

دورة: 2019

المدة: 04 سا و 30 د

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (03) صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأول: (04 نقاط)

: كما يلى المتتاليتان العدديتان المعرّفتان على المتتاليتان العدديتان المعرّفتان على و $\left(u_{n}\right)$

- (1) أثبت أنّ المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول.
 - n اکتب u_n بدلالة n ثم استنتج u_n بدلالة u_n
- $S_n = u_0 + u_1 + ... + u_n$: $S_n = u_0 + u_1 + ... + u_n$: (3)
- 4) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية لـ 7^n على 9.
- \mathbf{r} 1442 2019 +1962 1954 +1954 1962 على 9 للعدد 9 للعدد وباقي القسمة الإقليدية على 9 بالعدد 9 بالعدد 9 بالعدد 9 بالعدد بالعدد العدد 9 بالعدد 1442
 - $.6S_n 7u_n \equiv 0[9]$: n عدد طبیعی عدد أبّه من أجل كلّ عدد عدد عدد عدد عدد الله عدد أبّه من أجل كلّ

التمرين الثاني: (04 نقاط)

توجد إجابة صحيحة واحدة من بين الأجوبة المقترحة في كل حالة من الحالات التالية. اختر الإجابة الصحيحة مبرّرا اختيارك.

يحتوي كيس على ثلاث كريّات بيضاء تحمل الأرقام 1, 2, 3 وكريّتين سوداوين تحملان الرقمين 1, 2.

(الكربّات لا نفرّق بينها عند اللمس) نسحب من الكيس 3 كربّات عشوائيا وفي آن واحد .

لمتغير العشوائي الذي يرفق بكل سحب عدد الكربّات السوداء المسحوبة. X

$$\{0;1;2\}$$
 (ج. $\{0;2;3\}$ (ب. $\{1;2;3\}$) قيم المتغير العشوائي X هي: أ

$$E(X) = \frac{11}{10}$$
 (ج ، $E(X) = \frac{6}{5}$ (ب ، $E(X) = \frac{4}{5}$ (أ) لأمل الرياضياتي (2) و الأمل الرياضياتي (2) و الأمل الرياضياتي (3) و الأمل الرياضياتي (4) و الأمل الرياضياتي (5) و الأمل الرياضياتي (4) و الأمل الرياضياتي (5) و الأمل الرياضياتي (5) و الأمل الرياضياتي (6) و الأمل الرياضياتي (7) و الأمل الرياضياتي (7)

3) احتمال "الحصول على كريّة واحدة سوداء تحمل الرقم 1 من الكريّات المسحوبة"

$$\frac{3}{5}$$
 (ب $\frac{9}{10}$ ، $\frac{7}{10}$ (أ : يساوي : أ

$$\frac{1}{5}$$
 (\div , $\frac{3}{10}$ (\div , $\frac{2}{5}$ (\dagger

التمرين الثالث: (05 نقاط)

المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ в \cdot A و \cdot النّقط التي لاحقاتها على

.
$$z_C = \frac{3}{2} + i \left(1 + \frac{\sqrt{3}}{2}\right)$$
 و $z_B = 2 + i$ ، $z_A = 1 + i$:التَّرتيب

- . 1 الدّائرة التي مركزها A وطول نصف قطرها Γ
 - (Γ) أ) تحقّق أنّ النّقطة C من الدّائرة (1).
- A مين قيسا بالراديان للزّاوية $(\overline{AB}; \overline{AC})$ ثم استنتج أنّ C صورة B بالدوران C الذي مركزه عيد راويته.
 - دات اللاحقة z' حيث: S (2 التّشابه المباشر الذي يحوّل النّقطة M ذات اللاحقة z' حيث:

$$z' = \left(1 + i\sqrt{3}\right)z + \sqrt{3} - i\sqrt{3}$$

- أ) حدّد العناصر المميزة للتّشابه S .
- S بالتشابه D عيّن عيّن عين Z_D لاحقة D
- ماهي نسبة التّحاكي h الذي مركزه A حيث S=hor ؟ استنتج أنّ النقط h و C في استقامية.
 - $k \in \mathbb{R}_+^*$ مجموعة النقط M من المستوي التي لاحقتها $z = z_A + ke^{i\frac{\pi}{3}}$: معموعة (E) (4
 - . (E) من المجموعة (E) ثم حدّد طبيعة (E)

التمرين الرابع: (07 نقاط)

- $g(x) = (x+3)e^x 1$ الذَّالة المعرفة على \mathbb{R} كما يلى: g(I)
 - . الشكل مثيلها البياني كما هو مبين في الشكل (C_{ϱ})

