NEWTON'S METHOD AS A DYNAMICAL SYSTEM

David Rosado Rodríguez

Facultat de Matemàtiques i Informàtica

28 de setembre de 2022

A usual problem in mathematics \longrightarrow solve f(x) = 0.

A usual problem in mathematics \longrightarrow solve f(x) = 0. Sometimes, it is not possible to find the explicit solutions \longrightarrow iterative algorithms.

A usual problem in mathematics \longrightarrow solve f(x) = 0. Sometimes, it is not possible to find the explicit solutions \longrightarrow iterative algorithms.

Newton's method in $\mathbb R$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

A usual problem in mathematics \longrightarrow solve f(x) = 0. Sometimes, it is not possible to find the explicit solutions → iterative algorithms.

Newton's method in \mathbb{R}

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

We have to choose a initial condition!!

Historical context

• Described for the first time by Isaac Newton in 1669.

Historical context

- Described for the first time by Isaac Newton in 1669.
- Multiple contributions of mathematicians as Joseph Raphson or Joseph Fourier.

Historical context

- Described for the first time by Isaac Newton in 1669.
- Multiple contributions of mathematicians as Joseph Raphson or Joseph Fourier.
- In 1870 Ernst Schröder i Arthur Cayley generalise Newton's method for a functions of complex variable, with a new goal: Global study.

Index

- Rational iteration
 - Local theory
 - Fatou and Julia sets
- Newton's method
 - Properties
 - Basin of attraction of N_p
 - ullet Numerical applications to compute roots by N_p
- Newton's method and the exponential function
 - Properties and asymptotic behaviour
 - ullet Numerical applications to compute roots by N_F
 - Numerical evidences; the cubic family

Index

- Rational iteration
 - Local theory
 - Fatou and Julia sets
- Newton's method
 - Properties
 - Basin of attraction of N_p
 - ullet Numerical applications to compute roots by N_p
- Newton's method and the exponential function
 - Properties and asymptotic behaviour
 - Numerical applications to compute roots by N_F
 - Numerical evidences; the cubic family

Rational functions and local theory

We denote $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ the Riemann sphere.

Definition

A rational function is a function of the form R(z) = P(z)/Q(z) where P and Q are polynomials.

Rational functions and local theory

We denote $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ the Riemann sphere.

Definition

A rational function is a function of the form R(z) = P(z)/Q(z) where P and Q are polynomials.

• Study of the fixed points $(f(z_0) = z_0) \longrightarrow$ easiest orbits to study.

Local theory

Theorem (linearization)

Let $z_0 \in \mathbb{C}$, U a neighborhood of z_0 i f an holomorphic function in U such that z_0 is a fixed point of f with multiplier λ , $|\lambda| \neq 0,1$. Then, there exist a conformal map $\phi: U \to W$, W neighborhood of the origin, such that conjugate f in U with the lineal function $g(w) = \lambda w$ in W.

$$\begin{array}{c|c}
U & \xrightarrow{f} & U \\
\phi \downarrow & & \downarrow \phi \\
W & \xrightarrow{g} & W
\end{array}$$

Local theory

Theorem (linearization)

Let $z_0 \in \mathbb{C}$, U a neighborhood of z_0 i f an holomorphic function in U such that z_0 is a fixed point of f with multiplier λ , $|\lambda| \neq 0,1$. Then, there exist a conformal map $\phi: U \to W$, W neighborhood of the origin, such that conjugate f in U with the lineal function $g(w) = \lambda w$ in W.

Theorem (Boettcher)

If now z_0 is a super-attracting fixed point of $f(\lambda = 0)$,

$$f(z) = z_0 + a_p(z - z_0)^p + \cdots, \qquad a_p \neq 0, p \geqslant 2.$$

Then, the same result is true with $g(w) = w^p$.

Fatou and Julia sets

Definition

Given a rational function $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, the Fatou set is:

$$\mathcal{F}(R) = \left\{ z \in \hat{\mathbb{C}} \mid \left\{ R^n \right\}_n \text{ is normal in some neighborhood of } z \right\}.$$

The Julia set is, $\mathcal{J}(R) = \hat{\mathbb{C}} \backslash \mathcal{F}(R)$.

Fatou and Julia sets

Definition

Given a rational function $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, the Fatou set is:

$$\mathcal{F}(R) = \left\{ z \in \hat{\mathbb{C}} \mid \left\{ R^n \right\}_n \text{ is normal in some neighborhood of } z \right\}.$$

The Julia set is, $\mathcal{J}(R) = \hat{\mathbb{C}} \backslash \mathcal{F}(R)$.

There are a lot of properties of these sets and lot of theory in that way!

•
$$\mathcal{J}(R) \neq \emptyset$$
.

Index

- Rational iteration
 - Local theory
 - Fatou and Julia sets
- Newton's method
 - Properties
 - Basin of attraction of N_p
 - Numerical applications to compute roots by N_p
- Newton's method and the exponential function
 - Properties and asymptotic behaviour
 - ullet Numerical applications to compute roots by N_F
 - Numerical evidences; the cubic family

Properties

Let p a polynomial, consider the Newton's method, $N_p = Id - \frac{p}{p'}$.

Properties

Let p a polynomial, consider the Newton's method, $N_p = Id - \frac{p}{p'}$.

Properties

- N_p is a rational function.
- $\alpha \in \mathbb{C}$ is a fixed point of N_p if and only if $p(\alpha) = 0$.
- If $p(\alpha) = 0$, then α is an attracting fixed point of N_p . If the root is simple, then is super-attracting.
- The infinite point is a repelling fixed point of N_p .

Properties

Let p a polynomial, consider the Newton's method, $N_p = Id - \frac{p}{p'}$.

Properties

- N_p is a rational function.
- $\alpha \in \mathbb{C}$ is a fixed point of N_p if and only if $p(\alpha) = 0$.
- If $p(\alpha) = 0$, then α is an attracting fixed point of N_p . If the root is simple, then is super-attracting.
- The infinite point is a repelling fixed point of N_p .

Corollary (Linearization and Boettcher theorem)

Let z_0 a simple root of the polynomial p. Then N_p is locally conjugate to $z \mapsto z^k$ with $k \geqslant 2$. If the root is not simple, calling m the order of the root, the algorithm is locally conjugate to $z \mapsto \frac{m-1}{m}z$.

Basin of attraction

Theorem

Let p a polynomial of degree $d \ge 2$, α a root of p. Then, $\mathcal{A}_{N_p}^*(\alpha)$, is not bounded.

Basin of attraction

Theorem

Let p a polynomial of degree $d \ge 2$, α a root of p. Then, $\mathcal{A}_{N_p}^*(\alpha)$, is not bounded.

Numerical applications

Theorem (Hubbard, Schleicher and Sutherland)

For each $d \ge 2$, exist a set S_d of $1.11d\log^2 d$ points of $\mathbb C$ as maximum, such that, for each polynomial p of degree d and for each of its roots, exist a point $s \in S_d$ in the basin of attraction of the chosen root.

$$\mathcal{S}_d = \{ (1 + \sqrt{2}) \left(\frac{d-1}{d} \right)^{\frac{2V-1}{4s}} \exp(i\frac{2\pi j}{N}) \, | \, 1 \leqslant v \leqslant s \,, \, 0 \leqslant j \leqslant N-1 \}.$$
 on $s = \lceil 0.26632 \log d \rceil$ i $N = \lceil 8.32547 d \log d \rceil$.

Examples

(a) The algorithm applied to a polynomial of degree 5. We need s=1 circles and N=67 points distributed in the circle of radius r=2.28322. Actually, we only need 46.

(b) The algorithm applied to a polynomial of degree 8. We need s=1 circles and N=139 points distributed in the circle of radius r=2.33495. Actually, we only need 107.

Index

- Rational iteration
 - Local theory
 - Fatou and Julia sets
- Newton's method
 - Properties
 - Basin of attraction of N_p
 - Numerical applications to compute roots by N_p
- Newton's method and the exponential function
 - Properties and asymptotic behaviour
 - ullet Numerical applications to compute roots by N_F
 - Numerical evidences; the cubic family

Newton's method and the exponential function

Now, we study the method applied to the function F(z) = exp(z)p(z).

Newton's method and the exponential function

Now, we study the method applied to the function F(z) = exp(z)p(z).

$$N_F(z) = z - \frac{exp(z)p(z)}{exp(z)p(z) + exp(z)p'(z)} = z - \frac{p(z)}{p(z) + p'(z)}.$$

Properties

- N_F is a rational function.
- $\alpha \in \mathbb{C}$ is a fixed point of N_F if and only if $F(\alpha) = 0$ (\iff $p(\alpha) = 0$).
- If $F(\alpha) = 0$, then α is an attracting fixed point (super-attracting) of N_F .
- The infinite point is a parabolic fixed point of N_F .

Asymptotic behaviour

Theorem

Let p be a polynomial of degree $d \geqslant 2$, α a root of F. Then $\mathcal{A}_{N_F}^*(\alpha)$, is not bounded.

Asymptotic behaviour

Theorem

Let p be a polynomial of degree d \geqslant 2, α a root of F. Then $\mathcal{A}_{N_F}^*(\alpha)$, is not bounded.

Numerical applications with N_F

Question

Can we build an algorithm to find all of the roots of a polyonmial with N_F ?

Numerical applications with N_F

Question

Can we build an algorithm to find all of the roots of a polyonmial with $N_{\rm F}$?

Applying the same algorithm at N_F (Hubbard, Schleicher and Sutherland)...

Newton's method

(a) The algorithm applied at a polynomial of degree 5 by N_p . Of the 67 initial conditions, only 46 were needed.

(b) The algorithm applied at a polynomial of degree 5 by N_p . Of the 67 initial conditions, only 29 were

New set of initial condtions

New approach

We propose the next set to find all of the roots of a polynomial with N_F :

$$\mathcal{T}_d = \{ a_d + b_d i \mid -L_d \leqslant b_d \leqslant L_d \},\,$$

where a_d is a fixed value, not "too big" and L_d follows the next condition. If $|b_d| \ge L_d$, the orbit of the initial condition $a_d + b_d i$ tends to infinite.

New set of initial condtions

New approach

We propose the next set to find all of the roots of a polynomial with N_F :

$$\mathcal{T}_d = \{a_d + b_d i \mid -L_d \leqslant b_d \leqslant L_d\},\,$$

where a_d is a fixed value, not "too big" and L_d follows the next condition. If $|b_d| \ge L_d$, the orbit of the initial condition $a_d + b_d i$ tends to infinite.

Observation

For a given polynomial, we do not have the analytic support of the existence of this line.

Examples

(a) New algorithm applied to a polynomial of degree 5 by N_F . Of the 25 initial conditions, only 17 were needed.

(b) New algorithm applied to a polynomial of degree 8. Of the 29 initial conditions, only 18 were needed.

Numerical evidences. Conclusions

$$p_a(z) = z(z-1)(z-a), \ a = \omega e^{2\pi i \theta}, 0 < w < 1, 0 \le \theta < 2\pi$$

Results

For 4000 different values of a \rightarrow success in 3997 of the cases, putting 28 initial conditions in the line.

Numerical evidences. Conclusions

$$p_a(z) = z(z-1)(z-a), \ a = \omega e^{2\pi i\theta}, 0 < w < 1, 0 \le \theta < 2\pi$$

Results

For 4000 different values of a \rightarrow success in 3997 of the cases, putting 28 initial conditions in the line.

Observations

- It is not necessary the 28 initial conditions in most cases. For a = i, only 12 are needed.
- Problem when we have two "close" roots.
- Reduction of the number of initial conditions!!

Final

Thank you!