Universidad del Valle de Guatemala

Departamento de Matemática

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

 $\mbox{MM2033}$ - Teoría de Conjuntos - Catedrático: Nancy Zurita 5 de agosto de 2021

HT 1

1. Sección A

Problemas de [1] - Sección 1.1

Problema 1.1 (Problema 1). Probar el **teorema 1.8**. Para todas las oraciones P, Q y R, las siguientes expresiones son verdaderas:

$$i) P \lor Q \iff Q \lor P.$$

Demostración. Tenemos:

P	Q	$P \wedge Q$	$Q \wedge P$	$P \wedge Q \iff Q \wedge P$
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	V

$$i)' P \wedge Q \iff Q \wedge P.$$

Demostración. Tenemos:

P	Q	$P \wedge Q$	$Q \wedge P$	$P \wedge Q \iff Q \wedge P$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	F	V

 $ii) \ P \lor (Q \lor R) \iff (P \lor Q) \lor R.$

Demostraci'on. Tenemos:

P	Q	R	$Q \vee R$	$P \lor Q$	$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	$P \vee (Q \vee R) \iff (P \vee Q) \vee R.$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	V	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	V	V	V	V	V
F	F	V	V	F	V	V	V
F	F	F	F	F	F	F	V

 $ii)'\ P \wedge (Q \wedge R) \iff (P \wedge Q) \wedge R.$

Demostración. Tenemos:

P	Q	R	$Q \wedge R$	$P \wedge Q$	$P \wedge (Q \wedge R)$	$(P \wedge Q) \wedge R$	$P \wedge (Q \wedge R) \iff (P \wedge Q) \wedge R$
V	V	V	V	V	V	V	V
V	V	F	F	V	F	F	V
V	F	V	F	F	F	F	V
V	F	F	F	F	F	F	V
F	V	V	V	F	F	F	V
F	V	F	F	F	F	F	V
F	F	V	F	F	F	F	V
F	F	F	F	F	F	F	V

 $iii) \ P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R).$

Demostración. Tenemos:

P	Q	R	$Q \vee R$	$P \wedge Q$	$P \wedge R$	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$	$P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R).$
V	V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V	V
V	F	V	V	F	V	V	V	V
V	F	F	F	F	F	F	F	V
F	V	V	V	F	F	F	F	V
F	V	F	V	F	F	F	F	V
F	F	V	V	F	F	F	F	V
F	F	F	F	F	F	F	F	V

 $iii)'\ P\vee (Q\wedge R)\iff (P\vee Q)\wedge (P\vee R).$

Demostración. Tenemos:

P	Q	R	$(Q \wedge R)$	$(P \lor Q)$	$(P \vee R)$	$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$	$P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R).$
V	V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V	V
V	F	V	F	V	V	V	V	V
V	F	F	F	V	V	V	V	V
F	V	V	V	V	V	V	V	V
F	V	F	F	V	F	F	F	V
F	F	V	F	F	V	F	F	V
F	F	F	F	F	F	F	F	V

$$iv) P \lor P \iff P.$$

Demostración. Tenemos:

P	$P \lor P$	$P \lor P \iff P$
V	V	V
F	F	V

$$iv)$$
, $P \wedge P \iff P$.

Demostración. Tenemos:

P	$P \wedge P$	$P \wedge P \iff P$
V	V	V
F	F	V

Problema 1.2 (Problema 4). Probar que la sisguientes expresiones son verdaderas para todo P y Q.

1.
$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$
.

Demostración. Tenemos:

P	Q	$\neg Q$	$\neg P$	$(P \Rightarrow Q)$	$(\neg Q \Rightarrow \neg P)$	$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$
V	V	F	F	V	V	V
V	F	V	F	F	F	V
F	V	F	V	V	V	V
F	F	V	V	V	V	V

2.
$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$
.

Demostraci'on. Tenemos:

P	Q	$\neg P$	$(P \Rightarrow Q)$	$(\neg P \lor Q)$	$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$
V	V	F	V	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

3. $(P \Rightarrow Q) \Leftrightarrow \neg (P \land \neg Q)$.

