

Licenciatura em Engenharia Informática e de Computadores e Licenciatura em Engenharia Informática, Redes e Telecomunicações

Circuitos aritméticos e lógicos (2º Trabalho de Laboratório)

Lógica e Sistemas Digitais 2024 / 2025 inverno

10 de outubro de 2024

1 Objetivo

O objetivo deste trabalho é descrever um circuito aritmético e lógico (ALU – *Aritmetic and Logic Unit*) com base em *VHDL* estrutural, simulá-lo e implementá-lo na placa de desenvolvimento *DE10-Lite* da *Intel*. Este trabalho é obrigatório e contabilizado para a classificação prática.

2 Descrição do circuito a desenvolver

Pretende-se projetar uma unidade aritmética e lógica que realize as operações aritméticas adição (W + Y + CBi), subtração (W - Y - CBi), incremento (W + CBi) e decremento (W - CBi) e as operações de deslocamento (W >>> 1, W >> 1 e W <<< 1, e a operação lógica NAND $(\overline{W}, \overline{Y})$, sobre operandos de 4 bits. O resultado tem 4 bits e deve gerar os indicadores (flags) Carry/Borrow (CBo), Overflow (OV), Zero (Z), Greater or Equal (GE), Below or Equal (BE) e Parity (P).

As entradas e saídas do sistema, bem como as operações, estão representadas na Figura 1.

Figura 1 – Especificação da ALU a desenvolver

As entradas X e Y são os operandos de 4 bits e a entrada OP de 3 bits seleciona a operação a realizar. Para as operações aritméticas, considere que os operandos estão representados em números naturais ou relativos (inteiros sem e com sinal, respetivamente). A saída R também de 4 bits é o resultado da operação, no mesmo domínio dos operandos. As operações de deslocamento >>> (*Logical Shift Right* – LSR), >> (*Aritmetic Shift Right* – ASR) e <<< (*Logical Shift Left* – LSL) deslocam para a direita (LSR e ASR) ou para a esquerda (LSL) o valor do operando X em 1 bit na respetiva direção. As operações LSR e LSL introduzem zeros no resultado R enquanto a operação ASR introduz 1 bit com o valor do bit de sinal do operando X.

Adicionalmente, são geradas ainda as seis *flags*:

 CBo: Representa o carry de saída da operação de soma ou o borrow de saída da operação de subtração. Fica ativa quando o resultado excede o domínio dos números naturais; representa, igualmente, no âmbito das operações deslocamento (LSR, ASR e LSL), o valor do bit deslocado de X;

- OV: Fica ativa quando o resultado excede o domínio dos números relativos;
- Z: Fica ativa quando o resultado é igual a zero;
- P: Fica ativa quando o resultado tem um número ímpar de 1's;
- GE: Fica ativa quando o primeiro operando (X) é maior ou igual do que o segundo (Y + CBi), considerando-se apenas na representação de números relativos;
- BE: Fica ativa quando o primeiro operando (X) é menor ou igual do que o segundo (Y + CBi), considerando-se apenas na representação de números naturais.

Em algumas operações, o valor das *flags* não tem significado, representado na tabela da Figura 1 com o carater '-'. Nesses casos, o valor das *flags* pode assumir qualquer valor.

3 Projeto do Circuito

O circuito deverá ser implementado de acordo com o diagrama de blocos da Figura 2.

Figura 2 – Diagrama de blocos da ALU

Para o projeto da ALU deverá elaborar os seguintes passos:

- 1. Considere o módulo aritmético desenvolvido no laboratório LABc (*LABc module*);
- 2. Desenvolva e descreva em VHDL o módulo de lógica com base no módulo desenvolvido no LABb;
- 3. Desenvolva e descreva em *VHDL* o módulo *Flags* com base nas *flags* geradas pelo módulo LABc, no resultado R e na *flag* CY gerada pelo módulo de lógica para gerar as seis *flags* do circuito ALU;

- 4. Desenvolva o módulo Decoder em VHDL. Estabeleça a correspondência entre os sinais internos OP_A ... OP_F e os 3 bits de entrada OP_{2..0}. Note que vários sinais OP_A ... OP_F podem ligar ao mesmo bit de OP_{2..0};
- 5. Reúna as unidades referidas nos pontos anteriores e a unidade MUX numa entidade de topo com o nome ALU que corresponde à descrição completa da ALU;
- 6. Simule o circuito (considere o ficheiro de teste anexo ao trabalho);
- 7. Implemente o circuito na placa DE10-Lite considerando a utilização dos 10 interruptores (SW_{9..0}) para definição dos valores de entrada (X_{3..0} = SW_{3..0}, Y_{3..0} = SW_{7..4}). A operação é definida na placa pelos dois SW_{9..8} para definição dos bits OP_{1..0} e o botão de pressão 0 (BTN₀) é usado para definição do bit mais significativo de OP (OP₂ = BTN₀); O sinal Carry-In (CB_i) é definido pelo estado do botão de pressão 1 (CB_i = BTN₁).
- 8. Defina 4 combinações de entrada que servirão para testar o circuito implementado (duas para testar operações aritméticas #21 e #22 e duas para testar operações lógicas #23 e #24).
- 9. Determine para cada uma das combinações de entrada na tabela do anexo A qual o resultado esperado (resultado teórico).
- 10. Confirme o funcionamento do circuito para as combinações de entrada na tabela do anexo A registando o valor obtido no circuito (resultado experimental) e comparando com o resultado esperado (resultado teórico).

4 Relatório

Deverá apresentar um relatório do trabalho desenvolvido com a seguinte estrutura:

- 1. Capa com a indicação do curso, unidade curricular, elementos do grupo (número e nome), nome do trabalho;
- 2. Introdução: breve descrição do trabalho a desenvolver e quais os objetivos;
- 3. Análise e Projeto: descrição de todas as funções lógicas e diagramas lógicos;
- 4. Montagem laboratorial: Resultados experimentais e confirmação dos resultados teóricos;
- 5. Conclusão: comentário sobre o trabalho desenvolvido e sobre os resultados obtidos;
- 6. Anexo: Código VHDL.

										Resultado Teórico										Resultado Experimental								
#	OP	CBi	X ₍₂₎	X _(N)	X _(Z)	Y ₍₂₎	Y _(N)	Y _(Z)	R ₍₂₎	R _(N)	R _(Z)	CBo	ov	Z	P	GE	BE	R ₍₂₎	R _(N)	R _(Z)	CBo	ov	Z	P	GE	BE		
1	000	0	0000			1111																						
2	000	1	0000			1111																						
3	000	1				0101			1000																			
4	000	1	1111			1010																						
5	001	1	0000			1111																						
6	001	1	0001			0101																						
7	001	1				1010				7																		
8	010	0				1110					-1																	
9	010	1	0001											1														
10	010	1	1000						1000																			
11	010	1	0010			0101																						
12	011	0	0011			0101																						
13	011	0	1110							2																		
14	011	1	0110			0110																						
15	011	1				0111										1	1											
16	100	1	0001			1100																						
17	100	0	1101			1001																						
18	101	0	1010			1111																						
19	110	0	1001			0110																						
20	111	1	1111							11																		
21																												
22																												
23																												
24																												