Antenna 4





Report No.: GTSR17020073-02 Page 48 of 78

#### 4.6. 6dB Bandwidth

#### **TEST CONFIGURATION**



## **TEST PROCEDURE**

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a. Set RBW = 100 kHz.
- b. Set the video bandwidth (VBW) ≥ 3 × RBW
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

#### **LIMIT**

For Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz

## **TEST RESULTS**

# Antenna 1

| Туре        | Channel | 6dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|---------------------|-------------|--------|
|             | 149     | 16.41               |             |        |
| 802.11ac    | 157     | 16.43               | ≥500        | Pass   |
|             | 165     | 16.40               |             |        |
|             | 149     | 17.61               |             |        |
| 802.11nHT20 | 157     | 17.61               | ≥500        | Pass   |
|             | 165     | 17.62               |             |        |

## Antenna 2

| Туре        | Channel | 6dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|---------------------|-------------|--------|
|             | 149     | 16.44               |             |        |
| 802.11ac    | 157     | 16.39               | ≥500        | Pass   |
|             | 165     | 16.43               |             |        |
|             | 149     | 17.62               |             |        |
| 802.11nHT20 | 157     | 17.62               | ≥500        | Pass   |
|             | 165     | 17.63               |             |        |

# Antenna 3

| Туре        | Channel | 6dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|---------------------|-------------|--------|
|             | 149     | 16.41               | ≥500        | Pass   |
| 802.11ac    | 157     | 16.39               |             |        |
|             | 165     | 16.40               |             |        |
|             | 149     | 17.63               |             |        |
| 802.11nHT20 | 157     | 17.61               | ≥500        | Pass   |
|             | 165     | 17.64               |             |        |

| Туре        | Channel | 6dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|---------------------|-------------|--------|
|             | 149     | 16.41               |             |        |
| 802.11ac    | 157     | 16.41               | ≥500        | Pass   |
|             | 165     | 16.40               |             |        |
|             | 149     | 17.62               |             |        |
| 802.11nHT20 | 157     | 17.61               | ≥500        | Pass   |
|             | 165     | 17.64               |             |        |

















Report No.: GTSR17020073-02 Page 54 of 78

#### 4.7. 26dBc Bandwidth

#### **TEST CONFIGURATION**



## **TEST PROCEDURE**

According to KDB789033 D02 General UNII Test Procedures New Rules v01 for one of the following procedures may be used for Emission Bandwidth (EBW) measurement:

- a. Set RBW = 300 kHz (approximately 1% of the emission bandwidth).
- b. Set the video bandwidth (VBW) = 1000 KHz (VBW > RBW)
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

### **LIMIT**

No Limits for 26dBc Bandwith

#### **TEST RESULTS**

# Antenna 1

| Туре        | Channel | 26dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|----------------------|-------------|--------|
|             | 36      | 22.69                |             |        |
| 802.11ac    | 40      | 20.94                |             | Pass   |
|             | 48      | 19.67                |             |        |
|             | 36      | 22.42                |             |        |
| 802.11nHT20 | 40      | 23.17                |             | Pass   |
|             | 48      | 20.02                |             |        |

# Antenna 2

| Туре        | Channel | 26dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|----------------------|-------------|--------|
|             | 36      | 21.35                |             |        |
| 802.11ac    | 40      | 20.68                |             | Pass   |
|             | 48      | 20.25                |             |        |
|             | 36      | 21.10                |             |        |
| 802.11nHT20 | 40      | 22.48                |             | Pass   |
|             | 48      | 20.14                |             |        |

# Antenna 3

| Туре        | Channel | 26dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|----------------------|-------------|--------|
|             | 36      | 20.23                |             | Pass   |
| 802.11ac    | 40      | 20.03                |             |        |
|             | 48      | 21.15                |             |        |
|             | 36      | 20.94                |             |        |
| 802.11nHT20 | 40      | 23.94                |             | Pass   |
|             | 48      | 20.98                |             |        |

| Туре        | Channel | 26dB Bandwidth (MHz) | Limit (KHz) | Result |
|-------------|---------|----------------------|-------------|--------|
|             | 36      | 23.39                |             |        |
| 802.11ac    | 40      | 23.43                |             | Pass   |
|             | 48      | 19.58                |             |        |
|             | 36      | 20.11                |             |        |
| 802.11nHT20 | 40      | 21.28                |             | Pass   |
|             | 48      | 20.19                |             |        |

















