Obsah

- Matrix Operations
- Systems of Linear Equations
- Vector Spaces
- <u>Linear Transformations</u>
- Bilinear and Quadratic Forms
 - Quadratic form
 - <u>Classification</u>
 - Congruent operations
 - Inner Product
 - Norms
 - Orthonormality
 - <u>Variation Principle</u>
 - Least Square Method
- <u>Eigenvalues and Eigenvectors</u>
 - <u>Spectral Decomposition</u>

Matrix Operations

Systems of Linear Equations

Vector Spaces

Linear Transformations

Bilinear and Quadratic Forms

Quadratic form

Definition: Q_B is a <u>quadratic form</u>, if it takes a vector and outputs a real number. $Q_B : \mathcal{V} \to \mathbb{R}$.

$$\mathcal{Q}_B(v) = \mathcal{B}(v,v) = \mathcal{B}_S(v,v)$$

Example: $\mathcal{Q}: \mathbb{R}^3 o \mathbb{R}; \mathcal{Q}(x) = x^T x = x_1^2 + x_2^2 + x_3^2$, always positive or zero

Example: $\mathcal{Q}:\mathbb{R}^2 o\mathbb{R};\mathcal{Q}(x)=x^TAx=a_{11}x_1^2+(a_{12}+a_{21})\,x_1x_2+a_{22}x_2^2$, contains zero

Example: $\mathcal{Q}: \mathcal{F}
ightarrow \mathbb{R}; \mathcal{Q}(f) = f^2(1)$

 $\mathcal{Q}_B(lpha x) = lpha^2 \mathcal{Q}(x)$, (prove by B(lpha x, lpha x))

Property: $1 \in R(\mathcal{Q}) \Rightarrow \mathcal{Q}(x) = 1$; $\mathcal{Q}(\alpha x) = \alpha^2 \mathcal{Q}(x) = \alpha^2$: if 1 is in the range, all positive numbers and zero is in the range; similarly if -1 is in the range, all negative numbers and zero is in the range.

Property: $\mathcal{Q}(0) = \mathcal{Q}(0 \bullet 0) = 0 \bullet \mathcal{Q}(0) = 0$

A bilinear form generating a quadratic form is not unique.

By adding any antisymmetric bilinear form, I'd get a new one.

Example: Find a symmetric bilinear form \mathcal{B}_S for quadratic form \mathcal{Q}_B .

$$\mathcal{B}_S(x+y,x+y) = \mathcal{B}(x,x) + \mathcal{B}(x,y) + \mathcal{B}(y,x) + \mathcal{B}(y,y) \ \mathcal{Q}(x) = \mathcal{Q}(x) + 2\mathcal{B}_S(x,y) + \mathcal{Q}(y) \ \mathcal{B}_S(x,y) = rac{1}{2} \left(\mathcal{Q}(x+y) - \mathcal{Q}(x) - \mathcal{Q}(y)
ight)$$

A symmetric bilinear form generating a quadratic is unique and given by $\mathcal{B}_S(x,y,)=\frac{1}{2}\left(\mathcal{Q}(x+y)-\mathcal{Q}(x)-\mathcal{Q}(y)\right)$.

Example: $\mathcal{B}(x,y) = 2x_1y_1 - 3x_1y_2 + 5x_2y_1 - x_2y_2; \varepsilon = \{[1,0],[0,1]\}$

$$B = egin{bmatrix} 2 & -3 \ 5 & -1 \end{bmatrix}; B_S = rac{1}{2} \left(B + B^T
ight) = egin{bmatrix} 2 & 1 \ 1 & -1 \end{bmatrix}; Q = B_S = egin{bmatrix} 2 & 1 \ 1 & -1 \end{bmatrix}$$

A matrix of quadratic form is equal to a matrix of corresponding bilinear form.

Classification

Definition: A positive definite form: $Q: \mathcal{V} \rightarrow \mathbb{R}: \forall x \in \mathcal{V}, x \neq o: \mathcal{Q}(x) > 0$.

