- 1. Calcular la pendiente de la recta secante a la gráfica de f trazada por los puntos de abscisa x_0 y $x_0 + \Delta x$ indicados. Representar gráficamente.
 - a) $f(x) = \frac{1}{2}x$
- en $x_0 = 1$
- i) $\Delta x = -0.5$
- $ii) \Delta x = 0.5$
- b) $f(x) = \frac{1}{x}$ en $x_0 = -2$

 - i) $\Delta x = -0.5$
 - $ii) \Delta x = 0.5$
- c) $f(x) = 2x^2$
- en $x_0 = 1$
- $\Delta x = 0.5$
- Calcular, por definición, la pendiente de la recta tangente trazada a la gráfica de cada función fmencionada, en el punto de abscisa x_0 dado. Representar gráficamente.
 - a) $f(x) = \frac{1}{2}x^2$
- $en \ x_0 = 1$
- b) $f(x) = \frac{1}{x}$
- $en x_0 = -2$
- c) $f(x) = \sqrt{x}$
- $en x_0 = 4$
- d) f(x) = 2x
- $en x_0 = 1$
- 3. Calcular aplicando la definición de derivada en un punto:
 - a) f'(2) siendo $f(x) = x^3 + 2x$
 - b) f'(0) siendo $f(x) = x^{12} 3x + 1$
 - c) f'(5) siendo $f(x) = (5-x)^5 + 3x^2 2$
 - d) f'(-1) siendo $f(x) = \frac{1}{x^2 + 1}$
 - e) f'(3) siendo $f(x) = \sqrt{x+1} 2$
- 4. Hallar el punto de la gráfica de $f(x) = x^2 x$ en el punto que la recta tangente es 3x 9y 4 = 0

- 5. Aplicando la definición, calcular la derivada de las siguientes funciones en el punto de abscisa indicado en cada caso:

 - a) $f(x) = x^2 + 2x$ en $x_0=2$ b) $f(x) = \sqrt{x-4}$ en $x_0=7$ c) $f(x) = \sin 3x$ en $x_0=0$ d) $f(x) = \ln(x+4)$ en $x_0=6$ e) $f(x) = \frac{3}{x+2}$ en $x_0=6$
- 6. Si $f: \Re \to \Re$; $f(x) = \begin{cases} x^3 \operatorname{sen}\left(\frac{1}{x}\right) & si \quad x \neq 0 \\ 0 & si \quad x = 0 \end{cases}$, calcular f'(x) si $x \neq 0$, y calcular f'(0).
- 7. Estudiar la derivabilidad de $f: \Re \to \Re$; $f(x) = |x^2 1|$, en $x_0 = 1$ y en $x_1 = -1$.

8. Determinar cuáles de las siguientes gráficas no tienen recta tangente en x = a. Justificar.

9. Determinar la ecuación explícita de la recta tangente a la curva definida por cada una de las siguientes funciones, de \Re en \Re , y en los puntos cuyas abscisas se indican:

a)
$$f(x) = -\frac{1}{2}x^2 + 3x - 2$$
 en $x_0 = 0$

b)
$$f(x) = \frac{1}{x+1}$$
 en $x_0 = 1$

c)
$$f(x) = -7x + 6$$
 en $x_0 = -1$

- 10. Para cada una de las siguientes funciones se pide:
 - i) graficarla,
 - ii) hallar las ecuaciones de la recta tangente y de la recta normal en los puntos cuyas abscisas se indican:

a)
$$f: \Re \to \Re$$
; $f(x) = x^2$ en $x_0 = 1$

b)
$$f: \Re -\{2\} \to \Re$$
; $f(x) = \frac{x-1}{x-2}$ en $x_0 = 0$

c)
$$f: \Re -\{-4\} \to \Re$$
; $f(x) = \frac{x+3}{x+4}$ en $x_0 = -1$

11. Dada la función $f(x) = x^{\frac{2}{3}}$ cuya gráfica es la que se exhibe

Calcular $f'(0^+)$ y $f'(0^-)$

12. Graficar las siguientes funciones. Estudiar continuidad y derivabilidad de cada una de ellas en $x_0 = 0$.

a)
$$f: \Re \to \Re$$
; $f(x) = \begin{cases} \sqrt{x} & si \quad x \ge 0 \\ \sqrt{-x} & si \quad x < 0 \end{cases}$

b)
$$f: \Re \to \Re$$
; $f(x) = \begin{cases} |x| & si \quad x \ge 0 \\ x^3 & si \quad x < 0 \end{cases}$

c)
$$f: \Re \to \Re$$
; $f(x) = \begin{cases} x^2 & si \quad x < 0 \\ -x^2 & si \quad x \ge 0 \end{cases}$

