## Intervals, Transformations, and Slope Solution (version 107)

1. The function f is graphed below.



Indicate the following intervals using interval notation. Remember, you can use  $\cup$  between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-9, -5) \cup (2, 6)$  |
| Negative   | $(-5,2) \cup (6,8)$     |
| Increasing | $(-9, -6) \cup (-4, 5)$ |
| Decreasing | $(-6, -4) \cup (5, 8)$  |
| Domain     | (-9,8)                  |
| Range      | (-6,6)                  |

## Intervals, Transformations, and Slope Solution (version 107)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.











3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=20$  and  $x_2=74$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 20 & 63 \\ 39 & 20 \\ 63 & 74 \\ 74 & 39 \\ \hline \end{array}$$

$$\frac{f(74) - f(20)}{74 - 20} = \frac{39 - 63}{74 - 20} = \frac{-24}{54}$$

The greatest common factor of -24 and 54 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-4}{9}$$

2