

Gustavo Julián Rivas

Tecnicatura Universitaria en Programación

Gustavo Julián Rivas

UML

Unified Modeling Language (Lenguaje Unificado de Modelado)

Gustavo Julián Rivas

es un lenguaje para visualizar, especificar, construir y documentar

los artefactos de un sistema con gran cantidad de software

en Programación

Gustavo Julián Rivas

es un lenguaje

proporciona un vocabulario y las reglas para combinar palabras de dicho vocabulario con el fin de posibilitar la comunicación

Gustavo Julián Rivas

Tecnicatura Universitaria en Programación

> Sin las tildes no entiendo si es una noticia o se está ofreciendo como sicario de hasta 6 personas y un extra por la suegra.

Gustavo Julián Rivas

es un lenguaje de modelado

su vocabulario y reglas se centran en la representación conceptual y física de un sistema

por ende, es un lenguaje estándar para los planos del software

Gustavo Julián Rivas

para visualizar

un modelo explícito facilita la comunicación

textual o gráfico, según convenga

Gustavo Julián Rivas

para especificar

construir modelos precisos, no ambiguos, y completos

Gustavo Julián Rivas

para construir

puede conectarse directamente con una gran variedad de lenguajes de programación

lo cual permite ingeniería directa e inversa

Gustavo Julián Rivas

para documentar todos los detalles de un sistema

y no solamente el código fuente

Gustavo Julián Rivas

es independiente del proceso

pero funciona mejor con uno dirigido por los casos de uso ¹, centrado en la arquitectura ², e iterativo e incremental ³

- 1- se usan como base, guía e hilo conductor del proyecto
- 2- se construye a partir de los aspectos más significativos
- 3- cada iteración genera una versión que mejora la anterior

Gustavo Julián Rivas

proceso iterativo

Gustavo Julián Rivas

proceso incremental

Gustavo Julián Rivas

proceso incremental

Gustavo Julián Rivas

proceso iterativo e incremental

Gustavo Julián Rivas

Proceso Unificado de Desarrollo de Software ¹ cumple con las tres características

1- de los mismos autores de UML

Tecnicatura Universitaria en Programación

> bloques básicos

> > de construcción

Gustavo Julián Rivas

bloques básicos clases

- elementos
 abstracciones que constituyen las entidades de un modelo
- relaciones
 conexiones semánticas entre elementos
- diagramas colecciones interesantes de elementos y relaciones representadas gráficamente

Gustavo Julián Rivas

elementos tipos

- estructurales partes estáticas de los modelos
- de comportamiento partes dinámicas de los modelos
- de agrupación
 partes organizativas de los modelos
- de anotación partes explicativas de los modelos

Gustavo Julián Rivas

elementos estructurales 1

partes estáticas de los modelos

- clase descripción de un conjunto de objetos que comparten características
- interfaz colección de operaciones que especifica un servicio
- colaboración sociedad de elementos con un objetivo común
- **caso de uso** descripción de un conjunto de secuencias de acciones
- clase activa clase con comportamiento concurrente
- componente parte modular del diseño del sistema que expone interfaces
- artefacto parte física y reemplazable de un sistema
- nodo recurso computacional utilizable que existe físicamente
- 1- o clasificadores, representan conceptos o cosas

Gustavo Julián Rivas

elementos de comportamiento 1

partes dinámicas de los modelos

- interacción
 conjunto de mensajes intercambiados entre un conjunto de objetos
- máquina de estados secuencias de estados de un objeto o interacción
- actividad
 conjunto de acciones que ejecuta un proceso computacional

1- representan comportamiento en el tiempo y el espacio

Gustavo Julián Rivas

elementos de agrupación

partes organizativas de los modelos

 paquete contenedor conceptual de propósito general

Gustavo Julián Rivas

elementos de anotación

partes explicativas de los modelos

nota

representación de restricciones/comentarios junto a un elemento o colección

relaciones

conexiones semánticas entre elementos

- dependencia

 un cambio a elemento afecta la semántica del otro
- asociación
 entre clasificadores que implica la conexión entre sus instancias
- generalización
 las instancias especializadas pueden sustituir a las generales
- realización
 un clasificador especifica un contrato que el otro debe cumplir

Gustavo Julián Rivas

diagramas estructurales

muestran los aspectos estáticos del sistema

- de clases conjunto de clases, interfaces, colaboraciones y sus relaciones
- de componentes
 partes internas, conectores y puertos que implementan un componente
- de objetos
 conjunto de objetos y sus relaciones en un momento dado
- de artefactos unidades físicas de implementación del sistema
- de despliegue configuración de nodos y artefactos en tiempo de ejecución

Gustavo Julián Rivas

diagramas de comportamiento

muestran los aspectos dinámicos del sistema

- de casos de uso y actores, y sus relaciones
- de interacción (secuencia y comunicación)
 interacción (conjunto de objetos o roles y los mensajes que intercambian)
 resaltando la ordenación temporal (secuencia)
 o resaltando la organización estructural (comunicación)
- de estados máquina de estados (estados, transiciones, eventos y actividades)
- de actividades
 estructura, flujo de control y de datos de un proceso

Gustavo Julián Rivas

en Programación

reglas

Gustavo Julián Rivas

reglas

sintácticas ¹ y semánticas ² para asegurar la construcción de modelos bien formados ³

1- cómo combinar los elementos

2- con significado

3- semánticamente autoconsistentes y en armonía con todos sus modelos relacionados

reglas sintácticas y semánticas para:

- nombres cómo llamar a los elementos, relaciones y diagramas
- alcance contexto que da un significado específico a un nombre
- visibilidad cómo un nombre puede ser visto y usado por otros
- integridad cómo los elementos se relacionan de forma apropiada y consistente
- ejecución
 qué significa ejecutar o simular un modelo dinámico

en Programación

Metodología de Sistemas I

Gustavo Julián Rivas

mecanismos comunes

Gustavo Julián Rivas

mecanismos comunes

que se aplican transversalmente a través de todo el lenguaje

- especificaciones base semántica para el uso consistente de todas las partes y modelos
- adornos gráficos o textuales, para ampliar la información
- divisiones comunes abstracción vs. manifestación concreta interfaz vs. implementación tipo vs. rol
- mecanismos de extensibilidad
 estereotipo (extensión del vocabulario)
 valor etiquetado (extensión de las propiedades de un estereotipo)
 restricción (extensión de la semántica de un bloque de construcción)