差分方法 II

lab1

Wide stencil finite difference method 算例

陈伟

1901110037

2020年5月14日

目录

1	问题描述	2
2	宽模版方法	6

1 问题描述

用宽模版的有限差分法求解 2D 的 Monge-Ampère 方程:

$$\begin{cases} \det D^2 u = f & \text{in } \Omega \subset \mathbb{R}^2 \\ u = g & \text{on } \partial \Omega \end{cases}$$

其中计算区域为单位正方形, 也即是 $\Omega = (0,1)^2$. 令 $\boldsymbol{x} = (x,y)^T, \boldsymbol{x}_0 = (0.5,05)$. 对于如下三个例子进行数值实验:

• Smooth and radial example:

$$u(\mathbf{x}) = \exp(|\mathbf{x}|^2/2), \quad f(\mathbf{x}) = (1+|\mathbf{x})|^2 \exp(|\mathbf{x}|^2).$$

• C^1 example:

$$u(\mathbf{x}) = \frac{1}{2} \left((|\mathbf{x} - \mathbf{x}_0| - 0.2)^+ \right)^2, \quad f(\mathbf{x}) = \left(1 - \frac{0.2}{|\mathbf{x} - \mathbf{x}_0|} \right)^+.$$

• Twice differentiable in the interior domain, but has unbounded gradient near the boundary point (1,1):

$$u(x) = -\sqrt{2 - |x|^2}, \quad f(x) = 2(2 - |x|^2)^{-2}.$$

边界 g(x) 可以通过真解获得. 分别用 explicit solution method 和 Newton's method 来解这个离散的非线性方程. 报告中应包含不同模版的 L^{∞} 误差.

2 宽模版方法

令

$$\mathrm{MA}[\varphi]\left(x_{0}\right) = \min_{\left(w_{1}, \cdots, w_{d}\right) \in V} \left[\prod_{i=1}^{d} \left(\frac{\partial^{2} \varphi}{\partial w_{i}^{2}}\left(x_{0}\right)\right)^{+} - \sum_{i=1}^{d} \left(\frac{\partial^{2} \varphi}{\partial w_{i}^{2}}\left(x_{0}\right)\right)^{-}\right]$$

在 φ 是凸函数下有:

$$\mathrm{MA}[\varphi] = \det D^2 \varphi$$

对于凸区域 Ω , 以及网格剖分, 给定 $\mathbf{x}_h \in \Omega$, 以及方向 \mathbf{e} , 有 $\rho_{\pm} \in (0,1]$ 使得 $\mathbf{x}_h \pm \rho_{\pm} h \mathbf{e} \in \partial \Omega \cup \bar{\Omega}_h$. 当 $\mathbf{x}_h \pm h \mathbf{e}$ 落在 Ω_h 内部网格点时, ρ_{\pm} 均为 1; 当落在外边界时, ρ_{\pm} 为使得 $\mathbf{x}_h \pm \rho_{\pm} h \mathbf{e}$ 收缩回边界的比例. 令

$$\Delta_e u_h(x_h) = \frac{2}{(\rho_+ + \rho_-)|e|^2 h^2} \left[\frac{u_h(x_n + \rho_+ he) - u_h(x_h)}{\rho_+} - \frac{u_h(x_h) - u_h(x_n - \rho_- he)}{\rho_-} \right]$$