Zadanie 14. (0-3)

Dana jest parabola o równaniu $y = x^2 + 1$ i leżący na niej punkt A o współrzędnej x równej 3. Wyznacz równanie stycznej do tej paraboli w punkcie A.

Zadanie 10. (0-3)

Funkcja f jest określona wzorem $f(x) = x^4$ dla każdej liczby rzeczywistej x. Wyznacz równanie prostej stycznej do wykresu funkcji f, która jest równoległa do prostej y = 4x + 7.

Zadanie 12. (0-4)

Funkcja f określona jest wzorem $f(x) = x^3 - 2x^2 + 1$ dla każdej liczby rzeczywistej x. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y = 4x.

Zadanie 6. (0-3)

Funkcja f jest określona wzorem $f(x) = \frac{x-1}{x^2+1}$ dla każdej liczby rzeczywistej x. Wyznacz równanie stycznej do wykresu tej funkcji w punkcie P = (1,0).

Zadanie 5. (0-2)

Oblicz współczynnik kierunkowy stycznej do wykresu funkcji $f(x) = \frac{x^2}{x-1}$, określonej dla każdej liczby rzeczywistej $x \ne 1$, poprowadzonej w punkcie $A = \left(6, \frac{36}{5}\right)$ tego wykresu.

W poniższe kratki wpisz kolejno cyfrę jedności i dwie cyfry po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0–3)

Styczna do paraboli o równaniu $y = \sqrt{3}x^2 - 1$ w punkcie $P = (x_0, y_0)$ jest nachylona do osi Ox pod kątem 30°. Oblicz współrzędne punktu P.

Zadanie 7. (0-2)

Punkt P = (10, 2429) leży na paraboli o równaniu $y = 2x^2 + x + 2219$. Prosta o równaniu kierunkowym y = ax + b jest styczna do tej paraboli w punkcie P. Oblicz współczynnik b.

Zadanie 13. (0-5)

Dana jest funkcja f określona wzorem $f(x) = \frac{x^3 + k}{x}$ dla każdej liczby rzeczywistej $x \neq 0$. Oblicz wartość k, dla której prosta o równaniu y = -x jest styczna do wykresu funkcji f.

Zadanie 3. (0-1)

Prosta dana równaniem $y = \frac{1}{2}x + \frac{3}{2}$ jest prostopadła do stycznej do wykresu funkcji $f(x) = x^4 - 3x^3 + x^2 + x + 5$ w punkcie

- **A.** (-1, 6)
- **B.** (0,5)
- **C**. (1, 5)
- **D.** (2, 3)

Zadanie 2. (0-3)

Funkcja f jest określona wzorem $f(x) = \frac{x^2+3}{x-1}$ dla każdej liczby rzeczywistej $x \neq 1$.

Wyznacz równanie stycznej do wykresu tej funkcji w punkcie P = (-3, -3).

Zadanie 4. (0-3)

Funkcja f jest określona wzorem $f(x) = 2x^3 - 4x^2 + 9x$ dla każdego $x \in \mathbb{R}$. Punkt $P = (x_0, 18)$ należy do wykresu funkcji f.

Oblicz x_0 oraz wyznacz równanie stycznej do wykresu funkcji f w punkcie P. Zapisz obliczenia.

Zadanie 3. (0-3)

Funkcja f jest określona wzorem $f(x) = \frac{3x^2 - 2x}{x^2 + 2x + 8}$ dla każdej liczby rzeczywistej x. Punkt $P = (x_0, 3)$ należy do wykresu funkcji f.

Oblicz x_0 oraz wyznacz równanie stycznej do wykresu funkcji f w punkcie P. Zapisz obliczenia.

Zadanie 3. (0-3)

Funkcja f jest określona wzorem $f(x) = \frac{2x+1}{x-4}$ dla każdej liczby rzeczywistej $x \neq 4$. W kartezjańskim układzie współrzędnych (x,y) punkt $P = (x_0,5)$ należy do wykresu funkcji f.

Oblicz x_0 oraz wyznacz równanie stycznej do wykresu funkcji f w punkcie P. Zapisz obliczenia.

Zadanie 4. (0-1)

Funkcja f jest określona wzorem $f(x)=2x^3+4x^2-9$ dla każdej liczby rzeczywistej x. Prosta o równaniu y=ax+b jest styczna do wykresu funkcji f w punkcie P=(-2,-9). Współczynnik a w równaniu tej stycznej jest równy

A. 8 **B.**
$$(-2)$$
 C. (-1) **D.** (-11)

Zadanie 4. (0-3)

Funkcja f jest określona wzorem

$$f(x) = \frac{x^3 - 3x + 2}{x}$$

dla każdej liczby rzeczywistej x różnej od zera. W kartezjańskim układzie współrzędnych (x,y) punkt P, o pierwszej współrzędnej równej 2, należy do wykresu funkcji f. Prosta o równaniu y=ax+b jest styczna do wykresu funkcji f w punkcie P.

Oblicz współczynniki a oraz b w równaniu tej stycznej. Zapisz obliczenia.