

Bild = Eröffnungsbild des Programms bzw. Login-Seite (16:9)

Name	:	_ (Wie auf dem Studentenausweis geschrieben
Vorname	:	(Wie auf dem Studentenausweis geschrieben
Matrikelnummer	:	(6 Stellen in der Form: 5)
Ouerverweis auf di	ie Spielregeln nach den	n Login.

ODER Spielregeln zu Beginn immer lesen und bestätigen lassen. Alternativ: Wichtigste Spielregeln kurz auf der Login-Page nennen, u.a.:

Die Matrikelnummer wird bei der Kontrolle der Aufgaben stets mit der im LSF hinterlegten Nummer abgeglichen. Es macht keinen Sinn, eine fremde Matrikelnmmer zu verwenden.

- 1. Sie müssen im Internet sein und Zugang zur Seite: www.stone-at-htw-berlin.de (Vorschlag) haben.
- 2. Login mit der eigenen Matrikelnummer, Name, Vorname
- 3. STONE zeigt den letzten gespeicherten Arbeitsstand zu Ihrer Matrikelnummer.
- 4. Sie können die anstehende Aufgabe zum download anfordern und individuell bearbeiten.
- 5. Ergebnisse bei STONE eintragen und prüfen lassen.
- 6. Wenn alles richtig ist, Bestätigungsblatt mit Lösungen ausdrucken lassen und abgeben.
- 7. STONE speichert den aktualisierten Bearbeitungsstand automatisch und gibt die folgende Aufgabe frei.
- 8. Abmeldung von STONE erfolgt automatisch nach 15 Minuten Inaktivität.

Aufgabentypen - Parametertabellen

Teil 1: Lastreduktion und Lastdisduktion

a) Theorieteil als Multiple Choice

- s. Konzeptdatei
- b) Zusammenfassen von Lasten bis zur Punktlast
- c) Verteilen von Lasten bis zur Flächenlast
- d) Eigenlasten, Lastschwerpunkt von Körpern

Für zwei individuell vorgebene Aufgabentypen (Tabellenzeile) sind je zwei zu berechnen:				
Lasten reduzieren Lastresultierende und Lastschwerpunkt einer Böschung				
Lasten disduzieren Lastverteilung auf einer Decke und einem Brückenüberbau				

Skizzen vorbereiten, Maße und Beschreibung aus der Matrikelnummer ermitteln. Verwendet werden die letzten drei Ziffern (x4,x5,x6). Ein Jahrgangskorrekturwert wird aus dem ersten drei Ziffern ermittelt (x1,x2,x3).

Aufgabentypen:	a) Flächenlast einer Decke	Belag	a
	LAN1	Estrich	b
		Dämmung	C
		Rohdecke	d
		Unterdecke	e
	b) Flächenlast eines Dachaufbaus	Deckung	a)
	LAN2		

<u>Teil 2: Lastannahmen – Teil 1</u>

a) Theorieteil als Multiple Choice

- s. Konzeptdatei
- b) Eigenlasten und Nutzlasten nach EN 1991-1-1
- c) Schneelasten nach EN 1991-1-3
- d) charakteristische Werte, Designwerte

je Tabellenzeile 2 Beispiele rechnen lassen, Automation der vorhandenen Arbeitsblätter über Schichtdicken und Gebäudeabmessungen (Grundmaße und Firsthöhe sowie Dachneigung).

Für drei individuell vorgebene Aufgabentypen (Tabellenzeile) sind je zwei zu berechnen:				
Eigen- und Nutzlasten	LAN-1 Eigenlasten einer Massivdecke und Nutzlasten LAN-2 Eigenlasten eines Dachaufbaus Charakteristische Werte und Designwerte angeben			
Schneelasten für ein Haus mit Satteldach	LAN-3 Schneelasten für ein Haus mit Sateldach Charakteristische Werte und Designwerte angeben für die drei wichtigsten Lastfälle, Dachneigung und Schneelastzone, Grundrissabmessungen, Traufhöhe			
Lastkombinationen	LAN-4 G, Q, S, inkl. Kombinationsbeiwerte für alle Leiteinwirkungen, Kombination vorgeben			

Aufgabentypen:	a) Flächenlast einer Decke	Belag	a01
	LAN-1	Estrich	b01
		Dämmung	c01
		Rohdecke	d01
		Unterdecke	e01
		geplante Nutzung	f01
	b) Flächenlast eines Dachaufbaus	Deckung	a02
	LAN-2	Sparren	b02
		Dämmung	c02
		Unterdecke	c03
	c) Schneelasten	Dachneigung	a03
	LAN-3	Schneelastzone	b03

Teil 3: Lastannahmen – Teil 2

a) Theorieteil als Multiple Choice

s. Konzeptdatei

- b) Windlasten nach EN 1991-1-4
- c) charakteristische Werte, Designwerte
- d) Lastkombinationen, Kombinationsbeiwerte

je Tabellenzeile 2 Beispiele rechnen lassen, Automation der vorhandenen Arbeitsblätter über Schichtdicken und Gebäudeabmessungen (Grundmaße und Firsthöhe sowie Dachneigung).

