

PRACTICAL M-ARY DEMODULATOR AND METHOD OF
OPERATION FOR USE IN A CDMA WIRELESS
NETWORK BASE STATION

Inventor(s) :

Joseph R. Cleveland
911 Grinnell Drive
Richardson
Dallas County
Texas 75081
United States citizen

Adnan Kavak
Mimar Sinan Mah.
Petkimililer Sitesi
No.: 11 D:1
41740 Yarimca, Izmit, Turkey
Citizen of Turkey

Assignee:

SAMSUNG ELECTRONICS Co., LTD.
416, Maetan-dong, Paldal-gu
Suwon-city, Kyungki-do
Republic of Korea

CERTIFICATE OF EXPRESS MAIL	
I hereby certify that this correspondence, including the attachments listed, is being mailed in an envelope addressed to Commissioner of Patents and Trademarks, Washington, DC 20231, using the Express Mail Post Office to Addressee service of the United States Postal Service on the date shown below.	
Kathy Longenecker Printed Name of Person Mailing <i>Kathy Longenecker</i> Signature of Person Mailing	ET838008915US Express Mail Receipt No. <u>12/31/01</u> Date

William A. Munck
John T. Mockler
Novakov Davis & Munck, P.C.
Three Galleria Tower
13155 Noel Road, Suite 900
Dallas, Texas 75240
(214) 922-9221

PRACTICAL M-ARY DEMODULATOR AND METHOD OF
OPERATION FOR USE IN A CDMA WIRELESS
NETWORK BASE STATION

CROSS-REFERENCE TO RELATED APPLICATIONS

5 The present invention is related to those disclosed in:

1) United States Patent Application Serial No. [Docket No. SAMS01-00151], filed concurrently herewith, entitled "APPARATUS AND METHOD FOR M-ARY DEMODULATION IN A DIGITAL COMMUNICATION SYSTEM"; and

2) United States Patent Application Serial No. [Docket No. SAMS01-00198], filed concurrently herewith, entitled "PRACTICAL M-ARY DEMODULATOR USING HARD DECISION CIRCUIT AND METHOD OF OPERATION FOR USE IN A CDMA WIRELESS NETWORK BASE STATION".

United States Patent Application Serial No. [Docket No. SAMS01-00160] and United States Patent Application Serial No. [Docket No. SAMS01-00198] are commonly assigned to the assignee of the present invention. The disclosures of the related patent applications are hereby incorporated by reference for all purposes as if fully set forth herein.

TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to digital communication systems and, more specifically, to an M-ary demodulator for use in a wireless network base station.

5

BACKGROUND OF THE INVENTION

The radio frequency (RF) spectrum is a limited commodity. Only a small portion of the spectrum can be assigned to each communications industry. The assigned spectrum, therefore, must be used efficiently in order to allow as many frequency users as possible to have access to the spectrum. Multiple access modulation techniques are some of the most efficient techniques for utilizing the RF spectrum. Examples of such modulation techniques include time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA).

15

CDMA modulation employs a spread spectrum technique for the transmission of information. The CDMA wireless communications system spreads the transmitted signal over a wide frequency band. This frequency band is typically substantially wider than the minimum bandwidth required to transmit the signal. A signal having a bandwidth of only a few kilohertz can be spread over a bandwidth of more than a megahertz.

20

ATTY. DOCKET NO. SAMS01-00160

5

All of the wireless access terminals, including both mobile stations and fixed terminals, that communicate in a CDMA system transmit on the same frequency. Therefore, in order for the base station to identify the wireless access terminals, each wireless access terminal is assigned a unique pseudo-random (PN) long spreading code that identifies that particular wireless access terminal to the wireless network. Typically, each long code is generated using the electronic serial number (ESN) of each mobile station or fixed terminal. The ESN for each wireless access terminal is unique to that wireless access terminal.

15

20

In some CDMA wireless networks, during the transmission of user data from a wireless access terminal to a base station (i.e., reverse channel traffic), the user data are grouped into 20 millisecond (msec.) frames. All user data transmitted on the reverse channel are convolutionally encoded and block interleaved to form a baseband signal. In a preferred embodiment, the baseband signal is then modulated by an M-ary orthogonal modulation in which each N-bit data sequence or symbol is replaced by an orthogonal modulation code sequence of length $M=2^N$. The M-ary modulated signal is then spread using a long code based on the ESN data and then separated into an in-phase (I) component and a quadrature (Q) component prior to quadrature modulation of an RF carrier and

transmission.

Next, the I-component is modulated by a zero-offset short pseudo-random noise (I-PN) binary code sequence. The Q-component is modulated by a zero-offset short pseudo-random noise (Q-PN) binary code sequence. In an alternate embodiment, the quadrature binary sequence may be offset by one-half of a binary chip time. Those skilled in the art will recognize that the in-phase component and the quadrature component are used for quadrature phase shift keying (QPSK) modulation of an RF carrier prior to transmission. Those skilled in the art will also recognize that the access terminal may use binary phase shift keying (BPSK) modulation, quadrature amplitude modulation (QAM) or other digital modulation format for modulation of an RF carrier for transmission of the data signals prior to transmission.

For IS-95 and IS-2000 based systems, the M-ary modulation uses $M = 2^6$ orthogonal binary sequences for 6-bit encoding. In other words, six ($N = 6$) bit blocks (or symbols) of the encoded and interleaved baseband signal are represented by one of 2^6 (i.e., 64) unique codes. In 64-ary modulation used in current CDMA systems, one of 64 possible Walsh codes is transmitted for each group of six (6) coded bits of the baseband signal. Within a Walsh function, sixty-four (64) Walsh chips are transmitted. The particular Walsh

function is selected according to the relation:

$$\text{Walsh Function} = c_0 + 2c_1 + 4c_2 + 8c_3 + 16c_4 + 32c_5 \quad (1)$$

where c_5 represents the last coded bit and c_0 represents the first coded bit in the six-bit group of baseband data. Upon receipt of 5 the transmitted signal from the access terminal, the base station performs the inverse of this sequence to detect the transmitted user baseband data bits.

Those skilled in the art will recognize that instead of M-ary modulation described previously, the baseband signal may be spread with an M-bit Walsh code, a quasi-orthogonal function or a turbo code prior to up-conversion and modulation of an RF carrier for transmission.

