

JP8333654A2: IRON-NICKEL ALLOY SHEET AND IRON-NICKEL-COBALT ALLOY SHEET FOR ELECTRONIC PARTS, EXCELLENT IN DEGREASING PROPERTY, AND THEIR PRODUCTION

View Images (1 pages) | View INPADOC only

Country:

JP Japan

Kind:

Inventor(s):

TSURU KIYOSHI INOUE TADASHI YAMANOUCHI NAOJI KAGE ISAMU

KAGE ISAMU WAKASA HIROSHI

Applicant(s):

NKK CORP

News, Profiles, Stocks and More about this company

Issued/Filed Dates:

Dec. 17, 1996 / June 7, 1995

Application Number:

JP1995000140779

IPC Class:

C22C 38/00; C21D 8/02; C21D 9/46; C22C 19/03; C22C 38/08; C22C 38/10;

Abstract:

Purpose: To produce an Fe-Ni alloy sheet and an Fe-Ni-Co alloy sheet for electronic parts, excellent in etching characteristic, by

improving degreasing property.

Constitution: An Fe-Ni alloy sheet or an Fe-Ni-Co alloy sheet, containing, by weight, 26-52% Ni and ?0.1% Sn or further containing 1-20% Co, is used. This alloy sheet is subjected to a repetition of cold rolling and annealing, and then finish rolling is performed by using a dull roll at 15-80% rolling rate to regulate surface roughness to 40-200µm RSm and 0.3-1.5 Rsk. Subsequently, stress relief annealing is carried out in an atmosphere consisting of ?1vol.% H2, ?0.02vol.% O2, and the balance inert gas and having -10 to -60°C dew point. At this time, temp, is raised at (3 to 50)°C/sec temp, rise rate and annealing is

temp. is raised at (3 to 50)°C/sec temp. rise rate and annealing is performed at 450-690°C annealing temp., and then cooling is done at (3 to 150)°C/sec cooling rate.

at (3 to 150)°C/sec cooling rate. COPYRIGHT: (C)1996,JPO

Other Abstract Info:

CHEMABS 126(12)165459Q CAN126(12)165459Q DERABS C97-095687

DERC97-095687

Foreign References:

(No patents reference this one)

INPADOC Record

JP8333654A2: IRON-NICKEL ALLOY SHEET AND IRON-NICKEL-COBALT ALLOY SHEET FOR ELECTRONIC PARTS, EXCELLENT IN DEGREASING PROPERTY, AND THEIR PRODUCTION

View Images (1 pages) | View Full Record

Country: JP Japan

> A2 Document Laid Open to Public Inspection Kind:

Inventor(s): TSURU KIYOSHI

INOUE TADASHI YAMANOUCHI NAOJI **KAGE ISAMU**

WAKASA HIROSHI

Applicant(s): NKK CORP

News, Profiles, Stocks and More about this company

Issued/Filed Dates: Dec. 17, 1996 / June 7, 1995

Application Number: JP1995000140779

> IPC Class: C22C 38/00; C21D 8/02; C21D 9/46; C22C 19/03; C22C 38/08; C22C 38/10;

ECLA Code: none

Priority Number(s): June 7, 1995 JP1995000140779

Other Abstract Info: CHEMABS 126(12)165459Q CAN126(12)165459Q DERABS C97-095687

DERC97-095687

Foreign References: (No patents reference this one)

ee nn.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-333654

(43)公開日 平成8年(1996)12月17日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	ΓI				技術表示箇所
C 2 2 C 38/00		,,,,	C 2 2 C	38/00		302R	
C21D 8/02		9270-4K	C 2 1 D	8/02		D	
9/46		02,0		9/46		P	
•	•		C 2 2 C	19/03		M	
C 2 2 C 19/03				38/08			
38/08		審査請求		•	OL	(全 13 頁)	最終頁に続く
(21)出顯番号	特顯平7-140779		(71) 出顧人			A 41.	
				日本鋼			口:4440日
(22)出顯日	平成7年(1995)6	月7日				区丸の内一丁	日1年27
			(72)発明者			mtam T	ロ14巻の耳 口
							目1番2号 日
				本鋼管		EN.	
	4.		(72)発明者				· 1 4 0 A
· .							目1番2号 日
					株式会		
			(72)発明者				
							目1番2号 日
					株式会		
			(74)代理/	人 弁理士	細江	利昭	
							最終頁に続く

(54) 【発明の名称】 脱脂性に優れた電子部品用Fe-Ni系合金薄板ならび Co系合金薄板とその製造方法

KFe-Ni-

(57)【要約】

【目的】 優れた脱脂性とすることにより、エッチング性に優れる電子部品用Fe-Ni系合金、Fe-Ni-Co系合金薄板とその製造方法を提供する。

【構成】 重量%で、Ni:26~52%、Sn:0.1%以下、あるいはCo:1~20%を含有したFe-Ni系合金薄板あるいはFe-Ni-Co系合金薄板。前記合金薄板を冷間圧延、焼鈍をくりかえした後、仕上げ圧延をダルロールを用いて圧延率15~80%で圧延し、その表面粗さをRSm:40~200μm、Rsk:0.3~1.5とし、前記応力除去焼鈍を、H21vo1%以上、O20.02vo1%以下、残部実質的に不活性ガスからなり、露点が-10~-60℃の雰囲気で、昇温速度3~50℃/秒で昇温し、焼鈍温度450~690℃で焼鈍後、冷却速度3~150℃/秒で冷却を行う。

【特許請求の範囲】

【請求項1】重量%で、Ni:26~52%、Sn:0.1%以下を含有するFe-Ni系合金薄板であって、その表面に厚さ10~200Åの酸化膜が形成され、当該酸化膜上における水滴接触角法による表面の接触角が40~90°であることを特徴とする脱脂性に優れた電子部品用Fe-Ni系合金薄板。

【請求項2】前記酸化膜形成前のFe-Ni系合金薄板の表面粗さがRSm:40~200μm、Rsk:0.3~1.5であることを特徴とする請求項1記載の脱脂 10性に優れた電子部品用Fe-Ni系合金薄板。

