Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию №6

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 11 / 1-4 / 1-3

Выполнил: студент 102 группы Такшин А. И.

Преподаватель: Гуляев Д. А.

Содержание

Іостановка задачи	
Математическое обоснование Алгоритм нахождения площади криволинейного треугольника Формулы оценки погрешностей методов	4
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	7
Отладка программы, тестирование функций	8
Программа на Си и на Ассемблере	9
Анализ допущенных ошибок	10
Список цитируемой литературы	11

Постановка задачи

- Требуется реализовать программу, которая численными методами вычисляет площадь фигуры, ограниченной тремя кривыми заданными ввиде формул $f: \mathbb{R} \to \mathbb{R}$.
- Для вычисления площади реализованны численные методы интегрирования: через формулу прямоугольников, через формулу трапеций и, используемый по умолчанию, через формулу Симпсона.
- Для нахождения вершин криволинейного треугольника реализованы 4 метода нахождения корня функции на заданном отрезке: метод деления отрезка пополам, метод хорд, метод Ньютона и комбинированный метод (метод хорд + метод Ньютона).
- Так как для корректной работы перечисленных методов необходимо, чтобы значения функции на концах имели разные знаки, отрезок для их применения должен быть вычислен заранее аналитически и задан в файле с описанием функций.

Математическое обоснование

Алгоритм нахождения площади криволинейного треугольника

Рассмотрим на примере (рис. 1) порядок вычисления площади криволинейного треугольника образованного графиками трёх функций, в предположении, что любые из двух функций f_1, f_2, f_3 пересекаются ровно в одной точке на заданном отрезке.

Упорядочим точки попарных пересечений функций $\{A, B, C\}$, тогда для вычисления площади достаточно сложить модули интегралов функций $g_1(x), g_2(x)$ на отрезках $[A_x; B_x], [B_x; C_x],$ где $g_1(x)$ разность функций, точка пересечения которых является точкой A, а $g_2(x)$ разность функций, точка пересечения которых является точкой C. Так как функции пересекаются в одной точке, знак разности любых двух из них не будет меняться после прохождения точки пересечения, а значит полученная сумма будет корректно определять площадь.

В данном примере, точка A является точкой пресечения $f_2(x), f_3(x)$, поэтому программа изначально вычислит модуль интеграла на отрезке $[A_x, B_x]$ функции $g_1(x) = f_2(x) - f_3(x)$. Точка C является точкой пересечения $f_1(x), f_3(x)$, поэтому вторым слагаемым будет модуль интеграла $g_2(x)=f_1(x)-f_2(x)$ $S(\Phi)=|\int_{A_x}^{B_x}f_2(x)-f_3(x)\,dx|+|\int_{B_x}^{C_x}f_1(x)-f_3(x)\,dx|$

$$S(\Phi) = \left| \int_{A_x}^{B_x} f_2(x) - f_3(x) \, dx \right| + \left| \int_{B_x}^{C_x} f_1(x) - f_3(x) \, dx \right|$$

Рис. 1: Пример плоской фигуры, ограниченной графиками заданных уравнений

Формулы оценки погрешностей методов

Абсолютная погрешность по абциссе при вычислении точки пересечения ε_1 задется непосредственно в вычисляющем её методе. Для нахождения значения ε_2 - абсолютной погрешности при вычислении определенного интеграла использовались известные формулы оценки погрешности [1]:

- $\varepsilon_2 = \frac{f'(\xi)}{2} h^2(b-a)$, для формулы прямоугольников
- $\varepsilon_2 = \frac{f''(\xi)}{12} h^2(b-a)$, для формулы трапеций
- $\varepsilon_2 = \frac{f^{(4)}(\xi)}{2880} h^4(b-a)$, для формулы Симпсона

Учитывая, что $h=\frac{(b-a)}{n}$ и предполагая $f^{(n)}\approx 1$, получаем следующие оценки на число шагов:

- $n=\sqrt[2]{\frac{(b-a)^3}{2\varepsilon_2}}$, для формулы прямоугольников
- $n=\sqrt[2]{\frac{(b-a)^3}{12\varepsilon_2}}$, для формулы трапеций
- $n=\sqrt[4]{\frac{(b-a)^5}{2880\varepsilon_2}}$, для формулы Симпсона

