Policy Evaluation

Chen-Yu Wei

Policy Evaluation

Given: a policy π

Evaluate $V^{\pi}(s)$ or $Q^{\pi}(s,a)$

On-policy policy evaluation: the learner can execute π to evaluate π

74(·(s)

Off-policy/offline policy evaluation: the learner can only execute some $\pi_b \neq \pi$, or can only access some existing dataset to evaluate π

$$(S_{i,\alpha_{i}}, r_{i}, S_{i,\alpha_{i}}, a_{i}, \dots)$$

Use cases:

- Approximate policy iteration: $\pi^{(k)}(s) = \underset{a}{\operatorname{argmax}} Q^{\pi^{(k-1)}}(s, a)$
- Estimate the value of a policy before deploying it in the real world, e.g., COVID-related border measures, economic recovery policies, or policy changes in recommendation systems.

Value Iteration for V^{π} / Q^{π}

Input:
$$\pi$$

For
$$k = 1, 2, ...$$

$$\forall s, \qquad V^{(k)}(s) \leftarrow \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{(k-1)}(s') \right)$$

Input: π

For
$$k = 1, 2, ...$$

$$\bigcirc_{(i)} \rightarrow \bigcirc_{\mathcal{I}}$$

$$\forall s, a, \qquad Q^{(k)}(s, a) \leftarrow R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \, \pi(a'|s') Q^{(k-1)}(s', a')$$

On-Policy Policy Evaluation

LSPE and TD

Collecting samples $\{(s_i, r_i, s_i')\}_{i=1}^n$ using π

For k = 1, 2, ...

$$\theta_k \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \left(V_{\theta}(s_i) - r_i - \gamma V_{\theta_{k-1}}(s_i') \right)^2$$

Least-Square

Policy Evaluation (LSPE)

$$V(s) \approx \left[\sum_{\alpha} z(\gamma|s) \left(R(s,\alpha)+V\right) \underbrace{E}_{S'\sim P(\cdot|s,s)} V_{O_{k-1}}(s')\right]$$

For i = 1, 2, ...

Draw $a_i \sim \pi(\cdot | s_i)$

(s,r,s')

Observe reward r_i and next state s_{i+1}

$$\underline{\theta_i} \leftarrow \underline{\theta_{i-1}} - \alpha \nabla_{\underline{\theta}} \left(V_{\underline{\theta}} (s_{\underline{\theta}}) - \gamma V_{\underline{\theta_{i-1}}} (s_{\underline{\theta_{i-1}}}) \right)^2$$

Temporal difference learning

TD learning

$$TD(0)$$
 $70(\lambda)$

$$\frac{\partial S_{i-1}}{\partial S_{i-1}} = \frac{1}{100} \left(\frac{1}{100} \right) = \frac{$$

LSPEQ and TDQ TD

Collecting samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ using π

For k = 1, 2, ...

$$\theta_k \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \sum_{a'} \pi(a'|s_i') Q_{\theta_{k-1}}(s_i', a') \right)^2$$

For i = 1, 2, ...

Draw $a_i \sim \pi(\cdot | s_i)$, observe reward r_i and next state s_{i+1}

$$\theta_i \leftarrow \theta_{i-1} - \alpha \nabla_{\boldsymbol{\theta}} \left(Q_{\boldsymbol{\theta}}(s_i, a_i) - r_i - \gamma \sum_{a'} \pi(a'|s_i') Q_{\theta_{i-1}}(s_i', a') \right)^2$$

 $\frac{A \ge 0 : A : s \text{ psd}}{A \ge B = A - B : s \text{ psd}}$

TD with Linear Function Approximation

BC:
$$R(S,u) + \sqrt{\frac{1}{5}} \max_{s \in P(S,u)} \widehat{Q}(S,u') = \varphi(S,u)^T Q^* \qquad \forall \widehat{Q}$$

Let μ be the stationary state distribution under policy π . Furthermore, assume

- (1) $V^{\pi}(s) = \phi(s)^{\mathsf{T}} \theta^{\star}$ (realizability assumption)
- (2) $\mathbb{E}_{s \sim \mu}[\phi(s)\phi(s)^{\mathsf{T}}] \geqslant \rho I$ for some $\rho > 0$ (coverage assumption)

Then the following TD update:

imply (set $\widetilde{O} = O^*$)

For
$$i=1,2,...$$
In fact, even if the samples are generated as $\alpha_i \sim \mathcal{I}(\cdot|s_i)$, $Y_i = \mathcal{P}(s_i,\alpha_i)$, $S_{i+1} \sim \mathcal{P}(\cdot|s_{i},\alpha_i)$

$$\underbrace{\mathsf{Sample} \ s \sim \mu, \quad a \sim \pi(\cdot|s), \quad r \sim R(s,a), \quad s' \sim P(\cdot|s,a)}_{\theta_i \leftarrow \theta_{i-1} - \alpha_i} (\phi(s)^{\mathsf{T}}\theta_{i-1} - r - \gamma\phi(s')^{\mathsf{T}}\theta_{i-1})\phi(s)$$

converges to θ^* with properly chosen α_i .

.

