Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski | Dr. rer. nat. Marcus Völker

WS 25/26

Kapitel 1: Zahlendarstellung

Anwendungsbeispiel

Abschnitt 1.1

Natürliche Zahlen

- Zahlendarstellungen
- b-adische Darstellung natürlicher Zahlen

Zahlendarstellungen

Endliches Alphabet:

z.B. im Dezimalsystem: $\sum_{10} = \{0,1,2,3,4,5,6,7,8,9\}$ allgemein: $\sum_{b} = \{0,1,...,b-1\}$, wobei b Basis genannt wird

b-adische Zahlen mit **endlicher Wortlänge** n: \sum_{b}^{n}

Beispiel: $00456 \in \sum_{10}^{5}$

Wichtige Zahlensysteme in der Informatik:

Dual-/Binärsystem: $\Sigma_2 = \{0,1\}$

Oktalsystem: $\Sigma_8 = \{0,1,2,3,4,5,6,7\}$

Hexadezimalystem: $\Sigma_{16} = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

Wahl der Basis

- Warum keine Basis 10?
 - Natürliche Darstellung für Finanztransaktionen, etwa € 1.20
 - Verbreitet in Wissenschaft, z.B. $6.6206 \cdot 10^{34}$
- Aber elektronische Bearbeitung schwierig
 - Speicherung anspruchsvoll, der ENIAC benutzte 10 Röhren pro Ziffer
 - Übertragung von 10 Signalniveaus auf einer Leitung benötigt hohe Präzision
 - Implementierung von Addition & Co ist schwierig

b-adische Darstellung natürlicher Zahlen

Sei $b \in N$ mit b > 1. Dann ist jede natürliche Zahl z mit $0 \le z \le b^n - 1$ (und $n \in N$) eindeutig als Wort der Länge n über \sum_{b}^{n} darstellbar durch

$$z = \sum_{i=0}^{n-1} z_i b^i$$

mit $z_i \in \sum_b = \{0,1,...,b-1\}$ für i = 0,1,...,n-1.

Als vereinfachende Schreibweise ist dabei die folgende **Ziffernschreibweise** üblich:

$$z = (z_{n-1}z_{n-2} \dots z_1z_0)_b$$

Wichtiger Spezialfall: b = 2 ("Binärdarstellung" natürlicher Zahlen)

Beispiel: Binäre Zahlendarstellung

- Betrachte $z = (0110)_2$
- Als natürliche Zahl interpretiert als:

$$z = \sum_{i=0}^{3} 2^{i} \cdot z_{i} = 2^{0} \cdot 0 + 2^{1} \cdot 1 + 2^{2} \cdot 1 + 2^{3} \cdot 0 = 6$$

Größte darstellbare Zahl mit n Bits:

$$z_{max} = \sum_{i=0}^{n-1} 2^i = 2^n - 1$$

• Beispiel: z ist 3-stellig $\Rightarrow z_{max} = (111)_2 = (7)_{10} = 2^3 - 1$

Beispiel: Umrechnung Dezimal- zu Binärsystem

```
47:2 = 23 Rest 1
23:2 = 11 Rest 1
11:2 = 5 Rest 1
5:2 = 2 Rest 1
2:2 = 1 Rest 0
1:2 = 0 Rest 1
```

$$(47)_{10} = (101111)_2$$

Horner-Schema

Schema zur Umrechnung zwischen
 Zahlensystemen mit unterschiedlichen Basen

$$w = \sum_{i=0}^{n-1} z_i b^i = z_0 + b \cdot (z_1 + b \cdot (z_2 + \cdots (b \cdot (z_{n-3} + b \cdot (z_{n-2} + b \cdot z_{n-1})) \dots))$$

