UC SANTA CRUZ

Math 134: Cryptography

Lecture 12: the ElGamal Public-Key Cryptosystem

Eoin Mackall February 5th, 2025

University of California, Santa Cruz

Announcements

- · Midterm #1 results
- Homework #3 posted to canvas
- Final Project Rubric posted to canvas

Last week, we introduced two important concepts: *primitive roots* and *discrete logarithms*.

Last week, we introduced two important concepts: *primitive roots* and *discrete logarithms*.

Let n > 1 be an integer. Recall that we say that $a \in \mathbb{Z}$ is a primitive root modulo n if both gcd(a, n) = 1 and

$$a^k \not\equiv 1 \pmod{n}$$
 for all $1 \le k < \phi(n)$.

Last week, we introduced two important concepts: *primitive roots* and *discrete logarithms*.

Let n > 1 be an integer. Recall that we say that $a \in \mathbb{Z}$ is a primitive root modulo n if both gcd(a, n) = 1 and

$$a^k \not\equiv 1 \pmod{n}$$
 for all $1 \le k < \phi(n)$.

Equivalently, since $a^{\phi(n)} \equiv 1 \pmod{n}$ by Euler's theorem, a is a primitive root modulo n if $\operatorname{ord}_n(a) = \phi(n)$.

Example

Let n = 101 and a = 2. We'll check that a is a primitive root mod n.

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

 $2^4 \equiv 16 \pmod{101}$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

 $2^4 \equiv 16 \pmod{101}$
 $2^5 \equiv 32 \pmod{101}$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$
 $2^4 \equiv 16 \pmod{101}$
 $2^5 \equiv 32 \pmod{101}$
 $2^{10} \equiv 1024 \equiv 14 \pmod{101}$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

 $2^4 \equiv 16 \pmod{101}$
 $2^5 \equiv 32 \pmod{101}$
 $2^{10} \equiv 1024 \equiv 14 \pmod{101}$
 $2^{20} \equiv (14)^2 \equiv 196 \equiv 95 \pmod{101}$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^{2} \equiv 4 \pmod{101}$$
 $2^{4} \equiv 16 \pmod{101}$
 $2^{5} \equiv 32 \pmod{101}$
 $2^{10} \equiv 1024 \equiv 14 \pmod{101}$
 $2^{20} \equiv (14)^{2} \equiv 196 \equiv 95 \pmod{101}$
 $2^{25} \equiv (95) \cdot 32 \equiv (-6) \cdot 32 \equiv -192 \equiv 10 \pmod{101}$

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

 $2^4 \equiv 16 \pmod{101}$
 $2^5 \equiv 32 \pmod{101}$
 $2^{10} \equiv 1024 \equiv 14 \pmod{101}$
 $2^{20} \equiv (14)^2 \equiv 196 \equiv 95 \pmod{101}$
 $2^{25} \equiv (95) \cdot 32 \equiv (-6) \cdot 32 \equiv -192 \equiv 10 \pmod{101}$
 $2^{50} \equiv (10)^2 \equiv 100 \equiv -1 \pmod{101}$.

Example

Let n=101 and a=2. We'll check that a is a primitive root mod n. Note that since n is prime we have $\phi(n)=100=2^2\cdot 5^2$.

Hence, it suffices to check that none of 2^2 , 2^4 , 2^5 , 2^{10} , 2^{20} , 2^{25} , 2^{50} , are congruent to 1 mod 101.

$$2^2 \equiv 4 \pmod{101}$$

 $2^4 \equiv 16 \pmod{101}$
 $2^5 \equiv 32 \pmod{101}$
 $2^{10} \equiv 1024 \equiv 14 \pmod{101}$
 $2^{20} \equiv (14)^2 \equiv 196 \equiv 95 \pmod{101}$
 $2^{25} \equiv (95) \cdot 32 \equiv (-6) \cdot 32 \equiv -192 \equiv 10 \pmod{101}$
 $2^{50} \equiv (10)^2 \equiv 100 \equiv -1 \pmod{101}$.

Hence $\operatorname{ord}_{101}(2) = \phi(101) = 100$.

Let n > 1 be an integer and suppose that there exists a primitive root a for n.

