Math 521 HW 11

Morgan Gribbins

Exercise 3.3.9. Follow these steps to prove the final implication in Theorem 3.3.8.

Assume K satisfies (i) and (ii), and let $\{O_{\lambda} : \lambda \in \Lambda\}$ be an open cover for K. For contradiction, let's assume that no finite subcover exists. Let I_0 be a closed interval containing K.

- **3.3.9.a.** Show that there exists a nested sequence of closed intervals ... $\subseteq I_2 \subseteq I_1 \subseteq I_0$ with the property that, for each $n, I_n \cap K$ cannot be finitely covered and $\lim |I_n| = 0$.
 - **3.3.9.b.** Argue that there exists an $x \in K$ such that $x \in I_n$ for all n.

By the Nested Interval Property, there must exists one $x \in K$ such that $x \in \bigcap_{n \in \mathbb{N}} I_n$, because of the established definitions of each I_n .

3.3.9.c. Because $x \in K$, there must exist an open set O_{λ_0} from the original collection that contains x as an element. Explain how this leads to the desired contradiction.

Exercise 4.2.2. For each stated limit, find the largest possible δ -neighborhood that is a proper response to the given ϵ challenge.

4.2.2.a.
$$\lim_{x\to 3} (5x-6) = 9$$
, where $\epsilon = 1$.

4.2.2.b.
$$\lim_{x\to 4} \sqrt{x} = 2$$
, where $\epsilon = 1$.

4.2.2.c.
$$\lim_{x\to\pi}[[x]] = 3$$
, where $\epsilon = 1$.

4.2.2.d.
$$\lim_{x\to\pi}[[x]] = 3$$
, where $\epsilon = .01$.

Exercise 4.2.5. Use Definition 4.2.1 to supply a proper proof for the following limit statements.

4.2.5.a.
$$\lim_{x\to 2} (3x+4) = 10.$$

4.2.5.b.
$$\lim_{x\to 0} x^3 = 0$$
.

- **4.2.5.c.** $\lim_{x\to 2}(x^2+x-1)=5$.
- **4.2.5.d.** $\lim_{x\to 3} 1/x = 1/3$.
- **Exercise 4.3.5.** Show using Definition 4.3.1 that if c is an isolated point of $A \subseteq \mathbb{R}$, then $f: A \to \mathbb{R}$ is continuous at c.
 - Exercise 4.3.6. Provide an example of each or explain why the request is impossible.
- **4.3.6.a.** Two functions f and g, neither of which is continuous at 0 but such that f(x)g(x) and f(x) + g(x) are continuous at 0.
- **4.3.6.b.** A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x) + g(x) is continuous at 0.
- **4.3.6.c.** A function f(x) continuous at 0 and g(x) not continuous at 0 such that f(x)g(x) is continuous at 0.
 - **4.3.6.d.** A function f(x) not continuous at 0 such that f(x) + 1/f(x) is continuous at 0.
 - **4.3.6.e.** A function f(x) not continuous at 0 such that $[f(x)]^3$ is continuous at 0.
- **Exercise 4.3.9.** Assume $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x: h(x) = 0\}$. Show that K is a closed set.