

# **FORESEE**®

# LPDDR Datasheet

D-00249

FLXC2004G-N1

Version 1.0

LONGSYS ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. All brand names, trademarks and registered trademarks belong to their respective owners.

This document and all information discussed herein remain the sole and exclusive property of Longsys Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise.

For updates or additional information about Longsys products, contact your nearest Longsys office.

© 2021 Shenzhen Longsys Electronics Co., Ltd. All rights reserved.



# **Revision History**

| Rev. | Date       | Changes          |
|------|------------|------------------|
| 1.0  | 2021/04/20 | Document Create. |



## **CONTENTS**

| Revision History                                          | 2  |
|-----------------------------------------------------------|----|
| CONTENTS                                                  | 3  |
| 1 KEY FEATURES                                            | 4  |
| 2 SDRAM Addressing                                        | 5  |
| 3 Functional Block Diagram                                | 6  |
| 4 Ordering Information                                    | 7  |
| 5 Ball Assignment                                         | 8  |
| 6 Pin Description                                         | 9  |
| 7 Package Information                                     | 10 |
| 8 Input/Output Capacitance                                | 11 |
| 8.1 IDD Specification Parameters and Operating Conditions | 11 |
| 8.2 Absolute Maximum DC Ratings                           | 13 |
| 8.3 Recommended DC Operating Conditions                   | 13 |
| 8.4 Initialization Timing Parameters                      | 15 |
| 8.5 AC Timing                                             | 15 |
| 8.5.1 Clock Timing                                        | 15 |
| 8.5.2 Read Output Timing                                  | 16 |
| 8.5.3 Write Timing                                        | 17 |



#### 1 KEY FEATURES

#### **Features**

- Ultra-low-voltage core and I/O power supplies
  - VDD1 = 1.70–1.95V; 1.8V nominal
  - VDD2 = 1.06-1.17V; 1.10V nominal
  - VDDQ = 1.06–1.17V; 1.10V nominal or Low VDDQ = 0.57-0.65V; 0.6V nominal
- Frequency range
  - 1866 -10 MHz (data rate range: 3733-20

#### Mb/s/pin)

- 16n prefetch DDR architecture
- 8 internal banks per channel for concurrent operation
- Single-data-rate CMD/ADR entry
- Bidirectional/differential data strobe per byte lane
- Programmable READ and WRITE latencies (RL/WL)
- Programmable and on-the-fly burst lengths (BL =16,32)
- Directed per-bank refresh for concurrent bank operation and ease of command scheduling
- Up to 15 GB/s per chip (2 channels x 7.5 GB/s)

- On-chip temperature sensor to control self refresh rate
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock-stop capability
- RoHS-compliant, "green" packaging
- Programmable VSSQ (ODT) termination
- Single-ended CK and DQS support

#### **Options**

- VDD1/VDD2/VDDQ: 1.8V/1.1V/1.1V or 0.6V
- Array configuration
  - -1 Gig x 32 (2 channels x 16 I/O)
- Device configuration
  - -512M32 x 2 die in package
- FBGA "green" package
  - -200-ball VFBGA (10mm x 14.5mm x1.00mm max)
- Speed grade, cycle time
  - -535ps @ RL = 32/36
- Operating temperature range
  - -25°C to +85°C



# 2 SDRAM Addressing

| Configuration     |                                      |                | 1 Gig x 32(32Gb/Package)        |
|-------------------|--------------------------------------|----------------|---------------------------------|
|                   | Channel A, R                         | tank 0         | 16 1 1 1                        |
| Die Configuration | Channel B, R                         | Cank 0         | x16 mode x 1 die                |
|                   | Channel A, R                         | Cank 1         | 16                              |
|                   | Channel B, R                         | Cank 1         | x16 mode x 1 die                |
|                   | Device density                       | (per die)      | 16Gb                            |
|                   | Device density (po                   | er channel)    | 8Gb                             |
|                   | Configuration(                       | per die)       | 64Mb ×16 DQ ×8 banks ×2channels |
|                   | Number of channe                     | els (per die)  | 2                               |
|                   | Number of banks (p                   | per channel)   | 8                               |
|                   | Array prefetch (bits,                | per channel)   | 256                             |
|                   | Number of rows (                     | per channel)   | 65336                           |
| Die Addressing    | Number of columns (fetch boundaries) |                | 64                              |
|                   | Page size (b                         | ytes)          | 2048                            |
|                   | Channel density (bits                | s per channel) | 8,589,934,592                   |
|                   | Total density (bit                   | ts per die)    | 17,179,869,184                  |
|                   | Bank addr                            | ess            | BA[2:0]                         |
|                   | 1.                                   | Row address    | R[15:0]                         |
|                   | x16                                  | Column address | C[9:0]                          |
|                   | Burst starting address boundary      |                | 64-bit                          |



# 3 Functional Block Diagram

#### **DRAM Block Diagrams**

Dual-Die, Dual-Channel Package Block Diagram





# **Ordering Information**

| Part Number  | Package<br>Size(mm) | Memory<br>Combination | Operation<br>Voltage | Density | Speed    | Package                            |
|--------------|---------------------|-----------------------|----------------------|---------|----------|------------------------------------|
| FLXC2004G-N1 | 10*14.5*1.00(max)   | LPDDR4/<br>LPDDR4X    | 1.8V/1.1/1.1or0.6    | 32Gb    | 3733Mb/s | 200ball FBGA (Lead & Halogen Free) |





