УДК: 544.169:544.132

DOI 10.26456/vtchem2020.4.12

ЭЛЕКТРОННОЕ СТРОЕНИЕ МЕТИЛИДИНСУЛЬФОКСИДАЛКАНОВ

Н.П. Русакова¹, Е.М. Чернова¹, В.В. Туровцев ^{1,2}, Ю.Д. Орлов ¹

¹ Тверской государственный университет, г. Тверь ²Тверской государственный медицинский университет, г. Тверь

В рамках «квантовой теории атомов в молекулах» (QTAIM) определено электронное строение молекул ряда метилидинсульфоксидалканов n- C_nH_{2n+1} -S(O)CH, где $1 \le n \le 10$. Составлена качественная шкала электроотрицательностей функциональных групп.

Ключевые слова: электронная плотность, электроотрицательность, индуктивный эффект, «квантовая теория атомов в молекулах»

Теория «атомов в молекулах» Бейдера (QTAIM) [1] базируется на топологическом анализе распределения электронной плотности и определяет границы атома через поток вектора градиента электронной плотности, что позволяет провести разбиение молекулы на фрагменты в реальном пространстве. Постулаты QTAIM связывают «эффективный» («топологический») атом в молекуле с его классическим аналогом «химического» атома молекулярной системы. «Топологический» атом ЭТО открытая квантовая подсистема, обменивающаяся электронной плотностью (согласно уравнению непрерывности) и импульсом с окружением через границы, заданные с помощью нулевого потока градиента электронной плотности. Каждый атом либо группа атомов вносят свои собственные, отличающиеся вклады в общее свойство молекулы.

Определение функциональной группы (R) и её влияния на свойства и реакционную способность соединения (M) происходит в терминах свойств R. Положение, лежащее в основе аддитивных моделей, гласит об идентичности вклада R в различные молекулы, если R в этих M имеет одинаковые свойства. Любое экстенсивное свойство P(M) соединения M определяется как сумма вкладов групп P(R), составляющих M:

$$P(M) = \sum_{R \in M} P(R),$$

где P(R) - «переносимые» вклады [2-4], а переносимость R (и их P(R)) эквивалентна переносимости относящейся к ним электронной плотности $\rho_R(r)$ [1].

В M взаимодействие различных R проявляется в виде индуктивного эффекта (І-эффекта) – перераспределение электронной плотности между R [5]. Дальнодействующие электронные І-эффект [6], изменяют взаимодействия, такие как величину переносимых парциальных свойств P(R). Изменение P(R) из-за Iэффекта возникает из-за различия электроотрицательностей (х) ближайших заместителей R в M. Распространение I-эффекта вдоль алкильной цепи выражается в отличии заряда групп $(q(CH_2))$ от стандартных значений ($q(CH_2) = 0,000$ a.e. с погрешностью $\pm 0,001$ a.e.).

Сравнение зарядов групп (q(R))позволяет составить качественную шкалу их электроотрицательностей $\chi(R)$. Изменение "эффективного" заряда $q(\Omega)$ атома Ω или группы q(R) при замещении атомных группировок позволяет сравнивать и шкалировать х замещаемых элементов. Качественное и количественное сравнение у большого количества заместителей, выполненное на основании расчетов "эффективных" зарядов отражено в работах [7 - 17]. Целью данного исследования является изучение электронного строения в рамках QTAIM соединений гомологического ряда C_nH_{2n+1} -S(O)CH, где n≤ 10. Значительное внимание уделено построению качественной шкалы электроотрицательностей и расширению $\chi(R)$ с включением кислород и серосодержащих групп.

Методология работы

Поиск равновесных геометрий серосодержащих соединений с брутто-формулой n- C_nH_{2n+1} -CSOH, где $n \le 10$, осуществлен в программе GAUSSIAN 03 [18] методом B3LYP/6-311++G(3df,3pd) (обоснование метода показано в работе [19]). Ранее данный метод был использован для оптимизации отдельных молекул и их гомологов, структурных изомеров [7-17, 20-27]. Согласно расположению в периодической системе химических элементов (третий период, шестая группа) S в соединениях может быть двух-, четырех-, шестивалентной, и образовывать кратные связи [28]. Метилидинсульфоксидный фрагмент S(O)CH в $n-C_nH_{2n+1}-S(O)CH$ является плоским, расчетная кратность связей S-CH S-O больше единицы (рис. Метилидинсульфоксидалканы в свободном виде не выявлены, и существование их в природе с достоверностью не установлено, однако они представляют собой интереснейшие объекты изучения для квантовой химии, как возможные короткоживущие реакционноактивные интермедиаты.