Für drei individuell vorgebene Aufgabentypen (Tabellenzeile) sind je zwei zu berechnen:				
Windlasten $\Theta=0^\circ$ $c_{pe,10}$, charakteristische Werte und Designwerte angeben				
Windlasten $\Theta = 90^{\circ}$	$c_{\it pe,10}$, charakteristische Werte und Designwerte angeben			
Lastkombinationen	G, W in Kombination			

Teil 4: Träger auf zwei Stützen, Stützkräfte

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>drei Aufgaben</u> freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für je 2 Lastfälle generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabelle mit zu generierenden Werten für STONE-Teil 4:

1		$F_{{\scriptscriptstyle Ed},1}$		$q_{\scriptscriptstyle Ed,1}$	
Param.	Wert	Param.	Wert	Param.	Wert
c=0	6,3	d=0	18,1	e=0	2,1
c=1	6,1	d=1	19,2	e=1	2,2
c=2	5,9	d=2	21,3	e=2	2,3
c=3	5,7	d=3	22,1	e=3	2,4
c=4	5,5	d=4	23,2	e=4	2,5
c=5	5,3	d=5	24,3	e=5	2,6
c=6	5,1	d=6	25,4	e=6	2,7
c=7	4,9	d=7	26,1	e=7	2,8
c=8	4,7	d=8	27,2	e=8	2,9
c=9	4,5	d=9	28,3	e=9	3,1

Auswahlparameter für die Querschnittsabmessungen:

c = **Stützweitenparameter** (10 verschiedene Stützweiten *l*)

daraus resultiert: $l_1 = 0.6 \cdot l + 0.1$

daraus resultiert: $l_2 = 0.55 \cdot l + 0.2$, je auf 1 Stelle nach dem Komma gerundet

daraus resultiert: $l_a = 0.3 \cdot l - 0.1$

d = Einzellastparameter (10 verschiedene Grundeinzellasten $F_{Ed.1}$)

daraus resultiert: $F_{Ed,2} = 0.72 \cdot F_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

e = Streckenlastparameter (10 verschiedene Grundstreckenlasten $q_{Ed,1}$)

daraus resultiert: $q_{Ed,2} = 1,14 \cdot q_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

= 1000 verschiedene, pro Jahrgang einmalige Kombinationen.

STONE - Aufgabe Nr. 04-01-nr

Berechnen Sie für den dargestellten Träger auf 2 Stützen mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]							
Alle Lastfälle Lastfall 1 Lastfall 2							
1	l_1	$F_{{\scriptscriptstyle Ed},1}$	l_1	$F_{{\scriptscriptstyle Ed},2}$			
	<u>1</u> 2						

Ergebnisse									
Lastfall 1				Lastfall 2			Superposition		
$A_{H,1}$	$A_{V,1}$	$B_{V,1}$	$A_{H,2}$	$A_{V,2}$	$B_{ m V,2}$	$A_{H,S}$	$A_{V,S}$	$B_{V,S}$	

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 04-02-nr

Berechnen Sie für den dargestellten Träger auf 2 Stützen mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]								
Alle Lastfälle	Alle Lastfälle Lastfall 1					fall 2		
1	l_1	l_a	$q_{{\scriptscriptstyle Ed},1}$	l_1	l_a	$q_{\scriptscriptstyle Ed,2}$		
	0	1						

Ergebnisse								
Lastfall 1			Lastfall 2			Superposition		
$A_{H,1}$	$A_{V,1}$	$B_{V,1}$	$A_{H,2}$	$A_{V,2}$	$B_{V,2}$	$A_{H,S}$	$A_{V,S}$	$B_{V,S}$

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte

STONE - Aufgabe Nr. 04-03-nr

Berechnen Sie für den dargestellten Träger auf 2 Stützen mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]								
Alle Lastfälle		Lasti	fall 1		Last	fall 2		
1	l_1	l_a	$q_{{\scriptscriptstyle Ed},1}$	l_1	l_a	$q_{\scriptscriptstyle Ed,2}$		
	0	1						

 q_{Ed} a b l_1 l_a

	Ergebnisse								
	Lastfall 1			Lastfall 2 Superposition			n		
$A_{H,1}$	$A_{V,1}$	$B_{V,1}$	$A_{H,2}$	$A_{V,2}$	$B_{V,2}$	$A_{H,S}$	$A_{V,S}$	$B_{V,S}$	

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken Ausdruck der Ergebnisse : hier klicken

Zur nächsten Aufgabe : hier klicken

Bei "Klick" auf "Erläuterung der gesuchten Werte" im Teil 4 erscheint diese Tabelle:

Im STONE-Teil 4 sind zu bere	echnen:
Stützkräfte horizontal	Lastfall 1: $A_{H,1}$ Lastfall 2: $A_{H,2}$
Stützkräfte vertikal	Lastfall 1: $A_{V,1}$, $B_{V,1}$ Lastfall 2: $A_{V,2}$, $B_{V,2}$
Superponierte Stützkräfte	$A_{H,S}$, $A_{V,S}$, $B_{V,S}$
Indizierung	1 = Lastfallindex a = linkes Auflager (unverschieblich) H = horizontal b = rechtes Auflager (verschieblich) V = vertikal S = Superposition
Weitere Erläuterungen in den	Lehrveranstaltungen.

Teil 5: Kragarm, Stützkräfte

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>drei</u> Aufgaben freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für je 2 Lastfälle generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.

4. Tabelle mit zu generierenden Werten für STONE-Teil 5 (anders als bei Teil 4 durch Parametertausch)

1		$F_{\scriptscriptstyle Ed}$	',1	,1	
Param.	Wert	Param.	Wert	Param.	Wert
d=0	6,3	e=0	18,1	c=0	2,1
d=1	6,1	e=1	19,2	c=1	2,2
d=2	5,9	e=2	21,3	c=2	2,3
d=3	5,7	e=3	22,1	c=3	2,4
d=4	5,5	e=4	23,2	c=4	2,5
d=5	5,3	e=5	24,3	c=5	2,6
d=6	5,1	e=6	25,4	c=6	2,7
d=7	4,9	e=7	26,1	c=7	2,8
d=8	4,7	e=8	27,2	c=8	2,9
d=9	4,5	e=9	28,3	c=9	3,1

Auswahlparameter für die Querschnittsabmessungen:

d = Stützweitenparameter (10 verschiedene Stützweiten *l*)

daraus resultiert: $l_1 = 0.6 \cdot l + 0.1$

daraus resultiert: $l_2 = 0.55 \cdot l + 0.2$, je auf 1 Stelle nach dem Komma gerundet

daraus resultiert: $l_a = 0.3 \cdot l - 0.1$

 \mathbf{e} = **Einzellastparameter** (10 verschiedene Grundeinzellasten $F_{{\scriptscriptstyle Ed},1}$)

daraus resultiert: $F_{Ed,2} = 0.72 \cdot F_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

 \mathbf{c} = **Streckenlastparameter** (10 verschiedene Grundstreckenlasten $q_{Ed,1}$)

daraus resultiert: $q_{Ed,2} = 1.14 \cdot q_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

= 1000 verschiedene, pro Jahrgang einmalige Kombinationen.

