TTK4130 - Cheat Sheet

Håkon Bårsaune

May 14, 2023

https://github.com/haakonbaa/TTK4130-cheatsheet

Contents

Intr	· -
1.1	What are models, what are simulations, notation
1.2	System dynamics and differential equations
Rot	eations
6.2	Vectors
6.4	The Rotation Matrix
6.5	Euler Angles
6.6	Angle Axis Description of rotation
	6.6.5 Rotation Matrix
6.7	Euler parameters
	6.7.1 Definition
	6.7.3 Quaternions
	6.7.6 Euler parameters from the rotation matrix
6.8	Angular Velocity
6.9	Kinematic differential equations
	6.9.4 Euler Angles
Rig	id Body Dynamics
	Kinematics of a rigid body
	The center of mass
	Forces and torques
•	Newton-Euler Equations for rigid bodies
	1.1 1.2 Rot 6.2 6.4 6.5 6.6 6.7 6.8 6.9 Rig 6.12 6.13 7.2

1 Intro

- 1.1 What are models, what are simulations, notation
- 1.2 System dynamics and differential equations.

2 Rotations

Vectors

The skew-symetric matrix form of the coordinate vector **u** is defined by

$$\mathbf{u}^x = \begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix}$$

Notation: v_{ab}^c means the vector from point a to point b (or often the origo of the reference frames a and b) described in the reference frame c

6.4 The Rotation Matrix

The coordinate transformation from frame b to frame a is given by

$$oldsymbol{v}^a = oldsymbol{R}^a_b oldsymbol{v}^b$$

Properties of the rotation matrix

$$egin{aligned} & oldsymbol{R}_a^b oldsymbol{R}_b^a = oldsymbol{I} = oldsymbol{R}_b^a oldsymbol{R}_a^b = oldsymbol{(R}_a^b)^T = oldsymbol{R}_b^a & oldsymbol{b}_2^a & oldsymbol{b}_3^a ig) \ \det oldsymbol{R}_a^b = 1 \end{aligned}$$

R is a rotation matrix if and only if it is an element of SO(3)

$$SO(3) = \{ \mathbf{R} \in \mathbb{R}^{3 \times 3} | \mathbf{R}^T \mathbf{R} = \mathbf{I} \wedge \det \mathbf{R} = 1 \}$$

Rotation matrices in three dimentions

$$\mathbf{R}_{x}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}$$
$$\mathbf{R}_{y}(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$
$$\mathbf{R}_{z}(\psi) = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix transformations in different refrence frames

$$egin{aligned} oldsymbol{D}^a &= oldsymbol{R}_b^a oldsymbol{D}^b oldsymbol{R}_a^b \ &(oldsymbol{u}^b)^ imes &= oldsymbol{R}_a^b (oldsymbol{u}^a)^ imes oldsymbol{R}_h^a \end{aligned}$$

The transformation of position and orientation from frame b to frame a is

$$egin{aligned} m{T}_b^a &= egin{pmatrix} m{R}_b^a & m{r}_{ab}^a \ m{0}^T & 1 \end{pmatrix} \ m{T}_b^a egin{pmatrix} m{v}^b \ 1 \end{pmatrix}^T &= m{v}^a \ 1 \end{pmatrix} \ &(m{T}_b^a)^{-1} &= m{T}_a^b &= m{K}_a^b & m{r}_{ba}^b \ m{0}^T & 1 \end{pmatrix} \end{aligned}$$

The Special Euclidean group is the set of all transfor- Quaternion product mations from one reference frames to another

$$SE(3) = \left\{ \boldsymbol{T} = \begin{pmatrix} \boldsymbol{R} & \boldsymbol{r} \\ \boldsymbol{0}^T & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \middle| \boldsymbol{R} \in SO(3) \land \boldsymbol{r} \in \mathbb{R}^3 \right\} \qquad \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 - \boldsymbol{\beta}_1^T \boldsymbol{\beta}_2 \\ \alpha_1 \boldsymbol{\beta}_2 + \alpha_2 \boldsymbol{\beta}_1 + \boldsymbol{\beta}_1^\times \boldsymbol{\beta}_2 \end{pmatrix}$$

