Exercícios 2.85. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x, y) = x^2 e^y$.

- 1. Determine o valor máximo e o valor mínimo da derivada direccional de f em (-2,0) e indique os vectores unitários \hat{u} e \hat{v} que tornam a derivada direccional em (-2,0) máxima e mínima, respectivamente.
- 2. Determine os vectores unitários \hat{u} tais que $D_{\hat{u}}f(-2,0)=0$.
- 3. A base de uma certa montanha é representada por uma região R no plano x0y considerada ao nível do mar. A altitude z sobre o ponto (x,y) de R é dada por $z=2000-0,02x^2-0,04y^2$, sendo x,y e z expressos em metros. Considera-se que o eixo positivo 0x tem a direcção Este e que o eixo positivo 0y tem a direcção Norte. Um alpinista está no ponto (-20,5,1991).
 - (a) Se o alpinista pretender seguir para Oeste, ele sobe ou desce?
 - (b) Se o alpinista pretende seguir para nordeste, ele sobe ou desce? Indique a taxa de variação da altitude a que se encontra o alpinista.
 - (c) Diga qual a direcção que o alpinista deve escolher para
 - (i) ascender mais rapidamente; (ii) pero
- (ii) percorrer um caminho plano.
- 4. Considere uma placa de metal aquecida tal que em cada ponto (x,y) a temperatura é dada por $T(x,y) = 80 20xe^{-\frac{1}{20}(x^2+y^2)}$. Um insecto está no ponto (2,1).
 - (a) O insecto desloca-se na direcção do ponto (1, -2). Qual a taxa de variação da temperatura nessa direcção?
 - (b) Em que direcção se deve mover o insecto para se aquecer o mais rapidamente possível? Qual a variação da temperatura nessa direcção?
 - (c) Observe o campo de vectores gradientes de T e tire conclusão acerca da temperatura da placa.

2.8 Máximos e Mínimos

Definição 2.86. Sejam $f: D \to \mathbb{R}$ uma função e $P_0 \in D$.

- 1. Diz-se que f tem um **máximo relativo** (ou **local**) $f(P_0)$ se existe uma bola aberta B centrada em P tal que, para todo o $P \in B \cap D$, se tem $f(P) \leq f(P_0)$.
- 2. Diz-se que f tem **máximo absoluto** $f(P_0)$ se, para todo o $P \in D$, se tem $f(P) \leq f(P_0)$.
- 3. Diz-se que f tem um **mínimo relativo** (ou **local**) $f(P_0)$ se existe uma bola aberta B centrada em P_0 tal que, para todo o $P \in B \cap D$, se tem $f(P) \ge f(P_0)$.
- 4. Diz-se que f tem **mínimo absoluto** $f(P_0)$ se, para todo o $P \in D$, se tem $f(P) \ge f(P_0)$.
- 5. Os mínimos relativos e os máximos relativos de uma função f dizem-se **extremos relativos** de f.
- 6. O mínimo absoluto e o máximo absoluto de uma função f dizem-se **extremos absolutos** de f.

Exemplos 2.87. A função $f:D=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2\leq 4\}\to\mathbb{R}$ definida por

$$f(x,y) = \sqrt{4 - (x^2 + y^2)}$$

tem máximo absoluto f(0,0)=2, pois para qualquer $(x,y)\in\mathbb{R}^2$, $f(x,y)=\sqrt{4-(x^2+y^2)}\leq \sqrt{4}=2=f(0,0)$.

A função f tem mínimo absoluto 0, pois

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = \sqrt{4 - (x^2 + y^2)} \ge 0$$

e f toma o valor 0 nos pontos da circunferência $x^2 + y^2 = 4$.

1. A função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \sin(xy)$ tem máximo absoluto 1, pois para todo o $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \sin(xy) \le 1 = f(1,\frac{\pi}{2}).$$

A função f tem mínimo absoluto -1, pois para todo o $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \sin(xy) \ge -1$$

e $f(-1, \frac{\pi}{2}) = -1$, por exemplo.

2.8.1 Extremos Livres

Definição 2.88. Sejam $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função e $P_0 \in D$. Se as derivadas parciais de 1^a ordem de f são nulas em P_0 ou pelo menos uma delas não existe, então P_0 diz-se um **ponto crítico** de f.

