Спецификация Asynchronous FIFO (afifo).

Оглавление

Принятые сокращения
1. Введение
1.1. Назначение
1.2. Основные функции
1.3. Параметры конфигурации
2. Функциональное описание
2.1. Структурная схема
2.2. Описание работы
3. Описание портов ввода-вывода
3.1. Описание сигналов синхронизации
3.2. Описание сигналов сброса
3.3. Описание шинных интерфейсов
4. Версия документа

Принятые сокращения

HS – Handshake Interface Specification.

FIFO – организация памяти по принципу первый зашел, первый вышел.

1. Введение

1.1. Назначение

Asynchronous FIFO – блок FIFO с асинхронным доступом для чтения и записи данных. Порты чтения и записи данных используют интерфейс HS.

1.2. Основные функции

- Асинхронная запись и чтение данных.
- Контроль состояния full/empty.
- Отображение счетчиков свободного/заполненного пространства.

1.3. Параметры конфигурации

Таблица 1. RTL параметры.

Имя	Допустимые значения	Описание
ADDR_WIDTH	>1	Ширина адресной шины

2. Функциональное описание

2.1. Структурная схема

На рисунке 1 приведена структурная схема afifo. В его состав входит:

- Bin_ptr бинарный счетчик адреса чтения/записи;
- Ptr_sub вычисляет разницу значений указателей адреса чтения/записи;
- 2-flop sync синхронизатор адреса чтения/записи;
- В2g конвертор бинарного кода в код Грея;
- G2b конвертор кода Грея в бинарный код;
- Мих мультиплексор адреса чтения/записи.

Рисунок 1. Структурная схема

2.2. Описание работы

На рисунке 1 представлена структурная схема afifo. Для синхронизации указателей чтения/записи использован подход конвертации этих указателей из бинарного кода в код Грея. Указатели адреса для чтения и записи синхронизируются аналогичным способом.

Bin_ptr является инкрементным счетчиком. Значение с его выхода передается на память как указатель адреса чтения/записи, а также после конвертации в код Грея (блоком b2g) передается на пересинхронизацию в блок 2-flop sync. Блок g2b выполняет обратную конвертацию в бинарный код. Блок ptr_sub на основании разницы между указателями

адресов чтения/записи определяет количество свободного или занятого пространства.

Количество свободного пространства транслируется на выход wcnt_o, а также используется для формирования сигнала wready_o. Если wcnt_o > 0, то wready_o устанавливается в «1», иначе wready_o = 0 (состояние FIFO full).

Количество занятого пространства транслируется на выход rcnt_o, а также используется для формирования сигнала rvalid_o. Если rcnt_o > 0, то rvalid_o устанавливается в «1», иначе rvalid_o = 0 (состояние FIFO empty).

Хранение данных осуществляется во внешнем двухпортовом блоке памяти. На рисунке 2 приведена схема подключения afifo с блоком 2P-RAM.

Рисунок 2. Подключение блока памяти

Временная диаграмма работы внешней памяти приведена на рисунке 3.

Рисунок 3. Временная диаграмма 2P-RAM

3. Описание портов ввода-вывода

AFIFO имеет следующий список портов ввода-вывода:

Таблица 2. Порты ввода-вывода

Название	Разрядность	Тип	Описание		
FIFO write интерфейс					
wclk_i	1	in	тактовый сигнал		
wrst_n_i	1	in	Ассинхронный сброс, активный уровень - 0		
wready_o	1	out	ready - handshake		
wvalid_i	1	in	valid - handshake		
wcnt_o	ADDR_WIDTH+1	out	Количество свободного места		
FIFO read интерфейс					
rclk_i	1	in	тактовый сигнал		
rrst_n_i	1	in	Ассинхронный сброс, активный уровень - 0		
rready_i	1	in	ready - handshake		
rvalid_o	1	out	valid - handshake		
rcnt_o	ADDR_WIDTH+1	out	Количество занятого места		
Интерфейс памяти					
mem_waddr_o	ADDR_WIDTH	out	Адрес записи		
mem_wen_o	1	out	Разрешение записи		
mem_raddr_o	ADDR_WIDTH	out	Адрес чтения		
mem_ren_o	1	out	Разрешение чтения		

3.1. Описание сигналов синхронизации

В AFIFO используется следующие тактовые сигналы:

- rclk_i сигнал синхронизации, тактирующий работу read интерфейса.
- wclk_i сигнал синхронизации, тактирующий работу write интерфейса.

3.2. Описание сигналов сброса

В AFIFO используется следующие сигналы аппаратного сброса:

- rrst_n_i асинхронный сброс, активный уровень сигнала приводит интерфейсную часть FIFO read в исходное состояние, активный уровень сигнала низкий;
- wrst_n_i асинхронный сброс, активный уровень сигнала приводит интерфейсную часть FIFO write в исходное состояние, активный уровень сигнала низкий.

В блоке используются асинхронные сигналы сброса, при этом снятие сигнала сброса должна производиться синхронно соответствующему тактовому домену. Активация сброса должна производиться одновременно со стороны чтения и записи данных. Минимальная длительность сброса должна захватывать один такт медленного порта. На рисунке 4 приведена диаграмма установки и снятия сигналов сброса. Сигналы wvalid_i/rready_i должны находится в неактивном состоянии в время сброса и на такте снятия сигнала сброса.

Рисунок 4. Установка и снятие сигналов сброса

3.3. Описание шинных интерфейсов

4. Версия документа

Таблица 3. Лист регистрации изменений

Версия	Дата	Внесенные изменения	Автор
0.0.1	25.10.2023	Первая версия документа	Бородин А. А.