# **Algorithms Design and Analysis**

Lecture 4

Beihang University

2017

# **Dynamic Programming (Continue)**

Example 2. Matrix Chain-Products (乘积)

#### **Review: Matrix Multiplication**

- $\bullet$  C=A×B
- ullet A is  $d \times e$  and B is  $e \times f$

$$\bullet C[i,j] = \sum_{k=0}^{e-1} A[i,k] \times B[k,j]$$

- $\bullet$ C is  $d \times f$
- $\bullet$   $O(d \times e \times f)$  time



$$(A \times B) \times C = A \times (B \times C)$$



#### The matrix multiplication order problem

- What is the best order to compute  $A_1 \times A_2 \times ... \times A_n$  for n > 2 -where matrix  $A_i$  has cardinality (基数)  $d_{i-1} \times d_i$
- $\bullet$  Consider matrices A<sub>1</sub>:30×1, A<sub>2</sub>:1×40, A<sub>3</sub>:40×10, A<sub>4</sub>:10×25

| Multiplication order | 1st product                | 2 <sup>nd</sup> product    | 3 <sup>rd</sup> product | # Mults |
|----------------------|----------------------------|----------------------------|-------------------------|---------|
| $((A_1A_2)A_3)A_4$   | 30×1×40 +                  | 30×40×10 +                 | 30×10×25                | = 20700 |
| $A_1(A_2(A_3A_4))$   | $40 \times 10 \times 25 +$ | $1 \times 40 \times 25 +$  | $30 \times 1 \times 25$ | = 11750 |
| $(A_1A_2)(A_3A_4)$   | 30×1×40 +                  | $40 \times 10 \times 25 +$ | 30×40×25                | = 41200 |
| $A_1((A_2A_3)A_4)$   | 1×40×10 +                  | $1 \times 10 \times 25 +$  | $30 \times 1 \times 25$ | = 1400  |

•What is the minimum number of multiplications? What is the order?

## An Enumeration (列举) Approach

● Try all possible ways to parenthesize (加括号)

$$\Diamond (\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \mathbf{A}_k) (\mathbf{A}_{k+1} \times \mathbf{A}_{k+2} \times \cdots \mathbf{A}_n)$$
*k* matrices

*n-k* matrices

- Calculate number of operations for each one
- Pick the one that is best

Let P(n) be the number of different parenthesizations of n matrices.

$$P(n)=P(k)P(n-k)$$
?

Recursive equation for the number of parenthesizations is:

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n > 1 \end{cases}$$

#### **Complexity analysis**

- By induction, we can prove  $P(n) = \binom{2n-2}{n-1} / n$ .
- This is **exponential!**
- ullet It is called the Catalan number, and is almost  $4^n$  when n is large.
- ●This is a terrible (可怕的) algorithm!

#### The structure of an optimal parenthesization

- Notation (记号):  $A_{i,j}$  = result from computing  $A_iA_{i+1}...A_j$ 
  - ✓ Any parenthesization of  $A_iA_{i+1}...A_j$  must split the product between  $A_k$  and  $A_{k+1}$  for some integer k in the range  $i \le k < j$ , i.e.  $(A_iA_{i+1}...A_k)(A_{k+1}A_{k+2}...A_j)$ .
  - ✓ Cost = cost of computing  $A_{i..k}$  + cost of computing  $A_{k+1..j}$  + cost of multiplying  $A_{i..k}$  and  $A_{k+1..j}$  together

- •Suppose that an optimal parenthesization of  $A_iA_{i+1}...A_j$ , called P, splits the product between  $A_k$  and  $A_{k+1}$ .
  - ✓ The parenthesization of the sub-chain  $A_iA_{i+1}...A_k$  given by P must be an optimal parenthesization of  $A_iA_{i+1}...A_k$

✓ The parenthesization of the sub-chain  $A_{k+1}A_{k+2}...A_j$  given by P must be an optimal parenthesization of  $A_{k+1}A_{k+2}...A_j$ 



## Characterize (刻画) the structure of an optimal solution

- Denote (表示) the problem  $A_{l+1} \times A_{l+2} \times ... \times A_h$  as (l, h), i.e.  $(d_l, d_{l+1}) \times (d_{l+1}, d_{l+2}) \times ... \times (d_{h-1}, d_h)$ .
  - ✓ After choice of the last multiplication at i where l < i < h, i.e.  $(A_{l+1} \times A_{l+2} \times ... \times A_i) \times (A_{i+1} \times ... \times A_h)$ , the remaining subproblems are (l, i) and (i, h).
- Let m[l, h] be the optimal cost of computing the problem (l, h). To determine it we need to check all possibilities for i.





Note: there are at least two subproblems of size n-1, i.e. (1, n) and (0, n-1).

#### **Subproblem graph – recursive algorithm**

The subproblem graph of  $A_1 \times A_2 \times A_3 \times A_4$ , i.e. subproblem (0,4):



- •For problem (0, n), this creates  $\Theta(n^2)$  vertices (页点) in the subproblem graph
- ●Encounter (遭遇) each sub-problem many times in different branches of its recursion tree ⇒ overlapping sub-problems
- A recursive algorithm takes exponential time.
  - ✓ Let T(n) denote the number of recursive calls for computing (0, n). Then T(2) = 2 and  $T(n) \ge 2T(n-1)$ . So  $T(n) \ge 2^{n-1}$ .

