Formelsammlung

Paul Raffer

2021-09-02

Contents

1 Mathematik

1.1 Winkelfunktionen

$$\sin \alpha = \frac{G}{H}$$
 $\alpha = \arcsin \frac{G}{H}$ $\cos \alpha = \frac{A}{H}$ $\alpha = \arcsin \frac{A}{H}$ $\tan \alpha = \frac{G}{A} = \frac{\sin \alpha}{\cos \alpha}$ $\alpha = \arcsin \frac{G}{A}$

 $H...Hy potenuse \\ A...Anka the te$

G...Gegen kathete

2 Physik

2.1 "Grundgesetze der Mechanik"

$$v = \frac{s}{t}$$

$$a = \frac{v}{t}$$

$$g = 9.81 \frac{m}{s^2} = 9.81 \frac{N}{kg} \approx 10 \frac{m}{s^2}$$

$$F = m * a$$

$$\begin{array}{lll} t... & Zeit & [t] & = s \\ s... & Weg & [s] & = m \\ m... & Masse & [m] & = kg \\ v... & Geschwindigkeit & [v] & = \frac{[s]}{[t]} & = \frac{m}{s} \\ a... & Beschleungiung & [a] & = \frac{[v]}{[t]} & = \frac{m}{s^2} & = \frac{N}{kg} \\ g... & Erdbeschleungiung & [g] & = [a] & = \frac{m}{s^2} & = \frac{N}{kg} \\ F... & Kraft & [F] & = [m] * [a] & = kg * \frac{m}{s^2} & = N \\ \end{array}$$

2.2 Statik

2.2.1 Hebelgesetz

$$M_L = M_R$$

$$F_L * r_L = F_R * r_R$$

$$Last * Lastarm = Kraft * Kraftarm$$

$$M_L...Linksdrehendes\ Drehmoment\ [M_L] = Nm$$
 $M_R...Rechtsdrehendes\ Drehmoment\ [M_R] = Nm$
 $F...\ Kraft\ [F] = N$
 $r...\ Radius\ [r] = m$

2.2.2 Gleichgewichtsbedingungen

$$\sum M = 0$$
$$\sum F = 0$$

$$M...Momente [M] = Nm$$

 $F...Kr\"{a}fte [F] = N$

2.2.3 Kraftübertragungsverhältnis

$$i = \frac{F}{F_G}$$

i... Kraftübertragungsverhältnis [i] = 1 F... Kraft [F] = N $F_G...Last$ $[F_G] = N$

2.2.4 Kippsicherheit

$$v_K = \frac{\sum M_S}{\sum M_K}$$

 $v_K...$ Kippsicherheit $[v_K] = 1$ $M_S...$ Standmomente $[M_S] = Nm$ $M_K...$ Kippmomente $[M_K] = Nm$

2.3 Übersetzung

2.3.1 Drehmomentübersetzung

$$i = \frac{M_1}{M_2} = \frac{r_1}{r_2} = \frac{d_1}{d_2} = \frac{Z_1}{Z_2} = \frac{\omega_2}{\omega_1} = \frac{n_2}{n_1}$$

 $Seilwinde\ mit\ mehreren\ Stufen:\ i_{ges}=i_{1/2}*i_{2/3}*\dots$

$$i_{ges} = \frac{n_{Motor}}{n_2}$$

i... Übersetzungsverhältnis [i] = 1

M...Drehmoment [M] = Nm

r... Radius [r] = m

d... Durchmesser [d] = m

Z... Anzahl der Zahnräder [Z] = 1

 $\omega ... \ Winkelgeschwindigkeit \ [\omega] \ = rac{rad}{s}$

n... Drehzahl $[Z] = \frac{1}{min}$

2.4 Rotation

$$v_u = \omega * r$$
$$\omega = \frac{\pi * n}{30}$$

$$v_u...Umfanggeschwingigkeit [i] = \frac{m}{s^2}$$
 $\omega...Winkelgeschwindigkeit [\omega] = \frac{rad}{s}$
 $n...Drehzahl$ $[Z] = \frac{1}{min}$
 $30...Umrechnungsfaktor$
 $r...Radius$ $[r] = m$

2.5 Reibung

$$F_R = F_N * \mu$$

$$F_N = F_G * \cos \alpha$$

$$F_N = F_G * \sin \alpha$$

$$F_G...Gewichtskraft$$
 $[F_G] = N$
 $F_N...Normalkraft$ $[F_N] = N$
 $F_H...Hangabtriebskraft$ $[F_H] = N$
 $F_R...Reibungskraft$ $[F_R] = N$
 $\alpha...Neigungswinkel$ $[\alpha] = rad$

2.6 Mechanik von Flüssigkeiten

2.6.1 Das Pascalsche Gesetz

$$p = \frac{F}{A} = const.$$

$$p = \frac{F_1}{A_1} = \frac{F_2}{A_2} = \frac{F_3}{A_3} = \frac{F_4}{A_4} = \dots$$

$$F...Kraft$$
 $[F] = N$
 $A...Fläche$ $[A] = m^2$
 $p...Druck$ $[p] = \frac{[F]}{[A]} = \frac{N}{m^2} = Pa(Pascal)$

$$1 \ bar = 100 \ kPa$$

2.7 Dichte

$$\rho = \frac{m}{V}$$

$$\rho_{H_2O} = 1 \frac{kg}{l} = 1 \frac{kg}{dm^3} = 1000 \frac{kg}{m^3}$$

 $\begin{array}{ll} m... & Masse & [m] = kg \\ V... & Volumen & [V] = m^3 \\ \rho... & Dichte & [\rho] = \frac{[m]}{[V]} = \frac{kg}{m^3} \end{array}$

 ρ_{H_2O} ...Dichte von Wasser

2.8 Mechanik von Flüssigkeiten

2.8.1 Auftrieb

$$F_A = g * m = g * \rho * V$$

$$g...$$
 Erdbeschleunigung $[g] = \frac{m}{s^2}$
 $m...$ Masse der verdrängten Flüssigkeit $[m] = kg$
 $V...$ Volumen der verdrängten Flüssigkeit $[V] = m^3$
 $\rho...$ Dichte der Flüssigkeit $[\rho] = \frac{kg}{m^3}$
 $F_A...$ Auftriebskraft $[F_A] = N$