MO640 - Biologia Computacional

Zanoni Dias

Instituto de Computação - Unicamp

Segundo Semestre de 2015

Roteiro

- Rearranjos de Genomas
- Genoma Mitocondrial
- 3 Distância de Reversão sem Orientação de Genes
- 4 Ordenação por Reversões sem Orientação de Genes
- 5 Problema da Ordenação de Panquecas
- 6 Breakpoints e Strips
- 🕡 Algoritmo para Ordenação por Reversões sem Orientação de Genes
- Ordenação por Reversões com Orientação de Genes
- Murdles
- Algoritmo para Ordenação por Reversões com Orientação de Genes
- 11 Ordenação por Transposições
- Ordenação por Reversões e Transposições

Rearranjos de Genomas

- Rearranjo de Genomas é a área da Biologia Computacional dedicada à comparação de genomas considerando eventos de mutação que afetam grandes porções dos genomas.
- Rearranjo de Genomas é uma forma mais adequada de comparar genomas completos do que através de mutações pontuais (inserções, remoções ou substituições).
- A comparação é realizada considerando apenas o conjunto dos blocos conservados entre os genomas.
- Um bloco conservado tipicamente representa um ou mais genes.

Principais Eventos de Mutação

- Conservativos:
 - Reversão
 - Transposição
 - Transposição Reversa
 - Fissão
 - Fusão
 - ▶ Translocação
- Não Conservativos:
 - ▶ Inserção
 - Remoção
 - Duplicação

Reversão

Transposição

Transposição Reversa

Fissão e Fusão

Translocação

Inserção, Remoção e Duplicação

Genoma Mitocondrial

- Mitocôndria é uma organela envolvida no processo de respiração celular presente na maioria dos eucariotos.
- Possui um genoma circular com aproximadamente 16kbp, com 37 genes, sendo que 13 codificam proteínas, 22 codificam RNAs transportadores e 2 codificam RNAs ribossomais.
- O genoma mitocondrial é altamente conservado em animais, mas a ordem dos genes varia bastante de espécie para espécie.

Blocos Conservados em Mitocôndrias de Artrópodes

Blocos Conservados em Mitocôndrias de Artrópodes

Distância de Reversão sem Orientação de Genes

- Nem sempre é possível conhecer os blocos conservados e a orientações dos genes de dois genomas.
- Podemos representar um genoma com n blocos conservados como uma permutação, $\pi=\pi_1\pi_2\dots\pi_n$, dos números de 1 a n.
- A reversão $\rho(i,j)$, com $1 \le i < j \le n$, reverte a ordem de $\pi[i..j]$, ou seja, $\pi \cdot \rho(i,j) = \pi_1 \pi_2 \dots \pi_{i-1} \pi_j \pi_{j-1} \dots \pi_{i+1} \pi_i \pi_{j+1} \dots \pi_{n-1} \pi_n$.
- Distância de Reversão: dados dois genomas compostos por n blocos conservados, representados pelas permutações π e σ , calcular a distância de reversão $(d(\pi,\sigma))$ entre π e σ , ou seja, obter uma série de reversões $\rho_1,\rho_2,\ldots,\rho_r$, de tamanho mínimo, tal que $d(\pi,\sigma)=r$ e $\pi\cdot\rho_1\cdot\rho_2\ldots\rho_r=\sigma$.
- Ordenação por Reversões: dado um genoma composto por n blocos conservados, representado pela permutação π , calcular a distância de reversão $(d(\pi))$ entre π e a permutação identidade $\iota=(1,2,\ldots,n)$, ou seja, $d(\pi)=d(\pi,\iota)$.

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5$$
 3 1 6 7 4 2

5 3 1 6 7 2 4

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5$$
 3 1 6 7 4 2 5 3 1 6 7 2 4

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5$$
 3 1 6 7 4 2

5 3 1 6 7 2 4

5 3 2 7 6 1 4

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 2 \quad 4$$

$$5 \quad 3 \quad 2 \quad 7 \quad 6 \quad 1 \quad 4$$

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 2 \quad 4$$

$$5 \quad 3 \quad 2 \quad 7 \quad 6 \quad 1 \quad 4$$

$$6 \quad 7 \quad 2 \quad 3 \quad 5 \quad 1 \quad 4$$

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 2 \quad 4$$

$$5 \quad 3 \quad 2 \quad 7 \quad 6 \quad 1 \quad 4$$

$$6 \quad 7 \quad 2 \quad 3 \quad 5 \quad 1 \quad 4$$

$$\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4$$

$$\pi = 5 \quad 3 \quad 1 \quad 6 \quad 7 \quad 4 \quad 2$$

$$5 \quad 3 \quad \boxed{1 \quad 6 \quad 7 \quad 2} \quad 4$$

$$\boxed{5 \quad 3 \quad 2 \quad 7 \quad 6} \quad 1 \quad 4$$

$$\boxed{6 \quad \boxed{7 \quad 2 \quad 3} \quad 5 \quad 1 \quad 4}$$

$$\boxed{\sigma = 6 \quad 3 \quad 2 \quad 7 \quad 5 \quad 1 \quad 4}$$

$$\boxed{1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 = 1}$$

Ordenação por Reversões sem Orientação de Genes

- Podemos adaptar algoritmos de ordenação para usarem apenas reversões para ordenação (sem necessariamente minimizar o número de reversões utilizadas).
- A complexidade de algoritmos de ordenação geralmente é calculada em termos do número de comparações efetuadas.
- No caso do problema da ordenação por reversões, seria interessante adaptar o algoritmo de ordenação que fizesse o menor número possível de trocas, já que as trocas de elementos devem ser transformadas em reversões.
- Entre os algoritmos de ordenação mais comumente utilizados, o Selection Sort é o único que faz no máximo O(n) trocas.

