MaLo
 Marc Ludevid
 405401

 SS 2021
 Übungsblatt 10
 Andrés Montoya
 405409

 4. Juli 2021
 Til Mohr
 405959

Aufgabe 1

E-Test

Aufgabe 2

- (a) $R^{\mathfrak{h}(T)} = \{c_0, f^2 c_0\}$
- (b) Nein. $\mathfrak{h}(T)$ ist ein Modell von $f^4c_0 \neq c_1$, jedoch ist $f^4c_0 = c_1 \in T$. (Skript Seite 99)
- (c) Beobachtungen:
 - Wegen $fc_0 = fc_1$ gilt für alle $n \in \mathbb{N}, n \ge 1$: $f^n c_0 = f^n c_1$
 - Da $f^4c_0 = c_1$ gilt auch $f^4c_1 = c_1$. Es gilt also $f^4c_0 \xrightarrow{f} c_1$ und $f^4c_1 \xrightarrow{f} c_1$.
 - Es gilt auch Rf^2c_1 und für alle $n \in N$: $Rf^{2+4\cdot n}c_0$, $Rf^{2+4\cdot n}c_0$.

Sei G_{τ} die Menge aller Grundterme über τ .

$$\Sigma = \{t = t' \mid t, t' \in G_{\tau}, \text{ in } t \text{ bzw. } t' \text{ kommen } k \geq 1 \text{ bzw. } m \geq 1 \text{ } f \text{ vor, mit } k = 4 \cdot z \cdot m, z \in \mathbb{Z}\}$$

$$\cup \{t = c_1, c_1 = t \mid t \in G_{\tau}, \text{ in } t \text{ kommt } f \text{ } k\text{-mal vor, mit } k = 4 \cdot (1+n), n \in \mathbb{N}\}$$

$$\cup \{c_0 = c_0, c_1 = c_1\}$$

$$\cup \{Rf^k c_0, Rf^k c_1 \mid k = 2 + 4 \cdot n, n \in \mathbb{N}\}$$

$$\cup \{Rc_0\}$$

(d) Nein. $\mathfrak{h}(T)$ ist kein Modell von Rf^2c_1 , $\mathfrak{h}(\Sigma)$ jedoch schon.

(e)

$$[c_0]_{\sim} = \{c_0\}$$

$$[c_1]_{\sim} = \{c_1, f^k c_0, f^k c_1 \mid k = 4 \cdot (n+1), n \in \mathbb{N}\}$$

$$[fc_0]_{\sim} = \{f^k c_0, f^k c_1 \mid k = 4 \cdot n + 1, n \in \mathbb{N}\}$$

$$[f^2 c_0]_{\sim} = \{f^k c_0, f^k c_1 \mid k = 4 \cdot n + 2, n \in \mathbb{N}\}$$

$$[f^3 c_0]_{\sim} = \{f^k c_0, f^k c_1 \mid k = 4 \cdot n + 3, n \in \mathbb{N}\}$$

$$R^{\mathfrak{A}(\Sigma)} = \{ [c_0]_{\sim}, [f^2 c_0]_{\sim} \}$$

$$f:[c_0]_{\sim} \mapsto [fc_0]_{\sim} \qquad \qquad [c_1]_{\sim} \mapsto [fc_0]_{\sim}$$
$$[fc_0]_{\sim} \mapsto [f^2c_0]_{\sim} \qquad \qquad [f^3c_0]_{\sim} \mapsto [f^3c_0]_{\sim}$$

