Introductory Functional Analysis Chapter 1 Exercises

Top Maths

Last Updated: Tuesday 2nd April, 2024

1.1. Prove the reverse triangle inequality: For vectors x and y in any normed linear space,

$$||x - y|| \ge |||x|| - ||y|||.$$

 \square

¹There is a typo in the book. The reverse triangle inequality is as I stated here.

1.2. Show that C[0,1] is a Banach space in the supremum norm. Hint: if $\{f_n\}$ is a Cauchy sequence in C[0,1], then for each fixed $x \in [0,1]$, $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{C} , which is complete.

Proof. Suppose $\{f_n\}$ is a Cauchy sequence in C[0,1]. That means, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$ we have

$$||f_n - f_m|| = \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$

We also get that, for $m, n \ge N$, for all $a \in [0, 1]$,

$$|f_n(a) - f_m(a)| \le \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$
 (1)

In particular, since $\{f_n\}$ is a Cauchy sequence in C[0,1], $\{f_n(a)\}$ is a Cauchy sequence in \mathbb{C} for all $a \in [0,1]$. Since \mathbb{C} is complete, $\{f_n(a)\}$ converges (because it is Cauchy) for all $a \in [0,1]$. For each $a \in [0,1]$, define

$$f(a) := \lim_{n \to \infty} f_n(a).$$

Considering (1) again, we have by the continuity of $|\cdot|$,

$$\lim_{m \to \infty} |f_n(a) - f_m(a)| = |f_n(a) - \lim_{m \to \infty} f_m(a)| = |f_n(a) - f(a)| < \varepsilon.$$

Since this ε is independent of our choice of $a \in [0, 1]$, it follows that

$$\sup |f_n(a) - f(a)| = ||f_n - f|| < \varepsilon$$

giving that $f_n \to f$ in C[0,1]. To establish the continuity of f, pick $a \in [0,1]$ and let $\varepsilon > 0$ arbitrary. Since each f_n is continuous, there exists $\delta > 0$ such that

$$|x-a| < \delta \implies |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}.$$

Also, pick n large enough so that

$$\sup_{p \in [0,1]} |f_n(p) - f(p)| < \frac{\varepsilon}{3}.$$

Then,

$$|f(x) - f(a)| = |f(x) - f(a) + f_n(x) - f_n(x) + f_n(a) - f_n(a)|$$

$$= |f(x) - f_n(x) + f_n(x) - f_n(a) + f_n(a) - f(a)|$$

$$\leq |f(x) - f_n(x)| + \underbrace{|f_n(x) - f_n(a)|}_{<\varepsilon/3} + |f_n(a) - f(a)|$$

$$\leq ||f - f_n|| + \frac{\varepsilon}{3} + ||f_n - f||$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

1.3. Let $C^1[0,1]$ be the space of continuous, complex-valued functions on [0,1] with continuous first derivative. Show that with the supremum norm $\|\cdot\|_{\infty}$, $C^1[0,1]$ is not a Banach space, but that in the norm defined by $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$ it does become a Banach space.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}\subseteq C^1[0,1]$ be defined by

$$f_n(x) = \sqrt{x + \frac{1}{n}}$$
 $(x \in [0, 1]).$

Observe that \sqrt{x} is uniformly continuous² on [0, 1], and so for all $\varepsilon > 0$ there exists $\delta > 0$ such that for any two points $p_1, p_2 \in [0, 1]$,

$$|p_1 - p_2| < \delta \implies |f(p_1) - f(p_2)| < \varepsilon.$$

Take $p_1 = x + 1/n$ and $p_2 = x$, then the uniform continuity condition yields

$$\frac{1}{n} < \delta \implies \left| \sqrt{x + 1/n} - \sqrt{x} \right| < \varepsilon.$$

There exists $N \in \mathbb{N}$ large enough so that $1/n < \delta$, and so there exists $n \in \mathbb{N}$ large enough so that

$$\left| \sqrt{x + 1/n} - \sqrt{x} \right| < \varepsilon.$$

Since this ε comes from the uniform continuity condition, it is independent of the choice of x, as is N, and therefore there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$\sup_{x \in [0,1]} \left| \sqrt{x + 1/n} - \sqrt{x} \right| < \varepsilon.$$

While $\sqrt{x+1/n}$ converges to \sqrt{x} in the supremum norm, we find that $\sqrt{x} \notin C^1[0,1]$ because the derivative of \sqrt{x} :

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

is not differentiable at 0, and hence $(C^1[0,1], \|\cdot\|_{\infty})$ is not a Banach space.