For multipath propagation, the base station may employ spatial diversity reception with two independent receive paths to receive 15 a fading signal from the kth access terminal. In a preferred embodiment, diversity reception comprises two or more antennas separated by a distance equal to ten (10) or more wavelengths of the received RF signal. Those skilled in the art will recognize that signals arriving at the two or more antennas from the same 20 source are un-correlated with antennas separations of ten (10) or more wavelengths. That is, if the signal received by one antenna is faded, the signal received by another antenna is not faded.

Each antenna is connected to receive circuitry that performs separate despreading, M-ary demodulation, de-interleaving and convolutional decoding functional blocks for processing each multipath signal received by the base station. If the signal from 5 the access terminal to one of the antennas undergoes a fade, a signal on the radio path from the access terminal to the second antenna may not have been in a fade condition. A selector circuit selects the best signal from the multiple diversity receive circuits to mitigate the affects of fading.

In conventional CDMA systems, the M-ary demodulator for demodulation of the signal from the k^{th} access terminal consists of a bank of matched filters needed to detect one out of the M possible N-bit data symbols. A separate bank of matched filters is required for processing the signal received on each path. Each 15 matched filter consists of M stages for processing the M modulation symbol bits to detect one out of the M possible N-bit data symbols. This greatly increases the number of ASIC gates or DSP processing (instructions per second) to detect the one of $M = 2^N$ possible N-bit data symbols (patterns) in demodulating the M-ary modulated 20 signal.

Therefore, there is a need for an M-ary demodulator that reduces the signal processing complexity required to perform M-ary

demodulation of M-ary modulated data symbols. In particular, there is a need for an M-ary demodulator that does not require a separate bank of matched filters on each received signal path, wherein each matched filter consists of M stages for processing the M modulation symbol bits.

SUMMARY OF THE INVENTION

5

TOP SECRET//
REF ID: A6512

15

20

To address the above-discussed deficiencies of the prior art, it is a primary object of the present invention to provide a demodulator for demodulating a set of S possible orthogonal modulation codes received serially as binary data, wherein each of the orthogonal modulation codes comprises M binary bits representing an N -bit data symbol and wherein $M = 2^N$. According to an advantageous embodiment of the present invention, the demodulator comprises: 1) a Logic 00 input detector capable of comparing sequential pairs of the M binary bits of the serially received orthogonal modulation codes to a Logic 00 value and outputting a $[+1, +1]$ signal if a match occurs and outputting a $[-1, -1]$ signal if a match does not occur; 2) a summation circuit comprising S accumulators; 3) a Logic 00 switch array comprising S switches, wherein a K th one of the S switches in the Logic 00 switch array is capable of coupling an output of the Logic 00 input detector to a first input of a K th one of the S accumulators; 4) a storage array capable of storing S code masks associated with the S orthogonal modulation codes, wherein each of the S code masks comprises $M/2$ code mask bits and each of the $M/2$ code mask bits is associated with a corresponding one of the sequential pairs of the M binary bits in one of the orthogonal modulation codes; and

5

5) control circuitry capable of synchronously applying the M/2 code mask bits in a Kth one of the S code masks in the storage array as a switch control signal to the Kth switch in the Logic 00 switch array such that a Logic 1 code mask bit in the Kth code mask closes the Kth switch in the Logic 00 switch array whenever the Logic 00 input detector is comparing a sequential pair of the M binary bits equal to 00, thereby connecting the [+1,+1] output signals of the Logic 00 input detector to the first input of the Kth accumulator.

TOP SECRET//
REF ID: A6512

15

20

According to one embodiment of the present invention, the demodulator further comprises: 6) a Logic 01 input detector capable of comparing sequential pairs of the M binary bits of the serially received orthogonal modulation codes to a Logic 01 value and outputting a [+1,+1] signal if a match occurs and outputting a [-1,-1] signal if a match does not occur; and 7) a Logic 01 switch array comprising S switches, wherein a Kth one of the S switches in the Logic 01 switch array is capable of coupling an output of the Logic 01 input detector to a second input of the Kth accumulator, wherein the control circuitry is capable of synchronously applying the M/2 code mask bits in the Kth code mask in the storage array as a switch control signal to the Kth switch in the Logic 01 switch array such that a Logic 1 code mask bit in the Kth code mask closes the Kth switch in the Logic 01 switch array whenever the Logic 01

input detector is comparing a sequential pair of the M-binary bits equal to 01, thereby connecting the [+1,+1] output signals of the Logic 01 input detector to the second input of the Kth accumulator.

According to another embodiment of the present invention, the
5 demodulator further comprises: 8) a Logic 10 input detector capable of comparing sequential pairs of the M binary bits of the serially received orthogonal modulation codes to a Logic 10 value and outputting a [+1,+1] signal if a match occurs and outputting a [-1,-1] signal if a match does not occur; and 9) a Logic 10 switch array comprising S switches, wherein a Kth one of the S switches in the Logic 10 switch array is capable of coupling an output of the Logic 10 input detector to a third input of the Kth accumulator, wherein the control circuitry is capable of synchronously applying the M/2 code mask bits in the Kth code mask in the storage array as 15 a switch control signal to the Kth switch in the Logic 10 switch array such that a Logic 1 code mask bit in the Kth code mask closes the Kth switch in the Logic 10 switch array whenever the Logic 10 input detector is comparing a sequential pair of the M binary bits equal to 10, thereby connecting the [+1,+1] output signals of the 20 Logic 10 input detector to the third input of the Kth accumulator.

According to still another embodiment of the present invention, the demodulator further comprises: 10) a Logic 11 input

TOP SECRET//COMINT

10
15

detector capable of comparing sequential pairs of the M binary bits of the serially received orthogonal modulation codes to a Logic 11 value and outputting a [+1,+1] signal if a match occurs and outputting a [-1,-1] signal if a match does not occur; and 11) a 5 Logic 11 switch array comprising S switches, wherein a Kth one of the S switches in the Logic 11 switch array is capable of coupling an output of the Logic 11 input detector to a fourth input of the Kth accumulator, wherein the control circuitry is capable of synchronously applying the M/2 code mask bits in the Kth code mask in the storage array as a switch control signal to the Kth switch in the Logic 11 switch array such that a Logic 1 code mask bit in the Kth code mask closes the Kth switch in the Logic 11 switch array whenever the Logic 11 input detector is comparing a sequential pair of the M binary bits equal to 11, thereby 15 connecting the [+1,+1] output signals of the Logic 11 input detector to the fourth input of the Kth accumulator.

