```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing,svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

C:\Users\91720\AppData\Local\Temp\ipykernel\_26292\569056123.py:1: DtypeWarning: Columns (47,73) have mixed types. Sp
ecify dtype option on import or set low\_memory=False.
 df=pd.read\_csv(r"C:\Users\91720\Downloads\bottle.csv.zip")

#### Out[2]:

|        | Cst_Cnt | Btl_Cnt | Sta_ID         | Depth_ID                                                   | Depthm | T_degC | Salnty  | O2ml_L | STheta   | O2Sat  | <br>R_PHAEO | R_PRES | R_SAMP | DIC1 | DIC2 |
|--------|---------|---------|----------------|------------------------------------------------------------|--------|--------|---------|--------|----------|--------|-------------|--------|--------|------|------|
| 0      | 1       | 1       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0000A-3 | 0      | 10.500 | 33.4400 | NaN    | 25.64900 | NaN    | <br>NaN     | 0      | NaN    | NaN  | NaN  |
| 1      | 1       | 2       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0008A-3 | 8      | 10.460 | 33.4400 | NaN    | 25.65600 | NaN    | <br>NaN     | 8      | NaN    | NaN  | NaN  |
| 2      | 1       | 3       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0010A-7 | 10     | 10.460 | 33.4370 | NaN    | 25.65400 | NaN    | <br>NaN     | 10     | NaN    | NaN  | NaN  |
| 3      | 1       | 4       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0019A-3 | 19     | 10.450 | 33.4200 | NaN    | 25.64300 | NaN    | <br>NaN     | 19     | NaN    | NaN  | NaN  |
| 4      | 1       | 5       | 054.0<br>056.0 | 19-<br>4903CR-<br>HY-060-<br>0930-<br>05400560-<br>0020A-7 | 20     | 10.450 | 33.4210 | NaN    | 25.64300 | NaN    | <br>NaN     | 20     | NaN    | NaN  | NaN  |
|        |         |         |                |                                                            |        |        |         |        |          |        | <br>        |        |        |      |      |
| 864858 | 34404   | 864859  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0000A-7 | 0      | 18.744 | 33.4083 | 5.805  | 23.87055 | 108.74 | <br>0.18    | 0      | NaN    | NaN  | NaN  |
| 864859 | 34404   | 864860  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0002A-3 | 2      | 18.744 | 33.4083 | 5.805  | 23.87072 | 108.74 | <br>0.18    | 2      | 4.0    | NaN  | NaN  |
| 864860 | 34404   | 864861  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0005A-3 | 5      | 18.692 | 33.4150 | 5.796  | 23.88911 | 108.46 | <br>0.18    | 5      | 3.0    | NaN  | NaN  |
| 864861 | 34404   | 864862  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0010A-3 | 10     | 18.161 | 33.4062 | 5.816  | 24.01426 | 107.74 | <br>0.31    | 10     | 2.0    | NaN  | NaN  |
| 864862 | 34404   | 864863  | 093.4<br>026.4 | 20-<br>1611SR-<br>MX-310-<br>2239-<br>09340264-<br>0015A-3 | 15     | 17.533 | 33.3880 | 5.774  | 24.15297 | 105.66 | <br>0.61    | 15     | 1.0    | NaN  | NaN  |

864863 rows × 74 columns

In [3]: df=df[['Salnty','T\_degC']]
df.columns=['Sal','Temp']

## In [4]: df.head(10)

# Out[4]: Sal Temp 0 33.440 10.50 1 33.440 10.46

**2** 33.437 10.46

**3** 33.420 10.45

**4** 33.421 10.45

**5** 33.431 10.45

**6** 33.440 10.45

**7** 33.424 10.24

**8** 33.420 10.06

**9** 33.494 9.86

In [5]: | sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

#### Out[5]: <seaborn.axisgrid.FacetGrid at 0x1a6c5276fd0>



In [6]: df.describe()

#### Out[6]:

|       | Sal           | Temp          |
|-------|---------------|---------------|
| count | 817509.000000 | 853900.000000 |
| mean  | 33.840350     | 10.799677     |
| std   | 0.461843      | 4.243825      |
| min   | 28.431000     | 1.440000      |
| 25%   | 33.488000     | 7.680000      |
| 50%   | 33.863000     | 10.060000     |
| 75%   | 34.196900     | 13.880000     |
| max   | 37.034000     | 31.140000     |
|       |               |               |

#### In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
 # Column Non-Null Count Dtype

0 Sal 817509 non-null float64 1 Temp 853900 non-null float64

dtypes: float64(2)
memory usage: 13.2 MB

```
In [26]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)
```

Out[26]: <seaborn.axisgrid.FacetGrid at 0x1a6d325b190>



```
In [9]: x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
df.dropna(inplace=True)
```

C:\Users\91720\AppData\Local\Temp\ipykernel\_26292\1516682253.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [10]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.20382032523695925

```
In [11]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='g')
plt.plot(x_test,y_pred,color='k')
plt.show()
```



```
In [12]: df500=df[:][:500]
         sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
Out[12]: <seaborn.axisgrid.FacetGrid at 0x1a6a8879110>
             12
             10
              8
              6 -
In [23]: |df500.fillna(method='ffill',inplace=True)
         x=np.array(df500['Sal']).reshape(-1,1)
         y=np.array(df500['Temp']).reshape(-1,1)
         df500.dropna(inplace=True)
         X_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(X_train,y_train)
         print("Regression:",regr.score(x_test,y_test))
         y_pred=regr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
```

Regression: 0.8531288985580764



## from sklearn.linear\_model import LinearRegression

from sklearn.metrics import r2\_score model=LinearRegression() model.fit(x\_train,y\_train) y\_pred=model.predict(x\_test) r2=r2\_score(y\_test,y\_pred) print("R2score:",r2)

### **CONCLUSION**

1.

Dataset we have taken is poor for linear model but with the smaller data works well with linear mode