Stock-Bond Dynamics and Expected Country Stock Returns

Sungjune Pyun (변성준)

Yonsei University School of Business 연세대학교 경영대학

2023 KFA Young Scholar Workshop

2023년 한국재무학회 신진학자 학술세미나

Stocks and Treasury Bonds

- ▶ With advancements of ETFs, international investment based on the macro environment became more popular.
- ▶ A common top-down approach requires us to first understand how local/global risk factors influence the prices of assets.
- Stocks and Treasury bonds are the traditional financial asset classes. It is natural to assume that their dynamics would affect the portfolio decision.
- ▶ While much is known what derives the stock-bond return (SB) dynamics, lesser is known about their implication for the country equity risk premium.

Should negative SB correlation imply higher stock returns?

▶ Flight-to-quality

When uncertainty increases, investors prefer to have safer bonds over risky equity holdings.

- \rightarrow The SB correlation is negative when uncertainty is high
- ightarrow The risk premium should be *higher* when the SB correlation is *negative*.

Natural hedging

Most investors in the world hold stocks and bonds together in their portfolio.

- \rightarrow Investors may dislike if the returns on two asset classes move together.
- \rightarrow SB correlation should be positively related to the risk premium.

Drivers of the SB relationship

In standard consumption-based models, bond yields are affected by consumption growth expectation (+), consumption volatility (uncertainty) (-) and expected inflation (+).

- Shocks to economic growth expectation and uncertainty both lead to a negative SB relationship.
 - The uncertainty effect is consistent with flight-to-quality.
 - A negative SB relationship should correspond to a higher risk premium.
 - This implies that the SB relationship is always negative.
- ▶ Inflation increases bond yields, but the effect on stock prices is ambiguous.
 - The effect on stock prices can be positive or negative (e.g., David and Veronesi 2014)

Overview of the model

A (consumption-based) model is proposed that shows:

- ▶ More country-specific news leads to a positive SB correlation
 - Higher inflation relative to its competing countries reduces a country's growth potential
 - Such shocks will increase bond yields and reduce stock prices (positive SB relationship).
- ▶ More country-specific news leads to a relatively higher equity risk premium
 - Higher global risk may lead to a higher global risk premium
 - The relative performance of a country affected by country-specific risk

Overview of the empirical result

- Higher country-specific volatility leads to a positive stock-bond correlation.
 - Inflation shocks specific to the country lowers economic growth expectation relative to the world
 - Global growth expectation shocks increase bond yields and stock prices
 - Country-specific growth expectation shocks lower bond yields and increase stock prices
- ▶ Equity markets of countries with a positive stock-bond relationship outperform countries with a negative relationship
 - A long-short country portfolio yields 7-11% per year
 - The countries invested in the long side varies.

Literature (1): Cross-country returns

- ▷ Dividend yields, term premium (Jensen, Mercer, and Johnson 1986) Or momentum (Hou, Karolyi, and Kho 2011, Cedenese et al. 2019)
- ▶ Liquidity (e.g., Bekaert, Harvey, and Lundblad 2007, Goyenko and Sarkissian 2014)
- Idiosyncratic volatility (Bali and Cakici 2010)

Literature (2): Stock-bond returns

- ▶ Inflation derives variations in the SB correlation
 - Song (2017), Campbell, Pflueger, and Viceira (2020)
 - Correlation between inflation and real growth matters
- ▶ Real variables matter
 - Duffee (2022), Kozak (2022), Chernov, Song, Lochstoer (2023), Jones and Pyun (2023)
 - Persistence of shocks should affect the change in signs of the SB correlation
- Country-specific (local) shocks leads to positive comovement (This paper)
 - Country-specific shocks are more likely to be transient
 - Country specific real shocks are negatively related to country-specific inflation shocks

Consumption dynamics

Epstein-Zin (1991) preference for country i and the world (*):

$$\textit{m}_{t+1}^{i/*} = \theta \log \beta - \frac{\theta}{\psi} \Delta c_{t+1}^{i/*} + (\theta - 1) R_{TW,t+1}^{i/*},$$

