Digits 3D Practical assignment

PATTERN RECOGNITION COURSE FALL 2019

JONI KETTUNEN

I'm at work during the seminar, u can scroll through this if u want

Data preprocessing

Pre-processing steps

- Gather data from each file into large struct, remove Z (depth) axis
- Exponential smoothing on each digit
- Data centering
- Min-max normalization

Feature extraction

- Transform time series data into
 12*12 'pixel' matrix. If timeseries goes
 through the pixel the pixel is activated
 as 1. Pixel has value 0 otherwise
 - Transform each pixel to one column in final dataframe
- Calculate extra features and add into the final dataframe →

Feature	Explanation
startX	Start position X on the time series data
startY	Start Y position on the time series data
afterstartX	Position X of the timeseries data, when 33% of the datapoints are gone through
afterstartY	Position Y of the timeseries data, when 33% of the datapoints are gone through
beforeendX	Position X of the timeseries data, when 66% of the datapoints are gone through
beforeendY	Position Y of the timeseries data, when 66% of the datapoints are gone through
endX	End position X on the time series data
endY	End position Y on the time series data
startDirX	Direction of the time series on x axis at starting point
startDirY	Direction of the time series on Y axis at starting point
afterstartDirX	Direction of the time series on X axis, 33% of the timeseries values are gone through
afterstartDirY	Direction of the time series on Y axis, 33% of the timeseries values are gone through
beforeendX	Direction of the time series on X axis, 66% of the timeseries values are gone through
beforeendY	Direction of the time series on Y axis, 66% of the timeseries values are gone through
Eigenvector11	Highest Variability direction of scaled + smoothed time series data (no normalization)
Eigenvertor12	Highest Variability direction of scaled + smoothed time series data (no normalization)
Eigenvector21	Second highest Variability direction of scaled + smoothed time series <u>data</u> (no normalization)
Eigenvector22	Second highest Variability direction of scaled + smoothed time series <u>data</u> (no normalization)
Eigenvalue1	Variability amount on highest variability direction
Eigenvalue2	Variability amount on second highest variability direction

Classification model

Multilayer perceptron

- Neural network with two layers, each layer has 10 nodes
- 97.51% accuracy in test set (with 200 digits in test set)

Classification accuracy 97.51% NN layers: 2 10 neurons in layer 1 10 neurons in layer 2 Epoch error stop limit: 7

Misclassified digits

•5 digits out of 200 in test set were misclassified

Classification performance

Classification performance,500 train digits and 500 test digits.

Figure 7 Confusion matrix done with 50% of the data in testing set