Advanced Applied Econometrics Week 1 - Intro and Static Discrete Choice

Peter Haan

21 April 2023

Introduction

- EMAILS: mail list for the course
- Organization, see outline

If anything unclear, please ask.

Presentation: name, study status, main econ interest

Course schedule

- Methods
- Paper discussion ⇒ you need to read at home
- 3 Practical session (numerical methods)
 - ⇒ you **need** to do problem sets
 - \Rightarrow you **need** STATA and Python
 - ⇒ you need to practice coding

Evaluation

For students who need to be evaluated

- (1) Special problem sets
 - individually or in pairs
 - provide commented code, results, documentation, tables
- (2) **Exam**
 - **2**1.7.2023;

Plan for today

- Structural econometrics
- Examples of a structural model
- Practical session,
- Python and example with Max Blesch

What is structural econometrics?

What is structural econometrics?

What is structural econometrics?

Structural econometric models...

- "...combine explicit economic theories with statistical models" (Reiss and Wolak, 2007)
- "...[infer] underlying parameters that represent tastes, technology, and other primitives from observations of individual households and firms..." (Adda and Cooper, 2003)
- ... estimate features of a data generating process (i.e., a model) that are (assumed to be) invariant to the policy changes or other counterfactuals of interest (Haile, 2022)

Descriptive vs structural analyses

- Descriptive analysis: establish facts about observable quantities
- RCT
- Policy evaluation
- Economic model

Program Evaluation

Haile (2022):

- Program evaluation (indeed, any type of so-called "causal inference" is always a form of structural estimation. It requires a set of maintained hypotheses about the world (i.e., a model) allowing one to define and identify a counterfactual quantity of interest.
- TT, ATE, LATE, QTE, etc. are all precisely defined only under a well specified model of how the data are being generated. Any suggestion that these objects are "model free" is nonsense.
- Causality is always defined by a counterfactual.

Reduced form vs structural

Haile (2022):

"Reduced form" is sometimes used to mean "equation I won't derive, justify, or take questions on, but which I will nonetheless treat as causal when I talk about conclusions.
This is just bad science."

Other views and definitions by Rust (2010), thoughtful (and spiteful) comments on Keane (2013) in Fritjers (2013) vs Rust (2013).

An Introductory Example

How much revenue raised by **introducing income taxes**?

Simple answers?

Effects of tax change I

How much additional revenue (AR)

- AR=new tax rate * wage * number of hours worked
- AR=new tax rate * wage * hours worked post tax

How many hours worked post tax?

Effects of tax change II

How many hours worked post tax?

- estimate observed corr between wages and hours
- interpret as L^S-elasticity?

Effects of tax change III

using theory... why might number of hours worked change?

- 1 hours margin: change in hours for (pre- & post-) workers
- participation margin: change in participation pre vs. post-tax:

Effects of tax change IV

- 3 life-cycle margin:
 - changing taxes may influence optimal allocation of work over life
 - (eg. if progressivity is increased...)
- wage margin: equilibrium (gross) wage may change

Conclude: Predicting reform effect (AR) requires structural model. But: Model choice depends on **margin** and **identification**.

Before the practical session

10 minute break

Practical Session - Economic model simple version of van Soest 1995

Question: The Flat Party wins elections and wants to **introduce** a Flat Income Tax (FIT).

We want to know how much revenue is raised under FIT.

Why do we need a structural model? Alternatives? How to model this?

Practical Session

What minimal necessary ingredients for a model?

- decision to participate
- 2 decision over hours worked (discretize why?)
- g earnings of participants (pre- and post reform)
- A NB. recognize heterogeneity (e.g. due to different non-labour incomes)

(1) Participation and hours

How do we model this?

(1) Participation and hours II

Individuals maximize utility from consumption & leisure

$$U(c, h) = \gamma \left[\frac{c^{\theta}}{\theta} - \alpha h \right] + \varepsilon_h$$

by **choosing hours per week** $h \in [0, 10, 20, 30, 40]$ faced with constraint posed by wage.

(2) Consumption

Simplest model of consumption in this context?

(2) Consumption II

$$c = w * h$$

What does this imply? Simplest models of wages?

(3) Wages

Assume workers draw wage rates from normal wage offer distribution *before* choosing hours

$$\log \mathbf{W} = \mu_{\mathbf{W}} + \epsilon_{\mathbf{W}}$$

where $\varepsilon_{\it w}$ from $N[0,\sigma_{\it w}]$

Estimation and Identification

Use maximum likelihood to estimate...

- 1 parameters of the wage distribution
- 2 taste parameters of leisure-consumption choice

How is the model identified? How can we estimate a causal effect based on the model?

Coding

Principles

- Use a script and document your code. Always.
- 2 There is **always** a solution. Not one.
- 3 One solution is fast,
- another is easy to read & understand,
- 5 another is flexible.
- 6 You won't find any immediately. No matter. Try again.

Simulate to estimate

Good practice: Simulate before estimating. Why?

In practice: Simulation and Estimation

- Simulate economic behaviour in model with your favourite parameters.
- 2 Generate simulated data.
- Save the data. Forget the parameters.
- Write the likelihood function as a function of data and parameters.
- Maximize likelihood of observing your simulated data w.r.t. parameters.
- 6 Rediscover your favourite parameters.

