SBML Model Report

Model name: "Neves2008 - Role of cell shape and size in controlling intracellular signalling"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by Harish Dharuri¹ at August 20th 2008 at 9:35 a.m. and last time modified at April seventh 2014 at 0:39 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element Quan		Element	Quantity
compartment types	0	compartments	3
species types	0	species	37
events	0	constraints	0
reactions	32	function definitions	0
global parameters	28	unit definitions	14
rules	19	initial assignments	0

Model Notes

Neves 2008 - Role of cell shape and size in controlling intracellular signalling

The role of cell shape and size in the flow of spatial information from the cell surface receptor to downstream components within the cell has been studied on the -adrenergic receptor to MAPK-signalling network.

¹California Institute of Technology, hdharuri@cds.caltech.edu

This model is described in the article:Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, Alberini CM, Schaff JC, Blitzer RD, Moraru II, Iyengar RCell. 2008, 133(4):666-680

Abstract:

The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.

This model is hosted on BioModels Database and identifiedby: MODEL8609366518.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of 16 unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Definition $(10^{-6} \text{ m})^3$

2.3 Unit area

Definition μm²

2.4 Unit molecules

Definition item

```
2.5 Unit um2
Definition \mu m^2
2.6 Unit uM_um3_molecules_1
Definition item<sup>-1</sup> \cdot \mu mol \cdot l^{-1} \cdot \mu m^{-3}
2.7 Unit molecules_um_2_s_1
Definition item \cdot \mu m^{-2} \cdot s^{-1}
2.8 Unit pA_um_2
Definition dimensionless \cdot A \cdot m^{-2}
2.9 Unit s_1
Definition s^{-1}
2.10 Unit _one_000000_0_m6_mol_2_s_1
Definition 1000000 \text{ dimensionless} \cdot \text{m}^6 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}
2.11 Unit uM_s_1
Definition 0.0010 \text{ dimensionless} \cdot \text{m}^{-3} \cdot \text{mol} \cdot \text{s}^{-1}
2.12 Unit uM
Definition 0.0010 \text{ dimensionless} \cdot \text{m}^{-3} \cdot \text{mol}
2.13 Unit uM_1_s_1
Definition 1000 dimensionless \cdot m<sup>3</sup> \cdot mol<sup>-1</sup> \cdot s<sup>-1</sup>
2.14 Unit molecules_um_2
```

2.15 Unit length

Definition item $\cdot \mu m^{-2}$

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.16 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cyto	cyto		3	1	$(10^{-6} \mathrm{m})^3$	Ø	cyto_mem
extra	extra		3	0.1111111111111111	$(10^{-6} \mathrm{m})^3$		
cyto_mem	cyto_mem		2	0.2	μ m ²		extra

3.1 Compartment cyto

This is a three dimensional compartment with a constant size of one $(10^{-6} \text{ m})^3$, which is surrounded by cyto_mem (cyto_mem).

Name cyto

3.2 Compartment extra

This is a three dimensional compartment with a constant size of 0.111111111111111 $(10^{-6} \text{ m})^3$.

Name extra

3.3 Compartment cyto_mem

This is a two dimensional compartment with a constant size of $0.2 \, \mu m^2$, which is surrounded by extra (extra).

Name cyto_mem

4 Species

This model contains 37 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
AC_active_cyto_mem	l	cyto_mem	item $\cdot \mu m^{-2}$		\Box
G_GDP_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
$G_{\mathtt{protein}}$		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$	\Box	
G_a_s_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
GRK_bg_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
${\tt iso_BAR_p_cyto_mem}$		${\tt cyto_mem}$	item $\cdot \mu m^{-2}$	\Box	
PDE4_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
ATP_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
AC_PKA_cyto_mem		${\tt cyto_mem}$	item $\cdot \mu m^{-2}$	\Box	
R2C2_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
PP_PDE_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
${\tt BAR_cyto_mem}$		cyto_mem	item $\cdot \mu m^{-2}$		
$BAR_G_cyto_mem$		cyto_mem	item $\cdot \mu m^{-2}$	\Box	
iso_extra		extra	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
${\tt iso_BAR_cyto_mem}$		${\tt cyto_mem}$	item $\cdot \mu m^{-2}$	\Box	
${\tt MAPK_active_cyto}$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
MEK_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
$\texttt{MEK_active_cyto}$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	
$B_Raf_active_cyto$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	\Box	\Box
bg_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
B_Raf_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$	В	
PKA_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
${\tt AC_cyto_mem}$		cyto_mem	item $\cdot \mu m^{-2}$		\Box
$\mathtt{AMP}_\mathtt{cyto}$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
${\tt GRK_cyto}$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		\Box
$PP2A_cyto$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
$\mathtt{MAPK_cyto}$		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
PTP_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
PTP_PKA_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
c_R2C2_cyto		cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		
c2_R2C2_cyto	,	cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
c3_R2C2_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
$iso_BAR_G_cy$	to_mem	cyto_mem	item $\cdot \mu m^{-2}$		\Box
PDE_high_km_	cyto	cyto	item $\cdot \left(10^{-6} \text{ m}\right)^{-3}$		\Box
$\mathtt{cAMP_cyto}$		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		
PTP_PP_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		\Box
PDE4_P_cyto		cyto	item $\cdot (10^{-6} \text{ m})^{-3}$		

5 Parameters

This model contains 28 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KMOLE			0.002	$tem^{-1} \cdot \mu mol \cdot l^{-1} \cdot \mu m^{-3}$	Ø
Vmax_pde4_p- _pde4_p			0.000	$0.0010 \text{ dimensionless} \cdot $ $m^{-3} \cdot \text{mol} \cdot \text{s}^{-1}$	
kcat_PPase- _Raf			5.000	s^{-1}	
Vmax_PPase- _Raf			0.000	0.0010 dimensionless · $m^{-3} \cdot mol \cdot s^{-1}$	
Vmax_PDE4- _PDE4			0.000	0.0010 dimensionless · $m^{-3} \cdot mol \cdot s^{-1}$	
Vmax_MEK- _activates- MAPK			0.000	$\begin{array}{l} 0.0010 dimensionless \cdot \\ m^{-3} \cdot mol \cdot s^{-1} \end{array}$	
kcat_PKA- _activates- _Raf			10.000	s^{-1}	Ø
Vmax_PKA- _activates- _Raf			0.000	$\begin{array}{l} 0.0010 dimensionless \cdot \\ m^{-3} \cdot mol \cdot s^{-1} \end{array}$	
Vmax_AC- _active_AC- _active			0.000	$item \cdot \mu m^{-2} \cdot s^{-1}$	
Vmax_highKM- _PDE			0.000	0.0010 dimensionless · $m^{-3} \cdot mol \cdot s^{-1}$	
kcat_PKA_P- _PTP			0.200	s^{-1}	
Vmax_PKA_P- _PTP			0.000	$0.0010dimensionless \cdot \\ m^{-3} \cdot mol \cdot s^{-1}$	
Vmax_AC- _basal_AC- _basal			0.000	$item \cdot \mu m^{-2} \cdot s^{-1}$	
Vmax_grk_GRK			0.000	item $\cdot \mu m^{-2} \cdot s^{-1}$	
Vmax_PKA_P- _PDE			0.000	$\begin{array}{l} 0.0010 dimensionless \cdot \\ m^{-3} \cdot mol \cdot s^{-1} \end{array}$	
Vmax_Raf- _activates- _MEK			0.000	$\begin{array}{l} 0.0010 dimensionless \cdot \\ m^{-3} \cdot mol \cdot s^{-1} \end{array}$	