Algoritmo 1: Selection Sort using Reversals

```
Input: \pi, n
r \leftarrow 0
for i \leftarrow 1 to n-1 do
      i \leftarrow i
      while \pi_i \neq i do
        i \leftarrow i + 1
       end
      if i \neq i then
         \begin{vmatrix} r \leftarrow r + 1 \\ \pi \leftarrow \pi \cdot \rho(i, j) \end{vmatrix} 
       end
```

end

return r

- Complexidade: $O(n^2)$.
- Aproximação:
 - ▶ Considere a permutação $\pi = (n, 1, 2, ..., n-2, n-1)$.
 - ▶ O algoritmo ingênuo usa n-1 reversões para ordenar π :

*
$$\pi \leftarrow \pi \cdot \rho(1,2) = (1, n, 2, ..., n-2, n-1)$$

* $\pi \leftarrow \pi \cdot \rho(2,3) = (1, 2, n, ..., n-2, n-1)$

- ***** ...
- $\star \pi \leftarrow \pi \cdot \rho(n-2, n-1) = (1, 2, \dots, n, n-1)$
- * $\pi \leftarrow \pi \cdot \rho(n-1,n) = (1,2,\ldots,n-1,n) = \iota$
- É possivel ordenar π com apenas duas reversões:
 - $\star \pi \leftarrow \pi \cdot \rho(2, n) = (n, n-1, n-2, \dots, 2, 1)$
 - * $\pi \leftarrow \pi \cdot \rho(1, n) = (1, 2, \ldots, n-1, n) = \iota$
- Logo, o algoritmo ingênuo não garante uma aproximação melhor do que (n-1)/2.

- Dada uma pilha de panquecas circulares, ordená-las, deixando a panqueca de menor diâmetro no todo da pilha. O único movimento permitido para ordenar as panquecas é o de inserir uma espátula num ponto qualquer da pilha e inverter a ordem de todas as panquecas acima da espátula.
- Qual o número mínimo de movimentos suficientes para ordenar qualquer pilha de n panquecas?
- O Problema da Ordenação de Panquecas é equivalente o problema da Ordenação por Reversões de Prefixos, ou seja, o problema da Ordenação por Reversões onde só são permitidas reversões do tipo $\rho(1,i)$, para $2 \le i \le n$.

Algoritmo Guloso para o Problema de Ordenação de Panquecas

Algoritmo 2: Greedy Pancake Flipping Problem

```
Input: \pi, n
t \leftarrow 0
for i \leftarrow n downto 2 do
      i \leftarrow 1
       while \pi_i \neq i do
             i \leftarrow i + 1
       end
       if i \neq i then
              if i \neq 1 then
                    t \leftarrow t + 1
                     \pi \leftarrow \pi \cdot \rho(1, j)
               end
               t \leftarrow t + 1
               \pi \leftarrow \pi \cdot \rho(1, i)
       end
end
```

return t

- Complexidade: $O(n^2)$.
- O algoritmo guloso ordena qualquer pilha de n panquecas em no máximo 2n-3 movimentos.
- William Gates e Christos Papadimitriou provaram, em 1979, que (5n+5)/3 movimentos são suficientes e 17n/16 movimentos podem ser necessários para qualquer pilha de n panquecas
- Em 1997, Mohammad Heydari e Ivan Sudborough mostraram que podem ser necessários 15n/14 movimentos para ordenar uma pilha de n panquecas.
- Em 2009, Chalam Chitturi, Bill Fahle, Zhaobing Meng, Linda Morales, Charles Shields, Ivan Sudborough, e Walter Voit, pela primeira vez em 30 anos, obtiveram um limite superior melhor do que o provado por Gates e Papadimitriou: são suficientes 18n/11 movimentos para ordenar qualquer pilha de n panquecas.

- Vamos considerar a permutação estendida que pode ser obtida a partir de π inserindo-se dois novos elementos: $\pi_0 = 0$ e $\pi_{n+1} = n+1$.
- Um par de elementos π_i e π_{i+1} , para $0 \le i \le n$, é uma adjacência se $|\pi_i \pi_{i+1}| = 1$. Caso contrário, o par de elementos é chamado de breakpoint.
- Uma $strip \ \pi[i..j]$ é uma trecho maximal em π tal que todos os pares (π_k, π_{k+1}) são adjacências, para $i \leq k < j$.

- ullet O número de *breakpoints* numa permutação π é denotado por $b(\pi)$.
- A única permutação sem *breakpoints* é a permutação identidade $(b(\iota)=0)$. Logo, ordenar por reversões é equivalente a remover todos o *breakpoints* de π .
- Seja $\Delta_b(\pi,\rho)=b(\pi\cdot\rho)-b(\pi)$. Logo, $\Delta_b(\pi,\rho)\in\{-2,-1,0,1,2\}$.
- Podemos obter o seguinte limite inferior para o valor distância de reversão $(d(\pi))$, quando a orientação dos genes é desconhecida:

$$d(\pi) \geq \frac{b(\pi)}{2}$$

Definição

Uma strip $\pi[i..j]$ é chamada decrescente se e somente se a sequência π_i , π_{i+1} , ..., π_{j-1} , π_j for decrescente. As strips unitárias são definidas como decrescentes, com exceção das strips formadas por π_0 e π_{n+1} que são sempre crescentes.

Teorema

Se o elemento k pertence a uma strip decrescente e o elemento k-1 pertence a uma strip crescente, então existe uma reversão ρ tal que $\Delta_b(\pi,\rho)<0$.

Lema

Seja π uma permutação com pelo menos uma strip decrescente. Então, existe uma reversão ρ tal que $\Delta_b(\pi,\rho) < 0$.

Remoção de Pelo Menos Um Breakpoint com Auxílio de uma Strip Decrescente

Teorema

Seja π uma permutação que possui uma única strip decrescente. Se todas as reversões ρ que removem breakpoints de π não deixam nenhuma strip decrescente em $\pi \cdot \rho$, então existe uma reversão ρ tal que $\Delta_b(\pi,\rho) = -2$.

Lema

Seja π uma permutação com pelo menos uma strip decrescente. Seja k o menor elemento entre todas as strips decrescentes de π e seja l o maior elemento entre todas as strips decrescentes de π . Seja ρ_k a reversão que posiciona k ao lado de k-1, e seja ρ_l a reversão que posiciona l ao lado de l+1. Se tanto $\pi \cdot \rho_k$ quanto $\pi \cdot \rho_l$ não possuírem nenhuma strip decrescente, então $\rho_k = \rho_l$ e $\Delta_b(\pi,\rho) = -2$.

