

TECHNICAL NOTE

D-1361

THE ELECTROMAGNETIC-RADIATION ENVIRONMENT OF A SATELLITE

PART II. RADIO WAVES

By Jerry L. Modisette

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON September 1962

20

-

•

ų

		-
		-
		er.
		-

CONTENTS

•		Page
	SUMMARY	1
	INTRODUCTION	1
	SOLAR RADIO WAVES	2
	Disturbed Sun	4 4 5
L 2 0	Fast-drift bursts	5 5
8	DISCRETE SOURCES OF COSMIC RADIO WAVES	7
	COSMIC BACKGROUND RADIATION	9
•	RADIO WAVES FROM THE MOON AND PLANETS	10 10 11
	REFERENCES	13
	TABLES	19
	FIGURES	50

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1361

THE ELECTROMAGNETIC-RADIATION ENVIRONMENT OF A SATELLITE

PART II. RADIO WAVES*

By Jerry L. Modisette

SUMMARY

This paper is a compilation of the available information on electromagnetic radiation at radio wavelengths incident on the Earth. Radio waves from the Sun, Moon, and planets and the background radiation from the sky are discussed. A table of the intensities and celestial coordinates of the 2,000 most intense discrete sources (radio stars) is given, together with maps of the brightness temperature of the sky at frequencies of 64 to 910 megacycles per second.

INTRODUCTION

The present paper is a review of the long-wavelength (radio) electromagnetic radiation received from the Sun, the planets, and the Galaxy. With regard to artificial satellites, or space vehicles in general, this radiation is mainly important with regard to interference with communications. However, the material has been presented without special emphasis on those wavelengths that are presently used in communications.

Since Jansky's discovery of radio waves from the constellation of Sagittarius in 1933 (refs. 1 to 3), cosmic radio waves have been observed at most wavelengths from the millimeter range up into the broadcast band. The principal sources have been found to be the Sun, other discrete radio sources or "radio stars" scattered over the sky, and the cosmic background radiation which is concentrated around the galactic equator and which reaches its maximum intensity in the direction of the center of the Galaxy.

There are several features of cosmic radio waves which are not found in the optical range of the electromagnetic spectrum. These consist both of properties of the radiation itself and of characteristics of the sources. With one exception, the spectral distribution of cosmic radio waves is continuous. This exception is the spectral line at 21 centimeters produced by a hyperfine transition of atomic hydrogen.

 $[\]ensuremath{^{\star}}\textsc{Part}$ I. Range of Thermal to X-Radiation, by S. Katzoff, is NASA Technical Note D-1360.

A curious characteristic of the Sun as a source is its relation to the rest of the sources. The Sun is the source of most radiation of wavelengths between those of infrared and gamma rays - at optical wavelengths it is 10^8 times as intense as the rest of the sky. For radio waves, however, the undisturbed Sun is no stronger than many other celestial sources, and when compared to the background radiation coming from the sky the undisturbed Sun amounts to only one ten-thousandth of the total radiation at a wavelength of 15 meters. (See ref. 4.) As the wavelength of the radio waves decreases, the sky diminishes in importance until at around 10 centimeters the intensity is below the threshold of detection. At these wavelengths the Sun becomes the most important source.

Although the undisturbed or "quiet" Sun is relatively unimportant at longer wavelengths, the intensity is subject to fluctuations which may bring about increases by factors of as much as 107. This variation has not been observed in the radiation coming from the rest of the sky, so that during a solar fluctuation or "burst" the Sun accounts for most of the radio-frequency-radiation incident on the Earth.

SOLAR RADIO WAVES

In speaking of solar radio waves, it is helpful to refer separately to the radiation emitted by the undisturbed or "quiet" Sun and the bursts of radiation associated with various types of solar disturbances. The differences in these two types of radiation lie in their variability and the magnitude of their intensities. The radiation from the quiet Sun varies less and is much less intense than that associated with bursts: Maxwell, Howard, and Garmire, in reference 5 report an increase of the quiet Sun's radiation by a factor of 2 as the sunspot cycle goes from minimum to maximum whereas the bursts may produce changes in intensity by factors of as much as 10^7 ; the quiet Sun is no more intense than several other discrete radio sources, but during a burst the Sun may become as much as a thousand times more intense than all the rest of the sky combined.

Quiet Sun

Observations of the brightness temperature of the quiet Sun at various wavelengths have been reported in references 6 to 16. The results of several of these observations are shown in figure 1 (refs. 5, 7, and 9 to 12). This temperature is somewhat misleading as it is computed from intensity measurements and is based on the assumption that all the radiation comes from a disk the size of the photosphere. The radiation, especially at longer wavelengths, actually comes from an area somewhat larger than the photosphere. For an antenna of low resolution compared

to the angle subtended by the photosphere or the corona, the brightness temperature is not as important as the radiation-flux incident on the antenna. Measurements of this radiation flux for various wavelengths are tabulated in table I (refs. 5, 7, 9, and 16). For antennas of high resolution the apparent temperature distribution of the solar disk and corona becomes significant.

Theoretical work done on the brightness distribution indicates that at wavelengths below 1 centimeter the Sun should appear as a constant temperature disk whose diameter equals that of the photosphere; from 1 centimeter to about 1 meter the apparent size of the disk should remain the same, but marked limb-brightening is predicted; at wavelengths above 1 meter the limb-brightening should disappear but the apparent size of the disk should increase until it is as much as twice the diameter of the photosphere. (See ref. 13.)

Measurements of the brightness distribution across the solar disk have been made at wavelengths of 60 centimeters (ref. 14), 3.68 meters (ref. 15) and more recently at 9.1 centimeters (ref. 16) and 21 centimeters (ref. 17). The limb-brightening predicted in reference 13 does not appear in the early work at 60 centimeters. However, the later work at 9.1 and 21 centimeters using highly directional antennas indicates that limb-brightening of the basic component is masked by radiation from strongly emitting regions associated with sunspots. After the effect of these regions was eliminated by analysis of the data, the limb-brightening appeared at 9.1 centimeters; whereas, the data at 21 centimeters were taken during a time when the Sun was free of sunspots and the limb-brightening appeared in the original data. It should be noted, however, that the limb-brightening appeared only on the east and west limbs in both cases. The data taken at 3.68 meters show the extension of the apparent disk diameter as predicted in reference 13. The results of the previously noted studies are shown in graphical form in figures 2 and 3.

The quiet Sun is considered as having two components, one of which, the basic component, remains relatively constant varying over the 11-year sunspot cycle. It is this component to which the distribution analysis in the preceding paragraph applies. The other component, the so-called slowly varying component, varies over a 27-day cycle corresponding to the synodic period of rotation of the Sun at the equator.

The 11-year variation of the basic component has been attributed by Van de Hulst (ref. 18) to a variation of the density of the solar corona over the sunspot cycle, which would in turn produce a variation in intensity at a wavelength of 50 centimeters of about 2 to 1. As mentioned before, according to Maxwell et al. in reference 5 this has been observed at wavelengths of 56, 76, 150, and 240 centimeters.

The slowly varying component appears to be related to the sunspots in that over any given short period of time the intensity of this component is roughly proportional to the sunspot area visible from the Earth. In addition, observations at 9.1 centimeters with a highresolution antenna (ref. 16) show that the sunspots are actually strongly emitting regions. The variation in intensity results from the irregular distribution of sunspots over the surface of the Sun, which in turn produces a change in the sunspot area visible from the Earth as the Sun rotates. At sunspot maximum the average variation in intensity over the 27-day cycle is 100 percent, and at sunspot minimum this variation is 50 percent. It should be noted that for a given visible sunspot area, the random variation may be ±50 percent. The slowly varying component only appears at wavelengths of 3 to 60 centimeters. This is attributed to the fact that the radiation in this range originates in the lower corona and chromosphere, where underlying sunspots cause local enhancement of the radiation.

Disturbed Sun

Radiation from the disturbed Sun is noted for its intensity, variability, and, by those whose interest is solar physics, its apparently nonthermal origin. It is generally agreed that the radiation is caused by some physical disturbance which occurs in the solar atmosphere at altitudes responsible for the particular frequencies observed. This disturbance may remain fixed in one altitude range, or may move, in the one case causing radiation over a constant-frequency range, and in the other causing the frequency range to vary with time. The exact nature of the disturbances has not been decided; such mechanisms as spontaneous plasma oscillations, moving groups of particles, and shock waves have been proposed.

The radiation phenomena observed from the Earth have been classified into four distinct types according to the way the frequency range of the disturbance varies with time. Ninety-five percent of the observed disturbances fall into these classifications, which are listed and described as follows:

Noise storms.— Noise storms occur as two types, the wide-band type having bandwidths (frequency range) of about 100 mc/sec and lasting a few seconds, and the narrow-band type having bandwidths of 1 or 2 mc/sec and lasting from a fraction of a second to several minutes. Noise storms usually occur at frequencies below 250 mc/sec. The intensity ranges from being barely perceptible to as much as 1,000 times that of the quiet Sun. The radiation is usually circularly polarized with the sense being determined by the largest emitting sunspot such that right-handed polarization appears when the spot is a south (negative) magnetic pole, and left-handed polarization appears with spots which are north magnetic poles.

Slow-drift bursts.— The slow-drift bursts are bands of intense radiation which drift towards lower frequencies. The drift rate is of the order of 200 mc/sec per minute initially, slowing to about 50 mc/sec per minute toward the end of a burst, which usually lasts about 4 minutes. Slow-drift bursts usually begin at about 500 mc/sec, with a bandwidth of 200 mc/sec. The bandwidth remains at about 40 percent of the frequency throughout the burst. Slow-drift bursts are randomly polarized.

Fast-drift bursts. In the case of fast-drift bursts the drift is also towards lower frequencies, but the drift rate is about 100 times that of the slow-drift bursts. These bursts may begin at any frequency from 50 to 600 mc/sec and are randomly polarized.

Enhanced continuum radiation. Enhanced continuum radiation occurs over a bandwidth greater than 300 mc/sec and may drift towards either lower or higher frequencies or not at all. The frequency usually lies between 100 and 600 mc/sec. The intensity is about 10 times that of the quiet Sun.

Figure 4 shows the dynamic spectra of the previously discussed types of solar bursts. The 5 percent of the solar disturbances not included in the four classifications discussed may be of any form. They are usually short lived and isolated from other forms of solar activity such as flares or sunspots.

The frequency of occurrence of these classifications of radiation from the disturbed Sun is greatest during the maximum of the sunspot cycle. During the sunspot maximum of 1957-58, Maxwell et al. (ref. 5) made extensive measurements of solar radio disturbances at frequencies of 125, 200, 425, and 550 mc/sec. The total observing time during the period was 4,008 hours. The resulting distribution of the various types of solar disturbances is given in the following table:

Type of activity	Percentage of total observing time at frequencies of:									
Type of desiring	125 mc/sec	200 mc/sec	425 mc/sec	550 mc/sec						
Noise storm Slow-drift bursts Fast-drift bursts Continuum Unclassified	13.3 .047 .247 .283 .029	8.0 .020 .142 .524 .008	0.080 .003 .023 .412 .001	0.053 .003 .016 .512 .001						

In addition to the distribution of various types of disturbances, the distribution of intensities of all types of disturbances was determined and is as follows:

Intensity	Percent	age of total frequenci		me at
	125 mc/sec	200 mc/sec	425 mc/sec	550 mc/sec
1 2 3	9.26 ± 0.57 2.00 ± .12 2.07 ± .05	5.59 ± 0.35 1.17 ± .07 1.25 ± .02	0.0570 .0096 .0133	0.0387 .0066 .0075

The relations between the three intensity designations and the actual fluxes at the various frequencies are:

Intensity	Flux range, watts - m^{-2} - $(c/sec)^{-1} \times 10^{22}$, at frequencies of:									
	125 mc/sec	200 mc/sec	425 mc/sec	550 mc/sec						
1 2 3	<40 40 to 200 >200	<60 60 to 250 >250	<50 50 to 200 >200	<50 50 to 200 >200						

Various observers have noted apparent coincidences of radio disturbances with optical phenomena such as flares, sunspots, and ejective prominences. For example, Erickson (ref. 19) observing at a frequency of 26.3 mc/sec during May 1959 observed a strongly emitting region to move from a position in the corona 4.5 solar radii from the center of the Sun, across the disk to a corresponding position on the other side. The movement was such as to indicate a rigid corona, radiating in one spot. On the third day of observation, a class 3+ flare was observed to occur at the location of the disturbance. The flux was 10×10^{-22} watts - m⁻² - (c/sec)⁻¹ for 2 days before the flare, 30×10^{-22} watts - m⁻² - (c/sec)⁻¹ for 3 days during and after the flare, dying out to 1×10^{-22} watts - m⁻² - (c/sec)⁻¹ 8 days after the flare.

Maxwell et al. attempted to find correlations between the disturbances which were observed during the 1957-58 sunspot maximum, with the following results:

No correlation was found for ejective prominences, with few of them being associated with any type of burst at all.

The sunspots were definitely correlated with noise storms, in that all noise storms were associated with sunspot groups. However, not all sunspot groups had accompanying noise storms. The correlation seemed to depend upon the size of the sunspot group, with noise storms being improbable if the sunspot group covers less than 400 millionths of the solar disk, and probable if the group is larger than this. It has also been suggested by Payne-Scott and Little (ref. 20) that a correlation is obtained between the noise storm and the area of the largest spot in the group. This belief is supported by their observations at 97 mc/sec which showed that individual spots whose area is greater than 400 millionths of the solar disk are usually accompanied by noise storms, whereas smaller spots seldom had associated noise storms. The importance of the largest individual spot also appears in the polarization effect mentioned before; that is, the sense of the polarization is determined by the largest emitting spot.

Flares show no association with noise storms, according to the observations of Maxwell et al., but there were indications of a correlation of flares with slow-drift bursts and fast-drift bursts. One-half the slow-drift bursts and 30 percent of the fast-drift bursts were accompanied by flares, and all the flares having areas greater than 600 millionths of the solar disk were observed to have accompanying bursts.

A definite correlation was found by Maxwell et al. between flares and enhanced continuum radiation. All flares of class 1 or above were accompanied by enhanced continuum which tended to last longer with the larger flares. The average duration of the enhanced continuum associated with class 1 flares was 40 minutes; whereas, with class 2 and 3 flares, the average duration was 110 and 220 minutes, respectively. Of course these times are averages, and sometimes the duration is much longer, as in the example mentioned previously which was observed by Erickson.

DISCRETE SOURCES OF COSMIC RADIO WAVES

Scattered about the sky are many discrete sources of radio emission which are much stronger than the background radiation. In the past, these sources have been termed "radio stars" because when they were first discovered, their angular extent was less than the resolving power of the available instruments so that they appeared to be point sources. With the advent of better radio telescopes, it developed that most of

the stronger sources have appreciable angular extent, a result that has not been found for optical stars.

Discrete radio sources are divided into two types, class I and class II. The distinction is not based on intrinsic properties of the sources, but on their locations. Class I sources, also called galactic sources, are located within 10° of the galactic equator and are generally agreed to be sources distributed throughout the Galaxy. The class II sources are randomly distributed over the sky. It has been hypothesized that these sources are located close to the solar system and also that they are extragalactic objects, with the consensus of modern opinion favoring the latter.

A number of surveys have been made for the purpose of mapping the discrete sources, and have been reported in references 21 to 29. The total number of sources is probably over 5,000, although not all have been observed because not all the sky has been surveyed exhaustively. Table II is a catalogue of the positions and intensities of the sources which were observed and reported in references 21 to 29.

Nine radio-source surveys are included in table II. The surveys are numbered and referenced as follows:

Surv	re	y																								Reference
1				•																						21
																										22
																										23
					•																					
																										26
6	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•		•	•	•	•		29
7																										27
8																										28
9	•	•	•		•	•		•	•	•	•	•	•	•		•	•	•	•				•			25

Three of these surveys (5, 7, and 9) are comprehensive, generally considered to be exhaustive for the areas of the sky covered. However, in the case of survey 9, there is considerable doubt as to the accuracy of the positions due to confusion of sources arising from the use of a rather large beamwidth. Therefore, this survey has been used only for declinations not covered by surveys 5 or 7 (declinations greater than 71°; declinations less than 22°). The other surveys are less exhaustive and are included principally to confirm positions of the stronger sources. In the table, repeated observations of the same source are given the same number and designated a, b, c, and so forth. The stated errors are the root-mean-square derivation of several determinations in the case of surveys 6, 7, and 9, and beamwidths to 1/2 maximum in the other surveys.

COSMIC BACKGROUND RADIATION

In addition to the discrete sources, the entire sky exhibits radiation at radio wavelengths. This radiation, in fact, accounts for most of the energy flux incident on a surface in the vicinity of the Earth, except during solar bursts. As is the case of solar radiation, the brightness of the sky increases with increasing wavelength or decreasing frequency. The intensity of this background radiation varies over the sky, reaching its maximum in the direction of the galactic center.

A number of surveys have been made of the background radiation of the sky at various frequencies from 18 to 2,000 mc/sec. The first, covering the sky in the vicinity of the Milky Way, was reported by Reber (ref. 30) in 1944 at a frequency of 160 mc/sec. Other surveys have been made at 64 mc/sec (ref. 31), 81 mc/sec (ref. 32), 86 mc/sec (ref. 33), 100 mc/sec (ref. 34), 250 mc/sec (ref. 35), 480 mc/sec (ref. 36), 600 mc/sec (ref. 37), and 910 mc/sec (ref. 38). Ko (ref. 39) has assembled the previously mentioned surveys into a compilation of maps using the same coordinate system, scale, and projection representing the best available picture of the background radiation. These maps are reproduced in figure 5. None of these maps cover the north polar region, and with one exception none cover the south polar region. Westerhout (ref. 40) using observations at 400 mc/sec has prepared a map of the north polar cap which is reproduced in figure 6.

Figures 5 and 6 are reproduced in celestial coordinates, epoch 1950. According to reference 4, the approximate formulas for the yearly change due to precession of the Earth's axis are:

$$\Delta \alpha = 3.07 + 1.34 \sin \alpha \tan \delta$$

$$\Delta\delta$$
 = 20.0 cos α

where α and δ are the right ascension and declination, respectively; $\Delta\alpha$ and $\Delta\delta$ are the yearly changes in right ascension and declination, measured in seconds of time and seconds of arc, respectively.

The contours of figures 5 and 6 are isophotes, that is, lines of constant brightness. In figure 5 the width of the antenna beam to 1/2 power is shown. The accuracy of the isophotes is limited by the beamwidth. According to Ko, the absolute accuracy of the maps should be ±50 percent or better, and the relative precision of isophotes on a single map should be better than ±20 percent.

RADIO WAVES FROM THE MOON AND PLANETS

Lunar Radiation

There are in principle two sources of lunar radiation: thermal radiation and radiation from other sources which is reflected by the Moon's surface. The thermal radiation has been measured by Piddington and Minnett (ref. 41) and their result for the brightness temperature is:

$$T = 239 + 40.3 \cos\left(\omega t - \frac{1}{4} \pi\right)$$

where

T temperature, OK

t elapsed time since full Moon, days

 ω angular velocity of Moon about Earth (0.23 radian/day)

The brightness temperature given is the mean disk temperature. Coates (ref. 42) measured the brightness-temperature distribution at a wavelength of 4.3 millimeters. He concluded that, in general, the maria heat and cool more rapidly than the mountains, with the exception of Mare Imbrium, which always remains cooler.

Measurements of radio waves reflected by the Moon were not found in the literature, except for radar reflections originating on the Earth. This does not indicate that no such reflections exist, since there were also no reports of unsuccessful attempts to find them. Also, these reflections would be most likely to appear at full Moon during solar bursts. The strength of the reflected bursts would be dependent upon the intensity of the radiation incident upon the lunar surface, and upon the efficiency of the Moon as a scatterer or reflector of radiation. Senior and Siegel (ref. 43) give a compilation of scattering cross sections as determined by various observers from radar reflections. These values are tabulated as follows:

λ, meter											Scattering cross section, percent of lunar disk area
0.6											- - 3
0.7											
1.0											
1.5											6 to 10
2.5	_		_		_						10

Since these values of the scattering cross sections are determined by the reflection of radar waves originating on the Earth, they can be strictly applied only to reflection from the Sun when the Earth lies between the Sun and the Moon, that is, at full Moon. For application at any other time, a correction factor must be applied to account for the fraction of the visible disk which is illuminated, and for the difference in reflection characteristics, which is not known at present.

With use of data from reference 5, the intensity of the reflected radiation during a solar burst can be calculated. At a wavelength of 1.5 meters, a typical intensity is 2.5×10^{-20} watts - m⁻² - (c/sec)⁻¹. A scattering cross section of 10 percent of the lunar disk area gives a total reflected flux of 2.4×10^{-8} watts - (c/sec)⁻¹. At the distance of the Earth from the Moon, this gives a flux density of 5×10^{-26} watts - m⁻² - (c/sec)⁻¹, about the same as one of the weakest "radio stars."

Planetary Radiation

Planetary radiation is generally classed as thermal and nonthermal. Thermal radiation is nonfluctuating and is presumed to actually be thermal radiation from the surface or atmosphere of the planet. It is usually strong enough to be detectable only at very short wavelengths (<1 meter). Thermal radiation has been observed for Mars, Jupiter, and Venus (refs. 44 to 52). The results of the various observations are given in table III.

At longer wavelengths than those listed in table III, several observers have noted incongruously high disk temperatures for Jupiter (refs. 53 to 56). The observed disk temperatures were:

Wavelength, λ, meter	Disk temperature, T _d , ^O K	Reference
0.208	1,000 to 4,700	56
.214	3,500 ± 1,700	53
.31	3,800 to 6,400	55
.68	70,000 ± 30,000	53

Roberts and Stanley in reference 55 hypothesize that likely sources of this anomalous radiation are free-free transitions of electrons in the Jovian corona or else synchrotron radiation from Van Allen belts. It was noted by Epstein (ref. 53) that the radiation varies by as much as a factor of 2 over a few hours observing time.

In addition to the anomalous radiation in the decimeter range mentioned in the previous paragraph, highly fluctuating radiation has been observed from Jupiter at frequencies of 14 to 43 mc/sec (wavelengths of 21 to 6.9 meters). (See refs. 56 to 63.) The initial discovery was made by Burke and Franklin (ref. 56) in 1955. Subsequent observations have revealed several pertinent characteristics of the radiation. It is almost completely circularly polarized, it shows a periodicity of 9 hours, 55 minutes, and 28.8 seconds during active periods (ref. 57), and it appears to be localized on the surface of the planet (ref. 58). It may be that the radiation exists at frequencies below 14 mc/sec but is so strongly attenuated by the Earth's atmosphere that detection is impossible. Attempts have been made to observe this radiation at higher frequencies without success (ref. 59). Even in the range of 14 to 43 mc/sec the radiation is not always present. According to reference 60 several days may pass during which no nonthermal radiation is detected.

 \mathbf{L}

2

0

8

The peak intensity of the radiation is given by various observers as 10^{-21} watts - m^{-2} - $(c/sec)^{-1}$ at 21.1 mc/sec (ref. 61), 2.5 \times 10^{-21} watts - m^{-2} - $(c/sec)^{-1}$ at 27 mc/sec (ref. 57), and 8.5 \times 10^{-20} watts - m^{-2} - $(c/sec)^{-1}$ at 18 mc/sec (ref. 58).

Kraus in reference 62 reports bursts of nonthermal radiation from Venus at 26.7 mc/sec. The peak intensity was $8.9 \times 10^{-22} \text{ watts} - \text{m}^{-2} - (\text{c/sec})^{-1}$. In reference 63, Kraus reports a 13-day periodicity to the radiation which he attributes to the "beat" frequency between the 24-hour rotation period of the Earth and the 22-hour, 17-minute rotation period of Venus. No other observers have reported nonthermal radiation from Venus.

