

KLASIFIKACIJA TUMORA MOZGA KORIŠĆENJEM CNN

AGENDA

Uvod

Problem

Podaci

CNN model

Transfer learning

UVOD

Tumor, odnosno neoplazma ili novotvorina, označava skup promenjenih ćelija koje pokazuju nepravilan i progresivan rast. Tumorske bolesti imaju ozbiljnu prognozu, a neke su opasne po život, te su danas aktuelna tema traženja novih načina lečenja.

Nastaje kao posledica unutrašnjih i spoljašnjih faktora koji deluju na organizam. Može se definisati i kao abnormalna nakupina tkiva čiji je rast nesvrsishodan, autonoman i nadmašuje rast normalnog tkiva, te nastavlja da raste i nakon prestanka uzroka, koji je praktično nepoznat.

PROBLEM

U ovom projektu je implementirana konvoluciona neuronska mreža (CNN) za klasifikaciju četiri različite vrste tumora na snimcima magnetne rezonance mozga (MRI snimcima)

Postoje više različitih vrsta tumora, u ovom projektu klasifikaciju vršimo na četiri kategorije: bez tumora, gliom, tumor hipofize, meningiom

Sam skup podatak ćemo izdeliti da delove za učenje, validaciju i testiranje. Skup podataka za validaciju i treniranje neuronske mreže sastoji se iz 2870 slika, podeljenih principomm 80/20 (80% podataka se nalazi u skupu za treniranje, a 20% u skupu za validiranje). Preostale 394 slike koriste se za testiranje i evaluiranje same mreže, na osnovu čijih rezultata izvodimo zaključke.

PODACI

PODACI

Prikaz originalnih podataka

Slike su učitane u "grayscale" modu boja kako bismo smanjili broj koršićenih kanala boja radi optimizacije (naše slike su svakako izmedju crne, bele i sive). Koristimo "Shuffle" mod kako bismo na slučajan način odabrali slike.

PODACI

Prikaz izmenjenih podataka

Data Augmentation – proces u kome vršimo razne transformacije slika, kako bismo povećali skup za trening i smanjili mogućnost overfitting-a.

Korišćene metode: RandomFlip, RandomBrightness, RandomZoom, RandomRotation

KONVOLUTIVNA NEURONSKA MREŽA

KONVOLUTIVNA NEURONSKA MREŽA

KONVLUCIONA NEURONSKA MREŽA

Konvoluciona neuronska mreža se sastoji od ulaznog sloja, skrivenih slojeva i izlaznog sloja. U konvolucionoj neuronskoj mreži, skriveni slojevi uključuju jedan ili više slojeva koji izvode konvolucije.

REŠENJE KORIŠĆENJEM TRANSFER LEARNING TEHNIKE

Skup podataka je previše mali da bi se CNN obučio od početka i dao pozitivne rezultate. Zbog ovog problema pokušećemo drugi pristup, takozvani prenos učenja - Transfer Learning. Prenos učenja kao opšti pojam se odnosi na ponovnu upotrebu znanja jednog zadatka na drugi. Posbeno za konvolucione neuronske mreže, mnoge karakteristike slike su zajedničke za različite skupove podataka (npr. linije, ivice). Iz tog razloga se cnn veoma retko obučava potpuno od nule jer je teško doći do velikih skupova podataka i velikih računarskih resursa.

REŠENJE KORIŠĆENJEM TRANSFER LEARNING TEHNIKE

- Skup podataka je previše mali da bi se CNN obučio od početka i dao pozitivne rezultate.
 Zbog ovog problema pokušećemo drugi pristup, takozvani prenos učenja Transfer Learning.
- Prenos učenja kao opšti pojam se odnosi na ponovnu upotrebu znanja jednog zadatka na drugi. Posbeno za konvolucione neuronske mreže, mnoge karakteristike slike su zajedničke za različite skupove podataka (npr. linije, ivice). Iz tog razloga se cnn veoma retko obučava potpuno od nule jer je teško doći do velikih skupova podataka i velikih računarskih resursa.
- U ovom projektu korišćena su 2 modela, DenseNet169 i Efficientb0 kao "pretrained" modeli. U nastavku će biti prikazani rezultati.

REZULTATI

Veliki problem nastaje u maloj raznolikosti slika, iako 3000 slika zvuči kao veliki skup za ovaj problem je potrebno više slika. Takođe, jedan od problema je to što se doktori pri donošenju dijagnoze ne oslanjaju isključivo na slike, već i na neke dodatne podatke i zaključke, koji u ovom projektu nisu obuhvaćeni.

Parameters / Model	Custom Model	EfficientNetB0	DenseNet169
Accuracy	0.73	0.73	0.61