### **Anomaly Detection**

### Exercise 5





# **Anomaly Detection**Definition of Outliers









**Exercise 5: Anomaly Detection** 

28.03.2022





#### **Definitions:**

- Q1:  $x \ge Q1$  holds for 75% of all x
- Q3:  $x \ge Q3$  holds for 25% of all x
- IQR = Q3-Q1

#### Outlier detection:

All values outside [median-1.5\*IQR; median+1.5\*IQR]

#### **TASK**

Find outliers in [3, 5, 6, 6, 8, 11, 21] with IQR

# Univariate Anomaly Detection Interquartile Range



#### **TASK**

Find outliers in [-5, 3, 7, 11] with IQR

Find outliers in [1, 4, 9] with IQR

Find outliers in [-14, -12, 7, 10, 11, 12, 14, 16.5, 17, 38] with IQR

# Univariate Anomaly Detection Median Absolute Deviation (MAD)



$$MAD := median_i(X_i - median_j(X_j))$$

- all values that are k\*MAD away from the median are considered to be outliers
- e.g., k=3

#### **TASK**

Find outliers in [3, 5, 6, 6, 8, 11, 21] with MAD

# Univariate Anomaly Detection Median Absolute Deviation (MAD)



#### **TASK**

k = 3

• Find outliers in [-5, 3, 7, 11] with MAD

Find outliers in [1, 4, 9] with MAD

Find outliers in [-14, -12, 7, 10, 11, 12, 14, 16.5, 17, 38] with MAD

### Multivariate Anomaly Detection k-NN and Local Outlier Factor



#### **TASK**

- 1) Look up workings of k-NN and LOF
- Identify the top two outliers using k-NN approach with k=3. Use either the maximum or average distance
- 3) Compute the LOF outlier score for the two outliers identified in step 2 (with k=3). Which one is greater?

Hint: For convenience, use Manhattan distance as distance metric!



### **Isolation Forests**

### Task



Using Isolation Forests, you want to find outliers in the dataset on the right.

#### **TASK**

Compute the outlier score (i.e., the probability of the data point ending in a leaf of height 1) for every point in the dataset.