Aufgabe 3

- (a) (i) Wenn es ein $\psi \in \text{Th}(\mathfrak{A}) \cap \overline{\text{Th}}(\mathfrak{A})$ gäbe, dann würde ja $\mathfrak{A} \models \psi$ und $\mathfrak{A} \not\models \psi$ gelten. Dies ist ein Widerspruch. Folglich sind $\text{Th}(\mathfrak{A})$ und $\overline{\text{Th}}(\mathfrak{A})$ disjunkt.
 - (ii) (1) Sei t ein beliebiger Term. Dann ist $t = t \in \text{Th}(\mathfrak{A})$, denn $\mathfrak{A} \models t = t$, denn t = t ist eine Tautologie.
 - (2) Seien t, t' beliebige Terme. Angenommen $t = t', \psi(t) \in \text{Th}(\mathfrak{A})$. Dann ist auch $\psi(t') \in \text{Th}(\mathfrak{A})$, denn es gilt: $\{t = t', \psi(t)\} \models \psi(t')$ und Theorien sind unter \models abgeschlossen.
 - (iii) Sei $\neg \psi \in \text{Th}(\mathfrak{A})$. Es gilt folglich $\mathfrak{A} \models \psi$. Angenommen es gilt aber $\psi \notin \text{Th}(\mathfrak{A})$. Da $\text{Th}(\mathfrak{A}) \cup \overline{\text{Th}}(\mathfrak{A}) = \text{FO}(\tau)$ und beide disjunkt sind, muss $\psi \in \text{Th}(\mathfrak{A})$, also $\mathfrak{A} \models \psi$. Da \mathfrak{A} aber beliebig ist, ist dies ein Widerspruch. Folglich muss $\psi \in \overline{\text{Th}}(\mathfrak{A})$ Analog umgekehrt.
 - (iv) Sei $\psi \lor \vartheta \in \operatorname{Th}(\mathfrak{A})$. Dann gilt $\mathfrak{A} \models \psi \lor \vartheta$. \mathfrak{A} ist also ein Modell von mindestens eins von beidem. Es muss also $\mathfrak{A} \models \psi$ oder $\mathfrak{A} \models \vartheta$ gelten. Folglich muss auch eines zu $\operatorname{Th}(\mathfrak{A})$ gehören. Sei $\psi \lor \vartheta \in \overline{\operatorname{Th}}(\mathfrak{A})$. Dann gilt ja $\mathfrak{A} \not\models \psi \lor \vartheta$. Ist nun einer der beiden Formeln nicht in $\overline{\operatorname{Th}}(\mathfrak{A})$, so muss diese Formel dann in $\operatorname{Th}(\mathfrak{A})$ sein. Dann ist aber \mathfrak{A} ein Modell der Formel, weswegen $\mathfrak{A} \models \psi \lor \vartheta$ gelten müssten. Widerspruch. Folglich muss $\psi, \vartheta \in \overline{\operatorname{Th}}(\mathfrak{A})$ gelten.
- (b) Wenn $\psi \wedge \vartheta \in \Gamma^*$, dann gehören ψ und ϑ zu Γ^* . Wenn $\psi \wedge \vartheta \in \Delta^*$, dann gehört ψ oder ϑ zu Δ^* .
- (c) Wenn $\psi \to \vartheta \in \Gamma^*$, dann gehört ψ zu Δ^* oder ϑ zu Γ^* . Wenn $\psi \to \vartheta \in \Delta^*$, dann gehören ψ zu Γ^* und ϑ zu Δ^* .
 - Sei $\psi \to \vartheta \in \text{Th}(\mathfrak{A})$. Dann ist entweder \mathfrak{A} kein Modell von ψ . Also gilt $\mathfrak{A} \not\models \psi$, weshalb $\psi \in \overline{\text{Th}}(\mathfrak{A})$. Oder \mathfrak{A} ist Modell von sowohl ψ als auch ϑ . Dann ist folglich $\vartheta \in \text{Th}(\mathfrak{A})$, da ja $\mathfrak{A} \models \vartheta$.
 - Sei $\psi \to \vartheta \in \overline{\operatorname{Th}}(\mathfrak{A})$. Dann ist ja \mathfrak{A} zwar ein Modell von ψ , aber keines von ϑ . Deshalb gilt $\mathfrak{A} \models \psi$ und $\mathfrak{A} \not\models \vartheta$, also ist $\psi \in \operatorname{Th}(\mathfrak{A})$, aber $\psi \in \overline{\operatorname{Th}}(\mathfrak{A})$.
- (d) Offensichtlich ist $\exists x \psi(x) \in \text{Th}(\mathfrak{A})$ mit $\psi := 2 = x \cdot x$ ($x \in \mathbb{R}, x = \sqrt{2}$). Jedoch sind alle Grundterme rationale Zahlen. Es gibt also keinen Grundterm t, bei dem $\mathfrak{A} \models \psi(t)$. Folglich ist $\psi(t) \notin \text{Th}(\mathfrak{A})$.

