Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3112	К работе допущен
Студент Баатарцогт Анужин	Работа выполнена <u>06/23/2020</u>
Преподаватель Мейлахс Александр Павлович	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.13V

1. Цель работы.

Кольцо Гемгольца. Получение магнитного поля B в зависимосто от расстояния между кольцами и радиус кольца. Сравнение экпериментальных и лабораторных данных.

2. Задачи, решаемые при выполнении работы.

Получение данных от Комсола. Обработка данных. Вычисление магнитного поля. Построение графика магнитного поля. Сравнивание результаты.

3. Объект исследования.

Кольцо Гемгольца.

4. Метод экспериментального исследования.

Виртуальное COMSOL. MATLAB.

5. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	COMSOL Hemholtz Coil 3.13	Виртуальный		

6. Рабочие формулы и исходные данные.

$$B = \mu_0 \left(\frac{4}{5}\right)^{3/2} \frac{IN}{R},$$

$$B_z = \frac{\mu_0 I R^2}{2} \left[\frac{1}{(z^2 + R^2)^{3/2}} + \frac{1}{[(z - a)^2 + R^2]^{3/2}} \right], \quad (11)$$

Неоднородность B_z в первом приближении характеризуется первой производной

$$\frac{dB_z}{dz} = \frac{3\mu_0 I R^2}{2} \left[\frac{-z}{(z^2 + R^2)^{5/2}} + \frac{-(z-a)}{[(z-a)^2 + R^2]^{5/2}} \right]. \tag{12}$$

При $z=\frac{a}{2}$ получаем $\frac{dB_z}{dz}=0$. Найдем вторую производную:

$$\frac{d^2B_z}{d^2z} = \frac{3\mu_0 I R^2}{2} \cdot K \tag{13}$$

$$K = \frac{5z^2}{(z^2 + R^2)^{7/2}} - \frac{1}{(z^2 + R^2)^{5/2}} + \frac{5(z - a)^2}{[(z - a)^2 + R^2]^{7/2}} - \frac{1}{[(z - a)^2 + R^2]^{5/2}}$$
(14)

7. Схема установки (перечень схем, Приложение 1)

Distance Beetween Coils:	0.1	m	Distance Beetween Coils:	0.4	m
Coil current:	1	А	Coil current:	1	Α
Radius Of Coil Down:	0.4	m	Radius Of Coil Down:	0.1	m
Radius Of Coil Up:	0.4	m	Radius Of Coil Up:	0.1	m
Magnetic field in Point (0,0,0)	•		Magnetic field in Point (0,0,0):		
2.348 A/m		0.5414 A/m			
Distance Beetween Coils:	0.5	m	Distance Beetween Coils:	0.5	m
Coil current:	1	Α	Coil current:	1	Α
Radius Of Coil Down:	0.5	m	Radius Of Coil Down:	0.4	m
Radius Of Coil Up:	0.5	m	Radius Of Coil Up:	0.6	m
Magnetic field in Point (0,0,0):			Magnetic field in Point (0,0,0):		
1.357 A/m			1.373 A/m		

8. Результат прямых измерений и их обработки (Таблицы примеров и их расчётов)

Данные о распределении потенциала по координатам точки. Всего 18 файлов получили.

Например:

% X Y Z 0 0 0 0.25 mf.Hx (A/m) mf.Hy (A/m) mf.Hz (A/m) 1.4520265799277348E-4 2.2167032099388715E-5 1.0926648961539707

9. Журнал измерений:

№ опыта	Distance Between Coils	Coil current	Radius Of Coil Down	Radius Of Coil Up
1	0.1	1	0.4	0.4
2	0.4	1	0.1	0.1
3	0.5	1	0.5	0.5
4	0.5	1	0.4	0.6

