VG101 Lab Manual

Lab 9

Instructor: Dr. Yifei ZHU

TA: Hangrui CAO
TA: Haoxuan SHAN
TA: Qinhang WU
TA: Muchen XU

Table of Contents

- Sort
- Basic Algorithm
- Mid 2 Sample Exam

Workflow

Content	Approx. Time
Warmup: Sort	30 mins
Break	10 mins
Mid2 Sample Exam	70 mins
Break	10 mins
Practical Exercise	60 mins

Mid 2 Sample Exam

Ex1. Simple I/O

#string #I/O

Description

Write a program to find the number of times that a key substring occurs in some sentences. The last lines will be the key substring (it can be a word or phrase).

Input

• several lines of string

Sample #1

input

- 1 | I want to learn courses well.
- 2 I want to survive.
- 3 ktt wants 14d2.
- 4 cls wanted qhh and shanhx to come to his office hour.
- 5 want

output

Sample #2

input

- 1 Four hundred cannon have been thundering without a break since morning on both sides
- 2 At the front, the cavalcades of horsemen clash with the firing squares, drumsticks come down hard on the drumheads, the whole plain is shaking with the noise since morning.
- 3 But above the battle, since morning on the two hills, the field marshals are listening to a softer sound above the human storm.
- 4 | since morning

output

1 3

Update

• Sample code available on Canvas

Ex2. Perplexity

#loop

Description

It is known that the multiplication of polynomials are just a convolution:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots, \quad g(x) = b_0 + b_1 x + b_2 x^2 + \dots,$$

 $(f * g)(x) = (a_0 b_0) + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \dots$

That is to say, the polynomial coefficient of f * g is

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

Now given the polynomial coefficient of f and g at both n degrees, find the sum of all the coefficient of f * g.

Input

The first line contain only one integer n.

The second and the third lines both contain n integers, denoting the polynomial coefficient $a_0 \ldots a_{n-1}$ and $b_0 \cdots b_{n-1}$.

Output

You should print only one integer, the sum of

Sample #1

input

```
1 260
```

Specification

For all test cases, $n \leq 10^6, |a_i|, |b_i| \leq 10^3.$

Explanation

$$(1+2x+3x^2+4x^3)(5+6x+7x^2+8x^3)=5+16+34x^2+60x^3+61x^4+52x^5+32x^6$$

So the coefficient sum is 5 + 16 + 34 + 60 + 61 + 52 + 32 = 260.

Ex3. Chess Movement

#recursion

Description:

Provided 2n chesses in a single line where n white chesses are on the left and n black chesses are on the right. There are two extra blank position on the right. For example, if we denote \bullet as white chess, \bullet as black chess and \bullet as blank position, we have the following condition when n=5: 00000******-.

Now you need to move the chess so as to let every black chess alternating with a white one. For example, when n=5, your final chess board should look like: --o*o*o*o*o*. However, you can only move two adjacent chess at a time.

Input Format

an integer n indicating the number of a kind of chess.

Output Format

m lines, each line indicating your movement of the chess. Note that you only need to output m lines with a feasible solution.

Sample #1

input

```
1 | 7
```

output

```
0000000******
 2 000000--*****0*
 3 000000*****--0*
   00000--****0*0*
 4
 5 00000*****--0*0*
 6 0000--***0*0*0*
 7
   0000****--0*0*0*
8 000--***0*0*0*
   000*0**--*0*0*0*
9
10 0--*0**00*0*0*0*
11 0*0*0*--0*0*0*
12
   --0*0*0*0*0*0*0*
```

Specification:

ullet For 100% input, n < 15

Notes:

• We will use Special Judge to grade your code

Grading Rubric

Criteria	Weight	Available Time	Due Time	Entry
Sample Exam	60%	4:00pm , July.10	11:59am , July.12	JOJ
Algorithmic Exercise	40%	9:00pm , July.10	11:59pm , July.12	JOJ

• For Sample Exam and algorithmic exercise, you need to submit your code to JOJ before Sunday midnight. You'll earn most partial points as long as you submit the code.