પ્રશ્ન 1(અ) [3 ગુણ]

Distributed ledger systems ના ઉપયોગમાં લેવાના ફાયદાઓ સમજાવો.

જવાબ:

ટેબલ: Distributed Ledger Systems ના ફાયદાઓ

ફાયદો	વર્ણન
પારદર્શિતા	બધા સહભાગીઓ transaction history જોઈ શકે છે
સુરક્ષા	Cryptographic સુરક્ષા છેડછાડ સામે
વિકેન્દ્રીકરણ	એક જ નિયંત્રણ અથવા નિષ્ફળતાનું બિંદુ નથી
અપરિવર્તનીયતા	એકવાર confirm થયા પછી records બદલી શકાતા નથી

મેમરી ટ્રીક: "T-S-D-I" (Transparent, Secure, Decentralized, Immutable)

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યાયિત કરો: 1) Blockchain 2) Distributed systems

જવાબ:

ટેબલ: મુખ્ય વ્યાખ્યાઓ

કાલ્દ	વ્યાખ્યા
Blockchain	Transaction data ધરાવતા blocks ની chain, cryptographic hashes દ્વારા જોડાયેલ
Distributed Systems	સ્વતંત્ર computers નું network એક single system તરીકે કામ કરતું

મુખ્ય લાક્ષણિકતાઓ:

- **Blockchain**: Hash pointers, consensus mechanisms, અને merkle trees વાપરે છે
- **Distributed Systems**: Fault tolerance, scalability, અને resource sharing

મેમરી ટ્રીક: Blockchain માટે "Chain-Hash-Consensus", Distributed માટે "Network-Independent-Together"

પ્રશ્ન 1(ક) [7 ગુણ]

Blockchain network ฯร CAP theorem ฯย์ฯ่า.

જવાબ:

રેબલ: CAP Theorem ના ઘટકો

ગુણઘર્મ	นณ์ฯ	Blockchain સંદર્ભ
Consistency	બધા nodes એ જ data જુએ છે	બધા nodes પાસે સમાન ledger
Availability	System કાર્યરત રહે છે	Network accessible રહે છે
Partition Tolerance	Network failures છતાં કામ કરે છે	Node disconnections દર્મિયાન યાલુ રહે છે

આકૃતિ:

મુખ્ય મુદ્દાઓ:

- Trade-off: 3 માંથી માત્ર 2 properties એક સાથે મેળવી શકાય
- Blockchain Choice: મોટાભાગના blockchains Consistency + Partition Tolerance પસંદ કરે છે
- **ઉદાહરણ**: Bitcoin અસ્થાયી રૂપે unavailable બની શકે પણ consistency જાળવે છે

મેમરી ટ્રીક: "CAP-2-out-of-3" (3 માંથી કોઈ પણ 2 Properties પસંદ કરો)

પ્રશ્ન 1(ક) OR [7 ગુણ]

Blockchain network ની ઉપયોગિતાઓ યાદી બનાવો અને સમજાવો.

જવાબ:

ટેબલ: Blockchain Applications

Application	વર્ણન	ઉદાહરણ
Cryptocurrency	Digital money transactions	Bitcoin, Ethereum
Supply Chain	ઉત્પાદનો ને origin થી track કરવું	Walmart food tracing
Healthcare	સુરક્ષિત patient records	Medical data sharing
Voting	પારદર્શી elections	Estonia e-voting
Real Estate	Property ownership records	Land registries

મુખ્ય ફાયદાઓ:

• **પારદર્શિતા**: બધા transactions સહભાગીઓને દૃશ્યમાન

• **સુરક્ષા**: છેતરપિંડી સામે cryptographic સુરક્ષા

• કાર્યક્ષમતા: મધ્યસ્થીઓ અને ખર્ચમાં ઘટાડો

મેમરી ટ્રીક: "C-S-H-V-R" (Crypto, Supply, Health, Vote, Real estate)

પ્રશ્ન 2(અ) [3 ગુણ]

Permissionless blockchain ની વ્યાખ્યા કરો અને સમજાવો.

જવાબ:

વ્યાખ્યા: એક blockchain જ્યાં કોઈપણ વ્યક્તિ કેન્દ્રીય સત્તાધિકારીની પરવાનગી વગર ભાગ લઈ શકે છે.

