Материалы к лекциям по математическому анализу для студентов РУДН, обучающихся по направлениям НК и НИ III семестр

Е. И. Галахов

1 Мера Жордана в \mathbb{R}^n

Пусть $n \in \mathbb{N}$, $a_i \in \mathbb{R}$ (i = 0, 1, ..., n), $\sum_{i=1}^{n} a_i^2 \neq 0$.

Определение 1.1. Множество точек $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, координаты которых удовлетворяют линейному уравнению вида

$$a_1 x_1 + \dots + a_n x_n = a_0, \tag{1.1}$$

называется гиперплоскостью в пространстве \mathbb{R}^n .

Пусть $k \in \mathbb{N}_0$ фиксировано, $m = (m_1, \dots, m_n) \in \mathbb{Z}^n$.

Определение 1.2. Будем называть кубы вида

$$Q_{m,k} = \left\{ x \colon \frac{m_i}{10^k} \le x_i \le \frac{m_i + 1}{10^k} \right\}$$
 (1.2)

кубами ранга к.

Замечание 1.1. Очевидно, что при любом $k \in \mathbb{N}_0$ совокупность всех кубов ранга k покрывает все пространство \mathbb{R}^n :

$$\mathbb{R}^{n} = \bigcup_{m \in \mathbb{Z}^{n}} Q_{m,k} = \left\{ x : \frac{m_{i}}{10^{k}} \le x_{i} \le \frac{m_{i} + 1}{10^{k}} \right\}.$$

Определение 1.3. Определим *меру* (n-*мерный объем*) куба $Q_{m,k}$ по формуле

$$\mu(Q_{m,k}) = 10^{-kn},\tag{1.3}$$

а объем любого множества $S = \bigcup_j Q_j$, состоящего из некоторого множества попарно различных кубов ранга k, определим как сумму объемов входящих в него кубов:

$$\mu(S) = \mu\left(\bigcup_{j} Q_{j}\right) = \sum_{j} \mu(Q_{j}). \tag{1.4}$$

Очевидно, что $\mu(S) \ge 0$ для любого S. Будем считать по определению, что $\mu(\emptyset) = 0$.

Пусть $X \subset \mathbb{R}^n$. Обозначим через $s_k(X)$ объединение всех кубов ранга k, целиком содержащихся в X, а через $S_k(X)$ – объединение всех кубов ранга k, пересекающихся с X:

$$s_k = s_k(X) := \bigcup_{m} \bigcup_{Q_{m,k} \subset X} Q_{m,k}, \quad S_k = S_k(X) := \bigcup_{m} \bigcup_{Q_{m,k} \cap X \neq \emptyset} Q_{m,k}. \tag{1.5}$$

Из этого определения следует, что множества $s_k(X)$ возрастают с ростом k и содержатся в X, а множества $S_k(X)$ убывают с ростом k и содержат X:

$$s_0 \subset s_1 \subset ... \subset s_k \subset ... \subset X \subset ... \subset S_k \subset ... \subset S_1 \subset S_0$$

откуда в силу (1.4) следует

$$0 \le \mu(s_0) \le \mu(s_1) \le \dots \le \mu(s_k) \le \dots \le \mu(S_k) \le \dots \le \mu(S_1) \le \mu(S_0) \le +\infty. \tag{1.6}$$

Таким образом, последовательности $\{\mu(s_k)\}$ и $\{\mu(S_k)\}$ являются монотонными, а следовательно, имеют конечные или бесконечные пределы.

Определение 1.4. Предел $\mu_*(X) := \lim_{k \to \infty} \mu(s_k)$ называется нижней (внутренней) n-мерной мерой (Жордана) множества X, а предел $\mu^*(X) := \lim_{k \to \infty} \mu(S_k)$ – верхней (внешней) n-мерной мерой (Жордана) множества X.

B силу (1.6) для любого X имеем

$$0 \le \mu_*(X) \le \mu^*(X) \le +\infty.$$

Определение 1.5. Если $\mu_*(X) = \mu^*(X)$ конечны, то множество X называется измеримым (по Жордану), а общее значение $\mu_*(X)$ и $\mu^*(X)$ называется мерой Жордана множества X и обозначается через $\mu(X)$.

Пример 1.1. Существуют множества, неизмеримые по Жордану, например, множество $\mathbb{Q}_0 = \mathbb{Q} \cap [0,1]$. Легко проверить, что $\mu_*(\mathbb{Q}_0) = 0 < 1 = \mu^*(\mathbb{Q}_0)$.

Лемма 1.1. (Монотонность верхней и нижней мер.) $\mathit{Ecлu}\ X_1 \subset X_2,\ \mathit{mo}$

$$\mu_*(X_1) \le \mu_*(X_2), \quad \mu^*(X_1) \le \mu^*(X_2).$$
 (1.7)

Доказательство. Если $X_1 \subset X_2$, то из определений s_k и S_k следует, что при любом $k \in \mathbb{N}_0$ $s_k(X_1) \subset s_k(X_2)$, $S_k(X_1) \subset S_k(X_2)$. Поэтому, согласно (1.4),

$$\mu(s_k(X_1)) \le \mu(s_k(X_2)), \quad \mu(S_k(X_1)) \le \mu(S_k(X_2)).$$

Переходя к пределу при $k \to \infty$, получаем (1.7).

Следствие 1.1. $Ecnu\ X_1 \subset X_2\ u\ \mu(X_2) = 0,\ mo\ \mu(X_1) = 0.$

Доказательство. При условиях следствия имеем

$$0 \le \mu_*(X_1) \le \mu^*(X_1) \le \mu^*(X_2) = \mu(X_2) = 0,$$

т. е. $\mu_*(X_1) = \mu^*(X_1) = 0$.

Обозначим

$$\sigma_k = \sigma_k(X) := \bigcup_{m} \bigcup_{Q_{m,k} \subset (S_k \setminus s_k)} Q_{m,k}.$$

Тогда $S_k = s_k \cup \sigma_k$, причем никакой куб $Q_{m,k}$ не входит одновременно в s_k и σ_k , поэтому согласно определению 1.3 $\mu(S_k) = \mu(s_k) + \mu(\sigma_k)$. Более того,

Лемма 1.2. Для любого $X \subset \mathbb{R}^n$ справедливы включения $\partial X \subset \sigma_k(X) \subset S_k(\partial X)$.

Доказательство. Пусть $x \in \partial X$. Тогда имеем

$$x \in \partial X \subset \overline{X} \subset \overline{S_k(X)} = S_k(X) = s_k(X)_{\text{int}} \cup \sigma_k(X)$$
 (1.8)

(здесь и далее индекс int означает внутренность соответствующего множества). Но, так как $s_k(X) \subset X$, имеем $s_k(X)_{\text{int}} \subset X_{\text{int}}$, и так как $x \in \partial X$ не может принадлежать X_{int} , то $x \notin s_k(X)_{\text{int}}$. Поэтому из (1.8) следует, что $x \in \sigma_k(X)$, т. е. $\partial X \subset \sigma_k(X)$.

Пусть теперь $x \in \sigma_k(X)$, т.е. существует куб Q ранга k такой, что $x \in Q$ и Q содержится в $\sigma_k(X)$, т.е. $Q \subset S_k(X)$ ($Q \cap X \neq \emptyset$), но $Q \not\subset s_k(X)$ (Q содержит точки, не принадлежащие X). Следовательно, Q содержит точки ∂X , т.е. $x \in Q \subset S_k(\partial X)$.

Теорема 1.1. (Критерий измеримости множеств по Жордану.) Для того чтобы множество $X \subset \mathbb{R}^n$ было измеримо по Жордану, необходимо и достаточно, чтобы оно было ограничено и чтобы его граница ∂X имела меру $\mu(\partial X) = 0$.

Доказательство. Heoбxoдимость. Если $X \subset \mathbb{R}^n$ измеримо, оно ограничено (иначе было бы $\mu^*(X) = +\infty$), а $\lim_{k\to\infty} \mu(s_k(X)) = \lim_{k\to\infty} \mu(S_k(X))$ конечны. Поэтому с учетом лемм 1.2 и 1.1 имеем

$$0 \le \mu^*(\partial X) \le \mu^*(\sigma_k(X)) = \mu(\sigma_k(X)) = \mu(S_k(X)) - \mu(s_k(X)) \to 0$$
 при $k \to \infty$,

T.e.
$$\mu^*(\partial X) = \mu(\partial X) = 0$$
.

Достаточность. Пусть $X \subset \mathbb{R}^n$ ограничено и $\mu(\partial X) = 0$. Тогда по определению 1.5 $\lim_{k \to \infty} \mu(S_k(\partial X)) = 0$ и в силу лемм 1.2 и 1.1

$$0 \le \mu(S_k(X)) - \mu(s_k(X)) = \mu(\sigma_k(X)) \le \mu(S_k(\partial X)) \to 0 \tag{1.9}$$

при $k \to \infty$.

Из ограниченности множества X вытекает существование конечных пределов

$$\lim_{k \to \infty} \mu(S_k(X)) = \mu^*(X)$$

И

$$\lim_{k \to \infty} \mu(s_k(X)) = \mu_*(X),$$

которые равны между собой в силу (1.9), что и означает измеримость множества X по Жордану.

Из доказанных утверждений вытекают следующие свойства меры Жордана:

- 1. (Неотрицательность.) Для любого измеримого множества $X \subset \mathbb{R}^n$ всегда $\mu(X) \ge 0$.
- 2. (Монотонность.) Если $X_1 \subset X_2$ измеримые множества, то $\mu(X_1) \leq \mu(X_2)$.
- 3. (Замкнутость относительно объединения и пересечения.) Объединение и пересечение конечного числа измеримых множеств являются измеримыми множествами.
- 4. (Конечная аддитивность.) Мера объединения конечного числа попарно непересекающихся измеримых множеств равна сумме мер этих множеств.
- 5. (Инвариантность.) Мера измеримого множества не меняется при параллельном переносе и ортогональном преобразовании (повороте).

Примерами множеств нулевой меры Жордана являются графики функций, непрерывных на компакте, и спрямляемые кривые.

2 Понятие кратного интеграла

Пусть множество $X \subset \mathbb{R}^n$ измеримо по Жордану.

Определение 2.1. Конечная система измеримых множеств $\tau = \{X_j\}_{j=1}^{j_{\tau}}$ называется разбиением множества X, если:

1. $\mu(X_i \cap X_j) = 0$ при $j \neq i$;

$$2. \bigcup_{j=1}^{j_{\tau}} X_j = X.$$

Определение 2.2. Число

$$|\tau| = \max_{j=1,2,\ldots,j_{\tau}} \operatorname{diam} X_j$$

называется мелкостью разбиения τ .

Лемма 2.1. Если
$$\tau = \{X_j\}_{j=1}^{j_{\tau}}$$
, то $\mu(X) = \sum_{j=1}^{j_{\tau}} \mu(X_j)$.

Доказательство. Пусть $X^* = \bigcup_{i \neq j} (X_i \cap X_j)$. Из условия 1 и конечной аддитивности меры Жордана следует, что $\mu(X^*) = 0$ и $\mu(X_j^*) = \mu(X_j)$, где $X_j^* = X_j \setminus X^*$. Множества X_j^* не пересекаются между собой и с X^* , причем $X = \bigcup_{j=1}^{j_\tau} X_j^* \cup X^*$. Поэтому

$$\mu(X) = \sum_{j=1}^{j_{\tau}} \mu(X_j^*) + \mu(X^*) = \sum_{j=1}^{j_{\tau}} \mu(X_j) + \mu(X^*) = \sum_{j=1}^{j_{\tau}} \mu(X_j).$$

Лемма 2.2. У всякого измеримого множества существуют разбиения сколь угодно малой мелкости.

Доказательство. В качестве разбиений $\tau_k = \{X_j^{(k)}\}_{j=1}^{j_k}$ можно выбрать системы множеств $X_j^{(k)} = X \cap Q_j^{(k)}$, где $Q_j^{(k)}$ – все кубы порядка k, имеющие общие точки с X. Действительно, множества $X_j^{(k)}$ измеримы как пересечения измеримых множеств X и $Q_j^{(k)}$, $\bigcup_{i=1}^{j_k} X_j = X$, а так как при $i \neq j$

$$X_i^{(k)} \cap X_i^{(k)} \subset Q_i^{(k)} \cap Q_i^{(k)} = \partial Q_i^{(k)} \cap \partial Q_i^{(k)},$$

ТО

$$\mu(X_i^{(k)} \cap X_i^{(k)}) \le \mu(\partial Q_i^{(k)} \cap \partial Q_i^{(k)}) \le \mu(\partial Q_i^{(k)}) = 0.$$

Кроме того,

$$| au_k| = \max_{j=1,2,\dots,j_k} \operatorname{diam} X_j^{(k)} \le \operatorname{diam} Q_1^{(k)} = \frac{\sqrt{n}}{10^k} \to 0$$
 при $k \to \infty$,

что и требовалось.

Пусть на измеримом множестве $X \subset \mathbb{R}^n$ определена функция f, задано разбиение $\tau = \{X_j\}_{j=1}^{j_\tau}$ и выбраны точки $\xi^{(j)} \in X_j, \ j=1,\ldots,j_\tau$.

Определение 2.3. Всякая сумма вида

$$\sigma_{\tau} \equiv \sigma_{\tau}(f) \equiv \sigma_{\tau}(f; \xi^{(1)}, \dots, \xi^{(j_{\tau})}) = \sum_{j=1}^{j_{\tau}} f(\xi^{(j)}) \mu(X_j)$$

называется интегральной суммой (Pимана) функции f, соответствующей разбиению τ .

Определение 2.4. Функция f называется *интегрируемой* (по Pиману) на множествее X, если существует один и тот же конечный предел у любой последовательности интегральных сумм

$$\sigma_{\tau_k} = \sum_{j=1}^{j_k} f(\xi^{(j,k)}) \mu(X_j^{(k)}),$$

соответствующих разбиениям $au_k = \{X_j^{(k)}\}_{j=1}^{j_k}$ множества X, у которых $\lim_{k \to \infty} | au_k| = 0$, а точки $\xi^{(j,k)} \in X_j^{(k)}$ выбраны произвольным образом. Этот предел называется интегралом Римана от функции f по множеству X и обозначается $\int f(x) \, dx$:

$$\int_{Y} f(x) dx = \lim_{k \to \infty} \sigma_{\tau_k}(f; \xi^{(1,k)}, \dots, \xi^{(j_k,k)}).$$
 (2.1)

При n > 1 интеграл Римана называется (n)-кратным (при $n = 2 - \partial soйным$, при n = 3 - mpoйным).

Замечание 2.1. В этом случае используется также обозначение $\int\limits_X f(x) \, dx = \lim_{|\tau| \to 0} \sigma_{\tau}.$

Замечание 2.2. Можно показать, что при n=1 и x=[a,b] это определение эквивалентно ранее данному определению интеграла Римана (где разбиения состояли только из отрезков, а не из произвольных измеримых множеств).

Определение 2.5. Пусть функция f ограничена на измеримом множестве $X \subset \mathbb{R}^n$, $\tau = \{X_j\}_{j=1}^{j_\tau}$ – разбиение множества X,

$$m_j = \inf_{x \in X_j} f(x), \quad M_j = \sup_{x \in X_j} f(x), \quad j = 1, \dots, j_{\tau}.$$

Тогда суммы

$$s_{\tau} = \sum_{j=1}^{j_{\tau}} m_j \mu(X_j), \quad S_{\tau} = \sum_{j=1}^{j_{\tau}} M_j \mu(X_j)$$

называют соответственно ниженими и верхними суммами Дарбу.

Аналогично одномерному случаю формулируется и доказывается следующая

Теорема 2.1. (Критерий интегрируемости Дарбу.) Для того чтобы функция f, ограниченная на измеримом множестве X, была на нем интегрируема по Риману, необходимо и достаточно, чтобы для ее сумм Дарбу выполнялось условие

$$\lim_{|\tau| \to 0} (S_{\tau} - s_{\tau}) = 0.$$

Следствие 2.1. Если функция непрерывна на измеримом компакте, то она интегрируема на нем по Риману.

Теорема 2.2. (Критерий интегрируемости Лебега.) Для того чтобы функция f, ограниченная на измеримом множестве X, была на нем интегрируема по Риману, необходимо и достаточно, чтобы существовали множества X^* и X^{**} такие, что $X = X^* \cup X^{**}$, $X^* \cap X^{**} = \emptyset$, $\mu(X^*) = 0$ и чтобы f была непрерывна на X^{**} (т. е. чтобы f была непрерывна на X всюду, кроме, возможно, некоторого множества нулевой меры).

На кратные интегралы от ограниченных функций переносятся все основные свойства интеграла по отрезку:

- 1. Если $X \subset \mathbb{R}^n$ измеримое множество, то $\int\limits_X dx = \mu(X)$.
- 2. (Линейность интеграла.) Если функции f_i , i = 1, ..., m, интегрируемы на множестве X, то для любых чисел λ_i , i = 1, ..., m, функция $\sum_{i=1}^{m} \lambda_i f_i$ также интегрируема на X и

$$\int_{X} \sum_{i=1}^{m} \lambda_{i} f_{i} dx = \lambda_{i} \sum_{i=1}^{m} \int_{X} f_{i} dx.$$

3. Если X и Y – измеримые множества, $X \subset Y$, функция f ограничена и интегрируема на множестве Y, то она интегрируема и на множестве X.

