Binary Tree Traversal Methods and Tree Construction Methods

In a traversal of a binary tree,
 A1 of the binary tree is visited

• In a traversal of a binary tree, each element of the binary tree is visited exactly once.

We can perform A1 (e.g., display, operator evaluation, etc.) on the elements of the node during A2

• In a traversal of a binary tree, each element of the binary tree is visited exactly once.

 We can perform operations (e.g., display, operator evaluation, etc.) on the elements of the node during the visit.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order (Breadth-first)

Preorder Traversal

```
template <class T>
void preOrder( Node<T> *t )
   if (t != NULL)
      visit(t);
      preOrder(t->leftChild);
      preOrder(t->rightChild);
void visit( Node<T> *t ) {
    t->printf(); // display the element
```

Preorder Traversal

```
template <class T>
void preOrder( Node<T> *t )
   if (t != NULL)
      visit(t);
      preOrder(t->leftChild);
      preOrder(t->rightChild);
void visit( Node<T> *t ) {
    t->printf(); // display the element
```


Preorder Traversal

```
template <class T>
void preOrder( Node<T> *t )
   if (t != NULL)
      visit(t);
      preOrder(t->leftChild);
      preOrder(t->rightChild); !
                                 1, 2, 4, 8, 9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15
void visit( Node<T> *t ) {
    t->printf(); // display the element
```


1, 2, 3

1, 2, 4, 8, 9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15

```
Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)
```

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)

the prefix form expression?

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)

-+*+ab+cdf+*x/yz7
the prefix form expression?

```
template <class T>
void inOrder(Node<T> *t)
   if (t != NULL)
      inOrder(t->leftChild);
      visit(t);
      inOrder(t->rightChild);
```

```
template <class T>
void inOrder(Node<T> *t)
   if (t != NULL)
      inOrder(t->leftChild);
      visit(t);
      inOrder(t->rightChild);
```

```
template <class T>
void inOrder(Node<T> *t)
   if (t != NULL)
      inOrder(t->leftChild);
      visit(t);
      inOrder(t->rightChild);
```

```
template <class T>
void inOrder(Node<T> *t)
   if (t != NULL)
      inOrder(t->leftChild);
      visit(t);
      inOrder(t->rightChild);
                                 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15
```


2,1,3

8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)

Infix =
$$(a + b) * (c + d) + f - (x*(y/z) + 7)$$

Postorder Traversal

```
template <class T>
void postOrder(Node<T> *t)
  if (t == NULL) return;
  postOrder(t->leftChild);
  postOrder(t->rightChild);
  visit(t);
```


Postorder Traversal

```
template <class T>
void postOrder(Node<T> *t)
  if (t == NULL) return;
  postOrder(t->leftChild);
  postOrder(t->rightChild);
  visit(t);
```


Postorder Traversal

```
template <class T>
void postOrder(Node<T> *t)
  if (t == NULL) return;
  postOrder(t->leftChild);
  postOrder(t->rightChild);
  visit(t);
```


2, 3, 1

8, 9, 4, 10, 11, 5, 2, 12, 13, 6, 14, 15, 7, 3, 1

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)Gives the postfix form of the expression.

Postorder Of Expression Tree

Infix = (a + b) * (c + d) + f - (x*(y/z) + 7)

$$ab+cd+*f+xyz/*7+-$$

Traversal Applications

- Make a clone.
- Determine height.
- Determine number of nodes.

Level Order Traversal

```
unmark all the nodes
q = { t } // q is a queue (FIFO)
mark t
while ( q != { } )
{
   t ← pop from q
   visit t
```


put its unmarked children (from left to right) on q and mark them

1,2,3

1, 2, 3, 4, 5, 6, 8, 10, 11, 13

preorder = ab

inorder = ab

postorder = ab

level-order = ab

- Suppose that the elements in a binary tree are distinct.
- ➤ Given some traversal sequences, we may be able to construct one or more binary trees.
- ➤ Based on some traversal sequences, we can construct a unique binary tree.

preorder = ab

inorder = ab

postorder = ab

level-order = ab

preorder = ab

inorder = ab

postorder = ab

level-order = ab

Preorder And Postorder

preorder = ab
postorder = ba

- In some cases, preorder and postorder do not uniquely define a binary tree.
- ➤ Nor do preorder and level order. Give an example?
- Nor do postorder and level order. Give an example?

- inorder = xcfdgbey
- preorder = bcxdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

- inorder = xcfdgbey
- preorder = bcxdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

- inorder = xcfdg **b** ey
- preorder = b cxdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

- inorder = x fdg **b** ey
- preorder = b xdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

- inorder = x fdg **b** ey
- preorder = b xdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

- inorder = x fdg b ey
- preorder = b xdfgey

- Scan the preorder left to right using the inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.
- The left subtree is printed before the root node.

Inorder And Postorder

- inorder = xcfdgbey
- postorder = xfgdcyeb
- Scan postorder from **right to left** using inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.

Inorder And Levelorder

- inorder = xcfdgbey
- postorder = bcexdyfg

- Scan level order from left to right using inorder to separate left and right subtrees.
- b is the root of the tree; xcfdg are in the left subtree; ey are in the right subtree.

Reconstruct the binary tree

Inorder: 8, 4, 2, 10, 5, 11, 1, 6, 13, 3

Level order: 1, 2, 3, 4, 5, 6, 8, 10, 11, 13

Reconstruct the binary tree

Inorder: 8, 4, 2, 10, 5, 11, 1, 6, 13, 3

Postorder: 8, 4, 10, 11, 5, 2, 13, 6, 3, 1

• Give an example in which there can be two binary trees that can be constructed based on the sequences of the inorder and level order traversal methods.