

Wishbone Specification for SCUBA 2

v0.1

CHANGE RECORD

Date	Section affected	Change Description
05/12/2003		First Draft
		affected

This document describes how the FPGA VHDL blocks for SCUBA 2 will implement the Wishbone bus architecture.

The following table, **Table 1**, shows the Wishbone signal name, the corresponding signal name from our own block diagrams, and whether the signal is an input or output relative to the master (Command FSM block).

We will consider the "Command FSM" block on each FPGA as the master, and the remaining blocks as the slaves. If anyone wants to create multiple masters on an FPGA, we have the option of doing that also.

Table 1 Wishbone Signal Description

Table 1 Wishbone Signal Description					
Wishbone Signal	Our Signal	Description	Direction		
CLK_I	clk	System clock signal. This signal goes to the master and slaves	in		
RST_I	reset_n	Asynchronous system reset. This signal goes to the master and slaves. The Wishbone reset is active high.	in		
DAT_O	r_dout(31:0)	Data going from the master (command FSM block) towards the slaves	out		
DAT_I	r_din(31:0)	Data going from the slaves towards the master	in		
ADR_O	r_addr(31:0)	Address signal going from the master. We will use this signal to select the slave block we want to read or write from (the slaves must decode the address to determine if they are the intended target for a read or write). Therefore, we must come up with an address map.	out		
WE_O	r_wr / r_rd	Write Enable/ Read signal going from the master to the slaves. For write, WE_O = 1 For read, WE_O = 0	out		
STB_O		Strobe signal from the master indicating it's initiating a read or write cycle with a slave	out		
ACK_I		Acknowledge signal from the slave to the master indicating that the slave is ready to send/receive data	in		
CYC_O		Cycle signal is asserted by the master the entire time during a valid bus cycle (read or write)	out		

For timing diagrams of read and write cycles, and for more information on Wishbone, please refer to the latest Wishbone Spec at: http://www.opencores.org/wishbone/