NaMo₂P₃O₁₂: A New Phosphate of Mo(IV)

K. H. LII and J. J. CHEN

Institute of Chemistry Academia Sinica, Nankang, Taipei, Taiwan, Republic of China

AND S. L. WANG

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Received May 26, 1988; in revised form August 12, 1988

A new Mo(IV) phosphate, NaMo₂P₃O₁₂, has been discovered and characterized by means of single crystal X-ray diffraction. It crystallizes in the trigonal space group $R\overline{3}c$ with a=8.6160(7), c=22.075(3) Å, Z=6, R=0.015, $R_w=0.018$, GOF = 1.613 for 406 unique reflections with I>2.5 $\sigma(I)$. The framework of NaMo₂P₃O₁₂ is built of MoO₆ octahedra, NaO₆ trigonal antiprisms, and PO₄ tetrahedra. Its structure is isostructural with NaZr₂P₃O₁₂ and closely related to MoP₃SiO₁₁. © 1989 Academic Press, Inc.

Introduction

A large number of new compounds have been isolated and characterized in the system of M-Mo-P-O (M = metal cation) containing Mo in oxidation states less than +6, indicating the great ability of PO₄ tetrahedra to form various frameworks with MoO₆ octahedra. The investigation of the system M-Mo(V)-P-O has shown the formation of $K_4Mo_8P_{12}O_{52}$ (1), α -, β -, and γ - $CsMo_2P_3O_{13}$ (2), and $MMo_5P_8O_{33}$ (M = Li, Na, Ag) (3). The phosphates containing Mo(IV) have been observed in MMo₂P₃O₁₂ (M = Tl, Rb, K) (4) and the mixed-valence compounds $MMo_3P_6Si_2O_{25}$ (M = Cs, Rb, Tl) (5), $Cs_3Mo_6P_{10}O_{38}(6)$, $Cs_2Mo_5P_9O_{33}(7)$, and NaMo₂P₄O₁₄ (8), in which Mo(IV) and Mo(III) are simultaneously present. Interestingly, several compounds exhibit metalmetal bondings. For example, Cs₃Mo₅P₆O₂₅

(9), $Cs_3Mo_4P_3O_{16}$ (10), and $Cs_3Mo_5P_7O_{24}$ (11) contain cubane-like Mo_4O_4 and Mo_4O_3P clusters each with six Mo-Mo bonds. A confacial bioctahedral Mo_2O_9 cluster with a Mo-Mo bond has been observed in $Mo_3P_5SiO_{19}$ (12). The phosphates containing isolated Mo(III) only have also been found in $MMoP_2O_7$ (M = Cs, Rb, K) (13) and MoP_3SiO_{11} (14).

The Mo(IV) phosphates $M\text{Mo}_2\text{P}_3\text{O}_{12}$ (M = Tl, Rb, K) have been unusual among molybdenum phosphates with respect to the corner-sharing Mo_2O_{11} units in their framework. Since phosphates containing Mo(IV) only have been relatively rare, efforts have been made to add new members to the family of M-Mo(IV)-P-O. In an attempt to prepare "Na₂Mo₃P₄O₁₇" a new Mo(IV) phosphate has been discovered. In contrast to $M\text{Mo}_2\text{P}_3\text{O}_{12}$ (M = Tl, Rb, K) which adopt a tunnel structure and are built

of Mo₂O₁₁ units, P₂O₇ groups and PO₄ tetrahedra, the sodium compound has a markedly different structure and is composed of MoO₆ octahedra, NaO₆ trigonal antiprisms, and PO₄ tetrahedra. We report in this paper the preparation and crystal structure of Na $Mo_2P_3O_{12}$.

Experimental

The starting materials used for prepara-Na₂MoO₄ tion (99.9%),MoO₃ were (99.9%), Mo (99.9%), and P_2O_5 (99.9%). The title compound was first obtained as black chunky crystals in an attempt to prepare "Na₂Mo₃P₄O₁₇" in a sealed fused silica tube at 1000°C for 4 days. Its stoichiometry was not known until a complete single crystal X-ray structure determination. Subsequently, a few reactions using appropri-

