NOTAZIONE BINARIA

NOTAZIONE POSIZIONALE

- · Cifre uguali in posizioni diverse hanno significato diverso
- $4.34_{10} = (4 \cdot 10^0 + 3 \cdot 10^{-1} + 4 \cdot 10^{-2})_{10}$
- $ullet a_{n-1}a_{n-2}...a_0 = \sum_{k=0}^{n-1} a_k b^k$
 - n cifre
 - b base
 - a_k cifra in posizione k

BASE BINARIA

- È la più semplice da manipolare per un computer
 - acceso/spentoSWDE4RF5T
 - tensione alta/bassa

CONVERSIONE DA BINARIO A DECIMALE

$$ullet (1101)_2 = (1*2^3 + 1*2^2 + 0*2^1 + 1*10^0)_{10} = (13)_{10}$$

CONVERSIONE DA DECIMALE A BINARIO

- Parte intera elaborata in modo indipendente da quella frazionaria
- Conversione parte intera
 - $a_{k+1} = a_k \div 2$ (ed elimino eventuale resto)
 - se $a_k = 0$ mi fermo
 - risultato dato dalla serie dei resti iniziando dall'ultimo

```
100 / 2 = 50 resto 0

50 / 2 = 25 resto 0

25 / 2 = 12 resto 1

12 / 2 = 6 resto 0

6 / 2 = 3 resto 0

3 / 2 = 1 resto 1

1 / 2 = 0 resto 1

(100)<sub>10</sub> = (1100100)<sub>2</sub>
```

- · Conversione parte frazionaria
 - ullet se $a_k > 1$ -> $a_{k+1} = (a_k 1) * 2$
 - se $a_k < 1$ -> $a_{k+1} = a_k * 2$
 - ullet se parte decimale di $a_k=0$ oppure ad un risultato ottenuto in precedenza -> mi fermo
 - risultato dato dalla serie delle parti intere partendo dal primo

 $(0.35)_{10} = (0.01\overline{0110})_2$

RAPPRESENTAZIONE DI NUMERI NATURALI

- 8 bit -> $2^8 = 256$ disposizioni
 - $0_{10} = 000000000_2$
 - $-1_{10} = 00000001_2$
 - $\ ^{\bullet} \ 2_{10} = 0000 \ 0010_2$
 -
 - $-255_{10} = 111111111_2$

🖺 In generale

- rappresentazione n bit
- ullet si possono rappresentare 2^n numeri interi
- $ullet a \in [0,2^n-1] \cap \mathbb{N}$

RAPPRESENTAZIONE DI NUMERI INTERI RELATIVI

RAPPRESENTAZIONE CON MODULO E SEGNO

- Codifica
 - Primo bit (+ significativo): indica segno
 - · 0 -> +
 - ∘ 1 -> -
 - Altri bit: indicano modulo del numero

Esempio (8 bit)

•
$$(0\,0001100)_2 = (+12)_{10}$$

• $(1\,0001100)_2 = (-12)_{10}$

- Due codifiche diverse per dire 0 (+0, -0) -> spreco
- Algoritmo di addizione -> troppo lento per una semplice somma

In generale

- · rappresentazione a n bit
- ullet si possono rappresentare 2^n-1 numeri interi
- $a \in [-(2^{n-1}-1), +(2^{n-1}-1)] \cap \mathbb{Z}$

⚠ N.B.

- Cifre più significative -> posizione a sinistra
- Cifre meno significative -> posizione a destra

RAPPRESENTAZIONE CON COMPLEMENTO A DUE

Codifica:

```
a \geq 0 \circ rappresentazione: a a < 0 \circ rappresentazione: (a + 2^n)
```

- Esempio (8 bit)
 - $(011111111)_2 = +127_{10}$
 - $(00000001)_2 = +1_{10}$
 - $-(0000\,0000)_2=0_{10}$
 - $(111111111)_2 = 255_{10} = > -1_{10}$
 - $-(1000\,0000)_2 = 128_{10} = > -128_{10}$
- Procedimento per conversione da decimale negativo a binario
 - 1. modo
 - \circ sommo al numero 2^n e poi converto
 - 2. modo
 - o codifico il modulo
 - scambio 0 con 1
 - sommo 1 al risultato
- Proprietà
 - bit più significativo rappresenta segno
 - solo UNA codifica per lo zero
- · Addizione: si esegue addizione binaria
 - ullet bisogna ignorare eventuale $(n+1)_{esima}$ cifra