# **Ball Assignment**

200-Ball Dual-Channel Discrete VFBGA

|                                 | 1                                                                                                  | 2                                                           | 3                                                                                  | 4                                             | 5                                                                                          | 6 | 7 | 8                                                         | 9                                                | 10                                                                                 | 11                                                     |   |
|---------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|---|---|-----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|---|
| Α                               | DNU                                                                                                | DNU                                                         | V <sub>SS</sub>                                                                    | V <sub>DD2</sub>                              | ZQ0                                                                                        |   |   | ZQ1                                                       | V <sub>DD2</sub>                                 | V <sub>SS</sub>                                                                    | DNU                                                    |   |
| В                               | DNU                                                                                                | DQ0_A                                                       | V <sub>DDQ</sub>                                                                   | DQ7_A                                         | V <sub>DDQ</sub>                                                                           |   |   | V <sub>DDQ</sub>                                          | DQ15_A                                           | V <sub>DDQ</sub>                                                                   | DQ8_A                                                  |   |
| C                               | V <sub>SS</sub>                                                                                    | DQ1_A                                                       | DMI0_A                                                                             | DQ6_A                                         | V <sub>SS</sub>                                                                            |   |   | V <sub>SS</sub>                                           | DQ14_A                                           | DMI1_A                                                                             | DQ9_A                                                  |   |
| D                               | V <sub>DDQ</sub>                                                                                   | V <sub>SS</sub>                                             | DQS0_t_A                                                                           | V <sub>SS</sub>                               | V <sub>DDQ</sub>                                                                           |   |   | V <sub>DDQ</sub>                                          | V <sub>SS</sub>                                  | DQS1_t_A                                                                           | V <sub>SS</sub>                                        |   |
| Ε                               | V <sub>SS</sub>                                                                                    | DQ2_A                                                       | DQS0_c_A                                                                           | DQ5_A                                         | V <sub>SS</sub>                                                                            |   |   | V <sub>SS</sub>                                           | DQ13_A                                           | DQS1_c_A                                                                           | DQ10_A                                                 |   |
| F                               | V <sub>DD1</sub>                                                                                   | DQ3_A                                                       | V <sub>DDQ</sub>                                                                   | DQ4_A                                         | V <sub>DD2</sub>                                                                           |   |   | V <sub>DD2</sub>                                          | DQ12_A                                           | V <sub>DDQ</sub>                                                                   | DQ11_A                                                 |   |
| G                               | V <sub>SS</sub>                                                                                    | ODT_CA_A                                                    | V <sub>SS</sub>                                                                    | V <sub>DD1</sub>                              | V <sub>SS</sub>                                                                            |   |   | V <sub>SS</sub>                                           | V <sub>DD1</sub>                                 | V <sub>SS</sub>                                                                    | NC                                                     |   |
| Н                               | V <sub>DD2</sub>                                                                                   | CA0_A                                                       | CS1_A                                                                              | CS0_A                                         | V <sub>DD2</sub>                                                                           |   |   | V <sub>DD2</sub>                                          | CA2_A                                            | CA3_A                                                                              | CA4_A                                                  |   |
| J                               | V <sub>SS</sub>                                                                                    | CA1_A                                                       | V <sub>SS</sub>                                                                    | CKE0_A                                        | CKE1_A                                                                                     |   |   | CK_t_A                                                    | CK_c_A                                           | V <sub>SS</sub>                                                                    | CA5_A                                                  |   |
| K                               | V <sub>DD2</sub>                                                                                   | V <sub>SS</sub>                                             | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                               | NC                                                                                         |   |   | NC                                                        | V <sub>SS</sub>                                  | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                                        | , |
| L<br>M                          |                                                                                                    |                                                             |                                                                                    |                                               |                                                                                            |   |   |                                                           |                                                  |                                                                                    |                                                        |   |
| L<br>M                          |                                                                                                    |                                                             |                                                                                    |                                               |                                                                                            |   |   |                                                           |                                                  |                                                                                    |                                                        |   |
|                                 | V <sub>DD2</sub>                                                                                   | V <sub>SS</sub>                                             | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                               | NC                                                                                         |   |   | NC                                                        | V <sub>SS</sub>                                  | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                                        |   |
| М                               | V <sub>DD2</sub>                                                                                   | V <sub>SS</sub>                                             | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                               | NC<br>CKE1_B                                                                               |   |   | NC<br>CK_t_B                                              | V <sub>SS</sub>                                  | V <sub>DD2</sub>                                                                   | V <sub>SS</sub>                                        | , |
| M<br>N                          |                                                                                                    |                                                             |                                                                                    |                                               |                                                                                            |   |   |                                                           |                                                  |                                                                                    |                                                        |   |
| M<br>N<br>P                     | V <sub>SS</sub>                                                                                    | CA1_B                                                       | V <sub>SS</sub>                                                                    | CKE0_B                                        | CKE1_B                                                                                     |   |   | CK_t_B                                                    | CK_c_B                                           | V <sub>SS</sub>                                                                    | CA5_B                                                  |   |
| M<br>N<br>P                     | V <sub>SS</sub>                                                                                    | CA1_B                                                       | V <sub>SS</sub>                                                                    | CKE0_B                                        | CKE1_B                                                                                     |   |   | CK_t_B                                                    | CK_c_B                                           | V <sub>SS</sub>                                                                    | CA5_B                                                  |   |
| M<br>N<br>P<br>R                | V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub>                                                   | CA1_B CA0_B ODT_CA_B DQ3_B                                  | V <sub>SS</sub> CS1_B V <sub>SS</sub>                                              | CKE0_B  CS0_B  V <sub>DD1</sub>               | CKE1_B  V <sub>DD2</sub> V <sub>SS</sub>                                                   |   |   | CK_t_B  V <sub>DD2</sub> V <sub>SS</sub>                  | CK_c_B CA2_B V <sub>DD1</sub>                    | V <sub>SS</sub> CA3_B V <sub>SS</sub>                                              | CA5_B CA4_B RESET_n DQ11_B                             |   |
| M<br>N<br>P<br>R<br>T           | V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD1</sub>                                  | CA1_B CA0_B ODT_CA_B DQ3_B DQ2_B                            | V <sub>SS</sub> CS1_B V <sub>SS</sub> V <sub>DDQ</sub>                             | CKE0_B  CS0_B  V <sub>DD1</sub> DQ4_B         | CKE1_B  V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD2</sub>                                  |   |   | CK_t_B  V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD2</sub> | CK_c_B CA2_B V <sub>DD1</sub> DQ12_B             | V <sub>SS</sub> CA3_B V <sub>SS</sub> V <sub>DDQ</sub>                             | CA5_B CA4_B RESET_n DQ11_B                             |   |
| M<br>N<br>P<br>R<br>T<br>U      | V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD1</sub> V <sub>SS</sub>                  | CA1_B CA0_B ODT_CA_B DQ3_B DQ2_B                            | V <sub>SS</sub> CS1_B V <sub>SS</sub> V <sub>DDQ</sub> DQS0_c_B                    | CKE0_B  CS0_B  V <sub>DD1</sub> DQ4_B  DQ5_B  | CKE1_B  V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD2</sub>                                  |   |   | CK_t_B  V_DD2  V_SS  V_DD2  V_SS                          | CK_c_B CA2_B VDD1 DQ12_B DQ13_B                  | V <sub>SS</sub> CA3_B  V <sub>SS</sub> V <sub>DDQ</sub> DQS1_c_B                   | CA5_B CA4_B RESET_n DQ11_B DQ10_B                      |   |
| M<br>N<br>P<br>R<br>T<br>U<br>V | V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD1</sub> V <sub>SS</sub> V <sub>DDQ</sub> | CA1_B  CA0_B  ODT_CA_B  DQ3_B  DQ2_B  V <sub>SS</sub>       | V <sub>SS</sub> CS1_B  V <sub>SS</sub> V <sub>DDQ</sub> DQS0_c_B  DQS0_t_B         | CKE0_B  CS0_B  VDD1  DQ4_B  DQ5_B  VSS        | CKE1_B  V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub>                  |   |   | CK_t_B  V_DD2  VSS  VDD2  VSS  VDD2                       | CK_c_B  CA2_B  VDD1  DQ12_B  DQ13_B  VSS         | V <sub>SS</sub> CA3_B  V <sub>SS</sub> V <sub>DDQ</sub> DQS1_c_B  DQS1_t_B         | CA5_B  CA4_B  RESET_n  DQ11_B  DQ10_B  V <sub>SS</sub> |   |
| M<br>N<br>P<br>R<br>T<br>U<br>V | V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD1</sub> V <sub>SS</sub> V <sub>DDQ</sub> | CA1_B  CA0_B  ODT_CA_B  DQ3_B  DQ2_B  V <sub>SS</sub> DQ1_B | V <sub>SS</sub> CS1_B  V <sub>SS</sub> V <sub>DDQ</sub> DQS0_c_B  DQS0_t_B  DMI0_B | CKE0_B  CS0_B  VDD1  DQ4_B  DQ5_B  Vss  DQ6_B | CKE1_B  V <sub>DD2</sub> V <sub>SS</sub> V <sub>DD2</sub> V <sub>SS</sub> V <sub>DDQ</sub> |   |   | CK_t_B  V_DD2  VSS  VDD2  VSS  VDDQ  VSS                  | CK_c_B  CA2_B  VDD1  DQ12_B  DQ13_B  VSS  DQ14_B | V <sub>SS</sub> CA3_B  V <sub>SS</sub> V <sub>DDQ</sub> DQS1_c_B  DQS1_t_B  DMI1_B | CA5_B  CA4_B  RESET_n  DQ11_B  V <sub>SS</sub> DQ9_B   | , |

