Foundation of Cryptography (0368-4162-01), Lecture 7 MACs and Signatures

Iftach Haitner, Tel Aviv University

December 27, 2011

Section 1

Message Authentication Code (MAC)

Goal: message authentication.

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- 2 Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- ② Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)
 - Consistency: Vrfy(k, m, t) = 1 for any $k \in Supp(Gen(1^n)), m \in \{0, 1\}^n$ and t = Mac(k, m)

Goal: message authentication.

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)
 - Consistency: Vrfy(k, m, t) = 1 for any $k \in Supp(Gen(1^n)), m \in \{0, 1\}^n$ and t = Mac(k, m)
 - Unforgability: For any oracle-aided PPT A:

```
\Pr[k \leftarrow \text{Gen}(1^n); (m, t) \leftarrow A^{\text{Mac}_k, \text{Vrfy}_k}(1^n): \text{Vrfy}_k(m, t) = 1 \land \text{Mac}_k \text{ was not asked on } m] \leq \text{neg}(n)
```

• "Private key" definition

- "Private key" definition
- Definition too strong?

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"

- "Private key" definition
- Definition too strong? Any message? Use of Verifier?
- "Reply attacks"
- Will focus on bounded length messages (specifically n), and then show how to move to any length

Bounded MACs

Definition 2 (ℓ**-time MAC)**

Same as in Definition 1, but security is only required against $\ell\text{-query}$ adversaries.

One-time MAC

Construction 3 (One-time MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0,1\}^n$
- $Mac(k, m) = k \oplus m$
- Vrfy(k, m, t) = 1, iff $t = k \oplus m$

ℓ-times MAC

Construction 4 (ℓ-time MAC, Stateful)

Like Construction 3, but uses a different mask for every message.

ℓ-times MAC

Construction 4 (ℓ-time MAC, Stateful)

Like Construction 3, but uses a different mask for every message.

Construction 5 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient family of ℓ -wise independent hash functions.^a

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

^aFor any distinct $x_1, ..., x_{\ell} \in \{0, 1\}^n$ and $y_1, ..., y_{\ell} \in \{0, 1\}^n$, $\text{Pr}_{h \leftarrow \mathcal{H}_n}[h(x_1) = y_1 \wedge \cdots \wedge h(x_{\ell}) = y_{\ell}] = 2^{-tn}$.

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 6 (PRF-based MAC)

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 6 (PRF-based MAC)

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 7

Assuming that \mathcal{F} is a PRF, then Construction 6 is a MAC.

Proof:

$\mathsf{OWF} \Longrightarrow \mathsf{MAC}$

Construction 6 (PRF-based MAC)

Same as Construction 5, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 7

Assuming that \mathcal{F} is a PRF, then Construction 6 is a MAC.

Proof: Easy to prove if $\mathcal F$ is a family of random functions. Hence, also holds in case $\mathcal F$ is a PRF.

Length restricted MAC ⇒ **MAC**

Construction 8 (Length restricted MAC ⇒ **MAC)**

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Length restricted MAC ⇒ **MAC**

Construction 8 (Length restricted MAC ⇒ **MAC)**

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Claim 9

Assume ${\cal H}$ is "collision resistant", then (Gen', Mac', Vrfy') is a MAC.

Length restricted MAC ⇒ **MAC**

Construction 8 (Length restricted MAC ⇒ **MAC)**

Let (Gen, Mac, Vrfy) be length restricted MAC with d(n) = n, and let $\mathcal{H} = \{\mathcal{H}_n : \{0, 1\}^* \mapsto \{0, 1\}^n\}$ be an eff. function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\bullet \ \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Claim 9

Assume \mathcal{H} is "collision resistant", then (Gen', Mac', Vrfy') is a MAC.

Collision Resistant Hash Family

Definition 10 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon \{0,1\}^*\mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] \leq \mathsf{neg}(n)$$

for any PPT A.

Collision Resistant Hash Family

Definition 10 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon \{0,1\}^*\mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] \leq \mathsf{neg}(n)$$

for any PPT A.

Not known to be implied by OWF

Collision Resistant Hash Family

Definition 10 (collision resistant hash family (CRH))

A function family $\mathcal{H}=\{\mathcal{H}_n\colon \{0,1\}^*\mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] \leq \mathsf{neg}(n)$$

for any PPT A.

