Vectors in \mathbb{R}^n

Michael Brodskiy

Professor: Lynn Knight

February 24, 2021

• Vector — Quantity described with length and direction

- 1. Written bold and lowercase $(\overrightarrow{\mathbf{x}})$
- 2. Vectors are position free
- 3. Standard Position When the initial point is at the origin and the terminal point is somewhere in the plane

• Algebraic work with vectors:

- 1. Addition: $\langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$
- 2. Subtraction: $\langle u_1, u_2 \rangle \langle v_1, v_2 \rangle = \langle u_1 v_1, u_2 v_2 \rangle$
- 3. Scalar Multiplication: $c\langle u_1, u_2 \rangle = \langle cu_1, cu_2 \rangle$
- 4. $\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{v}}$ iff $u_1 = v_1$ and $u_2 = v_2$
- Zero Vector $-\overrightarrow{\mathbf{o}} = \langle 0, 0, \dots, 0 \rangle$
- \bullet Properties of vectors in \mathbb{R}^2
 - 1. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} \in \mathbb{R}$ (two vectors in \mathbb{R}^2 remain in \mathbb{R}^2)
 - 2. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{u}}$
 - 3. $(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) + \overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}})$
 - 4. $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{o}} = \overrightarrow{\mathbf{u}}$
 - 5. $\overrightarrow{\mathbf{u}} + (-\overrightarrow{\mathbf{u}}) = \overrightarrow{\mathbf{o}}$
 - 6. $c\overrightarrow{\mathbf{u}} \in \mathbb{R}$ (scalar times a vector in \mathbb{R}^2 remains a vector in \mathbb{R}^2)
 - 7. $c(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) = c\overrightarrow{\mathbf{u}} + c\overrightarrow{\mathbf{v}}$
 - 8. $(c+d)\overrightarrow{\mathbf{u}} = c\overrightarrow{\mathbf{u}} + d\overrightarrow{\mathbf{u}}$
 - 9. $c(d\overrightarrow{\mathbf{u}}) = (cd)\overrightarrow{\mathbf{u}}$
 - 10. $1(\overrightarrow{\mathbf{u}}) = \overrightarrow{\mathbf{u}}$

• Vectors in \mathbb{R}^n

- 1. All properties for vectors in \mathbb{R}^2 apply to \mathbb{R}^n as well
- 2. Addition: $\langle u_1, u_2, ..., u_n \rangle + \langle v_1, v_2, ..., v_n \rangle = \langle u_1 + v_1, u_2 + v_2, ..., u_n + v_n \rangle$
- 3. Subtraction: $\langle u_1, u_2, \dots, u_n \rangle \langle v_1, v_2, \dots, v_n \rangle = \langle u_1 v_1, u_2 v_2, \dots, u_n v_n \rangle$
- 4. Scalar Multiplication: $c\langle u_1, u_2, \dots, u_n \rangle = \langle cu_1, cu_2, \dots, cu_n \rangle$
- 5. Equality: $\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{v}}$ iff $u_1 = v_1, u_2 = v_2, \dots$, and $u_n = v_n$
- $\overrightarrow{\mathbf{x}}$ is a linear combination of $\overrightarrow{\mathbf{v}}_1$, $\overrightarrow{\mathbf{v}}_2$, ..., $\overrightarrow{\mathbf{v}}_n \exists c_1, c_2, \ldots, c_n$ such that $\overrightarrow{\mathbf{x}} = c_1 \overrightarrow{\mathbf{v}}_1 + c_2 \overrightarrow{\mathbf{v}}_2 + \cdots + c_n \overrightarrow{\mathbf{v}}_n$