PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-271976

(43)Date of publication of application: 27.09.1994

(51)Int.Cl.

C22C 38/00

F16L 9/02

(21)Application number: 05-081552

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

16.03.1993

(72)Inventor: KUSHIDA TAKAHIRO

(54) STEEL AND STEEL TUBE EXCELLENT IN SULFIDE CRACK RESISTANCE

(57)Abstract:

PURPOSE: To establish stable producing means for a steel tube enough to clear CAPCIS test, excellent in sulfide crack resistance and to produce a steel having sulfide crack resistance equivalent to the test. CONSTITUTION: A steel produced through rolling or forging is constituted to the structure not having B type inclusion of 200,,m in the rolling direction or forging axial direction, also a steel tube produced through rolling or forging is constituted to the structure not having B type inclusion of 200,, m in the rolling direction or forging axial direction in the thickness range of ≤4mm at least from its inner surface. By this method, excellent sulfide crack resistance is provided.

LEGAL STATUS

[Date of request for examination]

10.11.1998

[Date of sending the examiner's decision of rejection]

17.07.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

2001-14414

rejection]

[Date of requesting appeal against examiner's decision of 14.08.2001

rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-271976

(43)公開日 平成6年(1994)9月27日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

C 2 2 C 38/00 F16L 9/02

301 F

7123 - 3 J

審査請求 未請求 請求項の数2 FD (全 9 頁)

(21)出願番号

特願平5-81552

(71)出願人 000002118

住友金属工業株式会社

(22)出願日 平成5年(1993)3月16日 大阪府大阪市中央区北浜 4 丁目 5 番33号

(72)発明者 櫛田 隆弘

大阪府大阪市中央区北浜 4丁目 5番33号

住友金属工業株式会社内

(74)代理人 弁理士 今井 毅

(54) 【発明の名称 】 耐硫化物割れ性に優れた鋼材並びに鋼管

(57)【要約】

【目的】 CAPCIS試験を十分にクリアーする耐硫 化物割れ性能に優れた鋼管、並びにそれに相当する優れ た耐硫化物割れ性能を備えた鋼材の安定提供手段を確立 する。

【構成】 圧延又は鍛練が施されて製造された鋼材を "圧延方向又は鍛練軸方向の寸法が200μm以上であ るB系介在物"が含まれない素地を有して成る構成とす るか、圧延又は鍛練が施されて製造された鋼管を、少な くともその内表面から4mm以内の肉厚範囲においては "圧延方向又は鍛練軸方向の寸法が200µm以上であ るB系介在物"が含まれない素地を有して成る構成とす ることにより、優れた耐硫化物割れ性を付与する。

【特許請求の範囲】

【請求項1】 圧延又は鍛練が施されて製造された鋼材 であって、 "圧延方向又は鍛練軸方向の寸法が200μ m以上であるB系介在物"が含まれない素地を有して成 ることを特徴とする、耐硫化物割れ性に優れた鋼材。

1

【請求項2】 圧延又は鍛練が施されて製造された鋼管 であって、少なくとも内表面から4mm以内の肉厚範囲に おいては "圧延方向又は鍛錬軸方向の寸法が200μm 以上であるB系介在物"が含まれない素地を有して成る ことを特徴とする、耐硫化物割れ性に優れた鋼管。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、硫化水素を含む原油 又はガスを輸送するラインパイプや、硫化水素を含む原 油又はガスを精製する塔、槽類の配管や構成部材として 好適な、耐硫化物割れ性(耐水素誘起割れ(HIC) 性、耐硫化物応力割れ(SSC)性) に優れた鋼材並び に鋼管に関するものである。

[0002]

【従来技術とその課題】硫化水素を含む原油又はガスを 輸送するラインパイプやタンカー用の鋼板、更には硫化 水素を含む原油或いはガスを精製する塔、槽類に用いら れる鋼板においては、水素誘起割れ(HIC)或いは硫 化物応力割れ(SSC)〔以降、両者をまとめて呼ぶ場 合には"硫化物割れ"と称する〕が問題となることは既 に周知の事実である。

