

=> d his full

(FILE 'HOME' ENTERED AT 13:58:35 ON 20 SEP 2001)

FILE 'CAPLUS, EMBASE, MEDLINE, USPATFULL, PCTFULL, EUROPATFULL' ENTERED
AT 13:59:59 ON 20 SEP 2001

L1 577 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) AND (HEARING OR COCHLEAR ADJ CELLS OR AUDITORY)

L2 430 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) AND (HEARING (3A) LOSS OR COCHLEAR (3A)
DEGENRAT? OR AUDITORY)

L3 340 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (P) (HEARING (3A) LOSS OR COCHLEAR (3A)
DEGENRAT? OR AUDITORY)

L4 404 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (L) (HEARING (3A) LOSS OR COCHLEAR (3A)
DEGENRAT? OR AUDITORY)

L5 406 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (L) ((HEARING (3A) LOSS) OR (COCHLEAR (3A)
DEGENERAT?) OR AUDITORY)

L6 3 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (5A) ((HEARING (3A) LOSS) OR (COCHLEAR (3A)
DEGENERAT?) OR AUDITORY)

L7 3 DUP REM L6 (0 DUPLICATES REMOVED)
D L7 IBIB KWIC
D L7 IBIB KWIC 2-

L8 393 DUP REM L5 (13 DUPLICATES REMOVED)

L9 142 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (5A) (INHIBIT? OR MODIF? OR ANTAGONIST OR
ANTIBOD?) (P) (HEARING LOSS OR COCHLEAR DEGENERAT?)

L10 142 SEA ABB=ON PLU=ON (TNF OR TUMOR NECRO? FACTOR OR TUMOUR
NECRO? FACTOR) (5A) (INHIBIT? OR MODIF? OR ANTAGONIST OR
ANTIBOD?) (P) (HEARING (3A) LOSS OR COCHLEAR (3A) DEGENERAT?)
D L10 1-5 IBIB KWIC
D L10 130-142 IBIB KWIC

L12 127 SEA ABB=ON PLU=ON L10 (P) (INTERLEUKIN-1 OR IL-1)
D L12 120-127 IBIB KWIC

1Q ANSWER 139 OF 142 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1997042966 PCTFULL
TITLE (ENGLISH): THERAPEUTIC USES OF BPI PROTEIN PRODUCTS FOR HUMAN MENINGOCOCCEMIA
TITLE (FRENCH): APPLICATIONS THERAPEUTIQUES DE PRODUITS PROTEIQUES BACTERICIDES/AUGMENTANT LA PERMEABILITE (BPI) DANS LE CAS DE MENINGOCOCCEMIES CHEZ L'HOMME
INVENTOR(S): GIROIR, Brett, P.; SCANNON, Patrick, J.
PATENT ASSIGNEE(S): XOMA CORPORATION
LANGUAGE OF PUBL.: English
LANGUAGE OF FILING: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

	NUMBER	KIND	DATE
DESIGNATED STATES:	WO 9742966	A1	19971120
	AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN GH KE LS MW SD SZ UG AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG		
APPLICATION INFO.:	WO 1997-US8016		19970509
PRIORITY (ORIGINAL):	US 1996-08/644287		19960510

DETD . . . culture or immunologic assays.

Systemic hemodynamic signs, severe coagulopathy and intravascular thrombosis are notably absent. If properly treated, mortality is rare and neurologic sequelae, including sensineurial **hearing loss**, is uncommon. The approach to diagnosis and treatment of meningococcal meningitis is the same as with other forms of bacterial meningitis.

et al., Blood 85:3437-3443 (1995); de Winter et al., J. Inflam. 45:193-206 (1995)]. Thornton et al., FASEB J., 8(4):AI37, 1994, report that BPI **inhibited** the release of **TNF** *in vitro* by human inflammatory cells in response to LOS derived from two Neisseria species, N.