Рис. 1. Молекула метилидинсульфоксидметана (CH₃-S(O)CH) с а) моделируемой кратностью связей S=CH, $S-CH_3$ и S=O и б) оптимизированной геометрией и кратностью связевых путей S-CH, $S-CH_3$ и S-O, полученной в QTAIM вычислениях (кратность показана цифрами, малыми сферами критические точки связей, ядра атомов – сферами большего размера)

Заряды q, энергии E и объемы V атомов Ω были получены в рамках QTAIM [1] численным интегрированием в пределах межатомных поверхностей и изоповерхности электронной плотности 0,001 а.е. с помощью программы AIMALL [29]. Все параметры были суммированы в параметры функциональных групп q(R), E(R) и V(R). Погрешность расчета парциальных зарядов q(R) и энергий E(R) составляла не более 0,001 а.е. (1 а.е. заряда = 1,6·10 $^{-19}$ Кл, 1 а.е. энергии = 2625,4999 кДж/моль), а для V(R) не более 0,1 Å 3 . Разброс относительных энергий $\Delta E(R)$ составил ± 10 кДж/моль и связан с отклонением вириального отношения от -2 [9], поэтому округление относительной энергии групп ($\Delta E(R)$, которая представляет собой разность между энергиями данной и «стандартной» группы) соединений сделано до десятков кДж/моль.

Результаты и обсуждение

Сравнение полученных величин q(R) гомологов n- C_n H $_{2n+1}$ -S(O)CH, с $n \le 10$, позволило определить дальность и интенсивность индуктивного воздействия концевых фрагментов: S(O)CH влияет на ближайшие четыре, а CH_3 на одну соседнюю метиленовую группу. Анализ $q(CH_2)$ выявил значительное увеличение заряда на первой CH_2 группе от S(O)CH по сравнению со второй (Таблица 1.). Такая «странность» первой возбуждённой CH_2 вызвана «перетеканием» $\rho(R)$ от соседних CH_2 в функциональную группу S(O)CH с увеличением $\rho(R)$ в области критических точек кратных связевых путей C-S и S-O ($\rho_r(C$ -S) = 0,275 а.е., $\rho_r(S$ -O) = 0,278 а.е., тогда как для простой связи $\rho_r(C$ -S) = 0,186 а.е.). Кислород проявляет отрицательный индуктивный эффект, оттягивая на себя электронную плотность с атома серы и с ближайших четырех CH_2 .

-0,008

-0,010

-0.012

-0.012

0,021

0,017

0,017

0.016

Suprigram $q(n)$ is most explain $n \in \mathbb{N}^{112n+1}$ S(0)O11, tight $n = 10$, is a.e.											
n	CH ₃	CH ₂	CH_2	CH ₂	S(O)CH						
1	0,117	_	_	_	_	_	_	_	_	_	-0,117
2	- ,	_	_	_	_	_	_	_	_	0,045	-0,156
3	0,029	_	_	_	_	_	_	_	0,103	0,028	-0,160
4	0,016	0,031	_	_	_	_	_	_	0,087	0,027	-0,161
5	0,001	0,032	_	_	_	_	_	0,016	0,086	0,027	-0,162
6	-0,003	0,020	_	—	_	_					-0,162

0,005

0,005

0,005

0.005

0,006

0,005

0.005

0,002

0.001

0.002

0,016

0,017

0,016

0.016

0,015

0,015

0,015

0.015

0,086

0,086

0,086

0.086

0,027

0,027

0,027

0.027

-0,163

-0,163

-0.163

-0.163

Таблица 1 Заряд групп q(R) в молекулах n-C $_n$ H $_{2n+1}$ -S(O)CH, где $n \le 10$, в а.е.

