BANC D'ESSAI

performances calcul scientifique

BENCHMARK

performance scientific computation

Performances comparées de 80 ordinateurs sur des programmes Fortran

Performance of Various Computers Using Standard Linear Equations Software in a Fortran Environment

Jack J. DONGARRA

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, Etats-Unis.

PRÉSENTATION

Il existe peu d'études publiées permettant de comparer les performances d'ordinateurs appartenant à toute la gamme des matériels actuellement disponibles. C'est ce qui fait tout l'intérêt de l'article de Jack Dongarra, qui donne les temps d'exécution, sur un même jeu de programmes, de machines allant du Cray XMP à ... l'Apple III! On notera tout particulièrement la présence de machines récentes, comme le Fujitsu VP-200, le Ridge 32, l'ELXSI, le NAS 9060 etc. Bien entendu, comme tout banc d'essai, celui-ci a ses limites, et ses résultats ne doivent pas être considérés comme une mesure absolue des rapports entre puissances des machines considérées. En particulier, les programmes utilisés sont des primitives d'algèbre linéaire, extraites de la fameuse bibliothèque Linpack, un ensemble de sous-programmes portables de très haute qualité; leur comportement n'est guère représentatif de ce qu'on trouve dans les applications de gestion ou de traitement de texte, par exemple. Il convient par ailleurs de bien examiner les détails fournis par l'auteur quant aux conditions de mesure. Il reste que la masse d'informations contenue dans ces tables fournit un bon cadre de comparaison... et la matière de quelques surprises.

Bertrand Meyer

COMMENTARY

Few published studies allow comparing the performance of computers covering the whole spectrum of today's technology. Jack Dongarra's paper provides exactly that: execution timings of the same set of programs over a whole range of computers, from the Cray XMP to... the Apple III! Of particular interest is the inclusion of results pertaining to recent machines such as the Fujitsu VP-200, the NAS 9060, the Ridge 32, the ELXSI, etc. Of course, this benchmark, as any other, has its limitations; one should not accept its results as an absolute measurement of the performance ratios between the machines considered. In particular, the test programs are subroutines from the famous Linpack library, a set of portable, high-quality primitives; their execution patterns are quite different from what may be found e.g. in data-intensive applications or text processing systems. Also, one should carefully examine the conditions in which the tests were performed, as given by the author. With these qualifications, however, Dongarra's tables provide a particularly rich source of informations... and a few surprises.

Bertrand Meyer

Les données de mesure présentées ici ne devraient en aucune façon être utilisées pour juger des performances globales d'un système. Il s'agit de résultats illustrant seulement un type de problème : la solution de systèmes d'équations linéaires denses à l'aide de la bibliothèque de programmes Linpack [Dongarra 79] dans un environnement Fortran.

Les programmes Linpack peuvent être caractérisés par leur pourcentage élevé d'opérations arithmétiques en virgule flottante. Les sous-programmes utilisés dans cette étude de performance, SGEFA et SGESL, utilisent des algorithmes travaillant par colonne. Autrement dit, ces programmes référencent habituellement les éléments d'un tableau selon une colonne plutôt que suivant une ligne. L'orientation par colonne est importante du point de vue de l'efficacité en raison de la façon dont les tableaux sont rangés en mémoire en Fortran. La plus grande partie des opérations en virgule flottante dans Linpack apparaissent dans un ensemble de sous-programmes, le Blas (Basic Linear Algebra Subprograms) [Lawson 79], appelé de façon répétitive au cours d'un calcul. Le Blas référence des tableaux à une dimension, plutôt que des tableaux à deux dimensions.

Les deux tables suivantes contiennent les résultats de mesure obtenus en utilisant Linpack pour résoudre un système d'équations linéaires d'ordre 100. Ces résultats doivent être interprétés en notant que les vitesses d'exécution, particulièrement pour les calculateurs vectoriels. peuvent ne pas avoir atteint leurs valeurs asymptotiques (voir en annexe le tableau comparatif des ordinateurs scientifiques de grande puissance pour Fortran). Il faut également noter qu'à l'exception du remplacement du Blas par du code en language assembleur, aucune autre modification n'a été apportée au logiciel. En particulier. ni l'utilisation de dispositifs matériels sur certaines machines, ni l'exploitation des possibilités de vectorisation ou de parallélisme n'a été tentée (toutefois, les compilateurs de certaines machines peuvent, bien évidemment, générer du code optimisé qui tire partie de ces différents mécanismes).

