ANOMAVISION VS ANOMALIB

A Comprehensive Performance Analysis: Benchmarking on MVTec and Visa Datasets

AnomaVision

VS

Anomalib

INTRODUCTION TO ANOMALY DETECTION

CORE CONCEPTS

Q What is Anomaly Detection?

Identification of rare items, events or observations which deviate significantly from normal behavior patterns.

Why Compare Frameworks?

Framework selection impacts **accuracy**, **speed**, and **resource efficiency** in industrial applications.

FRAMEWORKS OVERVIEW

AnomaVision (AV)

High-performance anomaly detection framework optimized for industrial applications.

- Higher FPS (3x)
- Superior localization

- Production-ready

Anomalib (AL)

Deep learning library with state-of-the-art anomaly detection algorithms.

- 🎭 Modular API & CLI
- # High flexibility

- **H** Largest algorithm collection
- Reproducible research

DATASETS OVERVIEW

MVTEC DATASET

15

CLASSES

5K+

IMAGES

★ Key Features

- Industrial inspection focus
- ⊞ Texture & object anomalies
- High-resolution 2D images

Q VISA (VISA) DATASET

12

CLASSES

10.8K

TOTAL IMAGES

***** Key Features

- Largest anomaly dataset
- 3 different domains
- 9.6K normal, 1.2K anomaly

METHODOLOGY AND METRICS

Comprehensive evaluation across **five key metrics** to capture different aspects of anomaly detection effectiveness and efficiency.

Image AUROC

AREA UNDER ROC CURVE

Measures ability to distinguish between normal and anomalous images at the image level.

Operation Accuracy

Pixel AUROC

AREA UNDER ROC CURVE

Evaluates ability to precisely localize anomalies within images at the pixel level.

Localization Precision

FPS

FRAMES PER SECOND

Measures inference speed and real-time processing capability of the framework.

Processing Speed

Model Size

MEGABYTES

Storage footprint of the trained model, important for deployment on devices with limited storage.

Storage Efficiency

Memory Usage

MEGABYTES

Runtime memory consumption, indicates resource requirements during inference.

Resource Efficiency

VISA DATASET PERFORMANCE

Processing Speed
AnomaVision: 3x higher FPS

Model Size

AnomaVision: 25% smaller

AnomaVision (AV)

Detection AccuracyComparable performance by class

MVTEC DATASET PERFORMANCE

Detection AccuracyNotable differences by class

Resource Efficiency

Consistent memory usage

OVERALL COMPARISON

FRAMEWORK PERFORMANCE COMPARISON

FLEXIBLE

CONCLUSION

KEY FINDINGS

