CS:E4830 Kernel Methods in Machine Learning

Lecture 7 : Convexity and Duality

Rohit Babbar

27th February, 2019

Convex sets

• A **line segment** between $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^n$ is defined as all points that satisfy

$$x = \theta x_1 + (1 - \theta)x_2, 0 \le \theta \le 1$$

 A convex set contains the line segment between any two distinct points in the set

$$x_1, x_2 \in C, 0 \le \theta \le 1 \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

• Below: Convex and non-convex sets. Q: Which ones are convex?

Operations that preserve convexity of sets

There are two main ways of establishing the convexity of a set C

• apply the definition of convexity:

$$x_1, x_2 \in C, 0 \le \theta \le 1 \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

- or show that the set can be obtained from simpler convex sets with operations that preserve convexity, most importantly:
 - intersection: if S_1 , S_2 are convex, their intersection $S_1 \cap S_2$ is convex.
 - affine functions: If S is a convex and f(x) = Ax b is affine, the image of S under f, $f(S) = \{f(x) | x \in S\}$ is convex

Convex functions

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if (i) the domain of f is a convex set and (ii) for all x, y, and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

• Geometrical interpretation: the graph of the function lies below the line segment from (x, f(x)) to (y, f(y))

- A function f is
 - strictly convex if strict inequality holds above
 - concave if -f is convex.

First order conditions

• Suppose $f: \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable. Then f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

holds for all $x, y \in \mathbb{R}^n$.

- The right-hand side, the first order Taylor approximation of f, is a global underestimator of f.
- Geometrical interpretation: a convex function lies above each its tangent.

 Corresponding forms of the equation can be written for strictly convex (replace ≥ with > and concave functions (replace ≥ with ≤)

Second order conditions

• Assume $f: \mathbb{R}^n \mapsto \mathbb{R}$ is twice differentiable. Then f is convex if and only if its Hessian matrix (matrix of second derivatives)

$$H = [\nabla^2 f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i = 1, \dots, n, j = 1, \dots, n,$$

is positive semi-definite: for all $x^T Hx \ge 0$

- Geometrically the condition means that the function has positive curvature at x.
- Strict convexity is partially characterized by second order conditions: if $H = \nabla^2 f(x)$ is positive definite, $x^T H x > 0$ for all x, then f is strictly convex. The converse does not hold true in general.
- For function defined on \mathbb{R} , the condition reduces to the simple condition $f''(x) \geq 0$, that is, that the second derivative is non-decreasing.
- Analogous conditions can be written for (strictly) concave functions and negative (semi-)definite Hessians

Operations that preserve convexity of functions

- Nonnegative weighted sums:
 - Nonnegative weighted sum of convex functions:

$$f = w_1 f_1 + \dots w_m f_m$$

where $w_i \geq 0$ is convex.

- Similarly, nonnegative weighted sum of concave functions is concave.
- These properties extend to infinite sums and integrals
- Pointwise maximum and supremum:
 - Pointwise maximum $f(x) = \max(f_1(x), f_2(x), \dots, f_m(x))$, of a set f_1, \dots, f_m of convex functions is convex.
 - Pointwise supremum of an infinite set of convex functions is convex
 - Similarly: Pointwise minimum (infimum) of concave functions is concave

Convex optimization problem

Standard form of a convex optimization problem

$$\min_{x \in \mathcal{D}} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, \dots, m$

$$h_i(x) = 0, i = 1, \dots, p$$

- The problem is composed of the following components:
 - The variable $x \in \mathcal{D}$ from a domain \mathcal{D} , $\mathcal{D} = \mathbb{R}^n$ is typical.
 - The **objective function** $f_0: \mathbb{R}^n \mapsto \mathbb{R}$ to be minimized, a convex function of the variable x
 - The constraint functions $f_i\mapsto \mathbb{R}$ related to inequality constraints, convex functions of x
 - The constraint functions $h_i(x) = a_i^T x b_i$ related to **equality constraints**, affine (linear) functions of x

Convex optimization problem

Standard form of a convex optimization problem

$$\min_{x \in \mathcal{D}} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$h_i(x) = 0, i = 1, ..., p$$

- Value of x that satisfy the constraints is called feasible, the set of all feasible points is called the feasible set.
- The feasible set defined by the above constraints is a convex set
- x is **optimal** if it has the smallest objective function value among all feasible $z \in \mathcal{D}$.
- Lets denote by p^* , the optimal value of the above problem, i.e.

$$p^* = \min\{f_0(x)|f_i(x) \le 0, i = 1, ..., m; h_i(x) = 0, i = 1, ..., p\}$$

Why is convexity useful?

• Convex objective vs. non-convex objective

 Convex feasible set vs. non-convex feasible set

Why convexity?

