

Journey of The RAVEN Surgical Robotic System

Yun-Hsuan Su (Melody) University of Washington

The Future

Contents

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent Research at UW

RAVEN I (2002)

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Harsh and Remote Environments

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

- The RAVEN II
 - System
 - The Community
 - Recent research

RAVEN II Upgrades

RAVEN History

- The RAVEN II
 - System
 - The Community
 - Recent research
 at UW

RAVEN

- Link angles and base optimized for 2 arms
- Link mass: 4.6 kg

5 DoF tools

RAVEN II

- Link angles and base optimized for 4 arms
- Link mass: 2 kg
- 7 DoF Tools
- Compatible with da Vinci Instruments using Adapter.
- Simplified cable routing
- Electronics improved for reliability, compactness and performance

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

- Shared Research Platform
- A common platform
 - Community Support
 - Shared developments
 - Replication and extension of results

Scaling Up

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

RAVEN II Software Stack

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

https://github.com/uw-biorobotics/raven2

Master Interfaces

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research
 at UW

- ROS messages
 - Keyboard
 - Autonomous agents
- Interoperable Teleop Protocol (UDP)
 - Plugfest 2009: 28 unique global connections
- Human Interface devices
 - Phantom Omni (6 DOF)
 - Force Dimension (7 DoF)
 - Mimic Mantis Duo (7 DOF)
 - Entact W5D (6 DoF)
 - Surgical Cockpit (28 DOF)

Master Interfaces

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Global Research Community (late 2018)

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Ender's Game (2012)

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

More Hollywood Presence

Raven Pose Correction with ML

Haonan Peng, MS student (2017 – present)

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Raven Pose Correction with ML

Haonan Peng, MS student (2017 – present)

Camera Camera Camera Camera

RAVEN History

The RAVEN II

System

at UW

The Community

Recent research

Joint position and cable tension estimation

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW
- Mohammad Haghighipanah, PhD student (2011-2017)

Haghighipanah, Mohammad, et al. "Unscented kalman filter and 3d vision to improve cable driven surgical robot joint angle estimation." 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016.

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Joint position and cable tension estimation

Mohammad Haghighipanah, PhD student (2011-2017)

Haghighipanah, Mohammad, et al. "Unscented kalman filter and 3d vision to improve cable driven surgical robot joint angle estimation." 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016.

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Semi-Autonomous Tumor Ablation for Brain Surgery

Danying Hu, PhD student (2012-2017)

Hu, Danying, et al. "Semi-autonomous image-guided brain tumor resection using an integrated robotic system: A bench-top study." The International Journal of Medical Robotics and Computer Assisted Surgery 14.1 (2018): e1872.

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Semi-Autonomous Tumor Ablation for Brain Surgery

Hu, Danying, et al. "Semi-autonomous image-guided brain tumor resection using an integrated robotic system: A bench-top study." The International Journal of Medical Robotics and Computer Assisted Surgery 14.1 (2018): e1872.

- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Recent Research at UW:

Motion Compensation for Beating Heart

Kyle Lindgren, PhD student (2015 – present)

Figure 3.3: Perspective view of the calf heartbeat trajectory used in the test setup.

- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Recent Research at UW: Motion Compensation for Beating Heart

• Kyle Lindgren, PhD student (2015 – present)

- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Recent Research at UW:

Force Estimation from Tissue Deformation

Yun-Hsuan Su, PhD student (2016 – present)

Stage 1: 3D segmentation and reconstruction of surgical tool versus tissue

Stage 2: tissue deformation analysis and force rendering

Stage 3: Bilateral Teleoperation

Tool Segmentation with Kinematics Prior

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Yun-Hsuan Su, PhD student (2016 – present)

Su, Yun-Hsuan, Kevin Huang, and Blake Hannaford. "Real-time vision-based surgical tool segmentation with robot kinematics prior." 2018 International Symposium on Medical Robotics (ISMR). IEEE, 2018.

Multicam 3D reconstruction for Surgical cavities

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Yun-Hsuan Su, PhD student (2016 – present)

Yun-Hsuan Su, Kevin Huang, Blake Hannaford, Multicamera 3D Reconstruction of Dynamic Surgical Cavities: Camera Grouping and Pair Sequencing, International Symposium on Medical Robotics (ISMR 2019)

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Tool Segmentation with CNN & Kinematics

Fangbo Qin, visiting PhD student (2018)

SEGMENTATION PERFORMANCES WITH DATA FUSION				
Data Fusion	Segmentation	mDSC	mIOU	Time cost
Method	method	(%)	(%)	(ms)
Particle filter	ToolNet-C with DCGAN	96.0	92.9	33
	ToolNet-C with FCAE	94.4	90.4	33
	ToolNet-H [14]	94.5	90.4	29
	GBDT [10]	88.8	82.8	53
Template matching [21]	ToolNet-C with DCGAN	92.2	87.0	12
	ToolNet-C with FCAE	89.5	84.4	12
	ToolNet-H [14]	90.6	85.3	9
	GBDT [10]	86.2	81.1	32

Fangbo Qin, et al. "Surgical Instrument Segmentation for Endoscopic Vision with Data Fusion of CNN Prediction and Kinematic Pose." 2019 IEEE international conference on robotics and automation (ICRA). IEEE, 2019.

- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Recent Research at UW:

Tool Segmentation with CNN & Kinematics

Fangbo Qin, visiting PhD student (2018)

Fangbo Qin, et al. "Surgical Instrument Segmentation for Endoscopic Vision with Data Fusion of CNN Prediction and Kinematic Pose." 2019 IEEE international conference on robotics and automation (ICRA). IEEE, 2019.

- RAVEN History
- The RAVEN II
 - System
 - The Community
 - Recent research at UW

Questions