ZQ, ODT\_CA, RESET

LPDDR4\_B (Channel B)

LPDDR4\_A (Channel A)

Ground

Supply



# **6 Pin Description**

| Symbol                                                 | Туре      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CK_t_A, CK_c_A, CK_t_B, CK_c_B                         | Input     | Clock: CK_t and CK_c are differential clock inputs. All address, command and control input signals are sampled on positive edge of CK_t and the negative edge of CK_c. AC timings for CA parameters are referenced to clock. Each channel (A, B) has its own clock pair.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CKE0_A, CKE1_A, CKE0_B,<br>CKE1_B                      | Input     | Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is sampled at the rising edge of CK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CS0_A, CS1_A, CS0_B, CS1_B                             | Input     | Chip select: Each rank (0,1) in each channel (A, B) has its own CS signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CA[5:0]_A,<br>CA[5:0]_B                                | Input     | Command/address inputs: Provide the command and address inputs according to the command truth table. Each channel (A, B) has its own CA signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ODT_CA_A,<br>ODT_CA_B                                  | Input     | CA ODT control: The ODT_CA pin is ignored by LPDDR4X devices. CA ODT is fully controlled through MR11 and MR22. The ODT_CA pin shall be connected to a valid logic level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DQ[15:0]_A, DQ[15:0]_B                                 | I/O       | Data input/output: Bidirectional data bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DQS[1:0]_t_A, DQS[1:0]_c_A, DQS[1:0]_t_B, DQS[1:0]_c_B | I/O       | Data strobe: DQS_t and DQS_c are bidirectional differential output clock signals used to strobe data during a READ or WRITE. The data strobe is generated by the DRAM for a READ and is edge-aligned with data. The data strobe is generated by the SoC memory controller for a WRITE and is trained to precede data. Each byte of data has a data strobe signal pair. Each channel (A, B) has its own DQS_t and DQS_c strobes.                                                                                                                                                                                                                                                                                    |
| DMI[1:0]_A,<br>DMI[1:0]_B                              | I/O       | Data Mask/Data Bus Inversion: DMI is a dual use bidirectional signal used to indicate data to be masked, and data which is inverted on the bus. For data bus inversion(DBI),the DMI signal is driven HIGH when the data on the data bus is inverted, or driven LOW when the data is in its normal state. DBI can be disabled via a mode register setting. For data mask, the DMI signal is used in combination with the data lines to indicate data to be masked in a MASK WRITE command (see the Data Mask (DM) and Data Bus Inversion (DBI) sections for details). The data mask function can be disabled via a mode register setting. Each byte of data has a DMI signal. Each channel has its Own DMI signals. |
| ZQ0, ZQ1                                               | Reference | ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin shall be connected to VDDQ through a $240\Omega \pm 1\%$ resistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $V_{DDQ}, V_{DD1}, V_{DD2}$                            | Supply    | Power supplies: Isolated on the die for improved noise immunity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V <sub>SS</sub>                                        | Supply    | Ground Reference: Power supply ground reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RESET_n                                                | Input     | RESET: When asserted LOW, the RESET pin resets both channels of the die.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DNU                                                    | -         | Do not use: Must be grounded or left floating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NC                                                     | -         | No connect: Not internally connected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



