Lecture 09. Approximate Value-Based Methods. DQN.

Nikolay Karpachev 1.04.2024

Goal: optmize total return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Goal: optmize total return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Assign numeric value to each state and (state, action) pair

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] \qquad q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

Goal: optmize total return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Assign numeric value to each state and (state, action) pair

$$v_{\pi}(s) \triangleq \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] \qquad q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

- Optimize policy
 - Estimate correct value functions for current policy
 - Improve policy using estimated V

Policy iteration

- Policy evaluation given policy p, estimate V_p
- 2. Policy improvement improve p greedily

Policy iteration

Model Free Policy Evaluation

Monte-Carlo backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Temporal Difference backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

DP vs. Model Free TD

Dynamic Programming backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Temporal Difference backup

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

Monte-Carlo Model Free Control

Just like in value iteration

on every episode (!)

- 1. Approx. policy evaluation
- 2. Policy improvement

Model Free Control: SARSA

Basically, SARSA is

- One-step Temporal Difference Policy Evaluation
- Epsilon-greedy Policy Improvement

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Policy evaluation

Sample from experience

Off-policy model-free control: Q-Learning

Key idea: optimize greedy policy

- Our policy is greedy (or eps-greedy) w.r.t. current q-values
- Hence, no A' is required in (S, A, R, S', A') updates

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

$$\pi(S_{t+1}) = \underset{a'}{\operatorname{argmax}} \ Q(S_{t+1}, a')$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \underset{a'}{\operatorname{max}} \ Q(S', a') - Q(S, A) \right)$$

Approximate Methods

Continuous Spaces

Tabular Q-Learning

Great!

Continuous Spaces

Tabular Q-Learning

Great!

Atari games

How many states are there? approximately

$$|S| = 2^{210 \cdot 160 \cdot 8 \cdot 3}$$

Q-Learning

Training step

$$Q(s_t, a_t) \longleftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-Learning

Training step

$$Q(s_t, a_t) \longleftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-learning as MSE minimization

$$L = (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))^2$$

$$\nabla L = 2 \cdot (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-Learning

Training step

$$Q(s_t, a_t) \longleftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-learning as MSE minimization

$$L = (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))^2$$

$$\nabla L = 2 \cdot (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

running mean updates are equivalent to minimizing MSE with targets: $r_t + \gamma \cdot max_a$, $Q(s_{t+1}, a')$

What are we predicting? And what are the features?

What are we predicting? And what are the features?

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} Q(s_{t+1}, a')$$

SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Expected Value SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot \underset{a' \sim \pi(a|s)}{E} Q(s_{t+1}, a')$$

Atari SpaceInvaders

Q.: How to actually predict Q(s, a) (features, architecture)

Basic DQN

DQN: Deep Q Network

Autocorrelation

How bad it is if agent spends next 1000 ticks under the left rock? (while training)

Autocorrelation

- Training samples are not "i.i.d",
- Model forgets parts of environment it hasn't visited for some time
- · Drops on learning curve
- Any ideas?

Autocorrelation: Multiagent Training

Idea: Throw in several agents with shared W.

 Chances are, they will be exploring different parts of the environment

- More stable training
- Requires a lot of interaction

Autocorrelation: Multiagent Training

Idea: Throw in several agents with shared W.

 Chances are, they will be exploring different parts of the environment

- More stable training
- Requires a lot of interaction

Question: your agent is a real robot car. Will there be any problems?

Autocorrelation: Experience Replay

Idea:

Store several past interactions <s,a,r,s'>
Train on random subsamples

Training curriculum:

- Play 1 step and record it
- Pick N random transitions to train

Profit:

you don't need to revisit same (s,a) many times to learn it.

Autocorrelation: Experience Replay

- Atari DQN > 10⁵ interactions
- Closer to i.i.d. pool contains several sessions
- Older interactions were obtained under weaker policy

Experience Replay

- You approximate Q(s, a) with a neural network
- You use experience replay when training

Question: which of those algorithms will fail?

- Q-learning
- SARSA
- CEM
- Expected Value SARSA

Experience Replay

- You approximate Q(s, a) with a neural network
- You use experience replay when training

Agent trains off-policy on an older version of himself

Question: which of those algorithms will fail?

Off-policy methods work, On-policy methods are super slow (fail)

- Q-learning
- SARSA
- CEM
- Expected Value SARSA

Experience Replay

When training with on-policy methods,

- use no (or small) experience replay
- compensate with parallel game sessions

DQN: Observation Design

Left or right?

DQN: Observation Design

N-Gram trick

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

DQN: Observation Design

N-Gram trick

- · Nth-order markov assumption
- · Works for velocity/timers
- · Fails for anything longer that N frames
- · Impractical for large N

DQN: Target Networks

Target is based on prediction

Q(s, a) correlates with Q(s', a)

DQN: Target Networks

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^-)))^2]$$
 where Θ^- is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

DQN: Target Networks

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^-)))^2]$$
 where Θ^- is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Soft target network:

Update Θ^- every step:

$$\Theta^{-} = (1 - \alpha)\Theta^{-} + \alpha\Theta$$

DQN: Putting it all together

Playing Atari with Deep Reinforcement Learning (Deepmind, 2013)

4 last frames as input

DQN: Putting it all together

Playing Atari with Deep Reinforcement Learning (Deepmind, 2013)

Update weights using:

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$

Update Θ^- every 5000 train steps

Experience replay

106 last transitions

Outro

- Value-based RL
- Env model is unknown: MC and TD from samples
- Continuous state/action space: predict Q with MSE on TD target
- DQN
 - Training hacks and state design
 - Autocorrelation
 - Target Networks

Acknowledgements

This lecture uses materials from

- (1) RL Lectures by David Siver (licensed CC-BY-NC 4.0)
- (2) <u>Practical_RL lectures</u> by Yandex Data School (<u>Unlicense</u> license)

Questions?