Exemplo 2.89. Determinemos os pontos críticos da função $f(x,y) = 1 - x^2 + xy$: A função f tem derivadas parciais

$$f_x(x,y) = -2x + y,$$
 $f_y(x,y) = x.$

Assim, os pontos críticos de f são as soluções do sistema

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} -2x + y = 0 \\ x = 0 \end{cases},$$

ou seja, (x, y) = (0, 0). O único ponto crítico de $f \in (0, 0)$.

Proposição 2.90 (Primeiro teste da derivada). Sejam $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função e (a_1, \ldots, a_n) um ponto interior de D. Suponhamos que f tem derivadas parciais de 1^a ordem em (a_1, \ldots, a_n) . Se f tem um extremo local em (a_1, \ldots, a_n) então $\nabla f(a_1, \ldots, a_n) = (0, \ldots, 0)$.

Definição 2.91. Se f é diferenciável num ponto P_0 , $\nabla f(P_0) = \vec{0}$ e qualquer bola aberta centrada em P_0 contém pontos P tais que $f(P) < f(P_0)$ e pontos Q tais que $f(Q) > f(P_0)$, o ponto P_0 diz-se **ponto sela**.

Exercícios 2.92. 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^2 + y^2 - 2x - 6y + 14.$$

Mostre que (1,3) é ponto crítico de f e f(1,3) é o mínimo absoluto de f.

2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 - y^2$. Mostre que (0,0) é ponto crítico de f mas f(0,0) não é extremo local de f.

Proposição 2.93 (Teste da segunda derivada). Sejam D um aberto e $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função. Suponha-se que f tem derivadas parciais de 2^a ordem contínuas em D. Seja (a,b) um ponto crítico de f (isto é, tem-se $f_x(a,b)=0$ e $f_y(a,b)=0$). Seja

$$d = \begin{vmatrix} f_{x^2}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{y^2}(a,b) \end{vmatrix} = f_{x^2}(a,b)f_{y^2}(a,b) - f_{xy}(a,b)f_{yx}(a,b)$$
$$= f_{x^2}(a,b)f_{y^2}(a,b) - (f_{xy}(a,b))^2.$$

- 1. Se d > 0 e $f_{x^2}(a, b) > 0$ então f(a, b) é mínimo local.
- 2. Se d > 0 e $f_{x^2}(a, b) < 0$ então f(a, b) é máximo local.
- 3. Se d < 0 então f(a, b) não é máximo local nem mínimo local.

Observação 2.94. 1. Os pontos (a, b) que verificam a condição 3. do Teorema anterior são pontos sela.

2. Se d=0 na proposição anterior, temos um caso duvidoso: f(a,b) pode ou não ser extremo local.

3. A matriz
$$\begin{bmatrix} f_{x^2}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{y^2}(a,b) \end{bmatrix}$$
 diz-se **matriz Hessiana** de f em (a,b) .

As figuras seguintes são gráficos de funções com ponto sela.

Exercício 2.95. Para cada uma das funções seguintes, determine os pontos críticos e verifique se algum dos pontos críticos é extremante local da função.

(a)
$$f(x,y) = x^2 + 2y^2 - x$$
;

(b)
$$g(x,y) = y^2 - x^2$$
;

(c)
$$h(x,y) = 3x^2 - 2xy + y^2 - 8y$$
.

2.8.2 Extremos Absolutos

Definição 2.96. 1. O ponto $a \in \mathbb{R}^n$ diz-se **ponto fronteiro** de $S \subseteq \mathbb{R}^n$ quando, qualquer que seja $r \in \mathbb{R}^+$, se tem

$$B(a,r) \cap S \neq \emptyset, \qquad B(a,r) \cap (\mathbb{R}^n \backslash S) \neq \emptyset.$$

- 2. A fronteira de $S \subseteq \mathbb{R}^n$ é o conjunto dos pontos fronteiros de S e denota-se por fr(S).
- 3. Um conjunto $S \subseteq \mathbb{R}^n$ diz-se **fechado** se S contém a sua fronteira fr(S).
- 4. Um conjunto $S \subseteq \mathbb{R}^n$ diz-se **limitado** se existe uma bola (aberta ou fechada) que contém S.

