Λύσεις Ασκήσεων Πιθανοτήτων

TK

Προειδοποίηση

Οι ασκήσεις είναι πρόχειρα λυμένες,συνεπώς ενδέχεται να υπάρχουν λάθη υπολογισμού,σκέψης και πιο σημαντικά αντιγραφής. Δεν λαμβανώ καμία ευθύνη για τις επιδόσεις των εξεταζόμενων. Οι ασκήσεις ειναι του Στυλιανού Αρβανιτή.

Διατύπωση του Προβλήματος 1

Δίνεται η συνάρτηση πυκνότητας πιθανότητας f(z):

$$f(z) = \begin{cases} c(z + \exp(2+z)), & z \in [0,1] \\ 0, & z \notin [0,1] \end{cases}$$

Ζητείται να βρεθεί η τιμή του c έτσι ώστε η f(z) να είναι έγκυρη συνάρτηση πυκνότητας πιθανότητας, καθώς και η αθροιστική συνάρτηση κατανομής της κατανομής πιθανότητας που αντιστοιχεί στη συνάρτηση πυκνότητας f. Επιπλέον, ζητείται να υπολογιστεί η πιθανότητα αυτή η κατανομή να αποδώσει στο σύνολο $(-3/2,0] \cup \{0.028\} \cup [0.4,1.5] \cup [10,10^{30000!}].$

Λύση

Βήμα 1: Εύρεση της Σταθεράς c

 Γ ια να είναι η συνάρτηση f(z) έγχυρη συνάρτηση πυχνότητας πιθανότητας, πρέπει να ισχύει:

$$\int_{-\infty}^{\infty} f(z) \, dz = 1$$

Δεδομένου ότι f(z) = 0 εκτός του διαστήματος [0,1], το ολοκλήρωμα γίνεται:

$$\int_0^1 c(z + \exp(2+z)) \, dz = 1$$

Με τον παράγοντα c να βγαίνει εκτός του ολοκληρώματος:

$$c \int_0^1 (z + \exp(2+z)) dz = 1$$

Αυτό σημαίνει ότι η σταθερά c είναι:

$$c = \frac{1}{\int_0^1 (z + \exp(2 + z)) \, dz}$$

Υπολογισμός του Ολοκληρώματος

Το ολοκλήρωμα χωρίζεται σε δύο μέρη:

$$\int_0^1 z \, dz + \int_0^1 \exp(2+z) \, dz$$

Πρώτο Ολοκλήρωμα:

$$\int_0^1 z \, dz = \left[\frac{z^2}{2} \right]_0^1 = \frac{1}{2}$$

Δεύτερο Ολοκλήρωμα: Ας κάνουμε την αντικατάσταση u=2+z, οπότε du=dz. Τα όρια του ολοκληρώματος μεταβάλλονται:

$$\int_{2}^{3} \exp(u) \, du = [\exp(u)]_{2}^{3} = \exp(3) - \exp(2)$$

Άρα το συνολικό ολοκλήρωμα είναι:

$$\int_0^1 (z + \exp(2+z)) dz = \frac{1}{2} + \exp(3) - \exp(2)$$

Υπολογισμός της Σταθεράς c

Αντικαθιστώντας στο προηγούμενο αποτέλεσμα, έχουμε:

$$c = \frac{1}{\frac{1}{2} + \exp(3) - \exp(2)}$$

Για να το επαληθεύσουμε αριθμητικά, χρησιμοποιούμε τις τιμές:

$$\exp(3) \approx 20.0855, \quad \exp(2) \approx 7.3891$$

Άρα:

$$\exp(3) - \exp(2) \approx 12.6964$$

Και:

$$\frac{1}{2} + 12.6964 \approx 13.1964$$

Επομένως:

$$c = \frac{1}{13.1964} \approx 0.0758$$

Βήμα 2: Αθροιστική Συνάρτηση Κατανομής (CDF)

Η αθροιστική συνάρτηση κατανομής F(z) είναι ο ορισμός του ολοκληρώματος της συνάρτησης πυκνότητας:

$$F(z) = \int_{-\infty}^{z} f(t) \, dt$$

Για $z \in [0,1]$, αυτό γίνεται:

$$F(z) = \int_0^z c(t + \exp(2 + t)) dt$$

Υπολογίζοντας αυτό το ολοκλήρωμα:

$$F(z) = c \left[\frac{t^2}{2} + \exp(2+t) - \exp(2) \right]_0^z = c \left(\frac{z^2}{2} + \exp(2+z) - \exp(2) \right)$$

