

Convergence Properties of Iteratively Coupled Surface-Subsurface Models

Background: Coupled Environmental Problems

- Applications: environmental & climate science
- Problem type: coupled partial differential equations
- Research aim: understand and improve existing coupling approaches
- Today: coupled surface-subsurface flow
 - Flood prediction
 - Water management projects
 - Terrestrial water cycle modelling

Credit: Joshua J. Cotton (Unsplash), Patrick Kelley (CC BY 2.0)

A 2D-1D Model Problem

• Subsurface flow: Richards' equation on $\Omega \subset \mathbb{R}^d$

$$\begin{cases} c(\psi)\partial_t \psi + \nabla \cdot \underbrace{\left(-K(\psi)\nabla(\psi+z)\right)}_{=:\forall(\psi)} = 0 & \text{on } (0,T] \times \Omega, \\ + \text{B.C., I.C.} \end{cases}$$

• Surface flow: Shallow water equations on $\Gamma \subset \mathbb{R}^{d-1}$

$$\begin{cases} \partial_t h + \partial_x (hu) = s(t,x) + r(t,x) & \text{on } (0,T] \times \Gamma, \\ + \text{ equation for } u, \text{ B.C., I.C.} \end{cases}$$

• Coupled via boundary conditions on Γ

$$|\psi|_{\Gamma} = h$$
, $s = \mathbf{v}(\psi)|_{\Gamma} \cdot \mathbf{n}$ on $(0, T] \times \Gamma$.

 Γ $\partial \Omega$

Coupling Iteration

Given an initial guess $h^0(t,x)$, compute **sequentially** in each iteration k=1,2,...:

$$c(\psi^{k})\partial_{t}\psi^{k} + \nabla \cdot \mathbf{v}(\psi^{k}) = 0 \quad \text{on } (0, T] \times \Omega,$$

$$\psi^{k}\Big|_{\Gamma} = h^{k-1} \quad \text{on } [0, T] \times \Gamma,$$
(1a)

$$\partial_{t}\tilde{h}^{k} + \partial_{x}(\tilde{h}^{k}u^{k}) = s^{k} + r \quad \text{on } (0,T] \times \Gamma,$$

$$s^{k} = \mathbf{v}(\psi^{k})\Big|_{\Gamma} \cdot \mathbf{n} \quad \text{on } [0,T] \times \Gamma.$$
(1b)

Relaxation step:

$$h^{k}(t,x) = \omega \tilde{h}^{k} + (1-\omega)h^{k-1}, \quad \omega \in (0,1].$$
 (1c)

Our Research Questions

Goal: Analyze this coupling iteration.

- Does it converge?
- At which rate?
- Can we accelerate convergence by picking a good ω ?

Idea: Apply fully discrete analysis technique¹ for linear problems to this problem!

¹Azahar Monge and Philipp Birken. "On the Convergence Rate of the Dirichlet–Neumann Iteration for Unsteady Thermal Fluid–Structure Interaction" Comput. Mech. 62.3 (Sept. 2018), pp. 525-541, DOI: 10.1007/s00466-017-1511-3.

Simplifying the Model Problem

- 1. Reduce dimension: Vertical processes matter most
- 2. Linearize: Assume $c(\psi) = c > 0$, $K(\psi) = K > 0$

Given $h^0(t)$, compute sequentially for k = 1, 2, ...:

$$c\frac{\partial \psi^{k}}{\partial t} - K \frac{\partial^{2}}{\partial z^{2}} \psi^{k} = 0 \quad \text{on } (0, T] \times \Omega$$

$$\psi^{k} \Big|_{z=t} = h^{k-1} \quad \text{on } [0, T]$$
(2a)

$$\frac{d\tilde{h}^k}{dt} = -K \left. \partial_z \left(\psi^k + z \right) \right|_{z=L} \quad \text{on (0, T]}$$
 (2b)

Relaxation step:

$$h^{k}(t) = \omega \tilde{h}^{k}(t) + (1 - \omega)h^{k-1}(t)$$
 (2c)

Discretization in Space & Time

- Consider coupled system without coupling iteration
- Space: Linear finite elements for subsurface flow
- Time: Implicit Euler (IE) method in both solvers $\Rightarrow \vec{\psi}^n \in \mathbb{R}^{M-1}, h^n \in \mathbb{R}$

$$\begin{bmatrix} B_1 & B_2 \\ B_2^T & B_3 + 1 \end{bmatrix} \begin{pmatrix} \vec{\psi}^n \\ h^n \end{pmatrix} = - \begin{bmatrix} M_1 & M_2 \\ M_2^T & M_3 + 1 \end{bmatrix} \begin{pmatrix} \vec{\psi}^{n-1} \\ h^{n-1} \end{pmatrix} + \begin{pmatrix} 0 \\ -\Delta t K \end{pmatrix}$$

- $B_i := M_i + \Delta t A_i$ mass + stiffness matrices
- Coupling iteration: splitting of this system!

