Gør tanke til handling

VIA University College

Set theory

Sets

Sets

Collections of definite and separate objects

The **elements** of the **set** *S*.

Specifying a set 1: Listing notation

One way of specifying a set is by simply listing its elements.

Examples:

```
A = \{a, b, c, d, e\}

B = \{\text{elephant, rhino, hippo, giraffe, buffalo}\}

C = \{1,2,3\}

D = \{0.1, 1, \pi, 8.2939, ...\}
```

Note: order doesn't matter! $\{a, b, c\} = \{c, a, b\}$

Note: each element only appears once: $\{a, a, a, b, b, c, a, b\} \rightarrow \{a, b, c\}$.

Specifying a set 2: Set builder notation

Another way to specify a set is by describing it.

This is done using the symbol |, which means "such that".

Examples:

 $A = \{l | l \text{ is a vowel in the English alphabet}\}$

 $B = \{a | a \text{ is one of the five largest animals living in Africa}\}$

 $C = \{n | n \text{ is an integer greater than } 0 \text{ and less than } 4\}$

 $D = \{x | x \in \mathbb{R}, 0 < x < 9\}$

An equivalent way to write C and D:

 $C = \{n \text{ is an integer} | n \text{ is greater than } 0 \text{ and less than } 4\}$

$$D = \{x \in \mathbb{R} | 0 < x < 9\}$$

A few important sets

The sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R}

In the previous slide, we referred to the set \mathbb{R} - the set of real numbers.

This is one of the fundamental number sets, which we will be referring to a lot duing the course. Below these sets are listed:

sometimes, 0 is included as well

- The set of integers:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

All the numbers that can be written as fractions

The rational numbers:

$$\mathbb{Q} = \{-\frac{2}{5}, \frac{3}{3}, \frac{23}{393}, \frac{239,129}{2093}, \dots\}$$

All the numbers that cannot be written as fractions

• The set of irrational numbers:

$$\mathbb{I} = \{..., \sqrt{2}, e, \pi, ...\}$$

The set of real numbers :

$$\mathbb{R} = \{-17.8923, -10, \}$$

In price dis welcome he will describe and the moderate them the set of the described and the describe

The real numbers:

The number line

We can imagine that all numbers lie on a line (or axis) from $-\infty$ to ∞ :

Interval notation

Consider an interval of the numbers on the real line – say from - $\sqrt{2}$ to 3:

We use the following notation to denote this interval:

$$[-\sqrt{2}; 3]$$

$$(-\sqrt{2};3)$$

$$(-\sqrt{2};3)$$
 or $]-\sqrt{2};3[$

if the endpoints are included

if the endpoints are not included

We may also consider intervals that extends all the way to $-\infty$ for example. For this, we use the same notation – however, note that ∞ or $-\infty$ are never included:

 $(-\infty;3]$

← interval from minus infinity to 3.

Venn diagrams and subsets

Venn diagrams

Graphical representations of sets as geometrical shapes (circles, ellipses, rectangles, . . .):

Sometimes the set's elements are also shown:

$$A \begin{pmatrix} a & & \\ e & i \\ u & o \end{pmatrix}$$

Subsets

A set A is a subset of another set B if all its elements are within it.

It is written $A \subseteq B$.

Note that this is fulfilled if A and B are equal!

Example 1:

$$A = \{a, b\}; B = \{a, b, c, d, e, f\} \Rightarrow A \subseteq B$$

Example 2:

$$A = \{1,2,3,4\}; B = \{4,3,2,1\} \Rightarrow A \subseteq B$$

Proper subsets

A set A is a **proper** subset of B if A is a subset of B but $A \neq B$. This is written $A \subset B$.

Example

$$A = \{2,5,6\}, B = \{1,2,3,4,5,6\} \Rightarrow A \subset B$$

Note: in this case, it is also true that $A \subseteq B$.

Counterexample

$$S = \{1,2\}, T = \{1,2\} \Rightarrow S \subseteq T$$
, but $S \not\subset T$.

