TEST REPORT

Reference No. : WTS16S0756109E

FCC ID : WUI-LM55931

Applicant.....: Winplus Co., Ltd.

Address...... Suites 6-11, 7th Floor, Corporation Park, 11 On La, Shatin, Hong

Kong.

Manufacturer : The same as above

Address...... The same as above

Product Name : Bluetooth Module

Model No...... : WMD410A01SR6A0

Standards...... FCC CFR47 Part 15 Section 15.247:2015

Date of Receipt sample : Jul. 18, 2016

Date of Test Jul. 19 – Aug. 10, 2016

Date of Issue...... : Aug. 12, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by: Approved by:

de Z

Zero Zhou / Tested Engineer

Philo Zhong / Manager

Tablo zhoux

Contents

	COVER BACE	Page					
1 2	COVER PAGECONTENTS						
3	REVISION HISTORY						
4	GENERAL INFORMATION						
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST						
5	EQUIPMENT USED DURING TEST						
	5.1 EQUIPMENTS LIST	8					
6	TEST SUMMARY	9					
7	CONDUCTED EMISSION	10					
	7.1 E.U.T. OPERATION	10 10					
8	RADIATED EMISSIONS	13					
	8.1 EUT OPERATION						
9	BAND EDGE MEASUREMENT						
	9.1 TEST PRODUCE	20					
10	BANDWIDTH MEASUREMENT	22					
	10.1 TEST PROCEDURE						
11	MAXIMUM PEAK OUTPUT POWER						
12	11.1 TEST PROCEDURE	24					
14	12.1 Test Procedure						
	12.2 TEST RESULT						
13	ANTENNA REQUIREMENT	28					
14	RF EXPOSURE	29					
	14.1 REQUIREMENTS						
15	PHOTOGRAPHS -MODEL WMD410A01SR6A0 WITH HOST TEST SETUP PHOTO						
Wal	15.1 CONDUCTED EMISSION AT TEST SITE 2#						

Reference No.: WTS16S0756109E Page 3 of 37

16	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	35
	16.1	PHOTOGRAPHS -HOST EXTERNAL PHOTOS	35
	16.2	PHOTOGRAPHS-HOST INTERNAL PHOTOS	36
	16.3	PHOTOGRAPHS-MODEL WMD410A01SR6A0 PHOTOS	37

Reference No.: WTS16S0756109E Page 4 of 37

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S0756109E	Jul. 18, 2016	Jul. 19 – Aug. 10, 2016	Aug. 12, 2016	original	-	Valid

Reference No.: WTS16S0756109E Page 5 of 37

4 General Information

4.1 General Description of E.U.T.

Product Name: Bluetooth Module

Model No.: WMD410A01SR6A0

Model Difference: N/A

Host Name: Smart LED Light Strip

Host Brand: Winplus

Host Model No.: LM55931

Operation Frequency: 2402MHz ~ 2480MHz, separated by 2MHz,40 channels in total

The lowest oscillator: 32.768KHz

Type of modulation: GFSK(BLE only)

4.2 Details of E.U.T.

Technical Data: 2.0-3.6VDC

4.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2440MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207&15.209

Test Item	Test Mode
Conducted Emissions	Communication
Radiated Emissions	Communication

Reference No.: WTS16S0756109E Page 6 of 37

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October. 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions at Mains Terminals Disturbance Voltage(1#)									
Item	Equipment	Manufacturer	Model No.	Model No. Serial No.		Calibration Due Date			
1	EMI Test Receiver	R&S	ESCI	100947	Sep.14, 2015	Sep.13, 2016			
2	LISN	R&S	ENV216	100115	Sep.14, 2015	Sep.13, 2016			
3	Cable	Тор	TYPE16(3.5M)	-	Sep.14, 2015	Sep.13, 2016			
Cond	Conducted Emissions at Mains Terminals Disturbance Voltage(2#)								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMI Test Receiver	R&S	ESCI	101155	Sep.14, 2015	Sep.13, 2016			
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.14, 2015	Sep.13, 2016			
3	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.14, 2015	Sep.13, 2016			
4	Cable	Laplace	RF300	-	Sep.14, 2015	Sep.13, 2016			
3m Se	mi-anechoic Chambe	er for Radiation(1#)	1					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Spectrum Analyzer	pectrum Analyzer R&S FSP 100091		100091	Apr. 08, 2016	Apr. 07, 2017			
2	Amplifier Agilent		8447D	2944A10178	Jan. 13, 2016	Jan. 12, 2017			
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct, 17, 2015	Oct, 16, 2016			
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 09, 2016	Apr. 08, 2017			
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep. 14, 2015	Sep. 13, 2016			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 09, 2016	Apr. 08, 2017			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G26	2004	Apr. 13, 2016	Apr. 12, 2017			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr. 13, 2016	Apr. 12, 2017			
9	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr. 13, 2016	Apr. 12, 2017			
3m Se	mi-anechoic Chambe	er for Radiation(2#)	1					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	Apr. 13, 2016	Apr. 12, 2017			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr. 09, 2016	Apr. 09, 2017			
3	Amplifier	ANRITSU	MH648A	M43381	Apr. 13, 2016	Apr. 12, 2017			
4	Cable	HUBER+SUHNER	CBL2	525178	Apr. 13, 2016	Apr. 12, 2017			

