CALCULUS (JUNE 22, 2006)

- 1. (10) Evaluate the following integrals,
- (a) $\iint_R x dA$ where R is given by $0 \le y \le \sin x$, $0 \le x \le \pi$. (b) $\int_0^1 \int_y^1 e^{-x^2} dx dy$.
- 2. (10) Find the volume of the region given by $0 \le z \le r^2$ and in one loop of $r^2 = 2 \sin \theta$.
- 3. (10) Find the centroid of the region given by $x^2 \le y \le 4$ with $\delta(x,y) = y$.
- 4. (10) Find the potential function of the vector field $\mathbf{F} = (y\cos z yze^x)\mathbf{i} + (x\cos z ze^x)\mathbf{j} (xy\sin z + ye^x)\mathbf{k}$.
- 5. (10) Find the centroid of the ice-cream cone bounded by $\phi = \frac{\pi}{6}$ and $\rho = 4\cos\phi$ with density $\delta(x,y,z) = z$.
- 6. (20) Find the volume of the region in the first octant given by $1 \le xy \le 4$, $1 \le yz \le 9$, $4 \le xz \le 9$.
- 7. (10) A sphere of radius 1 is interior and tangent to a sphere of radius 2. Find the average distance from the tangent point to all points between two spheres.
- 8. (10 Find the area of the region bounded by $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$
- 9. (10) Evaluate $\iint_S x^2 + y^2 dS$ where S is the part of $x^2 + y^2 + z^2 = 25$ above z = 3.
- 10. (10) Evaluate $\iint_S \mathbf{F} * \mathbf{n} dS$ where $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + 4\mathbf{k}$ and S is the boundary of the region $x^2 + y^2 \le z \le 5$.
- 11. (10) Let T be a region in space with volume V, boundary surface S and centroid (a,b,c). Use the divergence theorem to show that $c=\frac{1}{2V}\iint_S z^2 dx dy$.