GanRui

静以修身, 俭以养德, 非淡泊无以明志, 非宁静无以致远

首页 新随笔 联系 管理 订阅 📶

随笔-78 文章-1 评论-0

嵌入式Linux下S3C2410的调色板彩色显示

对于一个显示设备,数据的更新率正比于画面的像素数和色彩深度的乘积。在嵌入式Linux系统中,受处理器资源配置和运算能力的制约,当使用大分辨率显示时(如在一些屏幕尺寸较大的终端上,往往需要640×480以上),需要降低显示的色彩深度。否则,由于数据处理负担过重会造成画面的抖动和不连贯。这时,调色板技术将发挥重要作用。ARM9内核的S3C2410在国内的嵌入式领域有着广泛的应用,芯片中带有LCD控制器,可支持多种分辨率、多种颜色深度的LCD显示输出。在此,将S3C2410的调色板技术,以及嵌入式Linux系统下调色板显示的实现方法进行分析。

1 S3C2410调色板技术概述

1.1 调色板的概念

在计算机图像技术中,一个像素的颜色是由它的R,G,B分量表示的,每个分量又经过量化,一个像素总的量化级数就是这个显示系统的颜色深度。量化级数越高,可以表示的颜色也就越多,最终的图像也就越逼真。当量化级数达到16位以上时,被称为真彩色。但是,量化级数越高,就需要越高的数据宽度,给处理器带来的负担也就越重;量化级数在8位以下时,所能表达的颜色又太少,不能够满足用户特定的需求。

为了解决这个问题,可以采取调色板技术。所谓调色板,就是在低颜色深度的模式下,在有限的像素值与RGB颜色之间建立对应关系的一个线性表。比如说,从所有的16位彩色中抽取一定数量的颜色,编制索引。当需要使用某种彩色时,不需要对这种颜色的RGB分量进行描述,只需要引用它的索引号,就可以使用户选取自己需要的颜色。索引号的编码长度远远小于RGB分量的编码长度,因此在彩色显示的同时,也大大减轻了系统的负担。

以256色调色板为例,调色板中存储256种颜色的RGB值,每种颜色的RGB值是16位。用这256种颜色编制索引时,从OOH~FFH只需要8位数据宽度,而每个索引所对应的颜色却是16位宽度的颜色信息。在一些对色彩种类要求不高的场合,如仪表终端、信息终端等,调色板技术便巧妙地解决了数据宽度与颜色深度之间的矛盾。

1.2 S3C2410中的调色板

ARM9核的S3C2410芯片可通过内置的LCD控制器来实现对LCD显示的控制。以TFT LCD为例,S3C2410芯片的LCD控制器可以对TFT LCD提供1位、2位、4位、8位调色板彩色显示和16位、24位真彩色显示,并支持多种不同的屏幕尺寸。

S3C2410的调色板其实是256个16位的存储单元,每个单元中存储有16位的颜色值。根据16位颜色数据中,RGB分量所占位数的不同,调色板还可以采取5:6:5(R:G:B)和5:5:5:1(R:G:B:1)两种格式。当采用5:6:5(R:G:B)格式时,它的调色板如表1所示。

表 1 S3C2410 调色板的结构

索引号		11.11			
	1511	105	40	- 地址	
00 H	R4…R0	G5G0	B4 · · · B0	0x4D000400	
01H	R4R0	G5G0	B4B0	0x4D000404	
	:	i		ŧ	
FFH	R4R0	G5Goelecfanscomo東角成城			

表1中,第一列为颜色索引,中间三列是R,G,B三个颜色分量对应的数据位,分别是5位、6位和5位,最后一列是对应颜色条目的物理地址。当采用5:5:5:1(R:G:B:1)格式时,R,G,B三个颜色分量的数据位长度都是5位,最低位为1。

用户编程时,应首先对调色板进行初始化处理(可由操作系统提供的驱动程序来完成),赋予256色调色板相应的颜色值;在进行图像编程时,可以将图像对象赋予所需的颜色索引值。程序运行时,由芯片的LCD控制器查找调色板,按相应的值进行输出。S3C2410芯片图像数据输出端口VD[23:0]有24位,当使用不同的色彩深度时,这24位数据可以表示一个或多个点的颜色信息。

1.3 调色板颜色的选择

调色板中颜色的选择可以由用户任意定义,但为了编程方便,颜色的选取应遵循一定的规律。例如在Windows编程中,系统保留了20种颜色。另外,在Web编程中,也定义了216种Web安全色,这些颜色可以尽量保留。2S3C2410调色板在嵌入式Linux系统下的使用ARM实现图像显示时,由LCD控制器将存储系统中的视频缓冲内容以及各种控制信号传送到外部LCD驱动器,然后由LCD驱动器实现图像数据的显示。实际应用中,常通过驱动程序