Definition: A <u>negative definite form</u>: $\mathcal{Q}: \mathcal{V} \rightarrow \mathbb{R}: \forall x \in \mathcal{V}, x \neq o: \mathcal{Q}(x) < 0.$

Definition: A positive semi definite form: $\mathcal{Q}: \mathcal{V} \rightarrow \mathbb{R}: \forall x \in \mathcal{V}, x \neq o: \mathcal{Q}(x) \geq 0.$

Definition: A <u>negative semi definite form</u>: $\mathcal{Q}: \mathcal{V} \rightarrow \mathbb{R}: \forall x \in \mathcal{V}, x \neq o: \mathcal{Q}(x) \leq 0$.

Definition: A <u>indefinite form</u>: $\mathcal{Q}: \mathcal{V} \rightarrow \mathbb{R}: \exists x \in \mathcal{V}, x \neq o: \mathcal{Q}(x) < 0 \land \exists y \in \mathcal{V}, y \neq o: \mathcal{Q}(x) > 0$.

Example: Classify $\mathcal{Q}(x) = -2x_1^2 + 2x_1x_2 - 3x_2^2$

$$s_1 = x_1 - \frac{1}{2}x_2$$

$$Q(x) = -2x_1^2 + 2x_1x_2 - 3x_2^2 = -2\left(x_1^2 - x_1x_2 + \frac{1}{4}x^2\right) - \frac{5}{2}x_2^2 = -2\left(x_1 - \frac{1}{2}x_2\right)^2 - \frac{5}{2}x_2^2 \xrightarrow{} -2s_1^2 - \frac{5}{2}s_2^2,$$
 aka it's negative definite form.

$$[Q]_N = \begin{bmatrix} -2 & 1 \\ 1 & -3 \end{bmatrix}; s = \left(S = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}\right)x; [Q]_S = \begin{bmatrix} -2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix}; \text{We diagnolised our matrix}.$$

Congruent operations

Perform a row operation and at the same time the corresponding column operation.

$$[Q]_N = egin{bmatrix} -2 & 1 \ 1 & -3 \end{bmatrix} \sim egin{bmatrix} -2 & 1 \ 0 & -rac{5}{2} \end{bmatrix} \sim egin{bmatrix} -2 & 0 \ 0 & -rac{5}{2} \end{bmatrix}$$

For all symmetric matrices $[A|I] \sim [D|\widetilde{L}]$ is called <u>LD decomposition</u>.

Example: Classify
$$\mathcal{Q}(x):Q=egin{bmatrix} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & -2 \\ 0 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \text{, it is a positive definite form.}$$

Inner Product

Definition: Inner product on the real vector space \mathcal{V} is a symmetric bilinear form on \mathcal{V} , which corresponding quadratic form is a positive definite one.

$$(u+v,w) = (u,w) + (v+w) \ (lpha u,v) = lpha (u,v) \ (u,v) = (v,u) \ (u,u) > 0; u
eq 0$$

Example: Examine, whether (f,g)=f(0)g(0)+f(1)g(1) is an inner product. (HOWTO: Examine all 4 conditions.)

Example: Examine, whether $(x,y)_A=x^TAy$ is an inner product. (It is.)

Norms

Definition: The norm of the vector on the real vector space \mathcal{V} is a positive definite one quadratic form.

 $||x+y|| \leq ||x|| + ||y||$ (triangular inequality)

$$\|\alpha x\| = \alpha \|x\| \|x\| = 0 \Leftrightarrow x = 0$$

Example: $\left\|x\right\|_2 = \sqrt{x^2 + y^2}$ (Euclidian norm); $\left\|x\right\|_0 = \sum_i^n |x_i|$ (zero norm); $\left\|x\right\|_\infty = \max_i |x_i|$ (maximum norm)

Example: Energy norms: $(x,y)_A = x^TAy; \left\|x\right\|_A = \sqrt{(x,y)_A}$

Cauchy–Bunyakovsky–Schwarz inequality: $(x,y)^2 \leq (x,x) \bullet (y,y)$

Orthonormality

Definition: An orthonormal means that the norm of all vectors is equal to one and is orthogonal.

