淇江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 47——数列求和 4

学号: ______姓名: _____

一、单选题

1. 已知数列 $\left\{a_{n}\right\}$ 中, $a_{1}=1, a_{n}=3a_{n-1}+4(n\in N^{*}, n\geq 2)$,求数列 $\left\{a_{n}\right\}$ 的前 n 项和 S_{n} 为()

A.
$$S_n = \frac{3^{n+1} - 2n - 3}{2}$$

B.
$$S_n = \frac{3^{n+1} + 2n - 3}{2}$$

$$S_n = \frac{3^{n+1} - 4n - 3}{2}$$

D.
$$S_n = \frac{3^{n+1} - 3}{2}$$

2. 等比数列 $\{a_n\}$ 中, $a_1=2$,数列 $b_n=\frac{a_n}{(a_{n+1}-1)(a_n-1)}$, $\{b_n\}$ 的前n 项和为 T_n ,则 T_{10} 的值为()

A.
$$\frac{4094}{4095}$$

B.
$$\frac{2046}{2047}$$

B.
$$\frac{2046}{2047}$$
 C. $\frac{1022}{1023}$ **D.** $\frac{510}{511}$

D.
$$\frac{510}{511}$$

3. 已知函数 $f(x) = \frac{4^x}{4^x + 2}$, 数列 $\{a_n\}$ 满足 $a_n = f\left(\frac{n}{2020}\right)$, 则数列 $\{a_n\}$ 的前 2019 项和为()

A.
$$\frac{2019}{2}$$

B. 1010

c. $\frac{2021}{2}$ D. 1011

4. 已知数列 $\{a_n\}$ 的前n项和为 S_n ,前n项积为 T_n ,且 $a_1 = \frac{1}{2}$, $\frac{S_{n+1}}{S_n} = \frac{2^{n+1}-1}{2^{n+1}-2}$.若 $b_n = -\log_2 T_n$,则数列 $\left\{\frac{1}{b_n}\right\}$ 的前n

项和 A_n 为()

A.
$$\frac{2n}{n+1}$$
 B. $\frac{n}{n+2}$ C. $\frac{n+1}{2^n}$ D. $\frac{3}{2^{n+1}}$

$$\mathbf{B.} \quad \frac{n}{n+2}$$

c.
$$\frac{n+1}{2^n}$$

D.
$$\frac{3}{2^{n+1}}$$

5. 数列 $\{b_n\}$ 满足 $b_{n+1}=rac{b_n}{2}+rac{1}{2^{n+1}}$,若 $b_1=rac{1}{2}$,则 $\{b_n\}$ 的前n项和为()

A.
$$1-\frac{n+2}{2^{n+1}}$$

B.
$$1-\frac{n+1}{2^{n+1}}$$

c.
$$2 - \frac{n+2}{2^n}$$

A.
$$1 - \frac{n+2}{2^{n+1}}$$
 B. $1 - \frac{n+1}{2^{n+1}}$ **C.** $2 - \frac{n+2}{2^n}$ **D.** $2 - \frac{3n+3}{2^{n+1}}$

6. 已知等差数列 $\{a_n\}$ 的公差为 2,前 n 项和为 S_n ,且 S_1 , S_2 , S_4 成等比数列.令 $b_n = \frac{1}{a_n a_{n+2}}$,数列 $\{b_n\}$ 的前 n 项和

为 T_n ,若对于 $\forall n \in N^*$,不等式 $T_n < \lambda$ 恒成立,则实数 λ 的取值范围是(

$$\mathbf{A.} \quad \lambda \ge \frac{1}{3}$$

$$\mathbf{B.} \quad \lambda > \frac{1}{5}$$

A.
$$\lambda \ge \frac{1}{3}$$
 B. $\lambda > \frac{1}{5}$ **C.** $\lambda \ge \frac{1}{5}$ **D.** $\lambda > 0$

$$\mathbf{D.} \quad \lambda > 0$$

7. 已知数列 $\{a_n\}$ 满足 $a_{n+1}=a_n^2-a_n+1$ $\left(n\in N^*\right)$,设 $S_n=\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}$,且 $S_9=\frac{2a_{10}-3}{a_{10}-1}$,则数列 $\{a_n\}$ 的首项 a_1 的值

A.
$$\frac{2}{3}$$
 B. 1 **C.** $\frac{3}{2}$

c.
$$\frac{3}{2}$$

8. 设 S_n 为数列 $\left\{a_n\right\}$ 的前n 项和, $S_n = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$,则 $S_1 + S_2 + \dots + S_{100} = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$,则 $S_1 + S_2 + \dots + S_{100} = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$,则 $S_1 + S_2 + \dots + S_{100} = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$,则 $S_1 + S_2 + \dots + S_{100} = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$,则 $S_1 + S_2 + \dots + S_{100} = (-1)^n a_n - \frac{1}{2^n}, n \in \mathbb{N}^*$

