Understanding quantum information and computation

By John Watrous

Lesson 4

Entanglement in action

Alice and Bob

- Alice and Bob are names given to hypothetical entities or agents in systems, protocols, and games that involves the exchange of information.
- They are assumed to be in different locations.
- The specific roles they play must be clarified in different situations.
- Additional characters (e.g., Charlie, Diane, Eve, and Mallory) may be introduced as needed.

Remarks on entanglement

In Lesson 2, we encountered this example of an *entangled state* of two qubits:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

We also encountered this example of a *probabilistic state* of two bits:

$$\frac{1}{2}|00\rangle + \frac{1}{2}|11\rangle$$

It is typical in the study of quantum information and computation that we view entanglement as a *resource* that can be used to accomplish different tasks.

When we do this we view the state $|\phi^+\rangle$ as representing one unit of entanglement called an e-bit.

Terminology

To say that Alice and Bob share an e-bit means that Alice has a qubit A, Bob has a qubit B, and together the pair (A, B) is in the state $|\phi^+\rangle$.

Teleportation set-up

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

- Alice is unable to physically send Q to Bob she is only able to send *classical information*.
- Alice and Bob share an e-bit.

Remarks

- The state of Q is "unknown" to both Alice and Bob.
- Correlations (including entanglement) between Q and other systems must be preserved by the transmission.
- The *no-cloning theorem* implies that if Bob receives the transmission, Alice must no longer have the qubit in its original state.

Teleportation protocol

Initial conditions

Alice and Bob share one e-bit: Alice has a qubit A, Bob has a qubit B, and (A, B) is in the state $|\phi^+\rangle$.

Alice also has a qubit Q that she wishes to transmit to Bob.

Teleportation protocol

Operation performed by Bob

1 if
$$ab = 00$$

Z if $ab = 01$
X if $ab = 10$
ZX if $ab = 11$

Protocol

- 1. Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.
- 3. Alice measures A and Q, obtaining binary outcomes α and b, respectively.
- 4. Alice sends α and b to Bob.
- 5. Bob performs these two steps:
 - 5.1 If $\alpha = 1$, then Bob applies an X operation to the qubit B.
 - 5.2 If b = 1, then Bob applies a Z operation to the qubit B.

$$\begin{split} |\pi_0\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle}{\sqrt{2}} \\ |\pi_1\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle}{\sqrt{2}} \\ |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \end{split}$$

$$\begin{split} |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \\ &= \frac{\alpha|00\rangle\big(|0\rangle + |1\rangle\big) + \alpha|11\rangle\big(|0\rangle + |1\rangle\big) + \beta|01\rangle\big(|0\rangle - |1\rangle\big) + \beta|10\rangle\big(|0\rangle - |1\rangle\big)}{2} \\ &= \frac{\alpha|000\rangle + \alpha|001\rangle + \alpha|110\rangle + \alpha|111\rangle + \beta|010\rangle - \beta|011\rangle + \beta|100\rangle - \beta|101\rangle}{2} \\ &= \frac{1}{2}\big(\alpha|0\rangle + \beta|1\rangle\big)|00\rangle + \frac{1}{2}\big(\alpha|0\rangle - \beta|1\rangle\big)|01\rangle + \frac{1}{2}\big(\alpha|1\rangle + \beta|0\rangle\big)|10\rangle + \frac{1}{2}\big(\alpha|1\rangle - \beta|0\rangle\big)|11\rangle \end{split}$$

$$\left|\pi_{2}\right\rangle = \frac{1}{2}\left(\alpha|0\rangle + \beta|1\rangle\right)\left|00\rangle + \frac{1}{2}\left(\alpha|0\rangle - \beta|1\rangle\right)\left|01\rangle + \frac{1}{2}\left(\alpha|1\rangle + \beta|0\rangle\right)\left|10\rangle + \frac{1}{2}\left(\alpha|1\rangle - \beta|0\rangle\right)\left|11\rangle$$

ab	Probability	Conditional state of (B, A, Q)	Operation on B	Final state of B
00	$\frac{1}{4}$	$(\alpha 0\rangle + \beta 1\rangle) 00\rangle$	1	$\alpha 0\rangle + \beta 1\rangle$
01	$\frac{1}{4}$	$(\alpha 0\rangle - \beta 1\rangle) 01\rangle$	Z	$\alpha 0\rangle + \beta 1\rangle$
10	$\frac{1}{4}$	$(\alpha 1\rangle + \beta 0\rangle) 10\rangle$	X	$\alpha 0\rangle + \beta 1\rangle$
11	$\frac{1}{4}$	$(\alpha 1\rangle - \beta 0\rangle) 11\rangle$	ZX	$\alpha 0\rangle + \beta 1\rangle$