Id	Name	SBO	Value	Unit	Constant
kcat_PTP_PKA			0.100	s^{-1}	
${\tt Vmax_PTP_PKA}$			0.000	0.0010 dimensionless	
				$m^{-3} \cdot mol \cdot s^{-1}$	
kcat_PTP			1.060	s^{-1}	
Vmax_PTP			0.000	0.0010 dimensionless $m^{-3} \cdot mol \cdot s^{-1}$	· 📙
kcat_PPase- _MAPK			0.636	s^{-1}	\square
Vmax_PPase- _MAPK			0.000	0.0010 dimensionless $m^{-3} \cdot mol \cdot s^{-1}$. 🗎
Vmax_pp2a_4- _pp2a_4			0.000	0.0010 dimensionless $m^{-3} \cdot mol \cdot s^{-1}$. 🗎
kcat_pp_ptp- _pp_ptp			5.000	s^{-1}	
Vmax_pp_ptp			0.000	0.0010 dimensionless $m^{-3} \cdot mol \cdot s^{-1}$. 🗎
Vmax_GRK_bg-			0.000	item $\cdot \mu m^{-2} \cdot s^{-1}$	
_GRK_bg					
kcat_PPase-			5.000	s^{-1}	
_mek					
Vmax_PPase-			0.000	0.0010 dimensionless	· 📙
_mek				$m^{-3} \cdot mol \cdot s^{-1}$	

6 Rules

This is an overview of 19 rules.

6.1 Rule Vmax_pde4_p_pde4_p

Rule Vmax_pde4_p_pde4_p is an assignment rule for parameter Vmax_pde4_p_pde4_p:

$$Vmax_pde4_p_pde4_p = 20 \cdot 0.00166112956810631 \cdot [PDE4_P_cyto]$$
 (1)

6.2 Rule Vmax_PPase_Raf

Rule Vmax_PPase_Raf is an assignment rule for parameter Vmax_PPase_Raf:

$$Vmax_PPase_Raf = kcat_PPase_Raf \cdot 0.00166112956810631 \cdot [PP2A_cyto]$$
 (2)

6.3 Rule Vmax_PDE4_PDE4

Rule Vmax_PDE4_PDE4 is an assignment rule for parameter Vmax_PDE4_PDE4:

$$Vmax_PDE4_PDE4 = 8 \cdot 0.00166112956810631 \cdot [PDE4_cyto]$$
 (3)

6.4 Rule Vmax_MEK_activates_MAPK

Rule Vmax_MEK_activates_MAPK is an assignment rule for parameter Vmax_MEK_activates_MAPK:

 $Vmax_MEK_activates_MAPK = 0.15 \cdot 0.00166112956810631 \cdot [MEK_active_cyto]$ (4)

6.5 Rule Vmax_PKA_activates_Raf

Rule Vmax_PKA_activates_Raf is an assignment rule for parameter Vmax_PKA_activates_Raf:

 $Vmax_PKA_activates_Raf = kcat_PKA_activates_Raf \cdot 0.00166112956810631 \cdot [PKA_cyto] \quad (5)$

6.6 Rule Vmax_AC_active_AC_active

Rule Vmax_AC_active_AC_active is an assignment rule for parameter Vmax_AC_active_AC_active:

$$Vmax_AC_active_AC_active = 8.5 \cdot [AC_active_cyto_mem]$$
 (6)

6.7 Rule Vmax_highKM_PDE

Rule Vmax_highKM_PDE is an assignment rule for parameter Vmax_highKM_PDE:

$$V_{max}_{high}KM_{PDE} = 8 \cdot 0.00166112956810631 \cdot [PDE_{high}_{km_{cyto}}]$$
 (7)

6.8 Rule Vmax_PKA_P_PTP

Rule Vmax_PKA_P_PTP is an assignment rule for parameter Vmax_PKA_P_PTP:

$$V_{\text{max}}PKA_{\text{-}PTP} = k_{\text{cat}}PKA_{\text{-}PTP} \cdot 0.00166112956810631 \cdot [PKA_{\text{-}cyto}]$$
 (8)

6.9 Rule Vmax_AC_basal_AC_basal

Rule Vmax_AC_basal_AC_basal is an assignment rule for parameter Vmax_AC_basal_AC_basal:

$$Vmax_AC_basal_AC_basal = 0.2 \cdot [AC_cyto_mem]$$
 (9)

6.10 Rule Vmax_grk_GRK

Rule Vmax_grk_GRK is an assignment rule for parameter Vmax_grk_GRK:

$$Vmax_grk_GRK = 0.104 \cdot 0.00166112956810631 \cdot [GRK_cyto]$$
 (10)

6.11 Rule Vmax_PKA_P_PDE

Rule Vmax_PKA_P_PDE is an assignment rule for parameter Vmax_PKA_P_PDE:

$$Vmax_PKA_P_PDE = 10 \cdot 0.00166112956810631 \cdot [PKA_cyto]$$
 (11)

6.12 Rule Vmax_Raf_activates_MEK

Rule Vmax_Raf_activates_MEK is an assignment rule for parameter Vmax_Raf_activates_MEK:

 $Vmax_Raf_activates_MEK = 0.105 \cdot 0.00166112956810631 \cdot [B_Raf_active_cyto]$ (12)

6.13 Rule Vmax PTP PKA

Rule Vmax_PTP_PKA is an assignment rule for parameter Vmax_PTP_PKA:

$$Vmax_PTP_PKA = kcat_PTP_PKA \cdot 0.00166112956810631 \cdot [PTP_PKA_cyto]$$
 (13)

6.14 Rule Vmax_PTP

Rule Vmax_PTP is an assignment rule for parameter Vmax_PTP:

$$Vmax_PTP = kcat_PTP \cdot 0.00166112956810631 \cdot [PTP_cyto]$$
 (14)

6.15 Rule Vmax_PPase_MAPK

Rule Vmax_PPase_MAPK is an assignment rule for parameter Vmax_PPase_MAPK:

$$Vmax_PPase_MAPK = kcat_PPase_MAPK \cdot 0.00166112956810631 \cdot [PP2A_cyto] \quad (15)$$

6.16 Rule Vmax_pp2a_4_pp2a_4

Rule Vmax_pp2a_4_pp2a_4 is an assignment rule for parameter Vmax_pp2a_4_pp2a_4:

$$V_{\text{max_pp2a_4_pp2a_4}} = 5 \cdot 0.00166112956810631 \cdot [PP_PDE_cyto]$$
 (16)

6.17 Rule Vmax_pp_ptp

Rule Vmax_pp_ptp is an assignment rule for parameter Vmax_pp_ptp:

$$Vmax_pp_ptp = kcat_pp_ptp_pp_ptp \cdot 0.00166112956810631 \cdot [PTP_PP_cyto]$$
 (17)