Comparison

5~M. ava(1) 5~P(1/s,a)

On-Poly

Why does <u>Linear TD and Linear TDQ</u> converge (and converges to the correct solution) but <u>Linear Q-Learning</u> diverges?

$$E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)\phi(s)^{T}\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)\phi(s)^{T}\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)\phi(s)^{T}\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)\phi(s)^{T}\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)^{T}-\gamma\phi(s)\right]$$

$$=E\left[\phi(s)\phi(s)^{T}-\gamma\phi(s)^{T$$

Comparison

Under coverage assumption (i.e., the data $\{(s_i, a_i, r_i, s_i')\}$ sufficiently cover every state-action pair / feature space)

	LSVI	Watkins's Q-Learning	On-Policy LSPE(Q) / TD(Q)
Tabular	$Q^{(k)} \to Q^*$	$Q^{(k)} \to Q^*$	$V^{(k)} ightarrow V^{\pi} / Q^{(k)} ightarrow Q^{\pi}$ under realizability
Linear Approx.	$Q^{(k)} \rightarrow Q^*$ under Bellman completeness	Diverges even with Bellman completeness	

Monte Carlo Estimation

Start from $s_1 = s^*$

Execute policy π until the episode ends and obtain trajectory

$$s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{\tau}, a_{\tau}, r_{\tau}$$

Let
$$G = \sum_{h=1}^{\tau} \gamma^{h-1} r_h$$

K(a)

G is an unbiased estimator for $V^{\pi}(s^{\star})$

MC estimator: unbiased, higher variance

TD estimator: biased, lower variance

a sample of arm a's reward

A Family of Estimators

Suppose we have a value function estimation $V_{\theta}(s) \approx V^{\pi}(s)$

Suppose we also have a **trajectory** s_1 , a_1 , r_1 , ..., s_{τ} , a_{τ} , r_{τ} generated by π

Then the following are all valid estimators for $V^{\pi}(s_1)$ besides $V_{\theta}(s_1)$:

Below, we will show

GI+Z

$$TD(0) = TD$$
 | $Corn'g$ | $Corn'$

1. A way to combine these estimators

2. A more general policy evaluation method $TD(\lambda)$ based on these estimators

Striking a Balance Between Bias and Variance

$$\underline{G_{\theta}(\lambda)} = (1 - \lambda) \left(G_1 + \lambda G_2 + \lambda^2 G_3 + \cdots \right)$$

$$= (1 - \lambda) \left(r_1 + \gamma V_{\theta}(s_2) \right) + (1 - \lambda) \lambda \left(r_1 + \gamma r_2 + \gamma^2 V_{\theta}(s_3) \right) + (1 - \lambda) \lambda^2 (\cdots) + \cdots$$

 $\mathsf{TD}(\lambda)$ $\int_{S_{1}, \alpha_{1}, \gamma_{1}} S_{k, \alpha_{1}, \gamma_{2}, \cdots, S_{k}, \alpha_{2}, \gamma_{2}} G_{\theta_{K}}(o)$ $\mathsf{TD}(0): \ \theta_{k+1} \leftarrow \theta_{k} - \alpha \nabla_{\theta} \left(V_{\theta}(s_{1}) - r_{1} - \gamma V_{\theta_{k}}(s_{2}) \right)^{2}$ $\mathsf{TD}(\lambda): \ \theta_{k+1} \leftarrow \theta_{k} - \alpha \nabla_{\theta} \left(V_{\theta}(s_{1}) - G_{\theta_{k}}(\lambda) \right)^{2}$

Implementation details:

How to make update before reaching the end of the episode? (Sutton and Barto Chapter 12)

•

$TD(\lambda)$

Figure 12.6: 19-state Random walk results (Example 7.1): Performance of $TD(\lambda)$ alongside that of the off-line λ -return algorithm. The two algorithms performed virtually identically at low (less than optimal) α values, but $TD(\lambda)$ was worse at high α values.

(Sutton and Barto Chapter 12)

Summary: On-Policy Policy Evaluation

- Double time-scale: LSPE, LSPEQ, Single time-scale: TD, TDQ
- TD (TD(0)) update:

$$(s, a, r, s') \sim \pi$$

$$\theta_{i+1} \leftarrow \theta_i - \alpha \left. \nabla_{\theta} \left(V_{\theta}(s) - r - \gamma V_{\theta_i}(s') \right)^2 \right|_{\theta = \theta_i}$$

- In the linear case, when realizability and coverage hold, we can show $\theta_i \to \theta^*$
- Monte Carlo Estimator
- An estimator with parameter λ that balances variance and bias
- $TD(\lambda)$

Off-Policy Policy Evaluation

Off-Policy LSPEQ / TDQ

Collecting samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ using π_b

For k = 1, 2, ...

$$\theta_k \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \sum_{a'} \pi(a'|s_i') Q_{\theta_{k-1}}(s_i', a') \right)^2$$

Bellman completeness + coverage will make it work

For i = 1, 2, ...

Draw $a_i \sim \pi_b(\cdot | s_i)$, observe reward r_i and next state s_{i+1}

$$\theta_i \leftarrow \theta_{i-1} = \alpha \nabla_{\theta} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \sum_{a'} \pi(a'|s_i') Q_{\theta_{i-1}}(s_i', a') \right)^2$$

Like Q-learning, this is not stable

Off-Policy LSPE

Collecting samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ using π_b

For k = 1, 2, ...

$$\theta_k \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n \frac{\pi(a_i|s_i)}{\pi_b(a_i|s_i)} \Big(V_{\theta}(s_i) - r_i + \gamma V_{\theta_{k-1}}(s_i') \Big)^2$$

Bellman completeness + coverage will make it work

(Sutton and Barto Chapter 11.7 and 11.8 have more techniques to deal with the V_{θ} case)