EXECUTIVE SUMMARY

- 1. Data was collected for BMW 3 series cars within a 40-mile radius of the NW1 4NP postcode, with a focus on cars sold between 2019 to 2023. The data collected includes price, registration year, segment, mileage(miles), Engine-size, BHP, Gearbox, Fueltype, colour, number of owners and number of doors.
- 2. Mean price of BMW 3 series is £ 25338.35.
- 3. All of the linear and multi-linear regression criteria are satisfied.
- 4. The tools utilized in this study include SPSS, MS Excel, and Python.
- 5. A regression model has been constructed for the purpose of forecasting the price of BMW 3 series based on Age, miles, BHP, Fuel-type, Segment and Transmission.

Price (£) = 28155.040-3204.526(age)-0.107(miles)+45.642(BHP)+1963.6(diesel)-1319.785(sedan)+3976.913(automatic)

CHAPTER 1 - INTRODUCTION

Understanding the complex factors that affect the pricing of used cars, creating a scenario where buyers face uncertainty due to inadequate information on pricing and vehicle conditions. The absence of clear information obstructs buyers from making informed decisions and prevents sellers from establishing fair pricing practices. Statistical methods analyse market data to reveal pricing trends, brand quality insights, and factors influencing used car values, aiming to increase transparency for market participants.

- The BMW 3 series has been chosen for the study within a 40-mile radius of the NW1 4NP postcode.
- Source: https://www.autotrader.co.uk/car-search?advertising-location=at_cars&make=BMW&model=3%20Series&postcode=NW1%204NP&radius=40&sort=relevance&year-from=2019&year-to=2023
- After drawing out significant data around 422 population data from the Autotrader website, it is critical to recognize and deal with null values in order to properly structure the data for analysis and interpretation which ensures accuracy of the predictive model.

Limitations:

- The collected population data is cleaned to remove null values without altering the data's context, resulting in 315 data.
- Random sampling is then employed to select 100 data for statistical analysis, ensuring each data point has an equal chance of being included in the sample.
- The study focuses on cars within the age range of 2019-2023 to maintain a specific timeframe for analysis and consistency in the study parameters.

CHAPTER 2 - DATA VISUALIZATION

Data visualization is a powerful tool that transforms data into visual representations to improve understanding, communication, and decision-making across various domains, from business to scientific research.

i. Comparative Analysis of Diesel vs Petrol BMW 3 series

A scatter plot in simple terms is a graphical representation that illustrates the relationship between two sets of data by plotting points on a graph to show how they are interconnected.

In the above plot, we can observe the correlation between car's price and its mileage. Notably, there is a negative correlation for both petrol and diesel cars, indicating that as the mileage increases, the car's price decreases. The term 'Mileage' refers to the total distance in miles that a car has been driven.

The linear regression model for Diesel cars is represented as

$$Y = -0.2493X + 33744$$

While for Petrol cars it is

$$Y = -0.1062X + 25844$$

In these equations, X represents the mileage of the car.

ii. Comparison of BMW 3 Series Gearbox Options

The distribution of manual and automatic cars in various price levels is seen in the stacked column chart above. The price ranges from £ 15000-42000 show up on the X-axis in £ 2000 increments. While the number of cars appears on the Y-axis. Every column denotes a range of prices, and the height of each column shows the total number of cars. Orange sections represent automatic cars, whereas blue section represents manual cars. All price points show a greater dominance of automated cars according to the data. There are more automatic cars than manual cars in my sample data for the BMW 3 series, and the majority of automatic cars found in the 24-27k price bracket. On the other hand, just 8 manual cars within the price 15-21k.

iii. Analysis of Registration Year vs. Number of BMW 3 Series

The bar graph illustrates the number of car registrations from 2019 to displaying varying counts: In 2019, 33 cars were registered. In 2020, 22 cars. A record high of 35 registrations was reached in 2021, yet there was an abrupt drop to 3 in 2022 and 7 by 2023. For clarity, each year's registration data is displayed in a different colour the chart, on demonstrating fluctuating trends in registrations over the time.

iv. Comparative Analysis of BMW 3 Series Pricing Against Competitors

The provided image depicts a horizontal bar chart that compares Price across various car models. The Range Rover Evoque has the highest value, followed by the BMW 3 Series and the Audi A4. The Mercedes-Benz A-Class and BMW 1 Series also have relatively high values. On the lower end of the chart, the Nissan Qashqai, Volkswagen Polo, and Ford Focus have the lowest values, with the Ford Focus being the lowest among the displayed models.

