

Competitive Programming

From Problem 2 Solution in $\overline{O(1)}$

Dynamic Graphs Heavy-light tree decomposition - 1

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Heavy-light tree decomposition

- Purpose: Handling queries on dynamic trees
 - Dynamic graph: Add/Remove edge or change costs
 - HLD case: Fixed tree structure, but values can change
- Algorithm (<u>tutorial</u> <u>code</u>)
 - Simple DFS that divides the tree to set of chains
 - The real magic: A prove that # of chains from node to root is O(log(n)). Hence, allows efficient querying
 - Given the chains, use them for answering queries
- Prerequisites
 - LCA concept (not specific algorithm)
 - Segment tree: To do update/query on the chains

Recall: Range Query on arrays

- Given array of N Numbers and Q queries
 [Start-end], find in the range/interval:
 - range sum/max/min/average/median/lcm/gcd/xor
 - number of elements repeated K times (k = 1 = distinct)
 - position of 1st index with accumulation >= C
 - the smallest number < S (or their count)</p>
 - Value repeats exactly once (use xor) or most frequent
 - Find the <u>kth elemnt</u> in the sorted distinct list of range
- \blacksquare Brute force is O(NQ), can we do better?
 - Preprocessing algorithms / Data Structures

Recall: Range Query on arrays

- Data Structures & Algorithms
 - DS: BIT, Segment Tree, heaps, BBST
 - Algos: Square root decomposition, ad hoc preprocessing
- Applying data structures / algorithms
 - Some of them will be the easiest
 - While others will be harder to apply
 - And some of them might be **impossible** to use
 - Some of them can be easy to apply, but not efficient
 - So think about possible choices before going with one

Recall: Range Query on arrays

- Static vs Dynamic arrays (update operation)
 - Sometimes we are given a static array
 - Then queries are just given ranges to compute F
 - Sometimes, you have update operations
 - Update position 10 with value 157
 - Some algorithms work for static case only
- Online vs offline processing
 - Sometimes you can read all queries and sort them
 - Then answering might be more efficient
 - This is always doable in competitions (read input file)
 - Sometimes update operation makes that impractical

Recall: Range Query on trees

Basic Ways (if applicable):

- The idea is to convert the tree to array
- Query 1: Compute something on subtree of given root?
- Easy: Preorder traversal over tree flats it to array. Then any root can be identified in this array as a range
- Query 2: Given Node A, Node B, query on path?
- Similar to LCA, run Euler walk DFS to flat a tree to array
- Then **path** (A, B) can be mapped to a **range** in the array
- After that, just apply applicable algorithm for arrays.
- However, notice, that path may have duplicate nodes which should be <u>neglected</u>. We can find solution for some algorithms (E.g. MO), but fail to others (Segment Tree).

Recall: Tree and Chain

Src: https://sheridanmath.wikispaces.com/file/view/GEOMETRY_04.GIF/177066721/GEOMETRY_04.GIF https://blog.anudeep2011.com/heavy-light-decompositio

Recall: Rooted Tree

Src: https://www.tutorialspoint.com/discrete_mathematics/images/rooted_tree.ipg

Heavy-light tree decomposition

In Summary

- Split the tree into chains such that every node is in the chain with the child which has biggest subtree.
- This can be done by a simple DFS
- For node p, Compute childern tree sizes
- Connect p to child c with biggest size
- Other children are independent subtrees
- Property: path between 2 nodes is O(logn) chains
- So if each chain is a segment tree, we can do queries in O(logn) * O(segment tree per a range), e.g. O(log²n)

HLD: Compute node subtree size

Each node has its sub-tree size written on top.

Each non-leaf node has exactly one special child whose sub-tree size is colored.

Colored child is the one with maximum sub-tree size.

Src: https://blog.anudeep2011.com/heavy-light-decomposition/

HLD: Link node with biggest child

Each Chain is represented with different color.

Thin Black lines represent the connecting edges. They connect 2 chains.

Src: https://blog.anudeep2011.com/heavy-light-decomposition/

HLD: Path U to (ancestor) V

Src: https://blog.anudeep2011.com/heavy-light-decomposition/

HLD: Path U to (any) V

- To go for a child, you just keep going down
- To go an ancestor, you just keep going up
- Otherwise, some go up steps, and then go down
- **LCA**(A, B) is where you start to **flip**
- HLD computes some chains going up from node 1
- And other chains going down (or, going up too, but from the 2nd node)
- Compute V1 from first node's chains (e.g max on path)
- Compute V2 from 2nd node's chains (e.g max on path)
- Compute Overall V (e.g. max(v1, v2))
- What are the chains from 9 to 3 and from 12 to 3?

