

PROGRAMA ACADÉMICO: INGENIERIA INFORMÁTICA	FECHA: 06/04/2021
MATERIA: ARQUITECTURA DE HARDWARE	CÓDIGO: ING01191
ÁREA DE FORMACIÓN: INFRAESTRUCTURA DE TI	PREREQUISITO: <u>ELECTRÓNICA DIGITAL</u>
NOMBRE(S)	APELLIDOS:
CÓDIGO:	DURACIÓN: 1.50

- TODA RESPUESTA DEBE TENER SU APOYO O SUSTENTACIÓN EN UN PROCEDIMIENTO ELABORADO PASO A PASO
- EXPLIQUE CLARAMENTE SUS RESPUESTAS.
- . Nota: todo el desarrollo se debe realizar únicamente en un archivo Word, (NO SE ACEPTAN FOTOS DEL DESARROLLO DEL EJERCICIO).
- . El archivo de desarrollo del ejercicio se recibe "únicamente" en Word, el estudiante lo enviara al correo del profesor. con la adición de algún archivo si se solicita.
- . El estudiante adicionara el archivo de assembler (ver Nota 1) con extención ".s"
- . Correo: hernandovanegas@elpoli.edu.co"

NOTA 1: Como Adjuntar los dos archivos el de word donde el estudiante realiza todo la demostración del ejercicio y el archivo de "Assembler", que demuestra que su programa corre en QEMU con extención ".s". Min/Max Terminos.

Para enviarlo al correo del profesor: hernandovanegas @elpoli.edu.co

ASUNTO: QUIZ_AH_No.1_XYZW

NOMBRE DEL ARCHIVO DE WORD: QUIZ_AH_No1_XYZW.DOCX

NOMBRE DEL ARCHIVO DE ASSEMBLER: QUIZ_AH_No1_XYZW.s

X: LETRA INICIAL PRIMER NOMBRE Y: LETRA INICIAL SEGUNDO NOMBRE (si tiene)

Z: LETRA INICIAL PRIMER APELLIDO W: LETRA INICIAL SEGUNDO APELLIDO.

1) ASSEMBLER- MAQUINA VIRTUAL D.F. MAPAS DE KARNAUGH - MIN/MAX-TERMINOS – ECUACIONES LOGICAS (VALOR 50 %)

Con base en la siguiente función de trasferencia asignada. Realizar:

- 1. (5%) Deducir la ecuación característica (función de variables) de Maxtérminos o Mintérminos según sea el caso y Tabla de Verdad, asignada a cada estudiante.
 - 2. (5%) Función característica obtenida del proceso de simplificación al máximo por Mapas de Karnaugh.
- 3. (5%) Elabora la Tabla de asignación y implemente el diagrama de flujo DF con respecto a la función simplificada al máximo.
- 4. (26%) Elabore el programa en Assembler de la familia ARM y córralo en QEMU (maquina virtual), por consola y solo se recibe por Lectura de datos por consola. Trabaje con su número asignado Adicione este archivo en su

<u>correo.(Archivo de Assembler). También Evalue la función con el numero asignado base (3) para probar su</u> programa ver tabla.

- 5. (3%) Corra su programa con un Mintermino. Tome foto (Print Screen por teclado) nítida y legible de su corrida anexe esta foto al archivo en Word.
- 6. (3%) Corra su programa con un Maxtermino. Tome foto (Print Screen por teclado) nítida y legible de su corrida anexe esta foto al archivo en Word.
- 6. (3%) Corra su programa con el numero asignado en la tabla siguiente, (en base tres). Tome foto (Print Screen por teclado) nítida y legible de su corrida anexe esta foto al archivo en Word.

NOTA: LA 4 (CUARTA COLUMNA) ES EL NUMERO QUE DEBE SER PROBADO TAMBIEN EN SU PROGRAMA.

