§ 9.

Der Umkehrsatz

Erinnerung: Sei $x_0 \in \mathbb{R}^n$ und $U \subseteq \mathbb{R}^n$. U ist eine Umgebung von $x_0 \iff \exists \delta > 0 : U_{\delta}(x_0) \subseteq U$

Hilfssatz 9.1 (Offenheit des Bildes)

Sei $\delta > 0$, $f: U_{\delta}(0) \subseteq \mathbb{R}^n \to \mathbb{R}^n$ stetig, f(0) = 0 und V sei eine offene Umgebung von f(0) (= 0). $U := \{x \in U_{\delta}(0) : f(x) \in V\}$. Dann ist U eine offene Umgebung von 0.

Beweis

Übung

Erinnerung: Cramersche Regel: Sei A eine reelle $(n \times n)$ -Matrix, det $A \neq 0$, und $b \in \mathbb{R}^n$. Das lineare Gleichungssystem Ax = b hat genau eine Lösung: $x = (x_1, \dots, x_n) = A^{-1}b$. Ersetze in A die j-te Spalte durch b^{\top} . Es entsteht eine Matrix A_j . Dann: $x_j = \frac{\det A_j}{\det A}$.

Satz 9.2 (Stetigkeit der Umkehrfunktion)

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen, $f \in C^1(D, \mathbb{R}^n)$. f sei auf D injektiv und es sei f(D) offen. Weiter sei det $f'(x) \neq 0 \ \forall x \in D$ und f^{-1} sei auf f(D) differenzierbar. Dann: $f^{-1} \in C^1(f(D), \mathbb{R}^n)$.

Beweis

Sei $f^{-1} = g = (g_1, \dots, g_n), g = g(y)$. Zu zeigen: $\frac{\partial g_j}{\partial y_k}$ sind stetig auf f(D). 5.6 $\Longrightarrow g'(y) \cdot f'(x) = I$ $(n \times n\text{-Einheitsmatrix})$, wobei $y = f(x) \in f(D) \Longrightarrow$

$$\begin{pmatrix} g_1'(y) \\ \vdots \\ g_n'(y) \end{pmatrix} \cdot f'(x) = \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

 $\Longrightarrow \operatorname{grad} g_j(y) \cdot f'(x) = e_j \Longrightarrow f'(x)^\top \cdot \operatorname{grad} g_j(y)^\top = e_j^\top$. Ersetze in $f'(x)^\top$ die k-te Spalte durch e_j^\top . Es entsteht die Matrix $A_k(x) = A_k(f^{-1}(y))$. Cramersche Regel $\Longrightarrow \frac{\partial g_j}{\partial y_k}(y) = \frac{\det A_k(f^{-1}(y))}{\det f'(x)} = \frac{\det A_k(f^{-1}(y))}{\det f'(f^{-1}(y))}$. $f \in C^1(D, \mathbb{R})$, f^{-1} stetig \Longrightarrow obige Definitionen hängen stetig von y ab $\Longrightarrow \frac{\partial g_j}{\partial y_k} \in C(f(D), \mathbb{R})$.

Satz 9.3 (Der Umkehrsatz)

Sei $\emptyset \neq D \subseteq \mathbb{R}^n$, D sei offen, $f \in C^1(D, \mathbb{R}^n)$, $x_0 \in D$ und $\det f'(x_0) \neq 0$. Dann existiert eine offene Umgebung U von x_0 und eine offene Umgebung V von $f(x_0)$ mit:

- (a) f ist auf U injektiv, f(U) = V und $\det f'(x) \neq 0 \ \forall x \in U$
- (b) Für $f^{-1}: V \to U$ gilt: f^{-1} ist stetig differenzierbar auf V und

$$(f^{-1})'(f(x)) = (f'(x))^{-1} \ \forall x \in U$$

Folgerung 9.4 (Satz von der offenen Abbildung)

D und f seien wie in 9.3 und es gelte: det $f'(x) \neq 0 \ \forall x \in D$. Dann ist f(D) offen.

