EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

01162362

PUBLICATION DATE

26-06-89

APPLICATION DATE

18-12-87

APPLICATION NUMBER

62321812

(1)

APPLICANT: FUJITSU LTD;

INVENTOR:

HASEGAWA MICHIHIKO;

INT.CL.

H01L 27/08 H01L 27/00 H01L 29/78

TITLE

MANUFACTURE OF

SEMICONDUCTOR DEVICE

(2)

(3)

ABSTRACT :

PURPOSE: To sped up a CMOS element by a method wherein an n-channel FET with a channel region in a plane (100) is built in p-type silicon and a p-channel FET with a channel region in a plane (100) is formed in n-type silicon.

CONSTITUTION: A p-Si substrate 11 of a plane index (100) and an n-Si substrate 12 of a plane index (100), mounted with approximately 3000 thick SiO₂ layers 11A and 12A, are put together on their SiO₂ surfaces and placed on a carbon heater 13. The substrates 11 and 12 are heated and then exposed to a pulse voltage for adhesion. The substrate 12 is thinned out by lapping and etching. The substrate 12 is subjected to another etching after which only an island- geometry element-forming n-Si region 12B is retained and the SiO₂ layer 12A is exposed. A p-channel FET is built on the n-Si region 12B, the SiO₂ layers 12A ad 11A are locally removed for the exposure of the substrate 11 for the construction of an n-channel FET thereon. This design enhances a CMOS element in its operating speed.

COPYRIGHT: (C)1989,JPO&Japio

⑲ 日本 国 特 許 庁 (JP)

① 特許出願公開

母 公 開 特 許 公 報 (A) 平1-162362

@Int.Cl.4	識別記号	庁内整理番号		43公開	平成1年(1989) 6月26日
H 01 L 27/08 27/00 29/78	3 3 1 3 0 1 3 1 1	B-7735-5F A-8122-5F C-7925-5F	審査請求		発明の数	

公発明の名称 半導体装置の製造方法

②特 願 昭62-321812

塑出 願 昭62(1987)12月18日

⑫発 明 者 長谷 川 充彦 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

⑪出 願 人 富士通株式会社 神奈川県川崎市中原区上小田中1015番地

砂代 理 人 弁理士 井桁 貞一

明 細 き

1.発明の名称

半導体装置の製造方法

2. 特許請求の範囲

面指数(100) のp型珪素(Si)基板上に、絶縁層を介して面指数(110) のn型珪素基板を形成する工程と、

前記のいずれか一方の基板を薄膜化し、パターニングして該絶経暦上に島状の珪素層を形成する 工程と、

p型珪素中にチャネル領域を(100) 面内に持つ nチャネルPET を形成し、n型珪素中にチャネル 領域を(110) 面内に持つpチャネルPET を形成す る工程

とを有することを特徴とする半導体装置の製造 方法。

3. 発明の詳細な説明

(概要)

高速CNOS素子の製造方法に関し、

cnos素子の高速化、微細化を可能とし、さらに ラッチアップによる障害を防止することを目的と し、

面指数(100) のp型珪素(Si)基板上に、組級層を介して面指数(110) のn型珪素基板を形成する工程と、前記のいずれか一方の基板を確膜化し、パターニングして該組縁層上に島状の珪素層を形成する工程と、p型珪素中にチャネル領域を(100) 面内に持つnチャネルPET を形成し、n型珪素中にチャネル領域を(110) 面内に持つpチャネルPET を形成する工程とを有するように構成する。

(産業上の利用分野)

本発明は半導体装置の製造方法に係り、特に高速CHOS素子の製造方法に関する。

CHOS素子は同一チップ上にnチャネルMOS F8T

CHOS素子の断面図である。

第1図(1)において、要面に厚さ約3000人のSiO。 図11A を形成した面指数(100) のp-Si基板11と、 変面に厚さ約3000人のSiO。屋12A を形成した面指数(110) のn-Si基板12をそれぞれのSiO。面を合わせて重ねてカーボンヒーク13上に載せ、電源14により 800~900 でに基板を加熱し、パルス電源15より両基板間に30~300 V のパルス電圧を印加して両基板を貼り合わせる?。この方法は本出順人により提起されたものである。

2) 1987年春季 第34回応用物理学会予稿集 p544, 30a-8-1.

次に、n-Si基板12をラッピングとエッチングにより5000人程度に薄くして、素子形成領域を島状に残してその他の領域をエッチング除去して、下地のSiO₂層12Aを露出させる。

 成する。

第1図(3)は完成したCHOS素子の断面図で、16は ゲート絶縁層等を構成する酸化膜、17はゲート電 極、18、19はn型のソースドレイン領域で、nチ +ネルFET を構成する。

一方、20はゲート絶縁層等を構成する酸化膜、 21はゲート電極、22、23はp型のソースドレイン 領域で、pチャネルPBT を構成する。

基板全面にカバーの絶縁層として燐珪酸ガラス (PSG) 暦24を成長し、コンタクト孔を開けて各電極25が形成されている。

(発明の効果)

以上説明したように本発明によれば、両PBT は それぞれキャリアの移動度の大きい面指数を選ん で形成されるため高速化が可能となる。

両FET は同一平面上に形成されるため、ゲート電極に自己整合してソースドレイン領域を形成でき、素子の微細化が可能となる。

また、両FET は絶縁層で分離されているため、

7

ラッチアップによる障害を防止できる。

4. 図面の簡単な説明

第1図(1)~(3)は本発明の一実施例を説明する CMOS素子の断面図。

第2図は従来例による異なる面にチャネルを形成したCHOS素子の断面図である。

図において.

11は面指数(100) のp-Si基板。

11A はSiO₂層,

12は面指数(110) On-Si 基板。

12A はSiO.商.

12B は島状のn-Si層,

13はカーボンヒータ,

14は電源,

15はパルス電源,

16はゲート絶縁眉等を構成する酸化膜。

17はゲート電極。

18, 19はn型のソースドレイン領域。

20はゲート絶縁層等を構成する酸化胶,

8

21はゲート電極。

22. 23はp型のソースドレイン領域。

24はカバーの絶縁層でPSG 層、

25は各電極

である.

代理人 弁理士 井桁貞一

.