Remoção de Dois Breakpoints ao Destruir a Última Strip Decrescente

Algoritmo para Ordenação por Reversões sem Orientação de Genes

Algoritmo 3: Greedy Sorting by Reversal

```
Input: \pi, n
r \leftarrow 0
while \pi \neq \iota do
      if \pi has a decreasing strip then
            k \leftarrow the smallest element in all decreasing strips
            \rho \leftarrow the reversal that cuts after k and after k-1
            if \pi \cdot \rho has no decreasing strip then
                  I \leftarrow the largest element in all decreasing strips
                  \rho \leftarrow the reversal that cuts before \mathit{I} and before \mathit{I}+1
            end
      end
      else
            \rho \leftarrow the reversal that cuts the first two breakpoints
      end
      \pi \leftarrow \pi \cdot \rho
      r \leftarrow r + 1
end
return r
```

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{8} \bullet \overrightarrow{5} \quad \overrightarrow{6} \bullet \overrightarrow{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = 0 \quad \boxed{3 \quad 4} \quad \boxed{1 \quad 2} \quad \boxed{7 \quad 8} \quad \boxed{5 \quad 6} \quad \boxed{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = 0 \quad \boxed{3 \quad 4} \quad \boxed{1 \quad 2} \quad \boxed{7 \quad 8} \quad \boxed{5 \quad 6} \quad \boxed{9}$$

$$\boxed{0 \quad 4 \quad 3 \quad \boxed{1 \quad 2} \quad \boxed{7 \quad 8} \quad \boxed{5 \quad 6} \quad \boxed{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \bullet \overrightarrow{4} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overleftarrow{4} \bullet \overrightarrow{3} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \bullet \overrightarrow{4} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overleftarrow{4} \bullet \overrightarrow{3} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overleftarrow{4} \bullet \overrightarrow{3} \bullet \overrightarrow{2} \bullet \overrightarrow{1} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \bullet \overrightarrow{4} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{6} \bullet \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overleftarrow{4} \bullet \overrightarrow{3} \bullet \overrightarrow{1} \bullet \overrightarrow{2} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{6} \bullet \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overleftarrow{4} \bullet \overrightarrow{3} \bullet \overrightarrow{2} \bullet \overrightarrow{1} \bullet \overrightarrow{7} \bullet \overrightarrow{8} \bullet \overrightarrow{5} \bullet \overrightarrow{6} \bullet \overrightarrow{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = 0 \quad \boxed{3} \quad \boxed{4} \quad \boxed{1} \quad 2 \quad \boxed{7} \quad \boxed{8} \quad \boxed{5} \quad \boxed{6} \quad \boxed{9}$$

$$0 \quad \boxed{4} \quad \boxed{3} \quad \boxed{1} \quad \boxed{2} \quad \boxed{7} \quad \boxed{8} \quad \boxed{5} \quad \boxed{6} \quad \boxed{9}$$

$$0 \quad \boxed{4} \quad \boxed{3} \quad \boxed{2} \quad \boxed{1} \quad \boxed{7} \quad \boxed{8} \quad \boxed{5} \quad \boxed{6} \quad \boxed{9}$$

$$0 \quad \boxed{8} \quad \boxed{7} \quad \boxed{1} \quad \boxed{2} \quad \boxed{3} \quad \boxed{4} \quad \boxed{5} \quad \boxed{6} \quad \boxed{9}$$

$$\mathfrak{l} = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$\pi = \overrightarrow{0} \quad \overrightarrow{3} \quad \overrightarrow{4} \quad \overrightarrow{1} \quad \overrightarrow{2} \quad \overrightarrow{7} \quad \overrightarrow{8} \quad \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{4} \quad \overrightarrow{3} \quad \overrightarrow{1} \quad \overrightarrow{2} \quad \overrightarrow{7} \quad \overrightarrow{8} \quad \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{4} \quad \overrightarrow{3} \quad \overrightarrow{2} \quad \overrightarrow{1} \quad \overrightarrow{7} \quad \overrightarrow{8} \quad \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{8} \quad \overrightarrow{7} \quad \overrightarrow{1} \quad \overrightarrow{2} \quad \overrightarrow{3} \quad \cancel{4} \quad 5 \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\iota = \overline{0} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

- Complexidade: $O(n^2)$.
- O algoritmo ordena qualquer permutação usando, no máximo, $b(\pi)$ reversões.
- Sendo assim, temos que:

$$\frac{b(\pi)}{2} \le d(\pi) \le b(\pi)$$

logo, o algoritmo guloso é um algoritmo de aproximação com fator:

$$\frac{b(\pi)}{\frac{b(\pi)}{2}} = 2.$$

$$\pi = \overline{0} \bullet \overline{3} \quad \overline{4} \bullet \overline{1} \quad \overline{2} \bullet \overline{7} \quad \overline{8} \bullet \overline{5} \quad \overline{6} \bullet \overline{9} \bullet \overline{7}$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad 4 \bullet \overrightarrow{1} \quad 2 \bullet \overrightarrow{7} \quad 8 \bullet \overrightarrow{5} \quad 6 \rightarrow 9$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{8} \bullet \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \bullet \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{6} \quad \overrightarrow{5} \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad 4 \bullet \overrightarrow{1} \quad 2 \bullet \overrightarrow{7} \quad \overrightarrow{8} \bullet \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{3} \quad 4 \bullet \overrightarrow{1} \quad 2 \bullet \overrightarrow{7} \quad 6 \quad 5 \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{8} \bullet \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{6} \quad \overrightarrow{5} \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{1} \bullet \overrightarrow{4} \quad \overrightarrow{3} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{6} \quad \overrightarrow{5} \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\pi = \overrightarrow{0} \bullet \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{8} \bullet \overrightarrow{5} \quad \overrightarrow{6} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{3} \quad \overrightarrow{4} \bullet \overrightarrow{1} \quad \overrightarrow{2} \bullet \overrightarrow{7} \quad \overrightarrow{6} \quad \overrightarrow{5} \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\overrightarrow{0} \quad \overrightarrow{1} \quad \cancel{4} \quad \overrightarrow{3} \quad \overrightarrow{2} \quad \cancel{7} \quad \overrightarrow{6} \quad \overrightarrow{5} \quad \bullet \overrightarrow{8} \quad \overrightarrow{9}$$

