Better Online Deterministic Packet Routing on Grids

Számítógép-hálózatok és osztott rendszerek

Kádár Tamás Csaba, Kedves Nándor November 24, 2016

Tartalomjegyzék

- 1. Bevezetés
- 2. Modell és probléma
- 3. Algoritmus
- 4. Konklúzió

Bevezetés

Modell

Hálózatunkat a következő modellel írjuk le, melyet [1] cikk alapján építjük fel:

- G = (V, E) irányított gráf
- B buffer méret, c élek kapacitása, ahol B, c > 0

A hálózat topológiája irányított egyenes, amely n vertexből áll $V = \{v_0, v_1, \dots, v_{n-1}\}, E = \{(v_{i-1}, v_i) \mid 0 < i < n\}$

Figure 1: Lineáris hálózatmodell

Kérés (Request)

A kérést egy számhármassal adhatjuk meg, $r = (a_i, b_i, t_i)$

- ai a forrás csomópont
- b_i a cél csomópont
- t_i az időpont amikor a kérés érkezik

, ahol $a_i,b_i\in V,t_i\in\mathbb{N}$

Minden time stepben, a routing algoritmus:

- törli a célba érkezett csomagokat
- minden más csomagra, beleértve az éppen beérkezőket is eldönti, hogy:
 - törli
 - tárolja az aktuális csomópont bufferjében
 - továbbküldi a következő vertexnek

Modell és probléma

Kiindulunk a már említett modellből és a következő modellt építjük fel:

- $G^{st}=(V^{st},E^{st})$ irányított aciklikus végtelen gráf, amiben $c^{st}(e)$ az élek kapacitása. $V^{st}:=V\times\mathbb{N}$, ahol minden $v\in V$ vertexnek végtelen számú másolata van a G^{st} -ben, melyet a $(v,t)\in V^{st}$ azonosít. $E^{st}:=E_0\cup E_1$, ahol az E_0 tartalmazza a csomópontok közötti éleket, melyek c kapacitással rendelkeznek és a E_1 a ugyanazon csomópont time steppek közötti élét tartalmazza, mely kapacitása B
- a kérés a következőképpen alakul $r_i^{st} = ((a_i, t_i), row(b_i))$, ahol a $row(b_i)$, a cél csomópont sorát jelöli

Figure 2: Döntött rácsos hálózatmodell [2]

Figure 3: Nem döntött rácsos hálózatmodell [2]

Rács modelltől a vázlat gráfig

Felépítjük a *sketch gráfot*, mely egy durvább megközelítése a rács modellnek. Felépítéséhez úgynevezett *tilingokat* használunk. Tiling

- $\ell_h \times \ell_v$ részrács, ahol $\ell_h = \left\lceil \frac{6k}{5c'} \right\rceil$ és $\ell_v = \left\lceil \frac{6k}{5B'} \right\rceil$ ($c' = \lfloor c/5 \rfloor$, $B' = \lfloor B/5 \rfloor$ és $k = log(1 + 3 \cdot p_{max})$, ahol a p_{max} később kifejtjük)
- ϕ_X és ϕ_Y 2 offset paraméter segítségével határozzuk meg $((\phi_X + i \cdot \ell_h, \phi_Y + j \cdot \ell_V)$, ahol $i, j \in \mathbb{N})$

A cikk által feldolgozott algoritmus 4 offsetet használ $(\phi_x,\phi_y)\in\{-\ell_h/2.0\}\times\{-\ell_v/2.0\}$, ezeket nevezzük T_1,\ldots,T_4 -nek.

Figure 4: Sketch gráf

Sketch gráf

Definíció

Az $r_i = (a_i, b_i, t_i)$ kérés SW_j -ben található, ha a forrás vertex (a_i, t_i) a T_j csempe délnyugati részéhez tartózik.

Egy sketch gráfot indukál a T_j , melyet jelöljük $S_j := (V(S_j), E(S_j))$, ahol a $V(S_j)$ egy csempe halmaz a T_j -ből és nekik van $(s_1, s_2) \in E(S_j)$, ha $s_1 \neq s_2$ és $E^{st} \cap (s_1 \times s_2) \neq \emptyset$. Minden élhez egy egység kapacitást rendelünk.

g

Online Packing of Paths

- A sketch gráfot használjuk fel az path packing probléma megoldásához. Intuitíve a path packing modell hasonlít a packet routing modellhez, kivéve hogy ott nincsenek bufferek és hogy minden link e különböző kapacitással rendelkezik, melyet a következőképpen jelölünk c(e).
- Formálisan egy kérés a következő alakba írható fel a G gráfban (a_i, D_i) , ahol $a_i \in V$ a forrás vertex és a $D_i \subseteq V$ célrészhalmaz.
- Legyen $P(r_i)$, mely jelölje azon pathek halmazát, melyek kiszolgálják a r_i kérést. Minden $p \in P(r_i)$ az a_i vertexel kezdődik és a vége a D_i halmazban található.

