Daily Stand Up: The Journal App

A Project By : Monali, Dimitra, Yannik, Torsten

Contents

- The Team & Business Problem
- Daily Stand Up: The Journal App
- Live Demonstration
- Model Concepts
- Future Goals

The Team & Business Problem

The Team

Dimitra Gkogkou
Emotion
Classification
Data Scientist | Physicist
(PhD) | Scientific Editor

Monali Talele Q&A Chatbot

Category Manager | Data & Analytics | Tech (M.B.A)

Torsten ChandlerData & Analytics

Data Scientist | Researcher Health Economist (PhD)

Yannik Hake Architecture

Full Stack Developer | Urban Design | Geography

Idea

"Wouldn't it be nice if you could talk with your private journal in the same way you interact with a chat engine like ChatGPT?"

Daily Stand Up: The Journal App

- ✓ Journal Entry with Emotion Classification
- ✓ Personal History Chatbot
- Mood Tracking Dashboard

Business Problem

Supports Mental Health

We built an app that supports mental health through the clinical benefits of journaling

Data Privacy

App runs locally and does not expose the user's data

Fit for a broad Audience

This app is suitable for anyone who wishes to improve their overall mental well-being

Live Demonstration

Technologies Used

App

- Docker
- Hasura
- Postgres
- FastAPI
- SvelteKit
 - Houdini
 - AuthIS
 - Skeleto

Q&A Chatbot

- Langchain
- ●Llama3
- ●Ollama
- Postgres Vector
- ●Ollama **Embeddings**

Emotion Classification

- Hugging Face
- Pytorch
- Use our model

for direct inference

Guide to the entire modeling process

Mood Tracking

Streamlit

Model Concepts

Personal History Chatbot

- Learns from your past experiences and emotions
- Provides personalized responses.

User Question

Personal History Chatbot Response

"How was I feeling last week?"

"Last week, you were feeling happy because you spent time with friends."

Large Language Model (LLM)

- Learn from large amounts of texts to understand and generate language.
- They represent words as vectors (numerical form) and use neural networks (advanced maths), to understand the meaning behind them.
- They can translate languages, summarize books, and answer questions.

Popular LLM Examples:

Retrieval Augmented Generation (RAG)

The RAG model works in 3 steps:

1. Augmentation

Journal entries are stored in the database.

2. Retrieval

When a user asks a question, relevant information is retrieved from the database.

3. Generation

Generates an answer using the retrieved information.

Relative Date Functionality

- RAG Model failed to understand questions with relative dates.
- Additional relative date filtering functionality added.

Emotion Classification - Explanation

Application

Enables our app to analyze and categorize emotions in journal entries

Classification

Identifying and categorizing emotions expressed in text

Dataset

8000 tweets labelled with 6 feelings - anger, fear, sadness, joy, love, surprise

Emotion Classification - Modeling

Baseline Model - K Nearest Neighbours

Transfer Learning with Transformer Model **RoBERTa Emotion Dataset**

Accuracy: 92 %

Future Goals

- A. Faster Chat Response
- B. Encrypting user entries for enhancing
- protection
- C. Expand Emotion Palette
- D. Integrate App and Dashboard

Thank you!

Any Questions?

