Présentation projet 9

Prédisez la demande en électricité

Partie 1 : Présentation des données

Degré Jour Unifié (DJU)

Données de consommation d'électricité mensuelles

Réseau de transport d'électricité

Partie 1 : Présentation des données

Données de janvier 2010 à décembre 2018.

13 valeurs pour un territoire autre que « France ». Données mises de côté

Partie 1 : Présentation des données

Données jusqu'en mai 2018. Année 2018 mise de côté

Partie 2 : Détails du programme


```
def plot sortie acf( y acf, y len, pacf=False):
    "représentation de la sortie ACF"
   if pacf:
       y_acf = y_acf[1:]
   plt.figure(figsize=(20,8))
   plt.bar(range(len(y acf)), y acf, width = 0.1)
   plt.xlabel('lag')
   if pacf:
       plt.ylabel('PACF')
       plt.title("PACF Graph")
   else :
        plt.ylabel('ACF')
       plt.title("ACF Graph")
   plt.axhline(y=0, color='black')
    plt.axhline(y=-1.96/np.sqrt(y len), color='b', linestyle='--', linewidth=0.8)
    plt.axhline(y=1.96/np.sqrt(y len), color='b', linestyle='--', linewidth=0.8)
   plt.ylim(-1, 1)
   plt.show()
    return
```

Partie 2 : Détails du programme

OLS Regression Results

```
# Régression linéaire

y = eco.Consommation_brute.copy()
X = df_dju.copy()
X = sm.add_constant(X)

results=sm.OLS(y,X).fit()
results.params
```

const 31831.938004 dju 48.564302

dtype: float64

OLS Re	gression Re	suits								
De	p. Variable	Consommation_brute				R-squared:			0.9	56
	Model	:		OL	s /	Adj. R-s	square	ed:	0.9	55
	Method		Least	s	F-statistic:			203	9.	
	Date		Thu, 18 Apr 2019			Prob (F-statistic):			1.59e-	65
	Time	:	09:50:46			Log-Likelihood:			-839.	84
No. Ob	servations	:	96			AIC:			168	4.
Df	f Residuals:	:	94			BIC:			168	9.
	Df Model:	:			1					
Covar	iance Type:	:	n	onrobu	st					
	coef	std	err	t	P> t	[0	.025	0	.975]	
const	3.183e+04	247.	202 12	8.769	0.000	3.136	e+04	3.23	e+04	
dju	48.5643	1.0	076 4	5.151	0.000	46	.429	50	0.700	
(Omnibus:	0.217	Durb	in-Wat	son:	1.836				
Prob(Omnibus): 0		0.897	Jarque	-Bera (JB):	0.294				
	Skew:	0.109		Prob(JB):	0.863				
	Kurtosis:	2.839		Cond	No.	361.				

```
plt.scatter(df_dju,eco.Consommation_brute)
plt.plot(df_dju,results.predict(),color="red")
plt.xlabel("DJU")
plt.ylabel("Consommation")
plt.legend()
plt.title("Droite de régression linaire de la consommation en fonction des DJU")
plt.show()
```



```
#Calcul des résidus
pred_val = results.fittedvalues.copy()
residual = y - pred_val

# Hypothèse H0 : Il n'y a pas autocorrélation des résidus
sms.durbin_watson(residual)

# Résultat proche de 2. On ne peut donc pas rejetter l'hypothèse
#Il n'y a donc pas autocorrélation des résidus
```

1,835666911760647


```
fig, ax = plt.subplots()
ax.scatter(residual, pred_val,linewidths=0.1)
plt.title("Projection des résidus")
```

Text(0.5, 1.0, 'Projection des résidus')


```
# Hypothèse H0 : Les résidus et les les variables exogènes ont la même variance sms.het_goldfeldquandt(results.resid, results.model.exog)
# La P-value est supérieure au seuil de 5%. L'Homostédasticité est donc acceptée.
(0.9648797314741909, 0.5479881595271596, 'increasing')
```



```
#Hypothèse H0 : les résidus suivent une distribution gaussienne
sms.jarque_bera(residual)[:2]
#La p-value est supérieure au seuil de 5%. On ne rejette donc pas l'hypothèse H0.
#La distribution des résidus est gaussienne
```

(0.2940991425845843, 0.8632511838789051)

```
pd.merge(eco,conso_corrige,how="left",left_index=True,right_index=True).rename(columns={"Consommation_brute":"Consommation avant plt.title("Consommation électrique corrigée de l'effet température") plt.ylabel("Consommation") plt.xlabel("Année") plt.xlabel("Année") plt.show() #On a enlevé 95% de la variance, on a donc une courbe qui varie peu
```



```
def MM12(df):
    i=0
    liste=[]
    df=df.reset_index(drop=True)
    for i in range(df.shape[0]):
        if i<6 :
            liste.append(np.nan)
        elif i>(df.shape[0]-6):
            liste.append(np.nan)
        else :
            liste.append(float(df.loc[(i-6):(i+5)].mean())
        return(liste)
```

```
MM=conso_corrige.copy()
MM["Moyenne_mobile"]=MM12(conso_corrige)
MM=MM.drop(columns={"consommation_corrigée"})
```

```
#Calculer conso_corrige - Moyenne__Mobile

MECO=(conso_corrige["consommation_corrigée"]-MM["Moyenne_mobile"]).dropna()
MECO=MECO.reset_index()
```

```
# Calcul des coefficients saisonniers

MECO2=MECO.copy()
MECO2["Mois"]=MECO.Mois.dt.month
MECO2["Mois"]=pd.to_numeric(MECO2["Mois"])
MECO3=MECO2.groupby("Mois").mean()
z=MECO3.mean()
```

```
A=[]
for i in MECO3.index :
    A.append(MECO3.loc[i]-z)
```

```
#Je retranche mes coefficients saisonniers à la série initiale

A=pd.DataFrame(A)
B=[]
for i in range(96):
    B.append(float(conso_corrige.reset_index().loc[i][1]-A.loc[i%12]))
```


