Linear Discriminant Analysis (LDA, Fishers discriminant analysis)

-Extra Homework, Machine Learning 5255,9i NCTU

Dataset:

Rows of length 784 representing 28x28 images. Visualization below. (784 features)

0.txt: 234 samples

1.txt: 277 samples

1.txt: 277 samples

Visualization code snippet:

LDA – Linear Discriminant Analysis

1. Importing dataset

```
16 #Importing dataset
17 data0 = np.genfromtxt("0.txt", delimiter = ",")
18 data1 = np.genfromtxt("1.txt", delimiter = ",")
```

2. Calculate mean vectors

Mean vectors for each class.

```
45 #Mean vectors Class0 and Class1  
46 m0 = np.mean(data0, 0)  
47 m1 = np.mean(data1, 0)  
48  
49 mv = []  
50 mv.append(m0)  
51 mv.append(m1)  
\mathbf{m}_j = \frac{1}{n_j} \sum_{i \in \mathcal{C}_j} x_i, \quad j=1,2
```

3. Scatter matrices

a. Within-class scatter

Calculating within-class scatter for each class:

within-class scatter:
$$s_j^2 = \sum_{i \in C_j} (y_i - m_j)^2$$
, $j = 1, 2$

Within-class scatter matrix for all data is: $s_1^2 + s_2^2$ \Rightarrow $S_w = S_{w \text{ class } 0} + S_{w \text{ class } 1}$

b. Between-class scatter

```
84 #Between-class scatter matrix
85 #Calculating overall mean for each feature
86 mOverall = (m0 + m1)/nclass
87 mOverall = mOverall.reshape(784, 1)
88
89 #B/w-scatter matrix class0
90 mv0 = m0.reshape(784, 1)
91 Sb0 = (mv0 - mOverall).dot((mv0 - mOverall).T)
92
93 #B/w-scatter matrix class0
94 mv1 = m1.reshape(784,1)
95 Sb1 = (mv1 - mOverall).dot((mv1 - mOverall).T)
96
97 #Between-scatter matrix
98 Sb = 234*Sb0 + 277*Sb1
```

First calculate overall mean then proceeding with calculating the between-class scatter matrix:

$$S_b = \sum_{i=1}^{classes} N_i (\boldsymbol{m}_i - \boldsymbol{m}_{tot}) (\boldsymbol{m}_i - \boldsymbol{m}_{tot})$$

Where.

 N_i = sample size m_i = sample mean m_{tot} = overall mean

4. Solving generalized eigenvalue problem

We want to maximize between-class scatter and minimize within-class scatter:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$
 Via Rayleigh quotient and assuming that the within-class scatter matrix (S_w) is invertible we derive the matrix:

$$\Rightarrow \mathrm{w} = S_{\mathrm{w}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1) \quad \text{Equals to } \mathsf{S_{\mathrm{w}}}^{\text{-1}} \mathsf{S}_{\mathrm{b}}$$

```
105 #Solving eigenvalue problem
106 #Calculating (Moore-Penrose) pseudo inverse since Sw is singluar ->
107 SwInv = linalg.pinv(Sw)
108
109 #Eig to sove
110 eigVal, eigVec = linalg.eig(SwInv.dot(Sb))
111
```

In this case the matrix S_w is singular and thereby not invertible and I therefore resort to calculate the pseudo inverse.

5. Selecting linear discriminants for the new subspace

```
107 #Eigenvalues and Eigenvectors tuples/pairs
108 eigPair = [(np.abs(eigVal[i]), eigVec[:,i]) for i in range(len(eigVal))]
109
110 #Sorting Eigenvalues in descending order
111 eigPair = sorted(eigPair, key=lambda k: k[0], reverse = True)
```

Arranging eigenvalues as tuples with their corresponding eigenvectors then sorting them in

descending order. Eigenvectors with the lowest eigenvalue contains the least amount of

information and should be dropped. Choosing k eigenvectors to make a 1-D transformation

based on the highest eigenvalue makes us retain as much information as possible.

