- (2) $\forall a, b \in B, \overline{a \wedge b} = \overline{a} \vee \overline{b}, \overline{a \vee b} = \overline{a} \wedge \overline{b};$
- (3) $\forall a, b \in B, a \leq b \Leftrightarrow a \wedge \bar{b} = 0 \Leftrightarrow \bar{a} \vee b = 1 \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b;$
- (4) $\forall a, b \in B, a \leq b \Leftrightarrow \bar{b} \leq \bar{a}$.

定理 19.24 设 B_1, B_2 是布尔代数, $\varphi: B_1 \to B_2$. 若 φ 是同态,则

- (1) $\varphi(0) = 0, \varphi(1) = 1;$
- (2) $\varphi(B_1)$ 是布尔代数, 且是 B_2 的子代数.

定理 19.25 (有限布尔代数的表示定理) 设 B 是有限布尔代数, A 是 B 的全体原子构成的集合,则 B 同构于 A 的幂集代数 $\mathcal{P}(A)$.

定理 19.26 有限布尔代数的基数是 2^n 形式的, 其中 $n \in \mathbb{N}$, 且任何两个等势的有限布尔代数都是同构的.

定理 19.27 对每个有限布尔代数 $B, B \neq 0$,都存在正整数 n,使得 $B \cong \{0,1\}^n$.

定理 19.28 设 B 是布尔代数, 令

$$F_n(B) = \{ f \mid f : B^n \to B \}$$

是 B上所有 n 元布尔函数的集合. $\forall f, g \in F_n(B)$, 如下定义 $f \land g$, $f \lor g$, \bar{f} , f_0 和 f_1 : $\forall x \in B^n$

$$(f \wedge g)(x) = f(x) \wedge g(x),$$

$$(f \vee g)(x) = f(x) \vee g(x),$$

$$\bar{f}(x) = \overline{f(x)},$$

$$f_0(x) = 0,$$

$$f_1(x) = 1.$$

则 $\langle F_n(B), \wedge, \vee, \bar{f}_0, f_1 \rangle$ 构成布尔代数.