Analyzing the NYC Subway Dataset

Ignacio Toledo

CONTENTS

1	Ovei	view	1
	1.1	Supporting Material	2
	1.2	Some remarks about the datasets used	
2	Stati	stical Test	3
	2.1	Statistical Test Used	4
	2.2	Justify the Statistical Test	
	2.3	Results	
	2.4	Interpretation and discussion	
3	Line	ar Regression	11
	3.1	Linear regression algorithm(s)	11
	3.2	Models and features used	
	3.3	Results: coefficients and R Squared	16
	3.4	Interpretation and limits	17
4	Visu	alization	25
	4.1	Ridership distribution with weather	25
	4.2	Supporting visualizations	
5	Cone	clusions and Reflections	31
	5.1	Conclusion	31
	5.2	Shortcomings, limitations and insights	
Bi	hlingr	anhy	33

OVERVIEW

This project consists of two parts. In Part 1 of the project, we have completed the questions in Problem Sets 2, 3, 4, and 5 in the Introduction to Data Science course.

This document addresses part 2 of the project, where we answer a set questions to explain our reasoning and conclusions behind our work in the problem sets.

The main purpose of the project is to analyze the ridership behavior for the New York City subway. The dataset used contains a sample taken from the month of May 2011, using the publicly available turnstile data from MTA. The turnstiles in different stations of the system report the absolute number of entries and exits at certain hours for a given time interval. The improved dataset that we use reports the number of entries for time intervals of 4 hours, so it present us with 6 daily reports by turnstile.

Figure 1.1: Turnstiles' locations within NYC, from the improved dataset.

Besides the information provided by the NYC subway, the dataset also includes weather information taken from several weather stations within the NYC area: each turnstile, depending on the location in NYC, is merged with the weather information of the closest weather station, thus providing temperatures, wind speed, pressure, conditions, precipitations, etc.

The project focuses one main question: Does the weather conditions, specifically precipitations, affect the NYC subway ridership? To answer this question we will use exploratory tools,

statistical tests and visualizations. Also, we will try to fit a model to the data by choosing certain predicting features; will the use of the precipitation variable improve the fit?

1.1 Supporting Material

Within the project github repository you will also find an ipython notebook, where most of the work done was recorded for the readers reference.

1.2 Some remarks about the datasets used

For this project we use the data set provided at Data Analyst Nanodegree's portal for Project 1.

However, after the exploratory and data analysis, we created another dataset by further munging the improved dataset. The basic idea was to smooth out features that might be caused by individual turnstiles or measurements. To do this, we grouped the data by time stamp and aggregated the entries by hour by adding all the entries. Also, the precipitation information for each time stamp was included by means of two columns:

- rain_hour: indicator (0 or 1) for precipitations for the particular date date and time. It is 1 if for any of the stations the conditions were Rain, Light Rain, Hard Rain or Light Drizzle at that moment.
- rain_day: indicator (0 or 1) for precipitations for the particular day of the report. If at any station of our turnstiles the conditions reported precipitations during the day the value is set to 1.

STATISTICAL TEST

In lecture 3 and its problem set, the following question was given *Do rainy days affect the ridership of the NYC subway?* To answer this problem we began by creating two samples from our data:

- Sample A (*No rain*) is a subgroup containing the entries where no rain was reported, using the information of the rain variable (rain = 0)
- Sample B (Rain) is a subgroup with the entries where some precipitation was reported by means of the rain variable (rain = 1)

By studying the distributions, using histograms, we were able to characterize both data samples. We found out that both samples have a similar shape, clearly not normal, and positively skewed (figure 2.1).

Figure 2.1: Ridership distribution comparison between rainy and dry days. Please note the logarithmic scale on axis Y. It was used to allows us to study the visualization with more detail.

Analyzing the NYC Subway Dataset,

Because of the non-normal distribution we decided to use the median as measure of average for the samples:

- Sample A, days without precipitation, show a median ridership of 901 passengers per hour.
- Sample B, rainy days, report a median of 945 passengers per hour.

To assess the significance of this result, that rain seems to increase ridership in the NYC system by a small amount, we will use a non-parametric test.

2.1 Statistical Test Used

Which statistical test did you use to analyse the NYC subway data?

The Mann Whitney U test [wikiMann] is chosen to assess the statistical significance of this result.

What is the null hypothesis

The null hypothesis in our case is that both populations are equal, or that there is no significant deviation on both populations medians

Did you use a one or two-tail P value?

Because of the null hypothesis we will use a two-tail p-value.

What is your p-critical value?

We will use a p-critical equal to 0.05, meaning that in case the null hypothesis is false we will require a 95% of confidence.

2.2 Justify the Statistical Test

Why is this statistical test applicable to dataset? In particular, consider the assumptions that the test is making about the distribution of the ridership in the two samples.

