軌道最適化による動作生成 リファレンスマニュアル

平成 31 年 7 月 22 日

室岡雅樹

murooka@jsk.t.u-tokyo.ac.jp

目 次

1	軌追	道最適化による動作生成の基礎	1
	1.1	タスク関数のノルムを最小にするコンフィギュレーションの探索	1
	1.2	コンフィギュレーション二次形式の正則化項の追加	2
	1.3	コンフィギュレーション更新量の正則項の追加	3
	1.4	ソースコードと数式の対応	3
	1.5	章の構成	4
2	コン	ノフィギュレーションとタスク関数	4
	2.1	瞬時コンフィギュレーションと瞬時タスク関数	4
	2.2	軌道コンフィギュレーションと軌道タスク関数	22
3	勾配	己を用いた制約付き非線形最適化	29
	3.1	逐次二次計画法	29
	3.2	複数解候補を用いた逐次二次計画法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
		3.2.1 複数解候補を用いた逐次二次計画法の理論	30
		3.2.2 複数解候補を用いた逐次二次計画法の実装	35
4	動作	F生成の拡張	35
	4.1	マニピュレーションの動作生成	35
	4.2	B スプラインを用いた関節軌道生成	46
		$4.2.1$ B スプラインを用いた関節軌道生成の理論 \dots	46
		4.2.2 B スプラインを用いた関節軌道生成の実装	55
	4.3	B スプラインを用いた動的動作の生成	67
	4.4	離散的な幾何目標に対する逆運動学計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
		4.4.1 離散的な幾何目標に対する逆運動学計算の理論	96
		4.4.2 離散的な幾何目標に対する逆運動学計算の実装	98

5	補足			
	5.1	既存のロボット基礎クラスの拡張	99	
	5.2	環境と接触するロボットの関節・リンク構造	102	
	5.3	irteus σ inverse-kinematics 互換関数	104	
	5.4	関節トルク勾配の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109	

軌道最適化による動作生成の基礎

タスク関数のノルムを最小にするコンフィギュレーションの探索

 $oldsymbol{q} \in \mathbb{R}^{n_q}$ を設計対象のコンフィギュレーションとする.例えば一般の逆運動学計算では, $oldsymbol{q}$ はある瞬間のロ ボットの関節角度を表すベクトルで,コンフィギュレーションの次元 n_q はロボットの関節自由度数となる.

動作生成問題を,所望のタスクに対応するタスク関数 $e(q):\mathbb{R}^{n_q} o\mathbb{R}^{n_e}$ について,次式を満たす q を得る こととして定義する.

$$e(q) = 0 \tag{1.1}$$

例えば一般の逆運動学計算では,e(q) はエンドエフェクタの目標位置姿勢と現在位置姿勢の差を表す 6 次元 ベクトルである.非線形方程式(1.1)の解を解析的に得ることは難しく,反復計算による数値解法が採られる. 式 (1.1) が解をもたないときでも最善のコンフィギュレーションを得られるように一般化すると,式 (1.1) の 求解は次の最適化問題として表される1.

$$\min_{\mathbf{q}} F(\mathbf{q}) \tag{1.2a}$$

where
$$F(\boldsymbol{q}) \stackrel{\text{def}}{=} \frac{1}{2} \|\boldsymbol{e}(\boldsymbol{q})\|^2$$
 (1.2b)

コンフィギュレーションが最小値 q_{min} と最大値 q_{max} の間に含まれる必要があるとき,逆運動学計算は次の制 約付き非線形最適化問題として表される.

$$\min_{\boldsymbol{q}} \ F(\boldsymbol{q}) \quad \text{s.t.} \ \boldsymbol{q}_{min} \leq \boldsymbol{q} \leq \boldsymbol{q}_{max} \tag{1.3} \label{eq:1.3}$$

例えば一般の逆運動学計算では, q_{min},q_{max} は関節角度の許容範囲の最小値,最大値を表す.以降では,式 (1.3) の 制約を,より一般の形式である線形等式制約,線形不等式制約として次式のように表す2.

$$\min_{\mathbf{q}} F(\mathbf{q}) \tag{1.4a}$$

s.t.
$$\mathbf{A}\mathbf{q} = \overline{\mathbf{b}}$$
 (1.4b)

$$Cq \ge \bar{d}$$
 (1.4c)

制約付き非線形最適化問題の解法のひとつである逐次二次計画法では,次の二次計画問題の最適解として得 られる Δq_k^* を用いて, $q_{k+1}=q_k+\Delta q_k^*$ として反復更新することで,式 (1.4) の最適解を導出する 3 .

$$\min_{\Delta \boldsymbol{q}_k} F(\boldsymbol{q}_k) + \nabla F(\boldsymbol{q}_k)^T \Delta \boldsymbol{q}_k + \frac{1}{2} \Delta \boldsymbol{q}_k^T \nabla^2 F(\boldsymbol{q}_k) \Delta \boldsymbol{q}_k$$
 (1.5a)

s.t.
$$\mathbf{A}\Delta \mathbf{q}_k = \mathbf{\bar{b}} - \mathbf{A}\mathbf{q}_k$$
 (1.5b)

$$C\Delta q_k \ge \bar{d} - Cq_k \tag{1.5c}$$

$$egin{aligned} oldsymbol{q}_{min} &\leq oldsymbol{q} \leq oldsymbol{q}_{max} \ &\Leftrightarrow & egin{pmatrix} oldsymbol{I} \ -oldsymbol{I} \end{pmatrix} oldsymbol{q} \geq egin{pmatrix} oldsymbol{q}_{min} \ -oldsymbol{q}_{max} \end{pmatrix}$$

 $^{^1}$ 任意の半正定値行列 $m{W}$ に対して, $\|m{e}(m{q})\|_{m{W}}^2 = m{e}(m{q})^Tm{W}m{e}(m{q}) = m{e}(m{q})^Tm{S}^Tm{S}m{e}(m{q}) = \|m{S}m{e}(m{q})\|^2$ を満たす $m{S}$ が必ず存在するので, 式 (1.2b) は任意の重み付きノルムを表現可能である . 2 ギ 2 にもはる思想を

式 (1.3) における関節角度の最小値,最大値に関する制約は次式のように表される.

 $^{^3}$ 式 $(1.5\mathrm{a})$ は $F(oldsymbol{q})$ を $oldsymbol{q}_k$ の周りでテーラー展開し三次以下の項を省略したものに一致する.逐次二次計画法については,以下の書籍 の 18 章で詳しく説明されている.

Numerical optimization, S. Wright and J. Nocedal, Springer Science, vol. 35, 1999, http://www.xn--vjq503akpco3w.top/ $\label{limit} {\tt literature/Nocedal_Wright_Numerical_optimization_v2.pdf}.$

 $abla F(m{q}_k),
abla^2 F(m{q}_k)$ はそれぞれ, $F(m{q}_k)$ の勾配,ヘッセ行列 4 で,次式で表される.

$$\nabla F(\mathbf{q}) = \left(\frac{\partial e(\mathbf{q})}{\partial \mathbf{q}}\right)^T e(\mathbf{q})$$
 (1.6a)

$$= J(q)^T e(q) \tag{1.6b}$$

$$\nabla^2 F(\mathbf{q}) = \sum_{i=1}^m e_i(\mathbf{q}) \nabla^2 e_i(\mathbf{q}) + \left(\frac{\partial e(\mathbf{q})}{\partial \mathbf{q}}\right)^T \frac{\partial e(\mathbf{q})}{\partial \mathbf{q}}$$
(1.6c)

$$\approx \left(\frac{\partial \boldsymbol{e}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^T \frac{\partial \boldsymbol{e}(\boldsymbol{q})}{\partial \boldsymbol{q}} \tag{1.6d}$$

$$= J(q)^T J(q) \tag{1.6e}$$

ただし, $e_i(q)$ $(i=1,2,\cdots,m)$ は e(q) の i 番目の要素である.式 (1.6c) から式 (1.6d) への変形では e(q) の 二階微分がゼロであると近似している. $J(q)\stackrel{\mathrm{def}}{=} \frac{\partial e(q)}{\partial q} \in \mathbb{R}^{n_e \times n_q}$ は e(q) のヤコビ行列である.

式 (1.6a),式 (1.6d)から式 (1.5a)の目的関数は次式で表される 5 .

$$\frac{1}{2}\boldsymbol{e}_{k}^{T}\boldsymbol{e}_{k} + \boldsymbol{e}_{k}^{T}\boldsymbol{J}_{k}\Delta\boldsymbol{q}_{k} + \frac{1}{2}\Delta\boldsymbol{q}_{k}^{T}\boldsymbol{J}_{k}^{T}\boldsymbol{J}_{k}\Delta\boldsymbol{q}_{k}$$

$$(1.7a)$$

$$= \frac{1}{2} \|\boldsymbol{e}_k + \boldsymbol{J}_k \Delta \boldsymbol{q}_k\|^2 \tag{1.7b}$$

ただし, $e_k \stackrel{\mathrm{def}}{=} e(q_k), J_k \stackrel{\mathrm{def}}{=} J(q_k)$ とした.

結局,逐次二次計画法で反復的に解かれる二次計画問題(1.5)は次式で表される.

$$\min_{\Delta \boldsymbol{q}_k} \frac{1}{2} \Delta \boldsymbol{q}_k^T \boldsymbol{J}_k^T \boldsymbol{J}_k \Delta \boldsymbol{q}_k + \boldsymbol{e}_k^T \boldsymbol{J}_k \Delta \boldsymbol{q}_k$$
 (1.8a)

s.t.
$$\mathbf{A}\Delta \mathbf{q}_k = \mathbf{b}$$
 (1.8b)

$$C\Delta q_k \ge d$$
 (1.8c)

ここで,

$$\boldsymbol{b} = \bar{\boldsymbol{b}} - \boldsymbol{A}\boldsymbol{q}_k \tag{1.9}$$

$$\boldsymbol{d} = \bar{\boldsymbol{d}} - \boldsymbol{C} \boldsymbol{q}_k \tag{1.10}$$

とおいた.

1.2 コンフィギュレーション二次形式の正則化項の追加

式 (1.2a) の最適化問題の目的関数を , 次式の $\hat{F}(oldsymbol{q})$ で置き換える .

$$\hat{F}(\mathbf{q}) = F(\mathbf{q}) + F_{reg}(\mathbf{q}) \tag{1.11}$$

where
$$F_{reg}(\mathbf{q}) = \frac{1}{2} \mathbf{q}^T \bar{\mathbf{W}}_{reg} \mathbf{q}$$
 (1.12)

目的関数 $\hat{F}(q)$ の勾配, ヘッセ行列は次式で表される.

$$\nabla \hat{F}(\mathbf{q}) = \nabla F(\mathbf{q}) + \nabla F_{reg}(\mathbf{q}) \tag{1.13a}$$

$$= J(q)^T e(q) + \bar{W}_{req} q \tag{1.13b}$$

$$\nabla^2 \hat{F}(\mathbf{q}) = \nabla^2 F(\mathbf{q}) + \nabla^2 F_{reg}(\mathbf{q}) \tag{1.13c}$$

$$\approx J(q)^T J(q) + \bar{W}_{reg}$$
 (1.13d)

Feasible pattern generation method for humanoid robots, F. Kanehiro et al., Proceedings of the 2009 IEEE-RAS International Conference on Humanoid Robots, pp. 542-548, 2009.

 $^{^4}$ 式($(1.5\mathrm{a})$ の $\nabla^2 F(q_k)$ の部分は一般にはラグランジュ関数の q_k に関するヘッセ行列であるが,等式・不等式制約が線形の場合は $F(q_k)$ のヘッセ行列と等価になる.

 $^{^{5}}$ 式 (1.7b) は,以下の論文で紹介されている二次計画法によってコンフィギュレーション速度を導出する逆運動学解法における目的関数と一致する.

したがって,式(1.8)の二次計画問題は次式で表される.

$$\min_{\Delta \boldsymbol{q}_{k}} \frac{1}{2} \Delta \boldsymbol{q}_{k}^{T} \left(\boldsymbol{J}_{k}^{T} \boldsymbol{J}_{k} + \bar{\boldsymbol{W}}_{reg} \right) \Delta \boldsymbol{q}_{k} + \left(\boldsymbol{J}_{k}^{T} \boldsymbol{e}_{k} + \bar{\boldsymbol{W}}_{reg} \boldsymbol{q}_{k} \right)^{T} \Delta \boldsymbol{q}_{k}$$
(1.14a)

s.t.
$$\mathbf{A}\Delta \mathbf{q}_k = \mathbf{b}$$
 (1.14b)

$$C\Delta q_k \ge d$$
 (1.14c)

コンフィギュレーション更新量の正則項の追加 1.3

Gauss-Newton 法と Levenberg-Marquardt 法の比較を参考に,式 (1.14a) の二次形式項の行列に,次式のよ うに微小な係数をかけた単位行列を加えると,一部の適用例について逐次二次計画法の収束性が改善された6.

$$\min_{\Delta \boldsymbol{q}_{k}} \frac{1}{2} \Delta \boldsymbol{q}_{k}^{T} \left(\boldsymbol{J}_{k}^{T} \boldsymbol{J}_{k} + \bar{\boldsymbol{W}}_{reg} + \lambda \boldsymbol{I} \right) \Delta \boldsymbol{q}_{k} + \left(\boldsymbol{J}_{k}^{T} \boldsymbol{e}_{k} + \bar{\boldsymbol{W}}_{reg} \boldsymbol{q}_{k} \right)^{T} \Delta \boldsymbol{q}_{k}$$
(1.15a)

s.t.
$$\mathbf{A}\Delta \mathbf{q}_k = \mathbf{b}$$
 (1.15b)

$$C\Delta q_k \ge d$$
 (1.15c)

改良誤差減衰最小二乗法 7 を参考にすると $,\lambda$ は次式のように決定される.

$$\lambda = \lambda_r F(\boldsymbol{q}_k) + w_r \tag{1.16}$$

 λ_r と w_r は正の定数である.

1.4 ソースコードと数式の対応

$$\mathbf{v}_{reg} \stackrel{\text{def}}{=} \bar{\mathbf{W}}_{reg} \mathbf{q}_k$$
 (1.17b)

とすると,式(1.15)は次式で表される.

$$\min_{\Delta \boldsymbol{q}_{k}} \frac{1}{2} \Delta \boldsymbol{q}_{k}^{T} \left(\boldsymbol{J}_{k}^{T} \boldsymbol{J}_{k} + \boldsymbol{W} \right) \Delta \boldsymbol{q}_{k} + \left(\boldsymbol{J}_{k}^{T} \boldsymbol{e}_{k} + \boldsymbol{v}_{reg} \right)^{T} \Delta \boldsymbol{q}_{k}$$
(1.18a)

s.t.
$$\mathbf{A}\Delta \mathbf{q}_k = \mathbf{b}$$
 (1.18b)

$$C\Delta q_k \ge d$$
 (1.18c)

第 2 節や第 4 章で説明する ***-configuration-task クラスのメソッドは式 (1.18) 中の記号と以下のように対 応している.

: config-vectorget q:set-config set q: task-valueget e(q)get $J(q) \stackrel{\text{def}}{=} \frac{\partial e(q)}{\partial q}$: task-jacobian: config-equality-constraint-matrixget \boldsymbol{A} : config-equality-constraint-vectorget \boldsymbol{b} get C: config-inequality-constraint-matrix: config-inequality-constraint-vectorget d:regular-matrix get W_{rea} :regular-vector get \boldsymbol{v}_{req}

 $^{^6}$ これは,最適化における信頼領域 $({
m trust\ region})$ に関連している.

⁷ Levenberg-Marquardt 法による可解性を問わない逆運動学, 杉原 知道, 日本ロボット学会誌, vol. 29, no. 3, pp. 269-277, 2011.

1.5 章の構成

第 2 章では,コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $J(q)\stackrel{\mathrm{def}}{=} \frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのクラスを説明する.第 2.1 節ではコンフィギュレーション q が瞬時の情報,第 2.2 節ではコンフィギュレーション q が時系列の情報を表す場合をそれぞれ説明する.

第3章では,第2章で説明されるクラスを用いて逐次二次計画法により最適化を行うためのクラスを説明する.

第4章では,用途に応じて拡張されたコンフィギュレーションとタスク関数のクラスを説明する.第4.1節では,マニピュレーションのために,ロボットに加えて物体のコンフィギュレーションを計画する場合を説明する.第4.2節では,ロボットの関節位置の軌道をBスプライン関数でパラメトリックに表現する場合を説明する.いずれにおいても,最適化では第3章で説明された逐次二次計画法のクラスが利用される.

第 5 章では,その他の補足事項を説明する.第 5.1 節では,jskeus で定義されているクラスの拡張について説明する.第 5.2 節では,環境との接触を有するロボットの問題設定を記述するためのクラスについて説明する.第 5.4 節では,関節トルクを関節角度で微分したヤコビ行列を導出するための関数について説明する.

2 コンフィギュレーションとタスク関数

2.1 瞬時コンフィギュレーションと瞬時タスク関数

instant-configuration-task

[class]

```
:super
               propertied-object
               (_robot-env robot-environment instance)
:slots
               (_theta-vector \boldsymbol{\theta} [rad] [m])
               (_wrench-vector \hat{\boldsymbol{w}} [N] [Nm])
               (\_torque-vector \boldsymbol{\tau} [Nm])
               (_phi-vector \phi [rad] [m])
               (\text{_-num-kin } N_{kin} := |\mathcal{T}^{kin\text{-}trg}| = |\mathcal{T}^{kin\text{-}att}|)
               (_num-contact N_{cnt} := |\mathcal{T}^{cnt-trg}| = |\mathcal{T}^{cnt-att}|)
               (_num-variant-joint N_{var-joint} := |\mathcal{J}_{var}|)
               (_num-invariant-joint N_{invar-joint} := |\mathcal{J}_{invar}|)
               (_num-drive-joint N_{drive-joint} := |\mathcal{J}_{drive}|)
               (_num-posture-joint N_{posture-joint} := |\mathcal{J}_{posture}|)
               (_num-external N_{ex} := \text{number of external wrenches})
               (_num-collision N_{col} := \text{number of collision check pairs})
               (_dim-theta dim(\boldsymbol{\theta}) = N_{var-joint})
               (_dim-wrench dim(\hat{\boldsymbol{w}}) = 6N_{cnt})
               (_dim-torque dim(\tau) = N_{drive-joint})
               (_dim-phi dim(\phi) = N_{invar-joint})
               (_dim-variant-config dim(\mathbf{q}_{var}))
               (_dim-invariant-config dim(\mathbf{q}_{invar}))
               (_dim-config dim(\mathbf{q}))
               (\_dim-task \ dim(e))
               (\underline{\text{kin-scale-mat-list }} K_{kin})
```

 $(\text{_target-posture-scale-list } k_{posture})$

```
(_norm-regular-scale-max k_{max})
(\_norm-regular-scale-coeff k_{coeff})
(\_norm-regular-scale-offset k_{off})
(\_torque-regular-scale k_{trg})
(_wrench-maximize-scale k_{w-max})
(_variant-joint-list \mathcal{J}_{var})
(_invariant-joint-list \mathcal{J}_{invar})
(_drive-joint-list \mathcal{J}_{drive})
(_kin-target-coords-list \mathcal{T}^{kin-trg})
(_kin-attention-coords-list \mathcal{T}^{kin-att})
(_contact-target-coords-list \mathcal{T}^{cnt-trg})
(_contact-attention-coords-list \mathcal{T}^{cnt-att})
(_variant-joint-angle-margin margin of \theta [deg] [mm])
(_invariant-joint-angle-margin margin of \phi [deg] [mm])
(_delta-linear-joint trust region of linear joint configuration [mm])
(_delta-rotational-joint trust region of rotational joint configuration [deg])
(_contact-constraint-list list of contact-constraint instance)
(_posture-joint-list \mathcal{J}_{posture})
(_posture-joint-angle-list \bar{\boldsymbol{\theta}}^{trg})
(_external-wrench-list \{\boldsymbol{w}_1^{ex}, \boldsymbol{w}_2^{ex}, \cdots, \boldsymbol{w}_{N--}^{ex}\})
(_external-coords-list \{T_1^{ex}, T_2^{ex}, \cdots, T_{N_{ex}}^{ex}\})
(_wrench-maximize-direction-list \{m{d}_1^{w\text{-}max}, m{d}_2^{w\text{-}max}, \cdots, m{d}_{N_{cnt}}^{w\text{-}max}\})
(_collision-pair-list list of bodyset-link or body pair)
(_collision-distance-margin-list list of collision distance margin)
(_only-kinematics? whether to consider only kinematics or not)
(_variant-task-jacobi buffer for \frac{\partial e}{\partial q_{var}})
(_invariant-task-jacobi buffer for \frac{\partial e}{\partial q_{invar}})
(_task-jacobi buffer for \frac{\partial \mathbf{e}}{\partial \mathbf{q}})
(_collision-theta-inequality-constraint-matrix buffer for C_{col,\theta})
(_collision-phi-inequality-constraint-matrix buffer for oldsymbol{C}_{col.\phi})
(_collision-inequality-constraint-vector buffer for C_{col})
```

瞬時コンフィギュレーション $oldsymbol{g}^{(l)}$ と瞬時タスク関数 $oldsymbol{e}^{(l)}(oldsymbol{g}^{(l)})$ のクラス .

このクラスの説明で用いる全ての変数は , 時間ステップ l を表す添字をつけて $x^{(l)}$ と表されるべきだが , このクラス内の説明では省略して x と表す . また , 以降では , 説明文やメソッド名で , "瞬時" や "instant" を省略する .

コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $\frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのメソッドが定義されている.コンフィギュレーション・タスク関数を定めるために,初期化時に以下を与える

● ロボット・環境

```
robot-environment ロボット・環境を表す robot-environment クラスのインスタンス variant-joint-list \mathcal{J}_{var} 時変関節 invariant-joint-list \mathcal{J}_{invar} 時不変関節 (与えなければ時不変関節は考慮されない) drive-joint-list \mathcal{J}_{drive} 駆動関節 (与えなければ関節駆動トルクは考慮されない)
```

• 幾何拘束

kin-target-coords-list $\mathcal{T}^{kin-trg}$ 幾何到達目標位置姿勢リスト kin-attention-coords-list $\mathcal{T}^{kin-att}$ 幾何到達着目位置姿勢リスト kin-scale-mat-list K_{kin} 幾何拘束の座標系,重みを表す変換行列のリスト

• 接触拘束

contact-target-coords-list $\mathcal{T}^{cnt-trg}$ 接触目標位置姿勢リスト contact-attention-coords-list $\mathcal{T}^{cnt-att}$ 接触着目位置姿勢リスト contact-constraint-list 接触レンチ制約リスト

- コンフィギュレーション拘束 (必要な場合のみ)
 posture-joint-list J_{posture} 着目関節リスト
 posture-joint-angle-list ē^{trg} 着目関節の目標関節角
 target-posture-scale k_{posture} コンフィギュレーション拘束の重み
- 干渉回避拘束 (必要な場合のみ)
 collision-pair-list 干渉回避する bodyset-link もしくは body のペアのリスト
 collision-distance-margin 干渉回避の距離マージン (全てのペアで同じ値の場合)
 collision-distance-margin-list 干渉回避の距離マージンのリスト (ペアごとに異なる値の場合)
- 外レンチ (必要な場合のみ)
 external-wrench-list 外レンチのリスト (ワールド座標系で表す)
 external-coords-list 外レンチの作用点座標のリスト (位置のみを使用)
- 接触力最大化 (必要な場合のみ)wrench-maximize-direction-list 接触レンチ最大化方向 (ワールド座標系で表す)
- 目的関数の重み

norm-regular-scale-max k_{max} コンフィギュレーション更新量正則化の重み最大値 norm-regular-scale-coeff k_{coeff} コンフィギュレーション更新量正則化の係数 norm-regular-scale-offset k_{off} コンフィギュレーション更新量正則化の重みオフセット torque-regular-scale k_{trq} トルク正則化の重み wrench-maximize-scale k_{w-max} 接触レンチ最大化の重み

コンフィギュレーション q は以下から構成される.

$$\boldsymbol{q} := \begin{pmatrix} \boldsymbol{\theta}^T & \hat{\boldsymbol{w}}^T & \boldsymbol{\tau}^T & \boldsymbol{\phi}^T \end{pmatrix}^T \tag{2.1}$$

 $oldsymbol{ heta} \in \mathbb{R}^{N_{var-joint}}$ 時変関節角度 $[\mathrm{rad}]$ $[\mathrm{m}]$

 $\hat{\boldsymbol{w}} \in \mathbb{R}^{6N_{cnt}}$ 接触レンチ [N] [Nm]

 $au \in \mathbb{R}^{N_{drive-joint}}$ 関節駆動トルク $[\mathrm{Nm}]$ $[\mathrm{N}]$

 $\phi \in \mathbb{R}^{N_{invar-joint}}$ 時不変関節角度 $[\mathrm{rad}]$ $[\mathrm{m}]$

 \hat{w} は次式のように,全接触部位でのワールド座標系での力・モーメントを並べたベクトルである.

$$\hat{\boldsymbol{w}} = \begin{pmatrix} \boldsymbol{w}_1^T & \boldsymbol{w}_2^T & \cdots & \boldsymbol{w}_{N_{cnt}}^T \end{pmatrix}^T$$
(2.2)

$$= \begin{pmatrix} \boldsymbol{f}_1^T & \boldsymbol{n}_1^T & \boldsymbol{f}_2^T & \boldsymbol{n}_2^T & \cdots & \boldsymbol{f}_{N_{cnt}}^T & \boldsymbol{n}_{N_{cnt}}^T \end{pmatrix}^T$$
(2.3)

タスク関数 e(q) は以下から構成される.

$$e(q) := \begin{pmatrix} e^{kinT}(q) & e^{eom\text{-}transT}(q) & e^{eom\text{-}rotT}(q) & e^{trqT}(q) & e^{postureT}(q) \end{pmatrix}^{T}$$
(2.4)

[method]

[method]

```
e^{trq}(oldsymbol{q}) \in \mathbb{R}^{N_{drive\text{-}joint}} 関節トルクの釣り合い [\mathrm{rad}] [\mathrm{m}]
                   e^{posture}(q) \in \mathbb{R}^{N_{posture-joint}} 関節角目標 [rad] [m]
:init &key (name)
                                                                                                                     [method]
              (robot-env)
              (variant-joint-list (send robot-env :variant-joint-list))
              (invariant-joint-list (send robot-env:invariant-joint-list))
              (drive\mbox{-}joint\mbox{-}list\ (send\ robot\mbox{-}env\ :drive\mbox{-}joint\mbox{-}list))
              (only-kinematics?)
              (kin-target-coords-list)
              (kin-attention-coords-list)
              (contact-target-coords-list)
              (contact-attention-coords-list)
              (variant-joint-angle-margin 3.0)
              (invariant-joint-angle-margin 3.0)
              (delta-linear-joint)
              (delta-rotational-joint)
              (contact-constraint-list (send-all contact-attention-coords-list :get :contact-constraint))
              (posture-joint-list)
              (posture-joint-angle-list)
              (external-wrench-list)
              (external-coords-list)
              (wrench-maximize-direction-list)
              (collision\mbox{-}pair\mbox{-}list)
              (collision-distance-margin 0.01)
              (collision-distance-margin-list)
              (kin-scale 1.0)
              (kin-scale-list)
              (kin\text{-}scale\text{-}mat\text{-}list)
              (target-posture-scale 0.001)
              (target	ext{-}posture	ext{-}scale	ext{-}list)
              (norm-regular-scale-max (if only-kinematics? 0.001 1.000000e-05))
              (norm-regular-scale-coeff 1.0)
              (norm-regular-scale-offset 1.000000e-07)
              (torque-regular-scale 1.000000e-04)
              (wrench-maximize-scale 0)
              &allow-other-keys
      Initialize instance
```

 $e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$ 幾何到達拘束 [rad] [m]

 $e^{eom\text{-}rot}(q) \in \mathbb{R}^3$ モーメントの釣り合い [Nm]

 $e^{eom\text{-}trans}(q) \in \mathbb{R}^3$ 力の釣り合い [N]

:robot-env

:variant-joint-list

return robot-environment instance

return \mathcal{J}_{var}

:invariant-joint-list [method]

return \mathcal{J}_{invar}

:drive-joint-list [method]

return \mathcal{J}_{drive}

:only-kinematics?

return whether to consider only kinematics or not

:theta [method]

return $\boldsymbol{\theta}$

:wrench [method]

return $\hat{m{w}}$

:torque [method]

return $\boldsymbol{\tau}$

:phi [method]

return ϕ

:num-kin [method]

return $N_{kin} := |\mathcal{T}^{kin\text{-}trg}| = |\mathcal{T}^{kin\text{-}att}|$

 $: \mathbf{num\text{-}contact} \\ [\mathbf{method}]$

return $N_{cnt} := |\mathcal{T}^{cnt\text{-}trg}| = |\mathcal{T}^{cnt\text{-}att}|$

:num-variant-joint [method]

return $N_{var-joint} := |\mathcal{J}_{var}|$

 $: num-invariant-joint \\ [method]$

return $N_{invar-joint} := |\mathcal{J}_{invar}|$

:num-drive-joint [method]

return $N_{drive-joint} := |\mathcal{J}_{drive}|$

:num-posture-joint [method]

return $N_{target\text{-}joint} := |\mathcal{J}_{target}|$

:num-external [method]

return $N_{ex} :=$ number of external wrench

:num-collision [method]

return $N_{col} :=$ number of collision check pairs

:dim-variant-config [method]

 $dim(\mathbf{q}_{var}) := dim(\boldsymbol{\theta}) + dim(\hat{\boldsymbol{w}}) + dim(\boldsymbol{\tau})$ (2.5)

 $= N_{var-joint} + 6N_{cnt} + N_{drive-joint}$ (2.6)

return $dim(q_{var})$

[method]

return $dim(q_{invar}) := dim(\phi) = N_{invar-joint}$

:dim-config

[method]

return
$$dim(\mathbf{q}) := dim(\mathbf{q_{var}}) + dim(\mathbf{q_{invar}})$$

:dim-task

[method]

$$dim(\mathbf{e}) := dim(\mathbf{e}^{kin}) + dim(\mathbf{e}^{eom-trans}) + dim(\mathbf{e}^{eom-rot}) + dim(\mathbf{e}^{trq}) + dim(\mathbf{e}^{posture})$$
(2.7)
$$= 6N_{kin} + 3 + 3 + N_{drive-joint} + N_{posture-joint}$$
(2.8)

return dim(e)

:variant-config-vector

[method]

$$ext{return } oldsymbol{q}_{var} := egin{pmatrix} oldsymbol{ heta} \ \hat{oldsymbol{w}} \ oldsymbol{ au} \end{pmatrix}$$

:invariant-config-vector

[method]

return $q_{invar} := \phi$

 $: \! \mathbf{config\text{-}vector}$

[method]

$$ext{return } oldsymbol{q} := egin{pmatrix} oldsymbol{q_{var}} \ oldsymbol{q_{invar}} \end{pmatrix} = egin{pmatrix} oldsymbol{ heta} \ \hat{oldsymbol{w}} \ oldsymbol{ au} \ oldsymbol{\phi} \end{pmatrix}$$

 $\textbf{:set-theta} \ \textit{theta-new \&key (relative? nil)}\\$

[method]

(apply-to-robot? t)

Set $\boldsymbol{\theta}$.

:set-wrench wrench-new &key (relative? nil)

[method]

Set $\hat{\boldsymbol{w}}$.

:set-torque torque-new &key (relative? nil)

[method]

Set τ

:set-phi phi-new &key (relative? nil)

[method]

(apply-to-robot? t)

Set ϕ .

 $\textbf{:set-variant-config-} \textit{new \mathfrak{C} key $(\textit{relative? nil})$}$

[method]

(apply-to-robot? t)

Set q_{var} .

 $\textbf{:set-invariant-config} \ \textit{invariant-config-new} \ \mathscr{C}\textit{key} \ \ (\textit{relative?} \ \textit{nil})$

[method]

(apply-to-robot? t)

Set q_{invar} .

 $\textbf{:set-config} \ \textit{config-new} \ \textit{\&key} \ \ \textit{(relative?} \ \textit{nil)}$

[method]

(apply-to-robot? t)

Set q.

: kin-target-coords-list

[method]

$$T_m^{kin-trg} = \{ \boldsymbol{p}_m^{kin-trg}, \boldsymbol{R}_m^{kin-trg} \} \quad (m = 1, 2, \cdots, N_{kin})$$
 (2.9)

return $\mathcal{T}^{kin\text{-}trg} := \{T_1^{kin\text{-}trg}, T_2^{kin\text{-}trg}, \cdots, T_{N_{kin}}^{kin\text{-}trg}\}$

:kin-attention-coords-list

[method]

$$T_m^{kin-att} = \{ \boldsymbol{p}_m^{kin-att}, \boldsymbol{R}_m^{kin-att} \} \quad (m = 1, 2, \dots, N_{kin})$$
 (2.10)

return $\mathcal{T}^{kin\text{-}att} := \{T_1^{kin\text{-}att}, T_2^{kin\text{-}att}, \cdots, T_{N_{kin}}^{kin\text{-}att}\}$

: contact-target-coords-list

[method]

$$T_m^{cnt-trg} = \{ \boldsymbol{p}_m^{cnt-trg}, \boldsymbol{R}_m^{cnt-trg} \} \quad (m = 1, 2, \cdots, N_{cnt})$$
 (2.11)

return $\mathcal{T}^{cnt\text{-}trg} := \{T_1^{cnt\text{-}trg}, T_2^{cnt\text{-}trg}, \cdots, T_{N_{cnt}}^{cnt\text{-}trg}\}$

: contact-attention-coords-list

[method]

$$T_m^{cnt-att} = \{ \boldsymbol{p}_m^{cnt-att}, \boldsymbol{R}_m^{cnt-att} \} \quad (m = 1, 2, \dots, N_{cnt})$$
 (2.12)

return $\mathcal{T}^{cnt\text{-}att} := \{T_1^{cnt\text{-}att}, T_2^{cnt\text{-}att}, \cdots, T_{N_{cnt}}^{cnt\text{-}att}\}$

:contact-constraint-list

[method]

 ${\it return\ list\ of\ contact-constraint\ instance}$

:wrench-list

[method]

return
$$\{\boldsymbol{w}_1, \boldsymbol{w}_2, \cdots, \boldsymbol{w}_{N_{cnt}}\}$$

[method]

return
$$\{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_{N_{cnt}}\}$$

:moment-list

[method]

$$\text{return } \{\boldsymbol{n}_1,\boldsymbol{n}_2,\cdots,\boldsymbol{n}_{N_{cnt}}\}$$

:external-wrench-list &optional (new-external-wrench-list:nil)

[method]

set / get
$$\{\boldsymbol{w}_1^{ex},\boldsymbol{w}_2^{ex},\cdots,\boldsymbol{w}_{N_{ex}}^{ex}\}$$

 $: external \hbox{-} force \hbox{-} list$

[method]

return
$$\{\boldsymbol{f}_1^{ex}, \boldsymbol{f}_2^{ex}, \cdots, \boldsymbol{f}_{N_{ex}}^{ex}\}$$

:external-moment-list

[method]

return
$$\{oldsymbol{n}_1^{ex}, oldsymbol{n}_2^{ex}, \cdots, oldsymbol{n}_{N_{ex}}^{ex}\}$$

:mg-vec

[method]

return $m\boldsymbol{g}$

:cog &key (update? t)

return $p_G(q)$

:kinematics-task-value &key (update? t)

[method]

$$e^{kin}(q) = e^{kin}(\theta, \phi) \tag{2.13}$$

$$= \begin{pmatrix} e_1^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ e_2^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \vdots \\ e_{N_{kin}}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \end{pmatrix}$$
(2.14)

$$\boldsymbol{e}_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = K_{kin} \begin{pmatrix} \boldsymbol{p}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \boldsymbol{a} \left(\boldsymbol{R}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) \boldsymbol{R}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi})^{T} \right) \end{pmatrix} \in \mathbb{R}^{6} \quad (m = 1, 2, \dots, N_{kin}) \quad (2.15)$$

a(R) は姿勢行列 R の等価角軸ベクトルを表す.

return $e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$

:eom-trans-task-value &key (update? t)

[method]

$$e^{eom\text{-}trans}(q) = e^{eom\text{-}trans}(\hat{\boldsymbol{w}})$$
 (2.16)

$$= \sum_{m=1}^{N_{cnt}} \boldsymbol{f}_m - m\boldsymbol{g} + \sum_{m=1}^{N_{ex}} \boldsymbol{f}_m^{ex}$$
 (2.17)

return $e^{eom\text{-}trans}(q) \in \mathbb{R}^3$

:eom-rot-task-value &key (update? t)

[method]

$$e^{eom\text{-}rot}(\boldsymbol{q}) = e^{eom\text{-}rot}(\boldsymbol{\theta}, \hat{\boldsymbol{w}}, \phi)$$

$$= \sum_{m=1}^{N_{cnt}} \left\{ \left(\boldsymbol{p}_m^{cnt\text{-}trg}(\boldsymbol{\theta}, \phi) - \boldsymbol{p}_G(\boldsymbol{\theta}, \phi) \right) \times \boldsymbol{f}_m + \boldsymbol{n}_m \right\}$$
(2.18)

$$+\sum_{m=1}^{N_{ex}} \left\{ (\boldsymbol{p}_m^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_G(\boldsymbol{\theta}, \boldsymbol{\phi})) \times \boldsymbol{f}_m^{ex} + \boldsymbol{n}_m^{ex} \right\}$$
(2.19)

return $e^{eom\text{-}rot}(q) \in \mathbb{R}^3$

:torque-task-value &key (update? t)

[method]

$$e^{trq}(\mathbf{q}) = e^{trq}(\boldsymbol{\theta}, \hat{\boldsymbol{w}}, \boldsymbol{\tau}, \phi)$$
 (2.20)

$$= \tau + \sum_{m=1}^{N_{cnt}} \tau_m^{cnt}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \tau^{grav}(\boldsymbol{\theta}, \boldsymbol{\phi}) + \sum_{m=1}^{N_{ex}} \tau_m^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
 (2.21)

$$= \quad \boldsymbol{\tau} + \sum_{m=1}^{N_{cnt}} \boldsymbol{J}_{drive\text{-}joint,m}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi})^T \boldsymbol{w}_m - \boldsymbol{\tau}^{grav}(\boldsymbol{\theta}, \boldsymbol{\phi}) + \sum_{m=1}^{N_{ex}} \boldsymbol{J}_{drive\text{-}joint,m}^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi})^T \boldsymbol{w}_m^{ex}(2.22)$$

 $m{ au}_m^{cnt}(m{ heta}, m{\phi})$ は m 番目の接触部位にかかる接触レンチ $m{w}_m$ による関節トルク , $m{ au}_m^{grav}(m{ heta}, m{\phi})$ は自重による関節トルクを表す .

return $e^{trq}(q) \in \mathbb{R}^{N_{drive-joint}}$

:posture-task-value &key (update? t)

$$e^{posture}(q) = e^{posture}(\theta)$$
 (2.23)
= $k_{posture}(\bar{\theta}^{trg} - \bar{\theta})$ (2.24)

$$= k_{posture} \left(\bar{\boldsymbol{\theta}}^{trg} - \bar{\boldsymbol{\theta}} \right) \tag{2.24}$$

 $ar{m{ heta}}^{trg},ar{m{ heta}}$ は着目関節リスト $\mathcal{J}_{posture}$ の目標関節角と現在の関節角.

return $e^{posture}(q) \in \mathbb{R}^{N_{posture-joint}}$

:task-value &key (update

[method]

$$\operatorname{return} \; oldsymbol{e}(oldsymbol{q}) := egin{pmatrix} e^{kin}(oldsymbol{q}) \ e^{eom-trans}(oldsymbol{q}) \ e^{eom-rot}(oldsymbol{q}) \ e^{trq}(oldsymbol{q}) \ e^{posture}(oldsymbol{q}) \end{pmatrix} = egin{pmatrix} e^{kin}(oldsymbol{ heta}, oldsymbol{\phi}) \ e^{eom-trans}(oldsymbol{\hat{w}}) \ e^{eom-trans}(oldsymbol{\hat{w}}) \ e^{eom-rot}(oldsymbol{ heta}, oldsymbol{\hat{w}}, oldsymbol{\phi}) \ e^{trq}(oldsymbol{ heta}, oldsymbol{\hat{w}}, oldsymbol{ heta}, oldsymbol{\phi}) \ e^{posture}(oldsymbol{ heta}) \end{pmatrix}$$

:kinematics-task-jacobian-with-theta

[method]

$$\frac{\partial e^{kin}}{\partial \theta} = \begin{pmatrix} \frac{\partial e_1^{kin}}{\partial \theta} \\ \frac{\partial e_2^{kin}}{\partial \theta} \\ \vdots \\ \frac{\partial e_{N_{kin}}^{kin}}{\partial \theta} \end{pmatrix}$$
(2.25)

$$\frac{\partial \boldsymbol{e}_{m}^{kin}}{\partial \boldsymbol{\theta}} = K_{kin} \left\{ \boldsymbol{J}_{\theta,m}^{kin\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{\theta,m}^{kin\text{-}att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right\} \quad (m = 1, 2, \dots, N_{kin})$$
(2.26)

return
$$\frac{\partial oldsymbol{e}^{kin}}{\partial oldsymbol{ heta}} \in \mathbb{R}^{6N_{kin} imes N_{var-joint}}$$

:kinematics-task-jacobian-with-phi

[method]

$$\frac{\partial e^{kin}}{\partial \phi} = \begin{pmatrix} \frac{\partial e_{in}^{kin}}{\partial \phi} \\ \frac{\partial e_{in}^{kin}}{\partial \phi} \\ \vdots \\ \frac{\partial e_{N_{kin}}^{kin}}{\partial \phi} \end{pmatrix}$$
(2.27)

$$\frac{\partial \boldsymbol{e}_{m}^{kin}}{\partial \boldsymbol{\phi}} = K_{kin} \left\{ \boldsymbol{J}_{\phi,m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{\phi,m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right\} \quad (m = 1, 2, \cdots, N_{kin})$$
 (2.28)

return
$$\frac{\partial e^{kin}}{\partial \phi} \in \mathbb{R}^{6N_{kin} \times N_{invar-joint}}$$

:eom-trans-task-jacobian-with-wrench

[method]

$$\frac{\partial e^{eom\text{-}trans}}{\partial \hat{w}} = \begin{pmatrix} \frac{\partial e^{eom\text{-}trans}}{\partial f_1} & \frac{\partial e^{eom\text{-}trans}}{\partial n_1} & \cdots & \frac{\partial e^{eom\text{-}trans}}{\partial f_{N_{cnt}}} & \frac{\partial e^{eom\text{-}trans}}{\partial n_{N_{cnt}}} \end{pmatrix}$$

$$= \begin{pmatrix} I_3 \quad O_3 \quad \cdots \quad I_3 \quad O_3 \end{pmatrix} \tag{2.29}$$

return
$$\frac{\partial \boldsymbol{e}^{eom\text{-}trans}}{\partial \boldsymbol{\hat{w}}} \in \mathbb{R}^{3 \times 6N_{cnt}}$$

:eom-rot-task-jacobian-with-theta

$$\frac{\partial e^{eom\text{-}rot}}{\partial \theta} = \sum_{m=1}^{N_{ent}} \left\{ -[\boldsymbol{f}_{m} \times] \left(\boldsymbol{J}_{\theta,m}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{G\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \right\}
+ \sum_{m=1}^{N_{ex}} \left\{ -[\boldsymbol{f}_{m}^{ex} \times] \left(\boldsymbol{J}_{\theta,m}^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{G\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \right\}
= \left[\left(\sum_{m=1}^{N_{ent}} \boldsymbol{f}_{m} + \sum_{m=1}^{N_{ex}} \boldsymbol{f}_{m}^{ex} \right) \times \right] \boldsymbol{J}_{G\theta}(\boldsymbol{\theta}, \boldsymbol{\phi})
- \sum_{m=1}^{N_{ent}} [\boldsymbol{f}_{m} \times] \boldsymbol{J}_{\theta,m}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{ex}} [\boldsymbol{f}_{m}^{ex} \times] \boldsymbol{J}_{\theta,m}^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
(2.32)

 $\sum_{m=1}^{N_{cnt}} m{f}_m + \sum_{m=1}^{N_{ex}} m{f}_m^{ex} = mm{g}$ つまり , eom-trans-task が成立すると仮定すると次式が成り立つ .

