# Introduction to Linear Algebra and Convex Optimization

Dr Amit Sethi, IIT Bombay

## Module objectives

- Become familiar with linear algebra concepts
- Understand how dimensions play a role in linear algebra
- Understand types of functions
- Appreciate optimization objectives
- Understand the basics of convex optimization

#### Outline

- Scalars, vectors, matrices, tensors
- Linear operations on vectors and matrices
- Vector and matrix properties
- Functions and derivatives
- Optimizing a continuous function

### Scalars, vectors, matrices and tensors

$$x; x \in \mathbb{R}$$

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$$
$$X \in \mathbb{R}^{M \times N}$$

Vectors, matrices, and tensors represent multi-dimensional ordered data. Bold-face is used for vectors and matrices.



$$\begin{bmatrix} x_{111} & x_{121} & x_{131} \\ x_{211} & x_{221} & x_{231} \end{bmatrix}$$

$$\begin{bmatrix} x_{112} & x_{122} & x_{132} \\ x_{212} & x_{222} & x_{232} \end{bmatrix}$$

$$X \in \mathbb{R}^{L \times M \times N \times \cdots}$$

## An example from videos



- R-value (red) of one pixel is a scalar
- RGB values of one pixel is a vector
- A row of R-values is a vector
- A frame of R-values is a matrix
- A frame of RGB values is a 3-d tensor
- A video of R-value frames is a 3-d tensor
- A video of RGB values and several frames is a 4-d tensor

### N-D array

- 1-d, 2-d, and higher-d arrays are used to represent vectors, matrices, and tensors
- Sometimes n-d arrays are also used to represent scalars
- An array is a data structure, not a mathematical entity
- 1-d array is used interchangeably with a vector
- 2-d array is used interchangeably with a matrix

#### Outline

- Scalars, vectors, matrices, tensors
- Linear operations on vectors and matrices
- Vector and matrix properties
- Functions and derivatives
- Optimizing a continuous function

## Scalar multiplication

$$a\mathbf{x} = \begin{bmatrix} ax_{11} & ax_{12} & ax_{13} \\ ax_{21} & ax_{22} & ax_{23} \end{bmatrix}$$

Scalar scales.

$$a\mathbf{x} = \begin{bmatrix} ax_1 \\ ax_2 \end{bmatrix} \qquad \begin{bmatrix} ax_{111} & ax_{121} & ax_{131} \\ ax_{211} & ax_{221} & ax_{231} \end{bmatrix}$$
$$\begin{bmatrix} ax_{112} & ax_{122} & ax_{132} \\ ax_{212} & ax_{222} & ax_{232} \end{bmatrix}$$

## Adding a scalar to a vector or a matrix

Not valid in mathematics, but used in programming and ML

• How it is denoted sometimes: x + a

Mathematically correct operation:

$$x + a \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + a \\ x_2 + a \end{bmatrix}$$

## Point-wise operations require two tensors of the same size

Addition and subtraction require two matrices (or vectors) of the same size:  $\mathbb{R}^{M \times N \times \cdots} \times \mathbb{R}^{M \times N \times \cdots} \to \mathbb{R}^{M \times N \times \cdots}$ 

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}; \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \end{bmatrix}$$

Point-wise multiplication is not valid in mathematics, but is important in ML, where it can be used for masking:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \odot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 y_1 \\ x_2 y_2 \end{bmatrix}$$

## Matrix transpose

Transposition is exchange of rows and columns of a matrix (or a vector)

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}; \qquad X^T = \begin{bmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \\ x_{13} & x_{23} \end{bmatrix}$$

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \quad \boldsymbol{x}^T = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

Permuting dimensions for higher-dimensional tensors is defined in some python libraries

## Matrix multiplication

Matrix multiplication requires matching of the columns of one matrix with the rows of another:  $\mathbb{R}^{M\times N}\times\mathbb{R}^{N\times P}\to\mathbb{R}^{M\times P}$ 

