Definição de Algoritmo

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

23 de abril de 2019

Plano de Aula

Revisão

2 Definição de algoritmo

Sumário

Revisão

2 Definição de algoritmo

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

FIGURA 3.14

Representando três fitas com apenas uma

$$S =$$
 "Sobre a entrada $w = w_1 \cdot \cdot \cdot w_n$:

1. Primeiro S ponha sua fita no formato que representa todas as k fitas de M. A fita formatada contém

$$\#w_1w_2 \cdots w_n \# \# \# \# \cdots \#$$

2. Para simular um único movimento, S faz uma varredura na sua fita desde o primeiro #, que marca a extremidade esquerda, até o (k+1)-ésimo #, que marca a extremidade direita, de modo a determinar os símbolos sob as cabeças virtuais. Então S faz uma segunda passagem para atualizar as fitas conforme a maneira pela qual a função de transição de M estabelece.

3. Se em algum ponto S move uma das cabeças virtuais sobre um #, essa ação significa que M moveu a cabeça correspondente para a parte previamente não-lida em branco daquela fita. Portanto, S escreve um símbolo em branco nessa célula da fita e desloca o conteúdo da fita, a partir dessa célula até o # mais à direita, uma posição para a direita. Então ela continua a simulação tal qual anteriormente."

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

PROVA Uma linguagem Turing-reconhecível é reconhecida por uma máquina de Turing comum (com uma única fita), o que é um caso especial de uma máquina de Turing multifita. Isso prova uma direção desse corolário. A outra direção segue do Teorema 3.13.

Sumário

Revisão

2 Definição de algoritmo

Problema 3.16 (b)

Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer $A \in B$.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer $A \in B$. Sejam $M_A \in M_B$ as duas máquinas de Turing (MT) que reconhecem $A \in B$, respectivamente

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece).

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir:

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

• Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{aux} =$ "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{\rm aux} =$ "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- 3 Rode M_B sobre ω_2 . Se M_B aceita, aceite.

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{\rm aux} =$ "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: $M_{aux} =$ "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- **2** Rode M_A sobre ω_1 . Se M_A rejeita, *rejeite*.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Como é possível construir M_{aux} , então $A \circ B$ é TR

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- 2 Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Como é possível construir M_{aux} , então $A \circ B$ é TR (pois toda MT) tem uma MT equivalente).

Prova: Sejam duas linguagens Turing-reconhecíveis (TR) quaisquer A e B. Sejam M_A e M_B as duas máquinas de Turing (MT) que reconhecem A e B, respectivamente (pois se uma linguagem é Turing-reconhecível, então uma MT a reconhece). Iremos construir uma MT não-determinística (MTN) M_{aux} , a partir de M_A e M_B , que reconhece $A \circ B$. A descrição de M_{aux} é dada a seguir: M_{aux} = "Sobre a entrada ω , faça:

- Corte, não deterministicamente, ω em duas cadeias (i.e. $\omega = \omega_1 \circ \omega_2$).
- **2** Rode M_A sobre ω_1 . Se M_A rejeita, rejeite.
- **3** Rode M_B sobre ω_2 . Se M_B aceita, aceite.
- Rejeite".

Como é possível construir M_{aux} , então $A \circ B$ é TR (pois toda tem uma MT equivalente). Logo, a classe de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação

Definição de algoritmo

Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

Quem?

David Hilbert (1862-1943) Matemático alemão.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Curioso

Não existe algoritmo que execute esta tarefa.

Definição de algoritmo

Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.

Noção intuitiva é igual a algoritmos de de algoritmos máquina de Turing

FIGURA **3.22** A Tese de Church–Turing

Noção intuitiva é igual a algoritmos de de algoritmos é igual a máquina de Turing

FIGURA 3.22

A Tese de Church-Turing

Conclusão

Existem problemas que são algoritmicamente insolúveis.

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Resposta

Não é decidível. Mas é Turing-reconhecível.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

$MT M_1$ que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Considerações

 M_1 reconhece D_1 , mas não a decide.

Resultado obtido por Matijasevich

É possível construir um decisor para \mathcal{D}_1 . Mas não para \mathcal{D}_{\cdot}

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

em que

- k é o número de termos do polinômio,
- c_{max} é o coeficiente com maior valor absoluto, e
- c₁ é o coeficiente do termo de mais alta ordem.

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

23 de abril de 2019