10. Расчёт результатов косвенных измерений: Python

Код вычисления В и построения графа:

```
close all; clear all;
A=dlmread(['1.txt']);
Z = A(:, 3);
Bx = A(:, 4);
By =A(:, 5);
Bz = A(:, 6);
B = sqrt(Bx.^2 + By.^2 + Bz.^2);
new_table = [Z B]
out_sortrows(new_table,1)
z = out(:, 1);
b = out(:, 2);
figure(1)
z_interp = linspace(min(z), max(z),200);
b_interp = interp1(z, b, z_interp, 'cubic');
plot(z, b, 'bp')
hold on
plot(z interp, b interp, '-r')
hold off
grid
xlabel('Z')
ylabel('B')
legend('Original Data', 'Interpolation', 'Location', 'NW')
```

Данные будут онлайн google drive и вместе в rar файле для отчёта:

11. Сравнение полученного графа с графой из моделирований

PART 1

Вычисление	$ \mathbf{B} $	
------------	----------------	--

Dbi inclinic D		
Z	В	
-0.05000000	2.30202516	
-0.04942725	2.29386328	
-0.04576456	2.30350994	
-0.03540128	2.32224880	
0.01013871	2.34363838	
0.01688330	2.34324719	
0.02138090	2.33740701	
0.03073496	2.32906295	
0.03717577	2.33799473	
0.05000000	2.30409815	

Градиенты

Δ Bz
0.009640992
0.004084778
0.009379502
0.020808119
0.007571942
-0.007311962
0.000288554
-0.012459015
0.002628545
0.039134239

Δ Bxy
-0.711513652
-0.034638253
-1.046640604
3.145988177
-1.559878427
0.771590949
-1.128139106
0.478410349
0.141862486
0.572055315

ΔZ 1-10%
-0.049427254
-0.045764564
-0.05
0.010138706
0.030734961
-0.25
-0.158111175
-0.133493696
-4.77682E-07

-2.32928E-07
-0.086827137
-0.085883368
0.069621906
0.077889552
1.07338E-06
-6.33885E-08
-4.52393E-08
-5.90797E-09
6.45701E-07

Теоритеское и экспериментальное

теоритеское и экспериментальное			
Z	В	B(Theory)	
-0.05	2.302025157	0	
-0.049427254	2.293863279	0	
-0.045764564	2.303509941	2.82414E-06	
-0.035401281	2.322248802	0	
0.010138706	2.343638384	0	
0.016883301	2.343247186	0	
0.021380904	2.337407007	0	
0.030734961	2.329062946	0	
0.037175774	2.337994729	0	
0.05	2.304098155	0	

PART 2

Граф

Вычисление	$ \mathbf{B} $	
------------	----------------	--

Z	В
-0.20000000	4.14141089
-0.19999898	4.14142487
-0.19999854	4.24169175
-0.19997631	4.41824818
-0.19992519	4.41709454
-0.16970929	3.73555496
-0.16610523	3.61381759
-0.16396690	3.53997777
-0.15120543	3.08196434
-0.12571577	2.14304913
-0.12538343	2.13198304
-0.10959766	1.69104996
-0.10024023	1.46237591
-0.09632145	1.34745431
-0.08420177	1.10397049

-0.06417097	0.83211349
-0.00001214	0.34671833
-0.00000948	0.46187311
-0.00000734	0.46186195
-0.00000251	0.53899114
-0.00000009	0.54215599
0.00000272	0.52230534
0.00000308	0.48107887
0.00011296	0.46637706
0.00151721	0.47529395
0.06823973	0.90007575
0.06841637	0.90659252
0.06969411	0.91238040
0.07170358	0.96547512
0.07193159	0.97867616
0.07228234	0.91105525

0.07655660	1.02715187
0.10209710	1.56567165
0.11978625	1.99378178
0.12390818	2.10596487
0.12627214	2.20836567
0.13251903	2.47124698
0.13527467	2.48081062
0.15630065	3.26704871
0.16250722	3.49803765
0.16646167	3.63493730
0.19374779	4.28314642
0.19667858	4.14828487
0.19872728	4.16933778
0.19918319	4.03768511
0.20000000	4.01272969
<u> </u>	<u> </u>