【請求項3】重量%で、Ni:26~52%、Co:1~20%、Sn:0.1%以下を含有するFe-Ni-Co系合金薄板であって、その表面に厚さ10~200 Åの酸化膜が形成され、当該酸化膜上における水滴接触角法による表面の接触角が40~90°であることを特徴とする脱脂性に優れた電子部品用Fe-Ni-Co系合金薄板。

【請求項4】前記酸化膜形成前のFe-Ni-Co系合金薄板の表面粗さがRSm: 40~200μm、Rsk:0.3~1.5であることを特徴とする請求項3記載の脱脂性に優れた電子部品用Fe-Ni-Co系合金薄板。 【請求項5】重量%で、Ni:26~52%、Sn:

0.1%以下を含有するFe-Ni系合金薄板を、1回 ないし2回以上、冷間圧延、焼鈍をくりかえした後、仕 上げ圧延、応力除去焼鈍してFe-Ni系合金薄板を製 造するにあたり、前記仕上げ圧延をダルロールを用いて 圧延率15~80%で圧延し、その表面粗さをRSm: 40~200μm、Rsk: 0.3~1.5とし、前記 30 応力除去焼鈍を、H2 1 v o 1 %以上、O2 O. O 2 v ○1%以下、残部実質的に不活性ガスからなり、露点が -10~-60℃の雰囲気で、昇温速度3~50℃/秒 で昇温し、焼鈍温度450~690℃で焼鈍後、冷却速 度3~150℃/秒で冷却を行い、その表面に厚さ10 ~200Åの酸化膜を形成し、水滴接触角法による表面 の接触角を40~90°としたことを特徴とする脱脂性 に優れた電子部品用Fe-Ni系合金薄板の製造方法。 【請求項6】重量%で、Ni:26~52%、Co:1 ~20%、Sn:0.1%以下を含有するFe-Ni-Co系合金薄板を、1回ないし2回以上、冷間圧延、焼 鈍をくりかえした後、仕上げ圧延、応力除去焼鈍してF e −Ni−Co系合金薄板を製造するにあたり、前記仕 上げ圧延をダルロールを用いて圧延率15~80%で圧 延し、その表面粗さをRSm:40~200µm、Rs k:0.3~1.5とし、前記応力除去焼鈍を、H21 vo1%以上、O2 0. 02 vo1%以下、残部実質的 に不活性ガスからなり、露点が-10~-60℃の雰囲 気で、昇温速度3~50℃/秒で昇温し、焼鈍温度45 0~690℃で焼鈍後、冷却速度3~150℃/秒で冷 50

却を行い、その表面に厚さ $10\sim200$ Åの酸化膜を形成し、水滴接触角法による表面の接触角を $40\sim90$ ° としたことを特徴とする脱脂性に優れた電子部品用Fe-Ni-Co系合金薄板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カラー受像管用等のシャドウマスク、ICリードフレーム等の各種電子部品の機能材料として用いられるFe-Ni系合金薄板およびFe-Ni-Co系合金薄板とその製造法に関する。

[0002]

【従来の技術】Niを26~52%含むFe-Ni系合金およびFe-Ni-Co系合金は室温から300℃にわたる温度域で低い熱膨張係数を示し、これらの合金からなる薄板は、カラー受像管用等のシャドウマスク、ICリードフレーム等の各種電子部品の機能材料として広く用いられる。

【0003】以下に、シャドウマスクを例に取って説明する。シャドウマスク用素材の合金薄板は所定の板厚に20 加工された後、脱脂後、レジストを両面に塗布した後、パターンを焼付け、現像後、塩化第二鉄を主体とするエッチング液を用いてエッチング穿孔、レジストを除去した後、個々に切断してフラットマスクにする。フラットマスクは、成形性を向上するために非酸化性雰囲気中で焼鈍され、次いでレベラー加工後プレス成形されてマスク形状に成形される。さらに、脱脂後、水蒸気または燃焼ガス雰囲気中で黒化処理が施されて表面に黒色酸化膜が形成され、シャドウマスクが作製される。

【0004】近年、コンピュータのディスプレィ装置等への用途拡大と相まって、ディスプレイ画像のきめの細かさに対する要求が一段と高まっている。そのために、エッチング穿孔により形成される孔をさらに高密度で微細にした孔径ピッチが300μm以下の高精細マスクが要求されている。高精細マスクの場合、エッチング穿孔により形成される細孔の径や形状のバラツキがあると画像のきめの細かさに影響するので、これらのエッチングむらを改善する技術が提案されている。

【0005】例えば、特開平1-56824号公報には、レジストの密着性のバラツキによりエッチング穿孔により形成される細孔の径や形状にバラツキが生じることに着目して、シャドウマスク素材の製造に際して、最終冷間圧延工程で、レーザ加工により表面ダル加工を施した圧延ロールを用いて、素材の表面粗さRa(中心線平均粗さ)を0.2~1.0μm、RSm(基準長さ内における表面粗さを示す粗さ曲線の凹凸の間隔の平均値)を100μm以下にして、レジストの密着力を適切な範囲にすることによりエッチングむらを改善する技術が提案されている。

[0006]

【発明が解決しようとする課題】しかし、前記の技術に

よるものは、レーザ加工による特別なロールを用いるこ とが必要であり、そのための新たな設備が必要となり、 コスト上昇を招くという弊害がある。このため、新たな 装置を必要とすることなく、エッチングむらの少ない電 子部品用Fe-Ni系合金薄板ならびにFe-Ni-C o系合金薄板を安価に得ることができる技術が望まれて いた。

【〇〇〇7】本発明はかかる事情を考慮してなされたも のであり、新たな設備を必要とすることなく、エッチン グむらの少ない電子部品用Fe-Ni合金薄板ならびに 10 Fe−Ni−Co系合金薄板およびその製造方法を提供 することを目的とする。

[0008]

