TFY4125 Fysikk Eksamen 9. august 2023

1) En Tesla Model 3 Performance hevdes på britiske nettsider å kunne akselerere fra 0 til 62 mph (miles per hour) i løpet av 3.3 sekunder. 1 mile er 1609.34 m. Hva er da akselerasjonen i enheten g der g er tyngdens akselerasjon?

A) 0.36

B) 0.46

C) 0.56

D) 0.66

E) 0.76

F) 0.86

Oppgave 2 - 4: En maratonløper løper med fart $v(t) = v_0 [1 - \exp(-t/\tau)]$. Her er t tiden målt i sekunder etter start. De to konstantene har verdi $v_0 = 5.0$ m/s og $\tau = 2.0$ s.

2) Hva er maratonløperens maksimale akselerasjon?

A) 1.5 m/s^2

B) 2.0 m/s^2

C) 2.5 m/s^2

D) 3.0 m/s^2

E) 3.5 m/s^2

F) 4.0 m/s^2

3) Hva er maratonløperens maksimale fart?

A) 2.5 m/s

B) 3.0 m/s

C) 4.0 m/s

D) 5.0 m/s

E) 7.5 m/s

F) 10 m/s

4) Hvor lang tid bruker maratonløperen på en maraton, 42195 m?

A) 1 h 50 min

B) 2 h 20 min

C) 2 h 50 min

D) 3 h 20 min

E) 3 h 50 min

F) 4 h 20 min

Oppgave 5 - 7: Ei lita og kompakt kule ruller uten å gli på en krum bane. Kulas massesenter følger banen

$$y = y_0 (\xi^4 - \xi^2).$$

Her er $y_0 = 0.020$ m, og $\xi = x/x_0$ med $x_0 = 1.00$ m. Koordinatene x og y angir hhv horisontal og vertikal posisjon. Kula starter ved $\xi = -2$ med starthastighet lik null og ruller til $\xi = 1$.

5) Hva er banens helningsvinkel i startposisjonen (i absoluttverdi, og målt i grader)?

A) 44

B) 39

C) 34

D) 29

E) 24

F) 19

6) Hva er kulas fart i sluttposisjonen $\xi = 1$?

A) 1.5 m/s

B) 1.8 m/s

C) 2.1 m/s

D) 2.4 m/s

E) 2.7 m/s

F) 3.0 m/s

7) Hva er banens krumningsradius i $\xi = 0$?

A) 25 m

B) 35 m

C) 45 m

D) 25 cm

E) 35 cm

F) 45 cm

8) Figuren over viser massetettheten ρ som funksjon av avstanden r fra senteraksen til en sylinder med lengde L og radius R. Sylinderen er et stivt legeme. Sylinderens masse kan skrives på formen $M = \beta \rho_0 R^2 L$. Hva blir tallverdien av β ?

Oppgitt: $dV = 2\pi Lr dr$, $dm = \rho dV$

- A) $\pi/6$

- B) $\pi/5$ C) $\pi/4$ D) $\pi/3$ E) $\pi/2$ F) π

9) En kloss sendes nedover et langt skråplan med helningsvinkel 10°. Kinetisk friksjonskoeffisient mellom klossen og underlaget er $\mu = 0.35$. Klossens starthastighet er $v_0 = 1.2$ m/s. Hvor langt glir klossen før den stopper?

- A) 21 cm
- B) 32 cm
- C) 43 cm
- D) 54 cm
- E) 65 cm
- F) 76 cm

10) Anta at klossene med masse m (fart v_0 før kollisjonen) og 2m (i ro før kollisjonen) kolliderer delvis uelastisk. Umiddelbart etter kollisjonen har klossen med masse 2m en fart $2v_0/5$ (mot høyre, selvsagt). Hvor stor andel av opprinnelig kinetisk energi er bevart etter kollisjonen?

- A) 6%
- B) 16%
- C) 26%
- D) 36%
- E) 46%
- F) 56%

11) Anta nå at de samme to klossene kolliderer fullstendig elastisk. Hva er da farten til klossen med masse 2m etter kollisjonen?

- A) $v_0/6$
- B) $v_0/5$ C) $2v_0/3$ D) $2v_0/5$ E) $v_0/3$ F) $v_0/2$

Oppgave 12 - 14: Fire punktmasser ligger i xy-planet, en masse m i origo, masser 2m i (x,y) = (a,0)og i (0,a), samt en masse m i (a,a). Vi beregner treghetsmomenter i enheten ma^2 i disse tre oppgavene.

12) Hva er treghetsmomentet mhp z-aksen?