# 7 Package Information







| CVALDOL | DIME    | NSION II | N MM    | DIMENSION IN IN |     |     |         |
|---------|---------|----------|---------|-----------------|-----|-----|---------|
| SYMBOL  | MIN.    | NOM.     | MAX.    | MIN.            | NO  | М.  | MAX.    |
| А       |         |          | 1.00    |                 |     | -   | 0.039   |
| A1      |         | 0.21     |         |                 | 0.0 | 80  |         |
| A2      | 0.64    | 0.70     | 0.76    | 0.025           | 0.0 | 28  | 0.030   |
| b       | 0.25    | 0.30     | 0.35    | 0.010           | 0.0 | 12  | 0.014   |
| D       | 14.40   | 14.50    | 14.60   | 0.567           | 0.5 | 71  | 0.575   |
| Е       | 9.90    | 10.00    | 10.10   | 0.390           | 0.3 | 94  | 0.398   |
| е       | C       | ).65 BS( | C.      | 0.026 BSC.      |     |     | C.      |
| e1      | C       | ).80 BS( | Э.      | 0.031 BSC.      |     |     | C.      |
| JEDEC   |         | ١        | 10-311( | REF.)/MI        | М   |     |         |
| aaa     |         |          | 0.      | 10              |     |     |         |
| bbb     |         |          | 0.      | 10              |     |     |         |
| ddd     |         |          | 0.      | 08              |     |     |         |
| eee     |         |          | 0.      | 15              |     |     |         |
| fff     |         |          | 0.      | 08              |     |     |         |
| N       | SE (mr  | m) SI    | ) (mm)  | E1 (mr          | m)  | D1  | (mm)    |
| 200     | 1.20 BS | SC. 0.9  | 75 BSC. | 8.80 BS         | SC. | 13. | 65 BSC. |



## **Input/Output Capacitance**

| Part Number  | Parameter                                          | Symbol | Min.  | Max. | Unit | Notes |
|--------------|----------------------------------------------------|--------|-------|------|------|-------|
|              | Input capacitance, CK_t and CK_c                   | CCK    | 0.5   | 0.9  | pF   |       |
|              | Input capacitance delta, CK_t and CK_c             | CDCK   | 0     | 0.09 | pF   | 3     |
|              | Input capacitance, all other input-only pins       | CI     | 0.5   | 0.9  | pF   | 4     |
| FLXC2004G-N1 | Input capacitance delta, all other input-only pins | CDI    | -0.10 | 0.10 | pF   | 5     |
| FLXC2004G-N1 | Input/output capacitance, DQ, DMI, DQS_t, DQS_c    | CIO    | 0.7   | 1.3  | pF   | 6     |
|              | Input/output capacitance delta, DQS_t, DQS_c       | CDDQS  | 0     | 0.1  | pF   | 7     |
|              | Input/output capacitance delta, DQ, DMI            | CDIO   | -0.1  | 0.1  | pF   | 8     |
|              | Input/output capacitance ZQ pin                    | CZQ    | 0     | 5.0  | pF   |       |

Notes: 1. This parameter applies to die device only (does not include package capacitance).

- 2. This parameter is not subject to production testing; It is verified by design and characterization. The capacitance is measured according to JEP147 (procedure for measuring input capacitance using a vector network analyzer), with VDD1, VDD2, VDDQ, and VSS applied; All other pins are left floating.
  - 3. Absolute value of CCK\_t CCK\_c.
  - 4. CI applies to CS, CKE, and CA[5:0].
  - 5. CDI = CI  $0.5 \times (CCK_t + CCK_c)$ ; It does not apply to CKE.
  - 6. DMI loading matches DQ and DQS.
  - 7. Absolute value of CDQS\_t and CDQS\_c.
  - 8. CDIO = CIO Average (CDQn, CDMI, CDQS\_t, CDQS\_c) in byte-lane.

### 8.1 IDD Specification Parameters and Operating Conditions

| Parameter/Condition                                                                                         | Symbol  | Power<br>Supply | Current | Notes |
|-------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|-------|
| Operating one bank active-precharge current:                                                                | IDD01   | VDD1            | TBD     |       |
| tCK=tCK(MIN);tRC=tRC(MIN); CKE is HIGH; CS is LOW between valid commands; CA bus inputs are                 | IDD02   | VDD2            | TBD     |       |
| switching; Data bus inputs are stable; ODT is disabled                                                      | IDD0Q   | VDDQ            | TBD     |       |
| Idle power-down standby current: tCK = tCK (MIN); CKE                                                       | IDD2P1  | VDD1            | TBD     |       |
| is LOW; CS is LOW; All banks are idle; CA bus inputs are                                                    | IDD2P2  | VDD2            | TBD     |       |
| switching; Data bus inputs are stable; ODT is disabled                                                      | IDD2PQ  | VDDQ            | TBD     |       |
| Idle power-down standby current with clock stop: CK_t                                                       | IDD2PS1 | VDD1            | TBD     |       |
| =LOW, CK_c = HIGH; CKE is LOW; CS is LOW; All banks are idle; CA bus inputs are stable; Data bus inputs are | IDD2PS2 | VDD2            | TBD     |       |
| stable; ODT is disabled                                                                                     | IDD2PSQ | VDDQ            | TBD     |       |
| Idle non-power-down standby current: tCK = tCK (MIN);                                                       | IDD2N1  | VDD1            | TBD     |       |



