Database Systems

Relational Design - Functional Dependencies

Prof. Dr. Agnès Voisard Muhammed-Ugur Karagülle

Institute of Computer Science, Databases and Information Systems Group

Fraunhofer FOKUS

2025

Notes

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Notes

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summar

- 1 Functional Dependencies
- 2 Closure of a Set of FDs
- 3 Minimal Cover of a Set of FDs
- 4 Closure of Attribute Sets
- **5** Summary

Motivation

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summar

Designing a database:

- Common sense, intuition of DB designer
- Mapping ER schema onto relational schema

No final measure of why one grouping of attributes was better than another

Theory to attempt to design good relational schemas 2 levels:

- logical level
- storage level

Main tool for measuring the approprietness of attribute grouping into relation schemas: **functional dependencies**

Functional Dependencies

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Constraints on the set of relations Generalizes the notion of superkey

Example

EMPLOYEE(SSN, Name, Address) SECRETARY(SSN, Salary)

"In relation EMPLOYEE if we know a SSN we know the name"

Attribute SSN **determines** attribute **Name**, or Name is **functionally determined** by SSN

Functional Dependencies (cont'd)

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Notation:

 $\textbf{SSN} \to \textbf{Name}$

In relation SECRETARY: $SSN \rightarrow Salary$

BUT: if **we know the name** of an employee (or the **salary** of a secretary)

we do not know his/her SSN

Name → SSN

 $\textbf{Salary} \not\rightarrow \textbf{SSN}$

Functional Dependencies - Example

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Example

COURSE(CourseName, Teacher, Books)

CourseName	Teacher	Books
Data Structures	Müller	Knuth
Databases	Müller	Ullman
Databases	Müller	Date
Compilers	Meier	Aho et al.

A course has one teacher

- ⇔ CourseName → Teacher
- ⇔ 2 tuples having the same value for CourseName have the same value for Teacher
- ► Tuple (Databases, Meier, Ullman)?

Functional Dependencies (cont'd)

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

EMPLOYEE(SSN, Name, Address)

 $\textbf{SSN} \rightarrow \textbf{Name} \\ \textbf{SSN} \rightarrow \textbf{Address} \\$

If we know SSN we know the other attributes

⇔ 2 tuples having the same SSN are identical

⇔ SSN identifies a tuple

SSN is a key

If we know SSN and Name we know the address

 $\textbf{SSN, Name} \rightarrow \textbf{Address}$

But Name is non necessary

(SSN, Name) is a superkey

Functional Dependencies - More Formally

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

R (U): relation scheme

Subset K of U is a superkey of R

if in any relation r of schema R(U)

for all pairs t_1 and t_2 of tuples in r such that $t_1 \neq t_2$:

$$\mathsf{t}_1[\mathsf{K}] \neq \mathsf{t}_2[\mathsf{K}]$$

(no 2 tuples in any r(R) may have the same value on attribute set K)

Functional Dependencies - More Formally (cont'd)

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Let $X \subseteq U$ and $Y \subseteq U$

Functional dependency (FD):

 $\textbf{X} \rightarrow \textbf{Y}$

holds on R

if in any relation r(R),

for all pairs t_1 and t_2 of tuples in r such that $t_1[X] = t_2[X]$

it is also the case that $t_1[Y] = t_2[Y]$

K is a superkey of R if $K \to U$

$$(K \rightarrow U - K, K \rightarrow K)$$

i.e.,

K is a superkey if whenever $t_1[K] = t_2[K]$, it is also the case that $t_1[U] = t_2[U]$ (i.e., $t_1 = t_2$)

K is a key if:

- ▶ K is a superkey: K → U
- It does not exist Y ⊂ K such that Y → U (all the attributes of K are necessary to determine all the attributes of the schema)

Use of Functional Dependencies

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

Specify constraints on a set of relations

Be concerned *only* with relations that satisfy a given set of functional dependencies F: **legal relations**

A	В	C	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

 $A \rightarrow C$

There are 2 tuples with value a_1 for A; they have the same value for C

After looking at $a_1,a_2, a_3 : A \rightarrow C$ satisfied

Is C→ A satisfied?

Other dependencies: $AB \rightarrow D$

 $\mathsf{A} \to \mathsf{A}$ satisfied by all relations involving attribute A

Trivial FD

Idem for $AB \rightarrow A$

In general FD of the form $X\rightarrow Y$ trivial if $Y\subseteq X$

Functional Dependencies - Example

Functional Dependencies Closure of a Set of FDs Minimal Cover of a Set of FDs Closure of Attribute Sets Summary

When a relational DB is designed, first look at the FDs that must always hold Example: Bank database

Example

BRANCH(BranchName, Assets, BranchCity)

 FD_{BRANCH} = BranchName \rightarrow BranchCity, BranchName \rightarrow Assets

CUSTOMER(CName, Street, City)

 $\mathsf{FD}_{\mathsf{CUSTOMER}} = \mathsf{CName} \to \mathsf{City}, \, \mathsf{CName} \to \mathsf{Street}$

DEPOSIT(BranchName, AccountNum, CName, Balance)

 $\mathsf{FD}_{\mathsf{DEPOSIT}} = \mathsf{AccountNum} \to \mathsf{BranchName}, \, \mathsf{AccountNum} \to \mathsf{Balance}$

BORROW(BranchName, LoanNum, CName, Amount)

 $\mathsf{FD}_{\mathsf{BORROW}} = \mathsf{LoanNum} \to \mathsf{Amount}, \, \mathsf{LoanNum} \to \mathsf{BranchName}$

