

# 日

**JAPAN PATENT OFFICE** 

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 2月 5日

出願 番

Application Number:

特願2001-027987

[ ST.10/C ]:

[JP2001-027987]

Ш 人 願

Applicant(s):

ヤマハ株式会社

TECHNOLOGY CENTER 2800

2002年 4月 5日

特許庁長官 Commissioner, Japan Patent Office



【書類名】

特許願

【整理番号】

YC28958

【提出日】

平成13年 2月 5日

【あて先】

特許庁長官殿

【国際特許分類】

G10H 7/00

【発明者】

【住所又は居所】

静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】

河野 恭浩

【発明者】

【住所又は居所】

静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】

木村 英道

【特許出願人】

【識別番号】

000004075

【氏名又は名称】

ヤマハ株式会社

【代理人】

【識別番号】

100102635

【弁理士】

【氏名又は名称】

浅見 保男

【選任した代理人】

【識別番号】

100106459

【弁理士】

【氏名又は名称】 髙橋 英生

【選任した代理人】

【識別番号】

100105500

【弁理士】

【氏名又は名称】 武山 吉孝

【手数料の表示】

【予納台帳番号】 037338

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9808721

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 波形データ録音装置および録音波形データ再生装置

【特許請求の範囲】

【請求項1】 録音したいフレーズに関する演奏データを再生する自動演奏 手段と、

該自動演奏手段からの再生音に基づいて演奏された音のフレーズ波形を録音する波形録音手段と、

該波形録音手段に録音された前記フレーズ波形のデータを、前記演奏データにおける各音符の特徴情報に従って切り出すことにより、前記フレーズ波形のデータを各音符に対応する部分波形データに分割する波形データ処理手段と、

を備えることを特徴とする波形データ録音装置。

【請求項2】 前記波形録音手段は、前記フレーズ波形を前記自動演奏手段における演奏タイミングに同期して録音するようにしたことを特徴とする請求項1記載の波形データ録音装置。

【請求項3】 前記波形データ処理手段は、前記部分波形データに対応する前記各音符の特徴情報を属性情報として、前記部分波形データに付与するようにしたことを特徴とする請求項1記載の波形データ録音装置。

【請求項4】 前記部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている前記属性情報からなる部分波形管理データベースとから演奏用の音色セットが作成されていることを特徴とする請求項3記載の波形データ録音装置。

【請求項5】 部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている属性情報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、

演奏データの各音符の特徴情報に基づいて、前記音色セットにおける前記部分 波形管理データベースを検索し、前記部分波形プールから当該音符に最適の部分 波形データを検出する検出手段と、 該検出手段により検出された部分波形データを、対応する音符に指定する指定 データを、前記演奏データ中に埋め込む指定データ挿入手段と、

該指定データ挿入手段により前記指定データの埋め込まれた加工演奏データを 、前記指定データにより指定された前記部分波形データに基づいて自動再生する 再生手段と、

を備えることを特徴とする録音波形データ再生装置。

【請求項6】 部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている属性情報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、

発生した演奏イベントデータにおける情報に基づいて、前記音色セットにおける前記部分波形管理データベースを検索し、前記部分波形プールから当該演奏イベントデータに最適の部分波形データを検出する検出手段と、

該検出手段により検出された部分波形データに基づいて、前記演奏イベントデータを再生する再生手段と、

を備えることを特徴とする録音波形データ再生装置。

【請求項7】 部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている属性情報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、

先読みされた演奏データの各音符の特徴情報に基づいて、前記音色セットにおける前記部分波形管理データベースを検索し、前記部分波形プールから当該音符に最適の部分波形データを検出する検出手段と、

前記演奏データの各音符に対応する演奏イベントデータが発生した際に、前記 検出手段により検出された部分波形データに基づいて当該音符に対応する演奏音 を再生する再生手段と、

を備えることを特徴とする録音波形データ再生装置。

【発明の詳細な説明】

[0001]

#### 【発明が属する技術分野】

本発明は、録音された楽器音や歌唱音を用いて演奏する際の波形データ録音装置および録音波形データ再生装置に関する。

[0002]

#### 【従来の技術】

従来、サンプラーと称される電子楽器が知られている。サンプラーでは、演奏された単音の波形をサンプリング(例えば、C3の音高を5秒間等)して収録している。サンプリングされた各波形データに対して、該波形データの音高を示すオリジナルキーはユーザが設定し、そのオリジナルキーに基づいてその波形データを使用する音域や、所定の音高で発音する際にピッチシフトする量などを決定している。オリジナルキーの決定方式に関しては、サンプリングされた波形データからピッチを抽出し、該波形データに対し抽出されたピッチに対応したオリジナルキーを自動設定することが行われている(例えば、特開平7-325579号参照)。

また、演奏されたフレーズ波形をサンプリングし、サンプリングされたフレーズ波形データを、該フレーズ波形データから抽出されたエンベロープレベルに基づいて複数の部分波形データに分割し、各部分波形データのタイミングやピッチを変更しながら演奏を行なうフレーズサンプラーも提案されている。

[0003]

## 【発明が解決しようとする課題】

従来のサンプラーでは、演奏に使用される各波形データは単音で録音されていることから、曲の中で演奏された時の音とは異なり自然さが無いという問題点があった。すなわち、収録時に演奏者は、サンプラーにおいて必要な単音を順次演奏し録音させていく必要があるが、演奏者にとって単音だけを演奏するのは緊張もするしフレーズを演奏するより却って難しい。特に、ボーカルで一音だけ歌う場合、上手く声が出せずに声が裏返ったりしがちである。このように、自然な音色の単音を収録することが困難であることから、サンプラーの演奏音が自然な音になりにくいという問題点があった。

[0004]

