How Close We Are to 10-5? An Empirical Evidence From RBFHS

FH Bordey, MGC Lapurga, and SED Staff

RBFHS Review

- 2011 Wet Season and 2012 Dry Season
- 2500 respondents but 2399 is available for analysis
- Previous seminars Social characteristics, Technology and Input Uses (Seed, Fertilizer, Chemical Pesticide, Labor and Machinery), Water Source, Farm Asset, Marketing and Production Disposition

In this presentation...

- Yield and relation to factors of production
- Yield and relation to social characteristics
- Costs and returns of rice production
- Spatial distribution of yield and unit cost

Average Yield per Province, All Ecosystems 2011 WS

Average Yield per Province, Irrigated Ecosystem 2011 WS

Average Yield per Province, Rainfed Ecosystem 2011 WS

Production Loss, % of Respondents

Yield by Seed Class

Hybrid yield is significantly than CS (certified), GS (good), FSS (farmer's seed) Registered seed is significantly than CS, GS, FSS Certified seed is significantly than GS, FSS Good seed is significantly than FSS

Yield by Nitrogen Application

The higher N application, the higher yield is (significant yield difference between categories) Incremental yield is becoming smaller

Nitrogen Use, 2011 WS

Phosphate (P₂O₅) Use, 2011 WS

Potassium Oxide (K₂O) Use, 2011 WS

Yield by Crop Establishment

Transplanted rice has significantly yield than WDSR or DDSR Wet direct seeded rice has significantly yield than DDSR

Yield by Water Source

NIS/CIS – National/Communal Irrigation Systems, SSIS - STW/SWIP/SFR/ Open Well Natural Source – Stream, Spring, Free-flowing Rain – Rain only

NIS/CIS yield is significantly than SSIS, Natural Source, and Rain SSIS yield is significantly than Natural Source, and Rain Natural Source is significantly than Rain

Yield by Training

Yield of farmers with training is significantly than farmers who don't have training

With Training – has attended rice production-related training since 2008

Yield by Education

College farmers have significantly yield than HS, Elem, and NEd HS farmers have significantly yield than Elem farmers No significant yield difference between Elem and NE farmers

College – College level and graduates HS – High school level and graduates Elem – Elementary level and graduates NEd – No education

Yield by Tenure Status

Owners, lessees, and other tenure have yield levels that are not significantly different

Yield of owners, lessees, and other tenure is significantly than amortizing owner and tenant

Others – include mortgage owners

Cost of Rice Production

Item	PHP/ha
Seed	2,140
Fertilizer	5,735
Chemical Pesticides	1,932
Hired labor	13,926
Operator, Family and	
Exchange Labor	3,355
Food	1,123
Power	622
Irrigation	946
Transportation	270
Land Tax	377
Land Rent	10,351
Other Input	723
Interest on Capital	702
Total Production Cost	42,201

Labor Cost of Rice Production

Average Unit Cost per Province, All Ecosystems 2011 WS

Average Unit Cost per Province, Irrigated Ecosystems 2011 WS

Average Unit Cost per Province, Rainfed Ecosystems 2011 WS

Unit Cost by Water Source

NIS/CIS – National/Communal Irrigation Systems, SSIS - STW/SWIP/SFR/ Open Well Natural Source – Stream, Spring, Free-flowing Rain – Rain only NIS/CIS unit cost is significantly than Natural Source, and Rain

SSIS unit cost is significantly than Rain

Unit Cost by Crop Establishment

No significant difference between cost of TpR and WDSR

TpR and WDSR have significantly cost than DDSR

Unit Cost by Nitrogen Application

No significant difference between unit cost of N application from 40 to >120 kg/ha

Unit cost of farmers applying < 40 kg N/ha is significantly than the other groups

Unit Cost by Yield Level

Unit cost decreases as yield increases

Unit cost is significantly under higher yield category

Only unit cost between 4-5 mt/ha and >5mt/ha are not significantly different

Returns from Rice Production

Item	Value
Yield (kg/ha)	3,673
Price per kg (PHP/kg)	13.23
Gross Revenue (PHP/ha)	48,582
Total Production Cost (PHP/ha)	42,201
Net profit from Rice Farming (PHP/ha)	6,381
Net Profit from Rice Farming + Returns to Own Labor (PHP/ha)	9,735
Net Profit from Rice Farming + Returns to Own Labor and Land	
(PHP/ha)	20,086
Net Profit from Rice Farming + Returns to Own Labor, Land, and Capital	
(PHP/ha)	20,788

Has anyone achieved 10-5 during 2011 WS?

Farmers who got 10 mt/ha

Farmers who got 5 PHP/kg

Farmers who achieved 10-5

Insights

10-5 is feasible at the farm level but only few farmers have achieved it during 2011 WS

Wet season yield can still be improved further through use of high quality seed, and better nutrient management

Access to water and farmer's knowledge are other factors that can improve the yield

Increasing the yield is a good strategy to reduce cost

Reducing labor cost, particularly harvesting and threshing, can lead to lower unit cost

Thank You