🔾 🖸 অনুশীলনী ৩.৪ 💽 🔾

পাঠ সম্পর্কিত গুরুত্বপূর্ণ বিষয়াদি

■ ভাগশেষ উপপাদ্য (Remainder Theorem):

আমরা জানি, ভাজ্য = ভাজক × ভাগফল + ভাগশেষ

যদি আমরা ভাজ্যকে f(x), ভাগফলকে h(x),ভাগশেষকে r ও ভাজককে (x-a) দারা সূচিত করি, তাহলে উপরের সূত্র থেকে পাই,

 $f(\mathbf{x}) = (\mathbf{x} - \mathbf{a}).\mathbf{h}(\mathbf{x}) + \mathbf{r}$ এই সূত্রটি \mathbf{a} এর সকল মানের জন্য সত্য।

অতএব, f(x) কে (x-a) দারা ভাগ করলে ভাগশেষ হয় f(a) এই সূত্র ভাগশেষ উপপাদ্য $(Remainder\ theorem)$ নামে পরিচিত। অর্থাৎ, ধনাত্মক মাত্রার কোনো বহুপদী f(x) কে (x-a) আকারের বহুপদী দারা ভাগ করলে ভাগশেষ কত হবে তা ভাগ না করে বের করার সূত্রই হলো ভাগশেষ উপপাদ্য। ভাজক বহুপদী (x-a) এর মাত্রা 1।

প্রতিজ্ঞা : যদি f(x) এর মাত্রা ধনাত্মক হয় এবং $a \neq 0$ হয়, তবে f(x) কে (ax + b) দারা ভাগ করলে ভাগশেষ হয় $f\!\!\left(-\frac{b}{a}\right)$

অনুসিদ্ধান্ত : (x-a), f(x) এর উৎপাদক হবে, যদি এবং কেবল যদি f(a)=0 হয়। কোনো বহুপদী f(x), (x-a) দ্বারা বিভাজ্য হবে যদি এবং কেবল যদি f(a)=0 হয়। এই সূত্র উৎপাদক উপপাদ্য $(Factor\ theorem)$ নামে পরিচিত।

অনুসিন্ধান্ত $: ax + b, \ a \neq 0$ হলে, রাশিটি কোনো বহুপদী f(x) এর উৎপাদক হবে, যদি এবং কেবল যদি $f\!\!\left(-\frac{b}{a}\right)\!=0$ হয়।

অনুশীলনীর প্রশ্ন ও সমাধান

সমাধান :ধরি,
$$f(x)$$
 $= 6x^2 - 7x + 1$
 $\therefore f(1) = 6(1)^2 - 71 + 1$
 $= 61 - 7 + 1 = 6 - 7 + 1$
 $= 7 - 7 = 0$
 $\therefore (x - 1) \square f(x)$ এর একটি উৎপাদক।
এখন, $6x^2 - 7x + 1 = 6x^2 - 6x - x + 1$
 $= 6x (x - 1) - 1(x - 1) = (x - 1)(6x - 1)$
 $= (6x - 1)(x - 1)$ (Ans.)
প্রশ্ন ম ২ ম 3a³ + 2a + 5
সমাধান : ধরি, $f(a) = 3a^3 + 2a + 5$
 $\therefore f(-1) = 3(-1)^3 + 2(-1) + 5$
 $= -3 - 2 + 5 = -5 + 5 = 0$
 $\therefore (a + 1), f(a)$ এর একটি উৎপাদক।
এখন, $3a^3 + 2a + 5$
 $= 3a^3 + 3a^2 - 3a^2 - 3a + 5a + 5$
 $= 3a^3 + 3a^2 - 3a^2 - 3a + 5a + 5$
 $= 3a^2(a + 1) - 3a(a + 1) + 5(a + 1)$
 $= (a + 1)(3a^2 - 3a + 5)$ (Ans.)
প্রশ্ন ম ৩ ম $x^3 - 7xy^2 - 6y^3$
সমাধান : এখানে, x কে চলক এবং y কে ধ্রবক
হিসেবে বিবেচনা করি।
প্রদন্ত রাশিকে x —এর বহুপদী বিবেচনা করে
ধরি, $f(x) = x^3 - 7xy^2 - 6y^3$
 $\therefore f(-y) = (-y)^3 - 7 \cdot (-y)y^2 - 6y^3$
 $= -y^3 + 7y^3 - 6y^3 = 0$
 $\therefore x - (-y)$ বা, $(x + y)$, $f(x)$ এর একটি উৎপাদক।
এখন, $x^3 - 7xy^2 - 6y^3$
 $= x^3 + x^2y - x^2y - xy^2 - 6xy^2 - 6y^3$

