Algebraische Geometrie I

Prof. Dr. Venjakob

Vorlesung 17, 19 Oktober 2018

Literatur

- \bullet Görtz, Wedhorn. Algebraic Geometry I
- Hartshorne. Algebraic Geometry
- Shafarevich. Basic Algebraic Geometry 1 & 2
- Grothendieck. Eléments de géometrie algébrique, EGA I-IV

Kommutative Algebra

- $\bullet\,$ Brüske, Ischebeck, Vogel. Kommutative Algebra
- Kunz. Einführung in die kommutative Algebra und algebraische Geometrie

Inhaltsverzeichnis

Ι	Prä-Varietäten	2
1	Einführung	3
2	Die Zariski-Topologie 2.1 Eigenschaften	4
3	Affine algebraische Mengen	5
4	Der Hilbertsche Nullstellensatz	6
5	Korrespondenz zwischen Radikalidealen und affinen algebraischen Mengen	7
6	Irreduzible topologische Räume	8
7	Irreduzible affine algebraische Mengen	10
8	Quasikompakte und noethersche topologische Räume	11
9	Morphismen von affinen algebraischen Mengen	13
10	Unzulänglichkeiten des Begriffs der affinen algebraischen Mengen	14

INHALTSVERZEICHNIS 2

11 Der affine Koordinatenring	15
12 Funktorielle Eigenschaften von $\Gamma(X)$	17
13 Räume mit Funktionen	19
14 Der Raum mit Funktionen zu einer affin-algebraischen Menge	20
15 Funktorialität der Konstruktion	23
16 Definition von Prävarietäten	24
${\bf 17\ Vergleich\ mit\ differenzierbaren/komplexen\ Mannigfaltigkeiten}$	25
18 Topologische Eigenschaften von Prävarietäten	26
19 Offene Untervarietäten	27
20 Funktionenkörper einer Prävarietät	29
21 Abgeschlossene Unterprävarietäten	31
22 Homogene Polynome	32
23 Definition des projektiven Raumes 23.1 Reguläre Funktionen	33
24 Projektive Varietäten	36

Teil I

Prä-Varietäten

1 EINFÜHRUNG 4

Abbildung 1:
$$T_2^2 = T_1^2(T_1 - 1) = T_1^3 - T_1^2$$

1 Einführung

Algebraische Geometrie kann man verstehen, als das Studium von Systemen polynomialer Gleichungen (in mehreren Variabelen). Damit ist die algebraische Geometrie eine Verallgemeinerung der linearen Algebra, also statt X auch X^n , und auch der Algebra, durch Polynome in mehreren Variablen.

Frage. Seien k ein (algebraisch abgeschlossener) Körper, und $f_1, \ldots, f_m \in k[T_1, \ldots, T_n]$ gegeben. Was sind die "geometrischen Eigenschaften" der Nullstellenmenge

$$V(f_1, \dots, f_n) := \{ (t_1, \dots, t_n) \in k^n \mid f_i(t_1, \dots, t_n) = 0 \ \forall i \}$$

Beispiel 1. Sei $f = T_2^2 - T_1^2(T_1 - 1) \in k[T_1, T_2]$. Die Nullstellenmenge für $k = \mathbb{R}$ (aber: trügerisch, da \mathbb{R} nicht algebraisch abgeschlossen!) ist gegeben durch:

- Dimension 1
- (0,0) ist singulärer Punkt
- Alle anderen Punkte besitzen eine eindeutig bestimmte Tangente

Abbildung 2: Spitze und Doppelpunkt

Vergleiche mit dem Satz über implizite Funktionen: (Analysis, Differentialgeometrie)

V(f) ist lokal diffeomorph zu \mathbb{R} (= reelle Gerade) im Punkt (x_1, x_2) genau dann, wenn die Jacobi-Matrix

$$\left(\frac{\partial f}{\partial T_1}, \frac{\partial f}{\partial T_2}\right) = (T_1(3T_1 - 2), \ 2T_2)$$

Rang 1 in (x_1, x_2) hat. Das ist äquivalent dazu, dass $(x_1, x_2) \neq (0, 0)$. Dies lässt sich rein formal über beliebigen Grundkörpern **algebraisch** formulieren.

Methoden. GAGA - Géometrie algébrique, géometrique analytique (Serre)

Komplexe Geometrie (\mathbb{C}), Differential geometrie (\mathbb{R})	Algebraische Geometrie
Analytische Hilfsmittel	Kommutative Algebra

2 Die Zariski-Topologie

Definition 2. Sei $M \subseteq k[T_1, \dots, T_n] =: k[\underline{T}]$ eine Teilmenge. Mit

$$V(M) := \{(t_1, \dots, t_n) \in k^n \mid f(t_1, \dots, t_n) = 0 \ \forall f \in M\}$$

bezeichnen wir die gemeinsame Nullstellen-(Verschwindungs-)Menge der Elemente aus M. (Manchmal auch $V(f_i, i \in I)$ statt $V(\{f_i, i \in I\})$.

Notation Wir schreiben auch $V(f_i, i \in I)$ statt $V(\{f_i \mid i \in I\})$

2.1 Eigenschaften

- $V(M) = V(\mathfrak{a})$, wenn $\mathfrak{a} = \langle M \rangle_{k[\underline{T}]}$ das von M erzeugte Ideal in $k[\underline{T}]$ bezeichnet.
- Da $k[\underline{T}]$ noethersch (Hilbertscher Basissatz) ist, reichen stets endlich viele $f_1, \ldots, f_n \in M$:

$$V(M) = V(f_1, \dots, f_n)$$
 falls $\mathfrak{a} = \langle f_1, \dots, f_n \rangle_{k[\underline{T}]}$.

• V(-) ist inklusion sumkehrend, $M' \subseteq M \implies V(M) \subseteq V(M')$.

Satz 3. Die Mengen $V(\mathfrak{a})$, $\mathfrak{a} \subseteq k[\underline{T}]$ ein Ideal, sind die **abgeschlossenen** Mengen einer Topologie auf k^n , der sogenannten **Zariski-Topologie**.

- (i) $\emptyset = V((1)), k^n = V(0).$
- (ii) $\bigcap_{i \in I} V(\mathfrak{a}_i) = V\left(\sum_{i \in I} \mathfrak{a}_i\right)$ für beliebige Familien $(\mathfrak{a}_i)_{i \in I}$ von Idealen.
- (iii) $V(\mathfrak{a}) \cup V(\mathfrak{a}) = V(\mathfrak{a}\mathfrak{b})$ für $\mathfrak{a}, \mathfrak{b} \leq k[\underline{T}]$ Ideale.

Beweis. Übung / Algebra II.

3 Affine algebraische Mengen

Definition 4.

- $\mathbb{A}^n(k)$, der affine Raum der Dimension n (über k), bezeichne k^n mit der Zariski-Topologie.
- \bullet Abgeschlossene Teilmengen von $\mathbb{A}^n(k)$ heißen affine abgeschlossene Mengen.

Beispiel 5. Da k[T] ein Hauptidealring ist, sind die abgeschlossen Mengen in $\mathbb{A}^1(k)$: \emptyset , \mathbb{A}^1 , Mengen der Form V(f), $f \in k[T] \setminus \{k\}$ (endliche Teilmengen). Insbesondere sieht man, dass die Zariski-Topologie im Allgemeinen nicht Hausdorff ist.

Beispiel 6. $\mathbb{A}^2(k)$ hat zumindestens als abgeschlossene Mengen:

- \emptyset , \mathbb{A}^2 ;
- Einpunktige Mengen: $\{(x_1, x_2)\} = V(T_1 x_1, T_2 x_2);$
- V(f), $f \in k[T_1, T_2]$ irreduzibel.

Ferner alle endlichen Vereinigungen dieser Liste. (Dies sind in der Tat alle, denn später sehen wir: "irreduzible" abgeschlossene Mengen entsprechen den Primidealen, und $k[T_1, T_2]$ hat "Krull-Dimension 2".)

4 Der Hilbertsche Nullstellensatz

Satz 7. Sei K ein (nicht notwendigerweise algebraisch abgeschlossener) Körper, und A eine endlich erzeugte K-Algebra. Dann ist A Jacobson'sch, d.h. für jedes Primideal $\mathfrak{p} \subseteq A$ gilt:

$$\mathfrak{p} = \bigcap_{\mathfrak{m} \supseteq \mathfrak{p}} \mathfrak{m}, \quad \mathfrak{m} \text{ maximales Ideal}$$

Ist $\mathfrak{m} \subseteq A$ ein maximales Ideal, so ist die Körpererweiterung $K \subseteq A/\mathfrak{m}$ endlich.

 $Beweis.\ Algebra\ II\ /\ kommutative\ Algebra.$

Korollar 8.

- (i) Sei A eine e.e. (endlich erzeugte) k-Algebra (k sei algebraisch abgeschlossen), $\mathfrak{m} \subseteq A$ ein maximales Ideal. Dann ist $A/\mathfrak{m} = k$.
- (ii) Jedes maximale Ideal $\mathfrak{m} \subseteq k[\underline{T}]$ ist von der Form $\mathfrak{m} = (T_1 x_1, \dots, T_n x_n)$ mit $x_1, \dots, x_n \in k$.
- (iii) Für ein Ideal $\mathfrak{a} \subseteq k[\underline{T}]$ gilt:

$$\mathrm{rad}(\mathfrak{a}) = \sqrt{\mathfrak{a}} \stackrel{(i)}{=} \bigcap_{\mathfrak{a} \subseteq \mathfrak{p} \unlhd k[\underline{T}], \mathfrak{p}prim} \mathfrak{p} \stackrel{(ii)}{=} \bigcap_{\mathfrak{a} \subseteq \mathfrak{m} \unlhd k[\underline{T}], \mathfrak{m}maximal} \mathfrak{m}$$

Beweis.

- (i) $k \to A \to A/\mathfrak{m}$ ist Isomorphismus, da k keine echte algebraische Körpererweiterung besitzt.
- (ii) Es ist

$$k[T_1, \dots, T_n] \twoheadrightarrow k[\underline{T}]/\mathfrak{m} = k$$

$$T_i \mapsto x_i$$

surjektiv. Es folgt: $\mathfrak{m} = (T_1 - x_1, \dots, T_n - x_n)$, da letzteres bereits maximal ist. $(\supseteq klar.)$

(iii) (i) Algebra II. (ii) Theorem.

5 Korrespondenz zwischen Radikalidealen und affinen algebraischen Mengen

Sei $V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ affin algebraische Menge, $\mathfrak{a} \subseteq k[\underline{T}]$ ein Ideal. Es gilt:

$$V(\mathfrak{a}) = V(\operatorname{rad} \mathfrak{a})$$

mit rad $\mathfrak{a} = \{ f \in k[\underline{T}] \mid f^n \in \mathfrak{a} \text{ für ein } n > 0 \}, da$

$$f^n(x) = 0 \Leftrightarrow f(x) = 0,$$

d.h. verschiedene Ideale können dieselbe algebraische Menge beschreiben.