Each car model is represented by a color-coded bar, with a corresponding legend on the right side of the chart. This type of visualization allows for a quick comparison of the relative performance of the BMW 3 Series against its competitors in the automotive market.

The above all visualized graphs satisfy the Gestalt principles and also follows the Tufte's principles.

Tufte's principle focus on clear data visualization through accurate number representation, clear labelling, and prioritizing data variation over design elements to maintain focus on the data.

Gestalt principles are principles of human perception that describe how we group similar elements, recognize patterns, and simplify complex images when we perceive objects.

CHAPTER 3 - STATISTICAL ANALYSIS

The average value within a set of data can be derived through statistical measures of central tendency such as the mean, median, and mode in descriptive analysis.

- Mean: The mean is the average value of a dataset. It is calculated by adding up all values and dividing by the total number of values.
- Median: The median is the middle value in a dataset when values are ordered.
 If there is an even number of values, the median is the average of the two middle values
- Mode: The mode is the value that appears most frequently in a dataset. A dataset can have one or more modes or no mode at all.
- Variance: Measures the spread of data points from the mean.
- Range: Difference between the highest and lowest values in a dataset.
- Standard Deviation: statistical measure that quantifies the amount of variation or dispersion in a set of values. It indicates how spread out the values are from the mean.

	Price	Year	Segment	Miles	Engine	BHP	Owners	No of Doors
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	25338.350000	2020.290000	0.770000	35084.270000	2.190000	211.620000	1.590000	4.230000
std	6702.353237	1.165974	0.422953	19046.965918	0.394277	63.791925	0.805223	0.422953
min	15800.000000	2019.000000	0.000000	1940.000000	2.000000	148.000000	1.000000	4.000000
25%	19948.750000	2019.000000	1.000000	23503.500000	2.000000	181.000000	1.000000	4.000000
50%	24275.000000	2020.000000	1.000000	33997.500000	2.000000	187.000000	1.000000	4.000000
75%	29219.000000	2021.000000	1.000000	44623.500000	2.000000	190.000000	2.000000	4.000000
max	41979.000000	2023.000000	1.000000	86614.000000	3.000000	374.000000	4.000000	5.000000

From the table, it is evident that our sample includes 100 data points for the BMW 3 series. The average price is £ 25,338.35 with a maximum price of £ 41,979 and a minimum of £ 15880. Within these 100 samples, there are approximately 77 sedan cars with an average price of £ 25,338 and around 23 estate cars with an average price of £ 25287. Based on this data, we can conclude that sedan cars have a slightly higher average price compared to estate cars, although the difference is not significant.

Descriptive Statistics of Price of Diesel v/s Petrol v/s Diesel-Hybrid v/s Petrol-Hybrid:

Diese	l	Petro	l	Diesel-Hy	vbrid	Petrol-Hy	brid
Mean	20912	Mean	25849.83673	Mean	29100.55556	Mean	34233.75
Standard Error	761.956189	Standard Error	988.440752	Standard Error	1304.573454	Standard Error	631.6030366
Median	19855	Median	24250	Median	29443	Median	33997.5
Mode	19950	Mode	22490	Mode	26157	Mode	N/A
Standard Deviation	4103.259654	Standard Deviation	6919.085264	Standard Deviation	5534.836415	Standard Deviation	1263.206073
Sample Variance	16836739.79	Sample Variance	47873740.89	Sample Variance	30634414.14	Sample Variance	1595689.583
Kurtosis	-0.043357798	Kurtosis	0.023887261	Kurtosis	-0.962604589	Kurtosis	1.101040578
Skewness	0.940417643	Skewness	0.982265838	Skewness	-0.00748503	Skewness	0.984010308
Range	14195	Range	25080	Range	18705	Range	2960
Minimum	15800	Minimum	16899	Minimum	20295	Minimum	32990
Maximum	29995	Maximum	41979	Maximum	39000	Maximum	35950
Sum	606448	Sum	1266642	Sum	523810	Sum	136935
Count	29	Count	49	Count	18	Count	4

