CSC 212: Data Structures and Abstractions Big O Notation

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Example Review

```
for (int i = 0; i < n; i ++) {
    for (int j = 0; j < i*i; j ++) {
        for (int k = 0; k < j; k ++) {
            // count 1 instruction
        }
    }
}</pre>
```

The story so far ...

- · Can measure actual runtime to compare algorithms
 - ✓ however, runtime is noisy (highly sensitive to HW/SW and implementation details)
- Can count instructions to compare algorithms
 - ✓ can define T(n), which depends on the input size
 - ✓ for large inputs, our focus should be on the dominant terms of T(n)

we will now see formal ways for this approach

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\sum_{i=1}^{n-1} i = 1 + 2 + 3 + \dots + (n-2) + (n-1)$$

Should we consider these the same?

Comparing two algorithms with T(n) = 2nand T(n) = 25n respectively

What about now?

Now consider this example ...

Bottom line ...

- We are trying to compare **T(n)** functions, but we also care about large values of **n**
- Can we properly define '<=' for functions?</p>
 - we can group functions into 'sets' and make our lives easier

Asymptotic Analysis

Refers to the study of an algorithm as the input size "gets big" or reaches a limit (in the calculus sense)

Growth rate

rate at which the cost of an algorithm grows as the size of its input grows

$$c_1 n$$
 $c_2 n^2$

Common sets of functions

Faster growth rate ... slower algorithm

Algorithm A is better than algorithm B if for large values of n, $T_A(n)$ grows slower than $T_B(n)$

A few examples ...

order of growth	name	typical code framework	description	example
1	constant	a = b + c;	statement	add two numbers
log n	logarithmic	while (n > 1) { n = n/2; }	divide in half	binary search
n	linear	for (int i = 0; i < n; i++) { }	single loop	find the maximum
n log n	linearithmic	see mergesort lecture	divide and conquer	mergesort
n^2	quadratic	for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { }	double loop	check all pairs
n ³	cubic	<pre>for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) { }</pre>	triple loop	check all triples
2 ⁿ	exponential	see combinatorial search lecture	exhaustive search	check all subsets

Big O

T(n) is $O(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le T(n) \le cf(n), \forall n \ge n_0$ set of functions

Examples

$$7n - 2 = O(n)$$

$$20n^{3} + 10n \log n + 5 = O(n^{3})$$

$$3 \log n + \log \log n = O(\log n)$$

$$2^{100} = O(1)$$

Big Omega

T(n) is $\Omega(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le cf(n) \le T(n), \forall n \ge n_0$ set of functions

Big Theta

T(n) is $\Theta(f(n)) \iff T(n)$ is O(f(n)) and T(n) is $\Omega(f(n))$

Prove that ...

$$3 \log n + \log \log n = \Omega(\log n)$$
$$3 \log n + \log \log n = \Theta(\log n)$$

$$T(n)$$
 is $O(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le T(n) \le cf(n), \forall n \ge n_0$
 $T(n)$ is $\Omega(f(n)) \iff \exists$ positive $c, n_0 \mid 0 \le cf(n) \le T(n), \forall n \ge n_0$

In practice you can ...

"ignore constants and drop lower order terms"

True or False?

 ${n^2, n^4, 2^n, \log n, \dots}$

	Big O	Big Omega	C
$10^2 + 3000n + 10$			
$21 \log n$			
$500\log n + n^4$			
$\sqrt{n} + \log n^{50}$			
$4^n + n^{5000}$			
$3000n^3 + n^{3.5}$			
$2^5 + n!$			

Asymptotic Performance

For large values of n, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm

However, we shouldn't completely ignore asymptotically slower algorithms