بقراءة بيانية

.
$$g\left(\frac{-1}{2}\right)$$
 و $g\left(-1\right)$ قد إشارة (أ

- -1; $-\frac{1}{2}$ | ستنتج وجود عدد حقیقي α وحید من المجال α ; $-0.8 < \alpha < -0.7$ ثم تحقّق أنّ: $g(\alpha) = 0$ بحیث α
 - \mathbb{R} على g(x) على g(x)
 - $f(x) = (x+2)(e^x-1)$: بالدّالة المعرفة على f(II)

اختبار في مادة: الرياضيات // الشعبة: تقني رياضي // بكالوريا 2019

- $\cdot \left(O; \vec{i}, \vec{j} \right)$ تمثيلها البياني في المستوي المنسوب الى المعلم المتعامد والمتجانس $\left(C_f \right)$
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1
- . f ثم شكّل جدول تغيرات الدالـة f'(x) = g(x) ، x عدد حقيقى عدد حقيقى (2
- له. احسب المثالث الم
 - . (Δ) و المستقيم النسبي المنحنى الوضيع النسبي المنحنى المناقيم (C_f)
 - (Δ) الموازي للمستقيم ((C_f) مماس ((T_f) معادلة لـ
 - $(f(\alpha) \approx -0.7$ يعطى $]-\infty;1]$ على المجال المنحني (C_f) والمنحني (Δ) والمنحني (4
 - \mathbb{R} على f أصلية للدالة $f\left(x\right)-g\left(x\right)$ احسب (5
- لسابق. $h(x) = |x| \left(e^{|x|-2} 1\right) + 1$ كما يلي: $h(x) = |x| \left(e^{|x|-2} 1\right) + 1$ و $h(x) = |x| \left(e^{|x|-2} 1\right)$ كما يلي: $h(x) = |x| \left(e^{|x|-2} 1\right)$
 - .h(x) = f(x-2)+1 : فإنّ $[0;+\infty[$ من المجال x من أجل كل x من أجل كل أيّه من أجل كل x من المجال x
 - -3;3] اشرح کیف یمکن رسم (C_h) انطلاقا من (C_f) ثم ارسم علی المجال المجال (C_h)

الموضوع الثانى

يحتوي الموضوع على (03) صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأول: (04 نقاط)

- . نعتبر المعادلة ذات المجهول (x,y):(x,y):(x,y) نعتبر المعادلة ذات المجهول (1x
 - أ) تحقّق أنّ الثنائية (E) عدد طبيعي. (E) حل للمعادلة (E) حيث (6n+2;10n+3) عدد طبيعي.
 - + استنتج أنّ العددين n+3 و n+2 أوليان فيما بينهما.
 - aنضع a=10n+3 و a=10 وليكن b=3n+5 و وليكن (2
 - d = 41 أو d = 41 أي بيّن أنّ
 - $n \equiv 12[41]$ فإنّ d = 41 كان كان أنّه إذا كان d = 41
 - $A = 6n^2 + 19n + 15$ و $A = 20n^2 + 36n + 9$ و (3
 - أ) بيّن أنّ العددين A و B يقبلان القسمة على 2n+3.
 - $\cdot B$ و حسب قيم n القاسم المشترك الأكبر للعددين n و A

التمرين الثاني: (04 نقاط)

يحتوي كيس على أربع كريات بيضاء تحمل الأرقام 1 ، 2 ، 3 ، 4 وثلاث كريات حمراء تحمل الأرقام 1 ، 2 ، 4 وكريتين سوداوين تحملان الرقمين 1 ، 2 (كل الكريات متشابهة لا نفرق بينها عند اللمس) .

نسحب عشوائيا وفي آن واحد ثلاث كريات من هذا الكيس.

- 1) احسب احتمال الحوادث التالية:
- أ) الحادثة A: "الحصول على كربة بيضاء واحدة ".
- ب) الحادثة B: « الحصول على كريتين بيضاوين على الأكثر ».
- جـ) الحادثة C : « الحصول على ثلاث كريات تحمل أرقاما غير أولية ».
- 2) نعتبر المتغير العشوائي X الذي يرفق بكل عملية سحب عدد الكريات التي تحمل أرقاما أولية.
 - أ) عيّن قيم المتغير العشوائي X ، ثم عرّف قانون احتماله.
 - $P(X^2-X\leq 0)$ ب) احسب (ب

التمرين الثالث: (05 نقاط)

- . $(2-2\sqrt{3})^2 = 16-8\sqrt{3}$: نحقّق أنّ (I
- $Z=-16\sqrt{3}-16i$: حيث على الشكل الجبري الجذرين التّربيعيين $L_{_{\! 2}}$ و $L_{_{\! 1}}$ للعدد المركّب كين على الشكل الجبري الجذرين التّربيعيين $L_{_{\! 2}}$

$$z_{\rm C} = -rac{1}{4}z_{
m A}$$
 و $z_{
m B} = rac{1}{2}iz_{
m A}$ ، $z_{
m A} = 4e^{irac{\pi}{3}} + 4e^{irac{5\pi}{6}}$ لاحقاتها

