소프트웨어와 문제해결

컴퓨팅적/계산적 사고 (Computational Thinking)

프로그래밍이 무엇인가요?

프로그래밍은 프로그램을 하는 것

그럼 프로그램은 무엇인가요?

프로그램

Program

**pro·gram, 〈특히 英〉-gramme 🐠

program [próugræm]

n.

- 1 계획(plan), 예정, 행동 계획, 스케줄, 일정. I had a full ~ ahead of me for that day. 그날은 예정이 꽉 하다.
- 2 (국·음악회·운동회 등 플루트)램, 진행표; (라디오·텔레비전의) 프로.
- 3. 東口の比斯(prospectus): 24 🚾 (syllabus).
- 4 [컴퓨터] 프로그램.
- 7 (884) (M. 184)
- v. (-gramed, ~·ing or <특히 英> -grammed, ~·ming) v.i. 프로(그램)[계획] 를 짜다.

v.t.

- 1 [Ⅲ圏(閉)] ···의 프로(그램)를 짜다, 계획을 세우다: ···을 (프로(그램)·계획 등에) 짜넣다 ⟨into ...⟩; [♥閱to do] ···이 (···하도록) 계획하다, ⟨기계가⟩ (···하도록) 스위치 등을 맞추어 놓다. a computer ∼ med to solve complex functions 복잡한 기능을 해내도록 조정된 컴퓨터. A rest period is ∼ed after dinner. 만찬후휴게 시간이 예정되어 있다.
- 2 [컴퓨터] <컴퓨터의> 프로그램을 작성하다. [후기 라틴어에서, 원래는 그리스머 prógramma (pró-미리 + grámma 쓴 것 =쓴 것에 의한 사전고지). ➡ TELEGRAM, GRAMMAR]

~·ma-ble adj. [컴퓨터] 프로그램으로 제어[동작] 가능한.

[약어표]

컴퓨터 프로그램 Computer Program

컴퓨팅적 사고를 통한 문제해결

- •1단계
 - 컴퓨팅적 사고 기법
- 2단계
 - 컴퓨터처럼 생각하기
- 3단계
 - 컴퓨터를 사용한 문제 해결

ZHE WINGELIM COMPUTATION OF THE STATION OF THE STAT

문제를 해결 할 때, 필요한 자료를 추출하고 분석하고 일정한 경향을 파악해서 컴퓨터로 문제를 해결하기 위한 절차를 만드는 것

그림 1.1 컴퓨팅 사고의 구성

컴퓨팅 사고의 개념

여섯 가지 중요한 개념

- 1. 논리(logic): 논리적으로 사고하는 것
- 2. **분해(decomposition):** 복잡한 문제를 좀 더 작고 처리가 가능한 부분문제로 분해한다.
- 3. **패턴인식(pattern recognition)**:부분 문제들 중에서 유사성 (패턴)을 찾는다.

(Masher /Kes /RS)

컴퓨팅 사고의 개념

여섯 가지 중요한 개념

- 4. **추상화(abstraction):** 오직 중요한 정보에만 집중한다. 관련 없는 세부사항은 무시한다.
- 5. **알고리즘(algorithms):** 문제에 대한 <u>단계적인 해결책을</u> 개발한다.
- 6. **평가(evaluation):** 개발된 알고리즘의 정확도나 효율성을 평가한다.

(大郎、金松堂、健外)

컴퓨팅적 사고 1: 분해

 복잡한 문제를 나누어서 해결 가능한 크기의 작은 문제들의 집합으로 바꾸는 기술

그림 3.1 분해는 복잡한 문제를 해결 가능한 작은 문제들로 나누는 것이다.

분석, 합성, 병렬처리

- 분석(analysis): 주어진 문제를 작은 부분으로 어떻게 분해할 것인지에 초점을 맞추는 과정
- 합성(synthesis): 부분을 모아서 주어진 문제에 대한 해답을 만드는 과정
- 병렬처리: 작은 문제들을 해결하는 데 다중작업을 사용하는 것

예) 아침 만들기

- 아침 만들기
 - 토스트 만들기
 - 빵 썰기
 - 빵 굽기
 - 버터 바르기
 - 잼 바르기
 - 커피 만들기
 - 물 끓이기
 - 커피 넣기
 - 우유 넣기 →>>>>

컴퓨팅적 사고 2: 패턴 인식

- 패턴(pattern): 동일한 일이 반복되는 것
 - 매일 반복되는 일출과 일몰
 - 밀물과 썰물
 - 파도소리, 빗소리에도 있는 패턴

अ패턴 인식

- 패턴(pattern)발견의 중요성
 - 어떤 문제를 해결할 때 문제 안에 내재된 패턴을 발견한다면 문제를 쉽게 해결할 수 있다.
 - 또한 그 후에 동일한 문제가 발생했을 경우, 동일한 해결책을 사용할 수 있다.

