SEM Review

```
# Load the lavaan library
library(lavaan)
## This is lavaan 0.6-6
## lavaan is BETA software! Please report any bugs.
# =~ to define latent variables
# ~~ to define covariance and correlation
# ~ to define direct prediction
# Look at the dataset
data(HolzingerSwineford1939)
head(HolzingerSwineford1939[ , 7:15])
##
           x1
                x2
                      xЗ
                               x4
                                     x5
                                                        x7
                                                             8x
## 1 3.333333 7.75 0.375 2.333333 5.75 1.2857143 3.391304 5.75 6.361111
## 2 5.333333 5.25 2.125 1.666667 3.00 1.2857143 3.782609 6.25 7.916667
## 3 4.500000 5.25 1.875 1.000000 1.75 0.4285714 3.260870 3.90 4.416667
## 4 5.333333 7.75 3.000 2.666667 4.50 2.4285714 3.000000 5.30 4.861111
## 5 4.833333 4.75 0.875 2.666667 4.00 2.5714286 3.695652 6.30 5.916667
## 6 5.333333 5.00 2.250 1.000000 3.00 0.8571429 4.347826 6.65 7.500000
Define your model specification
text.model <- 'textspeed =~ x4 + x5 + x6 + x7 + x8 + x9'
#model name: 'text.model',
#latent variable : 'textspeed' (1 latent var) ,
#observed variables: x4 through x9 (6 observed var)
Analyze the model with cfa()
text.fit <- cfa(model = text.model, data = HolzingerSwineford1939)</pre>
#Summarize the model
summary(text.fit)
## lavaan 0.6-6 ended normally after 20 iterations
##
##
     Estimator
                                                        ML
                                                    NLMINB
##
     Optimization method
##
     Number of free parameters
                                                        12
##
                                                       301
##
     Number of observations
##
## Model Test User Model:
##
##
     Test statistic
                                                   149.786
##
    Degrees of freedom
    P-value (Chi-square)
                                                     0.000
```

```
##
## Parameter Estimates:
##
##
     Standard errors
                                                    Standard
##
     Information
                                                    Expected
     Information saturated (h1) model
                                                 Structured
##
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     textspeed =~
##
       x4
                          1.000
                          1.130
##
       x5
                                    0.067
                                            16.946
                                                       0.000
                          0.925
                                    0.056
                                                       0.000
##
       x6
                                            16.424
##
                          0.196
                                    0.067
                                             2.918
                                                       0.004
       x7
##
       8x
                          0.186
                                    0.062
                                             2.984
                                                       0.003
##
       x9
                          0.279
                                    0.062
                                             4.539
                                                       0.000
##
  Variances:
##
                       Estimate Std.Err z-value P(>|z|)
                                             7.903
##
      .x4
                          0.383
                                    0.048
                                                       0.000
##
      .x5
                          0.424
                                    0.059
                                             7.251
                                                       0.000
##
      .x6
                          0.368
                                    0.044
                                             8.419
                                                       0.000
##
      .x7
                          1.146
                                    0.094
                                            12.217
                                                       0.000
##
      .x8
                          0.988
                                    0.081
                                            12.215
                                                       0.000
##
      .x9
                                                       0.000
                          0.940
                                    0.077
                                            12.142
       textspeed
                          0.968
                                    0.112
                                             8.647
                                                       0.000
```

It is also important to examine model variances, which indicate the size of error in estimating manifest or latent variables.

You were able to view the coefficients for the model using the summary() function. However, the standardized coefficients in the Estimate column are often hard to interpret for how well they represent the latent variable.

```
#standardized solution
summary(text.fit, standardized=TRUE)
```

```
## lavaan 0.6-6 ended normally after 20 iterations
##
##
     Estimator
                                                          ML
                                                     NLMINB
##
     Optimization method
##
     Number of free parameters
                                                          12
##
##
     Number of observations
                                                         301
##
## Model Test User Model:
##
##
     Test statistic
                                                    149.786
##
     Degrees of freedom
##
     P-value (Chi-square)
                                                      0.000
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
                                                   Expected
##
     Information
##
     Information saturated (h1) model
                                                 Structured
##
```

##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	textspeed =~						
##	x4	1.000				0.984	0.846
##	х5	1.130	0.067	16.946	0.000	1.112	0.863
##	х6	0.925	0.056	16.424	0.000	0.910	0.832
##	x7	0.196	0.067	2.918	0.004	0.193	0.177
##	x8	0.186	0.062	2.984	0.003	0.183	0.181
##	x9	0.279	0.062	4.539	0.000	0.275	0.273
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.x4	0.383	0.048	7.903	0.000	0.383	0.284
##	.x5	0.424	0.059	7.251	0.000	0.424	0.256
##	.x6	0.368	0.044	8.419	0.000	0.368	0.308
##	.x7	1.146	0.094	12.217	0.000	1.146	0.969
##	.x8	0.988	0.081	12.215	0.000	0.988	0.967
##	.x9	0.940	0.077	12.142	0.000	0.940	0.926
##	textspeed	0.968	0.112	8.647	0.000	1.000	1.000

Look at the Std.all column for the completely standardized solution to see which variables have a poor relationship to the text speed latent variable.

Looking at 'Latent Variables: Std.all', we can tell that variables 7, 8, and 9 do not measure text speed very well, as these loading coefficients are close to zero.(.177, .181, .273)

After reviewing the standardized loadings in the previous exercise, we found that several of the manifest variables may not represent our latent variable well.

