Experimentalphysik 2 - Fragenkatalog

17. Juni 2021

Inhaltsverzeichnis

1	Elektrostatik im Vakuum	3
2	Materie im elektrischen Feld	7
3	Elektrischer Strom I	11
4	Elektrischer Strom II	15
5	Statische Magnetfelder	20
6	Materie im elektrischen Feld	22
7	Zeitlich veränderliche Felder	26
8	Elektrische Generatoren und Motoren	30
9	Wechselstrom und Drehstrom	31
10	Wechselstromkreise und Lineare Netzwerke	34
11	Transformator und Gleichrichter	38
12	Elektromagnetische Schwingungen und Entstehung von Wellen	43
13	Elektromagnetische Wellen	46
14	Wellen in Materie	47
15	Wellen an Grenzflächen, optische Anisotropie und Polarisation	48
16	Geometrische Optik I	50
17	Geometrische Optik II	53
18	Interferenz	57
19	Beugung	63
20	Optische Instrumente I	64
21	Optische Instrumente II	65
22	Fehlermeldungen	66

1 Elektrostatik im Vakuum

Schreiben Sie das Coulomb'sche Gesetz für Punktladungen an. Leiten Sie daraus definitionsgemäß einen Ausdruck für die elektrische Feldstärke und das elektrostatische Potenzial einer einzelnen Punktladung als Funktion des Ortes ab.

$$\mathbf{F}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q_1 \cdot Q_2}{r^2} \hat{\mathbf{r}} \tag{1}$$

$$\mathbf{E}(\mathbf{r}) = \frac{\mathbf{F}}{q} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{\mathbf{r}} \tag{2}$$

$$\phi(\mathbf{r}) = \int_{\mathbf{r}}^{\infty} \mathbf{E} d\mathbf{s} = \frac{Q}{4\pi\epsilon_0 r} \tag{3}$$

Beschreiben Sie das Superpositionsprinzip der elektrischen Feldstärke und des elektrostatischen Potenzials wenn mehrere Punktladungen vorhanden sind.

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{Q_i(\mathbf{r} - \mathbf{r_i})}{|\mathbf{r} - \mathbf{r_i}|^3} \hat{\mathbf{r_i}} = \sum_{i=1}^{n} \mathbf{E}_i$$
 (4)

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{Q_i}{|\mathbf{r} - \mathbf{r_i}|} = \sum_{i=1}^n \phi_i$$
 (5)

Schreiben Sie das Gauß'sche Gesetz der Elektrostatik an. Beschreiben und definieren Sie alle darin vorkommenden Größen. Die im Raum verteilten Ladungen sind die Quellen und Senken des elektrischen Feldes.

$$div \mathbf{E}(\mathbf{r}) = \frac{\rho(\mathbf{r})}{\epsilon_0} \tag{6}$$

- **r** Ortsvektor [r] = m
- $\mathbf{E} = \frac{\mathbf{F}}{q}$ elektrostatisches Feld $[E] = \mathrm{V}\,\mathrm{m}^{-1}$
- $\rho = \frac{dQ}{dV}$ Raumladungsdichte $[\rho] = C/m^3$
- ϵ_0 elektrische Feldkonstante $[\epsilon_0] = A \, \mathrm{s} \, \mathrm{V}^{-1} \, \mathrm{m}^{-1}$

Was versteht man unter "elektrischer Spannung" und wie lässt sich diese bei Kenntnis des elektrischen Feldes berechnen? Die Potentialdifferenz zwischen zwei Punkten nennt man elektrische Spannung.

$$U = \phi(P_1) - \phi(P_2) = \int_{P_1}^{P_2} \mathbf{E} d\mathbf{s}$$
 (7)

Ein Quader mit Seitenlängen a, b und c umschließt zwei Punktladungen mit gleicher Ladung q. Berechnen Sie für frei wählbare Positionen der Punktladungen innerhalb des Quaders den elektrischen Fluss durch seine Oberfläche. Aus dem Gauß'schen Satz die Unabhängigkeit des elektrischen Flusses von der durchströmten Oberfläche.

$$\phi_{el} = \frac{Q}{\epsilon_0} = \frac{2q}{\epsilon_0} \tag{8}$$

Leiten Sie mit Hilfe des Gauß'schen Gesetzes einen Ausdruck für das elektrische Feld und das elektrostatische Potenziale einer homogen geladenen Kugelfläche her. Erstellen Sie ein Diagramm der beiden Größen als Funktion des Zentrumsabstandes.

$$\oint_{A} \mathbf{E} d\mathbf{A} = \frac{Q}{\epsilon_{0}} \implies \mathbf{E}(\mathbf{r}) = \begin{cases} 0 & \text{für } r < R \\ \frac{Q}{4\pi\epsilon_{0}r^{2}} \hat{\mathbf{r}} & \text{für } r > R \end{cases}$$
(9)

$$\phi(\mathbf{r}) = \int_{\mathbf{r}}^{\infty} \mathbf{E} d\mathbf{s} = \begin{cases} \frac{Q}{4\pi\epsilon_0 R} f \ddot{\mathbf{u}} r r < R \\ \frac{Q}{4\pi\epsilon_0 r} f \ddot{\mathbf{u}} r r > R \end{cases}$$
(10)

Leiten Sie mit Hilfe des Gauß'schen Gesetzes einen Ausdruck für das elektrische Feld und das elektrostatische Potenziale eines homogen geladenen Kugelvolumens her. Erstellen Sie ein Diagramm der beiden Größen als Funktion des Zentrumsabstandes.

$$\oint_{A} \mathbf{E} d\mathbf{A} = \frac{Q}{\epsilon_{0}} \implies \mathbf{E}(\mathbf{r}) = \begin{cases} \frac{Qr}{4\pi\epsilon_{0}R^{3}} \hat{\mathbf{r}} & \text{für } r < R \\ \frac{Q}{4\pi\epsilon_{0}r^{2}} \hat{\mathbf{r}} & \text{für } r > R \end{cases}$$
(11)

$$\phi(\mathbf{r}) = \int_{\mathbf{r}}^{\infty} \mathbf{E} d\mathbf{s} = \begin{cases} \frac{Q}{4\pi\epsilon_0 R} \left(\frac{3}{2} - \frac{r^2}{2R^2} \right) & \text{für } r < R \\ \frac{Q}{4\pi\epsilon_0 r} & \text{für } r > R \end{cases}$$
(12)

Leiten Sie mit Hilfe des Gauß'schen Gesetzes einen Ausdruck für das elektrische Feld und das elektrostatische Potenziale einer homogen geladenen, sehr langen Zylinderfläche her. Erstellen Sie ein Diagramm der beiden Größen als Funktion des Zentrumsabstandes.

$$\oint_{A} \mathbf{E} d\mathbf{A} = \frac{Q}{\epsilon_{0}} = \frac{\lambda l}{\epsilon_{0}} = E(r) \cdot 2\pi r l \implies E(r) = \begin{cases} 0 & \text{für } r < R \\ \frac{\lambda}{2\pi\epsilon_{0}r} & \text{für } r > R \end{cases}$$
(13)

$$\phi(r) = \int_{r}^{R} E ds = \begin{cases} 0 & \text{für } r < R \\ \frac{\lambda}{2\pi\epsilon_{0}} \cdot \ln\left(\frac{R}{r}\right) & \text{für } r > R \end{cases}$$
 (14)

Als Potentialreferenz wird hierbei R anstatt ∞ verwendet.

Leiten Sie mit Hilfe des Gauß'schen Gesetzes einen Ausdruck für das elektrische Feld und das elektrostatische Potenziale eines homogen geladenen, sehr langen Zylindervolumnes her. Erstellen Sie ein Diagramm der beiden Größen als Funktion des Zentrumsabstandes.

$$\oint_{A} \mathbf{E} d\mathbf{A} = \frac{Q}{\epsilon_{0}} = \frac{\lambda l}{\epsilon_{0}} = E(r) \cdot 2\pi r l \implies E(r) = \begin{cases} \frac{\lambda r}{2\pi\epsilon_{0}R^{2}} & \text{für } r < R \\ \frac{\lambda}{2\pi\epsilon_{0}r} & \text{für } r > R \end{cases}$$
(15)

$$\phi(r) = \int_{r}^{R} E ds = \begin{cases} \frac{\lambda}{4\pi\epsilon_{0}} \cdot \left(1 - \frac{r^{2}}{R^{2}}\right) f \ddot{\mathbf{u}} r \ r < R \\ \frac{\lambda}{2\pi\epsilon_{0}} \cdot \ln\left(\frac{R}{r}\right) f \ddot{\mathbf{u}} r \ r > R \end{cases}$$
(16)

Als Potentialreferenz wird hierbei R anstatt ∞ verwendet.

Leiten Sie mit Hilfe des Gauß'schen Gesetzes einen Ausdruck für das elektrische Feld und das elektrostatische Potenzial einer homogen geladenen, unendlich großen, ebenen Fläche her. Erstellen Sie ein Diagramm der beiden Größen als Funktion des Abstandes von der Fläche.

$$\phi = 2AE = \frac{Q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0} \implies E = sgn(z) \cdot \frac{\sigma}{2\epsilon_0}$$
 (17)

$$\phi = \int_{z}^{0} E ds = -E \cdot z = -\frac{\sigma z}{2\epsilon_{0}} \tag{18}$$

Als Potentialreferenz wird hierbei 0 anstatt ∞ verwendet.

Berechnen Sie das elektrische Feld einer Anordnung aus zwei sehr großen, parallelen, homogen geladenen ebenen Flächen mit unterschiedlicher Flächenladungsdichte und endlichem Abstand.

Berechnen Sie das elektrische Feld einer Anordnung aus zwei homogen geladenen Kugelflächen mit unterschiedlicher Gesamtladung. Der Abstand der Kugelmittelpunkte ist größer als die Summe der Kugelradien.

Berechnen Sie die Kraft, das Drehmoment und die potenzielle Energie eines Dipols im homogenen elektrischen Feld.

$$\mathbf{F} = \mathbf{F_1} + \mathbf{F_2} = Q\mathbf{E} - Q\mathbf{E} = 0 \tag{19}$$

$$\mathbf{M} = Q(\mathbf{r_1} \times \mathbf{E}) - Q(\mathbf{r_2} \times \mathbf{E}) = Q\mathbf{d} \times \mathbf{E} = \mathbf{p} \times \mathbf{E}$$
(20)

$$W_{pot} = Q(\phi_1 - \phi_2) \tag{21}$$

Äquipotentialflächen

Berechnen Sie die Kraft auf einen Dipol in einem inhomogenen elektrischen Feld. Schreiben Sie eine Näherung für diese Kraft für den Grenzfall eines sehr kleinen Dipols an.

$$\mathbf{F} = \mathbf{F}_{+} + \mathbf{F}_{-} = q[\mathbf{E}(\mathbf{r}_{-} + d) - \mathbf{E}(\mathbf{r}_{-})] \tag{22}$$

$$\mathbf{F} \approx Q \mathbf{d} \frac{d \mathbf{E}(\mathbf{r})}{d \mathbf{r}} = \mathbf{p} \times \nabla \mathbf{E}(\mathbf{r})$$
 (23)

2 Materie im elektrischen Feld

Was ist ein elektrischer Leiter und was passiert wenn ein elektrischer Leiter in ein statisches elektrisches Feld gebracht wird. Wie nennt man den Effekt und welche Bedingungen muss das elektrische Feld und -Potenzial an der Leiteroberfläche und innerhalb des Leiters erfüllen?

Ein elektrischer Leiter ist ein Medium, welches eine hohe Dichte frei beweglicher Ladungsträger und daher eine gute elektrische Leitfähigkeit sowie einen möglichst geringen elektrischen Widerstand besitzt. Er ist dadurch zum Transport geladener Teilchen geeignet, welchen man auch als elektrischen Strom nennt.

Es kommt zu einer Ladungsverschiebung aufgrund des E-Feldes, wodurch sich ein Gegenfeld aufbaut und das äußere Feld kompensiert. Das Innere des Leiters wird dadurch feldfrei, man spricht von Influenz. Die beweglichen Ladungsträger befinden sich an der Leiteroberfläche und bilden somit eine Äquipotentialfläche, auf welche die Feldlinien senkrecht stehen. Das Potential im Inneren des Leiters ist konstant.

Was ist ein Kondensator? Warum kann man eindeutig eine elektrische Spannung zwischen zwei entgegengesetzt geladenen Metallkörpern angeben? Wie ist die elektrische Kapazität definiert und wovon hängt deren Größe ab?

Ein Kondensator ist ein elektrisches Bauelement mit der Fähigkeit, elektrische Ladung und die damit zusammenhängende Energie in einem elektrischen Feld zu speichern.

Da das elektrische Feld im Raum zwischen den Leiterflächen proportional zur Ladung Q und die Spannung U wegen $U = \int \mathbf{E} d\mathbf{s}$ proportional zu Q ist gilt die Beziehung

$$C = \frac{Q}{U} \,, \tag{24}$$

wobei die in Farad angegebene Proportionalitätskonstante C die Kapazität des Kondensators ist. Diese ist sowohl von der Geometrie als auch vom verwendeten Dielektrikum zwischen den Leitern abhängig.

Ein Plattenkondensator mit der Kapazität C und Plattenabstand d_C ist auf die Spannung U geladen und von der Spannungsquelle getrennt. Nun wird eine isolierte Metallplatte (Dicke $d_M < d_C$) parallel zu den Kondensatorplatten zwischen diese eingeschoben. Beschreiben Sie was passiert. Berechnen Sie die elektrische Feldstärken vor- und nach Einschieben der Platte. Zeichnen Sie ein Diagramm der elektrischen Feldstärke und des elektrischen Potenzials zwischen den Kondensatorplatten vor und nach Einschieben der Metallplatte.

