Peer-to-Peer-Systeme

Teil III: Zufallsgraphen, kleine Welten und skalenfreie Netze

Björn Scheuermann

Humboldt-Universität zu Berlin Wintersemester 2015/16

Milgrams Small-World-Experiment

- ▶ 1967 untersuchte der Psychologe Stanley Milgram die Struktur sozialer Netzwerke
- Er führte folgendes Experiment durch:
 - zufällig ausgewählte Personen erhielten einen Brief, den sie einer ihnen nicht persönlich bekannten Zielperson zukommen lassen sollten
 - über die Zielperson waren einige Hintergrundinformationen verfügbar (Name, Beruf, Wohnort,...)
 - der Brief durfte nur über persönlich bekannte Kontakte weitergegeben werden, mit dem Ziel, der Zielperson "näher" zu kommen
- Viele Briefe erreichten ihr Ziel in nicht mehr als sechs Schritten (und das 1967!)
- Wie lässt sich diese überraschende Eigenschaft sozialer Netzwerke verstehen?

Netzwerke als Graphen

- ▶ Netzwerke (im allgemeinsten Sinne!) lassen sich als Graphen beschreiben
- ▶ Ein *Graph* besteht aus einer Menge von *Knoten V* und einer Menge von Kanten E

Ungerichteter Graph $E \subseteq \{\{v_1, v_2\} \mid v_1, v_2 \in V, v_1 \neq v_2\}$ $E \subseteq \{(v_1, v_2) \mid v_1, v_2 \in V\}$

Gerichteter Graph

Graphen: Knotengrad

 Der Grad eines Knotens ist die Zahl der Kanten, an denen er beteiligt ist

► Bei gerichteten Graphen: *Eingrad* (Zahl der eingehenden Kanten) und *Ausgrad* (Zahl der ausgehenden Kanten)

Graphen: Wege und Distanzen

- ► Ein Weg oder Pfad von v₁ nach v₂ in einem Graphen ist eine Folge von Kanten, die von v₁ nach v₂ führt
- Die Länge eines Weges ist die Zahl der Kanten auf dem Weg

▶ Die *Distanz* zwischen v₁ und v₂ in einem Graphen ist die Länge des kürzesten Weges von v₁ nach v₂

Graphen: Zusammenhang

- ► Eine Zusammenhangskomponente eines Graphen ist eine Teilmenge $C \subseteq V$, so dass
 - von jedem Knoten in C zu jedem anderen Knoten in C ein Weg existiert und
 - keine andere Teilmenge existiert, für die das ebenfalls gilt und die C vollständig enthält

► Ein Graph ist *zusammenhängend*, wenn seine Knotenmenge *V* eine Zusammenhangskomponente ist

Graphen: Durchmesser und Durchschnitts-Pfadlänge

▶ Der Durchmesser eines Graphen ist die längste Distanz zwischen zwei Knoten des Graphen

 Die durchschnittliche Pfadlänge ist die durchschnittliche Distanz zwischen zwei zufällig gewählten Knoten eines Graphen

Zufallsgraphenmodelle

Es gibt zwei gängige Modelle für Zufallsgraphen:

1 Erdős und Rényi:

 $G_{n,m}$ sei die Menge aller (ungerichteten) Graphen mit n Knoten und m Kanten

2 Gilbert:

 $\mathcal{G}_{n,p}$ sei die Menge aller (ungerichteten) Graphen mit n Knoten, in denen jede mögliche Kante unabhängig mit Wahrscheinlichkeit p vorhanden ist

Für $m \sim p \cdot N$ (wobei $N = \binom{n}{2} = \frac{n \cdot (n-1)}{2}$ die Zahl der möglichen Kanten in einem ungerichteten Graphen mit n Knoten ist) sind die Modelle praktisch äquivalent.

Generiere mithilfe einer Münze als "Zufallsgenerator" einen Gilbert-Zufallsgraphen aus $\mathcal{G}_{6.0.5}$

Wieviele Zusammenhangskomponenten hat dein Graph? Was ist der Durchmesser der größten Zusammenhangskomponente?

