EsD3: Macchine a stati finiti: semafori e riconoscitore di fronti

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

22 aprile 2022

1 Misura componenti dei circuiti

Riportiamo per completezza il valore della tensione continua di alimentazione per i circuiti integrati misurata con il multimetro

$$V_{CC} = 4.99 \pm 0.03 \text{V}$$

e il valore di capacità del condensatore di disaccoppiamento che collega le linee di alimentazione a massa (sempre misurato con il multimetro)

$$C_d = 97 \pm 4 \text{ nF}$$

2 Implementazione di un semaforo con circuiti integrati

2.a Costruzione del circuito

Si è assemblato il circuito riportato in Figura 1 e si sono collegati i pin preset e clear dei D-FF a $V_{\rm CC}$.

Figura 1: schema del semaforo Mealy con enable.

Per studiarne il comportamento generiamo nei due pin DIO 0 (CLOCK) e DIO 1 (ENABLE) dell'AD2 due segnali di clock di frequenza f = 10 Hz e 1 Hz agli ingressi CLK ed E del circuito.

Conclusioni e commenti finali

Si è riusciti a verificare il corretto funzionamento di circuiti logici sequenziali di crescente complessità e svariate applicazioni (e.g., sistemi di controllo e misura) costruiti con porte NOT, NAND, XOR, D-Latch e contatori sincroni. In particolare sono stati realizzati e studiati un D-Latch, uno shift-register con positive edge-triggered D-FF, un generatore di sequenze pseudocasuali e alcuni tipi di divisore di frequenza con contatori binari. Inoltre si è riusciti ad apprezzare l'effetto dei tempi di propagazione delle porte sul loro comportamento, seppur in maniera limitata dalla bassa risoluzione temporale dell'AD2.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.