Ermittle Sequenz durch Division mit Rest:

$$\frac{w}{b} = \underbrace{z_1 + b \cdot (z_2 + \cdots \left(b \cdot \left(z_{n-3} + b \cdot (z_{n-2} + b \cdot z_{n-1})\right) \dots\right)\right)}_{w_1} \quad \text{Rest} \quad z_0$$

$$\frac{w_1}{b} = \underbrace{z_2 + \cdots \left(b \cdot \left(z_{n-3} + b \cdot (z_{n-2} + b \cdot z_{n-1})\right) \dots\right)\right)}_{w_2} \quad \text{Rest} \quad z_1$$

$$\frac{w_{n-2}}{b} = \underbrace{z_{n-1}}_{w_{n-1}} \quad \text{Rest} \quad z_{n-2}$$

$$\frac{w_{n-1}}{b} = 0$$

Beispiel: Horner-Schema

Beispiel: $(2595)_{10}$ nach Basis 11

$$\frac{(2595)_{10}}{11} = (235)_{10}$$

Rest:
$$(10)_{10} = (A)_{11}$$

$$\frac{(235)_{10}}{11} = (21)_{10}$$

Rest:
$$(4)_{10} = (4)_{11}$$

$$\frac{(21)_{10}}{11} = (1)_{10}$$

Rest:
$$(10)_{10} = (A)_{11}$$

$$\frac{(1)_{10}}{11} = (0)_{10}$$

Rest:
$$(1)_{10} = (1)_{11}$$

$$(2595)_{10} = (1A4A)_{11}$$

Addition

- mod-Operation ("modulo"): a mod b ist der Rest der
 Division von a durch b
- Resultat von x + y ist definiert für n Bits als $(x + y) \mod 2^n$
- Beispiel:

$$\begin{array}{ccc}
0011 & 3 = 2^{0} + 2^{1} \\
+ 0010 & 2 = 2^{1} \\
\hline
0101 & 5 = 2^{0} + 2^{2}
\end{array}$$

Überlauf eines jeden Bits ergibt Übertrag

Überlauf bei Addition

Beispiel: Was geschieht bei 15 + 2?

Überläufe entstehen durch endliche Präzision. Die implementierte Addition ist daher "modular", und das Resultat von x+y bei n Bits ist definiert als (x+y) mod 2^n

Multiplikation

Schulmethode:

Sei x der Multiplikand, $y = (y_{n-1}, ..., y_0)$ der Multiplikator, dann ist

$$x \cdot y = x \cdot y_0 + x \cdot y_1 \cdot 2 + x \cdot y_2 \cdot 2^2 + \dots + x \cdot y_{n-1} \cdot 2^{n-1}$$

$$= \sum_{i=0}^{n-1} x \cdot y_i \cdot 2^i$$

In der Praxis ist es sinnvoll, jeden Term der Form $x \cdot y_i \cdot 2^i$ zu addieren, sobald er generiert wurde:

$$x \cdot y = (\dots((x \cdot y_0 + x \cdot y_1 \cdot 2) + x \cdot y_2 \cdot 2^2) + \dots) + x \cdot y_{n-1} \cdot 2^{n-1}$$

Abschnitt 1.2

Ganze Zahlen

- Darstellung ganzer Zahlen im Rechner
- Alternative Darstellungen ganzer Zahlen
- ► BCD-Code

Darstellung ganzer Zahlen im Rechner

Bisher wurden nur natürliche Zahlen betrachtet. Wie sollte man ganze Zahlen darstellen?

Der konzeptionell einfachste Ansatz:

Dualdarstellung wie bisher plus Vorzeichen-Bit 0 = +, 1 = -, Bsp. +5 = 0101, -5 = 1101

Nachteile: 0 hat zwei Darstellungen und man braucht sowohl Addier- als auch Subtrahierwerk:

1.	+x, +y	x+y	Add.
2.	-x,-y	-(x+y)	Add.
3.	$+x, -y (x \ge y)$	x-y	Subtr.
	$-x, +y (y \ge x)$	y-x	Subtr.
4.	+x, -y (x < y)	-(y-x)	Subtr.
	-x, +y (y < x)	-(x-y)	Subtr.

Nachteile der vorzeichenlosen Version \rightarrow Verwendung von $K_1(x)$ und $K_2(x)$

Darstellung ganzer Zahlen im Rechner

Wir arbeiten hauptsächlich auf der Menge $\Sigma_2 = \{0,1\}$.