The Mann Whitney U test, or Wilcoxon rank-sum test, is chosen because of characteristics of our samples: we can't use a parametric test because the distributions do not seem to follow any particular and well known probability distribution which we could use to make inferences that could directly report the significance of any difference between both populations.

The U test is particularly powerful to assess the significance of the difference between the median of two samples that have similar distributions. The assumptions that our data samples must comply with are basically:

- All observations of both groups are independent
- The responses are ordinal (so we can use the ranking algorithm of the U test).

2.3 Results

What results did you get from this statistical test?

We used the scipy implementation of the Mann Whitney U test (scipy.stats.mannwhitneyu). The results from the test are:

- U = 150678745.0
- $p = 1.91 \cdot 10^{-6}$

But the user should be aware that scipy reports a p-value for a one-tailed hypothesis, so we multiply by 2 to get the significance for our hypothesis:

•
$$p = 3.82 \cdot 10^{-6}$$

The averages from the two data samples have been already presented in the beginning of this chapter.

2.4 Interpretation and discussion

What is the significance and interpretation of these results?

The interpretation, given the result from the U test, is that the ridership is not the same for rainy days than non-rainy days, with a significance higher than 95% (p < 0.05). Furthermore, from the descriptive statistics of our samples we would conclude that the ridership tends to be higher in rainy days.

However we have limited ourselves here to follow the procedure suggested by the lectures, assuming that observations of both groups are independent and there no other factors that might wrongly induce this result. Even when the data sample we use for the project has been through a more complete wrangling, there are still some issues that might affect the results:

- There is missing data for several turnstiles. From the original sample of 240 turnstiles, only 52 have complete data for May; also, as discussed on the forums, some precipitation data is missing from some weather stations.
- We are using the variable rain to create our samples: this variable indicates if the conditions at anytime of the day at a particular turnstile were rainy. Is it the appropriate variable to use to build the subgroups?
- There is one day which was a holiday (Monday 30th), should the data from this day be discarded?

Let's look with more detail at some these problems.

2.4.1 Missing data and precipitation distribution

Figure 2.2 shows some turnstiles have missing data for the month of May; with 31 days and 6 daily reports it is expected that a complete monitored turnstile should have 186 measurements. This is the case for 52 turnstiles, but 185 turnstiles have a number of measurements between 160

2.3. Results 5

Figure 2.2: Number of data points (measurements) by turnstile on project's improved dataset.

and 185. 3 turnstiles had less than 160 entries, and after inspections they have been removed because of the huge amount of missing data or time stamps reporting 0 entries. Of the 185 turnstiles with incomplete data, there was one case where at all time stamps the number of entries was 0, which was also removed as it does not add any information to our analysis (even when in other cases it could give further information).

The problem with the missing data is that, for some not clear explanation we could provide, affects more the suburb stations turnstiles than the ones in downtown areas. And suburb stations tend also to show lower number of hourly entries, i.e, a lower ridership, than downtown turnstiles. This effect can be seen in *Figure 2.3*.

We wonder, as the reader also may, if this missing data could affect in anyway our previous study. We are not completely sure, but we think that given the way we performed our analysis it could happen that the results were affected: the downtown station data, which also correspond to the group of stations with higher ridership, is contributing to increase the median "entries by hour" that we calculated, as they are located in the higher values side of the ridership distribution. What happens if the stations in this locations are also the ones that tend to have more rainy days? We didn't believe this was the case, but just to be sure we created the plot shown in *Figure 2.4*.

The figure shows that the precipitation is higher in the northern NYC, which is also the location of the most busy turnstiles: the median ridership of stations with higher precipitation (> 0.004 inches) is 1116 entries by hour, while the stations with lower precipitation (<= 0.004 inches) is 832 entries by hour. Also the stations with higher precipitation report on average 7 rainy days while the lower precipitation turnstiles only report 6 rainy days.

Figure 2.3: Turnstiles monthly median ridership, location and number of data points The figure shows the distribution of the turnstiles within NYC which are in our dataset. The size is proportional to the monthly median ridership (entries by hour) while the color indicates the data completeness of each turnstile: whiter colors indicate locations with more missing data.

Figure 2.4: Turnstiles monthly median ridership, location and mean precipitation. The figure shows the geographical distribution of the NYC turnstiles in the project's improved dataset. Size is proportional to the monthly median ridership and color represent the month's mean precipitation per turnstile. The figure shows that precipitations are higher in southern (and downtown) NYC.