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}; \quad Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \\ y_{31} & y_{32} \end{bmatrix}$$

$$\mathbf{XY} = \begin{bmatrix} x_{11}y_{11} + x_{12}y_{21} + x_{13}y_{31} & x_{11}y_{12} + x_{12}y_{22} + x_{13}y_{32} \\ x_{21}y_{11} + x_{22}y_{21} + x_{23}y_{31} & x_{21}y_{12} + x_{22}y_{22} + x_{23}y_{32} \end{bmatrix}$$

$$\boldsymbol{x}.\,\boldsymbol{y} = \boldsymbol{x}^T\boldsymbol{y} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1y_1 + x_2y_2$$

$$x. x = x^T x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2$$

In general:  $AB \neq BA$ 

#### Outline

- Scalars, vectors, matrices, tensors
- Linear operations on vectors and matrices
- Vector and matrix properties
- Functions and derivatives
- Optimizing a continuous function

#### Vector norm

- L<sub>p</sub> norm of a vector:  $\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}$
- By default, norm means L<sub>2</sub> norm, which is the length of a vector (or Euclidean distance)

$$\sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$

- L<sub>1</sub> norm is the sum of absolute values (or Manhattan distance)
  - $|x_1| + |x_2| + \cdots + |x_d|$
- $L_{\infty}$  norm is max absolute value of all dimensions. Why? Because max raised to the power infinity will dominate all other values in the sum

#### Cosine between two vectors

Cosine of the angle between x and y is  $\frac{x \cdot y}{\|x\| \|y\|}$ 



If cosine is zero then the vectors are orthogonal That is, their dot product is zero

Cosine is a measure of similarity (direction) of vectors, when we want to ignore their magnitudes

## Some special vectors and matrices

Zero vector: 
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 Ones:  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 

One-hot bit: 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
; s.t.  $x_1^2 + x_2^2 + x_3^2 = 1$ 

Diagonal matrix: 
$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Identity matrix:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$AI = IA = A$$

## Linear independence

 A set of vectors are linearly independent if none of them can be expressed as a linear combination of the others

• Example: 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
,  $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ , and  $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 

• But not: 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
,  $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ , and  $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ 

• And nor: 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and  $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ 

#### Rank of a matrix

- For a square matrix: A
- Rank is the minimum number of vectors needed to express its columns as their linear combination

• Example: 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
 has rank 2, and  $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{bmatrix}$ 

has rank 3 (a.k.a full rank)

- Eigenvalue analysis not only finds the rank, it also finds an orthonormal set of such vectors
  - Sort of like, modes of variation

## Eigen decomposition of a square matrix

• Eigen decomposition expresses a matrix as:

$$A = U\Lambda U^{-1}$$

- Where,  $\Lambda$  is a diagonal matrix containing eigenvalues (usually sorted in descending order)
- And, U is a matrix of orthonormal eigenvectors U =  $[u_1 ... u_N]$  such that  $u_i ... u_i = 1$ ,  $u_i ... u_j = 0$ ,  $Au_i = \lambda_i u_i$ ,  $\forall i \neq j$
- Number of non-zero eigenvalues is called the rank of the matrix (number of independent dimensions)

## Principal component analysis

- Finding orthogonal directions of maximum variance of a set of data points
- Rotating the reference frame
- Finding which directions can be neglected

- Steps:
  - Center points (subtract mean)
  - Compute covariance matrix
  - Eigen decompose covariance matrix
  - Find projections (dot products) along eigenvectors corresponding to highest eigenvalues

## Dimension reduction using PCA







Mean subtraction

Principal components of the covariance matrix



Projection



Projection



**Dimension Reduction** 

### PCA FAQs

- Why perform mean-centering?
  - Co-variance is defined on mean-centered data
- What is special about principal component directions?
  - The directions are orthogonal, just like original axes
  - The data is decorrelated in some sense independent along these directions
  - Co-variance in the new directions is  $\begin{vmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{vmatrix}$
  - Notice the zero terms in off-diagonal entries
- Which can we ignore some dimensions?
  - The ones along which the variance is the smallest
  - This will lead to the smallest mean square error between original and approximated data

## Inverse and pseudo inverse

- For square matrices that are full rank (all rows and columns are linearly independent of each other) an inverse matrix exists such that:
- $AA^{-1} = A^{-1}A = I$
- Similar to:

$$xx^{-1} = x^{-1}x = 1$$

 And just like inverse of 0 does not exist, the inverse of rank deficient matrices does not exist  For non-square matrices of full rank, there is something called a pseudo inverse (assuming N<sub>rows</sub> > N<sub>columns</sub> and rank is N<sub>columns</sub>):

