On Costa's Minimal Surface

Xiaoshuo Lin

University of Science and Technology of China

August 23, 2024

Outline

Constructing Minimal Surfaces

Two Weierstrass Functions

Parametrization of Costa's Minimal Surface

Asymptotics of the Ends

Symmetries of the Surface

The Hoffman-Meeks Conjecture

Weierstrass Representation

Theorem (The Weierstrass Representation Formula)

Let f and g be functions on a simply connected domain $D \subset \mathbb{C}$, where g is meromorphic and f is holomorphic, such that wherever g has a pole of order m, f has a zero of order at least 2m (or equivalently, such that the product fg^2 is holomorphic). Fix $z_0 \in D$, and let c_1, c_2, c_3 be constants. Then the surface with coordinates (x_1, x_2, x_3) is **minimal**, where the x_k are defined as follows:

$$x_k(z) = \operatorname{Re}\left\{\int_{z_0}^z \varphi_k(w) \, \mathrm{d}w\right\} + c_k, \quad k = 1, 2, 3.$$
$$\varphi_1 = \frac{f(1 - g^2)}{2}, \quad \varphi_2 = \frac{\mathrm{i}f(1 + g^2)}{2}, \quad \varphi_3 = fg.$$

Basic Example: The Catenoid

From the functions

$$f(z) = -e^{-z}$$
 and $g(z) = -e^z$

we obtain (up to constants)

$$\begin{cases} x_1(u, v) = \cosh u \cos v, \\ x_2(u, v) = \cosh u \sin v, \\ x_3(u, v) = u, \end{cases}$$

which describes the catenoid.

Figure: The catenoid

Weierstrass \wp and ζ

We choose the lattice $\mathbb{Z}[\mathrm{i}]=\{m+\mathrm{i}\,n:m,n\in\mathbb{Z}\}$ so that the Weierstrass \wp and ζ functions are defined by

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \mathbb{Z}[i] \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right),$$

$$\zeta(z) = \frac{1}{z} + \sum_{\omega \in \mathbb{Z}[i] \setminus \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).$$

Clearly, $\zeta'(z) = -\wp(z)$. Let us denote

$$e_1 = \wp(\frac{1}{2}), \quad e_2 = \wp\left(\frac{\mathrm{i}}{2}\right), \quad e_3 = \wp\left(\frac{1+\mathrm{i}}{2}\right).$$

Note that ζ here is **not** the Riemann zeta function.

Identities Involving \wp and ζ

- 1. $\wp(z+m+\mathrm{i} n)=\wp(z)$ for all $m,n\in\mathbb{Z}$.
- 2. $\wp(z_1+z_2)=\frac{1}{4}\left(\frac{\wp'(z_1)-\wp'(z_2)}{\wp(z_1)-\wp(z_2)}\right)^2-\wp(z_1)-\wp(z_2).$
- 3. $\wp'(z)^2 = [4\wp(z)^2 g_2]\wp(z)$.
- 4. $\wp'(z)^2 = 4\wp(z) \left[\wp(z)^2 e_1^2\right].$
- 5. $\wp\left(z+\frac{1}{2}\right)=e_1+\frac{2e_1^2}{\wp(z)-e_1}$.
- 6. $\wp\left(z+\frac{\mathrm{i}}{2}\right) = e_2 + \frac{2e_2^2}{\wp(z)-e_2} = -e_1 + \frac{2e_1^2}{\wp(z)+e_1}$.
- 7. $\wp\left(z \frac{1}{2}\right) \wp\left(z \frac{i}{2}\right) 2e_1 = \frac{16e_1^3\wp(z)}{\wp'(z)^2}$.

Identities Involving \wp and ζ

8.
$$\zeta(z+m+\mathrm{i} n)=\zeta(z)+2m\zeta\left(\frac{\mathrm{i}}{2}\right)+2n\zeta\left(\frac{\mathrm{i}}{2}\right)$$
 for all $m,n\in\mathbb{Z}$.

9.
$$i\zeta(iz) = \zeta(z)$$
.

10.
$$\zeta\left(\frac{1}{2}\right) = i\zeta\left(\frac{i}{2}\right) = \frac{\pi}{2}$$
.

11.
$$\zeta\left(\frac{1+i}{2}\right) = \frac{(1-i)\pi}{2}$$
.

12.
$$\zeta(z+u) - \zeta(z) - \zeta(u) = \frac{1}{2} \frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)}$$
.