6.18 Rule Vmax_GRK_bg_GRK_bg

Rule Vmax_GRK_bg_GRK_bg is an assignment rule for parameter Vmax_GRK_bg_GRK_bg:

$$Vmax_GRK_bg_GRK_bg = 1.34 \cdot 0.00166112956810631 \cdot [GRK_bg_cyto]$$
 (18)

6.19 Rule Vmax_PPase_mek

Rule Vmax_PPase_mek is an assignment rule for parameter Vmax_PPase_mek:

$$Vmax_PPase_mek = kcat_PPase_mek \cdot 0.00166112956810631 \cdot [PP2A_cyto]$$
 (19)

7 Reactions

This model contains 32 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	activate_Gs	activate_Gs	iso_BAR_G_cyto_mem == iso_BAR_cyto_mem +	
			bg_cyto+G_a_s_cyto	
2	pde4_p	pde4_p	cAMP_cyto PDE4_P_cyto AMP_cyto	
_	puo 1_p	puc :_p	· · · · · · · · · · · · · · · · · · ·	
3	PPase_Raf	PPase_Raf	$B_Raf_active_cyto \xrightarrow{PP2A_cyto} B_Raf_cyto$	
4	$\verb iso_binds_BAR $	iso_binds_BAR	BAR_cyto_mem+iso_extra \iff iso_BAR_cyto_mem	
5	PDE4	PDE4	cAMP_cyto PDE4_cyto AMP_cyto	
_			· · · · · · · · · · · · · · · · · · ·	
6	bg_binds_GRK	bg_binds_GRK	GRK_cyto + bg_cyto \improx GRK_bg_cyto	
7	MEK_activates-	MEK_activates_MAPK	MAPK_cyto $\stackrel{\text{MEK_active_cyto}}{\longleftarrow}$ MAPK_active_cyto	
	_MAPK		•	
			PKA_cyto	
8	PKA_activates-	PKA_activates_Raf	$B_Raf_cyto \rightleftharpoons B_Raf_active_cyto$	
	_Raf			
9	AC_{active}	AC_active	ATP_cyto \leftarrow cAMP_cyto	
10	GTPase	GTPase	$G_a_s_cyto \Longrightarrow G_GDP_cyto$	
11	trimer	trimer	$bg_cyto + G_GDP_cyto \Longrightarrow G_protein_cyto$	
12	G_binds_iso_BAR	G_binds_iso_BAR	iso_BAR_cyto_mem +	
			G_protein_cyto = iso_BAR_G_cyto_mem	
13	A2	A2	$c3_R2C2_cyto + cAMP_cyto \Longrightarrow PKA_cyto$	
			PDE_high_km_cyto	
14	${ t high KM_PDE}$	highKM_PDE	cAMP_cyto \longrightarrow AMP_cyto	

Νo	Id	Name	Reaction Equation	SBO
1.5		PKA_P_PTP	PKA_cyto	
15	PKA_P_PTP		PTP_cyto PTP_PKA_cyto	
16	$\mathtt{AC}_{ ext{-}}\mathtt{activation}$	AC_activation	$G_a_s_cyto + AC_cyto_mem \Longrightarrow AC_active_cyto_mer$	n
17	AC_basal	AC_basal	$ATP_cyto \xrightarrow{AC_cyto_mem} cAMP_cyto$	
18	B1	B1	$R2C2_cyto + cAMP_cyto \Longrightarrow c_R2C2_cyto$	
19	GRK	GRK	iso_BAR_cyto_mem GRK_cyto iso_BAR_p_cyto_mer	n
20	PKA_P_PDE	PKA_P_PDE	PDE4_cyto PDE4_P_cyto	
21	Raf_activates- _MEK	Raf_activates_MEK	MEK_cyto ERaf_active_cyto MEK_active_cyto	
22	PTP_PKA	PTP_PKA	MAPK_active_cyto \rightleftharpoons MAPK_cyto	
23	B2	B2	$c_R2C2_cyto + cAMP_cyto \rightleftharpoons c2_R2C2_cyto$	
			PTP_cyto	
24	PTP	PTP	MAPK_active_cyto \(\bigcom_{\text{map}} \) MAPK_cyto	
25	${\sf iso_binds_BAR_g}$	iso_binds_BAR_g	$iso_extra + BAR_G_cyto_mem \Longrightarrow iso_BAR_G_cyto_$	mem
26	PPase_MAPK	PPase_MAPK	MAPK_active_cyto PP2A_cyto MAPK_cyto	
27	pp2a_4	pp2a_4	PDE4_P_cyto PDE4_cyto	
28	ppptp	pp_ptp	PTP_PKA_cyto PTP_cyto	
29	GRK_bg	GRK_bg	iso_BAR_cyto_mem GRK_bg_cyto iso_BAR_p_cyto_n	mem
30	G_binds_BAR	G_binds_BAR	BAR_cyto_mem+G_protein_cyto \improtein_G_cyto_n	mem
31	PPase_mek	PPase_mek	MEK_active_cyto PP2A_cyto MEK_cyto	
32	A1	A1	$c2_R2C2_cyto + cAMP_cyto \Longrightarrow c3_R2C2_cyto$	

7.1 Reaction activate_Gs

This is a reversible reaction of one reactant forming three products.

Name activate_Gs

Reaction equation

$$iso_BAR_G_cyto_mem \Longleftrightarrow iso_BAR_cyto_mem + bg_cyto + G_a_s_cyto \tag{20}$$

Reactant

Table 6: Properties of each reactant

Tuble 6. I Toperties of each reactant.				
Id	Name	SBO		
iso_BAR_G_cyto_mem				

Products

Table 7: Properties of each product.

Id	Name	SBO
iso_BAR_cyto_mem bg_cyto G_a_s_cyto		

Kinetic Law

$$\begin{split} \nu_1 = \left(\text{Kf_activate_Gs} \cdot [\text{iso_BAR_G_cyto_mem}] - \text{Kr_activate_Gs} \cdot [\text{iso_BAR_cyto_mem}] \\ & \cdot 0.00166112956810631 \cdot [\text{bg_cyto}] \cdot 0.00166112956810631 \cdot [\text{G_a_s_cyto}] \right) \\ & \cdot \text{area} \left(\text{cyto_mem} \right) \end{split}$$

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.000	dimensionless \cdot A \cdot m ⁻²	
Kf_activ _Gs	ate-		0.025		

Id	Name	SBO	Value	Unit	Constant
Kr_activate- _Gs			0.000	1000000 dimension $m^6 \cdot mol^{-2} \cdot s^{-1}$	less· 🌠

7.2 Reaction pde4_p

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name pde4_p

Reaction equation

$$cAMP_cyto \xrightarrow{PDE4_P_cyto} AMP_cyto$$
 (22)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
cAMP_cyto		

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
PDE4_P_cyto		

Product

Table 11: Properties of each product.

Id	Name	SBO
AMP_cyto		

Kinetic Law

$$\begin{split} \nu_2 &= V max_p de4_p_p de4_p \cdot 0.00166112956810631 \cdot [cAMP_cyto] \\ &\cdot \frac{1}{Km_p de4_p + 0.00166112956810631 \cdot [cAMP_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{23}$$

Table 12: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km_pde4_p			1.3	0.0010 dimensionles $m^{-3} \cdot mol$	ss· 🗹

7.3 Reaction PPase_Raf

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PPase_Raf

Reaction equation

$$B_Raf_active_cyto \xrightarrow{PP2A_cyto} B_Raf_cyto$$
 (24)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
B_Raf_active_cyto		

Modifier

Table 14: Properties of each modifier.

