Nome	Sol	uções
------	-----	-------

Número

LEI MIEI

Grupo I – Apresente os cálculos que efectuar e justifique as suas respostas. Responda na folha de teste.

1. [3,5 val] Considere o integral $\mathcal{I} = \int_0^1 \int_0^{\sqrt{y}} e^{3x-x^3} dx dy$.

Esboce o domínio de integração, e calcule $\mathcal I$ invertendo a ordem de integração.

$$\mathcal{I} = \int_0^1 \int_{x^2}^1 e^{3x - x^3} \, dy \, dx = \frac{1}{3} (e^2 - 1)$$

2. [3,5 val] Considere o integral $\mathcal{J} = \int_0^1 \int_u^{\sqrt{2-y^2}} x \, dx dy$.

Esboce a região de integração e calcule \mathcal{J} , usando coordenadas polares.

$$\mathcal{J} = \int_0^{\pi/4} \int_0^{\sqrt{2}} \rho^2 \cos\theta \, d\rho \, d\theta = \frac{2}{3}$$

- 3. [5 val] Considere o sólido ${\mathcal S}$ que é limitado
 - inferiormente, pela superfície cónica $z^2 = 3(x^2 + y^2)$, e
 - superiormente, pela superfície esférica $x^2 + y^2 + (z-2)^2 = 4$.
 - (a) Faça um esboço de S.
 - (b) Estabeleça um integral em coordenadas cilíndricas que lhe permita calcular o volume de \mathcal{S} .
 - (c) Estabeleça um integral em coordenadas esféricas que lhe permita calcular o volume de \mathcal{S} .
 - (d) Calcule o volume de S, recorrendo a um integral ou a uma soma de integrais.

$$vol(S) = \underbrace{\int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{\sqrt{3}\rho}^{2+\sqrt{4-\rho^2}} \rho \, dz \, d\rho \, d\theta}_{\text{(b)}} = \underbrace{\int_{0}^{2\pi} \int_{0}^{\pi/6} \int_{0}^{4\cos\phi} r^2 \sin\phi \, dr \, d\phi \, d\theta}_{\text{(c)}} = \underbrace{\frac{14\pi}{3}}_{\text{(d)}}$$

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,5

(a) Se
$$f(x,y) > 0$$
 para todo o $(x,y) \in \mathbb{R}^2$ então $\int_{-1}^0 \int_{-2}^{-1} f(x,y) \, dx dy < 0$.

(b) Se
$$f: [0,1] \times [0,1] \longrightarrow \mathbb{R}$$
 é integrável então $\int_0^1 \int_0^x f(x,y) \, dy \, dx = \int_0^1 \int_0^y f(x,y) \, dx dy$.

(c) Em coordenadas polares, a equação da circunferência
$$x^2 + (y-1)^2 = 3$$
 é $\rho = \sqrt{3}$.

(d)
$$(\sqrt{3}, \frac{\pi}{4}, \frac{3\pi}{4})$$
 são as coordenadas esféricas do ponto cujas coordenadas cilíndricas são $(\sqrt{2}, \frac{\pi}{4}, -1)$.

Grupo III - Sem justificar, assinale a opção correcta.

Resposta correcta: 1

Resposta em branco: 0

Resposta errada: -0,25

(a) Seja $\mathcal{J} = \iint_{\mathcal{R}} (x+y)^2 e^{x-y} d(x,y)$, onde \mathcal{R} é o domínio plano limitado pelas rectas $x+y=1, \, x+y=4$, $x-y=-1, \, \text{e} \, x-y=1$. Usando a mudança de variáveis $x=\frac{3}{2}u-v+1, \, y=\frac{3}{2}u+v, \, \, \mathcal{I}$ é dado por

$$\int_0^1 \int_0^1 (3u+1)^2 e^{1-2v} \, du \, dv$$

$$\bigcap \frac{3}{2} \int_0^1 \int_0^1 (3u+1)^2 e^{1-2v} du dv$$

$$3 \int_0^1 \int_0^1 (3u+1)^2 e^{1-2v} du dv$$

$$\bigcap \frac{1}{3} \int_0^1 \int_0^1 (3u+1)^2 e^{1-2v} du dv$$

(b) Sejam $\mathcal{B}=[1,3]\times[0,1]\times[0,\pi/2]$ e $\iiint_{\mathcal{B}}\cos z\ d(x,y,z)=k.$ Então:

$$\bigcirc k = 1$$

$$\bigcirc k = -2$$

$$(\star)$$
 $k=2$

- \bigcirc nenhum dos anteriores, mas $k = \dots$
- (c) Seja $\mathcal{J} = \int_1^2 \int_{-1}^3 \int_2^5 f(x,z) dx dy dz$. Então:

$$\mathcal{J} = \int_{1}^{2} \int_{2}^{5} f(x, z) \, dx dz$$

$$\mathcal{J} = 4 \int_1^2 \int_2^5 f(x, z) \, dx dz$$

(d) Sejam $f,g,h:\mathbb{R}\to\mathbb{R}$ funções contínuas. Então:

$$\oint_0^1 \int_0^2 \int_0^3 f(x) \, g(y) \, h(z) \, dx dy dz = \int_0^1 h(z) \, dz \int_0^2 g(y) \, dy \int_0^3 f(x) \, dx$$