Reference No.: WTS16S0756109E Page 8 of 37

Measurement Uncertainty 5.2

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
B 11 10 1 5 1 1 1 1	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

Test Equipment CalibrationAll the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0756109E Page 9 of 37

6 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a) 15.209(a)	С
Conducted Emissions	15.207(a)	С
Bandwidth	15.247(a)(2)	С
Maximum Peak Output Power	15.247(b)(3),(4)	С
Power Spectral Density	15.247(e)	С
Band Edge	15.247(d)	С
Antenna Requirement	15.203	С
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	С
Note: C=Compliance; NC=Not Comp	liance; NT=Not Tested; N/A	Not Applicable.

Reference No.: WTS16S0756109E Page 10 of 37

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013&ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB μ V between 0.5MHz & 5MHz 60 dB μ V between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Live line:

Neutral line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1539	41.09	10.29	51.38	65.78	-14.40	QP	
2	0.1539	22.80	10.29	33.09	55.78	-22.69	AVG	
3	0.1980	35.56	10.26	45.82	63.69	-17.87	QP	
4	0.1980	17.81	10.26	28.07	53.69	-25.62	AVG	
5	0.3060	28.11	10.28	38.39	60.08	-21.69	QP	
6	0.3060	14.84	10.28	25.12	50.08	-24.96	AVG	
7	0.4420	21.96	10.26	32.22	57.02	-24.80	QP	
8	0.4420	11.20	10.26	21.46	47.02	-25.56	AVG	
9	16.8140	28.63	10.98	39.61	60.00	-20.39	QP	
10	16.8140	14.20	10.98	25.18	50.00	-24.82	AVG	
11	22.6860	31.11	11.14	42.25	60.00	-17.75	QP	
12	22.6860	17.50	11.14	28.64	50.00	-21.36	AVG	

Reference No.: WTS16S0756109E Page 13 of 37

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013&ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, ^{\circ}\text{RH}$ Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

	•	
Below 30MHz		
	Sweep Speed IF Bandwidth Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S0756109E Page 16 of 37

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. New battery was used during test.

8.5 Summary of Test Results

Test Frequency: 32.768KHz~30MHz

The measurements were more than 20 dB below the limit and not reported

Test Frequency: 30MHz ~ 18GHz

Frequency	Receiver	Turn	RX An	tenna	Corrected	Corrected			
	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK(BLE) Low Channel									
309.36	21.97	QP	263	1.7	Н	10.21	32.18	46.00	-13.82
309.36	19.48	QP	1	1.8	V	10.21	29.69	46.00	-16.31
4804.00	52.05	PK	360	1.5	V	-1.06	50.99	74.00	-23.01
4804.00	43.43	Ave	360	1.5	V	-1.06	42.37	54.00	-11.63
7206.00	53.82	PK	74	1.5	Н	1.39	55.21	74.00	-18.79
7206.00	43.33	Ave	74	1.5	Н	1.39	44.72	54.00	-9.28
2317.48	45.35	PK	142	1.8	V	-13.06	32.29	74.00	-41.71
2317.48	37.66	Ave	142	1.8	V	-13.06	24.60	54.00	-29.40
2356.35	44.82	PK	226	1.2	Н	-13.32	31.50	74.00	-42.50
2356.35	36.96	Ave	226	1.2	Н	-13.32	23.64	54.00	-30.36
2493.90	42.39	PK	262	1.7	V	-12.98	29.41	74.00	-44.59
2493.90	37.72	Ave	262	1.7	V	-12.98	24.74	54.00	-29.26

