REAL ANALYSIS: LECTURE 7

SEPTEMBER 28TH, 2023

1. PRELIMINARIES

We began with a brief remark about proofs:

Remark. Suppose you wanted to prove that $A \implies B$. There are two general options:

- (1) Suppose A. Super smart math stuff... And therefore, by the quantum crypto AI theorem, B. This is a **direct proof**.
- (2) Suppose not B. Then equally super smart math... Therefore, not A. This is a **contrapositive proof**. This is basically saying (if A then B is equivalent to if not B then not A). In fancy math language,

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A),$$

where $\neg A$ is the *negation of* A, i.e. not A.

Notice that you cannot suppose B and prove A!

This doesn't work out. Here's an example. If you are a math major, then you take real analysis. Notice that the *converse* is: if you take real analysis, you are a math major. This is not true! Plenty of non-math majors take real analysis.

Previously, on real analysis. We discussed induction and proved 1 is the smallest element of \mathbb{Z}_{pos} and \mathbb{Z}_{pos} are closed under +. Here's a statement similar to induction:

2. STRONG INDUCTION

Proposition 1 (Strong Induction). Suppose S(n) is a sequence of logical assertions, one for each $n \in \mathbb{Z}_{pos}$, such that

- (i) S(1) is true, and
- (ii) S(k) must be true whenever S(j) is true $\forall j \in \mathbb{Z}_{pos}$ such that j < k.

Then, S(n) is true $\forall n \in \mathbb{Z}_{pos}$.

Notice here you have a *stronger* requirement: rather than just know S(k-1) to imply S(k) (regular induction), we now need S(j) for every j < k to imply S(k).

Let's show an example of using strong induction. We begin with a definition:

Definition (Well Ordered). A set $S \subseteq \mathbb{R}$ is well ordered iff every nonempty subset of S has a least element.

Thanks to Jon for the catch that the subset can't be empty. In other words, a set $S \subseteq \mathbb{R}$ is well ordered if you can "order" every nonempty subset of S. For example, $\{1,2\} \subseteq \mathbb{R}$ is well ordered. Miles gave an example that isn't well ordered. Notice $\mathbb{R} \subseteq \mathbb{R}$, but \mathbb{R} doesn't have a least element.

What about [0,1]? Is it well ordered? Nope. Harry considered subset $(.5,.6) \subseteq [0,1]$. Notice there is no least element of .5. For example, for $\epsilon > 0$, $.5 + \epsilon$ is not the least element, since $.5 + \epsilon/2 < .5 + \epsilon$, and $.5 + \epsilon/2 \in (.5,.6)$. Another example of a set that isn't well ordered is \mathbb{Z} ; there's no smallest integer.

Proposition 2 (\mathbb{Z}_{pos} are well ordered). We proceed by strong induction, which means we need to come up with a sequence of logical assertions and show the relevant conditions hold.

Suppose $A \subseteq \mathbb{Z}_{pos}$ s.t. A has no least element (our goal is to show $A = \emptyset$). Let S(n) be the logical assertion $n \notin A$. We proved 1 is the least element in \mathbb{Z}_{pos} . So, if $1 \in A$, 1 would be the least element of A. Thus, $1 \notin A$, i.e. S(1) is true.

Suppose S(j) is true for every $j \in \mathbb{Z}_{pos}$ s.t. j < k. Thus, $j \notin A \ \forall j < k$. In other words, $j \in A$ implies $j \geq k$. Suppose, for the sake of contradiction, $k \in A$. Then we know every $j \in A$ has $j \geq k$, which means that k is the least element! This contradictions the definition of A. Thus, S(k) is true. By strong induction, S(j) is true for every positive integer j, which means $A = \emptyset$. Thus, \mathbb{Z}_{pos} are well ordered!

In general, it makes sense to use strong induction when you must know all of the previous S(j), not just the last piece of information S(k-1).

Let's take a step back. We constructed \mathbb{R} , and from there created $\mathbb{Z}_{pos}, \mathbb{Z}, \mathbb{Q}$. However, we don't really know about relationships between these. Our intuition, on the other hand, understands strong relationships between these sets. For example, we know intuitively that every $x \in \mathbb{R}$ can be approximated pretty well by an integer. Let's prove a formalized version of this:

Proposition 3. $\forall x \in \mathbb{R}, \exists N \in \mathbb{Z} \text{ and } \alpha \in [0, 1) \text{ s.t.}$

$$x = N + \alpha$$
.

Moreover, N and α are uniquely determined by x.

For example, $\pi=3+0.1415926\ldots$ (here $N=3,\alpha=0.14159$). Further, the only (N,α) that fulfill the above proposition are 3 and 0.14159; this N,α uniquely determined. Intuitively, how can we prove this?

Well, given x, how can we find N and α .

Jenna had a nice argument. Look at all the integer > x. By well ordering there's a least integer N'. Then N'-1 is the greatest integer less than x, so N=N'-1. Then we can find α with $\alpha=x-N$. Edith suggest showing it's unique by supposing there are two pairs $(N,\alpha),(M,\beta)$ and using the fact that $|N-M| \ge 1$ to show α or β is too large or too small. Here's a picture:

$$N$$
 x m $m+1$ $m+2$

Ok, let's prove this.

Proof. We'll assume $x \ge 1$, and you'll prove x < 1 on your homework. Let

$$J:=\{n\in\mathbb{Z}_{\mathrm{pos}}\ :\ n>x\}.$$

Since \mathbb{Z}_{pos} are well ordered, J has a least element $m \in \mathbb{Z}_{pos}$. Then set $N := m-1, \alpha = x-N$. We claim that

- (i) $N \in \mathbb{Z}_{pos}$
- (ii) $N \leq x$
- (iii) $\alpha \in [0,1)$

Proof of (i): We know $m \in \mathbb{Z}_{pos}$. Here's a quick lemma:

Lemma 1. If $m \in \mathbb{Z}_{pos}$, $m - 1 \in \mathbb{Z}_{pos} \cup \{0\}$.

Proof. Proved in the book.

Proof of (i): By the above lemma it suffices to show $N \neq 0$. Since $x \geq 1$, we get $m > x \geq 1$, which means $N = m - 1 > 0 \implies N \neq 0$. So, $N \in \mathbb{Z}_{pos}$.

Proof of (ii): Notice $m > m - 1 = N \notin J$ but is in \mathbb{Z}_{pos} , which means $N \leq x$.

Proof of (iii) $\alpha = x - N \ge 0$. Also,

$$\alpha = x - N$$
$$= x - m + 1.$$

Since x < m, we get x - m < 0, which from above tells us x - m + 1 < 1. Here, Miles pointed out an issue. To apply well-ordering, we need to know that $J \neq \emptyset$. The fact that there are arbitrary large integers (i.e. J

always is nonempty) is something called the *Archimedian Property*. Next time we will prove this property. \Box