TABULATION OF CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS OF DISCRIMINANTS $|\Delta| \equiv 7,15$ (MOD 24)

AND $|\Delta| \equiv 23, 47, 95 \text{ (MOD } 120)$

M. J. JACOBSON, JR. AND A. MOSUNOV

1. Main Theorems

For $\mathbf{a} \in \mathbb{N}^3$ and $\mathbf{x} \in \mathbb{Z}^3$, we define

$$Q_{\mathbf{a}}(\mathbf{x}) = \sum_{j=1}^{3} a_j x_j^2.$$

For a non-negative integer n, let $r_{\mathbf{a}}(n)$ denote the number of solutions to the equation

$$Q_{\mathbf{a}}(\mathbf{x}) = n.$$

Define

$$\vartheta_{a,m}(q) = \sum_{k=-\infty}^{+\infty} q^{(mk+a)^2}, \quad \nabla_{a,m}(q) = \sum_{k=-\infty}^{+\infty} q^{k(mk+a)/2},$$

$$\vartheta_3(q) = \nabla_{0,1}(q^2) = 1 + 2\sum_{k=0}^{\infty} q^{k^2} = 1 + 2q + 2q^4 + 2q^9 + 2q^{16} + \cdots$$

 $\nabla(q)=\frac{1}{2}\nabla_{1,1}(q)=\sum_{k=0}^{\infty}q^{k(k+1)/2}=1+q+q^3+q^6+q^{10}+\cdots$ In this article, we will prove the following two theorems.

Theorem 1. Let $\mathbf{a} = (1 \ 3 \ 3)^T$. Then

(1)
$$\sum_{k=0}^{\infty} r_{\mathbf{a}}(24k+7)q^k = 8\nabla(q) \left[\nabla_{1,3}(q)\nabla(q) + \nabla_{1,3}(q^4)\vartheta_3(q^2) + 2q\nabla_{2,3}(q^4)\nabla(q^4) \right],$$

(2)
$$\sum_{k=0}^{\infty} r_{\mathbf{a}}(24k+15)q^{k} = 8\nabla(q) \left[\nabla(q^{3})\nabla(q) + q\nabla(q^{12})\vartheta_{3}(q^{2}) + \vartheta_{3}(q^{6})\nabla(q^{4}) \right].$$

Theorem 2. Let $\mathbf{a} = (2\ 5\ 10)^T$. Then

$$\sum_{k=0}^{\infty} r_{\mathbf{a}}(120k+23)q^{k} = \nabla_{1,3}(q)(8\nabla_{2,15}(q^{2})\nabla_{1,3}(q^{2}) + 4q\nabla_{8,15}(q^{2})\nabla_{1,3}(q^{2}) + 4q\nabla_{7,15}(q^{2})\nabla_{2,3}(q^{2})$$

$$+ 4q^{3}\nabla_{13,15}(q^{2})\nabla_{2,3}(q^{2}) + 4q^{3}\nabla_{12,15}(q^{2})\nabla(q^{6}) + 4\nabla_{3,15}(q^{2})\vartheta_{3}(q^{3}))$$

$$+ \nabla(q^{3})(8q\nabla_{2,15}(q^{2})\nabla(q^{6}) + 8q^{2}\nabla_{8,15}(q^{2})\nabla(q^{6}) + 4q\nabla_{7,15}(q^{2})\vartheta_{3}(q^{3}) + 4q^{3}\nabla_{13,15}(q^{2})\vartheta_{3}(q^{3}))$$

$$\sum_{k=0}^{\infty} r_{\mathbf{a}}(120k+47)q^{k} = \nabla_{1,3}(q)(4\nabla_{4,15}(q^{2})\nabla_{1,3}(q^{2})+4q^{3}\nabla_{14,15}(q^{2})\nabla_{1,3}(q^{2})+4\nabla_{1,15}(q^{2})\nabla_{2,3}(q^{2}) + 4q^{2}\nabla_{11,15}(q^{2})\nabla_{2,3}(q^{2})+4q\nabla_{6,15}(q^{2})\nabla(q^{6})+2q\nabla_{9,15}(q^{2})\vartheta_{3}(q^{3})) + \nabla(q^{3})(8q\nabla_{4,15}(q^{2})\nabla(q^{6})+8q^{4}\nabla_{14,15}(q^{2})\nabla(q^{6})+4\nabla_{1,15}(q^{2})\vartheta_{3}(q^{3})+4q^{2}\nabla_{11,15}(q^{2})\vartheta_{3}(q^{3})).$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11E76.

$$\begin{split} \sum_{k=0}^{\infty} r_{\mathbf{a}}(120k+95)q^k &= \nabla_{1,3}(q)(4q\nabla_{10,15}(q^2)\nabla_{1,3}(q^2) + 4\nabla_{5,15}(q^2)\nabla_{2,3}(q^2) + 2\vartheta_3(q^{15})\nabla(q^6) + 2q^3\nabla(q^{30})\vartheta_3(q^3)) \\ &+ \nabla(q^3)(4\nabla_{5,15}(q^2)\vartheta_3(q^3) + 8q^2\nabla_{10,15}(q^2)\nabla(q^6)). \end{split}$$