$$\begin{split} |\pi_{0}\rangle &= \frac{1}{\sqrt{2}}\Big(\alpha|00\rangle|0\rangle|\gamma_{0}\rangle + \alpha|11\rangle|0\rangle|\gamma_{0}\rangle + \beta|00\rangle|1\rangle|\gamma_{1}\rangle + \beta|11\rangle|1\rangle|\gamma_{1}\rangle\Big) \\ |\pi_{1}\rangle &= \frac{1}{\sqrt{2}}\Big(\alpha|00\rangle|0\rangle|\gamma_{0}\rangle + \alpha|11\rangle|0\rangle|\gamma_{0}\rangle + \beta|01\rangle|1\rangle|\gamma_{1}\rangle + \beta|10\rangle|1\rangle|\gamma_{1}\rangle\Big) \\ |\pi_{2}\rangle &= \frac{1}{\sqrt{2}}\Big(\alpha|00\rangle|+\rangle|\gamma_{0}\rangle + \alpha|11\rangle|+\rangle|\gamma_{0}\rangle + \beta|01\rangle|-\rangle|\gamma_{1}\rangle + \beta|10\rangle|-\rangle|\gamma_{1}\rangle\Big) \\ &= \frac{1}{2}\Big(\alpha|0\rangle|00\rangle|\gamma_{0}\rangle + \alpha|0\rangle|01\rangle|\gamma_{0}\rangle + \alpha|1\rangle|10\rangle|\gamma_{0}\rangle + \alpha|1\rangle|11\rangle|\gamma_{0}\rangle \\ &+\beta|1\rangle|00\rangle|\gamma_{1}\rangle - \beta|1\rangle|01\rangle|\gamma_{1}\rangle + \beta|0\rangle|10\rangle|\gamma_{1}\rangle - \beta|0\rangle|11\rangle|\gamma_{1}\rangle\Big) \end{split}$$

$\begin{split} \pi_2\rangle &= \ \frac{1}{2} \left(\alpha 0\rangle 00\rangle \gamma_0\rangle + \alpha 0\rangle 01\rangle \gamma_0\rangle + \alpha 1\rangle 10\rangle \gamma_0\rangle + \alpha 1\rangle 11\rangle \gamma_0\rangle \\ &+ \beta 1\rangle 00\rangle \gamma_1\rangle - \beta 1\rangle 01\rangle \gamma_1\rangle + \beta 0\rangle 10\rangle \gamma_1\rangle - \beta 0\rangle 11\rangle \gamma_1\rangle \right) \end{split}$				
α b Probability Conditional state of (B, R, A, Q) Operation		Operation on B	Final state of (B, R)	
00	00 $\frac{1}{4}$ $(\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle) 00\rangle$		1	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$
01	$\frac{1}{4}$	$(\alpha 0\rangle \gamma_0\rangle - \beta 1\rangle \gamma_1\rangle) 01\rangle$	Z	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$
10	$\frac{1}{4}$	$(\alpha 1\rangle \gamma_0\rangle + \beta 0\rangle \gamma_1\rangle) 10\rangle$	X	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$
11	$\frac{1}{4}$	$(\alpha 1\rangle \gamma_0\rangle - \beta 0\rangle \gamma_1\rangle) 11\rangle$	ZX	$ \alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$

Remarks on teleportation

- Teleportation is not an application of quantum information it's a way to perform *quantum communication*.
- Teleportation motivates <u>entanglement distillation</u> as a means to reliable quantum communication.
- Beyond its potential for communication, teleportation also has fundamental importance in the study of quantum information and computation.

Superdense coding set-up

Scenario

Alice has two classical bits that she wishes to transmit to Bob.

- Alice is able to send a single qubit to Bob.
- Alice and Bob share an e-bit.

Remark

Without the e-bit, Alice and Bob's task would be impossible...

Holevo's theorem implies that two classical bits of communication cannot be reliably transmitted by a single qubit alone.