Eigenschaften von Zufallsgraphen

- ▶ Wir können keine (sinnvollen) Aussagen über *alle* Graphen in $\mathcal{G}_{n,m}$ oder $\mathcal{G}_{n,p}$ machen, sondern nur über *erwartete* Eigenschaften eines zufällig gewählten Graphen $G_{n,m} \in \mathcal{G}_{n,m}$ bzw. $G_{n,p} \in \mathcal{G}_{n,p}$
- ▶ Die Graphen aus G_{n,p} weisen eine Eigenschaft mit hoher Wahrscheinlichkeit (m. h. W.) auf, wenn

$$\lim_{n o \infty} P(G_{n,p} \in \mathcal{G}_{n,p} ext{ hat die geforderte Eigenschaft}) = 1$$

(analog auch für andere Graphenklassen)

▶ Für Erdős-Rényi-Zufallsgraphen aus $\mathcal{G}_{n,m}$ ist das i. d. R. nur sinnvoll, wenn m eine Funktion von n ist

Zusammenhang von Zufallsgraphen

Sei

$$m_{\gamma} = \frac{n}{2}(\log n + \gamma),$$

wobei $\gamma = \gamma(n)$ eine Funktion von n ist. Dann gilt

- wenn $\lim_{n\to\infty} \gamma = -\infty$, dann ist ein typisches $G_{n,m_{\gamma}}$ nicht zusammenhängend
- wenn $\lim_{n\to\infty} \gamma = \infty$, dann ein typisches $G_{n,m_{\gamma}}$ zusammenhängend

Typische Interpretation: Wenn der durchschnittliche Knotengrad in einem Zufallsgraphen $\Omega(\log n)$ ist, dann ist der Graph mit hoher Wahrscheinlichkeit zusammenhängend.

Giant Component

Sei
$$c > 0, p = \frac{c}{n}$$

- ▶ Für c < 1 hat m. h. W. jede Zusammenhangskomponente von $G_{n,p}$ die Größenordnung $O(\log n)$.
- Für c > 1 gibt es m. h. W. eine Zusammenhangskomponente mit Größe ⊖(n) ("Giant Component"), andere Komponenten haben die Größe O(log n).

Beobachtung: Die Giant Component entsteht m. h. W., wenn der durchschnittliche Grad der Knoten eins übersteigt!

Gradverteilung in Zufallsgraphen

In Zufallsgraphen folgt die Gradverteilung der Knoten (asymptotisch) einer Poisson-Verteilung:

Eigenschaften realer Netze: Watts + Strogatz

- Zufallsgraphen sind analytisch gut zugänglich und wurden lange zur Modellierung vieler realer Netzwerke eingesetzt
- ► Aber wie akkurat geben sie die Eigenschaften realer Netze wieder?
- Watts und Strogatz haben 1998 die Eigenschaften einer Reihe von realen Netzwerken untersucht und mit Zufallsgraphen mit gleicher Knoten- und Kantenzahl verglichen:
 - Zusammenarbeit von Filmschauspielern (Kante = gemeinsamer Film)
 - Neuronales Netz des Fadenwurms C. elegans
 - Stromnetz der westlichen USA
- Vergleich anhand von:
 - durchschnittlicher Pfadlänge
 - Clustering-Koeffizient

Clustering-Koeffizient

Sei i ein Knoten in einem ungerichteten Graphen, d(i) der Grad von i und E(i) die Zahl der Kanten zwischen Nachbarn von i.

Der Clustering-Koeffizient C(i) von i ist

$$C(i) = \frac{E(i)}{\binom{d(i)}{2}} = \frac{\text{Zahl der Kanten zwischen Nachbarn von } i}{\text{Zahl der } m\"{o}glichen \text{ Kanten zwischen Nachbarn von } i}$$

- Kante von i
- existierende Kante zwischen Nachbarn von i
- mögliche, aber nicht vorhandene Kante

$$C(i) = 3/6 = 1/2$$

(Lässt sich analog für gerichtete Graphen definieren.)

Suche in deine zuvor erzeugten Zufallsgraphen den Knoten mit dem höchsten Grad; bestimme den Clustering-Koeffizienten dieses Knotens.

Entspricht der Clustering-Koeffizient dem Wert, den du für einen Graphen aus $\mathcal{G}_{6.0.5}$ erwarten würdest?