【0003】なお、HICとは外部応力の無い状態で鋼 材に生じる割れであり、SSCは静的な応力下での割れ であるが、これら硫化物割れは"湿潤硫化水素環境で鋼 が腐食したときに発生する水素"が鋼中に侵入すること によって生じる水素脆化であり、鋼の脆化現象の1つで ある。

【0004】ところで、硫化物割れに関しては従来から 数多くの研究がなされ、これらによって多くの硫化物割 れ対策が生み出されてきているが、その主なもの挙げる と次の通りである。

- a) Cu添加によって湿潤硫化水素環境で鋼に水素が侵入 するのを抑制し、耐HIC、耐SSC性を向上させる。
- b) HICはMnSから成るA系介在物のエッジ部を起点 として発生することから、Ca添加により硫化物の形態制 御を行って割れの起点となるエッジ部を無くする。
- c) Ca添加によって硫化物の形態制御を行うと共に、鋼 の清浄度を増して介在物の低減を図る(特開昭56-1 3463号公報参照)。
- d) Mn及びP濃度の高くなる中心偏析部では硬化組織が 形成されてHIC、SSC感受性が高くなることから、 均熱拡散により偏析を軽減したり、圧延後の加速冷却に より硬化組織の生成を防止する。

【0005】そして、これらの対策により、耐硫化物割

CE浴"と称される"1気圧の硫化水素を飽和させた2 5℃の 0.5%酢酸+5%食塩水溶液"に鋼材を浸漬する 試験(小型試験片を供試材とするいわゆる小型試験の 1 つである)」におけるHIC発生率を低い値に抑えると とが可能となり、前述した施設・設備の性能は著しく向 上した。なお、このような硫化物割れ対策が必要な施設 ・設備用の鋼材、鋼管に対する現在の一般的な要求値 は、「NACE浴中に96時間浸漬した時の幅方向の割 れ長さ(CLR)が5~15%以下」というものであ 10 る。

【0006】しかし、最近ではより一層過酷な環境に存 在する油井やガス井にまで開発の手が伸びるようにな り、また一方では経済性の観点から鋼材、鋼管の高強度 化と操業圧のアップが図られる等、鋼材、鋼管の使用環 境は一層厳しいものとなってきている。その上、近年の 地球環境問題への認識の深まりも、この種の鋼材、鋼管 に対する要求性能をより厳しくする方向に向かわせてい る。

【0007】そこで、このような状況を背景に、従来の 小型試験で得られる耐HIC性、耐SSC性評価性能の 他に実管を使った試験性能が重視されるようになった。 なお、実管を使う試験としては"CAPCIS型実管試 験"が代表的なものとして知られている。

【0008】CAPCIS型実管試験は、図1(縦断面 図)及び図2(上方から見た応力負荷状態の説明図)に 示したように、短尺鋼管(実管)を内側からジャッキア ップして内表面に曲げによる引張応力を付与した状態で 該鋼管内にNACE浴を封入し、HIC、SSCの発生 を評価する方法であり、実管の評価としては比較的簡便 かつ妥当な方法であることから広まる傾向にある。そし て、この試験方法では、製管時の残留応力も加味された 状態で試験が行われるので従来の小型試験片を用いる方 法よりは極めて厳しい評価となる(小型試験では小型試 験片を切り出す時に残留応力の殆どが解放されてしま ろ)。

【0009】しかしながら、このCAPCIS試験を十 分にクリアーする程に耐硫化物割れ性に優れた鋼管(即 ち小型試験片だけでなく実管として十分な耐硫化物割れ 性を有した鋼管)を実現するための決め手となる具体的 要件が見出せないでいるのが現状であった。

【0010】とのようなことから、本発明が目的とする のは、CAPCIS試験を十分にクリアーする実管とし ての耐硫化物割れ性能に優れた鋼管、並びにそれに相当 する優れた耐硫化物割れ性能を備えた鋼材の安定提供手 段を確立することである。

[0011]

40

【課題を解決するための手段】そこで、本発明者は上記 目的を達成すべく鋭意研究を行ったが、その過程で、前 記図 1 及び図 2 で示す CAPC I S試験により X 5 2 ~ れ性の評価試験として確立しているところの、「"NA 50 X65級のラインパイプ材(API規格であって ksi強 10

