

Application Note

客户设计注意事项

设计注意事项

1.0 Date: 2014-3-3 Application Note

概述

本文档列举了客户在使用 MXCHIP 模块设计产品 过程中,各个阶段需要注意的事项。请客户先熟悉本 文档,提前考虑在设计,生产,烧录固件,测试阶段 可能出现的问题并有效规避,以达到快速量产的目的。

适用模块型号:

● EMW3162 系列

需要注意的阶段:

- 硬件设计
- 模块入库检验
- 烧录固件
- 产品 SMT 阶段
- 量产测试

模块基本特点:

- 每个模块都有全球唯一 MAC ID
- PCB 天线和外接天线两种型号
- 最大瞬时电流 320mA@3.3V
- 模块出厂自带产测模式
- 模块出厂自带 OTA 模式
- SMT 时模块过二次回流焊

EMW3162 正面图

EMW3162 型号列表

Module	-	Antenna	
EMW3162	-	Р	On-board PCB antenna
	-	Е	IPEX connector

硬件原理框图

内容

1	硬件设计注意事项	3
1.1	参考封装设计	3
1.2	DC 电源设计	3
1.3	RF 设计	
1.4	ESD 设计	5
2	入库检验及烧录固件方法	
2.1	准备工作	
2.2	系统连接	
2.3	入库检验	6
2.4	烧录固件	
2.5	重要性说明	. 10
3	SMT 注意事项	
3.1	开钢网注意事项	11
3.2	回流焊炉温曲线图	11
4	量产测试及产品升级	13
4.1	量产测试	
4.2	产品升级	. 13
5	销售及技术支持信息	14

1 硬件设计注意事项

1.1 参考封装设计

下图是 MXCHIP 建议的在设计底板 PCB 时模块的参考封装尺寸图,阻焊开窗和焊盘大小一致。设计时尽可能加上 Pin31~Pin44 的 GND 焊盘,使地平面完整。

1.2 DC 电源设计

模块峰值电流 320mA 左右,MXCHIP 推荐用最大输出电流 600mA 以上的 DC/DC 电源芯片,相对于 LDO 来说,DC/DC 更可以体现出模块低功耗的优势。

对于 DC/DC 电源芯片的使用,除了输出电压(3.3V)和最大电流(600mA)的要求外,还要特别注意布线,器件尽量紧凑,输入和输出的地要求良好的连接,反馈信号远离电感和肖特基二极管,具体要求参照相应 DC/DC 电源芯片的 Datasheet。

对于 LDO 的使用,要注意最大输出电流(600mA)和散热。例如,从 5V 降到 3.3V,压降为 1.7V,如果电流为 320mA,那么 LDO 上转化为热的功耗为 1.7V x 320mA = 544mW,LDO Datasheet 上有一项参数为 Power Dissipation,所选的此项参数必须大于 544mW(其他输入电压按照 此方法计算)。

只有在前期充分考虑电源的设计,才能减小最终产品在实际测试中出问题的概率。

1.3 RF 设计

如果选择 PCB 天线的模块,在硬件设计时需要考虑如何降低外部因素对其造成的干扰:

1.3.1 PCB 天线区域设计要求

模块 PCB 天线区域及外扩 15mm 区域严禁铺铜, 走线, 摆放元器件。

模块不得被任何含金属的外壳包裹,外壳要距离 PCB 天线区域 15mm 以上。

如果射频性能仍然不理想,可以考虑将 PCB 天线区域的底板板材切去,最大限度降低底板对 PCB 天线性能的影响。

1.3.2 MXCHIP 建议客户将模块放在底板的以下几个区域,减少对 PCB 天线和无线信号的影响

1.3.3 外接天线模块的天线接头选择

下图是模块上外接天线接头的尺寸,选择天线的接头时要和供应商确认接头是否吻合。

1.4 ESD 设计

模块 ESD 等级:人体模型(HBM)为 2000V,器件模型(CDM)为 500V,如果产品有更高的 ESD 要求,就要特别注意,所有可能与外界接触的引脚,如连接到 USB 座、SD 卡槽等这些接插件的,都要预留 ESD 保护器件的位置。

