

$$\begin{split} M(X) &= contents \ of \ memory \ location \ whose \ address \ is \ X \\ (i:j) &= bits \ i \ through \ j \end{split}$$

Figure 2.4 Partial Flowchart of IAS Operation

IAS Operations

	Symbolic							
Instruction Type	Opcode	Representation	Description					
	00001010	LOAD MQ	Transfer contents of register MQ to the					
			accumulator AC					
Data transfer	00001001	LOAD MQ,M(X)	Transfer contents of memory location X to					
			MQ					
	00100001	STOR M(X)	Transfer contents of accumulator to memory location X					
	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator					
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator					
	00000011	LOAD M(X)	Transfer absolute value of $M(X)$ to the accumulator					
	00000100	LOAD - M(X)	Transfer $- M(X) $ to the accumulator					
Unconditional	00001101	JUMP M(X,0:19)	Take next instruction from left half of $M(X)$					
branch	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$					
	00001111	JUMP+ M(X,0:19)	If number in the accumulator is nonnegative,					
Conditional branch			take next instruction from left half of $M(X)$					
	00010000	JUMP+ M(X,20:39)	If number in the accumulator is nonnegative,					
			take next instruction from right half of $M(X)$					
	00000101	ADD M(X)	Add M(X) to AC; put the result in AC					
	00000111	ADD M(X)	Add $ M(X) $ to AC; put the result in AC					
	00000110	SUB M(X)	Subtract $M(X)$ from AC; put the result in AC					
	00001000	SUB M(X)	Subtract $ M(X) $ from AC; put the remainder					
			in AC					
Arithmetic	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in AC, put least significant bits in MQ					
	00001100	DIV M(X)	Divide AC by M(X); put the quotient in MQ					
	00001100	21 (1/1(11)	and the remainder in AC					
	00010100	LSH	Multiply accumulator by 2; i.e., shift left one					
			bit position					
	00010101	RSH	Divide accumulator by 2; i.e., shift right one position					
Address modify	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12					
	00010010	51 OK 11(A,0.17)	rightmost bits of AC					
	00010011	STOR M(X,28:39)	Replace right address field at M(X) by 12					
		,	rightmost bits of AC					
П-1-1- О 1 П1 I ТС I (C -)								
Table 2.1 The IAS Instruction Set								

Table 2.1

The IAS
Instruction

Set

Commercial Computers UNIVAC

- 1947 Eckert and Mauchly formed the Eckert-Mauchly Computer Corporation to manufacture computers commercially
- UNIVAC I (Universal Automatic Computer)
 - First successful commercial computer
 - Was intended for both scientific and commercial applications
 - Commissioned by the US Bureau of Census for 1950 calculations
- The Eckert-Mauchly Computer Corporation became part of the UNIVAC division of the Sperry-Rand Corporation
- UNIVAC II delivered in the late 1950's
 - Had greater memory capacity and higher performance
- Backward compatible

- Was the major manufacturer of punched-card processing equipment
- Delivered its first electronic stored-program computer (701) in 1953
 - Intended primarily for scientific applications
- Introduced 702 product in 1955
 - Hardware features made it suitable to business applications
- Series of 700/7000 computers established IBM as the overwhelmingly dominant computer manufacturer

IBM

History of Computers Second Generation: Transistors

- Smaller
- Cheaper
- Dissipates less heat than a vacuum tube
- Is a *solid state device* made from silicon
- Was invented at Bell Labs in 1947
- It was not until the late 1950's that fully transistorized computers were commercially available

Table 2.2 Computer Generations

Generation	Approximate Dates	Technology	Typical Speed (operations per second)
1	1946–1957	Vacuum tube	40,000
2	1958–1964	Transistor	200,000
3	1965–1971	Small and medium scale integration	1,000,000
4	1972–1977	Large scale integration	10,000,000
5	1978–1991	Very large scale integration	100,000,000
6	1991-	Ultra large scale integration	1,000,000,000

Second Generation Computers

■ Introduced:

- More complex arithmetic and logic units and control units
- The use of high-level programming languages
- Provision of system software which provided the ability to:
 - load programs
 - move data to peripherals and libraries
 - perform common computations

- Appearance of the Digital
 Equipment Corporation (DEC)
 in 1957
- PDP-1 was DEC's first computer
- This began the mini-computer phenomenon that would become so prominent in the third generation

Table 2.3 Example Members of the IBM 700/7000 Series

Model Number	First Delivery	CPU Tech- nology	Memory Technology	Cycle Time (μs)	Memory Size (K)	Number of Opcodes	Number of Index Registers	Hardwired Floating- Point	I/O Overlap (Channels)	Instruction Fetch Overlap	Speed (relative to 701)
701	1952	Vacuum tubes	Electrostatic tubes	30	2–4	24	0	no	no	no	1
704	1955	Vacuum tubes	Core	12	4–32	80	3	yes	no	no	2.5
709	1958	Vacuum tubes	Core	12	32	140	3	yes	yes	no	4
7090	1960	Transistor	Core	2.18	32	169	3	yes	yes	no	25
7094 I	1962	Transistor	Core	2	32	185	7	yes (double precision)	yes	yes	30
7094 II	1964	Transistor	Core	1.4	32	185	7	yes (double precision)	yes	yes	50

Table 2.3 Example Members of the IBM 700/7000 Series

IBM
7094
Configuration

Figure 2.5 An IBM 7094 Configuration