20

According to yet another embodiment of the present invention, the demodulator further comprises a code selection circuit capable of reading a sum value from each the S accumulators and identifying an accumulator containing a maximum sum value.

According to a further embodiment of the present invention, the code selection circuit outputs one of 2^N N-bit data symbols

corresponding to the identified accumulator containing the maximum value.

According to a still further embodiment of the present invention, $N = 6$ and $M = 2^N = 64$.

5 According to a yet further embodiment of the present invention, $S = 64$.

According to another embodiment of the present invention, the orthogonal modulation codes are Walsh codes.

The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.

Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain

DOCKET
NUMBER
SAMS01-00160

words and phrases used throughout this patent document: the terms "include" and "comprise," as well as derivatives thereof, mean inclusion without limitation; the term "or," is inclusive, meaning and/or; the phrases "associated with" and "associated therewith," 5 as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term "controller" means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether 15 locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, wherein like numbers designate like objects, and in which:

FIGURE 1 illustrates an exemplary wireless network according to one embodiment of the present invention;

FIGURE 2 illustrates selected portions of the receive path circuitry in the exemplary base station in greater detail according to one embodiment of the present invention;

FIGURE 3 illustrates in greater detail selected portions of an exemplary M-ary demodulator according to a first embodiment of the present invention;

FIGURE 4 illustrates selected portions of an exemplary M-ary demodulator according to a second embodiment of the present invention;

FIGURE 5 illustrates selected portions of an exemplary M-ary demodulator according to a third embodiment of the present invention; and

FIGURE 6 illustrates selected portions of an exemplary M-ary demodulator according to a fourth embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

5

FIGURES 1 through 6, discussed below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any suitably arranged wireless network base station.

PCT/US2001/012640
10
15
20

FIGURE 1 illustrates exemplary wireless network 100 according to one embodiment of the present invention. Wireless network 100 comprises a plurality of cell sites 121-123, each containing one of the base stations, BS 101, BS 102, or BS 103. Base stations 101-103 communicate with a plurality of mobile stations (MS) 111-114 over, for example, code division multiple access (CDMA) channels. Mobile stations 111-114 may be any suitable wireless devices, including conventional cellular radiotelephones, PCS handset devices, personal digital assistants, portable computers, or metering devices. The present invention is not limited to mobile devices. Other types of access terminals, including fixed wireless terminals, may be used. However, for the sake of simplicity, only mobile stations are shown and discussed hereafter.

Dotted lines show the approximate boundaries of the cell

5

sites 121-123 in which base stations 101-103 are located. The cell sites are shown approximately circular for the purposes of illustration and explanation only. It should be clearly understood that the cell sites may have other irregular shapes, depending on the cell configuration selected and natural and man-made obstructions.

As is well known in the art, cell sites 121-123 are comprised of a plurality of sectors (not shown), each sector being illuminated by a directional antenna coupled to the base station. The embodiment of FIGURE 1 illustrates the base station in the center of the cell. Alternate embodiments position the directional antennas in corners of the sectors. The system of the present invention is not limited to any one cell site configuration.

15

In one embodiment of the present invention, BS 101, BS 102, and BS 103 comprise a base station controller (BSC) and one or more base transceiver subsystem(s) (BTS). Base station controllers and base transceiver subsystems are well known to those skilled in the art. A base station controller is a device that manages wireless communications resources, including the base transceiver stations, for specified cells within a wireless communications network. A base transceiver subsystem comprises the RF transceivers, antennas, and other electrical equipment located in each cell site. This

5

equipment may include air conditioning units, heating units, electrical supplies, telephone line interfaces, and RF transmitters and RF receivers. For the purpose of simplicity and clarity in explaining the operation of the present invention, the base transceiver subsystem in each of cells 121, 122, and 123 and the base station controller associated with each base transceiver subsystem are collectively represented by BS 101, BS 102 and BS 103, respectively.

PENDING
PAPERS
FILED
RECEIVED
U.S. PATENT
OFFICE
JULY 10 1991

15

BS 101, BS 102 and BS 103 transfer voice and data signals between each other and the public switched telephone network (PSTN) (not shown) via communications line 131 and mobile switching center (MSC) 140. Line 131 also provides the connection path to transfers control signals between MSC 140 and BS 101, BS 102 and BS 103 used to establish connections for voice and data circuits between MSC 140 and BS 101, BS 102 and BS 103.

20

Communications line 131 may be any suitable connection means, including a T1 line, a T3 line, a fiber optic link, a network packet data backbone connection, or any other type of data connection. Line 131 links each vocoder in the BSC with switch elements in MSC 140. Those skilled in the art will recognize that the connections on line 131 may provide a transmission path for transmission of analog voice band signals, a digital path for

transmission of voice signals in the pulse code modulated (PCM) format, a digital path for transmission of voice signals in an Internet Protocol (IP) format, a digital path for transmission of voice signals in an asynchronous transfer mode (ATM) format, or other suitable connection transmission protocol. Those skilled in the art will recognize that the connections on line 131 may also provide a transmission path for transmission of analog or digital control signals in a suitable signaling protocol.

ATTY. DOCKET NO. SAMS01-00160

15

MSC 140 is a switching device that provides services and coordination between the subscribers in a wireless network and external networks, such as the PSTN or Internet. MSC 140 is well known to those skilled in the art. In some embodiments of the present invention, communications line 131 may be several different data links where each data link couples one of BS 101, BS 102, or BS 103 to MSC 140.

20

In the exemplary wireless network 100, MS 111 is located in cell site 121 and is in communication with BS 101. MS 113 is located in cell site 122 and is in communication with BS 102. MS 114 is located in cell site 123 and is in communication with BS 103. MS 112 is also located close to the edge of cell site 123 and is moving in the direction of cell site 123, as indicated by the direction arrow proximate MS 112. At some point, as MS 112

moves into cell site 123 and out of cell site 121, a hand-off will occur.

