Tamarin: Concolic Disequivalence for MIPS

Abel Nieto

Given MIPS program P_1 and P_2 , when are they equivalent?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output? Register \$3.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output? Register \$3.

Don't care about (most) CPU interrupts/IO.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Problem: undecidable via Rice's theorem.

Attempt 2: two programs are S-equivalent if they cannot be told apart after S steps.

S-equivalent (e.g. for S = 10), but not equivalent:

R_1	R_2	S-equiv
-------	-------	---------

R_1	R_2	S-equiv
V	V	yes

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$	no

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$ error	no
V	error	no

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$ error	no
V	error	no
error	error	yes

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$	no
V	error	no
error	error	yes
non-termination	???	yes

Lemma

Equivalence implies S-equivalence.

Lemma

Equivalence implies S-equivalence.

Corollary (Soundness)

If two programs are not S-equivalent (for any S), then they are not equivalent.

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Try all 2⁶⁴ values of \$1 and \$2: high coverage, slow (but decidable)

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Try all 2⁶⁴ values of \$1 and \$2: high coverage, slow (but decidable)

Tamarin: use concolic execution: higher coverage(?), not too slow(?)


```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Alternating concolic execution

```
# P_1
bne $1, 42, end
add $3, $1, $2
add $3, $3, $0
bne $2, 100, end
end:
add $3, $1, $2
end:
```

Run | Driver | Verifier | \$1 | \$2 | Path $|R_D|R_V$

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 ≠ 42	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 ≠ 42	2	2
2	P_2	P_1	1	1	\$2 \neq 100	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 \neq 42	2	2
2	P_2	P_1	1	1	\$2 \neq 100	2	2
3	P_1	P_2	42		\$1 = 42	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 \neq 42	2	2
2	P_2	P_1	1	1	$$2 \neq 100$	2	2
3	P_1	P_2	42	1	$\$2 \neq 100$ \$1 = 42	2	2
4	P_2	P_1	1	100	\$2 = 100	201	2

Concolic

CPU

Concolic

Z3

Fetch

 ${\sf Make Symbolic}$

Trace $symb_1$ $symb_2$... $symb_{n-1}$ $symb_n$

Trace $symb_1$ $symb_2$... $symb_{n-1}$ $symb_n$

CPU (MakeSymbolic)

Instruction Symbolic

CPU (MakeSymbolic)

Instruction	Symbolic
add \$3, \$1, \$2	$r_3 \leftarrow r_1 + r_2$

CPU (MakeSymbolic)

Instruction	Symbolic
add \$3, \$1, \$2	$r_3 \leftarrow r_1 + r_2$ $r_1 = r_2 \text{ or } r_1 \neq r_2$ $r_3 \leftarrow 0$ x8BADF00D
beq \$1, \$2, label	$r_1 = r_2$ or $r_1 \neq r_2$
add \$3, \$pc, \$0	$r_3 \leftarrow 0$ x8BADF00D
lis \$3; 42	$r_3 \leftarrow 42$

Seq[Trace => Trace]

Desugar

$$T \longrightarrow Trace \longrightarrow T'$$

Seq[Trace => Trace]

- Desugar
- Simplify

$$T \longrightarrow Trace \longrightarrow T'$$

Seq[Trace => Trace]

- Desugar
- Simplify
- ▶ Trim

$$T \longrightarrow Trace \longrightarrow T'$$

Seq[Trace => Trace]

- Desugar
- Simplify
- Trim
- SSA convert

Desugar

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Simplify

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Simplify

```
beq $0, $0, label 	o \emptyset
```

Trace

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Simplify

```
beq $0, $0, label 	o \emptyset
```

Trim

Trace

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Simplify

```
beq $0, $0, label 
ightarrow \emptyset
```

Trim

limit trace to D path conditions

Trace

Desugar

