Feature Dimension Reduction

Presented by

Chowdhury Junayed Mahmud Abrar ID - 15701059
Session 2014-2015
Department of Computer Science and Engineering,
University of Chittagong

Supervised by

Nihad Karim Chowdhury Associate Professor Department of Computer Science and Engineering University of Chittagong

Contents

- Problem Statements
- Dimension Reduction
- Motivation
- Existing Methods
- How PCA works
- Features of the Proposed System
- Methodology
- Result
- Comparison with other methods
- Limitations
- Future works

Problem Statements

Problems for training dataset with high dimension

- Visualization problem
- Work on it
- Storage problem

Dimension Reduction

Dimension Reduction (2D to 1D)

Motivation

- Projecting high-dimensional data onto 2-3 dimensions
- Convert them to data points with minimum loss of information
- Ineffectiveness of most machine learning and data mining techniques on high-dimensional data

How PCA works

Features of the Proposed System

- Modified from PCA
- Supervised Learning Method
- PCA takes always high variance dimensions. But, this method choose dimensions which is account for better accuracy
- When the training set is small, modified PCA has lower error rates than PCA
- Projected data can classify with better accuracy like LDA

Methodology

Here, K = Number of Selected Dimensions

Results

Classification Accuracy Table for some datasets by Projecting Data onto 2 Dimensions:

 Attribute	 Instance	Classification Accuracy (Without Reduction)	Classification Accuracy (Applying PCA)	Classification Accuracy (Applying Modified PCA)	Classification Accuracy (Applying LDA)
5	80	62.5%	62.5%	75.0%	75.0%
4	748	73.3%	74.6%	77.3%	77.3%
23	1000	100.0%	92.0%	99.0%	100.0%
5	10000	99.2%	98.6%	98.6%	99.1%

Comparison with other methods

Limitations

- Not a good choice for large training datasets
- For large datasets, it will take much more time for computation than PCA
- Target class is necessary to implement it.

Future works

- Reduce computation for large datasets
- With more accuracy

Thank You