A comparison of diesel, petrol, diesel-hybrid, and petrol-hybrid cars can be seen in the table above. With 49, petrol cars have the greatest count, followed by diesel cars with 29, diesel-hybrid cars with 18 and petrol-hybrid cars with just 4. In general, diesel cars are more affordable, than the other three fuel types, with petrol vehicles coming in second. While petrol-hybrid cars are substantially more expensive than the other three fuel-types.

Descriptive Statistics of Price of Automatic v/s Manual Cars:

Automa	tic	Manual	
Mean	25932.55435	Mean	18505
Standard Error	692.7936665	Standard Error	640.0467
Median	24997	Median	18850
Mode	21300	Mode	N/A
Standard Deviation	6645.04341	Standard Deviation	1810.326
Sample Variance	44156601.92	Sample Variance	3277279
Kurtosis	-0.477822746	Kurtosis	-0.56804
Skewness	0.652820692	Skewness	-0.53795
Range	25989	Range	5190
Minimum	15990	Minimum	15800
Maximum	41979	Maximum	20990
Sum	2385795	Sum	148040
Count	92	Count	8

The comparison table above shows that there are more automatic cars (92) than manual cars (8), with an average price of £ 25932.55 for automatic cars and £ 18505 for manual cars. Automatic cars are regarded as superior to manual ones in terms of standard-deviation and range, indicating that most customers prefer to buy automatic cars when purchasing a new car.

CHAPTER 4 - CONFIDENCE INTERVALS

In statistics, a confidence interval is a probability that a population parameter will fall within a set of values a particular proportion of the time. A 95% confidence interval demonstrates that there is a 95% chance that the true population parameter is within the stated range of values around the mean.

The following presents the 95% confidence intervals for the BMW 3 series sample.

```
Confidence intervals (95%):

Price Year Miles Engine BHP
Lower 24024.712904 2020.061473 31351.133279 2.112723 199.117012
Upper 26651.987096 2020.518527 38817.406721 2.267277 224.122988
```

24024.71<**25338.35**<**26651.98**, this range indicates that the average car price (\pounds) is within these significant intervals.

One-sample T test

A one sample T-test will be used to examine whether the mean price of a BMW 3 series model in our data set lines up with the UK average price. The average price and mileage from 2019 to 2023 were estimated using https://www.carsite.co.uk/used-car-price-guide/bmw/3-series. After which, we compare our mean price and mean miles to the UK average price.

Within our BMW 3 series sample:

- The mean price of the BMW 3 series in our sample: £ 25338.35
- > The average cost of the BMW 3 series in the UK: £ 31139
- > The mean mileage of the BMW 3 series in our sample: £ 35084.27
- > The typical mileage of the BMW 3 series in the UK: £ 32648

SPSS Output for one sample T-test for price:

In this case, we reject the null hypothesis (HO) implies a significant difference between the sample mean and the test value. The negative t-value of -8.655 indicates that the sample value is lower than the test value. Furthermore, the very low P-value (much less than 0.001) indicates that the sample value is less than the 5% significance level, implying that it does not correspond to the mean price been evaluated.

SPSS Output for one sample T-test for miles:

In this context, we fail to reject the null hypothesis (HO) implies that there is no significant difference between the sample mean and the expected mean. The positive t-value of 1.279 indicates that the sample mean is slightly higher than the expected mean by 2436.27 units, furthermore, the p-value of 0.204 being above the significance level, indicates that our sample mileage is consistent with the true mean mileage.