Not known to be implied by OWF

Proof: (of Claim 9) HW

Section 2

Signature Schemes

Definition

Definition 11 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$ (we let Sign_s(·) := Sign(s, ·))
- **③** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO) (we let Vrfy_v(·) := Vrfy(v, ·))

Definition

Definition 11 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$ (we let Sign_s(·) := Sign(s, ·))
- **③** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO) (we let Vrfy_v(·) := Vrfy(v, ·))
 - Consistency: $Vrfy_{\nu}(m, \sigma) = 1$ for any $(s, \nu) \in Supp(Gen(1^n)), m \in \{0, 1\}^*$ and $\sigma \in Supp(Sign_s(m))$

Definition

Definition 11 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$ (we let Sign $_s(\cdot) := \text{Sign}(s, \cdot)$)
- Vrfy (v, m, σ) outputs 1 (YES) or 0 (NO) (we let $Vrfy_v(\cdot) := Vrfy(v, \cdot)$)
 - Consistency: $Vrfy_{\nu}(m, \sigma) = 1$ for any $(s, \nu) \in Supp(Gen(1^n)), m \in \{0, 1\}^*$ and $\sigma \in Supp(Sign_s(m))$
 - **Unforgability:** For any oracle-aided PPT A $\Pr[(s, v) \leftarrow \text{Gen}(1^n); (m, \sigma) \leftarrow A^{\text{Sign}_s(1^n, v)}:$ $\text{Vrfy}_v(m, \sigma) = 1 \land \text{Sign}_s \text{ was not asked on } m] \leq \text{neg}(n)$

 "Harder" to construct than MACs: (even restricted forms) require OWF

- "Harder" to construct than MACs: (even restricted forms) require OWF
- A can emulate oracle access to Vrfy by itself

- "Harder" to construct than MACs: (even restricted forms) require OWF
- A can emulate oracle access to Vrfy by itself
- Strong Signatures: impossible to generate new valid signatures

Section 3

OWF \Longrightarrow **Signature**

One Time Signatures

Definition 12 (one time signatures)

Same as Definition 11, but A can only ask for a single signature.

One Time Signatures

Definition 12 (one time signatures)

Same as Definition 11, but A can only ask for a single signature.

Definition 13 (length restricted, one time signatures)

Same as Definition 26, but $A(1^n)$ can only for signatures of predetermined length (in our case n).

One Time Signatures

Definition 12 (one time signatures)

Same as Definition 11, but A can only ask for a single signature.

Definition 13 (length restricted, one time signatures)

Same as Definition 26, but $A(1^n)$ can only for signatures of predetermined length (in our case n).

OWF \Longrightarrow length restricted, One Time Signature

Construction 14 (length restricted, one time signature)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1)$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- 3 Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$ check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

OWF \Longrightarrow length restricted, One Time Signature

Construction 14 (length restricted, one time signature)

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1)$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- Vrfy($v, m, \sigma = (\sigma_1, ..., \sigma_n)$) check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

Lemma 15

Assume that f is a OWF, then scheme from Construction 14 is a length restricted one-time signature scheme

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 14, we use A to invert <math>f$.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$ with y.
- ② If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 14, we use A to invert <math>f$.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{i^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$ with y.
- ② If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^*).

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of Construction 14, we use A to invert <math>f$.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{j^*}^{j^*}$ for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$ with y.
- ② If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq j^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 14, we use A to invert f.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace v_{i*}^{j*} for a random $i^* \in [n] \text{ and } j^* \in \{0, 1\} \text{ with } y.$
- If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

• Non length-restricted one-time signatures?

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 14, we use A to invert f.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace v_{i*}^{j*} for a random $i^* \in [n] \text{ and } j^* \in \{0, 1\} \text{ with } y.$
- If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

• Non length-restricted one-time signatures? use CRH

Proving Lemma 15

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 14, we use A to invert f.

Algorithm 16

(Inv) **Input:** $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace v_{i*}^{j*} for a random $i^* \in [n] \text{ and } j^* \in \{0, 1\} \text{ with } y.$
- If A(1ⁿ, v) ask to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i^*} .

v is distributed as it is in the real "signature game" (ind. of i^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

• Non length-restricted one-time signatures? use CRH ??