- 1. Clear from the definition of \wp .
- 2. A well-known addition formula that can be found in most textbooks on elliptic functions. So is 12.
- Corollary 2.3 of Chapter 9 in Complex Analysis by Stein and Shakarchi gives the identity

$$(\wp')^2 = 4\wp^3 - g_2\wp - g_3,$$

where

$$g_2 = 60 \sum_{\omega \in \mathbb{Z}[\mathrm{i}] \backslash \{0\}} \frac{1}{\omega^4} \quad \text{and} \quad g_3 = 140 \sum_{\omega \in \mathbb{Z}[\mathrm{i}] \backslash \{0\}} \frac{1}{\omega^6}.$$

In our case, $g_3 = 0$, since

$$(m-in)^6 + (m+in)^6 + (n-im)^6 + (n+im)^6 = 0.$$

- 4. It is known that 1/2, i/2 and (1+i)/2 are the roots of the cubic polynomial $\left[4\wp(z)^2-g_2\right]\wp(z)$, and $e_3=\wp\left(\frac{1+i}{2}\right)=0$. Hence $4e_1^2=g_2$, and the identity follows from 3.
- 5. Apply 2 and then 4.
- 6. Apply 2 and then 4. Note that $e_2 = -e_1$.
- 7. By 1, $\wp\left(z-\frac{1}{2}\right)-\wp\left(z-\frac{i}{2}\right)=\wp\left(z+\frac{1}{2}\right)-\wp\left(z+\frac{i}{2}\right)$. Then combine 5 and 6 to get the identity.
- 8. Since $\zeta'(z) = -\wp(z)$ and $\wp(z+1) = \wp(z)$, the two functions $\zeta(z+1)$ and $\zeta(z)$ differ by a constant, say $\zeta(z+1) = \zeta(z) + c$. Take $z=-\frac{1}{2}$ and use the fact that ζ is odd to get $c=2\zeta\left(\frac{1}{2}\right)$. The same argument gives $\zeta(z+\mathrm{i})=\zeta(z)+2\zeta\left(\frac{\mathrm{i}}{2}\right)$.
- 9. Clear from the definition of ζ and the fact that $i\mathbb{Z}[i] = \mathbb{Z}[i]$.

10. The residue theorem gives

$$\int_{ABCDA} \zeta(z) \, \mathrm{d}z = 2\pi \mathrm{i}.$$

On the other hand, by 8 we have

$$\begin{array}{c|c}
\operatorname{Im} & C \\
 & \stackrel{i}{2} & C \\
 & \stackrel{-\frac{1}{2}}{\longrightarrow} & \frac{1}{2} & \operatorname{Re}
\end{array}$$

$$\int_{CD} \zeta(z) dz = \int_{BA} \zeta(z) dz - 2\zeta\left(\frac{i}{2}\right), \int_{BC} \zeta(z) dz = \int_{AD} \zeta(z) dz + 2i\zeta\left(\frac{1}{2}\right).$$

Combining these equations gives $\zeta\left(\frac{1}{2}\right)+i\zeta\left(\frac{i}{2}\right)=\pi.$ Then use 9.

11. Take $z=-\frac{1+\mathrm{i}}{2}$ and m=n=1 in 8 and use the fact that ζ is odd to get $\zeta\left(\frac{1+\mathrm{i}}{2}\right)=\zeta\left(\frac{1}{2}\right)+\zeta\left(\frac{\mathrm{i}}{2}\right)$. Then 10 applies.

The Weierstrass Data

Costa's minimal surface is defined as a Weierstrass patch using the functions

$$f(z) = \wp(z)$$
 and $g(z) = \frac{A}{\wp'(z)}$.

In order that Costa's minimal surface has no self-intersections, we need to take¹

$$A = 2\sqrt{2\pi} e_1 \approx 34.46707.$$

Figure: Zeros and poles of f

Figure: Zeros and poles of g

To avoid integrals, we shall use ζ to express the coordinates.

 $^{^1}$ The choice of the constant A is forced by the requirement that the components $\varphi_1(z)\,\mathrm{d} z, \varphi_2(z)\,\mathrm{d} z, \varphi_3(z)\,\mathrm{d} z$ have no real periods.