Conducting Chi-square test for Fuel-type v/s Colours:

		Black	Blue	D	Colour		Silver	White	G80 W0 FT
				Bronze	Grey	Orange		1.5000000	Total
Fuel	Diesel	8	5	1	7	0	0	8	29
	Diesel Hybrid	5	4	0	4	0	0	5	18
	Petrol	18	6	0	7	1	2	15	49
	Petrol Hybrid	1	0	0	1	0	0	2	4
	r en or riyunu								
Total		32	15	1	19	1	2	30	
Total		32 ni-Square T	15 ests	Asymptotic Significance		1			
	СН	32 ni-Square T	15 ests	Asymptotic Significance (2-sided)	19	1			
Pears	Ch on Chi-Square	32 ni-Square T Value 9.599 ^a	15 Tests df	Asymptotic Significance (2-sided)	19	1			100
Pears	СН	32 ni-Square T	15 ests	Asymptotic Significance (2-sided)	19	1			

The findings above show a p-value of 0.944, significantly surpasses the significance level of 0.05, making it statistically insignificant. As a result, we don't have enough evidence to reject the null hypothesis, indicating that based on our sample data, there is no casual connection between Fuel-type and Colours.

CHAPTER 5 - CORRELATION MATRIX

		Correlations																					
		Price	Age	Miles	BHP	Fuel-Diese	Segment-Sed an	Gearbox=Auto	Engine	Owners	No of Doors	Colour-Blac	Colour-Blu	Colour-Bronz	Colour-Gre	Colour-Orang	Colour-Silve	Colour-Whit	Fuel-Diesel Hybrid	Fuel-Petr	Fuel-Petrol Hybrid	Segment-Est ate	Gearbox-Man
Price	Pearson Correlation	- 1	791	598	.514	-424	-169	.325	521	-118	.169	.071	.045	118	.009	016	045	- 072	.264	.075	.272	.169	-325
	Sig. (2-failed)		< 001	<.001	<.001	< 001	.093	< 001	<.001	.241	.093	.483	.657	.242	.932	.871	.658	.478	.008	.457	.006	.093	< 001
	N	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Analysing the correlation matrix above reveals key insights:

- Both age and mileage exhibit a strong negative correlation with price, at -0.761 and -0.598 respectively, with correlation coefficients less than 0.01. This indicates that older cars and those with higher mileage tend to have lower prices.
- There is a negative correlation of -0.424 between price and diesel cars, suggesting that diesel vehicles are generally cheaper in this dataset.
- BHP and engine-size show a moderate positive correlation with price, at 0.514 and 0.52 respectively, indicating that cars with higher BHP and larger engines tend to have higher prices.
- The correlation between price and automatic transmission is weakly positive, implying that cars with automatic gearboxes maybe slightly more expensive than those with manual transmission.

CHAPTER 6 - REGRESSION ANALYSIS

Regression analysis: Statistical method used to analyze the relationship betweenvariables, specifically estimating the impact of one or more independent variables on a dependent variable.

A **parsimonious model** in statistics is a simplified model that achieves good fit with minimal variables.

Model		Sum of Squares	df	Mean	Square	F	Sig.	
1	Regression 3	771183516.2	16	23569	8969.76	28.93	7 <.001	b
	Residual 6	76048836.55	83	8145	166.705			
	Total 4	447232352.7	99					
a. D	ependent Variable:	Price						
, (Colour≕White, Fuel	-	Coeffici	ents ^a	Standar			
Model		Unstanda	ardized Coef Std.	Error	Coeffici		t	Sig.
1	(Constant)	22105.	969 48	47.015			4.561	<.00
	Age	-3445.	141 4	05.097		599	-8.504	<.00
	Miles		102	.021		290	-4.846	<.00
	Engine	-1290.	858 21	49.917		076	600	.55
	BHP	55.	804	14.052		.531	3.971	<.00
	Owners	179.	113 4	54.164		.022	.394	.69
	No of Doors	1198.	914 7	30.854		.076	1.640	.10
	Colour=Black	1024	463 30	06.991		.072	.341	.73
	Colour=Blue	262.	469 30	49.721		.014	.086	.93
	Colour=Grey	902.	425 30	42.733		.053	.297	.76
	Colour=Orange	1642	387 42	72.907		.025	.384	.70
	Colour=Silver	3264.	954 37	74.838		.069	.865	.39
	Colout=Suver		004 20	37.788		.080	.383	.70
	Colour=Silver Colour=White	1164.	004 30					
		1164. 2394.		23.841		.163	2.592	.01
	Colour=White	2394	665 9	23.841		.005	2.592	
	Colour=White Fuel=Diesel	2394. orid 94.	665 9 156 8					.91

During regression analysis in SPSS, the car price is marked as the dependent variable, while all other variables are considered independent. With an Adjusted R-square of 0.819, indicating a good model fit, this signifies the model's predictive capability is 81.9%. Insignificant independent variables with a significance level less than 0.05 are preserved, while those with a significance level greater than 0.05 are eliminated one at a time subject to their significance values.