ટેબલ: Permissionless Blockchain ની લાક્ષણિકતાઓ

લાક્ષણિકતા	વર્ણન
ખુલ્લી પહોંચ	કોઈપણ join કરી અને ભાગ લઈ શકે છે
જાહેર ચકાસણી	બધા transactions જાહેરમાં verifiable છે
વિકેન્દ્રીકૃત	કોઈ કેન્દ્રીય નિયંત્રણ સત્તા નથી

મુખ્ય લાક્ષણિકતાઓ:

• Consensus: Proof-of-work અથવા proof-of-stake વાપરે છે

• **G**ะเ_eะเน้า: Bitcoin, Ethereum mainnet

મેમરી ટ્રીક: "Open-Public-Decentralized" (OPD)

પ્રશ્ન 2(બ) [4 ગુણ]

Blockchain ના data structure ની આકૃતિ દોરો અને સંક્ષિપ્તમાં સમજૂતી આપો.

જવાલ:

આકૃતિ: Blockchain Data Structure

મુખ્ય ઘટકો:

• **Previous Hash**: Blocks ને એકસાથે જોડે છે અને chain બનાવે છે

• Merkle Root: Block માં બધા transactions નો સારાંશ

• Timestamp: Block ક્યારે બનાવ્યો તે સમય

• Nonce: Proof-of-work માટે એકવાર વાપરાતો આંકડો

ਮੇਮરੀ ਟ੍ਰੀs: "P-M-T-N" (Previous, Merkle, Time, Nonce)

પ્રશ્ન 2(ક) [7 ગુણ]

Blockchain ના core components ની સમજૂતી યોગ્ય આકૃતિ સાથે આપો.

જવાબ:

ટેબલ: Blockchain ના મુખ્ય ઘટકો

ยะร	รเช้	હેતુ
Blocks	Data containers	Transaction માહિતી સ્ટોર કરવા
Hash Functions	Digital fingerprints अनाववा	Data integrity સુનિશ્ચિત કરવા
Merkle Trees	Transaction summaries	કાર્યક્ષમ verification
Consensus Mechanism	Agreement protocol	નવા blocks validate કરવા
Digital Signatures	Identity verification	Transactions authenticate કरवा

આકૃતિ: Merkle Tree Structure

મુખ્ય મુદ્દાઓ:

• અપરિવર્તનીયતા: Hash functions છેડછાડ શોધી શકાય એવું બનાવે છે

• **કાર્યક્ષમતા**: Merkle trees ઝડપી verification માટે પરવાનગી આપે છે

• વિકેન્દ્રીકરણ: Consensus mechanisms કેન્દ્રીય સત્તાને દૂર કરે છે

મેમરી ટ્રીક: "B-H-M-C-D" (Blocks, Hash, Merkle, Consensus, Digital)

પ્રશ્ન 2(અ) OR [3 ગુણ]

Permissioned blockchain ની વ્યાખ્યા કરો અને સમજાવો.

જવાબ:

વ્યાખ્યા: એક blockchain જ્યાં ભાગ લેવા માટે શાસન સત્તાધિકારીની સ્પષ્ટ પરવાનગીની જરૂર હોય છે.

ટેબલ: Permissioned Blockchain ની લાક્ષણિકતાઓ

લાક્ષણિકતા	વર્ણન
પ્રતિબંધિત પહોંચ	માત્ર અધિકૃત users ભાગ લઈ શકે છે
ખાનગી Network	નિયંત્રિત membership
કેન્દ્રીકૃત નિયંત્રણ	શાસન સંસ્થા permissions વ્યવસ્થાપિત કરે છે

મુખ્ય લાક્ષણિકતાઓ:

• **ગોપનીયતા**: સંવેદનશીલ data માટે વધારેલી ગુપ્તતા

• પ્રદર્શન: ઓછા validators ને કારણે ઝડપી transactions

• **G**ียเ**๔ะย**์ท: Hyperledger Fabric, R3 Corda

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Restricted-Private-Centralized" (RPC)

પ્રશ્ન 2(બ) OR [4 ગુણ]

Wallet ના પ્રકાર blockchain ના સંદર્ભમાં સમજાવો. તેમજ ચોક્કસ જરૂરિયાત માટે Wallet પસંદ કરતી વખતે ધ્યાનમાં લેવાના પરિબળોની ચર્ચા કરો.