 $LCA_{T}(9, 12) = 3$

Src: https://www.topcoder.com/community/data-science/data-science-tutorials/range-minimum-guery-and-lowest-common-ancestor/

HLD for LCA

- Do we need an extra LCA algorithm?
 - You may think we need LCA algorithm to break path (U, V) to <U, LCA(U, V), V>
 - However, HLD itself can compute LCA
 - Let depth[i] = the computed depth of node i
 - Let root[i] = the root of the chain of node i
 - Keep **moving up** on both U and V till finding their LCA:
 - Compare depth[root[u]] with depth[root[v]]
 - The lower one, goes up to the next chain toward the root
 - E.g. if v is lower \Rightarrow v = parent[root[v]]
 - You just learned a new algorithm for LCA :)

Range Query on chains

- The chain is a sequential set of values
 - So, it corresponds to an array
 - We need a range query data structure or algorithm
 - Usually used: segment tree (ST)
 - But others can be used based on problem nature
 - 1 segment tree for all chains vs 1 ST per a chain?
- Value changes
 - Queries to update values (node value edge value)
 - We just change one chain value (not whole given tree)

Solving Queries on trees

Thinking

- First, think for the query on an **array** and solve it
- Assume you have several arrays, can you compute their overall answer? If yes, HLD is done
- \blacksquare E.g. max of path = max over all chains
- One also may just use an euler walk, given that he can handle the duplicate values on path (little scenarios?)
- So generally, HLD is the way to go
- HLD also fits when the tree values changes

Chains to segment tree

Chains to segment tree

Chains to segment tree

- How to map to a single segment tree?
 - For each chain, assign consecutive IDs mapping
 - 1 2 4 <u>7</u> 10 => 1 2 3 <u>4</u> 5 E.g. treePos[7] = 4
 - 11 => 6
 - **5** 9 => 7 8
 - **1**2 => 9
 - **3** 6 8 => 10 11 12
 - tree chains \Rightarrow segment tree leaves values
 - 124710115912368 [chains ordered]
 - **8 5 4 7 6** 8 **15 17** 6 **0 4 5** [corresponding values]

- Assume values on nodes
- Assume 2 chains: {1, 7, 3} and {9, 5, 2}
- Assume 1 connector (3, 9)
- tree of 6 nodes => segment tree of 6 nodes
- map to seg tree values:: **8 5 4** 7 3 1
- Path (7-2) needs 2 queries for segment tree
- Range of Query1: (2, 3) [nodes 7 to 3]
- Range of Query2: (4, 6) [nodes 9 to 2]

- Assume values on edges
- Assume 2 chains: {1, 7, 3} and {9, 5, 2}
- Assume 1 connector (3, 9)
- tree of 6 nodes => segment tree of 5 nodes
- mapping a chain now is not that valid
- As connector value over edge (3, 9) will be dropped!
- Trick, convert to a tree with values on nodes
- But we have N-1 values and N edges
- Don't set value over the tree main root
- For edge (a, b) with cost C
- let node_value[b] = C

- Assume values on edges
- Assume 2 chains: {1, 7, 3} and {9, 5, 2}
- Assume 1 connector (3, 9)
- tree of 6 nodes => segment tree of 5 nodes
- mapping a chain now is valid
- But doing queries is little tricky
- Path (7-2) needs 2 queries for segment tree
- Range of Query1: (2+1, 3) [nodes 3 to 3]
 - We need +1, as value 8 is for edge (1-7)
- Range of Query2: (4, 6) [nodes 9 to 2]
 - We did not add 1 to let query consider edge (3, 9)
 - Recall, segment tree node 4 corresponds to edge (3, 9)

Implementation wise, few code changes to consider the +1 case

- Assume values on edges
- In the LCA(A, B) algorithm, A and B keeps going up till meet at the LCA node
- So, if a node will jump to the next chain connector, then we need to cover this connector
- Range (chain root, current node) covers such a range
- If the 2 nodes A, B are in same chain, then value at A should be ignored, as it is for the previous edge
- Then (A+1, B)
- Moral of that. There is a single difference between values of nodes vs edges
- When the 2 nodes are on the same chain, use (A+1, B).
- The remaining climbing up the tree is the same for values one edges or nodes
- Code next time clarifies that

Undirected trees

Undirected to directed

- Sometimes the given tree is undirected
- HLD needs a directed tree
- Pick any node, DFS from it
- Direct edges
- In case values on edges, mark which edge direction used
- E.g. if for edge (5, 8) u directed as (8, 5), then we put the value at node 5
- In fact, it the same DFS for HLD can handle that

Implementing HLD

Main HLD Algorithm

- Dropping chains processing, it is an easy code
- Write 1 (only) **DFS** to compute for each node: its parent, its depth and its heavy child (easy to code)
- For every chain with root i, iterate on all its nodes j and set their **root[j]** = i (easy to code)

Implementing HLD

- HLD with range query data structure
 - This is the main purpose of using HLD
 - It is more sort of implementation skills
 - One way is <u>1 segment tree</u> to all tree nodes (e.g. for every tree node j, map its position to the segment tree array position: $treePos[j] = segment_tree_array_idx$
 - Then sub-chain from node v to chain root corresponds in the segment tree to (treePos[root[v]], treePos[v])
 - And sub-chain between 2 nodes (u, v) on the same chain corresponds to (treePos[u], treePos[v])
 - The other way is 1 segment tree <u>per a chain</u>
 - Other data structures might be suitable (e.g. BIT)

HLD Efficiency

- The core of the algorithm
 - HLD is a DFS decomposes the vertices of the tree into disjoint chains => matter of O(E+V)
 - As mentioned, the core of queries efficiency is because of O(logn) chains only from a node to the tree root
 - Can you prove that?
 - Hint: prove the connector tree size <= parent / 2
 - Read1 Read2 Read3

HLD Efficiency

The proof

- The number of chains is bounded b connector edges
- We can prove size(a connector tree) <= size(parent)/2, and so on => O(logn)
- Why? What is minimum size of the largest subtree?
- If a tree has N = 100, M = 9, then a balanced children each have 99/9=11 nodes. This is the minimum: Ceil(n/m).
- So size(any connector tree) \leq Ceil(n/2) = the max child

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