

Assignment Project Exam Help

DR H.K. LAM

https://powergieler.com

Office S2.14, Strand Building, Strand Campus

Add Weylail an Reunglam@kcl.ac.uk.coder

Nature-Inspired Learning Algorithms (7CCSMBIM)

Outline

- Problem and Difficulties
- Introduction

ssignment Project Exam Help Binary Encoding and Decoding

- Decision Variables and Cost Function
- Popularienttps://powcoder.com
- Selection
- Mating Crossover WeChat powcoder
- Convergence
- Performance Evaluation
- Binary GA Example by Hand
- Why do GAs work? Schema Theorem
- Examples

Learning Aims and Objectives

Aims

Assignments Projectic Extram Help

- To apply the binary genetic algorithm to optimisation problems.
- To know the limitations of the binary genetic algorithms. Objectives $\frac{1}{2} \frac{1}{2} \frac{1}{2}$
 - To study how the binary genetic algorithm works in details.
 - To consider an umber of application and of property seminings to problems.

Assignment Project Exam Help

https://powcoder.com

Problem and Difficulties

Problem Statement:

Assignment-Project Exam Help

- Gradient information is not required
- Function evaluation // powcoder.com
 - non-convexity
 - multi-Modeld WeChat powcoder
 - non-smoothness
 - discontinuity
 - dimensionality

Assignment Project Exam Help

https://powcoder.com

Introduction

The Genetic Algorithm

S Seigning Heavis a Region is contention of the property of th optimisation.

- GA is a subclass of Evolutionary Computing.
- History of GA
 - Folutionally Consoliting evolved in the 1960's WCODET

 GA were proposed by John Hollan in the middle of 1970's.

8/87

Darwin's Theory of Evolution ¹

As spenga en t the pare to it baxes me in the population is stable.

- There are variations in characteristics between individuals that can be passed from backers to the characteristics between individuals that can be passed
- Only a small percentage of the offspring produced survive to adulthood.
- Which of the of spring survive depends on their inherited characteristics.

¹ Sue Ellen Haupt, ValliappaLakshmanan, CarenMarzban, AntonelloPasini, and John K. Williams. Environmental Science Models and Artificial Intelligence. Artificial Intelligence Methods in the Environmental Sciences. Springer Science (3-14, 103-126), 2009.

Introduction

The Binary Genetic Algorithm

As Biological Members Plattur Peroxipect Exam Help Genetics and Evolution - gene, chromosome, allele, genotype, phenotype.

mitosis, meiosis, gamete, crossover, mutation, ···

- · comprete project provided in the compression of t
 - Variable encoding and decoding, fitness function, population, selection, mating mutation, offspring and convergence, · · ·

Introduction

Advantages:

Assignment Project Exam Help

- Derivative information is not required.
- Able to deal with a large number of decision variables.
- Optimise decision variables with extremely complex cost function.
- Is less likely trapped in local optimum.
- Tender for Washimhat powcoder

• N_{var} : number of decision variables of the chromosome

As Si Estal sumber of the Project Exam Help

- $N_{pop} imes N_{bits}$: total number of bits of the population
- X_{rate} selection rate in the step of natural selection
- $N_{keep} = N_{pop}$ X_{rate} : number of chromosomes that are kept for each generation
- $N_{pop} N_{keep}$: number of chromosomes to be discarded
- x_{lo} : lower bound of variable x eChat powcoder
- ullet P_n : probability of the n^{th} chromosome in the mating pool of N_{keep} to be chosen
- c_n : cost of the n^{th} chromosome
- C_n : normalised cost of the n^{th} chromosome
- μ : mutation rate (or probability of mutation)

Assignment Project Exam Help

https://powcoder.com

The Binary Genetic Algorithm

The Binary Genetic Algorithm

Figure 1: Flowchart of a binary genetic algorithm.

Binary Encoding and Decoding

Binary number conversion:

Axample Convert 253125 to bina Project Exam Help The integer part: 25

$$\begin{array}{c} \overset{25/2}{\text{https:}} \overset{1}{\text{o}} / powcoder_{0.25 \times 2 = 0.625} \overset{0}{\longrightarrow} \overset{0}{\text{l}} \\ 6/2 \overset{0}{\longrightarrow} \overset{0}{\text{o}} & 0.25 \times 2 = 0.5 \overset{0}{\longrightarrow} \overset{0}{\text{o}} \\ \text{Add} & \text{WeChat poweoder} \\ \overset{1/2}{\longrightarrow} \overset{1}{\text{l}} & \end{array}$$

$25.3125_{10} = 11001.0101_2$

Binary to Decimal:

$$(1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0).(0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4})$$

Binary Encoding and Decoding

Given a number $x \in [x_{lo}, x_{hi}]$, how many bits (m) are required to achieve

Arssing triments Project Exam Help

$$\frac{\frac{x_{hi}-x_{lo}}{10^{-d}} \leq 2^m - \frac{x_{hi}-x_{lo}}{10^{-d}} \leq 2^m - \frac{x_{hi}-x_{ho}}{10^{-d}} \leq 2^m - \frac{$$

 $\frac{x_{hi}-x_{lo}}{10^{-d}} \leq 2^m-1$ Example: At the property of the property

$$\frac{100-25}{10^{-2}} \le 2^m - 1 \Rightarrow 7501 \le 2^m \Rightarrow m = 12.8729 \approx 13bits$$

0000000000ddd₂₅WxeChat powcoder

 $00000000000001 \rightarrow 25 + 1 \times \frac{100 - 25}{213 + 1} = 25.0092$

$$000000000010 \rightarrow 25 + 2 \times \frac{100 - 25}{2^{13} - 1} = 25.0183$$

Decoding: $x = x_{lo} + decimal(1001 \cdots 001_2) \frac{x_{hi} - x_{lo}}{2m-1}$

Decision Variables and Cost Function

• The optimisation/decision variables are represented by *chromosome*.

Assignment Project Exam Help

- Each gene $(p_i, i = 1, 2, ..., N_{var})$ is coded by m_i bits.
- Total hitteptsits be powere of the com
- The cost is evaluated by a cost (fitness) function.

AddoWe@hrat=powcoder

- Genotype: The bit string representation of the chromosome
- Phenotype: The decision variables. The genotype can be mapped to phenotype through decoding or vice versa through encoding.
- Allele: the value of a single bit in the chromosome

Decision Variables and Cost Function

Example: Consider an optimisation problem with decision variables of p_1, p_2, \dots ,

Assignment Project Exam Help

• Phenotype: $[p_1, p_2, \cdots, p_{N_{var}}]$

Population

• The GA starts with a group of chromosomes known as the population.

Assignment Project Exam Help

ullet A population represented by a $N_{pop} imes N_{bits}$ matrix filled with random 0s and

1s. https://powcoder.com

• Purposes: Population collects a group of potential solutions, which will be

Purposes: Population obliects a group of potential solutions, which will be evolved to improve their quality in each generation.

Example: A cost function: cost = f(x, y) with 7 bits in each gene.

Assignment Project Exam Help

Table 1: Example initial population

Natural Selection

• Two approaches: X_{rate} and Thresholding.

Scient mention of the Kann The Lolp ones will survive and the weaker ones will die, i.e., "Survival of the fittest" from

 $\frac{\text{Darwinian evolutionary, theory.}}{\text{https://powcoder.com}}$

Natural Selection: X_{rate}

Natural Selection using X_{rate}

Assignmenty Project & Exvan Help

- Natural selection occurs each generation or iteration of the algorithm.
- The selection rate, X_{fafe} , is the fraction of N_{fop} that survives.
- The number of chromosomes that are kept (for each generation):

$$N_{keep} = X_{rate} N_{pop}$$
.