Smith and Douglas in reference 61 report the possibility of non-thermal radiation from Saturn. Interference from terrestrial sources was such that positive identification could not be made, however.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 10, 1962.

REFERENCES

- 1. Jansky, Karl G.: Directional Studies of Atmospherics at High Frequencies. Proc. Inst. Radio Engineers, vol. 20, no. 12, Dec. 1932, pp. 1920-1932.
- 2. Jansky, Karl G.: Electrical Disturbances Apparently of Extrater-restrial Origin. Proc. Inst. Radio Engineers, vol. 21, no. 10, Oct. 1933, pp. 1387-1398.
- 3. Jansky, Karl G.: A Note on the Source of Interstellar Interference. Proc. Inst. Radio Engineers, vol. 23, no. 10, Oct. 1935, pp. 1158-1163.
- 4. Pawsey, J. L., and Bracewell, R. N.: Radio Astronomy. The Clarendon Press (Oxford), 1955, pp. 231-279.
- 5. Maxwell, Alan, Howard, W. E., III, and Garmire, G.: Solar Radio Interference at 125, 200, 425, and 550 mc/s. Sci. Rep. 14 (AFCRC TN 59-459), Harvard College Observatory, July 1959.
- 6. Pawsey, J. L., and Smerd, S. F.: Solar Radio Emission. The Sun, Gerard P. Kuiper, ed., The Univ. Chicago Press, c.1953, pp. 466-531.
- 7. Sinton, William M.: Observation of a Lunar Eclipse at 1.5 mm.
 The Astrophysical Jour., vol. 123, no. 2, Mar. 1956, pp. 325-330.
- 8. Sinton, William M.: Detection of Millimeter Wave Solar Radiation. Phys. Rev. (Letters to the Editor), vol. 86, no. 3, ser. 2, May 1, 1952, p. 424.
- 9. Hagen, J. P.: Temperature Gradient in the Sun's Atmosphere Measured at Radio Frequencies. The Astrophysical Jour., vol. 113, no. 3, May 1951, pp. 547-566.
- 10. Southworth, G. C.: Microwave Radiation From Sun. Jour. Franklin Inst., vol. 239, no. 4, Mar. 1945, pp. 285-297.
- 11. Friedman, H., Chubb, T. A., Kupperian, J. E., Jr., Kriplin, R. W., and Lindsay, J. C.: X-Ray and Ultraviolet Emission of Solar Flares. Ann. Géophysique, vol. 14, 1958, pp. 232-235.
- 12. Firor, J.: The Quiet Sun at 88-Cm Wavelength. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, p. 107.

- 13. Smerd, S. F.: Radio-Frequency Radiation From the Quiet Sun. Australian Jour. Sci. Res., ser. A, vol. 3, Mar. 1950, pp. 34-59.
- 14. Stanier, H. M.: Distribution of Radiation From the Undisturbed Sun at a Wave-Length of 60 cm. Nature (Letters to the Editors), vol. 165, no. 4192, Mar. 4, 1950, pp. 354-355.
- 15. Machin, K. E.: Distribution of Radiation Across the Solar Disk at a Frequency of 81.5 mc/s. Nature, vol. 167, no. 4257, June 5, 1951, pp. 889-891.
- 16. Swarup, G.: Studies of Solar Microwave Emission Using a Highly Directional Antenna. Sci. Rep. No. 13 (Contract AF18(603)-53), Stanford Electronics Labs., Stanford Univ., Feb. 6, 1961.
- 17. Christiansen, W. N., and Warburton, J. A.: The Distribution of Radio Brightness Over the Solar Disk at a Wavelength of 21 Centimeters Part III. The Quiet Sun Two-Dimensional Observations. Australian Jour. Phys., vol. 8, no. 4, Dec. 1955, pp. 474-486.
- 18. Van de Hulst, H. C.: Brightness Variations of the Solar Corona. Nature (Letters to the Editors), vol. 163, no. 4131, Jan. 1, 1949, p. 24.
- 19. Erickson, W. C.: Radio Emission in the Outer Corona. Phys. Rev. Letters, vol. 3, no. 8, Oct. 15, 1959, pp. 365-367.
- 20. Payne-Scott, R., and Little, A. G.: The Position and Movement on the Solar Disc of Sources of Radiation at a Frequency of 97 mc/s Part II. Noise Storms. Australian Jour. Sci. Res., ser. A, vol. 4, Dec. 1951, pp. 508-525.
- 21. Stanley, G. J., and Slee, O. B.: Galactic Radiation at Radio Frequencies. Australian Jour. Sci. Res., ser. A, vol. 3, June 1950, pp. 234-250.
- 22. Ryle, M., Smith, F. G., and Elsmore, B.: A Preliminary Survey of the Radio Stars in the Northern Hemisphere. Monthly Notices, Roy. Astronomical Soc., vol. 110, no. 6, 1950, pp. 508-523.
- 23. Mills, B. Y.: The Distribution of the Discrete Sources of Cosmic Radio Radiation. Australian Jour. Sci. Res., ser. A, vol. 5, no. 2, June 1952, pp. 265-287.
- 24. Brown, Hanbury R., and Hazard, C.: A Survey of 23 Localized Radio Sources in the Northern Hemisphere. Monthly Notices, Roy. Astronomical Soc., vol. 113, no. 2, 1953, pp. 123-133.

)

)

- 25. Shakeshaft, J. R., Ryle, M., Baldwin, J. E., Elsmore, B., and Thomson, J. H.: A Survey of Radio Sources Between Declinations -38° and +83°. Memoirs, Roy. Astronomical Soc., vol. 67, pt. 3, 1955, pp. 106-154.
- 26. Mills, B. Y., Slee, O. B., and Hill, E. R.: A Catalogue of Radio Sources Between Declinations of +10° and -20°. Australian Jour. Phys., vol. 11, 1958, pp. 360-387.
- 27. Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E., and Archer, S.: A Survey of Radio Sources at a Frequency of 159 mc/s. Memoirs, Roy. Astronomical Soc., vol. 68, pt. 2, 1957, pp. 37-60.
- 28. Boischot, A.: Résultats préliminaires de l'observation des radiosources à l'aide de l'interféromètre de Nançay. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 492-495.
- 29. Harris, D. E., and Roberts, J. A.: Radio Source Measurements at 960 mc/s. Pub. Astronomical Soc. Pacific, vol. 72, no. 427, Aug. 1960, pp. 237-255.
- 30. Reber, G.: Cosmic Static. The Astrophysical Jour., vol. 100, no. 3, Nov. 1944, pp. 279-287.
- 31. Hey, J. S., Parsons, S. J., and Phillips, J. W.: An Investigation of Galactic Radiation in the Radio Spectrum. Proc. Roy. Soc. (London), ser. A, vol. 192, no. 1030, Feb. 18, 1948, pp. 425-445.
- 32. Baldwin, J. E.: A Survey of the Integrated Radio Emission at a Wavelength of 3.7 m. Monthly Notices, Roy. Astronomical Soc., vol. 115, no. 6, 1955, pp. 684-689.
- 33. Mills, B. Y.: A Survey of Radio Sources at 3.5-m Wavelength. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 498-506.
- 34. Bolton, J. G., and Westford, K. C.: Galactic Radiation at Radio Frequencies I. 100 mc/s Survey. Australian Jour. Sci. Res., ser. A, vol. 3, Mar. 1950, pp. 19-33.
- 35. Ko, H. C., and Kraus, J. D.: A Radio Map of the Sky at 1.2 Meters. Sky and Telescope, vol. XVI, no. 4, 1957, pp. 160-161.
- 36. Reber, Grote: Cosmic Static. Proc. IRE, vol. 36, no. 10, Oct. 1948, pp. 1215-1218.

- 37. Piddington, J. H., and Trent, G. H.: A Survey of Cosmic Radio Emission at 600 mc/s. Australian Jour. Phys., vol. 9, no. 4, Dec. 1956, pp. 481-493.
- 38. Denisse, Jean-Francois, Leroux, Emile, and Steinberg, Jean-Louis:
 Observations du rayonnement galactique sur la longueur d'onde de
 33 cm. Comptes Rendus, t. 240, no. 3, Jan. 17, 1955, pp. 278-280.
- 39. Ko, H. C.: The Distribution of Cosmic Radio Background Radiation. Proc. IRE, vol. 46, no. 1, Jan. 1958, pp. 208-215.
- 40. Westerhout, G.: 75-cm and 22-cm Continuum Surveys. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 447-450.
- 41. Piddington, J. H., and Minnett, H. C.: Microwave Thermal Radiation From the Moon. Australian Jour. Sci. Res., ser. A, vol. 2, no. 1, Mar. 1949, pp. 63-77.
- 42. Coates, Robert J.: Lunar Brightness Variations With Phase at 4.3-mm Wave Length. The Astrophysical Jour., vol. 133, no. 2, Mar. 1961, pp. 723-725.
- 43. Senior, T. B. A., and Siegel, K. M.: Radar Reflection Characteristics of the Moon. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 29-46.
- 44. Mayer, C. H., McCullough, T. P., and Sloanaker, R. M.: Measurements of Planetary Radiation at Centimeter Wavelengths. Proc. IRE, vol. 46, no. 1, Jan. 1958, pp. 260-266.
- 45. Drake, F. D., and Ewen, H. I.: A Broad-Band Microwave Source Comparison Radiometer for Advanced Research in Radio Astronomy. Proc. IRE, vol. 46, no. 1, Jan. 1958, pp. 53-60.
- 46. Mayer, C. H., McCullough, T. P., and Sloanaker, R. M.: Observations of Mars and Jupiter at a Wave Length of 3.15 cm. The Astrophysical Jour., vol. 127, no. 1, Jan. 1958, pp. 11-16.
- 47. Mayer, C. H., McCullough, T. P., and Sloanaker, R. M.: Observations of Venus at 3.15-cm Wave Length. The Astrophysical Jour., vol. 127, no. 1, Jan. 1958, pp. 1-10.
- 48. Gibson, J. E., and McEwan, R. J.: Observations of Venus at 8.6-mm
 Wavelength. Paris Symposium on Radio Astronomy, Ronald N. Bracewell,
 ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 50-52.

- 49. McClain, E. F., and Sloanaker, R. M.: Preliminary Observations at 10-cm Wavelength Using the NRL 84-Foot Radio Telescope. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 61-68.
- 50. Alsop, L. E., Giordmaine, J. A., Mayer, C. H., and Townes, C. H.:
 Observations of Discrete Sources at 3-cm Wavelength Using a Maser.
 Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed.,
 Stanford Univ. Press (Stanford, Calif.), 1959, pp. 69-74.
- 51. Carr, T. D., Smith, A. G., Pepple, R., and Barrow, C. H.: 18-Megacycle Observations of Jupiter in 1957. The Astrophysical Jour., vol. 127, no. 2, Mar. 1958, pp. 274-283.
- 52. Sloanaker, Russell M., and Boland, John W.: Observations of Jupiter at a Wave Length of 10 cm. The Astrophysical Jour., vol. 133, no. 2, Mar. 1961, pp. 649-656.
- 53. Epstein, Eugene E.: Anomalous Continuum Radiation From Jupiter. Nature, vol. 184, no. 4679, July 4, 1959, p. 52.
- 54. Field, George B.: The Source of Radiation From Jupiter at Decimeter Wavelengths. Jour. Geophys. Res., vol. 64, no. 9, Sept. 1959, pp. 1169-1177.
- 55. Roberts, J. A., and Stanley, G. J.: Radio Emission From Jupiter at a Wavelength of 31 Centimeters. Pub. Astronomical Soc. Pacific, vol. 71, no. 423, 1959, pp. 485-495.
- 56. Burke, B. F., and Franklin, K. L.: Observations of a Variable Radio Source Associated With the Planet Jupiter. Jour. Geophys. Res., vol. 60, no. 2, June 1955, pp. 213-217.
- 57. Kraus, John D.: Planetary and Solar Radio Emission at 11 Meters Wavelength. Proc. IRE, vol. 46, no. 1, Jan. 1958, pp. 266-274.
- 58. Barrow, C. H., and Carr, T. D.: Eighteen-Megacycle Radiation From Jupiter. Jour. British Astronomical Assoc., vol. 68, no. 2, Feb. 1958, pp. 63-69.
- 59. Smith, F. G.: A Search for Radiation From Jupiter at 38 mc/s and at 81.5 mc/s. Observatory, vol. 75, no. 889, Dec. 1955, pp. 252-254.
- 60. Kraus, John D.: Solar System Radio Radiation. Sci. Rep. No. 1-A (Contract AF 19(604)-1591), Ohio State Univ. Res. Foundation, Dec. 1958. (Available from ASTIA as AD No. 211944.)

- 61. Smith, Harlan J., and Douglas, J. N.: Observations of Planetary Nonthermal Radiation. Paris Symposium on Radio Astronomy, Ronald N. Bracewell, ed., Stanford Univ. Press (Stanford, Calif.), 1959, pp. 53-55.
- 62. Kraus, John D.: Impulsive Radio Signals From the Planet Venus. Nature (Letters to the Editors), vol. 178, no. 4523, July 7, 1956, p. 33.
- 63. Kraus, J. D.: Recent Observations of Radio Signals From Venus at 11 Meters Wavelength. The Astronomical Jour., vol. 62, 1957, pp. 21- .

TABLE I.- RADIANT ENERGY FLUX FROM THE QUIET SUN

Wavelength, λ , meter	Frequency, v, mc/sec	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹	Reference
0.0085 .0125 .03 .075 .091 .091 .15 .3 .546 .706 1.0 1.5 2.4 3.0 6.0 12.0	35,300 24,000 10,000 4,000 3,300 3,300 2,000 1,000 550 425 300 200 125 100 50	17.7 × 10 ⁻²⁰ 12.0 3.1 2.3 a.94 (1960 SS max) a.70 (1954 SS min) 1.4 .7 .4 .3 .2 .13 .06 .04 .02	9755616555555555555555555555555555555555

 $^{^{\}mathbf{a}}\mathtt{Only}$ the basic component. All other values include the slowly varying component.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES

(a) Northern hemisphere

		Frequency, v,	Posi		Intensity, I.		
Source	Survey	mc/sec	a, hr min sec	∆a, sec	5, deg min	Δδ, min	watts - m ⁻² - (c/sec)
1 2 3 4 5a 5b	7 6 5 7 5 7	159 960 86 159 86 159	00 02 19 00 02 35 00 04 54 00 07 45 00 10 12 00 10 45	±4 ±30 ±18 ±8 ±12 ±04	17 01 72 04.5 06 05 32 46 00 37 00 47	+7 ±4 ±8 ±5 ±5 ±10	(8.0 ± 2.0) × 10 ⁻²⁶ 12.9 ± 1.5 35 10.5 ± 2.0 20 8.0 ± 2.5
6 7 8 9 10a 10b	7 5 7 4 7	159 86 86 159 159 159	00 10 51 00 14 12 00 16 00 00 17 50 00 22 00 00 22 37	±10 ±18 ±24 ±5 ±120 ±2	50 05 06 48 08 20 15 23 64 15 63 52	±3 ±7 ±8 ±8 ±35 ±2	16.5 ± 2.5 18 11 15.5 ± 2.5 170 110 ± 17
10e 11 12 13 14 15	6 5 7 5 7 7 5	960 86 159 86 159 86	00 22 45.7 00 24 48 00 26 35 00 30 00 00 30 06 00 30 48	±5 ±24 ±4 ±56 ±4 ±18	63 51.4 07 28 20 54 01 40 19 43 05 53	±1 ±6 ±6 ±10 ±6 ±5	57 ± 3 11 10.5 ± 3.5 68 9.5 ± 1.5 25
16 17 18 19 20	7 5 7 5 7 7	159 86 159 86 159 86	00 31 35 00 32 06 00 33 35 00 34 12 00 35 52 00 36 42	±5 ±24 ±3 ±18 ±6 ±24	39 03 04 28 18 25 00 12 12 50 03 35	±4 ±6 ±7 ±6 ±16 ±6	12.0 ± 5.0 16 13.5 ± 2.0 15 10.5 ± 2.0 14
22a 22b 23 24 25a 26	5 7 7 5 4 5	86 159 159 86 159 86	00 37 16 00 37 30 00 38 14 00 40 06 00 40 15 00 40 36	±12 ±5 ±6 ±18 ±30 ±16	09 30 09 54 32 54 06 53 40 50 02 20	±5 ±7 ±4 ±7 ±20 ±8	37 16.5 ± 4.5 13.0 ± 2.5 14 160 7
27 256 28 29 30	7 2 5 7 7 7	159 81 86 159 159 81.5	00 41 34 00 42 00 42 36 00 44 47 00 48 09 00 49 16	±4 ±360 ±16 ±5 ±2 ±20	51 49 38 05 26 20 24 50 51 76 24	±3 ±300 ±7 ±3 ±5 ±15	50 ± 10 40 19 10.0 ± 2.0 13.5 ± 2.5 24
32 33 34 35 36 37	7 6 7 7 7	159 960 159 159 159 159	00 49 53 00 50 05 00 50 39 00 50 44 00 52 42 00 53 09	±5 ±12 ±5 ±5 ±5 ±3	17 51 56 20.4 40 12 67 08 68 13 26 08	±6 ±1.5 ±5 ±10 ±10 ±10	16.0 ± 2.5 15.6 ± 1.2 9.5 ± 1.5 8 ± 3 22 ± 5 19.5 ± 5.5
38 39 40 41 42 43	5 5 5 5 5 5	101 101 86 86 86 101	00 55 00 55 00 55 18 00 55 30 00 59 48 01 00	±960 ±480 ±18 ±24 ±18 ±480	24 11 01 14 08 47 04 32 52	±90 ±40 ±6 ±8 ±6 ±40	50 150 16 1 ¹ 4 19
44 45 46 47 48 49	7 7 3 8 7	159 159 101 169 159	01 00 08 01 03 53 01 05 01 06 04.5 01 06 13 01 07 31	±6 ±7 480 ±1 ±3 ±2	14 25 32 11 30 13 01 13 05 31 24	±7 ±9 ±40 ±20 ±9	14.5 ± 3.5 10.5 ± 2.0 100 30 58 ± 6 12.5 ± 2.5
50 51 52 53 54 55	7 2 5 7 5 5	159 81 86 159 86 86	01 08 50 01 09 01 14 54 01 15 14 01 16 18 01 17 18	±3 ±180 ±18 ±5 ±12 ±24	47 05 43 15 06 05 45 23 08 11 03 20	±6 ±60 ±6 ±6 ±6 ±6	9.0 ± 2.5 11 8.0 ± 1.5 14 35
56 57 58 59 6 0 a 6 0 b	7 5 7 5 7 2	159 86 159 86 159 81	01 20 00 01 23 06 01 23 54 01 24 24 01 24 53 01 25	±4 ±18 ±5 ±18 ±7 ±300	05 39 01 22 32 50 09 13 28 48 30	±15 ±5 ±6 ±7 ±4 ±180	9.5 ± 3.0 20 8.5 ± 2.0 16 12.0 ± 2.0 80
61 62 63 64 65 66 67	9 7 7 5 7 5	81.5 159 159 86 86 159 86	01 25 21 01 27 14 01 27 52 01 28 42 01 29 12 01 33 25 01 35 30	±20 ±5 ±3 ±12 ±12 ±7 ±24	71 52 23 18 03 14 03 52 06 07 08 14 07 53	±30 ±9 ±10 ±6 ±5 ±10 ±6	39 16.5 ± 2.5 8.0 ± 2.5 18 23 9.0 ± 1.5

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemiaphere - Continued

		P	Posi	tion (1950	epoch) ^a		Intensity, I,		
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	ð, deg min	Δδ, min	watts - m ⁻² - (c/sec)		
68 69 70 71 72 73	7 7 7 5 7 9	159 159 159 86 159 81.5	01 35 35 01 35 42 01 34 51 01 34 54 01 38 32 01 38 51	±5 ±5 ±5 ±24 ±5 ±20	37 41 20 42 32 55 06 34 13 48 78 57	±6 ±3 ±4 ±8 ±7 ±20	(12.5 ± 3.0) × 10 ⁻²⁶ 27 ± 5 50 ± 11 7.4 10.0 ± 2.0 22		
74 75 76 77 78 79	7 7 5 5 7 5	159 159 86 86 159 86	01 41 11 01 42 36 01 43 00 01 46 12 01 47 02 01 47 12	±7 ±4 ±18 ±18 ±7 ±18	51 18 38 43 02 01 06 10 55 19 07 07	±6 ±6 ±6 ±8 ±5 ±6	8.0 ± 1.5 8.0 ± 1.5 9.4 19 9.5 ± 1.5		
80 81 82 83 84	5 7 7 5 7 9	86 159 159 86 159 81.5	01 52 06 01 52 25 01 54 19 01 57 24 01 58 38 02 00 11	±24 ±3 ±2 ±8 ±6 ±120	03 32 43 23 28 34 01 10 46 02 79 35	±6 ±5 ±4 ±6 ±7 ±30	49 11.5 ± 2.0 17.5 ± 3.5 16 10.0 ± 2.0 30		
85 86 87 88 89 90	7 5 7 5 7	159 86 159 86 159 159	02 01 41 02 02 18 02 05 15 02 07 24 02 08 27 02 10 38	±2 ±24 ±6 ±12 ±4 ±9	64 38 04 20 26 55 09 35 21 04 17 18	±15 ±8 ±6 ±8 ±6 ±7	13 ± 3 10 8.5 ± 2.5 23 9.5 ± 2.5 8.5 ± 1.5		
91 92 93 94 95 96	552444	86 86 81 159 159 159	02 11 00 02 12 30 02 16 02 16 00 02 18 00 02 18 00	±12 ±30 ±180 ±90 ±240 ±120	02 58 06 11 44 15 62 30 42 00 43 00	±5 ±8 ±2 ±45 ±60 ±60	24 14 60 80 10 25		
97a 97b 98 99 100	7 5 7 7 7 2	159 86 159 159 159 81 81	02 19 21 02 19 24 02 19 42 02 20 15 02 22 14 02 25 02 26 07	±4 ±12 ±4 ±5 ±3 ±180 ±15	08 19 08 08 39 46 42 51 29 54 35 30 77 43	±5 ±6 ±3 ±5 ±9 ±120 ±15	11.5 ± 2.5 24 18.5 ± 3.0 28 ± 7 10.0 ± 2.0 50 45		
102 103 104 105 106	59 75 72 9	86 81 159 86 159 81 81	02 26 12 02 35 35 02 34 20 02 35 42 02 40 43 02 45 02 47 01	±18 ±15 ±3 ±18 ±8 ±180 ±20	02 35 72 09 58 59 07 01 26 44 45 15 77 15	±7 ±15 ±3 ±8 ±5 ±45 ±20	9.0 34 25 ± 2 10 10.0 ± 2.5 10 22		
107 108 109 110 111	7 5 7 5 7 5 7 5	159 86 159 86 159 86 81	02 47 08 02 50 24 02 51 03 02 53 24 02 55 06 02 57 10	±7 ±24 ±6 ±18 ±4 ±6 ±20	39 17 01 19 19 49 06 48 06 05 05 53 76 26	±4 ±6 ±7 ±7 ±4 ±4 ±20	12.0 ± 2.0 10 8.5 ± 2.5 11 58 ± 10 51 20		
113 114 115 116 117 118 119	5 7 5 7 7 7	86 159 86 86 159 159	02 58 54 02 59 10 03 00 12 03 00 54 03 05 57 03 05 24	±18 ±5 ±18 ±18 ±5 ±4 ±12	01 35 50 44 07 20 09 37 49 55 04 09 03 50	±5 ±6 ±6 ±6 ±6 ±6 ±5	27 8.5 ± 1.5 18 13 8.0 ± 1.5 17.0 ± 5.0 34		
120 121 122 123 124a 125 124b	7 7 7 5 3 7 2	159 159 159 86 101 159 81	03 07 13 03 08 45 03 09 13 03 09 12 03 10 03 10 27 03 12	±3 ±5 ±3 ±24 ±240 ±10 ±180	16 55 48 30 40 54 05 11 42 26 24 43 45	±3 ±5 ±4 ±8 ±20 ±10 ±30	9.5 ± 2.0 15.0 ± 2.5 10 240 14.0 ± 3.5		
124c 126 124d 127 128a 129	4 6 7 7 7 7	159 960 159 159 159 159	03 15 15 03 16 22 03 16 29 03 19 30 03 23 36 03 23 41	±90 ±15 ±3 ±5 ±3 ±3	41 22 16 18.5 41 17 17 15 55 07 43 50	±30 ±4 ±2 ±8 ±9 ±5	65 9.0 ± 0.9 50 ± 7 8.5 ± 1.5 19 ± 4 9.5 ± 2.0		
128b 130a 130b 131 132 133	4 5 7 7 5 7	159 86 159 159 86 159	03 24 30 03 25 12 03 25 15 03 25 56 03 34 06 03 34 20	±180 ±18 ±3 ±5 ±24 ±2	55 02 25 02 07 13 01 09 51 50 51	±60 ±5 ±9 ±10 ±7 ±7	60 41 9.0 ± 2.0 9.0 ± 2.0 24 14.0 ± 3.0		

 $^{^{\}mathbf{a}}$ $_{\mathbf{a}}$, right ascension; $^{\mathbf{b}}$, declination.

