Video Prediction

Xiaolong Wang

This Class

Video Prediction Background

Interaction Network for Physical Prediction

Prediction Space and Time

Video Prediction Background

Visual Prediction

Given a (sequence of) past observations, predict future observations

 "Observations" can be many different things and used for different applications

Why Prediction?

If an organism carries a model of external reality and its own possible actions within its head, it is able to react in much fuller, safer and more competent manner to emergencies which face it.

-- Kenneth Craik, in ``The nature of explanation"

Model-based Planning.

 Learning a deep network provides a differentiable way to adjust the inputs.

Representation Learning

Two Layer Composite Model with 2048 LSTM units

From Pixels to Pixels

Not a well-defined problem

Pixel output space is too large

Future has a large uncertainty

Interaction Network for Physical Prediction

Object Centric Prediction in a Physical World

Predicting the physical dynamics

- Given the states of n objects at time t
- We want to predict their states at time t+1

$$\{x_1^t, x_2^t, \dots, x_n^t\} \longrightarrow \{x_1^{t+1}, x_2^{t+1}, \dots, x_n^{t+1}\}$$

Interaction Module

If we want to predict the future movement of the blue billiard

$$g(x_i^t)$$

relation-dynamics:

$$\sum_{j\neq i} h(x_i^t, x_j^t)$$

Aggregate the above:

$$F(x_i^t) = f(g(x_i^t), \sum_{j \neq i} h(x_i^t, x_j^t))$$

Prediction

Aggregate the unary and binary terms:

$$x_i^{t+1} = F(x_i^t) = f(g(x_i^t), \sum_{j \neq i} h(x_i^t, x_j^t))$$

Location estimation: $\hat{p}_i^{t+1} = W_p x_i^{t+1}$

Training loss function: $L_p = \sum_{t=1}^{\infty} \sum_{i=1}^{\infty} \|\hat{p}_i^{t+1} - p_i^{t+1}\|_2^2$

Interaction Network

- Object Representation
 - Use ground-truth state as input
 - Rigid Object: mass point (radius, mass, center, velocity)
 - Deformable Object: collection of mass points

Prediction Rollouts

Prediction Results

Learning to simulate more complex dynamics

- Propagation Interactions
- Compute Interaction locally

Visual Interaction Network

- Visual Interaction Network [1]: Use ConvNet to extract (#obj x 128) feature channels from multiple images.
 - Not very intuitive and cannot generalize to multiple objects
 - Input order is fixed so cannot generalize to multiple appearance

Visual Interaction Network

Estimate the object states from multiple images

Interaction Network

Visual Encoder

Visual Interaction Network

- Visual Interaction Network [1]: Use ConvNet to extract (#obj x 128) features from multiple images.
- Compositional Video Prediction [2,3]: Crop image by Rol and then pass through a ConvNet to get features.

Compositional Video Prediction

Extract features from cropped object

Dynamics are simple

More complex / Real World dynamics prediction

Goal: 1) hit the white ball so that it hits the other object balls. 2) Before hitting the last object ball, the white ball need to hit the cushions at least three times.

Goal: make the green ball touch the blue/purple object by adding a red ball

Region Proposal Interaction Networks

Visual Encoder

Visual Encoder

Object Centric Representation for Prediction

• We extract the state feature representations of n objects in time t, and predict their representations in time t+1.

$$\{x_1^t, x_2^t, \dots, x_n^t\} \longrightarrow \{x_1^{t+1}, x_2^{t+1}, \dots, x_n^{t+1}\}$$

Visual Encoder

- Use hourglass network to extract image features
- Use aligned Rol Pooling to extract region features

Interaction Module in feature space

Interaction Module in feature space

Interaction Module

If we want to predict the future movement of the blue billiard

• relation-dynamics: (Newton's second law) $\sum_{i \neq i} h(x_i^t, x_i^t)$

Aggregate the above:

$$F(x_i^t) = f(g(x_i^t), \sum_{j \neq i} h(x_i^t, x_j^t))$$

Prediction

Prediction

Future feature prediction: $x_i^{t+1} = W_d[F(x_i^t), F(x_i^{t-1}), \dots, F(x_i^{t-k})]$

Location estimation: $\hat{p}_i^{t+1} = W_p x_i^{t+1}$

Training loss function: $L_p = \sum_{t=1}^{n} \sum_{i=1}^{n} \|\hat{p}_i^{t+1} - p_i^{t+1}\|_2^2$

Simulation Billiards

Real Billiards

prediction ground-truth

PHYRE

Apply to Action Recognition

What Space to Predict

What Space to Predict

Predict Optical Flow:

An Uncertain Future: Forecasting from Static Images using Variational Autoencoders

Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert

Predict Skeleton:

Learning to Generate Long-term Future via Hierarchical Prediction

Predict Future Optical Flow from A Single Image

(b) Trajectories in Space-Time

Walker et al. An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders. 2016.

CVAE for Modeling Uncertainty

Prediction 1

Predict Future Pose

Method

What Time to Predict

Uncertainty in Time

Jayaraman et al. Time-Agnostic Prediction: Predicting Predictable Video Frames, 2019.

Predict the Predictable Future

Predict the Predictable Future

$$G^* = \operatorname*{arg\,min}_G \mathcal{L}(G) = \operatorname*{arg\,min}_G \operatorname*{min}_{t \in \mathcal{T}} \mathcal{E}(G(c), x_t)$$

Find a state with low uncertainty.

But it is unclear what exactly the T is in testing

Next Class

Self-Attention, GNN and Transformer