

W	zancianie vzov podestatienia Liadomo, že $\varphi(\begin{bmatrix} 2 \\ 1 \end{bmatrix}) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ i $\varphi(\begin{bmatrix} 3 \\ 1 \end{bmatrix}) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
	$A_{=}(v_{1},v_{2})=(\begin{bmatrix}2\\1\end{bmatrix},\begin{bmatrix}3\\1\end{bmatrix})$
	$\det M_{\mathcal{E}_{2}}(A) = 2 3 = -1 \neq 0 \text{org.} A \text{ jet bara} \mathbb{R}^{2}$
	2 triordzenia (1) na podstavie veletovós buzy można
	uzyskoù petniz informacji o prolesztatarniu
	$\varphi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \varphi\left(\begin{array}{c} x \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + y \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = x \varphi\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + y \varphi\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$
	trade una reason $\varphi([\cdot])$ is $\varphi([\cdot])$
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0, 0, \rightarrow \varphi\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \varphi\left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}\right) - \varphi\left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \end{bmatrix}$
	$\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \psi\left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\right) = \psi\left(\begin{bmatrix} 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = 2\psi\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + \psi\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3 \\ 1 \end{bmatrix} - 2\begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$
	$\left(\left[\begin{array}{c c} x \end{array} \right] \right)$
	$\varphi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x \cdot \begin{bmatrix} -1 \\ 0 \end{bmatrix} + y \cdot \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x + 5y \\ y \end{bmatrix}$
	Uspótrzedne wynikovego watora saz kombinacjami liniovymi
	uspólne duych veletora vejsadvego
/4	decirez przelsz talienia liniovego φ: V - W
	$A = (v_1 \dots v_n) - baza V$ $B = (v_1 \dots v_n) - baza W$
	kaidy veltor $φ(υ_i)$ možna υχνονίδ jaleo kombinacją liniovez veltorδυ z bazy B $φ(υ_i) = a_{11} υ_1 + a_{21} υ_2 + + a_{m_i} υ_m$
	$ \varphi(\upsilon_n) = a_{n_1} \upsilon_1 + a_{n_2} \upsilon_2 + a_{n_{lm}} \upsilon_m $
	$\mathcal{M}_{B}^{A}(\varphi) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \qquad \begin{array}{c} bacach & A & B \\ \end{array}$
	Kolumnu - Uspor Vrządne velstora p(Vi) v busie B
	Dla tego sameyo przeksztatecnia można zyznaczyć różne maciere
	zależnie od ugbon buzy, zausze macierze bejda tych samych zymioróu (dim W dim V)
	Znajoze Lizór, najprościej ugznaczyć maciera z bazy kanonicznej.