TABLE II .- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

		Preguene	Position (1950 epoch) ^a									
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	δ, deg min	Δ8, min	Intensity, I, watts - m ⁻² - (c/sec)					
134 135 136 137a 137b 138	7 5 9 7 5 3	159 86 81 159 86 101	03 35 15 03 35 48 03 38 21 03 40 11 03 40 30 03 45	±2 ±24 ±20 ±4 ±18 ±480	29 46 07 40 72 41 05 02 04 55 21	±5 ±7 ±10 ±10 ±5 ±40	(11.0 ± 2.0) × 10 ⁻²⁶ 13 45 11.5 ± 2.5 35 100					
139 140 141 142 143 144	5 5 2 5 7 7	86 86 81 86 159 159	03 45 36 03 46 36 03 50 03 51 24 03 55 28 03 55 43	±18 ±18 ±20 ±24 ±6 ±4	00 41 05 42 75 03 58 14 38 48 56	±5 ±6 ±60 ±6 ±8 ±5	15 15 140 16 9.0 ± 3.0 10.0 ± 2.0					
145 146 147 148a 148b	7 9 2 5 7 7	159 81 81 86 159 159	05 56 14 05 57 58 03 58 03 58 12 05 58 30 03 59 58	±15 ±15 ±90 ±12 ±4 ±3	10 24 71 19 41 00 27 00 17 16 34	±5 ±10 ±90 ±5 ±7 ±10	41 ± 9 47 45 19 14.5 ± 3.5 9.0 ± 2.0					
150 151 152 153 154a 154b	5 7 7 7 5	86 86 159 159 86 159	Off Off 148	±18 ±18 ±4 ±3 ±12 ±2	05 35 02 21 42 53 33 56 03 45 03 35	±8 ±5 ±4 ±8 ±4 ±7	13 11 29 ± 6 9.0 ± 3.5 37 12.5 ± 5.0					
155 156 157 158 159 160	4 7 2 7 7 7	159 159 81 159 159 86	04 06 00 04 08 41 04 10 04 10 32 04 10 55 04 11 54	±300 ±6 ±120 ±6 ±3 ±24	48 00 07 07 35 45 24 59 11 15 05 43	±120 ±9 ±30 ±5 ±4 ±7	≤50 8.0 ± 2.0 105 10.0 ± 2.5 19.5 ± 3.0 8.6					
161 162a 162b 163 164 165	9 8 7 7 7	81 169 159 159 159 159	04 14 31 04 14 45 04 15 05 04 17 43 04 18 17 04 18 54	±15 ±4 ±2 ±4 ±5 ±7	76 56 38 00 37 50 10 57 17 43 34 44	±60 ±30 ±4 ±9 ±12 ±6	52 141 60 ± 13 9.5 ± 2.5 12.5 ± 3.0 9.5 ± 2.0					
166 167 168 169 170	7 7 5 5 2 7	159 159 86 86 81 159	04 20 25 04 20 53 04 21 54 04 23 12 04 28 04 28	±3 ±5 ±24 ±24 ±60 ±3	30 06 40 44 00 24 04 26 25	±4 ±5 ±8 ±6 ±120 ±12	12.5 ± 2.0 11.0 ± 2.0 14 13 330 8.5 ± 2.0					
171b 172 173 174 175 176	5 7 7 3 7 5	86 159 159 101 159 86	04 28 48 04 29 08 04 29 32 04 30 04 31 52 04 32 48	±12 ±3 ±4 ±480 ±4 ±12	01 02 41 26 01 55 31 50 55 03 57	±5 ±4 ±8 ±40 ±6 ±5	20 14.5 ± 2.5 11.5 ± 2.5 300 8.5 ± 1.5 25					
177a 177b 178 177c 179 180	8 7 9 1 5 7	169 159 81 100 86 159	04 33 50 04 33 55 04 37 46 04 38 04 38 12 04 41 45	±2 ±4 ±15 ±30 ±4	29 15 29 35 72 15 28 07 05 37 27	±10 ±2 ±6 ±8 ±4	125 204 ± 52 28 300 8 12.5 ± 2.0					
181 182 183 184 185 186	5 7 7 7 7	86 159 159 159 159 159	04 41 48 04 42 55 04 43 10 04 44 01 04 46 33 04 48 50	±18 ±3 ±10 ±4 ±4 ±3	02 15 03 12 44 45 50 26 44 59 51 46	±5 ±8 ±7 ±6 ±4 ±6	50 10.0 ± 2.0 12.0 ± 2.0 11.5 ± 2.5 21.5 ± 3.5 9.5 ± 2.0					
187 188 189 190 191	7 3 5 7 5 2	159 101 86 159 86 81	04 49 13 04 50 04 51 30 04 52 57 04 54 54 04 56	±5 ±480 ±24 ±2 ±30 ±120	29 10 10 02 33 22 50 06 43	±4 ±40 ±6 ±6 ±8 ±90	16.0 ± 5.5 200 10 16.5 ± 2.5 13					
193 194a 194b 195 196 196a 196b	5 4 6 5 7 3 7	86 159 960 86 159 101	04 56 18 04 57 00 04 57 30 04 58 30 04 59 59 05 00 05 01 21	±18 ±120 ±30 ±24 ±3 ±480 ±4	05 20 46 30 46 26 01 24 25 20 42 38 05	±8 ±60 ±4 ±6 ±3 ±40 ±8	10 80 22.5 ± 4.5 15 23.0 ± 4.0 150 85 ± 11					

 $^{^{}B}\,\alpha,\,$ right ascension; $\delta,\,$ declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

			Posit		Intensity, I,		
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	5, deg min	Δδ, min	watts - m ⁻² - (c/sec) ⁻¹
196c 197 198a 198b 199 200	2 5 7 7 7	81 86 86 159 159 159	05 02 05 04 50 05 10 54 05 10 58 05 12 45 05 15 40	±180 ±18 ±18 ±3 ±2 ±25	37 07 20 01 02 01 12 51 24 77 41	±120 ±7 ±6 ±12 ±6 ±15	100 × 10 ⁻²⁶ 16 58 12.0 ± 3.0 8.0 ± 1.5 27
201 202 ,203 204 205 206	5 7 7 9 7	86 86 159 159 81 159	05 16 24 05 16 30 05 16 50 05 17 23 05 18 12 05 18 49	±24 ±12 ±3 ±3 ±25 ±8	09 58 03 59 50 48 13 57 80 56 22 40	±8 ±8 ±6 ±4 ±30 ±10	20 17 8.5 ± 1.5 19.5 ± 5.0 18 19 ± 6
207 208 209 210 211 212	7 7 9 7 5 3	159 159 81 159 86 101	05 21 53 05 22 28 05 23 02 05 25 22 05 28 54 05 30	±5 ±3 ±15 ±6 ±18 ±120	08 55 32 42 74 25 12 49 06 35 22	±8 ±8 ±10 ±8 ±6 ±20	10.0 ± 5.5 20.5 ± 6.0 26 9.0 ± 2.0 30 1,900
213 214a 214b 214c 214d 214e	7 6 7 1 2	159 960 159 100 81 100	05 51 04 05 51 30 05 51 31.5 05 51 31.5 05 31 37 05 32	±3 ±10	56 30 21 59.3 21 59.2 22 01 22 10 24	±5 ±20	11.5 ± 2.5 1,030 ± 45 1,500 1,850 1,250 600
215 216a 217 216b 218 219	6 7 5 4 7 5	960 159 86 159 159 86	05 36 05 38 46 05 38 48 05 39 05 40 07 05 41 30	±4 ±24 ±120 ±10 ±18	28 49 51 05 43 49 40 51 00 02 46	±6 ±8 ±60 ±30 ±6	12.9 ± 1.5 63 ± 12 9.2 50 11 ± 4 22
220 221 222 223 224 225	7 7 7 5 9 5	159 159 159 86 81 86	05 47 08 05 55 02 05 59 47 06 00 30 06 01 49 06 02 18	±8 ±4 ±2 ±24 ±20 ±18	28 41 32 29 42 11 02 23 74 31 00 54	±7 ±6 ±6 ±7 ±20 ±5	12.0 ± 2.0 8.5 ± 1.5 8.0 ± 1.5 11 21
226 227 228 229 230 231	7 7 7 7 5	159 86 159 159 159 159 86	06 02 25 06 05 24 06 05 47 06 10 43 06 13 25 06 14 12	±5 ±30 ±5 ±7 ±6 ±24	20 30 08 08 48 04 26 04 53 56 05 43	±12 ±10 ±4 ±4 ±10 ±8	12.5 ± 2.5 109 15.0 ± 2.5 26 ± 5 12.5 ± 3.0 18
232a 233 232b 232c 234 235	6 7 7 8 5	960 159 159 100 86 81	06 14 16 06 14 24 06 14 36 06 14 40 06 15 18 06 17	±6 ±5 ±12 ±10 ±24 ±120	22 36.4 22 49 22 43 22 38 03 36 33	±3 ±5 ±2 ±5 ±8 ±120	129 ± 6 14.0 ± 2.5 270 ± 40 470 8.8 85
256 237 238 239 240 241	7 5 7 7 7 5	159 86 159 159 86 81	06 18 50 06 20 18 06 21 43 06 22 21 06 24 48 06 27 37	±5 ±24 ±2 ±4 ±18 ±20	14 31 09 00 40 16 26 55 02 50 74 45	±8 ±10 ±5 ±6 ±5 ±10	21.5 ± 4.0 153 19.0 ± 3.5 8.5 ± 2.0 18
242 2438 244 2436 2436 245	7 7 7 6 5	159 159 159 960 86 81	06 28 22 06 29 18 06 29 19 06 29 24 06 29 36 06 31 27	±4 ±12 ±5 ±10 ±12 ±15	25 07 05 12 16 31 04 53 05 01 77 02	±7 ±5 ±7 ±3 ±3 ±15	10.5 ± 2.0 450 ± 150 11.0 ± 2.0 105 ± 2 250 22
246 247 248 249 250 251a	5 5 9 7 7	86 86 81 159 159	06 32 36 06 34 48 06 37 09 06 40 09 06 42 27 06 42 36	±18 ±18 ±15 ±5 ±5 ±6	02 09 07 15 71 17 23 26 21 20 05 36	±4 ±8 ±6 ±10 ±4 ±10	29 72 33 12.5 ± 3.5 16.0 ± 2.5 8.0 ± 2.5
251b 252 253 254 255 256	5 7 7 7 7 5 5	86 86 159 159 159 86 86	06 42 42 06 42 48 06 46 16 06 49 56 06 51 17 06 52 30 06 54 06	±24 ±24 ±10 ±5 ±3 ±24 ±18	05 15 00 10 69 16 22 48 54 08 03 00 08 36	±8 ±10 ±15 ±17 ±5 ±8 ±10	27 16 8 ± 3 10.0 ± 2.5 30 ± 8 22 24

^{257 5 86}a a, right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

		Frequency, v,	Pos	Position (1950 epoch) ^a				
Source Surve	Survey	Survey mc/sec	a, hr min sec	∆а., вес	δ, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec)	
258 259 260 261 262 263	2 7 7 7 7 3	81 159 159 159 101 81	06 57 06 59 08 07 01 00 07 10 19 07 15 07 16 40	±180 ±4 ±3 ±7 ±240 ±30	47 30 25 22 40 14 11 55 27 85 01	±90 ±10 ±5 ±4 ±40 ±10	30 × 10 ⁻²⁶ 17.0 ± 6.0 15.5 ± 4.0 23.5 ± 5.0 80 31	
264 265 266 267 268 269	7 5 2 5 7 7	159 86 81 86 159 159	07 16 55 07 17 54 07 19 07 19 24 07 21 45 07 22 58	±3 ±24 ±180 ±18 ±5 ±5	17 11 08 48 51 51 01 34 15 35 68 00	±7 ±8 ±60 ±5 ±10	8.5 ± 2.0 11 40 17 12.5 ± 4.5 10 ± 5	
270 271 272 273 274 275	9 7 7 5 7	81 159 159 86 159 159	07 24 42 07 25 20 07 27 19 07 29 36 07 30 37 07 32 20	±20 ±3 ±3 ±18 ±4 ±20	74 27 14 45 27 02 03 06 41 42 70 20	±10 ±9 ±6 ±8 ±8	24 14.0 ± 5.0 9.0 ± 1.5 21 8.5 ± 1.5 17 ± 5	
276 277 278a 278b 279 280	2 7 5 7 7	81 159 86 159 86 159	07 35 07 41 04 07 41 54 07 42 26 07 44 54 07 53 04	±240 ±6 ±12 ±8 ±24 ±6	42 38 05 02 05 01 54 09 57 01 57	±150 ±4 ±5 ±10 ±8 ±15	50 14.0 ± 5.0 56 9.0 ± 4.0 13 10.5 ± 2.5	
281 282 283 284 285 286	7 5 7 7 7 7	159 86 159 159 159 86	07 53 35 07 53 42 07 58 52 08 02 10 08 02 38 08 03 24	±6 ±24 ±3 ±2 ±5 ±24	38 18 07 10 14 27 10 34 24 16 04 48	±6 ±7 ±6 ±8 ±8	8.0 ± 1.5 8.2 12.0 ± 2.0 11.0 ± 2.5 17.0 ± 4.0 8.7	
287 288a 288b 288c 289 290	7 2 4 7 5	159 81 159 159 86 159	08 06 25 08 08 08 09 08 10 03 08 12 24 08 13 47	±6 ±15 ±120 ±3 ±18 ±6	40 17 48 15 48 22 01 33 20 25	±12 ±30 ±60 ±3 ±6 ±6	12.5 ± 2.0 100 40 66 ± 20 29 8.5 ± 2.0	
291 292a 292b 293 294 295	9 5 7 7 2	81 86 159 159 81 159	08 15 56 08 19 48 08 19 57 08 20 59 08 22 08 25 11	±15 ±12 ±4 ±4 ±180 ±3	74 24 06 07 06 09 42 58 36 29 28	±15 ±4 ±6 ±5 ±90 ±5	28 125 16.0 ± 4.0 8.5 ± 1.5 40 10.5 ± 2.0	
296 297 298 299 300 301	9 7 7 7 5 5	81 159 159 159 159 86 86	08 29 00 08 31 25 08 31 48 08 32 59 08 33 24 08 34 30	±15 ±3 ±12 ±5 ±18 ±18	72 26 17 27 17 09 65 32 00 42 09 30	#15 #12 #10 #10 #7 #7	35 9.0 ± 1.5 22 ± 4 9 ± 3 17 13	
302 303 304 305 306 307	7 5 7 5 9	159 86 159 86 81 86	08 35 28 08 38 30 08 40 27 08 41 00 08 41 18 08 43 18	±4 ±30 ±7 ±24 ±45 ±24	57 50 03 17 16 05 07 28 71 08 02 20	±5 ±8 ±6 ±7 ±10 ±8	11 ± 2 17 10.0 ± 2.5 14 24 9.4	
308a 308b 308c 309 310 311	2 3 7 2 5 5	81 101 159 81 86 86	08 48 08 50 08 50 26 08 51 08 54 54 08 55 00	±120 ±240 ±4 ±120 ±24 ±24	18 13 14 07 53 09 55 03 36	±300 ±40 ±9 ±60 ±8 ±8	75 160 24.5 ± 4.5 22 14 9.0	
312 313 314 315 316 317	7 7 7 7 7 3	159 159 159 159 101 101	08 55 05 08 55 40 08 56 00 08 57 09 09 00 09 00	±5 ±6 ±5 ±7 ±480 ±240	27 58 36 30 14 25 16 00 34 48	±5 ±5 ±8 ±10 ±40 ±20	10.0 ± 2.0 9.5 ± 2.0 21.5 ± 5.0 11.0 ± 2.0 70 200	
318 319 320 321 322 323 324a	7 7 7 7 7 ,5	159 159 159 159 86 86	09 01 55 09 02 56 09 06 25 09 06 52 09 09 12 09 15 12 09 16	±2 ±6 ±3 ±3 ±18 ±12 ±240	06 11 14 13 43 07 38 04 08 23 09 35	±9 ±5 ±2 ±6 ±7 ±6	8.5 ± 2.0 15.5 ± 4.5 23.5 ± 5.0 10.5 ± 2.0 13	

a α, right ascension; δ, declination.

TABLE II .- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

		Production V	Pos		Intensity, I,		
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	ð, deg min	Δ8, min	watts - m ⁻² - (c/sec)
3246 3246 325 326 327 328a	14 7 7 9 3	159 159 159 81 101 81	09 16 09 17 54 09 18 07 09 22 44 09 25 09 32	±120 ±2 ±3 ±20 ±1,920 ±360	45 45 52 26 36 78 48 8	±60 ±2 ±5 ±15 ±90 ±120	30 × 10 ⁻²⁶ 42 ± 9 10.5 ± 4.0 55 80 35
3286 3298 3296 339 330 331 332	7 7 5 5 7 7	159 159 86 86 159 159	09 32 02 09 34 01 09 34 06 09 34 24 09 39 36 09 41 41	±5 ±5 ±12 ±24 ±4 ±7	39 56 04 42 04 50 02 13 14 04 10 05	±6 ±7 ±5 ±6 ±3 ±7	8.0 ± 1.5 12.0 ± 2.5 24 14 19.5 ± 3.5 11.0 ± 2.0
333 334 335a 335b 336	5 5 7 7 9	86 86 86 159 159 81	09 41 48 09 43 00 09 44 54 09 45 11 09 47 25 09 48 01	±18 ±18 ±12 ±3 ±5 ±20	09 57 02 21 07 39 07 57 14 30 74 09	±7 ±5 ±4 ±4 ±7 ±25	32 7.1 89 50 ± 20 17.0 ± 3.0
337 338a 338b 339 340 341	7 7 5 5 7	159 159 86 86 159 159	09 48 21 09 49 27 09 49 42 09 50 30 09 51 20 09 54 31	±7 ±3 ±12 ±18 ±5 ±6	24 20 00 08 00 06 09 00 70 05 32 37	±7 ±14 ±5 ±7 ±15 ±5	10.0 ± 2.0 31 ± 8 36 16 12 ± 3 8.5 ± 2.5
ジュランションションションションションションションションションションションションション	5 2 7 7 2	86 81 159 159 81 159	09 55 18 09 57 09 57 03 09 58 56 10 00 30 10 03 33	±12 ±120 ±5 ±7 ±30 ±3	03 35 56 30 30 13 29 01 43 15 48 24	±5 ±90 ±4 ±10 ±60 ±5	18 33 10.0 ± 2.0 30 ± 8 75 8.0 ± 1.5
348 349a 349b 350 351 352	7 7 5 7 7	159 159 86 159 159 159	10 05 05 10 05 30 10 05 42 10 07 26 10 07 27 10 07 37	±7 ±5 ±12 ±2 ±5 ±20	37 15 07 47 07 54 03 26 44 33 71 16	±6 ±6 ±10 ±10 ±10	12.0 ± 2.5 21.5 ± 4.5 30 18.5 ± 9.0 15 ± 5 27
353 354 355 356 357 358	9 5 5 7 7	81 86 86 86 159 159	10 07 54 10 08 36 10 09 54 10 10 54 10 15 07 10 19 10	±30 ±18 ±24 ±18 ±5 ±3	74 36 06 32 04 50 03 11 30 08 22 11	±10 ±6 ±10 ±6 ±5 ±5	59 8.7 9.4 9.5 ± 2.0 13.0 ± 3.0
359 360 361a 361b 362 363	5 7 7 5 7	86 159 159 86 159 101	10 22 00 10 22 39 10 23 16 10 24 00 10 25 42 10 30	±18 ±3 ±6 ±18 ±3 ±120	09 36 20 28 06 46 06 41 48 28	±8 ±7 ±7 ±6 ±4 ±20	15 11.5 ± 2.5 12.5 ± 4.5 35 12.0 ± 2.5 220
364 365 366 367 368 369	2 9 3 5 7 5	81 81 101 86 159 86	10 35 10 33 11 10 35 10 38 12 10 40 15 10 47 18	±30 ±240 ±18 ±7 ±18	56 73 25 35 02 56 12 22 04 25	±60 ±12 ±40 ±8 ±6 ±7	35 28 100 15 12.0 ± 2.5
370 371 372 373 374 375	5 2 9 5 7 5	86 81 81 86 159 86	10 48 48 10 50 10 51 10 10 54 00 10 55 13 10 56 48	±12 ±180 ±20 ±24 ±4 ±24	00 00 44 15 72 18 02 09 43 23 09 15	±5 ±120 ±20 ±6 ±5 ±7	21 35 51 24 9.5 ± 2.0
376 377 378 379 380 381 382	7 2 7 5 9 7 5	159 81 159 86 81 159 86	10 58 24 11 03 11 06 12 11 06 30 11 06 39 11 06 44 11 07 06	±4 ±180 ±4 ±30 ±20 ±6 ±24	33 04 39 45 25 15 09 45 77 10 38 53 03 48	±6 ±60 ±5 ±7 ±20 ±7	8.5 ± 1.5 60 14.0 ± 3.5 16 24 9.0 ± 1.5 15
383 384 385 386 387 388a 388b 389	5 7 7 7 7 5 7 5	86 159 159 159 86 159 86	11 08 00 11 08 02 11 11 55 11 18 08 11 20 12 11 20 43 11 20 54 11 21 07	±30 ±7 ±5 ±6 ±24 ±5 ±18 ±10	01 56 35 54 40 58 23 41 07 40 05 52 05 25 72 55	±8 ±5 ±3 ±8 ±8 ±8 ±7	7.0 8.0 ± 2.0 21.5 ± 3.5 11.5 ± 2.0 8.2 11.0 ± 2.5 19 24