Superdense coding protocol

Superdense coding analysis

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$
$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}}|00\rangle - \frac{1}{\sqrt{2}}|11\rangle$$
$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$
$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}|01\rangle - \frac{1}{\sqrt{2}}|10\rangle$$

	1	ı
	Alice's action	
00	$ \phi^+\rangle \mapsto \phi^+\rangle$	$ \Phi^+\rangle \mapsto 00\rangle$
01	$ \Phi^+ \rangle \mapsto \Phi^- \rangle$	$ \Phi^{-}\rangle \mapsto 01\rangle$
10	$ \phi^{+}\rangle \mapsto \phi^{+}\rangle$ $ \phi^{+}\rangle \mapsto \phi^{-}\rangle$ $ \phi^{+}\rangle \mapsto \psi^{+}\rangle$ $ \phi^{+}\rangle \mapsto \psi^{-}\rangle$	$ \psi^{+}\rangle\mapsto 10\rangle$
11	$ \phi^+\rangle \mapsto \psi^-\rangle$	$ \psi^{-}\rangle\mapsto - 11\rangle$
	1	ı

Remarks on superdense coding

- Superdense coding seems unlikely to be useful in a practical sense.
- The underlying idea is fundamentally important, and illustrates an interesting aspect of entanglement.
- Together with teleportation, superdense coding establishes an equivalence:

Mathematical abstractions of games are both important and useful.

The CHSH game is an example of a *nonlocal game*.

Mathematical abstractions of games are both important and useful.

The CHSH game is an example of a *nonlocal game*.

The referee

The referee uses $\frac{randomness}{x}$ to select the questions x and y.

The referee determines whether a pair of answers (a, b) wins or loses for the questions pair (x, y) according to some fixed rule.

(A precise description of the referee defines an instance of a nonlocal game.)

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition
(0,0)	a = b
(0, 1)	a = b
(1,0)	a = b
(1, 1)	a≠b

Deterministic strategies

No deterministic strategy can win every time.

$$a(0) \oplus b(0) = 0$$

$$a(0) \oplus b(1) = 0$$

$$a(1) \oplus b(0) = 0$$

$$a(1) \oplus b(1) = 1$$

It follows that no deterministic strategy can with with probability greater than 3/4.

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition
(0,0)	a = b
(0,1)	a = b
(1,0)	a = b
(1, 1)	a≠b

Probabilistic strategies

Every probabilistic strategy can be viewed as a *random choice* of a *deterministic* strategy.

It follows that no probabilistic strategy can win with probability greater than 3/4.

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition
(0,0)	a = b
(0, 1)	a = b
(1,0)	a = b
(1, 1)	a≠b

Can a *quantum strategy* do better?

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

θ	$cos(\theta)$	$sin(\theta)$	
0	1	0	
$\frac{\pi}{8}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	
$\frac{3\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	
$\frac{\pi}{2}$	0	1	

This slide corrects a typo in the video: the "+" sign in $|\psi_{3\pi/8}\rangle$ appeared incorrectly as an "=" sign.

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

θ	$cos(\theta)$	$sin(\theta)$
0	1	0
$\frac{\pi}{8}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{3\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$
$\frac{\pi}{2}$	0	1

By one of the *angle addition formulas* we have

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) = \cos(\alpha - \beta)$$

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{\cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)}{\sqrt{2}} = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

Also define a unitary matrix

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}|$$

Alice and Bob's strategy

Alice and Bob share an e-bit (A, B).

Alice's actions

Alice applies an operation to A as follows:

$$\begin{cases} U_0 & \text{if } x = 0 \\ U_{\pi/4} & \text{if } x = 1 \end{cases}$$

She then measures A and sends the result to the referee.

Bob's actions

Bob applies an operation to B as follows:

$$\begin{cases} U_{\pi/8} & \text{if } y = 0 \\ U_{-\pi/8} & \text{if } y = 1 \end{cases}$$

He then measures B and sends the result to the referee.

Alice and Bob's strategy

Alice and Bob share an e-bit (A, B).

Alice's actions

Alice applies an operation to A:

$$\begin{cases} U_0 & \text{if } x = 0 \\ U_{\pi/4} & \text{if } x = 1 \end{cases}$$

She then measures A and sends the result to the referee.

Bob's actions

Bob applies an operation to B:

$$\begin{cases} U_{\pi/8} & \text{if } y = 0 \\ U_{-\pi/8} & \text{if } y = 1 \end{cases}$$

He then measures B and sends the result to the referee.