Clustering-Koeffizient

- Der Clustering-Koeffizient ist die Wahrscheinlichkeit, dass zwei Nachbarn von i wiederum Nachbarn sind
- In G_{n,p} ist deshalb ein Clustering-Koeffizient von p zu erwarten
- Der Clustering-Koeffizient eines Graphen ist der durchschnittliche Clustering-Koeffizient seiner Knoten
- Vorsicht: Der Clustering-Koeffizient für einen Knoten mit d(i) < 2 ist nicht definiert!</p>
 - wird dann manchmal = 0, manchmal = 1 gesetzt, oder solche Knoten werden in der Auswertung ignoriert

Eigenschaften realer Netze: Watts + Strogatz

Wir vergleichen jetzt die von Watts und Strogatz untersuchten Netze mit Zufallsgraphen mit gleicher Knoten- und Kantenzahl

Welches Ergebnis würdest du beim Vergleich der Clustering-Koeffizienten etwarten?

Was erwartest du hinsichtlich der durchschnittlichen Pfadlänge?

Eigenschaften realer Netze: Watts + Strogatz

Netzwerk	n	Ø-Grad	Ø-Pfadlänge		C	
			real	Zufall	real	Zufall
Schauspieler	225 226	61	3.65	2.99	0.79	0.00027
Stromnetz	4 941	2.67	18.7	12.4	0.08	0.005
C. elegans	282	14	2.65	2.25	0.28	0.05

Beobachtung: Pfadlänge passt gut, aber reale Netze sind lokal sehr viel dichter (= hoher Clustering-Koeffizient)!

Ein hoher Clustering-Koeffizient lässt sich auch in sozialen Netzwerken beobachten: Unsere eigene "nahe Umgebung" ist auch sehr viel besser "vernetzt" als das in einem Zufallsgraphen der Fall wäre!

[Watts, Strogatz: Collective dynamics of 'small-world' networks, Nature, 1998]

Small Worlds

Eine Small World ist ein Netzwerk mit

- 1 kleiner durchschnittlicher Pfadlänge (wie in Zufallsgraphen) und
- 2 hohem Clustering-Koeffizienten (anders als in Zufallsgraphen!)

Kleinbergs Small-World-Graphen

- Konstruktionsprinzip von Kleinberg für Small-World-Graphen mit effizientem Routing:
 - ordne die Knoten in einem Gitter an
 - jeder Knoten ist mit seinen Nachbarn verbunden
 - jeder Knoten hat außerdem eine zufällige "Fernkante"
 - Wahrscheinlichkeit für Wahl des Ziels der Fernkante fällt wie 1/d², wobei d der Abstand in "Gitterschritten" ist

- ► Erlaubt (bei richtiger Parameterwahl) Greedy-Routing zu Zielkoordinaten in $O(\log^2 n)$ Schritten
- Auch mehrdimensional möglich

[Kleinberg: The small-world phenomenon: An algorithmic perspective, STOC 2000]

Kleinberg-Graphen für ein P2P-System?

- Kleinberg-Graphen erlauben effizientes Routing mit rein lokalem Wissen
- ► Aber für die Konstruktion ist globales Wissen notwendig:
 - woher bekommt ein Knoten seine (eindeutige) Position im Gitter?
 - wie findet er alle seine Nachbarn?
 - um eine Fernkante zufällig zu wählen, müssen alle entfernten Knoten bekannt sein
 - ▶ ...
- Deshalb taugen Kleinberg-Graphen nur bedingt als Basis für ein Peer-to-Peer-Overlay
- Es gibt aber verschiedene Ansätze, Small-World-Overlays mit effizienten Routing-Algorithmen gezielt zu erzeugen und in P2P-Overlays zu verwenden (hier nicht weiter besprochen)

Gnutella ist eine Small World

- Unabhängige Untersuchungen aus mehreren Jahren zeigen, dass das Gnutella-Overlay Small-World-Eigenschaften hat
- ▶ Gilt für das ursprüngliche Gnutella (~2001) ebenso wie für das spätere Ultrapeer-Overlay (~2005)
- ► Typische Pfadlänge in Gnutella 2008: 4–5 Hops (!)
- Mögliche Ursachen für das beobachtete Clustering:
 - Bootstrapping-Mechanismen
 - Suche nach Peers f
 ür weitere Verbindungen
 - Dynamik des Overlays (Peers mit langer Uptime "sammeln" Verbindungen zu anderen Peers mit ähnlichen Eigenschaften)
 - endgültig ist das nicht geklärt...

