Principles of Uncertainty Homework 01

David Ocepek

19. October 2021

1 1.12

1.1 (b)

Problem: Show that the standard measurable space on $\Omega = \{0, 1, ..., \infty\}$ equipped with Poisson measure is a discrete probability space. Solution:

$$P(\cup_{k=1}^{\infty}k) = \Sigma_{k=1}^{\infty}P(k) = \Sigma_{k=1}^{\infty}\lambda^k e^{-\lambda}/k! = e^{-\lambda}\Sigma_{k=1}^{\infty}\lambda^k/k!$$

The macLauren expansion of $e^{\lambda}=\Sigma_{k=0}^{\infty}\lambda^k/k!,$ therefore

$$P(\cup_{k=1}^{\infty} k) = e^{-\lambda} \sum_{k=1}^{\infty} \lambda^k / k! = e^{-\lambda} e^{\lambda} = 1$$

2 2.3

Problem: Let C and D be two collections of subsets on σ such that $C \subset D$. Prove that $\sigma(C) \subseteq \sigma(D)$.

Solution: By definition $\sigma(C)$ is the smallest σ -algebra that contains C. Corollary:

- 1. $\sigma(C) = \bigcap_i F_i$, for all σ -algebras F_i that contain C.
- 2. $D \subset \sigma(D)$

Transitively, we know that C is also a subset of $\sigma(D)$, therefore

$$\sigma(C) = (\cap_i F_i - \sigma(D)) \cap \sigma(D) \subseteq \sigma(D)$$

3 2.6

Problem: Show that the Lebesgue measure of rational numbers on [0,1] is 0.

Solution: The Lebesque measure λ is defined on the borel set $\mathbb{B}_{(0,1]}$. In the previous exercises we have proven that the σ -algebra of $\mathbb{B}_{(0,1]}$ contains all singletons. For any singleton b the Lebesque measure $\lambda(\{b\}) = 0$ We can prove this by using the quality

$$\lambda((a,b]) = \lambda((a,b))$$

By countable additivity

$$\lambda((a,b]) = \lambda((a,b) \cup \{b\}) = \lambda((a,b)) + \lambda(\{b\})\lambda(\{b\}) = \lambda((a,b]) - \lambda((a,b)) = 0$$
$$\lambda(\{b\}) = \lambda((a,b]) - \lambda((a,b)) = 0$$

This proves that λ of a singleton is zero. Considering that the set of all rational elements is a union of rational elements it stand follows from countable additivity that the union of all elements is zero.

$$\lambda(\cup_{q_i\in\mathbb{Q}}q_i)=\Sigma_{q_i\in\mathbb{Q}}\lambda(q_i)=\Sigma_{q_i\in\mathbb{Q}}0=0$$

where q_i is a rational singleton, therefore $\lambda(q_i) = 0$

R code:

(Comment: It is impossible to generate irrational numbers on a computer. As all floats are represented as finite number that can always be represented as rational numbers.)