Solutions

1. Types of solutions

Q1.	Among the following mixtures, dipole-dipole	as the major interaction is present in :		
(A)	Benzene and ethanol			
(B)	KCl and water			
(C)	Acetonitrile and acetone			
(D)	Benzene and CCI ₄			
Cor	rect Answer: (C)	Level: Easy	Tagging:	Remembering
Q2.	An azeotropic mixture of two liquids has boil	ing point lower than either of them, when it		
(A)	Shows a negative deviation from Raoult's law			
(B)	Shows no deviation from Raoult's law			
(C)	Shows positive deviation from Raoult's law			
(D)	Is saturated			
Cor	rect Answer: (C)	Level: Easy	Tagging:	Remembering
Q3.	An example of a solution having liquid in gas	s is:		
(A)	Moist air			
(B)	Dry air			
(C)	Au-Hg			
(D)	C ₂ H ₅ OH+H ₂ O			
Cor	rect Answer: (A)	Level: Easy	Tagging:	Remembering
Q4.	Azeotropic mixture is			
(A)	Constant temperature boiling mixture			
(B)	Those which boils at different temperatures			
(C)	Mixture of two solids			
(D)	None of the above			
Cor	rect Answer: (A)	Level: Easy	Tagging:	Remembering
Q5.	In two Solutions having different osmotic pre	essure, the solution of higher osmotic pressure	is called:	
(A)	Isotonic solution			
(B)	Hypertonic solution			
(C)	Hypotonic solution			
(D)	None of these			
Cor	rect Answer: (B)	Level: Easy	Tagging:	Remembering
Q6.	Isotonic solution have the same			
(A)	Normality			
(B)	Density			
(C)	Molar concentration			
(D)	None of these			
Cor	rect Answer: (C)	Level: Easy	Tagging:	Remembering

_	The azeotropic mixture of water (b. pt.100°C sible to obtain) and HCl (b.pt. $85^{\circ}\mathrm{C}$) boils at $108.5^{\circ}\mathrm{C.When}$ th	is mixture is distilled it is
(A)	Pure HCI		
(B)	Pure water		
(C)	Pure water as well as HCl		
(D)	Neither HCl nor H_2 O in their pure states		
Cor	rect Answer: (D)	Level: Easy	Tagging: Remembering
Q8.	The distribution law holds good for :		
(A)	Heterogeneous systems		
(B)	Homogeneous systems		
(C)	Both (a) and (b)		
(D)	None of these		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
-	The natural semipermeable membrane is:		
(A)	Gelatinous Cu ₂ [Fe(CN) ₆]		
(B)	Gelatinous Ca ₃ [(PO ₄) ₂]		
(C)	Plant cell		
(D)	Phenol layer		
Cor	rect Answer: (C)	Level: Easy	Tagging: Remembering
Q10	. The phenomenon in which cells are shrinke	d down if placed in hypertonic solution is called	:
(A)	Plasmolysis		
(B)	Haemolysis		
(C)	Endosmosis		
(D)	None of these		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
Q11	. The phenomenon in which cells are swelled	up and then burst if placed in hypotonic solution	on is called :
(A)	Plasmolysis		
(B)	Haemolysis		
(C)	Exosmosis		
(D)	None of these		
Cor	rect Answer: (B)	Level: Easy	Tagging: Remembering
Q12	. Two Solutions have different osmotic press	ure. The solution of lower osmotic pressure is ca	alled:
(A)	Isotonic solution		
(B)	Hypertonic solution		
(C)	Hypotonic solution		
(D)	None of these		
Cor	rect Answer: (C)	Level: Easy	Tagging: Remembering
013	. When a solute distributes itself between tw	o immiscible liquids in contact with each other,	a mathematical constant

Q13. When a solute distributes itself between two immiscible liquids in contact with each other, a mathematical constant ratio exists between :

- (A) The weight of the solute in the two liquids
- (B) The concentration of solute in the two liquids
- (C) The number of mole of the solute in the two liquids
- (D) The number of atoms of the solute in the two liquids

Correct Answer: **(B)** Level: **Easy** Tagging: **Remembering**

Q14. Which of the following associated with isotonic Solutions is not correct?

- (A) They will have the same osmotic pressure
- (B) They will have the same vapour pressure
- (C) They have same weight concentrations
- (D) Osmosis does not take place when the two Solutions are separated by a semipermeable membrane

Correct Answer: (C) Level: Easy Tagging: Analyzing

2. Expressing Concentration of Solutions

Q15.

Iodine was added to a system of water and CS_2 . The concentrations of iodine in water and CS_2 were found to be c_1 and c_2 respectively. The ratio c_1/c_2 will not change only if:

- (A) More iodine is added
- (B) More water is added
- (C) More CS₂ is added
- (D) The temperature is changed

Correct Answer: (A) Level: Easy Tagging: Remembering

25 mL of 3.0 M HNO₃ are mixed with 75 mL of 4.0M HNO₃. If the volumes are additive, the molarity of the final mixture would

Q16.

- (A) 3.25M
- (B) 4.0M
- (C) 3.75M
- (D) 3.50M

Correct Answer: (C) Level: Easy Tagging: Evaluating

In a solution of 7.8 g benzene (C_6H_6) and 46.0 g toluene $(C_6H_5CH_3)$, the mole-fraction of benzene is

- (A) 1/2
- (B) 1/3
- (C) 1/5
- (D) 1/6

Correct Answer: **(D)** Level: **Easy** Tagging: **Evaluating**

Q18. 0.2 g of an organic compound containing C, H and O on combustion yielded 0.147 g CO₂ and 0.12 g water. The percentage of oxygen in it is:

(A) 73.34%

(B) 78.45%		
(C) 83.23%		
(D) 89.50%		
Correct Answer:	(A) Level	: Easy Tagging: Evaluating
Q19. 100 cc of	0.6 N $\rm H_2~SO_4$ and 200 cc of 0.3 N HCl were	mixed together. The normality of the solution will be
(A) 0.2 N		
(B) 0.4 N		
(C) 0.8 N		
(D) 0.6 N		
Correct Answer:	(B) Level	: Easy Tagging: Evaluating
Q20. 100 mL o	f 0.3 HCl is mixed with 200 mL of 0.6 N H_2 S	$\mathrm{SO}_4.$ The final normality of the resulting solution will be
(A) 0.3 N		
(B) 0.2 N		
(C) 0.5 N		
(D) 0.1 N		
Correct Answer:	(C) Level	: Easy Tagging: Evaluating
Q21. 13 g of a	hydrocarbon contains 1.0 g of hydrogen. Its	formula is:
(A) C ₂ H ₂		
(B) C ₂ H ₃		
(C) C ₃ H ₄		
(D) C ₄ H ₇		
Correct Answer:	(A) Level: Eas	Tagging: Understanding
Q22. 2.5 L of N	IaCl solution contain 5 moles of the solute.W	hat is the molarity ?
(A) 5M		
(B) 2M		
(C) 2.5M		
(D) 12.5M		
Correct Answer:	(B) Level	: Easy Tagging: Evaluating
Q23. 3.65 g of	HCl is dissolved in 16.2 g of water. The mole	e fraction of HCl in the resulting solution is
(A) 0.1		
(B) 0.2		
(C) 0.3		
(D) 0.4		
Correct Answer:	(A) Level	: Easy Tagging: Evaluating
Q24. 35.4 mL of hydrochloric a		solution containing 0.275 g of sodium hydroxide. The normality
(A) 0.97 N		

(C) 0.194 N

(D)	0.244 N		
Cor	rect Answer: (C)	Level: Easy	Tagging: Evaluating
Q25	5. 5 L of a solution contains 25 mg of CaCO ₃ . Who	at is its concentration in ppm? (mol. wt. of CaCo	O ₃ is 100)g/mol
(A)	25		
(B)	1		
(C)	5		
(D)	2500		
Cor	rect Answer: (C)	Level: Easy	Tagging: Evaluating
Q26	5. 5% (wt./vol.) aqueous NaCl solution and 5% (v	vt./vol.) aqueous KCl solution are :	
(A)	Isotonic		
(B)	Isomolar		
(C)	Equinormal		
(D)	None of these		
Cor	rect Answer: (A)	Level: Easy	Tagging: Analyzing
Q27	6.02 \times 10 ²⁰ molecules of urea are present in 100	mL of its solution. The concentration of urea s	olution is
(A)	0.1 M		
	0.01 M		
	0.001 M		
(D)	0.02 M		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
	3. A 5% solution of sugarcane (mol. wt. = 342) is ecular weight of X is (in g/mol)	isotonic with 1% solution of X under similar co	nditions. The
(A)	136.2		
(B)	689.4		
(C)	34.2		
(D)	171.2		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
_	A solution containing 4 g of polyvinyl chloride p		e an osmotic pressure
of 4	$.1 \times 10^{-4}$ atm at $27 ^{\circ}\mathrm{C}$. The approximate molecular	weight of the polymer is (in g/mol)	
(A)	1.5×10 ³		
(B)	2.4×10 ⁵		
(C)	1.0×10 ⁴		
(D)	2×10 ¹²		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
Q30	. A solution is prepared by dissolving 24.5 g of s	odium hydroxide in distilled water to give 1L so	lution. The molarity of
NaO	H in the solution is (Given, that molar mass of Na	$OH = 40.0 \text{ g mol}^{-1}$)	
(A)	0.2450 M		
(B)	0.6125 M		
(C)	0.9800 M		

