Data Analysis With Python

A. Beck

Pytho

Dasic

. . .

Data I/0

Visualizatio

Data Analysis With Python

Arnaud Beck

Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3

Space Science Training Week

Outline

Data Analysis With Python

A. Beck

Introduction

Introduction

Rasic

Pytho

Ocipy

Data I/O

· loudinzau

- 1 Introduction
- 2 Using Pythor
- 3 Basic Pythor
- 4 Scipy
- 5 Data I/O
- 6 Visualization

Why come to Python?

Data Analysis With Python

A. Beck

Introduction

Pythor

Pytho

. . .

Data I/

Visualizati

Should I use low-level, compiled language or an interpreted language? Commercial or open source?

	C/C++	Matlab	Python
Easy and flexible		Χ	Х
Performances	Х		
Free and available on any system	X		Χ

C++ g++ used what fraction? used how many times more?				
Benchm	nark	Time	Memory	Code
mandelbrot		¹ / ₁₂₁		±
n-body		¹ / ₉₇		±
spectral-norm		¹ / ₈₀		2×
fannkuch-redux		¹ / ₇₃		2×
fasta		¹ / ₅₄		2×
k-nucleotide		¹ / ₁₇	1/3	2×
binary-trees		1/15	1/3	±
reverse-compleme	ent†	¹ / ₇	¹ / ₃	7×
regex-dna		1/3	±	±
pidigits		±		3×

Why stick to Python?

Data Analysis With Python

A. Beck

Introduction

Using Pytho

Basic Python

Data I

Visualiza

Python is distinguished by its large and active scientific computing community. There are people developing "libraries" for virtually anything.

Glue to other languages

Libraries to interface other languages (C/C++/Fortran)...

...with the same performances!!

Critical part of codes are written in a lower level language.

Parallelization

- MPI
- OpenMP
- GPU

Data management and visualization

- IO data in any format (HDF5, VTK, ...)
- Data management dedicated libraries (scipy, pandas)
- Direct visualization or interfaces with other softwares (Paraview, Mayavi)

Outline

Data Analysis With Python

A. Beck

Using Python

2 Using Python

5 Data I/O

Getting Python for data analysis

Data Analysis With Python

A. Beck

atroducti

Using Python

Basic Pytho

ytrioi

Data I/O

Vierraliz

Basic Python distribution

Available on any Linux or Mac OS.

Critical for data analysis

Modules : Scipy, Matplotlib

Application specific

Modules: mpi4py, VTK, pytable, etc.

It is possible to install fully pre-built scientific Python environment : "Enthought Python Distribution" or "Python(x,y)" for Windows.

Running Python

Data Analysis With Python

A. Beck

ntroducti

Using Python

Basic Python

Scip

Data I

Visualiza

```
Interactive mode in a Python shell
```

```
[arnaud@beck ~]$ python
Python 2.7.3 (default, Jul 24 2012, 10:05:38)
[GCC 4.7.0 20120507 (Red Hat 4.7.0-5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> a = "Hello world"
>>> print a
Hello world
>>> ■
```

Use of a script

```
[arnaud@beck ~]$ more hello_world.py
a = "Hello world"
orint a
[arnaud@beck ~]$ python hello_world.py
Hello world
[arnaud@beck ~]$ [
```

Turn your python script into a unix script

```
[arnaud@beck ~]$ more hello_world.py
#!/usr/bin/env python
a = "Hello world"
print a
[arnaud@beck ~]$ ./hello_world.py
Hello world
[arnaud@beck ~]$ [
[arnaud@beck ~]$ [
```

You can compile scripts into binary .pyc files. Mostly for developers.

IPython: a convenient and comfortable Python shell

Data Analysis With Python

A. Beck

ntraduatio

Using Python

Basic Pytho

- 71110

Data I/

VISUAIIZALIO

Interesting features

- Command history
- Any Xterm command accessible via '!'
- Commands auto-completion
- Quick help through the use of "?"
- Inline and interactive graphics
- Timing and profiling tools
- Many many more ...

Best tool for exploring, debugging or work interactively. Have a look!

IPython example

Data Analysis With Python

A. Beck

atra di intin

Using

Python

Pytho

Scipy

Data I/

```
Visualization
```

```
arnaud@beck ~1$ ipvthon
Python 0.12 -- An enhanced Interactive Python.
object? -> Details about 'object'. use 'object??' for extra details.
ase Class: <type 'list'>
String Form: [1, 2, 3, 4]
lamespace: Interactive
ength:
ocstrina:
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
a.append a.count a.extend a.index
ase Class: <type 'builtin function or method'>
String Form: <built-in method count of list object at 0x2161a28>
lamespace: Interactive
```

Outline

Data Analysis With Python

A. Beck

atroductio

Using

Basic

Python

D-4-

V ...

