

METHOD AND APPARATUS FOR INSPECTING SEMICONDUCTOR DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention:

5 The present invention relates to a method of and an apparatus for inspecting semiconductor devices such as semiconductor integrated circuits and semiconductor memory devices, and more particularly to an inspection method and an inspection apparatus for semiconductor 10 devices by which an increased number of semiconductor devices can be inspected simultaneously.

2. Description of the Related Art:

When a semiconductor device is inspected upon manufacture or delivery, usually a semiconductor tester 15 and the semiconductor device to be inspected are connected to each other through a probe card or a test board. Then, a predetermined inspection signal is applied to each pad or each pin for an input signal of the semiconductor device under the inspection, and a 20 signal at each pad or each pin for an output signal of the semiconductor device then is detected. A semiconductor device of the inspection object may be referred to also as DUT (Device Under Test).

In the field of semiconductor devices, a terminology 25 is sometimes used in different manners depending upon whether a semiconductor device is not packaged as yet or

Sub A

is packaged already in such a manner that, for the semiconductor device before packaged, a representation "to connect to a pad with a probe card used" is used, but for the semiconductor device after packaged, another 5 representation "to connect to a pin with a test board" is used. In the following description, however, pads and pins of semiconductor devices are generally referred to as terminals. Also the probe card for connecting a semiconductor device of the inspection object to a tester 10 is used to include a test board.

In inspection of a semiconductor device, it is requested to minimize the inspection time. To this end, it has been attempted to inspect a plurality of semiconductor devices simultaneously. FIG. 1 shows a 15 basic configuration for inspecting a plurality of semiconductor devices simultaneously with a single tester used.

Tester 61 for inspecting semiconductor devices in accordance with a test program includes a plurality of drivers 62 each for applying a predetermined signal to a terminal 65 for an input signal of semiconductor device 64 to be inspected. Each of semiconductor devices 64 has a plurality of terminals 65 each for an input signal. Tester 61 and semiconductor devices 64 are connected to 20 each other through probe card 63. One driver 6 in tester 61 corresponds to one terminal 65, and therefore,

a number of drivers 62 greater than the total number of input terminals 65 of the semiconductor devices 64 to be inspected are prepared.

After all, in the configuration described above, a
5 number of drivers equal to the total number of terminals for an input signal of semiconductor devices to be inspected simultaneously must be prepared in the tester. Therefore, the configuration described has a problem in that the tester has a large-scale configuration. Further,
10 15 the number of the drivers that are provided in the tester limits the number of semiconductor devices that can be inspected simultaneously. Therefore, the configuration has another problem in that the number of simultaneously inspected semiconductor devices cannot be increased very much.

It is generally considered that semiconductor devices that are inspected simultaneously are of the same type. Thus, Japanese Patent Laid-Open No. 11-231022 (JP, 11231022, A) discloses an apparatus wherein a signal from 20 a driver of a tester is branched in a probe card and supplied in parallel to a plurality of semiconductor devices to be inspected simultaneously as seen from FIG. 2. A wiring scheme by which a signal from a driver is branched and supplied parallelly to a plurality of 25 semiconductor devices is called common drive wiring, and a driver used in such common drive wiring is called

common driver.

In the configuration shown in FIG. 2, three terminals 65a to 65c, 65d to 65f for an input signal are provided for each of a plurality of semiconductor devices 5 64a, 64b. The output of driver 62a from among the drivers in tester 61 is connected one by one to terminal 65a of semiconductor device 64a, and the output of driver 62d is connected one by one to terminal 65d of another semiconductor device 64b. However, the output of driver 10 62b is branched at branching point 66a in probe card 63 and supplied to terminal 65b of semiconductor device 64a and terminal 65e of semiconductor device 64b. Similarly, the output of driver 62c is branched at branching point 66b in probe card 63 and supplied to terminal 65c of 15 semiconductor device 64a and terminal 65f of semiconductor device 64b. Since the output of each of drivers 62b, 62c is branched and connected to a plurality of terminals for an input signal, drivers 62b, 62c are common drivers.