#### Reverse graphical order – dynamic programming

The dependency graph of  $A_1 \times A_2 \times A_3 \times A_4$ , i.e. subproblem (0,4):

```
m[2, 4] = \min_{2 < i < 4} \{ \text{ // A}_3A_4 \}
m[2, 3] + m[3, 4] + d_2d_3d_4 \}
m[1, 4] = \min_{1 < i < 4} \{ \text{ // A}_2A_3A_4 \}
m[1, 2] + m[2, 4] + d_1d_2d_4; \text{ // A}_2(A_3A_4)
m[1, 3] + m[3, 4] + d_1d_3d_4 \} \text{ // (A}_2A_3)A_4
```



```
m[l, h]
=0 if l+1=h
=min_{l < i < h}(m[l, i]+m[i, h]+d_ld_id_h) if l+1 < h
```

 $m[l, h] = \min_{l < i < h} (m[l, i] + m[i, h] + d[l]d[i]d[h])$ 



#### **Dynamic Programming Algorithm**

```
MatrixChain(d, n)
                                            // iterate (迭代) over rows (行)
for (l=n-1; l>0; l—) {
      for (h=l+1; h \le n; h++) {
                                             // iterate over the colums (列)
      if (h-l=1) bestcost =0; else bestcost = \infty;
      for (i=l+1; i<h; i++) {
                                                      // consider l<i<h
          a = m[l, i];
                                                      // look-up solution
          b = m[i, h];
                                                     // look-up solution
          c = d[l]d[i]d[h];
                                    // cost of last multiplicationat position i
          bestcost=min(bestcost, a+b+c); }
                                                   // store obtained result
       m[l, h] = bestcost; 
return m[0, n];
Complexity analysis: O(n \times n \times n) = O(n^3).
```

$$0+0+1\times40\times10=400$$

 $0+0+40\times10\times25=10000$ 

 $\begin{aligned} & \min_{1 < i < 4} \{ \\ & 0 + 10000 + 1 \times 40 \times 25 = 11000, \\ & 400 + 0 + 1 \times 10 \times 25 = 650 \} \end{aligned}$ 

=650

 $(A_2A_3)A_4$ 

$$d_0=30$$
,  $d_1=1$ ,  $d_2=40$ ,  $d_3=10$ ,  $d_4=25$ 

$$m[l, h]$$

$$= 0 if l+1=h$$

$$= \min_{l < i < h} (m[l, i] + m[i, h] + d_l d_i d_h) if l+1 < h$$





$$(2,4)$$

$$0+0+30\times1\times40=1200$$

 $min_{0 < i < 3} \{ 0+400+30\times1\times10=700, \\ 1200+0+30\times40\times10=13200 \} \\ =700$ 

0

(0,2)

(0,3)

(0,4)

400

**(650)** 

 $d_0=30, d_1=1, d_2=40, d_3=10, d_4=25$ 

m[l, h]

=0

if l+1=h

 $= \min_{l < i < h} (\mathbf{m}[l, i] + \mathbf{m}[i, h] + \mathbf{d}_l \mathbf{d}_i \mathbf{d}_h) \quad \text{if } l + 1 < h$ 

0 10000

 $\left( \mathbf{0}\right)$ 

# $\begin{aligned} &\min_{0 < i < 4} \{ \\ &0 + 650 + 30 \times 1 \times 25 = 1400, \\ &1200 + 100000 + 30 \times 40 \times 25 = 32000, \\ &700 + 0 + 30 \times 10 \times 25 = 8200 \} \\ &= 1400 \\ &A_1((A_2A_3)A_4) \end{aligned}$

 $d_0=30$ ,  $d_1=1$ ,  $d_2=40$ ,  $d_3=10$ ,  $d_4=25$ 



# Example 3. Longest Common (共同的) Subsequence (子序列) (LCS)

• A subsequence of a sequence *S* is obtained by deleting zero or more symbols from *S*. For example, the following are all subsequences of "president": pred, sdn, predent.

• The longest common subsequence problem is to find a maximum-length common subsequence between two sequences.

#### For instance,

Sequence 1: president

Sequence 2: providence (天意)

Its LCS is priden



#### Another example:

Sequence 1: algorithm

Sequence 2: alignment (队列)

One of its LCS is algm.