 $\sum_{i=1}^{n}$ beschreibt dann die Menge der n-stelligen Binärzahlen.

Sei $x = (x_{n-1} \dots x_0)_2 \in \sum_{i=1}^n$ eine n-stellige Binärzahl.

- (i) $K_1(x) := (\overline{x_{n-1}}, ..., \overline{x_0})_2$ heißt **Einer-Komplement** von x
- (ii) $K_2(x) \coloneqq (\overline{x_{n-1}}, ..., \overline{x_0})_2 + 1 = K_1(x) + 1 \pmod{2^n}$ heißt **Zweier-Komplement** von x

Beispiel:
$$x = 10110010$$
: $K_1(x) = 01001101$ $K_2(x) = 01001110$

Umrechnungsregeln

Einerkomplement: Invertierung

Beispiel:
$$x = 10110010$$

 $K_1(x) = 01001101$

Zweierkomplement: Invertierung + 1

Beispiel:
$$x = 10110010$$

 $K_1(x) = 01001101$
 $K_2(x) = 01001110$

Beispiel: Vorzeichenbehaftete Zahlen mit 4 Bit

- Das MSB legt das Vorzeichen fest
- $(0???)_2$
- $(1???)_2$

Wie interpretieren wir die Bits bei den Fragezeichen?

Einerkomplement

- $(0???)_2$: wird interpretiert wie im vorzeichenlosen Fall
- $(1???)_2$: Bilde Einerkomplement K_1
- Beispiel:

$$(0010)_2 = +(010)_2 = (2)_{10}$$

 $(1010)_2 = -K_1(1010)_2 = -(0101)_2 = -(5)_{10}$

 $K_1(K_1(x)) = x$

Addition im Einerkomplement

Beispiel:
$$(3)_{10} + (-6)_{10} = -(3)_{10}$$

$$(3)_{10} = (0011)_2$$

- $(6)_{10} = K_1(0110)_2 = (1001)_2$

$$\begin{array}{rcl}
0011 \\
+1001 \\
1100
\end{array} \qquad (1100)_2 = -K_1(1100)_2 = -(0011)_2 \\
= -(3)_{10}$$

Zweierkomplement

- $(0???)_2$: wird interpretiert wie im vorzeichenlosen Fall
- $(1???)_2$: Bilde Zweierkomplement K_2
- Beispiel:

$$(0010)_2 = +(010)_2 = (2)_{10}$$

 $(1010)_2 = -K_2(1010)_2 = -(0101 + 1)_2 = -(6)_{10}$

$$K_2(K_2(x)) = x$$

Addition im Zweierkomplement

Beispiel:
$$(3)_{10} + (-6)_{10} = -(3)_{10}$$

$$(3)_{10} = (0011)_2$$

- $(6)_{10} = K_2(0110)_2 = (1001 + 1)_2 = (1010)_2$

$$0011 \\ +1010 \\ \hline 1101$$

$$(1101)_2 = -K_2(1101)_2 = -(0010 + 1)_2$$

= $-(3)_{10}$

Darstellungsbereiche bei 4 Bit

Vorzeichenlos:

$$(0)_{10} \cdots (15)_{10}$$

• Einerkomplement:

$$-(7)_{10} \cdots (7)_{10}$$

Zweierkomplement:

$$-(8)_{10} \cdots (7)_{10}$$

Darstellungsbereiche

Sei $x = (x_{n-1} \dots x_0)_2 \in B^n$ eine n-stellige Binärzahl.