Beweis

O.B.d.A:
$$x_0 = 0$$
, $f(x_0) = f(0) = 0$ und $f'(0) = I$ (= $(n \times n)$ -Einheitsmatrix)

Die Abbildungen $x \mapsto \det f'(x)$ und $x \mapsto \|f'(x) - I\|$ sind auf D stetig, $\det f'(0) \neq 0$, $\|f'(0) - I\| = 0$. Dann existiert ein $\delta > 0$: $K := U_{\delta}(0) \subseteq D$, $\overline{K} = \overline{U_{\delta}(0)} \subseteq D$ und

- (1) det $f'(x) \neq 0 \ \forall x \in \overline{K}$ und
- $(2) ||f'(x) I|| \le \frac{1}{2n} \forall x \in \overline{K}$
- (3) **Behauptung:** $\frac{1}{2}||u-v|| \le ||f(u)-f(v)|| \ \forall u,v \in \overline{K}$, insbesondere ist f injektiv auf \overline{K}
- (4) f^{-1} ist stetig auf $f(\overline{K})$: Seien $\xi, \eta \in f(\overline{K}), u := f^{-1}(\xi), v := f^{-1}(\eta) \implies u, v \in \overline{K}$ und $||f^{-1}(\xi) f^{-1}(\eta)|| = ||u v|| \leq 2||f(u) f(v)|| = 2||\xi \eta||$

Beweis zu (3): h(x) := f(x) - x $(x \in D) \implies h \in C^1(D, \mathbb{R}^n)$ und h'(x) = f'(x) - I. Sei $h = (h1, \dots, h_n)$. Also: $h' = \begin{pmatrix} h'_1 \\ \vdots \\ h'_n \end{pmatrix}$. Seien $u, v \in \overline{K}$ und $j \in \{1, \dots, n\}$.

 $|h_{j}(u) - h_{j}(v)| \stackrel{\text{6.1}}{=} |h'_{j}(\xi) \cdot (u - v)| \stackrel{\text{CSU}}{\leq} ||h'_{j}(\xi)|| ||u - v|| \leq ||h'(\xi)|| ||u - v||, \ \xi \in S[u, v] \in \overline{K}. \ (2)$ $\implies \leq \frac{1}{2n} ||u - v||$ $\implies ||h(u) - h(v)|| = \left(\sum_{j=1}^{n} (h_{j}(n) - h_{j}(v))^{2}\right)^{\frac{1}{2}} \leq \left(\sum_{j=1}^{n} \frac{1}{4n^{2}} ||u - v||^{2}\right)^{\frac{1}{2}} = \frac{1}{2n} ||u - v|| \sqrt{n} \leq ||u - v||^{2}$

 $\Rightarrow \|h(u) - h(v)\| = \left(\sum_{j=1}^{n} (h_j(n) - h_j(v))^2\right)^{\frac{1}{2}} \le \left(\sum_{j=1}^{n} \frac{1}{4n^2} \|u - v\|^2\right)^{\frac{1}{2}} = \frac{1}{2n} \|u - v\| \sqrt{n} \le \frac{1}{2} \|u - v\| \Rightarrow \|u - v\| - \|f(u) - f(v)\| \le \|f(u) - f(v) - (u - v)\| = \|h(u) - h(v)\| \le \frac{1}{2} \|u - v\| \Rightarrow (3)$

 $V:=U_{\frac{\delta}{4}}(0)$ ist eine offene Umgebung von f(0) (= 0). $U:=\{x\in K: f(x)\in V\}$ Klar: $U\subseteq K\subseteq \overline{K},\ 0\in U,\ 9.1\implies U$ ist eine offene Umgebung von 0. (3) $\Longrightarrow f$ ist auf U injektiv. (1) $\Longrightarrow \det f'(x)\neq 0 \ \forall x\in U.$ (4) $\Longrightarrow f^{-1}$ ist stetig auf f(U). Klar: $f(U)\subseteq V$. Für (a) ist noch zu zeigen: $V\subseteq f(U)$.

Sei $y \in V$. $w(x) := ||f(x) - y||^2 = (f(x) - y) \cdot (f(x) - y) \implies w \in C^1(D, \mathbb{R})$ und (nachzurechnen) $w'(x) = 2(f(x) - y) \cdot f'(x)$. \overline{K} ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists x_1 \in \overline{K}$: (5) $w(x_1) \leq w(x) \ \forall x \in \overline{K}$.