Оценка общей погрешности

Пусть с помощью описанных выше методом мы получили оценку I' для интеграла на отрезке [a';b'], где $a'=a+\varepsilon_1$, $b'=b+\varepsilon_1$, и пусть I - действительное значение интеграла на отрезке [a;b]. Тогда из разложения в ряд Тейлора:

$$I' = I + f(a)\varepsilon_1 + f(b)\varepsilon_1 + o(\varepsilon_1)$$

$$I' - I \approx f(a)\varepsilon_1 + f(b)\varepsilon_1$$

Итоговая ошибка вычисления двух интегралов составит:

$$\varepsilon_3 = (f(A_x) + 2f(B_x) + f(C_x))\varepsilon_1$$

Разобьём требуемую наибольшую ошибку ε пополам между ε_3 и ε_2 . Тогда итоговые оценки для ε_1 и ε_2 будут такими:

- $\varepsilon_1 = \frac{\varepsilon}{2}$
- $\varepsilon_2 = \frac{\varepsilon}{2(f(A_x) + 2f(B_x) + f(C_x))}$

Результаты экспериментов

В результате работы программы для тестового примера (рис. 1) были получены следующие координаты точек пересечения:

Кривые	x	y
1 и 2	1.5824	1.5824
2 и 3	0.6283	0.6283
1 и 3	3.7634	0.6283

Таблица 1: Координаты точек пересечения

После чего программа корректно нашла искомую площадь криволинейного прямоугольника (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из следующих файлов

Основные файлы:

- main.c устанавливает порядок запуска функций из других файлов, обрабатывает аргументы командной строки.
- root.c/h содержит функции, вычисляющие пересечение заданной функции с осью абцисс.
- integral.c/h содержит функции, вычисляющие интеграл

Файлы подпрограммы, которая переводит польскую нотацию в asm код:

- function_to_asm.c считывает из заданного файла польскую нотацию, вызывает функции из других файлов. На выходе возваращет в stdin полученный листинг ассемблера.
- operation_tree.c/h строит дерево, описывающие порядок вычисления выражений. Разрешает проблемы связанные с нехваткой регистров x87 процессора.
- constant.h содержит константы, необходимые для работы описанных выше функций.

Файлы вспомогательных функций

- cvector.c/h содержит реализацию динамического массива.
- tools.c/h содержит вспомогательные простые функции.
- macro.h содержит макросы препроцессора.

Рис. 3: Графическое представление структуры программы

Сборка программы (Make-файл)

Зависимости между модулями программы полностью соотносятся с графическим представлением её структуры (рис. refgraph1). Исходный файл Макефайла можно найти в архиве или репозитории (см. Программа на Си и на Ассемблере).

Для задания необходимых методов вычисления точки пересечения и функции, по которым будут производится вычисления интегралов, нужно использовать аргументы CFLAGS при вызове make all. Например, для компиляции проекта с использованием метода Ньютона и формулы прямоугольников можно использовать следующую команду:

 $make\ clean\ \&\&\ CFLAGS="-DNEWTON_METHOD\ -DRECTANGLE_RULE"\ make\ all\ all\ clean\ \&\&\ CFLAGS="-DNEWTON_METHOD\ -DRECTANGLE_RULE"$

Отладка программы, тестирование функций

Для тестирования функций и отладки программы использовался специальный ключ препроцессора (-DDEBUG).

Функции описанные в файле root.c были протестированы на следующих примерах: f(x) = x, $f(x) = x^2 - 2$, f(x) = cos(x), для каждого из тестов подбирался соответсвующий отрезок для поиска корня: [-1;1], [0;2], [1;4]. Полученные результаты полностью совпали с вычисленными аналитически.

Функции из файла integral.c тестировались сразу в полной сборке программы. Вот входных данных в spec.txt, задающем кривые ограничивающие криволинейный треугольник, аналитически вычисленные значения площади и полученые результаты в ходе работы программы:

Curves	Segment	Predicted	Stdout
$y_1 = 0, \ y_2 = x, \ y_3 = 2 - x$	[-4; 4]	1.0000	1.0000
$y_1 = 2 - tg(\frac{x}{4}), \ y_2 = x, \ y_3 = 0.2 \cdot \pi$	[0;4]	1.6514	1.6516
$y_1 = cos(x), \ y_2 = 2x, \ y_3 = 0$	[-1;2]	0.7900	0.7678

Таблица 2: Результаты тестирования программы

В результате тестирования программы, было обнаружено, что на некоторых данных погрешность получается больше ожидаемой. Данная проблема не исправляется даже при уменьшении $\varepsilon < 10^{-7}$.

Тем не менее, результаты программы в большинстве случаев сходятся с прогрнозируемыми с требуемой точностью.

Программа на Си и на Ассемблере

Исходные тексты программ имеются в архиве, который приложен к этому отчету. А ещё исходные тексты программ можно найти на репозитории github.

Анализ допущенных ошибок

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.