Educational Technology Project - Survey Data Analysis

Process Data

```
# Set cwd
setwd("D:/Documents/Data Science/Educational Technology/R/Survey")
#setwd("E:/Educational Technology/R/Survey")
getwd()
# Load libraries
library(plyr)
library(tools)
library(psych)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
       %+%, alpha
# Read in survey data set
survey = read.csv('20170414_Survey_Responses.csv')
# Replace blanks with NA
is.na(survey) = (survey=="")
# Convert factors into character strings
survey$residence = as.character(survey$residence)
survey$birth = as.character(survey$birth)
survey$language = as.character(survey$language)
survey$education_field = as.character(survey$education_field)
survey$omscs_reason = as.character(survey$omscs_reason)
survey$specialization = as.character(survey$specialization)
survey$prog_languages = as.character(survey$prog_languages)
# Simplify level names
survey$education_level = revalue(survey$education_level,
                        c("Bachelor's degree (or equivalent)"="Bachelors",
                        "PhD degree (or equivalent)"="Doctorate",
                        "Master's degree (or equivalent)" = "Masters"))
course_names = colnames(survey)[12:39]
for(i in seq(1, length(course_names))){
   name = course_names[i]
    survey[, name] = as.character(survey[, name])
    survey[, name] = ifelse(survey[, name] == "Attempted but did not complete",
                            "Attempted", survey[, name])
    survey[, name] = ifelse(survey[, name] == "Currently undertaking (Spring 2017)",
                            "Current", survey[, name])
    survey[, name] = ifelse(is.na(survey[, name]), "Not Attempted", survey[, name])
```

```
survey[,name] = factor(survey[,name], levels = c("Completed", "Current", "Attempted",
                                                      "Not Attempted"))
}
# Determine counts of courses completed, attempted and current for each respondent
# Initialize counter variables
survey$completed = 0
survey$attempted = 0
survey$current = 0
for(j in seq(1, dim(survey)[1])){
  for(i in seq(1, length(course_names))){
   name = course_names[i]
   if(survey[j, name] == "Completed"){
      survey$completed[j] = survey$completed[j] + 1
   } else if(survey[j, name] == "Attempted"){
      survey$attempted[j] = survey$attempted[j] + 1
   } else if(survey[j, name] == "Current"){
      survey$current[j] = survey$current[j] + 1
   }
 }
}
# Convert scales to numeric
survey$conf post = revalue(survey$conf post, c("Very confident" = 5, "Confident" = 4,
                      "Neutral" = 3, "Unconfident" = 2, "Very unconfident" = 1))
survey$conf_post = as.numeric(as.character(survey$conf_post))
survey$conf_prior = revalue(survey$conf_prior, c("Very confident" = 5, "Confident" = 4,
                      "Neutral" = 3, "Unconfident" = 2, "Very unconfident" = 1))
survey$conf_prior = as.numeric(as.character(survey$conf_prior))
statements_pos = colnames(survey)[c(49, 50, 51, 52, 53, 54, 56, 57, 58, 62, 64, 66,
                                    68, 69)]
statements_neg = colnames(survey)[c(55, 59, 60, 61, 63, 65, 67, 70)]
for(i in seq(1, length(statements_pos))){
   name = statements_pos[i]
    survey[, name] = revalue(survey[, name], c("Strongly Agree" = 5, "Agree" = 4,
                      "Neutral" = 3, "Disagree" = 2, "Strongly disagree" = 1))
    survey[, name] = as.numeric(as.character(survey[, name]))
}
## The following `from` values were not present in `x`: Strongly disagree
## The following `from` values were not present in `x`: Disagree
for(i in seq(1, length(statements_neg))){
   name = statements_neg[i]
    survey[, name] = revalue(survey[, name], c("Strongly Agree" = 1, "Agree" = 2,
                      "Neutral" = 3, "Disagree" = 4, "Strongly disagree" = 5))
    survey[, name] = as.numeric(as.character(survey[, name]))
```

```
# Create average confidence score
survey$conf_ave = (survey$conf_prior + survey$conf_post)/2
# Get lists of unique values
#unique(survey$residence)
#unique(survey$birth)
#unique(survey$language)
#unique(survey$education_field)
# Clean language
survey$language = ifelse(survey$language == "korean", "Korean", survey$language)
survey$language = ifelse(survey$language == "Bahasa Indonesia", "Indonesian",
                         survey$language)
survey$language = ifelse(survey$language %in% c("Telugu (Indian dialect)", "Marathi",
                  "Bengali", "Kannada", "Kannada ", "Hindi", "Tamil"), "Indian",
                  survey$language)
survey$language = ifelse(survey$language == "Tagalog (Filipino)", "Tagalog",
                         survey$language)
# Clean education field
survey$education field = ifelse(survey$education field == "Engineering and Theology (2)",
                                "Engineering", survey$education_field)
survey$education field = ifelse(survey$education field ==
                  "CS, History, and Classical Studies", "Computer science",
                  survey$education field)
survey$education_field = ifelse(survey$education_field == "Mathematics Education",
                                "Mathematics/statistics", survey$education_field)
survey$education_field = ifelse(survey$education_field == "biology",
                                "Physical/life sciences", survey$education_field)
survey$education_field = ifelse(survey$education_field == "Business Management",
                                "Economics/business", survey$education_field)
survey$education_field = ifelse(survey$education_field %in% c("Theology",
              "Social sciences", "Education"), "Humanities/arts", survey$education_field)
survey$education_field = ifelse(survey$education_field %in% c("Psychology",
                "Information Systems Management", "Information Technology"),
                                "Other sciences", survey$education_field)
# Create factors
survey$birth = factor(survey$birth)
survey$residence = factor(survey$residence)
survey$language = factor(survey$language)
survey$education_field = factor(survey$education_field)
# Reorder levels of factors where necessary
survey$omscs_semester = factor(survey$omscs_semester, levels = c("Spring 2014",
                          "Summer 2014", "Fall 2014", "Spring 2015", "Summer 2015",
                          "Fall 2015", "Spring 2016", "Summer 2016", "Fall 2016",
                          "Spring 2017"))
survey$hours = factor(survey$hours, levels = c("< 5", "5 - 9", "10 - 14", "15 - 19",
                              "20 - 24", "25 - 29", "30 - 34", "35 - 39", "40 +"))
survey$prog_years = factor(survey$prog_years, levels = c("0", "1", "2", "3 - 5", "6 - 8",
```

```
"9 - 11", "12 - 14", "15+"))
survey$prior_cs_exp = factor(survey$prior_cs_exp, levels = c("0", "1", "2", "3 - 5",
                                                              "6 - 8", "9 - 11", "12+"))
# Convert ranges to numeric values
survey$age_num = revalue(survey$age, c("20 - 24"=22, "25 - 29"=27, "30 - 34"=32,
                                       "35 - 39"=37, "40 - 44"=42, "45 - 49"=47,
                                       "50 - 54" = 52, "55 - 59" = 57, "60 - 64" = 62))
survey$age num = as.numeric(as.character(survey$age num))
survey$gpa_num = revalue(survey$gpa, c("2.5 - 2.9" = 2.7, "3.0 - 3.4" = 3.2,
                                       "3.5 - 3.9" = 3.7, "Don't Know" = NA))
survey$gpa_num = as.numeric(as.character(survey$gpa_num))
survey$hours_num = revalue(survey$hours, c("< 5"=2, "5 - 9"=7, "10 - 14"=12, "15 - 19"=17,
                              "20 - 24"=22, "25 - 29"=27, "30 - 34"=32, "35 - 39"=37,
                              "40 +"=42))
survey$hours_num = as.numeric(as.character(survey$hours_num))
survey$prog_num = revalue(survey$prog_years, c("3 - 5"= 4, "6 - 8"=7, "9 - 11"=10,
                                               "12 - 14"=13, "15+"=16))
survey$prog num = as.numeric(as.character(survey$prog num))
survey$prior cs num = revalue(survey$prior cs exp, c("3 - 5"=4, "6 - 8"=7, "9 - 11"=10,
                                                      "12+"=13))
survey$prior cs num = as.numeric(as.character(survey$prior cs num))
# Create programming language count variable
count_items = function(x){
  if(is.na(x)|x == "I had not previously had any programming experience"){
   num = 0
 }else{
   num = length(unlist(strsplit(x, ", ")))
 return (num)
survey$prog_count = sapply(survey$prog_languages, count_items)
# Create specialization indicators
spec_list = c("Computational Perception and Robotics", "Computing Systems",
              "Interactive Intelligence", "Machine Learning")
for(i in seq(1, length(spec_list))){
    spec = spec_list[i]
    if(spec=="Computational Perception and Robotics"){
     name = "spec_robotics"
   } else if(spec=="Computing Systems"){
     name = "spec_systems"
    } else if(spec=="Interactive Intelligence"){
     name = "spec_intelligence"
   } else{
```

```
name = "spec_ml"
   }
    survey[, name] = as.numeric(grep1(spec, survey$specialization))
}
# Create reason indicators
reason_list = c("To increase financial prospects", "To gain an extra qualification",
                "To gain promotion within your current industry of employment",
    "To switch to a career in a different industry from where you are currently employed",
                "To make connections", "For fun/challenge")
for(i in seq(1, length(reason_list))){
   reason = reason_list[i]
    if(reason=="To increase financial prospects"){
     name = "reason_financial"
   } else if(reason=="To gain an extra qualification"){
     name = "reason_quals"
   } else if(reason=="To gain promotion within your current industry of employment"){
     name = "reason_promotion"
   } else if(reason=="To switch to a career in a different industry from where you are currently emplo
     name = "reason switch"
   } else if(reason=="To make connections"){
     name = "reason_connections"
   } else{
     name = "reason_fun"
    survey[, name] = as.numeric(grep1(reason, survey$omscs_reason))
}
# Create indicator variables
survey$cs_study_ind = ifelse(survey$prior_cs_study == "Yes", 1, 0)
survey$native_ind = ifelse(survey$language == "English", 1, 0)
survey$us_birth_ind = ifelse(survey$birth == "USA", 1, 0)
survey$us_res_ind = ifelse(survey$residence == "USA", 1, 0)
survey$higher_ind = ifelse(survey$education_level %in% c("Masters", "Doctorate"), 1, 0)
```

