Theory and Practice of Differential Entropy Estimation

Yanjun Han (Stanford EE)

Joint work with:

Weihao Gao UIUC ECE
Jiantao Jiao Stanford EE
Tsachy Weissman Stanford EE
Yihong Wu Yale Stats

July 17, 2018

Theory and Tructice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		

Outline

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation Idea of Nearest Neighbor Estimator Analysis

Numerical Results

Conclusion

Theory and Tractice of Emoretical Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
0000 0000	0000000	00000		

Introduction Problem Setup

Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation
Idea of Nearest Neighbor
Estimator Analysis
Numerical Results

Conclusion

Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
		000	

Motivation

Information-theoretic measures:

▶ entropy H(X)

Theory and Practice of Differential Entropy Estimation

- mutual information I(X; Y)
- ▶ Kullback–Leibler divergence D(P||Q)

,			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

Motivation

Information-theoretic measures:

▶ entropy H(X)

Theory and Practice of Differential Entropy Estimation

- mutual information I(X; Y)
- ▶ Kullback–Leibler divergence D(P||Q)

Subroutine for many fields and applications:

- machine learning: classification, clustering, feature selection
- causal inference: network flow
- sociology
- computational biology
- **...**

Theory and Tractice of Emicronial Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

Theory and Practice of Differential Entropy Estimation

Problem:

▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}

····, -·· · · ·· · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		

Theory and Practice of Differential Entropy Estimation

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$

Theory and Tradition of Emilian Emilion				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

Theory and Practice of Differential Entropy Estimation

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$
- estimate the differential entropy of f based on X^n :

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$
- estimate the differential entropy of f based on X^n :

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

$$|\hat{h}(X^n) - h(f)|$$

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$
- estimate the differential entropy of f based on X^n :

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

$$\mathbb{E}_f|\hat{h}(X^n)-h(f)|$$

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$
- estimate the differential entropy of f based on X^n :

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

$$\sup_{f\in\mathcal{F}}\mathbb{E}_f|\hat{h}(X^n)-h(f)|$$

Problem:

- ▶ let f be a continuous density supported on $[0,1]^d$, belonging to some function class \mathcal{F}
- observe $X^n = (X_1, \cdots, X_n) \stackrel{i.i.d.}{\sim} f$
- estimate the differential entropy of f based on X^n :

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

$$\inf_{\hat{h}} \sup_{f \in \mathcal{F}} \mathbb{E}_f |\hat{h}(X^n) - h(f)|$$

Theory and Tractice of Emerchan Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		

Choice of Function Class

Theory and Practice of Differential Entropy Estimation

Hölder ball $\mathcal{H}_d^s(L)$

- ▶ $0 < s \le 1$: $|f(x) f(y)| \le L||x y||^s$
- ▶ $1 < s \le 2$: $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|^{s-1}$
- ▶ intuition: $||f^{(s)}||_{\infty} \leq L$

Introduction	Theory: Optimal Estimation
000 0 0	00000000

Practice: Adaptive Estimation

Conclusion

Choice of Function Class

Hölder ball $\mathcal{H}_d^s(L)$

- ▶ $0 < s \le 1$: $|f(x) f(y)| \le L||x y||^s$
- ▶ $1 < s \le 2$: $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|^{s-1}$
- ▶ intuition: $||f^{(s)}||_{\infty} \leq L$

Lipschitz ball (or Besov ball) $\operatorname{Lip}_{p,d}^s(L)$

▶ definition: for any $t \in \mathbb{R}^d$,

$$||f(\cdot + t) + f(\cdot - t) - 2f(\cdot)||_p \le L||t||^s$$

▶ intuition: $||f^{(s)}||_p \leq L$

····, ···- · · ·· · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		

Parameters

Reminder of important parameters:

▶ n: sample size

Theory and Practice of Differential Entropy Estimation

- ▶ d: dimension of support of f
- $s \in (0,2]$: smoothness parameter of ${\mathcal F}$

Theory and Truckee of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000 •0000	0000000	00000		

Introduction

Problem Setup

Theory and Practice of Differential Entropy Estimation

Related Works

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation
Idea of Nearest Neighbor
Estimator Analysis
Numerical Results

Conclusion

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		
		000		

Nonparametric Functional Estimation

General Problem

Theory and Practice of Differential Entropy Estimation

Given $X_1, \cdots, X_n \sim f$, we would like to estimate the functional of the form

$$I(f) = \int w(f(x))dx$$

Nonparametric Functional Estimation

General Problem

Given $X_1, \dots, X_n \sim f$, we would like to estimate the functional of the form

$$I(f) = \int w(f(x))dx$$

Example

- quadratic functional: $I(f) = \int f(x)^2 dx$
- cubic functional: $I(f) = \int f(x)^3 dx$

Theory and Tractice of Emercial Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
		000	

quadratic functional: elbow effect

Theorem (Bickel-Ritov'88)

Theory and Practice of Differential Entropy Estimation

$$\inf_{\hat{I}} \sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{I} - I(f)| \asymp n^{-\frac{4s}{4s+d}} + n^{-\frac{1}{2}}$$

Theory and Traches of Emilian Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000 00•00	0000000	00000		

quadratic functional: elbow effect

Theorem (Bickel-Ritov'88)