$$\pi = 0 \cdot 3 \quad 4 \cdot 1 \quad 2 \cdot 7 \quad 8 \cdot 5 \quad 6 \quad 9$$

$$0 \cdot 3 \quad 4 \cdot 1 \quad 2 \cdot 7 \quad 6 \quad 5 \cdot 8 \quad 9$$

$$0 \quad 1 \cdot 4 \quad 3 \quad 2 \cdot 7 \quad 6 \quad 5 \cdot 8 \quad 9$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \cdot 7 \quad 6 \quad 5 \cdot 8 \quad 9$$

$$1 = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

Principais Resultados para Distância de Reversão sem Orientação dos Genes

- John Kececioglu e David Sankoff, em 1995, apresentaram o algoritmo guloso com fator de aproximação 2 e conjecturaram que o problema de distância de reversão sem orientação é NP-Difícil.
- Vineet Bafna e Pavel Pevzner, em 1996, apresentaram um algoritmo com fator de aproximação 1.75.
- Alberto Caprara, em 1997, provou que o problema da distância de reversão sem orientação é NP-Difícil.
- David Christie, em 1998, apresentou um algoritmo com fator de aproximação 1.5.
- Piotr Berman e Marek Karpinski, em 1999, provaram que o problema da distância de reversão sem orientação é \mathcal{MAX} - \mathcal{SNP} -Difícil.
- Piotr Berman, Sridhar Hannenhalli e Marek Karpinski, em 2002, apresentaram um algoritmo com fator de aproximação 1.375.

Ordenação por Reversões sem Orientação dos Genes com o Número Mínimo de Reversões Imposto pelo Limite Inferior de Breakpoints

- John Kececioglu e David Sankoff, em 1995, conjecturaram que o problema de decidir se uma permutação π pode ser ordenada usando exatamente $b(\pi)/2$ reversões é um problema \mathcal{NP} -Difícil.
- Nicholas Tran, em 1997, provou que é possível decidir se uma permutação π pode ser ordenada usando exatamente $b(\pi)/2$ reversões, em tempo $O(n^2 \log n)$. O algoritmo de decisão proposto é construtivo, então, em caso afirmativo, ele exibe a sequência de reversões que ordena π .

Breakpoints e Strips para Ordenação de Panquecas

- Para o problema de Ordenação de Panquecas, definimos breakpoints $(b_p(\pi))$ e strips da mesma forma que para o problema da Distância de Reversão sem Orientação dos Genes, com uma única diferença:
 - O par (\(\pi_0, \pi_1\)) será sempre considerado um breakpoint, já que qualquer modificação na pilha de panquecas envolve uma "quebra" entre estas duas posições.
- Logo, a única permutação com apenas um *breakpoint* é a permutação identidade ($b_p(\iota) = 1$).
- Seja $\Delta_{b_p}(\pi,\rho)=b_p(\pi\cdot\rho)-b_p(\pi)$. Então, $\Delta_{b_p}(\pi,\rho)\in\{-1,0,1\}$.
- É possível obter um limite inferior para o número de movimentos necessários para ordenar uma pilha de panquecas $(d_p(\pi))$, com base no número de *breakpoints* de uma permutação π :

$$d_p(\pi) \geq b_p(\pi) - 1$$

Algoritmos de Aproximação para Ordenação de Panquecas

Exercício

Mostre que o algoritmo guloso para o problema de Ordenação de Panquecas é um algoritmo de 4-aproximação.

Exercício

Mostre um algoritmo de 3-aproximação para o problema de Ordenação de Panquecas.

 Em 2005, Johannes Fischer e Simon Ginzinger mostraram um algoritmo de 2-aproximação para o problema de Ordenação de Panquecas.

Ordenação por Reversões com Orientação de Genes

- Podemos representar um genoma com n blocos conservados com orientação dos genes conhecidas como uma permutação com sinais, $\pi = \pi_1 \pi_2 \dots \pi_n$, com $\pi_i \in \{-1, -2, \dots, -n, +1, +2, \dots, +n\}$, de tal forma que $|\pi_i| \neq |\pi_j|$, para $1 \leq i < j \leq n$.
- A reversão $\rho(i,j)$, com $1 \le i \le j \le n$, reverte a ordem de $\pi[i..j]$ e os sinais de todos os elementos pertencentes a este intervalo.
- Distância de Reversão: dados dois genomas compostos por n blocos conservados, representados pelas permutações com sinais π e σ , calcular a distância de reversão $(d(\pi,\sigma))$ entre π e σ , ou seja, obter uma série de reversões $\rho_1,\rho_2,\ldots,\rho_r$, de tamanho mínimo, tal que $d(\pi,\sigma)=r$ e $\pi\cdot\rho_1\cdot\rho_2\ldots\rho_r=\sigma$.
- Ordenação por Reversões: dado um genoma composto por n blocos conservados, representado pela permutação com sinais π , calcular a distância de reversão $(d(\pi))$ entre π e a permutação identidade $\iota = (+1, +2, \ldots, +n)$, ou seja, $d(\pi) = d(\pi, \iota)$.

$$((((+1,-5,+4,-3,+2)\cdot \rho(2,2))\cdot \rho\ (5,5))\cdot \rho(2,5))=\iota$$

Breakpoints e Permutação Reduzida

Definição

Um par de elementos π_i e π_{i+1} , para $0 \le i \le n$, é uma adjacência se $\pi_{i+1} - \pi_i = 1$. Caso contrário, o par de elementos é chamado de breakpoint.

Definição

Uma permutação π é chamada reduzida se ela não contém adjacências.

Permutação Reduzida

Reversão Orientada

Definição

Um par orientado (π_i, π_j) é um par de elementos de π , tal que i < j, $||\pi_i| - |\pi_j|| = 1$ e $\pi_i \times \pi_j < 0$.