Using 7 we obtain

$$f(w) \left[1 - g(w)^2 \right] = \wp(w) - \frac{A^2 \wp(w)}{\wp'(w)^2}$$

$$= \wp(w) - \frac{A^2}{16e_1^3} \left[\wp\left(w - \frac{1}{2}\right) - \wp\left(w - \frac{i}{2}\right) - 2e_1 \right]$$

$$= \wp(w) - \frac{\pi}{2e_1} \left[\wp\left(w - \frac{1}{2}\right) - \wp\left(w - \frac{i}{2}\right) - 2e_1 \right]$$

$$= \wp(w) + \pi - \frac{\pi}{2e_1} \left[\wp\left(w - \frac{1}{2}\right) - \wp\left(w - \frac{i}{2}\right) \right].$$

Take $z_0 = \frac{1+i}{2}$. Integrating both sides and using 10 and 11, we get

$$\begin{split} & \int_{z_0}^z f(w) \left[1 - g(w)^2 \right] \mathrm{d}w \\ &= \left\{ -\zeta(w) + \pi w + \frac{\pi}{2e_1} \left[\zeta \left(w - \frac{1}{2} \right) - \zeta \left(w - \frac{\mathrm{i}}{2} \right) \right] \right\} \Big|_{z_0}^z \\ &= -\zeta(z) + \pi z + \frac{\pi}{2e_1} \left[\zeta \left(z - \frac{1}{2} \right) - \zeta \left(z - \frac{\mathrm{i}}{2} \right) \right] \\ &+ \zeta \left(\frac{1+\mathrm{i}}{2} \right) - \frac{\pi(1+\mathrm{i})}{2} - \frac{\pi}{2e_1} \left[\zeta \left(\frac{\mathrm{i}}{2} \right) - \zeta \left(\frac{1}{2} \right) \right] \\ &= -\zeta(z) + \pi z + \frac{\pi}{2e_1} \left[\zeta \left(z - \frac{1}{2} \right) - \zeta \left(z - \frac{\mathrm{i}}{2} \right) \right] - \mathrm{i}\pi + \frac{\pi^2(1+\mathrm{i})}{4e_1}. \end{split}$$

Dividing by 2 and taking the real part, we get x_1 .

Similarly,

$$f\!\left(w\right)\left[1+g\!\left(w\right)^{2}\right]=\wp\!\left(w\right)-\pi+\frac{\pi}{2e_{1}}\left[\wp\left(w-\frac{1}{2}\right)-\wp\left(w-\frac{\mathrm{i}}{2}\right)\right]$$

and then

$$\begin{split} & \int_{z_0}^z f(w) \left[1 + g(w)^2 \right] \mathrm{d}w \\ & = \left\{ -\zeta(w) - \pi w - \frac{\pi}{2e_1} \left[\zeta \left(w - \frac{1}{2} \right) - \zeta \left(w - \frac{\mathrm{i}}{2} \right) \right] \right\} \Big|_{z_0}^z \\ & = -\zeta(z) - \pi z - \frac{\pi}{2e_1} \left[\zeta \left(z - \frac{1}{2} \right) - \zeta \left(z - \frac{\mathrm{i}}{2} \right) \right] + \pi - \frac{\pi^2(1+\mathrm{i})}{4e_1}. \end{split}$$

From this we can find x_2 .

Using 4 we obtain

$$\begin{split} \int_{z_0}^z f(w)g(w) \, \mathrm{d}w &= A \int_{z_0}^z \frac{\wp(w)}{\wp'(w)} \, \mathrm{d}w = \frac{A}{4} \int_{z_0}^z \frac{\wp'(w) \, \mathrm{d}w}{\wp(w)^2 - e_1^2} \\ &= \frac{A}{8e_1} \int_{z_0}^z \left(\frac{\wp'(w)}{\wp(w) - e_1} - \frac{\wp'(w)}{\wp(w) + e_1} \right) \mathrm{d}w \\ &= \frac{\sqrt{2\pi}}{4} \log \left(\frac{\wp(w) - e_1}{\wp(w) + e_1} \right) \bigg|_{z_0}^z \\ &= \frac{\sqrt{2\pi}}{4} \left\{ \log \left(\frac{\wp(z) - e_1}{\wp(z) + e_1} \right) - \log \left(\frac{e_3 - e_1}{e_3 + e_1} \right) \right\} \\ &= \frac{\sqrt{2\pi}}{4} \left\{ \log \left(\frac{\wp(z) - e_1}{\wp(z) + e_1} \right) - \pi \mathrm{i} \right\}. \end{split}$$

Taking the real part gives x_3 .