As a second measure of our model, you can examine the fit indices to see if the model appropriately fits the data. You can look at both the goodness of fit and badness of fit statistics using the fit.measures argument within the summary() function.

```
#goodness of fit and badness of fit statistics
summary(text.fit, fit.measures=TRUE )
```

```
## lavaan 0.6-6 ended normally after 20 iterations
##
##
     Estimator
                                                          ML
     Optimization method
                                                      NLMINB
##
##
     Number of free parameters
                                                          12
##
##
     Number of observations
                                                         301
##
## Model Test User Model:
##
##
     Test statistic
                                                    149.786
##
     Degrees of freedom
                                                      0.000
##
     P-value (Chi-square)
## Model Test Baseline Model:
##
##
     Test statistic
                                                    681.336
     Degrees of freedom
##
                                                          15
     P-value
                                                      0.000
##
##
## User Model versus Baseline Model:
```

##										
##	Comparative Fit	Index (CFT)		0.789					
##	Tucker-Lewis Inc				0.648					
##	IUCKEI LEWIS III	iex (ili)			0.040					
##	Loglikelihood and	Informatio	n Critori							
##	rogilkelihood and	Informatio	n Cliceli	.a.						
##	Loglikelihood us	ser model (HU)	_	2476.130					
##	Loglikelihood ur				2470.130					
##	Logilkelinood ui	ii esti icted	. moder (n	11)	2401.201					
##	Akaike (AIC)				4976.261					
##	Bayesian (BIC)				5020.746					
##	•	isted Bawes	ian (RTC)		4982.689					
##	The second secon									
	Root Mean Square H	Error of An	nrovimati	on:						
##	noot hear square i	LITOI OI AP	Proximati	.011.						
##	RMSEA				0.228					
##	90 Percent confi	idonco into	rual - lo	uor	0.220					
##	90 Percent confi				0.137					
##	P-value RMSEA <=		ivai up	her	0.201					
##	1 Value Iuibla V-	- 0.03			0.000					
	Standardized Root	Mean Sauar	e Regidua	1.						
##	Standardized 1000	mean bquar	e nesidua							
##	SRMR				0.148					
##	Diunt				0.140					
	Parameter Estimate	og•								
##	Tarameter Estimate									
##	Standard errors				Standard					
##	Information				Expected					
##	Information satu	irated (h1)	model	St	ructured					
##	IIII OI MAOI OII DAO	114004 (111)	modol		, r uo o ur o u					
	Latent Variables:									
##		Estimate	Std.Err	z-value	P(> z)					
##	textspeed =~				- (1-1)					
##	x4	1.000								
##	x5	1.130	0.067	16.946	0.000					
##	x6	0.925	0.056							
##	x7	0.196	0.067	2.918	0.004					
##	x8	0.186	0.062	2.984	0.003					
##	x9	0.279								
##										
##	Variances:									
##		Estimate	Std.Err	z-value	P(> z)					
##	.x4	0.383	0.048	7.903	0.000					
##	.x5	0.424	0.059	7.251	0.000					
##	.x6	0.368	0.044		0.000					
##	.x7	1.146	0.094		0.000					
##	.x8	0.988	0.081	12.215	0.000					
##	.x9	0.940	0.077	12.142	0.000					
##	textspeed	0.968	0.112	8.647	0.000					
_	_									

Remember that goodness of fit statistics, like the CFI and TLI, should be large (over .90) and close to one, while badness of fit measures like the RMSEA and SRMR should be small (less than .10) and close to zero.

We can see that our fit indices are poor, with low CFI and TLI and high RMSEA and SRMR values. CFI=.789, TLI=.648, RMSE=..228, SRMR=.148

```
#model with zero degrees of freedom
text.model1 <- 'text =~ x4 + x5 + x6'
text.fit1 <- cfa(model = text.model1, data = HolzingerSwineford1939)
summary(text.fit1)
## lavaan 0.6-6 ended normally after 15 iterations
##
##
     Estimator
                                                        ML
                                                    NLMINB
##
     Optimization method
##
     Number of free parameters
                                                         6
##
                                                        301
##
     Number of observations
##
## Model Test User Model:
##
                                                     0.000
##
     Test statistic
##
     Degrees of freedom
##
## Parameter Estimates:
##
     Standard errors
##
                                                  Standard
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
##
     text =~
##
       x4
                         1.000
##
       x5
                         1.133
                                   0.067
                                           16.906
                                                     0.000
##
                         0.924
                                   0.056
                                           16.391
                                                     0.000
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .x4
                         0.382
                                   0.049
                                            7.805
                                                     0.000
##
                         0.416
                                   0.059
                                            7.038
                                                     0.000
      .x5
##
      .x6
                         0.369
                                   0.044
                                            8.367
                                                     0.000
##
                         0.969
                                   0.112
                                            8.640
                                                     0.000
       text
#You should have at least one degree of freedom for any model.
```

If a model has zero degrees of freedom, it means we need to fix the model identification.

Update the model specification by setting two of the coefficient paths to 'a' to set them equal to each other.

```
#fix model with zero degrees of freedom
text.model2 <- 'text =~ x4 + a*x5 + a*x6'
text.fit2 <- cfa(model = text.model2, data = HolzingerSwineford1939)
summary(text.fit2)</pre>
```

```
## lavaan 0.6-6 ended normally after 14 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of free parameters 6
## Number of equality constraints 1
##
```

```
##
     Number of observations
                                                         301
##
## Model Test User Model:
##
##
     Test statistic
                                                      11.227
     Degrees of freedom
##
                                                           1
     P-value (Chi-square)
                                                       0.001
##
##
## Parameter Estimates:
##
##
     Standard errors
                                                    Standard
##
     Information
                                                    Expected
##
     Information saturated (h1) model
                                                  Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
##
     text =~
##
                          1.000
       x4
##
                          1.009
                                            18.747
                                                       0.000
       x5
                   (a)
                                    0.054
##
       x6
                   (a)
                          1.009
                                    0.054
                                            18.747
                                                       0.000
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
                          0.383
                                    0.050
                                             7.631
##
      .x4
                                                       0.000
##
      .x5
                          0.499
                                    0.054
                                             9.164
                                                       0.000
##
      .x6
                          0.328
                                    0.045
                                             7.285
                                                       0.000
##
                          0.967
                                    0.113
                                             8.585
                                                       0.000
       text
#two equal parameter estimates for x5 and x6
```

You have now created a two-factor model of the reading comprehension and speeded addition factors. Is that better than a one-factor model? Use the cfa() and summary() functions on your new two-factor model of the HolzingerSwineford1939 dataset to show the fit indices.