Une dernière remarque : les données présentées dans les tables ont été rassemblées sur une période donnée. Des modifications ultérieures du logiciel ou du matériel des systèmes étudiés pourraient modifier dans une certaine mesure les résultats.

Solution d'un système linéaire avec LINPACK (a) en précision maximum (b)

Ordinateur	Compilateur (c)	Ratio (d)	MFLOPS (e)	Temps (seconde)	Temps unitaire (f) (microseconde)
Cray X-MP	CFT (Blas codé)	0,36	33	0.021	0.061
CDC Cyber 205	FTN (Blas codé)	0.48	25	0.027	0.079
Cray X-MP	CFT	0.57	21	0.32	0.093
Cray-1S	CFT (Blas codé)	0.68	18	0.038	0.11
Fujitsu VP-200	Fortran 77	0.69	18	0.039	0.11
Cray-1S	CFT	1 1 1 1 1 1	12	0.56	0,16
CDC Cyber 205	FTN	1,5	8.4	0.082	0,24
NAS 9060 w/VPF	VS opt = 2 (Blas codé)	1.8	6.8	0.101	0,28
NAS 9060	VS opt = 2	2.3	5.3	0.130	0,29
CDC Cyber 875	FTN opt = 3	2,5	5.0	0.138	0.40
CDC 7600	FTN (Blas codé)	2.6	4.6	0.148	0.43
CDC Cyber 176	FTN 5.1 opt = 2	2,6	4.6	0.148	0.43
Amdahl 5860 HSFPF	H étendu opt = 3	3,1	3.9	0.176	0,51
Amdahl 5860 HSFPF	VS opt = 3	3.2	3.8	0.181	0.53
CDC 7600	FTN	3,8	3.3	0.210	0.61
FPS-164	D, opt = 3 (Blas codé)	4.7	2.6	0.264	0.77
IBM 370/195	H étendu opt = 3	4.9	2.5	0.275	0.80
IBM 3081 K	H étendu opt = 3	5.7	2,1	0.321	0.94
CDC Cyber 175	FTN 5 opt = 2	5.8	2.1	0.322	0.938
IBM 3081 K	VS opt = 3	6.2	2.0	0,346	1.01
CDC 7600	Local	6,4	2.0	0,359	1.05
CDC Cyber 175	FTN 5 opt = 1	6,8	1.8	0,339	1.11
IBM 3033	H étendu opt = 3	7.0	1,8	0,390	1.14
IBM 3033		7,0	1.7		1.15
IBM 3081 D	VS opt = 3		1.7	0,396	
	VS opt = 2	7,4		0,415	1,21
Amdahl 470 V/8	H étendu opt = 3	7,7	1,6	0,429	1,25
Amdahl 470 V/8 FPS-164	VS opt = 3	8,2	1,5	0,458	1,33
CDC 7600	D, opt = 3	9,5	1,3	0,529	1,54
	Chat, No opt	9,9	1,2	0,554	1,61
IBM 370/168	H Ext Fast Mult	10	1,2	0,579	1,69
Amdahl 470 V/6	H opt = 2	11	1,1	0,631	1,84
IBM 370/165	H Ext Fast Mult	16	0,77	0,890	2,59
ELXSI	Embos, F77 (Blas codé)	22	0,56	1,23	3,57
CDC 6600	FTN 4,6 opt = 2	26	0,48	1,44	4,19
CDC Cyber 170-835	FTN 5 opt = 2	26	0,47	1,45	4,22
CDC Cyber 170-835	FTN 5 opt = 1	28	0,44	1,57	4,58

