Fast Campus 157

INSURANCE FRAUD DETECTION

0. 쏘카 소개

쏘카 소개

쏘카, 누구나 들어가고싶은 꿈의 직장^^

카셰어링 1위

약 1만 2천대의 차량 운영 누적 580만 회원 사용

6.5M adreside

5.8M + PARM +

200K _{월간 사용자 수(MAU)}

45% _{브랜드 최초 상기도}

1. 문제 정의

문제정의

보험사기로 골머리를 앓는다는데..

"ㄷㅋ구함"

* 뒷쿵

보험사기에 멍드는 카셰어링

문제정의

보험사기를 근절하기위해 각분야전문가가 모였다!!

보험사기를 근절하기위해 각분야전문가가 모였다!!

튜닝의신! **제이 킴**

그의 손만 거치면, 죽은 모델도 살려낸다는데!! 판다스가 낳은 괴물! **희란 팡**

EDA는 내가 책임진다!! 구글링 마스터! **앰버 정**

내게 불가능이란 없다!! 대장님♥ **핑크윙크**

마지막 잎새는 끝까지 떨어지지 않았다!!

2. 데이터 탐색

데이터개요

Fraud 검출 분류 데이터

• fraud_YN 컬럼의 불균형이 극심하여 전체 데이터 中 fraud 0.26%

fraud가 총 41 건 中 train 셋에는 34 건, test 셋에는 7 건

- fraud_YN 컬럼이 우리가 예측하고자 하는 라벨
- 미기록으로 기입된 결측치 데이터 多

Column 소개

fraud_YN

socarpass

. car_part1

car_model

socarsave

. car_part2

sharing_type

. start_hour

. repair_cnt

. age_group

. duration

. acc_type1

. has_previous_accident

. accident_hour

. insurance_site_aid_YN

. cumulative_use_count

repair_cost

. police_site_aid_YN

. b2b

insure_cost

total_prsn_cnt

accident_ratio

accident_location

test_set

pf_type

fraud_YN과피처들의 관계를확인해보자

fraud_YN과 유의미한 상관계수를 가진 피처는 보이지 않는다

3. 평가 기준

Overview

accuracy만으론 성능을평가하기어렵다

15,595 건 (99.74%)

No Fraud

Fraud

전부 0-Class (No Fraud)로 예측

accuracy = 0.99!!

쏘카고객이라면 precision이 중요하지않을까?

precision↑ 오판위험율↓ 고객불만↓

쏘카관계자라면 recall이중요하지 않을까?

recall↑ 사기적발↑ ≥손해↓

모델의 Bseline은?

accuracy

precision

recall

Support Vector Machine

0.492791

0.003153

0.714286

Source: 147]

평가기준

집중해서 사용한모델

일단모델을 돌려보자

train

	accuracy	precision	recall
LogisticRegression	0.99736	0.000000	0.000000
DecisionTree	1.000000	1.000000	1.000000
RandomForest	1.000000	1.000000	1.000000
LightGBM	1.000000	1.000000	1.000000

avg 0.74

test

	accuracy	precision	recall
LogisticRegression	0.997757	0.000000	0.000000
DecisionTree	0.990388	0.000000	0.000000
RandomForest	0.997757	0.000000	0.000000
LightGBM	0.997757	0.000000	0.000000

avg 0.00

4. 데이터 전처리

Overview

1

Remove Data

- 결측치처리
- 데이터 불균형 개선

2

Data Handling

- Nominal Data 를 One-Hot Encoding
- · Ordinal Data 를 재분류

3

Scaling

• 이상치제어

4

Oversampling

• 데이터 불균형 해소

Remove Data

우선데이터일부를 없애보기도하고

결측치 처리

미기록 데이터가 다수 포함된 컬럼

- · insurance site aid YN
- · police_site_aid_YN
- total_prsn_cnt

insurance_site_aid_YN	police_site_aid_YN	total_prsn_cnt
0	0	-1
0	0	-1
0	0	-1
drop:	3 colu	mns:
0	0	-1
0	0	-1
0	0	-1
0	0	-1
0	0	-1

데이터 불균형 개선

No Fraud 에만 발생하는 데이터를 제거하여 데이터 불균형을 개선

- . accident_hour (-1: 미기록)
- accident_location(3:고속도록, 5:확인불가)
- car_model(4: 수입차, 5: 전기차)
- · b2b(2:법인고객)
- duration(5:1시간 이하)
- · accident_ratio(0, 40, 100% 제외후모두)
- · Repair_cnt(1, 2, 3 제외후 모두)