By the result of Bringmann and Kane, if $\mathbf{a} = (1\ 3\ 3)^T$, $n \equiv 7\ (\text{mod }8)$ and $9 \nmid n$, then

$$r_{\mathbf{a}}(n) = 8\left(1 + \left(\frac{n}{3}\right)\right)H(n),$$

and if $\mathbf{a} = (2\ 5\ 10)^T$, $n \equiv 23 \pmod{24}$ and $25 \nmid n$, then

$$r_{\mathbf{a}}(n) = 2\left(1 - \left(\frac{n}{5}\right)\right)H(n).$$

Thus we obtain the following corollaries to Theorems 1 and 2.

Corollary 3.

$$2\sum_{k=0}^{\infty} H(24k+7)q^{k} = \nabla(q) \left[\nabla_{1,3}(q)\nabla(q) + \nabla_{1,3}(q^{4})\vartheta_{3}(q^{2}) + 2q\nabla_{2,3}(q^{4})\nabla(q^{4}) \right],$$

$$2\sum_{k=0}^{\infty} H(24k+15)q^{k} = \nabla(q) \left[\nabla(q^{3})\nabla(q) + q\nabla(q^{12})\vartheta_{3}(q^{2}) + \vartheta_{3}(q^{6})\nabla(q^{4}) \right].$$

Corollary 4.

$$\begin{split} \sum_{k=0}^{\infty} H(120k+23)q^k &= \nabla_{1,3}(q)(2\nabla_{2,15}(q^2)\nabla_{1,3}(q^2) + q\nabla_{8,15}(q^2)\nabla_{1,3}(q^2) + q\nabla_{7,15}(q^2)\nabla_{2,3}(q^2) \\ &+ q^3\nabla_{13,15}(q^2)\nabla_{2,3}(q^2) + q^3\nabla_{12,15}(q^2)\nabla(q^6) + \nabla_{3,15}(q^2)\vartheta_3(q^3)) \\ &+ \nabla(q^3)(2q\nabla_{2,15}(q^2)\nabla(q^6) + 2q^2\nabla_{8,15}(q^2)\nabla(q^6) + q\nabla_{7,15}(q^2)\vartheta_3(q^3) + q^3\nabla_{13,15}(q^2)\vartheta_3(q^3)) \\ 2\sum_{k=0}^{\infty} H(120k+47)q^k &= \nabla_{1,3}(q)(2\nabla_{4,15}(q^2)\nabla_{1,3}(q^2) + 2q^3\nabla_{14,15}(q^2)\nabla_{1,3}(q^2) + 2\nabla_{1,15}(q^2)\nabla_{2,3}(q^2) \\ &+ 2q^2\nabla_{11,15}(q^2)\nabla_{2,3}(q^2) + 2q\nabla_{6,15}(q^2)\nabla(q^6) + q\nabla_{9,15}(q^2)\vartheta_3(q^3)) \\ &+ \nabla(q^3)(4q\nabla_{4,15}(q^2)\nabla(q^6) + 4q^4\nabla_{14,15}(q^2)\nabla(q^6) + 2\nabla_{1,15}(q^2)\vartheta_3(q^3) + 2q^2\nabla_{11,15}(q^2)\vartheta_3(q^3)). \end{split}$$

$$2\sum_{k=0}^{\infty} H(120k+95)q^{k} = \nabla_{1,3}(q)(2q\nabla_{10,15}(q^{2})\nabla_{1,3}(q^{2}) + 2\nabla_{5,15}(q^{2})\nabla_{2,3}(q^{2}) + \vartheta_{3}(q^{15})\nabla(q^{6}) + q^{3}\nabla(q^{30})\vartheta_{3}(q^{3})) + \nabla(q^{3})(2\nabla_{5,15}(q^{2})\vartheta_{3}(q^{3}) + 4q^{2}\nabla_{10,15}(q^{2})\nabla(q^{6})).$$

Before we outline the proof of Theorems 1 and 2, let us introduce some notation and prove four auxiliary lemmas. For a positive integer m and an integer a, we denote the set of all numbers congruent to a modulo m by $[a]_m$. If a_1, \ldots, a_k and m_1, \ldots, m_k are fixed, we refer to $([\pm a_1]_{m_1}, \ldots, [\pm a_k]_{m_k})$ as a k-tuple of congruence classes. If $2a \equiv 0 \pmod{m}$, we write $[a]_m$ instead of $[\pm a]_m$ for brevity. Given a k-tuple of congruence classes $\mathcal{A} = ([\pm a_1]_{m_1}, \ldots, [\pm a_k]_{m_k})$, for $x_1, \ldots, x_k \in \mathbb{Z}$ we write $(x_1, \ldots, x_k) \in \mathcal{A}$ if and only if $x_i \equiv \pm a_i \pmod{m_i}$ for all $i = 1, \ldots, k$. If A_1, \ldots, A_m are k-tuples of congruence classes, we write $(x_1, \ldots, x_k) \in \bigcup_{i=1}^m \mathcal{A}_i$ if and only if there exists $i \in \{1, \ldots, m\}$ such that $(x_1, \ldots, x_k) \in \mathcal{A}_i$.