13. Calcular f'(x) aplicando la definición de función derivada en los siguientes casos:

a)
$$f(x) = 2x^2 + 3x - 2$$

b)
$$f(x) = \sqrt{x}$$

c)
$$f(x) = \frac{1}{x}$$

d)
$$f(x) = 5$$

e)
$$f(x) = x$$

f)
$$f(x) = x^3 + x$$

- 14. Utilizar en cada caso las funciones derivadas obtenidas en el ejercicio 13, para determinar la pendiente de la recta tangente a la gráfica de f, en el punto P_0 de la misma, de abscisa $x_0 = 4$.
- 15. A partir de la definición de función derivada, determinar en cada caso los valores de abscisa x para los cuales f'(x) = 5.

i)
$$f(x) = 3x^2 - 5x$$

ii)
$$f(x) = 2x^3 - x + 4$$

- 16. Dada la función $f: \Re \to \Re$; $f(x) = x^2 + 2x + 1$:
 - a) determinar la ecuación de la recta tangente a la curva, que sea paralela a la recta y = 2x 3,
 - b) ¿existe algún punto de la curva en el cual la recta tangente tenga pendiente -2?
- 17. Usando las reglas de derivación, hallar las funciones derivadas.

a)
$$f(x) = x^3 + 6x + 1$$

k)
$$f(x) = x \ln x$$

b)
$$f(x) = x^5 + \cos x$$

1)
$$f(x) = \frac{x^2 + 3x}{x^4 + x^2}$$

c)
$$f(x) = x^3 \operatorname{sen} x$$

m)
$$f(x) = (\sin x + \cos x)\sqrt{2}$$

d)
$$f(x) = \frac{2}{x+1} + \ln 3$$

n)
$$f(x) = \frac{\sin x \cos x}{2}$$

e)
$$f(x) = \frac{x^2 \sqrt{x}}{x^{3/2}}$$

$$\tilde{n}) f(x) = \operatorname{tg} x \ln x$$

f)
$$f(x) = 4x^{-2}$$

o)
$$f(x) = e^x \sin x - e^5$$

g)
$$f(x) = \frac{\sin x}{\cos x} + \sin \frac{\pi}{2}$$

$$p) f(x) = 2^x \operatorname{tg} x$$

h)
$$f(x) = \frac{1}{x} + 3x^5 \cos x$$

q)
$$f(x) = (x+1)e^x$$

$$i) \quad f(x) = \frac{x \sin x}{1 + x^3}$$

r)
$$f(x) = \frac{2x + \ln x}{3}$$

$$j) \quad f(x) = \frac{2 - \sin x}{2 - \cos x}$$

s)
$$f(x) = \frac{6 \ln x}{x}$$

18. Calcular mediante tablas de derivadas, las funciones derivadas de

- a) $f(x) = \sin x + x^{13}$
- b) $f(x) = \cos x + \frac{\sin x}{2^x}$
- c) $f(x) = 2 + \frac{\ln x}{x^2}$
- d) $f(x) = (2 + \sqrt{x}) \cdot x^3 + \frac{1}{\sqrt[3]{x}}$
- e) $f(x) = \frac{3+x}{3+x^3}$
- f) $f(x) = \frac{x^2}{x + \sqrt[3]{x}}$
- g) $f(x) = \frac{2x}{x^5 + 6x^3 + 2}$
- h) $f(x) = (\sqrt{x} + x)(x^2 + 3x 2)$
- i) $f(x) = \frac{\sqrt{x} 3\sqrt[4]{x}}{x}$
- $j) f(x) = \frac{x^5 + \sin x}{\sqrt{x}}$
- $f(x) = \frac{2^x \operatorname{tg} x}{x^2}$
- 1) $f(x) = \frac{2 \sqrt{x}}{2 + \sqrt{x}}$
- m) $f(x) = \frac{3}{x^2} \ln x$
- n) $f(x) = \frac{x \cdot 2^x}{\sqrt{x} + \cos x}$
- o) $f(x) = \frac{x(\ln x + \pi)}{\sqrt{2 \cos x}}$
- 19. Dadas las siguientes funciones, hallar los dominios de f, g, para que sea posible $f \circ g$, $g \circ f$.