Country i:

$$\Delta c_{t+1}^{i} = \mu + x_{t}^{*} + x_{t}^{i} + \sqrt{v_{t}^{i}} \epsilon_{c,t+1}^{i} + \sqrt{v_{t}^{*}} \epsilon_{c,t+1}^{*}$$

$$x_{t+1}^{i} = \xi_{I} x_{t}^{i} + \sigma_{xI} \sqrt{v_{t}^{i}} \epsilon_{x,t+1}^{i}$$

$$v_{t+1}^{i} = v_{I0} + v_{I1} v_{t}^{i} + \sigma_{I} \sqrt{v_{t}^{i}} \epsilon_{v,t+1}^{i}$$

$$\pi_{t+1}^{i} = p_{0} + p_{1} \pi_{t}^{i} + \sigma_{pI} \sqrt{v_{t}^{i}} \epsilon_{\pi,t+1}^{i} + \sigma_{pg} \sqrt{v_{t}^{*}} \epsilon_{\pi,t+1}^{*}$$

$$\Delta d_{t+1}^{i} = \mu_{d} + \phi \left(\lambda_{d} x_{t}^{i} + (1 - \lambda_{d}) x_{t}^{*} \right) + \sigma_{dI} \sqrt{v_{t}^{i}} \epsilon_{\pi,t+1}^{i} + \sigma_{dg} \sqrt{v_{t}^{*}} \epsilon_{d,t+1}^{*},$$
(1)

World:

$$\Delta c_{t+1}^* = \mu + x_t^* + \sqrt{v_t^*} \epsilon_{c,t+1}^*$$

$$x_{t+1}^* = \xi_g x_t^* + \sigma_{xg} \sqrt{v_t^*} \epsilon_{x,t+1}^*$$

$$v_{t+1}^* = v_{g0} + v_{g1} v_t^* + \sigma_g \sqrt{v_t^*} \epsilon_{v,t+1}^*,$$
(2)

Parameter Assumptions – I

Panel A. Parameter specification

Preferen	nce parameters	Inflation	parameters		
γ	7.5	p_1	0.970		
ψ	2	$\bar{\pi}$	0.002		
β	0.9987	σ_{pq}	0.085		
		σ_{pl}	0.057		
Consum	nption parameters	Dividend	Parameters	Varianc	e parameters
μ	0.0018	μ_d	0.0019	ω_{q1}	0.961
ξ_g	0.989	ϕ_d	5.0	ω_{l1}	0.986
ξ_l	0.930	λ_q	0.2	$\sqrt{\bar{v_t}^i}$	0.0052
σ_{xq}	0.034	σ_{dq}^{s}	9.0	$\sqrt{\bar{v_t}^*}$	0.0028
σ_{xl}	0.067	σ_{dl}	6.5	σ_q	0.00089
				σ_l	0.00087

Parameter Assumptions – II

Correlation between inflation and consumption growth expectation

Correlations

	Model 1	Model 2	$\operatorname{Model}3$
$ ho_l \ ho_g$	-0.15 -0.15	$-0.15 \\ 0.15$	$-0.25 \\ -0.35$

- ▶ Model 1 matches the entire sample
- ▶ Model 2 matches the post-1998 period

Asset Moments

Panel B. Consumption, dividend, inflation, and asset pricing moments

		Model		Data	
	Model 1	Model 2	Model 3	US (Median)	Global Mean
$Cor(\Delta c^i, \Delta c^j)$		0.346		0.368	0.350
$Cor(\Delta d^i, \Delta d^j)$		0.490		0.494	0.380
$\operatorname{Cor}(\Delta \pi^i, \Delta \pi^j)$		0.389		0.639	0.352
Nominal yields (10Y)	4.79%	4.67%	4.85%	4.26%	5.18%
Stock returns	7.88%	7.99%	7.80%	7.16%	7.14%
Stock market volatility	18.42%	18.59%	18.30%	15.22%	20.76%
$Cor(\Delta y^i, \Delta y^j)$	0.503	0.602	0.426	0.593	0.464
$\operatorname{Cor}(R_m^i, R_m^j)$	0.595	0.602	0.591	0.697	0.584
$ ho_{SB}$	-0.043	-0.272	0.173	-0.089	0.007
1990-1998				0.300	0.212
1999-2022				-0.333	-0.047
eta_{SB}	-1.714	-9.69	7.45	-1.693	-1.041
1990-1998				3.913	7.667
1999-2022				-7.030	-2.677

Model Implications: Bond yield/stock price response

The response to stock prices of country-specific inflation shocks is negative.