ELXSI	Embos, F77	28	0.43	1,60	4,66
Univac 1100/81	Ascii opt = ZEO	32	0.38	1,80	5.24
CDC 6600	Run	34	0.36	1,93	5,62
Data General MV/10000	f77 opt level 2	40	0,30	2,26	6.53
Harris 800	Fortran 77	53	0.23	2,99	8,70
IBM 370/158	H opt = 3	53	0,23	2,99	8,71
Vax 11/785 FPA	VMS (Blas codé)	54	0.23	3,01	8,77
IBM 370/158	VS opt = 3	56	0,22	3,15	9,17
Itel AS/5 mod 3	Н	63	0,19	3,54	10,3
Norsk Data ND-500	Fortran-500-E	63	0,19	3,54	10.3
CDC Cyber 170-825	FTN 5 opt = 2	65	0,19	3,63	10.6
IBM 4341 MG10	VS opt = 3	66	0,19	3,70	10,8
Vax 11/785 FPA	VMS	68	0,18	3,79	11.0
CDC Cyber 170-825	FTN 5 opt = 1	68	0.18	3,81	11,1
Vax 11/780 FPA	VMS (Blas codé)	76	0,16	4,25	12,4
ICL 2988	f77 OPT = 2	85	0,16	4,23	13,9
		88		4,78	14,3
Vax 11/750 FPA	VMS (Blas codé) VMS	98	0,14		
Vax 11/780 FPA			0,13	5,48	16,0
Ridge 32	Fort 77	100	0,12	5,61	16,3
CDC 6500	Fun	102	0,12	5,69	16,6
Denelcor Hep	f77	107	0,11	5,98	17,4
/ax 11/780 FPA	Unix xf77	107	0,11	5,98	17,4
Vax 11/750 FPA	VMS	119	0,10	6,66	19,4
Prime 850	Primos	130	0,95	7,26	21,1
Univac 1100/62	Ascii opt = ZEO	132	0,93	7,38	21,5
Data General MV/8000	f77 opt level 2	157	0,78	8,80	25,6
Vax 11/750	VMS	216	0,57	12,1	35,3
HP 9000 Series 500	Fortran 1,7	285	0,043	16,0	46,6
Vax 11/730 FPA	VMS (Blas codé)	286	0,043	16,0	46,6
Vax 11/725 FPA	VMS (Blas codé)	286	0,043	16,0	46,6
Apollo	4,1 PEB (Blas codé)	323	0,038	18,1	52,7
BM 4331	H opt = 3	326	0,038	18,1	53,2
Vax 11/730 FPA	VMS	348	0,036	19.5	56.9
Vax 11/725 FPA	VMS	348	0.036	19.5	56.9
Prime 2250	Fortran 77	365	0.034	20.5	59.6
BM PC-XT/370	H opt = 3	391	0.031	21.9	63.7
Masscomp MC500 w/FP	Unix, f77 opt	452	0.027	25.3	73.7
Sun 2 + SKY board	Unix, f77 opt	557	0.22	31.2	90.1
Apollo	4.1 PEB	559	0,022	31.3	91.2
Canaan	VS	588	0,021	33.0	96.0
Chas. River Data 6835 + SKY	SVS Fortran 77	700	0,018	39.2	114
Cadtrak DS1/8087	Intel Fortran 77	1 143	0,011	64	186
Chas. River Data 6835	SVS Fortran 77	1 401	0,0088	78.5	229
HP 9000 Series 200	HP-UX	1 982	0,0062	111	323
Sun 2		1 991	0,0062	1112	325
	Unix, f77 opt	2 588		145	422
Masscomp MC500 Sun	Unix, f77 opt	2 588	0,0047	149	434
oun	Unix, f77 no opt	2 001	0,0046	149	434

(a) Les sous-programmes Linpack SGEFA et SGESL ont été utilisés pour les calculs en simple précision et les sous-programmes DGEFA et DGESL pour les calculs en double précision. Ces sous-programmes réalisent la décomposition LU standard avec pivot partiel et substitution arrière.