(D) 1.6326 M		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q31. A solution is pre	epared by dissolving 24.5 g of sodium hydroxide in distilled water to give 1L solu	ution. The molarity of
NaOH in the solution is	(Given, that molar mass of NaOH = 40.0 g mol^{-1})	
(A) 1000 g of solvent		
(B) 1 L of solvent		
(C) 1 L of solution		
(D) 1000 g of solution	1	
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q32. A solution of 4.5 of the solute closest to	5 g of a pure non-electrolyte in 100 g of water was found to freeze at 0.465°C . (k_f=1.86)	The molecular weight
(A) 135.0 g/mol		
(B) 172.0 g/mol		
(C) 90.0 g/mol		
(D) 180.0 g/mol		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
	ution of 6.3 g oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 N s neutralise 10 mL of this solution is	sodium hydroxide
(A) 40 ML		
(B) 20 ML		
(C) 10 ML		
(D) 4 ML		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q34. ConcH ₂ SO ₄ has	s a density of 1.98 g/mL and is 98% H ₂ SO ₄ by weight. Its normality is	
(A) 19.6 N		
(B) 29.6 N		
(C) 39.6 N		
(D) 49.6 N		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q35. Density of a 2.0	95 M solution of acetic acid in water is 1.02 g/mL. The molality of the solution is	
(A) 23.077%		
(B) 230.77%		
(C) 2.3077%		
(D) 0.23077%		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q36. Dilute 1 L one m	nolar H ₂ SO ₄ solution by 5 L water, the normality of that solution is	
(A) 0.33 N		
(B) 33.0 N		
(C) 0.11 N		

(D) 11.0 N		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q37. How many gram of NaOH will be required to pre	epare 500 g solution containing 10%w/w NaOH	solution?
(A) 100 g		
(B) 50 g		
(C) 0.5 g		
(D) 5.0 g		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q38. How many grams of dibasic acid (mol. wt. 200)	should be present in 100 mL of the aqueous se	olution to give 0.1 N?
(A) 10 g		
(B) 20 g		
(C) 2 g		
(D) 1 g		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q39. How many moles of Al_2 (SO ₄) ₃ would be in 50	g of the substance?	
(A) 0.083 mol		
(B) 0.952 mol		
(C) 0.481 mol		
(D) 0.140 mol		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q40. How much of 0.1 M H ₂ SO ₄ solution is required	to neutralise 50 mL of 0.2 M NaOH solution?	
(A) 50 mL		
(B) 5.0 mL		
(C) 0.50 mL		
(D) 100 mL		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q41. If 117 g NaCl is dissolved in 1000 g of water the	e concentration of the solution is said to be	
(A) 2 molar		
(B) 2 molal		
(C) 1 normal		
(D) 1 molal		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q42. If a 5.25% (wt./vol.) solution of a non-electroly		urea, (mol-wt = 60) is
the same solvent then the molecular weight of non-ele	ctrolyte is :	
(A) 210.0 g mol ⁻¹		
(B) 90.0 g mol ⁻¹		
(C) 115.0 g mol ⁻¹		
(D) 105 g mol ⁻¹		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating

Q43. If for a sucrose solution elevation in boiling poi	nt is $0.1^{\circ}\mathrm{C}$ then what will be boiling point of Na	aCl solution for the
same molal concentration?		
(A) 0.1		
(B) 0.2		
(C) 0.16 (D) 0.26		
	Lovely Faces	Tagaina, Fualuatina
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q44. If P_0 and P_s are the vapour pressure of solvent	and solution respectively and N_1 and N_2 are the	ne mole of solute and
solvent then:		
(A) $(P_0 - P_s)/P_0 = N_1/(N_1 + N_2)$		
(B) $(P_0 - P_s)/P_s = N_1/N_2$		
(C) $P_s = P_0 \cdot N_2 / (N_1 + N_2)$		
(D) All of the above		
Correct Answer: (D)	Level: Easy	Tagging: Analyzing
Q45. Molarity of 0.2 N H ₂ SO ₄ is		
(A) 0.2		
(B) 0.4		
(C) 0.6		
(D) 0.1		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q46. Mole fraction (X) of any solution is equal to		
(A) (no.of moles of solute)/(volume of solution in lit	re)	
(B) (no.of gram-equivalent of solute)/(volume of sol	ution in litre)	
(C) (no.of moles of solute)/(mass of solvent in kg)		
(D) (no.of moles of any constituent)/(total number of	f moles of all constituents)	
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q47. Molecular weight of glucose is 180. A solution of	of glucose which contains 18 g/L, is	
(A) 0.1 molal		
(B) 0.2 molal		
(C) 0.3 molal		
(D) 0.4 molal		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q48. Partition coefficient of benzoic acid-ether-wate ether layer is shaken with 2 litre water. The concentra		g/litre benzoic acid in
(A) 1		
(B) 2		
(C) 3		
(D) 4		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating

Q49	. The amount of anhydrous $\mathrm{Na_2}\ \mathrm{CO_3}$ present	in 250 mL of 0.25 M solution is	
(A)	6.625 g		
(B)	66.25 g		
(C)	662.5 g		
(D)	6625 g		
Cori	rect Answer: (A)	Level: Easy	Tagging: Evaluating
Q50	. The density (in g mL $^{-1}$) of a 3.60 M sulphu	ric acid solution that is 29% H ₂ SO ₄ (molar mass	=98 g mol ⁻¹) by mass
will l	ре		
(A)	1.64		
(B)	1.88		
(C)	1.22		
(D)	1.45		
Corı	rect Answer: (C)	Level: Easy	Tagging: Evaluating
Q51	. The mole fraction of the solute in one moda	al aqueous solution is	
(A)	0.018		
(B)	0.027		
(C)	0.036		
(D)	0.048		
Corı	rect Answer: (A)	Level: Easy	Tagging: Evaluating
Q52	. Volume of 0.1 M K_2 Cr_2 O_7 required to oxid	ise 35 mL of 0.5 M FeSO ₄ solution is	
(A)	29.2 mL		
(B)	17.5 mL		
(C)	175 mL		
(D)	145 mL		
Corı	rect Answer: (A)	Level: Easy	Tagging: Evaluating
Q53	. What is the total number of moles of H_2 SC	0_4 needed to prepare 5.0 L of a 2.0 M solution of	H ₂ SO ₄ ?
(A)	2.5		
(B)	5.0		
(C)	10		
(D)	20		
Corı	rect Answer: (C)	Level: Easy	Tagging: Evaluating
Q54	. Which of the following concentration term is	s/are independent of temperature?	
(A)	Molarity		
(B)	Molarity and mole fraction		
(C)	Mole fraction and molality		
(D)	Molality and normality		
Corı	rect Answer: (C)	Level: Easy	Tagging: Remembering

Q55. Which of the following shows negative deviation from Raoult's law?

- (A) CHCl3 and acetone
- (B) CHCl₃ and C₂H₅OH
- (C) C₆H₅CH₃ and C₆H₆
- (D) C₆H₆ and CCl₄

Correct Answer: (A) Level: Easy Tagging: Remembering

Q56. Which one of the following is the incorrect form of Raoult's law

$$\frac{P_s}{P^o} = \frac{N}{n+N}$$

(A)

(B)
$$\frac{P^{\circ}}{P^{\circ} - P_{\circ}} = 1 + \frac{N}{n}$$

$$\frac{P^{\circ} - P_{s}}{P_{s}} = \frac{n}{n + N}$$

$$\frac{P_s}{P^{\circ} - P_s} = \frac{N}{n}$$

Correct Answer: (C) Level: Easy Tagging: Remembering

Q57.

A mixture of ethane and ethene occupies 41 L at 1 atm and 500 K. the mixture reacts completely with $\frac{10}{3}$ mole of O_2 to produce CO_2 and H_2O . The mole fraction of ethane and ethene in the mixture are $(R = 0.082L \text{ atm K}^{-1} \text{ mol}^{-1})$ respectively

- (A) 0.50, 0.50
- (B) 0.75, 0.25
- (C) 0.67, 0.33
- (D) 0.25, 0.75

Correct Answer: **(C)** Level: **Moderate** Tagging: **Evaluating**

Q58. 40% by weight solution will contain how much mass of the solute in 1L solution, density of the solution is 1.2 g/mL?

