Guangyuan Weng

(+1) 302 364 6860 ♦ weng.g@northeastern.edu ♦ gweng.netlify.app

177 Huntington Ave, FL 22, Boston, MA 02115

EDUCATION

Northeastern University

Sep 2021 - Aug 2026 (Expected)

Ph.D. Student, Computer and Information Sciences

Boston, MA

- · Advisor: Prof. Huaizu Jiang
- · Research Interests: Visual Compositional/Cognitive Reasoning

ShanghaiTech University

Sep 2017 - Jul 2021

B.E., Computer Science and Technology

Shanghai, China

Advisors: Prof. David J. Crandall (Indiana University), Prof. Haipeng Zhang

RESEARCH EXPERIENCE

Visual Intelligence Lab, Northeastern University

Sep 2021 - Present

Research Assistant (Advisor: Huaizu Jiang)

Boston, MA

- · Exploring visual models' induction capability by few-shot learning and compositional reasoning of novel concepts
- · Learning contrastively by modeling novel concepts using synthetic data
- · Developing models for human-object relation representation in the real word

IU Computer Vision Lab, Indiana University

Jul 2020 - Jun 2021

Remote Research Intern (Advisor: Prof. David J. Crandall)

Bloomington, IN

- · Focused on recognizing human actions in videos captured from egocentric cameras (e.g., google glass)
- · Discovered how action-object associations in datasets influence the generalization ability of action recognition models
- · Trained a graph convolutional neural network to model the positions and sizes of hands and objects in the videos

Financial Intelligence Lab, ShanghaiTech University

Mar 2020 - Jun 2021

Undergraduate Research Assistant (Advisor: Prof. Haipeng Zhang)

Shanghai, China

- · Investigated general rules of human Venture Capital (VC) investment behavior
- · Discovered the influencing factors of VC investment behavior, e.g., focus level, academic achievements, etc.
- · Constructed a mathematical model to simulate human choice and consequence outcomes by Maximum Likelihood Estimation (MLE), using large-scale data from PitchBook Data, Inc.

Mobile Autonomous Robotic Systems Lab (MARS Lab)

Sep 2018 - Jan 2020

Undergraduate Research Assistant (Advisor: Prof. Sören Schwertfeger)

Shanghai, China

- · Built a mapping/SLAM robot with super-precise timing and localization with hardware synchronization
- · Designed a printed circuit board (PCB) mounted on a field robotics research platform to produce synchronized signal for all sensors (e.g., IMUs and lidars) and reduce noise of trigger signal
- · Generated three high-resolution and sensor-dense datasets to evaluate the performance of SLAM algorithms

PUBLICATIONS

Action Recognition based on Cross-Situational Action-object Statistics

- · Tsutsui, Satoshi, Wang, Xizi, Weng, Guangyuan, Zhang, Yayun, Crandall, David, Yu, Chen
- · 12th IEEE International Conference on Development and Learning (ICDL 2022)

Advanced Mapping Robot and High-Resolution Dataset

- · Chen, H., Yang, Z., Zhao, X., Weng, G., Wan, H., Luo, J., Ye, X., Zhao, Z., He, Z., Dong, T., Schwertfeger, S.
- · Journal of Robotics and Autonomous Systems

Towards Generation and Evaluation of Comprehensive Mapping Robot Datasets

- · Chen, H., Zhao, X., Luo, J., Yang, Z., Zhao, Z., Wan, H., Ye, X., Weng, G., He, Z., Dong, T., Schwertfeger S.
- · Workshop on Dataset Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR of the 2019

 IEEE International Conference on Robotics and Automation (ICRAW 2019)

ACADEMIC PROJECTS

Slim Dog Apr 2020 - Jul 2019

- · Built a partly 3D printed quadrupedal dog-like that can trot, and walk
- · Calculated Inverse Kinematics, and Virtual Leg Principal and launch them on Arduino

Music Composition by Markov-Like Models

Dec 2019 - Jan 2020

- · Proposed two Markov-Like Models based on music theory, i.e., first-order and second-order models
- · Trained multiple levels of *Markov-Like Models* on piano pieces from the modern era and improved the models' ability to generate new pieces; Python used

MCMC Based Inference for Galerkin System of Poisson's Equation

Nov 2019 - Jan 2020

- · Solved a Bayesian inverse problem in physical situation by Markov Chain Monte Carlo (MCMC)
- · Utilized Galerkin Approximation, a method for converting a continuous operator problem to a discrete problem, to reduce the computational cost of Bayesian inverse problems without sacrificing much accuracy; MATLAB used

Pintos Operating System

Sep 2019 - Jan 2020

- · Pintos was developed for Stanford's CS 140 operating system course as a successor to Nachos
- · Developed four modules of an OS based on the original framework, more than 3,500 lines of C code
- · Designed four interactive modules regard to the principles of multi-programming, scheduling, virtual memory, and file systems

ACTIVITIES

CS5330 Pattern Recognition and Computer Vision (21 Fall, 22 Fall)	Sep 2022
Teaching Assistant	$Boston,\ MA$
Upenn Curiosity AI Robotics and Smart Material Summer Camp	Aug 2019
Teaching Assistant supervised by Prof. Jianbo Shi, GRASP Lab, University of Pennsylvania	Shanghai, China
2018 IEEE ComSoc Summer School on Fog Computing	Jun 2018
IEEE ComSoc, OpenFog Consortium	Shanghai, China

HONORS

ShanghaiTech Merit Students (2019-2020, Top 5%)

Dec 2020

ShanghaiTech University

Shanghai Tech Scholarship for Outstanding Undergraduate Students (RMB 30,000)

Dec 2020

ShanghaiTech University

Global Talent Attraction Program, International Summer Research Fellowship (\$ 4,000)

Feb 2020

Indiana University Bloomington

SKILLS

LanguagesChinese (Native), English (TOEFL-iBT 112)Computer LanguagesPython, C++, C, Rust, MATLAB, AWKProtocols & APIsPyTorch, ROS, Processing (Java), LATEX