Theory and Practice of Differential Entropy Estimation

$$\inf_{\hat{I}} \sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{I} - I(f)| \asymp n^{-\frac{4s}{4s+d}} + n^{-\frac{1}{2}}$$

 cubic functional: same result with much more involved estimator construction (Kerkyacharian–Picard'96, Tchetgen et al.'08)

quadratic functional: elbow effect

Theorem (Bickel-Ritov'88)

$$\inf_{\hat{I}} \sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{I} - I(f)| \asymp n^{-\frac{4s}{4s+d}} + n^{-\frac{1}{2}}$$

- cubic functional: same result with much more involved estimator construction (Kerkyacharian–Picard'96, Tchetgen et al.'08)
- smooth functional: reduce to linear, quadratic and cubic via Taylor expansion (Mukherjee–Newey–Robins'17)

quadratic functional: elbow effect

Theorem (Bickel-Ritov'88)

$$\inf_{\hat{I}} \sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{I} - I(f)| \asymp n^{-\frac{4s}{4s+d}} + n^{-\frac{1}{2}}$$

- cubic functional: same result with much more involved estimator construction (Kerkyacharian–Picard'96, Tchetgen et al.'08)
- smooth functional: reduce to linear, quadratic and cubic via Taylor expansion (Mukherjee-Newey-Robins'17)
- almost nothing is known for nonsmooth functionals

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000 000•0	0000000	00000 0000		

Differential Entropy Estimation

Theory and Practice of Differential Entropy Estimation

Kernel-based methods:

- ▶ Joe'89
- ► Györfi-van der Meulen'91
- ► Hall-Morton'93
- ► Paninski–Yajima'08
- ► Kandasamy et al.'15

Differential Entropy Estimation

Kernel-based methods:

- ▶ Joe'89
- ► Györfi-van der Meulen'91
- ► Hall–Morton'93
- ► Paninski-Yajima'08
- Kandasamy et al.'15
- **•** ...

Nearest neighbor methods:

- Tsybakov-van der Meulen'96
- ► Sricharan–Raich–Hero'12
- Singh-Póczos'16
- ▶ Berrett-Samworth-Yuan'16
- ▶ Delattre–Fournier'17
- ► Gao-Oh-Viswanath'17
- ▶ ..

Theory and Fractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000		

Differential Entropy Estimation (Cont'd)

Drawbacks of previous works:

▶ extra assumption: the density f is lower bounded by a positive universal constant, e.g., $f(x) \ge 0.01$ everywhere

Theory and Fractice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

Differential Entropy Estimation (Cont'd)

Drawbacks of previous works:

and Departure of Differential Entrany Estimation

- ▶ extra assumption: the density f is lower bounded by a positive universal constant, e.g., $f(x) \ge 0.01$ everywhere
- only prove consistency

Introduction Conclusion 0000

Differential Entropy Estimation (Cont'd)

Drawbacks of previous works:

- extra assumption: the density f is lower bounded by a positive universal constant, e.g., $f(x) \ge 0.01$ everywhere
- only prove consistency
- no new lower bound beyond quadratic case

Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction

Estimator Analysis

Practice: Adaptive Estimation Idea of Nearest Neighbor Estimator Analysis Numerical Results

Conclusion

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

Theorem

For any d and $p \in [2, \infty)$, $s \in (0, 2]$, we have

$$\inf_{\hat{h}} \sup_{f \in \operatorname{Lip}_{p,d}^s} \mathbb{E}_f |\hat{h} - h(f)| \asymp (n \log n)^{-\frac{s}{s+d}} + n^{-\frac{1}{2}}$$

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0 0 00000	00000		

Theorem

Theory and Practice of Differential Entropy Estimation

For any d and $p \in [2, \infty)$, $s \in (0, 2]$, we have

$$\inf_{\hat{h}} \sup_{f \in \operatorname{Lip}_{p,d}^{s}} \mathbb{E}_{f} |\hat{h} - h(f)| \asymp (n \log n)^{-\frac{s}{s+d}} + n^{-\frac{1}{2}}$$

Significance

first exact expression for the minimax rate, including sharp exponent and exact logarithmic factor

Theorem

For any d and $p \in [2, \infty)$, $s \in (0, 2]$, we have

$$\inf_{\hat{h}} \sup_{f \in \operatorname{Lip}_{p,d}^s} \mathbb{E}_f |\hat{h} - h(f)| \simeq (n \log n)^{-\frac{s}{s+d}} + n^{-\frac{1}{2}}$$

Significance

- ▶ first exact expression for the minimax rate, including sharp exponent and exact logarithmic factor
- ▶ parametric rate $n^{-\frac{1}{2}}$ requires $s \ge d$

Theorem

For any d and $p \in [2, \infty)$, $s \in (0, 2]$, we have

$$\inf_{\hat{h}} \sup_{f \in \operatorname{Lip}_{p,d}^s} \mathbb{E}_f |\hat{h} - h(f)| \asymp (n \log n)^{-\frac{s}{s+d}} + n^{-\frac{1}{2}}$$

Significance

- ▶ first exact expression for the minimax rate, including sharp exponent and exact logarithmic factor
- ▶ parametric rate $n^{-\frac{1}{2}}$ requires $s \ge d$
- ▶ does not use any extra assumption (e.g., boundedness of f)

Theorem

For any d and $p \in [2, \infty)$, $s \in (0, 2]$, we have

$$\inf_{\hat{h}} \sup_{f \in \operatorname{Lip}_{n,d}^s} \mathbb{E}_f |\hat{h} - h(f)| \asymp (n \log n)^{-\frac{s}{s+d}} + n^{-\frac{1}{2}}$$

