

Computational Intelligence

Subject5: Deep Neural Networks

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- Machine Learning Classification Algorithms
- Deep Neural Networks
- DNNs applications
- Advanced architectures
- Fine-tuning Deep Learning Models

Image from data-flair.training website

- Logistic Regression
 - A binary classifier with simple implementation and usage
 - ► Effective when the set of input variables is well-known

- K-Nearest Neighbor (KNN)
 - ► A Multiclass classifier dependent to all training instances for classification
 - ► Classifies each data point by analyzing its nearest neighbors from the training set

- Decision Tree Algorithm
 - ► A Multiclass classifier with the ability to model complex decision processes
 - ► A tree structure with a set of "if-then" rules learned in training process

- Random Forest Algorithm
 - ► A Multiclass classifier with more advanced features than Decision Trees
 - Selects and aggregates the best-performing decision trees

Classification with Neural Networks

- Classifier can be either binary or multiclass
- How do they classify data?
 - ► Each neuron receives part of the input variables
 - ► Then, passes on the results to the next layers
 - ▶ Now, and after learning process, it can classify almost any functions

Classification with Neural Networks

- ► Why?
 - Very effective for high dimensionality problems
 - ► The ability to dynamically create prediction functions
 - ▶ The ability to solve classification problems in an optimized way
- ► Why not?
 - Computationally intensive
 - Difficult to implement
 - Requiring careful fine-tuning

Deep Learning

- ▶ What is it?!
 - A powerful set of techniques for learning in neural networks
 - Processes data and creates patterns for decision making
 - ▶ Able to learn without human supervision
 - ▶ How? By **drawing from data** that is both unstructured and unlabeled

- DNNs can be used in
 - Supervised Learning
 - Semi-supervised Learning
 - Unsupervised Learning
- Some of the most common types:
 - Recurrent Neural Networks
 - Convolutional Neural Networks
 - Autoencoders
 - Deep Belief Net

- Based on many (tens or hundreds) hidden layers
- Each layer extracts high-level features from the previous layer
- ► Each layer converts data to a more abstract concept
- **Sample application:** face detection
 - ► Layers a...b (a<b): Analyzing pixels of the image
 - ► Layers b...c (b<c): Extracting edges and lines
 - Layers c...d (c<d): Extracting visual features, e.g. nose and eye
 - ► Layers d…e (d<e): Extracting human face

- Needs powerful hardware
 - ► GPU
- Training plays a key role
- Needs a huge amount of data for training
 - Totally based on Data
 - ► Training-set
 - ▶ Validation-set
 - ► Test-set

Machine Learning

 Using algorithms to parse data, learn from that data, and make informed decisions based on what it has learned

Deep Learning

 Structuring algorithms in layers to create an ANN to learn and make intelligent decisions on its own

Note: $DL \subset ML \subset AI$

- Most common applications
 - ► Google Voice Search
 - Google Image Search
 - ► Face detection in smartphones
 - ► Handwriting and Signature recognition
 - ► Image generation using trained samples
 - Automatic Speech Recognition
 - Natural Language Processing

► Face Detection/Recognition

Object Detection

Traffic Sign Detection

Handwriting Detection/Recognition

- Iranian Car License-plate Recognition
 - ► A project supported by Guilan Science and Technology Park (<u>link</u>)

- Iranian Car License-plate Recognition
 - ► A project supported by Guilan Science and Technology Park (<u>link</u>)

Convolutional Neural Networks (CNN)

- Primarily used in the field of Computer Vision
- ► **Input:** images
- **Outputs**: a single vector of probability scores
- ► Not fully-connected structure
- Very effective at tasks involving data that is closely knitted together
- ▶ A 3D structure with 3 sets of neurons analyzing Red, Green, and Blue layers of a color image
- Two phases: Convolution and Pooling

Convolutional Neural Networks (CNN)

- Phase 1: Convolution
 - ► Scanning the image
 - ► Analyzing a small part of it each time
 - ▶ Creating a feature map with probabilities that each feature belongs to the required class
- ▶ Phase 2: Pooling
 - ▶ Reducing the dimensionality of each feature
 - ▶ Maintaining its most important information

Convolutional Neural Networks (CNN)

Convolution

$$= (7*1) + (2*0) + (3*(-1))$$

$$+ (4*1) + (5*0) + (3*(-1))$$

$$+ (3*1) + (3*0) + (2*(-1))$$

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

Convolutional Neural Networks (CNN)

Convolution

$$= (2*1) + (3*0) + (3*(-1))$$

$$+ (5*1) + (3*0) + (8*(-1))$$

$$+ (3*1) + (2*0) + (8*(-1))$$

7	2	3	3	8
4	5	3	80	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

Convolutional Neural Networks (CNN)

Convolution

$$= (3*1) + (3*0) + (8*(-1))$$

$$+ (3*1) + (8*0) + (4*(-1))$$

$$+ (2*1) + (8*0) + (4*(-1))$$

7	2	3	3	8
4	5	3	80	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

* 1 0 -1 1 0 -1 1 0 -1

Convolutional Neural Networks (CNN)

Convolution

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

* 1 0 -1 1 0 -1 1 0 -1 6 -9 -8 -3 -2 -3 -3 0 -2

Convolutional Neural Networks (CNN)

Convolution

- Convolutional Neural Networks (CNN)
 - Pooling

Convolutional Neural Networks (CNN)

Pooling

Convolutional Neural Networks (CNN)

Fine-tuning Deep Learning Models

TRAINING FROM SCRATCH

TRANSFER LEARNING

Fine-tuning Deep Learning Models

What does fine-tuning mean?

- A common practice in Deep Learning
- DNNs have a huge number of parameters
 - Often in the range of millions!
- Solutions?
 - Training a on a small dataset?
 - ► Greatly affects the accuracy and result in overfitting
 - ▶ Fine-tune existing networks that are trained on a large dataset
 - Training it on our small dataset

Fine-tuning Deep Learning Models

Conditions:

- Our dataset is not drastically different in context to the original dataset
 - ▶ Like fine-tuning a network that trained on ImageNet for detection of objects
- ▶ The main dataset contains classes that we want
 - ▶ For instance, both can be used for face detection
- Note: **Fine-tuning** is one approach to **Transfer Learning**, where we take features learned on one problem, and leveraging them on a new, similar problem

What's Next?

Fuzzy Basics

Questions?

