CS565: Intelligent Systems and Interfaces

Lecture: Language Modeling Estimating Parameters of N-gram models

3rd Feb, 2016 Semester: Jan – May 2016

Ashish Anand IIT Guwahati

Recap and Moving Forward

- In the last lecture
 - Language Modeling
 - Definition
 - N-gram Models
 - Parameter Estimation
- Moving Forward
 - Better estimators: Smoothing Techniques

MLE of N-gram models

Unigram

$$p_{ml}(w_i) = \frac{c(w_i)}{\sum c(w_i)}$$

• Bigram

$$p_{ml}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Trigram

$$p_{ml}(w_i|w_{i-2},w_{i-1}) = \frac{c(w_{i-2},w_{i-1},w_i)}{c(w_{i-2},w_{i-1})}$$

Problem with MLE

- Works well if test corpus is very similar to training, which is not generally the case.
- Training Set

```
..... denied the allegations
```

..... denied the reports

..... denied the claims

..... denied the request

Test Set

.... denied the offer

.... denied the loan

P("offer" | denied the) = 0

Smoothing Techniques

Simplest Approach: Additive Smoothing

Add-1 Smoothing

$$p_{ml}(w_i|w_{i-2},w_{i-1}) = \frac{c(w_{i-2},w_{i-1},w_i) + 1}{c(w_{i-2},w_{i-1}) + |\mathcal{V}|}$$

Generalized version

$$p_{ml}(w_i|w_{i-2},w_{i-1}) = \frac{c(w_{i-2},w_{i-1},w_i) + \delta}{c(w_{i-2},w_{i-1}) + \delta|\mathcal{V}|}$$

What's wrong with additive smoothing

- Gale and Church, 1990, Estimation procedure for language context: poor estimates are worse than none. In COMPSTAT, Proceedings in Computational statistics
- Gale and Church, 1994, What's wrong with adding one? Corpus-Based Research into Language.

Take the help of lower order models

- Bigram Example
 - $c(w_1, w_2) = 0 = c(w_1, w_2')$
 - $p_{add}(w_2 | w_1) = p_{add}(w_2' | w_1)$
 - Lets assume $p(w_2') < p(w_2)$
 - We should expect p_{add} ($w_2 \mid w_1$) > p_{add} ($w_2' \mid w_1$)

Take the help of lower order models

• Linear Interpolation Models

Discounting Models

Linear Interpolation Model

Bigram model p(w_i|w_{i-1})

$$p_{int}(w_i|w_{i-1}) = \lambda p_{ml}(w_i|w_{i-1}) + (1-\lambda)p_{ml}(w_i),$$
 Where $0 \le \lambda \le 1$

• Trigram model

$$\begin{aligned} p_{int}(w_i|w_{i-2},w_{i-1}) \\ &= \lambda_1 \times p_{ml}(w_i|w_{i-2},w_{i-1}) + \lambda_2 \times p_{ml}(w_i|w_{i-1}) + \lambda_3 \times p_{ml}(w_i), \end{aligned}$$

Linear Interpolation Model

Verify $p_{int}(w_i|w_{i-2},w_{i-1})$ is probability distribution.

i.e.,
$$\sum p_{int}(w_i|w_{i-2},w_{i-1})=1$$

Estimating λ values

- Use of validation or development or held-out data
- $c'(w_1, w_2, w_3)$:= Number of occurrences of $w_1w_2w_3$ in the <u>validation</u> <u>data</u>
- Maximum likelihood estimation

$$L(\lambda_1, \lambda_2, \lambda_3) = \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log p_{int}(w_3 | w_1, w_2)$$

s.t. constraints on λ values.

Allowing λ to vary

- Objective: vary the weight as per the count that is being conditioned.
- For trigram, we are conditioning on bigrams.
- Approach "Bucketing"
- Example

Discounting Method

• Collins Slide

More on Smoothing Techniques

• An Empirical Study of Smoothing Techniques for Language Modeling, *S Chen, and J Goodman*, 1998.

- Generalized versions
 - Interpolation Techniques
 - Discounting Methods

Evaluating Language Models: Perplexity

- Given a test data of m sentences: s_1 , s_2 ,, s_m
- Probability of a sentence under this model $p(s_i)$
- Log-Probability of all sentences: $\log \prod p(s_i) = \sum \log p(s_i)$
- Perplexity = 2^{-1} , where $I = 1/M(\sum \log p(s_i))$
- Smaller the value of perplexity, better the language model is.