- The the College Carpetratipowcoder
- The **bottom** $N_{pop}-N_{keep}$ chromosomes will be discarded and replaced by new offspring.

Natural Selection: X_{rate}

Example: $N_{pop} = 8$ and $X_{rate} = 50\%$. $N_{keep} = X_{rate}N_{pop} = 0.5 \times 8 = 4$. Assignment-Project Exam Help 00110010001100 11101100000001 https://powcoder.com 01000101111011 Add We Chat pow 600 der -1163111001111111011

Table 2: Ranked population. The upper four will be kept and the lower four will be discarded and replaced.

Natural Selection: Thresholding

Natural Selection using Thresholding:

Assignmente Projecta Exams Help

- Chromosomes with a cost **higher** than the threshold will be discarded and replaced.
- If no chromes surve, a whole new population will be generated.
- The threshold can be changed in each generation.

Advantage Avertage natival election at powcoder

Less computationally expensive as population does not have to be sorted.

Selection:

Assignment Project Exam Help 1) Pairing from top to bottom

- 2) Random pairing
- https://powcoder.com
 - 3.2) Cost weighting
- 4) Taurna nert se ettion Chat powcoder

 Purposes: Determine who should reproduce offspring.

Selection: Two chromosomes are selected from the mating pool of $N_{\it Keep}$

Thromosphes to produce that new properties of the properties of t

- 1) Pairing from top to bottom: Start at the top of the list and pair the two chroms to be a time to the list and pair the two chroms at time to the list and pair the two mating.
 - Property: Simple and easy to implement.
- 2) Randon Galling: White Can Idna to the General Control Contr
 - *Property:* All chromosomes (in the mating pool of N_{Keep}) have chance to mate. Introduce diversity to the population resulting in higher chance of producing offspring of quality.

3) Weighted Random Paring (roulette wheel weighting): The probabilities

Assignment of the page too are the probability of t

- Property: A chromosome with the lowest cost has the greatest probability of mating. While he chromosome with the lowest cost has the greatest probability of mating.
- Two techniques: Rank weighting and cost weighting coder

3.1) Rank weighting (roulette wheel weighting):

Assignment Project Exam Help

where P_n : probability of the n^{th} chromosome in the mating pool of N_{keep} to be

chos $\frac{1}{N}$ ttps://powcoder.com

n	Chromosome Chat	Cost	P_n	$\sum_{n=1}^{n} P_n$
*	0011001000100	13477	0.4	0.4
2	11101100000001	-12588	0.3	0.7
3	00101111001000	-12363	0.2	0.9
4	00101111000110	-12359	0.1	1.0

Table 3: Probability table for rank weighting.

Rank weighting (roulette wheel weighting):

Assignment Project Exam Help

- It is problem independent.
- Small populations have a high probability of selecting the same chromosome.
- https://propyedical-computationally

3.2) Cost weighting (roulette wheel weighting):

Assignment c_n Project Exam Help Probability: $P_n = \left| \frac{C_n}{\sum_{m=1}^{N_{keep}} C_m} \right|$ Example: Patt ps://powcoder.com

n	Chromosome	$C_n = c_n - c_{N_{keep+1}}$	P_n	$\sum_{i=1}^{n} P_n$
1	901100100011	eC13472420704880	0)575	201 675
2	111011000000001	-12588 + 12097 = -491	0.205	0.780
3	00101111001000	-12363 + 12097 = -266	0.111	0.891
4	00101111000110	-12359 + 12097 = -262	0.109	1.000

Table 4: Probability table for cost weighting.

3.2) Cost weighting (roulette wheel weighting):

Assignment Project Exam Help It is cost function dependent.

- it is cost function dependent.
- It tends to weight the top chromosome more when there is a large spread in the
- It tends to weight the chromosomes evenly when all the chromosomes have approximately the same cost.
- The probabilitides have to be calculated each generation—con putationally expensive.