10 ANSWER 139 OF 142 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1997042966 PCTFULL
TITLE (ENGLISH): THERAPEUTIC USES OF BPI PROTEIN PRODUCTS FOR HUMAN
MENINGOCOCCEMIA
TITLE (FRENCH): APPLICATIONS THERAPEUTIQUES DE PRODUITS PROTEIQUES
BACTERICIDES/AUGMENTANT LA PERMEABILITE (BPI) DANS LE
CAS DE
MENINGOCOCCEMIES CHEZ L'HOMME
INVENTOR(S): GIROIR, Brett, P.; SCANNON, Patrick, J.
PATENT ASSIGNEE(S): XOMA CORPORATION
LANGUAGE OF PUBL.: English
LANGUAGE OF FILING: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

NUMBER	KIND	DATE
--------	------	------

WO 9742966	A1	19971120
------------	----	----------

DESIGNATED STATES: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE
ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS
LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG
SI SK TJ TM TR TT UA UG US UZ VN GH KE LS MW SD SZ UG
AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB
GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR
NE SN TD TG

APPLICATION INFO.: WO 1997-US8016 19970509
PRIORITY (ORIGINAL): US 1996-08/644287 19960510

DETD . . . culture or immunologic assays.

Systemic hemodynamic signs, severe coagulopathy and intravascular thrombosis are notably absent. If properly treated, mortality is rare and neurologic sequelae, including sensineurial **hearing loss**, is uncommon. The approach to diagnosis and treatment of meningococcal meningitis is the same as with other forms of bacterial meningitis.

et al., Blood 85:3437-
3443 (1995);
de Winter et at., J. Inflam. 45:193-206 (1995)]. Thornton et al., FASEB
J., 8(4):AI37, 1994, report that BPI **inhibited** the release of
TNF *in vitro*
by human
inflammatory cells in response to LOS derived from two Neisseria species,
N.

L12 ANSWER 125 OF 127 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1993006865 PCTFULL
TITLE (ENGLISH): TREATMENT OF OCULAR INFLAMMATION BY BLOCKAGE OF CELL
ADHESION
MOLECULES
TITLE (FRENCH): TRAITEMENT DE L'INFLAMMATION OCULAIRE PAR BLOCAGE DES
MOLECULES
D'ADHESION CELLULAIRE
INVENTOR(S): WHITCUP, Scott, M.; CHAN, Chi-Chao; NUSSENBLATT,
Robert, B.
PATENT ASSIGNEE(S): THE UNITED STATES OF AMERICA, represented by THE
SECRETARY, DEPARTMENT
LANGUAGE OF PUBL.: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

	NUMBER	KIND	DATE
DESIGNATED STATES:	WO 9306865	A1	19930415
APPLICATION INFO.:	AU CA JP AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE		
PRIORITY (ORIGINAL):	WO 1992-US8556		19921002
	US 1991-770026		19911004
	US 1992-822042		19920117

DETD Case 2 A 72-year-old black woman with a 30-year history of bilateral recurrent panuveitis with exudative retinal detachments, apapilledema, **hearing loss**, and vitiligo was diagnosed with Vogt-Koyanagi-Harada syndrome (Chan, C-C. et al., Am. J.

• six uveitic eyes showed mild staining for TNF-B (cases 1, 2, 3 and 6), and two uveitic eyes showed no staining with **antibody** against **TNF-B**. None of the control eyes stained positively for either TNF-a and TNF-B.

• the regulation of adhesion molecule expression. The secretions of cytokines, particularly by the infiltrating T lymphocytes, probably plays an important regulatory function. Gamma-interferon, **interleukin-1**, and tumor necrosis factor cause the strong induction of ICAM-1, although different cells vary as to which cytokines will i

L12 ANSWER 125 OF 127 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1993006865 PCTFULL
TITLE (ENGLISH): TREATMENT OF OCULAR INFLAMMATION BY BLOCKAGE OF CELL
ADHESION
MOLECULES
TITLE (FRENCH): TRAITEMENT DE L'INFLAMMATION OCULAIRE PAR BLOCAGE DES
MOLECULES
D'ADHESION CELLULAIRE
INVENTOR(S): WHITCUP, Scott, M.; CHAN, Chi-Chao; NUSSENBLATT,
Robert, B.
PATENT ASSIGNEE(S): THE UNITED STATES OF AMERICA, represented by THE
SECRETARY, DEPARTMENT
LANGUAGE OF PUBL.: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