• 
$$A^+ = (A^T A)^{-1} A^T$$

• Note that  $A^+A = I$ 

## Singular Value Decomposition

- SVD is a generalization of eigendecomposition
- It can be applied to any sized matrix
- It expresses a matrix as:  $M = U \Sigma V^*$ 
  - U and V are square matrices
  - Σ is a diagonal matrix, but need not be square
  - V\* is the conjugate transpose of V
  - $UU^*$  and  $VV^*$  are identity matrices of different sizes
- Non-zero singular values of M are square root of eigenvalues of MM\* and M\*M
- It is used to find finding pseudo inverse and least square fitting

#### Outline

- Scalars, vectors, matrices, tensors
- Linear operations on vectors and matrices
- Vector and matrix properties
- Functions and derivatives
- Optimizing a continuous function

## Function usually is a mapping from a vector to a scalar

- Usual definition of a function:
  - Input x
  - Output y = f(x)
- Examples:
  - f(x) = w x + b or w x + b 1
  - $f(x) = w_2 x^2 + w_1 x^1 + w_0 x^0$
  - $f(x) = \mathbf{w}^T \mathbf{x} + b$
  - $f(x) = g(\mathbf{w}^T \mathbf{x} + b)$ , where g is a nonlinear function

#### Derivative of a function of a scalar



E.g. 
$$f(x) = ax^2 + bx + c$$
,  $f'(x) = 2ax + b$ ,  $f''(x) = 2a$ 

- Derivative  $f'(x) = \frac{d f(x)}{d x}$  is the rate of change of f(x) with x
- It is zero when then function is flat (horizontal), such as at the minimum or maximum of f(x)
- It is positive when f(x) is sloping up, and negative when f(x) is sloping down
- To move towards the maxima, taking a small step in a direction of the derivative

#### Chain rule of differentiation

- Very handy for complicated functions
  - Especially functions of functions
  - E.g. NN outputs are functions of previous layers
- For example: Let f(x) = g(h(x))
  - Let y = h(x), z = g(y) = g(h(x))
- Then  $f'(x) = \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = g'(y)h'(x)$
- For example:  $\frac{d \sin(x^2)}{d x} = 2x \cos(x^2)$

#### Double derivative



- Double derivative  $f''(x) = \frac{d^2 f(x)}{dx^2}$  is the derivative of
- derivative of f(x)
- Double derivative is positive for convex functions (have a single minima), and negative for concave functions (have a single maxima)

#### Double derivative



- Double derivative tells how far the minima might be from a given point.
- From x=0 the minima is closer for the red dashed curve than for the blue solid curve, because the former has a larger second derivative (its slope reverses faster)

#### Gradient of a function of a vector



 Derivative with respect to each dimension, holding other dimensions constant

• 
$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix}$$

- At a minima or a maxima the gradient is a zero vector

  The function is flat in every direction
- At a minima or a maxima the gradient is a zero vector

#### Gradient of a function of a vector



- Gradient gives a direction for moving towards the minima
- Take a small step towards negative of the gradient



## Example of gradient

• Let 
$$f(x) = f(x_1, x_2) = 5x_1^2 + 3x_2^2$$

• Then 
$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 10x_1 \\ 6x_2 \end{bmatrix}$$

• At a location (2,1) a step in  ${20\brack 6}$  or  ${0.958\brack 0.287}$  direction will lead to maximal increase in the function

#### Hessian of a function of a vector



 Double derivative with respect to a pair of dimensions forms the Hessian matrix:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

 If all eigenvalues of a Hessian matrix are positive, then the function is convex

## Example of Hessian

• Let 
$$f(x) = f(x_1, x_2) = 5x_1^2 + 3x_2^2 + 4x_1x_2$$

• Then 
$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 10x_1 + 4x_2 \\ 6x_2 + 4x_1 \end{bmatrix}$$

• And, 
$$H(f(\mathbf{x})) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ 4 & 6 \end{bmatrix}$$

