Оценка роста СПФ на данных по российским предприятиям за 2008-2015 годы

Практикум по прикладным экономическим исследованиям

Начало работы

1. Отрываем файл use "Z:\Data\tfp_1581.dta"

2. Смотрим на базу d (или describe)

Число наблюдений в базе

id – идентификационный код предприятия year – год Каждое предприятие можем

Начало работы

Смотрим на данные sort id year (упорядочиваем данные по предприятию и году) edit

Описание данных

Предприятия в отрасли «Производство хлеба и мучных кондитерских изделий недлительного хранения» (код ОКВЭД 1581)

Период наблюдения 2008-2015 годы

Не все предприятия мы наблюдаем в каждом году – несбалансированная панель

. tab year

year	Freq.	Freq. Percent	
2008	879	10.63	10.63
2009	913	11.05	21.68
2010	881	10.66	32.34
2011	919	11.12	43.46
2012	964	11.66	55.12
2013	1,164	14.08	69.20
2014	1,273	15.40	84.60
2015	1,273	15.40	100.00
Total	8,266	100.00	

Переменные:

rva	Real Value Added	Реальная добавленная стоимость, расчитана на основе данных бухгалтерских балансов предприятия, показатель дефлирован с помощью индекса цен производителей (ИПЦ)
emp	Number of Employees	Число работников на предприятии
rk	Real Capital	Реальная стоимость основных фондов, данные бухгалтерских балансов предприятия, дефлированы на основе индексов физического объема основных фондов

Панельные данные

Задаем панельную структуру данных Пространственная переменная – предприятие (id)

Временная переменная – год (year)

xtset id year, vearly

Периодичность наблюдения – годовые данные

Создаем новые переменные для оценки производственных функций

Для оценки функции Кобба-Дугласа

gen lva=ln(rva) логарифм реальной добавленной

gen lk=ln(rk) логарифм капитала

gen ll=ln(emp) логарифм труда

Для оценки транслогарифмической функции

gen lksq=lk^2 логарифм капитала в квадрате

gen llsq=ll^2 логарифм труда в квадрате

gen II_lk=II*lk произведение логарифма труда на логарифм капитала

Оценка регрессий на панельных данных

Оценка методом постоянных эффектов (Fixed Effects Estimations)

$$y_{it} = \beta_1 x_{it1} + \beta_2 x_{it2} + \dots + \beta_k x_{itk} + \alpha_i + u_{it}, t = 1, 2, \dots, T$$

(1)

Усредним это уравнение для каждой фирмы i за все годы

Ненаблюдаемые эффекты, специфичные для данной фирмы

$$\bar{y}_i = \beta_1 \bar{x}_{i1} + \beta_2 \bar{x}_{i2} + \dots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{u}_i$$

(2)

где
$$\bar{y}_i = T^{-1} \sum_{t=1}^T y_{it}$$
 и т.д.

В уравнение (2) входит α_i , так как этот параметр не изменяется во времени

Вычитаем из уравнения (1) уравнение (2)

$$y_{it} - \bar{y}_i = \beta_1(x_{it1} - \bar{x}_{i1}) + \beta_2(x_{it2} - \bar{x}_{i1}) + \dots + \beta_k(x_{itk} - \bar{x}_{i1}) + (u_{it} - \bar{u}_i)$$

или

$$\ddot{y}_i = \beta_1 \ddot{x}_{i1} + \beta_2 \ddot{x}_{i2} + \dots + \beta_k \ddot{x}_{ik} + \ddot{u}_i$$
 (3)

Не содержит α_i можно оценить с помощью pooled OLS

где $\ddot{y}_i = y_{it} - \bar{y}_i$ и т.д. (time-demeaned data or within transformation)

Fixed effects estimation:

Оценка уравнения (3) с преобразованными данными методом pooled OLS

Команда в Стате для оценки методом постоянных эффектов

Мы уже задали панельную структуру данных (xtset...).
Можем использовать команды, которые работают с панельными данными

Fixed effects estimations

Оценка регрессии методом постоянных эффектов **xtreg y x1 x2, fe** (данные не надо трансформировать вручную, эта операция встроена в команду)

Оценка функции Кобба-Дугласа $\ln RVA_{it} = \alpha_0 + \alpha_L \ln L_{it} + \alpha_K \ln RK_{it}$ методом постоянных эффектов

