Paper #: 212

On Joint Dereverberation and Single Moving Source Separation with Online Source Steering

Yiting Zhang, Kaien Mo, Tetsuya Ueda, Yichen Yang, Shoji Makino

Waseda University, Japan

Research Background (1/2)

- The growing demand for speech processing and recognition
- Multi-speakers and reverberation significantly degrade their performance

Research Background (2/2)

- Separation performance becomes worse when a sound source is moving
- It is necessary to consider both reverberation and moving source

Problem formulation

• Target-source tracking: only **one target source is moving** and other sources are

Baseline Method: Online WPE-IVA

- Online Joint Optimization of Weighted Prediction Error and Independent Vector Analysis (Online WPE-IVA) [Ueda+ 2021; Mo+ 2024]
 - Convolutional Beamformer (CBF) with source-wise factorization

Online: filters are updated after every new frame

D: prediction delay L: number of demixing matrix $\overline{\pmb{x}}_{f,t} = \left[\pmb{x}_{f,t-D}^{\mathrm{T}}, \dots, \pmb{x}_{f,t-D-L+1}^{\mathrm{T}}\right]^{\mathrm{T}}$

Baseline Method: Online WPE-IVA

Update rule of Online WPE-IVA

Online WPE part:
$$\boldsymbol{G}_{n,f,t} = \boldsymbol{G}_{n,f,t-1} + \boldsymbol{k}_{n,f,t} \boldsymbol{z}_{n,f,t}^{\mathrm{H}}$$

 $oldsymbol{k}_{n,f,t}$: Kalman gain obtained by past observed signals

 α : forgetting vector

(1) using Iterative Projection (IP) [Ueda+ 2021]

$$\mathbf{w}_{n,f,t} = (\mathbf{W}_{f,t-1} \mathbf{V}_{n,f,t})^{-1} \mathbf{e}_{n,f}$$

$$\mathbf{w}_{n,f,t} = (\mathbf{w}_{n,f,t}^{\mathsf{H}} \mathbf{V}_{n,f,t} \mathbf{w}_{n,f,t})^{-1/2} \mathbf{w}_{n,f,t}$$

$$(\boldsymbol{W}_{f,t} = [\boldsymbol{w}_{1,f,t}, \dots, \boldsymbol{w}_{N,f,t}]^{\mathrm{H}})$$

 $W_{f,t}$: separation matrix for n = 1 ... N

one-hot update

Online IVA part: Matrix computation!
$$V_{n,f,t} = \alpha V_{n,f,t-1} + (1-\alpha) \frac{\mathbf{z}_{n,f,t} \mathbf{z}_{n,f,t}^{\mathrm{H}}}{r_{n,t}}$$

②using Iterative Source Steering (ISS) [Mo+ 2024]

$$u_{n,f,t} = \mathbf{w}_{i,f,t-1}^{H} \mathbf{V}_{n,f,t} \mathbf{w}_{n,f,t-1}$$

$$d_{n,f,t} = \mathbf{w}_{i,f,t-1}^{H} \mathbf{V}_{n,f,t} \mathbf{w}_{i,f,t-1}$$

$$\mathbf{w}_{n,f,t} = \begin{cases} \mathbf{w}_{n,f,t-1} - \frac{u_{n,f,t}}{d_{n,f,t}} \mathbf{w}_{i,f,t-1}, n \neq i \\ d_{i,f,t} - \frac{1}{2} \mathbf{w}_{i,f,t-1}, n = i \end{cases}$$

rank-1 update

i: moving source

Motivation and Contribution

- Baseline Method: Online WPE-IVA [Ueda+ 2021; Mo+ 2024]
 - Advantage:
 - Suitable for highly reverberant environments
 - Suitable for real-time processing under time-variant environments
 - Shortcoming:
 - Relative slow update algorithm in separation filter
- Contribution
 - Promote computational efficiency by apply Online Source Steering (OSS, explained later)
 [Nakashima+ 23].
 - Apply Geometric Constraint (GC) [Parra+ 03] to fix permutation before using our proposed method.

