ПРОКЛЯТИЕ РАЗМЕРНОСТИ. РЕГУЛЯРИЗАЦИЯ

Квантитативный анализ текста

Кирилл Александрович Маслинский 04.04.2022 / 06

НИУ ВШЭ Санкт-Петербург

ПРОКЛЯТИЕ РАЗМЕРНОСТИ

SPARSE DATA PROBLEM

Terms

	Docs	выгребать	выгребной	выгружать	выгрузка	выгрыза
	1	0	0	0	0	
	2	0	0	0	0	
	3	0	0	0	0	
	4	0	0	0	0	
	5	0	0	0	۵	

ПРОКЛЯТИЕ РАЗМЕРНОСТИ

A document-term matrix (1530 documents, 13322 terms

Non-/sparse entries: 68859/20313801

Sparsity : 100% Maximal term length: 66

Weighting : term frequency (tf)

HUGHES PHENOMENON

Optimal number of features

Переобучение

Переобучение

Снижение размерности: простые

СПОСОБЫ

Снижение размерности

- Матрица терминов-документов очень большая и редкая
- Близкие по смыслу слова не обязательно встречаются в одних и тех же документах:
 - синонимия
 - полисемия
 - шум
- Нужно сократить размерность матрицы (сделать меньше столбцов).

Снижение размерности

- Матрица терминов-документов очень большая и редкая
- Близкие по смыслу слова не обязательно встречаются в одних и тех же документах:
 - синонимия
 - полисемия
 - шум
- Нужно сократить размерность матрицы (сделать меньше столбцов).

Простейший способ уменьшить число столбцов — просто удалить лишние слова:

- Статический список: без более бы был была были было быть в вам вас весь во вот все всего всех вы где да даже для ...
- Динамический список:
 - · Слишком частотные (N самых частотных)
 - Слишком редкие (порог: не менее чем в F документов)
 - Слишком короткие (меньше М букв)

Алгоритм классификации:

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ПРОСТАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия: генеративная формулировка

где

RSS — ФУНКЦИЯ ПОТЕРЬ

Логистическая регрессия: бинарный классификатор

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ: ГЕНЕРАТИВНАЯ ФОРМУЛИРОВКА

$$Y_{i} \sim \text{Binomial}(1, p_{i})$$

$$\text{logit}(p_{i}) = \alpha + \beta_{1}X_{1} + \beta_{2}X_{2}, \quad (2)$$

$$\text{logit}(p_{i}) = \log \frac{p_{i}}{1 - p_{i}}$$

где

Y_i класс индивида i {0,1}

p_i вероятность позитивного класса (1) для индивида і

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ: ГЕНЕРАТИВНАЯ ФОРМУЛИРОВКА

$$Y_i \sim \text{Binomial}(1, p_i)$$

$$\log \text{it}(p_i) = \alpha + \beta_1 x_1 + \beta_2 x_2, \quad (2)$$

$$\log \text{it}(p_i) = \log \frac{p_i}{1 - p_i}$$

где

Y_i класс индивида i {0,1}

 p_i вероятность позитивного класса (1) для индивида і

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ — ФУНКЦИЯ ПОТЕРЬ

$$LS = -(y\log(p) + (1 - y)\log(1 - p))$$
(3)

Примеры:

$$y = 1; p = 0.8$$

$$LS = -(1 * log(0.8) + (1 - 1) * log(0.2)) =$$

$$= 0.22$$
(4)

$$y = 0; p = 0.8$$

$$LS = -(0 * log(0.8) + (1 - 0) * log(0.2)) = (5)$$

$$= 1.6$$

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ — ФУНКЦИЯ ПОТЕРЬ

$$LS = -(y\log(p) + (1-y)\log(1-p))$$
 (3)

Примеры:

$$y = 1$$
; $p = 0.8$
 $LS = -(1 * log(0.8) + (1 - 1) * log(0.2)) =$ (4)
 $= 0.22$

$$y = 0; p = 0.8$$

$$LS = -(0 * log(0.8) + (1 - 0) * log(0.2)) = (5)$$

$$= 1.6$$

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ — ФУНКЦИЯ ПОТЕРЬ

$$LS = -(y\log(p) + (1 - y)\log(1 - p))$$
(3)

Примеры:

$$y = 1; p = 0.8$$

$$LS = -(1 * log(0.8) + (1 - 1) * log(0.2)) =$$

$$= 0.22$$
(4)

$$y = 0$$
; $p = 0.8$
 $LS = -(0 * log(0.8) + (1 - 0) * log(0.2)) = (5)$
 $= 1.6$

Снижение размерности:

РЕГУЛЯРИЗАЦИЯ

UNDERFITTING/OVERFITTING

РЕГУЛЯРИЗАЦИЯ

РЕГУЛЯРИЗОВАННАЯ ФУНКЦИЯ ПОТЕРЬ

Обычная регрессия:

$$Loss = Error(y, \hat{y}) \tag{6}$$

L1 Loss (LASSO regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum |\beta_j| \tag{7}$$

L2 Loss (RIDGE regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum \beta_j^2$$
 (8)

РЕГУЛЯРИЗОВАННАЯ ФУНКЦИЯ ПОТЕРЬ

Обычная регрессия:

$$Loss = Error(y, \hat{y}) \tag{6}$$

L1 Loss (LASSO regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum |\beta_j|$$
 (7)

L2 Loss (RIDGE regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum \beta_j^2$$
 (8)

РЕГУЛЯРИЗОВАННАЯ ФУНКЦИЯ ПОТЕРЬ

Обычная регрессия:

$$Loss = Error(y, \hat{y}) \tag{6}$$

L1 Loss (LASSO regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum |\beta_j| \tag{7}$$

L2 Loss (RIDGE regression):

$$Loss = Error(y, \hat{y}) + \lambda \sum \beta_j^2$$
 (8)

SCEPTICAL HAMSTER