분해 & 패턴인식

- 문제를 작은 단위로 나누고 → 분해
- 작은 문제들 사이에서 패턴을 찾는다 → 패턴인식

好機 銀門 內里 學學 學

- 케이크 만들기
 - 어떤 종류의 케이크를 만들 것인가?
 - 어떤 재료를 얼마만큼 사용할 것인가?
 - 얼마나 많은 사람이 먹을 수 있게 할 것인가?
 - 얼마나 오랫동안 빵을 구워야하는가?
 - 어떤 도구가 필요한가?

컴퓨팅적사고(3) 추상화

1.문제를 쉽게 해결하기 위하여 불필요한 세부 사항을 제거하는 기법

2.복잡한 시스템의 구체적인 예로부터 공통적인 특성을 추려내서 일반적인 개념을 형성하는 과정

量型工作工作中人的工作的

一方子子的现象 是是 医原果 医原果 医肾中毒

추상화 예

추상화 예

컴퓨팅적 사고 4: 알고리즘

*분할된 작은 문제의 해법을 찾고,이러한 해법을 모아서 알고리즘(문제를 해결하는 절차)으로 만드는 작업.

*알고리즘을 작성할 때 우리는 어린아이에게 말하듯이 자세하게 **컴퓨터의 수준**에서 생각해야 한다.

2011

생활 속의 알고리즘

·생활속의 알고리즘: 요리법(recipe)

-빵을 만드는 알고리즘

李杨 军的人

- 빈 그릇을 준비한다.
- ② 이스트를 밀가루, 우유에 넣고 저어준다.
- **③** 버터, 설탕, 계란을 추가로 넣고 섞는다.
- ₫ 따뜻한 곳에 놓아두어 발효시킨다
- **⑤** 170~180도의 오븐에서 굽는다

생활 속의 알고리즘

- •알고리즘 = 요리법
- 1.빵을 만들 때도 순서가 잘못되면 빵이 만들어지지 않는다
- 2.같은 빵을 만드는 방법도 여러가지가 존재할 수 있듯이 하나의 문제에 대한 알고리즘 또한 여러 가지가 존재할 수 있다.
- 3.알고리즘에서 가장 중요한 것: 정확성, 효율성
- 4.같은 문제를 해결할 때 가장 효율적인 알고리즘을 선택한다

- 간단한 정의
 - 일을 처리하기 위한 명령들의 논리적 순서
- 요구사항
 - 명령은 순차적으로 잘 정렬되어야 함

 - 실행 가능해야 함
 - 요구되는 결과물을 생산해야 함
 - 명령에는 끝이 있어야 함

알고리즘의 조건

• 입력을 받고, 하나 이상의 결과 유도

• 의미 있는 동작, 존재의 필요성, 동작의 명확성 學學 與

알고리즘의 조건

• 올바른 순서 정의

• 무한하지 않고 유한하게 종료

알고리즘의 조건

• 유한한 시간 안에 수행할 정도로 단순해야 함

알고리즘?

The actions must be doable

भिन्न स्वित हात्राप्ता

알고리즘?

The actions must be clear and precise

알고리즘 평가

알고리즘의 처리속도나 정확도를 평가하여야 함

그림 1.5 잘못된 알고리즘도 만들어 질 수 있다.

알고리즘을 작성한 후 확인할 사항

- 알고리즘을 쉽게 이해할 수 있는가?
- 문제의 모든 면을 해결하는가?
- 가능한 자원을 최대한 활용하여 문제를 해결하는가?
- 주어진 설계 기준을 충족하는가? 2013

컴퓨팅자고"카라민경우

-소프트웨어를 사용하는 방법을 배우는 것

- "프로그래밍" 자체를 배우는 것

2012

2011 2013

컴퓨팅 사고의 예 1

- •가방 싸기
 - Pre-fetching and caching

컴퓨팅 사고의 예 2

- •정렬 및 탐색
 - •책장에 책을 정렬해서 넣는 방법
 - •도서관 책이 들어갈 위치를 찾는 방법

컴퓨팅 사고의 예 3

•경로 찾기

• 태권도장, 미술학원, 수영장, 영어학원 간의 이동

경로

컴퓨팅 사고의 예 4

- •레고 정리
 - •색깔별,크기별,주제별...

컴퓨팅적 사고 활동 1: 탐색

숫자 찾기 규칙

- 교실 앞에 10명의 학생이 줄을 서고 숫자 카드를 받습니다.
- 2. 도전자는 5개의 사탕을 받고 자신이 원하는 숫자를 찾습니다.
- 3. 사탕 1개를 주고 숫자를 확인할 수 있습니다.
- 4. 자신의 사탕을 모두 사용하기 전에 숫자를 찾는다면, 남은 사탕을 모두 가질 수 있습니다.