The first two lemmas follows from basic number theoretical observations.

Lemma 5. Let n be a non-negative integer, and suppose that $x^2 + 3y^2 + 3z^2 = n$ for some integers x, y, z.

• If $n \equiv 7 \pmod{24}$, then

$$(x_1, x_2, x_3) \in ([\pm 1]_6, [1]_2, [1]_2) \cup ([\pm 2]_{12}, [0]_4, [1]_2) \cup ([\pm 2]_{12}, [1]_2, [0]_4) \cup ([\pm 4]_{12}, [2]_4, [1]_2) \cup ([\pm 4]_{12}, [1]_2, [2]_4).$$

• If $n \equiv 15 \pmod{24}$, then

$$(x_1, x_2, x_3) \in ([3]_6, [1]_2, [1]_2) \cup ([6]_{12}, [0]_4, [1]_2) \cup ([6]_{12}, [1]_2, [0]_4) \cup ([0]_{12}, [2]_4, [1]_2) \cup ([0]_{12}, [1]_2, [2]_4).$$

Lemma 6. Let n be a non-negative integer, and suppose that $2x^2 + 5y^2 + 10z^2 = n$ for some integers x, y, z.

• If $n \equiv 23 \pmod{120}$, then

$$(x_1, x_2, x_3) \in ([\pm 2]_{30}, [\pm 1]_6, [\pm 1]_6) \cup ([\pm 2]_{30}, [3]_6, [3]_6) \cup ([\pm 3]_{30}, [\pm 1]_6, [0]_6) \cup ([\pm 7]_{30}, [\pm 1]_6, [\pm 2]_6) \cup ([\pm 7]_{30}, [3]_6, [0]_6) \cup ([\pm 8]_{30}, [\pm 1]_6, [\pm 1]_6) \cup ([\pm 8]_{30}, [3]_6, [3]_6) \cup ([\pm 12]_{30}, [\pm 1]_6, [3]_6) \cup ([\pm 13]_{30}, [\pm 1]_6, [\pm 2]_6) \cup ([\pm 13]_{30}, [3]_6, [0]_6).$$

• If $n \equiv 47 \pmod{120}$, then

$$(x_1, x_2, x_3) \in ([\pm 1]_{30}, [\pm 1]_6, [\pm 2]_6) \cup ([\pm 1]_{30}, [3]_6, [0]_6) \cup ([\pm 4]_{30}, [\pm 1]_6, [\pm 1]_6) \cup ([\pm 4]_{30}, [3]_6, [3]_6) \cup ([\pm 6]_{30}, [\pm 1]_6, [3]_6) \cup ([\pm 9]_{30}, [\pm 1]_6, [0]_6) \cup ([\pm 11]_{30}, [\pm 1]_6, [\pm 2]_6) \cup ([\pm 11]_{30}, [3]_6, [0]_6) \cup ([\pm 14]_{30}, [\pm 1]_6, [\pm 1]_6) \cup ([\pm 14]_{30}, [3]_6, [3]_6).$$

• If $n \equiv 95 \pmod{120}$, then

$$(x_1, x_2, x_3) \in ([0]_{30}, [\pm 1]_6, [3]_6) \cup ([\pm 5]_{30}, [\pm 1]_6, [\pm 2]_6) \cup ([\pm 5]_{30}, [3]_6, [0]_6) \cup ([\pm 10]_{30}, [\pm 1]_6, [\pm 1]_6) \cup ([\pm 10]_{30}, [3]_6, [3]_6) \cup ([15]_{30}, [\pm 1]_6, [0]_6).$$

For a non-negative integer n and a 3-tuple of congruence classes \mathcal{A} , let $r_{\mathbf{a},\mathcal{A}}(n)$ denote the number of solutions to the equation $Q_{\mathbf{a}}(\mathbf{x}) = n$ such that $(x_1, x_2, x_3) \in \mathcal{A}$.

Lemma 7. Let $\mathbf{a} = (1 \ 3 \ 3)^T$.

