Les reproducing kernel Hilbert spaces

> Matthieu Denis

Les reproducing kernel Hilbert spaces

Présentation du TER, supervisé par Christophe Giraud

Matthieu Denis

Université Paris Saclay

25 juin 2021

Contexte

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

- X un ensemble quelconque
- H un espace de Hilbert de fonctions réelles sur X
- $\forall x \in X$, L_x une forme linéaire sur H:

$$L_x: f \mapsto f(x) \ \forall f \in H$$

Définitions

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Définition: RKHS

 L_{\times} est bornée sur H, i.e :

$$\forall x \in X, \ \exists M_x > 0, \ \forall f \in H \ \text{t.q} \ |L_x(f)| := |f(x)| \le M_x ||f||_H$$

Définitions

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Définition : Noyau / Kernel

Une fonction $k: X \times X \to \mathbb{R}$ est un noyau si

$$\exists \phi: X \to H \text{ t.q } k(x,y) = \langle \phi(x), \phi(y) \rangle_H \ \forall x,y \in X$$

Définitions

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Définition : Noyau / Kernel

Une fonction $k: X \times X \to \mathbb{R}$ est un noyau si

$$\exists \phi: X \to H \text{ t.q } k(x,y) = \langle \phi(x), \phi(y) \rangle_H \ \forall x, y \in X$$

Définition : Noyau Reproduisant / Reproducing Kernel

Une fonction $k: X \times X \to \mathbb{R}$ est un noyau reproduisant de H si $\forall x \in X, f \in H$:

- $k(\cdot,x) \in H$
- $f(x) = \langle f, k(\cdot, x) \rangle_H$

Noyaux classiques

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

•
$$k(x,y) := \langle x,y \rangle$$

•
$$k(x,y) := (\alpha \langle x,y \rangle + 1)^d, \ \alpha \in \mathbb{R}, \ d \in \mathbb{N}$$

•
$$k(x,y) := \exp(||x-y||^2/(2\sigma^2)), \ \sigma > 0$$

•
$$k(x,y) := \exp(||x-y||/\sigma), \ \sigma > 0$$

Résultats importants

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Propriété:

 ${\sf Noyau\ reproduisant} \Longrightarrow {\sf Noyau}.$

Résultats importants

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Propriété:

 ${\sf Noyau\ reproduisant} \Longrightarrow {\sf Noyau}.$

Théorème:

H est un RKHS $\iff \exists !$ noyau reproduisant de H.

Résultats importants

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Propriété:

Noyau reproduisant \Longrightarrow Noyau.

Théorème:

H est un RKHS $\iff \exists !$ noyau reproduisant de H.

Théorème de Moore-Aronszaj :

Soit k un noyau. Alors $\exists !$ espace de Hilbert H de fonctions sur X pour lequel k est un noyau reproduisant.

Application au ML : Le Representer Theorem

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Soit k un kernel sur X et soit H son RKHS associée. Posons $x_1, \dots, x_n \in X$ notre training sample. Regardons le problème d'optimisation suivant :

$$\min_{f\in H} J(f) := E(f(x_1), \cdots, f(x_n)) + P(||f||_H^2)$$

Où P est une fonction croissante.

Alors si ce problème d'optimisation a (au-moins) une solution, il y a (au-moins) une solution de la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

De plus, si *P* est strictement croissante, alors toute solution a cette forme.

Kernel Ridge Regression

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Ici, $J(f) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{H_i}^2$ prenons k un kernel sur X. Le representer theorem nous dit que la solution de ce problème (sous couvert d'existence) est nécessairement de la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

Kernel Ridge Regression

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Ici, $J(f) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{H_i}^2$ prenons k un kernel sur X. Le representer theorem nous dit que la solution de ce problème (sous couvert d'existence) est nécessairement de la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

$$\min_{f \in H} J(f) \coloneqq \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_H^2$$

$$\iff \min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \cdot k(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j)$$

$$\iff \min_{\alpha \in \mathbb{R}^n} ||y - K\alpha||_2^2 + \lambda \alpha^T K \alpha \text{ avec } K_{ij} \coloneqq k(x_i, x_j)$$

SVM

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Dans le cadre d'une SVM, $J(f) := \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i f(x_i)) + \frac{\lambda}{2} ||f||_H^2$. Prenons un kernel k sur X. Encore une fois, le representer theorem nous dit que la seule solution (si elle existe) est sous la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

SVM

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Dans le cadre d'une SVM, $J(f) := \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i f(x_i)) + \frac{\lambda}{2} ||f||_H^2$. Prenons un kernel k sur X. Encore une fois, le representer theorem nous dit que la seule solution (si elle existe) est sous la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \max(0, 1 - y_i \sum_{j=1}^n \alpha_j \cdot k(x_i, x_j)) + \frac{\lambda}{2} \sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i, x_j)$$

SVM

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Dans le cadre d'une SVM, $J(f) := \frac{1}{n} \sum_{i=1}^{n} max(0, 1 - y_i f(x_i)) + \frac{\lambda}{2} ||f||_{H}^{2}$. Prenons un kernel k sur X. Encore une fois, le representer theorem nous dit que la seule solution (si elle existe) est sous la forme

$$f = \sum_{i=1}^{n} \alpha_i \cdot k(\cdot, x_i)$$

$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \max(0, 1 - y_i \sum_{j=1}^n \alpha_j \cdot k(x_i, x_j)) + \frac{\lambda}{2} \sum_{i=1}^n \sum_{j=1}^n a_i a_j K(x_i, x_j)$$

On peut montrer que le dual de ce problème est :

$$\min_{\gamma \in \mathbb{R}^n} - \sum_{i=1}^n \gamma_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \gamma_i \gamma_j y_i y_j k(x_i, x_j) \text{ t.q } 0 \leq \gamma_i \leq \frac{1}{n\lambda}, \ \alpha_i = y_i \gamma_i \forall i$$

Visualisation

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

 $\Phi: (\mathbb{R}^m \times \mathbb{R}^{m \times m} \times \mathbb{R}^m) \times \mathbb{R} \to \mathbb{R}$ combinaison d'applications linéaires, sans non linéarités intermédiaires :

$$\Phi((\beta, A, u), x) := \frac{1}{m^{\alpha}} \beta^{T} \left(\frac{1}{m^{\gamma}} A \right) ux$$

Les reproducing kernel Hilbert spaces

> Matthieu Denis

Denis

RKHS

 $\Phi: (\mathbb{R}^m \times \mathbb{R}^{m \times m} \times \mathbb{R}^m) \times \mathbb{R} \to \mathbb{R}$ combinaison d'applications linéaires, sans non linéarités intermédiaires :

$$\Phi((\beta,A,u),x) := \frac{1}{m^{\alpha}}\beta^{T}\left(\frac{1}{m^{\gamma}}A\right)ux$$

On initialise $\theta^0 := (\beta^0, A^0, u^0)$ de manière standarde : $\forall i, j \in \{1, \dots, m\}, \ u_i^0, A_{ij}^0, \beta_i^0 \sim_{iid} N(0, 1)$

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Posons une fonction de perte $F: \mathbb{R} \to \mathbb{R}$ t.g $F'(0) \neq 0$. Lorsque $\alpha < 1$, on a pour *m* grand :

$$||\nabla_{\beta/u/A}F(\Phi(\theta^{t+1},x)) - \nabla_{\beta/u/A}F(\Phi(\theta^t,x))|| \ll ||\nabla_{\beta/u/A}F(\Phi(\theta^t,x))||$$

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Posons une fonction de perte $F: \mathbb{R} \to \mathbb{R}$ t.q $F'(0) \neq 0$. Lorsque $\alpha < 1$, on a pour m grand :

$$||\nabla_{\beta/u/A}F(\Phi(\theta^{t+1},x)) - \nabla_{\beta/u/A}F(\Phi(\theta^{t},x))|| \ll ||\nabla_{\beta/u/A}F(\Phi(\theta^{t},x))||$$

$$F(\Phi(\theta^T, x)) = F(\Phi(\theta^0, x)) + \langle \theta^T - \theta^0, \nabla_{\theta} F(\Phi(\theta^0, x)) \rangle + \mathcal{O}(m^{-1/2})$$

Les reproducing kernel Hilbert spaces

> Matthieu Denis

RKHS

Posons une fonction de perte $F: \mathbb{R} \to \mathbb{R}$ t.q $F'(0) \neq 0$. Lorsque $\alpha < 1$, on a pour m grand :

$$||\nabla_{\beta/u/A}F(\Phi(\theta^{t+1},x)) - \nabla_{\beta/u/A}F(\Phi(\theta^{t},x))|| \ll ||\nabla_{\beta/u/A}F(\Phi(\theta^{t},x))||$$

$$F(\Phi(\theta^T, x)) = F(\Phi(\theta^0, x)) + \langle \theta^T - \theta^0, \nabla_{\theta} F(\Phi(\theta^0, x)) \rangle + \mathcal{O}(m^{-1/2})$$

On apprend donc un modèle linéaire relatif aux features $\nabla_{\theta} F(\Phi(\theta^0, x))$, c'est-à-dire qu'après la transformation $x \to \nabla_{\theta} F(\Phi(\theta^0, x))$, on est linéaire. On fait donc face à un RKHS de noyau (par définition)

$$k(x,y) = \langle \nabla_{\theta} F(\Phi(\theta^{0},x)), \nabla_{\theta} F(\Phi(\theta^{0},y)) \rangle \xrightarrow{LGN} \mathbb{E}[\langle \nabla_{\theta} F(\Phi(\theta^{0},x)), \nabla_{\theta} F(\Phi(\theta^{0},y)) \rangle]$$