

Taller Lógica Proposicional

Matemáticas Discretas I / 750083M / Grupo 01 / Prof. Juan Francisco Díaz / Monitor Juan Marcos Caicedo / 2018-2

1. Formalizar (modelar) usado los elementos y variables de lógica proposicional, el siguiente texto:

Si tuvieran que justificarse ciertos hechos por su enorme tradición entonces, si estos hechos son inofensivos y respetan a todo ser viviente y al medio ambiente, no habría ningún problema. Pero si los hechos son bárbaros o no respetuosos con los seres vivientes o el medio ambiente, entonces habría que dejar de justificarlos o no podríamos considerarnos dignos de nuestro tiempo.

Sugerencia: use p: justificar hechos por su tradici on, q: ser inofensivo, r: ser respetuoso con los seres vivos, s: ser respetuoso con el medio ambiente, t: tener problemas q: ser b arbaro (= no ser inofensivo), u: ser digno de nuestro tiempo

- 2. Aplique las reglas adecuadas a la siguiente expresión lógica para convertirla en una de las reglas de inferencia **no ecuacionales** (o demuéstrelo usando el metateorema de la deducción): $\neg[(p \Rightarrow q) \land (\neg q \lor r)] \lor (\neg p \lor r)$
- 3. Si se sabe que:

$$(\neg q \Rightarrow \neg t) \equiv false \tag{1}$$

$$(p \wedge t) \equiv true \tag{2}$$

Determine el valor de verdad de las siguientes proposiciones:

- (a) $\neg [\neg p \land (\neg q \lor \neg p)] \equiv false$
- (b) $(p \lor t) \lor s$
- (c) $[(p \lor (\neg q \land t)] \equiv [(p \Rightarrow q) \land \neg (q \land t)]$
- 4. **Demuestre** las siguientes equivalencias lógicas usando los **axiomas y teoremas de la lógica proposicional**, junto con el esquema de demostración desarrollado en el curso:
 - (a) $p \lor (p \land q) \equiv p$
 - (b) $(p \lor q) \land p \land (q \lor r) \land (p \lor \neg p \lor r) \land (\neg q \lor r) \equiv (p \land r)$
 - (c) $(\neg(p \land (\neg p \lor q)) \lor q) \equiv true$
 - (d) $(p \wedge q) \vee (p \wedge r) \vee (\neg(\neg p \vee q)) \equiv p$
 - (e) $\neg (p \lor q) \Rightarrow (\neg p \land \neg (q \lor p)) \equiv true$
 - (f) $\neg (p \lor (\neg p \land q)) \equiv (\neg p \land \neg q)$
 - (g) $(p \land q) \Rightarrow (p \lor q)$
 - (h) $[\neg(p \oplus q)] \equiv (p \iff q)$
 - (i) $[(p \equiv q)] \equiv [(p \land q) \lor (\neg p \land \neg q)]$

¹Algunos ejercicios extraídos de:

- 5. Dada la fórmula $(p \lor q) \land \neg (p \land q)$, Cuál de los textos siguientes representa una lectura incorrecta de la fórmula (si hay uno o más señálelos todos) y cuál simboliza una lectura **equivalentemente correcta** (donde p = quiero paz y q = quiero armonía)?
 - (A) Quiero paz y no armonía o quiero armonía pero no paz.
 - (B) Quiero paz o armonía, pero no ambas cosas simultáneamente.
- (C) Quiero paz o no quiero armonía y quiero armonía o no quiero paz.
- 6. Considere el siguiente texto:

Sólo con un uso adecuado del poder y con una interpetación apropiada de la voluntad del pueblo, una democracia es verdaderamente legítima; si es cierta la anterior afirmación, entonces hay un uso adecuado del poder o no habrá reelección.

Tomando en cuenta que p : uso adecuado del poder, q : interpretación apropiada de la voluntad del pueblo, r : una democracia es verdaderalmente legítima, s : habrá reelección,

Cuál de las siguientes opciones es una representación simbólica **correcta** de ese texto?

(A)
$$[(p \land q) \Rightarrow r] \Rightarrow [(p \lor \neg s) \land \neg (p \land \neg s)]$$

(B)
$$[r \Rightarrow (p \land q)] \land (p \lor \neg s)$$

(C)
$$[(p \land q) \Rightarrow r] \Rightarrow (p \lor \neg s)$$

(D)
$$[r \Rightarrow (p \land q)] \Rightarrow (\neg p \lor \neg s)$$

(E)
$$[r \Rightarrow (p \land q)] \Rightarrow (p \lor \neg s)$$

- 1. Kenneth H., Rosen Rosen Discrete Mathematics and its Applications
- 2. Bustamante A., Alfonso Lógica y argumentación: De los argumentos inductivos a las álgebras de Boole

- (F) $[(p \land q) \Rightarrow r] \lor (p \lor \neg s)$
- (G) $[r \Rightarrow (p \lor q)] \Rightarrow (\neg p \lor \neg s)$
- (H) $[p \Rightarrow (q \land r)] \Rightarrow (p \lor \neg r)$