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{\theta}} = [m\boldsymbol{g} \times] \boldsymbol{J}_{G\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{cnt}} [\boldsymbol{f}_m \times] \boldsymbol{J}_{\theta, m}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{ex}} [\boldsymbol{f}_m^{ex} \times] \boldsymbol{J}_{\theta, m}^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi}) \quad (2.33)$$

return $\frac{\partial \boldsymbol{e}^{\scriptscriptstyle{eom-rot}}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{3 \times N_{var-joint}}$

:eom-rot-task-jacobian-with-wrench

[method]

$$\frac{\partial e^{eom-rot}}{\partial \hat{\boldsymbol{w}}} = \left(\frac{\partial e^{eom-rot}}{\partial \boldsymbol{f}_{1}} \quad \frac{\partial e^{eom-rot}}{\partial \boldsymbol{n}_{1}} \quad \cdots \quad \frac{\partial e^{eom-rot}}{\partial \boldsymbol{f}_{N_{cnt}}} \quad \frac{\partial e^{eom-rot}}{\partial \boldsymbol{n}_{N_{cnt}}}\right) \qquad (2.34)$$

$$\frac{\partial e^{eom-rot}}{\partial \boldsymbol{f}_{m}} = \left[\left(\boldsymbol{p}_{m}^{cnt-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{G}(\boldsymbol{\theta}, \boldsymbol{\phi})\right) \times\right] \quad (m = 1, 2, \cdots, N_{cnt}) \qquad (2.35)$$

$$\frac{\partial e^{eom-rot}}{\partial \boldsymbol{n}_{m}} = \boldsymbol{I}_{3} \quad (m = 1, 2, \cdots, N_{cnt}) \qquad (2.36)$$

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{f}_{m}} = \left[\left(\boldsymbol{p}_{m}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{G}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \times \right] \quad (m = 1, 2, \cdots, N_{cnt})$$
 (2.35)

$$\frac{\partial \boldsymbol{e}^{com\text{-}rot}}{\partial \boldsymbol{n}_{m}} = \boldsymbol{I}_{3} \quad (m = 1, 2, \cdots, N_{cnt})$$
(2.36)

return $\frac{\partial \boldsymbol{e}^{\scriptscriptstyle{eom-rot}}}{\partial \hat{\boldsymbol{w}}} \in \mathbb{R}^{3 \times 6N_{cnt}}$

:eom-rot-task-jacobian-with-phi

[method]

$$\frac{\partial e^{eom-rot}}{\partial \phi} = \sum_{m=1}^{N_{cnt}} \left\{ -[f_m \times] \left(J_{\phi,m}^{cnt-trg}(\theta, \phi) - J_{G\phi}(\theta, \phi) \right) \right\}
+ \sum_{m=1}^{N_{ex}} \left\{ -[f_m^{ex} \times] \left(J_{\phi,m}^{ex}(\theta, \phi) - J_{G\phi}(\theta, \phi) \right) \right\}$$

$$= \left[\left(\sum_{m=1}^{N_{cnt}} f_m + \sum_{m=1}^{N_{ex}} f_m^{ex} \right) \times \right] J_{G\phi}(\theta, \phi)$$

$$- \sum_{m=1}^{N_{cnt}} [f_m \times] J_{\phi,m}^{cnt-trg}(\theta, \phi) - \sum_{m=1}^{N_{ex}} [f_m^{ex} \times] J_{\phi,m}^{ex}(\theta, \phi)$$
(2.38)

 $\sum_{m=1}^{N_{ent}} m{f}_m + \sum_{m=1}^{N_{ex}} m{f}_m^{ex} = mm{g}$ つまり , eom-trans-task が成立すると仮定すると次式が成り立つ .

$$\frac{\partial e^{eom\text{-}rot}}{\partial \phi} = [mg \times] J_{G\phi}(\theta, \phi) - \sum_{m=1}^{N_{cnt}} [f_m \times] J_{\phi,m}^{cnt\text{-}trg}(\theta, \phi) - \sum_{m=1}^{N_{ex}} [f_m^{ex} \times] J_{\phi,m}^{ex}(\theta, \phi) \quad (2.39)$$

return $\frac{\partial \boldsymbol{e}^{\scriptscriptstyle{eom-rot}}}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{3 \times N_{invar-joint}}$

:torque-task-jacobian-with-theta

$$\frac{\partial e^{trq}}{\partial \theta} = \sum_{m=1}^{N_{cnt}} \frac{\partial \tau_m^{cnt}}{\partial \theta} - \frac{\partial \tau_m^{grav}}{\partial \theta} + \sum_{m=1}^{N_{ex}} \frac{\partial \tau_m^{ex}}{\partial \theta}$$
(2.40)

return $\frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N_{drive-joint} \times N_{var-joint}}$

:torque-task-jacobian-with-wrench

[method]

$$\frac{\partial \boldsymbol{e}^{trq}}{\partial \hat{\boldsymbol{w}}} = \left(\frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{w}_{1}} \quad \frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{w}_{2}} \quad \cdots \quad \frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{w}_{N_{cnt}}} \right)$$

$$\frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{w}_{m}} = \boldsymbol{J}_{drive-joint,m}^{cnt-trg}(\boldsymbol{\theta}, \boldsymbol{\phi})^{T} \quad (m = 1, 2, \cdots, N_{cnt})$$
(2.41)

$$\frac{\partial e^{trq}}{\partial \boldsymbol{w}_m} = \boldsymbol{J}_{drive-joint,m}^{cnt-trg}(\boldsymbol{\theta}, \boldsymbol{\phi})^T \quad (m = 1, 2, \dots, N_{cnt})$$
(2.42)

return $\frac{\partial \boldsymbol{e}^{trq}}{\partial \hat{\boldsymbol{n}}} \in \mathbb{R}^{N_{drive-joint} \times 6N_{cnt}}$

:torque-task-jacobian-with-phi

[method]

$$\frac{\partial e^{trq}}{\partial \phi} = \sum_{m=1}^{N_{ent}} \frac{\partial \tau_m^{ent}}{\partial \phi} - \frac{\partial \tau_m^{grav}}{\partial \phi} + \sum_{m=1}^{N_{ex}} \frac{\partial \tau_m^{ex}}{\partial \phi}$$
(2.43)

return $\frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{N_{drive-joint} \times N_{invar-joint}}$

:torque-task-jacobian-with-torque

[method]

$$\frac{\partial e^{trq}}{\partial \tau} = \boldsymbol{I}_{N_{drive-joint}} \tag{2.44}$$

return $\frac{\partial \boldsymbol{e}^{trq}}{\partial \boldsymbol{\tau}} \in \mathbb{R}^{N_{drive-joint} \times N_{drive-joint}}$

:posture-task-jacobian-with-theta &key (update? nil)

[method]

$$\left(\frac{\partial e^{posture}}{\partial \boldsymbol{\theta}}\right)_{i,j} = \begin{cases}
-k_{posture} & (\mathcal{J}_{posture,i} = \mathcal{J}_{var,j}) \\
0 & \text{otherwise}
\end{cases}$$
(2.45)

return $\frac{\partial \boldsymbol{e}^{posture}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N_{posture-joint} \times N_{var-joint}}$

:variant-task-jacobian

[method]

return $\frac{\partial e}{\partial q_{var}} \in \mathbb{R}^{(6N_{kin}+3+3+N_{drive-joint}+N_{posture-joint})\times(N_{var-joint}+6N_{cnt}+N_{drive-joint})}$

:invariant-task-jacobian

$$\frac{\partial e}{\partial q_{invar}} = 3$$

$$\frac{\partial e}{\partial q_{invar}} = 3$$

$$\frac{N_{invar-joint}}{3}$$

$$\frac{\partial e^{kin}}{\partial \phi}$$

$$\frac{\partial e^{eom-rot}}{\partial \phi}$$

$$\frac{\partial e^{eom-rot}}{\partial \phi}$$

$$\frac{\partial e^{eom-rot}}{\partial \phi}$$

$$\frac{\partial e^{trq}}{\partial \phi}$$

return $\frac{\partial e}{\partial q_{invar}} \in \mathbb{R}^{(6N_{kin}+3+3+N_{drive-joint}+N_{posture-joint}) \times N_{invar-joint}}$

 $: task-jacobian \\ [method]$

$$\frac{\partial e}{\partial q} = \begin{pmatrix} \frac{\partial e}{\partial q_{var}} & \frac{\partial e}{\partial q_{invar}} \end{pmatrix} \tag{2.48}$$

$$N_{var-joint} = 6N_{cnt} - N_{drive-joint} - N_{invar-joint}$$

$$= 3$$

$$= 3 - N_{drive-joint} - N_{drive-joint} - N_{drive-joint} - N_{invar-joint}$$

$$\frac{\partial e^{kin}}{\partial \theta} - \frac{\partial e^{kin}}{\partial \hat{\theta}}$$

$$\frac{\partial e^{eom-trans}}{\partial \hat{\theta}} - \frac{\partial e^{eom-trans}}{\partial \hat{\phi}}$$

$$\frac{\partial e^{eom-rot}}{\partial \theta} - \frac{\partial e^{trq}}{\partial \hat{\theta}} - \frac{\partial e^{trq}}{\partial \hat{\phi}}$$

$$\frac{\partial e^{trq}}{\partial \theta} - \frac{\partial e^{trq}}{\partial \hat{\phi}} - \frac{\partial e^{trq}}{\partial \hat{\phi}}$$

$$\frac{\partial e^{trq}}{\partial \theta} - \frac{\partial e^{trq}}{\partial \hat{\phi}} - \frac{\partial e^{trq}}{\partial \hat{\phi}} - \frac{\partial e^{trq}}{\partial \hat{\phi}}$$

$$(2.49)$$

return $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}} \in \mathbb{R}^{(6N_{kin}+3+3+N_{drive-joint}+N_{posture-joint})\times(N_{var-joint}+6N_{cnt}+N_{drive-joint}+N_{invar-joint})}$

:theta-max-vector &key (update? nil)

[method]

return $\boldsymbol{\theta}_{max} \in \mathbb{R}^{N_{var-joint}}$

:theta-min-vector &key (update? nil)

[method]

return $\boldsymbol{\theta}_{min} \in \mathbb{R}^{N_{var-joint}}$

:delta-theta-limit-vector &key (update? nil)

[method]

get trust region of θ

return $\Delta \boldsymbol{\theta}_{limit}$

:theta-inequality-constraint-matrix $\&key\ (update?\ nil)$

$$\begin{cases}
\theta_{min} \leq \theta + \Delta \theta \leq \theta_{max} \\
-\Delta \theta_{limit} \leq \Delta \theta \leq \Delta \theta_{limit} & \text{(if } \Delta \theta_{limit} \text{ is set)}
\end{cases}$$
(2.50)

$$\Leftrightarrow \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{I} \\ \boldsymbol{I} \\ -\boldsymbol{I} \end{pmatrix} \Delta \boldsymbol{\theta} \ge \begin{pmatrix} \boldsymbol{\theta}_{min} - \boldsymbol{\theta} \\ -(\boldsymbol{\theta}_{max} - \boldsymbol{\theta}) \\ -\Delta \boldsymbol{\theta}_{limit} \\ -\Delta \boldsymbol{\theta}_{limit} \end{pmatrix}$$

$$(2.51)$$

$$\Leftrightarrow C_{\theta} \Delta \theta \ge d_{\theta} \tag{2.52}$$

$$ext{return } oldsymbol{C_{ heta}} := egin{pmatrix} I \ -I \ I \ -I \end{pmatrix} \in \mathbb{R}^{4N_{var-joint} imes N_{var-joint}}$$

[method]

$$ext{return } oldsymbol{d}_{oldsymbol{ heta}} := egin{pmatrix} oldsymbol{ heta}_{min} - oldsymbol{ heta} \ -(oldsymbol{ heta}_{max} - oldsymbol{ heta}) \ -\Delta oldsymbol{ heta}_{limit} \ -\Delta oldsymbol{ heta}_{limit} \end{pmatrix} \in \mathbb{R}^{4N_{var-joint}}$$

:wrench-inequality-constraint-matrix &key (update? t)

[method]

接触レンチ $w\in\mathbb{R}^6$ が満たすべき制約(非負制約,摩擦制約,圧力中心制約)が次式のように表される とする.

$$C_w w \ge d_w \tag{2.53}$$

 N_{cnt} 箇所の接触部位の接触レンチを並べたベクトル $\hat{m w}$ の不等式制約は次式で表される.

$$C_{w,m}(\boldsymbol{w}_m + \Delta \boldsymbol{w}_m) \ge \boldsymbol{d}_{w,m} \quad (m = 1, 2, \cdots, N_{cnt})$$
(2.54)

$$\Leftrightarrow C_{w,m} \Delta w_m \ge d_{w,m} - C_{w,m} w_m \quad (m = 1, 2, \dots, N_{cnt})$$
(2.55)

$$\Leftrightarrow \begin{pmatrix} \boldsymbol{C}_{w,1} & & \\ & \boldsymbol{C}_{w,2} & \\ & & \ddots & \\ & & \boldsymbol{C}_{w,N-1} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{w}_1 \\ \Delta \boldsymbol{w}_2 \\ \vdots \\ \Delta \boldsymbol{w}_{N-1} \end{pmatrix} \geq \begin{pmatrix} \boldsymbol{d}_{w,1} - \boldsymbol{C}_{w,1} \boldsymbol{w}_1 \\ \boldsymbol{d}_{w,2} - \boldsymbol{C}_{w,2} \boldsymbol{w}_2 \\ \vdots \\ \boldsymbol{d}_{w,N-1} - \boldsymbol{C}_{w,N-1} \boldsymbol{w}_{N-1} \end{pmatrix}$$
(2.56)

$$\Leftrightarrow C_{\hat{w}} \Delta \hat{w} \ge d_{\hat{w}} \tag{2.57}$$

[method]

$$\mathbf{r}$$
eturn $oldsymbol{d}_{\hat{w}} := egin{pmatrix} oldsymbol{d}_{w,1} - oldsymbol{C}_{w,1} oldsymbol{w}_1 \ oldsymbol{d}_{w,2} - oldsymbol{C}_{w,2} oldsymbol{w}_2 \ dots \ oldsymbol{d}_{w,N_{cnt}} - oldsymbol{C}_{w,N_{cnt}} oldsymbol{w}_{N_{cnt}} \end{pmatrix} \in \mathbb{R}^{N_{wrench-ineq}}$

:torque-max-vector &key (update? nil)

[method]

return $\boldsymbol{\tau}_{max} \in \mathbb{R}^{N_{drive-joint}}$

:torque-min-vector &key (update? nil)

[method]

return $\boldsymbol{\tau}_{min} \in \mathbb{R}^{N_{drive-joint}}$

:torque-inequality-constraint-matrix &key (update? nil)

[method]

$$\tau_{min} \le \tau + \Delta \tau \le \tau_{max} \tag{2.58}$$

$$\tau_{min} \leq \tau + \Delta \tau \leq \tau_{max} \tag{2.58}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} \Delta \tau \geq \begin{pmatrix} \tau_{min} - \tau \\ -(\tau_{max} - \tau) \end{pmatrix} \tag{2.59}$$

$$\Leftrightarrow C_{\tau} \Delta \tau \geq d_{\tau} \tag{2.60}$$

$$\Leftrightarrow C_{\tau} \Delta \tau \ge d_{\tau} \tag{2.60}$$

$$ext{return } oldsymbol{C_{ au}} := egin{pmatrix} oldsymbol{I} \ -oldsymbol{I} \end{pmatrix} \in \mathbb{R}^{2N_{drive ext{-}joint} imes N_{drive ext{-}joint}}$$

:torque-inequality-constraint-vector &key (update? t)

$$\text{return } \boldsymbol{d_{\tau}} := \begin{pmatrix} \boldsymbol{\tau}_{min} - \boldsymbol{\tau} \\ -(\boldsymbol{\tau}_{max} - \boldsymbol{\tau}) \end{pmatrix} \in \mathbb{R}^{2N_{drive\text{-}joint}}$$

:phi-max-vector &key (update? nil)

[method]

return
$$\phi_{max} \in \mathbb{R}^{N_{invar-joint}}$$

:phi-min-vector &key (update? nil)

[method]

return
$$\phi_{min} \in \mathbb{R}^{N_{invar-joint}}$$

:delta-phi-limit-vector &key (update? nil)

[method]

get trust region of
$$\phi$$

return $\Delta \phi_{limit}$

:phi-inequality-constraint-matrix &key (update? nil)

[method]

$$\begin{cases}
\phi_{min} \leq \phi + \Delta \phi \leq \phi_{max} \\
-\Delta \phi_{limit} \leq \Delta \phi \leq \Delta \phi_{limit} & \text{(if } \Delta \phi_{limit} & \text{is set)}
\end{cases}$$
(2.61)

$$\Leftrightarrow \begin{pmatrix} \mathbf{I} \\ -\mathbf{I} \\ \mathbf{I} \\ -\mathbf{I} \end{pmatrix} \Delta \phi \ge \begin{pmatrix} \phi_{min} - \phi \\ -(\phi_{max} - \phi) \\ -\Delta \phi_{limit} \\ -\Delta \phi_{limit} \end{pmatrix}$$

$$(2.62)$$

$$\Leftrightarrow C_{\phi} \Delta \phi \ge d_{\phi} \tag{2.63}$$

$$ext{return } oldsymbol{C_{\phi}} := egin{pmatrix} I \ -I \ I \ -I \end{pmatrix} \in \mathbb{R}^{4N_{invar-joint} imes N_{invar-joint}}$$

[method]

$$ext{return } oldsymbol{d_{\phi}} := egin{pmatrix} \phi_{min} - \phi \ -(\phi_{max} - \phi) \ -\Delta \phi_{limit} \ -\Delta \phi_{limit} \end{pmatrix} \in \mathbb{R}^{4N_{invar-joint}}$$

:variant-config-inequality-constraint-matrix &key (update? nil)

[method]

$$\begin{cases}
C_{\theta} \Delta \theta \ge d_{\theta} \\
C_{\hat{w}} \Delta \hat{w} \ge d_{\hat{w}} \\
C_{\tau} \Delta \tau \ge d_{\tau}
\end{cases} (2.64)$$

$$\begin{cases}
C_{\theta} \Delta \theta \geq d_{\theta} \\
C_{\hat{w}} \Delta \hat{w} \geq d_{\hat{w}} \\
C_{\tau} \Delta \tau \geq d_{\tau}
\end{cases} (2.64)$$

$$\Leftrightarrow \begin{pmatrix} C_{\theta} \\ C_{\hat{w}} \\ C_{\tau} \end{pmatrix} \begin{pmatrix} \Delta \theta \\ \Delta \hat{w} \\ \Delta \tau \end{pmatrix} \geq \begin{pmatrix} d_{\theta} \\ d_{\hat{w}} \\ d_{\tau} \end{pmatrix}$$

$$\Leftrightarrow C_{var} \Delta q_{var} \ge d_{var} \tag{2.66}$$

$$ext{return } oldsymbol{C}_{var} := egin{pmatrix} oldsymbol{C}_{ heta} & & & \ & oldsymbol{C}_{\hat{w}} & & \ & oldsymbol{C}_{ au} \end{pmatrix} \in \mathbb{R}^{N_{var ext{-}ineq} imes dim}(oldsymbol{q}_{var})$$

:variant-config-inequality-constraint-vector &key (update? t)

$$ext{return } oldsymbol{d}_{var} := egin{pmatrix} oldsymbol{d}_{ heta} \ oldsymbol{d}_{\hat{w}} \ oldsymbol{d}_{ au} \end{pmatrix} \in \mathbb{R}^{N_{var ext{-}ineq}}$$

:invariant-config-inequality-constraint-matrix &key (update? nil)

[method]

$$C_{\phi}\Delta\phi \ge d_{\phi} \tag{2.67}$$

$$\Leftrightarrow C_{invar} \Delta q_{invar} \ge d_{invar}$$
 (2.68)

return $\boldsymbol{C}_{invar} := \boldsymbol{C}_{\phi} \in \mathbb{R}^{N_{invar-ineq} \times dim(\boldsymbol{q}_{invar})}$

:invariant-config-inequality-constraint-vector $\&key\ (update\@ifnextraint-vector\ \&key\ (update\@ifnextraint-vector\ \&key\@ifnextraint-vector\ \&key\@ifnextraint-vector\ (update\@ifnextraint$

[method]

return $oldsymbol{d}_{invar} := oldsymbol{d}_{\phi} \in \mathbb{R}^{N_{invar-ineq}}$

 $\textbf{:config-inequality-constraint-matrix} \ \ \mathscr{C}key \ \ (update? \ nil)$

[method]

 $(update\text{-}collision?\ nil)$

$$\begin{cases}
C_{var} \Delta q_{var} \ge d_{var} \\
C_{invar} \Delta q_{invar} \ge d_{invar} \\
C_{col} \begin{pmatrix} \Delta q_{var} \\ \Delta q_{invar} \end{pmatrix} \ge d_{col}
\end{cases}$$
(2.69)

$$\Leftrightarrow \begin{pmatrix} C_{var} \\ C_{invar} \\ C_{col} \end{pmatrix} \begin{pmatrix} \Delta q_{var} \\ \Delta q_{invar} \end{pmatrix} \ge \begin{pmatrix} d_{var} \\ d_{invar} \\ d_{col} \end{pmatrix}$$

$$(2.70)$$

$$\Leftrightarrow C\Delta q \ge d \tag{2.71}$$

$$\text{return } \boldsymbol{C} := \begin{pmatrix} \boldsymbol{C}_{var} \\ \boldsymbol{C}_{invar} \\ \end{pmatrix} \in \mathbb{R}^{N_{ineq} \times dim(\boldsymbol{q})}$$

:config-inequality-constraint-vector &key (update? t) (update-collision? nil)

[method]

$$ext{return } oldsymbol{d} := egin{pmatrix} oldsymbol{d}_{var} \ oldsymbol{d}_{invar} \ oldsymbol{d}_{col} \end{pmatrix} \in \mathbb{R}^{N_{ineq}}$$

:variant-config-equality-constraint-matrix &key (update? nil)

[method]

return $\boldsymbol{A}_{var} \in \mathbb{R}^{0 \times dim(\boldsymbol{q}_{var})}$ (no equality constraint)

:variant-config-equality-constraint-vector $\&key\ (update?\ t)$

[method]

return $\boldsymbol{b}_{var} \in \mathbb{R}^0$ (no equality constraint)

:invariant-config-equality-constraint-matrix &key (update? nil)

[method]

return $\boldsymbol{A}_{invar} \in \mathbb{R}^{0 \times dim(\boldsymbol{q}_{invar})}$ (no equality constraint)

[manth o d]

 $\textbf{:invariant-config-equality-constraint-vector} \ \ \textit{\&key (update? t)}\\$

[method]

return $\boldsymbol{b}_{invar} \in \mathbb{R}^0$ (no equality constraint)

:config-equality-constraint-matrix &key (update? nil)

return $\boldsymbol{A} \in \mathbb{R}^{0 \times dim(\boldsymbol{q})}$ (no equality constraint)

:config-equality-constraint-vector $\&key\ (update?\ t)$

[method]

return $\boldsymbol{b} \in \mathbb{R}^0$ (no equality constraint)

:torque-regular-matrix &key (update? nil)

[method]

 $(only\text{-}variant?\ nil)$

二次形式の正則化項として次式を考える.

$$F_{tau}(q) = \left\| \frac{\tau}{\tau_{max}} \right\|^2$$
 (ベクトルの要素ごとの割り算を表す) (2.72)
= $\tau^T \bar{W}_{tra} \tau$ (2.73)

ここで,

$$\bar{\boldsymbol{W}}_{trq} := \begin{pmatrix} \frac{1}{\tau_{max,1}^2} & & & \\ & \frac{1}{\tau_{max,2}^2} & & & \\ & & \ddots & & \\ & & & \frac{1}{\tau_{max,N_{drive-joint}}^2} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{\tau}) \times dim(\boldsymbol{\tau})}$$

$$(2.74)$$

only-variant? is true:

$$\boldsymbol{W}_{trq} := dim(\boldsymbol{\hat{w}}) \begin{pmatrix} dim(\boldsymbol{\hat{w}}) & dim(\boldsymbol{\tau}) \\ dim(\boldsymbol{\hat{v}}) & \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}_{var}) \times dim(\boldsymbol{q}_{var})}$$

$$(2.75)$$

otherwise:

$$\boldsymbol{W}_{trq} := \begin{pmatrix} dim(\boldsymbol{\theta}) & dim(\hat{\boldsymbol{w}}) & dim(\boldsymbol{\tau}) & dim(\boldsymbol{\phi}) \\ dim(\boldsymbol{\theta}) & & & & \\ dim(\hat{\boldsymbol{v}}) & & & \\ dim(\boldsymbol{\tau}) & & & \\ dim(\boldsymbol{\phi}) & & & \\ \hline \boldsymbol{W}_{trq} & & \\ \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$$
(2.76)

return \boldsymbol{W}_{tra}

 $\begin{array}{ccc} \textbf{:torque-regular-vector} \ \mathscr{C}key \ \ (update? \ t) & \\ & (only-variant? \ nil) \end{array}$

$$\bar{\boldsymbol{v}}_{trq} := \bar{\boldsymbol{W}}_{trq} \boldsymbol{\tau} \tag{2.77}$$

$$= \begin{pmatrix} \frac{\tau_1}{\tau_{max,1}^2} \\ \frac{\tau_2}{\tau_{max,2}^2} \\ \vdots \\ \frac{\tau_{dim}(\boldsymbol{\tau})}{\tau^2} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{\tau})} \tag{2.78}$$

only-variant? is true:

otherwise:

$$\boldsymbol{v}_{trq} := \begin{pmatrix} dim(\boldsymbol{\theta}) \\ dim(\hat{\boldsymbol{v}}) \\ dim(\boldsymbol{\tau}) \\ dim(\boldsymbol{\phi}) \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q})}$$

$$(2.80)$$

 $return \ \boldsymbol{v}_{trq}$

:torque-ratio

[method]

$$\operatorname{return} \ rac{oldsymbol{ au}}{oldsymbol{ au}_{max}} := egin{pmatrix} rac{ au_1}{ au_{max,1}} & rac{ au_2}{ au_{max,2}} & rac{ au_{max,2}}{ au_{max,2}} & rac{ au_{nax,2}}{ au_{max,N_{drive-joint}}} & rac{ au_{N_{drive-joint}}}{ au_{max,N_{drive-joint}}} \end{pmatrix}$$

:wrench-maximize-regular-vector &key (update? nil) (only-variant? nil)

[method]

$$\bar{\boldsymbol{v}}_{w\text{-}max} := \begin{pmatrix} \boldsymbol{d}_1^{w\text{-}max} \\ \boldsymbol{d}_2^{w\text{-}max} \\ \vdots \\ \boldsymbol{d}_{N_{cnt}}^{w\text{-}max} \end{pmatrix} \in \mathbb{R}^{dim(\hat{\boldsymbol{w}})}$$
 (2.81)

only-variant? is true:

$$v_{w\text{-}max} := dim(\hat{\boldsymbol{w}}) \begin{pmatrix} \bar{\boldsymbol{v}}_{w\text{-}max} \\ dim(\boldsymbol{\tau}) \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}_{var})}$$

$$(2.82)$$

otherwise:

$$\boldsymbol{v}_{w\text{-}max} := \frac{dim(\boldsymbol{\theta})}{dim(\boldsymbol{\tau})} \begin{pmatrix} \bar{\boldsymbol{v}}_{w\text{-}max} \\ \bar{\boldsymbol{v}}_{w\text{-}max} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q})}$$

$$dim(\boldsymbol{\phi})$$

$$(2.83)$$

 $return \ v_{w-max}$

:regular-matrix [method]

$$W_{reg} := \min(k_{max}, k_{coeff} ||e||^2 + k_{off}) I + k_{trq} W_{trq}$$
 (2.84)

return $\boldsymbol{W}_{req} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:regular-vector [method]

$$\boldsymbol{v}_{req} := k_{trq} \boldsymbol{v}_{trq} + k_{w-max} \boldsymbol{v}_{w-max} \tag{2.85}$$

return $\boldsymbol{v}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q})}$

:update-collision-inequality-constraint

[method]

リンク 1 とリンク 2 の最近点を p_1,p_2 とする.リンク 1 とリンク 2 が干渉しない条件を,最近点 p_1,p_2 の距離が d_{margin} 以上である条件に置き換えて考える.これは次式で表される.

$$\boldsymbol{d}_{12}^{T}(\boldsymbol{p}_{1} - \boldsymbol{p}_{2}) \ge d_{margin} \tag{2.86}$$

where
$$d_{12} = p_1 - p_2$$
 (2.87)

コンフィギュレーションが Δq だけ更新されてもこれが成立するための条件は次式で表される.

$$d_{12}^{T} \{ (p_1 + \Delta p_1) - (p_2 + \Delta p_2) \} \ge d_{margin}$$
(2.88)

where
$$\Delta \mathbf{p}_1 = \mathbf{J}_{\theta,1} \Delta \theta + \mathbf{J}_{\phi,1} \Delta \phi$$
 (2.89)

$$\Delta \mathbf{p}_2 = \mathbf{J}_{\theta,2} \Delta \theta + \mathbf{J}_{\phi,2} \Delta \phi \tag{2.90}$$

$$J_{\theta,i} = \frac{\partial \mathbf{p}_i}{\partial \theta}, \quad J_{\phi,i} = \frac{\partial \mathbf{p}_i}{\partial \phi} \quad (i = 1, 2)$$
 (2.91)

これは以下のように変形される.

$$d_{12}^{T}\left\{ (\boldsymbol{p}_{1} + \boldsymbol{J}_{\theta,1}\Delta\boldsymbol{\theta} + \boldsymbol{J}_{\phi,1}\Delta\boldsymbol{\phi}) - (\boldsymbol{p}_{2} + \boldsymbol{J}_{\theta,2}\Delta\boldsymbol{\theta} + \boldsymbol{J}_{\phi,2}\Delta\boldsymbol{\phi}) \right\} \ge d_{margin}$$
(2.92)

$$\Leftrightarrow d_{12}^{T}(J_{\theta,1} - J_{\theta,2})\Delta\theta + d_{12}^{T}(J_{\phi,1} - J_{\phi,2})\Delta\phi \ge -(d_{12}^{T}(p_1 - p_2) - d_{margin})$$
(2.93)

$$\Leftrightarrow c_{col,var}^{T} \Delta \theta + c_{col,invar}^{T} \Delta \phi \ge d_{col}$$
 (2.94)

where
$$\boldsymbol{c}_{col,var}^T = \boldsymbol{d}_{12}^T (\boldsymbol{J}_{\theta,1} - \boldsymbol{J}_{\theta,2})$$
 (2.95)

$$\boldsymbol{c}_{col,invar}^{T} = \boldsymbol{d}_{12}^{T} (\boldsymbol{J}_{\phi,1} - \boldsymbol{J}_{\phi,2})$$
(2.96)

$$d_{col} = -(d_{12}^{T}(p_1 - p_2) - d_{margin})$$
(2.97)

i 番目の干渉回避リンクペアに関する行列,ベクトルをそれぞれ $m{c}_{col,var,i}^T, m{c}_{col,invar,i}^T, d_{col,i}$ とする. $i=1,2,\cdots,N_{col}$ の全てのリンクペアにおいて干渉が生じないための条件は次式で表される.

$$\begin{pmatrix} \boldsymbol{C}_{col,\theta} & \boldsymbol{C}_{col,\phi} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{\theta} \\ \Delta \boldsymbol{\phi} \end{pmatrix} \ge \boldsymbol{d}_{col}$$
 (2.98)

$$\boldsymbol{C}_{col,\theta} := \begin{pmatrix} \boldsymbol{c}_{col,var,1}^T \\ \vdots \\ \boldsymbol{c}_{col,var,N_{col}}^T \end{pmatrix} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{\theta})}$$

$$(2.99)$$

$$\boldsymbol{C}_{col,\phi} := \begin{pmatrix} \boldsymbol{c}_{col,invar,1}^T \\ \vdots \\ \boldsymbol{c}_{col,invar,N,i}^T \end{pmatrix} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{\phi})}, \tag{2.100}$$

$$\boldsymbol{d}_{col} := \begin{pmatrix} d_{col,1} \\ \vdots \\ d_{col,N_{col}} \end{pmatrix} \in \mathbb{R}^{N_{col}}$$

$$(2.101)$$

update inequality matrix $C_{col,\theta}, C_{col,\phi}$ and inequality vector d_{col} for collision avoidance

:collision-theta-inequality-constraint-matrix

return $\boldsymbol{C}_{col,\theta} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{\theta})}$

:collision-phi-inequality-constraint-matrix

[method]

return
$$\boldsymbol{C}_{col,\phi} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{\phi})}$$

:collision-inequality-constraint-matrix &key (update? nil)

[method]

$$dim(\boldsymbol{\theta}) \quad dim(\hat{\boldsymbol{w}}) \quad dim(\boldsymbol{\tau}) \quad dim(\boldsymbol{\phi})$$

$$\boldsymbol{C}_{col} := N_{col} \left(\boldsymbol{C}_{col,\theta} \quad \boldsymbol{O} \quad \boldsymbol{O} \quad \boldsymbol{C}_{col,\phi} \right)$$

$$(2.102)$$

return $\boldsymbol{C}_{col} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{q})}$

:collision-inequality-constraint-vector &key (update? nil)

[method]

return
$$\boldsymbol{d}_{col} \in \mathbb{R}^{N_{col}}$$

:update-viewer

[method]

Update viewer.

:print-status

[method]

Print status.

2.2 軌道コンフィギュレーションと軌道タスク関数

trajectory-configuration-task

[class]

:super **propertied-object** :slots (_instant-config-task

ots (_instant-config-task-list list of instant-config-task instance)

(_num-instant-config-task L)

(_dim-variant-config $dim(\mathbf{q}_{var})$)

(_dim-invariant-config $dim(\boldsymbol{q}_{invar})$)

(_dim-config dim(q))

 $(_{\text{dim-task}} dim(e))$

 $(_norm-regular-scale-max k_{max})$

 $(_norm\text{-regular-scale-offset } k_{off})$

(_adjacent-regular-scale-list $k_{adj}^{(1)}, k_{adj}^{(2)}, \cdots, k_{adj}^{(L-1)})$

 $(_torque-regular-scale k_{trq})$

(_task-jacobi buffer for $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{a}}$)

軌道コンフィギュレーション q と軌道タスク関数 e(q) のクラス.

以降では、説明文やメソッド名で、"軌道"や"trajectory"を省略する。

コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $\frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのメソッドが定義されている.

コンフィギュレーション・タスク関数を定めるために,初期化時に以下を与える

● 瞬時のコンフィギュレーション・タスクのリスト

instant-config-task-list instant-configuration-task のリスト

• 目的関数の重み

norm-regular-scale-max k_{max} コンフィギュレーション更新量正則化の重み最大値 norm-regular-scale-offset k_{off} コンフィギュレーション更新量正則化の重みオフセット adjacent-regular-scale-list $k_{adj}^{(l)}$ 隣接コンフィギュレーション正則化の重みのリスト torque-regular-scale k_{trq} トルク正則化の重み

コンフィギュレーション q は以下から構成される.

$$\boldsymbol{q} := \begin{pmatrix} \boldsymbol{q}_{var}^{(1)T} & \boldsymbol{q}_{var}^{(2)T} & \cdots & \boldsymbol{q}_{var}^{(L)T} & \boldsymbol{q}_{invar}^{T} \end{pmatrix}^{T}$$
(2.103)

ここで,

$$q_{invar} := q_{invar}^{(1)} = q_{invar}^{(2)} = \dots = q_{invar}^{(L)}$$
 (2.104)

 $m{q}_{var}^{(l)},m{q}_{invar}^{(l)}\;(l=1,2,\cdots,L)$ は l 番目の瞬時の時変,時不変コンフィギュレーションを表す. タスク関数 $m{e}(m{q})$ は以下から構成される.

$$e(q) := \left(e^{(1)T}(q_{var}^{(1)}, q_{invar}) - e^{(2)T}(q_{var}^{(2)}, q_{invar}) - \cdots - e^{(L)T}(q_{var}^{(L)}, q_{invar})\right)^{T}$$
(2.105)

 $e^{(l)}(oldsymbol{q}_{var}^{(l)},oldsymbol{q}_{invar})\;(l=1,2,\cdots,L)$ は l 番目の瞬時のタスク関数を表す.

:init &key (name)

[method]

(instant-config-task-list)

 $(norm\text{-}regular\text{-}scale\text{-}max\ 1.000000e\text{-}04)$

(norm-regular-scale-offset 1.000000e-07)

(adjacent-regular-scale 0.005)

(adjacent-regular-scale-list)

(torque-regular-scale 0.001)

Initialize instance

:instant-config-task-list

[method]

return instant-config-task-list

:dim-variant-config

[method]

return
$$dim(\boldsymbol{q}_{var}) := \sum_{l=1}^{L} dim(\boldsymbol{q}_{var}^{(l)})$$

:dim-invariant-config

[method]

return
$$dim(\boldsymbol{q_{invar}}) := dim(\boldsymbol{q_{invar}}^{(l)}) \; (l=1,2,\cdots,L$$
 で同じ)

:dim-config

[method]

return
$$dim(\mathbf{q}) := dim(\mathbf{q}_{var}) + dim(\mathbf{q}_{invar})$$

:dim-task

[method]

return
$$dim(\mathbf{e}) := \sum_{l=1}^{L} dim(\mathbf{e}^{(l)})$$

:variant-config-vector

[method]

$$ext{return } oldsymbol{q_{var}} := egin{pmatrix} oldsymbol{q_{var}^{(1)}} \ oldsymbol{q_{var}^{(2)}} \ dots \ oldsymbol{q_{var}^{(L)}} \end{pmatrix}$$

:invariant-config-vector

return
$$q_{invar} := q_{invar}^{(l)} \; (l=1,2,\cdots,L$$
 で同じ)

:config-vector

[method]

$$ext{return } oldsymbol{q} := egin{pmatrix} oldsymbol{q}_{var} \ oldsymbol{q}_{invar} \end{pmatrix} = egin{pmatrix} oldsymbol{q}_{var}^{(1)} \ oldsymbol{q}_{var}^{(L)} \ oldsymbol{q}_{var}^{(L)} \ oldsymbol{q}_{invar} \end{pmatrix}$$

:set-variant-config variant-config-new &key (relative? nil)
(apply-to-robot? t)

[method]

Set q_{var} .

:set-invariant-config invariant-config-new &key (relative? nil)
(apply-to-robot? t)

[method]

Set q_{invar} .

 $\begin{array}{ll} \textbf{:set-config} \ config-new \ \&key \ \ (relative? \ nil) \\ & (apply-to-robot? \ t) \end{array}$

[method]

Set q.

:task-value &key (update? t)

[method]

$$\operatorname{return} \ oldsymbol{e}(oldsymbol{q}) := egin{pmatrix} oldsymbol{e}^{(1)}(oldsymbol{q}_{var}^{(1)}, oldsymbol{q}_{invar}) \ oldsymbol{e}^{(2)}(oldsymbol{q}_{var}^{(2)}, oldsymbol{q}_{invar}) \ dots \ oldsymbol{e}^{(L)}(oldsymbol{q}_{var}^{(L)}, oldsymbol{q}_{invar}) \end{pmatrix}$$

:variant-task-jacobian

[method]

$$\frac{\partial e}{\partial q_{var}} = \begin{pmatrix}
\frac{\partial e^{(1)}}{\partial q_{var}^{(1)}} & O \\
\frac{\partial e^{(2)}}{\partial q_{var}^{(2)}} & \\
& & \ddots \\
O & & & \frac{\partial e^{(L)}}{\partial q_{var}^{(L)}}
\end{pmatrix}$$
(2.106)

return
$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}_{var}} \in \mathbb{R}^{dim(\boldsymbol{e}) \times dim(\boldsymbol{q}_{var})}$$

:invariant-task-jacobian

[method]

$$\frac{\partial e}{\partial q_{invar}} = \begin{pmatrix} \frac{\partial e^{(1)}}{\partial q_{invar}} \\ \frac{\partial e^{(2)}}{\partial q_{invar}} \\ \vdots \\ \frac{\partial e^{(L)}}{\partial q_{invar}} \end{pmatrix}$$
(2.107)

return
$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}_{invar}} \in \mathbb{R}^{dim(\boldsymbol{e}) \times dim(\boldsymbol{q}_{invar})}$$

:task-jacobian [method]

$$\frac{\partial \mathbf{e}}{\partial \mathbf{q}} = \left(\frac{\partial \mathbf{e}}{\partial \mathbf{q}_{var}} \quad \frac{\partial \mathbf{e}}{\partial \mathbf{q}_{invar}}\right)$$

$$\left(\frac{\partial \mathbf{e}^{(1)}}{\partial \mathbf{r}}\right) \qquad \mathbf{O} \qquad \frac{\partial \mathbf{e}^{(1)}}{\partial \mathbf{r}}\right)$$
(2.108)

$$\frac{\partial e}{\partial q} = \begin{pmatrix} \frac{\partial e}{\partial q_{var}} & \frac{\partial e}{\partial q_{invar}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial e^{(1)}}{\partial q_{var}^{(1)}} & O & \frac{\partial e^{(1)}}{\partial q_{invar}} \\ & \frac{\partial e^{(2)}}{\partial q_{var}^{(2)}} & & \frac{\partial e^{(2)}}{\partial q_{invar}} \\ & & \ddots & \\ O & & \frac{\partial e^{(L)}}{\partial q_{var}^{(L)}} & \frac{\partial e^{(L)}}{\partial q_{invar}} \end{pmatrix}$$
(2.108)

return $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}} \in \mathbb{R}^{dim(\boldsymbol{e}) \times dim(\boldsymbol{q})}$

 $\textbf{:variant-config-inequality-constraint-matrix} \ \textit{\&key (update? nil)}$

[method]

$$C_{var} := \begin{pmatrix} C_{var}^{(1)} & & O \\ & C_{var}^{(2)} & & \\ & & \ddots & \\ O & & & C_{var}^{(L)} \end{pmatrix}$$
(2.110)

return $\boldsymbol{C}_{var} \in \mathbb{R}^{N_{var-ineq} \times dim(\boldsymbol{q}_{var})}$

:variant-config-inequality-constraint-vector &key (update? t)

[method]

$$\boldsymbol{d}_{var} := \begin{pmatrix} \boldsymbol{d}_{var}^{(1)} \\ \boldsymbol{d}_{var}^{(2)} \\ \vdots \\ \boldsymbol{d}_{var}^{(L)} \end{pmatrix}$$
(2.111)

return $\boldsymbol{d}_{var} \in \mathbb{R}^{N_{var-ineq}}$

:invariant-config-inequality-constraint-matrix &key (update? nil)

[method]

$$C_{invar} := C_{invar}^{(l)} \ (l = 1, 2, \cdots, L \ \texttt{で同じ})$$
 (2.112)

return $\boldsymbol{C}_{invar} \in \mathbb{R}^{N_{invar-ineq} \times dim(\boldsymbol{q}_{invar})}$

:invariant-config-inequality-constraint-vector &key (update? t)

[method]

$$d_{invar} := d_{invar}^{(l)} \ (l = 1, 2, \cdots, L \ \mathfrak{T} 同じ)$$
 (2.113)

return $\boldsymbol{d}_{invar} \in \mathbb{R}^{N_{invar-ineq}}$

:config-inequality-constraint-matrix &key (update? nil) [method] (update-collision? nil)

$$C := \begin{pmatrix} C_{var} \\ C_{invar} \\ C_{col} \end{pmatrix} \in \mathbb{R}^{N_{ineq} \times dim(\mathbf{q})}$$
(2.114)

return $C \in \mathbb{R}^{N_{ineq} \times dim(q)}$

$$d := \begin{pmatrix} d_{var} \\ d_{invar} \\ d_{col} \end{pmatrix}$$
 (2.115)

return $\boldsymbol{d} \in \mathbb{R}^{N_{ineq}}$

 $\textbf{:variant-config-equality-constraint-matrix} \ \ \mathscr{C}key \ (update? \ nil)$

[method]

$$\mathbf{A}_{var} := \begin{pmatrix} \mathbf{A}_{var}^{(1)} & & \mathbf{O} \\ & \mathbf{A}_{var}^{(2)} & & \\ & & \ddots & \\ \mathbf{O} & & & \mathbf{A}_{var}^{(L)} \end{pmatrix}$$
(2.116)

return $\boldsymbol{A}_{var} \in \mathbb{R}^{N_{var-eq} \times dim(\boldsymbol{q}_{var})}$

:variant-config-equality-constraint-vector $\&key\ (update\ ?\ t)$

[method]

$$\boldsymbol{b}_{var} := \begin{pmatrix} \boldsymbol{b}_{var}^{(1)} \\ \boldsymbol{b}_{var}^{(2)} \\ \vdots \\ \boldsymbol{b}_{var}^{(L)} \end{pmatrix}$$
(2.117)

return $\boldsymbol{b}_{var} \in \mathbb{R}^{N_{var-eq}}$

:invariant-config-equality-constraint-matrix &key (update? nil)

[method]

$$m{A}_{invar} := m{A}_{invar}^{(l)} \; (l=1,2,\cdots,L$$
 で同じ) (2.118)

return $\boldsymbol{A}_{invar} \in \mathbb{R}^{N_{invar-eq} \times dim(\boldsymbol{q}_{invar})}$

:invariant-config-equality-constraint-vector &key (update? t)

[method]

$$b_{invar} := b_{invar}^{(l)} \ (l = 1, 2, \cdots, L \ \text{で同じ})$$
 (2.119)

return $\boldsymbol{b}_{invar} \in \mathbb{R}^{N_{invar-eq}}$

:config-equality-constraint-matrix &key (update? nil)

[method]

$$\boldsymbol{A} := \begin{pmatrix} \boldsymbol{A}_{var} \\ \boldsymbol{A}_{invar} \end{pmatrix} \in \mathbb{R}^{N_{eq} \times dim(\boldsymbol{q})}$$
 (2.120)

return $\boldsymbol{A} \in \mathbb{R}^{N_{eq} \times dim(\boldsymbol{q})}$

:config-equality-constraint-vector &key (update? t)

$$\boldsymbol{b} := \begin{pmatrix} \boldsymbol{b}_{var} \\ \boldsymbol{b}_{invar} \end{pmatrix} \tag{2.121}$$

return $\boldsymbol{b} \in \mathbb{R}^{N_{eq}}$

 $: update \hbox{-} collision \hbox{-} inequality \hbox{-} constraint$

[method]

update inequality matrix $\boldsymbol{C}_{col,\theta}^{(l)}, \boldsymbol{C}_{col,\phi}^{(l)}$ and inequality vector $\boldsymbol{d}_{col}^{(l)}$ for collision avoidance $(l=1,2,\cdots,L)$

:collision-inequality-constraint-matrix &key (update? nil)

[method]

$$\frac{\dim(\boldsymbol{\theta}^{(l)}) \quad \dim(\hat{\boldsymbol{w}}^{(l)}) \quad \dim(\boldsymbol{\tau}^{(l)})}{\hat{\boldsymbol{C}}_{col,\theta}^{(l)} \quad := \quad N_{col}^{(l)} \left(\begin{array}{cc} \boldsymbol{C}_{col,\theta}^{(l)} & \boldsymbol{O} & \boldsymbol{O} \\ \end{array} \right) \tag{2.122}$$

$$\hat{\boldsymbol{C}}_{col,\theta}^{(l)} := N_{col}^{(l)} \begin{pmatrix} \boldsymbol{C}_{col,\theta}^{(l)} & dim(\hat{\boldsymbol{v}}^{(l)}) & dim(\boldsymbol{\tau}^{(l)}) \\ \boldsymbol{C}_{col,\theta}^{(l)} := N_{col}^{(l)} \begin{pmatrix} \boldsymbol{C}_{col,\theta}^{(l)} & \boldsymbol{O} & \boldsymbol{O} \\ & \boldsymbol{C}_{col,\phi}^{(1)} & & \boldsymbol{C}_{col,\phi}^{(1)} \\ & \hat{\boldsymbol{C}}_{col,\theta}^{(2)} & & \boldsymbol{C}_{col,\phi}^{(2)} \\ & & \ddots & & \vdots \\ & & \hat{\boldsymbol{C}}_{col,\theta}^{(L)} & \boldsymbol{C}_{col,\phi}^{(L)} \end{pmatrix} \tag{2.123}$$

return $\boldsymbol{C}_{col} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{q})}$

:collision-inequality-constraint-vector &key (update? nil)

[method]

$$\mathbf{d}_{col} := \begin{pmatrix} \mathbf{d}_{col}^{(1)} \\ \mathbf{d}_{col}^{(2)} \\ \vdots \\ \mathbf{d}_{col}^{(L)} \end{pmatrix}$$
(2.124)

return $\boldsymbol{d}_{col} \in \mathbb{R}^{N_{col}}$

:adjacent-regular-matrix &key (update? nil)

[method]

二次形式の正則化項として次式を考える.

$$F_{adj}(\mathbf{q}) = \sum_{l=1}^{L-1} k_{adj}^{(l)} \|\boldsymbol{\theta}_{l+1} - \boldsymbol{\theta}_{l}\|^{2}$$
 (2.125)

$$= \boldsymbol{q}^T \boldsymbol{W}_{adi} \boldsymbol{q} \tag{2.126}$$

ここで,

$$\bar{\boldsymbol{I}}_{adj}^{(l)} := dim(\boldsymbol{\theta}^{(l)}) dim(\hat{\boldsymbol{w}}^{(l)}) dim(\boldsymbol{\tau}^{(l)})$$

$$\bar{\boldsymbol{I}}_{adj}^{(l)} := dim(\hat{\boldsymbol{w}}^{(l)}) \begin{pmatrix} k_{adj}^{(l)} \boldsymbol{I} \\ k_{adj}^{(l)} \boldsymbol{I} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}_{var}^{(l)}) \times dim(\boldsymbol{q}_{var}^{(l)})}$$

$$(2.127)$$

$$W_{adj} := \begin{pmatrix} \bar{W}_{adj} \\ O \end{pmatrix}$$
 (2.129)

return $\boldsymbol{W}_{adj} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:adjacent-regular-vector &key (update? t)

[method]

$$\boldsymbol{v}_{adj} := \boldsymbol{W}_{adj} \boldsymbol{q} \tag{2.130}$$

return $\boldsymbol{v}_{adj} \in \mathbb{R}^{dim(\boldsymbol{q})}$

:torque-regular-matrix &key (update? nil)

[method]

$$\bar{\boldsymbol{W}}_{trq} := \begin{pmatrix} \boldsymbol{W}_{trq}^{(1)} & & \boldsymbol{O} \\ & \boldsymbol{W}_{trq}^{(2)} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{W}_{trq}^{(L)} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}_{var}) \times dim(\boldsymbol{q}_{var})}$$
(2.131)

$$W_{trq} := \begin{pmatrix} \bar{W}_{trq} \\ O \end{pmatrix}$$
 (2.132)

return $\boldsymbol{W}_{trq} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:torque-regular-vector $\&key\ (update?\ t)$

[method]

$$\bar{\boldsymbol{v}}_{trq} := \begin{pmatrix} \boldsymbol{v}_{trq}^{(1)} \\ \boldsymbol{v}_{trq}^{(2)} \\ \vdots \\ \boldsymbol{v}_{trq}^{(L)} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{q}_{var})}$$

$$\boldsymbol{v}_{trq} := \begin{pmatrix} \bar{\boldsymbol{v}}_{trq} \\ \boldsymbol{0} \end{pmatrix}$$

$$(2.133)$$

$$\boldsymbol{v}_{trq} := \begin{pmatrix} \bar{\boldsymbol{v}}_{trq} \\ \boldsymbol{0} \end{pmatrix} \tag{2.134}$$

return $\boldsymbol{v}_{trq} \in \mathbb{R}^{dim(\boldsymbol{q})}$

:regular-matrix

[method]

$$\mathbf{W}_{reg} := \min(k_{max}, \|\mathbf{e}\|^2 + k_{off})\mathbf{I} + \mathbf{W}_{adj} + k_{trg}\mathbf{W}_{trg}$$
 (2.135)

return $\boldsymbol{W}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:regular-vector

[method]

$$\boldsymbol{v}_{reg} := \boldsymbol{v}_{adj} + k_{trg} \boldsymbol{v}_{trg} \tag{2.136}$$

return $\boldsymbol{v}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q})}$

:update-viewer

[method]

Update viewer.

