Seminar 7 Estimare ML

- 1. Un robot se deplasează pe o traiectorie liniară cu o viteză necunoscută V centimetri/secundă, pornind de la poziția $x_0 = 0$ la momentul inițial. La intervale de o secundă, robotul măsoară distanța parcursă folosind un senzor, afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 0.1)$. Valorile măsurate la momentele $t_i = [1, 2, 3, 4, 5]$ sunt $r_i = [4.9, 9.8, 14.3, 21.2, 25.7]$
 - a. Estimați viteza v a robotului folosind estimarea ML.
 - b. Preziceți poziția robotului la momentul 6.
 - c. Dacă presupunem că la momentul inițial poziția robotului nu este 0, ci o valoare necunoscută x_0 , estimați perechea de parametri $[v, x_0]$ folosind estimarea ML. Preziceți poziția robotului la momentul 6.
 - d. Scrieți sistemul de ecuații pentru estimarea ML presupunând că legea de mișcare este $x(t) = a \cdot t^2 + v_0 \cdot t + x_0$. (robotul are o accelerație constantă a, o viteză inițială v_0 , și poziția inițială x_0).

Hint: Dacă viteza e constantă, distanta parcursă este $x = v \cdot t$.

- 2. Valorile măsurate ale unei funcții liniare $y = a \cdot x$, unde a este necunoscut, sunt următoarele: $(x_i, y_i) = (1, 1.8), (2, 4.1), (2.5, 5.1), (4, 7.9), (4.3, 8.5)$. Presupunând că zgomotul are distribuția $\mathcal{N}(0, \sigma^2 = 1)$
 - a. Estimați valoarea lui a folosind estimarea ML
- 3. Un semnal de forma $r(t) = A \cdot t^2 + 2 + zgomot$ este eșantionat la momentele $t_i = [1, 2, 3, 4, 5]$, și valorile obținute sunt $r_i = [1.2, 3.7, 8.5, 18, 25.8]$. Distribuția zgomotului este $\mathcal{N}(0, \sigma^2 = 1)$.
 - a. Estimați parametrul A folosind estimarea ML
 - b. Estimați parametrul A folosind estimarea MAP și MMSE, considerând distribuția a priori $w(A) = \mathcal{N}(\mu = 1, \sigma^2 = 2)$

4. Un robot se deplasează pe o traiectorie liniară cu viteza V = 10 centimetri/secundă. La fiecare secundă, robotul își măsoară poziția folosind un senzor afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 0.5)$.

La secunda 1, poziția robotului este undeva în jurul valorii $x_1 = 20$, fiind o variabilă aleatoare cu distribuția:

$$w(x_1) = \mathcal{N}(\mu = 20, \sigma = 0.5)$$

- a. Preziceți poziția la secunda 2, x_2 , și distribuția acestei poziții, $w(x_2)$.
- b. La secunda 2 se face o măsurătoare a poziției, și se obține valoarea r=19.5. Folosiți estimarea Bayesiană pentru a estima poziția la acest moment, considerând ca distribuție *a priori* distribuția prezisă la punctul a).
- 5. Dacă distribuția a posteriori a unui parametru Θ este $w(\Theta|r) = U[-3,7]$, calculați estimatul MMSE și estimatul MAP.

Notă:

• Se știe că produsul a două distribuții normale cu μ_1, σ_1^2 și μ_2, σ_2^2 este tot o fistribuție normală cu media $\mu = \frac{\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2}$ și varianța $\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$