Titanic

How can deep learning on irregular domains help to save lifes?

0 - Table of content

- 1. Introduction
- 2. Data source
- 3. Preprocessing
- 4. Graphs
- 5. Models
- 6. Evaluation
- 7. Conclusion
- 8. References

1 - Introduction

2 - Data source

10'028 iceberg or ship cases with only 1'604 labelled

Description

Feature	Description	Туре	Has N/A	Comment
id	image identifier	String	No	
band_1	horizontal plane	Float array	No	НН
band_2	vertical plane	Float array	No	HV
inc_angle	measurement angle	Float	Yes (~10%)	Unit in degrees
is_iceberg	iceberg or not	Boolean (0/1)	No	Label

Exploration

In [10]: viz.plot_bands(example_iceberg)

In [13]: viz.plot_bands(example_ship)

In [11]: viz.plot_bands_3d(example_iceberg)

In [14]: viz.plot_bands_3d(example_ship, angle=60)


```
In [15]: plt.title('iceberg distribution')
   measures.groupby(measures.is_iceberg).is_iceberg.count().plot.barh();
```



```
In [18]: plt.title('Iceberg bands distribution')
    sns.distplot(example_iceberg.band_1, label='band 1')
    sns.distplot(example_iceberg.band_2, label='band 2')
    plt.legend();
```



```
In [19]: plt.title('Ship bands distribution')
    sns.distplot(example_ship.band_1, label='band 1')
    sns.distplot(example_ship.band_2, label='band 2')
    plt.legend();
```



```
In [23]: plt.title('T-NSE icebergs vs ships')
    plt.scatter(tsne[measures.is_iceberg == 1, 0], tsne[measures.is_iceberg == 1, 1],
    label='icebergs')
    plt.scatter(tsne[measures.is_iceberg == 0, 0], tsne[measures.is_iceberg == 0, 1],
    label='ships')
    plt.legend();
```


In [26]: for i, center in enumerate(kmeans_centers):
 plt.subplot(1, 4, i % 4 + 1)
 plt.imshow(center.reshape(75, 75))
 if i % 4 == 3:
 plt.show()

3 - Preprocessing

- No filtering
- No data augmentation
- Rescaling between 0 and 1
- Replacing missing angle by 0

4 - Graphs

Classical 2D grid

```
In [39]: small_grid = nx.grid_graph([5, 5])
    nx.draw(small_grid)
```


Knn 2D grid

In [40]:

small_knn = graph.knn(graph.grid_coordinates(5), k=8, metric='cityblock')
nx.draw(small_knn)

Wrap-around Knn 2D grid

```
In [41]: small_wraps = graph.kwraps(5, kd=1)
    nx.draw(small_wraps)
```


Classical 3D grid

```
In [42]: small_grid3d = nx.grid_graph([5, 5, 2])
    nx.draw(small_grid3d)
```


Knn 3D grid

In [43]:

small_knn3d = graph.knn3d(graph.grid_coordinates(5), k=8, metric='cityblock', d=2)
nx.draw(small_knn3d)

3D wrap-around grid

```
In [44]: small_wraps3d = graph.kwraps3d(5, kd=1, d=2)
    nx.draw(small_wraps3d)
```


Graclus

In [50]: viz.plot_graph_steps(graclus_levels)

Algebraic multigrid

```
In [53]: for g in graphs:
    plt.subplot(121)
    plt.spy(g.todense())
    plt.subplot(122)
    nx.draw(nx.from_numpy_array(g.todense()))
    plt.show()
```


Kron reduction

Maximum spanning tree

In [59]: viz.plot_graph_steps(mst_levels)

5 - Models

Convolution baseline

Layer	Output shape	Input connected to	
Convolution2d	16	Convolution2d_input	
MaxPool2d	4	Convolution2d	
Convolution2d	32	MaxPool2d	
MaxPool2d	4	Convolution2d	
Linear	256	MaxPool2d	
Linear	128	Linear	
Linear	1	Linear	

Graph convolution (Graclus)

Layer	Output shape	Input connected to	
GraphFourierConv / GraphChebyshevConv	16	GraphFourierConv_input / GraphChebyshevConv_input	
MaxPool2d	4	GraphFourierConv / GraphChebyshevConv	
GraphFourierConv / GraphChebyshevConv	32	MaxPool2d	
MaxPool2d	4	GraphFourierConv / GraphChebyshevConv	
Linear	256	MaxPool2d	
Linear	128	Linear	
Linear	1	Linear	

6 - Evaluation

In [99]:

scores

Out[99]:

	accuracy	precision	recall	f1
name				
baseline	0.502075	0.470085	0.486726	0.478261
knn	0.684647	0.645669	0.725664	0.683333
logistic	0.775934	0.725191	0.840708	0.778689
conv	0.854772	0.848214	0.840708	0.844444
gcnn_grid	0.788382	0.822917	0.699115	0.755981
gcnn_kwraps	0.780083	0.705479	0.911504	0.795367

7 - Conclusion

Possible improvements

- sparse operations
- better and more detailed comparison
- speedup to improve both coarsening algorithms and training
- graph deconvolution and inspect what the filter actually does

8 - References

- TORRES, Ramon, SNOEIJ, Paul, GEUDTNER, Dirk, et al. GMES Sentinel-1 mission. Remote Sensing of Environment, 2012, vol. 120, p. 9-24.
- SHUMAN, David I., NARANG, Sunil K., FROSSARD, Pascal, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, vol. 30, no 3, p. 83-98.
- BRONSTEIN, Michael M., BRUNA, Joan, LECUN, Yann, et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 2017, vol. 34, no 4, p. 18-42.
- DEFFERRARD, Michaël, BRESSON, Xavier, et VANDERGHEYNST, Pierre.
 Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems. 2016. p. 3844-3852.
- NGUYEN Ha Q., DO Minh N, et al. Downsampling of Signal on Graphs Via Maximum Spanning Trees. IEEE Transactions on Signal Processing, 2015, vol. 63, no 1.
- DORFLER Florain, BULLO Francesco. Kron reduction of graphs with applications to electrical networks. 2011.