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

		_	Po	sition (19	50 epoch)a		
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα., sec	ð, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
390 391 392 393 394 395	7 5 7 5 9	159 86 159 86 81 159	11 22 12 11 22 30 11 24 31 11 26 18 11 27 10 11 31 35	±9 ±24 ±3 ±24 ±20 ±5	19 39 02 20 32 40 00 42 77 33 23 57	±7 ±8 ±5 ±8 ±15 ±6	(10.0 ± 2.0) × 10 ⁻²⁶ 8.5 9.5 ± 2.5 7.1 14 9.5 ± 2.0
396a 396b 397 398 399 400	7 7 7 5 5 5	159 101 159 86 86 101	11 32 17 11 35 11 36 55 11 37 24 11 38 24 11 40	±5 ±240 ±5 ±24 ±24 ±240	50 26 31 66 07 01 24 05 43 50	±5 ±40 ±10 ±7 ±8 ±20	12.0 ± 3.0 100 10 ± 2 15 8.2 200
401 402 403 404 405 406	5 7 7 2 7	86 86 159 159 81 159	11 42 24 11 42 30 11 42 34 11 42 54 11 43 11 44 39	±18 ±30 ±6 ±6 ±180 ±4	08 14 09 30 20 00 31 46 44 52 03	±7 ±10 ±9 ±7 ±120	14 8.6 37 ± 5 30 ± 7 30 14.0 ± 2.5
407 408 409 410 411 412	3 7 6 2 7	101 159 86 81 159 100	11 45 11 46 40 11 47 00 11 48 11 50 52 11 52	±480 ±5 ±18 ±240 ±4	37 13 10 05 40 64 51 15	±40 ±7 ±7 ±180 ±6	100 14.5 ± 2.5 11 50 8.5 ± 1.5 100
413 414 415 416 417 418	6 96 66 66	86 81 86 86 86 86 86	11 54 06 11 58 45 11 59 36 12 01 42 12 04 12 12 07 24	±18 ±20 ±18 ±30 ±12 ±18	04 26 73 27 00 36 07 14 04 19 08 39	±10 ±20 ±7 ±8 ±5 ±10	12 24 8.5 13 25 12
419 420 421a 421b 422 423	7 6 5 7 5 5	159 86 86 159 86 86	12 14 58 12 14 48 12 16 42 12 16 55 12 18 00 12 19 00	±5 ±12 ±6 ±4 ±18 ±12	23 22 04 00 05 59 06 15 09 50 02 46	±7 ±6 ±5 ±15 ±10 ±6	14.0 ± 5.0 30 100 20 ± 7 24
424 425 426a 426b 427a 427b	7 7 5 7 1 6	159 159 86 159 100 960	12 20 55 12 21 10 12 26 36 12 26 44 12 28 11 12 28 18	±3 ±8 ±12 ±4	16 24 42 37 02 17 02 22 12 40 12 40.1	±7 ±5 ±4 ±5	11.5 ± 4.0 10.5 ± 2.0 167 79 ± 21 1,250 300
427c 427d 427e 428 429 430	7 2 3 9 5 5 5	159 81 101 81 86 86	12 28 18 12 28 25 12 30 12 30 58 12 35 18 12 46 54	±70 ±120 ±20 ±18 ±30	12 40.1 12 12 50 71 52 01 42 09 23	±20 ±20 ±180 ±8 ±8	1,100 1,050 1,200 30 16 14
431a 431b 432 433 434a 434b	7 7 5 7 7	159 159 159 86 159 101	12 48 49 12 49 12 50 38 12 51 30 12 54 43 12 55	±3 ±120 ±5 ±18 ±4 ±480	45 33 47 30 50 50 08 53 47 35	±5 ±180 ±8 ±6 ±10 ±40	8.0 ± 1.5 18 12 ± 4 17 25 ± 6 120
435 436 437 438a 438b 439	9 9 5 7 7	81 81 86 86 159 159	12 57 15 13 00 20 13 02 00 13 04 30 13 05 22 13 07 59	±60 ±15 ±12 ±24 ±8 ±10	82 20 71 57 09 02 07 02 06 50 66 10	±20 ±20 ±7 ±7 ±8 ±15	30 40 22 18 14.0 ± 2.5 8 ± 2
440 441 443 444 445	5 7 5 5 5 5	86 159 86 86 101 86	13 08 00 13 09 33 13 09 42 13 12 36 13 15 13 18 42	±18 ±6 ±12 ±30 ±240 ±18	06 10 27 47 04 00 07 41 25 01 00	±7 ±5 ±7 ±8 ±40 ±8	22 10.0 ± 3.5 7.5 16 150 50
446 447 448 449 450 451	7 9 2 7 7 5	159 81 81 159 159 86	13 20 11 13 23 44 13 26 13 28 49 13 29 04 13 30 18	±2 ±7 ±240 ±5 ±3 ±18	42 49 71 09 48 30 40 25 24 02 18	±4 ±10 ±180 ±6 ±6 ±8	11.0 ± 2.0 26 35 30 ± 7 29 ± 7

a, right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

		_	Posi	Position (1950 epoch) ^a				
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	8, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec)	
452 453 a 4530 454 455 456	5 7 2 5 7 5	86 159 81 86 159 86	15 32 48 15 36 38 13 40 13 40 18 15 45 00 15 45 30	±18 ±3 ±150 ±24 ±4 ±18	06 22 39 04 38 02 20 52 08 00 42	±10 ±4 ±90 ±9 ±4 ±6	8.0 × 10 ⁻²⁶ 15.0 ± 5.5 30 15 12.0 ± 2.0 8.3	
457 458 459 460 461 462	7 7 7 5 7 5	159 159 159 86 159 86	15 46 55 15 47 20 15 48 49 15 50 00 15 50 01 15 55 00	±5 ±3 ±5 ±30 ±6 ±12	30 03 21 26 64 54 06 19 31 31 01 24	±10 ±5 ±10 ±7 ±5 ±6	8.0 ± 2.5 10.0 ± 2.0 9 ± 2 54 12.5 ± 2.0	
463 464 465 466 467 468	52 5 7 9 5	86 81 86 159 81 86	13 55 24 14 01 14 01 00 14 04 35 14 06 14 14 09 24	±18 ±120 ±18 ±4 ±20 ±18	04 50 51 09 22 34 32 76 08 07 31	±7 ±120 ±7 ±4 ±20 ±6	10 75 28 12.5 ± 3.0 13	
469 a 469b 469c 470 471 472	8 7 5 7 5	100 159 159 86 159 86	14 09 ·31.5 14 09 32 14 10 14 13 00 14 13 48 14 15 48	±4 ±3 ±120 ±30 ±7 ±18	50 23 52 26 51 30 05 49 11 22 01 06	±10 ±5 ±60 ±8 ±7 ±7	35 74 ± 15 40 17 10.0 ± 2.0 17	
47 3a 47 3 b 474 475 476 477	7 5 5 7 7 7	159 86 86 159 159	14 16 40 14 16 42 14 17 00 14 19 02 14 19 54 14 20	±8 ±6 ±12 ±3 ±8 ±480	06 46 06 43 04 00 41 54 17 25	±7 ±4 ±5 ±4 ±6 ±40	61 ± 16 114 22 10.5 ± 2.0 15.0 ± 4.0 200	
478 479 480 481 482 483	5 5 9 7 5	86 86 81 81 81 86	14 24 18 14 25 24 14 29 03 14 32 12 14 32 16 14 32 30	±18 ±24 ±10 ±60 ±3 ±18	04 19 00 36 73 23 78 01 29 40 06 38	±7 ±6 ±15 ±20 ±12 ±7	13 16 35 20 9.5 ± 2.0	
484 485 486 487 488 489	7 5 5 5 9 3	159 86 86 86 81 101	14 35 09 14 35 30 14 35 30 14 37 06 14 38 38 14 40	±3 ±12 ±12 ±30 ±20 ±480	26 23 03 36 00 23 08 58 71 30	±6 ±6 ±6 ±8 ±15 ±40	8.5 ± 2.0 47 14 12 20 100	
490 491 492 493 494 495	3 7 5 5 7 7	101 159 86 86 159 159	14 40 14 40 02 14 40 30 14 45 00 14 46 35 14 48 09	±240 ±6 ±12 ±12 ±5 ±2	26 52 04 05 04 07 54 20 35 63 33	±40 ±7 ±6 ±6 ±6 ±15	100 9 ± 3 15 19 11.0 ± 4.0 15 ± 4	
496 497 498 499 500 501	7 7 7 5 7 2	159 159 159 86 159 81	14 52 08 14 52 55 14 54 39 14 56 30 14 57 07 14 59	±3 ±3 ±3 ±18 ±3 ±180	16 36 69 42 50 06 04 01 14 26 58	±7 ±20 ±6 ±30 ±7 ±90	10.0 ± 2.5 9 ± 2 10 ± 4 11 11.5 ± 2.5 40	
502 503 504 5 05a 5056 506	2 5 2 7 8 7	81 86 81 159 169 159	15 00 15 00 06 15 01 15 02 48 15 02 48.5 15 03 00	±120 ±24 ±120 ±2 ±1.5 ±6	70 06 15 36 26 14 26 60 07	#60 #10 #180 #5 #15 #4	90 15 40 72 ± 13 6 10.5 ± 2.0	
507 508 509a 509b 510	9 7 7 5 5 5	81 159 159 86 86 86	15 04 42 15 06 12 15 07 50 15 08 12 15 08 36 15 09 48	±20 ±7 ±6 ±12 ±12 ±30	76 30 12 23 08 09 08 09 06 08 01 42	±10 ±9 ±15 ±7 ±6 ±48	20 8.5 ± 2.0 21.0 ± 4.5 22 24 20	
512 513 514 515 516a 516b 516e 517	3 7 7 7 8 5 7 5	101 159 159 159 169 86 159	15 10 15 10 27 15 11 32 15 13 50 15 14 10.5 15 14 12 15 14 19 15 14 24	±240 ±3 ±4 ±6 ±3 ±12 ±5 ±30	11 45 35 26 19 18 35 07 07 11 07 11 00 18	±90 ±5 ±7 ±8 ±60 ±36 ±4 ±48	100 8.5 ± 1.5 26 ± 8 8.5 ± 2.0 45 140 55 ± 14 16	

a a, right ascension; 5, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

			Pos	ition (1950	epoch) ^a		Interest to T
Source	Survey'	Frequency, v, mc/sec	a, hr min sec	Δα., sec	8, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
518 519 520 521 522 523	7 5 7 9 2 7	159 86 159 81 81	15 17 52 15 19 18 15 22 48 15 25 34 15 29 15 29 37	±6 ±12 ±6 ±10 ±300 ±5	20 28 07 55 54 39 72 31 55 35 53	±5 ±30 ±4 ±20 ±90 ±6	(14.5 ± 5.0) × 10 ⁻²⁶ 50 16.5 ± 2.5 41 45 8.0 ± 1.5
524 525 526 527 528 529	7 3 7 5 5	159 101 159 86 86 86	15 29 41 15 50 15 30 47 15 33 18 15 34 06 15 36 06	±6 ±480 ±3 ±30 ±12 ±24	24 18 26 53 59 09 29 02 38 01 42	±10 ±40 ±4 ±8 ±6 ±7	15.0 ± 2.5 100 11.5 ± 2.0 13 17 12
530 531 532 533 534 535	5 7 5 7 7	86 159 86 86 159 86	15 37 24 15 40 57 15 42 06 15 42 24 15 47 34 15 48 54	±18 ±5 ±18 ±12 ±5 ±12	06 08 60 18 04 06 02 20 21 33 03 10	±8 ±10 ±7 ±5 ±7 ±6	22 9 ± 2 17 16 18 ± 5
536 537 538a 538b 539 540	7 7 5 7 2 7	159 159 86 159 81 159	15 49 08 15 49 25 16 00 00 16 00 01 16 01 16 01 07	±5 ±4 ±12 ±4 ±240 ±6	62 50 17 47 02 13 02 05 66 30 30 09	±4 ±6 ±5 ±8 ±60 ±7	15 ± 5 12.5 ± 2.5 100 34 ± 8 70 8.0 ± 2.0
541 542 543 544 545 546	5 5 2 7 7	86 86 86 81 159 159	16 02 48 16 03 18 16 07 00 16 08 16 08 11 16 08 59	±24 ±12 ±4 ±120 ±3 ±5	01 05 00 06 04 25 40 33 07 66 10	±7 ±6 ±7 ±240 ±5 ±6	45 35 17 35 11.0 ± 2.5 24 ± 4
547 548 549 550 551 552	7 9 5 7 7	159 81 86 159 159 159	16 10 11 16 12 32 16 13 18 16 14 44 16 15 05 16 18 07	±6 ±15 ±18 ±4 ±4	22 41 76 44 04 25 30 09 21 11 17 44	±9 ±18 ±6 ±6 ±4 ±8	10.5 ± 3.0 16 27 16.0 ± 2.5 14.0 ± 2.5 16.0 ± 3.5
553 554 555 556 557 55 8a	7 9 7 5 9	159 81 159 86 81 81	16 18 16 16 19 50 16 21 44 16 22 12 16 22 37 16 24	±4 ±180 ±7 ±18 ±180 ±60	13 45 79 59 23 48 08 21 82 08 38	±11 ±30 ±5 ±6 ±20 ±90	10.5 ± 5.0 15 13.5 ± 2.5 14 22 70
559 558b 560 561 562 563	7 7 7 7 7 7	159 159 159 159 159 86	16 25 12 16 26 54 16 27 10 16 27 42 16 28 41 16 29 00	±2 ±5 ±3 ±5 ±5	44 20 39 38 14 43 23 40 30 09 09 08	±5 ±3 ±4 ±7 ±11 ±10	8.5 ± 1.5 49 ± 10 14.5 ± 2.5 9.5 ± 2.0 8.5 ± 3.5 22
564 565 566 567 568 569	3 7 7 5 3	101 159 159 86 101 159	16 30 16 34 32 16 35 40 16 38 06 16 40 16 41 15	±240 ±3 ±5 ±18 ±240 ±7	18 26 53 62 51 05 44 41 37 28	±40 ±7 ±10 ±10 ±40 ±10	130 10.5 ± 2.0 18 ± 3 23 80 8.5 ± 1.5
570 571 572 573 574a 574b	7 7 7 5 3	159 159 159 86 101 86	16 41 53 16 41 36 16 43 08 16 44 42 16 45 16 48 42	±5 ±2 ±7 ±18 ±120 ±6	40 11 17 24 13 16 01 43 6 05 04	±55 ±55 ±8 ±90 ±2	9.0 ± 1.5 15.5 ± 3.0 16.0 ± 3.0 33 400 890
574c 574d 574e 574f 575 576	7 6 2 1 9	159 960 81 1 00 81 159	16 48 43 16 48 43 16 49 16 50 16 55 08 16 58 10	±5 ±2 ±240 ±7 ±4	05 10 05 06.4 7 5 71 22 47 08	±10 ±.5 ±540 ±6 ±6	300 ± 50 73.5 ± 6 300 200 59 13.5 ± 2.0
577 578a 579 578b 580 581 582 583	7 2 5 7 7 8 7 5	159 81 86 159 159 169 169 86	17 00 32 17 03 17 03 12 17 04 03 17 09 15 17 18 01 17 19 01 17 22 18	±6 ±360 ±18 ±6 ±4 ±1.5 ±7 ±18	36 55 63 50 09 16 60 48 46 02 00 19 24 05 44	±5 ±90 ±10 ±5 ±4 ±120 ±10 ±4	9.0 ± 2.5 50 78 15 ± 3 12.0 ± 2.0 14 12.0 ± 5.0 56

aα, right ascension; δ declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

	<u> </u>	[Posi	tion (1950	epoch)a		Intensity, I,
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., вес	8, deg min	Δδ, min	watts - m-2 - (c/sec)-1
584 585 586 587 588 589	7 7 9 7 9	159 159 81 159 81 159	17 22 31 17 23 21 17 24 30 17 26 34 17 28 52 17 29 50	±5 ±4 ±20 ±8 ±30 ±4	38 17 51 13 79 48 31 50 73 57 20 39	±5 ±5 ±20 ±6 ±20 ±7	(9.0 ± 1.5) × 10 ⁻²⁶ 14.0 ± 3.5 24 9.0 ± 2.0 37 12.0 ± 5.5
590 591 592 593 594 595	7 3 7. 7 7	159 101 159 159 159 159	17 34 04 17 40 17 45 06 17 47 26 17 54 01 17 56 01	±3 ±480 ±5 ±3 ±5 ±5	40 39 14 18 42 59 41 37 34 10 45	±5 ±40 ±7 ±5 ±5 ±5	10.0 ± 2.0 150 11.5 ± 2.5 11 ± 2 10.5 ± 2.0 15.5 ± 5.5
596 597 598 599 600 601	5 7 2 7 7 5	86 159 81 159 159 159 86	17 56 06 17 57 00 18 00 18 01 10 18 02 42 18 03 54	±24 ±3 ±30 ±3 ±5 ±24	02 46 55 06 47 30 55 06 10 57 00 12	±10 ±5 ±30 ±5 ±6 ±7	48 9.0 ± 2.0 85 9.0 ± 2.0 13.5 ± 2.5 33
602 603 604 605 606 607	5 7 7 7 7 7	86 159 159 159 159 159 81	18 04 18 18 05 39 18 06 47 18 07 04 18 10 35 18 11 37	±24 ±2 ±5 ±2 ±4 ±15	03 40 25 46 32 29 69 55 42 56 73 34	±10 ±5 ±6 ±20 ±6 ±15	27 13.0 ± 2.5 9.0 ± 2.0 9 ± 3 9.0 ± 1.5 21
608 609 610 611 612 613	7 5 7 7	159 86 86 159 159 159	18 14 16 18 15 18 18 17 24 18 19 54 18 19 58 18 21 15	±5 ±24 ±18 ±7 ±5 ±5	31 21 00 04 03 05 26 06 15 09 36 18	±5 ±10 ±6 ±7 ±7 ±7	11.0 ± 2.5 14 41 9.0 ± 2.5 11.0 ± 2.5 14.5 ± 2.5
614 615 616 617 618 619a	7 9 7 9 5 2	159 81 159 81 86 86	18 25 39 18 23 40 18 24 16 18 26 19 18 26 30 18 27	±4 ±15 ±5 ±15 ±24	57 41 73 51 23 17 72 16 00 25 47 45	±5 ±20 ±7 ±15 ±6 ±60	9.5 ± 1.5 30 8.5 ± 2.0 21 50 75
6196 620 621 622 623 624	7 5 7 7 6	159 86 159 159 960 159	18 28 12 18 29 36 18 32 28 18 33 12 18 33 21 18 33 35	±3 ±24 ±2 ±4 ±6 ±3	48 43 09 40 47 24 30 23 32 40.6 65 20	±3 ±10 ±4 ±4 ±1 ±20	70 ± 10 45 14.5 ± 3.5 18.0 ± 5.0 6.9 ± 0.6 8 ± 3
625 626 627 628 629 630a	7 5 7 2 7 5	159 86 159 81 159 86	18 54 12 18 54 56 18 36 13 18 40 18 42 37 18 42 42	±6 ±18 ±4 ±600 ±3 ±42	34 46 03 37 17 11 80 45 32 09 30	±5 ±6 ±8 ±60 ±3 ±10	13.0 ± 2.5 20 27 ± 6 95 22.5 ± 3.5
631 630b 632 633 634 635a	1 7 5 5 9 7	100 159 86 86 81 159	18 43 18 43 12 18 43 18 18 44 00 18 49 08 18 53 35	±35 ±24 ±30 ±20 ±5	5 09 49 07 15 05 07 72 58 01 15	±4 ±8 ±8 ±20	300 22.5 ± 4.5 28 25 35 680 ± 120
635b 636 637 638 639 640	5 7 7 3 7 2	86 159 159 101 159 81	18 53 42 18 55 48 18 57 02 19 00 19 00 16 19 01	±6 ±7 ±6 ±480 ±5 ±240	01 29 53 04 12 56 7 32 06 57 30	±5 ±5 ±7 ±90 ±10 ±60	550 10.0 ± 2.0 18.5 ± 3.5 300 8.0 ± 2.0 38
641 642 643 644 645 646	7 7 9 7 5	159 159 81 159 86 81	19 01 42 19 05 06 19 08 25 19 08 45 19 09 00 19 10 50	±5 ±8 ±15 ±4 ±18 ±20	05 31 07 07 74 05 09 09 05 05 78 53	±6 ±4 ±25 ±3 ±6 ±20	24.5 ± 7.0 29 ± 9 33 43 ± 7 59 26
647 648 649 650 651 652 653 654	5 7 5 7 7 5 7 5 5 5 5	86 159 86 81 159 86 86	19 12 42 19 16 30 19 17 30 19 18 46 19 22 04 19 30 06 19 32 24 19 33 48	±18 ±9 ±18 ±30 ±5 ±18 ±24 ±18	00 09 53 32 00 54 77 54 13 43 00 54 09 43	±8 ±9 ±10 ±60 ±6 ±7 ±6 ±8	29 8.0 ± 2.0 20 18 25 ± 4 20 50

aα, right ascension; δ, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Continued

<u> </u>			Post	tion (1950	epoch) ⁸		I
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	δ, deg min	Δ8, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
655 656 657 658 659 660a	5 7 7 5 7	86 86 159 159 86 159	19 37 24 19 37 42 19 39 37 19 40 25 19 45 48 19 49 41	±18 ±24 ±4 ±7 ±18 ±6	04 15 01 06 60 35 50 32 09 16 02 23	±12 ±10 ±3 ±8 ±8	; 8.5 8.5 22 ± 5 15.0 ± 3.0 13 25 ± 6
660b 661a 661b 661c 661d 661e	5 4 7 7 1	86 159 101 960 159	19 49 48 19 57 22 19 57 30 19 57 44.5 19 57 44.5 19 58 18	±18 ±25	02 26 40 22 40 30 40 35.8 40 35 40 36	±2 ±16	64 5,700 13,000 2,160 ± 120 8,600 12,500
662 663 664a 664b 665 666	7 7 8 7 5 5	159 159 169 159 86 86	20 00 19 20 07 52 20 12 15 20 12 17 20 15 12 20 15 42	±4 ±5 ±1 ±2 ±18 ±18	00 20 51 39 23 25 23 26 08 49 01 54	±9 ±20 ±15 ±5 ±8 ±7	9.5 ± 2.0 8 ± 2 4 102 ± 20 15 14
667 668 669 670 671 672	5 7 7 4 7 5	86 159 159 159 159 159 86	20 16 54 20 18 08 20 19 47 20 22 00 20 22 02 20 25 36	±18 ±7 ±5 ±10 ±36	04 00 29 31 09 59 40 00 69 28 06 22	±7 ±8 ±8 ±15 ±8	13 36 ± 7 16.0 ± 4.0 300 8 ± 2 16
673 674 675 676 677 678	9 7 7 7 5	81 159 159 159 86 159	20 28 44 20 29 52 20 30 17 20 33 13 20 35 42 20 35 49	±60 ±4 ±3 ±5 ±30 ±6	75 39 25 41 18 57 52 57 04 13 34 10	±15 ±7 ±7 ±10 ±10 ±5	59 10.0 ± 2.0 9.5 ± 2.0 9 ± 3 11 15.5 ± 4.5
679 680 681 682 683 684	7 5 7 5 9 7	159 86 159 86 81 159	20 37 07 20 37 18 20 38 50 20 39 06 20 41 30 20 41 45	±30 ±30 ±55 ±18 ±30 ±5	51 07 05 20 24 25 00 48 75 43 50 20	±10 ±8 ±7 ±7 ±15 ±15	16.0 ± 3.0 14 10.5 ± 2.5 12 47 8.0 ± 2.0
685 686 687a 687b 688 689a	5 7 4 6 7 7	86 159 159 960 159 159	20 42 24 20 43 51 20 44 20 45 20 45 12 20 45 43	±50 ±7 ±60 ±10 ±4	03 29 40 21 50 20 50 30 46 31 06 50	±7 ±9 ±45 ±7 ±6	11 13.5 ± 3.0 200 60 ± 6 8.0 ± 2.0 16.0 ± 4.0
690 6896 691 692 693 694	5 5 5 6 5 5	86 86 86 960 86 86	20 45 54 20 45 54 20 45 42 20 50 20 55 24 20 55 42	±18 ±18 ±18 ±24 ±24	01 54 06 57 04 00 30 00 42 05 43	±7 ±7 ±7 ±4 ±8	19 22 10 33 ± 3 104 19
695 696 697 698 699 7 00	7 9 7 7 5	159 81 81 159 159 86	20 58 46 20 59 27 21 03 44 21 05 05 21 06 26 21 07 42	±4 ±10 ±20 ±5 ±4 ±24	25 59 72 23 76 17 21 12 47 20 09 19	±7 ±7 ±10 ±12 ±8 ±10	9.5 ± 2.0 30 59 12.0 ± 2.5 19.5 ± 4.5
701 702 703 704 705 706	5 7 7 7 7	86 159 159 159 159 159	21 12 42 21 12 57 21 16 57 21 17 11 21 20 30 21 21 31	±18 ±5 ±5 ±4 ±2 ±4	04 06 62 17 60 35 49 22 17 04 24 48	±5 ±10 ±3 ±4 ±5 ±7	12 11 ± 2 100 ± 40 31 ± 6 13.5 ± 2.5 62 ± 10
707 708 709 710a 710b 711	5 7 9 5 7 5	86 159 81 86 159 86	21 21 54 21 22 32 21 23 24 21 26 24 21 26 39 21 27 06	±18 ±5 ±30 ±12 ±5 ±30	02 45 15 49 75 04 07 15 07 27 01 06	±6 ±12 ±40 ±7 ±10 ±8	17 10.5 ± 4.0 24 27 12.5 ± 3.0 67
712 713 714 715 716 717 718 719	9 5 7 5 7	81 86 159 86 159 86 159	21 34 41 21 36 00 21 37 21 37 48 21 41 56 21 42 24 21 42 30 21 45 00	±15 ±24 ±120 ±24 ±4 ±18 ±24 ±3	74 45 03 47 56 30 02 45 27 50 07 54 04 00 15 03	±30 ±6 ±90 ±7 ±8 ±8 ±5 ±5	21 12 50 18 21.0 ± 3.5 15 11 16.0 ± 5.0