Coordinates of the Surface

Costa's minimal surface is given by (x_1, x_2, x_3) where

$$\begin{cases} x_{1}(u,v) = \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u+iv) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u+iv - \frac{1}{2}\right) - \zeta\left(u+iv - \frac{i}{2}\right) \right] \right\}, \\ x_{2}(u,v) = \frac{1}{2} \operatorname{Re} \left\{ -i\zeta(u+iv) + \pi v + \frac{\pi^{2}}{4e_{1}} - \frac{\pi i}{2e_{1}} \left[\zeta\left(u+iv - \frac{1}{2}\right) - \zeta\left(u+iv - \frac{i}{2}\right) \right] \right\}, \\ x_{3}(u,v) = \frac{\sqrt{2\pi}}{4} \log \left| \frac{\wp(u+iv) - e_{1}}{\wp(u+iv) + e_{1}} \right|. \end{cases}$$

Parameter Space

By 8 and 10 we have $\zeta(z+1) = \zeta(z) + \pi$, hence

$$x_1(u+1,v) = \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u+iv) - \pi + \pi u + \pi + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta\left(u+iv - \frac{1}{2}\right) + \pi - \zeta\left(u+iv - \frac{i}{2}\right) - \pi \right] \right\}$$
$$= x_1(u,v).$$

Similarly, one can show that $x_1(u, v + 1) = x_1(u, v)$ and

$$x_2(u+1, v) = x_2(u, v),$$
 $x_2(u, v+1) = x_2(u, v),$
 $x_3(u+1, v) = x_3(u, v),$ $x_3(u, v+1) = x_3(u, v).$

Therefore, we can restrict u and v to the unit square $[0,1)\times[0,1)$.

Meromorphic functions of $\mathbb{T}^2 \iff$ Elliptic functions of $\mathbb{Z}[i]$.

Shape of the Surface

Figure: Close-up views of Costa's surface (left to right)

Ends of Complete Minimal Surfaces

Let M_g be a compact surface of genus g, and let Q_1, \dots, Q_r be distinct points on M_g . Consider a complete minimal immersion

$$x: M = M_g \setminus \{Q_1, \cdots, Q_r\} \to \mathbb{R}^n.$$

For each j, let $D_j \subset M_g$ be a topological disk centered at Q_j , with $Q_i \notin D_j$ for all $i \neq j$. The image

$$F_j = x(D_j \cap M)$$

is called an **end** of the immersion x. We say that x is a **complete** minimal immersion in \mathbb{R}^n of genus g with r ends.

Osserman's Classification

A surface M is said to have **finite topology** if it is homeomorphic to a compact surface (i.e., has finite genus) from which a finite number of points have been removed (i.e., has finitely many ends).

In 1986, Osserman described all complete, properly embedded minimal surfaces in \mathbb{R}^3 of finite topology.

The ends are all graphs over the same plane, asymptotic to

$$x_3 = a + b \log \sqrt{x_1^2 + x_2^2},$$

for suitable constants a and b.

Costa's Groundbreaking Discovery

It had been a longstanding conjecture that the only complete embedded minimal surfaces in \mathbb{R}^3 of finite topology are the plane, the catenoid, the helicoid.

Theorem (Costa, 1984)

Costa's surface is a complete minimal immersion in \mathbb{R}^3 , of **genus** one, with **three ends** and the following properties:

- The total curvature is -12π .
- The ends are embedded.

Two Catenoidal Ends and One Planar End

Figure: Front view of Costa's surface

We aim to determine the coefficients a_1, a_2, a_3 .

Key Observation (i)

 $\triangleright \wp(x) \in \mathbb{R}$ whenever $x \in \mathbb{R}$.

$$\overline{\wp(x)} = \frac{1}{x^2} + \sum_{\omega \in \mathbb{Z}[i] \setminus \{0\}} \left(\frac{1}{(x - \overline{\omega})^2} - \frac{1}{\overline{\omega}^2} \right) = \wp(x).$$

 $ightharpoonup \zeta(x) \in \mathbb{R}$ whenever $x \in \mathbb{R}$.