Αντικαθιστώντας τη σταθερά c:

$$F(z) = \frac{\frac{z^2}{2} + \exp(2+z) - \exp(2)}{\frac{1}{2} + \exp(3) - \exp(2)}$$

Βήμα 3: Υπολογισμός Πιθανότητας

Η πιθανότητα η κατανομή να αποδώσει στο σύνολο $(-3/2,0] \cup \{0.028\} \cup [0.4,1.5] \cup [10,10^{30000!}]$ είναι:

$$P = F(1) - F(0.4) + F(0.028)$$

Καθώς F(0) = 0, η πιθανότητα μπορεί να υπολογιστεί άμεσα με τους αριθμητικούς υπολογισμούς που έχουν περιγραφεί παραπάνω.

Επαλήθευση

Επαλήθευση της Σταθεράς c

Για να επαληθεύσουμε ότι η τιμή του c είναι σωστή, υπολογίζουμε το ολοχλήρωμα της f(z) ξανά με τη συγχεχριμένη τιμή του c και επιβεβαιώνουμε ότι το αποτέλεσμα είναι 1.

Το ολοκλήρωμα είναι:

$$\int_0^1 f(z) dz = c \int_0^1 (z + \exp(2 + z)) dz = c \cdot \left(\frac{1}{2} + \exp(3) - \exp(2)\right)$$

Αντικαθιστώντας τη σταθερά c:

$$\int_0^1 f(z) dz = \frac{1}{\frac{1}{2} + \exp(3) - \exp(2)} \cdot \left(\frac{1}{2} + \exp(3) - \exp(2)\right) = 1$$

Αυτό επιβεβαιώνει ότι η σταθερά c είναι σωστή.

Επαλήθευση της Αθροιστικής Συνάρτησης Κατανομής F(z)

Η συνάρτηση κατανομής F(z) πρέπει να ικανοποιεί τις ακόλουθες ιδιότητες: 1. F(z) είναι μη φθίνουσα. 2. $\lim_{z\to-\infty}F(z)=0$ και $\lim_{z\to\infty}F(z)=1$.

Ας ελέγξουμε τα όρια της F(z) στις άκρες του διαστήματος:

 Γ ια z=0:

$$F(0) = \frac{\frac{0^2}{2} + \exp(2+0) - \exp(2)}{\frac{1}{2} + \exp(3) - \exp(2)} = \frac{0 + \exp(2) - \exp(2)}{\frac{1}{2} + \exp(3) - \exp(2)} = 0$$

 Γ ια z=1:

$$F(1) = \frac{\frac{1^2}{2} + \exp(2+1) - \exp(2)}{\frac{1}{2} + \exp(3) - \exp(2)} = \frac{\frac{1}{2} + \exp(3) - \exp(2)}{\frac{1}{2} + \exp(3) - \exp(2)} = 1$$

Επομένως, η F(z) ικανοποιεί τις ιδιότητες που απαιτούνται από μια αθροιστική συνάρτηση κατανομής.

Συμπέρασμα

Η τιμή της σταθεράς c υπολογίστηκε σωστά και η αθροιστική συνάρτηση κατανομής F(z) επιβεβαιώθηκε ότι είναι έγκυρη. Η πιθανότητα για το δεδομένο σύνολο μπορεί να υπολογιστεί χρησιμοποιώντας τις αριθμητικές τιμές της F(z).

Διατύπωση του Προβλήματος 2

Έστω $\lambda>0$ και έστω η κατανομή πιθανότητας που ορίζεται από το υπόθεμα supp = N και τη σχέση:

$$P(\{i\}) = \exp(-\lambda) \frac{\lambda^i}{i!}, \quad i \in \mathbb{N}.$$

- Να δειχθεί ότι η παραπάνω κατανομή ορίζει καλά μια διακριτή κατανομή πιθανότητας στους πραγματικούς αριθμούς.
- Στη συνέχεια, να εξεταστούν οι $P((-\infty,0))$ και P(Z) ως προς αυτήν την κατανομή.
- Να υπολογιστεί η πιθανότητα για τη συνάρτηση $g(x) = \exp(t_1 x) + \exp(t_2 x)$, όπου $t_1, t_2 \in R$.
- Να βρεθούν οι τιμές της έχφρασης $\left. \frac{\partial^{\kappa} E[g]}{\partial t_1^{\kappa}} \right|_{t_1=0}$ για $\kappa=1,2.$

