Tarefa 2 – Teoria dos Grafos

Arthur do Prado Labaki – 11821BCC017

1.55)

Sendo G um grafo e m(G) < n(G), ou existira um vértice sem nenhuma aresta ou existira pelo menos 2 vértices de grau 1.

Pegando um grafo com 5 vértices e 4 arestas, as formas de preencher 4 arestas seriam:

Em um caminho (maior grau é 2);

Com no mínimo 2 vértices de grau 1;

Um vértice sem aresta.

1.75)

1.92)

Sendo G um grafo, com $d(v) = \delta(G)$ e $d(w) = \Delta(G)$.

 $\delta(G-v) = \delta(G)-1$ não é verdade, pois, pelo contraexemplo, $\delta(G-v)$ é 2 e $\delta(G)-1$ é 0.

 $\Delta(G-w) = \Delta(G) - 1$ também não é verdade, pois, pelo mesmo contraexemplo, e $\Delta(G-w)$ é 2 e $\Delta(G)$ – 1 é 3.

1.127)

Seja k := $\delta(G)$ e seja P = (vo, . . . , vm) um caminho mais longo em G. Então todos os vizinhos de vm pertencem a V (P) (caso contrário, teríamos um caminho mais longo do que |P|, contrariando a escolha de P).

Como g(vm) \geq k, temos que m \geq g(vm) \geq k, e, portanto, o comprimento de P é pelo menos k. Considere o menor índice i tal que vi vm \in A(G). Então (vi , vi+1, . . . , vm) 'e um circuito de comprimento pelo menos k + 1.

1.137)

Um passeio é fechado se tem pelo menos dois arcos e seu primeiro vértice coincide com o último. Com isso, nesse grafo existe um circuito.

1.142)

Caminho consiste de uma sequência finita alternada de vértices e arestas, começando e terminando por vértices, tal que cada aresta é incidente ao vértice que a precede e ao que a sucede e não há repetição de vértices.

Circuito é um trajeto fechado no qual nenhum vértice (com exceção do inicial e do final) aparece mais de uma vez.

Um grafo é dito conexo se existir pelo menos um caminho entre cada par de vértices do grafo. Com isso, caminho e circuito são grafos conexos, pois todos os vértices estão ligados por, no mínimo, 1 aresta.

1.144)

Sejam G e H dois grafos conexos e, entre eles, existe pelo menos 1 vértice ou aresta em comum, a sua união (G U H) vai ser um grafo conexo, pois os 2 grafos que já são conexos estão conectados, e seus vértices em comum já são conexos.

1.156)

Seja e uma aresta e v um vértice de um caminho P. O grafo P - e será conexo se existir um caminho passando por todos os vértices, podendo ser e uma aresta que liga 2 vértices que já estão ligados por outras arestas. P - v poderá ser conexo se v for ou o começo ou o final do caminho.

1.163)

Seja k um número natural não nulo e G um grafo $\{U, W\}$ -bipartido e que $|U| \le k$ e $|W| \le k$, se $\delta(G) > k/2$ então o grafo será necessariamente conexo, pois o número de arestas será suficiente para existir um caminho, onde todos os vértices terão que ter necessariamente uma aresta.

K = 6 $\delta(G) > 3$

1.195)

0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	0	0
0	1	0	0	0	1
0	1	0	0	1	0

1	0	1	1	0	0	0
0	0	0	1	1	1	0
1	1	0	0	0	0	0
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	1

Tanto a matriz de adjacência quanto a de incidência serão normais, com exceção das pontes, que nunca terão o numero 1 nas mesmas posições, com exceção dela mesma (uv).

1.199)

Uma aresta pode ser uma ponte ou ela pertence a um circuito. Se ela separar duas partes do grafo, ou ser ligada a um vértice de grau 1 ela será uma ponte. Caso ela pertença a um circuito, ela não será uma ponte, pois mesmo sem ela, o grafo ainda é conexo. Pontes são o contrario de circuitos em relação que caso se retire a aresta, no circuito, o grafo ainda será conexo, sendo um caminho, em uma ponte não.

1.202)

Sendo r um número natural maior que 1, o grafo bipartido r regular não terá pontes, pois o menor grau do grafo será o r e, com r maior que 1 em um grafo bipartido, é impossível existir uma ponte (formam um circuito).

16.13)

Caso um grafo G for completo, sua conexidade será e $\kappa(Kn) = n-1$ para todo $n \ge 2$ e $\kappa(K1) = 1$.

18.14)

Um ciclo Euleriano será {cd, de, ec, cg, ge, ef, fg, gb, ba, ah, hb, bc}

18.21)

Sim, usando o grafo do exercício anterior, sendo c=x, e=y e d=z, o ciclo Euleriano seria o mesmo e eles aparecerão consecutivamente (xy, yz). Pois os vértices serão de grau par, e existir no grafo um ciclo Euleriano, arestas adjacentes poderão aparecer consecutivamente.