- 1. Im Einerkomplement: $-(2^{n-1}-1) \le x \le 2^{n-1}-1$
- 2. Im Zweierkomplement: $-2^{n-1} \le x \le 2^{n-1} 1$

- Wegen der doppelten Darstellung der 0 im Einerkomplement lässt sich im Zweierkomplement eine Zahl mehr darstellen
- Einfache (technische) Umsetzung arithmetischer Operationen
- Addition bspw. genauso wie vorzeichenlos

Alternative Darstellung ganzer Zahlen

D:Hfalas	Darstellung in Dezimalnotation				
Bitfolge	Vorz./Betrag	K ₁	K ₂		
0000	+0	+0	+0		
0001	+1	+1	+1		
0010	+2	+2	+2		
0011	+3	+3	+3		
0100	+4	+4	+4		
0101	+5	+5	+5		
0110	+6	+6	+6		
0111	+7	+7	+7		
1000	-0	-7	-8		
1001	-1	-6	-7		
1010	-2	-5	-6		
1011	-3	-4	-5		
1100	-4	-3	-4		
1101	-5	-2	-3		
1110	-6	-1	-2		
1111	-7	-0	-1		

BCD-Code

Binary Coded Decimal

Ziffern werden einzeln mit 4 Bits als vorzeichenlose Binärzahl dargestellt.

Beispiel: 4739 = 0100 0111 0011 1001

6 Bitmuster ungenutzt, erlaubt Darstellung der Vorzeichen:

z.B. + = 1010 und - = 1011

Nachteil: Erschwerte Addition

Beispiel: 4739 + 1287 = 6026

0101	1001	1100	0000	
0001	0010	1000	0111	
0100	0111	0011	1001	

Z.B. Fehler an der letzten Stelle wegen des Übertrags.

BCD-Code

Korrektur: Bei jedem Übertrag und bei jeder ungültigen

BCD-Darstellung 6 aufaddieren:

0101	1001	1100	0000	\rightarrow	Fehlerhaftes Ergebnis der letzten Rechnung
			0110		_
0101	1001	1100	0110		_
		0110		\rightarrow	Korrektur
0101	1010	0010	0110		 -
	0110			\rightarrow	Korrektur
0110	0000	0010	0110		_
6	0	2	6		

Exkurs: Anwendungen BCD Code

- Vorteil von BCD: Einfache Konvertierung in Dezimalsystem, daher BCD Code für Anzeigen sinnvoll
- Konkrete Anwendungsbeispiele
 - DCF Funkuhr Signal
 - Bis heute existieren Hardwarebausteine (IC), welche u.a. BCD Codes für 7 Segment Displays dekodieren
 - Taschenrechner (u.a. von Texas Instruments) nutzen die freien Kombinationen für weitere Symbole (z.B. unendlich)

Abschnitt 1.3

Festkommazahlen

Festkomma-Darstellung

Motivation: Festkommazahlen

- Fest vorgegebene Anzahl an Vor- und Nachkommastellen
- Getrennt voneinander binär dargestellt
- Häufig aus Performancegründen eingesetzt

Festkomma-Darstellung

Komma **rechts** von der Stelle mit dem niedrigsten Wert: ein n-Bit Wort $(z_{n-1} \dots z_0)_2$ stellt dann die Zahl

$$z = \sum_{i=0}^{n-1} z_i \cdot 2^i$$
 dar, z.B. 110101.0

• Komma **links** von der Stelle mit dem höchsten Wert: ein n-Bit Wort $(x_1 ... x_n)_2$ stellt dann die Zahl

$$z = \sum_{i=1}^{n} z_i \cdot 2^{-i}$$
 dar, z.B. 0.110101

• Allgemein stellt eine Bitfolge $(x_{n-1}, ..., x_1, x_0, x_{-1}, ..., x_{-m})_2$, falls das Komma zwischen x_0 und x_{-1} angenommen wird, die Zahl

$$z = \sum_{i=-m}^{n-1} z_i \cdot 2^i$$
 dar, z.B. 1101.01

Beispiel für Festkomma-Arithmethik

Verwende 4 Bits für Vor- und 3 Bits für Nachkommateil

$$3.5 + 2.5 = (0011).(100) + (0010).(100)$$

= $(0110).(000)$
= 6.0

Beispiel

$$0,6875 \cdot 2 = 1,375$$
 $0,375 \cdot 2 = 0,75$
 $0,75 \cdot 2 = 1,5$
 $0,5 \cdot 2 = 1,0$

$$(0,6875)_{10} = 0,(1011)_{2}$$

Abschnitt 1.4

Gleitkommazahlen

- Gleitkomma-Darstellung
- Regeln für das Rechnen mit Gleitkommazahlen
- ► Rechnerinterne Darstellung von Gleitkommazahlen
- ► IEEE 754