また、収録された単音のオリジナルキーを設定する場合に、人間が判断してオリジナルキーを決定するか、あるいは、ピッチ抽出を行なってオリジナルキーを決定しなければならなかった。人間が判断してオリジナルキーを決定するには、相応の経験が必要であり誰にでもできるものではない。一方、ピッチ抽出する際には、複雑な演算処理が必要であり、しかも、抽出されたピッチは、演奏音のピッチの時間変化により1つの音を複数の音と誤認識してしまったり、演奏音によっては倍音成分が強い演奏音があり、そのいずれかの倍音を間違えて基音と判定してしまったりする場合がある。このように、ピッチ抽出されたピッチは必ずしも正しいピッチではない。すなわち、ピッチ抽出したとしても最終的に決定するピッチは、人間による確認の必要があるという問題点があった。

#### [0005]

さらに、従来のフレーズサンプラーでは、フレーズ波形を部分波形に分割する際に波形データのピッチを抽出するようなことは行なわれていない。すなわち、フレーズ波形から部分波形への分割位置はピッチの変わり目とは限らなくなることから、各部分波形のデータにオリジナルキーを設定することができないという問題点があった。また、分割位置をピッチの変わり目として部分波形データのオリジナルキーを設定する場合には、上述したようにユーザによる設定ないし波形データからのピッチの抽出が必要であり、上述したように煩雑な作業が必要になるという問題点があった。

#### [0006]

そこで、本発明は自然な音を収録できると共に、収録された波形データをピッチの変わり目で分割することができる波形データ録音装置、および、分割してピッチ等の属性情報を自動的に付与することのできる波形データ録音装置を提供することを第1の目的としている。さらに、本発明は、自然な演奏音を得ることのできる録音波形データ再生装置を提供することを第2の目的としている。

#### [0007]

# 【課題を解決するための手段】

上記第1の目的を達成するために、本発明の波形データ録音装置は、録音した いフレーズに関する演奏データを再生する自動演奏手段と、該自動演奏手段から の再生音に基づいて演奏された音のフレーズ波形を録音する波形録音手段と、該 波形録音手段に録音された前記フレーズ波形のデータを、前記演奏データにおける各音符の特徴情報に従って切り出すことにより、前記フレーズ波形のデータを 各音符に対応する部分波形データに分割する波形データ処理手段とを備えている

#### [0008]

また、上記本発明の波形データ録音装置において、前記波形録音手段は、前記フレーズ波形を前記自動演奏手段における演奏タイミングに同期して録音するようにしてもよい。

さらに、上記本発明の波形データ録音装置において、前記波形データ処理手段 は、前記部分波形データに対応する前記各音符の特徴情報を属性情報として、前 記部分波形データに付与するようにしてもよい。

さらにまた、上記本発明の波形データ録音装置において、前記部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている前記属性情報からなる部分波形管理データベースとから演奏用の音色セットが作成されている。

#### [0009]

上記第2の目的を達成するために、本発明の録音波形データ再生装置は、部分 波形データの内から選択された選択部分波形データをプールした部分波形プール と、該部分波形プールにプールされた各部分波形データに付与されている属性情 報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、演奏データの各音符の特徴情報に基づいて、前記音色セットにおける前記部分波形管理データベースを検索し、前記部分波形プールから当該音符に最適の部分波形データを検出する検出手段と、該検出手段により検出された部分波形データを、対応する音符に指定する指定データを、前記演奏データ中に埋め込む指定データを、対応する音符に指定する指定データを、前記演奏データ中に埋め込む指定データ挿入手段と、該指定データ挿入手段により前記指定データの埋め込まれた加工演奏データを、前記指定データにより指定された前記部分波形データに基づいて自動再生する再生手段とを備えている。

[0010]

上記第2の目的を達成するために、本発明の他の録音波形データ再生装置は、部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている属性情報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、発生した演奏イベントデータにおける情報に基づいて、前記音色セットにおける前記部分波形管理データベースを検索し、前記部分波形プールから当該演奏イベントデータに最適の部分波形データを検出する検出手段と、該検出手段により検出された部分波形データに基づいて、前記演奏イベントデータを再生する再生手段とを備えている。

#### [0011]

上記第2の目的を達成するために、本発明のさらに他の録音波形データ再生装置は、部分波形データの内から選択された選択部分波形データをプールした部分波形プールと、該部分波形プールにプールされた各部分波形データに付与されている属性情報からなる部分波形管理データベースとからなる音色セットが記憶されている記憶手段と、先読みされた演奏データの各音符の特徴情報に基づいて、前記音色セットにおける前記部分波形管理データベースを検索し、前記部分波形プールから当該音符に最適の部分波形データを検出する検出手段と、前記演奏データの各音符に対応する演奏イベントデータが発生した際に、前記検出手段により検出された部分波形データに基づいて当該音符に対応する演奏音を再生する再生手段とを備えている。

#### [0012]

このような本発明によれば、自動演奏手段により演奏された演奏音を聴きながら演奏することができるので、リラックスして演奏することができ、自然な音を録音することができる。このようにして録音されたフレーズ波形のデータを自動演奏された演奏データに基づいて切り出すことにより、演奏データの音符に対応する部分波形データに分割することができるようになる。この場合、自動演奏手段の演奏タイミングに同期して演奏された音を録音することにより、分割位置の精度を高めることができる。また、分割された部分波形データに対応する音符の音高、音符の長さ、強度情報等の特徴情報を対応する部分波形データに属性情報

として付与することができる。さらに、分割された部分波形データの内から、所望の部分波形データを選択して、その属性情報と共に音色セットとすれば、演奏用の音色セットとすることができる。

[0013]

ところで、音色セットに基づく演奏を行う際に、自動演奏を行う場合は、予め 自動演奏する演奏データの各音符の音高、音の長さや強度等に基づいて音色セットの部分波形管理データベースを検索することにより最適の部分波形データを検 出し、その部分波形データを当該音符に指定する指定データを演奏データに埋め 込むようにしたので、加工された演奏データに基づいて自動演奏した際に自然な 音による自動演奏を行うことができるようになる。

また、音色セットに基づく演奏を行う際に、リアルタイム演奏を行う場合は、 発生した演奏イベントデータの情報に基づいて音色セットの部分波形管理データ ベースを検索して最適の部分波形データを検出して、その部分波形データを使用 して当該演奏イベントデータの演奏音を再生しているので、自然な音の演奏音を 得ることができるようになる。