Исходя из соотношения зарядов функциональных групп СН₂, CH_3 S(O)CH, качественную онжом составить шкалу электроотрицательностей каждого гомолога ДЛЯ метилидинсульфоксидалканов, которая будет отражать степень индукционного влияния групп. Для молекул с n ≥ 7 возможно составление шкалы $\gamma(R)$ путём выделения в качестве реперной точки группы СН2, которая присутствует в молекулах также и в невозмущённом состоянии ($q(-CH_2-)=0.000$ a.e.):

$$\chi(CH_2) < \chi(CH_3) < \chi(S(O)CH) \tag{1}$$

Увеличение количества CH_2 в структуре органических соединений серы приводит к изменению величин некоторых $q(CH_2)$, что связанно с перекрыванием индуктивных влияний концевых групп (таблица 1). Однако различия в $q(CH_2)$ не может влиять на расположении CH_2 и остальных R на шкале $\chi(R)$ соответствующего ряда. Таким образом, для разных рядов при наличии в структуре "стандартных" CH_2 , не подверженных I-эффекту ближних групп, возможно составление общих $\chi(R)$ на основе сопоставления q(R) всех молекул со «стандартным» $q(CH_2)$. Составленная таким образом для некоторых гомологических рядов [8-9, 11-17] и включающая неравенство (1) общая шкала $\chi(R)$ представляет соотношение:

$$\chi(CH_2) < \chi(CH_3) < \chi(CHS^{IV}H_2) < \chi(S^{II}H) < \chi[S^{IV}(O)OH] < \chi[S^{VI}(O)(O)H] < \chi[C(S^{II})OH] <$$

$$<\chi[C(O)S^{II}H] < \chi(CHS^{IV}O) < \chi[S(O)CH] < \chi[CS(O)H] < \chi(CS^{IV}OH) < \chi(O-S^{II}-OH)$$
 (2)

где $\chi(CH_2)$ — электроотрицательность «стандартной» или невозмущенной группы CH_2 [3].

Таблица 2 Относительная энергия групп $\Delta E(R)$ в молекулах $n\text{-}\mathrm{C}_n\mathrm{H}_{2n+1}\text{-}\mathrm{S}(\mathrm{O})\mathrm{CH}$, где $n\leq 10$, в кДж/моль.

n	CH ₃	CH ₂	S(O)CH								
1	250	_	_	_	_	_	_	_	_	_	1880
2	220	_	_	_	_	_	_	_	_	170	1520
3	130	_	_	_	_	_	_	_	210	110	1220
4	100	130	_	_	_	_	_	_	150	90	990
5	70	110	_	_	_	_	_	70	130	80	780
6	60	90	_	_	_	_	60	60	120	70	590
7	40	80	_	_	_	30	40	50	110	50	420
8	30	60	_	_	20	20	30	40	90	40	270
9	10	50	_	10	10	20	20	30	80	30	130
10	0	40	0	0	0	10	10	20	70	20	0

Серосодержащая группа S(O)CH, воздействуя на углеводородную цепь, изменяет относительную энергию трех соседних метиленовых фрагментов (Таблица 2), при этом увеличение энергии CH_2 , ближайшей к S(O)CH такое же, как у третьей, и меньше, чем у второй. Возможно, данное явление связано с перераспределением электронной плотности внутри S(O)CH.

Разница полных электронных энергий между соседними гомологами (δE) показывает, на какое количество атомных единиц (кДж/моль) уменьшается E_{total} соединения при увеличении длины алкильной цепи на одну CH₂. В гомологическом ряду n-C_nH_{2n+1}-S(O)CH для ближайших гомологов δE составляет 103260 кДж/моль, которое и определяет вклад добавляемой CH₂ в E_{total} всей молекулы.

Влияние фрагмента S(O)CH на углеводородную цепь приводит к значительному уменьшению объемов двух ближайших метиленовых групп (Таблица 3), при этом ее объем не меняется $V(S(O)CH) = 64.5 \text{ Å}^3$ даже в начальных гомологах. Наибольшее изменение претерпевает величина $V(CH_2)$ второго от S(O)CH метилена; уменьшение $V(CH_2)$ для третьей и четвертой групп незначительно. Величина $V(CH_2)$,

соответствующая «стандартному» значению группы $V(CH_2)_{cm} = 23,5 \text{ Å}^3$ появляется в молекулах с $4 \le n \le 10$.