সমাধান : ধরি,
$$f(x) = x^2 - 5x - 6$$

$$f(-1) = (-1)^2 - 5(-1) - 6$$

$$= 1 + 5 - 6 = 6 - 6 = 0$$

$$x - (-1) \text{ বা, } (x + 1), f(x) \text{ এর একটি উৎপাদক।}$$

$$equal x - 5x - 6$$

$$= x^2 + x - 6x - 6 = x(x + 1)$$

$$- 6(x + 1)$$

$$= (x + 1)(x - 6) = (x - 6)(x + 1)$$

$$1) \text{ (Ans.)}$$

প্রশ্ন য ৫ য $2x^2 - x - 3$ সমাধান : ধরি, f(x) $= 2x^2 - x - 3$ $\therefore f(-1)$ $= 2(-1)^2 - (-1) - 3$ = 2 + 1 - 3 = 3 - 3 = 0 $\therefore \{x - (-1)\}$ বা, (x + 1), f(x) এর একটি উৎপাদক।

এখন, $2x^2 - x - 3 = 2x^2 + 2x - 3x - 3$ = 2x(x + 1) - 3(x + 1) = (x + 1)(2x - 3) = (2x - 3)(x + 1) (Ans.)

প্রমাণ ভারমে বিনার কর্মাণ বিনার কর্মাণ ভারমে বিনার কর্মাণ ভারমে বিনার কর্মাণ ভারমে বিনার কর্মাণ ভারমি বিনার কর্মাণ ভার কর্মাণ ভারমি বিনার কর্মাণ ভারমি বিনার কর্মাণ ভারমি বিনার কর্মাণ

ে (x - 3),
$$f(x)$$
 এর একটি উৎপাদক।
এখন, $3x^2 - 7x - 6 = 3x^2 - 9x + 2x - 6$
 $= 3x(x - 3) + 2(x - 3) = (x - 3)(3x + 2)$ (Ans.)
প্রশ্ন 1 ৭ 1 $x^3 + 2x^2 - 5x - 6$
সমাধান : ধরি, $f(x)$ $= x^3 + 2x^2 - 5x - 6$
 $\therefore f(-1)$ $= (-1)^3 + 2(-1)^2 - 5(-1) - 6$
 $= -1 + 2 + 5 - 6 = 7 - 7$
 $= 0$
 $\therefore x - (-1)$ বা, $(x + 1)$, $f(x)$ এর একটি উৎপাদক।
এখন, $x^3 + 2x^2 - 5x - 6$
 $= x^3 + x^2 + x^2 + x - 6x - 6$
 $= x^2(x + 1) + x(x + 1) - 6(x + 1)$
 $= (x + 1)(x^2 + x - 6)$
 $= (x + 1)(x^2 + 3x - 2x - 6)$
 $= (x + 1)(x + 3)(x - 2)$
 $= (x - 2)(x + 1)(x + 3)$ (Ans.)
প্রশ্ন 1 ৮ 1 $x^3 + 4x^2 + x - 6$
সমাধান :মনে করি, $f(x)$ $= x^3 + 4x^2 + x - 6$
 $\therefore f(1) = (1)^3 + 4(1)^2 + (1) - 6$
 $= 1 + 4 + 1 - 6 = 6 - 6$
 $= 0$
 $\therefore (x - 1)$, $f(x)$ এর একটি উৎপাদক।
এখন, $x^3 + 4x^2 + x - 6$
 $= x^3 - x^2 + 5x^2 - 5x + 6x - 6$
 $= x^3 - x^2 + 5x^2 - 5x + 6x - 6$
 $= (x - 1)(x^2 + 5x + 6)$
 $= (x - 1)(x^2 + 5x + 6)$
 $= (x - 1)(x^2 + 3x + 2x + 6)$

ে
$$f(1) = (1)^6 - (1)^5 + (1)^4$$
 $-(1)^3 + (1)^2 - 1$
 $= 1 - 1 + 1 - 1 + 1 - 1 = 3$
 $- 3 = 0$
 $\therefore (x - 1), f(x)$ এর একটি উৎপাদক।
এখন, $x^6 - x^5 + x^4 - x^3 + x^2 - x$
 $= x(x^5 - x^4 + x^3 - x^2 + x - 1)$
 $= x\{x^4 (x - 1) + x^2 (x - 1) + 1(x - 1)\}$
 $= x(x - 1) (x^4 + x^2 + 1)$
 $= x(x - 1) \{(x^2)^2 + 2.x^2.1 + (1)^2 - x^2\}$
 $= x(x - 1) \{(x^2 + 1)^2 - (x)^2\}$
 $= x(x - 1) (x^2 + 1 + x) (x^2 + 1 - x)$
 $= x(x - 1) (x^2 + x + 1) (x^2 - x + 1) (Ans.)$
প্রশা ১৯ ॥ $4x^3 - 5x^2 + 5x - 1$
সমাধান : ধরি, $f(x) = 4x^3 - 5x^2 + 5x - 1$
 $\therefore f(\frac{1}{4}) = 4(\frac{1}{4})^3 - 5(\frac{1}{4})^2 + 5(\frac{1}{4}) - 1$
 $= 4 \times \frac{1}{64} - 5 \cdot \frac{1}{16} + \frac{5}{4} - 1 = \frac{1}{16} - \frac{5}{16} + \frac{5}{4} - 1$
 $= \frac{1 - 5 + 20 - 16}{16} = \frac{21 - 21}{16} = \frac{0}{16} = 0$
 $\therefore (x - \frac{1}{4})$ বা, $(4x - 1)$, $f(x)$ এর একটি উৎপাদক।
এখন, $4x^3 - 5x^2 + 5x - 1$
 $= 4x^3 - x^2 - 4x^2 + x + 4x - 1$
 $= x^2(4x - 1) - x(4x - 1) + 1(4x - 1)$

