dependent and A_k would not be invertible, a contradiction. This situation is illustrated by the following matrix for n = 5 and k = 3:

$$\begin{pmatrix} a_{11}^{(3)} & a_{12}^{(3)} & a_{13}^{(3)} & a_{13}^{(3)} & a_{15}^{(3)} \\ 0 & a_{22}^{(3)} & a_{23}^{(3)} & a_{24}^{(3)} & a_{25}^{(3)} \\ 0 & 0 & 0 & a_{34}^{(3)} & a_{35}^{(3)} \\ 0 & 0 & 0 & a_{44}^{(3)} & a_{4n}^{(3)} \\ 0 & 0 & 0 & a_{54}^{(3)} & a_{55}^{(3)} \end{pmatrix}.$$

The first three columns of the above matrix are linearly dependent.

So one of the entries $a_{ik}^{(k)}$ with $k \leq i \leq n$ can be chosen as pivot, and we permute the kth row with the ith row, obtaining the matrix $\alpha^{(k)} = (\alpha_{jl}^{(k)})$. The new pivot is $\pi_k = \alpha_{kk}^{(k)}$, and we zero the entries $i = k+1, \ldots, n$ in column k by adding $-\alpha_{ik}^{(k)}/\pi_k$ times row k to row i. At the end of this step, we have A_{k+1} . Observe that the first k-1 rows of A_k are identical to the first k-1 rows of A_{k+1} .

The process of Gaussian elimination is illustrated in schematic form below:

8.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row operations used during Gaussian elimination. The key point is that if A = PB, where A, B are $m \times n$ matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and B by A_1, \ldots, A_m and B_1, \ldots, B_m , then the formula

$$a_{ij} = \sum_{k=1}^{m} p_{ik} b_{kj}$$

giving the (i, j)th entry in A shows that the *i*th row of A is a *linear combination* of the rows of B:

$$A_i = p_{i1}B_1 + \dots + p_{im}B_m.$$

Therefore, multiplication of a matrix on the left by a square matrix performs row operations. Similarly, multiplication of a matrix on the right by a square matrix performs column operations

The permutation of the kth row with the ith row is achieved by multiplying A on the left by the transposition matrix P(i, k), which is the matrix obtained from the identity matrix