

Deep Learning

Peerapon Vateekul, Ph.D.

peerapon.v@4amconsult.com

Outlines

- What is Deep Learning (DL)?
- Why now?
- DL application
 - Computer Vision (CV), NLP, Automatic Speech Recognition (ASR)
- DL tools
- Conclusion

AI = Automation

- 1) Rule-based AI
- 2) Machine Learning (ML)

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

https://mc.ai/machine-learning-basics-artificial-intelligence-machine-learning-and-deep-learning/

+

Handcrafted features

Age	Income	Gender	Province	Corona
25	25,000	Female	Bangkok	Yes
35	50,000	Female	Nontaburi	Yes
32	35,000	Male	Bangkok	No

Can we still tell the features (columns)?

What is Deep Learning (DL)?

Part of the machine learning field of learning representations of data. Exceptional effective at learning patterns.

Utilizes learning algorithms that derive meaning out of data by using a hierarchy of multiple layers that mimic the neural networks of our brain.

Deep Learning – Basics (cont.)

What did it learn?

A deep neural network consists of a hierarchy of layers, whereby each layer transforms the input data into more abstract representations (e.g., edge - > nose -> face). The output layer combines those features to make predictions.

Deep Learning Application

IM. GENET

The **ImageNet** project is a large visual database designed for use in visual object recognition software research. Over **14M** URLs of images have been hand-annotated by ImageNet to indicate what objects are pictured on **22K** categories.

ILSVRC

The Image Classification Challenge:

1,000 object classes

1,431,167 images

ImageNet 2017 is the last challenge.

Wider and deeper networks (Beyond Human)

CHULA ENGINEERING

÷

SOTA of Image Classification

https://theaisummer.com/cnn-architectures/

Why now

- Neural Networks has been around since 1990s.
- Big data DNN can take advantage of large amounts of data better than other models
- GPU Enable training bigger models possible
- Deep Easier to avoid bad local minima when the model is large

Deep Learning Application

Speech Recognition

Natural Language Processing

Type of image tasks

Smart Medical Diagnosis

Deep Learning Application

Introduction: Natural Language Processing (NLP)

- Subfield of AI
- GOAL:

- Bridge the gap between how people <u>communicate</u> and what machines <u>understand</u> in order to perform useful tasks, e.g.
 - Making appointments, buying things, question answering, etc.

Goal: intelligent processing of human languages

Not just string matching

Intro (cont.): NLP Pipeline Example (English)

1 Tokenization

- •Input: Mr.Smith goes to Washington
- •Output: [Mr.Smith, goes, to, Washington]

Part of Speech tagging

- •Input: [Mr.Smith,goes,to,Washington]
- •Output:[(Mr.Smith, NNP), (goes, VBZ), (to, TO), (Washington, NNP)]

3 NER

- •Input:[(Mr.Smith, NNP), (goes, VBZ), (to, TO), (Washington, NNP)]
- •Output:[(Mr.Smith,NNP,PER), (goes,VBZ,O), (to,TO,O), (Washington,NNP,LOC)]

4
Application

•e.g., Word Cloud (Named Entity Only), Question Answering (QA)

PENN Part Of Speech Tags

- NNP proper noun
- VBZ Verb, 3rd person singular present
- TO to

Ref:

https://www.ling.upenn.edu/cours es/Fall 2003/ling001/penn treeba nk pos.html

Named Entity Tags

- PER-Person
- · LOC Location
- ORG Organization
- O Other

Central African Republic Lebanon China Nelson Mandela India Shanghai

< Share

GETTY IMAGES

NLP today: Machine Translation (MT)

Markets, Brexit and Bitcoin: 2018's themes

By Chris Johnston Business reporter

(1) 5 January 2018

As the new year gets underway, expert commentators give their view on what 2018 holds in store.

http://www.bbc.com/news/business-42581934

IBM Watson wowed the tech industry and a corner of U.S. pop culture with its 2011 win against two of Jeopardy's greatest champions. Here's how IBM pulled it off and a look at what Watson's real career is going to be.

https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/

Ref: Prof. Regina Barzilay, NLP @MIT

\$1,200

Deep Learning Application

https://huggingface.co/spaces/biodatlab/whisper-thai-demo

Deep Learning tools

Tools for Computer Vision

Model 1

Tools for Thai NLP

WangchanBERTa โมเดลประมวล ผลภาษาไทยที่ใหญ่และก้าวหน้า ที่สุดในขณะนี้

VISTEC-depa Al Research Institute of Thailand Follow Jan 24 - 5 min read

เปิดให้ทุกคนใช้ฟรีโดย AIResearch.in.th และ VISTEC ภายใต้สัญญาอนุญาต CC-BY-SA 4.0

PyThaiNLP

Thai Natural Language Processing in Python.

PyThaiNLP is a Python package for text processing and linguistic analysis, similar to nitk but with focus on Thai language.

News

We are conducting a 2-minute survey to know more about your experience using the library and your expectations regarding what the library should be able to do. Take part in this survey: https://forms.gle/aLdSHnvkNuK5CFyt9

This is a document for development branch (post 2.1). Things will break.

Conclusion

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Recognition

Computer Vision

No objects, just pixels

Single Object

Natural Language Processing

Feature extraction + Classification

Classification

Supervised

Idenity Fraud

Big data

Unsupervised

Customer Retention

Prediction

Not Car

Output

Multiple Object