Let n > 1 be an integer and suppose that there exists a primitive root a for n.

The discrete logarithm or the index of an integer b to base a modulo n is the unique integer k with $1 \le k \le \phi(n)$ such that $a^k \equiv b \pmod{n}$.

Let n > 1 be an integer and suppose that there exists a primitive root a for n.

The discrete logarithm or the index of an integer b to base a modulo n is the unique integer k with $1 \le k \le \phi(n)$ such that $a^k \equiv b \pmod{n}$.

Example

Let n = 101. Then $2^{57} \equiv 74 \pmod{101}$ and $2^{33} \equiv 35 \pmod{101}$.

Let n > 1 be an integer and suppose that there exists a primitive root a for n.

The discrete logarithm or the index of an integer b to base a modulo n is the unique integer k with $1 \le k \le \phi(n)$ such that $a^k \equiv b \pmod{n}$.

Example

Let n = 101. Then $2^{57} \equiv 74 \pmod{101}$ and $2^{33} \equiv 35 \pmod{101}$.

So the index of 74 to base 2 modulo 101 is $ind_2(74) = 57$.

Let n > 1 be an integer and suppose that there exists a primitive root a for n.

The discrete logarithm or the index of an integer b to base a modulo n is the unique integer k with $1 \le k \le \phi(n)$ such that $a^k \equiv b \pmod{n}$.

Example

Let n = 101. Then $2^{57} \equiv 74 \pmod{101}$ and $2^{33} \equiv 35 \pmod{101}$.

So the index of 74 to base 2 modulo 101 is $ind_2(74) = 57$.

The index of 35 to base 2 modulo 101 is $ind_2(35) = 33$.

Table of contents

- 1. Last time
- ElGamal Public-Key Cryptosystem
 The ElGamal encryption algorithm
 The ElGamal decryption algorithm
- Security of ElGamal Encryption
 The computational Diffie-Hellman problem

ElGamal Public-Key Cryptosystem

Alice wants to send a message to Bob. Bob has indicated that he wants to use the ElGamal public-key cryptosystem. What is the process for encryption?

1. Bob chooses a large prime p and a primitive root α for p.

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.
- 5. For each block m_i , Alice will generate a random integer k_i and she will compute $r_i \equiv \alpha^{k_i} \pmod{p}$ and $t_i \equiv \beta^{k_i} \cdot m_i \pmod{p}$.

- 1. Bob chooses a large prime p and a primitive root α for p.
- 2. Bob chooses a secret integer b with 1 < b < p-1 and computes $\beta \equiv \alpha^b \pmod{p}$.
- 3. Bob sends Alice the triple (p, α, β) . This is Bob's *public* key.
- 4. Alice will send her message in the form of an integer $m \in \mathbb{Z}$. If m > p, then Alice breaks $m = m_1 m_2 m_3 ...$ into blocks m_i of sizes less than p.
- 5. For each block m_i , Alice will generate a random integer k_i and she will compute $r_i \equiv \alpha^{k_i} \pmod{p}$ and $t_i \equiv \beta^{k_i} \cdot m_i \pmod{p}$.
- 6. Alice then sends all of the pairs (r_i, t_i) to Bob.

Example

Suppose Bob chooses p=101 and $\alpha=2$. Bob also randomly selects a secret number b=76, and computes $\beta=2^{76}\equiv 81\pmod{101}$.

Example

Suppose Bob chooses p=101 and $\alpha=2$. Bob also randomly selects a secret number b=76, and computes $\beta=2^{76}\equiv 81\pmod{101}$.

Bob asks Alice to send her favorite number to Bob, to test his new encryption algorithm. He sends Alice the triple $(p, \alpha, \beta) = (101, 2, 81)$.

Example

Suppose Bob chooses p=101 and $\alpha=2$. Bob also randomly selects a secret number b=76, and computes $\beta=2^{76}\equiv 81\pmod{101}$.

Bob asks Alice to send her favorite number to Bob, to test his new encryption algorithm. He sends Alice the triple $(p, \alpha, \beta) = (101, 2, 81)$.

