

Neuronske mreže

Agenda

- Autoenkoderi
- Transfer Learning
- Sequence To Sequence
- Dodatno čitanje

- Veštačka neuronska mreža koja se koristi za učenje efikasnog kodiranja
- Cilj je naučiti kompresovanu, distribuiranu reprezentaciju podataka
- Isti podaci se dovode i na ulaz i na izlaz:
 - Formalno nema labele ⇒ nenadgledano učenje
 - Tehnički, pošto se podaci dovode i na ulaz ⇒ nadgledano učenje.

- Osnovna struktura:
 - Feed-forward MLP sa:
 - Istim brojem ulaznih i izlaznih neurona
 - Nekoliko skrivenih slojeva
 - Za razliku od standardnog MLP, autoenkoder uči da rekonstruiše ulaz
 - Enkoder deo mreže koji uči efikasno kodiranje podataka
 - Dekoder deo mreže koji uči efikasno dekodiranje (rekonstrukciju) podataka.

- Varijacije:
 - Denoising Autoencoder (DAE) ulaz sa šumom, na izlazu se očekuje rekonstruisan ulaz, ali bez šuma

- Varijacije:
 - Stacked Autoencoder (SAE) suštinski deep autoenkoder, ima više skrivenih slojeva

- Varijacije:
 - Convolutional Autoencoder (CAE) autoenkoder sa konvolutivnim slojevima

- Obučavanje:
 - Standardni Backpropagation sa nekim od Gradient Descent algoritama
 - Cilj je što više smanjiti razliku između ulaza i rekonstruisanog izlaza:
 - Često se minimizuje MSE (Mean Squared Error) između svih ulaznih neurona i njima odgovarajućih izlaznih neurona.

- Upotreba:
 - Učenje osobina podataka
 - Smatra se da će autoenkoder tokom učenja rekonstrukcije ulaza naučiti i neke osobine podataka:
 - Konvolutivni autoenkoder nauči iste filtere kao i CNN

- Upotreba:
 - Jako korisni ako nema puno obeleženih podataka:
 - Neobeleženi podaci se daju autoenkoderu pretraining
 - Nakon pretraining-a, uzima se samo enkoder deo mreže
 - Na pretrenirani enkoder doda se još par slojeva i takva mreža se obučava nad obeleženim podacima - fine-tuning.

Upotreba:

- Primeri:
 - Simple Autoencoder
 - Convolutional Autoencoder

• *CNN* - podsetnik:

- Poznate CNN:
 - LeNet-5
 - AlexNet
 - GoogLeNet
 - VGGNet
 - ResNet

- Transfer Learning:
 - CNN kao fiksan esktraktor osobina
 - Fiksiramo težine unutar CNN, a ponovo treniramo samo MLP
 - Menja se samo klasifikator koji dolazi posle CNN

Transfer Learning Transfer learning be like

- Fine-tuning:
 - Fiksiraju se težine unutar početnih slojeva (pretpostavka o jednostavnosti osobina), a kasniji slojevi se dotreniraju nad novim skupom podataka
 - Ne retrenira se samo MLP, nego i dublji slojevi CNN

Target Dataset

Feature Extraction

Classifier

(a)

Fine-tuning

(c)

- Primer:
 - VGG16 Fine tuning

- Da li je moguće napraviti univerzalan Language model koji bi se mogao koristiti u raznim NLP (Natural Language Processing) zadacima (kao što koristimo pretrenirane VGGNet, ResNet, ...)?
- Više pokušaja istraživanja u ovom smeru.

– Primeri

• RNN - Primer klasifikacije sekvence (podsetnik):

What time is it?

Tokenizacija rečenice na reči

RNN - Primer klasifikacije sekvence (podsetnik):

What time is it ?

Dovođenje prve reči na RNN. RNN kodira ulaz i vraća rezultat.

RNN - Primer klasifikacije sekvence (podsetnik):

Dovođenje druge reči na RNN. Pored druge reči, dovodi se i skriveno stanje iz prethodnog koraka. RNN ima transformaciju i "What" i "time".

