# Adaptive Experimental Design with Temporal Interference

Mohammad Rasouli — Peter Glynn — Ramesh Johari
Stanford University
rjohari@stanford.edu

24 May 2019

#### **Motivation: Testing algorithms**

Suppose you are one of these:





















You have two algorithms A and B that you want to compare (e.g., matching algorithms).

Each algorithm changes the *state* of the system.

How do you design an experiment (A/B test) and an estimator to compare them?

#### Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A (heads) or B (tails).

Why is this not a good idea?

#### Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A (heads) or B (tails).

Why is this not a good idea?

Temporal interference: Each algorithm's action changes the *state* as seen by the other algorithm.

Therefore experimental units (time steps) *interfere* with each other.

# (Less naive) industry practice: Switchback designs

Many platforms (ridesharing, delivery marketplaces, etc.) use *switchback designs* to run A/B tests of algorithms:

- 1. Divide time into fixed length non-overlapping intervals.
- **2.** In each successive interval, assign one of algorithm A or B.
- **3.** Compute sample average estimate  $SAE_A$  and  $SAE_B$  of reward of A and B respectively.
- **4.** Compute  $SAE_A SAE_B$  as treatment effect estimate  $\widehat{TE}$ .



Note: Doesn't eliminate temporal interference.

#### In their own words...

# Experimentation in a Ridesharing Marketplace



#### Part 1 of 3: Interference Across a Network

Technology companies strive to make data-driven product decisions—and Lyft is no exception. Because of that, online experimentation, or A/B testing, has become ubiquitous. The way it's bandied about, you'd be excused for thinking that online experimentation is a completely solved problem. In this post, we'll illustrate why that's far from the case for systems—like a ridesharing marketplace—that evolve according to network dynamics. As we'll see, naively partitioning users into treatment and control groups can bias the effect estimates you care about.

#### Switchback Tests and Randomized Experimentation Under Network Effects at DoorDash



David Kastelman, Data Scientist & Raghav Ramesh, Machine Learning Engineer

customers. As a result, this treatment algorithm may be observed to have a faster average time to completion even if it is not a better algorithm simply because it is cherry-picking short deliveries and leaving the control group to complete longer deliveries. Bias is more likely to occur if your regions get too small or you switch back too frequently; when we switchback less frequently,

#### Overview of our contributions

We cast the problem of testing two algorithms as one of *testing two Markov* chains.

We focus on *consistent* estimation of TE.

We develop two pairs of designs and consistent estimators:

- ► A Markov policy for allocation, together with a MLE for TE, that is *sample* efficient but not practical.
- ▶ A regenerative policy for allocation, together with the SAE for TE, that is practical but not as sample efficient.

#### Related work

► Mitigating network interference

```
Sobel (2006); Hudgens and Halloran (2008); Manski (2013); Ugander et al. (2013); Manski (2013); Eckles et al. (2017); Choi (2017); Baird et al. (2018); Athey et al. (2018); Basse et al. (2019)
```

► Mitigating marketplace interference

Kohavi et al. (2009); Ostrovsky and Schwarz (2011); Bottou et al. (2013); Blake and Coey (2014); Basse et al. (2016); Wager and Xu (2019)

#### Related work (continued)

- Estimation of a single Markov chain Billingsley (1961); Kutoyants (2013)
- Markov decision processes with minimum variance objectives: Generally computationally intractable
   Sobel (1982, 1994); Di Castroet et al. (2012); Filar et al. (1989); Iancu et al. (2015); Mannor and Tsitsiklis (2011); Yu et al. (2018)
- ► Pure exploration in reinforcement learning: Focus on finding the best policy Brunskill et al. (2017); Putta and Tulabandhula (2017)
- ➤ Offline policy evaluation in reinforcement learning

  Precup et al. (2000), Dudik et al. (2015), Theocharous et al. (2015), Thomas and Brunskill (2016), etc.

#### **Preliminaries**

- ightharpoonup Discrete time  $n = 0, 1, 2, \dots$
- Finite state space S (x, y denote states)

- ightharpoonup Discrete time  $n = 0, 1, 2, \dots$
- ightharpoonup Finite state space S (x, y denote states)
- ightharpoonup Two algorithms (actions) 1 and 2 ( $\ell$  denotes algorithm)
- ▶ Unknown irreducible transition matrices  $P(\ell) = (P(\ell, x, y), x, y \in S)$
- ▶ Invariant distributions  $\pi(\ell) = (\pi(\ell, x), x \in S)$  (row vector)