Motivation and Contribution

Efficiency of source separation

Proposed Method: WPE-IVA-OSS

 Using Online Source Steering (OSS) algorithm [Nakashima+ 2023] to replace IP or ISS

– Advantage:

Relative fast update algorithm in separation filter

OSS algorithm:

matrix computation is avoided

Proposed Method: WPE-IVA-OSS

Update rule of WPE-IVA-OSS

Online WPE part:
$$\boldsymbol{G}_{n,f,t} = \boldsymbol{G}_{n,f,t-1} + \boldsymbol{k}_{n,f,t} \boldsymbol{z}_{n,f,t}^{\mathrm{H}}$$

Online IVA part: No matrix computation! $V_{n,f,t} = \alpha V_{n,f,t-1} + (1-\alpha) \frac{\mathbf{z}_{n,f,t} \mathbf{z}_{n,f,t}^{11}}{r_{n,t}}$

Coefficients for updating $w_{n,f,t-1}$:

$$u_{n,f,t} = \mathbf{w}_{i,f,t-1}^{H} \mathbf{V}_{n,f,t} \mathbf{w}_{n,f,t-1}$$

$$d_{n,f,t} = \mathbf{w}_{i,f,t-1}^{H} \mathbf{V}_{n,f,t} \mathbf{w}_{i,f,t-1}$$

using Online Source Steering(OSS) [Nakashima+ 2023]

$$u_{n,f,t} = \alpha \frac{u_{n,f,t-1}}{u_{i,f,t-1}} + \frac{(1-\alpha) \left| \hat{y}_{i,f,t} \right|^2}{r_{n,t}}, d_{n,f,t} = \frac{(1-\alpha) \hat{y}_{i,f,t} y_{n,f,t}^*}{r_{n,t}}$$

 $u_{n,f,t}$, $d_{n,f,t}$ are recursively updated without $V_{n,f,t}$

- Motivation: evaluate our proposed method's
 - 1. Separation performance
 - 2. Computational efficiency

- Evaluation Criteria
 - $-\Delta SDR$ [dB]: Improvement of source-to-distortions ratio (SDR_{output} SDR_{observed})
 - Runtime [s]
- Compared Methods
 - Online WPE-IVA-IP [Ueda+ 2021]
 - Online WPE-IVA-ISS [Mo+ 2024]
 - WPE-IVA-OSS [Proposed]

Settings

Mixing conditions	
Speech datasets	ATR503 database set B
Reverberation time (RT60)	600 ms
Number of microphone (= Number of source)	2
Number of dataset pair	20 pairs

Experimental conditions	
Sampling frequency	16 kHz
STFT window/shift length	1024/256
STFT window function	Hann
lpha (forgetting factor)	0.99
eta (forgetting factor)	0.96
L (filter order)	10
D (prediction delay)	2
Initial values of $oldsymbol{G}_{n,f,t}$	Zero matrix
Initial values of $oldsymbol{W}_{f,t}$	Identity matrix

- Online WPE-IVA with Geometric Constraint (Online WPE-GCIVA) [Mo+ 2023]
 - Permutation problem of estimated signals

– Geometric Constraint (GC): Guide separation filters to suppress signal in direction θ

Fixed output permutation

Settings

Online WPE-IVA with Geometric Constraint [Mo+ 2023]

Result 1: Source separation performance

- WPE-IVA-OSS converged faster than online WPE-IVA-IP.
- After the convergence, WPE-IVA-OSS performed slightly worse than online WPE-IVA-IP.

• Result 2: Runtime

Online WPE-IVA-IP	Online WPE-IVA-ISS	WPE-IVA-OSS
2.4124 s	1.2775 s	0.4808 s

- Only include last 40s because updates of first 20s are the same
- Only include separation part because other parts are the same

Conclusions

- We integrated OSS update algorithm to replace conventional IP- and ISS-based one in online WPE-IVA.
- Our proposed method fully took advantages of online WPE-IVA.

- Our proposed method has low computational cost and no matrix computation in separation filter.
- Our proposed method is computationally more efficient while achieving the same or at least comparable separation performance.

Thank you for your listening!

