MLOps Engineering Machine Learning Operations V2.0.0 Sessions 8 - 9

MsC in Business Analytics and Data Science Madrid, May 2025

Agenda

- Q&A Project phase
- 15' Quiz
- Towards ML pipeline automation
- WandB and Mlflow 101

Evaluation methodology v2.0.0

Total

Class Participation: 0.0

Final exam fail: **3.5/10.0**

Ind. Class participation 20% OR Relevant contributions in Class and/ or via Teams ON GO	
class and/ or via Teams ON GO	ING
1st Group Presentation 15% 1st group deliverable (Business case, VC'ed, production-ready-code)	N 8 (29 st May)
Intermediate test 10% 2 Initial core concepts & SESSION fundamental best practices	N 9 (29 th May)
2 nd Group Work Presentation 25% Final group project - Presentation SESSION (End-to-end CI/ CD)	N 14 (25 th Jun)
Ind. Final Exam 30% Final closed-book exam SESSION	NS 15 (25 th Jun)

100%

14

MLOps is not a destination, but a journey. Involving people, processes, tools, data and governance

Level 0: Manual ML workflows hinder scalability and reliability, highlighting the need for MLOps automation to streamline operations and reduce errors

Automating ML pipelines enable fast experiments, continuous model updates, and reliable deployments

Rapid Experimentation

- Automate pipeline steps for quick iterations
- Seamlessly transition experiments to production

Continuous Training

- Automatically retrain models with fresh data
- Triggered by schedules, data availability, or performance

Experimental-Operational Symmetry

- Use identical pipeline in development and production
- Ensures consistency and simplifies management

Modular Components

- Decouple code execution (EDA can still live in notebooks)
- Reusable, isolated components enhance reproducibility

Continuous Model Delivery

- Automatically deploy updated models
- Regularly serve improved prediction services

Level 1

Enabling continuous training of the model by automating the ML pipeline

https://github.com/2025-IE-MLOps-course/main_logging_examples

Harnessing the combined power of MLflow & WandB for **Experimentation and Lifecycle Management**

Weights & Biases

Overview	Open-source platform managing the end-to-end ML lifecycle	Experiment tracking, dataset versioning, and model evaluation
Importance	Facilitates reproducibility, collaboration, and model deployment	Real-time insights, collaboration, and reproducibility in ML projects
Components	Tracking, Projects, Models, and Registry	Experiments, Reports, Artifacts, Tables, Sweeps, Launch, Models
Business model	Open-sourced	Managed Cloud (Free student)

Source: mlFlow, Weight & Biases

Integrating MLflow and WandB ensures your work is trackable, reproducible, and scalable

Dimension	Current (main.py only)	With MLflow	With WandB
Experiment Tracking	Manual, limited, error-prone	Automated, centralized, queryable	Best-in-class, collaborative, real-time
Pipeline Automation	Custom scripting, no standardization	Standardized, modular, reproducible	Still manual, focus on tracking, not flow
Monitoring	Basic logs, hard to compare runs	UI for metrics, basic monitoring	Advanced live metrics, alerts, dashboards
Visualization	Print/logs, no central dashboard	Simple UI, basic charts	Rich dashboards, interactive comparisons
Reproducibility	Depends on discipline, not enforced	Enforced via MLproject, Conda/Docker	Good with artifacts and configs
Collaboration	Manual sharing, hard to track changes	Easier, but limited UI	Team-focused, cloud-based collaboration
Model Registry	Manual versioning, error- prone	Built-in, production-ready registry	Artifacts system, suitable for most projects

MLflow and WandB integration

Source: based on Udacity

UNIVERSITY

MLflow and WandB integration

- MLproject
- conda.yml
- config.yalm
- main.py

- MLproject
- conda.yml
- run.py

- MLproject
- conda.yml
- run.py

Canonical Mlflow directory

```
MLproject
main.py
environemnt.yml
conda.yml
src
    basic_cleaning
        MLproject
        conda.yml
        run.py
    data_check
        MLproject
        conda.yml
        run.py
    eda
        EDA.ipynb
        MLproject
        conda.yml
    train_random_forest
        MLproject
        conda.yml
        run.py
```


Next project steps (25/06)

- 1. Refactor pipeline to use

 MLflow and W&B
- 2. Add/configure **Hydra** for flexible experimentation
- 3. Create and push tests; see CI results on **GitHub Actions**
- 4. Deploy API to <free server>; share the endpoint
- 5. Wrap model in **FastAPI**; test endpoint locally

leUNIVERSITY

Weights and Biases

WandB

GitHub repo – WandB demo

GitHub repo – MLflow demo

GitHub repo

Mlflow relevant commands

- conda clean -all
- conda env remove -n mlflow-<hash>
- mlflow run .
- mlflow run . -P <arg name>=<"script">
- mlflow run src/<module>
- mlflow ui

Mlflow commands in WSL

Install Ubuntu > wsl --install

- # Install conda
- wget
 https://repo.anaconda.com/miniconda/M
 iniconda3-latest-Linux-x86 64.sh
- bash Miniconda3-latest-Linuxx86_64.sh
- # Install MAMBA
- conda install -n base -c conda-forge mamba
- conda config --set solver libmamba
- # Set MAMBA as solver
- echo 'export
 MLFLOW_CONDA_CREATE_ENV_CMD=mamba' >>
 ~/.bashrc
- source ~/.bashrc

https://github.com/2025-IE-MLOps-course/main_logging_examples