M314 REVIEW EXERCISES 01.03.17

You're encouraged to discuss these problems with other students in the class.

1. Prove by induction that:

$$\forall n \in \mathbb{N}, \ 3|(2^{2n} - 1).$$

- 2. List all (integer) divisors of these numbers:
 - -12
 - -113
 - 100
 - -112

Can you think of an efficient way to do this?

- 3. Find the greatest common divisor of these sets of numbers:
 - $-\{-12,112\}$
 - $-\{113,226\}$
 - $-\{100, 24, 125\}$
 - $-\{112,252\}$
- 4. Which of these pairs of integers are coprime?
 - $-\{113,226\}$
 - $-\{24,125\}$
 - $-\{-24,226\}$
 - $-\{17,15\}$
 - $-\{-1,1\}$
- 5. Let m, n, a be integers. Then if m|a, n|a, and let m, n be coprime. Prove that $m \cdot n|a$.
- 6. Define the complete set of integer solutions of these LDEs, the equations are given in the form $a \cdot x + b \cdot y = c$. You need to:
 - Check that solutions exist (i.e. that GCD(a,b)|c)
 - Express the GCD(a,b) as a linear combination of a,b.
 - Multiply this expression by $\frac{c}{GCD(a,b)}$ to get one solution.
 - If x_0, y_0 is a solution, then so is:

$$x_n = x_0 + \frac{b}{GCD(a,b)}n, \ y_n = y_0 - \frac{a}{GCD(a,b)}n$$
 for any $n \in \mathbb{Z}$

Write an expression for the complete set.

a)
$$97x + 35y = 13$$

b)
$$98x + 35y = 13$$

c)
$$258x + 147y = 369$$