Unsupervised learning

Gosia Migut

Admin stuff: schedule changes

7.1	18-10	Gosia Migut	Unsupervised Learning 1
7.2	20-10	Gosia Migut	Unsupervised Learning 2
8.1	25-10	Jesse Krijthe	Question & Answers lecture
8.2	27-10		No Lecture
9.1	1-11	Guest Lecturers	Convolutional Neural Networks & ML research in industry

Machine learning

Non-parametric

Parametric

Unlabelled data: what now?

Unsupervised learning: no labels/targets present

Unsupervised learning

- Clustering
 - Discover structures in unlabelled data
- Dimensionality reduction
 - does not use information about the labels

Clustering

Learning goals of today

- Explain what clustering is and it's applications
- Explain k-means algorithm
- Explain hierarchical clustering, single and complete link
- Pros and cons of k-means and hierarchical clustering
- Implement k-means

Clustering

- Finding natural groups in data where
 - Items within the group are close together
 - Items between groups are far apart

Historic application of clustering

- John Snow, a London physician plotted the locations of cholera deaths on a map during an outbreak in 1850s.
- The locations indicated that cases were clustered around certain intersections where there were polluted wells exposing both the problem and the solution.

Clustering applications

- Market research: find groups of similar customers
- Social networks: find communities with similar interests / characteristics

Recommender systems: find groups of users with similar ratings

What interesting clusterings / patterns can you find here? Take 3 minutes.

Clustering

- Clustering is best judged in context of application
 - Is the clustering good? If we can get some new / interesting insight from it
 - For one person a pattern is interesting, for another it's garbage

- In supervised learning: measure performance on test set, objective.
- In unsupervised learning: no clear performance measure, subjective.

What do we need for clustering?

1. Proximity measure, either

- Similarity measure $s(x_i, x_k)$: large if x_i and x_k are similar, or
- Dissimilarity (distance) measure $d(x_i, x_k)$: small if x_i and x_k are similar

Distance measure

Typically, we need to define a distance between objects first.

Euclidean:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{l} (x_i - y_i)^2}$$

Manhattan:

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{l} |x_i - y_i|$$

More similarity measures

Cosine similarity

$$s_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Pearson's correlation coefficient

$$r_{Pearson}(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - \mu_x)^T (\mathbf{y} - \mu_y)}{\|\mathbf{x} - \mu_x\| \|\mathbf{y} - \mu_y\|}$$

 and more... (for discrete features, mixed features, categorical features, ...)

What do we need for clustering?

1. Proximity measure, either

- Similarity measure $s(x_i, x_k)$: large if x_i and x_k are similar, or
- Dissimilarity (distance) measure $d(x_i, x_k)$: small if x_i and x_k are similar large d, small s large s, small d

2. Method to evaluate a clustering

Cluster evaluation (a hard problem)

- Intra-cluster cohesion (compactness):
 - Cohesion measures how near the data points in a cluster are to the cluster's mean.
 - Sum of squared errors (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
 - Separation means that different cluster means should be far away from one another.
- In most applications, expert judgments are still the key

What do we need for clustering?

- 1. Proximity measure, either
 - Similarity measure $s(x_i, x_k)$: large if x_i and x_k are similar, or
 - Dissimilarity (distance) measure $d(x_i, x_k)$: small if x_i and x_k are similar

2. Criterion function to evaluate a clustering

- 3. Algorithm to compute clustering
 - Eg. By optimizing the criterion function

Clustering techniques

Hard vs. soft

- Hard assignments: each point assigned to 1 cluster
 - K-Means
 - Hierarchical clustering
- Soft assignments: each point assigned cluster membership
 - Fuzzy C-means
 - Probabilistic mixture medels

K-means clustering

Choose k (random) seeds to be the initial centroids (cluster centers)

Assign each data point to the closest centroid

Re-compute the centroids using the current cluster memberships

If a convergence criterion is not met, repeat steps 2 and 3

If a convergence criterion is not met, repeat steps

K-means algorithm

- Given k, the k-means algorithm works as follows:
 - 1. Choose k (random) data points (seeds) to be the initial centroids, cluster centers
 - 2. Assign each data point to the closest centroid
 - 3. Re-compute the centroids using the current cluster memberships
 - 4. If a convergence criterion is not met, repeat steps 2 and 3

K-means questions

- When do we know when to stop?
- What is it trying to optimize?
- How do we choose the number of centers (k)?
- Are we sure it will terminate?
- Are we sure it will find an optimal clustering?

K-means convergence (stopping) criterion

no (or minimum) re-assignments of data points to different clusters,
 or

no (or minimum) change of centroids, or

minimum decrease in the sum of squared errors (SSE)

Sum of squared errors

Cost function (residual sum of squares, distortion, inertia, scatter,

custer within variance):

 x_6 μ_2 x_5 x_5 x_5

Small $J(C_1)$

Local optima

Random initialization

```
    For i=1 to 10000
{
        Randomly initialize k means
        Run k-means. Get centroids and means
        Compute cost function J
    }
```

- Pick clustering that gave lowest cost
- For high-dimensional data, many restarts are necessary (e.g. I = 10000)!