Remark for Normalisation: Different scaling functions can be used. For example,

Assignment Project Exam Help

$$C_n = ac_n + b$$

where a attrosars to prove Gadenst Grant tions.

In our example, we choose a=1 and $b=-c_{N_{keep+1}}$ so that $c_n=c_n-c_{N_{keep+1}}$.

4) Tournament selection:

ASSI gain in items and the chromosome with the lowest cost in the subset becomes a parent.

Prophet ps://powcoder.com

- It is problem independent.
- It works best for larger population sizes because sorting becomes

 the consuminator larger populations > 1e) constitutionally expensive.
- Chromosomes of good quality (with lower cost) have higher chance to be chosen.

Crossover

Crossover:

Assignment Project Exam Help

- 2) Double-point crossover
- 3) https://powcoder.com
- Purposes: Create offspring from the parents selected in the selection process (by exchanging information).

1) Single-point crossover:

Step 1: A crossover point is randomly selected between the first and last bits of the parents' chromosomes.

A Step 2 Generate two offspring by swapping the chromosomes from the crossover point between two 10^{10} Step 3: Replace any two chromosomes to be discarded in the pool of $N_{pop} - N_{keep}$ in the population.

Step 4: Repeat Steps 1 to 3 for the next two parents until the pool of $N_{pop} - N_{keep}$ is replaced.

1) Single-point crossover:

Assignment Project Exam Help

	Chromosome	ramily	Binary String
	3	ma(1)	00101111001000
http	s://po '	WCOC	er:com
1	5	$off spring_1$	00101100000001
	6	$offspring_2$	111011111001000
Add	3 We(hat r	peweder of the control of the contro
	4	pa(2)	00101111000110
	7	$offspring_3$	00101111000110
	8	$offspring_4$	0010111100 <i>1000</i>

Table 5: Pairing and mating process of single-point crossover.

2) **Double-point crossover**: The segments in between two randomly generated

Assignment Projects Exam Help

3) **Uniform crossover**: Bits are randomly chosen for swapping between parents.

Mutations

Mutations:

A Surphoses: Bandom mutations alter certain bercentage of the bits in the list Help

Mutation process:

new information.

Step 1: Choose the nutrition rate (correspondence of the 1 COM)

Step 2: Determine the number of bits to be mutated:

Add We Chat powcoder

Step 3: Flip the chosen bits.

Remark: If elitism is NOT implemented,

$$#mutation = \mu N_{pop} N_{bits}$$
.

• Mutations:

Assignment-Projecto-ExamoHelp

	Population after Mating	Population after Mutations	New Cost					
_	00110010001100	00110010001100	-13477					
h	titipisooopoy	wcoder.co	171 2588					
	00101111001000	00101111010000	-12415					
	00101111000110	00001011000111	-13482					
Addowne Charomowcoder								
	11101111001000	111101111410010	-12146					
	00101111000110	00100111101000	-12716					
	00101111001000	00110111001000	-12103					

Table 6: Mutating the population.

Table 7: New ranked population at the start of the second generation.

Convergence

Stopping Criteria:

ssignment-Project Exam Help

- A set number of iterations is exceeded.
- No changes on the chromosomes.
- No charges pith cost powcoder.com
- Population statistics on mean and minimum cost.

Convergence

Question: Find the maximum percentage of the possible solution being searched

Assignment Project Exam Help

Total number of possible solutions: $128 \times 128 = 16384$

https://powcoder.com
maximum number of solutions searched at the 3rd generation:

 $\frac{29}{128 \times 128} \times 100 = 0.18\%$ of the solution space has been searched.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Statistics

