НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук

Применение методов доменной адаптации для задач обработки изображений

Выполнила:

Анна Володкевич, студентка образовательной программы «Науки о данных»

Консультант:

Сергей Овчаренко, Senior Research Engineer, Яндекс

Доменная адаптация: постановка задачи

Исходный домен

$$S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim (\mathcal{D}_S)^n$$

Целевой домен

$$T = \{\mathbf{x}_i\}_{i=n+1}^N \sim (\mathcal{D}_{\mathrm{T}}^X)^{n'}$$

$$\eta:X\to Y$$

Задачи работы

- Обзор методов доменной адаптации для задачи классификации изображений
- Воспроизведение выбранной архитектуры и ее модификация для улучшения результатов по сравнению с результатами статьи

Критерии успеха

- Удалось воспроизвести выбранную архитектуру
- В ходе работы удалось добиться статистически значимого повышения качества моделей в метрике accuracy

Содержание

1

Постановка задачи и ее актуальность

2

Теоретическая часть:

- Distance-based методы
- Adversarial-based методы
- Pseudo-labeling

3

Практическая часть:

- Проведенные эксперименты
- Результаты экспериментов

4

Результаты

Подходы и проблемы

Цель: обучить нейронную сеть предсказывать классы для целевого и исходного домена

Проблемы:

- нет меток \mathbf{y}^t для обучения
- распределения признаков для исходного и целевого доменов отличаются (доменный сдвиг)

Подходы и проблемы

No Adaptation

$$P(x) \neq Q(x)$$

Проблемы

Доменный сдвиг распределений

Не можем напрямую приближать совместные распределения признаков и меток

Match Marginal Distributions

$$P(x) \approx Q(x)$$

Match Joint Distributions

$$P(x,y) \approx Q(x,y)$$

Идеи и решения

Приближать распределения признаков целевого и исходного доменов с использованием статистических критериев (distance-based) и состязательных сетей (adversarial-based)

- Косвенно приближать совместное распределения
- Размечать данные целевого домена с использованием дополнительных методов **(pseudo-labeling)**. 6/18

Сравнение подходов

Модель	Год	Метод	acc Office31 A->W	acc Office31 W->A	mean acc Office31
CAN	2019	Distance-based + Pseudo- Labeling	0.945	0.77	0.906
SDA-TCL	2019	Adversarial + Pseudo-Labeling	0.924	0.776	0.902
SPL	2019	Distance-based + Pseudo- Labeling	0.927	0.763	0.896
DADA	2019	Adversarial	0.923	0.742	0.89
ALDA	2020	Adversarial	0.956	0.725	0.887
DANN-CA	2018	Adversarial	0.9135	0.6876	0.862
JAN ResNet 50	2017	Distance-based	0.86	0.707	0.846
ADDA	2017	Adversarial	0.862	0.689	0.829
DANN ResNet 50	2016	Adversarial	0.826	0.661	0.828
JAN AlexNet	2017	Distance-based	0.752	0.563	0.763
D-CORAL	2016	Distance-based	0.664	0.515	0.721
DANN AlexNet	2016	Adversarial	0.73	-	0.743
DAN AlexNet	2015	Distance-based	0.68	0.53	0.72

Adversarial-based методы: DANN

Проблема: есть доменный сдвиг

Решение: приблизим домены с использованием дискриминатора

Модель DANN, использующая классификационную и доменные функции потерь и gradient reversal layer для сближения распределений признаков данных двух доменов

Содержание

1

Постановка задачи и ее актуальность

2

Теоретическая часть:

- Distance-based методы
- Adversarial-based методы
- Pseudo-labeling

3

Практическая часть:

- Проведенные эксперименты
- Результаты экспериментов

4

Результаты

Dataset

Office-31: 31 класс предметов повседневных объектов из трех доменов

Домен	Amazon	DSLR	Webcam	_	
Количество				A ->	W
изображений	2817	498	795		

Базовая модель

ResNet50

один полносвязный слой

Эксперименты

Кратко: воспроизвести DANN, попробовать различные модификации архитектур Попробовать использовать эмбеддинги, полученные из обученных моделей в качестве входных данных для SPL

- 1) One Domain Model: Обучение baseline: классификатора на основе ResNet50
- 2) DANN: Воспроизведение архитектуры и обучение модели DANN с базовой моделью ResNet50
- 3) Rich DANN: Эксперимент с усилением классификатора DANN
- 4) Rich DANN with bottleneck: Эксперимент с добавлением bottleneck (сужения векторного представления изображений перед разделением классификаторов).
- 5) Rich DANN Entropy: Эксперимент с добавлением энтропийной регуляризации при предсказании классов target domain
- 6) DANN-CA: Воспроизведение архитектуры и обучение модели DANN с базовой моделью ResNet50
- 7) DANN to SPL: Эксперименты с использованием эмбеддингов, полученных из DANN, в качестве входных данных для архитектуры SPL.