- (A) 480 g
- (B) 48 g
- (C) 38 g
- (D) 380 g

Correct Answer: (A) Level: Moderate Tagging: Applying

Q59. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is

- (A) 0.1 M
- (B) 0.01 M
- (C) 0.001 M
- (D) None of these

Correct Answer: **(B)** Level: **Moderate** Tagging: **Evaluating**

Q60. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is (Avogadro constant, $N_A = 6.02 \times 10^{23}$ mol⁻¹)

(A) 0.001 M

(B) 0.01 M

(C) 0.02 M

(D) 0.1 M

Correct Answer: **(B)** Level: **Moderate** Tagging: **Evaluating**

Q61. An organic compound has C and H percentage in the ratio 6 : 1 and C and O percentage in the ratio 3 : 4. The compound is:

(A) HCHO

(B) CH₃ OH

(C) CH₃ CH₂ OH

(D) $(COOH)_2$

Correct Answer: (A) Level: Moderate Tagging: Evaluating

Q62. The plots of $1/X_A$ vs. $1/Y_A$ (where X_A and Y_A are the mole fraction of liquid A in liquid and vapour phase respectively) is linear with slope and intercepts respectively:

$$(A)$$
 P_A^0/P_B^0 and $\frac{(P_A^0-P_B^0)}{P_B^0}$

(B)
$$P_A^0/P_B^0$$
 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$

(C)
$$P_B^0/P_A^0$$
 and $\frac{(P_A^0 - P_B^0)}{P_B^0}$

(D)
$$P_B^0/P_A^0$$
 and $\frac{(P_B^0 - P_A^0)}{P_B^0}$

Correct Answer: (B) Level: Moderate Tagging: Understanding

Q63. Two Solutions of glucose have osmotic pressure 1.0 and 3.5 atm. If 1 L of first solution is mixed with V L of second solution, the osmotic pressure of the resultant solution becomes 2.5 atm. Volume of second solution is

(A) 1.0 L

(B) 1.5 L

(C) 2.5 L

(D) 3.5 L

Correct Answer: **(B)** Level: **Moderate** Tagging: **Evaluating**

Q64. 50 cm³ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued after adding 50 cm³ of NaOH. The remaining titration is completed by adding 0.5 NKOH. The volume of KOH required for completing the titration is

(A) 12 cm^3

(B) 10 cm^3

(C) 25 cm³

(D) 10.5 cm^3

Correct Answer: (B) Level: Difficult Tagging: Evaluating

3. Solubility

Q65.

The distribution coefficient of I_2 in between CCl_4 and H_2O is 85 in favour of CCl_4 at 25°C. If solubility of I_2 in H_2O at 25°C is 0.33 g litre⁻¹, the solubility of I_2 in CCl_4 isg litre⁻¹.

- (A) 28.05
- (B) 30.05
- (C) 40.05
- (D) 26.05

Correct Answer: (A) Level: Easy Tagging: Understanding

Q66.

The K for I_2 between CS_2 and H_2O is 588 in favour of CS_2 . One litre of aqueous solution containing 1 g of I_2 is shaken with 50 mL of CS_2 . What will be the amount of I_2 in aqueous layer?

- (A) 0.035 g
- (B) 0.010 g
- (C) 0.05 g
- (D) 0.04 g

Correct Answer: (A) Level: Easy Tagging: Understanding

Some of the following gases are soluble in water due to formation of their ions:

 $\begin{array}{ll} \underbrace{\text{II: NH}_3}; & \text{III: NH}_3; & \text{III} \\ \vdots & \text{HCI}; & \text{IV: CH}_4; & \text{V: H}_2 \\ \end{array}$

Q67. Water insoluble gases can be:

-

- (A) I, IV, V
- (B) I, V
- (C) I, II, III
- (D) IV, V

Correct Answer: (D) Level: Easy Tagging: Remembering

Q68. As the temperature of a solvent increases, what generally happens to the solubility of most solid solutes?

- (A) Solubility increases
- (B) Solubility decreases
- (C) Solubility remains constant
- (D) Solubility becomes unpredictable

Correct Answer: (A) Level: Easy Tagging: Remembering

Q69. Henry's Law is primarily concerned with the solubility of:

- (A) Solids in liquids
- (B) Liquids in liquids
- (C) Gases in liquids
- (D) Gases in solids

Correct Answer: (C) Level: Easy Tagging: Remembering

Q70. How does an increase in pressure typically	affect the solubility of a gas in a liquid?	
(A) Pressure has no effect on gas solubility in liqu	uids.	
(B) Solubility decreases with increasing pressure		
(C) Solubility increases with increasing pressure.		
(D) The effect of pressure on gas solubility varies	depending on the gas and solvent.	
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q71. The energy that opposes the dissolution of	a solute in a solvent is called :	
(A) Solvent energy		
(B) Hydration energy		
(C) Lattice energy		
(D) Ionization energy		
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q72. The solubility of a gas in water depends on	:	
(A) Nature of the gas		
(B) Temperature		
(C) Pressure of the gas		
(D) All of these		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q73. The solubility of gas in liquid depends upon	:	
(A) Nature of gas		
(B) Nature of solvent		
(C) Temperature and pressure		
(D) All of the above		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q74. The solubility of iodine in water is 0.8 g/L.	If the partition coefficient of iodine between CCI	4 and water (in favour of
${\rm CCl_4}$) is 82, the solubility of iodine in ${\rm CCl_4}$ is :		
(A) 102.5 g/L		
(B) 65.6 g/L		
(C) 0.009 g/L		
(D) 81.2 g/L		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q75. The substances whose solubility decreases	with increase in temperature :	
(A) Ca(OH) ₂		
(B) Na ₂ CO ₃		
(C) Na ₂ SO ₄		
(D) All of these		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q76. What is solubility?		
(A) The ability of a substance to conduct electrici	ty	

	n dissolve in a given solvent at a specific tempe	erature and pressure
(C) The rate at which a substance evaporates		
(D) The ability of a substance to change its physic		
Correct Answer: (B)	Level: Easy	Tagging: Remembering
Q77. Which of the following factors does NOT affe	ect the solubility of a substance in a liquid?	
(A) Temperature		
(B) Pressure		
(C) Color of the solute		
(D) Nature of the solute and solvent		
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q78. Which statement is wrong for distribution la	w?	
(A) The two solvents should be mutually immiscible	ole	
(B) The substance should not chemically react with	th any of the two solvents	
(C) The temperature should not change during ex	periment	
(D) The concentration of the solute in both the so	lvents must be kept high	
Correct Answer: (D)	Level: Easy	Tagging: Remembering
4. Vapour pressure of liquid solutions		
 Q79. A and B are ideal gases. The molecular weight containing equal weight of A and B is p atm. What (A) P/5 (B) P/2 (C) P/2.5 (D) 3P/4 	•	-
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q80. A substance will be deliquescent if its vapou	ur pressure is :	
(A) Equal to the atmospheric pressure		
(B) Equal to that of water vapour in the air		
(C) Greater than that of water vapour in the air		
(D) Lesser than that of water vapour in the air		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q81. At 80° C, the vapour pressure of pure liquid solution of 'A' and 'B' boils at 80° C and 1 atm pres		=
(A) 52 mole percent		
(B) 34 mole percent		
(C) 48 mole percent		
(D) 50 mole percent		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q82. At high altitude the boiling of water occurs	at low temp. because :	
(A) Atmospheric pressure is low		

(B) Temperature is low

(C)	Atmospheric pressure is high		
(D)	None of the above		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
Q83	Boiling point of water is defined as the ter	mperature at which :	
(A)	Vapour pressure of water is equal to one at	mospheric pressure	
(B)	Bubbles are formed		
(C)	Steam comes out		
(D)	None of the above		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
Q84	I. If 0.1 M Solutions of each electrolyte are	taken and if all electrolytes a	re completely dissociated, then whose boiling
poin	t will be highest ?		
(A)	Glucose		
(B)	KCI		
(C)	BaCl ₂		
(D)	K_2 [Fe(CN) ₆]		
Cor	rect Answer: (D)	Level: Easy	Tagging: Evaluating
_	·	50°C at atmospheric pressure	, which of the following processes is expected
to ta	ake place more in case of liquids?		
(A)	Freezing		
(B)	Vaporization		
(C)	Sublimation		
(D)	None of these		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
Q86	On a humid day in summer, the mole frac	tion of gaseous H ₂ O (water v	vapour) in the air at 25° C can be as high as
0.02	287. Assuming a total pressure of 0.977 atm.	What is the partial pressure	of dry air?
(A)	94.9 atm		
(B)	0.949 atm		
(C)	949 atm		
(D)	0.648 atm		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
Q87	One mole of non-volatile solute is dissolve	ed in two mole of water. The	vapour pressure of the solution relative to that
of w	ater is :		
(A)	2/3		
(B)	1/3		
(C)	1/2		
(D)	3/2		
Cor	rect Answer: (A)	Level: Easy	Tagging: Evaluating
Q88	3. The atmospheric pressure is sum of the		
(A)	Pressure of the biomolecules		
(B)	Vapour pressure of atmospheric constituent	:S	

