Topic: Sketching graphs

Question: If the first derivative of the function is positive, then the function is...

Answer choices:

A ... concave down

B ... concave up

C ... decreasing

D ... increasing

)			
So				n	•	1)
30	ıu	u	v			\boldsymbol{L}

Where the first derivative of a function is positive, the function itself is increasing.

Topic: Sketching graphs

Question: If g'(-2) = 0 and g''(-2) > 0, which of the following must be true?

Answer choices:

- A The function has an inflection point at x = -2.
- B The function has a local minimum at x = -2.
- C The function has a local maximum at x = -2.
- D The function has an *x*-intercept at x = -2.

Solution: B

If g'(-2) = 0, then x = -2 is critical point of the function. If g''(x) > 0 at a critical point, there's a local minimum there.

Topic: Sketching graphs

Question: Which of the following is a graph of the function with the given properties?

$$f'(x) < 0 \text{ and } f''(x) > 0 \text{ for } x \le -1$$

$$f'(x) > 0$$
 and $f''(x) > 0$ for $-1 < x < 2$

$$f(x) = 10$$
 for $x \ge 2$

Answer choices:

Α

В

Solution: C

For $x \le -1$, the function is decreasing since f'(x) < 0, and concave up since f''(x) > 0.

For -1 < x < 2, the function is increasing since f'(x) > 0, and concave up since f''(x) > 0.

For $x \ge 2$, the function's value is f(x) = 10.