VISUAIIZAD

- 1 Introduction
- 2 Using Python
- 3 Basic Python
- 4 Scipy
- 5 Data I/O
- 6 Visualization

Python is an object oriented language

Data Analysis With Python

A. Beck

Using

Pytho

Basic Python

_ .

D-4- I

Visualizati

"In Python, we do things with stuff!"

things = operations

stuff = objects

Туре	Example	
Numbers	128, 3.14, 4+5j	
Strings	'Rony', "Giovanni's"	
Lists	[1,"string",2.45]	
Tuples	(1,"string",2.45)	

Strings, Lists and Tuples are sequences. Strings and Tuples are "immutable".

Numbers

Data Analysis With Python

A. Beck

atraduatio

Using

Pythor

Python

Scip

Data I

Strings Ordered collection (or sequence) of characters

Data Analysis With Python

A. Beck

atroductio

Usina

Python

Python

Scip

Data I/

V IOUUIILUII

```
Out[2]: 'spam a lot !'
TypeError
/home/arnaud/<ipython-input-4-27903bb729b1> in <module>()
---> 1 s[0] = c
TypeError: 'str' object does not support item assignment
in [5]: s.replace("pa","a")
TypeError
/home/arnaud/<ipython-input-6-eb0154d479ea> in <module>()
----> 1 "42" + 1
TypeError: cannot concatenate 'str' and 'int' objects
In [7]: int("42") + 1
```

String Methods

Data Analysis With Python

A. Beck

Pytho

Basic Python

- - 1- 7

Data i/C

visualiza

Lists

Sequence of any objects

Data Analysis With Python

A. Beck

ntroductio

. . .

Pytho

Basic

Python

0-:---

Data I/0

Vigualiz:

```
[n [54]: list * 2
[n [56]: list.extend([234,457,"ola"]); list
Out[56]: [2, 45, 28, 9, 3, 234, 457, 'ola']
In [57]: list.append([234.457."ola"]): list
Out[58]: [2, 3, 9, 28, 45, 234, 457, [234, 457, 'ola'], 'ola']
In [59]: list.pop(3):list #removes 3rd element
[n [60]: list.remove(3); list #removes element 3
Out[60]: [2, 9, 45, 234, 457, [234, 457, 'ola'], 'ola']
In [61]: len(list) #Works for any sequence
In [62]: range(6) #Generates a list
```

Slices Manipulating sequences

Data Analysis With Python

A. Beck

atroduction

Using

Python

Basic Python

Scip

Data I/

Visualiza

```
[n [80]: list[1:8:2]
In [81]: list[1:8:2][:2]
[n [82]: s="spam"
```

Importing modules

Data Analysis With Python

A. Beck

Hsina

Python

Basic Python

Scip

Data I/C

Visualiza

Modules define new object types and operations.

```
In [38]: import math
In [39]: math.pi
Out[39]: 3.141592653589793
In [40]: import random
In [41]: random.random()
Out[41]: 0.6015750142337749
In [42]: random.choice([1,2,3,4,"bingo",6,7,8,9.3])
Out[42]: 8
```

The large and growing Python users community provides an increasing number of modules that already do what you need.

Outline

Data Analysis With Python

A. Beck

ntroductio

miroductic

Pytho

Basic

Scipy

Data I

Visualiza

1 Introduction

2 Using Python

3 Basic Python

4 Scipy

5 Data I/O

The Scipy module

Data Analysis With Python

A. Beck

Using

Pytho

Pvth

Scipy

. . .

Dala I/C

Visualizat

Scipy is a collection of powerful , high level functions for mathematics and data management. It is based on the numpy.ndarray object type and vectorized operations. The operations are optimized and coded in C to deliver high performances.

```
In [134]: a=scipy.arange(10000000)

In [135]: %time for i in range(len(a)):a[i]=a[i]**2

CPU times: user 8.26 s, sys: 0.07 s, total: 8.33 s

Wall time: 8.31 s

In [136]: %time a = a**2

CPU times: user 0.02 s, sys: 0.00 s, total: 0.02 s

Wall time: 0.03 s
```

If you are using a for loop, you are probably doing something wrong!