さらに、音色セットに基づく演奏を行う際に、先読みした演奏データの音符の音高、音の長さや強度等に基づいて音色セットの部分波形管理データベースを検索することにより最適の部分波形データを検出し、演奏データと同じパートを演奏した際の演奏データの各音符に対応する演奏イベントデータが発生した際に、検出された部分波形データを用いて当該音符に対応する演奏音を生成するようにしたので、未来の状況を検知することができ、より自然な音の演奏音を得ることができるようになる。

[0014]

【発明の実施の形態】

本発明の波形データ録音装置および録音波形データ再生装置を備える実施の形態である波形データ録音再生装置のハードウェア構成を図1に示す。

図1に示す波形データ録音再生装置1おいて、CPU10は各種プログラムを 実行することにより波形データ録音再生装置1における録音や再生の動作を制御 する中央処理装置 (Central Processing Unit) であり、タイマ11は動作時の 経過時間を示したり、特定の間隔でタイマ割込を発生するタイマであり、自動演奏の時間管理等に使用される。ROM12は、CPU10が収録時に実行する分割処理および属性情報付与処理のプログラムや、再生時に実行する演奏データ加工処理、ノートオンイベント処理等のプログラムが格納されていると共に、各種データが格納されているROM (Read Only Memory) である。RAM13は波形データ録音再生装置1におけるメインメモリであり、CPU10のワークエリア等が設定されるRAM (Random Access Memory) である。

#### [0015]

また、表示器 1 4 は収録時や再生時に各種情報が表示されるディスプレイであり、操作子 1 5 は収録時や再生時に各種の操作を行う際に操作される操作子であり、鍵盤を含んでいてもよい。音源 1 6 は、収録時に自動演奏される複数のフレーズの演奏データに基づく楽音を生成する音源であり、FM音源やPCM音源あるいは高調波合成音源等のいずれの音源でもよい。ミキサ 1 7 は、音源 1 6 で生成された楽音や後述する再生回路 2 4 で再生された楽音をミキシングしてDAC 1 8 に送るミキサであり、DAC1 8 はミキサ 1 7 から供給された楽音データをアナログの楽音信号に変換してサウンドシステム 1 9 に送るデジタルーアナログ変換器である。サウンドシステム 1 9 は、DAC 1 8 から供給された楽音信号を増幅して放音している。

#### [0016]

マイクロフォン20は、演奏者が演奏した楽器音や歌唱した歌唱音が入力され、入力された楽器音や歌唱音のフレーズ波形信号はADC21に送られる。ADC21は、供給された音の波形信号をディジタルのフレーズ波形データに変換するアナログーディジタル変換器であり、変換されたフレーズ波形データは録音回路22の制御の基でHDD(Hard Disk Drive)23に録音される。録音されたフレーズ波形データは、後述するように音源16で収録時に再生された演奏データに基づいて部分波形データに分割され、分割された部分波形データには属性情報が付与される。この分割処理や属性情報付与処理は、CPU10が分割処理や属性情報付与処理のプログラムを実行することにより行われる。さらに、部分波形データの内の使用する部分波形データを選択して、選択された部分波形データ

に付与されている属性情報から演奏用の音色セットが作成されている。再生回路 24は、音色セットの指定された音色における部分波形管理データベースを検索 し、属性情報から最適の部分波形データを検索して演奏波形データを生成している。生成された演奏波形データは、ミキサ17、DAC18を介してサウンドシステム19から放音される。

#### [0017]

MIDIインタフェース25には、MIDI鍵盤等のMIDI対応機器から出力されるMIDI信号が入力され、MIDI信号中のイベントデータに基づいて再生回路24が上述したように演奏波形データを生成し、サウンドシステム19から演奏音が放音されるようになされている。その他のインタフェース26は、LAN (Local Area Network) や公衆電話網、インターネット等の通信ネットワーク用の通信インタフェースであって、通信ネットワークを介してサーバコンピュータと接続され、サーバコンピュータから所望の演奏データ等をダウンロードすることができる。なお、27は各デバイス間で信号を送受信するためのバスラインである。

#### [0018]

次に、本発明にかかる波形データ録音再生装置1においてフレーズ波形データを録音して部分波形データに分割する処理を図2ないし図6を参照しながら以下 に説明する。

本発明にかかる波形データ録音再生装置1においてフレーズ波形データを録音する際には、図3(a)に示すように自動演奏手段31に複数のフレーズからなる演奏データ30を供給して自動演奏させる。フレーズには録音したい音高等の特徴情報を有する音符が含まれている。この自動演奏手段31は、図1に示すCPU10および音源16により主に構成されている。そして、CPU10が自動演奏プログラムを実行することにより、ROM12あるいはRAM13から読み出した演奏データに基づいて音源パラメータを生成し、この音源パラメータを音源16に供給することにより、音源16において生成された演奏波形データは、ミキサ17、DAC18を介してサウンドシステム19に接続されているヘッドフォン36から放音される。ヘッドフォン36は演奏者32が装着しており、演

奏音は演奏者32を聴取することができる。なお、録音したいパートの演奏データやその他のパートの演奏データを含む、例えばSMF (Standard MIDI File) 等の形式とされた1ないし複数パートのフレーズのシーケンスデータが予め作成されており、これが演奏データとしてRAM13等に格納されている。

#### [0019]

そして、演奏者32はその演奏データに基づく演奏音を聴取しながら、演奏音に従って図示しない楽器を演奏したり、あるいは歌唱する。この演奏者32による演奏音あるいは歌唱音は、演奏音を聴取しながら行われるため、その演奏音あるいは歌唱音は自然な音になる。この演奏音あるいは歌唱音のフレーズ波形はマイクロフォン20を介して波形録音手段33に供給され、フレーズ波形はサンプリングされてディジタルのフレーズ波形データ34とされてフレーズ毎に録音されるようになる。この場合、自動演奏手段31と波形録音手段33とのクロックはクロック同期ライン35により同期化されており、演奏タイミングに同期化されてフレーズ波形データが録音されるようになる。この同期化では、波形録音手段33のサンプリングクロックと自動演奏手段31の動作クロックとを共通化すると共に、自動演奏開始と録音開始とのタイミングを一致させる、あるいは、両タイミングの差を記憶するようにしている。これにより、録音したフレーズ波形データ34と自動演奏される演奏データの全区間にわたる同期が保証されるようになる。したがって、演奏データのテンポが途中で変更されていたとしても、同期化には全く影響を与えないようになる。