	NUMBER	KIND	DATE
DESIGNATED STATES:	WO 9306865	A1	19930415
APPLICATION INFO.:	AU CA JP AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE		
PRIORITY (ORIGINAL):	WO 1992-US8556		19921002
	US 1991-770026		19911004
	US 1992-822042		19920117

DETD Case 2 A 72-year-old black woman with a 30-year history of bilateral recurrent panuveitis with exudative retinal detachments, apapilledema, **hearing loss**, and vitiligo was diagnosed with Vogt-Koyanagi-Harada syndrome (Chan, C-C. et al., Am. J.

• . . six uveitic eyes showed mild staining for TNF-B (cases 1, 2, 3 and 6), and two uveitic eyes showed no staining with **antibody** against **TNF-B**. None of the control eyes stained positively for either TNF-a and TNF-B.

• . . the regulation of adhesion molecule expression. The secretions of cytokines, particularly by the infiltrating T lymphocytes, probably plays an important regulatory function. Gamma-interferon, **interleukin-1**, and tumor necrosis factor cause the strong induction of ICAM-1, although different cells vary as to which cytokines will i

L12 ANSWER 122 OF 127 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1999053927 PCTFULL
TITLE (ENGLISH): METHODS FOR TREATING AND PREVENTING INSULIN RESISTANCE
AND
RELATED DISORDERS
TITLE (FRENCH): PROCEDES POUR TRAITER ET PREVENIR LA RESISTANCE A
L'INSULINE ET
LES TROUBLES QUI Y SONT LIES
INVENTOR(S): GREENBERG, Andrew, S.
PATENT ASSIGNEE(S): TRUSTEES OF TUFTS COLLEGE
LANGUAGE OF PUBL.: English
LANGUAGE OF FILING: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

	NUMBER	KIND	DATE
DESIGNATED STATES:	WO 9953927	A1	19991028
	JP US AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE		
APPLICATION INFO.:	WO 1999-US8364		19990416
PRIORITY (ORIGINAL):	US 1998-60/082152		19980417
	US 1998-		19980423

DETD . . . years while attacking the blood vessels and nerves, Diabetics, as a group, are far more often afflicted with blindness, heart disease, stroke, kidney disease, **hearing loss**, gangrene and impotence. One third of all visits to physicians are occasioned by this disease and its complications, and diabetes and its complications. . .

activity of JNK and also, but to a lesser extent, the activity of ERK1" kinase. Furthermore, a prostaglandin derivative was also shown to **inhibit TNF-** induced lipolysis and to **inhibit** ERK1/2 and YNK-1 activation. Furthermore, as shown herein, an inhibitor of a ERK/MA-P kinase decreases TNF-a induced lipolysis. In addition, contrary to JNK and. . .) 8 pathway stimulates TNF-a induced lipolysis. Thus, the Examples described herein indicate that inhibition of the JNK pathway and the ERK/MAP kinase pathway **inhibit TNF-**(y induced lipolysis, whereas **inhibition** of the p3) 8 pathway increases TNF-a induced lipolysis.

3. Compounds which **inhibit TNF-a** induced lipolysis
The invention provides methods for inhibitino, or blocking lipolysis of adipocytes. In

In a preferred embodiment, lipolysis is TNF-a induced lipolysis. In. . .

kinases (SAPKs), are members of the mitogen-activated protein (MAP) kinase group which are activated in response to cytokines, such as TNF, e.g., TNF-(x and IL-1, and exposure to environmental ZD stress, including ultraviolet light, heat shock, and osmotic stress (U.S. Pat. No. 5605808; B.

Other compounds of the invention

Other preferred compounds of the invention include compounds which inhibit TNF-a.