Exemplos 2.97. 1. Todos os pontos da circunferência $x^2 + y^2 = 4$ são pontos de fronteira do conjunto $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$. O conjunto A é fechado e é limitado.

- 2. Os pontos do plano y=2 são pontos da fronteira do conjunto $B=\{(x,y,z)\in\mathbb{R}^3:\ y\geq 2\}.$ O conjunto B é fechado e não é limitado.
- 3. Se $S = \{(x, y) \in \mathbb{R}^2 : x = 1\}$ então fr(S) = S. O conjunto S é fechado e não é limitado.
- 4. A fronteira de $T = \{(x, y) \in \mathbb{R}^2 : x < y\}$ é o conjunto

$$fr(T) = \{(x, y) \in \mathbb{R}^2 : x = y\}.$$

O conjunto T não é fechado nem limitado.

Teorema 2.98 (Teorema de Weierstrass). Seja $A \subseteq \mathbb{R}^n$ um conjunto fechado e limitado. Se a função $f: A \to \mathbb{R}$ é contínua então f tem um máximo e um mínimo absolutos em A, isto é, existem $u, v \in A$ tais que

$$\forall x \in A, \quad f(x) \le f(u), \quad f(x) \ge f(v).$$

Exemplo 2.99. A função $f(x,y) = x^3 - ye^{x^4y^7}$, definida em

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + 3y^2 \le 4\}$$

é uma função contínua definida num conjunto fechado e limitado, logo f atinge em A um valor máximo e um valor mínimo.

Para determinar os extremos absolutos de uma função contínua $f: A \to \mathbb{R}$, onde A é um subconjunto fechado e limitado de \mathbb{R}^n (com n = 2 ou n = 3), procedemos da seguinte forma:

- (1.) Calculamos os pontos críticos de f no conjunto dos pontos interiores de A.
- (2.) Determinamos os candidatos a extremos de f na fronteira de A.
- (3.) Listamos os valores de f nos pontos críticos determinados em (1.) e os candidatos a extremos de f obtidos em (2.). O maior valor da lista será o máximo absoluto de f em A e o menor valor será o mínimo absoluto de f em A.

Exemplo 2.100. Determinemos os extremos absolutos da função $f(x,y) = x^2 + 2y^2 - x$ na região $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$

Note-se que A é um subconjunto de \mathbb{R}^2 fechado e limitado e que f uma função contínua em A. Pelo Teorema de Weierstrass, f tem máximo absoluto e mínimo absoluto em A.

(1.) A função f tem derivadas parciais

$$f_x(x,y) = 2x - 1$$
 $f_y(x,y) = 4y$,

logo o único ponto crítico de f é o ponto $(\frac{1}{2},0)$, que é ponto interior de A.

(2.) Se (x,y) é um ponto da fronteira de A então $y^2 = 4 - x^2$ e $x \in [-2,2]$. Assim,

$$f(x,y) = x^2 + 2(4 - x^2) - x = -x^2 - x + 8.$$

Seja $g(x) = -x^2 - x + 8$, $x \in [-2, 2]$. A função g é derivável e

$$g'(x) = -2x - 1, \ x \in [-2, 2].$$

Ora,

$$g'(x) = 0 \Leftrightarrow -2x - 1 = 0 \Leftrightarrow x = -\frac{1}{2}$$
.

Portanto os candidatos a extremos de g são $g(-\frac{1}{2}) = \frac{33}{4}$, g(-2) = 6 e g(2) = 2.

(3.) Os candidatos a extremos de f são $f(\frac{1}{2},0)=-\frac{1}{4}, g(2)=f(2,0)=2$ e

$$g(-\frac{1}{2}) = f(-\frac{1}{2}, \frac{15}{4}) = f(-\frac{1}{2}, -\frac{15}{4}) = \frac{33}{4}, \quad g(-2) = f(-2, 0) = 6.$$

Assim, o máximo absoluto de f em A é $\frac{33}{4}$ e o mínimo absoluto de f em A é $-\frac{1}{4}$.

