Notas da aula 2

Autômatos Finitos Não-determinísticos (AFN), diferentemente de sua contraparte determinística AFD, vista anteriormente, possuem uma função de transição δ em que várias alternativas podem existir para o estado seguinte. Esta função, no mais, aceita também a cadeia vazia ε como parte de seu alfabeto estendido $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, tal que $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a definição formal da função de transição. Onde $\mathcal{P}(Q)$ é o conjunto das partes (conjunto potência) de Q.

Sempre que um AFN se depara com um não-determinismo, este faz uma cópia de si (um "subautômato") e cada cópia segue com uma alternativa, em paralelo. Se uma das cópias aceitar a cadeia, então o AFN aceita a cadeia.

Exemplo

Seja M_1 um autômato finito não-determinístico definido por $M_1=(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_4\})$ onde

δ	0	1	ϵ
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

Onde \emptyset indica que naquele dado ramo da computação que levou a este resultado a cadeia foi rejeitada.

Este pode ser esquematizado pelo seguinte diagrama:

Note que o estado q_1 apresenta múltiplos estados seguintes para o símbolo 1, e o estado q_2 apresenta um estado seguinte para a cadeia vazia. Uma **árvore de decisão** representativa do funcionamento deste autômato é a seguinte:

