3/25/2021

DSO 562 Project 2

Identity Fraud in the Credit Card Dataset

Team Member:

Xue Gao, Tianze Yang, Yang Jiao, Yunlong Wang, Huiyi Zhang, Xinzhu Zhang

University of Southern California MARSHALL SCHOOL OF BUSINESS

Table of Contents

Executive Summary	2
Description of Data	3
Data Cleaning	6
Candidate Variables	7
Feature Selection Process	9
Model Algorithms	13
Results	19
Conclusions	22
Appendix	23

Executive Summary

As technology advances rapidly evolve around methods of payments, also presented are potential exposures to various risks. As the most common type of identity theft, Credit card fraud is widely prevalent in the U.S. According to research, of the 1.5 billion credit cards issued in the United States, millions fall victim to this unscrupulous tactic each year.

In addition to performing unauthorized transactions using stolen or lost credit cards, it has been discovered that fraudsters often apply for a credit card in someone else's name. Basic information such as legal name, date of birth, address, and social security numbers are rudimentary to this scheme; overtime, the criminals also adopted less conventional methods to extract relevant info from supporting documents to fly under the radar.

In this project, we aim to build a real-time fraud detection model to predict if a credit card applicant uses someone else's in combination with made-up information to commit fraud.

The credit card application dataset we use contains one million rows of records each with ten columns, including date, ssn, first name, last name, address, zip5, dob, homephone, and fraud label.

In order to develop this predictive model, we went through several steps. At first, we did data cleaning and sorting to adjust the data type and replace frivolous values. Then, we did feature engineering by creating combination group variables and day since, velocity, and relative velocity variables for each combination group.

After generating candidate variables, we operated feature selection to select a number of best potential variables to train the models. By having a dataset split in training, testing, and out of time validation, we trained models by applying different machine learning algorithms and compared the performance by calculating average fraud detection rate at 3% to select the best model to be our final model.

As a result, we found that the Gradient Boosting Tree with Learning_rate 0.01, n_estimator 1100, and max_depth of 5 has the highest average FDR at 3% in the test set. After that, we used that model to calculate the bins and cumulative goods, bads and built the tables in the results section.

Description of Data

Applications Data is a dataset containing records of 1,000,000 applications. It includes fields such as date of application, SSN, first and last name, address, zip code, date of birth, home phone number, and fraud label of each applicant.

File Name: applications data.csv

Data Source: An identity fraud prevention company

Time Period: Jan 1st 2016 – Dec 31st 2016

Number of Records: 1,000,000 records

Number of Fields: 9 variables in total: 7 categorical variables, 2 date variables

Field Name	Data Type	%Populated	Unique number
date	Date variable	100%	365
ssn	Categorical variable	100%	835819
firstname	Categorical variable	100%	78136
lastname	Categorical variable	100%	177001
address	Categorical variable	100%	828774
zip5	Categorical variable	100%	26370
dob	Date variable	100%	42673

homephone	Categorical variable	100%	28244
Fraud_label	Categorical variable	100%	2

date: The date when the credit card application was filled. It ranges from Jan 1st 2016 – Dec 31st 2016.

ssn: The SSN used for that particular credit card application.

firstname: The first name used for that credit card application.

lastname: The last name used for that credit card application.

address: The address used for that credit card application, which includes street number and street name.

zip5: The 5-digit zip code used for that credit card application.

dob: The date of birth that the applicants used for application, the format is YYYY-MM-DD.

homephone: The phone number that the applicants used for credit card application.

fraud_lable: Whether the record is considered fraud.

Data Cleaning

The original dataset has a total of 9 fields. Each of the fields is 100% populated. There are no missing values in any of the fields.

The date field was originally in the type of int64. We firstly changed the data type to a string, added dashes in between to separate the year, month and day, and finally converted it to a datetime variable using the pandas to_datetime function.

The zip5 field has some values in 4 digits and others in 5 digits. To unify the number of digits in each entry, we formatted the 4-digit ones by adding a 0 in front of each entry.

The most common value in the ssn field was 999999999, which was clearly a frivolous value. To fix this problem, we replaced the frivolous value with a field that would not link -- the negative of the record number and then formatted the entries into 9 digits.

Similarly, the most common value in the homephone field was 9999999999. We replaced the frivolous value with the negative of the record number and formatted it into a 10-digit number.

The address field had around a thousand frivolous values of "123 MAIN ST". We created a value by concatenating the record number with the word "RECORD" and used it to replace each frivolous value under the address field.

The most common field value in the dob field was 19070626, which was an impossible number. Again, we replaced it with the negative of the record number and formatted it into an 8-digit number.

Candidate Variables

First of all, we created a variable called "day of the week" to figure out the risk of each day in a week. From the risk table for day of week, it was obvious that Monday had the lowest fraud risk and Wednesday had the highest risk.

Then we linked the original fields and created new entities:

```
name = firstname + lastname
fulladdress = address + zip5
name_dob = name + dob
name_fulladdress = name + fulladdress
name_homephone = name + homephone
fulladdress_dob=fulladdress+dob
fulladdress_homephone=fulladdress+homephone
dob_homephone=dob+homephone
homephone_name_dob=homephone+name_dob
```

Then we linked applicants' SSN to all these entities described above. In total, we created 28 entities.

Next, we built 'velocity' variables for all these attributes, which means the number of records with the same attributes over the last 0, 1, 3, 7, 14, 30 days.

Another group 'day since' variables mean that how many days has passed since the last time the attributes appeared.

In the end, we built 'relative velocity' group variables, and they represented the proportion of the number of times we have seen that entity in the past days comes from the recent past.

Variable groups	Variable name format
Velocity	attributes _count_xx
Day since	attibutes_since
Relative velocity	attributes_count_yy_by_xx

xx: 0, 1, 3, 7, 14 days; yy: recent days

Feature Selection Process

During the feature selection stage, we calculated the Kolmogorov–Smirnov (KS) and Fraud Detection Rate (FDR) value for each variable and used backward stepwise methods to select 30 variables for our final models.

- Kolmogorov–Smirnov (KS)
 - Kolmogorov–Smirnov is the measurement of how well two distributions are separated. The larger the KS, the more separate the two distributions. We used KS to measure the differences between fraud records and non-fraud records for each variable created. Specifically, for each variable, we gathered a list of fields corresponding to fraud records and the other list of random numbers between 0 and 1. Then we applied stats.ks.2samp function to compute KS for all variables.
- Fraud Detection Rate (FDR)
 Fraud Detection Rate is the percentage of all the fraud found at a score cutoff. 3% of FDR means the calculation of how many fraud records in the top 3% of all records.
 Specifically, we sort the data and compute the number of bad records in the top 3% of the records, then divided by the total number of fraud data.