【課題を解決するための手段】本発明は、上記したよう な実情に鑑み、検討を重ねて創案されたものであって、 その要旨とする構成は、以下のとおりである。

【0009】(1)重量%で、Ni:26~52%、S n:O.1%以下を含有するFe-Ni系合金薄板であ って、その表面に厚さ10~200Åの酸化膜が形成さ れ、当該酸化膜上における水滴接触角法による表面の接 20 触角が40~90°である脱脂性に優れた電子部品用F e-Ni系合金薄板。

【0010】(2)前記(1)の電子部品用Fe-Ni 系合金薄板において、前記酸化膜形成前のFe-Ni系 合金薄板の表面粗さがRSm:40~200μm、Rs k:0.3~1.5である脱脂性に優れた電子部品用F e-Ni系合金薄板。

【0011】(3)重量%で、Ni:26~52%、C o:1~20%、Sn:0.1%以下を含有するFe-Ni-Co系合金薄板であって、その表面に厚さ10~30 200 Åの酸化膜が形成され、当該酸化膜上における水 滴接触角法による表面の接触角が40~90°である脱 脂性に優れた電子部品用Fe-Ni-Co系合金薄板。 【0012】(4)前記(3)記載の電子部品用Fe-Ni系合金薄板において、前記酸化膜形成前のFe-N

i −C o系合金薄板の表面粗さがRSm:40~200 μm、Rsk:0.3~1.5である脱脂性に優れた電 子部品用Fe-Ni-Co系合金薄板。

【0013】(5)重量%で、Ni:26~52%、S n:0.1%以下を含有するFe-Ni系合金薄板を、 1回ないし2回以上、冷間圧延、焼鈍をくりかえした 後、仕上げ圧延、応力除去焼鈍してFe-Ni系合金薄 板を製造するにあたり、前記仕上げ圧延をダルロールを 用いて圧延率15~80%で圧延し、その表面粗さをR $Sm: 40\sim200 \mu m, Rsk: 0.3\sim1.5 \xi$ し、前記応力除去焼鈍を、H2 1vol%以上、O 2 0.02 v o 1%以下、残部実質的に不活性ガスから なり、露点が−10~−60℃の雰囲気で、昇温速度3 ~50℃/秒で昇温し、焼鈍温度450~690℃で焼

面に厚さ10~200人の酸化膜を形成し、水滴接触角 法による表面の接触角を40~90°とする脱脂性に優 れた電子部品用Fe-Ni系合金薄板の製造方法。

【0014】(6)重量%で、Ni:26~52%、C o:1~20%、Sn:0.1%以下を含有するFe-Ni-Co系合金薄板を、1回ないし2回以上、冷間圧 延、焼鈍をくりかえした後、仕上げ圧延、応力除去焼鈍 してFe-Ni-Co系合金薄板を製造するにあたり、 前記仕上げ圧延をダルロールを用いて圧延率15~80 %で圧延し、その表面粗さをRSm: $40\sim200\mu$ m、Rsk:0.3~1.5とし、前記応力除去焼鈍 を、H2 1vo1%以上、O2 0.02vo1%以下、 残部実質的に不活性ガスからなり、露点が-10~-6 ○℃の雰囲気で、昇温速度3~50℃/秒で昇温し、焼 鈍温度450~690℃で焼鈍後、冷却速度3~150 ℃/秒で冷却を行い、その表面に厚さ10~200Åの 酸化膜を形成し、水滴接触角法による表面の接触角を4 0~90°とする脱脂性に優れた電子部品用Fe−Ni -Co系合金薄板の製造方法。

[0015]

【作用】本発明者等は、前記した観点から安価なFe-Ni系合金薄板およびFe-Ni-Co系合金薄板(以 下、Fe-Ni系合金薄板等という)を開発すべく、鋭 意研究を重ねた結果、以下の知見を得たことに基づくも

【0016】(1) エッチングむらにはエッチング穿孔 に先立って塗布されるレジストの膜厚のバラツキに起因 するものがあり、このバラツキがレジスト塗布前の合金 薄板の脱脂の程度を表す水滴接触角法による接触角の測 定値と密接に関係していること。

【0017】(2) Fe-Ni系合金薄板等の化学成 分、表面粗さ、Feリッチな酸化膜の厚さを適正な範囲 に規定することにより、優れた脱脂性の表面となり、レ ジスト膜厚のバラツキを少なくできること。さらに、

- (3) 前記合金薄板の製造方法として、特定の成分組成 を持つFe-Ni系合金帯板等について、冷延、焼鈍を 1回ないし2回以上繰返した後、仕上げ圧延、応力除去 焼鈍して合金薄板を製造するに当たり、仕上げ圧延の圧 延率、応力除去焼鈍の雰囲気の組成と露点、焼鈍温度、 昇温速度、冷却速度を所定の範囲に規定することによ
- り、優れた脱脂性のFe-Ni系合金薄板等を得ること ができること。 【0018】以下に、本発明の限定理由について説明す

る。Niは、本発明の合金薄板を低熱膨張とするための 重要な成分元素である。シャドウマスク用材料の場合、 色ずれを防止するために要求される30~100℃の温 度域における平均熱膨張係数の上限は3.0×10-6/ ℃である。この平均熱膨張係数の条件を満たすN i 量は Fe-Ni系合金の場合、30~38%の範囲である。

38%の範囲に限定すべきである。なお、このようなNi量の範囲内でも、平均熱膨張係数を低下させうるより好ましいNi量は35~37%である。

【0019】なお、Coを1%未満の範囲内で含有する場合でも上記した平均熱膨張係数の上限を満足するNi量は30~38%であり、平均熱膨張係数を低下させる好ましいNi量は35~37%である。

【0020】また、 $1\sim8\%$ のC o を含有するF e -N i -C o 系合金の場合、上述した平均熱膨張係数の条件を満たすN i 量は $26\sim38\%$ であり、N i 量が $30\sim33\%$ 、C o 量が $3\sim8\%$ の場合、平均熱膨張係数は更に低く優れたものとなる。