40

度で類別されるもの)について耐SSC性を評価し、更 にSSCの起点部を詳細に調査したところ、次のような 事象が明らかとなった。

【0012】a) 何れのSSCも、応力軸に対して平行 に発生したHICが段階状に連結した形態を示している

b) 各HICはB系介在物を起点に発生していること。 c) HIC破面上で、そのB系介在物の圧延軸方向の一 端からもう一端までの寸法(距離)は何れも200μm 以上あること。

の CAPCIS試験におけるように管内面のみがNA CE浴に接触する場合、SSCはNACE浴に接する内 表面から4m以内の肉厚範囲にのみ発生していること。 【0013】そして、上記の事実から、実管の耐硫化物 割れ性能を損なう原因となっているのが"圧延軸方向の 長さ寸法が200µm以上であるB系介在物"であるこ とが予想されたので、更にB系介在物の長さの影響につ いて詳細な検討を行った。その結果、次のような知見を 得ることができた。

り低い水素量でHICを発生することとなり、便宜上、 B系介在物の長さでHIC感受性が議論できる。なお、 硫化物割れが問題となる施設・設備で用いられる鋼材, 鋼管は、通常、圧延又は鍛練が施されて製造された鋼材 であるのでB系介在物は圧延方向又は鍛練軸方向に延ば されており、そのため前記 "B系介在物の長さ"とは

"圧延方向又は鍛練軸方向の長さ寸法"ということに なる。ただ、鋼材に対する実際の水素侵入速度には自ず と限界があり、そのため実際上は無応力下ではB系介在 物の長さが250μm以上、また応力が負荷される実管 の場合には200μm以上になると割れに至るのが殆ど で、この "B系介在物長さ:200µm" が耐SSC性 能を損なう臨界長さであることが確認されたのである。

【0015】勿論、これは鋼管以外の鋼材(鋼板等)の 場合も同様で、片面のみが硫化水素を含む液やガスに接 触する場合、200μm以上のB系介在物が硫化物割れ に影響を及ぼすのは硫化水素を含む液やガスと接触する 面から4 mmまでの肉厚範囲内に該B系介在物が存在した 場合に限られ、従って特にラインバイブ等の鋼管の場合 には、硫化水素を含む液やガスとの接触は殆ど内表面の みであるので内表面から4mmまでの肉厚範囲が耐SSC 性能を左右することも確認された。なお、鋼材の両面

(含む全周面) が硫化水素を含む液やガスに接触する場 合には肉厚中心部の介在物も問題となるが、これについ ては後に説明する。

【0016】本発明は、上記知見事項等に基づいて完成 されたものであり、「圧延又は鍛練が施されて製造され た鋼材を "圧延方向又は鍛練軸方向の寸法が200μm 以上であるB系介在物"が含まれない素地を有して成る 構成とするか、圧延又は鍛錬が施されて製造された鋼管 50 管の耐SSC性能を損なうことが予想されたので、本発

を、少なくともその内表面から4m以内の肉厚範囲にお いては "圧延方向又は鍛練軸方向の寸法が200μm以 上であるB系介在物"が含まれない素地を有して成る構 成とすることにより、優れた耐硫化物割れ性を安定付与 させた点」に大きな特徴を有している。

【0017】なお、前記"B系介在物"とは、JIS G0 555 (鋼の非金属介在物の顕微鏡試験方法) に規定さ れる "加工方向に集団をなして不連続に粒状の介在物が 並んだもの(アルミナ等)"を意味している。

【0018】また、本発明鋼材、鋼管に適用される鋼種 としては、硫化物腐食割れが問題となる用途の主なもの が原油やガスを輸送するラインパイプやタンカー用部材 或いは原油やガスを精製する塔、槽類であるという観点 からすれば、基本成分系としてC:0.01~0.20%(より 望ましくは0.03~0.18%;以降は成分割合を表す%は重 量%とする), Si: 0.01~0.5 % (より望ましくは 0.1 ~ 0.3%), Mn: 0.3~1.8 %(より望ましくは 0.5~ 1.5%), P:0.012 %以下, S:0.002 %以下及びA 1: 0.01~0.1% (より望ましくは0.01~0.05%) を含 【0014】即ち、B系介在物の長さが長くなるほどよ 20 み、 Ca/S比が2~10に調整されてなるものが望まし

