Propiedades de los estimadores Estadística

Santiago Alférez

Febrero de 2020

Contenidos

Eficiencia

2 Consistencia

Eficiencia Relativa

Definición: eficiencia

Sean $\hat{\theta}_1$ y $\hat{\theta}_2$ dos estimadores insesgados de un parámetro θ , con varianzas $V(\hat{\theta}_1)$ y $V(\hat{\theta}_2)$ respectivamente, entonces la eficiencia de $\hat{\theta}_1$ con respecto a $\hat{\theta}_2$, se define como

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$

Eficiencia Relativa

Ejemplo

Sea θ_1 la mediana muestral y sea θ_2 la media muestral. Calcule la eficiencia de la mediana muestral con respecto a la media muestral.

Solución

Se puede demostrar que la varianza de la mediana muestral es $V(\hat{\theta_1})=(1.25)^2(\sigma^2/n)$. Entonces, la eficiencia es:

eff
$$(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)} = \frac{\sigma^2/n}{(1.25)^2 \sigma^2/n} = \frac{1}{(1.25)^2} = .64 < 1$$

Por lo tanto, se prefiere utilizar la media muestral como estimador de la media poblacional.

Eficiencia Relativa

Ejercicio

Suponga que Y_1,Y_2,\ldots,Y_n denotan una muestra aleatoria de tamaño n de una distribución de Poisson con media λ . Considere $\hat{\lambda}_1=(Y_1+Y_2)\,/2$ y $\hat{\lambda}_2=\bar{Y}.$ Deduzca la eficiencia de $\hat{\lambda}_1$ con respecto a $\hat{\lambda}_2.$

Solución

- La distribución de Poisson tiene media y varianza λ .
- Ambos estimadores son insesgados.
- $V(\hat{\lambda_1}) = /2$ y $V(\hat{\lambda_2}) = \lambda/n$.
- Así, la eficiencia $eff(\lambda_1, \lambda_2) = 2/n$.

Definición

El estimador $\hat{\theta}_n$ es un estimador consistente de θ si, para cualquier número positivo ε

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| \le \varepsilon \right) = 1$$

o bien, de forma equivalente,

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| > \varepsilon \right) = 0$$

Teorema

Un estimador insesgado $\hat{\theta}_n$ para θ es un estimador consistente de θ si

$$\lim_{n \to \infty} V(\hat{\theta}_n) = 0$$

Ejemplo

Sea Y_1,Y_2,\ldots,Y_n que representan una muestra aleatoria de una distribución con media μ y varianza $\sigma^2<\infty$. Demuestre que $\bar{Y}_n=\frac{1}{n}\sum_{i=1}^n Y_i$ es un estimador consistente de μ .

Solución $E(\bar{Y}_n)=\mu$ y $V(\bar{Y}_n)=\sigma^2/n$. Dado que \bar{Y}_n es insesgado y $V(\bar{Y}_n)\to 0$ cuando $n\to\infty$. Entonces, \bar{Y}_n es un estimador consistente de μ , o \bar{Y}_n converge en probabilidad en μ .

Teorema

Suponga que $\hat{\theta}_n$ converge en probabilidad en θ y que $\hat{\theta}'_n$ converge en probabilidad en θ' .

- $\mathbf{0} \ \hat{\theta}_n + \hat{\theta}'_n$ converge en probabilidad en $\theta + \theta'$
- $\hat{\theta}_n \times \hat{\theta}_n'$ converge en probabilidad en $\theta \times \theta'$
- **3** Si $\theta' \neq 0, \hat{\theta}_n/\hat{\theta}'_n$ converge en probabilidad en θ/θ' .
- $\textbf{ Si } g(\cdot) \text{ es una función de valor real que es continua en } \theta, \\ \text{ entonces } g\left(\hat{\theta}_n\right) \text{ converge en probabilidad en } g(\theta).$

Teorema

- Suponga que U_n tiene una función de distribución que converge en una función de distribución normal estándar cuando $n \to \infty$.
- Si W_n converge en probabilidad en 1, entonces la función de distribución de U_n/W_n converge en una función de distribución normal estándar.