Definition: An orthogonal means, that the inner product of any two vector is equal to zero.

Gram-Schmidt Algorithm: Make a set of vectors to orthonormal set.

- 1. Take the first vector from the set.
- 2. Orthogonalize the vector. We know ${f'}_n=e_n-lpha_{n-1}f_{n-1}-\ldots$, where $lpha_y=(f_y,e_n)\,,\ldots$
- 3. Orthonormalize the vector divide it by its norm.

Example: Find an orthonormal basis: $(x,y)_A=x^TAy;\;A=\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-1&2\end{bmatrix}; \left\|x\right\|_A=\sqrt{x^TAx}; \mathcal{V}=\mathbb{R}^3$

$$\varepsilon = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}; f = \left\{ \frac{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}{\left\| \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\| = \sqrt{2}} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ 0 \end{bmatrix}, \frac{\begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}}{\left\| \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} \right\| = \frac{\sqrt{6}}{2}} = \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} \bullet \frac{\sqrt{6}}{2}, \frac{\begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix}}{\left\| \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\| = \frac{2\sqrt{3}}{3}} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \bullet \frac{\sqrt{3}}{2} \right\}$$

Example: Find an orthonormal basis of \mathcal{P}^2 : $(p,q)=\int_0^1 p(x)q(x)dx; \left\|p
ight\|_A=\sqrt{\int_0^1 p(x)^2dx}$

$$\left\{ arepsilon arepsilon = \left\{ 1; x; x^2
ight\}; f = \left\{ rac{x^2}{\|x^2\| = rac{\sqrt{5}}{5}} = \sqrt{5} x^2, rac{x - rac{5}{4} x^2}{\|x - rac{5}{4} x^2\| = rac{\sqrt{12}}{12}} = -5 \sqrt{3} x^2 + 4 \sqrt{3} x, \ldots
ight\}$$

Variation Principle

Theorem: The matrix A is symmetric and positive definite, $(x,y)_A=x^TAy$, $b(x)=b^tx$, $q(x)=\frac{1}{2}(x,x)_A-b(x)$, vectors b and \overline{x} .

$$A\overline{x} = b \Leftrightarrow (x,y)_A = b(y), \forall y \in \mathbb{R}^n \Leftrightarrow !\exists \overline{x} : q(\overline{x}) \leq q(x)$$

Notes: q(x) is an error function. The solution \overline{x} has the smallest error possible.

Let's use the middle equation $(x,y)_A=b(y),y\in f$. We can then count only $lpha_1=b\left(f_1
ight)$ \cdots . $lpha_n=b\left(f_n
ight)$

Least Square Method

r(x) = Ax - b is called the <u>residual vector</u>. It changes the problem to minimalize the residuum.

Theorem: The minimal residuum is achieved at $A^TAx = A^Tb$

$$x_1 + x_2 = 0$$

Example: $2x_1+x_2=4$

 $3x_1 + x_2 = 4$

$$A=egin{bmatrix}1&1\2&1\3&1\end{bmatrix};A^T=egin{bmatrix}1&2&3\1&1&1\end{bmatrix};b=egin{bmatrix}0\4\4\end{bmatrix};A^TA=egin{bmatrix}14&6\6&3\end{bmatrix};A^Tb=egin{bmatrix}20\8\end{bmatrix};x=egin{bmatrix}2\-rac{4}{3}\end{bmatrix}$$

Eigenvalues and Eigenvectors

Spectral Decomposition

Spectral decomposition, a.k.a. diagonalization, is concerned with a linear transformation $A_{F,F} = T \bullet A_{E,E} \bullet T^{-1}$, where the