(C) Vapour pressure of chemicals and vapour	pressure of volatiles	
(D) Pressure created on to atmospheric molec	cules	
Correct Answer: (B)	Level: Easy	Tagging: Remembering
Q89. The vapour pressure (VP) of a dilute solu	ution of non-volatile solute is P and th	ne VP of pure solvent is P_0 , the lowering
of the VP is :		
(A) +ve		
(B) -ve		
(C) P/P ₀		
(D) P ₀ /P		
Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q90. The vapour pressure of a dilute aqueous	s solution of Glucose is 750 mm of me	ercury at 373 K. The mole fraction of
solute is -		
(A) $\frac{1}{10}$		
(B) $\frac{1}{7.6}$		
(C) $\frac{1}{35}$		
(D) $\frac{1}{76}$		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Correct Answer: (D) Q91. The vapour pressure of a dilute solution	-	Tagging: Evaluating
	-	Tagging: Evaluating
Q91. The vapour pressure of a dilute solution	-	Tagging: Evaluating
Q91. The vapour pressure of a dilute solution (A) Temperature of solution	-	Tagging: Evaluating
Q91. The vapour pressure of a dilute solution(A) Temperature of solution(B) Melting point of solute	-	Tagging: Evaluating
Q91. The vapour pressure of a dilute solution(A) Temperature of solution(B) Melting point of solute(C) Mole fraction of solute	-	Tagging: Evaluating Tagging: Remembering
 Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute 	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7	is not influenced by : Level: Easy s 40 mm Hg at 310 K. The vapour pre	Tagging: Remembering essure of this liquid in a solution with
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8	Level: Easy s 40 mm Hg at 310 K. The vapour pre of A in the solution if it obeys the Ra Level: Easy C is 1020 torr. A solution of 5 g of a so	Tagging: Remembering essure of this liquid in a solution with woult's law? Tagging: Evaluating
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 Correct Answer: (D) Q93. The vapour pressure of benzene at 90°C	Level: Easy s 40 mm Hg at 310 K. The vapour pre of A in the solution if it obeys the Ra Level: Easy C is 1020 torr. A solution of 5 g of a so	Tagging: Remembering essure of this liquid in a solution with woult's law? Tagging: Evaluating
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 Correct Answer: (D) Q93. The vapour pressure of benzene at 90°C pressure 990 torr. The molecular weight of the	Level: Easy s 40 mm Hg at 310 K. The vapour pre of A in the solution if it obeys the Ra Level: Easy C is 1020 torr. A solution of 5 g of a so	Tagging: Remembering essure of this liquid in a solution with woult's law? Tagging: Evaluating
Q91. The vapour pressure of a dilute solution (A) Temperature of solution (B) Melting point of solute (C) Mole fraction of solute (D) Degree of dissociation of solute Correct Answer: (B) Q92. The vapour pressure of a pure liquid A is liquid B is 32 mm Hg. What is the mole fraction (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 Correct Answer: (D) Q93. The vapour pressure of benzene at 90°C pressure 990 torr. The molecular weight of the (A) 78.2	Level: Easy s 40 mm Hg at 310 K. The vapour pre of A in the solution if it obeys the Ra Level: Easy C is 1020 torr. A solution of 5 g of a so	Tagging: Remembering essure of this liquid in a solution with woult's law? Tagging: Evaluating

Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q94. The vapour pressure of benzene at a certai weighing 2.175 g is added to 39.08 g of benzene. molecular weight of solid substance in g/mol		·
(A) 49.50		
(B) 59.60		
(C) 69.6		
(D) 79.82		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q95. The vapour pressure of two liquids P and Q by mixing 3 mole of P and 2 mole of Q would be :	are 80 torr and 60 torr respectively. The total	vapour pressure obtained
(A) 68 torr		
(B) 20 torr		
(C) 140 torr		
(D) 72 torr		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q96. The vapour pressure of water depends upo	n :	
(A) Surface area of container		
(B) Volume of container		
(C) Temperature		
(D) All of these		
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q97. Vapour pressure of dilute aqueous solution	of glucose is 750 mm of mercury at 373 K. The	e mole fraction of solute is
(A) 1/76		
(B) 1/7.6		
(C) 1/38		
(D) 1/10		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q98. Vapour pressure of a solvent containing no	n-volatile solute is :	
(A) More than the vapour pressure of a solvent		
(B) Less than the vapour pressure of solvent		
(C) Equal to the vapour pressure of solvent		
(D) None of the above		
Correct Answer: (B)	Level: Easy	Tagging: Remembering
Q99. Vapour pressure of pure A = 100 torr, mole vapour pressure of the mixture is	es = 2 mol; vapour pressure of pure B=80 torr,	moles = 3 mol. Total
(A) 440 torr		
(B) 460 torr		
(C) 180 torr		
(D) 88 torr		

Corre	ect Answer: (D)	Level: Easy	Tagging: Evaluating
Q100	• Water will boil at 101.5°C at which of the	following pressure?	
(A)	76 cm of Hg		
(B)	76 mm of Hg		
(C)	> 76 cm of Hg		
(D)	< 76 cm of Hg		
Corre	ect Answer: (C)	Level: Easy	Tagging: Remembering
_	. When an ideal binary solution is in equilibrathe the vapour phase is:	ium with its vapour, molar ratio of the two com	ponents in the solution
(A)	Same		
(B) I	Different		
(C)	May or may not be same depending upon vol	atile nature of the two components	
(D)	None of the above		
Corre	ect Answer: (C)	Level: Easy	Tagging: Remembering
Q102	. Which solution will have least vapour pres	sure?	
(A)	0.1 M BaCl ₂		
(B)	0.1 M urea		
(C)	0.1 M Na ₂ SO ₄		
(D)	0.1 M Na ₃ PO ₄		
Corre	ect Answer: (D)	Level: Easy	Tagging: Analyzing
	Vapour pressure of CCl ₄ at 25°C is 14	Level: Easy 3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of	ute (mol. wt=65) is
Q103	Vapour pressure of CCl ₄ at 25°C is 14	3 mm of Hg and 0.5 g of a non-volatile sol	ute (mol. wt=65) is
Q103 (A)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the va	3 mm of Hg and 0.5 g of a non-volatile sol	ute (mol. wt=65) is
Q103 (A) (B)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the va	3 mm of Hg and 0.5 g of a non-volatile sol	ute (mol. wt=65) is
Q103 (A) (B) (C)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the va 94.39 mm 141.93 mm	3 mm of Hg and 0.5 g of a non-volatile sol	ute (mol. wt=65) is
Q103 (A) (B) (C) (D)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the va 94.39 mm 141.93 mm 134.44 mm	3 mm of Hg and 0.5 g of a non-volatile sol	ute (mol. wt=65) is
Q103 (A) (B) (C) (D) Correct Q104	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of value	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) Correct Q104 mole	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) Correct Q104 mole solution	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) Correct Q104 mole solution (A) (B) (C) (C) (C)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) (Correct Q104 mole solution (A) (B) (B) (C)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) Correct Q104 mole solution (A) (B) (C) (C) (D)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	3 mm of Hg and 0.5 g of a non-volatile sol pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the
Q103 (A) (B) (C) (D) Correct Q104 mole solution (A) (B) (C) (D) Correct (D) (C) (D)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	Hand 0.5 g of a non-volatile solution pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of the that will boil at 88°C at 1 atm pressure, benze that will boil at 88°C at 1 atm pressure.	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the ene-toluene form an ideal
Q103 (A) (B) (C) (D) Correct (A) (B) (C) (D) Correct (D) Correct (D) Correct (D) (D) Correct (D)	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	Hand 0.5 g of a non-volatile solution pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of the that will boil at 88°C at 1 atm pressure, benze that will boil at 88°C at 1 atm pressure.	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the ene-toluene form an ideal
Q103 (A) (B) (C) (D) (Correct (A) (C) (D) (C) (D) (C) (D) (C) (A) (B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Vapour pressure of CCl ₄ at 25°C is 14 dissolved in100 mL CCl ₄ . Find the value of the value o	Hand 0.5 g of a non-volatile solution pour pressure of the solution. (Density of Level: Moderate 900 torr and toluene has a vapour pressure of the that will boil at 88°C at 1 atm pressure, benze that will boil at 88°C at 1 atm pressure.	ute (mol. wt=65) is $CCl_4 = 1.58 \text{ g/cm}^2$) Tagging: Evaluating 360 torr. What is the ene-toluene form an ideal