No.		FUNCION	Núm ero para evaluar
1	1152464590	F(r,t,n,m,u)= Σ(4,16,5,7,17,19,8,28,9,11,29)	X(3)=210(3)
2	1036665352	F(r,t,n,m,u)= Σ(0,4,12,3,7,15,17,21,29,18,22)	X(3)=112(3)
3	1001418288	F(r,t,n,m,u)= Σ(0,1,3,14,13,15,20,21,23,27,26)	X(3)=110(3)

4	1017208067	F(r,t,n,m,u)=Σ(29,17,5,7,6,8,19,9,11,16,28)	X(3)=111(3)
5	1001539096	F(r,t,n,m,u)= Σ(30,21,0,4,12,3,7,15, 17,22,29)	X(3)=020(3)
6	1036682129	F(r,t,n,m,u)=Σ(29,4,28,18,5,7,19,8,9,11,17)	X(3)=022(3)
7	1238938029	F(r,t,n,m,u)=Σ(28,5,17,7,6,19,8,9,11,18,29)	X(3)=120(3)
8	1036668468	F(r,t,n,m,u)= Σ(21,0,4,12,18,3,21,7,15,29,25,22)	X(3)=121(3)
9	1001361984	F(r,t,n,m,u)= Σ(29,0,4,22,12,3,7,15,21,25,30)	X(3)=010(3)
10	1037652785	F(r,t,n,m,u)= Σ(17,4,5,19,18,7,8,9,11,29,31)	X(3)=212(3)
11	1000207025	F(r,t,n,m,u)= Σ(0,21,4,29,12,3,30,7,15,17,26)	X(3)=211(3)

12	1000549592	F(r,t,n,m,u)=Σ(19,5,7,18,6,8,9,31,11,29,17)	X(3)=002(3)
13	1001469387	F(r,t,n,m,u)= Σ(20,0,27,1,3,23,12,13,15,26,21)	X(3)=222(3)
14	1214741988	F(r,t,n,m,u)= Σ(16,17,4,5,7,19,8,29,9,11,31)	X(3)=101(3)
15	1033367413	F(r,t,n,m,u)= Σ(30,26,0,4,12,3,7,15,17,21,29)	X(3)=121(3)
16	1017256539	F(r,t,n,m,u)=Σ(17,17,5,7,6,8,19,31,9,11,29)	X(3)=222(3)
17	1036676629	F(r,t,n,m,u)= Σ(27,26,23,22,0,1,3,12,13,15,21	X(3)=121(3)
18	1214723015	F(r,t,n,m,u)= Σ(30,4,17,31,5,7,8,9,11,16,19)	X(3)=211(3)
19	1214725877	F(r,t,n,m,u)= Σ(0,1,3,14,13,15,21,23,22,26,27)	X(3)=101(3)

20	8060336	$F(r,t,n,m,u) = \Sigma(20,24,0,1,3,12,13,15,27,21,25)$	X(3)=100(3)
21	1214748652	F(r,t,n,m,u)= Σ(1,3,2,13,15,14, 23,22,24,25,27)	X(3)=210(3)
22	1037650134	F(r,t,n,m,u)= Σ(5,7,30,16,6,8,9,11,19,17,31)	X(3)=010(3)
23	1040758335	F(r,t,n,m,u)= Σ(20,21,24,25,27,0,1,3,14,13,15)	X(3)=101(3)
24	1017251755	F(r,t,n,m,u)= Σ(1,3,2,13,15,14, 20,21,23,27,26)	X(3)=102(3)
25	1001370117	F(r,t,n,m,u)=Σ(27,23,0,1,3,12,13,25,15,21,24)	X(3)=122(3)
26	1036654523	F(r,t,n,m,u)= Σ(1,3,2,13,15,14, 21,23,22,26,27)	X(3)=222(3)
27	1026135514	F(r,t,n,m,u)=Σ(21,23,24,25,27,0,1,3,14,13,15)	X(3)=221(3)
28	1018227262	F(r,t,n,m,u)= Σ(30,21,0,4,12,3,7,15,26,29,25)	X(3)=100(3)

29	$F(r,t,n,m,u) = \Sigma(0,1,3,12,13,15,23,22,24,25,27)$	X(3)=220(3)
30	F(r,t,n,m,u)= Σ(30,0,4,12,3,7,15,26,29,25,20)	X(3)= 201(3)