:print-status

[method]

Print status.

3 勾配を用いた制約付き非線形最適化

3.1 逐次二次計画法

sqp-optimization

[class]

```
propertied-object
:super
:slots
           (_config-task instance of configuration-task)
           (_qp-retval buffer for QP return value)
           (_qp-status buffer for QP status)
           (_qp-int-status QP status)
           (_task-value buffer for task value e(q))
           (_task-jacobian buffer for task jacobian \frac{\partial e}{\partial q})
           (_dim-config-buf-matrix matrix buffer)
           (_convergence-check-func function to check convergence)
           (_failure-callback-func callback function of failure)
           (_pre-process-func pre-process function)
           (_post-process-func post-process function)
           (_i buffer for iteration count)
           (_status status of sqp optimization)
           (_no-visualize? whether to supress visualization)
           (_no-print? whether to supress print)
```

逐次二次計画法のクラス.

instant-configuration-task クラスや trajectory-configuration-task クラスの instance (以降, configuration-task と呼ぶ) が与えられた時に, configuration-task のタスク関数 ノルム二乗 $\|e(q)\|^2$ を最小にするコンフィギュレーション q を反復計算により求める.

```
:init &key (config-task) [method]
(convergence-check-func)
```

[method]

(failure-callback-func)
(pre-process-func)
(post-process-func)
(no-visualize?)
(no-print?)
& allow-other-keys

Initialize instance

:config-task [method]

Return configuration-task instance

Optimize

In each iteration, do following:

- 1. check convergence
- 2. call pre-process function
- 3. print status
- 4. solve QP and update configuration
- 5. call post-process function

Solve following QP:

$$\min_{\Delta \boldsymbol{q}^{(k)}} \frac{1}{2} \Delta \boldsymbol{q}^{(k)T} \boldsymbol{W} \Delta \boldsymbol{q}^{(k)} + \boldsymbol{v}^T \Delta \boldsymbol{q}^{(k)}$$
(3.1)

s.t.
$$\mathbf{A}\Delta \mathbf{q}^{(k)} = \mathbf{b}$$
 (3.2)

$$C\Delta q^{(k)} \ge d \tag{3.3}$$

where
$$\mathbf{W} = \left(\frac{\partial \mathbf{e}(\mathbf{q}^{(k)})}{\partial \mathbf{q}^{(k)}}\right)^T \left(\frac{\partial \mathbf{e}(\mathbf{q}^{(k)})}{\partial \mathbf{q}^{(k)}}\right) + \mathbf{W}_{reg}$$
 (3.4)

$$v = \left(\frac{\partial e(q^{(k)})}{\partial q^{(k)}}\right)^T e(q^{(k)}) + v_{reg}$$
(3.5)

and update configuration:

$$\mathbf{q}^{(k+1)} = \mathbf{q}^{(k)} + \Delta \mathbf{q}^{(k)*} \tag{3.6}$$

:iteration [method]

Return iteration index.

:status [method]

Return status of sqp optimization.

3.2 複数解候補を用いた逐次二次計画法

3.2.1 複数解候補を用いた逐次二次計画法の理論

式 (1.4a) の最適化問題に逐次二次計画法などの制約付き非線形最適化手法を適用すると,初期値から勾配方

向に進行して至る局所最適解が得られると考えられる.したがって解は初期値に強く依存する.

式 (1.4a) の代わりに,以下の最適化問題を考える.

$$\min_{\hat{\boldsymbol{q}}} \sum_{i \in \mathcal{I}} \left\{ F(\boldsymbol{q}^{(i)}) + k_{msc} F_{msc}(\hat{\boldsymbol{q}}; i) \right\}$$
(3.7)

s.t.
$$Aq^{(i)} = \bar{b}$$
 $i \in \mathcal{I}$ (3.8)

$$Cq^{(i)} \ge \bar{d} \quad i \in \mathcal{I}$$
 (3.9)

where
$$\hat{\boldsymbol{q}} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{q}^{(1)T} & \boldsymbol{q}^{(2)T} & \cdots & \boldsymbol{q}^{(N_{msc})T} \end{pmatrix}^T$$
 (3.10)

$$\mathcal{I} \stackrel{\text{def}}{=} \{1, 2, \cdots, N_{msc}\} \tag{3.11}$$

$$F_{msc}(\hat{\boldsymbol{q}};i) \stackrel{\text{def}}{=} -\frac{1}{2} \sum_{\substack{j \in \mathcal{I}\\ j \neq i}} \log \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})\|^2$$
(3.12)

$$d(q^{(i)}, q^{(j)}) \stackrel{\text{def}}{=} q^{(i)} - q^{(j)}$$

$$(3.13)$$

 N_{msc} は解候補の個数で,事前に与えるものとする. msc は複数解候補 (multiple solution candidates) を表す. これは,複数の解候補を同時に探索し,それぞれの解候補 $oldsymbol{q}^{(i)}$ が本来の目的関数 $F(oldsymbol{q}^{(i)})$ を小さくして,なお かつ、解候補どうしの距離が大きくなるように最適化することを表している.これにより、初期値に依存した 唯一の局所解だけでなく、そこから離れた複数の局所解を得ることが可能となり、通常の最適化に比べてより 良い解が得られることが期待される.以降では,解候補どうしの距離のコストを表す項 $F_{msc}(\hat{m{q}};i)$ を解候補分 散項と呼ぶ8.

解候補分散項のヤコビ行列,ヘッセ行列の各成分は次式で得られる9.

$$\nabla_{i} F_{msc}(\hat{\boldsymbol{q}}; i) = \frac{\partial F_{msc}(\hat{\boldsymbol{q}}; i)}{\partial \boldsymbol{q}^{(i)}}$$
(3.16a)

$$= -\frac{1}{2} \sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \frac{\partial}{\partial \boldsymbol{q}^{(i)}} \log \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})\|^2$$
(3.16b)

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \frac{1}{\|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})\|^2} \left(\frac{\partial \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})}{\partial \boldsymbol{q}^{(i)}} \right)^T \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})$$
(3.16c)

$$= -\sum_{\substack{j \in \mathcal{I} \\ i \neq i}} \frac{d(q^{(i)}, q^{(j)})}{\|d(q^{(i)}, q^{(j)})\|^2}$$
(3.16d)

(3.16e)

$$\frac{\partial}{\partial d} \left(-\frac{1}{2} \log d^2 \right) = -\frac{1}{d} \to -\infty \quad (d \to +0) \qquad \qquad \frac{\partial}{\partial d} \left(-\frac{1}{2} \log d^2 \right) = -\frac{1}{d} \to 0 \quad (d \to \infty) \tag{3.14}$$

となり,最適化により,コンフィギュレーションが近いときほど離れるように更新し,遠くなるとその影響が小さくなる効果が期待され る. それに対し, log がない場合の勾配は,

$$\frac{\partial}{\partial d} \left(-\frac{1}{2} d^2 \right) = -d \to 0 \quad (d \to +0) \qquad \qquad \frac{\partial}{\partial d} \left(-\frac{1}{2} d^2 \right) = -d \to -\infty \quad (d \to \infty) \tag{3.15}$$

となり、コンフィギュレーションが遠くなるほど離れるように更新し、近いときはその影響が小さくなる、これは、コンフィギュレーショ ンが一致する勾配ゼロの点と,無限に離れ発散する最適値をもち,これらは最適化において望まない挙動をもたらす.

⁹ヘッセ 行 列 の 導 出 は 以 下 を 参 考 に し た .https://math.stackexchange.com/questions/175263/

 $^{^8}$ 解分散項の \log を無くすことは適切ではない.なぜなら, $d=\|oldsymbol{d}(oldsymbol{q}^{(i)},oldsymbol{q}^{(j)})\|$ として,解分散項の勾配は,

gradient-and-hessian-of-general-2-norm

$$\nabla_k F_{msc}(\hat{\boldsymbol{q}}; i) = \frac{\partial F_{msc}(\hat{\boldsymbol{q}}; i)}{\partial \boldsymbol{q}^{(k)}} \quad k \in \mathcal{I} \land k \neq i$$
(3.17a)

$$= -\frac{1}{2} \sum_{\substack{j \in \mathcal{I} \\ i \neq j}} \frac{\partial}{\partial \boldsymbol{q}^{(k)}} \log \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)})\|^2$$
(3.17b)

$$= -\frac{1}{2} \frac{\partial}{\partial \boldsymbol{q}^{(k)}} \log \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^2$$
(3.17c)

$$= -\frac{1}{\|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^2} \left(\frac{\partial \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})}{\partial \boldsymbol{q}^{(k)}}\right)^T \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})$$
(3.17d)

$$= \frac{d(q^{(i)}, q^{(k)})}{\|d(q^{(i)}, q^{(k)})\|^2}$$
(3.17e)

(3.17f)

(3.20f)

$$\nabla_{ii}^{2} F_{msc}(\hat{\mathbf{q}}; i) = \frac{\partial^{2} F_{msc}(\hat{\mathbf{q}}; i)}{\partial \mathbf{q}^{(i)2}}$$

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \frac{\partial}{\partial \mathbf{q}^{(i)}} \left(\left\{ \| \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \|^{2} \right\}^{-1} \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \right)$$

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \left(-2 \left\{ \| \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \|^{2} \right\}^{-2} \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)})^{T} + \left\{ \| \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \|^{2} \right\}^{-1} \mathbf{I} \right\}$$

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \left(-\frac{2}{\| \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \|^{4}} \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)})^{T} + \frac{1}{\| \mathbf{d}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)}) \|^{2}} \mathbf{I} \right)$$

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \mathbf{H}(\mathbf{q}^{(i)}, \mathbf{q}^{(j)})$$

$$(3.18a)$$

ただし,

$$H(q^{(i)}, q^{(j)}) \stackrel{\text{def}}{=} -\frac{2}{\|d(q^{(i)}, q^{(j)})\|^4} d(q^{(i)}, q^{(j)}) d(q^{(i)}, q^{(j)})^T + \frac{1}{\|d(q^{(i)}, q^{(j)})\|^2} I$$
(3.19)

$$\nabla_{ik}^{2} F_{msc}(\hat{\boldsymbol{q}}; i) = \frac{\partial^{2} F_{msc}(\hat{\boldsymbol{q}}; i)}{\partial \boldsymbol{q}^{(i)} \partial \boldsymbol{q}^{(k)}} \quad k \in \mathcal{I} \wedge k \neq i \qquad (3.20a)$$

$$= -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \frac{\partial}{\partial \boldsymbol{q}^{(k)}} \left(\left\{ \| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)}) \|^{2} \right\}^{-1} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(j)}) \right) \qquad (3.20b)$$

$$= -\frac{\partial}{\partial \boldsymbol{q}^{(k)}} \left(\left\{ \| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^{2} \right\}^{-1} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \right) \qquad (3.20c)$$

$$= -\left(2 \left\{ \| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^{2} \right\}^{-2} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})^{T} - \left\{ \| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^{2} \right\}^{-1} \boldsymbol{I}(\boldsymbol{\beta}.20d)$$

$$= -\frac{2}{\| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^{4}} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})^{T} + \frac{1}{\| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^{2}} \boldsymbol{I} \qquad (3.20e)$$

 $= \boldsymbol{H}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})$

$$\nabla_{kk}^{2} F_{msc}(\hat{\boldsymbol{q}}; i) = \frac{\partial^{2} F_{msc}(\hat{\boldsymbol{q}}; i)}{\partial \boldsymbol{q}^{(k)2}} \quad k \in \mathcal{I} \wedge k \neq i$$

$$= \frac{\partial}{\partial \boldsymbol{q}^{(k)}} \left(\left\{ \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^{2} \right\}^{-1} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \right)$$
(3.21a)

$$= \frac{\partial}{\partial \boldsymbol{q}^{(k)}} \left(\left\{ \|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^2 \right\}^{-1} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \right)$$
(3.21b)

$$= -\left(-\frac{2}{\|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^4} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})^T + \frac{1}{\|\boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)})\|^2} \boldsymbol{I}\right)$$
(3.21c)

$$= -\mathbf{H}(\mathbf{q}^{(i)}, \mathbf{q}^{(k)}) \tag{3.21d}$$

$$\nabla_{kl}^{2} F_{msc}(\hat{\boldsymbol{q}}; i) = \frac{\partial^{2} F_{msc}(\hat{\boldsymbol{q}}; i)}{\partial \boldsymbol{q}^{(k)} \partial \boldsymbol{q}^{(l)}} \quad k \in \mathcal{I} \wedge l \in \mathcal{I} \wedge k \neq i \wedge l \neq i \wedge k \neq l$$
(3.22a)

$$= \frac{\partial}{\partial \boldsymbol{q}^{(l)}} \left(\left\{ \| \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \|^2 \right\}^{-1} \boldsymbol{d}(\boldsymbol{q}^{(i)}, \boldsymbol{q}^{(k)}) \right)$$
(3.22b)

$$= O (3.22c)$$

したがって、解候補分散項のヤコビ行列、ヘッセ行列は次式で表される.

$$\nabla F_{msc}(\hat{q}; i) = \frac{\partial F_{msc}(\hat{q}; i)}{\partial \hat{q}}$$

$$= \begin{pmatrix} \frac{d(q^{(i)}, q^{(1)})}{\|d(q^{(i)}, q^{(1)})\|^{2}} \\ \vdots \\ \frac{d(q^{(i)}, q^{(i-1)})}{\|d(q^{(i)}, q^{(i-1)})\|^{2}} \\ -\sum_{\substack{j \in \mathcal{I} \\ j \neq i}} \frac{d(q^{(i)}, q^{(j)})}{\|d(q^{(i)}, q^{(j)})\|^{2}} \\ \frac{d(q^{(i)}, q^{(i+1)})}{\|d(q^{(i)}, q^{(i+1)})\|^{2}} \\ \vdots \\ \frac{d(q^{(i)}, q^{(N_{msc})})}{\|d(q^{(i)}, q^{(N_{msc})})\|^{2}} \end{pmatrix}$$
(3.23a)

$$\mathbf{v}_{msc} \stackrel{\text{def}}{=} \sum_{i \in \mathcal{I}} \nabla F_{msc}(\hat{\mathbf{q}}; i)$$
 (3.23c)

$$= 2 \begin{pmatrix} -\sum_{j \in \mathcal{I}} \frac{\boldsymbol{d}(\boldsymbol{q}^{(1)}, \boldsymbol{q}^{(j)})}{\|\boldsymbol{d}(\boldsymbol{q}^{(1)}, \boldsymbol{q}^{(j)})\|^{2}} \\ \vdots \\ -\sum_{\substack{j \in \mathcal{I} \\ i \neq N}} \frac{\boldsymbol{d}(\boldsymbol{q}^{(N_{msc})}, \boldsymbol{q}^{(j)})}{\|\boldsymbol{d}(\boldsymbol{q}^{(N_{msc})}, \boldsymbol{q}^{(j)})\|^{2}} \end{pmatrix}$$
(3.23d)

$$\nabla^{2}F_{msc}(\hat{q};i) = \frac{\partial^{2}F_{msc}(\hat{q};i)}{\partial\hat{q}^{2}}$$

$$1 \cdots i-1 \qquad i \qquad i+1 \cdots N_{msc}$$

$$1 \left(-H_{i,1} & H_{i,1} \\ \vdots & \vdots & \vdots \\ i-1 \\ = i & H_{i,1} \cdots H_{i,i-1} & -F_{i,i-1} \\ \vdots & \vdots & \ddots & \vdots \\ H_{i,1} \cdots H_{i,i-1} & -F_{i,i-1} \\ \vdots & \vdots & \ddots & \vdots \\ H_{i,i+1} & -H_{i,i+1} & -H_{i,i+1} \\ \vdots & \vdots & \ddots & \vdots \\ H_{i,N_{msc}} & & -H_{i,N_{msc}} \end{pmatrix}$$

$$W_{msc} \stackrel{\text{def}}{=} \sum_{i \in \mathcal{I}} \nabla^{2}F_{msc}(\hat{q};i) \qquad (3.24c)$$

$$W_{msc} \stackrel{\text{def}}{=} \sum_{i \in \mathcal{I}} \nabla^{2}F_{msc}(\hat{q};i) \qquad (3.24c)$$

$$= 2 \begin{pmatrix} -\sum_{j \in \mathcal{I}} H_{1,j} & H_{1,2} & \cdots & H_{1,N_{msc}} \\ H_{2,1} & -\sum_{j \in \mathcal{I}} H_{2,j} & H_{2,N_{msc}} \\ \vdots & \ddots & \vdots \\ H_{N_{msc},1} & H_{N_{msc},2} & \cdots & -\sum_{j \in \mathcal{I}} H_{N_{msc},j} \end{pmatrix}$$

ただし, $H(q^{(i)},q^{(j)})$ を $H_{i,j}$ と略して記す.また, $d(q^{(i)},q^{(j)})=-d(q^{(j)},q^{(i)}),\ H_{i,j}=H_{j,i}$ を利用した.解候補分散項 $\sum_{i\in\mathcal{I}}F_{msc}(\hat{q};i)$ による二次計画問題の目的関数(式(1.5a))は次式で表される.

$$\sum_{i \in \mathcal{I}} \left\{ F_{msc}(\hat{\boldsymbol{q}}_k; i) + \nabla F_{msc}(\hat{\boldsymbol{q}}_k; i)^T \Delta \hat{\boldsymbol{q}}_k + \frac{1}{2} \Delta \hat{\boldsymbol{q}}_k^T \nabla^2 F_{msc}(\hat{\boldsymbol{q}}_k; i) \Delta \hat{\boldsymbol{q}}_k \right\}$$
(3.25)

$$= \sum_{i \in \mathcal{I}} F_{msc}(\hat{\boldsymbol{q}}_k; i) + \left\{ \sum_{i \in \mathcal{I}} \nabla F_{msc}(\hat{\boldsymbol{q}}_k; i) \right\}^T \Delta \hat{\boldsymbol{q}}_k + \frac{1}{2} \Delta \hat{\boldsymbol{q}}_k^T \left\{ \sum_{i \in \mathcal{I}} \nabla^2 F_{msc}(\hat{\boldsymbol{q}}_k; i) \right\} \Delta \hat{\boldsymbol{q}}_k$$
(3.26)

$$= \sum_{i \in \mathcal{I}} F_{msc}(\hat{\boldsymbol{q}}_k; i) + \boldsymbol{v}_{msc}^T \Delta \hat{\boldsymbol{q}}_k + \frac{1}{2} \Delta \hat{\boldsymbol{q}}_k^T \boldsymbol{W}_{msc} \Delta \hat{\boldsymbol{q}}_k$$
(3.27)

 $m{W}_{msc}$ が必ずしも半正定値行列ではないことに注意する必要がある.以下のようにして $m{W}_{msc}$ に近い正定値行列を計算し用いることで対処する 10 . $m{W}_{msc}$ が次式のように固有値分解されるとする.

$$\boldsymbol{W}_{msc} = \boldsymbol{V}_{msc} \boldsymbol{D}_{msc} \boldsymbol{V}_{msc}^{-1} \tag{3.28}$$

ただし, D_{msc} は固有値を対角成分にもつ対角行列, V_{msc} は固有ベクトルを並べた行列である.このとき W_{msc} に近い正定値行列 \tilde{W}_{msc} は次式で得られる.

$$\tilde{W}_{msc} = V_{msc} D_{msc}^{+} V_{msc}^{-1} \tag{3.29}$$

ただし, $m{D}_{msc}^+$ は $m{D}_{msc}$ の対角成分のうち,負のものを 0 で置き換えた対角行列である.

式 (3.7) において,解候補を分散させながら,最終的に本来の目的関数を最小にする解を得るために, SQP のイテレーションごとに,解候補分散項のスケール k_{msc} を次式のように更新することが有効である.

$$k_{msc} \leftarrow \min(\gamma_{msc}k_{msc}, k_{msc-min}) \tag{3.30}$$

 γ_{msc} は $0<\gamma_{msc}<1$ なるスケール減少率 , $k_{msc\text{-}min}$ はスケール最小値を表す .

 $^{^{10}}W_{msc}$ が対称行列であることから,以下を参考にした.https://math.stackexchange.com/questions/648809/how-to-find-closest-positive-definite-matrix-of-non-symmetric-matrix#comment1689831_649522

3.2.2 複数解候補を用いた逐次二次計画法の実装

sqp-msc-optimization

[class]

 $: \mathbf{super} \qquad \mathbf{sqp\text{-}optimization}$

:slots (_num-msc number of multiple solution candidates N_{msc})

(_config-task-list list of configuration-task instance)

(_dispersion-scale k_{msc})

(_dispersion-scale-min $k_{msc-min}$, minimum of k_{msc})

(_dispersion-scale-decrease-ratio γ_{msc} , decrease ration of k_{msc})

(_config-vector-dist2-min minimum squared distance of configuration vector)

(_dispersion-matrix buffer for \boldsymbol{W}_{msc})

複数回候補を用いた逐次二次計画法のクラス.

instant-configuration-task クラスや trajectory-configuration-task クラスの instance (以降, configuration-task と呼ぶ) が与えられた時に, configuration-task のタスク関数 ノルム二乗 $\|e(q)\|^2$ を最小にするコンフィギュレーション q を,複数の解候補を同時に考慮しながら反復計算により求める.

:init &rest args &key (num-msc 3)

[method]

 $(dispersion\text{-}scale\ 0.01)$

 $(dispersion\text{-}scale\text{-}min\ 0.0)$

 $(dispersion\text{-}scale\text{-}decrease\text{-}ratio\ 0.5)$

(config-vector-dist2-min 1.000000e-10)

& allow-other-keys

Initialize instance

:config-task-list

[method]

Return list of configuration-task instance

:dispersion-matrix

[method]

式 (3.23d) 参照.

return $oldsymbol{W}_{msc} \in \mathbb{R}^{N_{msc}dim(oldsymbol{q}) imes N_{msc}dim(oldsymbol{q})}$

:dispersion-vector

[method]

式 (3.24d) 参照.

return $v_{msc} \in \mathbb{R}^{N_{msc}dim(oldsymbol{q})}$

4 動作生成の拡張

4.1 マニピュレーションの動作生成

robot-object-environment

[class]

:super robot-environment

:slots ($_$ obj \mathcal{O})

(_obj-with-root-virtual $\hat{\mathcal{O}}$)

ロボットと物体とロボット・環境間の接触のクラス.

以下を合わせた関節・リンク構造に関するメソッドが定義されている.

- 1. 浮遊ルートリンクのための仮想関節付きのロボットの関節
- 2. 物体位置姿勢を表す仮想関節
- 3. 接触位置を定める仮想関節

関節・リンク構造を定めるために、初期化時に以下を与える

```
robot \mathcal{R} ロボット (cascaded-link クラスのインスタンス).
```

 $\mathbf{object}\ \mathcal{O}\$ 物体 $(\mathbf{cascaded\text{-}link}\ \mathcal{O}$ ラスのインスタンス). 関節をもたないことを前提とする.

```
contact-list \{C_1, C_2, \dots, C_{N_C}\} 接触 (2d-planar-contact クラスなどのインスタンス) のリスト.
```

ロボット R に,浮遊ルートリンクの変位に対応する仮想関節を付加した仮想関節付きロボット $\hat{\mathcal{R}}$ を内部で保持する.同様に,物体 O に,物体の変位に対応する仮想関節を付加した仮想関節付き物体 $\hat{\mathcal{O}}$ を内部で保持する.

```
\begin{array}{lll} \textbf{:init } \& key & (robot) & & & \\ & (object) & & \\ & (contact\text{-}list) & & \\ & (root\text{-}virtual\text{-}mode : 6dof) & & \\ & (root\text{-}virtual\text{-}joint\text{-}class\text{-}list) & & \\ & (root\text{-}virtual\text{-}joint\text{-}axis\text{-}list) & & \\ \end{array}
```

Initialize instance

:object $\mathscr{E}rest\ args$ return \mathcal{O}

:object-with-root-virtual &rest args

return $\hat{\mathcal{O}}$

instant-manipulation-configuration-task

[class]

[method]

[method]

```
:super instant-configuration-task :slots (_robot-obj-env robot-object-environment instance) (_wrench-obj-vector \hat{\boldsymbol{w}}_{obj} [N] [Nm]) (_num-contact-obj N_{cnt-obj} := |\mathcal{T}^{cnt-trg-obj}|) (_num-act-react N_{act-react} := |\mathcal{P}^{act-react}|) (_dim-wrench-obj dim(\hat{\boldsymbol{w}}_{obj}) = 6N_{cnt-obj}) (_contact-target-coords-obj-list \mathcal{T}^{cnt-trg-obj})
```

(_contact-constraint-obj-list list of contact-constraint instance for object)

 $(\text{_act-react-pair-list } \mathcal{P}^{act-react})$

マニピュレーションにける瞬時コンフィギュレーション $m{q}^{(l)}$ と瞬時タスク関数 $m{e}^{(l)}(m{q}^{(l)})$ のクラス.マニピュレーション対象の物体の瞬時コンフィギュレーションや瞬時タスク関数を含む.

このクラスの説明で用いる全ての変数は,時間ステップ l を表す添字をつけて $x^{(l)}$ と表されるべきだが,このクラス内の説明では省略して x と表す.また,以降では,説明文やメソッド名で,"瞬時" や "instant" を省略する.

コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $\frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのメソッドが定義されている.

コンフィギュレーション・タスク関数を定めるために, instant-configuration-task の設定に加えて, 初期化時に以下を与える

● ロボット・物体・環境

robot-object-environment ロボット・物体・環境を表す robot-object-environment クラスのインスタンス

• 物体の接触拘束

contact-target-coords-obj-list $\mathcal{T}^{cnt-trg-obj}$ 物体の接触目標位置姿勢リスト contact-constraint-obj-list 物体の接触レンチ制約リスト

作用・反作用の拘束

act-react-pair-list \mathcal{P}^{act -react} 作用・反作用の関係にあるロボット・物体の接触目標位置姿勢ペアのリスト

コンフィギュレーション q は以下から構成される.

 $oldsymbol{ heta} \in \mathbb{R}^{N_{var-joint}}$ 時変関節角度 $[\mathrm{rad}]$ $[\mathrm{m}]$

 $\hat{m{w}} \in \mathbb{R}^{6N_{cnt}}$ ロボットの接触レンチ $[\mathrm{N}]$ $[\mathrm{Nm}]$

 $\hat{m{w}}_{obj} \in \mathbb{R}^{6N_{cnt-obj}}$ 物体の接触レンチ $[ext{N}]$ $[ext{Nm}]$

 $au \in \mathbb{R}^{N_{drive-joint}}$ 関節駆動トルク $[\mathrm{Nm}]$ $[\mathrm{N}]$

 $\phi \in \mathbb{R}^{N_{invar-joint}}$ 時不変関節角度 $[\mathrm{rad}]$ $[\mathrm{m}]$

 \hat{w} は次式のように,全接触部位でのワールド座標系での力・モーメントを並べたベクトルである.

$$\hat{\boldsymbol{w}} = \begin{pmatrix} \boldsymbol{w}_1^T & \boldsymbol{w}_2^T & \cdots & \boldsymbol{w}_{N_{cnt}}^T \end{pmatrix}^T \tag{4.1}$$

$$= \begin{pmatrix} \boldsymbol{f}_1^T & \boldsymbol{n}_1^T & \boldsymbol{f}_2^T & \boldsymbol{n}_2^T & \cdots & \boldsymbol{f}_{N_{cnt}}^T & \boldsymbol{n}_{N_{cnt}}^T \end{pmatrix}^T$$

$$(4.2)$$

タスク関数 e(q) は以下から構成される.

 $e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$ 幾何到達拘束 [rad] [m]

 $e^{eom\text{-}trans}(q) \in \mathbb{R}^3$ ロボットの力の釣り合い [N]

 $e^{eom\text{-}rot}(q) \in \mathbb{R}^3$ ロボットのモーメントの釣り合い $[\mathrm{Nm}]$

 $e^{eom\text{-}trans\text{-}obj}(q) \in \mathbb{R}^3$ 物体の力の釣り合い [N]

 $e^{eom\text{-}rot\text{-}obj}(q) \in \mathbb{R}^3$ 物体のモーメントの釣り合い $[\mathrm{Nm}]$

 $e^{trq}(q) \in \mathbb{R}^{N_{drive\text{-}joint}}$ 関節トルクの釣り合い $[\mathrm{rad}]$ $[\mathrm{m}]$

 $e^{posture}(q) \in \mathbb{R}^{N_{posture-joint}}$ 関節角目標 [rad] [m]

&allow-other-keys

Initialize instance

 $: {\bf robot\text{-}obj\text{-}env}$

[method]

return robot-object-environment instance

:wrench-obj

[method]

return $\hat{\boldsymbol{w}}_{obj}$

:num-contact-obj

[method]

return
$$N_{cnt-obj} := |\mathcal{T}^{cnt-trg-obj}|$$

:dim-variant-config

[method]

$$dim(\mathbf{q}_{var}) := dim(\boldsymbol{\theta}) + dim(\hat{\mathbf{w}}) + dim(\hat{\mathbf{w}}_{obj}) + dim(\boldsymbol{\tau})$$
(4.3)

$$= N_{var-joint} + 6N_{cnt} + 6N_{cnt-obj} + N_{drive-joint}$$

$$\tag{4.4}$$

return $dim(q_{var})$

:dim-task

[method]

$$dim(\mathbf{e}) := dim(\mathbf{e}^{kin}) + dim(\mathbf{e}^{eom\text{-}trans}) + dim(\mathbf{e}^{eom\text{-}rot}) + dim(\mathbf{e}^{eom\text{-}trans\text{-}obj})$$

$$+ dim(\mathbf{e}^{eom\text{-}rot\text{-}obj}) + dim(\mathbf{e}^{trq}) + dim(\mathbf{e}^{posture})$$

$$(4.5)$$

$$= 6N_{kin} + 3 + 3 + 3 + 3 + N_{drive-joint} + N_{posture-joint}$$

$$\tag{4.6}$$

return dim(e)

:variant-config-vector

[method]

$$ext{return } oldsymbol{q_{var}} := egin{pmatrix} oldsymbol{\hat{w}} \ \hat{oldsymbol{\hat{w}}}_{obj} \ oldsymbol{ au} \end{pmatrix}$$

:config-vector

[method]

return
$$m{q} := egin{pmatrix} m{q_{var}} \ m{q_{invar}} \end{pmatrix} = egin{pmatrix} m{ heta} \ \hat{m{w}} \ m{\hat{w}}_{obj} \ m{ au} \ m{\phi} \end{pmatrix}$$

:set-wrench-obj wrench-obj-new &key (relative? nil)

[method]

Set $\hat{\boldsymbol{w}}_{obj}$.

:set-variant-config- new @key (relative? nil)

[method]

 $(apply ext{-}to ext{-}robot?\ t)$

Set q_{var} .

:contact-target-coords-obj-list

$$T_m^{cnt-trg-obj} = \{ \boldsymbol{p}_m^{cnt-trg-obj}, \boldsymbol{R}_m^{cnt-trg-obj} \} \quad (m = 1, 2, \cdots, N_{cnt-obj})$$

$$(4.7)$$

return
$$\mathcal{T}^{cnt\text{-}trg\text{-}obj} := \{T_1^{cnt\text{-}trg\text{-}obj}, T_2^{cnt\text{-}trg\text{-}obj}, \cdots, T_{N_{cnt\text{-}obj}}^{cnt\text{-}trg\text{-}obj}\}$$

:contact-constraint-obj-list

[method]

return list of contact-constraint instance for object

:wrench-obj-list

[method]

return
$$\{\boldsymbol{w}_{obj,1}, \boldsymbol{w}_{obj,2}, \cdots, \boldsymbol{w}_{obj,N_{obj}}\}$$

:force-obj-list

[method]

return
$$\{\boldsymbol{f}_{obj,1}, \boldsymbol{f}_{obj,2}, \cdots, \boldsymbol{f}_{obj,N_{cnt-obj}}\}$$

:moment-obj-list

[method]

return
$$\{n_{obj,1}, n_{obj,2}, \cdots, n_{obj,N_{cnt-obj}}\}$$

:mg-obj-vec

[method]

return
$$m_{obj}\boldsymbol{g}$$

:cog-obj &key (update? t)

[method]

return
$$p_{Gobj}(q)$$

:eom-trans-obj-task-value &key (update? t)

[method]

$$e^{eom\text{-}trans\text{-}obj}(q) = e^{eom\text{-}trans\text{-}obj}(\hat{w}_{obj})$$
 (4.8)

$$=\sum_{m=1}^{N_{cnt-obj}} \boldsymbol{f}_{obj,m} - m_{obj} \boldsymbol{g} \tag{4.9}$$

return $e^{eom\text{-}trans\text{-}obj}(q) \in \mathbb{R}^3$

:eom-rot-obj-task-value &key (update? t)

[method]

$$e^{eom\text{-}rot\text{-}obj}(q) = e^{eom\text{-}rot\text{-}obj}(\theta, \hat{w}_{obj}, \phi)$$
 (4.10)

$$e^{eom\text{-}rot\text{-}obj}(\boldsymbol{q}) = e^{eom\text{-}rot\text{-}obj}(\boldsymbol{\theta}, \hat{\boldsymbol{w}}_{obj}, \boldsymbol{\phi})$$

$$= \sum_{m=1}^{N_{cnt\text{-}obj}} \left\{ \left(\boldsymbol{p}_m^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{Gobj}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \times \boldsymbol{f}_{obj,m} + \boldsymbol{n}_{obj,m} \right\}$$

$$(4.10)$$

return $e^{eom\text{-}rot\text{-}obj}(q) \in \mathbb{R}^3$

:task-value &key (update? t

[method]

$$\operatorname{return} \ oldsymbol{e}(q) := egin{pmatrix} e^{kin}(oldsymbol{q}) \ e^{eom-trans}(oldsymbol{q}) \ e^{eom-trans-obj}(oldsymbol{q}) \ e^{eom-trans-obj}(oldsymbol{q}) \ e^{eom-trans-obj}(oldsymbol{q}) \ e^{eom-trans-obj}(oldsymbol{\psi}, oldsymbol{\psi}, oldsymbol{\phi}) \ e^{eom-trans-obj}(oldsymbol{\psi}, oldsymbol{\psi}, oldsymbol{\psi}, oldsymbol{\psi}) \ e^{eom-trans-obj}(oldsymbol{\psi}, oldsymbol{\psi}, oldsymbol{\psi}$$

:eom-trans-obj-task-jacobian-with-wrench-obj

$$\frac{\partial \boldsymbol{e}^{eom\text{-}trans\text{-}obj}}{\partial \hat{\boldsymbol{w}}_{obj}} = \begin{pmatrix} \frac{\partial \boldsymbol{e}^{eom\text{-}trans\text{-}obj}}{\partial \boldsymbol{f}_{obj,1}} & \frac{\partial \boldsymbol{e}^{eom\text{-}trans\text{-}obj}}{\partial \boldsymbol{n}_{obj,1}} & \cdots & \frac{\partial \boldsymbol{e}^{eom\text{-}trans\text{-}obj}}{\partial \boldsymbol{f}_{obj,N_{cnt\text{-}obj}}} & \frac{\partial \boldsymbol{e}^{eom\text{-}trans\text{-}obj}}{\partial \boldsymbol{n}_{obj,N_{cnt\text{-}obj}}} \end{pmatrix} \quad (4.12)$$

$$= \begin{pmatrix} \boldsymbol{I}_3 \quad \boldsymbol{O}_3 \quad \cdots \quad \boldsymbol{I}_3 \quad \boldsymbol{O}_3 \end{pmatrix}$$

$$= \begin{pmatrix} I_3 & O_3 & \cdots & I_3 & O_3 \end{pmatrix} \tag{4.13}$$

return
$$\frac{\partial \boldsymbol{e}^{eom\text{-}trans-obj}}{\partial \boldsymbol{\hat{w}}_{obj}} \in \mathbb{R}^{3 \times 6N_{cnt-obj}}$$

:eom-rot-obj-task-jacobian-with-theta

[method]

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot\text{-}obj}}{\partial \boldsymbol{\theta}} = \sum_{m=1}^{N_{cnt\text{-}obj}} \left\{ -[\boldsymbol{f}_{obj,m} \times] \left(\boldsymbol{J}_{\theta,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{Gobj\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \right\}$$

$$= \left[\left(\sum_{m=1}^{N_{cnt\text{-}obj}} \boldsymbol{f}_{obj,m} \right) \times \right] \boldsymbol{J}_{Gobj\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{cnt\text{-}obj}} [\boldsymbol{f}_{obj,m} \times] \boldsymbol{J}_{\theta,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) (4.15)$$

 $\sum_{m=1}^{N_{cnt ext{-}obj}} m{f}_{obj,m} = m_{obj} m{g}$ つまり , eom-trans-obj-task が成立すると仮定すると次式が成り立つ .

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot\text{-}obj}}{\partial \boldsymbol{\theta}} = [m_{obj}\boldsymbol{g} \times] \boldsymbol{J}_{Gobj\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{cnt\text{-}obj}} [\boldsymbol{f}_{obj,m} \times] \boldsymbol{J}_{\theta,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
(4.16)

return $\frac{\partial \boldsymbol{e}^{eom\text{-}rot\text{-}obj}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{3 \times N_{var\text{-}joint}}$

:eom-rot-obj-task-jacobian-with-wrench-obj

[method]

$$\frac{\partial e^{eom-rot-obj}}{\partial \hat{\boldsymbol{w}}_{obj}} = \left(\frac{\partial e^{eom-rot-obj}}{\partial \boldsymbol{f}_{obj,1}} \quad \frac{\partial e^{eom-rot-obj}}{\partial \boldsymbol{n}_{obj,1}} \quad \cdots \quad \frac{\partial e^{eom-rot-obj}}{\partial \boldsymbol{f}_{obj,N_{cnt-obj}}} \quad \frac{\partial e^{eom-rot-obj}}{\partial \boldsymbol{n}_{obj,N_{cnt-obj}}} \right)$$

$$\frac{\partial e^{eom-rot-obj}}{\partial \boldsymbol{f}_{obj,m}} = \left[\left(\boldsymbol{p}_{m}^{cnt-trg-obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{Gobj}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \times \right] \quad (m = 1, 2, \cdots, N_{cnt-obj})$$
(4.17)

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot\text{-}obj}}{\partial \boldsymbol{f}_{\text{-}b\text{-}rot}} = \left[\left(\boldsymbol{p}_{m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{Gobj}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \times \right] \quad (m = 1, 2, \cdots, N_{cnt\text{-}obj})$$
(4.18)

$$\frac{\partial \boldsymbol{f}_{obj,m}}{\partial \boldsymbol{f}_{obj,m}} = [(\boldsymbol{p}_m^{ent-trg-ooj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{Gobj}(\boldsymbol{\theta}, \boldsymbol{\phi})) \times] \quad (m = 1, 2, \dots, N_{cnt-obj}) \\
\frac{\partial \boldsymbol{e}^{eom-rot-obj}}{\partial \boldsymbol{n}_{obj,m}} = \boldsymbol{I}_3 \quad (m = 1, 2, \dots, N_{cnt-obj}) \tag{4.18}$$

return
$$\frac{\partial \boldsymbol{e}^{com\text{-}rot\text{-}obj}}{\partial \hat{\boldsymbol{w}}_{obi}} \in \mathbb{R}^{3 \times 6N_{cnt\text{-}obj}}$$

:eom-rot-obj-task-jacobian-with-phi

[method]

$$\frac{\partial e^{eom\text{-}rot\text{-}obj}}{\partial \phi} = \sum_{m=1}^{N_{cnt\text{-}obj}} \left\{ -[\boldsymbol{f}_{obj,m} \times] \left(\boldsymbol{J}_{\phi,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{Gobj\phi}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right) \right\}$$

$$= \left[\left(\sum_{m=1}^{N_{cnt\text{-}obj}} \boldsymbol{f}_{obj,m} \right) \times \right] \boldsymbol{J}_{Gobj\phi}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{cnt\text{-}obj}} [\boldsymbol{f}_{obj,m} \times] \boldsymbol{J}_{\phi,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi}) (4.21)$$

 $\sum_{m=1}^{N_{cnt ext{-}obj}} m{f}_{obj,m} = m_{obj} m{g}$ つまり , eom-trans-obj-task が成立すると仮定すると次式が成り立つ .