1. If $A = ([\pm 1]_6, [1]_2, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+7)q^k = 8\nabla_{1,3}(q)\nabla(q)^2.$$

2. If $A = ([\pm 2]_{12}, [0]_4, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+7)q^k = 4\nabla_{1,3}(q^4)\vartheta_3(q^2)\nabla(q).$$

3. If $A = ([\pm 4]_{12}, [2]_4, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+7)q^k = 8q\nabla_{2,3}(q^4)\nabla(q^4)\nabla(q).$$

4. If $A = ([3]_6, [1]_2, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+15)q^k = 8\nabla(q^3)\nabla(q)^2.$$

5. If $A = ([6]_{12}, [0]_4, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+15)q^{k} = 4q\nabla(q^{12})\vartheta_{3}(q^{2})\nabla(q).$$

6. If $A = ([0]_{12}, [2]_4, [1]_2)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+15)q^k = 4\vartheta_3(q^6)\nabla(q^4)\nabla(q).$$

Proof. We will prove only Part 1, as the other parts can be established analogously. Let $\mathcal{A} = ([\pm 1]_6, [1]_2, [1]_2)$. For a positive integer m and an integer a, define

$$\vartheta_{a,m}(q) = \sum_{k=-\infty}^{+\infty} q^{(mk+a)^2}.$$

We claim that

(3)
$$\sum_{n=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(n)q^n = 2\vartheta_{1,6}(q)\vartheta_{1,2}(q^3)^2.$$

To see that this is the case, first note that the n-th coefficient of the series

$$2\vartheta_{1,6}(q) = \sum_{x \equiv \pm 1 \pmod{6}} q^{x^2} = 2q + 2q^{25} + 2q^{49} + 2q^{121} + 2q^{169} + \cdots$$

is equal to the number of solutions to the equation $x^2 = n$ with $x \equiv \pm 1 \pmod{6}$. Second, observe that the *n*-th coefficient of the series

$$\vartheta_{1,2}(q^3) = \sum_{y \text{ odd}} q^{3y^2} = 2q^3 + 2q^{27} + 2q^{75} + 2q^{147} + \cdots$$

is equal to the number of solutions y to the equation $3y^2 = n$ with y odd. Consequently, the number of solutions to the equation $3(y^2 + z^2) = n$ with y and z odd is equal to the n-th coefficient of the series $\vartheta_{1,2}(q^3)^2$, since

$$\vartheta_{1,2}(q^3)^2 = \left(\sum_{y \text{ odd}} q^{3y^2}\right)^2 = \sum_{y \text{ odd}} q^{3y^2} \times \sum_{z \text{ odd}} q^{3z^2} = \sum_{y, z \text{ odd}} q^{3(y^2 + z^2)}.$$

Finally, we conclude that

$$2\vartheta_{1,6}(q)\vartheta_{1,2}(q^3)^2 = \sum_{x \equiv \pm 1 \pmod{6}} q^{x^2} \times \sum_{y, z \text{ odd}} q^{3(y^2+z^2)}$$
$$= \sum_{(x_1, x_2, x_3) \in \mathcal{A}} q^{x^2+3(y^2+z^2)}$$
$$= \sum_{n=0}^{\infty} r_{\mathbf{a}, \mathcal{A}}(n) q^n.$$

Next, observe that $n \not\equiv 7 \pmod{24}$ implies $r_{\mathbf{a},\mathcal{A}}(n) = 0$. Hence we can rewrite (3) as

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+7)q^{24k+7} = 2\vartheta_{1,6}(q)\vartheta_{1,2}(q^3)^2.$$

Substituting q with $q^{1/24}$ and then multiplying both sides by $q^{-7/24}$, we obtain

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(24k+7)q^k = 2\left[q^{-1/24}\vartheta_{1,6}(q^{1/24})\right] \cdot \left[q^{-1/8}\vartheta_{1,2}(q^{1/8})\right]^2.$$

The result follows once we note that

$$q^{-1/24}\vartheta_{1,6}(q^{1/24}) = q^{-1/24} \cdot \sum_{k=-\infty}^{+\infty} q^{(6k+1)^2/24} = \sum_{k=-\infty}^{+\infty} q^{k(3k+1)/2} = \nabla_{1,3}(q)$$

and

$$q^{-1/8}\vartheta_{1,2}(q^{1/8}) = q^{-1/8}\sum_{k=-\infty}^{+\infty}q^{(2k+1)^2/8} = \sum_{k=-\infty}^{+\infty}q^{k(k+1)/2} = 2\nabla(q).$$

Lemma 8. Let $\mathbf{a} = (2\ 5\ 10)^T$.

1. If $A = ([\pm 2]_{30}, [\pm 1]_6, [\pm 1]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 8\nabla_{2,15}(q^2)\nabla_{1,3}(q)\nabla_{1,3}(q^2).$$

2. If $A = ([\pm 2]_{30}, [3]_6, [3]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 8q\nabla_{2,15}(q^2)\nabla(q^3)\nabla(q^6).$$

3. If $A = ([\pm 3]_{30}, [\pm 1]_6, [0]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4\nabla_{3,15}(q^2)\nabla_{1,3}(q)\vartheta_3(q^3).$$

4. If $A = ([\pm 7]_{30}, [\pm 1]_6, [\pm 2]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q\nabla_{7,15}(q^2)\nabla_{1,3}(q)\nabla_{2,3}(q^2).$$

