Lecture #3: Michaelis-Menten Kinetics

- (1) Introduction
- (2) Assumptions
- (3) Derivation
- (4) Description of v_o versus [S] curves
- (5) Michaelis constant (K_M)
- (6) Specificity/Substrate constant (SpC)
- (7) Appendix

Michaelis-Menten Kinetics

(1) Introduction

$$E_f + S \qquad \stackrel{k_1}{\rightleftharpoons} \qquad ES \stackrel{k_2}{\rightleftharpoons} E_f + P$$

Leonor Michaelis 1875–1949

Maud Menten 1879–1960

- -The M-M treatment (rapid equilibrium approximation = 1913) is unsuitable for many biochemical systems because:
 - (a) Many intermediates in enzyme reactions are reactive intermediates
 - (b) True equilibrium likely doesn't exist
 - (c) Biochemical systems are often a chain of reactions
- -apply the steady-state treatment to assume that **the rate of ES formation is equal to the rate of ES consumption** over the short time interval defined by the initial velocity

-in **1925 Briggs and Haldane** developed the steady-state treatment

J. B. S. Haldane 1892–1964

2. Assumptions:

(a) the E-S complex is in a steady-state

-the rate at which the complex is being formed from E_f and S is equal to the rate at which it is

consumed by being broken down to E + P or E + S

$$d[ES]/dt = 0$$

(b) The formation of P ∞ the concn of ES complex

-the reverse reaction can be ignored (k₋₂ rate)

-implies that the **breakdown of ES to E + P** is *RDS* of reaction

$$v_o = k_2[ES]$$

J. B. S. Haldane 1892–1964

-implies that reverse reaction (E + P \rightarrow EP \rightarrow ES) is negligible (true if use **initial velocity!**)

(c) The S concn is much larger than E_T concn

- -change in [S] as a result of the formation of ES complex is negligible -the substrate concn is taken to be a constant
- -assumptions (b) and (c) are identical to those of M-M treatment

Deviation from M-M kinetics happens when:

- There are multiple catalytic steps $(k_2 \neq k_{cat})$
- >[ES] is not at steady state
- ➤ The enzyme displays cooperativity
- ➤ There are multiple substrates
- ➤ Substrate binding is irreversible

3. Derivation

$$E_f + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E_f + P$$

-assumption (a):
$$d[ES]/dt = 0$$
 {K-1}

Rate of formation of ES = Rate of consumption of ES

Rate of formation =
$$k_1[E_f][S] + k_2[E_f][P]$$
 {K-2}

-based on assumption (b) the second term can be ignored (reverse reaction) so:

Rate of ES formation =
$$k_1[E_f][S]$$

{K-5}

Rate of ES consumption =
$$k_{-1}[ES] + k_2[ES] = (k_{-1} + k_2)[ES]$$

{K-4}

$$d[ES]/dt = k_1[E_f][S] - (k_{-1} + k_2)[ES] = 0$$

$$k_1[E_f][S] = (k_{-1} + k_2)[ES]$$
 {K-6}

Mass Conservation Equation for [E_T] at constant [S]

$$[E_T] = [E_f] + [ES]$$
 {K-7}

and
$$[E_f] = [E_T] - [ES]$$
 {K-8}

-substitute $[E_T]$ – [ES] from $\{K-8\}$ into $\{K-6\}$ for $[E_f]$

$$k_1([E_T] - [ES])[S] = (k_{-1} + k_2)[ES]$$
 {K-9} group rate constants

$$([E_T] - [ES])[S] = \{(k_{-1} + k_2)/k_1\}[ES] \{K-10\}$$

-define a new constant, K_M , such that: $K_M = (k_{-1} + k_2)/k_1$ {K-11}

-called the "Michaelis constant"

-substituting K_M into {K-10} yields:

$$([E_T] - [ES])[S] = K_M[ES]$$
 or

$$[E_T][S] - [E_S][S] = K_M[ES]$$
 {K-12} get [ES] out of eq.

-velocity of reaction based on assumption (b) and so:

$$v_0 = k_2[ES]$$
 {K-13} or $[ES] = v_0/k_2$

-substituting for [ES] into {K-12} gives the rate equation:

$$[E_T][S] - v_o/k_2 * [S] = K_M * v_o/k_2$$
 {K-14}

-rearranging {K-14} gives: (multiply by k₂)

$$k_{2}[E_{T}][S] - v_{0}[S] = K_{M}v_{0}$$
 {K-15}

At **saturation** conditions: $k_2 = k_{cat}$

-recall: TN
$$(k_{cat}) = V_{max}/[E_T]$$
 so:

$$k_2 = V_{\text{max}}/[E_T] \qquad \{K-16\}$$

$$V_{\text{max}} = k_2[E_T] \qquad \{K-17\}$$

-substitute V_{max} into {K-15}

$$k_2[E_T][S] - v_0[S] = K_M v_0$$
 {K-15}

$$V_{max}[S] - v_o[S] = K_M v_o$$
 and rearrange

$$V_{max}[S] = K_M v_o + v_o[S]$$
 group terms

$$V_{max}[S] = v_o(K_M + [S])$$
 solve for v_o

$$V_o = V_{max}[S]/(K_M + [S])$$

{K-18}

Michaelis-Menten Equation!

Substrate concentration, [S] (mm)

4. Description of v_o versus [S] curve:

i. When [S] $<< K_M$ then $\{K-18\}$ becomes:

-{K-19} is rate equation for <u>first order reaction</u> with $\mathbf{v_o}$ α [S] -low concn range of v versus [S] curve

ii. When [S] >> K_M then {K-18} becomes: $(drop K_M)$

$$V_0 = V_{max}[S]/(K_M + [S]) = V_{max}[S]/[S] = V_{max}$$
 {K-20}

-{K-20} is rate equation for a **zero order reaction** with v_o independent of [S] -high end of v_o versus [S] curve

iii. Central part of v_o versus [S] curve is described by intermediate range of [S] -special case: when [S] = K_M

$$V_o = V_{max}[S]/(K_M + [S]) = V_{max}[S]/([S] + [S]) = V_{max}/2$$

- -K_M defined as being equal to that substrate concn which gives one half of the maximum velocity of reaction
 - -K_M has units of concn (M)

5. Michaelis Constant (K_M)

- (a) K_M is [S] at which one half of V_{max} of a reaction is observed
- (b) K_M has units of concn
- (c) K_M is a constant only under <u>rigorously</u> defined conditions of pH, T, ionic strength, etc -if reaction has 2 or more substrates, the true K_M for a given substrate is when all other [S] are at saturation
 - -V_{max} is that observed when <u>all substrates</u> are at sat'n concn
- (d) Values for K_M vary greatly from E to E
 - -generally range 10⁻⁸ to 1.0 M
 - -large K_{M} : means that one half of V_{max} is achieved at a relatively large S concn
 - -small K_M: means that 1/2 of V_{max} occurs at relatively low S concn

(e) K_M is **not** an equilibrium constant, but rather a complex constant, composed of various rate constants $K_M = (k_{-1} + k_2)/k_1$ for simple reaction

$$E_f + S \stackrel{k_1}{\Longrightarrow} ES \stackrel{k_2}{\Longrightarrow} E_f + P$$

(f) K_M is **not** a dissociation constant of the ES complex

Numerical values of K_M

- (a) K_M relates reaction velocity to [S] and indicates the approximate level of the intracellular [S]
 - -unlikely that intracellular [S] would be significantly higher or lower than the K_M
- (b) K_M is a **characteristic constant** for a given E under defined conditions
 - -useful to help identify an enzyme
- (c) K_M is useful for comparing the activity of different E and for Lehninger Principles of Biochemistry, Sixth Edition 2013 W. H. Freeman and Company comparing the "suitability" of alternate substrates for the same E
 - -a substrate with a lower K_M is a better substrate
 - (d) best S of an E is one which leads to the **highest V**_{max} and the lowest K_M -a substrate which yields the highest V_{max}/K_M ratio

TABLE 6-6 K_m for Some Enzymes and Substrates

Enzyme	Substrate	К _m (m м)
Hexokinase (brain)	ATP	0.4
	D-Glucose	0.05
	D-Fructose	1.5
Carbonic anhydrase	HCO ₃	26
Chymotrypsin	Glycyltyrosinylglycine	108
	N-Benzoyltyrosinamide	2.5
eta-Galactosidase	D-Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

- (e) Knowing the K_M value permits adjustment of assay conditions, one can vary [S] according to the needs of assay
 - -can then measure total [E] or [S]
- (f) K_M values useful in evaluating the relative roles of forward and reverse reactions in metabolism

6. Specificity Constant (SpC)

- recall: (TN or k_{cat}) is the maximum number of moles of substrate that are converted to product each second per mole of enzyme
 - - k_{cat} is a measure of how rapidly an enzyme can operate once the active site is filled • $k_{cat} = V_{max}/[E]$
- -under physiological conditions, enzymes **do not operate** at saturating S conditions -usually the ratio of $[S]:K_M$ is in the range of 0.01 to 1.0.
 - -previously determined that at low [S] then:

$$v_o = V_{max}[S]/K_M$$

- the number of moles of S converted to P per second per mole of enzyme = $(V_{max}[S]/K_M)/[E] = (k_{cat}/K_M)[S]$
- -the ratio k_{cat}/K_M is therefore a measure of **how rapidly an enzyme can work at low [S]**-known as the "**specificity constant**" (SpC)

-k_{cat}/K_M compares the relative abilities of different compounds to serve as a substrate

for a given enzyme

- SpC: compares the rate of an enzyme-catalyzed reaction with the rate of random diffusion of the enzyme and substrate
- -if every collision between a protein and a <u>small molecule</u> resulted in a reaction, the max possible value of the second-order rate constant would be 10⁸ to 10⁹ M⁻¹s⁻¹

TABLE 8.7 Substrate preferences of chymotrypsin

Amino acid in ester	Amino acid side chain	$k_{ m cat}/K_{ m M}({ m s}^{-1}{ m M}^{-1})$
Glycine	—Н	1.3×10^{-1}
Valine	CH ₃ -CH CH ₃	2.0
Norvaline	-CH ₂ CH ₂ CH ₃	3.6×10^{2}
Norleucine	-CH ₂ CH ₂ CH ₂ CH ₃	3.0×10^{3}
Phenylalanine	$-CH_2$	1.0×10^{5}

Source: After A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman and Company, 1999), Table 7.3.

TABLE 6-8 Enzymes for Which k_{cat}/K_{m} Is Close to the Diffusion-Controlled Limit (10⁸ to 10⁹ m⁻¹s⁻¹)

Enzyme	Substrate	κ _{cat} (s ⁻¹)	К _m (м)	K_{cat}/K_{m} ($M^{-1}S^{-1}$)
Acetylcholinesterase	Acetylcholine	1.4 × 10⁴	9 × 10 ⁻⁵	1.6 × 10 ⁸
Carbonic anhydrase	CO ₂ HCO ⁻ 3	1 × 10 ⁶ 4 × 10 ⁵	1.2×10^{-2} 2.6×10^{-2}	8.3×10^{7} 1.5×10^{7}
Catalase	H ₂ O ₂	4 × 10 ⁷	1.1 × 10°	4×10^7
Crotonase	Crotonyl-CoA	5.7×10^3	2 × 10 ⁻⁵	2.8×10^8
Fumarase	Fumarate	8 × 10 ²	5 × 10 ⁻⁶	1.6×10^{8}
	Malate	9 × 10 ²	2.5 × 10⁻⁵	3.6×10^{7}
β -Lactamase	Benzylpenicillin	2.0×10^{3}	2×10^{-5}	1×10^8

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

Table 6-8

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

- -some enzymes have achieved an **astonishing state** of perfection!
- -only way to increase rate is to (i) generate substrate at the active site or (ii) decrease the size of the E moiety

- -first possibility arises when two or more E are combined in a multi-enzyme complex
- -the product of one reaction can then be released close to the active site of the next E

-second possibility is difficult since the sizes of E are limited by the need for tertiary structure to create the proper active site geometry

13

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

-large sizes of E are dictated by the need for secondary binding sites for effector molecules that regulate enzymatic activity

Phosphoserine residues

S5:F7-1

Human ribonuclease

Phosphorylase q (in R state)

Appendix

Michaelis-Menten Equation (Integrated Form)

Comment: You may wish to use the integrated Michaelis-Menten equation to determine the precise changes in [S] during an enzyme-catalyzed reaction or to determine how long it will take to form a certain amount of product, etc. This derivation is for your reading pleasure only and is meant to be background information to support some questions found in Problem Set#2 (e.g., Question #8).

(1) Derivation

- -for calculations involving changes as a function of reaction time, the integrated form of the Michaelis-Menten equation must be used
- -the Michaelis-Menten equation is a differential equation since velocity is the rate of change of either substrate consumption or product formation

thus,
$$v = -d[S]/dt = d[P]/dt$$

the M-M equation can be written as: $-d[S]/dt = V_{max}[S]/(K_M + [S])$ [M-1]

separating variables:
$$-V_{max}dt = (K_M/[S] + 1)d[S]$$
 [M-2]

equation can be integrated between an initial time (t₀) and a final time (t) for which the corresponding substrate concns are [S]₀ and [S]_t, respectively.

$$-1\int_{t_0}^t V_{\max} dt = \int_{t_0}^t (\frac{K_M}{[S]} + 1)d[S] \quad [M-3]$$

$$V_{max}(t-t_0) = K_M ln([S]_0/[S]_t) + ([S]_0 - [S]_t)$$
 [M-4]

If we let $t_0 = 0$ and $y = ([S]_0 - [S]_t)$ and substituting for $[S]_t$

where
$$[S]_t = [S]_0 - y$$

then,
$$V_{max}t = K_M \ln([S]_0/[S]_0 - y) + y$$
 [M-5]

converting to ordinary logs:
$$V_{max}(t) = 2.303 \text{ K}_{M} \log([S]_{0}/([S]_{0}-y)) + y \text{ [M-6]}$$

rearranging yields:
$$V_{\text{max}} = 2.303 \text{ K}_{\text{M}} (1/t) \log([S]_0/([S]_0-y)) + (y/t) [M-7]$$

$$2.303 \text{ K}_{\text{M}} (1/t) \log([S]_0/([S]_0-y)) = V_{\text{max}} - (y/t) [M-8]$$

$$2.303/t \log([S]_0/([S]_0-y)) = -1/K_M (y/t) + V_{max}/K_M [M-9]$$

(2) Simplified forms

- -Equation M-9 (above) reduces to simpler forms when the substrate concn is either very large or small compared to $K_{\rm M}$ and y
- -if $[S]_0 >> K_M$ and much larger than the change in substrate concn (y) then equation M-9 reduces to:

$$2.303/t \log([S]_0/[S]_0) = -1/K_M (y/t) + V_{max}/K_M$$
 [M-10]

that is, $y/t = V_{max}$ [M-11]

but, y/t is the change in [S] per unit time, i.e., the velocity of the reaction

$$v = y/t = V_{max}$$
 [M-12]

likewise, if $[S]_0$ (and hence y) is $\ll K_M$ then equation M-9 reduces to:

$$2.303/t \log([S]_0/([S]_0-y)) = V_{max}/K_M [M-13]$$

which describes a first order reaction (initial part of v versus [S] curve)

 $V_{\text{max}}/K_{\text{M}}$ is the first order rate constant (k) and thus equation M-13 can be rewritten:

$$2.303 \log([S]_0/[S]_t) = kt [M-14]$$

$$log([S]_0/[S]_t) = kt/2.303$$
 [M-15]

$$log[S]_0 - log[S]_t = kt/2.303$$
 [M-16]

$$-\log[S]_t = kt/2.303 - \log[S]_0$$
 [M-17]

$$log[S]_t = -kt/2.303 + log[S]_0$$
 [M-18]

$$[S]_t = [S]_0 e^{-kt}$$
 [M-19]

the half-life for this first order reaction: at $t_{1/2}$ then $[S]_t/[S]_0 = 0.5$ so: $[S]_t/[S]_0 = e^{-kt}$ [M-20]

$$0.5 = e^{-kt}$$
 [M-21]

$$ln(0.5) = -kt_{1/2}$$
 [M-22]

$$t_{1/2} = 0.693/k = 0.693K_M/V_{max}$$
 [M-23]