

# Relatório Integração de Sistemas de Informação

No.12747 – João Carvalho

# Licenciatura em Engenharia Sistemas Informáticos 3ºano

Barcelos | Outubro, 2024

# Índice

| 1. | Intro     | duçãodução           | 1  |
|----|-----------|----------------------|----|
| 2. | Desa      | fio                  | 2  |
| 2  | 2.1.      | Processos utilizados | 3  |
| 3. | Dese      | nvolvimento          | 5  |
| 3  | 3.1.      | Transformação        | 5  |
| 3  | 3.2.      | Job                  | 19 |
| 4. | Vídeo     | 0                    | 23 |
| 5. | Conclusão |                      | 24 |
| 6. | Anexos    |                      | 25 |
| 7  | Riblio    | ngrafia              | 26 |



# Índice de Figuras

| Figura 1 - Definição das colunas de dados para os pedidos à API REST | 5  |
|----------------------------------------------------------------------|----|
| Figura 2 - Definição dos parâmetros                                  | 5  |
| Figura 3 - Pedido à API com o URL e Method definido na Data Grid     | 6  |
| Figura 4 - Filtragem da resposta do pedido de identificador da API   | 7  |
| Figura 5 - Atribuição do valor da tag à variável API_KEY             | 7  |
| Figura 6 - Seleção de valores a utilizar nos passos seguintes        | 8  |
| Figura 7 - Pedido à API para obtenção de dados de refugiados         | 9  |
| Figura 8 - Parâmetros passados no pedido à API                       | 10 |
| Figura 9 - Filtragem dos dados da variável result                    | 11 |
| Figura 10 - Mapeamento dos dados para as variáveis correspondentes   | 11 |
| Figura 11 - Seleção dos valores JSON da resposta                     | 12 |
| Figura 12 - Normalização das datas                                   | 13 |
| Figura 13 - Transformação dos campos das datas                       | 13 |
| Figura 14 - Ordenação dos dados pela coluna Start                    | 14 |
| Figura 15 - Exportação XML dos dados                                 | 14 |
| Figura 16 - Filtragem dos dados                                      | 15 |
| Figura 17 - Exportação Excel                                         | 16 |
| Figura 18 - Mapeamento das colunas                                   | 17 |
| Figura 19 - Visão geral da transformação                             | 18 |
| Figura 20 - Validação existência do ficheiro exportado               | 19 |
| Figura 21 - Configuração do email                                    | 20 |
| Figura 22 - Assunto e Mensagem a enviar no email                     | 21 |

# Relatório Integração Sistemas Informação

| Figura 23 - Definição de ficheiro a anexar no email | . 22 |
|-----------------------------------------------------|------|
|                                                     |      |
| Figura 24 - Visão geral do Job                      | . 22 |



### 1. Introdução

Este projeto integra-se no âmbito da unidade curricular de Integração de Sistemas de Informação (ISI), lecionada no primeiro semestre do terceiro ano do curso de Licenciatura em Engenharia de Sistemas Informáticos. O trabalho proposto visa aprofundar o conhecimento e a aplicação de técnicas e ferramentas ETL (*Extract, Transformation, and Load*) para integração de sistemas de informação, com foco na manipulação e consolidação de dados provenientes de múltiplas fontes.

Para a realização do projeto, será utilizado o Pentaho Data Integration (Kettle), uma das principais ferramentas ETL *open-source*, que permite a transformação e o fluxo automatizado de dados entre diferentes sistemas. Esta escolha proporciona um ambiente de desenvolvimento visual, facilitando a criação de fluxos de trabalho complexos para transformar, normalizar e carregar dados, o que é fundamental para a obtenção de dados integrados e coerentes num sistema central.

Ao longo do projeto, serão abordados desafios comuns em cenários de integração, como a necessidade de extração de dados de diferentes fontes, transformação conforme regras de negócio específicas e carregamento eficiente em sistemas de destino. Este processo de experimentação e aplicação prática permitirá consolidar o conhecimento teórico em torno dos conceitos de ETL, explorando a interligação de sistemas numa infraestrutura centralizada de dados e simulando condições reais do ambiente profissional de engenharia de sistemas informáticos.



### 2. Desafio

Neste trabalho, a API *Humanitarian Data Exchange* (HAPI) foi utilizada como uma fonte externa de dados para integrar e enriquecer as informações no processo de ETL realizado no Pentaho Data Integration (Kettle). Através da API de refugiados do *Humanitarian Data Exchange*, obtivemos dados atualizados e detalhados sobre o número de refugiados que entraram em Portugal, juntamente com a distribuição das nacionalidades desses indivíduos.

O fluxo de trabalho foi construído de forma a fazer chamadas à API, utilizando funcionalidades para obter e carregar dados de entrada de refugiados em Portugal, categorizados por nacionalidade. Esta integração permitiu que os dados fossem transformados e preparados no Kettle para gerar métricas.