5. If $A = ([\pm 7]_{30}, [3]_6, [0]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q\nabla_{7,15}(q^2)\nabla(q^3)\vartheta_3(q^3).$$

6. If $A = ([\pm 8]_{30}, [\pm 1]_6, [\pm 1]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q\nabla_{8,15}(q^2)\nabla_{1,3}(q)\nabla_{1,3}(q^2).$$

7. If $A = ([\pm 8]_{30}, [3]_6, [3]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 8q^2 \nabla_{8,15}(q^2)\nabla(q^3)\nabla(q^6).$$

8. If $A = ([\pm 12]_{30}, [\pm 1]_6, [3]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q^3 \nabla_{12,15}(q^2) \nabla_{1,3}(q) \nabla(q^6).$$

9. If
$$A = ([\pm 13]_{30}, [\pm 1]_6, [\pm 2]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q^3 \nabla_{13,15}(q^2) \nabla_{1,3}(q) \nabla_{2,3}(q^2).$$

10. If
$$A = ([\pm 13]_{30}, [3]_6, [0]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 4q^3 \nabla_{13,15}(q^2)\nabla(q^3)\vartheta_3(q^3).$$

11. If
$$A = ([\pm 1]_{30}, [\pm 1]_6, [\pm 2]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4\nabla_{1,15}(q^2)\nabla_{1,3}(q)\nabla_{2,3}(q^2).$$

12. If
$$A = ([\pm 1]_{30}, [3]_6, [0]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4\nabla_{1,15}(q^2)\nabla(q^3)\vartheta_3(q^3).$$

13. If
$$A = ([\pm 4]_{30}, [\pm 1]_6, [\pm 1]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4\nabla_{4,15}(q^2)\nabla_{1,3}(q)\nabla_{1,3}(q^2).$$

14. If
$$A = ([\pm 4]_{30}, [3]_6, [3]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 8q\nabla_{4,15}(q^2)\nabla(q^3)\nabla(q^6).$$

15. If
$$A = ([\pm 6]_{30}, [\pm 1]_6, [3]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4q\nabla_{6,15}(q^2)\nabla_{1,3}(q)\nabla(q^6).$$

16. If
$$A = ([\pm 9]_{30}, [\pm 1]_6, [0]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 2q\nabla_{9,15}(q^2)\nabla_{1,3}(q)\vartheta_3(q^3).$$

17. If $A = ([\pm 11]_{30}, [\pm 1]_6, [\pm 2]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4q^2 \nabla_{11,15}(q^2) \nabla_{1,3}(q) \nabla_{2,3}(q^2).$$

18. If $A = ([\pm 11]_{30}, [3]_6, [0]_6)$, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4q^2 \nabla_{11,15}(q^2)\nabla(q^3)\vartheta_3(q^3).$$

19. If
$$A = ([\pm 14]_{30}, [\pm 1]_6, [\pm 1]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 4q^3 \nabla_{14,15}(q^2) \nabla_{1,3}(q) \nabla_{1,3}(q^2).$$

20. If
$$A = ([\pm 14]_{30}, [3]_6, [3]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+47)q^k = 8q^4 \nabla_{14,15}(q^2)\nabla(q^3)\nabla(q^6).$$

21. If
$$A = ([0]_{30}, [\pm 1]_6, [3]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k + 95)q^k = 2\vartheta_3(q^{15})\nabla_{1,3}(q)\nabla(q^6).$$

22. If
$$A = ([\pm 5]_{30}, [\pm 1]_6, [\pm 2]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+95)q^k = 4\nabla_{5,15}(q^2)\nabla_{1,3}(q)\nabla_{2,3}(q^2).$$

23. If
$$A = ([\pm 5]_{30}, [3]_6, [0]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+95)q^k = 4\nabla_{5,15}(q^2)\nabla(q^3)\vartheta_3(q^3).$$

24. If
$$A = ([\pm 10]_{30}, [\pm 1]_6, [\pm 1]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+95)q^k = 4q\nabla_{10,15}(q^2)\nabla_{1,3}(q)\nabla_{1,3}(q^2).$$

25. If
$$A = ([\pm 10]_{30}, [3]_6, [3]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+95)q^k = 8q^2 \nabla_{10,15}(q^2)\nabla(q^3)\nabla(q^6).$$

26. If
$$A = ([15]_{30}, [\pm 1]_6, [0]_6)$$
, then

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k + 95)q^k = 2q^3 \nabla(q^{30}) \nabla_{1,3}(q) \vartheta_3(q^3).$$

Proof. We will prove only Part 1, as the other parts can be established analogously. Let $\mathcal{A} = ([\pm 2]_{30}, [\pm 1]_6, [\pm 1]_6)$. We claim that

(4)
$$\sum_{n=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(n)q^n = 8\nabla_{2,15}(q^2)\nabla_{1,3}(q)\nabla_{1,3}(q^2).$$

To see that this is the case, note that

• the coefficient of q^m of the series

$$2\vartheta_{2,30}(q^2) = \sum_{x = +2 \pmod{30}} q^{2x^2} = 2q^8 + 2q^{1568} + 2q^{2048} + 2q^{6728} \cdots$$

is equal to the number of solutions to the equation $2x^2 = m$ with $x \equiv \pm 2 \pmod{30}$.