Demostración. Tenemos:

P	Q	$\neg Q$	$\neg P$	$(P \Rightarrow Q)$	$(P \land \neg Q)$	$\neg (P \land \neg Q)$	$(P \Rightarrow Q) \Leftrightarrow \neg (P \land \neg Q).$
V	V	F	F	V	F	V	V
V	F	V	F	F	V	F	V
F	V	F	V	V	F	V	V
F	F	V	V	V	F	V	V

4. $[P \land (P \Rightarrow Q)] \Rightarrow Q$

Demostraci'on. Tenemos:

P	Q	$(P \Rightarrow Q)$	$[P \land (P \Rightarrow Q)]$	$[P \land (P \Rightarrow Q)] \Rightarrow Q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

5. $[(P \lor Q) \land \neg P] \Rightarrow Q$.

Demostración. Tenemos:

P	Q	$\neg P$	$(P \lor Q)$	$[(P \lor Q) \land \neg P]$	$[(P \lor Q) \land \neg P] \Rightarrow Q$
V	V	F	V	F	V
V	F	F	V	F	V
F	V	V	V	V	V
F	F	V	F	F	V

Problema 1.3 (Problema 5). Probar que la sisguientes expresiones son verdaderas para todo $P\ y\ Q\ y\ R.$

1.
$$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$$

Demostraci'on. Tenemos:

P	Q	R	$(P \Rightarrow Q)$	$(Q \Rightarrow R)$	$[(P \Rightarrow Q) \land (Q \Rightarrow R)]$	$(P \Rightarrow R)$	$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

$$\mathcal{Z}.\ [(P\Rightarrow Q)\wedge (R\Rightarrow Q)]\Leftrightarrow [(P\vee R)\Rightarrow Q].$$

P	Q	R	$(P \Rightarrow Q)$	$(R \Rightarrow Q)$	$(P \vee R)$	$[(P \Rightarrow Q) \land (R \Rightarrow Q)]$	$[(P \lor R) \Rightarrow Q]$	\iff
V	V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V	V
V	F	V	F	F	V	F	F	V
V	F	F	F	V	V	F	F	V
F	V	V	V	V	V	V	V	V
F	V	F	V	V	F	V	V	V
F	F	V	V	F	V	F	F	V
F	F	F	V	V	F	V	V	V

Demostraci'on.

3.
$$[(P \Rightarrow Q) \land (P \Rightarrow R)] \Leftrightarrow [P \Rightarrow (Q \land R)].$$

Demostración. Tenemos:

P	Q	R	$(P \Rightarrow Q)$	$(Q \wedge R)$	$(P \implies R)$	$[(P \Rightarrow Q) \land (P \Rightarrow R)]$	$[P \Rightarrow (Q \land R)]$	\iff
V	V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	F	V
V	F	V	F	F	V	F	F	V
V	F	F	F	F	F	F	F	V
F	V	V	V	V	V	V	V	V
F	V	F	V	F	V	V	V	V
F	F	V	V	F	V	V	V	V
F	F	F	V	V	V	V	V	V

Problema 1.4 (Problema 6). Probar que, para todas las expresiones P, Q y R, si $Q \iff R$ es verdadero, entonces las siguientes expresiones son verdaderas:

1.
$$P \lor Q \Leftrightarrow P \lor R$$
.

Demostraci'on. Tenemos:

P	Q	R	$Q \iff R$	$P \lor Q$	$P \vee R$	$P \lor Q \Leftrightarrow P \lor R$	$(Q \iff R) \implies (P \lor Q \Leftrightarrow P \lor R)$
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	V	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	V	F	F	V
F	F	V	F	F	V	F	V
F	F	F	F	F	F	V	V

2. $P \wedge Q \Leftrightarrow P \wedge R$.