Such a configuration as described above includes a driver that takes charge of a plurality of terminals and therefore allows a greater number of semiconductor devices to be inspected with a small number of drivers used.

This configuration, however, has a problem in that, if one of semiconductor devices inspected simultaneously

has a defect such as leak or a short-circuit at an input terminal, inspection of the remaining normal semiconductor devices is disabled. Where the input terminal of a semiconductor device to be inspected has a 5 MOS (metal-oxide-semiconductor) transistor configuration or a CMOS (complementary MOS) configuration, it is considered that the input resistance of the input terminal is equal to or higher than $0.5 \text{ M}\Omega$, typically equal to or higher than approximately $3 \text{ M}\Omega$. Therefore, 10 the drivers in a tester are so configured that the current driving capacity thereof may conform to the input resistance. Here, if leak of 100Ω or less when converted into an input resistance for dc, for example, occurs with one of a plurality of input terminals to 15 which a signal branched from a driver is applied, then a normal signal voltage is not applied to the normal input terminals either. This disables inspection of a normal semiconductor device as well.

This is described in connection with the example 20 shown in FIG. 2. It is assumed here that semiconductor device 64a is a non-defective unit and semiconductor device 64b is a defective unit in that leak occurs with input terminal 65e thereof. Terminal 65e with which leak occurs and terminal 65b of semiconductor device 64a of a 25 non-defective unit are connected in parallel to driver 62b. Therefore, when terminals 65b, 65e are driven by

driver 62b, because of the leak at terminal 65e, a regular signal voltage is not applied to normal terminal 65b either, and also semiconductor device 64a of a non-defective unit cannot be inspected normally.

5 As a countermeasure to solve the problem described above where a signal from a driver is branched and applied to a plurality of input terminals, it is attempted to insert a resistor of approximately several hundreds ohms between a branching point and each input
10 terminal after a signal from a driver is branched in a probe card as seen in FIG. 3. The configuration shown in FIG. 3 is a modification to the configuration shown in FIG. 2 in that resistors 67 of approximately several hundreds ohms (600Ω , for example) are inserted between
15 branching point 66a and terminal 65b, between branching point 66a and terminal 65e, between branching point 66b and terminal 65c, and between branching point 66b and terminal 65f.

Although this configuration is effective for
20 inspection of a semiconductor device whose clock frequency is comparatively low such as approximately 10 MHz or less, it cannot be used for inspection of a semiconductor device whose clock frequency is higher than 30 MHz. The reason is that, since the input capacitance
25 of each input terminal of a semiconductor device to be inspected is typically 5 pF and provides a time constant

of approximately 3 ns together with the inserted register (typically having a resistance of approximately 600 Ω), the application timing of the signal to the input terminals is delayed as much and the waveform of the 5 signal applied thereto is distorted. Further, the dispersion in input capacitance disperses the delay time itself for each terminal.

Also with the circuit configuration shown in FIG. 2 or FIG. 3, a signal to which a delay or distortion of the 10 waveform is extremely unfavorable like a reference clock which determines an operation timing of a semiconductor device is supplied to a clock input terminal without being branched from a driver. If some delay occurs with a certain data input terminal as described above, the 15 signal is not latched correctly at the data input terminal when the latch operation is synchronized to the clock signal supplied to the clock input signal. Further, extreme distortion of a signal renders operation of the semiconductor device unstable as well.

20 FIG. 4 is a diagram illustrating a disadvantage where a waveform suffers from some delay or distortion. Waveform b is a waveform to be latched at a rising edge of waveform a, and it is assumed here that waveform b falls prior to a rising edge of waveform a. Also it is 25 assumed that a resistor is interposed between the driver that outputs waveform b and a terminal of a semiconductor

device to be inspected to which waveform b is inputted. Furthermore, it is assumed that the threshold voltage of the latch is just equal to one half power supply voltage Vcc, and consequently, it is discriminated that the input 5 voltage has the "H" (high) level when it is equal to or higher than $V_{cc}/2$, but the input voltage has the "L" (low) level when it is lower than $V_{cc}/2$. The solid line curve of waveform b indicates a waveform when no resistor is interposed (i.e., waveform at the output point of the 10 driver) and a broken line indicates a waveform at the input terminal of the semiconductor device when the resistor is inserted as seen in FIG. 3. As seen from FIG. 4, where a resistor is connected to the driver which outputs waveform b, waveform b still remains at the "H" 15 level at the point of time of the rising edge of waveform a, and therefore, the semiconductor device cannot latch a signal correctly.

