Relatório 04: Medidas com Osciloscópio

Ana Letícia Pereira - RA 119065 Milena Lumi Hangai - RA 184654 Rafael Picasso Tóth - RA 223706 Tomás Conti Loesch - RA 224991

1. AFIRMAÇÃO DE HONESTIDADE

A equipe declara que este relatório que está sendo entregue foi escrito por ela e que os resultados apresentados foram medidos por ela durante as aulas de F 329 no 2S/2020. Declara ainda que o relatório contém um texto original que não foi submetido anteriormente em nenhuma disciplina dentro ou fora da Unicamp.

2. INTRODUÇÃO

Osciloscópio é um equipamento permite visualizar a evolução temporal de uma diferença de potencial ou a sua evolução relativamente a outra tensão e também diferenças de fase entre sinais periódicos. Estas respostas de sinais são representadas em formas de onda e quase de forma instantânea são representadas graficamente no domínio temporal.

Objetivo do experimento é conhecer o princípio físico de funcionamento de um osciloscópio e utilizá-lo para obter dados como tensão, período, frequência e fases para diferentes canais e também investigar os efeitos dos sinais ondulatórios (senoidal, triangular ou quadrada). Comparar os dados coletados no osciloscópio com os dados coletados através de um multímetro.

3. MATERIAIS E MÉTODOS

Para todas as situações analisadas foram utilizados circuitos semelhantes, mudando somente o dispositivo a ser analisado. Além do osciloscópio e do gerador de funções que são instrumentos fundamentais para este experimento, foram utilizados um resistor de $(4,68\pm0,02)k\Omega$, outro de $(0,987\pm0,004)k\Omega$, um diodo, um capacitor de 47nF e um LED

A partir dos arquivos html e jpeg disponibilizados na plataforma Moodle e os vídeos experimentos, coletamos os dados necessários para fazer as análises e comparações solicitadas. Além disso, para o cálculo das incertezas associadas foram utilizados o manual do multímetro e o manual do osciloscópio.

4. RESULTADOS

4.1. DIVISOR DE TENSÃO RESISTIVO

Com o objetivo de estudar o efeito do divisor de tensão, foi utilizado o gerador de tensão, para gerar funções senoidais para o canal 1 e para o canal 2, gerando um gráfico que pode ser verificado a partir do html interativo do circuito associado.

Diante disso, foi possível obter a amplitude, a frequência, a V_{rms} e a diferença de fase (colocados na Tabela 1). O valor da tensão eficaz obtido para o canal 1 pelo multímetro foi de $(1,407\pm0,004)V$, enquanto o V_{rms} obtido pela equação 1 foi de $(1,44\pm0,07)V$. Já para o canal 2, a tensão obtida pelo multímetro foi de $(0,242\pm0,002)V$ e pela equação foi de $(0,25\pm0,01)V$. Percebemos que o intervalo de confiança para a tensão dada pelo multímetro é muito menor, logo, podemos dizer que é um aparelho mais preciso para medição.

É possível notar que nesta configuração, a diferença de fase entre as duas ondas é quase nula, portanto, podemos dizer que as duas ondas estão praticamente em fase.

4.2. RETIFICADOR DE MEIA ONDA COM DIODO DE Si

Como visto anteriormente, o diodo é um dispositivo que permite a passagem de corrente apenas no sentido da polarização direta. Neste caso, vamos estudar o efeito do retificador de meia onda através da comparação de sinais obtidos em dois pontos diferentes no circuito montado no vídeo-experimento. O canal 1 está antes da corrente passar pelo diodo e o canal 2 está após a corrente passar pelo diodo.

Como observado no html interativo e no vídeo-experimento, do canal 1 para o canal 2 há uma redução da amplitude (Tabela 2), indicando que parte da tensão gerada pelo gerador de função é perdida ao passar pelo diodo

de Si. Além disso, também observamos que não há tensões negativas no canal 2, nos locais onde supostamente deveria haver uma tensão negativa, o gráfico aponta que a tendência é da tensão ser de 0V, diferentemente do canal 1, que apresenta uma senoide completa.

