HOMEWORK 7 – MATH 441 May 21, 2018

ALEX THIES athies@uoregon.edu

Assignment: 3.E - 7, 13, 16; 4 - 4, 5; 5.A - 3, 6, 12, 17, 21;

Section 3.E

Exercise 7. Suppose v, x are vectors in V and U, W are subspaces of V such that v + U = x + W. Prove that U = W.

Proof. Let v, x, V, U, W be as above. Then $v = x + w_1$ for some $w_1 \in W$, and by Theorem 3.85 we have $v - x \in W$. Thus, for some $u \in U$ it follows that $v + u = x + w_2$ for some $w_2 \in W$. Therefore, we have that $u = (x - v) + w_2 = -(v - x) + w_2 = -w_1 + w_2 \in W$. Since u was chosen arbitrarily, we have shown that $U \subseteq W$, mutatis mutandis to show that $W \subseteq U$. Hence, by double-inclusion we have shown that U = W, as we aimed to do.

Exercise 13. Suppose U is a subspace of V and $v_1 + U, \ldots, v_m + U$ is a basis of V/U and u_1, \ldots, u_n is a basis of U. Prove that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis of V.

Proof. Let $U, V, v_1 + U, \ldots, v_m + U$, and u_1, \ldots, u_n be as above. Let $w \in V$, to show that $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis of V, we will show that $w \in \text{Span}(v_1, \ldots, v_m, u_1, \ldots, u_n)$. Since $v_1 + U, \ldots, v_m + U$ is a basis of V/U, we have

$$w + U = a_1(v_1 + U) + \dots + a_m(v_m + U).$$

By Theorem 3.85 we have that $w - (a_1v_1 + \cdots + a_mv_m) \in U$. Therefore, we can express this difference in terms of a basis of U, i.e.,

$$w - (a_1v_1 + \dots + a_mv_m) = b_1u_1 + \dots + b_nu_n.$$

This allows us to write

$$w = a_1 v_1 + \dots + a_m v_m + b_1 u_1 + \dots + b_n u_n.$$

Therefore, $w \in \text{Span}(v_1, \dots, v_m, u_1, \dots, u_n)$, and $v_1, \dots, v_m, u_1, \dots, u_n$ is a basis of V, as we aimed to show.

Exercise 16. Suppose U is a subspace of V such that $\dim V/U = 1$. Prove that there exists $\varphi \in \mathcal{L}(V, \mathbb{F})$ such that null $\varphi = U$.

Proof. Let U, V be as above. The best way forward will be to define a map from $V/U \to \mathbb{F}$, and then build φ as the composition of our map with the quotient map $\pi: V \to V/U$. Since linear maps are closed under composition, this new composition of maps φ will be in the vector space $\mathscr{L}(V, \mathbb{F})$, like we want. We will have to pick a map from $V/U \to \mathbb{F}$ so that we get the desired property that null $\varphi = U$.

The fact that $\dim V/U=1$ tells us that there exists a $v\in V$ where $v\notin U$ and such that v+U is a basis of V/U. We can send scalar multiples of these v to the scalar in \mathbb{F} , and since $v\notin U$, every $u\in U$ will be sent to 0. So, define the linear map $\psi:V/U\to\mathbb{F}$ by the mapping $\lambda v+U\mapsto \lambda$. Next, let $\varphi=\psi\circ\pi$, notice that $\varphi:V\to V/U\to\mathbb{F}$, so $\varphi\in\mathscr{L}(V,\mathbb{F})$, like we want. We will proceed by double-inclusion to show that null $\varphi=U$.

Step 1 (null $\varphi \subset U$). Let $w \in V$ such that $\varphi(w) = 0$. It follows by the way we created φ , that w + U = 0v + U, hence $w \in U$ and null $\varphi \subset U$.

Step 2 $(U \subset \text{null } \varphi)$. Let $u \in U$. Then $\pi(u) = u + U = 0 + U = 0v + U$, hence ψ sends u to 0, i.e. $\varphi(u) = 0$, and $u \in \text{null } \varphi$. Thus, $U \subset \text{null } \varphi$, and by the double-inclusion that we have just shown, we have $U = \text{null } \varphi$, as desired.