【0021】また、ICリードフレーム用材料の場合、 半導体素子、ガラスおよびセラミックス等との熱膨張の 整合性を保つ必要があり、そのためには、Ni量を38 %以上、52%以下とする必要がある。従って、ICリ ードフレーム用材料の場合、Ni量は38%以上、52 %以下の範囲に限定すべきである。このようなNi量の 範囲内で、半導体素子、ガラスおよびセラミックス等の 熱膨張係数に応じてNi量は適切に選択される。

【0022】なお、Coを1%未満の範囲内で含有する場合、ICリードフレーム用としての熱膨張の整合性を保つためのNi量は38~52%である。また、ICリードフレーム用材料としてはFe-Ni-Co系合金も本発明の対象としているが、この場合、Co量は1~20%、Ni量は26~38%であれば、ICリードフレーム用としての熱膨張の整合性を保つことができる。

【0023】さて、上記した化学成分のFe-Ni系合金薄板等において、レジスト塗布前の合金薄板の脱脂性を適切にすることにより、レジスト膜厚のバラツキを少 30なくすることができる。

【0024】レジスト膜厚のバラツキを少なくするには、水滴接触角法により測定される接触角を40~90。にする必要がある。接触角が40。未満では脱脂後の水きり性が悪く、水分の軽度の残存によりレジストの塗布状態が不均一になる。接触角が90。を超えると、脱脂の均一性が劣るため、油脂分等の局部的な残存により、レジストの塗布状態が不均一になる。

【0025】接触角を前記した範囲にするためには、合金薄板の表面粗さ (Rsk、RSm)の適正化、Feリッチな酸化膜の形成および合金中のSn含有量の適正化が必要である。

【0026】合金薄板表面の表面粗さは、Rsk(粗さ曲線の高さ方向の片寄り比率)を0.3~1.3、RSm(基準長さ内における表面粗さを示す粗さ曲線の凹凸の間隔の平均値)を40~200μmにする必要がある。Rskが0.3未満、RSmが200μmを超えると脱脂の均一性が悪くなる。一方、Rskが1.3超え、RSmが40μm未満では、脱脂の水きり性が悪くなる。

【0027】本発明においては、上記したような表面粗度の規定に加え、厚さ10~200ÅのFeリッチな酸化膜の形成が必要である。この酸化膜の厚さが10Å未満では、脱脂の水きり性が劣り、また、200Åを超えると、脱脂の均一性が得られない。酸化膜の厚さが10~200Åの場合、後述するSnの添加とも相まって本発明で意図する水きり性に優れた脱脂性が得られる。

6

【0028】脱脂の均一性の向上のために。上記したFeリッチな酸化膜厚さの適正化に加え、合金中のSn量の規定が有効である。Snは本合金にあっては、鉄源のスクラップ等から混入する不純物元素であるが、Sn量が0.1%を超えると、本合金で要求される脱脂の均一性が低下するため好ましくないため、その上限を0.1%とする。Snは合金薄板の製造工程中では、酸化物を生成しないため、酸化膜と合金下地の界面に濃縮し、Feリッチな酸化膜の形成を促進する。

【0029】なお、本合金薄板において、前記したNi、Co、Sn以外の成分組成は、優れた加工性を確保するため、C:0.06wt%以下、O:0.005wt%以下、S:0.003wt%以下、P:0.01wt%以下、N:0.003wt%以下、H:3.0ppm以下であることが好ましい。さらに、Mn:0.50wt%以下、Si:0.001~0.25wt%、B:0.0005wt%以下とすることが望ましい。

【0030】Mnは高い黒色度を有する黒化膜の形成のためには有害な元素であり低減するこが好ましい。Mn量が0.50wt%を超えるとMnを含むスピネル酸化物が形成され、黒色度の優れた黒化膜が形成されにくいため、0.50wt%上限とする。なお、このMn量は0.50wt%以下で低ければ低いほど黒色度は高まり、熱輻射率も高くすることができる。

【0031】また、Siはシャドウマスク用Fe-Ni系合金薄板によって作られたフラットマスクの焼鈍時において焼付防止に有効なSiを主体とする酸化膜をフラットマスクの表面に形成し、フラットマスクの焼付を防止する作用を有している。しかし、このSi含有量が0.001wt%未満では、上述した作用に所望の効果が得られない。一方、Si含有量が0.25wt%を超えると、Fe-Ni系合金薄板のエッチング穿孔時に孔界面が著しく荒れてエッチング穿孔性が悪くなる。従って、Si含有量は0.001~0.25wt%の範囲に限定することが望ましい。

【0032】Bは、熱間加工性を向上させるが含有量が多くなるとプレス前の焼鈍時に形成される再結晶粒の粒界に偏析し、粒界を移動しにくくさせ、結果的にオーステナイト結晶粒の成長性が阻害され、プレス成型前の焼鈍後で所要のオーステナイト結晶粒径が得られなくなる。粒成長の阻害作用はすべての結晶粒に対して一様に働かないため結果的には著しい混粒組織を示し、プレス成型時の伸びムラが発生し、透過ムラの原因となる。こ

のB量がÓ、0005wt%を超えると、プレス成型時の形状凍結性向上、合金板の割れ発生抑制及びプレス成型後の透過ムラ発生の防止のために要求される平均オーステナイト粒径(15~45μm)が得られなくなり、かつプレス時の透過ムラ等の問題も発生するため、B量の上限は0.0005wt%とすることが望ましい。

【0033】前記した成分組成の合金帯板を、冷延・焼 鈍を1回ないし2回以上繰返した後、仕上げ圧延、応力 除去焼鈍して本発明のFe-Ni系合金薄板等を製造す るに際して、前記仕上げ圧延条件と応力除去焼鈍条件の 10 適正化が必要である。