Rich DANN

Основная идея: более сложный, чем в ResNet50, классификатор классов с dropout

Rich DANN entropy

Основная идея: минимизация энтропии классификатора на целевом домене

Энтропийная регуляризация на целевом домене (DADA)

$$\mathcal{L}_{em}^{t}(G, F) = \frac{1}{n_t} \sum_{j=1}^{n_t} \mathcal{H}(\bar{\mathbf{p}}(\mathbf{x}_j^t)),$$

$$\mathcal{H}(x) = -\sum_{i=1}^{k} p(x_i) \log(p(x_i))$$

trg_metrics.accuracy

-- group: DANN_ResNet_rich_129
- group: DANN_rich_129_entropy_05
- group: DANN_rich_129_entropy_1

Модель	Accuracy A->W
Rich DANN ResNet50 129	0.865 ± 0.017
Rich DANN ResNet50 129 entropy 1	0.897 ± 0.005
Rich DANN ResNet50 129 entropy 0.5	0.877 ± 0.012

Выводы по экспериментам

- Задачи доменной адаптации требуют большого внимания к настройке гиперпараметров. Так, например, слишком быстрый рос веса доменной функции потерь приводит к стабильному ухудшению качества в процессе обучения, которое невозможно отследить без знания меток целевого домена.
- Подбор гиперпараметров и оптимальной архитектуры для реальной задачи очень осложняется из-за отсутствия разметки target domain и немонотонно изменяющихся loss-функций.
- о Результаты статей довольно сложно повторить. Возможно, из-за разницы в используемых фреймворках и предобученных моделях, а также недостаточного описания гиперпараметров моделей и процесса обучения.

Содержание

1

Постановка задачи и ее актуальность

2

Теоретическая часть:

- Distance-based методы
- Adversarial-based методы
- Pseudo-labeling

3

Практическая часть:

- Проведенные эксперименты
- Результаты экспериментов

4

Результаты

Результаты

Модель	Accuracy	Accuracy	Accuracy
	A->W	W->A	VisDA
ResNet50 (baseline)	0.73 ±0.015	0.635±0.009	0.407
DANN ResNet50 (опубликованные	0.826	0.661	0.574
результаты), 2016	0.020	0.001	0.574
DANN ResNet50 Rich	0.864±0.016	0.699±0.006	0.668±0.015
DANN ResNet50 Rich Entropy	0.897±0.005	0.697±0.005	0.668±0.016

- Удалось добиться улучшения качества по сравнению с опубликованными результатами за счет усложнения классификатора и использования энтропийной регуляризации (примерно до результатов статей 2018 года)
- ✓ Практические результаты (исходный код) могут быть использованы для решения задач классификации изображений для любой пары доменов.
- ✓ Рассмотренные модификации архитектуры могут быть применены для любой уже существующей архитектуры Domain Adaptation
- ✓ Результаты могут рассматриваться в качестве ablation study для более современных архитектур (DADA)

Актуальность задачи

Почему разметка целевого домена вручную не всегда решение?

- Качественный, большой и размеченный датасет уже есть
- Умеем хорошо моделировать данные
- Реальные данные встречаются редко и сложно собрать их в принципе
- Ручная разметка данных дорогая и может содержать ошибки

Distance-based методы

Проблема: есть доменный сдвиг

Решение: приблизим домены с использованием статистических критериев

Архитектура DAN, минимизирующая MMD для выходов полносвязных слоев на данных целевого и исходного доменов

Критерий Maximum Mean Discrepancy

$$\widehat{D}_{\mathcal{H}}(P,Q) = \|\widehat{\mu}_{\mathbf{Z}^{s,l}}(P) - \widehat{\mu}_{\mathbf{Z}^{t,l}}(Q)\|_{\mathcal{H}}^{2}$$
Inner product in \mathcal{H} :

$$\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}} = k(\mathbf{x}, \mathbf{x}')$$

$$\widehat{\mu}_{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_i)$$

Long, Mingsheng, Yue Cao, Jianmin Wang, u Michael I. Jordan. «Learning Transferable Features with Deep Adaptation Networks.» arxiv. 2015. https://arxiv.org/abs/1502.02791.