2.4.2 The use of the rain variable

The rain indicator in the improved data set reports if whether any precipitation happened at the turnstile location during the day. Because some of the precipitation data was missing in the weather tables, the conditions reported in the conds variable were used to create the rain column (as mentioned in the forums): if at anytime during a day the condition reported at a turnstile location was one of the following the rain indicator was set to one: 'Rain', 'Light Rain', 'Heavy Rain' or 'Light Drizzle'. This explains why for 94 entries reporting rain equal to 1, the meanprecipi variable (mean precipitation for the day at the location) was 0. Also, as shown before, this indicator is different for each turnstile depending on the closest weather station report. Thus, we find out that 216 turnstiles report 7 days of rain, 19 turnstiles report 6 rainy days, and 2 report 5 rainy days. Adding this analysis with the one in the previous subsection, we have to be aware that the samples might not be completely independent as previously thought.

Also, there is another important problem derived from the use of rain variable that we hope to make clear with the plot shown on *Figure 2.5*.

Figure 2.5: Ridership, precipitation and rain indicator for turnstile 084.

The figure show the ridership evolution in May, in terms of entries per hour, for turnstile 084, which is on one of the must busy stations in NYC subway. There is one point every four hours for the month of May, and the symbols indicate whether the day was rainy (big circles) or not rainy (small triangles). Also, the precipitation amount in inches for the rainy days is shown by means of the color bar in the right, with darker blue colors indication more precipitation.

The problem we see on using the rain variable as and indicator of rainy conditions for a turnstile is that a whole day is tagged as rainy even when only rained at one time during the day. Furthermore, it can happen, as it can clearly be seen on the figure, that the rain happened in one of the less busy hours of the day, but still the whole day data will be tagged as rainy: this will clearly affect the results of our previous analysis.

2.4.3 Smoothing the data and answering the question again

In order to smooth out the previously mentioned effects we created a new data set from where two samples will be created later. For this dataset we grouped all individual turnstiles by time stamp, aggregating the ridership (ENTRIESn_hourly) using the sum function. In this way we have a set that represent the behavior of the whole NYC subway as one system, instead of individual turnstiles, reporting the total ridership at each time stamp. For each time stamp a variable called rain_day was created, which is 1 if in any turnstile during a day within the whole NYC subway network reported some precipitation, or 0 otherwise. Also, the data from May 30th is removed, since it changes the statistic for the mondays. We will now redo the analysis using this dataset, and in this way try to answer the original question: *Does the NYC subway ridership changes with the precipitation conditions?*

- Sample A is the subgroup of all the data coming from non rainy days (rain == 0).
- Sample B is the subgroup of the data in rainy days (rain == 1).

The ridership distribution of both samples are again similar in shape, but they are not longer continuous, as show in *Figure 2.6*. We will use again the median to report the average of each sample, and the Mann Whitney U test to assess the significance of any difference we might found.

Figure 2.6: Ridership distribution comparison between rainy and dry days for the new samples taken from the aggregated data.

The ridership in non-rainy days has a **median of 370535 entries per hour**, while for rainy days the **median is 363124**. However the results from the U test are now different:

- Ustatistic = 3477.0
- p value = 0.71 (Two-tailed hypothesis)

So the difference in the medians are not significant now, and we can't conclude that there is any meaningful difference in the ridership that could be explained by the precipitation conditions.

Analyzing the NYC Subway Dataset,

THREE

LINEAR REGRESSION

The second part of this work deals with the use of tools related to machine learning: can we use the data to create models that will allows us to predict the ridership based on some predicting features?

Problem Set 3 of the class has as one of the main goals the use of a linear regression model that could help us to predict the ridership in the NYC subway. We were asked to implement one of the algorithms that calculates the coefficients of a multiple linear regression model: gradient descent. The selection of the features, and thus the number of coefficients to fit, was left as an exercise for the student.

After implementing the linear regression model, and study its strengths and shortcomings, we used another algorithm to find the coefficients of the linear regression model: OLS, or ordinary least squares.

Finally, a third method was used, also based on a linear regression algorithm, but this time the model used higher order polynomials to learn from the data, in an effort to deal with the nonlinearity of it.

3.1 Linear regression algorithm(s)

What approach did you use to compute the coefficients theta and produce prediction for ENTRIESn_hourly in your regression model

3.1.1 Gradient descent

The code used to implement the gradient descent algorithm to find the linear regression coefficient can be checked on the python file available at the github repository associated to this work (projectone.py), and on the submissions to the *Introduction to Data Science* class (problem set 3).

3.1.2 Ordinary Least Squares (with statsmodels)

Selecting the same features as in the Gradient Descent exercise, we calculated the coefficients of the linear model by using the OLS implementation of the statsmodels python library [statsmod-

els].

3.1.3 Polynomial features with Ridge linear regression

After analysing the results from the previous regressions, and for reasons that will become clear after the description of their results, we went a little further and we used a polynomial transformation of the selected features, and another linear regression algorithm, the Ridge regression, was used to find the coefficients and predict ridership. The model used and results will be shown in the interpretation section.

