

Classe: TS 1

Date: 30 Novembre 2019

DST Mathématiques

Durée: 1 h 30

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1: (8 points)

La fonction f est définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{2x^2-x-6}{x-1}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 1. Déterminer les coordonnées du ou des point(s) d'intersection de C_f et de l'axe des abscisses. (2 points)
- 2. Déterminer les coordonnées du point d'intersection de C_f et de l'axe des ordonnées. (1 point)
- 3. Déterminer les points d'intersection de $\,C_f\,$ avec la droite d'équation $\,y$ = 7 x + 4 . (2 points)
- 4. Étudier le signe de f(x) . (3 points)

EXERCICE 2: (8 points)

Soit f la fonction définie sur IR \ {-1; 3}.par: $f(x) = \frac{4x - 6x}{x^2 - 2x - 3}$ et soit Cf la courbe représentative de la fonction dans un repère orthogonal.

- 1. Étudier le signe de f(x) . (3 points)
- 2. Déterminer les images de 0 et de -2. (1 point)
- 3. Déterminer les antécédents (s'ils existent ...) de 1. (2 points)
- 4. Déterminer les points d'intersection de Cf avec la droite d'équation $y = -\frac{2}{3}x + \frac{25}{3}$ (2 points)

Classe: TS 1

Date: 30 Novembre 2019

EXERCICE 3: (4 points)

La courbe ${\cal C}$ de la figure ci-dessous est la représentation graphique d'une fonction f définie sur ${\Bbb R}$ dans un repère orthogonal.

1. Déterminer graphiquement : (1 point)

- a) f(0)
- b) f(1)
- c) f(2)
- 2. Déterminer l'équation de la tangente T_1 au point d'abscisse 1 et celle de la tangente T_0 au point d'abscisse 0. (1 point)
- 3. La droite T tangente à la courbe C au point d'abscisse -2 et d'ordonnée -1 passe par le point A de coordonnées (1 ; 26). Déterminer par le calcul une équation de T. (2 points)