MULTIFACTOR MODEL: Two factor model

```
#two-factor model of text and speed variables
twofactor.model <- 'text =~ x4 + x5 + x6
speed =~ x7+ x8+x9'
#two-factor model of the reading comprehension and speeded addition factors</pre>
```

Is that better than a one-factor model? Use the cfa() and summary() functions to show the fit indices.

```
twofactor.fit <- cfa(model=twofactor.model, data=HolzingerSwineford1939)
summary(twofactor.fit, standardized = TRUE, fit.measures = TRUE)</pre>
```

```
## lavaan 0.6-6 ended normally after 24 iterations
##
##
     Estimator
                                                          ML
##
     Optimization method
                                                      NLMINB
##
     Number of free parameters
                                                          13
##
##
     Number of observations
                                                         301
##
## Model Test User Model:
##
```

```
14.354
##
     Test statistic
##
     Degrees of freedom
     P-value (Chi-square)
##
                                                     0.073
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   681.336
     Degrees of freedom
##
                                                         15
##
     P-value
                                                     0.000
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                     0.990
##
##
     Tucker-Lewis Index (TLI)
                                                     0.982
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -2408.414
##
     Loglikelihood unrestricted model (H1)
                                                 -2401.237
##
##
     Akaike (AIC)
                                                  4842.828
##
     Bayesian (BIC)
                                                  4891.021
##
     Sample-size adjusted Bayesian (BIC)
                                                  4849.792
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.051
##
     90 Percent confidence interval - lower
                                                     0.000
                                                     0.093
##
     90 Percent confidence interval - upper
     P-value RMSEA <= 0.05
##
                                                     0.425
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.039
##
## Parameter Estimates:
##
##
    Standard errors
                                                  Standard
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
## Latent Variables:
                      Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
##
     text =~
##
                         1.000
                                                               0.984
                                                                        0.847
       x4
                                   0.067
                                           16.954
                                                     0.000
##
       x5
                         1.132
                                                               1.114
                                                                        0.865
                                   0.056
                                                               0.911
##
       x6
                         0.925
                                           16.438
                                                     0.000
                                                                        0.833
##
     speed =~
##
       x7
                         1.000
                                                               0.674
                                                                        0.619
                                                     0.000
                                                               0.775
##
       8x
                         1.150
                                   0.165
                                            6.990
                                                                        0.766
##
                         0.878
                                   0.123
                                                     0.000
                                                               0.592
                                                                        0.587
       x9
                                            7.166
##
## Covariances:
                      Estimate Std.Err z-value P(>|z|)
##
                                                              Std.lv Std.all
```

##	text ~~						
##	speed	0.173	0.052	3.331	0.001	0.261	0.261
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.x4	0.382	0.049	7.854	0.000	0.382	0.283
##	.x5	0.418	0.059	7.113	0.000	0.418	0.252
##	.x6	0.367	0.044	8.374	0.000	0.367	0.307
##	.x7	0.729	0.084	8.731	0.000	0.729	0.616
##	.x8	0.422	0.084	5.039	0.000	0.422	0.413
##	.x9	0.665	0.071	9.383	0.000	0.665	0.655
##	text	0.969	0.112	8.647	0.000	1.000	1.000
##	speed	0.454	0.096	4.728	0.000	1.000	1.000

In comparing the one- and two-factor models, you should see that the fit indices are improved in the two-factor model.

Covariances: was added (amount by which 2 variables change together)

check covariance under std. all

R automatically correlates the latent variables, in order to:

Set covariance = 0, 'speed \sim 0*visual'

Specify direct relationship between latent variables: 'speed ~ visual'

THREE-FACTOR MODEL:

Three-factor model of personality. This inventory includes 57 questions that measure extraversion, neuroticism, and lying.

Three factor model using the latent variables: extraversion, neuroticism, and lying with four manifest variables on each item.

Remember when you create multiple latent variables, these endogenous variables are automatically correlated. Set the correlation between the extraversion latent variable and neuroticism latent variable to zero, by using the \sim in model specification code.

EPI

```
# Load the library and data
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
##
##
       cor2cov
epi <- read.csv("~/Downloads/epi.csv", row.names=1)
# Specify a three-factor model with correlation between extraversion and neuroticism set to zero
epi.model <- 'extraversion =~ V1 + V3 + V5 + V8
neuroticism = \sim V2 + V4 + V7 + V9
lying =~ V6 + V12 + V18 + V24
extraversion ~~ 0*neuroticism'
# Run the model
epi.fit <- cfa(model = epi.model, data = epi)
```

lavaan 0.6-6 ended normally after 118 iterations ## ## Estimator MLOptimization method NLMINB ## ## Number of free parameters 26 ## ## Used Total Number of observations 3193 3570 ## ## ## Model Test User Model: ## ## Test statistic 584.718 ## Degrees of freedom 52 ## P-value (Chi-square) 0.000 ## Model Test Baseline Model: ## ## Test statistic 2196.019 ## Degrees of freedom 66 P-value 0.000 ## ## ## User Model versus Baseline Model: ## Comparative Fit Index (CFI) 0.750 ## Tucker-Lewis Index (TLI) 0.683 ## ## ## Loglikelihood and Information Criteria: ## ## Loglikelihood user model (HO) -23208.145 Loglikelihood unrestricted model (H1) ## -22915.787 ## ## Akaike (AIC) 46468.291 ## Bayesian (BIC) 46626.077 ## Sample-size adjusted Bayesian (BIC) 46543.464 ## ## Root Mean Square Error of Approximation: ## ## 0.057 ## 90 Percent confidence interval - lower 0.053 ## 90 Percent confidence interval - upper 0.061 P-value RMSEA <= 0.05 0.004 ## ## ## Standardized Root Mean Square Residual: ## SRMR 0.058 ## ## ## Parameter Estimates: ## ## Standard errors Standard ## Information Expected

summary(epi.fit, standardized = TRUE, fit.measures = TRUE)

