Lecture 18 Introduction to Graphs

Learning Objectives: Lec 18

After today's lecture (and the associated readings, discussion, & homework), you should know:

- Types of graphs: undirected, directed
- Representation of graphs: Sets of vertices, sets of edges.
- **Terminology and lingo:** bipartite, degree, cycle, tree, spanning tree, connected, connected component.
- Facts about graphs: the handshake lemma, characterization of bipartite graphs as 2-colorable, number of edges in a spanning tree.

- Definition of a graph
 - Variants: undirected, directed
 - Variants: simple graphs, multigraphs, and loops.
 - A graph vs. a drawing of a graph
- Graphs and Relations
- Degrees and the Handshake Theorem
- Special graphs: cliques, cycles, hypercubes
- Paths and connected components
- Spanning trees
- Bipartite graphs

Graphs

The singular form is "vertex" just like index/indices, codex/codices, vortex/vortices, etc. "Vertice" is not a word.

- A way to represent things and their pairwise relationships.
- Consists of a pair of sets, one of "vertices" and one of "edges".
- G = (V, E) is an <u>undirected</u> graph if
 - *V* is some set (vertices)
 - E is a set of two-element subsets of V (edges)
 - $V = \{a, b, c, d, e\}$
 - $E = \{\{a,b\},\{b,d\},\{d,e\},\{b,e\}\}$

- G = (V, E) is a <u>directed</u> graph if
 - *V* is some set (vertices)
 - $E \subseteq V \times V$ (subset of ordered pairs of elements from V)
 - $V = \{a, b, c, d, e\}$
 - $E = \{(a, b), (b, d), (d, e), (e, b)\}$

The edge (a, b) is directed FROM a TO b.

4

Graphs and Social Networks

- Facebook friend graph $G_{FB} = (V, E_{FB})$
 - *V* : the set of all people on Earth.
 - $\{u,v\} \in E_{FB}$ if u and v are friends (symmetric/mutual relationship)

Undirected

- Twitter network $G_{TW} = (V, E_{TW})$
 - *V* : the set of all people on Earth.
 - $(u, v) \in E_{TW}$ if u **follows** v.
 - ullet Asymmetrical relationship. Not equivalent to v following u!

Directed

Variants of Graphs

• Some graphs have "loop" edges

• In *multigraphs*, edges can have multiplicity:

- Simple graphs have no loops or multiple edges.
- Is this a *simple*, *directed* graph?

(b,e) and (e,b) are <u>distinct edges</u>, not an edge with multiplicity 2.

Graphs vs. Drawings of Graphs

- A <u>graph</u> G = (V, E) consists of sets of vertices and edges.
- A <u>drawing</u> of a graph is a diagram consisting of dots and lines/arrows.
- Every graph can be drawn and every (legal) drawing corresponds to a graph, but they're not the same thing!
 - Two drawings of the same graph G = (V, E), $V = \{a, b, c, d\}$, $E = \{\{x, y\} \mid x, y \in V, x \neq y\}\}$

- Definition of a graph
 - Variants: undirected, directed
 - Variants: simple graphs, multigraphs, and loops.
 - A graph vs. a drawing of a graph
- Graphs and Relations
- Degrees and the Handshake Theorem
- Special graphs: cliques, cycles, hypercubes
- Paths and connected components
- Spanning trees
- Bipartite graphs

Graphs and Relations

- Let V be a set and $E \subseteq V \times V$ be a relation.
- If E is **symmetric** $(\forall a, b \in V.(a, b) \in E \leftrightarrow (b, a) \in E)$ then you can often regard the graph G = (V, E) as begin *undirected*.
 - Two directed edges (a, b), (b, a) very much like an undirected edge $\{a, b\}$.
- If E is *irreflexive* and *not symmetric* then what can you say about G = (V, E)?
 - (a) it's an undirected graph.
 - (b) it's a simple undirected graph.
 - (c) it's a directed graph.
 - (d) it's a simple directed graph.
 - (e) it's a directed multigraph.

Irreflexive only means that $\forall a \in V$. $(a, a) \notin E$, i.e., no loops are allowed. I.e., it is a *simple graph*.

Graphs and Relations

- Let V be a set and $E \subseteq V \times V$ be a relation.
- If *E* is *transitive*, what does that look like in terms of the graph?
 - $\forall a, b, c. (a, b), (b, c) \in E \rightarrow (a, c) \in E$

 $(e,d),(d,e) \in E \rightarrow (e,e) \in E$. However, the loops $(a,a),(b,b) \in E$ don't "need" to be there.

- Definition of a graph
 - Variants: undirected, directed
 - Variants: simple graphs, multigraphs, and loops.
 - A graph vs. a drawing of a graph
- Graphs and Relations
- Degrees and the Handshake Theorem
- Special graphs: cliques, cycles, hypercubes
- Paths and connected components
- Spanning trees
- Bipartite graphs

Degrees, Indegrees, and Outdegrees

- In a simple graph, vertices u, v are "adjacent" or "neighbors" if
 - $\{v, u\} \in E$ (undirected graph) or $(v, u) \in E$ (directed).
- Here is some useful notation for talking about neighborhoods:

 - $N(u) = \{v \mid \{u, v\} \in E\}$ (the "neighborhood of u" in an undirected graph)

 - $N^+(u) = \{v \mid (u, v) \in E\}$ (the "out-neighborhood of u" in a directed graph)

 - $N^-(u) = \{v \mid (v, u) \in E\}$ (the "in-neighborhood of u" in a directed graph)

$$N(e) = \{a, b, c\}$$

$$N^+(e) = \{a, c\}$$

 $N^-(e) = \{b\}$

- The degree of a vertex is the number of adjacent edges.
 - deg(u) = |N(u)| (undirected graphs)

 - $deg^+(u) = |N^+(u)|$ (out-degree in directed graphs)

 - $deg^{-}(u) = |N^{-}(u)|$ (in-degree in directed graphs)

The Handshake Theorem

In an undirected graph
$$G = (V, E)$$
, what is $\sum_{v \in V} \deg(v)$?

The Handshake Theorem

• **Theorem.** In a simple undirected graph G = (V, E),

$$\sum_{v \in V} \deg(v) = 2|E|.$$

• **Proof.** Every edge $\{u, v\} \in E$ contributes 1 to $\deg(u)$ and 1 to $\deg(v)$.

Does this Theorem hold for <u>non-simple</u> graphs? How should we define deg(v)?

• **Theorem.** Similarly, in a directed graph G = (V, E),

$$\sum_{v \in V} \deg^{+}(v) = \sum_{v \in V} \deg^{-}(v) = |E|$$

Degree sequences

- I'm thinking of a simple undirected graph with 6 vertices whose degrees are 1,2,2,3,3,4. How many edges does it have?
 - (a) 13
 - (b) 15
 - (c) 26
 - (d) 30
 - (e) there is no such graph —
- <u>Corollary</u> (of the Handshake Theorem). Every graph has an <u>even number</u> of vertices with <u>odd degree</u>.
- <u>Proof by contradiction</u>. If one had an odd number of vertices with odd degree, then $\sum_{v \in V} \deg(v)$ would be odd, but 2|E| is clearly even, a contradiction.

Special Undirected Graphs

• K_n : the complete graph on n vertices.

• C_n : the cycle on n vertices.

• "Wheels"

• "Hypercubes"

Subgraphs and Disjoint Unions

• $H = (V_H, E_H)$ is a **subgraph** of $G = (V_G, E_G)$ if $V_H \subseteq V_G$ and $E_H \subseteq E_G$.

- The *union* of $G = (V_G, E_G)$ and $H = (V_H, E_H)$ is the graph
 - $G \cup H = (V_G \cup V_H, E_G \cup E_H).$

- Definition of a graph
 - Variants: undirected, directed
 - Variants: simple graphs, multigraphs, and loops.
 - A graph vs. a drawing of a graph
- Graphs and Relations
- Degrees and the Handshake Theorem
- Special graphs: cliques, cycles, hypercubes
- Paths and connected components
- Spanning trees
- Bipartite graphs

Connectivity

- Let G = (V, E) be a simple, undirected graph.
- <u>Definition</u>. A <u>path</u> $(u_0, u_1, ..., u_k)$ is a sequence of vertices in which consecutive vertices are connected by an edge, i.e., $\forall i \in [0, k).\{u_i, u_{i+1}\} \in E$. A <u>simple path</u> does not repeat any vertex.
- **Definition.** Two vertices u, v are **connected** if there is a path (u, ..., v).

Connectivity

- Define the relation $(u, v) \in Conn$ iff u is connected to v in G = (V, E).
- Which properties does Conn have?
 - Asymmetric?No
 - Antisymmetric? No
 - Symmetric? Yes
 - Transitive? Yes
 - Reflexive? Yes
 - Irreflexive? No

A relation that is symmetric, transitive, and reflexive is called an *equivalence relation*

• The equivalence classes of Conn are called the $\underline{connected\ components}$ of G.

Connectivity

- Define the relation $(u, v) \in Conn$ iff u is connected to v in G = (V, E).
- The equivalence classes of Conn are called the <u>connected components</u> of G.
- How many connected components are there in this graph *G*?
- (a) 2
- (b) 3
- (c) 4
- (d) 5
- (e) 6

Trees

- <u>Definition.</u> A <u>tree</u> is a connected <u>acyclic</u> graph.
 - Acyclic means no subgraph is a cycle.
- If G = (V, E) is a graph, a <u>spanning tree</u> is a subgraph $T = (V, E_T)$ that is a tree. (I.e., it "spans" all of V.)
- Theorem. If T = (V, E) is a tree and $u, v \in V$, there is a <u>unique</u> simple path from u to v.
 - **Proof:** if there were two simple paths from u to v, T would contain a cycle.
- **Theorem.** Every tree on n vertices contains n-1 edges.

Trees

- **Theorem.** Every tree on n vertices contains n-1 edges.
- Proof by induction.
 - Base case: n = 1. The only tree is a graph with 1 vertex and 0 edges.
 - General case: Assume the claim holds for all n' < n. Let T = (V, E) be any tree with |V| = n.
 - Pick any edge in E, say it is $\{e, g\}$.
 - There is no path from e to g in $T' = (V, E \{\{e, g\}\})$; if there were, that path and $\{e, g\}$ would form a cycle in T, a contradiction.
 - Let T_e , T_g be the connected components of T' containing e, g.
 - $T_e = (V_e, E_e), T_g = (V_g, E_g)$ are acyclic and therefore trees.
 - By the inductive hypothesis, T_e contains $|V_e|-1$ edges and T_g contains $|V_g|-1$ edges. With $\{e,g\}$, T contains $1+(|V_e|-1)+(|V_g|-1)=|V|-1=n-1$ edges.

- Definition of a graph
 - Variants: undirected, directed
 - Variants: simple graphs, multigraphs, and loops.
 - A graph vs. a drawing of a graph
- Graphs and Relations
- Degrees and the Handshake Theorem
- Special graphs: cliques, cycles, hypercubes
- Paths and connected components
- Spanning trees
- Bipartite graphs

Bipartite Graphs

- A graph G = (V, E) is called **bipartite** if
 - You can partition $V = A \cup B$ into two parts, where $A \cap B = \emptyset$.
 - For every edge $\{a,b\} \in E$, $a \in A$ and $b \in B$. (There are no edges between A-vertices or B-vertices.)
- **Theorem.** The following statements are equivalent:
 - (1) G is bipartite.
 - (2) G is 2-colorable.
 - There is a function $f: V \to \{\text{red,blue}\}\ \text{ s.t. } \{u,v\} \in E \to f(u) \neq f(v).$
 - (3) G does not contain any C_{2k+1} (an odd cycle) as a subgraph.

- $(1) \leftrightarrow (2)$
 - If G = (V, E) is bipartite we can write it as $G = (A \cup B, E)$ such that $\{u, v\} \in E \rightarrow u \in A, v \in B$.
 - Color every vertex in A "red" and every vertex in B "blue".
 - $f: V \to \{\text{red, blue}\}\$ be such that $f(u) = \begin{cases} \text{red} & u \in A \\ \text{blue} & u \in B \end{cases}$.
 - By definition, $\{u,v\} \in E \to f(u) \neq f(v)$, so G is 2-colorable.
 - In the reverse direction, set $A = f^{-1}(\text{red})$ and $B = f^{-1}(\text{blue})$.
 - Then $\{u, v\} \in E \rightarrow u \in A, v \in B$, so G is bipartite.

- $(2) \to (3)$
- Proof by contradiction.
 - Suppose G is 2-colorable and contains C_{2k+1} (odd cycle) as a subgraph.
 - Call the vertices of the cycle $(v_0, v_1, v_2, v_3, ..., v_{2k}, v_0)$.
 - Wlog $f(v_0) =$ blue.
 - Then $f(v_1) = f(v_3) = f(v_5) = \dots = f(v_{2k-1}) = \text{red}$,
 - And $f(v_0) = f(v_2) = f(v_4) = \dots = f(v_{2k}) =$ blue.
 - But then $f(v_0) = f(v_{2k})$, so f is not a 2-coloring, a contradiction.

- $(3) \to (2)$
- If the claim holds for every connected component of G then it holds for G as well. (Combine the 2-colorings of each component.) Wlog we can assume G is connected.
- Let T be any spanning tree of G and $v_0 \in V$ any vertex.
- $f(u) = \begin{cases} \text{blue} & \text{if the path in } T \text{ from } v_0 \text{ to } u \text{ has } \mathbf{even} \text{ length.} \\ \text{red} & \text{if the path in } T \text{ from } v_0 \text{ to } u \text{ has } \mathbf{odd} \text{ length.} \end{cases}$
- If f were not a 2-coloring then some edge $\{x,y\}$ has f(x)=f(y).
 - Let $(v_0, v_1, v_2, v_3, \dots, v_k)$ be the T-path from v_0 to $v_k = x$, and
 - $(v_0, v_1, \dots, v_i, v'_{i+1}, v'_{i+2}, \dots, v'_j)$ be the T-path from v_0 to $v'_j = y$.
- Then $(v_i,v_{i+1},\ldots,v_k,v_j',v_{j-1}',\ldots,v_{i+1}',v_i)$ is a cycle with length k-i+1+j-i, but since $f(v_k)=f(v_j'), (k-i)\equiv (j-i)\pmod 2$, it follows that
- $k-i+1+j-i\equiv 1\ (\mathrm{mod}\ 2)$, meaning the cycle has odd length, contradicting (3).