Business Trends

Market need in OLTP space

- Ever higher throughput
- Lower latency
- At a lower cost

Examples

- Credit-card transactions: validate, authorize and complete the transaction
- Online-betting: ability to place the bet quickly
- Session state: high traffic E-commerce website

Hardware Trends

Moore's Law means more transistors and therefore cores, but...

Meanwhile RAM cost continues to drop

SQL Server Initiatives

In-Memory OLTP is one of many SQL Server initiatives to take advantage of plentiful memory and processor cores

Specialized database engines for particular workloads:

- Column store indexes for SQL Server 2012/2014 and PDW
- In-Memory Analytics Power Pivot for Excel
- App Fabric Cache mid-tier caching solution
- Stream Insight real-time data stream analytics
- In-Memory OLTP for SQL Server 2014

Myths

- 1. In-Memory OLTP is like DBCC PINTABLE
- 2. In-Memory databases are new separate products
- 3. You can use In-Memory OLTP in an existing SQL Server app with NO changes whatsoever
- 4. Since tables are in memory, the data is not durable or highly available; data is lost after a server crash

In-Memory OLTP Pillars

Customer Benefits

Architectural Pillars

Drivers

High performance data operations

Efficient business-logic processing

Frictionless scale-up

Hybrid engine and integrated experience

Main-Memory Optimized

- Optimized for in-memory data
- Indexes (hash and range) exist only in memory
- No buffer pool, B-trees
- Stream-based storage

T-SQL Compiled to Machine Code

- T-SQL compiled to machine code via C code generator and VC
- Invoking a procedure is just a DLL entry-point
- Aggressive optimizations at compile-time

High Concurrency

- Multi-version optimistic concurrency control with full ACID support
- Core engine uses lock-free algorithms
- No lock manager, latches or spinlocks

SQL Server Integration

- Same manageability, administration & development experience
- Integrated queries & transactions
- Integrated HA and backup/restore

Hardware trends

Steadily declining memory price, Non-volatile RAM

Stalling CPU clock rate

Many-core processors

Business

TCO

In Memory OLTP Architecture

Key

Existing SQL Component

In-mem OLTP Component

Generated .dll

Performance Gains

No improvements in: communication stack, parameter passing, result set generation

10-30x more efficient

Removes lock and latch contention

Reduced bandwidth, Latency remains

Persistence uses sequential IO

Memory-optimized

Table Filegroup

Transaction Log

Key

Existing SQL Component

In-mem OLTP Component

Generated .dll

Data Filegroup

Scalability

```
ostress.exe -S. –E
-dAdventureWorks2012
-Q"EXEC
Demo.usp_DemoInsertSalesOrders
@use_inmem = <0,1>,
@order_count=100000
@usenative=<0,1>
"
-n<varies>
```


Types of Candidate Workloads

Application has OLTP characteristics

Relatively short transactions

High degree of concurrency, transactions from many sessions

Suited for in-memory processing

Critical path data can fit in memory

Currently encounter locking or latching bottlenecks

Code characteristics

Stored procedures used

Code can be modified and isolated to subset of tables or stored procedures