જવાબ:

ટેબલ: Blockchain Wallets ના પ્રકારો

Wallet มรเจ	વર્ણન	સુરક્ષા સ્તર
Hot Wallets	Internet સાથે જોડાયેલ	મધ્યમ
Cold Wallets	Offline storage	ઊંચું
Hardware Wallets	ભૌતિક devices	ખૂબ ઊંચું
Paper Wallets	છાપેલી keys	ઊંચું (જો સુરક્ષિત રીતે સંગ્રહિત)

પસંદગીના પરિબળો:

• સુરક્ષા જરૂરિયાતો: ઊંચું મૂલ્ય બહેતર સુરક્ષાની જરૂર પાડે છે

• **ઉપયોગની આવર્તન**: નિયમિત ઉપયોગ hot wallets ને તરફેણ કરે છે

• તકનીકી કુશળતા: શરૂઆતીઓ માટે સરળ wallets

મેમરી ટ્રીક: "H-C-H-P" (Hot, Cold, Hardware, Paper)

પ્રશ્ન 2(ક) OR [7 ગુણ]

Sidechain ને યોગ્ય આકૃતિ સાથે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: એક અલગ blockchain જે two-way peg વાપરીને parent blockchain સાથે જોડાયેલ છે.

આકૃતિ: Sidechain Architecture

ટેબલ: Sidechain ના ફાયદાઓ

ફાયદો	વર્ણન
માપનીયતા	Main chain પરનો લોડ ઘટાડે છે
પ્રયોગશીલતા	નવી features સુરક્ષિત રીતે test કરે છે
વિશિષ્ટ કાર્યો	કસ્ટમ applications
Interoperability	વિવિધ blockchains ને જોડે છે

મુખ્ય પદ્ધતિઓ:

- Two-Way Peg: Chains વચ્ચે asset transfer માટે પરવાનગી આપે છે
- SPV Proofs: Simplified payment verification
- Federated Control: બહુવિધ parties transfers નું વ્યવસ્થાપન કરે છે

મેમરી ટ્રીક: "S-E-S-I" (Scalability, Experimentation, Specialized, Interoperability)

પ્રશ્ન 3(અ) [3 ગુણ]

Blockchain network માં transaction ના સંદર્ભમાં "Confirmation" અને "Finality" ને વ્યાખ્યાયિત કરો.

જવાબ:

રેબલ: Transaction States

શહ્દ	વ્યાખ્યા
Confirmation	Transaction block ની ઉપર બનાવાયેલા blocks ની સંખ્યા
Finality	જ્યાં transaction અપરિવર્તનીય બને છે તે બિંદુ

મુખ્ય મુદ્દાઓ:

- Confirmation Count: વધુ confirmations = વધુ સુરક્ષા
- Bitcoin Standard: ઊંચા મૂલ્યના transactions માટે 6 confirmations
- Finality มรเล้: Probabilistic (Bitcoin) vs Absolute (รัชเตร PoS systems)

મેમરી ટ્રીક: Confirmation માટે "Count-Blocks-Security", Finality માટે "Irreversible-Point"

પ્રશ્ન 3(બ) [4 ગુણ]

Proof of Work અને Proof of Stake નો તફાવત આપો.

જવાબ:

ટેબલ: PoW vs PoS સરખામણી

પાસું	Proof of Work (PoW)	Proof of Stake (PoS)
સંસાધન	Computational power	Stake ownership
Energy Use	ઊંચું	નીચું
સુરક્ષા	Hash rate dependent	Stake dependent
Rewards	Mining rewards	Staking rewards
ઉદાહરણો	Bitcoin, Ethereum (જૂનું)	Ethereum 2.0, Cardano

મુખ્ય તફાવતો:

- પદ્ધતિ: PoW mining વાપરે, PoS validators વાપરે
- **પર્યાવરણીય અસર**: PoS વધુ પર્યાવરણ-મિત્ર છે
- પ્રવેશ અવરોદ્યો: PoS પ્રારંભિક stake જરૂરે, PoW hardware જરૂરે

મેમરી ટ્રીક: "Work-vs-Stake" (Computational Work vs Financial Stake)

પ્રશ્ન 3(ક) [7 ગુણ]

Blockchain network ના સંદર્ભમાં 51% attack સમજાવો.

જવાબ:

વ્યાખ્યા: એક attack જ્યાં એક જ entity network ના mining power અથવા stake ના 50% થી વધુ પર નિયંત્રણ રાખે છે.

