/57/

ALGÈBRE HOMOLOGIQUE. — Catégories doubles et catégories structurées. Note (*) de M. Charles Ehresmann, présentée par M. Jean Leray.

Définition des catégories structurées; cas plus particulier des catégories doubles, lesquelles admettent pour catégorie quotient une catégorie de quatuors.

1. CATÉGORIES DOUBLES :

Définition. — Nous appellerons catégorie double une classe $\mathcal C$ munie de deux lois de composition, notées . et 1, vérifiant les conditions :

- 1. $(\mathcal{C}, .)$ est une catégorie, notée \mathcal{C} ; les unités à droite et à gauche de $f \in \mathcal{C}$ seront notées $\alpha(f)$ et $\beta(f)$ respectivement, la classe des unités, \mathcal{C}_{α} ;
- 2. $(\mathcal{C}, \mathbf{1})$ est une catégorie, notée $\mathcal{C}^{\mathbf{1}}$; les unités de $f \in \mathcal{C}^{\mathbf{1}}$ seront notées $\alpha^{\mathbf{1}}(f)$ et $\beta^{\mathbf{1}}(f)$, la classe des unités, $C^{\mathbf{1}}_{\mathbf{0}}$;
- 3. Les applications α et β (resp. α^{\perp} et β^{\perp}) sont des foncteurs de C^{\perp} vers C^{\perp} (resp. de C vers C);
- 4. Axiome de permutabilité : Si les composés k.h, g.f, k1g et h1f sont définis, on a

$$(k,h) \perp (g,f) = (k \perp g) \cdot (h \perp f).$$

Soit \mathcal{C} une classe munie de deux lois de composition . et 1 vérifiant les axiomes 1 et 2; considérons les axiomes suivants :

- 3'. \mathcal{C}_0 (resp. C_0^1) est stable relativement à 1 (resp. à .);
- - 5. Pour tout $f \in \mathcal{C}$, on a

$$\alpha(\alpha^{\perp}(f)) = \alpha^{\perp}(\alpha(f)); \qquad \beta(\beta^{\perp}(f)) = \beta^{\perp}(\beta(f));$$

$$\alpha(\beta^{\perp}(f)) = \beta^{\perp}(\alpha(f)); \qquad \alpha^{\perp}(\beta(f)) = \beta(\alpha^{\perp}(f)).$$

PROPOSITION. — Pour que $(\mathcal{C}, ., 1)$ soit une catégorie double, il faut et il suffit que les conditions 1, 2, 3', 4', 5 soient vérifiées. Dans ce cas, $\mathcal{C}_{\scriptscriptstyle 0}$ (resp. $\mathcal{C}_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}$) est une sous-catégorie de $\mathcal{C}^{\scriptscriptstyle 1}$ (resp. $\mathcal{C}^{\scriptscriptstyle 1}$).

Une sous-catégorie double d'une catégorie double $\mathcal C$ est une sous-classe $\mathcal C'$ de $\mathcal C$ qui est une sous-catégorie de $\mathcal C$ et de $\mathcal C^1$; alors C' est une catégorie double pour les lois de compositions induites par . et 1.

Définition. — Soit \mathcal{C} une catégorie double; on appelle idéal à gauche (resp. à droite) de \mathcal{C}^1 une sous-catégorie I^1 de \mathcal{C}^1 telle qu'on ait \mathcal{C} . $I^1 = I^1$ (resp. $I^1 . \mathcal{C} = I^1$), où \mathcal{C} . I^1 (resp. $I^1 . \mathcal{C}$) est la classe des composés f . g (resp. g . f), $g \in I^1$ et $f \in \mathcal{C}$. On définit de même un idéal de \mathcal{C} .

3

4

PROPOSITION. — Soit \mathcal{C} une catégorie double; un idéal I^{\perp} à gauche de \mathcal{C}^{\perp} est une espèce de structures (†) au-dessus de \mathcal{C} pour la loi de composition : $(f,g) \to f.g$ si, et seulement si, f.g est défini, où $f \in \mathcal{C}$ et $g \in I^{\perp}$. La catégorie \mathcal{E} (I^{\perp}) des hypermorphismes (†) correspondante est une catégorie double pour les lois de composition :

$$(f', g') \cdot (f, g) = (f', f, g)$$

si, et seulement si, $g' = f \cdot g$ et

$$(f',g') \mathbf{1} (f,g) = (f'\mathbf{1} f, g'\mathbf{1} g)$$

si, et seulement si, f'ıf et g'ıg sont définis.

2. Catégories doubles de quatuors. — Soient \mathcal{C}_1 et \mathcal{C}_2 deux catégories ayant même classe d'unités Δ . Soit \square (\mathcal{C}_2 , \mathcal{C}_4) la classe des quadruplets : (g_2, g_1, f_1, f_2) , où $f_i \in \mathcal{C}_i$, $g_i \in \mathcal{C}_i$, i = 1, 2, tels que :

$$\alpha(f_1) = \alpha(f_2); \quad \alpha(g_1) = \beta(f_2); \quad \beta(f_1) = \alpha(g_2); \quad \beta(g_1) = \beta(g_2).$$

Sur \square (\mathcal{C}_2 , \mathcal{C}_1), on définit les deux lois de composition : Multiplication longitudinale :

$$(g_2', g_1', f_1', f_2) \prod (g_2, g_1, f_1, f_2) = (g_2', g_1', g_2, f_1f_1, f_2)$$

si, et seulement si, $f_2 = g_2$;

Multiplication latérale:

$$(g_2',g_1',f_1,f_2') \coprod (g_2,g_1,f_1,f_2) = (g_2'g_2,g_1',f_1,f_2'f_2)$$

si, et seulement si, $f_1 = g_1$.

Proposition. — \square (\mathcal{C}_2 , \mathcal{C}_3) est une catégorie double pour les multiplications longitudinale et latérale.

Supposons $C = C_1 = C_2$; rappelons (1) qu'un quatuor de C est un élément $(g_2, g_1, f_1, f_2) \in \Box(C, C)$ tel que $g_1 f_2 = g_2 f_1$.

COROLLAIRE. — La classe $\square \mathcal{C}$ des quatuors de \mathcal{C} est une sous-catégorie double de $\square (\mathcal{C}, \mathcal{C})$.

Théorème. — Soit \mathcal{C} une catégorie double; alors \mathcal{C} admet pour catégorie quotient (¹) la catégorie longitudinale $\coprod (\mathcal{C}_{\circ}, \mathcal{C}_{\circ}^{1})$, où \mathcal{C}_{\circ} (resp. \mathcal{C}_{\circ}^{1}) est munie de sa structure de sous-catégorie de \mathcal{C}^{1} (resp. \mathcal{C}).

3. Foncteurs vers une catégorie double. — Soient Γ une catégorie et $\mathcal C$ une catégorie double; soit $\mathcal F$ ($\mathcal C$ ', Γ) la classe des foncteurs de Γ vers $\mathcal C$ '.

PROPOSITION. — $\mathcal{F}(\mathcal{C}, \Gamma)$ est une catégorie pour la loi de composition $(\Phi', \Phi) \to \Phi' \perp \Phi$, où $(\Phi' \perp \Phi) (f) = \Phi' (f) \perp \Phi(f)$ si, et seulement si, $\Phi' (f) \perp \Phi (f)$ est défini pour tout $f \in \mathcal{C}$.

Définition. — Soient \mathcal{C} et \mathcal{C}_1 deux catégories doubles; on appelle foncteur double de \mathcal{C} vers \mathcal{C}_1 une application Φ de \mathcal{C} dans \mathcal{C}_1 telle que Φ soit un foncteur de \mathcal{C}^1 vers \mathcal{C}_1^1 . La classe des foncteurs doubles de \mathcal{C} vers \mathcal{C}_1 sera notée \mathcal{F} (\mathcal{C}_1 , \mathcal{C}).

PROPOSITION. — $\mathcal{F}(\mathcal{C}_1, \mathcal{C})$ est une sous-catégorie de $\mathcal{F}(\mathcal{C}_1, \mathcal{C})$ et de $\mathcal{F}(\mathcal{C}_1, \mathcal{C}_1)$; munie des deux lois de composition induites, $\mathcal{F}(\mathcal{C}_1, \mathcal{C})$ est une catégorie double.

1¶

2

4

5+

PROPOSITION. — Soient \mathcal{C} et \mathcal{C}' deux catégories; la catégorie longitudinale \mathfrak{N} (\mathcal{C}' , \mathcal{C}) des transformations naturelles (2) entre foncteurs de \mathcal{C} vers \mathcal{C}' s'identifie à la catégorie \mathfrak{F} (\sqsubseteq \mathcal{C}' , \mathcal{C}), en identifiant la transformation naturelle (2 , 2 , 2) au foncteur 4 tel que

$$\Phi\left(f\right) = \left(\varphi'\left(f\right), \tau\left(\beta\left(f\right)\right), \tau\left(\alpha\left(f\right)\right), \varphi\left(f\right)\right)$$

pour tout $f \in \mathcal{C}$.

Par suite, si $(\mathcal{C}^{\bullet}, \mathcal{C}^{\downarrow})$ est une catégorie double, un foncteur Φ d'une catégorie Γ vers C^{\bullet} peut être considéré comme une transformation naturelle généralisée de $\alpha^{\downarrow}\Phi$ vers $\beta^{\downarrow}\Phi$. Nous verrons une autre généralisation des transformations naturelles (catégorie double des quintettes) dans une publication suivante.

4. Catégories structurées. Soit $\mathcal{M}_{\mathfrak{o}}$ une classe de classes, contenant avec X toutes ses parties, avec X et X' le produit $X \times X'$; soit \mathcal{M} la catégorie de toutes les applications de X vers Y, où $X \in \mathcal{M}_{\mathfrak{o}}$ et $Y \in \mathcal{M}_{\mathfrak{o}}$. Soit $(\mathcal{M}, p, \mathcal{K}, \mathcal{S})$ une catégorie d'homomorphismes (¹), \mathcal{S} contenant le groupoïde des éléments inversibles de \mathcal{K} ; soit $\mathcal{K}_{\mathfrak{o}}$ la classe des unités de \mathcal{K} ; on identifie $h \in \mathcal{K}$ avec $(\beta^{\infty}(h), p, h)$, $z^{\infty}(h)$).

Définition. — On appelle catégorie structurée dans $\mathcal K$ un couple $(\mathcal C, s)$, où $\mathcal C$ est une structure de catégorie sur $\mathcal C \in \mathcal M_n$, $s \in \mathcal K_n$ et $p(s) = \mathcal C$, vérifiant les conditions suivantes :

10 Il existe $s_0 \in \mathcal{K}_0$ tel que :

$$p(s_0) = \mathcal{C}_0$$
, $(s, i_{\mathcal{C}_0}, s_0) \in \mathcal{K}$, $(s_0, \alpha, s) \in \mathcal{K}$ et $(s_0, \beta, s) \in \mathcal{K}$,

où $i_{\mathcal{C}_0}$ est l'injection canonique de \mathcal{C}_0 vers \mathcal{C} , α et β , les applications source et but dans \mathcal{C} .

2º Il existe un produit $s \times s$ dans \mathcal{K} , tel que $p(s \times s) = \mathcal{C} \times \mathcal{C}$; si K est la sous-classe de $\mathcal{C} \times \mathcal{C}$ formée des couples composables, il existe $s' \in \mathcal{K}_0$ tel que

$$p'(s') = K$$
 et $(s \times s, i_K, s') \in \mathcal{K}$.

 $3^{\circ} \times \text{désignant l'application } (g, f) \rightarrow g.f \text{ de } K \text{ dans } \mathcal{C}, \text{ la relation } (s \times s, i_{\kappa}, s') \in \mathcal{K} \text{ entraîne } (s, \times, s') \in \mathcal{K}.$

Exemple. — Une catégorie structurée dans $\tilde{\mathfrak{E}}$, où $\tilde{\mathfrak{E}}$ est la catégorie des topologies, est une catégorie topologique (3).

Théorème. Pour que $(\mathfrak{C}^{+}, \mathfrak{C}^{1})$ soit une catégorie double, il faut et il suffit que $(\mathfrak{C}^{+}, \mathfrak{C}^{1})$ soit une catégorie structurée dans la catégorie \mathfrak{F} des foncteurs d'une catégorie vers une autre; dans ce cas, $(\mathfrak{C}^{1}, \mathfrak{C}^{+})$ est aussi une catégorie structurée dans \mathfrak{F}^{+} (la structure sur \mathfrak{C}^{+} est \mathfrak{C}^{1}).

(*) Séance du 28 janvier 1963.

(1) Calégorie des foncteurs types. Rev. Un. Mal. Argentina, 20, 1960, p. 194.

⁽¹⁾ Espèces de structures locales; étargissements de catégories, Séminaire Top. et Géo. Diff. (Ehresmann), III, Paris, 1961; Jahres. Deutsch. Math. Ver., 60, 1957, p. 49.

⁽⁴⁾ Catégories topologiques et catégories différentiables, Coll. Géo. Diff. Glo., Bruxelles, G.B.R.M., 1959, p. 137.