S 1.1 HMIs for disabled persons

1) Intent detection VS somatosensory feedback

Intent detection: the feed-forward path

- · detecting signals out of the participant's body
- converting them into control commands for your robot

Somatosensory feedback

- detecting signals from the environment and the robot
- · converting them into bodily stimuli for your participant

2) Illustration (or similar)

S 1.1 HMIs for disabled persons

1) Intent detection VS somatosensory feedback

Intent detection: the feed-forward path

- · detecting signals out of the participant's body
- converting them into control commands for your robot

Somatosensory feedback

- detecting signals from the environment and the robot
- converting them into bodily stimuli for your participant

2) Illustration (or similar)

S 1.1 HMIs for disabled

3) Examples:

Sensors: e.g. Electromyography (EMG), Ultrasound, Force Myography

Stimulators: e.g. Tactile Pulses/Vibration, Force Feedback

E 2.1 Ground Truth Problem

State a	an example	problem	regarding	the	ground	truth	data	acquisition	for	amputees.
Propos	se a solutio	n.								

E 2.2 Offline VS Online Intent Detection

State the problem of offline vs. online intent detection. Compare it to a machine learning model that classifies CT scans from tumors into maligne and benigne. Give a reason, why offline intent detection does not work as well for e.g. human subjects with amputation.

S 2.2 Ground Truth Problem

- We cannot know if the person is performing the correct movement / providing the correct label as the limb is missing!
- They have no sensori-motor feedback any longer (proprioception)

Solution ideas:

- 1) "Think about performing the correct movement"
 - In case of congenitial amputation X
- 2) "Do the same movement with both sides"
 - Does not work for bilateral (both sides) amputation X
- 3) "Just produce signals patterns, which you can distinctly repeat"
- 4) Start with some signals and update model incrementally

S 2.3 Offline VS Online Detection

- Classically, you would first get huge amounts of data, then train and test your model (offline).
 Then your model would have a specific accuracy etc to classify maligne tumors.
- The difference: Your CT scans don't change, depending if they were correctly classified. The human user does! So we need a system that adapts to the user, but need to keep in mind that the user also adapts to the system (Coadaptation) and though his/her brain plasticity changes his/her biosignals. So in a way you have to models adapting to each other, which only works if the first model is "adaptable" => can incrementally learn (online)
- · Offline detection ignores the users interaction with the system!

Friedrich-Alexander-Universität Erlangen-Nürnberg

Eigenvalues & Eigenvectors (basic)

Intuition (2D transformations)

Knorrenschild. Mathematik F. Ingenieure 2. C

What does a matrix $A \in \mathbb{R}^{n \times n}$ generally do to a vector $\mathbf{v} \in \mathbb{R}^n$?

$$Ax = y$$

⇒ Rotation and Scaling

Examples:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (no transformation),
$$B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
 (scaling),
$$C = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$
 (90° rotation clockwise)

$$A_{\varphi} = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \text{ (general rotation matrix)}$$

What are Eigenvectors and Eigenvalues of a Matrix $A \in \mathbb{R}^{d \times d}$?

Let A be a $n \times n$ -Matrix. $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $x \in \mathbb{C}^n \setminus \{o\}$

$$Ax = \lambda x$$
.

 \boldsymbol{x} is then called eigenvector of \boldsymbol{A} .

Friedrich-Alexander-Universität Erlangen-Nürnberg

E 2.4 Eigenvalues & Eigenvectors - Intuition

Sketch or describe the Eigenvector and –value for the matrix performing this geometric transformation.

S 2.4 Eigenvalues & Eigenvectors - Intuition

x is any vector with $x_2 = 0$

 λ for these vectors is 1

for $\varphi \neq b\pi$, with $b \in \mathbb{Z}$, no eigenvalue or -vector

All vectors are eigenvectors. λ is scaling coefficent