[Stutzbach, Rejaie, Sen: Characterizing Unstructured Overlay Topologies in Modern P2P File-Sharing Systems, Transactions on Networking, 2008]

Skalenfreie Netze

- Wie sieht die Gradverteilung in realen Netzwerken aus?
- ▶ In der AS-Topologie des Internet ist die Häufigkeit des Knotengrades k proportional zu $k^{-\alpha}$ mit einer Konstanten $\alpha > 0$ ("power law")
- Auch der Link-Grad von Webseiten, das Stromnetz der USA und das Schauspieler-Zusammenarbeits-Netzwerk verhalten sich so
- Solche Netzwerke heißen skalenfreie Netzwerke

[Faloutsos, Faloutsos: On Power-law Relationships of the Internet Topology, SIGCOMM 1999]

[Barabási, Albert: Emergence of Scaling in Random Networks, Science, 1999]

Skalenfreie Netze

- ▶ Die meisten Knoten haben sehr niedrige Grade
- Es gibt wenige zentrale Knoten mit hohem Grad

Pareto-Verteilung

▶ Die entsprechende Wahrscheinlichkeitsverteilung ist die diskrete Pareto-Verteilung (für k ≥ 1):

$$P(\operatorname{Grad} k) = \frac{1}{\zeta(\alpha)k^{\alpha}} \qquad \zeta(\alpha) = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}}$$

- Heavy-Tail-Eigenschaft: Im Vergleich zur Poisson-Verteilung treten große Knotengrade mit hoher Wahrscheinlichkeit auf
- (Definition passt nicht ganz für $\alpha \leq 1$, da dann $\zeta(\alpha) = \infty$. Für einen Graphen mit endlicher Zahl von Knoten kann man den Normalisierungsfaktor ζ aber einfach entsprechend anpassen.)

Pareto-Verteilung

$$P(\operatorname{Grad} k) = \frac{1}{\zeta(\alpha)k^{\alpha}} \qquad \zeta(\alpha) = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}}$$

Gradverteilung im Internet

Inter-AS-Topologie des Internet von 1997, Grad vs. Häufigkeit; "Power Law" ergibt linear fallende Kurve im Log-Log-Diagramm:

(Abbildung: [Faloutsos et al. 1999])

Eigenschaften skalenfreier Netzwerke

Welche Aussagen können wir über ein Netzwerk alleine auf Basis der Tatsache machen, dass es skalenfrei ist?

Für große Pareto-Graphen gilt m. h. W.:

- α < 1 \Rightarrow der Graph ist zusammenhängend
- $\alpha > 1 \Rightarrow$ der Graph ist nicht zusammenhängend
- 1 < α < 2 ⇒ eine Giant Component (Θ(n)), sonstige Komponenten O(1)
- ▶ 2 < α < 3,4785... \Rightarrow eine Giant Component ($\Theta(n)$), sonstige Komponenten $O(\log n)$
- $\alpha > 3,4785... \Rightarrow$ keine Giant Component

[Aiello, Chung, Lu: A Random Graph Model for Power Law Graphs, Experimental Mathematics, 2001]

Rich gets richer

- Skalenfreie Netzwerke entstehen, wenn neu hinzukommende Knoten sich bevorzugt mit existierenden Knoten mit hohem Grad verbinden
- ⇒ "Rich gets richer"
 - Konkrete Bedingung: Wahrscheinlichkeit, eine Verbindung zu einem existierenden Knoten aufzubauen, ist proportional zur Anzahl der Verbindungen, die dieser Knoten bereits hat
 - Tatsächlich ist dies die einzige Bedingung für das Entstehen von skalenfreien Netzwerken

[Albert, Barabási: Statistical Mechanics of Complex Networks, Reviews of Modern Physics, 2002]

