Цепной методом поиска булевой производной (префиксная форма задания функций)

Вычисления можна упростить используя префиксную форму

$$y = (((x1+x2)_1x3x4)_3(x5+x6)_2)_4$$

$$y = (_4 \land (_3 \land (_1 \lor (x1x2)_1x3x4)_3(_2 \lor x5x6)_2)_4$$

Аргументы в скобках называются списком аргументов

Правило интерпретируется

$$\frac{d(\neg cnucok_apryментов)}{d(apryмент_us_cnucka)} = \land cnucok_apryментов_беs_apryментаиs_cnucka$$

$$\frac{d(\neg cnucok_aprymeнтов)}{d(aprymeнт_us_cnucka)} = \neg cnucok_aprymeнтов_беs_aprymeнтаиs_cnucka$$
 Пример

$$y = ({}_{6}\overline{\vee}({}_{4}\overline{\wedge}({}_{1}\vee x1x2)x3({}_{2}\vee x4x5){}_{2})_{4}({}_{5}\overline{\vee}({}_{3}\overline{\wedge}x6x7){}_{3})_{5})_{6}$$

$$y1 = \vee x1x2$$

$$y2 = \vee x4x5$$

$$y3 = \overline{\wedge}x6x7$$

$$y4 = \overline{\wedge}y1x3y2$$

$$y5 = \overline{\vee}y3$$

$$y6 = \overline{\vee}y4y5$$

$$\frac{dy}{dx_1} = \frac{dy}{dy_4} \frac{dy_4}{dy_1} \frac{dy_1}{dx_1}$$

$$\frac{dy}{dy_4} = \frac{d(\nabla y + y + 5)}{dy_4} = (\nabla y + 5) = (\nabla y + 5) = (\nabla y + 5) = (\nabla x + 5) = ($$

	X1	X2	Х3	X4	X5	Х6	X7	Υ
X1≡0	1	0	1	1	х	0	х	1
	1	0	1	1	х	х	0	1
	1	0	1	х	1	0	x	1
	1	0	1	х	1		0	1
X1≡1	0	0	1	1	х	0	x	0
	0	0	1	1	х	х	0	0
	0	0	1	х	1	0	х	0
	0	0	1	х	1	х	0	0