Aufgrund der Influenz erfolgt eine Ladungsverschiebung in der Platte, auf dessen Oberfläche sich nun die Ladungsträger sammeln und ein Gegenfeld bewirken, welches das Innere der Platte feldfrei macht. Dadurch sinkt auch die Spannung, da effektiv weniger Plattenabstand vorhanden ist - die Kapazität C des Kondensators steigt.

vorher:
$$E_V = \frac{Q}{A \cdot \epsilon_0} = \frac{U}{d_C}$$
 (25)

nachher:
$$E_V = \frac{U}{d_C - d_M}$$
 $E_M = 0$ (26)

Ein Plattenkondensator mit der Kapazität C und Plattenabstand d_C ist an eine Spannungsquelle mit der Spannung U angeschlossen. Nun wird eine dielektrische Platte (Dicke d_D , Permitivität ϵ_D) parallel zu den Kondensatorplatten zwischen diese eingeschoben. Beschreiben Sie was passiert. Berechnen Sie die elektrische Feldstärken und die elktrischen Verschiebungsdichten vor- und nach einschieben der Platte. Zeichnen Sie ein Diagramm der elektrischen Feldstärke, der dielektrischen Verschiebungsdichte und des elektrischen Potenzials zwischen den Kondensatorplatten vor und nach Einschieben der dielektrischen Platte.

Durch das Feld des Kondensators werden die festen Moleküle im Dielektrikum polarisiert - es bildet sich ein Gegenfeld, welches das äußere jedoch nicht vollständig kompensiert. Die Feldstärke und die Spannung sinken um den Faktor ϵ_D , die Kapazität steigt entsprechend um den Faktor ϵ_D .

vorher:
$$E_V = \frac{Q}{A \cdot \epsilon_0} = \frac{U}{d_C}$$
 $D_V = E_V \cdot \epsilon_0$ (27)

nachher:
$$E_V = \frac{U}{d_C - d_D + \frac{d_D}{\epsilon_D}}$$
 $E_D = \frac{E_V}{\epsilon_0}$ $D_V = D_D$ (28)

Ein Plattenkondensator mit Fläche A, Plattenabstand d, gefüllt mit einem Dielektrikum mit der relativen Permittivität ϵ ist mit der Ladung Q geladen. Wie groß ist die in ihm gespeicherte Energie?

$$E_{el} = \frac{Q^2}{2 \cdot C} = \frac{Q^2}{2 \cdot \epsilon \epsilon_0 \frac{A}{d}} \tag{29}$$

Was ist der Unterschied zwischen Polarisation und Influenz? Welche Arten von Polarisation können bei einem Dielektrikum auftreten? Was für Voraussetzungen müssen die Moleküle des Dielektrikums dafür erfüllen?

Unter Influenz versteht man die räumliche Verschiebung frei beweglicher Ladungsträger im Leiter durch ein äußeres Feld, wodurch sich ein (meist das äußere Feld kompensierendes) Gegenfeld bildet. Die Polarisation ist ein vergleichbarer Effekt im Dielektrikum, allerdings können hier die Ladungen nur innerhalb der Atome oder Moleküle verschoben werden. Es entsteht ein schwächeres Gegenfeld als im Leiter, das äußere Feld kann nicht kompensiert werden.

• Induzierte Polarisation: Die Polarisierbarkeit (Verschiebbarkeit der negativen und positiven Ladungsträger im Atom oder Molekül relativ zueinander) muss ausreichend groß sein.

Orientierungspolarisation: Die Schwerpunkte der positiven und negativen Ladungen müssen deutlich voneinander getrennt sein, man spricht von Dipolmolekülen oder permanenten Molekülen. Ein Beispiel hierfür sind Wassermoleküle.

Beschreiben Sie die Größen elektrische Polarisation, Suzeptibilität, Dielektrizitätskonstante, dielektrische Verschiebungsdichte und elektrische Feldstärke. Wie hängen sie zusammen und welche Einheiten haben sie?

- Polarisation P: Beschreibt, wie stark ein Dielektrikum polarisiert ist beziehungsweise kennzeichnet die Stärke des Dipolmoments in dielektrischen Material. $[P] = As/m^2$
- Suszeptibilität (Reizbarkeit) χ : Materialeigenschaft, welche die Fähigkeit zur elektrischen Polarisierung in einem eingeprägten elektrischen Feld angibt. $[\chi] = 1$

$$\chi = \frac{P}{E \cdot \epsilon_0} \tag{30}$$

- Dielektrizitätskonstante ϵ : Gibt die Polarisationsfähigkeit eines Materials durch elektrische Felder an. $[\epsilon] = A \, s \, V^{-1} \, m^{-1}$
- Dielektrische Verschiebungsdichte **D**: Ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung. $[D] = C/m^2$

$$\mathbf{D} = \epsilon \epsilon_0 \mathbf{E} = \epsilon_0 \mathbf{E} + \mathbf{P} \tag{31}$$

• Elektrische Feldstärke E: Beschreibt die Stärke und Richtung eines elektrischen Feldes, also die Fähigkeit des Feldes, Kraft auf Ladungen auszuüben. $[E] = V m^{-1}$

Schreiben Sie die Feldgleichungen der Elektrostatik in Materie an (Integralform) und benennen Sie alle vorkommenden Größen inklusive Einheiten.

$$\oint_{A} \mathbf{E} d\mathbf{A} = \frac{Q}{\epsilon_{0}} \quad \oint \mathbf{E} d\mathbf{s} = 0 \tag{32}$$

- A: Oberfläche des Volumens $[A] = m^2$
- **E**: Elektrische Feldstärke $[E] = V m^{-1}$
- Q: Eingeschlossene Ladung [Q] = C
- ϵ_0 : Elektrische Feldkonstante $[\epsilon_0] = A\,\mathrm{s}\,\mathrm{V}^{-1}\,\mathrm{m}^{-1}$

Ein Elektron bewegt sich zum Zeitpunkt t_0 mit der Geschwindigkeit v_0 senkrecht zu den elektrischen Feldlinien in einem elektrischen Feld. Stellen Sie die Bewegungsgleichung auf und beschreiben Sie die weitere Bahn des Elektrons.

$$F = q \cdot E = m \cdot a_y \implies a_y = \frac{E \cdot e}{m} \tag{33}$$

$$s_x(t) = v_0 \cdot t \tag{34}$$

$$s_y(t) = \frac{1}{2} \cdot a_y \cdot t^2 \tag{35}$$

Außerhalb des Feldes gilt für die Beschleunigung $a_y=0$, die weitere Kurve entspricht einer Geraden.

Beschreiben Sie Zweck und Funktionsprinzip des Millikan Versuches. Wie kann die Masse und die elektrostatische Kraft auf die Öltröpfchen bestimmt werden und wie bestimmt man deren Ladung?

Der Millikan-Versuch dient der experimentellen Ermittlung der Elementarladung e. Durch Zerstäuben von Öl werden kleine Öltröpfchen erzeugt, welche aufgrund der Reibung beim Zerstäubungsvorgang die Ladung $n \cdot e$ besitzen und zwischen die horizontalen Platten eines Kondensators diffundieren.

Im feldfreien Kondensator wird die Schwerkraft $m \cdot g$ durch die Summe der Auftriebskraft $F_A = \rho_{Luft} \cdot \frac{4}{3}\pi R^3 \cdot g$ und der Reibungskraft $F_R = 6\pi\eta R \cdot v$ kompensiert. Die sich einstellende konstante Sinkgeschwindigkeit kann gemessen werden, wodurch sich der Radius und in weiterer Folge die Masse des Tröpfchens ergibt.

Durch Anlegen einer geeigneten Spannung am Kondensator kann nun das Tröpfchen im E-Feld in Schwebe gehalten werden. Eine Ladungsänderung des Tröpfchens durch beispielsweise Röntgenstrahlung erfordert eine Spannungsänderung, um den Schwebezustand aufrecht zu erhalten. Mithilfe der bekannten Spannungswerte kann nun n und in weiterer Folge e bestimmt werden.

3 Elektrischer Strom I

Was bedeuten die Begriffe elektrischer Strom, Stromdichte und Driftgeschwindigkeit und wie sind sie miteinander verknüpft? Welche Einheiten habe diese Größen? Sind es skalare oder vektorielle Grössen?

• Elektrischer Strom I: Transport von elektrischen Ladungsträgern [I] = A

$$I = \int_{A} \mathbf{j} d\mathbf{A} \tag{36}$$

• Stromdichte **j**: Verhältnis der Stromstärke I zur Verfügung stehenden Querschnittsfläche $A[j] = A/m^2$

$$\mathbf{j} = n \cdot q \cdot \mathbf{v_D} \tag{37}$$

• Driftgeschwindigkeit $\mathbf{v_D}$: Die mittlere Geschwindigkeit der Ladungsträger aufgrund eines äußeren Feldes [v]=m s $^{-1}$

Was bedeuten die Begriffe Beweglichkeit und elektrische Leitfähigkeit und spezifischer Widerstand? Welche Einheit haben sie und in welcher Beziehung stehen sie zur Stromdichte?

• Beweglichkeit μ : Gibt die Driftgeschwindigkeit der Ladungsträger bei einer elektrischen Feldstärke von $1\,\mathrm{V}\,\mathrm{m}^{-1}$ an $[\mu]=\mathrm{m}^2\,\mathrm{V}^{-1}\,\mathrm{s}^{-1}$

$$\mathbf{j} = \sigma \cdot \frac{\mathbf{v_d}}{\mu} \tag{38}$$

• Elektrische Leitfähigkeit σ : Fähigkeit eines Stoffes, den elektrischen Strom zu leiten $[\sigma] = A V^{-1} m^{-1}$

$$\mathbf{j} = \sigma \cdot \mathbf{E} \tag{39}$$

• Spezifischer Widerstand ρ_s : Kehrwert der elektrischen Leitfähigkeit $[\rho_s] = \Omega$ m

$$\mathbf{E} = \rho \cdot \mathbf{j} \tag{40}$$

Was besagt das Ohm'sche Gesetz? Schreiben Sie das Ohm'sche Gesetz in seiner lokalen und integralen Form an. Was ist ein Ohm'scher Leiter?

Die Stärke des durch ein Objekt fließenden elektrischen Stroms ist proportional der elektrischen Spannung.

$$\mathbf{j} = \sigma \cdot \mathbf{E} \quad R = \int_0^l \frac{\rho}{s} dl \tag{41}$$

Einen Leiter, für welchen ρ_s unabhängig von Strom I und Spannung U sind, nennt man ohm'schen Leiter. Die Spannung U und der Strom I sind also über R proportional zueinander.

Eine ideale Spannungsquelle liefert eine Klemmspannung von $10\,V$. Entwerfen und dimensionieren Sie eine einfache Schaltung aus Widerständen, die es ihnen erlaubt eine Spannung von $4\,V$ abzugreifen. Der gesamtwiderstand der Schaltung sollte $10\,k\Omega$ sein.

$$I = \frac{U_0}{R_{ges}} = \frac{U_1}{R_1} = \frac{U_2}{R_2} \tag{42}$$

$$\left. \begin{array}{l}
R_1 = R_{ges} \cdot \frac{U_1}{U_0} \\
R_2 = R_1 \cdot \frac{U_2}{U_1}
\end{array} \right\} \implies R_2 = R_{ges} \cdot \frac{U_2}{U_0} = 4 \,\mathrm{k}\Omega \tag{43}$$

$$R_1 = R_{qes} - R_1 = 6 \,\mathrm{k}\Omega \tag{44}$$

Das Material eines metallischen Leiters (Draht) mit konstanter Querschnittsfläche F und einer Länge L, habe den spezifischen Widerstand ρ . Berechnen Sie den Ohm'schen Widerstand des Drahtes.

$$R = \rho \cdot \frac{L}{F} \tag{45}$$

Beschreiben Sie den Ladungsvorgang eines Kondensators, der über einen Widerstand plötzlich mit einer idealen Spannungsquelle verbunden wird (Strom und Spannungen als Funktion der Zeit).

$$U(t) = U_0 \cdot \left(1 - e^{-t/(RC)}\right) \tag{46}$$

$$I(t) = I_0 \cdot e^{-t/(RC)} \tag{47}$$

Beschreiben Sie den Entladungsvorgang eines geladenen Kondensators, dessen Kontakte über einen Widerstand plötzlich verbunden werden (Strom und Spannungen als Funktion der Zeit).

$$U(t) = U_0 \cdot e^{-t/(RC)} \tag{48}$$

$$I(t) = I_0 \cdot e^{-t/(RC)} \tag{49}$$

Beschreiben Sie die elektrische Leitung in Metallen. Wie ändert sich der spezifische Widerstand mit der Temperatur? Begründen Sie.

Das Anlegen einer Spannung bewirkt ein elektrisches Feld im Metall, welches die Elektronen zum positiven Pol der Spannungsquelle hin beschleunigt. Duch die Kollision der Elektronen mit den Ionen im Kristallgitter verlieren erstere kinetische Energie, welche in Wärmeenergie umgewandelt wird.

Bei höheren Temperaturen kommt es zu stärkeren Schwingungen der Metallionen, wodurch die Bewegung der Elektronen noch stärker beschränkt wird. Der spezifische Widerstand steigt also mit der Temperatur.

Bei sehr tiefen Temperaturen können viele Metalle ihren Widerstand völlig verlieren, man spricht dann von Supraleitung.

Beschreiben Sie die elektrische Leitung in Halbleitern. Wie ändert sich der spezifische Widerstand mit der Temperatur? Begründen Sie.

Die Atome im Halbleiter bilden stabile Elektronenpaarbindungen, bei tiefen Temperaturen sind also keine freien Elektronen verfügbar. Mit steigender Temperatur können aufgrund ihres höheren Energie-Niveaus jedoch Elektronen frei werden, die Leitfähigkeit steigt also währen der elektrische Widerstand mit steigender Temperatur sinkt.

Durch das Fehlen von Elektronen im Gitter entstehen Löcher, welche als positive Ladungsträger betrachtet werden können. Diese Löcher werden durch von Loch zu Loch springende Elektronen gefüllt, wodurch sie scheinbar in entgegengesetzter Richtung der Elektronen wandern und damit ebenso dem Ladungstransport dienen.

Beschreiben Sie die elektrische Leitung in Gasen.

Der Ladungstransport in ionisierten Gasen, die auch als Plasma bezeichnet werden, erfolgt sowohl durch Elektronen als auch durch Ionen. Neben der Existenz dieser frei beweglichen Ladungsträger ist ein elektrisches Feld Voraussetzung für die Leitung in Gasen.