#### Vector valued functions and Jacobians

 We often deal with functions that give multiple outputs

• Let 
$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} f_1(x_1, x_2, x_3) \\ f_2(x_1, x_2, x_3) \end{bmatrix}$$

 Thinking in terms of vector of functions can make the representation less cumbersome and computations more efficient

• Then Jacobian 
$$J(f) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{bmatrix}$$

$$\frac{\partial f_2}{\partial x_1} \quad \frac{\partial f_2}{\partial x_2} \quad \frac{\partial f_2}{\partial x_3}$$

# Relationship between Hessian, Jacobian, and gradient

- Interestingly, Hessian is the transpose of Jacobian of the gradient
  - Gradient can be thought of as a multi-output function
  - So, its Jacobian makes sense
  - And derivative (Jacobian) of a derivative (gradient) is the second derivative (Hessian transposed)

#### Outline

- Scalars, vectors, matrices, tensors
- Linear operations on vectors and matrices
- Vector and matrix properties
- Functions and derivatives
- Optimizing a continuous function

#### Gradient ascent

- If you didn't know the shape of a mountain
- But at every step you knew the slope
- Can you reach the top of the mountain?



#### Gradient descent minimizes a function

- At every point, compute
  - f(x)
  - Gradient of loss with respect to weights (vector):

$$\nabla_{x} f(x)$$

Take a step towards negative gradient:

$$x \leftarrow x - \eta \nabla_x f(x)$$



### Role of step size and learning rate

- Tale of two loss functions
  - Same value, and
  - Same gradient (first derivative), but
  - Different Hessian (second derivative)
  - Different step sizes needed
- Success not guaranteed for non-convex functions

# The perfect step size is impossible to guess

Goldilocks finds the perfect balance only in a fairy tale



• The step size is decided by learning rate  $\eta$  and the gradient

#### Momentum

• Momentum means using the memory of previous step to build up speed or to slow down with forgetting factor  $\alpha$ ;  $0 \le \alpha = 1$ 



$$\Delta \mathbf{x}^{(t)} = \alpha \, \Delta \mathbf{x}^{(t-1)} - \eta \, \nabla_{\mathbf{x}} f(\mathbf{x})$$

## This story is unfolding in multiple dimensions



## Perfect step size for a paraboloid

- Let  $f(x) = ax^2 + bx + c$
- Assuming a < 0
- Minima is at:  $x^* = -\frac{b}{2a}$
- For any x the perfect step would be:

$$-\frac{b}{2a} - x = -\frac{2ax+b}{2a} = -\frac{f'(x)}{f''(x)}$$

- So, the perfect learning rate is:  $\eta^* = \frac{1}{f''(x)}$
- In multiple dimensions,  $x \leftarrow x H(f(x))^{-1} \nabla (f(x))$
- Practically, we do not want to compute the inverse of a Hessian matrix, so we approximate Hessian inverse

## Saddle points, Hessian and long local furrows

- Some variables may have reached a local minima while others have not
- Some weights may have almost zero gradient
- At least some eigenvalues may not be negative





### Adam optimizer

- For update step t
  - $\bullet g_{t} \leftarrow \nabla_{x} f(x_{t-1})$
  - $\bullet \boldsymbol{m}_{t} \leftarrow \beta_{1} \cdot \boldsymbol{m}_{t-1} + (1 \beta_{1}) \boldsymbol{g}_{t}$
  - $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 \beta_2) \cdot (\mathbf{g}_t \odot \mathbf{g}_t)$
  - $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t / (1 \beta_l^t)$
  - $\hat{\boldsymbol{v}}_t \leftarrow \boldsymbol{v}_t / (1 \beta_2^t)$
  - $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} \alpha \, \widehat{\mathbf{m}}_t \, . / (\sqrt{\widehat{\mathbf{v}}_t} + \varepsilon)$
- Good default values:
  - $\alpha = 0.001$ ,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$  and  $\epsilon = 10^{-8}$

- Explanation
  - Gradient
  - Momentum
  - Moment (grad. sq.)
  - Bias correction
  - Bias correction
  - Update
  - Why divide by moment?
    - It approximates Hessian inverse to give correct step size for each dimension