> 【0019】との場合、各成分は次のような作用を有し ている。Cは安定して鋼の強度を得る元素であり、必要 な強度確保には0.01%以上含有させるのが良く、溶接割 れ抑制の観点からは0.20%以下が良い。Siは製鋼時の脱 酸剤として必要であるため0.01%以上含有させるのが良 く、鋼の靱性を劣化させないためには0.5%以下に止め るのが良い。Mnも鋼の強度を確保する元素であり、必要 な強度確保には 0.3%以上含有させるのが良く、溶接割 れ抑制や耐硫化物割れの観点からは 1.8%以下が良い。 Pは中心偏析によりMnとPの濃度偏析による異常組織を 生じて耐HIC性に悪影響を及ぼすので 0.012%以下、 出来れば低いほど好ましい。SはCaによる硫化物の形態 制御を行っても、中心偏析部等でMnSが生成して耐HI C性を損なうので 0.002%以下、出来れば低いほど好ま しい。なお、Caは硫化物系介在物の形態を制御するのに 有効な元素であるが、この形態制御により良好な耐HI C性を確保するには Ca/S比を2~10に調整するのが 良い。A1は脱酸のために0.01%以上含有させるのが良 く、鋼の清浄度並びに靭性劣化を招かないためには 0.1 %以下に止めるのが良い。

【0020】ところで、本発明では鋼材素地又は鋼管内 表面側素地中における "圧延方向又は鍛練軸方向の寸法 が200μm以上であるB系介在物"を規制したが、そ の理由を以下に詳述する。つまり、先にも述べたよう に、"優れた耐硫化物割れ性を安定して発揮する鋼材" の追求過程で、圧延軸方向の長さが特に200μm以上 に達するB系介在物が鋼材の耐SSC性能を損ない、実 管においては管内表面から特に 4 m以内の肉厚範囲が実 明者はB系介在物の長さの影響について更に詳細な検討 を開始した。

【0021】なお、この検討の際には、本発明者等が別途開発したところの図3に概要を示す"HICその場測定器"は、無応力下ではあるが実管の場合と同様に試験片の片面から水素をチャージして反対側の面に拡散浸透してくる水素量を電気化学的に測定しながら、HICの発生を超音波探傷法にて調べる機器であり、HICが発生するまでチャージされる水素量を段階的に増加させることによりHIC発生の臨界水素透過係数を求めることができる方法である。この臨界水素透過係数とは、臨界水素透過速度(μA/cm)に表面からの割れ深さ(cm)を乗じた値(μA/cm)であるが、これを鋼中水素拡散係数で割る

【0022】そして、上記手段によって臨界水素透過係数が定量化されたHIC破面上のB系介在物の圧延軸方向の長さを測定し、B系介在物の長さと臨界水素透過係数の関係を整理して図示したのが図3である。この図3から分かるように、B系介在物長さが長くなるほど臨界水素透過係数は低下する。即ち、B系介在物長さが長くなるほどより低い水素量でHICを発生することとなり、便宜上、B系介在物の長さでHIC感受性が議論できることが分かる。

ことにより水素濃度に換算することが可能である。

【0023】一方、図5はCAPCIS型試験における水素透過係数の経時変化を示したものである。図5に示されるように、NACE浴を用いるCAPCIS型実管試験では表面水素透過係数の最大値は25μA/cmから30μA/cm弱の範囲となることが分かった。従って、厳しく見積もってもCAPCIS型実管試験での表面水 30素透過係数は最大で30μA/cmと判断でき、してみれば、前記図4より無応力下では長さが250μm以上のB系介在物は割れを生じることになる。

【0024】しかし、数多くの化学組成から成る試験材を使った数多くのCAPCIS型実管試験の結果から、規格最小降伏応力(SMYS)の72%の応力をかけた場合には200μmでもHICが発生したことや、応力がHIC及びSSCの発生を加速することを考え合わせると、圧延軸方向の長さが200μm以上に達するB系介在物も実管の耐SSC性能を損なうことが確認でき、十分な耐硫化物割れ性は圧延軸方向の寸法が200μm以上あるB系介在物が除かれて初めて達成できることが明らかとなった。勿論、鍛練材の場合には、鍛練軸方向の寸法が200μm以上に達するB系介在物が存在すると十分な耐硫化物割れ性を保証できないことは言うまでもない。