Definição

A pontuação de uma reversão ρ em relação a π , representada por score (π, ρ) , é o numero de pares orientados em $\pi \cdot \rho$.

Definição

Seja (π_i, π_j) um par orientado. Logo, as seguintes reversões são chamadas orientadas:

- $\rho(i, j-1)$, se $\pi_i + \pi_j = +1$.
- $\rho(i+1, j)$, se $\pi_i + \pi_i = -1$.

$$\pi = +0 \bullet +2 \bullet -1 \bullet +4 \bullet -6 \bullet -3 \bullet +7 \bullet -5 \bullet +8$$

$$(+0, -1) \Rightarrow \rho(1,2) \qquad (+4, -3) \Rightarrow \rho(3,4)$$

$$(+2, -1) \Rightarrow \rho(1,1) \qquad (+4, -5) \Rightarrow \rho(4,7)$$

$$(+2, -3) \Rightarrow \rho(2,5) \qquad (-6, +7) \Rightarrow \rho(4,5)$$

$$\pi = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$(+0, -1) \Rightarrow \rho(1, 2)$$

$$\operatorname{score}(\pi, \rho) = 4$$

$$\pi \cdot \rho = +0 +1 \cdot -2 \cdot +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$(+2, -1) \Rightarrow \rho(1, 1)$$

$$score(\pi, \rho) = 4$$

$$\pi \cdot \rho = +0 -2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi = +0 \cdot +2 \cdot -1 \cdot +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$(+4, -5) \Rightarrow \rho(4,7)$$

$$\operatorname{score}(\pi, \rho) = 4$$

$$\pi \cdot \rho = +0 \cdot +2 \cdot -1 \cdot +4 \cdot +5 \cdot -7 \cdot +3 \cdot +6 \cdot +8$$

$$\pi = +0 \bullet +2 \bullet -1 \bullet +4 \bullet -6 \bullet -3 \bullet +7 \bullet -5 \bullet +8$$

$$(-6, +7) \Rightarrow \rho(4,5)$$

$$\operatorname{score}(\pi, \rho) = 4$$

$$\pi \cdot \rho = +0 \bullet +2 \bullet -1 \bullet +4 \bullet +3 \bullet +6 +7 \bullet -5 \bullet +8$$

Lema

Uma reversão ρ é orientada em relação a π se e somente se $\Delta_b(\pi,\rho) < 0$.

Teorema

Seja $\pi^{(i)}$ uma permutação que contém pelo menos um par orientado. Seja ρ_i uma reversão orientada de score máximo em relação a $\pi^{(i)}$. Defina $\pi^{(i+1)}$ como $\pi^{(i+1)} = (\pi^{(i)} \cdot \rho_i)$. Seja $\pi^{(1)}$, $\pi^{(2)}$, ..., $\pi^{(k)}$ uma série maximal de permutações gerada a partir de $\pi^{(0)}$. Logo $\pi^{(k)}$ é formada apenas por elementos positivos e $d(\pi^{(0)},\pi^{(k)})=k$.

Ordenação Usando Apenas Pares Ordenados

$$\pi^{(0)} = +0 \bullet +2 \bullet -1 \bullet +4 \bullet -6 \bullet -3 \bullet +7 \bullet -5 \bullet +8$$

$$\pi^{(0)} = +0$$
 $+2 \cdot -1$ $+4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(0)} = +0$$
 $+2 \cdot -1$ $+4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 \cdot -7 \cdot +3 \cdot +6 \cdot +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 \cdot -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 \cdot -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 \cdot -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 \cdot -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(4)} = +0 +1 +2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(4)} = +0 +1 +2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 \quad +2 \cdot -1 \quad +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 \quad +1 \cdot -2 \cdot +4 \quad -6 \cdot -3 \cdot +7 \cdot -5 \quad +8$$

$$\pi^{(2)} = +0 \quad +1 \cdot -2 \cdot +4 \quad +5 \quad -7 \cdot +3 \cdot +6 \quad +8$$

$$\pi^{(3)} = +0 \quad +1 \quad -2 \cdot +4 \quad +5 \cdot -6 \cdot -3 \cdot +7 \quad +8$$

$$\pi^{(4)} = +0 \quad +1 \quad +2 \quad +4 \quad +5 \cdot -6 \quad -3 \cdot +7 \quad +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(4)} = +0 +1 +2 \cdot +4 +5 \cdot -6 -3 \cdot +7 +8$$

$$\pi^{(5)} = +0 +1 +2 \cdot +6 \cdot -5 -4 -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 +2 \cdot -1 +4 \cdot -6 \cdot -3 \cdot +7 \cdot -5 \cdot +8$$

$$\pi^{(1)} = +0 +1 \cdot -2 \cdot +4 +5 -6 \cdot -3 \cdot +7 \cdot -5 +8$$

$$\pi^{(2)} = +0 +1 \cdot -2 \cdot +4 +5 -7 \cdot +3 \cdot +6 +8$$

$$\pi^{(3)} = +0 +1 -2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(4)} = +0 +1 +2 \cdot +4 +5 \cdot -6 \cdot -3 \cdot +7 +8$$

$$\pi^{(5)} = +0 +1 +2 \cdot +6 \cdot -5 -4 -3 \cdot +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(6)} = +0 +1 +2 +3 +4 +5 -6 +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(6)} = +0 +1 +2 +3 +4 +5 -6 +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(6)} = +0 +1 +2 +3 +4 +5 -6 +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 +3 +7 +8$$

$$\pi^{(6)} = +0 +1 +2 +3 +4 +5 -6 +7 +8$$

$$\pi^{(7)} = +0 +1 +2 +3 +4 +5 +6 +7 +8$$

$$\pi^{(0)} = +0 +2 -1 +4 -6 -3 +7 -5 +8$$

$$\pi^{(1)} = +0 +1 -2 +4 -6 -3 +7 -5 +8$$

$$\pi^{(2)} = +0 +1 -2 +4 +5 -7 +3 +6 +8$$

$$\pi^{(3)} = +0 +1 -2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(4)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(5)} = +0 +1 +2 +4 +5 -6 -3 +7 +8$$

$$\pi^{(6)} = +0 +1 +2 +3 +4 +5 -6 +7 +8$$

$$1 = +0 +1 +2 +3 +4 +5 +6 +7 +8$$

Hurdles

Definição

Seja π uma permutação reduzida formada apenas por elementos positivos (logo, sem pares orientados). Suponha que π foi estendida, com $\pi_0=0$ e $\pi_{n+1}=n+1$, e circularizada, considerando que o elemento 0 é consecutivo ao elemento n+1. Um framed interval em π é um intervalo da forma i π_{j+1} π_{j+2} ... π_{j+k-1} i+k, tal que todos inteiros entre i e i+k pertencem ao intervalo [i..i+k] (considerado de forma circular).