113 #Choosing eigenvectors with largest eigenvalues
114 W = np.hstack((eigPair[0][1].reshape(784,1)))

```
118 #Explanation of variance
119 varExpl = []
120 eigSum = sum(eigVal)
121 for i,j in enumerate(eigPair):
122  varExpl.append('eigenvalue {0:}: {1:.2%}'.format(i+1, (j[0]/eigSum).real))
123
```

ıd€ ▲	Type	Size	Value
0	str	1	eigenvalue 1: 100.00%
1	str	1	eigenvalue 2: 0.00%
2	str	1	eigenvalue 3: 0.00%
3	str	1	eigenvalue 4: 0.00%
4	str	1	eigenvalue 5: 0.00%
5	str	1	eigenvalue 6: 0.00%
6	str	1	eigenvalue 7: 0.00%
7	str	1	eigenvalue 8: 0.00%

Number of linear discriminants should at most be Classes – 1 and since this is a 2-class problem it should be 1 linear discriminant (eigenvalue = 0). Resulting in only one eigenvector with eigenvalue 0 and we can

form a 1-D feature space based on this eigenpair without losing a lot of information. And as can be seen by looking at the variance the first eigenpair is containing most information and a subspace based on this pair will not loose a lot of information.

6. Transforming sample data to the new subspace

```
116 #Transforming data samples to new sub-space
117 lda0 = data0.dot(W)
118 lda1 = data1.dot(W)
```

7. Visualization of result

135 plt.hist(lda0, color = "blue")

```
136 plt.hist(lda1, color = "orange")
137 plt.title("Histogram of classes")
138 plt.show()
130
131 #Plotting the samples against gaussian noise
132 noise0 = np.random.normal(0, 1, 234)
133 noise1 = np.random.normal(0, 1, 277)
134
135 plt.scatter(lda0, noise0, marker = "x", color = "blue")
136 plt.scatter(lda1, noise1, marker = "x", color = "orange")
137 plt.legend([0,1], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
138 plt.xlabel('LDA, W transform')
139 plt.ylabel('Gaussian noise')
```

Decision boundary calculated as the hyperplane between the projections of the two means. There is no standard rule for calculating the decision boundary.

```
153 #Alternative calculation (orojecting the means)
155 #bl = 0.5*(m1.dot(W) - m0.dot(W))

142 #Alternative plot
143 plt.scatter(lda1, noise1, color = "white")
144 plt.scatter(lda1, noise1, color = "white")
145 for x, y in zip(lda0, noise0):
146 plt.text(x, y, str(0), color="blue", fontsize=10)
147
148 for x, y in zip(lda1, noise1):
149 plt.text(x, y, str(1), color="orange", fontsize=10)
150
151 plt.legend([0,1], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
152 plt.xlabel('LDA, W transform')
153 plt.ylabel('Gaussian noise')
```

Conclusions and reflections

152 bl = 0.5*(np.mean(lda1) - np.mean(lda0))

Implementing the Linear Discriminant Analysis to reduce the dimension of the provided datasets was a quite straightforward process that could, as seen above be broken down into a few steps. These steps

are taken from lecture notes provided by professor Wei-Chen Chiu (Slide 180 – 184).

How to choose a proper decision boundary for this dataset seems to be hard. I tried several different approaches but finding a good hyper plane from the equations given above seemed impossible. With the chosen hyper plane lying between the projected means I was not satisfied and decided to see how kmeans performs on the projected dataset since it seems an easy approach and the number of clusters is already known. Further, since I choose the decision boundary to be found as a hyperplane and nothing more complex for this 2-cluster problem regular kmeans seemed to be alright. Result can be seen below.

K-means clustering of the projected datasets [Not updated···]

Importing the datasets and applying kmeans clustering to classify the dataset results in a correct classification rate of 0.9941291585127201%.

Old inaccurate plots. From wrongly assuming that the matrix was symmetric.