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 1:
$$(x, y) = (0, 0)$$

Alice performs U_0 and Bob performs $U_{\frac{\pi}{2}}$.

 $\frac{1}{2}\cos^2\left(-\frac{\pi}{8}\right)$

$$\begin{split} \left(U_0 \otimes U_{\frac{\pi}{8}}\right) |\varphi^+\rangle &= |00\rangle \big\langle \psi_0 \otimes \psi_{\frac{\pi}{8}} \left| \varphi^+ \right\rangle + |01\rangle \big\langle \psi_0 \otimes \psi_{\frac{5\pi}{8}} \left| \varphi^+ \right\rangle \\ &+ |10\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{\pi}{8}} \left| \varphi^+ \right\rangle + |11\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{5\pi}{8}} \left| \varphi^+ \right\rangle \\ &= \frac{\cos(-\frac{\pi}{8})|00\rangle + \cos(-\frac{5\pi}{8})|01\rangle + \cos(\frac{3\pi}{8})|10\rangle + \cos(-\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

 $\frac{2+\sqrt{2}}{8}$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 2:
$$(x, y) = (0, 1)$$

Alice performs U_0 and Bob performs $U_{-\frac{\pi}{o}}$.

 $\frac{1}{2}\cos^2(\frac{\pi}{2})$

(1,1)

$$\begin{split} \left(U_0 \otimes U_{-\frac{\pi}{8}} \right) | \varphi^+ \rangle &= |00\rangle \big\langle \psi_0 \otimes \psi_{-\frac{\pi}{8}} \big| \varphi^+ \big\rangle + |01\rangle \big\langle \psi_0 \otimes \psi_{\frac{3\pi}{8}} \big| \varphi^+ \big\rangle \\ &+ |10\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{-\frac{\pi}{8}} \big| \varphi^+ \big\rangle + |11\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{3\pi}{8}} \big| \varphi^+ \big\rangle \\ &= \frac{\cos(\frac{\pi}{8})|00\rangle + \cos(-\frac{3\pi}{8})|01\rangle + \cos(\frac{5\pi}{8})|10\rangle + \cos(\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 3:
$$(x, y) = (1, 0)$$

Alice performs $U_{\frac{\pi}{4}}$ and Bob performs $U_{\frac{\pi}{2}}.$

$$\begin{split} \left(\mathbf{U}_{\frac{\pi}{4}} \otimes \mathbf{U}_{\frac{\pi}{8}}\right) | \boldsymbol{\varphi}^{+} \rangle &= |00\rangle \left\langle \boldsymbol{\psi}_{\frac{\pi}{4}} \otimes \boldsymbol{\psi}_{\frac{\pi}{8}} \left| \boldsymbol{\varphi}^{+} \right\rangle + |01\rangle \left\langle \boldsymbol{\psi}_{\frac{\pi}{4}} \otimes \boldsymbol{\psi}_{\frac{5\pi}{8}} \left| \boldsymbol{\varphi}^{+} \right\rangle \right. \\ &+ |10\rangle \left\langle \boldsymbol{\psi}_{\frac{3\pi}{4}} \otimes \boldsymbol{\psi}_{\frac{\pi}{8}} \left| \boldsymbol{\varphi}^{+} \right\rangle + |11\rangle \left\langle \boldsymbol{\psi}_{\frac{3\pi}{4}} \otimes \boldsymbol{\psi}_{\frac{5\pi}{8}} \left| \boldsymbol{\varphi}^{+} \right\rangle \\ &= \frac{\cos(\frac{\pi}{8})|00\rangle + \cos(-\frac{3\pi}{8})|01\rangle + \cos(\frac{5\pi}{8})|10\rangle + \cos(\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

(a, b)	Probability	Simplified	$\Pr(\alpha = b) = \frac{2 + \sqrt{2}}{4} \approx 0.85$
(0,0)	$\frac{1}{2}\cos^2\left(\frac{\pi}{8}\right)$	$\frac{2+\sqrt{2}}{8}$	T
(0, 1)	$\frac{1}{2}\cos^2\left(-\frac{3\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	$Pr(a \neq b) = \frac{2 - \sqrt{2}}{4} \approx 0.15$
(1,0)	$\frac{1}{2}\cos^2\left(\frac{5\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	2. /5
(1, 1)	$\frac{1}{2}\cos^2\left(\frac{\pi}{8}\right)$	$\frac{2+\sqrt{2}}{8}$	They win with probability $\frac{2+\sqrt{2}}{4} \approx 0.85$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 4:
$$(x, y) = (1, 1)$$

Alice performs $U_{\frac{\pi}{4}}$ and Bob performs $U_{-\frac{\pi}{9}}$.