Além disso, a API trouxe uma camada adicional de automação e consistência ao processo, uma vez que possibilitou a atualização periódica dos dados sem a necessidade de importações manuais. Este método, combinado com as capacidades de transformação e manipulação de dados do Kettle, forneceu uma visão analítica importante para a análise das tendências migratórias de refugiados para Portugal, garantindo que o projeto reflita dados precisos e em tempo real.

Esta integração, portanto, proporcionou uma aplicação prática na recolha e análise de dados de sistemas externos, permitindo um maior entendimento da utilização de APIs no contexto da integração de sistemas de informação e enriquecendo o projeto com dados reais e dinâmicos.



#### 2.1. Processos utilizados

Para a realização deste trabalho foram utilizados os seguintes processos:

#### Data Grid

 Permite criar e inserir dados manualmente numa transformação, sendo útil para testes, tabelas de referência e dados temporários.

#### Rest Client

 Permite fazer pedidos a APIs REST externas para obter, enviar ou atualizar dados, integrando essas informações ao fluxo de transformação para serem processadas ou armazenadas.

#### JSON Input

 Usado para ler e processar dados em formato JSON, extraindo informações específicas para serem manipuladas dentro do fluxo de transformação, como se fosse uma fonte de dados.

#### Select Values

 Permite selecionar, renomear, reordenar, remover e alterar o tipo de dados das colunas numa transformação, facilitando a gestão e a organização dos dados antes de etapas posteriores no fluxo.

#### Modified JavaScript Value

 Permite manipular e transformar dados através de código JavaScript personalizado, facilitando operações complexas e condicionais durante o processo de ETL.

#### Sort Rows

 Utilizado para ordenar dados numa tabela ou fluxo, facilitando o préprocessamento, a análise e a preparação para operações subsequentes.

#### Filter Rows

 Usado para selecionar ou descartar linhas de dados com base em condições específicas, permitindo refinar conjuntos de dados antes de outras operações no processo de ETL.



#### Microsoft Excel Writter

 Utilizado para exportar dados processados para arquivos no formato Excel (.xls ou .xlsx), permitindo a criação de relatórios e a exportação de dados de forma estruturada e fácil de manipular.

#### XML Output

Utilizado para exportar dados processados para arquivos no formato XML,
permitindo a criação de documentos estruturados que podem ser utilizados para integração com outros sistemas ou armazenamento de dados.

#### • File Exists

 Utilizado para verificar a existência de um ficheiro ou diretório específico no sistema de ficheiros, permitindo controlar o fluxo de execução do processo de ETL com base na presença ou ausência desse ficheiro.

#### Mail

 Utilizado para enviar e-mails a partir do fluxo de ETL, permitindo a notificação de eventos, relatórios ou alertas com dados processados diretamente do Kettle.



### 3. Desenvolvimento

### 3.1. Transformação

Para este trabalho foi utilizado uma transformação de uma API de dados externa. O primeiro passo foi a criação de uma Data Grid de apenas uma linha com os diferentes parâmetros para executar os pedidos à API.



Figura 1 - Definição das colunas de dados para os pedidos à API REST



Figura 2 - Definição dos parâmetros



De seguida, foi utilizado o processo Rest Client para fazer o pedido à API para obter o identificador a usar nos diferentes endpoints, no *endpoint* definido nos parâmetros na Figura 2.



Figura 3 - Pedido à API com o URL e Method definido na Data Grid

O *URL* e o método do pedido à API, bem como os consequentes parâmetros usados nos pedidos à API tiveram de ser inseridos na Data Grid devido a uma limitação de *software* do Kettle que não permite passar parâmetros na aba 'Parameters' se o tipo de pedido for *GET*.



Após o pedido, foi utilizado o JSON Input para filtrar a resposta devolvida pela API ao pedido, utilizando para isso a variável *result* definida no passo anterior como nome de variável para o resultado, sendo depois esse valor da resposta atribuída à variável *API\_KEY*.



Figura 4 - Filtragem da resposta do pedido de identificador da API



Figura 5 - Atribuição do valor da tag à variável API\_KEY



Depois de obtida a resposta, é utilizado o Select Values para obter as variáveis a usar nos passos seguintes.



Figura 6 - Seleção de valores a utilizar nos passos seguintes

Depois de definidas as variáveis a utilizar nos próximos passos, passou-se à obtenção dos dados da API, já com a API\_KEY obtida junto com os parâmetros que o *endpoint* permite, definidos pela documentação da API.





Figura 7 - Pedido à API para obtenção de dados de refugiados

Mais uma vez, foi necessário definir o método do pedido através da variável Method, para permitir que a aba 'Parameters' estivesse ativa para passar os restantes parâmetros no pedido à API.