 $^{^{8}\}alpha$, right ascension; δ , declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(a) Northern hemisphere - Concluded

		Base	Posi		Intensity, I,		
Source Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	δ, deg min	Δδ, min	watts - m ⁻² - (c/sec)-	
720 721 722 723 724 725	5 5 6 5 7 7	86 86 960 86 159 159	21 49 36 21 50 30 21 51 37 21 52 12 21 53 48 21 57 20	±24 ±24 ±7 ±24 ±6 ±5	07 52 05 17 46 50 02 08 37 42 50 22	±8 ±7 ±3 ±7 ±8 ±10	23 × 10 ⁻²⁶ 17 4.5 ± 0.6 15 43 ± 7 8.0 ± 2.0
726 727 728 729 730 731	5 7 9 7	86 86 159 81 81 159	21 58 18 21 59 54 22 03 09 22 03 36 22 03 39 22 04 42	±30 ±18 ±5 ±10 ±15 ±5	05 16 04 25 62 12 72 24 73 30 29 15	±7 ±5 ±10 ±15 ±20 ±5	8.5 8.4 11 ± 5 38 20 12.5 ± 2.5
732 733 734 735 736 737	5 7 5 9 5	86 86 159 86 81 81	22 06 30 22 10 00 22 10 30 22 10 48 22 14 58 22 21 24	±24 ±30 ±4 ±50 ±20 ±30	01 54 07 41 10 50 08 48 77 37 02 17	±7 ±6 ±6 ±7 ±15 ±7	26 14 33 ± 6 31 26 8.1
738 739 740 741 742 743	5 7 5 7 7	86 159 86 159 159 960	22 22 24 22 24 27 22 26 36 22 28 13 22 29 09 22 29 53	±24 ±6 ±18 ±3 ±6 ±6	05 55 39 20 08 27 44 28 38 57 11 28.2	±5 ±7 ±7 ±5 ±7 ±2	16 9.0 ± 1.5 19 9.5 ± 2.0 11.5 ± 2.0 7.2 ± 0.6
744 745 746 747 748 749	5 7 5 7 9	86 159 86 159 81 159	22 34 54 22 39 43 22 39 54 22 40 40 22 41 30 22 43 30	±24 ±10 ±24 ±7 ±20 ±5	05 45 41 22 04 28 15 45 76 40 39 21	±8 ±6 ±8 ±7 ±10 ±3	12 8.0 ± 1.5 12 9.0 ± 2.0 24 50 ± 10
750 751 752 753 754 755	7 5 7 5 5 5	159 86 159 86 86 86	22 44 14 22 46 54 22 47 26 22 49 30 22 50 24 22 51 42	±5 ±18 ±9 ±30 ±12 ±18	17 10 07 00 15 50 09 43 03 35 00 54	±8 ±8 ±10 ±7 ±5 ±7	10.0 ± 2.0 15 11.5 ± 4.5 17 11
756 757 758 759 760 761	5 7 5 5 5 5	86 159 86 86 86 86	22 52 18 22 53 27 22 55 18 22 57 12 23 05 06 23 08 12	±18 ±5 ±24 ±24 ±24 ±18	02 43 13 12 08 08 09 43 03 23 07 28	±7 ±5 ±6 ±8 ±6 ±6	16 15.0 ± 2.5 16 15 9.4 22
762 763a 763b 764 765 766	9 7 5 7 7 5	81 159 86 159 159 86	23 08 16 23 09 19 23 09 36 23 09 36 23 09 37 23 10 30	±20 ±5 ±24 ±3 ±5 ±18	77 46 09 06 09 16 18 25 05 09 04 50	±15 ±8 ±8 ±5 ±14 ±6	21 10.0 ± 2.0 51 12.5 ± 2.0 12.5 ± 3.5 18
767a 767b 768 769 770a 770b	5 7 7 5 6 2	86 159 159 86 960 81	23 14 00 23 14 05 23 18 15 23 19 00 23 21 11.4 23 21 12	±06 ±3 ±5 ±24 ±10	03 53 03 55 23 37 09 16 58 31.9 58 32	±5 ±5 ±7 ±4	57 25 ± 5 13.0 ± 2.5 7.8 3,120 ± 150 22,000
770c 770a 771 772 773 774	7 7 7 5 7	159 159 159 86 86 159	23 21 12 23 21 36 23 23 33 23 24 54 23 25 00 23 25 30	±30 ±2 ±24 ±24 ±6	58 32.1 58 38 40 26 06 49 03 54 26 50	±10 ±5 ±8 ±36 ±6	13,000 9,250 10.0 ± 2.0 15 17 14 ± 4
775 776 777 778 779 780	5 7 3 5 7 7	86 159 101 86 159 159	23 31 18 23 33 58 23 35 23 35 23 35 50 23 35 57 23 38 41	±24 ±5 ±480 ±42 ±4 ±3	01 03 20 53 10 55 26 38 22 00	±36 ±7 ±90 ±7 ±5 ±8	8.6 8.0 ± 1.5 90 13 50 ± 20 9.0 ± 2.0
781 782 783 784 785 786 787 788	5 7 7 7 9 7	86 159 159 159 159 81 159 159	23 39 18 23 46 00 23 46 31 23 50 48 23 50 56 23 55 53 23 56 46 23 57 06	±18 ±4 ±5 ±10 ±20 ±2 ±3 ±30	04 38 18 37 50 39 32 42 79 34 43 48 41 25 09 48	±30 ±8 ±6 ±4 ±20 ±5 ±7 ±30	15.

a, right ascension; 5, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere

	Ţ		Post	ltion (1950	epoch) ^a		T
Source	Survey	Frequency, v, mc/sec	a, hr min sec	∆a., sec	5, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
1 2 5 4 5a 5b	5 3 5 5 5 7	86 101 86 86 86 159	00 00 00 00 00 00 00 18 00 00 56 00 03 18 00 03 49	±12 ±240 ±18 ±18 ±18 ±18	17 32 14 15 28 12 23 00 56 00 23	±5 ±40 ±5 ±6 ±4 ±7	28 × 10 ⁻²⁶ 150 15 12 35 16.5 ± 4.5
6 7 8 9 10	3 7 5 5 9 5	101 159 86 86 81.5 86	00 05 00 05 06 00 05 36 00 06 00 00 06 36 00 09 12	±240 ±5 ±18 ±24 ±10 ±12	61 06 31 19 58 06 19 27 34 19 07	±20 ±10 ±6 ±8 ±120 ±5	150 11.0 ± 5.0 17 15 28 13
12 13 14 15 16 17	5 5 7 7	86 86 86 159 86 159	00 12 24 00 15 54 00 16 12 00 17 04 00 17 24 00 17 38	±18 ±18 ±12 ±2 ±18 ±10	15 07 13 02 10 46 04 38 05 01 08 35	±8 ±5 ±5 ±9 ±6 ±11	34 52 23 13.5 ± 2.5 9.5 9.0 ± 2.0
18 19 20 21 22 25	5 5 5 9 9 5	86 86 81.5 81.5 81.5	00 17 42 00 18 36 00 18 48 00 19 13 00 20 46 00 21 30	±18 ±18 ±18 ±20 ±10 ±24	02 51 19 11 01 42 32 30 28 00 08 14	±4 ±5 ±6 ±300 ±300	23 8.7 9.8 50 17 24
24 25 26 27 28 29	9 5 5 5 5 9	81.5 86 86 86 86 81.5	00 24 25 00 25 00 00 25 18 00 27 42 00 29 24 00 32 06	±15 ±24 ±24 ±12 ±18 ±10	26 00 16 48 15 10 11 50 15 33 22 32	±180 ±6 ±7 ±10 ±6 ±120	24 6.0 13 14 8.8 30
30 31 32 33 34 35	5 5 5 5 9 9	86 86 86 86 81.6 81.6	00 32 18 00 32 30 00 32 30 00 32 36 00 33 00 00 34 20	±12 ±18 ±18 ±18 ±10 ±15	08 27 16 50 18 14 07 32 29 14 32 30	±4 ±6 ±5 ±6 ±60 ±300	13 12 17 9.0 17 37
36 37 38 39 40 41	5 7 6 5 7	86 960 159 960 86 159	00 35 00 00 34 24 00 35 18 00 35 40 00 36 24 00 36 37	±36 ±10 ±4 ±8 ±12 ±3	12 35 01 20 01 31 02 23 02 50 02 16	±8 ±4 ±5 ±4 ±5 ±14	9.6 5.1 ± 1.2 21.5 ± 3.0 10.2 ± 2.4 120 21.5 ± 7.0
42 43 44 45 46 47	5 5 5 5 9 9	86 86 86 86 81.6 81.6	00 38 00 00 39 00 00 39 00 00 39 12 00 39 52 00 40 46	±24 ±18 ±24 ±6 ±20 ±10	15 15 15 44 06 25 09 43 22 59 29 30	±7 ±6 ±5 ±18 ±60 ±120	10 14 10 56 17 40
48 49 50 51 52 53	5 5 5 5 5 5	86 86 86 86 86 86	00 42 54 00 43 30 00 45 48 00 46 00 00 46 42 00 48 48	±18 ±24 ±24 ±18 ±18	00 05 14 49 17 58 07 01 02 48 12 28	±5 ±6 ±7 ±5 ±6 ±5	12 9.0 8.9 12 18
54 55 56a 56b 57 58	5 9 7 5 5 5	86 81.5 159 86 86 86	00 50 06 00 51 23 00 51 36 00 51 42 00 52 18 00 52 24	±18 ±20 ±4 ±18 ±24 ±24	19 53 28 05 03 51 03 42 16 19 05 06	±7 ±240 ±12 ±4 ±6 ±6	11 24 8.0 ± 2.0 25 12 8.5
59 60a 60b 61 62 63	9 5 7 5 5	81.6 86 159 86 86 86	00 54 00 00 54 30 00 55 03 00 56 54 00 57 12 00 57 36	±20 ±6 ±4 ±18 ±18 ±18	35 00 01 39 01 35 13 40 15 22 17 24	±180 ±2 ±10 ±6 ±6 ±5	19 90 17.0 ± 6.0 13 17 29
64 65 66 67 68 69a	9 5 5 9 9 5	81.6 86 86 81.6 81.6 86	00 58 33 00 58 54 01 01 36 01 02 00 01 04 04 01 05 54	±15 ±18 ±12 ±10 ±20 ±6	22 08 14 30 12 27 27 30 34 30 16 15	±90 ±6 ±5 ±300 ±300 ±2	57 9.8 18 57 45 53

a a, right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

		_	Posi		Intensity, I,		
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	ð, deg min	∆ð, min	watts - m ⁻² - (c/sec)
696 69c 70 71 72 73	6 7 5 5 9 5	960 159 86 86 81.6 86	01 05 47 01 06 00 01 06 30 01 07 12 01 07 42 01 08 12	±10 ±12 ±18 ±18 ±10 ±24	16 19.8 16 18 00 57 18 51 34 30 14 33	±2 ±12 ±6 ±6 ±6 ±200 ±6	(7.2 ± 1.5) × 10 ⁻²⁶ 20 ± 4 13 9.0 37 16
74 75 76 77 78 79	5 5 5 9 7 5	86 86 86 81.6 159 86	01 10 30 01 11 42 01 14 30 01 15 21 01 15 22 01 16 48	±18 ±24 ±18 ±20 ±4 ±30	05 07 10 07 11 53 27 30 00 52 16 45	±6 ±6 ±6 ±300 ±5 ±10	15 7.8 11 9 12.0 ± 2.5
80 81a 81b 81c 82 83	5 5 7 6 5 9	86 86 159 960 86 81.5	01 16 48 01 18 00 01 18 06 01 18 05 01 19 36 01 19 36	±6 ±12 ±12 ±12 ±18 ±15	19 00 15 34 15 55 15 44 00 13 33 00	±6 ±3 ±12 ±6 ±5 ±3	14 45 22 ± 4 8.4 ± 1.5 19 30
84 85a 85b 85c 86 86	5 6 7 5 5 5	86 960 159 86 86 86	01 21 06 01 23 20 01 23 35 01 23 30 01 24 54 01 25 06	±24 ±4 ±2 ±6 ±18 ±12	03 50 01 37.7 01 32 01 35 12 10 14 13	±6 ±2 ±9 ±2 ±6 ±3	18 8.1 ± 1.8 26 ± 5 88 7.0 30
88 89 90 91 92 93	5 5 9 5 9 5	86 86 81.6 86 81.6 85	01 27 54 01 28 48 01 30 31 01 30 48 01 32 13 01 35 06	±18 ±18 ±15 ±18 ±15 ±12	15 38 07 03 29 30 00 26 33 00 09 25	±5 ±6 ±120 ±5 ±180 ±4	18 19 22 10 47 18
94 95 96 97 98	5 9 5 5 3	86 81.6 86 86 101 81.6	01 35 24 01 35 32 01 36 54 01 38 24 01 40	±18 ±15 ±24 ±24 ±480 ±15	02 06 33 00 17 49 18 25 49 33 00	±5 ±180 ±6 ±7 ±40 ±180	13 32 10 8.0 80 31
100 101 102 103 104 105	5 5 9 5 5 5	86 86 81.6 86 86	01 40 24 01 43 42 01 44 17 01 45 30 01 45 36 01 47 36	±12 ±12 ±30 ±24 ±18 ±24	16 51 02 27 32 30 00 02 18 44 09 09	±4 ±5 ±300 ±6 ±7 ±6	28 12 50 12 16 9.4
106 107 108 109 110	5 5 5 3 5 7	86 86 101 86 159	01 47 36 01 47 54 01 49 54 01 50 01 50 36 01 50 42	±18 ±18 ±12 ±8 ±24 ±5	11 11 13 11 03 52 22 14 54 04 17	±6 ±7 ±4 ±20 ±6 ±10	10 8.1 20 80 12 10.5 ± 2.0
112 113 114 115 116 117	5 5 9 5 5 5	86 86 81.5 86 86	01 51 36 01 52 12 01 52 54 01 55 06 01 55 06 01 57 00	±24 ±18 ±15 ±18 ±18 ±24	07 26 05 17 27 31 00 39 10 45 02 31	±6 ±7 ±4 ±6 ±6 ±6	9.0 6.8 36 8.0 16 8.5
118 119a 119b 120 119c 121	9 5 3 7 5	81.5 86 101 101 159 86	01 57 14 01 59 36 02 00 02 00 02 00 12 02 02 00	±5 ±18 ±4 ±16 ±2 ±24	29 30 11 47 11 40 11 47 19 43	±300 ±6 ±40 ±40 ±10 ±7	53 14 100 70 10.5 ± 2.0 8.5
122 123 124 125 126 127	5 5 5 5 9 5	86 86 86 86 81-5 86	02 02 36 02 03 30 02 08 00 02 08 18 02 09 52 02 10 42	±24 ±18 ±12 ±24 ±15 ±18	05 35 18 16 11 18 05 38 29 00 08 11	±6 ±6 ±6 ±180 ±6	8.5 17 30 12 26 8.5
128 129 130 131 132a 132b	5 5 9 5 7 5	86 86 81.5 86 159 86	02 10 48 02 11 24 02 11 40 02 12 24 02 13 06 02 13 12	±24 ±18 ±15 ±18 ±12 ±6	04 54 16 02 26 37 02 46 13 29 13 19	±6 ±6 ±90 ±6 ±12 ±3	8.7 8.2 37 7.5 13.5 42

a a, right ascension; b, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

			Po	sition (195	O epoch) [®]		T-4/
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	8, deg min	∆8, min	Intensity, I, watts = m ⁻² - (c/sec) ⁻¹
133 134 135a 135b 135c 136	5 5 6 7 5 5	86 86 960 159 86 86	02 14 12 02 14 48 02 18 07 02 18 24 02 18 36 02 18 36	±18 ±24 ±10 ±1 ±12 ±24	00 54 17 58 02 12 02 10 02 11 03 45	±6 ±8 ±6 ±5 ±3 ±6	12 × 10 ⁻²⁶ 8.5 6.0 ± 0.9 26 ± 5 74 7.5
137 138 139 140 141 142	9 3 5 9 5 7	81.5 101 86 81.5 86 159	02 18 36 02 20 02 22 54 02 23 09 02 26 30 02 28 04	±10 ±1,920 ±18 ±10 ±18 ±2	24 12 85 11 38 29 00 17 31 07 20	±90 ±10 ±8 ±240 ±6 ±3	35 150 13 25 19 23 ± 2
143 144 145 146 147 148	5 5 5 5 5 5 5 5 5	86 86 86 86 86 101	02 29 24 02 29 48 02 29 48 02 30 48 02 30 48 02 35	±18 ±24 ±18 ±24 ±18 ±240	04 55 00 18 06 57 02 40 10 12	±5 ±6 ±5 ±6 ±5 ±90	12 14 15 11 17 50
149 150 151 152 153 154a	5 5 5 7 5 5 5	86 86 86 159 86 86	02 35 24 02 36 00 02 36 18 02 39 19 02 39 24 02 40 00	±6 ±24 ±24 ±3 ±24 ±6	19 42 14 45 18 20 03 15 02 30 00 09	±3 ±7 ±6 ±14 ±6 ±3	44 14 9.5 8.0 ± 2.0 15 35
154b 155 156 157 1 58 159	7 5 5 9 5 5	159 86 86 81.5 86 86	02 40 06 02 42 48 02 43 36 02 44 24 02 45 48 02 46 12	±5 ±18 ±18 ±15 ±18 ±24	00 25 05 21 09 50 26 14 16 47 13 29	±9 ±5 ±7 ±90 ±6 ±8	11.0 ± 2.5 25 8.7 30 6.2
160 161 162 163 164 165	5 5 9 5 5 5	86 86 81.5 86 86 86	02 46 18 02 47 30 02 53 07 02 54 06 02 56 12 02 56 48	±24 ±18 ±15 ±24 ±18 ±18	07 46 18 10 30 00 03 30 16 52 05 06	±6 ±5 ±300 ±6 ±6 ±6	9.0 9.3 32 11 12 8.8
166 167 168 169 170	5 5 5 7 9	86 86 86 86 159 81.5	02 57 48 03 03 30 03 05 24 03 07 30 03 07 59 03 10 50	#18 #18 #24 #18 #5 #15	07 30 12 21 16 44 13 33 03 00 26 55	±5 ±5 ±6 ±7 ±11 ±120	11 18 17 16 8.0 ± 2.0
172 173 174 175 176 177	1 5 9 5 9 3	100 86 81.5 86 81.5 101	03 11 03 12 36 03 13 44 03 15 06 03 18 50 03 20	±18 ±20 ±18 ±10 ±240	36 03 37 28 11 14 48 27 31 37 30	±4 ±90 ±6 ±180 ±18	200 20 33 9.5 30 240
178 179 180 181 182 183	6 9 5 9 5 5	960 81.5 86 81.5 86 86	03 20 25 03 22 04 03 27 54 03 29 05 03 29 48 03 31 06	±15 ±15 ±18 ±10 ±18 ±24	37 215 31 24 16 51 25 44 07 40 18 48	±4 ±180 ±5 ±90 ±5 ±6	123 ± 6 37 16 24 12
184a 184b 184c 185 186 187	6 7 5 9 9	960 159 86 81.5 81.5 960	03 31 26 03 31 46 03 31 42 03 32 19 03 33 01 03 36 54	±10 ±5 ±12 ±15 ±10 ±50	01 25 01 14 01 25 32 30 22 32 01 55	±10 ±10 ±4 ±300 ±180 ±8	6.3 ± 0.9 19.5 ± 4.5 64 15 54 3.6 ± 1.2
188 189 190 191 192 193	9 5 9 5 5 5	81.5 86 81.5 86 86	03 37 10 03 39 00 03 41 45 03 44 06 03 46 00 05 46 24	±7 ±18 ±15 ±12 ±24 ±24	24 12 04 55 32 30 11 13 04 20 13 08	±60 ±5 ±300 ±4 ±7 ±6	16 8.8 24 56 16
194 195 196 197 198 199	5 5 7 7 9	86 86 86 159 159 81.5	03 49 18 03 49 36 03 49 42 03 50 08 03 50 49 03 51 22	±12 ±12 ±12 ±3 ±6 ±10	14 38 07 25 10 08 07 17 09 49 27 31	±18 ±6 ±5 ±10 ±15 ±180	44 25 21 15.5 ± 4.0 8.5 ± 2.0

 $^{^{\}mathbf{a}}\,\alpha,\,$ right ascension; $\delta,\,$ declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