| Parameter/Condition                                                                                                | Symbol  | Power<br>Supply | Current | Notes |
|--------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|-------|
| CKE is HIGH; CS is LOW; All banks are idle; CA bus                                                                 | IDD2N2  | VDD2            | TBD     |       |
| inputs are switching; Data bus inputs are stable; ODT is disabled                                                  | IDD2NQ  | VDDQ            | TBD     |       |
| Idle non-power-down standby current with clock stopped:                                                            | IDD2NS1 | VDD1            | TBD     |       |
| CK_t = LOW; CK_c = HIGH; CKE is HIGH; CS is LOW;<br>All banks are idle; CA bus inputs are stable; Data bus inputs  | IDD2NS2 | VDD2            | TBD     |       |
| are stable; ODT is disabled                                                                                        | IDD2NSQ | VDDQ            | TBD     |       |
| Active power-down standby current: tCK = tCK (MIN);                                                                | IDD3P1  | VDD1            | TBD     |       |
| CKE is LOW; CS is LOW; One bank is active; CA bus inputs are switching; Data bus inputs are stable; ODT is         | IDD3P2  | VDD2            | TBD     |       |
| disabled                                                                                                           | IDD3PQ  | VDDQ            | TBD     |       |
| Active power-down standby current with clock stop: CK_t =                                                          | IDD3PS1 | VDD1            | TBD     |       |
| LOW, CK_c = HIGH; CKE is LOW; CS is LOW; One bank is active; CA bus inputs are stable; Data bus inputs are         | IDD3PS2 | VDD2            | TBD     |       |
| stable; ODT is disabled                                                                                            | IDD3PSQ | VDDQ            | TBD     |       |
| Active non-power-down standby current: tCK = tCK                                                                   | IDD3N1  | VDD1            | TBD     |       |
| (MIN); CKE is HIGH; CS is LOW; One bank is active; CA bus inputs are switching; Data bus inputs are stable; ODT is | IDD3N2  | VDD2            | TBD     |       |
| disabled                                                                                                           | IDD3NQ  | VDDQ            | TBD     |       |
| Active non-power-down standby current with clock stopped:                                                          | IDD3NS1 | VDD1            | TBD     |       |
| CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS is LOW;<br>One bank is active; CA bus inputs are stable; Data bus inputs  | IDD3NS2 | VDD2            | TBD     |       |
| are stable; ODT is disabled                                                                                        | IDD3NSQ | VDDQ            | TBD     |       |
| Operating burst READ current: tCK = tCK (MIN); CS is LOW between valid commands; One bank is active; BL =          | IDD4R1  | VDD1            | TBD     |       |
| 16 or 32; RL = RL(MIN); CA bus inputs are switching; 50% data change each bursttransfer;                           | IDD4R2  | VDD2            | TBD     |       |
| ODT is disabled                                                                                                    | IDD4RQ  | VDDQ            | TBD     |       |
| Operating burst WRITE current: tCK = tCK (MIN); CS is                                                              | IDD4W1  | VDD1            | TBD     |       |
| LOW between valid commands; One bank is active; BL = 16 or 32; WL = WL(MIN); CA bus inputs are switching;          | IDD4W2  | VDD2            | TBD     |       |
| 50% data change each burst transfer; ODT is disabled                                                               | IDD4WQ  | VDDQ            | TBD     |       |
| All-bank REFRESH burst current: tCK = tCK (MIN); CKE is HIGH between valid commands; tRC = tRFCab (MIN);           | IDD51   | VDD1            | TBD     |       |
| Burst refresh; CA bus inputs are switching; Data bus inputs                                                        | IDD52   | VDD2            | TBD     |       |



| Parameter/Condition                                                                                               | Symbol  | Power<br>Supply | Current | Notes |
|-------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------|-------|
| are stable; ODT is disabled                                                                                       | IDD5Q   | VDDQ            | TBD     |       |
| All-bank REFRESH average current: tCK = tCK (MIN);                                                                | IDD5AB1 | VDD1            | TBD     |       |
| CKE is High between valid commands tRC = tREFI; CA bus inputs are switching; Data bus inputs are stable; ODT is   | IDD5AB2 | VDD2            | TBD     |       |
| disabled                                                                                                          | IDD5ABQ | VDDQ            | TBD     |       |
| Per-bank REFRESH average current: tCK = tCK (MIN);                                                                | IDD5PB1 | VDD1            | TBD     |       |
| CKE is High between valid commands tRC = Trefi/8; CA bus inputs are switching; Data bus inputs are stable; ODT is | IDD5PB2 | VDD2            | TBD     |       |
| disabled                                                                                                          | IDD5PBQ | VDDQ            | TBD     |       |
| Power-down self refresh current: CK_t = LOW, CK_c =                                                               | IDD61   | VDD1            | TBD     |       |
| HIGH; CKE is LOW; CA bus inputs are stable; Data bus inputs are stable; Maximum 1x self refresh rate; ODT is      | IDD62   | VDD2            | TBD     |       |
| disabled $(25^{\circ}\text{C})$                                                                                   | IDD6Q   | VDDQ            | TBD     |       |

#### Notes:

- 1. Notes:1. Published IDD values except IDD4RQ are the maximum of the distribution of the arithmeticmean. Refer to the following note for IDD4RQ;.
- 2. IDD4RQ value is reference only. Typical value. DBI disabled, VOH = VDDQ/3, TC = 25°C.
- 3. Measurement conditions of IDD4R and IDD4W values: DBI disabled, BL = 16.

