Repaso de espacios y álgebra lineales Lección 06.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Repaso de espacios vectoriales

¿Qué es un vector?

 En física, se introducen vectores como entidades matemáticas con magnitud y dirección.

 Formalmente, un vector es un elemento de un espacio lineal o espacio vectorial.

¿Qué es un vector?

- En física, se introducen vectores como entidades matemáticas con magnitud y dirección.
- En ingeniería el concepto de vector se asocia a una tupla de n componentes, por ejemplo $[x_1, x_2, \dots, x_n]^T$.
- Formalmente, un vector es un elemento de un espacio lineal o espacio vectorial.

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

• para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \mathbf{y} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; y

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

- para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \underline{\mathbf{y}} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; y
- para una operación de multiplicación escalar en \mathbb{V} , denotada como $a\underline{\mathbf{x}}$, con $\underline{\mathbf{x}} \in \mathbb{V}$ y $a \in \mathbb{F}$ se cumplen los siguientes axiomas:

Un conjunto de vectores $\mathbb V$ se denomina **espacio vectorial** o **lineal** sobre un cuerpo $\mathbb F$ (usualmente $\mathbb R$ o $\mathbb C$) si

- para una operación de adición vectorial en \mathbb{V} , denotada $\underline{\mathbf{x}} + \underline{\mathbf{y}}$, con $\underline{\mathbf{x}}, \mathbf{y} \in \mathbb{V}$ se cumple que $(\mathbb{V}, \{+\})$ es un grupo abeliano; \mathbf{y}
- para una operación de multiplicación escalar en \mathbb{V} , denotada como $a\underline{\mathbf{x}}$, con $\underline{\mathbf{x}} \in \mathbb{V}$ y $a \in \mathbb{F}$ se cumplen los siguientes axiomas:
 - $a\underline{\mathbf{x}} \in \mathbb{V}$. (\mathbb{V} es cerrado con respecto a la multiplicación escalar).
 - $a(b\underline{\mathbf{x}}) = (ab)\underline{\mathbf{x}}$. (Asociatividad de la multiplicación escalar en \mathbb{V}).
 - Si 1 representa el elemento neutro multiplicativo del cuerpo \mathbb{F} entonces $1\underline{\mathbf{x}} = \underline{\mathbf{x}}$. (Neutralidad de uno).
 - $a(\underline{\mathbf{x}} + \underline{\mathbf{y}}) = a\underline{\mathbf{x}} + a\underline{\mathbf{y}}$. (Distributividad con respecto a la adición vectorial).
 - $(a + b)\underline{\mathbf{x}} = a\underline{\mathbf{x}} + b\underline{\mathbf{x}}$. (Distributividad con respecto a la adición del cuerpo \mathbb{F}).

Combinación lineal

El vector $\underline{\mathbf{x}}$ es una **combinación lineal** de los vectores $\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n$ si

$$\underline{\mathbf{x}} = c_1 \underline{\mathbf{u}}_1 + c_2 \underline{\mathbf{u}}_2 + \ldots + c_n \underline{\mathbf{u}}_n$$

con $c_i \in \mathbb{F}$.

Independencia lineal

El conjunto $\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$ es:

- **linealmente dependiente** si algún $\underline{\mathbf{u}}_i$ es una combinación lineal de otros elementos de \mathcal{U} .
- linealmente independiente si $c_1\underline{\mathbf{u}}_1 + c_2\underline{\mathbf{u}}_2 + \ldots + c_n\underline{\mathbf{u}}_n = \underline{\mathbf{0}}$ solo con $c_1 = \ldots = c_n = 0$.

Independencia lineal

- un conjunto que contiene un solo vector, es libre si el vector es no nulo,
- ullet el vector nulo $\underline{\mathbf{0}}$ no forma parte de ningún sistema libre,
- todo subconjunto de un sistema libre es también libre,
- el número máximo de vectores de un sistema libre es igual a la dimensión de dichos vectores.

