What is claimed is:

CLAIMS

5 1.

10

15

20

25

A digital signature cryptographic method comprising:

supplying a set S1 of k polynomial functions as a public-key, the set S1 including the functions $P_1(x_1,...,x_{n+v}, y_1,...,y_k),..., P_k(x_1,...,x_{n+v}, y_1,...,y_k)$ where k, v, and n are integers, $x_1,...,x_{n+v}$ are n+v variables of a first type, $y_1,...,y_k$ are k variables of a second type, and the set S1 is obtained by applying a secret key operation S2 of k polynomial functions φn a set $P'_{1}(a_{1},...,a_{n+v},y_{1},...,y_{k}),...,P'_{k}(a_{1},...,a_{n+v},y_{1},...,y_{k})$ where $a_{1},...,a_{n+v}$ are n+v variables which include a set of n "oil" variables $a_1,...,a_n$, and a set of v "vinegar" variables $a_{n+1},...,a_{n+v};$

providing a message to be signed;

applying a hash function on the message to produce a series of k values $b_1, ..., b_k$;

substituting the series of k values $b_1,...,b_k$ for the variables $y_1,...,y_k$ of the set S2 respectively to produce a set S3 of k polynomial functions $P''_1(a_1,...,a_{n+v}),...,P''_k(a_1,...,a_{n+v});$

selecting v values $a'_{n+1},...,a'_{n+v}$ for the v "vinegar" variables $a_{n+1},...,a_{n+v}$;

solving a set of equations $P''_{1}(a_{1},...,a_{n},a'_{n+1},...,a'_{n+v})=0,...,$ $P''_{k}(a_{1},...,a_{n},a'_{n+1},...,a'_{n+v})=0$ to obtain a solution for $a'_{1},...,a'_{n}$; and

applying the secret key operation to transform $a'_1,...,a'_{n+v}$ to a digital signature $e_1,...,e_{n+v}$.

SUB AL)

A method according to claim 1 and also comprising the step of verifying the digital signature.

15

25

- 3. A method according to claim 2 and wherein said verifying step comprises the steps of: obtaining the signature $e_1,...,e_{n+v}$, the message, the hash function
- applying the hash function on the message to produce the series of k values $b_1,...,b_k$; and

and the public key;

verifying that the equations $P_1(e_1,...,e_{n+v},b_1,...,b_k)=0,...,$ $P_k(e_1,...,e_{n+v},b_1,...,b_k)=0$ are satisfied.

- 10 4. A method according to claim 1 and wherein the set S2 comprises the set f(a) of k polynomial functions of the HFEV scheme.
 - 5. A method according to claim 1 and wherein the set S2 comprises the set S of k polynomial functions of the UOV scheme.
 - 6. A method according to claim 1 and wherein said supplying step comprises the step of selecting the number v of "vinegar" variables to be greater than the number n of "oil" variables.
- 7. A method according to claim 1 and wherein v is selected such that q^{v} is greater than 2^{32} , where q is the number of elements of a finite field K.
 - 8. A method according to claim 1 and wherein said supplying step comprises the step of obtaining the set S1 from a subset S2' of k polynomial functions of the set S2, the subset S2' being characterized by that all coefficients of components involving any of the $y_1, ..., y_k$ variables in the k polynomial functions $P'_1(a_1, ..., a_{n+v}, y_1, ..., y_k), ..., P'_k(a_1, ..., a_{n+v}, y_1, ..., y_k)$ are zero, and the number v of "vinegar" variables is greater than the number v of "oil" variables.

9. A method according to claim 8 and wherein the set S2 comprises
the set S of k polynomial functions of the UOV scheme, and the number v of
"vinegar" variables is selected so as to satisfy one of the following conditions:
(a) for each characteristic p other than 2 of a field K in an "Oil and
Vinegar" scheme of degree 2, v satisfies the inequality q ^{(v-n)-1} * n ⁴ >
2 ⁴⁰ ,
(b) for $p = 2$ in an "Oil and Vinegar" scheme of degree 3, v is
greater than $n^{*}(1 + \text{sqrt}(3))$ and lower than or equal to $n^{3}/6$, and

(c) for each p other than 2 in an "Oil and Vinegar" scheme of

10

15

5

10. A method according to claim 8 and wherein the set S2 comprises the set S of k polynomial functions of the UOV scheme, and the number v of "vinegar" variables is selected so as to satisfy the inequalities $v < n^2$ and $q^{(v-n)-1} * n^4 > 2^{40}$ for a characteristic p=2 of a field K in an "Oil and Vinegar" scheme of degree 2.

degree 3, vis greater than n and lower than or equal to n⁴.

op 20 a₁.

11. A method according to claim 1 and wherein said secret key operation comprises a secret affine transformation s on the n+v variables $a_1,...,a_{n+v}$.

A method according to claim 4 and wherein said set S2 comprises

polynomial.

25

12.

13. A method according to claim 12 and wherein said univariate polynomial includes a univariate polynomial of degree less than or equal to 100,000.

an expression including k functions that are derived from a univariate

15

20

5

14. A cryptographic method for verifying the digital signature of claim 1, the method comprising:

obtaining the signature $e_1,...,e_{n+v}$, the message, the hash function and the public key;

applying the hash function on the message to produce the series of k values b_1, \ldots, b_k ; and

verifying that the equations $P_1(e_1,...,e_{n+v},b_1,...,b_k)=0,...,$ $P_k(e_1,...,e_{n+v},b_1,...,b_k)=0$ are satisfied.

In an "Oil and Vinegar" signature method, an improvement comprising the step of using more "vinegar" variables than "oil" variables.

16. A method according to claim 15 and wherein the number v of "vinegar" variables is selected so as to satisfy one of the following conditions:

- (a) for each characteristic p other than 2 of a field K and for a degree 2 of the "Oil and Vinegar" signature method, v satisfies the inequality $q^{(v-n)-1}$ in $n^4 > 2^{40}$,
- (b) for p = 2 and for a degree 3 of the "Oil and Vinegar" signature method, v is greater than n*(1 + sqrt(3)) and lower than or equal to $n^3/6$, and
- (c) for each p other than 2 and for a degree 3 of the "Oil and Vinegar" signature method, v is greater than n and lower than or equal to n⁴.

A method according to claim 15 and wherein the set S2 comprises the set S of k polynomial functions of the UOV scheme, and the number v of "vinegar" variables is selected so as to satisfy the inequalities $v < n^2$ and $q^{(v-n)-1} * n^4 > 2^{40}$ for a characteristic p=2 of a field K in an "Oil and Vinegar" scheme of degree 2.

ARA

Add