Definition 9. Für eine Teilmenge $Z \subseteq \mathbb{A}^n(k)$ bezeichne

$$I(Z) := \{ f \in k[\underline{T}] \mid f(x) = 0 \ \forall x \in Z \}$$

das Verschwindungsideal von \mathbb{Z} , das Ideal aller auf Z verschwindenden Polynomfunktionen.

Satz 10.

- (i) Sei $\mathfrak{a} \subseteq k[\underline{T}]$ Ideal. Dann ist $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.
- (ii) Sei $Z \subseteq \mathbb{A}^n(k)$ Teilmenge. Dann ist $V(I(Z)) = \overline{Z}$, der Abschluss von Z in $\mathbb{A}^n(k)$.

Beweis. Übungsblatt 2.

 \mathfrak{a} heißt **Radikalideal**, falls $\mathfrak{a} = \operatorname{rad}(\mathfrak{a})$, oder äquivalent falls $k[\underline{T}]/\mathfrak{a}$ reduziert ist, d.h. keine nilpotente Elemente ungleich 0 hat.

Korollar 11. Wir erhalten eine 1-1 Korrespondenz

$$\{abg.\ Mengen\ \subseteq \mathbb{A}^n\} \leftrightarrow \{Radikalideale\ \mathfrak{a} \unlhd k[\underline{T}]\}$$

$$Z \mapsto I(Z)$$

$$V(\mathfrak{a}) \leftrightarrow \mathfrak{a}$$

die sich zu einer 1-1 Korrespondenz

$$\{Punkte\ in\ \mathbb{A}^n\} \leftrightarrow \{max.\ Ideale\ in\ k[\underline{T}]\}$$

$$x = (x_1, \dots, x_n) \mapsto \begin{array}{l} \mathfrak{m}_x = I(\{x\}) \\ = \ker(k[\underline{T}] \to k,\ T_i \mapsto x_i) \end{array}$$

einschränkt.

6 Irreduzible topologische Räume

Die folgenden topologischen Begriffe sind nur interessant, da $\mathbb{A}^n(k)$ (n>0) kein Hausdorff'scher Raum ist.

Definition 12. Ein topologischer Raum X heißt **irreduzibel**, falls $X \neq \emptyset$ und X sich nicht als Vereinigung zweier echter abgeschlossener Teilmengen darstellen lässt, d.h

$$X = A_1 \cup A_2$$
, A_i abg. \Longrightarrow $A_1 = X$ oder $A_2 = X$.

 $Z\subseteq X$ heißt irreduzibel, falls Z mit der induzierten Topologie irreduzibel ist.

Satz 13. Für einen topologischen Raum $X \neq \emptyset$ sind äquivalent:

- (i) X ist irreduzibel.
- (ii) Je zwei nichtleere offene Teilmengen von X haben nicht-leeren Durchschnitt.
- (iii) Jede nichtleere offene Teilmenge $U \subseteq X$ ist dicht in X.
- (iv) Jede nichtleere offene Teilmenge $U \subseteq X$ ist zusammenhängend.
- (v) Jede nichtleere offene Teilmenge $U \subseteq X$ ist irreduzibel.

Beweis.

• $(i) \Leftrightarrow (ii)$ Komplementärmengen.

• $(ii) \Leftrightarrow (iii)$

Es ist: $U \subseteq X$ dicht $\Leftrightarrow U \cap O \neq \emptyset$ für jedes offene $\emptyset \neq O \subseteq X$.

• $(iii) \Rightarrow (iv)$

Klar.

• $(iv) \Rightarrow (iii)$

Sei $\emptyset \neq U$ offen und zusammenhängend. Es folgt:

$$U = U_1 \sqcup U_2, \qquad \emptyset \neq U_i \subseteq U \subseteq X$$

Damit ist $U_1 \cap U_2 = \emptyset$, ein Widerspruch zu (iii).

- $(v) \Rightarrow (i)$ Klar. (U = X)
- $(iii) \Rightarrow (v)$

Sei $\emptyset \neq U \subseteq_{\text{offen}} X$. Ist $\emptyset \neq V \subseteq_{\text{offen}} U$, so ist $V \subseteq_{\text{offen}} X$. Es folgt: V ist dicht in X und irreduzibel in U. Mit $(iii) \Rightarrow (i)$ folgt, dass U irreduzibel ist.

Lemma 14. Eine Teilmenge Y ist genau dann irreduzibel, wenn ihr Abschluss \overline{Y} dies ist.

Beweis. Y irreduzibel

 $\Leftrightarrow \forall U,V\subseteq X \text{ offen mit } U\cap Y\neq \emptyset\neq V\cap Y, \text{ gilt } Y\cap (U\cap V)\neq \emptyset.$ $\Leftrightarrow \overline{Y} \text{ irreduzibel}$

Definition 15. Eine maximale irreduzible Teilmenge eines topologischen Raumes X heißt **irreduzible Komponente** von X.

Bemerkung 16.

- (i) Jede irreduzible Komponente ist abgeschlossen nach Lemma 14.
- (ii) X ist Vereinigung seiner irreduziblen Komponenten, denn:

die Menge der irreduziblen Teilmengen von X ist **induktiv geordnet**: für jede aufsteigende Kette irreduzibler Teilmengen ist die Vereinigung wieder irreduzible (Satz 13 (ii)). Mit dem **Lemma von Zorn** folgt: Jede irreduzible Teilmenge ist in einer irreduziblen Komponente enthalten. Damit ist jeder Punkt in einer irreduziblen Komponente enthalten.

7 Irreduzible affine algebraische Mengen

Lemma 17. Eine abgeschlossene Teilmenge $Z \subseteq \mathbb{A}^n(k)$ ist genau dann irreduzibel, wenn $I(Z) \subseteq k[\underline{T}]$ ein Primideal ist. Insbesondere ist $\mathbb{A}^n(k)$ irreduzibel.

 $Beweis.\ Z$ irreduzibel ist äquivalent zu

$$(Z = \underbrace{V(\mathfrak{a})}_{\bigcap_{i} V(f_{i})} \cup \underbrace{V(\mathfrak{b})}_{\bigcap_{j} V(g_{j})} \Rightarrow V(\mathfrak{a}) = Z \text{ oder } V(\mathfrak{b}) = Z).$$

$$\Leftrightarrow \forall f, g \in k[\underline{T}]: \ V(fg) = V(f) \cup V(g) \supseteq Z: \ V(f) \supseteq Z \text{ oder } V(g) \supseteq Z.$$

$$(*) \Leftrightarrow \forall f, g \in k[\underline{T}]: \ fg \in I(V(fg)) \subseteq I(Z): \ f \in I(Z) \text{ oder } g \in I(Z).$$

$$\Leftrightarrow I(Z) \text{ ist Primideal.}$$

(*):
$$V(I(Z)) = Z$$
, $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.

Bemerkung18. Die Korrespondenz aus Korollar 11 schränkt sich ein zu

{irred. abg. Teilmengen
$$\subseteq \mathbb{A}^n$$
} $\stackrel{1:1}{\leftrightarrow}$ {Primideale in $k[\underline{T}]$ }

8 Quasikompakte und noethersche topologische Räume

Definition 19. Ein topologischer Raum X heißt **quasikompakt**, falls jede offene Überdeckung von X eine *endliche* Teilüberdeckung enthält. ("quasi" deutet an, dass X in der Regel nicht Hausdorff'sch ist!). Er heißt **noethersch**, wenn jede absteigende Kette

$$X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$$

abgeschlossener Teilmengen von X stationär wird (\Leftrightarrow jede aufsteigende Kette offener Teilmengen wird stationär).

Lemma 20. Sei X ein noetherscher topologischer Raum. Dann gilt:

- (i) Jede abgeschlossene Teilmenge $Z \subseteq X$ ist noethersch.
- (ii) Jede offene Teilmenge $U \subseteq X$ ist quasikompakt.
- (iii) Jeder abgeschlossene Teilraum $Z \subseteq X$ besitzt nur endlich viele irreduzible Komponenten.

Beweis.

- (i) Nach Definition, da abgeschlossene Mengen von Z auch solche von X sind.
- (ii) $U = \bigcup_{i \in I} U_i$ offen; Angenommen U wäre nicht quasikompakt. Dann gibt es eine Folge $I_1 \subseteq I_2 \subseteq \cdots \subseteq I$ von Teilmengen mit

$$V_1 \subsetneq V_2 \subsetneq \cdots \neq U$$
 für $V_j = \bigcup_{i \in I_j} U_i$.

Widerspruch zu noethersch.

(iii) Es reicht zu zeigen: Jeder noethersche Raum ist Vereinigung endlich vieler irreduzibler Teilmengen. Da X noethersch ist, folgt mit dem $Lemma\ von\ Zorn$ dass jede nichtleere Menge von algebraischen Teilmengen in X ein minimales Element besitzt.

Angenommen: $\mathcal{M} := \{Z \subseteq X \text{ abg. } | Z \text{ ist } \mathbf{nicht} \text{ endl. Vereinigung irred. Mengen} \}$ wäre nichtleer.

- $\Rightarrow \exists$ minimales Element, sagen wir Z, in \mathcal{M} .
- $\Rightarrow Z$ ist nicht irreduzibel.
- $\Rightarrow Z = Z_1 \cup Z_2$ mit $Z_1, Z_2 \subsetneq Z$ abgeschlossen.
- $\Rightarrow (Z \text{ minimal}) \ Z_1, Z_2 \notin \mathcal{M}$
- $\Rightarrow Z \notin \mathcal{M}$. Widerspruch.

Satz 21. Jeder abgeschlossene Teilraum $X \subseteq \mathbb{A}^n(k)$ ist noethersch.

Beweis. Nach dem obigen Lemma ist nur zu zeigen, dass $\mathbb{A}^n(k)$ noethersch ist.

Absteigende Ketten abgeschlossener Teilmengen sind nach Korollar 11 in 1-1 Korrespondenz mit aufsteigenden Ketten von (Radikal-)Idealen in $k[\underline{T}]$. Da $k[\underline{T}]$ nach dem Hilbertschen Basissatz noethersch ist, werden letzere Ketten stationär.

Korollar 22 (Primärzerlegung). Sei $\mathfrak{a} = \operatorname{rad}(\mathfrak{a}) \leq k[\underline{T}]$ ein Radikalideal. Dann gilt: \mathfrak{a} ist Durchschnitt von endlich vielen Primidealen, die sich jeweils paarweise nicht enthalten; diese Darstellung ist eindeutig bis auf Reihenfolge.