Create Score Variables

```
# Equality
eq_corr = cor(survey[, c("equality1", "equality2", "equality3", "equality4", "equality5",
               "equality6")])
eq_corr[eq_corr == 1] <- NA
colMeans(eq_corr, na.rm = TRUE)
## equality1 equality2 equality3 equality4 equality5 equality6
## 0.5257517 0.5068182 0.5499074 0.5203307 0.2163926 0.4983357
mean(eq_corr, na.rm = TRUE)
## [1] 0.4695894
# Belonging
be_corr = cor(survey[, c("belonging1", "belonging2", "belonging3", "belonging4",
                         "belonging5", "belonging6", "belonging7", "belonging8",
                         "belonging9")])
be_corr[be_corr == 1] <- NA
colMeans(be_corr, na.rm = TRUE)
## belonging1 belonging2 belonging3 belonging4 belonging5 belonging6
## 0.3916325 0.3921835 0.4557640 0.1961097 0.3264607 0.4143715
## belonging7 belonging8 belonging9
## 0.3608049 0.4369175 0.2831651
mean(be_corr, na.rm = TRUE)
## [1] 0.3619344
# Check Cronbach's alpha for each group
psych::alpha(survey[, c("selfconf1", "selfconf2", "selfconf3", "selfconf4", "selfconf5",
               "selfconf6", "selfconf7")])
##
## Reliability analysis
## Call: psych::alpha(x = survey[, c("selfconf1", "selfconf2", "selfconf3",
       "selfconf4", "selfconf5", "selfconf6", "selfconf7")])
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean
##
##
        0.86
                  0.87
                          0.87
                                    0.49 6.7 0.016 4.1 0.65
##
                         95% confidence boundaries
## lower alpha upper
## 0.83 0.86 0.89
##
## Reliability if an item is dropped:
##
            raw_alpha std.alpha G6(smc) average_r S/N alpha se
## selfconf1
                 0.82
                           0.84
                                   0.83
                                             0.46 5.1
                                                         0.021
                                             0.47 5.4
                                   0.84
## selfconf2
                 0.84
                           0.84
                                                         0.020
                 0.83
                          0.84
                                   0.83
                                             0.46 5.2
## selfconf3
                                                         0.021
## selfconf4
                 0.84
                           0.85
                                   0.84
                                             0.49 5.7
                                                         0.019
## selfconf5
                 0.85
                           0.86
                                   0.86
                                             0.51 6.2
                                                         0.018
## selfconf6
                 0.83
                           0.84
                                   0.84
                                             0.47 5.3
                                                         0.021
## selfconf7
                           0.89
                                   0.88
                                             0.57 7.9
                 0.88
                                                         0.014
##
## Item statistics
```

```
n raw.r std.r r.cor r.drop mean
## selfconf1 160 0.84 0.84 0.82
                                    0.76 4.2 0.88
## selfconf2 160 0.77 0.79 0.75
                                    0.70 4.5 0.63
## selfconf3 160 0.82 0.83 0.81
                                    0.74 3.8 0.93
## selfconf4 160
                 0.76
                       0.76
                             0.72
                                    0.66
                                          3.9 0.85
## selfconf5 160 0.67
                       0.69 0.61
                                    0.57
                                          4.3 0.75
                 0.83 0.81
                             0.78
                                    0.73
                                          3.8 1.03
## selfconf6 160
## selfconf7 160 0.56 0.53 0.40
                                    0.37 4.2 1.02
##
## Non missing response frequency for each item
               1
                    2
                          3
                              4
## selfconf1 0.01 0.04 0.13 0.42 0.39
## selfconf2 0.00 0.01 0.06 0.39 0.54
## selfconf3 0.02 0.06 0.25 0.44 0.23
## selfconf4 0.01 0.02 0.29 0.42 0.26
## selfconf5 0.01 0.01 0.11 0.45 0.42
## selfconf6 0.01 0.11 0.22 0.34 0.32
## selfconf7 0.02 0.08 0.11 0.31 0.48
psych::alpha(survey[, c("equality1", "equality2", "equality3", "equality4", "equality5",
               "equality6")])
##
## Reliability analysis
## Call: psych::alpha(x = survey[, c("equality1", "equality2", "equality3",
       "equality4", "equality5", "equality6")])
##
##
##
     raw alpha std.alpha G6(smc) average r S/N
                                                ase mean
##
        0.79
                  0.84
                          0.87
                                    0.47 5.3 0.028 4.4 0.62
##
## lower alpha upper
                         95% confidence boundaries
## 0.73 0.79 0.84
##
##
   Reliability if an item is dropped:
            raw_alpha std.alpha G6(smc) average_r S/N alpha se
##
## equality1
                 0.73
                           0.80
                                   0.83
                                             0.44 4.0
                                                         0.036
                 0.75
                           0.80
                                   0.82
                                             0.45 4.1
                                                         0.034
## equality2
                 0.74
                           0.79
                                   0.80
                                             0.43 3.8
                                                         0.035
## equality3
                 0.73
                           0.80
                                   0.82
                                             0.44 4.0
                                                         0.036
## equality4
                 0.88
                           0.88
                                   0.89
## equality5
                                             0.60 7.4
                                                         0.016
                                             0.46 4.2
## equality6
                 0.73
                           0.81
                                   0.82
                                                         0.037
##
##
   Item statistics
              n raw.r std.r r.cor r.drop mean
##
                                    0.68 4.5 0.77
## equality1 160 0.78 0.81 0.76
## equality2 160 0.73 0.79 0.77
                                    0.61 4.7 0.72
## equality3 160
                 0.77
                       0.84 0.84
                                    0.68 4.7 0.68
                       0.80
                             0.77
                                    0.68 4.7 0.73
## equality4 160
                 0.78
## equality5 160 0.59
                       0.46
                             0.29
                                    0.27 3.3 1.34
## equality6 160 0.78
                       0.78
                             0.74
                                    0.65 4.5 0.88
## Non missing response frequency for each item
               1
                    2
                         3
                              4
                                   5 miss
## equality1 0.01 0.01 0.08 0.26 0.64
## equality2 0.01 0.01 0.05 0.17 0.76
```

```
## equality3 0.02 0.00 0.02 0.16 0.81
## equality4 0.01 0.02 0.03 0.11 0.82
                                         0
## equality5 0.07 0.29 0.19 0.16 0.29
## equality6 0.02 0.03 0.06 0.18 0.71
psych::alpha(survey[, c("belonging1", "belonging2", "belonging3", "belonging4",
                         "belonging5", "belonging6", "belonging7", "belonging8",
                         "belonging9")])
##
## Reliability analysis
  Call: psych::alpha(x = survey[, c("belonging1", "belonging2", "belonging3",
##
       "belonging4", "belonging5", "belonging6", "belonging7", "belonging8",
##
       "belonging9")])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N
                                                 ase mean sd
##
                   0.84
                           0.86
                                     0.36 5.1 0.021
                                                     3.9 0.7
##
   lower alpha upper
                          95% confidence boundaries
##
## 0.78 0.82 0.87
##
##
   Reliability if an item is dropped:
##
              raw_alpha std.alpha G6(smc) average_r S/N alpha se
                   0.80
                             0.81
                                     0.84
                                               0.35 4.4
                                                           0.024
## belonging1
## belonging2
                   0.80
                             0.81
                                     0.83
                                               0.35 4.4
                                                           0.025
                                               0.34 4.0
## belonging3
                   0.79
                             0.80
                                     0.82
                                                           0.025
                   0.84
                             0.85
                                     0.86
                                               0.41 5.5
                                                           0.019
## belonging4
## belonging5
                   0.82
                             0.83
                                     0.85
                                               0.37 4.7
                                                           0.022
                                     0.83
                                               0.35 4.3
                                                           0.025
## belonging6
                   0.79
                             0.81
## belonging7
                   0.81
                             0.82
                                     0.84
                                               0.36 4.5
                                                           0.023
                                     0.82
                                                           0.024
## belonging8
                   0.80
                             0.81
                                               0.34 4.1
## belonging9
                   0.82
                             0.83
                                     0.85
                                               0.38 5.0
                                                           0.022
##
##
   Item statistics
##
                n raw.r std.r r.cor r.drop mean
## belonging1 160 0.68 0.70 0.65
                                      0.58
                                            3.7 0.99
                  0.73
                         0.70 0.66
                                      0.61
                                            3.8 1.25
## belonging2 160
## belonging3 160
                  0.76
                         0.78 0.78
                                      0.68
                                            4.1 0.94
                  0.49 0.43 0.33
                                      0.30 3.0 1.31
## belonging4 160
## belonging5 160
                  0.59 0.61 0.54
                                      0.46 3.4 1.08
## belonging6 160
                  0.75 0.73 0.70
                                      0.65 4.0 1.15
## belonging7 160 0.61 0.66 0.61
                                      0.52 4.5 0.78
## belonging8 160
                  0.72 0.76 0.75
                                      0.64 4.0 0.97
## belonging9 160 0.57 0.55 0.47
                                      0.43 4.2 1.13
##
## Non missing response frequency for each item
##
                      2
                 1
                           3
## belonging1 0.04 0.05 0.28 0.43 0.20
## belonging2 0.02 0.20 0.15 0.20 0.42
                                          0
## belonging3 0.02 0.05 0.14 0.42 0.37
                                          0
## belonging4 0.12 0.29 0.21 0.19 0.18
## belonging5 0.05 0.18 0.27 0.36 0.14
                                          0
## belonging6 0.03 0.11 0.15 0.26 0.46
                                          0
                                          0
## belonging7 0.02 0.01 0.05 0.28 0.65
## belonging8 0.02 0.05 0.14 0.41 0.37
                                          0
```