Significance

- ► first exact expression for the minimax rate, including sharp exponent and exact logarithmic factor
- ▶ parametric rate $n^{-\frac{1}{2}}$ requires $s \ge d$
- \triangleright does not use any extra assumption (e.g., boundedness of f)
- ▶ improves the best known lower bound

,			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
00000	0000000	0000	

Idea: Two-stage Approximation

Theory and Practice of Differential Entropy Estimation

Recall

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

· · · · · · · · · · · · · · · · · · ·			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

Idea: Two-stage Approximation

Theory and Practice of Differential Entropy Estimation

Recall

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

▶ can estimate $-f(x) \log f(x)$ for every x and then integrate

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

Idea: Two-stage Approximation

Theory and Practice of Differential Entropy Estimation

Recall

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

- ▶ can estimate $-f(x) \log f(x)$ for every x and then integrate
- ▶ involves both function f(x) and functional $y \mapsto -y \log y$

Practice: Adaptive Estimation

Conclusion

Idea: Two-stage Approximation

Recall

$$h(f) = \int_{[0,1]^d} -f(x) \log f(x) dx$$

- ▶ can estimate $-f(x) \log f(x)$ for every x and then integrate
- ▶ involves both function f(x) and functional $y \mapsto -y \log y$
- two-stage approximation: first approximate the function and then approximate the functional

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	000 ● 0000 0000000	00000	

How to estimate f(x) at a given x?

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	000 ● 0000 0000000	00000	

How to estimate f(x) at a given x?

▶ no unbiased estimator...

····, ··· · · · · · · · · · · · · ·			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
00000	0000000	0000	

How to estimate f(x) at a given x?

no unbiased estimator...

Theory and Practice of Differential Entropy Estimation

• first-stage approximation: consider $f_h = f * K_h$ instead, where K_h is some kernel with bandwidth h

Theory: Optimal Estimation	Practice: Adaptive Estimation
00000000	00000
0000000	0000
	000

How to estimate f(x) at a given x?

- no unbiased estimator...
- first-stage approximation: consider $f_h = f * K_h$ instead, where K_h is some kernel with bandwidth h

Example

When $K_h(x) = \frac{1}{2h} \mathbb{1}_{[-h,h]}(x)$, we have

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy$$

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	9999		

First Stage (Cont'd)

Theory and Practice of Differential Entropy Estimation

Advantages of f_h :

• close to f for small bandwidth: $||f_h - f||_p \lesssim h^s$

Theory: Optimal Estimation

Practice: Adaptive Estimation

Conclusion

First Stage (Cont'd)

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\frac{1}{n}\sum_{i=1}^n K_h(x-X_i)$$

First Stage (Cont'd)

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n K_h(x-X_i)\right]$$

Theory: Optimal Estimation

Practice: Adaptive Estimation

Conclusion

First Stage (Cont'd)

Introduction

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}K_{h}(x-X_{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[K_{h}(x-X_{i})]$$

Practice: Adaptive Estimation

Conclusion

First Stage (Cont'd)

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}K_{h}(x-X_{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[K_{h}(x-X_{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\int K_{h}(x-y)f(y)dy$$

Practice: Adaptive Estimation

Conclusion

First Stage (Cont'd)

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}K_{h}(x-X_{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[K_{h}(x-X_{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\int K_{h}(x-y)f(y)dy = f * K_{h}(x)$$

 ntroduction
 Theory: Optimal Estimation
 Practice: Adapti

 00000
 00000
 00000

 00000
 00000
 0000

 0000
 0000
 0000

 000
 0000
 0000

First Stage (Cont'd)

Advantages of f_h :

- ▶ close to f for small bandwidth: $||f_h f||_p \lesssim h^s$
- admits an unbiased estimator:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}K_{h}(x-X_{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[K_{h}(x-X_{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\int K_{h}(x-y)f(y)dy = f * K_{h}(x)$$

First-stage approximation

Estimate $h(f_h)$ instead of h(f)!

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000 0000 000		

Theory and Practice of Differential Entropy Estimation

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		

Theory and Practice of Differential Entropy Estimation

$$K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)$$

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		

Theory and Practice of Differential Entropy Estimation

$$\mathbb{E}\left[K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)\right]$$

···, -··- · · · · · · · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		
		000		

Theory and Practice of Differential Entropy Estimation

$$\mathbb{E}\left[K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)\right]$$

$$=\int \cdots \int K_h(x-y_1)\cdots K_h(x-y_k)f(y_1)\cdots f(y_k)dy_1\cdots dy_k$$

Theory and Tractice of Emerchan Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000		

Theory and Practice of Differential Entropy Estimation

$$\mathbb{E}\left[K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)\right]$$

$$=\int \cdots \int K_h(x-y_1)\cdots K_h(x-y_k)f(y_1)\cdots f(y_k)dy_1\cdots dy_k$$

$$=\left(\int K_h(x-y)f(y)dy\right)^k$$

Theory and Tructice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	00000•00	00000		
00000	00000000	0000		

Practice of Differential Entropy Estimation

$$\mathbb{E}\left[K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)\right]$$

$$=\int \cdots \int K_h(x-y_1)\cdots K_h(x-y_k)f(y_1)\cdots f(y_k)dy_1\cdots dy_k$$

$$=\left(\int K_h(x-y)f(y)dy\right)^k = f_h(x)^k$$

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		

y and Practice of Differential Entropy Estimation

There exists unbiased estimator for $f_h(x)^k$ for any $k = 1, 2, \dots, n$

$$\mathbb{E}\left[K_h(x-X_1)K_h(x-X_2)\cdots K_h(x-X_k)\right]$$

$$=\int \cdots \int K_h(x-y_1)\cdots K_h(x-y_k)f(y_1)\cdots f(y_k)dy_1\cdots dy_k$$

$$=\left(\int K_h(x-y)f(y)dy\right)^k = f_h(x)^k$$

U-statistics

$$U_k(x) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \prod_{j=1}^k K_h(x - X_{i_j})$$

efficiently computable via Newton's identity

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 0000000	00000 0000 000	

How to estimate $-f_h(x) \log f_h(x)$ at a given x?

