Métodos Numéricos de Optimización con restricciones.

Bustos Jordi Práctica I

September 10, 2025

Ejercicio 1. Sean $f: \mathbb{R}^n \to \mathbb{R}, x, d \in \mathbb{R}^n, \lambda > 0$ tales que $x + \lambda d$ cumple la condición de Armijo. Sea $0 < \mu < \lambda$. ¿Cumple μ la condición de Armijo? Pruébelo o dé un contraejemplo que puede ser gráfico.

Proof.

Ejercicio 2. Considere la función

$$f(x,y) = x - y + 2x^2 + 2xy + y^2.$$

- (a) Muestre que d = (-1, 0) es una dirección de descenso para f en (0, 0). Analizar cuál es el paso óptimo que se puede dar en esa dirección para hacer decrecer el valor de f utilizando búsqueda exacta.
- (b) Para la dirección de máximo decrecimiento en (0,0) determinar el intervalo de paso máximo que se puede dar en esa dirección a partir de (0,0) para hacer decrecer el valor de f utilizando la regla de Armijo con parámetro $\sigma_1 = 1/4$.

Proof.

Ejercicio 3. Considere la función

$$f(x,y) = 2x^2 + y^2 - 2xy + 2x^3 + x^4.$$

- (a) Verificar que d = (0,1) es una dirección de descenso para f a partir de (0,-2).
- (b) Para la dirección a partir de (0, -2) considerada en (a), el valor t = 1 verifica la regla de Armijo con parámetro $\sigma_1 = 4/5$? ¿Para qué valores de σ_1 el valor de longitud de paso t = 1 verifica la regla de Armijo?

Proof.

Ejercicio 4. Sea f una función diferenciable tal que $\nabla f(\bar{x}) \neq 0$. Mostrar que si $H: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ es una función continua que asigna a cada $x \in \mathbb{R}^n$ una matriz definida positiva H(x) entonces la dirección

$$d = -H(x)\nabla f(x)$$

es una dirección de descenso para f en \bar{x} .

Proof.

Ejercicio 5. Considere la función $f(x,y) = (x-2y)^2 + x^4$. Calcular la dirección de Newton en el punto (2,1). ¿Cumple el valor t=1 la regla de Armijo con parámetro $\sigma_1=1/5$?

Proof.

Ejercicio 6. Considere el siguiente método:

- Dado x_k . Calcular d_k como se indica a continuación.
- Hacer t = 1.

Si $f(x_k + td_k) \le f(x_k) + \frac{1}{2}td_k^T \nabla f(x_k)$ (*) hacer $x_{k+1} = x_k + td_k$,

Sino, reemplazar por t/2 hasta que se verifique (*).

Sea $f(x,y) = x^2 + y^2 - xy$, $x_0 = (2,0)$.

- (a) Dibuje algunas curvas de nivel de f.
- (b) Hacer dos iteraciones del método utilizando la dirección de Cauchy. Dibuje los iterados obtenidos en el plano en el cual están las curvas de nivel de f.
- (c) Resuelva el problema mediante el uso de la dirección de Newton.

Proof.

Ejercicio 7. Sean $u, v \in \mathbb{R}^n$ no nulos y $A \in \mathbb{R}^{n \times n}$ una matriz no singular. Sea $B = A + uv^T$. Demuestre que B es no singular si y solo si $\sigma = 1 + v^T A^{-1} u \neq 0$. En este caso demuestre que

$$B^{-1} = A^{-1} - \frac{1}{\sigma} A^{-1} u v^T A^{-1}.$$

Idea de la demostración:

- (a) Mostrar que la matriz $B = I + xy^T$, para $x, y \in \mathbb{R}^n$ tiene dos autovalores: $\lambda_1 = 1$ con multiplicidad n-1 (hay que demostrar que dim $(N\acute{\mathbf{u}}(B-\lambda_1 I)) = n-1$, para eso considerar que la imagen de $B-\lambda_1 I = xy^T$ que es una matriz de rango 1 cuya imagen tiene dimensión 1) y $\lambda_2 = 1 + y^T x$.
- (b) Lo anterior implica que

$$\det(B) = 1 + y^T x,$$

luego,

$$\det(I + A^{-1}xy^T) = 1 + y^T A^{-1}x.$$

(c) Finalmente mostrar que $A + uv^T$ es no singular si y solo si $I + A^{-1}uv^T = A^{-1}(A + uv^T)$ es invertible. Luego, hacer el producto de la matriz por su inversa para verificar la fórmula.

Proof.

Ejercicio 8. Demostrar que la adaptada BFGS para la inversa cumple: Si H_k es simétrica definida positiva y se tiene que $s_k^T y_k > 0$ entonces H_{k+1} es simétrica definida positiva.

Proof.

Ejercicio 9. Considere el método de Quasi-Newton con fórmula adaptada secante DFP búsqueda lineal exacta y matriz inicial H_0 definida positiva. Demuestre que $y_k^T s_k > 0$ para se utiliza la búsqueda de Wolfe.	O .
Proof.	