★ kütüphanleri yükleyelim

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

xeri setini okutalım

```
df_ = pd.read_csv("/content/diabetes.csv")
df = df .copy()
```

? KEŞFEDİCİ VERİ ANALİZİ

✓ EDA deki ana fikir varsayimlar yapmadan onceden veriye bakmaktir. Verideki pattern dedigimiz duzen ve kalibi bulmamiz ve sira disi olaylari gozlemlememizin yanında ayrıca degiskenler arasındaki iliskiyi bulmamiza yardım eder.

✓ Veri bilimcileri kesfedici veri analizini hem duzen bulmak hem sira disi olaylari kesfetmek hemde degiskler arasindaki iliskiyi bulmak icin kullanırlar. Bunun yanı sira bazı is sorularını cevaplayabilirler.

- √ kesfedici analizlerle ayrica dogru sorulari sorup sormadigimizi da anlayabiliriz
- √ kesfedici analizler istatistiki bilgileri bulmamiza da yardimci olur, mesela, standard sapma, ortalama deger gibi.
- ✓ Kesfedici analizler yapildiktan sonra uretilen feature (degisken) ve bilgiler kullanilarak machine learning modelleri uretilebilir
- Pregnancies: Hamilelik sayısı
- Glucose: Glikoz
- 🔀 BloodPressure: Kan basıncı (Diastolic(Küçük Tansiyon))
- Insulin: İnsülin.
- BMI: Beden kitle indeksi.
- DiabetesPedigreeFunction: Soyumuzdaki kişilere göre diyabet olma ihtimalimizi hesaplayan bir fonksiyon.

```
🔀 Age: Yaş (yıl)
```

Outcome: Kişinin diyabet olup olmadığı bilgisi. Hastalığa sahip (1) ya da değil (0)

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age	Out
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	

null değerlere ve veri tiplerine bakalım
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

Ducu	COTAIIII3 (COCAT 3 COTAIIII3)	•	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

df.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64
dtype: object	

df.describe([0.10, 0.20, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99]).T

	count	mean	std	min	10%	20%	25%	50%	
Pregnancies	768.0	3.845052	3.369578	0.000	0.000	1.0000	1.00000	3.0000	6.00
Glucose	768.0	120.894531	31.972618	0.000	85.000	95.0000	99.00000	117.0000	140.25
BloodPressure	768.0	69.105469	19.355807	0.000	54.000	60.0000	62.00000	72.0000	80.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.000	0.0000	0.00000	23.0000	32.00
Insulin	768.0	79.799479	115.244002	0.000	0.000	0.0000	0.00000	30.5000	127.25
BMI	768.0	31.992578	7.884160	0.000	23.600	25.9000	27.30000	32.0000	36.60
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.165	0.2194	0.24375	0.3725	0.62
Age	768.0	33.240885	11.760232	21.000	22.000	23.0000	24.00000	29.0000	41.00
Outcome	768.0	0.348958	0.476951	0.000	0.000	0.0000	0.00000	0.0000	1.00

× veride boş değer olmaması ve birkaç kolon min değerlerinin 0 olması garip (bmı ı 0 olan insan yada glucose değerinin sıfır olması?))

outcome değeri int tipinde ama 0 ve 1 olarak 2 kategorik değeri var o yüzden type ı kategorik olarak değiştirelim df.Outcome.unique()

array([1, 0])

df.Outcome = df.Outcome.astype(str)
df.dtypes

Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 int64 Age Outcome object dtype: object

histogram
plt.hist(df["Outcome"])
plt.title("Diyabetik olmanın dağılımı")
plt.xlabel("Sonuç")

plt.ylabel("Frekans")

Text(0, 0.5, 'Frekans')

df.Outcome.value_counts(normalize=True).plot(kind='pie', table=True)

<Axes: ylabel='Outcome'>

df.Outcome.value_counts(normalize=True).plot(kind='pie', table=True)

<Axes: ylabel='Outcome'>


```
# özellik değerlerinin dağılımlarına bakalım :
df.hist(figsize=(20,10)); #; olmayınca x ve y ile ilgili bilgiler geliyor
```


☆ özellik müh ve veri temizleme

df.describe().T

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768 N	79 799479	115 244002	0 000	0 00000	30 5000	127 25000	846 00
df[df["SkinThickness"] >90] # s	adece 1 de	ğer var (ayk	ırı değer)					