Id	Name	SBO
PP2A_cyto		

Product

Table 15: Properties of each product.

Id	Name	SBO
B_Raf_cyto		

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = Vmax_PPase_Raf \cdot 0.00166112956810631 \cdot [B_Raf_active_cyto] \\ \cdot \frac{1}{Km + 0.00166112956810631 \cdot [B_Raf_active_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE}$$
 (25)

Table 16: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			15.7	0.0010 dimensionless $m^{-3} \cdot mol$	s. Z

7.4 Reaction iso_binds_BAR

This is a reversible reaction of two reactants forming one product.

Name iso_binds_BAR

Reaction equation

$$BAR_cyto_mem + iso_extra \rightleftharpoons iso_BAR_cyto_mem$$
 (26)

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
BAR_cyto_mem		
iso_extra		

Product

Table 18: Properties of each product.

Table 16. Hoperties of each product.			
Id	Name	SBO	
iso_BAR_cyto_mem			

Kinetic Law

Derived unit contains undeclared units

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
Kf			1.0	$1000 dimensionless \cdot m^3 \cdot mol^{-1} \cdot s^{-1}$	\square
Kr			0.2	s^{-1}	

7.5 Reaction PDE4

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PDE4

Reaction equation

$$cAMP_cyto \xrightarrow{PDE4_cyto} AMP_cyto$$
 (28)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
cAMP_cyto		

Modifier

Table 21: Properties of each modifier.

Id	Name	SBO
PDE4_cyto		

Product

Table 22: Properties of each product.

Id	Name	SBO
AMP_cyto		

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = Vmax_PDE4_PDE4 \cdot 0.00166112956810631 \cdot [cAMP_cyto] \\ \cdot \frac{1}{Km_PDE4 + 0.00166112956810631 \cdot [cAMP_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE}$$
 (29)

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km_PDE4			1.3	0.0010 dimensionles $m^{-3} \cdot mol$	s· 🌠

7.6 Reaction bg_binds_GRK

This is a reversible reaction of two reactants forming one product.

Name bg_binds_GRK

Reaction equation

$$GRK_cyto + bg_cyto \rightleftharpoons GRK_bg_cyto$$
 (30)

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
GRK_cyto		
bg_cyto		

Product

Table 25: Properties of each product.

Id	Name	SBO
GRK_bg_cyto		-

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_6 = & (\text{Kf_bg_binds_GRK} \cdot 0.00166112956810631 \cdot [\text{GRK_cyto}] \cdot 0.00166112956810631 \cdot [\text{bg_cyto}] \\ + & ((\text{Kr_bg_binds_GRK} \cdot 0.00166112956810631 \cdot [\text{GRK_bg_cyto}]))) \cdot \text{vol} (\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{aligned}$$

Table 26: Properties of each parameter.

		L			
Id	Name	SBO	Value	Unit	Constant
Kf_bg_binds- _GRK			1.00	$1000 \text{ dimensionless} \cdot \\ \text{m}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	Ø
Kr_bg_binds- _GRK			0.25	s^{-1}	

7.7 Reaction MEK_activates_MAPK

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name MEK_activates_MAPK

Reaction equation

$$MAPK_cyto \xrightarrow{MEK_active_cyto} MAPK_active_cyto$$
 (32)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
MAPK_cyto		

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
MEK_active_cyto		

Product

Table 29: Properties of each product.

Id	Name	SBO
MAPK_active_cyto		-

Kinetic Law

Derived unit contains undeclared units

Table 30: Properties of each parameter.

	14010 2011	roperties or	out Pu		
Id	Name	SBO	Value	Unit	Constant
Km			0.046	0.0010 dimensionles $m^{-3} \cdot mol$	s· 🗹

7.8 Reaction PKA_activates_Raf

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PKA_activates_Raf

Reaction equation

$$B_Raf_cyto \xrightarrow{PKA_cyto} B_Raf_active_cyto$$
 (34)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
B_Raf_cyto		

Modifier

Table 32: Properties of each modifier.

Id	Name	SBO
PKA_cyto		

Product

Table 33: Properties of each product.

	т Г	
Id	Name	SBO
B_Raf_active_cyto		

Kinetic Law

$$\begin{split} \nu_8 &= Vmax_PKA_activates_Raf \cdot 0.00166112956810631 \cdot [B_Raf_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [B_Raf_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{35}$$

Table 34: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			0.5	0.0010 dimensionle $m^{-3} \cdot mol$	ess.

7.9 Reaction AC_active

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name AC_active

Reaction equation

$$ATP_cyto \xrightarrow{AC_active_cyto_mem} cAMP_cyto$$
 (36)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
ATP_cyto		

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
AC_active_cyto_mem		

Product

Table 37: Properties of each product.

Id	Name	SBO
cAMP_cyto		

Kinetic Law

Table 38: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	dimensionless \cdot A \cdot m ⁻²	
Km_AC_act	ive		32.0	0.0010 dimensionless $m^{-3} \cdot mol$. 🗖

7.10 Reaction GTPase

This is a reversible reaction of one reactant forming one product.

Name GTPase

Reaction equation

$$G_a_s_cyto \rightleftharpoons G_GDP_cyto$$
 (38)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
G_a_s_cyto		

Product

Table 40: Properties of each product.

Id	Name	SBO
G_GDP_cyto		

Kinetic Law

$$\begin{split} \nu_{10} &= (\text{Kf_GTPase} \cdot 0.00166112956810631} \cdot [\text{G_a_s_cyto}] \\ &+ ((\text{Kr_GTPase} \cdot 0.00166112956810631} \cdot [\text{G_GDP_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{split} \tag{39}$$

Table 41: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Kf_GTPase		$0.067 ext{ s}^{-1}$	
$\mathtt{Kr}_{ extsf{-}}\mathtt{GTPase}$		$0.000 ext{ s}^{-1}$	$\overline{\mathbf{Z}}$

7.11 Reaction trimer

This is a reversible reaction of two reactants forming one product.

Name trimer

Reaction equation

$$bg_cyto + G_GDP_cyto \Longrightarrow G_protein_cyto$$
 (40)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
bg_cyto G_GDP_cyto		

Product

Table 43: Properties of each product.

Id	Name	SBO
G_protein_cyto		

Kinetic Law

$$\begin{split} \nu_{11} &= (\text{Kf_trimer} \cdot 0.00166112956810631} \cdot [\text{bg_cyto}] \cdot 0.00166112956810631} \cdot [\text{G_GDP_cyto}] \\ &+ ((\text{Kr_trimer} \cdot 0.00166112956810631} \cdot [\text{G_protein_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{aligned} \tag{41}$$

Table 44: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
Kf_trimer			6.0	$1000 \text{dimensionless} \cdot $ $\text{m}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	\square
${\tt Kr_trimer}$			0.0	s^{-1}	

7.12 Reaction G_binds_iso_BAR

This is a reversible reaction of two reactants forming one product.

Name G_binds_iso_BAR

Reaction equation

$$iso_BAR_cyto_mem + G_protein_cyto \Longrightarrow iso_BAR_G_cyto_mem$$
 (42)

Reactants

Table 45: Properties of each reactant.

