HNCO

Visualization of Walsh transforms of various functions defined on bit vectors

June 27, 2018

Abstract

This document proposes to visualize Walsh (or Fourier) transforms of various functions defined on bit vectors (hypercube) of size n = 10. For each function, only non zero coefficients are retained. Moreover, they are sorted in decreasing order of amplitude and normalized relatively to the greatest magnitude.

Contents

1 All functions	2
2 one-max	2
3 lin	3
4 leading-ones	3
5 ridge	4
6 jmp-2	4
7 jmp-4	5
8 djmp-2	5
$9 ext{ djmp-4}$	6
10 fp-2	6
11 fp-4	7
12 nk	7
13 max-sat	8
14 labs	8
15 ep	9
16 cancel	9
17 trap	10
18 hiff	10
19 plateau	11
20 walsh2	11
A Plan	12
B Default parameters	13

1 All functions

2 one-max

3 lin

4 leading-ones

5 ridge

7 jmp-4

8 djmp-2

9 djmp-4

10 fp-2

11 fp-4

13 max-sat

14 labs

16 cancel

17 trap

18 hiff

19 plateau

20 walsh2

A Plan

```
"exec": "hnco",
"opt": "--fn-walsh-transform -b 0 -s 10",
"parallel": true,
"results": "results",
"graphics": "graphics",
"report": "report",
"xlogscale": false,
"ylogscale": true,
"functions": [
    {
        "id": "one-max",
        "opt": "-F 0",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "lin",
        "opt": "-F 1 -p instances/lin.10",
        "col": ">{{\\nprounddigits{2}}}N{2}{2}"
    },
        "id": "leading-ones",
        "opt": "-F 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "ridge",
        "opt": "-F 11",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "jmp-2",
        "opt": "-F 30 -t 2",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-4",
        "opt": "-F 30 -t 4",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "djmp-2",
        "opt": "-F 31 -t 2",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "djmp-4",
        "opt": "-F 31 -t 4",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "fp-2",
        "opt": "-F 40 -t 2",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "fp-4",
        "opt": "-F 40 -t 4",
        "col": ">{{\\nprounddigits{0}}}}N{3}{0}"
    },
    {
```

```
"id": "nk",
    "opt": "-F 60 -p instances/nk.10.2",
    "col": ">{{\\nprounddigits{2}}}N{1}{2}"
},
    "id": "max-sat",
    "opt": "-F 70 -p instances/ms.10.3.10",
    "col": ">{{\\nprounddigits{0}}}N{3}{0}"
},
    "id": "labs",
    "opt": "-F 80",
    "col": ">{{\\nprounddigits{2}}}N{1}{2}"
},
    "id": "ep",
    "opt": "-F 90 -p instances/ep.10",
    "reverse": true,
    "logscale": true,
    "col": ">{{\\nprounddigits{2}}}N{1}{2}"
},
    "id": "cancel",
    "opt": "-F 100 -s 9",
    "reverse": true,
    "col": ">{{\\nprounddigits{2}}}N{1}{2}"
},
    "id": "trap",
    "opt": "-F 110 --fn-num-traps 2",
    "col": ">{{\\nprounddigits{0}}}N{3}{0}"
},
    "id": "hiff",
    "opt": "-F 120 -s 8",
    "col": ">{{\\nprounddigits{0}}}N{3}{0}"
},
    "id": "plateau",
    "opt": "-F 130",
    "col": ">{{\\nprounddigits{0}}}N{3}{0}"
},
    "id": "walsh2",
    "opt": "-F 162 -p instances/walsh2.10",
    "col": ">{{\\nprounddigits{2}}}N{3}{2}"
}
```

B Default parameters

]

}

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
# cache_budget = 0
# ea_lambda = 100
# ea_mu = 10
```

```
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# mutation_probability = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation_probability = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
\# version = 0.9
# Generated from hnco.json
```