STONE - Aufgabe Nr. 05-01-nr

Berechnen Sie für den dargestellten Kragarm mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]							
Alle Lastfälle	Last	fall 1	Lastfall 2				
1	l_1	$F_{{\scriptscriptstyle Ed},1}$	l_1	$F_{{\scriptscriptstyle Ed},2}$			
	1						

	Ergebnisse								
	Lastfall 1	Lastfall 2 Superposition				n			
$A_{H,1}$	$A_{V,1}$	M_{1}	$A_{H,2}$	$A_{V,2}$	M_2	$A_{H,S}$	$A_{V,S}$	M_{S}	

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 05-02-nr

Berechnen Sie für den dargestellten Kragarm mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]									
Alle Lastfälle		Last	fall 1	Lastfall 2					
1	l_1	l_1 l_a $q_{{\scriptscriptstyle Ed},1}$		l_1	l_a	$q_{\scriptscriptstyle Ed,2}$			
0 1									

Erläuterung der gesuchten Werte : hier klicken

	Ergebnisse								
	Lastfall 1		Lastfall 2			Superposition			
$A_{H,1}$	$A_{V,1}$	M_{1}	$A_{H,2}$	$A_{V,2}$	M_2	$A_{H,S}$	$A_{V,S}$	M_{S}	

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken

Ausdruck der Ergebnisse : hier klicken
Zur nächsten Aufgabe : hier klicken

STONE - Aufgabe Nr. 05-03-nr

Berechnen Sie für den dargestellten Kragarm mit den angegebenen Dimensionen für beide Lastfälle (LF 1 und LF 2) die Stützkräfte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Superponieren Sie die Stützkräfte aus beiden Lastfällen und geben Sie auch diese Ergebnisse ein.

Vorgegebene Dimensionen [m] und [kN]								
Alle Lastfälle		Last	fall 1	Lastfall 2				
I	l_1	l_1 l_a $q_{Ed,1}$		l_1	l_a	$q_{\scriptscriptstyle Ed,2}$		

Erläuterung der gesuchten Werte : hier klicken

	Ergebnisse								
	Lastfall 1		Lastfall 2 Superposition				n		
$A_{H,1}$	$A_{V,1}$	M_{1}	$A_{H,2}$	$A_{V,2}$	M_2	$A_{H,S}$	$A_{V,S}$	M_{S}	

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken Ausdruck der Ergebnisse : hier klicken

Zur nächsten Aufgabe : hier klicken

Bei "Klick" auf "Erläuterung der gesuchten Werte" im Teil 5 erscheint diese Tabelle:

Im STONE-Teil 5 sind zu bere	Im STONE-Teil 5 sind zu berechnen:								
Stützkräfte horizontal	Lastfall 1: $A_{H,1}$	Lastfall 2: $A_{H,2}$							
Stützkräfte vertikal	Lastfall 1: $A_{V,1}$	Lastfall 2: $A_{V,2}$							
Stützmomente	Lastfall 1: M_1	Lastfall 2: M_2							
Superponierte Stützkräfte	$A_{H,S}$, $A_{V,S}$, M_S								
Indizierung	1 = Lastfallindex H = horizontal V = vertikal S = Superposition	a = linkes Auflager (Einspannung) b = rechte Seite (freier Rand)							
Weitere Erläuterungen in den	Lehrveranstaltungen.								

Teil 6: Schnittprinzip, Gleichgewichtsbedingungen an geschnittenen Tragwerken

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>drei Doppelaufgaben</u> freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für je 2 Lastfälle generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabelle mit zu generierenden Werten für STONE-Teil 6 (anders als bei Teil 4 und Teil 5 durch Parametertausch)

1		$F_{{\scriptscriptstyle Ed}}$	',1	α_1		$q_{\scriptscriptstyle Ed}$	1,1	
Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	
e=0	6,3	c=0	18,1	c=0	48	d=0	2,1	
e=1	6,1	c=1	19,2	c=1	46	d=1	2,2	
e=2	5,9	c=2	21,3	c=2	44	d=2	2,3	
e=3	5,7	c=3	22,1	c=3	40	d=3	2,4	
e=4	5,5	c=4	23,2	c=4	38	d=4	2,5	
e=5	5,3	c=5	24,3	c=5	36	d=5	2,6	
e=6	5,1	c=6	25,4	c=6	34	d=6	2,7	
e=7	4,9	c=7	26,1	c=7	32	d=7	2,8	
e=8	4,7	c=8	27,2	c=8	30	d=8	2,9	
e=9	4,5	c=9	28,3	c=9	28	d=9	3,1	

Auswahlparameter für die Querschnittsabmessungen:

e = Stützweitenparameter (10 verschiedene Stützweiten l)

daraus resultiert: $l_1 = 0.6 \cdot l + 0.1$

daraus resultiert: $l_2 = 0.55 \cdot l + 0.2$, je auf 1 Stelle nach dem Komma gerundet

 \mathbf{c} = **Einzellastparameter** (10 verschiedene Grundeinzellasten $F_{Ed,1}$)

daraus resultiert: $F_{Ed,2} = 0.72 \cdot F_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

c = Winkelparameter (10 verschiedene Winkel, an Einzellasten gekoppelt)

daraus resultiert: $\alpha_2 = \alpha_1 + 3^{\circ}$

d = Streckenlastparameter (10 verschiedene Grundstreckenlasten $q_{Ed,1}$)

daraus resultiert: $q_{Ed,2} = 1,14 \cdot q_{Ed,1}$, auf eine Stelle nach dem Komma gerundet

= 1000 verschiedene, pro Jahrgang einmalige Kombinationen.