(b) Précision maximum implique l'utilisation d'une arithmétique à 64 bits (environ), par exemple la simple précision CDC ou la double précision 1BM. Demi-précision implique l'utilisation d'une arithmétique à 32 bits (environ), par exemple la simple précision IBM.

(e) MFLOPS est la vitesse d'exécution en millions d'opérations flottantes exécutées par seconde. Pour la solution d'un système de π équations, environ 2/3 n**3 + 2 n**2 opérations sont réalisées (en comptant à la fois les additions et les multiplications).

 (f) Temps unitaire est le temps, exprimé en microsecondes, nécessaire pour exécuter l'instruction y(i) = y(i) + tx(i). Cette instruction comporte une multiplication flottante, une addition flottante, quelques opérations d'indexation à une dimension et des références mémoires. Elle intervient dans SAXPY, appelé environ n**2 fois par SGEFA et n fois par SGESL avec des vecteurs de longueurs variées. Cette instruction est exécutée approximativement $1/3 n^{**}3 + n^{**}2$ fois. Ainsi, pour n = 100:

Temps unitaire = 10**6 Temps/(100**3/3 + 100**2).

Toute personne intéressée à compléter ou mettre à jour ces tables est invitée à contacter l'auteur. Envoyer suggestions et résultats à :

Jack J. Dongarra Mathematics and Computer Science Division Argonne National Laboratory Argonne, Illinois 60439

Telephone: 312-972-7246

ARPAnet : DONGARRA@ANL-MCS

 ⁽c) Compilateur désigne le compilateur utilisé et « BLAS codé » indique l'utilisation d'un langage assembleur pour coder le BLAS.
 (d) Ratio est le rapport de la performance d'une configuration de machine donnée avec la performance du Cray-1S utilisant un BLAS codé en Fortran.

Solution d'un système d'équations linéaires avec LINPACK (a) en demi-précision (b)

