§ 32. Инвариантные подпространства

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение и некоторые примеры инвариантных подпространств

Определение

Пусть \mathcal{A} — линейный оператор в векторном пространстве V. Подпространство U пространства V называется инвариантным относительно оператора \mathcal{A} , если $\mathcal{A}(\mathbf{x}) \in U$ для всякого вектора $\mathbf{x} \in U$.

Ясно, что все пространство V и его нулевое подпространство $\{\mathbf{0}\}$ инвариатны относительно любого линейного оператора. Они называются *тривиальными инвариантными подпространствами*. Чтобы привести еще один пример инвариантного подпространства, предположим, что векторное пространство V разлагается в прямую сумму подпространств M_1 и M_2 , а \mathcal{P} — оператор проектирования на подпространство M_1 параллельно M_2 . Очевидно, что подпространство M_1 инвариантно относительно \mathcal{P} .

Матрица и характеристический многочлен инвариантного подпространства (1)

Теорема о матрице оператора и инвариантном подпространстве

Пусть \mathcal{A} — линейный оператор в векторном пространстве V, а U — подпространство в V, инвариантное относительно \mathcal{A} и отличное отнулевого пространства и V. Тогда:

- 1) существует базис пространства V, в котором оператор $\mathcal A$ имеет полураспавшуюся матрицу;
- 2) порядок одного из диагональных блоков этой матрицы равен $\dim U$;
- ограничение линейного оператора А на подпространство U является линейным оператором на U, характеристический многочлен которого делит характеристический многочлен оператора A.

Доказательство. Положим $\dim V = n$ и $\dim U = k$. Из условия вытекает, что 0 < k < n. Пусть $\mathbf{p_1}, \, \mathbf{p_2}, \, \ldots, \, \mathbf{p_k} - \mathsf{базис} \, U$. В соответствии с теоремой о дополнении до базиса (см. § 22), дополним его до базиса V векторами $\mathbf{p_{k+1}}, \, \ldots, \, \mathbf{p_n}$ и обозначим базис $\mathbf{p_1}, \, \mathbf{p_2}, \, \ldots, \, \mathbf{p_n}$ пространства V через P. Пусть $A_P = (p_{ij})$ — матрица оператора \mathcal{A} в базисе P. В i-м столбце этой матрицы записаны координаты вектора $\mathcal{A}(\mathbf{p_i})$ в базисе P. Поскольку оператор \mathcal{A} инвариантен относительно $U, \, \mathcal{A}(\mathbf{p_i}) \in U$ для всех $i=1,2,\ldots,k$.

Матрица и характеристический многочлен инвариантного подпространства (2)

Следовательно, вектор $\mathcal{A}(\mathbf{p}_i)$, где $i=1,2,\ldots,k$, имеет в базисе Pкоординаты вида $(p_{i1}, p_{i2}, \dots, p_{ik}, 0, \dots, 0)$. Это означает, что матрица A_P имеет вид

$$A_{P} = \begin{pmatrix} p_{11} & p_{21} & \dots & p_{k1} & p_{k+1 \ 1} & \dots & p_{n1} \\ p_{12} & p_{22} & \dots & p_{k2} & p_{k+1 \ 2} & \dots & p_{n2} \\ \dots & \dots & \dots & \dots & \dots \\ p_{1k} & p_{2k} & \dots & p_{kk} & p_{k+1 \ k} & \dots & p_{nk} \\ 0 & 0 & \dots & 0 & p_{k+1 \ k+1} & \dots & p_{n \ k+1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & p_{k+1 \ n} & \dots & p_{nn} \end{pmatrix}.$$

Это доказывает пп. 1) и 2). Докажем п. 3). Тот факт, что ограничение ${\cal A}$ на U является линейным оператором на U, очевиден. Запишем матрицу $A_{n}-xE$:

$$A_{P} - xE = \begin{pmatrix} p_{11} - x & p_{21} & \dots & p_{k1} & p_{k+1 \, 1} & \dots & p_{n1} \\ p_{12} & p_{22} - x & \dots & p_{k2} & p_{k+1 \, 2} & \dots & p_{n2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{1k} & p_{2k} & \dots & p_{kk} - x & p_{k+1 \, k} & \dots & p_{nk} \\ 0 & 0 & \dots & 0 & p_{k+1 \, k+1} - x & \dots & p_{nk+1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & p_{k+1 \, n} & \dots & p_{nn} - x \end{pmatrix}.$$

Матрица и характеристический многочлен инвариантного подпространства (3)

Используя предложение об определителе полураспавшейся матрицы (см. \S 25), получаем, что

$$\chi_{A}(x) = |A_{P} - xE| = \begin{vmatrix} p_{11} - x & p_{21} & \dots & p_{k1} & p_{k+11} & \dots & p_{n1} \\ p_{12} & p_{22} - x & \dots & p_{k2} & p_{k+12} & \dots & p_{n2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{1k} & p_{2k} & \dots & p_{kk} - x & p_{k+1k} & \dots & p_{nk} \\ 0 & 0 & \dots & 0 & p_{k+1k+1} - x & \dots & p_{nk+1} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & p_{k+1k+1} - x & \dots & p_{nk+1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{12} & p_{22} - x & \dots & p_{k2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{1k} & p_{2k} & \dots & p_{kk} - x \end{vmatrix} \cdot \begin{vmatrix} p_{k+1k+1} - x & \dots & p_{nk+1} \\ \dots & \dots & \dots & \dots \\ p_{k+1n} & \dots & p_{nn} - x \end{vmatrix} = \\ = \chi_{A|_{U}}(x) \cdot \begin{vmatrix} p_{k+1k+1} - x & \dots & p_{nk+1} \\ \dots & \dots & \dots & \dots \\ p_{k+1n} & \dots & p_{nn} - x \end{vmatrix}.$$

Это доказывает п. 3).

