

Docket No. P2092D/1612US

APPLICATION FOR
UNITED STATES UTILITY LETTERS PATENT

Be it known that we, David V. James and William Rivard, have invented certain new and useful improvements in an

APPARATUS AND METHOD FOR INTER-NODE
COMMUNICATION

of which the following is the Specification:

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail No. EK889946752US in an envelope addressed to: BOX PATENT APPLICATION, Commissioner of PatentS, Washington, D.C. 20231, on December 31, 2001.

(Signature)

1 CROSS REFERENCE TO RELATED APPLICATION
2

3 This is a division of United States Patent Application No. 09/040,149,
4 filed on March 17, 1998.

5 BACKGROUND
6

7 1. Technical Field

8 The present invention relates generally to apparatus and methods for
9 transmitting signals between nodes, and more particularly for transmitting
10 signals at high bit-rates between nodes.

11

12 2. Background

13 A typical computer or inter-linked set of computers can be modeled as
14 a series of nodes which communicate with one another point-to-point.
15 Although nodes have in the past been attached to a bus, modern
16 communications standards more commonly employ point-to-point
17 interconnections. In the past, the communication data rate between such
18 nodes was limited more by the performance of the computer or its various
19 internal chips than by the speed of the traces or transmission lines by which
20 the nodes were connected. Now as chip and computer speeds have
21 substantially increased, these interconnects are hindering further
22 performance improvements.

23

24 More specifically, current signaling architectures as well as the physical
25 limitations of the traces and transmission lines themselves limit the
26 maximum inter-node communications rate. Synchronized buses and
27 point-to-point links are two of interconnect architectures commonly used.
28 Synchronous bus architectures typically broadcast an address block to all
29 nodes on a multiplexed bus. The node corresponding to the address then
30 generates an acknowledgement block, which is also broadcast to all of the
31 nodes. This architecture results in relatively low communications

1 throughput. This is because each node must be synchronized to the same
2 common reference clock so that address and acknowledgment blocks can be
3 transmitted and received. Nodes employing the synchronous bus
4 architecture must also take turns communicating, further limiting the
5 maximum possible inter-node data rate, especially when a large number of
6 nodes are connected to the same bus. The multiplexed buses used with
7 synchronous bus architectures also typically contain intermediate stubs and
8 additional signal paths that limit the effective speed of data transfer between
9 nodes.

10

11 Point-to-point link architectures are comparatively more time efficient
12 since their signals have an affiliated reference clock signal. Using a
13 point-to-point link architecture, two nodes can transfer data at a rate
14 independent of other nodes and of any common reference clock. However,
15 point-to-point link inter-node data rates still tend to be limited by the physical
16 limitations in the traces and transmission lines.

17

18 For instance, modern computers typically communicate by either
19 single-ended or differential signaling. Both of these forms of signaling are
20 well known in the art. Ideally, single-ended connections require only one
21 physical line per logic signal. However, as communication rates have
22 increased so has ground-bounce, which is inherent in single-ended systems.
23 Attempts to solve the ground-bounce problem include adding power supply
24 and ground pins for each single-ended logic line on a chip, effectively tripling
25 the number of physical traces required. Thus, six single-ended logic signals
26 can require up to eighteen physical traces. Differential signaling systems
27 require two physical traces for each logic signal. Thus, six differential logic
28 signals require at least twelve physical traces. Since silicon and computer
29 resources are finite, a large number of traces or transmission lines can
30 significantly increase the cost of manufacturing the chip or the computer.

31

1 Regardless of whether single-ended or differential signaling is used, the
2 physical traces and transmission lines all have an inherent parasitic
3 inductance. As the data rate over these pathways increases, the parasitic
4 inductance combined with the quickly varying signal currents generate
5 parasitic voltages that interfere with and corrupt the signals traveling over
6 these pathways.

7

8 Additionally, large signal currents that pass through the traces and
9 transmission lines can generate Electro-Magnetic Interference (EMI) noise
10 which further corrupts signals traveling between the nodes. Such EMI noise
11 may also, from time to time, exceed the limits of various well known
12 regulatory standards for permissible EMI radiation levels.

13

14 Other prior art approaches have employed RAMBUS technology
15 (manufactured by RAMBUS, Inc. of Mountain View, California) to reduce the
16 parasitic and EMI noise voltages present on some signal lines. The RAMBUS
17 approach consists of a number of traces or transmission lines, each of which
18 transmits a different signal. Ideally, these signal lines are kept in close
19 proximity to one another. One of the signal lines is designated as a reference
20 and used to cancel out some of the noise effects present on the signal lines. A
21 shortcoming of this approach is a noticeable current surge when all of the
22 signal lines are either logic 1's or logic 0's.