3.2 Models and features used

What features (input variables) did you use in your model? Did you use any dummy variables as part of your features?

The selection of the features to use and how to use them in the model was not a linear process, but an iterative work based on exploratory statistics, residuals analysis and study of the models obtained to predict the ridership. In fact, for the problem set 3 in the class we used a different set of variables as predictors (specifically day_week instead of weekday).

Also, it was because of these iterative analysis that we decided to give a try to a third method to model the data which included the use of polynomial features.

The multiple regression model used for the first two methods can be written as:

$$\hat{y} = \theta_0 + \theta_1 x_1 + theta_2 x_2 + \dots + \theta_k x_k \tag{3.1}$$

where \hat{y} is the predicted variable, x_i are the predictors (features) and θ_i are the coefficients or parameters that we are looking for using either the gradient descent or the OLS algorithms.

For our work we decided to use the following predictors:

- UNIT: turnstile unique identification. The use of the identification of each turnstile starts from the realization that the turnstiles have different ridership volumes for the same time periods, as it can be readily seen by comparing ridership averages. However this is a non-numerical categorical variable, so it was required to transform this variable to a numerical format by using dummy variables. This steps adds at once *n* extra features or predictors, one for each turnstile in our data, which adds a lot of computing work to the algorithm.
- hour: numerical variable that indicates the hour of the day when the ridership is reported for each turnstile. This variable can takes values that are continuous between 0 and 24, even when in the improved dataset the observed values are reported every four hours; it adds one coefficient to the calculations. *Figure 3.1* shows the relation of the ridership values with hour the day.
- weekday: numerical (and categorical) variable indicating if the day when the ridership measurement was done was either a weekday (1) or weekend day (0). *Figure 3.2* shows the relation of the ridership with kind of day.

Figure 3.1: Ridership vs hour of the day.

Instead of just constructing a scatter plot, we decided to use another descriptive statistic method to study the relation, if any, between ridership and hour of the day. We used boxplots to visualize the distribution of ridership for each hour of the day. In this way we can see that the medians do not follow a linear relation with the hour of the day, and that there is a huge spread of possible ridership values for each hour.

Figure 3.2: Ridership vs weekday/weekend-day.

This plot show the ridership distribution as boxplots for work days (Monday to Friday) and weekend days (Saturdays and Sundays). It is clear that even when the spread in entries per hour is still big a linear correlation can be used.

• rain: daily precipitation condition for a turnstile location (0 for a clear day, 1 for rainy). Even when is a categorical variable, it is also numerical, and it is used as the final predictor feature for our linear model. *Figure 3.3* shows the relation of the ridership values with precipitation conditions.

Figure 3.3: Ridership vs rainy conditions.

With the use of boxplots again, we can see in this figure that a really mild linear correlation exist between daily precipitation conditions and ridership. (Which as was shown in the previous section is not significant).

Why did you select these features in your model?

The features were selected based partially on intuition and partially by exploratory analysis. First, it was clear that the behavior for each individual turnstile was mainly a function of the hour of the day and the day of the week, as is shown in *Figure 3.4*: there is a clear periodicity in the ridership behavior for each day, depending on the time of the day, and also a dependence on the day of the week. However the relation is clearly non-linear. We kept the hour as a predictor because is an important predictor, an in a very rough approximation one can see that ridership is lower in the beginning of the day while reaching a peak on the evenings.

However, we decided to use weekday instead of day_week (the second being the day of the week, i.e, a number between 0 and 6, where 0 is Monday and 6 Sunday), because the major change on ridership behavior is seen between work days and off days (weekends), and weekday can be better modeled by a linear model than day_week (as it can be checked on *Figure 3.5*)

Even when UNIT was not a numerical variable, we decided to use it given the different ridership patterns for each turnstile location. When using it as a dummy variable what we will be doing is adding or subtracting a constant offset which is particular for each location. Will this be enough to model the behaviors of different stations?

No further experiments where done to try other weather variables, since we were mainly interested in the behavior of the system as a function of precipitations; also, no other linear relationships were apparent from these variables, or there was not enough data to sample the ridership under some conditions (e.g, only 1 or 2 foggy days, no snow, etc.)

Finally, out from intuition we left out the variable EXITSn: besides having a highly linearly correlated relation with the ridership variable, it is clear that this variable is not completely

Figure 3.4: Ridership vs date for turnstile R084.

The figure clearly shows a periodic behavior for the ridership behavior for a particular turnstile, which is a function mainly of the hour of the day and day of the week. Ridership peaks are usually seen at 20 hours, while weekends and holidays (May 30th) being less busy than weekdays.

Figure 3.5: Ridership vs day of the week.