Die Erzeugung von Ladungsträgern im Gas kann über verschiedene Methoden erfolgen:

- Thermische Ionisation: Durch eine Kombination der thermischen Anregung und der damit initiierten chemischen Prozesse entstehen Ladungsträger. Die erforderliche, sehr hohe Temperatur kann durch Verwendung eines Katalysators verringert werden.
- Elektronenstoßionisation: Elektronen mit ausreichend hoher Energie können beim Stoß mit Atomen oder Molekülen Elektronen aus der Elektronenhülle herausschlagen und damit ein Elektron-Ion-Paar bilden.
- Photoionisation: Durch kurzwellige Strahlung wie etwa UV- oder Röntgenstrahlung können Atome oder Moleküle aufgrund der hochenergetischen Photonen ihrer Elektronen beraubt werden. Dies führt ebenfalls zur Entstehung von Elektron-Ion-Paaren.

Beschreiben Sie die Ionenleitung in Flüssigkeiten.

Flüssigkeiten, in denen Säuren, Laugen oder Salze gelöst sind, nennt man Elektrolyte. Im Gegensatz zu Metallen ist hier der Stromdurchgang mit einer chemischen Zersetzung des Elektrolyten verbunden. Sowohl an der Anode als auch an der Kathode werden Stoffe in fester oder gasförmiger Form abgeschieden.

Durch Dissoziation - also durch Aufspaltung von Molekülen in kleinere Bestandteile - entstehen positiv und negativ geladene Ionen. Diese ermöglichen bei einer angelegten Spannung den Ladungstransport mit der sogenannten Driftgeschwindigkeit. Während die positiven Ionen zur Kathode wandern und dort Elektronen aufnehmen geben die negativen Ionen an der Anode ihre überschüssigen Elektronen ab. Dabei scheiden sie als neutrale Atome an der jeweiligen Elektrode ab.

4 Elektrischer Strom II

Beschreiben Sie die Funktionsweise eines galvanischen Elementes. Wodurch ist die erzielbare Spannung bestimmt?

Das Prinzip einer galvanischen Zelle beruht darauf, dass unterschiedliche Metalle eine unterschiedliche Tendenz aufweisen, Elektronen abzugeben. Die Potentialdifferenz und damit auch die abgreifbare Spannung sind umso größer, je unterschiedlicher die einzelnen die einzelnen Elemente in dieser Hinsicht sind.

Werden zwei Metallelektroden in eine gemeinsame Elektrolytlösung getaucht, so gibt eine der Elektroden Metallionen an das Elektrolyt ab während die Elektronen auf der Elektrode zurückbleiben. Von dem mit Ionen angereicherten Elektrolyt werden wiederum Metallionen auf die andere Elektrode übertragen und dort entladen. Werden die Elektroden über einen elektrischen Leiter verbunden, so können die Elektronen von einer Elektrode auf die andere übertragen werden. Die Reaktion läuft so lange ab, bis sich die Elektrode aufgelöst hat.

Neben den verwendeten Metallen hängt die abgreifbare Spannung auch vom Elektrolyt ab.

Beschreiben Sie die Funktionsweise einer Brennstoffzelle.

Brennstoffzellen ermöglichen die direkte Umwandlung von chemischer in elektrische Energie ohne den Umweg über Wärmeenergie.

Durch geschickte Konstruktion werden die Oxidations- sowie Reduktionsreaktion von Sauerstoff mit dem verwendeten Brennstoff (wie etwa Wasserstoff) räumlich getrennt. Durch beispielsweise poröse, mit Katalysatorstoffen versehene Elektroden im gemeinsamen Elektrolyt wird kontinuierlich Sauerstoff und Wasserstoff zugeführt. Die beiden Reaktionen laufen dann getrennt an der jeweiligen Elektrode ab.

Der Wasserstoff an der Anode zerfüllt durch die katalytische Wirkung schon bei Raumtemperatur in Protonen und Elektronen. Die Protonen gelangen durch das Elektrolyt auf die Kathodenseite. Die Elektronen wandern durch den geschlossenen äußeren Stromkreis zur Kathode und verrichten auf diesem Wege elektrische Arbeit. An der Kathode verbinden sich Protonen, Elektronen und Sauerstoff zu Wasser.

Beschreiben Sie den Seebeck-Effekt und die Ursache der Thermospannung.

Werden zwei Leiter unterschiedlicher Stoffe zu einem geschlossenen Stromkreis verlötet, so misst man bei unterschiedlichen Temperaturen der Lötstellen eine Spannung. Man spricht vom Seebeck-Effekt.

Am heißen Ende des Leiters gibt es mehr Elektronen mit hoher Energie und weniger Elektronen mit geringer Energie. Durch Diffusion bewegen sich die energiereichen Elektronen zum kalten Ende und Elektronen mit wenig Energie zum heißen Ende. Das entstehende Ungleichgewicht wird durch ein elektrisches Feld ausgeglichen, die entstehende Spannung ist die Seebeck-Spannung.

Was ist der Innenwiderstand einer Spannungsquelle? Wie groß ist der Innenwiderstand einer idealen Spannungsquelle bzw. einer idealen Stromquelle?

Der Innenwiderstand R_i einer Spannungsquelle rührt daher, dass die Ladungsträger auf dem Weg vom Ort ihrer Trennung bis zu den Ausgangsklemmen der Quelle Stöße mit Atomen oder Molekülen innerhalb der Quelle erleiden.

Der Innenwiderstand einer idealen Spannungsquelle ist 0Ω , der einer idealen Stromquelle $\infty \Omega$.

Wie kann man den Kurzschlussstrom und den Innenwiderstand eines Akkumulators durch Strom und Spannungsmessung ermitteln, ohne den Akku wirklich kurz zu schließen? Der Akkumulator sei in guter Näherung eine lineare Spannungsquelle. Schaltungsskizze!

- 1. Leerlaufspannung U_0 direkt per Voltmeter messen
- 2. Potentiometer als Lastwiderstand schalten und derart einstellen, dass genau die Hälfte der Leerlaufspannung am Potentiometer abfällt. Der nun am Potentiometer eingestellte Wert entspricht genau dem des Innenwiderstandes R_i .
- 3. Der Kurzschlussstrom ergibt sich mit $I_K = \frac{U_0}{R_i}$

Zeichnen Sie das Ersatzschaltbild einer mit einem Widerstand R belasteten linearen Spannungsquelle mit Innenwiderstand R_i und elektromotorischer Kraft U. Berechnen Sie einen Ausdruck für die Klemmspannnung.

$$U_K = U_0 - R_i \cdot I = U_0 - R_i \cdot \frac{U_0}{R_i + R} \tag{50}$$

Was versteht man unter Leistungsanpassung bei einer Spannungsquelle? Bei welchem Lastbzw. Innenwiderstand ist dies erfüllt?

Unter Leistungsanpassung versteht man die Dimensionierung des Innen- und Lastwiderstandes, sodass die im Verbraucher umgesetzte Leistung maximal wird. Dies ist der Fall, wenn $R_i = R_L$ gilt.

Beschreiben und erklären Sie die Funktionsweise eines Dual-Slope Analog-Digital Umsetzers.

Ein Analog-Digital-Umsetzer ist eine elektronisches Gerät zur Umsetzung analoger Eingangssignale in einen digitalen Datenstrom. Die Eingangsgröße ist dabei immer eine elektrische Spannung.

Beim Dual-Slope-Verfahren wird ein Kondensator während einer Integrationszeit von der analogen Eingangsspannung aufgeladen. Nach Abschluss der Integrationszeit wird eine Gegenspannung an den Integrator angelegt, die den Kondensator wieder vollständig entlädt. Hat der Kondensator eine hohe Spannung, so ist die Entladezeit länger. Analog dazu ist sie bei einer geringeren Spannung kürzer. Die Entladezeit ist somit ein Maß für die Eingangsspannung. Sie ergibt sich durch zählen der Taktimpulse beim Entladevorgang.

Beschreiben und erklären Sie die Funktionsweise eines Flash Analog-Digital Umsetzers.

Flash-Umsetzer sind sogenannte Paralellumsetzer, bei denen alle logischen Entscheidungen parallel ausgeführt werden. Sie zeichnen sich durch eine extrem schnelle Wandlungsgeschwindigkeit aus, die nur einen Taktzyklus kurz ist.

Die Komperatoren haben zwei Eingänge, an welchen einerseits die Eingangsspannung verbunden ist und am anderen über eine Widerstandsmatrix eine Bezugsspannung bezogen wird. Das analoge Eingangssignal wird parallel an viele sogenannte Komparatoren geführt, wo es mit den erzeugten Referenzspannungen verglichen wird. Hierbei ist für jeden möglichen Ausgangswert ein eigener Komparator erforderlich, was bedeutet dass die Anzahl der Komparatoren exponentiell mit der Auflösung steigt.

Die Ausgänge der Komparatoren representieren diskrete digitale Zustände, deren Pegel codiert und digitalisiert in jedem Taktzyklus als Ausgangssignal weitergeleitet wird.

Aus welchen Beiträgen setzt sich die Gesamtunsicherheit eines Digitalvoltmeters zusammen?

- Abgleichabweichung: Die Kennlinie eines Analog-Digital-Umsetzers ist eine Gerade durch den Nullpunkt und steht für die gewünschte Proportionalität zwischen Anzeige und Messgröße. Sowohl die horizontale Verschiebung zum Nullpunkt als auch die Steigung der Kennlinie können nur innerhalb gewisser Unsicherheitsgrenzen eingestellt werden.
- Quantisierungsabweichung: Dadurch, dass die Messgröße nur schrittweise abgebildet wird, entsteht eine Quantisierungsabweichung.

• Linearitätsabweichung: Man unterscheidet zwischen einer integralen Linearitätsabweichung durch eine Nichtlinearität der Kennlinie und einer differenziellen Linearitätsabweichung durch ungleiche Breite der benachbarten Quantisierungsschritte.

Die maximal messbare Spannung eines Voltmeters mit Innenwiderstand R_i ist U_m . Der Messbereich soll auf $10 \cdot U_m$ erweitert werden. Zeichnen und dimensionieren Sie eine Widerstandsschaltung die dies ermöglicht. Wie groß ist der Gesamtwiderstand dieser Schaltung?

Es muss zusätzlich ein Widerstand $R_V = 9 \cdot R_i$ in Serie vor das Voltmeter geschaltet werden. Dies verzehnfacht den gesamten Innenwiderstand des Voltmeters, wobei aber $\frac{9}{10}$ am Vorwiderstand abfallen. Damit sind auch 10 mal größere Messwiderstände möglich, was entsprechend zum zehnfachen Messbereich für U_m führt.

Die maximal mit einem Amperemeter (Innenwiderstand R_i) messbare Strom sei I_m . Der Messbereich soll auf $10 \cdot I_m$ erweitert werden. Zeichnen und dimensionieren Sie eine Widerstandsschaltung die dies ermöglicht. Wie groß ist der Gesamtwiderstand dieser Schaltung?

Es muss zusätzlich ein Widerstand $R_m = \frac{R_i}{9}$ parallel zum Amperemeter geschaltet. Dadurch wird der Strom vor das Amperemeter aufgeteilt, nur noch ein Zehntel fließt durch das Amperemeter. Dies ermöglicht die Messung eines verzehnfachten Stromes.

5 Statische Magnetfelder

Schreiben Sie das Ampere'sche Gesetz an. Leiten Sie daraus einen Ausdruck für das Magnetfeld eines geraden, sehr langen, zylindrischen Leiters ab, durch den ein elektrischer Strom mit über den Leiterquerschnitt homogener Stromdichte fließt. Das Ringintegral entlang einer geschlossenen Magnetfeldlinie, ist immer gleich dem eingeschlossenen Strom mal der magnetischen Feldkonstante, wie aus dem Amperschen Gesetz ?? ersichtlicht wird.

$$\oint \mathbf{B} \, d\mathbf{s} = \mu_0 \cdot I \tag{51}$$

Wählt man nun als Integrationsweg die den Draht umschließende Feldlinie mit dem Abstand r, so ergibt sich:

$$\int_0^{2\pi} rBd\phi = 2\pi rB(r) = \mu_0 \cdot I \tag{52}$$

$$B(r) = \frac{\mu_0 \cdot I}{2\pi r} \qquad \text{für} \quad r > r_0 \tag{53}$$

$$B(r) = \frac{\mu_0 \cdot I}{r_0^2 2\pi} \cdot r \qquad \text{für} \quad r < r_0$$
 (54)

Schreiben Sie das Ampere'sche Gesetz an. Leiten Sie daraus einen Ausdruck für das Magnetfeld im Inneren einer geraden, sehr langen, zylindrischen Leiterspule ab. Der Integrationsweg wird so gewählt, dass nur der Teil im Inneren der Spule einen Beitrag leistet. N ist in diesem Zusammenhang die Anzahl der Windungen.

$$\int_{A}^{B} B \, ds = B \cdot L = N\mu_0 I \tag{55}$$

$$B = \frac{N}{L}\mu_0 I \qquad \text{mit} \quad \frac{N}{L} = n \text{ (Windungsdichte)}$$
 (56)

Schreiben Sie einen Ausdruck für die Lorentzkraft (nicht die verallgemeinerte Lorentzkraft) einer bewegten Ladung im Magnetfeld an. Beschreiben Sie alle verwendeten Formelsymbole und leiten Sie damit die Kraft auf einen geraden, stromdruchflossenen Leiter im homogenen Magnetfeld her.

$$F = q(textbfv \times \mathbf{B}) \tag{57}$$

- q Ladung auf die die Kraft wirkt
- v die Geschwindigkeit des Ladungsträgers

labelDrehmomen

• B Magnetfeld, welches der Ladungsträgert passiert

$$d\mathbf{F} = (\mathbf{j} \times \mathbf{B}) \, dV \qquad dV = A \cdot dL \quad \& \quad j \cdot A = I$$
 (58)

$$d\mathbf{F} = I(d\mathbf{L} \times \mathbf{B}) \tag{59}$$

$$\mathbf{F} = I(\mathbf{L} \times \mathbf{B}) \tag{60}$$

Schreiben Sie eine Ausdruck für das Magnetfeld zweier paralleler, stromdurchflossener, zylindrischer Leiter an. Erstellen Sie ein Diagramm der magnetischen Feldstärke als Funktion des Ortes entlang einer Linie, die die Achsen beider Leiter unter 90° schneidet. Welche Richtung hat das Magnetfeld entlang dieser Linie? Das Magnetfeld des einen Leiters übt eine Kraft, abhängig von der Stromrichtung, auf den anderen aus. Dieses Magnetfeld $B=\frac{\mu_0 I}{2\pi r}\cdot \hat{e}^{\phi}$ steht tangential auf konzentrischen Feldlinien. Setzt man diesen Zusammenhang in die hergeleitete Formel der letzten Frage, so bemerkt man das B orthognal auf L steht. Somit ergibt sich:

$$F_1 = I_1(L_1 \cdot \frac{\mu_0 I_2}{2\pi r}) \tag{61}$$

(62)

$$\frac{F_1}{L_1} = \frac{\mu_0}{2\pi r} \cdot I_2 \cdot I_1 \tag{63}$$

Leiten Sie ausgehend von der Kraft auf einen stromdurchflossenen, geraden Draht im homogenen Magnetfeld einen Ausdruck für das Drehmoment einer rechteckigen Leiterschleife im homogenen Magnetfeld her. Die Drehachse ist parallel zu zwei Seiten der Leiterschleife und senkrecht zur Richtung des Magnetfeldes. Bei welchem Winkel zwischen Leiterschleife und Magnetfeldrichtung ist das Drehmoment maximal? Bei welchem Winkel ist der magnetische Fluss durch die Leiterschleife maximal?