Градиент B_z

Δ Bz
-0.024778298
0.065570128
0.068065548
0.058277707
-0.255828948
-0.392412037
-0.713319262
-0.513610093
0.136282171
0.398113159
-0.243864846
-0.581428933
-0.509048107

-0.596595119
0.026084329
0.327331759
-0.063604979
-0.329553465
0.006003759
0.029321152
-0.22290063
-0.245063628
0.007374236
0.031136639
0.029685561
-0.007945729
-0.040243221

-0.030850858
-0.056722106
0.18611662
0.378462967
0.257695975
0.179561571
0.171799029
0.334801357
0.22603338
0.474999167
0.735378015
0.229005821
0.060848032
0.438480468

0.341300394
-0.087709224

-0.138638815	
-0.050346323	_

1.36977E-05

Градиент Вху

Δ Bxy
2.204779744
-9.080628504
-32.28067664
-2.270628136
-0.903911265
2.631591847
3.263299931
-1.657251633
-2.995848259
-1.885873263
-0.721214114
-0.994299691
2.086172234
-1.017931518
0.634395051

т радие
-1.330241804
0.273180725
-3.520190472
-1.507377394
1.774591492
3.061864813
-3.776294004
8.502187812
-2.745171903
-2.644666649
2.626603462
-0.56913476
0.665870567
0.275610271
0.626658171
0.139032673

-0.938859867
0.548299632
-1.185027048
-0.348106147
-0.143622459
-1.267146976
-0.826632204
-0.942623575
1.041152251
-0.116852202
0.039685693
1.717488663
-1.285064278
-2.903494459
27.57556571

	T	1
ΔZ (1-4%)	ΔZ (4-9%)	ΔZ (10%)
0.2	0.2	0.132519
0.198727282	0.198727282	0.135275
0.19667858	0.19667858	0.156301
0.19374779	0.19374779	0.119786
0.126272141	0.126272141	0.071932
0.132519027	0.132519027	0.072282
0.135274669	0.135274669	0.076557
0.156300648	0.156300648	0.102097
0.119786252	0.119786252	0.06824
0.071931585	0.071931585	0.068416
0.076556598	0.076556598	0.000113
0.068239731	0.068239731	3.08E-06
0.068416374	0.068416374	-2.5E-06
0.000112958	0.000112958	2.72E-06
3.07626E-06	3.07626E-06	-9.5E-06
-2.50558E-06	-2.50558E-06	-7.3E-06
2.72434E-06	2.72434E-06	-1.2E-05
-0.084201771	-0.084201771	-0.06417
-0.100240233	-0.100240233	-0.0842
-0.109597657	-0.109597657	-0.09632
-0.125383427	-0.125383427	-0.10024
-0.12571577	-0.12571577	-0.1096
-0.151205435	-0.151205435	-0.12538
-0.166105235	-0.166105235	-0.12572
-0.169709295	-0.169709295	-0.15121
-0.199998538	-0.199925194	-0.16611