Таблица 3 Объем групп V(R) в молекулах n-C $_n$ Н $_{2n+1}$ -S(O)CH, где $n \le 10$, в Å 3

10	CH ₃	CH ₂	S(O)CH								
n	СП3	$C\Pi_2$	Cn_2	Cn_2	Cn_2	Cn_2	Cn_2	$C\Pi_2$	$C\Pi_2$	Cn_2	3(0)CH
1	31,8	_	_		_	_	_	_	_	_	64,6
2	31,8	_	_		_	_	_	_	_	23,3	64,5
3	32,7	_	_		_	_	_	_	22,8	23,1	64,5
4	32,8	23,5	_		_	_	_	_	22,6	23,1	64,5
5	32,9	23,5	_		_	_	_	23,4	22,6	23,1	64,5
6	33,0	23,6	_		_	_	23,3	23,4	22,6	23,1	64,5
7	33,0	23,6	_		_	23,5	23,3	23,4	22,6	23,1	64,5
8	33,0	23,6	_		23,5	23,5	23,3	23,4	22,6	23,1	64,5
9	33,1	23,6		23,5	23,5	23,5	23,4	23,4	22,6	23,1	64,6
10	33,1	23,6	23,5	23,5	23,5	23,5	23,4	23,4	22,6	23,1	64,6

Таким образом, в представленной работе рассмотрены заряды, объемы групп первых десяти энергии молекул метилидинсульфоксидалканов. На основании сопоставления зарядов построена общая шкала групповых электроотрицательностей: χ(CH₂) < $\chi(CH_3) < \chi(S(O)CH)$ и проведено объединение с $\chi(R)$ других гомологических рядов: $\chi(\text{CH}_2) < \chi(\text{CH}_3) < \chi(\text{CHS}^{\text{IV}}\text{H}_2) < \chi(\text{S}^{\text{II}}\text{H}) <$ $\chi[S^{IV}(O)OH] < \chi[S^{VI}(O)(O)H] < \chi[C(S^{II})OH] < \chi[C(O)S^{II}H] < \chi(CHS^{IV}O) < \chi(CHS^{IV}O)$ $\chi[S(O)CH] < \chi[CS(O)H] < \chi(CS^{IV}OH) < \chi(O-S^{II}-OH)$. Показано, что дальность влияния S(O)CH распространяется на заряды четырех, энергии – трех и объемы двух ближайших СН2. Отмечено аномальное изменение $q(CH_2)$, $E(CH_2)$ и $V(CH_2)$ первой от S(O)CH.

Список литературы

- 1. Бейдер Р. Атомы в молекулах: Квантовая теория, М.: Мир. 2001. 528 с.
- 2. Бенсон С. Термохимическая кинетика. М.: Мир. 1971. 306 с.
- 3. Татевский В.М. Квантовая механика и теория строения молекул. М.: МГУ. 1965. 164 с.
- 4. Флайгер У. Строение и динамика молекулы. Т. 1, 2. М.: Мир. 1982.
- 5. Сайфуллин Р.С., Сайфуллин А.Р. /Универсальный лексикон: химия, физика и технология (на русском и английском языках)/ Справочник. М.: Логос. 2001. 448 с. (Saifullin R.S., Saifullin A.R. Universal concise dictionary chemistry, physics and technology (English and Russian)).
- 6. Верещагин А.Н. Индуктивный эффект. М.: Наука. 1987. 326 с.
- 7. Русакова Н.П., Туровцев В.В., Орлов. Ю.Д. // Журнал прикладной химии. 2011. Т. 84, вып. 9. С. 1578-1580.