$$= (4x - 1)(x^2 - x + 1) \text{ (Ans.)}$$
প্রশ্ন ম ২০ ম $18x^3 + 15x^2 - x - 2$
সমাধান : ধির, $f(x) = 18x^3 + 15x^2 - x - 2$

$$\therefore f\left(-\frac{1}{2}\right) = 18\left(-\frac{1}{2}\right)^3 + 15\left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right) - 2$$

$$= 18 \times \left(-\frac{1}{8}\right) + 15 \cdot \frac{1}{4} + \frac{1}{2}$$

$$-2$$

$$= -\frac{9}{4} + \frac{15}{4} + \frac{1}{2} - 2$$

$$= \frac{-9 + 15 + 2 - 8}{4} = \frac{-17 + 17}{4} = \frac{0}{4} = 0$$

∴
$$x - \left(-\frac{1}{2}\right)$$
 বা, $(2x + 1)$, $f(x)$ এর একটি উৎপাদক।

এখন, $18x^3 + 15x^2 - x - 2$
 $= 18x^3 + 9x^2 + 6x^2 + 3x - 4x$
 -2
 $= 9x^2 (2x + 1) + 3x(2x + 1) - 2(2x + 1)$
 $= (2x + 1)(9x^2 + 3x - 2)$
 $= (2x + 1)(9x^2 - 3x + 6x - 2)$
 $= (2x + 1)\{3x(3x - 1) + 2(3x - 1)\}$
 $= (2x + 1)(3x - 1)(3x + 2)$

(Ans.)

অনুশীলনমূলক কাজের আলোকে সৃজনশীল প্রশ্ন ও সমাধান

প্রস্থান ১ চ $x^3 - 21x - 20$ ও $2x^3 - 3x^2 + 3x$

— 1 দুইটি রাশি।

- ক. (x + 2) দারা প্রথম রাশিটি বিভাজ্য কি না?
- খ. প্রথম রাশিকে উৎপাদকে বিশেরষণ কর।
- গ. দ্বিতীয় রাশিকে উৎপাদকে বিশেরষণ কর।

🕨 ১নং প্রশ্নের সমাধান 🕨 🕻

ক. ধরি,
$$f(x) = x^3 - 21x - 20$$

 $\therefore f(x), f(x + 2)$ দারা বিভাজ্য হলে, $f(-2) = 0$ হবে।
এখন, $f(-2) = (-2)^3 - 21 (-2) - 20$
 $= -8 + 42 - 20 = -28 + 42 = 14$
 $\therefore f(-2) \neq 0$

- ∴ (x+2) দারা প্রথম রাশিটি বিভাজ্য নয়।
- খ. প্রদন্ত রাশি = $x^3 21x 20$ মনে করি, $f(x) = x^3 - 21x - 20$ এখানে, $f(-1) = (-1)^3 - 21(-1) - 20$ = -1 + 21 - 20 = 21 - 21 = 0 $\therefore x - (-1)$ বা, (x + 1), f(x) এর একটি উৎপাদক।

এখন,
$$x^3 - 21x - 20$$

 $= x^3 + x^2 - x^2 - x - 20x - 20$
 $= x^2(x+1) - x(x+1) - 20(x+1)$
 $= (x+1)(x^2 - x - 20)$
 $= (x+1)(x^2 - 5x + 4x - 20)$
 $= (x+1)\{x(x-5) + 4(x-5)\}$
 $= (x+1)(x-5)(x+4)$ (Ans.)