Demostración. Tenemos:

P	Q	R	$Q \iff R$	$P \wedge Q$	$P \wedge R$	$P \wedge Q \Leftrightarrow P \wedge R$	$(Q \iff R) \implies (P \land Q \Leftrightarrow P \land R)$
V	V	V	V	V	V	V	V
V	V	F	F	V	F	F	V
V	F	V	F	F	V	V	V
V	F	F	V	F	F	V	V
F	V	V	V	F	F	V	V
F	V	F	F	F	F	V	V
F	F	V	F	F	F	V	V
F	F	F	F	F	F	V	V

3.
$$(P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R)$$
.

Demostraci'on. Tenemos:

D	\circ	D	$O \rightarrow D$	$(D \rightarrow O)$	$(D \setminus D)$	$[(D \setminus O) \land (D \setminus D)]$	$(O \land D) \rightarrow [(D \land O) \land (D \land D)]$
	Q	R	$Q \iff R$	$(P \Rightarrow Q)$	$(P \Rightarrow R)$	$[(P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R)]$	$(Q \iff R) \implies [(P \Rightarrow Q) \Leftrightarrow (P \Rightarrow R)]$
V	V	V	V	V	V	V	V
V	V	F	F	V	F	F	V
V	F	V	F	F	V	F	V
V	F	F	V	F	F	V	V
F	V	V	V	V	V	V	V
F	V	F	F	V	V	V	V
F	F	V	F	V	V	V	V
F	F	F	F	V	V	V	V

2. Sección B

Dado los conjuntos A, B y C, demuestre que:

Problema 2.1. $A \subseteq A$.

Demostración. A probar: $A \subseteq A$. Por definición de contención, $\forall x (x \in A \implies x \in A) \implies A \subseteq A$.

Problema 2.2. Si $A \subseteq B$ y $B \subseteq A$ entonces A = B.

Demostración. A probar: A = B. Por hipótesis, $A \subseteq B$ y $B \subseteq A$. \Longrightarrow Por definición de contención, $[\forall x(x \in A \implies x \in B)] \land [\forall x(x \in B \implies x \in A)]$. $\Longrightarrow \forall x[(x \in A \implies x \in B) \land (x \in B \implies x \in A)]$ $\Longrightarrow \forall x[x \in A \iff x \in B]$. \Longrightarrow Por el axioma de extensión, A = B.

Problema 2.3. Si $A \subseteq B$ y $B \subseteq C$ entonces $A \subseteq C$.

Demostración. A probar: $A \subseteq C$ (i.e. $x \in A \implies x \in C$). Por hipótesis, $A \subseteq B$ y $B \subseteq C$. \implies Por definición de contención, $[\forall x(x \in A \implies x \in B) \land \forall x(x \in B \implies x \in C)]$ $\implies \forall x[(x \in A \implies x \in B) \land (x \in B \implies x \in C)] \implies \forall x(x \in A \implies x \in C) \implies A \subseteq C$.

Problema 2.4. Si $A \subset B$ entonces $\neg (B \subset A)$.

 $\begin{array}{ll} \textit{Demostraci\'on.} \ \text{Por reducci\'on al absurdo}, \ (A \subset B) \land (B \subset A). \implies \text{Por la definici\'on de contenci\'on estricta} \ [(A \subseteq B) \land (A \neq B)] \land [(B \subseteq A) \land (B \neq A)] \implies [(A \subseteq B) \land (B \subseteq A) \land (A \neq B)]. \implies \text{Por el Problema 2.2 sabemos que si } A \subseteq B \text{ y } B \subseteq A \text{ entonces } A = B, \text{ tal que } [(A = B) \land (A \neq B)](\rightarrow \leftarrow). \therefore \neg (B \subset A). \end{array}$

Problema 2.5. Si $A \subset B$ entonces $A \subseteq B$.

Demostración. A probar: $A \subseteq B$ (i.e. $x \in A \implies x \in B$). Por hipótesis, $A \subset B$. \Longrightarrow Por definición de contención estricta, $(A \subseteq B) \land (A \neq B)$.

Referencias

Pinter, C. C. (2014). A book of set theory. Courier Corporation.