Ein geladenes Teilchen ist bei t=0 am Ort x=(0,0,0) mit der Geschwindigkeit $v=(v_x,0,v_z)$ in einem homogenen Magnetfeld $B=(0,0,B_z)$. Wie wird die weitere Bahn des Teilchens qualitativ aussehen und warum? Berechnen Sie die Kreisfrequenz und Radius.

Beschreiben Sie die Funktion und Aufbau eines Wien-Filters und leiten Sie einen Ausdruck für die Filter-Geschwindigkeit her.

Beschreiben Sie den Hall-Effekt und leiten Sie ausgehend von der Lorentzkraft einen Ausdruck für die Hall-Spannung für einen Leiter mit rechteckigem Querschnitt im homogenen Magnetfeld her.

Wie beeinflussen Stromdichte, Querschnittsabmessungen, Ladungsträgerdichte und Ladung der Ladungsträger die Hall-Spannung? Geben Sie an, ob die Parameter groß oder klein sein sollten, um eine möglichst große Hall-Spannung zu beobachten.

6 Materie im elektrischen Feld

Ein kleiner Probekörper mit bekanntem Volumen befindet sich in einem inhomogenen magnetischen Feld. Der Probekörper wird durch das äußere Magnetfeld magnetisiert und erfährt daher eine Kraft. Wie groß ist diese Kraft und welche Richtung hat sie bei positiver oder negativer magnetischer Suzeptiblität?

$$\mathbf{F} = \mathbf{p_m} \cdot \nabla \mathbf{B} = -M \cdot V \cdot \frac{dB}{dr} \hat{\mathbf{r}}$$
(64)

Für die Magnetisierung $M = \chi \cdot H$ ergibt sich bei diamagnetischen Stoffen ($\chi < 0$) eine radiale Kraft nach außen, paramagnetische Stoffe ($\chi > 0$) hingegen werden zum Zentrum gezogen.

Welche magnetischen Stoffklassen gibt es und wie unterscheiden sie sich in ihren magnetischen Eigenschaften?

- Konstante magnetische Suszeptibilität χ
 - **Paramagnete** besitzen ein permanentes magnetisches Dipolmoment $\mathbf{p_m}$, welches aber aufgrund thermischer Bewegung statistisch im Raum vererteilt ist und in Summe Null ergibt.

Durch ein äußeres Magnetfeld werden die Dipole parallel ausgerichtet und verstärken so das äußere Feld im Inneren des Stoffes. Mit steigender Temperatur sinkt die Suszeptibilität.

Paramegnete werden im inhomogenen Magnetfeld zur höheren Feldstärke hingezogen.

- **Diamagnete** besitzen kein eigenes magnatisches Dipolmoment $\mathbf{p_m}$. Sie entwickeln im äußeren Magnetfeld ein induziertes, inneres Magnetfeld, welches dem äußeren entgegenwirkt.

Diamagnete werden im inhomogenen Magnetfeld zur niederen Feldstärke hingezogen.

- Variable magnetische Suszeptibilität χ
 - **Ferromagnete** besitzen eine hohe magnetische Suszeptibilität χ , die Magnetisierung M kann im Vergleich zu Paramagneten um viele Größenordnungen höher sein.

Sie richten im externen Feld ihre magnetischen Momente innerhalb kleiner Bereiche (Weiß'sche Bezirke) parallel aus und behalten diese Ausrichtung auch nach Entfernung des Feldes. Ferromagnete erzeugen entweder selbst ein dauerhaftes Magnetfeld oder werden von einem Pol eines äußeren Magnetfelds stark angezogen.

Über der sogenannten Curie-Temperatur wird die magnetische Ordnung aufgebrochen, der Stoff ist dann nur noch paramagnetisch.

- **Antiferromagnete** weisen ein Kristallgitter mit zwei ineinander gestellten Untergittern auf, wobei ohne äußeres Magnetfeld die magnetischen Momente der Atome A des einen Gitters antiparallel zu denen der Atome B im anderen Gitter stehen, wodurch die Magnetisierung M insgesamt Null ist.

Ähnlich wie bei Ferromagneten gehen die Antiferromagnete bei der kritischen, sogenannten Néel-Temperatur in den paramagnetischen Zustand über.

- **Ferrimagnete** weisen wie Antiferromagnete zwei Untergitter auf, allerdings sind die magnetischen Momente der verschiedenen Atome unterschiedlich groß, sodass sich eine spontane Magnetisierung auch ohne äußeres Feld ergibt.

Sie weisen eine ähnliche Magnetisierungskurve wie Ferromagnete auf, die Sättigungsmagnetisierung ist allerdings wesentlich geringer.

Was versteht man unter Diamagnetismus und Paramagnetismus? Welche spezielle Eigenschaft haben Moleküle oder Atome eines dia- oder paramegnetischen Stoffes?

• Paramagnete besitzen ein permanentes magnetisches Dipolmoment $\mathbf{p_m}$, welches aber aufgrund thermischer Bewegung statistisch im Raum vererteilt ist und in Summe Null ergibt.

Durch ein äußeres Magnetfeld werden die Dipole parallel ausgerichtet und verstärken so das äußere Feld im Inneren des Stoffes. Mit steigender Temperatur sinkt die Suszeptibilität.

Paramegnete werden im inhomogenen Magnetfeld zur höheren Feldstärke hingezogen.

• **Diamagnete** besitzen kein eigenes magnatisches Dipolmoment $\mathbf{p_m}$. Sie entwickeln im äußeren Magnetfeld ein induziertes, inneres Magnetfeld, welches dem äußeren entgegenwirkt.

Diamagnete werden im inhomogenen Magnetfeld zur niederen Feldstärke hingezogen.

Beschreiben Sie die Eigenschaften eines ferromagnetischen Stoffes? Nennen Sie drei Beispiele für ferromagnetische Stoffe.

Ferromagnetismus tritt nur in Festkörpern auf. Ferromagnete zeigen die Tendenz, ihre magnetische Ordnung auch entgegen äußeren Einflüssen zu behalten. Dies führt dazu, dass die im Inneren erzeugte magnetische Ordnung und somit das äußere erzeugte Magnetfeld behalten, auch wenn sie keinem Magnetfled mehr ausgesetzt sind. Diese als Remanenz bezeichnete Tendenz wird durch Effekte in zwei verschiedenen Größenordnungen verursacht:

- Mikroskopisch: Die gleichgerichtete magnetische Ordnung der Elementarmagnete (also beispielsweise der Elektronenspins) in atomarer Größenordnung.
- Makroskopisch: Die Anordnung der Weiß-Bezirke in der Größenordnung von Mikrobis Nanometern.

Die meisten ferromagnetischen Materialien bestehen aus Übergangselementen, also aus Atomen mit nicht aufgefüllten inneren Elektronenschalen wie Eisen, Nickel oder Kobalt. Über der sogenannten Curie-Temperatur wird die magnetische Ordnung aufgebrochen, der Stoff ist dann nur noch paramagnetisch.

Was sind antiferromagnetische und ferrimagnetische Stoffe?

• Antiferromagnete weisen ein Kristallgitter mit zwei ineinander gestellten Untergittern auf, wobei ohne äußeres Magnetfeld die magnetischen Momente der Atome A des einen Gitters antiparallel zu denen der Atome B im anderen Gitter stehen, wodurch die Magnetisierung M insgesamt Null ist.

Ähnlich wie bei Ferromagneten gehen die Antiferromagnete bei der kritischen, sogenannten Néel-Temperatur in den paramagnetischen Zustand über.

• Ferrimagnete weisen wie Antiferromagnete zwei Untergitter auf, allerdings sind die magnetischen Momente der verschiedenen Atome unterschiedlich groß, sodass sich eine spontane Magnetisierung auch ohne äußeres Feld ergibt.

Sie weisen eine ähnliche Magnetisierungskurve wie Ferromagnete auf, die Sättigungsmagnetisierung ist allerdings wesentlich geringer.

Schreiben Sie die Feldgleichungen der Elektro- und Magnetostatik an. Welche Stetigkeitsbedingungen müssen die elektrischen und magnetischen Felder an Grenzflächen erfüllen?

• Magnetostatik: Mit den Stetigkeitsbedingungen $H_{\parallel,1}=H_{\parallel,2}$ sowie $B_{\perp,1}=B_{\perp,2}$ gilt

$$\mathbf{B} = \mu_0 \mu \mathbf{H} \tag{65}$$

$$\oint \mathbf{B}d\mathbf{A} = 0 \quad \text{bzw} \quad div\mathbf{B} = 0$$
(66)

$$\oint \mathbf{H} d\mathbf{s} = I_A \quad \text{bzw} \quad rot \mathbf{H} = \mathbf{j} \tag{67}$$

• Elektrostatik: Mit den Stetigkeitsbedingungen $E_{\parallel,1}=E_{\parallel,2}$ sowie $E_{\perp,1}=E_{\perp,2}$ gilt

$$\mathbf{D} = \epsilon_0 \epsilon \mathbf{E} \tag{68}$$

$$\oint \mathbf{D}d\mathbf{A} = Q \quad \text{bzw} \quad div\mathbf{D} = \rho \tag{69}$$

$$\oint \mathbf{D}d\mathbf{A} = Q \quad \text{bzw} \quad div\mathbf{D} = \rho \tag{69}$$

$$\oint \mathbf{E}d\mathbf{s} = 0 \quad \text{bzw} \quad rot\mathbf{E} = 0 \tag{70}$$

7 Zeitlich veränderliche Felder

Schreiben Sie das Faradaysche Induktionsgesetz an. Welche Prozesse können zu einer induzierten Spannung in einer Leiterschleife führen?

$$U_{ind} = -\frac{d}{dt} \int \mathbf{B} d\mathbf{A} = -\frac{d\phi_m}{dt} \tag{71}$$

Eine induzierte Spannung kann durch Änderung der magnetischen Feldstärke \mathbf{B} , des Flächeninhalts A oder der Orientierung der beiden Größen relativ zueinander hervorgerufen werden.

Eine quadratische Leiterschleife (Schleifenfläche A) dreht sich im homogenen Magnetfeld mit der Winkelgeschwindigkeit ω um eine Achse, die senkrecht zu den magnetischen Feldlininen steht. Schreiben Sie einen Ausdruck für die induzierte Spannung als Funktion des Winkels und der Zeit an. Bei welcher Orientierung der Leiterschleife relativ zum Magnetfeld ist die induzierte Spannung maximal (Skizze!)?

$$\phi_m = \int \mathbf{B} d\mathbf{A} = B \cdot N \cdot A \cdot \cos(\omega \cdot t) \tag{72}$$

$$U_{ind} = -\frac{d}{dt}\phi_m = B \cdot N \cdot A \cdot \omega \cdot \sin(\omega \cdot t)$$
 (73)

Die induzierte Spannung ist maximal, wenn die Flächennormale mit $\varphi=90^\circ$ senkrecht auf das Magnetfeld steht.

Eine offene Leiterschleife befindet sich in einem homogenen Magnetfeld. Der Flächennormalvektor steht parallel zu den Feldlinien. Die magnetische Feldstärke nimmt mit der Zeit zu. Skizzieren Sie die Situation und zeichnen Sie die Richtung der induzierten elektrischen Feldstärke sowie die Polarität der beiden offenen Enden der Leiterschleife ein.

Beschreiben Sie Aufbau und Funktion einer Induktionsschleuder.

Auf einem langen Eisenjoch liegt über einer Feldspule ein Aluminiumring. Wird die Spule eingeschaltet, so wird im Ring ein Induktionsstrom erzeugt dessen magnetisches Moment so gerichtet ist, dass der Ring hochgeschleudert wird. Dieses Prinzip kann technisch angewandt werden, um kleinere Projektile auf große Geschwindigkeiten von bis zu $8\,\mathrm{km\,s^{-1}}$ beschleunigen.

Was versteht man unter Selbstinduktion? Was bedeutet der Selbstinduktionskoeffizient?

In einer stromdurchflossenen Spule wird bei einer zeitlichen Änderung des Stromes der magnetische Fluss durch die Spule geändert, weshalb nun aufgrund des Magnetfelds der Spule auch in der Spule selbst eine Induktionsspannung entsteht. Diese ist gemäß der Lenz'schen Regel der Änderung der von außen angelegten stromtreibenden Spannung entgegengerichtet.

Da das von der Spule erzeugte Magnetfeld proportional zum Strom I durch die Spule ist, folgt mit $\phi_m = L \cdot I$ die Proportionalitätskonstante L mit der Maßeinheit Henry, welche auch als Selbstinduktionskoeffizient bekannt ist.

