Question number	Scheme	Marks
4 (a)	$2 = 4\sin 2t \Rightarrow \sin 2t = 0.5 \Rightarrow 2t = \frac{\pi}{6} \Rightarrow t = \frac{\pi}{12} [\approx 0.26179]$	M1A1 (2)
(b)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 8\cos 2t \Rightarrow a = 8\cos\left(2 \times \frac{\pi}{12}\right) = 4\sqrt{3} \ (6.928) \left(\text{m/s}^2\right)$	M1dM1 A1cao (3)
(c)	$s = \int 4\sin 2t dt = -2\cos 2t \left(+c\right)$	M1A1
	$t = \frac{\pi}{4} \Rightarrow 3 = -2\cos\frac{\pi}{2} + c \Rightarrow c = 3$ $s = 3 - 2\cos 0 \Rightarrow s = 3 - 2 = 1 \text{ (m)}$	dM1 A1cao (4) [9]
(a)		
M1	Equate <i>v</i> to 2 and solve the equation by any valid method to obtain at least one value of <i>t</i> (not nec the least, but must be radians) Allow degrees only if then changed to radians.	
A1	Correct, least value. Can be exact or decimal – 3 sf minimum	
(b)		
M1	Differentiate v. $4\sin 2t \rightarrow k\cos 2t$, $k = \pm 8$ or ± 4	
dM1	Substitute their answer from (a) and obtain a positive value for <i>a</i> . De the previous M mark	pends on
	OR: use $\cos 2x = \sqrt{1 - \sin^2 2x}$ with their value for $\sin 2x$ from (a)	
A1cao	$4\sqrt{3}$ or 6.928 6.93 (3 sf minimum)	
	Allow all marks here if their answer from (a) is in degrees	
(c)		
M1	Integrate v. $4\sin 2t \rightarrow k\cos 2t$, $k = \pm 2, \pm 4$. If definite integration ign	nore limits
	here.	
A1	Correct integration, constant (or limits) not needed	
dM1	Substitute $t = \frac{\pi}{4}$ and $s = 3$ to obtain the value of c	
	Definite integration: Substitute correct limits $t = 0, \frac{\pi}{4}$ and $s = 3$	
	Depends on the previous M mark.	
A1cao	s = 1 (m)	