$$a^2 = 49 \times 4$$

$$a = 7 \times 2$$

Area of sector BDF = $\pi r^2 \times \frac{\theta}{360^\circ}$

$$=\frac{22}{7}\times7\times7\times\frac{60}{360}$$
 cm

$$=\frac{11\times7}{3}$$
 cm² $=\frac{77}{3}$ cm²

Area of sector BDF = Area of sector CDE = Area of sector AEF Sum of area of all the sectors

$$=\frac{77}{3}\times3$$
 cm² = 77 cm²

∴ Shaded area = Area of ∆ABC - sum of area of all sectors

$$=49\sqrt{3}-77 \text{ cm}^2=(84.77-77.00) \text{ cm}^2$$

$$= 7.77 \text{ cm}^2$$

******** END ******