Section 4

Exercise 4. Suppose m and n are positive integers with $m \leq n$, and suppose $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$. Prove that there exists a polynomial $p \in \mathcal{P}(\mathbb{F})$ with deg p = n such that $0 = p(\lambda_1) = \cdots = p(\lambda_m)$ and such that p has no other zeros.

Proof. Let m, n be as above. Define $p: \mathcal{P}(\mathbb{F}) \to \mathbb{F}$ by $p(z) \mapsto (z - \lambda_1) \cdots (z - \lambda_m)$. Then p has $\lambda_1, \ldots, \lambda_m$ as roots, but we can see that $\deg p = m$, which is too small. Let q = n - m + 1, then modify p so that $\tilde{p}(z) \mapsto (z - \lambda_1)^q \cdots (z - \lambda_m)$. Then we still have exactly $\lambda_1, \ldots, \lambda_m$ as roots, and now with m-1 linear factors each with multiplicity 1, and one linear factor with multiplicity q = n - m + 1, it follows that $\deg \tilde{p} = n$. Hence, for $m \leq n$, we have shown that here exists a polynomial $\tilde{p} \in \mathcal{P}_n(\mathbb{F})$ that has exactly $\lambda_1, \ldots, \lambda_m$ as its roots, as we aimed to do.

Exercise 5. Suppose m is a nonnegative integer, z_1, \ldots, z_{m+1} are distinct elements of \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$. Prove that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that

$$p(z_j) = w_j$$

for j = 1, ..., m + 1.

Proof. Let m, z_1, \ldots, z_{m+1} , and w_1, \ldots, w_{m+1} be as above. Define $T: \mathcal{P}_m(\mathbb{F}) \to \mathbb{F}^{m+1}$ by the mapping $Tp \mapsto (p(z_1), \ldots, p(z_{m+1})) = (w_1, \ldots, w_{m+1})$. We will prove existence and uniqueness by showing that T is a bijection, but first we have to show that T is a linear map. To show that T is a linear map we will show that it is closed under addition and scalar multiplication. Let $q, r \in \mathcal{P}_m(\mathbb{F})$. Then, $T(q+r) = ((q+r)(z_1), \ldots, (q+r)(z_{m+1}))$, since $(q+r) \in \mathcal{P}_m(\mathbb{F})$, it follows that T is closed under addition. Let $\lambda \in \mathbb{F}$. Then, $T(\lambda q) = (\lambda q(z_1), \ldots, \lambda q(z_{m+1})) = \lambda(q(z_1), \ldots, q(z_{m+1}))$, so we have that T is closed under scalar multiplication, hence $T \in \mathcal{L}(\mathcal{P}_m(\mathbb{F}), \mathbb{F}^{m+1})$; it remains to show that T is a bijection.

Injective. Because no $p \in \mathcal{P}_m(\mathbb{F})$ has more than m roots, it is impossible for any nonzero $p \in \mathcal{P}_m(\mathbb{F})$ to be mapped to the (m+1)tuple of zeros, hence null $T = \{0\}$. This implies that T is injective, and that these polynomials p are unique.

Surjective. By the FTLM we have,

dim range
$$T = \dim \mathcal{P}_m(\mathbb{F}) - \dim \text{null } T,$$

= $m + 1 - 0,$
= $\dim \mathbb{F}^{m+1}$

This implies that T is surjective, which guarantees that each list $w_1, \ldots, w_{m+1} \in \mathbb{F}^{m+1}$ will get hit by T. Hence, T is both injective, and surjective as we aimed to show. As a result of this map T, it follows that there exists a unique polynomial $p \in \mathcal{P}_m(\mathbb{F})$ such that $p(z_j) = w_j$ for $j = 1, \ldots, m+1$.

Section 5.A

Exercise 3. Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that range S is invariant under T.