(D)	Inversion temperature		
Cor	rect Answer: (A)	Level: Moderate	Tagging: Remembering
Q10	D6. The partial pressure of ethane	over a saturated solution containing 6.56 ×	10^{-2} g of ethane is 1 bar. If the solution
cont	tains 5.0×10^{-2} g of ethane, the pa	rtial pressure of ethane will be :	
(A)	0.762 bar		
(B)	1.762 bar		
(C)	0.1 bar		
(D)	0.2 bar		
Cor	rect Answer: (A)	Level: Difficult	Tagging: Evaluating
5. I	Ideal and Non-ideal Solution		
Q10	07. An ideal solution is that which		
(A)	Shows positive deviation from Ra	oult's law	
(B)	Shows negative deviation from Ra	aoult's law	
(C)	Has no connection with Raoult's la	aw	
(D)	Obeys Raoult's law		
Cor	rect Answer: (D)	Level: Easy	Tagging: Remembering
Q10	18. Binary liquid Solutions which e	exhibit negative deviations from Raoult's law	boil at temperaturethan the expected
valu	ie:		
(A)	Lower		
(B)	Higher		
(C)	Same		
(D)	Cannot be said		
Cor	rect Answer: (B)	Level: Easy	Tagging: Remembering
		different liquid molecules are stronger than	the molecular interactions of the same
	id molecules the mixture is expecte	ed to snow:	
(A)	Positive deviation Negative deviation		
(B) (C)	No deviations		
(D)		tions	
` ,	rect Answer: (B)	Level: Easy	Tagging: Understanding
Q11 law	10. When attraction between A-B	is more than that of A-A and B-B, the solution	on will snowdeviation from Raoult's
(A)	Positive		
(B)	Negative		
(C)	No		
(D)			
Cor	rect Answer: (B)	Level: Easy	Tagging: Remembering
_	11. When two liquids A and B are ure of this solution?	mixed then their boiling points becomes gre	eater than both of them. What is the

(A) Ideal solution

(B) Normal solution		
(C) Negative deviation with non-ideal solution		
(D) Positive deviation with non-ideal solution		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q112. Which of the following is not correct for	ideal solution?	
(A) $\Delta V_{mix} = 0$		
(B) $\Delta H_{mix} = 0$		
(C) $\Delta S_{mix} = 0$		
(D) Obeys Raoult's law		
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q113. Which of the following is true when com	ponents forming an ideal solution are mixed?	
(A) $\Delta H_m = \Delta V_m = 0$		
(B) $\Delta H_m < \Delta V_m$		
(C) $\Delta H_m = \Delta V_m = 1$		
(D) $\Delta H_m > \Delta V_m$		
Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q114. Which of the following liquid pair shows	a positive deviation from Raoult's law?	
(A) Water-nitric acid		
(B) Acetone-chloroform		
(C) Water-hydrochloric acid		
(D) Benzene-methanol		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q115. Which of the following liquid pairs shows	s a positive deviation from Raoult's law	
(A) Water-nitric acid		
(B) Benzene-methanol		
(C) Water-hydrochloric acid(D) Acetone-chloroform		
Correct Answer: (B)	Level: Easy	Tagging: Remembering
	-	ragging. Remembering
Q116. Which of the following will form an ideal C ₂ H ₅ OH and water	solution?	
(B) HNO ₃ and water		
(C) CHCl ₃ and CH ₃ COCH ₃		
$_{(D)}$ C_6H_6 and $C_6H_5CH_3$		
Correct Answer: (D)	Level: Easy	Tagging: Remembering
Q117. Which one of the following mixtures can	be separated into pure components by fractional	al distillation?
(A) Benzene - toluene	, , , , , , , , , , , , , , , , , , , ,	

- (B) Water ethyl alcohol(C) Water nitric acid
- (D) Water hydrochloric acid

Correct Answer: (A) Level: Easy Tagging: Remembering

6. Colligative Properties and Determination of Molar Mass

Relative lowering in vapour pressure of a solution containing 1 mole K₂SO₄ in 54 g H₂O is : (K₂SO₄ is 100% ionised)

Q118.

- (A) $\frac{1}{55}$
- (B) $\frac{3}{55}$
- (C) $\frac{3}{4}$
- (D) ¹/₂

Correct Answer: **(C)** Level: **Easy** Tagging: **Evaluating**

Q119.

Mole fraction of solute in an aqueous solution which boils at 100.104. K_b for $H_2O = 0.52$ K molality⁻¹:

- (A) 3.6×10^{-3}
- (B) 0.004
- (C) 5.6×10^{-3}
- (D) 0.996

Correct Answer: (B) Level: Easy Tagging: Evaluating

Q120.

The freezing point (in°C) of solution containing 0.1 g of $K_3[Fe(CN)_6]$ (mol. wt 329) in 100 g of water $(K_f = 1.86 \text{ K kg mol}^{-1})$ is

- (A) -2.3×10^{-2}
- (B) -5.7×10^{-2}
- (C) -5.7×10^{-3}
- (D) -1.2×10^{-2}

Correct Answer: (A) Level: Easy Tagging: Evaluating

Q121. 0.1 molal aqueous solution of NaBr freezes at -0.335°C at atmospheric pressure k_f for water is 1.86°C. The percentage of dissociation of the salt in solution is

- (A) 90
- (B) 80
- (C) 58
- (D) 98

Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q122. 1.0 g of a non-electrolyte sol	ute (molar mass 250 g mol ⁻¹) was dissolved in	51.2 g of benzene. If the freezing
point depression constant of benzene	is 5.12 K kg mol^{-1} , the lowering in freezing poi	nt will be :
(A) 0.5 K		
(B) 0.2 K		
(C) 0.4 K		
(D) 0.3 K		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q123. A 0.5 molal aqueous solution solution is : $(K_f=1.86 \text{ K/m for water})$	of a weak acid (HX) is 20 per cent ionized. The	e lowering in freezing point of this
(A) 0.56 K		
(B) -0.56 K		
(C) 1.12 K		
(D) -1.12 K		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q124. A thermometer which can be a:	used only for accurate measurement of small of	differences in temperature is known as
(A) Beckmann thermometer		
(B) Contact thermometer		
(C) Clinical thermometer		
(D) Platinum resistance thermomete	r	
Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q125. According to phase rule, if P=	=3,C=1, then F must be equal to :	
(A) 2		
(B) 1		
(C) Zero		
(D) 4		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q126. At 25°C, the highest osmotion	pressure is exhibited by 0.1 M solution of	
(A) Urea		
(B) Glucose		
(C) KCI		
(D) CaCl ₂		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q127. At certain temperature a 5.12 molar mass of solute is	2% solution of cane sugar is isotonic with a 0.9	% solution of an unknown solute. The
(A) 60		
(B) 46.17		

(C) 120

(D)	90		
Cor	rect Answer: (A)	Level: Easy	Tagging: Evaluating
Q12	28. Beckmann thermometer is used to	measure :	
(A)	Boiling point of the solution		
(B)	Freezing point of the solution		
(C)	Any temperature		
(D)	Elevation in boiling point or depression	n in freezing point	
Cor	rect Answer: (D)	Level: Easy	Tagging: Remembering
Q12	29. Camphor is used as solvent to dete	rmine mol. wt. of non-volatile solute by	Rast method because for camphor :
(A)	Is readily available		
(B)	Is volatile		
(C)	has high molal depression constant		
(D)	Is solvent for organic substances		
Cor	rect Answer: (C)	Level: Easy	Tagging: Remembering
Q13	80. Choose the correct statement. Who	en concentration of a salt solution is incr	eased
(A)	Boiling point increases while vapour pr	essure decreases.	
(B)	Boiling point decreases while vapour p	ressure increases.	
(C)	Freezing point decreases while vapour	pressure increases.	
(D)	Freezing point increases while vapour	pressure decreases.	
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
Q13	31. Colligative properties are used for	the determination of	
(A)	Molar mass		
(B)	Equivalent weigh		
(C)	Arrangement of molecules		
(D)	Melting and boiling points		
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering
	32. Elevation in boiling point was 0.52° (k_b of water is 5.2° C per 100 g water)	C when 6 g of a compound was dissolve	ed in 100 g of water. Molecular weight of
(A)	120 g mol ⁻¹		
(B)	60 g mol ⁻¹		
(C)	600 g mol ⁻¹		
(D)	180 g mol ⁻¹		
Cor	rect Answer: (B)	Level: Easy	Tagging: Evaluating
Q13	33. Equimolal Solutions will have the s	ame boiling point, provided they do not	show:
(A)	Electrolysis		
(B)	Association		
(C)	Dissociation		
(D)	Association or dissociation		
Cor	rect Answer: (D)	Level: Easy	Tagging: Evaluating

