MAT1830 - Discrete Mathematics for Computer Science Assignment #4

To be handed in at the beginning of your support class in week 6 (3–7 April)

Show your working and give full explanations for all questions.

(1) Define a sequence of integers a_1, a_2, a_3, \ldots by

$$a_1 = 4$$
, $a_2 = 12$, and $a_n = 10a_{n-1} - 12a_{n-2}$ for each integer $n \ge 3$.

Prove by strong induction that 2^n divides a_n for all integers $n \geq 1$.

(2) Let R, S and T be sets defined as follows

$$R = \{x : x \in \mathbb{Z} \text{ and either } x \le -4 \text{ or } x \ge 3\}$$

 $S = \{-6, -5, -3, 3, 4, 5\}$
 $T = \{x : x \in \mathbb{Z} \text{ and } x > 0\}.$

Find the following.

- (i) $R \cap S$
- (ii) R-T
- (iii) $R\triangle S$
- (iv) $\mathcal{P}(R) \cap \{\{-6, -5, 3\}, \{2, 3\}, \{5\}, \{\}, \{-5, 1, 4\}\}\}$
- (v) $|\mathcal{P}(\mathcal{P}(S \cap T))|$

No explanation is required for (i)–(iv). Give some explanation for (v).

- (3) (i) Is $(A \cup B) \times C = (A \times C) \cup (B \times C)$ true for all sets A, B and C? If so, prove it. If not, give an example of sets A, B and C for which it is false.
 - (ii) Is $\mathcal{P}(A)\triangle\mathcal{P}(B) = \mathcal{P}(A\triangle B)$ true for all sets A and B? If so, prove it. If not, give an example of sets A and B for which it is false.

Hint: A good way to prove that two sets are equal is to use laws of logic to show that they have exactly the same elements.