Proof. Let S, T be as above, and let $u \in \text{range } S$. Then, there exists $v \in V$ such that u = Sv. To show that range S is invariant under T, we will show that $Tu \in \text{range } S$. Consider the following,

$$Tu = T(Sv),$$

 $= (TS)v,$
 $= (ST)v,$
 $= S(Tv) \in \text{range } S.$

Since u was arbitrarily chosen, we have that $Tu \in \text{range } S$, hence range S is invariant under T, as we aimed to prove.

Exercise 6. Prove or give a counterexample: if V is finite-dimensional and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Proof. Let V be finite-dimensional. We will proceed by contrapositive and show that $U \neq \{0\}$ and $U \neq V$ together imply that there exists an operator T on V such that U is not invariant under T. Let U be a subspace of V such that $U \neq \{0\}$ and $U \neq V$. Then, let $u \in U - \{0\}$. Since $u \neq 0$, it is linearly independent as a list, extend it to a basis of V, e.g., u, v_1, \ldots, v_m is a basis of V. Define a linear operator $T: V \to V$ by $a_1u + a_2u_1 + \cdots + u_{m+1}u_m \mapsto b_1w$ where $w \in V/U$. Notice that since $w \in V/U$, we know that $w \notin U$; moreover, we have that Tu = w which implies that U is not invariant under T, as we aimed to show.

Exercise 12. Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}))$ by

$$(Tp)(x) = xp'(x)$$

for all $x = \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

Proof. Let $q \in \mathcal{P}_4(\mathbb{F})$, and let $1, x, x^2, x^3, x^4$ be a basis of $\mathcal{P}_4(\mathbb{F})$, then

$$q(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4.$$

We can see that applying T to q yields $Tq = a_1x + 2a_2x^2 + 3a_3x^3 + 4a_4x^4$. Recall that linear maps are additive, therefore we have,

$$(Tq)(x) = T(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4),$$

$$= T(a_0) + T(a_1x) + T(a_2x^2) + T(a_3x^3) + T(a_4x^4),$$

$$= a_1x + 2a_2x^2 + 3a_3x^3 + 4a_4x^4,$$

$$= \lambda_0(0) + \lambda_1(a_1x) + \lambda_2(a_2x^2) + \lambda_3(a_3x^3) + \lambda_4(a_4x^4).$$

Hence, we can see that $\lambda_0 = 0$, $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$, $\lambda_4 = 4$ with corresponding eigenvectors that can be seen above. To be clear, we have eigenvectors $v_0 = 1$,

Exercise 17. Give an example of an operator $T \in \mathcal{L}(\mathbb{R}^4)$ such that T has no (real) eigenvalues.

Proof. My initial idea for this proof was to modify Example 5.8(a) from the text, because it presents a simple case to think about, but I couldn't think about what a linear operator looks like that does counterclockwise rotation in \mathbb{R}^4 . Fortunately, Example 5.8(a) presents an easily copy-able pattern, which we use here.

Consider $T \in \mathcal{L}(\mathbb{R}^4)$ such that

$$(x_1, x_2, x_3, x_4) \mapsto (-x_2, x_1, -x_4, x_3).$$

Then suppose T has a real eigenvalues, i.e., suppose there exists $\lambda \in \mathbb{R}$ such that $T(x_1, x_2, x_3, x_4) = \lambda(x_1, x_2, x_3, x_4)$ and one of x_i is not zero. This implies that $(-x_2, x_1, -x_4, x_3) = \lambda(x_1, x_2, x_3, x_4)$, hence we have the following system of equations,

$$\lambda x_1 + x_2 = 0,$$

 $\lambda x_2 - x_1 = 0,$
 $\lambda x_3 + x_4 = 0,$
 $\lambda x_4 - x_3 = 0.$

Multiplying the corresponding binomials yields,

$$(\lambda x_1 + x_2)(\lambda x_2 - x_1) = 0,$$

$$\lambda^2 x_1 x_2 - \lambda x_1 x_1 + \lambda x_2 x_2 - x_1 x_2 = 0,$$

$$\lambda^2 x_1 x_2 - (\lambda x_1) x_1 + (\lambda x_2) x_2 - x_1 x_2 = 0,$$

$$\lambda^2 x_1 x_2 + x_2 x_1 + x_1 x_2 - x_1 x_2 = 0,$$

$$\lambda^2 x_1 x_2 + x_1 x_2 = 0,$$

$$\lambda^2 x_1 x_2 = -x_1 x_2.$$

Mutatis mutandis to show that we also have $\lambda^2 x_3 x_4 = -x_3 x_4$. Since at least one of x_i is not zero, we have that $\lambda^2 = -1$ which is true if and only if $\lambda = i \notin T$ has no real eigenvalues, as we aimed to prove.

Exercise 21. Suppose $T \in \mathcal{L}(V)$ is invertible.

- (a) Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .
- (b) Prove that T and T^{-1} have the same eigenvectors.

Proof. Let $T \in \mathcal{L}(V)$ be invertible; recall that this is equivalent to T is a bijection.

Part (a). Let λ be as above. Recall, since \mathbb{F} is a field and $\lambda \neq 0$, there exists $\lambda^{-1} = 1/\lambda \in \mathbb{F}$ such that $\lambda \lambda^{-1} = 1$.

 \Rightarrow) Assume λ is an eigenvalue of T. Then for some nonzero $v \in V$ we have

$$Tv = \lambda v$$
.

Apply T^{-1} to each side and we see that,

$$Tv = \lambda v,$$

$$T^{-1}Tv = T^{-1}(\lambda v),$$

$$v = \lambda T^{-1}v,$$

$$\lambda^{-1}v = \lambda^{-1}\lambda T^{-1}v,$$

$$\lambda^{-1}v = T^{-1}v.$$

Notice that by definition, λ^{-1} is an eigenvalue of T^{-1} , as we aimed to show.

 \Leftarrow) Assume λ^{-1} is an eigenvalue of T^{-1} . Then for some nonzero $v \in V$ we have

$$T^{-1}v = \lambda^{-1}v.$$

Apply T to each side and we see that,

$$T^{-1}v = \lambda^{-1}v,$$

$$TT^{-1}v = T(\lambda^{-1}v),$$

$$v = \lambda^{-1}Tv,$$

$$\lambda v = \lambda \lambda^{-1}Tv,$$

$$\lambda v = Tv.$$

Notice that by definition, λ is an eigenvalue of T, thus λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} , as we aimed to show.

Part (b). A linear operator $T \in \mathcal{L}(V)$ either has eigenvalues, or it doesn't. If T has no eigenvalues, then it's trivial for the purposes of this question, so assume T has eigenvalues λ_i for $i = 0, 1, 2, \ldots$; recall that if dim V = n, then $i \leq n$, however if V is infinite-dimensional, then i has no upper bound. We continue to disregard the case where $\lambda_i = 0$, because by Theorem 5.6 $(T - 0 \cdot I) = T$ is not invertible, so there doesn't even exist a T^{-1} to have identical eigenvectors. Then, for some nonzero $v_i \in V$ we have

$$Tv_i = \lambda_i v_i$$
.

¹A good example for the infinite-dimensional case would be to alter Exercise 5.A.12 so that instead of $\mathcal{L}(\mathcal{P}_4(\mathbb{R}))$ the maps were drawn from $\mathcal{L}(\mathcal{P}(\mathbb{R}))$. It is easily seen that in this case the eigenvalues would be $\lambda_i = i$ for $i = 0, 1, 2, \ldots$

Consider one of sets of equations from the proof of part (a) but with the addition of our subscripts,

$$Tv_i = \lambda_i v_i,$$

$$T^{-1}Tv_i = T^{-1}\lambda_i v_i,$$

$$v_i = \lambda_i T^{-1} v_i,$$

$$\lambda_i^{-1} v_i = T^{-1} v_i.$$

Notice that for each pair $\lambda_i, \lambda_i^{-1}$ guaranteed by part (a), they have the same corresponding eigenvector v_i . It follows that for $\lambda_i \neq 0$, the maps T and T^{-1} have the same eigenvectors.