Assistent description to Project of Example Help

Convergence rate

https://powcoder.com Benchmark functions

Functions of different properties

Function Add WeChat powcoder $f_1(\mathbf{x}) = \sum_{i=1}^{n} x_i^2, -5.12 \le x_i \le 5.12$

$$f_1(\mathbf{x}) = \sum_{i=1}^{n} x_i^2, -5.12 \le x_i \le 5.12$$

minimum: $\mathbf{x}^* = 0, f_1(\mathbf{x}^*) = 0$

Function 2:

$$f_3(\mathbf{x}) = 6n + \sum_{i=1}^{n} floor(x_i), -5.12 \le x_i \le 5.12$$

minimum: Add d12) We Chat powcoder

Function 4:

Assignment Project Exam Help

 $\textbf{Function} \overset{\textbf{x}^*}{\text{pt}} = \overset{0, f_4(\textbf{x}^*)}{\text{pt}} = \overset{0}{\text{pt}} \overset{\text{pt}}{\text{pt}} \overset{\text{pt$

Function 6:

Assignment Project Exam Help

 $\begin{tabular}{lll} $^{\text{minimum:}}$ & $\tilde{h} \bar{t} t p s^{0, f_6(x^*)} / powcoder.com \end{tabular}$

Add WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Chromosome: [x, y, z]

After encoding: 0.5 After encoding: 0.5

Add We chat powcoder

With
$$x_{lo} = \overline{2}$$
, $x_{hi} = 5$ and $m = 2$,

$$00 \rightarrow 2 + decimal(00) \times \frac{5-2}{2^2-1} = 2$$

$$01 \rightarrow 2 + decimal(01) \times \frac{5-2}{2^2-1} = 3$$

$$10 \rightarrow 2 + decimal(10) \times \frac{5-2}{2^2-1} = 4$$

$$11 \rightarrow 2 + decimal(11) \times \frac{5-2}{2^2-1} = 5$$

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 1: Population initialised with population size = 4

Add WeChat po wcoder

4 110100

5, 3, 2

-19

Example: Consider a function f(x,y,z) = x - 2xy + 3z to be minimised, where

Assignmentis Projectis Exam Help

Step 2: Ranked population and natural selection with $N_{keep}=3$

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 3: Selection with cost weighting (roulette wheel weighting)

n Chrompsome Decoded x, y, z Cost
$$C_n = c_n$$
 N_{bern} P_n P_n P_n 1 101110 P_n P_n

$$P_{n} = \left| \frac{C_{n}}{\sum_{m=1}^{N_{keep}} C_{m}} \right| = \left| \frac{C_{n}}{\sum_{m=1}^{3} C_{m}} \right| = \left| \frac{C_{n}}{-33-28-21} \right| = \left| \frac{C_{n}}{-82} \right|$$

$$P_{1} = \left| \frac{-33}{-82} \right|, P_{2} = \left| \frac{-28}{-82} \right|; P_{3} = \left| \frac{-21}{-82} \right|$$

• Generate two random numbers: 0.9649, 0.2785

What happen if the same chromosome is chosen?

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 4: Crossover with single-point crossover technique

 p_3 : 00110 https://powcoder.com

Generate randomly a crossover point: 2

offspring Add WeChat powcoder

*offspring*₂: 101100

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project is Exam Help

Step 5: Mutation

Ranked phyliatip gr. mytaton www.e-order.com $\#mutation = 0.2(4-1)6 = 3.6 \approx 4$

 $row = [2\ 2\ 3\ 4]; column = [4\ 5\ 2\ 5].$

	<u> </u>			
n	Chombone	Vonramosome affecteut	atili O Mexote Co, Ct	Cost
1	101110	101110	4, 5, 4	-24
2	110100	110010	5, 2, 4	-3
3	001100	011100	3, 5, 2	-21
4	001110	001100	2, 5, 2	-12

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Is Exam Help

• The 1st generation is done.