Disjoint sets

Two sets are *disjoint* if they do not have anything in common.

<u>Disjoint:</u>

Not disjoint:

Examples:

 $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint.

 $\{1,3,5\}$ and $\{2,4,6\}$ are disjoint.

 $\{1\}$ and $\{a, b, \{1\}\}$ are disjoint.

 \emptyset and any set (even \emptyset itself!) are disjoint.

The empty set

$$\emptyset = \{\}$$

The empty set is a subset of every set!

To illustrate this, imagine a set A and assume that \emptyset is not a subset of A. That means that \emptyset has at least one element which is not in A. But that's a contradiction, because \emptyset has no elements!

The size – or order - of a set

The size (or order) of a set is the number of elements in the set. It is written as |A|.

Example

$$A = \{1,2,3,4\} \Rightarrow |A| = 4$$

$$B = \{6,2,g,9,\pi\} \Rightarrow |B| = 5$$

$$C = \{x \in \mathbb{N} | 0 < x < 3\} \Rightarrow |C| = 2$$

$$D = \{x \in \text{The Alphabet} | x \text{ is a vowel} \} \Rightarrow |D| = 5$$

$$|\emptyset| = 0$$

Set operations

Intersection

The intersection between two sets is the set of elements they have in common.

It is written $A \cap B$.

Note: This is analogous to the Boolean AND-operator.

$$A \cap B = \{x | x \in A \land x \in B\}$$

= "The set of elements which are in both *A* AND *B*"

Example:

 $A = \{\text{shark, whale, penguin, sea lion}\};$

 $B = \{ dog, cat, whale, bear, sea lion \}$

$$\Rightarrow A \cap B = \{\text{whale, sea lion}\}\$$

Union

The union between two sets, A and B, is the set of all elements in A and all elements in B.

It is written $A \cup B$.

Example:

 $A = \{\text{shark, whale, penguin, sea lion}\};$

 $B = \{ dog, cat, whale, bear, sea lion \}$

Note: This is analogous to the Boolean OR-operator.

= "The set of elements which are in either *A* OR *B*"

 $\Rightarrow A \cup B = \{\text{shark, whale, penguin}\}\$ sea lion, dog, cat, bear}

Set difference

The set difference between two sets A and B is the set of all the elements in A which are not elements in B.

This is also called the relative complement between A and B. It is written A-B.

Example:

$$A = \{ \text{shark, whale, penguin, sea lion} \};$$

 $B = \{ \text{dog, cat, whale, bear, sea lion} \}$ $\Rightarrow A - B = \{ \text{shark, penguin} \}$

The symmetric difference

The symmetric difference between two sets A and B is the set of all the elements in A and all the elements in B except the part they have in common.

It is written $A \oplus B$.

Note: This is analogous to the Boolean XOR-operator.

 $A \oplus B = \{x | x \in (A \cup B) \land x \notin (A \cap B)\}$

= "The set of elements which are in either *A* or *B*, but not both"

Example:

 $A = \{$ shark, whale, penguin, sea lion $\};$

 $B = \{ dog, cat, whale, bear, sea lion \}$

 $\Rightarrow A \oplus B = \{\text{shark, penguin, dog, cat, bear}\}\$

Universal set

The **universal set** – also called "the universe" – is the *set of all elements* from which any given set is drawn.

This depends on the context!

The universal set is usually denoted U and is drawn as a rectangle.

Examples:

For the set $\{-5, -3, 2, 3, 4\}$, $U = \mathbb{Z}$.

For the set $\{0.1, \pi, 5, 8.358\}$, $U = \mathbb{R}$.

For the set {Congo, Togo, Egypt}, U = countries

or maybe U = African countries.

The complement

The complement to a set is everything in "the universe", or the universal set, that is not in the set.

It is written A^{C} (or sometimes \overline{A} or A').

