www.xremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	GCE A/AS LEVEL – October/November 2009 9702	21								
(i)	car uses 210 / 14 = 15 litres of fuelvolume reading = 45 litres		[2]							
(ii)	from 'full' to '3/4' mark	B1	[1]							
(i)	line/graph does not pass through ('empty, 0) / there is an intercept (do not allow 'non-linear')									
(ii)	,									
		[Tota	al: 5]							
(i)			[2]							
(ii)		B1	[1]							
acce (for	eleration = 1.9 ± 0.2 m s ⁻² values > ± 0.2 but ≤ 0.4, allow 1 mark)	M1 A2	[3]							
(i)	(use of $g = 10 \text{ m s}^{-2}$ then deduct mark but once only in the Paper)		[1] [1]							
(ii)	resistive force = 880 – 170 = 710 N									
		[Tota	al: 9]							
(i)	or total momentum before = total momentum after		[2]							
(ii)			[2]							
(i)	$1.0 \times 10^{-12} = \frac{1}{2} \times 4 \times \underline{1.66} \times 10^{-27} \times v^2$	M1	[2]							
(ii)	$1.7 \times 10^7 \times 4u = 216u \times V$	C1								
	(ii) (ii) (ii) (iii) use acce (for (ans) (ii) (ii) (iii)	 (ii) from 'full' to '3/4' mark (ii) line/graph does not pass through ('empty, 0) / there is an intercept (do not allow 'non-linear') (iii) (meter shows zero fuel when there is some left in the tank so) acts as a 'reserve' (ii) (air) resistance increases with speed resultant / accelerating force decreases (iii) either (air) resistance is zero or weight / gravitational force is only force use of gradient of a tangent acceleration = 1.9 ± 0.2 m s² (for values > ± 0.2 but ≤ 0.4, allow 1 mark) (answer 3.3 m s² scores no marks) (i) 1 weight = 90 × 9.8 = 880 N (use of g = 10 m s² then deduct mark but once only in the Paper) 2 accelerating force = 90 × 1.9 = 170 N (allow ecf) (ii) resistive force = 880 – 170 = 710 N (allow ecf but only if resistive force remains positive) (ii) either sum / total momentum (of system of bodies) is constant or total momentum before = total momentum after for an isolated system / no (external) force acts on system (iii) zero momentum before / after decay acparticle and nucleus D must have momenta in opposite directions (ii) kinetic energy = ½ mv² (iii) kinetic energy = ½ mv² (iii) kinetic energy = ½ 2 mv² (iiii) kinetic energy = ½ 2 mv² (iiiii) kinetic energy = ½ 2 mv² (iiiiii) kinetic energy = ½ 2 mv² (iiiiiii) kinetic energy = ½ 2 mv² (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	(i) line/graph does not pass through ('empty, 0) / there is an intercept (do not allow 'non-linear') (ii) (meter shows zero fuel when there is some left in the tank so) acts as a 'reserve'							

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

Page 3			Mark Scheme: Teachers' version Syllab GCE A/AS LEVEL – October/November 2009 9702							s Pa			
	(c)	dec (acc	elerati cept ca	ion/a =	3.2 × 10 based o) ¹⁵ m s ⁻²		2.22 × 10 ⁻¹⁷				C1 A1	[2]
											[То	otal:	10]
4 ((a)	(i)		_			•	tcrain is remo					[2]
		(ii)											[1] [1]
((b)	= (3	34 × 0	.44) / (7	$'.7 \times 10^{-4}$	\times 9.2 \times 10	0 ⁻⁸)				(21	[3]
											[7	Γota	l: 7]
5 ((a)												[2]
((b)	(i)	displa	acement .	/ velocity	/ accelera	ation (of	particles in	the way	/e)		31	[1]
		(ii)						of energy tr (<i>not 'wave</i>)	[31	[1]
	((iii)				•		of energy to(not 'wave			[31	[1]
(action er las		-	means of and apertu		tion			N	<i>/</i> 11	
		interference: suitable object, means of observation and illuminationlight and dark fringes observed											
		appropriate reference to a dimension for diffraction or for interference								I	31	[6]	
											[To	otal:	11]
6 ((a)							om some fo plete circui					[2]
	(b)	<u>and</u> <i>E</i> =											
								to ratio = X					[3]

Р	Page 4		Mark Scheme: Teachers' version Syllabu							us	•			
			GC	E A/AS	LEVEL	- Octo	ber/N	lovemb	er 2009)	9702	2	21	
(с	, , ,	1.4 V).40		(al										[2]
	` ,			ircuit =										
	r	· =	0.40 Ω	· · · · · · · · · · · · · · · · · · ·									A1	[3]
(d	i) eithei or			wer lost efficiend	_	•							B1 [Tota	[1] I: 11]
7 (a	ı) devia	ition	n showi	n correct	ly								B1	[1]
(b	o) small accep			n (not zo n wrt pos		,								[2]
(с		mpa	arison t	very) sm o the ato atom is r	m									[2]
(d	devia same			nds on cl o no cha										[2]
													[Tot	al: 7]