This plot show the ridership distribution as boxplots for the 7 days of the week (0 is Monday, 6 is Sunday). We can see that even when a relation exist between day of the week and ridership, this relation doesn't look linear, and thus we decided to use weekday instead.

independent from the number of entries to subway. Furthermore, it won't be a nice predicting feature, since its value will depend on the number of entries, and it should be treated as a observable or predictable variable on itself.

3.3 Results: coefficients and R Squared

What are the coefficients (or weights) of the non-dummy features in your linear regression model?

What is your model's \mathbb{R}^2 (coefficients of determination) value?

The coefficients found with the gradient descent and OLS algorithms were the same in both cases, which was expected for a successful execution of the gradient descent algorithm. The selected features were enough to obtain a $R^2 = 0.481$. More in depth details of the result can be seen in *Table 3.1*. Also, thanks to the statsmodels OLS implementation we can report some of the coefficients obtained from the linear model fit, using the predictor variables hour, weekday, rain and dummies from UNIT (Eq. 3.1), and their statistical significances (Table 3.2).

Table 3.1: OLS Regression Results

OLS Regression Results	
Dep. Variable: ENTRIESn_hourly	R-squared: 0.481
Model: OLS	Adj. R-squared: 0.478
Method: Least Squares	F-statistic: 163.1
Date: Wed, 07 Jan 2015	Prob (F-statistic): 0.00
Time: 14:12:52	Log-Likelihood: -3.8397e+05
No. Observations: 42267	AIC: 7.684e+05
Df Residuals: 42027	BIC: 7.705e+05
Df Model: 239	
Covariance Type: nonrobust	

Table 3.2: Linear regression coefficients

Predictor	coef	std err	t	P> t	[95% Conf. Int.]
Intercept	-1750.5171	166.661	-10.503	0.000	-2077.175 -1423.859
C(UNIT)[T.R004]	334.1581	231.108	1.446	0.148	-118.819 787.135
C(UNIT)[T.R005]	335.0522	232.095	1.444	0.149	-119.859 789.963
C(UNIT)[T.R006]	451.3319	229.532	1.966	0.049	1.445 901.218
C(UNIT)[T.R007]	164.5844	232.767	0.707	0.480	-291.644 620.812
hour	124.0989	1.500	82.741	0.000	121.159 127.039
weekday	980.9091	23.243	42.203	0.000	935.353 1026.465
rain	36.3145	25.167	1.443	0.149	-13.013 85.642

3.4 Interpretation and limits

What does this \mathbb{R}^2 value mean for the goodness of fit for your regression model? Do you think this linear model to predict ridership is appropriate for this dataset, given this \mathbb{R}^2 value?

Even when a relatively high R^2 was achieved by the use of a multiple linear regression model, a successful model should also comply with several assumptions, which can be checked by analysing the residuals [Diez2012].

- 1. **Are the residuals for the model nearly normal?**: *figure 3.6 top rows*, shows that the residuals obtained do not seem to follow a normal distribution. Even when the peak of the residuals tend to be zero, the wings do not follow a Gaussian distribution, as is more easily seen on the top left plot. Most probably, we have a big number of outliers.
- 2. **Is the variability of the residuals nearly constant?**: the variance of the residuals can be checked on the bottom left plot of *figure 3.6*, where the residuals vs predicted values are plotted. The figure doesn't show a constant variance along the x axis, with a lot of features that might be related to a poorly fit.
- 3. **Are the residuals independent?**: a plot of the residuals in the order of the data collected in the original data frame should show no relation between close neighbours. Our data frame mix data from several turnstiles, but it is ordered in such way that all data from the turnstiles can be found on sequenced blocks, where the data is again ordered by date and time. From the bottom right plot on *figure 3.6* it seems that the residuals do not look independent between different turnstiles.
- 4. Is each variable linearly related to the outcome?: we can check the linearity from the figures presented in section 3.2; also the reader can check some other figures withing the ipython notebook associated to this project. It has been already established that there is a linear relation between ridership and the variables weekday and rain; however there is a poor relation with the hour variable (figure 3.7). However, there are some issues raised given the way the UNIT variable was included in the model, and that can be seen in the plots shown in figure 3.8 and figure 3.9.

Besides the mild coefficient of determination it seems that many of the assumptions are not met by our data to successfully apply a multiple regression model to it. The residuals analysis are very good indicators of the behaviors of the ridership that the model can't explain, mainly because it was a very rough assumption to use hour as it is clearly not well modeled by the linear regression (figure 3.7). Figure 3.9 is also a nice diagnosis tool to show that using the turnstiles names as dummy variables can help to improve the fit to the model, but is not enough. From the figure we can see again that the ridership varies from location to location, with peaks and valley hours happening at different times of the day for different turnstiles. Our model only corrects each turnstile by adding or subtracting a constant to each turnstile, which is not enough to model the ridership of the different locations. We also found that given the negative value of the intercept coefficient and small values for some turnstile coefficients we have several ridership predictions that are negative: this is meaningless for our problem, since is doesn't make sense a negative ridership.

