Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

	•		•
L 371	0021200	111 t	\sim 1
1 '/ X	perime	IIII. IN	(). Z.
	P 01 11110	110 1	· -

Basic gates using universal gates.

Name: Patil Pranjal Keshav

Roll Number: 45

Date of Performance:

Date of Submission:

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Aim - To realize the gates using universal gates.

Objective -

- 1) To study the realization of basic gates using universal gates.
- 2) Understanding how to construct any combinational logic function using NAND or NOR gates only.

Theory -

AND, OR, NOT are called basic gates as their logical operation cannot be simplified further. NAND and NOR are called universal gates as using only NAND or only NOR, any logic function can be implemented.

Components required - 1. IC's

7400(NAND) 7402(NOR) 2.

Bread Board.

3. Connecting wires.

Circuit Diagram -

Implementation using NAND gate:

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Implementation using NOR gate:

(a) NOT gate:

$$Y = A'$$

A	Y
0	1
1	0

(b) AND gate:

$$Y = A \cdot B$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

(c) OR gate:

$$Y = A + B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

(d) NAND gate:

$$Y = (AB)'$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

(e) Ex-NOR gate:

$$Y = A \odot B = (A \oplus B)'$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Procedure:

- a) Connections are made as per the circuit diagrams.
- b) By applying the inputs, the outputs are observed and the operations are verified with the help of truth table.

Output -

Implementation using NAND Gate

Implementation using NOR Gate

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Conclusion -

Universal gates (NAND and NOR) are powerful tools in digital logic design because they can implement any other gate. This capability simplifies the design and minimizes the number of different components needed in circuit construction, making NAND and NOR gates fundamental in digital systems and integrated circuits.

40 mini

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science