Distance-based методы

Проблема: приближаем распределения без обусловленности на класс **Решение:** пытаемся приблизить совместное распределение

Архитектура JAN, минимизирующая меру несоответствия совместных распределений признаков целевого и исходного доменов

Joint Maximum Mean Discrepancy

$$D_{\mathcal{L}}(P, Q) \triangleq \|\mathcal{C}_{\mathbf{Z}^{s,1:|\mathcal{L}|}}(P) - \mathcal{C}_{\mathbf{Z}^{t,1:|\mathcal{L}|}}(Q)\|_{\otimes_{\ell=1}^{|\mathcal{L}|}\mathcal{H}^{\ell}}^{2}.$$

$$\widehat{D}_{\mathcal{L}}(P, Q) = \frac{1}{n_{s}^{2}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{s}} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_{i}^{s\ell}, \mathbf{z}_{j}^{s\ell}\right)$$

$$+ \frac{1}{n_{t}^{2}} \sum_{i=1}^{n_{t}} \sum_{j=1}^{n_{t}} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_{i}^{t\ell}, \mathbf{z}_{j}^{t\ell}\right)$$

$$- \frac{2}{n_{s}n_{t}} \sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{t}} \prod_{\ell \in \mathcal{L}} k^{\ell} \left(\mathbf{z}_{i}^{s\ell}, \mathbf{z}_{j}^{t\ell}\right).$$

Long, Mingsheng, Han Zhu, Jianmin Wang, u Michael I. Jordan. «Deep Transfer Learning with Joint Adaptation Networks.» arxiv. 2016. https://arxiv.org/abs/1605.0663.

Adversarial-based методы

Проблема: приближаем распределения без обусловленности на класс **Решение:** пытаемся приблизить совместное распределение

Энтропийная регуляризация на целевом домене

$$\mathcal{L}_{em}^{t}(G, F) = \frac{1}{n_t} \sum_{j=1}^{n_t} \mathcal{H}(\bar{\mathbf{p}}(\mathbf{x}_j^t)),$$

Архитектуры DANN-CA, DADA, использующие классификацию на n+1 класс (индикатор целевого домена)

Tang, Hui, u Kui Jia. «Discriminative Adversarial Domain Adaptation.» arxiv. 2019. https://arxiv.org/pdf/1911.12036.

Tran, Luan, Kihyuk Sohn, Xiang Yu, Xiaoming Liu, u Manmohan Chandraker. «Gotta Adapt 'Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild.» arxiv. 2018. https://arxiv.org/abs/1803.00068.

Pseudo-labeling

Задача: Лучше приблизить совместные распределения

Решение: кластеризовать данные и попробовать назначить pseudo-labels

- (b)
- labeled source sample source class prototype
- pseudo-labeled target sample
- unlabeled target sample
- target cluster mean
- → one-to-one match

- 1) Извлечем признаки изображений
- 2) Применим метод главных компонент (РСА)
- 3) По размеченным данным построим проекционную матрицу Р, переводящую признаковые описания в латентное пространство с использованием Supervised Locality Preserving Projection (SLPP)
- 4) Применим Р к признаковым описаниям объектов, кластеризуем данные с помощью k-means и присвоим pseudo-labels

Повторять до сходимости (10-20 итераций)

Архитектура SPL

Rich DANN bottleneck

Основная идея: сужение векторного представления перед разделением классификаторов

Модель	Accuracy A->W
Rich DANN ResNet50 141	0.843 ± 0.017
Rich DANN ResNet50 141 bottleneck 256	0.863 ± 0.016
Rich DANN ResNet50 129	0.865 ± 0.017
Rich DANN ResNet50 129 bottleneck 256	0.844 ± 0.008

DANN SPL

Основная идея: использовать эмбеддинги из DANN, а не из ResNet для обучения SPL

	Accuracy для	модели-	Accuracy	для	SPL	С
Модель-источник	источника эмбе	еддингов	использов	анием	данно	ОГО
	A->W		источника	A->W		
ResNet50 (статья)	0.664		0.927			
ResNet50	0.664		0.927			
ResNet50 fine-tuned	0.73		0.863			
DANN Rich	0.8649		0.906			
DANN Rich Entropy	0.8997		0.903			

Wang, Qian, u Toby P. Breckon. «Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling.» arxiv. 2019. https://arxiv.org/abs/1911.07982.

Визуализация результатов