Stateful schemes (also known as, Memory-dependant schemes)

Definition 17 (Stateful scheme)

Same as in Definition 11, but Sign might keep state.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 17 (Stateful scheme)

Same as in Definition 11, but Sign might keep state.

Make sense in many applications (e.g., , smartcards)

Stateful schemes (also known as, Memory-dependant schemes)

Definition 17 (Stateful scheme)

Same as in Definition 11, but Sign might keep state.

- Make sense in many applications (e.g., , smartcards)
- We'll use it a building block for building a stateless scheme

Naive construction

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 18 (Naive construction)

- Gen'(1ⁿ) outputs $(s, v) = \text{Gen}(1^n)$.
- ② Sign_s(m_i), where m_i is i'th message to sign: Let $((m_1, \sigma'_1), \ldots, (m_{i-1}, \sigma'_{i-1}))$ be the previously signed pairs of messages/signatures.
 - Let $(s_i, v_i) \leftarrow \text{Gen}(1^n)$
 - 2 Let $\sigma_i = \operatorname{Sign}_{s_{i-1}}(m_i, v_i)$, where $s_0 = s$, and output $\sigma'_i = (\sigma'_{i-1}, m_i, v_i, \sigma_i)$.
- **3** Vrfy'_v $(m, \sigma' = (m_1, v_1, \sigma_1), \dots, (m_i, v_i, \sigma_i))$:
 - Check that $m_i = m$.
 - ② $\forall j \in [i]$, verify that $Vrfy_{v_{i-1}}((m_i, v_i), \sigma_i) = 1$, where $v_0 = v$.

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Critically uses the fact that (Gen, Sign, Vrfy) is works for any length

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Critically uses the fact that (Gen, Sign, Vrfy) is works for any length

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Critically uses the fact that (Gen, Sign, Vrfy) is works for any length

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).$

- State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.
- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Critically uses the fact that (Gen, Sign, Vrfy) is works for any length

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).$

We assume for simplicity that p also bounds the query complexity of A'

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Claim 20

Whenever A' breaks the scheme, $\exists i \in [q]$ s.t. :

- Sign' was not asked by A' on m_i.
- ② Sign' was asked by A' on $m_{i'}$, for every $i' \in [i-1]$

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Claim 20

Whenever A' breaks the scheme, $\exists i \in [q]$ s.t. :

- Sign' was not asked by A' on m_i .
- ② Sign' was asked by A' on $m_{i'}$, for every $i' \in [i-1]$

Proof:

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Claim 20

Whenever A' breaks the scheme, $\exists i \in [q]$ s.t. :

- Sign' was not asked by A' on m_i.
- ② Sign' was asked by A' on $m_{i'}$, for every $i' \in [i-1]$

Proof: Let i be the maximal index such that condition (2) holds (cannot be q). \square

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Claim 20

Whenever A' breaks the scheme, $\exists i \in [q]$ s.t. :

- Sign' was not asked by A' on m_i.
- ② Sign' was asked by A' on $m_{i'}$, for every $i' \in [i-1]$

Proof: Let i be the maximal index such that condition (2) holds (cannot be q). \square

Let *i* be the index guaranteed by Claim 20 in a successful attack of A'.

Proving Lemma 19 cont.

Let (the r.v) $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q))$ be the pair output by A'.

Claim 20

Whenever A' breaks the scheme, $\exists i \in [q]$ s.t. :

- Sign' was not asked by A' on m_i.
- ② Sign' was asked by A' on $m_{i'}$, for every $i' \in [i-1]$

Proof: Let i be the maximal index such that condition (2) holds (cannot be q). \square

Let *i* be the index guaranteed by Claim 20 in a successful attack of A'.

Hence, $\operatorname{Sign}_{s_i}(\sigma_i, m_i^* = (m_i, v_i)) = 1$, where s_i is the signing key generated by Sign'_s when signing m_{i-1} , and $\operatorname{Sign}_{s_i}$ was not queried (by Sign'_s) on m_i^* .

