# **Propositional Logic**

Presentation by:

K.Lekshmi

SSN College of Engineering



### Overview of the session

- Definition of Logic
- Definition of Propositional Logic
  - Syntax
  - Semantics



## What is a Logic?

#### Logic is defined by:

- A set of sentences
  - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
  - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
  - Assigns a value (typically the truth value) to a given sentence under some interpretation

```
V: sentence \times interpretation \rightarrow \{True, False\}
```



## **Propositional Logic**

**Propositional logic**: a formal language for representing knowledge and for making logical inferences

- A **proposition** is a statement that is either true or false.
- A **compound proposition** can be created from other propositions using logical connectives
- The **truth of a compound proposition is** defined by truth values of elementary propositions and the meaning of connectives.
- The **truth table for a compound proposition**: table with entries (rows) for all possible combinations of truth values of elementary propositions.

## **Propositional Logic**

- Examples (cont.):
  - How are you?
    - a question is not a proposition
  - -x+5=3
    - since x is not specified, neither true nor false
  - 2 is a prime number.
    - · (T)
  - She is very talented.
    - since she is not specified, neither true nor false
  - There are other life forms on other planets in the universe.
    - · either T or F



## **Propositional Logic - Syntax**

- Formally propositional logic P:
  - is defined by Syntax+interpretation+semantics of P

#### Syntax:

- Symbols (alphabet) in P:
  - Constants: True, False
  - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$



## **Propositional Logic - Syntax**

#### Sentences in the propositional logic:

- Atomic sentences:
  - Constructed from constants and propositional symbols
  - True, False are (atomic) sentences
  - P,Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
  - Constructed from valid sentences via connectives
  - If A, B are sentences then  $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or  $(A \lor B) \land (A \lor \neg B)$

are sentences



## **Compound Propositions**

```
    Let p: 2 is a prime ..... T
    q: 6 is a prime ..... F
```

• Determine the truth value of the following statements:

```
\neg p:

p \land q:

p \land \neg q:

p \lor q:

p \oplus q:

q \to p:
```



## **Compound Propositions**

- Let p: 2 is a prime ..... T
   q: 6 is a prime ..... F
- Determine the truth value of the following statements:

```
\neg p: \mathbf{F}
p \land q : \mathbf{F}
p \land \neg q: \mathbf{T}
p \lor q : \mathbf{T}
p \oplus q: \mathbf{T}
p \to q: \mathbf{F}
q \to p: \mathbf{T}
```



## **Definition of Propositional Logic**

#### **SYNTAX** (what is a **formula**?):

- **▶** Vocabulary consists of a set P of propositional variables, usually denoted by (subscripted) p,q,r,...
- The set of propositional formulas over P is defined as:
  - Every propositional variable is a formula
  - If F is a formula,  $\neg F$  is also a formula
  - If F and G are formulas,  $(F \wedge G)$  is also a formula
  - If F and G are formulas,  $(F \vee G)$  is also a formula
  - Nothing else is a formula
- Formulas are usually denoted by (subscripted)  $F, G, H, \dots$
- Examples:

$$p \neg p (p \lor q) \neg (p \land q)$$

$$(p \land (\neg p \lor q))$$
  $((p \land q) \lor (r \lor \neg q))$  ...



## **Propositional Logic - Semantics**

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
  - Semantics of atomic sentences
- 2. Through the meaning of connectives
  - Meaning (semantics) of composite sentences



## Semantic: propositional symbols

#### A propositional symbol

- a statement about the world that is either true or false Examples:
  - Pitt is located in the Oakland section of Pittsburgh
  - It rains outside
  - Light in the room is on
- An interpretation maps symbols to one of the two values:
   True (T), or False (F), depending on whether the symbol is satisfied in the world
  - I: Light in the room is on -> True, It rains outside -> False
  - I': Light in the room is on -> False, It rains outside -> False



# **Semantic: propositional symbols**

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False

V(Light in the room is on, I) = True

V(It rains outside, I) = False

I': Light in the room is on -> False, It rains outside -> False

V(Light in the room is on, I') = False



## **Semantic: constants**

- The meaning (truth) of constants:
  - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, I) = True$$

$$V(False, I) = False$$
For any interpretation I



## Semantic: composite sentences

- The meaning (truth value) of complex propositional sentences.
  - Determined using the standard rules of logic:

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \vee Q$ | $P\Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|------------------|-----------------------|
| True  | True  | False    | True         | True       | True             | True                  |
| True  | False | False    | False        | True       | False            | False                 |
| False | True  | True     | False        | True       | True             | False                 |
| False | False | True     | False        | False      | True             | True                  |