As is well known, the hand-off procedure transfers control of a call from a first cell site to a second cell site. As MS 112 moves from cell 121 to cell 123, MS 112 detects the pilot signal from BS 103 and sends a Pilot Strength Measurement Message to BS 101. When the strength of the pilot transmitted by BS 103 and received and reported by MS 112 exceeds a threshold, BS 101 initiates a soft hand-off process by signaling the target BS 103 that a handoff is required as described in TIA/EIA IS-95 or TIA/EIA IS-2000.

BS 103 and MS 112 proceed to negotiate establishment of a communications link in the CDMA channel. Following establishment of the communications link between BS 103 and MS 112, MS 112 communicates with both BS 101 and BS 103 in a soft handoff mode. Those acquainted with the art will recognize that soft hand-off improves the performance on both forward (BS to MS) channel and reverse (MS to BS) channel links. When the signal from BS 101 falls below a predetermined signal strength threshold, MS 112 may then drop the link with BS 101 and only receive signals from BS 103. The call is thereby seamlessly transferred from BS 101 to BS 103.

The above-described soft hand-off assumes the mobile station is in a voice or data call. An idle hand-off is a hand-off of a mobile station, between cells sites, that is communicating in the control or paging channel.

5 FIGURE 2 illustrates in greater detail selected portions of the receive path circuitry in a base transceiver subsystem (BTS) of exemplary base station 101 according to one embodiment of the present invention. The BTS receive path circuitry comprises radio frequency (RF) down-converter 205, in-phase and quadrature (I/Q) demodulation circuitry 210, in-phase (I) pseudo-random noise (PN) code generator 212, quadrature (Q) pseudo-random noise (PN) code generator 214, and L path processing circuits, including exemplary path processing circuits 221, 222, and 223, which are labeled Path 1 Processing, Path 2 Processing, and Path L Processing, respectively.

15

Those skilled in the art will recognize that exemplary path processing circuits 221, 222, and 223, may each contain in-phase and quadrature (I/Q) demodulation circuitry 210, in-phase (I) pseudo-random noise (PN) code generator 212, quadrature (Q) pseudo-random noise (PN) code generator 214 which are time offset to account for multipath delay. Exemplary path processing circuit 221 comprises de-spreading and de-randomizing block 230, long code

20

generator 234, M-ary demodulator 232 according to the principles of the present invention, mixer 236, and channel impulse response block 238. Those skilled in the art of digital signal processing will also understand that a clock (not shown) controls and 5 synchronizes the transfer of bits from one block to the next.

It is recalled from the above description of CDMA compatible wireless access terminals that, in conventional mobile stations and fixed access terminals, user data (i.e., voice data, e-mail, data files, web page data, and the like) to be transmitted on the reverse channel are convolutionally encoded and block interleaved to form a baseband signal. The baseband signal is then modulated by an M-ary orthogonal modulation and the M-ary modulated signal is spread using a long code based on the ESN data prior of the mobile station or fixed access terminal. The long code generated from the 15 unique ESN data may be, for example, 2^{40} bits in length.

Following spreading with the long code, the signal is then demultiplexed or separated into an in-phase (I) component and a quadrature (Q) component prior to quadrature modulation of an RF carrier and transmission. The I-component is modulated by a zero-offset short pseudo-random noise (I-PN) binary code sequence. The 20 Q-component is modulated by a zero-offset short pseudo-random noise (Q-PN) binary code sequence. The short code may be, for example,

2¹⁵ bits in length. In one embodiment, the quadrature binary sequence is further offset by one-half of a binary chip time. Those skilled in the art will recognize that the in-phase component and the quadrature component are used for quadrature phase shift keying (QPSK) modulation of an RF carrier prior to transmission.

Upon receipt of, for example, a QPSK-modulated RF signal in the reverse channel, the RF front-end of the BTS amplifies and filters the QPSK-modulated RF signal transmitted by one or more access terminals. RF down-converter 205 down-converts the amplified and filtered RF signal to produce an in-phase (I) component signal and a quadrature (Q) component signal. I/Q demodulation block 210 uses an I-PN code and a Q-PN code to produce the I and Q components to produce a digital signal stream, $r(t)$, that represents the combination of signals from the transmitting access terminals. I/Q demodulation block compensates for the one-half chip time introduced in the Q-component by the access terminal prior to QPSK modulation and transmission.

De-spreading and de-randomizing block 230 then uses the 2⁴⁰ bit ESN-based long code from long code generator 234 to perform coherent de-spreading and de-randomizing of $r(t)$ from each access terminal signal using a matched filter. The output of de-spreading and de-randomizing block 230 is an orthogonal modulation symbol

represented by a Walsh code sequence of $M = 2^N$ bits. Next, M-ary demodulator 232 demodulates the sequence of bits (or chips) representing the Walsh code sequence. The demodulation circuit provides M-ary ($M=2^N$) demodulation of the stream of M-bit (i.e., M-chip) Walsh codes (i.e., symbols) to produce N-bit data symbols. For an exemplary IS-95 system, $N = 6$ and $M = 64$. The output of M-ary demodulator 232 is further filtered by mixer 236 and channel impulse response block 238 to produce a baseband signal comprising a stream of N-bit digital data symbols.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000

The N-bit symbols from each path are combined by path combiner/selector 240 and then de-interleaved by block de-interleaver 250. In one embodiment, combiner/selector 240 selects the strongest signal. In another embodiment, combiner/selector 240 selects the most probable N-bit symbol. Convolutional decoder 260 then convolutionally decodes the de-interleaved data bits to produce the original user data transmitted by the mobile station or fixed access terminal.

It should be noted that in the embodiments described herein, the number of Walsh codes, M , is equal to the number of bits or chips, M , in each Walsh code. However, this is not required. The number of bits in the Walsh code may be different than the number of Walsh codes. For example, in alternate embodiments of the

- 23 -

invention, a digital communication system may be implemented that uses $WC = 64$ Walsh codes, where each Walsh code contains, for example, $M = 16, 32,$ or 128 bits (or chips).

FIGURE 3 illustrates selected portions of simplified M-ary demodulator 232 in exemplary base station 101 in greater detail according to one embodiment of the present invention. M-ary demodulator 232 comprises clocks 301A and 301B, Input 1 processor 305, Input 0 processor 310, switch arrays 306 and 311, and summation block 320, and M-ary array 350, code selector 330, and demodulation processor 340. Clocks 301A and 301B are synchronized with the starting point and digital data rate of the M-ary modulation used by the transmitting access terminal and initialize the M-ary demodulation at the start of each set of M modulation code (i.e., Walsh code) bits.

