Summary: Lecture 6

Summary for the chapter 8.2. [1, 7]

Completeness

Let C be a complexity class and let L be a language in C. L is called C-complete if any language $L' \in C$ can be reduced to L.

(Every language of a complexity class can be reduced to L.)

- reducitbility is transitive \rightarrow problems are ordered by difficulty
- complete problems can capture the difficulty of a class
- problem is seen as completely understood if the problem is complete

Question:

Which problems can be reduced to a formal language?

```
SAT can be expressed as formal language. [6] \Rightarrow SAT can be reduced to a formal language. (?) SAT is in NP. [7]
```

Because CIRCUIT SAT can be reduced to SAT: CIRCUIT SAT can be reduced to a formal language. (?) CIRCUIT SAT is NP-complete. [3]

Any formal language $L \in NP$ can be reduced to CIRCUIT SAT? OR the other way around?

Formal language

Formal languages are abstract languages, which define the syntax of the words that get accepted by that language. It is a set of words that get accepted by the language and has a set of symbols that is called alphabet, which contains all the possible characters of the words. Those characters are called nonterminal symbols. [2, 8]

Kleene star

The Kleene star Σ^* of an alphabet Σ is the set of all words that can be created through concatenation of the symbols of the alphabet Σ . The empty word ϵ is included.

Formal language

A formal language L over an alphabet Σ is a subset of the Kleene star of the alphabet: $L\subseteq \Sigma^*$

Where to set the line between lanuguage decisions and other problems? Can every problem be controuted as a formal language?

Is everything that is reducable to SAT reducable to a formal language because of the transitivity?

I assume it does not have an influence on the complexity of a problem if it can be expressed as a formal language? Are formal languages part of specific complexity classes?

Closed under reduction

The following complexity classes are all closed under reductions:

P NP CONP L NL PSPACE EXP

A class C is closed under reductions if whenever L is reducible to L' and $L' \in C'$, then L in C'.

If a complete problem in C belongs in a class $C' \subseteq C$, C = C'.

Figure 1: P and NP sets [5] and complexity classes [4]

- examples:
 - if an NP-complete language is in P, then NP = P
 - if a P-complete language is in L, then P = L
 - if a P-complete language is in NL, then P = NL
 - no EXP-complete language can be in P

P-completeness of CircuitValue

Problem: CircuitValue

The CIRCUITVALUE Problem is the problem of computing the output of a given Boolean circuit on a given input.

In terms of time complexity, it can be solved in linear time (topological sort).

• P-complete

Proof idea:

- CIRCUIT VALUE is in P (prerequisite for being P-complete)
- show: any language $L \in P$ can be reduced to CIRCUITVALUE

TODO proof!
Questions:

CicuitSat is NP-complete

Problem: CircuitSat

The circuit satisfiability problem (CIRCUITSAT) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true.

Input: a Boolean circuit C

Question: Is there a truth assignment which makes C output the value true?

• cook's theorem: CIRCUITSAT is NP-complete

Proof idea:

- circuit decides nondeterministically (?)
- a variable is added in the nondeterministic Turing Machine
- check if one of the variables is tue: use this choice (?)
- problem: can we set thiese variables such that the Turing Machine accepts?
- answer corresponds direct to is there a choice of nd decisions such that the turing machine accepts?
- extremely direct reduction
- SAT is NP-complete

TODO proof!

Questions:

Rangfolge der Klassen

TODO

NP-complete problems

Figure 2: NP-complete problems in relation

• $k ext{-SAT}$ for $k\geq 3$ is NP-complete

Circuit-SAT	
SAT	
3-SAT	
Clique	
VertexCover	

HammiltonCykle
TravellingSalesman
-
GraphColoring
0.1 up. 1 0.132.1116
ExactCover
ExactCover
Knapsack
$\mathbf{SubsetSum}$
TODO
P-complete problems
• CircuitValue
• LinearProgramming
• HornSAT
CircuitValue
LinearProgramming
HornSAT
HOLIISAI

TODO

R I I		
INL	probl	ıems

- 2-Sat
- Reachability

2-Sat

Reachability

TODO

L problems

• 1-Sat

1-Sat

TODO

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Chomsky's Normal Form (CNF). Website. https://www.javatpoint.com/automata-chomskys-normal-form, opened on 26.09.2022.
- [3] Circuit satisfiability problem Proof of NP-Completeness. Website. https://en.wikipedia.org/wiki/Circuit_satisfiability_problem, opened on 25.11.2022.
- [4] Complexity classes diagram image source. https://en.wikipedia.org/wiki/Complexity_class.
- [5] Image source: P-NP sets. https://www.techno-science.net/actualite/np-conjecture-000-000-partie-denouee-N21607.html.
- [6] klaus-joern Lange. "The Boolean Formula Value Problem as Formal Language". In: (Jan. 2012). DOI: 10.1007/978-3-642-31644-9_9.
- [7] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.
- [8] A.J. Kfoury Robert N. Moll Michael A. Arbib. An Introduction to Formal Language Theory. Springer-Verlag, 1988.