We'll consider the new norm $\|\cdot\|$ as defined above. Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $(C^1[0,1],\|\cdot\|)$. And so for all $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that for $m,n\geq N$,

$$||f_n - f_m|| = ||f_n - f_m||_{\infty} + ||f'_n - f'_m||_{\infty} < \varepsilon.$$

It follows immediately that $\{f_n\}_{n\in\mathbb{N}}$ and $\{f'_n\}_{n\in\mathbb{N}}$ are a Cauchy sequences in C[0,1], and from our previous work we know $\lim_{n\to\infty} f_n = f$ and $\lim_{n\to\infty} f'_n = g$, where

$$f(x) := \lim_{n \to \infty} f_n(x), \qquad g(x) := \lim_{n \to \infty} f'_n(x)$$

for all $x \in [0,1]$. In fact, since this convergence is in the sup-norm, it follows³ that $\{f_n\}_{n\in\mathbb{N}}$ uniformly converges to f and $\{f'_n\}_{n\in\mathbb{N}}$ uniformly converges to g. But, we now have the conditions acquired⁴ to say that

$$g(x) = f'(x) = \lim_{n \to \infty} f'(x).$$

Therefore,

$$\lim_{n \to \infty} ||f_n - f|| = \lim_{n \to \infty} ||f_n - f||_{\infty} + \lim_{n \to \infty} ||f'_n - f'||_{\infty} = 0.$$

Hence, $C^1[0,1]$ is complete under this new norm.

²Continuous functions on compact sets, such as [0, 1] in question here, are always uniformly continuous

³See Principles of Mathematical Analysis (PMA) by Walter Rudin, 3rd Edition, Theorem 7.9 on p. 148

⁴See PMA, Theorem 7.17, p. 152

1.4. Show that the space ℓ^1 of Example 1.5 is complete.

Proof. Writing down the definition of ℓ^1 for convenience, we have:

$$\ell^1 = \left\{ \{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{C} : \|\{a_n\}\|_1 = \sum_{n=1}^{\infty} |a_n| < \infty \right\}.$$

Let $\{\{a_m^n\}_{m\in\mathbb{N}}\}_{n\in\mathbb{N}}$ be a notations nightmare, but also let it be a Cauchy sequence in ℓ^1 , and so for all $\varepsilon>0$ there exists $N\in\mathbb{N}$ such that for $k,\ell\geq N$,

$$\|\{a_n^{\ell}\} - \{a_n^{k}\}\| = \|\{a_n^{\ell} - a_n^{k}\}\| = \sum_{n=1}^{\infty} |a_n^{\ell} - a_n^{k}| < \varepsilon.$$

For a fixed n^* , we have

$$|a_{n^*}^{\ell} - a_{n^*}^{k}| < \sum_{n=1}^{\infty} |a_n^{\ell} - a_n^{k}| < \varepsilon$$

and so, for each fixed $n^* \in \mathbb{N}$,

$$\{a_{n^*}^\ell\}_{\ell\in\mathbb{N}}$$

is a Cauchy sequence in \mathbb{C} . For all $n \in \mathbb{N}$, let $\{a_n\}_{n \in \mathbb{N}}$ be the sequence defined by

$$a_n = \lim_{\ell \to \infty} a_n^{\ell}$$

for all $n \in \mathbb{N}$. First, we check that $\sum |a_n| < \infty$. We have,

$$\sum_{n=1}^{\infty} |a_n| = \lim_{\ell \to \infty} \sum_{n=1}^{\infty} |a_n^{\ell}|$$