• the coefficient of q^m of the series

$$2\vartheta_{1,6}(q^5) = \sum_{y \equiv \pm 1 \pmod{6}} q^{5y^2} = 2q^5 + 2q^{125} + 2q^{245} + 2q^{605} + \cdots$$

is equal to the number of solutions to the equation $5y^2 = m$ with $x \equiv \pm 1 \pmod{6}$;

• the coefficient of q^m of the series

$$2\vartheta_{1,6}(q^{10}) = \sum_{z \equiv \pm 1 \pmod{6}} q^{10z^2} = 2q^{10} + 2q^{250} + 2q^{490} + 2q^{1210} + \cdots$$

is equal to the number of solutions to the equation $10z^2 = m$ with $x \equiv \pm 1 \pmod{6}$.

Combining the above observations, we find that

$$\begin{split} 8\vartheta_{2,30}(q^2)\vartheta_{1,6}(q^5)\vartheta_{1,6}(q^{10}) &= \sum_{x \equiv \pm 2 \; (\text{mod } 30)} q^{2x^2} \times \sum_{y \equiv \pm 1 \; (\text{mod } 6)} q^{5y^2} \times \sum_{z \equiv \pm 1 \; (\text{mod } 6)} q^{10z^2} \\ &= \sum_{(x,y,z) \in \mathcal{A}} q^{2x^2 + 5y^2 + 10z^2} \\ &= \sum_{x=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(n)q^n. \end{split}$$

Next, observe that $n \not\equiv 23 \pmod{120}$ implies $r_{\mathbf{a},\mathcal{A}}(n) = 0$. Hence we can rewrite (4) as

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^{120k+23} = 8\vartheta_{2,30}(q^2)\vartheta_{1,6}(q^5)\vartheta_{1,6}(q^{10}).$$

Substituting q with $q^{1/120}$ and then multiplying both sides by $q^{-23/120}$, we obtain

$$\sum_{k=0}^{\infty} r_{\mathbf{a},\mathcal{A}}(120k+23)q^k = 8\left[q^{-1/15}\vartheta_{2,30}(q^{1/60})\right] \cdot \left[q^{-1/24}\vartheta_{1,6}(q^{1/24})\right] \cdot \left[q^{-1/12}\vartheta_{1,6}(q^{1/12})\right].$$

The result follows once we note that

$$q^{-1/15}\vartheta_{2,30}(q^{1/60}) = \sum_{k=-\infty}^{+\infty} q^{k(15k+2)} = \nabla_{2,15}(q^2),$$

$$q^{-1/24}\vartheta_{1,6}(q^{1/24}) = \sum_{k=-\infty}^{+\infty} q^{k(3k+1)/2} = \nabla_{1,3}(q),$$

and

$$q^{-1/12}\vartheta_{1,6}(q^{1/12}) = \sum_{k=-\infty}^{+\infty} q^{3k(k+1)} = \nabla_{1,3}(q^2).$$

We can now prove Theorems 1 and 2.

Proof of Theorem 1. We will demonstrate only the identity (1), as (2) can be established analogously. Let n be an integer congruent to 7 modulo 24. By Lemma 5, the equality $x^2 + 3y^2 + 3z^2 = n$ implies that $(x_1, x_2, x_3) \in \mathcal{A}_i$, where \mathcal{A}_i is one of the following five 3-tuples of congruence classes:

$$\mathcal{A}_{1} = ([\pm 1]_{6}, [1]_{2}, [1]_{2}), \mathcal{A}_{2} = ([\pm 2]_{12}, [0]_{4}, [1]_{2}), \mathcal{A}_{3} = ([\pm 2]_{12}, [1]_{2}, [0]_{4}),$$
$$\mathcal{A}_{4} = ([\pm 4]_{12}, [2]_{4}, [1]_{2}), \mathcal{A}_{5} = ([\pm 4]_{12}, [1]_{2}, [2]_{4}).$$

Hence

$$r_{\mathbf{a}}(n) = \sum_{i=1}^{5} r_{\mathbf{a}, \mathcal{A}_i}(n).$$

Since $r_{\mathbf{a},\mathcal{A}_2}(n) = r_{\mathbf{a},\mathcal{A}_3}(n)$ and $r_{\mathbf{a},\mathcal{A}_4}(n) = r_{\mathbf{a},\mathcal{A}_5}(n)$, the identity (1) follows from Lemma 7.