Motivation: Gleitkommazahlen

- Alternative zu Festkomma: approximative Darstellung reeller bzw. rationaler Zahlen
- Bei gleicher Anzahl an Bits wie bei Festkommadarstellung wird viel größerer Zahlenbereich abgedeckt
- Aber: Nicht jede Zahl in diesem Bereich kann exakt dargestellt werden
- Bis in die 80er Jahre hinein gab es viele verschiedene Gleitkomma-Darstellungen.
- Das Institute of Electrical and Electronics Engineers (IEEE) gab einen Standard für 32-, 64- und 80-Bit Gleitkommazahlen heraus.
- Probleme durch die Behandlung von Über- bzw.
 Unterläufen und anderen Ausnahmen.

Gleitkomma-Darstellung

- Jede Zahl z wird in der Form $z=\pm m\cdot b^{\pm e}$ dargestellt mit m Mantisse, e Exponent, b Basis für den Exponenten.
- Die Basis ist für alle auftretenden Exponenten die gleiche; daher rechnerinterne Darstellung einer Gleitkomma-Zahl:

$$(\pm m, \pm e)$$

Beispiel:

$$e = 1.6 * 10^{-19}C$$

Bit-weise Darstellung

- Speicherung einer Gleitkomma-Zahl in drei Feldern
 - Vorzeichen ŝ
 - Exponent $\hat{e} = (e_{k-1} ... e_0)$
 - Mantisse $\widehat{m} = (m_{n-1} \dots m_0)$
- Bei 32-Bit haben wir k=8 und n=23
- Bei 64-Bit haben wir k=11 und n=52

 Drei Fälle: normalisiert, denormalisiert und Sonderzahlen

IEEE 754 32-bit ("single")

Mit dieser Aufteilung darstellbare Beträge:

 $1.18 \cdot 10^{-38}$ bis $3.40 \cdot 10^{38}$

- $\hat{e} \neq (0 ... 0)$ und $\hat{e} \neq (1 ... 1)$
- Exponent $e = \hat{e} bias$ mit $bias = 2^{k-1} 1$
 - Für 32-Bit also bias = 127 da k = 8
- m wird interpretiert als $m=1+(0,\widehat{m})=1,\widehat{m}$
 - Darstellungstrick für ein weiteres Bit an Präzision
- Also gilt $1 \le m < 2$

• Zum Beispiel wird die Zahl z = -1.5 dargestellt durch

d.h.

$$\hat{s} = 1$$

$$\hat{e} = 011111111$$

$$s = 1$$

$$e = \hat{e} - 127 = 0$$

$$m = 1.\hat{m} = 1.5$$

- Stelle -2.625 als IEEE 754 Gleitkommazahl dar
- 1. Vorzeichen: $s = 1 \rightarrow \hat{s} = 1$
- 2. Mantisse: $(2,625)_{10} = (10,101)_2$

Normalisieren: $(10,101)_2 = (\underline{\mathbf{1}},0101)_2 \cdot (2)^1$ $\hat{\mathbf{m}} = 01010...$

3. Exponent: $e = \hat{e} - 127 \leftrightarrow \hat{e} = e + 127$ $\hat{e} = 1 + 127 = 128 = (10000000)_2$

 0
 1
 9
 31

 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Welcher Dezimalzahl entspricht die folgende Binärzahl?