 $Beweis.\ V(\mathfrak{a})=\bigcup_{i=1}^n V(\mathfrak{b}_i),\,\mathfrak{b}_i$ Primideal. [Anmerkung] Mit Satz 10 folgt:

$$\mathfrak{a} = \mathrm{rad}(\mathfrak{a}) = I(V(\mathfrak{a})) = \bigcap_{i=1}^{n} \underbrace{I(V(\mathfrak{b}_i))}_{\mathfrak{b}_i \text{ minimale Primideale (17)}}$$

9 Morphismen von affinen algebraischen Mengen

Definition 23. Seien $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ affine algebraische Mengen. Ein **Morphismus** $X \to Y$ affiner algebraischer Mengen ist eine Abbildung $f: X \to Y$ der zugrundeliegenden Mengen, sodass $f_1, \ldots, f_n \in k[T_1, \ldots, T_m]$ existieren, derart dass $\forall x \in X$ gilt:

$$f(x) = (f_1(x), \dots, f_n(x)) \in Y.$$

Es bezeichne hom(X,Y) die Menge der Morphismen $X \to Y$.

Bemerkung 24. $f: X \to Y$ lässt sich immer fortsetzen zu einem Morphismus

$$f: \mathbb{A}^m(k) \to \mathbb{A}^n(k),$$

aber nicht eindeutig, es sei denn $X = \mathbb{A}^m(k)$.

Komposition

$$X \xrightarrow{\quad f \quad } Y \xrightarrow{\quad f \quad } Y \xrightarrow{\quad g \quad } Z$$

mit $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$, $Z \subseteq \mathbb{A}^r(k)$. Es folgt:

$$g(f(x)) = (g_1(f_1(x), \dots, f_n(x)), \dots, g_r(f_1(x), \dots, f_n(x))$$

=: $(h_1(x), \dots, h_r(x))$

d.h. $g \circ f$ ist durch Polynome $h_i \in k[T_1, \dots, T_m]$ gegeben, also ist $g \circ f$ wieder ein Morphismus affiner algebraischer Mengen. Wir erhalten die **Kategorie affiner algebraischer Mengen**.

Beispiel 25.

(i) Sei die Abbildung

$$\mathbb{A}^1(k) \to V(T_2 - T_1^2) \subseteq \mathbb{A}^2(k)$$

 $x \mapsto (x, x^2).$

Diese Abbildung ist sogar ein Isomorphismus affiner algebraischer Mengen, da die Umkehrabbildung

$$(x,y) \mapsto x$$

ebenfalls ein Morphismus ist.

(ii) Sei char $(k) \neq 2$. Die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2}^{2} - T_{1}^{2}(T_{1} + 1))$$
$$x \mapsto (x^{2} - 1, x(x^{2} - 1))$$

ist ein Morphismus, aber nicht bijektiv, da 1, -1 beide auf (0, 0) abgebildet werden.

10 Unzulänglichkeiten des Begriffs der affinen algebraischen Mengen

- (i) Offene Teilmengen affiner algebraischer Mengen tragen nicht in natürlicher Weise die Struktur einer affinen algebraischen Menge.
- (ii) Insbesondere können wir affine algebraische Mengen nicht entlang offener Teilräume verkleben. (vgl. Mannigfaltigkeiten.)
- (iii) Keine Unterscheidungsmöglichkeiten z.B. zwischen $\{(0,0)\}$, $V(T_1) \cap V(T_2)$ und $V(T_2) \cap V(T_1^2 T_2) \subseteq \mathbb{A}^2(k)$, obwohl die "geometrische Situation" offensichtlich verschieden ist.

Um die Punkte 1 und 2 zu verbessern, gehen wir im Folgenden zu "Räumen mit Funktionen" über, und verzichten darauf, dass sich diese in einen affinen Raum $\mathbb{A}^n(k)$ einbetten lassen.

Der Punkt 3 ist eine Motivation dafür, später Schemata einzuführen. (subtiler)

Affine algebraische Mengen als Räume von Funktionen

11 Der affine Koordinatenring

Sei $X \subseteq \mathbb{A}^n(k)$ abgeschlossen. Für den surjektiven (Def. von Morphismen) k-Algebren-Homomorphismus

$$k[\underline{T}] \xrightarrow{\varphi} \text{hom}(X, \mathbb{A}^1(k))$$

 $f \mapsto (x \mapsto f(x)),$

wobei die Morphismen in folgende Weise eine k-Algebra bilden:

$$(f+g)(x) := f(x) + g(x)$$
$$(fg)(x) := f(x)g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$

mit $f, g \in \text{hom}(X, \mathbb{A}^1(k)), \alpha \in k$, gilt:

$$\ker \varphi = I(X).$$

Definition 26. $\Gamma(X) := k[\underline{T}]/I(X) \cong_{k-\text{Alg}} \text{hom}(X, \mathbb{A}^1(k))$ heißt der **affine Koordinatenring** von X. Für $x = (x_1, \dots, x_n) \in X$ gilt:

$$\mathfrak{m}_x := \ker(\Gamma(X) \twoheadrightarrow k, f \mapsto f(x))$$

$$= \{ f \in \Gamma(X) \mid f(x) = 0 \}$$

$$= \pi((T_1 - x_1, \dots, T_n - x_n))$$

$$= \ker(\Gamma(\mathbb{A}^n(k)) \twoheadrightarrow k)$$

unter der Projektion $\pi: k[\underline{T}] = \Gamma(\mathbb{A}^n(k)) \twoheadrightarrow \Gamma(X)$. Es ist \mathfrak{m}_x ein maximales Ideal von $\Gamma(X)$ mit $\Gamma(X)/\mathfrak{m}_x \cong k$. Für ein Ideal $\mathfrak{a} \subseteq \Gamma(X)$ sei

$$V(\mathfrak{a}) := \{ x \in X \mid f(x) = 0 \ \forall f \in \mathfrak{a} \} = V(\pi^{-1}(\mathfrak{a})) \cap X.$$

Dies sind genau die abgeschlossenen Mengen von X als Teilraum von $\mathbb{A}^n(k)$ mit der induzierten Topologie, diese wird auch **Zariski-Topologie** genannt. Für $f \in \Gamma(X)$ setze:

$$D_X(f) := D(f) := \{x \in X \mid f(x) \neq 0\} = X \setminus V(f).$$

Lemma 27. Die offenen Mengen D(f), $f \in \Gamma(X)$, bilden eine Basis der Topologie von X, d.h.

$$\forall U \subseteq X \text{ offen } \exists f_i \in \Gamma(X), \ i \in I \text{ mit } U = \bigcup_{i \in I} D(f_i)$$

Beweis. $U = X \setminus V(\mathfrak{a})$ für ein $\mathfrak{a} \subseteq \Gamma(X)$, $\mathfrak{a} = \langle f_1, \dots, f_n \rangle_{\Gamma(X)}$. Wegen

$$V(\mathfrak{a}) = \bigcap_{i=1}^{n} V(f_i) \quad \Rightarrow \quad U = \bigcup_{i=1}^{n} D(f_i)$$

Es reichen also sogar endlich viele $f_i \in \Gamma(X)$!

Satz 28. Der Koordinatenring $\Gamma(X)$ einer affinen algebraischen Menge X ist eine endlich erzeugte k-Algebra, die reduziert ist (d.h. keine nilpotenten Elemente $\neq 0$ enthält). Ferner ist X irreduzibel genau dann, wenn $\Gamma(X)$ integer ist.

Beweis. $k[\underline{T}] \twoheadrightarrow \Gamma(X)$ impliziert, dass $\Gamma(X)$ als k-Algebra endlich erzeugte ist. Es gilt:

$$\Gamma(X)$$
 irreduzibel $\Leftrightarrow I(X) = \operatorname{rad} I(X)$.

Denn mit Satz 10.ii) und Korollar 11 folgt:

$$X = V(\mathfrak{a}) : I(X) = \operatorname{rad} \mathfrak{a}$$

$$\Rightarrow \operatorname{rad} I(X) = \operatorname{rad} \operatorname{rad} \mathfrak{a} = \operatorname{rad} \mathfrak{a} = I(X).$$

Mit Lemma 17 folgt: X irreduzibel

$$\Leftrightarrow I(X)$$
 prim

$$\Leftrightarrow \Gamma(X) = k[\underline{T}]/I(X)$$
 integer.

12 Funktorielle Eigenschaften von $\Gamma(X)$

Satz 29. Für einen Morphismus $X \xrightarrow{f} Y$ affiner algebraischer Mengen definiert

$$\Gamma(f): \quad \Gamma(Y) \to \Gamma(X)$$

$$g \mapsto g \circ f$$

ein Homomorphismus von k-Algebren. Der so definierte kontravariante Funktor

 $\Gamma: \{affine \ algebraische \ Mengen\} \rightarrow \{reduzierte \ endl. \ erz. \ k-Algebren\}$

liefert eine Kategorienäquivalenz, welche durch Einschränkung eine Äquivalenz

$$\Gamma: \{irred. \ aff. \ alg. \ Mengem\} \rightarrow \{integre \ endl. \ erz. \ k-Algebren\}$$

induziert.

Beweis. Sei $Y \xrightarrow{g} \mathbb{A}^{1}(k) \in \Gamma(Y)$ ein Morphismus. Es folgt:

$$g \circ f : X \xrightarrow{f} Y \xrightarrow{g} \mathbb{A}^{1}(k)$$

ist Morphismus, d.h. $g \circ f \in \Gamma(X)$. $\Gamma(f) : \Gamma(Y) \to \Gamma(X)$ ist ein k-Algebren-Homomorphismus mit $\Gamma(\mathrm{id}_X) = \mathrm{id}_{\Gamma(X)}$. Da ferner gilt, dass $\Gamma(f_1 \circ f_2) = \Gamma(f_2) \circ \Gamma(f_1)$ ist Γ ein kontravarianter Funktor.

Behauptung. Γ ist volltreu, d.h.

$$\Gamma : \hom(X, Y) \to \hom_{k\text{-Alg}}(\Gamma(Y), \Gamma(X))$$

$$f \mapsto \Gamma(f)$$

ist bijektiv für alle affinen algebraischen Mengen X, Y.

