Probability Theory

Machine Learning - Prof. Dr. Stephan Günnemann

Leonardo Freiherr von Lerchenfeld

November 5, 2017

Problem 1

Bayes' rule

Bayes' rule
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) * \mathbb{P}(A)}{\mathbb{P}(B)}$$

 $A \rightarrow Being a terrorist \rightarrow exactly one passenger of 100 \rightarrow 0.01$

 $B \to Tested$ as a terrorist $\to 95\%$ of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. $\rightarrow 0.01 * 0.95 + 0.99 * (1 - 0.95)$

 $\mathbb{P}(B|A) \to \text{Tested}$ as a terrorist given that he is a terrorist $\to 95\%$ of all scanned terrorists are identified as terrorists $\rightarrow 0.95$

$$\mathbb{P}(A|B) = \frac{0.95 * 0.01}{0.01 * 0.95 + 0.99 * 0.05}$$
$$= 0.161$$

The chance that the man next to you is a terrorist is 16.1%

Problem 2

The equations (1)-(3) show the probability of the distribution of the balls in the box

$$\mathbb{P}(RR) = 0.25 \tag{1}$$

$$\mathbb{P}(RW) = 0.5 \tag{2}$$

$$\mathbb{P}(WW) = 0.25 \tag{3}$$

The equations (4)-(7) show the probability of drawing a ball three times (placing the drawn ball back into the box every time) and getting only red balls

$$\mathbb{P}(3R|RR) = 1 \tag{4}$$

$$\mathbb{P}(3R|RW) = 0.5 * 0.5 * 0.5 \tag{5}$$

$$= 0.125$$
 (6)

$$\mathbb{P}(3R|WW) = 0 \tag{7}$$

So the probability that both balls in the box are red is

$$\to \mathbb{P}(RR|3R) = \frac{\mathbb{P}(3R|RR) * \mathbb{P}(RR)}{\mathbb{P}(3R)}$$
(8)

$$= \frac{1*0.25}{1*0.25 + 0.125*0.5 + 0*0.25} \tag{9}$$

$$= 0.8 \tag{10}$$

Problem 3

A fair coin is flipped until heads shows up for the first time. The expected number of heads **H** is then $\mathbb{E}[H] = 1$. The following table shows how often one could flip (f) a coin until heads show up with the corresponding probability of that scenario. n_T is the number of tails and n_H the number of heads.

f	1	2	3	 k
n_H	1	1	1	 1
n_T	0	1	2	 k-1
$\mathbb{P}(f)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	 $\frac{1}{2^k}$

The geometric series $\sum_{k=0}^{\infty} q^k$ converges if |q| < 1 to $\frac{1}{1-q}$ for $k \to \infty$

Problem 4

Expectation

For any measurable function g: $\mathbb{R} \to \mathbb{R}$, we define the expected continuous value:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Special case: $\mathbb{E}[X]$, i.e., g(x) = x, is called the **mean** of X.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b x \frac{1}{b-a} dx = \frac{1}{2(b-a)} [x^2]_a^b$$
$$= \frac{b^2 - a^2}{2(b-a)}$$
$$= \frac{b+a}{2}$$

Variance

Variance measures the concentration of a random variable's distribution around its mean.

$$\begin{split} Var(X) &= \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ &= \int_a^b x^2 \frac{1}{b - a} \, dx - \left(\frac{b + a}{2}\right)^2 = \frac{1}{3(b - a)} [x^3]_a^b - \left(\frac{b + a}{2}\right)^2 \\ &= \frac{b^3 - a^3}{3(b - a)} - \left(\frac{b + a}{2}\right)^2 \\ &= \frac{b^2 + ab + a^2}{3} - \frac{b^2 + 2ab + a^2}{4} \\ &= \frac{(b - a)^2}{12} \end{split}$$

Problem 5

Problem 6