【0025】このように、B系介在物の長さが圧延方向 又は鍛糠軸方向に200μmという上限を超えると応力 下でB系介在物を起点としてHICが発生し、それらが 連結してSSCとなり実管の耐SSC性を損なうことか 50

ら、本発明に係る鋼材については「"圧延方向又は鍛練軸方向の寸法が200μm以上であるB系介在物"が含まれない素地を有して成るもの」と限定したが、望ましくは長さが100μmを超えるB系介在物を存在させないようにするのが良い。

【0026】しかし、その中を腐食流体が流れ外面は大気環境にさらされるラインパイプのように片面のみが腐食流体に接触する鋼管の場合には、鋼中水素濃度勾配は図6に示す如くになるので、少なくとも水素濃度の高くなる内表面近傍部にさえ前記のような寸法のB系介在物が存在していなければ、介在物に起因した硫化物割れの問題は生じないことになる。 そして、種々調査の結果、内表面からの距離が4mを超えた所に位置するB系介在物は、その周囲の水素濃度が内表面に比べて著しく低下するのでHICの起点とならないことが明らかとなったので、このような鋼管の場合には「少なくとも内表面から4m以内の肉厚範囲においては"圧延方向又は鍛練軸方向の寸法が200μm以上であるB系介在物"が含まれない素地を有して成るもの」と限定した。

【0027】なお、両面(含む全周面)が腐食流体に接触する場合には、図7に示す如く、鋼中水素濃度は肉厚方向に均一となる。従って、両面(含む全周面)が腐食流体に接触する環境下で使用する場合の鋼材は、全肉厚にわたって200μm以上のB系介在物が含まれてはならないことは言うまでもない。

【0028】ところで、本発明に係る上述のような鋼材、鋼管は

- イ) 溶鋼の脱酸、脱硫、或いはCa添加等の処理時に残留 する酸化物系介在物を徹底的に除去する。
- 30 の 圧延や鍛練での加工率を高くしない。 等の手段を適宜組み合わせることで製造できるが、鋼種

或いは製造する鋼材、鋼管の種類や寸法毎に予め介在物 調査を実施しておき、それらを結果を基に製造条件を調整するのが良い。

【0029】また、内表面近傍のみ寸法の大きいB系介在物が存在しない鋼管の製造には、例えば次のような方法が採用される。一般に、連続鋳造(CC)スラブ製造においてはスラブの天側に介在物が浮上集積するので、このスラブを圧延して製管用の鋼板を得、このようにして得られた鋼板のスラブ天側が管内面となるように溶接製管する等すれば良い。

【0030】なお、従来からCa及びAlを含むB系介在物がHICの起点となることは知られており、そのためCa 量、Ca/S比、〇量或いは鋼の清浄度等を規定する提案も幾つかなされたが、これらは鋼材、鋼管の母材部に特に"圧延方向又は鍛糠軸方向の寸法が200μm以上であるB系介在物"が含まれると実際の鋼材、鋼管での耐硫化物割れ性が低下することを窺わせるものではなく、ましてやこのB系介在物の特定方向の長さを特に200μm未満に規制すると実際の鋼材、鋼管で耐硫化物割れ

•

7

性が著しく改善されることを示唆するものでもなかった ことは言うまでもない。

【0031】以下、本発明の効果を実施例により更に具体的に説明する。

【実施例】まず、表1に示した各種鋼管(外径:1609.6 mm, 肉厚:25.4mm)を準備すると共に、これにNACE 浴を封入し、応力の最大位置で規格最小降伏応力(SMYS)の72%の応力がかかるようにジャッキにより曲*

* げを与えてCAPCIS型実管試験を行った。

【0032】との試験によってSSC発生の有無を調査したが、その際、SSCを発生したものについては「その破面上におけるB系介在物の"圧延方向又は鍛練軸方向の最小長さ"」と「最大割れ深さ」も調べた。この結果を表1に併記した。

[0033]