Finally, it is interesting to independently check that even when the rain variable can be fit by a linear model, it significance is very low as can be seen by the low p-value of the coefficient:

Figure 3.6: Residuals analysis plots for the linear regression model (improved dataset). *Top left:* normal probability plot of the residuals and *top right:* residuals distribution. It is clear that residuals do not adjust well to a simple normal probability distribution. *Bottom left* shows the residuals versus the predicted ridership, and *bottom right* just the residuals following the order on which the observed values were found on the improved dataset.

Figure 3.7: Residuals (as boxplots) vs hour of the day.

Figure 3.8: Residuals (as boxplots) for different turnstiles.

Figure 3.9: Observed and predicted ridership values for three different turnstiles. The turnstiles used were R084, R172 and R338, one at downtown and the other two at the periphery. The predicted values come from the linear regression model applied in previous section. Note how besides the middle panel, the model predictions do not follow well the observed ridership for stations with too much traffic or low traffic. Also, because of the way the UNIT dummy variables are used, we

can see that just adding a constant is not enough to scale the ridership for individual locations.

0.15. In fact, removing rain as predictor feature only reduce the \mathbb{R}^2 by less than 0.0001, and the reported coefficient of determination is still 0.481.

3.4.1 Aggregated dataset and polynomial features

We will now take advantage to the extra wrangling done with the improved data set in the previous chapter, and we will use the smoothed dataset that we created: **nycsubway_weather**. This data set was created by aggregating the ridership for each time stamp by adding all the ridership of the individual turnstiles, so we have a dataset that reports the ridership of the NYC subway as a whole. The columns of this dataset are:

- ENTRIESn_hourly: the total ridership as entries per hour for the whole NYC subway system
- dateTime: datetime variable, is the date and time for each observed value.
- hour: integer value, is the hour of the day for each reported value. It has a 24 hour format.
- day_week: integer value, is the day of the week for the observation (0 for Monday, 6 for Sunday)
- weekday: indicator variable, 1 for a weekday, 0 for a weekend day.
- holiday: categorical variable, 1 for days that are holidays.
- rain_hour: indicator variable, it reports whether at any location within the NYC Subway system was raining at the particular time
- rain_day: indicator variable, it reports whether at any location in the NYC Subway system there wa any precipitation (rain) for the particular day of the reported value.

After some tries with multiple regression models, using the OLS statsmodels implementation, we were able to raise the R^2 value to 0.563 using this new dataset and three predicting variables: hour, weekday and holiday. Neither rain_day nor rain_hour improved the coefficient of determination noticeably, with p-values higher than 0.61. Even with the smoothing achieved by the removal of individual turnstiles we were able to see the same kinds of problems as described previously, being the most important factor the nonlinearity of the relation between the hour of the day and ridership, plus the difference in this relation for different days of the week: having a constant added (or subtracted) given the type of day (weekday or day off) is not enough to account for the variations seen between days. *Figure 3.10* shows a plot with the observed and predicted values, which further explains the shortcoming of using a linear model with our data. The reader can also check the ipython notebook associated with this project to look for the residuals analysis.

Because of these reasons we decide to try a different method. This method is still an algorithm that uses the linear regression tools, but the predictors are now converted into *polynomial features* [glmscikit]. The problem can be resolved with a linear regression by taking advantage of the linearity of the coefficients in the system of equations needed to solve the problem of finding these coefficients. The function used to convert our selected predictors, that for this optional exercise will be hour, day_week, holiday and rain_hour, was the library PolynomialFeatures from the scikit-learn libraries for machine learning with python. We won't enter into the details of this method, since it goes beyond the goal of this project,

Figure 3.10: Observed and predicted ridership values for the NYC Subway, month of May. Even when we have eliminated the complexities by taking the whole NYC Subway as a whole and increased the percentage of the ridership behavior for May 2011 that is explained but the used linear model, is still apparent the problems produced by the lack of linearity of hour vs ridership, and the changes in ridership behavior for different days of the week.

but it suffice to say here that the new model is now a polynomial of degree 5 (that was our selection), were the predictors also interact with each other. So, if $x_1 = \text{hour}$, $x_2 = \text{day_week}$, $x_3 = \text{holiday}$ and $x_3 = \text{rain_hour}$, the model we are trying to use to explain our data is going to be of the form:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \dots + \theta_5 x_1^5 + \theta_6 x_2 + \dots + \theta_n x_1 x_2 + \theta_{n+1} x_1 x_3 + \dots$$

Also, we mentioned that we used a Ridge regression algorithm, that was suggested by the scikit-learn documentation as a more robust method to find the coefficients in a model like the one we are trying to use.