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot\text{-}obj}}{\partial \boldsymbol{\phi}} = [m_{obj}\boldsymbol{g} \times] \boldsymbol{J}_{Gobj\phi}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \sum_{m=1}^{N_{cnt\text{-}obj}} [\boldsymbol{f}_{obj,m} \times] \boldsymbol{J}_{\phi,m}^{cnt\text{-}trg\text{-}obj}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
(4.22)

return
$$\frac{\partial \boldsymbol{e}^{\textit{eom-rot-obj}}}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{3 \times N_{invar-joint}}$$

:variant-task-jacobian

$$\frac{\partial e}{\partial q_{var}} = 3$$

$$\frac{\partial e^{eom-rot}}{\partial \theta} = \frac{\partial e^{eom-rot}}{\partial \theta}$$

$$\frac{\partial e^{eom-rot}}{\partial \theta} = \frac{\partial e^{eom-trans}}{\partial \hat{w}}$$

$$\frac{\partial e^{eom-trans-obj}}{\partial \hat{w}_{obj}}$$

$$\frac{\partial e^{eom-rot-obj}}{\partial \theta} = \frac{\partial e^{eom-rot-obj}}{\partial \hat{w}_{obj}}$$

$$\frac{\partial e^{eom-rot-obj}}{\partial \theta} = \frac{\partial e^{eom-rot-obj}}{\partial \hat{w}_{obj}}$$

$$\frac{\partial e^{eom-rot-obj}}{\partial \theta} = \frac{\partial e^{trq}}{\partial \theta}$$

$$\frac{\partial e^{trq}}{\partial \theta} = \frac{\partial e^{trq}}{\partial \theta}$$

return $\frac{\partial e}{\partial q_{var}} \in \mathbb{R}^{(6N_{kin}+3+3+3+3+N_{drive-joint}+N_{posture-joint})\times(N_{var-joint}+6N_{cnt}+6N_{cnt}+6N_{cnt-obj}+N_{drive-joint})}$

:invariant-task-jacobian

[method]

$$\frac{\partial e}{\partial q_{invar}} = 3$$

$$\frac{\partial e}{\partial q_{invar}} = 3$$

$$\frac{\partial e}{\partial q_{invar}} = 3$$

$$\frac{\partial e^{com-rot}}{\partial \phi}$$

$$\frac{\partial e^{com-rot}}{\partial \phi}$$

$$\frac{\partial e^{com-rot}}{\partial \phi}$$

$$\frac{\partial e^{ecm-rot-obj}}{\partial \phi}$$

$$\frac{\partial e^{erq}}{\partial \phi}$$

 $\text{return } \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}_{invar}} \in \mathbb{R}^{(6N_{kin}+3+3+3+3+N_{drive-joint}+N_{posture-joint}) \times N_{invar-joint}}$

:task-jacobian [method]

$$\frac{\partial e}{\partial q} = \begin{pmatrix} \frac{\partial e}{\partial q_{var}} & \frac{\partial e}{\partial q_{invar}} \end{pmatrix} \tag{4.25}$$

$$\frac{N_{var-joint}}{\delta N_{kin}} & \frac{\delta N_{cnt}}{\delta \theta} & \frac{\delta N_{cnt-obj}}{\delta \theta} & \frac{\delta e^{kin}}{\delta \phi} \\
3 & \frac{\partial e^{eom-trans}}{\delta \theta} & \frac{\partial e^{eom-trans}}{\delta \hat{w}_{obj}} \\
= 3 & \frac{\partial e^{eom-rot}}{\delta \theta} & \frac{\partial e^{eom-trans-obj}}{\delta \hat{w}_{obj}} \\
\frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{eom-rot-obj}}{\delta \theta} \\
\frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{eom-rot-obj}}{\delta \theta} \\
\frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{eom-rot-obj}}{\delta \theta} & \frac{\partial e^{trq}}{\delta \theta} \\
\frac{\partial e^{posture}}{\delta \theta} & \frac{\partial e^{trq}}{\delta \theta} & \frac{\partial e^{trq}}{\delta \theta} & \frac{\partial e^{trq}}{\delta \theta} \end{pmatrix}$$

 $\text{return } \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}} \in \mathbb{R}^{(6N_{kin}+3+3+3+3+N_{drive-joint}+N_{posture-joint})\times (N_{var-joint}+6N_{cnt}+6N_{cnt-obj}+N_{drive-joint}+N_{invar-joint})}$

:wrench-obj-inequality-constraint-matrix $\&key\ (update\ ?\ t)$

[method]

物体の接触レンチ $w_{\mathit{obj}} \in \mathbb{R}^6$ が満たすべき制約(非負制約,摩擦制約,圧力中心制約)が次式のように 表されるとする.

$$C_{w_{obj}} w_{obj} \ge d_{w_{obj}} \tag{4.27}$$

 $N_{cnt ext{-}obj}$ 箇所の接触部位の接触レンチを並べたベクトル $\hat{m{w}}_{obj}$ の不等式制約は次式で表される .

$$C_{w_{obj},m}(\boldsymbol{w}_{obj,m} + \Delta \boldsymbol{w}_{obj,m}) \ge \boldsymbol{d}_{w_{obj},m} \quad (m = 1, 2, \cdots, N_{cnt\text{-}obj})$$

$$C_{w_{obj},m} \Delta \boldsymbol{w}_{obj,m} \ge \boldsymbol{d}_{w_{obj},m} - C_{w_{obj},m} \boldsymbol{w}_{obj,m} \quad (m = 1, 2, \cdots, N_{cnt\text{-}obj})$$

$$(4.28)$$

$$\Leftrightarrow C_{w_{obj},m} \Delta w_{obj,m} \ge d_{w_{obj},m} - C_{w_{obj},m} w_{obj,m} \quad (m = 1, 2, \dots, N_{cnt-obj})$$

$$(4.29)$$

$$\Leftrightarrow \begin{pmatrix} \boldsymbol{C}_{w_{obj},1} & & & \\ & \boldsymbol{C}_{w_{obj},2} & & \\ & & \ddots & \\ & & & \boldsymbol{C}_{w_{obj},N_{cnt-obj}} \end{pmatrix} \begin{pmatrix} \Delta \boldsymbol{w}_{obj,1} \\ \Delta \boldsymbol{w}_{obj,2} \\ \vdots \\ \Delta \boldsymbol{w}_{obj,N_{cnt-obj}} \end{pmatrix} \geq \begin{pmatrix} \boldsymbol{d}_{w_{obj,1}} - \boldsymbol{C}_{w_{obj},1} \boldsymbol{w}_{obj,1} \\ \boldsymbol{d}_{w_{obj,2}} - \boldsymbol{C}_{w_{obj},2} \boldsymbol{w}_{obj,2} \\ \vdots \\ \boldsymbol{d}_{w_{obj,N_{cnt-obj}}} - \boldsymbol{C}_{w_{obj},N_{cnt-obj}} \boldsymbol{w}_{obj,N_{cnt-obj}} \end{pmatrix}$$

$$\Leftrightarrow \boldsymbol{C}_{\hat{m}} \cup \Delta \hat{\boldsymbol{w}}_{obj} \geq \boldsymbol{d}_{\hat{m}} \cup \boldsymbol{c}_{w_{obj},N_{cnt-obj}} \boldsymbol{w}_{obj,N_{cnt-obj}} \boldsymbol{w}_{obj,N_{cnt-obj}}$$

:wrench-obj-inequality-constraint-vector &key (update? t) [method]

$$\mathbf{r}$$
eturn $oldsymbol{d}_{\hat{w}_{obj}} := egin{pmatrix} oldsymbol{d}_{w_{obj,1}} - oldsymbol{C}_{w_{obj},1} oldsymbol{w}_{obj,1} \\ oldsymbol{d}_{w_{obj,2}} - oldsymbol{C}_{w_{obj},2} oldsymbol{w}_{obj,2} \\ & dots \\ oldsymbol{d}_{w_{obj,N_{cnt-obj}}} - oldsymbol{C}_{w_{obj},N_{cnt-obj}} oldsymbol{w}_{obj,N_{cnt-obj}} \end{pmatrix} \in \mathbb{R}^{N_{wrench-obj-ineq}}$

:variant-config-inequality-constraint-matrix &key (update? nil) [method]

$$\begin{cases}
C_{\theta} \Delta \theta \geq d_{\theta} \\
C_{\hat{w}} \Delta \hat{w} \geq d_{\hat{w}} \\
C_{\hat{w}_{obj}} \Delta \hat{w}_{obj} \geq d_{\hat{w}_{obj}} \\
C_{\tau} \Delta \tau \geq d_{\tau}
\end{cases} (4.32)$$

$$\Leftrightarrow \begin{pmatrix} C_{\theta} & & & \\ & C_{\hat{w}} & & \\ & & C_{\hat{w}_{obj}} & \\ & & & C_{\tau} \end{pmatrix} \begin{pmatrix} \Delta \theta \\ \Delta \hat{w} \\ \Delta \hat{w}_{obj} \\ \Delta \tau \end{pmatrix} \geq \begin{pmatrix} d_{\theta} \\ d_{\hat{w}} \\ d_{\hat{w}_{obj}} \\ d_{\tau} \end{pmatrix}$$

$$(4.33)$$

$$\Leftrightarrow C_{var} \Delta q_{var} \ge d_{var} \tag{4.34}$$

:variant-config-inequality-constraint-vector &key (update? t)

[method]

$$ext{return } oldsymbol{d}_{var} := egin{pmatrix} oldsymbol{d}_{ heta} \ oldsymbol{d}_{\hat{w}_{obj}} \ oldsymbol{d}_{ au} \end{pmatrix} \in \mathbb{R}^{N_{var-ineq}}$$

:act-react-equality-constraint-matrix &key (update? nil)

ロボット・物体間の接触レンチに関する作用・反作用の法則は次式のように表される.

$$\hat{\boldsymbol{w}}_{i(m)} + \hat{\boldsymbol{w}}_{obj,j(m)} = \boldsymbol{0} \quad (m = 1, 2, \cdots, N_{act\text{-react}})$$

$$(4.35)$$

$$\Leftrightarrow A_{act\text{-}react,robot,m}\hat{\boldsymbol{w}} + A_{act\text{-}react,obj,m}\hat{\boldsymbol{w}}_{obj} = 0 \quad (m = 1, 2, \cdots, N_{act\text{-}react})$$

$$(4.36)$$

where $\boldsymbol{A}_{act\text{-}react,robot,m} = \begin{pmatrix} \boldsymbol{O}_6 & \boldsymbol{O}_6 & \cdots & \boldsymbol{I}_6 & \cdots & \boldsymbol{O}_6 & \boldsymbol{O}_6 \end{pmatrix} \in \mathbb{R}^{6 \times 6N_{cnt}} (4.37)$

$$m{J}(m)$$
 番目 $m{A}_{act\text{-}react,obj,m} = egin{pmatrix} m{O}_6 & m{O}_6 & \cdots & m{I}_6 & \cdots & m{O}_6 & m{O}_6 \end{pmatrix} \in \mathbb{R}^{6 imes6N_{cnt\text{-}ob}}$

$$\Leftrightarrow A_{act\text{-}react,robot}\hat{w} + A_{act\text{-}react,obj}\hat{w}_{obj} = 0$$
(4.39)

where
$$\mathbf{A}_{act\text{-}react,robot} = \begin{pmatrix} \mathbf{A}_{act\text{-}react,robot,1} \\ \vdots \\ \mathbf{A}_{act\text{-}react,robot,N_{act\text{-}react}} \end{pmatrix} \in \mathbb{R}^{6N_{act\text{-}react} \times 6N_{cnt}}$$
 (4.40)
$$\mathbf{A}_{act\text{-}react,obj} = \begin{pmatrix} \mathbf{A}_{act\text{-}react,obj,1} \\ \vdots \\ \mathbf{A}_{act\text{-}react,obj,N_{act\text{-}react}} \end{pmatrix} \in \mathbb{R}^{6N_{act\text{-}react} \times 6N_{cnt\text{-}obj}}$$
 (4.41)

$$\mathbf{A}_{act\text{-}react,obj} = \begin{pmatrix} \mathbf{A}_{act\text{-}react,obj,1} \\ \vdots \\ \mathbf{A}_{act\text{-}react,obj,N_{act\text{-}react}} \end{pmatrix} \in \mathbb{R}^{6N_{act\text{-}react} \times 6N_{cnt\text{-}obj}}$$

$$(4.41)$$

$$\Leftrightarrow \quad \mathbf{A}_{act\text{-}react} \begin{pmatrix} \hat{\mathbf{w}} \\ \hat{\mathbf{w}}_{obj} \end{pmatrix} = \mathbf{0} \in \mathbb{R}^{6N_{act\text{-}react}}$$

$$(4.42)$$

where
$$\mathbf{A}_{act\text{-}react} = \begin{pmatrix} \mathbf{A}_{act\text{-}react,robot} & \mathbf{A}_{act\text{-}react,obj} \end{pmatrix} \in \mathbb{R}^{6N_{act\text{-}react} \times (6N_{cnt} + 6N_{cnt\text{-}obj})}$$
 (4.43)

$$\Leftrightarrow A_{act\text{-react}}\begin{pmatrix} \hat{\boldsymbol{w}} + \Delta \hat{\boldsymbol{w}} \\ \hat{\boldsymbol{w}}_{obj} + \Delta \hat{\boldsymbol{w}}_{obj} \end{pmatrix} = \mathbf{0}$$
(4.44)

$$\Leftrightarrow A_{act\text{-}react} \begin{pmatrix} \hat{\boldsymbol{w}} + \Delta \hat{\boldsymbol{w}} \\ \hat{\boldsymbol{w}}_{obj} + \Delta \hat{\boldsymbol{w}}_{obj} \end{pmatrix} = \mathbf{0}$$

$$\Leftrightarrow A_{act\text{-}react} \begin{pmatrix} \Delta \hat{\boldsymbol{w}} \\ \Delta \hat{\boldsymbol{w}}_{obj} \end{pmatrix} = \boldsymbol{b}_{act\text{-}react}$$

$$(4.45)$$

where
$$\boldsymbol{b}_{act\text{-}react} = -\boldsymbol{A}_{act\text{-}react} \begin{pmatrix} \hat{\boldsymbol{w}} \\ \hat{\boldsymbol{w}}_{obj} \end{pmatrix}$$
 (4.46)

i(m),j(m) は作用・反作用の関係にある接触レンチの m 番目の対におけるロボット , 物体の接触レンチ のインデックスである.

return $\boldsymbol{A}_{act\text{-}react} \in \mathbb{R}^{6N_{act\text{-}react} \times (6N_{cnt} + 6N_{cnt\text{-}obj})}$

:act-react-equality-constraint-vector &key (update? t)

[method]

[method]

return $\boldsymbol{b}_{act\text{-}react} \in \mathbb{R}^{6N_{act\text{-}react}}$

:variant-config-equality-constraint-matrix &key (update? nil)

$$\mathbf{A}_{act\text{-}react} \begin{pmatrix} \Delta \hat{\mathbf{w}} \\ \Delta \hat{\mathbf{w}}_{obj} \end{pmatrix} = \mathbf{b}_{act\text{-}react}$$

$$(4.47)$$

$$\Leftrightarrow \left(\boldsymbol{O} \quad \boldsymbol{A}_{act\text{-}react} \quad \boldsymbol{O} \right) \begin{pmatrix} \Delta \boldsymbol{\theta} \\ \Delta \hat{\boldsymbol{w}} \\ \Delta \hat{\boldsymbol{w}}_{obj} \\ \Delta \boldsymbol{\tau} \end{pmatrix} = \boldsymbol{b}_{act\text{-}react}$$
(4.48)

$$\Leftrightarrow A_{var} \Delta q_{var} = b_{var} \tag{4.49}$$

 $\text{return } \boldsymbol{A}_{var} := \begin{pmatrix} \boldsymbol{O} & \boldsymbol{A}_{act\text{-}react} & \boldsymbol{O} \end{pmatrix} \in \mathbb{R}^{6N_{act\text{-}react} \times dim(\boldsymbol{q}_{var})}$

:variant-config-equality-constraint-vector
$$\&key\ (update?\ t)$$

[method]

return $\boldsymbol{b}_{var} := \boldsymbol{b}_{act\text{-}react} \in \mathbb{R}^{6N_{act\text{-}react}}$

:invariant-config-equality-constraint-matrix &key (update? nil)

[method]

return $\boldsymbol{A}_{invar} \in \mathbb{R}^{0 \times dim(\boldsymbol{q}_{invar})}$ (no equality constraint)

:invariant-config-equality-constraint-vector &key (update? t)

[method]

return $\boldsymbol{b}_{invar} \in \mathbb{R}^0$ (no equality constraint)

:config-equality-constraint-matrix &key (update? nil)

[method]

$$\mathbf{A}_{var} \Delta \mathbf{q}_{var} = \mathbf{b}_{var} \tag{4.50}$$

$$\mathbf{A}_{var} \Delta \mathbf{q}_{var} = \mathbf{b}_{var}$$

$$\Leftrightarrow \left(\mathbf{A}_{var} \quad \mathbf{O} \right) \begin{pmatrix} \Delta \mathbf{q}_{var} \\ \Delta \mathbf{q}_{invar} \end{pmatrix} = \mathbf{b}_{var}$$

$$\Leftrightarrow \mathbf{A} \Delta \mathbf{q} = \mathbf{b}$$

$$(4.51)$$

$$\Leftrightarrow \quad A\Delta q = b \tag{4.52}$$

return $m{A} := egin{pmatrix} m{A}_{var} & m{O} \end{pmatrix} \in \mathbb{R}^{N_{eq} imes dim(m{q})}$

:config-equality-constraint-vector &key (update? t)

[method]

return $\boldsymbol{b} := \boldsymbol{b}_{var} \in \mathbb{R}^{N_{eq}}$

:torque-regular-matrix &key (update? nil)

[method]

(only-variant? nil)

二次形式の正則化項として次式を考える.

$$F_{tau}(\mathbf{q}) = \left\| \frac{\mathbf{\tau}}{\mathbf{\tau}_{max}} \right\|^2$$
 (ベクトルの要素ごとの割り算を表す) (4.53)

$$= \boldsymbol{\tau}^T \bar{\boldsymbol{W}}_{tra} \boldsymbol{\tau} \tag{4.54}$$

ここで,

$$\bar{\boldsymbol{W}}_{trq} := \begin{pmatrix} \frac{1}{\tau_{max,1}^2} & & & & \\ & \frac{1}{\tau_{max,2}^2} & & & & \\ & & \ddots & & & \\ & & & \frac{1}{\tau_{max,N_{transions}}^2} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{\tau}) \times dim(\boldsymbol{\tau})}$$

$$(4.55)$$

only-variant? is true:

$$\boldsymbol{W}_{trq} := \begin{pmatrix} dim(\boldsymbol{\theta}) & dim(\hat{\boldsymbol{w}}) & dim(\hat{\boldsymbol{w}}_{obj}) & dim(\boldsymbol{\tau}) \\ dim(\hat{\boldsymbol{w}}) & \\ dim(\hat{\boldsymbol{w}}_{obj}) \\ dim(\boldsymbol{\tau}) \end{pmatrix} \left(\begin{pmatrix} dim(\hat{\boldsymbol{w}}) & dim(\hat{\boldsymbol{w}}_{obj}) & dim(\boldsymbol{\tau}) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

otherwise:

$$dim(\boldsymbol{\theta}) \quad dim(\hat{\boldsymbol{w}}) \quad dim(\hat{\boldsymbol{w}}_{obj}) \quad dim(\boldsymbol{\tau}) \quad dim(\boldsymbol{\phi})$$

$$dim(\boldsymbol{\theta}) \quad dim(\hat{\boldsymbol{w}}) \quad dim(\hat{\boldsymbol{w}})$$

$$dim(\hat{\boldsymbol{v}}) \quad dim(\boldsymbol{\tau}) \quad dim(\boldsymbol{\phi})$$

$$dim(\boldsymbol{\phi}) \quad \bar{\boldsymbol{W}}_{trq} \quad \bar{\boldsymbol{W}}_{trq}$$

return \boldsymbol{W}_{trq}

 $\begin{array}{ccc} \textbf{:torque-regular-vector} \ \mathscr{C}key & (update? \ t) & \\ & & (only\text{-}variant? \ nil) \end{array}$

$$\bar{\boldsymbol{v}}_{trq} := \bar{\boldsymbol{W}}_{trq} \boldsymbol{\tau} \tag{4.58}$$

$$= \begin{pmatrix} \frac{\tau_1}{\tau_{max,1}^2} \\ \frac{\tau_2}{\tau_{max,2}^2} \\ \vdots \\ \frac{\tau_{dim}(\boldsymbol{\tau})}{\tau_{max,dim}^2(\boldsymbol{\tau})} \end{pmatrix} \in \mathbb{R}^{dim(\boldsymbol{\tau})} \tag{4.59}$$

only-variant? is true:

otherwise:

$$\begin{array}{c}
dim(\boldsymbol{\theta}) \\
dim(\hat{\boldsymbol{w}}) \\
\boldsymbol{v}_{trq} := dim(\hat{\boldsymbol{w}}_{obj}) \\
dim(\boldsymbol{\tau}) \\
dim(\boldsymbol{\phi})
\end{array} \in \mathbb{R}^{dim(\boldsymbol{q})} \tag{4.61}$$

 $return \ \boldsymbol{v}_{trq}$

:collision-inequality-constraint-matrix &key (update? nil)

[method]

$$dim(\boldsymbol{\theta}) \quad dim(\hat{\boldsymbol{w}}) \quad dim(\hat{\boldsymbol{w}}_{obj}) \quad dim(\boldsymbol{\tau}) \quad dim(\boldsymbol{\phi})$$

$$\boldsymbol{C}_{col} := N_{col} \left(\begin{array}{ccc} \boldsymbol{C}_{col,\theta} & \boldsymbol{O} & \boldsymbol{O} & \boldsymbol{C}_{col,\phi} \end{array} \right)$$

$$(4.62)$$

return $\boldsymbol{C}_{col} \in \mathbb{R}^{N_{col} \times dim(\boldsymbol{q})}$

: update-viewer

[method]

Update viewer.

:print-status [method]

Print status.

Bスプラインを用いた関節軌道生成 4.2

4.2.1 B スプラインを用いた関節軌道生成の理論

一般のBスプライン基底関数の定義

B スプライン基底関数は以下で定義される.

$$b_{i,0}(t) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } t_i \le t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$b_{i,n}(t) \stackrel{\text{def}}{=} \frac{t - t_i}{t_{i+n} - t_i} b_{i,n-1}(t) + \frac{t_{i+n+1} - t}{t_{i+n+1} - t_{i+1}} b_{i+1,n-1}(t)$$

$$(4.64)$$

$$b_{i,n}(t) \stackrel{\text{def}}{=} \frac{t - t_i}{t_{i+n} - t_i} b_{i,n-1}(t) + \frac{t_{i+n+1} - t}{t_{i+n+1} - t_{i+1}} b_{i+1,n-1}(t)$$

$$(4.64)$$

 t_i はノットと呼ばれる.

使用区間を指定してノットを一様とする場合の B スプライン基底関数

 t_s, t_f を $\mathrm B$ スプラインの使用区間の初期,終端時刻とする.

n < mとする.

$$t_n = t_s \tag{4.65}$$

$$t_m = t_f (4.66)$$

とする . t_i $(0 \le i \le n+m)$ が等間隔に並ぶとすると ,

$$t_i = \frac{i-n}{m-n}(t_f - t_s) + t_s (4.67)$$

$$= hi + \frac{mt_s - nt_f}{m - n} \tag{4.68}$$

ただし,

$$h \stackrel{\text{def}}{=} \frac{t_f - t_s}{m - n} \tag{4.69}$$

式 (4.68) を式 (4.63), 式 (4.64) に代入すると, B スプライン基底関数は次式で得られる.

$$b_{i,0}(t) = \begin{cases} 1 & \text{if } t_i \le t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$(4.70)$$

$$b_{i,n}(t) = \frac{(t-t_i)b_{i,n-1}(t) + (t_{i+n+1}-t)b_{i+1,n-1}(t)}{nh}$$
(4.71)

以降では,nをBスプラインの次数,mを制御点の個数と呼ぶ.

B スプラインの凸包性

式 (4.70), 式 (4.71) で定義される B スプライン基底関数 $b_{i,n}(t)$ は次式のように凸包性を持つ.

$$\sum_{i=0}^{m-1} b_{i,n}(t) = 1 \quad (t_s \le t \le t_f)$$
(4.72)

$$0 \le b_{i,n}(t) \le 1 \quad (i = 0, 1, \dots, m - 1, \ t_s \le t \le t_f)$$

$$(4.73)$$

B スプラインの微分

B スプライン基底関数の微分に関して次式が成り立つ 11 .

$$\dot{\boldsymbol{b}}_n(t) = \frac{d\boldsymbol{b}_n(t)}{dt} = \boldsymbol{D}\boldsymbol{b}_{n-1}(t) \tag{4.74}$$

ただし,

$$\boldsymbol{b}_{n}(t) \stackrel{\text{def}}{=} \begin{pmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{m-1,n}(t) \end{pmatrix} \in \mathbb{R}^{m}$$

$$(4.75)$$

$$D \stackrel{\text{def}}{=} \frac{1}{h} \begin{pmatrix} 1 & -1 & & O \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & -1 \\ O & & & 1 \end{pmatrix} \in \mathbb{R}^{m \times m}$$

$$(4.76)$$

したがって, k 階微分に関して次式が成り立つ.

$$\boldsymbol{b}_{n}^{(k)}(t) = \frac{d^{(k)}\boldsymbol{b}_{n}(t)}{dt^{(k)}} = \boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)$$
(4.77)

B スプラインによる関節角軌道の表現

j 番目の関節角軌道 $\theta_i(t)$ を次式で表す.

$$\theta_j(t) \stackrel{\text{def}}{=} \sum_{i=0}^{m-1} p_{j,i} b_{i,n}(t) = \boldsymbol{p}_j^T \boldsymbol{b}_n(t) \in \mathbb{R} \quad (t_s \le t \le t_f)$$

$$(4.78)$$

ただし,

$$\boldsymbol{p}_{j} = \begin{pmatrix} p_{j,0} \\ p_{j,1} \\ \vdots \\ p_{i,m-1} \end{pmatrix} \in \mathbb{R}^{m}, \quad \boldsymbol{b}_{n}(t) = \begin{pmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{m-1,n}(t) \end{pmatrix} \in \mathbb{R}^{m}$$

$$(4.79)$$

以降では, $m{p}_j$ を制御点, $m{b}_n(t)$ を基底関数と呼ぶ.制御点 $m{p}_j$ を決定すると関節角軌道が定まる.制御点 $m{p}_j$ を動作計画の設計変数とする.

 $j=1,2,\cdots,N_{joint}$ 番目の関節角軌道を並べたベクトル関数は ,

$$\boldsymbol{\theta}(t) \stackrel{\text{def}}{=} \begin{pmatrix} \theta_{1}(t) \\ \theta_{2}(t) \\ \vdots \\ \theta_{N_{joint}}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{p}_{1}^{T}\boldsymbol{b}_{n}(t) \\ \boldsymbol{p}_{2}^{T}\boldsymbol{b}_{n}(t) \\ \vdots \\ \boldsymbol{p}_{N_{joint}}^{T}\boldsymbol{b}_{n}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{p}_{1}^{T} \\ \boldsymbol{p}_{2}^{T} \\ \vdots \\ \boldsymbol{p}_{N_{joint}}^{T} \end{pmatrix} \boldsymbol{b}_{n}(t) = \boldsymbol{P}\boldsymbol{b}_{n}(t) \in \mathbb{R}^{N_{joint}}$$

$$(4.80)$$

ただし,

$$\boldsymbol{P} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{p}_{1}^{T} \\ \boldsymbol{p}_{2}^{T} \\ \vdots \\ \boldsymbol{p}_{N_{\text{ioint}}}^{T} \end{pmatrix} \in \mathbb{R}^{N_{joint} \times m}$$

$$(4.81)$$

¹¹数学的帰納法で証明できる . http://mat.fsv.cvut.cz/gcg/sbornik/prochazkova.pdf

式 (4.80) は,制御点を縦に並べたベクトルとして分離して,以下のようにも表現できる.

$$\boldsymbol{\theta}(t) = \begin{pmatrix} \theta_{1}(t) \\ \theta_{2}(t) \\ \vdots \\ \theta_{N_{joint}}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t)\boldsymbol{p}_{1} \\ \boldsymbol{b}_{n}^{T}(t)\boldsymbol{p}_{2} \\ \vdots \\ \boldsymbol{b}_{n}^{T}(t)\boldsymbol{p}_{N_{ioint}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_{n}^{T}(t) & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{b}_{n}^{T}(t) \end{pmatrix} \begin{pmatrix} \boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \vdots \\ \boldsymbol{p}_{N_{joint}} \end{pmatrix} = \boldsymbol{B}_{n}(t)\boldsymbol{p} \in \mathbb{R}^{N_{joint}} (4.82)$$

ただし,

$$\boldsymbol{B}_{n}(t) \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_{n}^{T}(t) & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{b}_{n}^{T}(t) \end{pmatrix} \in \mathbb{R}^{N_{joint} \times mN_{joint}}, \quad \boldsymbol{p} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \vdots \\ \boldsymbol{p}_{N_{joint}} \end{pmatrix} \in \mathbb{R}^{mN_{joint}}$$
(4.83)

B スプラインによる関節角軌道の微分

式 (4.80) と式 (4.74) から,関節角速度軌道は次式で得られる.

$$\dot{\boldsymbol{\theta}}(t) = \boldsymbol{P}\dot{\boldsymbol{b}}_n(t) \tag{4.84}$$

$$= PDb_{n-1}(t) \tag{4.85}$$

$$= \begin{pmatrix} \boldsymbol{p}_{1}^{T} \\ \vdots \\ \boldsymbol{p}_{N_{inint}}^{T} \end{pmatrix} \boldsymbol{D} \boldsymbol{b}_{n-1}(t) \tag{4.86}$$

$$= \begin{pmatrix} \boldsymbol{p}_{1}^{T} \boldsymbol{D} \boldsymbol{b}_{n-1}(t) \\ \vdots \\ \boldsymbol{p}_{N-1}^{T} \boldsymbol{D} \boldsymbol{b}_{n-1}(t) \end{pmatrix}$$

$$(4.87)$$

$$\begin{pmatrix} \boldsymbol{p}_{N_{joint}}^{T} \boldsymbol{D} \boldsymbol{b}_{n-1}(t) \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{b}_{n-1}^{T}(t) \boldsymbol{D}^{T} \boldsymbol{p}_{1} \\ \vdots \\ \boldsymbol{b}_{n-1}^{T}(t) \boldsymbol{D}^{T} \boldsymbol{p}_{N_{joint}} \end{pmatrix}$$

$$(4.88)$$

$$= \begin{pmatrix} \boldsymbol{b}_{n-1}^{T}(t)\boldsymbol{D}^{T} & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & \boldsymbol{b}_{n-1}^{T}(t)\boldsymbol{D}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{p}_{1} \\ \vdots \\ \boldsymbol{p}_{N_{joint}} \end{pmatrix}$$
(4.89)

$$=\begin{pmatrix} O & b_{n-1}^{T}(t)D^{T}/\langle p_{N_{joint}}\rangle \\ b_{n-1}^{T}(t) & O \\ & \ddots & \\ O & b_{n-1}^{T}(t)\end{pmatrix}\begin{pmatrix} D^{T} & O \\ & \ddots & \\ O & D^{T}\end{pmatrix}\begin{pmatrix} p_{1} \\ \vdots \\ p_{N_{joint}}\end{pmatrix}$$
(4.90)

$$= \boldsymbol{B}_{n-1}(t)\hat{\boldsymbol{D}}_{1}\boldsymbol{p} \tag{4.91}$$

ただし,

$$\hat{\boldsymbol{D}}_{1} = \begin{pmatrix} \boldsymbol{D}^{T} & & \boldsymbol{O} \\ & \boldsymbol{D}^{T} & \\ & & \ddots & \\ \boldsymbol{O} & & \boldsymbol{D}^{T} \end{pmatrix} \in \mathbb{R}^{mN_{joint} \times mN_{joint}}$$

$$(4.92)$$

同様にして,関節角軌道の k 階微分は次式で得られる.

$$\boldsymbol{\theta}^{(k)}(t) = \frac{d^{(k)}\boldsymbol{\theta}(t)}{dt^{(k)}} \tag{4.93}$$

$$= PD^k b_{n-k}(t) \tag{4.94}$$

$$= \boldsymbol{B}_{n-k}(t)\hat{\boldsymbol{D}}_{k}\boldsymbol{p} \tag{4.95}$$

ただし,

$$\hat{\mathbf{D}}_{k} = \begin{pmatrix} (\mathbf{D}^{k})^{T} & \mathbf{O} \\ & \ddots & \\ \mathbf{O} & (\mathbf{D}^{k})^{T} \end{pmatrix} = (\hat{\mathbf{D}}_{1})^{k} \in \mathbb{R}^{mN_{joint} \times mN_{joint}}$$

$$(4.96)$$

計算時間は式 (4.94) のほうが式 (4.95) より速い.

エンドエフェクタ位置姿勢拘束のタスク関数

関節角 $heta\in\mathbb{R}^{N_{joint}}$ からエンドエフェクタ位置姿勢 $r\in\mathbb{R}^6$ への写像を f(heta) で表す .

$$r = f(\theta) \tag{4.97}$$

関節角軌道が式(4.82)で表現されるとき,エンドエフェクタ軌道は次式で表される.

$$\mathbf{r}(t) = \mathbf{f}(\boldsymbol{\theta}(t)) = \mathbf{f}(\boldsymbol{B}_n(t)\mathbf{p}) \tag{4.98}$$

 $l=1,2,\cdots,N_{tm}$ について,時刻 t_l でエンドエフェクタの位置姿勢が r_l であるタスクのタスク関数は次式で表される.以降では, t_l をタイミングと呼ぶ.

$$e(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} \begin{pmatrix} e_{1}(\boldsymbol{p}, \boldsymbol{t}) \\ e_{2}(\boldsymbol{p}, \boldsymbol{t}) \\ \vdots \\ e_{N_{tm}}(\boldsymbol{p}, \boldsymbol{t}) \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{1} - \boldsymbol{f}(\boldsymbol{\theta}(t_{1})) \\ \boldsymbol{r}_{2} - \boldsymbol{f}(\boldsymbol{\theta}(t_{2})) \\ \vdots \\ \boldsymbol{r}_{N_{tm}} - \boldsymbol{f}(\boldsymbol{\theta}(t_{N_{tm}})) \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{1} - \boldsymbol{f}(\boldsymbol{B}_{n}(t_{1})\boldsymbol{p}) \\ \boldsymbol{r}_{2} - \boldsymbol{f}(\boldsymbol{B}_{n}(t_{2})\boldsymbol{p}) \\ \vdots \\ \boldsymbol{r}_{N_{tm}} - \boldsymbol{f}(\boldsymbol{B}_{n}(t_{N_{tm}})\boldsymbol{p}) \end{pmatrix} \in \mathbb{R}^{6N_{tm}}$$
(4.99)

ただし,

$$e_l(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} r_l - f(\boldsymbol{\theta}(t_l)) = r_l - f(\boldsymbol{B}_n(t_l)\boldsymbol{p}) \in \mathbb{R}^6 \ (l = 1, 2, \dots, N_{tm})$$
 (4.100)

$$\mathbf{t} \stackrel{\text{def}}{=} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_{N_{tm}} \end{pmatrix} \in \mathbb{R}^{N_{tm}} \tag{4.101}$$

このタスクを実現する関節角軌道は,次の評価関数を最小にする制御点 p , タイミング t を求めることで導出することができる.

$$F(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} \frac{1}{2} \|\boldsymbol{e}(\boldsymbol{p}, \boldsymbol{t})\|^2$$
(4.102)

$$= \frac{1}{2} \sum_{l=1}^{N_{tm}} ||r_l - f(\boldsymbol{\theta}(t_l))||^2$$
 (4.103)

$$= \frac{1}{2} \sum_{l=1}^{N_{tm}} \| \boldsymbol{r}_l - \boldsymbol{f}(\boldsymbol{B}_n(t_l)\boldsymbol{p}) \|^2$$
 (4.104)

また,l 番目の幾何拘束の許容誤差を $e_{tol,l} \geq \mathbf{0} \in \mathbb{R}^6$ とする場合,タスク関数 $ilde{e}_l(m{p},t)$ は次式で表される.

$$\tilde{e}_{l,i}(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} \begin{cases}
e_{l,i}(\boldsymbol{p}, \boldsymbol{t}) - e_{tol,l,i} & e_{l,i}(\boldsymbol{p}, \boldsymbol{t}) > e_{tol,l,i} \\
e_{l,i}(\boldsymbol{p}, \boldsymbol{t}) + e_{tol,l,i} & e_{l,i}(\boldsymbol{p}, \boldsymbol{t}) < -e_{tol,l,i} & (i = 1, 2, \dots, 6) \\
0 & \text{otherwise}
\end{cases} \tag{4.105}$$

 $ilde{e}_{l,i}(m{p},m{t})$ は $ilde{e}_l(m{p},m{t})$ の i 番目の要素である. $e_{l,i}(m{p},m{t})$ は $e(m{p},m{t})$ の i 番目の要素である.

タスク関数を制御点で微分したヤコビ行列

式 (4.104) を目的関数とする最適化問題を Gauss-Newton 法 , Levenberg-Marquardt 法や逐次二次計画法で解く場合 , タスク関数 (4.99) のヤコビ行列が必要となる .

各時刻でのエンドエフェクタ位置姿勢拘束のタスク関数 $e_l(m{p},t)$ の制御点 $m{p}$ に対するヤコビ行列は次式で求められる.

$$\frac{\partial \boldsymbol{e}_{l}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \frac{\partial}{\partial \boldsymbol{p}} \{ \boldsymbol{r}_{l} - \boldsymbol{f}(\boldsymbol{B}_{n}(t_{l})\boldsymbol{p}) \}$$
(4.106)

$$= -\frac{\partial}{\partial \mathbf{p}} \mathbf{f}(\mathbf{B}_n(t_l)\mathbf{p}) \tag{4.107}$$

$$= -\frac{\partial \mathbf{f}}{\partial \boldsymbol{\theta}} \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}(t_i)} \frac{\partial \boldsymbol{\theta}}{\partial \boldsymbol{p}} \tag{4.108}$$

$$= -J(\boldsymbol{\theta}(t_l)) \frac{\partial}{\partial \boldsymbol{p}} \{\boldsymbol{B}_n(t_l)\boldsymbol{p}\}$$
 (4.109)

$$= -J(\boldsymbol{\theta}(t_l))\boldsymbol{B}_n(t_l) \tag{4.110}$$

途中の変形で, $oldsymbol{ heta}(oldsymbol{p};t) = oldsymbol{B}_n(t)oldsymbol{p}$ であることを利用した.ただし,

$$\boldsymbol{J} \stackrel{\text{def}}{=} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\theta}} \tag{4.111}$$

タスク関数をタイミングで微分したヤコビ行列

各時刻でのエンドエフェクタ位置姿勢拘束のタスク関数 $e_l(p,t)$ のタイミング t に対するヤコビ行列は次式で求められる.

$$\frac{\partial e_l(\boldsymbol{p}, \boldsymbol{t})}{\partial t_l} = \frac{\partial}{\partial t_l} \{ \boldsymbol{r}_l - \boldsymbol{f}(\boldsymbol{P}\boldsymbol{b}_n(t_l)) \}$$
(4.112)

$$= -\frac{\partial}{\partial t_l} \mathbf{f}(\mathbf{P} \mathbf{b}_n(t_l)) \tag{4.113}$$

$$= -\frac{\partial \mathbf{f}}{\partial \boldsymbol{\theta}} \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}(t_l)} \frac{\partial \boldsymbol{\theta}}{\partial t_l}$$

$$\tag{4.114}$$

$$= -J(\boldsymbol{\theta}(t_l)) \frac{\partial}{\partial t_l} \{ \boldsymbol{P} \boldsymbol{b}_n(t_l) \}$$
 (4.115)

$$= -J(\boldsymbol{\theta}(t_l))P\dot{\boldsymbol{b}}_n(t_l) \tag{4.116}$$

$$= -J(\boldsymbol{\theta}(t_l))\boldsymbol{P}\boldsymbol{D}\boldsymbol{b}_{n-1}(t_l) \tag{4.117}$$

途中の変形で, $\theta(p;t) = Pb_n(t)$ であることを利用した.

初期・終端関節速度・加速度のタスク関数とヤコビ行列

初期,終端時刻の関節速度,加速度はゼロであるべきである.タスク関数は次式となる.

$$e_{sv}(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} \dot{\boldsymbol{\theta}}(t_s)$$
 (4.118)

$$= \boldsymbol{B}_{n-1}(t_s)\hat{\boldsymbol{D}}_1\boldsymbol{p} \tag{4.119}$$

$$= PDb_{n-1}(t_s) \tag{4.120}$$

$$e_{fv}(\boldsymbol{p}, \boldsymbol{t}) \stackrel{\text{def}}{=} \dot{\boldsymbol{\theta}}(t_f)$$
 (4.121)

$$= \boldsymbol{B}_{n-1}(t_f)\hat{\boldsymbol{D}}_1\boldsymbol{p} \tag{4.122}$$

$$= PDb_{n-1}(t_f) (4.123)$$

$$e_{sa}(\mathbf{p}, \mathbf{t}) \stackrel{\text{def}}{=} \ddot{\boldsymbol{\theta}}(t_s)$$
 (4.124)

$$= \boldsymbol{B}_{n-2}(t_s)\hat{\boldsymbol{D}}_2\boldsymbol{p} \tag{4.125}$$

$$= \boldsymbol{P}\boldsymbol{D}^2 \boldsymbol{b}_{n-2}(t_s) \tag{4.126}$$

$$e_{fa}(\mathbf{p}, t) \stackrel{\text{def}}{=} \ddot{\boldsymbol{\theta}}(t_f)$$
 (4.127)

$$= \boldsymbol{B}_{n-2}(t_f)\hat{\boldsymbol{D}}_2\boldsymbol{p} \tag{4.128}$$

$$= PD^2b_{n-2}(t_f) (4.129)$$

制御点で微分したヤコビ行列は次式で表される.

$$\frac{\partial \boldsymbol{e}_{sv}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-1}(t_s)\hat{\boldsymbol{D}}_1 \tag{4.130}$$

$$\frac{\partial e_{sv}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-1}(t_s)\hat{\boldsymbol{D}}_1 \qquad (4.130)$$

$$\frac{\partial e_{fv}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-1}(t_f)\hat{\boldsymbol{D}}_1 \qquad (4.131)$$

$$\frac{\partial e_{sa}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_s)\hat{\boldsymbol{D}}_2 \qquad (4.132)$$

$$\frac{\partial e_{fa}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_f)\hat{\boldsymbol{D}}_2 \qquad (4.133)$$

$$\frac{\partial \boldsymbol{e}_{sa}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_s)\hat{\boldsymbol{D}}_2 \tag{4.132}$$

$$\frac{\partial e_{fa}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_f)\hat{\boldsymbol{D}}_2 \tag{4.133}$$

初期時刻,終端時刻で微分したヤコビ行列は次式で表される.

$$\frac{\partial \boldsymbol{e}_{sv}(\boldsymbol{p}, \boldsymbol{t})}{\partial t_s} = \boldsymbol{P} \boldsymbol{D} \frac{\partial \boldsymbol{b}_{n-1}(t_s)}{\partial t_s} = \boldsymbol{P} \boldsymbol{D}^2 \boldsymbol{b}_{n-2}(t_s)$$
(4.134)

$$\frac{\partial e_{fv}(\boldsymbol{p}, \boldsymbol{t})}{\partial t_f} = \boldsymbol{P} \boldsymbol{D} \frac{\partial \boldsymbol{b}_{n-1}(t_f)}{\partial t_f} = \boldsymbol{P} \boldsymbol{D}^2 \boldsymbol{b}_{n-2}(t_f)$$

$$\frac{\partial e_{sa}(\boldsymbol{p}, \boldsymbol{t})}{\partial t_s} = \boldsymbol{P} \boldsymbol{D}^2 \frac{\partial \boldsymbol{b}_{n-2}(t_s)}{\partial t_s} = \boldsymbol{P} \boldsymbol{D}^3 \boldsymbol{b}_{n-3}(t_s)$$
(4.135)

$$\frac{\partial \boldsymbol{e}_{sa}(\boldsymbol{p}, \boldsymbol{t})}{\partial t_s} = \boldsymbol{P} \boldsymbol{D}^2 \frac{\partial \boldsymbol{b}_{n-2}(t_s)}{\partial t_s} = \boldsymbol{P} \boldsymbol{D}^3 \boldsymbol{b}_{n-3}(t_s)$$
(4.136)

$$\frac{\partial e_{fa}(\mathbf{p}, t)}{\partial t_f} = \mathbf{P} \mathbf{D}^2 \frac{\partial \mathbf{b}_{n-2}(t_f)}{\partial t_f} = \mathbf{P} \mathbf{D}^3 \mathbf{b}_{n-3}(t_f)$$
(4.137)

関節角上下限制約

式 (4.78) の関節角軌道定義において,

$$p_{j} \le \theta_{max,j} \mathbf{1}_{m} \tag{4.138}$$

のとき,B スプラインの凸包性 (式 (4.72),式 (4.73))より次式が成り立つ.ただし, $\mathbf{1}_m \in \mathbb{R}^m$ は全要素が 1

のm次元ベクトルである.

$$\theta_j(t) = \sum_{i=0}^{m-1} p_{j,i} b_{i,n}(t)$$
(4.139)

$$\leq \sum_{i=0}^{m-1} \theta_{\max,j} b_{i,n}(t) \tag{4.140}$$

$$= \theta_{max,j} \sum_{i=0}^{m-1} b_{i,n}(t) \tag{4.141}$$

$$= \theta_{max,j} \tag{4.142}$$

同様に , $\theta_{min,j}\mathbf{1}_m \leq p_j$ とすれば , $\theta_{min,j} \leq \theta_j(t)$ が成り立つ .

したがって,j 番目の関節角の上下限を $\theta_{max,j}, \theta_{min,j}$ とすると,次式の制約を制御点に課すことで,関節角上下限制約を満たす関節角軌道が得られる.

$$\theta_{min,j} \mathbf{1}_m \le \mathbf{p}_j \le \theta_{max,j} \mathbf{1}_m \ (j = 1, 2, \cdots, N_{joint}) \tag{4.143}$$

つまり,

$$\hat{E}\theta_{min} \le p \le \hat{E}\theta_{max} \tag{4.144}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} p \ge \begin{pmatrix} \hat{E}\theta_{min} \\ -\hat{E}\theta_{max} \end{pmatrix}$$
 (4.145)

ただし,

$$\hat{\boldsymbol{E}} \stackrel{\text{def}}{=} \begin{pmatrix} \mathbf{1}_m & \mathbf{0}_m \\ & \mathbf{1}_m & \\ & & \ddots \\ & & & \mathbf{1}_m \end{pmatrix} \in \mathbb{R}^{mN_{joint} \times N_{joint}}$$

$$(4.146)$$

これは,逐次二次計画法の中で,次式の不等式制約となる.

$$\begin{pmatrix} I \\ -I \end{pmatrix} \Delta p \ge \begin{pmatrix} \hat{E}\theta_{min} - p \\ -\hat{E}\theta_{max} + p \end{pmatrix}$$
(4.147)

関節角速度・角加速度上下限制約

式 (4.78) と式 (4.74) より,関節角速度軌道,角加速度軌道は次式で表される.

$$\dot{\theta}_j(t) = \boldsymbol{p}_j^T \dot{\boldsymbol{b}}_n(t) = \boldsymbol{p}_j^T \boldsymbol{D} \boldsymbol{b}_{n-1}(t) = (\boldsymbol{D}^T \boldsymbol{p}_j)^T \boldsymbol{b}_{n-1}(t) \in \mathbb{R} \quad (t_s \le t \le t_f)$$
(4.148)

$$\ddot{\theta}_j(t) = \boldsymbol{p}_j^T \boldsymbol{b}_n(t) = \boldsymbol{p}_j^T \boldsymbol{D}^2 \boldsymbol{b}_{n-2}(t) = ((\boldsymbol{D}^2)^T \boldsymbol{p}_j)^T \boldsymbol{b}_{n-2}(t) \in \mathbb{R} \quad (t_s \le t \le t_f)$$
(4.149)

j 番目の関節角速度,角加速度の上限を $v_{max,j}, a_{max,j}$ とする.関節角上下限制約の導出と同様に考えると,次式の制約を制御点に課すことで,関節角速度・角加速度上下限制約を満たす関節角軌道が得られる.

$$-v_{max,j}\mathbf{1}_m \le \mathbf{D}^T \mathbf{p}_i \le v_{max,j}\mathbf{1}_m \ (j=1,2,\cdots,N_{joint})$$

$$(4.150)$$

$$-a_{max,j}\mathbf{1}_m \le (\mathbf{D}^2)^T \mathbf{p}_i \le a_{max,j}\mathbf{1}_m \ (j=1,2,\cdots,N_{joint})$$

$$\tag{4.151}$$

つまり,

$$-\hat{E}v_{max} \le \hat{D}_1 p \le \hat{E}v_{max} \tag{4.152}$$

$$\Leftrightarrow \begin{pmatrix} \hat{D}_1 \\ -\hat{D}_1 \end{pmatrix} p \ge \begin{pmatrix} -\hat{E}v_{max} \\ -\hat{E}v_{max} \end{pmatrix}$$

$$(4.153)$$

$$-\hat{E}a_{max} \le \hat{D}_2 p \le \hat{E}a_{max} \tag{4.154}$$

$$\Leftrightarrow \begin{pmatrix} \hat{D}_2 \\ -\hat{D}_2 \end{pmatrix} p \ge \begin{pmatrix} -\hat{E}a_{max} \\ -\hat{E}a_{max} \end{pmatrix}$$

$$(4.155)$$

これは,逐次二次計画法の中で,次式の不等式制約となる.

$$\begin{pmatrix} \hat{D}_1 \\ -\hat{D}_1 \end{pmatrix} \Delta \boldsymbol{p} \ge \begin{pmatrix} -\hat{E}\boldsymbol{v}_{max} - \hat{D}_1 \boldsymbol{p} \\ -\hat{E}\boldsymbol{v}_{max} + \hat{D}_1 \boldsymbol{p} \end{pmatrix}$$
(4.156)

$$\begin{pmatrix}
\hat{\boldsymbol{D}}_{1} \\
-\hat{\boldsymbol{D}}_{1}
\end{pmatrix} \Delta \boldsymbol{p} \ge \begin{pmatrix}
-\hat{\boldsymbol{E}} \boldsymbol{v}_{max} - \hat{\boldsymbol{D}}_{1} \boldsymbol{p} \\
-\hat{\boldsymbol{E}} \boldsymbol{v}_{max} + \hat{\boldsymbol{D}}_{1} \boldsymbol{p}
\end{pmatrix}$$

$$\begin{pmatrix}
\hat{\boldsymbol{D}}_{2} \\
-\hat{\boldsymbol{D}}_{2}
\end{pmatrix} \Delta \boldsymbol{p} \ge \begin{pmatrix}
-\hat{\boldsymbol{E}} \boldsymbol{a}_{max} - \hat{\boldsymbol{D}}_{2} \boldsymbol{p} \\
-\hat{\boldsymbol{E}} \boldsymbol{a}_{max} + \hat{\boldsymbol{D}}_{2} \boldsymbol{p}
\end{pmatrix}$$

$$(4.156)$$

タイミング上下限制約

タイミングが初期,終端時刻の間に含まれる制約は次式で表される.

$$t_s \le t_l \le t_f \quad (l = 1, 2, \dots, N_{tm})$$
 (4.158)

$$\Leftrightarrow \qquad t_s \mathbf{1} \le \mathbf{t} \le t_f \mathbf{1} \tag{4.159}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} t \ge \begin{pmatrix} t_s \mathbf{1} \\ -t_f \mathbf{1} \end{pmatrix} \tag{4.160}$$

これは,逐次二次計画法の中で,次式の不等式制約となる.

$$\begin{pmatrix} I \\ -I \end{pmatrix} \Delta t \ge \begin{pmatrix} t_s \mathbf{1} - t \\ -t_f \mathbf{1} + t \end{pmatrix} \tag{4.161}$$

(4.162)

また,タイミングの順序が入れ替わることを許容しない場合,その制約は次式で表される.

$$t_l \le t_{l+1} \quad (l = 1, 2, \dots, N_{tm} - 1)$$
 (4.163)

$$\Leftrightarrow -t_l + t_{l+1} \ge 0 \ (l = 1, 2, \dots, N_{tm} - 1)$$
 (4.164)

$$\Leftrightarrow \quad D_{tm}t \ge 0 \tag{4.165}$$

ただし,

$$D_{tm} = \begin{pmatrix} -1 & 1 & & & O \\ & -1 & 1 & & & \\ & & & \ddots & & \\ O & & & & -1 & 1 \end{pmatrix} \in \mathbb{R}^{(N_{tm}-1)\times N_{tm}}$$

$$(4.166)$$

これは,逐次二次計画法の中で,次式の不等式制約となる.

$$D_{tm}\Delta t \ge -D_{tm}t \tag{4.167}$$

関節角微分二乗積分最小化

関節角微分の二乗積分は次式で得られる。

$$F_{sqr,k}(\boldsymbol{p}) = \int_{t_s}^{t_f} \left\| \boldsymbol{\theta}^{(k)}(t) \right\|^2 dt \tag{4.168}$$

$$= \int_{t_0}^{t_f} \left\| \boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_k \boldsymbol{p} \right\|^2 dt \tag{4.169}$$

$$= \int_{t_s}^{t_f} \left(\boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_k \boldsymbol{p} \right)^T \left(\boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_k \boldsymbol{p} \right) dt$$
 (4.170)

$$= p^{T} \left\{ \int_{t}^{t_{f}} \left(\boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_{k} \right)^{T} \boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_{k} dt \right\} \boldsymbol{p}$$
(4.171)

$$= \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} \tag{4.172}$$

ただし,

$$\boldsymbol{H}_{k} = \int_{t}^{t_{f}} \left(\boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_{k} \right)^{T} \boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_{k} dt$$
(4.173)

$$B_{n-k}(t)\hat{D}_{k} = \begin{pmatrix} b_{n-k}^{T}(t) & O \\ & \ddots \\ O & b_{n-k}^{T}(t) \end{pmatrix} \begin{pmatrix} (D^{k})^{T} & O \\ & \ddots \\ O & (D^{k})^{T} \end{pmatrix}$$

$$= \begin{pmatrix} b_{n-k}^{T}(t)(D^{k})^{T} & O \\ & \ddots \\ O & b_{n-k}^{T}(t)(D^{k})^{T} \end{pmatrix}$$

$$= \begin{pmatrix} \left(D^{k}b_{n-k}(t)\right)^{T} & O \\ & \ddots \\ O & \left(D^{k}b_{n-k}(t)\right)^{T} \end{pmatrix}$$

$$(4.175)$$

$$= \begin{pmatrix} \left(D^{k}b_{n-k}(t)\right)^{T} & O \\ & \ddots \\ O & \left(D^{k}b_{n-k}(t)\right)^{T} \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{b}_{n-k}^{T}(t)(\boldsymbol{D}^{k})^{T} & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & \boldsymbol{b}_{n-k}^{T}(t)(\boldsymbol{D}^{k})^{T} \end{pmatrix}$$

$$(4.175)$$

$$= \begin{pmatrix} \left(\mathbf{D}^{k} \mathbf{b}_{n-k}(t) \right)^{T} & \mathbf{O} \\ & \ddots & \\ \mathbf{O} & \left(\mathbf{D}^{k} \mathbf{b}_{n-k}(t) \right)^{T} \end{pmatrix}$$

$$(4.176)$$

$$\begin{pmatrix} \boldsymbol{B}_{n-k}(t)\hat{\boldsymbol{D}}_{k} \end{pmatrix}^{T} \boldsymbol{B}_{n-k}(t) = \begin{pmatrix} \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} & \boldsymbol{O} \\ & \ddots & \\ & \boldsymbol{O} & \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \end{pmatrix}^{T} \begin{pmatrix} \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} & \boldsymbol{O} \\ & \ddots & \\ & \boldsymbol{O} & \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \end{pmatrix}^{T} \begin{pmatrix} \boldsymbol{O} & \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \\ \boldsymbol{O} & \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \end{pmatrix} \\
= \begin{pmatrix} \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)\left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} & \boldsymbol{O} \\ & \ddots & \\ & \boldsymbol{O} & \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)\left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \end{pmatrix} \tag{4.178}$$

これを逐次二次計画問題において,二次形式の正則化項として目的関数に加えることで,滑らかな動作が生成 されることが期待される.