- ightharpoonup Discrete time  $n = 0, 1, 2, \dots$
- Finite state space S (x, y denote states)
- ightharpoonup Two algorithms (actions) 1 and 2 ( $\ell$  denotes algorithm)
- ▶ Unknown irreducible transition matrices  $P(\ell) = (P(\ell, x, y), x, y \in S)$
- ▶ Invariant distributions  $\pi(\ell) = (\pi(\ell, x), x \in S)$  (row vector)
- ▶ Unknown reward distribution  $R \sim f(\cdot | \ell, x, y)$  (finite mean and variance)
- $ightharpoonup r(\ell,x) = \mathbb{E}[R|\ell,x]; \ r(\ell) = (r(\ell,x),x\in S) \ \text{(column vector)}$

- ightharpoonup Discrete time  $n = 0, 1, 2, \dots$
- Finite state space S (x, y denote states)
- ightharpoonup Two algorithms (actions) 1 and 2 ( $\ell$  denotes algorithm)
- ▶ Unknown irreducible transition matrices  $P(\ell) = (P(\ell, x, y), x, y \in S)$
- ▶ Invariant distributions  $\pi(\ell) = (\pi(\ell, x), x \in S)$  (row vector)
- ▶ Unknown reward distribution  $R \sim f(\cdot | \ell, x, y)$  (finite mean and variance)
- $\blacktriangleright \ r(\ell,x) = \mathbb{E}[R|\ell,x]; \ \pmb{r}(\ell) = (r(\ell,x),x \in S)$  (column vector)

At time n: State  $X_n$ , action  $A_n$ , reward  $R_n$ 

#### The estimation problem

Treatment effect of interest is the *steady state reward difference*:

$$\alpha = \alpha(2) - \alpha(1) = \sum_{x} \pi(2, x) r(2, x) - \sum_{x} \pi(1, x) r(1, x)$$
$$= \pi(2) \mathbf{r}(2) - \pi(1) \mathbf{r}(1).$$

#### The estimation problem

Treatment effect of interest is the *steady state reward difference*:

$$\alpha = \alpha(2) - \alpha(1) = \sum_{x} \pi(2, x) r(2, x) - \sum_{x} \pi(1, x) r(1, x)$$
$$= \pi(2) \mathbf{r}(2) - \pi(1) \mathbf{r}(1).$$

We get to choose an estimator and a policy:

- **Estimator**:  $\alpha = (\alpha_n : n \ge 0)$ ,  $\alpha_n \in \mathbb{R}$
- ▶ Policy:  $A = (A_n : n \ge 0)$ ,  $A_n \in \{1, 2\}$

Estimator and policy are adapted to history, and policy can be randomized.

#### **Maximum likelihood estimation**

#### The maximum likelihood estimator

**Definitions:** 

$$\Gamma_n(\ell, x) := \sum_{j=0}^{n-1} I(X_j = x, A_j = \ell)$$

$$r_n(\ell, x) := \frac{\sum_{j=0}^{n-1} I(X_j = x, A_j = \ell) R_{j+1}}{\max\{\Gamma_n(\ell, x), 1\}}$$

$$P_n(\ell, x, y) := \frac{\sum_{j=0}^{n-1} I(X_j = x, A_j = \ell, X_{j+1} = y)}{\max\{\Gamma_n(\ell, x), 1\}}$$

Let  $\pi_n(\ell)$  be invariant distribution of  $P_n(\ell)$  (exists a.s. as  $n \to \infty$ ). Then:

$$\alpha_n^{\mathsf{MLE}} = \boldsymbol{\pi}_n(2)\boldsymbol{r}_n(2) - \boldsymbol{\pi}_n(1)\boldsymbol{r}_n(1).$$

#### Time-average regular policies

We optimize over time-average regular policies.

#### **Definition**

Policy A is time-average regular if

$$\frac{1}{n}\Gamma_n(\ell, x) \xrightarrow{p} \gamma(\ell, x)$$

as  $n \to \infty$  for each  $x \in S, \ell = 1, 2$ , and (possibly random)  $\gamma(\ell, x)$ .

We call  $\gamma = (\gamma(\ell, x) : x \in S, \ell = 1, 2)$  the *policy limit*.

(For our theory we will require  $\gamma(\ell,x)>0$  a.s.)