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
579	2	197	70	99	0	34.7	0.575	62	

yeni veriyi skinthicness değeri 90 dan küçük olanlar şeklinde güncelleyelim df = df[df.SkinThickness < 90]</pre>

df[df.Pregnancies >15]

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
159	17	163	72	41	114	40.9	0.817	47	

df = df[df.Pregnancies < 15]</pre>

df.describe().T

	count	mean	std	min	25%	50%	75%	max	77.
Pregnancies	765.0	3.815686	3.317219	0.000	1.000	3.000	6.000	14.00	
Glucose	765.0	120.720261	31.875250	0.000	99.000	117.000	140.000	199.00	
BloodPressure	765.0	69.099346	19.393434	0.000	62.000	72.000	80.000	122.00	
SkinThickness	765.0	20.392157	15.705834	0.000	0.000	23.000	32.000	63.00	
Insulin	765.0	79.819608	115.422143	0.000	0.000	29.000	128.000	846.00	
BMI	765.0	31.970719	7.890247	0.000	27.300	32.000	36.500	67.10	
DiabetesPedigreeFunction	765.0	0.471707	0.331522	0.078	0.244	0.371	0.626	2.42	
Age	765.0	33.172549	11.721195	21.000	24.000	29.000	40.000	81.00	

🖈 eksik bilgileri olan kolonları tespit edelim

```
# muhtemelen eksik değerleri yerine otomatikman 0 değeri atanmış o yüzden "outcome" hariç diğer 0 sahibi kolonları seçelim
eksik bilgiler = [col for col in df.columns if (df[col].min() == 0 and df[col].dtypes != "0") ]
eksik bilgiler = [col for col in eksik bilgiler if "Pregnancies" not in col ]
eksik bilgiler
    ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
#seçtiğimiz kolonlaedaki 0 değerleri yerine nan değer atalım
df[eksik bilgiler] = np.where(df[eksik bilgiler] == 0, np.nan, df[eksik bilgiler])
# verimize tekrsr bakalım
df.info()
     <class 'pandas.core.frame.DataFrame'>
    Int64Index: 765 entries, 0 to 767
    Data columns (total 9 columns):
     # Column
                                    Non-Null Count Dtype
     ---
                                    _____
         Pregnancies
                                    765 non-null int64
                                   760 non-null float64
     1 Glucose
         BloodPressure
                                    730 non-null float64
                                   538 non-null float64
     3 SkinThickness
     4 Insulin
                                    392 non-null float64
     5
         BMI
                                    754 non-null float64
         DiabetesPedigreeFunction 765 non-null
                                                  float64
     6
     7
         Age
                                    765 non-null
                                                   int64
     8 Outcome
                                    765 non-null
                                                    object
    dtypes: float64(6), int64(2), object(1)
     memory usage: 59.8+ KB
# verimizde boş değer var mı yok mu daha net öğrenelim
df.isnull().any()
    Pregnancies
                                 False
    Glucose
                                  True
    BloodPressure
                                  True
    SkinThickness
                                  True
    Insulin
                                  True
                                  True
    DiabetesPedigreeFunction
                                 False
                                 False
    Outcome
                                 False
    dtype: bool
df.hist(figsize=(20,10));
```


df.boxplot(["BloodPressure"])

```
<Axes: >
                                              φ
      120
      100
df_yari_temiz = df.fillna(df.median()) # boş değerleri ilgili sütunun medyanı ile dolduralım
df_yari_temiz.isnull().any()
     Pregnancies
                                   False
                                   False
     Glucose
     BloodPressure
                                   False
     SkinThickness
                                   False
     Insulin
                                   False
     BMI
                                   False
     DiabetesPedigreeFunction
                                   False
                                   False
     Outcome
                                   False
     dtype: bool
# yaşı kendi içinde kategorilere bölelim
df['age\_bins'] = pd.cut(x=df["Age"], bins=[20,30,40,50,60,70,80,90])
df['age_bins'] = df['age_bins'].astype(str)
df.head()
```

