Data mining for detecting Bitcoin Ponzi schemes

一、简介

本文尝试将数据挖掘的方法应用在比特币的区块链中,首先通过一系了启发式的手工方法,构造了一个"旁氏地址"的数据集,然后使用三种机器学习方法(基于规则,贝叶斯网络和随机森林)进行分类,最终可以在分类效果上取得比较好的结果。

相比较以太坊而言,在比特币的区块链中没有交易的概念,因此我们无法通过智能合约中的代码逻辑去标记旁氏骗局的产生。因此,作者首先通过启发式的方法人工去收集具备旁氏骗局的地址(人工去论坛与社区进行搜索),然后通过对这些旁氏骗局的地址的相关交易进行特征设计,最终完成分类任务,在本文中,作者仅收集到32个诈骗地址簇。

此处, 值得借鉴的内容在于交易特征设计, 主要有:

11171111111111111111111111111111111111
存在时间
活跃天数
最大交易/天
基尼系数
收到金额总数
转入交易数量
转入交易与转出交易比例
交易金额平均值
交易涉及账户
接收金额与返回金额的时间延迟
连续两天交易额的最大差额

交易特征目的是反映出旁氏骗局存在的典型特征(后来者无法获得任何回报) 二、结果

	RIP: CM5			RIP: CM10			RIP: CM20					RIP: CM40		
	P	nP		P	nP			P	nP			P	nP	
P	19	13	P	19	13		P	19	13		P	19	13	
nP	7	6393	nP	7	6393		nP	7	6393		nP	7	6393	
BN: CM5				BN: CM10			BN: CM20					BN: CM40		
	P	nP]	P	nP			P	nP	1		P	nP	
P	24	8	P	24	8	1	P	24	8	1	P	24	8	
nP	136	6264	nP	155	6245		nP	192	6203		nP	213	6187	
RF: CM5			RF: CM10			RF: CM20					RF: CM40			
	P	nP	1	P	nP			P	nP		Ī	P	nP	
P	25	7	P	29	3		P	31	1		P	31	1	
nP	13	6387	nI	26	6374		nP	77	6323		nP	132	6268	

Figure 5: Confusion matrices of RIPPER, Bayes Net and Random Forest across different cost-matrices.

在本文中,随机森林的方法取得了最好的效果。需要注意的是,欺诈检测是一个典型的不平衡分类问题,因此作者采用了随机采样和代价函数修改的方法确保分类正确进行。从结果来看,召回率是一个不错的结果,随机森林可以找到32个中的31个诈骗地址。不过,还是有很大比例的误分类。

三、总结

本文是一个很好的开创性工作,主要的目的在于仅使用交易特征去尝试分析 区块链中的旁氏骗局。目前,有关比特币交易中的相关交易的分析得到了比较多 的研究,而以太坊引入智能合约之后,将会面临完全不一样的情况,这也是我们 后续研究想要尝试一起考虑的内容。