

AutoML raport 1

Tunowalność hiperparametrów

Devid Khodak 317253 Kamil Kubiak 313293

21listopada2023

Spis treści

1	Alg	orytmy uczenia maszynowego			
	1.1	Random Forest			
	1.2	Gradient Boosting			
	1.3	Support Vector Machine			
2	Zbi	ory danych			
	2.1	Phishing Websites			
	2.2	eeg-eye-state			
	2.3	jm1			
	2.4	mozilla4			
3	Metoda Random Search				
	3.1	Opis metody			
	3.2	Optymalizacja Random Forest			
	3.3	Optymalizacja SVM			
	3.4	Optymalizacja XGBoost			
	3.5	Wyniki tunowalności algorytmów			
4	Met	toda Bayes Search			
	4.1	Optymalizacja Random Forest			
	4.2	Optymalizacja SVM			
	4.3	Optymalizacja XGBoost			
5	Por	ównanie wyników			

1 Algorytmy uczenia maszynowego

1.1 Random Forest

Random forest polega na zastosowaniu pewnej liczby niezależnie tworzonych drzew decyzyjnych. Predykcja wynikowa jest średnią z predykcji wszystkich drzew.

1.2 Gradient Boosting

Gradient boosting jest algorytmem podobnym do Random Forest z tą różnicą, że drzewa decyzyjne nie są tworzone niezależnie. Wybrana została implementacja XGBoost.

1.3 Support Vector Machine

SVM próbuje znaleźć płaszczyzne najlepiej rozdzielającą obserwacje należące do różnych klas.

2 Zbiory danych

Wszystkie zbiory danych pochodzą z bazy zbiorów danych OpenML i przeznaczone są do klasyfikacji binarnej.

2.1 Phishing Websites

Zbiór danych zawiera informacje o stronach internetowych. Features tutaj to parametry opisujące strony internetowe, takie jak długość URL, port itp. Natomiast target określa czy dana strona jest stroną uprawiającą phishing.

2.2 eeg-eye-state

Zbiór danych opisuje przebieg 117 sekundowego pomiaru podczas testu EEG (test ten wykrywa zaburzenia w aktywności mózgu). Features w tym przypadku to wyniki 14 konkretnych miar tego testu w kolejnych momentach w czasie. Natomiast target określa czy oko było w danym momencie otwarte czy zamknięte (1 - oko zamknięte, 0 - oko otwarte).

2.3 jm1

Zbiór danych zawiera informacje o kodzie narzędzia JM1. W features znajdują się kolumny opisujące długość i skomplikowanie kodu według różnych miar. Natomiast target to defects, które przyjmuje False, w przypadku, gdy wszystko działa prawidłowo, natomiast True w przeciwnym przypadku.

2.4 mozilla4

Zbiór danych zawiera informacje opisujące rozwój kodu produktu Mozilli w czasie. W features mamy kolumny, które opisują czas życia C++ klasy (powstanie, naprawianie błędu, usunięcie) oraz jej rozmiar. Natomiast target to state, który wynosi domyślnie 0, ale w przypadku gdy dana klasa miała poprawiany jakiś defekt wynosi 1.

3 Metoda Random Search

3.1 Opis metody

Metoda Random Search polega na przejrzeniu losowo wybranych zestawów hiperparametrów w celu znalezienia najlepszego.

Testy liczby iteracji do uzyskania stabilnych wyników optymalizacji przeprowadzano dla [1, 10, 20, 30, 40, 45, 50] iteracji.

3.2 Optymalizacja Random Forest

Rozważana była następująca siatka hiperparametrów:

```
• n_estimators: [50, 75, 100, 125, 150, 175, 200]
```

• max_features: ['log2', 'sqrt', None]

• max_depth: [5, 10, 15, 20, 25, None]

• min_samples_split: [2, 5, 10]

• min_samples_leaf: [1, 2, 4]

• bootstrap: [True, False]

Metoda Random Search dla algorytmu Random Forest daje stabilne wyniki po 40 iteracjach. Wyniki testów dla poszczególnych datasetów znajdują się w pliku $, random_search.ipynb''$ w sekcji Evaluate algorytmu Random Forest.

Maksymalna średnia wartość accuracy po wszystkich zbiorach danych wyniosła:

$$\theta_1^* = 0.9165127017545728,$$

dla zestawu hiperparametrów:

```
n\_estimators = 75,
min\_samples\_split = 5,
min\_samples\_leaf = 1,
max\_features = log2,
max\_depth = None,
bootstrap = False.
```

3.3 Optymalizacja SVM

Rozważana była następująca siatka hiperparametrów:

• C: [0.1, 1, 10, 100, 1000]

• gamma: [1, 0.1, 0.01, 0.001, 0.0001]

• kernel: ['rbf', 'linear', 'sigmoid']

Metoda Random Search dla algorytmu SVC daje stabilne wyniki po 30 iteracjach. Wyniki testów dla poszczególnych datasetów znajdują się w pliku , , $random_search.ipynb''$ w sekcji Evaluate algorytmu SVC.