#### 8.2 Absolute Maximum DC Ratings

| Parameter                           | Symbol    | Min  | Max | Unit                   | Notes |
|-------------------------------------|-----------|------|-----|------------------------|-------|
| VDD1 supply voltage relative to VSS | VDD1      | -0.4 | 2.1 | V                      | 1     |
| VDD2 supply voltage relative to VSS | VDD2      | -0.4 | 1.5 | V                      | 1     |
| VDDQ supply voltage relative to VSS | VDDQ      | -0.4 | 1.5 | V                      | 1     |
| Voltage on any ball relative to VSS | VIN, VOUT | -0.4 | 1.5 | V                      |       |
| Storage temperature                 | TSTG      | -55  | 125 | $^{\circ}\!\mathbb{C}$ | 2     |

#### Notes:

- 1. For information about relationships between power supplies, see the Voltage Ramp and Device Initialization section.
- 2. Storage temperature is the case surface temperature on the center/top side of the device. For measurement conditions, refer to the JESD51-2 standard.

#### 8.3 Recommended DC Operating Conditions

| Symbol | Min  | Тур | Max  | DRAM                            | Unit | Notes |
|--------|------|-----|------|---------------------------------|------|-------|
| VDD1   | 1.7  | 1.8 | 1.95 | Core 1 power                    | V    | 1,2   |
| VDD2   | 1.06 | 1.1 | 1.17 | Core 2 power/Input buffer power | V    | 1,2,3 |
| VDDQ   | 0.57 | 0.6 | 0.65 | I/O buffer power                | V    | 2,3   |

#### Notes:

- 1. VDD1 uses significantly less power than VDD2.
- 2. The voltage range is for DC voltage only. DC voltage is the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz



at the DRAM package ball.

3. The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of 45mV at the DRAM ball is not included in the TdIVW.

| Symbol                | Parameter                            | Min    | Тур   | Max   | Unit | Notes |
|-----------------------|--------------------------------------|--------|-------|-------|------|-------|
| VREF(CA),max_r0       | VREF(CA) range-0 MAX operating point | -      | -     | 30%   | VDD2 | 1,11  |
| VREF(CA),min_r0       | VREF(CA) range-0 MIN operating point | 10%    | -     | -     | VDD2 | 1,11  |
| VREF(CA),max_r1       | VREF(CA) range-1 MAX operating point | -      | -     | 42%   | VDD2 | 1,11  |
| VREF(CA),min_r1       | VREF(CA) range-1 MIN operating point | 22%    | -     | -     | VDD2 | 1,11  |
| VREF(CA),step         | VREF(CA) step size                   | 0.30%  | 0.40% | 0.50% | VDD2 | 2     |
| VDEE(CA) set_tel      | VREF(CA) set tolerance               | -1.00% | 0.00% | 1.00% | VDD2 | 3,4,6 |
| VREF(CA),set_tol      | VKEF(CA) set tolerance               | -0.10% | 0.00% | 0.10% | VDD2 | 3,5,7 |
| tVREF_TIME-SHORT      |                                      | -      | -     | 100   | ns   | 8     |
| tVREF_TIME-<br>MIDDLE | VREF(CA) step time                   | -      | -     | 200   | ns   | 12    |
| tVREF_TIME-LONG       |                                      | -      | -     | 500   | ns   | 9     |
| tVREF_time_weak       |                                      | -      | -     | 1     | ms   | 13,14 |
| VREF(CA)_val_tol      | VREF(CA) valid tolerance             | -0.10% | 0.00% | 0.10% | VDD2 | 10    |

#### Notes:

- 1.  $V_{REF(CA)}$  DC voltage referenced to  $V_{DD2(DC)}$ .
- 2.  $V_{\text{REF}(CA)}$  step size increment/decrement range.  $V_{\text{REF}(CA)}$  at DC level.
- 3.  $V_{REF(CA)}$ , new =  $V_{REF(CA)}$ , old + n ×  $V_{REF(CA),step}$ ; n = number of steps; if increment, use "+"; if decrement, use "-".
- 4. The minimum value of  $V_{REF(CA)}$  setting tolerance =  $V_{REF(CA),new}$  1.0%  $\times$   $V_{DD2}$ . The maximum value of  $V_{REF(CA)}$  setting tolerance =  $V_{REF(CA),new}$  + 1.0%  $\times$   $V_{DD2}$ . For n > 4.
- 5. The minimum value of  $V_{REF(CA)}$  setting tolerance =  $V_{REF(CA),new}$  0.10% ×  $V_{DD2}$ . The maximum value of  $V_{REF(CA)}$  setting tolerance =  $V_{REF(CA),new}$  + 0.10% ×  $V_{DD2}$ . For n < 4.
- 6. Measured by recording the minimum and maximum values of the V<sub>REF(CA)</sub> output over the range, drawing a straight line between those points and comparing all other V<sub>REF(CA)</sub> output settings to that line.
- 7. Measured by recording the minimum and maximum values of the  $V_{REF(CA)}$  output across four consecutive steps (n = 4), drawing a straight line between those points and comparing all other  $V_{REF(CA)}$  output settings to that line.
- 8. Time from MRW command to increment or decrement one step size for  $V_{REF(CA)}$ .
- 9. Time from MRW command to increment or decrement  $V_{REF,min}$  to  $V_{REF,max}$  or  $V_{REF,max}$  to  $V_{REF,min}$  change across the  $V_{REF(CA)}$  range in  $V_{REF}$  voltage.
- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation.  $V_{REF}$  valid is to qualify the step times which will be characterized at the component level.
- 11. DRAM range-0 or range-1 set by MR12 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to a full range of VREF voltage within the same V<sub>REF(CA)</sub> range.
- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0b.



14.  ${}^{t}V_{REF}$ \_time\_weak covers all  $V_{REF(CA)}$  range and value change conditions are applied to  ${}^{t}V_{REF}$ \_TIME-SHORT/MIDDLE/LONG.