원핫인코딩을 적용해보고

N개의 단어를 각각 N차원의 벡터로 표현하는 방식 단어가 포함되는 자리엔 1을 넣고 나머지에는 0을 넣는다

Nominal Data에만 적용

- · car_model
- accident_location
- acc_type1

15999

	car_model_1	car_model_2	car_model_3	car_model_4	car_model_5
0	0	1	0	0	0
1	1	0	0	0	0
2	1	0	0	0	0
3	0	0	1	0	0
4	1	now	ı fea	turo	0
	***	HEW	riea	ture	
15995	0	1	0	0	0
15996	0	1	0	0	0
15997	0	1	0	0	0
15998	0	1	0	0	0
15999	0	1	0	0	0

```
np.unique(df['car_model'])
array([1, 2, 3, 4, 5], dtype=int64)
```

Ordinal Data를 재분류해보고

순차적이지 않은 값을 수정

Ordinal Data에만 적용

- · start_hour
- accident_hour

	Before	After
21~04시	1	1
05~07시	3	2
08~10시	4	3
11~13시	5	4
14~16시	6	5
17~20시	2	6

데이터전처리

스케일링을 적용해보기도 하였지만..

스케일링 기법

- MinMaxScaler
- StandardScaler
- RobustScaler

Outlier가 중요한 역할을 할때 사 용하면 안됨

스케일링 영향을 받는 모델

- Logistic Regression(O)
- Tree계열 모델(X)

Scaling

데이터전처리

그나마샘플링이 도움이되는듯하다

오버샘플링 기법

- SMOTE
- BorderlineSMOTE
- RandomOverSampler
- ADASYN

언더샘플링을 지양한 이유

• 언더샘플링을 진행하기엔 데이터가 부족.. train 기준, 34개의 데이터로 진행해야 한다

그러나만족할만한 성능은나오지않았다

전처리후 모델별 성능

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

Source: 147

전처리 후 모델별 성능

	accuracy	precision	recall
LogisticRegression	0.078167	0.002501	0.002501
DecisionTree	0.993454	0.083333	0.142857

5. 모델링

우리가무언가놓치 고있지는않을까?

우리가무언가 놓치고있지는 않을까?

우리가무언가 놓치고있지는 않을까?

과적합을 방지하려면 pruning이 필요하다.

수십 개의 parameter, 우리가 눈 여겨본 것은?

sklearn.tree.DecisionTreeClassifier tion of services, tree technique (taxables), colorum gor, gotter lied, may depth done, our complex splits? min samples (eafs I, min weight fraction leaf=0.0, may featurers None, nasdom state s None, may leaf modes a None. min_impurity_decrease=0.0 min_impurity_split=None, class_weight=None, csp_stpho+0.0) Read more in the User State. Parameters: criterion:/'gini', 'entropy'), defoult-'gini' The function to measure the quality of a split. Supported criteria are "gint" for the Gini impurity and "entropy" for the information gain. splitter: ["hest", "random"), default="best" The strategy used to choose the split at each node. Supported strategies are "best" to choose the hest split. and "random" to choose the best random split. max_depth: int, default=None The maximum digith of the tree if None, then make are equipped until all leaves are pure or until all leaves. contain less than min, samples, sold samples. min samples split: int or float, default=2 The minimum number of samples required to split an internal node: . If int, then consider sun_samples_split as the minimum number. * If flue! Then eth_complax_selin is a fraction and cast(min_semples_selin * n_semples) are the minimum number of samples for each sold. Changer in version S.Till Added Fost values for fractions. min samples leaf : out or floot, defeott-1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be corredered if it leaves at least also samples, leaf training samples in each of the left and right branches. This may have the effect of encotiving the model, especially in regression. . If irr, then consider sur-vanides, last at the minimum number. . If foot, then all jumples leaf is a fraction and call (all jumples leaf in a jumples) are the minimum number of samples for each node. Changes' in version & 18' Added float values for fractions. min weight fraction leaf : floot, default : 0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample, weight is not provided. max features : Int, fleat or ["auto", "sgrt", "lag2"], default=None The number of features to consider when looking for the best soft. . If Int, then consider was features frotures at each split. . If first, then any flatures is a fraction and lattices, features if a features) features are considered at each issit. . If 'auto', then ass_featuresvaproin_features). . If 'spri', then was feetures exert(in feetures). . If "log2", then are featuressingt(a features). . If None, then see, feetureum, feetures. Note the parts for a soft does not stop until at least one valid partition of the mode particles is found, even if if requires to effectively inspect more than war, features. Testures.

pruning 을 위한 후보군

- max_depth
 tree 최대 깊이
- class_weight
 예측하고자 하는 class에
 가중치를 주어서 학습
- max_features
 노드 분리 시 고려할 속성 개수
- criterion
 분할 기준이 되는 불순도
- min_samples_leaf leaf 노드가 되기 위한 최소한의 샘플 데이터 개수

Model 1 - Decision Tree 1

모델링

답은그리 멀지않은곳에있다

model 1은 다음과 같은 절차를 거쳤다.

