Modularly Composing Typed Language Fragments

Supplemental Material

1. Internal Language

copy from one of the 312 HWs

hm...

could move

this

whole

thing to supplement if room needed 1.1 Substitutions

1.2 Abstraction Theorem

Tycon Contexts

2.1 Tycon Context Well-Definedness

2.2 Equality Kinds

Need an equational theory for SL to state equality kind property, but not important for other metatheory.

- 2.3 Full Examples
- 3. Static Language
- 3.1 Kind Formation
- 3.2 Kinding Context Formation
- 3.3 Kinding
- 3.4 Dynamic Semantics
- 3.5 Kind Safety
- 4. Types
- 4.1 Type Translations
- 4.2 Typing Context Translations

Unicity The rules are structured so that if a term is well-typed, both its type and translation are unique.

Theorem 1 (Unicity). If $\vdash \Phi$ and $\vdash_{\Phi} \Upsilon \leadsto \Gamma$ and $\vdash_{\Phi} \sigma \leadsto \tau$ and $\vdash_{\Phi} \sigma' \leadsto \tau'$ and $\Upsilon \vdash_{\Phi} e \Leftarrow \sigma \leadsto \iota$ and $\Upsilon \vdash_{\Phi} e \Leftarrow \sigma' \leadsto \iota'$ then $\sigma = \sigma'$ and $\tau = \tau'$ and $\iota = \iota'$.

- 5. External Language
- 5.1 Additional Desugarings
- 5.2 Typing
- 5.3 Proof of Regular String Soundness Tycon Invariant

[Copyright notice will appear here once 'preprint' option is removed.]

1

References

A. Appendix

2014/11/2

2

$$(s-ity-unquote-step) \qquad (s-ity-unquote-err) \\ \hline \begin{matrix} \sigma \mapsto_{\mathcal{A}} \sigma' & \sigma \in r_{\mathcal{A}} \\ \hline \blacktriangleright(\blacktriangleleft(\sigma)) \mapsto_{\mathcal{A}} \blacktriangleright(\blacktriangleleft(\sigma')) & \hline \begin{matrix} \sigma \in r_{\mathcal{A}} \\ \hline \blacktriangleright(\lnot(\sigma)) \in r_{\mathcal{A}} \end{matrix} \end{matrix}$$

$$(s-ity-trans-step) \qquad (s-ity-trans-err) \\ \hline \begin{matrix} \sigma \mapsto_{\mathcal{A}} \sigma' & \sigma \in r_{\mathcal{A}} \\ \hline \blacktriangleright(trans(\sigma)) \mapsto_{\mathcal{A}} \blacktriangleright(trans(\sigma')) & \hline \begin{matrix} \bullet \\ \hline \end{pmatrix} (trans(\sigma)) \in r_{\mathcal{A}} \end{matrix}$$

This judgement is defined by the following straightforward rules:

$$\begin{array}{ll} \text{(tstore-emp)} & & & \mathcal{D} \leadsto \delta: \Delta \\ \hline \emptyset \leadsto \emptyset: \emptyset & & \hline \\ \hline \end{array}$$

 $\begin{array}{lll} \textbf{Description} & \textbf{Concrete Form} \\ \text{sequences} & (e_1, \dots, e_n) \text{ or } [e_1, \dots, e_n] \\ \text{labeled sequences} & \{\mathtt{lbl_1} = e_1, \dots, \mathtt{lbl_n} = e_n\} \\ \text{label application} & \mathtt{lbl}\langle e_1, \dots, e_n \rangle \\ \text{numerals} & n \\ \text{labeled numerals} & n \\ \text{strings} & \text{"s"} \\ \end{array}$

$$(s-itm-var-v) \\ \hline \rhd(x) \ val_{\mathcal{A}} \\ \hline (s-itm-lam-step-1) \\ \hline \blacktriangleright(\hat{\tau}) \mapsto_{\mathcal{A}} \blacktriangleright(\hat{\tau}') \\ \hline \rhd(\lambda[\hat{\tau}](x.\hat{\iota})) \mapsto_{\mathcal{A}} \rhd(\lambda[\hat{\tau}'](x.\hat{\iota})) \\ \hline$$

(s-itm-lam-step-2)

$$\begin{array}{c|c} \blacktriangleright(\hat{\tau}) \ \mathtt{val}_{\mathcal{A}} & \rhd(\hat{\iota}) \mapsto_{\mathcal{A}} \rhd(\hat{\iota}') \\ \hline \rhd(\lambda[\hat{\tau}](x.\hat{\iota})) \mapsto_{\mathcal{A}} \rhd(\lambda[\hat{\tau}](x.\hat{\iota}')) \end{array}$$

 $(s-itm-lam-err-1) \qquad (s-itm-lam-err-2) \\ \frac{\blacktriangleright(\hat{\tau}) \operatorname{err}_{\mathcal{A}}}{\triangleright(\lambda[\hat{\tau}](x.\hat{\iota})) \operatorname{err}_{\mathcal{A}}} \qquad \frac{\triangleright(\hat{\iota}) \operatorname{err}_{\mathcal{A}}}{\triangleright(\lambda[\hat{\tau}](x.\hat{\iota})) \operatorname{err}_{\mathcal{A}}}$ $(s-itm-lam-err-2) \\ (\triangleright(\lambda[\hat{\tau}](x.\hat{\iota})) \operatorname{err}_{\mathcal{A}}$

 $\frac{\triangleright(\hat{x}) \text{ val}_{\mathcal{A}} \quad \triangleright(\hat{t}) \text{ val}_{\mathcal{A}}}{\triangleright(\lambda[\hat{\tau}](x.\hat{t})) \text{ val}_{\mathcal{A}}}$ (k-itm-nuquote) $\frac{\triangleright(\lambda[\hat{\tau}](x.\hat{t})) \text{ val}_{\mathcal{A}}}{(k\text{-itm-nuquote})}$

$$\frac{\mathbf{\Delta}\;\Gamma\vdash^n_\Phi\sigma::\mathsf{ITm}}{\mathbf{\Delta}\;\Gamma\vdash^n_\Phi\rhd(\lhd(\sigma))::\mathsf{ITm}}$$

 $(s-itm-unquote-step) \qquad (s-itm-unquote-err) \\ \frac{\sigma \mapsto_{\mathcal{A}} \sigma'}{\rhd(\lhd(\sigma)) \mapsto_{\mathcal{A}} \rhd(\lhd(\sigma'))} \qquad \frac{\sigma \operatorname{err}_{\mathcal{A}}}{\rhd(\lhd(\sigma)) \operatorname{err}_{\mathcal{A}}}$

 $(s-itm-unquote-elim) > (\hat{\iota}) val_{\mathcal{A}} > (\triangleleft(\triangleright(\hat{\iota}))) \mapsto_{\mathcal{A}} \triangleright(\hat{\iota})$

$$\begin{array}{ccc} \text{(s-ana-step)} & & \text{(s-ana-err)} \\ & & \sigma \mapsto_{\mathcal{A}} \sigma' & & \sigma \text{ err}_{\mathcal{A}} \\ & & & \text{ana}[n](\sigma) \mapsto_{\mathcal{A}} \text{ana}[n](\sigma') & & & \text{ana}[n](\sigma) \text{ err}_{\mathcal{A}} \end{array}$$

(s-itm-anatrans-step)

$$\frac{\sigma \mapsto_{\mathcal{A}} \sigma'}{\rhd(\mathsf{anatrans}[n](\sigma)) \mapsto_{\mathcal{A}} \rhd(\mathsf{anatrans}[n](\sigma'))}$$

(s-itm-anatrans-err)

$$\frac{\sigma \operatorname{err}_{\mathcal{A}}}{\rhd(\operatorname{anatrans}[n](\sigma)) \operatorname{err}_{\mathcal{A}}}$$

, as specified by the judgement $\mathcal{G} \leadsto \gamma: \Gamma$ defined by the following rules:

$$\begin{array}{c} \text{(ttrs-emp)} & \qquad & \mathcal{G} \leadsto \gamma : \Gamma \\ \hline \emptyset \leadsto \emptyset : \emptyset & \qquad & \overline{ (\mathcal{G}, n : \sigma \leadsto \iota/x : \tau) \leadsto (\gamma, \iota/x) : (\Gamma, x : \tau) } \end{array}$$

$$\frac{\mathbf{\Delta} \; \Gamma \vdash_{\Phi}^{n} \blacktriangleright(\hat{\tau}) :: \mathsf{ITy} \qquad \mathbf{\Delta} \; \Gamma \vdash_{\Phi}^{n} \rhd(\hat{\iota}) :: \mathsf{ITm}}{\mathbf{\Delta} \; \Gamma \vdash_{\Phi}^{n} \rhd(\lambda[\hat{\tau}](x.\hat{\iota})) :: \mathsf{ITm}}$$

$$\begin{array}{c|c} (k\text{-raise}) & (s\text{-raise}) \\ \hline \textbf{Desugared Form} & \Delta \vdash \kappa \\ \hline \texttt{intro}[()](e_1;\ldots;e_n) & \overline{\Delta} \; \Gamma \vdash_{\Phi}^n \; \texttt{raise}[\kappa] :: \kappa \\ \hline \texttt{intro}[\texttt{lbl}_1,\ldots,\texttt{lbl}_n]](e_1;\ldots;e_n) \\ \hline \texttt{intro}[\texttt{lbl}](e_1,\ldots,e_n) \\ \hline \texttt{intro}[n](\cdot) & (s\text{-syn-success}) \\ \hline \texttt{intro}[(n,\texttt{lbl})](\cdot) & \text{syn-success}) \\ \hline \end{bmatrix}$$

$$\begin{array}{ll} \operatorname{nth}[n](\overline{e}) = e & \Upsilon \vdash_{\Phi} e \Rightarrow \sigma \leadsto \iota \\ \hline \operatorname{syn}[n] \mapsto_{\overline{e};\Upsilon;\Phi} (\sigma, \rhd(\operatorname{syntrans}[n])) \\ \\ \operatorname{(s-syn-fail)} \\ \operatorname{nth}[n](\overline{e}) = e & [\Upsilon \vdash_{\Phi} e \Rightarrow] \\ \hline \operatorname{syn}[n] \operatorname{err}_{\overline{e};\Upsilon;\Phi} \end{array}$$

$$\frac{(\text{k-itm-syntrans})}{n' < n} \\ \frac{n' < n}{\Delta \; \Gamma \vdash_{\Phi}^{n} \; \rhd(\text{syntrans}[n']) :: \mathsf{ITm}}$$

, e.g. for lambdas:

 $intro["s"](\cdot)$

$$\begin{array}{c} \text{(abs-lam)} \\ \frac{\hat{\tau} \parallel \mathcal{D} \hookrightarrow^{\text{TC}}_{\Phi} \tau \parallel \mathcal{D}' \qquad \hat{\iota} \parallel \mathcal{D}' \mathcal{G} \hookrightarrow^{\text{TC}}_{\overline{e};\Upsilon;\Phi} \iota \parallel \mathcal{D}'' \mathcal{G}'}{\lambda[\hat{\tau}](x.\hat{\iota}) \parallel \mathcal{D} \mathcal{G} \hookrightarrow^{\text{TC}}_{\overline{e};\Upsilon;\Phi} \lambda[\tau](x.\iota) \parallel \mathcal{G}' \mathcal{D}''} \end{array}$$

(abs-anatrans-stored)

$$\frac{n:\sigma \leadsto \iota/x:\tau \in \mathcal{G}}{\mathsf{anatrans}[n](\sigma) \parallel \mathcal{G} \ \mathcal{D} \looparrowright^\mathsf{TC}_{\mathcal{A}} x \parallel \mathcal{G} \ \mathcal{D}}$$

(abs-syntrans-stored)

$$\frac{n:\sigma \leadsto \iota/x:\tau \in \mathcal{G}}{\mathsf{syntrans}[n] \parallel \mathcal{G} \ \mathcal{D} \looparrowright_{\mathcal{A}}^{\mathsf{TC}} x \parallel \mathcal{G} \ \mathcal{D}}$$

(k-itm-anatrans)

$$\frac{n' < n \qquad \Delta \; \Gamma \vdash_{\Phi}^{n} \sigma :: \mathsf{Ty}}{\Delta \; \Gamma \vdash_{\Phi}^{n} \rhd (\mathsf{anatrans}[n'](\sigma)) :: \mathsf{ITm}}$$

(abs-syntrans-new)

$$\underbrace{ \begin{array}{c} (\text{etctx-emp}) \\ \hline \vdash_{\Phi} \emptyset \leadsto \emptyset \end{array} } \quad \underbrace{ \begin{array}{c} (\text{etctx-ext}) \\ \hline \vdash_{\Phi} \Upsilon \leadsto \Gamma \quad \sigma \ \text{type}_{\Phi} \quad \vdash_{\Phi} \sigma \leadsto \tau \\ \hline \vdash_{\Phi} \Upsilon, x \Rightarrow \sigma \leadsto \Gamma, x : \tau \end{array} }$$

3 2014/11/2

For example,

$$\begin{array}{c} \text{(abs-prod)} \\ \frac{\hat{\tau}_1 \parallel \mathcal{D} \looparrowright^{\text{TC}}_{\Phi} \tau_1 \parallel \mathcal{D}' \quad \hat{\tau}_2 \parallel \mathcal{D}' \looparrowright^{\text{TC}}_{\Phi} \tau_2 \parallel \mathcal{D}''}{\hat{\tau}_1 \times \hat{\tau}_2 \parallel \mathcal{D} \looparrowright^{\text{TC}}_{\Phi} \tau_1 \times \tau_2 \parallel \mathcal{D}''} \end{array}$$

The argument interfaces that populate the list provided to opcon definitions is derived from the argument list by the judgement $\arg(\overline{e}) =_n \sigma_{\arg s}$, defined as follows:

$$\frac{(\text{args-z})}{\mathsf{args}(\cdot) =_0 \textit{nil} \, [\mathsf{Arg}]}$$

$$\frac{(\text{args-s})}{\mathsf{args}(\overline{e}; e) =_{n+1} \textit{rcons} \, [\mathsf{Arg}] \, \sigma \, (\lambda \textit{ty} :: \mathsf{Ty}.\mathsf{ana}[n](\textit{ty}), \lambda .:: 1.\mathsf{syn}[n])}$$

We assume that the definitions of the standard helper functions $nil :: \forall (\alpha. \mathsf{List}[\alpha]) \text{ and } rcons :: \forall (\alpha. \mathsf{List}[\alpha] \to \alpha \to \mathsf{List}[\alpha])$, which adds an item to the end of a list, have been substituted into these rules. The result is that the nth element of the argument interface list simply wraps the static terms $\mathsf{ana}[n](\sigma)$ and $\mathsf{syn}[n]$.

4 2014/11/2