Progettar<u>e</u> un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, M, O nel seguente

modo:

x1, x0	carattere
00	A
10	M
11	O

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1z0=10 quando riceve in ingresso la sequenza AMA, z1z0=01 quando riceve in ingresso la sequenza AMO e z1z0=00 altrimenti. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo SR.

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, M, O nel seguente

modo:

x1, x0	carattere
00	A
10	M
11	O

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1z0=10 quando riceve in ingresso la sequenza AMA, z1z0=01 quando riceve in ingresso la sequenza AMO e z1z0=00 altrimenti. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo SR.

Automa

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, M, O nel seguente

modo:

x1, x0	carattere
00	A
10	M
11	O

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1z0=10 quando riceve in ingresso la sequenza AMA, z1z0=01 quando riceve in ingresso la sequenza AMO e z1z0=00 altrimenti. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo SR.

Automa

b) tabella degli stati, utilizzando un flip-flop D per Q1 e un flipflop SR per Q0

PS	Q ₁	Q ₀	xl	0x	NS	Qı'	Q ₀ '	D_1	S ₀	R ₀	zl	z0
R	0	0	0	0	A	0	1	0	1	0	0	0
R	0	0	0	1	-	-	-	-	-	-	-	-
R	0	0	1	0	R	0	0	0	0	-	0	0
R	0	0	1	1	R	0	0	0	0	-	0	0
A	0	1	0	0	A	0	1	0	-	0	0	0
A	0	1	0	1	-	-	-	-	-	-	-	-
A	0	1	1	0	AM	1	0	1	0	1	0	0
A	0	1	1	1	R	0	0	0	0	1	0	0
AM	1	0	0	0	A	0	1	0	1	0	1	0
AM	1	0	0	1	-	-	-	-	-	-	-	-
AM	1	0	1	0	R	0	0	0	0	-	0	0
AM	1	0	1	1	R	0	0	0	0	-	0	1
-	1	1	0	0	-	-	-	-	-	-	-	-
-	1	1	0	1	-	-	-	-	-	-	-	-
-	1	1	1	0	-	-	-	-	-	-	-	-
-	1	1	1	1	-	-	-	-	-	-	-	-

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri A, M, O nel seguente

modo:

x1, x0	carattere
00	A
10	M
11	O

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1z0=10 quando riceve in ingresso la sequenza AMA, z1z0=01 quando riceve in ingresso la sequenza AMO e z1z0=00 altrimenti. Sono ammesse sovrapposizioni. Realizzare la parte combinatoria con ROM e usare almeno un flip-flop di tipo SR.

b) tabella degli stati, utilizzando un flip-flop D per Q1 e un flipflop SR per Q0

PS	Q ₁	Qo	xl	x0	NS	Qı'	Q₀'	D_1	S ₀	R ₀	zl	z0
R	0	0	0	0	A	0	1	0	1	0	0	0
R	0	0	0	1	-	-	-	-	-	-	-	-
R	0	0	1	0	R	0	0	0	0	-	0	0
R	0	0	1	1	R	0	0	0	0	-	0	0
A	0	1	0	0	A	0	1	0	-	0	0	0
A	0	1	0	1	-	-	-	-	-	-	-	-
A	0	1	1	0	AM	1	0	1	0	1	0	0
A	0	1	1	1	R	0	0	0	0	1	0	0
AM	1	0	0	0	A	0	1	0	1	0	1	0
AM	1	0	0	1	-	-	-	-	-	-	-	-
AM	1	0	1	0	R	0	0	0	0	-	0	0
AM	1	0	1	1	R	0	0	0	0	-	0	1
-	1	1	0	0	-	-	-	-	-	-	-	-
-	1	1	0	1	-	-	-	-	-	-	-	-
-	1	1	1	0	-	-	-	-	-	-	-	-
-	1	1	1	1	-	-	-	-	-	-	-	-

Esercizio

Progettare un flip Flop JK a <u>partire</u> da un Flip-flop D.

Esercizio

Progettare un flip Flop JK a partire da un Flip-flop D.

Esercizio

Progettare un flip Flop JK a partire da un Flip-flop D.

Q	J	K	Q'
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q' = \overline{Q}J + Q\overline{K}$$

Esercizio

Progettare un flip Flop JK a partire da un Flip-flop D.

Q	J	K	Q'
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q' = \overline{Q}J + Q\overline{K}$$