```
Mult(s, t) \rightarrow Mult64(tmp, s, t); Low32(lo, tmp); High32(hi, tmp)
```

Simplify

beq \$0, \$0, label
$$ightarrow \emptyset$$

Trim

limit trace to D path conditions

SSA convert

Trace	Incorrect	Correct

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)		

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1=x_1+y_1$

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1$
Sub(\$1 , \$1 , \$2)		

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	

Trace	Incorrect	Correct
		$z_1 = x_1 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)		

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y = x + y	

Trace	Incorrect	Correct
Add(\$3, \$1, \$2)	z = x + y	$z_1=x_1+y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y = x + y	$y_2 = x_2 + y_1$

	Incorrect	
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1 x_2 = x_1 - y_1 y_2 = x_2 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y=x+y	$y_2 = x_2 + y_1$

$$$3 = 9 \land $1 = 3$$

	Incorrect	
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1 x_2 = x_1 - y_1 y_2 = x_2 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y = x + y	$y_2 = x_2 + y_1$

$$\$3 = 9 \land \$1 = 3$$

 $z = 9 \land x = 3$

	Incorrect	
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1 x_2 = x_1 - y_1 y_2 = x_2 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y=x+y	$y_2 = x_2 + y_1$

$$3 = 9 \land 1 = 3$$

 $z = 9 \land x = 3 \text{ (no sol)}$

	Incorrect	
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1 x_2 = x_1 - y_1 y_2 = x_2 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y = x + y	$y_2 = x_2 + y_1$

$$\$3 = 9 \land \$1 = 3$$

 $z = 9 \land x = 3 \text{ (no sol)}$
 $z_1 = 9 \land x_2 = 3$

	Incorrect	
Add(\$3, \$1, \$2)	z = x + y	$z_1 = x_1 + y_1 x_2 = x_1 - y_1 y_2 = x_2 + y_1$
Sub(\$1 , \$1 , \$2)	x = x - y	$x_2 = x_1 - y_1$
Add(\$2, \$1, \$2)	y = x + y	$y_2 = x_2 + y_1$

$$\$3 = 9 \land \$1 = 3$$

 $z = 9 \land x = 3 \text{ (no sol)}$
 $z_1 = 9 \land x_2 = 3 \text{ } (x_1 = 6 \land y_1 = 3)$

trace:

```
add $3, $1, $2
slt $4, $1, $2
add $5, $1, $0
$4 != $5
```

```
trace:
   add $3, $1, $2
   slt $4, $1, $2
   add $5, $1, $0
   $4 != $5

formula (SMT-LIB):
   (declare-const r0 (_ BitVec 32))
   (declare-const r1 (_ BitVec 32))
   ...
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
(assert (= r3 (bvadd r1 r2)))
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
(assert (= r3 (bvadd r1 r2)))
(assert
  (= r4 (ite (bvslt r1 r2)
    ( bv1 32)
    (_ bv0 32))))
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
(assert (= r3 (bvadd r1 r2)))
(assert
  (= r4 (ite (bvslt r1 r2)
    ( bv1 32)
    (_ bv0 32))))
(assert (= r5 (_ bv1 32)))
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
(assert (= r3 (bvadd r1 r2)))
(assert
  (= r4 (ite (bvslt r1 r2)
    ( bv1 32)
    (_ bv0 32))))
(assert (= r5 (_ bv1 32)))
(assert (not (= r4 r5)))
```

```
trace:
  add $3, $1, $2
  slt $4, $1, $2
  add $5, $1, $0
  $4 != $5
formula (SMT-LIB):
(declare-const r0 (_ BitVec 32))
(declare-const r1 (_ BitVec 32))
(assert (= r0 (_ bv0 32)))
(assert (= r3 (bvadd r1 r2)))
(assert
  (= r4 (ite (bvslt r1 r2)
    ( bv1 32)
    (_ bv0 32))))
(assert (= r5 (_ bv1 32)))
(assert (not (= r4 r5)))
(check-sat) (get-model)
```

Tamarin (Recap)

Demo time

Program equivalence is tricky. Program equivalence for assembly programs is even trickier.

Program equivalence is tricky. Program equivalence for assembly programs is even trickier.

Alternating concolic execution might be an effective way to tackle the problemb (surprinsingly, not done before?).

Program equivalence is tricky. Program equivalence for assembly programs is even trickier.

Alternating concolic execution might be an effective way to tackle the problemb (surprinsingly, not done before?).

Need experiments and to eliminate restrictions before we can say if useful for real-world programs.

Program equivalence is tricky. Program equivalence for assembly programs is even trickier.

Alternating concolic execution might be an effective way to tackle the problemb (surprinsingly, not done before?).

Need experiments and to eliminate restrictions before we can say if useful for real-world programs.

The whole field is not just theory. Z3 actually works! (and it's not hard to integrate with)

