EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 4	9 Octobre 2020

Veuillez télécharger vos solutions aux exercices à rendre (Exercice 5) sur la page Moodle du cours avant le lundi 19 octobre, 18h.

1 Exercices supplémentaires

Exercise 1.

Soit G un groupe.

1. Soit $g \in G$ un élément d'ordre fini $o(g) = n < \infty$. Montrez que

$$o(g^r) = \frac{n}{(n,r)}$$
 pour $0 < r < n$.

2. Soient $g_1, \ldots, g_m \in G$ des éléments d'ordres finis commutant deux-àdeux (c'est-à-dire $g_i g_j = g_j g_i$ pour tous i, j). Montrez que

$$o\left(\prod_{i=1}^{m} g_i\right) \le \operatorname{ppmc}\{o(g_1), \dots, o(g_m)\},$$

où ppmc $\{a_1,\ldots,a_s\}$ désigne le plus petit multiple commun de $a_1,\ldots,a_s\in\mathbb{N}$.

Exercise 2.

Fixons un entier $n \geq 1$. Un **cycle** de S_n est une permutation définie de la manière suivante. Prenons des entiers distincts $i_1, \ldots, i_r \in \{1, \ldots, n\}$ avec $r \geq 2$; le cycle $\sigma := (i_1 \ldots i_r)$ est la permutation définie par

$$\sigma(i_j) = i_{j+1}$$
 pour $j < r$, $\sigma(i_r) = i_1$, $\sigma(m) = m$ pour $m \notin \{i_1, \dots, i_r\}$.

On appelle r la **longueur** du cycle σ , et l'ensemble $\{i_1, \ldots, i_r\}$ le **support** de σ . Deux cycles $(i_1 \ldots i_r)$ et $(j_1 \ldots j_s)$ sont (à supports) disjoints si

$$\{i_1,\ldots,i_r\}\cap\{j_1,\ldots,j_s\}=\emptyset.$$

Ceci étant posé, prouvez les assertions suivantes :

- 1. Un cycle (de longueur ≥ 2) n'est jamais égal à e_{S_n} .
- 2. Soient σ et σ' des cycles disjoints. Alors $\sigma\sigma' = \sigma'\sigma$.

3. Soient $\sigma_1, \ldots, \sigma_m \ (m \geq 1)$ des cycles deux-à-deux disjoints. Alors

$$\prod_{i=1}^{m} \sigma_i \neq e_{S_n}.$$

- 4. Tout élément de S_n différent de l'identité peut s'écrire comme produit de cycles disjoints, et ces cycles sont uniquement déterminés. Indication : $Si \sigma \in S_n$, montrez que le graphe orienté associé à σ (voir l'Exemple 3.1.11.6) est une union de "boucles".
- 5. Si $\sigma \in S_n$, alors $\sigma^{n!} = e_{S_n}$.

Exercise 3.

Soit G un groupe. Montrez que $e_G^{-1} = e_G$.

Exercise 4.

On dit que $\sigma \in S_n$ fixe r éléments s'il existe $i_1, \ldots, i_r \in \{1, \ldots, n\}$ tels que $\sigma(i_j) = i_j$ pour chaque j.

- 1. Combiens d'éléments de S_5 fixent exactement 2 éléments ?
- 2. Combien d'éléments de S_5 fixent au moins un élément ? Indication : procédez par inclusion-exclusion.

2 Exercices à rendre

Exercise 5 (Ordre des éléments de S_4).

Pour chaque entier $n \geq 1$, trouvez le nombre d'éléments de S_4 dont l'ordre est n. Justifiez vos réponses.

Indication : le groupe S_4 possède 24 éléments, nous vous déconseillons de résoudre cette exercice par énumération. Utilisez l'Exercice 2 pour vous ramener à l'étude des produits de cycles disjoints.