Id	Name	SBO
iso_BAR_cyto_mem		
${ t G_protein_cyto}$		

Product

Table 46: Properties of each product.

Id	Name	SBO
iso_BAR_G_cyto_mem		

Kinetic Law

$$\begin{split} \nu_{12} = \left(\text{Kf_G_binds_iso_BAR} \cdot [\text{iso_BAR_cyto_mem}] \cdot 0.00166112956810631 \cdot [\text{G_protein_cyto}] \right. \\ \left. + \left(\left(\text{Kr_G_binds_iso_BAR} \cdot [\text{iso_BAR_G_cyto_mem}] \right) \right) \cdot \text{area} \left(\text{cyto_mem} \right) \right. \end{split}$$

Table 47: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Kf_G_binds- _iso_BAR			10.0	$1000 dimensionless \cdot m^3 \cdot mol^{-1} \cdot s^{-1}$	
Kr_G_binds- _iso_BAR			0.1	s^{-1}	

7.13 Reaction A2

This is a reversible reaction of two reactants forming one product.

Name A2

Reaction equation

$$c3_R2C2_cyto + cAMP_cyto \rightleftharpoons PKA_cyto$$
 (44)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
c3_R2C2_cyto cAMP_cyto		

Product

Table 49: Properties of each product.

Id	Name	SBO
PKA_cyto		

Kinetic Law

$$\begin{aligned} \nu_{13} = (\text{Kf} \cdot 0.00166112956810631} \cdot [\text{c3_R2C2_cyto}] \cdot 0.00166112956810631} \cdot [\text{cAMP_cyto}] \\ + ((\text{Kr} \cdot 0.00166112956810631} \cdot [\text{PKA_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{aligned} \tag{45}$$

Table 50: Properties of each parameter.

_						
	Id	Name	SBO	Value	Unit	Constant
	Kf			8.350	$1000 dimensionless \cdot $ $m^3 \cdot mol^{-1} \cdot s^{-1}$	
	Kr			0.017		\mathbf{Z}

7.14 Reaction highKM_PDE

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name highKM_PDE

Reaction equation

$$cAMP_cyto \xrightarrow{PDE_high_km_cyto} AMP_cyto$$
 (46)

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
cAMP_cyto		

Modifier

Table 52: Properties of each modifier.

Id	Name	SBO
PDE_high_km_cyto		

Product

Table 53: Properties of each product.

Id	Name	SBO
$\mathtt{AMP}_\mathtt{cyto}$		

Kinetic Law

$$\begin{split} \nu_{14} &= V max_highKM_PDE \cdot 0.00166112956810631 \cdot [cAMP_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [cAMP_cyto]} \cdot vol\left(cyto\right) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{47}$$

Table 54: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			15.0	0.0010 dimensionles $m^{-3} \cdot mol$	s. Z

7.15 Reaction PKA_P_PTP

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PKA_P_PTP

Reaction equation

$$PTP_cyto \xrightarrow{PKA_cyto} PTP_PKA_cyto$$
 (48)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
PTP_cyto		

Modifier

Table 56: Properties of each modifier.

Id	Name	SBO
PKA_cyto		

Product

Table 57: Properties of each product.

Id	Name	SBO
PTP_PKA_cyto		

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{15} &= \text{Vmax_PKA_P_PTP} \cdot 0.00166112956810631 \cdot [\text{PTP_cyto}] \\ &\cdot \frac{1}{\text{Km} + 0.00166112956810631 \cdot [\text{PTP_cyto}]} \cdot \text{vol}\left(\text{cyto}\right) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{split} \tag{49}$$

Table 58: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			0.1	0.0010 dimensionless $m^{-3} \cdot mol$	s. Z

7.16 Reaction AC_activation

This is a reversible reaction of two reactants forming one product.

Name AC_activation

Reaction equation

$$G_a_s_cyto + AC_cyto_mem \Longrightarrow AC_active_cyto_mem$$
 (50)

Reactants

Table 59: Properties of each reactant.

Id	Name	SBO
G_a_s_cyto		
AC_cyto_mem		

Product

Table 60: Properties of each product.

Id	Name	
AC_active_cyto_mem		

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} \nu_{16} &= (Kf_AC_activation \cdot 0.00166112956810631 \cdot [G_a_s_cyto] \cdot [AC_cyto_mem] \\ &+ ((Kr_AC_activation \cdot [AC_active_cyto_mem]))) \cdot area (cyto_mem) \end{aligned} \tag{51}$$

Table 61: Properties of each parameter.

	r		· · · · · · · · · · · · · · · · · · ·		
Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
Kf_AC- _activation			500.0	$1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1}$	\square
Kr_AC- _activation			1.0	s^{-1}	Ø

7.17 Reaction AC_basal

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name AC_basal

Reaction equation

$$ATP_cyto \xrightarrow{AC_cyto_mem} cAMP_cyto$$
 (52)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
$\mathtt{ATP}_{\mathtt{cyto}}$		

Modifier

Table 63: Properties of each modifier.

Id	Name	SBO
AC_cyto_mem		

Product

Table 64: Properties of each product.

Id	Name	SBO
cAMP_cyto		

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = V_{max_AC_basal_AC_basal} \cdot 0.00166112956810631 \cdot [ATP_cyto] \\ \cdot \frac{1}{Km_AC_basal + 0.00166112956810631 \cdot [ATP_cyto]} \cdot area(cyto_mem)$$
 (53)

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{l} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Km_AC_basal			1030.0	0.0010 dimensionless m ⁻³ · mol	. 🛮

7.18 Reaction B1

This is a reversible reaction of two reactants forming one product.

Name B1

Reaction equation

$$R2C2_cyto + cAMP_cyto \rightleftharpoons c_R2C2_cyto$$
 (54)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
R2C2_cyto		
$\mathtt{cAMP}_\mathtt{cyto}$		

Product

Table 67: Properties of each product.

Id	Name	SBO
c_R2C2_cyto		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = (\text{Kf} \cdot 0.00166112956810631} \cdot [\text{R2C2_cyto}] \cdot 0.00166112956810631} \cdot [\text{cAMP_cyto}] \\ + ((\text{Kr} \cdot 0.00166112956810631} \cdot [\text{c_R2C2_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}}$$
 (55)

Table 68: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kf			0.006	$1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1}$	
Kr			$2.8\cdot 10^{-4}$	s^{-1}	

7.19 Reaction GRK

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name GRK

Reaction equation

$$iso_BAR_cyto_mem \xrightarrow{GRK_cyto} iso_BAR_p_cyto_mem$$
 (56)

Reactant

Table 69: Properties of each reactant.

Table 07. Troperties (or cacif ic	actant.
Id	Name	SBO
iso_BAR_cyto_mem		

Modifier

Table 70: Properties of each modifier.

Id	Name	SBO
GRK_cyto		

Product

Table 71: Properties of each product.

Id	Name	SBO
iso_BAR_p_cyto_mem		

Kinetic Law

Derived unit contains undeclared units

$$= V max_grk_GRK \cdot [iso_BAR_cyto_mem] \cdot \frac{1}{Km_grk + [iso_BAR_cyto_mem]} \cdot area(cyto_mem)$$
 (57)

Table 72: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Km_grk			15.0	item $\cdot \mu m^{-2}$	\checkmark

7.20 Reaction PKA_P_PDE

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PKA_P_PDE

Reaction equation

$$PDE4_cyto \xrightarrow{PKA_cyto} PDE4_P_cyto$$
 (58)

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
PDE4_cyto		

Modifier

Table 74: Properties of each modifier.