Число наблюдений в выборке. Одну фирму мы наблюдаем несколько лет

Число фирм в выборке

Некоторые фирмы мы наблюдаем только один год Часть фирм мы наблюдаем все восемь лет В среднем для одной фирм мы располагаем данными за 3-4 года

xtreg Iva II lk, fe

Оценка транслогарифмической производственной функции методом постоянных эффектов

```
xtreg lva ll lk llsq lksq ll_lk, fe
Fixed-effects (within) regression
                                               Number of obs
                                                                         8,266
Group variable: id
                                               Number of groups =
                                                                         2,236
                                                Obs per group:
R-sq:
    within = 0.1262
                                                              min =
                                                                             1
    between = 0.4449
                                                              avg =
                                                                           3.7
    overall = 0.4532
                                                              max =
                                                                             8
                                                F(5,6025)
                                                                        173.96
corr(u i, Xb) = -0.0021
                                                Prob > F
                                                                        0.0000
         lva
                    Coef.
                           Std. Err.
                                                P>|t|
                                                          [95% Conf. Interval]
          11
                -.2102225
                            .1685363
                                        -1.25
                                                0.212
                                                          -.540614
                                                                       .120169
          lk
                -.2916114
                            .0749734
                                        -3.89
                                                0.000
                                                         -.4385861
                                                                     -.1446367
                            .0210086
                                                0.000
        llsq
                 .1252894
                                        5.96
                                                          .0841051
                                                                      .1664737
                            .0029662
       lksq
                 .0147011
                                        4.96
                                               0.000
                                                          .0088863
                                                                       .020516
                            .0103085
       ll_lk
               -.0049141
                                        -0.48
                                               0.634
                                                         -.0251224
                                                                      .0152942
                 15,13288
                            .6057081
                                        24.98
                                                0.000
                                                          13,94548
                                                                      16.32029
      cons
    sigma_u
                1.0065541
                .48518464
     sigma_e
                .81145877
                            (fraction of variance due to u_i)
         rho
 test that all u_i=0: F(2235, 6025) = 12.21
                                                             Prob > F = 0.0000
```

Расчет роста СПФ на основе оценок транслогарифмической функции

Рассчитываем эластичности выпуска по труду и капиталу (они будут отличаться для каждого предприятия и в разные годы)

```
gen eyk=_b[lk]+2*_b[lksq]*lk+_b[ll_lk]*ll
gen eyl=_b[ll]+2*_b[llsq]*ll+_b[ll_lk]*lk
```

Обращение к коэффициенту перед переменной *II_lk* в последней оцененной регрессии

• Рассчитываем прирост выпуска и факторов производства как разность логарифмов за два последовательных периода

```
gen dva=Iva-I.Iva
gen dk=Ik-I.Ik
gen dI=II-I.II
```

I. оператор лага, рассчитывает значение переменной в предыдушем периоде (если задана панельная структура данных или временные ряды)

• Рассчитываем средную эластичность факторов за два года

T-test на равенство 1 средней отдачи от масштаба

Отдача от масштаба: E_{YKi} + E_{YLi}

gen rts=eyk+eyl

```
ttest rts==1 if year==2009
One-sample t test
                                                         [95% Conf. Interval]
Variable
              0bs
                         Mean
                                 Std. Err. Std. Dev.
              913
                     .8408816
                                 .0090697
                                             .2740478
                                                         .8230818
                                                                     .8586814
    rts
   mean = mean(rts)
                                                                 t = -17.5440
                                                degrees of freedom =
Ho: mean = 1
                                                                          912
   Ha: mean < 1
                                Ha: mean != 1
                                                              Ha: mean > 1
Pr(T < t) = 0.0000
                     Pr(|T| > |t|) = 0.0000
                                                           Pr(T > t) = 1.0000
```

Интерпретация результатов теста https://stats.idre.ucla.edu/stata/output/t-test/

Расчет роста СПФ на основе оценок транслогарифмической функции

Paccчитываем рост СПФ
 gen tfp=dva-avg_eyk*dk-avg_eyl*dl

Строим таблицы со средними и средневзвешенными (по реальной добавленной стоимости) показателями роста СПФ

tabstat tfp, by(year) statistics(n mean) tabstat tfp [w=rva], by(year) statistics(n mean)

В квадратных скобках задаем веса, равные реальной добавленной стоимости

```
gen tfp=dva-avg eyk*dk-avg eyl*dl
(2,637 missing values generated)
 tabstat tfp, by(year) statistics(n mean)
    by categories of: year
                  736 .0238772
                  762 -.165858
    2011
                  727 -.1161348
    2012
                  638 -.1094116
    2013
                  843 -.0339785
    2014
                 939 -.1024379
    2015
                  984 -.0949763
   Total
                 5629 -.0855098
```

tabstat tfp [w=rva], by(year) statistics(n mean) (analytic weights assumed) Summary for variables: tfp by categories of: year year mean 2008 736 .114145 2010 762 -.076123 727 -.0485885 2011 2012 638 -.0194532 2013 .0486897 939 -.0051986 2014 2015 .0173127 Total 5629 .0047964