	,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion		
00000	0000000 0000000	00000 0000			

Theory and Practice of Differential Entropy Estimation

How to estimate $-f_h(x) \log f_h(x)$ at a given x?

▶ no unbiased estimator either...

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 0000000	00000	

How to estimate $-f_h(x) \log f_h(x)$ at a given x?

- no unbiased estimator either...
- **b** but we have unbiased estimator for all polynomials of $f_h(x)$!

luction	Theory: Optimal Estimation	Practice: Adaptive Estimation
00	00000000	00000
00	0000000	0000
		000

How to estimate $-f_h(x) \log f_h(x)$ at a given x?

- no unbiased estimator either...
- ▶ but we have unbiased estimator for all polynomials of $f_h(x)$!

Second-stage Approximation

Write the objective functional as

$$-f_h(x)\log f_h(x) \approx \sum_{k=0}^K a_k f_h(x)^k$$

then $\hat{H}(x) = \sum_{k=0}^{K} a_k U_k(x)$ is an unbiased estimator for the polynomial approximation.

Conclusion

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	

▶ choose a suitable kernel K_h with bandwidth h, and $f_h \triangleq f * K_h$

Theory and Tractice of Emerchanic Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

- ightharpoonup choose a suitable kernel K_h with bandwidth h, and $f_h \triangleq f * K_h$
- for every x, we aim to estimate $-f_h(x) \log f_h(x)$

Theory and Tractice of Emercial Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000000	00000 0000		

- ▶ choose a suitable kernel K_h with bandwidth h, and $f_h \triangleq f * K_h$
- for every x, we aim to estimate $-f_h(x) \log f_h(x)$
 - 1. if $f_h(x)$ is small, apply the previous unbiased estimator of the polynomial approximation of $y\mapsto -y\log y$

Theory and Tractice of Emerchan Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

- ▶ choose a suitable kernel K_h with bandwidth h, and $f_h \triangleq f * K_h$
- for every x, we aim to estimate $-f_h(x) \log f_h(x)$
 - 1. if $f_h(x)$ is small, apply the previous unbiased estimator of the polynomial approximation of $y \mapsto -y \log y$
 - 2. if $f_h(x)$ is large, just plug in $-\hat{f}_h(x) \log \hat{f}_h(x)$

Theory and Tructice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

- ▶ choose a suitable kernel K_h with bandwidth h, and $f_h \triangleq f * K_h$
- for every x, we aim to estimate $-f_h(x) \log f_h(x)$
 - 1. if $f_h(x)$ is small, apply the previous unbiased estimator of the polynomial approximation of $y \mapsto -y \log y$
 - 2. if $f_h(x)$ is large, just plug in $-\hat{f}_h(x) \log \hat{f}_h(x)$
- integrate the pointwise estimate

···, -·· · · ·· -··				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	•0000000	0000		

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation

Estimator Construction

Estimator Analysis

Practice: Adaptive Estimation

Idea of Nearest Neighbor

Estimator Analysis

Numerical Results

Conclusion

Theory and Practice of Differential Entropy Estimation			
Introduction 00000 00000	Theory: Optimal Estimation	Practice: Adaptive Estimation 00000 0000 000	Conclusion

$$\mathbb{E}_f|\hat{h}-h(f)|$$

···, -·· · · ·· -··				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
		000		

$$\mathbb{E}_f|\hat{h}-h(f)|\leq |h(f)-h(f_h)|+\mathbb{E}_f|\hat{h}-h(f_h)|$$

···, -·· · · · · · -··			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 0 0 00000	00000 0000	
		000	

$$\begin{split} \mathbb{E}_f |\hat{h} - h(f)| &\leq |h(f) - h(f_h)| + \mathbb{E}_f |\hat{h} - h(f_h)| \\ &\leq |h(f) - h(f_h)| + |\mathbb{E}_f \hat{h} - h(f_h)| + \sqrt{\mathsf{Var}_f(\hat{h})} \end{split}$$

Theory and Tractice of Emorential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

$$\begin{split} \mathbb{E}_f |\hat{h} - h(f)| &\leq |h(f) - h(f_h)| + \mathbb{E}_f |\hat{h} - h(f_h)| \\ &\leq |h(f) - h(f_h)| + |\mathbb{E}_f \hat{h} - h(f_h)| + \sqrt{\mathsf{Var}_f(\hat{h})} \\ &= \mathsf{approx}. \ \mathsf{error} + \mathsf{bias} + \mathsf{std} \end{split}$$

ry: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	00000	
	* '	00000

$$\begin{split} \mathbb{E}_f |\hat{h} - h(f)| &\leq |h(f) - h(f_h)| + \mathbb{E}_f |\hat{h} - h(f_h)| \\ &\leq |h(f) - h(f_h)| + |\mathbb{E}_f \hat{h} - h(f_h)| + \sqrt{\mathsf{Var}_f(\hat{h})} \\ &= \mathsf{approx}. \ \mathsf{error} + \mathsf{bias} + \mathsf{std} \\ &\lesssim h^{\mathsf{s}} + \frac{\log n}{nh^d \, \mathsf{K}^2} + \frac{2^{\mathsf{K}}}{n\sqrt{h^d}} \end{split}$$