Aufgabe 4

- (a)
- (b)
- (c) Falsch! Seien $\tau \coloneqq \{<\}$, $\Phi \coloneqq \{\exists x \forall y (x=y \lor x < y), \exists x \forall (x=y \lor y < x)\}$. Φ axiomatisiert also die Klasse der τ -Strukturen mit kleinstem und größtem Element. $\operatorname{Mod}(\varphi_1)$ axiomatisiert nur die Klasse der τ -Strukturen mit kleinstem Element, $\operatorname{Mod}(\varphi_2)$ axiomatisiert nur die Klasse der τ -Strukturen mit größtem Element. Widerspruch!
- (d) Gegenbeispiel: Die Klasse der Endlichen Linearen Ordnungen welche endlich axiomatisierbar ist durch $\varphi = \forall x (\forall y (y < x \lor y = x) \lor \exists y (x < y \land \neg \exists z (x < z < y))) \land \exists x (\forall y (x < y \lor x = y) \land \forall x \forall y \forall z (x < y \land y < z \Rightarrow x < z) \land \forall x \forall y (x < y \lor y < x \lor x = y)$ Also gibt es ein kleinstes und grösstes Element und jedes Element hat einen eindeutigen Nachfolger.

Aber für das unendliche Axiomensystem Ψ gibt es keine endliche Teilmenge, die die Klasse axiomatisiert und somit auch keine Konjunktion von Sätzen in Ψ , die die Klasse axiomatisiert.

Sei
$$\psi_n = \exists x_1 \exists x_2 \dots \exists x_n (x_1 \neq x_2 \land x_1 \neq x_3 \land \dots \land x_1 \neq x_n \land x_2 \neq x_3 \land \dots \land x_{n-1} \neq x_n \land \forall y ((y = x_1 \lor y = x_2 \lor \dots \lor y = x_n) \land x_1 < x_2 \land x_2 < x_3 \land \dots \land x_{n-1} < x_n) \land \forall x \forall y \forall z (x < y \land y < z \Rightarrow x < z) \land \forall x \forall y (x < y \lor y < x \lor x = y)$$

 ψ_n axiomatisiert die Lineare Ordnung mit n Elementen. Also ist $\Psi = \{\psi_n \mid n \in \mathbb{N}\}$ ein unendliches Axiomensystem für die Endlichen Linearen Ordnungen. Jegliche endliche Untermenge von Ψ hat ein ψ_m für maximales m. Somit kann eine Lineare Ordnung gewählt werden mit m+1 Elementen und diese wird kein Modell von besagten Untermenge sein.

(e) Richtig!

Es gibt ein endliches Axiomensystem Φ' für K. K ist also auch axiomatisierbar durch $\varphi \coloneqq \bigwedge \Phi'$. Für jede Struktur $\mathfrak{A} \in K$ muss also gelten $\mathfrak{A} \models \varphi$ und für jede Struktur $\mathfrak{B} \not\in K$ ($\mathfrak{B} \in \overline{K}$) $\mathfrak{B} \not\models \varphi$. Folglich muss für \mathfrak{B} dann gelten $\mathfrak{B} \models \overline{\varphi}$ mit $\overline{\varphi} \coloneqq \neg \varphi = \neg \bigwedge \Phi = \bigvee_{\varphi' \in \Phi} \neg \varphi'$. Folglich ist $\{\overline{\varphi}\}$ ein endliches Axiomensystem von \overline{K} .