Rows define all possible interpretations (worlds)



# Semantic: composite sentences – Constructing Truth Table

## Constructing the truth table

• Example: Construct the truth table for

$$(p \to q) \land (\neg p \leftrightarrow q)$$



# Semantic: composite sentences – Constructing Truth Table

 Example: Construct the truth table for (p → q) ∧ (¬p ↔ q)





# Semantic: composite sentences – Constructing Truth Table

Example: Construct the truth table for

$$(p \rightarrow q) \land (\neg p \leftrightarrow q)$$

Typically the target (unknown) compound proposition and its

| р  | q | ¬р    | $p \rightarrow q$      | ¬p ↔ q | (p→q)∧<br>(p↔qr) |
|----|---|-------|------------------------|--------|------------------|
| Т  | Т |       |                        |        |                  |
| Т  | F |       |                        |        |                  |
| F  | Т | Auxil | iary compo             | ound   |                  |
| F  | F | 1.04  | propositions and their |        |                  |
| 76 |   |       | values                 |        | 6                |



# **Semantic: composite sentences – Constructing Truth Table**

 Examples: Construct a truth table for (p → q) ∧ (¬p ↔ q)

| р | q | ¬р | $p \rightarrow q$ | ¬p ↔ q | (p→q)∧<br>(¬p↔q) |
|---|---|----|-------------------|--------|------------------|
| Т | Т | F  | Т                 | F      | F                |
| Т | F | F  | F                 | Т      | F                |
| F | Т | Т  | Т                 | Т      | Т                |
| F | F | Т  | Т                 | F      | F                |



# **Definition of Propositional Logic (2)**

**SEMANTICS** (what is an interpretation I, when I = F?):

- **●** An interpretation *I* over  $\mathcal{P}$  is a function  $I: \mathcal{P} \rightarrow \{0, 1\}$ .
- *I* satisfies *F* (written  $I \models F$ ) if and only if  $eval_I(F) = 1$ .
- $eval_I : Formulas \rightarrow \{0, 1\}$  is a function defined as follows:
  - $eval_I(p) = I(p)$
  - $eval_I(\neg F) = 1 eval_I(F)$
  - $eval_I((F \land G)) = min\{eval_I(F), eval_I(G)\}$
  - $eval_I((F \lor G)) = max\{eval_I(F), eval_I(G)\}$
- If  $I \models F$  we say that
  - I is a model of F or, equivalently
  - F is true in I.



## Semantics of propositional logic

We start with two truth values:  $\{0, 1\}$ 

• 0 stands for False, and 1 stands for True

Let **D** be any subset of the *atomic* formulas An *assignment* **A** is a map  $\mathbf{D} \rightarrow \{0, 1\}$ 

• A assigns True or False to every atomic in **D** 

Let  $E \supseteq D$  be set of formulas built from D using propositional connectives

Extended assignment A':  $\mathbf{E} \to \{0, 1\}$  extends A from atomic formulas to all formulas

continued on the next slide

# Semantics of propositional logic

For an atomic formula  $A_i$  in **D**:  $A'(A_i) = A(A_i)$ 

$$\mathbf{A}'(\mathbf{F} \wedge \mathbf{G}) = 1$$
 if  $\mathbf{A}'(\mathbf{F}) = 1$  and  $\mathbf{A}'(\mathbf{G}) = 1$ 

= 0 otherwise

$$\mathbf{A}'(\neg \mathbf{F})$$
 = 1 if  $\mathbf{A}'(\mathbf{F}) = 0$   
= 0 otherwise

We write A instead of  $\hat{A}$ .



# **Exercise: Define Extended Assignment**

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Is F true or false under A'?



## **Parse Tree**

## Formula

$$F = \neg (A \land B) \lor C$$

## Assignment

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Abstract Syntax Tree (AST)





## Is F true or false under A'?

$$F = (\neg A \to (A \to B))$$

| $\boldsymbol{A}$ | B | $\neg A$ | $(A \rightarrow B)$ | F |
|------------------|---|----------|---------------------|---|
| 0                | 0 | 1        | 1                   | 1 |
| 0                | 1 | 1        | 1                   | 1 |
| 1                | 0 | 0        | 0                   | 1 |
| 1                | 1 | 0        | 1                   | 1 |



# **Applications of Proposition Logic**

- Translation of English sentences
- Inference and reasoning:
  - new true propositions are inferred from existing ones
  - Used in Artificial Intelligence:
    - Rule based (expert) systems
    - Automatic theorem provers
- Design of logic circuit

#### **Assume the following sentences:**

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

#### **Denote:**

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a short trip
- t= We will be home by sunset



#### **Assume the following sentences:**

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

$$\begin{array}{c}
 & p \land q \\
 & r \rightarrow p \\
 & r \rightarrow s \\
 & s \rightarrow t
\end{array}$$

#### **Denote:**

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset



#### Assume a sentence:

If you are older than 13 or you are with your parents then you can attend a Horror movie.