Beweis. Wir konstruieren eine Umkehrabbildung wie folgt: Zu $\varphi : \Gamma(Y) \to \Gamma(X)$ für $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ existiert ein Lift $\tilde{\varphi}$, s.d.

$$k[T'_1, \dots, T'_n] \xrightarrow{\tilde{\varphi}} k[T_1, \dots, T_m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Gamma(Y) \xrightarrow{\varphi} \Gamma(X)$$

kommutiert; $\tilde{\varphi}(T_i') := f_i$ mit $f_i \in \pi^{-1}(\varphi(T_i')) \subseteq k[T_1, ..., T_n]$, wobei $\pi : k[\underline{T}] \to \Gamma(X)$ die kanonische Projektion bezeichne. Definiere:

$$f: X \to Y$$

$$x = (x_1, \dots, x_n) \mapsto (\tilde{\varphi}(T_1')(x_1, \dots, x_n), \dots, \tilde{\varphi}(T_n')(x_1, \dots, x_n))$$

Behauptung. Γ ist essentiell surjektiv, d.h. zu jeder reduzierten endlich erzeugten k-Algebra A existiert eine affine algebraische Menge X mit $A \cong \Gamma(X)$.

Beweis. Da nach Voraussetzung $A \cong k[T]/\mathfrak{a}$ für ein Radikalideal \mathfrak{a} , können wir etwa $X := V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ setzen. Der Rest folgt aus Satz 28.

Satz 30. Sei $f: X \to Y$ ein Morphismus affiner algebraischer Mengen und $\Gamma(f): \Gamma(Y) \to \Gamma(X)$ der zugehörige Homomorphismus der Koordinatenringe. Dann gilt $\forall x \in X \colon \Gamma(f)^{-1}(\mathfrak{m}_x) = \mathfrak{m}_{f(x)}$.

Beweis.

$$\Gamma(f)^{-1}(\mathfrak{m}_x) = \{ g \in \Gamma(Y) \mid g \circ f \in \mathfrak{m}_x \} = \{ g \in \Gamma(Y) \mid g(f(x)) = 0 \} = \mathfrak{m}_{f(x)},$$

da
$$\Gamma(f)(g) = g \circ f$$
.

13 Räume mit Funktionen

(Prototyp eines geometrischen Objektes, Spezialfall eines "geringten Raumes" vgl. später.) Sei K ein nicht notwendigerweise algebraisch abgeschlossener Körper.

Definition 31.

- (i) Ein Raum mit Funktionen besteht aus den folgenden Daten:
 - ein topologischer Raum X;
 - eine Familie von Unter-K-Algebren

$$\mathcal{O}_X(U) \leq \text{Abb}(U, K), \quad \forall U \subseteq X \text{ offen } d.d$$

- 1. Sind $U' \subseteq U \subseteq X$ offen und $f \in \mathcal{O}_X(U)$ so ist $f|_{U'} \in \mathcal{O}_X(U')$.
- 2. (Verklebungsaxiom) Sind $U_i \subseteq X$ offen, $i \in I$, und $U = \bigcup_i U_i$, $f_i \in \mathcal{O}_X(U_i)$, $i \in I$ gegeben mit

$$f_i|_{U_i\cap U_j} = f_j|_{U_i\cap U_j} \quad \forall i,j\in I$$

dann ist die eindeutige Abbildung

$$f: U \to K \text{ mit } f|_{U_i} = f_i$$

in
$$\mathcal{O}_X(U)$$
, bzw. $\exists ! f \in \mathcal{O}(U)$ mit $f|_{U_i} = f_i$ für alle $i \in I$.

Bezeichne \mathcal{O}_X oder auch \mathcal{O} die oben genannte Familie $\{\mathcal{O}_X(U) \mid U \subseteq X \text{ offen}\}$. Das Tupel (X, \mathcal{O}_X) heißt Raum mit Funktionen.

(ii) Ein **Morphismus** $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ von Räumen von Funktionen ist eine stetige Abbildung $\varphi : X \to Y$, so dass für alle $V \subseteq Y$ offen und $f \in \mathcal{O}_Y$ gilt:

$$f \circ \varphi|_{\varphi^{-1}(V)} : \varphi^{-1}(V) \to K$$

liegt in $\mathcal{O}_X(\varphi^{-1}(V))$.

$$X \xrightarrow{\varphi} Y$$

$$\downarrow \qquad \qquad \downarrow \text{offen}$$

$$\varphi^{-1}(V) \xrightarrow{\varphi|} V$$

$$f \circ \varphi|_{\varphi^{-1}(V)} \downarrow \qquad \qquad \downarrow f$$

$$K = \longrightarrow K$$

Wir erhalten die Kategorie der Räume mit Funktionen über K.

Definition 32 (offene Unterräume von Räumen mit Funktionen). Für (X, \mathcal{O}_X) einen Raum mit Funktionen und $U \subseteq X$ offen bezeichne $(U, \mathcal{O}_X|_U)$ den Raum mit Funktionen gegeben durch den topologischen Raum U mit Funktionen $\mathcal{O}_X|_U(V) := \mathcal{O}_X(V)$ für $V \subseteq U \subseteq X$.

 ${f Ab}$ jetzt betrachten wir Räume von Funktionen über einem festen, algebraisch abgeschlossenen Grundkörper k.

14 Der Raum mit Funktionen zu einer affin-algebraischen Menge

Ziel. Wir wollen jeder irreduziblen affin algebraischen Menge $X \subseteq \mathbb{A}^n(k)$ einen Raum mit Funktionen (X, \mathcal{O}_X) zuordnen. D.h. wir müssen Mengen von Funktionen $\mathcal{O}_X(U) \leq \mathrm{Abb}(U, k), U \subseteq X$ offen, definieren. Diese werden als Teilmengen des Funktionenkörpers K(X) definiert (dazu X irreduzibel, später bei Schemata fällt diese Bedingung weg!)

Definition 33. Für eine irreduzible, affin-algebraische Menge X heißt $K(X) := \operatorname{Quot}(\Gamma(X))$ Funktionenkörper von X.

Elemente $\frac{f}{g} \in K(X)$, $f, g \in \Gamma(X) = \text{hom}(X, \mathbb{A}^1(k))$, $g \neq 0$ lassen sich zumindest als Funktion auf der offenen Menge $D(g) \subseteq X$ auffassen, wenn auch i.A. nicht auf ganz X.

Lemma 34. Gilt für $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(X), f_i, g_i \in \Gamma(X), und einer offenen Teilmenge <math>\emptyset \neq U \subseteq D(g_1g_2)$

$$\frac{f_1(x)}{g_1(x)} = \frac{f_2(x)}{g_2(x)} \qquad \forall x \in U,$$

dann folgt $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ in K(X).

Beweis. Sei ohne Einschränkung der Allgemeinheit $g_1 = g_2 = g$. (Sonst Erweitern!)

$$\Rightarrow (f_1 - f_2)(x) = 0 \ \forall x \in U.$$

$$\Rightarrow \emptyset \neq U \subseteq V(f_1 - f_2) \subseteq X \text{ dicht, d.h. } V(f_1 - f_2) = X.$$

$$f_1 - f_2 \in I()V(f_1 - f_2)) = I(X) \equiv (0) \text{ in } \Gamma(X)$$

$$\Rightarrow f_1 - f_2 = 0.$$

Definition 35. Sei X eine irreduzible affin-algebraische Menge, $U \subseteq X$ offen. Für $x \in X$ bezeichne $\Gamma(X)_{\mathfrak{m}_x}$ die Lokalisierung von $\Gamma(X)$ an der multiplikativ abgeschlossenen Menge $S := \Gamma(X) \setminus \mathfrak{m}_x$.

$$\mathcal{O}_X(U) := \bigcap_{x \in U} \Gamma(X)_{\mathfrak{m}_x} \subseteq K(X)$$

d.h. für jedes $x \in U$ lässt sich $f \in \mathcal{O}_X(U)$ schreiben als $\frac{h}{g} \in K(X)$ mit $g(x) \neq 0$.

Für $f \in \Gamma(X)$ bezeichne $\Gamma(X)_f$ die Lokalisierung von $\Gamma(X)$ an der multiplikativ abgeschlossenen Menge $\{1, f, f^2, \dots, f^n \dots\}$. Dann lässt sich

$$\Gamma(X)_{\mathfrak{m}_x} = \bigcup_{f \in \Gamma(X) \setminus \mathfrak{m}_x} \Gamma(X)_f \subseteq K(X)$$

schreiben. "\(\text{\text{\text{"}}}\): klar, "\(\text{\text{"}}\): $\frac{g}{f}$ mit $f(x) \neq 0$ d.h. $f \notin \mathfrak{m}_x \Rightarrow \frac{g}{f} \in \Gamma(X)_f$.

Es gilt:

(i) Für $V \subseteq U \subseteq X$ offen kommutiert das folgende Diagramm:

$$\mathcal{O}_X(V) \hookrightarrow \operatorname{Abb}(V, k)$$

$$\downarrow \qquad \qquad \downarrow \text{Einschränkungsabb.}$$

$$\mathcal{O}_X(U) \hookrightarrow \operatorname{Abb}(U, k)$$

mit $\mathcal{O}_X(U) \hookrightarrow \mathcal{O}_X(V), f \mapsto f|_V$ nach Definition.

- (ii) $\mathcal{O}_X(U) \to \mathrm{Abb}(U,k), f \mapsto (x \mapsto f(x) := \frac{g(x)}{f(x)} \in k)$ ist injektiv (Lemma 34) und wohldefiniert (kürzen/erweitern), wobei $g, h \in \Gamma(X)$ mit $h \notin \mathfrak{m}_x$ mit $f = \frac{g}{h}$ nach Definition von $\mathcal{O}_X(U)$ existiert.
- (iii) Verklebungseigenschaft. Sei $U = \bigcup_{i \in I} U_i$. Nach Definition ist

$$\mathcal{O}_X(U) = \bigcap_i \mathcal{O}_X(U_i) \subseteq K(X)$$

$$\ni f: U \to k \quad \ni f_i: U_i \to k$$

[Diagramm fehlt]. (X, \mathcal{O}_X) ist Raum mit Funktionen, der zur irreduziblen affin algebraische Menge assoziierte Raum von Funktionen.

Satz 36 (orig. 33). Für (X, \mathcal{O}_X) zu X wie oben und $f \in \Gamma(X)$ gilt:

$$\mathcal{O}_X(D(f)) = \Gamma(X)_f,$$

insbesondere $\mathcal{O}_X(X) = \Gamma(X)$.

Beweis. $\Gamma(X)_f \subseteq \mathcal{O}_X(D(f))$ klar, da $f(x) \neq 0 \ \forall x \in D(f)$ bzw. $f \in \Gamma(X) \setminus \mathfrak{m}_x$.

Sei nun g in $\mathcal{O}_X(D(f))$ gegeben, (*) und $\mathfrak{a} := \{h \in \Gamma(X) \mid hg \in \Gamma(X)\} \subseteq \Gamma(X)$.