#### [0020]

ここで、自動演奏される演奏データとフレーズ波形データとの関係の概略を図2に示す。この場合の演奏データは、図2(a)に示すように五線譜上の音譜で表されており、この演奏データによる自動演奏音をヘッドフォン36から聴取しながら、その演奏音に合わせて演奏あるいは歌唱して録音されたフレーズ波形は図2(b)に示すような波形となっている。この場合、演奏データの四分音符「E(ミ)」は波形aに対応し、同様に演奏データの四分音符「A(ラ)」は波形bに対応し、演奏データの八分音符「F(ファ)」は波形cに対応し、演奏データの八分音符「E(ミ)」は波形dに対応し、演奏データの四分音符「C(ド)

」は波形 e に対応し、演奏データの音符「F (ファ)」は波形 f に対応している。上述したように同期化されているため、各波形は演奏データの演奏タイミングに合致していると共に、音符に対応した音の長さの波形となっている。さらに、波形からはわからないが、演奏データに基づく演奏音を聴きながら演奏しているため、その音色も自然な音色とされた波形となっている。

#### [0021]

また、波形録音手段33は、図1に示すCPU10、ADC21、録音回路22、HDD23により構成されている。そして、CPU10の制御の基でマイクロフォン20から入力された演奏音あるいは歌唱音であるフレーズ波形をADC21においてサンプリングしてディジタルのフレーズ波形データ34に変換している。このフレーズ波形データ34は録音回路22によりHDD23の所定の記憶領域に書き込まれて録音される。なお、自動演奏の態様は、次に示すいずれの態様でもよい。第1の自動演奏の態様は、当該フレーズの録音したいパート(録音パート)だけの演奏データからなるソロパート演奏である。第2の自動演奏の態様は、当該フレーズの録音したいパートを含む複数パートの演奏データからなる全パート演奏である。第3の自動演奏の態様は、当該フレーズの録音したいパートを含む複数パートの演奏データからなる全パート演奏である。第3の自動演奏の態様は、当該フレーズの録音したいパートを除く1ないし複数パートの演奏データ、あるいは上記その他のパートの演奏データからなるマイナスワン演奏である。

#### [0022]

本発明にかかる波形データ録音再生装置1においてフレーズ波形を録音する際に、図3(b)に示すようにして録音してもよい。図3(b)に示す構成では、ヘッドフォン36に代えてスピーカ37から自動演奏音を演奏者32に聴取させている。ここで、図3(b)に示す構成のうち、図3(a)に示す構成と異なる部分だけ説明すると、図3(b)に示す構成では、自動演奏手段31から出力される自動演奏音をスピーカ37から放音して演奏者32に聴取させている。この場合、スピーカ37からの自動演奏音はマイクロフォン20で拾われるようになるので、スピーカ音除去処理手段38によりマイクロフォン20で拾われた自動演奏音を除去している。なお、スピーカ音除去処理手段38には自動演奏手段31から自動演奏音が供給されており、この自動演奏音の位相を反転すると共に、

時間調整・振幅調整を行うことにより自動演奏音を除去するようにしている。

[0023]

自動演奏手段31において自動演奏を、上述したいずれかの態様の演奏として、演奏者32による演奏音あるいは歌唱音のサンプリングを波形録音手段33において行なっているため、録音されたフレーズ波形データには録音したいパート (録音パート) に対応する波形分割のための演奏データ (対応演奏データ) が必ず存在することになる。

そこで、図4に示すように分割処理手段41において、自動演奏された演奏データ44に従って、フレーズ波形データ40を演奏データ44の各音符に対応するノートの部分波形データ43に分割する。次いで、属性情報付与処理手段42において、分割された部分波形データ43に、その音高、音長や強度等の属性を示す属性情報を対応する演奏データ44の各音符の特徴情報を参照して付与する。このように、フレーズ波形データ40を部分波形データ43に分割する分割処理手段41、および、分割された部分波形データ43に属性情報を付与する属性情報付与処理手段42は、CPU10が分割処理プログラムや属性情報付与処理プログラムを実行することにより行われる。

[0024]

この場合、演奏データ44にフレーズ波形データ40は同期しているため、演奏データ44の発音タイミング等だけでも部分波形データ43へ分割することができる。また、フレーズ波形データ40を周波数分析(フォルマント分析)してその分割位置を補正するようにしてもよい。すなわち、演奏データ44に従って仮決定された仮の分割位置を基準にして、その近傍で部分波形データ43のフォルマントの開始位置をサーチし、検出された開始位置を分割位置として決定することができる。このようにすると、フレーズ波形データ40の分析結果だけに基づいて分割するのに比べて、音楽的に正確な位置での分割が可能になる。

[0025]

さらに説明すると、演奏データ44だけによる分割手法では、自動演奏される 演奏データ44とフレーズ波形データ40は、完全に同期がとれた状態とされて いることを利用して分割している。このため、録音パートの演奏データ44に含 まれる各音符のデータに従って、各音符に対応する時間範囲(音符に対応する音のスタートタイミング(ノートオン)からリリース開始(ノートオフ)後の音の減衰するまで、または、次の音符の音が始まるまでの時間範囲)のフレーズ波形データ40を部分波形データ43として切り出すことができる。

しかし、フレーズ波形データ40は人間が行なった演奏をサンプリングしたものであるため、録音パートの演奏データ44の音符のスタートタイミングと、フレーズ波形データ40のその音符に対応する波形のスタートタイミングとは必ずしもあっておらず、ずれている場合もある。

そこで、録音パートの演奏データ44の各音符の開始タイミングを基準に、フレーズ波形データ40のその前後区間(例えば開始タイミングの前後数秒)の波形を分析し、フレーズ波形データ40における音符の開始タイミングを検出して分割位置を補正するようにすると、部分波形データ43を正確に切り出すことができるようになる。