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

$$\mathcal{U} = \{\underline{\textbf{u}}_1,\underline{\textbf{u}}_2,\dots,\underline{\textbf{u}}_n\} \subset \mathbb{V}$$

si contiene **todas** las combinaciones lineales de los vectores de \mathcal{U} , al que se denomina entonces **conjunto generador** del espacio (ingl. *to span a space*).

• A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,
 - se suma un generador con otro,

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\} \subset \mathbb{V}$$

- A cada elemento del conjunto \mathcal{U} se le denomina en este contexto **vector generador**.
- Este espacio no varía si
 - se multiplica cualquier vector generador por un escalar no nulo,
 - se suma un generador con otro,
 - si se suprimen los generadores que son una combinación lineal de los demás.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

 Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

- Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.
- La intersección W₁ ∩ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V es a su vez un subespacio lineal.

Subespacio

El subconjunto $\mathbb{W} \subset \mathbb{V}$ es un **subespacio** de \mathbb{V} si es cerrado ante la suma vectorial y la multiplicación escalar.

Los subespacios tienen las siguientes propiedades:

- Todo espacio lineal V contiene al menos dos subespacios: el mismo V y {0}.
- La intersección W₁ ∩ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V es a su vez un subespacio lineal.
- La unión W₁ ∪ W₂ de dos subespacios lineales W₁ y W₂ del mismo espacio lineal V no necesariamente es un subespacio lineal.

• \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.
- Si existen varias bases, todas contienen el mismo número de vectores generadores.

- \mathcal{U} es una base de \mathbb{V} si los vectores generadores $\underline{\mathbf{u}}_i \in \mathcal{U}$ son linealmente independientes.
- Todo espacio lineal $\mathbb{V} \neq \{\underline{\mathbf{0}}\}$ posee al menos una base.
- Si existen varias bases, todas contienen el mismo número de vectores generadores.
- Este número de vectores de la base es la **dimensión** del espacio lineal.

Para un espacio \mathbb{V} con n dimensiones

1 toda base de \mathbb{V} tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- **1** toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,
- **3** cualquier subconjunto de \mathbb{V} que actúa como conjunto generador de \mathbb{V} debe tener al menos n elementos y es una base si y solo si tiene exactamente n elementos,

Para un espacio \mathbb{V} con n dimensiones

- toda base de \mathbb{V} tiene exactamente n elementos,
- ② todo subconjunto linealmente independiente de $\mathbb V$ tiene a lo sumo n elementos y corresponde a una base de $\mathbb V$ si y solo si tiene exactamente n elementos,
- **3** cualquier subconjunto de \mathbb{V} que actúa como conjunto generador de \mathbb{V} debe tener al menos n elementos y es una base si y solo si tiene exactamente n elementos,
- si los elementos de una determinada base en V se toman en un orden determinado, cualquier elemento de V puede entonces ser representado por una sucesión única de coordenadas.

Unicidad de coeficientes

El último punto indica que si $\mathbb V$ tiene como base a

$$\mathcal{U} = \{\underline{\mathbf{u}}_1, \underline{\mathbf{u}}_2, \dots, \underline{\mathbf{u}}_n\}$$

entonces un vector

$$\underline{\mathbf{x}} = c_1 \underline{\mathbf{u}}_1 + c_2 \underline{\mathbf{u}}_2 + \ldots + c_n \underline{\mathbf{u}}_n$$

puede representarse utilizando tan solo los coeficientes c_i y manteniendo fija la base: $\underline{\mathbf{x}} = [c_1, c_2, \dots, c_n]^T$.

