Year 8

Volume

Non Calculator Section

Cki	lle on	d Kno	wledg	A 660	ecod.
ЭКІ	us au	a viic	wieuz	e asse	SSEU:

- Draw different views of prisms and solids formed from combinations of prisms (ACMMG161)
- Choose appropriate units of measurement for area and volume and convert from one unit to another (ACMMG195)
- Develop the formulas for volumes of rectangular and triangular prisms and prisms in general. Use formulas to solve problems involving volume (ACMMG198)
- Calculate the surface area and volume of cylinders and solve related problems (ACMMG217) Extension

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

Ωr

 $Shading\ in\ the\ bubble\ for\ the\ correct\ answer\ from\ the\ four\ choices\ provided.$

Show any working out on the test paper. Calculators are **not** allowed.

Hexagonal prismHexagonal pyramidOctagonal prism.

Octagonal pyramid.

Name_

2. What name would be given to a solid whose net is shown below?

3. A cube has a side length of 5 cm?

What is its volume?

4. What is the volume of the rectangular prism?

5. Find the volume of the triangular prism shown.

$$\square$$
 920 cm³

$$\square$$
 1020 cm³

$$\square$$
 1200 cm³

6. A garbage skip bin is in the shape of a trapezoidal prism.

It is 2 m deep and 4 m long. It is 1.6 m wide at the top and 1.4 m wide at the bottom

What is its volume in cubic metres?

 \square 18 m³

 \square 24 m³

 \square 36 m³

7. The prism has a rhombus as its base.

What is its volume?

- \square 30 cm³
- \square 90 cm³
- \square 270 cm³
- \Box 540 cm³

8. A trophy is a prism with a kite as its cross-section with the dimensions shown.

What is its' volume?

- 300 cm^3
- \Box 600 cm³
- \Box 750 cm³
- \square 1 200 cm³

9. A prism is shown, whose cross-section is a parallelogram.

What is the volume of the prism?

10. What is the volume of the solid shown?

What is the volume of the cylinder in terms of π ?

- \square 160 π cm³
- \Box 640 π cm³
- \square 800 π cm³
- \square 2560 π cm³

12. A storage shed is shown at right.

Find the volume of the shed?

- \square 800 m³
- \square 960 m³
- \square 1280 m³
- \square 1600 m³

13. A building has the dimensions shown.

What is its volume?

A prism is made up of cubes which have 2 cm edges, as shown.

What is the volume of the prism?

A food package is in the form of a trapezoidal prism on top of a rectangular prism.

The dimensions are shown.

Find the volume of the package.

Volume

Year 8

Calculator Allowed
Short Answer
Section

N.T		
Name		

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

or

Shading in the bubble for the correct answer from the four choices provided. Show any working out on this test paper. Calculators are allowed.

2. Which solid below could be described as a pyramid?

3. What is the volume of the rectangular prism?

4. The cross section of the prism shown is 125 cm².

What is the volume of the prism?

5. What is the volume of the prism shown in cm³?

$$\square$$
 360 cm³

6. What is the volume of the prism shown in m³?

 \square 210 m³

 \Box 21 000 m³

 \square 2 100 000 m³

7. Find the volume of the trapezoidal prism shown.

8. What is the volume of the triangular prism shown?

☐ 10 800 cm³

 $11700 \,\mathrm{cm}^3$

 \square 21 600 cm³

9. Each diagonal of a square prism is 16 cm in length and the prism is 25 cm long.

What is the volume of the prism?

(Remember that a square is also a rhombus.)

10. What is the volume of the cylinder, correct to the nearest 100 mm³?

 \square 1 700 mm³

 \Box 6 700 mm³

6 800 mm³

What is the volume of the rectangular prism whose net is shown here?

What is the volume of this cylindrical tin?

Answer correct to the nearest cm³.

An irregular hexagonal prism has the dimensions shown.

Calculate the volume of the prism in cubic metres.

A cylindrical container has a diameter of 16 cm and is 32 cm high.

It is currently three-quarters full of water.

Given that 1000 cm³ holds 1 litre, how many litres of water does the container currently hold? (to the nearest 10th of a litre.)

The cross section of this prism is a semi-circle atop a rectangle.

Find the volume of the prism correct to the nearest cubic centimetre.