【表1】

					$\overline{}$			-,				
四十世	は (联)	2.8	3.5		3.9	2.5	1	33		3.0	3.0	
割れ配点になっ	た最小B来介在 数のあれ(cm)	250	400	1	900	200	1	200		300	240	
SSC	発生の無	発生	発生	路件中	発生	器件	発件	発生	等件	発生	発生	
	争	Nb:0.03,	Nb:0, 02,	Nb:0.04,	Ti:0.02	Ti :0.03	Ti :0, 03					
	e	Ni: 0. 06. Ti: 0. 02	#i:0, 05,	N: 0. 04	V : 0, 04,	V : 0. 06.	V :0.05,	Ti:0,02	Ti:0.03	Nb:0.02	Nb: 0, 03	
	*	Cu:0. 25. V:0. 05.	Cu:0.24, V:0.05	Cu:0.26. V:0.04.	Nb:0.04,	Nb:0.04.	Nb:0.03	Nb:0, 05,	Nb:0.04,	Cu:0.23	Cu:0.25,	,
(重量%)	S	0, 0035	0.0055	0.0035	0, 0025	0.0036	0.0025	0.0044	0.0039	0.0064	0.0050	語的は公子によるアニョルインなり
我	IV	0.028	0.032	0.035	0.026	0.024	0.026	0.041	0.036	0.038	0.036	10 10 10 10 10 10 10 10 10 10 10 10 10 1
代 华 B	S	0,0008	0.0009	0, 0008	0. 0007	0,0008	0.0007	0.0006	0.0008	0.0011	0.0010	F 60 H
	a.	0.003	0.008	0.00	0.011	0.010	0.011	0.008	0.003	0.010	0.011	おき
	u M	1. 26	1. 28	1.26	8	93	1.02	0.81	0.82	n 71	a 69	#
	Si	0. 19	0.20	0.21	0.25	0.24	0.25	0,34	0, 35	0.22	0. 22	ĺ
	C	0.02	0.08	0.02	0.03	0.09	0.09	0.08	0.08	0.08	0.06	
3	网	<	æ	S	٥	ப	G2	5	Ŧ		-	
強に	(API規格)	x 6 5	X 6 5	x 6 5	0 9 X	X 6 0	0 9 X	X 5 6	X 5 6	X 5 2	X 5 2	
夢	威摩		2	က	~	2	9	2	∞	6	10	

【0034】上記表1に示される如く、NACE浴を封 えて行ったC 入して応力の最大位置で規格最小降伏応力(SMYS) 生した鋼管の72%の応力がかかるようにジャッキにより曲げを与 50 観察された。

えて行ったCAPCIS型実管試験の結果、SSCを発生した鋼管の破面上には最低 $200\mu m$ のB系介在物が 網察された

-

【0035】そこで、上記"長さ200µmのB系介在 物"の意味を調べるため、上記表1に示した鋼管(鋼管 10は除く) に表2で示す新たな5種類の鋼管(寸法は同 じ)を加え、それぞれの内表面から4mm以内の肉厚範囲

*後、前記と同様の条件でCAPCIS型実管試験を実施 しSSC発生の有無を調べた。これらの調査結果を表2 に併せて示す。

10

[0036]