 $\mathsf{matrix}\, A_{E,E} \coloneqq \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}. \, \mathsf{Assume, that for some}\, A \, \mathsf{it holds true,}\, A \bullet e_i = \lambda_i \bullet e_i \, \mathsf{and}\, e_1, \ldots, e_n \, \mathsf{are linearly} \, \mathsf{and}\, e_1, \ldots, e_n \, \mathsf{are linearly} \, \mathsf{and}\, e_1, \ldots, e_n \, \mathsf{and}\, \mathsf{and}\, e_n \, \mathsf{and}\, e_n \, \mathsf{and}\, e_n \, \mathsf{and}\, e_n \, \mathsf{and}\, \mathsf{and}\, e_n \, \mathsf{and}\, \mathsf{a$

 $\text{independent. That implies } A \bullet (T \coloneqq [e_1, \dots, e_n]) = [\lambda_1 \bullet e_1, \dots, \lambda_n \bullet e_n] \text{, and so } A \bullet T = T \bullet \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}.$

Conclusion 1: For any matrix $A \in C^{n \times n}$: $A = T \bullet D \bullet T^{-1}$.

Assume that A is real and symmetric. We know $A \bullet e = \lambda \bullet e$. We can multiple by $e^* \bullet$ to get $(e^*)^T \bullet A \bullet e = \lambda \bullet \|e\|^2$. Now we know $e^T \bullet A^T \bullet e^* = e^T \bullet A \bullet e^* = e^T \bullet (A \bullet e)^* = e^T \bullet \lambda^* \bullet e^* = \lambda^* \bullet \|e\|^2$, so $\lambda \in \mathbb{R}$.

Conclusion 2: For any real symmetric matrix $A \in C^{n imes n}$: $orall \lambda_i : \lambda_i \in \mathbb{R}$

Assume that A is real and symmetric. We know $A \bullet e = \lambda \bullet e$. We can multiply by $e_j \bullet$, where $\lambda_i \neq \lambda_j$. Now $e_j^T \bullet A \bullet e_i = \lambda_i \bullet e_j^T \bullet e_i$, so $e_j^T \bullet A \bullet e_i = e_i^T \bullet A^T \bullet e_j = e_i^T \bullet (A \bullet e_j) = \lambda_j \bullet e_i^T \bullet e_j$. Now because $(\lambda_i - \lambda_j) \bullet (e_i \bullet e_j) = 0$.

Conclusion 3: For any real symmetric matrix $A \in C^{n imes n}$: $orall \, (e_i, e_j) : e_i ot e_j, \lambda_i
eq \lambda_j$

 $A=Tullet (D\in R^{n imes n})ullet T^{-1}=Qullet Dullet Q^T$, where Q is orthogonal matrix

Example: Compute the spectral decomposition of $A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$.

$$egin{aligned} |A-\lambda I| &= igg| egin{aligned} 3-\lambda & 2 \ 2 & 1-\lambda \end{matrix} igg| &= \lambda^2 - 4\lambda - 1; \lambda_1 = 2 + \sqrt{5}, \lambda_2 = 2 - \sqrt{5} \end{aligned} \ \lambda_1 &= 2 + \sqrt{5} : e_1' = t ullet igg[egin{aligned} -2 \ 1 - \sqrt{5} \end{matrix} igg], \ t^2 ullet lpha &= 1 \Rightarrow e_1 = igg[egin{aligned} -rac{2}{\sqrt{lpha}} \ rac{1-\sqrt{5}}{\sqrt{lpha}} \end{matrix} igg] \end{aligned} \ \lambda_2 : e_2 &= s ullet igg[egin{aligned} -2 \ 1 + \sqrt{5} \end{matrix} igg], s = rac{1}{\sqrt{eta}}, eta = 4 + \left(1 + \sqrt{5}\right)^2 \end{aligned} \ Q &= [e_1, e_2]; D = egin{aligned} 2 + \sqrt{5} & 0 \ 0 & 2 - \sqrt{5} \end{matrix} igg]; A = Q ullet D ullet Q^T \end{aligned}$$