Examine the output

##	Information satu	rated (h1)	model	St	ructured		
##	Tatant Wasiahlas						
	Latent Variables:	Datimata	C+ -1 E	1	D(> -)	C+3 7	C+3 -11
##	out morrowsi on -	Estimate	Sta.Err	z-varue	P(> z)	Std.lv	Std.all
## ##	extraversion =~ V1	1.000				0.052	0.115
##	V1 V3	1.360	0.329	4.127	0.000	0.032	0.113
##	V5	-2.829	0.554	-5.109	0.000	-0.146	-0.391
##	V8	7.315	1.832	3.992	0.000	0.377	0.797
##	neuroticism =~	7.313	1.002	3.992	0.000	0.311	0.131
##	V2	1.000				0.228	0.457
##	V4	0.424	0.053	8.004	0.000	0.097	0.196
##	V7	1.395	0.093	15.023	0.000	0.318	0.648
##	V9	1.205	0.078	15.506	0.000	0.275	0.553
##	lying =~	1,200	0.0.0	20.000		0.2.0	0.000
##	V6	1.000				0.135	0.272
##	V12	-0.851	0.132	-6.435	0.000	-0.115	-0.291
##	V18	-0.785	0.122	-6.421	0.000	-0.106	-0.289
##	V24	1.086	0.161	6.734	0.000	0.147	0.339
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	extraversion ~~						
##	neuroticism	0.000				0.000	0.000
##	lying	-0.002	0.001	-3.313	0.001	-0.258	-0.258
##	neuroticism ~~						
##	lying	-0.014	0.002	-6.867	0.000	-0.469	-0.469
##							
##	Variances:						
##		Estimate	Std.Err	z-value		Std.lv	
##	.V1	0.198	0.005	39.567	0.000	0.198	0.987
##	. V3	0.243	0.006	39.278	0.000	0.243	0.980
##	. V5	0.118	0.005	23.900	0.000	0.118	0.847
##	. V8	0.082	0.026	3.084	0.002	0.082	0.364
##	.V2	0.197	0.006	32.516	0.000	0.197	0.791
##	. V4	0.235	0.006	38.906	0.000	0.235	0.962
##	. V7	0.140	0.007	19.412	0.000	0.140	0.580
##	. V9	0.172	0.006	26.591	0.000	0.172	0.694
##	. V6	0.228	0.007	34.520	0.000	0.228	0.926
##	.V12 .V18	0.143	0.004 0.004	33.670	0.000	0.143 0.124	0.916
##		0.124		33.753			0.917
## ##	.V24 extraversion	0.166 0.003	0.005 0.001	31.021 2.480	0.000 0.013	0.166 1.000	0.885 1.000
##	neuroticism	0.003	0.001	10.010	0.013	1.000	1.000
##	lying	0.052	0.003	4.500	0.000	1.000	1.000
##	1 À 111 B	0.010	0.004	4.500	0.000	1.000	1.000

Create a DIRECT PATH

#Edit the epi.model to include a direct regression path between lying and neuroticism. #We might expect that a person's level of neuroticism would predict their level of lying.

```
epi.model1 <- 'extraversion =- V1 + V3 + V5 + V8
neuroticism =~ V2 + V4 + V7 + V9
lying =~ V6 + V12 + V18 + V24
lying ~ neuroticism'
                                       #THIS LINE
```

```
# Run the model
epi.fit1 <- cfa(model = epi.model1, data = epi)</pre>
# Examine the output
summary(epi.fit1, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-6 ended normally after 120 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of free parameters
                                                         26
##
##
                                                                  Total
                                                       Used
     Number of observations
                                                                   3570
##
                                                       3193
##
## Model Test User Model:
##
##
     Test statistic
                                                    534.426
     Degrees of freedom
##
                                                         52
##
     P-value (Chi-square)
                                                      0.000
##
## Model Test Baseline Model:
##
    Test statistic
                                                   2196.019
##
##
     Degrees of freedom
                                                         66
##
     P-value
                                                      0.000
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.774
##
     Tucker-Lewis Index (TLI)
                                                      0.713
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -23183.000
##
     Loglikelihood unrestricted model (H1)
                                                -22915.787
##
     Akaike (AIC)
##
                                                  46417.999
##
     Bayesian (BIC)
                                                  46575.786
     Sample-size adjusted Bayesian (BIC)
##
                                                  46493.173
##
## Root Mean Square Error of Approximation:
##
     RMSEA
                                                      0.054
##
     90 Percent confidence interval - lower
##
                                                      0.050
##
     90 Percent confidence interval - upper
                                                      0.058
##
     P-value RMSEA <= 0.05
                                                      0.058
## Standardized Root Mean Square Residual:
##
##
     SRMR.
                                                      0.053
##
```

Parameter Estimates:

## ## ## ##	Standard errors Information	umated (h1)	modol		Standard Expected		
##	Information satu	irated (III)	moder	30	ructured		
	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	extraversion =~						
##	V1	1.000				0.052	0.115
##	V3	1.135	0.268	4.230	0.000	0.059	0.118
##	V5	-2.497	0.443	-5.638	0.000	-0.129	-0.346
##	V8	8.223	2.008	4.096	0.000	0.425	0.898
##	neuroticism =~						
##	V2	1.000				0.223	0.447
##	V4	0.462		8.493		0.103	0.209
##	V7	1.435	0.093			0.320	0.652
##	V9	1.214	0.078	15.570	0.000	0.271	0.545
## ##	lying =~ V6	1.000				0.125	0.252
##	V0 V12	-0.943	0.150	-6.274	0.000	-0.118	-0.298
##	V12 V18	-0.905			0.000	-0.113	-0.308
##	V10 V24		0.140	6.509	0.000	0.148	0.342
##	721	1.101	0.102	0.000	0.000	0.110	0.012
	Regressions:						
##	G	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	lying ~						
##	neuroticism	-0.298	0.043	-6.943	0.000	-0.532	-0.532
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	extraversion ~~						
##	neuroticism	0.003	0.001	3.761	0.000	0.240	0.240
##	***						
	Variances:	Estimata	C+ -1 E]	D(> -)	C+3]	C+3 -11
##	.V1	Estimate 0.198	Std.Err 0.005	z-value 39.671	P(> z) 0.000	Std.lv 0.198	Std.all 0.987
##	.V3	0.130	0.006	39.651	0.000	0.130	0.986
##	.V5	0.123	0.004	28.256	0.000	0.123	0.881
##	.V8	0.043	0.033	1.302	0.193	0.043	0.193
##	.V2	0.200	0.006	33.262	0.000	0.200	0.800
##	.V4	0.233	0.006	38.804	0.000	0.233	0.956
##	. V7	0.139	0.007	20.087	0.000	0.139	0.575
##	. V9	0.174	0.006	27.907	0.000	0.174	0.703
##	.V6	0.231	0.007	35.398	0.000	0.231	0.936
##	.V12	0.143	0.004	33.349	0.000	0.143	0.911
##	.V18	0.122	0.004	32.825	0.000	0.122	0.905
##	.V24	0.166	0.005	30.854	0.000	0.166	0.883
##	extraversion	0.003	0.001	2.643	0.008	1.000	1.000
##	neuroticism	0.050	0.005	9.947	0.000	1.000	1.000
##	.lying	0.011	0.003	3.970	0.000	0.717	0.717