- 8. Русакова Н.П., Туровцев В.В. и Орлов Ю.Д. // Журнал структурной химии. 2015. Т. 56. № 1. С. 29-33.
- 9. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2010. № 10. С. 4-8.
- 10. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестник Новгородского гос. ун-та. Серия «Физико-математические науки». 73/2013. Т-2. С 110-113.
- 11. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2013. №16. с.170-179.
- 12. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестник Казанского технолог. ун-та. 2014. Т. 17. № 23. С. 28-31.
- 13. Русакова Н.П., Котомкин А.В., Туровцев В.В., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2014. № 3. с.79-88.
- 14. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2015. № 3. С. 55-61.
- 15. Чернова Е.М., Ситников В.Н., Туровцев В.В., Орлов Ю.Д. // Вестник Казанского технолог. ун-та. 2014. Т.17. №24. С.13-15.
- 16. Русакова Н.П., Туровцев В.В., Орлов Ю.Д., Котомкин А.В., Чернова Е.М. // Вестник ТвГУ. Серия: Физика. 2014. № 3. С. 3-13.
- 17. Туровцев В.В., Чернова Е.М., Орлов Ю.Д. // Журнал структурной химии. 2015. Т. 56. № 2. С. 225-231.
- 18. Frisch M.J., Trucks G.W., Schlegel H.B. and all. Gaussian 03 (Revision E 0.1 SMP). Gaussian Inc., Pittsburgh PA. 2007.
- 19. Орлов М. Ю., Туровцев В. В., Орлов Ю. Д. //Вестник Башкирского университета. 2008. Т. 13. № 3 (I). С. 758-760.
- 20. Туровцев В.В., Орлов Ю.Д., Русакова Н.П. // Вестник ТвГУ. Серия: Физика. 2007. № 6 (34). С. 204 209.
- 21. Русакова Н.П., Завьялова А.Г., Туровцев В.В., Третьяков С.А., Федина Ю.А., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2019. № 4 (38). С. 14-25.
- 22. Русакова Н.П., Курочкин Г.А., Софронова Ю.И., Туровцев В.В. // Вестник ТвГУ. Серия: Химия. 2020. № 2 (40). С. 53-61.
- 23. Русакова Н.П., Туровцев В.В., Орлов Ю.Д., Котомкин А.В. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2019. Т. 62. № 10. С. 96-102.
- 24. Русакова Н.П., Базулев А.Н., Туровцев В.В., Орлов Ю.Д. // Вестник ТвГУ. Серия: Химия. 2019. № 2 (36). С. 46-55.
- 25. Котомкин А.В., Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов. Тверь: ТвГУ. 2019. Вып. 11. С. 478-486.
- 26. Котомкин А.В., Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2019. Т. 62. № 1. С. 31-37.
- 27. Котомкин А.В., Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2018. № 10. С. 368-373.

- 28. Альфонсов В.А., Беленький Л.И. и др. Получение и свойства органических соединений серы. М.: Химия. 1998. 560 с.
- 29. AIMAll (Version 11.09.18, Professional), Todd A. Keith, 2010 (http://aim.tkgristmill.com).

Об авторах:

РУСАКОВА Наталья Петровна – кандидат химических наук, доцент кафедры физической химии Тверского государственного университета, *e-mail:* Rusakova.NP@tversu.ru, a002186@mail.ru

ЧЕРНОВА Елена Михайловна — кандидат физико-математических наук, ведущий инженер-лаборант Базовой учебной лаборатории общей физики Тверского государственного университета, *e-mail: Chernova.EM@tversu.ru*, chernova elena m@mail.ru

ТУРОВЦЕВ Владимир Владимирович, доктор физико-математических наук, доцент, заведующий кафедрой физики, математики и медицинской информатики Тверского государственного медицинского университета Росздрава РФ.; научный сотрудник кафедры общей физики Тверского государственного университета, *e-mail*: turtsma@tversu.ru

ОРЛОВ Юрий Димитриевич, доктор химических наук, профессор, заведующий кафедрой общей физики Тверского госуниверситета, e-mail: *Orlov.YuD@tversu.ru*

ELECTRONIC STRUCTURE OF METHYLIDINESULFOXIDALCANES

N.P. Rusakova¹, E.M. Chernova¹, V.V. Turovtsev^{1,2}, Yu.D. Orlov¹

¹ Tver State University, Tver ²Tver State Medical University, Tver

Within the framework of the "quantum theory of atoms in molecules" (QTAIM), the electronic structure of the molecules of a series of methylidinesulfoxidealkanes $n\text{-}C_nH_{2n+1}\text{-}S(O)CH$, where $1 \le n \le 10$, was determined. A qualitative scale of electronegativities of functional groups was compiled.

Keywords: electron density, electronegativity, inductive effect, "quantum theory of atoms in molecules"