logo.png

title.jpg

POLYGONS

Adam Klepáč September 18, 2023

CONTENTS

Cryptography on Regular Polygons

CRYPTOGRAPHY ON REGULAR POLYGONS

CHAINING SYMMETRIES

Given two symmetries, s_1 and s_2 of a regular polygon, one can apply them one after the other ('compose' them, like functions).

CHAINING SYMMETRIES

Given two symmetries, s_1 and s_2 of a regular polygon, one can apply them one after the other ('compose' them, like functions).

We'll denote this composition simply by s_1s_2 .

Example of chains of symmetries.

Discounting point symmetry, an *n*-gon has 2*n* symmetries.

Discounting point symmetry, an *n*-gon has 2*n* symmetries. Two symmetries can 'combine' to create a different symmetry.

Discounting point symmetry, an *n*-gon has 2*n* symmetries.

Two symmetries can 'combine' to create a different symmetry.

Natural question: How many (and which) symmetries of a regular polygon do I need to get

all the others?

Discounting point symmetry, an *n*-gon has 2*n* symmetries.

Two symmetries can 'combine' to create a different symmetry.

Natural question: How many (and which) symmetries of a regular polygon do I need to get all the others?

For example,

• if s_1 is any line symmetry and s_2 is a rotation by 60° counter-clockwise, then $s_2^3 s_1$ (s_2^3 means $s_2 s_2 s_2$) reflects a hexagon through a line perpendicular to the line of s_1 .

Discounting point symmetry, an *n*-gon has 2*n* symmetries.

Two symmetries can 'combine' to create a different symmetry.

Natural question: How many (and which) symmetries of a regular polygon do I need to get all the others?

For example,

- if s_1 is any line symmetry and s_2 is a rotation by 60° counter-clockwise, then $s_2^3 s_1$ (s_2^3 means $s_2 s_2 s_2$) reflects a hexagon through a line perpendicular to the line of s_1 .
- if s_1 is a rotation by 120° clockwise and s_2 is a reflection through a vertical line passing through the top vertex, then s_1s_2 is a reflection through the line given by the rotation of the line of s_2 60° clockwise.

Actually, for a general *n*-gon, we need only two:

Actually, for a general *n*-gon, we need only two:

• rotation by $360^{\circ}/n$ in any direction (we'll denote it r),

- Actually, for a general *n*-gon, we need only two:
 - rotation by $360^{\circ}/n$ in any direction (we'll denote it r),
 - any reflection (we'll denote it s).

Let r be the rotation by 120° and s any line symmetry.

Let r be the rotation by 120° and s any line symmetry.

• The other two rotational symmetries are r^2 and r^3 .

Let r be the rotation by 120° and s any line symmetry.

- The other two rotational symmetries are r^2 and r^3 .
- The other two line symmetries are rs and r^2s .

Let r be the rotation by 120° and s any line symmetry.

- The other two rotational symmetries are r^2 and r^3 .
- The other two line symmetries are rs and r^2s .
- Therefore, all the symmetries of an equilateral triangle are

$$\{r, r^2, r^3, s, rs, r^2s\}.$$

In general, to create all symmetries, one needs a rotation by an angle $k \cdot 360^{\circ}/n$ where k doesn't share a prime factor with n (in other words, the fraction $\frac{k}{n}$ cannot be simplified) and any one line symmetry.

In general, to create all symmetries, one needs a rotation by an angle $k \cdot 360^{\circ}/n$ where k doesn't share a prime factor with n (in other words, the fraction $\frac{k}{n}$ cannot be simplified) and any one line symmetry.

Why?

• If k shares factors with n, then you can never get rotation by $360^{\circ}/n$.

In general, to create all symmetries, one needs a rotation by an angle $k \cdot 360^{\circ}/n$ where k doesn't share a prime factor with n (in other words, the fraction $\frac{k}{n}$ cannot be simplified) and any one line symmetry.

Why?

- If k shares factors with n, then you can never get rotation by $360^{\circ}/n$.
- Two symmetries can never produce a rotation.

In general, to create all symmetries, one needs a rotation by an angle $k \cdot 360^{\circ}/n$ where k doesn't share a prime factor with n (in other words, the fraction $\frac{k}{n}$ cannot be simplified) and any one line symmetry.

Why?

- If k shares factors with n, then you can never get rotation by $360^{\circ}/n$.
- Two symmetries can never produce a rotation.
- Two rotations can never produce a symmetry.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a rotation, then

1. First measure the angle **counter-clockwise**.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a rotation, then

- 1. First measure the angle **counter-clockwise**.
- 2. Find a such that r^a is the rotation by $360^{\circ}/n$.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a rotation, then

- 1. First measure the angle counter-clockwise.
- 2. Find a such that r^a is the rotation by $360^{\circ}/n$.
- 3. Then, find b such that $(r^a)^b = r^{ab}$ is your desired rotation.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a reflection, then

1. Find a such that r^a is the rotation by $360^{\circ}/n$.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a reflection, then

- 1. Find a such that r^a is the rotation by $360^{\circ}/n$.
- 2. Determine the angle **in any direction** between your given line of symmetry **s** and the reflection you want.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a reflection, then

- 1. Find a such that r^a is the rotation by $360^{\circ}/n$.
- 2. Determine the angle **in any direction** between your given line of symmetry **s** and the reflection you want.
- 3. Find b such that r^{ab} is a rotation in the opposite direction by twice the angle from the previous step.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a reflection, then

- 1. Find a such that r^a is the rotation by $360^{\circ}/n$.
- 2. Determine the angle **in any direction** between your given line of symmetry **s** and the reflection you want.
- 3. Find b such that r^{ab} is a rotation in the opposite direction by twice the angle from the previous step.
- 4. rabs is your desired reflection.

You're given a rotation r by $k \cdot 360^{\circ}/n$ such that k doesn't share factors with n and a line symmetry s.

If you need to calculate a reflection, then

- 1. Find *a* such that r^a is the rotation by $360^{\circ}/n$.
- 2. Determine the angle **in any direction** between your given line of symmetry *s* and the reflection you want.
- 3. Find b such that r^{ab} is a rotation in the opposite direction by twice the angle from the previous step.
- 4. rabs is your desired reflection.

Voluntary HW: Why does this algorithm work?

We're given two symmetries of the square:

reflection s over the first diagonal

and want to produce

reflection over the second diagonal

We're given two symmetries of the square: rotation r by 270° counter-clockwise and reflection s over the first diagonal.

How to produce reflection over the other diagonal?

We're given two symmetries of the square: rotation r by 270° counter-clockwise and reflection s over the first diagonal.

How to produce reflection over the other diagonal?

We use the algorithm.

1. Repeating r three times gives the rotation by 90° counter-clockwise, that is, a = 3.

We're given two symmetries of the square: rotation r by 270° counter-clockwise and reflection s over the first diagonal.

How to produce reflection over the other diagonal?

We use the algorithm.

- 1. Repeating r three times gives the rotation by 90° counter-clockwise, that is, a = 3.
- 2. The angle between the two diagonals is 90° in any direction.

We're given two symmetries of the square: rotation r by 270° counter-clockwise and reflection s over the first diagonal.

How to produce reflection over the other diagonal?

We use the algorithm.

- 1. Repeating r three times gives the rotation by 90° counter-clockwise, that is, a = 3.
- 2. The angle between the two diagonals is 90° in any direction.
- 3. Repeating the rotation from step 1 two times (that is, b=2) and then using s gives the desired symmetry in this case it's $(r^3)^2s=r^6s$. Of course, r^4 is rotation by 360° which does nothing, so the final symmetry is r^2s .