Q134. For an aqueous solution, freezing point is -0. $(k_f=1.86^\circmol^{-1}~{\rm kg~and}~k_b=0.512^\circmol^{-1}~k_b)$		e solution is
(A) 0.186°		
(B) 0.0512°		
(C) 1.86°		
(D) 5.12°		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q135. If 0.15 g of a solute, dissolved in 15 g of solve pure solvent. The molecular weight of the substance		
(A) 100		
(B) 10.1		
(C) 10		
(D) 1.001	Level, France	Tanaina, Funkustina
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q136. If sodium sulphate is considered to be completed change in freezing point of water (ΔT_f), when 0.01 m		
(A) 0.0372 K		
(B) 0.0558 K		
(C) 0.0744 L		
(D) 0.0186 K		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Correct Answer: (B) Q137. If a is the degree of dissociation of Na ₂ SO ₄		
Q137. If a is the degree of dissociation of $Na_2 SO_4$		
Q137. If a is the degree of dissociation of $Na_2 SO_4$ (A) 1-2 a		
Q137. If a is the degree of dissociation of Na_2 SO_4 (A) 1-2 a (B) 1+2 a		
Q137. If a is the degree of dissociation of $Na_2 SO_4$ (A) 1-2 a (B) 1+2 a (C) 1-a		
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to	the van't Hoff factor (i) used for calculating the Level: Easy	molecular mass is Tagging: Evaluating
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C	the van't Hoff factor (i) used for calculating the Level: Easy	molecular mass is Tagging: Evaluating
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C	the van't Hoff factor (i) used for calculating the Level: Easy	molecular mass is Tagging: Evaluating
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C (C) +0.480°C	the van't Hoff factor (i) used for calculating the Level: Easy	molecular mass is Tagging: Evaluating
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C	the van't Hoff factor (i) used for calculating the Level: Easy id HX, the degree of ionization is 0.3 . Taking K_{f}	molecular mass is Tagging: Evaluating
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C (C) +0.480°C (D) -0.480°C Correct Answer: (D)	the van't Hoff factor (i) used for calculating the Level: Easy id HX, the degree of ionization is 0.3. Taking K_{f} Level: Easy	molecular mass is Tagging: Evaluating for water as 1.85, the
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C (C) +0.480°C (D) -0.480°C Correct Answer: (D) Q139. In the case of osmosis, solvent molecules more	the van't Hoff factor (i) used for calculating the Level: Easy id HX, the degree of ionization is 0.3. Taking K_{f} Level: Easy ove from :	molecular mass is Tagging: Evaluating for water as 1.85, the
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C (C) +0.480°C (D) -0.480°C Correct Answer: (D) Q139. In the case of osmosis, solvent molecules more	the van't Hoff factor (i) used for calculating the Level: Easy id HX, the degree of ionization is 0.3. Taking K_{f} Level: Easy ove from :	molecular mass is Tagging: Evaluating for water as 1.85, the
Q137. If a is the degree of dissociation of Na ₂ SO ₄ (A) 1-2 a (B) 1+2 a (C) 1-a (D) 1+ a Correct Answer: (B) Q138. In a 0.2 molal aqueous solution of a weak ac freezing point of the solution will be nearest to (A) -360°C (B) 0.260°C (C) +0.480°C (D) -0.480°C Correct Answer: (D) Q139. In the case of osmosis, solvent molecules months.	the van't Hoff factor (i) used for calculating the Level: Easy id HX, the degree of ionization is 0.3. Taking K _f Level: Easy ove from:	molecular mass is Tagging: Evaluating for water as 1.85, the

Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q140. Increasing the temperature of an aqueous	s solution will cause	
(A) Decrease in molarity		
(B) Decrease in molality		
(C) Decrease in mole fraction		
(D) Decrease in % w/w		
Correct Answer: (A)	Level: Easy	Tagging: Understanding
Q141. Lowering in vapour pressure is the highes	t for:	
(A) 0.2 m urea		
(B) 0.1 m glucose		
(C) 0.1 m MgSO ₄		
(D) 0.1 m BaCl ₂		
Correct Answer: (A)	Level: Easy	Tagging: Analyzing
Q142. Molal elevation constant of a liquid is :		
(A) The elevent in b.p. which would be produced	by dissolving one mole of solute in 100 g of sol	vent
(B) The elevation of b.p. which would be produce	ed by dissolving 1 mole solute in 10 g of solvent	
(C) Elevation in b.p. which would be produced by	dissolving 1 mole of solute in 1000 g of solven	t
(D) None of the above		
Correct Answer: (C)	Level: Easy	Tagging: Remembering
Q143. Osmatic pressure is 0.0821 atm at tempe	rature of 300 K. Find concentration in mole per	litre
(A) 0.33		
(B) 0.22×10^{-2}		
(C) 0.33×10 ⁻²		
(D) 0.44×10 ⁻²		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q144. Phenol dimerises in benzene having van't	Hoff factor 0.54. What is the degree of associat	tion?
(A) 1.92		
(B) 0.98		
(C) 1.08		
(D) 0.92		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating
Q145. Relative lowering of vapour pressure of a	dilute solution is 0.2. What is the mole fraction	of the non-volatile solute
?		
(A) 0.8		
(B) 0.5		
(C) 0.3		
(D) 0.2		
Correct Answer: (D)	Level: Easy	Tagging: Evaluating

Q146	5. Solution A contains 7 g/L of Mg0	${ m Cl}_2$ and solution B contains 7 g/L of NaCl. At ${ m r}$	room temperature, the osmotic
press	ure of		
(A)	Solution A is greater than B		
(B)	Both have same osmotic pressure		
(C)	Solution B is greater than A		
(D)	Cannot be determine		
Corre	ect Answer: (A)	Level: Easy	Tagging: Evaluating
_	7. The amount of ice that will sepa C will be	rate out on cooling a solute containing 50 g o	of ethylene glycol in 200 g water to
(A)	8.37 g		
(B)	161.3 g		
(C)	3.87 g		
(D)	38.7 g		
Corre	ect Answer: (D)	Level: Easy	Tagging: Evaluating
Q148	3. The conditions for the validity of	Henry's law is/are :	
(A)	The pressure should not be too high	ı	
(B)	The temperature should not be too	low	
(C)	The gas should neither dissociate n	ot enter into chemical combination with solve	ent
(D)	All of the above		
Corre	ect Answer: (D)	Level: Easy	Tagging: Remembering
Q149	The depression in f. p. of 0.01 m	n aqueous solution of urea, sodium chloride a	and sodium sulphate is in the ratio:
(A)	1:1:1		
(B)	1:2:3		
(C)	1:2:4		
(D)	2:2:3		
Corre	ect Answer: (B)	Level: Easy	Tagging: Evaluating
Q150	. The distribution law was given b	y:	
(A)	Henry		
(B)	Nernst		
(C)	van't Hoff		
(D)	Ostwald		
Corre	ect Answer: (B)	Level: Easy	Tagging: Remembering
Q151	L. The elevation in boiling point for	one molal solution of a solute in a solvent is	called:
(A)	Cryoscopic constant		
(B)	Boiling point constant		
(C)	Molal ebullioscopic constant		
(D)	None of the above		
Corre	ect Answer: (C)	Level: Easy	Tagging: Evaluating
Q152	2. The elevation of boiling point me	ethod is used for the determination of molecu	ılar weight of:

(A) Non-volatile and soluble solute (B) Non-volatile and insoluble solute (C) Volatile and soluble solute (D) Volatile and insoluble solute Correct Answer: (A) Level: Easy Tagging: Evaluating **Q153.** The Henry's law constant for the solubility of N_2 gas in water at 298 K is 1.0×105 atm. The mole fraction of N_2 In air is 0.8 The number of moles of N_2 from air dissolved in 10 moles of water of 298 K and 5 atm pressure is (A) 4×10^{-4} (B) 4.0×10^{-5} (C) 5.0×10^{-4} (D) 4.0×10^{-6} Correct Answer: (A) Level: Easy Tagging: Evaluating Q154. The increase in boiling point of a solution containing 0.6 g urea in 200 g water is 0.50° C. Find the molal elevation constant. (A) 10 K kg mol^{-1} (B) 10 K g mol^{-1} (C) 10 K kg mol (D) 1.0 K kg mol⁻¹ Correct Answer: (A) Level: Easy Tagging: Evaluating **Q155.** The melting point of most of the solid substances increases with an increase of pressure acting on them. However, ice melts at a temperature lower than its usual melting point, when the pressure increase. This is because: (A) Ice is less denser than water (B) Pressure generates heat (C) The bonds break under pressure (D) Ice is not a true solid Correct Answer: (A) Level: Easy Tagging: Understanding Q156. The modal elevation constant of water is 0.52°C. The boiling point of 1.0 modal aqueous KCl solution (assuming complete dissociation of KCl), therefore, should be (A) 98.96°C (B) 100.52°C (C) 101.04°C (D) 107.01°C Correct Answer: (C) Level: Easy Tagging: Evaluating Q157. The molal boiling point constant of water is 0.53°C. When 2 mole of glucose are dissolved in 4000 g of water, the solution will boil at: (A) 100.53 °C (B) 101.06 °C (C) 100.265 °C (D) 99.47 °C

Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q158. The molal elevation constant for water is dissolving 0.25 mole of a non-volatile solute in 25		ed in the boiling point of water by
(A) 52°C		
(B) 5.2°C		
(C) 0.52°C		
(D) 0.052°C		
Correct Answer: (C)	Level: Easy	Tagging: Evaluating
Q159. The molal elevation constant for water is pressure? (Assume b.p. of pure water is 100°C)	0.52. What will be the boiling p	point of 2 molar sucrose solution at 1 atm
(A) 101.04°C		
(B) 100.26°C		
(C) 100.52°C		
(D) 99.74°C		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q160. The molal elevation/depression constant	depends upon :	
(A) Nature of solvent		
(B) Nature of solute		
(C) Temperature		
(D) ΔH solution		
Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q161. The osmatic pressure of 0.4% urea solutions are mixed then the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the osmatic pressure of 0.4% urea solutions are mixed the 0.4% urea solutions		
(D) 0.02 atm Correct Answer: (B)	Lovely Energy	Togging, Evaluating
• •	Level: Easy	Tagging: Evaluating
Q162. The osmotic pressure (At27°C) of an aqu		ing 6 g of a protein is 2× 10 ⁻³ atm . If
$R=0.080 L atm mol^{-1} K^{-1}$, the molecular weight o	f protein is	
(A) 7.2×10^5		
(B) 3.6×10^5		
(C) 1.8×10 ⁵		
(D) 1.0×10 ⁵		
C (D)		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating

(C) 0.90		
(D) 0.80		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q164. The relative lowering of vapour pressure 0.00713. The molecular weight of the substance (A) 180		in 1000 g of water is
(B) 18		
(C) 342		
(D) 60		
Correct Answer: (A)	Level: Easy	Tagging: Evaluating
Q165. The statement "the relative lowering of t number of the moles in the solution" refers to	the vapour pressure is equal to the ratio of mole	es of the solute to the total
(A) Hess's law		
(B) Dalton's law		
(C) Raoult's law		
(D) Charles's law		
Correct Answer: (C)	Level: Easy	Tagging: Understanding
Q166. The temperature at which vapour pressu	re of a solvent in its liquid and solid phase become	omes same is called :
(A) b. p.		
(B) f. p.		
(C) Krafft point		
(D) None of these		
Correct Answer: (B)	Level: Easy	Tagging: Remembering
Q167. The van't hoff factor for $0.1 \text{ m Ba(NO}_3)$	₂ solution is 2.74. The degree of dissociation is	
(A) 91.3%		
(B) 87%		
(C) 100%		
(D) 74%		
Correct Answer: (B)	Level: Easy	Tagging: Evaluating
Q168. The van't Hoff factor i for a compound w is respectively :	hich undergoes dissociation in one solvent and	association in other solvent
(A) Greater than one and greater than one		
(B) Less than one and greater than one		
(C) Less than one and less than one		
(D) Greater than one and less than one		
Correct Answer: (A)	Level: Easy	Tagging: Remembering
Q169. Van't hoff factor of $Ca(NO_3)_2$ is		
(A) One		
(B) Two		
(C) Three		

(D)	four		
Corr	ect Answer: (C)	Level: Easy	Tagging: Remembering
Q17	0. What is the freezing point of a solution co	ontaining 8.1 g HBr in 100 g water assuming th	e acid to be 90% ionised
(k _f fo	r water =1.86 kg mol ⁻¹)?		
(A)	-0.35°C		
(B)	-1.35°C		
(C)	-2.35°C		
(D)	-3.53°C		
Corr	ect Answer: (D)	Level: Easy	Tagging: Evaluating
Q17	1. When 10 g of a non-volatile solute is diss	solved in 100 g of benzene, it raises boiling poir	nt by 1°C then molecular
mass	s of the solute is $(k_b \text{ for } C_6 \text{ H}_6 = 2.53 \text{ kg-mol}^{-1}$)	
(A)	223 g		
(B)	233 g		
(C)	243 g		
(D)	253 g		
Corr	ect Answer: (D)	Level: Easy	Tagging: Evaluating
Q17	2. When mercuric iodide is added to the aqu	ueous solution of potassium iodide, the	
(A)	Freezing point is raised		
(B)	Freezing point is lowered		
(C)	Freezing point does not change		
(D)	Boiling point does not change		
Corr	ect Answer: (A)	Level: Easy	Tagging: Understanding
Q17	3. Which is a colligative property ?		
(A)	Osmotic pressure		
(B)	Free energy		
(C)	Heat of vaporisation		
(D)	Change in pressure		
Corr	ect Answer: (A)	Level: Easy	Tagging: Remembering
Q17	4. Which is not a colligative property in the	following?	
(A)	pH ofa buffer solution		
(B)	Boiling point elevation		
(C)	Freezing point depression		
(D)	Vapour pressure lowering		
Corr	ect Answer: (A)	Level: Easy	Tagging: Remembering
gluco X=20	se solution (iii)0.6 g urea in 100 mL solution	produce the same osmotic pressure? (i)0.1 M $_{\odot}$ (iv)1.0 g of a non-electrolyte solute (X) in 50 $_{\odot}$	

(B) (ii), (iii), (iv)

(C) (i), (ii), (iv)

(D) (i), (iii), (iv)

Correct Answer: (C) Level: Easy Tagging: Evaluating

Q176. Which of the following curves represents the Henry's law?

Correct Answer: (B) Level: Easy Tagging: Analyzing

Q177. Which of the following is incorrect?

- (A) Relative lowering of vapour pressure is independent
- (B) Vapour pressure of a solution is lower than the vapour pressure of the solvent
- (C) The vapour pressure is a colligative property
- (D) The relative lowering of vapour pressure is directly proportional to the mole fraction solute

Correct Answer: (A) Level: Easy Tagging: Analyzing

Q178. Which of the following is incorrect?

- (A) Relative lowering of vapour pressure is independent of the solute and the solvent.
- (B) The relative lowering of vapour pressure is a colligative property.
- (C) Vapour pressure of a solution is lower than the vapour pressure of the solvent.
- (D) The relative lowering of vapour pressure is directly proportional to the original pressure.

Correct Answer: **(D)** Level: **Easy** Tagging: **Analyzing**

Q179. Which of the following is not a colligative property?

- (A) Optical activity
- (B) Osmotic pressure
- (C) Depression of freezing point
- (D) Elevation of boiling point

Correct Answer: (A) Level: Easy Tagging: Remembering

Q180. Which of the following shows maximum depression in freezing point?

(A)	K ₂ SO ₄						
(B)	NaCl						
(C)	Urea						
(D)	glucose						
Corr	ect Answer: (A)	Level: Easy	Tagging: Remembering				
Q18	1. Which of the following	llowing solution highest boiling point?					
(A)	0.1 M urea						
(B)	0.1 M sucrose						
(C)	0.1 M NaNO ₃						
(D)	$0.1 \text{ M Al(NO}_3)_3$						
Corr	ect Answer: (D)	Level: Easy	Tagging: Analyzing				
Q18	2. Which of the following	lowing Solutions will have the highest boiling point?					
(A)	Camphor						
(B)	Naphthalene						
(C)	Benzene						
(D)	Water						
Corr	rect Answer: (A)	Level: Easy	Tagging: Remembering				
Q18	3. Which of the giv	ven Solutions has highest osmotic pressure?					
(A)	1N NaNO ₃						
(B)	1N Ba(NO ₃) ₂						
(C)	1N AI(NO ₃) ₃						
(D)	1 N Th(NO ₃) ₄						
Corr	ect Answer: (D)	Level: Easy	Tagging: Applying				
Q18	4. Which one is a d	colligative property?					
(A)	A) Raoult's law states that the vapour pressure of a component over a solution is proportional to its mole fraction						
(B)	The osmotic pressure (π)of a solution is given by the equation π = MRT, where , M is the molarity of the solution						
(C)	The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is $BaCl_2 > KCl > CH_3$ COOH>						
sucr	ose						
(D)	Two sucrose Solution	ons of same molality prepared in different solvents will have the same	freezing point depression				
Corr	rect Answer: (D)	Level: Easy	Tagging: Analyzing				
Q18	5. Which one of the	e following aqueous Solutions will exhibit highest boiling point?					
(A)	$0.01~\mathrm{M~Na_2~SO_4}$						
(B)	0.01 M KNO ₃						
(C)	0.015 M urea						
(D)	0.015 M glucose						
Corr	ect Answer: (A)	Level: Easy	Tagging: Analyzing				
Q18	6. Which one of the	e statements given below concerning properties of Solutions, describe	es a colligative effect?				
(A)	Vapour pressure of	pure water decreases by the addition of nitric acid					

- (B) Boiling point of pure water decreases by the addition of ethanol
- (C) Boiling point of pure benzene increases by the addition of toluene
- (D) Vapour pressure of pure benzene decreases by the addition of naphthalene

Correct Answer: (A) Level: Easy Tagging: Remembering

Q187. Which solution would exhibit abnormal osmotic pressure?

- (A) Aqueous solution of urea
- (B) Aqueous solution of common salt
- (C) Aqueous solution of glucose
- (D) Aqueous solution of sucrose

Correct Answer: **(B)** Level: **Easy** Tagging: **Remembering**

Q188.

When 20 g of naphthoic acid $(C_{11}H_8O_2)$ is dissolved in 50 g of benzene $(k_f = 1.72 \text{ K kg mol}^{-1})$, a freezing point depression of 2 K is observed. The van't Hoff factor (*j*) is

- (A) 0.5
- (B) 1
- (C) 2
- (D) 3

Correct Answer: (A) Level: Moderate Tagging: Evaluating

Q189.

The freezing point depression of 0.001 m, $K_x[Fe(CN)_6]$ is 7.10×10^{-3} K. If for water, k_f is 1.86 K Kg mol⁻¹, value of x will be

- (A) 4
- (B) 3
- (C) 2
- (D) 1

Correct Answer: **(B)** Level: **Moderate** Tagging: **Evaluating**

Q190.