【0034】仕上げ圧延の圧延率は15~80%とする必要がある。圧延率が15%未満では、後述する最適な応力除去焼鈍下で、Feリッチな酸化膜が10Å未満しか形成されず、優れた脱脂の水きり性が得られない。一方、圧延率が80%を超えると、最適な応力除去焼鈍下でも、200Åを超える酸化膜が形成され、脱脂の均一性が確保できない。

【0035】また、前記した本発明の合金薄板の表面粗さは、仕上げ圧延において、表面粗さがRsk:-0.5~-1.3、 $RSm:40~250\mu$ mの直径200mm以下のダル仕上げのワークロールを用いて、15%以上の圧延率で圧延することによって得ることができる。

【0036】応力除去焼鈍としては、雰囲気ガスを、H2が1vo1%以上、O2が0.02vo1%以下、残部を実質的に不活性ガスとし、その露点が-10~-60℃の雰囲気で、昇温速度3~50℃/秒で昇温し、焼鈍温度450~690℃で焼鈍後、冷却速度3~150℃/秒で冷却することが必要である。

【0037】昇温速度が50℃/秒超え、焼鈍温度が450℃未満、冷却速度が150℃/秒超え、露点が-60℃未満では、応力除去焼鈍でFeリッチな酸化膜の厚さが10Å未満しか形成されないので、優れた脱脂の水きり性を得ることができない。

【0038】また、昇温速度が3℃/秒未満、焼鈍温度が690℃超、冷却速度が3℃/秒未満、露点が-10℃より高い場合、 H_2 濃度が1 v o 1%未満、 O_2 濃度が0.02 v o 1%超えでは、応力除去焼鈍で形成されるFe リッチな酸化膜の厚さが200 Åを超えるため、優れた脱脂の均一性が確保できない。

[0039]

【実施例】以下に、実施例について説明する。

【0040】(実施例1)取鍋精錬によって、表1に示す成分組成と残部がFeおよび不可避不純物からなる合金鋼を溶製し、合金鋼A、C、J~Mについては造塊法で鋼塊とした後、鋼塊を手入れ、分塊圧延してスラブとし、また合金鋼B、Dについては連続鋳造法でスラブとした。これらのスラブについて、表面疵取り、熱間圧延、疵取りして熱延コイルとした。この熱延コイルを、

冷間圧延-焼鈍-仕上げ圧延-応力除去焼鈍を施して、 板厚0.15mmの合金薄板No.1~No.10を得た。

【0041】仕上げ圧延は、径120mmのワークロールを使用し、圧延率30%で圧延した。使用したワークロールの表面粗さは、No. 6についてはRsk- $1. 0、RSm280 \mu m、No. 8については<math>R$ sk+ $0. 5、RSm105 \mu m、No. 6、No. 8以外については<math>R$ sk- $0. 5 \sim -1. 3、RSm40 \sim 250 \mu m$ である。

【0042】応力除去焼鈍は以下の条件によった。N o. 9については、 $H_2:60$ vol%、 $O_2:0.0$ 05 vol%、残りが N_2 からなり、露点が-50 \mathbb{C} の 雰囲気で、70 \mathbb{C} / 秒で昇温し、540 \mathbb{C} \mathbb{C} 0.2 \mathbb{C} 6 \mathbb{C} 4 0.2 \mathbb{C} 7 0.2 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 7 \mathbb{C} 8 \mathbb{C} 9 \mathbb{C} 9 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C} 9 \mathbb{C} 9 \mathbb{C} 7 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C} 7 \mathbb{C} 9 \mathbb{C}

【0043】得られた合金薄板の表面粗さ、酸化膜厚さ、接触角、脱脂性を調査した。酸化膜厚さは、オージェ分光分析法により、Arイオンによって表面より深さ方向にスパッタし、オージェ電子ピークを測定し、表面からバルク(母材)と同一のオージェスペクトルが得られるまでの厚さを測定し、酸化膜厚さとした。

【0044】接触角は、水滴接触角法、すなわち、試験 片上に水道水を滴下し、試験片上にできた水滴の角度を 30 分度器目盛り付きの倍率10倍の顕微鏡を用いて測定 し、図1に示す角度のから求めた。

【0045】均一性は、水滴接触角法で接触角が40°以上を「〇」、40°未満を「×」と評価した。また、水きり性は水滴接触角法で接触角が90°以下を「〇」、90°超えを「×」と評価した。結果を表2に示す。

[0046]

【表1】

40

	•				9 _						
	Sn	0.005	0.008	0.005	0.085	0.153	0, 0001	0. 126	0.005		【0047】 【表2】
	00	ŀ	0.013	0.520	5.50	ı	1	0.016	-		
	၁	0.0015	0.0048	0.0025	0.0098	0.0150	0.0142	0.0230	0.0200		
(wt%)	ဟ	0.0003	0.0016	0.0007	0.0024	0.0028	0.0026	0. 0030	0.0035	10	
\$	۵,	0.002	0.003	0.001	0.002	0.004	0.005	0.004	0.004		
ধ	м	0.0001	0.0001	0.0001	<0.0001	0.0002	0.0002	0.0001	0.0001		
₽ +	z	0.0012	0.0017	0.0010	0.0018	0.0024	0.0020	0.0022	0.0023		
书	0	0.0010	0.0021	0.0013	0.0025	0.0030	0.0027	0.0025	0.0026	20	
	S i	0.002	0.03	0.01	0.03	0.07	0.10	0.07	0.08		
	Mn	0.27	0.05	0.14	0.35	0, 31	0.30	0.32	0.35		
	H (ppm)	0.5	1.0	0.9	1.8	1.2	1.5	1.1	1.3		
	ž	35.5	38.5	38.2	31.5	35.2	35.9	7.98.	35.2	30	
	\$1 \$1 \$2	V	æ	ပ	Δ	ı	×	נו	×		