Maksymalna średnia wartość accuracy po wszystkich zbiorach danych wyniosła:

$$\theta_2^* = 0.8133374006292702,$$

dla zestawu hiperparametrów:

$$C = 100,$$

 $gamma = 1,$
 $kernel = rbf.$

3.4 Optymalizacja XGBoost

Rozważana była następująca siatka hiperparametrów:

- gamma: [0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 5]
- \bullet learning_rate: [0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.25, 0.3]
- max_depth: [3, 5, 6, 7, 8, 9, 10]
- n_estimators: [50, 75, 100, 125, 150, 175, 200]
- reg_alpha: [0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2, 102.4, 200]
- reg_lambda: [0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2, 102.4, 200]

Metoda Random Search dla algorytmu XGBoost daje stabilne wyniki po 40 iteracjach. Wyniki testów dla poszczególnych datasetów znajdują się w pliku , , $random_search.ipynb''$ w sekcji Evaluate algorytmu XGBoost.

Maksymalna średnia wartość accuracy po wszystkich zbiorach danych wyniosła:

$$\theta_3^* = 0.9177681913688276,$$

dla zestawu hiperparametrów:

$$gamma = 0.1,$$

 $learning_rate = 0.3,$
 $max_depth = 8,$
 $n_estimators = 200,$
 $reg_alpha = 0.1,$
 $reg_lambda = 6.4.$

3.5 Wyniki tunowalności algorytmów

Do wyznaczenia tunowalności poszczególnych algorytmów korzystano z wartości θ_1^* , θ_2^* i θ_3^* . Została wybrana liczba iteracji Random Search równa 50. Jest to liczba iteracji dla której wszystkie algorytmy dają stabilne wyniki. Tunowalność algorytmu o najlepszym zestawie hiperparametrów θ_k^* , dla zestawu parametrów θ_i^k , wyznaczana była w sposób następujący:

$$d_i^k = \theta_k^* - \theta_i^k,$$

gdzie k = 1, 2, 3 oraz i = 1, 2, ..., 50. Wszystkie dane potrzebne do wyliczenia tunowalności można znaleźć w folderze , , Wyniki''. Wykresy pudełkowe tunowalności poszczególnych algorytmów zostały przedstawione na rysunku 1.

Rysunek 1: Wykresy pudełkowe tunowalności poszczególnych algorytmów

Z wykresu 1 wynika, że najbardziej tunowalny jest algorytm SVC.

4 Metoda Bayes Search

W przypadku metody Bayes Search siatki hiperparametrów dla każdego z algorytmów miały takie same górne i dolne ograniczenia, ale zawierały też wszystkie wartości pomiędzy. Przykładowo jak siatka hiperparametru P w Random Search wyglądała tak - [a,c,f,g,j,l], gdzie a najmniejszą wartością, a l największą to przy Bayes Search siatka hiperparametru P to (a, l).

4.1 Optymalizacja Random Forest

Hiperparametry	Phishing Websites	eeg-eye-state	jm1	mozilla4
$n_estimators$	185	188	50	191
$min_samples_split$	4	10	2	4
$min_samples_leaf$	2	4	1	4
$max_features$	$\log 2$	None	sqrt	$\log 2$
max_depth	25	6	5	5
bootstrap	False	True	True	True
Accuracy	0.9682496607869	0.522029372496	0.8091911764705	0.918173045995

Tabela 1: Zestawy hiperparametrów, dla których osiagane były najwyższe wyniki dla algorytmu Random Forest przy Bayes Search

4.2 Optymalizacja SVM

Hiperparametry	Phishing Websites	eeg-eye-state	jm1	mozilla4
\overline{C}	157.83879853890	0.1	223.64202820542	170.0853453339
gamma	0.04247908159416	100.0	19.9476465446	2.685839247256
kernel	${ m rbf}$	sigmoid	${ m rbf}$	rbf
Accuracy	0.9620985979194	0.522029372	0.8073529411764	0.8692827275651

Tabela 2: Zestawy hiperparametrów, dla których osiagane były najwyższe wyniki dla algorytmu SVM przy Bayes Search

4.3 Optymalizacja XGBoost

Hiperparametry	Phishing Websites	eeg-eye-state	jm1	mozilla4
gamma	0	4	3	2
$learning_rate$	0.3	0.3	0.0149967377512	0.1267551045561
max_depth	10	8	7	6
$n_estimators$	50	50	117	101
reg_alpha	0	123	39	21
reg_lambda	0	176	197	83
Accuracy	0.967526006331	0.510413885180	0.806709558823	0.933676423287

Tabela 3: Zestawy hiperparametrów, dla których osiagane były najwyższe wyniki dla algorytmu XGBoost przy Bayes Search

5 Porównanie wyników

Po głębszej analizie wyników działania metod BayesSearch i RandomSearch dochodzimy do wniosku, że z reguły dają bardzo porównywalne wyniki. Potencjalnie przemawiający na korzyść BayesSearch jest fakt, że wymagał tylko 20 iteracji w porównaniu do 50 iteracji Random Search. Warto wspomnieć, że BayesSearch spisał się znacząco gorzej w przypadku jednego datasetu (eeg-eye-state) dla algorytmów Random Forrest i XGBoost.

Rysunek 2: Wykresy pudełkowe różnicy pomiędzy θ^* , a wynikami accuracy dla wszystkich zestawów hiperparametrów każdego z algorytmów ($\theta^* - accuracy$)