4. (Аддитивность интеграла по множествам.) Если X – измеримое множество, $\tau = \{X_j\}_{j=1}^{j_{\tau}}$ – его разбиение, функция f определена и ограничена на множестве X, то функция f интегрируема на X и

$$\int\limits_X f(x) \, dx = \sum_{j=1}^{j_\tau} \int\limits_{X_j} f(x) \, dx.$$

- 5. Если функции f и g интегрируемы и ограничены на некотором множестве X, то и их произведение fg, а если $\inf_{X} |g(x)| > 0$, то и отношение f/g интегрируемы на X.
- 6. (Интегрирование неравенств.) Если функции f и g интегрируемы на X и для всех $x \in X$ выполняется неравенство $f(x) \leq g(x)$, то

$$\int\limits_X f(x) \, dx \le \int\limits_X g(x) \, dx.$$

В частности, если X и Y – измеримые множества, $X \subset Y$, функция f неотрицательна, ограничена и интегрируема на Y, то

$$\int\limits_{X} f(x) \, dx \le \int\limits_{Y} f(x) \, dx.$$

7. Если функция f интегрируема и ограничена на множестве X, то и ее абсолютная величина |f| интегрируема на нем, причем

$$\left| \int_{X} f(x) \, dx \right| \le \int_{X} |f(x)| \, dx.$$

8. Если функция f неотрицательна, ограничена и интегрируема на измеримом открытом множестве $G, x^{(0)} \in G$, функция f непрерывна в точке $x^{(0)}$ и $f(x^{(0)}) > 0$, то

$$\int_{C} f(x) \, dx > 0.$$

9. (Полная аддитивность интеграла по открытым множествам.) Если G, G_m – измеримые открытые множества, $G_m \subset G_{m+1}$ ($m \in \mathbb{N}$), $\bigcup_{m=1}^{\infty} G_m = G$, а функция f интегрируема и ограничена на G, то

$$\lim_{m \to \infty} \int_{G_m} f(x) \, dx = \int_G f(x) \, dx$$

или, что то же самое,

$$\int_{G} f(x) dx = \int_{G_1} f(x) dx + \sum_{m=1}^{\infty} \int_{G_{m+1} \backslash G_m} f(x) dx.$$

10. (Теоремы о среднем.) Если функции f и g интегрируемы на X, $m \leq f(x) \leq M$ ($x \in X$) и функция g не меняет знак на X, то существует такое число $\mu \in [m,M]$, что

$$\int_{X} f(x)g(x) dx = \mu \int_{X} g(x) dx.$$

Если при этом X = G – область, а функция f непрерывна и ограничена на ней, то существует такая точка $\xi \in G$, что

$$\int_{G} f(x)g(x) dx = f(\xi) \int_{G} g(x) dx.$$

Доказательства этих утверждений в целом аналогичны одномерному случаю.

3 Сведение кратного интеграла к повторному

Определение 3.1. Пусть функции φ и ψ непрерывны на отрезке $[a,b],\ \varphi(x) \leq \psi(x)$ $(a \leq x \leq b)$ и

$$E = \{(x, y) : a \le x \le b, \varphi(x) \le y \le \psi(x)\}.$$

Ясно, что E – измеримый компакт.

Определение 3.2. Пусть функция $f: E \to \mathbb{R}$ и $f(x,\cdot)$ при каждом $x \in [a,b]$ интегрируема на отрезке $[\varphi(x), \psi(x)]$. Тогда функция

$$F(x) = \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy$$

называется интегралом, зависящим от параметра х, а интеграл

$$\int_{a}^{b} F(x) dx = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) dy,$$
(3.1)

если он существует, называется повторным интегралом.

Лемма 3.1. Если функция f непрерывна на E, то функция F(x) непрерывна на [a,b].

Доказательство. Сделаем в интеграле (3.1) преобразование

$$y = \varphi(x) + (\psi(x) - \varphi(x))t$$
, $0 \le t \le 1$,

и обозначим

$$g(x,t) = f(x,\varphi(x) + (\psi(x) - \varphi(x))t)(\psi(x) - \varphi(x)).$$

Тогда получим

$$F(x) = \int_{0}^{1} g(x,t) dt,$$

где g – непрерывная функция (как композиция непрерывных функций) на прямоугольнике

$$P = \{(x,t): \, a \le x \le b, \, \, 0 \le t \le 1\},$$

а следовательно, равномерно непрерывна на нем. Поэтому для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всех Δx , для которых $|\Delta x| < \delta$, выполняется неравенство

$$|g(x + \Delta x, t) - g(x, t)| < \varepsilon, \quad (x, t) \in P, \quad (x + \Delta x, t) \in P,$$

а следовательно, и неравенство

$$|F(x + \Delta x) - F(x)| = \left| \int_{0}^{1} g(x + \Delta x, t) dt - \int_{0}^{1} g(x, t) dt \right| \le$$

$$\le \int_{0}^{1} |g(x + \Delta x, t) - g(x, t)| dt < \varepsilon,$$

т.е. F непрерывна на [a,b].

Теорема 3.1. (Равенство двойного интеграла повторному.) *Если функция* f *непрерывна на* E, mo

$$\iint\limits_{E} f(x,y) \, dx \, dy = \int\limits_{a}^{b} dx \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) \, dy. \tag{3.2}$$

Доказательство. Повторный интеграл в правой части (3.2) существует вследствие леммы. Для доказательства равенства (3.2) введем разбиение τ_k множества E на подмножества

$$E_{ij}^{(k)} = \{(x,y) : x_{i-1,k} \le x \le x_{i,k}, \varphi_{j-1,k}(x) \le y \le \varphi_{j,k}(x)\},\$$

где $k \in \mathbb{N}, i = 1, \dots, k, j = 1, \dots, k,$

$$x_{i,k} = a + \frac{b-a}{k}i,$$

$$\varphi_{j,k}(x) = \varphi(x) + \frac{\psi(x) - \varphi(x)}{k} j \ (x \in [a, b]).$$

Покажем, что $\lim_{k\to\infty} |\tau_k| = 0$:

$$\dim E_{ij}^{(k)} \leq \sqrt{|x_{i,k} - x_{i-1,k}|^2 + \max_{x \in [x_{i-1,k}, x_{i,k}]} |\varphi_{j,k}(x) - \varphi_{j-1,k}(x)|^2} \leq
\leq \sqrt{\frac{(b-a)^2}{k^2} + \max_{x \in [a,b]} \frac{|\psi(x) - \varphi(x)|^2}{k^2}} \leq
\leq \frac{1}{k} \sqrt{(b-a)^2 + \max_{x \in [a,b]} (|\psi(x)| + |\varphi(x)|)^2} \leq
\leq \frac{1}{k} \sqrt{(b-a)^2 + 4c^2} \to 0 \ (k \to \infty),$$

откуда и

$$|\tau_k| = \max_{i,j=1,\dots,k} \operatorname{diam} E_{ij}^{(k)} \to 0 \ (k \to \infty).$$

Положим теперь

$$m_{ij}^{(k)} = \inf_{(x,y)\in E_{ij}^{(k)}} f(x,y), \quad M_{ij}^{(k)} = \sup_{(x,y)\in E_{ij}^{(k)}} f(x,y), \quad i,j=1,\ldots,k,$$

$$s_k = \sum_{i,j=1}^k m_{ij}^{(k)} \mu(E_{ij}^{(k)}), \quad S_k = \sum_{i,j=1}^k M_{ij}^{(k)} \mu(E_{ij}^{(k)}), \quad k \in \mathbb{N}.$$

В силу интегрируемости f как непрерывной функции на измеримом компакте E и стремления $|\tau_k|$ к 0 при $k\to\infty$ имеем

$$\lim_{k \to \infty} s_k = \lim_{k \to \infty} S_k = \iint_E f(x, y) \, dx \, dy. \tag{3.3}$$

Учитывая, что

$$\int_{c_{j-1,k}}^{x_{i,k}} \left[\varphi_{j,k}(x) - \varphi_{j-1,k}(x) \right] dx = \mu(E_{ij}^{(k)}),$$

будем иметь

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x,y) dy = \int_{a}^{b} dx \sum_{j=1}^{k} \int_{\varphi_{j-1,k}(x)}^{\varphi_{j,k}(x)} f(x,y) dy =
= \sum_{i=1}^{k} \sum_{j=1}^{k} \int_{x_{i-1,k}}^{x_{i,k}} dx \int_{\varphi_{j-1,k}(x)}^{\varphi_{j,k}(x)} f(x,y) dy \le \sum_{i=1}^{k} \sum_{j=1}^{k} M_{ij}^{(k)} \int_{x_{i-1,k}}^{x_{i,k}} dx \int_{\varphi_{j-1,k}(x)}^{\varphi_{j,k}(x)} dy =
= \sum_{i=1}^{k} \sum_{j=1}^{k} M_{ij}^{(k)} \int_{x_{i-1,k}}^{x_{i,k}} [\varphi_{j,k}(x) - \varphi_{j-1,k}(x)] dx = \sum_{i=1}^{k} \sum_{j=1}^{k} M_{ij}^{(k)} \mu(E_{ij}^{(k)}) = S_{k}$$

и аналогично

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy \ge s_k.$$

Переходя в двух последних неравенствах к пределу при $k \to \infty$, в силу (3.3) получим

$$\iint\limits_E f(x,y) \, dx \, dy \le \int\limits_a^b dx \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) \, dy \le \iint\limits_E f(x,y) \, dx \, dy,$$

что доказывает (3.2).

Замечание 3.1. Если E – стандартная область относительно y, т. е.

$$E = \{(x, y) : c \le y \le d, \, \alpha(y) \le x \le \beta(y)\},\$$

где α и β — непрерывные функции на [c,d], а f непрерывна на E, то аналогично предыдущему имеем

$$\iint\limits_E f(x,y) \, dx \, dy = \int\limits_c^d dy \int\limits_{\alpha(y)}^{\beta(y)} f(x,y) \, dx.$$

Следовательно, если E – стандартная область как относительно x, так и относительно y, то в повторном интеграле можно менять порядок интегрирования:

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x,y) dy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} f(x,y) dx.$$

Замечание 3.2. Теорема обобщается по индукции на кратные интегралы по множествам произвольной размерности. Например, если

$$E = \{(x, y, z) : (x, y) \in E_{xy}, \varphi_1(x, y) \le z \le \psi_1(x, y)\} \subset \mathbb{R}^3,$$

где $E_{xy}\subset \mathbb{R}^2$ – измеримый компакт и функции φ_1,ψ_1 непрерывны на $E_{xy},$ а f – на E, то

$$\iiint\limits_E f(x,y,z) \, dx \, dy \, dz = \iint\limits_{E_{xy}} dx \, dy \int\limits_{\varphi_1(x,y)}^{\psi_1(x,y)} f(x,y,z) \, dz.$$

Если при этом E_{xy} – стандартная область относительно x, имеет место формула

$$\iiint\limits_E f(x,y,z)\,dx\,dy\,dz = \int\limits_a^b dx \int\limits_{\varphi(x)}^{\psi(x)} dy \int\limits_{\varphi_1(x,y)}^{\psi_1(x,y)} f(x,y,z)\,dz.$$

Если обозначить через $E(x_0)$ сечение множества E плоскостью $x=x_0$, т. е.

$$E(x_0) = E \cap \{(x, y, z) : x = x_0\},\$$

то в предыдущей формуле можно объединить два внутренних интегрирования:

$$\iiint\limits_E f(x,y,z) \, dx \, dy \, dz = \int\limits_a^b dx \iint\limits_{E(x)} f(x,y,z) \, dy \, dz. \tag{3.4}$$

Например, если $f(x, y, z) \equiv 1$, то

$$\iiint\limits_E dx\,dy\,dz = \mu_3(E), \quad \iint\limits_{E(x)} dx\,dy = \mu_2(E(x)),$$

где μ_n – мера множества в \mathbb{R}^n (n=2,3), и из (3.4) следует, что

$$\mu_3(E) = \int_a^b \mu_2(E(x)) dx,$$

т. е. объем равен одномерному интегралу от площадей сечений.

4 Замена переменных в кратных интегралах. Криволинейные координаты

Теорема 4.1. Если X – измеримое множество, содержащееся вместе со своим замыканием в открытом множестве $G: \overline{X} \subset G$, $F: G \to \mathbb{R}^n_y$ – непрерывно дифференцируемое отображение с якобианом J_F , не обращающимся в нуль, а функция f непрерывна на множестве $\overline{F(X)}$, то

$$\int_{\overline{F(X)}} f(y) dy = \int_{\overline{X}} f(F(x)) |J_F(X)| dx.$$
(4.1)

Замечание 4.1. Знаки замыкания в формуле можно опустить, так как интегралы по измеримому множеству и его замыканию существуют одновременно и совпадают.

Условия теоремы о замене переменных в кратном интеграле можно ослабить.

Определение 4.1. Непрерывное отображение f множества G в пространство X называется непрерывно продолжаемым на \overline{G} , если существует отображение $f^*: \overline{G} \to X$, сужение которого на G совпадает с X.

Теорема 4.2. Пусть отображение $F: G \subset \mathbb{R}^n_x \to \mathbb{R}^n_y$ взаимно однозначно, непрерывно дифференцируемо и J_F не обращается в нуль на G. Пусть F и J_F непрерывно

продолжаемы на \overline{G} , а функция f непрерывна на $G^*:=F(G)$ и непрерывно продолжаема на $\overline{G^*}$. Тогда

$$\int_{G^*} f(y) \, dy = \int_{G} f(F(x)) |J_F(x)| \, dx. \tag{4.2}$$

Доказательство. Так как G^* измеримо, то $\overline{G^*}$ – измеримый компакт, и функция f^* интегрируема на нем в силу непрерывности, а следовательно, и f интегрируема на G^* . Аналогично доказывается интегрируемость $f(F(x))|J_F(x)|$ на G.

Представим G в виде объединения монотонной последовательности измеримых открытых множеств $G=\bigcup_{k=1}^n G_k$, где $\overline{G_k}\subset G_{k+1},\,k\in\mathbb{N}$. Применяя теорему из предыдущей лекции к множествам G_k , получим

$$\int_{F(G_k)} f(y) \, dy = \int_{G_k} f(F(x)) |J_F(x)| \, dx. \tag{4.3}$$

В силу полной аддитивности интеграла имеем

$$\lim_{k \to \infty} \int_{G_k} f(F(x)) |J_F(x)| \, dx = \int_G f(F(x)) |J_F(x)| \, dx. \tag{4.4}$$

Так как множества $F(G_k)$ также открыты и $G^* = \bigcup_{k=1}^n F(G_k), \overline{F(G_k)} \subset F(G_{k+1}), k \in \mathbb{N},$ то аналогично (4.4) получаем

$$\lim_{k \to \infty} \int_{F(G_k)} f(y) \, dy = \int_{G^*} f(y) \, dy. \tag{4.5}$$

Переходя к пределу при $k \to \infty$ в равенстве (4.3), получаем (4.2).

Замечание 4.2. В отличие от предыдущей теоремы, продолжение F может не быть взаимно однозначным на ∂G , а продолженный якобиан может обращаться на ∂G в нуль.

Замечание 4.3. (Геометрический смысл абсолютной величины якобиана отображения.) Пусть $\{D\}$ – семейство измеримых областей $D \subset G$, имеющих общую точку $x^{(0)}$. В условиях доказанных теорем в силу теоремы о среднем имеем

$$\mu(F(D)) = \int_{F(D)} dy = \int_{D} |J_F(x)| dx = |J_F(\xi)| \,\mu(D), \,\, \xi \in D.$$

Если семейство $\{D\}$ содержит области сколь угодно малого диаметра, то из неравенства $|\xi - x^{(0)}| \le \text{diam } D, \, \xi, x^{(0)} \in D$, вытекает

$$\lim_{\text{diam } D \to 0} \xi = x^{(0)}$$

и вследствие непрерывности якобиана

$$\lim_{\text{diam } D \to 0} \frac{\mu(F(D))}{\mu(D)} = \lim_{\text{diam } D \to 0} |J_F(\xi)| = |J_F(x^{(0)})|, \tag{4.6}$$

т.е. абсолютная величина якобиана отображения в данной точке равна коэффициенту изменения меры множества в этой точке.

Определение 4.2. Пусть взаимно однозначное отображение $F:G \to \mathbb{R}^n_y$ имеет вид

$$y = F(x) = \begin{cases} y_1 = y_1(x_1, \dots, x_n), \\ \dots \\ y_n = y_n(x_1, \dots, x_n). \end{cases}$$

Тогда числа (y_1, \dots, y_n) называют *криволинейными координатами* точки x.