.
$$z_{\rm A} = 4\sqrt{2}e^{irac{7\pi}{12}}$$
 اكتب $z_{\rm A}$ على الشكل الجبري ، ثمّ بيّن أن $z_{\rm A}$ على الشكل الجبري ، ثمّ بيّن

$$\sin\left(\frac{7\pi}{12}\right)$$
 و $\cos\left(\frac{7\pi}{12}\right)$ استنتج القيمتين المضبوطتين للعددين العقيقيين (2

 $oldsymbol{C}$. $oldsymbol{C}$. $oldsymbol{B}$. oldsymbo

لتكن M' النقطة ذات اللاحقة z' صورة النقطة M ذات اللاّحقة z بالتّشابه z'

$$\cdot z' = \frac{1}{2}iz$$
 أ) بيّن أنّ

ب) حدّد العناصر المميزة للتّشابه S.

. $\{(A;2),(B;-2),(C;4)\}$ النّقطة ذات اللّحقة z_G مرجح الجملة G (4

$$z_{\rm G} = 2e^{i\frac{\pi}{3}}$$
: أ) بيّن أنّ

ب) (A) مجموعة النقط M من المستوي ذات اللاحقة z بحيث:

$$\| \overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} \| = 2\sqrt{2}$$

- حدّد طبیعة (E) وعناصرها الممیّزة، ثم احسب محیط (E') صورة (E) بالتشابه

التمرين الرابع: (07 نقاط)

 $g(x) = (x+1)(x+e) - e(x \ln x)$: بg(x) = 0 بالدالة المعرفة والمتزايدة تماما على $g(x) = (x+1)(x+e) - e(x \ln x)$ بالدالة المعرفة والمتزايدة تماما على g(x) = 0 بالدالة المعرفة والمتزايدة المعرفة والمتزايدة المتزايدة المتزايدة

$$f(x) = \ln(x+1) + \frac{e \ln x}{x+1}$$
 :ب] $0 ; +\infty$ على الدالة المعرفة على f (II)

. $\left(O; \vec{i}\;, \vec{j}\right)$ و تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f\right)$

$$\lim_{x\to +\infty} f(x) = +\infty$$
 ثم بیّن أنّ ، $\lim_{x\to \infty} f(x)$ احسب (أ (1

$$\cdot f'(x) = \frac{g(x)}{x(x+1)^2}$$
 : $]0; +\infty[$ من أجل كل x من أجّه من أجل كل بيّن أنّه من أجل كل x

ج) استنتج اتجاه تغیر الداله f، ثم شکّل جدول تغیراتها.

 (\mathbf{C}_f) مماس معادلة لـ (\mathbf{T}) مماس معادلة النقطة ذات الفاصلة (2

lpha فاصلتها A فاصلتها

اختبار في مادة: الرياضيات // الشعبة: تقنى رياضى // بكالوريا 2019

- $[0\;;+\infty[$ التمثيل البياني للدالة $x\mapsto \ln(x+1)$ على المجال (Γ) (4
 - أ) احسب $\lim_{x\to +\infty} (f(x)-\ln(x+1))$ ثم فسّر النتيجة بيانيا.
 - . (Γ) و (C_f) ادرس الوضع النسبي للمنحنيين
 - (C_f) أرسم المماس (T) و (T) ثم
- . حلين متمايزين $f(x) = \frac{1+e}{2}x-m$ وسيط حقيقي ، عين قيم m بحيث تقبل المعادلة m وسيط حقيقي ، عين قيم
 - . $\ln x < x+1$:]1;+ ∞ [من المجال x من أجل كل x من أجل أنّه من أجل كل x من المجال (6
 - . $\ln 2 < f(x) < e + \ln(x+1)$: $]1;+\infty[$ من المجال x من أجل كل بيّن أنّه من أجل كل من المجال أ
- ب) تحقّق أنّه من أجل كل x من المجال $[1;+\infty]$ الدالة $x\mapsto (x+1)\ln(x+1)-x$ هي دالة أصلية للدالة $x\mapsto \ln(x+1)$.
 - ج) S مساحة الحيز المستوي المحدّد بالمنحنى C_f وحامل محور الفواصل والمستقيمين اللذين $x=e^2-1$ و x=e-1 .
 - . $(e^2-e)\ln 2 < S < e^3$: بيّن أنّ ، بيّن أن السؤال بين السؤال -