## Application (应用): comparison of two molecular sequence

Molecular (分子) sequence data are at the heart of Computational Biology (计算生物学)

- DNA sequences
- RNA sequences
- ◆Protein (蛋白质) sequences

We can think of these sequences as strings of letters

- ◆ DNA & RNA: alphabet of 4 letters (A,T,C,G) (A,U,C,G)
- ◆ Protein: alphabet of 20 letters

#### Two DNA sequences

Sequence X = AT C TGAT

Sequence Y = T G C A T A

### Similarity Degree (相似程度)

We can define a parameter to determine the similarity degree between two sequences as follows:

$$S(X, Y)=2|LCS(X, Y)|/(|X|+|Y|).$$

For example, for the above two sequences, we have

$$S(X, Y)=2\times4|/(7+6|)\approx0.6.$$







#### An enumeration approach

Enumeration algorithm will compare each subsequence of X with the symbols in Y

- •If |X| = m, |Y| = n, then there are  $2^m$  subsequences of X; we must compare each with Y (n comparisons)
- So the running time of the enumeration algorithm is  $O(n2^m)$

For example, given two sequences X = ATC and Y = TCAG, the subsequences of X include ATC, AT, AC, TC, A, T, C and the empty string.

#### **Basic Definitions**

- •Define  $X_i$ ,  $Y_j$  to be the prefixes of X and Y of length i and j respectively, where |X| = m, |Y| = n. For example, X=abcbd, |X|=5,  $X_2=ab$ ,  $X_3=abc$ .
- Define c[i,j] to be the length of LCS of  $X_i$  and  $Y_j$
- Then the length of LCS of X and Y will be c[m,n]

#### **How to compute LCS**

- •When computing c[i,j], we consider the following two cases:
- **●First case:** Let  $X_i = a_1 \ a_2 \dots a_{i-1} \ a_i$  and  $Y_j = b_1 \ b_2 \dots b_{j-1} \ b_j$ . If  $a_i = b_j$ , then the length of LCS of  $X_i$  and  $Y_j$  equals to the length of LCS of smaller strings  $X_{i-1}$  and  $Y_{j-1}$ , plus 1. That is to say, we have c[i,j] = c[i-1,j-1]+1. For example, given  $X_3 = abc$ ,  $Y_2 = ac$ , we have c[3,2] = 2,  $X_2 = ab$ ,  $Y_1 = a$  and c[2,1] = 1.

**Second case:** If  $a_i \neq b_j$ , then the length of LCS(X<sub>i</sub>, Y<sub>j</sub>) is the maximum of LCS(X<sub>i</sub>, Y<sub>j-1</sub>) and LCS(X<sub>i-1</sub>,Y<sub>j</sub>). That is to say, we have  $c[i,j] = \max\{c[i-1,j], c[i,j-1]\}$ .

Why not take the length of LCS( $X_{i-1}$ ,  $Y_{j-1}$ )?

•For example,  $X_3$ =abc,  $Y_2$ =ab. We have  $X_2$ =ab,  $Y_1$ =a, c[3,2]=2 and c[2,1]=1.

Combining the above two cases, we have

$$c[i,j] = c[i-1,j-1]+1$$
 if  $a_i = b_j$   
=  $\max\{c[i-1,j], c[i,j-1]\}$  if  $a_i \neq b_j$ 

#### **Base cases**

- •We start with i = j = 0 (empty substrings of X and Y)
- •Since  $X_0$  and  $Y_0$  are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- •LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0.

#### The dynamic programming approach



```
LCS-Length(X, Y)
1. m = \text{length}(X) // get the number of symbols in X
2. n = \text{length}(Y) // get the number of symbols in Y
3. for i = 1 to m c[i, 0] = 0 // base case: Y_0
4. for j = 1 to n c[0, j] = 0 // base case: X_0
5. for i = 1 to m // Iterated over rows
6. for j = 1 to n // Iterated over columns
7. if (x_i = y_i)
8.
             c[i, j] = c[i-1, j-1] + 1
9.
         else c[i, j] = \max(c[i-1, j], c[i, j-1])
10. return c[m, n]
```

Complexity analysis: O(mn).

#### LCS Example

X = b a c a d, Y = a c c b a d c b

|   |   |   |             |      |            | Y                |   |   |                 |          |
|---|---|---|-------------|------|------------|------------------|---|---|-----------------|----------|
|   |   |   | a           | c    | c          | b                | a | d | c               | <u>b</u> |
|   |   | 0 | 0           | 0    | 0          | 0                | 0 | 0 | 0               | 0        |
|   | b | 0 | 0           | 0    | 0          | 1                | 1 | 1 | 1               | 1        |
|   | a | 0 |             | ←1 ҝ | 1          | 1                | 2 | 2 | 2               | 2        |
| X | c | 0 | 1           | 2    | <b>(2)</b> | <del>-</del> 2 ≈ | 2 | 2 | 3               | 3        |
|   | a | 0 | 1<br>1<br>1 | 2    | 2          | 2                | 3 | 3 | 3               | 3        |
|   | d | 0 | 1           | 2    | 2          | 2                | 3 | 4 | <del>-</del> 4< | -4       |

After all elements have been found, we can trace (追溯) back to find the longest common subsequence of X and Y.

#### Homework 7

对于矩阵链乘积(Matrix Chain-Products)问题,请问是否存在其它的子问题计算次序,使得可以保证在计算到每一个子问题时,其所需要的子问题的解已经存在。如果有,请给出这样的计算次序。

#### Homework 8

用动态规划方法求解背包问题。