動作期間の最小化

動作期間 (t_f-t_s) の二乗は次式で表される.

$$F_{duration}(\boldsymbol{t}) = |t_1 - t_{N_{tm}}|^2 \tag{4.179}$$

$$= \mathbf{t}^T \begin{pmatrix} 1 & -1 \\ & \\ -1 & 1 \end{pmatrix} \mathbf{t} \tag{4.180}$$

ただし,初期時刻 $t_s=t_1$,終端時刻 $t_f=t_{N_{tm}}$ がタイミングベクトル t の最初,最後の要素であるとする.これを逐次二次計画問題において,二次形式の正則化項として目的関数に加えることで,短時間でタスクを実現する動作が生成されることが期待される.

4.2.2 B スプラインを用いた関節軌道生成の実装

bspline-configuration-task

[class]

```
:super
            propertied-object
:slots
             (_robot robot instance)
             (\_control-vector p)
             (\_timing-vector t)
             (_num-kin N_{kin} := |\mathcal{T}^{kin-trg}| = |\mathcal{T}^{kin-att}|)
             (\text{\_num-joint } N_{joint} := |\mathcal{J}|)
             (_num-control-point N_{ctrl})
             (_num-timing N_{tm})
             (_bspline-order B-spline order, n)
             (\_dim\text{-control-vector }dim(\mathbf{p}))
             (\_dim-timing-vector \ dim(t))
             (-dim\text{-config }dim(q))
             (_{\text{dim-task}} dim(e))
             (_num-collision N_{col} := number of collision check pairs)
             (_stationery-start-finish-task-scale k_{stat})
             (_first-diff-square-integration-regular-scale k_{sqr,1})
             (_{second-diff-square-integration-regular-scale} k_{sqr,2})
             (_third-diff-square-integration-regular-scale k_{sqr,\beta})
             (\_motion-duration-regular-scale k_{duration})
             (\_norm-regular-scale-max k_{max,p})
             (_norm-regular-scale-offset k_{off,p})
             (_timing-norm-regular-scale-max k_{max,t})
             (_timing-norm-regular-scale-offset k_{off,t})
             (_{ioint-list} \mathcal{J})
             (_{\rm start-time} t_s)
             (_finish-time t_f)
             (_kin-time-list \{t_1^{kin-tm}, t_2^{kin-tm}, \cdots, t_{N_{tim}}^{kin-tm}\})
             (_kin-variable-timing-list list of bool. t for variable timing.)
             (_kin-target-coords-list \mathcal{T}^{kin-trg})
             (_kin-attention-coords-list \mathcal{T}^{kin-att})
             (_kin-pos-tolerance-list list of position tolerance e_{tol,pos} [m])
             (_kin-rot-tolerance-list list of rotation tolerance e_{tol,rot} [rad])
             (_joint-angle-margin margin of \boldsymbol{\theta} [deg] [mm])
             (_collision-pair-list list of bodyset-link or body pair)
             (_keep-timing-order? whether to keep order of timing t or not)
             (_bspline-matrix buffer for B_n(t))
```

(_diff-mat buffer for \boldsymbol{D}^k)
(_diff-mat-list buffer for $\{\boldsymbol{D}^1,\boldsymbol{D}^2,\cdots,\boldsymbol{D}^K\}$)
(_extended-diff-mat-list buffer for $\{\hat{\boldsymbol{D}}_1,\hat{\boldsymbol{D}}_2,\cdots,\hat{\boldsymbol{D}}_K\}$)
(_task-jacobi buffer for $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}}$)
(_regular-mat buffer for \boldsymbol{W}_{reg})
(_regular-vec buffer for \boldsymbol{v}_{reg})

 $\mathrm B$ スプラインを利用した軌道生成のためのコンフィギュレーション q とタスク関数 e(q) のクラス.

コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $\frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのメソッドが定義されている.

コンフィギュレーション・タスク関数を定めるために,初期化時に以下を与える

ロボット

robot ロボットのインスタンス joint-list \mathcal{J} 関節

B スプラインのパラメータ

 ${f start-time}\ t_s\ {f B}\ {f Z}$ ラインの使用区間の初期時刻 ${f finish-time}\ t_f\ {f B}\ {f Z}$ ラインの使用区間の終端時刻 ${f num-control-point}\ N_{ctrl}\$ 制御点の個数 ${f bspline-order}\ n\ {f B}\ {f Z}$ ラインの次数

• 幾何拘束

kin-target-coords-list $\mathcal{T}^{kin-trg}$ 幾何到達目標位置姿勢リスト kin-attention-coords-list $\mathcal{T}^{kin-att}$ 幾何到達着目位置姿勢リスト kin-time-list $\{t_1^{kin-tm}, t_2^{kin-tm}, \cdots, t_{N_{kin}}^{kin-tm}\}$ 幾何到達タイミングリスト

kin-variable-timing-list 幾何到達タイミングが可変か (t), 固定か (nil) のリスト. このリスト内の t の個数がタイミング t の次元 N_{tm} となる .

コンフィギュレーション q は以下から構成される.

$$q := \begin{pmatrix} p \\ t \end{pmatrix} \tag{4.181}$$

 $m{p} \in \mathbb{R}^{N_{ctrl}N_{joint}}$ 制御点 (B スプライン基底関数の山の高さ) $[\mathrm{rad}]$ $[\mathrm{m}]$ $m{t} \in \mathbb{R}^{N_{tm}}$ タイミング (幾何拘束タスクの課される時刻) $[\mathrm{sec}]$

タスク関数 e(q) は以下から構成される.

$$e(q) := \begin{pmatrix} e^{kin}(q) \\ e^{stat}(q) \end{pmatrix} \in \mathbb{R}^{6N_{kin} + 4N_{joint}}$$

$$(4.182)$$

 $e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$ 幾何到達拘束 [rad] [m]

 $e^{stat}(q)\in\mathbb{R}^{4N_{joint}}$ 初期,終端時刻静止拘束 $[\mathrm{rad}][\mathrm{rad/s}][\mathrm{rad/s}^2][\mathrm{m}][\mathrm{m/s}][\mathrm{m/s}^2]$

```
:init &key (name)
                                                                                                                 [method]
              (robot)
              (joint-list (send robot :joint-list))
              (start-time \ 0.0)
              (finish-time 10.0)
              (num-control-point 10)
              (bspline-order 3)
              (kin-time-list)
              (kin-variable-timing-list (make-list (length kin-time-list) :initial-element nil))
              (kin-target-coords-list)
              (kin-attention-coords-list)
              (kin-pos-tolerance-list (make-list (length kin-time-list) :initial-element 0.0))
              (kin-rot-tolerance-list (make-list (length kin-time-list) :initial-element 0.0))
              (joint-angle-margin 3.0)
              (collision-pair-list)
              (keep-timing-order? t)
              (stationery-start-finish-task-scale\ 0.0)
              (first-diff-square-integration-regular-scale\ 0.0)
              (second-diff-square-integration-regular-scale\ 0.0)
              (third\text{-}diff\text{-}square\text{-}integration\text{-}regular\text{-}scale \ 0.0)
              (motion-duration-regular-scale 0.0)
              (norm-regular-scale-max 1.000000e-05)
              (norm-regular-scale-offset 1.000000e-07)
              (timing-norm-regular-scale-max 1.000000e-05)
              (timing-norm-regular-scale-offset 1.000000e-07)
      Initialize instance
:robot
                                                                                                                 [method]
       return robot instance
:joint-list
                                                                                                                 [method]
       return \mathcal{J}
:num-kin
                                                                                                                 [method]
       return N_{kin} := |\mathcal{T}^{kin\text{-}trg}| = |\mathcal{T}^{kin\text{-}att}|
:num-joint
                                                                                                                 [method]
       return N_{joint} := |\mathcal{J}|
:num-control-point
                                                                                                                 [method]
       return N_{ctrl}
:num-timing
                                                                                                                 [method]
       return N_{tm}
:num-collision
                                                                                                                 [method]
       return N_{col} := number of collision check pairs
:dim-config
                                                                                                                 [method]
       return dim(\mathbf{q}) := dim(\mathbf{p}) + dim(\mathbf{t}) = N_{ctrl}N_{joint} + N_{tm}
```

:dim-task

[method]

return $dim(\mathbf{e}) := dim(\mathbf{e}^{kin}) + dim(\mathbf{e}^{stat}) = 6N_{kin} + 4N_{joint}$

:control-vector

[method]

return control vector \boldsymbol{p}

:timing-vector

[method]

return timing vector t

:config-vector

[method]

$$\operatorname{return} \ q := egin{pmatrix} p \ t \end{pmatrix}$$

 $\textbf{:set-control-} vector \ \textit{control-} vector-new \ \textit{\&key} \ (\textit{relative?} \ \textit{nil})$

[method]

Set \boldsymbol{p} .

:set-timing-vector timing-vector-new &key (relative? nil)

[method]

Set t.

:set-config config-new &key (relative? nil)

[method]

Set q

:bspline-vector tm &key (order-offset 0)

[method]

$$\boldsymbol{b}_{n}(t) := \begin{pmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{N_{ctrl}-1,n}(t) \end{pmatrix} \in \mathbb{R}^{N_{ctrl}}$$

$$(4.183)$$

return $\boldsymbol{b}_n(t)$

:bspline-matrix tm &key (order-offset 0)

[method]

$$\boldsymbol{B}_{n}(t) := \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_{n}^{T}(t) & & \\ & & \ddots & \\ \boldsymbol{O} & & \boldsymbol{b}_{n}^{T}(t) \end{pmatrix} \in \mathbb{R}^{N_{joint} \times N_{ctrl} N_{joint}}$$

$$(4.184)$$

return $\boldsymbol{B}_n(t)$

:differential-matrix &key (diff-order 1)

[method]

$$D := \frac{1}{h} \begin{pmatrix} 1 & -1 & & O \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & -1 \\ O & & & 1 \end{pmatrix} \in \mathbb{R}^{N_{ctrl} \times N_{ctrl}}$$
(4.185)

return \boldsymbol{D}^k

:extended-differential-matrix &key (diff-order 1)

[method]

$$\hat{\boldsymbol{D}}_{k} := \begin{pmatrix} (\boldsymbol{D}^{k})^{T} & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & (\boldsymbol{D}^{k})^{T} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}N_{joint} \times N_{ctrl}N_{joint}}$$

$$(4.186)$$

return $\hat{\boldsymbol{D}}_k$

:bspline-differential-matrix tm &key (diff-order 1)

[method]

return
$$\boldsymbol{B}_{n-k}(t) \hat{\boldsymbol{D}}_k \in \mathbb{R}^{N_{joint} \times N_{ctrl} N_{joint}}$$

:control-matrix [method]

$$\boldsymbol{P} := \begin{pmatrix} \boldsymbol{p}_1^T \\ \boldsymbol{p}_2^T \\ \vdots \\ \boldsymbol{p}_{n_{joint}}^T \end{pmatrix} \in \mathbb{R}^{N_{joint} \times N_{ctrl}}$$

$$(4.187)$$

return \boldsymbol{P}

:theta tm

[method]

return
$$\boldsymbol{\theta}(t) = \boldsymbol{B}_n(t)\boldsymbol{p}$$
 [rad][m]

:theta-dot $tm \ \mathcal{E}key \ (diff\text{-}order \ 1)$

[method]

return
$$\boldsymbol{\theta}^{(k)}(t) = \frac{d^{(k)}\boldsymbol{\theta}(t)}{dt^{(k)}} = \boldsymbol{P}\boldsymbol{D}^k\boldsymbol{b}_{n-k}(t) \text{ [rad/s^k][m/s^k]}$$

:theta-dot-numerical tm &key (diff-order 1)

[method]

(delta-time 0.05

$$\text{return } \boldsymbol{\theta}^{(k)}(t) = \frac{d^{(k)}\boldsymbol{\theta}(t)}{dt^{(k)}} = \frac{\boldsymbol{\theta}^{(k-1)}(t+\Delta t) - \boldsymbol{\theta}^{(k-1)}(t)}{\Delta t} \text{ [rad/s^k][m/s^k]}$$

:apply-theta-to-robot tm

:kin-target-coords-list

[method]

apply $\boldsymbol{\theta}(t)$ to robot.

[method]

$$T_m^{kin\text{-}trg} = \{ \boldsymbol{p}_l^{kin\text{-}trg}, \boldsymbol{R}_l^{kin\text{-}trg} \} \ (l = 1, 2, \dots, N_{kin})$$
 (4.188)

return $\mathcal{T}^{kin\text{-}trg} := \{T_1^{kin\text{-}trg}, T_2^{kin\text{-}trg}, \cdots, T_{N_{kin}}^{kin\text{-}trg}\}$

:kin-attention-coords-list

[method]

$$T_m^{kin\text{-}att} = \{ \boldsymbol{p}_l^{kin\text{-}att}, \boldsymbol{R}_l^{kin\text{-}att} \} \ (l = 1, 2, \dots, N_{kin})$$
 (4.189)

return $\mathcal{T}^{kin\text{-}att} := \{T_1^{kin\text{-}att}, T_2^{kin\text{-}att}, \cdots, T_{N_{kin}}^{kin\text{-}att}\}$

:kin-start-time [method]

return $t_s^{kin} := t_1^{kin\text{-}tm}$

:kin-finish-time

[method]

return $t_f^{kin} := t_{N_{kin}}^{kin-tm}$

:motion-duration

[method]

return
$$(t_{N_{kin}}^{kin\text{-}tm}-t_{1}^{kin\text{-}tm})$$

:kinematics-task-value &key (update? t)

[method]

$$e^{kin}(\boldsymbol{q}) = e^{kin}(\boldsymbol{p}, t) \tag{4.190}$$

$$= \begin{pmatrix} e_1^{kin}(\boldsymbol{p}, \boldsymbol{t}) \\ e_2^{kin}(\boldsymbol{p}, \boldsymbol{t}) \\ \vdots \\ e_{N_{kin}}^{kin}(\boldsymbol{p}, \boldsymbol{t}) \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{p}_l^{kin-trg} - \boldsymbol{p}_l^{kin-att}(\boldsymbol{p}, \boldsymbol{t}) \\ \boldsymbol{a} \begin{pmatrix} \boldsymbol{R}_l^{kin-trg} \boldsymbol{R}_l^{kin-att}(\boldsymbol{p}, \boldsymbol{t})^T \end{pmatrix} \in \mathbb{R}^6 \quad (l = 1, 2, \dots, N_{kin})$$

$$(4.191)$$

$$\boldsymbol{e}_{l}^{kin}(\boldsymbol{p}, \boldsymbol{t}) = \begin{pmatrix} \boldsymbol{p}_{l}^{kin-trg} - \boldsymbol{p}_{l}^{kin-att}(\boldsymbol{p}, \boldsymbol{t}) \\ \boldsymbol{a} \left(\boldsymbol{R}_{l}^{kin-trg} \boldsymbol{R}_{l}^{kin-att}(\boldsymbol{p}, \boldsymbol{t})^{T} \right) \end{pmatrix} \in \mathbb{R}^{6} \quad (l = 1, 2, \dots, N_{kin})$$
(4.192)

a(R) は姿勢行列 R の等価角軸ベクトルを表す.

return $e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$

:stationery-start-finish-task-value &key (update? t)

[method]

$$e^{stat}(q) = e^{stat}(p, t)$$
 (4.193)

$$e^{stat}(\mathbf{q}) = e^{stat}(\mathbf{p}, \mathbf{t})$$

$$= \begin{pmatrix} e^{stat}_{sv}(\mathbf{p}, \mathbf{t}) \\ e^{stat}_{sv}(\mathbf{p}, \mathbf{t}) \\ e^{stat}_{fv}(\mathbf{p}, \mathbf{t}) \\ e^{stat}_{sa}(\mathbf{p}, \mathbf{t}) \\ e^{stat}_{fa}(\mathbf{p}, \mathbf{t}) \end{pmatrix}$$

$$(4.194)$$

$$\boldsymbol{e}_{sv}^{stat}(\boldsymbol{p}, \boldsymbol{t}) := \boldsymbol{\dot{\theta}}(t_s^{kin})$$
 (4.195)

$$e_{fv}^{stat}(\boldsymbol{p}, \boldsymbol{t}) := \dot{\boldsymbol{\theta}}(t_f^{kin})$$
 (4.196)

$$\begin{aligned}
e_{sv}^{stat}(\boldsymbol{p}, \boldsymbol{t}) &:= \dot{\boldsymbol{\theta}}(t_s^{kin}) \\
e_{fv}^{stat}(\boldsymbol{p}, \boldsymbol{t}) &:= \dot{\boldsymbol{\theta}}(t_f^{kin}) \\
e_{sa}^{stat}(\boldsymbol{p}, \boldsymbol{t}) &:= \ddot{\boldsymbol{\theta}}(t_s^{kin}) \\
e_{fa}^{stat}(\boldsymbol{p}, \boldsymbol{t}) &:= \ddot{\boldsymbol{\theta}}(t_s^{kin}) \\
e_{fa}^{stat}(\boldsymbol{p}, \boldsymbol{t}) &:= \ddot{\boldsymbol{\theta}}(t_f^{kin})
\end{aligned} \tag{4.195}$$

$$e_{fa}^{stat}(\boldsymbol{p}, \boldsymbol{t}) := \ddot{\boldsymbol{\theta}}(t_f^{kin})$$
 (4.198)

return $e^{stat}(q) \in \mathbb{R}^{4N_{joint}}$

[method]

:task-value &key (update? t)
$$\text{return } \boldsymbol{e}(\boldsymbol{q}) := \begin{pmatrix} \boldsymbol{e}^{kin}(\boldsymbol{q}) \\ k_{stat}\boldsymbol{e}^{stat}(\boldsymbol{q}) \end{pmatrix} \in \mathbb{R}^{6N_{kin}+4N_{joint}}$$

:kinematics-task-jacobian-with-control-vector

[method]

式 (4.110) より,タスク関数 e^{kin} を制御点 p で微分したヤコビ行列は次式で得られる.

$$\frac{\partial \boldsymbol{e}^{kin}}{\partial \boldsymbol{p}} = \begin{pmatrix}
\frac{\partial \boldsymbol{e}_{in}^{kin}}{\partial \boldsymbol{p}} \\
\frac{\partial \boldsymbol{e}_{in}^{kin}}{\partial \boldsymbol{p}} \\
\vdots \\
\frac{\partial \boldsymbol{e}_{N_{kin}}^{kin}}{\partial \boldsymbol{p}}
\end{pmatrix} (4.199)$$

$$\frac{\partial \boldsymbol{e}_{l}^{kin}}{\partial \boldsymbol{p}} = -\boldsymbol{J}^{kin\text{-}att}(\boldsymbol{\theta}(t_{l}^{kin\text{-}tm}))\boldsymbol{B}_{n}(t_{l}^{kin\text{-}tm}) \quad (l = 1, 2, \cdots, N_{kin})$$
(4.200)

$$\text{return } \frac{\partial \boldsymbol{e}^{kin}}{\partial \boldsymbol{p}} \in \mathbb{R}^{6N_{kin} \times N_{ctrl}N_{joint}}$$

: kine matics-task-jacobian-with-timing-vector

[method]

式 (4.117) より,タスク関数 e^{kin} をタイミング t で微分したヤコビ行列は次式で得られる.

$$\frac{\partial e^{kin}}{\partial t} = \begin{pmatrix} \frac{\partial e_{1}^{kin}}{\partial t} \\ \frac{\partial e_{2}^{kin}}{\partial t} \\ \vdots \\ \frac{\partial e_{N_{kin}}^{kin}}{\partial t} \end{pmatrix}$$
(4.201)

 $rac{\partial m{e}_l^{kin}}{\partial m{t}}$ の i 番目の列ベクトル $\left[rac{\partial m{e}_l^{kin}}{\partial m{t}}
ight]_i \in \mathbb{R}^6$ は次式で表される $(i=1,2,\cdots,N_{tm})$.

$$\left[\frac{\partial \boldsymbol{e}_{l}^{kin}}{\partial t}\right]_{i} = \begin{cases}
-\boldsymbol{J}^{kin-att}(\boldsymbol{\theta}(t_{l}^{kin-tm}))\boldsymbol{P}\boldsymbol{D}\boldsymbol{b}_{n-1}(t_{l}^{kin-tm}) & t_{l}^{kin-tm} \text{ and } t_{i} \text{ is identical} \\
\boldsymbol{0} & \text{otherwise}
\end{cases} (4.202)$$

return
$$\frac{\partial \boldsymbol{e}^{kin}}{\partial \boldsymbol{t}} \in \mathbb{R}^{6N_{kin} \times N_{tm}}$$

: stationery-start-finish-task-jacobian-with-control-vector

[method]

式 (4.130) , 式 (4.131) , 式 (4.132) , 式 (4.133) より , タスク関数 e^{stat} を制御点 p で微分したヤコビ行 列は次式で得られる.

$$\frac{\partial \boldsymbol{e}^{stat}}{\partial \boldsymbol{p}} = \begin{pmatrix} \frac{\partial \boldsymbol{e}^{stat}_{sav}}{\partial \boldsymbol{p}} \\ \partial \boldsymbol{e}^{stat}_{fv} \\ \partial \boldsymbol{p} \\ \frac{\partial \boldsymbol{e}^{stat}_{sa}}{\partial \boldsymbol{p}} \\ \partial \boldsymbol{e}^{stat}_{fa} \\ \partial \boldsymbol{p} \end{pmatrix} \tag{4.203}$$

$$\frac{\partial \boldsymbol{e}_{sv}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{n}} = \boldsymbol{B}_{n-1}(t_s^{kin})\hat{\boldsymbol{D}}_1 \tag{4.204}$$

$$\frac{\partial e_{sv}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-1}(t_s^{kin})\hat{\boldsymbol{D}}_1 \qquad (4.204)$$

$$\frac{\partial e_{fv}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-1}(t_f^{kin})\hat{\boldsymbol{D}}_1 \qquad (4.205)$$

$$\frac{\partial e_{sa}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_s^{kin})\hat{\boldsymbol{D}}_2 \qquad (4.206)$$

$$\frac{\partial e_{fa}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_f^{kin})\hat{\boldsymbol{D}}_2 \qquad (4.207)$$

$$\frac{\partial \boldsymbol{e}_{sa}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_s^{kin}) \hat{\boldsymbol{D}}_2$$
 (4.206)

$$\frac{\partial \boldsymbol{e}_{fa}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{p}} = \boldsymbol{B}_{n-2}(t_f^{kin})\hat{\boldsymbol{D}}_2 \tag{4.207}$$

$$\text{return } \frac{\partial \boldsymbol{e}^{stat}}{\partial \boldsymbol{p}} \in \mathbb{R}^{4N_{joint} \times N_{ctrl}N_{joint}}$$

:stationery-start-finish-task-jacobian-with-timing-vector

[method]

式 (4.134),式 (4.135),式 (4.136),式 (4.137) より,タスク関数 e^{stat} をタイミング t で微分したヤコ ビ行列は次式で得られる.

$$\frac{\partial e^{stat}}{\partial t} = \begin{pmatrix} \frac{\partial e^{stat}}{\partial t} \\ \frac{\partial e^{stat}}{\partial t} \end{pmatrix}$$
(4.208)

 $rac{\partial m{e}_x^{stat}}{\partial m{t}}$ の i 番目の列ベクトル $\left[rac{\partial m{e}_x^{stat}}{\partial m{t}}
ight]_i \in \mathbb{R}^{N_{joint}}$ は次式で表される $(x \in \{sv, fv, sa, fa\}, i=1, 2, \cdots, N_{tm})$.

$$\left[\frac{\partial e_{sv}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{t}}\right]_{i} = \begin{cases} \boldsymbol{P}\boldsymbol{D}^{2}\boldsymbol{b}_{n-2}(t_{s}^{kin}) & t_{s}^{kin} \text{ and } t_{i} \text{ is identical} \\ \boldsymbol{0} & \text{otherwise} \end{cases}$$
(4.209)

$$\left[\frac{\partial e_{fv}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{t}}\right]_{\cdot} = \begin{cases}
\boldsymbol{P}\boldsymbol{D}^{2}\boldsymbol{b}_{n-2}(t_{f}^{kin}) & t_{f}^{kin} \text{ and } t_{i} \text{ is identical} \\
\boldsymbol{0} & \text{otherwise}
\end{cases}$$
(4.210)

$$\left[\frac{\partial \boldsymbol{e}_{sa}^{stat}(\boldsymbol{p}, \boldsymbol{t})}{\partial \boldsymbol{t}}\right]_{i} = \begin{cases} \boldsymbol{P}\boldsymbol{D}^{3}\boldsymbol{b}_{n-3}(t_{s}^{kin}) & t_{s}^{kin} \text{ and } t_{i} \text{ is identical} \\ \boldsymbol{0} & \text{otherwise} \end{cases}$$
(4.211)

$$\begin{bmatrix}
\frac{\partial e_{sv}^{stat}(\boldsymbol{p}, t)}{\partial t} \end{bmatrix}_{i} = \begin{cases}
PD^{2}b_{n-2}(t_{s}^{kin}) & t_{s}^{kin} \text{ and } t_{i} \text{ is identical} \\
0 & \text{otherwise}
\end{cases} \tag{4.209}$$

$$\begin{bmatrix}
\frac{\partial e_{fv}^{stat}(\boldsymbol{p}, t)}{\partial t} \end{bmatrix}_{i} = \begin{cases}
PD^{2}b_{n-2}(t_{f}^{kin}) & t_{f}^{kin} \text{ and } t_{i} \text{ is identical} \\
0 & \text{otherwise}
\end{cases} \tag{4.210}$$

$$\begin{bmatrix}
\frac{\partial e_{sa}^{stat}(\boldsymbol{p}, t)}{\partial t} \end{bmatrix}_{i} = \begin{cases}
PD^{3}b_{n-3}(t_{s}^{kin}) & t_{s}^{kin} \text{ and } t_{i} \text{ is identical} \\
0 & \text{otherwise}
\end{cases} \tag{4.211}$$

$$\begin{bmatrix}
\frac{\partial e_{fa}^{stat}(\boldsymbol{p}, t)}{\partial t} \end{bmatrix}_{i} = \begin{cases}
PD^{3}b_{n-3}(t_{f}^{kin}) & t_{f}^{kin} \text{ and } t_{i} \text{ is identical} \\
0 & \text{otherwise}
\end{cases}
\tag{4.212}$$

$$\text{return } \frac{\partial \boldsymbol{e}^{stat}}{\partial \boldsymbol{t}} \in \mathbb{R}^{4N_{joint} \times N_{tm}}$$

:task-jacobian [method]

$$\frac{\partial \mathbf{e}}{\partial \mathbf{q}} = \frac{6N_{kin}}{4N_{joint}} \begin{pmatrix} \frac{\partial \mathbf{e}^{kin}}{\partial \mathbf{p}} & \frac{\partial \mathbf{e}^{kin}}{\partial \mathbf{t}} \\ \frac{\partial \mathbf{e}^{kin}}{\partial \mathbf{p}} & \frac{\partial \mathbf{e}^{kin}}{\partial \mathbf{t}} \\ k_{stat} \frac{\partial \mathbf{e}^{stat}}{\partial \mathbf{p}} & k_{stat} \frac{\partial \mathbf{e}^{stat}}{\partial \mathbf{t}} \end{pmatrix}$$
(4.213)

return $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}} = \mathbb{R}^{(6N_{kin} + 4N_{joint}) \times (N_{ctrl}N_{joint} + N_{tm})}$

:theta-max-vector &key (update? nil)

[method]

return $\boldsymbol{\theta}_{max} \in \mathbb{R}^{N_{joint}}$

:theta-min-vector &key (update? nil)

[method]

return $\boldsymbol{\theta}_{min} \in \mathbb{R}^{N_{joint}}$

:theta-inequality-constraint-matrix &key (update? nil)

[method]

式 (4.144) より,関節角度上下限制約は次式で表される.

(4.214)

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} \Delta p \ge \begin{pmatrix} \hat{E}\theta_{min} - p \\ -\hat{E}\theta_{max} + p \end{pmatrix}$$
(4.215)

$$\Leftrightarrow C_{\theta} \Delta p \ge d_{\theta} \tag{4.216}$$

ただし,

$$\hat{\boldsymbol{E}} := \begin{pmatrix} \mathbf{1}_{N_{ctrl}} & \mathbf{0}_{N_{ctrl}} \\ \mathbf{1}_{N_{ctrl}} & & \\ & \ddots & \\ \mathbf{0}_{N_{ctrl}} & & \mathbf{1}_{N_{ctrl}} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}N_{joint} \times N_{joint}}$$

$$(4.217)$$

 $\mathbf{1}_{N_{ctrl}} \in \mathbb{R}^{N_{ctrl}}$ は全要素が1 の N_{ctrl} 次元ベクトルである .

$$ext{return } oldsymbol{C_{ heta}} := egin{pmatrix} oldsymbol{I} \ -oldsymbol{I} \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint} imes N_{ctrl}N_{joint}}$$

:theta-inequality-constraint-vector
$$\&key~(update?~t)$$
return $oldsymbol{d}_{oldsymbol{ heta}} := \begin{pmatrix} \hat{oldsymbol{E}} oldsymbol{ heta}_{min} - oldsymbol{p} \\ -\hat{oldsymbol{E}} oldsymbol{ heta}_{max} + oldsymbol{p} \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint}}$

return $\boldsymbol{v}_{max} \in \mathbb{R}^{N_{joint}}$

[method]

:velocity-inequality-constraint-matrix &key (update? nil)

[method]

式 (4.152) より,関節速度上下限制約は次式で表される.

$$-\hat{E}v_{max} \le \hat{D}_1(p + \Delta p) \le \hat{E}v_{max}$$
(4.218)

$$\Leftrightarrow \begin{pmatrix} \hat{\boldsymbol{D}}_{1} \\ -\hat{\boldsymbol{D}}_{1} \end{pmatrix} \Delta \boldsymbol{p} \ge \begin{pmatrix} -\hat{\boldsymbol{E}} \boldsymbol{v}_{max} - \hat{\boldsymbol{D}}_{1} \boldsymbol{p} \\ -\hat{\boldsymbol{E}} \boldsymbol{v}_{max} + \hat{\boldsymbol{D}}_{1} \boldsymbol{p} \end{pmatrix}$$
(4.219)

$$\Leftrightarrow C_{\dot{\theta}} \Delta p \ge d_{\dot{\theta}} \tag{4.220}$$

$$\text{return } \boldsymbol{C}_{\boldsymbol{\dot{\theta}}} := \begin{pmatrix} \boldsymbol{\hat{D}}_1 \\ -\boldsymbol{\hat{D}}_1 \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint} \times N_{ctrl}N_{joint}}$$

:velocity-inequality-constraint-vector &key (update? t)

[method]

$$ext{return } oldsymbol{d}_{oldsymbol{\dot{ heta}}} := egin{pmatrix} -\hat{oldsymbol{E}} oldsymbol{v}_{max} - \hat{oldsymbol{D}}_1 oldsymbol{p} \ -\hat{oldsymbol{E}} oldsymbol{v}_{max} + \hat{oldsymbol{D}}_1 oldsymbol{p} \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint}}$$

:acceleration-max-vector &key (update? nil)

[method]

return $\boldsymbol{a}_{max} \in \mathbb{R}^{N_{joint}}$

:acceleration-inequality-constraint-matrix &key (update? nil)

[method]

式 (4.154) より,関節加速度上下限制約は次式で表される.

$$-\hat{E}a_{max} \le \hat{D}_2(p + \Delta p) \le \hat{E}a_{max} \tag{4.221}$$

$$\Leftrightarrow \begin{pmatrix} \hat{\mathbf{D}}_2 \\ -\hat{\mathbf{D}}_2 \end{pmatrix} \Delta \mathbf{p} \ge \begin{pmatrix} -\hat{\mathbf{E}} \mathbf{a}_{max} - \hat{\mathbf{D}}_2 \mathbf{p} \\ -\hat{\mathbf{E}} \mathbf{a}_{max} + \hat{\mathbf{D}}_2 \mathbf{p} \end{pmatrix}$$
(4.222)

$$\Leftrightarrow C_{\ddot{\theta}} \Delta p \ge d_{\ddot{\theta}} \tag{4.223}$$

$$\text{return } \boldsymbol{C}_{\ddot{\boldsymbol{\theta}}} := \begin{pmatrix} \hat{\boldsymbol{D}}_2 \\ -\hat{\boldsymbol{D}}_2 \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint} \times N_{ctrl}N_{joint}}$$

:acceleration-inequality-constraint-vector &key (update? t)

[method]

$$\text{return } \boldsymbol{d}_{\boldsymbol{\ddot{\theta}}} := \begin{pmatrix} -\hat{\boldsymbol{E}} \boldsymbol{a}_{max} - \hat{\boldsymbol{D}}_2 \boldsymbol{p} \\ -\hat{\boldsymbol{E}} \boldsymbol{a}_{max} + \hat{\boldsymbol{D}}_2 \boldsymbol{p} \end{pmatrix} \in \mathbb{R}^{2N_{ctrl}N_{joint}}$$

:control-vector-inequality-constraint-matrix &key (update? nil)

[method]

$$\begin{cases}
C_{\theta} \Delta p \ge d_{\theta} \\
C_{\dot{\theta}} \Delta p \ge d_{\dot{\theta}} \\
C_{\ddot{\theta}} \Delta p \ge d_{\ddot{\theta}}
\end{cases} (4.224)$$

$$\Leftrightarrow \begin{pmatrix} C_{\theta} \\ C_{\dot{\theta}} \\ C_{\ddot{\theta}} \end{pmatrix} \Delta p \ge \begin{pmatrix} d_{\theta} \\ d_{\dot{\theta}} \\ d_{\ddot{\theta}} \end{pmatrix} \tag{4.225}$$

$$\Leftrightarrow C_{p}\Delta p \ge d_{p} \tag{4.226}$$

$$\text{return } \boldsymbol{C}_{\boldsymbol{p}} := \begin{pmatrix} \boldsymbol{C}_{\boldsymbol{\theta}} \\ \boldsymbol{C}_{\dot{\boldsymbol{\theta}}} \\ \boldsymbol{C}_{\ddot{\boldsymbol{\theta}}} \end{pmatrix} \in \mathbb{R}^{N_{p\text{-}ineq} \times dim(\boldsymbol{p})}$$

:control-vector-inequality-constraint-vector &key (update? t)

$$ext{return } oldsymbol{d_p} := egin{pmatrix} oldsymbol{d_{ar{oldsymbol{ heta}}}} \ oldsymbol{d_{ar{oldsymbol{ heta}}}} \end{pmatrix} \in \mathbb{R}^{N_{p ext{-}ineq}}$$

:timing-vector-inequality-constraint-matrix &key (update? nil)

[method]

式 (4.159) より,タイミングがBスプラインの初期,終端時刻の間に含まれる制約は次式で表される.

$$t_s \mathbf{1} \le t + \Delta t \le t_f \mathbf{1} \tag{4.227}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} \Delta t \ge \begin{pmatrix} t_s \mathbf{1} - t \\ -t_f \mathbf{1} + t \end{pmatrix}$$
 (4.228)

また,式(4.165)より,タイミングの順序が入れ替わることを許容しない場合,その制約は次式で表さ れる.

$$D_{tm}(t + \Delta t) \ge 0 \tag{4.229}$$

$$\Leftrightarrow D_{tm}\Delta t \ge -D_{tm}t \tag{4.230}$$

ただし,

$$\mathbf{D}_{tm} = \begin{pmatrix} -1 & 1 & & & \mathbf{O} \\ & -1 & 1 & & & \\ & & & \ddots & & \\ \mathbf{O} & & & & -1 & 1 \end{pmatrix} \in \mathbb{R}^{(N_{tm}-1)\times N_{tm}}$$

$$(4.231)$$

これらを合わせると、

$$\begin{pmatrix} I \\ -I \\ D_{tm} \end{pmatrix} \Delta t \ge \begin{pmatrix} t_s \mathbf{1} - t \\ -t_f \mathbf{1} + t \\ -D_{tm} t \end{pmatrix} \Leftrightarrow C_t \Delta p \ge d_t$$

$$(4.232)$$

$$\text{return } \boldsymbol{C_t} := \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{I} \\ \boldsymbol{D_{tm}} \end{pmatrix} \in \mathbb{R}^{(3N_{tm}-1) \times dim(\boldsymbol{t})}$$

:timing-vector-inequality-constraint-vector &key (update? t)

[method]

$$\text{return } \boldsymbol{d_t} := \begin{pmatrix} t_s \mathbf{1} - \boldsymbol{t} \\ -t_f \mathbf{1} + \boldsymbol{t} \\ -\boldsymbol{D}_{tm} \boldsymbol{t} \end{pmatrix} \in \mathbb{R}^{(3N_{tm} - 1)}$$

:config-inequality-constraint-matrix &key (update? nil) [method] (update-collision? nil)

$$\begin{cases}
C_p \Delta p \ge d_p \\
C_t \Delta t \ge d_t
\end{cases}$$
(4.233)

$$\begin{cases}
C_{p}\Delta p \ge d_{p} \\
C_{t}\Delta t \ge d_{t}
\end{cases} \tag{4.233}$$

$$\Leftrightarrow \qquad \begin{pmatrix} C_{p} \\ C_{t} \end{pmatrix} \begin{pmatrix} \Delta p \\ \Delta t \end{pmatrix} \ge \begin{pmatrix} d_{p} \\ d_{t} \end{pmatrix}$$

$$\Leftrightarrow C\Delta q \ge d \tag{4.235}$$

$$\text{return } \boldsymbol{C} := \begin{pmatrix} \boldsymbol{C_p} & \\ & \boldsymbol{C_t} \end{pmatrix} \in \mathbb{R}^{N_{ineq} \times dim(\boldsymbol{q})}$$

$$ext{return } oldsymbol{d} := egin{pmatrix} oldsymbol{d_p} \ oldsymbol{d_t} \end{pmatrix} \in \mathbb{R}^{N_{ineq}}$$

:config-equality-constraint-matrix &key (update? nil)

[method]

return $\boldsymbol{A} \in \mathbb{R}^{0 \times dim(\boldsymbol{q})}$ (no equality constraint)

:config-equality-constraint-vector &key (update? t)

[method]

return $\boldsymbol{b} \in \mathbb{R}^0$ (no equality constraint)

:square-integration-regular-matrix &key (diff-order 1) [method]

(delta-time (/ (- _finish-time _start-time) 100.0))

式 (4.172) より,関節角微分の二乗積分は次式で得られる.

$$F_{sqr,k}(\boldsymbol{p}) = \int_{t_s}^{t_f} \left\| \boldsymbol{\theta}^{(k)}(t) \right\|^2 dt$$
 (4.236)

$$= \boldsymbol{p}^T \boldsymbol{H}_{sqr,k} \boldsymbol{p} \tag{4.237}$$

ただし,

$$\boldsymbol{H}_{sqr,k} = \int_{t_{s}}^{t_{f}} \left(\boldsymbol{B}_{n-k}(t)\hat{\boldsymbol{D}}_{k}\right)^{T} \boldsymbol{B}_{n-k}(t)\hat{\boldsymbol{D}}_{k}dt$$

$$= \int_{t_{s}}^{t_{f}} \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right) \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} \qquad \boldsymbol{O}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\boldsymbol{O} \qquad \qquad \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right) \left(\boldsymbol{D}^{k}\boldsymbol{b}_{n-k}(t)\right)^{T} dt (4.239)$$

これは二次形式の正則化項である.

return $\boldsymbol{H}_{sqr,k} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

:first-differential-square-integration-regular-matrix &key (delta-time (/ (- _finish-time _start-time) 100.0))

return $\boldsymbol{H}_{sqr,1} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

 $\begin{array}{l} \textbf{:second-differential-square-integration-regular-matrix} \ \mathscr{C}key \ (delta\text{-}time \ (/ \ (\text{-} _finish\text{-}time \ _start\text{-}time) \\ 100.0)) \end{array} \\ [\text{method}] \\ \end{array}$

return $\boldsymbol{H}_{sqr,2} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

:third-differential-square-integration-regular-matrix &key (delta-time (/ (- _finish-time _start-time) 100.0)) [method]

return $\boldsymbol{H}_{sqr,\beta} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

:control-vector-regular-matrix

[method]

$$\mathbf{W}_{reg,p} := \min(k_{max,p}, \|\mathbf{e}\|^2 + k_{off,p})\mathbf{I} + k_{sqr,1}\mathbf{H}_{sqr,1} + k_{sqr,2}\mathbf{H}_{sqr,2} + k_{sqr,3}\mathbf{H}_{sqr,3}$$
(4.240)

return $\boldsymbol{W}_{reg,p} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

:control-vector-regular-vector

$$\mathbf{v}_{reg,p} := (k_{sqr,1}\mathbf{H}_{sqr,1} + k_{sqr,2}\mathbf{H}_{sqr,2} + k_{sqr,3}\mathbf{H}_{sqr,3})\mathbf{p}$$
(4.241)

return $\boldsymbol{v}_{reg,p} \in \mathbb{R}^{dim(\boldsymbol{p})}$

:motion-duration-regular-matrix

[method]

式 (4.180) より,動作期間の二乗は次式で得られる.

$$F_{duration}(\boldsymbol{t}) = |t_1 - t_{N_{tm}}|^2 \tag{4.242}$$

$$= \mathbf{t}^T \begin{pmatrix} 1 & -1 \\ & \\ -1 & 1 \end{pmatrix} \mathbf{t} \tag{4.243}$$

$$= \mathbf{t}^T \mathbf{H}_{duration} \mathbf{t} \tag{4.244}$$

これは二次形式の正則化項である.

return $m{H}_{duration} \in \mathbb{R}^{dim(m{t}) \times dim(m{t})}$

:timing-vector-regular-matrix

[method]

$$\boldsymbol{W}_{reg,t} := \min(k_{max,t}, \|\boldsymbol{e}\|^2 + k_{off,t})\boldsymbol{I} + k_{duration}\boldsymbol{H}_{duration}$$

$$(4.245)$$

return $\boldsymbol{W}_{reg,t} \in \mathbb{R}^{dim(\boldsymbol{t}) \times dim(\boldsymbol{t})}$

:timing-vector-regular-vector

[method]

$$\boldsymbol{v}_{req,t} := k_{duration} \boldsymbol{H}_{duration} \boldsymbol{t} \tag{4.246}$$

return $\boldsymbol{v}_{reg,t} \in \mathbb{R}^{dim(\boldsymbol{t})}$

:regular-matrix

[method]

$$\boldsymbol{W}_{reg} := \begin{pmatrix} \boldsymbol{W}_{reg,p} & \\ & \boldsymbol{W}_{reg,t} \end{pmatrix} \tag{4.247}$$

return $\boldsymbol{W}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:regular-vector

[method]

$$\boldsymbol{v}_{reg} := \begin{pmatrix} \boldsymbol{v}_{reg,p} \\ \boldsymbol{v}_{reg,t} \end{pmatrix} \tag{4.248}$$

return $\boldsymbol{v}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:update-collision-inequality-constraint

[method]

Not implemented yet.

:update-viewer &key (trajectory-delta-time (/ (- _finish-time _start-time) 10.0))
Update viewer.

:print-status [method]

Print status.

:print-motion-information [method]

Print motion information.

:play-animation &key (robot)

 $(delta\text{-}time\ (/\ (\text{--}finish\text{-}time\ _start\text{-}time)\ 100.0))$

 $(only\text{-}motion\text{-}duration?\ t)$

(loop? t)

 $(visualize\mbox{-}callback\mbox{-}func)$

Play motion animation.

:plot-theta-graph &key (joint-id nil)

[method]

[method]

(divide-num 200)

 $(plot-numerical?\ nil)$

(only-motion-duration? t)

 $(dat\text{-}filename\ /tmp/bspline\text{-}configuration\text{-}task\text{-}plot\text{-}theta\text{-}graph.dat)$

(dump-pdf? nil)

(dump-filename (ros::resolve-ros-path package://eus_qp/optmotiongen/logs/bspline-configu

Plot graph.

:generate-angle-vector-sequence &key (divide-num 100)

[method]

(start-time (send self:kin-start-time))

(finish-time (send self:kin-finish-time))

(delta-time (/ (float (- finish-time start-time)) divide-num))

Generate angle-vector-sequence.

get-bspline-knot $i \ n \ m \ x_min \ x_max \ h$

[function]

$$t_i = \frac{i-n}{m-n}(t_f - t_s) + t_s (4.249)$$

$$= hi + \frac{mt_s - nt_f}{m - n} \tag{4.250}$$

return knot t_i for B-spline function

bspline-basis-func x i n m x_min x_max $\mathcal{C}optional$ $(n\text{-}orig\ n)$ $(m\text{-}orig\ m)$

[function]

$$b_{i,0}(t) = \begin{cases} 1 & \text{if } t_i \le t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$(4.251)$$

$$b_{i,n}(t) = \frac{(t-t_i)b_{i,n-1}(t) + (t_{i+n+1}-t)b_{i+1,n-1}(t)}{nh}$$
(4.252)

return B-spline function value $b_{i,n}(t)$.