Id	Name	SBO
PKA_cyto		

Product

Table 75: Properties of each product.

Id	Name	SBO
PDE4_P_cyto		

Kinetic Law

$$\begin{split} \nu_{20} &= \text{Vmax_PKA_P_PDE} \cdot 0.00166112956810631} \cdot [\text{PDE4_cyto}] \\ &\cdot \frac{1}{\text{Km} + 0.00166112956810631} \cdot [\text{PDE4_cyto}] \cdot \text{vol} (\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{split} \tag{59}$$

Table 76: Properties of each parameter.

T 1	NI	CDO	X 7 1	TT :	<u> </u>
Id	Name	SBO	Value	Unit	Constant
Km			0.5	0.0010 dimensionles $m^{-3} \cdot mol$	s· 🗹

7.21 Reaction Raf_activates_MEK

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name Raf_activates_MEK

Reaction equation

$$MEK_cyto \xrightarrow{B_Raf_active_cyto} MEK_active_cyto$$
 (60)

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
MEK_cyto		

Modifier

Table 78: Properties of each modifier.

Id	Name	SBO
B_Raf_active_cyto		

Product

Table 79: Properties of each product.

Id	Name	SBO
MEK_active_cyto		

Kinetic Law

$$\begin{split} v_{21} &= V_{max_Raf_activates_MEK} \cdot 0.00166112956810631 \cdot [MEK_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [MEK_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{61}$$

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			0.159	0.0010 dimensionless $m^{-3} \cdot mol$	s· 🗹

7.22 Reaction PTP_PKA

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PTP_PKA

Reaction equation

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
MAPK_active_cyto		

Modifier

Table 82: Properties of each modifier.

Id	Name	SBO
PTP_PKA_cyto		

Product

Table 83: Properties of each product.

Id	Name	SBO
MAPK_cyto		

Kinetic Law

$$v_{22} = Vmax_PTP_PKA \cdot 0.00166112956810631 \cdot [MAPK_active_cyto] \\ \cdot \frac{1}{Km + 0.00166112956810631 \cdot [MAPK_active_cyto]} \cdot vol(cyto) \cdot 1 \cdot \frac{1}{KMOLE}$$
 (63)

Table 84: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			9.0	0.0010 dimensionles $m^{-3} \cdot mol$	s· 🗹

7.23 Reaction B2

This is a reversible reaction of two reactants forming one product.

Name B2

Reaction equation

$$c_R2C2_cyto + cAMP_cyto \rightleftharpoons c2_R2C2_cyto$$
 (64)

Reactants

Table 85: Properties of each reactant.

Id	Name	SBO
c_R2C2_cyto cAMP_cyto		

Product

Table 86: Properties of each product.

Id	Name	SBO
c2_R2C2_cyto		

Kinetic Law

$$v_{23} = (\text{Kf} \cdot 0.00166112956810631} \cdot [\text{c_R2C2_cyto}] \cdot 0.00166112956810631} \cdot [\text{cAMP_cyto}] + ((\text{Kr} \cdot 0.00166112956810631} \cdot [\text{c2_R2C2_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}}$$
(65)

Table 87: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kf			0.006	$1000 dimensionless \cdot $ $m^3 \cdot mol^{-1} \cdot s^{-1}$	Ø
Kr			$2.8\cdot 10^{-4}$	s^{-1}	

7.24 Reaction PTP

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PTP

Reaction equation

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
MAPK_active_cyto		

Modifier

Table 89: Properties of each modifier.

Id	Name	SBO
PTP_cyto		

Product

Table 90: Properties of each product.

Id	Name	SBO
MAPK_cyto		

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{24} &= Vmax_PTP \cdot 0.00166112956810631 \cdot [MAPK_active_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [MAPK_active_cyto]} \cdot vol\left(cyto\right) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{67}$$

Table 91: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			0.46	0.0010 dimensionless $m^{-3} \cdot mol$	s. Z

7.25 Reaction iso_binds_BAR_g

This is a reversible reaction of two reactants forming one product.

Name iso_binds_BAR_g

Reaction equation

$$iso_extra + BAR_G_cyto_mem \Longrightarrow iso_BAR_G_cyto_mem$$
 (68)

Reactants

Table 92: Properties of each reactant.

Id	Name	SBO
iso_extra		
BAR_G_cyto_mem		

Product

Table 93: Properties of each product

Table 73. Hoperties of each product.				
Id	Name	SBO		
iso_BAR_G_cyto_mem				

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = (Kf \cdot 0.00166112956810631 \cdot [iso_extra] \cdot [BAR_G_cyto_mem] + ((Kr \cdot [iso_BAR_G_cyto_mem]))) \cdot area(cyto_mem)$$
(69)

Table 94: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
I			0.000	$\begin{array}{l} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Kf			1.000	$1000 dimensionless \cdot m^3 \cdot mol^{-1} \cdot s^{-1}$	\square
Kr			0.062	s^{-1}	

7.26 Reaction PPase_MAPK

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PPase_MAPK

Reaction equation

$$MAPK_active_cyto \xrightarrow{PP2A_cyto} MAPK_cyto$$
 (70)

Reactant

Table 95: Properties of each reactant.

Id	Name	SBO
MAPK_active_cyto		

Modifier

Table 96: Properties of each modifier.

Id	Name	SBO
PP2A_cyto		

Product

Table 97: Properties of each product.

Id	Name	SBO
MAPK_cyto		

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} \nu_{26} &= Vmax_PPase_MAPK \cdot 0.00166112956810631 \cdot [MAPK_active_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [MAPK_active_cyto]} \cdot vol\left(cyto\right) \cdot 1 \cdot \frac{1}{KMOLE} \end{aligned} \tag{71}$$

Table 98: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Km			0.77	0.0010 dimensionless $m^{-3} \cdot mol$	s. Z

7.27 Reaction pp2a_4

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name $pp2a_4$

Reaction equation

$$PDE4_P_cyto \xrightarrow{PP_PDE_cyto} PDE4_cyto$$
 (72)

Reactant

Table 99: Properties of each reactant.

Id	Name	SBO
PDE4_P_cyto		

Modifier

Table 100: Properties of each modifier.

Id	Name	SBO
PP_PDE_cyto		

Product

Table 101: Properties of each product.

Id	Name	SBO
PDE4_cyto		

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{27} &= Vmax_pp2a_4_pp2a_4 \cdot 0.00166112956810631 \cdot [PDE4_P_cyto] \\ &\cdot \frac{1}{Km_pp2a_4 + 0.00166112956810631 \cdot [PDE4_P_cyto]} \cdot vol\left(cyto\right) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{73}$$

Table 102: Properties of each parameter.

Tuble 102. Troperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
Km_pp2a_4			8.0	0.0010 dimensionl $m^{-3} \cdot mol$	less· 🗹

7.28 Reaction pp_ptp

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name pp_ptp

Reaction equation

$$PTP_PKA_cyto \xrightarrow{PTP_PP_cyto} PTP_cyto$$
 (74)

Reactant

Table 103: Properties of each reactant.

