13 Функції компл змінної. Основні елементарні фкз. Область однолистості степеневої функції і її властивості

- f(z) opnoznama, encuso nou ∀z nomima ∈ epune znamnu, nanou una o f(z) = 1 z 1; f(z)=2z²-z
- f(z) Багатознагна, ексизо тощі г вірповірає більше мех орна тожа ω , напринлар f(z) = Azgz.
- . 3aganns komnsektuoznamoi opynkyii w = f(z)pibnocushuo zapanno cuctemu gbox giútum opynkyin u+iv=w=f(z)=Ref(z)+Jmf(z)=u(x,y)+iv(x,y) $\int u=Ref(z)=u(x,y)$ v=Jmf(z)=v(x,y)
- **⑤** Границя функції. Комплексне число A називають границею функції w=f(z) в точці z_0 (коли $z\to z_0$), якщо для будь-якого ε -околу точки A можна вказати проколений δ -окіл точки z_0 , такий що, коли $z\in U_{\delta}(z_0)\setminus\{z_0\}$, то $f(z)\in U_{\varepsilon}(A)$ і позначають $\lim_{z\to z_0}f(z)=A$.*
- **Ф***Неперервність функції.* Нехай функція w=f(z) означена в точці $z=z_0$ і в деякому її околі. Функцію w=f(z) називають неперервною в точці z_0 , якщо $\lim_{z\to z_0} f(z)=f(z_0)$.

Функція f(z) неперервна в області D, якщо вона неперервна в кожній точці цієї області.

2.5. Основні елементарні функції комплексної змінної

О Показникова функція	$e^x = e^x(\cos y + i\sin y)$
2 Тригонометричні функції	$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \ \sin z = \frac{e^{iz} - e^{-iz}}{2i},$
	$ \operatorname{tg} z = \frac{\sin z}{\cos z}, \operatorname{etg} z = \frac{\cos z}{\sin z} $
3 Гіперболічні функції	$\operatorname{ch} z = \frac{e^z + e^{-z}}{2}, \operatorname{sh} z = \frac{e^z - e^{-z}}{2},$
	$ \operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z} $
О Логарифмічна функція*	$\operatorname{Ln} z = \ln z + i(\arg z + 2\pi k), k \in \mathbb{Z}$
6 Головне значення логарифма	$\ln z = \ln z + i \arg z$
6 Узагальнені показникова і степенева функції	$a^z = e^{z \operatorname{Ln} a}, a \neq 0, z^{\alpha} = e^{\alpha \operatorname{Ln} z}$
О Арксинус	$\operatorname{Arcsin} z = -i\operatorname{Ln}(iz + \sqrt{1-z^2})$
③ Арккосинус	$\operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1})$
© Арктангенс	$\operatorname{Arctg} z = -rac{i}{2}\operatorname{Ln}rac{i-z}{i+z}$
Ф Арккотангенс	$\operatorname{Arcetg} z = \frac{i}{2} \operatorname{Ln} \frac{z-i}{z+i}$
Anagarius	
П Ареасинус	$\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1})$
В Ареакосинус	$\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 - 1})$
- Work County	31 35 0

П Ареасинус	$\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1})$
Д Ареакосинус	$\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 - 1})$
ВАреатангенс	$\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \frac{1+z}{1-z}$
(Д Ареакотангенс	$\operatorname{Areth} z = \frac{1}{2} \operatorname{Ln} \frac{z+1}{z-1}$

 $^{^{\}star}$ Областю означення логарифмічної функції є $\,\mathbb{C}\setminus\{0\}.$

Визначення однолистості

Область однолистості

Властивості

5) Comenene ba apyliky is
$$w = z^n = 1z1^n (\cos n\varphi + i\sin n\varphi)$$

$$w = z^n = \sqrt{1z1} (\cos \frac{\varphi + 2k\pi}{n} + i\sin \frac{\varphi + dk\pi}{n}) \quad k = 0,1,...,n-1.$$

$$w = z^n = 2 = e = e$$