Report No.: GTSR17020073-02 Page 60 of 78

# 4.8. Band Edge Compliance

#### **TEST CONFIGURATION**



#### **LIMIT**

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequency (MHz) | Distance | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------|----------------------------------|-----------------|
|                 | (Meters) |                                  |                 |
| 0.009-0.49      | 3        | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3        | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3        | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3        | 40.0                             | 100             |
| 88-216          | 3        | 43.5                             | 150             |
| 216-960         | 3        | 46.0                             | 200             |
| Above 960       | 3        | 54.0                             | 500             |

According to §15.407 (b):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Report No.: GTSR17020073-02 Page 61 of 78

| Fred  | uency (MHz) | EIRP Limit (dBm) | Equivalent Field Strength at 3m (dBµV/m) |
|-------|-------------|------------------|------------------------------------------|
| 5     | 5150-5250   | -27              | 68.3                                     |
| 5     | 5250-5350   | -27              | 68.3                                     |
| 5     | 5470-5725   | -27              | 68.3                                     |
|       | Below 5650  | -27              | 68.3                                     |
|       | 5650-5700   | -27~10           | 68.3~105.3                               |
|       | 5700-5720   | 10~15.6          | 105.3~110.9                              |
| 5725- | 5720-5725   | 15.6~27          | 110.9~68.3                               |
| 5850  | 5725-5850   | 27               | 122.3                                    |
| 3630  | 5850-5855   | 27~15.6          | 122.3~110.9                              |
|       | 5855-5875   | 15.6~10          | 110.9~105.3                              |
|       | 5875-5925   | 10~-27           | 105.3~68.3                               |
|       | Above 5925  | -27              | 68.3                                     |

#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 1.5m above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from  $0^{\circ}$  to  $360^{\circ}$  to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...

5. The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |

Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting    | Detector |
|----------------------|-----------------------------------|----------|
|                      | Peak Value: RBW=1MHz/VBW=3MHz,    |          |
| 1GHz-18GHz           | Sweep time=Auto                   | Peak     |
| 10112-100112         | Average Value: RBW=1MHz/VBW=10Hz, | Feak     |
|                      | Sweep time=Auto                   |          |

#### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

### **TEST RESULTS**

Remark: We tested at 802.11ac/802.11n HT20 mode at the antenna single transmitting mode and the Mimo mode, and recored the worst data at the Mimo mode of the 802.11ac Mode.

Test site: Shenzhen CTL Testing Technology Co., Ltd.

Report No.: GTSR17020073-02 Page 62 of 78

# For Radiated Bandedge Measurement

|           | 802.11 ac/ Channel 36 :5180 MHz |         |        |       |          |          |        |          |              |
|-----------|---------------------------------|---------|--------|-------|----------|----------|--------|----------|--------------|
| Freq      | Read                            | Antenna | PRM    | Cable | Result   | Limit    | Margin |          |              |
| (MHz)     | Level                           | Factor  | Factor | Loss  | Level    | Line     | (dB)   | Detector | Polarization |
| (IVII 1Z) | (dBµV)                          | (dB/m)  | (dB)   | (dB)  | (dBµV/m) | (dBµV/m) | (ub)   |          |              |
| 5150.00   | 35.32                           | 35.58   | 29.04  | 8.28  | 50.14    | 68.30    | 18.16  | Peak     | Horizontal   |
| 5150.00   | 24.76                           | 35.58   | 29.04  | 8.28  | 39.58    | 54.00    | 14.42  | AV       | Horizontal   |
| 5180.00   | 75.66                           | 35.55   | 29.02  | 8.30  | 90.49    |          |        | Peak     | Horizontal   |
| 5180.00   | 74.96                           | 35.55   | 29.02  | 8.30  | 89.79    |          |        | AV       | Horizontal   |
| 5150.00   | 34.93                           | 35.58   | 29.04  | 8.28  | 49.75    | 68.30    | 18.55  | Peak     | Vertical     |
| 5150.00   | 23.40                           | 35.58   | 29.04  | 8.28  | 38.22    | 54.00    | 15.78  | AV       | Vertical     |
| 5180.00   | 76.39                           | 35.55   | 29.02  | 8.30  | 91.22    |          |        | Peak     | Vertical     |
| 5180.00   | 74.54                           | 35.55   | 29.02  | 8.30  | 89.37    |          |        | AV       | Vertical     |