Explore Data

```
# Calculate summary statistics
summary(survey)
```

```
##
                timestamp
                               gender
                                              age
                                                          residence
## 3-23-2017 20:03:44: 1
                            Female: 57
                                         30 - 34:38
                                                      USA
                                                               :139
## 3-23-2017 20:05:41: 1
                            Male :103
                                         25 - 29:36
                                                      Canada
## 3-23-2017 20:28:09: 1
                                         35 - 39:28
                                                      India
                                                                 3
   3-23-2017 20:36:25: 1
                                         45 - 49:15
                                                      Singapore:
## 3-23-2017 20:44:03: 1
                                         40 - 44:14
                                                      Australia:
## 3-23-2017 21:07:05: 1
                                         20 - 24:11
                                                      Brazil
   (Other)
##
                     :154
                                         (Other):18
                                                      (Other) : 7
                                    education_level
##
         birth
                        language
## USA
            :92
                                   Bachelors:113
                 English
                            :104
## India
            :25
                 Chinese
                            : 17
                                   Masters : 38
## China
            :12
                            : 15
                                   Doctorate: 9
                  Indian
##
   Indonesia: 3
                  Spanish
                              8
## Ecuador : 2
                  Indonesian: 3
##
   Mexico
            : 2
                  Korean
                            : 2
##
   (Other)
            :24
                  (Other)
                           : 11
##
                 education_field omscs_yn omscs_reason
## Computer science
                         :73
                                 No: 7
                                           Length: 160
                         : 5
## Economics/business
                                 Yes:153
                                           Class : character
## Engineering
                         :50
                                           Mode :character
## Humanities/arts
                         : 6
## Mathematics/statistics:12
## Other sciences
                         : 3
##
   Physical/life sciences:11
##
       omscs_semester
                                cs6035
                                                    cs6210
## Spring 2015:42
                                   : 47
                                                       : 11
                      Completed
                                          Completed
## Fall 2015 :26
                                   : 7
                      Current
                                          Current
   Fall 2016 :25
##
                      Attempted
                                   : 2
                                          Attempted
   Spring 2016:19
                      Not Attempted: 104
##
                                          Not Attempted: 143
## Fall 2014 :18
##
   Spring 2014:17
##
              :13
   (Other)
##
            cse6220
                                cse6242
                                                     cs6250
## Completed
                                    : 13
                                                        :77
                : 11
                       Completed
                                           Completed
## Current
                       Current
                                    : 35
                                           Current
                                                        : 7
```

```
Attempted : 2 Attempted : 2 Attempted : 2
##
  Not Attempted:147
                   Not Attempted:110 Not Attempted:74
##
##
##
##
      cs6262
                     cs6290
                                           cs6300
  Completed : 10
                   Completed : 8 Completed :91
##
                              : 1 Current
             : 6
##
   Current
                   Current
                                              :12
           : 0
                   Attempted
                                             : 1
##
   Attempted
                              : 1 Attempted
##
   Not Attempted: 144
                   Not Attempted:150 Not Attempted:56
##
##
##
          cs6310
                            cs6340
##
                                            cs6400
## Completed : 22
                   Completed : 11 Completed : 30
##
   Current
             : 4
                   Current
                              : 1
                                    Current
                                               : 10
##
            : 1
                            : 1
   Attempted
                   Attempted
                                    Attempted
                                             : 0
##
  Not Attempted:133
                   Not Attempted: 147
                                    Not Attempted: 120
##
##
##
##
       cs6440
                     cs6460
                                           cs6475
## Completed : 50 Completed : 7
                                   Completed : 48
             : 1
                   Current
                              :64
                                   Current
##
   Current
                   Attempted : 0
##
   Attempted : 0
                                   Attempted : 1
##
  Not Attempted:109
                   Not Attempted:89
                                   Not Attempted:105
##
##
##
          cs6476
                                           cs6601
                     cs6505
##
   Completed : 36
                   Completed : 28
                                    Completed : 24
##
                             : 2
## Current
             : 9
                   Current
                                    Current
                   Attempted : 14
##
   Attempted
           : 3
                                    Attempted : 5
##
  Not Attempted:112
                   Not Attempted:116
                                    Not Attempted:123
##
##
##
           cs6750
##
                            cs7637
                                            cs7641
                              :89
##
   Completed : 7
                   Completed
                                   Completed
                                              :58
                              : 4
                   Current
                                   Current
                                              :10
##
  Current
            : 10
  Attempted : 1
                   Attempted : 5
                                   Attempted
##
                                              :13
##
  Not Attempted:142
                   Not Attempted:62
                                   Not Attempted:79
##
##
##
           cs7646
                          cse8803
                                   cs8803_001
##
## Completed :50
                   Completed : 6
                                   Completed : 45
             :12 Current
## Current
                            : 1
                                   Current
##
  Attempted : 1 Attempted : 4
                                   Attempted : 3
   Not Attempted:97 Not Attempted:149
##
                                   Not Attempted:110
##
##
##
         cs8803 002
                   cs8803 003 cs8803 004
##
```

```
Completed
                 : 16
                        Completed
                                      : 20
                                             Completed
                                                           : 1
   Current
                 : 0
                                      : 4
##
                        Current
                                             Current
                 : 4
                                             Attempted
##
    Attempted
                        Attempted
##
    Not Attempted: 140
                        Not Attempted:134
                                             Not Attempted:158
##
##
##
            cs8803 007
                                 cs8803 008
##
                                             specialization
##
    Completed
                 : 3
                        Completed
                                      : 1
                                             Length: 160
##
    Current
                    3
                        Current
                                             Class : character
    Attempted
                 : 1
                        Attempted
                                      : 1
                                             Mode :character
##
    Not Attempted:153
                        Not Attempted: 156
##
##
##
##
                        hours
                                    prog_years prog_languages
            gpa
    2.5 - 2.9 : 2
##
                    10 - 14:41
                                  15+
                                         :47
                                               Length: 160
    3.0 - 3.4 : 24
                    15 - 19:36
                                  3 - 5
                                        :31
                                               Class : character
    3.5 - 3.9 : 60
                    20 - 24:30
                                         :21
                                               Mode :character
##
                                  1
##
              :66
                    25 - 29:17
                                         :18
   Don't Know: 8
##
                    30 - 34:13
                                  12 - 14:14
##
                    5 - 9 : 9
                                  6 - 8 :12
##
                    (Other):14
                                  (Other):17
    prior_cs_study prior_cs_exp
                                   conf prior
##
                                                   conf_post
##
    No : 58
                         :33
                                 Min. :1.000
                   0
                                                 Min.
                                                       :1.000
                                                 1st Qu.:4.000
    Yes:102
                   1
                          :12
                                 1st Qu.:3.000
##
                   2
                          :23
                                 Median :4.000
                                                 Median :5.000
##
                   3 - 5 :22
                                                        :4.369
                                 Mean
                                        :3.844
                                                 Mean
##
                   6 - 8 :13
                                 3rd Qu.:5.000
                                                 3rd Qu.:5.000
##
                   9 - 11:17
                                 Max.
                                        :5.000
                                                 Max.
                                                        :5.000
##
                   12+
                         :40
##
      selfconf1
                     selfconf2
                                      selfconf3
                                                    selfconf4
##
    Min.
           :1.00
                   Min.
                           :2.000
                                    Min.
                                           :1.0
                                                  Min.
                                                         :1.000
    1st Qu.:4.00
                   1st Qu.:4.000
                                    1st Qu.:3.0
                                                  1st Qu.:3.000
##
##
    Median:4.00
                   Median :5.000
                                    Median:4.0
                                                  Median :4.000
##
    Mean
           :4.15
                   Mean
                           :4.475
                                                  Mean
                                                         :3.888
                                   Mean
                                           :3.8
    3rd Qu.:5.00
##
                   3rd Qu.:5.000
                                    3rd Qu.:4.0
                                                  3rd Qu.:5.000
##
    Max.
           :5.00
                   Max.
                           :5.000
                                    Max.
                                           :5.0
                                                  Max.
                                                         :5.000
##
##
      selfconf5
                      selfconf6
                                       selfconf7
                                                        equality1
   Min.
           :1.000
                    Min. :1.000
                                     Min. :1.000
                                                     Min. :1.000
##
    1st Qu.:4.000
                    1st Qu.:3.000
                                     1st Qu.:4.000
                                                     1st Qu.:4.000
    Median :4.000
                    Median :4.000
                                     Median :4.000
                                                     Median :5.000
##
    Mean
          :4.275
                    Mean
                           :3.844
                                     Mean
                                           :4.162
                                                     Mean
                                                            :4.519
    3rd Qu.:5.000
                    3rd Qu.:5.000
                                     3rd Qu.:5.000
                                                     3rd Qu.:5.000
##
    Max.
           :5.000
                           :5.000
                    Max.
                                     Max.
                                            :5.000
                                                     Max.
                                                            :5.000
##
##
                      equality3
                                       equality4
      equality2
                                                        equality5
##
   Min.
          :1.000
                    Min.
                           :1.000
                                     Min.
                                           :1.000
                                                     Min.
                                                            :1.000
##
    1st Qu.:5.000
                    1st Qu.:5.000
                                     1st Qu.:5.000
                                                     1st Qu.:2.000
##
    Median :5.000
                    Median :5.000
                                     Median :5.000
                                                     Median :3.000
##
   Mean
          :4.662
                    Mean :4.731
                                     Mean
                                           :4.719
                                                     Mean :3.306
                                                     3rd Qu.:5.000
##
    3rd Qu.:5.000
                    3rd Qu.:5.000
                                     3rd Qu.:5.000
## Max. :5.000
                    Max.
                           :5.000
                                     Max.
                                            :5.000
                                                     Max.
                                                            :5.000
```

```
##
      equality6
##
                      belonging1
                                       belonging2
                                                      belonging3
    Min. :1.000
                            :1.000
                                                    Min.
##
                                            :1.0
                                                           :1.000
    1st Qu.:4.000
                    1st Qu.:3.000
                                      1st Qu.:3.0
                                                    1st Qu.:4.000
    Median :5.000
                    Median :4.000
                                     Median:4.0
                                                    Median :4.000
##
    Mean
           :4.537
                    Mean
                            :3.694
                                     Mean
                                             :3.8
                                                    Mean
                                                            :4.069
    3rd Qu.:5.000
                     3rd Qu.:4.000
                                      3rd Qu.:5.0
                                                    3rd Qu.:5.000
    Max.
           :5.000
                            :5.000
                                             :5.0
                                                            :5.000
##
                    Max.
                                     Max.
                                                    Max.
##
##
      belonging4
                       belonging5
                                       belonging6
                                                     belonging7
    Min.
           :1.000
                    Min.
                            :1.000
                                     Min.
                                             :1
                                                   Min.
                                                          :1.000
                     1st Qu.:3.000
                                                   1st Qu.:4.000
##
    1st Qu.:2.000
                                      1st Qu.:3
    Median :3.000
                                                   Median :5.000
##
                    Median :3.500
                                     Median:4
##
    Mean
           :3.006
                    Mean
                            :3.356
                                     Mean
                                                   Mean
                                             :4
                                                          :4.531
##
    3rd Qu.:4.000
                     3rd Qu.:4.000
                                      3rd Qu.:5
                                                   3rd Qu.:5.000
##
    Max.
           :5.000
                    Max.
                            :5.000
                                     Max.
                                             :5
                                                   Max.
                                                          :5.000
##
##
      belonging8
                      belonging9
                                      completed
                                                        attempted
##
          :1.00
                          :1.000
                                           : 0.000
                                                      Min. : 0.0000
    Min.
                                    Min.
                    Min.
##
    1st Qu.:4.00
                    1st Qu.:4.000
                                    1st Qu.: 3.000
                                                      1st Qu.: 0.0000
##
    Median:4.00
                   Median :5.000
                                    Median : 5.000
                                                      Median: 0.0000
##
    Mean
           :4.05
                    Mean
                           :4.181
                                    Mean
                                            : 5.125
                                                      Mean
                                                             : 0.4625
                                    3rd Qu.: 7.000
##
    3rd Qu.:5.00
                    3rd Qu.:5.000
                                                      3rd Qu.: 1.0000
    Max.
           :5.00
                    Max.
                           :5.000
                                    Max.
                                           :11.000
                                                      Max.
                                                             :14.0000
##
##
##
       current
                      conf ave
                                      age_num
                                                       gpa_num
##
    Min.
           :0.0
                         :1.500
                                   Min.
                                          :22.00
                                                    Min.
                                                           :2.700
                  Min.
    1st Qu.:1.0
                   1st Qu.:3.500
                                   1st Qu.:27.00
##
                                                    1st Qu.:3.700
##
    Median:1.0
                   Median :4.250
                                   Median :32.00
                                                    Median :3.700
    Mean
          :1.4
                   Mean
                         :4.106
                                   Mean
                                         :35.88
                                                    Mean
                                                            :3.738
##
    3rd Qu.:2.0
                   3rd Qu.:4.500
                                   3rd Qu.:42.00
                                                    3rd Qu.:4.000
##
    Max.
           :7.0
                  Max.
                          :5.000
                                   Max.
                                          :62.00
                                                    Max.
                                                            :4.000
##
                                                            :8
##
      hours_num
                        prog_num
                                       prior_cs_num
                                                          prog_count
##
    Min. : 2.00
                    Min. : 0.000
                                      Min. : 0.000
                                                        Min.
                                                               : 0.000
##
    1st Qu.:12.00
                    1st Qu.: 2.000
                                      1st Qu.: 1.000
                                                        1st Qu.: 3.000
##
    Median :17.00
                    Median : 7.000
                                      Median: 4.000
                                                        Median : 5.000
##
    Mean
           :20.19
                    Mean
                          : 8.244
                                      Mean
                                            : 5.794
                                                        Mean
                                                              : 4.694
##
    3rd Qu.:27.00
                    3rd Qu.:16.000
                                      3rd Qu.:10.750
                                                        3rd Qu.: 6.000
    Max. :42.00
                                                               :14.000
##
                    Max.
                            :16.000
                                      Max.
                                            :13.000
                                                        Max.
##
##
    spec robotics
                       spec_systems
                                        spec intelligence
                                                              spec ml
    Min. :0.0000
                      Min.
                                              :0.0000
                                                          Min.
##
                            :0.0000
                                       Min.
                                                                  :0.000
##
    1st Qu.:0.0000
                      1st Qu.:0.0000
                                        1st Qu.:0.0000
                                                          1st Qu.:0.000
    Median :0.0000
                      Median :0.0000
                                       Median :0.0000
                                                          Median : 0.000
                                                          Mean
##
    Mean
           :0.1062
                                       Mean
                                              :0.4875
                                                                  :0.275
                      Mean
                             :0.1562
##
    3rd Qu.:0.0000
                      3rd Qu.:0.0000
                                        3rd Qu.:1.0000
                                                           3rd Qu.:1.000
##
    Max.
           :1.0000
                             :1.0000
                                               :1.0000
                                                                  :1.000
                      Max.
                                       Max.
                                                          Max.
##
##
    reason_financial
                     reason_quals
                                       reason_promotion reason_switch
##
           :0.000
                             :0.0000
                                                                 :0.0
    Min.
                      Min.
                                       Min.
                                               :0.0000
                                                         Min.
    1st Qu.:0.000
                      1st Qu.:0.0000
                                        1st Qu.:0.0000
                                                         1st Qu.:0.0
##
    Median : 0.000
                      Median :1.0000
                                       Median :0.0000
                                                         Median:0.0
##
    Mean :0.375
                      Mean
                            :0.6562
                                       Mean :0.3063
                                                         Mean
                                                               :0.3
```

```
3rd Qu.:1.000
                    3rd Qu.:1.0000
                                     3rd Qu.:1.0000
                                                       3rd Qu.:1.0
##
   Max.
         :1.000
                    Max.
                           :1.0000
                                    Max.
                                             :1.0000
                                                      Max.
                                                             :1.0
##
##
   reason_connections
                        reason_fun
                                        cs_study_ind
                                                          native_ind
##
   Min.
          :0.0000
                      Min.
                             :0.0000
                                       Min.
                                              :0.0000
                                                        Min.
                                                               :0.00
##
   1st Qu.:0.0000
                      1st Qu.:0.0000
                                       1st Qu.:0.0000
                                                        1st Qu.:0.00
   Median :0.0000
                      Median :0.0000
                                       Median :1.0000
                                                        Median:1.00
   Mean
         :0.1187
                             :0.4062
                                                               :0.65
##
                      Mean
                                       Mean
                                               :0.6375
                                                        Mean
##
   3rd Qu.:0.0000
                      3rd Qu.:1.0000
                                        3rd Qu.:1.0000
                                                        3rd Qu.:1.00
##
   Max. :1.0000
                      Max.
                             :1.0000
                                             :1.0000
                                                        Max.
                                       Max.
                                                               :1.00
##
##
    us_birth_ind
                     us_res_ind
                                      higher_ind
                                                      selfconf score
##
   Min.
         :0.000
                   Min. :0.0000
                                     Min.
                                          :0.0000
                                                     Min.
                                                           :1.857
##
   1st Qu.:0.000
                   1st Qu.:1.0000
                                     1st Qu.:0.0000
                                                     1st Qu.:3.714
  Median :1.000
                   Median :1.0000
                                     Median :0.0000
                                                     Median :4.143
##
   Mean
         :0.575
                   Mean
                          :0.8688
                                     Mean
                                            :0.2938
                                                     Mean
                                                           :4.085
##
   3rd Qu.:1.000
                   3rd Qu.:1.0000
                                     3rd Qu.:1.0000
                                                     3rd Qu.:4.607
##
   Max.
          :1.000
                   Max.
                          :1.0000
                                    Max.
                                           :1.0000
                                                     Max.
                                                             :5.000
##
## equality score belonging score
## Min.
          :1.000
                   Min.
                          :1.000
  1st Qu.:4.167
                   1st Qu.:3.333
## Median :4.500
                  Median :3.944
## Mean :4.412
                   Mean :3.854
   3rd Qu.:4.833
##
                   3rd Qu.:4.333
   Max.
          :5.000
                  Max. :5.000
##
# Explore outlier cases for completed, current and attempted
subset(survey[,c("completed", "current", "attempted")], completed > 10)
##
       completed current attempted
## 37
              11
                       0
                       2
                                0
## 154
              11
subset(survey[,c("completed", "current", "attempted")], current > 3)
##
       completed current attempted
## 114
              5
                       4
              7
## 137
                       7
                               14
subset(survey[,c("completed", "current", "attempted")], attempted > 5)
##
       completed current attempted
## 137
              7
                      7
# Change outlier values to medians
survey$current = ifelse(survey$current > 3, 1, survey$current)
survey$attempted = ifelse(survey$attempted == 14, 0, survey$attempted)
# Calculate proportion of class by gender
prop.table(table(survey$gender))
##
## Female
             Male
## 0.35625 0.64375
```

```
# Calculate proportion of respondent who are currently enrolled in CS6460 (EduTech)
count(subset(survey, cs6460 == "Current"), "cs6460")$freq/dim(survey)[1]
```

