

PHYS143

Physics for Engineers Tutorial - Chapter 44

Question 1

Calculate the difference in binding energy per nucleon for the nuclei $^{23}_{11}$ Na and $^{23}_{12}$ Mg (Mass of Neutral atom: Na: 22.989769, Mg: 22.994124, H: 1.007 825, and 1.008 665 for neutron).

Question 2

Calculate the minimum energy required to remove a neutron from the $^{43}_{20}$ Ca nucleus. (Mass of Neutral atom: $^{43}_{20}$ Ca: 42.958767, $^{42}_{20}$ Ca: 41.958618 and 1.008 665 for neutron).

Question 3

A freshly prepared sample of a certain radioactive isotope has an activity of 10.0 mCi. After 4.00 h, its activity is 8.00 mCi. Find (a) the decay constant and (b) the half-life. (c) How many atoms of the isotope were contained in the freshly prepared sample? (d) What is the sample's activity 30.0 h after it is prepared?

Question 4

The radioactive isotope 198 Au has a half-life of 64.8 h. A sample containing this isotope has an initial activity (t = 0) of 40.0 μ Ci. Calculate the number of nuclei that decay in the time interval between t_1 = 10.0 h and t_2 = 12.0 h.

Question 5

Determine which decays can occur spontaneously.

(a)
$$^{40}_{20}{\rm Ca} \rightarrow {\rm e^+} + ^{40}_{19}{\rm K}$$
 (b) $^{98}_{44}{\rm Ru} \rightarrow ^{4}_{2}{\rm He} + ^{94}_{42}{\rm Mo}$ (c) $^{164}_{58}{\rm Nd} \rightarrow ^{4}_{2}{\rm He} + ^{140}_{58}{\rm Ce}$

Atomic Masses: 40 Ca (39.962 591), 40 K (39.963 998), 98 Ru (97.905 287), 94 Mo (93.905 088), 144 Nd (143.910 087), 140 Ce (139.905 439), 140 Me (0.000549), 140 Ma (4.002603).

Question 6

A $^3\mathrm{H}$ nucleus beta decays into $^3\mathrm{He}$ by creating an electron and an antineutrino according to the reaction

Question 7

Identify the unknown nuclide or particle (X).

(a)
$$X \to {}^{65}_{28} Ni + \gamma$$
 (b) ${}^{215}_{84} Po \to X + \alpha$ (c) $X \to {}^{55}_{26} Fe + e^+ + \nu$

Dr. Obada Al Khatib

Question 8

The nucleus ¹⁵₈O decays by electron capture. The nuclear reaction is written

$$^{15}_{~8}\mathrm{O} + \mathrm{e}^{-} \! \to ^{15}_{~7}\mathrm{N} + \nu$$

(a) Write the process going on for a single particle within the nucleus. (b) Disregarding the daughter's recoil, determine the energy of the neutrino. Atomic masses: 15 O (15.003 066), 15 N (15.000 109)

Dr. Obada Al Khatib