Such compounds include those which inhibit the production of TNF-a, as well as those which specifically inhibit its activity, e.g., by interfering. . . its interaction with a receptor. For example, an inhibitor can be an antibody binding specifically to, and inhibiting the activity of TNF-a. Yet other **inhibitory** compounds include **inhibitors** of a TNF-a receptor or of a molecule interacting therewith, such as the NLADD protein (Schievella et al. (1997) J Biol. Chem. 272:12069). Thus, within the scope of the invention are antisense and triplex molecules; which specifically **inhibit** the expression of TNF-a, a TNF-u. receptor, or molecule interactina with TNF-u, or' uch as MADD.

thereof As described in the Examples, NaSal has in fact been shown herein to inhibit JNK activation by TNF-u. in adipocytes and to **inhibit** TNF-cz induced lipolysis in adlpoc tes. NaSal has also been described as being capable of **inhibiting** TNF-Induced activation of JNK and p42/p44 MAP kinases in FS4 fibroblasts (Schwenger et al. (1997) P.N.A.S. tWA 94:2869) and Schwenger et al. (1996). . .

discovery that the.TNK and the EPK/MAP kinase pathways are involved in TNF-a induced lipolysis, and that iri-hition of these kinase pathways decreases or **inhibits** TNF-a induced lipolysis. It has also been shown that PPAR-y agonists inhibit TNIF-a induced lipolysis. Thus, the invention pertains to any disease or dlsorder which. . .

In a particular embodiment, insulin resistance or other disease or condition associated with an abnormal FFA level is reduced, eliminated or **inhibited**, by blocking TNF-a action, e-,- by neutralizing TNF-u, in the serum (Le., circulating T'NT,-ct) or in the adipose tissue.

methods of the invention comprise determining the activity of a PPAR-y receptor, In fact, since binding of a ligand to a PPAR-y receptor **inhibits** TNF-a induced lipolysis, a defective PPAR-y may result in increased TNF-a induced lipolysis.

of detection is by performing ELISA assays. An ELISA assay for the detection of human TNF-rt, as well as the production of **antibodies** against human TNF-U., is described, e.g., in U.S. Patent No. 5,716,972 by Adams eL a]. Antibodies for performing

these assays are also commercially available, such as. . .

shown in Figure 1. These indicate that lipolysis in the adipocytes induced by 2 ng/ml (Panel A) or 20 ng/ml (Panel B) TNF-a is significantly inhibited by the addition of 2 or 20 mM NaSal. In fact, NaSal inhibited glycerol production by 3T3-L1 adipocytes induced by. . .

Example 2: NaSal inhibits TNF-a induced JNK-1 activation in adipocytes

This example shows that NaSal inhibits JNK-1 activation by TNF-a in adipocytes.

Thus, since NaSal inhibits TNF-a induced lipolysis and NaSal significantly reduces JNK-I activation, JNK-I activation is likely to play a significant role in blocking lipolysis induced by TNF-u.

Example 3. NaSal partially inhibits TNF-ct induced NMP kinase activation

This example shows that, whereas JNK- I activation by TNF-u is significantly inhibited by NaSal, activation of NIALP kinases by TNF-a is not significantly inhibited by NaSal.

Example 4- NUP kinase inhibitor PD98059 decreases TNF-a induced lipolysis

This Example demonstrates that inhibition of ERK1/2 by PD98059 decreases TNF-a induced lipolysis.

Example 5: Inhibition of-p38 kinase stimulates TNF-u induced lipolysis

This example shows; that, contrarily to JNK and ERK 1/2 signal pathways, inhibition of the p38 signal pathway stimulates TNF-u induced. . .

ERK 1/2 kinase activity, BRL does not significantly affect the activity of JNK- I and ERK 1/2 kinases. Thus, BRL does not inhibit

TNF-a induced lipolysis by decreasing the activity of JNK- I and "K/ERK.

Example 7: PGJ2 inhibits TNF-u induced activation of JNK-I and ERK1/2

This example shows that TNF-rt induced activation of JNK-1 and ERK1/2 can be inhibited by PGJ2.

p3 8. Total protein I s shown in Figure 7 panel

B. Furthermore, Figure 7 panels C and D shows that PGJ2 significantly inhibits the TNF-ct induced increase in ERK 1 / 2 and that of JNK- I kinase activity. Thus., PGJ2, which is an agonist of the PPAR-g receptor may function in a similar manner to NaSal to inhibit TNF-a induced lipolysis, i.e., by modulating TVAP kinases, e.g., ERK1/2 and JNK-I.

