MAC0219 - INTRODUÇÃO À COMPUTAÇÃO PARALELA E DISTRIBUÍDA RELATÓRIO MINIEP5

Nome: Beatriz Viana Costa Número USP: 13673214

Questão 1:

Ao usar blocagem no mini EP, criei 4 variáveis auxiliares, sendo que 1 delas, tamBloco, guarda o tamanho de cada bloco, e as 3 restantes, ii, jj, e kk, são iteradores auxiliares.

Estas variáveis auxiliares, diferentemente das variáveis iteradoras usuais, vão de 0 à n com saltos iguais ao valor de tamBloco, dessa forma fazemos os cálculos de bloco em bloco, otimizando o uso do cache.

Os resultados foram obtidos por meio de 10 execuções, sempre fazendo uma depois de cada compilação para o descarte:

	N	tempo médio em s	
	512	0.096784s	
	1024	0.385673s	
	2048	$3.688577\mathrm{s}$	
	4096	43.55004s	
ТА	BELA	1. Para $tamBloco =$	$\frac{n}{16}$

	N	tempo médio em s	
	512	0.106856s	
	1024	0.407895s	
	2048	2.974925s	
	4096	42.31531s	
TA	BELA :	2. Para $tamBloco =$	$\frac{n}{32}$
Та	BELA :	2. Para $tamBloco =$	$\frac{n}{32}$

	N	tempo médio em s	
	512	0.12947s	
	1024	0.44379s	
	2048	$3.96501\mathrm{s}$	
	4096	36.90221s	
Та	BELA	B. Para tamBloco =	$\frac{n}{64}$
			-

Questão 2:

Da mesma forma que na questão anterior, realizamos 10 execuções, fazendo uma execução de descarte logo após a compilação, para obter os dados relativos à implementação matrix_dgemm_1. Como já possuímos os dados relativos à matrix_dgemm_2, apenas os copiamos na tabela a seguir, para comparação mais direta.

tamE	Bloco	N	$matrix_dgemm_1$	$matrix_dgemm_2$
$\frac{n}{16}$	3	512	0.097057s	0.096784s
$\frac{\tilde{n}}{16}$	3	1024	0.448758s	0.385673s
$\begin{bmatrix} \frac{n}{16} \\ \frac{n}{16} \\ \frac{n}{32} \\ n \end{bmatrix}$	5	2048	6.528890s	2.974925s
$\frac{3}{64}$		4098	58.006782s	36.90221s

Tabela 4. Tempo em segundos da média de execução de cada implementação.

Por meio da amostragem destes casos, podemos notar que a diferença no tempo médio de execução entre as duas implementações se torna significativa à medida que N cresce.

Para N=512, a diferença é desconsiderável. Já para N a partir de 1024 a diferença começa a se tornar cada vez maior.

Questão 3:

Resultados obtidos por meio de 10 execuções, fazendo uma inicialmente para descarte:

N	tempo médio em s
512	0.078821s
1024	0.514883s
2048	4.558090s
4096	37.80875s

TABELA 5. Para $tamBloco = \frac{n}{16}$

N	tempo médio em s
512	0.079434s
1024	0.519671s
2048	4.454231s
4096	38.17118s

TABELA 6. Para $tamBloco = \frac{n}{32}$

N	tempo médio em s
512	0.07874s
1024	0.527442s
2048	4.407359s
4096	43.43267s

TABELA 7. Para $tamBloco = \frac{n}{64}$

É possível notar que houve uma mudança de desempenho em relação ao N e ao tamanho do bloco que utilizamos, por exemplo, é notável nestes testes, que quando aumentamos do tamanho do bloco no caso N=4096, o tempo de execução diminui, enquanto nos testes apresentados na ${\bf Questão~1.}$, para o mesmo N, o tempo de execução melhora à medida que diminuímos o tamanho do bloco.