Switch array 306 comprises M switches, labeled S_0 through $S_{(M-1)}$. For example, if $M = 64$, switch array comprises 64 switches, S_0-S_{63} . Similarly, switch array 311 comprises M switches, labeled S_0 through $S_{(M-1)}$. Again, if $M = 64$, switch array comprises 64 switches, S_0-S_{63} .

Summation block 320 comprises M accumulator circuits (or summers), labeled $WC(0)$ Accumulator through $WC(M-1)$ Accumulator. Each of the M accumulator circuits has two inputs and sums together

the outputs of the input processors in order to detect a match to one of the M Walsh codes. Each of the switches S₀-S(M-1) in switch array 306 connects the output of Input 1 processor 305 to a first one of the two inputs of each of WC(0) Accumulator - WC(M-1) Accumulator. Similarly, each of the switches S₀-S(M-1) in switch array 311 connects the output of Input 0 processor 310 to the second one of the two inputs of each of WC(0) Accumulator - WC(M-1) Accumulator. Thus, each of the M accumulator circuits has one input coupled to the output of Input 1 processor 305 via one of the switches in switch array 306 and has its second input coupled to the output of Input 0 processor 310 via one of the switches in switch array 311.

As is well known, a cleanly received M-bit Walsh Code signal consists of M chip intervals during which the signal has either a positive amplitude, +A, or a negative amplitude, -A, with respect to a 0 volt reference level. The +A level comprises a +1 (or Logic 1) value and the -A level comprises a -1 (or Logic 0) value. Upon initialization to the start of the M bits (i.e., M chips) of the next Walsh code received from de-spreading and de-randomizing block 230, the M-bit Walsh code is input to Input 1 processor 305 and Input 0 processor 310. Input 0 processor 310 functions as a matched filter for a -1 (or Logic 0) state of a WC symbol bit (or

WC chip). Input 1 processor 305 functions as a matched filter for a +1 (or Logic 1) state of the WC symbol bit. It is noted that the present invention reduces the matched filter for each code from M stages to two stages.

5 Each of the matched filter outputs of Input 1 processor 305 and Input 0 processor 310 has a relative value of +1 upon detection of the desired digital signal and -1 otherwise. In other words, if Input 1 processor 305 determines that the current WC chip has a level of +1 (i.e., detects a match for a Logic 1), Input 1 processor 305 outputs a +1 signal. However, if Input 1 processor 305 determines that the current WC chip has a level of -1 (i.e., does not match a Logic 1), Input 1 processor 305 outputs a -1 signal. Similarly, if Input 0 processor 310 determines that the current WC chip has level of -1 (i.e., detects a match for a Logic 0), Input 0 processor 310 outputs a +1 signal. However, if Input 0 processor 310 determines that the current WC chip has level of +1 (i.e., does not match Logic 0), then Input 0 processor 310 outputs a -1 signal.

15

At the same time that the input data are read into Input 1 processor 305 and Input 0 processor 310, demodulator processor 340 loads switch array 306 and 311 with the respective code mask from M-ary array 350. The outputs of Input 1 processor 305 and Input 0

20

processor 310 are loaded into switch arrays 306 and 311, respectively. Switch arrays 306 and 311 determine whether or not the outputs of Input 1 processor 305 and Input 0 processor 310 are transferred to summation block 320 according to the switch control signals in M-ary array 350.

If Input 1 processor 305 or Input 0 processor 310 indicates a match, a signal of relative value +1 is loaded into the selected WC(k) Accumulator in summation block 320. If Input 1 processor 305 or Input 0 processor 310 does not indicate a match, a signal of relative value -1 is loaded into the selected WC(k) Accumulator. This processes continues synchronously with the input data rate until all M input modulation symbol bits (i.e., all M Walsh code chips) have been processed.

At the completion of processing of M input orthogonal modulation symbol bits, demodulation processor 340 notifies code selector 330 to evaluate the output of each of the M accumulator circuits in summation block 320 to determine the most likely received and demodulated N-bit digital data symbol. An M-ary code (i.e., Walsh code) match produces a maximum value in one of the M accumulator circuits and a minimum value in all others. A maximum occurs for a demodulation code match since M signals of relative value +1 are loaded into the corresponding accumulator circuit in

5

summation block 320. A minimum occurs in all other due to the occurrence of an equal number of +1 and -1 signals loaded into each of the remaining accumulator circuits in summation block 320 if a code match does not exist. Code selector 330 determines the N-bit data symbol pattern $[n_0, n_1, \dots, n_{N-1}]$ by evaluating the expression from the kth WC accumulator from the expression:

$$N_0 = n_0 + 2n_1 + 4n_2 + 8n_3 + \dots + 2^{N-1}n_{N-1}$$

That is, it functions as a digital matched filter for each expected N-bit data symbol. Demodulation processor 340 then initializes the M-ary demodulator for detection and demodulation of the next set of M orthogonal modulation symbol bits.

15

The contents of the $M \times M$ bit array in M-ary array 350 are shown in Appendix A below. The contents of M-ary array 350 provide an exemplary embodiment for 64-ary demodulation with $M = 64$ modulated symbol chips (or bits) per $N = 6$ user data bits for IS-95 and IS-2000.

The elements of the $M \times M$ matrix are obtained from the commutation of the Hadamard matrix given by:

$$H[1] = [0] \quad H[2^N] = \begin{bmatrix} H_{2^{N-1}} & H_{2^{N-1}} \\ H_{2^{N-1}} & H_{2^{N-1}} \end{bmatrix}$$

Under control of clock 301B, at the start of each M-bit modulation symbol, the switch control signals in the first column of the MxM matrix are fed into switch arrays 306 and 311. Each row of the Hadamard matrix with N = 6 defines Walsh code 0 to Walsh code 63.

5 For switch array 311, a 0 chip value in the kth position in the column causes switch S(k) in switch array 311 to transfer the +1 or -1 output of Input 0 processor 310 to WC(k) Accumulator in summation block 320. However, a 1 chip value in the kth position in the column causes switch S(k) in switch array 311 not to transfer (i.e., block) the +1 or -1 output of Input 0 processor 310 to WC(k) Accumulator in summation block 320.