	Pregnancies Glucose		BloodPressure	SkinThickness	kinThickness Insulin E		DiabetesPedigreeFunction		Out
0	6	148.0	72.0	35.0	NaN	33.6	0.627	50	
1	1	85.0	66.0	29.0	NaN	26.6	0.351	31	
2	8	183.0	64.0	NaN	NaN	23.3	0.672	32	
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	

```
df_temiz = df.fillna(df.groupby(['Pregnancies', 'Outcome', 'age_bins']).transform('median'))
df_temiz.isnull().any()
```

False
False
True
True
True
True
False
False
False
False

df.groupby(['Outcome', 'age_bins', 'Pregnancies']).count()

Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFu

Outcome	age_bins	Pregnancies							
0	(20, 30]	0	61	58	47	35	58		
		1	93	96	87	68	96		
		2	76	72	62	49	74		
		3	37	35	29	23	36		
		4	28	28	19	14	28		
1	(50, 60]	12	1	1	1	1	1		
	(60, 70]	0	1	1	0	0	1		
		2	1	1	0	0	1		
		4	3	3	1	0	3		
		6	1	1	0	0	1		

115 rows × 7 columns

yaş altı hamilelik sayısını azalan şekilde sıralayalım
df[df["Age"] < 25].sort_values(by="Pregnancies", ascending=False)[0:10]</pre>

	Pregnancies Glucose		BloodPressure	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age	(
731	8	120.0	86.0	NaN	NaN	28.4	0.259	22	
49	7	105.0	NaN	NaN	NaN	NaN	0.305	24	
121	6	111.0	64.0	39.0	NaN	34.2	0.260	24	
98	6	93.0	50.0	30.0	64.0	28.7	0.356	23	
457	5	86 N	68 0	28 0	71 በ	30 2	0.364	24	

[#] age_bins ve outcome i kendi medyanları ile değiştirelim

df_temiz = df_temiz.fillna(df_temiz.groupby(['Outcome', 'age_bins']).transform('median'))

df_temiz.describe().T

	count	mean	std	min	25%	50%	75%	max	10-
Pregnancies	765.0	3.815686	3.317219	0.000	1.000	3.000	6.000	14.00	
Glucose	765.0	121.481699	30.358024	44.000	99.000	117.000	140.000	199.00	
BloodPressure	764.0	72.400524	12.206042	24.000	64.000	72.000	80.000	122.00	
SkinThickness	764.0	29.047120	8.966978	7.000	23.000	29.000	35.000	63.00	
Insulin	758.0	149.141161	99.073541	14.000	88.000	122.000	177.500	846.00	
BMI	765.0	32.421307	6.883376	18.200	27.500	32.100	36.500	67.10	
DiabetesPedigreeFunction	765.0	0.471707	0.331522	0.078	0.244	0.371	0.626	2.42	
Age	765.0	33.172549	11.721195	21.000	24.000	29.000	40.000	81.00	

df_temiz.isnull().any()

Pregnancies	False
Glucose	False
BloodPressure	True
SkinThickness	True
Insulin	True
BMI	False
DiabetesPedigreeFunction	False
Age	False
Outcome	False
age_bins	False
dtype: bool	

[#] Outcome değerine göre diğer kolonlarrın na değerlerini medyanı ile doldur df_temiz = df_temiz.fillna(df_temiz.groupby(['Outcome']).transform('median'))

df_temiz.describe().T

	count	mean	std	min	25%	50%	75%	max	10-
Pregnancies	765.0	3.815686	3.317219	0.000	1.000	3.000	6.000	14.00	
Glucose	765.0	121.481699	30.358024	44.000	99.000	117.000	140.000	199.00	
BloodPressure	765.0	72.397386	12.198360	24.000	64.000	72.000	80.000	122.00	
SkinThickness	765.0	29.044444	8.961413	7.000	23.000	29.000	35.000	63.00	
Insulin	765.0	149.240523	98.651920	14.000	88.000	122.000	176.000	846.00	
BMI	765.0	32.421307	6.883376	18.200	27.500	32.100	36.500	67.10	
DiabetesPedigreeFunction	765.0	0.471707	0.331522	0.078	0.244	0.371	0.626	2.42	
Age	765.0	33.172549	11.721195	21.000	24.000	29.000	40.000	81.00	

df_corr = df_temiz.copy()

df_corr['Outcome'] = df_corr['Outcome'].astype(int)

df_corr.dtypes

Pregnancies	int64
Glucose	float64
BloodPressure	float64
SkinThickness	float64
Insulin	float64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64
age_bins	object
dtype: object	

df_corr.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabet
Pregnancies	1.000000	0.125841	0.217565	0.108548	0.091245	0.013672	
Glucose	0.125841	1.000000	0.228163	0.188185	0.491978	0.233472	

plt.figure(figsize=(13,10))
cmap = sns.color_palette('rocket_r', as_cmap=True)
sns.heatmap(df_corr.corr(), cmap=cmap, annot=True)

