Non-parametric methods kNN classifier, Kernel density estimate, Kernel regression

Aarti Singh

Co-instructor: Pradeep Ravikumar

Machine Learning 10-701 Mar 6, 2017

Non-Parametric methods

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data

- We will see some nonparametric methods for
 - Classification
 - Density estimation
 - Regression

k-NN classifier (k=5)

Test document

k-NN classifier – decision boundary

• K acts as a smoother (Bias-variance tradeoff)

Case Study: kNN for Web Classification

Dataset

- 20 News Groups (20 classes)
- Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)
- 61,118 words, 18,774 documents
- Class labels descriptions

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.misc talk.politics.guns talk.politics.mideast	talk.religion.misc alt.atheism soc.religion.christian

Experimental Setup

- Training/Test Sets:
 - 50%-50% randomly split.
 - 10 runs
 - report average results
- Evaluation Criteria:

$$Accuracy = \frac{\sum_{i \in \textit{test set}} I(\textit{predict}_i = \textit{true label}_i)}{\textit{\# of test samples}}$$

Results: Binary Classes

- Optimal Classifier: $f^*(x) = \arg\max_y P(y|x)$ = $\arg\max_y P(x|y)P(y)$
- k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_{y} \ \widehat{P}_{kNN}(x|y)\widehat{P}(y)$ = $\arg\max_{y} \ k_{y}$

Lets consider discrete features first:

$$\widehat{P}_{kNN}(x|y) = \frac{k_y}{n_y} \xrightarrow{\hspace*{1cm} \# \text{ training pts of class y}} \text{that have feature value(s) x} \\ \text{\# total training pts of class y}$$

- Optimal Classifier: $f^*(x) = \arg\max_y P(y|x)$ = $\arg\max_y P(x|y)P(y)$
- k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_{y} \ \widehat{P}_{kNN}(x|y)\widehat{P}(y)$ = $\arg\max_{y} \ k_{y}$

Lets consider discrete features first:

$$\widehat{P}_{kNN}(x|y) = \frac{k_y}{n_y} \xrightarrow{\text{\# training pts of class y that have feature value(s) x}} \text{\# total training pts of class y}$$

What if no training pts of class y have feature values x? Almost surely the case with continuous features.

- Optimal Classifier: $f^*(x) = \arg\max_y P(y|x)$ = $\arg\max_y p(x|y)P(y)$ Prob density
- k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_{y} \ \widehat{p}_{kNN}(x|y)\widehat{P}(y)$

k-NN Density Estimate:

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

k/n is estimated probability in ball of volume $\Delta_{\mathbf{k},\mathbf{x}}$

0

k-NN classifier (k=5)

Test document

- Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$ = $\arg \max_y p(x|y)P(y)$
- k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_{y} \ \widehat{p}_{kNN}(x|y)\widehat{P}(y)$ $= \arg\max_{y} \ k_{y}$

$$\widehat{p}_{kNN}(x|y) = \frac{k_y}{n_y \Delta_{k,x}} \text{ # training pts of class y that lie within } \Delta_{\mathbf{k},\mathbf{x}} \text{ ball } \sum_y k_y = k$$

$$\stackrel{\widehat{p}_{kNN}(x|y)}{\longrightarrow} \text{# total training pts of class y}$$

From Classification to Density estimation

Density estimation

Goal: Given $X_1, X_2, ..., X_n$, estimate P(X)

Distribution of intensities at a pixel

Parametric approaches

Binary X $P(X) \sim Bernoulli(\theta)$

Real X $P(X) \sim Gaussian(\mu, \sigma)$

Estimate P(X) = estimate parameters θ, μ, σ

Methods: MLE, MAP

Nonparametric approaches

Methods: k-NN, Histogram and Kernel density estimation

k-NN density estimation

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

k acts as a smoother.

Not very popular for density estimation – spiked estimates

Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\widehat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

"Local relative frequency"

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Image src: Bishop book

Effect of histogram bin width

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

Small ∆, large #bins
Good fit but unstable
(few points per bin)
"Small bias, Large variance"

Large ∆, small #bins
Poor fit but stable
(many points per bin)
"Large bias, Small variance"

Histogram as MLE

Underlying model – density is constant on each bin
 Parameters p_i: density in bin j

Note
$$\sum_{j} p_{j} = 1/\Delta$$
 since $\int p(x)dx = 1$

 Maximize likelihood of data under probability model with parameters p_i

$$\hat{p}(x) = \arg\max_{\{p_j\}} P(X_1, \dots, X_n; \{p_j\}_{j=1}^{1/\Delta})$$
 s.t. $\sum_j p_j = 1/\Delta$

Show that histogram density estimate is MLE under this model

Kernel density estimate

Histogram – blocky estimate

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Kernel density estimate aka "Parzen/moving window method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

Kernel density estimate

•
$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} K\left(\frac{X_{j}-x}{\Delta}\right)}{n}$$
 more generally

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Any kernel function that satisfies

$$K(x) \ge 0,$$

$$\int K(x)dx = 1$$

Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".

Gaussian bumps (red) around six data points and their sum (blue)

 Note that where the points are denser the density estimate will have higher values.

Choice of Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Finite support

only need local points to compute estimate

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Infinite support

- need all points to compute estimate
- -But quite popular since smoother

Choice of kernel bandwidth

Image Source: Larry's book – All of Nonparametric Statistics

Bart-Simpson Density

Histograms vs. Kernel density estimation

Nonparametric density estimation

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

Kernel density est

$$\widehat{p}(x) = \frac{n_x}{n\Delta}$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

Fix $n_x = k$, estimate Δ from data (volume of ball around x that contains k training pts)

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

From Classification and Density Estimation to Regression

Temperature sensing

What is the temperature in the room?

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Average

at location x?

$$\widehat{T}(x) = \frac{\sum_{i=1}^{n} Y_i \mathbf{1}_{||X_i - x|| \le h}}{\sum_{i=1}^{n} \mathbf{1}_{||X_i - x|| \le h}}$$

"Local" Average

Kernel Regression

- Aka Local Regression
- Nadaraya-Watson Kernel Estimator

$$\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i$$
 Where $w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :
$$K(x) = \frac{1}{2}I(x),$$

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

$$K\left(\frac{X_j-x}{\Delta}\right)$$

Choice of kernel bandwidth h

h=10

Too small

h=1

Image Source: Larry's book – All of Nonparametric Statistics

Too small

Choice of kernel is not that important

Kernel Regression as Weighted Least Squares

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set
$$f(X_i) = \beta$$
 (a constant)

Kernel Regression as Weighted Least **Squares**

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^{n} w_i (\beta - Y_i)^2$$

$$\underset{\text{constant}}{\downarrow}$$

$$w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2\sum_{i=1}^n w_i(\beta - Y_i) = 0$$
 Notice that $\sum_{i=1}^n w_i = 1$

Notice that
$$\sum_{i=1}^n w_i = 1$$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

$$f(X_i) = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \dots + \frac{\beta_p}{p!}(X_i - X)^p$$

i.e. set

(local polynomial of degree p around X)

Summary

Non-parametric approaches

Four things make a nonparametric/memory/instance based/lazy learner:

- A distance metric, dist(x,X_i)
 Euclidean (and many more)
- How many nearby neighbors/radius to look at?
 k, Δ/h
- A weighting function (optional)
 W based on kernel K
- 4. How to fit with the local points?

 Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 - Parametric models, once fitted, are much more efficient in terms of storage and computation.