

* Fourcet

* Arteriz with blockage

$$Q_{1} = A_{1}v_{1} = A_{2}v_{2} = Q_{2}$$

$$v_{2} = \frac{A_{1}}{A_{2}}v_{1} = 4v_{1}$$

$$PV = \frac{F}{A}Ad = Fd = work$$

$$P + pgh + \frac{1}{2}pv^{2} = conbfant$$

$$* special case: $v_{1} = v_{2} = 0$

$$h_{1}, v_{1} = 0, P_{1} = 1 \text{ atm}$$

$$Ah = h_{1} - h_{2}$$

$$P_{1} + pgh_{1} = P_{2} + pgh_{2}$$

$$P_{2} = P_{1} + pg(h_{1} - h_{2}) = P_{1} + pgAh$$

$$* fancet: P_{1} = 1 \text{ atm}, P_{2} = 1 \text{ atm}$$$$

P+ pgh +
$$\frac{1}{2}$$
pv² = constant

P+ pgh, + $\frac{1}{2}$ pv² = $\frac{1}{2}$ pv²

gh, + $\frac{1}{2}$ v² = $\frac{1}{2}$ pv²

2gh, + $\frac{1}{2}$ v² = $\frac{1}{2}$ gh₂ + $\frac{1}{2}$ v²

$$\frac{1}{2}$$
ph₃ + $\frac{1}{2}$ v² = $\frac{1}{2}$ gh₄ + $\frac{1}{2}$ v²

$$\frac{1}{2}$$
ph₅ + $\frac{1}{2}$ gh₇ + $\frac{1}{2}$ gh₈

P₁ = $\frac{1}{2}$ atm, v₂ + 0, h₂

P₁ + $\frac{1}{2}$ gh₁ + $\frac{1}{2}$ pv²

P₂ + $\frac{1}{2}$ gh₁ + $\frac{1}{2}$ pv²

Ygh₁ = $\frac{1}{2}$ gh₂ + $\frac{1}{2}$ Av²

2gh₁ - h₂) = $\frac{1}{2}$ qh₁

+ Venturi effect: pressure will decrease when volocity increases v₂0

* Transient ischemic attack
obstruction in subclavian artery - increase velocity
- pressure decreases

Hurricanes

A Pout

Patrol Patrol Patrol Patrol Pout = Patrol - 1-p v 2

Dill Patrol Pout = Patrol - 2 p v wind

Flight = Fout - Patin = Pout A - Patin A (100 km/h) - (Pout - Patin) A A = (5m x 15m = 2 pr wind A

> Fliff = $\frac{1}{2} (1.29 \frac{\text{kg}}{\text{m}^3}) (30 \frac{\text{m}}{\text{s}})^2 (15 \text{ m})^2$ Fliff = $1.3 \times 10^5 \text{ N}$