

09/831452

JC08 Rec'd PCT/PTO 10 MAY 2001

SEQUENCE LISTING

<110> Japan Science and Technology Corporation

<120> Protein AMSH and cDNA thereof

<130> 99-F-054PCT/YS

5 <140> PCT/JP99/06309

<141> 1999-11-12

<150> JP No. 10-322674

<151> 1998-11-12

<160> 4

10 <170> PatentIn Ver. 2.0

<210> 1

<211> 424

<212> PRT

<213> Homo sapiens

15 <400> 1

Met Ser Asp His Gly Asp Val Ser Leu Pro Pro Glu Asp Arg Val Arg

1 5 10 15

Ala Leu Ser Gln Leu Gly Ser Ala Val Glu Val Asn Glu Asp Ile Pro

20 25 30

20 Pro Arg Arg Tyr Phe Arg Ser Gly Val Glu Ile Ile Arg Met Ala Ser

35 40 45

Ile Tyr Ser Glu Glu Gly Asn Ile Glu His Ala Phe Ile Leu Tyr Asn

50 55 60

Lys Tyr Ile Thr Leu Phe Ile Glu Lys Leu Pro Lys His Arg Asp Tyr

25 65 70 75 80

Lys Ser Ala Val Ile Pro Glu Lys Lys Asp Thr Val Lys Lys Leu Lys

85 90 95

Glu Ile Ala Phe Pro Lys Ala Glu Glu Leu Lys Ala Glu Leu Leu Lys

100 105 110
Arg Tyr Thr Lys Glu Tyr Thr Glu Tyr Asn Glu Glu Lys Lys Lys Glu
115 120 125
Ala Glu Glu Leu Ala Arg Asn Met Ala Ile Gln Gln Glu Leu Glu Lys
5 130 135 140
Glu Lys Gln Arg Val Ala Gln Gln Lys Gln Gln Gln Leu Glu Gln Glu
145 150 155 160
Gln Phe His Ala Phe Glu Glu Met Ile Arg Asn Gln Glu Leu Glu Lys
165 170 175
10 Glu Arg Leu Lys Ile Val Gln Glu Phe Gly Lys Val Asp Pro Gly Leu
180 185 190
Gly Gly Pro Leu Val Pro Asp Leu Glu Lys Pro Ser Leu Asp Val Phe
195 200 205
Pro Thr Leu Thr Val Ser Ser Ile Gln Pro Ser Asp Cys His Thr Thr
15 210 215 220
Val Arg Pro Ala Lys Pro Pro Val Val Asp Arg Ser Leu Lys Pro Gly
225 230 235 240
Ala Leu Ser Asn Ser Glu Ser Ile Pro Thr Ile Asp Gly Leu Arg His
245 250 255
20 Val Val Val Pro Gly Arg Leu Cys Pro Gln Phe Leu Gln Leu Ala Ser
260 265 270
Ala Asn Thr Ala Arg Gly Val Glu Thr Cys Gly Ile Leu Cys Gly Lys
275 280 285
Leu Met Arg Asn Glu Phe Thr Ile Thr His Val Leu Ile Pro Lys Gln
25 290 295 300
Ser Ala Gly Ser Asp Tyr Cys Asn Thr Glu Asn Glu Glu Leu Phe
305 310 315 320
Leu Ile Gln Asp Gln Gln Gly Leu Ile Thr Leu Gly Trp Ile His Thr

325 330 335
His Pro Thr Gln Thr Ala Phe Leu Ser Ser Val Asp Leu His Thr His
340 345 350
Cys Ser Tyr Gln Met Met Leu Pro Glu Ser Val Ala Ile Val Cys Ser
5 355 360 365
Pro Lys Phe Gln Glu Thr Gly Phe Phe Lys Leu Thr Asp His Gly Leu
370 375 380
Glu Glu Ile Ser Ser Cys Arg Gln Lys Gly Phe His Pro His Ser Lys
385 390 395 400
10 Asp Pro Pro Leu Phe Cys Ser Cys Ser His Val Thr Val Val Asp Arg
 405 410 415
Ala Val Thr Ile Thr Asp Leu Arg
 420