Regression Variables Entered/Removed Gearbox=Auto Enter matic, Miles, Seament=Sed an, BHP, Fuel=Diesel, Age ^b a. Dependent Variable: Price b. Tolerance = .000 limit reached. Model Summary Std. Error of the .918ª 2742.284 .843 .833 a. Predictors: (Constant), Gearbox=Automatic, Miles Segment=Sedan, BHP, Fuel=Diesel, Age b. Dependent Variable: Price Mean Square 624643493.65 Residual 699371390.84 93 7520122.482 Total 4447232352.7 99 a. Dependent Variable: Price b. Predictors: (Constant), Gearbox=Automatic, Miles, Segment=Sedan, BHP, Fuel=Diesel, -3204.526 319.806 +10.020 .018 -5.969 1963.600 765.330 134 3976.913 1065.586 b. Predictors in the Model: (Constant), Gearbor Fuel=Diesel, Age Residuals Statistics -6424.576 6431.599 2657.886

After removing all insignificant variables, the Adjusted R-square improved from 0.819 to 0.833, indicating that our model is now considered parsimonious. The analysis reveals the following insights on the predictors and their impact on car prices:

- Age is a significant predictor of car price, with each additional year resulting in a £ 3204.526 decrease (p-value<0.001)
- For every extra mile, the price drops by 0.107, which is statistically significant.
- Higher BHP results in higher prices, with each unit increase adding £ 45.642 to the price, indicating a strong and substantial predictor.
- Diesel cars are approximately £ 1963.600 more expensive than the petrol fuel-type indicating a significant predictor with a p-value of 0.012.
- Sedan cars are £ 1319.785 cheaper than the baseline segment, a finding on the verge of statistical significance (p-value = 0.050)
- Cars with automated gearbox cost £ 3976.913 more on average than cars with manual gearbox, making this a significant predictor in the analysis

CHAPTER 7 – RESIDUAL ANALYSIS

Having established our model as parsimonious in the previous chapter, this chapter will focus on testing its adequacy by ensuring it satisfies five essential assumptions for Linear regression.

Assumption 1: Linear Relationship

The first step in linear regression is to ensure that the correlation between the independent and dependent variables is linear. Checking for outliers is crucial because linear regression is sensitive to their effects, and scatter plots are the best way to test the linearity assumption.

Assumption 2: Multi-variate normality

Second, linear regression analysis requires that all variables be multivariate normal. This assumption can be examined most effectively using a histogram or Q-Q plot. The graphs below demonstrate that our model is linear and that the errors follow a normal distribution.

Assumption 3: No or little multicollinearity

Linear regression is based on the assumption that there is little or no multicollinearity in the data, which occurs when independent variables have strong correlations with one another. The table reveals that our matrix exhibits no significant correlations, implying an absence of multicollinearity. Therefore, the coefficients in our model are likely to remain steady.