-0.2	-0.199998538	-0.16971
	-0.2	-0.19993
		-0.2
		-0.2

Теоритеское и экспериментальное

r			•	1	
Z	В	B(T)	0.000112958	0.466377061	0
-0.2	4.141410886	0	0.001517208	0.475293951	0
-0.199998983	4.141424871	1.12397E-06	0.068239731	0.900075747	0
-0.199998538	4.241691751	0	0.068416374	0.906592522	0
-0.199976312	4.418248185	0	0.069694112	0.912380399	0
-0.199925194	4.417094539	0	0.071703581	0.965475122	0
-0.169709295	3.735554962	0	0.071931585	0.978676159	0
-0.166105235	3.613817593	0	0.072282338	0.911055253	0
-0.163966902	3.539977766	0	0.076556598	1.027151874	0
-0.151205435	3.08196434	0	0.102097098	1.565671653	0
-0.12571577	2.143049126	0	0.119786252	1.99378178	0
-0.125383427	2.131983044	0	0.123908183	2.105964867	0
-0.109597657	1.691049964	0	0.126272141	2.208365674	0
-0.100240233	1.462375905	0	0.132519027	2.47124698	0
-0.096321454	1.347454305	0	0.135274669	2.480810624	0
-0.084201771	1.103970487	0	0.156300648	3.267048715	0
-0.06417097	0.832113491	0	0.162507225	3.498037654	0
-1.21375E-05	0.346718334	0	0.166461673	3.6349373	0
-9.48297E-06	0.461873109	0	0.19374779	4.28314642	0
-7.33924E-06	0.461861947	0	0.19667858	4.148284872	0
-2.50558E-06	0.538991136	0	0.198727282	4.16933778	0
-8.61823E-08	0.542155994	0	0.199183191	4.037685109	8.04248E-07
2.72434E-06	0.522305344	0	0.2	4.012729691	0
3.07626E-06	0.481078867	0			

вычисление в	Вычисление	В
--------------	------------	---

Z	В
-0.2500000	1.2795126
-0.2487902	1.2805890
-0.2468777	1.2836604
-0.2188787	1.3079792
-0.2046868	1.3174607
-0.1695237	1.3376875
-0.1581112	1.3434517
-0.1507007	1.3442449
-0.1433515	1.3476008
-0.1334937	1.3492287
-0.1215606	1.3517052
-0.0984251	1.3538934
-0.0891034	1.3551987
-0.0868271	1.3554208

-0.0858834	1.3554580
-0.0829649	1.3555729
-0.0000005	1.3575188
-0.0000002	1.3569384
-0.0000001	1.3569384
0.0000000	1.3570298
0.0000000	1.3570298
0.0000000	1.3570133
0.000001	1.3570133
0.000001	1.3568099
0.0000006	1.3568099
0.000011	1.3567509
0.0696219	1.3565208
0.0778896	1.3559699
0.0802136	1.3557363

0.0919786	1.3545854
0.0944080	1.3545305
0.1103357	1.3523917
0.1172446	1.3514640
0.1285407	1.3506415
0.1692774	1.3363717
0.1958861	1.3264578
0.2022622	1.3199419
0.2073092	1.3164266
0.2095236	1.3144880
0.2100873	1.3140571
0.2120393	1.3123840
0.2277224	1.2996719
0.2291972	1.2988075
0.2500000	1.2776838
·	·

Градиент B_z

ΔBz
0.003071427
-0.000538213
0.012159424
0.018974137
0.014854053
0.013391784
0.004956525
-0.000397453
0.000814185
0.004127938
0.002332379
0.001746715
0.000839763
0.001160116

I
0.000682741
-0.001049064
-0.000740232
0.000550053
0.000255874
0.000115043
0.000484357
0.000139441
4.57139E-05
-0.000109919
-8.22319E-06
1.86992E-09
-6.38954E-11
-0.003084249
-0.010320809

0.000411253
0.0096823
0.001560683
-0.000602903
-0.001096813
-0.014036557
-0.016225057
-0.005016013
-0.010134911
-0.00880898
-0.010993972
0.006788051
0.018401661
0.000836429
-0.000430761

0.00116011	6
ΔBxv	

1.190111066 -0.554225537

-1.759890742 -0.898916334

2.033446773

-0.182152077

23.050771108

-1.243551614

-9.152962490

-4.391702671

2.810406612

0.048853877

0.079257259 0.490334988 Градиент B_{xy}

I pa
-0.085273022
-0.500714363
-0.148843494
-0.341439392
-1.178372015
-3.674379452
-0.567716876
-0.362595809
-0.189804264
-0.627740602
-0.126412818
-9.722424270
-0.185232441
0.191364158
1.271614036
0.026640625