For switch array 306, the switch logic is reversed. A 1 chip value in the kth position in the column causes switch S(k) in switch array 306 to transfer the +1 or -1 output of Input 1 processor 305 to WC(k) Accumulator in summation block 320. However, a 0 chip value in the kth position in the column causes switch S(k) in switch array 306 not to transfer (i.e., block) the +1 or -1 output of Input 1 processor 305 to WC(k) Accumulator in summation block 320. This process continues until all M input modulation symbol bits have been processed and the samples applied to the bank of M Walsh code accumulator blocks.

20 To further explain the operation of M-ary demodulator 232, an

TOP SECRET//COMINT

example is now given. In the following example, it is assumed that M = $2^6 = 64$. Thus, 64-ary demodulator 232 receives a sequence of 64-bit Walsh codes, and there are sixty-four (64) possible Walsh codes. Each Walsh code represents one of the 64 possible values of 5 a 6-bit user data symbol. For example, user data symbol 000000 maybe be represented by Walsh code 0 (WC0), user data symbol 010010 may be represented by WC18, and the like. M-ary array 350 stores all 64 possible Walsh codes, WC0-WC63, in 64 rows, where each row contains the 64 chip values of a given Walsh code. Thus, Row 0 of M-ary array 350 derived from the Hadamard matrix for N = 6 stores WC0 and Column 0 of Row 0 stores Chip 0 of WC0, Column 1 of Row 0 stores Chip 1 of WC0, Column 2 of Row 0 stores Chip 2 of WC0, and so forth, until the last column, Column 63, of Row 0 stores Chip 63 of WC0.

15 It is assumed that the next incoming M-ary code is Walsh code 11 (WC11) and it has been cleanly received (i.e., no corrupted chips/bits). WC11 occupies the twelfth row of M-ary array 350. WC11 begins with the eight chip sequence "01100110..." and ends with the eight chip sequence "...10011001". Thus, the first eight 20 chips input to Input 1 processor 305 and Input 0 processor 310 are -1,+1,+1,-1,-1,+1,+1,-1 (which is equivalent to the logic values 01100110). Similarly, the first eight switch control signals

shifted out of Row 11 of M-ary array 350 and applied to switches S11 in switch arrays 306 and 311 are 01100110.

As noted above, Input 1 processor 305 compares the chips of a received M-ary code to +1 and outputs a +1 if a match occurs and a -1 if a match does not occur. Thus, the first eight chips of the incoming M-ary signal, -1,+1,+1,-1,-1,+1,+1,-1, are compared to +1 and Input 1 processor 305 generates the output sequence -1,+1,+1,-1,-1,+1,+1,-1.

At the same time, Input 0 processor 310 compares the chips of a received M-ary code to -1 and outputs a +1 if a match occurs and a -1 if a match does not occur. Thus, the first eight chips of the incoming M-ary signal, -1,+1,+1,-1,-1,+1,+1,-1, are compared to -1 and Input 0 processor 310 generates the output sequence +1,-1,-1,+1,+1,-1,-1,+1.

As a result, during the first 8 chips of the M-ary code, switch S11 in switch array 306 receives the output sequence -1,+1,+1,-1,-1,+1,+1,-1 from Input 1 processor 305 and synchronously receives the switch control signal sequence 01100110 from Row 11 of M-ary array 350. It is recalled that when the switch control signal is Logic 1, switch S11 of switch array 306 closes and passes the output (+1 or -1) of Input 1 processor 305 to one input of WC(11) Accumulator in summation block 320 and when the

switch control signal is Logic 0, switch S11 of switch array 306 opens and blocks the output (i.e., 0) of Input 1 processor 305 from being applied to one input of WC(11) Accumulator.

Thus, the switch control signal sequence 01100110 blocks the -1 values and passes the +1 values in the output sequence -1,+1,+1,-1,-1,+1,+1,-1 from Input 1 processor 305. Therefore, the output of switch S11 in switch array 306 is the sequence 0,+1,+1,0,0,+1,+1,0, which is applied to one input of WC(11) Accumulator.

Furthermore, during the first 8 chips of the M-ary code, switch S11 in switch array 311 receives the output sequence +1,-1,-1,+1,+1,-1,-1,+1 from Input 0 processor 310 and synchronously receives the switch control signal sequence 01100110 from Row 11 of M-ary array 350. It is recalled that when the switch control signal is Logic 0, switch S11 in switch array 311 closes and passes the output (+1 or -1) of Input 0 processor 310 to the second input of WC(11) Accumulator in summation block 320 and when the switch control signal is Logic 1, switch S11 in switch array 311 opens and blocks the output (i.e., 0) of Input 0 processor 310 from being applied to the second input of WC(11) Accumulator.

Thus, the switch control signal sequence 01100110 blocks the

-1 values and passes the +1 values in the output sequence +1, -1, -1, +1, +1, -1, -1, +1 from Input 0 processor 310. Therefore, the output of switch S11 in switch array 311 is the sequence +1, 0, 0, +1, +1, 0, 0, +1, which is applied to second input of WC(11)

5 Accumulator.

Since the two inputs of WC(11) Accumulator are the sequence 0, +1, +1, 0, 0, +1, +1, 0 from Input 1 processor 305 and the sequence +1, 0, 0, +1, +1, 0, 0, +1 from Input 0 processor 305, WC(11) Accumulator is incremented during each of the first 8 chips of the incoming 64-chip Walsh code. This process continues for the remaining 56 chips in WC11, so that WC(11) Accumulator contains a value of 64 at the end of the received 64-chip Walsh code. It should be noted that the inputs to WC11 accumulator are always +1.

However, this process only occurs for WC11 Accumulator, which 15 detects Walsh Code 11. All of the other accumulators in summation block 320 are equal to 0 because the switch control signals from the other rows of M-ary array 350 do not match WC11. Thus, an equal number of +1 values and -1 values are randomly added by the other accumulators (i.e., summers) of summation block 320. This 20 results in a value of 0 in the other accumulators.