Wrapped Method:

Backward step-by-step selection involves starting with all candidate variables, testing the deletion of each variable using the selection model to meet the criteria and repeating this process until no further variable can be eliminated. In the wrapped method, we use FDR score as the score in the function RFECV in order to have a better result. Below is a list of the 30 variables chosen by backward selection and are ones we used in our final models:

Variable	Description	Variable	Description
address_count_ 0	Number of same address seen in the past 0 days	fulladdress_count_ 0	Number of same address plus zip code seen in the past 0 days

address_count_ 0_by_3	Number of same address seen in the past 0 days divided by the same group in 3 days.	fulladdress_count_ 0_by_14	Number of same full address and dob seen in the past 0 days divided by the same group in 14 days.
address_count_ 0_by_7	Number of same address seen in the past 0 days divided by the same group in 7 days.	fulladdress_count_ 0_by_3	Number of same full address and dob seen in the past 0 days divided by the same group in 3 days.
address_count_ 1	Number of same address seen in the past 1 days	fulladdress_count_ 0_by_7	Number of same full address and dob seen in the past 0 days divided by the same group in 7 days.
address_count_ 1_by_7	Number of same address seen in the past 1 days divided by the same group in 7 days.	fulladdress_count_ 1	Number of same address plus zip code seen in the past 1 days
address_count_	Number of same address seen in the past 3 days	fulladdress_count_ 3	Number of same address plus zip code seen in the past 3 days
address_count_ 30	Number of same address seen in the past 30 days	fulladdress_count_ 30	Number of same address plus zip code seen in the past 30 days

homephone_co unt_3	Number of same phone number seen in the past 3 days	fulladdress_homep hone_count_30	Number of same address plus zip plus home phone number code seen in the past 30 days
name_dob_cou nt_0_by_14	Number of same name and dob seen in the past 0 days divided by the same group in 14 days.	fulladdress_homep hone_count_7	Number of same address plus zip plus home phone number code seen in the past 7 days
name_dob_cou nt_14	Number of same address plus zip code seen in the past 30 days	ssn_count_0_by_3 0	Number of same ssn in the past 0 days divided by the same group in 30 days.
name_dob_cou nt_30	Number of same address plus zip code seen in the past 30 days	ssn_count_30	Number of same ssn code seen in the past 30 days
name_dob_cou nt_7	Number of same address plus zip code seen in the past 30 days	ssn_count_7	Number of same ssn code seen in the past 7 days
ssn_dob_count _0_by_14	Number of same ssn and dob seen in the past 0 days divided by the same group in 14 days.	ssn_dob_count_30	Number of same SSN and date of birth seen in the past 30 days

ssn_dob_count _0_by_30	Number of same ssn and dob seen in the past 0 days divided by the same group in 30 days.	ssn_dob_count_7	Number of same SSN and date of birth seen in the past 7 days
ssn_dob_count _14	Number of same address plus zip code seen in the past 30 days	ssn_firstname_cou nt_14	Number of same SSN and first name seen in the past 14 days

Model Algorithms

After feature selection, we applied different machine learning algorithms to train models and calculated the average FDR at 3% for the train, test, and OOT data for each model. We applied 4 machine learning algorithms as below.

Logistic Regression:

Logistic regression analysis studies the relationship between a categorical dependent variable and a set of independent variables. Logistic regression can predict the probability of an outcome that has two values (i.e., 0 and 1).

In logistic regression, we don't directly fit a straight line to our data like in linear regression. Instead, we fit a S-shaped curve, called Sigmoid, to our observations.

In the logistic regression the constant moves the curve left and right and the slope defines the steepness of the curve. By simple transformation, the logistic regression equation can be written

as:
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + ... + \beta_n X_n}}{1 + e^{\beta_0 + \beta_1 X_1 + ... + \beta_n X_n}}$$

With the fraud label being the dependent variable and the 30 selected features being the independent variables, we trained the logistic regression model with parameter cv = 10 and Cs = 0.01. We then used the model to predict the probability of fraud on the train, test and oot dataset separately and get the best average FDR rate of 0.5445, 0.5364 and 0.5207 for each of the dataset.

Model	Parameter		Average FDR(%) at 3%		
Logistic Regression	Total # of variables variables selected		Train	Test	ООТ
1	30	10	0.3577	0.3572	0.3206
2	30	20	0.5231	0.5213	0.5031
3	30	25	0.5436	0.5358	0.5194
4	30	30	0.5445	0.5364	0.5207

Random Forests:

Random forest is an integrated learning method based on classification and regression. It constructs a large number of decision trees during training and outputs the pattern of classes (classification) or average/average prediction of a single tree (regression). We used the randomForest package in the Python sklearn package. When we trained the random forest model, we tried generating 100, 200 and 300 decision trees with max_depth of 60, 70, 80.

Random Forests	# of Vars	N_estima tor	Max_dept h	max_featu res	Train	Test	ООТ
1	30	100	60	7	0.567	0.553	0.535

2	30	100	70	7	0.568	0.553	0.535
3	30	100	80	7	0.567	0.553	0.536
4	30	200	60	7	0.567	0.553	0.537
5	30	200	70	7	0.567	0.552	0.536
6	30	200	80	7	0.567	0.553	0.535
7	30	300	60	7	0.567	0.553	0.537
8	30	300	70	7	0.567	0.552	0.536
9	30	300	80	7	0.567	0.552	0.535

Gradient Boosting Trees:

Like other boosting methods, gradient boosting combines weak 'learners' into a single strong 'learner'. The goal of this model is to predict values by minimizing the mean squared error. The model in supervised learning usually refers to the mathematical structure by which the prediction y_i is made from the input x_i . Gradient boosting works by sequentially adding predictors to an ensemble, each one correcting its predecessor, i.e., each succeeding one attempts to fit the new predictor to the residual errors made by the previous one. In this project we use this model to be a classification model to determine whether it is fraud.

We use the GradientBoostingClassifier from the Scikit-learn package to predict the correct classification of fraud case and use the predict_proba method to rank the predictions by their likelihood of being fraud before tallying the results and compare with the true count of fraud case in the test and oot set. As mentioned previously, this will be defined as the top 3% FDR rate and effectiveness of model selection will rely heavily on this metric.

In the quest for a best fitting model in this ensemble from Sci-kit Learn, 3 hyperparameters are adjusted to find the best possible outcome, namely,

- max_depth: the maximum length from a root to a node in a decision tree.
- n_estimators: the number of trees in the ensemble.
- learning_rate: a value to adjust the amount of information retained from each tree to compensate against overfitting.

We have tried 60 combinations of different hyperparameters. The max depths are 1,5,6, the numbers of trees are 700,800,1100,1400 and the learning rates goes from 0.01 to 0.1. We picked 5 models from the 60 models with the top 5 testing FDR.

