Вариант 33-2022

Часть 1

Ответом к заданиям 1-23 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ №1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведенными в бланке образцами. Единицы измерения физических величин писать не нужно.

- 1. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
 - 1) Силы, с которыми тела действуют друг на друга, равны по модулю, направлены вдоль одной прямой в противоположные стороны и имеют разную природу.
 - 2) Температура плавления ртути ниже 36,6°C.
 - 3) Потенциальная энергия взаимодействия двух разноименных зарядов отрицательна.
 - 4) В замкнутом проводящем контуре при изменении магнитного потока через ограниченную им площадку возникает индукционный ток.
 - 5) Массовое число ядра равно сумме масс протонов и электронов в ядре. Ответ:

- 2. Даны следующие зависимости величин:
 - A) зависимость количества нераспавшихся ядер радиоактивного вещества от времени
 - вависимость магнитного потока в однородном магнитном поле через квадратную рамку от длины стороны рамки
 - В) зависимость объема от температуры при изохорном процессе

Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

Ompon:	A	Б	В
Ответ:			

3. Материальная точка движется по окружности радиусом 4 м. На графике показана зависимость модуля ее скорости v от времени t. Чему равен модуль центростремительного ускорения точки в момент $t=3\,\mathrm{c}$?

$v, \frac{n}{c}$	`				
8	 -	 -		<u> </u>	 - -
4			-	- -	
2		-	·	- <u> </u>	
	1	2	3	4	t,c

Otbet: ______ $_{\rm M}/{\rm c}^2$.

4. Какую мощность развивает двигатель подъемного механизма крана, если он равномерно поднимает плиту массой 600 кг на высоту 4 м за 3 с?

Ответ: _____ кВт.

5. Колеблющаяся струна издает звук с длиной волны 0.17 м. Какова частота ее колебаний, если скорость звука в воздухе 340 м/с?

Ответ: Гц

6. Из начала декартовой системы координат в момент времени t=0 Женя бросает небольшой камень под углом к горизонту. В таблице приведены результаты измерения координат камня x и y в зависимости от времени наблюдения. Выберите все верные утверждения на основании данных, приведенных в таблице.

Время, с	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
Координата x , м	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4
Координата y , м	0,35	0,60	0,75	0,80	0,75	0,60	0,35	0

- 1) В момент времени t = 0.4 с скорость тела равна 3 м/с.
- 2) Проекция скорости v_y в момент времени $t=0.2\,\mathrm{c}$ равна 2 м/с.
- 3) Тело бросили со скоростью 6 м/с.
- 4) Тело бросили под углом 45° к горизонту.
- 5) Максимальная высота подъема тела составила 1,2 м.

7. Шарик, брошенный Олесей горизонтально с высоты H с начальной скоростью v_0 , до падения на землю пролетел в горизонтальном направлении расстояние L (см. рисунок). Что произойдет со временем полета и ускорением шарика, если в этой же постановке опыта уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь.

Для каждой величины определите соответствующий характер изменения:

1) увеличивается 2) уменьшается 3) не изменяется Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

H	\vec{v}_0
	I

Время полета шарика	Ускорение шарика

Груз, привязанный к нити, Лена отклонила на небольшой угол от положения 8. равновесия и в момент t=0 отпустила из состояния покоя

(см. рисунок). На графиках А и Б показано изменение физических величин, характеризующих движение груза после этого. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) Координата x
- 2) Проекция скорости v_x
- 3) Кинетическая энергия E_{κ}
- 4) Потенциальная энергия E_{π}

Ответ:

A	Б

9. Во сколько раз уменьшится средняя кинетическая энергия движения молекул идеального газа, если давление увеличится в 2 раза, а концентрация молекул увеличится в 6 раз?

Ответ: в _______ раз(а).

10.	На pV -диаграмме показан процесс изменения
	состояния 4 моль идеального одноатомного га-
	за. Газ отдал в окружающую среду количество
	теплоты, равное 2,5 кДж. На сколько умень-
	шилась внутренняя энергия газа в этом процес-
	ce?

шилась внутренняя энергия га ce?	за в этом процес-			
	П	p_0		
Ответ:	кДж.	0	V_0	

11. Относительная влажность водяного пара в сосуде при температуре $100\,^{\circ}\mathrm{C}$ равна 62%. Какова плотность этого пара? Ответ округлите до сотых долей.

Otbet: _____ $K\Gamma/M^3$.

12. На рисунке представлены графики зависимости температуры t двух тел одинаковой массы от сообщенного количества теплоты Q. Первоначально тела находились в жидком агрегатном состоянии. Используя данные графиков, выберите из предложенного перечня все верные утверждения.