-3.049744304
2.492629026
-2.432219943
0.829566122
0.329212120
0.490883037
-0.764628064
-0.098523859
-6.355719255
11.519987895
0.222931323
1.321285241
-3.721590236
1.680719514

ΔZ 1%-3%	ΔZ 3%-5%	ΔZ 5%-8%	ΔZ 8%-9%	ΔZ 10%
		-		
-0.246877735	-0.246877735	0.246877735	-0.246877735	-0.246877735
-0.25	-0.25	-0.25	-0.25	-0.25
		-		
-0.218878722	-0.218878722	0.218878722	-0.218878722	-0.218878722
		-		
-0.169523703	-0.169523703	0.169523703	-0.169523703	-0.169523703
		-		
-0.150700661	-0.150700661	0.150700661	-0.150700661	-0.150700661
		-		
-0.143351525	-0.143351525	0.143351525	-0.143351525	-0.143351525
		-		
-0.158111175	-0.158111175	0.158111175	-0.158111175	-0.158111175
		-		
-0.133493696	-0.133493696	0.133493696	-0.133493696	-0.133493696
		-		
-4.77682E-07	-4.77682E-07	0.098425107	-0.098425107	-0.098425107
-2.32928E-07	-2.32928E-07	-4.77682E-07	-0.089103399	-0.089103399
-0.086827137	-0.086827137	-2.32928E-07	-4.77682E-07	-0.082964913
		-		
-0.085883368	-0.085883368	0.086827137	-2.32928E-07	-4.77682E-07
		-		
0.069621906	0.069621906	0.085883368	-0.086827137	-2.32928E-07
0.077889552	0.077889552	0.069621906	-0.085883368	-0.086827137
1.07338E-06	1.07338E-06	0.077889552	0.069621906	-0.085883368
-6.33885E-08	-6.33885E-08	1.07338E-06	0.077889552	0.069621906
-4.52393E-08	-4.52393E-08	-6.33885E-08	1.07338E-06	0.077889552
-5.90797E-09	-5.90797E-09	-4.52393E-08	-6.33885E-08	1.07338E-06
6.45701E-07	6.45701E-07	-5.90797E-09	-4.52393E-08	-6.33885E-08
6.38754E-08	6.38754E-08	6.45701E-07	-5.90797E-09	-4.52393E-08
1.07815E-07	1.07815E-07	6.38754E-08	6.45701E-07	-5.90797E-09
0.117244595	0.169277378	1.07815E-07	6.38754E-08	6.45701E-07
0.091978627	0.117244595	0.169277378	1.07815E-07	6.38754E-08
0.202262204	0.091978627	0.117244595	0.169277378	1.07815E-07
0.207309152	0.202262204	0.091978627	0.117244595	1.97652E-08
0.227722415	0.207309152	0.202262204	0.091978627	0.169277378
0.209523643	0.227722415	0.207309152	0.202262204	0.117244595
	0.209523643	0.227722415	0.207309152	0.091978627
		0.209523643	0.227722415	0.094407992
			0.209523643	0.110335735
				0.195886075
				0.202262204
				0.207309152
				0.227722415
				0.25
				0 209523643