In the following results, we found that Gradient Boosting Tree 1 with max_depth = 5, N_estimators = 1100, and leaning_rate = 0.01 provided the most promising result where top 3% FDR equals 0.5592 and 0.5369 for the test and oot datasets, respectively.

Gradient Boosting Trees	Learning rate	n_estimator s	max_depth	Training FDR	Testing FDR	OOT FDR
Gradient Boosting Tree 1	0.01	1100	5	0.5644	0.5592	0.5369
Gradient Boosting Tree 2	0.01	800	6	0.5647	0.559	0.536
Gradient Boosting Tree 3	0.01	800	5	0.564	0.5589	0.5369
Gradient Boosting Tree 4	0.01	700	5	0.5637	0.5586	0.5369

	0.03	1400	1	0.5551	0.5523	0.5313
Gradient						
Boosting						
Tree 5						

Neural Net:

Neural network is a machine learning algorithm that they make use of architecture that mimics how the neurons work in the brain. For example, a brain neuron receives an input and based on that input, fires off an output that is used by another neuron. The neural network simulates this behavior in learning about collecting the data and predicting outcomes.

In the above graph, we can see that a typical neural net consists of an input layer, hidden layers, and an output layer. The input layer is formed by all the independent variables. Each hidden layer is a set of nodes (neurons). Each neuron in the hidden layer receives weighted signals from all the nodes in the previous and transforms the linear combination of signals. The transform/activation function can be a logistic function(sigmoid) or something else. Finally, the output layer is the dependent variable.

We trained six neural net models with different hyperparameters as in the following table and listed all average FDRs at 3% on training, testing, and oot data. According to each model's performance, we didn't observe overfitting so we could trust the results of these models. The best model is the highlighted Neural Net 6 with average FDR of 0.5339 on oot data.

Neural Net	Nodes in layer 1	Activation function layer 1	Nodes in layer 2	Activation function layer 2	Activation function output layer	Optimizer	Epoch	Batch size	Training FDR	Testing FDR	OOT FDR
Neural net 1	10	relu	None	None	sigmoid	adam	20	10	0.556	0.5488	0.5264
Neural net 2	15	relu	None	None	sigmoid	adam	25	10	0.5449	0.5386	0.5201
Neural net 3	25	relu	None	None	sigmoid	adam	30	15	0.5433	0.5386	0.5184
Neural net 4	10	relu	10	relu	sigmoid	adam	20	15	0.5607	0.5548	0.5314
Neural net 5	15	relu	10	relu	sigmoid	adam	25	10	0.5608	0.5528	0.5331
Neural net 6	15	relu	15	relu	sigmoid	adam	30	20	0.5602	0.5519	0.5339

Results

By training several models using different machine learning algorithms and adjusting hyperparameters for each particular machine learning algorithm, we compared the model performance based on average FDR at 3% on testing data and found that the best model is the gradient boosting tree as highlighted in the following graph. Of the attempted methods, a common peak value for the FDR at 3% is reached for the OOT dataset at around 53.5%. Since out of time data is considered unknown information in reality, we have little choice but to turn to the test set results. Random forest and Gradient Boosting Tree came in neck to neck and the latter won by a slight lead of around 0.5%. It is worth mentioning that the Gradient Boosting Tree is a more cultivated model in terms of number of trees and learning rate, making this choice both more time consuming and computationally demanding. Random Forest in comparison provided similar results with much less trees but deeper depth, demonstrating a diminishing marginal return on the complexity of model structure. We ultimately opted to use test set average FDR at 3% to be the guideline for the choice of model since algorithm efficiency and time limit is outside the scope of this project.

Model	Parameters						Average FDR at 3%					
	# variables						Train		Test	ООТ		
	10								0.3577	0.3572	0.3206	
Logistic Regression	20								0.5231	0.5213	0.5031	
	25								0.5436	0.5358	0.5194	
				30						0.5445	0.5364	0.5207
	# variable	n_estimate	max_depth		max_	features			Train		Test	ООТ
	30	100	60			7				0.567	0.553	0.535
	30	100				7				0.568	0.553	0.535
	30	100	80			7				0.567	0.553	0.536
Random Forest	30	200				7				0.567	0.553	0.537
Random Forest	30	200	70			7				0.567	0.552	0.536
	30	200						0.567	0.553	0.535		
	30	300	60			7			2	0.567	0.553	0.537
	30	300				7				0.567	0.552	0.536
	30	300				7				0.567	0.552	0.535
	# variable		max_depth			ing rate			Train		Test	ООТ
	30	1100	5		(0.01				0.5644	0.5592	0.5369
Gradient Boosting Tree	30	800	_			0.01				0.5647	0.559	
Gradient Boosting Free	30	800				0.01				0.564	0.5589	0.5369
	30	700	5			0.01				0.5637	0.5586	
	30	1400	1			0.03				0.5551	0.5523	0.5313
			layer 1 activa	•	•	epoch	_	batch size	Train		Test	ООТ
	30		relu		none		20	10		0.556	0.5488	
	30		relu		none		25	10		0.5449	0.5386	
Neural Net	30		relu		none		30	15		0.5433		
	30		relu		relu		20	15		0.5607	0.5548	
	30	10000	relu	-	relu		25	10		0.5608	0.5528	
	30	15	relu	15	relu		30	20		0.5602	0.5519	0.5339

After selecting the first gradient boosting tree as our final model, we ran the model on training data again and reevaluated the model on both testing and oot data. We took a closer look at the structure of the predicted results on all three datasets by computing critical statistics by

individual percentiles and then generated the tables below to examine how our final model performed on the three datasets when detecting fraudulent applications.

As a brief review, the oot data represented approximately 16.65% of the entire dataset, the remaining are split into training and testing by 75% and 25%, respectively. The underlying fraud rate is consistent for all three sets at around 1.43%, or 1 fraud case in about 70 applications.

More specifically, the first percentile of data ranked by our model of choice uniformly contained the largest percentage in true frauds identified, up to 76.7% in training, 76.56% in testing and 72.71% in OOT. This means that approximately 3 out of 4 applications that we deny arbitrarily without additional information in the first percentile is a true fraud case. This is an immediate choice for any financial institution where no other alternative is present. The gains in fraud detection percentage quickly diminishes in subsequent percentiles, however; before we penetrate through the first 4% of all applications, the true percentage of fraud in each additional percentile of data falls below 1%. As a comparison, the company now looks at a proposal much less tempting: give up 5% of all applications in the hope of catching up to 57.28% of all frauds, still good if the institution's profit margin prevails but nowhere near as good if the model's effectiveness holds through.