Algoritmus

Packet routing algoritmus pszeudokód

- 1. Let R_t be a list of new requests, sorted by source-destination distance.
- 2. For each vertex v, let $R'_t(v)$ the first B' + c' requests in R_t whose source is v. // filter requests
- 3. **for** each request $r_i \in \bigcup_{\nu} R'_t(\nu)$ **do**
- 4. **if** $r_i \in Near$ **then** ROUTE-NEAR(r_i)
- 5. **else**
- 6. Let $j \in \{1, ..., 4\}$ be s.t. $r_i \in SW_j$ // classify r_i
- 7. $sketch_i \leftarrow IPP(S_j, accepted_j, r_i) // lengths bounded by <math>p_{max}$

Packet routing algoritmus pszeudokód

```
8.  init<sub>i</sub> ← INITIAL-ROUTE(accepted<sub>j</sub> , r<sub>i</sub>)
9.  if sketch<sub>i</sub> ≠ REJECT and init<sub>i</sub> ≠ REJECT then
10.  add r<sub>i</sub> to accepted<sub>j</sub>
11.  DETAILED-ROUTE(r<sub>i</sub>; init<sub>i</sub>; sketch<sub>i</sub>) // update routes
12.  else Reject ri
13.  end if
14.  end if
15.  end for
```

Kérések rendezése és szűrése

Near vagy Far

Minden kérésre eldöntjük:

- near kérés, az az
- far kérés, amelyet

Amennyiben far kérésről van szó, kiválasztjuk a megfelelő sketch gráfot aminek a SW kvadrantjába esik ez az r_i request.

IPP (Integral Path Packing) algoritmus

Az IPP algoritmus [3] vagy elutasítja a r_i kérést, vagy egy utat ad vissza egy csempék egy szekvenciáján a kezdő csempéből a cél csempébe.

Figure 5: IPP algoritmus

Initial-Route algoritmus

Detailed-Route algoritmus

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Konklúzió

Összefoglaló

Bemutattunk egy determinisztikus packet routing algoritmust, mely megoldott egy nyitott kérdést, de számos más kérdés még mindig nyitva hagyott. Például, hogy mi történik nem centralizált esetben?

Ref.	Dim.	Comp. Ratio	Determ?	B, c
[4, 5, 6]	1	$O(\log(n))$	Yes	$B, c > logn, B/c = n^{O(1)}$
[7]	1	$O(\log^3(n))$	No	B ≥ 2, c = 1
[8]	1	$O(\log^2(n))$	No	B ≥ 2, c = 1
[4, 6]	1	O(log(n))	No	$B \in [1, \mathit{logn}], c \geq 1$
[5, 6]	1	$O(\log^5(n))$	Yes	[3, O(logn)]
[5, 6]	d	$O(\log^{d+4}(n))$	Yes	[5, <i>O</i> (<i>logn</i>)]
[1]	1	O(log(n))	Yes	[5, <i>O</i> (<i>logn</i>)]

Table 1: Összehasonlítás más algoritmusokkal

References I

- [1] Guy Even, Moti Medina, and Boaz Patt-Shamir.
 Better online deterministic packet routing on grids.
 arXiv preprint arXiv:1501.06140, 2015.
- [2] Guy Even and Moti Medina.
 Online packet-routing in grids with bounded buffers.
 Algorithmica, pages 1–50, 2016.
- [3] Niv Buchbinder and Joseph Naor.
 Improved bounds for online routing and packing via a primal-dual approach.
 2006.

References II

[4] Guy Even and Moti Medina.
An o (logn)-competitive online centralized randomized packet-routing algorithm for lines.
pages 139–150, 2010.

- [5] Guy Even and Moti Medina.
 Online packet-routing in grids with bounded buffers.
 pages 215–224, 2011.
- [6] Moti Medina Guy Even.
 Online packet-routing in grids with bounded buffers.
 abs/1407.4498, 2014.
- [7] Stanislav Angelov, Sanjeev Khanna, and Keshav Kunal.
 The network as a storage device: Dynamic routing with bounded buffers.

Algorithmica, 55(1):71–94, 2009.

References III

[8] Yossi Azar and Rafi Zachut.
Packet routing and information gathering in lines, rings and trees.
pages 484–495, 2005.

Kérdések?

Köszönjük a figyelmet!