- 1) Температура кипения у первого тела в 2 раза ниже, чем у второго.
- 2) Тела имеют одинаковую удельную теплоемкость в жидком агрегатном состоянии.
- 3) Удельная теплоемкость в жидком агрегатном состоянии у первого тела в 3 раза больше, чем у второго.
- 4) Оба тела имеют одинаковую удельную теплоту парообразования.
- 5) Удельная теплоемкость в газообразном агрегатном состоянии у первого тела в 2 раза больше, чем у второго.
- 13. В сосуде неизменного объема находится идеальный газ. Часть газа выпускали из сосуда так, что давление оставалось неизменным. Как изменяются при этом температура газа, оставшегося в сосуде, и его плотность? Для каждой величины определите соответствующий характер изменения:
 - 1) увеличивается
 - 2) уменьшается
 - 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Температура газа	Плотность газа

14.	Сила тока, текущего п	ю провод	цнику,	равн	a 2 A	A. K	а	кой	зар	яд	[П]	pox	оди	т по	про	вод-
	Ответ:		ŀ	ζл.												
15.	В катушке индуктивно от 0 до некоторого ко самоиндукции, модультока в катушке.	нечного	значе	ния.	При	ЭТОІ	Μ	ВК	ату	Шŀ	кe	наб	, - ЭЛЮ,	дает	ся З	ДС
	Ответ:			A.												
16.	В колебательном конт по закону $U = U_0 \cos$ колебаний заряда кон	(ωt) , где	$U_0 =$	= 12 I	$3, \omega$											
	Ответ:			мкс.												
17.	Арсений подключил и последовательно с рессунок). В момент вресэтот момент конденса зультаты измерений с в таблице.	вистором мени $t=0$ пол	и $R=0$ кл ность	20 к юч за ю раз) мО чымы ккары	(см. кают кен.	р г. Р	ои- В Ре-	مح		<u></u>	 	<u>k</u> -[i	/_ ? }		_C
		t, c	0	1	2	3	4	4 5	6							
		I, MKA	300	110	40	15		5 2	1							
	Внутреннее сопротивлило. Выберите все ве									_			_		_	
	 В момент времени Через 6 с после зам ЭДС источника то: В момент времени Ток через резистор 	пыкания ка состав $t = 3 {\rm c}$ н	ключ зляет апрях	а кон 6 В. кение	денс	ато <u>г</u> конд	p i	пол нсал	ност	гы	ю з оав	заря	яди			
	Ответ:		·													
18.	К концам отрезка про заменили отрезком пр речного сечения и при этого изменились сопр	оовода из пложили	в нихр к про	ома [,] воду	- гой : прех	же д кнее	ĮЛ : Н	инь іапр	- I, Н ЭЯЖ	о в ені	втр ие	ooe U.	бол Как	ьше: к всл	го п ведст	опе- гвие

ны определите соответствующий характер изменения:

2) уменьшается

3) не изменяется

1) увеличивается

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сопротивление провода	Сила тока в проводе		

19. Оптическая система состоит из тонкой собирающей линзы и предмета S. Установите соответствие между схемами оптических систем и их увеличением.

СХЕМА ОПТИЧЕСКОЙ СИСТЕМЫ

УВЕЛИЧЕНИЕ

- 1) 0,25
- 2) 0,5
- 3) 2
- 4) 4

Ответ: А Б

20. На рисунке представлен фрагмент Периодической системы элементов Д.И.Менделева. Под названием элемента приведены массовые числа его основных стабильных изотопов, нижний индекс около массового числа указывает (в процентах) распространенность изотопа в природе. Укажите число электронов и число нейтронов в самом распространенном изотопе магния.

2	II	Li лит 7 ₉₃	3 ий 6 _{7,4}	Ве 6 БЕРИЛ 9	4 лий 100	B 11 ₈₀	5 10 ₂₀
3	III	Na HATP	11	Mg	12	13 алюм	А1 ииний 7 ₁₀₀
1	IV	К 39 ₉₃	19 ^{ий} 41 _{6,7}	КАЛЬ	20 ьций 44 _{2,1}	Sc CKAI 4:	21 ндий 5 ₁₀₀

Число	Число
электронов	нейтронов

B бланк ответов №1 перенесите только числа, не разделяя их пробелом или другим знаком.

21.	Ядро элемента A_Z Х претерпевает гамма-распад. Как изменятся зарядовое число и
	массовое число у образовавшегося (дочернего) ядра по отношению к исходному?
	Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Зарядовое число	Массовое число			

22.	Даня	измерил	і толщину	пачки	из 200	листов	бумаги,	которая	оказалась	равна
	20 ± 1	1 мм. Че	му равна т	олщина	а одног	о листа	бумаги?			

Ответ: (<u></u>) MM
O I DO I . (/ 1/11/1

B бланк ответов №1 перенесите только числа, не разделяя их пробелом или другим знаком.

23. Для проведения лабораторной работы по обнаружению зависимости сопротивления проводника от его длины Мише выдали пять проводников, характеристики которых указаны в таблице. Какие два из предложенных ниже проводников необходимо взять Мише, чтобы провести данное исследование?

Nº	Длина	Диаметр	Материал
проводника	проводника	проводника	
1	100 см	0,5 мм	алюминий
2	100 см	1,0 мм	алюминий
3	100 см	1,0 мм	медь
4	200 см	0,5 мм	медь
5	200 см	1,0 мм	алюминий

Ответ:		
--------	--	--

He забудьте перенести все ответы в бланк ответов №1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Для записи ответов на задания 24-30 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер задания (24, 25 и т.д.), а затем решение соответствующей задачи. Ответы записывайте четко и разборчиво.