	ТТ							
		材料の記	表面組さ		接触角	校脂t	ŧ	備考
材料加	olk金合	Ŕsk	RSm (μm)	酸化膜厚さ (人)	接触角	均一性	水きり性	神神
1	A	0. 5	50	70	80 .	0	0	発明例
2	В	1. 2	80	50	75	0	0	発明例
3	С	0.8	180	30	45	0	0	発明例
4	D	0.7	130	50	48	0	0	発明例
5	J	1. 3	100	230	100	×	0	比較例
6	К	0. 5	230	40	95	×	0	比較例
7	L	0. 9	140	210	110	×	0	比較例
8	М	0. 2	180	210	95	×	0	比較例
9	A	0.7	90	5	30	0	×	比較例
1 0	A	0. 6	180	260	120	×	0	比較例

【0048】この結果より、本発明例のNo.1~No.4は、均一性、水きり性とも良好であり、優れた脱脂性を示す。これに対して、Sn含有量が本発明の上限を超えるNo.5とNo.7、Rskが本発明の下限を下回るNo.8、冷却速度が本発明の下限を外れるNo.10はいずれも均一性が劣る。また、RSmが本発明の上限を超えるNo.6、昇温速度が本発明の上限を超えるNo.9は水きり性が劣る。

【0049】(実施例2)取鍋精錬によって、表3に示す成分組成と残部がFeおよび不可避不純物からなる合 30金鋼を溶製し、合金鋼E、G、N~Qについては造塊法で鋼塊とした後、鋼塊を手入れ、分塊圧延してスラブとし、また合金鋼F、H、Iについては連続鋳造法でスラブとした。これらのスラブについて、表面疵取り、熱間圧延、疵取りして熱延コイルとした。この熱延コイルを、冷間圧延一焼鈍一仕上げ圧延一応力除去焼鈍を施して、板厚0.15mmの合金薄板No.11~No.21を得た。

【0050】仕上げ圧延は、径120mmのワークロールを使用し、圧延率70%で圧延した。使用したワーク 40ロールの表面粗さは、No.17についてはRsk-*

*1.0、RSm300 μ m、No.19についてはRs k-1.5、RSm120 μ m、No.17、No.19以外についてはRs k-0.5 \sim -1.3、RSm40 \sim 250 μ mである。

12

【0051】歪取り焼鈍は以下の条件によった。No.20については、H2:60vo1%、O2:0.006vo1%、残りがN2からなり、露点が-40℃の雰囲気で、60℃/秒で昇温し、540℃で0.1秒焼鈍した後120℃/秒で冷却した。No.21については、No.20と同様の雰囲気で、15℃/秒で昇温し、540℃で450秒焼鈍した後2.5℃/秒で冷却した。その他については、H2:70vo1%、O2:0.005vo1%、残りがN2からなり、露点が-50℃の雰囲気で、5℃/秒で昇温し、540℃で300秒加熱した後20℃/秒で冷却した。

【0052】得られた合金薄板の表面粗さ、酸化膜厚さ、接触角、脱脂性を実施例1と同様にして調査、評価した。結果を表4に示す。

[0053]

【表3】

4	

3						Ι					Γ
		u S	0.006	0.005	0.004	0.016	0.065	0. 162	0.0001	0. 132	0.010
		0 ي	1	0.012	0.831	6.610	16.720	1.63	1	17.48	1
		ပ	0.0027	0.0013	0.0019	0.0522	0.0522	0.0089	0.0162	0.0182	0.0242
	(wt%)	တ	6000 '0	0.0011	0.0014	0.0008	0.0006	0.0023	0.0025	0.0022	0.0029
	*	ፈ	0.001	0.002	700.0	0.003	0.001	0.005	900 0	900.0	0.008
	松	æ	0.0001	<0.0001	0.0002	<0.0001	0.0002	0.0003	0.0005	0.0003	0.0003
	俳	Z	© 0013	0.0013	1000 0	0100 '0	6.0013	8100 0	0.0022	9700'0	0.0028
	4.6	0	0.0021	9700.0	0.0014	0.0023	0.0013	0.0035	0.0041	0.0030	0.0028
		S i	0.02	0.001	0.03	20.0	EO 10	07.50	0.15	12.0	0.07
		иW	0.31	0.03	0.47	0.38	0.34	0.49	0.45	0.49	0.35
		(mdd) H	0.3	0.7	1.0	1.0	0.4	1.5	2.1	1.3	1.4
		N i	41.7	40.8	42.3	29.6	26.1	6.88	41.1	29.6	6'07
	464		E	Ħ	ც	E	ı	2	0	P	ď

* *【表4】

[0054]

	_			材料の記	関値さ		14	脱	性	備考
材	料	Na.	co ls€ c	Rsk	RSm (μm)	酸化膜厚さ (A)	接触角	均一性	水きり性	PR "3
1		1	E	0.6	80	110	70	0	0	発明例
1		2	F	1. 2	130	40	50	0	0	発明例
i		3	G	0. 5	100	10	45	0	0	発明例
		4	Н	0. 9	180	30	60	0	0	発明例
		5	1	1.4	150	20	40	0	0	発明例
		6	N	0.6	170	270	110	×	0	比較例
	_	7	0	1.0	280	190	100 '	×	0	比較例
	l	8	P	0.5	80	220	120	×	0	比較例
	 l	9	Q	0.2	120	50	110	×	0	比較例
;	2	0	E	1.0	120	<10	30	0	×	比較例
	2	1	E	0.6	100	250	110	×	0	比較例

【0055】この結果より、本発明例のNo.11~No.15は、均一性、水きり性とも良好であり、優れた脱脂性を示す。また、これらの材料のフォトエッチングは良好であった。これに対して、Sn含有量が本発明の上限を超えるNo.16とNo.18、RSmが本発明の上限を超えるNo.17、冷却速度が本発明の範囲を下回るNo.21、Rskが本発明の下限を下回るNo.21、Rskが本発明の下限を下回るNo.19はいずれも均一性が劣る。また、昇温速度が本発明の範囲を上回るNo.20は水きり性が劣る。