		Bandung	Post	ltion (1950	epoch) ^B		Intensity, I,
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα., sec	ð, deg min	Δ8, min	watts - m ⁻² - (c/sec)
200 201 202 203 204 205	5 5 5 7 5 7	86 86 86 159 86 159	03 56 30 03 57 30 03 59 12 03 59 21 04 00 06 04 00 19	±30 ±18 ±18 ±4 ±18 ±4	03 50 16 20 02 10 09 03 09 56 01 11	±6 ±7 ±6 ±12 ±6 ±10	11 × 10 ⁻²⁶ 18 16 8.5 ± 2.0 10 9.0 ± 2.0
206 207 208 209 210 211	595555	86 81 86 86 86 86	04 00 54 04 04 22 04 05 00 04 05 24 04 05 30 04 06 00	±18 ±15 ±18 ±6 ±18 ±18	08 54 32 30 13 20 12 26 05 37 06 46	±6 ±300 ±8 ±3 ±5 ±5	19 20 14 31 12 17
212 213 214a 214b 215 216	5 5 5 7 5 5	86 86 86 159 86 86	04 08 54 04 09 30 04 09 36 04 09 55 04 11 24 04 11 48	±24 ±18 ±6 ±3 ±24 ±24	16 27 01 50 01 02 01 01 19 36 11 26	±6 ±5 ±4 ±9 ±7 ±6	10 15 35 11.5 ± 2.5 9.4 18
217 218 219a 219b 220a 220b	9 5 7 5 7 5	81.5 86 159 86 159 86	04 13- 26 04 13 48 04 14 53 04 15 30 04 15 35 04 15 42	±15 ±18 ±6 ±18 ±3 ±12	32 30 15 22 05 52 05 35 03 03 03 21	±180 ±8 ±11 ±7 ±10 ±4	22 15 8.5 ± 2.5 36.0 ± 3.0 28
221 222 223 224 225 226	5555 5555 5555 5555	86 86 86 86 81.5 86	04 16 18 04 20 18 04 25 00 04 25 54 04 25 54 04 25 54 04 26 24	±18 ±24 ±18 ±18 ±7 ±18 ±24	18 13 09 28 16 57 12 07 22 32 11 38 01 15	±5 ±6 ±6 ±5 ±120 ±7 ±6	15 8.5 14 16 19 11 9.7
227 228 229a 229b 230 231	5 5 5 7 5 9	86 86 86 159 86 81.5	04 27 12 04 28 12 04 30 54 04 31 03 04 32 00 04 32 09	±30 ±18 ±12 ±2 ±12 ±15	18 36 09 58 08 44 08 58 13 26 28 12	±8 ±6 ±6 ±12 ±5 ±180	9.0 7.3 11 12.0 ± 2.5 38 27
232 233 234 235 236 237	5 5 9 5 5 7	86 86 81.5 86 86 159	04 32 54 04 32 54 04 32 59 04 36 54 04 38 18 04 38 20	±18 ±24 ±7 ±24 ±18 ±2	05 50 16 38 22 13 15 00 12 10 02 19	±4 ±6 ±180 ±7 ±6 ±11	10 15 27 7.3 8.0 8.5 ± 2.0
238 239 240a 241 240b 242	5 5 3 9 5 9	86 86 101 81.5 86 81.5	04 39 00 04 39 36 04 40 04 40 12 04 42 48 04 42 58	±12 ±18 ±240 ±10 ±30 ±15	09 52 00 49 18 22 49 18 52 27 20	±5 ±6 ±40 ±20 ±7 ±120	17 12 150 20 7.0
243 244 245 246 247 248a	5 5 5 5 5 5 5	86 86 86 86 86 101	04 46 48 04 47 18 04 48 00 04 49 18 04 49 36 04 50	±18 ±24 ±18 ±18 ±24 ±480	09 55 04 33 17 34 06 38 02 31 30	±5 ±6 ±6 ±4 ±5 ±40	16 46 14 9.6 13
2486 249 250 251 252 253	9 5 5 5 5 5 9	81.5 86 86 86 86 86 81.5	04 51 47 04 52 06 04 52 24 04 54 12 04 58 42 04 59 18	±15 ±24 ±24 ±18 ±24 ±10	32 30 19 07 00 24 11 51 03 39 28 11	±300 ±8 ±6 ±6 ±6 ±120	50 7.3 20 17 18 22
254 255 256 257 258 259	5 5 5 1 5 5	86 86 86 100 86 86	04 59 36 04 59 54 05 00 00 05 01 05 03 00 05 06 30	±18 ±12 ±24 ±18 ±18	05 48 12 16 08 37 36 10 13 14 29	±6 ±4 ±6 ±5 ±6	8.5 14 9.1 200 20 16
260 261 262 263 264 265	5 9 5 9 5 5	86 81.5 86 81.5 86 86	05 08 30 05 09 20 05 10 00 05 11 49 05 12 24 05 13 00	±12 ±15 ±18 ±15 ±18 ±12	18 42 32 30 07 36 27 25 02 19 01 15	±3 ±300 ±6 ±60 ±5 ±6	41 25 16 32 17 18

a a, right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

		-	Pos	1tion (1956	epoch)a		7-4
Source	Survey	Frequency, v, mc/sec	c, hr min sec	Δα., sec	8, deg min	Δ8, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
266 267 268 269 270 271a	5 5 5 9 5 1	86 86 86 81.5 86	05 13 00 05 13 18 05 13 36 05 14 01 05 15 30 05 18	±18 ±18 ±12 ±15 ±15	15 56 09 41 13 41 32 30 16 34	±8 ±6 ±6 ±240 ±5	11 × 10 ⁻²⁶ 8.8 16 38 16 500
2716 272 273 274 275 276	6 5 5 9 9 5	960 86 86 81.5 81.5 86	05 18 19 05 18 18 05 21 12 05 21 30 05 22 00 05 22 12	±10 ±18 ±24 ±20 ±7 ±24	45 52 06 15 11 59 33 00 26 51 02 46	±5 ±5 ±6 ±180 ±60 ±6	84 ± 6 17 11 25 25 16
277 278 279 280 281 282	5 5 5 5 5 5 5 5 5	86 86 86 86 86 86	05 22 18 05 23 36 05 23 48 05 24 12 05 24 54 05 24 54	±24 ±18 ±18 ±18 ±18	07 22 09 36 18 24 13 36 16 31 17 35	±6 ±6 ±6 ±6 ±7 ±6	15 12 14 16 12 8.2
265 264 265 266 267 268	5 9 5 5 3 9	86 81.5 86 86 101 81.5	05 25 24 05 26 06 05 26 36 05 27 54 05 30 05 32 01	±18 ±15 ±24 ±18 ±240 ±5	10 45 28 42 14 48 00 03 46 25 26	±6 ±120 ±7 ±5 ±20 ±60	16 31 8.3 15 250 17
289a 289b 289c 290 291 292	5 7 6 5 7 5	86 159 960 86 159 86	05 32 30 05 32 48 05 32 49 05 33 18 05 34 29 05 34 36	±12 ±12 ±18 ±2 ±24	05 24 05 18 05 25.3 12 01 02 55 18 31	±18 ±4 ±6 ±11 ±8	85 45 ± 4 360 ± 9 15 9.5 ± 3.5
293 294 295 296 297 298	5 5 5 5 5 5 5	86 86 86 86 86 86	05 35 00 05 35 18 05 37 06 05 38 00 05 39 06 05 40 06	±24 ±18 ±18 ±30 ±24 ±24	17 18 13 16 16 04 02 20 01 25 05 16	±8 ±8 ±8 ±10 ±6	15 14 9.7 88 25 9.5
299 300 301 302 303 304	9 9 5 5 5 5	81.5 81.5 86 86 86 86	05 40 26 05 41 05 05 42 00 05 45 42 05 45 36	#10 #15 #24 #18 #24 #24	22 29 32 30 12 33 17 33 04 42 06 41	±60 ±240 ±8 ±7 ±8 ±6	40 30 8.0 17 6.1 9.0
305 306 307 308 309 310	9 5 5 5 5 5	81.5 86 86 86 86 86 86	05 47 41 05 48 00 05 48 42 05 49 18 05 51 00 05 51 42	#20 #24 #18 #12 #18 #30	34 50 08 08 15 48 10 32 16 59 14 19	±240 ±6 ±6 ±4 ±6 ±7	26 15 8.7 17 8.5 8.7
311 312 313 314 315 516	5 5 5 5 9 3	86 86 86 86 81.5	05 51 54 05 52 00 05 53 06 05 54 48 05 54 57 05 55	±18 ±18 ±30 ±18 ±10 ±480	12 29 02 00 01 00 03 27 35 30 56	#6 #6 #6 #6 #180 #40	9.5 29 19 18 37 160
317 318a 318b 319 320 321	5 5 3 9 5 5	86 86 101 81.5 86	05 56 48 05 57 36 06 00 06 03 50 06 03 54 06 04 30	±18 ±18 ±480 ±20 ±18 ±18	08 03 16 50 17 32 30 10 45 04 02	±5 ±6 ±40 ±240 ±6 ±5	14 13 70 31 9.2 9.0
322 323 324 325 326 327	5 5 5 9 9	86 86 86 81.5 81.5	06 04 36 06 06 06 06 07 18 06 10 13 06 11 26 06 12 00	±24 ±12 ±24 ±10 ±15 ±12	17 49 07 21 14 40 22 15 28 00 03 53	±7 ±4 ±7 ±60 ±120	15 23 14 21 17
528 529 530 531 532 555	5 9 5 9 5	86 81.5 86 81.5 86 81.5	06 14 48 06 17 12 06 17 48 06 17 53 06 20 18 06 21 52	±30 ±15 ±30 ±15 ±24 ±15	15 00 27 30 16 36 35 30 15 39 27 30	±7 ±300 ±10 ±180 ±8 ±240	19 15 63 37 9.5

a, right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

			Posi	tion (1950	epoch)a		Intensity, I,
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	ð, deg min	Δδ, min	watta - m ⁻² - (c/sec)-1
334a 334b 334c 334d 335 336	8 6 7 5 5	169 960 159 86 86 86	06 24 06 24 37 06 24 41 00 25 00 06 25 48 06 27 42	±3 ±10 ±3 ±6 ±18 ±24	05 47 05 51.4 05 56 05 56 12 52 02 25	±15 ±2 ±10 ±18 ±8 ±6	40 × 10 ⁻²⁶ 24.0 ± 1.5 78 ± 30 120 16 8.7
3376 3376 338 339 340 341	9 3 5 5 5 5	81.5 101 86 86 86 86 86	06 29 14 06 30 06 34 06 06 34 54 06 36 18 06 38 54	±15 ±16 ±24 ±18 ±18 ±30	30 30 30 15 46 13 44 16 50 06 40	±180 ±40 ±7 ±8 ±6 ±8	50 100 16 9.3 18
342 343 345 346 347	5 9 5 5 9 5	86 81.5 86 86 81.5 86	06 39 00 06 40 04 06 42 12 06 44 00 06 44 38 06 45 00	±30 ±15 ±24 ±12 ±15 ±24	08 01 26 13 10 19 15 33 25 44 02 06	±6 ±60 ±6 ±6 ±90 ±6	50 22 84 18 16 35
348 349 350 351 352 353	5 7 5 5 9	86 86 159 86 86 86 81.5	06 45 18 06 45 36 06 45 36 06 47 12 06 49 42 06 52 45	±24 ±24 ±5 ±18 ±30 ±15	08 10 09 16 06 16 05 37 12 43 23 56	±6 ±6 ±12 ±5 ±10 ±120	17 11 8.0 ± 2.5 25 55 22
354 355 356 357 358 359•	5 9 9 5 5 5	86 81.5 81.5 86 86 86	06 53 12 06 55 23 06 55 55 06 56 42 07 03 12 07 03 36	±18 ±15 ±7 ±12 ±12 ±24	19 15 32 30 23 13 02 12 11 02 19 13	±7 ±300 ±20 ±5 ±7 ±7	7.6 27 37 24 55
359b 360 361 362 363 364	3 7 9 5 5	101 159 81.5 86 86 86	07 05 21 07 05 21 07 06 20 07 07 00 07 10 24 07 12 00	±240 ±4 ±15 ±18 ±18 ±18	20 08 05 30 30 00 38 09 06 14 30	±40 ±12 ±240 ±7 ±5 ±10	100 10.0 ± 2.5 24 11 21
365 366 367 368 369 370	5 9 5 9 5	86 81.5 86 81.5 86	07 12 42 07 12 44 07 13 48 07 14 23 07 16 12 07 20 11	±12 ±15 ±24 ±20 ±24 ±15	02 41 27 12 11 20 31 30 17 07 26 04	±4 ±60 ±5 ±240 ±7 ±30	25 20 25 25 25 17 25
571 572a 572b 573 574 575a	5 7 5 5 5	86 86 159 86 86 86	07 21 24 07 22 18 07 22 33 07 23 06 07 23 48 07 24 24	±18 ±18 ±4 ±18 ±24 ±12	18 38 09 49 09 30 06 10 13 16 02 00	±5 ±4 ±12 ±6 ±7 ±4	19 36 9.5 ± 3.5 94 15 29
375b 376 377 378 379 380	7 9 5 9 5 5	159 81.5 86 81.5 86	07 24 34 07 24 49 07 26 06 07 27 58 07 29 42 07 31 24	±4 ±12 ±12 ±15 ±24 ±24	01 59 35 30 14 51 24 38 18 17 05 31	±10 ±240 ±6 ±60 ±8 ±6	15.0 ± 3.0 37 17 10 29 8.6
381 382 383 384 385a 385b	5 5 9 5 5 7	86 86 81.5 86 86 159	07 32 54 07 34 12 07 34 33 07 34 48 07 36 12 07 36 58	±18 ±18 ±30 ±24 ±18 ±4	15 59 19 38 30 30 15 00 02 03 01 42	±6 ±6 ±240 ±7 ±5 ±11	12 11 25 9.2 19 8.5 ± 2.0
386 387 388 389 390 391	5 5 5 5 5	86 86 86 86 86 86	07 38 36 07 38 48 07 41 30 07 43 24 07 44 12 07 45 50	±18 ±24 ±24 ±50 ±12 ±12	15 58 01 01 17 45 16 32 08 05 19 00	±6 ±6 ±7 ±7 ±6 ±4	12 15 9.8 10 17
392 393 394 395 396 397	5 9 5 5 5	86 81.5 86 86 86 81.5	07 45 36 07 45 46 07 46 12 07 48 36 07 51 18 07 55 42	±24 ±15 ±24 ±18 ±30 ±7	10 01 32 30 11 53 06 52 19 22 26 48	±6 ±300 ±7 ±6 ±8 ±120	13 36 20 11 17

a, right ascension; 8, declination.

TABLE II .- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

		Frequency	Pos	ition (1950	epoch) ^a		Intensity
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα, sec	8, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
398 399 400 401 402 403	5 5 5 5 5 5	86 86 86 86 86 86	07 58 54 07 59 42 08 00 18 08 01 00 08 03 06 08 03 24	±24 ±18 ±24 ±12 ±18 ±18	02 06 09 40 14 40 04 13 00 30 17 11	±6 ±6 ±7 ±6 ±6 ±5	7.5 × 10 ⁻²⁶ 17 55 14 15 18
404 405 406 407 408a 408b	7 5 5 9 7 5	159 86 86 81.5 159 86	08 03 43 08 03 54 08 05 18 08 05 41 08 06 36 08 07 00	±2 ±24 ±18 ±15 ±4 ±12	01 07 07 54 12 37 27 13 10 15 10 27	±10 ±7 ±6 ±120 ±12 ±3	10.0 ± 2.0 9.7 14 25 21.0 ± 4.0
409a 410 409b 411 412 413	5 9 3 5 5 5	86 81.5 101 86 86 86	08 09 18 09 09 29 08 10 08 13 06 08 13 24 08 13 48	±12 ±15 ±480 ±24 ±12 ±18	05 40 30 30 4 11 49 02 53 15 57	±5 ±240 ±90 ±7 ±5 ±5	22 20 50 4.2 35 14
414 415 a 416 415b 417 417	5 1 9 6 5 5	86 100 81.5 960 86 86	08 17 36 08 18 08 21 15 08 21 20 08 21 30 08 22 42	±24 ±15 ±15 ±12 ±24	11 00 42 30 30 42 52 09 32 04 38	±7 ±240 ±4 ±6 ±7	8.9 300 40 102 ± 6 20 8.8
419 420 421 422 423 424a	5 5 9 9 5 5	86 86 81.5 81.5 86 86	08 27 12 08 27 18 08 29 30 08 31 55 08 32 00 08 32 18	±18 ±24 ±20 ±15 ±18 ±18	03 15 17 39 29 30 35 30 05 10 07 25	±6 ±6 ±300 ±180 ±6 ±6	27 14 26 21 13 13
424b 425 426 427a 428 427b	7 5 5 5 5 7	159 86 86 86 86 101 159	08 32 27 08 33 06 08 34 18 08 35 00 08 35 08 38 16	±6 ±24 ±18 ±18 ±480 ±6	08 23 16 04 01 04 11 27 42 11 39	±12 ±7 ±7 ±6 ±20 ±12	8.5 ± 2.0 8.8 13 18 60 13.0 ± 2.5
429 430 431 432 433 434	9 5 5 9 5 5	81.5 86 86 81.5 86 86	08 38 51 08 39 36 08 40 18 08 42 51 08 43 48 08 44 36	±15 ±18 ±24 ±20 ±18 ±24	25 00 17 49 09 15 27 31 11 28 17 44	±240 ±6 ±7 ±180 ±6 ±7	17 10 7 19 12 9.4
435 436 437 438 439 440	5 5 7 5 5	86 86 86 159 86 86	08 45 30 08 48 24 08 51 18 08 52 46 08 53 12 08 53 30	±24 ±24 ±12 ±2 ±18 ±18	15 33 10 15 14 18 07 10 12 27 06 07	±7 ±7 ±5 ±12 ±6 ±6	6.6 7.6 24 8.5 ± 3.0 13 12
441 442 443 444 445	5 5 5 9 5 5	86 86 86 81.5 86	08 54 24 08 55 36 08 57 36 08 59 32 08 59 54 09 00 00	±30 ±18 ±24 ±10 ±18 ±18	15 38 19 38 02 05 30 30 05 07 14 18	±8 ±7 ±7 ±300 ±6 ±6	9.4 17 7.8 50 18 12
447 448 449 450 451 452	5 5 5 5 5 5	86 86 86 86 86 86	09 01 18 09 03 30 09 06 24 09 06 30 09 06 54 09 07 00	±18 ±18 ±24 ±18 ±24 ±18	06 46 12 32 10 22 09 38 03 15 01 22	±6 ±6 ±7 ±6 ±7 ±7	13 16 9.5 17 7.6 7.3
453 454a 454b 454c 455 456a	9 7 5 6 3	81.5 159 86 960 101 101	09 14 19 09 15 42 09 15 42 09 15 43 09 20 09 20	±20 ±3 ±6 ±2 ±120 ±480	30 30 11 53 11 53 11 52.4 11	±180 ±5 ±2 ±1 ±40 ±40	33 210 ± 32 690 67.2 ± 1.8 250 80
456b 457 458 459 460 461	9 5 9 5 5	81.5 86 81.5 86 86 81.5	09 20 53 09 21 36 09 26 58 09 30 00 09 31 24 09 33 03	±10 ±24 ±15 ±18 ±18 ±10	32 30 04 22 33 30 19 56 16 47 32 00	±180 ±7 ±300 ±6 ±6 ±500	33 9.5 33 11 13 56

 $^{^{\}mathbf{a}}\,\alpha,$ right ascension; $\delta,$ declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

			Posi	tion (1950	epoch) ^a		Intensity, I,
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα., sec	5, deg min	Δδ, min	watts - m-2 - (c/sec)-1
462 463 464 465 466 467a	5 5 5 5 7	86 101 86 86 86 159	09 34 54 09 35 09 38 12 09 38 48 09 39 18 09 39 22	±18 ±480 ±24 ±24 ±18 ±5	04 00 19 17 18 01 17 16 09 11 57	±6 ±40 ±6 ±6 ±7 ±10	15 × 10-26 150 15 12 10 14.5 ± 5.0
467b 468 469 470 471 472	5 5 5 5 5 5 5 5 9	86 86 86 86 86 81.5	09 39 42 09 41 24 09 42 00 09 42 42 09 43 30 09 43 43	±18 ±24 ±30 ±18 ±12 ±10	11 28 07 14 09 39 19 33 13 19 30 30	±5 ±7 ±8 ±6 ±5 ±180	50 8,4 100 12 25 37
473 474 475 476 477 478	5 5 5 5 5 5 5	86 86 86 81.5 86 86	09 47 00 09 48 42 09 48 54 09 50 55 09 53 18 09 54 00	±24 ±18 ±18 ±7 ±24 ±18	18 15 04 57 08 31 25 00 12 50 13 36	±7 ±6 ±6 ±180 ±7 ±6	12 9.3 12 62 9.5
479a 480 481 482 483 4796	1 3 9 5 9 3	100 101 81.5 86 81.5 101	09 55 09 55 10 00 05 10 03 48 10 04 57 10 05	±960 ±15 ±24 ±30 ±480	5 62 33 00 10 38 35 30 5	±20 ±300 ±7 ±180 ±90	200 100 32 7-3 31 50
484 485 486 487 488 489	5 5 5 5 5 3	86 86 86 86 86 101	10 05 18 10 07 18 10 07 42 10 08 06 10 08 18 10 10	±12 ±18 ±18 ±18 ±18 ±480	09 45 03 44 11 47 07 25 14 47 42 30	±5 ±6 ±7 ±6 ±6 ±20	17 10 32 17 17
490 491 492 493 494 495	5 5 5 9 5 5	86 86 86 81.5 86	10 10 06 10 10 18 10 11 48 10 13 20 10 16 54 10 17 42	±18 ±24 ±24 ±15 ±18 ±24	18 15 15 16 09 30 32 00 02 34 03 00	±6 ±7 ±6 ±180 ±6 ±7	14 9.2 9.4 31 16 7.3
496 497 498 499 500 501	5 5 9 5 9	86 86 81.5 86 81.5 86	10 18 54 10 19 54 10 19 56 10 22 24 10 22 39 10 23 00	±18 ±18 ±20 ±18 ±10 ±24	19 43 10 25 32 30 10 43 29 14 11 44	±6 ±7 ±300 ±6 ±120 ±7	7.5 6.5 14 18 31 8.5
502 503 504 505 506 507	5 5 5 5 5 5	86 86 86 86 86 86	10 25 06 10 25 36 10 24 06 10 24 18 10 25 24 10 27 18	±18 ±24 ±18 ±18 ±18 ±12	08 10 18 10 02 19 04 47 07 20 05 57	±6 ±6 ±6 ±7 ±6 ±6	11 10 17 5.3 10
508 509 510 511 512 513	9 5 5 5 5 5 5	81.5 86 86 86 86 86 86	10 27 25 10 28 00 10 30 00 10 30 06 10 31 00 10 32 24	±10 ±18 ±24 ±24 ±24 ±24	30 00 15 28 13 36 09 10 17 04 19 15	±500 ±6 ±7 ±7 ±8 ±7	25 18 7.5 6.5 9.0
514 515 516 517 518 519	5 5 5 5 9 5	86 86 86 86 81.5 86	10 33 24 10 35 30 10 33 42 10 34 42 10 35 12 10 36 00	±18 ±18 ±24 ±18 ±10 ±24	02 29 10 20 06 17 18 24 25 52 00 53	±6 ±5 ±7 ±6 ±90 ±6	16 9.4 6.5 14 41 8.2
520 521 522 523 524 525	9 5 5 5 5 5	81.5 86 86 86 86 86	10 38 30 10 38 42 10 39 24 10 41 54 10 44 42 10 44 48	±10 ±24 ±24 ±30 ±18 ±24	25 00 11 53 14 00 08 12 01 06 17 08	±180 ±7 ±7 ±7 ±6 ±7	31 6.5 9.3 17 14 7.5
526 527 528 529 530 531a	9 5 5 5 7	81.5 86 86 86 86 86	10 45 15 10 46 18 10 46 36 10 48 30 10 48 42 10 49 45	±15 ±12 ±18 ±24 ±18	28 00 02 33 18 46 09 19 20 12 09 11	±300 ±5 ±6 ±7 ±6 ±12	17 20 24 8.5 13 8.5 ± 2.0

 $^{^{\}text{a}}\,\alpha_{\text{s}}$ right ascension; 8, declination.

