1.) Identify the problem statement

- Dataset is very clear and provided input and output data, so this is supervised learning
- We need to predict the insurance charges, so this will come under regression
- There are so many input so we will not use simple linear regression

2.) About the dataset

Dataset have 1337 rows and 6 column

3.) pre-processing the dataset

- There are 2 string columns that need to be converting into numeric
- Columns Sex and smoker are non orderable so it will come under nominal data
- For nominal data we need to use one-hot coding method
- Input columns are 'age', 'bmi', 'children', 'sex_male', 'smoker yes'
- Output column is 'charges'

R2 Value:

- Multiple linear regression we got R2 value is 0.78
- SVM Module R2 value tuning using below parameter

Finding Best SVM Module using R2 value

kernel	С	coef0	degree	R2 value
linear	1000			0.76
poly	1000			0.85
rbf	1000			0.21
sigmoid	1000			0.85
sigmoid	1000	0.5		-1.62
poly	1000	0.5		<mark>0.87</mark>
poly	1000	0.5	3	0.87
poly	1000	0.5	1	0.63
poly	1000		1	0.87
poly	1000	155.5		0.86
linear	2000			0.74

We got high r2 value = $\frac{0.87}{0.87}$ for kernel=poly ,C=1000 parameter and coef0=0.5,so this will be the best model

Finding Best Decision Tree Module using R2 value

R2 will change depends up on various hyper tuning parameter

criterion	splitter	min_samples_spli t	ccp_alpha	random_stat e	R2 value
squared_error					0.67
squared_error	best	2	0.0	None	0.67
squared_error	random				0.7
squared_error	random	14	0.5		0.84
squared_error	random	5	0.5	10	0.85
friedman_mse					0.69
friedman_mse	best	2	0.0	None	0.69
friedman_mse	random				0.73
friedman_mse	random	14			0.84
friedman_mse	random	14	0.5		0.85
friedman_mse	random	14	0.5	10	0.85
absolute_error					0.69
absolute_error	best	2	0.0	None	0.69
absolute_error	random				0.73

absolute_error	random	14	0.5	10	0.85
absolute_error	random	14			0.87
absolute_error	random	14	0.5		0.88
poisson					0.67
poisson	best	2	0.0	None	0.67
poisson	random				0.71
poisson	random	14			0.82
poisson	random	14	0.5		0.86
poisson	random	14	0.5	10	0.85

We got high r2 value = 0.88 for the hyper tuning parameter criterion=absolute_error,splitter = random,min_samples_split=14,ccp_alpha=0.5

Finding Best Random forest Module using R2 value

R2 will change depends up on various hyper tuning parameter

n_estimators	criterion	random_state	R2 value
	squared_error		0.85
50	squared_error		0.84
50	squared_error	None	0.84
61	squared_error	18	0.84
	friedman_mse		0.85
50	friedman_mse		0.85
61	friedman_mse	None	0.85
61	friedman_mse	18	0.85
	absolute_error		0.85
50	absolute_error		0.85
50	absolute_error	18	0.85
61	absolute_error	18	0.85
	poisson		0.84
50	poisson		0.84
61	poisson	None	0.84

50 poisson 18 0.84

We got high r2 value = 0.85 for the hyper tuning parameter criterion=absolute_error ,friedman_mse, squared_error

- 4. I have created many models using machine learning algorithm like
 - Multiple linear regression
 - Support vector machine
 - Decision tree
 - Random forest
 We can select the best model having a high R2 value.

Compared to all other values, the Decision Tree R2 value 0.88 is high, so we can finalize that.