આકૃતિ: 51% Attack Scenario

ટેબલ: Attack ની ક્ષમતાઓ અને મર્યાદાઓ

કરી શકે છે	કરી શકતું નથી
પોતાના coins double spend કરવું	બીજાના coins ચોરી કરવું
તાજેતરના transactions reverse કરવું	કંઈ પણ માંથી coins બનાવવું
યોક્કસ transactions block કરવું	Consensus rules બદલવા
Blockchain fork કરવું	Private keys ને access કરવા

રોકથામના પગલાં:

• વૈવિધ્યસભર Mining: બહુવિધ mining pools ને પ્રોત્સાહન આપવું

• Checkpoint Systems: સમયાંતરે finality markers

• **આર્થિક પ્રોત્સાહનો**: Attacks ને અલાભકારક બનાવવા

અસર:

• Network વિશ્લેપ: અસ્થાયી સેવા વિક્ષેપ

• આર્થિક નુકસાન: ઘટેલો વિશ્વાસ અને મૂલ્ય

• **પુનઃપ્રાપ્તિ**: Attack સમાપ્ત થયા પછી network સામાન્યત: સ્વસ્થ થાય છે

ਮੇਮਰੀ ਟ੍ਰੀs: "Majority-Control-Attack" (51% = Majority Control = Attack Power)

પ્રશ્ન 3(અ) OR [3 ગુણ]

"Hard fork" અને "Soft fork" ની વ્યાખ્યા આપો.

જવાલ:

રેબલ: Fork પ્રકારો

Fork ysis	વ્યાખ્યા	સુસંગતતા
Hard Fork	Non-backward compatible protocol change	સુસંગત નથી
Soft Fork	Backward compatible protocol change	સુસંગત છે

મુખ્ય લાક્ષણિકતાઓ:

- Hard Fork: નવી blockchain branch બનાવે છે, બધા nodes ને upgrade જરૂરી
- **Soft Fork**: Rules ને tight કરે છે, જૂના nodes હજી પણ operate કરી શકે છે

ઉદાહરણો:

- Hard Fork: Bitcoin Cash નો Bitcoin માંથી વિભાજન
- Soft Fork: Bitcoin หi SegWit activation

મેમરી ટ્રીક: "Hard-Breaks-Compatibility" vs "Soft-Keeps-Compatibility"

પ્રશ્ન 3(બ) OR [4 ગુણ]

વિવિધ પ્રકારના consensus mechanisms ની યાદી બનાવો અને કોઈ પણ એકને વિગતવાર સમજાવો.

જવાબ:

રેબલ: Consensus Mechanisms

પદ્ધતિ	นญ์า	Energy Use
Proof of Work	Computational puzzle solving	ઊંચું
Proof of Stake	Stake-based validation	નીચું
Delegated PoS	મત આપેલા પ્રતિનિધિઓ validate કરે છે	ખૂબ નીચું
Proof of Authority	પૂર્વ-મંજૂર validators	ન્યૂનતમ

વિગતવાર સમજૂતી - Proof of Stake (PoS):

प्रङ्गिया:

- Validator Selection: Stake amount અને randomization આધારે
- Block Creation: પસંદ કરાયેલ validator નવો block propose કરે છે
- Validation: બીજા validators block verify કરે છે અને attest કરે છે
- **Rewards**: Validators fees અને નવા tokens મેળવે છે

ફાયદાઓ: ઓછું energy consumption, ઘટેલું centralization risk **નુકસાનો**: "Nothing at stake" problem, પ્રારંભિક વિતરણ સમસ્યાઓ

મેમરી ટ્રીક: "Stake-Select-Validate-Reward" (PoS Process)

પ્રશ્ન 3(ક) OR [7 ગુણ]

Blockchain network ના સંદર્ભમાં sybil attack સમજાવો.

જવાબ:

વ્યાખ્યા: એક attack જ્યાં એક જ શત્રુ network માં અપ્રમાણસર પ્રભાવ મેળવવા માટે બહુવિધ નકલી identities બનાવે છે.

આકૃતિ: Sybil Attack Structure

ટેબલ: Attack પદ્ધતિઓ અને બચાવો

Attack પદ્ધતિ	વર્ણન	બચાવ
Identity Flooding	ઘણી નકલી nodes બનાવવી	Proof of Work/Stake
Routing Manipulation	Network paths નિયંત્રિત કરવા	Reputation systems
Consensus Disruption	Voting પ્રભાવિત કરવું	Resource requirements

Blockchain પર અસર:

• Network Partitioning: Honest nodes ને અલગ પાડવા

• **Double Spending**: છેતરપિંડીવાળા transactions ને સહાય કરવી

રોકથામ પદ્ધતિઓ:

• Resource Requirements: PoW/PoS attacks ને મોંઘા બનાવે છે

• Identity Verification: KYC/AML પ્રક્રિયાઓ

• Network Monitoring: શંકાસ્પદ વર્તન patterns શોધવા

• Reputation Systems: સમય સાથે node behavior track કરવું

વાસ્તવિક ઉદાહરણો:

• P2P Networks: BitTorrent, Gnutella vulnerabilities

• Social Networks: Fake account creation

• Blockchain: Permissionless networks માટે સંભવિત ખતરો

મેમરી ટ્રીક: "Single-Multiple-Influence" (Single Attacker, Multiple Identities, Network Influence)

પ્રશ્ન 4(અ) [3 ગુણ]

"Merkle Tree" અને "Hyperledger" ને વ્યાખ્યાયિત કરો.