| 802.11 ac/ Channel 48 :5240 MHz |        |         |        |       |          |          |        |          |              |
|---------------------------------|--------|---------|--------|-------|----------|----------|--------|----------|--------------|
| Freq                            | Read   | Antenna | PRM    | Cable | Result   | Limit    | Margin |          |              |
| (MHz)                           | Level  | Factor  | Factor | Loss  | Level    | Line     | (dB)   | Detector | Polarization |
| (1711 12)                       | (dBµV) | (dB/m)  | (dB)   | (dB)  | (dBµV/m) | (dBµV/m) | (ub)   |          |              |
| 5240.00                         | 75.86  | 35.51   | 29.05  | 8.32  | 90.64    |          |        | Peak     | Horizontal   |
| 5240.00                         | 73.88  | 35.51   | 29.05  | 8.32  | 88.66    |          | -      | AV       | Horizontal   |
| 5350.00                         | 33.53  | 35.42   | 29.06  | 8.39  | 48.28    | 68.30    | 20.02  | Peak     | Horizontal   |
| 5350.00                         | 24.89  | 35.42   | 29.06  | 8.39  | 39.64    | 54.00    | 14.36  | AV       | Horizontal   |
| 5240.00                         | 77.33  | 35.51   | 29.05  | 8.32  | 92.11    |          | -      | Peak     | Vertical     |
| 5240.00                         | 74.57  | 35.51   | 29.05  | 8.32  | 89.35    |          | -      | AV       | Vertical     |
| 5350.00                         | 35.52  | 35.42   | 29.06  | 8.39  | 50.27    | 68.30    | 18.03  | Peak     | Vertical     |
| 5350.00                         | 24.87  | 35.42   | 29.06  | 8.39  | 39.62    | 54.00    | 14.38  | AV       | Vertical     |

|           | 802.11 ac/ Channel 149 :5745 MHz |         |        |       |          |          |        |          |              |
|-----------|----------------------------------|---------|--------|-------|----------|----------|--------|----------|--------------|
| Freq      | Read                             | Antenna | PRM    | Cable | Result   | Limit    | Margin |          |              |
| (MHz)     | Level                            | Factor  | Factor | Loss  | Level    | Line     |        | Detector | Polarization |
| (IVII IZ) | (dBµV)                           | (dB/m)  | (dB)   | (dB)  | (dBµV/m) | (dBµV/m) | (dB)   |          |              |
| 5725.00   | 35.82                            | 35.69   | 29.13  | 8.65  | 51.03    | 122.3    | 71.27  | Peak     | Horizontal   |
| 5725.00   | 25.54                            | 35.69   | 29.13  | 8.65  | 40.75    |          |        | AV       | Horizontal   |
| 5745.00   | 77.23                            | 35.70   | 29.14  | 8.69  | 92.48    |          |        | Peak     | Horizontal   |
| 5745.00   | 74.92                            | 35.70   | 29.14  | 8.69  | 90.17    |          |        | AV       | Horizontal   |
| 5725.00   | 35.48                            | 35.69   | 29.13  | 8.65  | 50.69    | 122.3    | 71.61  | Peak     | Vertical     |
| 5725.00   | 25.20                            | 35.69   | 29.13  | 8.65  | 40.41    |          |        | AV       | Vertical     |
| 5745.00   | 76.43                            | 35.70   | 29.14  | 8.69  | 91.68    |          |        | Peak     | Vertical     |
| 5745.00   | 73.37                            | 35.70   | 29.14  | 8.69  | 88.62    |          |        | AV       | Vertical     |