Definição

Seja π uma permutação reduzida formada apenas por elementos positivos. Um hurdle em π é um framed interval que não contém outros framed intervals.

Hurdles

Hurdles

Definição

A posição do elemento j na permutação π é indicada por π_j^{-1} .

Definição

Uma reversão ρ corta um hurdle i π_{j+1} π_{j+2} ... i+1... π_{j+k-1} i+k se $\rho = \rho(\pi_i^{-1}+1,\pi_{i+1}^{-1}-1)$, ou seja, se reverte os elementos entre i e i+1.

Definição

Uma reversão ρ une dois hurdles $i \dots i + k \dots i' \dots i' + k'$ da permutação π se $\rho = \rho(\pi_{i+k}^{-1}, \pi_{i'}^{-1})$, ou seja, se reverte os elementos entre i + k e i' (inclusive ambos).

Definição

Um hurdle é chamado de simples se quando cortado o número de hurdles diminui. Caso constrário, o hurdle é chamado de super.

Cutting Hurdles × Merging Hurdles

Cutting Hurdles

Merging Hurdles

Algoritmo para Ordenação por Reversões com Orientação de Genes

Algoritmo 4: Optimal Sorting by Reversal

```
Input: \pi, n
r \leftarrow 0
while \pi \neq \iota do
     if \pi has a oriented pair then \rho \leftarrow the reversal that has maximal score else
           if \pi has 2k hurdles then
                if \pi has 2 hurdles then \rho \leftarrow the reversal that merges the two hurdles
                else \rho \leftarrow any reversal that merges two non-consecutives hurdles
           end
           else if \pi has only one hurdle then \rho \leftarrow the reversal that cuts the hurdle else
                 if \pi has a simple hurdle then \rho \leftarrow any reversal that cuts a simple hurdle else
                      if \pi has 3 hurdles then \rho \leftarrow any reversal that merges two hurdles
                      else \rho \leftarrow any reversal that merges two non-consecutives hurdles
                end
           end
     end
     \pi \leftarrow \pi \cdot \rho
     r \leftarrow r + 1
end
return r
```

Algoritmo para Ordenação por Reversões com Orientação de Genes

- Complexidade:
 - ▶ Determinar todos os pares orientados de uma permutação: O(n).
 - ▶ Determinar a reversão com maior score: $O(n) \times O(n) = O(n^2)$.
 - ▶ Determinar todos os *hurdles*: $O(n^2)$.
 - ▶ Total: $O(n) \times O(n^2) = O(n^3)$.
- Algoritmo proposto por Anne Bergeron, em 2004.
- O problema da distância de reversão com orientação de genes foi originalmente resolvido em tempo polinomial $(O(n^4))$ por Sridhar Hannenhalli e Pavel Pevzner, em 1999.
- David Bader, Bernard Moret e Mi Yan, em 2001, mostraram que é possível calcular a distância de reversão com orientação de genes conhecida (sem listar as reversões utilizadas), em O(n).
- Krister Swenson, Yu Lin, Vaibhav Rajan e Bernard Moret, em 2008, provaram que a chance de uma permutação aleatória (com sinal) possuir pelo menos um *hurdle* é de $\Theta(n^{-2})$.

Distância de Reversão, Translocação, Fusão e Fissão

- Sridhar Hannenhalli e Pavel Pevzner, em 1999, apresentaram o primeiro algoritmo polinomial para este problema.
- Pavel Pevzner e Glenn Tesler, em 2003, mostraram um cenário completo de evolução entre humanos e camundongos:
 - ▶ Eles consideraram 281 blocos conservados com pelo menos 1 Mbp.
 - ▶ Os blocos conservados no genoma humano tem tamanho médio de 9.6 Mbp, enquanto no camundongo, possuem tamanho médio de 8.5 Mbp.
 - ▶ Os blocos conservados no genoma humano cobrem 2707 Mbp (94.0% do genoma), enquanto no camundongo cobrem 2397 Mbp (95.3%).
 - ▶ Os *breakpoints* no genoma humano tem tamanho médio de 668 kbp enquanto no camundongo, possuem tamanho médio de 458 kbp.
 - Existe um cenário ótimo de evolução envolvendo 245 eventos (149 reversões, 93 translocações e 3 fissões).
 - Existem outros cenários possíveis com 245 eventos (o cenário anterior é o que apresenta o maior número de reversões).
 - ► Foram detectados também 3170 microrearranjos (reversões), dentro dos blocos conservados.

Ordenação por Transposições

- A transposição $\rho(i,j,k)$, com $1 \le i < j < k \le n+1$, troca os blocos $\pi[i..j-1]$ e $\pi[j..k-1]$ de lugar, ou seja, $\pi \cdot \rho(i,j,k) = \pi_1\pi_2 \dots \pi_{i-1}$ $\underline{\pi_j\pi_{j+1}\dots\pi_{k-1}}$ $\underline{\pi_i\pi_{i+1}\dots\pi_{j-1}}$ $\underline{\pi_k\dots\pi_n}$.
- Distância de Transposição: dados dois genomas compostos por n blocos conservados, representados pelas permutações π e σ , calcular a distância de transposição $(d_t(\pi,\sigma))$ entre π e σ , ou seja, obter uma série de transposições $\rho_1,\rho_2,\ldots,\rho_t$, de tamanho mínimo, tal que $d_t(\pi,\sigma)=t$ e $\pi\cdot\rho_1\cdot\rho_2\ldots\rho_t=\sigma$.
- Ordenação por Transposições: dado um genoma composto por n blocos conservados, representado pela permutação π , calcular a distância de transposição $(d_t(\pi))$ entre π e a permutação identidade $\iota = (1, 2, \ldots, n)$, ou seja, $d_t(\pi) = d_t(\pi, \iota)$.