【表2】

し、その圧延方向又は鍛練軸方向の最大長さを測定した米

に含まれるB系介在物をJISG0555に従って調査

鋼管 種別		強	度 パペル 規格)	4	化学成分 (重量%)								最大B系介 在物の長さ	SSC 発生の					
		(AP		ベル 規格)	レベル PI規格)	レベル (API規格)	レベル (API規格)	レベル (API規格)	(規格) 種) 商	С	Si	Kn	P	S	Al	Ca	ŧ	の
比	1	X	6 5	A	0. 05	0. 19	1. 26	0.009	0. 0008	0.028	0. 0035	Cu:0.25. V:0.05.	Ni:0.06. Ti:0.02	мь:0.03.	300	発生			
比较例	2	x	6 5	В	0. 06	0. 20	1. 28	0.008	0. 0009	0. 032	0. 0055	Cu : 0. 24. V : 0. 05.	Ni:0.05. Ti:0.03	Nb: 0. 02.	500	発生			
*	3	х	6 5	С	0, 05	0. 21	1. 26	0.009	0, 0008	0.035	0. 0035	Cu : 0. 26, V : 0. 04.	Ni:0.04. Ti:0.02	Nb:0, 04.	150	発生 せず			
H	4	X	6 0	D	0. 09	0. 25	1. 02	0.011	0. 0007	0. 026	0, 0025	Nb:0.04.	V :0. 04.	Ti:0.02	1000	発生			
比較例	5	x	6 0	E	0. 09	0. 24	0. 99	0.010	0. 0008	0.024	0. 0036	Nb:0.04.	V :0.06,	Ti:0.03	250	発生			
木	6	Х	6 0	F	0. 09	0. 25	1.02	0.011	0. 0007	0.026	0, 0025	Nb:0.03.	V :0. 05.	Ti:0.03	180	発生 せず			
比	7	Х	5 6	G	0, 08	0. 34	0.81	0.008	0. 0006	0.041	0. 0044	Nb:0.05.	Ti:0.02		600	発生			
本	8	х	5 6	Н	0. 08	0. 35	0. 82	0.009	0. 0008	0. 036	0. 0039	Nb:0.04,	Ti:0.03		100	発生 せず			
比	9	х	5 2	I	0. 06	0. 22	0.71	0.010	0,0011	0.036	0. 0064	Cu:0. 23,	Nb: 0. 02		300	発生			
	11	x	5 2	K	0, 06	0, 22	0. 73	0.009	0. 0010	0. 034	0, 0045	Cu:0, 25.	Nb:0.03		120	発生せず			
本	12	x	6 5	L	0. 04	0. 15	1. 35	0.007	0. 0007	0. 025	0. 0021		_		80	発生します			
発明	13	x	6 0	М	0, 07	0, 22	1. 20	0.009	0. 0010	0.029	0. 0032		<u> </u>		100	発生せず			
91	14	x	5 6	N	0. 09	0, 26	0. 95	0.008	0. 0006	0.024	0. 0024		_		140	発生せず			
	15	х	5 2	0	0, 05	0. 15	0. 80	0.009	0, 0010	0, 021	0. 0026		_		60	発生せず			

(注)「本」は「本発明例」を、「比」は「比較例」を表す。また、「残邸成分」はFe及び不可避的不能物であり、 「最大B系介在物の長さ」は管内面から4㎜以内の肉厚範囲でのものである。

【0037】この表2に示される結果からは、本発明に 係る鋼管であるところの、内表面から4mm以内の肉厚範 囲に存在するB系介在物が圧延方向又は鍛錬軸方向の最 大長さで200μm未満のものは、NACE浴を封入し て応力の最大位置でSMYSの72%の応力がかかるよ 実管試験でもSSCを発生しなかったのに対して、前記 長さが200μm以上のB系介在物が存在するものでは SSCを発生することが確認された。

【0038】一方、これとは別に、表3に示した各種の 鋼材(厚さ:25.4mmの鋼板)を準備し、まずその全肉厚 に含まれるB系介在物をJIS G0555に従って調査し て圧延方向又は鍛練軸方向の最大長さを測定した後、各 々についてNACE浴でのHIC試験を実施しHIC発 うにジャッキにより曲げを与えて行ったCAPCIS型 40 生の有無を調べた。これらの調査結果を表3に併せて示 す。

