Machine Learning for Finance

Supervised Learning: Linear and Logistic Regression

Alireza Nouri - Mahdi Mastani

Sharif University of Technology

May 28, 2024

Outline of talk

Linear Regression

2 Logistic Regression

Linear Regression

Linear Regression

- Linear regression is an important tool in machine learning, often used first by analysts in supervised learning.
- Used for predicting the value of a target from one or more features.
- Minimizes the mean squared error (MSE).
- Linear regression can handle both categorical and numerical features effectively.
- Assume that relationship between the target and the features are linear.

Linear Regression: One Feature

- Model: $Y = a + bX + \epsilon$
- Objective: Minimize MSE for the observations in the training set.
- Best fit values of a and b are those that minimize:

$$\frac{1}{n}\sum_{i=1}^{n}(Y_i-a-bX_i)^2$$

Linear Regression: Multiple Features

- Extends single feature regression to multiple features.
- Model: $Y = a + b_1 X_1 + b_2 X_2 + \cdots + b_p X_p + \epsilon$
- Requires solving for p + 1 coefficients (including the intercept).
- In machine learning, the parameter a is referred to as the bias and the coefficients b_i are referred to as the weights

Categorical Features

- Two types of categorical features:
 - Ordinal
 - Ominal

Handling Ordinal Features

- Ordinal features have a natural order (e.g., low, medium, high).
- Can be encoded using integer values reflecting their order.
- Example: Education level (High School = 1, Bachelor's = 2, Master's = 3).
- Ensure that the encoding captures the order relationship.

Handling Nominal Features

- Nominal features have no intrinsic order (e.g., red, green, blue).
- Handled by creating dummy variables (one-hot encoding).
- Each category is represented by a binary variable.
- One category can be dropped (e.g., drop the blue dummy variable).

Example: Categorical Features

- Consider a feature "City" with categories "New York", "San Francisco", and "Chicago".
- Create two dummy variables: D1 for "New York" and D2 for "San Francisco".
- Model:

$$\mathsf{Price} = \mathsf{a} + \mathsf{b}_1 \times \mathsf{Size} + \mathsf{b}_2 \times \mathsf{Bedrooms} + \mathsf{c}_1 \times \mathsf{D}1 + \mathsf{c}_2 \times \mathsf{D}2 + \epsilon$$

Credit Card Balance Data

- Income: Income in \$1,000
- Limit: Credit limit
- Rating: Credit rating
- Cards: Number of credit cards
- Age: Age in years
- Education: Education in years
- Own: A factor with levels No and Yes indicating whether the individual owns a home
- Student: A factor with levels No and Yes indicating whether the individual is a student
- Married: A factor with levels No and Yes indicating whether the individual is married
- Region: A factor with levels East, South, and West indicating the individual's geographical location
- Balance: Average credit card balance in \$

Data Table

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
0	14.891	3606	283		34	11	Male	No	Yes	Caucasian	333
1	106.025	6645	483		82	15	Female	Yes	Yes	Asian	903
2	104.593	7075	514		71	11	Male	No	No	Asian	580
3	148.924	9504	681		36	11	Female	No	No	Asian	964
4	55.882	4897	357		68	16	Male	No	Yes	Caucasian	331
395	12.096	4100	307		32	13	Male	No	Yes	Caucasian	560
396	13.364	3838	296		65	17	Male	No	No	African American	480
397	57.872	4171	321		67	12	Female	No	Yes	Caucasian	138
398	37.728	2525	192		44	13	Male	No	Yes	Caucasian	
399	18.701	5524	415		64		Female	No	No	Asian	966
400 rc	400 rows × 11 columns										

Multivariate Linear Regression Summary

OLS Regression Results

Dep. Varial Model: Method: Date: Time: No. Observ: Df Residua Df Model: Covariance	Su ations: ls:	Least Squa un, 26 May 2 20:46	OLS Adj. I res F-star 024 Prob :25 Log-L: 320 AIC: 309 BIC:	ared: R-squared: tistic: (F-statistic ikelihood:	:):	0.955 0.954 658.5 9.50e-202 -1926.8 3876. 3917.
	coef	std err	t	P> t	[0.025	0.975]
	472 0226	41.025	11 522			202.070
const	-472.8236 -7.5486		-11.522			
Income		0.277				
Limit	0.1998	0.037	5.380	0.000	0.127	0.273
Rating	0.9443	0.558		0.092	-0.153	2.042
Cards	19.2659		3.843		9.401	29.131
Age	-0.6210	0.343	-1.809	0.071	-1.296	0.054
Education	-1.1159	1.819	-0.613	0.540	-4.695	
Gender	12.6153		1.106			
Student	419.1412	19.697	21.280	0.000	380.385	457.898
Married	-5.5100	11.836	-0.466	0.642		17.780
Ethnicity	5.0384	6.898	0.730	0.466	-8.535	18.612
Omnibus: Prob(Omnib	Omnibus: Prob(Omnibus):			 n-Watson: e-Bera (JB):		1.981 20.759
Skew:		0.	620 Prob(.			3.11e-05
Kurtosis:		2.	861 Cond.	No.		3.85e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.85e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Train and Test Evaluation