[1] 0.4

Analyze Data by Gender

```
# Calculate confidence summary statistics
ddply(survey, "gender", summarise,
   mean = mean(conf_prior), sd = sd(conf_prior), median = median(conf_prior),
    first_q = quantile(conf_prior, 0.25), third_q = quantile(conf_prior, 0.75))
     gender
                            sd median first_q third_q
                mean
## 1 Female 3.315789 1.1363773
       Male 4.135922 0.8289912
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(conf_post), sd = sd(conf_post), median = median(conf_post),
    first_q = quantile(conf_post, 0.25), third_q = quantile(conf_post, 0.75))
                            sd median first_q third_q
##
     gender
                mean
## 1 Female 4.175439 0.9281858
       Male 4.475728 0.7776871
                                     5
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(conf_ave), sd = sd(conf_ave), median = median(conf_ave),
    first_q = quantile(conf_ave, 0.25), third_q = quantile(conf_ave, 0.75))
##
                            sd median first_q third_q
     gender
                mean
## 1 Female 3.745614 0.8080113
                                  4.0
                                             3
                                                   4.5
       Male 4.305825 0.6868264
                                  4.5
                                             4
                                                   5.0
# Calculate summary stats for self confidence statements
ddply(survey, "gender", summarise,
    mean = mean(selfconf1), sd = sd(selfconf1), median = median(selfconf1),
    first_q = quantile(selfconf1, 0.25), third_q = quantile(selfconf1, 0.75))
##
    gender
                            sd median first_q third_q
                mean
## 1 Female 3.877193 0.9077086
                                    4
                                             3
      Male 4.300971 0.8264613
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(selfconf2), sd = sd(selfconf2), median = median(selfconf2),
   first_q = quantile(selfconf2, 0.25), third_q = quantile(selfconf2, 0.75))
                            sd median first_q third_q
     gender
                mean
## 1 Female 4.315789 0.6855106
                                                     5
      Male 4.563107 0.5886159
                                     5
                                             4
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(selfconf3), sd = sd(selfconf3), median = median(selfconf3),
    first_q = quantile(selfconf3, 0.25), third_q = quantile(selfconf3, 0.75))
##
     gender
                mean
                            sd median first_q third_q
## 1 Female 3.578947 0.9626483
                                     4
                                             3
                                                     4
                                             3
                                                     5
       Male 3.922330 0.8932132
```

```
ddply(survey, "gender", summarise,
    mean = mean(selfconf4), sd = sd(selfconf4), median = median(selfconf4),
    first_q = quantile(selfconf4, 0.25), third_q = quantile(selfconf4, 0.75))
     gender
                            sd median first_q third_q
                mean
## 1 Female 3.771930 0.8241347
                                    4
                                            3
       Male 3.951456 0.8674805
                                            3
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(selfconf5), sd = sd(selfconf5), median = median(selfconf5),
   first_q = quantile(selfconf5, 0.25), third_q = quantile(selfconf5, 0.75))
##
     gender
                mean
                            sd median first_q third_q
## 1 Female 4.105263 0.7484319
                                                     5
       Male 4.368932 0.7408301
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(selfconf6), sd = sd(selfconf6), median = median(selfconf6),
   first_q = quantile(selfconf6, 0.25), third_q = quantile(selfconf6, 0.75))
                            sd median first_q third_q
##
     gender
                mean
## 1 Female 3.280702 1.0308524
                                            2
                                                     4
      Male 4.155340 0.8939588
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(selfconf7), sd = sd(selfconf7), median = median(selfconf7),
    first_q = quantile(selfconf7, 0.25), third_q = quantile(selfconf7, 0.75))
##
     gender
                           sd median first_q third_q
                mean
## 1 Female 4.017544 1.008734
                                           3
                                                    5
      Male 4.242718 1.023891
                                            4
                                                    5
ddply(survey, "gender", summarise,
   mean = mean(selfconf_score), sd = sd(selfconf_score), median = median(selfconf_score),
   first_q = quantile(selfconf_score, 0.25), third_q = quantile(selfconf_score, 0.75))
##
     gender
                                 median first_q third_q
                            sd
## 1 Female 3.849624 0.6609809 3.857143 3.428571 4.428571
     Male 4.214979 0.6109819 4.285714 3.857143 4.714286
# Calculate summary statistics for equality statements
ddply(survey, "gender", summarise,
   mean = mean(equality1), sd = sd(equality1), median = median(equality1),
   first_q = quantile(equality1, 0.25), third_q = quantile(equality1, 0.75))
##
     gender
                mean
                            sd median first q third q
## 1 Female 4.649123 0.6121166
                                    5
                                            4
                                                     5
                                    5
                                            4
                                                     5
       Male 4.446602 0.8369899
ddply(survey, "gender", summarise,
   mean = mean(equality2), sd = sd(equality2), median = median(equality2),
   first_q = quantile(equality2, 0.25), third_q = quantile(equality2, 0.75))
##
     gender
                            sd median first_q third_q
## 1 Female 4.684211 0.5718983
                                    5
                                            4
                                                     5
       Male 4.650485 0.7885049
                                    5
                                            5
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(equality3), sd = sd(equality3), median = median(equality3),
```

```
first_q = quantile(equality3, 0.25), third_q = quantile(equality3, 0.75))
    gender
##
                            sd median first_q third_q
                mean
## 1 Female 4.842105 0.4135851
                                    5
                                             5
       Male 4.669903 0.7845112
                                    5
                                             5
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(equality4), sd = sd(equality4), median = median(equality4),
    first_q = quantile(equality4, 0.25), third_q = quantile(equality4, 0.75))
                            sd median first_q third_q
     gender
                mean
## 1 Female 4.842105 0.4135851
                                    5
      Male 4.650485 0.8483980
                                     5
                                             5
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(equality5), sd = sd(equality5), median = median(equality5),
   first_q = quantile(equality5, 0.25), third_q = quantile(equality5, 0.75))
##
     gender
                           sd median first_q third_q
                mean
## 1 Female 3.438596 1.414435
                                   4
                                                  5.0
                                            2
       Male 3.233010 1.300105
                                                  4.5
ddply(survey, "gender", summarise,
   mean = mean(equality6), sd = sd(equality6), median = median(equality6),
   first_q = quantile(equality6, 0.25), third_q = quantile(equality6, 0.75))
##
     gender
                            sd median first_q third_q
## 1 Female 4.649123 0.6941394
                                    5
                                             4
                                                     5
      Male 4.475728 0.9685714
                                    5
                                                     5
                                             4
ddply(survey, "gender", summarise,
    mean = mean(equality_score), sd = sd(equality_score), median = median(equality_score),
    first_q = quantile(equality_score, 0.25), third_q = quantile(equality_score, 0.75))
##
                                 median first_q third_q
     gender
                mean
                            sd
## 1 Female 4.517544 0.4721239 4.666667 4.333333 5.000000
       Male 4.354369 0.6774775 4.500000 4.083333 4.833333
# Calculate summary statistics for belonging statements
ddply(survey, "gender", summarise,
   mean = mean(belonging1), sd = sd(belonging1), median = median(belonging1),
   first_q = quantile(belonging1, 0.25), third_q = quantile(belonging1, 0.75))
##
     gender
                            sd median first q third q
                mean
## 1 Female 3.333333 1.0745985
                                    3
                                             3
                                                     4
      Male 3.893204 0.8846471
                                             3
                                                     4
ddply(survey, "gender", summarise,
   mean = mean(belonging2), sd = sd(belonging2), median = median(belonging2),
   first_q = quantile(belonging2, 0.25), third_q = quantile(belonging2, 0.75))
##
     gender
                mean
                           sd median first_q third_q
## 1 Female 3.456140 1.310264
                                   4
                                            2
                                                    5
       Male 3.990291 1.184004
                                            3
                                                    5
ddply(survey, "gender", summarise,
   mean = mean(belonging3), sd = sd(belonging3), median = median(belonging3),
   first_q = quantile(belonging3, 0.25), third_q = quantile(belonging3, 0.75))
```

```
sd median first_q third_q
     gender
                mean
## 1 Female 3.684211 1.0716792
                                    4
                                             3
                                                     4
     Male 4.281553 0.7848751
                                             4
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(belonging4), sd = sd(belonging4), median = median(belonging4),
    first_q = quantile(belonging4, 0.25), third_q = quantile(belonging4, 0.75))
##
                           sd median first_q third_q
## 1 Female 2.842105 1.264762
                                            2
                                   3
                                            2
     Male 3.097087 1.332214
ddply(survey, "gender", summarise,
   mean = mean(belonging5), sd = sd(belonging5), median = median(belonging5),
    first_q = quantile(belonging5, 0.25), third_q = quantile(belonging5, 0.75))
     gender
##
                           sd median first_q third_q
## 1 Female 3.157895 1.177004
                                   3
                                           2
      Male 3.466019 1.017644
                                            3
ddply(survey, "gender", summarise,
   mean = mean(belonging6), sd = sd(belonging6), median = median(belonging6),
   first_q = quantile(belonging6, 0.25), third_q = quantile(belonging6, 0.75))
##
     gender
                            sd median first_q third_q
                mean
## 1 Female 3.543860 1.2687195
                                    4
                                             2
                                                     5
     Male 4.252427 0.9972359
                                    5
                                             4
                                                     5
ddply(survey, "gender", summarise,
   mean = mean(belonging7), sd = sd(belonging7), median = median(belonging7),
    first_q = quantile(belonging7, 0.25), third_q = quantile(belonging7, 0.75))
     gender
                mean
                            sd median first_q third_q
## 1 Female 4.473684 0.8885233
                                    5
       Male 4.563107 0.7231454
                                    5
                                             4
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(belonging8), sd = sd(belonging8), median = median(belonging8),
    first_q = quantile(belonging8, 0.25), third_q = quantile(belonging8, 0.75))
##
     gender
                            sd median first_q third_q
                mean
## 1 Female 3.842105 1.0314600
                                             3
                                                     5
      Male 4.165049 0.9192611
                                                     5
ddply(survey, "gender", summarise,
    mean = mean(belonging9), sd = sd(belonging9), median = median(belonging9),
   first_q = quantile(belonging9, 0.25), third_q = quantile(belonging9, 0.75))
##
     gender
                           sd median first_q third_q
                mean
## 1 Female 3.947368 1.216274
                                           3
                                                    5
      Male 4.310680 1.057458
                                            4
                                                    5
ddply(survey, "gender", summarise,
   mean = mean(belonging score), sd = sd(belonging score),
   median = median(belonging_score),
   first_q = quantile(belonging_score, 0.25), third_q = quantile(belonging_score, 0.75))
##
     gender
                mean
                            sd
                                 median first_q third_q
## 1 Female 3.586745 0.7794071 3.555556 3.111111 4.111111
```

```
Male 4.002157 0.5997620 4.111111 3.555556 4.444444
# Calculate age summary statistics
ddply(survey, "gender", summarise, mean = mean(age_num),
      sd = sd(age_num), median = median(age_num), first_q = quantile(age_num, 0.25),
      third_q = quantile(age_num, 0.75))
     gender
                mean
                           sd median first_q third_q
## 1 Female 34.71930 9.593067
                                  32
                                          27
       Male 36.51456 9.432801
                                  37
                                          27
                                                  42
# Calculate qpa summary statistics
ddply(subset(survey, !is.na(gpa_num)), "gender", summarise, mean = mean(gpa_num),
        sd = sd(gpa_num), median = median(gpa_num), first_q =
        quantile(gpa_num, 0.25), third_q = quantile(gpa_num, 0.75))
                            sd median first_q third_q
## 1 Female 3.772222 0.3217972
                                  4.0
                                          3.7
                                                    4
     Male 3.719388 0.2895635
                                  3.7
                                          3.7
                                                     4
# Calculate study hours summary statistics
ddply(survey, "gender", summarise,
             mean = mean(hours_num), sd = sd(hours_num), median = median(hours_num),
             first_q = quantile(hours_num, 0.25), third_q = quantile(hours_num, 0.75))
    gender
                           sd median first_q third_q
                mean
                                                  27
## 1 Female 21.03509 9.084848
                                  22
                                          12
      Male 19.71845 9.095805
                                  17
                                          12
                                                  22
# Calculate programming years summary statistics
ddply(survey, "gender", summarise,
             mean = mean(prog_num), sd = sd(prog_num), median = median(prog_num),
             first_q = quantile(prog_num, 0.25), third_q = quantile(prog_num, 0.75))
                           sd median first_q third_q
    gender
                mean
## 1 Female 6.192982 5.648763
                                   4
      Male 9.378641 6.057108
                                  10
                                                  16
# Calculate prior cs experience summary statistics
ddply(survey, "gender", summarise, mean = mean(prior_cs_num), sd = sd(prior_cs_num),
      median = median(prior cs num), first q = quantile(prior cs num, 0.25),
      third_q = quantile(prior_cs_num, 0.75))
     gender
                mean
                           sd median first_q third_q
## 1 Female 4.210526 4.857751
                                   2
                                           0
     Male 6.669903 5.086291
# Calculate programming language count summary statistics
ddply(survey, "gender", summarise, mean = mean(prog_count), sd = sd(prog_count),
      median = median(prog_count), first_q = quantile(prog_count, 0.25),
      third_q = quantile(prog_count, 0.75))
     gender
                           sd median first_q third_q
                mean
## 1 Female 4.105263 2.335168
                                           2
                                                 5.0
      Male 5.019417 2.585710
                                   5
                                                 6.5
# Calculate course completion/attempt summary statistics
ddply(survey, "gender", summarise, mean = mean(completed), sd = sd(completed),
      median = median(completed), first_q = quantile(completed, 0.25),
```

```
third_q = quantile(completed, 0.75))
     gender
##
                            sd median first_q third_q
                mean
## 1 Female 4.649123 2.831527
                                            3
       Male 5.388350 2.690699
                                            4
ddply(survey, "gender", summarise, mean = mean(attempted), sd = sd(attempted),
      median = median(attempted), first_q = quantile(attempted, 0.25),
      third_q = quantile(attempted, 0.75))
     gender
                              sd median first_q third_q
                 mean
## 1 Female 0.3333333 0.7867958
                                      0
       Male 0.3980583 0.7963127
                                      0
                                                       1
ddply(survey, "gender", summarise, mean = mean(current), sd = sd(current),
      median = median(current), first_q = quantile(current, 0.25),
      third_q = quantile(current, 0.75))
     gender
                             sd median first_q third_q
                mean
## 1 Female 1.228070 0.8241347
                                     1