UPDATING POOR MODELS:

if model has CFI and TLI below our criteria (.9) also if bad fit indices RMSEA and SRMS is higher tan criteria (.1)

```
#CHECK MODEL VARIANCE
#In order to evaluate your three-factor model of the epi, you can examine the variance of the
#manifest(observable) variables to check for potential problems with the model. Very large variances
#can indicate potential issues; however, this value should be compared to the original scale of the dat
# Calculate the variance of V1
var(epi$V1) #0.2017972
## [1] NA
#You can see that your variance from the model (0.199) is very similar to the real variance (0.201)
#which indicates our model does not have variance issues.
#Examine MODIFICATION INDICES
#The fit indices for our epi.model are low (in the .70s) for CFI and TLI.
#You can use modification indices to find potential parameters (paths) to add to the model specificatio
#to improve model fit.
# Original model summary
summary(epi.fit, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-6 ended normally after 118 iterations
##
##
     Estimator
                                                        ML
                                                    NLMINB
##
     Optimization method
##
     Number of free parameters
                                                        26
##
##
                                                      Used
                                                                 Total
    Number of observations
##
                                                      3193
                                                                  3570
##
## Model Test User Model:
##
##
     Test statistic
                                                   584.718
     Degrees of freedom
                                                        52
                                                     0.000
##
     P-value (Chi-square)
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                  2196.019
##
     Degrees of freedom
                                                        66
     P-value
                                                     0.000
##
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.750
     Tucker-Lewis Index (TLI)
                                                     0.683
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                -23208.145
     Loglikelihood unrestricted model (H1)
##
                                                -22915.787
##
     Akaike (AIC)
                                                 46468.291
##
```

46626.077

##

Bayesian (BIC)

```
##
     Sample-size adjusted Bayesian (BIC)
                                                  46543.464
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.057
##
     90 Percent confidence interval - lower
                                                      0.053
##
     90 Percent confidence interval - upper
                                                      0.061
     P-value RMSEA <= 0.05
##
                                                      0.004
##
## Standardized Root Mean Square Residual:
##
                                                      0.058
##
     {\tt SRMR}
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     extraversion =~
##
       V1
                          1.000
                                                                0.052
                                                                         0.115
##
       VЗ
                          1.360
                                   0.329
                                             4.127
                                                      0.000
                                                                0.070
                                                                         0.141
##
       V5
                                   0.554
                                            -5.109
                                                      0.000
                                                                        -0.391
                         -2.829
                                                               -0.146
##
       8V
                          7.315
                                   1.832
                                             3.992
                                                      0.000
                                                                0.377
                                                                         0.797
##
     neuroticism =~
##
                          1.000
                                                                0.228
                                                                         0.457
       ٧2
##
       ۷4
                                   0.053
                                             8.004
                          0.424
                                                      0.000
                                                                0.097
                                                                         0.196
##
       ۷7
                                   0.093
                          1.395
                                            15.023
                                                      0.000
                                                                0.318
                                                                         0.648
##
       ۷9
                          1.205
                                   0.078
                                            15.506
                                                      0.000
                                                                0.275
                                                                         0.553
##
     lying =~
                          1.000
##
       ۷6
                                                                0.135
                                                                         0.272
##
       V12
                         -0.851
                                   0.132
                                            -6.435
                                                      0.000
                                                               -0.115
                                                                        -0.291
                                   0.122
##
       V18
                         -0.785
                                            -6.421
                                                      0.000
                                                               -0.106
                                                                        -0.289
##
       V24
                          1.086
                                   0.161
                                             6.734
                                                      0.000
                                                                0.147
                                                                         0.339
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     extraversion ~~
##
       neuroticism
                          0.000
                                                                0.000
                                                                         0.000
##
       lying
                         -0.002
                                   0.001
                                            -3.313
                                                      0.001
                                                               -0.258
                                                                        -0.258
     neuroticism ~~
##
##
                                   0.002
       lying
                         -0.014
                                            -6.867
                                                      0.000
                                                               -0.469
                                                                        -0.469
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv
                                                                       Std.all
##
      .V1
                          0.198
                                   0.005
                                            39.567
                                                      0.000
                                                                0.198
                                                                         0.987
                                   0.006
##
      . V3
                          0.243
                                            39.278
                                                      0.000
                                                                0.243
                                                                         0.980
##
      . V5
                                   0.005
                                            23.900
                          0.118
                                                      0.000
                                                                0.118
                                                                         0.847
##
      .V8
                          0.082
                                   0.026
                                             3.084
                                                      0.002
                                                                0.082
                                                                         0.364
##
      .V2
                          0.197
                                   0.006
                                            32.516
                                                      0.000
                                                                0.197
                                                                         0.791
##
      .V4
                          0.235
                                   0.006
                                            38.906
                                                      0.000
                                                                0.235
                                                                         0.962
##
                                   0.007
      .V7
                          0.140
                                            19.412
                                                      0.000
                                                                0.140
                                                                         0.580
```

```
26.591
##
      . V9
                        0.172
                                 0.006
                                                  0.000
                                                           0.172
                                                                    0.694
##
      .V6
                        0.228
                                 0.007
                                        34.520
                                                  0.000
                                                           0.228
                                                                    0.926
##
                        0.143
                                 0.004
                                                  0.000
                                                                    0.916
      .V12
                                         33.670
                                                           0.143
##
      .V18
                        0.124
                                 0.004
                                         33.753
                                                  0.000
                                                           0.124
                                                                    0.917
##
      .V24
                        0.166
                                 0.005
                                        31.021
                                                  0.000
                                                           0.166
                                                                    0.885
      extraversion
                        0.003
                                 0.001
##
                                          2.480
                                                  0.013
                                                           1.000
                                                                    1.000
                        0.052
                                 0.005
                                         10.010
                                                  0.000
                                                                    1.000
##
      neuroticism
                                                           1.000
##
      lying
                        0.018
                                 0.004
                                          4.500
                                                  0.000
                                                           1.000
                                                                    1.000
```