Frequency	Receiver	Turn	RX An	tenna	Corrected	Corrected			
	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK(BLE) Middle Channel								
309.36	21.50	QP	332	1.1	Н	10.21	31.71	46.00	-14.29
309.36	20.99	QP	111	1.7	V	10.21	31.20	46.00	-14.80
4880.00	53.72	PK	223	2.0	V	-0.59	53.13	74.00	-20.87
4880.00	40.40	Ave	223	2.0	V	-0.59	39.81	54.00	-14.19
7320.00	52.09	PK	315	1.4	Н	2.25	54.34	74.00	-19.66
7320.00	44.45	Ave	315	1.4	Н	2.25	46.70	54.00	-7.30
2332.83	46.36	PK	13	1.1	V	-13.21	33.15	74.00	-40.85
2332.83	39.89	Ave	13	1.1	V	-13.21	26.68	54.00	-27.32
2374.56	44.67	PK	96	1.8	Н	-13.05	31.62	74.00	-42.38
2374.56	37.79	Ave	96	1.8	Н	-13.05	24.74	54.00	-29.26
2486.01	42.13	PK	228	1.2	V	-13.10	29.03	74.00	-44.97
2486.01	36.89	Ave	228	1.2	V	-13.10	23.79	54.00	-30.21

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK(BLE) High Channel								
309.36	20.64	QP	236	1.4	Н	10.21	30.85	46.00	-15.15
309.36	18.40	QP	65	1.0	V	10.21	28.61	46.00	-17.39
4960.00	52.33	PK	219	1.5	V	-0.25	52.08	74.00	-21.92
4960.00	41.41	Ave	219	1.5	V	-0.25	41.16	54.00	-12.84
7440.00	53.71	PK	97	1.5	Н	2.81	56.52	74.00	-17.48
7440.00	43.61	Ave	97	1.5	Н	2.81	46.42	54.00	-7.58
2326.97	45.15	PK	208	1.2	V	-13.20	31.95	74.00	-42.05
2326.97	39.18	Ave	208	1.2	V	-13.20	25.98	54.00	-28.02
2389.00	42.69	PK	270	2.0	Н	-13.15	29.54	74.00	-44.46
2389.00	36.98	Ave	270	2.0	Н	-13.15	23.83	54.00	-30.17
2491.88	42.89	PK	204	1.7	V	-13.05	29.84	74.00	-44.16
2491.88	38.05	Ave	204	1.7	V	-13.05	25.00	54.00	-29.00

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0756109E Page 20 of 37

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits

specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

9.2 Test Result

Band edge-left side

Band edge-right side

Reference No.: WTS16S0756109E Page 22 of 37

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result

Operation mode	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low channel	0.699	1.086
Middle channel	0.697	1.078
High channel	0.695	1.074

Test result plot as follows:

Mode: Low channel

Mode: Middle channel

Mode: High channel

Reference No.: WTS16S0756109E Page 24 of 37

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 10MHz. VBW = 10MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

Maximum Peak Output Power (dBm)						
Low channel Middle channel High channel						
-2.71 -2.59 -3.13						
Limit						
1W/30dBm						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

Reference No.: WTS16S0756109E Page 26 of 37

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

12.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Power Spectral Density						
Low channel Middle channel High channel						
-15.18 -14.90 -15.48						
Limit						
8dBm per 3kHz						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one wire antenna, the gain is 1.66dBi. meets the requirements of FCC 15.203.

Reference No.: WTS16S0756109E Page 29 of 37

14 RF Exposure

Test Requirement: FCC Part 1.1307
Test Mode: FCC Part 2.1091

KDB 447498 D01 General RF Exposure Guidance v06

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz) Electric Field Strength (E) (V/m		Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S0756109E Page 30 of 37

14.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm²)
1.66	1.466	-2.59	0.551	0.000161	1

15 Photographs – Model WMD410A01SR6A0 with Host Test Setup Photos

15.1 Conducted Emission at test site 2#

15.2 Radiated Emission

Test frequency from 30MHz to 1GHz Test Site 2#

Reference No.: WTS16S0756109E Page 33 of 37

Reference No.: WTS16S0756109E Page 34 of 37

16 Photographs - Constructional Details

16.1 Photographs -Host External Photos

16.2 Photographs-Host Internal Photos

16.3 Photographs-Model WMD410A01SR6A0 Photos

====End of Report=====