Lec 10: Characteristic moots, undamped and damped oscillation's

Linear in y y', y'

y" + P(x) y' + q(x) y=0 (Homogenous)

The cinecosity of equ that is the form in which appears is grown be the less idea todays

Solution method in to find two
independent solution's Sis Si

Y2(4) + C Si(t)

Sh(t) + c' y2(t)

Then all solution's are

7(4)= (12/4) + (2/2/4)

- (D1) why are all the solution's?
 (D2) why are they all the solution's?
 - (1) =) (on le answered du superiosition
 Pocinciple.
 - of 21(4), 25(4) core 20104icuis to
- (Linear Commonder) Crys(4) à also a construction.

Cohorago ragnis

L= D2+PD+9

24

and see what comes out v(x)

emult broad is ingo bitherestists enjulos

(x) who sold bloods bodice with the constraints)

O=(x)V bodt how how

(melsons screens)

L= D2+PD+9 Linear operation.

=) (L(u, + v2) = Loi + Lo2

=> (2) L (cu) = c Lu

C= Constant.

Ex: D is Lineary is Linear.

Paront of Sopomocition: ODE = L= B 49049 Ly=0 in U12 yr are two independent solvhich's. =1 ((C14)4 (242) =) C, Ly1+ C2 Ly2=0 in also a Solution to Ly=0 O2) why cow there all the solution's? Solving the TUP (fit initial values) Then solve {C191+ C292 g Hese tinds su top L'nsitulos est lle esee know yets

Lasters in Econoph to And

whitial condition = if we have

any initial condition we can solve too

Con & Cr.

Paoof:

$$y(x_0) = a$$

$$y'(x_0) = b$$

$$y'(x_0) = b$$

$$y'(x_0) = b$$

$$=$$
) $y(x_0) = (-y_1(x_0) + (2y_2(x_0))$

$$C' ?'(x0) + (525(x0) = 0$$

$$C' ?'(x0) + (525(x0) = 0$$

$$= \int \left(\frac{\partial l_{1}(\kappa \rho)}{\partial l_{1}(\kappa \rho)} \frac{\partial l_{2}(\kappa \rho)}{\partial l_{2}(\kappa \rho)} \right) \left(\frac{cs}{s} \right) = \int \left(\frac{s}{s} \right) ds$$

The Pais of simultaneous can be valued ine
we can solve foor C1 c2 only with
one condition. A condition which government
their Soution exist's.
5, 52
Should be invertible
T + 100
sldebirgunis is xistem for help (=
31, 25 KD 21 RS 7
1
moix2nore W ballos is Emanimedrab cint
af cs, ses
of Sises W(Sises) = W(X)
tenchion of x

Chrobnesselb ever 32 Ce C1C 9209902 (=

925 COI

=> 52/ = (21)

(6! 21 C21) =0 AX

Theodom: if 21(x), 22(x) are the

Solution's to ODE, those one only

two Possbil अरक

eithe $W(v_1, v_2) \equiv 0$ (for all r)

Or W(51242) is nover Zero

Ji, Je another Pair of Linearly independent solution's.

Finding Morreralized Solm (at 0)

I, , Iz they are one which

Satists initial Condition's

 $\frac{\lambda'_1(o) \in D}{\lambda'_1(o)} = \frac{\lambda'_1(o) \in D}{\lambda'_2(o)} = \frac{\lambda'_1(o) \in D}{\lambda'_2(o)} = 0$

à Ji, Ji ou Normalited sol

 $90^{\circ} = 9 = (9)0^{\circ}$ + = 90 901 of 102

then solution is

9(4)= 50 \(\T1 + 50 \) \(\T2 \)

Exiestance	8	uniquenes	of heorem:
------------	---	-----------	------------

y" + py + qy =0 P, q and

then the theorem says, there is
one and only solution satisfying
the IVP Problem 3(0) = A

y'(0) = P