Proof of Theorem 2. We will demonstrate only the first identity, as the other two identities can be established analogously. Let n be a positive integer congruent to 23 modulo 120. By Lemma 6, the equality $2x^2 + 5y^2 + 10z^2 = n$ implies that $(x_1, x_2, x_3) \in \mathcal{A}_i$, where \mathcal{A}_i is one of the following five 3-tuples of congruence classes:

$$\begin{array}{lll} \mathcal{A}_1 = ([\pm 2]_{30}, [\pm 1]_6, [\pm 1]_6) \,, & \mathcal{A}_2 = ([\pm 2]_{30}, [3]_6, [3]_6) & \mathcal{A}_3 = ([\pm 3]_{30}, [\pm 1]_6, [0]_6) \\ \mathcal{A}_4 = ([\pm 7]_{30}, [\pm 1]_6, [\pm 2]_6) & \mathcal{A}_5 = ([\pm 7]_{30}, [3]_6, [0]_6) & \mathcal{A}_6 = ([\pm 8]_{30}, [\pm 1]_6, [\pm 1]_6) \\ \mathcal{A}_7 = ([\pm 8]_{30}, [3]_6, [3]_6) & \mathcal{A}_8 = ([\pm 12]_{30}, [\pm 1]_6, [3]_6) & \mathcal{A}_9 = ([\pm 13]_{30}, [\pm 1]_6, [\pm 2]_6) \\ \mathcal{A}_{10} = ([\pm 13]_{30}, [3]_6, [0]_6) & \end{array}$$

Hence

$$r_{\mathbf{a}}(n) = \sum_{i=1}^{10} r_{\mathbf{a}, \mathcal{A}_i}(n)$$

and

$$\sum_{k=0}^{\infty} r_{\mathbf{a}} (120k + 23) q^k = \sum_{i=1}^{10} \left(\sum_{k=0}^{\infty} r_{\mathbf{a}, \mathcal{A}_i} (120k + 23) q^k \right).$$

The result follows from Lemma 8.

2. Tabulation Bounds

In the previous work, we derived three series for the tabulation of class numbers $h(\Delta)$ when $|\Delta| \equiv 4,8 \pmod{16}$ and $|\Delta| \equiv 3 \pmod{8}$. In this article we derived five more tabulation formulas, namely for $|\Delta| \equiv 7,15 \pmod{24}$ and for $|\Delta| \equiv 23,47,95 \pmod{120}$. The cases $|\Delta| \equiv 71,119 \pmod{120}$ have to be handled with Jacobson-Ramachandran-Williams Algorithm. Below we present the bounds for tabulation of all $h(\Delta)$ for all $|\Delta|$ up to X.

$ \Delta $	$X = 2^{40}$	$X = 2^{41}$	$X = 2^{42}$	$X = 2^{43}$	$X = 2^{44}$
4 (mod 16)	2^{36}	2^{37}	2^{38}	2^{39}	2^{40}
8 (mod 16)	2^{36}	2^{37}	2^{38}	2^{39}	2^{40}
$3 \pmod{8}$	2^{37}	2^{38}	2^{39}	2^{40}	2^{41}
7 (mod 24)	2^{36}	2^{37}	2^{38}	2^{39}	2^{40}
15 (mod 24)	2^{36}	2^{37}	2^{38}	2^{39}	2^{40}
23 (mod 120)	2^{34}	2^{35}	2^{36}	2^{37}	2^{38}
47 (mod 120)	2^{34}	2^{35}	2^{36}	2^{37}	2^{38}
95 (mod 120)	2^{34}	2^{35}	2^{36}	2^{37}	2^{38}
71,119 (mod 120)	2^{35}	2^{36}	2^{37}	2^{38}	2^{39}

For example in order to compute $h(\Delta)$ for all $|\Delta|$ up to $X=2^{42},$ one would have to

- 4 (mod 16): Multiply two polynomials of degree at most 2³⁸:
- 8 (mod 16): Multiply two polynomials of degree at most 2³⁸;
- 3 (mod 8): Multiply two polynomials of degree at most 2^{39} ;
- 7 (mod 24): Multiply two polynomials of degree at most 2³⁸;
- 15 (mod 24): Multiply two polynomials of degree at most 2³⁸;
- 23 (mod 120): Multiply two polynomials of degree at most 2^{36} :
- 47 (mod 120): Multiply two polynomials of degree at most 2³⁶;

- 95 (mod 120): Multiply two polynomials of degree at most 2³⁶;
- 71, 119 (mod 120): Compute h(-120k-71) and h(-120k-119) for at most 2^{37} values of k. Not all of these values have to be computed though, because the discriminants -120k - 71, -120k - 119 need not be fundamental (i.e., they are not squarefree). Assuming that only $6/\pi^2 \approx 0.6079$ of these values correspond to fundamental discriminants, this number further reduces to 2^{36} .

