

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 15 de marzo de 2022

	10 0	ie marzo de z	022
Nombre y ap	ellido:		Padrón:
Cuatrimestre de cursada:		Turno:	
Disposi		nsta de 5 pr	e de la evaluación integradora de la materia reguntas y debe ser respondido en una hora, cepción.
■ Se reco	mienda organizar el tiempo para der	morar 10 mi	nutos por pregunta.
■ Alguna	s preguntas pueden ser del tipo mult	tiple choice	(MC) y otras pueden ser con respuesta numérica.
■ En las j	preguntas MC existe siempre una ún	nica respues	ta correcta.
■ En las j	preguntas numéricas debe responder	se con unid	ades siempre y cuando corresponda.
■ El cues	tionario se aprueba con 3 preguntas	correctas.	
_	obación del cuestionario es necesaria te para aprobar la evaluación integra	-	er a la segunda parte de la evaluación, pero no es
■ En caso	o de no aprobar el cuestionario, la ev	valuación in	segradora estará desaprobada.
Pregunta	Respuesta		Corrección
1			
2			
3			
4			
5			
	Calificación Cue	estionario:	
	Nota	Examen:	
	N	ota Final:	

Firmar al entregar: _____

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 15 de marzo de 2022

- 1) Dos diodos de juntura PN sólo se diferencian por haber sido fabricados con distinto material semiconductor, manteniendo iguales entre sí su geometría y niveles de dopaje de cada lado de la juntura. Como consecuencia, se obtienen dos corrientes de saturación inversa distintas para cada uno de ellos: $I_{S1} = 200 \,\text{fA}$ y $I_{S2} = 20 \,\text{fA}$. Se disponen en un arreglo serie donde el D_1 se encuentra polarizado en inversa y D_2 en directa a través de una fuente de tensión ($V_F = 9 \,\text{V}$) y un resistor ($1 \,\text{k}\Omega$). ¿Cómo son las caídas de tensión de cada uno de los diodos?
 - A) $V_{D1} \simeq 2.5 \,\text{mV} \,\text{y} \, V_{D2} \simeq 9 \,\text{V}.$
 - B) $V_{D1} \simeq 62 \,\mathrm{mV} \,\mathrm{y} \,V_{D2} \simeq 9 \,\mathrm{V}.$
 - C) $V_{D1} \simeq 0.7 \,\text{V} \,\text{y} \,V_{D2} \simeq 8.3 \,\text{V}.$
 - D) $V_{D1} \simeq 9 \text{ V y } V_{D2} \simeq 2.5 \text{ mV}.$
 - E) $V_{D1} \simeq 9 \text{ V y } V_{D2} \simeq 62 \text{ mV}.$
 - F) $V_{D1} \simeq 8.3 \text{ V y } V_{D2} \simeq 0.7 \text{ V}.$
- 2) Para un transistor MOSFET canal P, ¿cuál de las siguientes afirmaciones es correcta respecto de "El Pinch-off"?
 - A) Una vez superado el "pinch-off", el campo eléctrico lateral en todo el canal aumenta considerablemente y es muy elevado.
 - B) En régimen de saturación la corriente no satura, sino que el canal está saturado de portadores y el transistor se comporta como un resistor de bajo valor.
 - C) Una vez superado el "pinch-off", la densidad de portadores libres en el canal aumenta considerablemente, pero el campo eléctrico disminuye manteniendo la corriente constante.
 - D) Una vez superado el "pinch-off", se mantiene constante tanto el perfil de densidad de portadores como el campo eléctrico lateral a lo largo del canal, de forma tal que la corriente se mantiene constante.
 - E) Cuando sucede "El Pinch-off", en el extremo de Drain el campo eléctrico lateral es nulo.
- 3) Un transistor TBJ PNP está polarizado en MAD a temperatura ambiente.

Se conocen las pendientes de las concentraciones de minoritarios en el emisor, base y colector, siendo su valor absoluto $8.775 \times 10^{13} \, \mathrm{cm}^{-4}$, $3.515 \times 10^{16} \, \mathrm{cm}^{-4}$ y $5.05 \times 10^8 \, \mathrm{cm}^{-4}$, respectivamento

	$\mu_n \; (\mathrm{cm}^2/(\mathrm{Vs}))$	$\mu_p \ (\mathrm{cm}^2/(\mathrm{Vs}))$
Emisor	900	300
Base	1400	450
Colector	1450	480

También se conocen las movilidades en cada una de las regiones (ver tabla).

Determinar el valor de la densidad de corriente de colector (J_C) .

- 4) Se implementa un amplificador emisor común sin realimentación con un transistor NPN con parámetros $\beta=300~{\rm y}~V_A\to\infty$. La tensión de alimentación es $V_{CC}=9~{\rm V}$, y el transistor está polarizado con dos resistencia de base siendo $R_{B1}=10~{\rm k}\Omega$ entre la fuente de alimentación y la base del transistor, $R_{B2}=1~{\rm k}\Omega$ entre la base del transistor y tierra, y una resistencia de colector, $R_C=150~\Omega$ conectada a la fuente de alimentación. A la entrada del amplificador, se conecta una señal senoidal (v_s) de tensión pico $15~{\rm mV}~{\rm y}$ resistencia serie $R_s=100~\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular la tensión pico de la señal de salida v_{out} .
- 5) Un JFET de canal N está conectado de la siguiente forma: el drain conectado a una fuente de alimentación de 5 V, el source conectado al cátodo de un diodo zener, y el gate del JFET conectado a una fuente de tensión (V_G) que controla la corriente de drain. Los parámetros del transistor son $I_{DSS}=50\,\mathrm{mA}$ y $V_P=-2\,\mathrm{V}$. El ánodo del diodo zener está conectado a tierra, y sus parámetros son $V_Z=2.7\,\mathrm{V}$, $I_{min}=0.1\,\mathrm{mA}$ y $I_{max}=20\,\mathrm{mA}$. Calcular el valor de V_G para que el diodo funcione en la región de zener disipando la mitad de su potencia máxima.