

Types of MachineLearning

Ms. Sandhya Harikumar,

Department of Computer Science & Engineering,

Amrita Vishwa Vidyapeetham, Amritapuri

Machine Learning is Inductive

➤ Deductive Learning

Premise A : Tumor size is $\ge x$

Conclusion B: Person suffers from cancer

 $A \rightarrow B$

General Information to Specifics

➤ Inductive (Inference) Learning

Given A: Tumor sizes of various Cancer/Non-Cancer Patients

Infer B: Person suffering from cancer or not

$$B=f(A)$$

Specifics to General Information

X7

>(X1,X2,...,Xn): Samples/Rows/Tuples/Instances/ Observations

Independent and Identically Distributed vectors

- Time series (Dependent vectors)
- >Images (Matrices)
- ➤ Variable size Non-vector data(Trees, Graphs, Text)
- ➤ Objects (Relational Schema)

Discrete versus Continuous Labels

Supervised Learning from Data

➤ Predicting continuous target variable

Task: Regression

Example : Stock Price Prediction

- Only one target variable ?
- ➤ How to take a combination of the features (linear regression)?
- ➤ Anything more general than that?
- ➤ Is local minimum error the global minimum error ?

Task: Classification

> Example : Classify whether the patient is suffering from cancer or not.

Supervised Learning

Unsupervised Learning

- ➤ Task : Clustering
- ➤ No Target variable

Task: Association mining

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

```
{milk} → {bread}
{milk, cheese, eggs} → {bread}
{milk, diaper} → {beer}
```

Task: Dimensionality Reduction

Reinforcement Learning

Typical RL scenario

<u>Image Source: https://www.guru99.com/reinforcement-learning-tutorial.html</u>

Applications

- > Manufacturing
 - ➤ Pick a device and put it in right container
- > Self-driving cars
 - > Detect obstacles, proper routing, traffic signal
- ➤ Power systems
- ➤ Network routing

Data Mining and Machine Learning Process

References

- https://chatbotsmagazine.com/reinforcement-learning-and-its-practical-applications-8499e60cf751
- https://www.guru99.com/reinforcement-learning-tutorial.html
- https://cs.gmu.edu/~jessica/DimReducDanger.html
- https://elearningindustry.com/machine-learning-process-and-scenarios