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

$$\begin{split} \mathbb{E}_f |\hat{h} - h(f)| &\leq |h(f) - h(f_h)| + \mathbb{E}_f |\hat{h} - h(f_h)| \\ &\leq |h(f) - h(f_h)| + |\mathbb{E}_f \hat{h} - h(f_h)| + \sqrt{\mathsf{Var}_f(\hat{h})} \\ &= \mathsf{approx}. \ \mathsf{error} + \mathsf{bias} + \mathsf{std} \\ &\lesssim h^s + \frac{\log n}{nh^d K^2} + \frac{2^K}{n\sqrt{h^d}} \end{split}$$

Choosing $h \simeq (n \log n)^{-\frac{1}{s+d}}$, $K \simeq \log n$ completes the proof.

Theory and Fractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		

Key Lemma in Bounding $|h(f_h) - h(f)|$

Inequality of Fisher Information

Let $f \in C^2(\mathbb{R})$ be supported on [0,1], and $f \geq 0$ everywhere. The following inequality holds:

$$J(f) \triangleq \int \frac{(f')^2}{f} \leq C_p ||f''||_p$$

where 1 .

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 000•0000	00000 0000 000	

Non-negativity of f:

$$0 \le f(x+h)$$

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 000•0000	00000	

Non-negativity of f:

$$0 \le f(x+h) \le f(x) + hf'(x) + h \int_{x}^{x+h} |f''(y)| dy$$

Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
00000	0000000	0000	

Non-negativity of f:

$$0 \le f(x+h) \le f(x) + hf'(x) + h \int_{x}^{x+h} |f''(y)| dy$$
$$0 \le f(x-h) \le f(x) - hf'(x) + h \int_{x-h}^{x} |f''(y)| dy$$

Non-negativity of f:

$$0 \le f(x+h) \le f(x) + hf'(x) + h \int_{x}^{x+h} |f''(y)| dy$$
$$0 \le f(x-h) \le f(x) - hf'(x) + h \int_{x-h}^{x} |f''(y)| dy$$

Rearranging:

$$|f'(x)| \le \inf_{h>0} \left[\frac{2f(x)}{h} + 2h \cdot \frac{1}{2h} \int_{x-h}^{x+h} |f''(y)| dy \right]$$

Non-negativity of f:

00000000

$$0 \le f(x+h) \le f(x) + hf'(x) + h \int_{x}^{x+h} |f''(y)| dy$$
$$0 \le f(x-h) \le f(x) - hf'(x) + h \int_{x-h}^{x} |f''(y)| dy$$

Rearranging:

$$|f'(x)| \le \inf_{h>0} \left[\frac{2f(x)}{h} + 2h \cdot \frac{1}{2h} \int_{x-h}^{x+h} |f''(y)| dy \right]$$

$$\le \inf_{h>0} \left[\frac{2f(x)}{h} + 2h \cdot \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} |f''(y)| dy \right]$$

Non-negativity of f:

00000000

$$0 \le f(x+h) \le f(x) + hf'(x) + h \int_{x}^{x+h} |f''(y)| dy$$
$$0 \le f(x-h) \le f(x) - hf'(x) + h \int_{x-h}^{x} |f''(y)| dy$$

Rearranging:

$$|f'(x)| \le \inf_{h>0} \left[\frac{2f(x)}{h} + 2h \cdot \frac{1}{2h} \int_{x-h}^{x+h} |f''(y)| dy \right]$$

$$\le \inf_{h>0} \left[\frac{2f(x)}{h} + 2h \cdot \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} |f''(y)| dy \right]$$

$$= 2\sqrt{f(x)M[|f''|](x)}$$

Theory and Tractice of Emercial Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 0000•000	00000 0000	

Maximal Function

Theory and Practice of Differential Entropy Estimation

Definition (Hardy-Littlewood Maximal Function)

For non-negative function h, the Hardy–Littlewood maximal function M[h] is defined as

$$M[h](x) \triangleq \sup_{r>0} \frac{1}{|B(x;r)|} \int_{B(x;r)} h(y) dy.$$

Theory and Practice	Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 0000•000	00000 0000		

Maximal Function

Definition (Hardy-Littlewood Maximal Function)

For non-negative function h, the Hardy–Littlewood maximal function M[h] is defined as

$$M[h](x) \triangleq \sup_{r>0} \frac{1}{|B(x;r)|} \int_{B(x;r)} h(y) dy.$$

Theorem (Hardy-Littlewood Maximal Inequality)

The following tail bound holds:

$$\operatorname{Vol}\left\{x\in\mathbb{R}^d:M[h](x)>t\right\}\leq\frac{C_d}{t}\int h(x)dx.$$

Consequently, $||M[h]||_p \le C_p ||h||_p$ for any $p \in (1, \infty]$.