In recent years, the clock frequency of a semiconductor memory device, for example, has raised from 20 66 MHz to 100 MHz and further to 250 MHz, and utilization also of a higher clock frequency is proceeding steadily. Also the bus frequency of a microprocessor has been and is raised similarly. Thus, the delay caused by an inserted resistor restricts the number of simultaneously 25 inspected semiconductor devices of the type described and significantly disturbs augmentation in efficiency of the

inspection.

With the conventional inspection methods described above, as the operation speed of a semiconductor device increases, it becomes more difficult to increase the 5 number of semiconductor devices which can be inspected simultaneously without increasing the required number of drivers in a tester while a defect of one of semiconductor devices inspected simultaneously is prevented from having a bad influence on the other normal 10 semiconductor devices.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an inspection method for a semiconductor device by which 15 an increased number of semiconductor devices can be inspected simultaneously without increasing the number of drivers in a tester even where the semiconductor devices of the inspection object are of the type which operates at a high speed.

20 It is an object of the present invention to provide an inspection apparatus for a semiconductor device by which an increased number of semiconductor devices can be inspected simultaneously without increasing the number of drivers in a tester even where the semiconductor devices 25 of the inspection object are of the type which operates at a high speed.

In the present invention, when a common drive wiring line is used to branch a signal from a driver so that the signal is supplied in parallel to a plurality of input terminals through respective resistors, a capacitor is connected in parallel to each resistor. This simple circuit configuration wherein a capacitor is connected in this manner can suppress delay or distortion of a signal applied to the input terminal even where a resistor is inserted in the common drive wiring line. As a result, a large number of semiconductor devices whose clock frequency is higher than 30 MHz can be inspected simultaneously.

The resistor is used to prevent a defect like a leak defect, which may incidentally occur with one of semiconductor devices connected to the common drive wiring line, from having an influence on the other semiconductor devices, and acts to suppress overcurrent which may flow due to such leak defect. Accordingly, in the present invention, the resistor may be replaced by any current limiting element such as a thermistor having a positive temperature coefficient or a constant current element which makes use of a threshold value-current characteristic of a junction field effect transistor (JFET), for example. Also a resistor is included in the criterion of the current limiting element in the present invention.

Where a resistor is used as the current limiting element, the resistance value of the resistor is determined suitably in accordance with the dc input resistance value or the input capacitance value of the 5 input terminal of the semiconductor device to be inspected. However, where the input terminals of the semiconductor device have a MOS transistor configuration or a CMOS configuration, for example, and have a dc input resistance value equal to or higher than $3\text{ M}\Omega$, the 10 resistance value of the resistor is set within the range from $50\text{ }\Omega$ to $1\text{ k}\Omega$, more preferably within the range from $50\text{ }\Omega$ to $200\text{ }\Omega$.

Meanwhile, preferably the capacitance value of the capacitor connected in parallel to the resistor is equal 15 to or higher than the input capacitance of each input terminal of the semiconductor device to be inspected. More strictly, the capacitance value of the capacitor preferably is equal to or higher than an input capacitance value (a designed value or a value on a 20 catalogue, for example) of the input terminal to be connected thereto when the terminal is normal, and more preferably is equal to or higher than 1.5 times the input capacitance value. Since the input terminals of a MOS transistor configuration or a CMOS configuration usually 25 have an input capacitance value of 3 to 5 pF although they have somewhat different input capacitance values

032559-02

before and after the semiconductor device is packaged, the capacitance value of the capacitor connected in parallel to the resistor preferably is equal to or higher than 5 pF, more preferably is equal to or higher than 7 pF, and further more preferably is equal to or higher than 10 pF. However, if the capacitance value is excessively high, then the volume of the capacitor may be so large that it may possibly be difficult to accommodate a required number of capacitors in a probe card or a test board. Further, where leak current at an input terminal of a semiconductor device of the inspection object is very large due to a defect, this unfavorably provides a capacitive load to the driver of the tester. The upper limit to the capacitance value of the capacitor preferably is equal to or lower than 10 times the input capacitance, for example, and more preferably is equal to or lower than 50 pF.

In the present invention, it is possible to use an element having a variable resistance value as the resistor or current limiting element. Further, it is possible to use an element having a variable capacitance value as the capacitor that is connected in parallel to the resistor or current limiting element. Use of such a variable resistor and/or a variable capacitor allows selection of an optimum resistance value and/or an optimum capacitance value in accordance with an electric

characteristic of the input terminals of the semiconductor device to be inspected, a clock frequency or the driving capacity of the driver.

In the present invention, the number of branches from one driver in the tester by the common drive wiring line is not limited to 2 but is adjusted suitably in accordance with the number of semiconductor devices to be inspected simultaneously or with some other parameter. The number of branches may be three, four or more, for example.

The semiconductor device to which the present invention can be applied suitably is a semiconductor device such as a semiconductor memory device, a microprocessor or an ASIC (application specific integrated circuit) whose driving clock or reference clock has a frequency equal to or higher than 10 MHz, typically equal to or higher than 50 MHz. A semiconductor memory device, a microprocessor or an ASIC whose reference clock has one of frequencies of 66 MHz, 100 MHz and 133 MHz, for example, is applicable to this. The driving clock or the reference clock here signifies a clock signal that is supplied as a reference to a timing for fetching or outputting of a signal to the semiconductor device. According to the present invention, a plurality of semiconductor devices can be inspected simultaneously through the common drive wiring line even

where the clock frequency for the semiconductor devices is 250 MHz, for example.

Furthermore, the present invention is suitably applied also to a semiconductor device for which it is required that the rise time or the fall time of a signal is equal to or shorter than 10 ns, typically equal to or shorter than 5 ns. The time required for an input voltage to rise from its 10 % value to its 90 % value is called rise time and the time required for an input voltage to fall from its 90 % value to its 10 % value is called fall time in accordance with a common custom in the pertaining field.

The above and other objects, features, and advantages of the present invention will become apparent from the following description referring to the accompanying drawings which illustrate examples of preferred embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a circuit diagram illustrating an example of conventional inspection method for a semiconductor device;

FIG. 2 is a circuit diagram illustrating another example of conventional inspection method for a semiconductor device;

FIG. 3 is a circuit diagram illustrating a further

example of conventional inspection method for a semiconductor device;

FIG. 4 is a diagram showing waveforms in the configuration shown in FIG. 3;

5 FIG. 5 is a circuit diagram showing a configuration
of a semiconductor device inspection apparatus of a
preferred embodiment of the present invention;

FIG. 6A is a diagram showing waveforms outputted from drivers;

10 FIGS. 6B and 6C are diagrams showing waveforms applied to different input terminals of a semiconductor device in the arrangement shown in FIG. 5;

FIGS. 6D and 6E are diagrams showing waveforms applied to different input terminals of a semiconductor device having the conventional configuration shown in FIG. 3;

FIG. 7 is a circuit diagram showing a configuration of a semiconductor device inspection apparatus of another embodiment of the present invention;

20 FIG. 8 is a circuit diagram showing a configuration
of a semiconductor device inspection apparatus of a
further embodiment of the present invention; and

FIG. 9 is a circuit diagram showing a configuration of a semiconductor device inspection apparatus of a still further embodiment of the present invention;

DESCRIPTION OF THE PREFERRED EMBODIMENTS

It is assumed that, in FIG. 5 which shows a configuration of a semiconductor device inspection apparatus of a preferred embodiment of the present invention, tester 11 is used to inspect two semiconductor devices 14a, 14b simultaneously, for the convenience of description. Each of semiconductor devices 14a, 14b includes three inputting terminals 15a to 15c, 15d to 15f. Tester 11 includes a plurality of drivers 12a, 12b, 12c, 12d, ..., and signals from the drivers are applied to semiconductor devices 14a, 14b through probe card 12.