Dann gilt: $g \in \Gamma(X)_f$

 $\Leftrightarrow g = \frac{k}{f^n}$ für ein n und $k \in \Gamma(X)$

 $\Leftrightarrow f^n \in \mathfrak{a} \text{ für ein } n.$

d.h. zu zeigen: $f \in rad(\mathfrak{a}) = I(V(\mathfrak{a}))$ (Hilbertscher Nullstellensatz)

 $\Leftrightarrow f(x) = 0 \ \forall x \in V(\mathfrak{a})$

Ist dazu $x \in X$ mit $f(x) \neq 0$, also $x \in D(f)$, so existieren wegen $g \in \mathcal{O}_X(D(f))$

Funktionen $f_1, f_2 \in \Gamma(X), f_2 \notin \mathfrak{m}_x$ mit $g = \frac{f_1}{f_2}$, also gilt $f_2 \in \mathfrak{a}$.

Da
$$f_2(x) \neq 0$$
 folgt weiter $x \notin V(\mathfrak{a})$.

Bemerkung 37 (orig. 34).

- (i) Im Allgemeinen existieren für $f \in \mathcal{O}_x(U)$ nicht notwendigerweise $g, h \in \Gamma(X)$ mit $f = \frac{g}{h}$ und $h(x) \neq 0$ $\forall x \in U$.
- (ii) Alternative Definition von \mathcal{O}_X , I.

$$\mathcal{O}_X(D(f)) := \Gamma(X)_f, \quad \forall f \in \Gamma(X).$$

Da $(D(f))_{f \in \Gamma(X)}$ Basis der Topologie bildet, kann es höchstens einen Raum mit Funktionen mit dieser Eigenschaft geben, es bleibt die Existenz zu zeigen.

(iii) Alternative Definition von \mathcal{O}_X , II.

Direkt von einer integeren endlich erzeugten k-Algebra A ausgehend (die X bis auf Isomorphie festlegt), aber ohne "Koordinaten" zu wählen.

$$X := \{ \mathfrak{m} \subseteq A \mid \mathfrak{m} \text{ ist max. Ideal} \}$$

Die abgeschlossenen Mengen sind gegeben durch:

$$V(\mathfrak{a}):=\{\mathfrak{m}\in X\mid \mathfrak{m}\supseteq \mathfrak{a}\},\quad \mathfrak{a}\unlhd A \text{ Ideal}.$$

 $\mathcal{O}_X(U):=\bigcap_{\mathfrak{m}\in U}A_{\mathfrak{m}}\subseteq \operatorname{Quot}(A)$ für $U\subseteq X$ offen (vgl. später Schemata).

15 Funktorialität der Konstruktion

Satz 38 (orig. 35). Sei $f: X \to Y$ eine stetige Abbildung zwischen irreduziblen affin-algebraischen Mengen. Es sind äquivalent:

- (i) f ist ein Morphismus affin-algebraischer Mengen.
- (ii) $\forall g \in \Gamma(Y)$ gilt $g \circ f \in \Gamma(X)$.
- (iii) f ist ein Morphismus von Räumen von Funktionen, d.h. für alle $U \subseteq Y$ offen und alle $g \in \mathcal{O}_Y(U)$ gilt $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Beweis.

- $(i) \Leftrightarrow (ii)$ Folgt aus Satz 29.
- $(iii) \Rightarrow (ii)$ U := Y und Satz 36.
- $(ii) \Rightarrow (iii)$

Betrachte $\Gamma(f):\Gamma(Y)\to\Gamma(X)$, $h\mapsto h\circ f$. Aufgrund des Verklebungsaxioms reicht es, die Bedingung für U von der Form D(g) zu zeigen; hier gilt:

$$f^{-1}(D(g)) = \{x \in X \mid \underbrace{g(f(x))}_{=\Gamma(f)(g)(x)} \neq 0\} = D(g \circ f)$$

Deswegen induziert $\Gamma(f)$:

$$h \longmapsto h \circ f$$

$$\mathcal{O}_Y(D(g)) \longrightarrow \mathcal{O}_X(D(g \circ f))$$

$$\Gamma(Y)_g \longrightarrow \Gamma(X)_{g \circ f}$$

$$\frac{h}{g^n} \longmapsto \frac{h \circ f}{(g \circ f)^n}$$

mit $h \circ f, g \circ f \in \Gamma(X)$ nach Voraussetzung.

Insgesamt erhalten wir:

Theorem 39 (orig. 36). Die obige Konstruktion definiert einen volltreuen Funktor

 $\{irreduzible \ aff. \ alg. \ Mengen \ \ddot{u}ber \ k\} \rightarrow \{R\ddot{a}ume \ mit \ Funktionen \ \ddot{u}ber \ k\}.$

Prävarietäten

Ziel. Klasse der affin-algebraischen Mengen, aufgefasst als Räume mit Funktionen durch Verkleben vergrößern. (X, \mathcal{O}_X) heißt **zusammenhängend**, falls X als topologischer Raum zusammenhängend ist.

16 Definition von Prävarietäten

Definition 40 (orig. 37). Eine **affine Varietät** ist ein Raum mit Funktionen, der isomorph zu dem Raum mit Funktionen assoziiert zu einer irreduziblen affin-algebraischen Menge ist.

Definition 41 (orig. 38). Eine **Prävarietät** ist ein zusammenhängender Raum mit Funktionen (X, \mathcal{O}_X) , für den eine *endliche* Überdeckung $X = \bigcup_{i=1}^n U_i$ durch offene Teilmengen $U_i \subseteq X$ existiert, d.d. $\forall i = 1, \ldots, n \ (U_i, \mathcal{O}_{X|_{U_i}})$ eine affine Varietät ist. Insbesondere sind affine Varietäten Prävarietäten!

Ein Morphismus von Prävarietäten ist ein Morphismus der entsprechenden Räume mit Funktionen.

Später sehen wir: Varietät = "separierte Prävarietät". Affine Varietäten sind stets "separiert", daher braucht man nicht von "affinen Prävarietäten" zu reden. Ist X eine affine Varietät, so schreiben wir oft $\Gamma(X)$ für $\mathcal{O}_X(X)$ (vgl. Satz 36).

Unter einer **offenen affinen Überdeckung** einer Prävarietät X verstehen wir eine Famile von offenen affinen Unterräumen mit Funktionen $U_i \subseteq X$, $i \in I$ die affine Varietäten sind, d.d. $X = \bigcup_i U_i$.

17 Vergleich mit differenzierbaren/komplexen Mannigfaltigkeiten

Differential/Komplexe Geometrie Mannigfaltigkeiten werden via Kartenabbildungen mit differenzierbaren/holomorphen Übergangsabbildungen definiert (hier problematisch, da offene Teile affiner algebraischer Mengen i.A. keine solche Struktur besitzen.) Jedoch:

{differenzierbare Mfgkt.}
$$\longrightarrow$$
 {Räume mit Fkt./ \mathbb{R} }
$$X\longmapsto (X,\mathcal{O}_X)$$

$$\mathcal{O}_X(U):=C^\infty(U,\mathbb{R}),\ U\subseteq X \text{ offen}$$

ist ein volltreuer Funktor. Daher kann man differenzierbare Mannigfaltigkeiten auch als diejenigen Räume mit Funktionen über \mathbb{R} definieren, für die X Hausdorff ist, und so dass eine offene Überdeckung durch solche Räume mit Funktionen über \mathbb{R} existiert, die in obiger Weise offene Teilmengen von \mathbb{R}^n zugeordnet sind. (Analog bei komplexen Mannigfaltigkeiten.)

18 Topologische Eigenschaften von Prävarietäten

Lemma 42. Für einen topologischen Raum X und $U \subseteq X$ offen haben wir eine Bijektion

$$\{Y\subseteq U\ irred.\ abg.\}\longleftrightarrow \{Z\subseteq X\ irred.\ abg.\ mit\ Z\cap U\neq\emptyset\}$$

$$Y\longmapsto \overline{Y}\ (Abschluss\ in\ X)$$

$$Z\cap U\longleftrightarrow Z$$

Beweis. Lemma 14: $Y \subseteq X$ irreduzibel $\Leftrightarrow \overline{Y} \subseteq X$ irreduzibel.

 $Y \subseteq U$ abgeschlossen $\Leftrightarrow \exists A \subseteq X$ abgeschlossen: $Y = U \cap A$.

$$\Rightarrow Y\subseteq \overline{Y}\subseteq A\Rightarrow Y=U\cap \overline{Y}$$

Y irreduzibel in $U \Rightarrow Y$ irreduzibel in X

 $\Rightarrow \overline{Y}$ irreduzibel nach 14

$$\Rightarrow Y \mapsto \overline{Y} \mapsto \overline{Y} \cap U = Y. \checkmark$$

 $\emptyset \neq Z \cap U \subseteq Z$ damit dicht daZirreduzibel (Satz 13 ii. und v.)

Also ist die Abbildung \leftarrow wohldefiniert.

$$\Rightarrow \overline{Z \cap U} = Z$$

Satz 43. Sei (X, \mathcal{O}_X) eine Prävarietät.

 $Dann\ ist\ X\ noethersch\ (insbesondere\ quasikompakt)\ und\ irreduzibel.$

Beweis. Sei $X = \bigcup_{i=1}^n$ endliche offene aff. Überdeckung und $X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$ eine absteigende Kette abgeschlossener Teilmengen.

 $\Rightarrow U_i \cap Z_1 \supseteq U_i \cap Z_2 \supseteq \cdots$, ist eine absteigende Kette abgeschlossener Teilmengen von U_i

 $\Rightarrow \forall i \ \exists n_i \in \mathbb{N}: U_i \cap Z_{n_i} = U_i \cap Z_{i+m} \text{ für alle } m \in \mathbb{N}. \text{ Setzen wir } n := \max n_i, \text{ so folgt:}$

$$\forall i = 1, \dots, n \ \forall m \ge n : U_i \cap Z_m = U_i \cap Z_{m+1}$$

 $\Rightarrow (Z_i)_i$ wird stationär da $Z_m = \bigcup_i U_i \cap Z_m$.

X ist demnach noethersch.

X ist weiter irreduzibel:

Sei $X = X_1 \cup \cdots \cup X_n$ die Zerlegung in irreduzible Komponenten.

Angenommen es wäre $n \geq 2$.

$$\Rightarrow \exists i_0 \in \{2,\dots,n\}: X_1 \cap X_{i_0} \neq \emptyset. \text{ (Andernfalls gilt: } X = X_1 \sqcup \underbrace{X \backslash X_1}_{=X_2 \cup \dots \cup X_n \text{ abg.}}, \text{ im Widerspruch dazu, dass } X$$

zusammenhängend ist.)

Sei ohne Einschränkung $i_0 = 2$. Sei $x \in X_1 \cap X_2, x \in U \subseteq X$ offen, affin (d.h. affine Varietät).

