<u>Γ1</u>		1	7
i '	$\frac{1}{x^2} - 6x - 40 \ge 0$	M1	Correct method to find roots
	$(x+4)(x-10) \ge 0$		
	.	A1 .	-4, 10
	10 y		:
ĺ	5 0		
	-3% -40	M1	Correct method to solve quadratic
	-50 -60		inequality e.g. +ve quadratic graph
i	$x \le 4$, $x \ge 10$	A1 4	$x \le -4, x \ge 10$
		4	(not wrapped, not strict inequalities, no
2(i)	EITHER		'and')
	$3(x^2+4x)+7$		
	$3(x+2)^2-12+7$		
	$3(x+2)^2-5$	ĺ	
	, ,		
	OR		
	$\int_{1}^{1} 3(x^2 + 2ax + a^2) + b$		
	$3x^2 + 6ax + 3a^2 + b$	İ	12
	6a = 12	M1	a = 12 6 or 2
	a = 2	A1	a = 2
	$3a^2 + b = 7$! M1	$7 - a^2$ or $7 - 3a^2$ or $\frac{7}{3} - a^2$ (their a)
	h = -5	A1 4	b = -5
(ii)	x = -2	B1 ft 1	x = -2
ļ		5	
3 (i)	↑ y	B1 1	Correct sketch showing point of inflection at origin
			at ongin
		1	
]	·		
İ	. I		
(ii)	Reflection in x-axis or reflection in y-axis	B1	Reflection
		B1 2	In x-axis or $y=0$ or y-axis or $x=0$
(iii)		M1	$y = (x \pm p)^{3}$
		A1 2 5	$y = (x - p)^4$
L	<u> </u>		

<u></u>	$k = x^3$	*M1	Attempt a substitution to obtain a
	$k^2 + 26k - 27 = 0$	A1	quadratic $k^2 + 26k + 27 = 0$
	$k=\cdot 27,1$	A1	-27, 1
		DM1	Attempt cube root
	x = -3, 1	A1 5	x = -3, 1 (no extras)
			(SR: x = 1 seen www B1
			x = -3 seen www B1)
		5	
5 (a)	$2x^{\frac{2}{3}} \times 3x^{-1}$	М1	Adds indices
	$=6x^{-\frac{1}{3}}$	A1 2	$6x^{\frac{1}{3}}$
	2 ⁴⁰ × 4 ⁴⁰		
(b)	$= 2^{40} \times 2^{60}$	M1	2 ⁶⁰ or 4 ²⁰
	$=2^{106}$	A1 2	2100
(c)	$26(4+\sqrt{3})$	M1	Multiply top and bottom by
·	$\frac{26\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}$		$\left(4+\sqrt{3}\right)$ or $\left(-4-\sqrt{3}\right)$
	$=8+2\sqrt{3}$	A1	$\left(4 - \sqrt{3}\right)\left(4 + \sqrt{3}\right) = 13$
		A1 3	$8 + 2\sqrt{3}$
6 (i)	$(x^2+2x+1)(3x-4)$	M1	Expand 2 brackets to give an expression
	$=3x^3 + 2x^2 - 5x - 4$		of the form $ax^2 + bx + c$ ($a \ne 0$, $b \ne 0$, $c \ne 0$) and attempt to multiply by third
	= 3x + 2x + 3x + 4		bracket
			$3x^3 + 2x^2 - 5x - 4$
		A1 A1 3	
(it)	$9x^2 + 4x - 5$		Completely correct
(")	$9x^2 + 4x = 5$		$9x^2 + 4x = 5$
		B1 ft B1 ft 2	1 term correct Completely correct (3 terms)
fiii	18x + 4	M1	
(iii)		A1 ft 2	Attempt to differentiate their (ii) 18x + 4 (2 terms)
			(SR (ii) $3ax^2 + 2bx + e$ B1
			(iii) 6av + 2b B1)
L		7	<u></u>

7 (i)	$\begin{cases} b^2 - 4ac \\ \text{(a)} 36 - 9 \times 4 = 0 \end{cases}$	M1	Uses $h^2 - 4ac$
	}	A1 -	1 correct
	(b) 100 ~ 48 = 52	A1 3	3 correct
	(c) 4-20 = -16		SR All 3 values correct but $\sqrt{-}$ used B1
(ir)			
\")	(a) Fig 3	В1	1 correct matching
	(b) Fig 2	B1	3 correct matchings
	(c) Fig 5		
	(a) 1 root, touches x-axis once, line of symmetry x= -3 or root x =-3	B1	1 correct comment relating roots to touching/crossing x-axis or about line of
	(b) 2 roots, meets x-axis twice, line of symmetry x=5		symmetry or vertex o.e. for one graph
	(c) No real roots, does not meet x-	B1 4	2 further correct comments about roots, line of symmetry o.e. for the other 2 graphs
	axis	7	
8 (i)	Circle, centre (0, 0), radius 5	B1 B1 2	Circle centre (0, 0) Radius 5
(ii)	$\begin{cases} y = 5 - 2x \\ x^2 + (5 - 2x)^2 = 25 \end{cases}$	M1	Attempt to solve equations simultaneously
	$\begin{cases} x + (5 - 2x) - 25 \\ 5x^3 - 20x = 0 \end{cases}$	 	
	$ \begin{array}{ccc} 5x & 20x = 0 \\ \text{OR} \end{array} $	*M1	Substitute for x/y or correct attempt at elimination of one variable (NOT for 2 linear equations)
	$x = \frac{5 - y}{2}$]]	
	$\left \frac{(5-y)^2}{4} + y^2 \right = 25$	DM1	Obtain quadratic $ax^2 + bx + c = 0$ (a $\neq 0$, b $\neq 0$)
	$\begin{cases} 4 & y^2 \\ y^2 - 2y - 15 = 0 \end{cases}$	M1	Correct method to solve quadratic
	x = 0, 4	A1	y = 0, 4 or y = 5, -3
	y = 5, -3		y = 5, 3 or x = 0, 4
			SR one correct pair www B1
			SR If solution by graphical methods Drawing circle, centre (0,0) radius 5 B1 Drawing line B1 Looking for intersection M1 (0,5) correct A1 (4, -3) correct A2
		8	
·	I		L