 $\frac{1}{2}\cos^2(\frac{3\pi}{2})$

(1, 1)

$$\begin{split} \left(U_{\frac{\pi}{4}} \otimes U_{-\frac{\pi}{8}} \right) | \varphi^{+} \rangle &= |00\rangle \left\langle \psi_{\frac{\pi}{4}} \otimes \psi_{-\frac{\pi}{8}} \left| \varphi^{+} \right\rangle + |01\rangle \left\langle \psi_{\frac{\pi}{4}} \otimes \psi_{\frac{3\pi}{8}} \left| \varphi^{+} \right\rangle \right. \\ &+ |10\rangle \left\langle \psi_{\frac{3\pi}{4}} \otimes \psi_{-\frac{\pi}{8}} \left| \varphi^{+} \right\rangle + |11\rangle \left\langle \psi_{\frac{3\pi}{4}} \otimes \psi_{\frac{3\pi}{8}} \left| \varphi^{+} \right\rangle \\ &= \frac{\cos(\frac{3\pi}{8})|00\rangle + \cos(-\frac{\pi}{8})|01\rangle + \cos(\frac{7\pi}{8})|10\rangle + \cos(\frac{3\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

The strategy wins with probability $\frac{2+\sqrt{2}}{4}\approx 0.85$ (in all four cases, and therefore overall).

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (0,0)		
(a, b)	Probability	
(0,0)	$\frac{1}{2} \langle \psi_0 \psi_{\frac{\pi}{8}} \rangle ^2$	
(0,1)	$\frac{1}{2} \langle \psi_0 \psi_{\frac{5\pi}{8}} \rangle ^2$	
(1,0)	$\frac{1}{2} \langle \psi_{\frac{\pi}{2}} \psi_{\frac{\pi}{8}} \rangle ^2$	
(1, 1)	$rac{1}{2} \langle \psi_{rac{\pi}{2}} \psi_{rac{5\pi}{8}} angle ^2$	
	·	

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x, y) = (0, 1)				
(a, b)	Probability			
(0,0)	$\frac{1}{2} \langle \psi_0 \psi_{-\frac{\pi}{8}} \rangle ^2$			
(0,1)	$rac{1}{2} \langle \psi_0 \psi_{rac{3\pi}{8}} angle ^2$			
(1,0)	$rac{1}{2} \langle \psi_{rac{\pi}{2}} \psi_{-rac{\pi}{8}} angle ^2$			
(1, 1)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{2}} \left \psi_{rac{3\pi}{8}} ight angle ight ^2$			

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (1,0)				
(a, b)	Probability			
(0,0)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{4}} \left \psi_{\frac{\pi}{8}} \right\rangle \right ^2$			
(0,1)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{4}} \left \psi_{rac{5\pi}{8}} ight angle ight ^2$			
(1,0)	$rac{1}{2} \left \left\langle \psi_{rac{3\pi}{4}} \left \psi_{rac{\pi}{8}} ight angle ight ^2$			
(1, 1)	$rac{1}{2} \langle \psi_{rac{3\pi}{4}} \psi_{rac{5\pi}{8}} angle ^2$			

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (1,1)	
(a, b)	Probability
(0,0)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{4}} \left \psi_{-\frac{\pi}{8}} \right\rangle \right ^2$
(0,1)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{4}} \left \psi_{rac{3\pi}{8}} ight angle ight ^2$
(1,0)	$\frac{1}{2} \left \left\langle \psi_{\frac{3\pi}{4}} \left \psi_{\frac{-\pi}{8}} \right\rangle \right ^2$
(1,1)	$rac{1}{2} \left \left\langle \psi_{rac{3\pi}{4}} \left \psi_{rac{3\pi}{8}} ight angle \right ^2$

Remarks on the CHSH game

- The CHSH game is not always described as a game it's often described as an experiment, or an example of a *Bell test*.
- The CHSH game offers a way to <u>experimentally test</u> the theory of quantum information.
 - (The 2022 Nobel Prize in Physics was awarded to Alain Aspect, John Clauser, and Anton Zeilinger for experiments that do this with entangled photons.)
- The study of nonlocal games more generally is a fascinating and active area of research that still holds many mysteries.