4.3 B スプラインを用いた動的動作の生成

bspline-trajectory

[class]

:super propertied-object

:slots ($_{start-time} t_s$)

(_finish-time t_f)

(_num-control-point N_{ctrl})

(_bspline-order B-spline order, n)

(_dim-instant-config $N_{\bar{q}}$)

(_dim-control-vector $dim(\mathbf{p}) := N_{ctrl}N_{\bar{q}}$)

 $(_control-vector \mathbf{p})$

(_zero-diff-stationery-start-finish-regular-scale $k_{stat,0}$)

(_first-diff-stationery-start-finish-regular-scale $k_{stat,1}$)

($_$ second-diff-stationery-start-finish-regular-scale $k_{stat,2}$)

(_diff-square-integration-regular-scale k_{sqr})

(_diff-mat buffer for \boldsymbol{D}^k)

(_diff-mat-list buffer for $\{\boldsymbol{D}^1, \boldsymbol{D}^2, \cdots, \boldsymbol{D}^K\}$)

(_extended-diff-mat-list buffer for $\{\hat{\boldsymbol{D}}_1, \hat{\boldsymbol{D}}_2, \cdots, \hat{\boldsymbol{D}}_K\}$)

(_ineq-const-matrix buffer for C_p)

(_ineq-const-vector buffer for d_p)

B スプラインを利用した軌道のクラス.

B スプラインベクトル・行列,制御点ベクトル・ベクトル,微分行列,瞬時コンフィギュレーションの取得や制御点ベクトルの更新のためのメソッドが定義されている.

B スプライン軌道を定めるために,初期化時に以下を与える

start-time t_s 初期時刻

 $finish-time t_f$ 終端時刻

num-control-point N_{ctrl} 制御点の個数

 $\operatorname{dim-instant-config}\ N_{ar{q}}\$ 瞬時コンフィギュレーションの次元

ある時刻の瞬時コンフィギュレーション $ar{m{q}}(t)\in\mathbb{R}^{N_{ar{q}}}$ の j 番目の要素 $ar{q}_{i}(t)\in\mathbb{R}$ を次式で表す.

$$\bar{q}_{j}(t) = \sum_{i=0}^{N_{ctrl}-1} p_{j,i} b_{i,n}(t) = \boldsymbol{p}_{j}^{T} \boldsymbol{b}_{n}(t) \quad (j = 1, 2, \dots, N_{\bar{q}})$$
(4.253)

ただし,

$$\boldsymbol{p}_{j} = \begin{pmatrix} p_{j,0} \\ p_{j,1} \\ \vdots \\ p_{j,N_{ctrl}-1} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}} \quad (j = 1, 2, \dots, N_{\bar{q}})$$

$$(4.254)$$

$$\boldsymbol{b}_{n}(t) = \begin{pmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ b_{N_{etr}-1,n}(t) \end{pmatrix} \in \mathbb{R}^{N_{ctrl}}$$

$$(4.255)$$

 $b_{i,n}(t)$ は B スプライン基底関数である.また, $p_{j,i}$ をそれぞれ制御点と呼ぶ.

したがって, $ar{q}(t)$ は次式で表される.

$$\bar{\boldsymbol{q}}(t) = \begin{pmatrix} \bar{q}_1(t) \\ \vdots \\ \bar{q}_{N_{\bar{q}}}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{p}_1^T \boldsymbol{b}_n(t) \\ \boldsymbol{p}_2^T \boldsymbol{b}_n(t) \\ \vdots \\ \boldsymbol{p}_{N_{\bar{r}}}^T \boldsymbol{b}_n(t) \end{pmatrix} = \boldsymbol{P} \boldsymbol{b}_n(t)$$

$$(4.256)$$

ただし,

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_{1}^{T} \\ \mathbf{p}_{2}^{T} \\ \vdots \\ \mathbf{p}_{N_{\bar{q}}}^{T} \end{pmatrix} \in \mathbb{R}^{N_{\bar{q}} \times N_{ctrl}}$$

$$(4.257)$$

また , $\bar{q}(t)$ は , 制御点を縦に並べたベクトルを分離して次式のようにも表される .

$$\bar{q}(t) = \begin{pmatrix} \boldsymbol{b}_n^T(t)\boldsymbol{p}_1 \\ \boldsymbol{b}_n^T(t)\boldsymbol{p}_2 \\ \vdots \\ \boldsymbol{b}_n^T(t)\boldsymbol{p}_{N_z} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_n^T(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_n^T(t) & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{b}_n^T(t) \end{pmatrix} \begin{pmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \vdots \\ \boldsymbol{p}_{N_z} \end{pmatrix} = \boldsymbol{B}_n(t)\boldsymbol{p}$$
(4.258)

ただし,

$$\boldsymbol{B}_{n}(t) = \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_{n}^{T}(t) & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{b}_{n}^{T}(t) \end{pmatrix} \in \mathbb{R}^{N_{\bar{q}} \times N_{ctrl}N_{\bar{q}}}, \quad \boldsymbol{p} = \begin{pmatrix} \boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \vdots \\ \boldsymbol{p}_{N_{\bar{q}}} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}N_{\bar{q}}}$$
(4.259)

B スプラインによる軌道表現の詳細については第??節参照.

 $\begin{array}{ccc} \textbf{:init} \ \mathcal{C}key \ (name) & \\ & (start\text{-}time \ 0.0) & \\ \end{array}$

 $(finish-time\ 10.0)$

(num-control-point 10)

(bspline-order 3)

(dim-instant-config 1)

(stationery-start-finish-regular-scale 1.0)

 $(zero-diff-stationery-start-finish-regular-scale\ 0.0)$

(first-diff-stationery-start-finish-regular-scale stationery-start-finish-regular-scale)

 $(second-diff-stationery-start-finish-regular-scale\ stationery-start-finish-regular-scale)$

(diff-square-integration-regular-scale 1.0)

Initialize instance

:start-time [method]

return t_s

:finish-time [method]

return t_s

:num-control-point [method]

return N_{ctrl}

:dim-instant-confing

return $N_{\bar{q}}$

[method]

:dim-control-vector

[method]

return $dim(\mathbf{p}) := N_{ctrl} N_{\bar{q}}$

[method]

:bspline-vector tm &key (order-offset 0)

 $\boldsymbol{b}_{n}(t) := \begin{pmatrix} b_{0,n}(t) \\ b_{1,n}(t) \\ \vdots \\ \vdots \end{pmatrix} \in \mathbb{R}^{N_{ctrl}}$ (4.260)

return $\boldsymbol{b}_n(t)$

:bspline-matrix tm &key (order-offset 0)

[method]

$$\boldsymbol{B}_{n}(t) := \begin{pmatrix} \boldsymbol{b}_{n}^{T}(t) & & \boldsymbol{O} \\ & \boldsymbol{b}_{n}^{T}(t) & & \\ & & \ddots & \\ \boldsymbol{O} & & \boldsymbol{b}_{n}^{T}(t) \end{pmatrix} \in \mathbb{R}^{N_{\bar{q}} \times N_{ctrl}N_{\bar{q}}}$$

$$(4.261)$$

return $\boldsymbol{B}_n(t)$

:control-vector [method]

$$\boldsymbol{p} := \begin{pmatrix} \boldsymbol{p}_1 \\ \vdots \\ \boldsymbol{p}_{N_{\bar{q}}} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}N_{\bar{q}}}$$

$$(4.262)$$

return \boldsymbol{p}

:control-matrix [method]

$$\boldsymbol{P} := \begin{pmatrix} \boldsymbol{p}_1^T \\ \vdots \\ \boldsymbol{p}_{N_{\bar{q}}}^T \end{pmatrix} \in \mathbb{R}^{N_{\bar{q}} \times N_{ctrl}}$$

$$(4.263)$$

return \boldsymbol{P}

:differential-matrix &key (diff-order 1)

[method]

return D^k

:extended-differential-matrix &key (diff-order 1)

[method]

$$\hat{\boldsymbol{D}}_{k} := \begin{pmatrix} (\boldsymbol{D}^{k})^{T} & \boldsymbol{O} \\ & \ddots & \\ \boldsymbol{O} & (\boldsymbol{D}^{k})^{T} \end{pmatrix} \in \mathbb{R}^{N_{ctrl}N_{\bar{q}} \times N_{ctrl}N_{\bar{q}}}$$

$$(4.265)$$

return $\hat{\boldsymbol{D}}_k$

:instant-config tm [method]

$$\text{return } \boldsymbol{\bar{q}}(t) = \begin{pmatrix} \boldsymbol{p}_1^T \boldsymbol{b}_n(t) \\ \vdots \\ \boldsymbol{p}_{N_{\bar{q}}}^T \boldsymbol{b}_n(t) \end{pmatrix} = \boldsymbol{P} \boldsymbol{b}_n(t) = \boldsymbol{B}_n(t) \boldsymbol{p} \in \mathbb{R}^{N_{\bar{q}}}$$

:instant-config-dot tm &key (diff-order 1)

[method]

return
$$\bar{\boldsymbol{q}}^{(k)}(t) = \frac{d^{(k)}\bar{\boldsymbol{q}}(t)}{dt^{(k)}} = \boldsymbol{P}\boldsymbol{D}^k\boldsymbol{b}_{n-k}(t)$$

 $\textbf{:} \textbf{set-control-} vector \ \textit{control-} vector-new \ \textit{\&key} \ (\textit{relative?} \ \textit{nil})$

[method]

Set $\boldsymbol{p} \in \mathbb{R}^{N_{ctrl}N_{\bar{q}}}$.

:set-control-vector-from-instant-config instant-config

[method]

Set $\boldsymbol{p} \in \mathbb{R}^{N_{ctrl}N_{\bar{q}}}$ from $\bar{\boldsymbol{q}} \in \mathbb{R}^{N_{\bar{q}}}$.

:convert-instant-inequality-constraint-matrix-for-control-vector &key (instant-ineq-matrix) [method] (update? nil)

$$\bar{\boldsymbol{q}}(t) = \begin{pmatrix} \bar{q}_{1}(t) \\ \vdots \\ \bar{q}_{N_{\bar{q}}}(t) \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{N_{ctrl}-1} p_{1,i}b_{i,n}(t) \\ \sum_{i=0}^{N_{ctrl}-1} p_{2,i}b_{i,n}(t) \\ \vdots \\ \sum_{i=0}^{N_{ctrl}-1} p_{N_{\bar{q}},i}b_{i,n}(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{p}_{1}^{T}\boldsymbol{b}_{n}(t) \\ \boldsymbol{p}_{2}^{T}\boldsymbol{b}_{n}(t) \\ \vdots \\ \boldsymbol{p}_{N_{\bar{n}}}^{T}\boldsymbol{b}_{n}(t) \end{pmatrix} = \boldsymbol{P}\boldsymbol{b}_{n}(t)$$

$$(4.266)$$

ただし,

$$P = \begin{pmatrix} \boldsymbol{p}_1^T \\ \boldsymbol{p}_2^T \\ \vdots \\ \boldsymbol{p}_{N_{\bar{q}}}^T \end{pmatrix} = \begin{pmatrix} \tilde{\boldsymbol{p}}_0 & \tilde{\boldsymbol{p}}_1 & \cdots & \tilde{\boldsymbol{p}}_{N_{ctrl}-1} \end{pmatrix}$$
(4.267)

$$\tilde{p}_{i} = \begin{pmatrix} p_{1,i} \\ p_{2,i} \\ \vdots \\ p_{N_{-},i} \end{pmatrix} \quad (i = 0, 1, \dots, N_{ctrl} - 1)$$
(4.268)

ここで制御点pが次式を満たすとする.

$$\boldsymbol{c}^T \tilde{\boldsymbol{p}}_i \ge d \quad (i = 0, 1, \cdots, N_{ctrl} - 1) \tag{4.269}$$

つまり,

$$\begin{pmatrix} c_1 & c_2 & \cdots & c_{N_{\bar{q}}} \end{pmatrix} \begin{pmatrix} p_{1,i} \\ p_{2,i} \\ \vdots \\ p_{N_{\bar{n}},i} \end{pmatrix} = \sum_{j=1}^{N_{\bar{q}}} c_j p_{j,i} \ge d \quad (i = 0, 1, \cdots, N_{ctrl} - 1)$$
(4.270)

このとき,

$$\boldsymbol{c}^{T}\bar{\boldsymbol{q}}(t) = \begin{pmatrix} c_{1} & c_{2} & \cdots & c_{N_{\bar{q}}} \end{pmatrix} \begin{pmatrix} \sum_{i=0}^{N_{ctrl}-1} p_{1,i}b_{i,n}(t) \\ \sum_{i=0}^{N_{ctrl}-1} p_{2,i}b_{i,n}(t) \\ \vdots \\ \sum_{i=0}^{N_{ctrl}-1} p_{N_{\bar{q}},i}b_{i,n}(t) \end{pmatrix}$$
(4.271)

$$= \sum_{j=1}^{N_{\bar{q}}} c_j \sum_{i=0}^{N_{ctrl}-1} p_{j,i} b_{i,n}(t)$$
(4.272)

$$= \sum_{i=0}^{N_{ctrl}-1} \left(\sum_{j=1}^{N_{\bar{q}}} c_j p_{j,i} \right) b_{i,n}(t)$$
 (4.273)

$$\geq d \sum_{i=0}^{N_{ctrl}-1} b_{i,n}(t) \tag{4.274}$$

$$= d (4.275)$$

したがって,

$$C_{\bar{q}}\bar{q}(t) \ge d_{\bar{q}} \tag{4.276}$$

$$\Leftrightarrow C_{\bar{q}}\tilde{p}_i \ge d_{\bar{q}} \quad (i = 0, 1, \cdots, N_{ctrl} - 1)$$

$$(4.277)$$

$$\Leftrightarrow C_p \mathbf{p} \ge \mathbf{d}_p \tag{4.279}$$

ただし,

$$C_{\bar{q}} = \begin{pmatrix} c_1 & c_2 & \cdots & c_{N_{\bar{q}}} \end{pmatrix} \in \mathbb{R}^{N_{ineq} \times N_{\bar{q}}}$$
 (4.280)

$$C_{p,i,j} = \begin{pmatrix} \mathbf{0} & \cdots & \mathbf{0} & \mathbf{c}_{j} & \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix} \in \mathbb{R}^{N_{ineq} \times N_{ctrl}}$$

$$(i = 0, 1, \cdots, N_{ctrl} - 1, j = 1, 2, \cdots, N_{\bar{q}})$$

$$(4.281)$$

$$(i = 0, 1, \dots, N_{ctrl} - 1, j = 1, 2, \dots, N_{\bar{q}})$$
 (4.282)

このメソッドは $C_{ar{q}}\in\mathbb{R}^{N_{ineq} imes N_{ar{q}}}$ を受け取り, $C_p\in\mathbb{R}^{N_{ctrl}N_{ineq} imes N_{ctrl}N_{ar{q}}}$ を返す.

:convert-instant-inequality-constraint-vector-for-control-vector &key (instant-ineq-vector) [method] (update? nil)

このメソッドは $d_{ar{q}} \in \mathbb{R}^{N_{ineq}}$ を受け取り , $d_p \in \mathbb{R}^{N_{ctrl}N_{ineq}}$ を返す .

:stationery-start-finish-regular-matrix &key (start-time _start-time) [method] (finish-time _finish-time) (update? nil)

$$W_{stat} = k_{stat,0} \boldsymbol{B}_{n}^{T}(t_{s}) \boldsymbol{B}_{n}(t_{s}) + k_{stat,0} \boldsymbol{B}_{n}^{T}(t_{f}) \boldsymbol{B}_{n}(t_{f})$$

$$+ k_{stat,1} (\boldsymbol{B}_{n-1}(t_{s}) \hat{\boldsymbol{D}}_{1})^{T} (\boldsymbol{B}_{n-1}(t_{s}) \hat{\boldsymbol{D}}_{1}) + k_{stat,1} (\boldsymbol{B}_{n-1}(t_{f}) \hat{\boldsymbol{D}}_{1})^{T} (\boldsymbol{B}_{n-1}(t_{f}) \hat{\boldsymbol{D}}_{1}) (4.284)$$

$$+ k_{stat,2} (\boldsymbol{B}_{n-2}(t_{s}) \hat{\boldsymbol{D}}_{2})^{T} (\boldsymbol{B}_{n-2}(t_{s}) \hat{\boldsymbol{D}}_{2}) + k_{stat,2} (\boldsymbol{B}_{n-2}(t_{f}) \hat{\boldsymbol{D}}_{2})^{T} (\boldsymbol{B}_{n-2}(t_{f}) \hat{\boldsymbol{D}}_{2}) (4.285)$$

return $oldsymbol{W}_{stat} \in \mathbb{R}^{N_{ctrl}N_{ar{q}} \times N_{ctrl}N_{ar{q}}}$

:differential-square-integration-regular-matrix &key (start-time _start-time) [method]
(finish-time _finish-time)
(delta-time (/ (- finish-time start-time) 100.0))
(diff-order 1)

式 (4.172) より, コンフィギュレーション微分の二乗積分は次式で得られる.

$$F_{sqr,k}(\boldsymbol{p}) = \int_{t_s}^{t_f} \left\| \bar{\boldsymbol{q}}^{(k)}(t) \right\|^2 dt \qquad (4.286)$$

$$= \boldsymbol{p}^T \boldsymbol{W}_{sqr,k} \boldsymbol{p} \tag{4.287}$$

ただし,

$$\mathbf{W}_{sqr,k} = \int_{t_s}^{t_f} \left(\mathbf{B}_{n-k}(t) \hat{\mathbf{D}}_k \right)^T \mathbf{B}_{n-k}(t) \hat{\mathbf{D}}_k dt$$

$$= \int_{t_s}^{t_f} \begin{pmatrix} \left(\mathbf{D}^k \mathbf{b}_{n-k}(t) \right) \left(\mathbf{D}^k \mathbf{b}_{n-k}(t) \right)^T & \mathbf{O} \\ & \ddots & \\ \mathbf{O} & \left(\mathbf{D}^k \mathbf{b}_{n-k}(t) \right) \left(\mathbf{D}^k \mathbf{b}_{n-k}(t) \right)^T \end{pmatrix} dt (4.289)$$

return $k_{sqr} \boldsymbol{W}_{sqr,k} \in \mathbb{R}^{dim(\boldsymbol{p}) \times dim(\boldsymbol{p})}$

:dump-config-data &key (start-time _start-time) (finish-time _finish-time) (delta-time (/ (- finish-time start-time) 100.0)) (data-filename (format nil /tmp/ a.dat (send self :name))) (diff-order 0) [method]

bspline-dynamic-configuration-task

[class]

propertied-object :super :slots (_robot-env robot-environment instance) (_theta-bst bspline trajectory instance for θ) (_cog-bst bspline trajectory instance for c) ($_$ ang-moment-bst bspline trajectory instance for \boldsymbol{L}) (wrench-bst bspline trajectory instance for $\hat{\boldsymbol{w}}$) (_torque-bst bspline trajectory instance for τ) $(-\text{phi-vector } \boldsymbol{\phi})$ (_num-kin $N_{kin} := |\mathcal{T}^{kin-trg}| = |\mathcal{T}^{kin-att}|$) (_num-contact $N_{cnt} := |\mathcal{T}^{cnt-trg}| = |\mathcal{T}^{cnt-att}|$) (_num-variant-joint $N_{var-joint} := |\mathcal{J}_{var}|$) (_num-invariant-joint $N_{invar-joint} := |\mathcal{J}_{invar}|$) (_num-drive-joint $N_{drive-joint} := |\mathcal{J}_{drive}|$) (_num-posture-joint $N_{posture-joint} := |\mathcal{J}_{posture}|$) (_num-collision $N_{col} := \text{number of collision check pairs})$ (_dim-theta-control-vector $dim(\mathbf{p}_{\theta}) := N_{var-joint} N_{\theta-ctrl}$) (_dim-cog-control-vector $dim(\mathbf{p}_c) := 3N_{c-ctrl}$) (_dim-ang-moment-control-vector $dim(\mathbf{p}_L) := 3N_{L-ctrl}$) (_dim-wrench-control-vector $dim(\mathbf{p}_{\hat{w}}) := 6N_{cnt}N_{\hat{w}-ctrl}$) (_dim-torque-control-vector $dim(\mathbf{p}_{\tau}) := N_{drive-joint} N_{\tau-ctrl}$) $(\dim\text{-}\dim\phi) := N_{invar-joint}$

 $(\text{_dim-kin-task } dim(e^{kin}))$

(_dim-eom-trans-task $dim(e^{eom-trans})$)

(_dim-config $dim(\boldsymbol{q}) := dim(\boldsymbol{p}_{\theta}) + dim(\boldsymbol{p}_{c}) + dim(\boldsymbol{p}_{L}) + dim(\boldsymbol{p}_{\hat{w}}) + dim(\boldsymbol{p}_{\tau}) + dim(\boldsymbol{\phi})$)

```
(_dim-eom-rot-task dim(e^{eom-rot}))
(_{\text{dim-cog-task}} dim(e^{cog}))
(_dim-ang-moment-task dim(e^{ang-moment}))
(_{\text{dim-torque-task}} dim(e^{trq}))
(_dim-posture-task dim(e^{posture}))
(_{\text{dim-task}} dim(e))
(_kin-task-scale k_{kin})
(_kin-task-scale-mat-list-func function returning list of K_{kin})
(_eom-trans-task-scale k_{eom-trans})
(-\text{eom-rot-task-scale } k_{eom-rot})
(\_cog-task-scale k_{cog})
(_ang-moment-task-scale k_{ang-moment})
(_torque-task-scale k_{trq})
(_posture-task-scale k_{posture})
(_torque-regular-scale k_{tra})
(\_stationery-start-finish-regular-scale k_{stat})
(_first-diff-square-integration-regular-scale k_{sqr,1})
(_second-diff-square-integration-regular-scale k_{sqr,2})
(_third-diff-square-integration-regular-scale k_{sqr,\beta})
(\_norm-regular-scale-max k_{max})
(\_norm\text{-regular-scale-offset } k_{off})
(_variant-joint-list \mathcal{J}_{var})
(_invariant-joint-list \mathcal{J}_{invar})
(_drive-joint-list \mathcal{J}_{drive})
(_posture-joint-list \mathcal{J}_{posture})
(_kin-task-time-list time list for kinematics task)
(_eom-task-time-list time list for eom task)
(_centroid-task-time-list time list for centroid task)
(_posture-task-time-list time list for posture task)
(_kin-target-coords-list-func function returning \mathcal{T}^{kin-trg})
(_kin-attention-coords-list-func function returning \mathcal{T}^{kin-att})
(_contact-target-coords-list-func function returning \mathcal{T}^{cnt-trg})
(_contact-attention-coords-list-func function returning \mathcal{T}^{cnt-att})
(_contact-constraint-list-func function returning list of contact-constraint)
(_posture-joint-angle-list \bar{\boldsymbol{\theta}}^{trg})
(_variant-joint-angle-margin margin of \theta [deg] [mm])
(_invariant-joint-angle-margin margin of \phi [deg] [mm])
(_collision-pair-list list of bodyset-link or body pair)
(_collision-distance-margin-list list of collision distance margin)
(_task-jacobi buffer for \frac{\partial \mathbf{e}}{\partial \mathbf{q}})
(_collision-theta-inequality-constraint-matrix buffer for C_{col,\theta})
(_collision-phi-inequality-constraint-matrix buffer for C_{col,\phi})
(_collision-inequality-constraint-vector buffer for \boldsymbol{C}_{col})
```

コンフィギュレーション q の取得・更新,タスク関数 e(q) の取得,タスク関数のヤコビ行列 $\frac{\partial e(q)}{\partial q}$ の取得,コンフィギュレーションの等式・不等式制約 A,b,C,d の取得のためのメソッドが定義されている.

初期化

コンフィギュレーション・タスク関数を定めるために,初期化時に以下を与える

● ロボット・環境

 ${f robot-environment}$ ロボット・環境を表す ${f robot-environment}$ クラスのインスタンス ${f variant-joint-list}$ ${\cal J}_{var}$ 時変関節 ${f invariant-joint-list}$ ${\cal J}_{invar}$ 時不変関節 (与えなければ時不変関節は考慮されない)

drive-joint-list \mathcal{J}_{drive} 駆動関節 (与えなければ関節駆動トルクは考慮されない)

B スプライン軌道

theta-bst 時変関節位置 θ の B スプライン軌道のインスタンス cog-bst 重心位置 c の B スプライン軌道のインスタンス ang-moment-bst 角運動量 L の B スプライン軌道のインスタンス wrench-bst 接触レンチ \hat{w} の B スプライン軌道のインスタンス torque-bst 関節トルク τ の B スプライン軌道のインスタンス

タスク関数のサンプリング時刻

kin-task-time-list 幾何到達拘束 e^{kin} の時刻のリスト eom-task-time-list 並進運動方程式 $e^{eom-trans}$, 回転運動方程式 $e^{eom-rot}$ の時刻リスト centroid-task-time-list 重心位置 e^{cog} , 角運動量 $e^{ang-moment}$ の時刻リスト posture-task-time-list 関節角目標 $e^{posture}$ の時刻リスト

• 幾何拘束

kin-target-coords-list-func 幾何到達目標位置姿勢リスト $\mathcal{T}^{kin-trg}$ を返す関数 kin-attention-coords-list-func 幾何到達着目位置姿勢リスト $\mathcal{T}^{kin-att}$ を返す関数

• 接触拘束

contact-target-coords-list-func 接触目標位置姿勢リスト $\mathcal{T}^{cnt-trg}$ を返す関数 contact-attention-coords-list-func 接触着目位置姿勢リスト $\mathcal{T}^{cnt-att}$ を返す関数 contact-constraint-list-func 接触レンチ制約リストを返す関数

• コンフィギュレーション拘束 (必要な場合のみ) posture-joint-list $\mathcal{J}_{posture}$ 着目関節リスト posture-joint-angle-list $\bar{\theta}^{trg}$ 着目関節の目標関節角

• 干渉回避拘束(必要な場合のみ)

collision-pair-list 干渉回避する bodyset-link もしくは body のペアのリスト collision-distance-margin 干渉回避の距離マージン (全てのペアで同じ値の場合) collision-distance-margin-list 干渉回避の距離マージンのリスト (ペアごとに異なる値の場合)

• 目的関数の重み

kin-task-scale k_{kin} 幾何到達拘束タスクの重み kin-task-scale-mat-list-func 幾何到達拘束タスクの重み行列 K_{kin} を返す関数 eom-trans-task-scale $k_{eom-trans}$ 並進運動方程式タスクの重み

 ${f eom ext{-rot-task-scale}}\;k_{eom ext{-rot}}\;$ 回転運動方程式タスクの重み $cog-task-scale \ k_{cog}$ 重心位置タスクの重み ang-moment-task-scale $k_{ang-moment}$ 角運動量タスクの重み $torque-task-scale k_{trq}$ 関節トルクの釣り合いタスクの重み $posture-task-scale k_{posture}$ 目標関節角タスクの重み $torque-regular-scale k_{trq}$ トルク正則化の重み $stationery-start-finish-regular-scale ~k_{stat}$ 初期・終端静止正則化の重み first-diff-square-integration-regular-scale $k_{sqr,1}$ 速度正則化の重み second-diff-square-integration-regular-scale $k_{sqr,2}$ 加速度正則化の重み third-diff-square-integration-regular-scale $k_{sqr,\beta}$ 躍度正則化の重み ${f norm-regular-scale-max}$ k_{max} コンフィギュレーション更新量正則化の重み最大値 ${f norm-regular-scale-offset}$ k_{off} コンフィギュレーション更新量正則化の重みオフセット

コンフィギュレーション

動的動作は各瞬間において以下の瞬時状態 $ar{q}(t)$ を定めることで表現される.

$$\bar{q}(t) := \begin{pmatrix} \boldsymbol{\theta}(t) \\ \boldsymbol{c}(t) \\ \boldsymbol{L}(t) \\ \hat{\boldsymbol{w}}(t) \\ \boldsymbol{\tau}(t) \\ \boldsymbol{\phi} \end{pmatrix}$$
 (4.290)

 $oldsymbol{ heta} \in \mathbb{R}^{N_{var-joint}}$ 時変関節位置 $[\mathrm{rad}]$ $[\mathrm{m}]$

 $c \in \mathbb{R}^3$ 重心位置 [m]

 $L \in \mathbb{R}^3$ 角運動量 $[\text{kgm}^2/\text{s}]$

 $\hat{m{w}} \in \mathbb{R}^{6N_{cnt}}$ 接触レンチ [N] [Nm]

 $au \in \mathbb{R}^{N_{drive-joint}}$ 関節トルク $[\mathrm{Nm}]$ $[\mathrm{N}]$

 $\phi \in \mathbb{R}^{N_{invar-joint}}$ 時不変関節位置 [rad] [m]

 \hat{w} は次式のように,全接触部位でのワールド座標系での力・モーメントを並べたベクトルである.

$$\hat{\boldsymbol{w}} = \begin{pmatrix} \boldsymbol{w}_1^T & \boldsymbol{w}_2^T & \cdots & \boldsymbol{w}_{N_{cnt}}^T \end{pmatrix}^T
= \begin{pmatrix} \boldsymbol{f}_1^T & \boldsymbol{n}_1^T & \boldsymbol{f}_2^T & \boldsymbol{n}_2^T & \cdots & \boldsymbol{f}_{N_{cnt}}^T & \boldsymbol{n}_{N_{cnt}}^T \end{pmatrix}^T$$
(4.291)

$$= \begin{pmatrix} \boldsymbol{f}_1^T & \boldsymbol{n}_1^T & \boldsymbol{f}_2^T & \boldsymbol{n}_2^T & \cdots & \boldsymbol{f}_{N_{cnt}}^T & \boldsymbol{n}_{N_{cnt}}^T \end{pmatrix}^T$$
(4.292)

本クラスでは,瞬時状態 $ar{q}(t)$ の軌道を B スプラインで表現する.設計対称のコンフィギュレーション $ar{q}$ は以下から構成される.

$$q := \begin{pmatrix} p_{\theta} \\ p_{c} \\ p_{L} \\ p_{\hat{w}} \\ p_{\tau} \\ \phi \end{pmatrix}$$

$$(4.293)$$

 $p_{ heta} \in \mathbb{R}^{N_{var-joint}N_{ heta-ctrl}}$ 時変関節位置の制御点 $[\mathrm{rad}]$ $[\mathrm{m}]$

 $oldsymbol{p}_c \in \mathbb{R}^{3N_{c ext{-}ctrl}}$ 重心位置の制御点 $[\mathrm{m}]$

 $oldsymbol{p}_L \in \mathbb{R}^{3N_{L\text{-}ctrl}}$ 角運動量の制御点 $[ext{kgm}^2/ ext{s}]$

 $oldsymbol{p}_{\hat{w}} \in \mathbb{R}^{6N_{cnt}N_{\hat{w} ext{-}ctrl}}$ 接触レンチの制御点 $[ext{N}]$ $[ext{Nm}]$

 $oldsymbol{p}_{ au} \in \mathbb{R}^{N_{drive-joint}N_{ au-ctrl}}$ 関節トルクの制御点 $[\mathrm{Nm}]$ $[\mathrm{N}]$

 $oldsymbol{\phi} \in \mathbb{R}^{N_{invar-joint}}$ 時不変関節位置 $[\mathrm{rad}]$ $[\mathrm{m}]$

制御点とは,Bスプライン基底関数の重み係数を意味する.

タスク関数

瞬時状態 $ar{q}(t)$ に関するタスク関数 $ar{e}(ar{q}(t))$ は以下から構成される.

$$\bar{e}(\bar{q}) = \begin{pmatrix}
\bar{e}^{kin}(\theta, \phi) \\
\bar{e}^{eom-trans}(c, \hat{w}) \\
\bar{e}^{eom-rot}(\theta, c, L, \hat{w}, \phi) \\
\bar{e}^{cog}(\theta, c, \phi) \\
\bar{e}^{ang-moment}(\theta, L, \phi) \\
\bar{e}^{trq}(\theta, \hat{w}, \tau, \phi) \\
\bar{e}^{posture}(\theta)
\end{pmatrix}$$
(4.294)

 $ar{e}^{kin}(oldsymbol{ heta},oldsymbol{\phi})\in\mathbb{R}^{6ar{N}_{kin}(t)}$ 幾何到達拘束 [rad] [m]

$$\bar{e}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \begin{pmatrix}
\bar{e}_{1}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\
\bar{e}_{2}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\
\vdots \\
\bar{e}_{N_{kin}(t)}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})
\end{pmatrix}$$

$$\bar{e}_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \begin{pmatrix}
\boldsymbol{p}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\
\boldsymbol{a} \left(\boldsymbol{R}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) \boldsymbol{R}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi})^{T}\right)
\end{pmatrix} \in \mathbb{R}^{6} \quad (m = 1, 2, \dots, \bar{N}_{kin}(t))(4.296)$$

$$ar{m{e}}_m^{kin}(m{ heta},m{\phi}) = egin{pmatrix} m{p}_m^{kin-trg}(m{ heta},m{\phi}) - m{p}_m^{kin-att}(m{ heta},m{\phi}) \ m{a} \left(m{R}_m^{kin-trg}(m{ heta},m{\phi})m{R}_m^{kin-att}(m{ heta},m{\phi})^T
ight) \end{pmatrix} \in \mathbb{R}^6 \quad (m=1,2,\cdots,ar{N}_{kin}(t))(4.296)$$

a(R) は姿勢行列 R の等価角軸ベクトルを表す.

 $ar{m{e}}^{eom ext{-}trans}(m{c},\hat{m{w}})\in\mathbb{R}^3$ 並進運動方程式 $[\log\mathrm{m/s^2}]$

$$\bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}, \hat{\boldsymbol{w}}) = m\ddot{\boldsymbol{c}} - \left\{ \sum_{m=1}^{N_{ent}} \boldsymbol{f}_m - m\boldsymbol{g} + \sum_{m=1}^{N_{ex}} \boldsymbol{f}_m^{ex} \right\}$$
(4.297)

 $\bar{e}^{eom\text{-}rot}(\boldsymbol{\theta}, \boldsymbol{c}, \boldsymbol{L}, \hat{\boldsymbol{w}}, \boldsymbol{\phi}) \in \mathbb{R}^3$ 回転運動方程式 $[\log m^2/s^2]$

$$\bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}, \boldsymbol{c}, \boldsymbol{L}, \hat{\boldsymbol{w}}, \boldsymbol{\phi}) = \dot{\boldsymbol{L}} - \left(\sum_{m=1}^{N_{ent}} \left\{ \left(\boldsymbol{p}_{m}^{ent\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \boldsymbol{f}_{m} + \boldsymbol{n}_{m} \right\} \right. \\
\left. + \sum_{m=1}^{N_{ex}} \left\{ \left(\boldsymbol{p}_{m}^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \boldsymbol{f}_{m}^{ex} + \boldsymbol{n}_{m}^{ex} \right\} \right) \qquad (4.298)$$

 $ar{e}^{cog}(oldsymbol{ heta},oldsymbol{c},oldsymbol{\phi})\in\mathbb{R}^3$ 重心位置 [m]

$$\bar{e}^{cog}(\theta, c, \phi) = p_G(\theta, \phi) - c$$
(4.299)

 $ar{e}^{ang\text{-}moment}(oldsymbol{ heta},oldsymbol{L},oldsymbol{\phi})\in\mathbb{R}^3$ 角運動量 $[\lg\mathrm{m}^2/\mathrm{s}]$

$$\bar{\boldsymbol{e}}^{ang\text{-}moment}(\boldsymbol{\theta}, \boldsymbol{L}, \boldsymbol{\phi}) = \boldsymbol{L} - \left\{ \boldsymbol{A}_{\theta}(\boldsymbol{\theta}, \boldsymbol{\phi}) \dot{\boldsymbol{\theta}} + \boldsymbol{A}_{\phi}(\boldsymbol{\theta}, \boldsymbol{\phi}) \dot{\boldsymbol{\phi}} \right\}$$
(4.300)

 $ar{e}^{trq}(m{ heta},\hat{m{w}},m{ au},m{\phi})\in\mathbb{R}^{N_{drive\text{-}joint}}$ 関節トルクの釣り合い $[\mathrm{rad}]$ $[\mathrm{m}]$

$$\bar{\boldsymbol{e}}^{trq}(\boldsymbol{\theta}, \hat{\boldsymbol{w}}, \boldsymbol{\tau}, \boldsymbol{\phi}) = \sum_{m=1}^{N_{ent}} \left\{ \left(\boldsymbol{p}_m^{ent-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \boldsymbol{f}_m + \boldsymbol{n}_m \right\} \\
+ \sum_{m=1}^{N_{ex}} \left\{ \left(\boldsymbol{p}_m^{ex}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \boldsymbol{f}_m^{ex} + \boldsymbol{n}_m^{ex} \right\} \tag{4.301}$$

 $ar{e}^{posture}(oldsymbol{ heta}) \in \mathbb{R}^{N_{posture\text{-}joint}}$ 関節角目標 [rad] [m]

$$\bar{e}^{posture}(\theta) = (\bar{\theta}^{trg} - \bar{\theta})$$
 (4.302)

瞬時状態 ar q(t) の軌道を ${
m B}$ スプラインで表現することで,設計対称のコンフィギュレーション ${m q}$ に関するタスク関数 ${m e}({m q})$ は以下から構成される.

$$e(q) = \begin{pmatrix} e^{kin}(\mathbf{p}_{\theta}, \phi) \\ e^{eom-trans}(\mathbf{p}_{c}, \mathbf{p}_{\hat{w}}) \\ e^{eom-rot}(\mathbf{p}_{\theta}, \mathbf{p}_{c}, \mathbf{p}_{L}, \mathbf{p}_{\hat{w}}, \phi) \\ e^{cog}(\mathbf{p}_{\theta}, \mathbf{p}_{c}, \phi) \\ e^{ang-moment}(\mathbf{p}_{\theta}, \mathbf{p}_{L}, \phi) \\ e^{trq}(\mathbf{p}_{\theta}, \mathbf{p}_{\hat{w}}, \mathbf{p}_{\tau}, \phi) \\ e^{posture}(\mathbf{p}_{\theta}) \end{pmatrix}$$

$$(4.303)$$

ただし,

(wrench-bst)(torque-bst)

(kin-target-coords-list-func) (kin-attention-coords-list-func)

$$e^{*}(\boldsymbol{q}) = \begin{pmatrix} \bar{\boldsymbol{e}}^{*}(\bar{\boldsymbol{q}}(t_{1})) \\ \vdots \\ \bar{\boldsymbol{e}}^{*}(\bar{\boldsymbol{q}}(t_{N_{tm}})) \end{pmatrix} \in \mathbb{R}^{N_{tm}dim(\bar{\boldsymbol{e}}^{*}(\bar{\boldsymbol{q}})(t))}$$

$$(4.304)$$

```
(contact-target-coords-list-func)
(contact\text{-}attention\text{-}coords\text{-}list\text{-}func)
(contact-constraint-list-func)
(posture-joint-angle-list)
(variant-joint-angle-margin 3.0)
(invariant-joint-angle-margin 3.0)
(collision-pair-list)
(collision-distance-margin 0.01)
(collision-distance-margin-list)
(kin-task-scale 1.0)
(kin-task-scale-mat-list-func)
(eom-trans-task-scale 1.0)
(eom-rot-task-scale 1.0)
(cog-task-scale 1.0)
(ang-moment-task-scale 1.0)
(torque-task-scale 1.0)
(posture-task-scale\ 0.001)
(torque-regular-scale 1.000000e-04)
(stationery-start-finish-regular-scale 1.000000e-04)
(first-diff-square-integration-regular-scale\ 1.000000e-07)
(second-diff-square-integration-regular-scale 1.000000e-07)
(third-diff-square-integration-regular-scale 1.000000e-07)
(norm-regular-scale-max 1.000000e-05)
(norm-regular-scale-offset 1.000000e-07)
```

Initialize instance

return $N_{invar-joint} := |\mathcal{J}_{invar}|$

```
:robot-env
                                                                                                                                     [method]
        return robot-environment instance
:variant-joint-list
                                                                                                                                     [method]
        return \mathcal{J}_{var}
:invariant-joint-list
                                                                                                                                     [method]
        return \mathcal{J}_{invar}
:drive-joint-list
                                                                                                                                     [method]
        return \mathcal{J}_{drive}
:num-kin
                                                                                                                                     [method]
        return N_{kin} := |\mathcal{T}^{kin\text{-}trg}| = |\mathcal{T}^{kin\text{-}att}|
:num-contact
                                                                                                                                     [method]
        return N_{cnt} := |\mathcal{T}^{cnt\text{-}trg}| = |\mathcal{T}^{cnt\text{-}att}|
:num-variant-joint
                                                                                                                                     [method]
        return N_{var-joint} := |\mathcal{J}_{var}|
:num-invariant-joint
                                                                                                                                     [method]
```

:num-drive-joint $\operatorname{return} N_{drive-joint} := \mathcal{J}_{drive} $	[method]
$egin{aligned} ext{:num-posture-joint} \ ext{return} \ N_{target\text{-}joint} := \mathcal{J}_{target} \end{aligned}$	[method]
:num-collision $ \text{return } N_{col} := \text{number of collision check pairs } $	[method]
:dim-config return $dim(q)$	[method]
:dim-task return $dim(e)$	[method]
:theta-control-vector return $oldsymbol{p}_{ heta}$	[method]
:cog-control-vector return \boldsymbol{p}_c	[method]
:ang-moment-control-vector return $oldsymbol{p}_L$	[method]
:wrench-control-vector return $oldsymbol{p}_{\hat{w}}$	[method]
:torque-control-vector return $oldsymbol{p}_{ au}$	[method]
:phi $_{ m return} \; \phi$	[method]
	[method]
return ϕ :config-vector	
return ϕ :config-vector return q :set-theta-control-vector control-vector-new &key (relative? nil)	[method]
return ϕ :config-vector return q :set-theta-control-vector control-vector-new &key (relative? nil) Set p_{θ} . :set-cog-control-vector control-vector-new &key (relative? nil)	[method]
return ϕ :config-vector return q :set-theta-control-vector control-vector-new &key (relative? nil) Set p_{θ} . :set-cog-control-vector control-vector-new &key (relative? nil) Set p_c . :set-ang-moment-control-vector control-vector-new &key (relative? nil)	[method] [method]
$ \begin{array}{c} \operatorname{return} \phi \\ \\ \operatorname{set-vector} \\ \\ \operatorname{return} q \\ \\ \operatorname{set-theta-control-vector} \\ \operatorname{control-vector-new} \ \mathscr{C} key \ (\mathit{relative?} \ \mathit{nil}) \\ \\ \operatorname{Set} p_{\theta}. \\ \\ \operatorname{set-cog-control-vector} \\ \operatorname{control-vector-new} \ \mathscr{C} key \ (\mathit{relative?} \ \mathit{nil}) \\ \\ \operatorname{Set} p_{c}. \\ \\ \operatorname{set-ang-moment-control-vector} \\ \operatorname{control-vector-new} \ \mathscr{C} key \ (\mathit{relative?} \ \mathit{nil}) \\ \\ \operatorname{Set} p_{L}. \\ \\ \operatorname{set-wrench-control-vector} \\ \operatorname{control-vector-new} \ \mathscr{C} key \ (\mathit{relative?} \ \mathit{nil}) \\ \\ \end{array} $	[method] [method] [method]

:set-config config-new &key (relative? nil) [method] Set q. :theta tm &key (diff-order 0) [method] return $\boldsymbol{\theta}(t)$ [rad] [m] **:cog** tm &key (diff-order 0) [method] return c(t) [m] :ang-moment tm &key (diff-order 0) [method] return $\boldsymbol{L}(t)$ [kgm²/s] **:wrench** tm &key (diff-order 0) [method] return $\hat{\boldsymbol{w}}(t)$ [N] [Nm] :torque tm &key (diff-order 0) [method] return $\boldsymbol{\tau}(t)$ [Nm] [N] :apply-config-to-robot tm[method] apply q(t) to robot. :kin-target-coords-list tm[method] $T_m^{kin-trg} = \{\boldsymbol{p}_m^{kin-trg}, \boldsymbol{R}_m^{kin-trg}\} \ (m = 1, 2, \cdots, N_{kin})$ (4.305)return $\mathcal{T}^{kin\text{-}trg} := \{T_1^{kin\text{-}trg}, T_2^{kin\text{-}trg}, \cdots, T_{N_{kin}}^{kin\text{-}trg}\}$: kin-attention-coords-list tm[method] $T_m^{kin\text{-}att} = \{\boldsymbol{p}_m^{kin\text{-}att}, \boldsymbol{R}_m^{kin\text{-}att}\} \ (m = 1, 2, \cdots, N_{kin})$ (4.306)return $\mathcal{T}^{kin\text{-}att} := \{T_1^{kin\text{-}att}, T_2^{kin\text{-}att}, \cdots, T_{N_{kin}}^{kin\text{-}att}\}$:kin-scale-mat-list tm[method] return list of K_{kin} :contact-target-coords-list tm[method]

$$T_m^{cnt-trg} = \{ \boldsymbol{p}_m^{cnt-trg}, \boldsymbol{R}_m^{cnt-trg} \} \quad (m = 1, 2, \cdots, N_{cnt})$$

$$(4.307)$$

return $\mathcal{T}^{cnt\text{-}trg} := \{T_1^{cnt\text{-}trg}, T_2^{cnt\text{-}trg}, \cdots, T_{N_{cnt}}^{cnt\text{-}trg}\}$

:contact-attention-coords-list tm [method]

$$T_m^{cnt-att} = \{ \boldsymbol{p}_m^{cnt-att}, \boldsymbol{R}_m^{cnt-att} \} \quad (m = 1, 2, \dots, N_{cnt})$$
 (4.308)

return $\mathcal{T}^{cnt\text{-}att} := \{T_1^{cnt\text{-}att}, T_2^{cnt\text{-}att}, \cdots, T_{N_{cnt}}^{cnt\text{-}att}\}$

 $: \mathbf{contact\text{-}constraint\text{-}list} \ tm \\ [method]$

return list of contact-constraint

:wrench-list
$$tm$$

[method]

return
$$\{\boldsymbol{w}_1, \boldsymbol{w}_2, \cdots, \boldsymbol{w}_{N_{cnt}}\}$$

:force-list tm

[method]

return
$$\{\boldsymbol{f}_1, \boldsymbol{f}_2, \cdots, \boldsymbol{f}_{N_{cnt}}\}$$

:moment-list tm

[method]

return
$$\{\boldsymbol{n}_1, \boldsymbol{n}_2, \cdots, \boldsymbol{n}_{N_{cnt}}\}$$

:mass

[method]

return
$$m$$
 [kg]

:mg-vec

[method]

return
$$m\mathbf{g}$$
 [kg m/s²]

:cog-from-model &key (update? t)

[method]

return
$$\boldsymbol{p}_G(\boldsymbol{q})$$
 [m]

:kinematics-instant-task-value $\it tm$

[method]

$$\bar{\boldsymbol{e}}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi}) = \begin{pmatrix} \bar{\boldsymbol{e}}_{1}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi}) \\ \bar{\boldsymbol{e}}_{2}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi}) \\ \vdots \\ \bar{\boldsymbol{e}}_{\bar{N}_{kin}(t)}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi}) \end{pmatrix} \in \mathbb{R}^{6\bar{N}_{kin}(t)}$$

$$(4.309)$$

$$\bar{\mathbf{e}}_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \begin{pmatrix} \mathbf{p}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \mathbf{p}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \mathbf{a} \begin{pmatrix} \mathbf{R}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \mathbf{R}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \mathbf{a} \begin{pmatrix} \mathbf{R}_{m}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) \mathbf{R}_{m}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi})^{T} \end{pmatrix} \end{pmatrix} \in \mathbb{R}^{6} \quad (m = 1, 2, \dots, \bar{N}_{kin}(t)) \quad (4.310)$$

a(R) は姿勢行列 R の等価角軸ベクトルを表す .

return
$$\bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi}) \in \mathbb{R}^{6\bar{N}_{kin}(t)}$$

:kinematics-task-value &key (update? t)