Theory and Tractice of Emercial Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
		000		

Proof of Key Lemma (Cont'd)

Theory and Practice of Differential Entropy Estimation

Recall

$$|f'(x)| \leq 2\sqrt{f(x)M[|f''|](x)}.$$

Theory and Tractice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 00000•00	00000	

Proof of Key Lemma (Cont'd)

Theory and Practice of Differential Entropy Estimation

Recall

$$|f'(x)| \le 2\sqrt{f(x)M[|f''|](x)}.$$

Consequently,

$$\int \frac{(f')^2}{f} \leq 4 \|M[f'']\|_1 \leq 4 \|M[f'']\|_p \leq 4 C_p \|f''\|_p.$$

Theory and Tractice	Theory and Tructice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000 00000•0	00000		
		000		

Applications of Maximal Function

- ► Doob's martingle inequality
- Lebesgue differentiation theorem
- Birkhoff's pointwise ergodic theorem

···, ··· · · · · · · · · ·			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	00000	
		000	

Summary

- two-stage approximation is optimal for differential entropy estimation
- polynomial-time estimator

- \blacktriangleright need to tune parameters h, K in practice
- requires the knowledge of s

	• •		
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000	•0000	
00000	0000000	0000	

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation Idea of Nearest Neighbor Estimator Analysis Numerical Results

Conclusion

Theory and Tractice of Differential Entropy Estimation			
Introduction T	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
	0000000	0000	

Another View of Differential Entropy

$$h(f) = \int -f(x) \log f(x) dx$$

Theory and Tractice of Differential Entropy Estimation			
Introduction T	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
	0000000	0000	

Another View of Differential Entropy

$$h(f) = \int -f(x) \log f(x) dx$$
$$= \mathbb{E}_f[-\log f(X)]$$

Conclusion

Another View of Differential Entropy

$$h(f) = \int -f(x) \log f(x) dx$$
$$= \mathbb{E}_f[-\log f(X)]$$
$$\approx \frac{1}{n} \sum_{i=1}^n -\log f(X_i)$$

Theory: Optimal Estimation

Practice: Adaptive Estimation

Conclusion

Another View of Differential Entropy

$$h(f) = \int -f(x) \log f(x) dx$$

$$= \mathbb{E}_f[-\log f(X)]$$

$$\approx \frac{1}{n} \sum_{i=1}^n -\log f(X_i)$$

$$\approx \frac{1}{n} \sum_{i=1}^n -\log \hat{f}(X_i)$$

Practice: Adaptive Estimation

OOOO

OOO

Conclusion

Another View of Differential Entropy

$$h(f) = \int -f(x) \log f(x) dx$$

$$= \mathbb{E}_f[-\log f(X)]$$

$$\approx \frac{1}{n} \sum_{i=1}^n -\log f(X_i)$$

$$\approx \frac{1}{n} \sum_{i=1}^n -\log \hat{f}(X_i)$$

Question

How to find a good estimator $\hat{f}(X_i)$?

Theory and Truckee of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

Nearest Neighbor Estimator

Theory and Practice of Differential Entropy Estimation

Let h_i be the distance of X_i to its nearest neighbor, we set

$$\hat{f}(X_i) \cdot \text{Vol}(B(X_i; h_i)) = \frac{1}{n}.$$

Nearest Neighbor Estimator

Let h_i be the distance of X_i to its nearest neighbor, we set

$$\hat{f}(X_i) \cdot \text{Vol}(B(X_i; h_i)) = \frac{1}{n}.$$

Kozachenko-Leonenko (KL) Nearest Neighbor Estimator

$$\hat{h}_{\mathrm{KL}} = \frac{1}{n} \sum_{i=1}^{n} \log \left[n \mathrm{Vol}(B(X_i; h_i)) \right] + \gamma$$

where $\gamma \approx$ 0.577 is Euler's constant.

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

Insights behind KL Estimator

Theory and Practice of Differential Entropy Estimation

Key Observation

For each i, $\int_{B(X_i,h_i)} f(y) dy \sim \text{Beta}(1,n-1)$.

Conclusion

Insights behind KL Estimator

Key Observation

For each i, $\int_{B(X_i,h_i)} f(y) dy \sim \text{Beta}(1,n-1)$.

Consequence

Define

$$f_h(x) = \frac{1}{\text{Vol}(B(x;h))} \int_{B(x;h)} f(y) dy$$

Practice: Adaptive Estimation

Conclusion

Insights behind KL Estimator

Key Observation

For each i, $\int_{B(X_i,h_i)} f(y) dy \sim \text{Beta}(1,n-1)$.

Consequence

Define

$$f_h(x) = \frac{1}{\text{Vol}(B(x;h))} \int_{B(x;h)} f(y) dy$$

we have

$$\mathbb{E}_f[\hat{h}_{\mathsf{KL}}] - h(f) = \mathbb{E}_f\left[\log\frac{f(X)}{f_{h(X)}(X)}\right] + \underbrace{\mathbb{E}\log[n\cdot\mathsf{Beta}(1,n-1)] + \gamma}_{=O(n^{-1})}$$

···, -·· · · · · · · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	00000000	0000		
00000	0000000	0000		

Theorem

Theory and Practice of Differential Entropy Estimation

For any d > 0 and $s \in (0,2]$, the KL estimator satisfies

$$\sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{h}_{\mathrm{KL}} - h(f)| \lesssim n^{-\frac{s}{s+d}} \log n + n^{-\frac{1}{2}}$$

,			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclu
00000	0000000	0000	

Theorem

Theory and Practice of Differential Entropy Estimation

For any d > 0 and $s \in (0,2]$, the KL estimator satisfies

$$\sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{h}_{\mathrm{KL}} - h(f)| \lesssim n^{-\frac{s}{s+d}} \log n + n^{-\frac{1}{2}}$$

Significance

optimal up to logarithmic factor

Theory and Tractice of Emercial Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	0000● 0000		
00000	0000000	0000		