Definition of A

We define algorithm A as follows:

Algorithm 21 (A)

Input: v, 1ⁿ
Oracle: Sign_e

- **①** Choose $i \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's with a single twist:
 - On the *i*'th call to Sign'_{s'}, set $v_i = v$ (rather then choosing it via Gen)
 - When need to sign using s_i , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $(m_i^* = (m_i, v_i), \sigma_i)$ (aborts, if i > q))

Definition of A

We define algorithm A as follows:

Algorithm 21 (A)

Input: v, 1ⁿ
Oracle: Sign_e

- **①** Choose $i \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's with a single twist:
 - On the *i*'th call to Sign'_{s'}, set $v_i = v$ (rather then choosing it via Gen)
 - When need to sign using s_i , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- ① Output $(m_i^* = (m_i, v_i), \sigma_i)$ (aborts, if i > q))
 - Sign_s is called at most once

Definition of A

We define algorithm *A* as follows:

Algorithm 21 (A)

Input: v, 1ⁿ Oracle: Sign_s

- ① Choose $i \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the *i*'th call to Sign'_{s'}, set $v_i = v$ (rather then choosing it via Gen)
 - When need to sign using s_i , use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $(m_i^* = (m_i, v_i), \sigma_i)$ (aborts, if i > q))
 - Sign_s is called at most once
- The emulated game A'Sign'_{s'} has the "right" distribution.

Analysis of A

Let $i(m, \sigma)$ be the index guaranteed by Claim 20 (set to \bot , if A' dos not break the scheme).

Analysis of A

Let $i(m, \sigma)$ be the index guaranteed by Claim 20 (set to \bot , if A' dos not break the scheme).

• A breaks (Gen, Sign, Vrfy) whenever $i = i(m, \sigma)$.

Analysis of A

Let $i(m, \sigma)$ be the index guaranteed by Claim 20 (set to \bot , if A' dos not break the scheme).

• A breaks (Gen, Sign, Vrfy) whenever $i = i(m, \sigma)$.

Hence, for any $i \in \mathcal{I}$

Pr[A breaks (Gen, Sign, Vrfy)]

$$\geq \Pr_{i \leftarrow [p=p(n)]}[i=i(m,\sigma)]$$

$$\geq \frac{1}{p} \cdot \Pr[A' \text{ breaks } (Gen', Sign', Vrfy')] \geq \frac{1}{p(n)^2}$$

"Semi"-Stateful Schemes

A one-time scheme (Gen, Sign, Vrfy), and $\ell = \ell(n) \in \omega(\log n)$

Construction 22

- $\operatorname{Gen}'(1^n)$: output $(s, v) \leftarrow \operatorname{Gen}(1^n)$.
- Sign_s(m): choose $r = (r_1 \dots, r_\ell) \leftarrow \{0, 1\}^\ell$ and let $(s_\lambda, v_\lambda) = (s, v)$
 - For i = 0 to $\ell 1$: if a_{r_1} , was not set:
 - **1** For $j \in \{0,1\}$, let $(s_{r_1,...,j}, v_{r_1,...,j})$ ← Gen (1^n)
 - **2** $\sigma_{r_1,...,i} = \operatorname{Sign}_{s_{r_1}} (v_{r_1,...,i},0, v_{r_1,...,i},1)$
 - $a_{r_1,\ldots,i} = (v_{r_1,\ldots,i},0,v_{r_1,\ldots,i},1,\sigma_{r_1,\ldots,i})$
 - Output $(r, a_{\lambda}, a_{r_1}, \dots, a_r, \sigma = \operatorname{Sign}_{s_r}(m))$
- $Vrfy'_{\nu}(m, \sigma' = (r, a_{\lambda}, a_{r_1}, \dots, a_{r_r}, \sigma))$:
 - For every $i \in [\ell]$, verify that $Vrfy_{\nu_{r_i}} (a_{r_1,...,i}) = 1$.
 - 2 Verify that $Vrfy_{V_{\sigma}}(m, \sigma) = 1$

A much more efficient scheme

- A much more efficient scheme
- ② With save but negligible probability, each leaf is used once.