+5 +
-2
+3

In generale

- rappresentazione a n bit
- si possono rappresentare 2^n numeri interi
- $^{ullet} \ a \in [-(2^{n-1}), +(2^{n-1}-1)] \cap \mathbb{Z}$

ERRORE DI OVERFLOW

Il numero è più grande della codifica consentita

OVERFLOW IN ADDIZIONE BINARIA

- Avviene se: $a+b
 otin [-2^{n-1},+2^{n-1}-1] \cap \mathbb{Z}$
- · Si può determinare analizzando le due cifre più significative del risultato
 - si ha riporto in una sola delle due cifre più significative

1000 0000	-128
1111 111 <u>1</u>	1
1 0111 1111	+127 !!
	\

RAPPRESENTAZIONE IN VIRGOLA FISSA

• Il separatore si trova sempre nella stessa posizione rispetto alla sequenza dei bit

NUMERI REALI IN VIRGOLA MOBILE

- Notazione a mantissa ed esponente
- $1024.3 = 1.0243 * 10^3$
 - alcuni bit usati per la base (mantissa)
 - alcuni bit usati per l'esponente
- Computer utilizzano base 2

•
$$(2^0+2^{-1}+2^{-2}+\ldots+2^{-23})*2^e=1.110\ldots1*2^E$$

IEEE 754

- Standard internazionale
- Precisione singola (32 bit)
 - 1 bit: segno
 - 8 bit: esponente con bias e+127
 - 23 bit: mantissa normalizzata (senza 1 iniziale)
- Precisione doppia (64 bit)
 - 1 bit: segno
 - 11 bit: esponente con bias e+1023
 - 52 bit: mantissa normalizzata (senza 1 iniziale)
- Numeri "riservati"
 - 0
- ∘ mantissa: 0
- ∘ esponente: -127
- infinito
 - ∘ mantissa = 0
 - ∘ esponente: +128
- NaN
 - ∘ mantissa ≠ 0
 - ∘ esponente: +128

• In codifica a 32 bit

• Numero più piccolo: $1.8 * 10^{-38}$

• Numero più grande: $3.4*10^{+38}$

DENSITÀ DI NUMERI IN VIRGOLA MOBILE

• Si può calcolare con:

$${}^\blacksquare \delta = 2^{-m} \, * 2^E$$

∘ m = bit mantissa

∘ E = esponente

• Distanza tra due numeri reali rappresentabili a 32 bit: $\delta = 2^{-23} * 2^E$

 -2^{-23} = numero più piccolo mantissa a 23 bit

- E = valore esponente

- la distanza dipende dal valore dell'esponente

ARROTONDAMENTO IN VIRGOLA MOBILE

- Alcuni numeri decimali non hanno una rappresentazione esatta in binario
 - Es. 4.35
- Può causare errori nelle somme

RAPPRESENTAZIONE ESADECIMALE

Rappresentazione in base 16

$$A = 10_{10}$$

$$B = 11_{10}$$

$$C = 12_{10}$$

$$D = 13_{10}$$

$$E = 14_{10}$$

$$F = 15_{10}$$

Conversione da binaria a esadecimale

• $16 = 2^4$ -> raggruppo bit 4 a 4 da destra

Esempio:

$$-011111111_2 = 7F_{16} = 0x7F$$

RAPPRESENTAZIONE OTTALE

- Rappresentazione in base 8
- · Conversione da binaria a ottale
 - $8 = 2^3$ -> raggruppo bit 3 a 3 da destra
- Esempio

$$-100010_2 = 42_8$$

RAPPRESENTAZIONE DI CARATTERI

- A ciascun carattere viene associato un numero naturale
- ASCII (American Standard Code for Information) 7 bit
 - 128 caratter
 - o alfabeto americano + numeri e simboli
- ASCII esteso 8 bit
 - 256 caratteri
 - codifica tutti i caratteri dell'alfabeto occidentale
- UNICODE 16bit
 - tutti i caratteri per tutte le lingue
 - i primi 7 bit corrispondono alla codifica ASCII