Design/Practical Experience [EEN3010] Department of Electrical Engineering Final Report

Academic Year: 2022-23

Semester: 7th

Date of Submission of Report: 15–11-2022 **1. Name of the Student:** Rahul Dhayal

2. Roll Number: B19EE069

3. Title of the Project: Simulation-based Methodology of Trojan Detection

4. Project Category: 35. Targeted Deliverables:

- a) Development of simulation-based methodology for trojan
- b) Detection & Documentation.

6. Work Done:

In our project, we have tried to highlight the importance of development in the domain of Hardware Trojan detection. We ran Modelsim simulations on the design for Fibonacci series with different types of self-made Trojans. Our task in this project is to check the impact of these different types of Trojans on the simulation and code coverage of the design and then compare it with Trojan free design. The procedure, Results, and conclusions of one such trojan with design in modelsim have been discussed below:-

- To begin with, we selected two Verilog files for trojan insertion which are Real_mesh_core.v and e2.v. both the files are easy to understand and there is huge ground for trojan insertion.
- Trojan condition for e2.v file

Trojan condition for real_core_mesh.v file

```
// code start here

assign a = from_peripheral_data[20] & from_peripheral_data[21] & from_peripheral_data[0] & f

assign b = to_peripheral_data[20] & to_peripheral_data[21] & to_peripheral_data[0] & to_per

assign c = prog_address[20] & prog_address[21] & prog_address[0] & prog_address[15]& prog_a

assign trigger = a & b & c;

//-------------------------//
```

When Hardware Trojan Free simulation:

	ppeumes pass. ampass	1.75~	Danie Count D			Jun			u.u. ,.	
sim	vsim.wlf C:/Users									
unified_caches	. C:/Users/hp/D C:/Users	verilog								
tb_Real_Cores	. C:/Users/hp/D C:/Users	verilog	100	96	96.000		2	2	100.000	
router_wrappe	. C:/Users/hp/D C:/Users	verilog								
— i router.v	C:/Users/hp/D C:/Users	verilog	238	200	84.034		89	74	83.146	
— i regFile.v	C:/Users/hp/D C:/Users	verilog	5	5	100.00		3	3	100.000	
real_cores_me	C:/Users/hp/D C:/Users	verilog	37	32	86.486		30	25	83.333	
— ififo.v	C:/Users/hp/D C:/Users	verilog	25	13	52.000		26	21	80.769	
e2.v	C:/Users/hp/D C:/Users	verilog	62	57	91.935		14	13	92.857	
— idir_two_port_b	. C:/Users/hp/D C:/Users	verilog	7	5	71.429		18	11	61.111	
dir_packetizer	. C:/Users/hp/D C:/Users	verilog	89	45	50.562		63	31	49.206	
dir_packetizer	. C:/Users/hp/D C:/Users	verilog	130	110	84.615		95	78	82.105	
dir_packetizer	. C:/Users/hp/D C:/Users	verilog								
dir_network_in	. C:/Users/hp/D C:/Users	verilog	159	150	94.340		123	105	85.366	
— dir_merger.v	C:/Users/hp/D C:/Users	verilog	25	21	84.000		12	12	100.000	
dir_memory_sp	. C:/Users/hp/D C:/Users	verilog	15	15	100.00		28	28	100.000	
dir_memory_ro	. C:/Users/hp/D C:/Users	verilog	4	0	0.000					
— i dir_mem_syste	. C:/Users/hp/D C:/Users	verilog								
— i dir_main_memo	. C:/Users/hp/D C:/Users	verilog	109	109	100.00		67	59	88.060	
— i dir_main_memo	. C:/Users/hp/D C:/Users	verilog	261	121	46.360		113	49	43.363	
dir_main_memo	. C:/Users/hp/D C:/Users	verilog	4	0	0.000					
dir_direct_map	. C:/Users/hp/D C:/Users	verilog	141	125	88.652		149	133	89.262	
dir_cache_wra	C:/Users/hp/D C:/Users	verilog								
dir_cache_tran	. C:/Users/hp/D C:/Users	verilog	100	45	45.000		20	10	50.000	
dir_cache_split	. C:/Users/hp/D C:/Users	verilog	24	24	100.00		68	58	85.294	
dir_cache_inter	. C:/Users/hp/D C:/Users	verilog	134	126	94.030		107	96	89.720	
— iii decode.∨	C:/Users/hp/D C:/Users	verilog	47	47	100.00		56	42	75.000	
crossbar.v	C:/Users/hp/D C:/Users	verilog	8	8	100.00		4	4	100.000	
core_interface	. C:/Users/hp/D C:/Users	verilog	29	29	100.00		22	22	100.000	
— ■ buffer_port.v	C:/Users/hp/D C:/Users	verilog	33	30	90.909		28	21	75.000	
— Bram.∨	C:/Users/hp/D C:/Users	verilog	4	4	100.00		6	6	100.000	
arbiter.v	C:/Users/hp/D C:/Users	verilog	16	16	100.00		10	9	90.000	
→ ALU.v	C:/Users/hp/D C:/Users	verilog	2	2	100.00		46	19	41.304	
7_stage_MIPS	C:/Users/hp/D C:/Users	verilog	136	122	89.706		268	245	91.418	
_										