જવાબ:

ટેબલ: મુખ્ય વ્યાખ્યાઓ

3018	વ્યાખ્યા
Merkle Tree	Hashes નો binary tree જે બધા transactions ને કાર્યક્ષમ રીતે સારાંશિત કરે છે
Hyperledger	Linux Foundation દ્વારા hosted open-source blockchain platform

મુખ્ય લાક્ષણિકતાઓ:

• Merkle Tree: સંપૂર્ણ blockchain download કર્યા વગર કાર્યક્ષમ verification સક્ષમ કરે છે

• **Hyperledger**: Enterprise-focused, modular architecture, બહુવિધ frameworks

મેમરી ટ્રીક: Merkle માટે "Tree-Hash-Efficient", Hyperledger માટે "Enterprise-Modular-Linux"

પ્રશ્ન 4(બ) [4 ગુણ]

Classic Byzantine generals problem ને વિગતવાર સમજાવો.

જવાબ:

પરિસ્થિતિ: બહુવિધ generals એ શહેર પર હુમલાનું સંકલન કરવું જોઈએ, પરંતુ કેટલાક દગાબાજ હોઈ શકે છે.

ટેબલ: Problem ના ઘટકો

ยรร	นย์า	
Generals	Network nodes/સહભાગીઓ	
Messages	Transactions/communications	
Traitors	દુર્ભાવનાપૂર્ણ/ખરાબ nodes	
Consensus	કાર્ય પર સમજૂતી	

સોલ્યુશન જરૂરિયાતો:

• Agreement: બધા પ્રામાણિક generals એ જ કાર્યનો નિર્ણય લે

• Validity: જો બધા પ્રામાણિક generals હુમલો કરવા માગે તો તેઓએ હુમલો કરવો જોઈએ

• Termination: મર્યાદિત સમયમાં નિર્ણય લેવાયો હોવો જોઈએ

Blockchain સુસંગતતા: દુર્ભાવનાપૂર્ણ nodes છતાં network agreement સુનિશ્ચિત કરે છે

મેમરી ટ્રીક: "Generals-Messages-Traitors-Consensus" (GMTC)

પ્રશ્ન 4(ક) [7 ગુણ]

Merkle tree creation ની પ્રક્રિયા યોગ્ય ઉદાહરણ અને આકૃતિ સાથે સમજાવો.

જવાબ:

પ્રક્રિયાના પગલાં:

- 1. દરેક transaction ને વ્યક્તિગત રીતે hash કરો
- 2. Hashes ને જોડો અને pairs ને hash કરો
- 3. એક જ root hash બાકી રહેવા સુધી ચાલુ રાખો

ઉદાહરણ: 4 Transactions

ટેબલ: Merkle Tree ના ફાયદાઓ

ફાયદો	વર્ણન	
કાર્યક્ષમતા	સંપૂર્ણ data વગર transactions verify કરો	
सुरक्षा	કોઈપણ બદલાવ root hash ને અસર કરે છે	
માપનીયતા	Log(n) verification complexity	

Verification प्रक्रियाः

- Tx A verify કરવા માટે: Hash(B), Hash(CD), અને Root Hash જરૂરી
- Path verification: Hash(A) + Hash(B) = Hash(AB)
- Hash(AB) + Hash(CD) = Root Hash

Applications:

- **Bitcoin**: Block headers ਮi Merkle root છੇ
- SPV Clients: Light wallets Merkle proofs વાપરે છે
- **Git**: Version control system સમાન structure વાપરે છે

મેમરી ટ્રીક: "Hash-Pair-Repeat-Root" (Merkle Tree Creation Process)

પ્રશ્ન 4(અ) OR [3 ગુણ]

Hyperledger projects ના વિવિધ પ્રકારની યાદી બનાવો.

