6.2: Compound Interest

Example. Suppose you invest \$1,000 at 5% annual interest. With simple interest, you can take 2 approaches:

- 1. Gain interest on only your initial investment
- 2. Reinvest the interest gained

Year	Simple interest	Simple interest reinvested
1	\$1,050.00	\$1,050.00
2	\$1,100.00	\$1,102.50
3	\$1,150.00	\$1,157.63
4	\$1,200.00	\$1,215.51
5	\$1,250.00	$$1,\!276.28$

Definition.

Compound interest is a method where the interest for each period is added to the principal before interest is calculated for the next period.

Example. Using the example above, derive a formula for the future value of an investment compounded annually.

1:
$$1000(1+0.5) = $1050.00$$

2: $1050(1+0.5) = [1000(1+0.5)](1+0.5) = 1000(1+0.5)^2 = 1102.50
3: $1102.50(1+0.5) = [1000(1+0.5)^2](1+0.5) = 1000(1+0.5)^3 = 1157.63
 $\Rightarrow n: 1000(1+0.5)^2 \Rightarrow S = P(1+P)^2$

6.2: Compound Interest

Definition.

When interest is compounded multiple times a year (e.g. quarterly, monthly, etc.), the **nominal interest rate** is the interest rate per year.

If P is invested for t years at a nominal interest rate r compounded m times per year, then the **total number of compounding periods** is

$$n = mt$$

the interest rate per compounding period (periodic interest rate) is

$$i = \frac{r}{m}$$

and the future value is

$$S = P(1+i)^n = P\left(1 + \frac{r}{m}\right)^{mt}$$

Example. If \$3,000 is invested for 5 years at 9% compounded 4 times a year, how much interest is earned?

$$S = 3000 \left(1 + \frac{0.09}{4} \right)^{4(5)}$$

$$= 3000 \left(1.0225 \right)^{20}$$

$$= 3000 \left(1.9494 \right)$$

$$= 85848.18$$

Example. For the following, identify the annual interest rate, the length in years, the periodic interest rate, and the number of periods:

12% compounded monthly for 7 years
$$r = 0.12 \qquad m = 12 \qquad t = 7 \qquad mt = 84$$
7.2% compounded quarterly for 11 quarters
$$r = 0.072 \qquad m = 4 \qquad mt = 11 \implies t = \frac{11}{4} = 2.75$$

Frequency	\overline{m}
Annually	1
Semi-annually	2
Quarterly	4
Monthly	12
Weekly	52
Daily	365

Example. Ben and Taylor want to have \$200,000 in Arthur's college fund on his 18th birthday, and they want to know the impact on this goal of having \$10,000 invested at 9.8%, compounded quarterly, on his 1st birthday. To advise Ben and Taylor regarding this, find

the future value of the \$10,000 investment,

the amount of compound interest that the investment earns,

$$S = P + I$$

 $5 \cdot 1857.73 = 10,000 + I \Rightarrow 41.857.73$

the impact this would have on their goal.

$$\frac{51,857.73}{200,000} (100%) = 25.9%$$

Example. What amount must be invested now to have \$12,000 after 3 years with an interest rate of 6%, compounded semi-annually?

$$S = P(1+\frac{c}{m})^{mt} \Rightarrow 12000 = P(1+\frac{0.06}{2})^{2(3)}$$

$$\frac{12000}{(1.03)^{6}} = P(1.03)^{6}$$

$$\frac{12000}{(1.03)^{6}} = P \approx 10.049.81$$

Example. Three years after Google stock was first sold publicly, its share price had risen 500%. Google's 500% increase means that \$10,000 invested in Google stock at its initial public offering (I.P.O) was worth \$60,000 three years later. What interest rate compounded annually does this represent?

$$S = 60000
P = 10000
re find
M = 1
t = 3
$$\frac{60000}{10000} = 10000 \left(1 + \frac{1}{1}\right)^{1/3}$$

$$\frac{6^{1/3} - 1}{1 + 6^{1/3}} = 1 + 1 - 1$$

$$\frac{6^{1/3} - 1}{1 + 6^{1/3}} = 1 + 1 - 1$$

$$\frac{6^{1/3} - 1}{1 + 6^{1/3}} = 81.7\%$$$$

6.2: Compound Interest 70 Math 121 Class notes

Example. Suppose we invest \$1 at a 100% interest rate for 1 year:

$$S = \left(1 + \frac{1.00}{m}\right)^m$$

Compute the future value

Annually

Semi-annually

$$\int = \left(1 + \frac{1.06}{1}\right)^1 = 2$$

$$\int = \left(1 + \frac{1.00}{2}\right)^2 = 2.25$$

Monthly

Weekly

$$5 = (1 + \frac{1.00}{12})^{12} = 2.6130$$

$$\int = \left(1 + \frac{1.06}{52}\right)^{52} = 2.6926$$

Daily

Each minute (m = 525, 600)

$$\int = \left(1 + \frac{1.00}{363}\right)^{365} = 2.7146$$

$$5 = (1 + \frac{1.00}{1})^1 = 2.7183$$

Definition.

If P is invested for t years at a nominal rate r compounded continuously, then the future value is given by the exponential function

$$S = Pe^{rt}$$

Example. Which investment strategy is worth more: \$3,000 for 8 years at

9%, compounded annually

 $S = 3000(1 + \frac{1}{0.09})^{1(8)}$ = 3000 (1.09)8 = 3000 (1.9926) = 85977,69

8%, compounded continuously

$$5 = 3000 e^{6.08(8)}$$
 $= 3000 e^{6.64}$
 $= 3000(1.8965)$
 $= 95689.44$

Example. Suppose you invest \$900 at 11.5%, compounded continuously. How long will

it take to gain \$700 in interest?

6.2: Compound Interest

Definition.

Let r represent the annual (nominal) interest rate for an investment. Then the **annual** percentage yield (APY) is:

Periodic compounding:

$$APY = \left(1 + \frac{r}{m}\right)^m - 1$$

Continuous compounding:

$$APY = e^r - 1$$