【0056】(実施例3)実施例1の合金A~Dを用いてNo.1~No.4の条件で作成した熱延コイルと同様の熱延コイルを用いて、冷間圧延-焼鈍-仕上げ圧延*

* - 応力除去焼鈍を行ない、板厚0.15mmの合金薄板 No.31~No.51を得た。

【0057】仕上げ圧延は、 $Rsk-0.3\sim-1.$ 3、 $RSm40\sim250\mu$ mのロール径が120mmのワークロールを用いて圧延を行った。仕上げ圧延の圧延率、応力除去焼鈍の条件を表5に示す。

【0058】得られた合金薄板の表面粗さ、酸化膜厚さ、水ぬれ角、脱脂性を実施例1と同様にして調査,評30 価した。結果を表6に示す。

[0059]

【表5】

1 8

_	V		, 1 /	·					18	
*	****No	合金版	仕上げ 冷延率	応力除去焼鈍 ・昇温速度	応力除去 規範温度	応力除去焼鈍 ・冷却速度	応力除去焼鈍 雰囲気の露点	応力除去網	地雰囲気 ''	- 備考
L		ļ	(%)	(℃/秒)	(°C)	(℃/秒)	(°C)	H2 (vol%)	O1 (vol%)	, M-3
		<u> </u>	85	20	500	20	- 50	50	10.0	比較例
13		A	10	50	500	40	- 50	60	0.01	比較例
13		C	30	30	700	35	- 40	50	0.01	比較例
3		С	25	15	430	15	- 40	50	0.005	比較例
3		В	21	1	450	8	- 50	50	0. 01	比較例
3		В	25	55	450	6	- 10	60	0.01	比較例
3		A	25	20	540	2	- 40	65	0. 01	比較例
3		C	29	30	540	160	- 30	40	0.01	比較例
3		Α	29	40	540	30	- 5	70	0.01	比較例
4	0	Α	60	45	500	8	- 70	10	0.02	比較例
4	1_	В	50	50	690	12	- 20	30	0.03	比較例
4	2	С	20	35	450	19	- 40	0.5	0.01	比較例
4	3	'A	17	7	600	30	- 50	60	0, 005	発明例
4	4	В	17	13	450	45	- 60	90	0,005	発明例
4	5	С	21	10	500	50	- 40	94	0.010	発明例
4	6	A	21	30	500	40	- 55	99	0.001	発明例
4	7	С	30	15	480	15	- 35	80	0.010	発明例
4	8	Α	70	20	680	20	- 50	65	0,005	発明例
4	9	С	15	10	500	25	- 50	65	0.010	発明例
5	0	В	35	45	540	15	- 40	70	0.001	発明例
5	1	D	29	30	480	5	- 20	99	0.005	発明例

1)残部:N₁

[0060]

* *【表6】

,	l				* *	【表り】			
 -	料Na.	合金No	材料の	表面粗さ	mith / la 17th DMF as-	+***	IX.		
1	77114	A ZISIU	Rsk	RSm (µm)	酸化膜厚さ(A)	接触角	均一性	. 水約性	備考
3		Α	0. 6	145	220	110	×	0	比較例
3		Α	1.3	190	<10	30	0	×	比較例
3		С	0.5	50	230	120	×	0	比較例
3		С	1.0	42	<10	25	0	×	比較例
3	5	С	1.1	70	260	120	×	0	比較例
3	6	В	1.5	78	<10	30	0	×	比較例
3	7	В	0. 8	85	250	110	×	0	比較例
3	8	Α	0. 9	90	<10	25	0	×	比較例
3	9	С	0. 6	94	230	110	×	0	比較例
4	0	Α	1.0	102	<10	30	0	×	比較例
4	1	В	0. 4	70	230	120	×	0	比較例
4	2	С	0.6	50	250	110	×	0	比較例
4	3	A	1.0	120	10	40	0	0	発明例
4	4	В	0.6	105	30	45	0	0	発明例
4	5	С	0.8	170	60	55	0	0	発明例
4	6	<u>A</u>	1.2	100	30	47	0	0	発明例
4	7	С	0.5	95	40	50	0	0	発明例
4	8	<u>A</u>	0.8	130	. 140	80	0	0	発明例
4	9	С	0.8	120	10	· 43	0	0	発明例
5	0	В	1.0	190	70	60	0	0	発明例
5	1	D	1.2	63	50	55	0	0	発明例

【0061】本発明例のNo.43~No.51は、本発明規定範囲内の酸化膜厚さ、表面粗度を有し、脱脂性の均一性および水きり性とも良好であり優れた脱脂性を示す。1%以上のCoを含有するNo.51についても良好な脱脂性を示している。

※【0062】これに対して、仕上げ圧延の圧延率が本発明規定上限を超えるNo.31、焼鈍温度が本発明の上限を超えるNo.33、昇温速度が本発明の下限を下回るNo.35、冷却速度が本発明の下限を下回るNo.35、冷却速度が本発明の下限を下回るNo.39、焼鈍雰

開気中のO₂ 濃度が本発明の上限を超えるNo. 41、 雰囲気中のH2 濃度が本発明の下限を下回るNo. 42 は、いずれも酸化膜厚さが200Åを超え、接触角は本 発明の上限を超え、均一性が劣っている。

【0063】一方、仕上げ圧延の圧延率が本発明の下限 を外れるNo.32、焼鈍温度が本発明の範囲を下回る No. 34、昇温速度が本発明の上限を超えるNo. 3 6、冷却速度が本発明の上限を超えるNo.38、露点 が本発明の下限を下回るNo. 40は、いずれも酸化膜 厚さが10Å未満であり、水ぬれ角が本発明の下限を下 10 した。結果を表8に示す。 回り、水きり性が劣っている。

【0064】(実施例4)実施例2の合金E~Iを用い てNo. 11~No. 15の条件で作成した熱延コイル* *と同様の熱延コイルを用いて、冷延圧延-焼鈍-仕上げ 冷延-応力除去焼鈍を行ない、板厚O.15mmの合金 薄板No. 62~No. 83を得た。

【0065】仕上げ圧延は、Rsk-0.5~-1. 5、RSm40~250μmでロール径が120mmの ワークロールを用いて圧延を行った。仕上げ圧延の圧延 率、応力除去焼鈍の条件を表7に示す。