0 1 9 31 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0

- 1. Vorzeichen: $\hat{s} = 0 \rightarrow s = 0 \rightarrow pos$. Zahl
- 2. Exponenten: $\hat{e} = (10110011)_2 = (179)_{10}$ $e = \hat{e} - 127 = 52$
- 3. Mantisse: $m = 1, \hat{m} = (1,0101)_2 = (1,3125)_{10}$

Ergebnis: $z = +1,3125 \cdot 2^{52}$

- Normalisiert lässt sich die 0 nicht darstellen wegen $1 \le m$
- Falls $\hat{e} = (0 \dots 0)$, dann denormalisiert
 - Exponent e = 1 bias
 - Mantisse $m=\widehat{m}$ ohne führende $1 \ z = 0$, \widehat{m}
- Genaue Darstellung für 0 und Werte nahe der 0
- Durch 1 bias statt 0 bias sanfter Übergang zwischen denormalisiert und normalisiert

- Durch 1 bias statt 0 bias sanfter Übergang zwischen denormalisiert und normalisiert
- Kleinste normalisierte Zahl (Betrag)

$$\hat{m} = (0 \dots 0)$$
 $\hat{e} = (0 \dots 1)$
 $\Rightarrow 1.0 \cdot 2^{-126}$

Größte denormalisierte Zahl (Betrag)

$$\widehat{m} = (1 \dots 1)$$
 $\widehat{e} = (0 \dots 0)$
 $\widehat{e} = (0 \dots 0)$
 $\widehat{e} = (0 \dots 0)$
 $\widehat{e} = (0.99999988079071044921875)_{10} \cdot 2^{-126}$

Darstellung der Null

Kurioserweise gibt es zwei Darstellungen für die Zahl 0:

$$\hat{s} = 0
\hat{m} = (0 ... 0)
\hat{e} = (0 ... 0)$$

$$\hat{s} = 1
\hat{m} = (0 ... 0)
\hat{m} = (0 ... 0)
\hat{e} = (0 ... 0)$$

$$\hat{e} = (0 ... 0)$$

 Nach IEEE 754 manchmal gleich interpretiert (bei Vergleich z.B.), manchmal unterschiedlich

Sonderfall: Über- und Unterlauf

- Überlauf: Das Resultat einer Gleitkomma-Operation ist zu groß, um es darzustellen (bzw. zu klein, dann Unterlauf)
- Das Ergebnis einer solchen Gleitkomma-Operation wird durch "infinity" gekennzeichnet, Symbole +∞ oder -∞
- Beispiel: $\frac{1}{0} = +\infty \qquad \frac{1}{-0} = -\infty$
- Im IEEE 754 wird dies durch $\widehat{m}=(0 \dots 0)$ und einen Exponenten $\widehat{e}=(1 \dots 1)$ mit $\widehat{s}\in\{0,1\}$ dargestellt

Ausnahmebedingungen: NaN

- Wenn das Resultat einer Gleitkomma-Operation keine gültige Gleitkommazahl ist, dann wird eine Sonderzahl mit der Bedeutung "not a number" (NaN) generiert.
 - Beispiel:

$$+\infty + (-\infty) = NaN$$

• NaN werden durch $\widehat{m} \neq (0 \dots 0)$ und einen Exponenten $\widehat{e} = (1 \dots 1)$ dargestellt

Approximative Darstellung

- Es können nicht alle Zahlen dargestellt werden
- Beispiel: $(0.1)_{10}$

$$\hat{s} = 0$$
 (1.10011001100110011001101)₂ · 2⁻⁴
 $\hat{e} = (01111011)$ = 0.100000001490116119384765625
 $\hat{m} = (10011001100110011001101)$

Nächstkleinere Zahl

$$\hat{s} = 0$$
 $(1.10011001100110011001100)_2 \cdot 2^{-4}$ $= 0.0999999940395355224609375$ $\hat{e} = (100110011001100110011001100)$

Approximative Darstellung

- float a = 0.1; float b = 0.3;
- if (a == 0.1) ergibt true
- Aber if (a+b == 0.4) ergibt false

Daher Vergleich mit Epsilon-Umgebung nötig

Rechnen mit Gleitkommazahlen

Seien
$$x = m_x \cdot 2^{d_x}$$

 $y = m_y \cdot 2^{d_y}$

• Falls $d_x \le d_y$ dann

$$x + y = (m_x \cdot 2^{d_x - d_y} + m_y) \cdot 2^{d_y}$$
$$x - y = (m_x \cdot 2^{d_x - d_y} - m_y) \cdot 2^{d_y}$$