The main idea was to try to overcome the limitation given for the non-linearity of the hourly and daily ridership in our NYC subways system set. The improvement was amazing, by reaching a $R^2 = 0.968$, and the reader can check the residual analysis plots in *Figure 3.11*.

Even when (a) the residual distribution is now closer to a normal distribution, (b) the variance seems to be more constant and (c) the residuals seem independent, we must draw the attention to the reader to the fact that this model, while an improvement, still have shortcomings, that can be seen in *Figure 3.12*. While the hourly and daily ridership are now modeled with higher precision we have to be aware of the overfitting our model is suffering of, explained by the large number of coefficients to be found (126 coefficients). However, it is clear that a much better work can be done with more complex machine learning algorithms, and the idea was just to show that with the data we have we should be able to predict ridership with much more accuracy than the linear regression is capable of.

Figure 3.11: Residuals analysis plots for the polynomial model (nycsubway_weather dataset). *Top left:* normal probability plot of the residuals and *top right:* residuals distribution. The residuals are distributed now following more closely the shape of a Gaussian, and less outliers are visible; *Bottom left* shows the residuals versus the predicted ridership, and *bottom right* just the residuals following the order on which the observed values are reported.

Daily ridership behavior and polynomial regression model.

Figure 3.12: Observed and predicted ridership values for days of the week as a function of hour.

VISUALIZATION

4.1 Ridership distribution with weather

One visualization should contain two histograms: one of ENTRIESn_hourly for rainy days and one of ENTRIESn_hourly for non-rainy days.

The figure comparing the ridership distributions for rainy and non-rainy days has been already presented in the Chapter 2. Here (*figure 4.1*) we show the same figure, but this time we want to show the different samples sizes by not normalizing the data.

Figure 4.1: Ridership distribution comparison between rainy and dry days.

Please note the logarithmic scale on axis Y. It was used to allows us to study the visualization with more detail. Both distributions are similar in shape, but the rainy sample is smaller than the rain sample (there was precipitation reported for only 7 days of May 2011), and thus the counts by bin are smaller.

4.2 Supporting visualizations

One visualization can be more freeform.

We will shown here some of the other plots that were created while working on this project, and that help to answer particulars questions we have, or to explore the data. All the code that produced these plots can be found on the accompanying IPython notebook.

Figure 4.2: Ridership distribution for one turnstile.

With this figure we studied how the ridership distribution looked for the data of one turnstile. It looks like there are multiple distributions within the data (multiples modes), which correspond to the different distributions for a particular hour and day of the week.

Figure 4.3: Ridership behavior for two different turnstiles

This plot was created to show the different daily behavior by turnstile location, comparing one turnstile at downtown and other at the periphery. The y-axis scale was normalized to focus on how different was the use of the turnstiles along the day: the downtown locations tend to have a peak at 20 hours, while the suburbs peak at noon.

Figure 4.4: Weekly ridership behavior for turnstiles with no missing data. This figure, and the next, were created while studying the actual independence of the rainy and non-rainy samples in chapter 2. We noticed that several turnstiles within the original dataset didn't report information for 1 or several times in May 2011, and we wanted to study what would happen if we only worked with the complete turnstiles. We found out that the locations with no missing data were mostly at downtown stations, and they also represented mostly the busiest locations. Note that daily ridership peaks at 20 hours. *Notice that the x-axis includes markers for the 0 hours of each day of the week, and six reports happen each day, for 0, 4, 8, 12, 16 and 20 hours.*

Figure 4.5: Weekly ridership behavior for turnstiles with missing data. Same as previous figure, but for data with missing data. Note how the daily ridership behaviors changes, with two peaks, one at noon and the other at 20 hours. If a comparison is done with *Figure 4.3*, this sample is more similar to the suburb station, while the previous sample is closer to the behavior of the downtown locations.

Figure 4.6: Comparison of the daily ridership for non-rainy (0) and rainy (1) samples from the improved dataset.

This plots helps to compares how the ridership volume might be affected by the precipitation conditions for each day of the week. Both samples seem too have a pretty similar ridership volume for the same days, within the limits shown by the 95% confidence intervals (the black vertical lines in each bar)

Figure 4.7: Comparison of the daily ridership for non-rainy (0) and rainy (1) samples but now from the nycsubway_weather dataset.

Same as previous figure. The daily ridership volume for both samples look even more similar than in the previous plot. One drawback of this new dataset, that treats the NYC subway system as a whole, is that we can notice that we do not have too many data points to accurately study the ridership, as can be seen by the big 95% confidence interval lines. With most days having 4 (and some 5) observed values within May 2011, when dividing between rainy and non-rainy the number of observations drops even more.

Figure 4.8: Comparison of the week-hourly ridership volumes for the non-rainy and rainy samples from the nycsubway_weather dataset.