The output of driver 12a is connected one by one to terminal 15a of semiconductor device 14a, and also the output of driver 12d is connected to terminal 15d of semiconductor device 14b. Therefore, the wiring lines for them are not common drive wiring lines.

On the other hand, the output of driver 12b is branched to two branches at branching point 16a in probe card 13, and one of the branches is connected to inputting terminal 15b of semiconductor device 14a while the other branch is connected to inputting terminal 15e of semiconductor device 14b. Resistor 17 is interposed between branching point 16a and terminal 15b. Further, capacitor 18 is connected in parallel to resistor 17. Similarly, resistor 17 is interposed between branching point 16a and terminal 15e, and capacitor 18 is connected

in parallel to resistor 17. In other words, the output of driver 12b is connected to a common drive wiring line. Resistors 17 and capacitors 18 are provided in probe card 13.

5 Also the output of driver 12c is branched to two branches at branching point 16b in probe card 13 and is connected to a common drive wiring line similarly to the output of driver 12b. In particular, resistor 17 is interposed between branching point 16b and terminal 15c, 10 and capacitor 18 is connected in parallel to resistor 17. Resistor 17 is interposed between branching point 16b and terminal 15f as well, and capacitor 18 is connected in parallel to resistor 17.

Each of inputting terminals 15a to 15f has a dc 15 input resistance value of $3 \text{ M}\Omega$, for example, and has an input capacitance of 3 pF. In this instance, a resistor of 100Ω , for example, is used for each resistor 17, and a capacitor of a capacitance of 10 pF is used for each capacitor 18.

20 In the example shown in FIG. 5, the common driven wiring is applied to terminals 15b, 15c, 15e, 15f from among the input terminals of semiconductor devices 14a, 14b, but is not applied to the remaining terminals 15a, 15d.

25 Those terminals to which the common drive wiring is applied and those terminals to which the common drive

wiring is not applied are present in a mixed state in
this manner, and they may be applied separately in the
following manner. Where the semiconductor device of the
inspection object is a semiconductor memory device such
5 as a DRAM (Dynamic Random Access Memory), for example, a
clock signal is used as a reference to operation of the
memory device and accordingly provides a reference to the
timing upon inspection. Further, the clock signal is
frequently prescribed strictly in terms of the duty ratio
10 and the waveform. Accordingly, generally the common
drive wiring is not applied to the clock signal. On the
other hand, preferably the common drive wiring is applied
to an address line, data line, a CAS (column address
strobe) signal and a RAS (row address strobe) signal
15 which are fetched in synchronism with the clock signal so
that the required number of drivers in the tester may be
decreased. Such criteria as described here can be
applied also where the semiconductor device of the
inspection object is a microprocessor.

20 FIGS. 6A to 6E are diagrams for comparison between
waveforms at different portions of the configuration of
the present embodiment and waveforms at different
portions of the conventional configuration shown in FIG.
3. FIG. 6A shows standard signals, i.e., the output
25 waveforms of the drivers. FIGS. 6B and 6C show waveforms
at input terminals 15a to 15f of the configuration shown

in FIG. 5 when the signals illustrated in FIG. 6A are outputted from the drivers. Meanwhile, FIGS. 6D and 6E show waveforms at input terminals 65a to 65f of the conventional configuration shown in FIG. 3, that is, the 5 configuration wherein only resistors are inserted in a common drive wiring line when the signals illustrated in FIG. 6A are outputted from the drivers.

Here, the input capacitance of each input terminals of the semiconductor device to be inspected is 5 pF; the 10 input resistance of each input terminal is $3 \text{ M}\Omega$; the resistance value of each resistor inserted in the common drive wiring lines is 300Ω ; and the capacitance of each capacitor connected in parallel to the resistor is 50 pF.