> [0039] 【表3】

表 3

11

	3	120		1	7									1	
鋼	a A	碧	度 レベル	. 1					化学 !	文 分	(重量%)	·		最大B系介 在他の長さ	HIC 発生の
1	10 (12 10	(A)	·I規格) 🛗	С	Si	Ma	P	S	Y)	Ca	その	他	(µm)	有一無
比較例	1	x	6 5	A	0. 05	Q 19	1. 26	0.009	0. 0008	0. 028	0. 0035	Cu:0.25. Ni:0.06. V:0.05. Ti:0.02	Nb:0.03.	350	発生
Ä	5	х	6 5	В	0.06	0. 20	1. 28	0,008	0. 0009	0. 032	0. 0055	Cu:0.24 Mi:0.05 V:0.05 Ti:0.03	Nb:0.02.	550	発生
本	3	x	6 5	С	0. 05	Q 21	1. 26	0.009	0. 0008	0. 035	0. 0035	Cu:0.26, Ni:0.04, V:0.04, Ti:0.02	Nb:0.04.	160	発生せず
比例	4	х	60	D	0. 09	0. 25	1. 02	0.011	0. 0007	0. 026	0. 0025	Rb:0.04, V:0.04.	7i:0.02	1000	発生
颍	5	х	60	E	0.09	0. 24	0. 99	0.010	0. 0008	0. 024	0, 0036	Mb:0.04, V:0.06	†i:0.03	300	発生
本	6	х	60	F	0. 09	0. 25	1.02	0.011	0. 0007	0.026	0. 0025	Nb:0.03, V:0.05.	7i:0.03	220	発生
比	7	х	5 6	G	0. 08	0. 34	0. 81	0, 008	0,0006	0. 041	0, 0044	Nb:0,05, Ti:0.02		600	発生
本	8	X	5 6	Н	0. 08	0. 35	0. 82	0.009	0. 0008	0. 036	0, 0039	Nb:0.04. Ti:0.03		150	発生せず
比	9	Х	5 2	ı	0.06	0. 22	0. 71	0.010	0.0011	0. 036	0. 0064	Cu:0.23. Nb:0.02		300	発生
	11	х	5 2	К	0.06	0. 22	0. 73	0, 009	0. 0 010	0. 034	0. 0045	Cu:0, 25, Nb:0, 03		140	発生せず
本	12	Х	6 5	L	0.04	0. 15	1. 35	0. 007	0. 0007	0. 025	0. 0021	_		100	発生せず
発明	13	х	60	М	0. 07	0, 22	1, 20	0, 009	0.0010	0. 029	0.0032	-		100.	発生せず
例	14	Х	5 6	N	0.09	0, 26	0, 95	0.008	0. 0006	0.024	0. 0024	-		150	発生せず
	15	Х	5 2	0	0, 05	0, 15	0. 80	0.009	0.0010	0. 021	0, 0026			80 .	発生せず
	16	X	5 6	P	0. 08	0. 34	0, 80	0. 008	0, 0008	0, 024	0.0048	Nb:0.05, Ti:0.02		150	発生せず

(注) 「本」は「本発明例」を、「比」は「比較例」を表す。また、「関節成分」はPe及び不可避的不純物であり、「最大B系介在物の長さ」は全肉厚でのものである。

【0040】表3に示される結果からも、本発明鋼材で あるところの、存在するB系介在物が圧延方向又は鍛練 30 である。 軸方向の最大長さで200μm未満のものは、NACE 浴中でもHICを発生しなかったのに対して、前記長さ が200μm以上のB系介在物が存在するものではHI Cを発生することが確認できた。

[0041]

【効果の総括】以上に説明した如く、この発明によれ ば、NACE浴中においてもHICやSSCを発生しな い優れた耐硫化物割れ性を安定して示す鋼材、鋼管を提 供することが可能となり、硫化水素を含む原油或いはガ スを輸送するラインパイプ、更には硫化水素を含む原油 40 ける肉厚方向の水素濃度分布を示す模式図である。 或いはガスを精製する塔、槽類の性能向上に大きく寄与 できるなど、産業上極めて有用な効果がもたらされる。 【図面の簡単な説明】

【図1】CAPCIS型実管試験の説明図(縦断面図)

【図2】CAPCIS型実管試験の説明図(上方から見 た応力負荷状態の説明図) である。

【図3】無応力下で小型試験片のHIC感受性を定量化 する「HICその場測定法」の説明図である。

【図4】B系介在物の圧延軸方向の長さと割れ臨界水素 透過係数の相関を示したグラフである。

【図5】数例のCAPCIS型実管試験における表面水 素透過係数の経時変化を示したグラフである。

【図6】鋼材の片面のみが腐食流体に曝される場合にお

【図7】鋼材の両面あるいは全周面が腐食流体に曝され る場合における肉厚方向の水素濃度分布を示す模式図で ある。

1 気圧H,S

1 気圧H,S

引張応力

ジャッキのスクリュー

NACE TM-01-77浴
(0.5%CH,COOH+5 WacIr/な溶液)

[図3]

【図4】

【図6】