Breakpoints e Strips

- Vamos considerar a permutação estendida que pode ser obtida a partir de π inserindo-se dois novos elementos: $\pi_0 = 0$ e $\pi_{n+1} = n+1$.
- Um par de elementos π_i e π_{i+1} , para $0 \le i \le n$, é uma adjacência se $\pi_{i+1} \pi_i = 1$. Caso contrário, o par de elementos é chamado de breakpoint.
- Uma strip $\pi[i..j]$ é uma trecho maximal em π tal que todos os pares (π_k, π_{k+1}) são adjacências, para $i \leq k < j$.
- O número de *breakpoints* numa permutação π é denotado por $b_t(\pi)$.
- A única permutação sem *breakpoints* é a permutação identidade.
- Seja $\Delta_{b_t}(\pi, \rho) = b_t(\pi \cdot \rho) b_t(\pi)$. Logo, temos que $\Delta_{b_t}(\pi, \rho) \in \{-3, -2, -1, 0, 1, 2, 3\}$.
- Podemos obter o seguinte limite inferior para o valor distância de transposição $(d_t(\pi))$:

$$d_t(\pi) \geq \frac{b_t(\pi)}{3}$$

Algoritmo Ingênuo Baseado no Selection Sort para Ordenação por Transposições

Algoritmo 5: Selection Sort using Transpositions of Strips

```
Input: \pi, n
t \leftarrow 0
while \pi \neq \iota do
     i \leftarrow 1
     while \pi_i - \pi_{i-1} = 1 do i \leftarrow i+1
     i \leftarrow i + 1
     while \pi_i - \pi_{i-1} \neq 1 do j \leftarrow j+1
     k \leftarrow i + 1
     while \pi_k - \pi_{k-1} = 1 do k \leftarrow k+1
     t \leftarrow t + 1
     \pi \leftarrow \pi \cdot \rho(i,j,k)
end
```

return t

Algoritmo Ingênuo Baseado no Selection Sort para Ordenação por Transposições

- Complexidade: $O(n^2)$.
- Aproximação:
 - O algoritmo ingênuo remove pelo menos um breakpoint por transposição.
 - ▶ O algoritmo ingênuo garante o seguinte limite superior para distância de transposição:

$$d_t(\pi) \leq b_t(\pi) - 2$$

▶ Logo, o algoritmo ingênuo é um algoritmo de aproximação com fator:

$$\frac{b_t(\pi)-2}{\frac{b_t(\pi)}{3}}<3$$

- Dada uma permutação π de n elementos defina o grafo de ciclos alternados como $G(\pi) = (V, E_{black} \cup E_{gray})$.
- Defina o conjunto de vértices como:

$$V = \{+0, -\pi_1, +\pi_1, -\pi_2, +\pi_2, \dots, -\pi_n, +\pi_n, -(n+1)\}.$$

- Defina o conjunto de arestas pretas como:
 - ► $E_{black} = \{(-\pi_i, +\pi_{i-1}) | 1 \le i \le n+1\}.$
- Defina o conjunto de arestas cinzas como:
 - ► $E_{gray} = \{(+(i-1), -i)|1 \le i \le n+1\}.$

- Seja $c(\pi)$ o número de ciclos alternados de $G(\pi)$.
- Seja $c_{odd}(\pi)$ o número de ciclos alternados com número ímpar de arestas pretas de $G(\pi)$.
- A permutação identidade é a única cujo grafo de ciclos alternados possui n+1 ciclos, sendo todos ímpares $(c(\iota) = c_{odd}(\iota) = n+1)$.
- Seja $\Delta_c(\pi,\rho)=c(\pi\cdot\rho)-c(\pi)$. Logo, $\Delta_c(\pi,\rho)\in\{-2,0,2\}$.
- Seja $\Delta_{c_{odd}}(\pi, \rho) = c_{odd}(\pi \cdot \rho) c_{odd}(\pi)$. Pela paridade dos tamanhos dos ciclos, temos que $\Delta_{c_{odd}}(\pi, \rho) \in \{-2, 0, +2\}$.
- Usando a variação do número de ciclos (ímpares) podemos obter o seguinte limite inferior para o valor distância de transposição:

$$d_t(\pi) \geq \frac{n+1-c_{odd}(\pi)}{2} \geq \frac{n+1-c(\pi)}{2}$$

Transposição Agindo em Ciclos Alternados

Transposição Agindo em Ciclos Alternados

Transposição Agindo em Ciclos Alternados

- As arestas pretas do grafo $G(\pi)$ são numeradas de 1 a n+1, sendo que a aresta $(-\pi_i, +\pi_{i-1})$ recebe o rótulo i.
- Uma transposição $\rho(i,j,k)$ age nas arestas pretas $i, j \in k$.
- Uma transposição ρ em relação a π é chamada de x-move se e somente se $\Delta_c(\pi,\rho)=x$.
- Um ciclo alternado (ciclo de arestas de cores alternadas) é chamado
 k-ciclo se ele possuir 2k arestas (k pretas e k cinzas).
- Um k-ciclo é identificado por suas arestas pretas, a partir da arestas de maior rótulo, de acordo com a ordem imposta pela orientação de suas arestas.
- Um k-ciclo $C = (i_1, i_2, \ldots, i_k)$ é chamado não orientado se i_1, i_2, \ldots, i_k for uma sequência decrescente. Caso contrário, o ciclo é chamado de orientado.
- Uma transposição $\rho(i,j,k)$ age num ciclo C se $i,j,k \in C$.

Ciclo Não Orientado

Ciclo Orientado

2-Move agindo num Ciclo Orientado

Lema

Se C é um ciclo orientado, então existe um 2-move que age em C.