# Central limit theorem for MLE: Single chain

Suppose we sample only algorithm  $\ell$ . Then  $\gamma(\ell,x)=\pi(\ell,x)$ , and:

$$n^{1/2}\left(\alpha_n^{\mathsf{MLE}}(\ell) - \alpha(\ell)\right) \Rightarrow \sum_x \frac{\pi(\ell, x) \sigma(\ell, x)}{\gamma(\ell, x)^{1/2}} G(\ell, x)$$

#### where:

- $ightharpoonup G(\ell,x)$  are i.i.d. N(0,1);
- $\sigma^2(\ell, x) = \operatorname{Var}\left(R_j + \tilde{g}(\ell, X_j) \mid X_{j-1} = x, A_{j-1} = \ell\right)$  (assume positive);
- $ightharpoonup \tilde{g}(\ell)$  solves the following *Poisson equation*:

$$\tilde{\boldsymbol{g}}(\ell) = (\boldsymbol{I} - \boldsymbol{P}(\ell) + \boldsymbol{\Pi}(\ell))^{-1} \boldsymbol{r}(\ell)$$

▶  $\Pi(\ell)$  is the matrix where each row is  $\pi(\ell)$ .

# Central limit theorem for MLE: Single chain

Key idea:

$$\alpha_n(\ell) - \alpha(\ell) = \sum_{x} \pi_n(\ell, x) r_n(\ell, x) - \sum_{x} \pi(\ell, x) r(\ell, x)$$

$$= \pi_n(\ell) (\mathbf{r}_n(\ell) - \mathbf{r}(\ell)) + (\pi_n(\ell) - \pi(\ell)) \mathbf{r}(\ell)$$

$$= \pi_n(\ell) (\mathbf{r}_n(\ell) - \mathbf{r}(\ell)) + \pi_n(\ell) (\mathbf{P}_n(\ell) - \mathbf{P}(\ell)) \tilde{\mathbf{g}}(\ell)$$

### Central limit theorem for MLE: Adaptive sampling

#### **Theorem**

For time-average regular policy A with strictly positive policy limits:

$$n^{1/2}(\alpha_n^{\textit{MLE}} - \alpha) \Rightarrow \sum_x \frac{\pi(2,x)\sigma(2,x)}{\gamma(2,x)^{1/2}} G(2,x) - \sum_x \frac{\pi(1,x)\sigma(1,x)}{\gamma(1,x)^{1/2}} G(1,x).$$

*Proof intuition*: Use the single chain argument, together with martingale arguments to handle adaptive sampling.

# Optimal oracle policy for MLE

Let K be the (convex, compact) set of all  $(\kappa(\ell, x) : x \in S, \ell = 1, 2)$  such that:

$$\kappa(1,y) + \kappa(2,y) = \sum_{\ell} \sum_{x} \kappa(\ell,x) P(\ell,x,y), \quad y \in S;$$
$$\sum_{\ell} \sum_{x} \kappa(\ell,x) = 1;$$
$$\kappa(\ell,x) \ge 0.$$

Lemma: The law of any time-average regular policy limit  $\gamma$  is a probability measure over  $\mathcal{K}$ .

# Optimal oracle policy for MLE

Let  $\kappa^*$  be the solution to the following convex optimization problem:

$$\begin{array}{ll} \text{minimize} & \sum_{\ell} \sum_{x} \frac{\pi^2(\ell,x) \sigma^2(\ell,x)}{\kappa(\ell,x)} \\ \text{subject to} & \kappa \in \mathcal{K}. \end{array}$$

Then  $\kappa^*$  can be realized as the policy limit of the following stationary, Markov policy:

Run algorithm  $\ell$  in state x with probability:

$$p^*(\ell, x) = \frac{\kappa^*(\ell, x)}{\kappa^*(1, x) + \kappa^*(2, x)}.$$

# Optimal oracle policy for MLE

#### **Theorem**

The policy  $p^*$  minimizes the asymptotic variance of  $n^{1/2}(\alpha_n^{\rm MLE}-\alpha)$  over time-average regular policies.

# Optimal oracle policy for MLE: Proof idea

For a given policy, the asymptotic variance of  $n^{1/2}(\alpha_n^{\rm MLE}-\alpha)$  is:

$$\begin{split} \mathbb{E}\bigg[\sum_{\ell} \sum_{x} \frac{\pi^{2}(\ell, x) \sigma^{2}(\ell, x)}{\gamma(\ell, x)}\bigg] \\ &\geq \sum_{\ell} \sum_{x} \frac{\pi^{2}(\ell, x) \sigma^{2}(\ell, x)}{\mathbb{E}[\gamma(\ell, x)]} \quad \text{(via Jensen's inequality)} \\ &\geq \inf_{\kappa \in \mathcal{K}} \sum_{\ell} \sum_{x} \frac{\pi^{2}(\ell, x) \sigma^{2}(\ell, x)}{\kappa(\ell, x)}. \end{split}$$

# **Optimal online policy for MLE**

Without knowledge of the primitives, we can compute  $\kappa_n(\ell,x)$  as the optimal solution given  $\boldsymbol{P}_n(\ell)$ , and set:

$$p_n(\ell, x) = (1 - \epsilon_n) \left( \frac{\kappa_n(\ell, x)}{\kappa_n(1, x) + \kappa_n(2, x)} \right) + \frac{1}{2} \epsilon_n,$$

with  $\epsilon_n = n^{-1/2}$  (forced exploration).