$$\overline{\zeta(x)} = \frac{1}{x} + \sum_{\omega \in \mathbb{Z}[\mathbf{i}] \setminus \{0\}} \left(\frac{1}{x - \overline{\omega}} + \frac{1}{\overline{\omega}} + \frac{x}{\overline{\omega}^2} \right) = \zeta(x).$$

Key Observation (ii)

$$x_2(u,0) = \frac{1}{2} \operatorname{Re} \left\{ -i\zeta(u) + \frac{\pi^2}{4e_1} - \frac{\pi i}{2e_1} \left[\zeta \left(u - \frac{1}{2} \right) - \zeta \left(u - \frac{i}{2} \right) \right] \right\}$$
$$= \frac{1}{2} \left\{ \frac{\pi^2}{4e_1} - \frac{\pi}{2e_1} \operatorname{Im} \left\{ \zeta \left(u - \frac{i}{2} \right) \right\} \right\}.$$

By 12 we have

$$\zeta\left(u - \frac{\mathrm{i}}{2}\right) = \zeta(u) + \zeta\left(-\frac{\mathrm{i}}{2}\right) + \frac{1}{2} \frac{\wp'(u) - \wp'\left(\frac{1}{2}\right)}{\wp(u) - \wp\left(\frac{\mathrm{i}}{2}\right)}.$$

Since $\wp\left(\frac{\mathrm{i}}{2}\right)=e_2=-e_1\in\mathbb{R}$ and $\wp'\left(\frac{\mathrm{i}}{2}\right)=0$, we obtain

$$\operatorname{Im}\left\{\zeta\left(u-\tfrac{\mathrm{i}}{2}\right)\right\} = \operatorname{Im}\left\{\zeta\left(-\tfrac{\mathrm{i}}{2}\right)\right\} = \operatorname{Im}\left\{\tfrac{\pi\mathrm{i}}{2}\right\} = \tfrac{\pi}{2}.$$

Hence $x_2(u, 0) = 0$.

Key Observation (iii)

$$x_{2}\left(u, \frac{1}{2}\right)$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -i\zeta\left(u + \frac{i}{2}\right) + \frac{\pi}{2} + \frac{\pi^{2}}{4e_{1}} - \frac{\pi i}{2e_{1}} \left[\zeta\left(u + \frac{i}{2} - \frac{1}{2}\right) - \zeta(u)\right] \right\}$$

$$= \frac{1}{2} \left\{ \operatorname{Im} \left\{ \zeta\left(u + \frac{i}{2}\right) \right\} + \frac{\pi}{2} + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \operatorname{Im} \left\{ \zeta\left(u + \frac{i}{2} - \frac{1}{2}\right) \right\} \right\}.$$

As in the case with (ii), we have

$$\operatorname{Im}\left\{\zeta\left(u+\frac{\mathrm{i}}{2}\right)\right\} = \operatorname{Im}\left\{\zeta\left(u-\frac{\mathrm{i}}{2}\right) - \pi\mathrm{i}\right\} = \frac{\pi}{2} - \pi = -\frac{\pi}{2},$$
$$\operatorname{Im}\left\{\zeta\left(u+\frac{\mathrm{i}}{2}-\frac{1}{2}\right)\right\} = \operatorname{Im}\left\{\zeta\left(\left(u-\frac{1}{2}\right)+\frac{\mathrm{i}}{2}\right)\right\} = -\frac{\pi}{2}.$$

Therefore, $x_2\left(u,\frac{1}{2}\right)=0$.

Key Observation (iv)

- $ightharpoonup x_1(u,0) o -\infty \text{ as } u \searrow 0.$
- $ightharpoonup x_1(u,0) o -\infty \text{ as } u \nearrow \frac{1}{2}.$
- $\blacktriangleright x_1(u,0) \to +\infty \text{ as } u \searrow \frac{1}{2}.$
- \blacktriangleright $x_1(u,0) \to +\infty$ as $u \nearrow 1$.
- $ightharpoonup x_3(u,0) \to 0$ as $u \to 0$.
- $ightharpoonup x_3(u,0) o -\infty \text{ as } u o \frac{1}{2}.$

Figure: The curve v = 0

When $u \setminus 0$.