#### [0026]

分割位置を補正する際に用いる波形分析手法としては、フォルマント分析およびFFT分析を採用することができる。このフォルマント分析では、まず、録音パートの演奏データ44の各音符の開始タイミングを基準に、フレーズ波形データ40の前後区間の波形データの相関関数からLPC (Linear Prediction Coding) 係数を算出する。次いで、LPC係数をフォルマントパラメータに変換してフレーズ波形データ40におけるフォルマントを求める。そして、当該音符に対応するフォルマントの立上がり位置からその音符の開始タイミングを検出する。これにより、音楽的に正確な位置で部分波形データ43を切り出して、ノート毎の部分波形データ43に分割することができる。

また、FFT分析では、まず、録音パートの演奏データ44の各音符の開始タイミングを基準に、フレーズ波形データ40の前後区間について時間窓を移動しながらフレーズ波形データ40の高速フーリエ変換を行う。次いで、当該音符に対応する基音および複数倍音の軌跡を検出し、検出された基音および倍音の軌跡における立上がり位置から開始タイミングを検出する。この手法によっても、音楽的に正確な位置で部分波形データ43を切り出して、ノート毎の部分波形デー

タ43に分割することができる。ここでは、フォルマント分析とFFT分析について説明したが、分割位置を補正するための分析には、その他のピッチ分析やエンベロープ分析等の分析方法を用いてもよい。

#### [0027]

分割処理が終了すると、分割された各部分波形データに対して属性情報が付与 される属性情報付与処理が行われる。この属性情報付与処理では、演奏データ4 4の各音符に対応する部分波形データ43に、その音符の特徴情報に対応する属 性情報が付与される。この属性情報には、オリジナルキーとして使用される音高 情報、オリジナル強度として使用される強度情報、オリジナル音長として使用さ れる音長情報、部分波形データを選択するのに使用される前音情報および後音情 報のいずれか1つの情報ないし複数の情報が含まれている。なお、前音情報とは 、前音の音高が現音より上か下かの情報、または前音との音高差の情報、前音の 強度が現音より大か小かの情報、または前音との強度差の情報、および、前音の 音長が現音より長いか短いか同じかの情報、または前音との音長差の情報やその 他前音と現音との関係に関する情報である。この場合、前音は複数でもよく、例 えば、2つ前の音までとされる。また、後音情報とは、前音情報における前音を 後音に置き換えた際の後音と現音との関係に関する情報である。さらに、スラー 、トリル、クレッシェンド等の音楽記号を含む演奏データとされている場合は、 その音楽記号を属性情報に含ませてもよい。この属性情報は、当該部分波形デー タを選択する基準として使用されたり、当該部分波形データを加工するときのパ ラメータとして使用される情報とされる。なお、所望の属性情報に対応した音符 を演奏データに含めて録音を行なうことにより、所望の属性情報に対応した部分 波形データを得ることができる。

#### [0028]

図4に示すように分割処理手段41において部分波形データ43に分割され、 分割された部分波形データ43に属性情報付与処理手段42において属性情報が 付与される。分割処理された部分波形データ43や付与された属性情報は、HD D23に演奏データ等と共に1つの収録データとして記憶されている。フレーズ 波形データ40は、楽器種類やボーカル音色毎に録音されることから、収録デー タは音色毎に記録されることになる。この収録データのデータ構成を図 5 に示す。図 5 に示すように、収録データは自動演奏された複数フレーズとされている演奏データと、各フレーズの演奏データに対応するフレーズ波形データが記憶領域のどこの位置に記憶されているかを管理するフレーズ波形管理情報と、フレーズ波形データを分割した部分波形データの記憶領域におけるスタート位置や終了位置およびその部分波形データの属性情報からなる部分波形管理情報と、各フレーズの演奏データに対応するフレーズ波形 1,フレーズ波形 2,・・・・から構成されている。各フレーズ波形のデータは、前述したような方法で複数の部分波形データに分割されるが、その分割された態様がフレーズ波形 1 に例示されている。すなわち、フレーズ波形 1 は、部分波形 1 ー 1, 部分波形 1 ー 2,・・・,部分波形 1 ー 6の6つの部分波形データに分割されている。

[0029]

図5に示す収録データは、演奏データ毎に収録されたフレーズ波形データを分割処理して属性の付与処理を行った結果のデータとされており、フレーズ波形データは楽器種類やボーカル音色毎に録音される。すなわち、収録データは音色毎に作成されることになることから、演奏イベントデータに応じて収録データから対応する部分波形データ読み出して用いることにより、その音色の演奏波形データを得ることができる。しかし、図5に示す収録データにおける複数の部分波形データには属性情報の音高等が重複した部分波形データや不要な部分波形データも記録されている。そこで、収録データのうちから使用する部分波形データを選択し、選択された部分波形データにより演奏用の音色セットを作成している。音色セットを作成する際に、いずれの部分波形データを選択するかの選択情報、音色パラメータ等が音色管理情報として収録データ中に記録されており、この音色管理情報に従って音色セットが作成されるようになる。このことから、図5に示す収録データを音色セットが作成されるようになる。このことから、図5に示す収録データを音色セットが作成されるようになる。このことから、図5に示す収録データを音色セットが作成されるようになる。このことから、図5に示す収録データを音色セットが作成されるようになる。このことから、図5に示す収録データを音色セット作成ツールと称することができる。なお、音色管理情報は、ユーザの所望に応じて選択された部分波形データを選択する選択情報、ユーザにより設定された音色パラメータ等を含んでいる。

[0030]