TABLE II .- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

	T	T_	Pos	ition (1950	D epoch) ^a		<u> </u>
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	ð, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec) ⁻¹
532 533a 531b 532a 532b 533b	9 5 7 5 5	81.5 86 86 159 86 86	10 52 59 10 54 36 10 59 36 10 59 37 10 59 48 11 00 18	±15 ±24 ±24 ±6 ±12 ±18	32 00 16 00 09 39 01 00 00 52 06 18	±240 ±7 ±6 ±7 ±5 ±6	25 × 10 ⁻²⁶ 9.2 6.5 14.5 ± 3.5 23 15
534 535 536 537 538 539	5 9 5 5 5	86 86 81.5 86 86 86	11 00 36 11 03 00 11 03 35 11 05 24 11 09 00 11 10 24	±30 ±24 ±20 ±24 ±16 ±18	15 01 08 22 25 57 03 55 06 10 11 50	±10 ±7 ±120 ±7 ±6 ±6	56 8.5 33 5.0 12 10
540 541 542 543 544 545	7 5 5 9 9	159 86 86 81.5 81.5 86	11 11 01 11 11 12 11 11 48 11 12 52 11 13 05 11 13 18	±3 ±18 ±24 ±30 ±15 ±18	02 18 13 15 01 54 30 30 26 56 07 10	±11 ±6 ±6 ±300 ±120 ±6	8.0 ± 2.0 17 18 19 25 16
546 547 548 549 550 551	5 9 7 5 5 9	86 81.5 159 86 86 81.5	11 16' 06 11 16 13 11 16 35 11 16 54 11 19 54 11 24 33	±18 ±15 ±3 ±12 ±18 ±15	08 43 33 00 06 23 02 46 12 00 33 00	±6 ±300 ±8 ±5 ±6 ±300	15 24 15.0 ± 7.5 31 12 33
552 553 554 555 556 557	5 5 5 5 5	86 86 86 86 86 86	11 25 24 11 28 06 11 30 24 11 30 54 11 31 24 11 32 36	±24 ±18 ±24 ±12 ±24 ±18	06 52 03 15 15 16 19 22 07 43 17 25	±7 ±6 ±6 ±4 ±7 ±6	14 10 9.4 52 6.0
558 559 560 561 562 563	5 7 5 5 5 5	86 159 86 86 86 86	11 34 12 11 36 00 11 36 30 11 39 18 11 39 48 11 40 00	±24 ±2 ±6 ±24 ±24 ±12	00 30 02 23 13 41 01 28 17 11 15 08	±7 ±15 ±4 ±7 ±6 ±5	8.2 10.5 ± 3.0 44 6.3 7.3 25
564 565 566 567 568 569	5 5 5 5 5 3	86 86 86 86 101	11 40 18 11 41 36 11 42 56 11 42 42 11 42 54 11 45	±18 ±18 ±18 ±30 ±12 ±8	11 29 03 45 15 43 06 06 00 12 14	±6 ±5 ±6 ±7 ±5 ±40	14 8.4 15 6.0 24 50
570 571 572 573 574 575	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	86 86 86 86 86	11 46 24 11 47 06 11 50 24 11 52 00 11 53 06 11 56 12	±18 ±18 ±24 ±24 ±18 ±18	06 59 11 47 10 10 15 22 17 39 00 30	±6 ±6 ±7 ±6 ±6	16 17 7.7 6.6 9.5 16
576 577 578 579 580 581	5 5 5 5 5 5	86 86 86 86 86 86	11 56 36 11 59 30 11 59 54 12 01 48 12 01 48 12 02 24	±24 ±12 ±18 ±18 ±18 ±30	11 42 18 41 10 27 04 36 15 33 17 39	±7 ±6 ±5 ±6 ±8 ±10	7.3 10 16 11.8 14 48
582 583 584 585 586 587	5 5 5 5 5	86 86 86 86 86 86	12 03 42 12 04 00 12 04 24 12 05 00 12 08 36 12 09 06	±18 ±18 ±12 ±18 ±24 ±12	07 37 12 53 07 27 08 42 09 38 10 55	±7 ±10 ±5 ±6 ±7 ±5	18 56 9.9 11 11
588 589 590 591 592 593	5 5 5 5 5	86 86 86 86 86 86	12 09 18 12 11 12 12 11 54 12 13 42 12 15 54 12 15 54	±18 ±18 ±18 ±18 ±18 ±12	19 27 04 36 00 36 14 39 04 47 09 54	±5 ±10 ±8 ±7 ±7	11 9.9 15 6.3 15.7 23
594 595 596 597 598 599	5 5 5 9 5	86 86 86 86 81.5 86	12 16 06 12 18 12 12 22 30 12 23 24 12 28 00 12 28 24	±12 ±12 ±18 ±12 ±15 ±6	07 03 16 30 19 32 11 22 33 00 16 59	±5 ±5 ±6 ±6 ±300 ±4	9.2 12 9.0 16 37 38

 $^{^{\}mathbf{a}}\,\alpha_{r}$ right ascension; 8, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

		•	Posi	tion (1950	epoch)		Intensity, I,
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	8, deg min	Δδ, min	watts - m^{-2} - $(c/sec)^{-1}$
600 601 602 603 604 605	9 5 9 5 5 5	81.5 86 81.5 86 86 86	12 38 41 12 34 00 12 34 10 12 35 12 12 35 54 12 37 06	±15 ±18 ±10 ±18 ±18 ±18	28 00 14 15 22 27 19 53 00 31 07 19	±300 ±7 ±90 ±6 ±6 ±6	27 × 10 ⁻²⁶ 9.6 33 24 8.0 52
606 607 608 609 610 611	5 5 7 5 9	86 86 86 159 86 81.5	12 37 18 12 37 42 12 39 12 12 39 49 12 40 30 12 41 07	±30 ±18 ±12 ±6 ±24 ±15	15 38 04 24 08 33 04 39 06 07 33 00	±6 ±6 ±7 ±7 ±8 ±300	14 25 20 18.0 ± 5.0 12 24
612 613 614 615 616 617	5 5 5 5 5 5	86 86 86 86 86 86	12 41 54 12 43 06 12 43 18 12 43 36 12 44 48 12 45 30	±12 ±24 ±18 ±18 ±24	19 36 03 06 17 50 11 06 05 21 06 12	±5 ±6 ±5 ±5 ±8	18 10 7.0 18 14 17
618 619 620 621a 621b 622	5 9 5 7 6 9	86 81.5 86 159 960 81.5	12 48 00 12 50 14 12 51 36 12 52 00 12 52 00 12 52 06	±12 ±10 ±12 ±6 ±6 ±15	01 36 25 48 18 20 12 25 12 25 32 30	±6 ±30 ±7 ±6 ±6 ±300	14 28 13 42 ± 10 9.6 ± 1.5
621c 623a 623b 623c 624 625	5 7 6 5 5 5	86 159 960 86 86 86	12 52 18 12 53 37 12 53 37 12 53 42 12 57 00 12 57 18	±6 ±3 ±3 ±6 ±24 ±12	12 19 05 41 05 41 05 38 17 16 00 24	±4 ±7 ±7 ±5 ±6 ±6	53 20.5 ± 5.0 6.9 ± 1.2 37 27 7.5
626 627 628 629 630 631	5 9 9 5 5 5	86 81.5 81.5 86 86	12 58 06 12 58 38 12 59 31 13 00 00 13 04 12 15 06 00	±18 ±10 ±10 ±18 ±18 ±24	11 17 26 02 31 00 18 03 05 42 09 49	±5 ±40 ±240 ±8 ±8 ±7	19 22 43 18 8.5
632 633 634 635a 635b 636	5 9 5 6 7 5	86 81.5 86 960 159 86	13 07 18 13 07 52 13 08 18 13 08 50 13 09 12 13 09 36	#12 #15 #18 #18 #12 #12	00 29 35 00 12 07 22 11 21 44 02 29	±5 ±240 ±7 ±5 ±16 ±7	25 16 8.9 10.2 ± 1.5 36 ± 9 11
637 638 639 640 641 642	5 5 5 5 5	86 86 86 86 86 81.5	13 12 00 13 12 48 13 12 48 13 13 00 13 13 06 13 13 08	±18 ±24 ±12 ±18 ±18 ±15	12 07 08 05 18 41 06 17 01 25 28 00	±7 ±8 ±5 ±6 ±8 ±300	8.7 45 22 7.0 16 20
643 645 644a 644b 646a 647	9 5 9 3 3 9	81.5 86 81.5 101 101 81.5	13 14 48 13 16 48 13 15 20 13 20 13 20 13 20 12	±15 ±24 ±15 ±480 ±120 ±15	33 00 00 30 22 32 22 43 33 00	±240 ±7 ±180 ±130 ±20 ±240	51 15 12 100 160 27
6466 646c 648 649 650	169555	100 960 81.5 86 86 86	13 22 27 13 22 28 13 27 05 13 28 24 13 31 42 13 31 54	±15 ±24 ±36 ±18	42 38 42 45.6 33 00 06 07 14 18 10 00	±300 ±6 ±10 ±7	1,850 462 ± 30 45 13 22 18
652 653 654 655 656 657	5 5 5 5 5 5 9	86 86 86 101 86 81.5	13 33 48 13 34 24 13 34 42 13 35 13 35 42 13 37 06	±24 ±18 ±18 ±480 ±12 ±10	07 54 10 57 17 55 60 15 06 21 27 31	±7 ±7 ±6 ±10 ±6 ±180	8.7 17 11 75 35 31
658 659 660 661 662 663	95555555	81.5 86 86 86 86 86	15 39 57 13 41 24 13 41 42 13 41 48 13 43 00 13 45 24	±15 ±24 ±24 ±12 ±18 ±18	35 00 19 22 12 21 03 04 07 48 11 07	±240 ±6 ±6 ±7 ±7	32 14 18 16 55

a, right ascension; 5, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

		B	Pos	ition (1950	epoch) ^a		Total atternative T
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα, sec	δ, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec)
664 665 666 667 668 669	5 9 5 5 5 5	86 81.5 86 86 86 86	15 46 48 13 47 04 13 47 12 13 48 06 13 48 18 13 50 00	±24 ±15 ±24 ±18 ±18 ±18	12 58 32 30 16 30 09 55 05 36 06 07	±7 ±300 ±5 ±7 ±6 ±7	14 × 10 ⁻²⁶ 37 12 8.0 12 7.8
670 671 672 673 674 675	5 5 5 9 5 5	86 86 86 81.5 86 86	13 52 06 13 53 24 13 53 54 13 54 04 13 56 42 13 56 48	±18 ±12 ±12 ±15 ±24 ±24	19 25 08 10 17 39 35 00 09 57 16 17	±5 ±10 ±6 ±300 ±8 ±7	15 8.7 18 26 8.5 8.7
676 677 678 679 680 681	9 9 5 5 5 5 9	81.5 81.5 86 86 86 86 81.5	13 58 10 13 58 24 13 59 06 13 59 54 14 01 18 14 03 37	±15 ±7 ±12 ±12 ±24 ±15	28 00 22 19 11 35 14 50 19 23 32 30	±240 ±180 ±5 ±9 ±7 ±300	12 27 13 15 14 28
682 683 684 685 686 687	5 5 5 5 5 5 5 5	86 86 86 86 86 86	14 04 12 14 05 30 14 06 06 14 06 30 14 09 00 14 09 36	±12 ±12 ±12 ±18 ±12 ±12	02 09 06 19 09 49 08 59 02 58 06 52	±8 ±5 ±8 ±8 ±8	12 18 10 27 7
688 689 690 691 692	5 9 5 7 7	86 81.5 86 86 159 86	14 09 48 14 10 12 14 14 42 14 15 18 14 15 30 14 16 00	±24 ±10 ±18 ±24 ±4 ±12	18 41 31 00 03 50 17 15 03 58 15 47	±7 ±240 ±7 ±10 ±9 ±8	15 21 24.4 14 14.5 ± 2.5 34
694 695 696 697 698 699	9 5 9 5 5	81.5 86 81.5 86 86 86	14 17 30 14 17 42 14 17 46 14 19 42 14 20 06 14 20 24	±15 ±18 ±15 ±18 ±18 ±12	25 40 19 14 33 00 05 20 09 09 14 29	±120 ±8 ±300 ±6 ±7 ±8	27 11 71 5.0 16 26
700 701 702 703 704 705	5 5 5 5 9 5	86 86 86 81.5 81	14 20 30 14 20 54 14 23 24 14 23 36 14 24 19 14 24 36	±30 ±18 ±36 ±24 ±15 ±12	13 14 18 20 08 00 17 28 35 00 11 44	±8 ±10 ±7 ±8 ±300	12 9.0 7.5 11 50 22
706 707 708 709 710 711	5 5 5 5 5	86 86 86 86 86 86	14 26 36 14 29 06 14 31 24 14 32 00 14 32 48 14 34 42	±24 ±18 ±30 ±24 ±24 ±12	01 18 03 38 19 13 12 22 11 11 08 21	±5 ±5 ±8 ±6 ±8	25 16 8.9 6.5 8.5
712 713 714 715 716 717	9 5 5 9 5 5	81.5 86 86 81.5 86 86	14 36 17 14 37 12 14 37 24 14 41 30 14 41 42 14 42 24	±15 ±12 ±18 ±10 ±12 ±24	26 01 17 08 06 56 24 52 18 00 08 44	±120 ±8 ±5 ±60 ±8 ±7	24 11 22 41 11 20
718 719 720 721 722 723	5 5 9 5 5 9	86 81.5 86 86 81.5	14 42 54 14 43 00 14 43 58 14 44 06 14 46 54 14 48 53	±12 ±18 ±10 ±18 ±24 ±10	19 23 03 45 26 17 11 36 15 53 32 00	±6 ±7 ±60 ±7 ±6 ±240	14 7.6 25 17 42 31
724 725 726 727 728 729	9 5 5 5 5	81.5 86 86 86 86 86	14 49 56 14 50 12 14 51 42 14 52 42 14 53 24 14 53 30	±10 ±18 ±18 ±12 ±12 ±12	25 57 12 58 18 30 04 10 11 02 05 44	±60 ±6 ±7 ±6 ±5	19 19 9.5 22 41 16
730 731 732 733 734 735	5 9 5 5 9	86 81.5 86 86 81.5 86	14 55 30 14 59 11 14 59 18 15 00 18 15 01 00 15 02 36	±18 ±15 ±18 ±12 ±20 ±18	00 54 26 28 16 10 14 41 33 00	±7 ±120 ±7 ±7 ±300 ±13	19 27 10 13 41 18

 $^{^{\}bullet}\alpha$, right ascension; δ , declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

,,,		_	Pos	ltion (1950	epoch) ^a		Intensity, I,
Source	Survey	Frequency, v, mc/sec	α, hr min sec	Δα., sec	δ, deg min	Δ8, min	watts - m ⁻² - (c/sec) ⁻¹
736 737 738 739 740 741	5 5 9 5 5 5	86 86 81.5 86 86 86	15 02 42 15 03 18 15 04 06 15 04 18 15 04 30 15 08 06	±12 ±18 ±15 ±12 ±12 ±18	12 00 16 36 33 00 06 41 13 52 18 05	±10 ±8 ±300 ±6 ±7 ±8	9.5 × 10 ⁻²⁶ 10 28 17 13
742 743 744 745 746 747	555559	86 86 86 86 86 81.5	15 08 18 15 09 00 15 09 00 15 09 12 15 10 36 15 13 27	±18 ±12 ±24 ±18 ±30 ±15	00 42 09 17 05 26 08 15 19 23 33 00	±6 ±5 ±6 ±7 ±6 ±300	19 18 8 7-5 49
748 749 750 751 752 753	5 5 9 5 5 5 5	86 86 81.5 86 86 86	15 14 06 15 16 36 15 16 51 15 20 24 15 21 48 15 21 54	±18 ±12 ±15 ±18 ±24 ±24	15 58 12 32 34 00 05 12 06 52 03 13	±7 ±6 ±240 ±7 ±7 ±6	19 13 51 14 12 7.0
754 755 756 757 758 759	5 5 5 9 5	86 86 81.5 86 86	15 22 06 15 22 54 15 23 30 15 26 19 15 27 06 15 31 30	±18 ±18 ±12 ±15 ±18	07 28 08 17 13 41 32 00 12 21 18 36	±7 ±6 ±4 ±240 ±6 ±8	18 12 16 40 8.2
760 761 762 763 764 765	9 5 5 5 5	81.5 86 86 86 86 86	15 33 30 15 37 48 15 38 06 15 39 00 15 40 54 15 41 18	±20 ±12 ±30 ±18 ±30 ±18	27 12 17 23 01 54 04 59 16 02 13 36	±60 ±7 ±6 ±7 ±8 ±10	27 16 37 12 7-5 8.8
766 767 768 769 770	5 5 5 5 5 9	86 86 86 86 86 81.5	15 42 30 15 43 54 15 45 18 15 46 00 15 48 36 15 49 47	±18 ±12 ±30 ±12 ±12 ±15	05 41 12 23 07 20 07 55 19 51 31 00	±9 ±7 ±9 ±8 ±5 ±300	25 9.5 14.6 12 11 47
772 773 774 775 776 777	5 5 5 9 5 5	86 86 86 81.5 86 86	15 50 00 15 51 48 15 52 24 15 53 12 15 53 18 15 53 24	±18 ±30 ±12 ±15 ±18 ±24	16 57 02 52 06 57 34 00 16 10 09 05	±10 ±5 ±8 ±300 ±7 ±7	21 9.7 19 53 10
778 779 780 781 782 783	5 9 5 5 5 5	86 81.5 86 86 86 81.5	15 57 18 15 57 34 16 02 42 16 03 12 16 04 06 16 04 13	±18 ±10 ±18 ±18 ±18 ±10	04 38 36 00 09 15 17 19 18 20 22 56	±7 ±240 ±6 ±6 ±10 ±40	7.0 66 20 16 7.6
784 785 786 787 788 789	5 5 5 5 9 3	86 86 86 86 81.5	16 05 30 16 05 48 16 07 42 16 08 06 16 08 59 16 10	±18 ±18 ±18 ±24 ±10 ±480	16 18 06 36 12 45 10 44 31 00 60 45	±8 ±6 ±7 ±7 ±240 ±10	8.5 9.5 15 11 21 850
790 791 792s 793s 792b 793b	5 5 5 9 3 5	86 86 86 81.5 101 86	16 12 18 16 12 24 16 14 00 16 14 58 16 15 16 16 00	±12 ±12 ±18 ±10 ±240 ±18	02 30 00 35 05 44 22 34 5 08 42	±4 ±5 ±7 ±60 ±90	9.1 15 9.5 28 200 8.0
794 795 796 797 798 799	5 5 5 5 5 5 5 5	86 86 86 86 86 86	16 16 54 16 17 36 16 21 06 16 22 00 16 22 48 16 26 24	±24 ±18 ±18 ±18 ±30 ±24	10 05 13 36 11 28 17 34 19 23 06 20	±7 ±6 ±4 ±7 ±5 ±6	17 12 20 15 11 9.0
800 801 802 803 804 805	5 9 5 5 9 5	86 81.5 86 86 81.5 86	16 26 36 16 28 56 16 30 24 16 32 36 16 33 08 16 34 06	±24 ±10 ±12 ±30 ±15 ±18	05 24 26 29 12 48 15 18 23 44 03 33	±6 ±30 ±6 ±9 ±120 ±8	17 38 15 14 20

 $^{^{\}text{A}}\alpha$, right ascension; δ , declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

		Frequency, v,	Po	sition (195	0 epoch) ⁸	*	Intensity, I,
Source	Survey	mc/sec	a, hr min sec	Δα., sec	8, deg min	Δ8, min	watts - m ⁻² - (c/sec)
806 807 808 809 810 811	5 5 5 5 5 5 5	86 86 86 86 86 86	16 34 54 16 36 54 16 36 54 16 38 00 16 38 06 16 40 24	#18 #30 #30 #12 #30 #18	14 18 00 30 12 55 19 35 17 50 15 19	±7 ±6 ±7 ±6 ±10 ±5	16 × 10 ⁻²⁶ 26 8.9 25 19 30
812 813 814 815 816 827	5 5 5 9 9 5	86 86 86 81.5 81.5 86	16 42 42 16 43 06 16 45 24 16 45 56 16 46 26 16 48 06	±12 ±24 ±12 ±15 ±15 ±18	07 14 18 20 10 48 34 00 23 44 12 53	±7 ±6 ±6 ±300 ±180 ±7	21 18 37 30 12 14
818 819 820 821 822 823	5 5 5 5 9 5 5	86 86 86 81.5 81.5 86	16 49 18 16 52 00 16 52 36 16 52 44 16 53 18 16 54 36	±24 ±24 ±12 ±15 ±15 ±18	00 18 05 09 02 17 26 00 33 00 09 08	±6 ±6 ±9 ±300 ±300	80 11 60 12 30
824 825 826 827 829 829	5 5 5 5 9	86 86 86 86 86 81.5	16 55 30 16 55 42 16 56 00 17 05 12 17 05 24 17 05 24	±24 ±18 ±18 ±18 ±18 ±10	18 51 14 03 01 11 10 02 17 13 30 00	±8 ±5 ±7 ±6 ±6 ±300	17 22 15 15 60 68
830 831 832 835 834 835	5 5 5 5 5	86 86 86 86 86 86	17 05 48 17 06 12 17 09 42 17 10 30 17 12 30 17 15 00	±24 ±18 ±18 ±30 ±24 ±42	01 36 04 41 00 26 13 41 03 16 12 43	±6 ±5 ±7 ±8 ±7 ±7	17 12 15 32 21 16
836 837 838a 838b 838c 839a	5 7 6 5	86 86 159 960 86 86	17 15 54 17 16 54 17 17 58 17 17 59 17 18 06 17 19 24	±24 ±18 ±3 ±3 ±6 ±30	16 25 04 25 00 52 00 55.5 00 55 18 45	±7 ±8 ±6 ±1.5 ±3 ±7	15 31 180 ± 40 83.7 ± 1.8 475 150
8395 840 841 842 843 844a	6 3 5 5 7	960 101 86 86 86 86	17 19 24 17 20 17 22 06 17 22 18 17 24 36 17 27 47	±30 ±240 ±18 ±24 ±24 ±5	18 45 39 03 50 10 49 08 21 21 16	±7 ±20 ±9 ±8 ±7 ±10	5.1 ± 1.8 400 16 21 15 58 ± 12
8445 845 846 847 848 849	6 9 7 5	960 86 81.5 159 86 81.5	17 27 47 17 30 54 17 31 35 17 33 23 17 33 42 17 36 28	±5 ±12 ±15 ±5 ±18 ±15	21 16 05 10 28 00 08 26 06 52 33 00	±10 ±7 ±240 ±11 ±8 ±240	19.5 ± 2.1 16 37 14.5 ± 3.5 19
850 851 852 853 854 855	5 5 5 5 5	86 86 86 86 86 86	17 37 06 17 37 42 17 47 42 17 48 06 17 48 42 17 51 06	±24 ±24 ±24 ±18 ±24 ±18	11 40 01 18 13 04 02 06 17 28 14 56	±6 ±8 ±9 ±8 ±8	16 59 18 53 30 19
856 857 858 859 860a 860b	5 5 5 5 3 9	86 86 86 101 81.5	17 51 18 17 53 48 17 53 54 17 54 24 17 55 18 00 44	±30 ±24 ±18 ±18 ±480 ±10	10 43 08 10 11 39 05 34 23 22 14	±8 ±8 ±6 ±6 ±40 ±40	16 21 12 55 150 155
861 862 863 864 865 866	3 5 5 5 5 5	101 86 86 86 86 86	17 55 17 55 24 17 55 42 18 00 06 18 02 24 18 04 42	±240 ±18 ±12 ±30 ±18 ±30	29 16 07 01 24 17 49 0 5 19 11 26	±20 ±7 ±6 ±7 ±7 ±7	500 24 50 40 25 29
867 868 869a 870a 870b 871	5 9 3 1 5	86 81.5 101 100 86 86	18 05 12 18 05 28 18 10 18 11 18 11 36 18 12 00	±18 ±15 ±240 ±12 ±24	00 59 35 30 6 15 17 12 12 40	±8 ±180 ±90	62 355 250 200 160 20

 $^{^{\}mathbf{a}}\alpha$, right ascension; δ , declination.