Eine Doppelleitung besteht aus zwei zylindrischen, parallelen Leitern, durch die der gleiche Strom aber mit unterschiedlichen Vorzeichen fließt. Fertigen Sie eine Skizze an, skizzieren Sie das Magnetfeld der Anordnung und schreiben Sie das Magnetfeld zwischen den Leitern analytisch an. Zeigen Sie, wie man daraus (im Prinzip) den Selbstinduktionskoeffizienten der Doppelleitung berechnen kann.

$$B_a = \frac{\mu_0 I}{2\pi} \left(\frac{1}{\frac{d}{2} + x} + \frac{1}{\frac{d}{2} - x} \right) \tag{74}$$

$$B_{1i} = \frac{\mu_0 I}{2\pi r_0^2} \left(\frac{d}{2} + x\right) + B_{2a} \tag{75}$$

$$B_{2i} = \frac{\mu_0 I}{2\pi r_0^2} \left(\frac{d}{2} - x\right) + B_{1a} \tag{76}$$

Durch Integration über die magnetische Flussdichte B ergibt sich zunächst der magnetische Fluss ϕ_m und in weiterer Folge der Selbstinduktionskoeffizient L.

$$\phi_m = l \cdot \int_{-d/2}^{d/2} B dx \tag{77}$$

$$L = \frac{\phi_m}{I} = \dots = \frac{\mu_0 I}{2\pi} \left(1 + 2 \cdot \ln \frac{d - r_0}{r_0} \right)$$
 (78)

Was versteht man unter Gegeninduktion? Wie kann man sie formal beschreiben?

Ein vom Strom I_1 durchflossener Stromkreis 1 erzeugt im Punkt $\mathbf{P}(\mathbf{r_2})$ ein Magnetfeld \mathbf{B} . Dieses Magnetfeld erzeugt einen magnetischen Fluss durch die vom Leiterkreis 2 eingeschlossene Fläche A. Die diesen Fluss $\phi_m = L_{12} \cdot I_1$ mit dem Strom I_1 im Stromkreis 1 verknüpfende Proportionalitätskonstante $L_{12} = L_{21}$ heißt Koeffizient der gegenseitigen Induktivität.

Beschreiben Sie den Strom- und Spannungsverlauf einer Serienschaltung aus idealer Induktivität und ohm'schen Widerstand, wenn diese über einen Schalter mit einer idealen Spannungsquelle verbunden werden (Einschaltvorgang). Schreiben Sie die Funktionen I(t) sowie U(t) für Widerstand und Spule an und erstellen Sie die entsprechenden Diagramme.

$$I(t) = \frac{U_0}{R} \cdot \left(1 - e^{-Rt/L}\right) \tag{79}$$

$$U_L(t) = U_0 \cdot e^{-Rt/L} \quad U_R = U_0 \cdot \left(1 - e^{-Rt/l}\right)$$
 (80)

Beschreiben Sie den Strom- und Spannungsverlauf einer Serienschaltung aus idealer Induktivität und ohm'schen Widerstand, wenn diese über einen Schalter von einer Spannungsquelle plötzlich getrennt werden (Ausschaltvorgang). Schreiben Sie die Funktionen I(t) sowie U(t) für Widerstand und Spule an und erstellen Sie die entsprechenden Diagramme.

$$I(t) = \frac{U_0}{R} \cdot e^{-Rt/L} \tag{81}$$

$$U_L(t) = -U_0 \cdot e^{-Rt/L} \quad U_R = U_0 \cdot e^{-Rt/L}$$
 (82)

Wie kann man im Prinzip die Induktivität z.B. einer Spule durch eine Zeitmessung bestimmen (Schaltplan und Beschreibung)?

Zwei dünne, lange Spulen sind auf den gleichen Kern gewickelt, sodass der gesamte magnetische Fluss der einen Spule durch die andere fließt. Berechnen Sie die in einer Spule induzierte Spannung, wenn sich in der andern der Strom ändert. Die Spulenlängen, die Anzahl der Windungen, die Spulenquerschnitte, und die magnetischen Eigenschaften des Spulenkerns seien bekannt.

Berechnen Sie die im magnetischen Feld einer dünnen, langen Spule gespeicherte Energie als Funktion des Stromes. Die Spulenlänge, die Anzahl der Windungen, der Spulenquerschnitt, und die magnetischen Eigenschaften des Spulenkerns seien bekannt.

$$W(I) = \frac{1}{2} \cdot I^2 \cdot L = \frac{1}{2} \cdot I^2 \cdot \mu_r \mu_0 n^2 \frac{A}{l}$$
 (83)

Schreiben Sie die Maxwell-Gleichungen an und visualisieren Sie die Quellen der elektrischen und magnetischen Felder sowie die Ursache der elektrischen und magnetischen Wirbelfelder. (vgl. Folie 23).

$$rot \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \quad div \mathbf{D} = \rho \tag{84}$$

$$rot \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j} \quad div \mathbf{B} = 0$$
 (85)

8 Elektrische Generatoren und Motoren

Erklären Sie das Prinzip eines einfachen Wechselstromgenerators mit einer Spule im homogenen äußeren Magentfeld. Schreiben Sie die Beziehung für den elektrischen Fluss an und leiten Sie daraus die induzierte Spannung bei konstanter Winkelgeschwindigkeit als Funktion der Zeit her.

Doppel-T Anker und Trommelanker: Beschreiben Sie die Funktion eines permanenterregten Generators mit Doppel-T Anker und Kommutator. Skizzieren Sie den Anker inklusive Stellung und Anschluss des Kommutators relativ zur Spulenorientierung. Erstellen Sie ein Diagramm der Klemmspannung als Funktion der Zeit für konstante Drehgeschwindigkeit. Welche Vorteile bringt ein Trommelanker?

Skizzieren Sie den Aufbau und Schaltplan einer Hauptschlussmaschine. Wie sieht bei einem Generator dieser Bauart die Klemmspannung als Funktion des Stromes aus? Wie sieht bei einem Motor dieser Bauart der Strom und das Drehmoment als Funktion der Drehzahl bei konstanter Versorgungsspannung aus?

Skizzieren Sie den Aufbau und Schaltplan einer Nebenschlussmaschine. Wie sieht bei einem Generator dieser Bauart die Klemmspannung als Funktion des Stromes aus? Wie sieht bei einem Motor dieser Bauart der Strom und das Drehmoment als Funktion der Drehzahl bei konstanter Versorgungsspannung aus?

Nennen und erklären Sie drei Arten von Erregung bei Gleichstrommaschinen.

9 Wechselstrom und Drehstrom

Zeichnen Sie den zeitlichen Spannungsverlauf einer Wechselspannung. Zum Zeitpunkt 0 sei die Phase $\phi \neq 0$. Zeichnen Sie das Zeigerdiagramm für die Spannung zum Zeitpunkt t=0 und t=T/4, wobei T die Periodendauer ist. Zeichnen Sie Periodendauer, Scheitelwert und Effektivwert ein.

Eine Wechselspannungsquelle liefert an einen Verbraucher Spannung und Strom. Der Strom eilt der Spannung um einen Phasenwinkel von 45° nach. Zeichnen Sie den zeitlichen Spannungs- und Stromverlauf und das Zeigerdiagramm mit Spannung und Strom zum Zeitpunkt t=0 bei dem die Spannung gerade ihr Maximum hat, und zum Zeitpunkt t=T/4, wobei T die Periodendauer ist.

Eine Wechselspannungsquelle liefert an einen Verbraucher Spannung und Strom. Der Strom eilt der Spannung um einen Phasenwinkel von 45° voraus. Zeichnen Sie den zeitlichen Spannungs- und Stromverlauf sowie den zeitlichen Verlauf der abgegebenen Leistung. Erklären und berechnen Sie Wirk-, Blind-, und Scheinleistung.

Zeichnen Sie den zeitlichen Spannungsverlauf einer dreiphasigen Wechselspannung sowie das zugehörige Zeigerdiagramm.

Zeichnen Sie die Schaltpläne für drei Widerstände, die in Stern- oder Dreieckschaltung an eine dreiphasige Wechselspannung angeschlossen sind. Erstellen Sie die zugehörigen Zeigerdiagramme. Berücksichitgen Sie im Zeigerdiagramm bei der Dreieckschaltung sowohl die Strangspannungen U_i als auch die Außenleiterspannungen U_{ij} und deren Konstruktion.

Beschreiben und erklären Sie den Aufbau eines Asynchron-Motors mit Kurzschluss-Läufer. (Skizze und Benennung aller wesentlicher Bauteile) Ist eine Drehstrommaschine, bei der der Rotor dem Drehfeld des Stators als Generator vor und als Elektromotor nachläuft. Entweder strändig oder fallweise kurzgeschlossen. Dreht sich der Rotor langsamer als das Magnetfeld ändert sich dadurch der magnetische Fluss, was eine Spannung induziert, die wiederum einen Strom hervorruft. Fließt Strom durch die Ständerwicklung wird dadurch ein Magnetfeld aufgebaut. Aufgrund der Kreisbewegung wandert das Magnetfeld. Das Ständerfeld kann auf das Drehfeld wirken und ein Drehmoment auf den Läufer ausüben. Da sich das Ständerfeld fortlaufend in eine Richtung bewegt, entsteht eine Drehbewegung.

Aufbau: Ein Asynchronmotor besteht aus einem Gehäuse in dem sich ein Ständerblechpaket befindet. Zwischen den Ständerblechen werden drei Wicklungen geführt, an welche die drei Drehstrompha- sen gelegt werden. Innerhälb des Ständer befindet sich als bewegliches Element ein Läufer, der die elektrische Energie in eine Rotationsbewegung. Beim Läufer des Kurzschlussläufers wird in die Läufernuten nur jeweils ein Leiter in Form eines massiven Stabes geschoben. Diese Stäben werden an den Enden verbunden und damit kurzgeschlossen. Der Läufer hat damit die Form eines zylindrischen Käfigs (Käfigläufer).

Eine Drehstrommaschine, bei der der Rotor dem Drehfeld des Stators als Generator vor- und als Elektromotor nachläuft. Entweder ständig oder fallweise kurzgeschlossen. Der magnetische Fluss ändert sich, da sich der Rotor langsamer dreht, als sich das Magnetfeld ändert

Zeichnen Sie die Schaltpläne für drei Widerstände, die in Stern- oder Dreieckschaltung an eine dreiphasige Wechselspannung mit Scheitelwert U_0 angeschlossen sind. Berechnen Sie die in den beiden Schaltungen an den Widerständen anliegende Spannung, die elektrische Leistung sowie das Verhältnis der Leistungen für beide Schaltungsvarianten.

Was versteht man unter Wirk-, Blind-, und Scheinleistung und wie kann man sie aus Stromund Spannung berechnen? Wirkleistung (mittlere abgegebene Leistung): ist die echt verbrauchte leistung in ohmschen Widerständen. Elektrische leistung, die für die Umwandlung in andere Leistungen verfügbar ist (Blindleistung ist nicht dafür verwendbar).

$$P = U_{eff}I_{eff}cos(\phi) \tag{86}$$

Blindleistung: fließt zur Spannungsquelle. Tritt auf, wenn elektrische Energie über Wechselstrom transportiert wird. Die Leistung zum Aufbau wird beim Abbau wieder ans Netz zurückgegeben, weshalb sie Blindleistung genannt wird.

$$P = I_{eff} U_{eff} sin(\phi) \tag{87}$$

Scheinleistung: Gesamtleistung, welche für ein Netz bereitgestellt werden muss. Ist eine Rechengröße, die im Blick auf Verluste, wenn elektrische Verbraucher elektrische Leistung zugeführt wird.

$$P_S = I_{eff} U_{eff} \tag{88}$$

10 Wechselstromkreise und Lineare Netzwerke

Schreiben Sie die komplexen Impedanzwerte einer Spule, eines Widerstandes und eines Kondensators an. Wie ist die komplexwertige Impedanz definiert und in welchen Fällen kann man Sie zur Berechnung von Schaltungen verwenden?

$$Z_R = R \quad Z_L = i\omega L \quad Z_C = \frac{1}{i\omega C} = \frac{-i}{\omega C}$$
 (89)

Die komplexwertige Impedanz $Z=\frac{U}{I}$ ist der Quotient aus den Augenblickswerten der komplexen Wechselspannung und dem komplexen Wechselstrom. Sie gibt sowohl das Verhältnis der Amplituden von Wechselspannung zu Wechselstrom als auch den Phasenwinkel zwischen diesen Größen an.

Mithilfe der komplexwertigen Impedanz können lineare Wechselstromnetzwerke im Rahmen der komplexen Notation völlig analog zu linearen Gleichstromnetzwerken berechnet werden. Die komplexe Notation macht ausschließlich bei rein harmonischem Wechselstrom Sinn. In allen anderen Fällen muss immer die Differentialgleichung für die Schaltung aufgestellt und gelöst werden.

Eine Serienschaltung von Widerstand, Spule und Kondensator ist an einer Wechselspannungsquelle $U=U_0cos(\omega t)$ angeschlossen. Zeichnen Sie das Zeigerdiagramm für Spannung und Strom an der Schaltung und an den einzelnen Elementen. Die Phasenlagen aller Größen muss ersichtlich sein. Berechnen Sie Effektivwert und Phasenlage des Stromes, der in die Schaltung fließt.

$$Z = Z_R + Z_L + Z_C = R + i\omega L + \frac{-i}{\omega C} = R + i\cdot\left(\omega L - \frac{1}{\omega C}\right)$$
(90)

$$tan(\varphi) = \frac{ImZ}{ReZ} \implies \varphi = arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$
 (91)

$$I_0 = \frac{U_0}{|Z|} \implies I_{eff} = \frac{I_0}{\sqrt{2}} = \frac{U_0}{\sqrt{2R^2 + 2\left(\omega L - \frac{1}{\omega C}\right)^2}}$$
 (92)

Erklären Sie einen passiven Hochpass. Zeichnen Sie das Zeigerdiagramm für Strom und Spannungen, leiten Sie einen Ausdruck für die Ausgangspannung her und skizzieren Sie das Bode-Diagramm für Ausgangsspannung und -phase.