Theorem

Theory and Practice of Differential Entropy Estimation

For any d > 0 and $s \in (0,2]$, the KL estimator satisfies

$$\sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{h}_{\mathrm{KL}} - h(f)| \lesssim n^{-\frac{s}{s+d}} \log n + n^{-\frac{1}{2}}$$

Significance

- optimal up to logarithmic factor
- ▶ does not use extra assumptions (e.g., boundedness of f)

Theory and Tractice of Emerchan Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	0000		
00000	0000000	0000		

Theorem

Theory and Practice of Differential Entropy Estimation

For any d > 0 and $s \in (0,2]$, the KL estimator satisfies

$$\sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{h}_{\mathrm{KL}} - h(f)| \lesssim n^{-\frac{s}{s+d}} \log n + n^{-\frac{1}{2}}$$

Significance

- optimal up to logarithmic factor
- \triangleright does not use extra assumptions (e.g., boundedness of f)
- adaptive in smoothness s

Theorem

For any d > 0 and $s \in (0,2]$, the KL estimator satisfies

$$\sup_{f \in \mathcal{H}_d^s} \mathbb{E}_f |\hat{h}_{\mathrm{KL}} - h(f)| \lesssim n^{-\frac{s}{s+d}} \log n + n^{-\frac{1}{2}}$$

Significance

- optimal up to logarithmic factor
- \triangleright does not use extra assumptions (e.g., boundedness of f)
- adaptive in smoothness s
- do not need to tune parameter

····, ···- · · · · · · · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	00000000	00000		
00000	00000000	●000		
		000		

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation

Idea of Nearest Neighbor

Estimator Analysis

Numerical Results

Conclusion

Theory and Practice of Differential Entropy Estimation			
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion
00000	0000000 0000000	00000 0 00 0	
		000	

▶ Variance of \hat{h}_{KL} : \odot

· · · · · · · · · · · · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

▶ Variance of \hat{h}_{KL} : ©

Theory and Practice of Differential Entropy Estimation

▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$

,				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	00000000	00000		
00000	0000000	0.00		

▶ Variance of \hat{h}_{KL} : ②

- ▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$
 - 1. Upper bound $\mathbb{E}_f \log \frac{f_{h(x)}(X)}{f(X)} = \int f(x) \mathbb{E} \log \frac{f_{h(x)}(x)}{f(x)} dx$: ©

Theory and Tractice of Emerchan Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000		

▶ Variance of \hat{h}_{KL} : ②

- ▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$
 - 1. Upper bound $\mathbb{E}_f \log \frac{f_{h(x)}(x)}{f(x)} = \int f(x) \mathbb{E} \log \frac{f_{h(x)}(x)}{f(x)} dx$: ②
 - 2. Upper bound $\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)} = \int f(x) \mathbb{E} \log \frac{f(x)}{f_{h(X)}(X)} dx$

Theory and Tractice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	00000000	00000		
00000	0000000	0000		
		000		

▶ Variance of \hat{h}_{KL} : ©

- ▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$
 - 1. Upper bound $\mathbb{E}_f \log \frac{f_{h(x)}(X)}{f(X)} = \int f(x) \mathbb{E} \log \frac{f_{h(x)}(x)}{f(x)} dx$: ©
 - 2. Upper bound $\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)} = \int f(x) \mathbb{E} \log \frac{f(x)}{f_{h(X)}(x)} dx$
 - ▶ If $f_{h(x)}(x)$ is large: ©

0000

Error Analysis

- ▶ Variance of \hat{h}_{KI} : ©
- ▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$
 - 1. Upper bound $\mathbb{E}_f \log \frac{f_{h(x)}(X)}{f(X)} = \int f(x) \mathbb{E} \log \frac{f_{h(x)}(x)}{f(x)} dx$: ©
 - 2. Upper bound $\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)} = \int f(x) \mathbb{E} \log \frac{f(x)}{f_{h(X)}(x)} dx$
 - ▶ If $f_{h(x)}(x)$ is large: ②
 - ▶ If $f_{h(x)}(x)$ is small: ②

- ▶ Variance of \hat{h}_{KI} : ©
- ▶ Bias of \hat{h}_{KL} : suffices to upper bound $|\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)}|$
 - 1. Upper bound $\mathbb{E}_f \log \frac{f_{h(x)}(X)}{f(X)} = \int f(x) \mathbb{E} \log \frac{f_{h(x)}(x)}{f(x)} dx$: ©
 - 2. Upper bound $\mathbb{E}_f \log \frac{f(X)}{f_{h(X)}(X)} = \int f(x) \mathbb{E} \log \frac{f(x)}{f_{h(x)}(x)} dx$
 - ▶ If $f_{h(x)}(x)$ is large: ②
 - ▶ If $f_{h(x)}(x)$ is small: ②

Question

For small $\varepsilon > 0$, find a good upper bound of

$$\mathbb{E}\left[\int f(x)\mathbb{1}(f_{h(x)}(x)\leq\varepsilon)dx\right]$$

···, -·· · · · · · - ·····					
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion		
00000	00000000	00000			
00000	00000000	0000			

Minimal Function

Definition (Minimal Function)

Theory and Practice of Differential Entropy Estimation

For non-negative function f supported on $[0,1]^d$, the minimal function m[f] is defined as

$$m[f](x) = \inf_{0 < r \le 1} \frac{1}{|Vol(B(x;r))|} \int_{B(x;r)} f(y) dy.$$

Minimal Function

Definition (Minimal Function)