【0066】得られた合金薄板の表面粗さ、酸化膜厚 さ、接触角、脱脂性を実施例1と同様にして調査,評価

[0067]

【表7】

			仕上げ	応力除去統鈍	应力除去	応力除去熄鈍	応力除去境鈍	応力除去焼鈴	机雰囲気・1)	備考
才革	4No	合金加	冷延率	」 昇温速度 (℃/秒)	焼鈍温度 (℃)	·冷却速度 (℃/秒)	雰囲気の露点 (°C)	H2 (vol%)	O2 (vol%)	Me-2
6	2	F :	83	25	500	20	– 50	60	0.01	比較例
6	3	G	12	50	500	16	- 50	50	0.01	比較例
6	4	Е	25	8	700	43	- 30	50	0.01	比较多
 6	5	F	20	15	400	. 8	50	60	0.005	比較例
6	6	F	35	2	480	17	- 60	60	0. 01	比較仍
6	7	E	35	55	520	26	- 40	60	0.01	比較多
6	8	E	23	10	530	2	- 30	50	0. 01	比較例
6	9	С	19	25	450	170	- 40	50	0. 005	比較的
7	0	·E	23	35	450	27	- 5	20	0.01	比較的
7	1	F	19	40	450	10	- 65	70	0. 02	比較的
7	2	Ē	35	25	560	16	- 30	30	0.03	比較的
7	3	G	60	15	450	23	- 50	0. 5	0.01	比較的
7	4	F	80	5	550	38	- 50	90	0.005	発明的
7	5	E	15	10	540	47	- 30	95	0.01	発明的
7	6	G	17	8	600	38	- 45	95	0.01	発明包
7	7	E	23	16	450	29	- 40	60	0.01	発明的
7	8	F	30	29	680	16	- 45	50	0. 005	発明的
7	9	G	23	47	500	10	- 50	60	0. 0001	発明的
8	0	Е	70	30	520	27	– 45	50	0.005	発明的
8	1	F	2 5	13	550	19	- 35	99	0.01	発明的
8	2	Н	29	26	550	36	- 45	80	0.005	発明的
8	3	ı	30	43	550	5	- 50	70	0.005	発明的

1) 残部: N.

※ ※【表8】

[0068]

		A A 31	表面物	取	30% / 1 a 1149 1987 - 3 a	+÷ Ali Ca	RHI	智性	/Make
材料	4Na	合金No	Rsk	RSm (µm)	酸化膜厚さ (人)	接触角	均一性	水約性	備考
6	2	F	0.5	150	220	120	×	0	比較例
6	3	G	0.8	185	<10	28	0	×	比較例
6	4	F	1.2	135	230	110	×	0	比較例
6	5	F	1.0	110	<10	30	0	×	比較例
6	6	F	0.9	100	240	105.	×	0	比較例
6	7	E	0.5	105	<10	35	0	×	比較例
6	8	E	. 0.8	120	220	110	×	0	比較例
6	9	C	1.5	125	<10	35	0	×	比較例
7	0	E	0.7	95	230	115	×	0	比較例
7	1	F	0. 9	125	<10	33	0	×	比較例
7	2	С	1.2	115	220	110	×	0	比較例
7	3 .	, C	1.2	120	230	120	×	0	比较例
7	4	F	1.0	130	140	80	0	0	発明例
7	5	E	0.9	100	10	40	0	0	発明例
7	6	G	0.7	105	30	48	0	0	発明例
7	7	E	0.7	120	20	45	0	0	発明例
7	8	F	0.9	156	60	60	0	0	発明例
7	9	G	1.5	100	20	45	0	0	発明例
8	0	E	1.4	125	80	85	0	0	発明例
8	1	F	0.5	110	40	50	0	0	発明例
8	2	Н	0. 6	50	30	47	0	0	発明例
8	3	1	0.9	65	40	55	0	0	発明例

【0069】本発明例のNo.74~No.83は、本 発明規定範囲内の酸化膜厚さ、表面粗度を有し、脱脂性 の均一性および水きり性が良好である。1%以上のCo を含有するNo. 82およびNo. 83についても同様 に優れた脱脂性を示している。

【0070】これに対して、仕上げ圧延の圧延率が本発 明の上限を超えるNo.62、焼鈍温度が本発明の上限 を超えるNo.64、昇温速度が本発明の下限を外れる 30 の安価な製造方法を提供することができ、これらの合金 No. 66、冷却速度が本発明の下限を外れるNo. 6 8、露点が本発明の上限を超えるNo.70、雰囲気中 の〇2 濃度が本発明の上限を超えるNo. 72、雰囲気 中のH2 濃度が本発明の下限を外れるNo. 73は、い ずれも酸化膜厚さが200Åを超え、接触角は本発明の 下限を下回り、均一性が劣っている。

【0071】一方、仕上げ圧延の圧延率が本発明の下限 を外れNo.63、焼鈍温度が本発明の下限を外れるN o. 65、昇温速度が本発明の上限を超えるNo. 6 * *7、冷却速度が本発明の上限を超えるNo.69、露点 が本発明の下限を外れるNo. 71は、いずれも酸化膜 厚さが10Å未満であり、接触角は本発明の範囲を超え ており、水きり性が劣っている。

[0072]

【発明の効果】本発明によれば、脱脂性に優れるFe-Ni系合金薄板およびFe-Ni-Co系合金薄板とそ 薄板を素材としてより高精細なエッチング加工が可能と なる。

【図面の簡単な説明】

【図1】水滴接触角法における接触角を示す図。

【符号の説明】

- 1 試験材
- 2 水滴
- θ 接触角

【図1】

フロントページの続き

(51) Int. Cl. 6

識別記号 广内整理番号

FΙ

技術表示箇所

C 2 2 C 38/10

C 2 2 C 38/10

(72) 発明者 鹿毛 勇

東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72) 発明者 若狭 浩

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内