SUMMARY

The present invention delineates an inter-node communications paradigm for enabling signals to be transmitted between nodes at a higher rate. The higher rate is possible due to an encoding schema that reduces current demands and fluctuations between multiple nodes. The encoding schema also requires fewer physical traces and/or transmission lines than high speed single-ended and differential signaling circuits.

Within the apparatus of the present invention, a first node is connected to a communication channel. Operations on the first node result in a first set of signals that are to be transmitted over the communication channel. The logic states which comprise the first set of signals may range from all logic zeros to all logic ones. This large number of potential logic transitions results in large current fluctuations over the communication channel. To reduce and/or eliminate these current fluctuations, the present invention also includes an encoder or lookup table for transforming the first set of signals into a second set of signals having either an equal number, nearly an equal number, a constant number, or nearly a constant number of logic ones and logic zeros. In one embodiment, groups of six signals from the first set of signals are encoded into eight signals in the second set of signals.

Within the method of the present invention, a first set of signals from a first node are encoded into a second set of signals having either an equal number, nearly an equal number, a constant number, or nearly a constant number of logic ones and logic zeros. This second set of signals is then transmitted over a communication channel.

29 Thus, the present invention presents a communications technique
30 which has quieter switching currents than single-ended circuits and requires
31 fewer physical traces and transmission lines than differential circuits. The

1 present invention can be applied to communications between computer chips
2 on a circuit board as well as between nearby computers linked together. These
3 and other aspects of the invention will be recognized by those skilled in the
4 art upon review of the detailed description, drawings, and claims set forth
5 below.

1 BRIEF DESCRIPTION OF THE DRAWINGS
23 **Figure 1** is a block diagram of an apparatus for inter-node
4 communication;5
6 **Figure 2** is a table of unencoded signals utilized by each node within
7 the apparatus of **Figure 1**;8
9 **Figure 3** is a block diagram of an apparatus for encoding and
10 transmitting signals between a set of nodes;11
12 **Figure 4** is a partial electrical circuit of an encoder and decoder pair
13 within the apparatus for encoding and transmitting the signals between the
14 set of nodes;15
16 **Figure 5** is a flowchart of a method for inter-node communication; and17
18 **Figure 6** is a flowchart of a method for encoding inter-node
19 communication signals.

1 DETAILED DESCRIPTION
2

3 **Figure 1** is a block diagram of an apparatus 100 for transmitting high
4 bit-rate signals between a set of nodes. The apparatus 100 includes a first node
5 102, a second node 104, a third node 106, a fourth node 108 and a clock
6 generator 110. The apparatus is designed to provide the functionality of a
7 synchronous bus, with the performance advantages of point-to-point
8 signaling. Each node 102, 104, 106 and 108 receives a clock signal on line 112
9 from the clock generator 110, data signals on lines 114 A, B, C and D, flag
10 signals on lines 116 A, B, C and D, and strobe signals on lines 118 A, B, C and
11 D. Collectively, the signals on lines 114, 116, and 118 make up a shared
12 communications channel/link between the nodes 102, 104, 106 and 108.
13 Those skilled in the art will be aware of various other receive and transmit
14 signals which can also be passed between the nodes 102, 104, 106 and 108,
15 depending upon the application or transmission protocol.

16
17 Data transmissions between nodes 102, 104, 106 and 108 are source
18 synchronous. Even though all of the nodes also receive the clock signal on
19 line 112, the strobe signals on lines 118 A, B, C and D act as a reference clock
20 for these data transmissions. The strobe signal resolves any frequency
21 differences in timing between the transmitting and receiving node.
22 Although each node has to compensate for arbitrary frequency differences
23 between its incoming data and the clock signal on line 112, this arrangement
24 eliminates the need to insert or delete symbols to adjust for inter-node timing
25 differences. Strobe signals also enable higher transmission bandwidths
26 between the nodes because there is no longer a need to accurately synchronize
27 all of the nodes within the apparatus 100. The inter-node transmission rates
28 are not affected by inter-node transmission delays, thus arbitrary delays
29 between each of the nodes are acceptable.

1 Using the point-to-point link data communication architecture, the
2 nodes transmit requests and responses as *send* packets. The receiving node
3 strips the *send* packet of its data and then returns a small *acknowledgment*
4 (i.e. "ack") packet. Routing architectures for the packets are preferably
5 straightforward. In the preferred embodiment, the *send* packets addressed to
6 a specific node are stripped from the inter-node data stream flowing on lines
7 114 A, B, C, and D by that node and are replaced with *ack* packets. The *send*
8 and *ack* packets addressed to other nodes are passed through any intermediate
9 nodes. The *ack* packets are stripped from the inter-node data stream when
10 they return to the original transmitting node.