Creating an ndarray

Data Analysis With Python

A. Beck

atroductio

miroductic

Using

Pytrior

Scipy

. . .

V/:----

```
[140]: scipy.arange(10)
Out[140]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
[141]: scipy.zeros((5,5))
n [142]: scipv.ones(5)
in [143]: scipy.linspace(0,3.1415,10)
[n [144]: scipy.fromstring("0. 1. 2.32 1.45",dtype=float,sep=" ")
[n [145]: list = range(5);scipy.array(list)
Out[145]: array([0, 1, 2<u>, 3, 4])</u>
```

Manipulating ndarrays

Data Analysis With Python

A. Beck

ntroductio

Using

Basic

Pytho

Scipy

Data I/

Visualizatio

- Slicing is still the basis of array manipulation.
- Reshape -> Change number and size of dimensions of the array.
- Sort -> Quite self explanatory.
- Delete, insert, append -> Remove or add parts of the array.
- Squeeze, flatten, ravel -> More ways to control dimensionality of the array.
- Transpose,swapaxes, rollaxis -> More ways to arange the dimensions as you want

These functions are important because a well aranged data is a quickly processed data.

Extracting information from your data

```
Data
 Analysis
With Python
```

A. Beck

Scipy

```
[168]: a=scipy.rand(10)
[n [169]: a[a>0.5]
[n [171]: arg = a.argsort();print arg
```

- Intersection (convenient for filtering)
- Histograms (perfect for distribution functions)
- Convolution
- Integration
- Interpolation
- Name it

Outline

Data Analysis With Python

A. Beck

ntroductio

Using Python

Pytho

Sciny

Data I/O

- 1 Introduction
- 2 Using Python
- 3 Basic Pythor
- 4 Scipy
- 5 Data I/O
- 6 Visualization

Reading data

Data Analysis With Python

A. Beck

Using

Basic

Pytho

Scin

Data I/O

Visualizati

The whole game is to fit your data in a ndarray.

```
data = scipy.fromfile("file",dtype='float32',count=-1,sep=" ")
```

Works with raw binary files and ASCII files but not very flexible.

```
data = scipy.loadtxt("file",skiprows=0,delimiter=",")
```

More flexible but works only with text files.

The file object

Data Analysis With Python

A. Beck

Using Pythor

Pytrio

. , , ,

Ocip

Data I/O

visualizati

The file object is a basic python type. It is created by

```
fid = open("filename","r")
```

"r" for read, "w" for write.

- fid.readline() -> reads a line in a string
- fid.readlines() -> reads all line in a list of strings
- fid.tell() -> returns the file's current position (in byte)
- fid.seek(n) -> goes to position n
- fid.read() -> reads all file in a string
- fid.close()

Manipulating a file

Data Analysis With Python

A. Beck

Using

Pythor

Pyth

Scipy

Data I/O

Vicuoliza

```
arnaud@beck 600TW light bestcase0]$ head -n 3 final density full.csv
arnaud@beck 600TW light bestcase01$ ipvthon
ython 2.7.3 (default, Jul 24 2012, 10:05:38)
ype "copyright", "credits" or "license" for more information.
Python 0.12 -- An enhanced Interactive Python.
         -> Introduction and overview of IPvthon's features.
nelp -> Python's own help system.
[n [1]: fid = open("final density full.csy".'r'): fid.readline()
Out [5]: (6832468.)
```

Quick words about reading HDF5 files

Data Analysis With Python

A. Beck

Using

Pytho

ı yuı

Scipy

Data I/O

Visualizatio

Reading HDF5 files is module dependant. You can use either "tables" or "h5py" for instance.

These modules coexist well with Scipy and load data directly into ndarray.

tables example

```
In [20]: h5 file = tables.openFile("proc5.hdf", mode = "r")
h5_file.root.energy h5_file.root.moments
h5_file.root.fields h5_file.root.potentials
n5 file.root.moments.phi h5 file.root.moments.species 0
                                  h5 file.root.moments.species 1
In [21]: data = h5 file.root.moments.species 0.Jx.cvcle 0.read()
```

Writing data

Data Analysis With Python

A. Beck

Introduction

Using

Pytho

Pyth

Scin

Data I/O

scipy.save("file",ndarray) and scipy.load("file") in order to use the binary scipy format to store arrays.

- ndarray.tofile() in order to store an array in a text file or raw binary.
- fileobject.write("any_string") to write a string in a text file.
- The h5py and tables modules are used to write HDF5 files.

