Short exact sequences

Def a seq. of gps and homomorphisms
$$H \xrightarrow{\alpha} G \xrightarrow{\beta} K$$

of to say
$$1 \rightarrow 6 \xrightarrow{f} K$$
 is exact means f is injective.
to say $H \xrightarrow{f} G \rightarrow 1$ is exact, means f is surjective.

Def A short exact seq is a seq

$$1 \rightarrow H \xrightarrow{\alpha} G \xrightarrow{r} K \rightarrow I$$

eg when
$$N \ge 6$$
, $1 \longrightarrow N \hookrightarrow 6 \longrightarrow \frac{G}{N} \longrightarrow 1$.

Page 1

Def two SES's
$$\longrightarrow H_1 \xrightarrow{\alpha_1} G_1 \xrightarrow{\beta_2} K_1 \longrightarrow I$$

$$1 \longrightarrow H_2 \xrightarrow{\alpha_2} G_2 \xrightarrow{\beta_2} K_2 \longrightarrow I$$

are equivalent if they fit into a commetative diagram:

$$| \longrightarrow H_1 \longrightarrow G_1 \longrightarrow K_1 \longrightarrow I$$

$$\cong \downarrow \qquad \cong \downarrow \qquad \Rightarrow \downarrow$$

$$| \longrightarrow H_2 \longrightarrow G_2 \longrightarrow K_2 \longrightarrow I$$

$$(N \cong G)$$

eg every SES is equivalent to one of the form $1 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 1$.

Pf let $1 \longrightarrow H \xrightarrow{\Lambda} G \xrightarrow{\beta} K \longrightarrow 1$ be a SES. Then

 α restricts to an isomorphism $\overline{\beta}: G_{lm\alpha} = G_{ker \beta} \cong K$.

Note equivalence of SES is an equivalence relation.

Thy let 1->Hand GARK-- 1 be a SES. TFAE.

- (1)] a homomorphism a': G -> H s.t. a'(a(h)) = h YheH.
- (2) I an isomorphism $\theta: G \longrightarrow H \times K$ s.t. the following diagram commutes.

$$| \longrightarrow H \longrightarrow G \longrightarrow k \longrightarrow I$$

$$| \downarrow 0 \qquad | \downarrow 0$$

$$| \longrightarrow H \longleftarrow H \times k \stackrel{\pi}{\longrightarrow} k \longrightarrow I$$

 \underline{proof} (1) \Rightarrow (2):

Since d'4 p are.

Define $\Theta: G \longrightarrow H \times K$ by $\Theta(g) = (\alpha'(g), \beta(g)) \cdot \Theta$ is a nonnomorphism.

Suppose $\Theta(g) = (1,1)$. Then $\alpha'(g) = 1$ and $\beta'(g) = 1$. So $g = \alpha(h)$ for some h (by exactness at G). Thus $\alpha'(\alpha(h)) = 1$ So h = 1 So g = 1. So Θ is injective.

Suppose $(h,k) \in H \times K$. By exactness at G, $\exists g \in G \text{ by } \beta(g) = k$. by exactness at G, $k = \beta(g \propto (x))$ for all $x \in H$. We want $\chi'(g \propto (x)) = h$.

Equiv, we want x s.t. $\alpha'(g) \alpha'(\alpha(x)) = h \Leftrightarrow \alpha'(g) x = h$. Take $x = (\alpha'(g))^{-1}h$. So $\Theta(g\alpha(x)) = (h,k)$. So Θ is surjective.

To Show the diagram is commetative, the first square is

$$H \xrightarrow{\alpha} G$$
 $\downarrow \theta$
 $H \xrightarrow{\alpha} H \times K$
 $\downarrow \theta$
 $\downarrow \theta$

Similarly, the second squere committes.

(2) \Rightarrow (1): Suppose \exists isomorphism $\theta: G \cong H \times K$ s.t.

$$| \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} K \xrightarrow{\pi} |$$

$$| \downarrow \theta \qquad |$$

$$| \longrightarrow H \longleftrightarrow HxK \xrightarrow{\pi} K \xrightarrow{\pi} |$$

definition of x1.

is commotative. We have $\Theta(g) = (\alpha'(g), \beta(g))$

 α' is a function $G \longrightarrow H$. it is also a hom: $\alpha' = \pi_H \cdot \Theta$.

and I he H, d'(x(h)) = h by commutativity.

Thus let $1 \longrightarrow H \xrightarrow{d} G \xrightarrow{\beta} K \longrightarrow 1$ be a SES. TFAE:

(1) \exists a homomorphism $\beta': K \longrightarrow G$ s.t. $\beta(\beta'(k)) = k \ \forall k \in K$.

(2)
$$\exists$$
 a homomorphism $\varphi: k \longrightarrow Ant(H)$ and isomorphism
$$\theta: G \longrightarrow H \rtimes_{\rho} K \qquad s.t.$$

$$1 \longrightarrow H \stackrel{\alpha}{\longrightarrow} G \stackrel{\rho}{\longrightarrow} k \longrightarrow I$$

$$\downarrow \theta \qquad \downarrow 0$$

$$1 \longrightarrow H \stackrel{\alpha}{\longrightarrow} H \rtimes_{\rho} K \stackrel{\pi}{\longrightarrow} K \longrightarrow I$$

commit es. (it is ensier to construct 0-1),

Det a SES
$$| \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} K \xrightarrow{\beta} |$$
 is said to
Split if \exists how $\beta' : K \longrightarrow G$ s.t $\beta(\beta'(k)) = k \ \forall k \in K$.