Choosing the number of clusters

- Inspect visually
- Known purpose
- Elbow method

Elbow method

K-means summary

- Disadvantages:
 - Finds only convex clusters ("round shapes")
 - doesn't works for: non-spherical clusters,
 clusters of different sizes, different densities, outliers
 - Sensitive to initialization
 - Can get stuck in local minima
- Advantages:
 - Very simple
 - Fast

Interpret results carefully, ideally by hand (!) or with domain knowledge

Are the patterns found interesting? Subjective.

Example exercise

Given are the following points:

and two cluster centroids:

$$\mu_1 = (1, 2), \ \mu_2 = (6, 6).$$

What is the value of the k-means cost function (SSE)?

Clustering techniques

Hierarchical clustering

Hierarchical clustering

- Selecting k is a problem of granularity
 - How course or fine-grained is the structure in the data?
 - No cluster algorithm able to pick k

- Instead of picking k find a hierarchy of structure
 - Course effects: top level contains all points
 - Fine-grained: bottom level
 one cluster per data point

Hierarchical clustering approaches

- Agglomerative (bottom-up):
 - each point starts as cluster
 - group two closest clusters
 - stop at some point

Hierarchical clustering approaches

- Divisive (top-down):
 - all points start in one cluster
 - split cluster in some sensible way
 - stop at some point

Divisive: hierarchical k-means

- Apply k-means recursively:
 - Run k-mean on the original data for k=2
 - For each of the resulting clusters run k-means with k=2

- Starting from individual observations, produce sequence of clusterings of increasing size
- At each level, two clusters chosen by criterion are merged

- Determine distances between all clusters
- 2. Merge clusters that are closest
- 3. IF #clusters>1 THEN GOTO 1

- Which clusters to start with?
- What is the distance between clusters?
- Final number of clusters?

Different merging rules

Single linkage: two nearest objects in the clusters:

$$g(R,S) = \min_{ij} \{ d(x_i, x_j) : x_i \in R, x_j \in S \}$$

Complete linkage: two most remote objects in the clusters:

$$g(R,S) = \max_{ij} \{ d(x_i, x_j) : x_i \in R, x_j \in S \}$$

Average linkage: cluster centres :

$$g(R,S) = \frac{1}{|R||S|} \sum_{ij} \{d(x_i, x_j) : x_i \in R, x_j \in S\}$$

Agglomerative clustering: how it works

- Input:
 - dataset, X: [$n \times p$], or directly:
 - dissimilarity matrix, D: [n x n]
 - linkage type

- Output:
 - dendrogram

Step 0: each object is a cluster:

Step 1:

Find the most similar pair: $\min_{(i,j)} \{d(i,j)\} = d(2,3)$

	x_1	x_2	x_3	x_4	<i>x</i> ₅
Υ 1				5.22	
κ_2	0.00			5.50	
x_3				4.81	
\mathfrak{c}_4				0.00	1.12
v ₅					0.00
x ₅					

Step 2:

Merge x_2 and x_3 into a single object, $[x_2, x_3]$;

Step 3:

Recompute D – what is the distance between $[x_2, x_3]$ and the rest?

Step 3:

Recompute D – single linkage: $d([x_2,x_3],x_1) = \min(d(x_1,x_2),d(x_1,x_3))$

Step 3:

Recompute D – complete linkage: $d([x_2,x_3],x_1) = \max(d(x_1,x_2),d(x_1,x_3))$

Step 3:

Recompute D – average linkage: $d([x_2,x_3],x_1) = mean(d(x_1,x_2),d(x_1,x_3))$

Step 3:
 Recompute *D* – single linkage:

\boldsymbol{x}_1	$[x_2,x_3]$	x_4	x_5
$x_1 \ 0.00$	1.58	5.22	4.53
$[x_2,x_3]$	0.00	4.81	4.48
x_4		0.00	1.12
<i>x</i> ₅			0.00

Repeat, step 1:

Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\} = d(4,5)$

• Repeat, step 2: Merge x_4 and x_5 into a single object, $[x_4,x_5]$;

• Repeat, step 3: Recompute *D* (single linkage):

	x_1	$[x_2,x_3]$	$[x_4,x_5]$
x_1	0.00	1.58	4.53
$[x_2,x_3]$		0.00	4.48
$[x_4,x_5]$			0.00

Repeat steps 1-3 untill a single cluster remains

Linkage and cluster shape

Question: hierarchical clustering

- Given is a dataset: (4, 10), (7,10), (4, 8), (10, 5), (11, 4), (3, 4), (9, 3), (5, 2)
- Cluster the points using agglomerative clustering
- Use single link method with Euclidean distance
- Stopping criterion: 3 clusters
- Detail your methodology, show steps and dendrogram

Hierarchical clustering summary

Pros

- Dendrogram gives overview of all possible clusterings
- Linkage type allows to find clusters of varying shapes
- Different dissimilarity measures can be used

Cons

- Computationally intensive
- Clustering limited to "hierarchical nestings"

Clusters visualized: Co-occurrence heatmap

Clusters visualized: scatterplot matrix

Clusters visualized: 2d embedding with t-SNE

Clustering summary

- We can "classify" when we don't have (training) labels: clustering
- Definition of clusters is vague and evaluation hard
- For clustering we need to :
 - define distance measure
 - define method to evaluate a clustering
 - select clustering algorithm
- Discussed clustering algorithms
 - Hierarchical clustering
 - k-means clustering