<210> 2
15 <211> 1910
<212> DNA
<213> Homo sapiens
<221> CDS
<222> 11.. 1282
20 <400> 2

cttggtcctg atgtctgacc atggagatgt gagcctcccg cccgaagacc gggtgagggc 60
tctctccag ctggtagtg cgtagaggt gaatgaagac attccacccc gtcggtaactt 120
ccgctctgga gttgagatta tccgaatggc atccatttac tctgaggaag gcaacattga 180
acatgccttc atcctctata acaagtatac cacgccttt attgagaaac tacaaaaca 240
25 tcgagattac aaatctgctg tcattcctga aaagaaagac acagtaaaga aattaaagga 300
gattgcattt cccaaagcag aagagctgaa ggcagagctg ttaaaaacgat ataccaaaga 360
atatacagaa tataatgaag aaaagaagaa ggaagcagag gaattggccc ggaacatggc 420
catccagcaa gagctggaaa agaaaaaca gaggtagca caacagaagc agcagcaatt 480

ggaacaggaa cagttccatg cttcgagga gatgatccgg aaccaggagc tagaaaaaga 540
gcgactgaaa attgtacagg agtttggaa ggttagccct ggcctaggtg gcccgtagt 600
gcctgacttg gagaagccct ccttagatgt gttccccacc ttaacagtct catccataca 660
gccttcagac tgtcacacaa ctgttaaggcc agctaagcca cctgtggtgg acaggtcctt 720
5 gaaacctgga gcactgagca actcagaaaag tattccaca atcgatggat tgcccatgt 780
ggtgtgcct gggcggctgt gcccacagtt tctccagttt gccagtgccca acactgccc 840
gggagtgagg acatgtggaa ttctctgtgg aaaactgtatg aggaatgaat ttaccattac 900
ccatgttctc atccccaaagc aaagtgcgtt gtctgattac tgcaacacag agaacgaaga 960
agaacttttc ctcatcagg atcagcaggc cctcatcaca ctgggctgga ttcatactca 1020
10 ccccacacag accgcgttcc tctccagttgt cgacccatcac actcactgtt cttaccagat 1080
gtatgtgcctt gagtcagtag ccattgttttgc tcccccaag ttccaggaaa ctggattctt 1140
taaactaact gaccatggac tagaggagat ttcttcgtt cggccagaaag gatttcatcc 1200
acacagcaag gatccacccctc tggtctgttag ctgcagccac gtgactgttg tggacagagc 1260
agtgaccatc acagacccctc gatgagcgtt tgagtccaaac accttccaaag aacaacaaaa 1320
15 ccatatcagt gtactgttagc cccttaattt aagctttcta gaaagcttttgc gaagtttttgc 1380
tagatagtag aaaggggggc atcacctgag aaagagctga ttttgtatattt caggtttgaa 1440
aagaataac tgaacatatt ttttaggcaa gtcagaaaga gaacatggtc accccaaaagc 1500
aactgtact cagaaattaa gttactcaga aattaatgtt ctcagaaattt aagaatgtt 1560
ggtataatgtt accccatat acccttcctt ctggattcac caattgtttaa catttttttc 1620
20 ctctcagcta tccttctaat ttctctctaa ttcaatttttgc ttatatttta cctctggct 1680
caataagggc atctgtgcag aaatttggaa gccattttaga aaatcttttgc gatttcgtt 1740
tggtttatgg caatatgtt ggagcttattt actgggggtga gggacagctt actccatttgc 1800
accagattgtt ttggcttaca catcccgaag aatgattttgc tcaggtttaa ttgttatttgc 1860
ataaatattt caggatattt ttctctaca ataaatgtt aatgtt 1910
25 <210> 3
<211> 424
<212> PRT
<213> mouse

<400> 3

Met Ser Asp His Gly Asp Val Ser Leu Pro Pro Gln Asp Arg Val Arg
1 5 10 15
Ile Leu Ser Gln Leu Gly Ser Ala Val Glu Leu Asn Glu Asp Ile Pro
5 20 25 30
Pro Arg Arg Tyr Tyr Arg Ser Gly Val Glu Ile Ile Arg Met Ala Ser
35 40 45
Val Tyr Ser Glu Glu Gly Asn Ile Glu His Ala Phe Ile Leu Tyr Asn
50 55 60
10 Lys Tyr Ile Thr Leu Phe Ile Glu Lys Leu Pro Lys His Arg Asp Tyr
65 70 75 80
Lys Ser Ala Ile Ile Pro Glu Lys Lys Asp Ala Val Lys Lys Leu Lys
85 90 95
Ser Val Ala Phe Pro Lys Ala Glu Glu Leu Lys Thr Glu Leu Leu Arg
15 100 105 110
Arg Tyr Thr Lys Glu Tyr Glu Gln Tyr Lys Glu Arg Lys Lys Glu
115 120 125
Glu Glu Glu Leu Ala Arg Asn Ile Ala Ile Gln Gln Glu Leu Glu Lys
130 135 140
20 Glu Lys Gln Arg Val Ala Gln Gln Lys Gln Lys Gln Leu Glu Gln Glu
145 150 155 160
Gln Phe His Ala Phe Glu Glu Met Ile Gln Arg Gln Glu Leu Glu Lys
165 170 175
Glu Arg Leu Lys Ile Val Gln Glu Phe Gly Lys Val Asp Pro Gly Pro
25 180 185 190
Cys Gly Pro Leu Leu Pro Asp Leu Glu Lys Pro Cys Val Asp Val Ala
195 200 205
Pro Ser Ser Pro Phe Ser Pro Thr Gln Thr Pro Asp Cys Asn Thr Gly

