Theorem7.9:Weierstrass's M-Test

叶卢庆 杭州师范大学理学院,学 号:1002011005 Email:h5411167@gmail.com 2013. 11. 24

Theorem (Weierstrass's M-Test). Let $\{y_m(x)\}$ be a sequence of functions with $|y_m(x)| \leq M_m$ for all x in $[\alpha, \beta]$ with $\sum_{m=0}^{\infty} M_m < \infty$. Then $\sum_{m=0}^{\infty} y_m(x)$ converges uniformly in $[\alpha, \beta]$ to a unique function y(x).

Proof. Very simple indeed.Still,I'd like to write my proof down.In order to prove that $\sum_{m=0}^{\infty} y_m(x)$ converges uniformly to y(x) in $[\alpha, \beta]$,we only need to prove that for any given positive real number ε , there exists a positive integer N such that for all m > n > N, and **for all** $x \in [\alpha, \beta]$, we have

$$|\sum_{i=n}^m y_i(x)| < \varepsilon.$$

In order to prove it, we just need to prove that

$$\sum_{i=n}^{m} |y_i(x)| < \varepsilon.$$

We just need to prove that

$$\sum_{i=n}^{m} M_i < \varepsilon.$$

From $\sum_{m=0}^{\infty} M_m$, we know this is true.