Etude de l'astroïde

 \mathcal{P} désigne un plan affine euclidien rapporté à un repère orthonormé $\mathcal{R} = (O; \vec{i}, \vec{j})$.

On considère la courbe $\mathcal C$ décrite par le point M(t) de coordonnées $\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \end{cases} \text{ pour } t \in \mathbb R \ .$

Cette courbe \mathcal{C} est appelée astroïde.

- 1. Allure:
- 1.a Déterminer les axes de symétrie de la courbe C.
- 1.b Etudier et construire \mathcal{C} . Pour la représentation on prendra une unité égale à 4 cm.
- 1.c Calculer la longueur L de la courbe C.
- 2. Etude des centres de courbures :

En tout point régulier M(t) de \mathcal{C} on note $\vec{T}(t)$ et $\vec{N}(t)$ les vecteurs tangents et normaux de la base de Frénêt.

- 2.a Donner les composantes des vecteurs $\vec{T}(t)$ et $\vec{N}(t)$.
- 2.b Déterminer le rayon de courbure R(t) au point M(t), pour tout $t \neq 0 \lceil \pi/2 \rceil$.
- 2.c On note $\Omega(t)$ le centre de courbure au point M(t) lorsque celui-ci est régulier et on pose $\Omega(t)=M(t)$ lorsque le point M(t) est singulier. Exprimer les coordonnées de $\Omega(t)$ pour $t\in\mathbb{R}$.
- 2.d On introduit le repère $\mathcal{R}' = (O, \vec{I}, \vec{J})$ déterminé par $\vec{I} = \frac{1}{\sqrt{2}}(\vec{i} + \vec{j})$ et $\vec{J} = \frac{1}{\sqrt{2}}(-\vec{i} + \vec{j})$.

Déterminer les coordonnées, notées (X(t),Y(t)), du point $\Omega(t)$ dans le repère \mathcal{R}' .

- 2.e En introduisant le paramètre $\tau = t \frac{\pi}{4}$, observer que la courbe \mathcal{C}' décrite par les points $\Omega(t)$ se déduit de la courbe \mathcal{C} à l'aide de transformations géométriques simples à préciser.
- 3. Propriété géométrique :
- 3.a Ecrire une équation de la droite D(t) tangente en M(t) à C pour $t \in \mathbb{R}$.
- 3.b Soit A(t) et B(t) les points d'intersection avec les axes de coordonnées de la tangente D(t) à C en un point régulier M(t). Calculer la longueur A(t)B(t).
- 4. Construction géométrique :

Soit $t \in \mathbb{R}$ fixé. On note M au lieu de M(t).

Soit P le point du cercle de centre O et de rayon 1/2 déterminé par $(\vec{i}, \overrightarrow{OP}) = t[2\pi]$.

4.a Montrer que la droite D(t) tangente à \mathcal{C} en M passe par P. Indiquer une construction géométrique de D(t) à partir du point P seul.

4.b On note H le projeté orthogonal de O sur D(t).

Donner les coordonnées de H puis calculer $\overrightarrow{OH} + \overrightarrow{OM}$.

Faire une figure précisant comment, à partir du point P on peut construire M.