[method]

$$e^{kin}(\boldsymbol{p}_{\theta}, \boldsymbol{\phi}) = \begin{pmatrix} \bar{e}^{kin}(\boldsymbol{\theta}(t_{1}), \boldsymbol{\phi}) \\ \vdots \\ \bar{e}^{kin}(\boldsymbol{\theta}(t_{N_{tm-kin}}), \boldsymbol{\phi}) \end{pmatrix} \in \mathbb{R}^{6N_{kin}} \quad \left(N_{kin} := \sum_{t=1}^{t_{N_{tm-kin}}} \bar{N}_{kin}(t)\right)$$
(4.311)

return $e^{kin}(p_{\theta}, \phi)$

:eom-trans-instant-task-value $\it tm$

[method]

$$\bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t)) = m\ddot{\boldsymbol{c}} - \left\{ \sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \boldsymbol{f}_m - m\boldsymbol{g} \right\}$$
(4.312)

$$= m\ddot{\mathbf{c}} - \sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \mathbf{f}_m + m\mathbf{g} \in \mathbb{R}^3$$
(4.313)

return $\bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))$

:eom-trans-task-value &key (update? t)

$$\boldsymbol{e}^{eom\text{-}trans}(\boldsymbol{p}_{c}, \boldsymbol{p}_{\hat{w}}) = \begin{pmatrix} \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t_{1}), \hat{\boldsymbol{w}}(t_{1})) \\ \vdots \\ \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t_{N_{tm\text{-}eom}}), \hat{\boldsymbol{w}}(t_{N_{tm\text{-}eom}})) \end{pmatrix} \in \mathbb{R}^{3N_{tm\text{-}eom}}$$

$$(4.314)$$

return $e^{eom\text{-}trans}(p_c, p_{\hat{w}})$

:eom-rot-instant-task-value $\it tm$

[method]

$$\bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t),\boldsymbol{c}(t),\boldsymbol{L}(t),\hat{\boldsymbol{w}}(t),\boldsymbol{\phi}) = \dot{\boldsymbol{L}} - \sum_{\substack{m=1\\m\in contact}}^{N_{cnt}} \left\{ \left(\boldsymbol{p}_m^{cnt\text{-}trg}(\boldsymbol{\theta},\boldsymbol{\phi}) - \boldsymbol{c} \right) \times \boldsymbol{f}_m + \boldsymbol{n}_m \right\} \in \mathbb{R}^3.315)$$

return $\bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})$

:eom-rot-task-value &key (update? t)

[method]

$$egin{aligned} oldsymbol{e}^{eom ext{-}rot}(oldsymbol{p}_{ heta},oldsymbol{p}_{c},oldsymbol{p}_{L},oldsymbol{p}_{\hat{w}},oldsymbol{\phi}) &= & \left(egin{aligned} ar{oldsymbol{e}}^{eom ext{-}rot}(oldsymbol{ heta}(t_{1}),oldsymbol{c}(t_{1}),oldsymbol{L}(t_{1}),oldsymbol{\omega}(t_{1}),oldsymbol{\phi}) \end{aligned} & dots \ ar{ar{oldsymbol{e}}}^{2} & dots \ ar{ar{oldsymbol{e}}}^{2} & dots \ ar{oldsymbol{e}}^{2} & dots \ ar{oldsymbol{e}^{2} & dots \ ar{oldsymbol{e}}^{2} & dots \ ar{old$$

return $oldsymbol{e}^{eom\text{-}rot}(oldsymbol{p}_{ heta},oldsymbol{p}_{c},oldsymbol{p}_{L},oldsymbol{p}_{\hat{w}},oldsymbol{\phi})$

:cog-instant-task-value tm

[method]

$$\bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi}) = \boldsymbol{p}_G(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \in \mathbb{R}^3$$
 (4.317)

return $\bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})$

:cog-task-value &key (update? t)

[method]

$$\boldsymbol{e}^{cog}(\boldsymbol{p}_{\theta}, \boldsymbol{p}_{c}, \boldsymbol{\phi}) = \begin{pmatrix} \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t_{1}), \boldsymbol{c}(t_{1}), \boldsymbol{\phi}) \\ \vdots \\ \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{\phi}) \end{pmatrix} \in \mathbb{R}^{3N_{tm-eom}}$$
(4.318)

return $e^{cog}(p_{\theta}, p_{c}, \phi)$

:ang-moment-instant-task-value $\it tm$

[method]

$$\bar{\boldsymbol{e}}^{ang\text{-}moment}(\boldsymbol{\theta}(t), \boldsymbol{L}(t), \boldsymbol{\phi}) = \boldsymbol{L}(t) - \left\{ \boldsymbol{A}_{\theta}(\boldsymbol{\theta}(t), \boldsymbol{\phi}(t)) \dot{\boldsymbol{\theta}}(t) + \boldsymbol{A}_{\phi}(\boldsymbol{\theta}(t), \boldsymbol{\phi}(t)) \dot{\boldsymbol{\phi}}(t) \right\} \in \mathbb{R}^{3} (4.319)$$

本実装では, $A_{ heta}=A_{\phi}=O$ という仮定を置く.このとき,タスク関数は次式となる.

$$\bar{e}^{ang\text{-}moment}(L(t)) = L(t) \in \mathbb{R}^3$$
 (4.320)

return $\bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t))$

:ang-moment-task-value &key (update? t)

$$e^{ang\text{-}moment}(\boldsymbol{p}_{L}) = \begin{pmatrix} \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t_{1})) \\ \vdots \\ \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t_{N_{tm\text{-}eom}})) \end{pmatrix} \in \mathbb{R}^{3N_{tm\text{-}eom}}$$

$$(4.321)$$

return $e^{ang\text{-}moment}(p_L)$

:posture-instant-task-value tm

[method]

$$\bar{e}^{posture}(\theta(t)) = k_{posture} \left(\theta_{posture}^{trg} - \theta_{posture}\right) \in \mathbb{R}^{N_{posture-joint}}$$
 (4.322)

 $oldsymbol{ heta}^{trg}_{posture}, oldsymbol{ heta}_{posture}$ の目標関節角と現在の関節角.

return $\bar{e}^{posture}(\theta(t))$

:posture-task-value &key (update? t)

[method]

$$e^{posture}(\boldsymbol{p}_{\theta}) = \begin{pmatrix} \bar{e}^{posture}(\boldsymbol{\theta}(t_{1})) \\ \vdots \\ \bar{e}^{posture}(\boldsymbol{\theta}(t_{N_{tm-kin}})) \end{pmatrix} \in \mathbb{R}^{N_{posture-joint}N_{tm-kin}}$$
(4.323)

return $e^{posture}(p_{\theta})$

:task-value &key (update? t)

[method]

$$e(q) = \begin{pmatrix} e^{kin}(\mathbf{p}_{\theta}, \phi) \\ e^{eom-trans}(\mathbf{p}_{c}, \mathbf{p}_{\hat{w}}) \\ e^{eom-rot}(\mathbf{p}_{\theta}, \mathbf{p}_{c}, \mathbf{p}_{L}, \mathbf{p}_{\hat{w}}, \phi) \\ e^{cog}(\mathbf{p}_{\theta}, \mathbf{p}_{c}, \phi) \\ e^{ang-moment}(\mathbf{p}_{\theta}, \mathbf{p}_{L}, \phi) \\ e^{trq}(\mathbf{p}_{\theta}, \mathbf{p}_{\hat{w}}, \mathbf{p}_{\tau}, \phi) \\ e^{posture}(\mathbf{p}_{\theta}) \end{pmatrix}$$

$$(4.324)$$

return $e(q) \in \mathbb{R}^{dim(e)}$

: kinematics-instant-task-jacobian-with-theta-control-vector $\it tm$

$$\frac{\partial \bar{\mathbf{e}}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{\mathbf{e}}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}}$$
(4.325)

$$\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} \qquad (4.325)$$

$$\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \begin{pmatrix} \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \\ \vdots \\ \frac{\partial \bar{e}^{kin}_{\tilde{N}_{kin}(t)}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{J}_{1,\theta}(t) \\ \vdots \\ \boldsymbol{J}_{\tilde{N}_{kin}(t),\theta}(t) \end{pmatrix}$$

$$(4.326)$$

$$\frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial}{\partial \boldsymbol{p}_{\theta}} \boldsymbol{B}_{\theta,n}(t) \boldsymbol{p}_{\theta} = \boldsymbol{B}_{\theta,n}(t)$$
(4.327)

return
$$\frac{\partial oldsymbol{e}^{kin}}{\partial oldsymbol{p}_{oldsymbol{a}}} \in \mathbb{R}^{6N_{kin} imes dim}(oldsymbol{p}_{oldsymbol{ heta}})$$

[method]

:kinematics-task-jacobian-with-theta-control-vector

$$\frac{\partial e^{kin}}{\partial p_{\theta}} = \begin{pmatrix}
\frac{\partial e^{kin}(\boldsymbol{\theta}(t_{1}), \boldsymbol{\phi}(t_{1}))}{\partial p_{\theta}} \\
\vdots \\
\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t_{N_{tm-kin}}), \boldsymbol{\phi}(t_{N_{tm-kin}}))}{\partial p_{\theta}}
\end{pmatrix} (4.328)$$

return
$$\frac{\partial \boldsymbol{e}^{kin}}{\partial \boldsymbol{p}_{\theta}} \in \mathbb{R}^{6N_{kin} \times dim}(\boldsymbol{p}_{\theta})$$

:kinematics-instant-task-jacobian-with-phi $\it tm$

[method]

$$\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}}$$
(4.329)

$$\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \tag{4.329}$$

$$\frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \begin{pmatrix} \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \\ \vdots \\ \frac{\partial \bar{e}^{kin}_{N_{kin}(t)}(\boldsymbol{\theta}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{J}_{1, \boldsymbol{\phi}}(t) \\ \vdots \\ \boldsymbol{J}_{\bar{N}_{kin}(t), \boldsymbol{\phi}}(t) \end{pmatrix}$$

return
$$\frac{\partial e^{kin}}{\partial \phi} \in \mathbb{R}^{6N_{kin} \times dim(\phi)}$$

:kinematics-task-jacobian-with-phi

[method]

$$\frac{\partial e^{kin}}{\partial \phi} = \begin{pmatrix} \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t_1), \boldsymbol{\phi}(t_1))}{\partial \phi} \\ \vdots \\ \frac{\partial \bar{e}^{kin}(\boldsymbol{\theta}(t_{N_{tm-kin}}), \boldsymbol{\phi}(t_{N_{tm-kin}}))}{\partial \phi} \end{pmatrix} \tag{4.331}$$

return
$$\frac{\partial e^{kin}}{\partial \phi} \in \mathbb{R}^{6N_{kin} \times dim(\phi)}$$

:eom-trans-instant-task-jacobian-with-cog-control-vector tm

[method]

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \boldsymbol{p}_{c}} = m \frac{\partial \ddot{\boldsymbol{c}}(t)}{\partial \boldsymbol{p}_{c}}$$

$$(4.332)$$

$$= m \frac{\partial}{\partial \boldsymbol{p}_c} \boldsymbol{B}_{c,n-2}(t) \hat{\boldsymbol{D}}_2 \boldsymbol{p}_c \tag{4.333}$$

$$= m\mathbf{B}_{c,n-2}(t)\hat{\mathbf{D}}_2 \tag{4.334}$$

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_c)}$$

:eom-trans-task-jacobian-with-cog-control-vector

$$\frac{\partial \boldsymbol{e}^{eom\text{-}trans}}{\partial \boldsymbol{p}_{c}} = \begin{pmatrix}
\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t_{1}), \hat{\boldsymbol{w}}(t_{1}))}{\partial \boldsymbol{p}_{c}} \\
\vdots \\
\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}))}{\partial \boldsymbol{p}_{c}}
\end{pmatrix} (4.335)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}trans}}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_c)$$

 $: {\bf eom\text{-}trans\text{-}instant\text{-}task\text{-}jacobian\text{-}with\text{-}wrench\text{-}control\text{-}vector}\ \mathit{tm}$

[method]

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \boldsymbol{p}_{\hat{w}}} = \frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} \frac{\partial \hat{\boldsymbol{w}}(t)}{\partial \boldsymbol{p}_{\hat{w}}}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{e}^{eom-trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} & \cdots & -\boldsymbol{I}_{3} & \boldsymbol{O}_{3} \end{pmatrix}$$

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \hat{\boldsymbol{w}}} = \begin{pmatrix} -\boldsymbol{I}_3 & \boldsymbol{O}_3 & \cdots & -\boldsymbol{I}_3 & \boldsymbol{O}_3 \end{pmatrix}$$
(4.337)

(ただし , $oldsymbol{p}_m^{cnt-trg}$ が nilの接触については , $oldsymbol{O}_3$ とする)

$$\frac{\partial \hat{\boldsymbol{w}}(t)}{\partial \boldsymbol{p}_{\hat{w}}} = \frac{\partial}{\partial \boldsymbol{p}_{\hat{w}}} \boldsymbol{B}_{\hat{w},n}(t) \boldsymbol{p}_{\hat{w}} = \boldsymbol{B}_{\hat{w},n}(t)$$
(4.338)

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}trans}(\boldsymbol{c}(t), \hat{\boldsymbol{w}}(t))}{\partial \boldsymbol{p}_{\hat{w}}} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_{\hat{w}})}$$

:eom-trans-task-jacobian-with-wrench-control-vector

[method]

$$\frac{\partial e^{eom\text{-}trans}}{\partial p_{\hat{w}}} = \begin{pmatrix}
\frac{\partial \bar{e}^{eom\text{-}trans}(\boldsymbol{c}(t_1), \hat{\boldsymbol{w}}(t_1))}{\partial p_{\hat{w}}} \\
\vdots \\
\frac{\partial \bar{e}^{com\text{-}trans}(\boldsymbol{c}(t_{N_{tm-com}}), \hat{\boldsymbol{w}}(t_{N_{tm-com}}))}{\partial p_{\hat{w}}}
\end{pmatrix} (4.339)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}trans}}{\partial \boldsymbol{p}_{\hat{w}}} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim(\boldsymbol{p}_{\hat{w}})}$$

:eom-rot-instant-task-jacobian-with-theta-control-vector tm

[method]

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}}$$
(4.340)

$$\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} \qquad (4.340)$$

$$\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \left\{ [\boldsymbol{f}_m(t) \times] \boldsymbol{J}_{m,\theta}^{cnt-trg}(t) \right\} \qquad (4.341)$$

$$\frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial}{\partial \boldsymbol{p}_{\theta}} \boldsymbol{B}_{\theta,n}(t) \boldsymbol{p}_{\theta} = \boldsymbol{B}_{\theta,n}(t)$$
(4.342)

$$\text{return } \frac{\partial \overline{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\boldsymbol{\theta}}} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_{\boldsymbol{\theta}})}$$

:eom-rot-task-jacobian-with-theta-control-vector

[method]

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_{\theta}} = \begin{pmatrix}
\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t_{1}), \boldsymbol{c}(t_{1}), \boldsymbol{L}(t_{1}), \hat{\boldsymbol{w}}(t_{1}), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} \\
\vdots \\
\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{L}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}}
\end{pmatrix} (4.343)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_{\boldsymbol{\theta}}} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_{\boldsymbol{\theta}})$$

:eom-rot-instant-task-jacobian-with-cog-control-vector tm

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{c}} = \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{c}} \frac{\partial \boldsymbol{c}(t)}{\partial \boldsymbol{p}_{c}}$$
(4.344)

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{c}} = -\sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} [\boldsymbol{f}_m \times] = \left[\left(-\sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \boldsymbol{f}_m \right) \times \right] \quad (4.345)$$

$$\frac{\partial \boldsymbol{c}(t)}{\partial \boldsymbol{p}_{c}} = \frac{\partial}{\partial \boldsymbol{p}_{c}} \boldsymbol{B}_{c,n}(t) \boldsymbol{p}_{c} = \boldsymbol{B}_{c,n}(t)$$
(4.346)

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_c)}$$

:eom-rot-task-jacobian-with-cog-control-vector

[method]

$$\frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_{c}} = \begin{pmatrix}
\frac{\partial \boldsymbol{\bar{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t_{1}), \boldsymbol{c}(t_{1}), \boldsymbol{L}(t_{1}), \hat{\boldsymbol{w}}(t_{1}), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{c}} \\
\vdots \\
\frac{\partial \boldsymbol{\bar{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{L}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{c}}
\end{pmatrix} (4.347)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_c)$$

:eom-rot-instant-task-jacobian-with-ang-moment-control-vector tm

[method]

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{L}} = \frac{\partial \dot{\boldsymbol{L}}(t)}{\partial \boldsymbol{p}_{L}}$$

$$= \frac{\partial}{\partial \boldsymbol{p}_{L}} \boldsymbol{B}_{L,n-1}(t) \hat{\boldsymbol{D}}_{1} \boldsymbol{p}_{L}$$

$$(4.348)$$

$$= \frac{\partial}{\partial \boldsymbol{p}_L} \boldsymbol{B}_{L,n-1}(t) \hat{\boldsymbol{D}}_1 \boldsymbol{p}_L \tag{4.349}$$

$$= \mathbf{B}_{L,n-1}(t)\hat{\mathbf{D}}_1 \tag{4.350}$$

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_L} \in \mathbb{R}^{3 \times dim}(\boldsymbol{p}_{\scriptscriptstyle L})$$

: eom-rot-task-jacobian-with-ang-moment-control-vector

[method]

$$\frac{\partial e^{eom-rot}}{\partial p_{L}} = \begin{pmatrix}
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_{1}), \boldsymbol{c}(t_{1}), \boldsymbol{L}(t_{1}), \hat{\boldsymbol{w}}(t_{1}), \boldsymbol{\phi})}{\partial p_{L}} \\
\vdots \\
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{L}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial p_{L}}
\end{pmatrix} (4.351)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_L} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_L)$$

 $: {\bf eom\text{-}rot\text{-}instant\text{-}task\text{-}jacobian\text{-}with\text{-}wrench\text{-}control\text{-}vector}\ \mathit{tm}$

$$\frac{\partial \bar{\mathbf{e}}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\hat{w}}} = \frac{\partial \bar{\mathbf{e}}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \hat{\boldsymbol{w}}} \frac{\partial \hat{\boldsymbol{w}}(t)}{\partial \boldsymbol{p}_{\hat{w}}}$$

$$\frac{\partial \bar{\mathbf{e}}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \hat{\boldsymbol{w}}} = \left(\left[-\left(\boldsymbol{p}_{1}^{cnt-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \right] - \boldsymbol{I}_{3} \cdot \cdots \cdot \left[-\left(\boldsymbol{p}_{N_{cnt}}^{cnt-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \right] \right)$$

$$(4.3)$$

$$\frac{\partial \bar{\boldsymbol{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \hat{\boldsymbol{w}}} = \left(\left[-\left(\boldsymbol{p}_{1}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \right] - \boldsymbol{I}_{3} \cdots \left[-\left(\boldsymbol{p}_{N_{cnt}}^{cnt\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{c} \right) \times \right] \right)$$
(4)

(ただし ,
$$m{p}_m^{cnt-trg}$$
が nil の接触については , $m{O}_3$ とする)

$$\frac{\partial \hat{\boldsymbol{w}}(t)}{\partial \boldsymbol{p}_{\hat{w}}} = \frac{\partial}{\partial \boldsymbol{p}_{\hat{w}}} \boldsymbol{B}_{\hat{w},n}(t) \boldsymbol{p}_{\hat{w}} = \boldsymbol{B}_{\hat{w},n}(t)$$
(4.

$$\text{return } \frac{\partial \boldsymbol{\bar{e}}^{eom\text{-}rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \boldsymbol{\hat{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\hat{w}}} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_{\hat{w}})}$$

:eom-rot-task-jacobian-with-wrench-control-vector

[method]

$$\frac{\partial e^{eom-rot}}{\partial p_{\hat{w}}} = \begin{pmatrix}
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_1), \boldsymbol{c}(t_1), \boldsymbol{L}(t_1), \hat{\boldsymbol{w}}(t_1), \boldsymbol{\phi})}{\partial p_{\hat{w}}} \\
\vdots \\
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{L}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial p_{\hat{w}}}
\end{pmatrix} (4.355)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{p}_{\hat{w}}} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_{\hat{w}})$$

:eom-rot-instant-task-jacobian-with-phi $\it tm$

[method]

$$\frac{\partial \bar{\boldsymbol{e}}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{\partial \bar{\boldsymbol{e}}^{eom-rot}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \qquad (4.356)$$

$$= \sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \left\{ [\boldsymbol{f}_m(t) \times] \boldsymbol{J}_{m,\phi}^{cnt-trg}(t) \right\} \qquad (4.357)$$

$$= \sum_{\substack{m=1\\m \in contact}}^{N_{cnt}} \left\{ [\boldsymbol{f}_m(t) \times] \boldsymbol{J}_{m,\phi}^{cnt-trg}(t) \right\}$$
(4.357)

$$\text{return } \frac{\partial \overline{\boldsymbol{e}}^{\textit{eom-rot}}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{L}(t), \hat{\boldsymbol{w}}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{3 \times dim(\boldsymbol{\phi})}$$

:eom-rot-task-jacobian-with-phi

[method]

$$\frac{\partial e^{eom-rot}}{\partial \phi} = \begin{pmatrix}
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_1), \boldsymbol{c}(t_1), \boldsymbol{L}(t_1), \hat{\boldsymbol{w}}(t_1), \boldsymbol{\phi})}{\partial \phi} \\
\vdots \\
\frac{\partial \bar{e}^{eom-rot}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{L}(t_{N_{tm-eom}}), \hat{\boldsymbol{w}}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial \phi}
\end{pmatrix} (4.358)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{eom\text{-}rot}}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim(\boldsymbol{\phi})}$$

:cog-instant-task-jacobian-with-theta-control-vector $\it tm$

[method]

$$\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}}$$

$$\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \boldsymbol{J}_{G,\theta}(t)$$
(4.360)

$$\frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \boldsymbol{J}_{G,\theta}(t) \tag{4.360}$$

$$\frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial}{\partial \boldsymbol{p}_{\theta}} \boldsymbol{B}_{\theta,n}(t) \boldsymbol{p}_{\theta} = \boldsymbol{B}_{\theta,n}(t)$$
(4.361)

return
$$\frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{\boldsymbol{\theta}}} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_{\boldsymbol{\theta}})}$$

:cog-task-jacobian-with-theta-control-vector

$$\frac{\partial e^{cog}}{\partial p_{\theta}} = \begin{pmatrix}
\frac{\partial \bar{e}^{cog}(\theta(t_{1}), c(t_{1}), \phi)}{\partial p_{\theta}} \\
\vdots \\
\frac{\partial \bar{e}^{cog}(\theta(t_{N_{tm-com}}), c(t_{N_{tm-com}}), \phi)}{\partial p_{\theta}}
\end{pmatrix} (4.362)$$

return
$$\frac{\partial \boldsymbol{e}^{cog}}{\partial \boldsymbol{p}_o} \in \mathbb{R}^{3N_{tm ext{-}eom} imes dim}(\boldsymbol{p}_{ heta})$$

[method]

:cog-instant-task-jacobian-with-cog-control-vector $\it tm$

$$\frac{(t),\phi}{2}\frac{\partial \boldsymbol{c}(t)}{\partial z} \tag{4.363}$$

$$\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_{c}} = \frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{c}} \frac{\partial \boldsymbol{c}(t)}{\partial \boldsymbol{p}_{c}} \qquad (4.363)$$

$$\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{c}} = -\boldsymbol{I}_{3} \qquad (4.364)$$

$$\frac{\partial \boldsymbol{c}(t)}{\partial \boldsymbol{p}_{c}} = \frac{\partial}{\partial \boldsymbol{p}_{c}} \boldsymbol{B}_{c,n}(t) \boldsymbol{p}_{c} = \boldsymbol{B}_{c,n}(t) \qquad (4.365)$$

$$\frac{\partial \boldsymbol{c}(t)}{\partial \boldsymbol{p}_{c}} = \frac{\partial}{\partial \boldsymbol{p}_{c}} \boldsymbol{B}_{c,n}(t) \boldsymbol{p}_{c} = \boldsymbol{B}_{c,n}(t)$$
(4.365)

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3 \times dim(\boldsymbol{p}_c)}$$

:cog-task-jacobian-with-cog-control-vector

[method]

$$\frac{\partial e^{cog}}{\partial p_c} = \begin{pmatrix}
\frac{\partial \bar{e}^{cog}(\theta(t_1), c(t_1), \phi)}{\partial p_c} \\
\vdots \\
\frac{\partial \bar{e}^{cog}(\theta(t_{N_{tm-eom}}), c(t_{N_{tm-eom}}), \phi)}{\partial p_c}
\end{pmatrix} (4.366)$$

$$\text{return } \frac{\partial \boldsymbol{e}^{cog}}{\partial \boldsymbol{p}_c} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim(\boldsymbol{p}_c)}$$

:cog-instant-task-jacobian-with-phi tm

[method]

$$\frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t), \boldsymbol{c}(t), \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \boldsymbol{J}_{G, \phi}(t)$$
(4.367)

return
$$\frac{\partial \bar{\boldsymbol{e}}^{cog}(\boldsymbol{\theta}(t),\boldsymbol{c}(t),\boldsymbol{\phi})}{\partial \boldsymbol{\phi}} \in \mathbb{R}^{3 \times dim(\boldsymbol{\phi})}$$

:cog-task-jacobian-with-phi

[method]

$$\frac{\partial e^{cog}}{\partial \phi} = \begin{pmatrix}
\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t_1), \boldsymbol{c}(t_1), \boldsymbol{\phi})}{\partial \phi} \\
\vdots \\
\frac{\partial \bar{e}^{cog}(\boldsymbol{\theta}(t_{N_{tm-eom}}), \boldsymbol{c}(t_{N_{tm-eom}}), \boldsymbol{\phi})}{\partial \phi}
\end{pmatrix} (4.368)$$

return
$$\frac{\partial e^{cog}}{\partial \phi} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim(\phi)}$$

: ang-moment-instant-task-jacobian-with-ang-moment-control-vector $\it tm$

[method]

$$\frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t))}{\partial \boldsymbol{p}_{L}} = \frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t))}{\partial \boldsymbol{L}} \frac{\partial \boldsymbol{L}(t)}{\partial \boldsymbol{p}_{L}} \qquad (4.369)$$

$$\frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t))}{\partial \boldsymbol{L}} = \boldsymbol{I}_{3} \qquad (4.370)$$

$$\frac{\partial \boldsymbol{L}(t)}{\partial \boldsymbol{p}_{L}} = \frac{\partial}{\partial \boldsymbol{p}_{L}} \boldsymbol{B}_{L,n}(t) \boldsymbol{p}_{L} = \boldsymbol{B}_{L,n}(t) \qquad (4.371)$$

$$\frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t))}{\partial \boldsymbol{I}} = \boldsymbol{I}_3 \tag{4.370}$$

$$\frac{\partial \boldsymbol{L}(t)}{\partial \boldsymbol{p}_{I}} = \frac{\partial}{\partial \boldsymbol{p}_{I}} \boldsymbol{B}_{L,n}(t) \boldsymbol{p}_{L} = \boldsymbol{B}_{L,n}(t)$$
(4.371)

$$\text{return } \frac{\partial \bar{\boldsymbol{e}}^{ang\text{-}moment}(\boldsymbol{L}(t))}{\partial \boldsymbol{p}_L} \in \mathbb{R}^{3 \times dim}(\boldsymbol{p}_{\scriptscriptstyle L})$$

:ang-moment-task-jacobian-with-ang-moment-control-vector

$$\frac{\partial e^{ang\text{-}moment}}{\partial p_L} = \begin{pmatrix} \frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t_1))}{\partial p_L} \\ \vdots \\ \frac{\partial \bar{e}^{ang\text{-}moment}(\boldsymbol{L}(t_{N_{tm-eom}}))}{\partial p_L} \end{pmatrix}$$
(4.372)

$$\text{return } \frac{\partial \boldsymbol{e}^{ang\text{-}moment}}{\partial \boldsymbol{p}_L} \in \mathbb{R}^{3N_{tm\text{-}eom} \times dim}(\boldsymbol{p}_{\scriptscriptstyle L})$$

:posture-instant-task-jacobian-with-theta-control-vector $\it tm$

[method]

$$\frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}}$$
(4.373)

$$\frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} \qquad (4.373)$$

$$\left(\frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{\theta}}\right)_{i,j} = \begin{cases}
-k_{posture} & (\mathcal{J}_{posture,i} = \mathcal{J}_{var,j}) \\
0 & \text{otherwise}
\end{cases}$$

$$\frac{\partial \boldsymbol{\theta}(t)}{\partial \boldsymbol{p}_{\theta}} = \frac{\partial}{\partial \boldsymbol{p}_{\theta}} \boldsymbol{B}_{\theta,n}(t) \boldsymbol{p}_{\theta} = \boldsymbol{B}_{\theta,n}(t)$$
(4.375)

$$\text{return } \frac{\partial \overline{\boldsymbol{e}}^{posture}(\boldsymbol{\theta}(t))}{\partial \boldsymbol{p}_{\boldsymbol{\theta}}} \in \mathbb{R}^{N_{posture-joint} \times dim(\boldsymbol{p}_{\boldsymbol{\theta}})}$$

:posture-task-jacobian-with-theta-control-vector

[method]

$$\frac{\partial e^{posture}}{\partial p_{\theta}} = \begin{pmatrix} \frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t_{1}))}{\partial p_{\theta}} \\ \vdots \\ \frac{\partial \bar{e}^{posture}(\boldsymbol{\theta}(t_{N_{tm-kin}}))}{\partial p_{\theta}} \end{pmatrix}$$
(4.376)

$$\text{return } \frac{\partial e^{posture}}{\partial p_{\theta}} \in \mathbb{R}^{N_{posture-joint}N_{tm-kin} \times dim}(p_{\theta})$$

:task-jacobian [method]

$$\frac{\partial e}{\partial q} = \begin{pmatrix} dim(e^{kin}(\mathbf{p}_{\theta}, \phi)) & dim(\mathbf{p}_{c}) & dim(\mathbf{p}_{L}) & dim(\mathbf{p}_{\hat{w}}) & dim(\mathbf{p}_{\tau}) & dim(\phi) \\ \frac{\partial e^{kin}}{\partial \mathbf{p}_{\theta}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{c}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{c}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{c}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{L}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} \\ \frac{\partial e^{eom-trans}}{\partial \mathbf{p}_{\hat{w}}} & \frac$$

return
$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{q}} = \mathbb{R}^{\dim(\boldsymbol{e}) \times \dim(\boldsymbol{q})}$$

:theta-max-vector &key (update? nil)

return $\boldsymbol{\theta}_{max} \in \mathbb{R}^{N_{var-joint}}$

[method]

$$\textbf{:theta-min-vector} \ \mathcal{E}key \ (update? \ nil)$$

[method]

return $\boldsymbol{\theta}_{min} \in \mathbb{R}^{N_{var-joint}}$

:theta-instant-inequality-constraint-matrix &key (update? nil)

[method]

$$\theta_{min} \le \theta \le \theta_{max} \tag{4.378}$$

$$\Theta_{min} \leq \theta \leq \Theta_{max} \tag{4.378}$$

$$\Leftrightarrow \qquad \begin{pmatrix} I \\ -I \end{pmatrix} \theta \geq \begin{pmatrix} \Theta_{min} \\ -\Theta_{max} \end{pmatrix} \tag{4.389}$$

$$\Leftrightarrow \qquad C_{\theta} \theta \geq \bar{d}_{\theta} \tag{4.380}$$

$$\Leftrightarrow C_{\theta}\theta \ge \bar{d}_{\theta} \tag{4.380}$$

$$\text{return } \boldsymbol{C}_{\boldsymbol{\theta}} := \begin{pmatrix} \boldsymbol{I} \\ -\boldsymbol{I} \end{pmatrix} \in \mathbb{R}^{2N_{var\text{-}joint} \times N_{var\text{-}joint}}$$

:theta-instant-inequality-constraint-vector &key (update? nil)

[method]

return
$$ar{d}_{m{ heta}} := egin{pmatrix} m{ heta}_{min} \ -m{ heta}_{max} \end{pmatrix} \in \mathbb{R}^{2N_{var ext{-}joint}}$$

:theta-control-vector-inequality-constraint-matrix &key (update? nil)

[method]

$$C_{\theta}\theta \ge \bar{d}_{\theta} \tag{4.381}$$

$$\Leftrightarrow C_{p_{\theta}}p_{\theta} \ge \bar{d}_{p_{\theta}} \tag{4.382}$$

差分形式で表すと次式となる.

$$C_{p_{\theta}}(p_{\theta} + \Delta p_{\theta}) \ge \bar{d}_{p_{\theta}} \tag{4.383}$$

$$\Leftrightarrow C_{p_{\theta}} \Delta p_{\theta} \ge \bar{d}_{p_{\theta}} - C_{p_{\theta}} p_{\theta}$$
 (4.384)

$$\Leftrightarrow C_{p_{\theta}} \Delta p_{\theta} \ge d_{p_{\theta}} \tag{4.385}$$

return $C_{p_{\theta}}$

:theta-control-vector-inequality-constraint-vector &key (update? t)

[method]

$$\text{return } \boldsymbol{d}_{p_{\theta}} := \bar{\boldsymbol{d}}_{\boldsymbol{p}_{\boldsymbol{\theta}}} - \boldsymbol{C}_{\boldsymbol{p}_{\boldsymbol{\theta}}} \boldsymbol{p}_{\boldsymbol{\theta}}$$

:cog-max-vector &key (update? nil)

return $c_{max} \in \mathbb{R}^3$ [m]

[method]

:cog-instant-inequality-constraint-matrix &key (update? nil)

[method]

$$-c_{max} \le c \le c_{max} \tag{4.386}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} c \ge \begin{pmatrix} -c_{max} \\ -c_{max} \end{pmatrix} \tag{4.387}$$

$$\Leftrightarrow C_c c \ge \bar{d}_c \tag{4.388}$$

return
$$C_c := \begin{pmatrix} I \\ -I \end{pmatrix} \in \mathbb{R}^{6 \times 3}$$

 $\textbf{:} \textbf{cog-instant-inequality-constraint-vector} \ \ \mathscr{C}key \ (update? \ nil)$

[method]

$$ext{return } ar{m{d}_{m{c}}} := egin{pmatrix} -m{c}_{max} \ -m{c}_{max} \end{pmatrix} \in \mathbb{R}^6$$

:cog-control-vector-inequality-constraint-matrix &key (update? nil)

$$C_c c \ge \bar{d}_c \tag{4.389}$$

$$\Leftrightarrow C_{p_c} p_c \ge \bar{d}_{p_c} \tag{4.390}$$

差分形式で表すと次式となる.

$$C_{p_c}(p_c + \Delta p_c) \ge \bar{d}_{p_c} \tag{4.391}$$

$$\Leftrightarrow C_{p_c} \Delta p_c \ge \bar{d}_{p_c} - C_{p_c} p_c \tag{4.392}$$

$$\Leftrightarrow C_{p_c} \Delta p_c \ge d_{p_c} \tag{4.393}$$

return C_{p_c}

:cog-control-vector-inequality-constraint-vector $\&key\ (update?\ t)$

[method]

 $\text{return } \boldsymbol{d}_{p_c} := \bar{\boldsymbol{d}}_{\boldsymbol{p}_c} - \boldsymbol{C}_{\boldsymbol{p}_c} \boldsymbol{p}_c$

:ang-moment-max-vector &key (update? nil)

[method]

return $\boldsymbol{L}_{max} \in \mathbb{R}^3 \text{ [kgm}^2/\text{s]}$

:ang-moment-instant-inequality-constraint-matrix &key (update? nil)

[method]

$$-L_{max} \le L \le L_{max} \tag{4.394}$$

$$\Leftrightarrow \begin{pmatrix} I \\ -I \end{pmatrix} L \ge \begin{pmatrix} -L_{max} \\ -L_{max} \end{pmatrix} \tag{4.395}$$

$$\Leftrightarrow C_L L \ge \bar{d}_L \tag{4.396}$$

return $C_{L} := \begin{pmatrix} I \\ -I \end{pmatrix} \in \mathbb{R}^{6 \times 3}$

 $\textbf{:} \textbf{ang-moment-instant-inequality-constraint-vector} \ \textit{\&key (update? nil)}$

[method]

return
$$ar{m{d}}_{m{L}} := \begin{pmatrix} -m{L}_{max} \\ -m{L}_{max} \end{pmatrix} \in \mathbb{R}^6$$

:ang-moment-control-vector-inequality-constraint-matrix &key (update? nil)

[method]

$$C_L L \ge \bar{d}_L \tag{4.397}$$

$$\Leftrightarrow C_{p_L} p_L \ge \bar{d}_{p_L} \tag{4.398}$$

差分形式で表すと次式となる.

$$C_{p_L}(p_L + \Delta p_L) \ge \bar{d}_{p_L} \tag{4.399}$$

$$\Leftrightarrow C_{p_L} \Delta p_L \ge \bar{d}_{p_L} - C_{p_L} p_L \tag{4.400}$$

$$\Leftrightarrow C_{p_I} \Delta p_L \ge d_{p_I} \tag{4.401}$$

return C_{p_L}

:ang-moment-control-vector-inequality-constraint-vector &key (update? t)

[method]

 $\text{return } \boldsymbol{d}_{p_L} := \bar{\boldsymbol{d}}_{\boldsymbol{p}_L} - \boldsymbol{C}_{\boldsymbol{p}_L} \boldsymbol{p}_L$

:wrench-instant-inequality-constraint-matrix &key (update? t)

接触レンチ $w\in\mathbb{R}^6$ が満たすべき制約(非負制約,摩擦制約,圧力中心制約)が次式のように表される とする.

$$C_w w \ge d_w \tag{4.402}$$

 N_{cnt} 箇所の接触部位の接触レンチを並べたベクトル $\hat{m w}$ の不等式制約は次式で表される.

$$C_{w,m} w_m \ge d_{w,m} \quad (m = 1, 2, \dots, N_{cnt})$$
 (4.403)

$$\Leftrightarrow \begin{pmatrix} C_{w,1} & & & \\ & C_{w,2} & & \\ & & \ddots & \\ & & & C_{w,N_{cnt}} \end{pmatrix} \begin{pmatrix} \boldsymbol{w}_1 \\ \boldsymbol{w}_2 \\ \vdots \\ \boldsymbol{w}_{N_{cnt}} \end{pmatrix} \geq \begin{pmatrix} \boldsymbol{d}_{w,1} \\ \boldsymbol{d}_{w,2} \\ \vdots \\ \boldsymbol{d}_{w,N_{cnt}} \end{pmatrix}$$

$$(4.404)$$

$$\Leftrightarrow C_{\hat{w}}\hat{\boldsymbol{w}} \geq \boldsymbol{d}_{\hat{w}} \tag{4.405}$$

 $\textbf{:wrench-instant-inequality-constraint-vector} \ \textit{\&key (update? nil)}$

[method]

$$ext{return } oldsymbol{d}_{\hat{w}} := egin{pmatrix} oldsymbol{d}_{w,1} \ oldsymbol{d}_{w,2} \ dots \ oldsymbol{d}_{w,N_{cnt}} \end{pmatrix} \in \mathbb{R}^{N_{\hat{w} ext{-}ineq}}$$

:wrench-control-vector-inequality-constraint-matrix &key (update? nil)

[method]

$$C_{\hat{w}}\hat{w} \ge \bar{d}_{\hat{w}}$$
 (4.406)

$$\Leftrightarrow C_{p_{\hat{w}}}p_{\hat{w}} \ge \bar{d}_{p_{\hat{w}}} \tag{4.407}$$

差分形式で表すと次式となる.

$$C_{p_{\hat{w}}}(p_{\hat{w}} + \Delta p_{\hat{w}}) \ge \bar{d}_{p_{\hat{w}}} \tag{4.408}$$

$$\Leftrightarrow C_{p_{\hat{w}}} \Delta p_{\hat{w}} \geq \bar{d}_{p_{\hat{w}}} - C_{p_{\hat{w}}} p_{\hat{w}}$$

$$\Leftrightarrow C_{p_{\hat{w}}} \Delta p_{\hat{w}} \geq d_{p_{\hat{w}}}$$

$$(4.409)$$

$$\Leftrightarrow C_{p_{\hat{w}}} \Delta p_{\hat{w}} \ge d_{p_{\hat{w}}} \tag{4.410}$$

return $C_{p_{\hat{w}}}$

:wrench-control-vector-inequality-constraint-vector &key~(update?~t)

[method]

 $\text{return } \boldsymbol{d}_{p_{\hat{\boldsymbol{w}}}} := \bar{\boldsymbol{d}}_{\boldsymbol{p}_{\hat{\boldsymbol{w}}}} - \boldsymbol{C}_{\boldsymbol{p}_{\hat{\boldsymbol{w}}}} \boldsymbol{p}_{\hat{\boldsymbol{w}}}$

:torque-control-vector-inequality-constraint-matrix

[method]

todo

:torque-control-vector-inequality-constraint-vector

[method]

todo

:phi-max-vector &key (update? nil)

[method]

return $\phi_{max} \in \mathbb{R}^{N_{invar-joint}}$

:phi-min-vector &key (update? nil)

return $\phi_{min} \in \mathbb{R}^{N_{invar-joint}}$

[method]

:phi-inequality-constraint-matrix &key (update? nil)

[method]

[method]

$$\phi_{min} \le \phi + \Delta \phi \le \phi_{max} \tag{4.411}$$

$$\phi_{min} \le \phi + \Delta \phi \le \phi_{max}$$

$$\Leftrightarrow \begin{pmatrix} \mathbf{I} \\ -\mathbf{I} \end{pmatrix} \Delta \phi \ge \begin{pmatrix} \phi_{min} - \phi \\ -(\phi_{max} - \phi) \end{pmatrix}$$

$$(4.411)$$

$$\Leftrightarrow C_{\phi} \Delta \phi \ge d_{\phi} \tag{4.413}$$

$$ext{return } oldsymbol{C_{\phi}} := egin{pmatrix} I \ -I \end{pmatrix} \in \mathbb{R}^{2N_{invar-joint} imes N_{invar-joint}}$$

 $\begin{array}{l} \textbf{:phi-inequality-constraint-vector} \ \ \mathscr{C}key \ (update? \ t) \\ \\ \textbf{return} \ \ \boldsymbol{d_{\phi}} := \begin{pmatrix} \phi_{min} - \phi \\ -(\phi_{max} - \phi) \end{pmatrix} \in \mathbb{R}^{2N_{invar-joint}} \\ \end{array}$

[method]

:config-inequality-constraint-matrix

$$\begin{cases}
C_{p_{\theta}} \Delta p_{\theta} \geq d_{p_{\theta}} \\
C_{p_{c}} \Delta p_{c} \geq d_{p_{c}} \\
C_{p_{L}} \Delta p_{L} \geq d_{p_{L}} \\
C_{p_{\hat{w}}} \Delta p_{\hat{w}} \geq d_{p_{\hat{w}}} \\
C_{p_{\tau}} \Delta p_{\tau} \geq d_{p_{\tau}} \\
C_{\phi} \Delta \phi > d_{\phi}
\end{cases}$$

$$(4.414)$$

$$\begin{cases}
C_{p_{\theta}} \Delta p_{\theta} \geq d_{p_{\theta}} \\
C_{p_{c}} \Delta p_{c} \geq d_{p_{c}} \\
C_{p_{L}} \Delta p_{L} \geq d_{p_{L}} \\
C_{p_{\hat{w}}} \Delta p_{\hat{w}} \geq d_{p_{\hat{w}}} \\
C_{p_{\tau}} \Delta p_{\tau} \geq d_{p_{\tau}} \\
C_{\phi} \Delta \phi \geq d_{\phi}
\end{cases}$$

$$\Leftrightarrow \begin{pmatrix} C_{p_{\theta}} \\ C_{p_{c}} \\ C_{p_{c}} \\ C_{p_{c}} \\ C_{p_{\hat{w}}} \\ C_{p_{\hat{w}}} \\ C_{p_{\tau}} \\ C_{\phi} \end{pmatrix} \begin{pmatrix} \Delta p_{\theta} \\ \Delta p_{c} \\ \Delta p_{L} \\ \Delta p_{\hat{w}} \\ \Delta p_{\tau} \\ \Delta \phi \end{pmatrix} \geq \begin{pmatrix} d_{p_{\theta}} \\ d_{p_{c}} \\ d_{p_{L}} \\ d_{p_{\hat{w}}} \\ d_{p_{\tau}} \\ d_{\phi} \end{pmatrix}$$

$$\Leftrightarrow C \Delta q \geq d \qquad (4.416)$$

return C

:config-inequality-constraint-vector

[method]

return \boldsymbol{d}

:config-equality-constraint-matrix &key (update? nil)

[method]

return $\mathbf{A} \in \mathbb{R}^{0 \times dim(\mathbf{q})}$ (no equality constraint)

[method]

:config-equality-constraint-vector &key (update? t) return $\boldsymbol{b} \in \mathbb{R}^0$ (no equality constraint)

 $: \mathbf{stationery}\text{-}\mathbf{start}\text{-}\mathbf{finish}\text{-}\mathbf{regular}\text{-}\mathbf{matrix} \ \mathscr{C}\mathit{key} \ (\mathit{update?} \ \mathit{nil})$

[method]

return $\boldsymbol{W}_{stat} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:differential-square-integration-regular-matrix &key (diff-order 1)

[method]

return $\boldsymbol{W}_{sqr,d} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:first-differential-square-integration-regular-matrix &key (update? nil)

[method]

return $\boldsymbol{W}_{sqr,1} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

 $: second-differential-square-integration-regular-matrix \ \textit{\&key (update? nil)}\\$

[method]

return $\boldsymbol{W}_{sqr,2} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:third-differential-square-integration-regular-matrix &key (update? nil)

[method]

return $\boldsymbol{W}_{sar,3} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:regular-matrix

[method]

$$\mathbf{W}_{reg} := \min(k_{max}, \|\mathbf{e}\|^2 + k_{off})\mathbf{I} + k_{stat}\mathbf{W}_{stat} + \sum_{d=1}^{3} k_{sqr,d}\mathbf{W}_{sqr,d}$$
 (4.417)

return $\boldsymbol{W}_{req} \in \mathbb{R}^{dim(\boldsymbol{q}) \times dim(\boldsymbol{q})}$

:regular-vector

[method]

$$\boldsymbol{v}_{reg} := k_{stat} \boldsymbol{W}_{stat} \boldsymbol{q} + \sum_{d=1}^{3} k_{sqr,d} \boldsymbol{W}_{sqr,d} \boldsymbol{q}$$

$$(4.418)$$

return $\boldsymbol{v}_{reg} \in \mathbb{R}^{dim(\boldsymbol{q})}$

$: update \hbox{-} collision \hbox{-} inequality \hbox{-} constraint$

[method]

Not implemented yet.

:update-viewer &key (start-time (send _theta-bst :start-time))

[method]

 $(finish\text{-}time\ (send\ _theta\text{-}bst\ :finish\text{-}time))$

(delta-time (/ (- finish-time start-time) 100.0))

Update viewer.

:print-setting-information

[method]

Print setting information.

:print-status

[method]

Print status.

:play-animation &key (robot-env)

[method]

 $(start\text{-}time\ (send\ _theta\text{-}bst\ :start\text{-}time))$

(finish-time (send _theta-bst :finish-time))

(delta-time (/ (- finish-time start-time) 100.0))

(loop? t)

(visualize-callback-func)

Play motion animation.

:generate-graph &key (start-time (send _theta-bst :start-time))

[method]

(finish-time (send _theta-bst :finish-time))

(delta-time (/ (- finish-time start-time) 100.0))

(data-dirname /tmp/bspline-dynamic-config-task)

(graph-filename /tmp/bspline-dynamic-config-task/graph.pdf)

Generate graph from configuration and task trajectory.

Generate and return robot state list.