TABLE I SUMMARY OF CRYSTAL DATA, INTENSITY MEASUREMENT, AND STRUCTURE REFINEMENT PARAMETERS FOR NaMo₂P₃O₁₂

Crystal data			
Space group	$R\overline{3}c$		
Cell constants	a = 8.6160(7), c = 22.075(3)		
	\mathring{A} , $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$,		
	V = 1419.2 Å		
Z	6		
Density (calcd)	3.509 g/cm ³		
Abs. coeff. (Mo $K\alpha$)	32.0 cm ⁻¹		
Intensi	ty measurement		
$\lambda(MoK\alpha)$	0.70930 Å		
Scan mode	$\omega/2\theta$		
Scan rate	5.5°/min		
Scan width	$0.65^{\circ} + 0.35^{\circ} \tan \theta$		
Max 2θ	60°		
Standard reflections			
	(no decay)		
Reflections measured	889 total, 466 unique		
Structure solution and refinement			

Reflections included Parameters refined $R = 0.015, R_{\rm w} = 0.018$ Agreement factors **GOF** 1.613 0.48; -0.39 e/Å^3 $(\Delta \rho)_{\text{max}}; (\Delta \rho)_{\text{min}}$

406 with $I > 2.5 \sigma(I)$

ate amounts of the starting materials were conducted at several different temperatures ranging from 850 to 1000°C. However, powder X-ray diffraction patterns showed that the products were always contaminated with a small amount of MoO2 and NaMo2 P_4O_{14} (8).

A black crystal having the dimensions of $0.08 \times 0.09 \times 0.09$ mm was selected for indexing and intensity data collection. The unit cell parameters were obtained by leastsquares refinement of 25 reflections with 2θ ranging from 16 to 29°. Based on the statistical analysis of intensity distribution, systematic extinctions, and the successful solution and refinement of the structure, the space group was determined to be R3c (No. 167). The structure was solved by direct methods and refined by full matrix leastsquares refinement based on F values to R= 0.015, $R_w = 0.018$, and GOF = 1.613. The occupancy factor for Na was initially refined but the resultant value indicated full occupancy. Subsequently it was learned that the structure was isostructural with NaZr₂P₃O₁₂ (15). The intensity data were corrected for absorption, Lorentz, and polarization effects. Atomic scattering factors and anomalous dispersion terms were taken from International Tables for X-ray Crystallography (16). Crystal data, intensity measurements, and structure refinement parameters are collected in Table I. Final positional and thermal parameters are listed in Table II. Selected bond distances and angles are given in Table III.1

Description and Discussion of the Structure

As shown in Fig. 1 the framework of Na Mo₂P₃O₁₂ is composed of corner-sharing MoO₆ octahedra, NaO₆ trigonal antiprisms, and PO₄ tetrahedra. Each MoO₆ octahe-

A table of structure factors is available on request from the author.

TABLE II Positional and Thermal Parameters for $NaMo_2P_3O_{12}^{a,b}$

x	у	z	B(iso) (Å ²)
0.0	0.0	0.0	2.06(9)
0.0	0.0	0.14443(1)	0.37(1)
0.2891(1)	0.2891	0.25	0.44(2)
0.1917(2)	0.0250(2)	0.08676(8)	0.92(8)
0.0201(3)	-0.1813(3)	0.19315(9)	1.19(8)
	0.0 0.0 0.2891(1) 0.1917(2)	0.0 0.0 0.0 0.0 0.2891(1) 0.2891 0.1917(2) 0.0250(2)	0.0 0.0 0.0 0.0 0.0 0.14443(1) 0.2891(1) 0.2891 0.25 0.1917(2) 0.0250(2) 0.08676(8)

	Anisotropic thermal parameters ($\mathring{A}^2 \times 10^2$)					
Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
Na	3.4(1)	3.4	1.0(1)	1.7	0.0	0.0
Mo	0.50(2)	0.50	0.41(2)	0.25	0.0	0.0
P	0.50(3)	0.50	0.63(4)	0.21(3)	0.08(1)	-0.08
01	0.83(9)	1.63(9)	1.14(8)	0.70(7)	0.20(7)	-0.02(7)
O2	2.0(1)	1.43(9)	1.36(9)	1.06(8)	-0.12(7)	0.64(7)

^a B(iso) is the mean of the principal axes of the thermal ellipsoid.