	r		
9 (i)	$y = \frac{4}{3}x + \frac{5}{3}$		
	gradient = $\frac{4}{3}$	B1 1	$\frac{4}{3}$ or 1.33 or better
(ii)	gradient of		
	$\pm' = -\frac{3}{4}$	B1 ft	$-\frac{3}{4}$ seen or implied
	$y-2 = -\frac{3}{4}(x-1)$ $4v+3x=11$	M1	Attempts equation of straight line through (1, 2) with any gradient
	4y + 3x = 11	A1	$y - 2 = -\frac{3}{4}(x - 1)$
		A1 4	3x + 4y - 11 = 0 (not aef)
(iii)	$P\left(-\frac{5}{4},0\right)$		$\left(-\frac{5}{4},0\right)$ seen or implied
	$Q\left(0,\frac{11}{4}\right)$	B1 ft	$\left(0, \frac{11}{4}\right)$ seen or implied (from a straight
	` '		line equation in (ii))
	$\left(-\frac{5}{8},\frac{11}{8}\right)$	B1 ft 3	$\left(-\frac{5}{8},\frac{11}{8}\right)$ aef
(iv)	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$ $\frac{\sqrt{146}}{2}$	M1	Correct method to find line length using Pythagoras' theorem
	$\frac{\sqrt{146}}{4}$	A1	$\sqrt{\left(\frac{5}{4}\right)^2 + \left(\frac{11}{4}\right)^2}$
		A1 3	$\frac{\sqrt{146}}{4}$
		11	

[10/6]	T		
10 (i)	$\frac{dy}{dx} = x^2 - 9$		$x^2 - 9$
	dv "	B1	1 term correct
	·	B1-	2 Both terms correct
(ii)	$x^2 - 9 = 0$	*M1	uses $\frac{\mathrm{d}v}{\mathrm{d}s} = 0$
	x = 3, -3	A1	x=3,-3
	y = -18.18	1	
		A1 3	v = -18.18
			(1 correct pair A1 A0)
(iii)	$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = 2x$	DM1	Looks at sign of $\frac{d^2 y}{dx^2}$ or other
	d^2y		correct method
	$x = 3 - \frac{\mathrm{d}^2 y}{\mathrm{d} y^2} = 6$	A1	$x = 3 \min innum$
	$x = -3$ $\frac{d^2 y}{dx^2} = -6$	A1 3	x = -3 max imum
	CET		(N.B. If no method shown but min and
			max correctly stated, award all 3 marks unless earlier incorrect working)
(iv)	gradient of	B1	Gradient = ~ 8
	24x + 3y + 2 = 0 is -8	∱М1	$y^2 - 9 = -8$
İ	1		
	$x^2 - 9 = -8$		
	$x = \pm 1$	M1	one of their x values substituted in both line and curve
	For line	1,,,	
	$x = 1, y = -8\frac{2}{3}$	M1	second <i>x</i> value substituted in both line and curve <u>or</u> justification that first point is the correct one
	$x = -1$, $y = 7\frac{1}{3}$	A1 5	$p = 1, q = -8\frac{2}{3}$ seen
	For curve	1	Alternative methods:
1 !			Either:
	$x = 1, y = -8\frac{2}{3}$		Solve equations for curve and line simultaneously to get one solution
	1 02	ĺ	(either $x = 1$ or $y = -2$) M1
	$x = -1, y = 8\frac{2}{3}$		Gradient of line = -8 B1
	ຳ		Substitution of one x value into their gradient formula and check for -8 M1
	$p = 1, q = -8\frac{2}{3}$	<u> </u>	Substitution of other x value into
j !	.i		gradient formula and check for -8
			or justification as above M1
			Correct q value A1
ļ			Or: Solve equations for curve and line
			simultaneously to get one solution M1
·		ļ	Factorise to (x-1) ² (x+2)
		İ	State that a double root implies
ĺ		ļ	a tangent at x = 1 M2
	- ·——	13	Correct value for y A1

Mark Scheme 4722 June 2005