# FIT9137 Introduction to Computer Architecture and Networks

Week 9: Network & Transport Layers
Safi Uddin



www.shutterstock.com • 1322202464

# Learning Outcomes

- Apply TCP/IP protocols in a network
- Appropriately use and employ routing and addressing
- Investigate how applications communicate over the internet using TCP/IP
- Appropriately use and employ static & dynamic routing

### Consultations

- There are multiple consultations sessions per week, both online and on campus.
- https://learning.monash.edu/course/view.php?id=34622&s ection=5
- Good for: clarify your questions about the contents, get further assessment feedback from your marker, ...

### **Network Layer:**

Addressing, Networks & Subnets

Application layer

Address Resolution

Transport layer

Dynamic IP addressing (DHCP)

Network layer

addressing and routing of packets

connecting different networks

Physical layer

# Addressing

# Addressing applications



130.194.11.146:25 smtp.monash.edu



Fixed server port (25 = SMTP)

111.119.8.38:80

http://www.nasa.gov



## One address per

#### **Application Layer**

URL (e.g. <a href="http://www.csse.monash.edu">http://www.csse.monash.edu</a>)

#### **Transport Layer (TCP)**

- Port number (e.g. 80 for HTTP)
- identifies the application that handles a message

#### **Network Layer (IP)**

- IP address (e.g. 130.194.66.43)
- used for identifying devices across networks

#### **Data Link Layer (Ethernet)**

- MAC address (e.g. 00:23:ae:e7:52:85)
- used for sending frames in a LAN

#### Layers

Application layer

Transport layer

Network layer

Data-link layer

Physical layer

### Where to get an address?

#### **DNS** entries

- ICANN/Registrars manage top-level and second-level domains
- Network admins manage DNS for their assigned domains

#### **Port numbers**

IANA maintains official <u>list of port numbers</u>

#### IP addresses

- IANA and Regional Internet Registries (RIR) allocate blocks of addresses, local registries redistribute to customers.
- Network admins configure (static or dynamic) addresses in their assigned block

#### **MAC** addresses

Unique addresses allocated by hardware manufacturers

Addressing devices



### IP version 4

#### 32 bit addresses

Written using "dotted decimal" notation

Example: 130.194.66.43



### Hierarchy used for routing

You can immediately see if a destination address is in the same subnet!

Subnet mask: 255.255.255.192 or /26

### Subnets



### Address resolution

### Assume we browse to <a href="http://www.google.com.au">http://www.google.com.au</a>

- We know client use random tcp port & server uses destination port 80 for http
- We have to translate <u>www.google.com.au</u> into an IP address: 216.58.220.99 (domain name resolution)
- We send a request through the Internet to that IP address
- The router in the destination LAN of 216.58.220.99 needs to know the MAC address for 216.58.220.99 to deliver the frame (MAC address resolution)

This is known as Name resolution or address resolution.

### Address resolution: Application Layer

### **DNS (Domain Name System)**

- Application layer protocol for address resolution
- Client sends request to DNS server to get IP address registered for a name

#### **DNS Servers**

- Implement a distributed database of names
- Are organised in a hierarchy reflecting the structure of the domain names

### DNS Query



### Address resolution: Data Link Layer

How to find the MAC address for an IP address:



Arp /? command for ARP MAC address to IP\_Address resolution

# PollEv Question: Subnetting

In Network layer Addressing, Internet Protocol Version (IPv4) addresses, Classful addressing is replaced with:

- A. Classless addressing
- B. Classful addressing new version
- C. Classful advertising
- D. Classless broadcast

### PollEv Question: ARP

Address Resolution Protocol (ARP) request is sent as a broadcast message, the reply is:

- A. Unicast message
- B. Broadcast message
- C. Multicast message
- D. Generated locally

### Activity A: Address Resolution

# Activity A

# Configuring IP addresses

### Every device on the network needs an IP address

- Doesn't change for servers and routers, so configure statically
- Probably doesn't need to change for workstations, but configuring is time consuming
- Infeasible to allocate statically for mobile devices

# Dynamic Addressing IPv4

### **Dynamic Host Configuration Protocol (DHCP)**

- Send broadcast to DHCP server to get an address and subnet mask
- Addresses are only leased for a limited time
- Makes efficient use of limited IPv4 address space (since only computers currently connected to the network get an address)
- Much easier for admins to manage than static addresses