Id	Name	SBO
PTP_PKA_cyto		

Modifier

Table 104: Properties of each modifier.

Id	Name	SBO
PTP_PP_cyto		

Product

Table 105: Properties of each product.

Id	Name	SBO
PTP_cyto		

Kinetic Law

$$\begin{split} \nu_{28} &= V max_pp_ptp \cdot 0.00166112956810631 \cdot [PTP_PKA_cyto] \\ &\cdot \frac{1}{Km + 0.00166112956810631 \cdot [PTP_PKA_cyto]} \cdot vol\left(cyto\right) \cdot 1 \cdot \frac{1}{KMOLE} \end{split} \tag{75}$$

Table 106: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			6.0	0.0010 dimensionless $m^{-3} \cdot mol$	s· 🗹

7.29 Reaction GRK_bg

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name GRK_bg

Reaction equation

$$iso_BAR_cyto_mem \xrightarrow{GRK_bg_cyto} iso_BAR_p_cyto_mem$$
 (76)

Reactant

Table 107: Properties of each reactant.

Id Name SBO

iso_BAR_cyto_mem

Modifier

Table 108: Properties of each modifier.

Id	Name	SBO
GRK_bg_cyto		

Product

Table 109: Properties of each product.

	I	
Id	Name	SBO
iso_BAR_p_cyto_mem		

Kinetic Law

$$v_{29} = V_{max_GRK_bg_GRK_bg} \cdot [iso_BAR_cyto_mem] \cdot \frac{1}{Km_GRK_bg + [iso_BAR_cyto_mem]} \cdot area(cyto_mem)$$
(77)

Table 110: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	dimensionless \cdot A \cdot m ⁻²	Ø
${\tt Km_GRK_bg}$			4.0	item $\cdot \mu m^{-2}$	\square

7.30 Reaction G_binds_BAR

This is a reversible reaction of two reactants forming one product.

Name G_binds_BAR

Reaction equation

$$BAR_cyto_mem + G_protein_cyto \Longrightarrow BAR_G_cyto_mem$$
 (78)

Reactants

Table 111: Properties of each reactant.

Id	Name	SBO
BAR_cyto_mem		
G_protein_cyto		

Product

Table 112: Properties of each product.

Id	Name	SBO
BAR_G_cyto_mem		

Kinetic Law

$$v_{30} = (Kf_G_binds_BAR \cdot [BAR_cyto_mem] \cdot 0.00166112956810631 \cdot [G_protein_cyto] + ((Kr_G_binds_BAR \cdot [BAR_G_cyto_mem]))) \cdot area(cyto_mem)$$
(79)

Table 113: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Kf_G_binds- _BAR			0.3	$1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1}$	
Kr_G_binds- _BAR			0.1	s^{-1}	

7.31 Reaction PPase_mek

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name PPase_mek

Reaction equation

$$MEK_active_cyto \xrightarrow{PP2A_cyto} MEK_cyto$$
 (80)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
MEK_active_cyto		

Modifier

Table 115: Properties of each modifier.

Id	Name	SBO
PP2A_cyto		

Product

Table 116: Properties of each product.

Id	Name	SBO
$\mathtt{MEK}_{\mathtt{Cyto}}$		

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{31} &= \text{Vmax_PPase_mek} \cdot 0.00166112956810631 \cdot [\text{MEK_active_cyto}] \\ &\cdot \frac{1}{\text{Km} + 0.00166112956810631 \cdot [\text{MEK_active_cyto}]} \cdot \text{vol}\left(\text{cyto}\right) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{split} \tag{81}$$

Table 117: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km			15.7	0.0010 dimensionles $m^{-3} \cdot mol$	SS· 🗖

7.32 Reaction A1

This is a reversible reaction of two reactants forming one product.

Name A1

Reaction equation

$$c2_R2C2_cyto + cAMP_cyto \rightleftharpoons c3_R2C2_cyto$$
 (82)

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
c2_R2C2_cyto		
$\mathtt{cAMP}_\mathtt{cyto}$		

Product

Table 119: Properties of each product.

Id	Name	SBO
c3_R2C2_cyto		

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} \nu_{32} &= (\text{Kf} \cdot 0.00166112956810631} \cdot [\text{c2_R2C2_cyto}] \cdot 0.00166112956810631} \cdot [\text{cAMP_cyto}] \\ &+ ((\text{Kr} \cdot 0.00166112956810631} \cdot [\text{c3_R2C2_cyto}]))) \cdot \text{vol}(\text{cyto}) \cdot 1 \cdot \frac{1}{\text{KMOLE}} \end{aligned}$$

Table 120: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Kf			8.350	$1000 dimensionless \cdot m^3 \cdot mol^{-1} \cdot s^{-1}$	\square
Kr			0.017	s^{-1}	

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species AC_active_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu\text{m}^{-2}$

This species takes part in two reactions (as a product in AC_activation and as a modifier in AC_active).

$$\frac{d}{dt}AC_active_cyto_mem = v_{16}$$
(84)

8.2 Species G_GDP_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in trimer and as a product in GTPase).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G}_{-}\mathrm{GDP}_{-}\mathrm{cyto} = |v_{10}| - |v_{11}| \tag{85}$$

8.3 Species G_protein_cyto

Initial concentration $2167.2 \, \mathrm{item} \cdot \left(10^{-6} \, \mathrm{m}\right)^{-3}$

This species takes part in three reactions (as a reactant in G_binds_iso_BAR, G_binds_BAR and as a product in trimer).

$$\frac{d}{dt}G_{protein_cyto} = v_{11} - v_{12} - v_{30}$$
 (86)

8.4 Species G_a_s_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in GTPase, AC_activation and as a product in activate_Gs).

$$\frac{d}{dt}G_{-a-s-cyto} = v_1 - v_{10} - v_{16}$$
 (87)

8.5 Species GRK_bg_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a product in bg_binds_GRK and as a modifier in GRK_bg).

$$\frac{d}{dt}GRK_bg_cyto = v_6$$
 (88)

8.6 Species iso_BAR_p_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu m^{-2}$

This species takes part in two reactions (as a product in GRK, GRK_bg).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{iso_BAR_p_cyto_mem} = v_{19} + v_{29} \tag{89}$$

8.7 Species PDE4_cyto

Initial concentration $240.8 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in PKA_P_PDE and as a product in pp2a_4 and as a modifier in PDE4).

$$\frac{\mathrm{d}}{\mathrm{d}t} PDE4_cyto = |v_{27}| - |v_{20}| \tag{90}$$

8.8 Species ATP_cyto

Initial concentration $3010000 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in AC_active, AC_basal).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{ATP_cyto} = -v_9 - v_{17} \tag{91}$$

8.9 Species AC_PKA_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu \text{m}^{-2}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{d}{dt}AC_PKA_cyto_mem = 0$$
 (92)

8.10 Species R2C2_cyto

Initial concentration $120.4 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in one reaction (as a reactant in B1).

$$\frac{\mathrm{d}}{\mathrm{d}t} R2C2_\mathrm{cyto} = -v_{18} \tag{93}$$

8.11 Species PP_PDE_cyto

Initial concentration $120.4 \text{ item} \cdot \left(10^{-6} \text{ m}\right)^{-3}$

