Introduction to Information Retrieval

Probabilistic Information Retrieval

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N / \mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

6. BM25

OpenSource Connections

What We Do

Case Studies

About Us

BM25 The Next Generation of Lucene Relevance

Doug Turnbull - October 16, 2015

There's something new cooking in how Lucene scores text. Instead of the traditional "TF*IDF," Lucene just switched to something called BM25 in trunk. That means a new scoring formula for Solr (Solr 6) and Elasticsearch down the line.

Sounds cool, but what does it all mean? In this article I want to give you an overview of how the switch might be a boon to your Solr and Elasticsearch applications. What was the original TF*IDF? How did it work? What does the new BM25 do better? How do you tune it? Is BM25 right for everything?

Okapi BM25

[Robertson et al. 1994, TREC City U.]

- BM25 "Best Match 25" (they had a bunch of tries!)
 - Developed in the context of the Okapi system
 - Started to be increasingly adopted by other teams during the TREC competitions
 - It works well
- Goal: be sensitive to term frequency and document length while not adding too many parameters
 - (Robertson and Zaragoza 2009; Spärck Jones et al. 2000)

"Early" versions of BM25

Version 1: using the saturation function

$$c_i^{BM25v1}(tf_i) = c_i^{BIM} \frac{tf_i}{k_1 + tf_i}$$

Version 2: BIM simplification to IDF

$$c_i^{BM25v2}(tf_i) = \log \frac{N}{df_i} \cdot \frac{(k_1 + 1)tf_i}{k_1 + tf_i}$$

- (k_I+1) factor doesn't change ranking, but makes term score 1 when $tf_i=1$
- Similar to tf-idf, but term scores are bounded

Document length normalization

- Longer documents are likely to have larger tf_i values
- Why might documents be longer?
 - Verbosity: suggests observed tf_i too high
 - Larger scope: suggests observed tf_i may be right

- A real document collection probably has both effects
- ... so should apply some kind of partial normalization

Document length normalization

Document length:

$$dl = \mathop{\mathring{a}}_{i} tf_i$$

- avdl: Average document length over collection
- Length normalization component

$$B = \mathring{\xi}(1-b) + b \frac{dl}{avdl} \ddot{\mathring{g}}, \qquad 0 \notin b \notin 1$$

- b = I full document length normalization
- b = 0 no document length normalization

Okapi BM25

Normalize tf using document length

$$tf_i^{\mathbb{C}} = \frac{tf_i}{B}$$

$$c_i^{BM25}(tf_i) = \log \frac{N}{df_i} \cdot \frac{(k_1 + 1)tf_i^{\mathbb{C}}}{k_1 + tf_i^{\mathbb{C}}}$$

$$= \log \frac{N}{df_i} \cdot \frac{(k_1 + 1)tf_i}{k_1((1 - b) + b \frac{dl}{avdl}) + tf_i}$$

BM25 ranking function

$$RSV^{BM25} = \mathop{\bigcirc}_{i\hat{l}} c_i^{BM25}(tf_i);$$

Okapi BM25

$$RSV^{BM25} = \mathop{\aa}_{i \mid q} \log \frac{N}{df_i} \times \frac{(k_1 + 1)tf_i}{k_1((1 - b) + b\frac{dl}{avdl}) + tf_i}$$

- k_1 controls term frequency scaling
 - $k_1 = 0$ is binary model; k_1 large is raw term frequency
- b controls document length normalization
 - b = 0 is no length normalization; b = 1 is relative frequency (fully scale by document length)
- Typically, k_1 is set around 1.2–2 and b around 0.75

Why is BM25 better than VSM tf-idf?

- Suppose your query is [machine learning]
- Suppose you have 2 documents with term counts:
 - doc1: learning 1024; machine 1
 - doc2: learning 16; machine 8
- tf-idf: log₂ tf * log₂ (N/df)
 - doc1: 11 * 7 + 1 * 10 = 87
 - doc2: 5 * 7 + 4 * 10 = 75
- BM25: $k_1 = 2$
 - doc1: 7 * 3 + 10 * 1 = **31**
 - doc2: 7 * 2.67 + 10 * 2.4 = 42.7

Example

- Imagine we have two documents (A and B) and a query "protein-folding." We'll use the following parameters:
- **k1:** 1.2, **b:** 0.75, **avgdl:** 500
- Document A: Length (dl): 1000 words, Term frequency of "protein-folding" (tf): 10, idf of "protein-folding": 2
- Document B: Length (dl): 200 words, Term frequency of "protein-folding" (tf): 10, idf of "protein-folding": 2

Ranking with features

- Textual features
 - Zones: Title, author, abstract, body, anchors, ...
 - Proximity
 - ...
- Non-textual features
 - File type
 - File age
 - Page rank
 - •

Ranking with zones

- First combine evidence across zones for each term
- Then combine evidence across terms

BM25F with zones

- Calculate a weighted variant of total term frequency
- ... and a weighted variant of document length

$$t\tilde{f}_i = \mathop{a}\limits_{z=1}^Z v_z t f_{zi}$$

$$d\tilde{l} = \mathop{a}\limits_{z=1}^{Z} v_z len_z$$

 $t\tilde{f}_{i} = \mathring{a}v_{z}tf_{zi}$ $d\tilde{l} = \mathring{a}v_{z}len_{z}$ $avd\tilde{l} = Average d\tilde{l}$ across all documents

where

 v_{τ} is zone weight tf_{zi} is term frequency in zone z len_z is length of zone zZ is the number of zones

Simple BM25F with zones

$$RSV^{SimpleBM25F} = \mathop{\mathring{\text{o}}}_{i\hat{l} \ q} \log \frac{N}{df_i} \times \frac{(k_1 + 1)t\tilde{f}_i}{k_1((1 - b) + b\frac{d\tilde{l}}{avd\tilde{l}}) + t\tilde{f}_i}$$

• **Example:** A document with "apple" in the title and "pie" in the body might be ranked higher for the query "apple pie" than a document with both terms only in the body.

But we may want zone-specific parameters (k_I , b, IDF)

BM25F

 Empirically, zone-specific length normalization (i.e., zone-specific b) has been found to be useful

$$t\tilde{f}_i = \mathop{a}\limits_{z=1}^Z v_z \frac{tf_{zi}}{B_z}$$

$$B_z = \mathring{\varsigma}(1 - b_z) + b_z \frac{len_z}{avlen_z} \mathring{\varsigma}, \quad 0 \notin b_z \notin 1$$

$$RSV^{BM25F} = \mathop{\aa}_{i\hat{i}} \log \frac{N}{df_i} \times \frac{(k_1 + 1)tf_i}{k_1 + t\tilde{f}_i}$$

See Robertson and Zaragoza (2009: 364)

Resources

- S. E. Robertson and K. Spärck Jones. 1976. Relevance Weighting of Search Terms. *Journal of the American Society for Information Sciences* 27(3): 129–146.
- C. J. van Rijsbergen. 1979. *Information Retrieval.* 2nd ed. London: Butterworths, chapter 6. http://www.dcs.gla.ac.uk/Keith/Preface.html
- K. Spärck Jones, S. Walker, and S. E. Robertson. 2000. A probabilistic model of information retrieval: Development and comparative experiments. Part 1. *Information Processing and Management* 779–808.
- S. E. Robertson and H. Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. *Foundations and Trends in Information Retrieval* 3(4): 333-389.