Рассматривая $G^* = F(G)$ как множество наборов криволинейных координат точек $x \in G$, формулу (4.2) записывают в виде

$$\int_{G} f(y) \, dy = \int_{G} f(F(x)) |J_{F}(x)| \, dx. \tag{4.7}$$

Обратный переход от координат y_1, \ldots, y_n к координатам x_1, \ldots, x_n осуществляется при помощи обратного отображения

$$x = F^{-1}(y) = \begin{cases} x_1 = x_1(y_1, \dots, y_n), \\ \dots \\ x_n = x_n(y_1, \dots, y_n). \end{cases}$$

Двумерный случай. Пусть взаимно однозначное отображение открытого множества $G^*\subset \mathbb{R}^2_{x,y}$ на $G\subset \mathbb{R}^2_{u,v}$ задано формулами

$$u = u(x, y), \quad v = v(x, y),$$

а обратное к нему отображение $G \to G^*$ – формулами

$$x = x(u, v), \quad y = y(u, v),$$

и пусть выполнены все условия теоремы 6.1. Установим геометрический смысл якобиана $\frac{\partial(x,y)}{\partial(u,v)}$.

Зафиксируем $(u_0, v_0) \in G, \, \Delta u > 0, \, \Delta v > 0$ и рассмотрим образ

$$P = \{(x, y) : x = x(u, v), y = y(u, v); u_0 < u < u_0 + \Delta u, v_0 < v < v_0 + \Delta v\}$$

прямоугольника

$$P^* = \{(u, v) : u_0 < u < u_0 + \Delta u, v_0 < v < v_0 + \Delta v\},\$$

называемый координатным парамелограммом. Обозначим $x_0 = x(u_0, v_0), y_0 = y(u_0, v_0), M_0 = (x_0, y_0).$

Так как граница ∂P^* является кусочно гладкой, то $\mu(\partial P^*) = 0$, а так как ∂P является образом ∂P^* при взаимно однозначном непрерывном отображении, то и $\mu(\partial P) = 0$. Следовательно, множество P измеримо, и к нему можно применить формулу (4.7). Согласно интегральной теореме о среднем существует такая точка $M \in P^*$, что

$$\mu(P) = \iint_{P} dx \, dy = \iint_{P^*} \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M} \iint_{P^*} du \, dv = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M} \iint_{P^*} du \, dv = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M} \int_{u_0}^{u_0 + \Delta u} du \int_{v_0}^{v_0 + \Delta v} dv = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M} \Delta u \Delta v.$$

$$(4.8)$$

Обозначая

$$\varepsilon(M) = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M} - \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Big|_{M_0},$$

получим

$$\mu(P) = \left(\left| \frac{\partial(x,y)}{\partial(u,v)} \right| \right|_{M_0} + \varepsilon(M) \right) \Delta u \Delta v,$$

причем в силу непрерывной дифференцируемости отображения $(u,v) \to (x,y)$ имеем

$$\lim_{\Delta u^2 + \Delta v^2 \to 0} \varepsilon(M) = 0.$$

Таким образом, абсолютная величина якобиана $\left| \frac{\partial(x,y)}{\partial(u,v)} \right|$ равна коэффициенту изменения площади криволинейного координатного параллелограмма P по сравнению с площадью декартова координатного прямоугольника P^* (с точностью до бесконечно малых более высокого порядка).

Частным случаем криволинейных координат на плоскости являются nonsphile координаты

$$(r,\varphi): \quad x = r\cos\varphi, \ y = r\sin\varphi,$$
 (4.9)

где $r=\sqrt{x^2+y^2}$ — расстояние от точки (x,y) до начала координат, а φ — угол между радиус-вектором точки (x,y) и положительной полуосью Ox. Для полярных координат якобиан $\left|\frac{\partial(x,y)}{\partial(u,v)}\right|$ равен

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \varphi} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & \sin \varphi \\ -r \sin \varphi & r \cos \varphi \end{vmatrix} = r(\cos^2 \varphi + \sin^2 \varphi) = r.$$
 (4.10)

Отметим, что отображение (4.9) является взаимно однозначным на открытом прямоугольнике

$$G = \{ (r, \varphi) : 0 < r < R, 0 < \varphi < 2\pi \}$$

и непрерывно продолжимо на его замыкание, хотя продолженное отображение на ∂G уже не является взаимно однозначным (например, отрезок $r=0, 0 \le \varphi \le 2\pi$ отображается в одну точку (0,0)) и его якобиан обращается в нуль при r=0. Формула (4.7) для полярных координат принимает вид

$$\iint_{G} f(x,y) dx dy = \iint_{G} f(r\cos\varphi, r\sin\varphi) r dr d\varphi.$$
 (4.11)

Из криволинейных координат в \mathbb{R}^3 чаще всего используются uunundpuveckue:

$$\begin{cases} x = r\cos\varphi, & y = r\sin\varphi, & z = h, \\ r \ge 0, & 0 \le \varphi \le 2\pi, & -\infty < h < \infty, \end{cases}$$
 (4.12)

и сферические координаты:

$$\begin{cases} x = r\cos\varphi\cos\psi, & y = r\sin\varphi\cos\psi, & z = r\sin\psi, \\ r \ge 0, & 0 \le \varphi \le 2\pi, & -\pi/2 \le \psi \le \pi/2. \end{cases}$$
 (4.13)

Вычисляя якобиан, получаем для цилиндрических координат $\frac{\partial(x,y,z)}{\partial(r,\varphi,h)}=r$, а для сферических $-\frac{\partial(x,y,z)}{\partial(r,\varphi,\psi)}=r^2\cos\psi$.

5 Криволинейные интегралы 1-го и 2-го рода

Криволинейный интеграл 1-го рода. Пусть $L = \{M(s) : 0 \le s \le S\}$ – спрямляемая кривая на плоскости или в пространстве, s – длина ее дуги, M(s) = (x(s), y(s), z(s)), и пусть в каждой точке этой кривой задана числовая функция f(x(s), y(s), z(s)), имеющая, например, физический смысл линейной плотности в точке (x(s), y(s), z(s)).

Определение 5.1. Будем называть *криволинейным интегралом 1-го рода* от функции f по кривой L интеграл

$$\int_{L} f \, ds := \int_{0}^{S} f(x(s), y(s), z(s)) \, ds, \tag{5.1}$$

если он существует. Кривая L при этом называется nymem uhmerpupoвания. Свойства криволинейного интеграла 1-го рода:

- 1. Если функция f непрерывна на [0,S], то $\int\limits_{L}f\,ds$ существует. (Это свойство следует из определения криволинейного интеграла 1-го рода и достаточного условия существования определенного интеграла.)
- 2. $\int_{L} f \, ds$ не зависит от выбора направления кривой L.

Доказательство. Пусть L = AB (s = 0 в точке A и s = S в точке B). Обозначим длину дуги, отсчитываемую от точки B, через s^* . Тогда $s^* = S - s$, $ds^* = -ds$, а $M = M(S - s^*) = (x(S - s^*), y(S - s^*), z(S - s^*))$ – представление кривой BA. Поэтому

$$\int_{BA} f(x, y, z) ds^* = \int_0^S f(x(S - s^*), y(S - s^*), z(S - s^*)) ds^* =$$

$$= -\int_S^0 f(x(s), y(s), z(s)) ds = \int_0^S f(x(s), y(s), z(s)) ds = \int_{AB} f(x, y, z) ds.$$

3. Если кривая задана непрерывно дифференцируемым представлением $x(s) = \varphi(t)$, $y(s) = \psi(t)$, $z(s) = \chi(t)$, $a \le t \le b$, без особых точек $([\varphi'(t)]^2 + [\psi'(t)]^2 + [\chi'(t)]^2 > 0$,

 $t \in [a, b]$), то имеет место формула

$$\int_{L} f \, ds = \int_{a}^{b} f(\varphi(t), \psi(t), \chi(t)) \sqrt{[\varphi'(t)]^{2} + [\psi'(t)]^{2} + [\chi'(t)]^{2}} \, dt, \tag{5.2}$$

вытекающая из формулы замены переменных s=s(t) в определенном интеграле, где $s'(t)=\sqrt{[\varphi'(t)]^2+[\psi'(t)]^2+[\chi'(t)]^2}$:

$$\int_{L} f \, ds := \int_{0}^{S} f(x(s), y(s), z(s)) \, ds = \int_{AB} f(\varphi(t), \psi(t), \chi(t)) \, dt =$$

$$= \int_{a}^{b} f(\varphi(t), \psi(t), \chi(t)) \sqrt{[\varphi'(t)]^{2} + [\psi'(t)]^{2} + [\chi'(t)]^{2}} \, dt.$$

Замечание 5.1. Из формулы (5.2) следует независимость криволинейного интеграла 1-го рода от выбора параметра. Если кривая L является графиком непрерывно дифференцируемой функции $y = g(x), a \le x \le b$, то формула (5.2) принимает вид

$$\int_{L} f(x,y) ds = \int_{a}^{b} f(x,g(x)) \sqrt{1 + [g'(x)]^{2}} dx.$$
 (5.3)

Криволинейный интеграл 2-го рода.

Пусть L = AB – гладкая ориентированная кривая, $\mathbf{r}(s) = (x(s), y(s), z(s)), 0 \le s \le S$ – ее векторное представление (A = (x(0), y(0), z(0)), B = (x(S), y(S), z(S))). Пусть

$$\tau = \frac{d\mathbf{r}}{ds} = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}\right) = (\cos\alpha(s), \cos\beta(s), \cos\gamma(s)) -$$

единичный касательный вектор к кривой L, направление которого соответствует выбранному отсчету длин дуг ($\alpha(s)$, $\beta(s)$, $\gamma(s)$ – углы между касательной к кривой L в точке s и осями Ox, Oy, Oz соответственно), а

векторное поле, заданное на кривой L.

Определение 5.2. Величина

$$\int_{AB} \mathbf{a} \, d\mathbf{r} = \int_{AB} \mathbf{a} \tau \, ds = \int_{AB} P(x, y, z) \, dx + Q(x, y, z) \, dy + R(x, y, z) \, dz =$$

$$= \int_{AB} (P(x(s), y(s), z(s)) \cos \alpha(s) + Q(x(s), y(s), z(s)) \cos \beta(s) + R(x(s), y(s), z(s)) \cos \gamma(s)) \, ds$$
(5.4)

называется криволинейным интегралом 2-го рода от вектор-функции **a** по кривой L. Кривая L с учетом направления при этом называется путем интегрирования, а $\cos \alpha(s)$, $\cos \beta(s)$, $\cos \gamma(s)$ — ее направляющими косинусами в точке s.

Свойства криволинейного интеграла 2-го рода:

1. Если функции P,Q,R непрерывны на AB, то $\int_{AB} \mathbf{a} \, d\mathbf{r}$ существует.

Доказательство. В силу гладкости кривой L и непрерывности на ней функций P,Q и R подынтегральное выражение в криволинейном интеграле 1-го рода $\int \mathbf{a} \tau \, ds$ из определения (5.4) является непрерывным, а следовательно, этот интеграл существует.

2. При изменении ориентации кривой L криволинейный интеграл 2-го рода меняет только знак:

$$\int_{AB} \mathbf{a} \, d\mathbf{r} = -\int_{BA} \mathbf{a} \, d\mathbf{r}. \tag{5.5}$$

Доказательство. Если $s^* = S - s$ – переменная длина дуги, отсчитываемая от точки B кривой L, а τ^* – соответствующий единичный касательный вектор к L, то

$$\tau^* = \frac{d\mathbf{r}}{ds^*} = \frac{d\mathbf{r}}{ds} \frac{ds}{ds^*} = -\tau,$$

откуда

$$\int_{BA} \mathbf{a} \, d\mathbf{r} = \int_{BA} \mathbf{a} \tau^* \, ds^* = \int_{AB} \mathbf{a} \tau^* \, ds = -\int_{AB} \mathbf{a} \tau \, ds = -\int_{AB} \mathbf{a} \, d\mathbf{r}.$$

3. Если $\mathbf{r}(t)=(\varphi(t),\psi(t),\chi(t)),\ a\leq t\leq b,$ – векторное представление гладкой ориентированной кривой L, то

$$\int_{AB} \mathbf{a} \, d\mathbf{r} = \int_{a}^{b} \mathbf{ar}' \, dt. \tag{5.6}$$

Доказательство. Заметив, что

$$\tau = \frac{d\mathbf{r}}{ds} = \frac{\mathbf{r}'}{s'},$$

где штрихом обозначены производные по t, получим

$$\int_{AB} \mathbf{a} \, d\mathbf{r} = \int_{AB} \mathbf{a} \tau \, ds = \int_{a}^{b} \mathbf{a} \tau s' \, dt = \int_{a}^{b} \mathbf{a} \mathbf{r}' \, dt.$$

Замечание 5.2. Критерий независимости криволинейного интеграла 2-го рода от пути интегрирования будет доказан ниже.

6 Формула Грина

Определение 6.1. Пусть на плоскости задана правая система координат. Ориентацию простого замкнутого контура, лежащего на этой плоскости, будем называть *поло-эсительной*, если она соответствует движению против часовой стрелки (т.е. если при движении в соответствии с этой ориентацией конечная часть плоскости, ограниченная контуром, остается слева), и *отрицательной* в противном случае.

Определение 6.2. Ограниченная область G на плоскости Oxy называется элементарной относительно оси y, если существуют такие две непрерывные на некотором отрезке [a,b] функции φ и ψ , $\varphi < \psi$ при $x \in [a,b]$, что

$$G = \{(x, y): \ a < x < b, \ \varphi(x) < y < \psi(y)\}. \tag{6.1}$$

Аналогично определяется область, элементарная относительно оси x.

Лемма 6.1. Если область G элементарна относительно обеих осей, а функции P=P(x,y) и Q=Q(x,y) непрерывны вместе со своими производными $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ на замыкании \overline{G} области G, то справедлива формула Γ рина

$$\iint\limits_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int\limits_{\partial G^{+}} P dx + Q dy, \tag{6.2}$$

где ∂G^+ – граница G с положительной ориентацией.

Доказательство. Обозначим $A=(a,\varphi(a)),\ B=(b,\varphi(b)),\ A_1=(a,\psi(a)),\ B_1=(b,\psi(b)).$ Сведем интеграл $\iint_G \frac{\partial P}{\partial y}\,dx\,dy$ к повторному и применим формулу Ньютона–Лейбница:

$$\iint_{G} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \frac{\partial P}{\partial y} dy =$$

$$= \int_{a}^{b} (P(x, \psi(x)) - P(x, \varphi(x))) dx = \int_{A_{1}B_{1}} P dx - \int_{AB} P dx =$$

$$= -\int_{B_{1}A_{1}} P dx - \int_{AB} P dx.$$

Отрезки AA_1 и BB_1 являются гладкими кривыми. Они параллельны оси Oy, поэтому их касательные, совпадающие с ними по направлению, образуют с осью x прямой угол $\alpha = \pi/2$ с направляющим косинусом $\cos \alpha = 0$, откуда

$$\int_{A_1A} P \, dx = \int_{BB_1} P \, dx = 0$$

И

$$\iint_{G} \frac{\partial P}{\partial y} dx dy = -\int_{B_{1}A_{1}} P dx - \int_{A_{1}A} P dx - \int_{A_{1}A} P dx - \int_{AB} P dx - \int_{BB_{1}} P dx = -\int_{\partial G^{+}} P dx.$$

$$(6.3)$$

Аналогично доказывается, что

$$\iint_{G} \frac{\partial Q}{\partial x} dx dy = -\int_{\partial G^{+}} Q dx. \tag{6.4}$$

Вычитая (6.4) из (6.3), получим (6.2).

Теорема 6.1. Если G – ограниченная область, которую можно разбить на конечное множество элементарных по обеим осям областей и граница которой состоит из конечного числа простых замкнутых контуров, а функции P = P(x,y) и Q = Q(x,y) непрерывны вместе со своими производными $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ на замыкании \overline{G} области G, то справедлива формула (6.2).

Доказательство. Пусть область G разбита на элементарные области $G_i, i=1,\ldots,m$. По лемме 6.1 имеют место равенства

$$\iint_{G_i} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial G_i^+} P dx + Q dy.$$
 (6.5)

Суммируя левые части этих равенств и используя аддитивность кратного интеграла, получаем

$$\sum_{i=1}^{m} \iint_{G_i} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial G_i^+} P dx + Q dy.$$
 (6.6)

При суммировании правых частей равенств (6.5) остается только криволинейный интеграл по ∂G^+ , так как все остальные части границ ∂G_i встречаются в сумме дважды с противоположными ориентациями, в силу чего сумма интегралов по ним равна нулю:

$$\sum_{i=1}^{m} \int_{\partial G_{i}^{+}} P \, dx + Q \, dy = \int_{\partial G^{+}} P \, dx + Q \, dy. \tag{6.7}$$

Поскольку в силу (6.5) левые части формул (6.6) и (6.7) равны, то равны и правые, ч.т.д.

Следствие 6.1. Если в дополнение κ условиям теоремы граница ∂G области G кусочно гладкая, то формулу (6.2) можно записать в виде

$$\iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial G^{+}} (P \cos \alpha + Q \cos \beta) ds, \tag{6.8}$$

где $(\cos \alpha, \cos \beta)$ – единичный касательный вектор к границе ∂G области G.