જવાબ:

રેબલ: Hyperledger Projects

Project	уѕіг	હેતુ
Fabric	Framework	Permissioned blockchain platform
Sawtooth	Framework	Modular blockchain suite
Iroha	Framework	Mobile/web માટે સરળ blockchain
Burrow	Framework	Ethereum Virtual Machine
Caliper	Tool	Blockchain performance benchmark
Composer	Tool	Business network development

શ્રેણીઓ:

• Frameworks: મુખ્ય blockchain platforms

• Tools: Development અને testing utilities

મેમરી ટ્રીક: "F-S-I-B-C-C" (Fabric, Sawtooth, Iroha, Burrow, Caliper, Composer)

પ્રશ્ન 4(બ) OR [4 ગુણ]

Practical Byzantine Fault Tolerance algorithm વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Consensus algorithm જે 1/3 સુધી nodes ખરાબ અથવા દુર્ભાવનાપૂર્ણ હોય તો પણ યોગ્ય રીતે કામ કરે છે.

ટેબલ: PBFT Phases

Phase	વર્ણન	હેતુ
Pre-prepare	Primary request broadcast કરે છે	Consensus શરૂ કરવું
Prepare	Nodes validate કરે છે અને broadcast કરે છે	Proposal verify કરવું
Commit	Nodes નિર્ણય પર commit કરે છે	Agreement finalize કરવું

Algorithm પગલાં:

- 1. Client primary replica ને request મોકલે છે
- 2. Primary pre-prepare message broadcast sè છે
- 3. Valid હોય તો backups prepare messages મોકલે છે

- 4. 2f+1 prepares મળ્યા પછી commit મોકલે છે
- 5. 2f+1 commits મળ્યા પછી execute કરે છે

મુખ્ય ગુણધર્મો:

• Safety: ક્યારેય અસંગત પરિણામો ઉત્પન્ન કરતું નથી

• Liveness: આખરે પરિણામો ઉત્પન્ન કરે છે

• Fault Tolerance: f < n/3 ખરાબ nodes સાથે કામ કરે છે

મેમરી ટ્રીક: "Pre-Prepare-Commit" (PBFT ના 3 Phases)

પ્રશ્ન 4(ક) OR [7 ગુણ]

"Eventual consistency is evident in the context of bitcoin." આપેલ વાક્યને પુરવાર કરો.

જવાબ:

વ્યાખ્યા: Eventual consistency નો અર્થ છે કે system સમય સાથે consistent બનશે, ભલે તે અસ્થાયી રૂપે inconsistent હોય.

Bitcoin Implementation:

રેબલ: Bitcoin Consistency Mechanisms

પદ્ધતિ	นณ์ฯ	હેતુ
Chain Reorganization	લાંબી chain સાથે ટૂંકી chain replace કરવી	Consensus જાળવવું
Confirmation Delays	બહુવિધ blocks માટે રાહ જોવી	વિશ્વસનીયતા વધારવી
Fork Resolution	સૌથી લાંબી chain જીતે છે	સંઘર્ષો ઉકેલવા

Eventual Consistency દર્શાવતા દૃશ્યો:

1. અસ્થાયી Forks: જ્યારે બે miners એકસાથે blocks શોધે છે

2. **Network Partitions**: અલગ પડેલા nodes જુદા જુદા views હોઈ શકે છે

3. **Double Spending Attempts**: વિવિધ blocks માં સંઘર્ષ કરતા transactions

Resolution प्रक्रिया:

• Mining ચાલુ રહે છે: Miners તેમની પસંદીદા chain પર build કરે છે

• Longest Chain Rule: Network સૌથી વધુ work વાળી chain અપનાવે છે

• Automatic Convergence: બધા nodes આખરે સહમત થાય છે

આકૃતિ: Fork Resolution

વાજબીપણાના મુદ્દાઓ:

- Probabilistic Finality: લાંબો confirmation time = વધારે વિશ્વસનીયતા
- **તાત્કાલિક Consistency નથી**: નવા transactions તરત final નથી
- Convergence Guarantee: Network આખરે એક જ chain પર સહમત થશે
- Time-based Resolution: સમય સાથે consistency સુધરે છે

વ્યવહારિક અસરો:

- Merchant Waiting: Payment accept કરતા પહેલાં confirmations માટે રાહ જોવી
- Exchange Policies: વિવિધ રકમો માટે વિવિધ confirmation requirements
- **Risk Management**: Transaction value આધારે speed vs security સંતુલિત કરવું

મેમરી ટ્રીક: "Time-Brings-Consistency" (Eventual Consistency = Time + Convergence)

પ્રશ્ન 5(અ) [3 ગુણ]

ERC 20 ના ફાયદાઓ સમજાવો.