Rechnen mit Gleitkommazahlen

Seien
$$x = m_x \cdot 2^{d_x}$$

 $y = m_y \cdot 2^{d_y}$

• Falls $d_x \le d_y$ dann

$$x + y = (m_x \cdot 2^{d_x - d_y} + m_y) \cdot 2^{d_y}$$

$$x - y = (m_x \cdot 2^{d_x - d_y} - m_y) \cdot 2^{d_y}$$

• Ebenso $x \cdot y = (m_x \cdot m_y) \cdot 2^{d_x + d_y}$

$$\frac{x}{y} = \frac{m_x}{m_y} \cdot 2^{d_x - d_y}$$

Verteilung von Gleitkommazahlen

Vorzeichen: 1 Bit

Exponent: 3 Bits

Mantisse: 2 Bits

Weicher Übergang zwischen normalisierten und denormalisierten Werten

Präzise Verteilung um die 0

Computer Systems: A Programmer's Perspective (Bryant, O'Hallaron)

IEEE 754 - 64-Bit Zahlen

- Genau wie bei den vorgestellten 32-Bit Gleitkomma-Zahlen, jedoch:
 - Der Exponent besitzt 11 Bits (vorher: 8 Bits).
 - Die Mantisse ist 52 Bits lang (vorher: 23 Bits).
- Außerdem beschreibt IEEE 754 auch 80-Bit Gleitkomma-Zahlen mit 15-Bit Exponenten und 64-Bit Mantisse
- x86-Architekturen verwenden interne 80-Bit Darstellung,
 Speicherung erfolgt in 32- oder 64-Bit
- 64-Bit Gleitkomma-Zahlen werden auch als double bezeichnet.

Achtung: Rechnen mit Gleitkommazahlen

- Mit $x, y \in R$ ist das Ergebnis einer IEEE 754 Operation $\circ \in \{+, -, \cdot, /\}$ definiert als $round(x \circ y)$
- IEEE 754 definiert nicht, wie exakt gerundet werden muss, sondern liefert Alternativen
 - Round to zero
 - Round down
 - Round up
 - Round to nearest
 - Tie to even
 - Tie away from zero
- D.h. die gleichen 32-Bit FP-Operationen k\u00f6nnen unterschiedliche Ergebnisse liefern, obwohl korrekt (den Standard befolgend)

Beispiel: Rundung

Modus	1.40	1.60	1.50	2.50	-1.50
Round to nearest (tie to even)	1	2	2	2	-2
Round to nearest (tie away from zero)	1	2	2	3	-2
Round toward zero	1	1	1	2	-1
Round down	1	1	1	2	-2
Round up	2	2	2	3	-1

© R. Bryant, D. O'Hallaron

Abschnitt 1.5

Zusammenfassung

Achtung: Fehler kosten (viel) Geld

- Ariane 5 stürzte 37 Sekunden nach dem Start ab
- Kosten in Höhe von mehreren Hundert Millionen US-Dollar
- Was ist passiert?
- Konvertierung eines 64-Bit Floats in einen 16-Bit Signed Integer hat zu einem Überlauf geführt

Quelle: http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/V88_AR501.htm

Zusammenfassung

- Darstellung von natürlichen und ganzen Zahlen sowie deren wichtigsten Rechenoperationen
- BCD-Kodierung
- Festkommadarstellung und IEEE 754 Fließkommadarstellung
- Wichtig: Operationen verhalten sich nicht immer wie erwartet

Literatur

- W. Kahan: An Interview with the Old Man of Floating-Point (https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html)
- D. Goldberg: What Every Computer Scientist Should Know About Floating-Point Arithmetic. In: ACM Computing Surveys. 23, 1991, S. 5-48 (http://docs.sun.com/source/806-3568/ncg_goldberg.html)
- R. Bryant, D. O'Hallaron: Computer Systems A Programmer's Perspective (Chapter 2). Prentice Hall