この音色セットのデータ構成を図6に示す。図6に示す演奏用の音色セットは

、「バイオリン1」,「男声4」,「トランペット2」,・・・等の音色毎の音色データから構成されている。各音色データのデータ構成は同様とされており、例として「男声4」のデータ構成が図6に示されている。図6に示すように、音色データは、ヘッダ、部分波形管理データベース、音色パラメータおよび部分波形プールから構成されている。部分波形プールには、図5に示す収録データにおける音色管理情報に従って複数のフレーズ波形データの中から選択した部分波形のデータが図6に示すように部分波形1,部分波形2,部分波形3,・・・としてプールされている。この場合、音色管理情報により多くの音高に対応する部分波形データが選択されると、部分波形データを割り当てる音域を細かく設定することができるようになる。また、音高情報が同じでも音長情報や強度情報が異なっていたり、前音との音高差や前音の音高が上か下か等の情報が異なっている部分波形データも選択される音色管理情報とされていてもよい。

#### [0031]

このようにして作成された音色セットにおける部分波形管理データベースには、上記音色管理情報に従って選択された部分波形データの、前記部分波形プールにおける記憶領域のスタート位置や終了位置およびその部分波形データの属性情報が記録されている。また、上記音色管理情報に含まれていた音色パラメータがそのまま音色パラメータの記憶領域に記憶されており、該音色パラメータには、その音色におけるエンベロープパラメータやフィルタ係数が記録されている。

音色セットにおける音色毎に作成されている音色データは、図5に示す収録データから異なる組み合わせで部分波形データを選択するようにすると、1つの収録データから複数の音色データを作成することができる。そして、本発明にかかる波形データ録音再生装置1では、このようにして作成された音色セットを用いて自動演奏やリアルタイム演奏を行うことができるようにされている。

#### [0032]

ここで、図5のようなデータ構成を有する音色セット作成ツールにおいて、図6に示す演奏用の音色セットを作成する手順を示す図7のフローチャートに従って、その手順をまとめて説明する。なお、この手順は音色セットを作成するユーザが行う手順である。

まず、音色セットを作成するユーザは、録音パートに必要な音高の音符を少なくとも含む複数フレーズの演奏データを図5の演奏データ記憶領域に用意する(ステップS1)。この場合、録音に必要な特徴情報を有する音符としては、音高に加えて音長、ベロシティ、前音情報、前音との音高差等の特徴情報を有する音符を含むフレーズの演奏データとしてもよい。次いで、用意した複数フレーズの演奏データに基づいて波形データ録音再生装置1において自動演奏された楽音を演奏者に供給しながら、演奏者が演奏あるいは歌唱したフレーズ波形を波形データ録音再生装置1の図5のいずれかのフレーズ波形記憶領域に収録する(ステップS2)。

#### [0033]

この収録されたフレーズ波形データに対して、波形データ録音再生装置1において、収録データにおける演奏データに基づいてフレーズ波形データに分割処理が施されて部分波形データに分割されると共に、分割された部分波形データに対応する音符に関連した属性情報が付与される。分割された各部分波形データのスタート位置、終了位置、および各部分波形に付与された属性情報は、各部分波形の部分波形管理情報として図5の部分波形管理情報記憶領域に記憶される(ステップS3)。次いで、ユーザの操作子操作に応じて、部分波形データを選択的に組み合わせると共に、エンベロープパラメータ等の音色パラメータを用意し、選択された部分波形データを示す選択情報と用意された音色パラメータを音色管理情報として図5の音色管理情報記憶領域に記憶する(ステップS4)。

#### [0034]

以上のステップS1ないしステップS4の手順によって完成した1音色分の音色データに基づいて、次のようにして図6の音色セットの1音色分の音色データが記憶領域に用意される。まず、図5のフレーズ波形記憶領域に記憶された複数の部分波形データのうち、音色管理情報中の選択情報により選択された部分波形データが図6の当該音色の部分波形プールにコピーされ、そのコピー後の各部分波形データのスタート位置と終了位置、および、コピーされた各部分波形データの属性情報が図6の部分波形管理データベースに記憶される。次に、図5の音色管理情報中の音色パラメータが、図6の当該音色の音色パラメータ記憶領域にコ

ピーされる。最後に、当該音色のタイプ、音色名、作成者、音色データ容量等を 示すヘッダ情報が図6のヘッダ領域に記憶され、音色セット中の演奏用の音色デ ータが完成する。

なお、ステップS3において、フレーズ波形データの部分波形データへの分割 位置や付与される属性情報を自動的に決定した後、その分割位置や属性情報をユ ーザが任意に修正できるようにしてもよい。

#### [0035]

次に、本発明にかかる波形データ録音再生装置1において図6に示す演奏用の音色セットを自動演奏に適用するには、自動演奏する前に予め演奏データを加工するようにする。この演奏データは、自動演奏をユーザが所望する任意の演奏データである。そこで、音色セットを自動演奏に適用した際の演奏データ加工処理のフローチャートを図8に示し、その説明を以下に行う。

図8に示す演奏データ加工処理が起動されると、ステップS10にて処理したい演奏データが指定される。この指定は、ユーザがROM12あるいはRAM13内に記憶されている演奏データの内の自動演奏したい演奏データを指定する。ここでは、簡単化のため該演奏データは1パート構成の単旋律の演奏データとする。次いで、ステップS11にてポインタを指定された演奏データの先頭の音符に設定する。そして、ステップS12にてポインタが指し示す音符(この場合は演奏データの先頭の音符)における、音高、強度(ベロシティ)、音長、前音/後音の音高が上か下か、前音/後音との音高差等の特徴情報により、音色セットにおける指定されている音色の部分波形管理データベースの属性情報を検索して、最適の部分波形データを検出する。

#### [0036]

次いで、ステップS13にてポインタが指し示す音符に対応して検出された最適の部分波形データを指定する指定情報を、演奏データに埋め込む。具体的には、その音符に対応する演奏イベントデータの直前に、メタイベントやシステムエクスクルーシブメッセージとされた部分波形データの指定情報を挿入するようにする。続いて、ステップS14にて次の音符にポインタが移動され、ステップS15にて移動先に音符があるか否かが判定され、音符があればステップS12に

戻る。このように音符があれば、ステップS12ないしステップS15の処理が繰り返し行われるようになり、その処理毎に1つの音符に対応する最適の部分波形データの指定情報が演奏データ中に埋め込まれるようになる。そして、演奏データの最後の音符に対する部分波形データの指定情報の埋め込みが終了すると、ステップS15にて音符がないと判定されて、ステップS16に進む。ステップS16では、このようにして部分波形データの指定情報の埋め込まれた演奏データを別の名前で保存する処理が行われる。以上の処理が終了すると、演奏データ加工処理は終了する。