When Hardware Trojan Inserted simulation:

Real_core_messh.v (Trojan Free)

Design Unit Coverage Details:

Total Coverage:	49.28%	67.19%				
Coverage Type ◀	Bins •	Hits ◀	Misses ◀	Weight ◀	% Hit ◄	Coverage •
<u>Statements</u>	41	36	5	1	87.80%	87.80%
<u>Branches</u>	30	25	5	1	83.33%	83.33%
<u>Toggles</u>	138	42	96	1	30.43%	30.43%

e2.v (Trojan Free)

Design Unit Coverage Details:

Total Coverage:						67.03%
Coverage Type ◀	Bins •	Hits •	Misses 4	Weight ◀	% Hit ◄	Coverage •
<u>Statements</u>	62	57	5	1	91.93%	91.93%
<u>Branches</u>	14	13	1	1	92.85%	92.85%
<u>Toggles</u>	324	27	297	1	8.33%	8.33%
<u>FSMs</u>	31	21	10	1	67.74%	75.00%
<u>States</u>	11	11	0	1	100.00%	100.00%
<u>Transitions</u>	20	10	10	1	50.00%	50.00%

Real_core_mesh.v (Trojan Inserted)

Design Unit Coverage Details:

Total Coverage:						63.20%
Coverage Type ◀	Bins •	Hits •	Misses ◀	Weight ◀	% Hit ◄	Coverage •
<u>Statements</u>	43	38	5	1	88.37%	88.37%
<u>Branches</u>	32	26	6	1	81.25%	81.25%
<u>Toggles</u>	210	42	168	1	20.00%	20.00%

e2.v (Trojan Inserted)

Design Unit Coverage Details:

Total Coverage:						65.67%
Coverage Type ◀	Bins •	Hits •	Misses ◀	Weight ◀	% Hit ◀	Coverage ◀
<u>Statements</u>	63	58	5	1	92.06%	92.06%
<u>Branches</u>	16	14	2	1	87.50%	87.50%
<u>Toggles</u>	332	27	305	1	8.13%	8.13%
<u>FSMs</u>	31	21	10	1	67.74%	75.00%
<u>States</u>	11	11	0	1	100.00%	100.00%
Transitions	20	10	10	1	50.00%	50.00%

7. Concluding Remarks:

As we can observe from the above data, There is a major difference in the code coverage analysis of the design. It is likely that Trojan can affect our design badly. And if it gets activated, it can change the whole result and scenario. We can see that from code coverage reports. These kinds of trojans will be easily detected by Code Coverage and FSM Analysis.

8. References:

9. Declaration: I declare that no part of this report is copied from other sources. All the references are properly cited in this report.

Signature of the Student

Signature of the Supervisor

Supervisor's Recommendation for the Evaluation

Please tick any one of the following

- 1. The work done is satisfactory, and sufficient time has been spent by the student. The submission by the student should be evaluated in this term.
- 2. The work is not complete. Continuity Grade should be given to the student. The student would need to be evaluated in the next semester for the same Design Project with me.
- 3. The work is not satisfactory. There is no need for evaluation. The students should look for another Design Credit Project for the next semester.

4.	[Other Comment, if 1-3 are not valid]	

Signature of the Supervisor

Birwd Kumor