Model Performance on Training

Train	# of Records	# (Good	# of	bads	Fraud rate						
	556498	54	8443	80	54	0.014472649						
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
0	5565	1297	4268	23.30638	76.69362	5565	1297	4268	0.236488	52.992302	52.75581	0.303889
1	5565		181	96.74753	3.252471	11130	6681	4449	1.218176	55.239632	54.02146	1.501686
2	5565			98.63432	1.365678	16695	12170	4525	2.219009	56.183263	53.96425	2.689503
3	5565	5512	53	99.04762	0.952381	22260	17682	4578	3.224036	56.841321	53.61729	3.862385
4	5565			99.1195	0.880503		23198	4627	4.229792	57.449714	53.21992	
5			54	99.02965	0.97035		28709	4681	5.234637	58.120189	52.88555	
6			44	99.20934	0.790656	38955	34230	4725	6.241305	58.666501	52.4252	7.244444
7	5565			99.26325	0.736748		39754	4766	7.24852	59.175565	51.92705	
8	5565			99.19137	0.808625	50085	45274	4811	8.255006	59.734294	51.47929	9.410518
9	5565			99.28122	0.718778	55650	50799	4851	9.262403	60.230941	50.96854	10.47186
10				99.33513	0.66487	61215	56327	4888	10.27035	60.69034	50.41999	11.52353
11	5565			99.28122	0.718778	66780	61852	4928	11.27774	61.186988	49.90924	
12	5565			99.26325	0.736748		67376		12.28496	61.696052	49.41109	
13				99.29919	0.700809	77910	72902	5008	13.29254	62.180283	48.88774	
14				99.42498	0.575022	83475	78435	5040	14.3014	62.577601	48.27621	15.5625
15				99.22731	0.772686	89040	83957	5083	15.30825	63.111497	47.80325	
16				99.33501	0.664989	94604	89484	5120	16.31601	63.570896	47.25489	17.47734
17	5565	5532	33	99.40701	0.592992	100169	95016	5153	17.32468	63.980631	46.65595	18.43897
18	5565	5522	43	99.22731	0.772686	105734	100538	5196	18.33153	64.514527	46.183	19.34911
19	5565	5542	23	99.5867	0.413297	111299	106080	5219	19.34203	64.800099	45.45807	20.32573

Model Performance on Testing

Test	# Re	cord	# gc	oods	i	# bads	Fraud Rate					
	238	3499	235	067		3432	0.014389997					
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR
0	2385	559	1826	23.43816	76.56184	2385	559	1826	0.237805	53.2051282	52.96732	0.306134
1	2385	2311	74	96.89727	3.102725	4770	2870	1900	1.220929	55.3613054	54.14038	1.510526
2	2385	2357	28	98.826	1.174004	7155	5227	1928	2.223621	56.1771562	53.95353	2.7111
3	2385	2366	19	99.20335	0.796646	9540	7593	1947	3.230143	56.7307692	53.50063	3.899846
4	2385	2366	19	99.20335	0.796646	11925	9959	1966	4.236664	57.2843823	53.04772	5.065615
5	2385	2361	24	98.99371	1.006289	14310	12320	1990	5.241059	57.983683	52.74262	6.190955
6	2385	2369	16	99.32914	0.67086	16695	14689	2006	6.248857	58.4498834	52.20103	7.322532
7	2385	2358	27	98.86792	1.132075	19080	17047	2033	7.251975	59.2365967	51.98462	8.385145
8	2385	2362	23	99.03564	0.964361	21465	19409	2056	8.256795	59.9067599	51.64997	9.440175
9	2385	2364	21	99.1195	0.880503	23850	21773	2077	9.262466	60.518648	51.25618	10.48291
10	2385	2370	15	99.37107	0.628931	26235	24143	2092	10.27069	60.955711	50.68502	11.54063
11	2385	2368	17	99.28721	0.712788	28620	26511	2109	11.27806	61.451049	50.17299	12.57041
12	2385	2369	16	99.32914	0.67086	31005	28880	2125	12.28586	61.9172494	49.63139	13.59059
13	2385	2372	13	99.45493	0.545073	33390	31252	2138	13.29493	62.2960373	49.0011	14.6174
14	2385	2364	21	99.1195	0.880503	35775	33616	2159	14.3006	62.9079254	48.60732	15.57017
15	2385	2369	16	99.32914	0.67086	38160	35985	2175	15.3084	63.3741259	48.06572	16.54483
16	2385	2376	9	99.62264	0.377358	40545	38361	2184	16.31918	63.6363636	47.31719	17.56456
17	2385	2367	18	99.24528	0.754717	42930	40728	2202	17.32612	64.1608392	46.83472	18.49591
18	2385	2371	14	99.413	0.587002	45315	43099	2216	18.33477	64.5687646	46.23399	19.44901
19	2385	2367	18	99.24528	0.754717	47700	45466	2234	19.34172	65.0932401	45.75152	20.35184

Model Performance on OOT

							I					
OOT	# Re	cord	# gc	ods		# bads	Fraud rate					
	163	3772	161	427		2345	0.01432					
	# Records	# Goods	# Bads	% Goods	% Bads	Total # Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FD	KS	FPR
0	1638	447	1191	27.28938	72.71062	1638	447	1191	0.276905	50.78891	50.51201	0.375315
1	1637	1588	49	97.00672	2.99328	3275	2035	1240	1.260632	52.87846	51.61783	1.641129
2	1638	1620	18	98.9011	1.098901	4913	3655	1258	2.264181	53.64606	51.38187	2.905405
3	1638	1624	14	99.1453	0.854701	6551	5279	1272	3.270209	54.24307	50.97286	4.150157
4	1638	1625	13	99.20635	0.793651	8189	6904	1285	4.276856	54.79744	50.52059	5.372763
5	1637	1625	12	99.26695	0.733048	9826	8529	1297	5.283503	55.30917	50.02567	6.575944
6	1638	1615	23	98.59585	1.404151	11464	10144	1320	6.283955	56.28998	50.00602	7.684848
7	1638	1618	20	98.779	1.221001	13102	11762	1340	7.286266	57.14286	49.85659	8.777612
8	1637	1628	9	99.45021	0.549786	14739	13390	1349	8.294771	57.52665	49.23188	9.925871
9	1638	1629	9	99.45055	0.549451	16377	15019	1358	9.303896	57.91045	48.60655	11.05965
10	1638	1626	12	99.2674	0.732601	18015	16645	1370	10.31116	58.42217	48.11101	12.14964
11	1638	1620	18	98.9011	1.098901	19653	18265	1388	11.31471	59.18977	47.87505	13.15922
12	1637	1628	9	99.45021	0.549786	21290	19893	1397	12.32322	59.57356	47.25034	14.2398
13	1638	1627	11	99.32845	0.671551	22928	21520	1408	13.3311	60.04264	46.71154	15.28409
14	1638	1626	12	99.2674	0.732601	24566	23146	1420	14.33837	60.55437	46.216	16.3
15	1638	1620	18	98.9011	1.098901	26204	24766	1438	15.34192	61.32196	45.98004	17.22253
16		1619	18	98.90043	1.099572	27841	26385	1456	16.34485	62.08955	45.7447	18.12157
17	1638	1629	9	99.45055	0.549451	29479	28014	1465	17.35397	62.47335	45.11937	19.12218
18	1638	1632	6	99.6337	0.3663	31117	29646	1471	18.36496	62.72921	44.36425	20.15364
19	1637	1622	15	99.08369	0.91631	32754	31268	1486	19.36975	63.36887	43.99912	21.04172