Primer klasifikacije sekvence:

Proces se ponavlja do kraja sekvence. Rezultat je kodiranje cele ulazne sekvence reči.

RNN - Primer klasifikacije sekvence (podsetnik):

Pošto vektor **O5** sadrži kodirane informacije o celoj sekvenci, njega možemo poslati na neki klasifikator (recimo običan MLP) da bi izvršili klasifikaciju sekvence.

- Kako smo vršili kodiranje reči?
 - One-hot encoding
 - Svaka reč je imala svoj word vector, koji u sebi sadrži samo jednu jedinicu i n-1 nula, gde je n ukupan broj svih poznatih reči
 - Word vector smo dobijali tako što stavimo 1 na indeks date reči u rečniku svih poznati reči
 - Širina vektora = veličina rečnika
 - Jako loša osobina One-hot encoding-a

- Da li kod one-hot encoding-a imamo informaciju o tome koliko su određene reči "slične"?
 - Ako u rečniku imamo reči ["doberman", "senka", "vernost", "dresiran"], one-hot nam neće dati informaciju o tome koje reči su potencijalno bliske.

- Word2Vec:
 - Koncept prvi put predstavljen 2013. godine
 - Ideja je u tome da se ulazni one-hot (sparse) vektori projektuju na prostor mnogo manjih dimenzija (dense prostor), u kome će sami vektori sadržavati i neke osnovne informacije o semantici koju te reči nose
 - O Dve implementacije:
 - skip-gram
 - continuous bag of words (CBOW)

CBOW

Skip-gram

Word vektori
 obučeni kroz
 Word2Vec pristup
 pokazuju
 interesantno
 ponašanje:

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city All capital cities Currency City-in-state Man-Woman	Athens Astana Angola Chicago brother	Greece Kazakhstan kwanza Illinois sister	Oslo Harare Iran Stockton grandson	Norway Zimbabwe rial California granddaughter
Adjective to adverb Opposite Comparative Superlative	apparent possibly great easy	apparently impossibly greater easiest	rapid ethical tough lucky	rapidly unethical tougher luckiest
Present Participle Nationality adjective Past tense Plural nouns Plural verbs	think Switzerland walking mouse work	thinking Swiss walked mice works	read Cambodia swimming dollar speak	reading Cambodian swam dollars speaks

Moguće vršiti vektorsku aritmetiku: king - man + woman = queen

Spain

Italy Madrid

Germany Berlin

Turkey Ankara

Russia Moscow

Canada Ottawa

Japan Tokyo

Vietnam Hanoi
China Beijing

Country-Capital

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Transfer Learning

• GloVe:

- Prvi put objavljen 2014. godine
- GloVe vektori se baziraju na co-occurence count matrici
- U početku se napravi velika matrica nad kojom se vrši faktorizacija
- Ideja jeste da se smanji dimenzionalnost tako što će se zadržati komponente koje će u sebi sadržati većinu varijanse iz početnog skupa podataka.
- Stranica projekta

— Transfer Learning

- Primer:
 - Word2Vec

Transfer Learning

...

- Embedding Keras implementacija:
 - Dovoljno je dodati Embedding Layer
 - Omogućava i učitavanje pretreniranih embedding vektora

```
model_forward = Sequential()
model_forward.add(Embedding(max_features, embedding_size, input_length=maxlen, mask_zero=True))
model_forward.add(LSTM(hidden_size))
```

— Transfer Learning

- Primer:
 - RNN Binary Classification

- Primene RNN u NLP za Sequence-To-Classification klasu problema:
 - Klasifikacija teksta
 - Detekcija sentimenta
 - Topic modeling (supervised)
 - O ..

- Druga klasa problema, čijem se rešavanju često pristupa korišćenjem RNN je Sequence-To-Sequence:
 - Named Entity Recognition (NER)
 - Neural Machine Translation (NMT)
 - Chatbot
 - Text Summarization
 - Question Answering
 - Speech-to-Text
 - O ..