4.4 離散的な幾何目標に対する逆運動学計算

4.4.1 離散的な幾何目標に対する逆運動学計算の理論

min/max 関数の微分可能関数近似

minimum/maximum 関数

$$F_{min}(\boldsymbol{x}; f_1, \dots, f_K) \stackrel{\text{def}}{=} \min(f_1(\boldsymbol{x}), \dots, f_K(\boldsymbol{x}))$$
 (4.419)

$$F_{max}(\boldsymbol{x}; f_1, \dots, f_K) \stackrel{\text{def}}{=} \max(f_1(\boldsymbol{x}), \dots, f_K(\boldsymbol{x}))$$
(4.420)

を連続かつ微分可能な関数で近似した smooth minimum/maximum 関数として,次式を用いることができる 12 .

$$S_{\alpha}(\boldsymbol{x}; f_1, \dots, f_K) \stackrel{\text{def}}{=} \frac{\sum_{k=1}^{K} f_k(\boldsymbol{x}) e^{\alpha f_k(\boldsymbol{x})}}{\sum_{k=1}^{K} e^{\alpha f_k(\boldsymbol{x})}}$$
(4.421)

この関数は以下の性質をもつ.

$$\alpha \to -\inf \quad \mathcal{O} \succeq \delta \quad \mathcal{S}_{\alpha} \to F_{min}$$
 (4.422)

$$\alpha \to \inf$$
 のとき $S_{\alpha} \to F_{max}$ (4.423)

離散的な目標に対するタスク関数の微分可能関数近似

タスク関数として $e_1(q),\cdots,e_K(q)\in\mathbb{R}^{N_e}$ が与えられているときに,これらのタスク関数のいずれかをゼロにするコンフィギュレーション $q\in\mathbb{R}^{N_q}$ を求める問題を考える.複数個の目標位置のいずれかにリーチングする逆運動学問題などがこの問題に含まれる.

この問題は次式で表される.

$$e_k(q) = 0$$
 $(k は 1, \dots, K のいずれか)$
$$(4.424)$$

これは次式と同値である.

$$\boldsymbol{e}_{min}(\boldsymbol{q}) = \boldsymbol{0} \tag{4.425}$$

where
$$\mathbf{e}_{min}(\mathbf{q}) \stackrel{\text{def}}{=} \underset{\mathbf{e}_{k} \in \mathcal{E}}{\min} \|\mathbf{e}_{k}(\mathbf{q})\|^{2} \in \mathbb{R}^{N_{e}}$$
 (4.426)

$$\mathcal{E} \stackrel{\text{def}}{=} \{ \boldsymbol{e}_1, \cdots, \boldsymbol{e}_K \} \tag{4.427}$$

¹²https://en.wikipedia.org/wiki/Smooth_maximum

タスク関数 $e_{min}(q)$ のヤコビ行列 $\frac{\partial e_{min}(q)}{\partial q}$ が導出できれば,第 1 章の定式化により最適化計算を行うことでコンフィギュレーション q を求めることができる.しかし, $e_{min}(q)$ は一般に,最小の e_k が切り替わる点において微分不可能であり,ヤコビ行列を求めることができない.

式 (4.421) では, $f_k(x)\in\mathbb{R}$ $(k=1,\cdots,K)$ の $\frac{e^{\alpha f_k(x)}}{\sum_{k=1}^K e^{\alpha f_k(x)}}$ による重み付けした和をとることで, \min/\max の微分可能関数近似を得ている.この近似をスカラ値関数からベクトル値関数へと拡張して, $e_{min}(q)$ を次式の微分可能関数で近似する.

$$\hat{\boldsymbol{e}}_{min}(\boldsymbol{q}) \stackrel{\text{def}}{=} \frac{1}{\sum_{\boldsymbol{e}_k \in \mathcal{E}} \exp(-\alpha \|\boldsymbol{e}_k(\boldsymbol{q})\|^2)} \sum_{\boldsymbol{e}_k \in \mathcal{E}} \exp(-\alpha \|\boldsymbol{e}_k(\boldsymbol{q})\|^2) \boldsymbol{e}_k(\boldsymbol{q}) \in \mathbb{R}^{N_e}$$
(4.428)

lpha は正の定数で大きいほど近似精度が増す.タスク関数 $\hat{e}_{min}(m{q})$ のヤコビ行列 $rac{\partial \hat{e}_{min}(m{q})}{\partial m{q}}$ は,解析的に導出可能である.

contact-invariant-optimization における微分可能関数近似 (参考)

contact-invariant-optimization の論文 13 の $^{4.1}$ 節では , minimum 関数を含むタスク関数が以下のように近似されている .

$$\hat{\boldsymbol{e}}_{min}(\boldsymbol{q}) \stackrel{\text{def}}{=} \frac{1}{\sum_{\boldsymbol{e}_k \in \mathcal{E}} \eta(\boldsymbol{e}_k(\boldsymbol{q}))} \sum_{\boldsymbol{e}_k \in \mathcal{E}} \eta(\boldsymbol{e}_k(\boldsymbol{q})) \boldsymbol{e}_k(\boldsymbol{q}) \in \mathbb{R}^{N_e}$$
(4.429)

where
$$\eta(\boldsymbol{e}_k(\boldsymbol{q})) = \frac{1}{1 + \beta \|\boldsymbol{e}_k(\boldsymbol{q})\|^2} \in \mathbb{R}$$
 (4.430)

 β は正の定数で , 論文では 10^4 としている . これは , 式 (4.428) における $\exp(-\alpha\|e_k(q)\|^2)$ を $\eta(e_k(q))$ で置き換えたものである .

LogSumExp による微分可能関数近似 (参考)

式 (4.419),式 (4.420) の minimum/maximum 関数を連続かつ微分可能な関数で近似した smooth minimum/maximum 関数として,LogSumExp 関数を用いることができる 14 .

$$LSE_{\varepsilon}(\boldsymbol{x}; f_1, \cdots, f_K) \stackrel{\text{def}}{=} \frac{\log \left(\sum_{k=1}^{K} \exp(\varepsilon f_k(\boldsymbol{x})) \right)}{\varepsilon}$$
(4.431)

arepsilonが負のとき $\min \max$ 関数,正のとき $\max \min$ 関数の近似となり,絶対値が大きいほど近似精度が増す.

この関数は,重み付け和の形式ではないため,式 (4.428) のようにスカラ値関数からベクトル値関数へ拡張することができない.

タスク関数のノルム二乗として表される最適化の目的関数

$$F(q) \stackrel{\text{def}}{=} \min_{\boldsymbol{e}_k \in \mathcal{E}} \|\boldsymbol{e}_k(q)\|^2 \in \mathbb{R}$$
 (4.432)

は,次の $\hat{F}(q)$ として近似できる.

$$\hat{F}(\boldsymbol{q}) \approx \frac{\log \left(\sum_{\boldsymbol{e}_k \in \mathcal{E}} \exp(-\varepsilon \|\boldsymbol{e}_k(\boldsymbol{q})\|^2) \right)}{-\varepsilon}$$
(4.433)

式 (4.431) の ε を改めて $-\varepsilon$ と置き直した $.\varepsilon$ が大きいほど近似精度が増す .

¹³ Discovery of complex behaviors through contact-invariant optimization, I. Mordatch, et. al., ACM Transactions on Graphics 31.4, 43, 2012.

¹⁴https://en.wikipedia.org/wiki/Smooth_maximum

近似目的関数 $\hat{F}(q)$ の勾配は次式で表される.

$$\frac{\partial \hat{F}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \frac{\sum_{\boldsymbol{e}_k \in \mathcal{E}} 2\varepsilon \exp(-\varepsilon \|\boldsymbol{e}_k(\boldsymbol{q})\|^2) \left(\frac{\partial \boldsymbol{e}_k(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^T \boldsymbol{e}_k(\boldsymbol{q})}{\varepsilon \sum_{\boldsymbol{e}_k \in \mathcal{E}} \exp(-\varepsilon \|\boldsymbol{e}_k(\boldsymbol{q})\|^2)}$$
(4.434)

近似目的関数 $\hat{F}(q)$ のヘッセ行列も解析的に導出可能である.(タスク関数を考える場合,そのヤコビ行列が 求まれば,第1章のように目的関数のヘッセ行列は導出可能である.しかし,今回のように目的関数を直接扱 う場合は,そのヘッセ行列を陽に導出する必要がある.)

離散的な幾何目標に対する逆運動学計算の実装 4.4.2

discrete-kinematics-configuration-task

[class]

instant-configuration-task :super :slots ($\underline{\text{smooth-alpha}} \alpha$)

離散的な幾何目標を扱えるように拡張された瞬時コンフィギュレーション $m{q}^{(l)}$ と瞬時タスク関数 $m{e}^{(l)}(m{q}^{(l)})$ のクラス.

離散的な幾何目標とは,kin-target-coords-list や kin-attention-coords-list として目標位置姿勢や着目位 置姿勢が複数ペア与えられ,それらのいずれかが成り立てば良いという制約のことを指す.離散的な幾 何目標のタスク関数に含まれる min 関数を微分可能関数で近似することで,タスク関数のヤコビ行列を 求める.

:init &rest args &key (smooth-alpha 20.0) &allow-other-keys

[method]

Initialize instance

:kinematics-task-value &key (update? t)

[method]

$$e^{kin}(q) = e^{kin}(\theta, \phi) \tag{4.435}$$

$$= \begin{pmatrix} e_1^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ e_2^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \vdots \\ e_{N_{kin}}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \end{pmatrix} \tag{4.436}$$

$$\boldsymbol{e}_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underset{\boldsymbol{e}^{kin} \in \mathcal{E}^{kin}}{\operatorname{arg min}} \|\boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})\|^{2} \in \mathbb{R}^{6} \quad (m = 1, 2, \cdots, N_{kin})$$

$$(4.437)$$

where
$$\mathcal{E}_{m}^{kin} = \{ e_{m,i}^{kin} \mid i = 1, 2, \cdots, N_{kin\text{-}dis,m} \}$$
 (4.438)

where
$$\mathcal{E}_{m}^{kin} = \{\boldsymbol{e}_{m,i}^{kin} \mid i = 1, 2, \cdots, N_{kin\text{-}dis,m}\}$$
 (4.438)
 $\boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = K_{kin} \begin{pmatrix} \boldsymbol{p}_{m,i}^{kin\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{p}_{m,i}^{kin\text{-}att}(\boldsymbol{\theta}, \boldsymbol{\phi}) \\ \boldsymbol{a} \begin{pmatrix} \boldsymbol{R}_{m,i}^{kin\text{-}trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) \boldsymbol{R}_{m,i}^{kin\text{-}att}(\boldsymbol{\theta}, \boldsymbol{\phi})^T \end{pmatrix} \end{pmatrix} \in \mathbb{R}^6 \quad (i = 1, 2, \cdots, N_{kin\text{-}dis,m})$ (4.439)

 $oldsymbol{a}(oldsymbol{R})$ は姿勢行列 $oldsymbol{R}$ の等価角軸ベクトルを表す. $oldsymbol{e}_m^{kin}(oldsymbol{ heta},\phi)$ を次式で近似する.

$$\mathbf{e}_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{\sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \|\boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})\|^{2})} \sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \|\boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})\|^{2}) \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$\in \mathbb{R}^{6} \quad (m = 1, 2, \dots, N_{kin}) \tag{4.440}$$

 α は正の定数で大きいほど近似精度が増す.

return
$$e^{kin}(q) \in \mathbb{R}^{6N_{kin}}$$

:kinematics-task-jacobian-with-theta

[method]

$$\frac{\partial e^{kin}}{\partial \boldsymbol{\theta}} = \begin{pmatrix}
\frac{\partial e_{1}^{kin}}{\partial \boldsymbol{\theta}} \\
\frac{\partial e_{2}^{kin}}{\partial \boldsymbol{\theta}} \\
\vdots \\
\frac{\partial e_{N_{kin}}^{kin}}{\partial \boldsymbol{\theta}}
\end{pmatrix} (4.441)$$

ここで,

$$e_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{\sum e_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \| e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \|^{2})} \sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \| e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \|^{2}) e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$= u(\boldsymbol{\theta}, \boldsymbol{\phi}) v(\boldsymbol{\theta}, \boldsymbol{\phi}) \qquad (4.442)$$
where
$$u(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{\sum e_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \| e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \|^{2}) \in \mathbb{R}$$

$$v(\boldsymbol{\theta}, \boldsymbol{\phi}) = \sum_{\boldsymbol{e}^{kin}, \in \mathcal{E}_{m}^{kin}} \exp(-\alpha \| e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \|^{2}) e_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \in \mathbb{R}^{6}$$

$$(4.444)$$

であるから,

$$\frac{\partial e_{m}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \boldsymbol{v}(\boldsymbol{\theta}, \boldsymbol{\phi}) \left(\frac{\partial u(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}\right)^{T} + u(\boldsymbol{\theta}, \boldsymbol{\phi}) \left(\frac{\partial \boldsymbol{v}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}\right) \tag{4.445}$$

$$\frac{\partial u(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \frac{\sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}}^{kin} 2\alpha A \left(\frac{\partial \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}\right)^{T} \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\left\{\sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}}^{kin} A\right\}^{2}} \tag{4.446}$$

$$\frac{\partial \boldsymbol{v}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}} = \sum_{\boldsymbol{e}_{m,i}^{kin} \in \mathcal{E}_{m}^{kin}}^{kin} A \left\{-2\alpha \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi}) \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})^{T} \left(\frac{\partial \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}\right) + \left(\frac{\partial \boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\partial \boldsymbol{\theta}}\right)\right\} \in \mathbb{R}^{6 \times N-4477}$$

$$\frac{\partial \boldsymbol{e}_{m,i}^{kin}}{\partial \boldsymbol{\theta}} = K_{kin} \left\{\boldsymbol{J}_{\theta,m,i}^{kin-trg}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \boldsymbol{J}_{\theta,m,i}^{kin-att}(\boldsymbol{\theta}, \boldsymbol{\phi})\right\}$$

$$(\boldsymbol{m} = 1, 2, \dots, N_{kin}, \quad i = 1, 2, \dots, N_{kin-dis,m})$$

ただし,

$$A = \exp(-\alpha \|\boldsymbol{e}_{m,i}^{kin}(\boldsymbol{\theta}, \boldsymbol{\phi})\|^2)$$
(4.449)

とした.

$$\text{return } \frac{\partial \boldsymbol{e}^{kin}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{6N_{kin} \times N_{var\text{-}joint}}$$

5 補足

5.1 既存のロボット基礎クラスの拡張

joint [class]

```
:super
           propertied-object
: slots
           (parent-link)
           (child-link)
           (joint-angle)
           (min-angle)
           (max-angle)
           (default-coords)
           (joint-velocity)
           (joint-acceleration)
           (joint-torque)
           (max-joint-velocity)
           (max-joint-torque)
           (joint-min-max-table)
           (joint-min-max-target)
```

:child-link & rest args

Returns child link of this joint. If any arguments is set, it is passed to the child-link.

Override to support the case that child-link is cascaded-link instantiate. Return the root link of child cascaded-link instantiate in that case.

:axis-vector [method]

Return joint axis vector. Represented in world coordinates.

return $\boldsymbol{a}_i \in \mathbb{R}^3$

:pos [method]

Return joint position. Represented in world coordinates.

return $\boldsymbol{p}_i \in \mathbb{R}^3$

bodyset-link [class]

:super bodyset :slots (rot) (pos) (parent) (descendants) (worldcoords) (manager) (changed) (geometry::bodies) (joint) (parent-link) (child-links) (analysis-level) (default-coords) (weight) (acentroid)

```
(inertia-tensor)
(angular-velocity)
(angular-acceleration)
(spacial-velocity)
(spacial-acceleration)
(momentum-velocity)
(angular-momentum-velocity)
(momentum)
(angular-momentum)
(force)
(moment)
(ext-force)
(ext-moment)
```

$: centroid\hbox{-}with\hbox{-}fixed\hbox{-}child\hbox{-}links$

return $\boldsymbol{p}_{cog,k} \in \mathbb{R}^3$ [mm]

[method]

[method]

: weight-with-fixed-child-links

return $m \in \mathbb{R}$ [g]

[method]

:mg $\text{return } mg = \|m\boldsymbol{g}\| \in \mathbb{R} \text{ [N]}$

[method]

return $m\mathbf{g} \in \mathbb{R}^3$ [N]

cascaded-link

:mg-vec

[class]

(end-coords-list)

 $\begin{array}{c} \textbf{:calc-jacobian-from-joint-list} \ \& key \ \ (union\text{-}joint\text{-}list) \\ & (move\text{-}target) \end{array}$

```
(joint-list (mapcar #'(lambda (mt) (send-all (send self:link-list (send mt:pa
(transform-coords (mapcar #'(lambda (mt) (make-coords)) move-target))
(translation-axis (mapcar #'(lambda (mt) t) move-target))
(rotation-axis (mapcar #'(lambda (mt) t) move-target))
```

union-joint-list list of all joints considered in jacobian. column num of jacobian is same with length of union-joint-list.

move-target list of move-target.

joint-list list of joint-list which is contained in each chain of move-target.

transform-coords list of transform-coords of each move-target.

translation-axis list of translation-axis of each move-target.

rotation-axis list of rotation-axis of each move-target.

Get jacobian matrix from following two information: (1) union-joint-list and (2) list of move-target. One recession compared with :calc-jacobian-from-link-list is that child-reverse is not supported. (Only not implemented yet because I do not need such feature in current application.)

$\begin{array}{ll} \textbf{:calc-cog-jacobian-from-joint-list} \ \& \textit{key} \ \ (\textit{union-joint-list}) & [method] \\ & \textit{(update-mass-properties t)} \\ & \textit{(translation-axis:z)} \\ \end{array}$

union-joint-list list of all joints considered in jacobian. column num of jacobian is same with length of union-joint-list.

Get CoG jacobian matrix from union-joint-list.

:find-link-route to &optional from

[method]

Override to support the case that joint does not exist between links. Change from (send to :parent-link) to (send to :parent).

find-fixed-child-links *l &key joint-list* set-mass-property-with-fixed-child-links *robot* [function]

[function]

5.2 環境と接触するロボットの関節・リンク構造

2d-planar-contact

[class]

:super cascaded-link :slots (_contact-coords T_{cnt}) (_contact-pre-coords $T_{cnt-pre}$)

二次元平面上の長方形領域での接触座標を表す仮想の関節・リンク構造.

[method]

Initialize instance

:contact-coords $\&rest\ args$

[method]

return $T_{cnt} := \{\boldsymbol{p}_{cnt}, \boldsymbol{R}_{cnt}\}$

:contact-pre-coords &rest args

[method]

$$\text{return } T_{cnt\text{-}pre} := \{ \boldsymbol{p}_{cnt\text{-}pre}, \boldsymbol{R}_{cnt\text{-}pre} \}$$

:set-from-face &key (face)

[method]

set coords and min/max joint angle from face.

look-at-contact

[class]

 $: super \qquad \textbf{cascaded-link}$

:slots ($_$ contact-coords T_{cnt})

ある点を注視するためのカメラ座標を表す仮想の関節・リンク構造.

:init &key (name look-at)

[method]

 $(target\text{-}pos\ (float\text{-}vector\ 0\ 0\ 0))$

(camera-axis:z)

(angle-of-view 30.0)

Initialize instance

 $\textbf{:contact-coords} \ \mathscr{C}rest \ args$

[method]

return
$$T_{cnt} := \{ \boldsymbol{p}_{cnt}, \boldsymbol{R}_{cnt} \}$$

robot-environment

[class]

 $: super \qquad \textbf{cascaded-link}$

:slots ($_$ robot \mathcal{R})

(_robot-with-root-virtual $\hat{\mathcal{R}}$)

(_root-virtual-joint-list list of root virtual joint)

(_contact-list $\{C_1, C_2, \cdots, C_{N_C}\}$)

(_variant-joint-list \mathcal{J}_{var})

(_invariant-joint-list \mathcal{J}_{invar})

(_drive-joint-list \mathcal{J}_{drive})

ロボットとロボット・環境間の接触のクラス.

以下を合わせた関節・リンク構造に関するメソッドが定義されている.

- 1. 浮遊ルートリンクのための仮想関節付きのロボットの関節
- 2. 接触位置を定める仮想関節

関節・リンク構造を定めるために、初期化時に以下を与える

robot \mathcal{R} ロボット (cascaded-link クラスのインスタンス).

contact-list $\{C_1, C_2, \dots, C_{N_C}\}$ 接触 (2d-planar-contact クラスなどのインスタンス) のリスト.

ロボット R に,浮遊ルートリンクの変位に対応する仮想関節を付加した仮想関節付きロボット $\hat{\mathcal{R}}$ を内部で保持する.

```
:init &key (robot)
                                                                                                                                  [method]
               (contact-list)
                (root-virtual-mode :6dof)
                (root\mbox{-}virtual\mbox{-}joint\mbox{-}class\mbox{-}list)
                (root\text{-}virtual\text{-}joint\text{-}axis\text{-}list)
                (root\text{-}virtual\text{-}joint\text{-}min\text{-}angle\text{-}list)
                (root\text{-}virtual\text{-}joint\text{-}max\text{-}angle\text{-}list)
       Initialize instance
:dissoc-root-virtual
                                                                                                                                  [method]
        dissoc root virtual parent/child structure.
:init-pose
                                                                                                                                  [method]
        set zero joint angle.
:robot &rest args
                                                                                                                                  [method]
        return \mathcal{R}
\textbf{:robot-with-root-virtual} \ \mathscr{C}rest \ args
                                                                                                                                  [method]
        return \hat{\mathcal{R}}
:contact-list \&rest \ args
                                                                                                                                  [method]
        return \{C_1, C_2, \cdots, C_{N_C}\}
                                                                                                                                  [method]
:contact name &rest args
        return C_i
:variant-joint-list &optional (jl :nil)
                                                                                                                                  [method]
        return \mathcal{J}_{var}
:invariant-joint-list &optional (jl :nil)
                                                                                                                                  [method]
        return \mathcal{J}_{invar}
:drive-joint-list &optional (jl :nil)
                                                                                                                                  [method]
        return \mathcal{J}_{drive}
:root-virtual-joint-list
                                                                                                                                  [method]
        return list of root virtual joint
```

5.3 irteus の inverse-kinematics 互換関数

(worldcoords) (manager)

```
(changed)
(links)
(joint-list)
(bodies)
(collision-avoidance-links)
(end-coords-list)
```

```
:inverse-kinematics-optmotiongen target-coords &key (stop 50)
                                                                                                      [method]
                                                             (link-list)
                                                             (move-target)
                                                             (debug-view)
                                                             (revert-if-fail t)
                                                             (transform-coords target-coords)
                                                             (translation-axis (cond ((atom move-target) t) (t (make-li
                                                             (rotation-axis (cond ((atom move-target) t) (t (make-list
                                                             (thre (cond ((atom move-target) 1) (t (make-list (length r
                                                             (rthre (cond ((atom move-target) (deg2rad 1)) (t (make-la
                                                             (collision-avoidance-link-pair:nil)
                                                             (collision-distance-limit 10.0)
                                                             (obstacles)
                                                             (min-loop)
                                                             (root-virtual-mode:fix)
                                                             (root-virtual-joint-min-angle-list)
                                                             (root-virtual-joint-max-angle-list)
                                                             (joint-angle-margin 0.0)
                                                             (posture-joint-list)
                                                             (posture-joint-angle-list)
                                                             (target-posture-scale 0.001)
                                                             (norm-regular-scale-max 0.01)
                                                             (norm-regular-scale-offset 1.000000e-07)
                                                             (pre-process-func)
                                                             (post-process-func)
```

Solve inverse kinematics problem with sqp optimization. ;; target-coords, move-target, rotation-axis, translation-axis ;; -¿ both list and atom OK. target-coords: The coordinate of the target that returns coordinates. Use a list of targets to solve the IK relative to multiple end links simultaneously. Function is not available to target-coords. link-list: List of links to control. When the target-coords is list, this should be a list of lists. move-target: Specify end-effector coordinate. When the target-coords is list, this should be list too. stop: Maximum number for IK iteration. Default is 50. debug-view: Set t to show debug message and visualization. Use: no-message to just show the irtview image. Default is nil. revert-if-fail: Set nil to keep the angle posture of IK solve iteration. Default is t, which return to original position when IK fails. translation-axis::x:y:z for constraint along the x, y, z axis.:xy:yz:zx for plane. Default is t. rotation-axis: Use nil for position only IK.:x,:y,:z for the constraint around axis with plus direction. When the target-coords is list, this should be list too. Default is t.

&allow-other-keys

 $(norm\text{-}regular\text{-}scale\text{-}offset\ 1.000000e\text{-}07)$

(adjacent-regular-scale 0.0)

(pre-process-func)

thre: Threshold for position error to terminate IK iteration. Default is 1 [mm]. rthre: Threshold for rotation error to terminate IK iteration. Default is 0.017453 [rad] (1 deg).

cascaded-link [class]

```
:inverse-kinematics-trajectory-optmotiongen target-coords-list &key
                                                                                        (stop 50)
                                                                                                                    [method]
                                                                                        (move-target-list)
                                                                                        (debug\text{-}view)
                                                                                        (revert-if-fail t)
                                                                                        (transform-coords-list:nil)
                                                                                        (translation-axis-list:nil)
                                                                                        (rotation-axis-list:nil)
                                                                                        (thre 1.0)
                                                                                        (rthre (deg2rad 1))
                                                                                        (thre-list:nil)
                                                                                        (rthre-list:nil)
                                                                                        (collision-avoidance-link-pair:nil)
                                                                                        (collision-distance-limit 10.0)
                                                                                        (obstacles)
                                                                                        (min-loop)
                                                                                        (root-virtual-mode:fix)
                                                                                        (root-virtual-joint-invariant? nil)
                                                                                        (root\text{-}virtual\text{-}joint\text{-}min\text{-}angle\text{-}list)
                                                                                        (root\text{-}virtual\text{-}joint\text{-}max\text{-}angle\text{-}list)
                                                                                        (joint-angle-margin \ 0.0)
                                                                                        (posture-joint-list (make-list (length targe
                                                                                        (posture-joint-angle-list (make-list (length
                                                                                        (norm-regular-scale-max 0.001)
```

(post-process-func) & allow-other-keys

Solve inverse kinematics problem with sqp optimization. target-coords-list: The coordinate of the target that returns coordinates. Use a list of targets to solve the IK relative to multiple end links simultaneously. Function is not available to target-coords. move-target-list: Specify end-effector coordinate. When the target-coords is list, this should be list too. stop: Maximum number for IK iteration. Default is 50. debug-view: Set t to show debug message and visualization. Use: no-message to just show the irtview image. Default is nil. revert-if-fail: Set nil to keep the angle posture of IK solve iteration. Default is t, which return to original position when IK fails. translation-axis-list: x: y: z for constraint along the x, y, z axis. :xy: yz: zx for plane. Default is t. rotation-axis-list: Use nil for position only IK.: x, :y, :z for the constraint around axis with plus direction. When the target-coords is list, this should be list too. Default is t. thre: Threshold for position error to terminate IK iteration. Default is 1 [mm]. rthre: Threshold for rotation error to terminate IK iteration. Default is 0.017453 [rad] (1 deg).

robot-model [class]

```
cascaded-link
:super
:slots
           (rot)
           (pos)
           (parent)
           (descendants)
           (worldcoords)
           (manager)
           (changed)
           (links)
           (joint-list)
           (bodies)
           (collision-avoidance-links)
           (end-coords-list)
           (larm-end-coords)
           (rarm-end-coords)
           (lleg-end-coords)
           (rleg-end-coords)
           (head-end-coords)
           (torso-end-coords)
           (larm-root-link)
           (rarm-root-link)
           (lleg-root-link)
           (rleg-root-link)
           (head-root-link)
           (torso-root-link)
           (larm-collision-avoidance-links)
           (rarm-collision-avoidance-links)
           (larm)
           (rarm)
           (lleg)
```

```
(rleg)
(torso)
(head)
(force-sensors)
(imu-sensors)
(cameras)
(support-polygons)
```

:limb limb method $\mathcal{C}rest$ args

[method]

Extend to support to call :inverse-kinematics-optmotiongen.

contact-ik-arg

[class]

:super cascaded-link :slots (_contact-coords T_{cnt})

inverse-kinematics-optmotiongen の target-coords, translation-axis, rotation-axis, transform-coords 引数に対応する接触座標を表す仮想の関節・リンク構造.

Initialize instance

 $\textbf{:contact-coords} \ \mathscr{C}rest \ args$

[method]

[method]

return $T_{cnt} := \{ \boldsymbol{p}_{cnt}, \boldsymbol{R}_{cnt} \}$

ik-arg-axis->axis-list ik-arg-axis

[function]

Convert translation-axis / rotatoin-axis to axis list.

generate-contact-ik-arg-from-rect-face &key (rect-face)

[function]

(name (send rect-face :name))
(margin (or (send rect-face :get :margin) 0))

Generate contact-ik-arg instance from rectangle face.

 $\mathbf{generate\text{-}contact\text{-}ik\text{-}arg\text{-}from\text{-}line\text{-}segment} \ \mathcal{E}key \ \ (line\text{-}seg)$

[function]

(name (send line-seg :name))
(margin (or (send line-seg :get :margin) 0))

Generate contact-ik-arg instance from line segment.

axis->index axis [function]
axis->sgn axis

5.4 関節トルク勾配の計算

get-link-jacobian-for-contact-torque &key (robot)

[function]

(drive-joint-list)

(contact-coords)

(contact-parent-link)

contact-coords に対応する接触部位の番号を m とする.contact-coords の位置を $m{p}_m \in \mathbb{R}^3$,drive-joint-list の関節角度ベクトルを $\psi \in \mathbb{R}^{(N_{drive\text{-}joint})}$ として,次式を満たすヤコビ行列 J_m を返す.

$$\boldsymbol{J}_{m} = \begin{pmatrix} \boldsymbol{j}_{m}^{(1)} & \boldsymbol{j}_{m}^{(2)} & \cdots & \boldsymbol{j}_{m}^{(N_{drive-joint})} \end{pmatrix}$$
 (5.1)

$$m{j}_m^{(i)} = \left\{ egin{array}{ll} m{ar{j}}_m^{(i)} & {
m Bellon} m{\Sigma} \end{array}
ight.$$
 接触リンクが i 番目の駆動関節変位 ψ_i に依存している場合 $m{0}$ otherwise $\left. m{0} \right.$

 $ar{j}_m^{(i)}$ は基礎ヤコビ行列の列ベクトルで次式で表される.

 ψ_i が回転関節の場合

$$\vec{\boldsymbol{j}}_{m}^{(i)} = \begin{pmatrix} \boldsymbol{a}_{\psi_{i}} \times (\boldsymbol{p}_{m} - \boldsymbol{p}_{\psi_{i}}) \\ \boldsymbol{a}_{\psi_{i}} \end{pmatrix}$$
 (5.3)

 ψ_i が直動関節の場合

$$\vec{\boldsymbol{j}}_{m}^{(i)} = \begin{pmatrix} \boldsymbol{a}_{\psi_{i}} \\ \boldsymbol{0} \end{pmatrix} \tag{5.4}$$

 $oldsymbol{a}_{\psi_i}, oldsymbol{p}_{\psi_i} \in \mathbb{R}^3$ は i 番目の関節の回転軸ベクトルと位置である .

return $\boldsymbol{J}_m \in \mathbb{R}^{6 \times N_{drive-joint}}$

get-contact-torque &key (robot)

[function]

(drive-joint-list)

(wrench-list)

(contact-target-coords-list)

(contact-attention-coords-list)

ロボットの接触部位に加わる接触レンチによって生じる関節トルク au^{cnt} は,以下で得られる.

$$\boldsymbol{\tau}^{cnt} = \sum_{m=1}^{N_{cnt}} \boldsymbol{J}_m^T \boldsymbol{w}_m \tag{5.5}$$

 $oldsymbol{w}_m$ は m 番目の接触部位で受ける接触レンチである.

return $\boldsymbol{\tau}^{cnt} \in \mathbb{R}^{N_{drive-joint}}$

get-contact-torque-jacobian &key (robot)

[function]

(joint-list)

(drive-joint-list)

(wrench-list)

(contact-target-coords-list)

(contact-attention-coords-list)

以下では , $m{p}_B^A$ は A から B へ向かう位置ベクトルをワールド座標系で表記したものとする . A,B は ,

drive-joint-list の関節位置 ψ_i , joint-list の関節位置 θ_i , contact-coords の位置 m のいずれかを指す .

$$\frac{\partial \boldsymbol{\tau}^{cnt}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \sum_{m=1}^{N_{cnt}} \boldsymbol{J}_m^T \boldsymbol{w}_m$$
 (5.6)

$$= \frac{\partial}{\partial \boldsymbol{\theta}} \sum_{m=1}^{N_{cnt}} \begin{pmatrix} \boldsymbol{j}_m^{(1)} & \boldsymbol{j}_m^{(2)} & \cdots & \boldsymbol{j}_m^{(N_{drive-joint})} \end{pmatrix}^T \boldsymbol{w}_m$$
 (5.7)

$$= \sum_{m=1}^{N_{cnt}} \frac{\partial}{\partial \theta} \begin{pmatrix} \boldsymbol{w}_{m}^{T} \boldsymbol{j}_{m}^{(1)} \\ \boldsymbol{w}_{m}^{T} \boldsymbol{j}_{m}^{(2)} \\ \vdots \\ \boldsymbol{w}_{m}^{T} \boldsymbol{j}_{m}^{(N_{drive-joint})} \end{pmatrix}$$
(5.8)

$$= \sum_{m=1}^{N_{cnt}} \left[\boldsymbol{w}_m^T \frac{\partial}{\partial \theta_j} \boldsymbol{j}_m^{(i)} \right]_{i,j} \quad (i = 1, 2, \cdots, N_{drive-joint}, \quad j = 1, 2, \cdots, N_{joint})$$
 (5.9)

したがって,各接触力によるトルクのヤコビ行列の各要素は次式で得られる.

ψ_i が回転関節の場合

$$\boldsymbol{w}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \boldsymbol{j}_{m}^{(i)} = \begin{pmatrix} \boldsymbol{f}_{m} \\ \boldsymbol{n}_{m} \end{pmatrix}^{T} \frac{\partial}{\partial \theta_{j}} \begin{pmatrix} \boldsymbol{a}_{\psi_{i}} \times \boldsymbol{p}_{m}^{\psi_{i}} \\ \boldsymbol{a}_{\psi_{i}} \end{pmatrix}$$
(5.10)

$$= \boldsymbol{f}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \left(\boldsymbol{a}_{\psi_{i}} \times \boldsymbol{p}_{m}^{\psi_{i}} \right) + \boldsymbol{n}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \boldsymbol{a}_{\psi_{i}}$$

$$(5.11)$$

$$= \boldsymbol{f}_{m}^{T} \left\{ \left(\frac{\partial}{\partial \theta_{j}} \boldsymbol{a}_{\psi_{i}} \right) \times \boldsymbol{p}_{m}^{\psi_{i}} + \boldsymbol{a}_{\psi_{i}} \times \left(\frac{\partial}{\partial \theta_{j}} \boldsymbol{p}_{m} - \frac{\partial}{\partial \theta_{j}} \boldsymbol{p}_{\psi_{i}} \right) \right\} + \boldsymbol{n}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \boldsymbol{a}_{\psi_{i}} \quad (5.12)$$

 ψ_i が直動関節の場合

$$\boldsymbol{w}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \boldsymbol{j}_{m}^{(i)} = \begin{pmatrix} \boldsymbol{f}_{m} \\ \boldsymbol{n}_{m} \end{pmatrix}^{T} \frac{\partial}{\partial \theta_{j}} \begin{pmatrix} \boldsymbol{a}_{\psi_{i}} \\ \boldsymbol{0} \end{pmatrix}$$
 (5.13)

$$= \boldsymbol{f}_{m}^{T} \frac{\partial}{\partial \theta_{j}} \boldsymbol{a}_{\psi_{i}} \tag{5.14}$$

 $rac{\partial}{\partial heta_j} m{a}_{\psi_i}(drive\text{-}jnt\text{-}axis\text{-}derivative}), \; rac{\partial}{\partial heta_j} m{p}_{\psi_i}(drive\text{-}jnt\text{-}pos\text{-}derivative})$ は以下のように計算される .

- (A) 関節 $heta_j$ が関節 ψ_i よりもルートリンクに近いとき,もしくは関節 $heta_j$ と関節 ψ_i が同一のとき,
 - (I) 関節 θ_i が回転関節のとき,回転系での基礎方程式から,

$$\frac{\partial}{\partial \theta_i} \boldsymbol{a}_{\psi_i} = \boldsymbol{a}_{\theta_j} \times \boldsymbol{a}_{\psi_i} \tag{5.15}$$

$$\frac{\partial}{\partial \theta_{i}} \boldsymbol{p}_{\psi_{i}} = \boldsymbol{a}_{\theta_{j}} \times \boldsymbol{p}_{\psi_{i}}^{\theta_{j}} \tag{5.16}$$

(II) 関節 θ_i が直動関節のとき

$$\frac{\partial}{\partial \theta_i} \boldsymbol{a}_{\psi_i} = \mathbf{0} \tag{5.17}$$

$$\frac{\partial}{\partial \theta_j} \boldsymbol{p}_{\psi_i} = \boldsymbol{a}_{\theta_j} \tag{5.18}$$

(B) (A) でないとき, つまり

関節 ψ_i が関節 $heta_j$ よりもルートリンクに近いとき,もしくは,ルートリンクから関節 $heta_j$ までの間と ルートリンクから関節 ψ_i までの間に共通の関節が存在しないとき , 関節 θ_i の変化は関節 ψ_i の位 置,回転軸のベクトルに影響を与えないため,

$$\frac{\partial}{\partial \theta_i} \boldsymbol{a}_{\psi_i} = \mathbf{0} \tag{5.19}$$

$$\frac{\partial}{\partial \theta_j} \mathbf{a}_{\psi_i} = \mathbf{0}$$

$$\frac{\partial}{\partial \theta_j} \mathbf{p}_{\psi_i} = \mathbf{0}$$
(5.19)

 $rac{\partial}{\partial heta_i} m{p}_m(contact ext{-pos-derivative})$ は以下のように計算される .

- (a) 関節 $heta_j$ の変位が p_m に影響を与えるとき (このパターンは contact-target-coords が仮想関節の先に が設置されている場合などに発生する)
 - (i) 関節 θ_j が回転関節のとき

$$\frac{\partial}{\partial \theta_{j}} \boldsymbol{p}_{m} = \boldsymbol{a}_{\theta_{j}} \times \boldsymbol{p}_{m}^{\theta_{j}} \tag{5.21}$$

(ii) 関節 θ_j が直動関節のとき

$$\frac{\partial}{\partial \theta_j} \boldsymbol{p}_m = \boldsymbol{a}_{\theta_j} \tag{5.22}$$

(b) (a) でないとき, つまり

関節 θ_j の変位が $oldsymbol{p}_m$ に影響を与えないとき

$$\frac{\partial}{\partial \theta_i} p_m = 0 \tag{5.23}$$

 $return \ rac{\partial oldsymbol{ au}^{cnt}}{\partial oldsymbol{ heta}} \in \mathbb{R}^{N_{drive-joint} imes N_{joint}}$

get-link-jacobian-for-gravity-torque &key (robot)

[function]

(drive-joint-list) (gravity-link)

gravity-link のリンク番号を k とする.gravity-link の重心位置を $m{p}_{cog,k} \in \mathbb{R}^3$,drive-joint-list の関節角 度ベクトルを $\psi \in \mathbb{R}^{N_{drive-joint}}$ として,次式を満たすヤコビ行列 $oldsymbol{J}_{coq,k}$ を返す.

$$\dot{\boldsymbol{p}}_{cog,k} = \boldsymbol{J}_{cog,k}\dot{\boldsymbol{\psi}} = \sum_{i=1}^{N_k} \boldsymbol{j}_{cog,k}^{(i)}\dot{\psi}_i$$
 (5.24)

$$\boldsymbol{J}_{cog,k} = \begin{pmatrix} \boldsymbol{j}_{cog,k}^{(1)} & \boldsymbol{j}_{cog,k}^{(2)} & \cdots & \boldsymbol{j}_{cog,k}^{(N_{drive-joint})} \end{pmatrix}$$
 (5.25)

 $oldsymbol{ar{j}}_{coq,k}^{(i)}$ は基礎ヤコビ行列の列ベクトルで次式で表される.

 ψ_i が回転関節の場合

$$\overline{j}_{cog,k}^{(i)} = \boldsymbol{a}_{\psi_i} \times (\boldsymbol{p}_{cog,k} - \boldsymbol{p}_{\psi_i})$$
 (5.27)

 ψ_i が直動関節の場合

$$\bar{\boldsymbol{j}}_{cog,k}^{(i)} = \boldsymbol{a}_{\psi_i} \tag{5.28}$$

 $oldsymbol{a}_{\psi_i}, oldsymbol{p}_{\psi_i} \in \mathbb{R}^3$ は i 番目の関節の回転軸ベクトルと位置である.

return $\boldsymbol{J}_{coq,k} \in \mathbb{R}^{3 \times N_{drive-joint}}$

get-gravity-torque &key (robot)

[function]

(drive-joint-list)

(gravity-link-list)

ロボットのリンク自重によって生じる関節トルク au^{grav} は , ロボットモーション P111 式 (3.3.22) より以下で得られる .

$$\boldsymbol{\tau}^{grav} = \left(\sum_{k=1}^{N_{gravity-link}} m_k \boldsymbol{J}_{cog,k}^T\right) \boldsymbol{g}$$
 (5.29)

 m_k は k 番目のリンクの質量である.

return $\boldsymbol{\tau}^{grav} \in \mathbb{R}^{N_{drive-joint}}$

$$\frac{\partial \boldsymbol{\tau}^{grav}}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \theta_j} \sum_{k=1}^{N_{gravity-link}} \boldsymbol{J}_{cog,k}^T m_k \boldsymbol{g}$$
 (5.30)

$$= \frac{\partial}{\partial \theta_j} \sum_{k=1}^{N_{gravity-link}} \left(\boldsymbol{j}_{cog,k}^{(1)} \quad \boldsymbol{j}_{cog,k}^{(2)} \quad \cdots \quad \boldsymbol{j}_{cog,k}^{(N_{drive-joint})} \right)^T m_k \boldsymbol{g}$$
 (5.31)

$$= \sum_{k=1}^{N_{gravity-link}} \frac{\partial}{\partial \theta_j} \begin{pmatrix} m_k \boldsymbol{g}^T \boldsymbol{j}_{cog,k}^{(1)} \\ m_k \boldsymbol{g}^T \boldsymbol{j}_{cog,k}^{(2)} \\ \vdots \\ m_k \boldsymbol{g}^T \boldsymbol{j}_{cog,k}^{(N_{drive-joint})} \end{pmatrix}$$
(5.32)

$$= \sum_{k=1}^{N_{gravity-link}} \left[m_k \boldsymbol{g}^T \frac{\partial}{\partial \theta_j} \boldsymbol{j}_{cog,k}^{(i)} \right]_{i,j} \quad (i = 1, 2, \cdots, N_{drive-joint}, \quad j = 1, 2, \cdots, N_{joint}) (5.33)$$

したがって,各リンクの重力によるトルクのヤコビ行列の各要素は次式で得られる.

k 番目の gravity-link-list が i 番目の駆動関節変位 ψ_i に依存していない場合

$$m_k \mathbf{g}^T \frac{\partial}{\partial \theta_i} \mathbf{j}_{cog,k}^{(i)} = 0 ag{5.34}$$

k 番目の gravity-link-list が i 番目の駆動関節変位 ψ_i に依存していて , ψ_i が回転関節の場合

$$m_k \boldsymbol{g}^T \frac{\partial}{\partial \theta_j} \boldsymbol{j}_{cog,k}^{(i)} = m_k \boldsymbol{g}^T \frac{\partial}{\partial \theta_j} \left(\boldsymbol{a}_{\psi_i} \times \boldsymbol{p}_{cog,k}^{\psi_i} \right)$$
 (5.35)

$$= m_k \boldsymbol{g}^T \left\{ \left(\frac{\partial}{\partial \theta_j} \boldsymbol{a}_{\psi_i} \right) \times \boldsymbol{p}_{cog,k}^{\psi_i} + \boldsymbol{a}_{\psi_i} \times \left(\frac{\partial}{\partial \theta_j} \boldsymbol{p}_{cog,k} - \frac{\partial}{\partial \theta_j} \boldsymbol{p}_{\psi_i} \right) \right\}$$
(5.36)

k 番目の gravity-link-list が i 番目の駆動関節変位 ψ_i に依存していて , ψ_i が直動関節の場合

$$m_k \mathbf{g}^T \frac{\partial}{\partial \theta_i} \dot{\mathbf{j}}_{cog,k}^{(i)} = m_k \mathbf{g}^T \frac{\partial}{\partial \theta_i} \mathbf{a}_{\psi_i}$$
 (5.37)

 $rac{\partial}{\partial \theta_i} m{a}_{\psi_i}(drive\text{-}jnt\text{-}axis\text{-}derivative}), \; rac{\partial}{\partial \theta_j} m{p}_{\psi_i}(drive\text{-}jnt\text{-}pos\text{-}derivative})$ は以下のように計算される .

- (A) 関節 $heta_j$ が関節 ψ_i よりもルートリンクに近いとき , もしくは関節 $heta_j$ と関節 ψ_i が同一のとき ,
 - (I) 関節 $heta_j$ が回転関節のとき,回転系での基礎方程式から,

$$\frac{\partial}{\partial \theta_i} \boldsymbol{a}_{\psi_i} = \boldsymbol{a}_{\theta_j} \times \boldsymbol{a}_{\psi_i} \tag{5.38}$$

$$\frac{\partial}{\partial \theta_j} \boldsymbol{p}_{\psi_i} = \boldsymbol{a}_{\theta_j} \times \boldsymbol{p}_{\psi_i}^{\theta_j} \tag{5.39}$$

(II) 関節 $heta_j$ が直動関節のとき

$$\frac{\partial}{\partial \theta_j} \boldsymbol{a}_{\psi_i} = \mathbf{0} \tag{5.40}$$

$$\frac{\partial}{\partial \theta_j} \mathbf{a}_{\psi_i} = \mathbf{0}$$

$$\frac{\partial}{\partial \theta_j} \mathbf{p}_{\psi_i} = \mathbf{a}_{\theta_j}$$
(5.40)

(B) (A) でないとき, つまり

関節 ψ_i が関節 $heta_j$ よりもルートリンクに近いとき,もしくは,ルートリンクから関節 $heta_j$ までの間と ルートリンクから関節 ψ_i までの間に共通の関節が存在しないとき , 関節 θ_j の変化は関節 ψ_i の位 置,回転軸のベクトルに影響を与えないため,

$$\frac{\partial}{\partial \theta_j} \mathbf{a}_{\psi_i} = \mathbf{0}$$

$$\frac{\partial}{\partial \theta_j} \mathbf{p}_{\psi_i} = \mathbf{0}$$
(5.42)

$$\frac{\partial}{\partial \theta_j} \mathbf{p}_{\psi_i} = \mathbf{0} \tag{5.43}$$

 $rac{\partial}{\partial \theta_i} p_{cog,k}(centroid\text{-}derivative)$ は以下のように計算される .

- (a) k 番目の gravity-link-list が j 番目の関節変位 θ_j に依存しているとき
 - (i) 関節 θ_j が回転関節のとき

$$\frac{\partial}{\partial \theta_j} \boldsymbol{p}_{cog,k} = \boldsymbol{a}_{\theta_j} \times \boldsymbol{p}_{cog,k}^{\theta_j} \tag{5.44}$$

(ii) 関節 θ_i が直動関節のとき

$$\frac{\partial}{\partial \theta_i} \boldsymbol{p}_{cog,k} = \boldsymbol{a}_{\theta_j} \tag{5.45}$$

(b) (a) でないとき, つまり

k 番目の gravity-link-list が j 番目の関節変位 $heta_j$ に依存していないとき

$$\frac{\partial}{\partial \theta_i} \boldsymbol{p}_{cog,k} = \mathbf{0} \tag{5.46}$$

 $return \ rac{\partial oldsymbol{ au}^{grav}}{\partial oldsymbol{ heta}} \in \mathbb{R}^{N_{drive-joint} imes N_{joint}}$