Теорема о прямой сумме инвариантных подпространств (1)

Если $V=V_1\oplus V_2$, то, в силу замечания о базисе прямой суммы подпространств (см. § 24), объединение базисов подпространств V_1 и V_2 является базисом V.

Теорема о прямой сумме инвариантных подпространств

Пусть \mathcal{A} — линейный оператор в векторном пространстве V и $V=V_1\oplus V_2$, где V_1 и V_2 — ненулевые подпространства в V, инвариантные относительно \mathcal{A} . Обозначим через \mathcal{A}_i ограничение оператора \mathcal{A} на подпространство V_i , через P_i — некоторый базис пространства V_i , а через A_i — матрицу оператора \mathcal{A}_i в базисе P_i , i=1,2. Тогда:

1) матрица оператора ${\mathcal A}$ в базисе $P=P_1\cup P_2$ пространства V имеет вид

$$\begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix}$$
;

2)
$$\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A}_1}(x) \cdot \chi_{\mathcal{A}_2}(x)$$
.

Теорема о прямой сумме инвариантных подпространств (2)

Доказательство. 1) Положим $r_1=\dim V_1$ и $r_2=\dim V_2$. По условию $r_1,r_2\neq 0$. Если ${\bf p}$ — вектор из базиса P_1 , то ${\cal A}({\bf p})={\cal A}_1({\bf p})\in V_1$ (так как V_1 инвариантно относительно ${\cal A}_1$). Следовательно, вектор ${\cal A}({\bf p})$ имеет в базисе P координаты вида $(p_1,\ldots,p_{r_1},\underbrace{0,\ldots,0}_{r_1})$, где (p_1,\ldots,p_{r_1}) —

координаты вектора $\mathcal{A}_1(\mathbf{p})$ в базисе P_1 . Аналогично, если \mathbf{q} — вектор из базиса P_2 , то вектор $\mathcal{A}(\mathbf{q})$ имеет в базисе P координаты вида $(\underbrace{0,\dots,0}_{r_1\;\text{штук}},q_1,\dots,q_{r_2})$, где (q_1,\dots,q_{r_2}) — координаты вектора $\mathcal{A}_2(\mathbf{q})$ в

базисе P_2 . Доказываемое утверждение вытекает теперь из определения матрицы линейного оператора в базисе.

2) Используя предложение об определителе полураспавшейся матрицы (см. § 25), имеем

$$\chi_{A}(x) = |A - xE| = \begin{vmatrix} A_{1} - xE & O \\ O & A_{2} - xE \end{vmatrix} = |A_{1} - xE| \cdot |A_{2} - xE| = \chi_{A_{1}}(x) \cdot \chi_{A_{2}}(x).$$

Теорема доказана.

1-е замечание об инвариантных подпространствах

1-е замечание об инвариантных подпространствах

Если \mathcal{A} — линейный оператор в векторном пространстве V, то подпространства $\operatorname{Im}(\mathcal{A}^m)$ и $\operatorname{Ker}(\mathcal{A}^m)$ инвариантны относительно \mathcal{A} .

Доказательство. Пусть $\mathbf{x} \in \text{Im}(\mathcal{A}^m)$. Тогда $\mathbf{x} = \mathcal{A}^m(\mathbf{y})$ для некоторого $\mathbf{y} \in V$. Следовательно,

$$A(\mathbf{x}) = A(A^{m}(\mathbf{y})) = A^{m+1}(\mathbf{y}) = A^{m}(A(\mathbf{y})),$$

и потому $\mathcal{A}(\mathbf{x})\in \mathrm{Im}(\mathcal{A}^m)$. Таким образом, подпространство $\mathrm{Im}(\mathcal{A}^m)$ инвариантно относительно \mathcal{A} .

Далее, пусть $\mathbf{x} \in \mathsf{Ker}(\mathcal{A}^m)$, т. е. $\mathcal{A}^m(\mathbf{x}) = \mathbf{0}$. Тогда

$$A^{m}(A(\mathbf{x})) = A^{m+1}(\mathbf{x}) = A(A^{m}(\mathbf{x})) = A(\mathbf{0}) = \mathbf{0},$$

и потому $\mathcal{A}(\mathbf{x}) \in \mathrm{Ker}(\mathcal{A}^m)$. Таким образом, подпространство $\mathrm{Ker}(\mathcal{A}^m)$ также инвариантно относительно \mathcal{A} .

2-е замечание об инвариантных подпространствах

2-е замечание об инвариантных подпространствах

Пусть \mathcal{A} — линейный оператор в векторном пространстве V над полем F, а $\lambda \in F$. Подпространство U пространства V инвариантно относительно \mathcal{A} тогда и только тогда, когда оно инвариантно относительно оператора $\mathcal{A} - \lambda \mathcal{E}$.

Доказательство. Пусть $\mathbf{x} \in U$. Поскольку

$$(\mathcal{A} - \lambda \mathcal{E})(\mathbf{x}) = \mathcal{A}(\mathbf{x}) - \lambda \mathcal{E}(\mathbf{x}) = \mathcal{A}(\mathbf{x}) - \lambda \mathbf{x}$$

и $\lambda \mathbf{x} \in U$, ясно, что $(\mathcal{A} - \lambda \mathcal{E})(\mathbf{x}) \in U$ тогда и только тогда, когда $\mathcal{A}(\mathbf{x}) \in U$. Отсюда немедленно вытекает доказываемое утверждение.