Figura 8 - Parâmetros passados no pedido à API

Tal como no passo seguinte do pedido para obter a API\_KEY, utilizei novamente o JSON Input para filtrar o resultado do pedido à API, indicando novas colunas e quais os paths para a obtenção dos dados no JSON da resposta da API, novamente obtendo os dados da variável result, definida no pedido à API.



### Relatório Integração Sistemas Informação



Figura 9 - Filtragem dos dados da variável result



Figura 10 - Mapeamento dos dados para as variáveis correspondentes



No passo seguinte utilizei novamente o Select Values para obter as variáveis dos dados resultantes do JSON.



Figura 11 - Seleção dos valores JSON da resposta



Depois de obtidos os dados, procedi à normalização dos campos das datas, utilizando para isso o processo Modified Javascript Value, para substituir parte da *string* das datas.



Figura 12 - Normalização das datas

Utilizei novamente o Select Value após este passo, para transformar os campos de datas para o tipo DATE na aba 'Meta-Data' com o respetivo formato.



Figura 13 - Transformação dos campos das datas



↓ Sort rows Nome do Step Ordenação por Data de In Sort directory %%java.io.tmpdir%% Navega... TMP-file prefix out Sort size (rows in memory) 1000000 0 Free memory threshold (in %) 0 Compress TMP Files? � 🗆 Ô Only pass unique rows? (verifies keys only) Fields: Fieldname Case sensitive compare? Collator Strength Ascending Sort based on current locale? Presorted? START Ν ? Help OK Obtem campos Cancela

Após a normalização dos campos das datas, procedi à ordenação dos dados pela coluna START.

Figura 14 - Ordenação dos dados pela coluna Start

Após este passo, é gerado um ficheiro XML com todos os dados presentes e ordenados, passível de ser usado por um outro sistema caso seja necessário.



Figura 15 - Exportação XML dos dados



Apliquei de seguida uma filtragem aos dados presentes para demonstrar que é possível aprimorar os dados para obtermos apenas os dados necessários nas condições que desejámos.



Figura 16 - Filtragem dos dados

Após a filtragem, seguiu-se a exportação dos dados para um ficheiro de formato Excel, para uma melhor compreensão e gestão por parte dos utilizadores que desejem ter estes dados.





Figura 17 - Exportação Excel





Figura 18 - Mapeamento das colunas





Figura 19 - Visão geral da transformação



## 3.2. Job

Foi criado um Job para permitir o envio do ficheiro Excel exportado na transformação para um email definido. Para isso foi incluída a execução da transformação dentro do Job, seguido de uma validação da existência do ficheiro exportado.



Figura 20 - Validação existência do ficheiro exportado

Caso esta validação seja positiva, ou seja, o ficheiro existe, é enviado então o email com as configurações definidas.





Figura 21 - Configuração do email





Figura 22 - Assunto e Mensagem a enviar no email





Figura 23 - Definição de ficheiro a anexar no email



Figura 24 - Visão geral do Job



# 4. Vídeo

Deixo abaixo o código QR gerado com o link para o vídeo da execução do processo de transformação dos dados.





### 5. Conclusão

Este trabalho demonstrou que as ferramentas de ETL (Extract, Transform, Load) oferecem uma vasta gama de recursos para a integração, transformação e análise de dados. A experiência adquirida ao explorar essas ferramentas foi bastante enriquecedora, permitindo compreender diversas funcionalidades que se destacam pela simplicidade e versatilidade.

Além disso, a capacidade de se integrar com outras ferramentas, como bases de dados e APIs, e de extrair dados de múltiplas fontes, transformando-os conforme as necessidades específicas e carregando-os nos destinos desejados, representa um grande diferencial.

Os conhecimentos adquiridos nesta disciplina não apenas ampliam a compreensão dos processos ETL, mas também podem ser aplicados diretamente no contexto profissional, facilitando a resolução de desafios relacionados ao tratamento de dados.

Em resumo, as ferramentas de ETL são uma excelente escolha para análise e tratamento de dados, oferecendo vantagens significativas para seus usuários e contribuindo para o desenvolvimento de habilidades práticas no mercado de trabalho.



# 6. Anexos

- o <u>Exemplo Exportação Excel</u>
- o Exemplo Exportação XML



# 7. Bibliografia

#### o API

- https://hdx hapi.readthedocs.io/en/latest/data\_usage\_guides/affected\_people/#refugees persons-of-concern
- o <a href="https://hapi.humdata.org/docs#/">https://hapi.humdata.org/docs#/</a>

#### Kettle

https://docs.hitachivantara.com/r/en-us/pentaho-data-integration-and-analytics/10.1.x/mk-95pdia000/getting-started-with-pdi/pentaho-data-integration-pdi-tutorial/step-1-extract-and-load-data

