Biçimsel Diller ve Soyut Makineler

Hafta 4

Regüler Dillerin kapalılık özelliği

- Regüler diller aşağıdaki işlemlerde kapalılık özelliğine sahiptir.
 - Birleşim
 - Gösterim: ∪
 - Kesişim
 - Gösterim: ∩
- Eğer L_1 ve L_2 regüler ise $L_1 \cup L_2$ ve $L_1 \cap L_2$ regulerdir.

Örnek

```
\begin{split} \Sigma &= \{a,b\}. \\ \mathsf{L}_1 &= \{ \ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w} \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{içerir.} \} \\ &- \ \mathsf{L}_1 \ \mathsf{regular} \ \mathsf{midir}? \\ \mathsf{L}_2 &= \mathsf{L}_2 = \{ \ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \\ &- \ \mathsf{L}_2 \ \mathsf{regular} \ \mathsf{midir}? \\ \mathsf{L}_1 \cup \mathsf{L}_2 &= ? \\ &- \ \mathsf{L}_1 \cup \mathsf{L}_2 = \{ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w}, \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{VEYA} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \ \mathsf{L}_1 \cap \mathsf{L}_2 = ? \\ &- \ \mathsf{L}_1 \cap \mathsf{L}_2 = \{ \mathsf{w} \ \mathsf{E} \{a,b\}^* \ | \ \mathsf{w}, \ \mathsf{cift} \ \mathsf{sayıda} \ \mathsf{a} \ \mathsf{VE} \ \mathsf{tek} \ \mathsf{sayıda} \ \mathsf{b} \ \mathsf{içerir.} \} \end{split}
```

$L_1 = \{ w \in \{a,b\}^* \mid w \text{ cift sayıda a içerir.} \}$ kümesi için DFA

$L_2 = \{ w \in \{a,b\}^* \mid w \text{ tek sayıda b içerir.} \}$ kümesi için DFA


```
\begin{aligned} \mathsf{M}_1 &= (\mathsf{Q}_1, \Sigma, \delta_1, \mathsf{s}_1, \mathsf{F}_1) \text{ ve} \\ \mathsf{M}_2 &= (\mathsf{Q}_2, \Sigma, \delta_2, \mathsf{s}_2, \mathsf{F}_2) \text{ makineleri verilmiş olsun.} \\ \mathsf{Yeni bir makine} & \cup \text{ ve } \cap \text{ için tasarlamak istiyoruz.} \\ \mathsf{M} &= (\mathsf{Q}, \Sigma, \delta, \mathsf{s}, \mathsf{F}) \text{ bu makine olsun. Burada} \\ \mathsf{Q} &= \mathsf{Q}_1 \times \mathsf{Q}_2 \\ \mathsf{s} &= (\mathsf{s}_1, \mathsf{s}_2) \\ \delta((\mathsf{q}_1, \mathsf{q}_2), \sigma) &= (\delta_1(\mathsf{q}_1, \sigma), \delta_2(\mathsf{q}_2, \sigma)) \end{aligned}
```

- Birleşim kümesi için, F = ?
 - Cevap: $(Q_1 \times F_2) \cup (F_1 \times Q_2)$
- Kesişim Kümesiiçin, F = ?
 - Cevap: F₁ X F₂

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ çift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cup L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VEYA tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

$L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

 $L_1 \cap L_2 = \{w \in \{a,b\}^* \mid w, \text{ cift sayıda a VE tek sayıda b içerir.}\}$ kümesi için DFA

A = {w | w, en az bir tane 1 içerir ve son 1'i çift sayıda 0 izler} kümesi için DFA

Nondeterministic Finite Automaton (NFA)

- DFA'nın daha genelleştirilmiş biçimidir.
 - Herhangi bir durumda iken bu durumdan bazı geçişler olmayabilir.
 - Bir geçişten birden fazla olabilir.
- Avantaj: Esneklik
 - Tasarım daha kolay hale gelmektedir.

NFA nasıl çaışır?

- NFA'nın başlangıç durumundan başlanarak, ilgili katar izlenip bir kabul durumunda biterse w NFA tarafından kabul edilir.
- NFA tarafından kabul edilen dil, bu NFA tarafından kabul edilen karakter katarlarının kümesidir.

NFA A = {w in {0,1}* | w'nin sondan ikinci sembolü 1'dir}

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \text{ in } \{0,1\}^* \mid w' \text{nin sondan ikinci}$ sembolü 1'dir $\}$

NFA A = $\{w \in \{0,1\}^* \mid w' \text{nin sondan ikinci sembolü}$ 1'dir $\}$

NFA'nın biçimsel tanımı

- NFA M = (Q, Σ , δ , s, F) Burada;
 - Q Durumların sonlu kümesi
 - $-\Sigma$ Giriş alfabesi
 - s Başlangıç durumu
 - F ⊆ Q − Kabul durumları kümesi
 - $-~\delta$ bir durum geçiş fonksiyonudur ve Q X $\Sigma_{\rm e}$ X Q'nin alt kümesidir.
- (p, u, q) δ'de ise, NFA p durumunda u okuyabilir ve q 'ya gider.

NFA'nın biçimsel tanımı (devam)

- $\delta^*(q, w)$ bir durumlar kümesidir ve
- $p \in \delta^*(q, w)$ ise q'dan p'ye w etiketli bir yol vardır.
 - Örnek:
- $\delta^*(q_0, 1) = ?$
 - Cevap: $\{q_0, q_1\}$
- $\delta^*(q_0, 11) = ?$
 - Cevap: $\{q_0, q_1, q_2\}$

NFA kabulü

• $\delta^*(q_0, w) \cap F$ kümesi bir boş küme değilse w karakter katarı M makinesi tarafından tanınır.

NFA'nın tanıdığı dil:

• L(M) = {w in Σ^* | w, M tarafından tanınır}.

NFA ve DFA'nın karşılaştırılması

- NFA , DFA'dan daha mı güçlüdür?
 - Cevap: Hayır
- Theorem:
 - Her NFA makinesi için eşdeğer bir DFA vardır.

Eşdeğer DFA'nın bulunması

- NFA M = $(Q, \Sigma, \delta, s, F)$
- DFA M' = (Q', Σ , δ , s', F') Burada:
 - $Q' = 2^{Q}$
 - $s' = \{s\}$
 - $F' = \{P \mid P \cap F \neq \Phi\}$
 - $-\delta(\{p_1, p_2, p_m\}, \sigma) = \delta^*(p_1, \sigma) \cup \delta^*(p_2, \sigma) \cup ... \cup \delta^*(p_m, \sigma)$

Örnek: Eşdeğer DFA'nın bulunması

Boşluk geçişli NFA

• Durumların boşluk kapanması: $\delta^*(q, \Lambda)$.

– gösterim: e-closure(q).

Handling epsilon transitions (contd.)

Durumun boşluk kapanmasının bulunması:

```
- e-closure(\{s_1, ..., s_m\}) = e-closure(s_1) \cup ... \cup e-closure(s_m)
s' = \text{e-closure}(\{s\}) \text{ olsun ve}
\delta(\{p_1, ..., p_m\}, \sigma) = \text{e-closure}(\delta^*(p_1, \sigma)) \cup ... \cup \text{e-closure}(\delta^*(p_m, \sigma))
```

Örnek

DFA = ?

• Theorem:

- (a) Her regüler ifade için eşdeğer bir NFA vardır.
- (b) Her DFA için eşdeğer bir regüler ifade vardır.