Directed Angles

GRAPHIEL

26 November 2024

Table of contents

1 The basics	2
2 Main properties	2
• •	
3 Other useful properties	3

§1 The basics

Definition 1.1. The *directed angle* $\measuredangle(l,m)$ is defined as the angle starting on l "going" until m counterclockwise.

The measurement of *directed angles* are measured **modulo 180°**, hence,

$$180^{\circ} = 0$$
$$150^{\circ} = -30^{\circ}$$
$$90^{\circ} = -90^{\circ}$$
$$[...]$$

Also, notice that the *directed angle* $\angle(ABC)$ can be written as

$$\angle (\overline{AB}, \overline{BC})$$

this is indeed very useful for a more intuitive understanding of "what the hell we are doing".

§2 Main properties

Fact 2.1.
$$\angle (XYX) = 0$$
.

Fact 2.2.
$$\angle(l, m) + \angle(m, l) = 180^{\circ}$$
.

Fact 2.3.
$$\measuredangle(ABC) = -\measuredangle(CBA)$$
.

Proof. By the Definition 1.1 of directed angles, we have that

$$\measuredangle(ABC) = \measuredangle\left(\overline{AB}, \overline{BC}\right)$$

$$\measuredangle(CBA) = \measuredangle\left(\overline{CB}, \overline{BA}\right) = \measuredangle\left(\overline{BC}, \overline{AB}\right)$$

since *directed angles* are measured *counterclockwise* from the first line to the second one, then it's clear that these two angles are measured oppositely.

Fact 2.4. $\angle PBA = \angle PBC$ if and only if A, B, C are collinear.

Proof. Let A, B, C and P be all distinct non-collinear points. Notice that, if $\angle PBA = \angle PBC$, then we have two cases, hence,

I.
$$A \cong C$$
 (absurd by definition).

II.
$$\angle PBA, \angle PBC \notin \{0, 180^{\circ}\}$$
 and $\angle PBA + \angle PBC = 180^{\circ} = 0$.

Notice that I is absurd by definition and that II is the only remaining option. Indeed, since they share the same side \overline{PB} , then A, B, C are in fact, collinear.

Fact 2.5.
$$\angle ABC + \angle CBD = \angle ABD$$
.

§3 Other useful properties

Theorem 3.1. A quadrilateral ABCD is cyclic if and only if $\angle ABC = \angle CDA$.

Proof. Since a convex quadrilateral has opposite angles from which both together sum up to 180°, then $\angle ABC + \angle ADC = 180^{\circ}$. If we denote that using *directed angles*, we get the following

$$\angle ABC + \angle ADC = 180^{\circ}$$

but directed angles are taken by modulo 180°, therefore

$$\angle ABC + \angle ADC = 0$$

also, notice that $\angle ADC = -\angle CDA$, therefore

$$\angle ABC - \angle CDA = 0 : \angle ABC = \angle CDA$$

just as we wished to prove.

Theorem 3.2. (*Triangle sum*) $\angle ABC + \angle ACB + \angle BAC = 0$

Proof. We can prove this easily by noticing that *directed angles* are measured by **modulo 180°**, which means that $180^{\circ} = 0$ (see Definition 1.1).

However, if you are more skeptical and is wondering "are you sure that they necessarily sum up to 180° ?" then the proof is left as an exercise¹.

Theorem 3.3. If $AB \parallel CD$, then $\angle ABC + \angle BCD = 0$.

Proof. This lefts us with two cases, hence,

I. Quadrilateral ABCD is convex.

II. Quadrilateral ABCD is not convex.

On case I, we have that

$$\angle BCD = \angle CBP \left(B \in \overline{AP} \land B \neq P \right) : \angle ABC + \angle BCD = 180^{\circ} = 0$$

On case II, we have that

$$\angle ABC = -\angle BCD : \angle ABC + \angle BCD = 0$$

just as we wished to prove.

¹Try looking at "Figure 1.4A" on Evan Chen's Geometry book.