Q1) Since the oracle does not give us decrypted version of the C, we need to give it something that we can recover M from the decryptions it gave. I did the following:

$$O(C^2) = (C^2)^d = (M^2)^{ed} = M^2 \mod p$$

When we send C^2 result will be M^2. Then I send C^3 and received M^3. At the last step if I multiply M^3 by M^-2 mod p I will get M mod p which is the plain text.

Following Python code did it and the results are as follows:

Answer: Bravo! You found it. Your secret code is 22545

Q1.py

Q2) Since the pin code has 10⁴ possible value and since the salt can take at most 2⁸ different value, key space is very small (around 2.5 million). So we can do a brute force attack to find the PIN number. Q2.py does that operation and results are as follows:

Answer:

PIN NUMBER iS: 1308

The Salt is: 206

Q3) The problem with the implementation is that, at the encryption it does not select random number from a large range but only choose values from 0 to 2^16. That makes there are around 65.000 possible k value. By implementing a brute force attack on k, we can retrieve the k value because generator is a public variable and the space we need to try is very small. If we know the k we know that $t * \beta^{-k} = m$. So, I implemented that solution in the Q3.py and the results are as follows:

Answer: Be yourself, everyone else is already taken.

```
# Since the random number generated by using very small range, we can find k by implementing brute force

max_range = 2 ** 16 - 1

k = 0

for i in range(1, max_range):

if binaryLeftRight(g,i,p) == r:

# Find the k value

k = i

break

109 #Retrieve message by simple mathematical manipulations.

key = modinv(binaryLeftRight(h,k,p),p)

plaintext = (t * key) % p

print(binaryToString(bin(plaintext)))
```

Q4) Since the r1 and r2 are equal, that implies k1 and k2 are equal. By knowing that we can do the following math:

$$\frac{t_2}{t_1} = (m_2 * B^k * r^k) / (m_1 * B^k * r^k) = \frac{m_2}{m_1} \bmod p$$

Basically if we divide t2 by t1 in mod p we will get m1 * inverse of m2 mod p. If we multiply that by m1 we will obtain the m2. These calculations are done in q4.py and the answer is as follows:

Answer: m2 = "A person can change, at the moment when the person wishes to change."

Q5) If we know the relation between k1 and k2 we can exploit that relation to find a. We know the following 2 equalities by implementation of DSA.

$$s_1 = \frac{(h_1 + ar_1)}{k_1} \bmod q$$

$$s_2 = \frac{(h_2 + ar_2)}{3k_1} \bmod q$$

That means

$$\frac{s_1}{s_2} = 3 * \frac{h_1 + ar_1}{h_2 + ar_2} \bmod q$$

$$a = \frac{3s_2h_1 - s_1h_2}{s_1r_2 - 3s_2r_1} \bmod q$$

Since all the values are known we can obtain the a from this calculation. Q5.py will solve this issue.

Answer: 2247688824790561241309795396345367052339061811694713858910365226453