Alice wants to send 8 to Bob, which is less than p. She then randomly generates an integer k=12.

Example

Suppose Bob chooses p=101 and $\alpha=2$. Bob also randomly selects a secret number b=76, and computes $\beta=2^{76}\equiv 81\pmod{101}$.

Bob asks Alice to send her favorite number to Bob, to test his new encryption algorithm. He sends Alice the triple $(p, \alpha, \beta) = (101, 2, 81)$.

Alice wants to send 8 to Bob, which is less than p. She then randomly generates an integer k=12.

Alice computes both

$$r \equiv \alpha^k \equiv 2^{12} \pmod{101}$$
 and $t \equiv \beta^k \cdot m \equiv (81)^{12} \cdot 8 \pmod{101}$.

She finds (r,t) = (56,44) and sends this pair to Bob.

Bob receives a message (r,t) from Alice. What is the process for decryption?

Bob receives a message (r,t) from Alice. What is the process for decryption?

1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.
- 3. This works since

$$ts^{b} \equiv (\beta^{k}m)s^{b} \equiv (\alpha^{b})^{k}ms^{b} \equiv (\alpha^{k})^{b}ms^{b}$$
$$\equiv r^{b}ms^{b} \equiv (rs)^{b}m \equiv (1)^{b}m \equiv m \pmod{p}.$$

Bob receives a message (r,t) from Alice. What is the process for decryption?

- 1. Bob computes a multiplicative inverse s to r modulo p (i.e. such that $sr \equiv 1 \pmod{p}$) using, for example, the Euclidean Algorithm.
- 2. Bob uses the secret integer b that he chose earlier to compute the message as $m \equiv ts^b \pmod{p}$.
- 3. This works since

$$ts^{b} \equiv (\beta^{k}m)s^{b} \equiv (\alpha^{b})^{k}ms^{b} \equiv (\alpha^{k})^{b}ms^{b}$$
$$\equiv r^{b}ms^{b} \equiv (rs)^{b}m \equiv (1)^{b}m \equiv m \pmod{p}.$$

Notation

We can write $s = r^{-1}$ (keeping in mind that $s \neq 1/r$ since we are working modulo p) and similarly $s^b = r^{-b}$. Then Bob computes m by $tr^{-b} \equiv m \pmod{p}$.

Example

Suppose Bob has selected p=101, $\alpha=2$, and b=76 as before. He receives the pair (r,t)=(56,44) from Alice.

Example

Suppose Bob has selected p=101, $\alpha=2$, and b=76 as before. He receives the pair (r,t)=(56,44) from Alice.

Bob uses the integer r=56 to find a multiplicative inverse r^{-1} of r mod 101 using the Euclidean Algorithm. He can use $r^{-1}=-9$ since

$$(-9) \cdot 56 + (5) \cdot 101 = -504 + 505 = 1.$$

9

Example

Suppose Bob has selected p=101, $\alpha=2$, and b=76 as before. He receives the pair (r,t)=(56,44) from Alice.

Bob uses the integer r=56 to find a multiplicative inverse r^{-1} of r mod 101 using the Euclidean Algorithm. He can use $r^{-1}=-9$ since

$$(-9) \cdot 56 + (5) \cdot 101 = -504 + 505 = 1.$$

Bob then finds

$$tr^{-b} \equiv 44 \cdot (-9)^{76} \equiv 8 \pmod{101}$$
.

So Alice must have sent the message m=8 to Bob.

9

Security of ElGamal Encryption

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers $\alpha^{\chi} \pmod{p}$ and $\alpha^{\psi} \pmod{p}$, find $\alpha^{\chi y} \pmod{p}$.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{y} (mod p), find $\alpha^{\chi y}$ (mod p).

Indeed, suppose a third party Eve can solve the Computational Diffie-Hellman problem.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{y} (mod p), find $\alpha^{\chi y}$ (mod p).

Indeed, suppose a third party Eve can solve the Computational Diffie-Hellman problem.

If Eve sees Bob's public key $(p, \alpha, \beta \equiv \alpha^b \pmod{p})$ and Alice's ciphertext $(r \equiv \alpha^k \pmod{p}, t \equiv \alpha^{bk} \cdot m \pmod{p})$, then Eve knows both $\alpha^b \pmod{b}$ and $\alpha^k \pmod{b}$.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{y} (mod p), find $\alpha^{\chi y}$ (mod p).