- A) 2
- B) 3
- C) 4
- D) 5
- E) 6
- F) 7

13) Hva er treghetsmomentet mhp y-aksen?						
A) 2 B) 3 C) 4 D) 5 E) 6 F) 7						
14) Hva er treghetsmomentet mhp en akse gjennom origo og (a, a) ?						
A) 2 B) 3 C) 4 D) 5 E) 6 F) 7						
15) Ei kompakt kule med masse 141 g, diameter 52.5 mm og dragkoeffisient 0.47 slippes fra 5. etasje i Realfagbygget. Hva blir terminalfarten i luft med tetthet 1.23 kg/m ³ ? Oppgitt: Luftmotstand $f = 0.5 \rho A C_d v_t^2$.						
A) 17 m/s B) 27 m/s C) 37 m/s D) 47 m/s E) 57 m/s F) 67 m/s						
Oppgave 16 - 20: Foucaultpendelen i Realfagbygget kan med svært god tilnærmelse betraktes som en matematisk pendel med lengde $L=25.0$ m. Metallkula som svinger fram og tilbake med små utsving fra likevekt, har masse $M=40.0$ kg. Kulas maksimale utsving fra likevekt, målt horisontalt, er $x_0=100$ cm.						
16) Hvor stor er forskjellen mellom kulas maksimale og minimale potensielle energi i løpet av pendelbevegelsen?						
A) 7.84 μJ B) 7.84 mJ C) 7.84 J D) 7.84 kJ E) 7.84 MJ F) 7.84 GJ						
17) Hva er pendelens svingetid?						
A) 10 s B) 12 s C) 14 s D) 16 s E) 18 s F) 20 s						
18) Kulas maksimale hastighet er 62.6 cm/s. Hva er det maksimale snordraget?						
A) 293 N B) 393 N C) 493 N D) 593 N E) 693 N F) 793 N						
19) Anta at kula er kompakt og med uniform massetet thet 7.85 g/cm³ (stål). Hva er i såfall kulas diameter?						
A) 113 mm B) 133 mm C) 153 mm D) 173 mm E) 193 mm F) 213 mm						
20) Uten en liten dytt for hver svingning ville pendelen svinge med mindre og mindre vinkelamplitude, $\alpha(t) = \alpha_0 \exp(-t/\tau)$. Anta at vinkelamplituden avtar fra 2.29° til 1.63° i løpet av en time. Hvor stor er omtrent tidskonstanten τ ?						
A) 6 timer B) 5 timer C) 4 timer D) 3 timer E) 2 timer F) 1 time						

Oppgave 21 - 25: Tre punktladninger -q, -2q og 3q er plassert på x-aksen i hhv x=0, x=a og x=2a. Vi antar at q>0 og a>0.

21) Hva er systemets elektriske dipolmoment, i enheten qa?

E) 5

A) 1 B) 2 C) 3

22) Potensialet på x-aksen, i posisjon x=3a, kan skrives på formen $V=A\cdot q/4\pi\varepsilon_0 a$. Hva er verdien av A? (Vi velger som vanlig V=0 i uendelig avstand fra en gitt punktladning.)

F) 6

A) 5/3 B) 7/3 C) 11/3 D) 13/3 E) 17/3 F) 19/3

D) 4

23) Den elektriske feltstyrken på x-aksen, i posisjon x=3a, kan skrives på formen $E=B\cdot q/4\pi\varepsilon_0a^2$. Hva er verdien av B?

A) 29/18 B) 31/18 C) 35/18 D) 37/18 E) 41/18 F) 43/18

24) Den elektriske kraften på ladningen -q fra de to andre kan skrives på formen $F = C \cdot q^2 / 4\pi \varepsilon_0 a^2$. Hva er verdien av C?

A) 3/4 B) 5/4 C) 7/4 D) 9/4 E) 11/4 F) 13/4

25) Systemets potensielle energi kan skrives på formen $U = D \cdot q^2/4\pi\varepsilon_0 a$. Hva er verdien av D? (Vi velger som vanlig U = 0 med uendelig avstand mellom to punktladninger.)

A) -3/2 B) -5/2 C) -7/2 D) -9/2 E) -11/2 F) -13/2

26) En elektrisk dipol har ladning pr lengdeenhet

$$\lambda(x) = \lambda_0 \frac{\sin^2(\pi x/L)}{(\pi x/L)}$$

for $-L \le x \le L$. Hva er dipolens elektriske dipolmoment?

Tips: En liten ladning $dq = \lambda(x) dx$ på intervallet (x, x + dx) bidrar med dp = x dq til totalt dipolmoment.

Oppgitt: $\sin^2 y = (1 + \cos 2y)/2$

A) $\lambda_0 L^2/\pi$ B) $\lambda_0 L^2/e$ C) $\lambda_0 L^2$ D) $\lambda_0 L^2/2$ E) $\lambda_0 L^2/5$ F) $\lambda_0 L^2/7$

,	k felt med felts	` ,	_			å tvers i et uniformt n inni den dielek-
A) 1.0 V/m	B) 10 V/m	C) 55 V/	m D) 100	V/m E)	$1.0 \; \mathrm{kV/m}$	F) 10 kV/m
28) Tre kapa totale kapa	•	$2.0 \text{ nF}, 5.0 \ \mu$	F og 7.0 mF	, er koblet i s	serie. Hva	er seriekoblingens
A) 2.0 nF	B) 5.0 μ F	C) 7.0 mF	D) 14 nF	E) 14 μ F	F) 14 mF	
	asitanser, hhv kapasitans?	$2.0 \text{ nF}, 5.0 \ \mu\text{F}$	og 7.0 mF,	er koblet i par	rallell. Hva	er parallellkoblin-
A) 2.0 nF	B) 5.0 μ F	C) 7.0 mF	D) 14 nF	E) 14 μ F	F) 14 mF	
,		kobles til de t	-	_	tansene i opp	pgave 29. Hva blir
A) 0.23 C	B) 0.19 C	C) 0.15 C	D) 0.11 C	E) 0.07 C	F) 0.03 C	
,	pasitans 11.0 /		-		_	av en motstand 72.0 nningen over mot-
A) 328 B) 379 C) 5	28 D) 579	E) 728	F) 779		
spenning 72	kV før de kom	mer inn i et or	nråde med et	uniformt ma	gnetfelt med	akselereres med en feltstyrke 0.72 T og ionene følger?
A) 14 cm	B) 17 cm	C) 20 cm	D) 23 cm	E) 26 cm	F) 29 cm	
33) I en ringi i sentrum a		ed diameter 75	ó cm går det e	n strøm 4.4 A	. Hva er ma	agnetisk feltstyrke
A) 3.2 μT	B) 4.7 μT	C) 5.6 μT	D) 6.5 μT	E) 7.4 μ T	F) 8.3 μ	T

34) En ringformet leder med diameter 75 cm er plassert i xy -planet med sentrum i origo. Anta at det går en strøm 4.4 A i lederen. Lederen plasseres i et uniformt ytre magnetfelt med feltstyrke 4.4 T og retning langs x -aksen. Hva er netto dreiemoment på lederen?
A) 9.1 Nm B) 8.6 Nm C) 8.1 Nm D) 7.6 Nm E) 7.1 Nm F) 6.6 Nm
35) En ringformet leder med diameter 75 cm er plassert i xy-planet med sentrum i origo. Lederen plasseres i et uniformt ytre magnetfelt med feltstyrke 0.72 T og retning langs x-aksen. Lederen roterer om y-aksen med omløpstid 44 ms. Hva er amplituden til den induserte harmoniske spenningen i lederen?
A) 35 V B) 45 V C) 55 V D) 65 V E) 75 V F) 85 V
36) En vekselspenningskilde $V(t) = V_0 \sin \omega t$ med amplitude 325 V og frekvens 50 Hz er koblet til en motstand 2.73 $k\Omega$. Hva er midlere effekt tilført av spenningskilden?
A) 13.3 W B) 15.3 W C) 17.3 W D) 19.3 W E) 21.3 W F) 23.3 W
37) Potensialene V_1 og V_2 på to adskilte ledere svinger harmonisk med amplitude 15 V og frekvens 50 Hz. Det er en faseforskjell $\pi/3$ mellom V_1 og V_2 . Hva er amplituden til spenningen $V_2 - V_1$ mellom de to lederne? Oppgitt: $\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$
A) 15 V B) 20 V C) 25 V D) 30 V E) 35 V F) 40 V
Oppgave 38 - 40: En seriekobling av en induktans, en kapasitans og en motstand har komponentverdiene hhv 250 mH, 0.625 mF og 18.0 m Ω . Kondensatoren har i utgangspunktet en ladning ± 1.89 mC. En bryter lukkes slik at en strøm kan gå i kretsen. (Tips: Mekanisk analogi.)
38) Etter at bryteren lukkes varierer strømmen harmonisk med tiden. Hva er svingetiden (perioden)?
A) 29 ms B) 39 ms C) 49 ms D) 59 ms E) 69 ms F) 79 ms
39) Ladningen på kondensatoren varierer også harmonisk med tiden. (Svakt dempet harmonisk svingning.) Hva er amplituden til kondensatorladningen 60 sekunder etter at bryteren ble lukket?
A) 0.10 mC B) 0.16 mC C) 0.22 mC D) 0.28 mC E) 0.34 mC F) 0.40 mC
40) En vekselspenning med amplitude 60 mV og vinkelfrekvens 80 s^{-1} kobles til LCR svingekretsen og vi venter noen minutter før vi måler strømmen. Hva er amplituden til strømmen i kretsen?

E) 5.5 A

F) 6.6 A

D) 4.4 A

A) 1.1 A

B) 2.2 A

C) 3.3 A