Problem 1.3

September 21, 2023 10:54 PM

Problem 1.3:

5.1 Linear independence of stacked vectors. Consider the stacked vectors

$$c_1 = \left[\begin{array}{c} a_1 \\ b_1 \end{array} \right], \ \ldots, \ c_k = \left[\begin{array}{c} a_k \\ b_k \end{array} \right],$$

where a_1, \ldots, a_k are *n*-vectors and b_1, \ldots, b_k are *m*-vectors.

- (a) Suppose a_1, \ldots, a_k are linearly independent. (We make no assumptions about the vectors b_1, \ldots, b_k .) Can we conclude that the stacked vectors c_1, \ldots, c_k are linearly independent?
- (b) Now suppose that a_1, \ldots, a_k are linearly dependent. (Again, with no assumptions about b_1, \ldots, b_k .) Can we conclude that the stacked vectors c_1, \ldots, c_k are linearly dependent?

a)
$$\downarrow a_1 \dots a_k$$
 are linearly independent,

 $a_1 \neq a_2 \neq \dots \neq a_k \quad \{a_1 \neq la_2$

$$\vdots \quad \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \neq \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} \neq \dots \neq \begin{bmatrix} a_k \\ b_k \end{bmatrix}$$

that Ci...Ck are independent even it a,...ak are dependent because b,...bk could be independent and then Ci...Ck Would be

be independent and then Ci...Ck Would be independent