Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 11 10 stycznia 2019 r.

M11.1. 1 punkt Udowodnić, że wielomiany Czebyszewa spełniają tożsamość

$$T_{n+j}(u_k) = T_n(u_k) \cdot T_j(u_k)$$

gdzie u_k oznaczają punkty ekstremalne wielomianu T_n .

- **M11.2.** I punkt Wykazać, że dla każdej funkcji $f \in C[a,b]$ ciąg kwadratur Gaussa $\{G_n(f)\}$ jest przy $n \to \infty$ zbieżny do całki $\int_a^b p(x)f(x)\,dx$.
- M11.3. 1 punkt
 - a) Stosując złożony wzór Simpsona S_n z odpowiednio dobranym n obliczyć przybliżoną wartość całki $\int_0^\pi \sin x \, dx$ z błędem $\leq 2 \cdot 10^{-5}$.
 - b) Jaka wartość n gwarantuje uzyskanie tak dokładnego wyniku, jeśli zamiast wzoru S_n użyjemy złożonego wzoru trapezów T_n ?
- **M11.4.** I punkt Niech będzie $w_n(x) = \sum_{k=0}^n {'a_k T_k(x)}$, gdzie T_k jest k-tym wielomianem Czebyszewa. Wykazać, że

$$\int_{-1}^{1} w_n(x) \, \mathrm{d}x = 2 \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{a_{2i}}{1 - 4i^2}.$$

M11.5. 2 punkty Uzasadnić poprawność poniższej procedury, zapisanej w języku Julia, do obliczania całki $\int_{-1}^{1} f(x) dx$ za pomocą kwadratury Clenshawa-Curtisa.

function ClenshawCurtis3(f,n)
 # Chebyshev extreme points
 x = cos.(pi*(0:n)/n)
 fx = f.(x)/(2n)
 # Fast Fourier transform
 g = real(FFTW.fft(vcat(fx,fx[n:-1:2])))
 # Chebyshev coefficients
 a = vcat(g[1], g[2:n]+g[2*n:-1:n+2], g[n+1])
 w = zeros(length(a))
 w[1:2:end] = 2 ./ (1 .- (0:2:n) .^ 2)
 LinearAlgebra.dot(w,a)
end

Jaka jest złożoność tej procedury?

M11.6. I punkt Znaleźć liczby c_j , dla których wielomian trygonometryczny $w_n(x) := \sum_{j=0}^n c_j \cos(jx)$ daje najmniejszą wartość całki

$$\int_0^{\pi} (\pi - x^2 - w_n(x))^2 dx.$$

M11.7. $\ \ \,$ Z punkty | Udowodnić, że współczynniki $A_k^{(n)}$ kwadratury Gaussa-Czebyszewa spełniają równość

$$A_k^{(n)} = -\frac{\pi}{T'_{n+1}(t_k) T_{n+2}(t_k)},$$

gdzie T_j oznaczają wielomiany Czebyszewa, a t_k — zera wielomianu T_{n+1} .

M11.8. 1,5 punktu Udowodnić, że wzór

(1)
$$\int_{-1}^{1} f(x)(1-x^2)^{-1/2} dx \approx \frac{\pi}{n} \sum_{k=0}^{n} f(\cos(k\pi/n))$$

jest dokładny dla $f \in \Pi_{2n-1}$.

- **M11.9.** I punkt Podać przykład wielomianu $f \in \Pi_{2n}$, dla którego wzór (1) jest niedokładny. Co z tego wynika?
- **M11.10.** $\boxed{1 \text{ punkt}}$ Wyznaczyć, o ile to możliwe, takie wartości stałych A, B, C, żeby równość

$$\int_{-1}^{1} f(x)(1-x^2)^{-1/2} dx = Af(-1) + Bf(0) + Cf(1)$$

zachodziła dla dowolnego wielomianu f stopnia ≤ 5 . Podać także przykład wielomianu stopnia 6, dla którego powyższa równość nie zachodzi.