Math 362, Problem set 3

Due 2/16/10

1. (5.4.18) Using the assumptions behind the confidence interval given in expression (5.4.17), show that

$$\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \to_P 1.$$

Answer:

The real key here is to address why the assumption $n_1/n \to \lambda_1$ and $n_2/n \to \lambda_2$ is important. We know $S_1^2 \to_p \sigma_1^2$, but we cannot simply cannot say:

$$\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}
ightarrow_p \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$$

because we are taking this limit as $n_1, n_2 \to \infty$ so they don't make sense in the second statement. So let's do an old trick from calculus:

$$\frac{\sqrt{n}}{\sqrt{n}}\frac{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{\sqrt{\frac{nS_1^2}{n_1} + \frac{nS_2^2}{n_2}}}{\sqrt{\frac{n\sigma_1^2}{n_1} + \frac{n\sigma_2^2}{n_2}}}.$$

Now the limit as $n \to \infty$ makes sense on the top and bottom, that is:

$$\frac{\sqrt{\frac{nS_1^2}{n_1} + \frac{nS_2^2}{n_2}}}{\sqrt{\frac{n\sigma_1^2}{n_1} + \frac{n\sigma_2^2}{n_2}}} \to_p \frac{\sqrt{\lambda_1 \sigma_1^2 + \lambda_2 \sigma_2^2}}{\sqrt{\lambda_1 \sigma_1^2 + \lambda_2 \sigma_2^2}} = 1$$

2. (5.4.24) Let \bar{X} and \bar{Y} be the means of two independent random samples, each of size n, from the respective distributions $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ where the common variance σ^2 is known. (Note: there is a type in the book, writing σ_2 instead of σ^2 , and my statement is correct). Find n such that

$$\mathbb{P}(\bar{X} - \bar{Y} - \sigma/5 < \mu_1 - \mu_2 < \bar{X} - \bar{Y} + \sigma/5) = 0.9.$$

Answer: Note that $X_i - Y_i \sim N(\mu_1 - \mu_2, 2\sigma^2)$ so

$$\mathbb{P}(-1.645 \le \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{2\sigma^2/n}} \le 1.645) = .9$$

Rearranging,

$$.9 = \mathbb{P}(\bar{X} - \bar{Y} - 1.645\sqrt{2}\sigma/\sqrt{n} < \mu_1 - \mu_2 < \bar{X} - \bar{Y} + 1.645\sqrt{2}\sigma/\sqrt{n}).$$

Now, simply choose n so that $1.645\sqrt{2}/\sqrt{n} < 1/5$, in other words take $n > 50(1.645)^2$, so that n = 136 suffices.

3. (5.5.1) Show that the approximate power function given in expression (5.5.12) of Example 5.5.3 is a strictly increasing function of μ . Show, then, that the test discussed in this example has approximate size α for testing

$$H_0: \mu \leq \mu_0 \text{ versus } H_1: \mu > \mu_0.$$

Answer: We have approximate power function

$$\gamma_C(\mu) = \Phi(-z_\alpha - \frac{\sqrt{n}}{\sigma}(\mu - \mu_0)),$$

SC

$$\frac{d}{d\mu}\Phi(-z_{\alpha} - \frac{\sqrt{n}}{\sigma}(\mu - \mu_{0})) = \frac{d}{d\mu} \int_{-\infty}^{-z_{\alpha} - \frac{\sqrt{n}}{\sigma}(\mu - \mu_{0})} \frac{1}{\sqrt{2\pi}} e^{-1/2x^{2}} dx
= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(-z_{\alpha} - \frac{\sqrt{n}}{\sigma}(\mu - \mu_{0}))^{2}\right) \frac{\sqrt{n}}{\sigma} > 0,$$

as the product of positive numbers. Thus $\gamma_C(\mu)$ is an increasing function of μ .

The approximate size of the discussed test is

$$\alpha = \max_{\mu \le \mu_0} \gamma_C(\mu) = \gamma_C(\mu_0) = \alpha,$$

where we used the fact that $\gamma_C(\mu)$ is an increasing function of μ to take the maximum.

4. (5.5.5) Let X_1, X_2 be a random sample of size n=2 from the distribution having pdf $f(x;\theta)=(1/\theta)e^{-x/\theta}$ for $0< x<\infty$, zero elsewhere. That is, $X_i\sim \exp(1/\theta)$ or equivalently $X_i\sim \Gamma(1,\theta)$. We reject $H_0:\theta=2$ and accept $H_1:\theta=1$ if the observed values of X_1, X_2 , say x_1, x_2 , are such that

$$\frac{f(x_1; 2)f(x_2; 2)}{f(x_1; 1)f(x_2; 1)} \le \frac{1}{2}$$

Here $\Omega = \{\theta : \theta = 1, 2\}$. Find the significance level of the test and the power of the test when H_0 is false.

