

SOFTWARE

CARACTERÍSTICAS

Procesador: 3.2 GHz Core I7

2. Memoria RAM: 32 GB

3. R version: 3.6.2

4. R studio version: 1.3

Razones para usar R:

- 1. R es gratuito
- 2. Es intuitivo
- 3. Esta avalado por una comunidad científica mundial.
- 4. Constantemente aparecen nuevos paquetes gratuitos que expande la capacidad de r
- 5. Crea gráficos de calidad superior a otros paquetes
- 6. Es compatible con 'todos' los formatos de datos

Razones para usar Power BI:

- 1. Es intuitivo
- 2. Compatible con el modelo de datos actual
- 3. Control y seguridad de información
- 4. Actualizaciones periódicas
- 5. Múltiple visibilidad (PC, móvil)

MODELOS ANALÍTICOS

PLANTEAMIENTO

- Evolución de las menciones en las semanas de estudio

 Las líneas de tiempo que permiten ver la estacionalidad del producto en el periodo de estudio
- Keyword Cloud/ frequency
 Una nube de palabras que permite ver cuáles se citan más, qué otras palabras acompañan, etc.
- Análisis de bigramas
 Grafo de palabras que se combinan de dos en dos para dar significado a los mensajes.
- Topic Modeling
 Cluster de términos, para ver cómo se agrupan, qué resúmenes se podrían hacer, etc.
- Sentiment Analysis

 Análisis del sentimiento, tanto positivo y negativos, así como por emociones básicas de la persona (alegría, tristeza, miedo, rechazo, etc.).

Proceso Promperú

Análisis y Exploración

Limpieza de datos y tokenización

Construcción de marco de datos Tidy

Modelamiento

Visualización de datos

- Construcción de matriz de datos
- Filtro de negocio.
- Estudio de variables

- Limpieza de textos.
- Filtro de stopwords
- Tokenización
- Lematizado de palabras

Se realiza la limpieza de la data conservando textos relevantes para el estudio

- Construcción de marco de datos considerando palabras tokenizadas.
- Análisis de tendencias
- Frecuencia de palabras mas recurrentes
- Análisis clustering
- Análisis de bigramas
- Análisis de sentimientos
- Generación de tablas de consumo

- Carga de tablas de consumo.
- Creación de variables adicionales.
- Actualización y publicación de reporte.

PLANTEAMIENTO

Proceso Promperú

Α. [Diccionario de variables requeridas
------	-------------------------------------

Variable	Descripción
url	La URL donde está el comentario de texto.
sentimiento	Obtenido por la herramienta de escucha (quizás nos aporte algo, lo he dejado por si las moscas, aunque prefiero hacerlo a partir del texto disponible)
autor	Quién lo escribió, por si quisieran localizar algún blog o identidad de redes sociales de referencia (influencia)
texto	El contenido de texto en sí. El campos más relevante, lógicamente.
hashtags	Quizás sea interesante sacar cuáles son los más citados, para ver tendencias, modas, etc.
impacto	Cuánto gente ha reaccionado al texto (mide a ver el éxito de una publicación)
impresiones	Cuánto gente lo ha llegado a leer (es lógicamente una cifra mayor al impacto)
localización	Desde dónde se ha escrito en el mercado de referencia, por si quisiera analizar también por ubicaciones.
dia	Día del periodo de estudio (octubre a diciembre de 2020)
hora	hora
plaza	País en análisis
producto	Producto en análisis

PROCESO DE ANÁLISIS

PLANTEAMIENTO

A.

Preparando el entorno de trabajo

Limpieza del entorno de trabajo

```
7 # clean the workspace
8 rm(list = ls())
9 cat("\014")
10 # fijamos a UTF-8
11 options(encoding = "utf-8")
```

Carga de funciones diseñadas

Functions				
calcular	function	(dtm)		E C
CVLDA	function	(Ntopics,	dtm,	🗵

Carga de librerías necesarias para trabajar

```
# Cargamos las librerías que vamos a necesitar
library(readxl) # Para leer ficheros excel
library(tidyverse) # Para las operaciones con datos
library(syuzhet) # Libreria para emociones
library(tidytext)
library(stringr) # Para operar con datos de tipo St
library(stopwords) # Para poder quitar las stopword
library(ggplot2) # Librería de visualización gráfic
library(lubridate) # Para el formateo de fechas y s
library(scales) # Para trabajar con datos de coma
```


arandano

B. ANÁLISIS Y EXPLORACIÓN

Carga y concatenación de datos según productos y plazas

```
arandano_esp <- read.csv("2. Datos brutos - Data 2020/productos/arandano_esp.csv",encoding = "Latin1",sep = ";")
arandano_fr <- read.csv("2. Datos brutos - Data 2020/productos/arandano_fr.csv",encoding = "Latin1",sep = ";")
arandano_uk <- read.csv("2. Datos brutos - Data 2020/productos/arandano_uk.csv",encoding = "Latin1",sep = ";")
```

Construcción de variables

```
210 # Creando variables plaza y producto
211 arandano_esp$plaza <- "Espana"
212 arandano_fr$plaza <- "Francia"
213 arandano_uk$plaza <- "Reino_Unido"
214 arandano <- rbind(arandano_esp,arandano_fr,arandano_uk)
215
216 rm(arandano_esp,arandano_fr,arandano_uk)
217 arandano$producto <- "arandano"
218
219 names(arandano) <- c("X","url","sentimiento","autor","texto","hashtags","impacto",
220 "impresiones","localizacion","fecha","hora","plaza","producto")
```


Joins bases

- 390 dfpromperu2020 <- rbind(arandano,cafe,palta,pisco,quinua,uva,superfood)
- 391 dfpromperu2020\$X <- NULL
- 392 names (dfpromperu2020)

 \mathbf{C}

LIMPIEZA DE DATOS

Seleccionar el producto y plaza que se quiere analizar

(1) Evolución de las menciones en las semanas de estudio

E. MODELAMIENTO DE DATOS

(2) Keyword Cloud/ Frequency

```
661 # Representacion grafica de las frecuencias
662 df_tidy %>% group_by(token) %>% summarise(n1 = n()) %>%
arrange(desc(n1)) %>% slice_max(order_by = n1, n = 10) %>%
ggplot(aes(x = reorder(token,n1), y = n1)) +
665
     geom_col(show.legend = TRUE,fill = "blue") +
      theme_bw() +
666
      labs (y = "", x = "") +
667
668
      theme(legend.position = "none") +
    coord_flip() +
669
      labs(title = "Palabras mas usadas",
671
           subtitle = "Stopwords retiradas".
           x = "Palabra",
672
           y = "Número de veces usada")
673
```


E. MODELAMIENTO DE DATOS

(3) Análisis de bigramas

```
821 analisis_bigrams <- title_word_pairs %>% filter(n >= 500)
822
823 analisis_bigrams$producto <- "arandano"
824 analisis_bigrams$plaza <- "España"
825
826 analisis_bigrams <- analisis_bigrams[c(4,5,1,2,3)]
827 write.csv(analisis_bigrams,'3. Datos Procesados - 2020/analisis_bigrams(uva_uk).csv</pre>
```


E. MODELAMIENTO DE DATOS

(4) Topic Modeling

```
849 corpus <- corpus(datos$texto)
850 cdfm <- dfm(corpus, remove=c(lista_stopwords),
                verbose=TRUE, remove_punct=TRUE, remove_numbers=TRUE)
852
853 # Quitamos palabras que solo salgan 1 vez
854 cdfm <- dfm_trim(cdfm, min_docfreq = 2, verbose=TRUE)
855
856 # Ahora lo exportamos a un formato para procesar los Topic Models.
857 dtm <- convert(cdfm, to="topicmodels")
858
859 # Calculamos ahora los topcis óptimos
860 # calculartopics(dtm)
861 # Estimamos el LDA con el número óptimo de topics que nos haya salido
862 1da \leftarrow LDA(dtm, k = 10, method = "Gibbs",
               control = list(verbose=25L, seed = 123, burnin = 100, iter = 500))
863
```



```
889 terminos$producto <- "arandano"
890 terminos$plaza <- "españa|"
891 terminos <- terminos[c(4,5,1,2,3)]
892
893 write.csv(terminos,'3. Datos Procesados - 2020/cluster_terminos(uva_uk).csv',row.names = F)</pre>
```


E.

MODELAMIENTO DE DATOS

(4) Topic Modeling

```
# Vamos a coger las palabras en español del diccionario NRC
nrc<- get_sentiment(datos$texto, method="nrc",lang="spanish")
#nrc<- get_sentiment(datos$texto, method="nrc",lang="french")
#nrc<- get_sentiment(datos$texto, method="nrc",lang="english")

# obtenemos las emociones
emotions <- get_nrc_sentiment(datos$texto,lang="spanish")

# emotions <- get_nrc_sentiment(datos$texto,lang="french")
# emotions <- get_nrc_sentiment(datos$texto,lang="english")

# emotions <- get_nrc_sentiment(datos$texto,lang="english")

# emotions <- get_nrc_sentiment(datos$texto,lang="english")

# emotions <- get_nrc_sentiment(datos$texto,lang="english")

# emotions <- get_nrc_sentiment(datos$texto,lang="english")</pre>
```

```
949 emo_sum$producto <- "quinua"

950 emo_sum$plaza <- "Reino_Unido"

951 emo_sum <- emo_sum[c(3,4,1,2)]

953 evrite.csv(emo_sum,'3. Datos Procesados - 2020/sentimientos (quinua_uk).csv',row.names = F)
```


