Práctico 1 Matemática Discreta I – Año 2023/1 FAMAF

Ejercicios resueltos (1º parte)

- (1) Demostrar las siguientes afirmaciones donde *a*, *b*, *c* y *d* son siempre números enteros. Justificar cada uno de los pasos en cada demostración indicando el axioma o resultado que utiliza.
 - *a*) a = -(-a)

Rta: -a es el inverso aditivo de a y por lo tanto el inverso aditivo de -a es a. Ahora bien, -(-a) es el inverso aditivo de -a, luego por unicidad del inverso aditivo (axioma 16), obtenemos que a = -(-a).

- b) a = b si y sólo si -a = -bRta: Si a = b, es claro que -a = -b. Si -a = -b, entonces -(-a) = -(-b) y por a), tenemos que a = b.
- c) a+a=a implica que a=0. Rta: Sumo -a a ambos lados de la ecuación a+a=a y obtengo, por axioma 16, -a+a+a=-a+a, luego 0+a=0 y, finalmente por axioma 14, a=0.
- (2) Idem (1).
 - a) $0 < a \le b$ implican $0 < a \cdot b$ Rta: Como $0 < a \le b$, por axioma l11, $0 \cdot b < a \cdot b$. Por un resultado del teórico tenemos que $0 \cdot b = 0$, luego $0 < a \cdot b$.
 - b) a < b y c < 0 implican $b \cdot c < a \cdot c$ Rta: Sumamos -c a la inecuación c < 0 y obtenemos, por axioma I10, -c+c < -c+0, luego por axioma I6 en la parte izquierda y axioma I4 en la parte derecha, obtenemos 0 < -c: Ahora bien por axioma I11, a < b y 0 < -c implican $a \cdot (-c) < b \cdot (-c)$. Por la regla de los signos tenemos $-a \cdot c < -b \cdot c$. Sumando $a \cdot c$ y $b \cdot c$ a ambos lados de la inecuación y aplicando axioma I10 y repetidamente los axiomas I4 e I6, obtenemos $b \cdot c < a \cdot c$.
- (3) Probar las siguientes afirmaciones, justificando los pasos que realiza.
 - a) Si 0 < a y 0 < b entonces a < b si y sólo si $a^2 < b^2$. Rta: Como a < b y 0 < a por l11 obtenemos $a^2 < ba$. Como a < b y 0 < b por l11 obtenemos $ab < b^2$. Luego $a^2 < ba = ab < b^2$.
 - b) Si $a \neq 0$ entonces $0 < a^2$. Rta: Por tricotomía (axioma I8) o bien 0 < a o bien a < 0. Si 0 < a, entonces, por a) tenemos que $0 = 0^2 < a^2$. Si a < 0, sumando -a a ambos

miembros de la desigualdad y aplicando axiomas I10, I6 e I4 obtenemos 0 < -a. Luego, por a), $0 = 0^2 < (-a)^2 = a^2$. La última igualdad se deduce de la regla de los signos.

- c) Si $a \neq b$ entonces $a^2 + b^2 > 0$. Rta: Como $a \neq b$, alguno de los dos, a o b, es distinto de cero. Supongamos que $a \neq 0$ y, entonces, por b) tenemos que $0 = \langle a^2 \rangle$. Análogamente, si $b \neq 0$, $0 < b^2$ y sumando a^2 a esta inecuación, por axioma I10, obtenemos $a^2 + 0 < a^2 + b^2$, que por axioma I4, es $a^2 < a^2 + b^2$. Como $0 = \langle a^2 \rangle$, tenemos $0 = \langle a^2 \rangle \langle a^$
- d) Probar que si a+c < b+c entonces a < b. Rta: Por axioma $110 \ a+c-c < b+c-c$. Por axiomas $16 \ e \ 14$ obtenemos a < b.