Λύση

Βήμα 1: Κανονικοποίηση της Πιθανότητας

Αρχικά, ας δείξουμε ότι η κατανομή P είναι κανονικοποιημένη, δηλαδή ότι:

$$\sum_{i=0}^{\infty} P(\{i\}) = 1.$$

Η κατανομή που δίνεται είναι της μορφής Poisson:

$$P(\{i\}) = \exp(-\lambda) \frac{\lambda^i}{i!}, \quad i \in \mathbb{N}.$$

Το άθροισμα των πιθανοτήτων είναι:

$$\sum_{i=0}^{\infty} P(\{i\}) = \exp(-\lambda) \sum_{i=0}^{\infty} \frac{\lambda^i}{i!}.$$

Η σειρά $\sum_{i=0}^{\infty}\frac{\lambda^i}{i!}$ είναι η σειρά Taylor για την εκθετική συνάρτηση $\exp(\lambda)$, επομένως:

$$\sum_{i=0}^{\infty} P(\{i\}) = \exp(-\lambda) \exp(\lambda) = 1.$$

Άρα, η κατανομή είναι κανονικοποιημένη και ορίζει μια διακριτή κατανομή πιθανότητας στους πραγματικούς αριθμούς.

Βήμα 2: Εξέταση των Πιθανοτήτων για τα Σύνολα $(-\infty,0)$ και P(Z)

Για το σύνολο $(-\infty,0)$:

$$P((-\infty, 0)) = 0$$

αφού η κατανομή υποστηρίζεται από N, δηλαδή δεν υπάρχουν πιθανότητες για αρνητικές τιμές.

Για το σύνολο Ζ:

$$P(Z) = \sum_{i=1}^{\infty} P(\{i\}) = 1,$$

όπως αποδείξαμε παραπάνω.

Βήμα 3: Υπολογισμός της Πιθανότητας για τη Συνάρτηση $g(\boldsymbol{x})$

Η συνάρτηση $g(x)=\exp(t_1x)+\exp(t_2x)$ είναι εκθετική συνάρτηση. Για να υπολογίσουμε την αναμενόμενη τιμή E[g(x)], λαμβάνουμε:

$$E[g(x)] = \sum_{i=0}^{\infty} g(i)P(\{i\}) = \sum_{i=0}^{\infty} (\exp(t_1 i) + \exp(t_2 i)) \exp(-\lambda) \frac{\lambda^i}{i!}.$$

Αυτό είναι ίσο με:

$$E[g(x)] = \exp(-\lambda) \left(\sum_{i=0}^{\infty} \exp(t_1 i) \frac{\lambda^i}{i!} + \sum_{i=0}^{\infty} \exp(t_2 i) \frac{\lambda^i}{i!} \right).$$

Κάθε άθροισμα είναι η γεννήτρια της εκθετικής συνάρτησης για τη μεταβλητή $\lambda \exp(t_1)$ και $\lambda \exp(t_2)$ αντίστοιχα. Άρα:

$$E[g(x)] = \exp(-\lambda)(\exp(\lambda \exp(t_1)) + \exp(\lambda \exp(t_2))).$$

Βήμα 4: Υπολογισμός της Παραγώγου για $\kappa = 1, 2$

Για την παράγωγο:

$$\left. \frac{\partial^{\kappa} E[g]}{\partial t_1^{\kappa}} \right|_{t_1 = 0}$$

για $\kappa = 1$:

$$\left. \frac{\partial E[g]}{\partial t_1} \right|_{t_1=0} = \lambda \exp(-\lambda) \exp(\lambda) \exp(t_1) \left|_{t_1=0} = \lambda. \right.$$

για = 2:

$$\left. \frac{\partial^2 E[g]}{\partial t_1^2} \right|_{t_1=0} = \lambda^2.$$

Συμπέρασμα

Η κατανομή που δόθηκε είναι έγκυρη κατανομή πιθανότητας στους πραγματικούς αριθμούς. Οι πιθανότητες για τα σύνολα $(-\infty,0)$ και Z είναι 0 και 1 αντίστοιχα, και η αναμενόμενη τιμή της συνάρτησης g(x) έχει υπολογιστεί. Οι παραγώγοι για $\kappa=1,2$ δόθηκαν ως λ και λ^2 αντίστοιχα.