U irreduzibel $\Rightarrow \overline{U}$ (Abschluss in X) $\subseteq X_j$ für ein $j \in \{1, \ldots, n\}$

Jedoch: Da
$$x \in X_i \cap U \subseteq U$$
 irreduzibel ist, ist $\underbrace{\overline{X_i \cap U}}_{\subseteq \overline{U} \subseteq X_i} = X_i, i = 1, 2$

 $\Rightarrow X_1, X_2 \subseteq X_j.$ Widerspruch zu maximale Komponente.

19 Offene Untervarietäten

Offene Teilmengen von affinen Varietäten (und allgemeiner beliebigen Prävarietäten) sind wieder Prävarietäten. (aber i.A. nicht affin!)

Lemma 44 (orig. 41). Sei X eine affine Varietät, $f \in \mathcal{O}_X(X)$, $D(f) \subseteq X$. Die Lokalisierung von $\Gamma(X) = \mathcal{O}_X(X)$ an f,

$$\Gamma(X)_f = \Gamma(X)[T]/(Tf - 1)$$

ist eine integre, endlich erzeugte k-Algebra. (Y, \mathcal{O}_Y) bezeichne die zugehörige affine Varietät. Dann gilt:

$$(D(f), \mathcal{O}_X|_{D(f)}) \cong (Y, \mathcal{O}_Y)$$

als Räume mit Funktionen, d.h. $(D(f), \mathcal{O}_{X|_{D(f)}})$ ist selbst affine Varietät.

Beweis. $\mathcal{O}_X(D(f)) = \mathcal{O}_X(X)_f$ muss affiner Koordinatenring von $(\mathcal{D}(f), \mathcal{O}_{X|_{\mathcal{D}(f)}})$ sein, wenn letzterer Raum von Funktionen affin ist. $X \subseteq \mathbb{A}^n(k)$ korrespondiert zu dem Radikalideal:

$$\mathfrak{a} := I(X) \le k[T_1, \dots, T_n] \subseteq \mathfrak{a}' := (\mathfrak{a}, fT_{n+1} - 1) \subseteq k[T_1, \dots, T_{n+1}]$$

mit Koordinatenringen:

$$\Gamma(X) = k[T_1, \dots, T_n]/\mathfrak{a}$$

$$\Gamma(Y) = \Gamma(X)_f = (k[T_1, \dots, T_n]/\mathfrak{a})[T_{n+1}]/(T_{n+1}f - 1)$$

$$\cong k[T_1, \dots, T_{n+1}]/\mathfrak{a}'$$

Für $Y = V(\mathfrak{a}') \subseteq \mathbb{A}^{n+1}(k)$ induziert die Abbildung

$$Y \subseteq \mathbb{A}^{n+1}(k) \qquad (x_1, \dots, x_{n+1}) \qquad T_i$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$X \subseteq \mathbb{A}^n(k) \qquad (x_1, \dots, x_n) \qquad T_i$$

eine Bijektion $Y \xrightarrow{j} D_X(f)$ mit Umkehrabbildung $(x_0, \ldots, x_n, \frac{1}{f(x_0, \ldots, x_n)}) \longleftrightarrow (x_0, \ldots, x_n)$ Behauptung. j ist Isomorphismus von Räumen mit Funktionen:

- (i) j ist stetig (als Einschränkung einer stetigen Abbildung) \checkmark
- (ii) j ist offen: Für $\frac{g}{f^n} \in \Gamma(X)_f = \Gamma(Y)$ mit $g \in \Gamma(X)$ gilt

$$j\left(D_Y\left(\frac{g}{f^n}\right)\right) = j\left(D_Y(gf)\right)$$
 f Einheit $= D_X(gf)$ offen

 $\Rightarrow j$ Homömorphismus.

(iii) j induziert $\forall g \in \Gamma(X)$ Isomorphismen:

$$\mathcal{O}_X(D(fg)) \longrightarrow \Gamma(Y)_g$$

 $s \longmapsto s \circ i$

mit $\mathcal{O}_X(D(fg)) = \Gamma(X)_{fg} = \Gamma(X)_f)_g = \Gamma(Y)_g$. Mit dem Verklebungsaxiom folgt: j ist Morphismus von Räumen mit Funktionen.

Satz 45 (orig. 42). Sei (X, \mathcal{O}_X) Prävarietät, $\emptyset \neq U \subseteq X$ offen. Dann ist $(U, \mathcal{O}_X|_U)$ eine Prävarietät und $U \hookrightarrow X$ ist Morphismus von Prävarietäten.

Beweis. X ist irreduzibel, also folgt mit Satz 13, dass U zusammenhängend ist. Nach Voraussetzung besitzt $X = \bigcup_i X_i$ eine affine, offene Überdeckung. Es folgt:

$$U = \bigcup_{i} (\underbrace{X_i \cap U}_{\text{offen in } X_i}) = \bigcup_{i,j} D_{X_i}(f_{i,j})$$

und $D_{X_i}(f_{i,j})$ ist eine affine Varietät nach Lemma 44. Da X noethersch ist, folgt mit Lemma 20, dass U quasikompakt ist.

 \Rightarrow Es existiert eine endliche Teilüberdeckung, also ist U Prävarietät. \checkmark

Die kanonische Inklusion $i:U\hookrightarrow X$ ist sicher stetig. Für $f\in\mathcal{O}_X(V), V\subseteq X$ offen gilt mit dem Einschränkungsaxiom

$$\mathcal{O}_X|_U(U\cap V) = \mathcal{O}_X(U\cap V) \ni f \circ i = f|_{U\cap V}$$

Also ist i Morphismus von Prävarietäten.

Die offenen affinen Teilmengen einer Prävarietät X ($\hat{=}U \subseteq X$ offen mit $(U, \mathcal{O}_X|_U)$ affine Varietät) bilden eine Basis der Topologie von X, da X durch offene affine Untervarietäten überdeckt wird und letzere diese Eigenschaft nach Lemma 44 haben.

20 Funktionenkörper einer Prävarietät

Definition 46 (orig. 43). Für eine Prävarietät X sind die rationalen Funktionenkörper aller nicht-leeren affinoffenen Teilmengen in natürlicher Weise zu einander isomorph. Diesen Körper K(X) nennen wir den **rationalen Funktionenkörper**von X.

Beweis. $\emptyset \neq U, V \subseteq X$ affine, offene Untervarietäten. Da X irreduzibel ist, gilt nach Satz 13:

$$\emptyset \neq U \cap V \subseteq U$$
 offen.

Nach Definition von \mathcal{O}_X ist

$$\mathcal{O}_X(U) \subseteq \mathcal{O}_X(U \cap V) \subseteq K(U) = \operatorname{Quot}(\mathcal{O}_X(U)).$$

Das impliziert $\operatorname{Quot}(\mathcal{O}_X(U\cap V))=K(U)$. Aus Symmetriegründen ist aber damit auch bereits $K(V)=\operatorname{Quot}(\mathcal{O}_X(U\cap V))$.

Bemerkung 47 (orig. 44). Bildung des des Funktionenkörpers $K(\cdot)$ ist **nicht** funktoriell! Für $X \to Y$ Morphismus affiner Varietäten ist die Abbildung auf den Koordinatenringen $\Gamma(Y) \to \Gamma(X)$ i.A. **nicht** injektiv, induziert also keine Abbildung $K(Y) \hookrightarrow K(X)$.

Jedoch: Eine Isomorphie $X \xrightarrow{\sim} Y$ induziert $K(Y) \xrightarrow{\sim} K(X)$. Allgemeiner sei $X \xrightarrow{\varphi} Y$ Morphismus mit $\operatorname{im}(\varphi) \subseteq Y$ offen (\Rightarrow dicht. Später: $X \xrightarrow{\varphi} Y$ dominant, gdw. $\operatorname{im}(\varphi) \subseteq Y$ dicht) induziert in funktioreller Weise eine Abbildung $K(Y) \hookrightarrow K(X)$.

Satz 48 (orig. 45). Sei X eine Prävarietät, $V \subseteq U \subseteq X$ offen. Dann gilt:

- (i) $\mathcal{O}_X(U) \subseteq K(X)$ ist k-Unteralgebra.
- (ii) $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ ist Inklusion von Teilmengen des Funktionenkörpers K(X).
- (iii) Insbesondere gilt für $U, V \subseteq X$ offen:

$$\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \cap \mathcal{O}_X(V).$$

Beweis.

(ii) Sei $\mathcal{O}_X(X) \ni f: X \to k$. Dann ist $f^{-1}(0) \subseteq X$ abgeschlossen, da für $W \subseteq X$ affin-offen beliebig gilt, dass

$$f^{-1}(0) \cap W = V(f|_{W}).$$

Dazu macht man sich klar: "abgeschlossen" ist eine lokale Eigenschaft, affin-offene W bilden eine Basis der Topologie.

$$\Rightarrow \mathcal{O}_X(U) \hookrightarrow \mathcal{O}_X(V), \, f \mapsto f|_V \text{ ist injektiv für } \emptyset \neq V \subseteq U \subseteq X \text{ offen.}$$

$$\Rightarrow V \subseteq f^{-1}(0)$$

$$\Rightarrow f^{-1}(0) = U$$

$$\Rightarrow f \equiv 0.$$

(i) $U \supseteq W$ affin-offene Untervarietät.

$$\mathcal{O}_X(W) \hookrightarrow K(W)$$
 k-Algebren
$$\oint_{\mathcal{O}_X(U)} \mathcal{O}_X(U)$$

(iii) Wir haben folgendes kommutatives Diagramm:

Nach dem Verklebungsaxiom ist die Sequenz

$$0 \longrightarrow \mathcal{O}_X(U \cup V) \longrightarrow \mathcal{O}_X(U) \times \mathcal{O}_X(V) \longrightarrow \mathcal{O}_X(U \cap V)$$

$$f \longmapsto (f|_U, f|_V)$$

$$(g, h) \longmapsto g|_{U \cap V} - h|_{U \cap V}$$

exakt.

21 Abgeschlossene Unterprävarietäten

Sei X eine Prävarietät, $Z \subseteq X$ abgeschlossen und irreduzibel.

Ziel. (Z, \mathcal{O}'_Z) Raum von Funktionen erklären. Definiere dazu für $U \subseteq Z$ offen:

$$\mathcal{O}_Z'(U) := \{ f \in Abb(U, k) \mid \forall x \in U \ \exists x \in V \subseteq X \ \text{offen}, \ g \in \mathcal{O}_X(V) \ \text{mit} \ f|_{U \cap V} = g|_{U \cap V} \}$$

Damit ist (Z, \mathcal{O}_Z') Raum von Funktionen (klar!) mit $\mathcal{O}_X' = \mathcal{O}_X$.