Ordinateur	Compilateur (c)	Ratio (d)	MFLOPS (e)	Temps (seconde)	Temps unitaire (f) microseconde
NAS 9060 w/VPF	VS opt = 2 (Blas codé)	1,5	8,4	0,082	0.24
Amdahl 5860 HSFPF	H étendu opt = 3	2,2	5,5	0,125	0,36
NAS 9060	VS opt = 2	2,4	5.2	0,133	0.38
Amdahl 5860 HSFPF	VS opt = 3	2,4	5.1	0,135	0.39
Amdahl 470 V/8	H étendu opt = 3	4.4	2,8	0,246	0.71
Amdahl 470 V/8	VS opt = 3	4.5	2.7	0,254	0.74
IBM 3081 K	H étendu opt = 3	5.1	2,4	0,283	0.82
IBM 3081 K	VS opt = 3	5,6	2,2	0,311	
IBM 3033		6.3	1.9	0,311	0.91
	VS Fortran	6.7			1,03
IBM 3081 D	VS opt = 2		1,8	0,376	1,10
ELXSI	Embos, F77 (Blas codé)	17	0,71	0,967	2,82
Vax 11/730 FPA	VMS (Blas codé)	23	0,53	1,30	3,79
ELXSI	Embos, F77	23	0,51	1,35	3,92
Univac 1100/81	Ascii opt = ZEO	24	0,52	1,32	3,85
Data General MV/10000	f77 opt level 2	31	0,39	1,75	5,09
VAX 11/785 FPA	VMS	36	0,34	2,01	5.85
VAX 11/780 FPA	VMS (Blas codé)	37	0,33	2,08	6.07
Ridge 32	Fort 77 (Blas codé)	39	0.31	2.19	6.38
IBM 370/158	H opt = 3	42	0,29	2,35	6.86
Norsk Data ND-500	Fortran-500-E	43	0.27	2,58	7.51
Dec KL-20	F20	46	0.27	2,59	7.53
IBM 370/158	VS opt = 3	46	0.26	2.60	7.58
Univac 1100/62		49	0.25	2,77	8.09
	Ascii opt = ZEO				
ICL 2988	f77 OPT = 2	50	0,25	2,79	8,13
Harris 800	Fortran 77	53	0,23	2,99	8,70
Vax 11/750 FPA	VMS (Blas codé)	56	0,22	3,14	9,16
IBM 4341 MG10	VS opt = 3	57	0,22	3,18	9,25
Vax 11/780 FPA	VMS	59	0,21	3,28	9,57
Vax 11/780 FPA	Unix xf77	61	0,20	3,41	9,93
Honeywell 6080	Y	62	0,20	3,46	10,1
Ridge 32	Fort 77	62	0,20	3,48	10.1
Data General MV/8000	f77 opt level 2	69	0.18	3.84	11,2
Vax 11/780	VMS	74	0,17	4.13	12.0
Vax 11/750 FPA	VMS	86	0.14	4.80	14.0
Prime 850	Primos	97	0.13	5,41	15,8
HP 9000 Series 500	Fortran 1.7	125	0,098	7,00	20,4
Vax 11/750	VMS	137	0,089	7.69	22.4
IBM 4331	H opt = 3	140	0,088	7,84	22,8
Apollo	4,1 PEB (Blas codé)	177	0,069	9,92	28,9
Vax 11/730 FPA	VMS (Blas codė)	205	0,060	11,5	33,4
Vax 11/725 FPA	VMS (Blas codė)	205	0,060	11,5	33,4
Masscomp MC500 w/FP	Unix, f77 opt	227	0,054	12,7	37,1
Burroughs 6700	H	234	0,052	13,1	38,2
Prime 2250	Fortran 77	258	0,048	14,5	42,1
Vax 11/730 FPA	VMS	259	0,047	14,5	42.2
Vax 11/725 FPA	VMS	259	0,047	14,5	42,2
Chas. River Data 6835 + SKY	SVS Fortran 77	284	0.043	15.9	46.3
IBM PC-XT/370	H opt = 3	303	0,040	17,0	49,5
DEC KA-10	F40	305	0,040	17.1	49.8
Canaan	vs	306	0,040	17,1	49.9
Sun 2 + SKY board					
	Unix, f77 opt	314	0,039	17,6	51,1
Apollo	4,1 PEB	334	0,037	18,7	54,5
Chas. River Data 6835	SVS Fortran 77	770	0,016	43,1	126
Cadtrak DS1/8087	Intel Fortran 77	893	0,013	50	146
Sun 2	Unix, f77 opt	966	0,013	54,1	158
Masscomp MC500	Unix, f77 opt	1 015	0,012	56,8	166
IBM PC/8087	Microsoft 3,1	1 071	0,011	60,0	175
HP 9000 Series 200	HP-UX	1 196	0,010	67,0	195
Sun	Unix, f77 no opt	1 298	0,0094	72,7	212
IBM PC	Microsoft 3.1	21 875	0.00056	1 225	3 568
Apple III	Pascal	50 232	0,00024	2 813	8 193

RAPPORTS

ANNEXE

Performances des grands ordinateurs scientifiques en environnement Fortran

Les sous-programmes Linpack utilisés pour obtenir les résultats présentés dans les tables ne révèlent pas les performances véritables des « ordinateurs scientifiques avancés ». Une implémentation différente de la solution des équations linéaires, présentée dans un rapport de Dongarra et Eisenstat [Dongarra 83], rend mieux compte des performances de ces machines. Cet algorithme utilise des opérations de type matrice-vecteur plutôt que seulement des opérations sur vecteur. Il en résulte un programme qui possède un haut niveau de modularité ou

une plus grande granularité, avec des performances potentielles meilleures pour une large gamme de machines, et spécialement sur les calculateurs de hautes performances. Le nombre d'opérations flottantes nécessaires et les erreurs d'arrondi sont exactement les mêmes pour les deux algorithmes, seule la façon dont les éléments de matrice sont accédés diffère. Comme dans l'expérience précédente, un programme Fortran a été exécuté et le temps requis pour résoudre le système d'équations avec une matrice d'ordre 300 est mesuré.

Il faut noter que toutes les exécutions ont été réalisées en précision maximum.