Behauptung: $x_1 \in K$.

Annahme: $x_1 \neq K \implies x_1 \in \partial K \implies ||x_1|| = \delta$. $2\sqrt{w(0)} = 2||f(0) - y|| = 2||y|| \le 2\frac{\delta}{4} = \frac{\delta}{2} = \frac{||x_1||}{2} = \frac{1}{2}||x_1 - 0|| \stackrel{(3)}{\le} ||f(x_1) - f(0)|| = ||f(x_1) - y + y - f(0)|| \le ||f(x_1) - y|| - ||f(0) - y|| = \sqrt{w(x_1)} + \sqrt{w(0)} \implies \sqrt{w(0)} < \sqrt{w(x_1)} \implies w(0) < w(x_1) \stackrel{(5)}{\le} w(0)$, Widerspruch. Also:

 $x_1 \in K$

(5) $\Longrightarrow w(x_1) \leq w(x) \ \forall x \in K. \ 8.1 \implies w'(x_1) = 0 \implies (f(x_1) - y) \cdot f'(x_1) = 0;$ (1) $\Longrightarrow f'(x_1)$ ist invertierbar $\Longrightarrow y = f(x_1) \implies x_1 \in U \implies y = f(x_1) \in f(U).$ Also: f(U) = V. Damit ist (a) gezeigt.

(b): Wegen 5.5 und 9.2 ist nur zu zeigen: f^{-1} ist differenzierbar auf V. Sei $y_1 \in V$, $y \in V \setminus \{y_1\}$, $x_1 := f^{-1}(y_1), \ x := f^{-1}(y); \ L(y) := \frac{f^{-1}(y) - f^{-1}(y_1) - f'(x_0)^{-1}(y - y_1)}{\|y - y_1\|}$. zu zeigen: $L(y) \to 0 \ (y - y_1)$. $\varrho(x) := f(x) - f(x_1) - f'(x_1)(x - x_1)$. f ist differenzierbar in $x_1 \implies \frac{\varrho(x)}{\|x - x_1\|} \to 0 \ (x \to x_1)$.

$$f'(x_1)^{-1}\varrho(x) = f'(x_1)^{-1}(y - y_1) - (f^{-1}(y) - f^{-1}(y_1)) = -\|y - y_1\|L(y)$$

$$\implies L(y) = -f'(x_1)^{-1} \frac{\varrho(x)}{\|y - y_1\|} = -f'(x_1)^{-1} \underbrace{\frac{\varrho(x)}{\|x - x_1\|}}_{\to 0} \cdot \underbrace{\frac{\|x - x_1\|}{\|f(x) - f(x_1)\|}}_{<2, \text{ nach } (3)}$$

Für $y \to y_1$, gilt (wegen (4)) $x \to x_1 \implies L(y) \to 0$.

Beispiel

$$f(x,y) = (x\cos y, x\sin y)$$

$$f'(x,y) = \begin{pmatrix} \cos y & -x\sin y \\ \sin y & x\cos y \end{pmatrix}, \det f'(x,y) = x\cos^2 y + x\sin^2 y = x$$

 $D := \{(x,y) \in \mathbb{R}^2 : x \neq 0\}. \text{ Sei } (\xi,\eta) \in D \text{ 9.3} \implies \exists \text{ Umgebung } U \text{ von } (\xi,\eta) \text{ mit: } f \text{ ist auf } U \text{ injektiv } (*). \text{ z.B. } (\xi,\eta) = (1,\frac{\pi}{2}) \implies f(1,\frac{\pi}{2}) = (0,1). \ f'(1,\frac{\pi}{2}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ (f^{-1})(0,1) = f'(1,\frac{\pi}{2})^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

Beachte: f ist auf D "lokal" injektiv (im Sinne von (*)), aber f ist auf D nicht injektiv, da $f(x,y)=f(x,y+2k\pi) \ \forall x,y\in \mathbb{R} \ \forall k\in \mathbb{Z}.$