Ein passiver Hochpass ist eine elektrische Schaltung, welche hohe Frequenzen praktrisch ungedämpft durchlässt während niedere Frequenzen gesperrt werden. Am CR-Glied hat der Kondensator bei tiefen Frequenzen der sinusförmigen Eingangsspannung einen großen Widerstandswert, am Widerstand hingegen fällt fast keine Spannung ab. Bei hohen Frequenzen ist der Widerstandswert des Kondensators gering und die Eingangsspannung fällt fast nur über den Widerstand ab.

Erklären Sie einen passiven Tiefpass. Zeichnen Sie das Zeigerdiagramm für Strom und Spannungen, leiten Sie einen Ausdruck für die Ausgangspannung her und skizzieren Sie das Bode-Diagramm für Ausgangsspannung und -phase.

Ein passiver Tiefpass ist eine elektrische Schaltung, welche niedere Frequenzen praktisch ungedämpft durchlässt während höhere Frequenzen gesperrt werden. Am RC-Glied hat der Kondensator bei hohen Frequenzen der sinusförmigen Eingangsspannung einen geringen Widerstandswert, die Spannung fällt großteils am Widerstand ab. Bei niederen Frequenzen ist der Widerstandswert des Kondensators hoch, wodurch die Eingangsspannung fast nur am Kondensator abfällt.

$$U_{a} = U_{C} = \frac{U_{e}}{R + \frac{1}{i\omega C}} \frac{1}{i\omega C} = U_{e} \frac{1}{1 + \frac{1}{i\omega RC}}$$

$$\begin{array}{c} 10^{0} \\ 10^{-1} \\ 10^{-3} \\ 10^{-3} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \\ 10^{-$$

Erklären Sie Aufbau und Funktion eines einfachen Bandpassfilters (Frequenzfilter) incl. Zeigerdiagramm und Ausdruck für die Ausgangsspannung.

Als Bandpassfilter wird ein Filter bezeichnet, welcher nur Signale eines bestimmten Frequenzbands passieren lässt während Frequenzen außerhalb des gewünschten Bereichs gesperrt oder deutlich abgeschwächt werden. Ein derartiger Filter kann unter anderem durch Reihenschaltung eines Hoch- und Tiefpassfilters umgesetzt werden.

Erklären Sie Aufbau und Funktion eines einfachen Bandstoppfilters (Frequenzfilter) incl. Zeigerdiagramm und Ausdruck für die Ausgangsspannung.

Als Bandstoppfilter wird ein Filter bezeichnet, welcher nur Signale außerhalb eines bestimmten Frequenzbands passieren lässt während Frequenzen innerhalb des gewünschten Bereichs gesperrt oder deutlich abgeschwächt werden. Im Gegensatz zum Bandpassfilter werden hier Induktivität und Kapazität parallel geschaltet.

$$U_a = \frac{R}{R + \frac{1}{\frac{1}{Z_C} + \frac{1}{Z_L}}} U_e \tag{96}$$

11 Transformator und Gleichrichter

Erklären Sie Aufbau, Sinn und Funktionsprinzip eines Transformators.

Transformatoren bestehen aus zwei Spulen, welche mit einem Eisenjoch verbunden sind. Die beiden Spulen sind nicht im gleichen Netzwerk. Sinn des Trafos ist es, eine Spannung U_1 auf eine andere Spannung U_2 zu transformieren. Das ist aufgrund vom Farady-Gesetz möglich. Das Eisenjoch ist für beide Spulen ein Eisenkern und bündelt den magnetischen Fluss. Je nach Windungssinn ergibt sich der Spannungsabfall U_2 wie folgt:

Für die Primär- und Sekundärspannung folgt somit:

gegensinnige Wicklung:
$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$
 gleichsinnige Wicklung: $\frac{U_2}{U_1} = -\frac{N_2}{N_1}$ (97)

Zeigen Sie, dass bei einem unbelasteten Transformator das Spannungsverhältnis gleich dem Verhältnis der Wicklungsanzahl von Primär- und Sekundärseite ist (Beträge). Wie ändert sich die Sekundärspannung qualitativ bei Belastung.

Legt man an der Primärspule eine Wechselspannung U_1 an, so fließt ein Strom I_1 dieser erzeugt einen magentischen Fluss ϕ_m welcher wiederum eine Induktionsspannung U_{ind} bewirkt.

$$U_{ind} = -L_1 \frac{dI_1}{dt} = -N_1 \frac{d\phi_m}{dt} = -U_1$$

Wie man sieht gilt auch hier die Maschenregel $U_1 + U_{ind} = 0$. Tritt nun der gesamte in L_1 induzierte Fluss auch durch L_2 so wird hier eine Spannung U_2 induziert:

$$U_2 = -N_2 \frac{d\phi_m}{dt}$$

Aus den oberen Termen folgt nun:

$$-\frac{U_2}{N_2} = \frac{U_1}{N_1} \to \frac{U_2}{U_1} = -\frac{N_2}{N_1} \tag{98}$$

Fließt beim belasteten Trafo nun ein Strom I_2 durch einen Verbraucher, so erzeugt dieser ein selbstinduziertes Magnetfeld $\phi_{sekund\"{a}r}$ welches U_2 verringert. Da die Energieerhaltung gilt muss somit folgendes gelten:

$$P_1 = P_2 \rightarrow U_1 \cdot I_1 = U_2 \cdot I_2$$

Zeigen Sie, dass beim unbelasteten Trafo der primärseitig aufgenommene Strom nicht null ist, dass aber die aufgenommene Wirkleistung null ist.

Ein unbelasteter Trafo ist nichts anderes als eine glorifizierte Spule mit Eisenkern (da ja schließlich der Sekundärkreis nicht geschlossen ist). Wie schon bei normaler Induktion ergibt sich die mittlere Leistung einer Spule zu:

$$\bar{P}_{Wirkleistung} = \frac{1}{2}UI\cos(\phi) = 0 \tag{99}$$

Die Spannung und Strom durch die Spule sind dabei um $\pi/2$ verschoben, was zu einem reinem Blindstrom und somit zu keiner Wirkleistung führt.

Leiten Sie einen Ausdruck für das Verhältnis der Ströme von Primär- und Sekundärseite eines belasteten Transformators ab. Die Impedanz der Last sei \mathbb{Z} .

Es gilt für die Spannung in der Primär- sowie Sekundärspule (Belastung mit Last Z):

$$U_1 = i\omega L_1 I_1 + i\omega L_{12} I_2$$

$$U_2 = I_2 \cdot Z = -i\omega L_2 I_2 - i\omega L_{12} I_1$$

Hierbei sind L_1 und L_2 die jeweiligen Induktivitäten in Primär- und Sekundärspule. L_{12} ist die gegenseitige Induktivität. Das Minus bei U_2 lässt sich damit erklären, da die Spannung hier 90° nacheilt, während sie im Primärkreis 90° voreilt (Gegenüber Strom; gleiche Phase im Eisenkern). Löst man nach Z auf ergibt sich:

$$I_2 \cdot Z = -i\omega (L_2 I_2 + L_{12} I_1) \quad \rightarrow \quad Z = -i\omega L_2 - (i\omega L_{12} \frac{I_1}{I_2})$$
 (100)

Schließlich ergibt sich somit das Verhältnis von I_1 zu I_2 zu:

$$\frac{I_1}{I_2} = \frac{z + i\omega L_2}{-i\omega L_{12}} \tag{101}$$

Erklären Sie die charakteristischen Eigenschaften einer Diode anhand einer typischen Diodenkennlinie.

Eine Diode ist ein Bauelementen welches Strom beim anlegen einer Spannung nur in eine Richtung fließen lässt (Abgesehen vom Sperrstrom).

Abbildung 5.44 Diodenkennlinie mit Anlaufstrom und Sättigungsbereich. Die Skala für den negativen Strom im Sperrbereich ist hundertfach gespreizt. Der Anlaufstrom wird durch die Raumladung um die Kathode (bzw. in der p-n Grenzschicht) bestimmt

Legt man beispielsweise eine positive Spannung an, so fließt viel Strom durch die Diode. Polt man die Spannung um, kommt es zu einem kleinen Sperrstrom, dieser ist aber um einige Größenordnungen kleiner als jener Durchflussrichtung.

Erklären Sie Aufbau und Funktion einer Röhrendiode.

Bei gegebener Polung werden Elektronen von der geheizten Kathode (K) zur Anode (A) beschleunigt. Beide befinden sich in einem evakuiertem Behältnis (meist Glaskolben) Ist die anliegende Spannung U_a anders gepolt verbleiben die Elektronen auf der Kathode und es fließt kein Strom.

Funktion: Strom kann nur in eine Richtung fließen. Verwendung: Für Gleichrichtung, Audiotechnik, etc. Beschreiben Sie die Einweig- und Zweiweggleichrichtung sowie die Grätz-Schaltung mit Schaltplan und zeitlichem Verlauf der Eingangs- und Ausgangsspannung.

Einweg-Gleichrichter: Es wird nur eine z.B.: positive Halbwelle durchgelassen die Diode verhindert den Durchfluss in die entgegengesetzte Richtung.

Zweiweg-Gleichrichter: Die sekundär Spule ist effektiv in zwei Teile geteilt. Dadurch liegt immer eine positive Spannung an, jedoch nur mehr mit der halben Amplitude.

Grätz-Gleichrichter: Hier fließt immer eine Spannung unabhängig von der Polung, es ändert sich lediglich der Weg durch die Dioden. Die Amplitude der Ausgangsspannung ist somit gleich wie die Eingehende.

Erklären Sie die Glättung einer pulsierenden Gleichspannung mit einem Kondensator, wenn die Schaltung mit einem ohm'schen Widerstand belastet ist. Stellen Sie Eingangs- und Ausgangsspannung als Funktion der Zeit in einem Diagramm dar und erklären Sie den Spannungsverlauf.

Der Kondensator wird während der positiven Halbwelle aufgeladen. Während der negativen Halbwelle fließt kein Strom durch die Diode, der Kondensator entlädt sich und "glättet "rudimentär die pulsierende Gleichspannung.

Erklären Sie Aufbau und Funktionsweise eines einfachen Röhrenverstärkers.

Funktionsweise ähnlich wie die einer Röhrendiode. Von einer Glühkathode (K) werden die Elektronen zur Anode (A) beschleunigt. Jedoch müssen diese durch ein Streugitter (G) fliegen. Liegt nun am Gitter eine zu große negative Spannung an, so werden die Elektronen wieder abgelenkt und es kommt zu keinem Strom zwischen Kathode und Anode. Durch die Steuerung der am Gitter angelegten Spannung kann somit auch der Gesamtstrom von K zu A und somit der Ausgangsstrom kontrolliert werden.

 $R\ddot{o}hrenverst\ddot{a}rker \rightarrow Vakuumr\ddot{o}hren mit Kathode und Anode (siehe auf R\ddot{o}hrendiode)$

12 Elektromagnetische Schwingungen und Entstehung von Wellen

Zeichnen Sie den Schaltplan eines gedämpften Serienschwingkreises und erstellen Sie ein Diagramm der im Schwingkreis verbrauchten Wirkleistung als Funktion der Frequenz. Grenzfrequenz ist jene Frequenz, bei welcher sich die imaginären Anteile von der Spule und dem Kondensator gegenseitig aufheben. Ergo kann L und C im Schlatplan weggedacht werden. Wird L und C weggedacht, bleibt ein ohmscher Widerstand übrig -> Die Leistung ist ohmsch -> Maximum (weil verbrauchte Wirkleistung = volle Wirkleistung)

Zeichnen Sie den Schaltplan eines gedämpften Parallelschwingkreises der an eine Wechselspannungsquelle angeschlossen ist und erstellen Sie ein Diagramm der im Schwingkreis verbrauchten Wirkleistung als Funktion der Frequenz der Wechselspannung. Grenzfrequenz ist jene Frequenz, bei welcher sich die imaginären Anteile von der Spule und dem Kondensator gegenseitig aufheben. Ergo kann L und C im Schlatplan weggedacht werden. Wird L und C weggedacht, bleibt ein Kurzschluss übrig! Daher Leistungsminimum bei Grenzfrequenz

Erstellen Sie das Zeigerdiagramm für Strom und Spannung eines an eine Wechselspannungsquelle angeschlossenen, gedämpften Serienschwingkreis für eine Frequenz unterhalb, oberhalb und bei der Resonanzfrequenz. Zeichnen Sie auch alle Teilspannungen bzw. Ströme an den einzelnen Bauelementen ein

Bild 2:

- niedrige Frequenz erhöht den Widerstand am Kondensator
- niedrige Frequenz senkt den Widerstand an der Spule
- Hoher Widerstand an C -> hohe Spannung -> größerer Zeiger nach unten

Bild 3:

- hohe Frequenz erhöht den Widerstand an der Spule
- hohe Frequenz senkt den Widerstand an der Spule
- hoher Widerstand an C -> hohe Spannung -> größerer Zeiger nach unten

Gegeben sei ein gedämpfter Serienschwingkreis. Zeichnen Sie ein Diagramm des Stromes als Funktion der Zeit nach einem Spannungssprung (I(0)=0; $\dot{I}(0)\neq 0$) am Schwingkreis für den Kriechfall, den Aperiodischen Grenzfall und eine gedämpfte Schwingung .

Wie sieht die Abstrahlcharakteristik (räumliche Verteilung der Leistungsabstrahlung in großer Entfernung) eines schwingenden Dipols aus ?

Abb. 6.26 dient der Erkäuterung für die Dichte. In y-Richtung gibt es keine Feldlinien (=keine Energiestromdichte) → kein r nach oben/unten im Abb. 6.26.

In x-Richtung ist die Dichte am höchsten, daher bei der Leistung auch der größte Abstand.

Was ist Bremsstrahlung und mit welchen Geräten wird sie technisch Erzeugt? Bremsstrahlung ist elektromagnetische Strahlung, die entsteht, wenn der Impuls eines geladenen Teilchens, z.B. eines Elektrons, geändert wird. Dem liegt zugrunde, dass jede Geschwindigkeitsänderung eines geladenen Teilchens mit der Absorption oder Emission von elektromagnetischer Strahlung verbunden ist (Energieerhaltung!).