Também foi possível calcular a frequência para os dois canais, sendo o primeiro de $(100, 0 \pm 0, 1)Hz$ e o segundo de $(100, 7 \pm 0, 1)Hz$ e a diferença entre as fases de 1, 82°.

4.3. FILTRO RC

Para o terceiro circuito, vamos analisar o comportamento de um filtro resistor-capacitor (filtro RC) sob diferentes frequências. O canal 1 está posicionado antes do capacitor e o canal 2 após, portanto, será observado a variação da tensão desses dois canais conforme há variação na intensidade da frequência.

A princípio, utilizamos as frequências de 10Hz, 1kHz, 10kHz e 1MHz e a partir dos htmls gerados, é possível perceber que quanto maior a frequência, mais as duas ondas têm o comportamento semelhante (tanto em amplitude, quanto em V_{rms} , etc.)

4.4. LED

Para o último circuito, o objetivo é analisar o comportamento do LED (que é um tipo de diodo) de acordo com a frequência e o formato de onda aplicados pelo gerador de função.

Quando a função determinada pelo gerador é quadrada, o LED apresenta um pico luminoso e logo em seguida nenhuma luz. Quanto maior é a frequência aplicada, mais rápido esse padrão acontece, até que a frequência chega em um limite onde essa distinção já não é mais notável e então aparenta estar em seu pico luminoso de forma contínua.

Já quando a função é triangular, percebemos uma ascensão gradual da intensidade luminosa do LED até atingir o pico, assim como uma redução gradual até que a luz emitida seja nula. Da mesma forma que a situação anterior, quanto maior é a frequência aplicada, mais rápido esse padrão acontece, até atingir um limite onde o LED parece estar continuamente aceso.

Por fim, quando a função é senoidal, há um comportamento semelhante ao triangular, com uma ascensão e redução gradual da luminosidade no LED. Quando a frequência está na faixa de 1Hz a 30Hz, é possível notar a luz "piscar" nesse padrão, já entre 31Hz a 40Hz é possível notar somente a diferença entre o pico de luminosidade e pouca luminosidade, e para 41Hz até 50Hz (até onde foi mostrado experimentalmente) o LED aparenta estar com a luminosidade no pico de forma contínua.

5. EQUAÇÕES UTILIZADAS

$$V_{rms} = 0,707 \cdot V_p \quad (1)$$

$$f = \frac{1}{T} \quad (2)$$

$$\omega = 2\pi f \quad (3)$$

$$V = V_p \cdot sen(\omega t + \varphi) \quad (4)$$

6. INCERTEZAS

Para o voltímetro:

Tabela 1: cálculos para a incerteza associada ao voltímetro				
Incerteza da calibração ($u_{c.v.}$)	Incerteza da leitura (u_l) Incerteza combinada $(u_{comb.v.})$			
$u_{c.v.} = \frac{(0,003 \cdot V + 0,002)}{\sqrt{3}}$	$u_{l.v.} = \frac{0,001}{2\sqrt{3}} = 0,0003$	$u_{comb.v.} = \sqrt{u_{c.v.}^2 + u_{l.v.}^2}$		

^{*} V é o valor da tensão medida

Para o ohmímetro:

Tabela 2: cálculos para a incerteza associada ao ohmímetro			
Incerteza da calibração ($u_{c.R.}$)	Incerteza da leitura (u_l)	Incerteza combinada ($u_{comb.R.}$)	

$u_{c.R.} = \frac{(0.005 \cdot R + 0.002)}{\sqrt{3}}$	$u_l = \frac{0,001}{2\sqrt{3}} = 0,0003$	$u_{comb.v.} = \sqrt{u_{c.R.}^2 + u_l^2}$
---	--	---

^{*} R é o valor da resistência medida

Para as medidas retiradas do osciloscópio:

Tabela 3: cálculos para as incertezas das medidas retiradas do osciloscópio			
Incerteza	Cálculo		
Tensão de pico (V_p)	$u_{v_p} = \frac{(0.03 \cdot V + 0.1 \cdot fator \ de \ escala + 0.001)}{\sqrt{3}}$		
Valor eficaz (V_{rms})	$u_{V_{rms}} = \sqrt{\frac{1}{2} \cdot u_{V_p}^2}$		
Amplitude (V_{pp})	$u_{V_{pp}} = \sqrt{(u_{vp^+})^2 + (u_{vp^-})^2}$		
Período (T _{1,2})	$u_{T_{1,2}} = \frac{(0,0001 \cdot T + 0,004 \cdot fator\ de\ escala + 0,4ns)}{\sqrt{3}}$		
Combinada do período	$u_T = \sqrt{u_{T_1}^2 + u_{T_2}^2}$		
Frequência (Hz)	$u_f = \sqrt{\frac{1}{T^4} \cdot u_T^2}$		
Diferença de fase	$* u_{\Delta \varphi} = 2\pi \sqrt{t_1^2 \cdot u_{f1}^2 + f_1^2 \cdot u_{t1}^2 + t_2^2 \cdot u_{f2}^2 + f_2^2 \cdot u_{t2}^2}$		

^{*} equação obtida através da propagação da diferença entre 2 fases diferentes da equação 4, quando $V = V_p$ e portanto $sen(2\pi ft + \varphi) = 1$

7. FIGURAS E TABELAS

	Tabela	a 4: Divisor de Ten	são	
	Canal 1	Incertezas	Canal 2	Incertezas
Amplitude (V)	4,04	0,23	0,70	0,03
Frequência (Hz)	100,0	0,1	100,7	0,1
Vrms (V)	1,44	0,07	0,25	0,01
Diferença de fase	(-0,006 +/- 0,01) rad ou (-0,4 +/- 0,6)°			

	Canal 1	Incertezas	Canal 2	Incertezas
Amplitude (V)	7,84	0,39	3,28	0,15
Frequência (Hz)	100,6	0,1	99,9	0,1
Vrms (V)	2,72	0,02	2,32	0,01
Diferença de fase	(-0,12 +/- 0,01) rad ou (-7,2 +/- 0,8) graus			

	Tai	bela 6: Filtro RC	_	
	Canal 1	Incertezas	Canal 2	Incertezas
		Frequêr	ncia 10Hz	
Amplitude (V)	4,04	0,23	0,010	0,001
Frequência (Hz)	10,0	0,1	10,6	0,1
Vrms (V)	1,440	0,004	0,01000	0,00001
Diferença de fase	(1,6 +/- 0,1)rad o	u (91,67 +/- 4,97))
		Frequêr	ncia 1kHz	
Amplitude (V)	4,04	0,23	1,22	0,06
Frequência (Hz)	1001,0	1,2	1003,0	1,2
Vrms (V)	1,440	0,004	0,4300	0,0003
Diferença de fase	(1,24 +/- 0,01)rad ou (71,05 +/- 0,75) graus			raus
		Frequên	cia 10kHz	
Amplitude (V)	3,92	0,23	3,68	0,22
Frequência (Hz)	10010	12	10101	12
Vrms (V)	1,414	0,004	1,300	0,004
Diferença de fase	(0,30 +/- 0,01)rad ou (16,9 +/- 0,76) graus			
	Frequência 1MHz			
Amplitude (V)	3,88	0,23	3,92	0,24
Frequência (Hz)	1006036,22	1905	1002004,01	1904
Vrms (V)	1,390	0,004	1,390	0,004
Diferença de fase	(-0,01 +/- 0,02)rad ou (-0,7 +/- 1,2) graus			

		Tabela 7: LED		
	Canal 1	Incertezas	Canal 2	Incertezas
Amplitude (V)	7,12	0,29	1,12	0,05
Frequência (Hz)	99,7	0,1	101,63	0,1
Vrms (V)	2,21	0,01	0,7900	0,0002
Diferença de fase	(-055 +/- 0,1) rad ou (-31,3 +/- 0,8) graus			

Figura 1: gráfico para o divisor de tensão.

Figura 2: gráfico para refiticador meia-onda.

Figura 2: retificador meia-onda.

Figura 3: gráfico para filtro RC com frequência 1kHz.

Figura 4: gráfico para filtro RC com frequência 1Mhz.

Figura 5: gráfico para filtro RC com frequência 10Hz.

Figura 6: gráfico para filtro RC com frequência 10kHz.

Figura 7: gráfico para LED.