গ. প্রদন্ত রাশি =
$$2x^3 - 3x^2 + 3x - 1$$

মনে করি, $f(x) = 2x^3 - 3x^2 + 3x - 1$
এখানে, $f(\frac{1}{2}) = 2.(\frac{1}{2})^3 - 3.(\frac{1}{2})^2 + 3.(\frac{1}{2})$
— 1

$$= \frac{2}{8} - \frac{3}{4} + \frac{3}{2} - 1$$

$$= \frac{1}{4} - \frac{3}{4} + \frac{3}{2} - 1 =$$

$$\frac{1 - 3 + 6 - 4}{4} = \frac{7 - 7}{4} = 0$$

$$\therefore x - \left(\frac{1}{2}\right) = x - \frac{1}{2}$$
অধাৎ $(2x - 1)$, $f(x)$ এর একটি উৎপাদক।

অর্থাৎ
$$(2x-1)$$
, $f(x)$ এর একটি উৎপাদক। এখন, $2x^3-3x^2+3x-1=2x^3-x^2-2x^2+x+2x-1$ $=x^2(2x-1)-x(2x-1)+1(2x-1)$ $=(2x-1)(x^2-x+1)$ (Ans.)

অতিরিক্ত সৃজনশীল প্রশ্ন ও সমাধান

প্রশ্ন \mathbf{z} $f(\mathbf{x})=\mathbf{x}^3+3\mathbf{x}+36$ একটি বহুপদী।

- ক. দেখাও যে, (x-a), f(x) এর একটি উৎপাদক হবে যদি ও কেবল যদি f(a)=0 হয়।
- খ. f(x) কে উৎপাদকে বিশেরষণ কর। 8 গ. $g(x)=x^4+x^3-25x^2-37x+60$ হলে দেখাও যে, f(x) ও g(x) এর সাধারণ উৎপাদক (x+3) 8

🕨 ব ২নং প্রশ্নের সমাধান 🕨 ব

ক. ধরি, f(a)=0 অতএব, ভাগশেষ উপপাদ্য অনুযায়ী, f(x) কে (x-a) দারা ভাগ করলে ভাগশেষ শূন্য হবে। অর্থাৎ (x-a), f(x) এর একটি উৎপাদক হবে।

বিপরীতক্রমে, ধরি, (x-a), f(x) এর একটি উৎপাদক।

অতএব, $f(\mathbf{x}) = (\mathbf{x} - \mathbf{a})$. $\mathbf{h}(\mathbf{x})$, যেখানে $\mathbf{h}(\mathbf{x})$ বহুপদী।

উভয়পৰে x = a বসিয়ে পাই,

$$f(a) = (a - a)$$
. $h(a) = 0$

 $\therefore f(a) = 0$

সুতরাং, কোনো বহুপদী f(x), (x-a) দারা বিভাজ্য হবে যদি এবং কেবল যদি f(a)=0 হয়। (দেখানো হলো)

খ. দেওয়া আছে, $f(\mathbf{x}) = \mathbf{x}^3 + 3\mathbf{x} + 36$ এখন, $f(-3) = (-3)^3 + 3(-3) + 36$

$$= -27 - 9 + 36 = -36 + 36$$

= 0 ∴ x − (−3) = x + 3, f(x) এর একটি উৎপাদক।

এখন, $x^3 + 3x + 36$

 $= x^3 + 3x^2 - 3x^2 - 9x + 12x + 36$

 $= x^{2}(x + 3) - 3x(x + 3) + 12(x + 3)$

$$= (x + 3) (x^2 - 3x + 12)$$
 (Ans.)

গ. দেওয়া আছে, $g(x) = x^4 + x^3 - 25x^2 - 37x + 60$

এখন,
$$g(-3) = (-3)^4 + (-3)^3 - 25(-3)^2 - 37 \cdot (-3) + 60$$

উৎপাদক। আবার, 'খ' থেকে পাই,

$$f(x) = (x + 3) (x^2 - 3x + 12)$$

 $\therefore f(x)$ ও g(x) এর সাধারণ উৎপাদক (x)+ 3) (Ans.)

প্রশ্নullet $f(\mathbf{x})$ কে $(\mathbf{a}\mathbf{x}+\mathbf{b})$ দারা ভাগ করলে ভাগশেষ হয় $f\!\!\left(-rac{\mathbf{b}}{\mathbf{a}}
ight)$ ।

যেখানে, $f(x) = x^2 + 4x - 12$

- ক. ভাগশেষ উপপাদ্যটি বীজগাণিতিক সমীকরণে প্রকাশ কর।
- খ. 'ক' থেকে প্রাপত সমীকরণে $a=1,\,b$ =-2 বসিয়ে ভাগফল নির্ণয় কর।
- গ. (2x + 7) দারা f(x) কে ভাগ করলে ভাগশেষ কত হবে?