Unicidad de coeficientes

Ninguna otra sucesión puede representar con la misma base al vector $\underline{\mathbf{x}}$, puesto que si existiese alguna otra representación equivalente

$$\underline{\mathbf{x}} = d_1\underline{\mathbf{u}}_1 + d_2\underline{\mathbf{u}}_2 + \ldots + d_n\underline{\mathbf{u}}_n$$

entonces la diferencia de ambas representaciones debería ser cero y

$$(d_1-c_1)\underline{\mathbf{u}}_1+(d_2-c_2)\underline{\mathbf{u}}_2+\ldots+(d_n-c_n)\underline{\mathbf{u}}_n=\underline{\mathbf{0}}$$

se cumple solo si $d_i = c_i$, i = 1, 2, ..., n por el requisito de que la base \mathcal{U} debe ser linealmente independiente.

Repaso de álgebra lineal

Vector columna

Vector de n dimensiones

$$\underline{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Vector fila

Vector de *n* dimensiones

$$\underline{\mathbf{x}}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

Matriz

Matriz de $n \times m$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

- n: filas
- m: columnas
- En notación a_{ij} primer subíndice es la fila y segundo la columna

Matriz en vectores

Matriz $n \times m$ **A** se compone de n vectores fila

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \\ \underline{\mathbf{a}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{a}}_{n}^{T} \end{bmatrix}$$

o m vectores columna.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{a}}_{\cdot 1} & \underline{\mathbf{a}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{\cdot m} \end{bmatrix}$$

Vectores como matrices

Observe que todo vector es un tipo particular de matriz, de dimension $1 \times m$ para un vector fila o $n \times 1$ para un vector columna.

Matriz transpuesta

Si

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

entonces su transpuesta es

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{bmatrix}$$

en otras palabras, si $\mathbf{B} = \mathbf{A}^T$ entonces $b_{ij} = a_{ji}$

Matriz simétrica

Matriz es **simétrica** si $\mathbf{A} = \mathbf{A}^T$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$$

es decir $a_{ij} = a_{ji}$.

Matriz diagonal

Matriz es **diagonal** si todos los elementos son cero excepto aquellos en la diagonal

$$\mathbf{A} = egin{bmatrix} a_{11} & & & & & & \\ & a_{22} & & & & & \\ & & & \ddots & & & \\ & & & a_{nn} \end{bmatrix}$$

Matriz identidad

Matriz es diagonal con todos sus elementos no nulos iguales a uno

$$\mathbf{I} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

Matriz triangular superior

Matriz es triangular superior si $a_{ij} = 0$ para todo i > j

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}$$

Matriz triangular inferior

Matriz es triangular inferior si $a_{ij} = 0$ para todo i < j

$$\mathbf{A} = \begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

Matriz a bandas

La matriz a bandas tiene todos los elementos cero excepto una banda centrada en la diagonal principal

Cuando el ancho de la banda tiene tres diagnonales la matriz se denomina **tridiagonal**

Producto escalar-matriz

El producto sA es otra matriz con todos los componentes escalados

$$s\mathbf{A} = s \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} = \begin{bmatrix} sa_{11} & sa_{12} & \cdots & sa_{1m} \\ sa_{21} & sa_{22} & \cdots & sa_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ sa_{n1} & sa_{n2} & \cdots & sa_{nm} \end{bmatrix}$$

Suma de matrices

Suma definida para dos matrices de idéntico tamaño:

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$$

Producto punto entre vectores

 El producto punto está definido para dos vectores de dimension n, y es un valor escalar calculado con:

$$\underline{\mathbf{x}} \cdot \underline{\mathbf{y}} = \underline{\mathbf{x}}^T \underline{\mathbf{y}} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = \sum_{i=1}^n x_i y_i$$

- El producto punto es un tipo de producto interno y por tanto se puede denotar también como (x, y)
- Obsérvese que

$$\underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = \underline{\mathbf{x}}^T \underline{\mathbf{x}} = x_1^2 + x_2^2 + \cdots + x_n^2 = \|\underline{\mathbf{x}}\|^2$$

Producto externo entre vectores

El producto externo está definido para dos vectores y es una **matriz** de dimensiones $n \times m$ con n el tamaño del primer vector y m el tamaño del segundo vector:

$$\underline{\mathbf{x}}\underline{\mathbf{y}}^T = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_n \end{bmatrix}$$