Note: This is analogous to the Boolean NOT-operator.

$$A^C = \{x \in U | x \notin A\}$$

= "The set of elements which are NOT in *A*"

Examples:

$$A = \{3,5\}$$
 and $U = \text{primes below } 10 \Rightarrow A^C = \{2,7\}$

$$B = \{\text{red, blue}\}\$$
and $U = \text{primary colors} \ \Rightarrow A^C = \{\text{yellow}\}\$

$$C = \{x | 0 \le x \le 2\} \text{ and } U = \mathbb{R} \Rightarrow C^C = \{x | x < 0 \lor 2 < x\}$$

Membership tables

Membership tables

Consider the following question

"An element is in the sets B and in the set C, but not in the set A. Is it in the set $(A \cup C) \cap B$?"

One way to answer any question of this type is to use a so-called **membership table**. A membership table for a combination of the sets A, B and C contains one row for all possible combinations of membership in each of these three sets, as you can see in the next slide.

Example of a membership table

This column represent the set we are interested in.

To answer whether an element is in $(A \cup C) \cap B$, it is helpful first to determine if it is in $A \cup C$.

This row represent	
elements which are	\rightarrow
neither in A , B nor C .	

This row represent elements which are both in B and C but not in A.

This row represent elements which are both in *A*, *B* and *C*.

				•
A	В	С	$A \cup C$	$(A \cup C) \cap B$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1/	0
l	1	0	1	1
1	1	1	1	1

If an element is neither in A nor C, it is not in $A \cup C$.

If an element is in A but not in C, it is in $A \cup C$.

If an element is in B but not in $A \cup C$, it is not in $(A \cup C) \cap B$.

If an element is in both $A \cup C$ and in B, it is in $(A \cup C) \cap B$.

Example of a membership table

This column represent the set we are interested in.

This row represent elements which are both in *B* and *C* but not in *A*.

					•
	A	В	С	$A \cup C$	$(A \cup C) \cap B$
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	0	0
	0	1	1	1	1
	1	0	0	1	0
	1	0	1	1	0
	1	1	0	1	1
	1	1	1	1	1

"An element is in the sets B and in the set C, but not in the set A. Is it in the set $(A \cup C) \cap B$?"

From the table, it is easy to see that the answer is yes!

Showing equalities with membership tables

We can use a membership-table to show that two sets are the same. This will be the case if the columns corresponding to the two sets are identical.

Example: Showing that $A \cap B = B - (B - A)$

A	В	$A \cap B$	B-A	B-(B-A)
1	1	1	0	1
1	0	0	0	0
0	1	0	1	0
0	0	0	0	0

For all combinations of membership in A and B, an element is in B-(B-A) if and only if it is in $A \cap B$. This proves that $A \cap B = B - (B-A)$.

Cartesian products and tuples

Cartesian product 1

The Cartesian product between two sets A and B is the combination of every element in A with every element in B.

Examples:

$$C = \{0,1\}, D = \{x,y\} \Rightarrow C \times D = \{(0,x), (0,y), (1,x), (1,y)\}$$

$$S = \{u,v,z\}, T = \{u,v\} \Rightarrow S \times T = \{(u,u), (u,v), (v,u), (v,v), (z,u), (z,v)\}$$

Cartesian product : $A \times B$

Cartesian product between more than two sets

$$A \times B \times C = \{(x, y, z) | x \in A \land y \in B \land z \in C\}$$

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_1 \in A_1 \land a_2 \in A_2 \land \dots \land a_n \in A_n\}$$

Tuples

The elements of a Cartesian product are called **tuples**.

An n-tuple contains n elements.

Examples:

2-tuple: (3,1), **3-tuple**: (Denmark, Norway, Sweden), **5-tuple**: (a, b, c, d, e)

A 2-tuple is also called an **ordered pair**.

Unlike sets, tuples are *ordered*, i.e. it matters which element comes first:

For sets: $\{1,2,3\} = \{2,3,1\}$

For tuples: $(1,2,3) \neq (2,3,1)$

