Elettronica Digitale A.A. 2020-2021

Lezione 18/03/2021

Caratteristiche di ingresso

$$i_1 = f(v_1, i_2 \ o \ v_2)$$

Caratteristiche di uscita

$$i_2 = f(v_2, i_1 \ o \ v_1)$$

$$V_{AA} = R_L i_2 + v_2$$

$$i_2 = \frac{V_{AA}}{R_L} - \frac{v_2}{R_L}$$

Retta di carico

Il transistore bipolare a giunzione consiste di due giunzioni **p-n** poste una di seguito all'altra e orientate in senso inverso

Il transistore bipolare a giunzione consiste di due giunzioni **p-n** poste una di seguito all'altra e orientate in senso inverso

Polarizzazione in zona attiva diretta: giunzione base emettitore polarizzata in diretta e giunzione

base collettore polarizzata in inversa.

Caduta di tensione nelle zone neutre trascurabile: fuori dalle zone di svuotamento solo corrente di diffusione

Iniezione di elettroni dalla base verso l'emettitore trascurabile (effetto drogaggio p⁺n) Corrente inversa della giunzione BC trascurabile (effetto polarizzazione inversa)

Modello di Ebers-Moll: descrive il comportamento per grandi segnali del transistore BJT

 α_F Frazione di corrente diretta

 $0.98 \le \alpha_F \le 0.998$

 α_R Frazione di corrente inversa

 $0.4 \le \alpha_R \le 0.8$

Transistore Bipolare (BJT) – Equazioni di Ebers-Moll

$$\begin{cases} I_{ED} = I_{ES} \left(\exp\left(\frac{V_{EB}}{V_T}\right) - 1 \right) \\ I_{CD} = I_{CS} \left(\exp\left(\frac{V_{CB}}{V_T}\right) - 1 \right) \end{cases}$$

$$\alpha_{F}I_{ES} = \alpha_{R}I_{CS}$$

Transistore Bipolare (BJT) – Equazioni di Ebers-Moll

$$\begin{cases} I_{E} = I_{ED} - \alpha_{R} I_{CD} = I_{ES} \left(\exp\left(\frac{V_{EB}}{V_{T}}\right) - 1 \right) - \alpha_{R} I_{CS} \left(\exp\left(\frac{V_{CB}}{V_{T}}\right) - 1 \right) \\ I_{C} = -\alpha_{F} I_{ED} + I_{CD} = -\alpha_{F} I_{ES} \left(\exp\left(\frac{V_{EB}}{V_{T}}\right) - 1 \right) + I_{CS} \left(\exp\left(\frac{V_{CB}}{V_{T}}\right) - 1 \right) \\ I_{B} = -I_{E} - I_{C} \end{cases}$$

Transistore Bipolare (BJT) – Equazioni di Ebers-Moll

$$\begin{cases} I_{E} = -I_{ED} + \alpha_{R}I_{CD} = -I_{ES} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right) + \alpha_{R}I_{CS} \left(\exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right) \\ I_{C} = +\alpha_{F}I_{ED} - I_{CD} = +\alpha_{F}I_{ES} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right) - I_{CS} \left(\exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right) \\ I_{B} = -I_{E} - I_{C} \end{cases}$$

Zona di funzionamento	Polarizzazione giunzioni	Impiego del BJT
Attiva Diretta	Giunzione "BE": diretta Giunzione "BC": inversa	Amplificatore
Attiva Inversa	Giunzione "BE": inversa Giunzione "BC": diretta	Prestazioni molto degradate
Interdizione	Giunzione "BE": inversa Giunzione "BC": inversa	Interruttore aperto
Saturazione	Giunzione "BE": diretta Giunzione "BC": diretta	Interruttore chiuso

V_{CE}

Caratteristiche di uscita

$$I_C = g(V_{CE}, I_B)$$

Caratteristiche di ingresso

$$I_B = f(V_{BE}, V_{CE})$$

$$\begin{cases} I_{E} = -I_{ES} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right) + \alpha_{R} I_{CS} \left(\exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right) \\ I_{C} = +\alpha_{F} I_{ES} \left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right) - I_{CS} \left(\exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right) \\ I_{B} = -I_{E} - I_{C} \end{cases}$$

Zona attiva diretta

$$V_{BE} \gg V_{T}$$

$$V_{BC} \ll -V_{T}$$

$$\begin{cases} I_{E} \approx -I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) - \alpha_{R}I_{CS} \approx -I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) \\ I_{C} \approx +\alpha_{F}I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) + I_{CS} \approx \alpha_{F}I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) \end{cases}$$

$$\begin{cases} I_{E} \approx -I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) \\ I_{C} \approx \alpha_{F} I_{ES} \exp\left(\frac{V_{BE}}{V_{T}}\right) \end{cases}$$

$$I_{C} \approx -\alpha_{F} I_{E}$$

$$I_B = -I_E - I_C = -\left(-\frac{1}{\alpha_F}I_C\right) - I_C = I_C\left(\frac{1}{\alpha_F} - 1\right) = I_C\frac{1 - \alpha_F}{\alpha_F}$$

$$I_C = \frac{\alpha_F}{1 - \alpha_F} I_B = \beta_F I_B$$

$$V_{RE} \gg V_{T}$$

$$V_{BC} \ll -V_{T}$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F} = h_{FE}$$

Guadagno di corrente in corto circuito a emettitore comune

Caratteristiche di uscita