Examine the modification indices modificationindices(epi.fit, sort=TRUE)

##		lhs	ор	rhs	mi	ерс	sepc.lv	sepc.all	sepc.nox
##	40	neuroticism	=~	V3	152.701	_	-0.139	-0.279	-0.279
##	39	neuroticism	=~	V1	122.735	0.493	0.112	0.251	0.251
##	48	lying	=~	V3	121.175	1.269	0.171	0.345	0.345
##	58	V1	~ ~	V2	76.218	0.032	0.032	0.164	0.164
##	70	V3	~ ~	V7	71.613	-0.033	-0.033	-0.178	-0.178
##	13	${\tt extraversion}$	~ ~	${\tt neuroticism}$	70.230	0.003	0.236	0.236	0.236
##	42	neuroticism	=~	8V	68.905	0.372	0.085	0.179	0.179
##	47	lying	=~	V1	62.368	-0.819	-0.111	-0.247	-0.247
##	50	lying	=~	8V	56.929	-1.095	-0.148	-0.313	-0.313
##	87	V8	~ ~	V7	38.504	0.022	0.022	0.203	0.203
##	33	${\tt extraversion}$	=~	V7	30.415	1.034	0.053	0.109	0.109
	59	V1	~ ~	V4	28.442	0.021	0.021	0.095	0.095
##	32	extraversion		V4	27.525	1.079	0.056	0.113	0.113
	75		~ ~	V24	20.299	0.017	0.017	0.084	0.084
##		lying		V4		-0.618	-0.084	-0.169	-0.169
	103	V4		V12	17.780	0.014	0.014	0.078	0.078
##	86	V8		V4	15.339	0.015	0.015	0.109	0.109
##	113	V9		V18	15.043	0.012	0.012	0.081	0.081
	53	lying		V7		-0.567	-0.077	-0.156	-0.156
##	35	extraversion		V6		-0.816	-0.042	-0.085	-0.085
	76		~ ~	V8	9.434	0.103	0.103	1.046	1.046
## ##	116	V6 neuroticism		V18 V18	9.357 9.199	0.011 0.178	0.011 0.041	0.067 0.111	0.067 0.111
	43 74	V3		V18 V18		-0.009	-0.009	-0.054	-0.054
##	64	V3 V1		V18 V18	8.624	0.009	0.003	0.054	0.054
##	68	V3		V10 V2		-0.012	-0.012	-0.054	-0.054
	99	V2		V24	7.503	0.012	0.012	0.055	0.055
	51	lying		V2	7.304	0.389	0.053	0.105	0.105
	84	-y8 V5		V24	7.237	0.008	0.008	0.054	0.054
	89	V8		V6		-0.011	-0.011	-0.084	-0.084
##	66	V3	~ ~	V 5	6.798	-0.010	-0.010	-0.060	-0.060
##	107	V7	~ ~	V6	6.068	-0.010	-0.010	-0.057	-0.057
##	61	V1	~ ~	V9	6.029	0.009	0.009	0.048	0.048
##	111	V9	~ ~	V6	5.999	0.010	0.010	0.051	0.051
##	46	neuroticism	=~	V24	5.729	0.180	0.041	0.095	0.095
##	71	V3	~ ~	V9	5.614	-0.009	-0.009	-0.046	-0.046
##	54	lying	=~	V9	5.263	-0.339	-0.046	-0.092	-0.092
##	56	V1	~ ~	V 5	5.014	0.007	0.007	0.047	0.047
	57	V1	~ ~	8V	4.821	0.017	0.017	0.136	0.136
##	60	V1	~ ~	V7	4.784	0.008	0.008	0.046	0.046
##	117	V6	~ ~	V24	4.689	0.010	0.010	0.051	0.051
##	34	extraversion	=~	V9	4.329	0.401	0.021	0.042	0.042

```
## 69
                  V3 ~~
                                 ۷4
                                       3.827 0.008
                                                       0.008
                                                                 0.035
                                                                          0.035
## 37
                                       3.057 -0.325
                                 V18
                                                      -0.017
                                                               -0.046
                                                                         -0.046
       extraversion =~
## 106
                  V7 ~~
                                                      -0.017
                                 ۷9
                                       2.624 -0.017
                                                                -0.112
                                                                         -0.112
## 83
                  V5 ~~
                                       2.479 0.004
                                                       0.004
                                                                 0.031
                                                                          0.031
                                 V18
## 96
                  V2 ~~
                                 ۷6
                                       2.361 0.006
                                                       0.006
                                                                 0.030
                                                                          0.030
## 88
                                 ۷9
                                       2.253 0.005
                                                       0.005
                  V8 ~~
                                                                 0.046
                                                                          0.046
## 94
                                       2.142 0.012
                  V2 ~~
                                 ۷7
                                                       0.012
                                                                 0.071
                                                                          0.071
## 92
                  V8 ~~
                                 V24
                                       2.050 0.006
                                                       0.006
                                                                 0.049
                                                                          0.049
                                       1.617 -0.005
## 55
                  V1 ~~
                                 VЗ
                                                      -0.005
                                                                -0.023
                                                                         -0.023
## 43
        neuroticism =~
                                 ۷6
                                       1.585 0.098
                                                       0.022
                                                                0.045
                                                                          0.045
## 49
              lying =~
                                 ٧5
                                       1.582 0.116
                                                       0.016
                                                                0.042
                                                                          0.042
                  V2 ~~
                                       1.192 -0.003
                                                      -0.003
## 98
                                 V18
                                                                -0.022
                                                                         -0.022
## 65
                  V1 ~~
                                 V24
                                       1.135 0.004
                                                       0.004
                                                                0.020
                                                                          0.020
                V18 ~~
                                       1.004 -0.003
## 120
                                 V24
                                                      -0.003
                                                               -0.024
                                                                         -0.024
## 110
                  V7 ~~
                                 V24
                                       0.949 0.004
                                                       0.004
                                                                0.024
                                                                          0.024
## 114
                  V9 ~~
                                 V24
                                       0.942 -0.004
                                                      -0.004
                                                                -0.021
                                                                         -0.021
## 63
                  V1 ~~
                                       0.922 0.003
                                                       0.003
                                 V12
                                                                0.018
                                                                          0.018
## 115
                  V6 ~~
                                 V12
                                       0.905 0.004
                                                       0.004
                                                                 0.021
                                                                          0.021
## 81
                  V5 ~~
                                 ۷6
                                       0.722 0.003
                                                       0.003
                                                                 0.016
                                                                          0.016
## 100
                  V4 ~~
                                 ۷7
                                       0.697 - 0.004
                                                      -0.004
                                                               -0.022
                                                                         -0.022
## 38
       extraversion =~
                                 V24
                                       0.639 0.185
                                                       0.010
                                                                0.022
                                                                          0.022
                                 V12
                                       0.585 0.049
                                                       0.011
                                                                          0.028
## 44
        neuroticism =~
                                                                 0.028
                                       0.573 0.003
                                                       0.003
## 62
                  V1 ~~
                                 ۷6
                                                                0.014
                                                                          0.014
                                       0.511 -0.002
## 80
                  V5 ~~
                                 ۷9
                                                      -0.002
                                                               -0.014
                                                                         -0.014
## 119
                 V12 ~~
                                 V24
                                       0.501 - 0.003
                                                      -0.003
                                                               -0.017
                                                                         -0.017
