Optimization Model for SCRUM-Based Software Development

Domain Modeling and Optimization Team

September 5, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. Decision Variables	7

1 1. Sets (Entities)

 \mathcal{P} : Set of Projects, where each $p \in \mathcal{P}$ has attributes: id, name, project_start, project_end, description, budget, status, target_audience, priority.

 \mathcal{T} : Set of Teams, where each $t \in \mathcal{T}$ has attributes: id, name, team_size, team_start, team_status, location, team_type.

W: Set of Workers, where each $w \in W$ has attributes: id, name, first_name, email, start_date, status, availability.

 \mathcal{F} : Set of Features, where each $f \in \mathcal{F}$ has attributes: id, title, description, status, priority, estimated_effort.

 \mathcal{S} : Set of Skills, where each $s \in \mathcal{S}$ has attributes: id, label, description, level, certified, category.

 \mathcal{R} : Set of Roles, where each $r \in \mathcal{R}$ has attributes: id, role_name, description, area_of_responsibility.

 \mathcal{PO} : Set of Product Owners, where each $po \in \mathcal{PO}$ has attributes: id, name, email, availability.

 \mathcal{SM} : Set of Scrum Masters, where each $sm \in \mathcal{SM}$ has attributes: id, name, email, experience.

 \mathcal{PB} : Set of Product Backlogs, where each $pb \in \mathcal{PB}$ has attributes: id, created_on, last_updated, number_of_entries, status.

 \mathcal{SP} : Set of Sprints, where each $sp \in \mathcal{SP}$ has attributes: id, sprint_number, start_date, end_date, status, achievement_of_goal.

 \mathcal{SPP} : Set of Sprint Plannings, where each $spp \in \mathcal{SPP}$ has attributes: id, date, duration_(min), moderation, outcome_documentation.

 \mathcal{DS} : Set of Daily Scrums, where each $ds \in \mathcal{DS}$ has attributes: id, date, time, duration, moderation.

SR: Set of Sprint Reviews, where each $sr \in SR$ has attributes: id, date, duration, feed-back_documentation, attendees_count.

SRE: Set of Sprint Retrospectives, where each $sre \in SRE$ has attributes: id, date, duration, improvement_actions, team_satisfaction, moderation.

 \mathcal{SBL} : Set of Sprint Backlogs, where each $sbl \in \mathcal{SBL}$ has attributes: id, number_of_tasks, last_updated, status, total_effort.

SG: Set of Sprint Goals, where each $sg \in SG$ has attributes: id, objective_description, achievement_status, benefit.

 \mathcal{E} : Set of Epics, where each $e \in \mathcal{E}$ has attributes: id, title, description, priority, status, estimated_effort.

 \mathcal{US} : Set of User Stories, where each $us \in \mathcal{US}$ has attributes: id, title, description, acceptance_criteria, priority, story_points, status.

 \mathcal{TSK} : Set of Tasks, where each $tsk \in \mathcal{TSK}$ has attributes: id, title, description, status, effort, type.

 \mathcal{DEV} : Set of Development Snapshots, where each $dev \in \mathcal{DEV}$ has attributes: id, version_number, creation_date, test_status, deployment_target, documentation.

 \mathcal{BL} : Set of Blockers, where each $bl \in \mathcal{BL}$ has attributes: id, title, description, severity, status, detected_on, resolved_on.

 \mathcal{SH} : Set of Stakeholders, where each $sh \in \mathcal{SH}$ has attributes: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature.

VEL: Set of Velocity Records, where each $vel \in VEL$ has attributes: id, number_of_sprints_used, avg._story_points, max_velocity, min_velocity, trend.

 \mathcal{REP} : Set of Release Plans, where each $rep \in \mathcal{REP}$ has attributes: id, version, planned_date, included_features, status.

 \mathcal{RM} : Set of Roadmaps, where each $rm \in \mathcal{RM}$ has attributes: id, start_date, end_date, milestones, objectives, versions.

 \mathcal{SCB} : Set of Scrum Boards, where each $scb \in \mathcal{SCB}$ has attributes: id, board_type, columns_(todo/done...), number_of_cards, last_updated.

 \mathcal{FED} : Set of Feature Documentations, where each $fed \in \mathcal{FED}$ has attributes: id, title, description, creation_date, change_log, linked_requirements, author.

2 2. Indices

 $p \in \mathcal{P}$: Index for projects.

 $t \in \mathcal{T}$: Index for teams.

 $w \in \mathcal{W}$: Index for workers.

 $f \in \mathcal{F}$: Index for features.

 $s \in \mathcal{S}$: Index for skills.

 $r \in \mathcal{R}$: Index for roles.

