Video Shot Change Detection

多媒體內容分析 Homework 2 數據一 RE6121011 徐仁瓏

一、 程式執行環境

程式環境是使用 Python 語言, 搭配 OpenCV 和其他相關的影像處理庫。詳盡的安裝套件放在 requirements.txt 中,程式碼皆在 hw2.ipynb 中執行。

二、 使用的 Visual Features

使用彩色直方圖作為視覺特徵時,我們在圖像分析和識別方面獲得了一系列 的優勢和特性。彩色直方圖是一種有效的工具,可以幫助我們理解圖像的色彩分 佈情況,並提供關於圖像內容的重要信息。

首先,彩色直方圖可以提供有關圖像中各種顏色出現頻率的信息。這意味著我們可以分析圖像的主要色彩和色彩分佈情況,從而識別和區分不同圖像之間的特徵和變化。這對於圖像的檢測、分割和相似性比較非常有用。其次,彩色直方圖的計算相對簡單且高效。這使得我們能夠快速地從圖像中提取出色彩特徵,而不需要過多的計算資源。這對於處理大量圖像數據或實時應用具有重要意義。彩色直方圖也具有對圖像尺寸變化不敏感的特點。即使圖像的尺寸發生變化,其色彩分佈情況仍然可以通過彩色直方圖來反映,這使得它在處理不同解析度的圖像時依然有效。此外,通過比較不同圖像的彩色直方圖,我們可以量化它們之間的相似性或差異性。這對於圖像的檢索、相似性搜索和內容匹配等任務非常重要。

三、 Detection 演算法

1) Shot Change Detection

透過比較前一幀和後一幀的 color histogram,若差異大過於某一閾值,則判定為 Shot change。但由於此法可能會產生出連續三幀有兩個 Shot change 的情況產生,而這情況在實際情形中並不常見,所以特地將此情形排除。

2) Fade In/Out Detection

透過比較前一幀和後一幀的 color histogram,若差異大過於某一 lower threshold,先將此大過於 lower threshold 的值保存下來,若連續三 幀以上都大過於此 lower threshold,且累計起來大過於某一 upper

threshold,則判定為 Fade In/Out Detection。但由於此法可能會將原判定為 Shot Change Detection 的幀也判定進來,因此再設下某一閾值,若小於這一閾值才可以判定為 Fade In/Out Detection。另外,從資料來看,我們可以將資料分成兩等分,兩分可以設定不同的閾值以提升效能。

四、 偵測效能

將成功偵測到 Shot change 或 Fade In/Out 的結果標示為 1,多預測的或是沒預測到的標示為 0,並計算出 Precision 和 Recall 做為評估指標。以下為 Precision 和 Recall 的公式:

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

其中,TP代表實際為正樣本且預測正確的樣本數量,FP代表實際為負樣本但被誤判為正樣本的樣本數量,FN代表實際為正樣本但被誤判為負樣本的樣本數量。

1) 影片一: news

實際結果	標記	預測結果	標記
73	1	73	1
235	1	235	1
301	1	301	1
370	1	370	1
452	1	452	1

Pre	cision: 100%	R	ecall: 100%
1281	1	1281	1
861	1	861	1

2) 影片二: climate

實際結果	標記	預測結果	標記
93	1	93	1
157	1	157	1
232	1	232	1
314	1	314	1
355	1	355	1
455~478	1	456~478	1
542~578	1		0
608~644	1	614~632	1
675~697	1	674~698	1
774~799	1	773~791	1
886~887	1	886~887	1
	0	919	1
1021	1	1021	1
1237	1	1237	1
1401	1	1401	1
1555	1	1555	1
Precision	: 93.33%	Recall:	93.33%

3) 影片三:ngc

實際結果	標記	預測結果	標記
127~164	1	124~274	1
196~253	1		1
285	1	285	1
340	1	340	1
383	1	383	1
384~444	1	384~450	1
456	1	456	1
516~535	1	515~670	1
540~573	1		1
573~622	1		1
622~664	1		1
683	1	683	1
	0	685	1
703	1		0
722	1		0
728~748	1	723~834	1
760~816	1		1
816~838	1		1
	0	835	1
840~851	1		0
	0	846	1
859	1	859	1
868	1	868	1
876	1	876	1

Precision: 85.71%			Recall: 83.33%	
1048~1059	1	1047~1056	1	
1038	1	1038	1	
	0	1009	1	
1003~1009	1	1007~1010	1	
986	1		0	
976	1	976	1	
969	1	969	1	
965	1	965	1	
963	1		0	
958	1	958	1	
943	1	943	1	
	0	941	1	
933	1	933	1	
921	1	921	1	
909	1	909	1	
897	1	897	1	
885	1		0	