Les données présentées dans la table ont été rassemblées sur une période donnée. Des modifications ultérieures du logiciel ou du matériel des systèmes étudiés pourraient modifier dans une certaine mesure les résultats.

Solution d'un système d'équations linéaires utilisant la technique de déroulement de vecteur

Ordinateur	Compilateur (c)	MFLOPS (e)	Temps (seconde)	Temps unitaire (f) (microseconde)
CRAY X-MP	CFT (Isamax codé)	240	0.076	0.0083
Fujitsu VP-200	Fortran 77 (Comp directive)	220	0.083	0.0091
Fujitsu VP-200	Fortran 77	183	0.099	0.011
CRAY X-MP	CFT	161	0.113	0.012
CRAY X-MP	CFT (Isamax codé)	134	0.136	0.015
CRAY X-MP	CFT	106	0.172	0.019
CRAY 1-M	CFT (Isamax codé)	83	0,215	0.024
CRAY 1-S	CFT (Isamax codé)	76	0.236	0.026
CRAY 1-M	CFT	69	0.259	0.029
CRAY 1-S	CFT	66	0.273	0.030
NAS 9060 w/VPF	VS opt = 2 (Blas codé)	9.7	1.9	0.204
NAS 9060	VS opt = 2	6,9	2,6	0.285
IBM 370/195	VS opt = 2	4.4	4.1	0.455
FPS 164	D, opt = 3 (Isamax codé)	4,1	4.4	0.488
FPS 164	D, opt = 3	4.0	4.5	0,500
BM	VS opt = 2	2.5	7.1	0.800
VAX 11/780 FPA	UNIX × f77	0.11	177	19.5

Commentaires:

- + + ces mesures sont obtenues avec deux processeurs.
- + ces mesures sont obtenues avec un processeur.

La différence majeure entre le Cray 1-M et le Cray 1-S est la vitesse de la mémoire, le Cray 1-M ayant une mémoire plus lente. Les mesures montrent que le Cray 1-M est plus rapide que le Cray 1-S. Après de nombreuses discussions et examen du code généré en langage assembleur il a été montré que, de fait, le Cray 1-M était plus rapide pour ce programme. Le code généré par le compilateur a pour effet que le Cray 1-S manque un pas d'enchaînement. Sur le Cray 1-M, du fait de sa mémoire plus lente, ce pas d'enchaînement n'est pas manqué, d'où le temps d'exécution plus rapide.

(a) Compilateur désigne le compilateur utilisé, Isamax codé indique l'usage de langage assembleur pour coder le BLAS Isamax et Comp Directive l'usage de directives du compilateur dans les sous-programmes de traitement de vecteurs et de matrices.

- (b) MFLOPS est la vitesse d'exécution exprimée en millions d'opérations flottantes par seconde. Pour la résolution d'un système de n équations, 2/3 n**3+2 n**2 opérations sont nécessaires (additions et multiplications sont comptées).
- (c) Temps unitaire est le temps exprimé en microsecondes nécessaire pour exécuter l'instruction y(i) = y(i) + tx(i). Cette opération fait intervenir une multiplication flottante, une addition flottante, et quelques opérations scalaires d'indexation, de références mémoire, d'additions et de multiplications.

Remerciements

Je voudrais remercier toutes les personnes qui m'ont aidé à rassembler ces données de mesure.

Ce travail a été partiellement soutenu par le sous-programme « Sciences mathématiques appliquées » de l'Office of Energy Research, US Department of Energy, au titre du contrat W-31-109-Eng-38.

RAPPORTS

BIBLIOGRAPHIE

- [Dongarra 79] J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart: LINPACK User's Guide; SIAM Publications, Phil. PA., 1979.
- [Lawson 79] C. Lawson, R. Hanson, D. Kincaid and F. Krogh: Basic Linear Algebra Subprograms for Fortran Usage; ACM Trans. Math. Software, 5 (3), 1979, 308-371.
- [Dongarra 83] J. J. Dongarra and S. C. Eisenstat: Squeezing the Most out of an Algorithm in CRAY Fortran; ANL Tech. Memo. ANL/MCS-TM-9, May 1983.