|           | 802.11 ac/ Channel 165 :5825 MHz |         |        |       |          |          |        |          |              |
|-----------|----------------------------------|---------|--------|-------|----------|----------|--------|----------|--------------|
| Freq      | Read                             | Antenna | PRM    | Cable | Result   | Limit    | Margin |          |              |
| (MHz)     | Level                            | Factor  | Factor | Loss  | Level    | Line     | (dB)   | Detector | Polarization |
| (1011 12) | (dBµV)                           | (dB/m)  | (dB)   | (dB)  | (dBµV/m) | (dBµV/m) | (ub)   |          |              |
| 5825.00   | 75.42                            | 35.82   | 29.16  | 8.77  | 90.85    |          |        | Peak     | Horizontal   |
| 5825.00   | 73.93                            | 35.82   | 29.16  | 8.77  | 89.36    |          | 1      | AV       | Horizontal   |
| 5850.00   | 35.32                            | 35.85   | 29.18  | 8.80  | 50.79    | 122.3    | 71.51  | Peak     | Horizontal   |
| 5850.00   | 24.36                            | 35.85   | 29.18  | 8.80  | 39.83    |          | 1      | AV       | Horizontal   |
| 5825.00   | 75.81                            | 35.82   | 29.16  | 8.77  | 91.24    |          | 1      | Peak     | Vertical     |
| 5825.00   | 73.22                            | 35.82   | 29.16  | 8.77  | 88.65    |          | 1      | AV       | Vertical     |
| 5850.00   | 33.82                            | 35.85   | 29.18  | 8.80  | 49.29    | 122.3    | 73.01  | Peak     | Vertical     |
| 5850.00   | 24.45                            | 35.85   | 29.18  | 8.80  | 39.92    |          |        | AV       | Vertical     |

## **REMARKS**:

- 1. Result Level = Read Level + Antenna Factor + Cable loss PRM Factor.
- 2. The other emission levels were very low against the limit.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.
- 4. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=10Hz/Sweep time=Auto/Detector=Peak;

Report No.: GTSR17020073-02 Page 63 of 78

# For Conducted Bandedge Measurement

|                                                                                                               | 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.11ac                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency<br>(MHz)                                                                                            | Delta Peak to Band emission (dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>(dBc)              | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5150.00                                                                                                       | -49.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5350.00                                                                                                       | -55.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Marker 3 5.025100000000 GHz  Marker 3 5.025100000000 GHz  To fire Ran  Ref 20.08 dBm  10 dbstv  Ref 20.08 dBm | Ang Travel Long-Free Ang Trave | Marker 3 5.391680000000 GHz | Ang Tiper Sing Per Market 20, 2017  And Tiper Sing Per Market 20, |
| 5′                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5:                          | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |







Report No.: GTSR17020073-02 Page 65 of 78

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 802.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Delta Peak to Band emission (dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>(dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Verdict                                 |
| 5150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -48.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                    |
| 5350.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -55.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                    |
| ef Value 20.00 dBm  Fiber per La Bridge Law | An Tipel Log Fee Park   Annual Log   An Tipel Log Fee   Park   Angliside 100/100   Park   Annual Log Fee   Park   Pa | Agrant Spectrum Analysis - Snept NS  Marker 3 5.366800000000 GHz  1351 per 1  10 district Ref 20.00 dBm  10 district Ref 20.00 dBm  10 district Ref 20.00 dBm  20 district Ref 20.00 dB | Activity   03.05 determination   Market |
| 1 N   f   5.1750 GHz   6682 GBm   7   5.101 6 GHz   41.554 GBm   1   5.101 6 GHz   48.136 GBm   48.136 GBm   6.101 6 GHz   48.136 GBm   6.101 6 GHz   6.101 | Presel Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 N 1 F 5.241 4 GHz 5.756 (BHz 5 Hz 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Properti                                |
| 7<br>9<br>9<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Man 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13<br>13<br>15<br>MID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Introd                                  |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240                                     |







