ASTRONOMY

Uncovering Ultra-Faint Galaxies (UFD) in the Local Group

The Missing Satellite Problem

Advisor: Eric Bell

Collaborator: Benjamin Radmore

(Bell et al., 2011)

DELVE Image of And XXIX

Outline

- Introduction
 - What is Dark Matter (halo)?
- Background
 - Why study ultra-faint dwarfs (UFD) helps us to understand dark matter?
- •Our work
 - Dataset
 - Methodology
 - Cluster searching
 - Star-Galaxy classification
 - Future step

What is dark matter?

Simulation credit: ESO/L. Calçada

The rotation curve of the Andromeda galaxy Credit: Queen's University

But, what does dark matter look like?

(NRAO, 2022)

Why study ultra-faint galaxies?

Dwarf/Satellite galaxies seen in (*left*) a simulation with a Milky Way sized halo, and (*right*) observations of the Milky Way from sky surveys.

The distribution of dwarf galaxies around the Andromeda galaxy (M31)

Dataset

CANADA · FRANCE · HAWAII
TELESCOPE

- The Pan-Andromeda Archaeological Survey (PAndAS)
 - galaxy archaeology
- The DECam Local Volume Exploration Survey (DELVE)
 - DECam data with 126 nights of novel observations

Searching for UFD

Look for highly statistically significant clump of (RGB / HB) stars

These galaxies are invisible!

The distribution of known dwarf galaxies (orange) and M81 sample (brick red shows the definite dwarf M81

Current progress

- Adopt cluster searching algorithm (DBSCAN) to detect potential dwarf galaxy candidates
 - Recovered several known dwarf galaxies
 - o And II, And XIV, And XXIX
 - o Fit potential stellar evolution model to our candidate dwarfs

Current progress

• Search for potential ultra-faint dwarfs within 15 degrees radius of M31

Classify DELVE objects into star and galaxy class by point spread model

measure

Significance of the finding missing satellites

 Testing cosmological constraints of the Lambda Cold Dark Matter (ΛCDM) model through studying the dark matter.

• Provide insights into the process of tidal stripping between the host

galaxies and their satellite galaxies.

References

Bell, E. F. et al. (2011). Andromeda XXIX: A new dwarf Spheroidal Galaxy 200 kpc from Andromeda.

Bell, E. F. et al.. (2022). Ultrafaint dwarf galaxy candidates in the M81 Group: Signatures of group accretion.

Cerny, W. et al. (2023). Pegasus IV: Discovery and spectroscopic confirmation of an Ultra-faint dwarf galaxy.

Doliva-Dolinsky, A. et al. (2023). The PAndAS view of the Andromeda Satellite System.

Drlica-Wagner, A. et al. (2022). The DECAM Local Volume Exploration Survey Data release

Fouesneau, M. (2022). EZPADOVA. Retrieved 2023, from https://github.com/mfouesneau/ezpadova

Simon, J. D. (2019). The faintest dwarf galaxies

Thanks for listening!

•Questions?