In essence, the Logic 0 chips in WC11 stored in M-ary array 350 close switch S11 in switch array 311 during the known

THE JOURNAL OF CLIMATE

5
15

Logic 0 (or -1) chip intervals in the incoming M-chip Walsh code, during which intervals Input 0 processor 310 outputs a +1 signal. The Logic 1 chips in WC11 stored in M-ary array 350 open switch S11 in switch array 311 during the known Logic 1 (or +1) chip intervals in the incoming M-bit Walsh code, during which intervals Input 0 processor 310 outputs a -1 signal. Similarly, the Logic 1 chips in WC11 stored in M-ary array 350 close switch S11 in switch array 306 during the known Logic 1 (or +1) chip intervals in the incoming M-chip Walsh code, during which intervals Input 1 processor 305 outputs a +1 signal. Also, the Logic 1 chips in WC11 stored in M-ary array 350 open switch S11 in switch array 306 during the known Logic 0 (or -1) chip intervals in the incoming M-chip Walsh code, during which intervals Input 1 processor 305 outputs a -1 signal. Thus, switch S11 in switch array 306 and switch S11 in switch array 311 only pass +1 values to WC11 Accumulator when the M-chip (M-bit) signal being received by Input 1 processor 305 and Input 0 processor 310 is Walsh code 11.

When code selector 330 determines that the output of WC(11) Accumulator is 64 and the output of the other accumulators are equal to 0, code selector 330 determines that WC11 has been received and outputs 001011, the 6-bit symbol that corresponds to WC11.

The present invention provides a technique to reduce the number of gates per demodulation path or finger in the base station receive path for demodulator implementation in ASICs or FPGAs. For demodulator implementation in a digital signal processor (DSP), the present invention reduces the number of instructions per second per demodulation path or finger in the base station receive processing. One consequence is a lower complexity for channel estimation used to determine beam forming coefficients for adaptive antenna technology in existing and future CDMA wireless base stations. The end result is reduced design cost, reduced numbers of ASICs and DSPs, and less circuit card space required to adapt adaptive antenna array technology.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455

5 accumulators then process the Logic 0 input signals when strobed by clock 301. Demodulation processor 340 then loads switch array 411 for the Logic 1 code and directs input processor 410 to send the samples to switch array 411, which routes the signals to WC(0) 10 Accumulator - WC(63) Accumulator according to the settings in switch array 411. The accumulators then process the input 1 signals when strobed by clock 301. Demodulation processor 340 processor executes these two sequences within the time period of one M-ary modulation symbol bit.

15 The above-described embodiments may be further reduced by taking advantage of the properties of Walsh codes. It is noted that every Walsh code listed in Appendix A may be regarded as a sequence of thirty-two (32) bit-pairs of binary data, rather than sixty-four (64) individual bits of binary data. However, the 32 bit-pairs are made up of random sequences of two and only two unique pairs, starting from the first bit (or chip). For example, SW11 in Appendix A consists of sequences of 01 and 10 only. The first sixteen chips of WC11 are 0110011010011001, but may be re-written as 01 10 01 10 10 01 10 01. The bit-pairs 00 and 11 do not 20 appear in WC11. Similarly, Walsh code 44 (WC44) consists of sequences of 00 and 11 only. The first 16 chips of WC44 are 000011111110000, but may be re-written as 00 00 11 11 11 11 00 00.

The bit-pairs 01 and 10 do not appear in WC44.

Accordingly, the embodiment of the present invention may be modified to use four (4) input processors that detect 00, 01, 10, and 11 binary data bit-pairs, instead of two input processors that 5 detect only a single 0 or 1 binary bit. The binary data pairs are always an even bit (or chip) followed by an odd bit (or chip). For example, the first binary data pair are [Bit 0, Bit 1] of each Walsh code, the second binary data pair are [Bit 2, Bit 3], and so forth, and the last binary data pair are [Bit 14, Bit 15]. Generally, the binary data pairs may be represented as [Bit (2k), Bit (2k+1)] for k = 0, 1, 2, 3, ..., K, where K may be, for example, 15, 31, 63, or the like.

ATTY. DOCKET NO. SAMS01-00160

FIGURE 5 illustrates selected portions of exemplary M-ary demodulator 232 according to a third embodiment of the present invention. M-ary demodulator 232 in FIGURE 5 comprises Input 00 processor 510, Input 01 processor 520, Input 10 processor 530, Input 11 processor 540, switch arrays 511, 521, 531, and 541, summation block 550, demodulation processor 560, code selector 570 and mask table 580. Clocks are used to synchronize the switch arrays and the input processors with the starting point and digital data rate of the M-ary modulation used by the transmitting access terminal and to initialize the M-ary demodulation at the start of 15 20

each set of M Walsh code (symbol) bits. For the purposes of simplicity and clarity, the clocks and clock lines are omitted from FIGURE 5.

Upon initialization to the start of the next incoming M-bit
5 Walsh code from de-spreading and de-randomizing block 230, the
M-bit Walsh code is applied simultaneously to Input 00
processor 510, Input 01 processor 520, Input 10 processor 530, and
Input 11 processor 540. Each input processor functions as a
matched filter for its binary pair (i.e., 00, 10, 01, 11) and
produces an output of [+1,+1] if the input signal contains the
designated pair of binary bits. Under the control of demodulation
processor 560, each input processor executes the matched filter
according to an optimization algorithm for its respective binary
pair.

15 During the time period for loading the input data into each
input processor, demodulation processor 560 loads switch
arrays 511, 521, 531, and 541 with the respective code masks from
code mask table 580 corresponding to selection of the 00, 10, 01,
11 binary pairs. After execution of the matched filter in the
20 input processors for detection of each of the 00, 10, 01, 11
possible binary combinations, the output of each input processor is
loaded into the respective switch array. The switch arrays route

the signals from the input processors to the summers (accumulators) according to the state of the M switches in each respective switch array. This process continues synchronously with the input data rate until all M input modulation symbol (i.e., Walsh code) bits have been processed (a pair at a time). If switch arrays 511, 521, 531, and 541 are filled for each binary pair processed by Input 00 processor 510, Input 01 processor 520, Input 10 processor 530, and Input 11 processor 540, the effective mask fill rate is:

$$\text{Fill Rate} = (\text{Input Rate}/2) \cdot 2^N$$

The array is filled with 2^N elements for every 2 input bits. For IS-95 or CDMA2000 with an input rate of 1.2288×10^6 chips per second, the fill rate is 39.322 Mbps.