This yields the asymptotically optimal policy limits in an online fashion.

# **Optimal online policy for MLE**

Without knowledge of the primitives, we can compute  $\kappa_n(\ell,x)$  as the optimal solution given  $\boldsymbol{P}_n(\ell)$ , and set:

$$p_n(\ell, x) = (1 - \epsilon_n) \left( \frac{\kappa_n(\ell, x)}{\kappa_n(1, x) + \kappa_n(2, x)} \right) + \frac{1}{2} \epsilon_n,$$

with  $\epsilon_n = n^{-1/2}$  (forced exploration).

This yields the asymptotically optimal policy limits in an online fashion.

But...computationally complex, and typically poor finite horizon performance.

# Sample average estimation

#### Sample average estimation

Given a policy A, the sample average estimator is:

$$\alpha_n^{\mathsf{SAE}} = \frac{\sum_{j=0}^{n-1} I(A_j = 2) R_{j+1}}{\sum_{j=0}^{n-1} I(A_j = 2)} - \frac{\sum_{j=0}^{n-1} I(A_j = 1) R_{j+1}}{\sum_{j=0}^{n-1} I(A_j = 1)}$$

This estimator is computationally much less intensive.

However, it suffers from *temporal interference* every time the policy switches chains.

#### Regenerative policies

Fix a state  $x^r$  (the regeneration state).

Only change chains at visits to  $x^r$ ; at each visit, choose  $\ell$  with probability  $p(\ell)$ .

#### Regenerative policies

Fix a state  $x^r$  (the regeneration state).

Only change chains at visits to  $x^r$ ; at each visit, choose  $\ell$  with probability  $p(\ell)$ .



#### Regenerative policies

Fix a state  $x^r$  (the regeneration state).

Only change chains at visits to  $x^r$ ; at each visit, choose  $\ell$  with probability  $p(\ell)$ .



### Consistency and central limit theorem

SAE of regenerative policy is consistent asymptotically (no temporal interference by design).

Can show: There exists  $q(\ell)$  (depending on  $x^r$  and p) such that q(1)+q(2)=1 and  $\gamma(\ell,x)=q(\ell)\pi(\ell,x)$  for all  $\ell,x$ .

 $q(\ell)$  gives the fraction of time spent with chain  $\ell$ . (Can choose any q we want by varying p.)

Since as if we have two parallel runs of each chain, convergence is at rate  $n^{1/2}$  and CLT holds.

### Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

$$q^*(\ell) = \frac{\overline{\sigma}(\ell)}{\overline{\sigma}(1) + \overline{\sigma}(2)},$$

where  $\overline{\sigma}^2(\ell) = \sum_x \pi(\ell, x) \sigma^2(\ell, x)$ .

Scaled asymptotic variance of this policy is  $(\overline{\sigma}(1) + \overline{\sigma}(2))^2$  (achievable with *any* choice of  $x^r$ ).

Can similarly construct an asymptotically equivalent online algorithm.

### Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

$$q^*(\ell) = \frac{\overline{\sigma}(\ell)}{\overline{\sigma}(1) + \overline{\sigma}(2)},$$

where  $\overline{\sigma}^2(\ell) = \sum_x \pi(\ell, x) \sigma^2(\ell, x)$ .

Scaled asymptotic variance of this policy is  $(\overline{\sigma}(1) + \overline{\sigma}(2))^2$  (achievable with *any* choice of  $x^r$ ).

Can similarly construct an asymptotically equivalent online algorithm.

Unboundedly *suboptimal* in general relative to MLE with Markov optimal policy: There we had |S| degrees of freedom vs. only one degree of freedom here.

#### **Practical considerations: Future work**

- Finite horizon performance
  - ightharpoonup Prefer  $x^r$  with smaller cycle length
  - Use bias reduction techniques (future work)

#### **Practical considerations: Future work**

- Finite horizon performance
  - ightharpoonup Prefer  $x^r$  with smaller cycle length
  - Use bias reduction techniques (future work)
- Large-scale experimentation
  - Single regeneration state unlikely to exist
  - State aggregation; regenerative set (semi-regenerative approach)
  - ► Combine with network clustering techniques for interference mitigation

# **Concluding thoughts**

### **Summary and looking ahead**

We proposed a benchmark model with which to evaluate sampling efficiency of consistent estimator-design pairs for switchback experimentation.

There are several considerations we have not addressed:

- Finite horizon analysis
- ► Multiple treatments
- Nonstationarity
- Heterogeneous treatment effects