 $sp \in \mathcal{SP}$: Index for sprints.

 $us \in \mathcal{US}$: Index for user stories.

 $tsk \in \mathcal{TSK}$: Index for tasks.

 $bl \in \mathcal{BL}$: Index for blockers.

 $sh \in \mathcal{SH}$: Index for stakeholders.

 $vel \in \mathcal{VEL}$: Index for velocity records.

 $rep \in \mathcal{REP}$: Index for release plans.

 $rm \in \mathcal{RM}$: Index for roadmaps.

3 3. Goals

G0: maximize_project_budget

Maximize total budget of active projects.

$$\max \sum_{p \in \mathcal{P}} \text{budget}_p \cdot \mathbb{I}(\text{status}_p = \text{active})$$

Weight: 1.5

G1: minimize_project_duration

Minimize total project duration (end - start).

$$\min \sum_{p \in \mathcal{P}} (\text{project_end}_p - \text{project_start}_p)$$

Weight: 1.3

G2: maximize_team_size

Maximize sum of team sizes.

$$\max \sum_{t \in \mathcal{T}} \text{team_size}_t$$

Weight: 1.0

G3: minimize_worker_start_date

Minimize average worker start date (earlier = more experienced).

$$\min \frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} \text{start_date}_w$$

Weight: 0.9

G4: maximize_worker_availability

Maximize total worker availability (as percentage).

$$\max \sum_{w \in \mathcal{W}} \text{availability}_w$$

Weight: 1.2

$G5:\ maximize_feature_priority$

Maximize sum of feature priorities.

$$\max \sum_{f \in \mathcal{F}} \text{priority}_f$$

Weight: 1.4

G6: minimize_sprint_duration

Minimize average sprint duration.

$$\min \frac{1}{|\mathcal{SP}|} \sum_{sp \in \mathcal{SP}} (\text{end_date}_{sp} - \text{start_date}_{sp})$$

Weight: 1.1

G7: maximize_sprint_achievement

Maximize average sprint goal achievement.

$$\max \frac{1}{|\mathcal{SP}|} \sum_{sp \in \mathcal{SP}} \text{achievement_of_goal}_{sp}$$

Weight: 1.6

G8: maximize_story_points

Maximize total completed story points.

$$\max \sum_{us \in \mathcal{US}} \text{story-points}_{us} \cdot \mathbb{I}(\text{status}_{us} = \text{done})$$

Weight: 1.3

G9: minimize_task_effort

Minimize effort spent on tasks blocked by high-severity issues.

$$\min \sum_{tsk \in \mathcal{TSK}} \operatorname{effort}_{tsk} \cdot \mathbb{I}(\exists bl \in \mathcal{BL} : \operatorname{severity}_{bl} = \operatorname{high} \wedge \operatorname{status}_{bl} = \operatorname{open})$$

Weight: 0.8

G10: maximize_velocity_trend

Maximize positive velocity trend.

 $\max \sum_{vel \in \mathcal{VEL}} trend_{vel}$

Weight: 1.5

G11: minimize_number_of_blockers

Minimize number of open blockers.

 $\min \sum_{bl \in \mathcal{BL}} \mathbb{I}(\text{status}_{bl} = \text{open})$

Weight: 1.2

G12: maximize_documentation_coverage

Maximize number of features with linked documentation.

 $\max \sum_{f \in \mathcal{F}} \mathbb{I}(\exists fed \in \mathcal{FED} : \text{linked_requirements}_{fed} \ni f)$

Weight: 1.0

G13: minimize_release_delay

Minimize total delay in release plans.

 $\min \sum_{rep \in \mathcal{REP}} \max(0, \text{current_date} - \text{planned_date}_{rep})$

Weight: 1.1

G14: maximize_stakeholder_influence

Maximize sum of influence levels of stakeholders involved in reviews.

 $\max \sum_{sh \in \mathcal{SH}} \text{influence_level}_{sh} \cdot \mathbb{I}(sh \text{ participated in sprint review})$

Weight: 1.0

4 4. Conditions

C0: required_project_status

All considered projects must be active.

 $\forall p \in \mathcal{P} : \text{status}_p = \text{active}$

Criteria Type: Must-Match (2), Weight: 1.0

C1: forbidden_worker_status

Workers must not be inactive.

 $\forall w \in \mathcal{W} : \text{status}_w \neq \text{inactive}$

Criteria Type: Cannot-Match (0), Weight: 0.9

C2: required_team_status

Teams must be active.

 $\forall t \in \mathcal{T} : \text{team_status}_t = \text{active}$

Criteria Type: Must-Match (2), Weight: 1.0

C3: required_feature_status

Features must be in progress or done.

 $\forall f \in \mathcal{F} : \text{status}_f \in \{\text{in progress, done}\}\$

Criteria Type: Must-Match (2), Weight: 1.2

C4: forbidden_task_status

Tasks cannot be cancelled.

 $\forall tsk \in \mathcal{TSK} : \text{status}_{tsk} \neq \text{cancelled}$

Criteria Type: Cannot-Match (0), Weight: 0.8

C5: required_sprint_status

Sprints must be active or completed.

 $\forall sp \in \mathcal{SP} : \text{status}_{sp} \in \{\text{active}, \text{completed}\}$

Criteria Type: Must-Match (2), Weight: 1.1

C6: required_user_story_status

User stories must not be rejected.

 $\forall us \in \mathcal{US} : \text{status}_{us} \neq \text{rejected}$

Criteria Type: Must-Match (2), Weight: 1.0

C7: required_skill_certification

Skills used must be certified.

 $\forall s \in \mathcal{S} : \text{certified}_s = \text{true}$

Criteria Type: Must-Match (2), Weight: 1.3

C8: required_role_area

Roles must be in development or QA.

 $\forall r \in \mathcal{R} : \text{area_of_responsibility}_r \in \{\text{development}, \text{QA}\}$

Criteria Type: May-Match (1), Weight: 0.9

C9: required_blocker_severity

Only high or medium severity blockers are considered.

 $\forall bl \in \mathcal{BL} : \text{severity}_{bl} \in \{\text{high, medium}\}\$

Criteria Type: Must-Match (2), Weight: 1.1

C10: required_snapshot_test_status

Development snapshots must pass testing.

 $\forall dev \in \mathcal{DEV} : \text{test_status}_{dev} = \text{passed}$

Criteria Type: Must-Match (2), Weight: 1.0

C11: required_planned_release

Releases must be in planned status.

 $\forall rep \in \mathcal{REP} : \text{status}_{rep} = \text{planned}$

Criteria Type: Must-Match (2), Weight: 0.9

C12: required_roadmap_milestones

Roadmaps must have defined milestones.

 $\forall rm \in \mathcal{RM} : \text{milestones}_{rm} \neq \emptyset$

Criteria Type: Must-Match (2), Weight: 1.0

C13: required_board_update

Scrum boards must be updated within the last 24 hours.

 $\forall scb \in \mathcal{SCB}$: last_updated_{scb} \geq current_time - 24h

Criteria Type: Must-Match (2), Weight: 0.8

C14: required_stakeholder_relevance

Stakeholders must be relevant to current feature.

 $\forall sh \in \mathcal{SH} : relevance_to_feature_{sh} = high$

Criteria Type: Must-Match (2), Weight: 1.1

5 5. Decision Variables

 $x_p \in [0.0, 1.0]$: project_priority_weight — Priority weight assigned to project p.

 $y_t \in \{0, 1, 2, 3, 4\}$: team_allocation_count — Number of teams assigned to a project.

 $l_w \in [0.0, 1.0]$: worker_load_percentage — Fraction of full-time capacity assigned to current sprint.

 $d_{sp} \in \{5, 10, 14, 21, 30\}$: sprint_length_days — Duration of sprint sp in calendar days.

 $r_{tsk} \in \{1, 2, 3, 4, 5\}$: task_priority_rank — Priority rank of task tsk.

 $e_f \in \{1, 2, 3, 5, 8, 13\}$: feature_estimated_effort — Estimated effort (in story points) for feature f.

 $v_{rep} \in \{1.0, 2.0, 3.0, 4.0, 5.0\}$: planned_release_version — Version number for release plan rep.

 $c_{fed} \in [0.0, 1.0]$: documentation_completeness — Completeness score of feature documentation fed.

 $t_{bl} \in \{1, 2, 3, 5, 7, 14\}$: blocker_resolution_time — Expected resolution time (days) for blocker bl.

 $v_{vel} \in \{5, 10, 15, 20, 25, 30\}$: velocity_prediction — Forecasted velocity (story points) for next sprint.

 $m_{evt} \in \{15, 30, 60, 90, 120\}$: meeting_duration_minutes — Duration of Scrum event (e.g., planning, retrospective).

 $s_w \in \{1, 2, 3, 4, 5\}$: worker_skill_level — Skill level of worker w (1=Junior, 5=Expert).

 $sat_{sre} \in \{1, 2, 3, 4, 5\}$: retrospective_satisfaction — Team satisfaction score from retrospective sre.

 $a_{sg} \in [0.0, 1.0]$: goal_achievement_score — Measured achievement of sprint goal sg.

 $I_f \in \{0,1\}$: feature_inclusion_flag — Binary indicator if feature f is included in next release.