			Corr	elations				
		Price	Age	Miles	BHP	Fuel=Diesel	Segment=Sed an	Gearbox=Auto matic
Price	Pearson Correlation	1	761	598	.514	424	169	.325
	Sig. (2-tailed)		<.001	<.001	<.001	<.001	.093	<.001
	N	100	100	100	100	100	100	100
Age	Pearson Correlation	761	1	.576	125	.502	.027	229
	Sig. (2-tailed)	<.001		<.001	.217	<.001	.788	.022
	N	100	100	100	100	100	100	100
Miles	Pearson Correlation	598	.576	1	012	.316	.025	039
	Sig. (2-tailed)	<.001	<.001		.907	.001	.802	.697
	N	100	100	100	100	100	100	100
BHP	Pearson Correlation	.514	125	012	1	229	152	.145
	Sig. (2-tailed)	<.001	.217	.907		.022	.131	.150
	N	100	100	100	100	100	100	100
Fuel=Diesel	Pearson Correlation	424	.502	.316	229	1	.140	415
	Sig. (2-tailed)	<.001	<.001	.001	.022		.165	<.001
	N	100	100	100	100	100	100	100
Segment=Sedan	Pearson Correlation	169	.027	.025	~.152	.140	1	089
	Sig. (2-tailed)	.093	.788	.802	.131	.165		.379
	N	100	100	100	100	100	100	100
Gearbox=Automatic	Pearson Correlation	.325	229	039	.145	415	089	1
	Sig. (2-tailed)	<.001	.022	.697	.150	<.001	.379	
	N	100	100	100	100	100	100	100

Assumption 4: Residuals are independent

The residuals in the regression analysis should be independent of one another, which means that the residuals from one observation should not predict those from the other. The above scatter plot shows that my model lacks a specific pattern, indicating that this assumption is satisfied.

Assumption 5: Homoscedasticity

The variances of the errors should be consistent, that signifies the pattern of distribution of residuals must be uniform across all levels of independent variables. The scatter plot above shows that the residuals remain close to zero, backing the validity of this assumption.

ADEQUACY TEST

After confirming that our model fits all assumptions and is parsimonious, the next step is to estimate the price using the equation y = mx + c.

		Co	efficients ^a			
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	28155.040	1859.741		15.139	<.001
	Age	-3204.526	319.806	557	-10.020	<.001
	Miles	107	.018	304	-5.969	<.001
	BHP	45.642	4.494	.434	10.157	<.001
	Fuel=Diesel	1963.600	765.330	.134	2.566	.012
	Segment=Sedan	-1319.785	664.566	083	-1.986	.050
	Gearbox=Automatic	3976.913	1065.586	.171	3.732	<.001

Dependent Variable: Price

Based on the filtered predictors we have incorporated into our dataset; we will now solve the equation to assess how well our predicted values match the actual market values.

$$\label{eq:price} \begin{split} & \text{Price}(Y) \text{ in } \pounds = 28155.040 + (-3204.526*\text{Age}) + (-0.107*\text{Miles}) + (45.642*\text{BHP}) + \\ & (1963.6*\text{Fuel=Diesel}) + (-1319.785*\text{Segment=sedan}) + (3976.913*\text{Gearbox=Automatic}) \end{split}$$

When we analyse the 28th row of population data alongside the unstandardized value and compare it with the statistical model, we notice that the car price closely aligns with the predicted value.

$$Price(Y) = 28155.040 - (3504.526*3) - (0.107*20300) + (45.642*190) + (1963.6) - (1319.785) + (3976.913)$$

$$Price(Y) = 29662.07 \sim £ 29662$$

Our predicted value was £ 29662, while the actual market value is £ 30995, showing a slight variance. This indicates that our prediction is close to the market value, suggesting accuracy. Factors such as Registration year, segment, mileage, BHP, gearbox, and fuel type contributes to predict the price of BMW 3 series cars.

CONCLUSION

The model has accurately captured the primary determinants of used BMW 3 series pricing, considering critical predictors such as the car's age, performance, and configuration. The model's ability to capture these linkages demonstrates its reliability in accurately calculating the market value of these used BMW 3 series cars. Furthermore, the model's alignment with expected and actual market prices demonstrates its effectiveness as a reliable tool for directing pricing strategies and decisions in the purchasing and selling of used BMW 3 series.

Overall, this model is a useful asset in the used car market since it identifies key pricing factors and provides precise price projections to help buyers make informed purchasing decisions.

REFERENCES

- [1] https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/assumptions-of-multiple-linear-regression/
- [2] https://www.statology.org/parsimonious-model/
- [3] https://journals.ala.org/index.php/ltr/article/view/6289/8215
- [4] https://www.dictionary.com/e/average-vs-mean-vs-median-vs-mode/
- [5] https://www.techtarget.com/searchbusinessanalytics/definition/data-visualization