Devoir à la maison nº 1

Problème 1 —

Pour tout $x \in \mathbb{R}_+^*$, on pose

$$f(x) = (1-x)\sqrt{x}$$
 et $g(x) = -x \ln x$

On note \mathcal{C}_f et \mathcal{C}_g les courbes représentatives de f et g.

Partie I – Position relative de C_f et C_g

- 1. On pose $\varphi(x) = \frac{f(x) g(x)}{x}$ pour tout $x \in \mathbb{R}_+^*$. Justifier que φ est dérivable sur \mathbb{R}_+^* et déterminer une expression factorisée de $\varphi'(x)$ pour $x \in \mathbb{R}_+^*$.
- 2. Calculer $\varphi(1)$ et en déduire les positions relatives de \mathcal{C}_f et \mathcal{C}_g .

Partie II - Calcul d'intégrales

Pour tout $a \in \mathbb{R}_+^*$, on pose

$$I(\alpha) = \int_{\alpha}^{1} f(x) dx$$
 et $J(\alpha) = \int_{\alpha}^{1} g(x) dx$

- 1. Calculer $I(\mathfrak{a})$ pour tout $\mathfrak{a} \in \mathbb{R}_+^*$.
- 2. On pose $\psi(x) = x^2 \ln x$ pour tout $x \in \mathbb{R}_+^*$. Justifier que ψ est dérivable sur \mathbb{R}_+^* et calculer sa dérivée. En déduire une primitive de g sur \mathbb{R}_+^* puis la valeur de $J(\mathfrak{a})$ pour tout $\mathfrak{a} \in \mathbb{R}_+^*$.
- $\textbf{3.} \ \ \mathrm{On \ rappelle \ que } \lim_{u \to +\infty} \frac{\ln u}{u} = 0. \ \mathrm{Montrer \ que } \lim_{x \to 0^+} \psi(x) = 0.$
- 4. En déduire la valeur de la limite $\lim_{\alpha \to 0^+} I(\alpha) J(\alpha).$

Partie III – Résolution approchée d'une équation

- 1. Justifier que l'équation g(x) = -24 admet une unique solution sur \mathbb{R}_+^* que l'on notera α et montrer que $\alpha \in [9, 11]$.
- **2.** On pose $h(x) = \frac{24}{\ln x}$ pour tout $x \in \mathbb{R}_+^* \setminus \{1\}$.
 - **a.** Montrer que pour tout $x \in [9, 11]$, $h(x) \in [9, 11]$.
 - **b.** On pose $K = \frac{2}{3(\ln 3)^2}$. Montrer que pour tout $t \in [9, 11], |h'(t)| \leq K$.
 - c. En déduire que pour tout $x \in [9,11], |h(x)-h(\alpha)| \leqslant K|x-\alpha|$. On pourra remarquer que

$$h(x) - h(\alpha) = \int_{\alpha}^{x} h'(t) dt$$

- 3. On définit la suite (u_n) par $u_0=9$ et $u_{n+1}=h(u_n)$ pour tout $n\in\mathbb{N}.$
 - $\mathbf{a.} \ \ \mathrm{Montrer} \ \mathrm{que} \ u_n \in [9,11] \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N} \ \mathrm{puis} \ \mathrm{que} \ |u_{n+1} \alpha| \leqslant K|u_n \alpha| \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}.$
 - $\mathbf{b.} \ \, \mathrm{En} \, \, \mathrm{d\acute{e}duire} \, \, \mathrm{que} \, \, |u_n \alpha| \leqslant 2 K^n \, \, \mathrm{pour} \, \, \mathrm{tout} \, \, n \in \mathbb{N} \, \, \mathrm{puis} \, \, \mathrm{que} \, \, \mathrm{la} \, \, \mathrm{suite} \, \, (u_n) \, \, \mathrm{converge} \, \, \mathrm{vers} \, \, \alpha.$
 - c. En utilisant ce qui précède, écrire un algorithme permettant de déterminer une valeur approchée de α à ϵ près, où $\epsilon \in \mathbb{R}_+^*$.

Utiliser cet algorithme pour déterminer une valeur approchée à 10^{-2} près de α .