TABLE II .- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

			Pos	Intensity, I,			
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	ð, deg min	Δ8, min	watts - m ⁻² - (c/sec)
869b 872 873 874 875 876	5 5 5 9 5 9	86 86 86 81.5 86 81.5	18 12 24 18 14 54 18 14 54 18 17 19 18 17 36 18 17 39	#18 #18 #18 #10 #24 #20	05 59 07 03 10 57 24 15 09 32 31 00	±7 ±8 ±7 ±60 ±5 ±240	82 × 10 ⁻²⁶ 30 35 27 50 57
877 878 879 880 881 882	5 7 5 5 5 5	86 159 86 86 86 86	18 18 54 18 20 17 18 20 36 18 21 30 18 21 48 18 25 00	±30 ±5 ±12 ±18 ±18	18 38 02 10 01 34 13 50 12 24 11 17	±10 ±10 ±6 ±5 ±4 ±4	15 12.0 ± 2.5 76 40 150 50
883 884 885 886 887 888	5 9 5 5 5 5	86 81.5 86 86 86 86	18 25 18 18 25 39 18 26 30 18 27 30 18 28 42 18 30 06	±18 ±15 ±18 ±18 ±24 ±12	04 38 32 00 17 54 12 46 14 36 10 01	±8 ±240 ±7 ±6 ±8 ±4	40 52 15 40 30 230
889 890 891 892a 892b 893	5 9 7 7 5 5	86 81.5 159 159 86 86	18 31 36 18 34 36 18 35 16 18 37 52 18 37 30 18 41 42	±12 ±15 ±5 ±3 ±12 ±24	08 42 27 01 07 01 05 19 05 10 03 51	±10 ±180 ±11 ±10 ±6 ±5	160 42 17.0 ± 3.5 22.0 ± 5.0 20 180
894 895 896 897 898 899a	5 5 7 9 5	86 86 86 159 81.5 86	18 41 48 18 42 06 18 42 54 18 42 56 18 45 01 18 46 18	±30 ±24 ±24 ±5 ±10 ±24	01 48 19 40 13 37 03 23 25 51 00 53	±10 ±8 ±8 ±12 ±60 ±8	25 56 24 17.0 ± 6.0 33 20
899b 900 901 902 903 904	7 5 5 5 9 5	159 86 86 86 86 81.5 86	18 46 47 18 48 54 18 50 18 18 51 06 18 52 27 18 53 00	±5 ±24 ±24 ±18 ±7 ±24	00 59 10 55 07 48 17 08 22 00 02 42	±6 ±7 ±8 ±7 ±240 ±7	27 ± 6 23 17 15 36 150
905 906 907 908 909	9 5 9 5 5	81.5 86 81.5 86 86 86 81.5	18 54 11 18 57 54 18 59 29 19 04 12 19 04 54 19 05 42	±8 ±18 ±10 ±24 ±30 ±10	25 53 04 13 24 36 03 06 19 01 25 00	±120 ±5; ±120 ±7 ±9 ±60	31 34 40 53 20 37
911 912 913 914 915 916	5 9 5 5 5 5	86 81.5 86 86 86 86	19 05 48 19 07 05 19 08 54 19 11 18 19 11 18 19 14 06	±18 ±15 ±18 ±18 ±18 ±30	12 37 33 00 06 41 09 41 15 11 02 17	±5 ±300 ±7 ±7 ±6 ±7	17 32 16 15 17 28
917 918 919 920 921 922	5 5 5 5 5	86 86 86 86 86 86	19 14 42 19 14 54 19 18 30 19 20 00 19 24 06 19 26 12	±18 ±12 ±18 ±36 ±30 ±30	16 30 11 58 05 33 03 38 14 18 02 05	±8 ±6 ±8 ±7 ±9	12 25 9.8 16 28 23
923 924 925 926 927 928	5 5 5 5 5 5	86 86 86 86 86 86	19 27 06 19 28 06 19 29 30 19 31 42 19 32 12 19 32 36	±12 ±18 ±12 ±18 ±24 ±18	15 19 06 41 19 44 17 18 10 55 09 46	±6 ±6 ±7 ±8 ±7 ±8	23 12 22 12 15 75 23
929 930 931 932 933 934	555555	86 86 86 101 86 86	19 37 42 19 39 42 19 39 48 19 40 19 40 48 19 42 54	±12 ±18 ±18 ±8 ±30 ±24	15 36 13 26 04 36 50 07 29 04 55	±4 ±7 ±8 ±40 ±6 ±8	58 13 12 50 33 20
935 936 937 938 939	5 5 5 5 5	86 86 86 86 86	19 43 30 19 44 48 19 45 48 19 48 54 19 49 54	±12 ±24 ±24 ±18 ±18	02 45 00 13 08 54 14 08 18 10	±6 ±7 ±8 ±8 ±7	22 22 9.5 15

 a_{α} , right ascension; δ , declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

		Prequency	Pos	ition (1950	epoch) ^a		
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα, sec	δ, deg min	Δ8, min	Intensity, I, watts - m ⁻² - (c/sec)-1
940 941 942 943 944 945	5 7 5 5 5 5	86 159 86 86 86 86	19 50 36 19 52 45 19 53 18 19 53 18 19 54 06 20 04 06	±24 ±55 ±18 ±24 ±18 ±18	19 43 07 29 05 22 12 30 16 30 19 32	±7 ±10 ±8 ±7 ±6 ±8	18 × 10 ⁻²⁶ 14.0 ± 2.5 10 19 9.2
946a 946b 947 948 949 950	7 5 9 5 5 5	159 86 81.5 86 86 86 81.5	20 05 45 20 06 24 20 07 06 20 08 12 20 09 42 20 17 04	±5 ±18 ±15 ±18 ±18 ±15	04 26 04 25 32 30 16 14 09 00 30 30	±10 ±7 ±300 ±8 ±7 ±300	11.5 ± 5.0 19 40 8.3 9.5 25
951 952 953 954 955 956	5 9 3 5 5 5 5	86 81.5 101 86 86 86	20 18 42 20 19 52 20 20 20 21 18 20 21 54 20 22 24	±24 ±15 ±960 ±18 ±18 ±24	09 38 27 30 06 17 38 13 56 19 43	±7 ±300 ±90 ±8 ±9 ±7	9.0 21 100 8.5 6.7 8.8
957 958 959 960 961a 961b	5 5 9 5 7 5	86 86 81.5 86 159 86	20 23 12 20 25 30 20 26 44 20 27 00 20 28 27 20 28 36	±24 ±12 ±10 ±24 ±8 ±12	01 18 15 41 29 30 00 47 07 25 08 09	±7 ±4 ±180 ±7 ±15 ±7	14 20 33 8.7 8.5 ± 2.0
962 963 964 965 966 967	9 9 5 5 5 5 5	81.5 81.5 86 86 86 86	20 30 03 20 32 10 20 55 12 20 55 30 20 56 30 20 57 30	±15 ±15 ±18 ±12 ±24 ±18	24 54 32 30 17 54 09 27 13 47 02 54	±120 ±300 ±6 ±8 ±7 ±7	14 41 15 14 13 9.7
968 969 970 971 <u>a</u> 972 971b	9 5 5 5 9 7	81.5 86 86 86 81.5 159	20 39 44 20 40 54 20 43 00 20 44 06 20 44 32 20 44 37	±10 ±24 ±24 ±18 ±15 ±4	26 27 15 00 10 12 02 17 32 30 02 31	±60 ±8 ±10 ±7 ±300 ±10	20 9.0 8.0 18 41 9.5 ± 2.5
973 974 975 976 977 978	5 5 5 5 5 5 5	86 86 86 86 86 86	20 45 00 20 45 00 20 45 06 20 48 30 20 48 48 20 50 12	±18 ±18 ±18 ±18 ±24 ±18	07 59 18 20 03 15 14 45 16 15 16 23	±8 ±7 ±7 ±7 ±9 ±7	9.0 15 27 13 17
979 980 981 982 983 984	5 5 5 9 5	86 86 86 81.5 86	20 50 18 20 53 12 20 53 30 20 56 22 20 56 48 20 58 12	±18 ±24 ±18 ±15 ±12 ±18	18 41 06 52 12 22 30 30 15 00 17 48	±7 ±8 ±7 ±240 ±6 ±6	9.0 15 8.5 87 15 24
985 986 987 988 989 990	5 5 3 5 5	86 86 101 101 86 86	20 58 48 20 59 42 21 00 21 00 21 00 12 21 00 54	±24 ±18 ±8 ±16 ±18 ±18	08 49 13 20 31 71 09 45 04 02	±7 ±7 ±40 ±20 ±6 ±7	17 14 80 200 12 19
991 992 995 994 995 996	5 5 5 5 9 5	86 86 86 86 81.5 86	21 01 24 21 02 06 21 03 24 21 05 24 21 05 40 21 07 18	±12 ±18 ±12 ±18 ±7 ±18	10 44 00 30 11 28 07 06 27 37 13 25	±5 ±7 ±6 ±5 ±120 ±8	14 11 12 17 72 10
997 998 999 1,000 1,001 1,002	5 9 5 5 5 5	86 81.5 86 86 86 86	21 10 30 21 12 51 21 13 42 21 15 18 21 15 48 21 17 00	±18 ±15 ±18 ±18 ±24 ±18	09 50 52 30 02 47 16 03 14 08 12 02	±7 ±240 ±10 ±7 ±7 ±6	11 38 28 9.3 14
1,003 1,004 1,005 1,006 1,007 1,008 1,009	5 9 5 5 9 5 9	86 81.5 86 86 81.5 86 81.5	21 17 42 21 18 26 21 19 06 21 20 12 12 23 45 21 24 30 21 24 38	±12 ±20 ±18 ±24 ±15 ±24 ±7	15 16 31 30 18 40 16 49 35 30 19 27 23 38	±7 ±240 ±8 ±7 ±180 ±8 ±120	17 58 9.7 30 19 8.2

^aα, right ascension; δ, declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Continued

(b) Southern hemisphere - Continued

			Posi	tion (1950	epoch) ^a		Intensity, I,	
Source	Survey	Frequency, v, mc/sec	a, hr min sec	Δα., sec	δ, deg min	Δδ, min	watts - m ⁻² - (c/sec)-)	
1,010 1,011 1,012 1,013 1,014 1,015	5 5 5 5 5 5	86 86 101 86 86 86	21 24 54 21 25 00 21 25 21 25 42 21 26 00 21 28 06	±18 ±24 ±480 ±30 ±18 ±30	05 55 06 36 41 00 59 14 37 09 15	±8 ±6 ±40 ±7 ±7 ±7	19 x 10-26 10 50 55 8.4 16	
1,016 1,017 1,018 1,019 1,020 1,021	5 5 5 5 5 5 5 5 5 5 5	86 86 86 86 86 86	21 31 54 21 31 36 21 32 42 21 33 18 21 34 42 21 35 12	±18 ±18 ±18 ±12 ±12 ±18	02 28 01 16 13 09 11 39 14 39 18 54	±6 ±6 ±7 ±6 ±5 ±7	9.0 6 15 28 35 23	
1,022 1,023 1,024 1,025 1,026 1,027	9555555	81.5 86 86 86 86 86 86	21 35 28 21 38 00 21 38 12 21 40 36 21 41 42 21 43 48	±10 ±24 ±18 ±24 ±18 ±18	29 30 07 02 16 35 09 14 04 02 08 10	±180 ±8 ±6 ±7 ±8 ±7	22 12 16 7.0 12	
1,028 1,029 1,030 1,031 1,032 1,033	9 5 5 9 5 5 5	81.5 86 86 81.5 86 86	21 44 24 21 46 12 21 46 54 21 48 39 21 48 42 21 48 54	±7 ±18 ±24 ±15 ±18 ±18	25 14 17 07 13 36 30 30 15 54 19 53	±60 ±8 ±7 ±300 ±7 ±7	30 13 2.5 26 8.8 18	
1,034 1,035 1,036 1,037 1,038 1,039	5 5 5 5 5 5	86 86 86 86 101 86	21 50 42 21 53 42 21 54 12 21 54 12 21 55 21 56 18	±18 ±12 ±18 ±12 ±240 ±18	03 40 12 53 01 29 18 25 24 05 55	±7 ±7 ±8 ±6 ±40 ±8	6.0 8.8 15.6 25 80	
1,040 1,041 1,042 1,043 1,044	5 5 5 5 5 9	86 86 86 101 86 81.5	21 57 42 21 58 12 21 58 30 22 00 22 02 12 22 02 14	±18 ±12 ±24 ±8 ±18 ±15	03 55 17 04 13 30 54 08 43 27 30	±8 ±5 ±6 ±40 ±8 ±300	15 14 12 50 11 38	
1,045 1,046 1,047 1,048 1,049	5 5 5 5 5	86 86 86 86 86 86	22 03 00 22 03 24 22 04 36 22 05 24 22 05 42 22 07 42	±12 ±18 ±12 ±12 ±18 ±18	18 40 15 33 09 16 05 30 03 27 14 13	±5 ±10 ±5 ±6 ±8 ±5	16 6.7 10 7 13	
1,051 1,052 1,053 1,054 1,055a 1,055b	5 5 5 5 7 8	86 86 86 86 159 169	22 08 30 22 08 30 22 10 18 22 10 48 22 11 48 22 11 48.5	±18 ±18 ±18 ±12 ±6 ±2	10 12 12 58 11 58 09 29 17 27 16 10	±6 ±7 ±6 ±5 ±6 ±20	9.5 14 16 17 49 ± 10	
1,055c 1,056 1,057 1,058 1,059 1,060a	5 5 5 5 7	86 86 86 86 81.5	22 12 00 22 16 18 22 16 54 22 19 24 22 19 28 22 20 51	±6 ±18 ±18 ±24 ±10	17 11 03 46 00 42 08 43 29 30 02 18	±4 ±6 ±9 ±10 ±240 ±5	127 35 15 7.1 28 20.5 ± 6.0	
1,061 1,060b 1,062 1,063 1,064a 1,064b	555575	86 86 86 86 159 86	22 21 24 22 21 30 22 22 36 22 23 00 22 23 04 22 23 06	±18 ±6 ±18 ±12 ±5 ±18	15 43 02 18 14 08 16 46 05 24 05 13	±6 ±3 ±6 ±6 ±8 ±5	10 60 15 15 33 ± 10	
1,065 1,066 1,067 1,068 1,069 1,070	9 5 5 5 5 5	81.5 86 86 86 86 86	22 24 19 22 24 30 22 27 06 22 28 00 22 29 12 22 33 18	±15 ±18 ±18 ±18 ±24 ±18	32 30 03 39 18 51 10 23 08 33 07 03	±300 ±8 ±7 ±8 ±6 ±8	32 9.6 11 6.5 15 8.0	
1,071 1,072 1,073 1,074 1,075 1,076 1,077	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	86 86 86 86 86 86	22 34 54 22 35 24 22 35 48 22 36 42 22 36 54 22 39 54 22 40 36	±12 ±12 ±12 ±18 ±18 ±24 ±24	15 56 12 03 17 36 19 35 04 15 14 56 16 36	±6 ±7 ±6 ±7 ±6 ±7 ±7	10 16 17 17 16 6.0 8	

 $^{^{}a}\alpha$, right ascension; δ , declination.

TABLE II.- POSITIONS AND INTENSITIES OF DISCRETE RADIO SOURCES - Concluded

	Survey	Frequency	Post	Intensity			
Source		rvey Frequency, v,	a, hr min sec	Δα, sec	8, deg min	Δδ, min	Intensity, I, watts - m ⁻² - (c/sec)
1,078 1,079 1,080 1,081 1,082 1,083	5 5 5 5 5 5 5	86 86 86 86 86 86	22 43 50 22 45 42 22 45 00 22 45 12 22 53 06 22 53 54	±24 ±12 ±18 ±24 ±30	02 10 19 02 02 52 03 25 06 37 00 18	±7 ±5 ±7 ±8 ±8	1 ¹ 4 × 10 ⁻²⁶ 8.0 20 9 12 32
1,084 1,085 1,086 1,087 1,088 1,089	5 5 5 5 5 5	86 86 86 86 86 86	22 54 54 22 55 18 22 56 00 22 56 54 22 57 24 22 58 00	±12 ±18 ±12 ±18 ±18 ±30	01 16 08 32 12 11 15 12 13 35 10 28	±6 ±8 ±6 ±8 ±8	6.6 15 8.6 12 6.7 8.0
1,090 1,091 1,092 1,093 1,094 1,095	5 5 5 9 5 5	86 86 81.5 86 82	23 01 42 23 02 36 23 02 48 23 03 28 23 03 36 23 04 48	±24 ±18 ±24 ±15 ±18 ±24	02 17 05 27 01 00 22 32 03 43 12 01	±8 ±6 ±8 ±300 ±6 ±7	7 10 9.5 16 14 8.6
1,096 1,097 1,098 1,099 1,100	5 5 5 9 9	86 86 86 86 81.5 81.5	23 05 30 23 06 30 23 07 30 23 07 42 23 08 56 23 09 27	±18 ±18 ±24 ±18 ±15 ±15	07 59 19 53 09 22 10 45 32 30 24 53	±7 ±7 ±8 ±7 ±300 ±120	6.7 11 9.0 7.6 37 33
1,102 1,103 1,104 1,105 1,106 1,107	5 5 5 5 5 5 5	86 86 86 86 86 86	23 09 36 23 12 36 23 13 54 23 14 06 23 15 36 23 15 54	±18 ±18 ±18 ±18 ±18 ±30	12 5¼ 05 57 1¼ 18 12 10 02 29 11 07	±6 ±6 ±7 ±6 ±7 ±7	11 6.7 9.6 8.6 9.8 6.9
1,108 1,109 1,110 1,111 1,112 1,113	9 5 5 9 5	81.5 86 86 86 81.5 86	25 16 32 25 17 36 25 18 06 25 18 30 25 19 20 25 19 30	±10 ±18 ±18 ±18 ±15 ±12	26 27 16 30 19 32 13 36 27 22 09 16	±30 ±5 ±6 ±8 ±120 ±5	46 23 15 7.4 20 6.0
1,114 1,115 1,116 1,117 1,118 1,119	5 5 5 5 5	86 86 81.5 86 86 86	25 20 06 25 22 56 25 24 17 25 24 18 25 25 06 23 25 12	±24 ±12 ±7 ±18 ±18 ±24	15 33 12 29 23 08 05 15 02 22 08 10	±8 ±5 ±300 ±6 ±6 ±8	10 30 31 35 19 9.0
1,120 1,121 1,122 1,123 1,124 1,125	5 9 5 5 5	86 81.5 81.5 86 86 86	23 25 18 23 26 01 23 26 37 23 26 42 23 27 18 23 27 36	±18 ±15 ±20 ±12 ±12 ±12	15 02 32 30 25 21 19 37 17 56 18 47	±7 ±300 ±40 ±5 ±6 ±6	14 27 31 19 11 13
1,126 1,127 1,128 1,129 1,130 1,131	5 5 5 5 5	86 86 86 86 86 81.5	25 29 12 25 30 00 25 32 42 25 35 24 25 34 54 25 36 21	±24 ±18 ±18 ±30 ±18 ±10	16 51 10 16 04 59 00 19 14 52 30 30	±6 ±7 ±5 ±5 ±6 ±180	10 10 9.7 9.5 16 43
1,132 1,133 1,134 1,135 1,136 1,137	5 5 5 5 5 9	86 86 86 86 86 81.5	23 38 00 23 39 30 23 39 42 23 42 30 23 42 54 23 43 54	±18 ±24 ±18 ±18 ±24 ±12	00 08 12 51 16 46 05 22 15 22 27 46	±6 ±7 ±6 ±7 ±8 ±120	11 6.9 16 7.6 13 50
1,138 1,139 1,140 1,141 1,142 1,143	5 9 5 9 5 5	86 81.5 86 81.5 86 86	23 46 06 23 47 59 23 48 06 23 48 23 23 48 42 23 49 42	±18 ±15 ±24 ±15 ±18 ±18	03 36 27 31 16 25 32 30 04 21 08 10	±8 ±180 ±6 ±300 ±8 ±7	8.6 25 13 32 13
1,144 1,145 1,146 1,147 1,148 1,149 1,150	5 5 9 5 9 5	86 86 81.5 86 81.5 81.5	25 45 54 25 51 18 25 53 57 23 54 30 23 54 55 23 58 32 25 59 36	±18 ±18 ±7 ±18 ±15 ±5 ±12	01 23 05 30 23 58 13 20 30 30 33 45 17 26	±7 ±7 ±120 ±8 ±180 ±250 ±6	18 9 24 8.3 31 62 14

a, right ascension; 5, declination.

TABLE III.- THERMAL RADIATION FROM VENUS, JUPITER, AND MARS

I-2080

Reference	Ltı	L _†	50	24	48	94, 44	94 44	52	45	64	45	54	94 , 44
Тіпе	Early May 1956	Inferior conj. ^a 1956	April 1958	June 25 and July 7, 1956	Inferior conj. ^a 1958	May 1956	March 1957			June 1958	June - August 1958	October 1959	September 1956
Disk temp., Td, OK	620 ± 110	560 ± 73	575	580 ± 230	410	140 ± 56	145 ± 26	165 ± 17	210	395 to 860	640 ± 85	315 ± 65	218 ± 76
Flux, watts - m ⁻² - (c/sec) ⁻¹	3.8 × 10 ⁻²⁵	9.6 × 10 ⁻²⁵				9.5 × 10 ⁻²⁶	1.4 × 10 ⁻²⁵			$(.27 \text{ to } .62) \times 10^{-25}$			6.5 × 10 ⁻²⁶
Frequency,										2,910			
Wavelength, λ, meter	0.0315	.0315	.0337	₹60.	9800.	0.0315	.0315	7550.	.0375	.103	.105 to .102	.105 to .102	0.0315
Planet	Venus					Jupiter							Mars

At inferior conjunction, the dark side of Venus faces the Earth.

Figure 1.- Brightness temperature of the solar disk at various wavelengths according to several observers.

DISTANCE FROM CENTER OF DISK, SOLAR RADII

Figure 2.- Brightness-temperature distribution across the solar disk at wavelengths of 60 centimeters and 3.68 meters. Stanier (ref. 14) and Machin (ref. 15).

Figure 3.- Brightness-temperature distribution of the Sun at a wavelength of 9.1 centimeters (Swarup, ref. 16).

Figure 4.- Dynamic spectra of various types of solar disturbances.

a, right ascension; 8, declination; Figure 5.- Distribution of radio brightness temperature. h, hour.

(e) 250 mc/sec. Ko (ref. 39) after Ko and Kraus (ref. 35).

(g) 600 mc/sec. Ko (ref. 39) after Piddington and Trent (ref. 37).

(f) 480 mc/sec. Ko (ref. 39) after Reber (ref. 36).

(h) 910 mc/sec. Ko (ref. 39) after Denisse, Leroux, and Steinberg (ref. 38).

Figure 5.- Concluded.

Figure 6.- Distribution of radio brightness temperature for the north polar cap at 400 mc/sec. Units are OK. Westerhout (ref. 40).

-			

	_
	_
	•
	-
	•
	•
	-