Fully Discrete Coupling Iteration

Given $h^{n,0}$, compute sequentially for k = 1, 2, ...:

$$B_1 \vec{\psi}^{n,k} = -B_2 h^{n,k-1} + M_1 \vec{\psi}^{n-1} + M_2 h^{n-1}$$
 (3a)

$$\tilde{h}^{n,k} = -B_2^T \vec{\psi}^{n,k} - B_3 h^{n,k-1} + M_2 \vec{\psi}^{n-1} + (M_3 + 1)h^{n-1} - \Delta t K$$
 (3b)

Relaxation step:

$$h^{n,k} = \omega \tilde{h}^{n,k} + (1 - \omega)h^{n,k-1}$$
(3c)

Discrete Analysis

Idea 1: Express everything in terms of h (scalar!), giving a matrix $S \in \mathbb{R}^{1 \times 1}$

$$h^{n,k} = \underbrace{(\omega S + (1 - \omega))}_{=:\Sigma(\omega)} h^{n,k-1} + \xi^{n-1}.$$

Convergence governed by $|\Sigma(\omega)|$: ("Fundamental Thm. of Numerical Linear Algebra!" — P. Birken)

Explicit Value for S

Idea 2: Compute S explicitly, using knowledge about the discretization matrices. $(B_1 \text{ sym. tridiag. Toeplitz!})^2$

$$S := B_2^T B_1^{-1} B_2 - B_3 = b^2 \alpha - \frac{a}{2}$$

with

$$a := \frac{2}{3}c\Delta z + \frac{2K\Delta t}{\Delta z}, \quad b := \frac{1}{6}c\Delta z - \frac{K\Delta t}{\Delta z}, \quad \alpha := \frac{\Delta z}{L} \sum_{j=1}^{M-1} \frac{\sin^2\left(\frac{j\pi\Delta z}{L}\right)}{\frac{a}{2} - b\cos\left(\frac{j\pi\Delta z}{L}\right)}.$$

²Azahar Monge and Philipp Birken. "On the Convergence Rate of the Dirichlet–Neumann Iteration for Unsteady Thermal Fluid–Structure Interaction". Comput. Mech. 62.3 (Sept. 2018), pp. 525–541. DOI: 10.1007/s00466-017-1511-3.

|S| for different parameter choices

Varying c, K, fixed $\Delta z = 1/20$, $\Delta t = 10^{-1}$. Fixed c = K = 1, varying grid sizes.

Fast, slow, and no convergence possible; smaller $\Delta t, \Delta z, c, K$ give faster convergence. → Does this hold in the nonlinear, 2D-1D case?

Numerical Results

Notes on the Implementation

- Implicit Euler in time, Linear FE & FV in space
- Python bindings of DUNE (subsolvers) + preCICE (coupling)³
- Termination criterion based on residual:

$$\operatorname{res}^{n,k} := \left\| \tilde{h}^{n,k} - h^{n,k-1} \right\|_2 < \operatorname{TOL} = 10^{-8}$$

Experimental convergence factor:

$$CR = \frac{1}{K - 2} \sum_{k=2}^{K - 1} \frac{res^{n,k}}{res^{n,k - 1}}$$

• Expected convergence factor: $S(\Delta t, \Delta z, \overline{c(\psi^n)}, \overline{K(\psi^n)})$

³Code available at: https://gitlab.maths.lu.se/nuan/projects/coupled-hydrology

Case 1: Coupled Hillslope

- Large-scale experiment based on [2]
- Uniform rainfall rate, cut off after 200 min → outflow at left boundary!
- Soil: homogeneous silt loam

Case 1: Results

 \rightarrow |S| captures convergence factor decrease due to changing c,K! Nonlinear effects not captured.