El producto matriz-vector

$$\underline{\mathbf{c}} = \mathbf{A}\underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \\ \underline{\mathbf{a}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{a}}_{n}^{T} \end{bmatrix} \underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{b}} \\ \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{b}} \\ \vdots \\ \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{b}} \end{bmatrix}$$

Otra forma de ver el producto matriz-vector es como combinación lineal de los vectores columna:

$$\underline{\mathbf{c}} = \mathbf{A}\underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{\cdot 1} & \underline{\mathbf{a}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{\cdot m} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = b_1\underline{\mathbf{a}}_{\cdot 1} + b_2\underline{\mathbf{a}}_{\cdot 2} + \cdots + b_m\underline{\mathbf{a}}_{\cdot m}$$

Observe la similitud con el producto punto.

Por ejemplo:

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{2} \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ \frac{5}{2} \\ 3 \end{bmatrix}$$

(representación gráfica en gnuplot)

Observese ahora el producto vector-matriz

$$\underline{\mathbf{c}}^T = \underline{\mathbf{b}}^T \mathbf{A} = \underline{\mathbf{b}}^T \begin{bmatrix} \underline{\mathbf{a}}_{\cdot 1} & \underline{\mathbf{a}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{\cdot n} \end{bmatrix}$$
$$= \begin{bmatrix} \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{\cdot 1} & \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{\cdot 2} & \cdots & \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{\cdot n} \end{bmatrix}$$

Otra forma de ver el producto vector-matriz es como combinación lineal de los vectores fila:

$$\underline{\mathbf{c}}^T = \underline{\mathbf{b}}^T \mathbf{A} = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix} \begin{bmatrix} \underline{\mathbf{a}}_{1.} \\ \underline{\mathbf{a}}_{2.} \\ \vdots \\ \underline{\mathbf{a}}_{n.} \end{bmatrix} = b_1 \underline{\mathbf{a}}_{1.} + b_2 \underline{\mathbf{a}}_{2.} + \cdots + b_n \underline{\mathbf{a}}_{n.}$$

Observe de nuevo la similitud con el producto punto.

El producto entre una matriz **A** de dimensión $n \times m$ por otra matriz **B** de dimension $m \times l$ es la matriz

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \\ \underline{\mathbf{a}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{a}}_{n}^{T} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{b}}_{\cdot 1} & \underline{\mathbf{b}}_{\cdot 2} & \cdots & \underline{\mathbf{b}}_{\cdot I} \end{bmatrix}$$

$$= \begin{bmatrix} \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{b}}_{\cdot 1} & \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{b}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{b}}_{\cdot I} \\ \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{b}}_{\cdot 1} & \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{b}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{b}}_{\cdot I} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{b}}_{\cdot 1} & \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{b}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{b}}_{\cdot I} \end{bmatrix}$$

que es una matriz de $n \times I$.

Note la similitud con el producto externo de vectores.

Este producto se puede reinterpretar como:

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \underline{\mathbf{a}}_{\cdot 1} & \underline{\mathbf{a}}_{\cdot 2} & \cdots & \underline{\mathbf{a}}_{\cdot n} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{b}}_{\cdot 1} & \underline{\mathbf{b}}_{\cdot 2} & \cdots & \underline{\mathbf{b}}_{\cdot l} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\underline{\mathbf{b}}_{\cdot 1} & \mathbf{A}\underline{\mathbf{b}}_{\cdot 2} & \cdots & \mathbf{A}\underline{\mathbf{b}}_{\cdot l} \end{bmatrix}$$

$$= \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \\ \underline{\mathbf{a}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{b}}_{n}^{T} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{b}}_{1}^{T} \\ \underline{\mathbf{b}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{b}}_{n}^{T} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \mathbf{B} \\ \underline{\mathbf{a}}_{2}^{T} \mathbf{B} \\ \vdots \\ \underline{\mathbf{a}}_{n}^{T} \mathbf{B} \end{bmatrix}$$

El producto de dos matrices puede intepretarse como combinaciones lineales de las columnas de la primera matriz, o de las filas de la segunda matriz.