TABLE III

SELECTED BOND DISTANCES (Å) AND BOND

ANGLES (DEGREE)

Bond distances		Bond angles		
Na-O1	2.467(2) (6×)	O1-Na-O1	180.0 (3×)	
Mo-O1	$2.010(2)(3\times)$	O1-Na-O1	66.2(2) (6×)	
Mo-O2	$1.974(2)(3\times)$	O1-Na-O1	113.8(1) (6×)	
P-O1	1.527(2) (2×)	O1-Mo-O1	84.2(1) (3×)	
P-O2 1.520(2) (2×)	O1-Mo-O2	92.05(8) (3×)		
	O1-Mo-O2	90.2(1) (3×)		
	O1-Mo-O2	173.5(1) (3×)		
	O2-Mo-O2	93.3(1) (3×)		
		O1-P-O1	109.4(1) (1×)	
		O1-P-O2	111.1(2) (2×)	
		O1-P-O2	$106.2(2) (2\times)$	
		O2-P-O2	112.9(1) (1×)	
		Na-O1-Mo	90.23(7)	
	Na-O1-P	126.2(1)		
		Mo-O1-P	143.5(1)	
	Мо-О2-Р	154.7(2)		

dron shares its six corners with six PO_4 tetrahedra. Similarly, each NaO_6 trigonal antiprism is linked to six PO_4 tetrahedra. Each NaO_6 trigonal antiprism shares its opposite faces with two MoO_6 octahedra (Fig. 2). Along a threefold axis the MoO_6 and NaO_6 polyhedra alternate in the following sequence . . . / $/(NaO_6)(MoO_6)(MoO_6)(NaO_6)$ $(MoO_6)/(MoO_6)//$ The structure of

NaMo₂P₃O₁₂ can be described as strings of MoO₆ octahedra and NaO₆ trigonal antiprisms directed along the *c*-axis which are linked together through PO₄ tetrahedra. Each PO₄ tetrahedron is linked with three neighboring strings. Each PO₄ group shares two corners with two MoO₆ octahedra within one of the three strings and two cor-

FIG. 1. (a) A stereoscopic view of the NaMo₂P₃O₁₂ structure along the c-axis. The Na, Mo, P, and O atoms are represented by circles with a cross, a dot, a slash, and open circles, respectively. For clarity, only half of the unit cell content along the c-axis is shown in the figure. (b) A polyhedron representation of the NaMo₂P₃O₁₂ structure along the c-axis.

^b The anisotropic thermal parameters take the form: $2\Pi^2(h^2(a^*)^2U_{11} +$

 $[\]cdots + 2hka*b*U_{12} + \cdots$).

ners each with a MoO₆ and a NaO₆ polyhedron within a neighboring string. Oxygen 1 is simultaneously bonded to P, Mo, and Na atoms and the four atoms are coplanar. However, O2 is only bonded to P and Mo atoms.

The structure of NaMo₂P₃O₁₂ is closely related to that of MoP₃SiO₁₁, which is built of corner-sharing Mo(III)O₆ octahedra, P₂O₇ groups, and Si₂O₇ groups. NaMo₂P₃ O₁₂ can be deduced from MoP₃SiO₁₁ by simple replacement of the Si₂O₇ groups with NaO₆ trigonal antiprisms, and the P₂O₇ groups with PO4 tetrahedra. The framework of the sodium compound is formed of $[NaMo_2(PO_4)_3]_{\infty}$ slabs parallel to the (001) plane, which are stacked along the c-axis and mutually linked in such a way that the three PO₄ tetrahedra in a slab unit share their corners with the MoO₆ octahedra and the NaO₆ trigonal antiprisms of an adjacent slab. Whereas in MoP₃SiO₁₁, the three PO₄ tetrahedra in a slab unit share their corners

Fig. 2. A section of a string of MoO_6 octahedra and NaO_6 trigonal antiprisms connected through PO_4 tetrahedra.

with the three other PO₄ tetrahedra of a neighboring slab.