Robustheit skalenfreier Netze

- In skalenfreien Netzen haben nur wenige Knoten sehr hohe Grade
 - (... obwohl die Wahrscheinlichkeit für hohe Grade wie erwähnt asymptotisch höher ist als bei poissonverteilten Graden in Zufallsgraphen – dort gibt es praktisch gar keine Knoten mit hohem Grad!)
- Zufällige Ausfälle treffen wahrscheinlich Knoten mit geringem Grad, die für den Zusammenhang des Netzwerks nicht wichtig sind
- ⇒ Skalenfreie Netzwerke sind robust gegenüber Ausfällen
 - 2,5 % Ausfälle ändern den Internet-Durchmesser kaum
 - Zufallsgraphen zerfallen sehr viel schneller in einzelne Komponenten

Robustheit skalenfreier Netze

Größenordnung der größten Zusammenhangskomponente nach dem zufälligen Entfernen von Knoten aus einem 10 000-Knoten-Graphen:

entfernte Knoten	Zufallsgraph	skalenfreies Netz
5%	9 000	9 500
28 %	100	7 000
45 %	1	5 0 0 0

Beim gezielten Entfernen der Knoten mit dem höchsten Grad:

entfernte Knoten	Zufallsgraph	skalenfreies Netz
5%	9 000	8 500
20 %	6 000	1
30 %	1	1

[Albert, Jeong, Barabási: The Internet's Achilles' Heel: Error and attack tolerance of complex networks, Nature, 2000]

Robustheit skalenfreier Netze

- Umgekehrt machen also die wenigen zentrale Knoten ein skalenfreies Netzwerk anfälliger für gezielte Angriffe!
- Man kann dem Netz großen Schaden zufügen, indem man gezielt Knoten mit hohem Grad ausfindig macht und lahmlegt

- Untersuchungen des ursprünglichen Gnutella-Overlays legten Skalenfreiheit nahe
- Betrachte den ursprünglichen Mechanismus, mit dem neue Gnutella-Servents dem Overlay beitreten
 - "Gut verbundene" Knoten haben eine h\u00f6here Wahrscheinlichkeit, beim Ping-Pong gefunden zu werden
- ⇒ Rich gets richer!

Neuere Ergebnisse zeigen, dass die Grade im *späteren* Ultrapeer-Overlay *nicht* Pareto-verteilt sind:

(Abbildung: [Stutzbach et al. 2008])

- Dass keine Pareto-Verteilung vorliegt ist eigentlich schon aufgrund der Strategie verbreiteter Ultrapeer-Implementationen (LimeWire, Bearshare) klar
- Die Ergebnisse in den älteren Studien könnten durch problematische Untersuchungsmethoden entstanden sein
- Erkenntnis: Schon das Sammeln der Rohdaten für die Untersuchung realer Systeme ist ein schwieriges Forschungsproblem!

[Stutzbach, Rejaie, Duffield, Sen, Willinger: On Unbiased Sampling for Unstructured Peer-to-Peer Networks, Transactions on Networking, 2009]

- Die Robustheit des Gnutella-Ultrapeer-Overlays ist bedeutend besser als die eines skalenfreien Netzwerks
- Das Ultrapeer-Overlay widersteht sowohl zufälligen Ausfällen als auch gezielten Angriffen gut:
 - ▶ 85 % zufällige Ausfälle ⇒ 90 % der verbleibenden Ultrapeers sind weiterhin verbunden
 - ▶ 50 % (!) der Peers mit hohem Grad entfernt ⇒ 75 % der verbleibenden Ultrapeers sind weiterhin verbunden

[Stutzbach et al. 2008]

Zusammenfassung

- In diesem Kapitel haben wir uns mit Graphenstrukturen und den sich daraus ergebenden Eigenschaften für entsprechende Netzwerke beschäftigt
- Wir haben zunächst Zufallsgraphen eingeführt und uns dann mit Eigenschaften realer Netzwerke beschäftigt, die sich wesentlich von denen von Zufallsgraphen unterscheiden
- Insbesondere haben wir Small-World-Graphen und skalenfreie Netze kennen gelernt und deren Eigenschaften am Beispiel des Gnutella-Overlays diskutiert