STONE - Aufgabe Nr. 06-01-nr

Berechnen Sie für den dargestellten Träger auf zwei Stützen und den dargestellten Kragarm mit den angegebenen Dimensionen und Lastfällen sowie die für Superposition aus beiden Lastfällen die Schnittkräfte und geben die gesuchten Ergebnisse bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [m], [kN] und [°]								
Alle Lastfälle	Lastfall 1 Lastfall 2							
1	l_1	l_2	$F_{{\scriptscriptstyle Ed},1}$	α_1	l_1	l_2	$F_{{\scriptscriptstyle Ed},2}$	α_2
	<u>l</u> 2	I						

Tabelle für Ergebniseinträge s. folgende Seite.

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken

Ausdruck der Ergebnisse : hier klicken Zur nächsten Aufgabe : hier klicken

Hinweis: Die vorgegebenen Darstellungen können infolge der konkreten Geometrie- und Lastwerte von den tatsächlichen Funktionen (meist nur geringfügig) abweichen.

Innerhalb der Tabellenspalten soll Reihenfolge der dargestellten drei Funktionen variieren. Es wird ein eindeutiges Vorgehen dafür angegeben (analog der Variation der Reihenfolge bei den Theoriefragen)

STONE - Aufgabe Nr. 06-02-nr

Berechnen Sie für den dargestellten Träger auf zwei Stützen und den dargestellten Kragarm mit den angegebenen Dimensionen und Lastfällen sowie die für Superposition aus beiden Lastfällen die Schnittkräfte und geben die gesuchten Ergebnisse bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [m], [kN] und [°]											
Alle Lastfälle Lastfall 1 Lastfall 2											
1	$q_{{\scriptscriptstyle Ed},1}$	$q_{\scriptscriptstyle Ed,2}$									

	$q_{\scriptscriptstyle Ed}$			$q_{\scriptscriptstyle Ed}$	
а		b	а		b
	1			1	

Tabelle für Ergebniseinträge s. folgende Seite.

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken

Ausdruck der Ergebnisse : hier klicken Zur nächsten Aufgabe : hier klicken

Ergebnisse Kra	garm / Ordnen Sie d	ie berechneten Größ	en den dargestellten Funktionen zu !									
	Lastfall 1	Lastfall 2	Superposition									
Ergebnisse Träger auf zwei Stützen / Ordnen Sie die berechneten Größen den dargestellten Funktionen zu !												
	T .C 11 4		C									
	Lastfall 1	Lastfall 2	Superposition									

Hinweis: Die vorgegebenen Darstellungen können infolge der konkreten Geometrie- und Lastwerte von den tatsächlichen Funktionen (meist nur geringfügig) abweichen.

Innerhalb der Tabellenspalten soll Reihenfolge der dargestellten drei Funktionen variieren. Es wird ein eindeutiges Vorgehen dafür angegeben (analog der Variation der Reihenfolge bei den Theoriefragen)

STONE - Aufgabe Nr. 06-03-nr

Berechnen Sie für den dargestellten Träger auf zwei Stützen und den dargestellten Kragarm mit den angegebenen Dimensionen und Lastfällen sowie die für Superposition aus beiden Lastfällen die Schnittkräfte und geben die gesuchten Ergebnisse bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [m] und [kN]												
1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$											

Tabelle für Ergebniseinträge s. folgende Seite.

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte

Hinweis: Die vorgegebenen Darstellungen können infolge der konkreten Geometrie- und Lastwerte von den tatsächlichen Funktionen (meist geringfügig) abweichen.

Bei "Klick" auf "Erläuterung der gesuchten Werte" im Teil 6 erscheint diese Tabelle:

Im STONE-Teil 6 sind zu berech	Im STONE-Teil 6 sind zu berechnen:										
Normalkräfte, maximale Werte		rechnen und in die Tabellen vorzeichenbehaftet									
Querkräfte, maximale Werte	einzutragen. Dabei sind die Berechnungswerte den Funktionsbildern eigenständig zuzuordnen. Werden in der Ergebnisspalte mehrere Werte										
Biegemomente, maximale Werte											
Superponierte Größen	rechts fortlaufend einz	utragen.									
Indizierung	1 = Lastfallindex	a = linkes Auflager (Einspannung)									
b = rechte Seite (freier Rand)											
Weitere Erläuterungen in den Le	hrveranstaltungen.										

Teil 7: Querschnittswerte – **Teil 1**

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>vier Aufgaben</u> freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die <u>Querschnittstypen 1, 2, 3 und 7</u> die Werte gemäß Tabelle generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabelle mit zu generierenden Werten für STONE-Teil 7

ŀ	1	b =	b_o	t.	w	$t_f =$	t_{fo}	b	u	t	fu
Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert
c=0	150	d=0	86	e=0	6	e=0	8	d=0	70	e=0	6
c=1	160	d=1	90	e=1	8	e=1	10	d=1	80	e=1	8
c=2	170	d=2	94	e=2	10	e=2	12	d=2	85	e=2	10
c=3	180	d=3	98	e=3	6	e=3	10	d=3	90	e=3	8
c=4	190	d=4	102	e=4	8	e=4	12	d=4	95	e=4	10
c=5	210	d=5	106	e=5	10	e=5	14	d=5	100	e=5	12
c=6	220	d=6	110	e=6	6	e=6	8	d=6	105	e=6	8
c=7	230	d=7	114	e=7	8	e=7	10	d=7	110	e=7	10
c=8	240	d=8	118	e=8	10	e=8	12	d=8	115	e=8	8
c=9	250	d=9	120	e=9	12	e=9	14	d=9	115	e=9	12

Auswahlparameter für die Querschnittsabmessungen:

- $c = H\ddot{o}henparameter$ (10 verschiedene Höhen h)
- **d = Breitenparameter** (10 verschiedene Kombinationen aus b bzw. b_o und b_u
- $\mathbf{e} = \mathbf{Dickenparameter}$ (10 verschiedene Kombinationen aus t_w , t_{fo} und t_{fu}
- = 1000 verschiedene, pro Jahrgang einmalige Kombinationen.