3. Next Steps

We need to implement initialization routines for the following ten series:

- $\nabla_{1,3}(q)\nabla(q) + \nabla_{1,3}(q^4)\vartheta_3(q^2) + 2q\nabla_{2,3}(q^4)\nabla(q^4)$
- $\nabla(q^3)\nabla(q) + q\nabla(q^{12})\vartheta_3(q^2) + \vartheta_3(q^6)\nabla(q^4)$
- $\nabla_{1,3}(q)$
- $\nabla(q^3)$
- $\bullet \ \ 2\overset{\cdot}{\nabla_{2,15}}(q^2)\nabla_{1,3}(q^2) + q\nabla_{8,15}(q^2)\nabla_{1,3}(q^2) + q\nabla_{7,15}(q^2)\nabla_{2,3}(q^2) + q^3\nabla_{13,15}(q^2)\nabla_{2,3}(q^2) + q^3\nabla_{13,15}(q^2)\nabla_{1$ $q^{3}\nabla_{12,15}(q^{2})\nabla(q^{6}) + \nabla_{3,15}(q^{2})\vartheta_{3}(q^{3})$
- $\bullet \ 2q\nabla_{2,15}(q^2)\nabla(q^6) + 2q^2\nabla_{8,15}(q^2)\nabla(q^6) + q\nabla_{7,15}(q^2)\vartheta_3(q^3) + q^3\nabla_{13,15}(q^2)\vartheta_3(q^3) \\ \bullet \ 2\nabla_{4,15}(q^2)\nabla_{1,3}(q^2) + 2q^3\nabla_{14,15}(q^2)\nabla_{1,3}(q^2) + 2\nabla_{1,15}(q^2)\nabla_{2,3}(q^2) + 2q^2\nabla_{11,15}(q^2)\nabla_{2,3}(q^2) + q^2\nabla_{11,15}(q^2)\nabla_{11,15}(q^2$ $\begin{array}{l} 2q\nabla_{6,15}(q^2)\nabla(q^6) + q\nabla_{9,15}(q^2)\vartheta_3(q^3) \\ \bullet \ 4q\nabla_{4,15}(q^2)\nabla(q^6) + 4q^4\nabla_{14,15}(q^2)\nabla(q^6) + 2\nabla_{1,15}(q^2)\vartheta_3(q^3) + 2q^2\nabla_{11,15}(q^2)\vartheta_3(q^3) \\ \bullet \ 2q\nabla_{10,15}(q^2)\nabla_{1,3}(q^2) + 2\nabla_{5,15}(q^2)\nabla_{2,3}(q^2) + \vartheta_3(q^{15})\nabla(q^6) + q^3\nabla(q^{30})\vartheta_3(q^3) \end{array}$

- $2\nabla_{5,15}(q^2)\vartheta_3(q^3) + 4q^2\nabla_{10,15}(q^2)\nabla(q^6)$

2021-12-30 Now that the polymult library has been updated, we can think of the practical aspects of computation. Recall that all series that we are dealing with have the form

$$cq^r \nabla_{a,m}(q^s)$$
.

Thus, each series can be expressed in terms of five parameters, namely (c, r, s, a, m). Polymult enables us to compute products of the form

$$(c_0q^{r_0}\nabla_{a_0,m_0}(q^{s_0})) \cdot \sum_{i=1}^k \left(c_{2i-1}q^{r_{2i-1}}\nabla_{a_{2i-1},m_{2i-1}}(q^s_{2i-1})\right) \cdot \left(c_{2i}q^{r_{2i}}\nabla_{a_{2i},m_{2i}}(q^{s_{2i}})\right).$$

The product can be computed by calling the following in the command line:

Now, let us focus on a particular example. From Corollary 3 we have the identity

$$2\sum_{k=0}^{\infty} H(24k+7)q^k = \nabla(q) \left[\nabla_{1,3}(q)\nabla(q) + \nabla_{1,3}(q^4)\nabla_{0,1}(q^4) + 2q\nabla_{2,3}(q^4)\nabla(q^4) \right].$$

Recall that all series that we are dealing with have the form

$$cq^r \nabla_{a,m}(q^s)$$
.

Here are the parameters for the series occurring in the aforementioned identity:

Series	c	r	s	a	m
$\nabla(q)$	1	0	1	1	1
$\overline{\nabla_{1,3}(q)}$	1	0	1	1	3
$\overline{\nabla(q)}$	1	0	1	1	1
$\overline{\nabla_{1,3}(q^4)}$	1	0	4	1	3
$\overline{\nabla_{0,1}(q^4)}$	1	0	4	0	1
$2q\nabla_{2,3}(q^4)$	2	1	4	2	3
$\nabla(q^4)$	1	0	4	1	1

Thus, if we want to compute the product in the right-hand side of the above identity, we can call the following piece of code:

This

Department of Computer Science, University of Calgary, Calgary AB, Canada T2N 1N4

Email address: jacobs@ucalgary.ca

Mathematics Undergraduate Office, University of Waterloo, Waterloo ON, Canada N2L $3\mathrm{G}1$

Email address: amosunov@uwaterloo.ca