Prova. Seja $C=(i_1,i_2,\ldots,i_k)$ um ciclo orientado e seja $3\leq t\leq k$ um índice tal que $i_t>i_{t-1}$. Considere uma transposição $\rho(i_{t-1},i_t,i_1)$ agindo em C. Essa transposição cria um novo 1-ciclo (com os vértices $+\pi_{i_{t-1}-1}$ e $-\pi_{i_t}$), além de outros ciclos. Logo, $\rho(i_{t-1},i_t,i_1)$ é um 2-move.

2-Move agindo num Ciclo Orientado

Lema

Seja $\pi \neq \iota$ uma permutação tal que $G(\pi)$ não possua nenhum ciclo orientado. Logo, existe um good 0-move, ou seja, um 0-move que cria um ciclo orientado.

Teorema

Qualquer permutação $\pi \neq \iota$ pode ser ordenada com $n+1-c(\pi)$ transposições.

0-Move que Cria um Ciclo Orientado

Algoritmo 6: Sorting by Transpositions

```
Input: \pi, n
t \leftarrow 0
while \pi \neq \iota do
     if G(\pi) has an oriented cycle C then
      \rho \leftarrow a 2-move acting on C
     end
     else
      \rho \leftarrow a \text{ good } 0\text{-move}
     end
     t \leftarrow t + 1
     \pi \leftarrow \pi \cdot \rho
end
```

return t

- Complexidade: $O(n^2)$.
- Aproximação:

$$\frac{n+1-c(\pi)}{\frac{n+1-c(\pi)}{2}}=2$$

- Vineet Bafna e Pavel Pevzner, em 1998, apresentaram algoritmos de aproximação com fatores 3, 2, 1.75 e 1.5 para o problema de ordenação por transposições.
- Isaac Elias and Tzvika Hartman, em 2005, apresentaram um algoritmo de aproximação com fator 1.375 para o problema de ordenação por transposições. A prova da corretude do algoritmo é baseada em mais de 80 mil casos, que foram verificados computacionalmente.
- Laurent Bulteau, Guillaume Fertin e Irena Rusu provaram em 2011 que o problema de ordenação por transposições é \mathcal{NP} -Difícil.

Exercícios

Exercício

Ordene, usando o algoritmo de 2-aproximação, as seguintes permutações:

- \bullet $\pi = (7, 1, 6, 2, 5, 3, 4)$
- \bullet $\pi = (7, 6, 5, 4, 3, 2, 1)$
- \bullet $\pi = (8, 7, 6, 5, 4, 3, 2, 1)$

Reversões e Transposições

- Em 1998, Maria Emília Walter, Zanoni Dias e João Meidanis mostraram um algoritmo de 3-aproximação para o problema de ordenação por reversões e transposições para permutações sem sinais e um algoritmo de 2-aproximação para o problema de ordenação por reversões e transposições para permutações com sinais.
- Em 2008, Atif Rahman, Swakkhar Shatabda e Masud Hasan apresentaram um algoritmo de 2k-approximação para o problema de ordenação por reversões e transposições para permutações sem sinais, onde k é a aproximação para um algoritmo para o problema de Máxima Decomposição em Ciclos.
- Em 2004, Guohui Lin e Tao Jiang mostraram um algoritmo de $1.4193 + \epsilon$ para o problema de Máxima Decomposição em Ciclos.
- Logo, existe um algoritmo de aproximação com fator $2.8386 + \epsilon$ para o problema de ordenação por reversões e transposições para permutações sem sinais.

Reversões de Prefixos e Transposições de Prefixos

- Como vimos anteriormente, Johannes Fischer e Simon Ginzinger, em 2005, mostraram um algoritmo de 2-aproximação para o problema de ordenação por reversões de prefixos para permutações sem sinais.
- Em 1995, David Cohen e Manuel Blum mostraram um algoritmo de 2-aproximação para o problema de ordenação por reversões de prefixos para permutações com sinais.
- Em 2011, Laurent Bulteau, Guillaume Fertin e Irena Rusu provaram que o problema de ordenação por reversões de prefixos para permutações sem sinais é \mathcal{NP} -Difícil.
- Em 2002, Zanoni Dias e João Meidanis mostraram um algoritmo de 2-aproximação para o problema de ordenação por transposições de prefixos para permutações sem sinais.

Reversões de Prefixos e Transposições de Prefixos

- Em 2010, Sharmin Mahfuza Sharmin, Rukhsana Yeasmin, Masud Hasan, Atif Rahman, e Mohammad Sohel Rahman apresentaram um algoritmo de 3-aproximação para o problema de ordenação por reversões de prefixos e transposições de prefixos para permutações sem sinais.
- Em 2014, Zanoni Dias e Ulisses Dias apresentaram um algoritmo de 2-aproximação (assintótica) para o problema de ordenação por reversões de prefixos e transposições de prefixos para permutações sem sinais.
- Em 2014, Carla Lintzmayer e Zanoni Dias apresentaram um algoritmo de 2-aproximação (assintótica) para o problema de ordenação por reversões de prefixos e transposições de prefixos para permutações com sinais.

Calculando Todas as Distâncias de Rearranjo para Permutações Pequenas

- Construa um grafo onde cada vértice represente uma permutação de S_n (conjunto de todas as permutações de tamanho n).
- Para cada vértice π , adicione arestas para todos os vértices σ , tal que $\pi \cdot \rho = \sigma$, para todos eventos de rearranjo ρ aplicáveis a π .
- Para computar as distâncias, faça uma busca em largura a partir de ι para todos os demais vértices π do grafo, computando o número de vértices no caminho entre ι e π . Neste caso estamos supondo que se $\pi \cdot \rho = \sigma$ então existe um evento de rearranjo ρ' tal que $\sigma \cdot \rho' = \pi$.
- Este algoritmo tem complexidade polinomial no número de permutações de S_n , no entanto $|S_n| = n!$ para permutações sem sinais e $|S_n| = 2^n n!$ para permutações com sinais.
- Rearrangement Distance Database: http://mirza.ic.unicamp.br:8080/bioinfo