🕨 🗸 ৩নং প্রশ্রের সমাধান 🕨 🕻

- ক. ধরি, f(x) কে (ax + b) দারা ভাগ করলে ভাগফল h(x)। ভাগশেষ $f\left(-rac{b}{a}
 ight)$ হলে ভাগশেষ উপপাদ্য অনুসারে, বীজগাণিতিক সমীকরণ দাঁড়ায়, $f(x) = (ax + b) \cdot h(x) + f\left(-\frac{b}{a}\right)$ (Ans.)
- খ. দেওয়া আছে, $f(x) = x^2 + 4x 12$ f(x) = (x-2).h(x) + f(-2)কি' থেকে :: a = 1, b = −21 $\exists 1, x^2 + 4x - 12 = (x - 2).h(x) + (2^2 + 2).h(x)$ $4 \times 2 - 12$ $\exists 1, x^2 + 4x - 12 = (x - 2).h(x) - 0$ $\frac{x^2 + 6x - 2x - 12}{(x - 2)}$

$$=rac{\mathrm{x}(\mathrm{x}+6)-2(\mathrm{x}+6)}{(\mathrm{x}-2)}=$$
 $rac{(\mathrm{x}+6)(\mathrm{x}-2)}{(\mathrm{x}-2)}=\mathrm{x}+6$
ভাগফল $=\mathrm{x}+6$ (Ans.)
গ. ভাগশেষ উপপাদ্য অনুসারে, $f(\mathrm{x})$ কে $(2\mathrm{x}+7)$ দারা ভাগ করলে ভাগশেষ হবে $f\left(\frac{7}{2}\right)$, যেখানে $f(\mathrm{x})=\mathrm{x}^2+4\mathrm{x}-12$
 \therefore ভাগশেষ $=f\left(\frac{-7}{2}\right)=$

$$\therefore$$
 ভাগশৈষ = $f\left(\frac{-7}{2}\right)$ =
$$\left(\frac{-7}{2}\right)^2 + 4\left(\frac{-7}{2}\right) - 12$$
$$= \frac{49}{4} - \frac{28}{2} - 12$$
$$= \frac{49 - 56 - 48}{4} = \frac{-55}{4}$$

(Ans.)

ধ্য–৪ $f(\mathbf{x}) = \mathbf{x}^3 - 3\mathbf{x}\mathbf{y}^2 + 2\mathbf{y}^3$ একটি $\overline{\mathsf{d}}_{\mathbf{x}}$ পদী। এখানে \mathbf{x} কে চলক এবং \mathbf{v} কে ধ্রববক হিসেবে বিবেচনা কর।

- ক. f(v) নির্ণয় কর।
- **থ.** দেখাও যে, (x + 2y), f(x) এর একটি উৎপাদক।
 - গ. $f(\mathbf{x})$ কে উৎপাদকে বিশেরষণ কর। 8 🄰 ৪নং প্রশ্রের সমাধান 🄰 🕻
- ক. দেওয়া আছে, $f(x) = x^3 3xy^2 + 2y^3$ $f(y) = y^3 - 3 \times y \times y^2 + 2y^3 = 0$ $3y^3 - 3y^3 = 0$ (Ans.)
- খ. আমরা জানি, (x + 2y), f(x) এর একটি উৎপাদক হবে যদি এবং কেবল যদি f(-2y) =এখন, $f(-2y) = (-2y)^3 - 3(-2y)y^2 +$ $= -8y^3 + 6y^3 + 2y^3 = -8y^3 + 8y^3 = 0$

সুতরাং (x + 2y), f(x) এর একটি উৎপাদক। (দেখানো হলো)

২

8

গ. 'খ' থেকে (x+2y), f(x) এর একটি উৎপাদক।

এখন,
$$x^3 - 3xy^2 + 2y^3$$

 $= x^3 + 2x^2y - 2x^2y - 4xy^2 + xy^2$
 $+ 2y^3$
 $= x^2(x + 2y) - 2xy(x + 2y) +$
 $y^2(x + 2y)$
 $= (x + 2y)(x^2 - 2xy + y^2)$
 $= (x - y)^2(x + 2y)$
∴ $x^3 - 3xy^2 + 2y^3 = (x - y)^2(x + 2y)$
(Ans.)

প্রম্নান্দ \mathbf{x} চলকের একটি বহুপদী $7\mathbf{x}^3-8\mathbf{x}^2+6\mathbf{x}-36.$

ক. P(0), P(-2) নির্ণয় কর।

- খ. বহুপদীটিকে (x-1) দারা ভাগ করলে যে ভাগশেষ থাকে তা ভাগশেষ উপপাদ্যের সাহায্যে নির্ণয় কর।
- গ. দেখাও যে, (x-2) বহুপদীর একটি উৎপাদক।

🕨 🕻 ৫নং প্রশ্রের সমাধান 🕨 🕻

ক. মনে করি, $P(x) = 7x^3 - 8x^2 + 6x - 36$ $\therefore P(0) = 7.0 - 8.0 + 6.0 - 36 = -36$ $\therefore P(-2) = 7.(-2)^3 - 8.(-2)^2 + 6.(-2) - 36$ = 7.(-8) - 8.4 + 6(-2) - 36= -56 - 32 - 12 - 36 = -136 (Ans·)

