This assignment is due on Tuesday, Nov 26 2024 at 11:59pm Beijing Time.

- Goals
- Setup
- Q0: Perceptron Learning Algorithm (10 points)
- Q1: k-Nearest Neighbor classifier (15 points)
- Q2: Training a Support Vector Machine (15 points)
- Q3: Implement a Softmax classifier (15 points)
- Q4: Two-Layer Neural Network (15 points)
- Q5: Higher Level Representations: Image Features (10 points)
- Submitting your work

Goals

In this assignment you will practice putting together a simple image classification pipeline based on the k-Nearest Neighbor or the SVM/Softmax classifier. The goals of this assignment are as follows:

- Understand the basic Image Classification pipeline and the data-driven approach (train/predict stages)
- Understand the train/val/test splits and the use of validation data for hyperparameter tuning.
- Develop proficiency in writing efficient vectorized code with numpy
- Implement and apply a k-Nearest Neighbor (kNN) classifier
- Implement and apply a Multiclass Support Vector Machine (SVM) classifier
- Implement and apply a **Softmax** classifier
- Implement and apply a Two layer neural network classifier
- Understand the differences and tradeoffs between these classifiers
- Get a basic understanding of performance improvements from using higher-level representations as opposed to raw pixels, e.g. color histograms, Histogram of Gradient (HOG) features, etc.

Setup

Download. Starter code containing jupyter notebooks will be released through piazza resource page.

Install Packages. Once you have the starter code, activate your environment (the one you installed in the Software Setup page) and run pip install -r requirements.txt.

Download CIFAR-10. Next, you will need to download the CIFAR-10 dataset. Run the following from the assignment1 directory:

cd cs231n/datasets
./get_datasets.sh

Start Jupyter Server. After you have the CIFAR-10 data, you should start the Jupyter server from the assignment1 directory by executing jupyter notebook in your terminal.

Complete each notebook, then once you are done, go to the submission instructions.

Q0: Perceptron Learning Algorithm (10 points)

The notebook **perceptron.ipynb** will walk you through implementing the perceptron algorithm.

Q1: k-Nearest Neighbor classifier (15 points)

The notebook knn.ipynb will walk you through implementing the kNN classifier.

Q2: Training a Support Vector Machine (15 points)

The notebook **svm.ipynb** will walk you through implementing the SVM classifier.

Q3: Implement a Softmax classifier (15 points)

The notebook **softmax.ipynb** will walk you through implementing the Softmax classifier.

Q4: Two-Layer Neural Network (15 points)

The notebook **two_layer_net.ipynb** will walk you through the implementation of a two-layer neural network classifier.

Q5: Higher Level Representations: Image Features (10 points)

The notebook **features.ipynb** will examine the improvements gained by using higher-level representations

as opposed to using raw pixel values.

Submitting your work

Important. Please make sure that the submitted notebooks have been run and the cell outputs are visible.

Please follow the instructions on Piazza to submit your homework.