Conclusions

The plethora of methods through which frauds are committed are unfathomable to recount; however, there are traces that remain to be picked up by the vigilant and learned. In this project, we attempted to predict the underlying fraudulent activity by observing none other than the information filled out on the applications. Via well-traversed methodologies developed by our seniors and predecessors, we were able to peek at the subtleties involuntarily revealed by the schemers, magnify their actions with tools based in both statistics and machine learning methods, and acutely label the potentially guilty. hile the predictions are far from perfect, these methods cemented a handle on a problem otherwise extremely difficult to tackle. Moreover, we duly believe that with more experience on the subject matter and techniques, we could significantly improve the end results by creating better expert variables and implementing more appropriate data cleaning techniques and machine learning algorithms in a more polished manner. Also observed was that machine learning algorithms tend to perform better with datasets large in both volume and diversity and with models that churn through the numbers laboriously. These are invaluable experiences that we will be utilizing faithfully in the upcoming projects in the hope of a more streamlined process and more indicative results.

Appendix

Data Quality Report

File Description:

Applications Data is a dataset containing records of 1,000,000 applications. It includes fields such as date of application, SSN, first and last name, address, zip code, date of birth, home phone number, and fraud label of each applicant.

File Name: applications data.csv

Number of Records: 1,000,000 records

Number of Fields: 9 variables in total: 7 categorical variables, 2 date variables

Field Name	Data Type	% Populated	Unique number
date	Date variable	100%	365
ssn	Categorical variable	100%	835819
firstname	Categorical variable	100%	78136
lastname	Categorical variable	100%	177001
address	Categorical variable	100%	828774
zip5	Categorical variable	100%	26370
dob	Date variable	100%	42673

homephone	Categorical variable	100%	28244
fraud_label	Categorical variable	100%	2

Time of Records: Jan 1st 2016 – Dec 31st 2016

Field 1

Field Name: date

Description: "date" is a date variable, including the application dates.

	month	count	percentage
0	01	85199	0.085199
11	02	76792	0.076792
4	03	84871	0.084871
7	04	82515	0.082515
1	05	85083	0.085083
9	06	82035	0.082035
2	07	84943	0.084943
6	80	84830	0.084830
8	09	82374	0.082374
5	10	84865	0.084865
10	11	81602	0.081602
3	12	84891	0.084891

Plot the distribution of the months and dates as below, the overall frequency is consistent.

Field 2
Field Name: ssn

Description: "ssn" is a categorical variable, indicating the applicant's ssn number.

	ssn	count	percentage
0	999999999	16935	0.016935
1	938972725	114	0.000114
2	810776805	81	0.000081
3	829352390	74	0.000074
4	473311863	44	0.000044
5	165764866	34	0.000034
6	189622157	30	0.000030
7	295308935	30	0.000030
8	588726212	29	0.000029
9	163830210	29	0.000029
10	687424410	28	0.000028

Top 15 ssn records

Since the number of 999999999 takes most of the count and it means the record is frivolous, we plot the graph which exclude the record of 999999999.

The distribution of the top 10 records (excluding the most frequent record "99999999"):

Field 3

Field Name: firstname

Description:

"firstname" is a categorical variable, indicating the applicant's first name.

	firstname	count	percentage
0	EAMSTRMT	12658	0.012658
1	TXEMXZZM	10297	0.010297
2	UXXJJZTUZ	10235	0.010235
3	UJSRSMUEZ	9994	0.009994
4	SREZUJMJU	9688	0.009688
5	EASEXMJAT	7576	0.007576
6	SSSXUEJMS	6923	0.006923
7	SZUASTTA	6878	0.006878
8	EREMTZXXA	6717	0.006717
9	EAXRRUMUX	5686	0.005686

Field 4

Field Name: lastname

Description: "lastname" is a categorical variable, indicating the applicant's last name.

	lastname	count	percentage
0	ERJSAXA	8580	0.008580
1	UMXUUUSE	7156	0.007156
2	UMARRMA	6832	0.006832
3	MEAXJUX	5492	0.005492
4	XMERRR	5451	0.005451
5	SXZXJRJT	4340	0.004340
6	EUSEZRAE	4173	0.004173
7	USMATTUR	4036	0.004036
8	ETERUXME	3762	0.003762
9	RJURSTXJ	3575	0.003575

Field 5
Field Name: address

Description: "address" is a categorical variable that contains inputs from applicants of their address.

	address	count	percentage
0	123 MAIN ST	1079	0.001079
1	1775 XJXE LN	97	0.000097
2	7433 RAEZA ST	80	0.000080
3	8911 MZSU DR	74	0.000074
4	4907 RRAAU DR	73	0.000073
5	426 XUAXZ BLVD	57	0.000057
6	606 EZZAU WY	44	0.000044
7	3545 ARMA ST	44	0.000044
8	4530 ETSMX WY	42	0.000042
9	4292 RUSMM LN	41	0.000041
10	9693 ERJZA LN	40	0.000040

The distribution of the top 10 records (excluding the most frequent record "123 MAIN ST"):

Field 6

Field Name: zip5

Description: "zip5" is a categorical variable that contains inputs from applicants of their zip codes.

	zip5	count	percentage
0	68138	823	0.00823
1	90042	514	0.00514
2	89835	489	0.00489
3	35227	478	0.00478
4	14931	459	0.00459
5	86500	438	0.00438
6	12700	436	0.00436
7	1362	434	0.00434
8	59695	432	0.00432
9	52317	432	0.00432

The distribution of the top 10 records:

Field 7

Field Name: dob

Description:

"dob" is a date variable that contains inputs from applicants of their date of birth.

The top 10 most frequent records are listed below:

	dob	count	percentage
0	19070626	126568	0.126568
1	19640318	4818	0.004818
2	19760625	3723	0.003723
3	19880628	1404	0.001404
4	19740216	980	0.000980
5	20090127	280	0.000280
6	19460901	135	0.000135
7	19591208	126	0.000126
8	19280611	120	0.000120
9	19670215	102	0.000102
10	19360908	81	0.000081

The distribution of the top 10 records (excluding the most frequent record "19070626"):

Also, the distribution of different DOB years is plotted below.

