Unitorm Circular motion

1) Theory

- What is radium
- Properties of S. V. a

Kadian

Measurement for angules (alternative for deg)

. Detined as the ratio between the are length

of the sector and its radius

• One radian B the argle within a sector when the arc length of the sector equals to its radius

S=rB (radian)

0=wt

$$A = ??$$

(ouizr. 300) one of of expressing I(t)

is this a circle?

$$\frac{ds}{dt} |\nabla|^2 = (rw)^2 \sin^2(\omega t) + (rw)^2 \cos^2(\omega t) \text{ there are full form:}$$

$$= -rw \sin(\omega t) \hat{1} + rw \cos(\omega t) \hat{1} |\nabla|^2 + rw$$

Properties: Direction: 1 to displacement [Vos= 0) . Magaitude: Constant

$$a(t) = \frac{dt}{dt}$$

= $-rw^2 \cos(\omega t) (1 - rw^2 \sin(\omega t)) \int_{a=1}^{\infty} \frac{v^2}{a^2}$
Properties: Direction: Toward contre
• Magnituele: vw^2

· Magnituell: VW2

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| |\vec{s}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{a}| |\vec{b}| |\vec{b}$$

if $a \neq 0$, by F = maFinet = ma(Finet = ma) # Centripetal force is

NOT a force, it is a requirement.
Centripetal force is only provided by other forcer e.g friction Tension Novemal reaction Fret = Fcen

How to approach

- 1 Label all forces
- 2) Find the component responsible for acm
- 3) Solve greation (Might need to set up another in I direction)

table

NO FRICTION

DWhat is w of y if mass M doesn't fail down

$$T = Mg = m_r w^2$$

$$\omega = \frac{M_1 g}{my r}$$

$$= 22.36 \text{ rad s}^{-1}$$

IJW.

(3) The string breaks, find the velocity of y

(4) Suppose f = 10N when y is moving, find $Q = \frac{1}{N}$ $V^2 = \frac{1}{N^2 + 20N}$ $Q = \frac{1}{N}$ $Q = \frac{1}{N}$ Q

distance de moved

(5) W.D by string on the mass?

OJ//if W.D> AKE +O i.e AV +D

-7 W= Fγ WS -1 X d1 \ 1 = TF.

Anywhere on an ideal string Is equal and of toward cutve

Debel and forces

L=Im

(2) Suppose
$$M = 0.3 \text{ kg}$$
, $0 = 30^{\circ}$,

Find: 1. $T = 0.3 \text{ m}$

Tcose = mg

$$T \sin \theta = m \nu \omega^2$$

Q:tun
$$V: SmS^1 (m: 0.3 kg)$$

find $G: r=0.5m$

Tsin
$$\theta = mr \omega^2$$

$$\omega = 5.32 \text{ rad s}^{-1}$$

$$W = 5.32 \text{ rad s}^{-1}$$

$$W = 5.32 \text{ rad s}^{-1}$$

$$W = 0.3 \text{ kg}$$

$$W = 0.3 \text{$$

Banked road

Vol car = 100 kmh

The first min θ required $v = 27.7 \text{ ms}^2$ $v = 4 \text{ min } \theta$ $v = 27.7 \text{ ms}^2$ $v = 4 \text{ min } \theta$ $v = 27.7 \text{ ms}^2$ $v = 4 \text{ min } \theta$ $v = 27.7 \text{ ms}^2$ $v = 4 \text{ min } \theta$ $v = 4 \text{ min$

Explain the benefits of a banked road compared to a Non-banked one tand = $\frac{1}{\sqrt{9}}$ $\theta=0$ than the non-banked one $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{9}}$ $\frac{1$

Mar = 1200 kg

Curved cy Muder

Assuming no friction

Given $\theta = 40^{\circ}$, m = 0.1 kg, h = 0.25 mFind Vurn required to sustain circular molin.

centre y: $mg = R \sin \theta$ $\chi: m_T = R \cos \theta$

V required for sustain unitorm circular motion

M. N. N. H.

Determine N, N_2 . for some M $\begin{pmatrix} N_1 + N_2 \end{pmatrix} \mu = \frac{MV^2}{V}$ $\begin{pmatrix} MV^2 \\ V \end{pmatrix} \begin{pmatrix} \frac{H}{2} \end{pmatrix} + N_1 \stackrel{\checkmark}{=} \bullet = N_2 \stackrel{}{=} \bullet = N_2 \stackrel{}{=}$

 $\frac{N_1: mg-N_1}{\left(\frac{M\gamma^2}{r}\right)\left(\frac{H}{2}\right) + N_1 \cdot L = mg^{\frac{L}{2}}$ LN= mg= - MV2 N= M(= - 22H) N, = \frac{\mathcal{M}}{2} \left(9 - \frac{\sqrt^2 \mu}{1 \overline{D}} \right) N2 = 1/2 (9+ 24)

$$SQ = VSin(\omegat) - Vw^2 sin(\omegat)$$

$$A = -W^{2}\chi$$

$$F = -k\pi$$

$$A = \frac{k\pi}{m} = -\frac{k\pi}{m}\chi$$

$$A = \frac{k\pi}{m} = 0$$

$$A = \pm \sqrt{\frac{k\pi}{m}} = 0$$

$$A = \pm$$

Hydrogen atom

$$e^{-}$$
 $a_0 = 5.30 \cdot 10^{-19} \text{ C}$
 $a_0 = 5.30 \cdot 10^{-11} \text{ m}$
 $a_0 = 9.11 \cdot 10^{-31} \text{ kg}$

What is $v_0 \neq e$

(Assume p_1 at rest)

$$F_{Q} = \frac{1}{4\pi \epsilon_{0}} \frac{9.82}{r^{2}} = \frac{mv^{2}}{r}$$

$$\frac{19.82}{4\pi \epsilon_{0}} \frac{19.92}{4\pi \epsilon_{0}}$$

> Capacitor

$$\overline{E}_{r} = \overline{4\pi b_{0}} \frac{1}{R^{3}}.$$

$$\overline{G}_{r} = \overline{G}_{r} M \frac{r}{R^{3}}.$$

B₁=
$$\frac{L}{4\pi r_1^2}$$

average light per unit area

$$B_2 = \frac{L}{4\pi r_2^2}$$

$$B_2 = \frac{r_1^2}{r_1^2}$$

$$B_1 r_2^2 = R$$

$$B_2 r_2^2 = R$$

$$B_1 r_2^2 = R$$

$$B_2 r_2^2 = R$$

$$B_2 r_2^2 = R$$