

Base de Datos DEPENDENCIAS FUNCIONALES

Pablo Pescio Esteban Schab

Definición

- Dada una relación R, el atributo o conjunto de atributos Y de R, **dependen funcionalmente** de X, si y sólo si, cada valor X en R, tiene asociado un valor Y en cualquier momento del tiempo.
- Entonces el subconjunto K de R es superclave de R si para todos los pares de tuplas t1 y t2 de R se su cumple que t1 <> t2 entonces t1[k] <> t2[k]

Restricciones

- Las dependencias funcionales nos permites expresar las restricciones que no se pueden expresar con las claves.
- A su vez la df implican que un atributo o conjunto de atributos determina el valor de otros.

Veamos un ejemplo

- Si tenemos una relación de prestamos de un banco con los siguientes atributos (nro. de préstamo, nro. Sucursal, nombre cliente, importe)
- Se pueden obtener las siguientes dependencias:
- #prestamo → #sucursal
- #prestamo → importe

Ejemplo

- Continuando con el ejemplo anterior, pensemos ¿#prestamo determina el nombre del cliente?
- Si pensamos en una entidad bancaria, los préstamos muchas veces se otorgan a más de una persona, por lo tanto el #prestamo no me determina a un sólo cliente sino a un conjunto de los responsables del mismo.

Dependencias triviales y no triviales

- La df ab → a siendo la clave de una relación y a un subconjunto de ab, es una dependencia funcional trivial.
- Se define dependencia funcional trivial cuando si y solamente si la parte derecha es un subconjunto (no necesariamente un subconjunto propio) de la parte izquierda.

Veamos otro ejemplo

Dni	Apellido	#proyecto	horas
20255509	PEREZ	4	12
20255509	PEREZ	3	15
18888888	GARCIA	4	28
18888888	GARCIA	3	40
33133133	SAAD	2	5
2222222	RAPALINI	1	6
25555555	GRAZIANI	2	13
2222222	RAPALINI	2	8
2222222	RAPALINI	4	4
2555555	GRAZIANI	3	13

Definir la df del ejemplo anterior

· De lo cual podemos inferir que:

 a) Para cualquier par {dni, #proyecto} sólo existe un valor horas, pero,

 b) Muchos valores distintos {dni, #proyecto} pueden tener el mismo valor horas.

Siguiendo el ejemplo

- · {dni, #proyecto} → apellido
- · {dni, #proyecto} → horas
- · {dni, #proyecto} → dni
- · {dni, #proyecto} → proyectoó bien
- · {dni, #proyecto} → {dni, #proyecto, apellido, horas}
- Lo que equivale a pensar que {dni, #proyecto} es una clave

Siguiendo el ejemplo

- Pensemos en la siguiente DF:
- · dni \rightarrow apellido
- Por lo tanto el atributo apellido depende solamente del atributo dni y no del par {dni, #proyecto}, lo trae aparejada cierta **redundancia**.

CIERRE DE UN CONJUNTO DE DEPENDENCIAS

 Suponiendo que en una relación R tenemos tres atributos A, B y C, tales que las DF sean las siguientes:

 $\cdot A \rightarrow B y B \rightarrow C$

Podemos ver claramente que por propiedad
transitiva, es válida la DF A → C, a través de B.

· Al conjunto de todas la Dfs implicadas en un

axioma de Armstrong

- Sean A, B, C subconjuntos del conjunto de atributos de R, entónces:
- 1) Reflexividad Si B es un subconjunto de A, entonces A → B
- 2) Aumento Si A \rightarrow B, entonces AC \rightarrow BC
- 3) Transitividad Si A \rightarrow B y B \rightarrow C, entonces A \rightarrow C

Dichas reglas con **completas** y **firmes**, pueden ser utilizadas para obtener el conjunto cierre de *df* T

Reglas adcionales

4) Autodeterminación A → A

5) Descomposición Si A → BC, entonces A → B y A
→ C

• 6) Unión Si A \rightarrow B y A \rightarrow C, entonces A \rightarrow BC

7) Composición Si A → B y C → D, entonces AC →
BD

Teorema de *unificación general* de Darwen

• Si A \rightarrow B y C \rightarrow D, entonces A unión (C – B) –> BD

Veamos otro ejemplo

Tenemos una R con los siguientes atributos: A, B, C, D, E, F y las siguientes *Dfs*

$$A \rightarrow BC$$

$$B \rightarrow E$$

$$CD \rightarrow EF$$

Podemos tomar: A (dni) B (#departamento) C (dnigerente) D (#proyecto dirigido por gerente) E (nombre departamento) y F (tiempo asignado a ese proyecto).

 $AD \rightarrow BCEF$

Veamos otro ejemplo

- · 1) $A \rightarrow B$
- · 2) BC \rightarrow D
- · 3) AB \rightarrow E

- · 1 por 2) tenemos que BC \rightarrow D y por 1) A \rightarrow B
- \cdot ABC \rightarrow ABCDE
- · ahora bien por 1) tenemos que A → B
- por lo tanto AC \rightarrow ABCDE y AC es *llave*

Logotipo de la compañía

Bibliografía

Navathe

. Introducción a los sistemas de bases de datos – C.J. Date .Fundamentos de Sistemas de Bases de Datos – Elmasri Logotipo de la compañía