Propiedades del producto matricial

El producto matricial NO es conmutativo

$$AB \neq BA$$

 Si las dimensiones lo permiten, el producto matricial sí es asociativo

$$(AB)C = A(BC)$$

 Si las dimensiones lo permiten, el producto matricial es distributivo

$$(A + B)C = AC + BC$$

Inversa de una matriz

Una matriz cuadrada ${\bf A}$ es invertible si existe otra matriz ${\bf A}^{-1}$ tal que

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}$$

 \mathbf{A}^{-1} es la matriz inversa de \mathbf{A} .

Ortogonalidad de matrices

Una matriz es **ortogonal** si se cumple $\mathbf{A}^{-1} = \mathbf{A}^T$ y por tanto $\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = I$

$$\mathbf{A}\mathbf{A}^{T} = \begin{bmatrix} \underline{\mathbf{a}}_{1}^{T} \\ \underline{\mathbf{a}}_{2}^{T} \\ \vdots \\ \underline{\mathbf{a}}_{n}^{T} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{a}}_{1} & \underline{\mathbf{a}}_{2} & \cdots & \underline{\mathbf{a}}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{a}}_{1} & \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{a}}_{2} & \cdots & \underline{\mathbf{a}}_{1} \cdot \underline{\mathbf{a}}_{1} \\ \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{a}}_{1} & \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{a}}_{2} & \cdots & \underline{\mathbf{a}}_{2} \cdot \underline{\mathbf{a}}_{1} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{a}}_{1} & \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{a}}_{2} & \cdots & \underline{\mathbf{a}}_{n} \cdot \underline{\mathbf{a}}_{1} \end{bmatrix}$$

Los vectores (fila y columna) son ortogonales entre sí.

Determinante de una matriz

La determinante de una matriz cuadrada ${\bf A}$ se denota como $|{\bf A}|$ o det ${\bf A}$ y se calcula para una matriz 2×2 con

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

y para una matriz de mayor orden como

$$|\mathbf{A}| = \sum_{j=1}^n a_{fj} |\mathbf{A}_{fj}|$$

donde \mathbf{A}_{fj} es la matriz adjunta de a_{fj} dada por $(-1)^{f+j}\mathbf{M}_{fj}$, y \mathbf{M}_{fj} es el menor complementario de a_{fj} , es decir, una matriz $(n-1)\times(n-1)$ obtenida eliminando la fila f y la columna j de la matriz \mathbf{A} .

Propiedades de la determinante

Sea **A** una matriz cuadrada de $n \times n$

- $|s\mathbf{A}| = s^n |\mathbf{A}|$
- |I| = 1
- Distributividad: |AB| = |A||B|
- $|\mathbf{I}| = 1 = |\mathbf{A}\mathbf{A}^{-1}| = |\mathbf{A}||\mathbf{A}^{-1}| \Rightarrow |\mathbf{A}^{-1}| = 1/|\mathbf{A}|$
- $\bullet |\mathbf{A}| = |\mathbf{A}^T|$

Traza de una matriz

La traza de una matriz es la suma de los elementos en su diagonal

$$\mathsf{tr}(\mathbf{A}) = \sum_{i=1}^n a_{ii}$$

Todo sistema de ecuaciones lineales se puede expresar de la forma

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

que representa a

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

o en forma tradicional

Rango de una matriz

- Obsérvese que $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ tiene solución solo si $\underline{\mathbf{b}}$ se encuentra en el espacio engendrado por las columnas de \mathbf{A} .
- Dicho espacio se denomina alcance de la matriz (ingl. range)
- La dimensión de dicho espacio se conoce como rango (ingl. rank)
- Es igual al número de columnas independientes
- También se denomina rango columna
- Se define el rango fila como dual de lo anterior con filas.

Resumen

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica