Travaux pratiques – TP 18 –

Étude de la chute d'une bille en fluide visqueux

Au programme

Savoir-faire

- ♦ Choisir de façon cohérente la fréquence d'échantillonnage et la durée totale d'acquisition.
- ♦ Évaluer, par comparaison à un étalon, une longueur (ou les coordonnées d'une position) sur une image numérique et en estimer la précision.
- ♦ Enregistrer un phénomène à l'aide d'une caméra numérique et repérer la trajectoire à l'aide d'un logiciel dédié, en déduire la vitesse et l'accélération.
- ♦ Mettre en œuvre un protocole expérimental de mesure de frottements fluides.

I | Objectifs

- ♦ Reconnaître si le mouvement du centre d'inertie est rectiligne uniforme ou non.
- ♦ Reconnaitre le régime transitoire et le régime permanent. Déterminer la vitesse limite.
- \diamond Évaluer le temps caractéristique τ par deux méthodes.
- \diamond Trouver un ordre de grandeur de la viscosité η de l'huile de silicone.

II | S'approprier

Matériel

- ♦ Éprouvette contenant l'huile de silicone et des billes
- \diamond Webcam
- ♦ Ordinateur et logiciel Latispro
- ♦ Chronomètre

Données

- \diamond Bille orange : $R = 1.0 \,\mathrm{cm}$ et $m = 10.4 \,\mathrm{g}$.
- $\diamond\,$ Masse volumique de l'huile de silicone : $\rho_0 = 970\,\mathrm{kg} \cdot \mathrm{m}^{-3}.$
- $\Rightarrow g = 9.8 \,\mathrm{m \cdot s^{-2}}.$

Principe

Une éprouvette contenant un liquide visqueux sert de support à l'étude de la chute d'une bille d'acier. La bille, qui constitue le système matériel étudié, est lâchée sans vitesse initiale à l'instant t = 0.

Le système d'acquisition vidéo est assuré par une webcam couplée à un ordinateur et réglée de manière à enregistrer 20 images par seconde. La position instantanée y du centre de gravité G de la bille est repérée par l'axe vertical (Oy) orienté vers le bas, de vecteur unitaire $\overrightarrow{u_y}$.

III Analyser

On étudie le mouvement de translation d'une bille de rayon R et de masse volumique ρ dans de l'huile de silicone de viscosité η . On admettra que les actions de frottement exercées par le liquide sur la bille en mouvement à la vitesse \vec{v} sont modélisables par une force de frottement f telle que

$$\vec{f} = -6\pi \, \eta \, R \, \vec{v}$$

On dépose la bille en O sans vitesse initiale dans l'huile de silicone contenue dans une grande éprouvette. On exprimera toutes les expressions littérales en fonction de ρ_0 , η , R, m et g.

- (1) Donner les caractéristiques de la poussée d'Archimède $\overrightarrow{\Pi}$ exercée sur la bille plongeant dans l'huile de silicone.
- (2) Faire le bilan des forces exercées sur la bille plongeant dans l'huile de silicone en précisant le référentiel de travail.
- (3) Établir l'équation différentielle que vérifie la valeur de la vitesse \vec{v} du centre d'inertie de la bille, sous la forme:

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{6\pi\eta R}{m}v = g\left(1 - \frac{4\pi\rho_0 R^3}{3m}\right)$$

(4) Montrer que la vitesse de la bille tend vers une vitesse limite $v_{\rm limTheo}$ telle que :

$$v_{\text{limTheo}} = \frac{g}{6\pi\eta R} \left(m - \frac{4\pi\rho_0 R^3}{3} \right)$$

- (5) Donner l'expression de la constante de temps τ_{theo} du mouvement en fonction de m, η et R.
- (6) En déduire la forme de la solution de l'équation différentielle en v(t).

Enregistrement vidéo

Préréglages de la webcam et de la prise de vue

- 1) Ouvrir le logiciel Amcap3 dans Bureau \rightarrow Programmes Physique Chimie \rightarrow Amcap3.
- 2) Dans le menu Options :
 - ♦ Preview, pour visualiser ce qu'on voit dans la caméra. Régler la distance caméra-éprouvette pour voir uniquement la moitié supérieure de l'éprouvette. Le trait noir sur l'éprouvette aide à régler l'horizontal de la caméra. Régler l'objectif de la caméra pour que l'image soit nette (faire le point sur l'éprouvette).
 - ♦ Video capture pin : taille de sortie choisir, 640*360. Fréquence image : 20. Format : $MJPG. \rightarrow Appliquer \rightarrow OK.$
 - \diamond Video capture filter: luminosité, netteté et contraste en positions intermédiaires. \rightarrow Appliquer \rightarrow OK.
- 3) Puis dans le menu Capture :
 - \diamond Set Frame Rate : nombre d'images par seconde : 20. \rightarrow Cocher : use \rightarrow OK.

IV. Réaliser

- \diamond Set time limit : $5 \, \mathrm{s} \to \mathrm{Cocher} : \mathtt{use} \to \mathrm{OK}.$
- ♦ Start capture : dossier élève : choisir où vous mettez vos dossiers.

Enregistrement de la vidéo

Aller sur : Capture ; Start Capture : Cliquer sur OK, puis lâcher la bille juste après.

Traitement vidéo de la chute de la bille

- 1) Ouvrir le logiciel Latispro dans programmes \rightarrow discipline \rightarrow physique-chimie \rightarrow Eurosmart.
- 2) Cliquer sur la 5^e icône : lecture de séquence AVI (ressemblant à Google chrome).
- 3) Fichiers \rightarrow ouvrir le fichier avi.
- 4) Revenir à zéro pour exploiter (4^e icône en bas).
- 5) Grâce à >, choisir le début de la vidéo à exploiter (première image quand la bille commence à descendre).
- 6) Puis cliquer sur sélection de l'origine et pointer la bille, grâce à la loupe à droite.
- 7) Sélection de l'étalon : sélection de haut en bas sur la partie visible de l'éprouvette.
- 8) Indiquer la distance associée (ne pas mettre l'unité qui est le m). \rightarrow correspond à la hauteur de l'éprouvette graduée.
- 9) Sens des axes : $\downarrow \rightarrow \mid$. Sélection manuelle des points.
- 10) Viser la cible et pointer grâce au zoom à droite : pointer alors ainsi une quarantaine de positions de la bille.

Attention

Il faut **absolument** prendre plusieurs points pendant que la balle ne bouge pas; vous choisirez de couper les points inutiles plus tard.

- 11) Terminer la sélection manuelle, quand il y a assez de points.
- 12) Fermer la fenêtre. Pour exploiter, cliquer sur le signal sinusoïdal vert. Icône:

IV/B Modélisation des données

Tracé de la vitesse verticale en fonction du temps

- \diamond Traitements: \rightarrow Calculs spécifiques. \rightarrow Dérivée. \rightarrow Faire glisser y pour obtenir $v = \frac{dy}{dt}$
- \diamond Pour visualiser v = f(t), faire glisser la fonction v sur le graphe. On affichera uniquement les points sans les relier.

Modélisation de la vitesse

- Cliquer modéliser.
- \diamond Choisir le modèle sous forme $A(1 e^{-t/\tau})$ (forme théorique attendue pour la loi de vitesse d'après la partie s'approprier). On forcera $V_0 = 0$ sur le modèle. Le calculer.

- ♦ Le glisser sur la courbe en superposition.
- $\diamond\,$ Pour afficher la modélisation : Copier dans le presse papier \to Fermer \to Créer un commentaire
 - \rightarrow Coller après avoir choisi une fenêtre.

\mathbf{V}

Valider et conclure

V/A Détermination de la vitesse limite

1 Imprimer la courbe, puis déterminer la valeur expérimentale de la vitesse limite.

m V/B Détermination de la constante de temps au par deux méthodes

V/B) 1 Utilisation du temps de montée

- (7) Quelle est la valeur de la vitesse (en pourcentage de la vitesse limite v_{lim}) lorsque $t = \tau$? En déduire une méthode de détermination de τ (qui est celle du cours).
- [2] Relever τ_{exp1} .

(V/B) 2 Utilisation de la modélisation de la vitesse

- $\boxed{3}$ Déduire de la modélisation de la vitesse l'ordre de grandeur de la constante de temps τ_{exp2} , disponible dans la fenêtre de modélisation.
- 4 Calculer l'écart normalisé entre les deux valeurs expérimentales de τ . Conclure et discuter des limites de la mesure.

$\overline{ m V/C}$ Détermination de la viscosité η de l'huile de silicone

- $\boxed{5}$ Grâce à l'étude théorique de la partie S'approprier et à la valeur moyenne de $\tau_{\rm exp}$, déterminer la valeur expérimentale de la viscosité $\eta_{\rm exp}$ en précisant son unité.
- 6 La comparer à la valeur théorique de la viscosité $\eta_{\text{theo}} = 1.5 \,\text{SI}.$

V/D Détermination plus rapide de la vitesse limite sans enregistrement vidéo

- [7] Justifier que le régime transitoire ait une durée négligeable devant la durée totale de chute de la bille.
- 8 Proposer alors puis réaliser un protocole expérimental (sans enregistrement) qui permettrait de déterminer la vitesse limite en répétant les mesures 5 à 6 fois.
- 9 Partagez vos résultats de mesure avec le reste de la classe.
- En déduire une nouvelle valeur de v_{lim} , en tenant compte de vos différents mesurages et de ceux des autres groupes de la classe. Vous présenterez le résultat avec l'incertitude de type A.
- 11 Comparer à la valeur trouvée avec la modélisation.