

Poincaré Plots: A Mini-Review

Albert C.-C. Yang, MD

ReyLab, Beth Israel Deaconess Medical Center

Harvard Medical School

Dept. Psychiatry, Taipei Veterans General Hospital, Taiwan

Henri Poincaré (1854-1912)

Poincaré plot

Poincaré HRV plot is a graph in which each RR interval is plotted against next RR interval (a type of delay map)

- Synonyms
 - Scatter plot; scattergram
 - Return map; phase delay map
 - Lorenz plot

Poincaré & related plots as nonlinear tools

Visualization of higher-dimensional phase spaces in two or three-dimensional sub-spaces

uncorrelated noise

harmonic oscillation

chaotic time series with linear trend

time series generated from an AR model

Source: http://en.wikipedia.org/wiki/Recurrence_plot

Poincaré HRV plot: normal

Visualization of ectopic beats

Poincaré HRV plot: healthy vs. disease

Healthy Control

mean heart rate: 52 bpm

Critically ill Patient

mean heart rate: 51 bpm

Data Source: Taipei Veterans General Hospital, Taiwan

HRV in different stages of cancer

Early-detected cancer patient

Chemotherapy cancer patient

Hospice cancer patient

Data Source: Taipei Veterans General Hospital, Taiwan

How aging and illness may affect the geometry of Poincaré HRV plot

Data Source: Taipei Veterans General Hospital, Taiwan

Quantitative analysis of Poincaré HRV plots

Variable geometries of Poincaré HRV plots

- Ellipse fitting technique
- Histogram technique
- Correlation coefficient

Ellipse fitting technique

SD1: dispersion (standard deviation) of points perpendicular to the axis of line-of-identity

SD2: dispersion (standard deviation) of points along the axis of line-of-identity

Ellipse fitting technique – Risk Stratification in Cardiovascular Disease

Table 1. Studies of Non-Linear HRV in Cardiac Patients

Reference	Population	Results/Conclusions				
1996 [19]	95 pts with HF, HRV and Poincaré plots from 24 hr holter recordings (Ibopamine Multicenter Trial study group)	Shape of Poincaré plots independent prognostic value in pts with mild to moderate HF				
Bigger et al., 1996 [2]	(1) 715 pts with recent MI (2) 274 healthy pts (3) 19 pts with heart transplant (Multicenter Post Infarction Program)	MI or denervation of the heart causes a steeper slope and decreased height of power law slope				
	446 with MI with decreased LV function (EF<35%) F/U Alpha 1 is the most powerful predictor of mortality					
Huikuri et al., 1998 [7]	Random sample of 347 patients of >65 yrs F/U for 10 yrs	Power law slope is a more powerful predictor of death than the traditional risk markers in elderly subjects				
Kamen et al, 1995	Poincaré plot pattern to display beat to beat HRV data from 23 pts with HF and compared with 20 healthy people	Poincaré plot is a semi-quantitative tool which can be applied to the analysis of R-R interval				
Laitio et al., 2002 [22]	HRV and Poincaré plots of 40 pts with CABG	SD1/SD2 ratio is the most powerful independent predictor of postoperative ischaemia				
	32 pts aged ≥60 yrs admitted to hospital for surgical repair of traumatic hip fracture	Alpha-1 predicts post operative myocardial infarction				
	HRV in 2 groups of pts after MI (normal and reduced LVEF). Group 1: 20 pts; Group 2: 15 pts	Steeper slope of the negative regression line between power and frequency among reduced LVEF				
	38 pts with stable angina without previous MI or cardiac medication and 38 age matched healthy pts	Alpha-1 helps differentiate CAD and healthy pts				

Stein PK et al. Indian Pacing and Electrophysiology Journal 2005;5:210-220

Histogram technique

Brennan M. et al. IEEE Trans Biomed Eng 2001;48:1342-47

Do these indices actually measure nonlinear properties of heart rate dynamics

Table 3. Correlation coefficients among average HR, time and frequency domain measures, and quantitative beat-to-beat analysis of HR variability at ventilatory threshold

	HR	SDANN	SDsd	SDsd/SDANN	HF	LF	LF/HF	SD1/SD2	SD2	SD1	ApEn
HR	1.0	0.63‡	0.59‡	0.16	0.47†	0.58‡	0.51†	0.18	0.61‡	0.58‡	0.54†
SDANN SDsd		1.0	0.54† 1.0	-0.51† 0.33	0.29 0.70†	0.73‡ 0.63‡	0.78‡ 0.48†	$0.46 \dagger \\ 0.27$	0.99‡ 0.49†	0.52† 0.99‡	$-0.45* \\ -0.47\dagger$
SDsd/SDANN HF				1.0	0.20 1.0	$-0.18 \\ 0.21$	$-0.42* \\ 0.07$	0.94‡ 0.15	$-0.56^{\dagger} \\ 0.24$	0.36* 0.70‡	$0.23 \\ 0.27$
LF LF/HF						1.0	$0.90 \ddagger 1.0$	$-0.18 \\ -0.21$	$0.73 \ddagger 0.79 \ddagger$	0.62‡ 0.49†	$-0.54 \dagger \\ -0.33$
SD1/SD2							1.0	1.0	-0.52^{+}	0.31	0.27
SD2 SD1									1.0	$0.47\dagger$ 1.0	$^{-0.45*}_{-0.48\dagger}$
ApEn											1.0

Values are Pearson's correlation coefficients; n = 31. See Table 2 for definition of abbreviations. *P < 0.05; †P < 0.01; ‡P < 0.001.

Do these indices actually measure nonlinear properties of heart rate dynamics

Ellipse fitting technique

$$SD1^{2} = Var(x_{1}) = Var\left(\frac{1}{\sqrt{2}}RR_{n} - \frac{1}{\sqrt{2}}RR_{n+1}\right)$$
$$= \frac{1}{2}Var(RR_{n} - RR_{n+1}) = \frac{1}{2}SDSD^{2}.$$

$$SD2^2 = 2SDRR^2 - \frac{1}{2}SDSD^2.$$

SDRR: standard deviation of the RR intervals

SDSD: standard deviation of the successive differences of the RR intervals

Brennan M. et al. IEEE Trans Biomed Eng 2001;48:1342-47

Summary

- Advantages
 - Simple visualization tool
 - Outlier (ectopic beat or artifact) identifier
 - Possible insights into short-term and long-term variability
- Limitations
 - Derived statistics not independent of other time domain measures