Mathematics 2602
Section L1
Midterm 1
Prof. Margalit
14 September 2011

1. State the principle of mathematical induction.

Suppose we have a mathematical statement that depends on an integer n. Suppose that O The statement is true for $n = n_0$. Whenever the statement is true for n = k + 1.

Then, the statement is true for all n=no.

2. State the definition of "f is $\mathcal{O}(g)$."

Let f and g be functions from N to R. We say f is O(g) if there is an integer no and a positive real number c so that

 $|f(n)| \le c|g(n)|$ for all $n \ge n_0$.

3. Use induction to prove that $2^n + 3^n - 5^n$ is divisible by 6 for $n \ge 1$.

$$2'+3'-5'=0$$

Assume the statement is true for n=k:

Show that the statement is true for n=k+1.

$$2^{k+1} + 3^{k+1} - 5^{k+1}$$

$$= 2.2^{k} + 3.3^{k} - 5.5^{k}$$

$$=5.2^{k}+5.3^{k}-5.5^{k}-3.2^{k}-2.3^{k}$$

$$=5(2^{k}+3^{k}-5^{k})-6.2^{k-1}-6.3^{k-1}$$

The first term is divisible by 6 by assumption. The second and third terms are clearly divisible by 6. Thus, the sum is divisible by 6.

By induction, $2^n+3^n-5^n$ is divisible by 6 for $n \ge 1$.

4. Let a_n be the number of ways to cover a $2 \times n$ checkerboard with	th dominoes (a domino is
made of two squares glued along one edge). Use strong induction	to show that a_n is equal
to the $(n+1)$ st Fibonacci number F_{n+1} . Recall that the Fibonacci	eci numbers are given by
$F_0 = 0, F_1 = 1, \text{ and } F_n = F_{n-1} + F_{n-2} \text{ for } n \ge 2.$	

Base cases: N=0 There is one way to cover a 2x0 board and F,=1 / n=1 Again, one way to cover Assume the Statement is true for WILLE [0, K-1]. There are two ways to cover the end of a 2xk board: By induction, can By induction, can be completed in be completed in f_{k-1} ways. Fr ways Thus the 2xK board can be covered

in Fr + Fr-1 = Fr+1 ways.

5. Solve the recurrence relation given by $a_0 = 0$, $a_1 = 30$, and

$$a_n = 10a_{n-1} - 25a_{n-2}$$

for $n \geq 2$.

characteristic polynomial: $\chi^2 - 10x + 25 = 0$ $(x-5)^2 = 0$ $\chi = 5$

So an= k,5° + k2n5°

$$0 = K_1$$

 $30 = K_2 \cdot 5 \implies K_2 = 6$

6. Solve the recurrence relation given by $a_0 = 2$ and

$$a_n = 3a_{n-1} - 4n$$

for $n \geq 1$.

First, Find a particular solution pn.

Since An linear, guess
$$p_n = mn+b$$
.

 $p_n = 3p_{n-1} - 4n$
 $m_n+b = 3(m(n-1)+b) - 4n$
 $m_n+b = 3(mn-m+b) - 4n$
 $m_n+b = 3(mn-m+b)$

Then find a solution gn to

Thus an = K,3" + (2n+3)

Solve for Ki:

$$2 = \frac{1}{2} \times K_1 + 3 \longrightarrow K_1 = -1$$

$$an = -5.3^{\circ} + 2n + 3$$

7. For each generating function, give the associate sequence. You do not need to show your work.

$$\frac{7}{1+x} \qquad 7, -7, 7, -7 \qquad a_{1} = (-1)^{n} 7$$

$$\left(\text{since } \frac{1}{1+x} = 1 - x + x^{2} - x^{3} + \dots \right)$$

$$\frac{x}{(1-x)^{2}} \qquad a_{1} = \Omega$$

$$\left(\text{since } \frac{1}{(1-x)^{2}} = 1 + 2x + 3x^{2} + \dots \right)$$

$$\frac{1}{1-5x} \qquad a_{1} = 5^{n}$$

Use generating functions to solve the recurrence relation given by $a_0 = 2$ and $a_n = 5a_{n-1}$ for $n \ge 1$.

$$f(x) = a_0 + a_1 x + a_2 x^2 + ...$$

$$-5x f(x) = -5a_0 x - 5a_1 x^2 - ...$$

$$(1-6x) f(x) = a_0 + 0 + 0 + ...$$

$$f(x) = \frac{2}{1-5x} \iff a_0 = 2.5^n$$

8. Use the definition of "f is $\mathcal{O}(g)$ " in order to verify the following. n^3 is not $\mathcal{O}(n^2)$

$$n^3 \le cn^2$$

means $n \le c$.
So it cannot be true that $= a$.
There is a c with $n^3 \le cn^2$
for $= all \ n \ large$.

 2^n is $\mathcal{O}(n!)$

Take
$$c=1$$
, $n_0=4$.

Want $2^n \le 1 \cdot n!$ for $n=4$.

i.e. $\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{n \cdot (n-1)(n-2) \cdot 2} \le 1$ for $n=4$.

i.e. $\frac{2^{n-4}}{n(n-1) \cdot (n-3)} \cdot \frac{2^4}{4!} \le 1$.

Both terms are less than 1,

So their product is also-

9. Find a function on the list

$$n^2$$
, 1, n^3 , $n \log n$, $\log n$, n^4 , 3^n , n^n , $n!$, n , e^n , n^5

that has the same order as each of the following functions. You do not need to show your work.

$$10^{99}n^{452} + \frac{3^n}{1,000,000} + 15\log n$$

3°

$$n \log n + n^2$$

n2

$$e^n + n^e$$

on

$$3n! - 2^n$$

 n^{l}

$$n + \log n$$

10. Let A and B be positive real numbers. Show that $\log(An+B)$ and $\log n$ have the same order.

$$\lim_{n\to\infty} \frac{\log(An+B)}{\log n} \stackrel{L'H}{=} \lim_{n\to\infty} \frac{An+B}{\ln n}$$

$$= \lim_{n\to\infty} An+B = \lim_{n\to\infty} = constant$$
Thus $\log(An+B) = \log n$.

Let $f: \mathbb{N} \to \mathbb{R}$ be a function with $\lim_{n \to \infty} f(n) = \infty$. Let M and N be nonzero real numbers. Show that the function Mf(n) + N has the same order as f(n).

$$\lim_{n\to\infty} \frac{Mf(n)+N}{f(n)} = \lim_{n\to\infty} \frac{M+N/f(n)}{1}$$

$$= M = constant.$$
Thus $Mf(n)+N = f(n)$.