Not enough to consider a given set of FDs: consider **all** FDs that hold

Set F of functional dependencies, other dependencies hold: logically implied by F (F \models fd)

Example

$$R = (A, B, C, G, H, I)$$
$$F: \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \}$$

$$A \rightarrow H$$
 is logically implied $(F \models A \rightarrow H)$

Suppose that
$$t_1[A] = t_2[A]$$

Since
$$A \rightarrow B$$
: $t_1[B] = t_2[B]$

Since
$$B \rightarrow H$$
: $t_1[H] = t_2[H]$

Then if we have $t_1[A] = t_2[A]$ it must be that $t_1[H] = t_2[H]$ Definition of $A \rightarrow H$

Closure of F:

Set of functional dependencies logically implied by F Denoted by F^+

$$\mathsf{F}^+ = \{\mathsf{X} \to \mathsf{Y} \mid \mathsf{F} \models \mathsf{X} \to \mathsf{Y}\}$$

Armstrong's Axioms:

- ► Reflexivity rule
 If X⊆Y then Y → X
- Augmentation rule
 If X→Y and Z is a set of attributes then XZ → YZ
- ► Transitivity rule
 If X→Y and Y → Z then X→ Z

Complete rules: Allows to generate all of F⁺

Additional rules:

- Union rule
 If X→Y and X→ Z then X→ YZ
- Decomposition rule
 If X→ YZ then X→Y and X→ Z
- Pseudotransitivity rule If X→Y and ZY → T then XZ → T

Example

R = (A, B, C, G, H, I) $F: \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

Some members of F^+ :

- ightharpoonup A
 ightharpoonup H
- ightharpoonup CG ightharpoonup HI
- ightharpoonup AG ightharpoonup I
- **.** . . .

F and F set of dependencies

F and F equivalent if $F^+ = G^+$ (F "covers" F and F "covers" F)

Set of dependencies minimal if:

- 1 Every right side of a dependency in F is a **single attribute** (apply decomposition)
- 2 For no X→ A in F is the set F {X → A} equivalent to F (all dependencies are useful)
- **3** For no $X \rightarrow A$ in F and subset Z of X is $F \{X \rightarrow A\} \cup \{Z \rightarrow A\}$ equivalent to F (no attribute in any left side is redundant)

Every set of dependencies is equivalent to a set F' that is minimal

To find out whether a set X is a superkey:

Compute the set of attributes functionally determined by X

Closure of X under F, denoted X⁺

Algorithm:

result := Xwhile result changes do for each FD $Y \rightarrow Z$ in F do if $Y \subseteq result$ then result := $result \cup Z$

Example: (AG)+

X is a superkey if for each $A \in U$

$$F \models X \rightarrow A$$

 $(X \rightarrow A \text{ can be inferred from F})$

or if
$$X \to A \in F^+$$

To compute a superkey it is not necessary to know F^+ :

Find
$$X \subset U$$
 such that $X^+ = U$

Key if there does not exist $Y \subset X$ such that $Y^+ = U$ => Find the "smallest" X such that $X^+ = U$ Each one is a key

- Functional dependencies (FDs)
- Key, superkey
- Closure of a set of FDs (Armstrong's axioms)
- Minimal cover of a set of FDs
- Closure of attribute set

Questions?

Summary

- 1 Welcome to Database Systems
- 2 Introduction to Database Systems
- 3 Entity Relationship Design Diagram (ERM)
- 4 Relational Model
- 5 Relational Algebra
- 6 Structured Query Language (SQL)
- 7 Relational Database Design Functional Dependencies
- 8 Relational Database Design Normalization
- 9 Online Analytical Processing + Embedded SQL
- 10 Physical Representation Storage and File Structure
- 11 Physical Representation Indexing and Hashing
- 12 Transactions
- 13 Concurrency Control Techniques
- 14 Recovery Techniques
- 15 Query Processing and Optimization

Appendix - Minimal Cover

Example

$$\label{eq:F} \begin{array}{l} \textit{F} = \{ \mathsf{AB} \to \mathsf{C}, \ \mathsf{C} \to \mathsf{A}, \ \mathsf{BC} \to \mathsf{D}, \ \mathsf{ACD} \to \mathsf{B}, \ \mathsf{D} \to \mathsf{EG}, \ \mathsf{BE} \to \mathsf{C}, \ \mathsf{CE} \to \mathsf{AG}, \ \mathsf{CG} \to \mathsf{BD} \} \end{array}$$

Split right-hand sides:

$$\mathsf{F} = \{\mathsf{AB} \to \mathsf{C}, \ \mathsf{C} \to \mathsf{A}, \ \mathsf{BC} \to \mathsf{D}, \ \mathsf{ACD} \to \mathsf{B}, \ \mathsf{D} \to \mathsf{E}, \ \mathsf{D} \to$$

- $\mathsf{G},\;\mathsf{BE}\to\mathsf{C},\;\mathsf{CE}\to\mathsf{A},\;\mathsf{CE}\to\mathsf{G},\;\mathsf{CG}\to\mathsf{B},\;\mathsf{CG}\to\mathsf{D}\}$
- ▶ CE \rightarrow A is redundant (since C \rightarrow A)
- ▶ CG \rightarrow B is redundant (from CG \rightarrow D, C \rightarrow A, ACD \rightarrow B)

Minimal cover:

$$F' = \{AB \rightarrow C, \ C \rightarrow A, \ BC \rightarrow D, \ ACD \rightarrow B, \ D \rightarrow E, \ D \rightarrow G, \ BE \rightarrow C, \ CE \rightarrow G, \ CG \rightarrow D\}$$