## 8.4 Initialization Timing Parameters

| Parameter | Min       | Max       | Unit | Comment                                                   |
|-----------|-----------|-----------|------|-----------------------------------------------------------|
| tINIT0    | -         | 20        | ms   | Maximum voltage ramp time                                 |
| tINIT1    | 200       | -         | μs   | Minimum RESET_n LOW time after completion of voltage ramp |
| tINIT2    | 10        | -         | ns   | Minimum CKE LOW time before RESET_n goes HIGH             |
| tINIT3    | 2         | -         | ms   | Minimum CKE LOW time after RESET_n goes HIGH              |
| tINIT4    | 5         | -         | tCK  | Minimum stable clock before first CKE HIGH                |
| tINIT5    | 2         | -         | μs   | Minimum idle time before first MRW/MRR command            |
| tCKb      | Note 1, 2 | Note 1, 2 | ns   | Clock cycle time during boot                              |

#### Notes:

- 1. Minimum tCKb guaranteed by DRAM test is 18ns.
- 2. The system may boot at a higher frequency than dictated by minimum tCKb. The higher boot frequency is system dependent.

## 8.5 AC Timing

#### **Clock Timing** 8.5.1

| B                                | Green le a l     | Min/   |          | Data Rate |          | I I a i i |  |
|----------------------------------|------------------|--------|----------|-----------|----------|-----------|--|
| Parameter                        | Symbol           | Max    | 1600Mbps | 3200 Mbps | 3733Mbps | Unit      |  |
| Assemble also de la comissión de | 4CV(2)           | Min    | 1250     | 625       | 535      | ps        |  |
| Average clock period             | tCK(avg)         | Max    | 100      | 100       | 100      | ns        |  |
| Average HIGH pulse               | tCH(ava)         | Min    |          | 0.46      |          | tCV(ova)  |  |
| width                            | tCH(avg)         | Max    |          | 0.54      |          | tCK(avg)  |  |
| A                                | +CI (2222)       | Min    |          | 0.46      |          |           |  |
| Average LOW pulse width          | tCL(avg)         | Max    |          | tCK(avg)  |          |           |  |
| Absolute clock period            | tCK(abs)         | Min    | tCK(     | ps        |          |           |  |
| Absolute clock HIGH              |                  | Min    |          |           |          |           |  |
| pulse<br>width                   | tCH(abs)         | Max    |          | 0.57      |          | tCK(avg)  |  |
| Absolute clock LOW pulse         |                  | Min    | 0.43     |           |          | tCK(avg)  |  |
| width                            | tCL(abs)         | Max    |          |           |          |           |  |
| Clark and all in                 | tJIT(per)allowe  | Min    | -70      | -40       | -34      |           |  |
| Clock period jitter              | d                | Max    | 70       | 40        | 34       | ps        |  |
| Maximum clock jitter             |                  |        |          |           |          |           |  |
| between two consecutive          | tJIT(cc)allowed  | Max    | 140      | 80        | 68       | ps        |  |
| clock cycles (includes           | 21 (00)4110 (00) | 111421 | 110      |           |          | Po        |  |
| clock period jitter)             |                  |        |          |           |          |           |  |



## 8.5.2 Read Output Timing

| Davameter                                   | Cymhal          | Min/   |                  | Data Rate        |          | Unit     |
|---------------------------------------------|-----------------|--------|------------------|------------------|----------|----------|
| Parameter                                   | Symbol          | Max    | 1600Mbps         | 3200Mbps         | 3733Mbps | Unit     |
| DQS output access time                      | +DOSCV          | Min    |                  | 1500             |          |          |
| from CK_t/CK_c                              | tDQSCK          | Max    |                  | 3500             |          | ps       |
| DQS output access time                      | +DOSCV          |        |                  |                  |          |          |
| from CK_t/CK_c - voltage                    | tDQSCK_<br>VOLT | Max    |                  | 7                |          | ps/mV    |
| variation                                   | VOLI            |        |                  |                  |          |          |
| DQS output access time                      | tDQSCK_         |        |                  |                  |          |          |
| from CK_t/CK_c-                             | TEMP            | Max    |                  | 4                |          | ps %C    |
| temperature variation                       | TENIF           |        |                  |                  |          |          |
| CK to DQS rank to rank                      | tDQSCK_r        |        |                  |                  |          |          |
| variation                                   | ank2rank        | Max    |                  | 1.0              |          | ns       |
| DOC 4 DOC - 4- DO -1                        |                 |        |                  |                  |          |          |
| DQS_t, DQS_c to DQ skew                     | 4D080           | Max    |                  | 0.18             |          | UI       |
| total, per group, per access (DBI Disabled) | tDQSQ           | Max    |                  | 0.18             |          | UI       |
| DQ output hold time total                   |                 |        |                  |                  |          |          |
| from DQS_t, DQS_c (DBI                      | tQH             | Min    |                  | MIN(tQSH, tQSL)  |          | no       |
| Disabled)                                   | iQH             | IVIIII | MIN ((QSH, (QSE) |                  |          | ps       |
| Data output valid window                    |                 |        |                  |                  |          |          |
| time total, per pin (DBI-                   | tQW_total       | Min    | 0.75             | 0.               | 70       | UI       |
| Disabled)                                   | tQW_total       | IVIIII | 0.70             |                  | 70       | O1       |
| DQS_t, DQS_c to DQ skew                     |                 |        |                  |                  |          |          |
| total, per group, per access                | tDQSQ_D Max     |        |                  | UI               |          |          |
| (DBI-Enabled)                               | BI              | IVIAX  | 0.18             |                  |          | OI       |
| DQ output hold time total                   |                 |        |                  |                  |          |          |
| from DQS_t, DQS_c (DBI-                     | tQH_DBI         | Min    | MINO             | tQSH_DBI, tQSL_I | DBI)     | ps       |
| Enabled)                                    | VQ11_DD1        | 1,111  |                  |                  | 221)     | P        |
| Data output valid window                    |                 |        |                  |                  |          |          |
| time total, per pin (DBI-                   | tQW_total_D     |        |                  |                  |          |          |
| Enabled)                                    | BI              | Min    | 0.75             | 0.′              | 70       | UI       |
| ,                                           |                 |        |                  |                  |          |          |
| DQS_t, DQS_c differential                   |                 |        |                  |                  |          |          |
| output LOW time (DBI-                       | tQSL            | Min    |                  | tCL(abs) - 0.05  |          | tCK(avg) |
| Disabled)                                   |                 |        |                  |                  |          |          |
| DQS_t, DQS_c differential                   |                 |        |                  |                  |          |          |
| output HIGH time (DBI-                      | tQSH            | Min    |                  | tCH(abs) - 0.05  |          | tCK(avg) |
| Disabled)                                   |                 |        |                  |                  |          |          |
| DQS_t, DQS_c differential                   |                 |        |                  |                  |          |          |
| output LOW time (DBI-                       | tQSL-DBI        | Min    |                  | tCL(abs)-0.045   |          | tCK(avg) |
| Enabled)                                    |                 |        |                  |                  |          |          |