(Ans.) খ. আমরা জানি,

ভাগশেষ উপপাদ্য অনুযায়ী কোনো বহুপদী P(x) কে (x-2) দারা ভাগ করলে ভাগশেষ হবে P(a)

 $\therefore P(x)$ কে (x-1) দারা ভাগ করলে ভাগশেষ হবে P(1)

∴
$$P(1) = 7.1^3 - 8.1^2 + 6.1 - 36$$

= $7 - 8 + 6 - 36 = 13 - 44 =$
-31 (**Ans.**)

গ. (x-2) প্রদন্ত বহুপদীর একটি উৎপাদক হবে যদি P(a)=0 হয়

$$\therefore P(2) = 7(2)^3 - 8(2)^2 + 6.2 - 36$$

$$= 7.8 - 8.4 + 6.2 - 36$$

$$= 56 - 32 + 12 - 36 = 68 - 68$$

$$= 0$$

(x-2) উক্ত বহুপদীর একটি উৎপাদক। (দেখানো হলো)

প্রশ্ন—৬ চ $f(\mathbf{x}) = 54\mathbf{x}^4 + 27\mathbf{x}^3\mathbf{a} - 16\mathbf{x} - 8\mathbf{a}$ একং $\mathbf{g}(\mathbf{x})$ বহুপদীর চলক \mathbf{x} হলে—

ক.
$$f\left(-rac{a}{2}
ight)$$
নির্ণয় কর।

- \mathbf{n} খ. দেখাও যে, $6\mathbf{x}^2-(4-3\mathbf{a})\mathbf{x}-2\mathbf{a}$ এর উৎপাদক দুইটি $f(\mathbf{x})$ এর একটি উৎপাদক।
 - গ. f(x) কে উৎপাদকে বিশ্লেষণ কর। 8

8

ক. দেওয়া আছে, $f(x) = 54x^4 + 27x^3a - 16x - 8a$

ছৎজ্ছ। $= \frac{54a^4}{16} - \frac{27a^4}{8} + \frac{16a}{2} - 8a$ $= \frac{27a^4}{8} - \frac{27a^4}{8} + 8a - 8a = 0$

 $(\mathbf{Ans.}) = \frac{8}{8} - \frac{8}{8} + 8a - 8a = 0$ $(\mathbf{Ans.})$

খ. ধিরি,
$$g(x) = 6x^2 - (4 - 3a)x - 2a =$$

$$6x^2 - 4x + 3ax - 2a$$

$$= 2x(3x - 2) + a(3x - 2)$$

$$= (3x - 2)(2x + a)$$

 $\therefore (3x-2)$ ও (2x+a), g(x) এর দুইটি উৎপাদক।

এখন,

$$f\left(\frac{2}{3}\right) = 54\left(\frac{2}{3}\right)^4 + 27\left(\frac{2}{3}\right)^3 a - 16\left(\frac{2}{3}\right) - 8a$$

$$\frac{54 \times 16}{81} + \frac{27 \times 8}{27} \, a - \frac{16 \times 2}{3} - 8a$$

$$\frac{2 \times 16}{3} + 8a - \frac{16 \times 2}{3} - 8a = 0$$

8

এবং 'ক' থেকে $f\left(-\frac{a}{2}\right)=0$

অর্থাৎ (3x - 2) ও (2x + a) উভয়ে f(x) এর উৎপাদক।

সুতরাং (3x-2) (2x+a) বা, $6x^2-(4-3a)x-2a$, f(x)-এর উৎপাদক। (দেখানো হলো)

গ. $f(x) = 54x^4 + 27x^3a - 16x - 8a$ $= 27x^3 (2x + a) - 8(2x + a)$ [: 2x + a, f(x) এর একটি উৎপাদক] $= (2x + a) (27x^3 - 8)$ $= (2x + a) \{(3x)^3 - (2)^3\}$ $= (2x + a) (3x - 2) \cdot \{(3x)^2 + 3x \cdot 2 + 2^2\}$ $= (2x + a) (3x - 2) (9x^2 + 6x + 4)$ (Ans.)