STONE - Aufgabe Nr. 07-01-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

Vorgegebene Dimensionen [mm]													
b bzw. b_o	b_u	h	t_w	t_f bzw. t_{fo}	t _{fu}								

	Ergebnisse													
A	-	-	-	f_{hy}^*	f_{hy}^*	S_y^*	S_z^*	a_y	a_z	S_{yo}	S_{zl}	S_{yu}	S_{zr}	
	-	-	-											

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 07-02-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

Vorgegebene Dimensionen [mm]												
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}											

	Ergebnisse												
$egin{array}{ c c c c c c c c c c c c c c c c c c c$												-S	
			-										

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 07-03-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

Vorgegebene Dimensionen [mm]												
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}											

	Ergebnisse													
A	$egin{array}{ c c c c c c c c c c c c c c c c c c c$													
			-											

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 07-04-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

	Vorgegebene Dimensionen [mm]										
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}										

	Ergebnisse										
A	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									-S	

Funktionen auf der jeweiligen Aufgabenseite:

Bei "Klick" auf "Erläuterung der gesuchten Werte" im Teil 7 erscheint diese Tabelle:

Im STONE-Teil 7 sind zu bere	Im STONE-Teil 7 sind zu berechnen:								
A , $A_{\scriptscriptstyle W}$, $A_{\scriptscriptstyle fo}$, $A_{\scriptscriptstyle fu}$	Fläche, Stegfläche, Flanschfläche oben und Flanschfläche unten								
f_{hy}^* , f_{hz}^*	Lage der Flächenhalbierenden im vorgegebenen Bezugssystem (*)								
S_y^* , S_z^*	Statische Momente im vorgegeben Bezugssystem (*)								
a_y , a_z	Lage des Schwerpunktes im vorgegebenen Bezugssystem								
S_{yo} , S_{zl} , S_{yu} , S_{zr}	Statische Momente der Teilflächen in welche der Querschnitt durch die Schwerachsen geteilt wird bezüglich der Schwerachsen								
Weitere Erläuterungen in den	Lehrveranstaltungen.								

Teil 8: Querschnittswerte – Teil 2

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>vier</u> Aufgaben freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die <u>Querschnittstypen 1, 2, 4 und 5</u> die Werte gemäß Tabelle generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabelle mit zu generierenden Werten für STONE-Teil 8 (<u>Tabelle analog wie für Teil 7</u>)

ŀ	1	b =	: b _o	t.	w	$t_f =$	$t_f = t_{fo}$		u	t _{fu}	
Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert
c=0	150	d=0	86	e=0	6	e=0	8	d=0	70	e=0	6
c=1	160	d=1	90	e=1	8	e=1	10	d=1	80	e=1	8
c=2	170	d=2	94	e=2	10	e=2	12	d=2	85	e=2	10
c=3	180	d=3	98	e=3	6	e=3	10	d=3	90	e=3	8
c=4	190	d=4	102	e=4	8	e=4	12	d=4	95	e=4	10
c=5	210	d=5	106	e=5	10	e=5	14	d=5	100	e=5	12
c=6	220	d=6	110	e=6	6	e=6	8	d=6	105	e=6	8
c=7	230	d=7	114	e=7	8	e=7	10	d=7	110	e=7	10
c=8	240	d=8	118	e=8	10	e=8	12	d=8	115	e=8	8
c=9	250	d=9	120	e=9	12	e=9	14	d=9	115	e=9	12

Auswahlparameter für die Querschnittsabmessungen:

- $\mathbf{c} = \mathbf{H\ddot{o}henparameter}$ (10 verschiedene Höhen h)
- **d = Breitenparameter** (10 verschiedene Kombinationen aus b bzw. b_o und b_u
- $\mathbf{e} = \mathbf{Dickenparameter}$ (10 verschiedene Kombinationen aus t_w , t_{fo} und t_{fu}
- = 1000 verschiedene, pro Jahrgang einmalige Kombinationen.

STONE - Aufgabe Nr. 08-01-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

	Vorgegebene Dimensionen [mm]										
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}										

	Ergebnisse										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
								-			

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 08-02-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

	Vorgegebene Dimensionen [mm]										
b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}											
	-				-						

	Ergebnisse										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 08-03-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

Vorgegebene Dimensionen [mm]										
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}									

	Ergebnisse									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 08-04-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die in der Ergebnistabelle angegebenen Querschnittswerte und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Nutzen Sie für die Berechnungen das vorgegebene Bezugskoordinatensystem.

	Vorgegebene Dimensionen [mm]										
b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}											
	-				-						

	Ergebnisse										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											

Funktionen auf der jeweiligen Aufgabenseite:

Bei "Klick" auf "Erläuterung der gesuchten Werte" im Teil 8 erscheint diese Tabelle:

Im STONE-Teil 8 sind zu berechnen:			
I_y , I_z , I_{yz}	Flächenmomente zweiten Grades		
$W_{el,yo}$, $W_{el,yu}$, $W_{el,zr}$	Elastische Widerstandsmomente, bei nicht symmetrischen Querschnitten jeweils oben und unten (y) bzw. links und rechts (z)		
I_p , I_T	Polares Trägheitsmoment, Torsionsträgheitsmoment		

STONE = STudents ONline Exercises

Prof. Dr.-Ing. Dirk Werner, HTW Berlin

Temperatur, Reibung Teil 9:

- a) Theorieteil als Multiple Choice
- b) gleichförmige Temperaturänderungen c) ungleichförmige Temperaturänderungen
- d) Reibungswiderstand

s.	Konze	ptdatei
•		

STONE = STudents ONline Exercises

Prof. Dr.-Ing. Dirk Werner, HTW Berlin

Teil 10: Hooksches Gesetz und Bernoullische Hypothese

a) Theorieteil als Multiple Choice	s. Konzeptdatei	
b) Elastizitätsgleichungen und Querdehnungen		11-01-046
c) Dehnungen einer bestimmten Faser		11-02-047
d) Dehnungsdifferenzen nicht verbundener parallel bela	steter Querschnitte	11-03-048

Teil 11: Lineare Elastizitätstheorie I. O – Teil 1

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>drei</u> Aufgaben freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für die Aufgaben generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind. Querschnittsarten 1, 8 und 9.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabellen mit zu generierenden Werten für STONE-Teil 11 (Schnittgrößentabelle, gilt auch für Teil 12)

N_{x}	, Ed	e_y	e_z	$M_{\rm p}$, Ed	M_z	, Ed	V_z	, Ed	V_y	, Ed
[ki	N]	[<i>C</i>	m]	[kN	lm]	[kN	lm]	[<i>k</i>]	N]	[kN]	
Param.	Wert	Wert	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert
c=0	-19,2	2	5	d=0	12,1	d=0	9,2	e=0	-22,1	e=0	15,6
c=1	18,2	-3	4	d=1	-12,2	d=1	8,2	e=1	23,9	e=1	16,7
c=2	-20,3	4	-3	d=2	12,3	d=2	7,3	e=2	24,8	e=2	-17,5
c=3	21,1	3	-4	d=3	-12,4	d=3	8,1	e=3	-25,7	e=3	15,8
c=4	-22,2	-2	5	d=4	12,5	d=4	8,2	e=4	26,6	e=4	16,4
c=5	23,3	-5	-2	d=5	-12,6	d=5	7,3	e=5	27,5	e=5	-17,9
c=6	-24,4	4	3	d=6	12,7	d=6	7,4	e=6	-28,4	e=6	15,4
c=7	25,1	-3	4	d=7	-12,8	d=7	5,1	e=7	29,3	e=7	16,8
c=8	-26,2	4	-3	d=8	12,9	d=8	6,2	e=8	31,2	e=8	-17,6
c=9	27,3	-5	-2	d=9	-13,1	d=9	7,7	e=9	32,1	e=9	15,5

c = Normalkraftparameter

d = Biegemomentenparameter

e = Querkraftparameter

Es gilt ferner die Querschnittstabelle der STONE-Teile 7 und 8. Die Werte werden jedoch <u>VOR</u> dem Einlesen wie folgt angepasst:

$$c_{neu} = 9 - c_{alt}$$
 , $d_{neu} = 9 - d_{alt}$, $e_{neu} = 9 - e_{alt}$

und erst dann aus der Tabelle eingelesen. Damit entstehen für die Teile 11 und 12 andere Werte, als zuvor.

STONE - Aufgabe Nr. 11-01-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Normalspannungen $\sigma_{x,Ed}$ jeweils an den vier Eckpunkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [mm]								
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}							
	-		-	-	-			

	Lastfälle [kN], [kNm], [cm]								
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$		
1		-	-	-	-	-	-		
2				-	-	-	-		
3		-	-		-	-	-		

Ergebnisse								
Lastfall	$\sigma_{x,1,Ed}$	$\sigma_{x,2,Ed}$	$\sigma_{x,3,Ed}$	$\sigma_{x,4,Ed}$				
1								
2								
3								

Funktionen auf der jeweiligen Aufgabenseite: Erläute

STONE - Aufgabe Nr. 11-02-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Normalspannungen $\sigma_{x,Ed}$ jeweils an den vier gekennzeichneten Punkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [mm]								
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}							
	-				-			

Lastfälle [kN], [kNm], [cm]									
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$		
1	-	-	-		-	-	-		
2		-	-	-		-	-		
3		-	-			-	-		

	Ergebnisse								
Lastfall	$\sigma_{x,1,Ed}$	$\sigma_{x,2,Ed}$	$\sigma_{x,3,Ed}$	$\sigma_{x,4,Ed}$					
1									
2									
3									

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 11-03-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Normalspannungen $\sigma_{x,Ed}$ jeweils an den vier gekennzeichneten Punkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Berechnen Sie ferner die Schnittpunkte der Spannungsnulllinie mit den Schwerachsen.

Vorgegebene Dimensionen [mm]								
b bzw. b_o	b bzw. b_o b_u h t_w t_f bzw. t_{fo} t_{fu}							

Lastfälle [kN], [kNm], [cm]								
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$	
1		-	-			-	-	
2		-	-			-	-	

	Ergebnisse								
Lastfall	$\sigma_{x,1,Ed}$	$\sigma_{x,2,Ed}$	$\sigma_{x,3,Ed}$	$\sigma_{x,4,Ed}$	y_0	z_0			
1									
2									

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte

hier klickenhier klickenhier klicken

Ausdruck der Ergebnisse Zur nächsten Aufgabe Bei Klick auf "Erläuterung der gesuchten Werte" erschient im Teil 11 diese Tabelle:

Im STONE-Teil 11 sind zu berechnen:					
$\sigma_{x,i,Ed}$	Designwert der Normalspannungen (normal zur Querschnittsebene y-z) am Punkt i				
y_0 , z_0	Schnittpunkt der Spannungsnulllinie mit der y-Achse bzw. der z-Achse, Wert ist gleich Null, wenn die Spannungsnulllinie durch den Koordinatenursprung geht, verläuft die Spannungsnulllinie parallel zu einer der Koordinatenachsen ist der Wert ersatzweise mit 999 anzugeben				

Weitere Informationen in den Lehrveranstaltungen.