Example 8: Inhibition of JNK-1 decreases TNF-u,
induced lipolysis

This example demonstrates an experiment that a person of skill in the
art can effectuate
without undue experimentation to show that. . . .

adenoviral vectors. Furthermore, as shown in Figure I OA,
incubation of the cells

with all adenoviral vector expressing perilipin A or B, essentially
inhibited completely lypolysis

induced by TNF-a, whereas the adenoviral vector alone had no
effect on

TNIF-u. induced

lipolysis. As shown in Figure I OB, **TNF-r4** induced 11polysis
was still

inhibited during the last ')
hours of the 24 hour treatment. On the contrary, perilipin A or B
overexpression did not
significantly block. . . .

L12 ANSWER 122 OF 127 PCTFULL COPYRIGHT 2001 MicroPatent
ACCESSION NUMBER: 1999053927 PCTFULL
TITLE (ENGLISH): METHODS FOR TREATING AND PREVENTING INSULIN RESISTANCE
AND
RELATED DISORDERS
TITLE (FRENCH): PROCEDES POUR TRAITER ET PREVENIR LA RESISTANCE A
L'INSULINE ET
LES TROUBLES QUI Y SONT LIES
INVENTOR(S): GREENBERG, Andrew, S.
PATENT ASSIGNEE(S): TRUSTEES OF TUFTS COLLEGE
LANGUAGE OF PUBL.: English
LANGUAGE OF FILING: English
DOCUMENT TYPE: Patent
PATENT INFORMATION:

	NUMBER	KIND	DATE
DESIGNATED STATES:	WO 9953927	A1	19991028
	JP US AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE		
APPLICATION INFO.:	WO 1999-US8364		19990416
PRIORITY (ORIGINAL):	US 1998-60/082152		19980417
	US 1998-		19980423

DETD . . . years while attacking the blood vessels and nerves, Diabetics, as a group, are far more often afflicted with blindness, heart disease, stroke, kidney disease, **hearing loss**, gangrene and impotence. One third of all visits to physicians are occasioned by this disease and its complications, and diabetes and its complications. . . .

activity of JNK and also, but to a lesser extent, the activity of ERK1" kinase. Furthermore, a prostaglandin derivative was also shown to **inhibit TNF-** u induced lipolysis and to **inhibit** ERK1/2 and YNK-1 activation. Furthermore, as shown herein, an inhibitor of a ERK/MA-P kinase decreases TNF-a induced lipolysis. In addition, contrary to JNK and. . .) 8 pathway stimulates TNF-a induced lipolysis. Thus, the Examples described herein indicate that inhibition of the JNK pathway and the ERK/MAP kinase pathway **inhibit TNF-** (y induced lipolysis, whereas **inhibition** of the p3) 8 pathway increases TNF-a induced lipolysis.

3. Compounds which **inhibit TNF-a** induced lipolysis The invention provides methods for inhibitino, or blocking lipolysis of adipocytes. In

In a preferred embodiment, lipolysis is TNF-a induced lipolysis. In. . . .

kinases (SAPKs), are members of the mitogen-activated protein (MAP) kinase group which are activated in response to cytokines, such as TNF, e.g., TNF-(x and IL-1, and exposure to environmental ZD stress, including ultraviolet light, heat shock, and osmotic stress (U.S. Pat. No. 5605808; B.

Other compounds of the invention

Other preferred compounds of the invention include compounds which inhibit TNF-a.