#### Parse:

• If (you are older than 13 or you are with your parents)then (you can attend a Horror movie)

#### **Atomic (elementary) propositions:**

- -A= you are older than 13
- B= you are with your parents
- C=you can attend a Horror movie
- Translation: ?



#### Assume a sentence:

If you are older than 13 or you are with your parents then you can attend a Horror movie.

#### Parse:

• If (you are older than 13 or you are with your parents)then (you can attend a Horror movie)

#### **Atomic (elementary) propositions:**

- -A= you are older than 13
- -B= you are with your parents
- C=you can attend a Horror movie
- Translation:  $A \lor B \to C$



- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

**Step 1 find logical connectives** 



- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

**Step 1 find logical connectives** 



- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions



- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

b

c

Step 2 break the sentence into elementary propositions



- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

b

c

Step 3 rewrite the sentence in propositional logic

$$b \wedge c \rightarrow a$$



## **Propositional Logic: Semantics**

An assignment A is <u>suitable</u> for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a <u>model</u> for F, written A⊧ F, iff

- A is suitable for F
- A'(F) = 1, i.e., F evaluates to true (or holds) under A

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable* (or contradictory)

A formula F is *valid* (or a tautology), written F F, iff every suitable assignment for F is a model for F



## Formalizing natural language (I)

A device consists of two parts A and B, and a red light. We know that:

- A or B (or both) are broken.
- If A is broken, then B is broken.
- If B is broken and the red light is on, then A is not broken.
- The red light is on.

We use the atomic formulas: Ro (red light on), Ab (A is broken), Bb (B is broken), and formalize this situation by means of the formula

$$((((Ab \lor Bb) \land (Ab \to Bb)) \land ((Bb \land Ro) \to \neg Ab))) \land Ro)$$

# Formalizing natural language (II)

| Full truth table: |    |    |    | F                                                     |
|-------------------|----|----|----|-------------------------------------------------------|
|                   |    |    |    | $ ((((Ab \vee Bb) \land (Ab \rightarrow Bb))) \land $ |
|                   | Ro | Ab | Bb | $((Bb \wedge Ro) \rightarrow \neg Ab)) \wedge Ro)$    |
|                   | 0  | 0  | 0  | 0                                                     |
|                   | 0  | 0  | 1  | 0                                                     |
|                   | 0  | 1  | 0  | 0                                                     |
|                   | 0  | 1  | 1  | 0                                                     |
|                   | 1  | 0  | 0  | 0                                                     |
|                   | 1  | 0  | 1  | 1                                                     |
|                   | 1  | 1  | 0  | 0                                                     |
|                   | 1  | 1  | 1  | 0                                                     |
|                   |    |    |    | ·                                                     |

- I satisfies F (written  $I \models F$ ) if and only if  $eval_I(F) = 1$ .
- If  $I \models F$  we say that

  I is a model of F or, equivalently

  F is true in I.

## **Contradiction and Tautology**

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

Contradiction (always False) / Unsatisfiable

$$P \wedge \neg P$$

Tautology (always True)

$$P \vee \neg P$$

$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q) 
\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$
DeMorgan's Laws



- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
  - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
  - i.e., if its negation is **not satisfiable** (leads to contradiction)

| P     | Q     | $P \vee Q$ | $(P \vee Q) \wedge \neg Q$ | $((P \vee Q) \wedge \neg Q) \Rightarrow P$ |
|-------|-------|------------|----------------------------|--------------------------------------------|
| True  | True  | True       | False                      | True                                       |
| True  | False | True       | True                       | True                                       |
| False | True  | True       | False                      | True                                       |
| False | False | False      | False                      | True                                       |



- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
  - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
  - i.e., if its negation is **not satisfiable** (leads to contradiction)

| P     | Q     | $P \vee Q$ | $(P \lor Q) \land \neg Q$ | $((P \lor Q) \land \neg Q) \Rightarrow P$ |
|-------|-------|------------|---------------------------|-------------------------------------------|
| True  | True  | True       | False                     | True                                      |
| True  | False | True       | True                      | True                                      |
| False | True  | True       | False                     | True                                      |
| False | False | False      | False                     | True                                      |



- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
  - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
  - i.e., if its negation is **not satisfiable** (leads to contradiction)

|       | 20    |            | Satisfiable sentence      |                                            |  |
|-------|-------|------------|---------------------------|--------------------------------------------|--|
| P     | Q     | $P \vee Q$ | $(P \lor Q) \land \neg Q$ | $((P \vee Q) \wedge \neg Q) \Rightarrow P$ |  |
| True  | True  | True       | False                     | True                                       |  |
| True  | False | True       | True                      | True                                       |  |
| False | True  | True       | False                     | True                                       |  |
| False | False | False      | False                     | True                                       |  |



- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is satisfiable if it has a model;
  - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is valid if it is True in all interpretations
  - i.e., if its negation is **not satisfiable** (leads to contradiction)

|       | 200   |            | Satisfiable sentence      | Valid sentence                             |
|-------|-------|------------|---------------------------|--------------------------------------------|
| P     | Q     | $P \vee Q$ | $(P \lor Q) \land \neg Q$ | $((P \vee Q) \wedge \neg Q) \Rightarrow P$ |
| True  | True  | True       | False                     | True                                       |
| True  | False | True       | True                      | True                                       |
| False | True  | True       | False                     | True                                       |
| False | False | False      | False                     | True                                       |



### Validity and Unsatisfiability

#### Theorem:

A formula F is valid if and only if ¬F is unsatifsiable

#### **Proof:**

F is valid  $\Leftrightarrow$  every suitable assignment for F is a model for F

⇔ every suitable assignment for ¬ F is not a model for ¬ F

⇔ ¬ F does not have a model

⇔ ¬ F is unsatisfiable



# **Small Syntax Extension**

- We will write  $(F \to G)$  as an abbreviation for  $(\neg F \lor G)$
- **⑤** Similarly,  $(F \leftrightarrow G)$  is an abbreviation of  $((F \to G) \land (G \to F))$

They both capture very intuitive concepts, which ones?



# **Small Syntax Extension**

- We will write  $(F \to G)$  as an abbreviation for  $(\neg F \lor G)$
- **⑤** Similarly,  $(F \leftrightarrow G)$  is an abbreviation of  $((F \to G) \land (G \to F))$

They both capture very intuitive concepts, which ones?

• 
$$I = (F \rightarrow G)$$
 iff  $I = F$  implies  $I = G$ 

$$I = (F \leftrightarrow G) \quad \text{iff} \quad I = F \text{ and } I = G \text{ or }$$

$$I = F \text{ and } I = G$$

$$\text{iff} \quad eval_I(F) = eval_I(G)$$



# **Operator (Connective) Precedence**

### Operator precedence:

```
binds weaker than

→ which binds weaker than

∨ which binds weaker than

∧ which binds weaker than

∧ which binds weaker than
```

So we have

$$A \leftrightarrow B \vee \neg C \to D \wedge \neg E \equiv (A \leftrightarrow ((B \vee \neg C) \to (D \wedge \neg E)))$$

But: well chosen parenthesis help to visually parse formulas.



### **EXCERCISE**

1. Draw the parse tree for the following formula:

$$((\neg p) \land ((\neg q) \land ((\neg r) \land ((\neg s) \land \top))))$$

List all sub-formulas of the expression.

2. According to the operator precedences, the following formula has a unique reading.

$$\neg p \land q \rightarrow \neg r \lor \neg p \rightarrow r$$

Indicate this reading by writing all parentheses



### **EXERCISE** on Translation

• Assume two elementary statements:

p: you drive over 65 mph; q: you get a speeding ticket

- Translate each of these sentences to logic
- a) you do not drive over 65 mph.
- b) you drive over 65 mph, but you don't get a speeding ticket.
- c) you will get a speeding ticket if you drive over 65 mph.
- d) if you do not drive over 65 mph then you will not get a speeding ticket.
- e) driving over 65 mph is sufficient for getting a speeding ticket.
- f) you get a speeding ticket, but you do not drive over 65 mph.



### References

Chpater 1 of Logic for Computer Scientists
 <a href="http://www.springerlink.com/content/978-0-8176-4762-9/">http://www.springerlink.com/content/978-0-8176-4762-9/</a>

Logic for Computer Scientists
Uwe Schöning