11
12 For example, in order for node 102 to transmit data to node 108, node
13 102 must first generate a *send* packet addressed to node 108. Node 102 then
14 transmits this *send* packet to node 106. Node 106 looks at the address of the
15 *send* packet and since the *send* packet is not intended for node 106, passes the
16 *send* packet along to node 108. Node 108 then looks at the address of the *send*
17 packet and since the *send* packet is intended for node 108, strips the *send*
18 packet from the inter-node data stream and generates an *ack* packet addressed
19 to node 102. Node 108 then sends the *ack* packet to node 104. Node 104 looks
20 at the address of the *ack* packet and since the *ack* packet is not intended for
21 node 104, passes the *ack* packet along to node 102. Node 102 then looks at the
22 address of the *ack* packet and since the *ack* packet is intended for node 102,
23 strips the *ack* packet from the inter-node data stream. After this last step the
24 data exchange between nodes 102 and 108 is complete.

25
26 The flags on lines 116 A, B, C, and D are used for data stream packet-
27 framing. Data stream packet-framing consists of labeling each packet with
28 either a first-packet symbol, a between-packet-idle symbol, or a last-packet
29 symbol. These flags are also used for arbitration purposes. Arbitration
30 protocols place a limit on a number of consecutive packets that can be sent by

1 any one node. This ensures that each node has an opportunity to send its
2 packets over the shared link.

3

4 Preferably one, and only one, of the nodes 102, 104, 106, 108 functions as
5 a "scrubber" within the apparatus 100. The scrubber performs such
6 maintenance functions as, removing mis-addressed packets on their second
7 pass around the shared link. The scrubber can be selected by setting a *scrubId*
8 line 120 A, B, C or D on the selected node to logic "1" (node 104 in Figure 1)
9 and setting the remaining *scrubId* lines 120 A, B, C or D to logic "0" (nodes 102,
10 106 and 108 in Figure 1). Those skilled in the art will know of other vendor-
11 dependent scrubber-assignment techniques that can be used.

12

13 **Figure 2** is a table 200 of unencoded signals utilized by each node
14 within the apparatus of **Figure 1**. The signals include a 1-pin scrubber
15 identifier (*scrubId*) 202, a 1-pin central clock (clock) 204, a 1-pin strobe 206,
16 4-pins of flags 208, and 32-pins of data.

17

18 The *scrubId* signal 202 is received by the nodes on lines 120 A, B, C, and
19 D, and uniquely identifies a particular node as the scrubber within the shared
20 communications channel (also known by those skilled in the art as a ringlet).
21 In an alternate embodiment, a vendor-dependent scrubber-identification
22 technique can be provided.

23

24 The clock signal 204 is preferably an input-only signal received by the
25 nodes on line 112, and provides the nodes with a reference for synchronizing
26 their internal frequency-lock loops. The frequency-lock-loops within the
27 nodes permit a lower clock generator 110 frequency, which in turn simplifies
28 clock signal distribution. For example, a 50 MHz clock signal can be
29 frequency-lock-looped up to 500 MHz. Also since the frequency-lock loops
30 within the nodes are tracking the clock signal fairly closely, the cycles per
31 second each node sees is about the same.

1

2 Frequency locking, rather than phase locking, is used because arbitrary,
3 but fixed, phase differences can be tolerated and a small input-data FIFO can
4 compensate for any incoming phase differences. The FIFO compensates for
5 the fixed phase error between each node. The fixed phase error is random
6 and cannot be controlled.

7

8 The strobe signal 206, received by the nodes on lines 118 A, B, C, and D,
9 is preferably complemented on each cycle, so that a receiving node can
10 accurately determine when incoming (source-synchronous) data should be
11 latched.

12

13 The flag signals 208, received by the nodes on lines 116 A, B, C, and D,
14 transfer control and framing information between the nodes.

15

16 The data signals 210, received by the nodes on lines 114 A, B, C, and D,
17 transmit the contents of the *send* and *ack* packets. Preferably, most-significant
18 bits are sent first when sending a packet header, and lower addresses are sent
19 first when sending data. While the present inter-node data packets contain 32
20 data bits, other data packet capacities, such as 8, 16, 64, or 128 data bits, are also
21 acceptable. Alternatively, large data-words may be broken up and sent over
22 multiple clock cycles. For instance a large 64 bit data packet could be sent as
23 two smaller 32 bit data packets. When deciding how many bits to include in a
24 data packet, designers should consider that while 8-bit data packets may be
25 more cost effective in terms of coding or hardware to implement, such small
26 data packet designs have less bandwidth per pin due to the relatively-fixed
27 overhead of the scrubId, clock, strobe, and flag pins. However, while 128-bit
28 data packets may have more bandwidth per pin, such large data packets may
29 be more expensive to implement in terms of coding, hardware, and/or
30 skew-management circuits.