0.209523643

		теоритеское
Z	В	B(T)
-0.25	1.279512567	0
-0.248790247	1.280588963	0
-0.246877735	1.283660449	1.11366E-06
-0.218878722	1.307979178	0
-0.20468683	1.31746066	0
-0.169523703	1.337687529	0
-0.158111175	1.343451735	0
-0.150700661	1.344244897	0
-0.143351525	1.347600828	0
-0.133493696	1.349228733	0
-0.121560558	1.351705192	0
-0.098425107	1.353893368	0
-0.089103399	1.355198664	0
-0.086827137	1.355420778	0
-0.085883368	1.355457953	0
-0.082964913	1.355572915	0
-4.77682E-07	1.35751884	0
-2.32928E-07	1.356938357	0
-6.33885E-08	1.356938357	0
-4.52393E-08	1.357029785	0
-5.90797E-09	1.357029785	0
1.97652E-08	1.357013344	0
6.38754E-08	1.357013345	0
1.07815E-07	1.356809947	0
6.45701E-07	1.356809943	0
1.07338E-06	1.356750901	0
0.069621906	1.356520815	0
0.077889552	1.355969918	0
0.080213588	1.355736332	0
0.091978627	1.354585353	0
0.094407992	1.354530517	0
0.110335735	1.352391707	0
0.117244595	1.351463976	0
0.128540674	1.350641546	0
0.169277378	1.336371722	0
0.195886075	1.326457835	0
0.202262204	1.319941871	0
0.207309152	1.316426617	0
0.209523643	1.314488022	0
0.210087296	1.314057096	0
0.212039291	1.312383981	0
0.227722415	1.299671874	0
0.22919722	1.298807498	0
0.25	1.277683832	0
0.23	1.2,7003032	

Вычисление |В|

Z	В
-0.250000000	1.577712717
-0.249992985	1.577717669
-0.249988270	1.578165104
-0.249986719	1.585109818
-0.249985889	1.595390782
-0.189907365	1.602408895
-0.188586420	1.602148056
-0.179926362	1.599209785
-0.176840187	1.601934352
-0.124037537	1.551508890
-0.089308855	1.503965959

-0.078256173	1.488608132
-0.068767107	1.474546868
-0.055097537	1.454026895
-0.033574311	1.421807394
-0.026915406	1.412517541
-0.016195627	1.396519289
-0.001926500	1.375935581
0.008127881	1.361615226
0.015596208	1.350839824
0.029795304	1.332865658
0.039265681	1.320357156
0.066017120	1.287160652
·-	_

1.267900908
1.251503786
1.236667660
1.230441169
1.209327252
1.185997499
1.157177641
1.149359425
1.143962272
1.092664906

Градиент B_z

Δ Bz
0.056694521
0.025648678

0.003909112
0.021017622
0.026074806

0.0)22221835
0.0	13670151
0.0	28359664

0.015616676
-0.01782836
0.026228112
0.049668011
0.006254263
0.005387597
0.044470859
0.025451276
-0.022935917

-0.00799913
0.056336279
0.039013791
-0.017290605
0.014709431
0.048739726
0.048982329
0.025451015
0.000107709

-0.001599363
-0.003378468
-0.010558665
-0.005146351
-0.000192799
-0.00369721
-4.96955E-06

Градиент Вху

ΔΒχγ
-1.435436334
-1.075024069
-0.505997941
0.097615091
0.798097858
43.9417796
0.182493498
0.896803324
0.347617747
0.553581028
2.303134858

Гради
1.774916299
1.297252292
-1.153173718
11.85415597
-0.75005693
1.510853032
1.612926438
0.538033601
0.170106534
0.063673678
1.182225984
1.772664771

1.791521566
3.645039751
2.624469632
0.824325534
1.464943827
3.429043186
1.669800554
1.868702095
0.127663764
-9.131229874

