Лабораторна робота № 1

Розв'язання нелінійних рівнянь.

Метод поділу навпіл (бісекції). Метод Ньютона.

Мета роботи: вивчення алгоритмів для розв'язання нелінійних рівнянь методами

бісекції та Ньютона.

Завдання: знайти корені рівняння f(x) = 0 методами бісекції та Ньютона.

Визначити порядки збіжності методів.

Вимоги до виконання роботи:

- **1.** складіть програму, що реалізує алгоритм розв'язання рівняння f(x) = 0 методом бісекції. Фрагмент програми, що власне розв'язує рівняння, оформіть у вигляді окремої процедури.
- **2.** Корені рівняння відокремте графічно і уточніть один з них вказаним методом з точністю до $\varepsilon = 10^{-4}$. Результат виведіть на екран.
- **3.** Введіть у програму проміжний друк номера ітерацій k, а також значень a_k , x_k , b_k , $|b_k a_k|$, $f(x_k)$ на кожній ітерації. Виведені результати повинні мати вигляд охайної таблиці.
- **4.** Дослідіть, як похибки поточного наближення до кореня $\Delta_B^{(k)} = |b_k a_k|$ залежать від номера ітерації. Побудуйте графік залежності $\lg \Delta_B^{(k)}$ від k і на його основі переконайтеся, що порядок збіжності методу бісекції дорівнює 1.
- **5.** Знайдіть решту коренів рівняння f(x) = 0.
- 6. Введіть у програму процедуру для реалізації методу Ньютона.
- **7.** Додайте у рядок проміжного друку вашої програми виведення значення $\Delta_N^{(k)} = \left| x^{(k)} x^{(k-1)} \right|$, що характеризує досягнуту точність поточного наближення.
- **8.** Знайдіть один або декілька коренів вашого рівняння за допомогою методу Ньютона з точністю $\varepsilon = 10^{-4}$ і виведіть результат на екран. Порівняйте результати зі значеннями, знайденими методом бісекції.
- **9.** Дослідіть, як похибки поточного наближення до кореня $\Delta_N^{(k)}$ залежать від номера ітерації. Побудуйте графік залежності $\lg \Delta_N^{(k)}$ від k і на його основі

з'ясуйте порядок збіжності методу Ньютона. Порівняйте порядки збіжності обох методів.

Контрольні запитання

- 1. Чому у методі бісекції кількість ітерацій, необхідна для відшукання кореня рівняння з точністю ε приблизно дорівнює $n \sim \log_2(|b-a|/\varepsilon)$?
- 2. Як обирається початковий відрізок у методі бісекції?
- **3.** Як поведе себе метод бісекції, якщо припущення, що функція на відрізку ϵ неперервною і змінює знак рівно один раз, невірне?
- 4. Якою буде достатня умова збіжності методу Ньютона, якщо розглядати його як модифікацію метода простих ітерацій?
- 5. Як обирається початкове наближення кореня у методі Ньютона?

Варіанти індивідуальних завдань

1.
$$x^3 + x^2 - 5x + 2 = 0$$
.

10.
$$x^2 - \sin 5x = 0$$
.

19.
$$2^x = 4x$$
.

2.
$$2x - \ln x - 4 = 0$$
.

11.
$$x + x^{1/2} + x^{1/3} + x^{1/4} = 5$$
.

20.
$$\cos x = x$$
.

3.
$$10 \ln x = x^3 - 3$$
.

12.
$$1.8x^2 - \sin 10x = 0$$
.

21.
$$x^3 - 3x^2 - 12x - 10 = 0$$
.

4.
$$xthx = 1$$
.

13.
$$3x - \cos x - 1 = 0$$
.

22.
$$10x = e^{-x}$$
.

5.
$$x^2 - \sin 5x = 0$$
.

14.
$$x^3 + 12x^2 + 44x + 48 = 0$$
. **23.** $x^x + 5x = 1000$.

23.
$$x^x + 5x = 1000$$
.

6.
$$ctgx = \frac{1}{x} - \frac{x}{2}$$
.

15.
$$x - \cos\left(\frac{0.7854 - x\sqrt{1 - x^2}}{1 - 2x^2}\right) = 0$$
.

7.
$$e^x + e^{-3x} - 4 = 0$$
.

16.
$$x + e^x = 0$$
.

24.
$$x + \lg x = 0.5$$
.

8.
$$\cos x \cdot chx = 1$$
.

17.
$$4x - 7\sin x = 0$$
.

25.
$$x \ln x = 18$$
.

9.
$$\ln \frac{x+1}{x-1} = 2x$$
.

18.
$$x = \sin x + 0.25$$
.