For each MoO₆ octahedron two sorts of Mo-O bond distances are observed. The longer Mo-O bonds correspond to the oxygen atom (O1) common to a PO₄ tetrahedron, a MoO₆ octahedron, and a NaO₆ trigonal antiprism. The shorter Mo-O bonds correspond to the oxygen atom (O2) shared by a PO₄ tetrahedron and a MoO₆ octahedron. The MoO6 octahedron is distorted as shown by the O-O distances ranging from 2.697(3) to 2.870(2) Å. The octahedral distortion can be estimated by using the equation $\Delta = (1/6)\Sigma((R_i - \overline{R})/\overline{R})^2$ where $R_i = \text{an}$ individual bond length and \overline{R} = average bond length (17). The calculation result $(\Delta \times 10^4 = 0.82)$ shows that the distortion is almost identical with the Mo4+-O octahedra in the mixed-valence compound Na $Mo_2P_4O_{14}$ ($\Delta \times 10^4 = 0.91$), but much smaller than the Mo4+-O octahedra in $TlMo_2P_3O_{12}$ ($\Delta \times 10^4 = 11.2$). The P atom is bonded to four oxygen atoms at two nearly equal distances (see Table III). The PO₄ tetrahedron is slightly distorted as indicated by the O-O distances ranging from 2.438(3) to 2.530(4) A. The sums of bond strengths using the equations derived by Brown and Wu (18) led to +0.99 for Na and +4.28 for Mo, which is a little higher than the formal oxidation state +4 of Mo in this compound. The Na atom is bonded to six oxygen atoms at a distance of 2.467(2) A forming a regular trigonal antiprism with the edge lengths of 2.697(3) Å (6×) and 4.134(3) Å (6×). It should be noted that the U_{11} and U_{22} values for the Na atom are much larger than the U₃₃ value. The anomalously large thermal parameters suggest that the sodium atom is mobile. Hong showed that the network of NaZr₂P₃O₁₂ contains empty interstitial space along the a-axis and the interstitial space satisfies the criteria for fast Na⁺-ion transport (19). Large thermal parameters for the Na atom were also observed in $NaZr_2P_3O_{12}$.

According to our knowledge NaMo₂P₃O₁₂ has been unique in the system of M-Mo-P-O with respect to the isolated Mo(IV)O₆ octahedra in its framework. Interestingly, the sodium compound adopts a drastically different structure from those of MMo₂P₃O₁₂ (M = Tl, Rb, K). It is one of the examples showing the effect of the size of the counter cation on the crystal structure. This structural study once again shows the great ability of PO₄ tetrahedra to form a variety of frameworks with MoO₆ octahedra.

Acknowledgments

Financial support for this study by the National Science Council and the Institute of Chemistry Academia Sinica of the Republic of China is gratefully acknowledged.

References

- A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, J. Solid State Chem. 48, 147 (1983).
- α-, β-CsMo₂P₃O₁₃: K. H. LII AND R. C. HAUS-HALTER, J. Solid State Chem. 69, 320 (1987);
 γ-CsMo₂P₃O₁₃: J. J. Chen, K. H. LII, AND S. L. WANG, J. Solid State Chem. 76, 204 (1988).
- 3. K. H. LII, D. C. JOHNSTON, D. P. GOSHORN, AND

- R. C. HAUSHALTER, J. Solid State Chem. 71, 131 (1987).
- A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, J. Solid State Chem. 59, 301 (1985); A. LECLAIRE AND B. RAVEAU, Acta Crystallogr. C 44, 226 (1988).
- A. LECLAIRE, J. C. MONIER, AND B. RAVEAU, Acta Crystallogr. B 40, 180 (1984).
- 6. K. H. LII AND C. C. WANG, J. Solid State Chem., in press.
- 7. K. H. LII, C. C. WANG, AND S. L. WANG, to be published.
- 8. J. J. CHEN, K. H. LII, AND S. L. WANG, J. Solid State Chem., in press.
- K. H. Lii, R. C. HAUSHALTER, AND C. J. O'CON-NOR, Angew. Chem. Int. Ed. Engl. 26, 549 (1987).
- R. C. HAUSHALTER, J. Chem. Soc. Chem. Commun., 1566 (1987).
- S. L. WANG AND K. H. LII, J. Solid State Chem. 73, 274 (1988).
- S. L. WANG, C. C. WANG, AND K. H. LII, J. Solid State Chem. 74, 409 (1988).
- K. H. LII AND R. C. HAUSHALTER, Acta Crystallogr. C 43, 2036 (1987); K. H. LII, C. C. WANG, AND J. J. CHEN, unpublished work.
- A. LECLAIRE AND B. RAVEAU, J. Solid State Chem. 71, 283 (1987).
- L. HAGMAN AND P. KIERKEGAARD, Acta Chem. Scan. 22, 1822 (1968).
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch, Birmingham (1974).
- R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- I. D. Brown and K. K. Wu, Acta Crystallogr. B 32, 1957 (1976).
- 19. H. Y-P. Hong, Mat. Res. Bull. 11, 173 (1976).