$$x_{1}(u,0)$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \zeta\left(u - \frac{i}{2}\right) \right] \right\}$$

$$= \frac{1}{2} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(u - \frac{i}{2}\right) \right\} \right] \right\}$$

$$\sim \frac{1}{2} \left\{ -\frac{1}{u} + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(-\frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(-\frac{i}{2}\right) \right\} \right] \right\}$$

$$\sim -\frac{1}{2u} \to -\infty.$$

When
$$u \nearrow \frac{1}{2}$$
,
$$x_{1}(u,0)$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \zeta\left(u - \frac{i}{2}\right) \right] \right\}$$

$$= \frac{1}{2} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(u - \frac{i}{2}\right) \right\} \right] \right\}$$

$$\sim \frac{1}{2} \left\{ -\zeta\left(\frac{1}{2}\right) + \frac{\pi}{2} + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(\frac{1 - i}{2}\right) \right\} \right] \right\}$$

$$\sim \frac{\pi}{4e_{1}} \zeta\left(u - \frac{1}{2}\right)$$

$$\sim \frac{\pi}{4e_{1}} \frac{1}{u - 1/2} \to -\infty.$$

When
$$u \searrow \frac{1}{2}$$
,
$$x_1(u,0)$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u) + \pi u + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(u - \frac{1}{2} \right) - \zeta \left(u - \frac{i}{2} \right) \right] \right\}$$

$$= \frac{1}{2} \left\{ -\zeta(u) + \pi u + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(u - \frac{1}{2} \right) - \operatorname{Re} \left\{ \zeta \left(u - \frac{i}{2} \right) \right\} \right] \right\}$$

$$\sim \frac{1}{2} \left\{ -\zeta \left(\frac{1}{2} \right) + \frac{\pi}{2} + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(u - \frac{1}{2} \right) - \operatorname{Re} \left\{ \zeta \left(\frac{1-i}{2} \right) \right\} \right] \right\}$$

$$\sim \frac{\pi}{4e_1} \zeta \left(u - \frac{1}{2} \right)$$

$$\sim \frac{\pi}{4e_1} \frac{1}{u - 1/2} \to +\infty.$$

When $u \nearrow 1$,

$$x_{1}(u,0)$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \zeta\left(u - \frac{i}{2}\right) \right] \right\}$$

$$= \frac{1}{2} \left\{ -\zeta(u) + \pi u + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(u - \frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(u - \frac{i}{2}\right) \right\} \right] \right\}$$

$$\sim \frac{1}{2} \left\{ -\frac{1}{u-1} - \pi + \pi + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta\left(\frac{1}{2}\right) - \operatorname{Re} \left\{ \zeta\left(1 - \frac{i}{2}\right) \right\} \right] \right\}$$

$$\sim -\frac{1}{2(u-1)} \to +\infty.$$

$$x_3(u,0) = \frac{\sqrt{2\pi}}{4} \log \left| \frac{\wp(u) - e_1}{\wp(u) + e_1} \right|.$$

- ▶ Since $\wp(u) \sim \frac{1}{u^2}$ as $u \to 0$, we have $x_3(u,0) \to 0$ as $u \to 0$.
- ▶ Since $\wp\left(\frac{1}{2}\right) = e_1$, we have $x_3(u,0) \to -\infty$ as $u \to \frac{1}{2}$.

Coefficients a_2 and a_3

It is obvious from observation (iv) that $a_2=0$. To find a_3 , first note that

$$a_3 = \lim_{u \searrow \frac{1}{2}} \frac{x_3(u,0)}{\log x_1(u,0)} = \frac{\sqrt{2\pi}}{4} \lim_{u \searrow 0} \frac{\log \left| \frac{\wp(u+1/2) - e_1}{\wp(u+1/2) + e_1} \right|}{\log \frac{\pi}{4e_1 u}}.$$

Using 5 we have

$$\frac{\wp\left(u + \frac{1}{2}\right) - e_1}{\wp\left(u + \frac{1}{2}\right) + e_1} = 1 - \frac{2e_1}{\wp\left(u + \frac{1}{2}\right) + e_1} = 1 - \frac{2e_1}{2e_1 + \frac{2e_1^2}{\wp(u) - e_1}}$$
$$= \frac{e_1}{\wp(u)} \sim e_1 u^2 \quad \text{as } u \to 0.$$

Coefficients a_2 and a_3

Now

$$a_{3} = \frac{\sqrt{2\pi}}{4} \lim_{u \searrow 0} \frac{\log(e_{1}u^{2})}{\log \frac{\pi}{4e_{1}u}}$$

$$= \frac{\sqrt{2\pi}}{4} \lim_{u \searrow 0} \frac{2\log u + \log e_{1}}{-\log u + \log \frac{\pi}{4e_{1}}}$$

$$= -\sqrt{\frac{\pi}{2}} \approx -1.25331.$$

Key Observation (v)