The distribution of different DOB years and months is plotted below

Field 8
Field Name: homephone

Description: "homephone" is a categorical variable that contains home phone number of each applicant.

	phone	count	percentage
0	9999999999	78512	0.078512
1	6384782007	466	0.000466
2	6035129044	360	0.000360
3	2113738531	331	0.000331
4	4024680535	198	0.000198
5	2669445638	172	0.000172
6	6637507363	169	0.000169
7	8629049955	139	0.000139
8	3364980740	110	0.000110
9	1324008228	108	0.000108
10	6845279110	108	0.000108

The distribution of the top 10 records (excluding the most frequent record "9999999999"):

Field 9

Field Name: Fraud Label

Description: "fraud_label" is a categorical variable whether the applicant is fraud.

	fraud	count	percentage
0	0	985607	0.985607
1	1	14393	0.014393

Candidate Variables

Velocity Candidate Variables					
1	ssn_count_0	85	ssn_lastname_count_0		
2	ssn_count_1	86	ssn_lastname_count_1		
3	ssn_count_3	87	ssn_lastname_count_3		
4	ssn_count_7	88	ssn_lastname_count_7		
5	ssn_count_14	89	ssn_lastname_count_14		
6	ssn_count_30	90	ssn_lastname_count_30		
7	address_count_0	91	ssn_address_count_0		
8	address_count_1	92	ssn_address_count_1		
9	address_count_3	93	ssn_address_count_3		
10	address_count_7	94	ssn_address_count_7		
11	address_count_14	95	ssn_address_count_14		
12	address_count_30	96	ssn_address_count_30		
13	dob_count_0	97	ssn_zip5_count_0		
14	dob_count_1	98	ssn_zip5_count_1		
15	dob_count_3	99	ssn_zip5_count_3		