24. Катушка, обладающая индуктивностью L, соединена с источником постоянного

тока с ЭДС \mathcal{E} и одинаковыми резисторами R_1 и R_2 как показано на рисунке. Ключ в цепи разомкнут долгое время. Основываясь на известных физических законах, опишите, как изменятся сила тока в цепи и напряжение на резисторе R_1 при замыкании ключа. Внутренним сопротивлением источника тока и сопротивлением катушки пренебречь.

Полное правильное решение каждой из задач 25-30 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и при необходимости рисунок, поясняющий решение.

- **25.** Скорость тела, совершающего гармонические колебания вдоль оси Ox, изменяется по закону $v_x(t) = 0.5\cos(4t)$ (все величины выражены в СИ). Чему равно ускорение тела в тот момент, когда его скорость равна 30 см/c?
- **26.** Какова максимальная скорость фотоэлектронов, вырываемых с поверхности калиевого фотокатода при облучении его светом частотой $8 \cdot 10^{14} \, \Gamma$ ц, если «красная граница» фотоэффекта для калия равна $0.62 \, \text{мкм}$?
- 27. Два сосуда разного объема, соединенные трубкой с краном, содержат влажный воздух при комнатной температуре. Относительная влажность воздуха в сосудах равна соответственно 30% и 40%. Если кран открыть, то после установления теплового равновесия относительная влажность воздуха в сосудах окажется равной 36%. Определите отношение объема второго сосуда к объему первого. Температуру считать постоянной.

28. На столе закреплен длинный тонкий непроводящий стержень, наклоненный под углом α к горизонту (см. рисунок). На стержне закреплена маленькая заряженная

бусинка. Выше нее на стержень надета другая такая же заряженная бусинка, которая может скользить по стержню без трения. Заряды бусинок одинаковы и равны q, масса бусинки равна m. Определите расстояние ℓ между бусинками, если они находятся в равновесии. Сделайте рисунок с указанием сил, действующих на верх-

нюю бусинку. Электростатическим воздействием стола на бусинки пренебречь.

- **29.** Луч света падает на плоскопараллельную стеклянную пластинку под углом $\alpha = \arcsin 0.8$. Вышедший из пластинки луч оказался смещенным относительно продолжения падающего луча на расстояние d=2 см. Какова толщина h пластинки, если показатель преломления стекла n=1.7?
- 30. В системе, изображенной на рисунке, масса груза, лежащего на шероховатой горизонтальной плоскости, равна m=3 кг. При подвешивании к оси подвижного блока груза массой M=2 кг он движется вниз с ускорением a=1 м/с². Чему равен коэффициент трения μ между грузом массой m и плоскостью? Нити невесомы и нерастяжимы, блоки невесомы, трение в осях блоков и о воздух отсутствует. Сделайте рисунок с указанием сил, действующих на грузы. Обоснуйте применимость использованных законов.

Проверьте, чтобы каждый ответ был записан рядом с соответствующим номером задания.

- **1.** 234
- **2.** 241
- 3. 9 m/c^2
- **4.** 8 κBτ
- **5.** 2000 Γιμ
- **6.** 12
- **7.** 33
- **8.** 41
- **9.** 3
- **10.** 0 кДж
- **11.** 0.36 kg/m^3
- **12.** 13
- **13.** 12
- **14.** 40 Кл
- **15.** 20 A
- **16.** 1 MKC
- **17.** 134
- **18.** 21
- **19.** 24
- **20.** 1212
- **21.** 33
- **22.** 0,1000,005
- **23.** 25
- **24.** $I = \mathcal{E}/R$. $I' = 2\mathcal{E}/R$. Ток увеличивается плавно от I до I' = 2I. После замыкания U_1 скачком уменьшается вдвое до $U'_1 = IR/2 = \mathcal{E}/2$. Пока ток плавно растет до I' = 2I, напряжение на R_1 плавно возвращается к значению \mathcal{E} .

25.
$$a_x = -2\sin(4t) = -1.6 \text{ m/c}^2$$

26.
$$v = \sqrt{\frac{2h}{m} \left(\nu - \frac{c}{\lambda_{\rm kp}}\right)} \approx 677 \text{ km/c}$$

27.
$$\frac{V_2}{V_1} = \frac{\varphi - \varphi_1}{\varphi_2 - \varphi} = 1.5$$

28.
$$\ell = |q| \sqrt{\frac{k}{mq \sin \alpha}}$$

29.
$$h = \frac{d\sqrt{n^2 - \sin^2 \alpha}}{\sin \alpha \left(\sqrt{n^2 - \sin^2 \alpha} - \sqrt{1 - \sin^2 \alpha}\right)} \approx 4.2 \text{ cm}$$

30.
$$\mu = \frac{M}{2m} \left(1 - \frac{a}{g} \right) - \frac{2a}{g} = 0.1$$