

问题 A. 一个多项式人

输入文件:标准输入输出文件标准输出时间限制4 秒 内存限制256 兆字节

这是编程竞赛吗?

给你一个质数 p 和两个从 0 到 p-1 的余数子集 S 和 V。您的任务是找出满足下列方程组的数对(a,b):

$$Y = \frac{(2a+3b^{(2)}+5a^{(2)}}{(3a+b)^2} + \frac{(2a+5b^{(2)}+3b^2}{(3a+2b)^2} -z = 0$$

- a∈S
- b∈S

注意,当 $a \neq b$ 时,(a, b) 和 (b, a) 会被认为是不同的。

不允许除以零: 当两个分母中的任何一个变成零时,同余式被认为是假的。

输入

第一行包含一个整数 p (2 \leq $p \leq$ 10 6 , p 是质数)。第二行包含一个整数 n: S 的

大小 $(0 \le n \le p)$ 。

第三行包含 n 个不同的整数 $S_1, S_2, ..., S_n$: S 的元素($0 \le S_i \le p-1$)。第四行包含一个整数 m: V 的大小($0 \le m \le p$)。

第五行包含 m 个不同的整数 $V_1, V_2, ..., V_m$: V 的元素 $(0 \le V_i \le p-1)$ 。

输出

打印一个整数:解的个数。

标准输入	标准输出
7	8
4	
0 4 5 6	
2	
2 3	
19	42
10	
0 3 4 5 8 9 13 14 15 18	
10	
2 3 5 9 10 11 12 13 14 15	

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 B.六道圣人阿列克谢

 输入文件
 标准输入

 输出文件
 标准输出

 时间限制
 2 秒 内存限制

1024 兆字节

赛恩斯党和他们尊敬的国王阿列克谢决定在即将到来的 CodeForces 比赛中挑战根纳季。第一组有 n 名党员,编号从 1 到 n ,第二组有 n 名党员,编号从 n+1 到 2n。本轮共有 m 个问题。

阿列克谢将按以下方式分配问题:对于每个问题,阿列克谢将从第一组和第二组各指派一名党员来解决这个问题。之后,每个党员将从他被分配到的问题中选择一个问题在比赛中解决。只有两名党员选择一个问题,该问题才能得到解决。

党员们将尽力而为,并始终最大限度地增加解决问题的数量。

不过,"赛恩斯党 "的党员不会免费解决问题。假设 c 是分配给党员 i 的问题数,那么阿列克谢需要支付给该党员的金额为 $p_{i,c}$ 。根据比赛规则,阿列克谢只有在他的团队至少解决了 l f 问题,最多解决了 f f 问题的情况下,才能击败根纳季。请帮助阿列克谢赢得比赛,同时尽可能少地向他的团队成员支付金钱。

输入

第一行包含整数 n、m、l 和 r: 一组中的党员人数、问题数量以及左右边界($1 \le n \le 30$, $0 \le m \le 30$, $0 \le l \le r \le n$)。接下来的 2 - n 行包含每个党员的工资要求: 其中 \hat{g} i 行包含 m+1 个整数 $p_{(i,j)(0)}, p_{(i,j)(1)}, \dots p_{i,m} (-10^9 \le p_{i,j} \le 10^9)$.

输出

如果没有钱可以帮助击败根纳季,则单行打印 "DEFEAT"(失败)。

否则,在第一行打印一个整数:为使阿列克谢赢得比赛而可能支付给党员的最低总额。然后,再打印 m 行。在 \hat{g} i f

如果有多个可能的解决方案,则打印其中任意一个。

标准输入	标准输出
2022	失败
8	
9	
3	
4	
2822	-21
2 5 5 10 -10 -1 3 5 9	1 3
8 -10 9 9 0 1 -3 1 -1	2 4
0 5 -1 5 3 -9 1 10 6	1 3
5 -4 8 -2 2 -8 6 3 -3	1 3
	1 3
	2 3
	2 4
	2 4
3 5 2 3	650
100 75 125 150 175 200	1 4
125 100 75 100 125 150	2 5
225 200 175 200 225 250	3 6
225 200 175 200 225 250	2 4
125 100 75 100 125 150	3 5
100 75 125 150 175 200	

Sammer 2019

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 C. 钢球运行

输入文件:标准输入输出文件:标准输出时间限制4秒内存限制256 兆字节

给你一棵有 n 个顶点的树。每个顶点可以包含一个芯片。最初,所有顶点都是空的。您必须处理两种类型的查询:

- 1. 将芯片放入顶点
- 2. 从顶点移除芯片

每次查询后,必须打印当前芯片配置的*跨度*。

跨度的定义是将所有芯片移动到同一顶点所需的最少操作次数。在一次操作中,可以将一个芯片从其顶点移动到任何相邻顶点。当然, 在此过程中,一个顶点可以包含多个芯片。

请注意,这些操作仅在定义跨度时需要,实际上并不执行。

输入

第一行包含一个整数 n($1 \le n \le 10^5$),即树的顶点数。

接下来的 n-1 行描述树的边,每行一条。其中第 i 行包含两个整数 u 和 v ($1 \le u, v \le n$),它们是 \hat{g} i 条边所连接的顶点的索引。 保证这些边构成一棵树。

下一行包含一个整数 q $(1 \le q \le 10^5)$,即查询次数。

输出

对于每个查询,打印一行,其中包含一个整数: 应用此查询后树的跨度。

标准输入	标准输出
3	0
1 2	2
2 3	2
4	1
+1	
+3	
+2	
- 1	

6	0
1 2	3
2 3	4
3 4	3
4 5	4
2 6	
5	
+1	
+4	
+5	
- 5	
+6	

问题 D. 从自我高度到智商水平高度的跳跃

输入文件:标准输入输出文件:标准输出时间限制7秒内存限制512 兆字节

有 n 座摩天大楼排成一行,其中 \hat{g} i \underline{w} 的高度为 h_i 。数字 h_i 构成 1 到 n 的整数排列。

阿列克谢想用他的抓钩跳一跳。为了完成跳跃,他需要三个摩天大楼:i、j、k,其中i < j < k 且 h_i < h_j < h_{ik} >

此外,摩天大楼有时会改变位置。您必须处理 q 个查询:

在 \hat{g} i 次查询中,您将得到 l_i , r_i , $k_{(i)}$ 。摩天大楼从每个位置 j 开始,这样 $l_i \leq j \leq r(j) = k(j)$ 移动到位置 $j + k_{(i)}$,摩天大楼从每个位置 j 开始,这样 $r_i = k_i + 1 \leq j \leq r(j)$ 移动到位置 $j + k(j) = (r_i - l_i + 1)$ 。换句话说,您需要移动段 l_i … ... r_i 段循环右移 k_i 次。

每次询问后,请帮助阿列克谢判断他是否能完成跳跃。

输入

第一行包含一个整数 n ($1 \le n \le 120000$),即摩天大楼的数量。

第二行包含 n 个整数 h_i $(1 \le h_i \le n)$,即摩天大楼的高度。 h_i 是一对不同的数字。

第三行包含一个整数 q $(1 \le q \le 120\ 000)$,即查询次数。

接下来的 q 行包含查询说明:

其中 $\hat{\mathbf{g}}$ i 行包含三个正整数 $l_i, r_i, k_{(i)}$

 $(1 \leq l_i \leq r_i \leq n, \, 0 \leq k(_i) \leq r_i - \, l(_i) + \, 1)_\circ$

输出

对于每个查询,单独一行打印一个单词: 如果有合适的摩天大楼可以进行跳跃,则打印 "YES",否则打印 "NO"。

标准输入	标准输出
6 2 5 6 1 3 4 1 1 6 5	是
8 5 1 2 8 7 6 3 4 4 2 4 2 4 5 1 1 3 2 3 8 2	是 是 是 是
5 4 3 2 5 1 2 3 4 1 1 2 1	是
6 6 5 4 3 2 1 3 1 1 0 1 3 1 2 5 3	无 否 是

注

Sammer 2019

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 E. 边上的最小值

 输入文件:
 标准输入

 输出文件:
 标准输出

 时间限制
 4 秒 内存限制

512 兆字节

给你一个有n 个顶点和m 条边的无向图。每个顶点可以包含多个代币。初始时,顶点中没有代币,但您有s 个代币,可以在它们之间分配。

假设每条边的*容量*是其端点中代币的最小数量。我们的目标是最大化所有边的容量总和。

输入

第一行包含三个整数 $n \times m$ 和 s: 顶点数、边数和要分配的代币数(1≤ $n \le 18$,0≤ $m \le 100$ 000,0≤ $s \le 100$)。

接下来的 m 行描述的是边。其中 \hat{g} i 行描述 \hat{g} i 条边,并包含两个整数 u 和 v : 连接顶点的索引($1 \le u, v \le n$)。