6.5 **Euler Angles**

Roll-Pitch-Yaw Euler angles

$$\mathbf{R}_a^b = \mathbf{R}_z(\psi)\mathbf{R}_y(\theta)\mathbf{R}_x(\phi)$$

Classical Euler angles. The orientation is described by a rotation bout the z axis, then the resulting y axis. And then again the resulting z axis.

$$\mathbf{R}_{a}^{b} = \mathbf{R}_{z}(\psi)\mathbf{R}_{y}(\theta)\mathbf{R}_{z}(\phi)$$

6.6 Angle Axis Description of rotation

6.6.5**Rotation Matrix**

Angle-axis parameters All rotation matrices have an eigen vector with eigen value 1. A rotation can be uniquely described by the direction of this vector and an angle θ being the rotation about this vector.

$$(\theta, \mathbf{k}) \text{ s.t. } ||\mathbf{k}|| = 1$$

 $\mathbf{R}_b^a = \cos \theta \mathbf{I} + \sin \theta (\mathbf{k}_a)^{\times} + (1 - \cos \theta) \mathbf{k}_a \mathbf{k}_a^T$
 $\mathbf{R}_b^a = \exp{\{\mathbf{k}^{\times} \theta\}}$

6.7Euler parameters

6.7.1Definition

$$egin{aligned} \eta &= \cos rac{ heta}{2} \ oldsymbol{\epsilon} &= oldsymbol{k} \sin rac{ heta}{2} \ oldsymbol{R}_e(\eta, oldsymbol{\epsilon}) &= oldsymbol{I} + 2\eta oldsymbol{\epsilon}^ imes + 2oldsymbol{\epsilon}^ imes oldsymbol{\epsilon}^ imes \end{aligned}$$

6.7.3Quaternions

The following can be treated as a unit quaternion

$$oldsymbol{p} = egin{pmatrix} \eta \ oldsymbol{\epsilon} \end{pmatrix}$$

A unit quaternion satisfies

$$p^T p = \eta^2 + \epsilon^T \epsilon = 1$$

$$\begin{pmatrix} \alpha_1 \\ \boldsymbol{\beta}_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_2 \\ \boldsymbol{\beta}_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 - \boldsymbol{\beta}_1^T \boldsymbol{\beta}_2 \\ \alpha_1 \boldsymbol{\beta}_2 + \alpha_2 \boldsymbol{\beta}_1 + \boldsymbol{\beta}_1^{\times} \boldsymbol{\beta}_2 \end{pmatrix}$$

6.7.6 Euler parameters from the rotation matrix

$$\mathbf{R} = (r_{ij})$$

$$\mathbf{z} = \begin{pmatrix} z_0 & z_1 & z_2 & z_3 \end{pmatrix}^T := 2 \begin{pmatrix} \eta & \epsilon_1 & \epsilon_2 & \epsilon_3 \end{pmatrix}^T$$

$$\mathbf{T} := r_{00} := \text{Trace} \mathbf{R}$$

The algorithm from Shepperd (1978) goes like this:

- Let $i = \arg \max_{i} \{r_{ii}\}$
- Compute $|z_i| = \sqrt{1 + 2r_{ii} T}$
- Determine sign of z_i
- \bullet Determine the rest of \boldsymbol{z} from equations below

$$z_0 z_1 = r_{32} - r_{23}$$
 $z_2 z_3 = r_{32} + r_{23}$ $z_0 z_2 = r_{13} - r_{31}$ $z_3 z_1 = r_{13} + r_{31}$ $z_0 z_3 = r_{21} - r_{12}$ $z_1 z_2 = r_{21} + r_{12}$