Partie 5: Holt Winters

```
test = conso_corrige.consommation_corrigée.reset_index()[conso_corrige.consommation_corrigée.reset_index()["Mois"]>"2016-12-01" y_hat_avg = test.copy()
train = conso_corrige.consommation_corrigée.reset_index()[conso_corrige.consommation_corrigée.reset_index()["Mois"]<"2017-01-01" fit1 = ExponentialSmoothing(np.asarray(train) ,seasonal_periods=12 ,trend='add', seasonal='add',).fit()
y_hat_avg['Holt_Winter'] = fit1.forecast(len(test))
plt.figure(figsize=(20,8))
plt.plot( train, label='Train')
plt.plot(test, label='Test')
plt.plot(y_hat_avg['Holt_Winter'], label='Holt_Winter')
plt.title("Représentation de la consommation corrigée séparée en train et test ainsi que de la prédiction par la méthode de liseplt.legend(loc='best')
plt.show()
```

Représentation de la consommation corrigée séparée en train et test ainsi que de la prédiction par la méthode de lissage exponentiel

Partie 5: Holt Winters

Comparaison de la prédiction du modèle Holt Winters à la réalité (test)


```
# Test de normalité des résidus

# H0 : Les résidus suivent un distribution gaussienne.

st.kstest(HW_residuals,'norm')

# La p-value est au dessus du seuil de 5%, on ne rejette donc pas l'hypothèse H0.

# Les résidus ne suivent donc pas une distribution gaussienne.
```

KstestResult(statistic=1.0, pvalue=0.0)

RMSE: 1136,61

Série non différenciée

Différenciation de 12 donc s=12

d=0 D=1 q=1 Q=1

Différenciation de 12 donc s=12

```
model = SARIMAX(np.asarray(conso_corrige["Consommation_corrigée"]), order=(1,0,1), seasonal_order=(2,1,1,12))
results = model.fit()
print(results.summary())
```

Statespace Model Results No. Observations: Dep. Variable: Log Likelihood Model: SARIMAX(1, 0, 1)x(2, 1, 1, 12)-825.788 Thu, 18 Apr 2019 1663.576 Date: AIC Time: 13:01:55 BIC 1678.962 Sample: HOIC 1669.795 - 96 Covariance Type: opg ar.L1 1.0000 7.09e-05 0.000 1.000 1.41e+04 ma.L1 -0.9983 0.034 -28.951 0.000 -1.066 -0.931 ar.S.L12 0.9790 0.328 2.987 0.003 0.337 1.621 0.954 0.555 ar.S.L24 -0.0167 0.292 -0.057 -0.588 ma.S.L12 -0.4563 -1.1740.366 -1.247 0.212 0.261 sigma2 9.925e+05 9.93e+05 Jarque-Bera (JB): Ljung-Box (Q): 55.81 1.11 Prob(Q): 0.05 Prob(JB): 0.57 Heteroskedasticity (H): 0.73 Skew: 0.25 Prob(H) (two-sided): Kurtosis: 3.17

```
model3 = SARIMAX(np.asarray(conso_corrige["Consommation_corrigée"]), order=(1,0,1), seasonal_order=(1,1,1,12))
results3 = model3.fit()
print(results3.summary())
```

Statespace Model Results

```
No. Observations:
Dep. Variable:
                                                  Log Likelihood
 Model:
                  SARIMAX(1, 0, 1)x(1, 1, 1, 12)
                                                                                -816.707
 Date:
                                Thu, 18 Apr 2019
                                                   AIC
                                                                                1643.415
 Time:
                                                                                1656.236
                                       12:59:44
                                                   BIC
Sample:
                                                   HOIC
                                                                                1648.597
                                           - 96
Covariance Type:
                                            opg
                        std err
                                                P>|z|
                                                           [0.025
                                                                       0.975]
ar.L1
              1.0000
                       6.76e-06 1.48e+05
                                                0.000
                                                           1.000
                                                                       1.000
             -0.9953
                          0.017 -58.617
                                                0.000
                                                           -1.029
                                                                      -0.962
ma.L1
ar.S.L12
           0.9816
                          0.040
                                    24.579
                                                0.000
                                                           0.903
                                                                      1.060
ma.S.L12
             -0.7933
                          0.231
                                    -3.430
                                                0.001
                                                           -1.247
                                                                       -0.340
sigma2
           1.056e+06
                       2.24e-07 4.72e+12
                                                0.000
Ljung-Box (Q):
                                    59.67 Jarque-Bera (JB):
                                                                             1.31
Prob(Q):
                                     0.02 Prob(JB):
                                                                             0.52
Heteroskedasticity (H):
                                     0.81 Skew:
                                                                             0.28
Prob(H) (two-sided):
                                     0.56 Kurtosis:
```

Prédiction de la consommation éléctrique à l'aide du model SARIMA


```
# Test de normalité des résidus

# H0 : Les résidus suivent un distribution gaussienne.

st.kstest(residuals, 'norm')

# La p-value est inférieure du seuil de 5%, on rejette donc l'hypothèse H0.

# Les résidus ne suivent donc pas une distribution gaussienne.
```

KstestResult(statistic=1.0, pvalue=0.0)

RMSE: 1075,47