Technische Erzeugung:

- Teilchenbeschleuniger
- Röntgenröhren in der Medizin

Bilderläuterung:

Wird z.B. ein Elektron um einen Kern gebremst, so verändert sich dessen Impuls und somit E_{Kin} .

Die Energiedifferenz wird also abgestrahlt. Dieses Phänomen nennt man Bremsstrahlung. Dieser Effekt tritt aber ebenso bei Beschleunigung auf, nicht nur bei Bremsung. Dabei wird ein Photon absorbiert (Die Energie des Photons ist dann der Betrag, mit welchem beschleunigt wird).

13 Elektromagnetische Wellen

Was sind ebene elektromagnetische Wellen? Schreiben Sie die Gleichung für das elektrische Feld einer ebenen, harmonischen, elektromagnetische Welle an.

Skizzieren Sie zeitlichen und örtlichen Verlauf des elektrischen Feldes einer ebenen, harmonischen, elektromagnetischen Welle. Geben Sie die Wellengleichung an und markieren Sie Wellenlänge und Periodendauer in Ihren Skizzen. Wie gehen diese beiden Größen in die Wellengleichung ein?

Was versteht man unter linearer, elliptischer, zirkulare Polarisation bzw. unter unpolarisiertem Licht?

Skizzieren Sie den räumlichen Verlauf des elektrischen und magnetischen Feldes einer harmonischen, ebenen elektromagnetischen Welle zu einen Zeitpunkt (Vektoren!).

Was versteht man unter Energiestromdichte und Intensität? Welche Einheiten haben sie?

Beschreiben Sie die Entstehung und Eigenschaften einer stehenden elektromagnetischen Welle.

14 Wellen in Materie

Beschreiben Sie die Leitung elektromagnetischer Wellen zwischen zwei elektrisch leitenden, ebenen Platten.

Wellenleitung auf Kabeln: Leiten Sie einen Ausdruck für die Eingangsimpedanz (Wellenwiderstand) eines Kabels mit bekanntem Induktivitäts- und Kapazitätsbelag her.

Erklären Sie das elektromagnetische Frequenzspektrum. Welchen Spektralbereich hat UV, sichtbares Licht, Infrarot, Mikrowellen und Radiowellen?

Was versteht man unter Brechungsindex und was bedeutet ein komplexwertiger Brechungsindex? Wie geht eine komplexwertiger Brechungsindex in die Wellengleichung ein?

Schreiben Sie das Beer'sche Absorptionsgesetz an (Skizze). Erstellen Sie ein Diagramm der Intensität als Funktion der Ausbreitungslänge der Welle.

Wie sieht der frequenzabhängige Verlauf von Real- und Imaginärteil des Brechungsindex qualitativ aus? Erstellen Sie Diagramme. Eine Absorptionslinie sollte im betrachteten Frequenzbereich enthalten sein.

15 Wellen an Grenzflächen, optische Anisotropie und Polarisation

Zeichnen Sie ein Diagramm mit dem winkelabhängigen Verlauf des Reflexionsvermögens für s- und p-polarisiertes Licht als Funktion des Einfallswinkels für Reflexion am optisch dichteren Medium.

Zeichnen Sie ein Diagramm mit dem winkelabhängigen Verlauf des Reflexionsvermögens für s- und p-polarisiertes Licht als Funktion des Einfallswinkels für Reflexion am optisch dünneren Medium.

Was bedeutet "Reflexionskoeffizient" und "Reflexionsvermögen" (Reflektivität), "Transmissionskoeffizient" und "Transmissionsvermögen" (Transmissionsgrad)? Wie groß ist das Reflexionsvermögen einer Grenzfläche zwischen zwei transparenten Medien bei Lichteinfall senkrecht auf die Grenzfläche.

Erklären Sie mithilfe einer Skizze die Begriffe "Einfallswinkel", "Reflexionswinkel", "Brechungswinkel", "Einfallsebene". Was bedeutet s- bzw. p-Polarisation? Leiten Sie das Reflexionsund Brechungsgesetz her.

Was ist der Brewsterwinkel? Erstellen Sie eine Skizze einer Luft-Glas Grenzfläche und zeichnen Sie alle mögliche Brewsterwinkel ein. Wie ist der Polarisationszustand der reflektierten und transmittierten Welle bei unpolarisierter einfallender Welle?

Was ist Totalreflextion und unter welchen Bedingungen tritt sie auf? Welche Rolle spielt die Polarisation dabei?

Was sind optisch anisotrope Kristalle und wie lassen sich die unterschiedlichen Richtungen der elektrischen Feldstärke und der dielektrischen Verschiebungsdichte mit dem mechanischen Analogmodell verstehen? Wie sieht der Zusammenhang zwischen elektrischer Feldstärke und dielektrischer Verschiebungsdichte dabei formal aus?

Was sind optisch einachsige bzw. optisch zweiachsige Kristalle. Wodurch unterscheidet sich deren ϵ -Tensoren in Hauptachsendarstellung? Was ist die optische Achse eines doppelbrechenden Kristalles?

Zeichnen und erklären Sie eine zweidimensionale Darstellung des Indexellipsoides eines optisch einachsigen Kristalles. Wie unterscheidet sich das Verhalten von ordentlichem und außerordentlichem Strahl bei optisch einachsigen Kristallen?

Beschreiben Sie die Funktion eines dichroitischen und eines Glan-Thompson Polarisators. (Skizze!)

Beschreiben Sie die Funktion eines $\lambda/4$ -Plättchens. Welche Bedingungen muss es erfüllen? (Skizze!)

Beschreiben Sie die Funktion eines $\lambda/2$ -Plättchens. Welche Bedingungen muss es erfüllen? (Skizze!)

Was ist optische Aktivität und wie lässt sich eine Platte aus optisch aktivem Material von einer $\lambda/2$ -Platte unterscheiden?

16 Geometrische Optik I

Nennen Sie die Axiome der Geometrischen Optik und erklären Sie unter welchen Bedingungen diese gut erfüllt sind.

- 1. In optisch homogenen Medien und Lichtstrahlen Geraden
- 2. An Grenzflächen gilt das Reflexions- und Brechungsgesetzt
- 3. Strahlen die sich durchdringen überlagern sich aber beeinflussen sich nicht gegenseitig gilt nur bei optisch linearen Phänomenen.

Beschreiben Sie die Abbildung in einem ebenen Spiegel. Zeichen Sie den Strahlengang für die Abbildung von zwei Gegenständen in unterschiedlichem Abstand vom Spiegel. Erzeugt eine ideale Abbildung, dass jeder Punkt P des Raumes einen anderen Punkt P' abbildet. Die Reflexionen gehen in den oberen Halbraum. Die rückwärts Verlängerungen der Reflexion gehen in die Untere Halbebene.

Erklären Sie den Unterschied zwischen einem reellen und einem virtuellen Bild. reell: nur für einen Punkt eine genaue Abbildung, Bild ist wirklich vorhanden. Entsteht, wenn Lichtstrahlen von einem Objekt auf eine Fläche treffen und diese von dort in das Auge reflektiert werden. virtuell: Jeder Punkt ist eine genaue Abbildung. Bild entsteht hinter dem Spiegel (optisches Abbild). Es entstehlt zwischen Brennpunkt und Linse (Spiegelbild). Abbild durch Spiegel ist seitenverkehrt. Das Bild kann an dem Ort, an dem es erscheint, nicht auf dem Schirm bagebildet werden. Die Lichtstrahlen des Objektes werden so gebrochen, dass es für den Betrachter größer erscheint.

Zeichnen Sie die 3 Konstruktionsstrahlen bei der Abbildung durch eine dünne Linse. Erklären sie, warum diese Strahlen für die Bildkonstruktion gewählt werden und warum sie so verlaufen wie sie es eingezeichnet haben. Zeichen Sie Bildweite, Gegenstandsweite und Brennweite ein. Mittelpunktstrahl (rot): von dem Gegenstand durch den Mittelpunkt zur Linse und auf selben Weg wieder zurück.

Brennpunktstrahl (grün): Vom Gegenstand durch den Brennpunkt und aufgrund der umkehrbarkeit wird er zum parallel Strahl

Parallelstrahl (blau): Vom Gegenstand zuerst parallel zur Linse dann durch den Brennpunkt (genau umgekehrt zum Brennpunktstrahl)

Konstruieren Sie das Bild eines Gegenstandes durch eine dünne Sammellinse wenn (a) der Gegenstand mehr als 2f von der Linse entfernt ist und (b) wenn der Gegenstand weniger als 2f von der Linse entfernt ist. Dabei ist f die Brennweite der Linse. a)

b)

Konstruieren Sie das Bild eines Gegenstandes durch eine dünne Zerstruungslinse wenn (a) der Gegenstand mehr als 2f von der Linse entfernt ist und (b) wenn der Gegenstand weniger als 2f von der Linse entfernt ist. Dabei ist f die Brennweite der Linse. a)

b)

Wie ist die Vergrößerung definiert? Zeichen Sie die Abbildung mit einer dünnen Sammellinse und leiten Sie eine Formel zur Berechnung der Vergrößerung aus Bild- und Gegenstandsweite her.

Wie ist die Vergrößerung definiert? Zeichen Sie die Abbildung mit einer dünnen Zerstreuungslinse und leiten Sie eine Formel zur Berechnung der Vergrößerung aus Bild- und Gegenstandsweite her.

17 Geometrische Optik II

Erklären Sie die Bedeutung der Hauptebenen dicker Linsen sowie die Bildkonstruktion bei dicken Linsen. Die BRechung kann an beiden Kugelflächen nicht mehr durch eine einzige, an der Mittelebene durchgeführte Brechung ersetzt werden. Deshalb wird die Grenzflächenberechnung gedanklich durch die beiden Hauptebenen ersetzt. Dadurch können alle Strahlen dazwischen als parallel zur optischen Achse angenommen werden

Zeichen Sie zwei Sammellinsen, deren Abstand kleiner als die kleinere von den beiden Brennweiten ist. Konstruieren Sie den Strahlengang für die Abbildung eines Objektes durch das Linsensystem.

Zeichen Sie zwei Sammellinsen, deren Abstand größer als die Summe der beiden Brennweiten ist. Konstruieren Sie den Strahlengang für die Abbildung eines Objektes durch das Linsensystem.

Nennen und erklären Sie die unterschiedlichen Abbildungsfehler, die bei einer Abbildung mit einer Linse entstehen können.

1. Chromatische Aberration: Entsteht, wenn Licht verschiedener Wellenlängen unterschiedlich Stark an einem Medium gebrochen wird. Rotes Licht beispielsweise eine größere Wellenlänge als blaues und wird weniger stark gebrochen. Dies führt dazu, dass die Lichtstrahlen nach ihrer Brechung nicht am selben Punkt wieder aufeinander treffen. Kurzund langwelliges Licht hat also unterschiedliche Brennweiten, das heißt, je nach Wellenlänge bzw. Farbe des Lichts verschiebt sich der Brennpunkt der Linse und es entstehen kontrastreicher Bildmotive an den Kantenrändern. Man kann die chromatische Abberation mithilfe von zwei Linsen verringern.

Ursasche: Wellenlängenabhängigkeit der Brechzahl des Linsenmaterials

Ausweg: Achromat (eine Farbabhängigkeit mehr)

2. Sphärische Aberration (auch öffnungsfehler, Kugelgestalsfehler): Ist ein Schärfefehler. Tritt bei einfachen konvexen Lisen auf. Lichtstahlen, die durch die Randzonen der Krümmung gehen, werden stärker gebrochen und dadurch an einen näher an der Linse liegenden Brennpunkt hin gebrochen. Die Folge ist ein leicht verschwommenes, unscharfes Bild.

Ursache: Brennweite für achsennahe und -ferne Strahlen verschieden -> keine Punkt- zu-Punkt- Abbildung Verringern: Blende, Plan-Konvex Linse, Linsensystem

3. Koma: Treffen Strahlen, die parallel zur optischen Achse sind, auf eine schief stehende Linse, oder treffen Strahlen unter einem Winkel auf eine nicht schiefe Linse, so kommt es zu einer Verschiebung der Brenn- punkte. Unter Koma versteht man also eine Brenn-punktverschiebung.

Ursache: Brechwinkel unterscheiden sich für die ober und unter der Mittelstrahl laufende Strahlen bei schief stehender Linse

4. Astigmatismus: Unterschiedliche Brechungen in x- und y-Achse der Linse tritt auf, wenn Objekt weit von der optischen Achse entfernt, wodurch die Eintrittswinkel für die Strahlen sich unterscheiden.

5. Bildfeldwölbung: Bild wird nicht eben auf einer Fläche abgebildet, sondern gewölbt. Damit kann man das Bild nicht an allen Punkten gleichzeitig scharf stellen. Dieser Fehler steht, weil Punkte am Rand der Linse näher an der optischen Achse abgebildet werden. Das Bildl ist nicht mehr in einer Ebene

Ursache: unterschiedlich schräg einfallende Strahlenbündel-> unterschiedlich starke Brechung, astigmatische Fehler, Bildweite bi für Ai hängt vim Achsenabstand von A_i ab.

6. Verzeichnung (Verzerrung): Geometrisch nicht maßstabsgetreue Abbildung eines Objekts. Dieser Fehler entsteht durch einen veränderten Abbildungsmaßstab bei weit von der optischen Achse entfernten Bildpunkten. Dadurch werden die Lichtstrahlen die nicht durch den Bildmittel- punkt laufen, gekrümmt.

Ursache: bei schrägen Strahlen und mit Ausblendung der Randstrahlen mittels Blende. Verzerrung flächenhafter Objekte.

Arten: Tonnenförmig und Kissenförmig

7. Aplantische Abbildung: Es werden kleine, zur optischen Achse senkrechten Flächenelemente durch Strahlenbündel mit großen Öffnungswinkel ohne Öffnungsfehler und ohne Koma scharf, aber nicht verzeichnungsfrei abgebildet.

18 Interferenz

Was versteht man unter "Interferenz" und "Kohärenz"?