VTK script

```
img.SetSpacing(dx local*reducefactor.dv local.dz local)
vtk datachamp = vtk.vtkFloatArray()
vtk datachamp.SetNumberOfTuples(numpoints)
vtk datachamp.SetNumberOfComponents(1)
vtk datachamp.SetVoidArray(champ, numpoints, 1)
vtk datachamp.SetName(namedata)
img.GetPointData().SetScalars(vtk datachamp)
writer =vtk.vtkXMLPImageDataWriter()
writer.SetFileName(data dir+'/'+cas+'/'+ifile+".pvti")
writer.SetNumberOfPieces(numberOfPieces):
```

Outline

Data Analysis With Python

A. Beck

troductio

Using Pythor

Basic Pytho

0-:---

Data I/O

- 1 Introduction
- 2 Using Python
- 3 Basic Python
- 4 Scipy
- 5 Data I/O
- 6 Visualization

Visualization workflow

Data Analysis With Python

A. Beck

Python

Python

Matplotlib: the figure object

Data Analysis With Python

A. Beck

ntroduction

Using Pythor

Basic

Pytho

Data I/0

Visualization

Options include :

- Size in inches
- Dpi
- Face and edge colors
- Frame layout

Operations include:

- Title and axis labels fig.xlabel("string")
- Axis ticks and extent fig.ticks(ndarray)
- Display a colorbar fig.colorbar()
- Display a legend fig.legend()
- Save figure (png or eps) fig.savefig()

Matplotlib: Simple plots

Data Analysis With Python

A. Beck

. .

Using

Pytho

D-4- 1/

Visualization

If x is omitted, default is x=range(len(y)).

All typical options are here : lines (style, color, width ...), markers (size, shape, colors ...), labels for legend, antialiasing, transparency, many more ...

Matplotlib 2D plots: imshow and pcolor

Data Analysis With Python

A. Beck

ntroducti

Using

Basic

Pytho

2D plots with a little bit of tuning

Data Analysis With Python

A. Beck

ntroductio

Using

Pytho

Pytho

Doto I/C

Other features of matplotlib

Data Analysis With Python

A. Beck

atroductio

Using

Basic

гуц

Matplotlib has native LATEX rendering

Data Analysis With Python

A. Beck

Using

Pythor

Pytr

Data I/C

Visualization

label = r"\$Math \LaTex code\$"

Matplotlib's math rendering engine

$$W_{\delta_1
ho_1 \sigma_2}^{3 eta} \! = \! U_{\delta_1
ho_1}^{3 eta} + \! rac{1}{8 \pi^2} \! \int_{lpha_2}^{lpha_2} dlpha_2^{'} \! \left[\! rac{U_{\delta_1
ho_1}^{2 eta} \! - \! lpha_2^{'} U_{
ho_1 \sigma_2}^{1 eta}}{U_{
ho_1 \sigma_2}^{0 eta}} \!
ight]$$

Subscripts and superscripts:

$$\alpha_i > \beta_i, \ \alpha_{i+1}^j = \sin(2\pi f_i t_i) e^{-5t_i/\tau}, \ \dots$$

Fractions, binomials and stacked numbers: $\frac{3}{4},\,\binom{3}{4},\,\frac{3}{4},\,\binom{5-\frac{1}{k}}{4},\,\ldots$

Radicals:

$$\sqrt{2}, \sqrt[3]{x}, \dots$$

Fonts:

Roman , Italic , Typewriter or CALLIGRAPHY

Accents:

$$(\dot{a}, \bar{a}, \dot{a}, \dot{a}, \dot{a}, \dot{a}, \dot{a}, \hat{a}, \tilde{a}, \widetilde{xyz}, \widetilde{xyz}, \ldots)$$

Greek. Hebrew:

$$\alpha, \beta, \chi, \delta, \lambda, \mu, \Delta, \Gamma, \Omega, \Phi, \Pi, \Upsilon, \nabla, \aleph, \beth, \daleth, \gimel, \dots$$

Delimiters, functions and Symbols:

$$\coprod$$
, \int , \oint , \prod , \sum , \log , \sin , \approx , \oplus , \star , ∞ , ∞ , ∂ , \Re , \leadsto , ...

The futur of visualization in Python

Data Analysis With Python

A. Beck

Using Pytho

Pytho

ı yırıoı

Visualization

It is an extremely vast, active and changing domain.

New modules are emerging: Chaco, MayaVi, Bokeh, stressing interactivity and dynamic data visualizations in web browsers and in 3D.

What you saw today is extremely basic and is only a tiny part of what Python is capable of.