- $ightharpoonup x_1\left(u,\frac{1}{2}\right) o -\infty \text{ as } u \searrow 0.$
- $ightharpoonup x_1\left(u,\frac{1}{2}\right) \to +\infty \text{ as } u \nearrow 1.$

Figure: The curve $v=\frac{1}{2}$

$$x_1\left(u, \frac{1}{2}\right) = \frac{1}{2} \operatorname{Re} \left\{ -\zeta \left(u + \frac{i}{2}\right) + \pi u + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(u + \frac{i}{2} - \frac{1}{2}\right) - \zeta(u) \right] \right\}.$$

When $u \searrow 0$,

$$x_1(u, \frac{1}{2}) \sim \frac{1}{2} \operatorname{Re} \left\{ -\zeta(\frac{i}{2}) + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta(\frac{i}{2} - \frac{1}{2}) - \zeta(u) \right] \right\}$$

 $\sim \frac{1}{2} \left\{ \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left(-\frac{\pi}{2} - \frac{1}{u} \right) \right\}$
 $\sim -\frac{\pi}{4e_1 u} \to -\infty.$

$$x_1\left(u, \frac{1}{2}\right) = \frac{1}{2} \operatorname{Re} \left\{ -\zeta \left(u + \frac{i}{2}\right) + \pi u + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(u + \frac{i}{2} - \frac{1}{2}\right) - \zeta(u) \right] \right\}.$$

When $u \nearrow 1$,

$$x_{1}\left(u, \frac{1}{2}\right) \sim \frac{1}{2} \operatorname{Re} \left\{ -\zeta \left(1 + \frac{i}{2}\right) + \pi + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\zeta \left(\frac{1+i}{2}\right) - \zeta(u)\right] \right\}$$

$$\sim \frac{1}{2} \left\{ -\pi + \pi + \frac{\pi^{2}}{4e_{1}} + \frac{\pi}{2e_{1}} \left[\frac{\pi}{2} - \zeta(u - 1) - \pi\right] \right\}$$

$$\sim \frac{\pi}{4e_{1}(1-u)} \to +\infty.$$

Coefficient a₁

As before, we write a_1 as

$$a_1 = \lim_{u \nearrow 1} \frac{x_3\left(u, \frac{1}{2}\right)}{\log x_1\left(u, \frac{1}{2}\right)} = \frac{\sqrt{2\pi}}{4} \lim_{u \nearrow 1} \frac{\log\left|\frac{\wp(u+i/2) - e_1}{\wp(u+i/2) + e_1}\right|}{\log \frac{\pi}{4e_1(1-u)}}.$$

Using 6 we have

$$\frac{\wp\left(u + \frac{i}{2}\right) - e_1}{\wp\left(u + \frac{i}{2}\right) + e_1} = 1 - \frac{2e_1}{\wp\left(u + \frac{i}{2}\right) + e_1} = 1 - \frac{2e_1}{\frac{2e_1^2}{\wp(u) + e_1}}$$
$$= -\frac{\wp(u)}{e_1} \sim -\frac{1}{e_1(1 - u)^2} \quad \text{as } u \to 1.$$

Coefficient a_1

Now

$$a_{1} = \frac{\sqrt{2\pi}}{4} \lim_{u \nearrow 1} \frac{\log \frac{1}{e_{1}(1-u)^{2}}}{\log \frac{\pi}{4e_{1}(1-u)}}$$

$$= \frac{\sqrt{2\pi}}{4} \lim_{u \nearrow 1} \frac{-2\log(1-u) - \log e_{1}}{-\log(1-u) + \log \frac{\pi}{4e_{1}}}$$

$$= \sqrt{\frac{\pi}{2}} \approx 1.25331.$$

Two Straight Lines Meeting at Right Angles

Figure: Vertical view of Costa's surface

Weierstrass \wp on the Unit Square

Figure: Sign of $\operatorname{Im}(\wp)$. Arrows in direction of increasing $\operatorname{Re}(\wp)$.

Figure: Sign of $\operatorname{Re}(\wp)$. Arrows in direction of increasing $\operatorname{Im}(\wp)$.

Since \wp is purely imaginary on the diagonals of the unit square,

$$x_3(u, u) = \frac{\sqrt{2\pi}}{4} \log \frac{|\wp(u + iu) - e_1|}{|\wp(u + iu) + e_1|} = 0.$$

Moreover, with 9 and $\zeta(\bar{z}) = \overline{\zeta(z)}$ we see that

$$x_{2}(u, u) = \frac{1}{2} \operatorname{Re} \left\{ -i\zeta(u + iu) + \pi u + \frac{\pi^{2}}{4e_{1}} - \frac{\pi i}{2e_{1}} \left[\zeta \left(u + iu - \frac{1}{2} \right) - \zeta \left(u + iu - \frac{i}{2} \right) \right] \right\}$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\zeta(u - iu) + \pi u + \frac{\pi^{2}}{4e_{1}} - \frac{\pi}{2e_{1}} \left[\zeta \left(u - iu + \frac{i}{2} \right) - \zeta \left(u - iu - \frac{1}{2} \right) \right] \right\}$$

$$= x_{1}(u, u).$$

As before, one can show that as $u \searrow 0$

$$x_1(u, u) = x_2(u, u)$$

$$\sim \frac{1}{2} \operatorname{Re} \left\{ -\frac{1}{u + iu} + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} \left[\zeta \left(-\frac{1}{2} \right) - \zeta \left(-\frac{i}{2} \right) \right] \right\}$$

$$\sim -\frac{1}{4u} \to -\infty,$$

and as $u \nearrow 1$

$$x_1(u, u) = x_2(u, u) \sim \frac{1}{4(1-u)} \to +\infty.$$

Therefore the straight line (x, x, 0) with $x \in \mathbb{R}$ lies on the surface. By reflection in the x_2 - x_3 plane, we find the other straight line on the surface.

Dihedral Symmetry from Straight Lines

Theorem (Schwarz's Reflection Principle for Minimal Surfaces)

A minimal surface which contains a straight line on its boundary can be analytically extended by reflection across the line.

Corollary

If a minimal surface contains a straight line, then it is invariant under rotation by π about that line.

The symmetry group of Costa's surface is the dihedral group generated by

- Reflection in the x₁-x₃ plane; and
- Rotation about the x_3 -axis by $\frac{\pi}{2}$ followed by reflection in the x_1 - x_2 plane.

Figure: Fundamental triangles \to Congruent pieces of the surface

Genus vs. Ends

Examples with more ends and of higher genus followed rapidly, all nicely embedded. But there was a pattern: $\#Ends \le Genus +2$.

- ✓ **Left:** Genus 2 with 4 ends.
- **Middle:** All attempts to produce a torus with 4 ends have failed. Here the ends eventually intersect.
- **✓ Right:** Genus 3 with 5 ends.

The Hoffman-Meeks Conjecture

Let $\mathcal P$ denote the space of all properly embedded connected minimal surfaces in $\mathbb R^3$ and let $\mathcal M\subset \mathcal P$ denote the subspace of examples with more than one end.

Finite Topology Conjecture (Hoffman and Meeks)

A noncompact orientable surface M of finite topology with genus g and r ends, $r \neq 2$, occurs in \mathcal{P} if and only if $r \leq g+2$.

This is possibly the most important open problem in the theory of minimal surfaces.

Known Results

- ▶ If $\Sigma \subset \mathcal{P}$ has finite topology, then:
 - If Σ has genus zero, then Σ is a plane, a helicoid or a catenoid;
 - If Σ has two ends, then Σ is a catenoid;
 - For every genus g, there exists an integer e(g) such that if Σ has genus g, then the number of ends of Σ is at most e(g).
- ▶ [Collin¹ and Schoen²] The only examples in \mathcal{M} with finite topology and two ends are catenoids.
- ▶ [Collin¹ and Lopez–Ros³] If M has finite topology, genus zero and at least two ends, then M is a catenoid.

 $^{^1}$ P. Collin. Topologie et courbure des surfaces minimales de \mathbb{R}^3 . *Annals of Math. 2nd Series*, 145-1:1-31, 1997.

 $^{^2}$ R. Schoen. Uniqueness, symmetry, and embeddedness of minimal surfaces. *J. Differential Geometry*, 18:791-809, 1983.

³F. J. Lopez and A. Ros. On embedded complete minimal surfaces of genus zero. *J. of Differential Geometry*, 33(1):293-300, 1991.

The End