This figure is similar to the previous two plots, but this time we use the rain_hour indicator to create the two samples. It is clearer now that we might have not enough observations to answer the question behind this project, does the ridership in the NYC subway changes with the rain conditions? *Note that the x-axis, for each sample, shows values between 0 and 143, being 0 the 0 hours of Monday, and 143 the 23 hours of Sunday.*

Analyzing the NYC Subway Dataset,

CONCLUSIONS AND REFLECTIONS

5.1 Conclusion

From your analysis and interpretation of the data, do more people ride the NYC subway when it is raining versus when it is not raining? What analyses lead you to this conclusion?

We have not found any significant evidence that ridership on the NYC subway is affected by the rainy conditions, at least for the month of May 2011, given the dataset used for this work. However, we don't think that we can extend this conclusion to other periods of the year, as we don't have enough information.

Two analysis were performed that backup this conclusion:

- 1. A non-parametric statistical test between two samples, being one sample the data observed in rainy days and the other the data observed in non-rainy days. Even when in the beginning the small difference in the ridership volume reported for each sample seemed to be significant by the statistics reported by the test, it was not clear that both samples were really independent. After aggregating the data from all individual turnstiles to smooth possible selection effects and outliers, the test was run again and no significant nor meaningful difference was found between both samples.
- 2. A second analysis was done by means of the use of a machine learning technique. We tried to fit the data to multiple regression model, were we aimed to find predicting features from with our data. Even when some predicting features were found, as the hour of the day, day of the week, holiday or workday, the rain indicators didn't have either a significant weight or a high p-value, thus confirming by an independent method that precipitations didn't seem to play a roll on the ridership behavior of the NYC subway. or from the fitting to a multiple regression model, support

After obtaining this result, can we discard some of our previous preconceptions or intuitions? One prejudgement was to believe that people would prefer to use the subway on rainy days, instead of using other transportation means as bus or taxis, since the later would mean to be more exposed to the rain. Another preconception, in a opposite direction, was to think that people would prefer instead to remain at home if there is not need to go out, thus only people that need to commute to work would be riding on those conditions.

5.2 Shortcomings, limitations and insights

Please discuss potential shortcomings of the methods of your analysis

Several shortcoming have been raised along the pages of this work. Many of them are not only related to the analysis methods but also to the dataset. Here we will summarize the most relevant shortcomings according to our criteria. The order of the list doesn't necessarily reflect the importance.

- 1. The statistical test must be used with caution: besides checking that some basic assumptions about the shape of the samples distribution should be met, the test itself does not indicates any about the actual independence of both samples. One should be careful when comparing the two samples on assessing if any other feature, or selection problem, can be the responsible of a significant difference detected by the test.
- 2. The use of a linear regression, even with multiple features, was shown to be not enough to model the ridership behavior of the NYC subway. The assumption of linearity between the predicting features and the entries by hour was not met for most of the variables, and the residual analysis confirmed the poor fit.
- 3. We believe that we did not have enough data to answer the question. Even studying the system as whole, removing the complications associated to the different behavior between different turnstiles and locations, the number of rainy points was small: only at 2 times heavy rain was reported, and just for short periods of a day; and only at 8 hours the conditions were "rain". All the other precipitations reported lasted only for short periods of time, affected only specific stations withing the whole NYC area, or where only relate to light rain or drizzle.

Do you have any other insight about the dataset that you would like to share with us?

As the shortcoming, some other insights have been shown within this work. Many of the visualizations presented in the different figures wanted to inform the reader about these findings:

- How the behavior changes for holidays, even when only one holiday was present in our data (May 30th, 2011).
- The ridership behavior and features changes between locations, specially when comparing the busier downtown stations with the periphery locations.
- The precipitations are different within the NYC area for the month of May, with the southern stations reporting a higher precipitation.

BIBLIOGRAPHY

[Diez2014] Diez, Barr, Cetinkaya-Rundel. Introductory Statistics with Randomizations and Simulation. 1st Edition. openintro.org

[Diez2012] Diez, Barr, Cetinkaya-Rundel. Open Intro Statistics. 2nd Edition. openintro.org

[McKinney2013] McKinney. Python for Data Analysis. 1st Edition. O'Reilly Media. 2012.

[Peck2012] Peck, Olsen, Devore. Introduction to Statistics and Data Analysis. 4th Edition. Brooks/Cole. 2012.

[Lyman2010] Lyman Ott, Longnecker. An Introduction to Statistical Methods and Data analysis. Sixth Edition. Brooks/Cole. 2010.

[Rossant2014] Rossant. IPython Interactive Computing and Visualization Cookbook. 1st Edition. Packt Publishing. 2014.

[glmscikit] http://scikit-learn.org/stable/modules/linear_model.html

[statsmodels] http://statsmodels.sourceforge.net/stable/

[wikiMann] http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test