| Dawawataw                                                | Cumhal                                                                    | Min/ |                                                                         | Data Rate                                            |          | II.u.i.b. |
|----------------------------------------------------------|---------------------------------------------------------------------------|------|-------------------------------------------------------------------------|------------------------------------------------------|----------|-----------|
| Parameter                                                | Symbol                                                                    | Max  | 1600Mbps                                                                | 3200Mbps                                             | 3733Mbps | Unit      |
| DQS_t, DQS_c differential output HIGH time (DBI-Enabled) | tQSH-DBI                                                                  | Min  | tCH(abs) – 0.045                                                        |                                                      | tCK(avg) |           |
| Read preamble                                            | tRPRE                                                                     | Min  |                                                                         | tCK(avg)                                             |          |           |
| Read postamble                                           | d postamble tRPST Min 0.4 (or 1.4 if extra postamble is programmed in MR) |      | rammed in MR)                                                           | tCK(avg)                                             |          |           |
| DQS Low-Z from clock                                     | tLZ(DQS)                                                                  | Min  | (RL x tCK)+ tDQ                                                         | (RL x tCK)+ tDQSCK(Min) - (tRPRE(Max) x tCK) - 200ps |          | ps        |
| DQ Low-Z from clock                                      | tLZ(DQ) Min (RL x tCK) + tDQSCK(Min) - 200ps                              |      | ps                                                                      |                                                      |          |           |
| DQS High-Z from clock                                    | tHZ(DQS)                                                                  | Min  | (RL x tCK) + tDQSCK(Max)+(BL/2 x tCK) + (tRPST(Max) xtCK) - 100ps       |                                                      |          | ps        |
| DQ High-Z from clock                                     | tHZ(DQ)                                                                   | Min  | $(RL \times tCK) + tDQSCK(Max) + tDQSQ(Max) + (BL/2 \times tCK) -100ps$ |                                                      | ps       |           |

## 8.5.3 Write Timing

| Davameter                              | Cumbal           | Min/   |          | Data Rate |          | Unit    |
|----------------------------------------|------------------|--------|----------|-----------|----------|---------|
| Parameter                              | Symbol           | Max    | 1600Mbps | 3200Mbps  | 3733Mbps | Unit    |
| Rx timing window total at              | TdIVW_t          | Max    | 0.22     | 0.2       | 25       | UI      |
| VdIVW voltage levels                   | otal             | IVIAX  | 0.22     | 0.2       | 23       | UI      |
| Rx timing window 1-bit toggle          | TdIVW_1-         | Max    |          | TBD       |          | UI      |
| (at VdIVW voltage levels)              | bit              | Iviax  |          | TBD       |          | O1      |
| DQ and DMI input pulse width           | TdIPW            | Min    |          | 0.45      |          | UI      |
| (at VCENT_DQ)                          | TUIFW            | IVIIII | 0.43     |           |          | UI      |
|                                        |                  | Min    |          | 200       |          |         |
| DQ-to-DQS offset                       | tDQS2DQ          |        |          |           |          | ps      |
|                                        |                  | Max    | 800      |           |          |         |
| DQ-to-DQ offset                        | tDQDQ            | Max    |          | 30        |          | ps      |
| DQ-to-DQS offset temperature variation | tDQS2DQ<br>_temp | Max    | 0.6      |           | ps/℃     |         |
| DQ-to-DQS offset voltage variation     | tDQS2DQ<br>_volt | Max    |          | 33        |          | ps/50mV |



| Dawawataw                               | Complete I             | Min/ |                                                     |          | 11!4     |          |  |
|-----------------------------------------|------------------------|------|-----------------------------------------------------|----------|----------|----------|--|
| Parameter                               | Symbol                 | Max  | 1600Mbps                                            | 3200Mbps | 3733Mbps | Unit     |  |
| DQ-to-DQS offset rank to rank variation | t DQS2DQ<br>_rank2rank | Max  |                                                     | ps       |          |          |  |
| WRITE command to first DQS              | DOGG.                  | Min  | 0.75                                                |          |          | tCK(avg) |  |
| transition                              | tDQSS                  | Max  |                                                     | 1.25     |          |          |  |
| DQS input HIGH-level width              | tDQSH                  | Min  | 0.4                                                 |          | tCK(avg) |          |  |
| DQS input LOW-level width               | tDQSL                  | Min  |                                                     | 0.4      |          |          |  |
| DQS falling edge to CK setup time       | tDSS                   | Min  | 0.2                                                 |          | tCK(avg) |          |  |
| DQS falling edge from CK hold time      | tDSH                   | Min  | 0.2                                                 |          | tCK(avg) |          |  |
| Write postamble                         | tWPST                  | Min  | 0.4 (or 1.4 if extra postamble is programmed in MR) |          | tCK(avg) |          |  |
| Write preamble                          | tWPRE                  | Min  | 1.8                                                 |          | tCK(avg) |          |  |