如果模块不是直接焊接或插到板子上,而是通过外拉引线来工作,就要注意 EMI 问题,最好用屏蔽 线连接,或者板上预留共模扼流圈的位置。

2 入库检验及烧录固件方法

2.1 准备工作

PC 一台,模块治具一台,EMB-380-S2 底板一块

PC 安装 FT230XS 驱动程序,下载链接:

http://www.ftdichip.com/Drivers/VCP.htm

从 MXCHIP 官网下载《EMW3162IQC@OTA》, 并解压缩至文件夹:

http://www.mxchip.com/product.php?class_id=15&id=41

EMB-380-S2 底板 5 个拨动开关方向见下图红色箭头标识

2.2 系统连接

模块治具通过排针连接至 EMB-380-S2 底板, EMB-380-S2 底板通过 USB 连接至 PC, 此时 EMB-380-S2 底板上红灯常亮

2.3 入库检验

2.3.1 在设备管理器中,找到 EMB-380-S2 底板连接至 PC 的 COM 口号,例如在下图中为 COM3:

2.3.2 打开《EMW3162IQC@OTA》中的《mxchip.ini》配置文件,按下述修改后保存退出:

[TEST]

Port=COM3 //图中 COM 口号

TESTNUM=1 //入库检验请改为1

TestReport = .\test.log

2.3.3 打开《IQC@OTA.exe》, 如果上述操作正常,则显示如下信息:

2014-03-14 15:51:18

PC connect to UART COM3, log result to .\test.log

сом ок

2014-03-14 15:51:18

2.3.4 将模块放入模块治具,天线朝右,压合模块治具手柄,模块绿灯常亮,红灯不亮,状态见下图:

2.3.5 等待 3s , 《IQC@OTA.exe》中会显示如下信息:

New module(0): c8-93-46-40-13-35

c8-93-46-40-13-35 version 31620003 PASS

其中 **c8-93-46-40-13-35** 为模块的 MAC ID , **version 31620003** 为模块出厂的程序版本 , **PASS** 表示通过。

2.3.6 重复 2.3.4~2.3.5 的操作,《IQC@OTA.exe》会将后续测试信息显示出来:

New module(0): c8-93-46-40-13-35

c8-93-46-40-13-35 version 31620003 PASS

New module(0): c8-93-46-40-13-27

c8-93-46-40-13-27 version 31620003 PASS

New module(0): c8-93-46-40-13-52

c8-93-46-40-13-52 version 31620003 PASS

2.3.7 测试结果会同时记录到《test.log》文件中:

c8-93-46-40-13-35 version 31620003 PASS 2014-03-14 15:54:06

c8-93-46-40-13-27 version 31620003 PASS 2014-03-14 15:56:15

c8-93-46-40-13-52 version 31620003 PASS 2014-03-14 15:56:26

2.4 烧录固件

2.4.1 同 2.3.1, 找到 COM 口号

2.4.2 将需要烧录的程序 BIN 档放入同级目录下,例如《31620302.007.bin》。打开《mxchip.ini》配置文件,按下述修改后保存退出:

[TEST]

Port=COM3 //COM 口号

TESTNUM=2//固件升级请改为2

TestReport=.\test.log

[OTA]

OTAFile=.\31620302.007.bin

//需要升级 BIN 档名称, 必须和同级目录下 BIN 档名称保持

一致

OTAVER=31620302.007 //用户自定义烧录固件版本号,为方便一般情况与 BIN 档名称相同

2.4.3 打开《IQC@OTA.exe》, 如果上述操作正常,则显示如下信息:

2014-03-14 16:02:59

open .\31620302.007.bin

version 31620302.007

PC connect to UART COM3, log result to .\test.log

сом ок

OTA md5 197f61079477c918ff0de64a79575a73, len 303280 //程序自动生成,不用管

2014-03-14 16:02:59

2.4.4 将模块放入模块治具,天线朝右,压合模块治具手柄,模块绿灯,红灯不亮;等待约10s,绿灯闪3下后熄灭;等待约2s,绿灯恢复常亮,红灯常亮。此时《IQC@OTA.exe》中会显示如下信息:

New module(0): c8-93-46-40-13-52

c8-93-46-40-13-52 version 31620302.007 PASS

2.4.5 重复 2.4.4,《IQC@OTA.exe》中会将每个模块的烧录信息显示出来:

New module(0): c8-93-46-40-13-52

c8-93-46-40-13-52 version 31620302.007 PASS

New module(0): c8-93-46-40-13-35

c8-93-46-40-13-35 version 31620302.007 PASS

2.4.6 烧录结果会同时记录到《test.log》文件中:

c8-93-46-40-13-52 version 31620302.007 PASS 2014-03-14 15:24:02

c8-93-46-40-13-35 version 31620302.007 PASS 2014-03-14 15:25:20

2.5 重要性说明

MXCHIP 有义务保证每批次交给客户的模块没有质量问题,如果客户在抽检中发现模块有问题,有权利要求 MXCHIP 及时换货。如果客户没有做入库检测,导致模块焊接到底板上后才发现问题,MXCHIP 只负责赔偿模块部分。

MXCHIP 有义务帮助客户在固件开发中解决各种技术问题,但不会保留任何客户的 bin 档。客户有义务将固件开发中的各个固件版本记录下来,并在最终生产前按需求烧录对应固件版本。

3 SMT 注意事项

3.1 开钢网注意事项

建议钢网厚度: 0.12mm(0.1~0.15mm), 激光打磨开孔

建议锡膏:无铅锡膏 SAC305

下图为模块建议钢网尺寸图,焊盘开孔向外延伸 0.15mm,能增强爬锡能力;如果 SMT 线没有 AOI 检测,通过肉眼也能检查模块是否放正,降低虚焊的风险。设计 PCB 时建议助焊层按此设计:

3.2 回流焊炉温曲线图

下图为建议回流焊炉温曲线图,按此温度曲线图控制炉温能够降低虚焊的风险

1.Max Rising Slope: 3°C/sec

2.Max Falling Slope: -3 °C/sec

3.Soaking Time(150°C~180°C): 60sec~120sec

4.Over 217°C Time:60sec~120sec;

5.Peak Temp.240°C~250°C

4 量产测试及产品升级

客户在开发程序时,除了要考虑产品功能,还需要考虑产品在量产时如何做测试以及今后如何方便的 在已有产品上升级固件。

4.1 量产测试

避免在 PCB 主板安装进整机后才发现问题。

1. 模块和客户的 MCU 通过串口连接,且使用 EMSP 命令控制模块

测试命令可以由客户的 MCU 发起,具体的触发方式由客户决定,比如设置一个组合键。

测试命令可以使用 EMSP 命令中的扫描周围热点命令或者通过 EMSP 命令设置模块连接到一个指定的测试专用路由器上。

这种方法可以同时测试模块的串口和射频功能。

2. 模块和客户的 MCU 通过串口连接,模块的固件为二次开发

可以直接将测试命令加入到模块的固件中,比如,通过串口发送指定的测试命令后,模块扫描周围的热点并通过串口将结果返回。可以同时测试模块的串口和射频功能。触发方式同 1。

3. 客户的应用完全基于模块二次开发

这种模式下,测试方法比较灵活。可以设置一个测试模式,专门用于测试模块的各项功能;可以将模块固件中的默认配置设置为测试专用的路由器,只要模块一上电就自动连接该路由器。具体的测试内容由客户的应用决定。

4.2 产品升级

推荐通过 OTA 方式。OTA——OVER THE AIR,是一种无线升级的方式。

mxchipWNet™ 支持这种升级方式,并提供详细的例程供客户参考。客户在固件中加入该功能后可以通过 OTA 远程控制模块升级至最新的固件。

具体例程,请参考官网上 mxchipWNet library 软件库《mxchipWNet library basic》:

http://www.mxchip.com/product.php?class_id=15&id=41

5 销售及技术支持信息

If you need to buy this product, please call MXCHIP during the working hours. (Monday \sim Friday A.M.9:00 \sim 12:00; P.M. 1:00 \sim 6:00)

Telephone: +86-21-52655026 / 52655025

Address: Room 811, Tongpu Building, No.1220 Tongpu Road, Shanghai

Post Code: 200333

Email: sales@mxchip.com

If you need to get the latest information on this product or our other product information, you can visit: http://www.mxchip.com/

If you need to get technical support, please call us during the working hours:

ST ARM technical support

+86 (021)52655026-822 Email: support@mxchip.com

Wireless network technical support

+86 (021)52655026-812 Email: support@mxchip.com

Development tools technical support

+86 (021)52655026-822 Email: support@mxchip.com