<Axes: >

★ VERİ GÖRSELLEŞTİRME

df_temiz.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Out
0	6	148.0	72.0	35.0	263.0	33.6	0.627	50	
1	1	85.0	66.0	29.0	73.0	26.6	0.351	31	
2	8	183.0	64.0	37.0	170.0	23.3	0.672	32	
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	
				3,25	.5.		5127		- 0 0

df_temiz.reset_index(inplace=True)
df_temiz.head()

	index	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	ß
0	0	6	148.0	72.0	35.0	263.0	33.6	0.627	_
1	1	1	85.0	66.0	29.0	73.0	26.6	0.351	
2	2	8	183.0	64.0	37.0	170.0	23.3	0.672	
3	3	1	89.0	66.0	23.0	94.0	28.1	0.167	
4	4	0	137.0	40.0	35.0	168.0	43.1	2.288	

```
# DF_TEMİZ İÇİN;
colors ={"0":'blue', "1":'red'}
plt.figure(figsize=(10,10))
plt.scatter(df_temiz.index,df_temiz.Insulin, c=df_temiz['Outcome'].map(colors))
plt.xlabel('Patient index')
plt.ylabel('Insulin level')
```

insilün seviyesinin azaldığı yerlerde mavi (diyabet olamama) yoğunlukta

Text(0, 0.5, 'Insulin level')

df_yari_temiz.dtypes

```
Pregnancies
                                     int64
     Glucose
                                   float64
     BloodPressure
                                   float64
     SkinThickness
                                   float64
     Insulin
                                   float64
                                   float64
    DiabetesPedigreeFunction
                                   float64
                                     int64
     Outcome
                                    object
     dtype: object
# DF_yarı_TEMİZ İÇİN ;
colors ={"0":'blue', "1":'red'}
plt.figure(figsize=(10,10))
plt.scatter(df_yari_temiz.index,df_yari_temiz.Insulin, c=df_temiz['Outcome'].map(colors))
plt.xlabel('Patient index')
plt.ylabel('Insulin level')
# grafikte de yarı_temizde problem olduğu bariz
```

Text(0, 0.5, 'Insulin level')

df_temiz.reset_index(drop=False, inplace=True)
df temiz

	level_0	index	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
0	0	0	6	148.0	72.0	35.0	263.0	33.6	
1	1	1	1	85.0	66.0	29.0	73.0	26.6	
2	2	2	8	183.0	64.0	37.0	170.0	23.3	
3	3	3	1	89.0	66.0	23.0	94.0	28.1	
4	4	4	0	137.0	40.0	35.0	168.0	43.1	
760	760	763	10	101.0	76.0	48.0	180.0	32.9	
761	761	764	2	122.0	70.0	27.0	94.0	36.8	
762	762	765	5	121.0	72.0	23.0	112.0	26.2	
763	763	766	1	126.0	60.0	28.5	160.0	30.1	
764	764	767	1	93.0	70.0	31.0	85.0	30.4	

765 rows × 12 columns

Patient index

px.scatter(df_temiz, x='index', y='Insulin', color='Outcome', color_discrete_sequence=['red', 'blue'])
interaktif kullanmak için bu grafik gayet iyi


```
# diyabet olanlarla - olmayanların insülin sayılarının kıyaslanması
plt.figure(figsize=(12,10))
df_diabetic = df_temiz.loc[df_temiz.Outcome =='1'];
df_non_diabetic = df_temiz.loc[df_temiz.Outcome =='0'];
labels=['non_diabetic', 'diabetic'];
plt.hist([df_non_diabetic['Insulin'], df_diabetic['Insulin']], label=labels);
plt.legend()
```

<matplotlib.legend.Legend at 0x7f970d7cb370>

✓ 0 sn. tamamlanma zamanı: 16:12