প্রমূ-৭ $\Rightarrow f(x) = x^3 + 6x^2 + 11x + 6$ এবং $g(x) = 12 + 4x - 3x^2 - x^3$

- ক. x এর কোন মানের জন্য f(x) = 0 হয়, নির্ণয় কর।
- খ. দেখাও যে (x+2), g(x) এর একটি উৎপাদক।
- গ. f(x) কে উৎপাদকে বিশ্লেষণ কর।

 ▶ ব ননং প্রশ্লের সমাধান ▶ ব
- ক. এখানে $f(x) = x^3 + 6x^2 + 11x + 6$ এর ধ্রব পদ 6 এর উৎপাদকগুলো হচ্ছে $\pm 1, \pm 2,$ $\pm 3, \pm 6$ x = -1 বসিয়ে পাই, $f(-1) = (-1)^3 + 6.(-1)^2 + 11.(-1) + 6$ = -1 + 6 11 + 6 = 0 $\therefore x = -1$ হলে, f(x) = 0
- খ. (x + 2), g(x) এর একটি উৎপাদক হবে যদি f(-2) = 0 হয়

g(x) = 12 + 4x - 3x² - x³ ∴ g(-2) = 12 + 4(-2) - 3(-2)² - (-2)³ = 12 - 8 - 12 + 8 = 0 ∴ (x + 2), g(x) এর একটি উৎপাদক। (দেখানো হলো)

গ. 'ক' হতে পাই, x = -1 হলে, f(x) = 0হবে ∴ (x+1), (f(x)) এর একটি উৎপাদক। প্রদন্ত রাশি = $x^3 + 6x^2 + 11x + 6$ $= x^2(x+1) + 5x^2 + 11x + 6$ $= x^2(x+1) + 5x(x+1) + 6x$ + 6

$$= x^{2}(x + 1) + 5x(x + 1) + 6(x + 1)$$

$$= (x + 1) (x^{2} + 5x + 6)$$

$$= (x + 1) (x^{2} + 3x + 2x + 6)$$

$$= (x + 1) \{x(x + 3) + 2(x + 3)\}$$

= (x + 1) (x + 3) (x + 2) = (x + 1) (x + 2) (x + 3)(Ans.)

প্রম্ন –৮ চ $f(a) = a^3 - 3a^2b + 2b^3$ $g(a) = a^3 - 9b^3 + (a+b)^3$

- ক. f(a) এর একটি উৎপাদক বের কর। ২ খ. দেখাও যে, (a-b), g(a) এর একটি উৎপাদক।
- গ. g(a) কে উৎপাদকে বিশ্লেষণ কর। 8

 ▶ ४ ৮নং প্রশ্লের সমাধান ▶ ४
- ক. দেওয়া আছে, $f(a) = a^3 3a^2b + 2b^3$ এখানে, a কে অনির্দেশক বা চলক এবং b কে আক্ষরিক সহগ হিসেবে বিবেচনা করি। এখন, a = b বসিয়ে পাই, $f(b) = (b)^3 3(b)^2b + 2b^3 = b^3 3b^3 + 2b^3 = 0$

 \therefore (a-b), f(a)- এর একটি উৎপাদক (Ans.)

খ.
$$(a - b)$$
, $g(a)$ এর একটি উৎপাদক হবে যদি $g(b) = 0$ হয়।
এখন, $g(a) = a^3 - 9b^3 + (a + b)^3$
∴ $g(b) = b^3 - 9b^3 + (2b)^3$

∴ (a − b), g(a) এর একটি উৎপাদক (দেখানো হলো)

 $= b^3 - 9b^3 + 8b^3 = 0$

$$9a - 9b^3 + (a + b)^3 = a^3 - b^3 + (a + b)^3 - 8b^3$$
$$= (a - b) (a^2 + ab + b^2) + (a + b)^3 - (2b)^3$$

$$= (a - b) (a^{2} + ab + b^{2}) + \{(a + b) - 2b\}$$

$$\{(a + b)^{2} + (a + b) 2b + (2b)^{2}\}$$

$$= (a - b) (a^{2} + ab + b^{2}) + (a - b)$$

$$(a^{2} + 2ab + b^{2} + 2ab + 2b^{2} + 4b^{2})$$

$$= (a - b) (a^{2} + ab + b^{2}) + (a - b)$$

$$(a^{2} + 4ab + 7b^{2})$$

$$= (a - b) (a^{2} + ab + b^{2} + a^{2} + 4ab + 7b^{2})$$

$$= (a - b) (2a^{2} + 5ab + 8b^{2})$$
(Ans.)

নির্বাচিত সৃজনশীল প্রশু ও সমাধান

২

$f(\mathbf{x}) = \mathbf{x}^3 - \mathbf{x} - \mathbf{6}$

- ক. ভাগশেষ উপপাদ্যটি লেখ।
- খ**.** f(3) নির্ণয় কর। 8
- গ. f(x) কে উৎপাদকে বিশেরষণ কর। ৪ ১৭ ৯নং প্রশ্নের সমাধান ১৭
- ক. কোনো বহুপদী f(x) কে (x-a) দারা ভাগ করলে ভাগশেষ হয় f(a)। এই সূত্র ভাগশেষ উপপাদ্য নামে পরিচিত।
- ₹. $f(x) = x^3 x 6$ ∴ $f(3) = (3)^3 - (3) - 6 = 27 - 3 - 6$ 6 = 27 - 9 = 18 (Ans.)
- গ. এখানে, $f(\mathbf{x})=\mathbf{x}^3-\mathbf{x}-6$ একটি বহুপদী। এর ধ্রববপদ -6 এর উৎপাদকগুলো হলো ± 1 , $\pm 2, \pm 3$ এবং ± 6