a)
$$f: D_f \to \Re$$
; $f(x) = \log x$
 $g: D_g \to \Re$; $g(x) = 2x - 3$

b)
$$f: D_f \to \Re$$
; $f(x) = \sqrt{-x}$
 $g: D_g \to \Re$; $g(x) = x - 5$

c)
$$f: D_f \to \Re ; f(x) = \log x$$

 $g: D_g \to \Re ; g(x) = 10^x$

d)
$$f: D_f \to \Re ; f(x) = \frac{2}{-x+3}$$

 $g: D_g \to \Re ; g(x) = \ln x$

e)
$$f: D_f \to \Re ; f(x) = |x|$$
$$g: D_g \to \Re ; g(x) = 2 + \sqrt{x}$$

20. Hallar f'(x) en cada uno de los siguientes casos:

a) a)
$$f(x) = (x+1)^2$$

b)
$$f(x) = 4 \operatorname{sen}^2 x$$

b)
$$f(x) = (3x + x^4)^3$$

c)
$$f(x) = \sin 2x$$

$$d) \quad f(x) = \cos^3 x$$

e)
$$f(x) = \frac{a}{\sqrt{a - x^2}}$$

$$f) \quad f(x) = \ln \sqrt{4 - x^2}$$

g)
$$f(x) = e^{x^2 + 2}$$

$$f(x) = e^{3x} \operatorname{sen}(2x)$$

i)
$$f(x) = a^x$$

j)
$$f(x) = \arcsin x$$

k)
$$f(x) = \arcsin(2x)$$

m)
$$f(x) = 1 + \arccos x$$

n)
$$f(x) = arctg(2x + 1)$$

$$\tilde{\mathbf{n}}) \quad f(x) = (\cos x)^{10}$$

o)
$$f(x) = \ln(x^2)$$

$$p) \quad f(x) = \ln^2 x$$

q)
$$f(x) = \ln\left(\frac{1}{x}\right)$$

$$f(x) = \sqrt{\frac{1+x}{1-x}}$$

s)
$$f(x) = \frac{\sin x}{1 + \lg^2 x}$$

$$f(x) = \sin x - \frac{1}{3} \sin^2 x$$

u)
$$f(x) = \left(x^3 - \frac{7}{x}\right)^{-2}$$

v)
$$f(x) = [\cos(\ln(x^2 + 3))]^3$$

w)
$$f(x) = \ln \sqrt{\frac{1}{x}}$$

21. Hallar las funciones derivadas de:

a)
$$y = \sin 2x$$

b)
$$y = \sqrt[3]{\cos x}$$

c)
$$y = 3^{\cos x}$$

d)
$$y = 2^{x \cos x}$$

e)
$$y = \sqrt[3]{\sin(\ln x)}$$

f)
$$v = 2^{\cot g x}$$

g)
$$y = \ln\left(\sqrt[3]{x} - x^3\right)$$

$$h) \ \ y = \sqrt{\ln \frac{1}{x}}$$

i)
$$y = \sqrt[3]{\cos\sqrt{x}}$$

j)
$$y = \cos(x - \cos x)$$

k)
$$y = \ln \left(x^2 \cdot \cot g 3x \right)$$

1)
$$y = \cos\left(\sin\frac{x}{3}\right)$$

m)
$$y = \sqrt[3]{x^2 sen3x} + 2^{\pi}$$

n)
$$y = \ln 2 \cot g^2 \left(\frac{1}{x}\right)$$

$$\tilde{n}) \quad y = \ln(senx^3) + \cos^3 \sqrt{\ln 2x}$$

o)
$$y = \left[tg \left(2x^2 - 2x \right) \right]^{1/2} + \cos^3 \left(\ln \frac{x}{2} \right)$$

p)
$$y = \sqrt[3]{\ln \frac{1}{\cos x}} + 2^{-x} \sqrt{\ln 3}$$

q)
$$y = \frac{1}{\ln(\cos^2 3x)} + e^{-3\sqrt{x}} \sqrt{sen(x^5 - 2x)}$$

r)
$$y = \sqrt[3]{\cot g^2 (sen2x) + e^{\cos 3x}}$$

- 22. Sabemos que (3; 4) es un punto de la gráfica de una función f, para el cual la pendiente de la recta tangente vale 3. Además (3; -5) es un punto de la gráfica de una función g, en donde la pendiente de la recta tangente vale -2. Hallar:
 - a) la pendiente de la recta tangente a la gráfica de f + g en el punto P_0 de la misma, de abscisa 3
 - b) h'(3) siendo h(x) = 5 f(x) 2g(x)

