gradient decent lineare regression

June 15, 2021

1 Gradientenabstiegsverfahren (Gradient Decent)

2 Am Beispiel der Linearen Regression

Datensatz "Umsatz Speiseeis in Abhängigkeit von der Temperatur

Variablen: - X: Temmperatur, y: Umsatz - m: Steigung der gesuchten Regressionsgeraden - t: Y-Achsenabschnitt - alpha: Lernrate - max_iter: Maximale Anzahl Iterationen - max_error: Maximaler Fehler (bricht ab, wenn eines der beiden Werte erreicht) - d_m: jeweils aktueller Wert für m eingesetzt in die 1. Ableitung der Fehlerfunktion - d_t: jeweils aktueller Wert für t eingesetzt in die 1. Ableitung der Fehlerfunktion - N: Anzahl der Beobachtungen

```
[1]: # Imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
[7]: # Funktion für m (Steigung) und t(Y-Achsenabschnitt) der Regressionsgeraden

def gradient_descent(X, y, alpha=0.001, max_iter=1000):

m = t = 0
N = len(y)
i = 0
d_m = 1000

for _ in range(max_iter):
    y_pred = m*X + t # Vorhergesagte Y-Werte
    d_m = (-2/N) * np.sum(X * (y - y_pred)) # eingesetzt in part.

→ Ableitung für m
    d_t = (-2/N) * np.sum(y - y_pred) # eingesezt in part. Ableitung für t
```

```
m = m - alpha * d_m # Berechne neues m
t = t - alpha * d_t # Berechne neues t

return np.round(m,4), np.round(t,4)
```

```
[12]: # Berechne m und t für Beispieldatensatz
m, t = gradient_descent(X,y, 0.001, 10000)
print("Ergebnisse:")
print(f"m={m}, t={t}")
```

Ergebnisse:

m=2.2714, t=-7.3579

```
[13]: # Plot der Regressionsgerade:

y_hat_1 = np.min(X) * m + t

y_hat_2 = np.max(X) * m + t

plt.plot([np.min(X), np.max(X)], [y_hat_1, y_hat_2], color="r")

plt.scatter(X,y)

plt.show()
```



```
[14]: # Vergleich mit Ergebnis von sklearn.linear_model.LinearRegression
import statsmodels.formula.api as smf
model = smf.ols("Umsatz~Temperatur", data = data).fit()
print(model.summary())
```

OLS Regression Results

Dep. Variable	:	Umsatz		R-sq	uared:		0.954
Model:			OLS	Adj.	R-squared:		0.952
Method:	thod: Least Squares		res	F-sta	atistic:		414.7
Date:	•	Tue, 15 Jun 2	021	Prob	(F-statistic)	:	7.65e-15
Time:		17:24	:05	Log-l	Likelihood:		-67.691
No. Observati	ons:		22	AIC:			139.4
Df Residuals:			20	BIC:			141.6
Df Model:			1				
Covariance Type:		nonrob	ust				
=========		========	====				========
	coef	std err		t	P> t	[0.025	0.975]
Intercept	-7.4001	2.305	-3	3.211	0.004	-12.208	-2.592
Temperatur	2.2732	0.112	20	365	0.000	2.040	2.506
Omnibus:		1.	===== 359	Durb:	======== in-Watson:		0.521
Prob(Omnibus)	:	0.	507	Jarqı	ıe-Bera (JB):		1.224
Skew:		0.	465	-			0.542
Kurtosis:		2.	313	Cond	. No.		40.6
=========	======						========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.