Contents

1	Intr	coduction	1
	1.1	Introduction	1
	1.2	Preliminaries	3
	1.3	First order scalar linear	
		differential equations	21
	1.4	Nonlinear scalar first order	
		differential equations	38
2	Noi	nlinear scalar dynamical systems	51
	2.1	Maximal solution and continuous	
		dependence	52
	2.2	Qualitative analysis	63
	2.3	Bifurcations	90
	2.4	Numerical solution	108
3	Lin	ear Systems	121
	3.1	Introduction	121
	3.2	Matrix exponential	128
	3.3	Linear systems in the plane	143

Contents 3

	4.2	Linearization and Hartman-Grobman	221
		theorem	231
	4.3	Stable manifolds and stationary	
		saddle solutions	270
	4.4	Limit cycles and periodic solutions	281
5	Cal	culus of Variations	315
	5.1	Introduction	315
	5.2	The \mathcal{P}_v problem	321
	5.3	The Euler-Lagrange equation	327
	5.4	Sufficient conditions and	
		autonomous equation	335
6	Optimal Control Theory		343
	6.1	$ Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	343
	6.2	The Maximum Principle of	
		Pontryagin	349
	6.3	Mangasarian and Arrow conditions	369
	6.4	Final state conditions	380
	6.5	Infinite horizon	400
\mathbf{A}	Top	ology in Vector Normed Spaces	459
В	Cal	culus and Real Analysis	471

Contents		
\mathbf{C}	Additional proves and results	478
	C.1 Legendre-Clebsch	478