Year 8

Volume

Non Calculator Section

ANSWERS

Question	Working and Answer
1.	It is a Hexagonal pyramid.
2.	A square prism
3.	$V = \text{side}^3$ $V = 6^3$ $V = 25 \times 5$ $= 125 \text{ cm}$ $3^{\text{rd}} \text{Answer}$
4.	$V = 5 \times 7 \times 6$ $= 7 \times 30$ $= 210 \text{ cm}^3$
5.	$V = \frac{1}{2} \times 8 \times 15 \times 20$ = 4 × 300 = 1200 m ³ 4 th Answer
6.	Area trapezium = $\frac{2}{2}(1.4 + 1.6)$ = 1 × 3.0 = 3 m ² Volume = 3 × 4 = 12 m ³ 1st Answer

Question	Working and Answer
7.	Area rhombus = $\frac{1}{2} \times 6 \times 10$ = 30 cm ² Volume = 30 × 9 = 270 cm ³ 3 rd Answer
8.	Area kite = $\frac{1}{2} \times 20 \times 15$ = 150 cm ² Volume = 150 × 4 = 600 cm ³ 2 nd Answer
9.	Area parallelogram = 40×100 = 4000 cm^2 Volume = 4000×60 = $240 \ 000 \text{ cm}^3$
10.	Area cross section = $5 \times 8 + 10 \times 7$ = $40 + 70$ = 110 cm^2 Volume = 110×9 = 990 cm^3
11.	Area circle = $\pi \times 8^2$ = 64π Volume = $64\pi \times 10$ = 640π cm ³ 2 nd Answer
12.	Area cross section = rectangle + triangle $= 6 \times 8 + \frac{1}{2} \times 8 \times 4$ $= 48 + 16$ $= 64 \text{ m}^{3}$ Volume = 64×20 $= 1280 \text{ m}^{3}$ 3rd Answer

0	TAY 1: 1A
Question	Working and Answer
13.	Area cross section = $\frac{1}{2} \times 5 (7.5 + 4.5)$ = $\frac{1}{2} \times 5 \times 12$ = 30 m^2 Volume = 30×8 = 240 m^3
14.	Volume of each cube = $2^3 = 8 \text{ cm}^3$ Number of cubes = $3 \times 5 = 15$ Volume of prism = 15×8 = 120 cm^3
15.	Area Trapezium = $\frac{6}{2}(8 + 12)$) $= 3 \times 20$ $= 60 \text{ m}^2$ Area Rectangle = 12×2 $= 24 \text{ m}^2$ Area cross section = $60 + 24 = 84 \text{ m}^2$ Volume = 84×12 $= 1008 \text{ m}^3$

Volume

Year 8

Calculator Allowed
Short Answer
Section

ANSWERS

Question	Working and Answer
1.	3 rd shape has half of a cylinder on top of a rectangular prism, which from above appears as a rectangle and the side as two rectangles. 3 rd Answer
2.	Only the 2 nd is a pyramid. 2 nd Answer
3.	$V = 14 \times 12 \times 6$ = 1008 cm ³
4.	$V = A \times l$ = 125 × 16 = 2000 cm ³
5.	$V = \frac{1}{2} \times b \times h \times l$ $= \frac{1}{2} \times 5 \times 12 \times 6$ $= 180 \text{ cm}^3$ 3 rd Answer

6.	As result needed in cubic metres, convert 70 cm to 0.7 m. Volume = $1.2 \times 2.5 \times 0.7$
	$= 2.1 \text{ m}^3$
	1 st Answer
7.	Area Trapezium = $\frac{6}{2} \times (5 + 11)$
	$= 3 \times 16$ $= 48 m^2$
	= 48 m Volume = $A l$
	$=48\times8$
	= 384 m3
8.	$V = \frac{1}{2} \times 30 \times 36 \times 20$
	$= 10 800 \text{ m}^3$
	2 nd Answer
9.	Area of Square = Area of Rhombus
	$= \frac{1}{2} \times 16 \times 16$
	$= 128 \text{ cm}^2$
	Volume = 128×25 = 3200 cm^3
	(Could also use Pythagoras to find side length of square)
10.	$V = \pi r^2 h$
	$= \pi \times 7^2 \times 11$
	$= 1693.3184402$ $= 1700 \text{ mm}^3 \text{ (nearest } 100 \text{ mm}^3 \text{)}$
	2 nd Answer
11.	$V = 12 \times 15 \times 8$ = 1440 cm ³
12.	Write all dimensions in cm first.
	$V = \pi r^2 h$
	$= \pi \times 16^2 \times 32.5$ = 26138.050877
	= 26 138 cm ³ (to nearest cm ³)

13.	Area end = Area of 2 trapezia
	$=\frac{6}{2}(15+10)+\frac{4}{2}(15+8)$
	$= 3 \times 25 + 2 \times 23$
	$= 121 \text{ m}^2$
	Volume = 121×12
	$= 1452 \text{ m}^3$
14.	
	Depth of water = $32 \times \frac{3}{4} = 24$
	$V = \pi r^2 h$
	$= \pi \times 8^2 \times 24$
	$= 4825.486 \text{ cm}^3$
	Capacity = $4825.486 \div 1000$
	= 4.8 litres
15.	Area end = $\pi \times 8^2 \div 2 + 16 \times 20$
	= 100.53096 + 320
	$= 420.53096 \text{ cm}^2$
	Volume = 420.53096×12
	5046.372
	$= 5046 \text{ cm}^3$
	= 5 046 cm