Problem-1: Linear Regression (Predicting Boston Housing Prices)

6.1 b. Fit a multiple linear regression model to the median house price (MEDV) as a function of CRIM, CHAS, and RM. Write the equation for predicting the median house price from the predictors in the model.

Ans: The equation for median house price from the predictors in the model can be described as: MEDV = -27.3251 + (-0.2630 *CRIM) + (5.6656 *CHAS) + (8.0096 *RM)

```
Console Jobs ×
                                                                                          😱 R 4.1.1 · ~/Documents/Fall 2021 – Semester (M1)/CIS 8695 – Big Data Analytics (Ling Xue)/ 🙈
> # Using lm() to run Linear Regression Model
> boston.lm <- lm(MEDV ~., data = train.df)</pre>
> # Using options() to ensure numbers not in Scientific Notation
> options(scipen = 999)
> summary(boston.lm)
lm(formula = MEDV ~ ., data = train.df)
Residuals:
         1Q Median
  Min
                     30
-16.65 -3.02 -0.30 2.33 38.81
Coefficients:
          Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) -27.3251 3.5205 -7.76
                                        0.0000000000013 ***
CRTM
           -0.2630
                      0.0428 -6.15
                                       0.00000000244897 ***
                                       0.00001850118407 ***
CHAS
            5.6656
                     1.3017 4.35
            RM
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

c. Using the estimated regression model, what median house price is predicted for a tract in the Boston area that does not bound the Charles River, has a crime rate of 0.1, and where the average number of rooms per house is 6? What is the prediction error?

Ans: The median house price for tract in Boston area satisfying the above conditions (CRM=0.1,RM=6.CHAS=0) is: MEDV = -27.3251 + (-0.2630 *0.1) + (5.6656 *0) + (8.0096 *6) = 20.7

The prediction error is 6.17 and can be calculated by looking at the Root Mean Square Error (RMSE)

```
Console Jobs ×

R 4.1.1 · ~/Documents/Fall 2021 - Semester (M1)/CIS 8695 - Big Data Analytics (Ling Xue)/ 
> accuracy(boston.lm.pred, valid.df$MEDV)

ME RMSE MAE MPE MAPE

Test set 0.197 6.17 4.36 -5.6 22.3
>
> # Calculating Median price when CRIM=0.1, CHAS=0 and RM=6
> boston.new.df <- data.frame("CRIM" = 0.1, "CHAS"= 0, "RM"=6)
> boston.new.predict <- predict(boston.lm,boston.new.df)
> boston.new.predict
1
20.7
```

d. iii) Use stepwise regression with the three options (backward, forward, both) to reduce the remaining predictors as follows: Run stepwise on the training set. Choose the top model from each stepwise run. Then use each of these models separately to predict the validation set. *Compare RMSE*, *MAPE*, and mean error, as well as lift charts. Finally, describe the best model.

Ans: Comparing RMSE/MAPE/Mean Error for the three options, we observe nearly identical values:

```
Step (BOTH): ME = -0.0626, RMSE = 5.24, MAPE = 17.6
Step (Forward): ME = -0.0503, RMSE = 5.33, MAPE = 17.9
Step (Backward): ME = -0.0626, RMSE = 5.24, MAPE = 17.6
```

The best performing model will ideally have lowest residual mean square, that would internally maximize the multiple correlation value R². Another statistic, in determining the best model in multiple linear regression is Cp criterion.

Sample Code (Problem-1: Linear Regression):

P1-Linear Regression.txt

Problem-2: Logistic Regression (Financial Condition of Banks)

10.1 b. Consider a new bank whose total loans and leases/assets ratio = 0.6 and total expenses/assets ratio = 0.11. From your logistic regression model, estimate the following four quantities for this bank (use R to do all the intermediate calculations; show your final answers to four decimal places): the logit, the odds, the probability of being financially weak, and the classification of the bank (use cutoff = 0.5)

```
Ans: Leases/Assets Ratio = 0.6, Total Expenses/Assets Ratio = 0.11, Cutoff = 0.5 Logit Equation = -14.72 + 89.83* TotExp.Assets + 8.37* TotLns.Lses.Assets = (-14.72) + (89.83*0.11) + (8.37*0.6) = 0.1833 Odds: e^(0.1833) = 1.2011 Probability: Odds/(1+Odds) = 1.2011 / (1+1.2011) = 0.5456 Classification: Financially Weak (P>0.5)
```

```
Console Jobs ×
                                                                                                   R 4.1.1 · ~/Documents/Fall 2021 - Semester (M1)/CIS 8695 - Big Data Analytics (Ling Xue)/
glm(formula = Financial.Condition ~ ., family = "binomial", data = train.df)
Min 1Q Median 3Q Max
-2.3739 -0.2797 -0.0483 0.5541 1.2326
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
                 -14.72 6.67 -2.21
                                                 0.027 *
(Intercept)
                                47.78 1.88
5.78 1.45
TotExp.Assets
                     89.83
                                                  0.060 .
                    8.37
TotLns.Lses.Assets
                                                 0.147
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 27.726 on 19 degrees of freedom
Residual deviance: 13.148 on 17 degrees of freedom
AIC: 19.15
```

```
Console Jobs ×
R 4.1.1 · ~/Documents/Fall 2021 – Semester (M1)/CIS 8695 – Big Data Analytics (Ling Xue)/
                  Kappa : 0.8
 Mcnemar's Test P-Value : 1.000000
            Sensitivity: 0.90
            Specificity: 0.90
         Pos Pred Value : 0.90
         Neg Pred Value : 0.90
            Prevalence : 0.50
         Detection Rate : 0.45
   Detection Prevalence: 0.50
      Balanced Accuracy: 0.90
       'Positive' Class : 0
> # Lease/Assets Ratio = 0.6, Expenses/Assets Ratio = 0.11
> new.bank.df <- data.frame("TotExp.Assets"=0.11,"TotLns&Lses.Assets"=0.6)
> new.bank.pred <- predict(logit.reg, new.bank.df, type = "response")
> new.bank.pred
0.546
```

d. Interpret the estimated coefficient for the total loans & leases to total assets ratio (TotLns&Lses/Assets) in terms of the odds of being financially weak

Ans: The positive coefficients of TotLns&Lses/Assets translates into odds coefficient being larger than 1.

e. When a bank that is in poor financial condition is misclassified as financially strong, the misclassification cost is much higher than when a financially strong bank is misclassified as weak. To minimize the expected cost of misclassification, should the cut off value for classification (which is currently at 0.5) be increased or decreased?

Ans: To minimize the expected cost of misclassification, the cut off values must be "decreased", since the success class is identified as weak.

Sample Code (Problem-2: Logistic Regression):

P2-Logistic Regression.txt