토론하기

 그룹으로 나누어 효율적으로 숫자를 찾을 수 있는 방법에 대해서 생각해 봅시다

전함 찾기 놀이 1

- 각 그룹을 반으로 나누어 시트를 하나씩 가집니다 (1A와 1B). 상대방의 시트를 볼 수 없습니다.
- 2. 자신이 가진 게임 시트지 맨 윗줄에 있는 배를 선택하여 동그라미를 그리고 그 숫자를 불러줍니다.
- 3. 번갈아가면서 배가 어디에 있는지 추측합니다. (배 아래에 있는 문자를 말하고 상대방은 그 문자에 해당하는 배의 숫자를 말합니다)
- 4. 원하는 배를 찾는데 걸리는 시간 (시도 횟수)은 어떻게 되는가요?

생각해보기

• 최소 점수와 최대 점수는 무엇일까요?

전함 찾기 놀이 2

- 앞의 게임과 같이 시트를 하나씩 가집니다 (2A와 2B). 이번 놀이에서는 배에 표기된 숫자가 오름차순으로 정렬되어 있습니다. 역시 상대방의 시트를 볼 수 없습니다.
- 2. 자신이 가진 게임 시트지 맨 윗줄에 있는 배를 선택하여 동그라미를 그리고 그 숫자를 불러줍니다.
- 번갈아가면서 배가 어디에 있는지 추측합니다. (배 아래에 있는 문자를 말하고 상대방은 그 문자에 해당하는 배의 숫자를 말합니다)
- 4. 원하는 배를 찾는데 걸리는 시간 (시도 횟수)은 어떻게 되는가요?

생각해보기

- 낮은 점수를 얻기 위한 전략이 있나요?
- 어느 배를 처음 선택해야 할까요?
- 다음으로 선택해야하는 배는 무엇인가요?
- 이와 같은 전략을 사용하면 얼마나 많은 시도를 해야할 까요?

전함 찾기 놀이 3

- 1. 앞의 게임과 같이 시트를 하나씩 가집니다 (3A와 3B).
- 2. 이 게임에서 여러분은 배에 있는 열 (0~9)을 확인할 수 있습니다. 배에 표기된 각 자릿수의 숫자를 모두 더한수의 1의 자리 수가 배가 속한 열입니다.
 - 예, 2345번 --> 2 + 3 + 4 + 5 = 14, 그러므로 4열
- 3. 배를 선택하고 배의 숫자를 알려줍니다.
- 4. 원하는 배를 찾는데 걸리는 시간 (시도 횟수)은 어떻게 되는가요?

생각해보기

- 어느 배가 찾기 쉽나요? 어느 배가 찾기 어렵나요?
- 앞의 방법과 비교하였을 때 속도는 어떤가요?
- 어떤 경우가 최악의 결과를 낳게되는가요?

탐색

- 컴퓨터가 데이터를 탐색하는 방법
 - 선형 탐색이진 탐색
 - 해시 탐색

선형 탐색

- 숫자들의 리스트가 있다고 가정
- 이 숫자들은 정렬되어 있을 수도 있으며 아닐 수도 있음
- 순환 탐색은 리스트에서 순차적으로 비교하면서 숫자를 찾는 방법

→ 순차적으로 검색											
3	5	2	1	0	9	7	8	6	4		

一族野一

이진 탐색 (Binary Search)

- 숫자들의 리스트가 있다고 가정
- 이 숫자들은 크기 순으로 정렬되어 있음
- 이진 탐색은 리스트를 반으로 나누어 가운데 숫자와 비교하며 원하는 숫자를 찾는 알고리즘

一般 数 2、

해시 탐색 (Hash Search)

- 숫자들의 리스트가 있다고 가정
- 이 숫자들은 그룹으로 나누어져 저장되어 있음
- 해시 탐색은 해당하는 숫자가 속한 그룹을 순차적으로 비교하여 원하는 숫자를 찾는 알고리즘 과 첫 첫 3

컴퓨팅적 사고 활동 2: 정렬

정렬 알고리즘

- 앞의 탐색 활동에서 보았듯이 데이터를 빠르게 처리하려면 정렬이 필수적입니다.
- 그러면, 정렬은 어떻게 할 수 있을까요?

정렬 게임

- 1. 교실 앞에 10명의 학생이 줄을 서고 숫자 카드를 (무작위로) 받습니다.
- 2. 도전자는 오름차순으로 숫자를 정렬해 봅시다.
- 3. 한번에 한명만 움직일 수 있습니다.
- 4. 움직일 때에는 움직이는 공간을 고려해야합니다.
 - 두 명의 자리를 바꾸기 위해서는 한 명이 자기 자리를 먼저 비워줘야 합니다.
- 5. 움직이는 횟수는 몇 번인가요?
- 6. 공간이 많으면 좋은가요?

컴퓨팅적 사고 활동 3: 정렬 네트워크

정렬 네트워크

- 앞서 소개한 정렬 기법은 속도가 많이 느립니다.
- 빅데이터 시대에 많은 데이터를 정렬할 수 있는 방법은 없을까요?

정렬 네트워크

생각하기

 앞의 활동을 더 빠르게 할 수 있는 방법은 무엇일까요?

Q & A

