Assignment -4

Assignment Date	17 November 2022
Student Name	V.UDAY KUMAR
Student Roll Number	111619104156
Maximum Marks	4 Marks

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
df=pd.read csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")
d-F[ 'age '] = d-F[ 'Rings ']+1.5
df = df.drop('Rings', axis = 1)
Univariate Analysis
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
      array([[<matplotlib.axes._subplots.AxesSubplot object at 8x7f3d1b8fb698>,
               <matplotlib.axes.subplots.AxesSubplot object at 0x7f3dlade4d98>,
<matplotlib.axes.subplots.AxesSubplot object at 0x7f3dladaa398>,
             (matplotlib.axes_subplots.AxesSubplot object at Bx7f3dlad60998>],
(matplotlib.axes_subplots.AxesSubplot object at 0x7f3dlad16f98>,
               <matplotlib.axes.subplots.AxesSubplot object at Bx7f3dlacda5d8>,
<matplotlib.axes.subplots.AxesSubplot object at Bx7f3dlac8fc58>,
               <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
             dtype=object)
                        Length
                                                                                                                                                            Whole weight
                                                                    Diameter
                                                                                                                  Height
                                                                                               1600
       400
                                                                                                                                             300
                                                    350
                                                                                               1400
       350
                                                                                                                                             250
                                                    300
                                                                                               1200
       300
                                                    250
                                                                                               1000
       250
                                                    200
                                                                                                800
       200
                                                                                                                                             150
                                                    150
                                                                                                600
       150
                                                                                                                                             100
                                                    100
                                                                                                400
       100
                                                                                                                                              50
        50
                                                                                                200
                                                                    0.3
                                                                          0.4
                                                                                                               0.4
                                                                                                                     0.6
                                                                                                                          0.8
                                                                                                                                                      0.5
                                                                                                                                                            1.0
                                                                                                                                                                 1.5
                                                                                                                                                                       2.0
                                                                                                               Shell weight
                    Shucked weight
                                                                  Viscera weight
                                                                                                                                                                age
                                                                                                                                             700
                                                    350
                                                                                                350
                                                                                                                                             600
       300
                                                    300
                                                                                                300
                                                                                                                                             500
       250
                                                    250
                                                                                                250
                                                                                                                                             400
       200
                                                    200
                                                                                                200
       150
                                                   150
                                                                                                150
       100
                                                    100
                                                                                                                                             200
                                                                                                100
                                                                                                 50
          0.00 0.25 0.50 0.75 100 125 150
                                                                                                          0.2
                                                                                                                       0.6
                                                                0.2
                                                                        0.4
                                                                                0.6
                                                                                                    0.0
Length Diameter Height whole weight Shucked weight Viscera weight Shell weight
```

0.191035

0.432946

0.446188

0.431363

0.991459

1.046532

0.092010

0.215545

0.230689

0.128182 9.390462

0.281969 12.205497

0.302010 12.629304

Sex

0.427746 0.326494 0.107996

0.579093 0.454732 0.158011

M 0.561391 0.439287 0.151381

Bivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.d	escribe()									
		Length	Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	age	70.
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684	
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000	
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000	
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000	
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000	
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000	

Check for missing values

df.isnull().sum()

```
df - pd.get_dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ 'VI scera weight '] > 0. 5) & (df-[ 'age '] < 20) ] . Index, inp1ace=True)
\tt df.drop(df[(df['Uiscera\ weight']<0.5)\ \&\ (df['age']\ >\ 25)].index,\ inplace=True)
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight'] > 0.6) & (df['age'] < 25)].index, inplace=True) $$
\label{eq:df_def} $$ df.drop(df[(df['Shell weight']<8.8) 8 (df['age'] > 25)].index, inplace=True) $$
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
\label{eq:dfdf} $$ df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 28)].index, inplace=True) $$
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 28)].iudex, inplace=True)
var = ' Nhole weight '
pit . scatter (x = df-[var], y = df['age'])
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
           (df['age'] < 25)].index, inplace = True)</pre>
df. drop(df-[(df['Nhole weight']<2.5) & (
d-F['age'] > 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop (df-[(df['Diazeten'] <8.1) &
\label{eq:condition} $$ (df['age'] < 5)].index, inplace = True) $$ df. drop(df-[(df['Diameter'] < 0.6) & (
d-F['age']>25)]. Index, 1nplace = True)
d-F-. drop(df-[ (d1°[ 'Diameter '] >=0.6) & (
df-[ ' age ' ] < 25) ] . Index, 1nplace = True)
var = 'Height'
p1t . scatter (x - df[var], y - df['age'])
p1t.grid(True)
d-F. drop(d-I- [ (df-[ ^{\prime} Height ^{\prime} ] > 6 . 4) &
            (df[ 'age '] < 15) ] . Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height '] <0. 4) & (
d-I°[ 'age '] > 25) ] . index, 1nplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] <8.1) &</pre>
           (df['age'] < 5)].index, inplace = True)</pre>
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)</pre>
```


Categorical columns

 $numerical_features = df.select_dtypes(include = [np.number]).columns \\ categorica1_features = df.select_dtypes(include = [np.object]).columns$

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations

numerical_features

```
Index(['Length','Dl ameter','Height','Mhole weight','Shucked weight',
'Uiscera weight','Shell weight', 'age'],
dtype='object')
```

categonica I_featunes

Index(['Sex'], dtype='object')

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:, :5]

10	Nhole we1ght	Helght	Diameter	Length	Sex		
	0.5140	0.095	0.365	0.455	М	0	
	0.2255	0.090	0.265	0.350	М	1	
	0.6770	0.135	0.420	0.530	F	2	
	0.5160	0.125	0.365	0.440	М	3	
	0.2050	0.080	0.255	0.330		4	
	0.8870	0.165	0.450	0.565	F	4172	
	0.9660	0.135	0.440	0.590	М	4173	
	1.1760	0.205	0.475	0.600	М	4174	
	1.0945	0.150	0.485	0.625	F	4175	
	1.9485	0.195	0.555	0.710	М	4176	

4167 rows • 5 columns

y=df.iloc[:,5:]

	Shucked weight	VIscera weight	Shell weight	age	7
0	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	
4167 rd	ws 4 columns				

 $from \ sk1earn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$

Model Building

 $\label{linearRegression} from sklearn.linear_model import LinearRegression \\ mlr=LinearRegression() \\ mlr.fit(x_train,y_train)$

Train and Test model

x_test [6:5]

	Sex	Length	Diameter	Height	Nhole we1ght
661		0.535	0.450	0.170	0.781
370	F	0.650	0.545	0.165	1.566
2272	М	0.635	0.510	0.210	1.598
1003	М	0.595	0.455	0.150	1.044
1145	М	0.580	0.455	0.195	1.859

y_test[0:5]

	Shucked we1ght	vlscera we1ght	Shell we1ght	age
661	0.3055	0.1555	0.295	12.5
370	0.6645	0.3455	0.415	17.5
2272	0.6535	0.2835	0.580	16.5
1003	0.5180	0.2205	0.270	10.5
1145	0.9450	0.4260	0.441	10.5

Feature Scaling

from sklearn.preprocessing import StandardScaler ss=StandardScaler() x_train=ss.fit_transform(x_train) mlrpred=mlr.predict(x_test[B:9]) mlrpred

Performance measure

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833