Answer:

Rearranging, we find the test that

$$\frac{f(X_1; 2)f(X_2; 2)}{f(X_1; 1)f(X_2; 1)} \le \frac{1}{2}$$

is the test

$$\frac{(1/4)\exp(-(X_1+X_2)/2)}{\exp(-(X_1+X_2)} \le \frac{1}{2}.$$

More rearranging, and we get that this is equivalent to:

$$X_1 + X_2 \le 2\ln(2),$$

and our power function is

$$\gamma_C(\theta) = \mathbb{P}_{\theta}(X_1 + X_2 \le 2\ln(2)).$$

Our size is

$$\alpha = \mathbb{P}_{\theta=2}(X_1 + X_2 \le 2\ln(2)).$$

In this case, $X_1 + X_2 \sim \Gamma(2,2)$ as the sum of two $\Gamma(1,2)$ random variables. Thus

$$\alpha = \int_0^{2\ln(2)} \frac{1}{4} x e^{-x/2} dx = \frac{1}{2} (1 - \ln(2)) \approx 0.1534.$$

In the case that $\theta = 1$, $X_1 + X_2 \sim \Gamma(2,1)$ so that

$$\gamma_C(1) = \int_0^{2\ln(2)} xe^{-x} dx = \frac{3}{4} - \frac{1}{2}\ln(2) \approx 0.403,$$

which is the power of the test if H_0 is false.

5. (5.5.9) Let X have a Poisson distribution with mean θ . Consider the simple hypothesis $H_0: \theta = \frac{1}{2}$, and the alternative composite hypothesis $H_1: \theta < \frac{1}{2}$. Thus $\Omega = \{\Theta: 0 < \theta \leq \frac{1}{2}\}$. Let X_1, \ldots, X_{12} denote a random sample of size 12 from this distribution. We reject H_0 if and only if the observed value of $Y = X_1 + \cdots + X_{12} \leq 2$. If $\gamma(\theta)$ is the power function of the test, find the powers $\gamma(1/2)$, $\gamma(1/3)$, $\gamma(1/4)$, $\gamma(1/6)$ and $\gamma(1/12)$. Sketch the graph of $\gamma(\theta)$. What is the significance level of this test?

Answer:

As the sum of 12 Poisson(θ) random variables, $Y \sim Poisson(12\theta)$. Thus

$$\gamma(\theta) = \mathbb{P}_{\theta}(Y \le 2) = e^{-12\theta} + e^{-12\theta}(12\theta) + \frac{e^{-12\theta}(12\theta)^2}{2}.$$

We can compute

$$\gamma(1/2) \approx 0.06196880442$$
 $\gamma(1/3) \approx 0.2381033056$
 $\gamma(1/4) \approx 0.4231900811$
 $\gamma(1/6) \approx 0.6766764160$
 $\gamma(1/12) \approx 0.9196986030$

A plot

The significance level is the same as the size is $\alpha = \gamma(1/2) \approx 0.06196880442$.

- 6. (5.5.11) Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size n=4 from a distribution with pdf $f(x;\theta)=1/\theta,\, 0< x<\theta,$ zero elsewhere, where $0<\theta$. The hypothesis $H_0=1$ is rejected and $H_1:\theta>1$ is accepted if the observed $Y_4\geq c$.
 - (a) Find the constant c so that the significance level is $\alpha = 0.05$.
 - (b) Determine the power function of the test.

Answer:

Recall

$$f_{Y_4}(y_4) = 4\left(\frac{y}{\theta}\right)^3 \frac{1}{\theta},$$

so

$$\gamma_C(\theta) = \mathbb{P}_{\theta}(Y_4 \ge c) = \int_c^{\theta} f_{Y_4}(y_4) dy_4 = 1 - \left(\frac{c}{\theta}\right)^4.$$

In order to find c so that the significance level is $\alpha=0.05$, we want to find c so that

$$0.05 = \alpha = \gamma_C(\theta) = 1 - c^4$$
.

In other words, we take $c = (.95)^{1/4} \approx 0.9872585449$.

Then the power function is

$$\gamma_C(\theta) = 1 - (\frac{c}{\theta})^4. = 1 - \frac{.95}{\theta^4}.$$