Such compounds include those which inhibit the production of TNF-a, as well as those which specifically inhibit its activity, e.g., by interfering with its interaction with a receptor. For example, an inhibitor can be an antibody binding specifically to, and inhibiting the activity of TNF-a. Yet other inhibitory compounds include inhibitors of a TNF-a receptor or of a molecule interacting therewith, such as the NLADD protein (Schievella et al. (1997) J Biol. Chem. 272:12069). Thus, within the scope of the invention are antisense and triplex molecules; which specifically inhibit the expression of TNF-a, a TNF-u. receptor, or molecule interacting with TNF-u, or such as MADD.

thereof As described in the Examples, NaSal has in fact been shown herein to inhibit JNK activation by TNF-u. in adipocytes and to inhibit TNF-cz induced lipolysis in adipocytes. NaSal has also been described as being capable of inhibiting TNF-Induced activation of JNK and p42/p44 MAP kinases in FS4 fibroblasts (Schwenger et al. (1997) P.N.A.S. 94:2869) and Schwenger et al. (1996). . .

discovery that the TNK and the EPK/MAP kinase pathways are involved in TNF-a induced lipolysis, and that inhibition of these kinase pathways decreases or inhibits TNF-a induced lipolysis. It has also been shown that PPAR-y agonists inhibit TNF-a induced lipolysis. Thus, the invention pertains to any disease or disorder which. . .

In a particular embodiment, insulin resistance or other disease or condition associated with an abnormal FFA level is reduced, eliminated or inhibited, by blocking TNF-a action, e.g., by neutralizing TNF-u, in the serum (i.e., circulating TNF-u) or in the adipose tissue.

methods of the invention comprise determining the activity of a PPAR-y receptor. In fact, since binding of a ligand to a PPAR-y receptor inhibits TNF-a induced lipolysis, a defective PPAR-y may result in increased TNF-a induced lipolysis.

of detection is by performing ELISA assays. An ELISA assay for the detection of human TNF-u, as well as the production of antibodies against human TNF-u, is described, e.g., in U.S. Patent No. 5,716,972 by Adams et al. Antibodies for performing

these assays are also commercially available, such as. . .

shown in Figure 1. These indicate that lipolysis in the adipocytes induced by 2 ng/ml (Panel A) or 20 ng/ml (Panel B) **TNF-a** is significantly inhibited by the addition of 2 or 20 mM NaSal. In fact, NaSal inhibited glycerol production by 3T3-L1 adipocytes induced by. . .

Example 2: NaSal inhibits TNF-a induced JNK-1 activation in adipocytes This example shows that NaSal inhibits JNK-1 activation by TNF-a in adipocytes.

Thus, since NaSal inhibits TNF-a induced lipolysis and NaSal significantly reduces JNK-I activation, JNK-I activation is likely to play a significant role in blocking lipolysis induced by TNF-u.

Example 3. NaSal partially inhibits TNF-ct induced NMP kinase activation This example shows that, whereas JNK- I activation by TNF-u is significantly inhibited by NaSal, activation of NIALP kinases by TNF-a is not significantly inhibited by NaSal.

Example 4- NUP kinase inhibitor PD98059 decreases TNF-a induced lipolysis This Example demonstrates that inhibition of ERK1/2 by PD98059 decreases TNF-a induced lipolysis.

Example 5: Inhibition of-p38 kinase stimulates TNF-u induced lipolysis This example shows; that, contrarily to JNK and ERK 1/2 signal pathways, inhibition of the p38 signal pathway stimulates TNF-u induced. . .

ERK 1/2 kinase activity, BRL does not significantly affect the activity of JNK- I and ERK 1/2 kinases. Thus, BRL does not inhibit TNF-a induced lipolysis by decreasing the activity of JNK- I and "K/ERK.

Example 7: PGJ2 inhibits TNF-u induced activation of JNK-I and ERK1/2 This example shows that TNF-rt induced activation of JNK-1 and ERK1/2 can be inhibited by PGJ2.

p3 8. Total protein I s shown in Figure 7 panel B. Furthermore, Figure 7 panels C and D shows that PGJ2 significantly inhibits the TNF-ct induced increase in ERK 1 / 2 and that of JNK- I kinase activity. Thus., PGJ2, which is an agonist of the PPAR-g receptor may function in a similar manner to NaSal to inhibit TNF-a induced lipolysis, i.e., by modulating TVAP kinases, e.g., ERK1/2 and JNK-I.