For bonds:

(a) Global growth expectation shock

(b) Local growth expectation shock

Model Implications: SB Beta/Correlations

(a) Nominal 10Y SB correlation

(c) SB Correlation (Model 2)

(b) Nominal 10Y SB beta

(d) SB Correlation (Model 3)

Model Implications: Market Risk Premium

(a) Market Risk Premium

Correlation between inflation-real growth expectation

- ▷ Test whether the relationship between shocks to expected economic growth and inflation rate of a country controlling for the global growth and inflation rate is negative
- ▶ World Economic Outlook of IMF provides forecasts of the economy's growth and inflation expectations for multiple years.
- → Measure revisions to 0-year (nowcast)/1-year/2-year forecasts
- ▶ Partial correlations of revisions between economic growth and inflation forecasts controlling for global revisions

Inflation-Real growth expectation

Panel A. Nowcast error

	$\operatorname{Cor}(\Delta \hat{x}_{t,t}^g, \Delta \hat{\pi}_{t,t}^g)$				$\operatorname{Cor}(\Delta \hat{x}_{t,t}^i, \Delta \hat{\pi}_{t,t}^i \Delta \hat{x}_{t,t}^g, \Delta \hat{\pi}_{t,t}^g)$			
	1990-2022	1990-1998	1999-2022	Diff.	1990-2022	1990-1998	1999-2022	Diff.
$g = {\rm World\ average}$	-0.059 (-0.46)	-0.315 (-1.29)	0.198 (1.38)	0.513	-0.208 (-4.36)	-0.247 (-3.75)	-0.207 (-4.60)	0.040 (0.14)
g = Adv. economy	0.325 (2.71)	-0.141 (-0.53)	0.339 (2.47)	0.480	-0.168 (-2.64)	-0.106 (-1.46)	-0.122 (-2.47)	-0.016 (-0.25)

Panel B. One-year-ahead forecast error

	$Cor(\Delta \hat{x}_{t,t+1}^g, \Delta \hat{\pi}_{t,t+1}^g)$				$\operatorname{Cor}(\Delta \hat{x}_{t,t+1}^i, \Delta \hat{\pi}_{t,t+1}^i \Delta \hat{x}_{t,t+1}^g, \Delta \hat{\pi}_{t,t+1}^g)$			
	1990-2022	1990-1998	1999-2022	Diff.	1990-2022	1990-1998	1999-2022	Diff.
g = World average	-0.123	-0.470	0.005	0.475	-0.194	-0.232	-0.220	0.012
	(-0.98)	(-2.06)	(0.03)		(-4.36)	(-3.14)	(-6.99)	(0.14)
g = Adv. economy	0.154	0.086	0.163	0.077	-0.124	-0.158	-0.105	0.052
	(1.23)	(0.32)	(1.13)		(-2.64)	(-2.24)	(-2.68)	(0.73)

Stock market response

Regress annual stock returns on long-term forecast revisions

	Stock returns $(R_{m,t})$					
			g =	World	g = A	verage
$\Delta \hat{x}_{t,t+2}^i$	8.454	8.413		3.711		4.183
	(3.03)	(3.01)		(2.04)		(3.80)
$\Delta \hat{\pi}_{i,t,t+2}^{i}$		-0.219		-0.126		-0.274
-,-,- , =		(0.87)		(0.46)		(1.22)
$\Delta x_{t,t+2}^{g}$			6.569	9.721	5.259	8.430
			(3.09)	(2.52)	(3.01)	(1.90)
$\Delta \hat{\pi}_{t,t+2}^g$			-3.444	-1.401	0.348	0.527
0,012			(-1.44)	(-0.59)	(1.05)	(2.72)
Country FE	Y	Y	Y	Y	Y	Y
R^2	0.151	0.152	0.236	0.188	0.176	0.194
N	1674	1674	1474	1474	1674	1674