Indeed, suppose a third party Eve can solve the Computational Diffie-Hellman problem.

If Eve sees Bob's public key $(p, \alpha, \beta \equiv \alpha^b \pmod{p})$ and Alice's ciphertext $(r \equiv \alpha^k \pmod{p}, t \equiv \alpha^{bk} \cdot m \pmod{p})$, then Eve knows both $\alpha^b \pmod{b}$ and $\alpha^k \pmod{b}$.

So Eve may calculate $\alpha^{bk} \pmod{p}$ and quickly find $\alpha^{-bk} \pmod{p}$ allowing her to recover $m \equiv \alpha^{-bk} \cdot t \pmod{p}$.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{ψ} (mod p), find $\alpha^{\chi y}$ (mod p).

Conversely, assume that there is a method for converting ElGamal ciphertext (r,t) gotten from a public key (p,α,β) into the plaintext m.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{ψ} (mod p), find $\alpha^{\chi y}$ (mod p).

Conversely, assume that there is a method for converting ElGamal ciphertext (r,t) gotten from a public key (p,α,β) into the plaintext m.

We could take $\beta \equiv \alpha^x \pmod{p}$. Then, by taking as input ciphertext $(r \equiv \alpha^y \pmod{p}, t \not\equiv 0 \pmod{p})$, we get $m \equiv t \cdot \alpha^{-xy} \pmod{p}$.

The security of the ElGamal public-key cryptosystem is based on the following problem:

The Computational Diffie-Hellman Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given the integers α^{χ} (mod p) and α^{ψ} (mod p), find $\alpha^{\chi y}$ (mod p).

Conversely, assume that there is a method for converting ElGamal ciphertext (r,t) gotten from a public key (p,α,β) into the plaintext m.

We could take $\beta \equiv \alpha^x \pmod{p}$. Then, by taking as input ciphertext $(r \equiv \alpha^y \pmod{p}, t \not\equiv 0 \pmod{p})$, we get $m \equiv t \cdot \alpha^{-xy} \pmod{p}$.

Multiplying by $t^{-1} \pmod{p}$ allows us to find find $\alpha^{-xy} \pmod{p}$ and so also $\alpha^{xy} \pmod{p}$.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

A solution to the Discrete Logarithm Problem gives a solution to the Computational Diffie-Hellman Problem.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

A solution to the Discrete Logarithm Problem gives a solution to the Computational Diffie-Hellman Problem.

Proof.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

A solution to the Discrete Logarithm Problem gives a solution to the Computational Diffie-Hellman Problem.

Proof.

Suppose that you can solve the Discrete Logarithm Problem.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

A solution to the Discrete Logarithm Problem gives a solution to the Computational Diffie-Hellman Problem.

Proof.

Suppose that you can solve the Discrete Logarithm Problem.

Then given $\alpha^x \pmod{p}$ and $\alpha^y \pmod{p}$, you can solve for $x = \operatorname{ind}_{\alpha}(\alpha^x)$ and $y = \operatorname{ind}_{\alpha}(\alpha^y)$.

Often the security of ElGamal is related to the following (difficult) problem:

The Discrete Logarithm Problem

Let p be an odd prime. Let α be a primitive root modulo p. Given an integer $1 < \beta < n$, determine the unique integer $1 \le x < \phi(n)$ such that $\beta \equiv \alpha^x \pmod{p}$.

A solution to the Discrete Logarithm Problem gives a solution to the Computational Diffie-Hellman Problem.

Proof.

Suppose that you can solve the Discrete Logarithm Problem.

Then given $\alpha^x \pmod{p}$ and $\alpha^y \pmod{p}$, you can solve for $x = \operatorname{ind}_{\alpha}(\alpha^x)$ and $y = \operatorname{ind}_{\alpha}(\alpha^y)$.

It is then easy to compute $\alpha^{xy} \equiv (\alpha^x)^y \equiv (\alpha^y)^x \pmod{p}$.