6.8 Angular Velocity

Let $R \in SO(3)$

$$0 = \frac{d}{dt}(\mathbf{I}) = \frac{d}{dt}(\mathbf{R}\mathbf{R}^T) = \dot{\mathbf{R}}\mathbf{R}^T + \mathbf{R}(\dot{\mathbf{R}})^T$$

$$\Rightarrow \dot{\mathbf{R}}\mathbf{R}^T skew\text{-symmetric}$$

Definition of angluar velocity

$$egin{aligned} (oldsymbol{\omega}_{ab}^a)^{ imes} &= \dot{oldsymbol{R}}_b^a (oldsymbol{R}_b^a)^T \Rightarrow \ \dot{oldsymbol{R}}_b^a &= (oldsymbol{\omega}_{ab}^a)^{ imes} oldsymbol{R}_b^a \ \dot{oldsymbol{R}}_b^i &= oldsymbol{R}_b^a (oldsymbol{\omega}_{ab}^b)^{ imes} \end{aligned}$$

It can be shown that

$$\omega = \dot{\theta} k$$

Where θ and k are Angle Axis parameters.

$$egin{aligned} oldsymbol{\omega}_{ad}^a &= oldsymbol{\omega}_{ab}^a + oldsymbol{\omega}_{bc}^a + oldsymbol{\omega}_{cd}^a \ \dot{oldsymbol{u}}^a &= oldsymbol{R}_b^a (\dot{oldsymbol{u}}^b + (oldsymbol{\omega}_{ab}^b)^{ imes} oldsymbol{u}^b) \end{aligned}$$

6.9 Kinematic differential equations

6.9.4 Euler Angles

$$\boldsymbol{\omega}_{ad}^{a} = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} + \boldsymbol{R}_{z,\psi} \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix} + \boldsymbol{R}_{z,\psi} \boldsymbol{R}_{y,\theta} \begin{pmatrix} \dot{\phi} \\ 0 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -\sin\psi\dot{\theta} + \cos\psi\cos\theta\dot{\phi} \\ \cos\psi\dot{\theta} + \sin\psi\cos\theta\dot{\phi} \\ \dot{\psi} - \sin\theta\dot{\phi} \end{pmatrix}$$

3 Rigid Body Dynamics

6.12 Kinematics of a rigid body

 $\vec{\omega}_{io}$ is the angular velocity of the o frame with respect to the i frame.

 $\frac{i}{dt}\vec{r}_o$ is the derivative of \vec{r}_o in the *i* frame.

Velocity and Acceleration

$$\begin{split} \vec{v_p} &:= \frac{^i d}{dt} \vec{r_p} \\ &= \vec{v_o} + \frac{^b d}{dt} \vec{r} + \vec{\omega}_{ib} \times \vec{r} \\ \vec{a_p} &:= \frac{^i d^2}{dt^2} \vec{r_p} \\ &= \vec{a_o} + \frac{^b d^2}{dt^2} \vec{r} + 2 \vec{\omega}_{ib} \times \frac{^b d}{dt} \vec{r} + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}) \end{split}$$

The last three terms are, respectively, the coriolis acceleration, Transveral acceleration and Centripetal acceleration. Note that

$$\vec{a}_o = \frac{^i d}{dt} \vec{v}_o = \frac{^b d}{dt} \vec{v}_o + \vec{\omega}_{ib} \times \vec{v}_o$$

6.13 The center of mass

The center of mass of a rigid body \mathcal{C} is defined to be

$$\vec{r}_c := \frac{1}{m} \int_{\mathcal{C}} \vec{r}_p \, dm$$

It can be shown that

$$\vec{v}_c = \frac{1}{m} \int_{\mathcal{C}} \vec{v_p} \, dm$$
 $\vec{a}_c = \frac{1}{m} \int_{\mathcal{C}} \vec{a_p} \, dm$

where c denotes center

7.2 Forces and torques

Moment. The moment about a point P of the set $S = \{F_j\}_{j \in [1, n_F]}$ for forces is

$$\vec{N}_{S/P} = \sum_{j=1}^{n_F} r_{Pj} \times \vec{F}_j$$

Where \vec{r}_{Pj} is an arbitrary point along the line of action of \vec{F}_{i}

Torque is defined as the moment of the couple C. A couple being a set of forces with $\mathbf{0}$ resultant force.