- c) la pendiente de la recta tangente a la gráfica de f. g en el punto P_0 de la misma, de abscisa 3
- d) l'(3) siendo $l(x) = \frac{f(x)}{g(x)}$
- 23. Determinar las ecuaciones explícitas de las rectas tangentes a las curvas dadas por las siguientes funciones en los puntos cuyas abscisas se indican:
 - a) $f(x) = x^5 3x^2 + x 1$
 - en *i*) $x_1 = 1$
 - *ii*) $x_2 = 0$
 - b) $f(x) = e^{-x}$ en i) $x_1 = 0$

 - $ii) x_2 = -1$
 - c) $f(x) = \cos x$ en i) $x_1 = 0$
 - - $ii) x_2 = \frac{\pi}{2}$
- 24. Determinar si las siguientes funciones son derivables en a
- a) $f(x) = \begin{cases} x^2 & si & x \le 1 \\ \sqrt{x} & si & x > 1 \end{cases}$ a = 1b) $f(x) = \begin{cases} x^2 & si & x \le 0 \\ x & si & 0 < x \le 1 \\ \frac{x^2 + 1}{2} & si & x > 1 \end{cases}$ a = 0, a = 1
- c) $f(x) = \begin{cases} 2x+1 & si & x < 2 \\ 2x^2 3 & si & x \ge 2 \end{cases}$
- a = 2
- 25. Hallar los puntos del gráfico de f donde la recta tangente es horizontal
 - a) $f(x) = x^2 3x + 2$

b) $f(x) = \frac{x}{9-x}$

- 26. Derivar las siguientes funciones:
 - a) $f(x) = x^x$

b) $f(x) = sen(x^{\cos x})$

c) $f(x) = (\ln x)^x$

27. Hallar la función derivada de

a)
$$y = (x + senx)^{\frac{1}{x}}$$

b)
$$y = 2^{x} (senx)^{x}$$

c)
$$y = \sqrt[3]{x} \operatorname{senx}^{x^2}$$

d)
$$y = \frac{\ln x}{e^x} - (2 + x)^{3\sqrt{x}}$$

e)
$$y = \left[(\ln x)^{senx} \right]^3$$

f)
$$y = sen(x+3^x)^x$$

28. Obtener la ecuación explícita de la recta tangente a la gráfica de las siguientes funciones en los puntos de tangencia cuyas abscisas se indican:

i)
$$f(x) = e^{\left[\frac{1}{(x-2)^x}\right]}$$

en
$$x_0 = 3$$

ii)
$$f(x) = \left[\frac{2}{x+4}\right]^{\frac{x+8}{3}}$$

en
$$x_0 = -2$$

iii)
$$f(x) = \ln(\sqrt{x^2 - 3})^{x-1}$$
 en $x_0 = 2$

en
$$x_0 = 2$$

29. Determinar si la gráfica de cada una de las funciones dadas tiene alguna tangente vertical. En caso de que exista, hallarla

i)
$$f(x) = (2x - 8)^{2/3}$$

ii)
$$f(x) = x^{-1/3} + 1$$

iii)
$$f(x) = \frac{1}{x^{\frac{1}{3}} + 1}$$

iv)
$$f(x) = 4x^2 + 6x^{\frac{1}{3}}$$

v)
$$f(x) = (x^2 + 9)^{1/3}$$

vi)
$$f(x) = (x+2)^{1/3}$$

30. Hallar y'', si:

a)
$$y = \ln x$$

b)
$$y = \operatorname{sen}^3 x$$

c)
$$y = \sqrt{x+3}$$

- 31. Hallar las funciones derivada primera, segunda y tercera de las siguientes funciones:
 - i) $f(x) = x^5 + 6x^4 + 3x$
 - ii) $f(x) = 2^x$
 - iii) $f(x) = x \cdot \ln x$
 - iv) $f(x) = \frac{1}{x}$
 - v) $f(x) = \cos x$
- 32. Hallar la expresión de la función derivada n-ésima de las siguientes funciones:
 - i) $f(x) = e^x$
 - ii) $f(x) = 2^x$
 - iii) $f(x) = \ln x$
 - iv) $f(x) = \frac{1}{x}$
 - $v) \quad f(x) = x^n$