Institut de Mathématiques d'Orsay Université Paris-Saclay

Rapport sur les algorithmes d'approximation pour les problèmes NP-Complet

Éric Aubinais, Farid Najar Master Mathématiques de l'Intelligence Artificielle

Table des matières

1	\mathbf{Pro}	blème de l'arbre de Steiner	1
	1.1	Contexte	1
	1.2	Modélisation	1
	1.3	Complexité	1
	1.4	Algorithme et taux d'approximation	1
2	Problème 2		
	2.1	Contexte	2
	2.2	Modélisation	2
	2.3	Complexité	2
	2.4	Algorithme et taux d'approximation	2
3	Problème 3		
	3.1	Contexte	3
	3.2	Modélisation	3
	3.3	Complexité	
	3.4	Algorithme et taux d'approximation	3

Partie 1

Problème de l'arbre de Steiner

- 1.1 Contexte
- 1.2 Modélisation
- 1.3 Complexité
- 1.4 Algorithme et taux d'approximation

Partie 2

Problème 2

- 2.1 Contexte
- 2.2 Modélisation
- 2.3 Complexité
- 2.4 Algorithme et taux d'approximation

Partie 3

Problème 3

- 3.1 Contexte
- 3.2 Modélisation
- 3.3 Complexité
- 3.4 Algorithme et taux d'approximation