- A much more efficient scheme
- With save but negligible probability, each leaf is used once.
- We sign both descendants, to avoid using the same one-time signature twice

- A much more efficient scheme
- With save but negligible probability, each leaf is used once.
- We sign both descendants, to avoid using the same one-time signature twice
- Sign' does not keep track of the messages it signed

- A much more efficient scheme
- With save but negligible probability, each leaf is used once.
- We sign both descendants, to avoid using the same one-time signature twice
- Sign' does not keep track of the messages it signed
- State is only needed to maintain the secret keys and to avoid using the same one-time signature twice.

- A much more efficient scheme
- With save but negligible probability, each leaf is used once.
- We sign both descendants, to avoid using the same one-time signature twice
- Sign' does not keep track of the messages it signed
- State is only needed to maintain the secret keys and to avoid using the same one-time signature twice.

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

- A much more efficient scheme
- With save but negligible probability, each leaf is used once.
- We sign both descendants, to avoid using the same one-time signature twice
- Sign' does not keep track of the messages it signed
- State is only needed to maintain the secret keys and to avoid using the same one-time signature twice.

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful signature scheme.

Proof: ?

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i\in[\ell]}\{0,1\}^i$ to $\{0,1\}^q$.

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i\in[\ell]}\{0,1\}^i$ to $\{0,1\}^q$.

• Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i\in[\ell]}\{0,1\}^i$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- ② Sign'(1ⁿ): when setting $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(r_{1,...,i},j)$ as the randomness for Gen.

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i \in [\ell]} \{0,1\}^i$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- ② Sign'(1ⁿ): when setting $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(r_{1,...,i},j)$ as the randomness for Gen.
 - Sign' keeps no state

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i \in [\ell]} \{0,1\}^i$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- ② Sign'(1ⁿ): when setting $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(r_{1,...,i},j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i \in [\ell]} \{0,1\}^i$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- ② Sign'(1ⁿ): when setting $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(r_{1,...,i},j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme:

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\bigcup_{i \in [\ell]} \{0,1\}^i$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow$ Gen(1ⁿ) and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in$ poly is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- ② Sign'(1ⁿ): when setting $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$, use $\pi(r_{1,...,i},j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme: use PRF

Without CRH

Definition 24 (target collision resistant (TCR))

An function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if for any PPT A: $\Pr[x \leftarrow A(1^n), h \leftarrow \mathcal{H}_n \colon x' \leftarrow A(x, h) \colon x \neq x' \land h(x) = h(x')] \leq \operatorname{neg}(n)$

Without CRH

Definition 24 (target collision resistant (TCR))

An function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if for any PPT A: $\Pr[x \leftarrow A(1^n), h \leftarrow \mathcal{H}_n \colon x' \leftarrow A(x, h) \colon x \neq x' \land h(x) = h(x')] \leq \operatorname{neg}(n)$

Theorem 25

OWFs imply TCR.

Definition 26 (target one-time signatures)

Same as one time signature, but A has to declare its query *before* seing the verification key.

Definition 26 (target one-time signatures)

Same as one time signature, but A has to declare its query *before* seing the verification key.

Claim 27

OWFs imply target one-time signatures

Definition 26 (target one-time signatures)

Same as one time signature, but A has to declare its query *before* seing the verification key.

Claim 27

OWFs imply target one-time signatures

Lemma 28

Assume that (Gen, Sign, Vrfy) is a target one time signature scheme, then (Gen', Sign', Vrfy') from Construction 22 is a stateful signature scheme.

Definition 26 (target one-time signatures)

Same as one time signature, but A has to declare its query *before* seing the verification key.

Claim 27

OWFs imply target one-time signatures

Lemma 28

Assume that (Gen, Sign, Vrfy) is a target one time signature scheme, then (Gen', Sign', Vrfy') from Construction 22 is a stateful signature scheme.

Proof: ?

Definition 26 (target one-time signatures)

Same as one time signature, but A has to declare its query *before* seing the verification key.

Claim 27

OWFs imply target one-time signatures

Lemma 28

Assume that (Gen, Sign, Vrfy) is a target one time signature scheme, then (Gen', Sign', Vrfy') from Construction 22 is a stateful signature scheme.

Proof: ?

Reduction to stateless scheme as in the CRH based scheme