                                             1
       Male 1.407767 0.7199795
                                             1
                                                      2
survey_m = subset(survey, gender == "Male")
survey f = subset(survey, gender == "Female")
# Compare age
prop.table(table(survey_m$age))
##
##
                             30 - 34
                                        35 - 39
                                                    40 - 44
      20 - 24
                 25 - 29
                                                               45 - 49
## 0.06796117 0.19417476 0.23300971 0.16504854 0.11650485 0.09708738
                             60 - 64
                 55 - 59
##
      50 - 54
## 0.08737864 0.03883495 0.00000000
prop.table(table(survey_f$age))
##
##
      20 - 24
                 25 - 29
                             30 - 34
                                        35 - 39
                                                    40 - 44
                                                               45 - 49
## 0.07017544 0.28070175 0.24561404 0.19298246 0.03508772 0.08771930
      50 - 54
                 55 - 59
                             60 - 64
## 0.01754386 0.05263158 0.01754386
# Compare birth country
prop.table(table(survey m$birth))
##
##
        Australia
                           Brazil
                                          Canada
                                                           Chile
                                                                           China
                     0.009708738
##
      0.00000000
                                     0.009708738
                                                     0.009708738
                                                                    0.067961165
##
         Colombia
                          Ecuador
                                         Greece
                                                          Guyana
                                                                        Holland
##
      0.00000000
                     0.009708738
                                     0.00000000
                                                     0.009708738
                                                                    0.009708738
##
                                       Indonesia
        Hong Kong
                            India
                                                        Ireland
                                                                           Kenya
##
      0.009708738
                     0.145631068
                                     0.029126214
                                                     0.009708738
                                                                    0.009708738
##
         Malaysia
                           Mexico
                                         Myanmar
                                                        Pakistan
                                                                            Perm
##
      0.009708738
                     0.009708738
                                     0.009708738
                                                     0.009708738
                                                                    0.009708738
##
      Philippines
                                       Singapore
                                                     South Korea Southeast Asia
                           Russia
      0.00000000
                                                     0.009708738
##
                     0.009708738
                                     0.009708738
                                                                    0.00000000
         Thailand
##
                          Ukraine United Kingdom
                                                             USA
                                                                     Yugoslavia
```

```
##
      0.00000000
                      0.009708738
                                     0.009708738
                                                     0.563106796
                                                                     0.009708738
prop.table(table(survey_f$birth))
##
##
        Australia
                           Brazil
                                           Canada
                                                            Chile
                                                                           China
##
       0.01754386
                       0.00000000
                                      0.00000000
                                                      0.00000000
                                                                      0.08771930
##
         Colombia
                          Ecuador
                                          Greece
                                                           Guyana
                                                                         Holland
##
       0.01754386
                                                      0.00000000
                                                                      0.0000000
                       0.01754386
                                      0.01754386
##
        Hong Kong
                            India
                                       Indonesia
                                                        Ireland
                                                                           Kenya
##
       0.00000000
                       0.17543860
                                      0.00000000
                                                      0.00000000
                                                                      0.00000000
##
         Malaysia
                           Mexico
                                          Myanmar
                                                        Pakistan
                                                                            Peru
##
       0.0000000
                       0.01754386
                                      0.0000000
                                                      0.00000000
                                                                      0.00000000
##
                                                     South Korea Southeast Asia
      Philippines
                           Russia
                                       Singapore
##
       0.01754386
                       0.0000000
                                      0.0000000
                                                      0.00000000
                                                                      0.01754386
##
         Thailand
                          Ukraine United Kingdom
                                                              USA
                                                                      Yugoslavia
##
       0.01754386
                       0.0000000
                                      0.00000000
                                                      0.59649123
                                                                      0.0000000
# Compare country of residence
prop.table(table(survey_m$residence))
##
                                                         Ecuador
##
     Australia
                    Brazil
                                 Canada
                                               China
                                                                        India
##
  0.00000000 0.009708738 0.058252427 0.009708738 0.009708738 0.009708738
##
                                                                     Thailand
        Israel
                      Japan
                                  Kenya
                                            Paraguay
                                                       Singapore
##
  0.000000000 0.000000000 0.009708738 0.009708738 0.019417476 0.000000000
           USA
##
## 0.864077670
prop.table(table(survey_f$residence))
##
##
    Australia
                  Brazil
                              Canada
                                           China
                                                    Ecuador
                                                                  India
## 0.01754386 0.00000000 0.01754386 0.00000000 0.00000000 0.03508772
##
       Israel
                    Japan
                               Kenya
                                       Paraguay Singapore
                                                               Thailand
## 0.01754386 0.01754386 0.00000000 0.00000000 0.00000000 0.01754386
##
          USA
## 0.87719298
# Compare language background
prop.table(table(survey_m$language))
##
##
          Burmese
                          Chinese
                                          English
                                                                          Indian
                                                          French
##
      0.009708738
                      0.087378641
                                      0.660194175
                                                     0.009708738
                                                                     0.077669903
##
       Indonesian
                           Korean
                                       Malayalam
                                                      Portuguese
                                                                         Russian
      0.029126214
                      0.019417476
                                      0.00000000
                                                     0.009708738
                                                                     0.019417476
## Serbo-Croatian
                                          Swahili
                          Spanish
                                                         Tagalog
                                                                            Thai
      0.009708738
                      0.048543689
                                     0.009708738
                                                     0.00000000
                                                                     0.00000000
##
##
             Hrdu
      0.009708738
prop.table(table(survey_f$language))
##
##
          Burmese
                          Chinese
                                          English
                                                          French
                                                                          Indian
##
       0.0000000
                       0.14035088
                                      0.63157895
                                                      0.00000000
                                                                      0.12280702
##
       Indonesian
                           Korean
                                       Malayalam
                                                      Portuguese
                                                                         Russian
```

```
0.0000000
                      0.00000000
                                      0.01754386
                                                     0.00000000
                                                                     0.00000000
##
## Serbo-Croatian
                         Spanish
                                         Swahili
                                                         Tagalog
                                                                           Thai
       0.00000000
                      0.05263158
                                      0.00000000
                                                                     0.01754386
##
                                                     0.01754386
##
             Urdu
##
       0.0000000
# Compare English skills
prop.table(table(survey_m$english))
## numeric(0)
prop.table(table(survey_f$english))
## numeric(0)
# Compare education level
prop.table(table(survey_m$education_level))
##
  Bachelors
                 Masters Doctorate
## 0.72815534 0.22330097 0.04854369
prop.table(table(survey_f$education_level))
##
   Bachelors
                 Masters Doctorate
## 0.66666667 0.26315789 0.07017544
# Compare education field
prop.table(table(survey_m$education_field))
##
##
         Computer science
                               Economics/business
                                                              Engineering
                                      0.038834951
                                                              0.320388350
##
              0.485436893
##
          Humanities/arts Mathematics/statistics
                                                           Other sciences
##
              0.029126214
                                      0.038834951
                                                              0.009708738
  Physical/life sciences
              0.077669903
prop.table(table(survey f$education field))
##
##
         Computer science
                               Economics/business
                                                              Engineering
                                       0.01754386
##
               0.40350877
                                                               0.29824561
##
          Humanities/arts Mathematics/statistics
                                                           Other sciences
               0.05263158
                                       0.14035088
                                                               0.03508772
##
## Physical/life sciences
##
               0.05263158
# Compare omscs_yn
prop.table(table(survey m$omscs yn))
##
##
                       Yes
## 0.009708738 0.990291262
prop.table(table(survey_f$omscs_yn))
##
##
          No
                   Yes
```

```
## 0.1052632 0.8947368
# Compare OMSCS commencement semester
prop.table(table(survey m$omscs semester))
##
## Spring 2014 Summer 2014 Fall 2014 Spring 2015 Summer 2015
                                                                 Fall 2015
## 0.12621359 0.03883495 0.09708738 0.25242718 0.00000000 0.20388350
## Spring 2016 Summer 2016 Fall 2016 Spring 2017
## 0.10679612 0.00000000 0.13592233 0.03883495
prop.table(table(survey_f$omscs_semester))
##
## Spring 2014 Summer 2014 Fall 2014 Spring 2015 Summer 2015
                                                                 Fall 2015
## 0.07017544 0.05263158 0.14035088 0.28070175 0.00000000 0.08771930
## Spring 2016 Summer 2016
                            Fall 2016 Spring 2017
## 0.14035088 0.00000000 0.19298246 0.03508772
# Compare prior cs study ind
prop.table(table(survey_m$prior_cs_study))
##
##
         No
                   Yes
## 0.2815534 0.7184466
prop.table(table(survey_f$prior_cs_study))
##
##
         No
                   Yes
## 0.5087719 0.4912281
# Compare prior cs experience
prop.table(table(survey_m$prior_cs_exp))
##
                                         3 - 5
                                                    6 - 8
                                  2
## 0.12621359 0.06796117 0.14563107 0.16504854 0.06796117 0.12621359
##
          12+
## 0.30097087
prop.table(table(survey_f$prior_cs_exp))
##
                                         3 - 5
## 0.35087719 0.08771930 0.14035088 0.08771930 0.10526316 0.07017544
##
          12+
## 0.15789474
# Compare specializations (including current EduTech students)
prop.table(table(survey_m$spec_robotics))
##
##
          Ω
## 0.8834951 0.1165049
prop.table(table(survey_f$spec_robotics))
##
##
          0
                     1
```

```
## 0.9122807 0.0877193
prop.table(table(survey_m$spec_systems))
##
##
                     1
## 0.8446602 0.1553398
prop.table(table(survey_f$spec_systems))
##
##
## 0.8421053 0.1578947
prop.table(table(survey_m$spec_intelligence))
##
           0
##
                     1
## 0.4854369 0.5145631
prop.table(table(survey_f$spec_intelligence))
##
##
           Λ
                     1
## 0.5614035 0.4385965
prop.table(table(survey_m$spec_ml))
##
##
          0
                   1
## 0.776699 0.223301
prop.table(table(survey_f$spec_ml))
##
##
## 0.6315789 0.3684211
# Compare specializations (excluding current EduTech students)
prop.table(table(subset(survey_m, cs6460 != "Current")$spec_robotics))
##
##
           0
                     1
## 0.7884615 0.2115385
prop.table(table(subset(survey_f, cs6460 != "Current")$spec_robotics))
##
##
           0
                     1
## 0.8863636 0.1136364
prop.table(table(subset(survey_m, cs6460 != "Current")$spec_systems))
##
##
           0
                     1
## 0.8076923 0.1923077
prop.table(table(subset(survey_f, cs6460 != "Current")$spec_systems))
##
##
           0
                     1
```

```
## 0.7954545 0.2045455
prop.table(table(subset(survey_m, cs6460 != "Current")$spec_intelligence))
##
##
## 0.8076923 0.1923077
prop.table(table(subset(survey_f, cs6460 != "Current")$spec_intelligence))
##
##
## 0.7045455 0.2954545
prop.table(table(subset(survey_m, cs6460 != "Current")$spec_ml))
##
##
           0
                     1
## 0.5769231 0.4230769
prop.table(table(subset(survey_f, cs6460 != "Current")$spec_ml))
##
##
                     1
           0
## 0.5454545 0.4545455
# Compare reasons
prop.table(table(survey_m$reason_financial))
##
##
           0
                     1
## 0.6019417 0.3980583
prop.table(table(survey_f$reason_financial))
##
##
           0
                     1
## 0.6666667 0.3333333
prop.table(table(survey_m$reason_quals))
##
##
           0
## 0.3592233 0.6407767
prop.table(table(survey_f$reason_quals))
##
           0
## 0.3157895 0.6842105
prop.table(table(survey_m$reason_promotion))
##
## 0.6699029 0.3300971
prop.table(table(survey_f$reason_promotion))
##
           0
##
                     1
```

```
## 0.7368421 0.2631579
prop.table(table(survey_m$reason_switch))
##
##
## 0.6893204 0.3106796
prop.table(table(survey_f$reason_switch))
##
##
## 0.7192982 0.2807018
prop.table(table(survey_m$reason_connections))
##
##
           0
                     1
## 0.8932039 0.1067961
prop.table(table(survey_f$reason_connections))
##
##
           0
## 0.8596491 0.1403509
prop.table(table(survey_m$reason_fun))
##
##
           0
## 0.6213592 0.3786408
prop.table(table(survey_f$reason_fun))
##
##
## 0.5438596 0.4561404
#Boxplot of age distribution by gender
ggplot(survey, aes(gender, age_num)) +
 geom_boxplot() +
labs(title = "Age Distribution by Gender",
     x = "Gender", y = "Age") +
 theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Age Distribution by Gender

Overall GPA Distribution by Gender

Study Hours Distribution by Gender

Programming Experience Distribution by Gender

Prior CS Experience Distribution by Gender

Programming Language Count Distribution by Gender

Confidence Score Distribution by Gender

Confidence Score (Pre-OMSCS) Distribution by Gender

Confidence Score (Post-OMSCS) Distribution by Gender

Self-Confidence Score Distribution by Gender

Equality Score Distribution by Gender

Belonging Score Distribution by Gender


```
# Bar chart comparing age by gender
ggplot(survey, aes(x = age)) +
    geom_bar(fill = "blue") +
    facet_wrap(~gender, scales = "free_y") +
    labs(title = "Age Distribution by Gender",
        x = "Age Band",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Age Distribution by Gender


```
# Bar chart comparing education level by gender
ggplot(survey, aes(x = education_level)) +
    geom_bar(fill = "blue") +
    facet_wrap(~gender, scales = "free_y") +
    labs(title = "Highest Education Level by Gender",
        x = "Highest Level of Educational Attainment",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Highest Education Level by Gender


```
# Bar chart comparing prior cs experience by gender
ggplot(survey, aes(x = prior_cs_exp)) +
    geom_bar(fill = "blue") +
    facet_wrap(~gender, scales = "free_y") +
    labs(title = "Prior CS Experience Distribution by Gender",
        x = "Prior CS Experience (Years)",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Prior CS Experience Distribution by Gender


```
# Histogram of conf_ave by gender
ggplot(survey, aes(x = conf_ave)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Confidence Score Distribution by Gender",
        x = "Average Confidence Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Confidence Score Distribution by Gender


```
# Histogram of conf_prior by gender
ggplot(survey, aes(x = conf_prior)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Pre-OMSCS Confidence Score Distribution by Gender",
        x = "Pre-OMSCS Confidence Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Pre-OMSCS Confidence Score Distribution by Gender


```
# Histogram of conf_post by gender
ggplot(survey, aes(x = conf_post)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Post-OMSCS Confidence Score Distribution by Gender",
        x = "Post-OMSCS Confidence Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Post-OMSCS Confidence Score Distribution by Gender


```
# Histogram of study hours by gender
ggplot(survey, aes(x = hours_num)) +
    geom_histogram(fill = "blue", binwidth = 1) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Study Hours Distribution by Gender",
        x = "Average Hours Spent Studying per Week",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Study Hours Distribution by Gender


```
# Histogram of programming experience by gender
ggplot(survey, aes(x = prog_num)) +
    geom_histogram(fill = "blue", binwidth = 1) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Programming Experience Distribution by Gender",
        x = "Average Programming Experience (Years)",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Programming Experience Distribution by Gender


```
# Histogram of prior cs experience by gender
ggplot(survey, aes(x = prior_cs_num)) +
    geom_histogram(fill = "blue", binwidth = 1) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Prior CS Experience Distribution by Gender",
        x = "Prior CS Experience (Years)",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Prior CS Experience Distribution by Gender


```
# Histogram of self-confidence score by gender
ggplot(survey, aes(x = selfconf_score)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Self-Confidence Score Distribution by Gender",
        x = "Self-Confidence Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Self-Confidence Score Distribution by Gender


```
# Histogram of equality score by gender
ggplot(survey, aes(x = equality_score)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Equality Score Distribution by Gender",
        x = "Equality Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Equality Score Distribution by Gender


```
# Histogram of belonging score by gender
ggplot(survey, aes(x = belonging_score)) +
    geom_histogram(fill = "blue", binwidth = 0.5) +
    facet_wrap(~gender, scale = "free_y") +
    labs(title = "Belonging Score Distribution by Gender",
        x = "Belonging Score",
        y = "Observations") +
    theme(plot.title = element_text(lineheight=.8, face="bold", hjust=0.5))
```

Belonging Score Distribution by Gender


```
# Age tests
t.test(survey_m$age_num, survey_f$age_num)
##
```

```
Welch Two Sample t-test
##
##
## data: survey_m$age_num and survey_f$age_num
## t = 1.1404, df = 114.04, p-value = 0.2565
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.323369 4.913898
## sample estimates:
## mean of x mean of y
   36.51456 34.71930
wilcox.test(age_num ~ gender, data=survey)
##
##
   Wilcoxon rank sum test with continuity correction
## data: age_num by gender
## W = 2560, p-value = 0.1744
## alternative hypothesis: true location shift is not equal to 0
# GPA tests
t.test(survey_m$gpa_num, survey_f$gpa_num)
```

##

```
## Welch Two Sample t-test
##
## data: survey_m$gpa_num and survey_f$gpa_num
## t = -1.0033, df = 99.97, p-value = 0.3181
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.15731386 0.05164493
## sample estimates:
## mean of x mean of y
## 3.719388 3.772222
wilcox.test(gpa_num ~ gender, data=survey)
   Wilcoxon rank sum test with continuity correction
##
## data: gpa_num by gender
## W = 3010, p-value = 0.1297
\#\# alternative hypothesis: true location shift is not equal to 0
# Average confidence score tests
t.test(survey_m$conf_ave, survey_f$conf_ave)
##
##
   Welch Two Sample t-test
## data: survey_m$conf_ave and survey_f$conf_ave
## t = 4.4242, df = 100.88, p-value = 2.451e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3090170 0.8114054
## sample estimates:
## mean of x mean of y
## 4.305825 3.745614
wilcox.test(conf_ave ~ gender, data=survey)
##
##
  Wilcoxon rank sum test with continuity correction
## data: conf_ave by gender
## W = 1715, p-value = 8.567e-06
## alternative hypothesis: true location shift is not equal to 0
# Pre-OMSCS confidence score tests
t.test(survey_m$conf_prior, survey_f$conf_prior)
##
## Welch Two Sample t-test
## data: survey_m$conf_prior and survey_f$conf_prior
## t = 4.789, df = 89.576, p-value = 6.591e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.4798879 1.1603778
## sample estimates:
## mean of x mean of y
```

```
## 4.135922 3.315789
wilcox.test(conf_prior ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: conf_prior by gender
## W = 1713, p-value = 4.403e-06
## alternative hypothesis: true location shift is not equal to 0
# Post-OMSCS confidence score tests
t.test(survey_m$conf_post, survey_f$conf_post)
##
## Welch Two Sample t-test
## data: survey_m$conf_post and survey_f$conf_post
## t = 2.0729, df = 99.701, p-value = 0.04076
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01286762 0.58771150
## sample estimates:
## mean of x mean of y
## 4.475728 4.175439
wilcox.test(conf_post ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: conf_post by gender
## W = 2378.5, p-value = 0.02681
## alternative hypothesis: true location shift is not equal to 0
# Study hours
t.test(survey_m$hours_num, survey_f$hours_num)
##
   Welch Two Sample t-test
## data: survey_m$hours_num and survey_f$hours_num
## t = -0.87752, df = 115.8, p-value = 0.382
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.288435 1.655153
## sample estimates:
## mean of x mean of y
## 19.71845 21.03509
wilcox.test(hours_num ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: hours_num by gender
## W = 3251.5, p-value = 0.252
## alternative hypothesis: true location shift is not equal to 0
```

```
# Programming experience tests
t.test(survey_m$prog_num, survey_f$prog_num)
##
##
   Welch Two Sample t-test
##
## data: survey_m$prog_num and survey_f$prog_num
## t = 3.3285, df = 122.67, p-value = 0.001153
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.291131 5.080186
## sample estimates:
## mean of x mean of y
## 9.378641 6.192982
wilcox.test(prog_num ~ gender, data=survey)
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: prog_num by gender
## W = 2025.5, p-value = 0.0009543
\#\# alternative hypothesis: true location shift is not equal to 0
# Prior CS experience tests
t.test(survey_m$prior_cs_num, survey_f$prior_cs_num)
##
## Welch Two Sample t-test
## data: survey_m$prior_cs_num and survey_f$prior_cs_num
## t = 3.0155, df = 120.26, p-value = 0.003131
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.8446286 4.0741246
## sample estimates:
## mean of x mean of y
## 6.669903 4.210526
wilcox.test(prior_cs_num ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
## data: prior_cs_num by gender
## W = 2032.5, p-value = 0.001081
## alternative hypothesis: true location shift is not equal to 0
# Programming language count tests
t.test(survey_m$prog_count, survey_f$prog_count)
##
##
   Welch Two Sample t-test
##
## data: survey_m$prog_count and survey_f$prog_count
## t = 2.2813, df = 125.94, p-value = 0.02421
## alternative hypothesis: true difference in means is not equal to 0
```

```
## 95 percent confidence interval:
## 0.1211331 1.7071756
## sample estimates:
## mean of x mean of y
## 5.019417 4.105263
wilcox.test(prog_count ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: prog_count by gender
## W = 2323.5, p-value = 0.0281
\ensuremath{\mbox{\#\#}} alternative hypothesis: true location shift is not equal to 0
# Self-confidence score tests
t.test(survey_m$selfconf_score, survey_f$selfconf_score)
##
## Welch Two Sample t-test
##
## data: survey_m$selfconf_score and survey_f$selfconf_score
## t = 3.4386, df = 108.2, p-value = 0.0008312
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1547532 0.5759571
## sample estimates:
## mean of x mean of y
## 4.214979 3.849624
wilcox.test(selfconf_score ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: selfconf_score by gender
## W = 1970.5, p-value = 0.0005691
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf1, survey_f$selfconf1)
##
## Welch Two Sample t-test
## data: survey_m$selfconf1 and survey_f$selfconf1
## t = 2.9183, df = 106.82, p-value = 0.004291
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1359072 0.7116486
## sample estimates:
## mean of x mean of y
## 4.300971 3.877193
wilcox.test(selfconf1 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
##
```

```
## data: selfconf1 by gender
## W = 2113.5, p-value = 0.001597
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf2, survey_f$selfconf2)
##
## Welch Two Sample t-test
##
## data: survey_m$selfconf2 and survey_f$selfconf2
## t = 2.2955, df = 101.72, p-value = 0.02376
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.03360707 0.46102758
## sample estimates:
## mean of x mean of y
## 4.563107 4.315789
wilcox.test(selfconf2 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: selfconf2 by gender
## W = 2356, p-value = 0.01934
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf3, survey_f$selfconf3)
##
##
   Welch Two Sample t-test
## data: survey_m$selfconf3 and survey_f$selfconf3
## t = 2.2164, df = 108.55, p-value = 0.02875
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.03629975 0.65046570
## sample estimates:
## mean of x mean of y
## 3.922330 3.578947
wilcox.test(selfconf3 ~ gender, data=survey)
##
##
   Wilcoxon rank sum test with continuity correction
## data: selfconf3 by gender
## W = 2315, p-value = 0.01907
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf4, survey_f$selfconf4)
##
## Welch Two Sample t-test
## data: survey_m$selfconf4 and survey_f$selfconf4
## t = 1.2949, df = 120.79, p-value = 0.1978
## alternative hypothesis: true difference in means is not equal to 0
```

```
## 95 percent confidence interval:
## -0.09495805 0.45401102
## sample estimates:
## mean of x mean of y
## 3.951456 3.771930
wilcox.test(selfconf4 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: selfconf4 by gender
## W = 2536, p-value = 0.1306
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf5, survey_f$selfconf5)
##
## Welch Two Sample t-test
## data: survey_m$selfconf5 and survey_f$selfconf5
## t = 2.1418, df = 114.68, p-value = 0.03433
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01980794 0.50752982
## sample estimates:
## mean of x mean of y
## 4.368932 4.105263
wilcox.test(selfconf5 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: selfconf5 by gender
## W = 2328.5, p-value = 0.01776
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf6, survey_f$selfconf6)
##
## Welch Two Sample t-test
##
## data: survey_m$selfconf6 and survey_f$selfconf6
## t = 5.3828, df = 102.56, p-value = 4.665e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.5523674 1.1969088
## sample estimates:
## mean of x mean of y
## 4.155340 3.280702
wilcox.test(selfconf6 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: selfconf6 by gender
```

```
## W = 1570, p-value = 3.775e-07
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$selfconf7, survey_f$selfconf7)
## Welch Two Sample t-test
##
## data: survey_m$selfconf7 and survey_f$selfconf7
## t = 1.345, df = 117.15, p-value = 0.1812
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1063897 0.5567388
## sample estimates:
## mean of x mean of y
## 4.242718 4.017544
wilcox.test(selfconf7 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
## data: selfconf7 by gender
## W = 2486, p-value = 0.08382
## alternative hypothesis: true location shift is not equal to 0
# Equality score tests
t.test(survey_m$equality_score, survey_f$equality_score)
##
##
  Welch Two Sample t-test
## data: survey_m$equality_score and survey_f$equality_score
## t = -1.7839, df = 149.65, p-value = 0.07646
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.34391287 0.01756302
## sample estimates:
## mean of x mean of y
## 4.354369 4.517544
wilcox.test(equality_score ~ gender, data=survey)
##
##
   Wilcoxon rank sum test with continuity correction
## data: equality_score by gender
## W = 3284.5, p-value = 0.2088
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality1, survey_f$equality1)
##
## Welch Two Sample t-test
##
## data: survey_m$equality1 and survey_f$equality1
## t = -1.7512, df = 146.01, p-value = 0.08202
## alternative hypothesis: true difference in means is not equal to 0
```

```
## 95 percent confidence interval:
## -0.43108509 0.02604336
## sample estimates:
## mean of x mean of y
## 4.446602 4.649123
wilcox.test(equality1 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: equality1 by gender
## W = 3292, p-value = 0.1335
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality2, survey_f$equality2)
##
## Welch Two Sample t-test
## data: survey_m$equality2 and survey_f$equality2
## t = -0.3108, df = 146.68, p-value = 0.7564
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2481694 0.1807192
## sample estimates:
## mean of x mean of y
## 4.650485 4.684211
wilcox.test(equality2 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: equality2 by gender
## W = 2848.5, p-value = 0.6782
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality3, survey_f$equality3)
##
## Welch Two Sample t-test
##
## data: survey_m$equality3 and survey_f$equality3
## t = -1.8176, df = 157.72, p-value = 0.07103
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.35933112 0.01492641
## sample estimates:
## mean of x mean of y
## 4.669903 4.842105
wilcox.test(equality3 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: equality3 by gender
```

```
## W = 3189, p-value = 0.1895
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality4, survey_f$equality4)
## Welch Two Sample t-test
##
## data: survey_m$equality4 and survey_f$equality4
## t = -1.9172, df = 156.01, p-value = 0.05703
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.389040496 0.005800843
## sample estimates:
## mean of x mean of y
## 4.650485 4.842105
wilcox.test(equality4 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
##
## data: equality4 by gender
## W = 3122, p-value = 0.3161
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality5, survey_f$equality5)
##
##
   Welch Two Sample t-test
## data: survey_m$equality5 and survey_f$equality5
## t = -0.90584, df = 107.68, p-value = 0.367
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6554683 0.2442948
## sample estimates:
## mean of x mean of y
## 3.233010 3.438596
wilcox.test(equality5 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: equality5 by gender
## W = 3192, p-value = 0.3467
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$equality6, survey_f$equality6)
##
##
  Welch Two Sample t-test
## data: survey_m$equality6 and survey_f$equality6
## t = -1.3085, df = 147.61, p-value = 0.1928
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.43527364 0.08848433
## sample estimates:
## mean of x mean of y
## 4.475728 4.649123
wilcox.test(equality6 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: equality6 by gender
## W = 3103, p-value = 0.4542
## alternative hypothesis: true location shift is not equal to 0
# Belonging score tests
t.test(survey_m$belonging_score, survey_f$belonging_score)
##
##
   Welch Two Sample t-test
## data: survey_m$belonging_score and survey_f$belonging_score
## t = 3.4922, df = 93.219, p-value = 0.0007342
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1792029 0.6516228
## sample estimates:
## mean of x mean of y
## 4.002157 3.586745
wilcox.test(belonging_score ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
## data: belonging_score by gender
## W = 1966, p-value = 0.0005437
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging1, survey_f$belonging1)
## Welch Two Sample t-test
##
## data: survey_m$belonging1 and survey_f$belonging1
## t = 3.3544, df = 98.292, p-value = 0.001131
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2286667 0.8910744
## sample estimates:
## mean of x mean of y
## 3.893204 3.333333
wilcox.test(belonging1 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: belonging1 by gender
```

```
## W = 2047.5, p-value = 0.000807
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging2, survey_f$belonging2)
## Welch Two Sample t-test
##
## data: survey_m$belonging2 and survey_f$belonging2
## t = 2.5543, df = 106.15, p-value = 0.01206
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1195647 0.9487371
## sample estimates:
## mean of x mean of y
## 3.990291 3.456140
wilcox.test(belonging2 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
##
## data: belonging2 by gender
## W = 2255.5, p-value = 0.01088
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging3, survey_f$belonging3)
##
##
   Welch Two Sample t-test
## data: survey_m$belonging3 and survey_f$belonging3
## t = 3.6953, df = 89.834, p-value = 0.0003771
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2761938 0.9184920
## sample estimates:
## mean of x mean of y
## 4.281553 3.684211
wilcox.test(belonging3 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: belonging3 by gender
## W = 1980, p-value = 0.0002715
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging4, survey_f$belonging4)
##
##
   Welch Two Sample t-test
## data: survey_m$belonging4 and survey_f$belonging4
## t = 1.1981, df = 120.86, p-value = 0.2332
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.1663665 0.6763307
## sample estimates:
## mean of x mean of y
## 3.097087 2.842105
wilcox.test(belonging4 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: belonging4 by gender
## W = 2603.5, p-value = 0.2257
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging5, survey_f$belonging5)
##
## Welch Two Sample t-test
##
## data: survey_m$belonging5 and survey_f$belonging5
## t = 1.6623, df = 102.3, p-value = 0.09951
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05952398 0.67577334
## sample estimates:
## mean of x mean of y
## 3.466019 3.157895
wilcox.test(belonging5 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: belonging5 by gender
## W = 2512, p-value = 0.117
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging6, survey_f$belonging6)
##
## Welch Two Sample t-test
##
## data: survey m$belonging6 and survey f$belonging6
## t = 3.6399, df = 94.758, p-value = 0.0004442
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3220952 1.0950398
## sample estimates:
## mean of x mean of y
## 4.252427 3.543860
wilcox.test(belonging6 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
##
## data: belonging6 by gender
## W = 1982, p-value = 0.0003035
```

```
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging7, survey_f$belonging7)
##
## Welch Two Sample t-test
##
## data: survey_m$belonging7 and survey_f$belonging7
## t = 0.64998, df = 97.395, p-value = 0.5172
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1836162 0.3624613
## sample estimates:
## mean of x mean of y
## 4.563107 4.473684
wilcox.test(belonging7 ~ gender, data=survey)
##
##
  Wilcoxon rank sum test with continuity correction
##
## data: belonging7 by gender
## W = 2834.5, p-value = 0.6696
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging8, survey_f$belonging8)
##
   Welch Two Sample t-test
##
## data: survey_m$belonging8 and survey_f$belonging8
## t = 1.9701, df = 104.92, p-value = 0.05146
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.002080254 0.647966815
## sample estimates:
## mean of x mean of y
## 4.165049 3.842105
wilcox.test(belonging8 ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: belonging8 by gender
## W = 2401, p-value = 0.04213
## alternative hypothesis: true location shift is not equal to 0
t.test(survey_m$belonging9, survey_f$belonging9)
##
##
   Welch Two Sample t-test
##
## data: survey_m$belonging9 and survey_f$belonging9
## t = 1.8936, df = 102.78, p-value = 0.06108
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01720392 0.74382630
```

```
## sample estimates:
## mean of x mean of y
## 4.310680 3.947368
wilcox.test(belonging9 ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
##
## data: belonging9 by gender
## W = 2442, p-value = 0.05112
## alternative hypothesis: true location shift is not equal to 0
# Prior CS ind test
t.test(survey_m$cs_study_ind, survey_f$cs_study_ind)
##
   Welch Two Sample t-test
##
## data: survey_m$cs_study_ind and survey_f$cs_study_ind
## t = 2.8301, df = 105.4, p-value = 0.005574
\mbox{\tt \#\#} alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06803058 0.38640649
## sample estimates:
## mean of x mean of y
## 0.7184466 0.4912281
wilcox.test(cs_study_ind ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
## data: cs_study_ind by gender
## W = 2268.5, p-value = 0.004344
## alternative hypothesis: true location shift is not equal to 0
# English ind test
t.test(survey_m$native_ind, survey_f$native_ind)
## Welch Two Sample t-test
## data: survey_m$native_ind and survey_f$native_ind
## t = 0.35897, df = 113.51, p-value = 0.7203
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1293073 0.1865377
## sample estimates:
## mean of x mean of y
## 0.6601942 0.6315789
wilcox.test(native_ind ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
## data: native_ind by gender
```

```
## W = 2851.5, p-value = 0.7188
## alternative hypothesis: true location shift is not equal to 0
# US birth ind test
t.test(survey_m$us_birth_ind, survey_f$us_birth_ind)
## Welch Two Sample t-test
##
## data: survey_m$us_birth_ind and survey_f$us_birth_ind
## t = -0.40755, df = 116.37, p-value = 0.6844
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1956207 0.1288519
## sample estimates:
## mean of x mean of y
## 0.5631068 0.5964912
wilcox.test(us_birth_ind ~ gender, data=survey)
##
## Wilcoxon rank sum test with continuity correction
##
## data: us_birth_ind by gender
## W = 3033.5, p-value = 0.6849
## alternative hypothesis: true location shift is not equal to 0
# US residence ind test
t.test(survey_m$us_res_ind, survey_f$us_res_ind)
##
##
   Welch Two Sample t-test
## data: survey_m$us_res_ind and survey_f$us_res_ind
## t = -0.23651, df = 119.58, p-value = 0.8134
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1229137 0.0966831
## sample estimates:
## mean of x mean of y
## 0.8640777 0.8771930
wilcox.test(us_res_ind ~ gender, data=survey)
##
  Wilcoxon rank sum test with continuity correction
## data: us_res_ind by gender
## W = 2974, p-value = 0.8169
## alternative hypothesis: true location shift is not equal to 0
# Higher education ind test
t.test(survey_m$higher_ind, survey_f$higher_ind)
##
## Welch Two Sample t-test
##
## data: survey_m$higher_ind and survey_f$higher_ind
```

```
## t = -0.79991, df = 109.75, p-value = 0.4255
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.21382942 0.09085207
## sample estimates:
## mean of x mean of y
## 0.2718447 0.3333333
wilcox.test(higher_ind ~ gender, data=survey)
## Wilcoxon rank sum test with continuity correction
## data: higher_ind by gender
## W = 3116, p-value = 0.4163
## alternative hypothesis: true location shift is not equal to 0
Regression Analysis
# Check for multicollinearity
cor_subset = survey[, c("age_num", "prior_cs_num", "native_ind", "higher_ind",
                     "cs_study_ind", "completed")]
cor(na.omit(cor_subset))
##
                 age_num prior_cs_num
                                     native_ind higher_ind
## age_num
              1.00000000
                          0.53998873  0.251844563  0.16356165
                          1.00000000 0.198503723 -0.06523606
## prior_cs_num 0.53998873
## native_ind
               ## higher_ind
               0.16356165 -0.06523606 0.012945942 1.00000000
## completed
            ##
             cs_study_ind completed
            -0.034667233 0.078682766
## age_num
## prior_cs_num 0.178104327 0.022305335
## native_ind -0.008177423 -0.023849306
## higher ind -0.113106360 0.140482039
## cs_study_ind 1.000000000 -0.008282098
## completed
              -0.008282098 1.000000000
# Fit regression to conf_ave
conf_lm = lm(conf_ave~gender + age_num + cs_study_ind + native_ind + higher_ind +
             completed, data=survey)
summary(conf_lm)
##
## Call:
## lm(formula = conf_ave ~ gender + age_num + cs_study_ind + native_ind +
##
      higher_ind + completed, data = survey)
##
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
## -2.76895 -0.42732 0.09353 0.50667 1.37922
##
```

Coefficients:

```
##
                Estimate Std. Error t value Pr(>|t|)
                3.187252  0.255174  12.491  < 2e-16 ***
## (Intercept)
## genderMale
                0.461281 0.122933
                                     3.752 0.000248 ***
## age_num
                0.004830 0.006286
                                      0.768 0.443435
## cs_study_ind 0.141303
                          0.121246
                                     1.165 0.245658
## native ind
                0.041680
                         0.122395
                                    0.341 0.733918
## higher ind
             -0.087922
                          0.127791 -0.688 0.492486
## completed
                0.069739
                          0.020992
                                      3.322 0.001118 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7137 on 153 degrees of freedom
## Multiple R-squared: 0.1899, Adjusted R-squared: 0.1582
## F-statistic: 5.978 on 6 and 153 DF, p-value: 1.231e-05
# Fit regression to conf_prior
conf_prior_lm = lm(conf_prior~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(conf_prior_lm)
##
## Call:
## lm(formula = conf_prior ~ gender + age_num + cs_study_ind + native_ind +
      higher_ind + completed, data = survey)
##
## Residuals:
##
               1Q Median
                               3Q
      Min
                                      Max
## -3.4295 -0.4496 0.0261 0.6611
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                2.559206 0.332179
                                     7.704 1.54e-12 ***
## genderMale
                0.665501
                           0.160031
                                      4.159 5.32e-05 ***
## age_num
                0.012419
                          0.008183
                                     1.518 0.13117
## cs_study_ind 0.443838 0.157834
                                    2.812 0.00557 **
## native_ind
              -0.064494 0.159331 -0.405 0.68620
## higher_ind
               -0.085471
                           0.166355 -0.514 0.60814
                0.037983
                          0.027327
                                      1.390 0.16658
## completed
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.929 on 153 degrees of freedom
## Multiple R-squared: 0.2097, Adjusted R-squared: 0.1787
## F-statistic: 6.767 on 6 and 153 DF, p-value: 2.235e-06
# Fit regression to conf_post
conf_post_lm = lm(conf_post~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(conf_post_lm)
##
## Call:
## lm(formula = conf_post ~ gender + age_num + cs_study_ind + native_ind +
##
      higher_ind + completed, data = survey)
```

```
##
## Residuals:
      Min
               1Q Median
                                     Max
## -3.3441 -0.3493 0.2026 0.4908 1.3189
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.815297
                          0.283886 13.440 < 2e-16 ***
## genderMale
                0.257061
                          0.136766
                                    1.880
                                             0.0621 .
## age_num
               -0.002759
                         0.006994 -0.394
                                             0.6938
## cs_study_ind -0.161232
                          0.134888 -1.195
                                             0.2338
                                             0.2793
## native_ind
                0.147855
                           0.136167
                                     1.086
## higher_ind
             -0.090373
                          0.142170 -0.636
                                             0.5259
## completed
                          0.023355
                0.101494
                                    4.346 2.52e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.794 on 153 degrees of freedom
## Multiple R-squared: 0.1483, Adjusted R-squared: 0.1149
## F-statistic: 4.441 on 6 and 153 DF, p-value: 0.0003596
# Fit regression to selfconf score
selfconf_lm = lm(selfconf_score~gender + age_num + cs_study_ind + native_ind +
                  higher_ind + completed, data=survey)
summary(selfconf_lm)
##
## Call:
## lm(formula = selfconf_score ~ gender + age_num + cs_study_ind +
      native_ind + higher_ind + completed, data = survey)
##
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  30
                                          Max
## -2.35767 -0.42014 0.02469 0.47805 1.24051
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                ## genderMale
                0.285781
                           0.106828
                                     2.675 0.00828 **
                0.012052
                          0.005463
                                     2.206 0.02886 *
## age_num
## cs_study_ind 0.126062
                          0.105361
                                     1.196 0.23336
                          0.106360 -0.093 0.92636
## native_ind
             -0.009847
## higher_ind
               -0.129715
                           0.111049 -1.168 0.24459
                0.029219
                          0.018242
## completed
                                    1.602 0.11129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6202 on 153 degrees of freedom
## Multiple R-squared: 0.1275, Adjusted R-squared: 0.09325
## F-statistic: 3.725 on 6 and 153 DF, p-value: 0.001738
# Fit regression to equality_score
equality_lm = lm(equality_score~gender + age_num + cs_study_ind + native_ind +
                  higher_ind + completed, data=survey)
```

```
summary(equality_lm)
##
## Call:
## lm(formula = equality_score ~ gender + age_num + cs_study_ind +
      native_ind + higher_ind + completed, data = survey)
##
##
## Residuals:
       Min
                 1Q
                     Median
                                  3Q
                                          Max
## -2.93547 -0.24829 0.09629 0.39943 0.98015
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                          0.207542 20.360 < 2e-16 ***
## (Intercept)
                4.225450
## genderMale
               -0.202636
                         0.099986 -2.027 0.044436 *
                0.009158
                         0.005113
                                    1.791 0.075242 .
## age num
                          0.098613 -0.129 0.897725
## cs_study_ind -0.012696
## native_ind
                0.213989
                          0.099548
                                     2.150 0.033159 *
                          0.103937 -3.731 0.000269 ***
## higher_ind
             -0.387740
## completed
               -0.005493
                          0.017074 -0.322 0.748088
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5804 on 153 degrees of freedom
## Multiple R-squared: 0.1448, Adjusted R-squared: 0.1112
## F-statistic: 4.317 on 6 and 153 DF, p-value: 0.0004725
# Fit regression to belonging_score
belonging_lm = lm(belonging_score~gender + age_num + cs_study_ind + native_ind +
                   higher_ind + completed, data=survey)
summary(belonging_lm)
##
## Call:
## lm(formula = belonging_score ~ gender + age_num + cs_study_ind +
      native_ind + higher_ind + completed, data = survey)
##
##
## Residuals:
                     Median
                 1Q
                                  3Q
## -2.53731 -0.40095 0.05514 0.46888 1.43403
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.675 0.000328 ***
## genderMale
                0.425493
                          0.115768
                          0.005920
                                    0.686 0.493619
## age_num
                0.004062
## cs_study_ind -0.062131
                          0.114179 -0.544 0.587125
## native_ind
              -0.047027
                           0.115261 -0.408 0.683840
## higher_ind
               -0.172517
                           0.120343 -1.434 0.153743
                          0.019769 -0.857 0.393025
## completed
               -0.016933
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.6721 on 153 degrees of freedom
## Multiple R-squared: 0.103, Adjusted R-squared: 0.06783
## F-statistic: 2.928 on 6 and 153 DF, p-value: 0.009864
# Fit regression to study hours
hours_lm = lm(hours_num~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(hours_lm)
##
## Call:
## lm(formula = hours_num ~ gender + age_num + cs_study_ind + native_ind +
      higher_ind + completed, data = survey)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -18.278 -7.547 -1.897
                            4.795
                                   22.243
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 18.545459 3.281607
                                     5.651 7.57e-08 ***
## genderMale
              -1.713133
                          1.580958 -1.084
                                               0.280
                0.003752 0.080845
## age_num
                                     0.046
                                               0.963
## cs study ind 1.201520
                          1.559254
                                      0.771
                                               0.442
                0.429752
                                      0.273
                                               0.785
## native_ind
                           1.574035
## higher_ind
                1.167708
                           1.643429
                                      0.711
                                               0.478
                                               0.379
## completed
                0.238426
                           0.269969
                                      0.883
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.178 on 153 degrees of freedom
## Multiple R-squared: 0.01803,
                                   Adjusted R-squared:
## F-statistic: 0.4682 on 6 and 153 DF, p-value: 0.8311
# Fit regression to number of years' programming experience
prog_lm = lm(prog_num~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(prog_lm)
##
## Call:
## lm(formula = prog_num ~ gender + age_num + cs_study_ind + native_ind +
##
      higher_ind + completed, data = survey)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -11.783 -3.540 -0.084
                            3.716 10.009
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                           1.827030 -2.952 0.00365 **
## (Intercept) -5.394168
## genderMale
                2.039854
                           0.880196
                                      2.317 0.02180 *
## age_num
                0.286103
                           0.045010
                                      6.356 2.26e-09 ***
```

```
## cs_study_ind 2.168805
                           0.868112
                                      2.498 0.01354 *
                           0.876342
                                      1.873 0.06291 .
## native ind
                1.641806
## higher ind
               -1.429879
                           0.914977 -1.563 0.12018
## completed
                0.006058
                           0.150305
                                      0.040 0.96790
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.11 on 153 degrees of freedom
## Multiple R-squared: 0.3231, Adjusted R-squared: 0.2965
## F-statistic: 12.17 on 6 and 153 DF, p-value: 3.639e-11
# Fit regression to number of years' cs experience
prior_cs_lm = lm(prior_cs_num~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(prior_cs_lm)
##
## Call:
## lm(formula = prior_cs_num ~ gender + age_num + cs_study_ind +
      native_ind + higher_ind + completed, data = survey)
##
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -9.7387 -2.6242 -0.1886 2.9593 8.8372
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.47620 1.48361 -4.365 2.33e-05 ***
                                   2.085
                           0.71475
## genderMale
                1.49010
                                             0.0387 *
## age_num
                0.29106
                           0.03655
                                   7.963 3.54e-13 ***
                                   2.283
## cs_study_ind 1.60965
                           0.70493
                                             0.0238 *
                           0.71162 0.921
                                             0.3583
## native_ind
              0.65563
## higher_ind
              -1.40946
                           0.74299 - 1.897
                                             0.0597
## completed
               -0.03303
                           0.12205 -0.271
                                            0.7871
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.149 on 153 degrees of freedom
## Multiple R-squared: 0.3702, Adjusted R-squared: 0.3455
## F-statistic: 14.99 on 6 and 153 DF, p-value: 1.908e-13
# Fit regression to gpa
gpa_lm = lm(gpa_num~gender + age_num + cs_study_ind + native_ind + higher_ind +
              completed, data=survey)
summary(gpa_lm)
##
## Call:
## lm(formula = gpa_num ~ gender + age_num + cs_study_ind + native_ind +
      higher_ind + completed, data = survey)
##
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
```

```
## -1.20517 -0.06386 0.04777 0.20549 0.39627
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                3.7806436 0.1113890 33.941
                                              <2e-16 ***
## genderMale -0.0537681 0.0527781 -1.019
                                             0.3100
                0.0005714 0.0027637
## age num
                                     0.207
                                              0.8365
## cs study ind 0.0195166 0.0516386
                                      0.378
                                              0.7060
## native ind
             0.0895858 0.0528644
                                     1.695
                                              0.0923 .
## higher_ind
              -0.0223444 0.0544762 -0.410
                                              0.6823
## completed
               -0.0174206 0.0093688 -1.859
                                             0.0650
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2991 on 145 degrees of freedom
     (8 observations deleted due to missingness)
## Multiple R-squared: 0.05422,
                                  Adjusted R-squared: 0.01509
## F-statistic: 1.386 on 6 and 145 DF, p-value: 0.2242
# Fit logistic regression to prior cs study indicator
cs_study_lm = glm(cs_study_ind~gender + age_num + cs_study_ind + native_ind +
               higher_ind + completed, data=survey, family=binomial())
## Warning in model.matrix.default(mt, mf, contrasts): the response appeared
## on the right-hand side and was dropped
## Warning in model.matrix.default(mt, mf, contrasts): problem with term 3 in
## model.matrix: no columns are assigned
summary(cs_study_lm)
##
## Call:
  glm(formula = cs_study_ind ~ gender + age_num + cs_study_ind +
##
      native_ind + higher_ind + completed, family = binomial(),
##
      data = survey)
##
## Deviance Residuals:
      Min
              1Q Median
                                  3Q
                                         Max
## -1.7166 -1.2108
                    0.7541
                              0.9207
                                       1.4221
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.501061
                        0.727559 0.689 0.49102
## genderMale
              0.987078
                         0.352579
                                   2.800 0.00512 **
## age_num
              -0.008923
                        0.018938 -0.471 0.63753
## native ind -0.014307
                          0.368752 -0.039 0.96905
## higher_ind -0.417569
                          0.374678 -1.114 0.26508
## completed
              -0.017076
                         0.063235 -0.270 0.78713
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 209.55 on 159 degrees of freedom
## Residual deviance: 199.51 on 154 degrees of freedom
```

```
## AIC: 211.51
```

##

Number of Fisher Scoring iterations: 4