Is this limit finite? In terms of the reverse triangle inequality for norms, we have,

$$\left| \sum_{n=1}^{\infty} |a_n^{\ell}| - \sum_{n=1}^{\infty} |a_n^{k}| \right| \le \sum_{n=1}^{\infty} |a_n^{\ell} - a_n^{k}| < \infty$$

by our Cauchy condition we obtained earlier. This result gives that the sequence of sums

$$\left\{ \sum_{n=1}^{\infty} |a_n^{\ell}| \right\}_{\ell \in \mathbb{N}}$$

is a Cauchy sequence of complex numbers, and therefore converges. Hence, $\{a_n\}_{n\in\mathbb{N}}\in\ell^1$. Now, to prove $\lim_{\ell\to\infty}\{a_n^\ell\}_{n\in\mathbb{N}}=\{a_n\}_{n\in\mathbb{N}}$, we have

$$\lim_{\ell \to \infty} \|\{a_n^{\ell}\} - \{a_n\}\|_1 = \sum_{n=1}^{\infty} |a_n^{\ell} - a_n|$$

$$= \sum_{n=1}^{\infty} |\lim_{\ell \to \infty} a_n^{\ell} - a_n|$$

$$= 0$$

We have shown ℓ^1 is complete, as desired.

1.5. Show that a metric space is complete if every Cauchy sequence has a convergent subsequence.

Proof. Let (X,d) be a metric space having the property that every Cauchy sequence in X has a convergent subsequence. Given any sequence $\{x_n\}_{n\in\mathbb{N}}$ in X, let $\{x_{n_j}\}_{j\in\mathbb{N}}$ be a convergent subsequence to $x\in X$. Since $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy, there exists $N_1\in\mathbb{N}$ such that for $j,m\geq N_1$,

$$d(x_m, x_{n_j}) < \frac{\varepsilon}{2}.$$

Moreover, by the fact $\lim_{j\to\infty} x_{n_j} = x$, there exists $N_2 \in \mathbb{N}$ such that for $j \geq N_2$,

$$|x_{n_j} - x| < \frac{\varepsilon}{2}.$$

Take $N = \max\{N_1, N_2\}$, and therefore for $n, j \geq N$,

$$d(x_n, x) \le d(x_n, x_{n_j}) + d(x_{n_j}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, $\lim_{n\to\infty} x_n = x$ and we conclude that (X, d) is complete.

1.6. Assume that you now Minkowski's inequality

$$\left(\sum_{j=1}^{n} |a_j + b_j|^2\right)^{1/2} \le \left(\sum_{j=1}^{n} |a_j|^2\right)^{1/2} + \left(\sum_{j=1}^{n} |b_j|^2\right)^{1/2}$$

for \mathbb{C}^n in the Euclidean norm.

(a) Show that for $\{a_n\}$ and $\{b_n\}$ in a weighted sequence space ℓ^2_{β} ,

$$\left(\sum_{j=0}^{\infty} |a_j + b_j|^2 \beta(j)^2\right)^{1/2} \le \left(\sum_{j=0}^{\infty} |a_j|^2 \beta(j)^2\right)^{1/2} + \left(\sum_{j=0}^{\infty} |b_j|^2 \beta(j)^2\right)^{1/2}$$

(b) Verify directly that ℓ_{β}^2 is complete.

Proof.

(a) For convenience, we recall the definition of ℓ^2_β . For $\{\beta(n)\}_{n=0}^\infty$ a sequence of positive numbers with $\beta(0)=1$, $\lim_{n\to\infty}\beta(n)^{1/n}\geq 1$, we have $\{a_n\}_{n=0}^\infty\in\ell^2_\beta$ if and only if

$$\sum_{n=0}^{\infty} |a_n|^2 \beta(n)^2 < \infty.$$

Suppose that $\{a_n\}, \{b_n\} \in \ell^2_\beta$ and define $\{a'_n\}, \{\beta'_n\}$ by setting $a'_j = a_j\beta(j), b'_j = b_j\beta(j)$. For all $m \in \mathbb{N}$, we have by the given finite Minkowski inequality over \mathbb{C}^m :

$$\left(\sum_{j=1}^{m} |a'_j + b'_j|^2\right)^{1/2} \le \left(\sum_{j=1}^{m} |a'_j|^2\right)^{1/2} + \left(\sum_{j=1}^{m} |b'_j|^2\right)^{1/2}.$$

Replacing a'_i, b'_i in terms of a_j and b_j , we obtain the inequality

$$\left(\sum_{j=1}^{m} |a_j + b_j|^2 \beta(j)^2\right)^{1/2} \le \left(\sum_{j=1}^{m} |a_j|^2 \beta(j)^2\right)^{1/2} + \left(\sum_{j=1}^{m} |b_j|^2 \beta(j)^2\right)^{1/2}$$

for all $m \in \mathbb{N}$.

(b)