Вариант № 220

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице приведены длины дорог между пунктами.

	1	2	3	4	5	6	7	D E.
1			9					1 $\frac{4B}{C}$ $\frac{F_6}{C}$
2			15		5	10		3
-3	9	15			8	7	<u>1</u> 3	5 A 0 12 25 3E (25)
4							5	1 7 3
5		5	8			6] ³
6		10	7		6]3 D H
7			12	5				2

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Найдите длину кратчайшего маршрута из А в Е, если известно, что самая длинная дорога из С ведет в Е.

Догическая функция F задаётся выражением (¬х ∧ у ∧ z) ∨ (¬х ∧ ¬z). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Перем. 1	Перем. 2	Перем. 3	Функция
???	???	???	F
0	0	0	1
0	0	1	1
1	0	1	1

3

В ответе напишите буквы х, у, z в том порядке, в котором идут соответствующие им столбцы (без разделителей).

В файле 3.xls приведён фрагмент базы фрагмент базы данных «Русский рок», описывающей советские и российские рок-группы. База данных состоит из двух таблиц. Таблица «Группы» содержит информацию о музыкальных коллективах: ID, название, год основания. Таблица «Альбомы» содержит информацию о студийных музыкальных альбомах: ID, название, ID группы, год издания, количество песен. Для каждой группы в базе данных указано ровно 3 альбома. На рисунке приведена схема базы данных.

Используя информацию из приведённой базы данных, определите ID группы, выпустившей альбом с максимальным количеством песен среди указанных в базе данных.

- Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 0, для буквы Б кодовое слово 110. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?
- В Автомат обрабатывает натуральное число N по следующему алгоритму:
 - 1) Строится двоичная запись числа N.
 - 2) Из записи удаляются две последние цифры.
 - 3) Полученное число переводится в десятичную запись и выводится на экран.

Сколько разных значений будет показано на экране автомата при последовательном вводе всех натуральных чисел от 20 до 600?

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд п (где п — целое число), вызывающая передвижение Черепахи на п единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись

Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:

Повтори 15 [Вперёд 4 Направо 60]

Определите, сколько точек с

целочисленными **положительными** координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

- Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 150 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза ниже и частотой дискретизации в 2 раз выше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б; пропускная способность канала связи с городом Б в 2 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?
- Сергей составляет 6-буквенные коды из букв Е, Л, Е, Й. Буква Й может использоваться в коде не более одного раза, при этом она не может стоять на первом месте, на последнем месте и рядом с буквой Е. Все остальные буквы могут встречаться произвольное количество раз или не встречаться совсем. Сколько различных кодов может составить Сергей?

- В файле электронной таблицы <u>9.xls</u> в каждой строке содержатся четыре натуральных числа. Сколько среди них строк, в которых модуль куба разности максимального и минимального чисел в строке не превышает квадрат суммы двух оставшихся?
- В файле 10.docx приведена повесть-феерия А. Грина «Алые паруса». Сколько раз упоминается имя Мери в тексте повести (не считая сносок)? В ответе укажите только число.
- При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов и содержащий только символы из 10-символьного набора: A, B, C, D, E, F, G, H, K, L. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 16 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 20 пользователях.
- Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
    заменить (v, w)
    нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь».

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 247 идущих подряд цифр 2? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (222) ИЛИ нашлось (555)
ЕСЛИ нашлось (222)
ТО заменить (222, 5)
ИНАЧЕ заменить (555, 2)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

В терминологии сетей TCP/IP маской сети называют двоичное число, которое показывает, какая часть IP-адреса узла сети относится к адресу сети, а какая - к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и маске сети. Сеть задана IP-адресом 202.75.38.160 и маской сети 255.255.255.240. Сколько в этой сети IP-адресов, у которых в двоичной записи IP-адреса имеется сочетание трех подряд идущих единиц?

В ответе укажите только число.

- 3начение арифметического выражения: **3 · 16⁸ − 4⁵ + 3** записали в системе счисления с основанием 4. Сколько цифр «3» содержится в этой записи?
- Для какого наименьшего целого неотрицательного числа A выражение $(75 \neq 2x + 3y) \lor (A > 3x) \lor (A > 2y)$

тождественно истинно, т.е. принимает значение 1 при любых целых **неотрицательных** х и у?

- **16** Алгоритм вычисления значения функции F(n), где n натуральное число, задан следующими соотношениями:
 - $F(n) = n*n*n + n*n + 1, при n \le 13$
 - F(n) = F(n-1) + 2*n*n 3, при n > 13, кратных 3
 - F(n) = F(n-2) + 3*n + 6, при n > 13, не кратных 3

Определите количество натуральных значений п из отрезка [1; 1000], для которых все цифры значения F(n) нечётные.

- В файле 17.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов больше, чем наибольшее из всех чисел в файле, делящихся на 107, и в семеричной записи хотя бы одного элемента из двух содержится сочетание цифр 36. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- Квадрат разлинован на N×N клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из трех команд: вправо, вниз или вправо_вниз. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз − в соседнюю нижнюю, по команде вправо_вниз робот перемещается одновременно вправо на одну клетку и вниз на одну клетку, т.е. на одну клетку по диагонали. Исключением являются клетки, отмеченные желтым цветом. Находясь в них, робот не может выполнять команду вниз.

Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке — это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.

Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую

19 20

22

нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.

Исходные данные для Робота записаны в файле <u>18.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата. Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом является пара чисел: 11 38.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч три

камня или **увеличить** количество камней в куче **в** два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 75. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 75 или больше камней.

В начальный момент в первой куче было 9 камней, во второй куче — S камней, $1 \le S \le 65$. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Bonpoc 2. Укажите минимальное значение S, при котором у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Вопрос 3. Найдите два значения S, при которых у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Найденные значения запишите в ответе в порядке возрастания.

В файле 22.xls содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите максимально возможное целочисленное неизвестное время выполнения процесса t, при

котором выполнение всей совокупности процессов может завершиться не более чем за 96 мс.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	t	1; 2
4	7	3

Пусть выполнение данной совокупности процессов закончилось за 15 мс. В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 – через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится t мс и закончится через 4+t мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 4 + t мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 4 + t + 7 = 15 мс. Следовательно, t = 15 - 47 = 4 мс. Ответ для этого примера: 4.

23 Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2
- 3. Умножить на 3

Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 46, и при этом траектория вычислений содержит число 12 и не содержит число 25?

Текстовый файл 24.txt состоит не более чем из 10^6 символов и содержит только заглавные буквы латинского алфавита (ABC...Z). Текст разбит на строки различной длины. Необходимо найти строку, содержащую наименьшее ненулевое количество пар соседних букв, которые стоят в таком же порядке и в алфавите (например, AB, BC, CD и т.д.). Если таких строк несколько, надо взять ту, которая в файле встретилась раньше. Определите, какая буква встречается в этой строке чаще всего. Если таких букв несколько, надо взять ту, которая стоит последней в алфавите. Запишите в ответе эту букву, а затем – сколько раз она встречается во всем файле.

Пример. Исходный файл:

ZZQABA

ZALMAC

KRAKUT

В этом примере в первой и второй строках по одной подходящей паре (АВ и LM), в третьей таких пар нет. Берём первую строку, т.к. она находится в файле раньше. В этой строке чаще других встречаются буквы Z и A (по два раза), выбираем букву Z, т. к. она позже стоит в алфавите. В ответе для этого примера надо записать Z3, так как во всех строках файла буква Z встречается 3 раза.

24

- Найдите все натуральные числа, принадлежащие отрезку [113 000 000; 114 000 000], у которых ровно три различных чётных делителя. В ответе перечислите найденные числа в порядке возрастания, справа от каждого числа запишите его второй по величине нетривиальный делитель (не равный 1 и самому числу).
- Предприятие производит оптовую закупку изделий А и Z, на которую выделена определённая сумма денег. У поставщика есть в наличии партии этих изделий различных модификаций по различной цене. На выделенные деньги необходимо приобрести как можно больше изделий Z (независимо от модификации). Закупать можно любую часть каждой партии. Если у поставщика закончатся изделия Z, то на оставшиеся деньги необходимо приобрести как можно больше изделий А. Известна выделенная для закупки сумма, а также количество и цена различных модификаций данных изделий у поставщика. Необходимо определить, сколько будет закуплено изделий А и какая сумма останется неиспользованной. Если возможно несколько вариантов решения (с одинаковым количеством закупленных изделий А), нужно выбрать вариант, при котором оставшаяся сумма максимальна.

Входные данные представлены в файле <u>26.txt</u> следующим образом. Первая строка входного файла содержит два целых числа: N – общее количество партий изделий у поставщика и S – сумма выделенных на закупку денег (в рублях). Каждая из следующих N строк описывает одну партию изделия: сначала записана буква A или Z (тип изделия), а затем – два целых числа: цена одного изделия в рублях и количество изделий в партии. Все данные в строках входного файла разделены одним пробелом.

В ответе запишите два целых числа: сначала количество закупленных изделий типа А, затем оставшуюся неиспользованной сумму денег.

Пример входного файла:

- 4 1000
- A 14 12
- Z 30 7
- A 40 24
- Z 50 15

27

В данном случае сначала нужно купить изделия Z: 7 изделий по 30 рублей и 15 изделий по 50 рублей. На это будет потрачено 960 рублей. На оставшиеся 40 рублей можно купить 2 изделия A по 14 рублей. Таким образом, всего будет куплено 2 изделия A и останется 12 рублей. В ответе надо записать числа 2 и 12.

Дана последовательность натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, в которых начальное число последовательности делится на 21 и является квадратом конечного числа последовательности. Найдите длину наибольшей такой подпоследовательности.

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество чисел N ($2 \le N \le 100000$). Каждая из следующих N строк файлов содержит одно натуральное число, не превышающее 10000.

Пример входного файла:

В этом наборе можно выбрать последовательности (441-21) и (1764-42), длина первой -3, длина второй -5. Ответ: 5.

В ответе укажите два числа: сначала искомое значение для файла А, затем для файла В.