加工後の演奏データを指定して、波形データ録音再生装置1で自動演奏すると、演奏データ中の各音符の開始タイミング (ノートオンタイミング) 毎に、そのノートオンイベントの直前に埋め込まれた指定情報で指定された部分波形データがHDD23から読み出され、ノートオンに対応した音色パラメータと共に再生回路24に送られる。このようにして、演奏データ中の各音符に対応した楽音が、指定された部分波形データに基づいて生成され自動演奏されるようになる。

[0037]

なお、ステップS13において部分波形データの指定情報をメタイベントやシステムエクスクルーシブとして埋め込むようにしたが、それに限らず、該指定情報をこれ以外のイベントとして埋め込むようにしてもよい。

また、自動演奏したい演奏データが複数パートの演奏データである場合には、 図8の処理をその中の所望の1つのパートだけに対して行ってもよいし、あるい は、その中の任意の複数のパートに対して行ってもよい。

さらに、図8の処理は、単旋律の演奏データだけでなく、同時に複数の音符が 重なるような演奏データでもよい。ただし、前音、後音が上か下か、前音/後音 との音高差等の特徴情報に基づいて部分波形データを選択したい場合には、処理 される演奏データは、全て単旋律の演奏データである必要がある。

[0038]

次に、本発明にかかる波形データ録音再生装置1において音色セットをリアルタイム演奏に適用した際のノートオンイベント処理のフローチャートを図9に示し、その説明を以下に行う。

操作子15に含まれている鍵盤を押鍵してノートオンイベントが発生したり、MIDIインタフェース25を介してノートオンイベントが供給されると、ノートオンイベント処理が起動され、ステップS20にて発生されたノートオンイベントにおける音高や強度等の情報に基づいて音色セットにおける指定されている音色の部分波形管理データベースの属性情報を検索して、最適の部分波形データが選択される。この場合の部分波形データの選択基準を、(1)当該ノートオンの音高、(2)当該ノートオンの音高と強度、(3)当該ノートオンの音高、および、前音の音高が上か下かの情報、(4)当該ノートオンの音高、および、前音の音高との音高差、(5)その他、当該ノートオンと前音の強度等の情報の組合せ、としてもよい。

#### [0039]

ノートオンイベントに対応する最適の部分波形データが選択されると、ステップS21にて再生回路24において発音するチャンネルが割り当てられ、ステップS22にて割り当てられた発音チャンネルに選択された部分波形データの情報や音色パラメータ等が設定される。この場合、ノートオンイベントにおける音高と選択された部分波形データの音高との音高差に基づいてピッチシフト量も設定される。次いで、ステップS23にて割り当てられた発音チャンネルにノートオンが送出され、再生回路24は設定された部分波形データおよび音色パラメータやピッチシフト量に基づいて楽音波形を再生する。ノートオンイベントに対応する楽音波形が再生されたらノートオンイベント処理は終了し、リアルタイム演奏に基づくノートオンイベントが再度発生すると、ノートオンイベント処理が再度起動されて上記したノートオンイベントに対応する楽音波形を再生する処理が繰り返し行われるようになる。

#### [0040]

なお、リアルタイム演奏では、演奏する音の長さは対応するノートオフが来るまで判明しないので、音長に応じて部分波形データの時間軸制御を行なうことはできない。そこで、リアルタイム演奏用の部分波形データでは、通常の波形メモリ音源と同様に、楽音波形のアタック以降の定常部にループ再生を行なうループ部を設定し、ループ再生+ノートオフに応じた減衰エンベロープ付与による楽音

音長の制御を行なうようにする。

また、音色セットをリアルタイム演奏に適用した際の変形例として、ノートオンイベントの発生から発音までに数秒~数十秒の発音遅れが許されるなら、その間の演奏イベントをバッファに記憶しておくことにより、部分波形データを選択する際に当該ノートオンの音長や後音の情報等も用いることができるようになる

#### [0041]

ところで、本発明にかかる波形データ録音再生装置1において音色セットを自動演奏とリアルタイム演奏の組み合わせに適用することもできる。この際に、自動演奏では、図8に示す演奏データ加工処理により加工された演奏データに基づく楽音波形が生成され、演奏者が自動演奏に合わせて演奏するリアルタイム演奏では、図9に示すノートオンイベント処理が実行されることにより楽音波形が生成されるようになる。この組み合わせにおいて、自動リズム、自動伴奏、伴奏パート等の自動演奏に合わせてリアルタイム演奏している場合は、自動演奏からテンポクロックを得ることができる。従って、この場合に、演奏者が行なうリアルタイム演奏パートの演奏データを用意しておくと、演奏者は、そのリアルタイム演奏パートの通りに演奏することから、リアルタイム演奏におけるノートオンイベントやノートオフイベント等のイベントの未来の状況を検知することができるようになる。したがって、図9に示すノートオンイベント処理のステップS20における部分波形データを選択する処理において、現ノートオンの音長情報や次に演奏される音の情報も使用して部分波形データを選択することができるようになる。

#### [0042]

なお、鍵域を所定の音域毎に区切り、区切った音域毎にサンプリング波形を割り当てるマルチサンプリングにおいて必要となる音高の音符を、演奏データのフレーズ中に全て含めておくと、必要となる音高の部分波形データは全て収録データに収録されるようになる。従って、この場合は、フレーズの演奏が完了したら直ちにマルチサンプリングされた部分波形データによる演奏を行なうことができるようになる。この際に、必要となる音長や演奏強度の音符を演奏データのフレ

ーズ中に全て含めておくようにしてもよい。

また、フレーズ波形データを分割した部分波形データを、音色セットとして全部使うように設定しておけば、選択された音色セットを作る手順を省略して直ち に演奏をすることができるようになる。

[0043]