At the completion of processing of M input symbol bits, demodulation processor 560 notifies the code selector 570 to evaluate the output of each of the accumulators (summers) to determine the most likely received and demodulated N-bit data symbol pattern. A code match will produce a maximum value in one of the WC Accumulators and a minimum value in all others. A maximum occurs for a demodulation code match since M signals of relative value +1 are coherently added in the WC accumulators. A minimum occurs because an equal number of signals of relative value +1 and -1 are coherently added in each WC accumulators if a code

match does not exist. Code selector 570 determines the N-bit data symbol pattern $[n_0, n_1, \dots, n_{N-1}]$ associated with the accumulator with the maximum value by evaluating the expression from the m^{th} Walsh code Summer from the expression:

$$m = n_0 + 2n_1 + 4n_2 + 8n_3 + \dots + 2^{N-1}n_{N-1}$$

That is, it functions as a digital matched filter for each expected code. Demodulation processor 560 then initializes the M-ary demodulator for detection and demodulation of the next set of M modulation symbol bits.

卷之三

15

20

The contents of code mask table 580 are shown in Appendices B, C, D and E, below. At a rate of one-half that of the input M-ary code digital stream, demodulation processor 560 loads each one of switch arrays 511, 521, 531, and 541 with the $M/2$ bits in the corresponding code mask given in Appendices B-E and initiates the transfer of the output of each input processor to the switch arrays. Code mask 00 in Appendix B comprises the switch control signals applied to switch array 511. Code mask 01 in Appendix C comprises the switch control signals applied to switch array 521. Code mask 10 in Appendix D comprises the switch control signals applied to switch array 531. Code mask 11 in Appendix E comprises the switch control signals applied to switch array 541.

The code masks in Appendices B-E are $M \times M/2$ matrices derived

from the table of 64-ary Walsh codes given in Appendix A. Each row in the table provides the Walsh code digital bit pattern. The elements of the matrix are obtained from the commutation of the Hadamard matrix given by:

$$H[1]=[0] \quad H[2^N]=\begin{bmatrix} H_{2^{N-1}} & H_{2^{N-1}} \\ H_{2^{N-1}} & H_{2^{N-1}} \end{bmatrix}$$

5

For the bits in column pairs in Appendix A, designated by AB, for a given code and the bits in binary pairs for the input processor designated by Input XY, the entry in the switch array for switch XY (SXY) is given by the logical expression:

$$S=A \cdot B \cdot X \cdot Y + A \cdot \bar{B} \cdot X \cdot \bar{Y} + \bar{A} \cdot B \cdot \bar{X} \cdot Y + \bar{A} \cdot \bar{B} \cdot \bar{X} \cdot \bar{Y}$$

FIGURE 6 illustrates selected portions of exemplary M-ary demodulator 232 according to a fourth embodiment of the present invention. M-ary demodulator 232 in FIGURE 6 comprises Input 00 processor 610, Input 01 processor 620, Input 10 processor 630, and 15 Input 11 processor 640, input decision processor 650, controller 660, code mask tables 661-664, accumulator array 670, and output decision processor 680. Each of Input 00 processor 610, Input 01 processor 620, Input 10 processor 630, and Input 11 processor 640 is a hard decision processor.

Upon initialization to the start of the next incoming M-bit Walsh code from de-spreading and de-randomizing block 230, the M-bit Walsh code is applied simultaneously to Input 00 processor 610, Input 01 processor 620, Input 10 processor 630, and Input 11 processor 640 which perform matched filtering to produce either a Logic 0 or Logic 1 output. Each input processor performs matched filtering operation between its designated binary pair (00, 01, 10, 11) and the portion of the incoming signal for the first two bits duration. At that point, only one of the input processors generates an output of 1. Each of the other three input processors generates an output of 0, which implies a no-match condition.

ATTY. DOCKET NO. SAMS01-00160

The outputs of the input processors and matched filters are fed to input decision processor 650, which provides information to controller 660 about which input processor matches to the incoming signal. Controller 660 loads the first column of the preset code mask table of the matched input processor. For example, if a match is found for Input 00 processor 610, controller 660 loads the first column from code mask table 661. Controller 660 then adds the values of the loaded column array to accumulator array 670. Accumulator array 670 has dimensions of Mx1 and all of accumulators A(0) through A(M-1) are initially set to zero. Before the start of the time periods for the next two chip cycles of the

incoming signal, input decision processor 650 must provide decision output to controller 660 and controller 660 must complete loading, storing, and adding the column of the code mask table.

For the next two chip periods, Input 00 processor 610, 5 Input 01 processor 620, Input 10 processor 630, and Input 11 processor 640, input decision processor 650, and controller 660 perform the same operation as for the first two bits. This procedure is continually repeated until the end of M-bits of the M-ary modulated incoming signal. Meanwhile, the integer values are accumulated in Mx1 accumulator array 670. For the k^{th} code transmitted, a maximum occurs at the k^{th} row of accumulator array 670. Based on accumulator array 670 output with the maximum value at the k^{th} row, output decision processor 680 (or decoder) determines the N-bit data symbol pattern. The embodiment depicted 15 in FIGURE 6 eliminates the need for using four switch arrays as in the embodiment using soft decisions in FIGURE 5.

This invention provides a technique to reduce the number of gates per demodulation path or finger in the base station receive processing for demodulator implementation in ASICs or FPGAs. Each 20 input processor requires two multiplication and two addition operations at a time. Therefore, $(M/2) \times (1 + (4 \times 2)) = 9M/2$ additions and $8M/2$ multiplications are needed to complete M-ary demodulation

5

using the present invention. However, the traditional approach using a bank of M matched filters require $M \times M$ additions and $M \times M$ multiplications. The Fast Hadamard Transform (FHT) method for M -ary demodulation performs butterfly operations and requires only $M \log_2(M)$ additions. Therefore, the methods in this invention provide computation complexity in between the FHT method and the bank of M matched filter method.

卷之三

15

For demodulator implementation in DSPs, the present invention reduces the number of instructions per second per demodulation path or finger in the base station receive processing. One consequence is a lower complexity for channel estimation used to determine beam forming coefficients for adaptive antenna (i.e., Smart Antenna) technology in existing and future CDMA wireless base transceiver subsystems (BTS). The impact is reduced design cost, number of ASICs, DSPs, and circuit card space required to adapt adaptive antenna array technology (i.e., Smart Antennas) to current and future base stations that employ CDMA waveforms.

20

Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the invention in its broadest form.