乘法逆元

Modular Multiplicative Inverse

概念

称使得

 $ax \equiv 1 \pmod{p}$

成立的 x 为 a 在模 p 意义下的逆元。

快速幂求解

根据费马小定理, 当p是质数且a不是p的倍数时, 有:

 $a^{p-1} \equiv 1 \pmod{p}$

于是乎:

 $a\cdot a^{p-2}\equiv 1\pmod{p}$

即 a^{p-2} 是 a 在模 p 意义下的逆元。用快速幂求解。

注意: 只适用于p是质数且a不是p的倍数的情形。

扩展欧几里得算法求解

 $ax \equiv 1 \pmod{p} \iff ax + py = 1$

由贝祖定理, 当 (a,p)=1 时, 上式有解。用扩展欧几里得算法解出 x 即可。

注意: p可以不是质数, 但是 a和 p必须互质。

线性递推

Theorem: $i^{-1} \equiv -\left\lfloor \frac{p}{i} \right\rfloor \times (p \bmod i)^{-1} \pmod{p}$. Proof: 设 $p = k \times i + r$, 即 $k = \left\lfloor \frac{p}{i} \right\rfloor$, $r = p \bmod i$, 在模 p 意义下该式为 $k \times i + r \equiv 0 \pmod{p}$, 两边同时乘以 $i^{-1}r^{-1}$ 得: $k \times r^{-1} + i^{-1} \equiv 0 \pmod{p}$, 故 $i^{-1} \equiv -k \times r^{-1} \equiv -\left\lfloor \frac{p}{i} \right\rfloor \times (p \bmod i)^{-1} \pmod{p}$. 证毕。

Code:

```
int main(){
    scanf("%lld%lld", &n, &p);
    inv[1] = 1;
    printf("%lld\n", inv[1]);
    for(int i = 2; i <= n; i++){
        inv[i] = -(p / i) * inv[p % i];
        ((inv[i] %= p) += p) %= p;
        printf("%lld\n", inv[i]);
    }
    return 0;
}</pre>
```