(Следствие вытекает из теоремы в силу формулы криволинейного интеграла для кусочно гладких кривых.)

Вычисление площадей по формуле Грина. Полагая в формуле (6.2) P=0, Q=x на $\overline{G},$ получим

$$\mu(G) = \iint_{G} dx \, dy = \int_{\partial G^{+}} x \, dy. \tag{6.9}$$

Аналогично, при $P=-y,\,Q=0$

$$\mu(G) = \iint_G dx \, dy = -\int_{\partial G^+} y \, dx. \tag{6.10}$$

Складывая (6.9) и (6.10) и деля на 2, получаем

$$\mu(G) = \frac{1}{2} \int_{\partial G^{+}} x \, dy - y \, dx. \tag{6.11}$$

Пример 6.1. По формуле (6.11) площадь S, ограниченная эллипсом

$$x = a\cos t$$
, $y = b\sin t$, $0 \le t \le 2\pi$,

равна

$$S = \frac{1}{2} \int_{\partial G^{+}} x \, dy - y \, dx = \frac{1}{2} ab \int_{0}^{2\pi} (\cos^{2} t + \sin^{2} t) \, dt = \pi ab.$$

Замечание 6.1. Пользуясь формулой Грина и ее следствием (6.9), можно доказать формулу замены переменных в двойном интеграле от непрерывной функции f по области G с кусочно гладкой границей, которая является образом области D при взаимно однозначном и дважды непрерывно дифференцируемом отображении $F: D \to G$, заданном формулами

$$\begin{cases} x = x(u, v), \\ y = y(u, v). \end{cases}$$

Пусть вначале $f(x) \equiv 1$ в G. Тогда

$$\mu(G) = \iint_{G} dx \, dy = \int_{\partial G^{+}} x \, dy = \pm \int_{\partial D^{+}} x \left(\frac{\partial y}{\partial u} \, du + \frac{\partial y}{\partial u} \, du \right) =$$

$$= \pm \iint_{D} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} + x \frac{\partial^{2} y}{\partial v \partial u} - \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - x \frac{\partial^{2} y}{\partial u \partial v} \right) \, du \, dv =$$

$$\pm \iint_{D} \left(\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} - \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} \right) \, du \, dv = \iint_{D} |J_{F}| \, du \, dv$$

$$(6.12)$$

(ориентация ∂D выбирается так, чтобы итоговый интеграл был неотрицательным, как и исходный).

Пусть теперь f – произвольная непрерывная функция в G и $\tau_k = \{D_{j,k}\}_{j=1}^{j_k}$ – разбиение области D, а $\{F(D_{j,k})\}_{j=1}^{j_k}$ – соответствующее разбиение области D. Тогда интегральные суммы для $\int\limits_G f(x,y)\,dx\,dy$ имеют вид

$$\sum_{j=1}^{j_k} f(\xi_{j,k}, \eta_{j,k}) \mu(F(D_{j,k})) = \sum_{j=1}^{j_k} f(\xi_{j,k}, \eta_{j,k}) \int_{F(D_{j,k})} dx \, dy,$$

где $(\xi_{j,k},\eta_{j,k}) \in F(D_{j,k})$. Пользуясь формулой (6.12), перепишем это выражение в виде

$$\sum_{j=1}^{j_k} f(\xi_{j,k}, \eta_{j,k}) \int_{D_{j,k}} |J_F(u, v)| \, du \, dv,$$

что по интегральной теореме о среднем равно

$$\sum_{j=1}^{j_k} f(\xi_{j,k}, \eta_{j,k}) J_F(u_{j,k}, v_{j,k}) \int_{D_{j,k}} du \, dv,$$

где $(u_{j,k}, v_{j,k}) \in D_{j,k}$. Выбирая в качестве $(\xi_{j,k}, \eta_{j,k})$ прообраз $(u_{j,k}, v_{j,k})$ при отображении F и переходя к пределу при $|\tau_k| \to 0$, получаем (6.2).

7 Поверхностные интегралы 1-го и 2-го рода

Определение 7.1. Пусть $(u,v) \in \overline{G}$, где G – область в \mathbb{R}^2 . Будем называть непрерывно дифференцируемое отображение $\mathbf{r}: \overline{G} \to \mathbb{R}^3$ поверхностью, а множество $S = \{\mathbf{r} = \mathbf{r}(u,v): (u,v) \in \overline{G}\}$ – ее носителем. Носитель S также называют поверхностью.

Определение 7.2. Точка $M_0 = \mathbf{r}(u_0, v_0)$ поверхности S называется неособой, если в ней векторы \mathbf{r}_u и \mathbf{r}_v не коллинеарны, и особой в противном случае.

Определение 7.3. Плоскость, проходящая через неособую точку $M_0 = \mathbf{r}(u_0, v_0)$ поверхности параллельно векторам $\mathbf{r}_u(u_0, v_0)$ и $\mathbf{r}_v(u_0, v_0)$, называется касательной плоскостью к поверхности S в точке M_0 .

Уравнение касательной плоскости имеет вид

$$(\mathbf{r} - \mathbf{r_0}, \mathbf{r}_u^0, \mathbf{r}_v^0) := \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_u^0 & y_u^0 & z_u^0 \\ x_v^0 & y_v^0 & z_v^0 \end{vmatrix} = 0.$$
 (7.1)

Если поверхность S является графиком дифференцируемой функции вида z=f(x,y), то

$$\mathbf{r}(x,y) = (x, y, f(x,y)), \quad \mathbf{r}_x = (1, 0, f_x), \quad \mathbf{r}_y = (0, 1, f_y).$$

В этом случае уравнение (7.1) принимает вид

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ 1 & 0 & f_x^0 \\ 0 & 1 & f_y^0 \end{vmatrix} = 0,$$

т. е.

$$z - z_0 = (x - x_0)f_x^0 + (y - y_0)f_y^0, (7.2)$$

где $z_0 = f(x_0, y_0), f_x^0 = f_x(x_0, y_0), f_y^0 = f_y(x_0, y_0).$ Определение 7.4. Ненулевой вектор, перпендикулярный касательной плоскости в (неособой) точке $M(u_0, v_0)$ поверхности S, называется нормалью к поверхности S в этой точке, а прямая, проходящая через точку $M(u_0, v_0)$ в направлении нормали, – нормальной прямой.

Очевидно, что нормалью к поверхности S в точке $M(u_0, v_0)$ является, в частности, вектор

$$\nu = \mathbf{r}_u^0 \times \mathbf{r}_v^0 = \left(\left| \begin{array}{cc} y_u^0 & z_u^0 \\ y_v^0 & z_v^0 \end{array} \right|, - \left| \begin{array}{cc} x_u^0 & z_u^0 \\ x_v^0 & z_v^0 \end{array} \right|, \left| \begin{array}{cc} x_u^0 & y_u^0 \\ x_v^0 & y_v^0 \end{array} \right| \right).$$

Соответственно уравнение нормальной прямой к поверхности S в точке $M(u_0, v_0)$ имеет вид

$$\frac{x - x_0}{\begin{vmatrix} y_u^0 & z_u^0 \\ y_v^0 & z_v^0 \end{vmatrix}} = \frac{y - y_0}{\begin{vmatrix} z_u^0 & x_u^0 \\ z_v^0 & x_v^0 \end{vmatrix}} = \frac{z - z_0}{\begin{vmatrix} x_u^0 & y_u^0 \\ x_v^0 & y_v^0 \end{vmatrix}},\tag{7.3}$$

а в случае поверхности, представляющей собой график функции $z = f(x, y), (x, y) \in \overline{G}$, - вид

$$\frac{x - x_0}{f_x^0} = \frac{y - y_0}{f_y^0} = -(z - z_0), \tag{7.4}$$

где f_x^0 , f_y^0 определены выше.

Пусть в каждой точке поверхности $\mathbf{r} = (x, y, z)$ задана функция f(x, y, z), имеющая, например, физический смысл поверхностной плотности в точке (x, y, z). Найдем массу поверхности S.

Для решения этой задачи приблизим область G совокупностью n квадратных подобластей G_k вида $(u, u + h) \times (v, v + h)$, где h > 0, а поверхность S – совокупностью четырехугольников S_k с вершинами $\mathbf{r}(u,v)$, $\mathbf{r}(u+h,v)$, $\mathbf{r}(u,v+h)$, $\mathbf{r}(u+h,v+h)$. По формуле Тейлора первого порядка с остаточным членом в форме Пеано имеем

$$\mathbf{r}(u+h,v) - \mathbf{r}(u,v) = \mathbf{r}_u h + o(h),$$

$$\mathbf{r}(u, v + h) - \mathbf{r}(u, v) = \mathbf{r}_v h + o(h).$$

Поэтому площадь четырехугольника S_k приближенно равна площади параллелограмма, построенного на векторах $\mathbf{r}_u h$ и $\mathbf{r}_v h$, т.е. модулю векторного произведения

$$\Delta \sigma_k = |\mathbf{r}_u h \times \mathbf{r}_v h| = |\mathbf{r}_u \times \mathbf{r}_v| h^2 = |\mathbf{r}_u \times \mathbf{r}_v| \Big|_{G_k} \mu(G_k). \tag{7.5}$$

Введем обозначения

$$g_{11} = \mathbf{r}_u^2, \quad g_{12} = (\mathbf{r}_u, \mathbf{r}_v), \quad g_{22} = \mathbf{r}_v^2.$$

Тогда

$$|\mathbf{r}_{u} \times \mathbf{r}_{v}|^{2} = \mathbf{r}_{u}^{2} \mathbf{r}_{v}^{2} \cos^{2}(\mathbf{r}_{u}, \mathbf{r}_{v}) = \mathbf{r}_{u}^{2} \mathbf{r}_{v}^{2} - \mathbf{r}_{u}^{2} \mathbf{r}_{v}^{2} \sin^{2}(\mathbf{r}_{u}, \mathbf{r}_{v}) = \mathbf{r}_{u}^{2} \mathbf{r}_{v}^{2} - (\mathbf{r}_{u}, \mathbf{r}_{v})^{2} = g_{11}g_{22} - g_{12}^{2}.$$

Это позволяет переписать равенство (7.5) в виде

$$\Delta \sigma_k = \sqrt{g_{11}g_{22} - g_{12}^2} \Big|_{G_k} \mu(G_k). \tag{7.6}$$

Выберем в каждой из подобластей G_k произвольную точку (ξ_k, η_k) и определим значение функции f в точке $\mathbf{r}(\xi_k, \eta_k)$. Масса области S_k будет приближенно равна

$$f(\mathbf{r}(\xi_k,\eta_k))\Delta\sigma_k$$
.

Сумма всех таких масс приближенно представляет массу поверхности S:

$$m(S) \approx \sum_{k=1}^{n} f(\mathbf{r}(\xi_k, \eta_k)) \Delta \sigma_k,$$

причем тем точнее, чем меньше диаметр областей G_k . Поэтому массу поверхности можно выразить формулой

$$m = \lim_{h \to 0} \sum_{k=1}^{n} f(\mathbf{r}(\xi_k, \eta_k)) \Delta \sigma_k$$

или с учетом (7.6)

$$m = \lim_{h \to 0} \sum_{k=1}^{n} f(\mathbf{r}(\xi_k, \eta_k)) \sqrt{g_{11}g_{22} - g_{12}^2} \Big|_{G_k} \mu(G_k).$$
 (7.7)

Из определения двойного интеграла следует, что

$$m = \iint_G f(x(u, v), y(u, v), z(u, v)) \sqrt{g_{11}g_{22} - g_{12}^2} \, du \, dv,$$

если этот интеграл существует.

Аналогичные конструкции возникают и в других задачах. Соответственно вводится следующее

Определение 7.5. Поверхностным интегралом первого рода от функции f(x,y,z) по поверхности S называется двойной интеграл

$$\iint_{S} f \, dS = \iint_{G} f(x(u, v), y(u, v), z(u, v)) \sqrt{g_{11}g_{22} - g_{12}^{2}} \, du \, dv. \tag{7.8}$$

В частности, если поверхность S задана функцией z = g(x, y), а (u, v) = (x, y), имеем

$$\mathbf{r} = (x, y, g(x, y)), \quad \mathbf{r}_u = (1, 0, g_x(x, y)), \quad \mathbf{r}_v = (0, 1, g_y(x, y)),$$

откуда

$$g_{11}g_{22} - g_{12}^2 = 1 + g_x^2(x, y)g_y^2(x, y)$$

и в силу (7.8)

$$\iint_{S} f \, dS = \iint_{C} f(x, y, g(x, y)) \sqrt{1 + g_x^2(x, y)g_y^2(x, y)} \, dx \, dy. \tag{7.9}$$

Интеграл (7.8) или (7.9) существует, если область G ограничена и квадрируема, функция f (кусочно) непрерывна и функция \mathbf{r} или соответственно g (кусочно) непрерывно дифференцируема в своих областях определения. Его свойства следуют из общих свойств двойного интеграла.

При $f \equiv 1$ поверхностный интеграл (7.8) определяет площадь поверхности S:

$$\mu(S) = \iint_{C} \sqrt{g_{11}g_{22} - g_{12}^2} \, du \, dv. \tag{7.10}$$

Пусть теперь в каждой точке поверхности S непрерывным образом задано направление единичной нормали

$$\nu = (\cos \alpha, \cos \beta, \cos \gamma).$$

Для многих поверхностей это можно сделать двумя способами.

Определение 7.6. Поверхность, для которой выбор направления единичной нормали зафиксирован, называют *ориентированной* и обозначают в зависимости от этого выбора S^+ или S^- .

Пусть

$$\mathbf{a}(\mathbf{r}(u,v)) = (P(\mathbf{r}(u,v)), Q(\mathbf{r}(u,v)), R(\mathbf{r}(u,v))) -$$

непрерывная векторная функция, заданная на S (имеющая, например, физический смысл силы, с которой на точку $\mathbf{r}(u,v)$ действует некоторое поле).

Рассмотрения, аналогичные предыдущим, приводят к следующему определению величины, выражающей поток силы \mathbf{a} через поверхность S^+ .

Определение 7.7. Поверхностным интегралом второго рода по ориентированной поверхности S^+ называется интеграл

$$\iint_{S^{+}} \mathbf{a} \, \mathbf{dS} = \iint_{S} (\mathbf{a}, \nu) \, dS. \tag{7.11}$$

Интеграл (7.11) записывают также в координатном виде

$$\iint_{S^+} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, dS. \tag{7.12}$$

При изменении знака ν и соответственно ориентации поверхности с S^+ на S^- или наоборот знак интеграла (7.11) также меняется:

$$\iint\limits_{S^{-}}\mathbf{a}\,\mathbf{dS}=\iint\limits_{S}(\mathbf{a},-\nu)\,dS=-\iint\limits_{S}(\mathbf{a},\nu)\,dS=-\iint\limits_{S^{+}}\mathbf{a}\,\mathbf{dS}.$$

В остальном поверхностный интеграл второго рода имеет обычные свойства интеграла. Обычно через S^+ обозначают поверхность S, ориентированную с помощью вектора

$$\nu = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|}.$$

В этом случае

$$\iint_{S^{+}} \mathbf{a} \, \mathbf{dS} = \iint_{S} (\mathbf{a}, \nu) \, dS = \iint_{G} \mathbf{a} \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, du \, dv =$$

$$= \iint_{G} (\mathbf{a}, \mathbf{r}_{u}, \mathbf{r}_{v}) \, du \, dv.$$
(7.13)

Если $\mathbf{a} = (P, Q, R)$, $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$, то формулу (7.13) можно переписать в координатном виде:

$$\iint_{S^{+}} \mathbf{a} \, \mathbf{dS} = \iint_{S} \begin{vmatrix} P & Q & R \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v} \end{vmatrix} du \, dv. \tag{7.14}$$

Если поверхность S имеет явное представление $z=f(x,y),\,(x,y)\in\overline{G},$ и $P\equiv Q\equiv 0$ на S, то

$$\left|\begin{array}{cc} x_u & y_u \\ x_v & y_v \end{array}\right| = \left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| = 1$$

и поэтому для интеграла по верхней стороне S^+ поверхности S будем иметь

$$\iint_{S^{+}} R \, dx \, dy = \iint_{G} R(x, y, f(x, y)) \, dx \, dy. \tag{7.15}$$

8 Формулы Гаусса-Остроградского и Стокса

Пусть G – область в пространстве \mathbb{R}^3 . Предположим, что на плоскости Oxy существует такая квадрируемая область D, ограниченная спрямляемой кривой, что граница ∂G области G состоит из двух поверхностей S_1 и S_2 , являющихся графиками непрерывных функций $z = \varphi(x,y)$ и $z = \psi(x,y)$ ($\varphi(x,y) \leq \psi(x,y)$) на \overline{D} , и, быть может, цилиндрической боковой поверхности S_0 , основанием которой служит граница ∂D , а образующая параллельна оси Oz:

$$S = \partial G = S_1 \cup S_2 \cup S_0. \tag{8.1}$$

В этом случае область G называется элементарной относительно оси Oz и имеет вид

$$G = \{(x, y, z) : (x, y) \in D, \, \varphi(x, y) \le z \le \psi(x, y)\}. \tag{8.2}$$