Report No.: GTSR17020073-02 Page 67 of 78









Report No.: GTSR17020073-02 Page 69 of 78









Report No.: GTSR17020073-02 Page 71 of 78

# 4.9. Frequency Stability

## **TEST CONFIGURATION**



# **TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port
- b. Spectrum setting as follows:

RBW=10KHz

VBW=30KHz

Span= Entire absence of modulation emissionsbandwidth

Sweep Time= Auto

Attenuation= Auto

c. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

## **LIMIT**

| Frequency Range (MHz) | Limit                          |
|-----------------------|--------------------------------|
| 5150-5250             |                                |
| 5250-5350             | Specified in the user's manual |
| 5470-5725             | Specifiedin the user's manual  |
| 5725-5850             |                                |

## **TEST RESULTS**

#### Antenna 1

### 802.11 ac/ Channel 36: 5180MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5180.000024                 |
| 12.0                    | 5180.000016                 |
| 10.2                    | 5180.000022                 |
| Maximum Deviation (MHz) | 0.000024                    |
| Maximum Deviation (ppm) | 0.0046                      |

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5180.000018                 |
| 5                       | 5180.000021                 |
| 15                      | 5180.000019                 |
| 25                      | 5180.000016                 |
| 35                      | 5180.000022                 |
| 45                      | 5180.000020                 |
| 55                      | 5180.000019                 |
| Maximum Deviation (MHz) | 0.000021                    |
| Maximum Deviation (ppm) | 0.0041                      |

Report No.: GTSR17020073-02 Page 72 of 78

# 802.11 ac/ Channel 149: 5745MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5745.000017                 |
| 12.0                    | 5745.000012                 |
| 10.2                    | 5745.000018                 |
| Maximum Deviation (MHz) | 0.000018                    |
| Maximum Deviation (ppm) | 0.0031                      |

**Temperature. Frequency Stability** 

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5745.000019                 |
| 5                       | 5745.000012                 |
| 15                      | 5745.000018                 |
| 25                      | 5745.000017                 |
| 35                      | 5745.000020                 |
| 45                      | 5745.000016                 |
| 55                      | 5745.000015                 |
| Maximum Deviation (MHz) | 0.000020                    |
| Maximum Deviation (ppm) | 0.0035                      |

## Antenna 2

# 802.11 ac/ Channel 36: 5180MHz

Voltage. Frequency Stability

| remager requestey etablish |                             |
|----------------------------|-----------------------------|
| Voltage (V)                | Measurement Frequency (MHz) |
| 13.8                       | 5180.000013                 |
| 12.0                       | 5180.000018                 |
| 10.2                       | 5180.000012                 |
| Maximum Deviation (MHz)    | 0.000018                    |
| Maximum Deviation (ppm)    | 0.0035                      |

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5180.000014                 |
| 5                       | 5180.000018                 |
| 15                      | 5180.000011                 |
| 25                      | 5180.000016                 |
| 35                      | 5180.000023                 |
| 45                      | 5180.000020                 |
| 55                      | 5180.000017                 |
| Maximum Deviation (MHz) | 0.000023                    |
| Maximum Deviation (ppm) | 0.0044                      |

Report No.: GTSR17020073-02 Page 73 of 78

# 802.11 ac/ Channel 149: 5745MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5745.000018                 |
| 12.0                    | 5745.000015                 |
| 10.2                    | 5745.000019                 |
| Maximum Deviation (MHz) | 0.000019                    |
| Maximum Deviation (ppm) | 0.0033                      |

**Temperature. Frequency Stability** 

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5745.000021                 |
| 5                       | 5745.000013                 |
| 15                      | 5745.000018                 |
| 25                      | 5745.000022                 |
| 35                      | 5745.000018                 |
| 45                      | 5745.000020                 |
| 55                      | 5745.000016                 |
| Maximum Deviation (MHz) | 0.000022                    |
| Maximum Deviation (ppm) | 0.0038                      |

## Antenna 3

# 802.11 ac/ Channel 36: 5180MHz

Voltage. Frequency Stability

| tollagor requestey etablicy |                             |
|-----------------------------|-----------------------------|
| Voltage (V)                 | Measurement Frequency (MHz) |
| 13.8                        | 5180.000016                 |
| 12.0                        | 5180.000012                 |
| 10.2                        | 5180.000019                 |
| Maximum Deviation (MHz)     | 0.000019                    |
| Maximum Deviation (ppm)     | 0.0037                      |

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5180.000021                 |
| 5                       | 5180.000012                 |
| 15                      | 5180.000017                 |
| 25                      | 5180.000015                 |
| 35                      | 5180.000016                 |
| 45                      | 5180.000013                 |
| 55                      | 5180.000017                 |
| Maximum Deviation (MHz) | 0.000021                    |
| Maximum Deviation (ppm) | 0.0041                      |

Report No.: GTSR17020073-02 Page 74 of 78

# 802.11 ac/ Channel 149: 5745MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5745.000015                 |
| 12.0                    | 5745.000024                 |
| 10.2                    | 5745.000016                 |
| Maximum Deviation (MHz) | 0.000024                    |
| Maximum Deviation (ppm) | 0.0042                      |

Temperature. Frequency Stability

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5745.000018                 |
| 5                       | 5745.000014                 |
| 15                      | 5745.000019                 |
| 25                      | 5745.000022                 |
| 35                      | 5745.000017                 |
| 45                      | 5745.000023                 |
| 55                      | 5745.000020                 |
| Maximum Deviation (MHz) | 0.000023                    |
| Maximum Deviation (ppm) | 0.0040                      |

## Antenna 4

# 802.11 ac/ Channel 36: 5180MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5180.000016                 |
| 12.0                    | 5180.000013                 |
| 10.2                    | 5180.000019                 |
| Maximum Deviation (MHz) | 0.000019                    |
| Maximum Deviation (ppm) | 0.0037                      |

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5180.000015                 |
| 5                       | 5180.000012                 |
| 15                      | 5180.000020                 |
| 25                      | 5180.000013                 |
| 35                      | 5180.000015                 |
| 45                      | 5180.000019                 |
| 55                      | 5180.000017                 |
| Maximum Deviation (MHz) | 0.000020                    |
| Maximum Deviation (ppm) | 0.0039                      |

Report No.: GTSR17020073-02 Page 75 of 78

# 802.11 ac/ Channel 149: 5745MHz

Voltage. Frequency Stability

| Voltage (V)             | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| 13.8                    | 5745.000017                 |
| 12.0                    | 5745.000024                 |
| 10.2                    | 5745.000015                 |
| Maximum Deviation (MHz) | 0.000024                    |
| Maximum Deviation (ppm) | 0.0042                      |

| Temperature (°C)        | Measurement Frequency (MHz) |
|-------------------------|-----------------------------|
| -10                     | 5745.000016                 |
| 5                       | 5745.000022                 |
| 15                      | 5745.000017                 |
| 25                      | 5745.000026                 |
| 35                      | 5745.000023                 |
| 45                      | 5745.000018                 |
| 55                      | 5745.000014                 |
| Maximum Deviation (MHz) | 0.000026                    |
| Maximum Deviation (ppm) | 0.0045                      |

Report No.: GTSR17020073-02 Page 76 of 78

# 4.10. Antenna Requirement

# **Standard Applicable**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### Antenna Information

The antenna is FPC antenna, through the buckle stretched out, The directional gains of antenna used for transmitting is 1.06dBi.



Report No.: GTSR17020073-02 Page 77 of 78

# 5. Test Setup Photos of the EUT







Report No.: GTSR17020073-02 Page 78 of 78



# 6. External and Internal Photos of the EUT

Reference to the test report No. GTSR17020073-01.

.....End of Report.....