FUNZIONI COMPOSTE

Consideriamo la funzione $f(x) = \sqrt{4 - x^2}$. Essa è una composizione di 2 operazioni, la funzione potenza e la funzione radicale. Ad x si associa prima un esponente poi si mette sotto radice:

$$x \to 4 - x^2 \to \sqrt{4 - x^2}$$

È quindi una composizione della funzione $g(x)=4-x^2\,$ e $h(x)=\sqrt{x}$, vediamo il dominio e l'immagine di entrambe le funzioni :

	$g(x) = 4 - x^2$	$h(x) = \sqrt{x}$
DOMINIO	\mathbb{R}	[0,∞)
IMMAGINE	\mathbb{R}	\mathbb{R}

$$g: \mathbb{R} \to \mathbb{R}$$

$$h: [0, \infty) \to \mathbb{R}$$

In questo caso la funzione $h(x)=\sqrt{x}$ viene applicata prima, poi viene applicata $g(x)=4-x^2$, quindi si dice scrive h composto g, usando questa scrittura :

$$h \circ g$$

L'immagine di g deve essere per forza contenuta nell'insieme di definizione di h. In questo caso l'immagine di g che è $\mathbb R$ non è contenuta nel dominio di h, cioè $[0,\infty)$, quindi restringiamo il dominio dato che l'immagine di h non è mai inferiore a 0. Il dominio di g diventa [-2,2] dato che esiste solo quando $4-x^2 \geq 0$.

FUNZIONE INVERSA

La funzione neutra rispetto all'operazione di composizione è f(x)=x

La funzione inversa di f (che si scrive f^{-1}) è quella che mi permette di ritrovare l'elemento neutro, è la funzione che associa a ogni uscita $y \in f(D)$ l'unico ingresso $x \in D$ tale che f(x) = y.

$$\begin{cases} y = f(x) \\ x \in D \end{cases} \text{ equivale a } \begin{cases} x = f^{-1}(y) \\ y \in f(D) \end{cases}$$

Considerando ciò, è possibile trovare una funzione inversa rispetto all'operazione di composizione?

Tale che:

$$f^{-1} \circ f(x) = I(x) = x$$

$$f \circ f^{-1}(x) = I(x) = x$$

$$cio\grave{e}$$

$$x \to f(x) \to f^{-1}(f(x)) = x$$

$$xx_1 \neq x_2 \ x_1 \neq x_2 \ \to f^{-1}(x) \to f(f^{-1}(x)) = x$$

La funzione inversa esiste solo se f è iniettiva, se presi

$$x_1, x_2 \in D(f) x_1 \neq x_2 \longleftrightarrow f(x_1) \neq f(x_2)$$

OPERAZIONI SUI GRAFICI

Supponiamo di conoscere il grafico di y = f(x):

Ora prendiamo una funzione g(x) = f(x + k)

Essa è una translazione orizzontale, se f(x) è contenuta tra a e b, g(x) sarà contenuta tra a+k e b+k.

Per avere una translazione verticale, dovremmo far si che g(x) assuma questo valore : g(x) = f(x) + k. se k>0 si ha una translazione verso l'alto, se k<0 verso il basso.

