Name: Shivani patel GSI: madeline Brandt

DISC #:103

Math 55, Handout 19.

LINEAR HOMOGENEOUS RECURRENCES WITH CONSTANT COEFFICIENTS.

	RECURRENCES	ODEs
Equation	$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$	$y^{(k)} = C_1 y^{k-1} + \cdots + C_k y^{k_1}$
Solution Ansatz	$a_n = a_1 \gamma_1^n + a_2 \gamma_2^n$	$y(x) = e^{rx}$
Ansatz plugged in	C1an-1 + C2an-2	$r^{k}e^{rx} = c_{1}r^{k-1}e^{rx} + c_{2}r^{k-2}e^{rx} + \dots + c_{k}e^{rx}$
Char. polynomial	$r^k = c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k$	C1rk-1 + + Ckr
Linearity	r_1 , r_2 solutions $\Rightarrow c_1r_1 + c_2r_2$ solution	$y_1, y_2 \text{ solutions} \Longrightarrow C_1 y_1 + C_2 y_2 \text{ solution}$
Distinct real roots	$a_n = C_1 r_1^n + C_2 r_2^n + \dots + C_k r_k^n$	r ^{k-1} e ^{rx} e ^{rx}
Initial conditions	met by solving for Crthrough Cx	met by solving for C_1 through C_k
Complex roots	$a_n = r^n$ still a solution for $r \in \mathbb{C}$	an=r ⁿ still a solution for r∈C
Multiple roots	01 r1,, an-1 rn-1	$e^{rx}, xe^{rx}, \dots, x^{m-1}e^{rx}$ are solutions

NB: The uppercase letters C_j and the lowercase letters c_j here are not to be confused!

Q1. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces? Start from the left. 2×2 piece, then there are $2 \times (n-2)$ ways. If instead we start with a 1×2 piece, then there are $2 \times (n-1)$ ways.

Q2. What is the general form of the solution of a linear homogeneous recurrence relation if its characteristic polynomial has precisely these roots: 1,1,1,1,-2,-2,-2,3,3,-4? characteristic equation $r^k - C_1 r^{k-1} - C_2 r^{k-2} - \ldots - C_k = 0$ has t distinct roots r_1, \ldots, r_t with multiplicities $m_1 \cdots m_t$ for $i=1,\ldots$ t and $m_1 + \cdots + m_t = k$. Then, these vence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k}$ if and only if

$$a_{n} = (a_{1,0} + a_{1,1n} + \dots + a_{1,m_{1}-1}n^{m_{1}-1} + \dots + (a_{t,0} + a_{t,1n} + \dots + a_{1,m_{1}-1}n^{m_{1}-1}) r_{t}^{n}$$

LINEAR INHOMOGENEOUS RECURRENCES WITH CONSTANT COEFFICIENTS.

	RECURRENCES	ODEs
Equation	$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + F(n)$	$y^{(k)} = C_1 y(k-1)C_k y = F(x)$
Linearity yields	$a_n = a_n^{hom} + a_n^{part}$	V= Ynom + Ypart
Special cases	$F(n) = p_t(n)s^n$	y(x)= Pt (x)sx
s not char. root	$a^{part}(n) = q_t(n)e^{sn}$	$y^{part}(x) = q_t(x)e^{sx}$
s root; mult. m	$\alpha^{part}(n) = n^m q_+(n) e^{sn}$	$y^{part}(x) = x^m q_t(x)e^{sx}$

Q3. What is the general form of the particular solution – guaranteed to exist by the above results – of the

What is the general form of the particular solution – guaranteed to elinear inhomogeneneous recurrence
$$a_n = 8a_{n-2} - 16a_{n-4} + F(n)$$
 if
$$f(n) \neq b_t n^t + \dots + b_1 n + b_0 s^n, \quad s = 1, + = 2$$
(a) $F(n) = n^2$? Solution: $p_2 \cdot n^2 + p_1 \cdot n + p_0 + p_1 \cdot n + p_0 + p_1 \cdot n + p_0 \cdot n^2$ (b) $F(n) = 2$? Solution: $p_0 = (b_t n^t + \dots + b_1 n + b_0) s^n, \quad s = 2, t^{-2}$ (c) $F(n) = n^4 2^n$? Solution: $n^2 (p_1 \cdot n^4 + p_3 \cdot n^3 + p_2 \cdot n^2 + p_1 \cdot n + p_0) (2)^n$

$$f(n) = b_t n^t + \cdots + b_1 n^t + b_2 n^2, n^2 + b_1 n^2 + b_2 n^2$$

Q4. Find all solutions to the recurrence $a_{n+2} = -a_n + 5 \cdot 2^n$ subject to the initial conditions $a_0 = 2$, $a_1 = 3$.

The associated differential equation has the form $y'' + y = 5 \cdot 2^n$ The auxiliary equation is $r^2 + 1 = 0$ to r = +i. So the complementary function: $a_n = C_1 cos(\frac{n\pi}{2}) + C_2 sin(\frac{n\pi}{2})$ The particular solution: $a_p = \frac{\pi}{2} \cdot \frac{2^n}{z^2 + 1} = 2^n$ so the general collution: $a_n = c_1 \cos\left(\frac{n\pi}{2}\right) + c_2 \sin\left(\frac{n\pi}{2}\right) + z^n$

apply the inital conditions a.=2, $a_1=3 \longrightarrow c_1+0+1=2$, $0+c_2+2=3$, $c_1=c_2=1$ solution: $a_n = \cos\left(\frac{n\pi}{2}\right) + \sin\left(\frac{n\pi}{2}\right) + 2n$