Exemplo 2.101. Determinemos os extremos absolutos da função $f(x,y)=x^2+x^2y+y^2$ na região $A=\{(x,y)\in\mathbb{R}^2: -2\leq y\leq -\frac{x^2}{2}\}.$

Note-se que A é um subconjunto de \mathbb{R}^2 fechado e limitado e que f é uma função contínua em A. Pelo Teorema de Weierstrass, f tem máximo absoluto e mínimo absoluto em A.

(1.) A função f tem derivadas parciais

$$f_x(x,y) = 2x + 2xy,$$
 $f_y(x,y) = x^2 + 2y.$

Determinemos as soluções do sistema $\left\{ \begin{array}{ll} fx(x,y) &= 0 \\ f_y(x,y) &= 0 \end{array} \right. :$

$$\begin{cases} 2x + 2xy = 0 \\ x^2 + 2y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x(1+y) = 0 \\ x^2 + 2y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} y = -1 \\ x^2 = 2 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow x = y = 0 \lor (x = \sqrt{2}, \ y = -1) \lor (x = -\sqrt{2}, \ y = -1)$$

Então os pontos críticos são (0,0), $(\sqrt{2},-1)$ e $(-\sqrt{2},-1)$. Estes pontos pertencem à fronteira de A (se forem pontos onde a função tem extremos, também serão encontrados em (2.).

(2.) A fronteira de $A \in A_1 \cup A_2$ com $A_1 = \{(x, y) \in \mathbb{R}^2 : y = -2, -2 \le x \le 2\}$ e

$$A_2 = \{(x, y) \in \mathbb{R}^2 : y = -\frac{x^2}{2}, -2 \le x \le 2\}.$$

• Seja $(x,y)\in A_1$. Então $f(x,y)=f(x,-2)=-x^2+4, \quad -2\leq x\leq 2$. Seja $g(x)=-x^2+4, \ x\in [-2,2]$. A função g é derivável e g'(x)=-2x. Ora,

$$g'(x) = 0 \Leftrightarrow -2x = 0 \Leftrightarrow x = 0.$$

Portanto os candidatos a extremos de g são g(0) = 4 e g(-2) = 0 = g(2).

• Seja
$$(x,y) \in A_2$$
. Então $f(x,y) = f(x, -\frac{x^2}{2}) = x^2 - \frac{x^4}{4}, -2 \le x \le 2$.

Seja
$$h(x) = x^2 - \frac{x^4}{4}$$
, $x \in [-2, 2]$. A função h é derivável e $h'(x) = 2x - x^3$. Ora,

$$h'(x) = 0 \Leftrightarrow x(2-x^2) = 0 \Leftrightarrow x = 0 \lor x^2 = 2 \Leftrightarrow x = 0 \lor x = \sqrt{2} \lor x = -\sqrt{2}.$$

Portanto os candidatos a extremos de h são h(0) = 0, $h(-\sqrt{2}) = 1 = h(\sqrt{2})$ e h(2) = 0 = h(-2).

(3.) Os candidatos a extremos de f são 0, 1 e 4. Assim, o máximo absoluto de f em A é 4 e o mínimo absoluto de f em A é 0.

2.8.3 Extremos Condicionados

Sejam f e g funções reais definidas num conjunto aberto $A \subseteq \mathbb{R}^2$. A determinação dos extremos de f(x,y) quando (x,y) não percorre livremente o aberto A mas tem que satisfazer g(x,y)=0 é um problema de **extremos condicionados**. Este problema estende-se naturalmente ao caso em que f é uma função de três variáveis definida num aberto e se pretende calcular os extremos de f em conjuntos de pontos que satisfazem uma ou duas condições da forma g(x,y,z)=0.

Seja D um subconjunto de \mathbb{R}^n e seja C um subconjunto de D. Seja $f:D\to\mathbb{R}$ uma função. Denotamos por $f_{|C}$ a função de domínio C tal que $f_{|C}(P)=f(P)$, para todo o $P\in C$. A função $f_{|C}$ diz-se **restrição** de f a C.