31

1 **Figure 3** is a block diagram of an apparatus 300 for encoding and
2 transmitting the signals 206, 208, and 210 between a set of nodes. The
3 apparatus includes a driver node 302 and a receiver node 304 which can
4 represent any pair of the **Figure 1** nodes 102, 104, 106, and 108. The driver
5 node 302 includes a plurality of encoders 302 A-G and the receiver node 304
6 includes a plurality of decoders 304 A-G. The nodes 302 and 304 communicate
7 via a set of traces, circuit paths, and/or transmission lines 308. These traces,
8 circuit paths, and transmission lines 308 collectively make up part of the
9 communications channel between the two nodes and perform the same roles
10 as the data 114, flag 116, and strobe 118 lines of **Figure 1**. The nodes
11 themselves can include any number of inter-linked devices. These
12 inter-linked devices can be computer chips, circuit boards, and/or stand alone
13 computers.

14

15 The apparatus 300 transmits the signals between the nodes by either a
16 dedicated line (such as for the scrubId signals on lines 120 A-D and the clock
17 signal on line 112) or after implementing an encoding schema (such as for the
18 strobe, flags and data signals). By selectively encoding the strobe, flag and data
19 signals transmitted between the nodes 302, 304, ground-bounce during
20 high-speed signaling, can be reduced. Preferably the strobe, flag and data
21 signals are grouped and encoded in such a way that nearly an equal (called
22 DC-free encoding) and/or constant (called DC-balanced encoding) number of
23 logic 0's and 1's are always transmitted between the driver node 302 and the
24 receiver node 304. These encoding schemas are preferably implemented
25 using an even number of data lines 308.

26

27 One way to implement a DC-balanced encoding schema is shown in
28 **Figure 3**. The strobe 206 signal is fed into a 1 to 2 encoder 302A which uses a
29 complementary encoding schema before the signal is transmitted over the
30 data lines 308. The flag 208 and data 210 signals, however, are divided into
31 groups of six unencoded signals (i.e. 6-bits), which are then converted into

1 groups of eight encoded signals (i.e. 8-bits). These eight encoded signals are
2 then transmitted in parallel over the data lines 308. Other signal coding
3 schemas, such as when groups of four unencoded signals (i.e. 4-bits) are
4 converted into groups of six encoded signals (i.e. 6-bits), can also be used.

5

6 DC-free encoding schemas can be implemented by transmitting an
7 even number of encoded signals with an equal number of logic 1's and 0's in
8 parallel over the data lines 308.

9

10 The DC-Balanced and DC-Free encoding schemas have the following
11 characteristics: First, a constant number of 1's valued lines is always driven
12 and thus the driver node 302 is balanced. A balanced driver node means that
13 total current over the data lines 308 is fairly constant. Second, ground-bounce
14 noise is reduced, since logic transitions from all zeros to all ones and from all
15 ones to all zeros are eliminated. Third, an implied reference voltage can be
16 obtained by averaging all of the data line 308 voltages. Fourth, parity
17 protection is inherent, since all single-bit transmissions failures, and many
18 double-bit errors, can be detected as an illegal (i.e. non-DC-balanced) input
19 code value. Fifth, peak current demands are reduced, since for each of the
20 unencoded signals, only half of the data lines are actively driven to a high
21 current logic state (such as logic "1"). Sixth, the encoding schema allows extra
22 control characters to be transmitted (for instance, in a 6-to-8 bit encoding
23 schema there are 6 unmapped 8-bit encoded values for each set of 64
24 unencoded values).

25

26 A nearly DC-free/nearly DC-balanced encoding schema can be
27 implemented by transmitting an odd number of bits, which contain no more
28 than one extra logic 1 or logic 0, in parallel over the data lines 308. For
29 instance, a 6/7 encoding schema (i.e. where 6-bits are encoded into 7-bits) may
30 be used where a logic 1 to logic 0 ratio is either 3-to-4 or 4-to-3. Although
31 more efficient, this nearly free/balanced encoding schema has no parity

1 protection and may be subject to signal-integrity limitations. This encoding
2 schema also results in a less accurate threshold reference voltage, once all of
3 the received signal values are averaged by the decoders 304 A-G.