Lemma 49 (orig. 46). Seien $X \subseteq \mathbb{A}^n(k)$ eine irreduzible, affin-algebraische Menge und $Z \subseteq X$ ein irreduzibler abgeschlossener Teilraum. Dann ist $(Z, \mathcal{O}_Z) = (Z, \mathcal{O}_Z')$.

Bezeichne ab jetzt stets \mathcal{O}_Z für $\mathcal{O}_{Z'}$.

Beweis. $Z \subseteq X$ ist in beiden Fällen mit der Teilraumtopologie ausgestattet! Ferner wissen wir, dass der Morphismus $Z \hookrightarrow X$ affin-algebraischer Mengen einen Morphismus $(Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ von Prävarietäten induziert. Nach Definition von \mathcal{O}' folgt dann:

$$\mathcal{O}_Z'(U) \subseteq \mathcal{O}_Z(U)$$
 für $U \subseteq Z$ offen, denn:

Ist $f \in \mathcal{O}'_Z(U)$ und $x \in U$ so existieren nach Definition eine offene Umgebung $x \in V_x \subseteq X$ und ein $g \in \mathcal{O}_X(V_x)$ d.d. $f|_{U \cap V_x} = g|_{U \cap V_x}$. Damit gilt $g|_{Z \cap V_x} \in \mathcal{O}_Z(Z \cap V_x)$. Mit dem Verklebungsaxiom erhalten wir also $f \in \mathcal{O}_Z(U)$.

Sei $f \in \mathcal{O}_Z(U)$ und $x \in U$ beliebig. Es folgt: $\exists h \in \Gamma(Z)$ mit $x \in D(h) \subseteq U$ und

$$f|_{D(h)} = \frac{g}{h^n} \in \Gamma(Z)_h = \mathcal{O}_Z(D(h))$$

für $n \geq 0$ und $g \in \Gamma(Z)$ geeignet. Lifte $g, h \in \Gamma(Z) \leftarrow \Gamma(X)$ zu $\overline{g}, \overline{h} \in \Gamma(X)$ und setze $V := D(\overline{h}) \subseteq X$. $\Rightarrow x \in V, \frac{\overline{g}}{\overline{h}^n} \in \mathcal{O}_X(D(\overline{h}))$ und $f|_{U \cap V} = \frac{\overline{g}}{\overline{h}^n}|_{U \cap V}$. $\Rightarrow f \in \mathcal{O}_Z'(U)$.

Korollar 50 (orig. 47). Wenn X eine Prävarietät ist, und $Z \subseteq X$ irreduzibel und abgeschlossen, dann ist (Z, \mathcal{O}_Z) ebenfalls eine Prävarietät.

Beweis. Es ist $X = \bigcup_i X_i$ für eine endliche affin-offene Überdeckung $(X_i)_i$. Damit ist

$$Z = \bigcup_{i} (Z \cap X_i) := \bigcup_{i} Z_i$$

mit (Z_i, \mathcal{O}_{Z_i}) affine Varietät nach Lemma 49.

Beispiele (Projektiver Raum und projektive Varietäten)

22 Homogene Polynome

Definition 51 (orig. 48). Ein Polynom $f \in k[X_0, ..., X_n]$ heißt **homogen vom Grad** $d \in \mathbb{Z}_{\geq 0}$, falls f die Summe von Monomen von Grad d ist. (Insbesondere ist für jedes d das Nullpolynom homogen von Grad d.)

Es bezeichne $k[X_0, ..., X_n]_d$ den k-Untervektorraum der Polynome homogen vom Grad $d, k[X_0, ..., X_n]_{\leq n}$ den k-Untervektorraum aller Polynome vom Grad $\leq n$.

Bemerkung 52 (orig. 49). Da #k unendlich ist, ist f homogen vom Grad $d \Leftrightarrow f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$ $\forall x_0, \dots, x_n \in k, \lambda \in k^{\times}.$

Es gilt:
$$k[X_0, \dots X_n] = \bigoplus_{d>0} k[X_0, \dots, X_n]_d$$
.

Lemma 53 (orig. 50). Für $i \in \{0, ..., n\}$ und $d \ge 0$ haben wir bijektive k-lineare Abbildungen

$$k[X_0, \dots, X_n]_d \longrightarrow k[T_0, \dots, \hat{T}_i, \dots, T_n] \leq d$$

$$f \stackrel{\Phi_i^d}{\longmapsto} f(T_0, \dots, \underbrace{1}_i, \dots, T_n)$$

$$X_i^d g\left(\frac{X_0}{X_i}, \dots, \frac{\hat{X}_i}{X_i}, \dots, \frac{X_n}{X_i}\right) \stackrel{\Psi_i^d}{\longleftrightarrow} g$$

Dehomogenisierung bzw. Homogenisierung.

Beweis. Es reicht, $\Psi_i^d \circ \Phi_i^d = \operatorname{id}$, $\Phi_i^d \circ \Psi_i^d = \operatorname{id}$ auf Monomen nachzurechnen, da alle Abbildungen k-linear sind. \square Oft ist es nützlich, $k[T_0, \dots, \hat{T}_i, \dots, T_n]$ mit $k\left[\frac{X_0}{X_i}, \dots, \frac{\hat{X}_i}{X_i}, \dots, \frac{X_n}{X_i}\right] \hookrightarrow k(X_0, \dots, X_n)$ zu identifizieren.

23 Definition des projektiven Raumes

Seien $X_1 = X_2 = \mathbb{A}^1$, $\tilde{U}_1 \subseteq X_1$, $\tilde{U}_2 \subseteq X_2$ mit $\tilde{U}_1 = \tilde{U}_2 = \mathbb{A}^1 \setminus \{0\}$.

$$\tilde{U}_1 \xrightarrow{\sim} \tilde{U}_2$$

$$x \longmapsto \frac{1}{x}$$

Verkleben von X_1 und X_2 entlang $\tilde{U}_1 \stackrel{\sim}{\longrightarrow} \tilde{U}_2$ liefert die **projektive Gerade**

$$\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} = U_1 \cup U_2.$$

Allgemein:

$$\mathbb{P}^{n} = \bigcup_{i=1}^{n+1} U_{i} = \mathbb{A}^{n} \cup \mathbb{P}^{n-1} = \mathbb{A}^{n} \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^{1} \sqcup \mathbb{A}^{0}$$

Idee: $\mathbb{P}^2 \supseteq \mathbb{A}^2$: Zwei verschiedene Geraden in \mathbb{P}^2 schneiden sich genau in einem Punkt. Als Menge:

$$\mathbb{P}^n(k):=\{\text{Ursprungsgeraden in }k^{n+1}\}=\{\text{1-dim. }k\text{-Unterräume}\}$$

$$=(k^{n+1}\backslash\{0\})/k^\times$$

Man schreibt meist kurz $(x_0 : \ldots : x_n)$ für den Repräsentanten der Klasse von $\langle (x_0, \ldots x_n) \rangle_k$ und nennt $(x_0 : \ldots : x_n)$ homogene Koordinaten auf \mathbb{P}^n .

 \ddot{A} quivalenz relation:

$$(x_0, \ldots, x_n) \sim (x'_0, \ldots, x'_n) \Leftrightarrow \exists \lambda \in k^{\times} \text{ mit } x_i = \lambda x'_i \ \forall i.$$

Die Mengen

$$U_i := \{(x_0 : \ldots : x_n) \in \mathbb{P}^n \mid x_i \neq 0\} \subseteq \mathbb{P}^n(k), \ 0 \leq i \leq n$$

sind wohldefiniert und überdecken $\mathbb{P}^n(k)$:

$$\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$$

Weiter hat man eine Bijektion

$$U_i \stackrel{[}{1}: 1] \kappa_i \longrightarrow \mathbb{A}^n(k)$$

$$(x_0: \dots : x_n) \longmapsto \left(\frac{x_0}{x_i}, \dots, \frac{\hat{x}_i}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

$$(t_0: \dots : t_{i-1}: 1: t_{i+1}: \dots : t_n) \longleftrightarrow (t_0, \dots, \hat{t}_i, \dots, t_n)$$

Über die κ_i definiert man nun eine Topologie auf $\mathbb{P}^n(k)$ durch: $U \subseteq \mathbb{P}^n(k)$ ist genau dann offen, wenn $\kappa_i(U \cap U_i) \subseteq \mathbb{A}^n(k)$ offen ist für alle i.

Es gilt:

$$U_i \cap U_i = D(T_i) \subseteq U_i$$
 offen, $i \neq j$

wenn auf $U_i \cong \mathbb{A}^n$ die Koordinaten $T_0, \dots, \hat{T}_i, \dots, T_n$ verwendet werden. Damit wird $\mathbb{P}^n(k)$ zu einem topologischen Raum, der durch die U_i , $0 \le i \le n$, offen überdeckt wird.

23.1 Reguläre Funktionen

Sei $U \subseteq \mathbb{P}^n(k)$ eine beliebige offene Teilmenge. Die regularären Funktionen auf U sind definiert als

$$\mathcal{O}_{\mathbb{P}^n}(U) := \{ f \in Abb(U, k) \mid f|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i) \} \qquad \forall i \in \{0, \dots, n\}$$

wobei wir die U_i via κ_i implizit als Raum mit Funktionen auffassen. Insgesamt erhalten wir:

$$\mathbb{P}^n(k) = (\mathbb{P}^n(k), \mathcal{O}_{\mathbb{P}^n})$$

als Raum mit Funktionen.

Satz 54 (orig 51). Für $U \subseteq \mathbb{P}^n$ offen gilt: $\mathcal{O}_{\mathbb{P}^n}(U) = \{f : U \to k \mid \forall x \in U : \exists x \in V \subseteq U \text{ offen, } d \geq 0 \text{ und } g, h \in k[X_0, \dots, X_n]_d \text{ homogen vom selben Grad } d, d.d. \ \forall v \in V : h(v) \neq 0 \text{ und } f(v) = \frac{g(v)}{h(v)} \}$

Wohldefiniertheit: Sei $v = (x_0 : \ldots : x_n)$.

$$f(\lambda x_0, \dots, \lambda x_n) = \frac{g(\lambda x_0, \dots, \lambda x_n)}{h(\lambda x_0, \dots, \lambda x_n)} = \frac{\lambda^d g(x_0, \dots, x_n)}{\lambda^d h(x_0, \dots, x_n)} = f(x_0, \dots, x_n)$$

Beweis.

