Transfer Learning

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning		
	unlabeled			

Model Fine-tuning

One-shot learning: only a few examples in target domain

- Task description
 - Source data: (x^s, y^s) A large amount
 - Target data: (x^t, y^t) Very little
- Example: (supervised) speaker adaption
 - Source data: audio data and transcriptions from many speakers
 - Target data: audio data and its transcriptions of specific user
- Idea: training a model by source data, then finetune the model by target data
 - Challenge: only limited target data, so be careful about overfitting

Conservative Training

Layer Transfer

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers
 - Image: usually copy the first few layers

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning

Progressive Neural Networks

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning		
	unlabeled	Domain-adversarial training Zero-shot learning		

Task description

- Source data: $(x^s, y^s) \longrightarrow$ Training data
- Target data: (x^t) Testing data

Same task, mismatch

Domain-adversarial training

classifier at the same time

Maximize label classification accuracy + Maximize label classification accuracy minimize domain classification accuracy $\overline{\partial} L_y$ loss L_u $\overline{\partial heta_y}$ $\overline{\partial heta_f}$ class label y label predictor θ_u indut 4 domain classifier θ_d feature extractor θ_f domain label dNot only cheat the domain loss L_{ϵ} classifier, but satisfying label

Maximize domain classification accuracy

- Source data: $(x^s, y^s) \longrightarrow$ Training data
- Target data: (x^t) Testing data

class

Representing each class by its attributes

Different tasks

Training

Database

attributes

	furry	4 legs	tail	
Dog	0	0	0	
Fish	Χ	Χ	0	
Chimp	0	Χ	Χ	

sufficient attributes for one to one mapping

Attribute embedding

f(*) and g(*) can be NN. Training target:

 $f(x^n)$ and $g(y^n)$ as close as possible

$$f^*,g^* = arg \min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,k-f(x^n)\cdot g(y^n) + \max f(x^m)\cdot g(y^n)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^*,g^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^m)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^n)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^n)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n) + \max f(x^n)\cdot g(y^n)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot g(y^n)\right)$$

$$f^* = arg \min_{f,g} \sum_n max \left(0,m-f(x^n)\cdot$$

Zero loss:
$$k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m) < 0$$

$$\underbrace{f(x^n) \cdot g(y^n)}_{m \neq n} - \max_{m \neq n} f(x^n) \cdot g(y^m) > k$$

$$f(x^n) \text{ and } g(y^n) \text{ as close} \qquad f(x^n) \text{ and } g(y^m) \text{ not as close}$$

Convex Combination of Semantic Embedding

Only need off-the-shelf NN for ImageNet and word vector

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng Self-taught learning: transfer learning from unlabeled data, ICML, 2007	
	unlabeled	Domain-adversarial training Zero-shot learning	Different from semi- supervised learning Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self- taught clustering", ICML 2008	