Problema de los Monedos

1) Dimensiones relevantes.

- El precio a pagar P.
 Los denominaciones {d₁, d₂, ..., d_n} de los monedos.

Dinensiones del problema: <P,{1,4,6}>.

2) Instancias triviales.

Se leuscan los casas extremos, en los que la solución es obvia.

Porque resulta imposible

$$\begin{cases} \text{Precio} = n \\ \text{Denom} = \{\} = \emptyset \end{cases} \longrightarrow \begin{cases} \text{Se necesitan on moved as} \\ \text{para pagar un precio } n. \end{cases}$$

$$\begin{cases} \text{Precio} = 0 \\ \text{Denom} = \{1, 4, 6\} \end{cases} \rightarrow \begin{cases} \text{Se necesitan 0 movedos} \\ \text{para pagar un precio de 0}. \end{cases}$$

3) Representación de soluciones triviales.

Las soluciones en azul son las más básicas.

Las soluciones intermedias para este problema se van razonando en orden.

Tobla A
 0
 1
 2
 3
 4
 5
 6
 7
 8

$$\{1\}$$
 0
 1
 2
 3
 4
 5
 6
 7
 8

 $\{1\}$
 0
 1
 2
 3
 4
 5
 6
 7
 8

 $\{1,4\}$
 0
 1
 2
 3
 1
 2
 3
 4
 2

 $\{1,4,6\}$
 0
 1
 2
 3
 1
 2
 1
 2
 2

Pagar P=3 teniendo monedos de 1ó4 implica usar 3 monedos (tres de 1).

Cada posición simboliza
el mínimo de monedas
para pagar un precio
disponiendo de las
denominaciones indicadas.

4) Ecuación de Bellman.

Partiendo de los soluciones triviales descritas en el paso 2 y representadas en la tabla, resulta:

$$A_{f,c} = \begin{cases} 0 & \text{si} & c = 0 \\ \infty & \text{si} & f = 0, c > 0 \end{cases}$$
 Esto es obvio, por lo razonado antes.

Ahora, para los casas intermedios, la lógica que se ha seguido al rellevar la tabla ha sido « copiar el valor de avriba hasta que la devoninación que se añade nueva, es mayor que la cantidad a devolver».

$$A_{f,c} = \begin{cases} 0 & \text{si} & C = 0 \\ \infty & \text{si} & f = 0, c > 0 \\ A_{f,c} & \text{si} & d_{g} > c, f > 0, c > 0 \\ & & \text{Denomination de la fila} \end{cases}$$

También ocurre que cuando aparece una nueva denominación, a veces no se usa, y es que hay que tener en cuenta los casos anteriores.

uso de @ por una de @ porque es mejor.

Por tanto, la ecuación de Bellman resultante es:

$$A_{f,c} = \begin{cases} 0 & \text{si} & C = 0 \\ \infty & \text{si} & f = 0, c > 0 \end{cases}$$

$$A_{f,c} = \begin{cases} A_{f,c} & \text{si} & d_g > c, f > 0, c > 0 \\ \min(A_{f,c}, c, 1 + A_{f,c}, c, d_g) & \text{si} & \text{wen otro coso} \end{cases}$$

$$Se \text{ anade la moveda que se ha usado}$$

- El razonamiento (ejemplo: P=8) es el siguiente: Como se busca el mínimo de monedos, hay que ver si el resultado de un paso es menor que otro anterior.
 - En $\{1,4,6\}$ para [3] se time que [3] % 6=[2], por lo que hay que ver si en $\{1,4,6\}$ para [2] hay X monedas como para que sea solución óptima.
 - O Se acaba de usar O, <u>la solución ya lleva 1 moneda.</u> +1 por buscar atras
 - En {1,4,6} para □ se tiene que □ % 1 = 2, y como ① es la moneda más pequeña, necesitaria 2 movedas ②.
 - O Se uso (II), <u>la solución devuelve 3 monedas</u>: (I) (16).

 Solución 2 + 1 Buscar

				8 - 6 = 2					• • •	n
Tabla A	0	1	2	3	4	S	6	7	8	>
[}	00	<i>∞</i>	∞	00	<i>∞</i>	00	00	∞	60	
{1}	0	1	2	3	4	S	6	7	8	
{1} {1,4} {1,4}	0	1	2	3	1	2	3	4	2	
{1,4,6}	0	1 (2	3	1	2	1	2	2)
			£			+1	6			