Theory and Practice of Differential Entropy Estimation

For non-negative function f supported on $[0,1]^d$, the minimal function m[f] is defined as

$$m[f](x) = \inf_{0 < r \le 1} \frac{1}{|Vol(B(x;r))|} \int_{B(x;r)} f(y) dy.$$

Observation

$$\mathbb{E}\left[\int f(x)\mathbb{1}(f_{h(x)}(x)\leq\varepsilon)dx\right]\leq\int f(x)\mathbb{1}(m[f](x)\leq\varepsilon)dx$$

Introduction Theory: Optimal Estimation
00000
00000
0000000

Practice: Adaptive Estimation

○○○○

○○○

○○○

Conclusion

Generalized Maximal Inequality

Theorem (Generalized Maximal Inequality)

Let μ_1, μ_2 be two Borel measures on metric space $\Omega \subset \mathbb{R}^d$, then for any t > 0,

$$\mu_2\left\{x\in\Omega: \sup_{r>0}\frac{\mu_1(B(x;r))}{\mu_2(B(x;r))}>t\right\}\leq \frac{C_d}{t}\cdot \mu_1(\Omega).$$

Practice: Adaptive Estimation

○○○○

○○○

○○○

Conclusion

Generalized Maximal Inequality

Theorem (Generalized Maximal Inequality)

Let μ_1, μ_2 be two Borel measures on metric space $\Omega \subset \mathbb{R}^d$, then for any t > 0,

$$\mu_2\left\{x\in\Omega: \sup_{r>0}\frac{\mu_1(B(x;r))}{\mu_2(B(x;r))}>t\right\}\leq \frac{C_d}{t}\cdot \mu_1(\Omega).$$

Corollary

Choose $\mu_1 =$ Lebesgue measure, $\frac{d\mu_2}{d\mu_1} = f$, we have

$$\int f(x) \mathbb{1}(m[f](x) \le \varepsilon) dx$$

Practice: Adaptive Estimation

○○○○

○○○

○○○

Conclusion

Generalized Maximal Inequality

Theorem (Generalized Maximal Inequality)

Let μ_1, μ_2 be two Borel measures on metric space $\Omega \subset \mathbb{R}^d$, then for any t > 0,

$$\mu_2\left\{x\in\Omega: \sup_{r>0}\frac{\mu_1(B(x;r))}{\mu_2(B(x;r))}>t\right\}\leq \frac{C_d}{t}\cdot \mu_1(\Omega).$$

Corollary

Choose $\mu_1 =$ Lebesgue measure, $\frac{d\mu_2}{d\mu_1} = f$, we have

$$\int f(x)\mathbb{1}(m[f](x) \leq \varepsilon)dx \leq \mu_2 \left\{ x \in [0,1]^d : \sup_{r>0} \frac{\mu_1(B(x;r))}{\mu_2(B(x;r))} > \frac{1}{\varepsilon} \right\}$$

ntroduction Theory: Optimal Estimation

Practice: Adaptive Estimation

Conclusion

Generalized Maximal Inequality

Theorem (Generalized Maximal Inequality)

Let μ_1, μ_2 be two Borel measures on metric space $\Omega \subset \mathbb{R}^d$, then for any t > 0,

$$\mu_2\left\{x\in\Omega: \sup_{r>0}\frac{\mu_1\big(B\big(x;r\big)\big)}{\mu_2\big(B\big(x;r\big)\big)}>t\right\}\leq \frac{C_d}{t}\cdot \mu_1\big(\Omega\big).$$

Corollary

Choose $\mu_1 =$ Lebesgue measure, $\frac{d\mu_2}{d\mu_1} = f$, we have

$$\int f(x)\mathbb{1}(m[f](x) \leq \varepsilon)dx \leq \mu_2 \left\{ x \in [0,1]^d : \sup_{r>0} \frac{\mu_1(B(x;r))}{\mu_2(B(x;r))} > \frac{1}{\varepsilon} \right\}$$

$$\leq C_d \cdot \varepsilon.$$

····, ···- · · · · · · · · · · · · · ·				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	0000000	0000 •00		

Introduction

Problem Setup Related Works

Theory and Practice of Differential Entropy Estimation

Theory: Optimal Estimation Estimator Construction Estimator Analysis

Practice: Adaptive Estimation

Idea of Nearest Neighbor Estimator Analysis

Numerical Results

Conclusion

Dimensionality d

Smoothness s

Theory and Tractice of Emercial Entropy Estimation					
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion		
00000	0000000	00000			
00000	0000000	0000			

Conclusion

Take-home message:

- two-stage approximation (first approximate the function, then approximate the functional) is optimal
- nearest neighbor estimator is near-optimal and adaptive to the smoothness parameter
- Hardy-Littlewood maximal inequality is crucial to deal with density close to zero

Theory and Practice of Differential Entropy Estimation				
Introduction	Theory: Optimal Estimation	Practice: Adaptive Estimation	Conclusion	
00000	0000000	00000		
00000	00000000	0000		

References

w. and Duastics of Differential Entremy Estimation

- Yanjun Han, Jiantao Jiao, Tsachy Weissman, and Yihong Wu, "Optimal Rates of Entropy Estimation over Lipschitz Balls", arXiv preprint, arXiv:1711.02141
- ▶ Yanjun Han, Jiantao Jiao, Rajarshi Mukherjee, and Tsachy Weissman, "On Estimation of *L_r*-Norms in Gaussian White Noise Models", *arXiv preprint*, *arXiv:1710.03863*.
- ▶ Jiantao Jiao, Weihao Gao, and Yanjun Han, "The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal", arXiv preprint, arXiv:1711.08824.