7.3 Newton-Euler Equations for rigid bodies

Angular Momentum. The angular momentum of the body b about the center of mass c is

$$egin{aligned} m{h}_{b/c} &= \int_b m{r} imes m{v} \, dm \ &= m{M}_{b/c} m{\omega}_{ib} \ m{T}_{bc} &= rac{d}{dt} m{h}_{b/c} \end{aligned}$$

Rotational Inertia / The intertia dyadic. The inertia matrix of the body b about the point c is

$$\begin{aligned} \boldsymbol{M}_{b/c} &= -\int_{b} \boldsymbol{r}^{\times} \boldsymbol{r}^{\times} \, dm \\ &= \int_{b} (\boldsymbol{r}^{T} \boldsymbol{r} \mathbb{I} - \boldsymbol{r} \boldsymbol{r}^{T}) \, dm \\ &= \begin{pmatrix} \boldsymbol{I}_{xx} & -\boldsymbol{I}_{xy} & -\boldsymbol{I}_{xz} \\ -\boldsymbol{I}_{xy} & \boldsymbol{I}_{yy} & -\boldsymbol{I}_{yz} \\ -\boldsymbol{I}_{xz} & -\boldsymbol{I}_{uz} & \boldsymbol{I}_{zz} \end{pmatrix} \end{aligned}$$

Where r is the distance vector from the center of mass to the mass element being integrated

$$I_{xx} = \int_b y^2 + z^2 dm$$
 $I_{xy} = \int_b xy dm$ $I_{yy} = \int_b x^2 + z^2 dm$ $I_{xz} = \int_b xz dm$ $I_{zz} = \int_b x^2 + y^2 dm$ $I_{yz} = \int_b yz dm$

$$oldsymbol{M}_{b/c}^i = oldsymbol{R}_b^i oldsymbol{M}_{b/c}^b oldsymbol{R}_i^b$$

Equations of motion. Let b denote body, i an intertial frame, c the center of mass of b, \mathbf{F}_{bc} a resultant force acting on b with line of action through c and \mathbf{T}_{bc} the torque about c. Then

$$egin{aligned} F_{bc} &= mm{a}_c \ T_{bc} &= M_{b/c}m{lpha}_{ib} + m{\omega}_{ib} imes (M_{b/c}m{\omega}_{ib}) \end{aligned}$$

On compact matrix form

$$\begin{pmatrix} m\mathbb{I} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{M}_{b/c}^b \end{pmatrix} \begin{pmatrix} \boldsymbol{a}_c^b \\ \boldsymbol{\alpha}_{ib}^b \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ (\boldsymbol{\omega}_{ib}^b)^\times \boldsymbol{M}_{b/c}^b \boldsymbol{\omega}_{ib}^b \end{pmatrix} = \begin{pmatrix} \boldsymbol{F}_{bc}^b \\ \boldsymbol{T}_{b/c}^b \end{pmatrix}$$

$$\begin{pmatrix} m\mathbb{I} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{M}_{b/c}^b \end{pmatrix} \begin{pmatrix} \dot{\boldsymbol{v}}_c^b \\ \boldsymbol{\alpha}_{ib}^b \end{pmatrix} + \begin{pmatrix} m(\boldsymbol{\omega}_{ib}^b)^\times \boldsymbol{v}_c^b \\ (\boldsymbol{\omega}_{ib}^b)^\times \boldsymbol{M}_{b/c}^b \boldsymbol{\omega}_{ib}^b \end{pmatrix} = \begin{pmatrix} \boldsymbol{F}_{bc}^b \\ \boldsymbol{T}_{b/c}^b \end{pmatrix}$$

Kinetic energy. The kinetic energy of the body b in an inertial refrence frame i is

$$K = \frac{1}{2}m(\boldsymbol{v}_c^b)^T\boldsymbol{v}_c^b + \frac{1}{2}(\boldsymbol{\omega}_{ib}^b)^T\boldsymbol{M}_{b/c}^b\boldsymbol{\omega}_{ib}^b$$

The parallel axes theorem. The inertia matrix of b about o is related to the inertia matrix of b about c according to

$$oldsymbol{M}_{b/o}^b = oldsymbol{M}_{b/c}^b - m(oldsymbol{r}_g^b)^ imes (oldsymbol{r}_g^b)^ imes$$

Where r_q^b is the vector from c to o