A.
$$\frac{1}{3} \left[\left(\frac{1}{2} \right)^{100} - 1 \right]$$
 B. $\frac{1}{3} \left[\left(\frac{1}{2} \right)^{98} - 1 \right]$ **C.** $\frac{1}{3} \left[\left(\frac{1}{2} \right)^{50} - 1 \right]$ **D.** $\frac{1}{3} \left[\left(\frac{1}{2} \right)^{49} - 1 \right]$

B.
$$\frac{1}{3} \left[\left(\frac{1}{2} \right)^{98} - 1 \right]$$

c.
$$\frac{1}{3} \left[\left(\frac{1}{2} \right)^{50} - 1 \right]$$

D.
$$\frac{1}{3} \left[\left(\frac{1}{2} \right)^{49} - 1 \right]$$

9. 2018年9月24日,英国数学家 M.F 阿帝亚爵在"海德堡论坛"展示了他"证明"黎曼猜想的过程,引起数学 界震动,黎曼猜想来源于一些特殊数列求和. 记无穷数列 $\left\{\frac{1}{n^2}\right\}$ 的各项的和 $S=1+\frac{1}{2^2}+\frac{1}{3^2}+L+\frac{1}{n^2}+L$,那么下列结 论正确的是

A.
$$1 < S < \frac{4}{3}$$

A.
$$1 < S < \frac{4}{3}$$
 B. $\frac{5}{4} < S < \frac{4}{3}$ **C.** $\frac{3}{2} < S < 2$

c.
$$\frac{3}{2} < S < 2$$

D.
$$S > 2$$

10. 已知数列 $\{a_n\}$ 满足 $a_n>0$, $a_1=2$,且 $(n+1)a_{n+1}^2=na_n^2+a_n$, $n\in \mathbb{N}^*$,则下列说法中错误的是(

A.
$$a_n^2 \le \frac{2n+2}{n}$$

A.
$$a_n^2 \le \frac{2n+2}{n}$$
 B. $\frac{a_2^2}{2^2} + \frac{a_3^2}{3^3} + \frac{a_4^2}{4^2} + L + \frac{a_n^2}{n^2} < 2$ **C.** $1 < a_{n+1} < a_n$

c.
$$1 < a_{n+1} < a_n$$

D.
$$2 \le a_n < a_{n+1}$$

11. 已知数列 $\{a_n\}$ 满足 $a_1 = \frac{1}{3}$, $a_{n+1} = a_n + \frac{a_n^2}{n^2} (n \in \mathbb{N}^*)$,则下列选项正确的是(

A.
$$a_{2021} < a_{2020}$$

A.
$$a_{2021} < a_{2020}$$
 B. $\frac{2021}{4043} < a_{2021} < 1$

c.
$$0 < a_{2021} < \frac{2021}{4043}$$
 D. $a_{2021} > 1$

D.
$$a_{2021} > 1$$

二、填空题

13. 已知数列 $\{a_n\}$ 满足 $a_1=1$ 且 $a_1+\frac{1}{2}a_2+\frac{1}{3}a_3+\cdots+\frac{1}{n}a_n=a_{n+1}-1$ $\{n\in N^*\}$,数列 $\{2^na_n\}$ 的前n 项为 S_n ,则不等式

 $S_n \ge 30a_n$ 最小整数解为_____.

14. 用T(n)表示正整数n 所有因数中最大的那个奇数,例如: 9的因数有1, 3, 9, 则T(9) = 9, 10的因数有1, 2,

5, 10,则T(10)=5. 计算 $T(1)+T(2)+T(3)+\cdots+T(2^{2021}-1)=$ ______.

15. 数列 $\{a_n\}$ 满足 $a_1 + \frac{a_2}{3} + \frac{a_3}{5} + \dots + \frac{a_n}{2n-1} = (n+1)^2$,则 $a_n =$ ______;若 $b_n = \frac{1}{a}$,则数列 $\{b_n\}$ 的前n 项和 $S_n =$ ______

16. 已知数列 $\{a_n\}$ 满足 $2(n+1)a_n-na_{n+1}=0, a_1=4$,则数列 $\left\{\frac{a_n}{(n+1)-(n+2)}\right\}$ 的前 n 项和为______.

17. 设 S_n 是数列 $\{a_n\}$ 的前 n 项和,若 $S_n = (-1)^n a_n + \frac{1}{2^n}$,则 $S_1 + S_2 + ... + S_{11} = \underline{\hspace{1cm}}$.

18. 在各项均为正数的等比数列 $\{a_n\}$ 中, $a_3-a_1=8$,当 a_4 取最小值时,则数列 $\{na_n^2\}$ 的前 n 项和为_______.