Teil 12: Lineare Elastizitätstheorie I. O – Teil 2

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>drei</u> Aufgaben freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für die Aufgaben generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind. Querschnittsarten 2, 4 und 5.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabellen mit zu generierenden Werten für STONE-Teil 12 (Schnittgrößentabelle, gilt auch für Teil 11)

N_{x}	, Ed	e_y	e_z	$M_{\rm p}$, Ed	M_z	, Ed	V_z	, Ed	V_y	, Ed
[ki	N]	[<i>C</i>	m]	[kN	lm]	[kN	lm]	[<i>k</i>]	N]	[ki	N]
Param.	Wert	Wert	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert
c=0	-19,2	2	5	d=0	12,1	d=0	9,2	e=0	-22,1	e=0	15,6
c=1	18,2	-3	4	d=1	-12,2	d=1	8,2	e=1	23,9	e=1	16,7
c=2	-20,3	4	-3	d=2	12,3	d=2	7,3	e=2	24,8	e=2	-17,5
c=3	21,1	3	-4	d=3	-12,4	d=3	8,1	e=3	-25,7	e=3	15,8
c=4	-22,2	-2	5	d=4	12,5	d=4	8,2	e=4	26,6	e=4	16,4
c=5	23,3	-5	-2	d=5	-12,6	d=5	7,3	e=5	27,5	e=5	-17,9
c=6	-24,4	4	3	d=6	12,7	d=6	7,4	e=6	-28,4	e=6	15,4
c=7	25,1	-3	4	d=7	-12,8	d=7	5,1	e=7	29,3	e=7	16,8
c=8	-26,2	4	-3	d=8	12,9	d=8	6,2	e=8	31,2	e=8	-17,6
c=9	27,3	-5	-2	d=9	-13,1	d=9	7,7	e=9	32,1	e=9	15,5

c = Normalkraftparameter

d = Biegemomentenparameter

e = Querkraftparameter

Es gilt ferner die Querschnittstabelle der STONE-Teile 7 und 8. Die Werte werden jedoch <u>VOR</u> dem Einlesen wie folgt angepasst:

$$c_{neu} = 9 - c_{alt}$$
 , $d_{neu} = 9 - d_{alt}$, $e_{neu} = 9 - e_{alt}$

und erst dann aus der Tabelle eingelesen. Damit entstehen für die Teile 11 uns 12 andere Werte, als zuvor.

STONE - Aufgabe Nr. 12-01-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Schubspannungen τ_{xz} bzw. τ_{xy} jeweils an den drei gekennzeichneten Punkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Die Querkräfte wirken im Schubmittelpunkt M des Querschnitts.

	Vorgegebene Dimensionen [mm]							
b bzw. b_o	$b_{\scriptscriptstyle u}$	h	t_w	t_f bzw. t_{fo}	$t_{\it fu}$			
	-				-			

	Lastfälle [kN], [kNm], [cm]									
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$			
1	-	-	-	-	-	-				
2	-	-	-	-	-		-			

	Ergebnisse								
Lastfall	$ au_{xy,1,\mathit{Ed}}$	$ au_{xz,2,\mathit{Ed}}$	$ au_{_{XZ},3,Ed}$						
1									
2									

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 12-02-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Schubspannungen τ_{xz} bzw. τ_{xy} jeweils an den drei gekennzeichneten Punkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Die Querkräfte wirken im Schubmittelpunkt M des Querschnitts. Berechnen Sie ferner die Koordinaten für den Schubmittelpunkt M des Querschnitts im Schwerachsensystem und tragen auch diese Werte in die Tabelle ein.

	Vorgegebene Dimensionen [mm]								
b bzw. b_o	b_u	h	t_w	t_f bzw. t_{fo}	t_{fu}				

	Lastfälle [kN], [kNm], [cm]								
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$		
1	-	-	-	-	-		-		
2	-	-	-	-	-	-			

	Ergebnisse									
Lastfall	$ au_{xy,1,Ed}$	$ au_{xz,2,Ed}$	$ au_{xz,3,\mathit{Ed}}$	<i>y</i> _{<i>M</i>}	Z_M					
1										
2				-	-					

Funktionen auf der jeweiligen Aufgabenseite:

STONE - Aufgabe Nr. 12-03-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen sowie für die angegebenen Designwerte der Schnittgrößen die Schubspannungen τ_{xz} bzw. τ_{xy} jeweils an den drei gekennzeichneten Punkten des Querschnitts und geben diese bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Die Querkräfte wirken im Schubmittelpunkt M des Querschnitts. Berechnen Sie ferner die Koordinaten für den Schubmittelpunkt M des Querschnitts im Schwerachsensystem und tragen auch diese Werte in die Tabelle ein.

	Vorgegebene Dimensionen [mm]							
b bzw. b_o	b_u	h	t_w	t_f bzw. t_{fo}	t_{fu}			

	Lastfälle [kN], [kNm], [cm]								
LF-Nr.	$N_{x,Ed}$	e_y	e_z	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$		
1	-	-	-	-	-	-			
2	-	-	-	-	-		-		

	Ergebnisse									
Lastfall	$ au_{xy,1,Ed}$	$ au_{xy,2,Ed}$	$ au_{xz,3,Ed}$	$y_{\scriptscriptstyle M}$	Z_M					
1										
2				-	-					

Funktionen auf der jeweiligen Aufgabenseite: Erläuterun

Bei Klick auf "Erläuterung der gesuchten Werte" erschient im Teil 12 diese Tabelle:

Im STONE-Teil 12 sind zu berechnen:					
$ au_{xz,i,Ed}$, $ au_{xy,i,Ed}$	Designwerte der Schubspannungen (in der Querschnittsebene y-z) am Punkt i, Indexdefinitionen gemäß Vorgabe in den Lehrveranstaltungen				
y_M , z_M	Koordinaten des Schubmittelpunktes M des Querschnitts				

Weitere Informationen in den Lehrveranstaltungen.