Example 8: Inhibition of JNK-1 decreases TNF-u,
induced lipolysis

This example demonstrates an experiment that a person of skill in the
art can effectuate
without undue experimentation to show that. . .

adenoviral vectors. Furthermore, as shown in Figure I OA,
incubation of the cells
with all adenoviral vector expressing perilipin A or B, essentially

inhibited completely lypolysis
induced by TNF-a, whereas the adenoviral vector alone had no
effect on

TNIF-u. induced
lipolysis. As shown in Figure I OB, TNF-r4 induced 11polysis
was still

inhibited during the last ')
hours of the 24 hour treatment. On the contrary, perilipin A or B
overexpression did not
significantly block. . .

WEST[Help](#)[Logout](#)[Interrupt](#)[Main Menu](#)[Search Form](#)[Posting Counts](#)[Show S Numbers](#)[Edit S Numbers](#)[Preferences](#)**Search Results -**

Term	Documents
MENINGITIS.DWPI,EPAB,JPAB,USPT,PGPB.	2980
MENINGITI.DWPI,EPAB,JPAB,USPT,PGPB.	5
HEARING.DWPI,EPAB,JPAB,USPT,PGPB.	21362
HEARINGS.DWPI,EPAB,JPAB,USPT,PGPB.	233
LOSS.DWPI,EPAB,JPAB,USPT,PGPB.	655519
LOSSES.DWPI,EPAB,JPAB,USPT,PGPB.	164374
(MENINGITIS SAME (HEARING ADJ LOSS)).USPT,PGPB,JPAB,EPAB,DWPI.	16

US Patents Full-Text Database
US Pre-Grant Publication Full-Text Database
JPO Abstracts Database
EPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Database:

meningitis same (hearing adj loss)

[Refine Search:](#)[Clear](#)**Search History****Today's Date: 9/20/2001**

WEST[Help](#)[Logout](#)[Interrupt](#)[Main Menu](#) | [Search Form](#) | [Posting Counts](#) | [Show S Numbers](#) | [Edit S Numbers](#) | [Preferences](#)**Search Results -**

Term	Documents
MENINGITIS.DWPI,EPAB,JPAB,USPT,PGPB.	2980
MENINGITI.DWPI,EPAB,JPAB,USPT,PGPB.	5
HEARING.DWPI,EPAB,JPAB,USPT,PGPB.	21362
HEARINGS.DWPI,EPAB,JPAB,USPT,PGPB.	233
LOSS.DWPI,EPAB,JPAB,USPT,PGPB.	655519
LOSSES.DWPI,EPAB,JPAB,USPT,PGPB.	164374
(MENINGITIS SAME (HEARING ADJ LOSS)).USPT,PGPB,JPAB,EPAB,DWPI.	16

US Patents Full-Text Database
US Pre-Grant Publication Full-Text Database
JPO Abstracts Database
EPO Abstracts Database
Derwent World Patents Index

Database: IBM Technical Disclosure Bulletins

Refine Search:

meningitis same (hearing adj loss)

[Clear](#)

Search History

Today's Date: 9/20/2001

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis same (hearing adj loss)	16	<u>L6</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis adj5 (hearing adj loss)	1	<u>L5</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis adj5(hearing adj loss)	1	<u>L4</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same (il-1 or interleukin-1) and (hearing adj loss or cochlear adj degenrat\$)	13	<u>L3</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same meningitis and (hearing adj loss or cochlear adj degenrat\$)	4	<u>L2</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same (hearing adj loss or cochlear adj degenrat\$)	4	<u>L1</u>

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis same (hearing adj loss)	16	<u>L6</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis adj5 (hearing adj loss)	1	<u>L5</u>
USPT,PGPB,JPAB,EPAB,DWPI	meningitis adj5(hearing adj loss)	1	<u>L4</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same (il-1 or interleukin-1) and (hearing adj loss or cochlear adj degenrat\$)	13	<u>L3</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same meningitis and (hearing adj loss or cochlear adj degenrat\$)	4	<u>L2</u>
USPT,PGPB,JPAB,EPAB,DWPI	(TNF or tumor adj necro\$3 adj factor or tumour adj necro\$4 adj factor) same (hearing adj loss or cochlear adj degenrat\$)	4	<u>L1</u>