- Convex objective:
 - We can always improve a sub-optimal objective value by stepping towards negative gradient
 - All local optima are global optima
- Convex constraints i.e. convex feasible set
 - Any point between two feasible points is feasible
 - Updates remain inside the feasible set as long as the update direction is towards a feasible point

⇒ fast algorithms based on the principle of feasible descent

Duality

- Principle of viewing an optimization problem from two interchangeable views, primal and dual views
- Intuitively:
 - ullet Minimization of a primal objective \Leftrightarrow Maximization of the dual objective
 - Primal constraints
 ⇔ Dual variables
 - Dual constraints
 ⇔ Primal variables

Duality: Lagrangian

Consider the primal optimisation problem

$$\min_{x \in \mathcal{D}} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, \dots, m$

$$h_i(x) = 0, i = 1, \dots, p$$

with variable $x \in \mathbb{R}^n$

• Augment the objective function with the weighted sum of the constraint functions to form the **Lagrangian** of the optimization problem:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• $\lambda_i, i=1,\ldots,m$ and $\nu_i, i=1,\ldots,p$ (ν is the greek letter 'nu') are called the **Lagrange multipliers** or **dual variables**

Example:

- Minimizing $f_0(x) = x^2$, s.t. $f_1(x) = 1 x \le 0$
- Lagrangian: $L(x, \lambda) = x^2 + \lambda(1 x)$

Lagrange dual function

• The Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$ is the minimum value of the Lagrangian over x:

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- Intuitively:
 - Fixing coefficients (λ, ν) corresponds to certain level of penalty,
 - ullet The infimum returns the optimal x for that level of penalty
 - ullet $g(\lambda,
 u)$ is the corresponding value for the Lagrangian
 - $g(\lambda, \nu)$ is a concave function as a pointwise infimum of a family of affine functions of (λ, ν)

Example

- Minimizing x^2 , s.t. $x \ge 1$
- Lagrange dual function : $g(\lambda) = \inf_{x} (x^2 + \lambda(1-x))$
- Set derivatives to zero $\nabla_x(x^2 + \lambda(1-x)) = 2x \lambda = 0 \implies x = \lambda/2$
- Plug back to the Lagrangian: $g(\lambda) = \frac{\lambda^2}{4} + \lambda(1-\lambda/2) = -\frac{\lambda^2}{4} + \lambda$

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- In general, it holds that $g(\lambda, \nu) \leq p^*$ for any non-negative λ $(\lambda_i \geq 0, i = 1, \dots, m)$ and for any ν
- ullet To see this, let $ilde{\mathbf{x}}$ be a feasible point of the original problem, thus all primal constraints are satisfied:
- We have $\lambda_i f_i(\tilde{x}) \leq 0$, i = 1, ..., m (Why?)

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- In general, it holds that $g(\lambda, \nu) \leq p^*$ for any non-negative λ $(\lambda_i \geq 0, i = 1, \dots, m)$ and for any ν
- ullet To see this, let $ilde{\mathbf{x}}$ be a feasible point of the original problem, thus all primal constraints are satisfied:
- We have $\lambda_i f_i(\tilde{x}) \leq 0$, i = 1, ..., m (Why?) since $\lambda_i > 0$ by assumption and $f_i(\tilde{x}) \leq 0$

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- In general, it holds that $g(\lambda, \nu) \leq p^*$ for any non-negative λ $(\lambda_i \geq 0, i = 1, \dots, m)$ and for any ν
- ullet To see this, let $ilde{\mathbf{x}}$ be a feasible point of the original problem, thus all primal constraints are satisfied:
- We have $\lambda_i f_i(\tilde{x}) \leq 0$, i = 1, ..., m (Why?) since $\lambda_i > 0$ by assumption and $f_i(\tilde{x}) \leq 0$
- Similarly $\nu_i h_i(\tilde{x}) = 0$ for i = 1, ..., p (Why?)

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- In general, it holds that $g(\lambda, \nu) \leq p^*$ for any non-negative λ $(\lambda_i \geq 0, i = 1, \dots, m)$ and for any ν
- ullet To see this, let $ilde{\mathbf{x}}$ be a feasible point of the original problem, thus all primal constraints are satisfied:
- We have $\lambda_i f_i(\tilde{x}) \leq 0$, i = 1, ..., m (Why?) since $\lambda_i > 0$ by assumption and $f_i(\tilde{x}) \leq 0$
- Similarly $\nu_i h_i(\tilde{x}) = 0$ for i = 1, ..., p (Why?) $h_i(\tilde{x}) = 0$

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \inf_{x} \{f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)\}$$

- In general, it holds that $g(\lambda, \nu) \leq p^*$ for any non-negative λ $(\lambda_i \geq 0, i = 1, \dots, m)$ and for any ν
- ullet To see this, let $ilde{\mathbf{x}}$ be a feasible point of the original problem, thus all primal constraints are satisfied:
- We have $\lambda_i f_i(\tilde{x}) \leq 0$, i = 1, ..., m (Why?) since $\lambda_i > 0$ by assumption and $f_i(\tilde{x}) \leq 0$
- Similarly $\nu_i h_i(\tilde{x}) = 0$ for i = 1, ..., p (Why?) $h_i(\tilde{x}) = 0$
- Thus the value of the Lagrangian is less than the objective function at \tilde{x} :

$$L(\tilde{x},\lambda,\nu)=f_0(\tilde{x})+\sum_{i=1}^m\lambda_if_i(\tilde{x})+\sum_{i=1}^p\nu_ih_i(\tilde{x})\leq f_0(\tilde{x})$$

• Now, $g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) \le L(\tilde{x}, \lambda, \nu) \le f_0(\tilde{x})$ as infimum is computed over a set containing \tilde{x}

• The Lagrange dual function gives us **lower bounds** on the optimal value p^* of the primal problem: below, $g(\lambda) \le 1 = p^*$,

The Lagrange dual problem

- For each pair (λ, ν) , $\lambda \ge 0$, the Lagrange dual function gives a lower bound on the optimal value of p^* .
- What is the tightest lower bound that can be achieved? We need to find the maximum
- This gives us a optimization problem

$$\max_{\lambda,\nu} g(\lambda,\nu)$$
s.t. $\lambda > 0$

- It is called the **Lagrange dual problem** of the original optimization problem.
- It is a convex optimisation problem, since it is equivalent to minimising $-g(\lambda,\nu)$ which is a convex function

Properties of convex optimisation problems

We will look at further concepts to understand the properties of convex optimisation problems

- Weak and strong duality
- Duality gap
- Complementary slackness
- KKT conditions

Weak and strong duality

- Let p^* and d^* denote primal and dual optimal values of an optimization problem.
- Weak duality

$$d^* \leq p^*$$

always holds, even when primal optimization problem is non-convex

Strong duality

$$d^* = p^*$$

holds for special classes of convex optimization problems

Duality gap

- A pair $x,(\lambda,\nu)$ where x is primal feasible and (λ,ν) is dual feasible is called primal dual feasible pair
- For primal dual feasible pair, the quantity

$$f_0(x) - g(\lambda, \nu),$$

is called the duality gap

A primal dual feasible pair localizes the primal and dual optimal values

$$g(\lambda, \nu) \leq d^* \leq p^* \leq f_0(x)$$

into an interval the width of which is given by the duality gap

- If the duality gap is zero, we know that x is primal optimal and (λ, ν) is dual optimal
- We can use duality gap as a stopping criterion for optimisation

Stopping criterion for optimization

- Suppose the algorithm generates a sequence of primal feasible $x^{(k)}$ and dual feasible $(\lambda^{(k)}, \nu^{(k)})$ solutions for $k = 1, 2, \ldots$
- Then the duality gap can be used as the stopping criterion: e.g. stop when $|f_0(x^{(k)}) g(\lambda^{(k)}, \nu^{(k)})| \le \epsilon$, for some $\epsilon > 0$

Complementary slackness

- Let x^* be a primal optimal (and thus also feasible) and (λ^*, ν^*) be a dual optimal (and thus also feasible) solution and let strong optimality hold, i.e. $d^* = p^*$
- Then, at optimum

$$d^* = g(\lambda^*, \nu^*) = \inf_{x} \{ f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \}$$

$$\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \leq f_0(x^*) = p^*$$

- First inequality: definition of infimum, second: inequality from x^* being a feasible solution
- ullet Due to $d^*=p^*$, the inequalities must hold as equalities \Longrightarrow penalty terms must equate to zero

Complementary slackness

We have

$$\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*}) = 0$$

• Since $h_i(x^*) = 0, i = 1, ..., p$ we conclude that

$$\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0$$

and since each term is non-positive

$$\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$$

• This condition is called the complementary slackness

Complementary slackness

• Intuition: at optimum there cannot be both slack in the dual variable $\lambda_i > 0$ and the constraint $f_i(x^*) < 0$ at the same time:

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0$$

and

$$f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

 At optimum, positive Lagrange multipliers are associated with active constraints

Karush-Kuhn-Tucker (KKT) conditions

- For convex or non-convex optimization, at optimum the following conditions must hold true:
 - Inequality constraints satisfied: $f_i(x^*) \leq 0, i = 1, ..., m$
 - Equality constraints satisfied: $h_i(x^*) = 0, i = 1, ..., p$
 - Non-negativity of dual variables of the inequality constraints: $\lambda_i^* > 0, i = 1, \dots, m$
 - Complementary slackness: $\lambda_i^* f_i(x^*) = 0, i = 1, ..., m$
 - Derivative of Lagrangian vanishes:

$$\nabla_x L(x^*, \lambda^*, \nu^*) = \nabla_x f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla_x f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla_x h_i(x^*)) = 0$$

- These conditions are called the Karush-Kuhn-Tucker conditions
 - However, for convex problems, KKT conditions is also sufficient for optimality

References

- Convex Optimization by Boyd and Vandenberghe (available online with Videos)
 - Convex sets chapter 2
 - Convex functions chapter 3
 - Convex optimization problems chapter 4
 - Duality chapter 5