さらに、各情報をその本来の目的以外の目的で使用してもよい。例えば、歌声をサンプリングした場合に「強度情報」を音声の音素を判別する「音素情報」として使用してもよい。具体的には、例えば、音素「あ~あ~あ~」を示す情報として強度=60を割り当て、音素「ら~ら~ら~」を示す情報として強度=61を割り当て、音素「どう~どう~」を示す情報として強度=62を割り当てる。このように、「強度情報」を「音素情報」として使用した場合、「強度情報」でグループ分けすれば、同じ音素に対応した部分波形データを集めることができるようになる。

さらにまた、演奏データ加工処理において処理したい演奏データを、そのまま、録音に使用する演奏データである対応演奏データとして使用してもよい。このようにすると、収録した波形データを部分波形データに分割処理した後に、得られた分割波形データをそのまま演奏データに張り付けることができるようになり、最適の部分波形データを検出する処理を簡略化することができる。

さらにまた、部分波形データを貼り付けられた演奏データの各音符をエディットすることにより、録音されたフレーズ波形データを間接的にエディットすることができる。

[0044]

【発明の効果】

本発明は以上のように構成されているので、自動演奏手段により演奏された演奏音を聴きながら演奏することができるので、リラックスして演奏することができ、自然な音を録音することができる。このようにして録音されたフレーズ波形のデータを自動演奏された演奏データに基づいて切り出すことにより、演奏データの音符に対応する部分波形データに分割することができるようになる。この場合、自動演奏手段の演奏タイミングに同期して演奏された音を録音することによ

り、分割位置の精度を高めることができる。また、分割された部分波形データに 対応する音符の音高、音符の長さ、強度情報等の特徴情報を対応する部分波形データに属性情報として付与することができる。さらに、分割された部分波形データの内から、所望の部分波形データを選択して、その属性情報と共に音色セットとすれば、演奏用の音色セットとすることができる。

#### [0045]

ところで、音色セットに基づく演奏を行う際に、自動演奏を行う場合は、予め 自動演奏する演奏データの各音符の音高、音の長さや強度等に基づいて音色セットの部分波形管理データベースを検索することにより最適の部分波形データを検 出し、その部分波形データを当該音符に指定する指定データを演奏データに埋め 込むようにしたので、加工された演奏データに基づいて自動演奏した際に自然な 音による自動演奏を行うことができるようになる。

また、音色セットに基づく演奏を行う際に、リアルタイム演奏を行う場合は、 発生した演奏イベントデータの情報に基づいて音色セットの部分波形管理データ ベースを検索して最適の部分波形データを検出して、その部分波形データを使用 して当該演奏イベントデータの演奏音を再生しているので、自然な音の演奏音を 得ることができるようになる。

さらに、音色セットに基づく演奏を行う際に、先読みした演奏データの音符の音高、音の長さや強度等に基づいて音色セットの部分波形管理データベースを検索することにより最適の部分波形データを検出し、演奏データと同じパートを演奏した際の演奏データの各音符に対応する演奏イベントデータが発生した際に、検出された部分波形データを用いて当該音符に対応する演奏音を生成するようにしたので、未来の状況を検知することができ、より自然な音の演奏音を得ることができるようになる。

### 【図面の簡単な説明】

- 【図1】 本発明の波形データ録音装置および録音波形データ再生装置を備える実施の形態である波形データ録音再生装置のハードウェア構成を示す図である。
  - 【図2】 本発明にかかる波形データ録音再生装置における同期化されてい

る自動演奏される演奏データとフレーズ波形データとの関係を示す図である。

- 【図3】 本発明にかかる波形データ録音再生装置において波形データを録音する際の態様を示す図である。
- 【図4】 本発明にかかる波形データ録音再生装置において、フレーズ波形 データの分割処理および属性情報付与処理を行う構成の概要を示す図である。
- 【図5】 本発明にかかる波形データ録音再生装置における収録データの構成を示す図である。
- 【図6】 本発明にかかる波形データ録音再生装置における演奏用の音色セットの構成を示す図である。
- 【図7】 本発明にかかる波形データ録音再生装置における音色セット作成手順を示すフローチャートである。
- 【図8】 本発明にかかる波形データ録音再生装置で実行される演奏データ 加工処理のフローチャートである。
- 【図9】 本発明にかかる波形データ録音再生装置で実行されるノートオン イベント処理のフローチャートである。

#### 【符号の説明】

- 1 波形データ録音再生装置、10 CPU、11 タイマ、12 ROM、1
- 3 RAM、14 表示器、15 操作子、16 音源、17 ミキサ、18
- DAC、19 サウンドシステム、20 マイクロフォン、21 ADC、22

録音回路、23 HDD、24 再生回路、25 MIDIインタフェース、

- 26 その他インタフェース、30 演奏データ、31 自動演奏手段、32
- 演奏者、33 波形録音手段、34 フレーズ波形データ、35 クロック同期
- ライン、36 ヘッドフォン、37 スピーカ、38 スピーカ音除去処理手段、40 フレーズ波形データ、41 分割処理手段、42 属性情報付与処理手
- 段、43 部分波形データ、44 演奏データ

【書類名】 図面

【図1】



# 【図2】

演奏データ



フレーズ波形データ

【図3】





【図4】



【図5】







演奏用の音色セット

#### [図7]



ユーザの作業手順

#### 【図8】



音色セットの自動演奏への適用

#### 【図9】



【書類名】

要約書

【要約】

【課題】 収録されたフレーズ波形データを部分波形データに簡易に分割する。

【解決手段】 録音したいフレーズに関する演奏データ30を自動演奏手段31で自動演奏し、この演奏を聴きながら演奏者が歌唱する。歌唱された音はマイクロフォン20を介して波形録音手段33にフレーズ波形データとして録音される。波形録音手段33では、自動演奏手段31のクロックに同期して録音していることから、演奏データの各音符の情報に基づいてフレーズ波形データを分割することから、ピッチの変わり目で分割することができる。これにより、フレーズ波形データを音高毎の部分波形データに簡易に分割することができる。

【選択図】 図3

# 出願人履歴情報

識別番号

[000004075]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

静岡県浜松市中沢町10番1号

氏 名

ヤマハ株式会社