Teorema 2.102 (Multiplicadores de Lagrange). Sejam D um aberto de \mathbb{R}^n (n=2 ou n=3) e $f,g:D\to\mathbb{R}$ funções com derivadas parciais de 1ª ordem contínuas em D. Seja \mathcal{C} o conjunto dos pontos $P\in D$ tais que g(P)=0 e seja $P_0\in\mathcal{C}\cap D$. Suponhamos que o gradiente de g em $P_0,\nabla g(P_0)$, é não nulo.

Se $f_{|\mathcal{C}}$ tem um extremo local em P_0 então existe $\lambda \in \mathbb{R}$ tal que a função

$$F(P) = f(P) - \lambda g(P), \quad P \in D,$$

tem um ponto crítico em P_0 .

O número λ diz-se multiplicador de Lagrange.

Na figura seguinte estão representadas algumas curvas de nível de uma função f e uma curva de equação g(x,y)=k.

Suponhamos que as funções f(x,y) e g(x,y) têm derivadas parciais de 1^a ordem contínuas num conjunto aberto $D \subseteq \mathbb{R}^2$ e que $\nabla g(x,y) \neq (0,0)$ em D. Seja $\mathcal{C} = \{(x,y) \in D : g(x,y) = 0\}$. Para determinar os candidatos a extremos condicionados de f, resolvemos o sistema de equações

$$\begin{cases} F_x(x,y) = 0 \\ F_y(x,y) = 0 \\ g(x,y) = 0 \end{cases}, \quad \text{ou seja,} \quad \begin{cases} f_x(x,y) - \lambda g_x(x,y) = 0 \\ f_y(x,y) - \lambda g_y(x,y) = 0 \\ g(x,y) = 0 \end{cases}$$

para $x, y \in \lambda$.

(*) Para cada ponto (x, y) obtido, calculamos f(x, y).

Se $f_{|C}$ tiver máximo, então esse máximo é o maior valor obtido em (*). Se $f_{|C}$ tiver mínimo, então esse mínimo é o menor valor obtido em (*).

Exemplos 2.103. 1. Determinemos os candidatos a extremos da função

 $f(x,y)=x^2+4y^3, \quad (x,y)\in\mathbb{R}^2 \text{ sobre a elipse } x^2+2y^2=1.$

Seja $g(x,y) = x^2 + 2y^2 - 1$, $(x,y) \in \mathbb{R}^2$. As derivadas parciais f_x , f_y , g_x e g_y existem e são contínuas pois

$$f_x(x,y) = 2x$$
, $f_y(x,y) = 12y^2$, $g_x(x,y) = 2x$, $g_y(x,y) = 4y$.

Além disso, $\nabla g(x,y) \neq (0,0)$ para todo o $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, e (0,0) não é um ponto da elipse $x^2 + 2y^2 = 1$. O sistema

$$\begin{cases} 2x - \lambda(2x) = 0\\ 12y^2 - \lambda(4y) = 0\\ x^2 + 2y^2 - 1 = 0 \end{cases}$$

tem soluções

$$\begin{cases} x = 0 \\ y = \frac{1}{\sqrt{2}} \\ \lambda = \frac{3}{\sqrt{2}} \end{cases}, \begin{cases} x = 0 \\ y = -\frac{1}{\sqrt{2}} \\ \lambda = -\frac{3}{\sqrt{2}} \end{cases}, \begin{cases} x = 1 \\ y = 0 \\ \lambda = 1 \end{cases}, \begin{cases} x = -1 \\ y = 0 \\ \lambda = 1 \end{cases}, \begin{cases} x = \frac{\sqrt{7}}{3} \\ y = \frac{1}{3} \\ \lambda = 1 \end{cases}, e \begin{cases} x = -\frac{\sqrt{7}}{3} \\ y = \frac{1}{3} \\ \lambda = 1 \end{cases}$$

Como
$$f(0, \frac{1}{\sqrt{2}}) = \sqrt{2}$$
, $f(1, 0) = 1 = f(-1, 0)$, $f(0, -\frac{1}{\sqrt{2}}) = -\sqrt{2}$,

$$f(\frac{\sqrt{7}}{3}, \frac{1}{3}) = \frac{25}{27} = f(-\frac{\sqrt{7}}{3}, \frac{1}{3}),$$

tem-se que o máximo de f na elipse (caso exista) é $f(0, \frac{1}{\sqrt{2}}) = \sqrt{2}$ e o mínimo de f na f

elipse (caso exista) é $f(0, \frac{1}{\sqrt{2}}) = -\sqrt{2}$.

