Conformal inference for cell type prediction leveraging the cell ontology

<u>Daniela Corbetta</u>¹, Ludwig Geistlinger², Livio Finos¹, Davide Risso¹

¹Department of Statistical Sciences, University of Padova ²Center for Computational Biomedicine, Harvard Medical School

Ascona Workshop: Spatial and temporal statistical modeling in molecular biology - Sept 12, 2024

Motivating Application: cell type annotation

Aim: Starting from a set of already annotated cells (reference set), predict the cell type of a new, unknown cell

How:

- Choose a model
- Fit the model on the reference set
- Obtain predictions for the new cell

	Gene 1		$Gene\; K$	Cell type
Cell 1	1		5	B cell
Cell 2	0		5	B cell
:	:	٠	÷	:
$Cell\ m$	3		0	T (CD4+)

	Gene 1	 $Gene\; K$	Cell type
New cell	4	 0	?

Example

Data: 5163 cells from the mouse ileum sequenced with Merfish^a

- 500 cells as reference
- 4663 cells as query
- 15 different cell types

Model: Multinomial logit model with the 50 HVGs

Results: Accuracy=0.77

^aPetukhov, V., et al. (2022). Cell segmentation in imaging-based spatial transcriptomics. Nature biotechnology, 40(3), 345–354.

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

Should we rely on point predictions?

- The model does not provide only a label, but also estimated probabilities for each class
- These probabilities encode how sure the model is of the prediction

How can we translate the level of confidence?

- Instead of a point prediction, return a prediction set: a set of different labels that we think our new cell might be
- Intuitively, the prediction set has to include more labels when we are less sure of the point prediction
- Let Y_{new} be the true label of the new cell and $C(X_{new})$ be the prediction set. We define a level α and we want the set to be valid at a level 1α :

$$P(Y_{new} \in C(X_{new})) \ge 1 - \alpha.$$

→ Conformal inference

Conformal inference

- Proposed by Vovk¹, very easy and nice tutorial in Angelopoulos & Bates²
- Provides prediction sets that satisfy $P(Y_{new} \in C(X_{new})) \ge 1 \alpha$, it's distribution-free and works with every model (even terrible ones)
- Based on data splitting:
 - training set: annotated data used to fit the model
 - calibration set: annotated data that we need to calibrate the prediction sets construction
 - query set: new data on which we want to do predictions. Need to be exchangeable
 with the calibration data
- Algorithm: calibration step and prediction step

¹Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world, volume 29. Springer

²Angelopoulos, A. N. & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.

Calibration step

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be the data in the calibration set.

- Compute predictions for the data in the calibration set
- Obtain the conformal score: $s_i = 1 \hat{p}(X_i)_{Y_i}, \ i = 1, \dots, n$ (i.e. 1 the predicted probabilities for the true class)
- **3** Compute \hat{q} , the $\lceil (n+1)(1-\alpha) \rceil / n$ empirical quantile of the conformal scores

Scores distribution 0.0 1.0 0.8 conformal scores

Prediction step

- 1 Obtain predictions for the data in the query set
- 2 Form prediction sets by including all the classes that have predicted probabilities $\geq 1-\hat{q}$

Back to the example: $1 - \hat{q} = 0.068$

Additional information

Cell types are organized into a graph structure:

Additional information

Back to the example 2:

Additional information

- Question: is there a way to exploit this information when we build prediction set?
- Desired result: instead of returning a set of potentially unrelated labels, return an ancestor of the predicted class.
- \rightarrow Conformal risk control³

³Angelopoulos, A. N., Bates, S., Fisch, A., Lei, L., & Schuster, T. (2022). Conformal risk control. arXiv preprint arXiv:2208.02814.

Conformal risk control

- Split the reference data into train set and calibration set.
- Choose an algorithm to build prediction sets. This algorithm must depend on a parameter λ that controls how big the prediction sets are. The only requirement is that the prediction sets are nested when λ increases.
- Choose a loss function $L_i(\lambda) \to \mathsf{miscoverage}$

$$L_i(\lambda) = \begin{cases} 1 & \text{if } y_i \notin C_{\lambda}(x_i) \\ 0 & \text{if } y_i \in C_{\lambda}(x_i) \end{cases}$$

• Choose λ based on the data in the calibration set as

$$\hat{\lambda} = \inf \left\{ \lambda : \frac{n}{n+1} \hat{R}_n(\lambda) + \frac{1}{n+1} \le \alpha \right\},$$

where $\hat{R}_n(\lambda)$ is the empirical risk for observations in the calibration set, to ensure, for a new observation in the query set,

$$E\left[L_{new}(\hat{\lambda})\right] \leq \alpha \xleftarrow{\text{with miscoverage}} P(Y_{new} \in C_{\lambda}(X_{new})) \leq \alpha$$

How do we build the prediction sets?

- Exploit the graph structure.
- Define for each node v a score g(v) as the sum of the predicted probabilities of the leaf nodes that are descendants of v.
- Start from the predicted class $\hat{y}(x)$. Let $\mathcal{P}(v)$ and $\mathcal{A}(v)$ be the set on descendant nodes that are leaves of the graph and ancestor nodes of a node v, respectively.
- Choose λ and build a prediction set as

$$\mathcal{P}(v) \cup \{\mathcal{P}(a) : a \in \mathcal{A}(\hat{y}(x)) : g(a, x) \le \lambda\},\$$

where $v: v \in \mathcal{A}(\hat{y}(x)), \ g(v, x) \geq \lambda, \ v = \arg\min_{u: q(u, x) > \lambda} g(u, x).$

• In words, we start from the predicted class and we go up in the graph until we find an ancestor of $\hat{y}(x)$ that has a score that is at least λ and include in the prediction sets all its descendants. To ensure that the sets are nested, to this subgraph we add all the other ones that contain $\hat{y}(x)$ for which the score is less than λ .

A simple example

A simple example

Back to example 2

Application

Random split:

- Training (model fit): 500 obs.
 Model: multinomial logit, 50 genes with the highest biological variance of the log-expression. Accuracy is 0.772.
- \bullet Calibration: 1000 obs. Used to compute the quantiles for split conformal and graph-structured
- Query: 3663 obs.

Comparison

Method	Coverage	Avg. Size	Avg. Dist.
(Standard) Conformal	0.901	1.842	1.564
Graph Conformal	0.903	3.577	1.003

Open problems

- Size of the calibration set
 It affects the precision of the coverage. Standard results (i.e. Beta distribution) does not apply in the Graph-structured procedure.
- Exchangeability of calibration data and query data is assumed, but in practice there are different sources of distribution shift:
 - different technologies
 - 2 batch effects
 - 3 different proportions of cell types in calibration and query set

Acknowledgements

University of Padova

- Livio Finos
- Davide Risso

Harvard Medical School

- Tram Nguyen
- Anthony Christidis
- Ludwig Geistlinger
- Robert Gentleman

Thank you for your attention!

daniela.corbetta@phd.unipd.it

https://github.com/ccb-hms/scConform