可以保证图中没有自循环。**但是,同一对顶点之间可能存在多条边**。

输出

打印 n 个数字 a_1, a_2, \ldots, a_m $(0 \le a_i \le s)$,其中 a_i 是你放在 \hat{a}_i 个顶点上的代币数。印出的整数之和必须等于 s。所有边的容量之和必须是可能的最大值。

如果有多个最佳答案,您可以打印其中任意一个。

示例

标准输入	标准输出
4 4 6	2 2 2 0
1 2	
2 3	
3 1	
1 4	
3 7 7	3 2 2
1 2	
1 2	
1 2	
1 3	
1 3	
2 3	
2 3	

沣

在第一个样本中,容量之和等于

 $\min(2, 2) + \min(2, 2) + \min(2, 2) + \min(2, 0) = 2 + 2 + 2 + 0 = 6.$

在第二个样本中,容量之和等于

 $\min(3, 2) + \min(3, 2) + \min(3, 2) + \min(3, 2) + \min(3, 2) + \min(2, 2) + \min(2, 2) + \min(2, 2) = 2 + 2 + 2 + 2 + 2 + 2 + 2 = 14$.

Sammer 2019

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 F. 智商测试

 输入文件:
 标准输入

 输出文件:
 标准输出

 时间限制: 1秒
 1秒内存限制

256 兆字节

给你一个整数集合 S。最初,S 包含 0、1 和 2。

您可以执行零步或多步。在每一步中,您选择两个元素(可能相等)x 和 y,使得 x \in S 和 y \in S ,并将数字 x^2 \to y 插入集合 S \to 。不能执行超过 43 步。

您的任务是得到集合中的整数n。

输入

第一行包含一个整数 n $(0 \le n \le 10^{18})$,即您必须在集合中得到的数字。

输出

每走一步,在单独一行中打印 x 和 y。必须满足条件 $0 \le x^2 - y \le 10^{(18)}$ 。

步数最多为 43 步。注意不一定要最小化。如果有多个可能的解,请打印其中任意一个。

标准输入	标准输出
5	1 1
	2 1
	2 0
	3 4
7	1 1
	2 1
	3 2

Summer 2019

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 G. AtCoder 质量问题

输入文件: *标准输入* 输出文件: *标准输出* 时间限制 2 秒 内存限制 256 兆字节

你有一个包含 n γ 元素的集合 S。你想把 S 的每个子集涂成红色或蓝色。对于 S 的每个子集 S,你知道涂红色的成本是 S,涂蓝色的成本是 S。

注意: 你要涂的是子集,而不是元素。只有一个要求:

• 如果 a 和 b 是 S 中颜色相同的两个子集,则子集 aU b 的颜色与 a 和 b 相同。

找出绘制所有 2ⁿ个子集的最小总成本。

输入

第一行包含一个整数 n (0≤ n≤ 20) ,即元素个数。

第二行包含 $2^{(n)}$ 个整数 R_0 , R_1 , ..., $R_{(2)^n-1}(-10^9 \le R_i \le 10^{(9)})$, 将子集涂成红色的费用。第三行包含 $2^{(n)}$ 个整数 B_0 , B_1 , ..., $B_{(2)^n-1}(-10^9 \le B_i \le 10^{(9)})$,即把子集涂成蓝色的成本。

子集 i ($0 \le i < 2^n$) 是由元素 j 组成的子集,使得 i 的二进制表示中的 $\hat{\boldsymbol{g}}_j$ 位为 1^n 为 1 的子集。

输出

打印一个整数: 绘制所有子集的最小成本。

标准输入	标准输出
2	-16
-5 9 9 -5	
10 -8 -6 3	
3	-22
-15 19 19 -5 30 -3 -16 13	
29 -6 -14 -7 24 -5 18 11	
0	-129363358
-129363358	
227605714	
1	-476078215
-120923470 -355154745	
-18478014 104068715	
3	173
41 38 35 12 5 15 42 18	
37 35 39 13 10 14 11 19	

第 37 届彼得罗扎沃茨克编程营,2019年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 H. DAG 上的 Mex

输入文件:标准输入输出文件:标准输出时间限制5 秒 内存限制256 兆字节

给你一个由 n 个顶点和 2n 条边组成的有向无环图。每条边包含一个整数:更确切地说, \hat{g} i 条边包含整数 i 。边的编号从 0 到 2n-1 。您需要在这个图中找到一条简单路径,使得沿这条路径的边的 mex 函数值尽可能最大。

