1 Variables

2 root

	var	symbol	documentation	type	units	tokens	eqs
5	$F_{N,A}$	F	incidence matrix of directed graph	network			
1	t_N	t	time	frame	s		
3	to_N	to	initial time	frame	s		1
4	te_N	te	end time	frame	s		2
2	value	value	numerical value	constant			

3 System

	var	symbol	documentation	type	units	tokens	eqs
17	$\hat{x}^a{}_N$	fx_a	flow of x with mechanism a	transport	ms^{-1}	[]	12
18	$\hat{x}^b{}_N$	fx_b	flow of x with mechanism b	transport	ms^{-1}		13
6	x_N	x	state	state	$\mid m \mid$		15
15	$\pi^a{}_N$	pi_a	effort a	state	$\mid m \mid$		10
16	$\pi^b{}_N$	pi_b	effort b	state	$\mid m \mid$		11
19	\dot{x}_N	dx	differential state	state	ms^{-1}		14
10	ν	nu	frequency	constant	$ s^{-1} $		
11	K	K	frequency a	constant	s^{-1}		6
12	L	L	frequency b	constant	s^{-1}		7
13	M	М	a transport constant	constant			8
14	N	N	a transport constant	constant			9

4 Properties

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

5 Control

var	symbol	documentation	type	units	tokens	eqs

6 System-Properties

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

${\bf 7} \quad {\bf Properties-System}$

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

8 System-Control

_							
							1
	var	symbol	documentation	type	units	\mid tokens \mid	eas
	1601	5J 1115 51	docamenda	JP S	diffes		l odp

9 Control-System

var	symbol	documentation	type	units	tokens	eqs
	-					

10 Properties-Control

	var	symbol	documentation	type	units	$_{ m tokens}$	eqs
--	-----	--------	---------------	------	-------	----------------	-----

11 Control-Properties

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

12 Equations

12.1 Model equations

no	equation	documentation	layer
1	$to_N := Set(t_N, value)$	initial time	root
2	$te_N := Set(t_N, value)$	end time	root
6	$K := Set(\nu, value)$	frequency a	System
7	$L := Set(\nu, value)$	frequency b	System
8	M := Set(value, value)	a transprort constant	System
9	N := Set(value, value)	a transport constant	System
10	$\pi^a{}_N := M . x_N$	effort a	System
11	$\pi^b{}_N := N . x_N$	effort b	System
12	$\hat{x}^{a}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(K \cdot F_{N,A} \stackrel{N}{\star} \pi^{a}{}_{N} \right)$	flow of x with mechanism a	System
13	$\hat{x}^b{}_N := F_{N,A} \stackrel{A}{\star} \left(K \cdot F_{N,A} \stackrel{N}{\star} \pi^b{}_N \right)$	flow of x with mechanism b	System
14	$\dot{x}_N := \hat{x}^a{}_N + \hat{x}^b{}_N$	differential state	System
15	$x_N := \int_{to_N}^{te_N} \dot{x}_N \ dt_N$	state	System