## 95
                  V2 ~~
                                 ۷9
                                       0.439 0.004
                                                       0.004
                                                                0.024
                                                                          0.024
## 101
                  V4 ~~
                                  ۷9
                                       0.432 -0.003
                                                      -0.003
                                                               -0.014
                                                                         -0.014
                  V2 ~~
## 93
                                  ٧4
                                       0.420 0.003
                                                       0.003
                                                                0.013
                                                                          0.013
## 41
                                  ۷5
                                       0.401 -0.022
                                                      -0.005
        neuroticism =~
                                                               -0.014
                                                                         -0.014
## 72
                  V3 ~~
                                  ۷6
                                       0.398 -0.003
                                                      -0.003
                                                                -0.012
                                                                         -0.012
                                       0.355 0.002
## 78
                  V5 ~~
                                 ۷4
                                                       0.002
                                                                0.011
                                                                          0.011
## 77
                  V5 ~~
                                 ٧2
                                       0.290 0.002
                                                       0.002
                                                                0.010
                                                                          0.010
## 36
       extraversion =~
                                 V12
                                       0.273 - 0.105
                                                      -0.005
                                                               -0.014
                                                                         -0.014
                  V8 ~~
                                 ٧2
                                       0.267 0.002
## 85
                                                       0.002
                                                                0.015
                                                                          0.015
## 105
                  V4 ~~
                                 V24
                                       0.227 0.002
                                                       0.002
                                                                 0.009
                                                                          0.009
                                 V2
                                       0.206 0.090
                                                       0.005
## 31
       extraversion =~
                                                                0.009
                                                                          0.009
## 91
                  V8 ~~
                                 V18
                                       0.191 - 0.001
                                                      -0.001
                                                               -0.014
                                                                         -0.014
## 102
                  V4 ~~
                                 ۷6
                                       0.158 -0.002
                                                      -0.002
                                                               -0.007
                                                                         -0.007
## 97
                  V2 ~~
                                 V12
                                       0.143 -0.001
                                                      -0.001
                                                                -0.007
                                                                         -0.007
## 73
                  V3 ~~
                                       0.130 -0.001
                                                      -0.001
                                 V12
                                                               -0.007
                                                                         -0.007
## 82
                  V5 ~~
                                       0.115 0.001
                                                       0.001
                                 V12
                                                                0.007
                                                                          0.007
## 118
                 V12 ~~
                                 V18
                                       0.109 -0.001
                                                     -0.001
                                                               -0.007
                                                                         -0.007
## 90
                  V8 ~~
                                 V12
                                       0.107 -0.001
                                                      -0.001
                                                               -0.011
                                                                         -0.011
                  V3 ~~
## 67
                                 ٧8
                                       0.102 -0.003
                                                     -0.003
                                                               -0.022
                                                                         -0.022
                  V5 ~~
## 79
                                 ۷7
                                       0.059 -0.001
                                                      -0.001
                                                               -0.005
                                                                         -0.005
                  V9 ~~
                                       0.054 -0.001
                                                      -0.001
## 112
                                 V12
                                                               -0.005
                                                                         -0.005
## 108
                  V7 ~~
                                 V12
                                       0.023 -0.001
                                                      -0.001
                                                               -0.004
                                                                         -0.004
## 104
                  V4 ~~
                                       0.011 0.000
                                 V18
                                                       0.000
                                                               -0.002
                                                                         -0.002
## 109
                  V7 ~~
                                 V18
                                       0.000 0.000
                                                       0.000
                                                                 0.000
                                                                          0.000
```

```
#Update the model specification code to include the largest mi value.
# Edit the model specification
epi.model2 <- 'extraversion =~ V1 + V3 + V5 + V8
neuroticism =~ V2 + V4 + V7 + V9</pre>
```

```
lying =~ V6 + V12 + V18 + V24
neuroticism =~ V3'
# Reanalyze the model
epi.fit2 <- cfa(model = epi.model2, data = epi)</pre>
# Summarize the updated model
summary(epi.fit2, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-6 ended normally after 126 iterations
##
##
     Estimator
                                                         ML
                                                     NLMINB
##
     Optimization method
##
     Number of free parameters
                                                         28
##
##
                                                       Used
                                                                  Total
##
     Number of observations
                                                       3193
                                                                   3570
##
## Model Test User Model:
##
##
     Test statistic
                                                    332.891
##
     Degrees of freedom
                                                         50
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   2196.019
##
     Degrees of freedom
                                                         66
     P-value
                                                      0.000
##
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.867
     Tucker-Lewis Index (TLI)
##
                                                      0.825
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                -23082.232
     Loglikelihood unrestricted model (H1)
##
                                                -22915.787
##
     Akaike (AIC)
##
                                                  46220.465
##
     Bayesian (BIC)
                                                  46390.389
##
     Sample-size adjusted Bayesian (BIC)
                                                  46301.421
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.042
##
     90 Percent confidence interval - lower
                                                      0.038
     90 Percent confidence interval - upper
##
                                                      0.046
     P-value RMSEA <= 0.05
##
                                                      0.999
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                      0.040
```