Средние темпы роста СПФ

graph bar tfp if year>=2009, over(year) name(gr1, replace) /// ytitle("%") blabel (bar, position(outside) format(%9.2f)) /// title("Average TFP growth rates", size(medium))

Средневзвешенные темпы роста СПФ

graph bar tfp [w=rva] if year>=2009, over(year) name(gr2, replace) /// ytitle("%") blabel (bar, position(outside) format(%9.2f)) /// title("Weighted average TFP growth rates", size(medium))

Уровень эффективности на основе показателей производительности труда

Рассчитываем уровень производительности труда

gen lab_prod= rva/emp

Рассчитываем максимальный уровень производительности труда в каждом году

egen max_lab_prod=max(lab_prod), by(year)

Для каждого предприятия рассчитываем расстояние до максимального уровня производительности труда (как долю от максимально возможной производительности труда)

gen lab_prod_gap=lab_prod/max_lab_prod

Смотрим на показатель эффективности

tabstat lab_prod_gap, by(year) statistics(n mean sd median min max p75)

		•	•			•	•
.gen lab_	prod= rva/em	р					
. egen max	_lab_prod=ma	x(lab_prod), by(yea	r)			
.gen lab_j	prod_gap=lab	_prod/max_	lab_prod				
· tabetat	lab prod gap	hy (yoar)	etatietie	galn moan g	d modian mi	n may nan	1
• tabbtat .	rab_prod_gap	, by (year)	Statistic	.s (II lileali s	u meuran mi	II IIIax p30)
Summary fo:	r variables:	lab prod	gap				
	tegories of:						
year	N	mean	sd	p50	min	max	p90
2008	879	.1743485	.1518592	.1324489	.0076369	1	.3679195
2009	913	.1888542	.1647401	.141111	.0095084	1	.4072718
2010	881	.1590046	.1544964	.1118689	.0087054	1	.3399792
2011	919	.1319999	.1459403	.0838825	.0062685	1	.3027978
2012	964	.1177972	.1432013	.0693922	.0023697	1	.2799171
2013	1164	.1440246	.1643602	.0847833	.0032521	1	.3554963
2014	1273	.1568662	.1766316	.0907539	.0047164	1	.4042912
2015	1273	.1695016	.1830146	.1042093	.0053999	1	.412409
Total	8266	.155303	.1641242	.0993511	.0023697	1	.3614495

Рост СПФ по группам эффективности

• Создаем бинарную переменную, которая равна 1 для 10% наиболее эффективных предприятия и 0 в противном случае

(в **каждом году** находим уровень эффективности, который соответствует предприятию ниже которого находится **90% выборки**; создаем бинарную переменную равную 1 в случае, если уровень эффективности предприятия **выше**, чем заданная величина)

egen lpg90= pctile(lab_prod_gap), p(90) by(year) gen dummy_lpg90=(lab_prod_gap>=lpg90) if lab_prod_gap!=.

- Смотрим на рост СПФ по двум группам
 - 1) Наиболее эффективные предприятия (dummy_lpg90==1)
 - 2) Все остальные предприятия(dummy_lpg90==0)

tabstat tfp if dummy_lpg90==1, by(year) statistics(mean n) tabstat tfp if dummy_lpg90==0, by(year) statistics(mean n)

. tabstat t	tfp if dummy_	lpg90==0,	by(year)	statistics(mean	n)
_	r variables: tegories of:				
year	mean				
2008		0			
2009	.0084323	667			
2010	1835578	691			
2011	1252607	673			
2012	1224287	608			
2013	0457507	783			
2014	1138291	852			
2015	114441	886			
Total	0996417	5160			

Средние темпы роста: наиболее эффективные предприятия

graph bar tfp if year>=2009 & dummy_lpg90==1, over(year) /// ytitle("%") blabel (bar, position(outside) format(%9.2f)) ylabel(-0.3(0.1)0.3) /// title("Average TFP growth rates (top 10%)", size(medium))

Средние темпы роста: прочие предприятия

graph bar tfp if year>=2009 & dummy_lpg90==0, over(year) /// ytitle("%") blabel (bar, position(outside) format(%9.2f)) ylabel(-0.3(0.1)0.3) /// title("Average TFP growth rates (other)", size(medium))

Накопленные темпы роста по группам эффективности

- 1. Наиболее эффективные предприятия показывают положительные темпы роста во все годы
- 2. Прочие фирмы начиная с 2010 года показывают отрицательные темпы роста
- 3. Увеличивается разрыв между наиболее эффективными предприятиями и всеми остальными
- 4. Неэффективные предприятия теряют долю на рынке. При этом они не выходят с рынка, продолжая неэффективно использовать факторы производства. В результате средние темпы роста в отрасли оказываются отрицательными, несмотря на высокие темпы роста у лидеров.