A função f é contínua e o conjunto

$$\{(x,y) \in \mathbb{R}^2 : x^2 + 2y^2 = 1\}$$

é um conjunto limitado e fechado. Pelo Teorema de Weierstrass, f tem máximo e mínimo absolutos sobre a elipse.

2. Determinemos os extremos da função $f(x,y,z)=xyz,\quad (x,y,z)\in\mathbb{R}^3$ sobre o elipsóide $x^2+\frac{y^2}{12}+\frac{z^2}{3}=1.$

$$g(x, y, z) = x^2 + \frac{y^2}{12} + \frac{z^2}{3} - 1, \quad (x, y, z) \in \mathbb{R}^3.$$

Procuramos os extremos de f no conjunto g(x, y, z) = 0. Ora-

$$f_x(x, y, z) = yz, \quad f_y(x, y, z) = xz, \quad f_z(x, y, z) = xy$$

е

$$g_x(x, y, z) = 2x, \quad g_y(x, y, z) = \frac{y}{6}, \quad g_z(x, y, z) = \frac{2z}{3},$$

portanto as derivadas parciais f_x , f_y , f_z , g_x , g_y , g_z são contínuas em \mathbb{R}^3 . Além disso, $\nabla g(x,y,z) \neq (0,0,0)$ para todo o $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, e (0,0,0) não é um ponto do elipsóide $x^2 + \frac{y^2}{12} + \frac{z^2}{3} = 1$.

elipsoide
$$x^2 + \frac{1}{12} + \frac{1}{3} = 1$$
.

Resolvamos o sistema
$$\begin{cases}
yz - \lambda(2x) = 0 \\
xz - \lambda(\frac{y}{6}) = 0 \\
xy - \lambda(\frac{2z}{3}) = 0 \\
x^2 + \frac{y^2}{12} + \frac{z^2}{3} - 1 = 0
\end{cases}$$

O sistema anterior tem soluções
$$\begin{cases} x = 1 \\ y = 0 \\ z = 0 \end{cases}, \begin{cases} x = -1 \\ y = 0 \\ z = 0 \end{cases}, \begin{cases} x = 0 \\ y = -2\sqrt{3} \\ z = 0 \\ \lambda = 0 \end{cases}, \begin{cases} x = 0 \\ y = 2\sqrt{3} \\ z = 0 \\ \lambda = 0 \end{cases}$$

$$\begin{cases} x = 0 \\ y = 0 \\ z = -\sqrt{3} \end{cases}, \begin{cases} x = 0 \\ y = 0 \\ z = \sqrt{3} \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = -2 \\ z = -1 \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = -2 \\ z = 1 \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\sqrt{3} \\ \lambda = \sqrt{3} \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\sqrt{3} \\ \lambda = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \\ \lambda = -\sqrt{3} \end{cases}, \begin{cases} x = -\frac{\sqrt{3}}{3} \\ y = 2 \end{cases}, \begin{cases} x = -\sqrt{3} \\ \lambda = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \\ \lambda = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \end{cases}, \begin{cases} x = -\sqrt{3} \end{cases},$$

Se x = 0 ou y = 0 ou z = 0 então f(x, y, z) = 0. Nos outros casos,

$$f(x, y, z) = -\frac{2\sqrt{3}}{3}$$
 ou $f(x, y, z) = \frac{2\sqrt{3}}{3}$.

Então o máximo de f no elipsóide (caso exista) é $\frac{2\sqrt{3}}{3}$ e o mínimo de f no elipsóide (caso exista) é $-\frac{2\sqrt{3}}{3}$.

Note-se que f é contínua e o conjunto $C = \{(x,y,z) \in \mathbb{R}^3 : x^2 + \frac{y^2}{12} + \frac{z^2}{3} = 1\}$ é um conjunto limitado e fechado. Pelo Teorema de Weierstras, existem máximo e mínimo absolutos de f no conjunto C.