Bond market response

Regress bond yield changes on long-term forecast revisions

First-difference in bond yields (Δy_t)						
			g = V	Vorld	g = A	verage
$\Delta \hat{x}_{t,t+2}^i$	-0.081	-0.068		-0.354		-0.451
$\Delta \hat{\pi}_{t,t+2}^i$	(-0.63)	(-0.54) 0.067		(-2.35)		(-3.38)
$\Delta n_{t,t+2}$		(2.49)		(0.27)		(2.45)
$\Delta \hat{x}_{t,t+2}^g$			0.182	0.544	0.302	0.733
$\Delta \hat{\pi}^g_{t,t+2}$			(0.58) 0.586	(1.66) 0.572	(1.30) -0.091	(2.95) -0.091
1,1+2			(2.20)	(2.08)	(-3.18)	(-3.22)
Country FE	Y	Y	Y	Y	Y	Y
R^2	0.234	0.267	0.275	0.281	0.246	0.257
N	1674	1674	1474	1474	1674	1674

Conclusion

SB relationship and country-specific volatility

- ▶ The framework suggests a positive comovement between stock and bond prices when *country-specific risk is high*
- ▷ Country-specific risk measured by
 - 1) Volatility of consumption growth measured using a stochastic volatility model

$$\Delta c_t^i = \beta_0^i + \beta_1^i \Delta c_t^* + \exp(h_t^i/2) \epsilon_t^i$$

$$h_{t+1}^i = \mu_h^i + \varphi_h^i (h_t^i - \mu_h^i) + \sigma_h^i \eta_t^i,$$

2) Country-specific volatility of international CAPM model

Bond market response

		$\hat{ ho}_S$	Bd,i			
CS volatility	14.156	13.929	8.941	2.730		
	(2.75)	(2.76)	(4.08)	(1.76)		
Global volatility		-38.390	-3.650	-27.515		
		(-1.59)	(-2.55)	(-1.58)		
Country FE	N	N	Y	Y		
Time FE	Y	Y	N	Y		
R^2	0.515	0.519	0.218	0.708		
4						
	$\hat{eta}_{SBd,i}$					
		\hat{eta}_{S}	Bd,i			
CS volatility	309.739	\hat{eta}_{S} . 304.346	Bd,i 197.330	54.080		
CS volatility	309.739 (2.53)			54.080 (1.82)		
CS volatility Global volatility		304.346	197.330			
v		304.346 (2.52)	197.330 (2.75)	(1.82)		
v		304.346 (2.52) -909.675	$ \begin{array}{c} 197.330 \\ (2.75) \\ -145.030 \end{array} $	(1.82) -675.810		
Global volatility	(2.53)	304.346 (2.52) -909.675 (-1.62)	$197.330 \\ (2.75) \\ -145.030 \\ (-3.31)$	(1.82) -675.810 (-1.87)		

Main result - Total returns

Panel A. Based on total returns (1999-2022)

		Daily SB beta estimation						
	USD ret.	α_{CAPM}	Local ret.	Currency	$\hat{\beta}_{SBd}$			
Port 1	0.45	-0.15	0.32	0.12	-13.48			
	(1.26)	(-1.35)	(1.01)	(0.85)				
Port 2	0.58	-0.02	0.56	0.00	-7.83			
	(1.63)	(-0.17)	(1.90)	(-0.00)				
Port 3	0.81	0.47	0.77	0.01	-3.76			
	(2.32)	(2.55)	(2.82)	(0.08)				
Port 4	0.90	0.34	0.85	0.02	0.72			
	(2.71)	(2.37)	(3.21)	(0.18)				
Port 5	1.03	0.72	1.17	-0.18	5.74			
	(2.69)	(3.96)	(3.69)	(-1.72)				
H–L	0.57**	0.88***	0.84***	-0.30**	19.22			
	(2.49)	(4.65)	(3.67)	(-2.54)				

Main result - Price returns

Panel B. Based on price returns (1990-2022)