ΔZ 1-3%	ΔZ 3-5%	ΔZ 5-8%	ΔΖ 8-9%	ΔΖ 10%
0.25	0.25	0.25	0.25	0.25
0.196644672	0.196644672	0.196644672	0.196644672	0.196644672
0.20196132	0.20196132	0.20196132	0.20196132	0.20196132
0.029795304	0.029795304	0.029795304	0.029795304	0.188943082
-	-	-	-	
0.033574311	0.033574311	0.033574311	0.033574311	0.160356345
			-	
-0.25	-0.25	-0.25	0.068767107	0.116795248
-	-	-		
0.158111175	0.158111175	0.158111175	-0.25	0.110837799
-	-	-	-	
0.133493696	0.133493696	0.133493696	0.133493696	0.06601712
-4.77682E-	-4.77682E-	-	-	
07	07	0.098425107	0.098425107	0.082847338
-2.32928E-	-2.32928E-	-4.77682E-	-	
07	07	07	0.089103399	0.029795304
-	-	-2.32928E-	-4.77682E-	-
0.086827137	0.086827137	07	07	0.033574311
-	-	-	-2.32928E-	-
0.085883368	0.085883368	0.086827137	07	0.016195627
		-	-	-
0.069621906	0.069621906	0.085883368	0.086827137	0.078256173
			-	-
0.077889552	0.077889552	0.069621906	0.085883368	0.068767107
1.07338E-06	1.07338E-06	0.077889552	0.069621906	-0.18858642
-6.33885E-	-6.33885E-			-
08	08	1.07338E-06	0.077889552	0.249992985
-4.52393E-	-4.52393E-	-6.33885E-		
08	08	08	1.07338E-06	-0.25

-5.90797E-	-5.90797E-	-4.52393E-	-6.33885E-	
09	09	08	08	1.07338E-06
		-5.90797E-	-4.52393E-	-6.33885E-
6.45701E-07	6.45701E-07	09	08	08
			-5.90797E-	-4.52393E-
6.38754E-08	6.38754E-08	6.45701E-07	09	08
				-5.90797E-
1.07815E-07	1.07815E-07	6.38754E-08	6.45701E-07	09
0.117244595	0.169277378	1.07815E-07	6.38754E-08	6.45701E-07
0.091978627	0.117244595	0.169277378	1.07815E-07	6.38754E-08
0.202262204	0.091978627	0.117244595	0.169277378	1.07815E-07
0.207309152	0.202262204	0.091978627	0.117244595	1.97652E-08
0.227722415	0.207309152	0.202262204	0.091978627	0.169277378
0.209523643	0.227722415	0.207309152	0.202262204	0.117244595
	0.209523643	0.227722415	0.207309152	0.091978627
		0.209523643	0.227722415	0.094407992
			0.209523643	0.110335735
				0.195886075
				0.202262204
				0.207309152
				0.227722415
				0.25
				0.209523643

Теоритеское и экспериментальное

Z	В	B(T)
-0.25	1.577712717	7.34919E-07
-0.249992985	1.577717669	0
-0.24998827	1.578165104	0
-0.249986719	1.585109818	0
-0.249985889	1.595390782	0
-0.189907365	1.602408895	0
-0.18858642	1.602148056	0
-0.179926362	1.599209785	0
-0.176840187	1.601934352	0
-0.124037537	1.55150889	0
-0.089308855	1.503965959	0
-0.078256173	1.488608132	0
-0.068767107	1.474546868	0
-0.055097537	1.454026895	0
-0.033574311	1.421807394	0
-0.026915406	1.412517541	0
-0.016195627	1.396519289	0
-0.0019265	1.375935581	0
0.008127881	1.361615226	0
0.015596208	1.350839824	0
0.029795304	1.332865658	0
0.039265681	1.320357156	0

экспериментальное				
0.06601712	1.287160652	0		
0.082847338	1.267900908	0		
0.097436609	1.251503786	0		
0.110837799	1.23666766	0		
0.116795248	1.230441169	0		
0.137489878	1.209327252	0		
0.160356345	1.185997499	0		
0.188943082	1.157177641	0		
0.196644672	1.149359425	0		
0.20196132	1.143962272	0		
0.25	1.092664906	2.90096E-07		
0.128540674	1.350641546	0		
0.169277378	1.336371722	0		
0.195886075	1.326457835	0		
0.202262204	1.319941871	0		
0.207309152	1.316426617	0		
0.209523643	1.314488022	0		
0.210087296	1.314057096	0		
0.212039291	1.312383981	0		
0.227722415	1.299671874	0		
0.22919722	1.298807498	0		
0.25	1.277683832	0		