Пусть на S задана функция F(x,y,z). Определим поверхностный интеграл второго рода по внешней стороне поверхности S как сумму соответствующих интегралов по верхней стороне S_1 , нижней стороне S_2 и интеграла по S_0 (равного 0, т.к. на этой поверхности направляющий косинус $\cos \gamma = 0$):

$$\iint_{S^{+}} F(x, y, z) dx dy =$$

$$= \iint_{S_{1}^{+}} F(x, y, z) dx dy + \iint_{S_{2}^{+}} F(x, y, z) dx dy + \iint_{S_{0}} F(x, y, z) dx dy.$$
(8.3)

Аналогично определяется поверхностный интеграл второго рода $\iint_{S^-} F(x,y,z) \, dx \, dy$ по внутренней стороне S, а также области G, элементарные относительно осей Ox и Oy, и

соответствующие поверхностные интегралы

$$\iint\limits_{S^+} F(x,y,z)\,dy\,dz,\quad \iint\limits_{S^-} F(x,y,z)\,dy\,dz,\quad \iint\limits_{S^+} F(x,y,z)\,dx\,dz,\quad \iint\limits_{S^-} F(x,y,z)\,dx\,dz.$$

Теорема 8.1. Если функции P, Q и R непрерывны вместе со своими частными производными $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$ и $\frac{\partial R}{\partial z}$ в элементарной (относительно всех координатных осей) области G, то имеет место формула (Гаусса-Остроградского)

$$\iiint\limits_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint\limits_{S^{+}} P dy dz + Q dx dz + R dx dy. \tag{8.4}$$

Замечание 8.1. Для кусочно гладкой области формулу (8.4) можно записать в виде

$$\iiint\limits_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \iint\limits_{S^{+}} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS$$
 (8.5)

или, если ввести обозначения $\mathbf{a} = (P, Q, R)$, div $\mathbf{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial u} + \frac{\partial R}{\partial z}$,

$$\iiint_{G} \operatorname{div} \mathbf{a} \, dx \, dy \, dz = \iint_{S^{+}} \mathbf{a} \, \nu \, dS. \tag{8.6}$$

Доказательство. Так как область G элементарна относительно Oz, последнее слагаемое в левой части (8.4) можно переписать в виде повторного интеграла и применить формулу Ньютона–Лейбница:

$$\iiint_{G} \frac{\partial R}{\partial z} dx dy dz = \iint_{D} \left(\int_{\varphi(x,y)}^{\psi(x,y)} \frac{\partial R}{\partial z} dz \right) dx dy =
= \iint_{D} \left[R(x,y,\psi(x,y)) - R(x,y,\varphi(x,y)) \right] dx dy =
= \int_{S_{1}^{+}} R dx dy + \iint_{S_{2}^{+}} R dx dy + \iint_{S_{0}} R dx dy = \iint_{S_{+}} R dx dy.$$
(8.7)

Аналогично доказываются равенства

$$\iiint\limits_{G} \frac{\partial P}{\partial x} \, dx \, dy \, dz = \iint\limits_{S^{+}} P \, dy \, dz, \quad \iiint\limits_{G} \frac{\partial Q}{\partial y} \, dx \, dy \, dz = \iint\limits_{S^{+}} Q \, dx \, dz. \tag{8.8}$$

Складывая (8.7) и (8.8), получаем (8.4).

Пусть теперь поверхность S является графиком дважды непрерывно дифференцируемой функции z = f(x, y) на \overline{G} :

$$S = \{(x, y, z) : (x, y) \in \overline{G}, z = f(x, y)\},\$$

 $\Gamma_0 = \partial G$ – кусочно гладкий контур, $\Gamma = f(\Gamma_0)$ – его образ при отображении f (край поверхности S). Зададим положительную ориентацию этих контуров:

$$\Gamma_0^+ = \{x(t), y(t) : a \le t \le b\},$$

$$\Gamma^+ = \{x(t), y(t), f(x(t), y(t)) : a \le t \le b\}.$$

Через $\nu = (\cos \alpha, \cos \beta, \cos \gamma)$ обозначим единичную нормаль на S, образующую острый угол с осью Oz.

Теорема 8.2. Если векторное поле $\mathbf{a} = (P, Q, R)$ непрерывно дифференцируемо в некоторой окрестности S, то справедлива формула Стокса

$$\int_{\Gamma^{+}} P \, dx + Q \, dy + R \, dz = \iint_{S} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \, dS. \tag{8.9}$$

Доказательство. Выразим криволинейный интеграл от первого слагаемого в левой части (8.9) через интеграл по параметру, а затем применим к полученному интегралу формулу Грина и сведем его к кратному интегралу:

$$\int_{\Gamma^{+}} P(x, y, z) dx = \int_{a}^{b} P(x(t), y(t), f(x(t), y(t))) x'(t) dt =
= \int_{\Gamma^{+}_{0}} P(x, y, f(x, y)) dx = - \iint_{G} \frac{\partial P(x, y, f(x, y))}{\partial y} dx dy =
= - \iint_{G} \left[\frac{\partial P(x, y, z)}{\partial y} + \frac{\partial P(x, y, z)}{\partial z} \frac{\partial f(x, y)}{\partial y} \right] dx dy =
= - \iint_{G} \frac{\partial P(x, y, z)}{\partial y} dx dy - \iint_{G} \frac{\partial P(x, y, z)}{\partial z} \frac{\partial f(x, y)}{\partial y} dx dy =
= - \iint_{G} \frac{\partial P}{\partial y} \cos \gamma dS - \iint_{G} \frac{\partial P}{\partial z} \frac{\partial f}{\partial y} \cos \gamma dS.$$
(8.10)

Так как

$$\cos \alpha = \frac{-f_x}{\sqrt{1 + f_x^2 + f_y^2}}, \quad \cos \beta = \frac{-f_y}{\sqrt{1 + f_x^2 + f_y^2}}, \quad \cos \gamma = \frac{1}{\sqrt{1 + f_x^2 + f_y^2}},$$

то $-\frac{\partial f}{\partial y}\cos\gamma = \cos\beta$. Подставив это выражение в (8.10), получаем

$$\int_{\Gamma^{+}} P \, dx = -\iint_{S} \left(\frac{\partial P}{\partial z} \cos \beta - \frac{\partial P}{\partial y} \cos \gamma \right) \, dS. \tag{8.11}$$

Аналогично доказывается равенство

$$\int_{\Gamma^{+}} Q \, dy = -\iint_{S} \left(\frac{\partial Q}{\partial x} \cos \gamma - \frac{\partial Q}{\partial z} \cos \alpha \right) \, dS. \tag{8.12}$$

Несколько другой вид имеют преобразования интеграла $\int\limits_{\Gamma_+} R\,dz$:

$$\int_{\Gamma^{+}} R(x, y, z) dx = \int_{a}^{b} R(x(t), y(t), f(x(t), y(t)))z'(t) dt =$$

$$= \int_{a}^{b} R(x(t), y(t), f(x(t), y(t))) \times$$

$$\times \left[\frac{\partial f(x(t), y(t))}{\partial x} x'(t) + \frac{\partial f(x(t), y(t))}{\partial y} y'(t) \right] dt =$$

$$= \int_{\Gamma_{0}^{+}} R(x, y, f(x, y)) \left[\frac{\partial f(x(t), y(t))}{\partial x} dx + \frac{\partial f(x(t), y(t))}{\partial y} dy \right] =$$

$$= \iint_{G} \left[\frac{\partial}{\partial x} \left(R \frac{\partial f}{\partial y} \right) - \frac{\partial}{\partial y} \left(R \frac{\partial f}{\partial x} \right) \right] dx dy =$$

$$= \iint_{G} \left[\left(\frac{\partial R}{\partial x} + \frac{\partial R}{\partial z} \frac{\partial f}{\partial x} \right) \frac{\partial f}{\partial y} + R \frac{\partial^{2} f}{\partial x \partial y} - \left(\frac{\partial R}{\partial y} + \frac{\partial R}{\partial z} \frac{\partial f}{\partial y} \right) \frac{\partial f}{\partial x} - \right.$$

$$\left. - R \frac{\partial^{2} f}{\partial y \partial x} \right] dx dy = \iint_{G} \left(\frac{\partial R}{\partial x} \frac{\partial f}{\partial y} - \frac{\partial R}{\partial y} \frac{\partial f}{\partial x} \right) dx dy =$$

$$= \iint_{G} \left(\frac{\partial R}{\partial x} \frac{\partial f}{\partial y} \cos \gamma - \frac{\partial R}{\partial y} \frac{\partial f}{\partial x} \cos \gamma \right) dS =$$

$$= \iint_{G} \left(\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta \right) dS.$$

$$(8.13)$$

Складывая равенства (8.11)-(8.13), получаем (8.10).

Замечание 8.2. Формула (8.10) обобщается на кусочно гладкие поверхности аналогично формуле Грина.

9 Скалярные и векторные поля

Определение 9.1. Будем называть функцию с числовыми или векторными значениями, заданная на множестве $G \subset \mathbb{R}^n$ (n=2 или 3), *скалярным* или *векторным полем*.

Пусть векторная функция $\mathbf{a}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ дифференцируема в каждой точке. Далее будем обозначать символом ∇ оператор $\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)$.

Определение 9.2. Величина

$$\operatorname{div} \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
(9.1)

называется дивергенцией поля а, а величина

$$\operatorname{rot} \mathbf{a} = \nabla \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
(9.2)

или в координатной записи

$$\operatorname{rot} \mathbf{a} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$
(9.3)

– ротором (вихрем) поля **а**.

В этих обозначениях формулы Гаусса-Остроградского и Стокса можно переписать в виде

$$\iiint_{G} \operatorname{div} \mathbf{a} \, dx \, dy \, dz = \iint_{S} \mathbf{a} \, \nu \, ds, \tag{9.4}$$

$$\iint_{S} \nu \operatorname{rot} \mathbf{a} \, dS = \int_{\Gamma^{+}} \mathbf{a} \, d\mathbf{r}. \tag{9.5}$$

Теорема 9.1. Пусть $\mathbf{a}(M)$ — непрерывно дифференцируемое в области $G \subset \mathbb{R}^3$ векторное поле, $M_0 \in G$, $\{D\}$ — семейство ограниченных областей с кусочно гладкими границами ∂D , содержащее области сколь угодно малого диаметра и такое, что $M_0 \in D \subset \overline{D} \subset G$, а ν — внешняя нормаль на границе ∂D области D. Тогда

$$\operatorname{div} \mathbf{a} = \lim_{\operatorname{diam} D \to 0} \frac{\iint\limits_{\partial D} \mathbf{a} \, \nu \, ds}{\mu(D)}.$$
(9.6)

Доказательство. Применяя к векторному полю **a** в области D формулу Гаусса—Остроградского, а затем интегральную теорему о среднем, получим

$$\iint_{\partial D} \mathbf{a} \, \nu \, ds = \iiint_{G} \operatorname{div} \mathbf{a} \, dx \, dy \, dz = \operatorname{div} \mathbf{a}(M) \, \mu(D),$$

где $M \in D$ и, следовательно,

$$\operatorname{div} \mathbf{a} = \frac{\iint \mathbf{a} \, \nu \, ds}{\mu(D)}.\tag{9.7}$$

Поскольку $M,\,M_0\in D,\,$ то $\lim_{{
m diam}\,D o 0}M=M_0,\,$ а в силу непрерывности дивергенции

$$\lim_{\operatorname{diam} D \to 0} \mathbf{a}(M) = \mathbf{a}(M_0).$$

Поэтому, перейдя к пределу при $\dim D \to 0$ в обеих частях равенства (9.7), получим (9.6).

Аналогичная формула имеет место для проекции ротора на произвольный единичный вектор ν . Для ее вывода проведем плоскость π через точку M_0 перпендикулярно ν и возьмем на этой плоскости область G, содержащую точку M_0 и ограниченную кусочно гладким контуром Γ . Контур Γ , ориентированный согласованно с вектором ν (по правилу штопора), обозначим через Γ_+ .

Теорема 9.2. Имеет место формула

$$\nu \operatorname{rot} \mathbf{a} = \lim_{\operatorname{diam} S \to 0} \frac{\iint\limits_{\Gamma_{+}} \mathbf{a} \, d\mathbf{r}}{\mu(S)}.$$
(9.8)

Доказательство этой теоремы проводится аналогично предыдущей на основе формулы Стокса (9.5), интегральной теоремы о среднем и предельного перехода.

Определение 9.3. Если Γ – кусочно гладкий замкнутый контур, на котором задано векторное поле ${\bf a}$, то криволинейный интеграл второго рода $\int\limits_{\Gamma} {\bf a} \, d{\bf r}$ называют $uup\kappa y n$ -

цией векторного поля по этому контуру, а интеграл $\int\limits_{\Gamma} {\bf a} \, \nu \, ds - nomo \kappa o M$ векторного поля через контур Γ .

Определение 9.4. Если кусочно гладкая поверхность S, на которой задано векторное поле \mathbf{a} , ориентирована с помощью единичной нормали ν , то поверхностный интеграл второго рода

$$\int_{S^+} \mathbf{a} \, d\mathbf{S} = \int_{S} \mathbf{a} \, \nu \, ds$$

называют потоком векторного поля через поверхность S.

Определение 9.5. Непрерывное в области $G \subset \mathbb{R}^3$ векторное поле называют *соленоидальным*, если для любой ограниченной области $D \subset G$ с кусочно гладкой границей $\partial D \subset G$ его поток через эту границу равен нулю.

Теорема 9.3. Для того чтобы векторное поле, непрерывно дифференцируемое в некоторой области, было соленоидальным, необходимо и достаточно, чтобы его дивергенция в каждой точке этой области равнялась нулю.

Доказательство. Необходимость. Пусть $M_0 \in G$. Так как множество G открыто, оно содержит вместе с этой точкой все шары вида $B_{\varepsilon}(M_0)$, где $\varepsilon > 0$ достаточно мало, вместе с их границами. В силу соленоидальности поля его поток через поверхность любого такого шара равен 0. Устремляя $\varepsilon \to 0$ и применяя формулу (9.7), получаем $\operatorname{div} \mathbf{a}(M_0) = 0$.

Достаточность непосредственно следует из формулы Гаусса-Остроградского.

Определение 9.6. Векторное поле (P,Q,R), для которого существует функция u такая, что в любой точке (x,y,z) области G

$$\frac{\partial u}{\partial x} = P, \quad \frac{\partial u}{\partial y} = Q, \quad \frac{\partial u}{\partial z} = R,$$
 (9.9)

называется потенциальным полем, а функция u — его потенциальной функцией (потенциалом).

Теорема 9.4. Для того чтобы непрерывное векторное поле **a** в области G было потенциальным, необходимо и достаточно, чтобы циркуляция поля **a** по любому замкнутому кусочно гладкому контуру $\Gamma \subset G$ равнялась нулю.

Приведенный критерий потенциальности можно заменить другим, более удобным для проверки.

Определение 9.7. Множество $G \subset \mathbb{R}^3$ называется *односвязным*, если для любого кусочно гладкого замкнутого контура, лежащего в G, существует кусочно гладкая ориентируемая поверхность $S \subset G$, краем которой он является.

Пример 9.1. Шар является односвязной областью, а тор – нет.

Теорема 9.5. Для того чтобы непрерывное векторное поле \mathbf{a} в односвязной области G было потенциальным, необходимо и достаточно, чтобы его ротор в этой области равнялся нулю:

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$
 (9.10)

Доказательство. Heoбxodumocmv. Если поле **a** имеет потенциальную функцию u, то равенства (9.10) следуют из независимости ее вторых смешанных производных от порядка интегрирования, например,

$$\frac{\partial R}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial Q}{\partial z}.$$

Достаточность. Если выполнено условие (9.10) и $\Gamma \subset G$ – кусочно гладкий замкнутый контур, то в силу односвязности G существует кусочно гладкая ориентируемая поверхность $S \subset G$, краем которой Γ является, и по формуле Стокса

$$\int_{\Gamma} \mathbf{a} \, d\mathbf{r} = \iint_{S} \nu \operatorname{rot} \mathbf{a} \, dS = 0.$$

10 Числовые ряды

Определение 10.1. Пара последовательностей $\{u_n\}$ и $\{s_n\}$, где $u_n, s_n \in \mathbb{R}, n \in \mathbb{N}$,

$$s_n = u_1 + \dots + u_n, \quad n \in \mathbb{N}, \tag{10.1}$$

называется uucnoвым pядом (бесконечной суммой) и обозначается $u_1+\cdots+u_n+\ldots$ или

$$\sum_{n=1}^{\infty} u_n. \tag{10.2}$$

Элементы последовательности $\{u_n\}$ называют *членами ряда*, а элементы последовательности $\{s_n\}$ – его *частичными суммами*.

Замечание 10.1. Иногда нумерацию членов ряда начинают не с 1, а с 0 или с другого числа.

