Contents

1	1 Objectives	2
2	2 Notes on the Procedure	2
3	3 Set-up	2
4	4 Results	3
	4.1 Raw Data	. 3
	4.2 Calculations for Volume and moles	. 3
	4.3 Calculations for pure component	. 4
	4.3.1 Calculation for K	. 4
	4.3.2 Calculation of C_p of pure acetone	. 4
	4.4 Calculations for mixtures	
	4.4.1 Finding the values of C_p and ΔH_m	
	4.5 Error calculations	
	4.6 Plotting ΔH_m vs. x_a	
	4.7 Calculation of partial molar enthalpies	
5	5 Discussion	7

1 Objectives

The objective of this experiment is to determine:

- 1. The heat capacity of pure components and the binary solutions of water and acetone
- 2. The enthalpy of mixing by measuring the heat of mixing using an adiabatic calorimeter
- 3. The partial molar enthalpies of components and the molar enthalpies at infinite dilution

2 Notes on the Procedure

- 1. Rinse the adiabatic flask with the chemical that will be added to it.
- 2. Fill the adiabatic flask with the calculated amount of chemical and a magnetic bead, then shut the flask with the stopper including the heating coil and the heat sensor.
- 3. Start the stirrer at 500rpm and wait for the steady temperature.

Additionally for Binary Solutions:

- (a) Remove the stopper and place it in distilled water.
- (b) Fill the flask with the calculated amount of second component of the solution.
- (c) Close the flask with the stopper enclosing the heating coil and the temperature sensor after wiping the heating coil and the temperature sensor with a tissue paper.
- (d) Wait for a steady temperature.
- 4. Simulataneously start the voltmeter and the timer.
- 5. Note the time for an rise in temperature of 2 degree C.
- 6. Discard the solution safely in separately.
- 7. Repeat the same procedure for other molar binary solutions.

3 Set-up

The apparatus required for the experiment is:

- 1. Adiabatic flask
- 2. Heating element
- 3. Temperature sensor connected to the temperature display
- 4. Magnetic bead and stirrer (kept constant at around 500 rpm)
- 5. Stopwatch or Timer
- 6. Voltage and Current regulator
- 7. Measuring Cylinders
- 8. Distilled Water
- 9. Analytical grade acetone
- 10. Beaker

4 Results

4.1 Raw Data

Mole fraction (x_a)	$V_a \pmod{\mathrm{mL}}$	mass m (g)	moles (n)	T_i (°C)	T_{mi} (°C)	T_{mf} (°C)	$ \begin{array}{c c} \Delta T_m \\ (T_{mi} - T_i) \\ (^{\circ}C) \end{array} $	V (volt)	I (A)	time (s)
0	0	149.5	8.31	29.3	29.3	31.3	0	16.3	2.7	79.2
0.2	75.7	133.80	5.14	29.3	34.8	36.9	5.5	16.5	2.72	77.47
0.4	109.7	126.52	3.72	29.2	32.1	34.2	2.9	16.3	2.72	68.32
0.6	128.9	122.41	2.92	29.3	29.4	31.5	0.1	16.3	2.72	60.03
0.8	141.3	119.76	2.39	29.3	27.4	29.5	-1.9	16.3	2.72	53.43
1	150	117.9	2.01	29.1	29.3	31.4	0	16.3	2.72	46.28

Table 1: Raw Data Table

The least count errors are:

- 1. Ammeter $\Delta I = 0.01$ A
- 2. Voltmeter $\Delta V = 0.01$ V
- 3. Stopwatch $\Delta t = 0.167$ s
- 4. Mass $\Delta m = 0.1$ g
- 5. $\Delta(\Delta T_m) = 0.1 \,^{\circ}\text{C}$

Values used from literature:

- 1. Density of water = $997 \text{ kg/}m^3$
- 2. Density of acetone = 790 kg/ m^3
- 3. Heat capacity of water at 20 °C = 4.186 J/g°C

4.2 Calculations for Volume and moles

Taking the mole fraction (x_a) to be 0.2

Let, subscript a denote acetone and subscript w denote water

Total volume $V_t = 150 \text{ ml} = V_a + V_w$

$$0.2 = \frac{n_a}{n_a + n_w} \text{ and } 0.8 = \frac{n_w}{n_a + n_w}$$

$$\implies 4 = \frac{n_w}{n_a}$$

$$\implies 4 = \frac{\rho_w * V_w * M_a}{\rho_a * V_a * M_w} = \frac{\rho_w * (150 - V_a) * M_a}{\rho_a * V_a * M_w}$$

$$\implies V_a * (\rho_w * M_a + 4 * \rho_a * M_w) = \rho_w * 150 * M_a$$

$$\implies V_a = 75.7 \text{ ml}$$

4.3 Calculations for pure component

4.3.1 Calculation for K

Let, Q be the heat required to raise the temperature of the solution by 2 °C (ΔT_1)

$$Q = IVt = (m(C_p)_{water} + k)\Delta T_1$$

$$K = IVt/2 - m(C_p)_{water}$$

$$K = 1.1168 * 10^3 \pm 63.77 \text{ J per }^{\circ}\text{C}$$

4.3.2 Calculation of C_p of pure acetone

Let, Q be the heat required to raise the temperature of the solution by 2 °C (ΔT_1)

$$Q = IVt = (mC_p + k)\Delta T_1$$

Which gives
$$C_p = \frac{(IVt/2 - k)}{m} = -0.6638 \pm 0.07678 \text{ J/(g°C)}$$

4.4 Calculations for mixtures

Calculations for sample with $x_a = 0.2$

4.4.1 Finding the values of C_p and ΔH_m

Let, Q be the heat required to raise the temperature of the solution by 2 °C (ΔT_1)

$$Q = IVt = (mC_p + k)\Delta T_1$$

Which gives
$$C_p = \frac{(IVt/2 - k)}{m}$$

$$Q_m = -(mC_p + k)\Delta T = -IVT\frac{\Delta T}{2}$$

$$H_m$$
 is given by $\frac{Q_m}{n_a}$

$$H_m = -IVT \frac{\Delta T}{2n_a} = J$$
 per mole

Molarity x_a	Heat Capacity C_p (J/g°C)	Error in C_p (J/g°C)	Heat of mixing Q_m (J)	Enthalpy of mixing ΔH_m (J/mole)	Error in H_m (J/mole)
0.2	4.6461	± 0.5310	-9561.3	-1860.2	± 354.00
0.4	3.2906	± 0.3771	-4446.0	-1195.2	± 247.38
0.6	1.8813	± 0.2163	-134.7	-46.1	± 54.07
0.8	0.6863	± 0.0792	2278.0	953.2	± 215.33

Table 2: Table for plotting ΔH_m VS x_a

4.5 Error calculations

Taking values for $x_a = 0.2$

Using the least counts from before,

$$\Delta I = 0.01 \text{ A}$$

$$\Delta V = 0.01 \text{ V}$$

$$\Delta t = 0.167 \text{ sec}$$

$$\Delta m = 0.1 \text{ g}$$

$$\Delta(\Delta T) = 0.1 \text{ K}$$

$$\frac{\Delta k}{k} = \frac{\Delta I}{I} + \frac{\Delta V}{V} + \frac{\Delta t}{t} + \frac{\Delta(\Delta T)}{\Delta T} + \frac{\Delta m}{m}$$

$$\Rightarrow \frac{\Delta k}{k} = \frac{0.01}{2.72} + \frac{0.01}{16.5} + \frac{0.167}{79.2} + \frac{0.1}{2} + \frac{0.1}{149.5500} = 5.7\%$$

$$\frac{\Delta C_p}{C_p} = \frac{\Delta k}{k} + \frac{\Delta I}{I} + \frac{\Delta V}{V} + \frac{\Delta t}{t} + \frac{\Delta(\Delta T)}{\Delta T} + \frac{\Delta m}{m}$$

$$\Rightarrow \frac{\Delta C_p}{C_p} = 0.057 + \frac{0.01}{2.72} + \frac{0.01}{16.5} + \frac{0.167}{77.47} + \frac{0.1}{2} + \frac{0.1}{133.8} = 11.43\%$$

$$\frac{\Delta H_m}{H_m} = \frac{\Delta C_p}{C_p} + \frac{\Delta k}{k} + \frac{\Delta(\Delta T)}{\Delta T} + \frac{\Delta m}{m}$$

$$\Rightarrow \frac{\Delta H_m}{H_m} = 0.057 + 0.01143 + \frac{0.1}{5.5} + \frac{0.1}{133.8} = 19.03\%$$

4.6 Plotting ΔH_m vs. x_a

In this section, the plot of the molar enthalpy of mixing vs. the mole fraction of acetone is show along with a data table. The code used to plot the graph is give here.

Figure 1: H_m vs. x_a

4.7 Calculation of partial molar enthalpies

Taking the values of $H_m|_{x_1=0.5}$, $dH_m/dx_1|_{x_1=0}$, $dH_m/dx_1|_{x_1=1}$ and $dH_m/dx_1|_{x_1=1}$ from the plot.

For
$$x_1=0.5$$
,
$$H_{1p}=H_m+x_2*dH_m/dx_1|_{x_1=0}$$

$$H_{1p}=-638.5561+0.5*5680.8=2.2018~{\rm KJ~per~mole}$$

$$H_{2p}=H_m-x_1*dH_m/dx_1|_{x_1=0}$$

$$H_{2p}=-638.5561-0.5*5680.8=-3.479~{\rm KJ~per~mole}$$

For infinite dilutions,

$$H_{1\infty} = dH_m/dx_1|_{x_1=0}$$
 (as $H_m = 0$ and $x_2 = 1$)
 $H_{1\infty} = -1.9149 * 10^4$ J per mole
 $H_{2\infty} = -dH_m/dx_1|_{x_1=1}$ (as $H_m = 0$ and $x_1 = 1$)

 $H_{2\infty} = 1.2812 * 10^4 \text{ J per mole}$

5 Discussion