4

5 The encoding schema herein taught requires extra-pinouts (for
6 example, the 6-to-8 schema requires an additional 2-pins for every 6 signals).
7 However, these additional demands upon limited silicon and PC-board
8 resources are offset by a reduction in a number of required ground and/or
9 power pins when compared with current unencoded full-swing signals
10 transmitted over single-ended data lines. To localize any chip or PC-board
11 ground-plane currents, each set of 8 signal traces is preferably routed as a
12 group. While the 6-to-8 bit encoding schema is preferred, sometimes the
13 number of unencoded signal lines are not always multiples of 6. In those
14 cases other encoding options are possible, such as 1-to-2 (differential), 2-to-4
15 (also differential), and 4-to-6 encoding schemas.

16

17 **Figure 4** is a partial electrical circuit 400 of the encoder 302A and the
18 decoder 304A pair within the apparatus 300 for encoding and transmitting the
19 signals between the set of nodes. The circuit 400, shown in **Figure 4**, effects a
20 6-to-8 bit encoding schema which employs a simple technology-independent
21 technique for driving the data lines 308 by switching a constant current 402
22 (i.e. "4i") to half (i.e. 4) of the total number (i.e. 8) of data lines 308 which are
23 driven to a high current logic state lines. Only half of the data lines are
24 driven since a DC-free encoding schema is effected. A zero volt termination
25 voltage 404, rather than a fixed positive voltage, enables the circuit to be
26 supply-voltage independent. In the circuit 400, termination resistors, R_t , are
27 effected using on chip FETs. The value of R_t is matched to the impedance of
28 each data-line 308. A typical termination resistance is 75Ω . Averaging
29 resistors, R_c , are chosen so that the threshold reference voltage of the decoder
30 304A is one half of the driven signal levels on the data lines 308. The decoder
31 304A then uses differential amplifiers 406 to compare the signals on the

1 data-lines 308 with the threshold reference voltage to determine whether, for
2 example, a logic "1" or a logic "0" has been transmitted.

3

4 Portions of the encoding and decoding hardware described in **Figure 3**
5 may also be implemented in software. In so doing, additional configurable
6 elements, such as a processing unit, a memory, and a storage device (not
7 shown) need to be added to **Figures 1, 3, and 4**. The memory would store
8 computer program instructions for controlling how the processing unit
9 accesses, transforms and outputs data. Those skilled in the art will recognize
10 that in alternate embodiments the memory could be replaced with a
11 functionally equivalent computer-useable medium such as a compact disk, a
12 hard drive or a memory card.

13

14 **Figure 5** is a flowchart of a method for inter-node communication.
15 The method begins in step 502 where a driver node and a receiver node are
16 identified within a communications system. Next, in step 504, a set of
17 unencoded signals transmitted from the driver node to the receiver node are
18 identified. The signals include a set of data values (i.e. logic "1's" and logic
19 "0's"). In step 506, the unencoded data values of the unencoded signals are
20 encoded to produce encoded signals. Next, in step 508, the encoded signals are
21 transmitted from the driver node to the receiver node. In step 510, the
22 encoded signals are decoded. After step 510, the method for inter-node
23 communication is complete.

24

25 **Figure 6** is a flowchart of a method for encoding the data values of the
26 inter-node communication signals (step 506 of **Figure 5**). The method begins
27 in step 602 by selecting a code such that a difference between a total number of
28 unencoded data values and a total number of encoded data values is a small
29 predetermined fraction of the total number of unencoded data values. A 6-bit
30 unencoded signal to 8-bit encoded signal coding schema is preferred, however
31 a 4-bit unencoded signal to 6-bit encoded signal coding schema may be more

1 appropriate in some applications. Codes may be stored in a set of lookup
2 tables or generated using algorithmic methods. Codes may also be switched at
3 any point during signal transmission provided that the switch is
4 communicated to the receiver node. In step 604, the code is selected such that
5 an encoded signal has an equal number of logic 1's and 0's. Alternatively, in
6 step 606 the code is selected such that an encoded signal has nearly an equal
7 number of logic 1's and 0's. Alternatively, in step 608 the code is selected such
8 that an encoded signal has a constant number of logic 1's and 0's.
9 Alternatively, in step 610 the code is selected such that an encoded signal has
10 nearly a constant number of logic 1's and 0's. After step 610, the method for
11 encoding the inter-node communication signals is complete.

12

13 While the present invention has been described with reference to a preferred
14 embodiment, those skilled in the art will recognize that various
15 modifications may be made. Variations upon and modifications to the
16 preferred embodiment are provided by the present invention, which is
17 limited only by the following claims.