Замечание 10.2. Из определения (10.1) следует равенство $s_n = s_{n-1} + u_n$, откуда

$$u_n = s_n - s_{n-1}, \quad n = 2, 3, \dots$$
 (10.3)

Определение 10.2. Если существует конечный предел

$$s = \lim_{n \to \infty} s_n,\tag{10.4}$$

его называют суммой pяда (10.2) и пишут

$$\sum_{n=1}^{\infty} u_n = s. \tag{10.5}$$

В этом случае ряд (10.2) называют cxodsumumcs, а в противном – pacxodsumumcs.

Пример 10.1. Примером сходящегося ряда является ряд $\sum_{n=1}^{\infty} q_n$, членами которого являются элементы геометрической прогрессии со знаменателем q таким, что |q| < 1:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q}.$$

При $|q| \ge 1$ (например, при q=1, так как в этом случае $\lim_{n \to \infty} s_n = \lim_{n \to \infty} n = \infty$) этот ряд расходится.

Теорема 10.1. (Необходимое условие сходимости ряда.) $Ecnu\ pnd\ cxodumcs,\ mo\ nocnedoв ательность его членов стремится <math>\kappa$ нулю.

Доказательство. Если существует конечный предел $\lim_{n\to\infty} s_n = s$, то из равенства (10.3) следует

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0.$$

Теорема 10.2. Если ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ сходятся, то для любых $\lambda, \mu \in \mathbb{R}$ ряд $\sum_{n=1}^{\infty} (\lambda u_n + \mu v_n)$ сходится и

$$\sum_{n=1}^{\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=1}^{\infty} u_n + \mu \sum_{n=1}^{\infty} v_n.$$
 (10.6)

Доказательство. Положим $s_n = \sum\limits_{k=1}^n u_n, \, \sigma_n = \sum\limits_{k=1}^n v_n, \, \text{тогда}$

$$\sum_{k=1}^{n} (\lambda u_n + \mu v_n) = \lambda s_n + \mu \sigma_n.$$

Если существуют конечные пределы $s=\lim_{n\to\infty}s_n$ и $\sigma=\lim_{n\to\infty}\sigma_n$, то по свойствам пределов существует и конечный предел

$$\lim_{n\to\infty}(\lambda s_n+\mu\sigma_n)=\lambda\lim_{n\to\infty}s_n+\mu\lim_{n\to\infty}\sigma_n=\lambda s+\mu\sigma, \ \text{ч. т. д.}$$

Определение 10.3. Ряд $\sum_{k=1}^{\infty} u_{n+k}$ называется n-м остаток ряда сходится, используется обозначение

$$r_n = \sum_{k=1}^{\infty} u_{n+k}. (10.7)$$

Теорема 10.3. Если ряд сходится, то и любой его остаток сходится. Если какой-то остаток ряда сходится, то сходится и сам ряд, причем для любого $n \in \mathbb{N}$ в принятых обозначениях имеет место формула

$$s = s_n + r_n. (10.8)$$

Доказательство. Если s_n и $s_m^{(n)}$ – частичные суммы ряда $\sum\limits_{n=1}^{\infty}u_n$ и его n-го остатка соответственно:

$$s_n = u_1 + \dots + u_n, \quad s_m^{(n)} = u_{n+1} + \dots + u_{n+m},$$

TO

$$s_{n+m} = s_n + s_m^{(n)}, (10.9)$$

и пределы обеих частей этого выражения существуют или не существуют одновременно. Если они существуют, переход к пределу при $m \to \infty$ в формуле (10.9) приводит к (10.8).

Теорема 10.4. (Критерий Коши сходимости ряда.) Для сходимости ряда $\sum_{n=1}^{\infty} u_n$ необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовало такое $n_0 \in \mathbb{N}$, что для всех $n > n_0$ и всех целых $p \geq 0$ имеет место неравенство

$$|u_n + u_{n+1} + \dots + u_{n+p}| < \varepsilon.$$
 (10.10)

Доказательство. Это утверждение следует из критерия Коши существования конечного предела последовательности, примененного к последовательности частичных сумм s_n ряда $\sum_{n=1}^{\infty} u_n$, так как

$$u_n + u_{n+1} + \dots + u_{n+p} = s_{n+p} - s_{n-1}.$$

Пример 10.2. Для *гармонического ряда* $\sum_{n=1}^{\infty} \frac{1}{n}$ при любом $n \in \mathbb{N}$ имеем

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}.$$

Поэтому при $0 < \varepsilon < 1/2$ нельзя подобрать номера n_0 , указанного в критерии Коши. Следовательно, ряд расходится.

11 Знакопостоянные ряды

Лемма 11.1. Если члены ряда $\sum_{n=1}^{\infty} u_n$ неотрицательны, то он сходится тогда и только тогда, когда его частичные суммы s_n ограничены сверху.

Доказательство. При условиях леммы $s_{n+1} = s_n + u_{n+1} \ge s_n \ (n \in \mathbb{N})$, т.е. последовательность $\{s_n\}$ возрастает, а возрастающая последовательность имеет конечный предел тогда и только тогда, когда она ограничена сверху.

Теорема 11.1. (Интегральный признак Коши сходимости ряда.) Если функция f(x) неотрицательна и убывает на полупрямой $x \geq 1$, то сходимость ряда

$$\sum_{k=1}^{\infty} f(n) \tag{11.1}$$

эквивалентна сходимости несобственного интеграла

$$\int_{1}^{+\infty} f(x) \, dx. \tag{11.2}$$

Доказательство. В силу монотонности функции f(x) она интегрируема на любом конечном отрезке $[1, \eta] \subset [1, +\infty)$.

Если $k \le x \le k+1$, то вследствие убывания функции f(x) будем иметь $f(k) \ge f(x) \ge f(k+1)$. Интегрируя это неравенство по отрезку [k,k+1], получаем

$$f(k) \int_{k}^{k+1} dx \ge \int_{k}^{k+1} f(x) dx \ge f(k+1) \int_{k}^{k+1} dx,$$

т.е.

$$f(k) \ge \int_{k}^{k+1} f(x) dx \ge f(k+1).$$

Суммируя эти неравенства по k от 1 до n, получаем

$$\sum_{k=1}^{n} f(k+1) \le \sum_{k=1}^{n} \int_{k}^{k+1} f(x) \, dx \le \sum_{k=1}^{n} f(k),$$

т.е.

$$s_{n+1} - f(1) \le \int_{1}^{n+1} f(x) dx \le s_n, \tag{11.3}$$

где
$$s_n = \sum_{k=1}^n f(k), n \in \mathbb{N}.$$

Если интеграл (11.2) сходится, то из неравенства (11.3) в силу неотрицательности f следует, что последовательность частичных сумм s_n ограничена сверху:

$$s_{n+1} \le f(1) + \int_{1}^{n+1} f(x) \, dx \le f(1) + \int_{1}^{+\infty} f(x) \, dx < +\infty,$$

и ряд (11.1) сходится по лемме.

Если же интеграл (11.2) сходится, то в силу неотрицательности f имеем

$$\lim_{n \to \infty} \int_{1}^{n+1} f(x) dx = \int_{1}^{+\infty} f(x) dx = +\infty,$$

а так как согласно неравенству (11.3)

$$s_n \ge \int_{1}^{n+1} f(x) \, dx,$$

то, перейдя к пределу в этом неравенстве при $n \to \infty$, получим $\lim_{n \to \infty} s_n = +\infty$. Это означает, что ряд (11.1) расходится.

Следствие 11.1. Обобщенный гармонический ряд Дирихле

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

cxodumcs $npu\ s > 1\ u\ pacxodumcs$ $npu\ s \le 1$.

Доказательство. При $s \leq 0$ утверждение следствия вытекает из необходимого условия сходимости числовых рядов, а при s > 0 – из интегрального признака сходимости для функции $f(x) = x^{-s}$.

Теорема 11.2. (Первый или допредельный признак сравнения.) $\Pi ycmb\ 0 \le u_n \le v_n, n \in \mathbb{N}$. *Тогда:*

- 1. если ряд $\sum_{n=1}^{\infty} v_n$ сходится, то и ряд $\sum_{n=1}^{\infty} u_n$ сходится;
- 2. если ряд $\sum_{n=1}^{\infty} u_n$ расходится, то и ряд $\sum_{n=1}^{\infty} v_n$ расходится.

Доказательство. Если $\sigma=\sum\limits_{n=1}^{\infty}v_n<+\infty$ и $\sigma_n:=\sum\limits_{k=1}^nv_k$, то для любого $n\in\mathbb{N}$ имеем

$$s_n = \sum_{k=1}^n u_k \le \sum_{k=1}^n v_k = \sigma_n \le \sigma,$$

откуда в силу леммы следует сходимость ряда $\sum_{n=1}^{\infty} u_n$. Второе утверждение теоремы следует из первого путем рассуждений от противного.

Следствие 11.2. (Второй или предельный признак сравнения.) $\Pi y cm b \ u_n \geq 0, v_n > 0 \ (n \in \mathbb{N}) \ u$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = l.$$

Тогда:

- 1. если ряд $\sum_{n=1}^{\infty} v_n$ сходится и $0 \le l < +\infty$, то и ряд $\sum_{n=1}^{\infty} u_n$ сходится;
- 2. если ряд $\sum_{n=1}^{\infty} u_n$ расходится $u \ 0 < l \le +\infty$, то u ряд $\sum_{n=1}^{\infty} v_n$ расходится.

Это следствие доказывается аналогично своему аналогу для несобственных интегралов.

Теорема 11.3. (Признак Даламбера.) *Пусть для ряда* $\sum_{n=1}^{\infty} u_n$ с неотрицательными членами существует предел

$$\lim_{n \to \infty} \frac{u_n}{u_{n-1}} = l. \tag{11.4}$$

Tогда, если l < 1, то ряд сходится, а если l > 1, то расходится.

Доказательство. Пусть l<1. Выберем число $q\in(l,1)$. Тогда в силу условия (11.4) и свойств предела существует такой номер n_0 , что для всех $n>n_0$ выполняется неравенство $\frac{u_n}{u_{n-1}}< q$, откуда $u_n< qu_{n-1}$. Применяя это неравенство последовательно для $n=n_0+1,\ n_0+2,\ldots$, получим $u_{n_0+k}< q^ku_{n_0}$ для любого $k\in\mathbb{N}$. Но ряд $\sum_{k=1}^{\infty}q^ku_{n_0}=u_{n_0}\sum_{k=1}^{\infty}q^k$ сходится, так как q<1. Следовательно, по признаку сравнения

сходится и ряд
$$\sum_{k=1}^{\infty} u_{n_0+k}$$
, а значит, и $\sum_{n=1}^{\infty} u_n$.

Если же l>1, в силу условия (11.4) и свойств предела существует такой номер n_0 , что для всех $n>n_0$ выполняется неравенство $\dfrac{u_n}{u_{n-1}}>1$, откуда $u_n>u_{n-1}$. Применяя это неравенство последовательно для $n=n_0+1,\,n_0+2,\ldots$, получим $u_{n_0+k}>u_{n_0+k-1}>\cdots>u_{n_0}>0$ для любого $k\in\mathbb{N}$, т.е. последовательность членов ряда $\sum_{n=1}^\infty u_n$ не стремится к нулю, откуда в силу необходимого условия следует его расходимость.

Теорема 11.4. (Радикальный признак Коши.) Пусть для ряда $\sum_{n=1}^{\infty} u_n$ с неотрицательными членами существует предел

$$\lim_{n \to \infty} \sqrt[n]{u_n} = l. \tag{11.5}$$

Тогда, если l < 1, то ряд сходится, а если l > 1, то расходится.

Доказательство. Пусть l<1. Выберем число $q\in(l,1)$. Тогда в силу условия (11.5) и свойств предела существует такой номер n_0 , что для всех $n>n_0$ выполняется

неравенство $\sqrt[n]{u_n} < q$, откуда $u_n < q^n$. Поскольку ряд $\sum_{n=1}^{\infty} q^n$ сходится при q < 1, по

признаку сравнения сходится и ряд $\sum_{k=1}^{\infty}u_{n_0+k}$, а значит, и $\sum_{n=1}^{\infty}u_n$.

Если же l > 1, в силу условия (11.5) и свойств предела существует такой номер n_0 , что для всех $n > n_0$ выполняется неравенство $\sqrt[n]{u_n} > 1$, откуда $u_n > 1$, и ряд расходится, так как для него не выполняется необходимое условие сходимости.

12 Знакопеременные ряды

Теорема 12.1. (Признак Лейбница.) Если последовательность $\{u_n\}$ убывает и стремится к нулю:

$$u_n \ge u_{n+1} \quad (n \in \mathbb{N}), \quad \lim_{n \to \infty} u_n = 0,$$
 (12.1)

то ряд

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n \tag{12.2}$$

сходится κ некоторому числу s, причем для его частичных сумм s_n при любом $n \in \mathbb{N}$ выполняется неравенство

$$|s_n - s| \le u_{n+1}. (12.3)$$

Из (12.1) следует, что $u_n \ge 0$. При $u_n > 0$ ряды вида (12.2) называют *знакочередую-щимися*.

Доказательство. В силу убывания u_n имеем

$$s_{2n+2} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n+1} - u_{2n+2}) =$$

= $s_{2n} + (u_{2n+1} - u_{2n+2}) > s_{2n} > 0, \ n = 2, 3, \dots$

И

$$s_{2n} = u_1 - (u_2 - u_3) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n} \le u_1.$$

Поскольку последовательность $\{s_{2n}\}$ возрастает и ограничена сверху, то она имеет конечный предел

$$s = \lim_{n \to \infty} s_{2n},$$

причем

$$0 \le s \le u_1,\tag{12.4}$$

а так как $s_{2n+1} = s_{2n} + u_{2n+1}$, то

$$\lim_{n\to\infty} s_{2n+1} = \lim_{n\to\infty} s_{2n} + \lim_{n\to\infty} u_{2n+1} = s.$$

Неравенство (12.3) следует из того, что

$$s - s_n = \sum_{k=1}^{\infty} (-1)^{n+k+1} u_{n+k} = (-1)^n \sum_{k=1}^{\infty} (-1)^{k+1} u_k,$$

где
$$0 \le |s - s_n| = \sum_{k=1}^{\infty} (-1)^{k+1} u_k \le u_{k+1}$$
 в силу (12.4).

Определение 12.1. Ряд $\sum_{n=1}^{\infty} u_n$ называется *абсолютно сходящимся*, если сходится

ряд $\sum_{n=1}^{\infty} |u_n|$. Если же первый ряд сходится, а второй – нет, первый ряд называется условно сходящимся.

Теорема 12.2. (Критерий Коши абсолютной сходимости ряда.) Для абсолютной сходимости ряда $\sum_{k=1}^{\infty} u_n$ необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовало такое $n_0 \in \mathbb{N}$, что для всех $n > n_0$ и всех целых $p \geq 0$ имеет место неравенство

$$\sum_{k=0}^{p} |u_{n+k}| < \varepsilon. \tag{12.5}$$

Доказательство. Это следует из определения 19.1 и критерия Коши сходимости ряда.

Теорема 12.3. Если ряд абсолютно сходится, то он сходится.

Доказательство. Это следует из неравенства

$$\left| \sum_{k=0}^{p} u_{n+k} \right| \le \sum_{k=0}^{p} |u_{n+k}|. \tag{12.6}$$

По критерию Коши абсолютной сходимости ряда для любого $\varepsilon > 0$ существует такое $n_0 \in \mathbb{N}$, что для всех $n > n_0$ и всех целых $p \ge 0$ правая часть неравенства (12.6) меньше ε , а следовательно, то же верно и для его левой части, и ряд сходится по критерию Коши для обычной сходимости.

Пример 12.1. Ряд $\sum_{k=1}^{\infty} \frac{(-1)^n}{2^n}$ сходится абсолютно, так как сходится ряд $\sum_{k=1}^{\infty} \frac{1}{2^n}$.

Ряд $\sum_{k=1}^{\infty} \frac{(-1)^n}{n}$ сходится по признаку Лейбница, но не абсолютно (условно), так как

гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{n}$ расходится.

Теорема 12.4. \vec{J} инейная комбинация абсолютно сходящихся рядов является абсолютно сходящимся рядом.

Доказательство. Если ряды $\sum_{k=1}^{\infty} u_n$ и $\sum_{k=1}^{\infty} v_n$ абсолютно сходятся, а $\lambda, \mu \in \mathbb{R}$, то

сходится и ряд $\sum_{k=1}^{\infty} |\lambda| |u_n| + |\mu| |v_n|$, откуда в силу неравенств

$$|\lambda u_n + \mu v_n| \le |\lambda| |u_n| + |\mu| |v_n|, \quad n \in \mathbb{N},$$

по признаку сравнения следует сходимость ряда $\sum_{k=1}^{\infty} |\lambda u_n + \mu \, v_n|$, т.е. абсолютная сходи-

мость ряда $\sum_{k=1}^{\infty} \lambda u_n + \mu v_n$.

Приведем без доказательства некоторые свойства абсолютно сходящихся рядов, вообще говоря, не присущие условно сходящимся.

