SpOoOoOky Halloween Lecture

Thomas Cohn

10/31/18

Prop: $K^{\text{cpt}} \subset \mathbb{R}^n \Rightarrow M^{*,J}(K) = m^*(K)$

Proof: We know $m^*(K) \leq m^{*,J}(K)$ is always true. So it is enough to show $m^*(K) \geq m^{*,J}(K)$. Pick boxes Q_j $(j=1,2,\ldots)$ with $\bigcup_{j=1}^{\infty} \operatorname{rInt} Q_j \supset K$.

Compactness implies that $\bigcup_{j=1}^{M} \operatorname{rInt} Q_j \supset K$. So

$$\sum_{j=1}^{\infty} v(Q_j) \ge \sum_{j=1}^{M} v(Q_j) \ge m^{*,J}(K)$$

Now we take the inf over the choice of Q_i 's.

Therefore $m^*(K) \geq M^{*,J}(K)$. \square

Recall the theorem from Friday:

For bounded $f: Q^{\text{box}} \to \mathbb{R}$, the following are equivalent

- 1. f is integrable
- 2.
- 3.
- 4. $\mathcal{D} \stackrel{\text{def}}{=} \{ \vec{x} \in Q : f \text{ not cts at } \vec{x} \} \text{ has } m^*(\mathcal{D}) = 0.$
- 5.

Prop: $|S_1 \cup \cdots \cup S_k| \leq |S_1| + \cdots + |S_k|$. (Cardinality maps to $\mathbb{N} \cup \{0, +\infty\}$).

We call this property finite subadditivity.

Proof 1: Induction.

Proof 2: Use $S_1 \cup \cdots \cup S_k = S_1 \sqcup (S_2 \setminus S_1) \sqcup (S_3 \setminus (S_1 \cup S_2)) \sqcup \cdots \sqcup (S_k - \bigcup_{i=1}^{k-1} S_i)$ $|S_1| + \cdots + |S_k| \le |RHS| = |S_1 \cup \cdots \cup S_k|$. \square

Lemma: Given $B_1 \cup \cdots \cup B_j \subset X_1 \cup \cdots \cup X_k$ (all boxes), with Int B_ℓ disjoint. Then $v(B_1) + \cdots + v(B_j) \leq v(X_1) + \cdots + v(X_n)$.

Proof 1: Chop into smaller pieces.

Proof 2: Exercise: R box $\to v(R) = m_{\text{pixel}}(R) = m_{\text{pixel}}(\text{Int } R) = m_{\text{pixel}}(\text{rInt } R)$ Where $m_{\text{pixel}}(E) = \lim_{N \to \infty} \left| E \cap \frac{\mathbb{Z}^n}{2^N} \right|$

$$\sum_{\ell=1} \left| \operatorname{Int} B_{\ell} \cap \frac{\mathbb{Z}^n}{2^{nN}} \right| \leq \left| \bigcup X_p \cap \frac{\mathbb{Z}^n}{2^{nN}} \right| \leq \sum_{p=1}^k \left| X_p \cap \frac{\mathbb{Z}^n}{2^{nN}} \right|$$

Therefore $\sum m_{\text{pixel}}(\text{Int }B_{\ell})=v(B_{\ell}).$

Prop: Given f integrable on Q^{box} , $f \ge 0$ on Q. Then $\int_Q f = 0$ iff $m^*(f^{-1}[(0, +\infty)]) = 0$.

Proof \Rightarrow : $f^{-1}[(0,+\infty)] \subset \mathcal{D} \cup \{\vec{a} \in Q : f \text{ is cts and positive at } \vec{a}\}$. For \vec{a} in the second set, $\exists B^{\text{box}} \supset \text{rInt } B \ni \vec{a} \text{ with } f \geq \frac{f(\vec{a})}{2} \mathbb{I}_B$. Then $\int_Q f \geq \int_Q \frac{f(\vec{a})}{2} \mathbb{I}_B \stackrel{\text{exer}}{=} \frac{f(\vec{a})}{2} v(B) > 0$. Oops! Hence no such \vec{a} exists.

Proof $\Leftarrow: f^{-1}[(0,+\infty)]$ contains no boxes of positive volume. To show this, it's enough to prove $m^*(B^{\text{positive volume box}}) > 0$. This is equal to $m^{*,J}(B)$, so this is all true by previous lemma. So each L(f,P) = 0, so $\int_Q f = 0$, so $\int_Q f = 0$.

Consider $S^{\text{bdd}} \subset \mathbb{R}^n$, with $f: S \to \mathbb{R}$ bounded, $f_S(\vec{x}) = \begin{cases} f(\vec{x}) & \vec{x} \in S \\ 0 & \vec{x} \notin S \end{cases}$, and $\int_S f \stackrel{\text{def}}{=} \int_Q f_S \text{ for } Q^{\text{box}} \supset S.$

Prop: Existence and value of $\int_Q f_s$ do not depend on the choice of Q.

Proof: Choose Q_3 s.t. $\overline{S}, Q_1, Q_2 \supset \text{Int } Q_3$. Then the discontinuities set for Q_3 is equal to the discontinuities set for f on S.