##							
##	Parameter Estimate	s:					
##	Standard errors				Standard		
##	Information				Expected		
##	Information satu	rated (h1)	model		ructured		
##							
	Latent Variables:		a	_	5 (1 1 1)	a	a
## ##	extraversion =~	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	V1	1.000				0.068	0.152
##	V3	1.798	0.325	5.532	0.000	0.123	0.246
##	V5	-2.268	0.360	-6.291		-0.155	-0.414
##	V8	5.077	0.887	5.725	0.000	0.346	0.732
##	neuroticism =~						
##	V2	1.000				0.222	0.445
##	V4	0.432	0.053	8.134		0.096	0.194
##	V7	1.493	0.093	16.025	0.000	0.331	0.675
##	V9	1.186	0.074	15.938	0.000	0.263	0.530
##	lying =~	1 000				0 125	0 070
## ##	V6 V12	1.000 -0.851	0.127	-6.699	0.000	0.135 -0.115	0.272 -0.290
##	V12 V18	-0.799	0.119	-6.728	0.000	-0.108	-0.294
##	V10 V24	1.115	0.113	7.087	0.000	0.151	0.347
##	neuroticism =~	11110	0.10	1.001	0.000	0.101	0.01
##	V3	-0.732	0.066	-11.074	0.000	-0.163	-0.327
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	extraversion ~~						
##	neuroticism	0.004	0.001	4.953	0.000	0.283	0.283
##	lying	-0.003	0.001	-4.380	0.000	-0.346	-0.346
##	neuroticism ~~	-0.016	0.002	-7.337	0.000	-0.521	-0.521
##	lying	-0.010	0.002	-1.331	0.000	-0.521	-0.521
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.V1	0.196	0.005	39.250	0.000	0.196	0.977
##	.V3	0.217	0.006	34.642	0.000	0.217	0.878
##	.V5	0.116	0.004	29.066	0.000	0.116	0.828
##	.V8	0.104	0.014	7.603	0.000	0.104	0.465
##	.V2	0.200	0.006	33.875	0.000	0.200	0.802
##	. V4	0.235	0.006	39.046	0.000	0.235	0.962
##	. V7	0.131	0.007	19.577	0.000	0.131	0.544
##	. V9	0.178	0.006	29.830	0.000	0.178	0.720
## ##	.V6 .V12	0.228 0.144	0.007 0.004	34.969 34.186	0.000	0.228 0.144	0.926 0.916
##	.V12 .V18	0.144	0.004	34.100	0.000	0.144	0.914
##	.V24	0.123	0.004	31.188	0.000	0.123	0.879
##	extraversion	0.005	0.001	3.265	0.001	1.000	1.000
##	neuroticism	0.049	0.005	10.127	0.000	1.000	1.000
##	lying	0.018	0.004	4.651	0.000	1.000	1.000

Your fit indices should improve to the .80s by including this one extra parameter to the model.

```
(Now, CFI = 0.867, TLI = 0.825)
(Before, CFI= 0.750, TLI = 0.683)
#COMPARE TWO MODELS
```

The original model epi.model and the updated model with the modified path epi.model2 can now be compared using the anova() function to determine if the change in fit indices was a large change.

```
We can use the anova() function because these models are nested, which means they are the same manifest
variables with different parameters.
# Analyze the original model
epi.fit <- cfa(model = epi.model, data =epi)
# Analyze the updated model
epi.fit2 <- cfa(model = epi.model2, data = epi)</pre>
# Compare those models
anova(epi.fit,epi.fit2)
## Chi-Squared Difference Test
##
##
                       BIC Chisq Chisq diff Df diff Pr(>Chisq)
                 AIC
## epi.fit2 50 46220 46390 332.89
## epi.fit 52 46468 46626 584.72
                                        251.83
                                                     2 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The updated model appears better, as the chi-square difference test is significant. (***)
#Select Specific Fit Indices
#You can also compare models by using the AIC or ECVI fit indices, rather than the anova() function.
#These fit indices are very useful if your models include different manifest variables.
#When comparing sets of AIC or ECVI values, the best model would have the smallest fit index.
# Find the fit indices for the original model
fitmeasures(epi.fit, c('aic', 'ecvi'))
##
         aic
                  ecvi
## 46468.291
                 0.199
# Find the fit indices for the updated model
fitmeasures(epi.fit2, c('aic', 'ecvi'))
##
         aic
                  ecvi
## 46220.465
                 0.122
For both AIC and ECVI, the updated model included the smaller fit indices and would be considered the
better model.
library(semPlot)
## Registered S3 methods overwritten by 'huge':
##
     method
               from
##
     plot.sim BDgraph
     print.sim BDgraph
semPaths(epi.fit2, whatLabels = 'std', rotation=1)
```