### Activity B: DHCP

### **Normal DHCP Operation**



Client IP: 192.168.1.10/24

Gateway: 192.168.1.1

DNS: 192.168.1.6

#### DHCPDISCOVER

**Broadcast for a DHCP Server** 

#### **DHCPOFFER**

MAC unicast with configuration information

#### DHCPREQUEST

Broadcast requesting configuration information sent in DHCPOFFER

#### **DHCPACK**

Acknowledge configuration information and begins lease



Pool: 192.168.1.0/24

Gateway: 192.168.1.1

DNS Server: 192.168.1.6

### PollEv Question: DHCP

The DHCP (Dynamic Host Configuration Protocol) server

- A. Maintains a database of available IP addresses
- B. Maintains the information about client configuration parameters
- C. Grants an IP address when receives a request from a client
- D. All of the above

# Activity B

# The Network Layer: Routing

### Routers

#### Routers connect networks

- Internet is a network of networks!
- Most important piece of Internet infrastructure



#### A router is a layer 3 device

- one IP address per interface, i.e. typically per subnet it is connected to
- Clients send packets to routers if destination is outside their own subnet
- Routers use IP address to determine over where the packet is sent next

# Routing

### For each incoming packet, the router

looks at the packet's destination IP address



- consults the routing table: to which other router should I send a packet for this destination, or can I deliver it directly?
- if destination not in table: send to default gateway
- if no default gateway configured: packet can't be routed and is dropped

### Types of decentralised routing

### **Static routing : Activity C**

- Network manager prepares fixed routing tables
- Manually updated when the network changes
- Used in simple networks that don't change a lot

### **Dynamic routing:**

- Routers exchange information to build routing tables dynamically
- Initial tables can be set up by network managers

FIT9137 2

# Dynamic routing algorithms

#### **Distance vector**

Exchange information about **distance to destination**, choose **shortest route** 

- EIGRP (Enhanced Interior Gateway Routing Protocol)
- RIP (Routing Information Protocol)
- BGP (Border Gateway Protocol)

#### **Link state**

Exchange information about quality of links, choose fastest route

OSPF (Open Shortest Path First)

### Routing Information Protocol (RIP)

### **Distance = hop count**

- Max. hop count 15
- Avoids loops

### Only used in small networks

- At most 15 hops
- Updates transmit whole routing table
- Can be slow to converge

FIT913 24

## Link-state routing protocols

### Routers exchange information about connectivity

- not just routing table (best routes) but all the network it knows about
- use a metric/Cost (usually link speed) to describe the quality of each connection.

### Each router creates a topological map

- a map of the entire network
- each router can independently compute best route to every subnet using a shortest path first algorithm

FIT913 30

### PollEv Question: Routing

A \_\_\_\_\_ routing table contains information entered manually.

- A. static
- B. dynamic
- C. hierarchical
- D. none of these options

### Activity C: Static Routing

# Activity C Network Routing -Static Routing

# The Transport Layer: TCP / UDP

# Network & Transport Layers

### **Network Layer:**

- addressing and routing of packets
- connecting different networks

### **Transport Layer:**

- establish end-to-end channel
- reliable communication (segmenting + ARQ)
- addressing of individual applications

Layers

Application layer

Transport layer

Network layer

Data-link layer

Physical layer

### TCP: A reliable end-to-end channel

Layers

Application layer

Transport layer

Network layer

Data-link layer

Physical layer

### Transmission Control Protocol (TCP)

#### **Connection-oriented**

- A virtual circuit is established between two devices
- To the application it always looks like a point-topoint full duplex connection
- Messages split into segments for transmission

#### Reliable

- Errors are detected and corrected
- Segments are re-assembled in the correct order

### TCP

### **TCP** implements segmentation

large application layer messages are split into segments

### How fast to send segments?

 Sending too many at once may overload receiver or intermediate path with lower bandwidth

### How to decide the segment size?

- Sending too large segments requires IP to fragment
- Large segments also increase errors

### **UDP**:

### connectionless, unreliable transport



### User Datagram Protocol

#### Connectionless

- Each packet ("datagram") sent individually
- . No virtual circuit
- No acknowledgement of receipt (unreliable)

#### **Small header**

8 bytes (compared to 20 bytes for TCP)

#### **Use cases**

- Applications that send very small messages (e.g., DNS, DHCP, Zoom etc.)
- Applications where loss of segments is acceptable, e.g. streaming video

FIT913 45