"⊆": Sei $f \in \mathcal{O}_{\mathbb{P}^n}(U)$. Dann ist $f|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i)$. Es folgt:

$$f = \frac{\tilde{g}}{\tilde{h}}, \ \tilde{g}, \tilde{h} \in k[T_0, \dots, \hat{T}_i, \dots, T_n]$$

Definiere $d := \max\{\deg(\tilde{g}), \deg(\tilde{h})\}$. Homogenisiere:

$$g:=\psi_i^d(\tilde{g}),\ h:=\psi_i^d(\tilde{h})$$

 $\Rightarrow f = \frac{g}{h}$ lokal.

$$f(x) = \frac{\tilde{g}}{\tilde{h}}(\kappa_i(x))$$

$$f((x_0 : \dots : x_n)) = \frac{\tilde{g}\left(\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}\right)}{\tilde{h}\left(\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}\right)}$$

$$= \frac{x_i^d \tilde{g}(\dots)}{x_i^d \tilde{h}(\dots)}$$

$$= \frac{\psi_i^d(\tilde{g})(\dots)}{\psi_i^d(\tilde{h})(\dots)} = \frac{g}{h}(x_0 : \dots : x_n)$$

" \supseteq ": Sei f in der rechten Menge, fixiere $i \in \{0, \ldots, n\}$. Nach Voraussetzung ist f lokal auf $U \cap U_i$ von der Form $f = \frac{g}{h}, g, h \in k[X_0, \ldots, X_n]_d, d \ge 0$ geeignet. Definiere:

$$\tilde{g}_i := \frac{g}{X_i^d}, \ \tilde{h} := \frac{h}{X_i^d} \in k \left[\frac{X_0}{X_i}, \dots, \frac{\hat{X}_i}{X_i}, \dots, \frac{X_n}{X_i} \right]$$

 $\Rightarrow f$ ist lokal von der Form: $\frac{\tilde{g}}{\tilde{h}}, \, \tilde{g}, \tilde{h} \in k[T_0, \dots, \hat{T}_i, \dots T_n]$.

 $\Rightarrow f|_{U\cap U_i} \in \mathcal{O}_{U_i}(U\cap U_i)$, also $f\in \mathcal{O}_{\mathbb{P}^n}(U)$.

Korollar 55 (orig. 52). $F\ddot{u}r \ i \in \{0, \dots, n\}$ induziert

$$U \xrightarrow{\kappa_i} \mathbb{A}^n(k)$$

 $einen\ Isomorphismus$

$$(U_i, \mathcal{O}_{\mathbb{P}^n|_{U_i}}) \xrightarrow{\cong} \mathbb{A}^n(k)$$

von Räumen mit Funktionen. Insbesondere ist $\mathbb{P}^n(k)$ eine Prävarietät.

Beweis. Zu zeigen: $\forall U \subseteq U_i$ offen gilt

$$\mathcal{O}_{\mathbb{P}^n(k)}(U) = \mathcal{O}_{U_i}(U) = \{ f : U \to k \mid f \in \mathcal{O}_{U_i}(U) \}$$

d.h. auf der rechten Seite muss die Bedingung nur für das fixierte i überprüft werden. Dies folgt aus dem Beweis von Satz 54.

Damit identifizieren sich die Funktionenkörper

$$K(\mathbb{P}^n(k)) = K(U_i) = k\left(\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}\right)$$

Satz 56 (orig. 53). $\mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k)) = k$. Insbesondere ist \mathbb{P}^n für $n \geq 1$ keine affine Varietät. (Da der k-Algebra A = k ja $\mathbb{A}^0(k) = \{pt\}$ als affine Varietät entspricht.)

Beweis. $k \subseteq \mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k))$ klar, da konstante Funktionen. Nach Satz 48 (iii) gilt:

$$\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n) = \bigcap_{i=0}^n \mathcal{O}_{\mathbb{P}^n}(U_i) \subseteq K(\mathbb{P}^n(k))$$
$$= \bigcap_{i=0}^n k[t_0, \dots, \hat{t_i}, \dots, t_n] = k$$

24 Projektive Varietäten

Definition 57 (orig. 54). Abgeschlossene Unterprävarietäten eines projektiven Raumes $\mathbb{P}^n(k)$ heißen **projektive** Varietäten.

Vorsicht: für $x=(x_0:\ldots:x_n)\in\mathbb{P}^n, f\in k[X_0,\ldots,X_n]$ ist $f(x_1,\ldots,x_n)$ nicht wohldefiniert, da von Repräsentaten abhängig, d.h. f kann nicht als Funktion auf \mathbb{P}^n aufgefasst werden. Für homogene Polynome $f_1,\ldots,f_n\in k[X_0,\ldots X_n]$ (nicht notwendig vom selben Grad) können wir demnoch Verschwindungsmengen definieren:

$$V_{+}(f_{1},...,f_{n}) = \{(x_{0}:...:x_{n}) \in \mathbb{P}^{n} \mid f_{i}(x_{0},...,x_{n}) = 0 \ \forall j\}$$

Da $V_+(f_1, \ldots, f_n) \cap U_i = V(\Phi_i(f_1), \ldots, \Phi_i(f_m))$ ist $V_+(f_1, \ldots, f_m)$ abgeschlossen in \mathbb{P}^n . Ist $V_+(f_1, \ldots, f_n)$ irreduzibel, so erhalten wir eine projektive Varietät. In der Tat entstehen alle projektiven Varietäten auf diese Weise, wie der folgende Satz zeigt:

Satz 58 (orig. 55). Sei $Z \subseteq \mathbb{P}^n(k)$ eine projektive Varietät. Dann existieren homogene Polynome $f_1, \ldots, f_n \in k[X_0, \ldots, X_n]$, so dass

$$Z = V_+(f_1, \ldots, f_n)$$

gilt.

Beweis. Betrachte:

 $f|_{f^{-1}(U_i)}: f^{-1}(U_i) \longrightarrow U_i$ ist Morphismus von Prävarietäten. Dann ist f selber ein Morphismus von Prävarietäten.

$$\overline{Y} := Y \cup \{0\}$$
 Abschluss von Y in $\mathbb{A}^{n+1}(k)$
 $\mathfrak{A} := I(\overline{Y}) \subseteq k[X_0, \dots, X_n]$

Behauptung: \mathfrak{A} wird von homogenen Polynomen erzeugt. Denn: für $g \in \mathfrak{A}$, $g = \sum_d g_d$ Zerlegung in homogene Bestandteile vom Grad d. \overline{Y} ist Vereinigung von Ursprungsgeraden im k^{n+1} , d.h. $\forall \lambda \in k^{\times}$ gilt:

$$q(x_0,\ldots,x_n)=0 \Leftrightarrow q(\lambda x_0,\ldots,\lambda x_n)=0$$

Beweis durch Widerspruch. Nicht alle g_d liegen in \mathfrak{A} .

$$\Rightarrow \exists (x_0,\ldots,x_n) \in \mathbb{A}^{n+1}(k)$$
, so dass $g(x_0,\ldots,x_n)=0$, aber $g_{d_0}(x_0,\ldots,x_n)\neq 0$.

$$\Rightarrow 0 \not\equiv \sum_d g_d(x_0, \dots, x_n) T^d \in k[T]$$

$$\Rightarrow (\exists \lambda \in k^{\times}) \ 0 \neq \sum_{d} g_{d}(x_{0}, \dots, x_{n}) \lambda^{d} = \sum_{d} g_{d}(\lambda x_{0}, \dots, \lambda x_{n}) = g(\lambda x_{0}, \dots, \lambda x_{n}) = 0. \text{ Widerspruch.}$$

$$\Rightarrow \mathfrak{A} = (f_1, \ldots, f_m), f_j \text{ homogen.}$$

$$\Rightarrow Z = V_+(f_1, \dots, f_m).$$

$$Z \ni (x_0 : \dots : x_n) \Leftrightarrow (\lambda x_0, \dots, \lambda x_n) \in \overline{Y} \ \forall \lambda \in k^{\times} \ \text{und} \ \neq 0$$

$$\Leftrightarrow f_i(x_0, \dots, x_n) = 0 \ \forall 1 \le i \le n, \ (x_0, \dots, x_n) \in \mathbb{P}^n$$

Zu Bemerkung 49

Nach Satz 51 und Definition von \mathcal{O}_Z' folgt: Ist X eine projektive Varietät und $U \subset X$ offen, so können wir $\mathcal{O}_X(U) = \{f: U \to k \mid \forall x \in U \ \exists x \in V \subset U, \ g, h \in k[X_0, \dots, X_n] \ \text{homogen vom gleichen Grad mit} \ h(v) \neq 0, \ f(v) = \frac{g(v)}{h(v)}, \ \forall v \in V\}. \ (*)$

Insbesondere gilt:

Satz 59 (orig. 56). Seien $V \subseteq \mathbb{P}^m(k)$, $W \subset \mathbb{P}^n(k)$ projektive Varietäten und

$$V \subseteq \mathbb{P}^m(k) \xrightarrow{\phi} W \subseteq \mathbb{P}^n(k)$$

eine Abbildung. Dann ist ϕ eine Morphismus genau dann, wenn es zu jedem $x \in V$ eine offene Menge $x \in U_x \subset V$ und homogene Polynome $f_0, \ldots, f_n \subseteq k[X_0, \ldots, X_m]$ vom selben Grad existiert mit

$$\phi(y) = (f_0(y), \dots, f_n(y)) \quad \forall y \in U_x$$

Beweis.

- "⇒", Übung.
- "⇐".
 - (i) ϕ stetig: Sei $Z \subseteq W$ abgeschlossen. Ohne Einschränkung $Z = V_+(g) \cap W$ für ein homogenes Polynom g. Dann berechnet sich das Urbild

$$\phi^{-1}(Z) = V_+(g \circ \phi) \cap V.$$

Auf U_x , $x \in V$, ist $g \circ \phi$ als homogenes Polynom in X_0, \ldots, X_n gegeben.

- $\Rightarrow V(g \circ \phi) \cap U_x = \phi^{-1}(Z) \cap U_x$ abgeschlossen in U_x für alle x.
- $\Rightarrow \phi^{-1}(Z) \subseteq V$ abgeschlossen.
- (ii) Zu zeigen: $\forall W' \subseteq W$ offen, $g \in \mathcal{O}_W(W')$ ist $g \circ \phi \in \mathcal{O}_V(\phi^{-1}(W'))$.
 - \Rightarrow (*) Es ex. eine offene Umgebung W_y in W' mit $g = \frac{h}{q}$ auf W_y , h, q homogen vom Grad d.
 - $\Rightarrow \phi_{|U_x \cap \phi^{-1}(W_y):=\tilde{U}_x}$ ist auch von dieser Gestalt.
 - $\Rightarrow (*) \frac{h(f_0, \dots, f_n)}{q(f_0, \dots, f_n)} = g \circ \phi_{|\tilde{U}_x} \in \mathcal{O}_V(\tilde{U}_x).$
- \Rightarrow (Verkleben) $g \circ \phi \in \mathcal{O}_V(\phi^{-1}(V))$.