Determinants of HIV

M. Moellenkamp and N. Rosemberg

December 4th, 2014

Presentation Outline

- Research Question & Motivation
- Theoretical Framework
- Methodology
- Descriptive Statistics
- Findings
- Conclusion & Limitations

Research Question & Motivation

Research Question: Are community level factors significant determinants of HIV/AIDS incidence rates?

- Understand why some countries failed to achieve MDG 6A
 - MDG 6: "Combat HIV/AIDS, Malaria and other diseases"
 - Target 6A: "Have halted by 2015 and begun to reverse the spread of HIV/AIDS"
- 2 Explore disease-specific determinants of health

Theoretical Framework - Determinants of Health

Source: Dahlgren and Whitehead, 1991

Methodology

Model

$$I_{it} = \beta_0 + \beta_1 S E_{it} + \beta_2 W L C_{it} + \beta_3 S C N_{it} + \beta_4 I L F_{it} + \epsilon_{it}$$

Datasets

 We will use the World Development Indicators (WDI) for the independent variables and a dataset from UNAIDS for the HIV/AIDS prevalence rate.

Methodology

- Model 1: Logistic Regression & Predicted Probabilities
- Model 2: Pooled OLS Regression & Fixed Effects

Distribution of HIV Incidence Rates

HIV Incidence Rates over Time

Interesting Cases for HIV Incidence Rates

Figure 6: Interesting Cases for HIV Incidence Rates

GDP per capita in Selected Countries

Access to Water in Selected Countries

Health Care Expenditure in Selected Countries

Female Schooling in Selected Countries

Female Unemployment in Selected Countries

Imputed Missing Values

Logistic Regression Results - Model 1

	Value	Std. Error	t-stat	p-value
(Intercept)	-37.6456773	7.2536989	-5.1898594	0.0000006
IGDPpc	0.2978185	0.3357784	0.8869494	0.3755804
I Rural	-2.5378333	0.5448833	-4.6575724	0.0000034
ICO2	-0.5450127	0.2142129	-2.5442569	0.0128744
IHCexpend	0.8726152	0.3949605	2.2093735	0.0277651
lWater	-2.3320335	0.8381804	-2.7822571	0.0054348
ISanitation	0.8971812	0.2821827	3.1794344	0.0014933
ILifeExpect	19.2576787	1.7732706	10.8599774	0.0000000
IDPT	-0.5550987	1.0258478	-0.5411121	0.5886335
IMeasles	1.5031143	1.1674113	1.2875619	0.1985293
Inverse	-1.8356883	0.2577191	-7.1228250	0.0000000
${\sf IFemSchool}$	-5.7688978	0.6982863	-8.2615079	0.0000000

Predicted Probabilities - Female School Enrollment

Predicted Probabilities - Female Unemployment

Simple Linear Regression Results - Model 2

	Value	Std. Error	t-stat	p-value
(Intercept)	7.3752345	1.5636985	4.7165322	0.0000024
IGDPpc	0.0090551	0.0726895	0.1245720	0.9008741
I Rural	0.2107062	0.1403357	1.5014435	0.1338737
ICO2	0.1015346	0.0307235	3.3047899	0.0009607
IHCexpend	0.3836497	0.1144031	3.3534906	0.0011367
lWater	-0.3449230	0.1905327	-1.8103085	0.0719839
ISanitation	0.0756900	0.0720312	1.0507946	0.2938588
ILifeExpect	-3.4622232	0.3254661	-10.6377375	0.0000000
IDPT	0.6056362	0.2462010	2.4599259	0.0139265
IMeasles	-0.0906028	0.2440964	-0.3711763	0.7105267
Inverse	0.4270358	0.0484790	8.8086759	0.0000000
${\sf IFemSchool}$	0.5914354	0.1424651	4.1514411	0.0000460

Conclusions & Limitations - Model 1

- Logistic Regression Results of Model 1 (all countries)
 - Generally in line with hypothesis
 - Most of the variables are statistically significant
 - Only Immunisation Variables and GDP per capital are not significant
- Predicted Probabilities of Model 1 (selected countries)
 - Direction of effect of Female School Enrollment matches initial assumptions for all case studies
 - Direction of effect of Female Unemployment does not match initial assumptions for any case study

Conclusions & Limitations - Model 2

- Linear Regression of Model 2 (countries with incidence above mean)
 - Significance of some variables changes
 - Female School Enrollment and Female Unemployment remain highly significant
 - Effect of Female Schooling becomes positive (!)
- Fixed Effects Regression of Model 2 (countries with incidence above mean)
- Significance of some variables changes compared to simple linear model
- Female School Enrollment and Female Unemployment become insignificant
- Immunisation rates for DPT & Measles become highly significant (!)