Interferenz ist die Überlagerung von Teilwellen. Die Folgen von konstruktiver und destruktiver Interferenz werden als Interferenzmuster bezeichnet.

Kohärenz Wellen nennt man hkhärent, wenn sie die gleiche Phasenbeziehung beibehalten. Dabei unterscheidet man:

- räumliche Kohärenz: die Phasendifferenz zwischen Teilwellen bleibt räumlich konstant
- zeitliche Kohärenz: die Phasendifferenz zwischen Teilwellen bleibt zeitlich konstant

Erklären Sie die Beugung von Licht am Young'schen Doppelspalt durch Interfernz. Bei Welchen Winkeln trete im Fraunhoferschen Limit Intensitätsmaxima auf? Leiten Sie die Formel für diese Winkel her.

Einfallende Wellen treffen auf die beiden Spalten S_1 und S_2 und werden jeweils gebeugt. Am Schirm (B) bildet sich so ein Interferenzmuster. Dieses Interferenzmuster lässt sich durch die unterschiedliche Weglänge, welche von den Teilstrahlen zurückgelegt wird erklären.

Frauenhofer Limit \rightarrow großer Abstand zwischen Quelle und Schirm, bzw. kleine Quelle.

Der Winkel θ beschreibt die Verbindung eines beliebigen Punktes P mit der Mitte der beiden Spalte. In Abb. b) sieht man, dass Δ L (grün) die Phasendifferenz der beiden Strahlen r1 und

r2 bestimmt. Beide Strahlen sind annähernd parallel dank großem Abstand zwischen Schirm und Doppelspalt.

$$\sin \theta = \frac{\Delta L}{d}$$
 \rightarrow $\Delta L = d \cdot \sin \theta$

Ist Δ L ein Vielfaches $n \in \mathbb{N}$ der Wellenlänge λ , entsteht konstruktive Interferenz/ein Maximum.

$$d \cdot \sin \theta = n \cdot \lambda$$

Somit ergeben sich die die Intensitätsmaxima unter folgendem Winkel:

$$\arcsin \theta = \frac{n \cdot \lambda}{d} \tag{102}$$

Beschreiben Sie den Aufbau und Funktion eines Michelson-Interferometers und schreiben sie einen Ausdruck für die Intensität am Detektor als Funktion der Längendifferenz der Lichtwege an.

Ein Michelson-Interferometer trennt einen monochromatischen kohärenten Lichtstrahl am halbdurchlässigen Spiegel auf. Unterscheiden sich die Abstände der beiden Spiegel, so kommt es je nach Wegunterschied zur Interferenz am Detektor. Ursprünglich versuchte man mittels des Interferometers die Äthertheorie zu bestätigen. Hier vermutete man, dass es zu einem Gangunterschied zwischen den Teilwellen kommt, da sich die Erde durch den Äther (vermutetes Ausbreitungsmedium des Lichts) bewegt, dies wurde jedoch experimentell widerlegt.

Die Intensität am Detektor (B) ist gegeben durch:

$$I_T = c\epsilon_0 (E_1 + E_2)^2$$

wobei E_1 und E_2r durch:

$$E_1 = \sqrt{RT}A_e \cdot \cos(\omega t + \varphi_1)$$
 bzw. $E_2 = \sqrt{RT}A_e \cdot \cos(\omega t + \varphi_2)$

gegeben sind. Somit ergibt sich I_T weiter zu:

$$I_T = c\epsilon_0 RT A_e^2 [\cos(\omega t + \varphi_1) + \cos(\omega t + \varphi_2)]^2$$

Seien nun die Wege zu den Spiegeln (1 und 2) als s_1 und s_2 ergibt sich deren Differenz zu Δs . Der Klammerterm unterscheidet sich nur um die Phase $\Delta \varphi$ welche sich mittels der Wege auch als

$$\Delta \varphi = \varphi_1 - \varphi_2 = \frac{2\pi}{\lambda} \cdot \Delta s$$

schreiben lässt. Setzt man nun φ_1 auf 0 und φ_2 auf $\Delta \varphi$ ergibt sich ein Term für die Intensität in Abhängigkeit der Längendifferenz:

$$I_T = c\epsilon_0 RT A_e^2 [\cos(\omega t) + \cos(\omega t + frac2\pi\lambda \cdot \Delta s)]^2$$
(103)

Nochmals grafisch:

Abbildung 10.11 Transmission des Michelson-Interferometers als Funktion des Wegunterschiedes $\Delta s/\lambda$ in Einheiten der Wellenlänge λ |bei monochromatischer einfallender ebener Welle

Was versteht man unter "zeitlicher Kohärenz"? Wovon hängt sie ab bzw. wie kann man sie beeinflussen? Mit welchem Gerät könnte man sie wie bestimmen?

Als "zeitlich kohärent "bezeichnet man Wellen die ihre Phasendifferenz zeitlich beibehalten. Wie links abgebildet laufen die Wellen in beliebige Richtung aus der Quelle starten jedoch alle bei der gleichen Phase (Nulldurchgang) und haben nach gleichen Zeitintervallen alle dieselbe Phasenverschiebung zum Ausgangspunkt [diskrete Zeiten farbig markiert].

Kohärenzzeit Δt_C : maximale Zeitspanne, während der sich die Phasendifferenz $\Delta \varphi$ um weniger als 2π ändert. $\Delta t_C = 1/(\Delta f)$ wobei Δf die spektrale Frequenzbreite der Lichtquelle ist.

Messung mittels Interferometer (z.B.: Michelson-Interferometer)

Eine Quelle ist nicht zeitlich kohärente falls:

1. Sich die Frequenz (des Senders) mit der Zeit ändert.

- 2. Bei endlichen Wellenzügen mit statistisch verteilten Phasen
- 3. Bei zeitlichen Änderungen des Brechungsindex zwischen Sender und Empfänger

Was versteht man unter "räumlicher Kohärenz"? Wovon hängt sie ab bzw. wie kann man sie beeinflussen? Mit welchem Gerät könnte man sie wie bestimmen?

Als "räumlich kohärent "bezeichnet man Wellen welche entlang einer Achse (meist jene senkrecht zur Ausbreitungsrichtung) eine feste Phasendiffernz aufweisen (siehe rechts oben). Letztere Achse wird auch als Kohärenzfläche bezeichnet.

Kohoärenzlänge Δx : Länge welche das Licht während der Kohärenzzeit zurücklegt.

 $\Delta x = c \cdot \Delta t_C$.

Messung mittels Interferometer.

Zeichnen Sie den prinzipiellen Aufbau / Strahlengang eines Sagnac und eines Mach-Zehnder Interferometers.

Sagnac: Rotiert das Interferometer um seine Achse brauchen die beiden Teilstrahen unterschiedlich Lange (Spiegel drehen sich von ihnen weg bzw. auf sie zu). Damit wurde die Erdrotationsperiode gemessen.

Mach-Zehnder: Durch den unterschiedlichen Brechungsindex kommt es zu einer Wegdifferenz und somit zu einer Interferenz der beiden Teilstrahlen, dies erlaubt genaue Rückschlüsse auf den Brechungsindex (z.B. von Gasen).

8 Sagnac-Interferometer

Abbildung 10.19 Mach-Zehnder Interferometer

Erklären Sie Aufbau, Funktion und Transmissionsverhalten eines Fabry-Perot-Interferometers. Skizzieren Sie den spektralen Verlauf der Transmission als Funktion der Finesse. Wie ist die Finesse definiert?

Besteht aus 2-teilreflektierenden Platten. Die einzelnen Strahlen interferieren miteinander, wobei nur gewisse Wellenlängen größtenteils transmittiert werden.

Abbildung 10.21 Fabry-Pérot-Interferometer. **a** Beidseitig verspiegeltes Etalon, **b** zwei einseitig verspiegelte Platten, deren Rückseiten entspiegelt sind

Die Finesse F ist definiert als das Verhältnis zwischen freiem Spektralbereich $\Delta\lambda$ und der Halbwertsbreite $\delta\lambda$ eines einzelnen Maximums.

$$F = \frac{\Delta\lambda}{\delta\lambda} = \frac{\delta f}{\Delta f} \tag{104}$$

Bei höherer Finesse wird mehr nach Wellenlänge "selektiert". Es löscht sich also mehr Licht durch Interferenz aus und es wird gemittelt über einen Wellenlängenbereich weniger transmittiert als bei geringerer Finesse. Exemplarisch ist dieser Zusammenhang unten dargestellt (y-Achse: Mittel der Transmittierten Intensität, x-Achse: Finesse)

Beschreiben Sie die Funktionsweise einer einfachen Antireflexbeschichtung aus einer dielektrischen Schicht.

Eine Antireflexbeschichtung besteht aus einem Träger (Glas) auf dem eine $\lambda/4$ - Schicht mit Brechungsindex zwischen Glas und Luft aufgetragen wird. Der einfallende Strahl I_0 wird zum Teil an der Grenzfläche n_1 - n_2 bzw. an n_2 - n_3 reflektiert. Wählt man n_2 richtig, so sind die beiden reflektierten Strahlen genau um $\pi/2$ phasenverschoben, was zu einer gegenseitigen Auslöschung führt.

Durch verwenden von mehreren Schichten, kann ein größerer Spektralbereich abgedeckt werden.

19 Beugung

Leiten Sie die Formel für die Intensitätsverteilung einer regelmäßigen Anordnung von kohärenten Emittern her und skizzieren Sie diese in einem Diagramm (Intensität vs. Winkel).

Beugung am Einzelspalt: Schreiben Sie einen Ausdruck für die Intensitätsverteilung im Fraunhofer'schen Beugungsbild eines einzelnen, mit einer ebenen Welle beleuchteten Spaltes an und skizzieren Sie diese in einem Diagramm. Bei welchem Winkel liegt das erste Beugungsminimum und wie lässt sich dies einfach erklären?

Beugung am Gitter: Schreiben Sie einen Ausdruck für die Intensitätsverteilung im Fraunhofer'schen Beugungsbild eines mit einer ebenen Welle beleuchteten Spaltgitters an und skizzieren Sie diese in einem Diagramm. Bei welchen Winkeln liegen die Hauptmaxima und wie lassen sich diese Winkel einfach erklären?

Skizzieren Sie den Aufbau eins geblazeten Gitters und erklären Sie dessen Funktion.

Erklären und Skizzieren Sie Aufbau und Funktion einer Fresnel'schen Zonenplatte.

Beugung am Gitter: Schreiben Sie einen Ausdruck für die Intensitätsverteilung im Fraunhofer'schen Beugungsbild einer mit einer ebenen Welle beleuchteten Kreisblende an und skizzieren Sie diese in einem Diagramm.

20 Optische Instrumente I

Skizzieren und beschreiben Sie den Aufbau des Auges. Welche Arten von Sehzellen sind vorhanden und welche spektrale empfindlichkeit haben diese (Diagramm)?

Zeichnen Sie den Strahlengang für eine Lupe, wobei das Auge auf unendlich eingestellt sein soll um ein scharfes Bild des Gegenstandes durch die Lupe zu sehen. Leiten Sie einen Ausdruck für die Winkelvergrößerung der Lupe her.

Zeichnen Sie den prinzipiellen Aufbau eines Mikroskopes mit dem Abbildungsstrahlengang (von einem Objektpunkt zum Bildpunkt). Wie ist die Vergrößerung definiert und wie kann man sie berechnen?

Zeichnen Sie den prinzipiellen Aufbau eines Keplerschen Fernrohres mit dem Abbildungsstrahlengang (von einem weit entfernten Objektpunkt zum Bildpunkt). Wie ist die Vergrößerung definiert und wie kann man sie berechnen?

Zeichnen Sie den prinzipiellen Aufbau eines Gallileischen Fernrohres mit dem Abbildungsstrahlengang (von einem weit entfernten Objektpunkt zum Bildpunkt). Wie ist die Vergrö-Berung definiert und wie kann man sie berechnen?

Zeichnen Sie den prinzipiellen Aufbau eines Projektors mit dem Abbildungsstrahlengang und dem Beleuchtungsstrahlengang.

Was versteht man unter Schärfentiefe und Lichtstärke? Wie kann man diese Größen bei einer gegebenen Linse beeinflussen? Beschreiben Sie wie sich die Größen ändern.

Welchen Einfluß hat Beugung auf die Abbildung mit einer Linse? Wie ist das Auflösungsvermögen definiert? Wie groß ist das Auflösungsvermögen einer Linse mit gegebenem Durchmesser und Brennweite für die Abbildung weit entfernter Gegenstände?

21 Optische Instrumente II

Erklären Sie kurz die Abb'esche Abbildungstheorie zur Bildenstehung

Berechnen Sie am Beispiel eines Liniengitters das Auflösungsvermögen einer Abbildung durch ein Objektiv.

Was besagt die Abbe'sche Sinusbedingung? Erklären Sie anhand eines Gitters als Objekt warum sie gelten muss, um eine gute Abbildung zu erreichen.

Zeichnen Sie den Strahlengang für die Abbildung eines Gitters durch eine oder zwei Linsen sowohl für das Beugungsbild (und weiterer Strahlengang) als auch für das Bild. Achten Sie auf die korrekte Konstruktion der Bild- bzw. Beugungsbildpunkte.

Schreiben Sie das Auflösungsvermögen für ein Mikroskopobjektiv an, wenn die Gegenstandspunkte inkohärent leuchten bzw. inkkohärent beleuchtet sind. Wie ist die Numerische Apertur definiert (Skizze)?

Zeichen Sie den optischen Strahlengang eines Gittermonochromators (Czerny-Turner) und bezeichnen Sie alle wesentlichen Elemente.

Wie ist das spektrale Auflösungsvermögen definiert? Schreiben Sie einen Ausdruck für das spektrale Auflösungsvermögen eins Gittermonochromators an.

22 Fehlermeldungen

Fehlermeldungen auf dem <u>Github Repo</u> erstellen. Dazu auf "New Issue"klicken.

Schließlich den Fehler im Dokument beschreiben und bestenfalls die korrekte Lösung beschreiben.

Zuletzt noch ein passendes Label (rechts neben dem Issue comment Feld auswählen) hinzufügen.