210 215 220
Met Arg Pro Ala Lys Pro Pro Val Val Asp Arg Ser Leu Lys Pro Gly
225 230 235 240
Ala Leu Ser Val Ile Glu Asn Val Pro Thr Ile Glu Gly Leu Arg His
5 245 250 255
Ile Val Val Pro Arg Asn Leu Cys Ser Glu Phe Leu Gln Leu Ala Ser
 260 265 270
Ala Asn Thr Ala Lys Gly Ile Glu Thr Cys Gly Val Leu Cys Gly Lys
 275 280 285
10 Leu Met Arg Asn Glu Phe Thr Ile Thr His Val Leu Ile Pro Arg Gln
 290 295 300
Asn Gly Gly Pro Asp Tyr Cys His Thr Glu Asn Glu Glu Glu Ile Phe
 305 310 315 320
Phe Met Gln Asp Asp Leu Gly Leu Leu Thr Leu Gly Trp Ile His Thr
15 325 330 335
His Pro Thr Gln Thr Ala Phe Leu Ser Ser Val Asp Leu His Thr His
 340 345 350
Cys Ser Tyr Gln Met Met Leu Pro Glu Ser Ile Ala Ile Val Cys Ser
 355 360 365
20 Pro Lys Phe Gln Glu Thr Gly Phe Phe Lys Leu Thr Asp Tyr Gly Leu
 370 375 380
Gln Glu Ile Ser Thr Cys Arg Gln Lys Gly Phe His Pro His Gly Arg
 385 390 395 400
Asp Pro Pro Leu Phe Cys Asp Cys Ser His Val Thr Val Lys Asp Arg
25 405 410 415
Ile Val Thr Ile Thr Asp Leu Arg
 420

<211> 1384

<212> DNA

<213> homosapiens

<221> CDS

5 <222> 56..1327

<400> 4

gtgacgtttc cggaagctct gactgtcatc cttcacgaaa gaaccttattt gtccaatgtc 60

tgaccatggg gatgtgagcc tcccacccca agacccggtg aggattctgt cccaaacttgg 120

gagtgcagtt gagttaaatg aagacattcc accccgtcgc tactaccgct ccggtgttga 180

10 gatcatccgc atggcgtccg tttactcgga agaaggcaac attgaacatg cctttatcct 240

ctacaacaag tacatcacgc tgtttatttga aaaacttccg aaacaccgag actacaaatc 300

agctatcatt cctgagaaga aagatgctgt caagaatta aagagcgtcg ctttcctaa 360

agcggaaagag ctgaagacag agctctttag aagatacacc aaagaatatg agcagtataa 420

agagcgaagaaaaaaggaag aagaggaact tgcccgaat atcgccatcc agcaagagtt 480

15 ggaaaaagaa aaacagaggg ttgctcagca gaagcagaag cagctagagc aggagcaatt 540

ccatgccttt gaggagatga tccagaggca ggagctggaa aaagaacggc tgaaaattgt 600

tcaagagttc gggaaaggtag accctggccc ctgcgggcct ctgctccctg atctggaaaa 660

gccttgcgtta gatgtggccc ccagctcacc gttctcgccc acgcagactc cagactgtaa 720

cacaggcatg aggccagcta agccacctgt ggtggacagg tccctgaaac ctggagcggtt 780

20 aagcgtcata gaaaatgttc ccaccattga aggcctgcgc cacatcggtt tgccccgtaa 840

tctgtgcgtca gaatttctcc agcttgcag tgccaatacc gccaaaggca ttgaaacctg 900

tggagtccctc tgtggaaaac tggatgagaaa tgaattcaca atcacacatg ttctcatccc 960

cagacaaaat ggtggccctg attattgcca cacggagaat gaagaagaaa ttttctttat 1020

gcaggatgac ctggactcc tcactcttgg ctggatccat actcatccaa cccaaacggc 1080

25 ctttctgtcc agtgtggatc tccacactca ctgctccctac caaatgtatgt taccagagtc 1140

catcgcaatc gtctgttccc caaagttcca ggaaactgga ttctttaagc taactgacta 1200

tggtcttcaa gagatttcaa cctgccggca gaaaggcttt caccccccattt gcagagaccc 1260

accgctgttc tgtgactgca gccatgtcac tgtcaaggac agaattgtga cgatcacaga 1320

090331452 , 061001

8/8

ccttcgataa atctcaaatc atgaaccagg gagatggatc actggtaac agcacttgtc 1380

acca

1384