16	dob_count_7	100	ssn_zip5_count_7
17	dob_count_14	101	ssn_zip5_count_14
18	dob_count_30	102	ssn_zip5_count_30
19	homephone_count_0	103	ssn_dob_count_0
20	homephone_count_1	104	ssn_dob_count_1
21	homephone_count_3	105	ssn_dob_count_3
22	homephone_count_7	106	ssn_dob_count_7
23	homephone_count_14	107	ssn_dob_count_14
24	homephone_count_30	108	ssn_dob_count_30
25	name_count_0	109	ssn_homephone_count_0
26	name_count_1	110	ssn_homephone_count_1
27	name_count_3	111	ssn_homephone_count_3
28	name_count_7	112	ssn_homephone_count_7
29	name_count_14	113	ssn_homephone_count_14
30	name_count_30	114	ssn_homephone_count_30
31	fulladdress_count_0	115	ssn_name_count_0
32	fulladdress_count_1	116	ssn_name_count_1
33	fulladdress_count_3	117	ssn_name_count_3
34	fulladdress_count_7	118	ssn_name_count_7
35	fulladdress_count_14	119	ssn_name_count_14
36	fulladdress_count_30	120	ssn_name_count_30
37	name_dob_count_0	121	ssn_fulladdress_count_0
38	name_dob_count_1	122	ssn_fulladdress_count_1
39	name_dob_count_3	123	ssn_fulladdress_count_3
40	name_dob_count_7	124	ssn_fulladdress_count_7
41	name_dob_count_14	125	ssn_fulladdress_count_14
42	name_dob_count_30	126	ssn_fulladdress_count_30
43	name_fulladdress_count_0	127	ssn_name_dob_count_0
44	name_fulladdress_count_1	128	ssn_name_dob_count_1
45	name_fulladdress_count_3	129	ssn_name_dob_count_3
46	name_fulladdress_count_7	130	ssn_name_dob_count_7
47	name_fulladdress_count_14	131	ssn name dob count 14
48	name_fulladdress_count_30	132	ssn_name_dob_count_30
49	name_homephone_count_0	133	ssn_name_fulladdress_count_0
50	name_homephone_count_1	134	ssn_name_fulladdress_count_1
51	name_homephone_count_3	135	ssn_name_fulladdress_count_3
52	name_homephone_count_7	136	ssn_name_fulladdress_count_7
53	name_homephone_count_14	137	ssn_name_fulladdress_count_14
54	name_homephone_count_30	138	ssn_name_fulladdress_count_30
55	fulladdress_dob_count_0	139	ssn_name_homephone_count_0
-			r

```
56
     fulladdress dob count 1
                                            140
                                                  ssn name homephone count 1
57
     fulladdress dob count 3
                                            141
                                                  ssn name homephone count 3
58
     fulladdress dob count 7
                                            142
                                                  ssn name homephone count 7
59
     fulladdress dob count 14
                                                  ssn_name_homephone_count_14
                                            143
60
     fulladdress_dob_count_30
                                            144
                                                  ssn_name_homephone_count_30
61
                                                  ssn_fulladdress_dob_count_0
     fulladdress_homephone_count_0
                                            145
62
     fulladdress homephone count 1
                                                  ssn fulladdress dob count 1
                                            146
63
     fulladdress homephone count 3
                                            147
                                                  ssn fulladdress dob count 3
64
     fulladdress homephone count 7
                                                  ssn fulladdress dob count 7
                                            148
65
     fulladdress homephone count 14
                                            149
                                                  ssn fulladdress dob count 14
     fulladdress homephone count 30
                                                  ssn fulladdress dob count 30
66
                                            150
67
     dob homephone count 0
                                                  ssn fulladdress homephone count 0
                                            151
68
     dob homephone count 1
                                            152
                                                  ssn fulladdress homephone count 1
69
     dob homephone count 3
                                            153
                                                  ssn fulladdress homephone count 3
70
     dob homephone count 7
                                            154
                                                  ssn fulladdress homephone count 7
71
     dob homephone count 14
                                            155
                                                  ssn_fulladdress_homephone_count_14
72
     dob homephone count 30
                                                  ssn_fulladdress_homephone_count_30
                                            156
73
     homephone_name_dob_count_0
                                            157
                                                  ssn_dob_homephone_count_0
74
     homephone_name_dob_count_1
                                            158
                                                  ssn dob homephone count 1
75
     homephone name dob count 3
                                            159
                                                  ssn dob homephone count 3
76
     homephone name dob count 7
                                                  ssn dob homephone count 7
                                            160
77
     homephone_name_dob_count_14
                                                  ssn_dob_homephone_count_14
                                            161
78
     homephone_name_dob_count_30
                                            162
                                                  ssn_dob_homephone_count_30
79
     ssn_firstname_count_0
                                                  ssn_homephone_name_dob_count_0
                                            163
80
     ssn firstname count 1
                                            164
                                                  ssn homephone name dob count 1
81
     ssn firstname count 3
                                                  ssn homephone name dob count 3
                                            165
82
     ssn firstname count 7
                                            166
                                                  ssn homephone name dob count 7
83
     ssn firstname count 14
                                                  ssn homephone name dob count 14
                                            167
84
     ssn firstname count 30
                                                  ssn homephone name dob count 30
                                            168
                            Relative Velocity Candidate Variables
                                                  ssn_firstname_count_0_by_30
169
     ssn_count_0_by_3
                                            276
170
     ssn_count_0_by_7
                                            277
                                                  ssn firstname count 1 by 3
171
     ssn_count_0_by_14
                                            278
                                                  ssn firstname count 1 by 7
172
     ssn_count_0_by_30
                                            279
                                                  ssn_firstname_count_1_by_14
173
     ssn_count_1_by_3
                                            280
                                                  ssn_firstname_count_1_by_30
174
     ssn_count_1_by_7
                                            281
                                                  ssn_lastname_count_0_by_3
175
                                            282
                                                  ssn lastname count 0 by 7
     ssn count 1 by 14
176
     ssn count 1 by 30
                                            283
                                                  ssn lastname count 0 by 14
177
     address count 0 by 3
                                            284
                                                  ssn lastname count 0 by 30
178
     address_count_0_by_7
                                            285
                                                  ssn_lastname_count_1_by_3
```

```
179
     address count 0 by 14
                                           286
                                                 ssn lastname count 1 by 7
180
     address count 0 by 30
                                           287
                                                 ssn lastname count 1 by 14
181
     address count 1 by 3
                                           288
                                                 ssn lastname count 1 by 30
182
                                           289
                                                 ssn_address_count_0_by_3
     address count 1 by 7
183
     address_count_1_by_14
                                           290
                                                 ssn_address_count_0_by_7
184
                                           291
     address_count_1_by_30
                                                 ssn_address_count_0_by_14
                                           292
185
     dob_count_0_by_3
                                                 ssn address count 0 by 30
                                                 ssn address count 1 by 3
186
     dob_count_0_by_7
                                           293
                                           294
187
     dob count 0 by 14
                                                 ssn address count 1 by 7
188
     dob_count_0_by_30
                                           295
                                                 ssn_address_count_1_by_14
                                           296
189
     dob_count_1_by_3
                                                 ssn_address_count_1_by_30
190
     dob_count_1_by_7
                                           297
                                                 ssn_zip5_count_0_by_3
191
     dob count 1 by 14
                                           298
                                                 ssn zip5 count 0 by 7
192
     dob_count_1_by_30
                                           299
                                                 ssn_zip5_count_0_by_14
193
     homephone_count_0_by_3
                                           300
                                                 ssn_zip5_count_0_by_30
194
     homephone_count_0_by_7
                                           301
                                                 ssn_zip5_count_1_by_3
195
     homephone_count_0_by_14
                                           302
                                                 ssn_zip5_count_1_by_7
196
    homephone_count_0_by_30
                                           303
                                                 ssn_zip5_count_1_by_14
197
     homephone_count_1_by_3
                                           304
                                                 ssn_zip5_count_1_by_30
198
     homephone count 1 by 7
                                           305
                                                 ssn dob count 0 by 3
199
     homephone count 1 by 14
                                           306
                                                 ssn dob count 0 by 7
200
     homephone_count_1_by_30
                                           307
                                                 ssn_dob_count_0_by_14
201
     name_count_0_by_3
                                           308
                                                 ssn_dob_count_0_by_30
202
     name_count_0_by_7
                                           309
                                                 ssn_dob_count_1_by_3
203
     name count 0 by 14
                                           310
                                                 ssn dob count 1 by 7
204
     name count 0 by 30
                                           311
                                                 ssn dob count 1 by 14
205
     name count 1 by 3
                                           312
                                                 ssn dob count 1 by 30
206
                                                 ssn homephone count 0 by 3
     name count 1 by 7
                                           313
207
     name count 1 by 14
                                           314
                                                 ssn homephone count 0 by 7
208
     name_count_1_by_30
                                           315
                                                 ssn_homephone_count_0_by_14
209
     fulladdress_count_0_by_3
                                           316
                                                 ssn_homephone_count_0_by_30
210
     fulladdress_count_0_by_7
                                           317
                                                 ssn homephone count 1 by 3
211
     fulladdress_count_0_by_14
                                           318
                                                 ssn homephone count 1 by 7
212
     fulladdress_count_0_by_30
                                           319
                                                 ssn_homephone_count_1_by_14
213
    fulladdress_count_1_by_3
                                           320