Теорема 12.5. (Переместительное свойство абсолютно сходящихся рядов.) *Если ряд*

$$\sum_{n=1}^{\infty} u_n \tag{12.7}$$

абсолютно сходится, то любой ряд

$$\sum_{m=1}^{\infty} u_m^*,\tag{12.8}$$

состоящий из тех же членов в другом порядке, тоже абсолютно сходится и имеет ту же сумму.

Замечание 12.1. Любой (не обязательно абсолютно) сходящийся ряд $\sum_{n=1}^{\infty} u_n$ облада-

ет и сочетательным свойством: ряд $\sum_{n=1}^\infty v_n$, где $v_n=\sum_{k=m_{n-1}+1}^{m_n}u_k,\,m_n o\infty$ при $n o\infty,$

 $m_n > m_{n-1} \ (n \in \mathbb{N}), \ m_0 = 0$, сходится к той же сумме, что и $\sum_{n=1}^{\infty} u_n$, так как последовательность частичных сумм второго ряда является подпоследовательностью частичных сумм первого.

Теорема 12.6. Если ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ абсолютно сходятся, то абсолютно сходится и ряд, составленный из всех попарных произведений их членов, причем его сумма в равна произведению сумм данных рядов.

13 Функциональные последовательности и ряды

Определение 13.1. Последовательность функций $f_n: X \to \mathbb{R}$ называется (равномерно) ограниченной на множестве X, если существует такая константа c > 0, что для всех $n \in \mathbb{N}$ и $x \in X$ выполнено неравенство

$$|f_n(x)| \le c. \tag{13.1}$$

Определение 13.2. Последовательность функций $f_n: X \to \mathbb{R}$ называется (поточечно) сходящейся на множестве X, если при любом фиксированном $x \in X$ числовая последовательность $\{f_n(x)\}$ сходится к некоторому числу $f(x) \in \mathbb{R}$. В этом случае функцию $f: X \to \mathbb{R}$ называют (поточечным) пределом функциональной последовательности $\{f_n\}$.

Определение 13.3. Множество всех числовых рядов $\sum_{n=1}^{\infty} f_n(x)$ с $x \in X$ называется

 ϕ ункциональным рядом $\sum_{n=1}^{\infty} f_n(x)$ на множестве X, функции $f_n(x)$ – его членами, сумма

$$s_n(x)=\sum_{k=1}^n f_k(x)$$
 – частичной суммой, ряд $\sum_{k=1}^\infty f_{n+k}(x)$ – остатком.

Определение 13.4. Ряд

$$\sum_{n=1}^{\infty} f_n(x) \tag{13.2}$$

называется (поточечно) сходящимся на множестве X, если последовательность $\{s_n(x)\}$ его частичных сумм сходится на этом множестве к некоторой функции s(x), которую называют суммой ряда (13.2). Говорят также, что функция s(x) раскладывается в этот ряд, и пишут

$$s(x) = \sum_{n=1}^{\infty} f_n(x).$$

Если ряд (13.2) при любом фиксированном $x \in X$ сходится абсолютно, то его называют абсолютно сходящимся на множестве X.

Пример 13.1. Последовательность $\{x^n\}$ (соответственно ряд $\{x^n-x^{n-1}\}$) сходятся на отрезке [0,1] к разрывной функции

$$s(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1. \end{cases}$$

Этот пример показывает, что из поточечной (даже абсолютной) сходимости ряда с непрерывными членами не следует непрерывность его суммы. Чтобы гарантировать ее, требуется сходимость в более сильном смысле.

Определение 13.5. Функциональная последовательность $\{f_n\}$ называется равномерно сходящейся к функции f на множестве X, если для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех $x \in X$ и $n > n_0$ выполняется неравенство

$$|f_n(x) - f(x)| < \varepsilon. \tag{13.3}$$

Соответственно определяется равномерная сходимость для функциональных рядов.

Лемма 13.1. Для того чтобы последовательность $\{f_n\}$ равномерно сходилась κ функции f, необходимо и достаточно, чтобы

$$\lim_{n \to \infty} \sup_{X} |f_n(x) - f(x)| = 0.$$
 (13.4)

Доказательство. Пусть $f_n \to f$ равномерно на X. Тогда по определению для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех $x \in X$ и $n > n_0$ выполняется неравенство (13.3), а следовательно, и

$$\sup_{X} |f_n(x) - f(x)| < \varepsilon,$$

что и означает выполнение условия (13.4).

Если же условие (13.4) выполнено, то по определению предела числовой последовательности существует такой номер n_0 , что для всех $x \in X$ и $n > n_0$ выполняется неравенство (13.4), а следовательно, и (13.3), что и означает равномерную сходимость f_n к f.

Следствие 13.1. Если существует такая последовательность $\{\alpha_n\}$, что $\lim_{n\to\infty}\alpha_n=0$ и для всех $x\in X$ выполняется неравенство

$$|f_n(x) - f(x)| \le \alpha_n,\tag{13.5}$$

то последовательность $\{f_n(x)\}$ равномерно сходится κ функции f на множестве X. Доказательство. Из (13.5) следует, что

$$\sup_{X} |f_n(x) - f(x)| \le \alpha_n,$$

а это в силу $\lim_{n\to\infty} \alpha_n = 0$ влечет (13.4).

Теорема 13.1. (Критерий Коши равномерной сходимости функциональных последовательностей.) Для того чтобы последовательность $\{f_n\}$ равномерно сходилась к некоторой функции f на множестве X, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер n_0 , что для всех $x \in X$, $n > n_0$ и $p = 0, 1, \ldots$ выполнялось неравенство

$$|f_{n+p}(x) - f_n(x)| < \varepsilon. \tag{13.6}$$

Доказательство. Пусть $f_n \to f$ равномерно на X. Тогда по определению для любого $\varepsilon > 0$ существует такой номер n_0 , что для всех $x \in X$ и $n > n_0$ выполняется неравенство

$$|f_n(x) - f(x)| < \varepsilon/2,$$

откуда

$$|f_{n+p}(x) - f_n(x)| = |[f_{n+p}(x) - f(x)] + [f(x) - f_n(x)]| \le \le |f_{n+p}(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

т.е. выполнено (13.6).

Пусть теперь выполнено (13.6), тогда для каждого $x \in X$ последовательность $\{f_n(x)\}$ удовлетворяет критерию Коши для числовых последовательностей и, следовательно, сходится. Обозначая ее предел через f(x) и переходя в (13.6) к пределу при $p \to \infty$, получаем (13.3).

Определение 13.6. Ряд (13.2) называется равномерно сходящимся на множестве X, если на этом множестве равномерно сходится последовательность его частичных сумм.

Замечание 13.1. Если какие-то функциональные последовательности или ряды равномерно сходятся на некотором множестве, то любые их конечные линейные комбинации также равномерно сходятся к соответствующим линейным комбинациям их пределов.

Теорема 13.2. (Необходимое условие равномерной сходимости функционального ряда.) Если ряд (13.2) равномерно сходится на множестве X, то последовательность его членов равномерно стремится к нулю на этом множестве.

Доказательство. Так как

$$u_n(x) = s_n(x) - s_{n-1}(x) \quad (n = 2, 3, ...),$$

а $\{s_n(x)\}$ и $\{s_{n-1}(x)\}$ равномерно сходятся к сумме ряда s(x) на X, то утверждение теоремы следует из предыдущего замечания.

Теорема 13.3. (Критерий Коши равномерной сходимости функциональных рядов.) Для того чтобы ряд (13.2) равномерно сходился на множестве X, необходимо u достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер n_0 , что для всех $x \in X$, $n > n_0$ u p = 0, 1, ... выполнялось неравенство

$$|u_{n+1}(x) + \dots + u_{n+p}(x)| < \varepsilon. \tag{13.7}$$

Доказательство. Утверждение теоремы вытекает из критерия Коши равномерной сходимости последовательностей с учетом равенства

$$u_{n+1}(x) + \dots + u_{n+p}(x) = s_{n+p}(x) - s_n(x).$$

Лемма 13.2. Если ряд (13.2) равномерно сходится на множестве X, а функция f ограничена на этом множестве, то ряд

$$\sum_{n=1}^{\infty} f(x)u_n(x) \tag{13.8}$$

тоже равномерно сходится на X.

Доказательство. Ограниченность функции f означает существование такой константы c>0, что $|f(x)|\leq c$ для всех $x\in X,$ откуда

$$|f(x)u_n(x) + \dots + f(x)u_{n+p}(x)| \le |f(x)| \cdot |u_n(x) + \dots + u_{n+p}(x)|$$

$$\le c|u_n(x) + \dots + u_{n+p}(x)|,$$

и из выполнения критерия Коши равномерной сходимости для ряда (13.2) следует его выполнение для ряда (13.8).

Теорема 13.4. (Признак Вейерштрасса.) *Если числовой ряд*

$$\sum_{n=1}^{\infty} \alpha_n, \quad \alpha_n \ge 0, \tag{13.9}$$

cxodumcs и для bcex $x \in X$ и $n \in \mathbb{N}$ выполняется неравенство

$$|u_n(x)| \le \alpha_n,\tag{13.10}$$

то ряд (13.2) абсолютно и равномерно сходится на множестве X.

Доказательство. Абсолютная сходимость ряда (13.2) при каждом $x \in X$ следует из принципа сравнения. Для доказательства равномерной сходимости обозначим

$$r_n(x) = \sum_{k=n+1}^{\infty} u_k(x), \ \varepsilon_n = \sum_{k=n+1}^{\infty} \alpha_k.$$
 Тогда

$$|r_n(x)| = \left|\sum_{k=n+1}^{\infty} u_k(x)\right| \le \sum_{k=n+1}^{\infty} |u_k(x)| \le \sum_{k=n+1}^{\infty} \alpha_k = \varepsilon_n.$$

Из сходимости ряда (13.9) следует, что $\lim_{n\to\infty} \varepsilon_n = 0$, а тогда в силу следствия 20.1 ряд (13.2) равномерно сходится на множестве X.

Имеют место следующие свойства равномерно сходящихся рядов:

Теорема 13.5. *Если ряд*

$$\sum_{n=1}^{\infty} u_n(x) \tag{13.11}$$

равномерно сходится на множестве X и в некоторой точке $x_0 \in X$ все члены ряда непрерывны, то сумма ряда s(x) непрерывна в этой точке.

Замечание 13.2. Условие равномерной сходимости в теореме существенно (см. пример 13.1).

Теорема 13.6. (Почленное интегрирование рядов.) Пусть члены ряда (13.11) непрерывны на отрезке [a,b] и ряд равномерно сходится на нем. Тогда, какова бы ни была точка $x_0 \in [a,b]$, ряд

$$\sum_{n=1}^{\infty} \int_{x_0}^{x} u_n(t) dt$$
 (13.12)

также равномерно сходится на отрезке [a,b] и

$$\int_{x_0}^{x} \left(\sum_{n=1}^{\infty} u_n(t) \right) dt = \sum_{n=1}^{\infty} \int_{x_0}^{x} u_n(t) dt.$$
 (13.13)

Замечание 13.3. Условие равномерной сходимости существенно, как показывает **Пример 13.2.** Пусть функции $f_n(x)$ заданы формулами

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le 1/n, \\ 2n - n^2 x, & 1/n \le x \le 2/n, \\ 0, & 2/n \le x \le 1. \end{cases}$$

Тогда для любой точки $x\in [0,1]$ имеем $\lim_{n\to\infty} f_n(x)=0,$ откуда $\int\limits_0^1 \lim_{n\to\infty} f_n(x)\,dx=0,$ но

$$\int\limits_0^1 f_n(x)\,dx=1$$
для любого $n\in\mathbb{N}$ и поэтому $\lim\limits_{n\to\infty}\int\limits_0^1 f_n(x)\,dx=1.$

Теорема 13.7. (Почленное дифференцирование рядов.) Пусть члены ряда (13.11) непрерывно дифференцируемы на отрезке [a,b], а ряд производных

$$\sum_{n=1}^{\infty} u_n'(x) \tag{13.14}$$

равномерно сходится на [a,b]. Тогда, если ряд (13.11) сходится хотя бы в одной точке $x_0 \in [a,b]$, то он сходится равномерно на всем отрезке [a,b], причем его сумма s(x) является непрерывно дифференцируемой функцией и

$$s'(x) = \sum_{n=1}^{\infty} u'_n(x). \tag{13.15}$$

14 Степенные ряды

Определение 14.1. Степенным рядом называется ряд вида

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$
 (14.1)

Замечание 14.1. Заменой $y=z-z_0$ и переобозначением z=y ряд (14.1) сводится к виду

$$f(z) = \sum_{n=0}^{\infty} a_n z^n. \tag{14.2}$$

Теорема 14.1. (Абель.) Если степенной ряд (14.2) сходится при $z=z_0\neq 0$, то при любом z таком, что $|z|<|z_0|$, он сходится абсолютно.

Доказательство. По необходимому условию сходимости $\lim_{n\to\infty} a_n z_0^n = 0$, и поэтому существует c>0 такое, что для всех $n\in\mathbb{N}$ имеем

$$|a_n z_0^n| \le c,$$

откуда

$$|a_n z^n| = |a_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \le c \left| \frac{z}{z_0} \right|^n,$$

и ряд (14.2) сходится по первому признаку сравнения с геометрической прогрессией, имеющей знаменатель

$$\left|\frac{z}{z_0}\right| < 1.$$

Следствие 14.1. Если ряд (14.2) расходится при $z = z_0 \neq 0$, то при любом z таком, что $|z| < |z_0|$, он тоже расходится.

Доказательство. Утверждение следует из предыдущей теоремы путем рассуждений от противного.

Определение 14.2. Число

$$R = \sup X,\tag{14.3}$$

где X — множество неотрицательных значений z, при которых ряд (14.2) сходится, называется радиусом сходимости этого ряда, а интервал (-R,R) — его интервалом сходимости.

Теорема 14.2. Пусть R – радиус сходимости ряда (14.2). Тогда при |z| < R ряд сходится абсолютно, при |z| > R расходится, а в любом интервале (-r,r) с $0 \le r < R$ сходится равномерно.

Доказательство. Из равенства (14.3) и определения sup следует, что для $0 < R \le +\infty$ и |z| < R существует $x \in X$ такое, что |z| < x < R, а так как по определению множества X во всех его точках ряд сходится, то по теореме 14.1 он абсолютно сходится и в точке z.

Если $0 \le R < +\infty$ и |z| > R, то для любой точки x такой, что R < x < |z|, в силу равенства (14.3) и определения ѕир имеем $x \notin X$, т.е. ряд $\sum_{n=1}^{\infty} a_n x^n$ расходится, и по следствию 14.1 расходится и ряд (14.3).

При $|z| \le r < R$ имеем

$$|a_n z^n| \le |a_n r^n|,$$

где ряд $\sum_{n=1}^{\infty} a_n r^n$ абсолютно сходится по доказанному, а следовательно, ряд (14.3) равномерно сходится на отрезке [-r,r] по признаку Вейерштрасса.

Аналогично определяется и исследуется интервал сходимости ряда (14.1).

Теорема 14.3. (Абель.) Если $R < +\infty$ – радиус сходимости степенного ряда (14.2) и этот ряд сходится при z = R, то он сходится равномерно на отрезке [0, R].

Следствие 14.2. Если ряд (14.2) сходится при z = R, то его сумма непрерывна на отрезке [0, R].

Доказательство. Утверждение вытекает из непрерывности каждого члена ряда (14.2) на отрезке [0, R] и теорем 13.5 и 14.3.

Пример 14.1. Радиус сходимости ряда $\sum_{n=1}^{\infty} n! z^n$ равен 0 по признаку Даламбера:

$$\lim_{n\to\infty}\frac{(n+1)!\cdot|z|^{n+1}}{n!\cdot|z|^n}=|z|\lim_{n\to\infty}(n+1)=\left\{\begin{array}{ll} +\infty, & \text{если } z\neq 0,\\ 0, & \text{если } z=0.\end{array}\right.$$

Аналогично доказывается, что радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{z^n}{n!}$ равен $+\infty$, а рядов $\sum_{n=1}^{\infty} z^n$

и $\sum_{n=1}^{\infty} \frac{z^n}{n}$ – единице. В силу признака равномерной сходимости Вейерштрасса и необходи-

мого условия сходимости единице равен также радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, причем

ряд $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ во всех граничных точках интервала сходимости абсолютно сходится, ряд

 $\sum_{n=1}^{\infty} z^n$ — расходится (по необходимому условию сходимости), а ряд $\sum_{n=1}^{\infty} \frac{z^n}{n}$ сходится при z=1.

Лемма 14.1. Радиусы сходимости R, R_1 и R_2 соответственно рядов (14.2),

$$\sum_{n=0}^{\infty} \frac{a_{n+1}}{n+1} z^{n+1},\tag{14.4}$$

$$\sum_{n=1}^{\infty} n a_n z^{n-1} \tag{14.5}$$

равны: $R = R_1 = R_2$.

