

Capstone Project Yes Bank Stock Closing Price Prediction

SHASHANK BHATIA

CONTENTS

- 1. Problem Statement
- 2. Data Pipeline
- 3. Data Summary
- 4. EDA
- 5. Regression Analysis
- 6. Performance Metrics
- 7. Conclusion

Problem Statement

Perform regression analysis using multiple models to predict the closing price of the stock and compare the evaluation metrics for all of them to find the best model.

DATA PIPELINE

- Data overview
- EDA
- Data bifurcation
- Test-train data split
- Regression analysis
- Evaluation metrics comparison

Data Summary

- Data set data_YesBank_StockPrices contains observations regarding open, close, high and low prices of the yes bank stock from July 2005 - November 2020.
- rows: 185
- column: 5
- Date: It denotes the month and year for a particular price.
- Open: Open means the price at which a stock started trading that month.
- High: refers to the maximum price that month.
- Low: refers to the minimum price that month.
- Close: refers to the final trading price for that month, which we have to predict using regression techniques.

EDA

Data distribution visualization

Data transformation visualization

Bivariate Analysis plots

Correlation

Linear Regression

MAE : 3.052764712964646

MSE : 19.9885/8593595022

RMSE : 4.470858820584142 MAPE : 5.404201340281821

Lasso Regression

MAE : 3.130856893860506

MSE : 20.878651216190214 RMSE : 4.569316274475889

MAPE : 5.53404458516646

Ridge Regression

MAE : 3.061022460686153 MSE : 20.095425485603688

RMSE: 4.48279215284444 MAPE: 5.416737109823077

KNN

MAE : 4.104324324324326 MSE : 37.72864864864864

RMSE : 6.142365069633084

MAPE : 6.4409728288406365

XGBOOST

MAE : 4.25945175686398 MSE : 32.91328663051823 RMSE : 5.737010251909807 MAPE : 6.839571142342331

METRIC EVALUATION

24	Model_Name	MAE	MSE	RMSE	MAPE
0	Linear regression	3.05	19.99	4.47	5.40
2	Ridge regression	3.06	20.10	4.48	5.42
1	Lasso regression	3.13	20.88	4.57	5.53
3	KNN regressor	4.10	37.73	6.14	6.44
4	XGBoost regressor	4.26	32.91	5.74	6.84

Conclusion

- 1. Target variable is highly dependent on input variables.
- Linear Regression has given the best results with lowest MAE, MSE, RMSE and MAPE score.
- Ridge regression shrunk the parameters to reduce complexity and multicollinearity, but ended up affecting the evaluation metrics.
- 4. Lasso regression did feature selection and ended up giving up worse result than ridge which again reflects to the fact that each feature is important(as previously discussed).
- 5. KNN AND XGBoost have given similar results.
- 6. The accuracy for each model is more than 90%.