STRUKTUR ALJABAR "Definisi Grup"

Nafida Hetty Marhaeni

STRUKTUR ALJABAR

- Struktur aljabar adalah suatu himpunan tidak kosong S yang dilengkapi dengan satu atau lebih operasi biner.
- ▶ Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut dinyatakan dengan (S,*)
- ▶ Jika S dilengkapi dengan dua operasi biner * dan ° maka struktur aljabar tersebut dinyatakan (S, *, °) atau (S, °, *)

OPERASI BINER

Definisi 1.:

- Operasi biner * pada S adalah jika ∀a, b ∈ S berlaku a*b ∈ S, atau sering dikatakan
 Operasi * pada S bersifat tertutup
- Jika Operasi * pada S tertutup maka (S,*) disebut Grupoid yaitu struktur aljabar dengan satu operasi yang tertutup (biner).
- 3. Operasi biner * pada S dikatakan **assosiatif** jika $\forall a, b, c \in S$, (a*b)*c = a*(b*c)
- 4. Grupoid (S,*) disebut **semigrup** jika Operasi biner * pada S assosiatif
- Himpunan S terhadap operasi * dikatakan mempunyai elemen identitas e jika ∃e ∈ S,
 ∀a ∈ S, a*e = e*a = a
- 6. Semigrup (S,*) disebut **monoid** jika S terhadap * mempunyai elemen identitas e.
- 7. Himpunan S terhadap operasi * dikatakan **komutatif** jika ∀a, b ∈ S, a*b = b*a

DEFINISI GRUP

Definisi 2.:

Misalkan G adalah himpunan tidak kosong dilengkapi dengan operasi . maka struktur aljabar (G,.) disebut Grup jika dipenuhi aksioma-aksioma berikiut :

- a. Tertutup, artinya $\forall a, b \in G$ berlaku a.b $\in G$
- b. Asosiatif, artinya $\forall a, b, c \in G$ berlaku (a.b).c = a.(b.c)
- c. Mempunyai elemen identitas ditulis e, artinya ($\forall a \in G$) a.e = e.a =a
- d. Setiap elemen mempunyai invers dinotasikan a^{-1} adalah invers dari a, artinya ($\forall a \in G$) ($\exists a^{-1} \in G$) sehingga a^{-1} a = a a a^{-1} = e

CONTOH

Diberikan himpunan bilangan bulat Z dengan operasi biner * yang

didefinisikan $\forall x, y \in Z$ berlaku x * y = xy - x - y

Buktikan apakah (Z,*) grup atau tidak.

BUKTI:

Pertama kita harus membuktikan (Z,*) tertutup

Ambil sebarang $x, y \in Z$ perhatikan bahwa:

$$x * y = xy - x - y \dots \in Z$$

Dengan demikian,

$$\forall x, y \in Z \ni x * y = xy - x - y \in Z$$

 \therefore (Z,*) tertutup

Lanjutan...

Selanjutnya, kita buktikan (Z,*) asosiatif

Ambil sebarang $x, y, z \in Z$ perhatikan bahwa:

$$(x * y) * z = (xy - x - y) * z$$

= $(xy - x - y)z - (xy - x - y) - z$
= $xyz - xz - yz - xy + x + y - z$

Sedangkan,

$$x * (y * z) = x * (yz - y - z)$$

$$= x(yz - y - z) - x - (yz - y - z)$$

$$= xyz - xy - xz - x - yz + y + z$$

$$\forall x, y, z \in Z \ni (x * y) * z \neq x * (y * z)$$

$$\therefore (Z,*) \text{ tidak asosiatif}$$

Lanjutan...

Karena (Z,*) tidak asosiatif maka harus diberikan counter example.

Misalkan: x = 1; y = 2; z = 3, perhatikan bahawa:

$$(x * y) * z = xyz - xz - yz - xy + x + y - z$$

= 1.2.3 - 1.3 - 2.3 - 1.2 + 1 + 2 - 3
= 6 - 3 - 6 - 2 + 1 + 2 - 3 = -5

Sedangkan,

$$x * (y * z) = xyz - xy - xz - x - yz + y + z$$

= 1.2.3 - 1.2 - 1.3 - 1 - 2.3 + 2 + 3
= 6 - 2 - 3 - 1 - 6 + 2 + 3 = -1

Terlihat jelas bahwa $(x * y) * z \neq x * (y * z)$

Kesimpulan

Karena (Z,*) yang didefiniskan sebagai x*y=xy-x-y hanya berlaku aksioma tertutup saja maka (Z,*) bukan grup tetapi grupoid.

Contoh

Misalkan
$$M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in Q \right\}$$
 maka $(M, +)$ merupakan grup,

BUKTI:

Pertama kita harus membuktikan (M,+) tertutup

Ambil sebarang A, $B \in M$ dimana $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ dan $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$ perhatikan bahwa:

$$A + B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix}$$

Karena $a,b,c,d,e,f,g,h\in Q$ maka $a+e,b+f,c+g,d+h\in Q$ Dengan demikian,

$$\forall A, B \in M \ni A + B \in Q$$

 $\therefore (M, +) \text{ tertutup}$

Lanjutan

Ambil sebarang A, B,
$$C \in M$$
 dimana $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$, $C = \begin{bmatrix} i & j \\ k & l \end{bmatrix}$ perhatikan bahwa

$$(A+B)+C = \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix} + \begin{bmatrix} i & j \\ k & l \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix} + \begin{bmatrix} i & j \\ k & l \end{bmatrix}$$

$$= \begin{bmatrix} (a+e)+i & (b+f)+j \\ (c+g)+k & (d+h)+l \end{bmatrix} = \begin{bmatrix} a+(e+i) & b+(f+j) \\ c+(g+k) & d+(h+l) \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e+i & f+j \\ g+k & h+l \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} + \begin{bmatrix} i & j \\ k & l \end{bmatrix} \end{pmatrix}$$

$$= A+(B+C)$$

Dengan demikian,

$$\forall A, B, C \in M \ni (A + B) + C = A(B + C) \in M$$

$$\therefore (M, +) \ asosiatif$$

Lanjutan

Ambil sebarang
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M$$
, perhatikan bahwa: $A + E = A$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$E = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$E = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \dots \in M$$
 Dengan demikian, $\exists E = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in M$, $\forall A \in M \ni A + E = A$

 $Mathcal{M}$: (M, +) mempunyai elemen identitas

Lanjutan

Ambil sebarang
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M$$
, dan $E = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ perhatikan bahwa:

$$A + A^{-1} = E$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + A^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \dots \in M$$

Dengan demikian,,
$$\forall A \in \exists A^{-1} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \in M \ni A + A^{-1} = E$$

 \therefore (M, +) mempunyai elemen invers

Kesimpulan

Karena
$$(M, +)$$
 yang didefiniskan $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in Q \right\}$

berlaku tertutup, asosiatif, mempunyai elemen identitas dan mempunyai elemen invers maka (M, +) merupakan grup.