<	2018年3月					>
日	_	=	Ξ	匹	五	$\dot{\sim}$
25	26	27	28	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31
1	2	3	4	5	6	7

搜索

找找看
谷歌搜索

我的标签

linux 内存管理(1) spi(1) tslib mouse keyboard usb(1) 内核链表 list list_head(1)

随笔分类

QT(12) vim(1) 方法与技巧(2) 关于我的-->家长里短(2) 理论基础(2) 驱动与应用-->FLASH(2) 驱动与应用-->LCD(17) 网络(2)

随笔档案

2016年3月(1) 2015年10月(1) 2015年9月(3) 2015年8月(2) 2015年6月(1) 2014年7月(3) 2014年6月(18) 2014年5月(28) 2014年4月(21)

文章档案

2015年6月 (1)

我的链接

关于我

由操作系统对寄存器、调色板进行配置。以Linux 2.4内核为例,对调色板的配置是在驱动程序S3C2410fb.c中 完成的。

在一些公司Linux源码包的S3C2410fb.c文件中,并没有对调色板进行配置,因此在8位以下的显示设置下。 LCD不能正常工作。若需要使用调色板,必须对此文件进行修改。

2.1 驱动程序的修改

查S3C2410数据手册,调色板的物理起始地址为0x4d000400,应先将调色板的物理地址映射到内核中的虚 拟地址,然后对其进行赋值。具体步骤如下:

(1)在S3C2410.h文件中添加:

#define MYPAL(Nb)__REG(Ox4d000400+(Nb)*4)

其作用是实现物理地址到虚拟地址的映射。

(2)在S3C24IOfb.h文件,通过下列语句定义256种颜色。

static const u_short my_color[256]={0x0000 , 0x8000 , ...} :

数组中的每个16位二进制数表示一种颜色, RGB分量采用的是5:6:5格式。

(3)在S3C2410fb.c文件的S3C2410fb-activate_var(...)函数中,通过下列语句对这256个调色板进行赋 值.

```
for(i = 0; i < 256; i++)
     MYPAL(i) = my_color[i];
electans com 电子发烧发
```

(4)另外,注意改变LCD控制寄存器LCDCON1的BPPMODE值,设定为需要的颜色深度。

(5)重新编译内核,烧写内核。

2.2 应用程序的编写

当S3C2410用于嵌入式Linux操作系统时,其图形功能一般是依靠帧缓存(Frame buffer)实现的。屏幕上的 每个点都被映射成一段线性内存空间,通过应用程序改变这段内存的值,就可以改变屏幕的颜色。当色深在16位以 上时,用户直接指定颜色的RGB分量;当色深在8位以下时,用户应当指定颜色在调色板中的索引值。

当使用MiniGUI等嵌入式图形系统时,只需要将界面元素的颜色值设为所需颜色的索引值即可。例如:

WinElementColors[i]=142;

就是将WinElementColors[i]的颜色设置为索引号为142的调色板颜色。

3 结语

在笔者开发的某型指挥车仿真终端中,其显示分辨率设置为640×480。如果色深设置为16 b/p,在系统使用 时,画面将会出现明显的抖动、不连贯,这是由于芯片的运算负荷过重造成的。如果按本文中提到的方法对显示驱 动加以修改,采用8位色深显示,颜色的选取可以满足需要,画面的显示将明显稳定。这说明,在显示分辨率较 高,色彩种类要求比较简单的嵌入式应用中,调色板技术是一个非常值得重视的选择。

From: http://www.cnblogs.com/ganrui/

分类: 驱动与应用-->LCD

粉丝 - 2

n

« 上一篇: linux下LCD(framebuffer)驱动分析

» 下一篇: linux 2440 LCD 应用程序编程

posted @ 2014-04-27 16:00 ganrui 阅读(206) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请登录或注册,访问网站首页。

【推荐】超50万VC++源码:大型组态工控、电力仿真CAD与GIS源码库!

【缅怀】传奇谢幕,回顾霍金76载传奇人生

【推荐】腾讯云校园拼团福利,1核2G服务器10元/月!

【活动】2050 科技公益大会 - 年青人因科技而团聚

最新IT新闻:

- ·从82到51再到30分钟 微软正不断缩短Win10功能更新时间
- · Google Play Instant功能上线:不下载安装就能试玩游戏
- · Magic Leap向VR应用开发者推出"创作者门户"
- ·组图:疑似在广州欲拿地同时,法拉第未来美国工厂正式动工
- ·程序员呆板?86%受访者认为职业标签化现象普遍
- » 更多新闻...

最新知识库文章:

- ·写给自学者的入门指南
- ·和程序员谈恋爱
- ・学会学习
- ·优秀技术人的管理陷阱
- ·作为一个程序员,数学对你到底有多重要
- » 更多知识库文章...

Copyright ©2018 ganrui