જવાબ:

ટેબલ: ERC-20 Token ના ફાયદાઓ

ફાયદો	વર્ણન
માનકીકરણ	બધા tokens માટે સામાન્ય interface
Interoperability	બધા Ethereum wallets/exchanges સાથે કામ કરે છે
તરલતા	સરળ trading અને exchange

મુખ્ય ફાયદાઓ:

- Developer Friendly: સરળ implementation standard
- Market Adoption: platforms પર વ્યાપક રીતે supported
- Smart Contract Integration: સરળ DeFi integration

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Standard-Interoperable-Liquid" (SIL)

પ્રશ્ન 5(બ) [4 ગુણ]

Smart-contract ની working mechanism વિગતવાર સમજાવો.

જવાબ:

રેબલ: Smart Contract Workflow

પગલું	વર્ણન
Code Deployment	Contract blockchain પર upload કરવું
Trigger Conditions	પૂર્વ-નિર્ધારિત conditions નું monitoring
Automatic Execution	Conditions મળ્યે contract execute થાય છે
State Update	Blockchain state modify થાય છે

รเข์ นริขเ:

1. **Development**: Solidity/Vyper માં contract લખવું

2. **Compilation**: Bytecode માં convert કરવું

3. **Deployment**: Blockchain network પર upload કરવું

4. **Execution**: Transactions અથવા events દ્વારા trigger થવું

મેમરી ટ્રીક: "Deploy-Trigger-Execute-Update" (DTEU)

પ્રશ્ન 5(ક) [7 ગુણ]

Smart-contract શું છે? Smart-contract ની વિશેષતા અને ઉપયોગીતા વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Self-executing contracts જેના terms સીધા code માં લખેલા હોય છે, blockchain પર ચાલે છે.

ટેબલ: Smart Contract વિશેષતાઓ

વિશેષતા	વર્ણન	ફાયદો
स्यायत्त	મધ્યસ્થીઓ વગર execute થાય છે	ખર્ચમાં ઘટાડો
પારદર્શી	Code blockchain પર વૃશ્યમાન છે	વિશ્વાસ નિર્માણ
અપરિવર્તનશીલ	Deploy થયા પછી બદલાઈ શકતું નથી	સુરક્ષા
નિર્ધારિત	સમાન input સમાન output આપે છે	અનુમાનિતતા

આકૃતિ: Smart Contract Architecture

ઉપયોગિતાઓ:

રેબલ: Smart Contract Applications

ક્ષેત્ર	ઉપયોગ	ઉદાહરણ	
Finance	Automated lending	DeFi protocols	
Insurance	Claim processing	Flight delay insurance	
Supply Chain	Product tracking	Food provenance	
Real Estate	Property transfers	Automated escrow	
Gaming	Digital assets	NFT marketplaces	

ફાયદાઓ:

• કાર્યક્ષમતા: ઘટેલો processing time અને costs

• વિશ્વાસ: Trusted third parties ની જરૂર નથી

• યોકસાઈ: માનવીય ભૂલો દૂર કરે છે

• **વૈશ્વિક પહોંચ**: 24/7 વિશ્વવ્યાપી ઉપલબ્ધ

મર્યાદાઓ:

• અપરિવર્તનશીલતા: Deployment પછી bugs ઠીક કરવા મુશ્કેલ

• Oracle Problem: બાહ્ય data sources ની જરૂર

• **Gas Costs**: Execution costs ઊંચા હોઈ શકે છે

• જટિલતા: તકનીકી નિપુણતા જરૂરી

Development વિચારણા:

• Security Audits: Deployment પહેલાં આવશ્યક

• Testing: Testnets પર વ્યાપક testing

• **Upgradability**: Updates หเ2 design patterns

• Gas Optimization: Execution costs ยะเรๆเ

મેમરી ટ્રીક: વિશેષતાઓ માટે "Auto-Transparent-Immutable-Deterministic" (ATID)

પ્રશ્ન 5(અ) OR [3 ગુણ]

ERC 20 ના ગેરફાયદાઓ સમજાવો.

જવાબ:

ટેબલ: ERC-20 Token ના ગેરફાયદાઓ

ગેરફાયદો	વર્ણન
મર્યાદિત કાર્યક્ષમતા	માત્ર બુનિયાદી token operations
Built-in Security નથી	સામાન્ય attacks માટે vulnerable
Gas Dependency	Transactions માટે ETH જરૂરી

મુખ્ય સમસ્યાઓ:

• Transfer મર્યાદાઓ: જટિલ transfers handle કરી શકતું નથી

• Approval Risks: Double spending vulnerabilities

• Network Congestion: Peak times દરમિયાન ઊંચી fees

મેમરી ટ્રીક: "Limited-Vulnerable-Dependent" (LVD)

પ્રશ્ન 5(બ) OR [4 ગુણ]

Decentralized Autonomous Organization (DAO) ના Launching માટેના steps વર્ણવો.