Case 2: Coupled Drainage Trench

- Small-scale experiment based on [3]
- Flat water surface, filled at rate 10 cm h⁻¹ for 2 h

Soil water potential ϕ after 3 h.

Case 2: Observed Grid Dependence

 \rightarrow No dependence on Δx ; Qualitative differences for $\Delta z, \Delta t$ dependence!

Summary

- Partitioned, iteratively coupled surface-subsurface flow model
- Richards' equation + shallow water equations
- Linear, 1D-0D analysis for a highly nonlinear, 2D-1D problem
- Merits: we can explain fast convergence, dynamic behavior due to changing c, K
- Limits:
 - nonlinear effects not captured
 - qualitative & quantitative differences between analysis and experiments
- In practice, iterations converge quickly; no acceleration necessary!

Full paper on arXiV!⁴

Thank You!

References

- [1] Azahar Monge and Philipp Birken. "On the Convergence Rate of the Dirichlet–Neumann Iteration for Unsteady Thermal Fluid–Structure Interaction". In: Comput. Mech. 62.3 (Sept. 2018), pp. 525–541. DOI: 10.1007/s00466-017-1511-3.
- [2] Reed M. Maxwell et al. "Surface-Subsurface Model Intercomparison: A First Set of Benchmark Results to Diagnose Integrated Hydrology and Feedbacks". In: *Water Resour. Res.* 50.2 (2014), pp. 1531–1549. ISSN: 1944-7973. DOI: 10.1002/2013WR013725.
- [3] Florian List and Florin A. Radu. "A Study on Iterative Methods for Solving Richards' Equation". In: Comput Geosci 20.2 (Apr. 2016), pp. 341–353. ISSN: 1573-1499. DOI: 10.1007/s10596-016-9566-3.
- [4] V. S., Philipp Birken, and Andreas Dedner. Convergence Properties of Iteratively Coupled Surface-Subsurface Models. Submitted. arXiv: 2408.12582.

Appendix

Exploring 1D-0D Results

Varying c, K, fixed $\Delta z = 1/20$, $\Delta t = 10^{-1}$.

Fixed c = K = 1, varying grid sizes.

 $\omega_{\rm opt} = 1/(1-S)$ for different parameter choices.

Constitutive Equations: van Genuchten Model

$$c(\psi) = \begin{cases} \alpha(\theta_{S} - \theta_{R})(n_{G} - 1)(\alpha|\psi|)^{n_{G} - 1}(1 + (\alpha|\psi|)^{n_{G}})^{(1/n_{G} - 2)}, & \psi \leq 0, \\ 0, & \psi > 0. \end{cases}$$

$$K(\psi) = \begin{cases} K_{S}\sqrt{\theta(\psi)} \left[1 - \left(1 - \theta(\psi)^{\frac{n_{G}}{n_{G} - 1}}\right)^{\frac{n_{G} - 1}{n_{G}}} \right]^{2}, & \psi \leq 0, \\ K_{S}, & \psi > 0. \end{cases}$$

Material Parameters

Parameter		Unit	Beit-Netofa Clay	Silt Loam	Sandy Loam
Alpha	α	m ⁻¹	0.152	0.423	100.0
Pore-size distributions	n_G	-	1.17	2.06	2.0
Residual water content	θ_R	-	0.0	0.131	0.2
Saturated water content	θ_{S}	-	0.446	0.396	1.0
Sat. hydraulic conductivity	$K_{\rm s}$	m/s	9.49×10^{-9}	5.74×10^{-7}	$1.16 \times 10^{\{-5,-6,-7\}}$
Max. hydraulic capacity	c	m ⁻¹	7.45×10^{-3}	0.0449	30.6

The van Genuchten parameters used in the nonlinear numerical experiments. The last two rows state maxima for K and c for all ψ according to the van Genuchten model.

Simulation Parameters: Hillslope

Parameter		Unit	Sandy Loam	Silt Loam
Time step size	Δt	S	60	1
Horizontal mesh size	Δx	m	80	80
Vertical mesh size	Δz	m	0.2	0.2
Manning's coefficient	n_M	m ^{1/3} min	3.31×10^{-3}	3.31×10^{-3}
Bed slope	S_f	%	0.05	0.05
Rainfall rate	r	m/min	3.30×10^{-4}	3.30×10^{-4} , 3.30×10^{-5}
		·		3.30×10^{-5}

Simulation parameters for the coupled hillslope experiments.

