Since this isomorphism is used often, we record it as the following proposition.

Proposition 33.8. Given a tensor product $E_1 \otimes \cdots \otimes E_n$, there is a canonical isomorphism

$$L(E_1,\ldots,E_n;K)\cong (E_1\otimes\cdots\otimes E_n)^*$$

between the vector space of multilinear maps $\mathcal{L}(E_1, \ldots, E_n; K)$ and the dual $(E_1 \otimes \cdots \otimes E_n)^*$ of the tensor product $E_1 \otimes \cdots \otimes E_n$.

The fact that the map $\varphi \colon E_1 \times \cdots \times E_n \to E_1 \otimes \cdots \otimes E_n$ is multilinear, can also be expressed as follows:

$$u_1 \otimes \cdots \otimes (v_i + w_i) \otimes \cdots \otimes u_n = (u_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes u_n) + (u_1 \otimes \cdots \otimes w_i \otimes \cdots \otimes u_n),$$

$$u_1 \otimes \cdots \otimes (\lambda u_i) \otimes \cdots \otimes u_n = \lambda(u_1 \otimes \cdots \otimes u_i \otimes \cdots \otimes u_n).$$

Of course, this is just what we wanted!

Definition 33.6. Tensors in $E_1 \otimes \cdots \otimes E_n$ are called *n-tensors*, and tensors of the form $u_1 \otimes \cdots \otimes u_n$, where $u_i \in E_i$ are called *simple (or decomposable) n-tensors*. Those *n*-tensors that are not simple are often called *compound n-tensors*.

Not only do tensor products act on spaces, but they also act on linear maps (they are functors).

Proposition 33.9. Given two linear maps $f: E \to E'$ and $g: F \to F'$, there is a unique linear map

$$f \otimes g \colon E \otimes F \to E' \otimes F'$$

such that

$$(f \otimes g)(u \otimes v) = f(u) \otimes g(v),$$

for all $u \in E$ and all $v \in F$.

Proof. We can define $h: E \times F \to E' \otimes F'$ by

$$h(u, v) = f(u) \otimes g(v).$$

It is immediately verified that h is bilinear, and thus it induces a unique linear map

$$f \otimes g \colon E \otimes F \to E' \otimes F'$$

making the following diagram commutes

$$E \times F \xrightarrow{\iota_{\otimes}} E \otimes F$$

$$\downarrow^{f \otimes g}$$

$$E' \otimes F',$$

such that $(f \otimes g)(u \otimes v) = f(u) \otimes g(v)$, for all $u \in E$ and all $v \in F$.