Shape	Volume	Surface Area
Sphere	$V = \frac{4}{3}\pi r^3$	$SA = 4\pi r^2$
Spherical cap	$V = \frac{\pi h^2}{3} \left(3r - h \right)$	$SA = 2\pi r h$
Cone/Pyramid [1]	$V = \frac{1}{3}Bh$	$SA = B + \frac{1}{2}c\ell$
Circular truncated cone	$V = \frac{1}{3}\pi \left(r_1^2 + r_1r_2 + r_2^2\right)$	Lateral Area: $F = \pi (r_1 + r_2) \sqrt{(r_1 - r_2)^2 + h^2}$ Surface Area: $SA = F + \pi (r_1^2 + r_2^2)$
Truncated Pyramid [2]	$V = \frac{1}{6} \left(ab + (a+c) \times (b+d) + cd \right)$	Sick meme my lad
1 pront	approaching infinity	ϕ

^[1] B is the area of the base, h is the height, while ℓ is the slant height(Cone only).

 $^{[2]\} a$ and c are parallel, just like b and d .