- BorderlineSMOTE
- Decision Tree

max_depth

= 4

max_features

= 'sqrt'

class_weight

= {0:0.01, 1:1.0}

model 1 - Decision Tree

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

train

	accuracy	precision	recall
LogisticRegression	0.823745	0.739890	0.998521
DecisionTree	0.923355	0.868079	0.998443
RandomForest	1.000000	1.000000	1.000000
LightGBM	1.000000	1.000000	1.000000

test

	accuracy	precision	recall
LogisticRegression	0.645626	0.005401	0.857143
DecisionTree	0.777635	0.009986	1.000000
RandomForest	0.997757	0.000000	0.000000
LightGBM	0.997437	0.000000	0.000000

Model 2 - Decision Tree 2

모델링

답은그리 멀지않은곳에있다

model 2 는 다음과 같은 절차를 거쳤다.

- BorderlineSMOTE
- Decision Tree

max_depth

= 4

max_features

= 'sqrt'

class_weight

= 'balanced'

model 2 - Decision Tree

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

train

	accuracy	precision	recall
LogisticRegression	0.823745	0.739890	0.998521
DecisionTree	0.949358	0.90971	0.997742
RandomForest	1.000000	1.000000	1.000000
LightGBM	1.000000	1.000000	1.000000

test

	accuracy	precision	recall
LogisticRegression	0.645626	0.005401	0.857143
DecisionTree	0.868952	0.014493	0.857143
RandomForest	0.997757	0.000000	0.000000
LightGBM	0.997437	0.000000	0.000000

Model 3 ~ 5

답은그리 멀지않은곳에있다

각 피처 중요도 (불순도 감소분) 측정

모델 1 에 따르면..

- repair_cost 가 가장 중요한 피처
- accident_location, car_part1 등 중요도가 0 인 피처는 사용하지 않는 것이 성능 향상에 도움이 될 것 같다
- * 중요도가 낮은 피처 중에서 결측치가 많은 피처도 사용하지 않는 것이 성능 향상에 도움이 될 것 같다

모델은알고있다

그래서 컬럼을 버렸다 ^^

그리고 또 다시 즐거운 파라미터 튜닝 여행 🌹 🌹 🦠

고진감래

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

train

	accuracy	precision	recall
LogisticRegression	0.786999	0.765349	0.827793
DecisionTree	0.820670	0.869881	0.754146
RandomForest	0.964344	0.935143	0.997898
LightGBM	0.977540	0.958857	0.997898

test

	accuracy	precision	recall
LogisticRegression	0.742711	0.006203	0.714286
DecisionTree	0.891381	0.008876	0.428571
RandomForest	0.934957	0.024272	0.714286
LightGBM	0.964114	0.043478	0.714286

Model 3 – Logistic Regression

고진감래

model 3은 다음과 같은 절차를 거쳤다.

- drop columns
- BorderlineSMOTE
- Logistic Regression

class_weight = 'balanced'

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

train

	accuracy	precision	recall
LogisticRegression	0.786999	0.765349	0.827793
DecisionTree	0.820670	0.869881	0.754146
RandomForest	0.964344	0.935143	0.997898
LightGBM	0.977540	0.958857	0.997898

test

	accuracy	precision	recall
LogisticRegression	0.742711	0.006203	0.714286
DecisionTree	0.891381	0.008876	0.428571
RandomForest	0.934957	0.024272	0.714286
LightGBM	0.964114	0.043478	0.714286

Model 4 - Random Forest

우리의 Baseline

SVM

고진감래

- · drop columns
- BorderlineSMOTE
- Random Forest

max_depth

= 7

class_weight = 'balanced'

model 4 는 다음과 같은 절차를 거쳤다.

	accuracy	precision	recall
LogisticRegression	0.786999	0.765349	0.827793
DecisionTree	0.820670	0.869881	0.754146
RandomForest	0.964344	0.935143	0.997898
LightGBM	0.977540	0.958857	0.997898

accuracy

0.492791

precision

0.003153

recall

0.714286

test

	accuracy	precision	recall
LogisticRegression	0.742711	0.006203	0.714286
DecisionTree	0.891381	0.008876	0.428571
RandomForest	0.934957	0.024272	0.714286
LightGBM	0.964114	0.043478	0.714286

Model 5 – LightGBM

고진감래

model 5는 다음과 같은 절차를 거쳤다.