Teil 13: Lineare Elastizitätstheorie I. O – Teil 3

- 1. Nach der (richtigen) Beantwortung der 10 Theoriefragen im Multiple-Choice-Verfahren werden nacheinander <u>zwei</u> Aufgaben freigeschaltet, für welche die Werte gemäß folgender Tabelle zu berechnen sind.
- 2. Aus der Matrikelnummer werden für die gezeigten Systeme die Werte gemäß Tabelle für die Aufgaben generiert. Für jeden Aufgabentyp wird die Formulierung auf einer gesonderten Seite vorgenommen und die zu berechnenden Werte in einer weiteren Tabelle definiert. Pro Aufgabe werden nur die Werte verwendet, die erforderlich sind. Querschnittsarten 7 und 10.
- 3. Als Ausdruck der Ergebnisse wird parallel eine Datei generiert, die gedruckt werden kann. In Ergänzung mit den eigenen Aufzeichnungen entsteht eine Sammlung von Übungsaufgaben.
- 4. Tabellen mit zu generierenden Werten für STONE-Teil 13 (gegenüber Teil 11, 12 Parametertausch)

N_{x}	,Ed	$M_{\rm p}$, Ed	M_{z}	z, Ed	V_z	, Ed	V_y	, Ed
[k]	N]	[<i>kI</i> N	[m]	[<i>k</i> N	lm]	[k	N]	[k	N]
Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert	Param.	Wert
e=0	-19,2	c=0	12,1	c=0	9,2	d=0	-22,1	d=0	15,6
e=1	18,2	c=1	-12,2	c=1	8,2	d=1	23,9	d=1	16,7
e=2	-20,3	c=2	12,3	c=2	7,3	d=2	24,8	d=2	-17,5
e=3	21,1	c=3	-12,4	c=3	8,1	d=3	-25,7	d=3	15,8
e=4	-22,2	c=4	12,5	c=4	8,2	d=4	26,6	d=4	16,4
e=5	23,3	c=5	-12,6	c=5	7,3	d=5	27,5	d=5	-17,9
e=6	-24,4	c=6	12,7	c=6	7,4	d=6	-28,4	d=6	15,4
e=7	25,1	c=7	-12,8	c=7	5,1	d=7	29,3	d=7	16,8
e=8	-26,2	c=8	12,9	c=8	6,2	d=8	31,2	d=8	-17,6
e=9	27,3	c=9	-13,1	c=9	7,7	d=9	32,1	d=9	15,5

e = Normalkraftparameter

c = Biegemomentenparameter

d = Querkraftparameter

Es gilt ferner die Querschnittstabelle der STONE-Teile 7 und 8. Die Werte werden jedoch <u>VOR</u> dem Einlesen wie folgt angepasst:

$$c_{neu} = 9 - d_{alt}$$
 , $d_{neu} = 9 - e_{alt}$, $e_{neu} = 9 - c_{alt}$

und erst dann aus der Tabelle eingelesen. Damit entstehen für den Teil 13 erneut <u>andere Werte, als zuvor</u>.

STONE - Aufgabe Nr. 13-01-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die Lage des Schwerpunktes S, die Hauptträgheitsmomente I_{η} und I_{ζ} und den zugehörigen Drehwinkel ϕ_1 für das Koordinatensystem und geben die Werte bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Berechnen Sie ferner für die angegebene Schnittgrößenkombination die Vergleichsspannung σ_{ν} an den beiden gekennzeichneten Punkten und geben auch diese Werte bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [mm]					
b bzw. b_o	b_u	h	t_w	t_f bzw. t_{fo}	t_{fu}

Lastfälle [kN], [kNm]					
LF-Nr.	$N_{x,Ed}$	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$
1					

	Ergebnisse					
Lastfall	I_{η}	I_{ζ}	ϕ_1	$\sigma_{v,1}$	$\sigma_{v,2}$	
1						

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken Ausdruck der Ergebnisse : hier klicken

Zur nächsten Aufgabe : hier klicken

STONE - Aufgabe Nr. 13-02-nr

Berechnen Sie für den dargestellten Querschnitt mit den angegebenen Dimensionen die Lage des Schwerpunktes S, die Hauptträgheitsmomente I_η und I_ζ und den zugehörigen Drehwinkel ϕ_1 für das Koordinatensystem und geben die Werte bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein. Berechnen Sie ferner für die angegebene Schnittgrößenkombination die Vergleichsspannung σ_ν an den beiden gekennzeichneten Punkten und geben auch diese Werte bis auf 2 Stellen nach dem Komma gerundet in die dafür vorgesehenen Felder ein.

Vorgegebene Dimensionen [mm]					
b bzw. b_o	b_u	h	t_w	t_f bzw. t_{fo}	$t_{\it fu}$

Lastfälle [kN], [kNm]					
LF-Nr.	$N_{x,Ed}$	$M_{y,Ed}$	$M_{z,Ed}$	$V_{z,Ed}$	$V_{y,Ed}$
1					

	Ergebnisse					
Lastfall	I_{η}	I_{ζ}	ϕ_1	$\sigma_{v,1}$	$\sigma_{v,2}$	
1						

Funktionen auf der jeweiligen Aufgabenseite: Erläuterung der gesuchten Werte : hier klicken Ausdruck der Ergebnisse : hier klicken

Zur nächsten Aufgabe : hier klicken

Bei Klick auf "Erläuterung der gesuchten Werte" erschient im Teil 13 diese Tabelle:

Im STONE-Teil 13 sind zu berechnen:					
$\sigma_{v,1}$, $\sigma_{v,2}$	Vergleichsspannung an den Punkten 1 bzw. 2				
I_{ζ} , I_{η} , ϕ_1	Hauptträgheitsmomente und Drehwinkel im Trägheitskreis				

Weitere Erläuterungen in den Lehrveranstaltungen.

STONE = STudents ONline Exercises

Prof. Dr.-Ing. Dirk Werner, HTW Berlin

Teil 14: Kräfte als Integral der Spannungen über den Querschnitt

a) Theorieteil als Multiple Choice

- s. Konzeptdatei
- b) Schwerpunkt der Spannungsblöcke
- c) innere Kräfte als Ersatz für die Spannungen

Für zwei individuell vorgebene Aufgabentypen (Tabellenzeile) sind je zwei Lastfälle zu berechnen:				