• Ranked population for nemocration oder.com

n (Chromosom	e	Decoded x, y, z	Cost
1_1	101110	V O1 4	4, 5, 4	-24
2 A	00100	weChat	1, 5, 4 1, 5, 4 1, 5, 4	ler
	001100		2, 5, 2	-12
4	110010		5, 2, 4	-3

• Repeat steps 1 to 5 until stopping criteria have been met.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Binary genetic algorithms are considered.

Achani Benem Michaltwicz, 1992 ject Exam Help

"Short, low-order, above-average schemata receive exponentially increasing trials in subsequent generations, of a genetic algorithm."

https://powcoder.com

Add WeChat powcoder

• A scheme: a template representing a subset of binary strings using symbols

Assignments Project Exam Help

```
Schema *1100 matches 2 strings: {01100, 11100}. Schema *\frac{1100}{100} matches 4 strings: {01000, 0100}, Ground Schema ***** matches 2 strings: {00000, 00001, ..., 11110, 11111}. Schema 11100 matches 1 string {11100}. String 11100 is matched by 2 schemata. {11100, *1100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×100, 1×
```


Schema properties:

As step 11430 miles the length of the template minus the number of don't care symbols.

2. **Defining to positions** the space of the first and the last fixed positions.

Example: Add We Chat powcoder $S_1 = \star \star \star \star 001 \star 110 \Rightarrow o(S_1) = 6, \delta(S_1) = 10$

$$S_2 = \star \star \star \star 00 \star \star 0 \star \Rightarrow o(S_2) = 3, \delta(S_2) = 9 - 5 = 4$$

$$S_3 = 11101 \star \star 001 \Rightarrow o(S_3) = 8, \delta(S_3) = 10 - 1 = 9$$

Binary GAs:

Assignment Project Exam Help

- 3. evaluate P(t)
- 4. t + https://powcoder.com

Binary GA configurations:

- $N_{keep} = 0.$ Selection and the week eighting at value of the contract of the contract
- Crossover: single-point crossover (crossover points are allowed any point in between the first and last bits).
- Mutation: uniform mutation (with the probability of mutation p_m for each bit).
- Elitism is not implemented.

 $\xi(S,t)$: the number of strings in the population at generation t matched by a schema S.

Axangit: goniante apting popular recents are not mailed and the of an inegative):

https://powcoder.com

Add $\sqrt[3]{e}$ $\left(\frac{110}{2}\right)^{11}$ $\left(\frac{1}{2}\right)^{11}$ $\left(\frac{1}{2}\right)^{1$

$$v_5 = 110001 \quad f(v_5) = -8$$

$$v_6 = 110011 \quad f(v_6) = -3$$

$$S_1 = \star \star 01 \star \star, \qquad \xi(S_1, t) = 3$$

f(S,t): average cost of all strings in the population matched by the schema S.

Assignment Project Exam Help Assuming that there are p strings $\{u_1, \dots, u_p\}$ in the population matched by a

schema S at generation t,

https://pow&qder.com

Example:

$$\begin{array}{c} S_1 = \star \star 014 \star \text{is matched by } \left\{ \underbrace{v_3 v_4}_{3} \right\} = \underbrace{100101 \ 110111 \ 0001101}_{10001101} \\ f(S_1,t) = \underbrace{f(V_1) \underbrace{f(V_2)}_{3} \underbrace{f(V_3) \underbrace{f(V_3)}_{3} \underbrace{f(V_3)}_{3}}_{3} = \underbrace{100101 \ 110111 \ 0001110}_{7.3} \end{array} \right]$$

Objective: Investigate the probability of survival of all schemata $(S_1, \dots, S_{2^N_{bijk}})$ in the GA process (selection, crossorer, mutation). Help a selection of the probability of selecting the string \mathbb{R} :

- The average probability of a string matched by schema S to be selected:
- 3. The number of strings to be selected for recombination: N_{pop} ($N_{keep} = 0$).

 $\xi(S,t+1)$: the number of strings matched by S after the selection process.