সুতরাং $(x-2),\,f(x)$ বহুপদীর একটি উৎপাদক।

$$f(x) = x^3 - x - 6 = x^3 - 2x^2 + 2x^2 - 4x + 3x - 6$$

$$= x^2(x - 2) + 2x(x - 2) + 3(x - 2)$$

$$= (x - 2)(x^2 + 2x + 3) \text{ (Ans.)}$$

সৃজনশীল প্রশ্বব্যাংক উত্তরসহ

প্রশ্ন—১০ > গণিত শিৰক মোশারফ স্যার নবম শ্রেণির গণিত ক্লাসে একজন ছাত্রকে বোর্ডে তিনটি বীজগাণিতিক রাশি লিখতে বললেন। ছাত্রটি লিখল:

(i)
$$a^2 + \frac{1}{a^2} - 2 - 2a + \frac{2}{a}$$

(ii) $a^4 - 4a + 3$

(iii)
$$2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4$$

ক. (i) নং রাশিকে উৎপাদকে বিশেরষণ কর।

খ. ভাগশেষ উপপাদ্য প্রয়োগ করে (ii) নং রাশি উৎপাদকে বিশেরষণ কর।

গ. প্রমাণ কর যে, (iii) নং রাশির একটি উৎপাদক (a+b-c)

উত্তর : ক.
$$\left(a - \frac{1}{a}\right) \left(a - \frac{1}{a} - 2\right)$$
; খ. $(a - 1)(a - 1)(a^2 + 2a + 3)$

প্রমূ–১১ চ $f(\mathbf{x}) = \mathbf{x}^3 + 3\mathbf{x} + 36$ একটি বহুপদী।

ক. (x-a), f(x) এর একটি উৎপাদক হবে, যদি ও কেবল যদি

$$f(\mathrm{a})=0$$
 হয়; প্রমাণ কর।

খ. f(x) কে উৎপাদকে বিশেরষণ কর।

গ. $g(x) = x^4 + x^3 - 25x^2 - 37x + 60$ হলে দেখাও যে,

f(x) ও g(x) এর সাধারণ উৎপাদক (x+3)

উত্তর : খ. $(x + 3)(x^2 - 3x + 12)$

প্রমু—১২ চ কোনো বহুপদী f(x), (x-a) দারা বিভাজ্য হবে যদি এবং কেবল যদি f(a)=0 হয়। এই সূত্র উৎপাদক উপপাদ্য $(Factor\ Theorem)$ নামে পরিচিত। f(x), x^3-x-6 একটি বহুপদী হলে—

ক. f(1) এবং f(-1) এর মান নির্ণয় কর।

খ. দেখাও যে, f(x), (x+1) ও (x-1) দারা বিভাজ্য নয় কিন্তু (x-2) দারা বিভাজ্য। 8

গ. Factor Theorem ব্যবহার করে f(x) এর একটি উৎপাদক বের কর এবং f(x) কে উৎপাদকে বিশেরষণ কর। 8 **উত্তর** : ক. -6, -6; গ. (x-2), (x-2) (x^2+2x+3)

প্রাম্বান্ত চ $f(\mathbf{x}) = 4\mathbf{x}^4 + 12\mathbf{x}^3 + 7\mathbf{x}^2 - 3\mathbf{x} - 2$;

 $\mathbf{g}(\mathbf{x}) = \mathbf{18}\mathbf{x}^3 + \mathbf{15}\mathbf{x}^2 - \mathbf{x} - \mathbf{2}$ দুইটি বহুপদী।

ক.
$$f(-1)$$
 নির্ণয় কর।

খ. f(x) কে উৎপাদকে বিশেরষণ কর।

গ. দেখাও যে, g(x) ও f(x) এর একটি সাধারণ উৎপাদক (2x+1) 8 **উত্তর** : ক. 0; খ. (2x-1)(2x+1)(x+1)(x+2)

- ক. f(x) = ভাজ্য, h(x) = ভাগফল, (x a) = ভাজক এবং r = ভাগশেষ ধরে পাটিগণিতের ভাজ্য নির্ণয়ের সূত্রটিকে বীজাণিতিক সমীকরণে প্রকাশ কর।
- খ. 'ক' থেকে প্রাপ্ত সমীকরণে ভাগশেষ r=0 ব্যবহার করে a এর মান নির্ণয় কর।
- গ. ভাজক (x-2) হলে ভাগফল ও ভাগশেষ নির্ণয় কর। 8 উত্তর : ক. f(x) = (x-a) h(x) + r; খ. a = 3; গ. 3x-1, -8