Доказательство. Из неравенств

$$\left| \frac{a_{n+1}}{n+1} z^{n+1} \right| = \frac{1}{n+1} |z| |a_n z^n| \le |z| |a_n z^n|$$

И

$$|a_n z^n| \le n|a_n z^n| = |na_n z^{n-1}| |z|$$

следует, что сходимость ряда (14.5) в точке z влечет сходимость ряда (14.2), а та, в свою очередь, – сходимость ряда (14.4), т.е. $R_1 \ge R \ge R_2$.

Остается показать, что $R_2 \ge R_1$. Для этого возьмем $z \ne 0, \, |z| < R_1$ и докажем, что в точке z сходится ряд (14.5). Запишем

$$|na_n z^{n-1}| = \frac{n(n+1)}{|z|^2} \left| \frac{z}{r} \right|^{n+1} \left| \frac{a_{n+1}}{n+1} r^{n+1} \right| = \frac{n(n+1)}{|z|^2} q^{n+1} \left| \frac{a_{n+1}}{n+1} r^{n+1} \right|, \tag{14.6}$$

где $|z| < r < R_1$ и q = |z/r|, 0 < q < 1. Ряд

$$\sum_{n=0}^{\infty} \frac{n(n+1)}{|z|^2} q^{n+1}$$

сходится по признаку Даламбера, поэтому последовательность его членов ограничена:

$$\left| \frac{n(n+1)}{|z|^2} q^{n+1} \right| \le c \quad \forall n \in \mathbb{N}. \tag{14.7}$$

В силу (14.6) и (14.7) имеем

$$|na_n z^{n-1}| \le c \left| \frac{a_{n+1}}{n+1} r^{n+1} \right|.$$

Так как $r < R_1$, то ряд $\sum_{n=0}^{\infty} \frac{a_{n+1}}{n+1} r^{n+1}$ абсолютно сходится, и по первому признаку сравнения абсолютно сходится и ряд (14.5), ч.т.д.

Теорема 14.4. Если функция f раскладывается в окрестности z_0 в степенной ряд (14.1) с радиусом сходимости R > 0, то:

1. Функция f имеет на интервале $(z_0 - R, z_0 + R)$ производные всех порядков, которые можно найти из ряда (14.1) почленным дифференцированием:

$$f^{(m)}(z) = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)a_n(z-z_0)^{n-m}.$$
 (14.8)

2. Для любого $z \in (z_0 - R, z_0 + R)$

$$\int_{z_0}^{z} f(t) dt = \sum_{n=0}^{\infty} \frac{a_{n+1}}{n+1} (z - z_0)^{n+1}$$
(14.9)

(p s d (14.1) можно почленно интегрировать на интервале $(z_0 - R, z_0 + R)$).

3. Ряды (14.1), (14.8) и (14.9) имеют одинаковые радиусы сходимости.

Доказательство. Утверждение 3 следует из предыдущей леммы, а утверждения 1 и 2 – из теоремы 14.3 для $[z_0 - r, z_0 + r]$, где 0 < r < R, и общих теорем 13.6 и 13.7 о дифференцируемости и интегрируемости функциональных рядов.

Следствие 14.3. В условиях теоремы имеем

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \quad n \in \mathbb{N}$$
 (14.10)

и соответственно

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n,$$
(14.11)

т.е. разложение (14.1) единственно.

Доказательство. Формула (14.10) следует из (14.8) при $z=z_0$.

15 Ряд Тейлора

Определение 15.1. Пусть функция f определена в некоторой окрестности точки x_0 и имеет в этой точке производные всех порядков. Тогда ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \tag{15.1}$$

называется ее pядом Tейлора в точке x_0 .

Из теоремы 13.7 следует, что если функция раскладывается в окрестности некоторой точки в степенной ряд, то она бесконечно дифференцируема (и этот ряд является ее рядом Тейлора). Обратное неверно.

Пример 15.1. Пусть

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 (15.2)

Если $x \neq 0$, то все производные этой функции имеют вид

$$f^{(n)}(x) = e^{-1/x^2} \sum_{k=0}^{m_n} \frac{c_k}{x^k}, \quad c_k \in \mathbb{R}, \quad m_n \in \mathbb{N}.$$
 (15.3)

Сделав замену переменной $t = 1/x^2$, получим

$$\lim_{x \to 0} \left| \frac{1}{x^m} e^{-1/x^2} \right| = \lim_{t \to +\infty} \frac{t^{m/2}}{e^t} = 0, \quad m \in \mathbb{N}$$

и в силу (15.3)

$$\lim_{x \to 0} f^{(n)}(x) = f^{(n)}(0) = 0,$$

т.е. все члены ряда Тейлора функции (15.2) равны нулю, в отличие от значений функции в окрестности 0.

Из формулы Тейлора

$$f(x) = s_n(x) + r_n(x), (15.4)$$

где

$$s_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$
(15.5)

а $r_n(x)$ – остаточный член формулы Тейлора, вытекает, что функция f(x) раскладывается в ряд Тейлора в окрестности точки x_0 тогда и только тогда, когда

$$\lim_{x \to x_0} r_n(x) = 0. \tag{15.6}$$

Установим новые формы записи $r_n(x)$.

Теорема 15.1. Если функция f непрерывно дифференцируема n+1 раз на интервале $(x_0 - h, x_0 + h)$, h > 0, то остаточный член формулы Тейлора можно записать в следующих формах:

$$r_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt,$$
 (15.7)

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi = x_0 + \theta(x - x_0), \quad 0 < \theta < 1, \tag{15.8}$$

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (1 - \theta)^n (x - x_0)^{n+1}, \quad 0 < \theta < 1.$$
 (15.9)

Эти формы называются соответственно интегральной, формой Лагранжа и формой Коши.

Доказательство. По формуле Ньютона-Лейбница

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t)dt.$$

Эта формула служит базисом индукции для доказательства (15.7). Шаг индукции при $1 \le m \le n$ делается с помощью интегрирования по частям:

$$\frac{1}{(m-1)!} \int_{x_0}^x f^m(t)(x-t)^{m-1} dt = -\frac{1}{m!} \int_{x_0}^x f^m(t) d(x-t)^m =$$

$$= -\frac{f^{(m)}(t)(x-t)^m}{m!} \Big|_{t=x_0}^{t=x} + \frac{1}{m!} \int_{x_0}^x f^{m+1}(t) (x-t)^m dt =$$

$$= \frac{f^{(m)}(t)}{m!} (x-x_0)^m + \frac{1}{m!} \int_{x_0}^x f^{m+1}(t) (x-t)^m dt.$$

По интегральной теореме о среднем с учетом знакопостоянства $(x-t)^n$ (так как t изменяется между x_0 и x) имеем

$$r_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{f^{(n+1)}(\xi)}{n!} \int_{x_0}^x (x-t)^n dt =$$

$$= \frac{f^{(n+1)}(\xi)}{n!} \left(-\frac{(x-t)^{n+1}}{n+1} \right) \Big|_{t=x_0}^{t=x} = \frac{f^{(n+1)}(\xi)}{n!} (x-x_0)^{n+1},$$

а также

$$r_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n (x-x_0)$$

с $\xi = x_0 + \theta(x - x_0)$, $0 < \theta < 1$, откуда

$$x - \xi = x - x_0 - \theta(x - x_0) = (x - x_0)(1 - \theta),$$

что доказывает (15.8) и (15.9).

Из доказанного утверждения вытекает

Теорема 15.2. (Достаточное условие разложимости функции в степенной ряд.) Ecли функция f имеет в окрестности точки x_0 все производные, ограниченные в совокупности на этой окрестности, то f раскладывается в этой окрестности в степенной ряд.

Доказательство. Условие теоремы означает существование такой константы c > 0, что для всех $x \in (x_0 - h, x_0 + h)$, h > 0, и всех $n = 0, 1, 2, \dots$ выполняется неравенство

$$|f^{(n)}(x)| \le c. (15.10)$$

Запишем остаточный член формулы Тейлора в форме Лагранжа (15.8). Из неравенства (15.10) следует, что

$$|r_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| \le c \frac{h^{n+1}}{n+1},$$

где $|\xi - x_0| < |x - x_0| < h$, а так как в силу сходимости ряда $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ имеем

$$\lim_{n \to \infty} \frac{h^{n+1}}{n+1} = 0,$$

то и $\lim_{n\to\infty} r_n(x)=0$ при $|x-x_0|< h,$ что и означает сходимость ряда Тейлора к функции f в этой окрестности.

Пример 15.2. Так как для функции $f(x) = e^x$ имеем $f^{(n)}(x) = e^x$, $n \in \mathbb{N}$, то для любого a > 0, $x \in (-a, a)$ и $n = 0, 1, 2, \dots$ выполняется неравенство

$$0 < f^{(n)}(x) < e^a.$$

По теореме 15.2 функция e^x раскладывается в ряд Тейлора на любом интервале (-a,a), а следовательно, и на всей числовой оси. Так как $f^{(n)}(0) = 1$ для всех n, то

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
 (15.11)

Аналогично доказывается, что для любого $x \in \mathbb{R}$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},\tag{15.12}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$
(15.13)

По теореме 14.1 соответствующие ряды сходятся и для любых комплексных чисел. Они определяют функции комплексной переменной, также обозначаемые e^z , $\sin z$, $\cos z$.

Ряд

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

равномерно сходится по признаку Вейерштрасса на любом отрезке [-q,q], 0 < q < 1, что позволяет почленно интегрировать его от 0 до $x \in (-1,1)$:

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n,$$
(15.14)

где ряд сходится при $x \in (-1,1)$ по теореме 13.6 о почленном интегрировании, а при x=1 – по признаку Лейбница. Следовательно, по теореме 15.3 на отрезке [0,1] его сходимость равномерна и сумма непрерывна, как и функция $\ln(1+x)$. Устремив x к 1, получим, что формула (15.14) имеет место для всех $x \in (-1,1]$ (при x=-1 ряд расходится как гармонический, а при |x|>1 – по необходимому условию).

По признаку Даламбера при $x \in (-1,1)$ сходится и биномиальный ряд

$$1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^n. \tag{15.15}$$

Можно показать, что ряд также сходится в точке x=1 при $\alpha>-1$ и в точке x=-1 при $\alpha\geq 0$. По теореме 22.3, когда ряд (15.15) сходится, его сумма равна $(1+x)^{\alpha}$.

16 Тригонометрические ряды Фурье

Определение 16.1. Функциональные ряды вида

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx, \tag{16.1}$$

где коэффициенты $a_n, b_n \in \mathbb{R}$, называются тригонометрическими рядами. Система функций

$$1, \cos x, \sin x, \dots, \cos nx, \sin nx, \dots, n \in \mathbb{N}, \tag{16.2}$$

называется тригонометрической системой.

Лемма 16.1. Функции системы (16.2) имеют следующие свойства:

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = 0, \quad m \neq n, \quad m, n \in \mathbb{N}_{0};$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = 0, \quad m \neq n, \quad m, n \in \mathbb{N}_{0};$$

$$\int_{-\pi}^{\pi} \cos nx \sin mx \, dx = 0, \quad m, n \in \mathbb{N}_{0};$$

$$\int_{-\pi}^{\pi} \cos^{2} nx \, dx = \int_{-\pi}^{\pi} \sin^{2} nx \, dx = \pi, \quad m \neq n, \quad m, n \in \mathbb{N}.$$

$$(16.3)$$

Доказательство. Например,

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \left[\cos(n+m)x + \cos(n-m)x \right] dx =$$

$$= \frac{\sin(n+m)x}{2(n+m)} \Big|_{-\pi}^{\pi} + \frac{\sin(n-m)x}{2(n-m)} \Big|_{-\pi}^{\pi} = 0, \ n \neq m;$$

$$\int_{-\pi}^{\pi} \cos^2 nx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos 2nx) \, dx = \pi + \frac{\sin 2nx}{4n} \Big|_{-\pi}^{\pi} = \pi, \ n \in \mathbb{N}.$$

Другие равенства (16.3) доказываются аналогично.

Определение 16.2. Если функция f абсолютно интегрируема на отрезке $[-\pi,\pi]$,

то тригонометрический ряд (16.1), коэффициенты которого заданы формулами

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \quad n \in \mathbb{N},$$

$$(16.4)$$

называется (тригонометрическим) рядом Фурье функции f. В этом случае пишут

$$f(x) \sim a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

Теорема 16.1. Равномерно сходящийся тригонометрический ряд является рядом Фурье своей суммы

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$
 (16.5)

Доказательство. Поскольку ряд (16.1) равномерно сходится, то обе части равенства (16.5) можно почленно интегрировать:

$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \left(a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \right) dx =$$

$$= a_0 \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos nx \, dx + b_n \int_{-\pi}^{\pi} \sin nx \, dx \right) = 2\pi a_0,$$

откуда следует первая формула (16.4).

Умножая обе части (16.5) на $\cos mx$ или на $\sin mx$, снова получаем равномерно сходящиеся ряды. Интегрируя обе части получившихся равенств с учетом (16.3), приходим к оставшимся формулам (16.4).

Очевидно, что сужение функции f на полуинтервал $[-\pi,\pi)$ можно 2π -периодически продолжить на ${\rm I\!R}$ по формуле

$$f^*(x + 2\pi k) = f(x), \ x \in [-\pi, \pi), \ k \in \mathbb{Z},$$

причем ряды Фурье функций f и f^* на отрезке $[-\pi,\pi]$ совпадают, так как значения f и f^* могут различаться только в точке π .

Для формулировки достаточных условий сходимости ряда Фурье нам потребуются следующие понятия.

Определение 16.3. Если функция f определена в некоторой проколотой окрестности своей точки разрыва первого рода x, то односторонними (правосторонней и левосторонней) производными f в точке x называются пределы

$$f'_{+}(x) = \lim_{h \to 0_{+}} \frac{f(x+h) - f(x+0)}{h}, \quad f'_{-}(x) = \lim_{h \to 0_{+}} \frac{f(x-h) - f(x-0)}{-h}.$$

Определение 16.4. Функция f называется кусочно дифференцируемой на отрезке [a,b], если существует такое его разбиение $\tau = \{x_i\}_{i=1}^n$, что f дифференцируема на каждом интервале (x_{i-1},x_i) $(i=1,\ldots,n)$, а в точках x_{i-1} и x_i $(i=1,\ldots,n)$ существуют правосторонние (соответственно левосторонние) производные $f'_+(x_{i-1})$ и $f'_-(x_i)$.

Замечание 16.1. Из определения следует, что кусочно дифференцируемая функция f является на отрезке [a,b] кусочно непрерывной и поэтому интегрируемой по Риману.

Введем обозначение

$$f_x^*(t) = f(x+t) + f(x-t) - f(x+0) - f(x-0).$$
(16.6)

Замечание 16.2. Если функция f(t) периодична с некоторым периодом T и абсолютно интегрируема на периоде, то же самое верно и для $f_x^*(t)$.

Теорема 16.2. (Признак Дини сходимости ряда Фурье.) Пусть функция f 2π периодична и абсолютно интегрируема на периоде, x – ее точка непрерывности или
разрыва первого рода и интеграл

$$\int_{0}^{\pi} \frac{|f_x^*(t)|}{t} dt < \infty. \tag{16.7}$$

Tогда тригонометрический ряд Φ урье функции f сходится в точке x к значению

$$\frac{f(x+0)+f(x-0)}{2},$$

в частности, в точке непрерывности – $\kappa f(x)$.

Следствие 16.1. Пусть функция f 2π -периодична и абсолютно интегрируема на периоде, а в точке x существуют ее конечные односторонние производные $f'_{+}(x)$ и

 $f'_{-}(x)$. Тогда тригонометрический ряд Фурье функции f сходится в точке x κ значению

$$\frac{f(x+0)+f(x-0)}{2}.$$

Доказательство. Так как при условиях следствия

$$\lim_{t \to 0_{+}} \frac{f_{x}^{*}(t)}{t} = \lim_{t \to 0_{+}} \left[\frac{f(x+t) - f(x+0)}{t} - \frac{f(x-t) - f(x-0)}{t} \right] = f'_{+}(x) - f'_{-}(x) < \infty,$$

то функция $\frac{f_x^*(t)}{t}$ ограничена на некотором интервале $(0,\delta)$ с $0<\delta<\pi$. Поэтому существует интеграл Римана

$$\int_{0}^{\delta} \frac{|f_x^*(t)|}{t} dt,$$

а интеграл

$$\int_{\delta}^{\pi} \frac{|f_x^*(t)|}{t} dt$$

сходится как интеграл от произведения абсолютно интегрируемой функции на ограниченную, что влечет справедливость условий теоремы, а следовательно, и ее заключения.

Замечание 16.3. Это следствие означает, в частности, что тригонометрический ряд Фурье функции f, кусочно дифференцируемой на $[-\pi,\pi]$, при $x\in (-\pi,\pi)$ сходится к $\frac{f(x+0)+f(x-0)}{2}$, а при $x=\pm\pi-$ к $\frac{f(-\pi+0)+f(\pi-0)}{2}$ (так как в силу $2\pi-$ периодичности функции f имеем $f(-\pi\pm0)=f(\pi\pm0)$).