- drop columns
- BorderlineSMOTE
- LightGBM

max_depth

= 4

learning rate

= 0.02

num_iterations

= 330

우리의 Baseline

	accuracy	precision	recall
SVM	0.492791	0.003153	0.714286

train

	accuracy	precision	recall
LogisticRegression	0.786999	0.765349	0.827793
DecisionTree	0.820670	0.869881	0.754146
RandomForest	0.964344	0.935143	0.997898
LightGBM	0.977540	0.958857	0.997898

test

	accuracy	precision	recall
LogisticRegression	0.742711	0.006203	0.714286
DecisionTree	0.891381	0.008876	0.428571
RandomForest	0.934957	0.024272	0.714286
LightGBM	0.964114	0.043478	0.714286

6. 모델 검증

모델을검증해보자

Stratified K-fold

 $Accuracy = Average(Accuracy_1, \cdots, Accuracy_k)$

- · 데이터 별 분포를 고려해서 데이터 fold 셋을 만드는 방법
- · Class별 데이터가 아주 불균형하다면 Stratified K-fold를 사용해야 한다

모델을검증해보자

Stratified K-fold

n_splits

= 5

Stratified K-fold 성능 & 표준편차

model	accuracy	std	precision	std	recall	std
1	0.94	0.01	0.89	0.01	1.00	0.00
2	0.95	0.00	0.91	0.00	1.00	0.01
3	0.85	0.03	0.77	0.01	1.00	0.07
4	0.96	0.00	0.92	1.00	1.00	0.00
5	0.98	0.00	0.96	0.01	1.00	0.00

테스트 성능과 비교

	accuracy			pre			recall		
model	CV	Diff	test	CV	Diff	test	CV	Diff	test
1	0.94	0.16	0.78	0.89	0.88	0.78	1.00	0.00	1.00
2	0.95	0.06	0.89	0.91	0.90	0.89	1.00	0.14	0.86
3	0.85	0.06	0.74	0.77	0.76	0.74	1.00	0.15	0.71
4	0.96	0.03	0.93	0.92	0.91	0.93	1.00	0.29	0.71
5	0.98	0.02	0.96	0.96	0.92	0.96	1.00	0.29	0.71

7. 결론

보험사기를 추정해보자

Model 1

수리비용

자기부담금

대여 시작 시간

대여 유형

파손부위

보험사 현장출동

해당 정보는 SOCAR 기업정보 보호를 위하여 숨김처리 되었음.

Discussion

Stratified K-fold 성능 & 표준편차

Model	CV after sampling			Diff			CV during sampling		
	accuracy	precision	recall	accuracy	precision	recall	accuracy	precision	recall
1	0.94	0.89	1.00	0.53	0.47	0.25	0.41	0.42	0.75
2	0.95	0.91	1.00	0.13	0.09	0.75	0.82	0.82	0.25
3	0.85	0.77	1.00	0.06	0.77	0.55	0.72	0.00	0.33
4	0.96	0.92	1.00	0.01	0.92	0.89	0.94	0.01	0.16
5	0.98	0.96	1.00	0.06	0.95	0.84	0.92	0.01	0.18

일반화할 수 있는가?

Discussion

Overoptimism 발생

Discussion

Santos, Miriam & Soares, Jastin & Henriques Abreu, Pedro & Araujo, Helder & Santos, Joao. (2018). Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches. IEEE Computational Intelligence Magazine. 13. 59-76. 10.1109/MCI.2018.2866730.

마무리

• 크게 개선되지 않은 precision

데이터 라벨링이 잘못되었을 가능성?

- 피해자에게 불리한 법적 시스템 ② 미신고 사례 多

(http://asg.kr/OhrdCTCuNHVI1o)

- 사기를 밝히는 것이 쉽지 않다

• 모델 1에 의하면 결측값을 가진 피처가 중요한 피처

e.g. 보험사/경찰 출동 유무, 탑승 인원 수

Scaling 이 tree계열 모델 성능에 영향을 줄 수도 있다

Scaling 은 Oversampling 에 영향을 준다 ② 결과적으로 모델 학습에 영향을 주게 된다

• 과적합엔 튜닝이 답이 될 수 있다

우리 모델의 경우 max features 가 성능향상에 결정적인 도움이 되었다

• 작지만 모이면 큰 힘!

의견을 조율하고 협력하는 과정을 통하여 좋은 결과를 낼 수 있었다

SOCAR

김준성

E: joon90s@gmail.com G: github.com/whistle-boy

방희란

E: bluebluedawn@gmail.com G: github.com/Heeran-cloud

정혜주

E:hjjung193@gmail.com G:github.com/hjung53