જવાબ:

ટેબલ: DAO Launch Steps

પગલું	વર્ણન
Concept Design	હેતુ અને governance rules વ્યાખ્યાયિત કરવા
Smart Contract Development	Governance mechanisms code इरवा
Token Distribution	Voting rights વહેંચવા
Community Building	સભ્યો અને contributors આકર્ષવા

વિગતવાર પ્રક્રિયા:

1. Whitepaper Creation: Vision અને tokenomics નું document

2. **Technical Implementation**: Governance contracts deploy કરવા

3. Initial Funding: Token sales દ્વારા capital raise કરવું

4. **Operations Launch**: વિકેન્દ્રીકૃત operations શરૂ કરવા

મેમરી ટ્રીક: "Design-Develop-Distribute-Deploy" (4D Launch)

પ્રશ્ન 5(ક) OR [7 ગુણ]

Decentralized Autonomous Organization (DAO) શું છે? તેના ફાયદાઓ અને ગેરફાયદાઓ વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Blockchain-based organization જે પરંપરાગત management ને બદલે smart contracts અને token holders દ્વારા સંચાલિત થાય છે.

રેબલ: DAO Structure

ยรร	વર્ણન	รเช้	
Smart Contracts	Code ні governance rules	Automated decision execution	
Tokens	Voting rights અને ownership	લોકશાહી ભાગીદારી	
Proposals	સૂચિત બદલાવો અથવા ક્રિયાઓ	Community-driven initiatives	
Treasury	સહેજ funds	Resource allocation	

આકૃતિ: DAO Governance Flow

```
graph TD

A[Token Holders] --> B[Submit Proposals]

B --> C[Community Discussion]

C --> D[Voting Period]

D --> E[Passed e) 리 d) Execution]

E --> F[Smart Contract Updates]

F --> G[Treasury Actions]
```

ફાયદાઓ:

ટેબલ: DAO ના ફાયદાઓ

ફાયદો	વર્ણન	અસર
વિકેન્દ્રીકરણ	નિયંત્રણનું એક જ બિંદુ નથી	ભ્રષ્ટાચાર જોખમ ઘટાડે છે
પારદર્શિતા	બધા નિર્ણયો blockchain પર	વધારેલી જવાબદારી
વૈશ્વિક ભાગીદારી	કોઈપણ join કરી શકે છે	વિવિધ દ્રષ્ટિકોણો
รเช็ญหดเ	Automated execution	ઝડપી નિર્ણય implementation
લોકશાહી Governance	Token-based voting	વાજબી પ્રતિનિધિત્વ

ગેરફાયદાઓ:

રેબલ: DAO Challenges

ગેરફાયદો	นณ์ฯ	જોખમ
તકનીકી જટિલતા	Smart contract bugs	System failures
કાનૂની અનિશ્ચિતતા	અસ્પષ્ટ regulatory status	Compliance issues
સંકલન સમસ્યાઓ	મુશ્કેલ નિર્ણય લેવું	ધીમી પ્રગતિ
Token Concentration	શ્રીમંત holders votes control કરે છે	Centralization જોખમ
સુરક્ષા Vulnerabilities	Code exploits શક્ય છે	નાણાકીય નુકસાન

DAO ના પ્રકારો:

• Investment DAOs: સામૂહિક investment નિર્ણયો

• Protocol DAOs: Blockchain protocol governance

• Social DAOs: Community-driven organizations

• Collector DAOs: NFT ਅਜੇ art collecting

સફળતાના પરિબળો:

• સ્પષ્ટ હેતુ: સુ-વ્યાખ્યાયિત mission અને goals

• મજબૂત Governance: અસરકારક voting mechanisms

• Community Engagement: સક્રિય સભ્ય ભાગીદારી

• तडनीडी सुरक्षा: Audited smart contracts

• **કાનૂની Compliance**: લાગુ પડતી જગ્યાએ regulatory compliance

નોંધપાત્ર ઉદાહરણો:

• MakerDAO: Decentralized finance protocol

• Uniswap: Decentralized exchange governance

• Compound: Money market protocol

ભવિષ્યની દૃષ્ટિ:

• Regulatory Clarity: વિકસિત થતા કાનૂની frameworks

• તકનીકી સુધારાઓ: બહેતર governance tools

• Integration: Hybrid traditional-DAO models

મેમરી ટ્રીક: "Decentralized-Autonomous-Organization" (DAO = Democratic Automated Ownership)