This species takes part in one reaction (as a modifier in pp2a_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} PP_PDE_cyto = 0 \tag{94}$$

8.12 Species BAR_cyto_mem

Initial concentration $94 \text{ item} \cdot \mu m^{-2}$

This species takes part in two reactions (as a reactant in iso_binds_BAR, G_binds_BAR).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{BAR_cyto_mem} = -v_4 - v_{30} \tag{95}$$

8.13 Species BAR_G_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu \text{m}^{-2}$

This species takes part in two reactions (as a reactant in iso_binds_BAR_g and as a product in G_binds_BAR).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{BAR_G_cyto_mem} = v_{30} - v_{25} \tag{96}$$

8.14 Species iso_extra

Initial concentration $6020 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in iso_binds_BAR, iso_binds_BAR_g).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{iso_extra} = -v_4 - v_{25} \tag{97}$$

8.15 Species iso_BAR_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu \text{m}^{-2}$

This species takes part in five reactions (as a reactant in G_binds_iso_BAR, GRK, GRK_bg and as a product in activate_Gs, iso_binds_BAR).

$$\frac{d}{dt}iso_BAR_cyto_mem = v_1 + v_4 - v_{12} - v_{19} - v_{29}$$
(98)

8.16 Species MAPK_active_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in four reactions (as a reactant in PTP_PKA, PTP, PPase_MAPK and as a product in MEK_activates_MAPK).

$$\frac{d}{dt}MAPK_active_cyto = |v_7| - |v_{22}| - |v_{24}| - |v_{26}|$$
(99)

8.17 Species MEK_cyto

Initial concentration $108.36 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in Raf_activates_MEK and as a product in PPase_mek).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MEK_cyto} = |v_{31}| - |v_{21}| \tag{100}$$

8.18 Species MEK_active_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in PPase_mek and as a product in Raf-activates_MEK and as a modifier in MEK_activates_MAPK).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{MEK_active_cyto} = v_{21} - v_{31}$$
 (101)

8.19 Species B_Raf_active_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in PPase_Raf and as a product in PKA-_activates_Raf and as a modifier in Raf_activates_MEK).

$$\frac{d}{dt}B_{Raf_active_cyto} = |v_8| - |v_3|$$
 (102)

8.20 Species bg_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in bg_binds_GRK, trimer and as a product in activate_Gs).

$$\frac{d}{dt}bg_cyto = v_1 - |v_6| - |v_{11}|$$
 (103)

8.21 Species B_Raf_cyto

Initial concentration $120.4 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in PKA_activates_Raf and as a product in PPase_Raf).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{B}_{-} \mathbf{R} \mathbf{a} \mathbf{f}_{-} \mathbf{c} \mathbf{y} \mathbf{t} \mathbf{0} = |v_3| - |v_8| \tag{104}$$

8.22 Species PKA_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in four reactions (as a product in A2 and as a modifier in PKA_activates_Raf, PKA_P_PTP, PKA_P_PDE).

$$\frac{\mathrm{d}}{\mathrm{d}t} PKA_cyto = v_{13} \tag{105}$$

8.23 Species AC_cyto_mem

Initial concentration $300 \text{ item} \cdot \mu\text{m}^{-2}$

This species takes part in two reactions (as a reactant in AC_activation and as a modifier in AC_basal).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AC_cyto_mem} = -v_{16} \tag{106}$$

8.24 Species AMP_cyto

Initial concentration $3010000 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a product in pde4_p, PDE4, highKM_PDE).

$$\frac{\mathrm{d}}{\mathrm{d}t} AMP_{-} cyto = |v_2| + |v_5| + |v_{14}| \tag{107}$$

8.25 Species GRK_cyto

Initial concentration $0.602 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in bg_binds_GRK and as a modifier in GRK).

$$\frac{d}{dt}GRK_cyto = -\nu_6 \tag{108}$$

8.26 Species PP2A_cyto

Initial concentration $60.2 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a modifier in PPase_Raf, PPase_MAPK, PPase_mek).

$$\frac{\mathrm{d}}{\mathrm{d}t} PP2A_cyto = 0 \tag{109}$$

8.27 Species MAPK_cyto

Initial concentration $216.72 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in four reactions (as a reactant in MEK_activates_MAPK and as a product in PTP_PKA, PTP, PPase_MAPK).

$$\frac{d}{dt}MAPK_cyto = |v_{22}| + |v_{24}| + |v_{26}| - |v_{7}|$$
(110)

8.28 Species PTP_cyto

Initial concentration $120.4 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in PKA_P_PTP and as a product in pp_ptp and as a modifier in PTP).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{PTP_cyto} = |v_{28}| - |v_{15}| \tag{111}$$

8.29 Species PTP_PKA_cyto

Initial concentration $0 \text{ item} \cdot \left(10^{-6} \text{ m}\right)^{-3}$

This species takes part in three reactions (as a reactant in pp_ptp and as a product in PKA_P_PTP and as a modifier in PTP_PKA).

$$\frac{\mathrm{d}}{\mathrm{d}t} PTP_PKA_cyto = v_{15} - v_{28}$$
 (112)

8.30 Species c_R2C2_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in B2 and as a product in B1).

$$\frac{d}{dt}c_{R}2C2_{c}yto = |v_{18}| - |v_{23}|$$
 (113)

8.31 Species c2_R2C2_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in A1 and as a product in B2).

$$\frac{d}{dt}c2 R2C2 cyto = |v_{23}| - |v_{32}|$$
 (114)

8.32 Species c3_R2C2_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in two reactions (as a reactant in A2 and as a product in A1).

$$\frac{d}{dt}c3_R2C2_cyto = |v_{32}| - |v_{13}|$$
 (115)

8.33 Species iso_BAR_G_cyto_mem

Initial concentration $0 \text{ item} \cdot \mu m^{-2}$

This species takes part in three reactions (as a reactant in activate_Gs and as a product in G_binds_iso_BAR, iso_binds_BAR_g).

$$\frac{d}{dt}iso_BAR_G_cyto_mem = v_{12} + v_{25} - v_1$$
 (116)

8.34 Species PDE_high_km_cyto

Initial concentration $301 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in one reaction (as a modifier in highKM_PDE).

$$\frac{d}{dt}PDE_high_km_cyto = 0$$
 (117)

8.35 Species cAMP_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in nine reactions (as a reactant in pde4_p, PDE4, A2, highKM_PDE, B1, B2, A1 and as a product in AC_active, AC_basal).

$$\frac{d}{dt}cAMP_cyto = v_9 + v_{17} - v_2 - v_5 - v_{13} - v_{14} - v_{18} - v_{23} - v_{32}$$
 (118)

8.36 Species PTP_PP_cyto

Initial concentration $60.2 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in one reaction (as a modifier in pp_ptp).

$$\frac{\mathrm{d}}{\mathrm{d}t} PTP_PP_cyto = 0 \tag{119}$$

8.37 Species PDE4_P_cyto

Initial concentration $0 \text{ item} \cdot (10^{-6} \text{ m})^{-3}$

This species takes part in three reactions (as a reactant in pp2a_4 and as a product in PKA_P_PDE and as a modifier in pde4_p).

$$\frac{d}{dt} PDE4_P_cyto = v_{20} - v_{27}$$
 (120)

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany