Referencia - ICPC

Mathgic

Noviembre 2024

Índice

	0.1.	OJO	4
1.	Est	ructuras básicas	4
	1.1.	Min stack	4
	1.2.	Min queue	4
	1.3.	Heap actualizable	4
2.	Ord	lenamiento	6
		Merge sort	6
	7. AT		,
3.		temáticas	6
	3.1.	Criba de Eratóstenes	6
		3.1.2. Criba sobre un rango	6
		3.1.3. Criba segmentada	7
		3.1.4. Criba lineal	7
	3.2.	Algoritmo extendido de Euclides	8
	3.3.		8
	3.4.		Ĝ
		3.4.1. Función Phi de Euler	ç
		3.4.2. Función sigma	ç
		3.4.3. Función de Moebius	10
	3.5.	Exponenciación binaria	10
	3.6.	Transformada de Fourier	11
		3.6.1. FFT	11
		3.6.2. Multiplicar polinomios	11
4.	Spa	rse table	11
5.	Fen	wick Tree	12
	Seg	ment Tree	13
	Seg : 6.1.	ment Tree Actualizaciones puntuales	13 13
	Seg : 6.1.	ment Tree	13
6.	Seg: 6.1. 6.2.	ment Tree Actualizaciones puntuales	13 13
6.	Segr 6.1. 6.2.	ment Tree Actualizaciones puntuales	13 13 14
6. 7.	Seg: 6.1. 6.2. Sqr: 7.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14
6. 7.	Segr 6.1. 6.2.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14 14 15
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U Ifos	13 13 14 14 14 15
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO Caminos mínimos	13 13 14 14 14 15 16
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14 14 15 16 16
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm	13 13 14 14 15 16 16 16
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles	13 14 14 14 15 16 16 16 17
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST	13 14 14 14 15 16 16 17 17 17
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA	13 13 14 14 14 15 16 16 17 17 17 18
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack	13 13 14 14 15 16 16 16 17 17 17 17 18 19
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack Máximo flujo	13 13 14 14 15 16 16 16 17 17 17 17 18 19 20
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	Ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack Máximo flujo 9.3.1. Algunos problemas de flujos	13 13 14 14 15 16 16 16 17 17 17 17 18 19 20 20
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo 9.3.1. Algunos problemas de flujos 9.3.2. Edmonds-Karp	13 14 14 14 15 16 16 16 17 17 17 17 17 18 19 20 20 20
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo 9.3.1. Algunos problemas de flujos 9.3.2. Edmonds-Karp 9.3.3. Dinic	13 13 14 14 15 16 16 17 17 17 17 17 18 19 20 20 23
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO U fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack Máximo flujo 9.3.1 Algunos problemas de flujos 9.3.2 Edmonds-Karp 9.3.3 Dinic SCC	13 13 14 14 15 16 16 16 17 17 17 17 18 19 20 20 23 24
6.7.8.	Seg: 6.1. 6.2. Sqr: 7.1. DSU Gra 9.1.	Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo 9.3.1. Algunos problemas de flujos 9.3.2. Edmonds-Karp 9.3.3. Dinic	13 13 14 14 15 16 16 17 17 17 17 17 18 19 20 20 23

10.Treap 2	6	
11.Strings		
11.1. KMP	7	
11.1.1. Autómata de KMP	8	
11.2. Suffix array		
11.2.1. Construcción		
11.2.2. Prefijo común más largo		
11.3. Aho-Corasick		
11.4. Suffix tree	ŀ	
12.Geometría	9	
12.1. Convex hull	3	
13.Utilidades	9	
13.1. Plantilla tree	2	
13.2. Números aleatorios		
13.3. Algunas formulas		
13.3. Algunas formulas	.4	
14.Bitmask 3	. 4	
14.1. Útiles		
14.2. Iterar		
14.3. Gospers' Hack	Ü	
15.Máximo de funciones	F	
15.1. Li-Chao Tree		

0.1. OJO

- a) Se usan macros (MAXN, LOGN, etc) con arreglos estáticos para más comodidad, pero puede causar RTE o MLE cuando los valores son grandes. Pensar en usar vector<> (STL) cuando sea conveniente.
- b) Temario (no oficial): https://youkn0wwho.academy/topic-list.
- c) agréguenle errores/consejos que hay que tener en cuenta sobre las implementaciones y no estemos mucho tiempo tratando de encontrar el error.

1. Estructuras básicas

1.1. Min stack

```
template<typename T> struct min_stack{
        stack<pair<T, T>> st;
2
        min_stack(){}
        min_stack(const T &MAXVAL){init(MAXVAL);}
4
        void init(const T &MAXVAL){st.push(make_pair(MAXVAL, MAXVAL));}
        void push(const T &v){st.push(make_pair(v, min(v, st.top().second)));}
6
        T top(){return st.top().first;}
        void pop(){if(st.size() > 1)st.pop();}
8
        T minV(){return st.top().second;}
        int size(){return st.size() - 1;}
10
        bool empty(){return size() == 0;}
11
    };
12
```

1.2. Min queue

```
template<typename T> struct min_queue{
        min_queue(const T &MAXVAL){ p_in.init(MAXVAL); p_out.init(MAXVAL);}
2
        void push(const T &v){p_in.push(v);}
3
        T front(){transfer(); return p_out.top();}
4
        void pop(){transfer(); p_out.pop();}
5
        int size(){return p_in.size() + p_out.size();}
6
        T minV() {return min(p_in.minV(), p_out.minV());}
        bool empty(){ return size() == 0;}
        void transfer(){
9
             if(p_out.size()) return;
10
            while(p_in.size()){
11
                 p_out.push(p_in.top());
                 p_in.pop();
13
             }
15
16
        min_stack<T> p_in, p_out;
    };
17
```

1.3. Heap actualizable

```
template<class TPriority, class TKey> class UpdatableHeap{
    public:
2
        UpdatableHeap(){
3
            TPriority a;
            TKey b;
5
            nodes.clear();
6
            nodes.push_back( make_pair(a, b) );
        }
        pair<TPriority, TKey> top() {return nodes[1];}
        void pop(){
10
             if(nodes.size() == 1) return;
11
```

```
TKey k = nodes[1].second;
12
             swap_nodes(1, nodes.size() - 1);
13
             nodes.pop back();
14
             position.erase(k);
15
             heapify(1);
16
         void insert_or_update(const TPriority &p, const TKey &k){
18
             int pos;
19
             if(is_inserted(k)){
20
                 pos = position[k];
21
                 nodes[pos].first += p;
22
             } else {
23
                 position[k] = pos = nodes.size();
24
                 nodes.push_back( make_pair(p, k) );
26
             heapify(pos);
         }
28
         bool is_inserted(const TKey &k) {
29
             return position.count(k);
30
         }
31
         int get_size() {
32
             return (int)nodes.size() - 1;
33
34
         void erase(const TKey &k){
35
             if(!is_inserted(k)) return;
             int pos = position[k];
37
             swap_nodes(pos, nodes.size() - 1);
             nodes.pop_back();
39
             position.erase(k);
40
             heapify(pos);
41
         }
42
    private:
43
         vector<pair<TPriority, TKey>> nodes;
44
        map<TKey, int> position;
45
         void heapify(int pos){
46
             if(pos >= nodes.size()) return;
47
             while (1 < pos \&\& nodes[pos / 2] \le nodes[pos])
48
                 swap_nodes(pos / 2, pos);
49
                 pos /= 2;
50
             }
51
             int 1 = pos * 2, r = pos * 2 + 1, maxi = pos;
52
             if(1 < nodes.size() && nodes[1] > nodes[maxi]) maxi = 1;
             if(r < nodes.size() && nodes[r] > nodes[maxi]) maxi = r;
54
             if(maxi != pos){
                 swap_nodes(pos, maxi);
56
                 heapify(maxi);
57
             }
58
         }
         void swap_nodes(int a, int b){
60
             position[ nodes[a].second ] = b;
61
             position[ nodes[b].second ] = a;
62
             swap(nodes[a], nodes[b]);
63
         }
64
    };
65
```

2. Ordenamiento

2.1. Merge sort

Complejidad: Tiempo $O(n \log n)$ - Memoria extra O(n).

```
void merge_sort(int arr[], int ini, int fin){
        if(ini == fin) return;
2
        int mitad = (ini + fin) / 2;
3
        merge_sort(arr, ini, mitad);
        merge_sort(arr, mitad + 1, fin);
5
6
        int tam1 = mitad - ini + 1, tam2 = fin - mitad;
7
        int mitad1[tam1], mitad2[tam2];
8
        for(int i = ini, idx = 0; i <= mitad; ++i, idx++)</pre>
9
             mitad1[idx] = arr[i];
10
        for(int i = mitad + 1, idx = 0; i \le fin; ++i, idx++)
11
            mitad2[idx] = arr[i];
12
13
        for(int i = ini, idx1 = 0, idx2 = 0; i \le fin; ++i){
14
             if(idx1 < tam1 && idx2 < tam2){ /// si quedan elementos en ambas mitades
15
                 arr[i] = mitad1[idx1] < mitad2[idx2] ? mitad1[idx1++] : mitad2[idx2++];</pre>
16
             } else { /// si solo hay elementos en mitad1
17
                 arr[i] = idx1 < tam1 ? mitad1[idx1++] : mitad2[idx2++];
18
             }
19
        }
20
    }
21
```

3. Matemáticas

3.1. Criba de Eratóstenes

3.1.1. Criba

Complejidad: Tiempo $O(n \log \log n)$ - Memoria extra O(n). Calcula los primos menores o iguales a n.

```
void criba(int n, vector<int> &primos){
        primos.clear();
2
         if(n < 2) return;</pre>
3
         vector<bool> no_primo(n + 1);
4
         no_primo[0] = no_primo[1] = true;
5
         for(long long i = 3; i * i <= n; i += 2){
6
             if(no_primo[i]) continue;
7
             for(long long j = i * i; j \le n; j += 2 * i)
                 no_primo[j] = true;
9
10
        primos.push_back(2);
11
         for(int i = 3; i \le n; i += 2){
12
             if(!no_primo[i])
13
                 primos.push_back(i);
         }
15
    }
```

3.1.2. Criba sobre un rango

Complejidad: Tiempo $O(\sqrt{b} \log \log \sqrt{b} + (b-a) \log \log (b-a))$ - Memoria extra $O(\sqrt{b} + b - a)$. Calcula los primos en el intervalo [a, b].

```
void criba_sobre_rango(long long a, long long b, vector<long long> &primos){
    a = max(a, 011);
    b = max(b, 011);
```

```
long long tam = b - a + 1;
4
         vector<int> primos_raiz;
5
         criba(sqrt(b) + 1, primos_raiz);
6
         bool no_primo[tam] = {};
7
        primos.clear();
8
         for(long long p : primos_raiz){
             long long ini = p * max(p, (a + p - 1) / p);
10
             for(long long m = ini; m <= b; m += p){
11
                 no_primo[m - a] = true;
12
             }
13
         }
14
         for(long long i = 0; i < tam; ++i){
15
             if(no_primo[i] || i + a < 2) continue;</pre>
16
             primos.push_back(i + a);
17
         }
18
    }
19
```

3.1.3. Criba segmentada

Complejidad: Tiempo $O(\sqrt{n}\log\log\sqrt{n} + n\log\log n)$ - Memoria extra $O(\sqrt{n} + S)$. Cuenta la cantidad de primos menores o iguales a n.

```
int cuenta_primos(int n){
         if(n < 2) return 0;
2
         const int S = sqrt(n);
3
         vector<int> primos_raiz;
4
         criba(sqrt(n) + 1, primos_raiz);
5
         int ans = 0;
6
         vector<char> no_primo(S + 1);
         for(int ini = 0; ini <= n; ini += S){</pre>
             fill(no_primo.begin(), no_primo.end(), false);
9
             for(int p : primos_raiz){
10
                  int m = p * max(p, (ini + p - 1) / p) - ini;
11
                  for(; m <= S; m += p) no_primo[m] = true;</pre>
13
             for(int i = 0; i < S && i + ini <= n; ++i)</pre>
                  if(!no_primo[i] && 1 < i + ini) ans++;</pre>
15
         }
16
         return ans;
17
    }
```

3.1.4. Criba lineal

Complejidad: Tiempo O(n) - Memoria extra O(n). Calcula los primos menores o iguales a n y el menor primo que divide a cada entero en [2, n]. ADVERTENCIA: es O(n) pero tiene una constante grande.

```
void criba_lineal(int n, vector<int> &primos){
         primos.clear();
2
         if(n < 2) return;</pre>
3
         vector<int> lp(n + 1);
         for(long long i = 2; i <= n; ++i){
             if(!lp[i]){
6
                 lp[i] = i;
                 primos.push_back(i);
             for(int j = 0; i * (long long)primos[j] <= n; ++j){</pre>
10
                  lp[i * primos[j]] = primos[j];
11
                  if(primos[j] == lp[i])
12
                      break;
13
             }
14
```

```
15 }
16 }
```

3.2. Algoritmo extendido de Euclides

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación $ax + by = \gcd(a,b)$.

```
int gcd_extendido(int a, int b, int &x, int &y){
         if(!b){
2
             x = 1;
3
             y = 0;
4
             return a;
5
         }
6
         int x1, y1;
7
         int g = gcd_extendido(b, a % b, x1, y1);
        x = y1;
9
         y = x1 - y1 * (a / b);
10
        return g;
11
    }
12
```

3.3. Solución de ecuaciones diofánticas lineales

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación ax + by = c o determina si no existe solución.

```
bool encuentra_solucion(int a, int b, int c, int &x, int &y, int &g){
         g = gcd_extendido(abs(a), abs(b), x, y);
2
         if(c % g) return false;
3
        x *= c / g;
         y *= c / g;
5
         if(a < 0) x = -x;
6
         if(b < 0) y = -y;
7
        return true;
    }
9
       Cambia a la siguiente (anterior) solución |cnt| veces. g := gcd(a, b).
    void cambia_solucion(int &x, int &y, int a, int b, int cnt, int g = 1) {
         x += cnt * b / g;
2
         y -= cnt * a / g;
3
    }
4
       Cuenta la cantidad de soluciones x, y \text{ con } x \in [minx, maxx] \ y \ y \in [miny, maxy].
    int cuenta_soluciones(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
1
2
         int x, y, g;
         if(!encuentra_solucion(a, b, c, x, y, g)) return 0;
3
         /// ax + by = c ssi (a/q)x + (b/q)y = c/q
4
         /// Dividimos entre g para simplificar y no dividir a cada rato
5
        a /= g;
6
        b /= g;
         /// Signos de a, b nos sirven para pasar a la
8
         /// siguiente (anterior) solucion
         int sign_a = a > 0 ? +1 : -1;
10
         int sign_b = b > 0 ? +1 : -1;
11
         /// pasa a la minima solucion tal que minx \le x
12
         cambia_solucion(x, y, a, b, (minx - x) / b);
13
         /// si \ x < minx, pasa a la siquiente para que minx <= x
14
         if(x < minx) cambia_solucion(x, y, a, b, sign_b);</pre>
15
         if (x > maxx) return 0; /// si \ x > maxx, entonces no hay x solution tal que x in [minx, maxx]
16
         int lx1 = x;
17
```

```
/// pasa a la maxima solucion tal que x <= maxx
18
        cambia_solucion(x, y, a, b, (maxx - x) / b);
19
        if(x > maxx) cambia_solucion(x, y, a, b, -sign_b); /// si x > maxx, pasa a la solucion anterior
20
        int rx1 = x;
21
        /// hace todo lo anterior pero con y
22
        cambia_solucion(x, y, a, b, -(miny - y) / a);
        if(y < miny) cambia_solucion(x, y, a, b, -sign_a);</pre>
24
        if(y > maxy) return 0;
25
        int 1x2 = x;
26
        cambia_solucion(x, y, a, b, -(maxy - y) / a);
        if(y > maxy) cambia_solucion(x, y, a, b, sign_a);
28
        int rx2 = x;
29
        /// como al encontrar las x tomando y como criterio no nos asegura
30
        /// que esten ordenadas, entonces las ordenamos
31
        if(lx2 > rx2) swap(lx2, rx2);
32
        /// obtenemos la interseccion de los intervalos
33
        int lx = max(lx1, lx2);
34
        int rx = min(rx1, rx2);
35
        if(lx > rx) return 0; /// no existen soluciones, interseccion vacia
36
        /// las soluciones (por x) van de b en b (b/q en b/q pero dividimos al principio)
37
        return (rx - lx) / abs(b) + 1;
38
    }
39
```

3.4. Funciones multiplicativas

3.4.1. Función Phi de Euler

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de coprimos con n menores a n.

```
int phi(int n){
1
         if(n <= 1) return 1;
2
         if(!dp[n]){
3
             int pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                 pot *= p;
6
                 n0 /= p;
8
             pot /= p;
9
             dp[n] = pot * (p - 1) * phi(n0);
10
         }
        return dp[n];
12
```

3.4.2. Función sigma

Sigma 0 (σ_0). Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de divisores de n.

```
long long sigma0(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long exp = 0, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                  exp++;
6
                  n0 /= p;
             dp[n] = (exp + 1) * sigma0(n0);
9
10
         return dp[n];
11
    |}
12
```

Sigma 1 (σ_1) . Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Calcula la suma de los divisores de n.

```
long long sigma1(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                  pot *= p;
                  n0 /= p;
             }
             pot *= p;
9
             dp[n] = (pot - 1) / (p - 1) * sigma1(n0);
10
11
         return dp[n];
12
    }
13
```

3.4.3. Función de Moebius

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Devuelve 0 si n no es divisible por algún cuadrado. Devuelve 1 o -1 si n es divisible por al menos un cuadrado. Devuelve 1 si n tiene una cantidad par de factores primos. Devuelve -1 si n tiene una cantidad impar de factores primos.

```
int moebius(int n){
         if(n <= 1) return 1;
2
         if(dp[n] == -7){
3
             int exp = 0, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                 exp++;
6
                 n0 /= p;
             }
             dp[n] = (exp > 1 ? 0 : -1 * moebius(n0));
         }
10
        return dp[n];
11
    }
12
```

3.5. Exponenciación binaria

Iterativa. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b){
1
        int ans = 1;
2
        while(b){
3
             if(b \% 2) ans *= a;
             a *= a;
5
             b /= 2;
6
        }
        return ans;
8
   }
9
```

Recursiva. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b){
   if(!b) return 1;
   int tmp = bin_exp(a, b / 2);
   if(b % 2) return tmp * tmp * a;
   return tmp * tmp;
}
```

3.6. Transformada de Fourier

3.6.1. FFT

Complejidad: Tiempo $O(n \log(n))$ - Memoria extra $O(n \log(n))$, donde n es el grado del polinomio P.

```
using comp = complex<double>;
    const double PI = acos(-1);
2
    vector<comp> FFT(vector<comp> &P, bool inversa){
3
        int n = P.size();
5
        if(n == 1) return P;
        vector<comp> Pe, Po;
6
        for(int i = 0; i < n; ++i)
             if(i % 2) Po.push_back(P[i]);
             else Pe.push_back(P[i]);
9
        vector<comp> eval_Pe = FFT(Pe, inversa);
10
        vector<comp> eval_Po = FFT(Po, inversa);
11
        vector<comp> eval(n);
12
        double angulo = 2 * PI / n * (inversa ? -1 : 1);
13
        comp w(1), w_n(cos(angulo), sin(angulo));
14
        for(int i = 0; i < n / 2; ++i){
15
             eval[i] = eval_Pe[i] + w * eval_Po[i];
             eval[i + n / 2] = eval_Pe[i] - w * eval_Po[i];
17
             if(inversa){
                 eval[i] /= 2;
19
                 eval[i + n / 2] /= 2;
20
             }
21
             w = w_n;
        }
23
        return eval;
24
25
```

3.6.2. Multiplicar polinomios

Complejidad: Tiempo $O(n \log(n))$ - Memoria extra $O(n \log(n))$, donde n es el grado máximo polinomio A y B.

```
vector<int> multiplicar(vector<int> A, vector<int> B){
        vector<comp> cA(A.begin(), A.end()), cB(B.begin(), B.end());
2
         int n = 1;
3
         while(n < A.size() + B.size()) n *= 2;</pre>
         cA.resize(n);
5
         cB.resize(n);
6
         vector<comp> val_A = FFT(cA, false);
7
         vector<comp> val_B = FFT(cB, false);
         for(int i = 0; i < n; ++i) val_A[i] *= val_B[i];</pre>
9
         val_A = FFT(val_A, true);
10
         vector<int> res(n);
11
         for(int i = 0; i < n; ++i) res[i] = round(val_A[i].real());</pre>
12
         int carry = 0;
13
         for(int i = 0; i < n; i++){
14
             res[i] += carry;
15
             carry = res[i] / 10;
             res[i] %= 10;
17
         }
18
        return res;
19
    }
20
```

4. Sparse table

Complejidad: Tiempo de precalculo $O(n \log n)$ - Tiempo en responder $O(\log(r-l+1))$ - Tiempo en responder para operaciones idempotentes O(1) - Memoria extra $O(n \log n)$. LOGN es $\lceil \log_2(\texttt{MAXN}) \rceil$. Indexado en 0.

```
struct sparse_table{
1
        int n, NEUTRO;
2
        vector<vector<int>> ST;
3
        vector<int> lg2;
        int f(int a, int b){return a + b;}
5
         sparse_table(int _n, int data[]){
             n = n;
             NEUTRO = 0;
             lg2.resize(n + 1);
9
             lg2[1] = 0;
10
             for(int i = 2; i \le n; ++i) lg2[i] = lg2[i / 2] + 1;
11
             ST.resize(lg2[n] + 1, vector<int>(n + 1, NEUTRO));
12
             for(int i = 0; i < n; ++i) ST[0][i] = data[i];</pre>
             for(int k = 1; k \le lg2[n]; ++k){
                 int fin = (1 << k) - 1;
15
                 for(int i = 0; i + fin < n; ++i)
16
                     ST[k][i] = f(ST[k-1][i], ST[k-1][i+(1 << (k-1))]);
             }
18
        }
19
        int query(int 1, int r){
20
             if(l > r) return NEUTRO;
             int ans = NEUTRO;
22
             for(int k = lg2[n]; 0 \le k; --k){
23
                 if(r - 1 + 1 < (1 << k)) continue;
24
                 ans = f(ans, ST[k][1]);
                 1 += 1 << k;
26
             }
             return ans;
28
29
        int queryIdem(int 1, int r){
30
             if(1 > r) return NEUTRO;
31
             int lg = lg2[r - 1 + 1];
32
             return f(ST[lg][l], ST[lg][r - (1 << lg) + 1]);
33
        }
34
   |};
35
```

5. Fenwick Tree

Complejidad: Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n). Indexado en 1.

```
struct fenwick_tree{
         int n;
2
         vector<int> BIT;
3
         fenwick_tree(int _n){
4
5
             n = n;
             BIT.resize(n + 1);
6
         void add(int pos, int x){
             while(pos <= n){
9
                 BIT[pos] += x;
10
                 pos += lsb(pos);
11
             }
         }
13
         int sum(int pos){
             int res = 0;
15
             while(pos){
16
                 res += BIT[pos];
17
                 pos -= lsb(pos);
18
```

6. Segment Tree

Nodo del Segment Tree:

```
struct node{
int val, lazy;
node():val(0), lazy(0){}/// inicializa con el neutro y sin lazy pendiente
node(int x, int lz = 0):val(x), lazy(lz){}
const node operator+(const node &b)const{
    return node(val + b.val);
}
```

6.1. Actualizaciones puntuales

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n). Indexado en 1.

```
struct segment_tree{
1
        struct node{...};
2
        vector<node> nodes;
3
         segment_tree(int n, int data[]){
             nodes.resize(4 * n + 1);
5
             build(1, n, data);
6
        void build(int left, int right, int data[], int pos = 1){
8
             if(left == right){
9
                 nodes[pos].val = data[left];
10
                 return;
11
             }
12
             int mid = (left + right) / 2;
13
             build(left, mid, data, pos * 2);
14
             build(mid + 1, right, data, pos * 2 + 1);
15
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
16
        }
17
        void update(int x, int idx, int left, int right, int pos = 1){
18
             if(idx < left || right < idx) return;</pre>
             if(left == right){
20
                 nodes[pos].val += x;
                 return;
22
             int mid = (left + right) / 2;
24
             update(x, idx, left, mid, pos * 2);
             update(x, idx, mid + 1, right, pos * 2 + 1);
26
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
27
28
        node query(int 1, int r, int left, int right, int pos = 1){
29
             if(r < left || right < 1) return node(); /// Devuelve el neutro</pre>
             if(1 <= left && right <= r) return nodes[pos];</pre>
31
             int mid = (left + right) / 2;
32
             return query(1, r, left, mid, pos * 2) + query(1, r, mid + 1, right, pos * 2 + 1);
33
        }
34
    };
35
```

6.2. Actualizaciones sobre rangos

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
1
        struct node{...};
2
        vector<node> nodes;
3
        segment_tree(int n, int data[]){...}
        void build(int left, int right, int data[], int pos = 1){...}
5
        void combine_lazy(int lz, int pos){nodes[pos].lazy += lz;}
        void apply_lazy(int pos, int tam){
             nodes[pos].val += nodes[pos].lazy * tam;
             nodes[pos].lazy = 0;
9
        }
10
        void push_lazy(int pos, int left, int right){
11
             int tam = abs(right - left + 1);
12
             if(1 < tam){
13
                 combine_lazy(nodes[pos].lazy, pos * 2);
                 combine_lazy(nodes[pos].lazy, pos * 2 + 1);
15
16
             apply_lazy(pos, tam);
17
        }
18
        void update(int x, int 1, int r, int left, int right, int pos = 1){
19
             push_lazy(pos, left, right);
20
             if(r < left || right < 1) return;</pre>
21
             if(1 <= left && right <= r){
22
                 combine_lazy(x, pos);
                 push_lazy(pos, left, right);
24
                 return;
             }
26
             int mid = (left + right) / 2;
             update(x, 1, r, left, mid, pos * 2);
28
             update(x, l, r, mid + 1, right, pos * 2 + 1);
29
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
30
31
        node query(int 1, int r, int left, int right, int pos = 1){
32
             push_lazy(pos, left, right);
33
34
        }
35
    };
36
```

7. Sqrt decomposition

7.1. Algoritmo de MO

Complejidad: Tiempo en responder $O((n+q)\sqrt{n}F + q\log(q))$, donde O(F) es la complejidad de add() y remove().

```
const int block_size = 300; /// Ajustable
    struct query {
2
         int 1, r, block, i;
3
         bool operator<(const query &b) const {</pre>
             if(block == b.block) return r < b.r;</pre>
5
             return block < b.block;</pre>
6
         }
    };
    void add(int idx){/**TO-DO*/}
9
    void remove(int idx){/**TO-DO*/}
10
    int get answer(){return 0; /**TO-DO*/}
11
```

```
vector<int> solve(vector<query> &queries) {
12
         vector<int> answers(queries.size());
13
         sort(queries.begin(), queries.end());
14
         int 1_act = 0;
15
         int r_act = -1;
16
         for(query q : queries){
             while(l_act > q.l) add(--l_act);
18
             while(r_act < q.r) add(++r_act);</pre>
19
             while(l_act < q.l) remove(l_act++);</pre>
20
             while(r_act > q.r) remove(r_act--);
21
             answers[q.i] = get_answer();
22
         }
23
         return answers;
24
    }
```

8. DSU

Complejidad: Tiempo $O(\log(n))$ - Memoria O(n), donde n es la cantidad total de elementos. La complejidad temporal es por cada función.

P[MAXN]: guarda el representante para cada nodo.

RA[MAXN]: guarda el rango (peso) del conjunto de cada representante para el small to large.

```
struct dsu{
        struct action{
2
             int x_p, y_p, rank_y;
        };
4
        vector<int> RA, P;
5
        vector<action> actions;
6
        dsu(int n){
             RA.resize(n, 1);
             P.resize(n);
             iota(P.begin(), P.end(), 0);
10
        }
11
        int root(int x){
12
             return x == P[x] ? x : P[x] = root(P[x]);
13
        }
        bool join(int x, int y, bool recording){
15
             x = root(x);
             y = root(y);
17
             if(x == y) return false;
             if(RA[x] >= RA[y]) swap(x, y);
19
             if(recording) actions.push_back({x, y, RA[y]});
20
             RA[y] += RA[x];
21
             P[x] = y;
22
             return true;
23
        void rollback(int cnt){
25
             while(cnt-- > 0 && actions.size()){
                 action act = actions.back();
                 actions.pop_back();
28
                 RA[act.y_p] = act.rank_y;
29
                 P[act.x_p] = act.x_p;
30
             }
        }
32
   };
```

9. Grafos

```
struct edge{
1
         int from, to;
2
         int64 t w;
3
         const bool operator<(const edge &b)const{</pre>
              return w > b.w;
5
         }
6
     };
     struct pos{
8
         int from;
9
         int64_t c;
10
         const bool operator<(const pos &b)const{</pre>
11
              return c > b.c;
12
         }
13
    |};
14
```

9.1. Caminos mínimos

9.1.1. Dijkstra

Complejidad: Tiempo $O(|E|\log |V|)$ - Memoria extra O(|E|). dist[MAXN] es el arreglo de distancias mínimas desde el nodo inicial a todos los demás.

```
int64_t dijkstra(int a, int b, vector<edge> graph[]){
        int64_t dist[MAXN];
2
        bool vis[MAXN] = {};
3
        fill(dist, dist + MAXN, LLONG_MAX);
        priority_queue<pos> q;
5
        q.push(pos{a, 0});
6
        dist[a] = 0;
        while(!q.empty()){
             pos act = q.top();
             q.pop();
10
             if(vis[act.from]) continue;
11
             vis[act.from] = true;
12
             for(edge &e : graph[act.from]){
13
                 if(dist[e.to] <= dist[act.from] + e.w) continue;</pre>
14
                 dist[e.to] = dist[act.from] + e.w;
15
                 q.push(pos{e.to, dist[e.to]});
16
             }
17
        }
        return dist[b];
19
    }
```

9.1.2. Bellman-Ford

```
Complejidad: O(|V||E|).
```

```
vector<int> bellman_ford(int s, int n, vector<edge> &edges, bool cycles = false){
        vector<int> d(n, (cycles ? 0 : INT_MAX));
2
        d[s] = 0;
3
        vector<int> P(n, -1); /// Predecesor
        for(int i = 0; i < n - 1; ++i){
5
            for(edge &e : edges){
6
                 if(d[e.from] == INT_MAX) continue;
                 if(d[e.to] > d[e.from] + e.w){
                     d[e.to] = d[e.from] + e.w;
9
                     P[e.to] = e.from;
10
                 }
11
            }
12
```

```
}
13
        int last_relax = -1;
14
        for(edge &e : edges){
15
             if(d[e.from] == INT_MAX) continue;
             if(d[e.to] > d[e.from] + e.w){
17
                 d[e.to] = d[e.from] + e.w;
                 P[e.to] = e.from;
19
                 last_relax = e.to;
             }
21
        }
22
         if(last_relax == -1) return d;
23
        return {}; /// VACIO
24
    }
25
   9.1.3. Floyd-Warshall
      Complejidad: O(|V|^3).
    vector<vector<int>> floyd_warshall(int n){
1
        vector<vector<int>>> d(n, vector<int>(n, INT_MAX));
2
        /// aqui inicializa con la lista/matriz de adyacencia
3
        /// luego calcula la dp
        for(int k = 0; k < n; ++k){
5
```

 $for(int i = 0; i < n; ++i){$

for(int $j = 0; j < n; ++j){$

if(d[i][k] == INT_MAX) continue;
if(d[k][i] == INT_MAX) continue;

9.1.4. Johnson's algorithm

}

}

return d;

}

Complejidad: $O(|V||E|\log |V|)$. Sea $p:V\to\mathbb{R}$ una función potencial del grafo. El algoritmo es como sigue:

if(d[i][j] > d[i][k] + d[k][j]) d[i][j] = d[i][k] + d[k][j];

- 1. Hacemos una transformación en el grafo cambiando los pesos w a w'(u,v) = w(u,v) + p(u) p(v).
- 2. Calculamos la distancia mínima $d': V \times V \to \mathbb{R}$ desde cada nodo a todos los demás con Dijkstra.
- 3. Finalmente, la distancia mínima de u a v en el grafo original es d(u,v) = d'(u,v) p(u) + p(v).

La función potencial p puede ser cualquiera. Usando Bellman-Ford se puede calcular el potencial p(u) como el camino más corto que termina (o empieza) en u.

9.2. Árboles

9.2.1. MST

9

10

11

12

13

14

15 }

Prim. Complejidad: Tiempo $O(|E|\log |V|)$. eCost [MAXN] es el arreglo de costos mínimos de cada nodo para incluirlo en el MST.

```
int64_t prim(vector<edge> graph[]){
   int64_t e_cost[MAXN];
   bool vis[MAXN] = {};
   fill(e_cost, e_cost + MAXN, LLONG_MAX);
   int64_t ans = 0;
   priority_queue<edge> q;
   q.push(edge{1, 1, 0});
   while(q.size()){
```

```
int node = q.top().to;
9
             int64_t w = q.top().w;
10
             q.pop();
11
             if(vis[node]) continue;
12
             vis[node] = true;
13
             ans += w;
             for(edge &e : graph[node]){
15
                  if(vis[e.to] || e_cost[e.to] <= e.w) continue;</pre>
16
                  e_{cost}[e.to] = e.w;
17
                  q.push(e);
18
             }
19
         }
20
         return ans;
21
    }
       Kruskal. Complejidad: Tiempo O(|E| \log |E|).
     int64_t kruskal(vector<edge> &edges, int n){
1
         sort(edges.begin(), edges.end());
2
3
         dsu mset(n);
         int64_t res = 0;
4
         for(edge &e : edges){
5
             if(mset.root(e.from) == mset.root(e.to)) continue;
6
             mset.join(e.from, e.to);
7
             res += e.w;
9
         return res;
10
11
       Boruvka. Complejidad: Tiempo O(|E|\log |V|). |V|=n. dsu. join() devuelve true si la unión se llevó a cabo
    o false en otro caso.
    int64_t boruvka(vector<edge> &edges, int n){
         dsu mset(n);
2
         int min_edge[n];
3
         int64_t res = 0;
4
         while(mset.cnt_comp > 1){
5
             fill(min_edge, min_edge + n, -1);
6
             for(int i = 0; i < edges.size(); ++i){</pre>
                  int u = mset.root(edges[i].from);
                  int v = mset.root(edges[i].to);
9
                  if(u == v) continue;
10
                  if(min edge[u] == -1 || edges[i].w < edges[min edge[u]].w) min edge[u] = i;
11
                  if(min_edge[v] == -1 || edges[i].w < edges[min_edge[v]].w) min_edge[v] = i;</pre>
             }
13
             for(int i = 0; i < n; ++i){</pre>
                  int idx_e = min_edge[i];
15
                  if(idx_e == -1) continue;
16
                  res += mset.join(edges[idx_e].from, edges[idx_e].to) * edges[idx_e].w;
17
             }
18
         }
19
         return res;
20
    }
21
   9.2.2. LCA
       Complejidad: Tiempo de preproceso O(|V| \log |V|). Tiempo de LCA y n-ésimo ancestro O(\log |V|). Indexado en
    1.
```

void precalc(int node, int p = 0, int d = 1){

depth[node] = d;

```
P[0][node] = p;
3
         for(int k = 1; k <= LOGN; ++k)</pre>
4
             P[k][node] = P[k - 1][P[k - 1][node]];
5
6
         for(int child : tree[node])
             if(p != child) precalc(child, node, d + 1);
7
    int LCA(int a, int b){
9
         if(depth[b] < depth[a]) swap(a, b);</pre>
10
         int dif = depth[b] - depth[a];
11
         for(int k = LOGN; 0 \le k; --k)
12
             if(is_on(dif, k)) b = P[k][b];
13
         if(a == b) return a;
14
         for(int k = LOGN; 0 \le k; --k){
15
             if(P[k][a] != P[k][b]){
16
                 a = P[k][a];
17
                 b = P[k][b];
18
             }
19
         }
20
        return P[0][a];
21
22
    int nth_ancestor(int u, int n){
23
         for(int k = LOGN; 0 \le k; --k)
24
             if(is_on(n, k)) u = P[k][u];
25
        return u;
26
    }
27
    9.2.3. Sack
       Complejidad: Tiempo O(|V| \log |V|). Indexado en 1.
    void precalc(int node, int p = 0){
         subtree_size[node] = 1;
2
         depth[node] = depth[p] + 1;
3
         for(int v : tree[node]){
             if(v == p) continue;
5
             precalc(v, node);
             subtree_size[node] += subtree_size[v];
7
         }
9
10
    void add(int node, int x, int p = 0){
         /// add node here
11
         /// add subtree
12
         for(int v: tree[node])
13
             if(v != p && !big[v])
14
                 add(v, x, node);
15
16
    void dfs(int node, bool keep, int p = 0){
17
         int maxi = -1, big_child = -1;
18
         for(int v : tree[node]) /// Search for big_child
19
            if(v != p && subtree_size[v] > maxi)
20
               maxi = subtree_size[v], big_child = v;
21
         for(int v : tree[node])
22
             if(v != p && v != big_child)
                 dfs(v, false, node); /// run a dfs on small childs and clear them
24
         if(big_child != -1)
25
             dfs(big_child, true, node), big[big_child] = 1; /// big_child marked as big and not cleared
26
         add(node, 1, p);
27
         /// answer queries here
28
         if(big_child != -1) big[big_child] = 0;
```

```
_{30} if(!keep) add(node, -1, p);
_{31} }
```

9.3. Máximo flujo

9.3.1. Algunos problemas de flujos

■ Maximum Weight Closure. Sea N_1 una clausura de G y $N_2 = V \setminus N_1$, tenemos que $w(N_1) = \sum_{i \in N_1^+} w_i - \sum_{i \in N_1^-} |w_i|$ y $Cap.Corte = \sum_{i \in N_2^+} w_i + \sum_{i \in N_1^-} |w_i|$. Entonces

$$Cap.Corte + w(N_1) = \sum_{i \in N_1^+} w_i + \sum_{i \in N_2^+} w_i.$$

- Mínima cobertura de vértices. En grafos generales es NP-Completo. En grafos bipartitos el máximo emparejamiento es igual al numero de vertices en la mínima cobertura. Para el problema con pesos en los nodos,
 unimos s a todos los nodos en L con capacidad igual al peso de cada nodo, unimos los nodos de R a t de la
 misma manera y unimos los nodos de L a R con capacidad infinita. El máximo flujo es el peso mínimo de la
 mínima cobertura.
- Máximo conjunto independiente. Cualquier conjunto independiente es el complemento de alguna cobertura de vértices
- Mínimo cubrimiento de caminos independientes. En grafos generales es NP-hard. En DAG's duplicamos los nodos en un lado IN y un lado OUT. Conectamos s al lado OUT y el lado IN a t. Las aristas del DAG las agregamos del lado OUT al lado IN. Sea M el máximo emparejamiento de la red anterior, entonces el mínimo cubrimiento es |V| M.
- Mínimo cubrimiento de caminos NO necesariamente independientes. En grafos generales es NP-hard. En DAG's transformamos el DAG a su clausura transitiva y aplicamos el problema anterior.
- Teorema de Mirsky. En todo POSET, el tamaño de la cadena de mayor tamaño es igual al número de anticadenas necesarias para cubrir todos los elementos del conjunto.
- Teorema de Dilworth. En todo POSET, el tamaño de la anticadena de mayor tamaño es igual al número de cadenas necesarias para cubrir todos los elementos del conjunto.
- Teorema de Hall. Un grafo bipartito con subconjuntos L y R tiene un emparejamiento de tamaño |L| si y sólo si para todo subconjunto W de L, se cumple que $|W| \leq |N_G(W)|$, donde $N_G(W)$ es el conjunto de vértices vecinos de alguno de los vértices en W.

9.3.2. Edmonds-Karp

Complejidad: Ford-Fulkerson $O(|E| \cdot maxFlow)$, Edmonds-Karp $O(|V||E|^2)$. Ejemplo de uso

```
int main(){
1
         int n,m,a,b; cin >> n >> m;
2
         vector< vector<edge> > elGrafo(n);
3
         int64_t c;
4
         while( m-- ){
5
              cin >> a >> b >> c;
6
              elGrafo[a-1].push_back( {a-1,b-1,c,c,0} );
         }
9
         //Flujo maximo
10
         ford fulkerson ff(elGrafo);
11
         cout << ff.get_max_flow( 0, n-1 ) << '\n';</pre>
12
13
15
         //corte minimo
16
```

```
vector< vector<edge> > residual = ff.get_residual_graph();
17
         vector<bool> visitados(n,false);
         queue<int> q;
19
         q.push(0);
20
         visitados[0]=true;
21
         while( !q.empty() ){
23
             int u = q.front(); q.pop();
24
             for( edge& e : residual[u] ){
25
                 if( e.c>0 && !visitados[e.to] ){
                     visitados[e.to] = true;
27
                     q.push(e.to);
28
                 }
29
             }
31
32
        for( int u=0; u<n; u++ ){</pre>
33
             for( edge& e : grafo[u] ){
34
                 if( visitados[u] && !visitados[e.to] && e.w > 0){
35
                     cout << u+1 << " " << e.to+1 << endl;
36
                 }
37
             }
38
         }
39
    }
40
    struct edge {
1
         int from, to;
2
         int64\_t w; /// weight
         int64_t c; /// capacity
4
         int64_t f; /// flow
    };
6
    class ford_fulkerson {
    public:
2
         ford_fulkerson (vector<vector<edge>> &graph) : graph(graph){}
3
         int64_t get_max_flow(int s, int t){
4
             init();
             int64_t f = 0;
6
             while(find_and_update(s, t, f)){}
             return f;
         }
9
         vector<int> get_st_cut(const int &s){
10
             bool vis[graph.size()] = {};
11
             vector<int> S;
12
             queue<int> q;
13
             q.push(s);
             S.push_back(s);
15
             vis[s] = true;
             while(q.size()){
17
                 int u = q.front(); q.pop();
                 for(int eI : edge_indexes[u]){
19
                      if(edges[eI].c > edges[eI].f && !vis[edges[eI].to]){
                          q.push(edges[eI].to);
21
                          vis[edges[eI].to] = true;
                          S.push_back(edges[eI].to);
23
                     }
24
                 }
25
             }
26
             return S;
27
         }
28
```

```
// Function to get the residual graph after computing the max flow
29
    vector<vector<edge>> get_residual_graph() const {
30
        vector<vector<edge>> residual(graph.size());
31
        for (size_t i = 0; i < edges.size(); i += 2) {</pre>
32
             const edge& e = edges[i];
33
             if (e.c > 0) { // Only consider edges with positive capacity
                 residual[e.from].push_back({e.from, e.to, e.w, e.c - e.f, e.f});
35
                 residual[e.to].push_back({e.to, e.from, -e.w, e.f, -e.f});
36
             }
37
        }
        return residual;
39
40
    private:
41
        vector<vector<edge>> graph; /// graph (to, capacity)
42
        vector<edge> edges; /// List of edges (including the inverse ones)
43
        vector<vector<int>> edge_indexes; /// indexes of edges going out from each vertex
44
        void init(){
45
             edges.clear();
46
             edge_indexes.clear(); edge_indexes.resize(graph.size());
47
             for(int u = 0; u < graph.size(); u++){
48
                 for(edge &e : graph[u]){
49
                     edges.push_back({u, e.to, e.w, e.c, 0});
50
                     edges.push_back({e.to, u, -e.w, 0, 0});
51
                     edge_indexes[u].push_back(edges.size() - 2);
52
                     edge_indexes[e.to].push_back(edges.size() - 1);
                 }
54
             }
        }
56
        bool find_and_update(int s, int t, int64_t &flow){
57
             // Encontrar camino desat con BFS
58
            queue<int> q;
59
             // Desde donde llego y con que arista
60
             vector<pair<int, int>> from(graph.size(), make_pair(-1, -1));
61
             q.push(s);
62
             from[s] = make_pair(s, -1);
63
             bool found = false;
             while(q.size() && (!found)){
65
                 int u = q.front(); q.pop();
66
                 for(int eI : edge_indexes[u]){
67
                     if((edges[eI].c > edges[eI].f) && (from[edges[eI].to].first == -1)){
                         from[edges[eI].to] = make_pair(u, eI);
69
                         q.push(edges[eI].to);
                         if(edges[eI].to == t) found = true;
71
                     }
                 }
73
             if(!found) return false;
75
             // Encontrar cap. minima del camino de aumento
             int64 t u flow = LLONG MAX;
77
             int current = t;
             while(current != s) {
79
                 u_flow = min(u_flow, edges[from[current].second].c - edges[from[current].second].f);
80
                 current = from[current].first;
81
             }
82
             current = t;
83
             // Actualizar flujo
84
            while(current != s){
85
                 edges[from[current].second].f += u_flow;
86
                 edges[from[current].second^1].f -= u_flow; // Arista inversa
```

```
current = from[current].first;
88
             }
89
             flow += u flow ;
90
             return true;
91
        }
92
    };
93
    9.3.3. Dinic
      Complejidad: O(|V|^2|E|).
    const int MAXV = 32767; /// 2^15 - 1
2
    template<class T = int64_t> struct dinic{
        dinic(short V){this->V = V; if(V > MAXV){cout << "ERROR"; exit(0);}}</pre>
3
         const static bool SCALING = true;
4
5
        bool sorted = false;
6
        short s, t, V;
        int lim = 1; /// Para escalado
         const T INF = numeric_limits<T>::max();
         short level[MAXV]; /// distancia desde s
10
         short ptr[MAXV]; /// arista por la que va explorando
12
        struct edge{
13
             short to, rev;
14
             T cap, flow, mcap;
15
             bool operator<(const edge &b)const{return mcap > b.mcap;}
16
        };
17
        vector<edge> adj[MAXV];
18
        vector<short> adj_current[MAXV]; /// aristas del grafo de nivel
19
        void add_edge(short u, short v, T cap, bool is_directed = true){
20
             if(u == v) return;
21
             T add = (is_directed ? 0 : cap);
22
             adj[u].push_back({v, adj[v].size(), cap, 0, cap + add});
23
             adj[v].push_back({u, (short)adj[u].size() - 1, add, 0, cap + add});
        }
25
        void mysort(){
26
             if(sorted) return;
27
             sorted = true;
             for(int i = 0; i < V; ++i){
29
                 sort(adj[i].begin(), adj[i].end());
                 for(int j = 0; j < adj[i].size(); ++j){</pre>
31
                     adj[adj[i][j].to][adj[i][j].rev].rev = j;
32
33
             }
34
        }
35
        bool bfs(){ /// Crea grafo de nivel
36
             for(int i = 0; i < V; ++i){
37
                 adj_current[i].clear();
38
                 adj_current[i].reserve(adj[i].size());
39
             }
40
             queue<short> q;
41
             q.push(s);
42
             fill(level, level + V, -1);
             level[s] = 0;
44
             while(q.size()){
                 short u = q.front(); q.pop();
46
                 if(u == t) return true;
                 for(int i = 0; i < (int)adj[u].size(); ++i){</pre>
48
```

```
edge &e = adj[u][i];
49
50
                      if(e.mcap < lim) break;</pre>
51
                      if(level[e.to] == -1 \&\& e.cap - e.flow >= lim){
52
                          level[e.to] = level[u] + 1;
53
                          adj_current[u].push_back(i);
                          q.push(e.to);
55
                     } else if(level[e.to] == level[u] + 1 && e.cap - e.flow >= lim){
                          adj_current[u].push_back(i);
57
                 }
59
             }
60
61
             return false;
         }
63
        T dfs(short u, T flow, vector<int> &S, bool save = false){ /// Encuentra camino, bloquea aristas
             if(save) S.push_back(u);
65
             if(u == t) return flow;
66
             for(; ptr[u] < adj_current[u].size(); ++ptr[u]){</pre>
67
                 edge &e = adj[u][adj_current[u][ptr[u]]];
68
                 if(T pushed = dfs(e.to, min(flow, e.cap - e.flow), S, save)){
                     e.flow += pushed;
70
                     adj[e.to][e.rev].flow -= pushed;
71
                     if(e.cap - e.flow < lim) ptr[u]++;</pre>
72
                     return pushed;
                 }
74
             }
             return 0;
76
         int64_t get_max_flow(short source, short sink){
78
             s = source;
             t = sink;
80
             mysort();
81
             vector<int> S;
82
             int64_t flow = 0;
83
             for(lim = SCALING ? (1 << 30) : 1; 0 < lim; lim >>= 1){
                 while(bfs()){
85
                     memset(ptr, 0, sizeof(ptr));
86
                     while(T pushed = dfs(s, INF, S)) flow += pushed; /// Bloquear flujo
87
                 }
             }
89
             return flow;
91
         vector<int> get_st_cut(){
             vector<int> S;
93
             memset(ptr, 0, sizeof(ptr));
94
             dfs(s, INF, S, true);
95
             return S;
         }
97
    };
           SCC
   9.4.
    9.4.1. Kosajaru
       Complejidad: Tiempo O(n).
    void dfs(int node, vector<int> &topo_ord){
         if(vis[node]) return;
         vis[node] = true;
3
```

```
for(int v : graph[node]) dfs(v, topo_ord);
4
         topo_ord.push_back(node);
5
    }
6
    void assign_scc(int node, const int id){
7
         if(vis[node]) return;
8
         vis[node] = true;
9
         scc[node] = id;
10
         for(int v : inv_graph[node]) assign_scc(v, id);
11
12
    int kosajaru(int n){ /// devuelve la cantidad de scc.
13
        memset(vis, 0, sizeof(vis));
14
         vector<int> topo_ord;
15
         for(int i = 1; i <= n; ++i) dfs(i, topo_ord);</pre>
16
        reverse(topo_ord.begin(), topo_ord.end());
17
        memset(vis, 0, sizeof(vis));
18
         int id = 0;
19
         for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
20
         return id;
21
22
    void build scc graph(int n, int n scc){
23
         for(int u = 0; u < n; ++u)
24
             for(int v : graph[u])
25
                 if(scc[u] != scc[v])
26
                     scc_graph[scc[u]].push_back(scc[v]);
27
         for(int u = 0; u < n_scc; ++u){</pre>
             sort(scc_graph[u].begin(), scc_graph[u].end());
29
             auto it = unique(scc_graph[u].begin(), scc_graph[u].end());
             scc_graph[u].resize(it - scc_graph[u].begin());
31
32
             for(int v : scc_graph[u])
                 inv_scc_graph[v].push_back(u);
33
         }
    }
35
           2-Sat
    9.5.
       Complejidad: Tiempo en responder O(n).
    struct two_sat{
         int n;
2
         vector<vector<int>>> graph, inv_graph;
3
4
         vector<int> scc, ans;
         vector<bool> vis;
5
         two_sat(){}
6
         two_sat(int _n){
             n = n;
8
             graph.resize(2 * n);
9
             inv_graph.resize(2 * n);
10
             scc.resize(2 * n);
11
             vis.resize(2 * n);
12
             ans.resize(n);
13
         }
14
         void add_edge(int u, int v){
15
             graph[u].push_back(v);
16
             inv_graph[v].push_back(u);
17
         }
18
         /// al menos una es verdadera
19
         void add_or(int p, bool val_p, int q, bool val_q){
20
             add_edge(p + (val_p ? n : 0), q + (val_q ? 0 : n));
21
             add_edge(q + (val_q ? n : 0), p + (val_p ? 0 : n));
22
         }
23
```

```
/// exactamente una es verdadera
24
        void add_xor(int p, bool val_p, int q, bool val_q){
25
             add_or(p, val_p, q, val_q);
26
27
             add_or(p, !val_p, q, !val_q);
        }
28
        /// p y q tienen el mismo valor
29
        void add_and(int p, bool val_p, int q, bool val_q){
30
             add_xor(p, !val_p, q, val_q);
31
32
         /// Kosajaru
        void dfs(int node, vector<int> &topo_ord){...}
34
        void assign_scc(int node, const int id){...}
35
        /// construye respuesta
36
        bool build_ans(){
37
             fill(vis.begin(), vis.end(), false);
38
             vector<int> topo_ord;
39
             for(int i = 0; i < 2 * n; ++i) dfs(i, topo_ord);</pre>
40
             fill(vis.begin(), vis.end(), false);
41
             reverse(topo_ord.begin(), topo_ord.end());
42
             int id = 0;
43
             for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
             for(int i = 0; i < n; ++i){
45
                 if(scc[i] == scc[i + n]) return false;
46
                 ans[i] = (scc[i] < scc[i + n] ? 0 : 1);
47
             }
             return true;
49
        }
   };
51
```

10. Treap

Complejidad: Tiempo O(log(n)) - Memoria O(n). Para treap implicito (arreglo dinamico) cambiar en insert/erase a split_by_pos().

```
struct treap{
1
2
         typedef struct _node{
             long long x;
3
             int freq, cnt;
             long long p;
5
             _node *1, *r;
             _node(long long _x): x(_x), p(((long long)(rand()) << 32 )^rand()),
             cnt(1), freq(1), l(nullptr), r(nullptr){}
8
             ~_node(){delete l; delete r;}
9
             void recalc(){
10
                 cnt = freq;
                 cnt += ((1) ? (1->cnt) : 0);
12
                 cnt += ((r) ? (r->cnt) : 0);
13
             }
14
         }* node;
15
        node root;
16
        node merge(node 1, node r){
17
             if(!1 || !r) return 1 ? 1 : r;
18
             if(1->p < r->p){
                 r->1 = merge(1, r->1);
20
                 r->recalc();
21
                 return r;
22
             } else {
                 1->r = merge(1->r, r);
24
                 1->recalc();
```

```
return 1;
26
             }
27
         }
28
         void split_by_value(node n, long long d, node &1, node &r){
29
             1 = r = nullptr;
30
             if(!n) return;
31
             if(n->x < d){
32
                  split_by_value(n->r, d, n->r, r);
33
                 1 = n;
34
             } else {
                 split_by_value(n->1, d, 1, n->1);
36
                 r = n;
37
             }
38
             n->recalc();
40
         void split_by_pos(node n, int pos, node &1, Node &r, int l_nodes = 0){
41
             1 = r = NULL;
42
             if(!n) return;
43
             int cur_pos = (n->1) ? (l_nodes + n->l->cnt) : l_nodes;
44
             if(cur_pos < pos){</pre>
45
                  splitFirstNodes(n->r, pos, n->r, r, cur_pos + 1);
46
                 1 = n;
47
             } else {
48
                  splitFirstNodes(n->1, pos, 1, n->1, 1_nodes);
49
                 r = n;
             }
51
             n->recalc();
52
53
         treap(): root(NULL){}
54
         void insert_value(long long x){
55
             node 1, m, r;
56
             split_by_value(root, x, 1, m);
57
             split_by_value(m, x + 1, m, r);
58
             if(m){}
59
                 m->freq++;
60
                 m->cnt++;
61
             } else m = new node(x);
62
             root = merge(merge(1, m), r);
63
         }
64
         void erase_value(long long x){
65
             node 1, m, r;
66
             split_by_value(root, x, 1, m);
67
             split_by_value(m, x + 1, m, r);
68
             if(!m \mid | m->freq == 1){
69
                 delete m;
70
                 m = nullptr;
71
             } else {
72
                 m->freq--;
73
                 m->cnt--;
74
             }
75
             root = merge(merge(1, m), r);
76
         }
77
    };
78
```

11. Strings

11.1. KMP

Complejidad: Tiempo O(|s|) - Memoria extra O(|s|).

```
vector<int> prefix_function(const string &s){
1
        int n = s.size();
2
        vector<int> pi(n);
3
        for (int i = 1; i < n; ++i) {
4
             int j = pi[i - 1];
5
            while (j \&\& s[i] != s[j]) j = pi[j - 1];
6
            pi[i] = j + (s[i] == s[j]);
7
        }
        return pi;
9
    }
10
```

11.1.1. Autómata de KMP

Complejidad: Tiempo O(|s|k) - Memoria extra O(|s|k), donde k es el tamaño del alfabeto.

```
void compute_automaton(const string &s, vector<vector<int>>& aut){
        s += '#';
2
        int n = s.size();
3
        vector<int> pi = prefix_function(s);
4
        aut.assign(n, vector<int>(26));
5
        for (int i = 0; i < n; ++i) {
6
             for (int c = 0; c < 26; ++c) {
                 if (i \&\& 'a' + c != s[i]) aut[i][c] = aut[pi[i - 1]][c];
                 else aut[i][c] = i + ('a' + c == s[i]);
9
             }
10
        }
11
    }
12
```

11.2. Suffix array

11.2.1. Construcción

Complejidad: Tiempo $O(|s|\log(|s|))$ - Memoria O(|s|). Calcula la permutación que corresponde a los sufijos ordenados lexicográficamente. SA[i] es el índice en el cual empieza el i-ésimo sufijo ordenado.

```
int SA[MAXN], mrank[MAXN];
    int tmpSA[MAXN], tmp_mrank[MAXN];
2
    void counting_sort(int k, int n){
3
         int freqs[MAXN] = {};
4
         for(int i = 0; i < n; ++i){
5
             if(i + k < n) freqs[ mrank[i + k] ]++;</pre>
6
             else freqs[0]++;
         }
         int m = max(100, n);
9
         for(int i = 0, sfs = 0; i < m; ++i){
10
             int f = freqs[i];
11
             freqs[i] = sfs;
12
             sfs += f;
13
         }
         for(int i = 0; i < n; ++i){
15
             if(SA[i] + k < n) tmpSA[ freqs[mrank[ SA[i] + k ]]++ ] = SA[i];</pre>
16
             else tmpSA[ freqs[0]++ ] = SA[i];
17
18
         for(int i = 0; i < n; ++i) SA[i] = tmpSA[i];</pre>
19
20
    void buildSA(string &str){
21
         int n = str.size();
22
         for(int i = 0; i < n; ++i){
23
             mrank[i] = str[i] - '#';
24
             SA[i] = i;
25
         }
26
```

```
for(int k = 1; k < n; k <<= 1){
27
             counting_sort(k, n);
28
             counting sort(0, n);
29
             int r = 0;
30
             tmp_mrank[ SA[0] ] = 0;
31
             for(int i = 1; i < n; ++i){
                 if(mrank[ SA[i] ] != mrank[ SA[i - 1] ] || mrank[ SA[i] + k ] != mrank[ SA[i - 1] + k ])
33
                     tmp_mrank[ SA[i] ] = ++r;
                 else tmp_mrank[ SA[i] ] = r;
35
             }
             for(int i = 0; i < n; ++i) mrank[i] = tmp_mrank[i];</pre>
37
        }
38
39
    inline bool suff_compare1(int idx,const string &pattern) {
40
        return (s.substr(idx).compare(0, pattern.size(), pattern) < 0);</pre>
41
42
    inline bool suff_compare2(const string &pattern,int idx) {
43
        return (s.substr(idx).compare(0, pattern.size(), pattern) > 0);
44
45
    pair<int,int> match(const string &pattern) {
46
         int *low = lower_bound (SA, SA + s.size(), pattern, suff_compare1);
47
         int *up = upper_bound (SA, SA + s.size(), pattern, suff_compare2);
48
        return make_pair((int)(low - SA),(int)(up - SA));
49
    }
50
```

11.2.2. Prefijo común más largo

Complejidad: Tiempo O(|s|) - Memoria O(|s|). Calcula la longitud del prefijo común más largo entre dos sufijos consecutivos (lexicográficamente) de s. lcp[i] guarda la respuesta para el i-ésimo sufijo y el (i-1)-ésimo sufijo.

```
int lcp[MAXN];
    void build_lcp(string &str){
2
         int n = str.size();
3
         int phi[n];
        phi[SA[0]] = -1;
5
         for(int i = 1; i < n; ++i) phi[ SA[i] ] = SA[i - 1];
         int plcp[n];
         int k = 0;
         for(int i = 0; i < n; ++i){
9
10
             if(phi[i] == -1){
                 plcp[i] = 0;
11
                  continue;
12
13
              while(i + k < n \&\& phi[i] + k < n \&\& str[i + k] == str[phi[i] + k]) k++; 
14
             plcp[i] = k;
             k = \max(k - 1, 0);
16
17
         for(int i = 0; i < n; ++i) lcp[i] = plcp[SA[i]];</pre>
18
    }
19
```

11.3. Aho-Corasick

Construción en O(mk), donde m es el tamaño total de los strings y k el tamaño del alfabeto.

```
struct aho_corasick{
const static int K = 26;
const char index = 'a';
struct vertex{
int next[K];
bool terminal = false;
```

```
int p = -1;
7
             char p_edge;
             int link = -1;
9
             int terminal_link = -1;
10
             int go[K];
11
             vertex(int p = -1, char c = '\$') : p(p), p_edge(c){
                 fill(next, next + K, -1);
13
                 fill(go, go + K, -1);
             }
15
         };
16
         vector<vertex> aho;
17
         aho_corasick(){ aho.resize(1); }
18
         void add_string(const string &s){
19
             int u = 0;
             for(char c : s){
21
                 int e = c - index;
                 if(aho[u].next[e] == -1){
23
                      aho[u].next[e] = aho.size();
24
                     aho.emplace_back(u, c);
25
                 }
26
                 u = aho[u].next[e];
28
             aho[u].terminal = true;
29
         }
30
         int get_link(int u){
             if(aho[u].link == -1){
32
                 if(!u \mid | !aho[u].p) aho[u].link = 0;
                 else aho[u].link = go(get_link(aho[u].p), aho[u].p_edge);
34
35
             return aho[u].link;
36
         }
         int go(int u, char c){
38
             int e = c - index;
39
             if(aho[u].go[e] == -1){
40
                 if(aho[u].next[e] != -1) aho[u].go[e] = aho[u].next[e];
41
                 else aho[u].go[e] = !u ? 0 : go(get_link(u), c);
42
43
             return aho[u].go[e];
44
         }
45
         int get_terminal_link(int u){
46
             if(aho[u].terminal_link == -1){
47
                 if(!u || !aho[u].p) aho[u].terminal_link = 0;
                 else aho[u].terminal_link = get_terminal_link(get_link(u));
49
             return aho[u].terminal_link;
51
         }
52
    |};
53
    11.4.
            Suffix tree
```

COPIADO Y PEGADO POR

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestiones detiempo
const int inf = 1e9;
const int maxn = 1e6;
int s[maxn];
map<int, int> to[maxn];
//Root is the vertex 0
//f_pos[i] is the initial index with the letter of the edge that goes from the parent of i to i
//len[i] is the number of letters in the edge that enters in i
```

```
//slink[i] is the suffix link
    int len[maxn], f_pos[maxn], slink[maxn];
10
    int node, pos;
11
    int sz = 1, n = 0;
12
13
    int make_node(int _pos, int _len){
14
         f_pos[sz] = pos;
15
         len [sz] = _len;
16
        return sz++;
17
    }
18
19
    void go_edge(){
20
         while(pos > len[to[node][s[n - pos]]]){
21
             node = to[node][s[n - pos]];
             pos -= len[node];
23
         }
    }
25
26
    void add_letter(int c){
27
        s[n++] = c;
28
        pos++;
29
         int last = 0;
30
         while(pos > 0){
31
             go_edge();
32
             int edge = s[n - pos];
             int &v = to[node][edge];
34
             int t = s[f_pos[v] + pos - 1];
             if(v == 0){
36
                 v = make_node(n - pos, inf);
37
                 //v = make_node(n - pos, 1);
38
                 slink[last] = node;
                 last = 0:
40
             } else if(t == c) {
41
                 slink[last] = node;
42
                 return;
43
             } else {
44
                 int u = make_node(f_pos[v], pos - 1);
45
                 to[u][c] = make_node(n - 1, inf);
46
                 to[u][t] = v;
47
                 f_pos[v] += pos - 1;
                 len [v] -= pos - 1;
49
                 v = u;
                 slink[last] = u;
51
                 last = u;
52
53
             if(node == 0) pos--;
54
             else node = slink[node];
55
        }
56
    }
57
58
    void correct(int s_size){
59
         len[0] = 0;
60
         for (int i = 1; i < sz; i++){
61
             if (f pos[i] + len[i] - 1 >= s size){
62
                 len[i] = (s_size - f_pos[i]);
63
             }
64
        }
65
    }
66
67
```

```
void print_suffix_tree(int from){
68
          cout << "Edge entering in " << from << " has size " << len[from];</pre>
69
          cout << " and starts in " << f pos[from] << endl;</pre>
70
          cout << "Node " << from << " goes to: ";</pre>
71
         for (auto u : to[from]){
72
              cout << u.second << " with " << (char)u.first << " ";</pre>
         }
74
         cout << endl;</pre>
         for (auto u : to[from]){
76
              print_suffix_tree(u.second);
78
     }
79
80
     void build(string &s){
81
         for (int i = 0; i < sz; i++){
82
              to[i].clear();
83
         }
84
         sz = 1;
85
         node = pos = n = 0;
86
         len[0] = inf;
87
         for(int i = 0; i < s.size(); i++)</pre>
              add_letter(s[i]);
89
         correct(s.size());
90
     }
91
     void cutGeneralized(vector<int> &finishPoints){
93
         for (int i = 0; i < sz; i++){
              int init = f_pos[i];
95
              int end = f_pos[i] + len[i] - 1;
96
              int idx = lower_bound(finishPoints.begin(), finishPoints.end(), init) - finishPoints.begin();
97
              if ((idx != finishPoints.size()) && (finishPoints[idx] <= end)){//Must be cut
                  len[i] = (finishPoints[idx] - f_pos[i] + 1);
99
                  to[i].clear();
100
              }
101
         }
102
     }
103
104
105
     void build_generalized(vector<string> &ss){
106
         for (int i = 0; i < sz; i++){
107
              to[i].clear();
108
         }
109
         sz = 1;
110
         node = pos = n = 0;
         len[0] = inf;
112
         int sep = 256;
113
         vector<int> finishPoints;
114
         int next = 0;
         for (int i = 0; i < ss.size(); i++){</pre>
116
              for (int j = 0; j < ss[i].size(); j++){
117
                  add_letter(ss[i][j]);
118
              }
119
              next += ss[i].size();
120
              finishPoints.push back(next);
121
              add_letter(sep++);
122
              next++;
123
         }
124
          correct(next);
125
          cutGeneralized(finishPoints);
126
```

12. Geometría

12.1. Convex hull

Complejidad: $O(n \log n)$. AGREGAR PEQUEÑA DESCRIPCIÓN.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    struct pt {
2
        double x, y;
3
    };
4
    int orientation(pt a, pt b, pt c) {
5
        double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
6
         if (v < 0) return -1; // clockwise
7
         if (v > 0) return +1; // counter-clockwise
        return 0;
9
    }
10
    bool cw(pt a, pt b, pt c, bool include_collinear) {
11
        int o = orientation(a, b, c);
12
        return o < 0 | | (include collinear && o == 0);
13
14
    bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
15
    void convex_hull(vector<pt>& a, bool include_collinear = false) {
16
        pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
17
             return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
18
        });
19
         sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
20
             int o = orientation(p0, a, b);
21
22
                 return (p0.x-a.x)*(p0.x-a.x) + (p0.y-a.y)*(p0.y-a.y)
23
                     < (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
24
             return o < 0;
        });
26
         if (include_collinear) {
27
             int i = (int)a.size()-1;
28
             while (i \ge 0 && collinear(p0, a[i], a.back())) i--;
             reverse(a.begin()+i+1, a.end());
30
        }
31
        vector<pt> st;
32
        for (int i = 0; i < (int)a.size(); i++) {
33
             while (st.size() > 1 && !cw(st[st.size()-2], st.back(), a[i], include_collinear))
34
                 st.pop_back();
35
             st.push_back(a[i]);
36
        }
37
38
        a = st;
   |}
39
```

13. Utilidades

13.1. Plantilla tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

13.2. Números aleatorios

mt19937_64 genera números de 64 bits.

```
random_device rd; // Inicializa el generador de numeros aleatorios
mt19937_64 generator(rd()); // Crea un generador Mersenne Twister con la semilla de random_device
uniform_int_distribution<long long> distribution(1, 1e18);
cout << distribution(generator) << '\n';
```

13.3. Algunas formulas

```
\oplus es el xor.
```

- $a|b=a\oplus b+a\&b$
- \bullet $a \oplus (a \& b) = (a|b) \oplus b$
- $\bullet b \oplus (a \& b) = (a|b) \oplus a$
- $\bullet (a\&b) \oplus (a|b) = a \oplus b$
- $a + b = a|b + a\&b = a \oplus b + 2(a\&b)$
- $a b = (a \oplus (a \& b)) ((a|b) \oplus a) = ((a|b) \oplus b) ((a|b) \oplus a)$
- $a b = (a \oplus (a \& b)) (b \oplus (a \& b)) = ((a|b) \oplus b) (b \oplus (a \& b))$

14. Bitmask

```
#define is_on(S, j) (S & (111 << (j)))
     \#define \ set\_bit(S, j) \ (S \mid = (1ll << (j)))
2
     #define clear_bit(S, j) (S \mathfrak{G}= ~(1ll << (j)))
3
     #define toggle_bit(S, j) (S \hat{}= (1ll << (j)))
     #define lsb(S) ((S) \mathfrak{G} -(S))
5
     #define clear_lsb(S) (S \mathfrak{G}= (S - 1))
6
     \#define\ set\_all(S,\ n)\ (S=(1ll<<(n))-1ll)
     #define clear_trailing_ones(S) (S \mathfrak{G}= (S + 1))
     \#define\ set\_last\_bit\_off(S)\ (S \mid = (S + 1))
9
     #define is_power_of_two(S) (!((S) & ((S) - 1)))
10
    \#define\ nearest\_power\_of\_two(S)\ ((int)pow(2,\ (int)((log((double)(S))\ /\ log(2))\ +\ 0.5))\ )
11
     \#define\ is\_divisible\_by\_power\_of\_two(n,\ k)\ !((n)\ &((1ll\ <<\ (k))\ -\ 1))
12
    #define modulo(S, N) ((S) \mathfrak{G} ((N) - 1)) // S % N, N potencia de 2
13
```

14.1. Útiles

Hay algunas funciones de gcc que nos pueden ayudar para hacer más eficiente nuestro código y evitar algunos bucles:

```
// one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.

int __builtin_ffs (int x):

// number of leading 0-bits in x, starting at the most significant bit position. If x is 0 is undefined

int __builtin_clz (unsigned int x):

// number of trailing 0-bits in x, starting at the least significant bit position. If x is 0 undefined.

int __builtin_ctz (unsigned int x):

// number of 1-bits in x.

int __builtin_popcount (unsigned int x):

// he parity of x, i.e. the number of 1-bits in x modulo 2.

int __builtin_parity (unsigned int x):
```

14.2. Iterar

Dada una máscara m, iterar sobre todos sus subconjuntos

```
for(int x=m; x; ){
    --x &= m;
    //...
}
```

El código anterior itera las máscaras válidas desde la más grande hasta la más pequeña (ojo el código no itera sobre x = m) La complejidad de iterar sobre todas las submáscaras de todos los números de 1 a 2^n es $O(3^n)$.

14.3. Gospers' Hack

Sirve para generar todos las máscaras de n bits, que tengan exactamente k bits a 1 (y que sean menores o iguales que 2^n). Complejidad $O\left(\binom{n}{k}\right)$?

```
void GospersHack(int k, int n) {
1
         int set = (1 << k) - 1;
2
         int limit = (1 << n);</pre>
3
         while (set < limit){</pre>
4
             DoStuff(set);
              // Gosper's hack:
6
              int c = set & - set;
              int r = set + c;
8
              set = (((r \cdot set) >> 2) / c) | r;
         }
10
    }
11
```

DoStuff() is meant to be replaced with a function that processes each different value that set takes.

```
int mask = (1 << k) - 1, r,c;
while(mask <= (1 << n) - (1 << (n-k) )){
    //...
    c = mask & -mask;
    r = mask + c;
    mask = r | ( (r^mask) >> 2/c );
}
```

15. Máximo de funciones

15.1. Li-Chao Tree

Dado un conjunto A con M valores a evaluar, y N funciones (tales que cada una de ellas se intersecta con el resto a lo más una vez), te devuelve $\max_{i \in [N]} (f_i(a))$ en $\log(M)$ para cualquier $a \in A$.

```
struct Function {
1
        long long m;
2
        long long b;
3
        long long eval(long long x){
            if (m == LLONG_MIN) return LLONG_MIN;
5
            return m*x+b;
6
        }
        Function(){ m = LLONG_MIN;}
8
        Function(long long m_, long long b_): m(m_), b(b_){ }
    };
10
    struct LiChaoTree {
1
        vector<long long> values;
2
        long long maxV;
3
        Function *functions;
```

```
LiChaoTree(vector<long long> &values_){
5
             values = values_;
6
             sort(values.begin(), values.end());
7
             functions = new Function[values.size() * 4];
             maxV = values.size();
9
10
         //Range\ from\ l\ to\ r-1
11
         long long get(long long x){
12
             return get(x, 1, 0, maxV);
13
         }
14
         long long get(long long x, int v, int l, int r){
15
             int m = (1 + r) / 2;
16
             long long mv = values[m];
17
             if (r - 1 == 1){
18
                 return functions[v].eval(x);
19
             } else if (x < mv){
20
                 return max(functions[v].eval(x), get(x, 2 * v, 1, m));
21
             } else {
22
                 return max(functions[v].eval(x), get(x, 2 * v + 1, m, r));
23
             }
24
         }
25
         void addFunction(Function f){
26
             addFunction(f, 1, 0, maxV);
27
         }
28
        void addFunction(Function f, int v, int l, int r){
             int m = (1 + r) / 2;
30
             long long mv = values[m];
31
             long long lv = values[1];
32
             bool lef = f.eval(lv) > functions[v].eval(lv);
33
             bool mid = f.eval(mv) > functions[v].eval(mv);
34
             if (mid){//Si \ el \ actual \ pierde \ en \ el \ medio}
                 swap(functions[v], f);
36
             }
37
             if (r - 1 == 1){
38
                 return;
39
             } else if (lef != mid){//El cruce esta en el lado izq.
40
                 addFunction(f, 2 * v, 1, m);
41
             } else {
42
                 addFunction(f, 2 * v + 1, m, r);
43
             }
44
45
         ~LiChaoTree(){ delete[] functions; }
46
    };
47
```