Assignment Project Exam Help

 $\underbrace{ \text{https://powcoder.com}}_{\text{where } \overline{F}(t) = \underbrace{\overline{K_{l}}}_{N_{pop}} \text{ is the average cost of the population.}$

Add We Chart powcoder
$$= \xi(S,t) \frac{f(S,t)}{\overline{E}(t)} \frac{f(S,t)}{\overline{F}(t)} + f(S,t) - \overline{F}(t)$$

$$= \xi(S,t) \frac{F(t)}{\overline{F}(t)}$$

$$= \xi(S,t) (1 + \varepsilon(t))$$

where $\varepsilon(t) = \frac{f(S,t)) - F(t)}{\overline{F}(t)}$.

$$\xi(S,t+1) = \xi(S,t)(1+\varepsilon(t))$$

Assignments. Project Exam Help $=\xi(S,t-2)(1+\varepsilon(t-2))(1+\varepsilon(t-1))(1+\varepsilon(t))$

https://powooder.com e(t)

Add SWeChat powcoder

- $\varepsilon(t) > 0$ for most of t: $\xi(S, t+1)$ is increasing
- $\varepsilon(t) < 0$ for most of t: $\xi(S, t+1)$ is decreasing

Implication: Above average schemata receive increasing number of strings in the next generation; however, below average schemata will die out as t increases.

Recombination - Crossover

Probability of destruction of a schema $S: p_d(S) = \frac{\delta(S)}{N_{bia}-1}$ Are significant values of the probability of destruction of a schema $S: p_d(S) = \frac{\delta(S)}{N_{bia}-1}$ Exam Help Example

A string
$$v_1 = 1101110010$$
 is matched by 2^{10} schemata. $S_1 = 110$ **https://pow.coefes.**

$$\overset{S_a = \star \star \star \star 1}{\text{Add}} \overset{\text{Add}}{\text{WeChat}} \overset{\text{2}}{\text{powcoder}}$$

$$S_b = 11 \star \star \star \star \star \star \star 10$$

$$p_d(S_b) = \frac{9}{9} = 1, p_s(S_b) = 0$$

$$S_{2^{N_{bits}}} = \star \star$$

$$p_d(S_{2^{N_{bits}}}) = \frac{0}{9} = 0, p_s(S_{2^{N_{bits}}}) = 1$$

 $v_1' = 1101110010$

Assignment Project Exam Help

Example 1: After crossover

$$o_1^c = 1101|000011$$

 $\begin{array}{ll} o_1^c = \mathbf{110111} | 0011 & o_1^c = \mathbf{1101} | 000011 \\ o_2^c = 0100 \mathbf{nttps://powcodeficeom} \end{array}$

 S_a survives but not S_b .

Both S_a and S_b cannot survive.

Example 2 And down Ve Chatan po Mercoder

$$o_1^c = 110|0000011$$

$$o_1^c = 11011|00011$$

$$o_2^c = 010|1110010$$

$$o_2^c = 01000|\mathbf{10010}|$$

 S_a survives but not S_b .

Both S_a and S_b cannot survive.

Assignment p_s Project Exam Help Modification of $p_s(S)$ considering that, e.g., the schema of v_1' and v_2' is the same

alion of $p_s(s)$ considering that, e.g., the schema of v_1 and v_2 is the same

https://powegager.com

Schema growth equation with the consideration of crossover:

Add We Chat powcoder
$$\xi(S,t+1) \ge \xi(S,t) = R(t) + R(t) + R(t) = R(t) + R$$

Mutation: Uniform mutation - each bit will be mutated if a random number $r < p_m$,

Assigniment Project Exam Help

Probability of a single bit survival (no mutation takes place):

https://powcoder.com

Schema growth equation with the consideration of crossover and mutation:

Assignment Projects Exams Help

https://powcoder.com Schema Theorem (Michalewicz, 1992)

"Short, low-order, above-average schemata receive exponentially increasing trials

in subsequent generations of energy and energy