Διατύπωση του Προβλήματος 3

- (i) Έστω διακριτή κατανομή που ορίζεται από τα: supp = $\{0,1,5\}$, και $P(\{0\})=\frac{1}{5},P(\{1\})=\frac{1}{5},P(\{5\})=\frac{3}{5}.$ Να εξαχθεί η αθροιστική συνάρτηση της συγκεκριμένης κατανομής. (1 μονάδα)
- (ii) Έστω η αθροιστική συνάρτηση F(x):

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2} + \frac{1}{4}x, & 0 \le x < 2\\ 1, & 2 \le x \end{cases}$$

Να βρεθεί η πιθανότητα που η κατανομή πιθανότητας με αθροιστική την προαναφερθείσα αποδίδει στο σύνολο $\{0\} \cup (1,3)$. Έχει η συγκεκριμένη κατανομή συνάρτηση πυκνότητας; Ναι ή όχι και γιατί; (1.5 μονάδες)

(iii) Έστω $\Omega = \{a,b\}, \mathcal{F} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$ και $Q: \mathcal{F} \to R$ είναι πραγματική συνολοσυνάρτηση επί του Ω που ορίζεται από τα: $Q(\emptyset) = 0, Q(\Omega) = -1, Q(\{a\}) = \frac{1}{3}, Q(\{b\}) = \frac{2}{3}$. Είναι η Q κατανομή πιθανότητας επί του Ω ; Ναι ή όχι και γιατί; (1 μονάδα)

Λύση

(i) Αθροιστική Συνάρτηση Κατανομής

Δεδομένης της κατανομής:

$$\mathrm{supp} = \{0,1,5\}, \quad P(\{0\}) = \frac{1}{5}, \quad P(\{1\}) = \frac{1}{5}, \quad P(\{5\}) = \frac{3}{5},$$

η αθροιστική συνάρτηση κατανομής F(x) ορίζεται ως εξής:

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{5}, & 0 \le x < 1 \\ \frac{2}{5}, & 1 \le x < 5 \\ 1, & x \ge 5 \end{cases}$$

Αυτό οφείλεται στο γεγονός ότι η αθροιστική συνάρτηση κατανομής F(x) για μια διακριτή κατανομή αυξάνεται σε κάθε σημείο του υποθέματος σύμφωνα με την αντίστοιχη πιθανότητα.

(ii) Πιθανότητα και Συνάρτηση Πυκνότητας

Η αθροιστική συνάρτηση F(x) δίνεται από:

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2} + \frac{1}{4}x, & 0 \le x < 2\\ 1, & 2 \le x \end{cases}$$

Η πιθανότητα που η κατανομή αποδίδει στο σύνολο $\{0\} \cup (1,3)$ είναι:

$$P(\{0\} \cup (1,3)) = P(\{0\}) + P((1,2)) + P((2,3))$$

$$= F(0) - F(-\infty) + F(2) - F(1) + F(3) - F(2)$$

$$= 0 + \left(\frac{1}{2} + \frac{1}{4} \cdot 2\right) - \left(\frac{1}{2} + \frac{1}{4} \cdot 1\right) + 1 - 1$$

$$= \frac{1}{5} + \frac{1}{2} - \frac{1}{4} = \frac{7}{20} = 0.35$$

Η συγκεκριμένη κατανομή δεν έχει συνάρτηση πυκνότητας, καθώς η F(x) δεν είναι απόλυτα συνεχής στο διάστημα [0,2], αλλά ούτε και διαρκώς αυξάνεται κατά τρόπο που να επιτρέπει την ύπαρξη συνεχούς πυκνότητας στο διάστημα αυτό.

(iii) Εξέταση της Συνάρτησης Q

Έστω $\Omega=\{a,b\},\; \mathcal{F}=\{\emptyset,\{a\},\{b\},\{a,b\}\},$ και η συνάρτηση Q ορίζεται από:

$$Q(\emptyset) = 0, \quad Q(\Omega) = -1, \quad Q(\{a\}) = \frac{1}{3}, \quad Q(\{b\}) = \frac{2}{3}.$$

Για να είναι η Q κατανομή πιθανότητας, πρέπει να ισχύουν οι ακόλουθες συνθήκες: 1. $Q(\Omega)=1$ 2. $Q(A)\geq 0$ για κάθε $A\subseteq \Omega$.

Η συνάρτηση Q δεν είναι κατανομή πιθανότητας, καθώς:

$$Q(\Omega) = -1 \neq 1.$$

Επίσης, η Q δίνει αρνητική τιμή στο συνολικό διάστημα, γεγονός που παραβιάζει τον ορισμό της πιθανότητας.