- Sequence To Sequence model:
 - Ideja: Na osnovu ulazne sekvence generisati izlaznu sekvencu

- Seguence To Seguence model:
 - Transformacija teksta u vektor fiksne dužine:
 - Kreiranje rečnika (svaka reč opisana svojim indeksom u rečniku)
 - Tretiranje nepoznatih reči
 - Zero Padding:
 - dopunjavanje kraćih sekvenci

```
[3, 2, 1, 4, 12, 7, 8, 6, 5, 0],

[3, 2, 1, 4, 16, 7, 8, 6, 5, 0],

[3, 2, 1, 4, 16, 14, 16, 16, 16, 5],

[3, 16, 9, 16, 16, 0, 0, 0, 0, 0],

[10, 11, 15, 0, 0, 0, 0, 0, 0, 0]
```

- Sequence To Sequence model:
 - Česti koraci:
 - Word Embedding (Word2Vec, GloVe)
 - Reversed input
 - Bidirectional LSTM
 - Teacher Forcing
 - Attention Mechanism

- Sequence To Sequence model:
 - o Bidirectional LSTM:
 - 2 LSTM mreže (za svaki smer po jedna)

- Sequence To Sequence model:
 - Teacher Forcing:
 - Koristi se u modelima gde izlaz modela zavisi od izlaza u prethodnom trenutku (output as input in sequence prediction) i predstavlja tehniku obučavanja RNN
 - Primena u NMT, sumarizaciji...
 - Razlika Teacher Forcing tehnike i obučne rekurentne tehnike je u tome što se u sledećem momentu ne dovodi izlaz iz prethodne iteracije, nego se dovodi stvarna vrednost (iz skupa podataka) koja je trebala biti izlaz u prethodnoj iteraciji

- Sequence To Sequence model:
 - Teacher Forcing:
 - Npr., neka sekvenca bude "Neuronske mreže master"
 - Početna reč je "Neuronske", predviđamo sledeću:
 - Obična rekurentna tehnika nakon prve iteracije može da vrati reč "proteze"
 - Reč "proteze" bi se dovodila u sledećoj iteraciji i samo produbljivala grešku u toku obučavanja, što usporava proces
 - Kod Teacher Forcing tehnike, čak i ukoliko RNN vrati "proteze" kao sledeću reč u sekvenci, mi ćemo tu reč odbaciti kao sledeći ulaz u sekvenci i u trening fazi na RNN dovesti reč "mreže", kako je navedeno u skupu podataka.

- Sequence To Sequence model:
 - Attention Mechanism:
 - Jednostavan mehanizam koji se ubacuje u prostor između enkodera i dekodera
 - Ovo dekoderu omogućava da uhvati više "globalnih" informacija, a ne samo poslednje skriveno stanje iz enkodera

 Neural Machine Translation

Named Entity Recognition (NER)

Text Summarization

Abstractive Text Summarization

- *NLP* resursi:
 - CoreNLP
 - CoreNLP Demo
 - spaCy
 - Software.

- Korišćenjem word embedding-a podižemo tačnost modela, pošto smo uveli semantički bogatije vektore nižeg nivoa dimenzionalnosti, u odnosu na one-hot vektore.
- Šta ako se pojavi reč koja ne postoji u rečniku?
 - Možda nam nije poznata
 - Možda je typo
 - Možda se samo nalazi u drugom obliku (recimo u množini)
 - O ...
 - o O ovome na sledećem terminu:)

Dodatno čitanje

Dodatno čitanje

- <u>Transfer Learning and Fine-tuning Convolutional Neural</u> <u>Networks</u>
- <u>Efficient Estimation of Word Representations in Vector</u>
 <u>Space</u>
- GloVe: Global Vectors for Word Representation
- Attention Is All You Need

Hvala na pažnji!

rend hard

Pitanja?