McMaster University Math 1A03/1ZA3 Summer 2013 Midterm 1 May 22, 2013

Duration: 75 minutes

Instructor: R. Conlon

Name:		
Student ID Number		
Student ID Number:		

This test paper is printed on both sides of the page. There are 15 questions on 5 pages. You are responsible for ensuring that your copy of this test is complete. Bring any discrepancies to the attention of the invigilator.

Instructions

- (1) No calculators are allowed.
- (2) Write your name and ID number on the computer card.
- (3) All answers must be entered on the computer card with an HB pencil. Read the marking instructions on the card.
- (4) Each question is worth one mark. No marks will be deducted for wrong answers or blank answers.
- (5) Any question left blank will receive 0 marks, even if the correct answer is circled on the exam page. You must enter your answers on the computer card.
- (6) Scratch paper is available for rough work; ask the invigilator.

1) Consider the function $f(x) = x^3 - x - 1$. We use Newton's method with $x_1 = 1$ to approximate the solution to f(x) = 0. Which of the following graphs correctly shows the calculation of x_2 from x_1 ?

2) If f and g are continuous functions with f(1) = 5 and $\lim_{x \to 1} (2f(x) - g(x)) = 4$, then g(1)equals

> **A.** 14

B. 5

C. 3

D. 6

 \mathbf{E} . 0

3) $\cosh(2x) - \sinh(2x) =$

 $2e^{-2x}$

B. $2e^{2x}$

D. e^{2x} **E.**

4) The function $f(x) = |x^2 - 1|$ is NOT differentiable at the points

x = 1 and x = -1 only Α.

D. x = 0 only

B. x = 1 only **C.** x = -1 only

E. x = -1, x = 1, and x = 0

5) The equation of the tangent line to the graph of $y = \frac{1}{1+x^2}$ at the point $(-1, \frac{1}{2})$ is:

A.
$$x = \frac{1}{2}y - \frac{5}{4}$$
 B. $y = -x - \frac{1}{2}$ **C.** $y = \frac{1}{2}x - 1$

B.
$$y = -x - \frac{1}{2}$$

C.
$$y = \frac{1}{2}x - 1$$

D.
$$y = -\frac{1}{2}x$$

D.
$$y = -\frac{1}{2}x$$
 E. $y = \frac{1}{2}x + 1$

6) Given the function $h(x) = \frac{e^{2x}}{1 + e^{2x}}$, which of the following is the inverse function?

A.
$$h^{-1}(x) = \frac{x \ln(2)}{1 - 2 \ln(x)}$$

A.
$$h^{-1}(x) = \frac{x \ln(2)}{1 - 2 \ln(x)}$$
 B. $h^{-1}(x) = \frac{1}{2} \ln\left(\frac{x}{1 - x}\right)$ **C.** $h^{-1}(x) = \frac{-\ln(x) \cdot \ln(2)}{1 - \ln(x)}$

C.
$$h^{-1}(x) = \frac{-\ln(x) \cdot \ln(2)}{1 - \ln(x)}$$

$$\mathbf{D.} \quad h^{-1}(x) = \frac{1 + e^{2x}}{e^{2x}}$$

D.
$$h^{-1}(x) = \frac{1 + e^{2x}}{e^{2x}}$$
 E. $h^{-1}(x) = 2\ln\left(\frac{x}{x - 1}\right)$

7) The graph of the derivative of a function is shown.

Which of the following could be the graph of the actual function?

 $\mathbf{C}.$

D.

 $\mathbf{E}.$

- 8) Let f be a function such that $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h} = 2$. Which of the following statements must always be true?
- I. f is continuous at x = 1.
- II. f is differentiable at x = 1.
- III. The derivative of f is continuous at x = 1.
 - A. I only
 - В. II only
 - $\mathbf{C}.$ III only
 - D. I and II only
 - $\mathbf{E}.$ II and III only
- **9)** If $f(x) = e^{\arccos(x)}$, -1 < x < 1, then f'(x) equals
 - **A.** $e^{\arccos(x)}\left(\frac{1}{\sqrt{1-x^2}}\right)$ **B.** $-e^{\arccos(x)}\left(\frac{1}{\sqrt{1-x^2}}\right)$ **C.** $e^{\arccos(x)}$

- **D.** $e^{\arccos(x)}\left(\frac{1}{\sqrt{1+x^2}}\right)$ **E.** $-e^{\arccos(x)}\left(\frac{1}{\sqrt{x^2-1}}\right)$
- 10) The domain of the function $f(x) = \arcsin(2x+1)$ is equal to:
- **A.** [-1, 1] **B.** [-1, 0] **C.** $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ **D.** [0, 1] **E.** $(-\infty, \infty)$

- **11)** If $y = \sin(x^2)$, then xy'' y' =
- **A.** $-4x^3 \sin(x^2)$ **B.** $4x \cos(x^2) 2x^2 \sin(x^2)$ **C.** $-x \sin(x^2) \cos(x^2)$

- **D.** $-2x^2\sin(x^2)$ **E.** $-x\sin(2) \cos(2x)$

- 12) Suppose that f and g are twice differentiable functions everywhere on \mathbb{R} . Which of the following is the correct formula for $(f \cdot g)''$, the second derivative of the pointwise product of the functions f and g?
- A. $f'' \cdot g + f \cdot g''$ B. $f'' \cdot g + f' \cdot g' + f \cdot g''$ C. $f'' \cdot g 2f' \cdot g' + f \cdot g''$ D. $f'' \cdot g f' \cdot g' + f \cdot g''$ E. $f'' \cdot g + 2f' \cdot g' + f \cdot g''$
- 13) Which of the following expressions is equal to $\sin(2\arccos(x))$?
 - A. $2x\sqrt{1+x^2}$ B. $\frac{x}{1+x^2}$ C. $\frac{2x^2}{\sqrt{1-x^2}}$ D. $2x\sqrt{1-x^2}$ E. $\frac{x^2}{1-x^2}$
- **14)** Find y', given that $e^{xy} 2y = (x + y)^2$.
 - A. $\frac{ye^{xy} y^2 2y}{x^2 + 2 + xe^{xy}}$ B. $\frac{ye^{xy} 2x 2y}{2x + 2y + 2 xe^{xy}}$ C. $x + y \frac{1}{2}e^{xy}$ D. $\frac{y^2 e^{xy}}{2}$ E. $\frac{ye^{xy}}{2x + 2y + 2}$
- **15)** Given that $f(x) = (\ln(x))^{\ln(x)}$ for x > 1, which of the following is the correct expression for f'(x)?
 - A. $\ln(x) \cdot (\ln(x))^{\ln(x)-1}$ B. $(\ln(x))^{\ln(x)} \left(\ln(x) \cdot (\ln(x))^{\ln(x)-1}\right)$ C. $(\ln(x))^{\ln(x)} \left(\ln(\ln(x)) + \frac{1}{x}\right)$ D. $\ln(x)^{\ln(x)} \left(\frac{\ln(\ln(x))}{x} + 1\right)$
 - **E.** $(\ln(x))^{\ln(x)} \left(\frac{\ln(\ln(x))}{x} + \frac{1}{x}\right)$

Answer key

#1	#2	#3	#4	#5
С	D	C	A	Е
#6	#7	#8	#9	#10
В	С	D	В	В
#11	#12	#13	#14	#15
A	Е	D	В	Е