As seen in FIG. 6A, waveform A outputted from driver 15 12a (62a) is a pulse of the pulse width of 15 ns; waveform B outputted from driver 12b (62b) is a pulse which rises earlier by 1 ns than a rising edge of waveform A; and waveform C outputted from driver 12c (62c) is a pulse which falls earlier by 1 ns than a 20 falling edge of waveform A. Accordingly, if waveform B and waveform C are latched at the rising edge of waveform A, then they become signals of "H" and "L", respectively.

Here, if only a resistor is inserted, the signals of waveform B and waveform C are distorted as seen in 25 FIGS. 6D and 6E, respectively, and therefore, the waveforms cannot be latched correctly. On the other hand,

where a capacitor is connected in parallel to the resistor in accordance with the present embodiment, the logic levels of waveform B and waveform C can be latched correctly although the potential level drops a little at 5 rising and falling edges of waveform B and waveform C, respectively, as seen in FIGS. 6B and 6C. Consequently, with the method of the present embodiment, semiconductor devices can be inspected correctly.

While an embodiment of the present invention has 10 been described, the present invention is not limited to the specific embodiment described above. The number of branches from a driver in the common drive wiring, for example, is not limited to 2 and may be 3 or more. FIG. 7 shows an example wherein the number of branches of 15 a common drive wiring line is 3.

The configuration shown in FIG. 7 is a modification to the configuration shown in FIG. 5 in that semiconductor device 14c having input terminal 15g to 15i is additionally provided as a semiconductor device of the 20 inspection object. The output of driver 12e in tester 11 is connected one by one to terminal 15g of semiconductor device 14c while the output of driver 12b is connected to terminal 15h, and the output of driver 12c is connected to terminal 15i. Naturally, resistor 17 is interposed 25 between the branching point and each terminal in probe card 13, and capacitor 18 is connected in parallel to

resistor 17.

While an example having three branches is just described, also any common driving wiring line that has four or more branches is naturally included in the scope 5 of the present invention.

Further, in the present invention, various elements can be used as a current limiting element. FIG. 8 shows an example wherein thermistor 21 is used in place of each resistor in the configuration shown in FIG. 5. Since a 10 leak defect of an inputting terminal is a dc defect, use of a thermistor having a positive temperature coefficient can raise the effective resistance value as viewed from the driver to the terminal with which the leak defect occurs and can lower the effective resistance value as 15 viewed from the driver to a normal terminal.

Consequently, the influence of a terminal with which leak occurs upon the other normal terminals can be suppressed to the minimum, and the resistance value of the resistor inserted for each normal terminal can be suppressed low 20 thereby to minimize the delay amount of a signal at each normal terminal.

In the configuration described above, a fixed resistor is interposed between a branching point and a terminal of a semiconductor device to be inspected, and a 25 fixed capacitor is connected in parallel to the fixed resistor. However, a variable resistor and a variable

capacitor (variable capacitance) may be used instead, respectively. FIG. 9 shows an example which is a modification to the configuration shown in FIG. 5 in that variable resistor 22 is used in place of each resistor 5 and variable capacitor 23 is used in place of each capacitor. Where a variable resistor and a variable capacitor are used in this manner, an optimum resistance value and/or capacitance value can be selected in accordance with the electric characteristic of an input 10 terminal of a semiconductor device to be inspected, the clock frequency, or the driving capacity of the drivers.

As described above, according to the present invention, delay or distortion of a signal applied to an input terminal of a semiconductor device upon inspection 15 can be suppressed with a simple circuit configuration without being influenced by another defective semiconductor device connected simultaneously. Consequently, a large number of semiconductor devices whose clock frequency is as high as 10 MHz or more such 20 as semiconductor devices whose clock frequency is 66 MHz or 133 MHz, for example, can be inspected simultaneously.

It is to be understood, however, that although the characteristics and advantages of the present invention have been set forth in the foregoing description, the 25 disclosure is illustrative only, and changes may be made in the arrangement of the parts within the scope of the

appended claims.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000