

FIG. 1
(Prior Art)

- = Center of Sphere
- = Source Focus
- \vec{F} = Gradient Force

- = Center of Sphere
- = Source Focus
- \vec{F} = Gradient Force

FIG. 2A
(Prior Art)

FIG. 2B
(Prior Art)

- = Center of Sphere
- = Source Focus
- \vec{F} = Gradient Force

FIG. 2C
(Prior Art)

n = Index of Refraction
N.A. = Numerical Aperture
TIR = Total Internal Reflection

FIG. 3
(Prior Art)

FIG. 4
(Prior Art)

FIG. 5
 (Prior Art)

FIG. 6

FIG. 7

FIG. 8C

FIG. 8B

FIG. 8A

FIG. 9

FIG. 10C

FIG. 10B

FIG. 10A

Page 11 of 13
MANIPULATION OF LIVE CELLS AND INORGANIC OBJECTS WITH OPTICAL MICRO BEAM ARRAYS
Mihrimah Ozkan et al.
09/917,139 (15670-036001)
REPLACEMENT SHEET

FIG. 11A

FIG. 11B

FIG. 12

Measurement of Trapping Force on 10 μm Sphere as a Function of Driving Current

Current (mA)	Power (mW)	Power at M.O. (mW)	Speed ($\mu\text{m/sec}$)	Force (pN)	Mode
Insufficient Power to Trap					
8.5	1.58	1.33	3	0.28	
10	1.76	1.3	3.75	0.35	
14	3.52	2.68	6	0.57	
18	4.4	2.46	6.4	0.6	

FIG. 13

FIG. 14