		Daily SB beta estimation						
	USD ret.	α_{CAPM}	Local ret.	Currency	\hat{eta}_{SBd}			
Port 1	0.09	-0.41	0.03	0.05	-10.16			
	(0.32)	(-2.60)	(0.12)	(0.48)				
Port 2	0.41	-0.04	0.42	-0.03	-4.98			
	(1.43)	(-0.24)	(1.75)	(-0.29)				
Port 3	0.84	0.31	0.78	$0.03^{'}$	-1.67			
	(2.90)	(2.00)	(3.26)	(0.31)				
Port 4	$0.92^{'}$	$0.42^{'}$	$0.82^{'}$	0.08	2.17			
	(3.17)	(2.25)	(3.35)	(0.72)				
Port 5	0.94	0.32	1.02	-0.12	7.45			
	(2.61)	(1.45)	(3.26)	(-1.18)				
H–L	0.85***	0.73***	0.99***	-0.17	17.61			
	(3.31)	(2.93)	(4.15)	(-1.44)				

Time-series of SB beta-sorted equity portfolios in USD

Conclusion

Is sovereign default risk in bond yields priced? Unlikely...

- $\, \triangleright \,$ Sovereign bond yields moves when credit spread varies.
- ▶ If default risk is priced in the stock market, an shocks to CDS spread and stock returns should be negatively related. → Ceteris paribus, a positive SB relationship is expected.
- ▷ Consider a decomposition of first-difference in bond yields:

$$R_{S,t+1}^{i} = a^{i} + b^{i}(-\Delta y_{t+1}^{i} + \Delta CDS_{t+1}^{i}) + c^{i}(-\Delta CDS_{t+1}^{i}) + \epsilon_{t+1}^{i}$$

Portfolios formed after sorting by risk-free yield beta

	Port 1	Port 2	Port 3	Port 4	Port 5	H –L
Returns	0.33	0.70	0.31	0.46	0.79	0.47**
in USD	(0.89)	(1.97)	(0.86)	(1.22)	(2.08)	(2.34)

Portfolios formed after sorting by CDS beta

	Port 1	Port 2	Port 3	Port 4	Port 5	H -I
		10112	10113	1 011 4	10113	
	0.66		0.46	0.59	• • • •	-0.25
in USD	(1.57)	(1.25)	(1.25)	(1.31)	(1.02)	(-1.45)

Cross-sectional regressions

Panel A. Baseline specification and control for macroeconomic variables

	Model 1	Model 2	Model 3	Model 4	Model 5
$\hat{eta}_{SBd,t}$	0.060** (2.94)	* 0.090*** (3.94)	0.059*** (2.81)	* 0.058** (2.57)	0.077***
$\hat{eta}_{SBd,t}$		-0.063*** (-2.99)			
Inflation Forecast		(-6.41 -0.98)		-7.96 (-1.15)
Total GDP		(-0.30)	0.00	0.01
GDP per cap				(0.09) -0.30 (-1.02)	(0.18) -0.39 (-1.19)
GDP Forecast				-8.79 (-1.13)	-15.44 (-1.36)
R^2	0.111	0.134	0.197	0.347	0.402

Introduction Model Test of the Model Main Result Globalization Conclusion
000000 000000 000000

■ Conclusion
0 000000

■ O

Globalization and SB correlation

Conclusion

- ▷ Countries with a positive relationship between returns on stocks and bonds have higher future stock returns.
- - there is more uncertainty shock within the country or region.
 - sovereign bond yield is volatile.
- ▷ Evidence of local risk priced in the international equity market

Cross-sectional regressions

Panel B. Control for return predictors

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Model 1	${\rm Model}\ 2$	${\rm Model}\ 3$	Model 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_{d,t}^i$	0.027**	0.030**	0.030*	0.034**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	(2.28)	(1.75)	. ,
Term Spread -0.03 -0.04 (-0.40) (-0.57) Momentum 0.36 0.47 (0.57) (0.71)	Dividend Yield	0.00			2102
Momentum (-0.40) (-0.57) 0.36 0.47 (0.57) (0.71)	Term Spread	(-0.12)	-0.03		,
(0.57) (0.71)	1		(-0.40)		(-0.57)
	Momentum				
R^2 0.149 0.163 0.191 0.319				(0.57)	(0.71)
	R^2	0.149	0.163	0.191	0.319

