Практическое занятие №5

«Использование средств индивидуальной и групповой защиты»

Краснов Александр МР-19

6 октября 2022 г.

Содержание

1	Шу	TM	2					
	1.1	Механический шум	2					
	1.2	Аэродинамические и гидродинамические шумы	3					
	1.3	Шумы электромагнитного происхождения	3					
2	Кла	ассификация шумов, воздействующих на человек	3					
	2.1	По характеру спектра шум делится	3					
	2.2	По временным характеристикам шум делится	4					
	2.3	Непостоянные шумы подразделяют	4					
3	3 Методы измерения шума на рабочих местах							
4	Изм	иерение шума на рабочем месте	6					

Цель работы

Ознакомиться со средствами индивидуальной и групповой защиты.

Задачи

- 1. Изучить виды и характеристики средств индивидуальной защиты
- 2. Изучить виды и характеристики средств коллективной защиты

1 Шум

Шум — это звук, оцениваемый негативно и наносящий вред здоровью. В качестве звука человек воспринимает упругие колебания, распространяющиеся в среде, которая может быть твердой, жидкой или газообразной. В зависимости от источника генерирующего колебания, различают шумы механического, аэродинамического и электромагнитного происхождения.

1.1 Механический шум

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе метало – и деревообрабатывающих станков.

1.2 Аэродинамические и гидродинамические шумы

- 1. шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания
- 2. шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов
- кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

1.3 Шумы электромагнитного происхождения

Шумы электромагнитного происхождения возникают в различных электротехнических изделиях (например, при работе электрических машин). Их причиной является взаимодействие ферримагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от $\frac{20}{30}$ дБ (микромашины) до $\frac{20}{30}$ дБ (крупные быстроходные машины).

2 Классификация шумов, воздействующих на человек

2.1 По характеру спектра шум делится

- 1. на широкополосный шум, с непрерывным спектром шириной более 1 октавы
- 2. на тональный шум, в спектре которого имеются выраженные тоны

Тональный характер шума для практических целей устанавливается измерением в $\frac{1}{3}$ октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на $10~\mathrm{д}\mathrm{B}$.

2.2 По временным характеристикам шум делится

- на постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА
- непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА

2.3 Непостоянные шумы подразделяют

- 1. на колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени
- 2. прерывистый шум, уровень звука которого ступенчато изменяется на 5дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более
- 3. импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАІ и дБА отличаются не менее чем на 7 дБ.

3 Методы измерения шума на рабочих местах

В соответствии с ГОСТ 12.1.050-86 «Методы измерения шума на рабочих местах»

1. Микрофон следует располагать на высоте 1,5 м над уровнем пола или рабочей площадки (если работа выполняется стоя) или на высоте уха человека, подвергающегося воздействию шума (если работа выполняется сидя). Микрофон должен быть ориентирован в направлении максимального уровня шума и удален не менее чем на 0,5 м от оператора, проводящего измерения.

- Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоянным местам.
- 3. Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего.
- 4. При проведении измерений октавных уровней звукового давления переключатель частотной характеристики прибора устанавливают в положение "фильтр". Октавные уровни звукового давления измеряют в полосах со среднегеометрическими частотами 63-8000 Гц. При проведении измерений уровней звука и эквивалентных уровней звука, дБА, переключатель частотной характеристики прибора устанавливают в положение "A".
- 5. При проведении измерений уровней звука и октавных уровней звукового давления постоянного шума переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней принимают по средним показателям при колебании стрелки прибора.
- 6. Значения уровней звука и октавных уровней звукового давления считывают со шкалы прибора с точностью до 1 дБА, дБ.
- 7. Измерения уровней звука и октавных уровней звукового давления постоянного шума должны быть проведены в каждой точке не менее трех раз.
- 8. При проведении измерений эквивалентных уровней звука колеблющегося во времени шума для определения эквивалентного (по энергии) уровня звука переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней звука принимают по показаниям стрелки прибора в момент отсчета.
- При проведении измерений максимальных уровней звука колеблющегося во времени шума переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней звука снимают в момент максимального показания прибора.
- 10. При проведении измерений максимальных уровней звука импульсного шума переключатель временной характеристики прибора ус-

- танавливают в положение "импульс". Значения уровней принимают по максимальному показанию прибора.
- 11. Интервалы отсчета уровней звука колеблющегося во времени шума при измерениях эквивалентного уровня продолжительностью 30 мин составляют 5–6 с при общем числе отсчетов 360.
- 12. При проведении измерений эквивалентных уровней звука непостоянного шума переключатель временной характеристики прибора устанавливают в положение "медленно", измеряют уровни звука и продолжительность каждой ступени.

4 Измерение шума на рабочем месте

В ходе данной работы проводилось измерение уровня шума от системы охлаждения персонального компьютера (ноутбука) на рабочем месте. Микрофон располагался на уровне головы человека. Измерения проводились 3 раза.

Вывод

В ходе выполнения данной практической работы я самостоятельно ознакомился со средствами индивидуальной и групповой защиты.

Noise level report

Date 28.09.22, 00:53

Duration 17 sec

Equivalent sound level (LAeq)

51 dBa

Maximum sound level

75 dBa

Sound pressure levels, dB, in octave frequency bands with geometric mean frequencies, Hz

Equivalent sound levels, dBA

	63	125	250	500	1000	2000	4000	8000	
LAeq	39	42	50	47	42	37	27	24	51
Maximum	47	56	65	60	56	58	56	47	75
Minimum	27	31	33	24	22	19	7	11	32

Noise level report

Date 28.09.22, 00:53

Duration 17 sec

Equivalent sound level (LAeq)

51 dBa

Maximum sound level

75 dBa

Sound pressure levels, dB, in octave frequency bands with geometric mean frequencies, Hz

Equivalent sound levels, dBA

	63	125	250	500	1000	2000	4000	8000	
LAeq	39	42	50	47	42	37	27	24	51
Maximum	47	56	65	60	56	58	56	47	75
Minimum	27	31	33	24	22	19	7	11	32

Noise level report

Date 28.09.22, 01:03

Duration 5 sec

Equivalent sound level (LAeq)

52 dBa

Maximum sound level

 74_{dBa}

Sound pressure levels, dB, in octave frequency bands with geometric mean frequencies, Hz

Equivalent sound levels, dBA

	63	125	250	500	1000	2000	4000	8000	
LAeq	49	47	43	42	38	39	33	30	52
Maximum	67	67	60	59	54	60	58	49	74
Minimum	32	29	28	33	26	22	13	10	37