	MAE	MSE	RMSE	R2_squared
Multi_Linear_Regression_Train	0.040445	0.002488	0.049876	0.955179
Multi_Linear_Regression_Test	0.037307	0.002014	0.044877	0.951831

Extending Features

- Feature engineering is the process of creating new features from existing ones to improve model performance.
- Techniques include:
 - Interaction features
 - Polynomial features
 - Omain-specific transformations

Interaction Features

- Interaction features capture the effect of one feature on another.
- Example: Interaction between age and income.
- Formula: Interaction = Age \times Income
- Created by multiplying or combining two or more features.
- Can help model complex relationships.

Polynomial Features

- Polynomial features are created by raising existing features to a power.
- Helps capture non-linear relationships.
- Example: If a feature is x, polynomial features include x^2 , x^3 , etc.
- Formula: Polynomial = [Income, Income², Income³]
- Captures more complex patterns than linear relationships.
- Useful in polynomial regression.

Domain-Specific Transformations

- Features created based on domain knowledge.
- Example: Financial ratios in accounting (e.g., profit margin, return on equity).
- Original Features: Net Income , Net Sales Revenue
- Domain-Specific Feature: Profit Margin.
- Formula: Profit Margin = $\frac{\text{Net Income}}{\text{Net Sales Revenue}}$
- Helps incorporate expert insights into the model.

Polynomial Regression Summary

	MAE	MSE	RMSE	R2_squared
Polynomial Regression_2	1.956470e-02	5.846371e-04	2.417927e-02	0.989466
Polynomial Regression_3	3.669813e-03	2.674971e-05	5.172012e-03	0.999518
Polynomial Regression_4	4.728095e-15	4.302659e-29	6.559466e-15	1.000000
Polynomial Regression_5	8.130118e-15	1.279324e-28	1.131072e-14	1.000000

Train and Test Evaluation

	MAE	MSE	RMSE	R2_squared
Multi_poly_Regression_Train_4	4.728095e-15	4.302659e-29	6.559466e-15	1.000000
Multi_poly_Regression_Test_4	5.687804e-02	1.274558e-02	1.128963e-01	0.695156

Regularization

- Helps to prevent overfitting.
- Before using regularization, it is important to carry out feature scaling
- To ensure that the numerical values of features are comparable.

Ridge Regression

- Ridge regression is referred to as L2 regularization.
- Adds a penalty equal to the sum of the squared coefficients.
- Objective: Minimize

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \lambda \sum_{j=1}^{p} b_j^2$$

- Reduces the magnitude of the coefficients.
- Useful when features are highly correlated.
- ullet The parameter λ is referred to as a hyperparameter.

Ridge regularization (L2)

Lasso Regression

- Lasso regression is referred to as L1 regularization.
- Adds a penalty equal to the sum of the absolute values of the coefficients.
- Objective: Minimize

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \lambda \sum_{j=1}^{p} |b_j|$$

- Can shrink some coefficients to zero, effectively selecting a simpler model.
- Useful for feature selection.

Lasso regularization (L1)

Elastic Net Regression

- Combines Ridge and Lasso penalties.
- Objective: Minimize

$$\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\hat{Y}_{i})^{2}+\lambda_{1}\sum_{j=1}^{p}b_{j}^{2}+\lambda_{2}\sum_{j=1}^{p}|b_{j}|$$

Balances between Ridge and Lasso properties.

Elastic Net regularization

Figure: $\lambda(\alpha \|\beta\|_1^2 + ((1-\alpha)/2)\|\beta\|_2^2)), \alpha = 0.1$

Alireza Nouri - Mahdi Mastani (Sharif Univer

The L2 norm of the coefficient

Figure: The L2 norm for the polynomial regression is 13.37

Logistic Regression

Logistic Regression

- Used for classification problems.
- Predicts the probability of an observation belonging to a category.
- $Z = a + b_1 X_1 + \cdots + b_p X_p$
- Uses the sigmoid function:

$$P(Y=1) = \frac{1}{1 + e^{-Z}}$$

Cross-Entropy Loss for Classification

The cross-entropy loss function for binary classification is given by:

$$L(y, \hat{y}) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

Where:

- y is the true label (0 or 1) of the sample.
- \hat{y} is the predicted probability of the sample belonging to class 1.

Decision Criteria

- Define a threshold probability t.
- If P(Y = 1) > t, classify as positive.
- If $P(Y = 0) \le t$, classify as negative.
- Trade-off

Confusion Matrix Components

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

- TP (True Positive): Correctly predicted positive cases.
- TN (True Negative): Correctly predicted negative cases.
- FP (False Positive): Incorrectly predicted as positive.
- FN (False Negative): Incorrectly predicted as negative.

Model Evaluation

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

- Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$
- True Positive Rate(TPR): $\frac{TP}{TP+FN}$
- False Positive Rate (FPR): $\frac{FP}{FP+TN}$
- Precision: $\frac{TP}{FP+TP}$
- F1-score: $2x \frac{\text{Precision.TPR}}{\text{TPR+Precision}}$

ROC Curve

- Plots the true positive rate against the false positive rate.
- Area Under the Curve (AUC) measures the model's performance.
- AUC ranges from 0.5 (random) to 1 (perfect classification).

Example

The S&P 500 stock index between 2017 and 2024

- Year: The year that the observation was recorded
- Lag1: Percentage return for previous day
- Lag2: Percentage return for 2 days previous
- Lag3: Percentage return for 3 days previous
- Lag4: Percentage return for 4 days previous
- Lag5: Percentage return for 5 days previous
- Volume: Volume of shares traded for 1 days previous (number of daily shares traded in billions)
- Direction: A factor with levels 'Down' and 'Up' indicating whether the market had a positive or negative return on a given day

Data Table

	Lag1	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction
0	-0.206290	0.257143	0.036155	0.404576	0.278029	3.64056	-0.036131	Down
1	-0.036131	-0.206290	0.257143	0.036155	0.404576	3.62508	0.296217	Up
2	0.296217	-0.036131	-0.206290	0.257143	0.036155	3.46622	-0.030819	Down
3	-0.030819	0.296217	-0.036131	-0.206290	0.257143	3.09068	0.083595	Up
4	0.083595	-0.030819	0.296217	-0.036131	-0.206290	3.58695	-0.055087	Down
1855	-1.356112	-0.230671	0.428789	0.052396	0.003204	3.00551	0.440599	Up
1856	0.440599	-1.356112	-0.230671	0.428789	0.052396	3.75154	-0.185671	Down
1857	-0.185671	0.440599	-1.356112	-0.230671	0.428789	3.55275	-0.223156	Down
1858	-0.223156	-0.185671	0.440599	-1.356112	-0.230671	3.81875	-0.461808	Down
1859	-0.461808	-0.223156	-0.185671	0.440599	-1.356112	5.43716	0.654176	Up
1860 ro	1860 rows × 8 columns							

Logistic Regression Summary

	coef	std err	z	P> z
const	1.6127	0.877	1.839	0.066
Lag1	-0.4008	0.648	-0.618	0.536
Lag2	0.0692	0.646	0.107	0.915
Lag3	-0.5883	0.659	-0.893	0.372
Lag4	-0.5198	0.649	-0.801	0.423
Lag5	-0.5108	0.659	-0.775	0.439
Volume	-1.3464	0.458	-2.940	0.003

38 / 48

Train and Test Evaluation

Figure: accuracy=0.56

Figure: accuracy=0.59

ROC curve

Features

Default of Credit Card Clients

- LIMIT_BAL
- SEX
- EDUCATION
- MARRIAGE
- AGE
- PAY_0
- PAY_2
- PAY_3
- PAY_4
- PAY_5
- PAY_6

- BILL_AMT1
- BILL_AMT2
- BILL_AMT3
- BILL_AMT4
- BILL_AMT5
- BILL_AMT6
- PAY_AMT1
- PAY_AMT2
- PAY_AMT3
- PAY_AMT4
- PAY_AMT5
- PAY_AMT6

Imbalance Data

	YES(1)	No(0)
Number	6636	23364

$$w_i = \frac{n}{k \cdot n_i} \tag{1}$$

- w_i: Weight for class i
- n: Total number of samples
- k: Number of classes
- n_i: Number of samples in class i

$$L = -\frac{1}{N} \sum_{i=1}^{N} \left[w_0 \cdot y_i \log(\hat{y}_i) + w_1 \cdot (1 - y_i) \log(1 - \hat{y}_i) \right]$$
 (2)

- N: Total number of samples
- y_i : True label of the i-th sample (0 or 1)
- \hat{y}_i : Predicted probability of the *i*-th sample being in class 1
- w_0 : Weight for the class where $y_i = 1$
- w_1 : Weight for the class where $y_i = 0$

Train and Test Evaluation

Train and Test Report

	precision	recall	f1-score		precision	recall	t1-score
0.0 1.0	0.87 0.39	0.72 0.63	0.79 0.48	0.0 1.0	0.87 0.38	0.71 0.63	0.78 0.47
accuracy	0.33	0.03	0.70	accuracy	0.30	0.03	0.69

Figure: Train Figure: Test

High false positive rates (FPR) can be dangerous

We can imagine that having a 10% FPR (90% TNR) can be considered perfect.

Figure: Train

Figure: Test

Train and Test Report

	precision	recall	f1-score		preci
0.0 1.0	0.88 0.24	0.20 0.91	0.33 0.39	0.0 1.0	(
accuracy			0.36	accuracy	

	precision	recall	f1-score
0.0 1.0	0.88 0.24	0.20 0.90	0.33 0.38
accuracy			0.36

Figure: Train

Figure: Test

ROC curve

Thank you for your attention

Any question?