我们将一个非负整数集合的 mex 值定义为不属于这个集合的最小非负整数。例如: mex (0, 1, 3) = 2。

输入

第一行包含一个整数 n ($2 \le n \le 2000$) ,即顶点数。

接下来的 2n 行包含边的描述,从边号 0 到边号 2n-1。 \hat{g} i 条边对应的一行说明了它的端点:两个整数 a_i 和 b_i ($1 \le a_i < b(i_j \le n)$ 。

回顾*第* i 边包含整数–。

 $\frac{i}{2}$

输出

打印一个整数: mex 函数在该图中某条简单路径上的最大值。

标准输入	标准输出
8	4
3 6	
2 7	
1 3	
2 3	
6 7	
7 8	
7 8	
4 6	
2 7	
15	
2 5	
2 8	
6 8	
7 8	
3 5	
7 8	
15	3
7 15	
10 12	
13 14	
6 8	
14 15	
9 10	
6 13	
1 8	
6 8	
8 9	
14 15	
13 14	
9 13	
7 13	
14 15	
12 14	
6 7	
3 14	
11 14	
3 10	
10 12	
3 8	
8 14	
13 14	
9 11	
10 13	
6 10	
5 10	
1 11	
13 14	

Summer 2019

第 37 届彼得罗扎沃茨克编程营,2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 I.查找顶点

输入文件: *标准输入* 输出文件 *标准输出* 时间限制: 1秒 1秒 内存限制 256 兆字节

给您一个有 n 个顶点和 m 条边的连通无向图。顶点编号从 1 到 n。您不知道 s 这个数字,但您知道从顶点 s 到其他每个顶点(包括它自己)的所有距离,取模 3。你必须找出数字 s。

两个顶点之间的距离就是它们之间最短路径的长度。路径的长度就是其中的边数。

输入

第一行包含两个整数 n 和 m ($1 \le n$, $m \le 500000$),即顶点数和边数。

第二行包含 n 个整数 $d_{(1)}$, d_2 , d_n ($0 \le d_i \le 2$)。这里, d_i 是顶点 s 和 i 之间的距离,取模 3。

接下来的m行描述的是边。其中第i行描述 \hat{x} i条边,包含两个整数u和v

(1 ≤ u, v ≤ n) ,即这条边上连接的顶点的索引。

保证图中没有自循环和多重边。此外,还能保证图形是连通的。

输出

打印数字 s: 初始顶点的索引。如果有多个答案,则打印其中任意一个。

示例

标准输入	标准输出
5 6	2
1 0 1 1 2	
5 4	
1 2	
3 2	
3 4	
4 2	
1 5	
6 6	1
0 1 2 0 2 1	
1 2	
2 3	
3 4	
4 5	
5 6	
6 1	

备注

在第一个样本中,顶点 2 与所有顶点之间的路径长度数组为 [1,0,1,1,2]。它等于给定的数组 d。

在第二个示例中,从顶点 1 出发的路径长度数组为 [0 , 1 , 2 , 3 , 2 , 1]。如果我们将每个元素取模 3 , 就会得到数组 d ,

第 37 届彼得罗扎沃茨克编程营, 2019 年夏季

第9天: MEX 基金会竞赛(由 AIM Tech 支持),2019年9月2日,星期一

问题 J. 另一个 Mex 问题

输入文件:标准输入输出文件标准输出时间限制4 秒 内存限制512 兆字节

给你一个长度为 n 的数组 a 和一个整数 k。你需要找出最佳方法,将给定的数组划分成几个长度不超过 k 的连续子数组,以获得最大利润。一个子数组的利润是其元素之和乘以该子数组的 mex 值。总利润是所有子数组的利润之和。

我们将非负整数集合的 mex 值定义为不属于该集合的最小非负整数。例如:mex (0, 1, 3) = 2。

输入

第一行包含两个整数: n (2 \leq n \leq 200 000) ,数组的长度; k (1 \leq k \leq n) ,子数组长度的上限。

第二行包含 n 个整数,即数组的元素: $\hat{\mathbf{g}}$ i 个整数为 a_i , $0 \le a_i \le n$ 。

输出

打印一个非负整数:将给定数组划分为长度不超过 k 的子数组所能获得的最大收益。

标准输入	标准输出
3 4 0 0 3	10
8 4 0 1 2 0 3 1 4 1	26
10 5 0 2 0 1 2 1 0 2 2 1	33