Math 3500 Assignment #9 Solutions University of Lethbridge, Fall 2014

Sean Fitzpatrick

December 1, 2014

- 1. Let f be a bounded function on [a, b], let \mathcal{P} denote the set of all partitions of [a, b], and let $P \in \mathcal{P}$ be an arbitrary partition of [a, b].
 - (a) Prove that $U(f) \ge L(f, P)$, where $U(f) = \inf\{U(f, P) | P \in \mathcal{P}\}$.

We know that for any partition P', $L(f,P) \leq U(f,P')$. Thus, L(f,P) is a lower bound for $\{U(f,P): P \in \mathcal{P}\}$. Since U(f) is the *greatest* lower bound, we have $U(f) \geq L(f,p)$.

(b) Prove that $U(f) \ge L(f)$, where $L(f) = \sup\{L(f, P) | P \in \mathcal{P}\}.$

Since the partition P in part (a) was arbitrary, it follows that U(f) is an upper bound for $\{L(f,P): P \in \mathcal{P}\}$. Since L(f) is the *least* upper bound, we have $L(f) \leq U(f)$.

- 2. Let f be a bounded function on [a, b].
 - (a) Prove that f is integrable on [a, b] if and only if there exists a sequence of partitions $(P_n)_{n=1}^{\infty}$ satisfying

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$$

If f integrable, then for each $n \in \mathbb{N}$, taking $\epsilon = 1/n$ there must exist a partition P_n such that $0 \le U(f, P_n) - L(f, P_n) < 1/n$. Since $1/n \to 0$ as $n \to \infty$, it follows that $U(f, P_n) - L(f, P_n) \to 0$ as well.

Conversely, suppose there exists a sequence of partitions (P_n) such that $a_n = U(f, P_n) - L(f, P_n) \to 0$ as $n \to \infty$. Then for any $\epsilon > 0$ there exists some $N \in \mathbb{N}$ such that if $n \geq N$, then $a_n < \epsilon$, and thus for any partition P_n with $n \geq N$, we have $U(f, P_n) - L(f, P_n) < \epsilon$, so f must be integrable.

(b) For each n, let P_n denote the uniform partition of [0,1] into n equal subintervals of length 1/n, and let f(x) = x. Find formulas for $U(f, P_n)$ and $L(f, P_n)$ in terms of n.

Our partition is given by $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n} = 1\}$. Since f is increasing on [0, 1], on each subinterval [(i-1)/n, i/n] we have $m_i = (i-1)/n$ and $M_i = i/n$. It follows that

$$L(f, P_n) = \sum_{i=1}^n \frac{i-1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \left(\sum_{i=1}^n i - \sum_{i=1}^n 1 \right) = \frac{1}{n^2} \left(\frac{n(n+1)}{2} - n \right) = \frac{n-1}{2n},$$

and

$$U(f, P_n) = \sum_{i=1}^{n} \frac{i}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \sum_{i=1}^{n} i = \frac{n+1}{2n}.$$

(c) Use the results from (a) and (b) to prove that f(x) = x is integrable on [0, 1].

For each n we have that $U(f, P_n) - L(f, P_n) = \frac{n+1}{2n} - \frac{n-1}{2n} = \frac{1}{n}$. Thus, for any $\epsilon > 0$ we can choose n such that $1/n < \epsilon$, and the result follows.

3. Let $f:[a,b]\to\mathbb{R}$ be bounded and increasing. Show that f is integrable on [a,b].

Let $P_n = \left\{a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \dots, a + \frac{n(b-a)}{n} = b\right\}$ denote the uniform partition of [a, b] into n subintervals of length $\Delta x = \frac{b-a}{n}$. Since f is increasing on [a, b], for each $i = 1, \dots, n$ we have $m_i = f(x_{i-1})$ and $M_i = f(x_i)$, where $x_i = a + \frac{i(b-a)}{n}$. Given $\epsilon > 0$, choose n sufficiently large that $(f(b) - f(a))\frac{(b-a)}{n} < \epsilon$. Then we have

$$U(f, P_n) - L(f, P_n) = \sum_{i=1}^n (M_i - m_i) \Delta x$$

$$= \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \left(\frac{b-a}{n}\right)$$

$$= (f(b) - f(a)) \frac{(b-a)}{n} \text{ (telescoping sum)}$$

$$< \epsilon.$$

- 4. Define the function $H(x) = \int_1^x \frac{1}{t} dt$, where x > 0.
 - (a) What is the value of H(1)? What is H'(x) for any x > 0?

By definition, $H(1) = \int_1^1 \frac{1}{t} dt = 0$. By the Fundamental Theorem of Calculus, H'(x) = 1/x for all x > 0.

(b) Show that if 0 < x < y, then H(x) < H(y); that is, that H is strictly increasing on $(0, \infty)$.

Since H'(x) = 1/x > 0 on $(0, \infty)$, the result follows from the Mean Value Theorem: $H(y) - H(x) = \frac{1}{c}(y - x) > 0$ for some $c \in (x, y)$.

(c) Show that H(cx) = H(c) + H(x) for any c > 0.

Let g(x) = H(cx). Then by the Chain Rule we have

$$g'(x) = H'(cx) \cdot c = \frac{1}{cx} \cdot c = \frac{1}{x} = H'(x).$$

Since g'(x) = H'(x) we must have g(x) = H(x) + k for some $k \in \mathbb{R}$, for all x > 0. Setting x = 1, we have k = g(1) = H(c), since H(1) = 0. Thus, H(cx) = H(x) + H(c).

(d) Use a similar argument to show that $H(x^a) = aH(x)$.

If we let $f(x) = H(x^a)$, then

$$f'(x) = H'(x^a)(ax^{a-1}) = \frac{ax^{a-1}}{x^a} = \frac{a}{x} = aH'(x).$$

Thus, we must have f(x) = aH(x) + k for some $k \in \mathbb{R}$, for all x > 0. Since H(1) = 0, we find $k = f(1) = H(1^a) = 0$, and the result follows.

Note: One often writes the function H(x) as $\ln(x)$, and refers to this function as the natural logarithm. Parts (c) and (d) then tell us that $\ln(xy) = \ln x + \ln y$ and $\ln(x^y) = y \ln x$. Since H is strictly increasing on $(0, \infty)$, it is one-to-one and therefore has a well-defined inverse function, which is usually denoted by $H^{-1}(x) = e^x$.

5. (**Bonus**) Define a bounded function f on [0,1] by $f(x) = \begin{cases} 1, & \text{if } x = 1/n \\ 0, & \text{otherwise} \end{cases}$. Prove that f is integrable on [0,1].

Let $\epsilon > 0$ be given and choose $N \in \mathbb{N}$ such that $1/N < \epsilon/2$. Since f has finitely many discontinuities on [1/n, 1], it is integrable on [1/N, 1], and thus there exists

a partition P' of [1/N,1] with $U(f,P')-L(f,P')<\epsilon/2$. On [0,1/N] we take the partition $P''=\{0,1/N\}$. Then $U(f,P'')=(1)\left(\frac{1}{N}-0\right)=\frac{1}{N},$ and L(f,P'')=0, since $0\leq f(x)\leq 1$ on [0,1/N]. It follows that $U(f,P'')-L(f,P'')=1/N<\epsilon/2$. Therefore, taking the partition $P=P'\cup P''$ of [0,1], we have $U(f,P)-L(f,P)<\epsilon/2+\epsilon/2=\epsilon$, so f is integrable.