The freezing point (in °C) of a solution containing 0.1 g of K_3 [Fe(CN)₆] (mol.wt.329) in 100 g of water is : $(K_f = 1.86 \ K \ kg \ mol^{-1})$

- (A) -2.3×10^{-2}
- (B) -5.7×10^{-2}
- (C) -5.7×10^{-3}
- (D) -1.2×10^{-2}

Correct Answer: (A) Level: Moderate Tagging: Evaluating

Q191.

The freezing point depression constant for water is -1.86° Cm $^{-1}$. If 5.00 g Na₂SO₄ is dissolved in 45.0 g H₂O, the freezing point is change by -3.82° C, Calculate the van't Hoff factor for Na₂SO₄.

- (A) 0.381
- (B) 2.05
- (C) 2.63

(D) 3.11

Correct Answer: **(C)** Level: **Moderate** Tagging: **Evaluating**

Q192.

 K_f for water is 1.86 K-kg-mol⁻¹. If your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol ($C_2H_6O_2$) must you add to get the freezing point of the solution lowered to $-2.8^{\circ}C$?

- (A) 93 g
- (B) 39 g
- (C) 27 g
- (D) 72 g

Correct Answer: (A) Level: Moderate Tagging: Evaluating

Glucose is added to 1 litre water to such an extent that $\frac{\Delta T_f}{K_f}$ becomes equal to $\frac{1}{1000}$, the

Q193. weight of glucose added is:

- (A) 180 g
- (B) 18 g
- (C) 1.8 g
- (D) 0.18 g

Correct Answer: **(D)**Level: **Moderate**Tagging: **Evaluating**

Q194. 20 g of binary electrolyte (mol. wt. =100) is dissolved in 500 g of water. The depression in freezing point of the solution is 0.74° C ($k_f = 1.86 \text{ Km}^{-1}$), the degree of ionisation of the electrolyte is

- (A) 0%
- (B) 100%
- (C) 75%
- (D) 50%

Correct Answer: (A) Level: Moderate Tagging: Evaluating

Q195. Depression in freezing point is 6 K for NaCl solution if k_f for water is 1.86 K/kg mol, amount of NaCl dissolved in 1 kg water is

- (A) 3.42
- (B) 1.62
- (C) 3.24
- (D) 1.71

Correct Answer: (B) Level: Moderate Tagging: Evaluating

Q196. In an osmotic pressure measurement experiment, a 5% solution of compound 'X' is found to be isotonic with a 2 % acetic acid solution . The gram molecular mass of 'X' is

- (A) 24
- (B) 60
- (C) 150

Correct Answer: **(C)** Level: **Moderate** Tagging: **Evaluating**

Q197. The freezing point of aqueous solution that contains 5% by mass urea, 1.0% by mass KCl and 10% by mass of glucose is : $(K_f H_2 O=1.86 \text{ K molality}^{-1})$

- (A) 290.2 K
- (B) 285.5 K
- (C) 269.93 K
- (D) 250 K

Correct Answer: (C) Level: Moderate Tagging: Evaluating

Q198. Two Solutions of KNO₃ and CH₃ COOH are prepared separately. Molarity of both is 0.1 M and osmatic pressures are p_1 and p_2 respectively. The correct relationship between the osmatic pressures is

- (A) $p_1 = p_2$
- (B) $p_1 > p_2$
- (C) $p_2 > p_1$

$$\frac{p_1}{p_1+p_2} + \frac{p_2}{p_1+p_2}$$

Correct Answer: **(B)** Level: **Moderate** Tagging: **Understanding**

Q199. A solute when distributed between two immiscible phases remains associated in phase II and dissociated in phase I. If a is the degree of dissociation and n is the number of molecules associated then:

$$K = \frac{c_{\rm I}}{c_{\rm II}}$$

(B)
$$K = \frac{c_{\rm I}}{\sqrt[n]{c_{\rm II}(1-\alpha)}}$$

(C)
$$K = \frac{c_{\text{I}}}{c_{\text{II}}(1-\alpha)}$$

$$K = \frac{c_{I}(1-\alpha)}{\sqrt[n]{c_{II}}}$$

Correct Answer: **(D)** Level: **Difficult** Tagging: **Evaluating**

7. Abnormal Molar Masses

Q200. Abnormal molar mass is a term used to describe a molar mass that is:

- (A) Accurately determined
- (B) Equal to the true value
- (C) Lower or higher than the expected or normal value
- (D) Affected by interionic attractions

Correct Answer: (C) Level: Easy Tagging: Remembering

Q201. Abnormal molar mass is produced by :

- (A) Dissociation of solute
- (B) Association of solute
- (C) Both association and dissociation of solute

(D) Separation by semipermeable membrane						
Correct Answer: (C)	Level: Easy	Tagging: Remembering				
Q202. Acetic acid associates as dimers in benzacid is 50%? (A) 0.25 (B) 0.50 (C) 0.75 (D) 0.40	ene. What is the Van't Hoff factor (i) if the degre	ee of association of acetic				
Correct Answer: (C)	Level: Easy	Tagging: Remembering				
 Q203. In the formula for calculating the van't Hoff factor (i), what does "Observed colligative property" refer to? (A) The expected colligative property (B) The experimentally determined molar mass (C) The colligative property considering dissociation or association (D) The total number of moles of solute particles 						
Correct Answer: (C)	Level: Easy	Tagging: Remembering				
Q204. The Van't Hoff factor i for a 0.2 molal aqueous solution of urea is (A) 0.2 (B) 1.2 (C) 0.1 (D) 1.0 Correct Answer: (D) Level: Easy Tagging: Remembering Q205. The van't Hoff factor, denoted as "i," is introduced to account for the extent of dissociation or association in a solution. What is the value of "i" for ethanoic acid in benzene? (A) Approximately 2 (B) Approximately 0.5 (C) Exactly 1 (D) Zero						
Correct Answer: (D) Q205. The van't Hoff factor, denoted as "i," is solution. What is the value of "i" for ethanoic act (A) Approximately 2 (B) Approximately 0.5 (C) Exactly 1	introduced to account for the extent of dissociation					
Correct Answer: (D) Q205. The van't Hoff factor, denoted as "i," is solution. What is the value of "i" for ethanoic act (A) Approximately 2 (B) Approximately 0.5 (C) Exactly 1	introduced to account for the extent of dissociation					
Correct Answer: (D) Q205. The van't Hoff factor, denoted as "i," is solution. What is the value of "i" for ethanoic act (A) Approximately 2 (B) Approximately 0.5 (C) Exactly 1 (D) Zero Correct Answer: (B)	introduced to account for the extent of dissociation of dissociation of dissociation discountry.	on or association in a Tagging: Remembering				

Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering			
Q20	18. What is the Van't Hoff	Factor for 1 mole of BaCl ₂ , assuming 100% dissociation?				
(A)	0.33					
(B)	1					
(C)	3					
(D)	2					
Cor	rect Answer: (C)	Level: Easy	Tagging: Remembering			
Q20	19. When an ionic compou	und dissolves in water, it dissociates into:				
(A)	Cations and anions					
(B)	Molecules and atoms					
-	Neutral particles					
(D)	Electrons and protons					
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering			
Q21	LO. When benzoic acid is d	dissolved in benzene, the observed molecular mass is				
(A)	244					
(B)	61					
	366					
(D)	122					
Cor	rect Answer: (A)	Level: Easy	Tagging: Applying			
Q21	L1. Which of the following	aqueous solutions should have the least boiling point?				
(A)	1.0 M KOH					
(B)	1.0 M (NH ₄) ₂ SO ₄					
(C)	1.0 M K ₂ CO ₃					
(D)	1.0 M K ₂ SO ₄					
Cor	rect Answer: (A)	Level: Easy	Tagging: Remembering			
Q21	12. Which of the following	statements is correct?				
(A)	Solutes that dissociate in water have molar mass higher than the molar mass of the solute calculated theoretically					
(B)	Solutes that associate in water have molar mass higher than the molar mass of the solute calculated theoretically					
(C)	Solutes that dissociate in water experience a decrease in colligative properties					
(D)	Colligative properties are independent of the number of particles of the solute in the solution					
Cor	rect Answer: (B)	Level: Easy	Tagging: Remembering			
Q21	13. The depression of free	zing point of a solution of acetic acid in benzene is -0.2°	PC. If the molality of acetic acid is			
0.1	m, then find the ratio of the	e normal mass to the abnormal mass. (Assume Kf of acet	tic acid = 4.0 °C m ⁻¹)			
(A)	1.5					
(B)	0.8					
(C)	0.5					
(D)	0.2					
Cor	rect Answer: (C)	Level: Moderate	Tagging: Evaluating			

Q214. The pH of a 2 M solution of a weak monobasic acid (HA) is 4. What is the value of the Van't Hoff factor?

- (A) 0.00005
- (B) 1.005
- (C) 1.0005
- (D) 1.00005

Correct Answer: **(D)** Level: **Moderate** Tagging: **Evaluating**