Cross-sectional regressions

Panel C. Control for liquidity factors

	Model 1	Model 2	Model 3	Model 4	Model 5
$\hat{\beta}^i_{SBd,t}$	0.067**	* 0.057**	* 0.059**	0.069**	* 0.098**
,-	(2.82)	(2.98)	(2.58)	(3.02)	(2.18)
Zero trading volume	-0.11				0.57
	(-0.83)				(0.77)
Treasury illiquidity		0.00			0.00
		(-0.50)			(0.85)
Zero return			-0.259*		-0.63
			(-1.66)		(-0.73)
Amihud	-0.11			60.92 -	-203.57
	(-0.83)			(0.69)	(-0.90)
R^2	0.205	0.204	0.206	0.206	0.423

→ Go Back

Main Result - Alternative Specifications

A. Weekly Estimation

Total returns							Price returns					
	Port 1	Port 2	Port 3	Port 4	Port 5	H-L	Port 1	Port 2	Port 3	Port 4	Port 5	H-L
Returns	0.28	0.32	0.53	0.52	0.93	0.65***	0.02	0.23	0.50	0.67	0.66	0.66**
in USD	(0.74)	(0.86)	(1.45)	(1.38)	(2.27)	(2.73)	(0.05)	(0.77)	(1.71)	(2.08)	(1.76)	(2.57)
ICAPM	-0.18	0.10	0.32	0.30	0.92	1.11***	-0.35	-0.02	0.22	0.28	0.44	0.81***
	(-1.77)	(0.60)	(2.47)	(2.03)	(4.32)	(5.16)	(-2.45)	(-0.15)	(1.60)	(1.60)	(2.01)	(3.83)
Returns	0.22	0.26	0.35	0.62	1.05	0.83***	0.00	0.25	0.49	0.67	0.81	-0.81***
in local \$	(0.68)	(0.85)	(2.11)	(2.06)	(3.14)	(3.60)	(0.01)	(1.05)	(2.04)	(2.51)	(2.45)	(3.40)
Currency	0.06	0.06	-0.07	-0.09	-0.11	-0.17	0.01	-0.03	0.02	0.00	-0.14	-0.15
returns	(0.40)	(0.41)	(-0.47)	(-0.68)	(-0.97)	(-1.59)	(0.09)	(-0.24)	(0.16)	(0.01)	(-1.06)	(-1.09)

B. Monthly Estimation

Total returns							Price ret	Price returns					
	Port 1	Port 2	Port 3	Port 4	Port 5	H-L	Port 1	Port 2	Port 3	Port 4	Port 5	H-L	
Returns	0.15	0.26	0.32	0.72	0.71	0.57**	0.55	0.52	0.46	0.87	0.96	0.42**	
in USD	(0.47)	(0.87)	(1.13)	(2.27)	(1.95)	(2.34)	(1.72)	(1.81)	(1.57)	(2.67)	(2.68)	(2.06)	
ICAPM	-0.18	-0.01	-0.07	0.42	0.46	0.66***	-0.11	0.08	0.28	0.41	0.85	0.96***	
	(-1.17)	(-0.11)	(-0.43)	(2.80)	(2.31)	(3.27)	(-0.85)	(0.71)	(2.07)	(2.79)	(4.64)	(4.77)	
Returns	0.13	0.30	0.31	0.71	0.80	0.68***	0.60	0.44	0.57	0.88	1.07	0.50***	
in local \$	(0.44)	(1.26)	(1.27)	(2.79)	(2.61)	(3.04)	(2.28)	(1.82)	(2.31)	(3.39)	(3.61)	(2.72)	
Currency	0.02	-0.05	0.01	0.01	-0.09	-0.10	-0.05	0.07	-0.10	-0.01	-0.11	-0.07	
returns	(0.20)	(-0.40)	(0.10)	(0.05)	(-0.80)	(-0.90)	(-0.40)	(0.69)	(-0.85)	(-0.07)	(-0.93)	(-0.64)	

N. Co Rock