

Module 11a: Introduction to Volumetric Data

Objectives

- Discuss the fundamentals of volumetric data
- Describe multiple 3D acquisition systems in medicine / medical imaging
- Start reviewing different visualization techniques to illustrate 3D data

Volumetric Data

- Advances in 3D data acquisition systems have made volumetric data fairly common these days.
- There is a need to perform advanced analysis of the data.
- 3D data can be captured by various technologies such as MRI, CT, and PET.
- Volumetric data can also can be produced by physical simulations such as fluid dynamics or particle systems.

Case Study - Medical Imaging

- One of the primary applications of 3D data visualization
 - Medical images are widely available
 - Everyone understands the need for computational techniques to enhance medical images
 - Easy to establish collaborations (somewhat easier to get funding)
- University of Maryland Medical Center (2007)
 - 50 GB of 3D images a day
 - o 15 TB in 2006

Outline

Fundamentals of Medical Imaging

- Acquisition
- •CT
- •MRI

Fundamentals of Visualization

- Volume Rendering
- Transfer Functions
- Display Systems

Analyzing and Processing Volumes

- Image Processing
- Statistical Volumes

Examples of Medical Images

Medical Imaging - Acquisition

- Different devices are used for image acquisition
 - X-Ray, CT, MRI, PET, etc..
 - **Protocols:** With / without contrast
 - Method: Real-time or offline
- When are they used?
 - O Purpose
 - X-Ray: Overview images
 - o CT: Bone
 - O MRI: tissue, muscles
 - Budget

X-RAY

X-Ray Images

- Simplest imaging technique
- Wilhelm Röntgen in 1895
- Accidentally discovered
 - Accelerated electrons
 - \circ *X-rays* (*X* for unknown)

X-ray Imaging: How it works

X-ray shadow cast by an object

X-ray Imaging: How it works

X-ray uses

- Radiographic images are made for all parts of the body
 - o skeletal, chest (thorax, heart), mammography (breast), dental
- Mammography is somewhat behind because it requires resolutions that exceed that of storage phosphors
- X-ray images can be static or dynamic

Fluoroscopy -- X-ray

- X-ray image sequences are produced in real time
 - applications where motion is the subject of investigation
 - guidance for minimally invasive procedures
 - angiography (coronary imaging, vessels)
 - instrument tracking

Summary: X-ray Imaging

- Oldest non-invasive imaging of internal structures
- Rapid, short exposure time, inexpensive
- Unable to distinguish between soft tissues in head, abdomen
- Real time X-ray imaging is possible and used during interventional procedures.
- Ionizing radiation: risk of cancer.