Level 2 E-training, week 3 Due to 23:59, Friday, 25 September 2020

Problem 1. Let x be a real number and n be a positive integer. Prove that

$$\lfloor nx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{n} \rfloor + \ldots + \lfloor x + \frac{n-1}{n} \rfloor$$

Problem 2. On a board there are 7 nails, each two connected by a rope. Each rope is colored in one of 7 given distinct colors. Is it possible that, for each three distinct colors, there will be three nails connected with ropes of these three colors?

Problem 3. Consider the line t in the plane and draw 3 circles tangent to t and externally tangent to each other. Prove that, for some permutation of their radii (a, b, c), one has

$$\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} = \frac{1}{\sqrt{c}}$$

Problem 4. Let n > 2 be an integer. Show that

$$\varphi(\varphi(n)) \le \frac{\varphi(n)}{2}$$

Problem 5. The positive reals x, y, z satisfy the equation $x^2 + y^2 + z^2 = 2(xy + yz + zx)$. Prove that

$$\frac{x+y+z}{3} \ge \sqrt[3]{2xyz}$$

Problem 6. Let ABC be a non-equilateral acute-angled triangle with circumcenter, incenter, orthocenter O, I, H, respectively. Suppose that the circumcircle of OIH passes through some vertex of $\triangle ABC$. Prove that one of the angles of $\triangle ABC$ is 60° .

Problem 7. Suppose that $a \in \mathbb{Z}$ and $p \in \mathbb{P}$ such that $p|a^{p^2}-1$. Prove that $p^3|a^{p^2}-1$

Problem 8. Let $n \in \mathbb{N}$. Deemah and Bayan play the following game on a pile of stones: Initially there are n stones in the pile, Deemah and Bayan take turns alternatively. In her turn, a player chooses a prime number p and a nonnegative integer k and removes p^k stones from the pile, the game ends when the pile is empty and the last one removing stones wins. If Deemah plays first, find all n for which Bayan has a winning strategy.