                                                 ssn_homephone_count_1_by_30
214
    fulladdress_count_1_by_7
                                           321
                                                 ssn_name_count_0_by_3
215
     fulladdress count 1 by 14
                                           322
                                                 ssn name count 0 by 7
    fulladdress count 1 by 30
                                           323
                                                 ssn name count 0 by 14
216
217
     name dob count 0 by 3
                                           324
                                                 ssn name count 0 by 30
218
     name_dob_count_0_by_7
                                           325
                                                 ssn_name_count_1_by_3
```

```
219
     name dob count 0 by 14
                                           326
                                                 ssn name count 1 by 7
220
     name dob count 0 by 30
                                           327
                                                 ssn name count 1 by 14
221
     name dob count 1 by 3
                                           328
                                                 ssn name count 1 by 30
222
                                                 ssn_fulladdress_count_0_by_3
     name dob count 1 by 7
                                           329
223
     name_dob_count_1_by_14
                                           330
                                                 ssn_fulladdress_count_0_by_7
224
     name_dob_count_1_by_30
                                           331
                                                 ssn_fulladdress_count_0_by_14
     name fulladdress count 0 by 3
                                                 ssn fulladdress count 0 by 30
225
                                           332
     name fulladdress count 0 by 7
                                                 ssn fulladdress count 1 by 3
226
                                           333
227
     name fulladdress count 0 by 14
                                           334
                                                 ssn fulladdress count 1 by 7
228
     name fulladdress count 0 by 30
                                           335
                                                 ssn fulladdress count 1 by 14
229
     name fulladdress count 1 by 3
                                           336
                                                 ssn fulladdress count 1 by 30
230
     name fulladdress count 1 by 7
                                           337
                                                 ssn name dob count 0 by 3
231
     name fulladdress count 1 by 14
                                           338
                                                 ssn name dob count 0 by 7
232
     name fulladdress count 1 by 30
                                           339
                                                 ssn name dob count 0 by 14
     name_homephone_count_0_by_3
233
                                           340
                                                 ssn_name_dob_count_0_by_30
234
     name_homephone_count_0_by_7
                                           341
                                                 ssn_name_dob_count_1_by_3
235
     name_homephone_count_0_by_14
                                           342
                                                 ssn_name_dob_count_1_by_7
236
     name_homephone_count_0_by_30
                                           343
                                                 ssn_name_dob_count_1_by_14
237
     name_homephone_count_1_by_3
                                           344
                                                 ssn_name_dob_count_1_by_30
238
     name homephone count 1 by 7
                                           345
                                                 ssn name fulladdress count 0 by 3
239
     name homephone count 1 by 14
                                           346
                                                 ssn name fulladdress count 0 by 7
240
     name_homephone_count_1_by_30
                                                 ssn_name_fulladdress_count_0_by_14
                                           347
241
     fulladdress_dob_count_0_by_3
                                           348
                                                 ssn_name_fulladdress_count_0_by_30
242
     fulladdress_dob_count_0_by_7
                                                 ssn_name_fulladdress_count_1_by_3
                                           349
243
     fulladdress dob count 0 by 14
                                           350
                                                 ssn name fulladdress count 1 by 7
     fulladdress dob count 0 by 30
                                                 ssn name fulladdress count 1 by 14
244
                                           351
245
     fulladdress dob count 1 by 3
                                           352
                                                 ssn name fulladdress count 1 by 30
246
     fulladdress dob count 1 by 7
                                                 ssn name homephone count 0 by 3
                                           353
247
     fulladdress dob count 1 by 14
                                           354
                                                 ssn name homephone count 0 by 7
     fulladdress_dob_count_1_by_30
                                                 ssn_name_homephone_count_0_by_14
248
                                           355
249
     fulladdress_homephone_count_0_by_3
                                           356
                                                 ssn_name_homephone_count_0_by_30
250
     fulladdress homephone count 0 by 7
                                           357
                                                 ssn name homephone count 1 by 3
251
     fulladdress homephone count 0 by 14
                                           358
                                                 ssn name homephone count 1 by 7
252
     fulladdress homephone count 0 by 30
                                                 ssn name homephone count 1 by 14
                                           359
                                                 ssn name_homephone_count_1_by_30
253
     fulladdress homephone count 1 by 3
                                           360
254
     fulladdress_homephone_count_1_by_7
                                                 ssn_fulladdress_dob_count_0_by_3
                                           361
255
     fulladdress homephone count 1 by 14
                                                 ssn fulladdress dob count 0 by 7
                                           362
256
     fulladdress homephone count 1 by 30
                                                 ssn fulladdress dob count 0 by 14
                                           363
257
     dob homephone count 0 by 3
                                                 ssn fulladdress dob count 0 by 30
                                           364
258
     dob_homephone_count_0_by_7
                                           365
                                                 ssn_fulladdress_dob_count_1_by_3
```

```
259
     dob homephone count 0 by 14
                                           366
                                                 ssn fulladdress dob count 1 by 7
260
     dob homephone_count_0_by_30
                                                 ssn fulladdress dob count 1 by 14
                                           367
261
     dob homephone count 1 by 3
                                           368
                                                 ssn fulladdress dob count 1 by 30
     dob homephone count 1 by 7
                                                 ssn fulladdress homephone count 0 by 3
262
                                           369
263
     dob_homephone_count_1_by_14
                                           370
                                                 ssn_fulladdress_homephone_count_0_by_7
     dob_homephone_count_1_by_30
                                           371
                                                 ssn_fulladdress_homephone_count_0_by_14
264
     homephone name dob count 0 by 3
                                           372
                                                 ssn fulladdress homephone count 0 by 30
265
     homephone name dob count 0 by 7
                                                 ssn fulladdress homephone count 1 by 3
266
                                           373
267
     homephone name dob count 0 by 14
                                           374
                                                 ssn fulladdress homephone count 1 by 7
268
     homephone name dob count 0 by 30
                                           375
                                                 ssn fulladdress homephone count 1 by 14
     homephone name dob count 1 by 3
                                                 ssn fulladdress homephone count 1 by 30
269
                                           376
     homephone_name_dob_count_1_by_7
                                                 ssn_dob_homephone_count_0_by_3
270
                                           377
271
     homephone name dob count 1 by 14
                                           378
                                                 ssn dob homephone count 0 by 7
272
     homephone_name_dob_count_1_by_30
                                           379
                                                 ssn dob homephone count 0 by 14
273
     ssn_firstname_count_0_by_3
                                           380
                                                 ssn_dob_homephone_count_0_by_30
274
     ssn_firstname_count_0_by_7
                                           381
                                                 ssn_dob_homephone_count_1_by_3
     ssn_firstname_count_0_by_14
275
                                           382
                                                 ssn_dob_homephone_count_1_by_7
                               Day Since Candidate Variables
383
     ssn_day_since
                                                 ssn_lastname_day_since
                                           397
384
     address day since
                                           398
                                                 ssn address day since
                                           399
     dob day since
                                                 ssn zip5 day since
385
     homephone_day_since
                                                 ssn_dob_day_since
386
                                           400
387
     name_day_since
                                           401
                                                 ssn_homephone_day_since
     fulladdress_day_since
                                                 ssn_name_day_since
388
                                           402
     name dob day since
                                                 ssn fulladdress day since
389
                                           403
     name fulladdress day since
                                                 ssn name dob day since
390
                                           404
391
     name homephone day since
                                           405
                                                 ssn name fulladdress day since
392
     fulladdress dob day since
                                                 ssn name homephone day since
                                           406
393
     fulladdress homephone day since
                                           407
                                                 ssn fulladdress dob day since
     dob_homephone_day_since
                                                 ssn_fulladdress_homephone_day_since
394
                                           408
395
     homephone_name_dob_day_since
                                           409
                                                 ssn_dob_homephone_day_since
396
     ssn firstname day since
                                           410
                                                 ssn homephone name dob day since
```

Reference:

Team, V. (2021, February 25). Machine learning algorithms: What is a neural network? Retrieved March 25, 2021, from https://www.verypossible.com/insights/machine-learning-algorithms-what-is-a-neural-network

Ho, Tin Kam (1995). Random Decision Forests (PDF). Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282. Archived from the original (PDF) on 17 April 2016. Retrieved 5 June 2016. https://ect.bell-labs.com/who/tkh/publications/papers/odt.pdf

Brownlee, J. (2020, August 14). A gentle introduction to the gradient boosting algorithm for machine learning. Retrieved March 25, 2021, from https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/

Z_ai (2020, February 8). Logistic Regression Explained. Retrieved March 23, 2021 from https://towardsdatascience.com/logistic-regression-explained-9ee73cede081