

Algorithmique Avancée

STRUCTURES DE DONNÉES PROBABILISTES

Animé par : Dr. ibrahim GUELZIM

Email: ib.guelzim@gmail.com

Sommaire

- Rappels
 - o Introduction et notions générales
 - Analyse et conception d'algorithmes
 - Complexité d'algorithmes classiques : 3 Tris de tableaux, 2 recherches dans un tableau,
 Schéma de Hörner
 - Preuves d'algorithmes
- Autres algorithmes de tri:
 - o Tri par fusion
 - o Tri par Tas
- · Complexité moyenne:
 - o Application au Tri rapide
 - O Structures de Données Probabilistes :
 - Notions sur les Tables de Hachage et Fonctions de Hachage,
 - Bloom Filter,
 - Count Min Sketch
- o Programmation dynamique
- Traitements de chaines de Caractères :
 - O Recherche de chaine de caractères
 - Compression de données

Rappel: Structure de Données (SD)

- Une SD sert à stocker et organiser les données
- · Objectif : Faciliter les opérations sur les données
 - o Trouver un élément
 - o Insérer un nouvel élément
 - Modifier des données
 - Supprimer un élément
 - o Faire des traitements sur Ttes les données
 - o Réorganiser: trier, ...
- SD les plus utilisés :
 - Tableaux / Listes
 - o Tables de Hashage
 - o Arbres, Graphes, ...

Rappel: Structure de Données (SD)

 Représentation des données : Structures contenant des données hétérogènes

```
• Expl : Etudiant :
                                  : Entier
             Id_Etu
             Nom_Etu : String
             Notes_Étu: Liste de Nombres

    Python → Class

• Expl python: List
   Lst = [1 \ 4 \ 63 \ -9 \ 10]
   Lst.append(20)  # Lst devient [1 4 63 -9 10 20]
   Lst.pop()
   X = Lst[2]
   for elt in Lst:
      print(elt)
```

• https://docs.python.org/fr/3/tutorial/datastructures.html

Tableaux dynamiques

- Tableaux en python : liste qui ne contient qu'un seul type de données
- Exemple utilisation:

```
import array as arr
a = arr.array('i', [1, 6, 7, 12] ) # 'i' pour les entiers
del a[3]
print(a) # affiche : array('i', [1, 6, 7])
```

- Plus simple de manipuler des listes que des tableaux
- Pour faire simple, nous allons confondre dans ce cours Tableau et Liste
- Tableau dynamique :
 - O Réservation dans la RAM d'une taille T initiale
 - o Après remplissage du tableau du taux a.T : extension automatiquement T = 2T
 - o T et a sont des caractéristiques du langage

Tableaux dynamiques

- Insérer d'un élément à une position i d'un tableau
 - o Exemple:

- Nombre (maximal) d'opérations ~ n-i opérations de décalage
- o Complexité (Pire des cas : insérer à la tête / début) : O(n)
- Supprimer un élément : de même Complexité O(n)

Dictionnaire (Python)

- Dictionnaire en Python:
 - o type de données
 - o permet d'associer une valeur (simple, ou composée) à une clé. (clé, val)
 - o Analogie avec un dictionnaire linguistique : accéder à une définition / mot
- Opérations sur dictionnaires (Exemples):
 - o Trouver une Val / clé
 - o Aj / Supp / Rempl (clé, val)

- SD qui permet de :
 - Éviter les inconvénients des SD linéaires
 - Exemple: recherche, insertion ou suppression à un coût O (n)
 - Associer une clé / valeur(s); tableau associatif
 - Groupement d'éléments sans ordre éventuel / clés
- Objectif:
 - o Faire la recherche d'un élément de la TH dans un temps moyen proche de O(1)
 - o Comment?
 - Réaliser l'association clé/valeur(s) via des fonctions de Hachage (FH) (cf plus loin)

- o Tâches souhaitées: Trouver, Insérer, Supprimer, màj une clé ou/et val
- o Idée de base :
 - Dans une TH vide de m cases
 - insérer des éléments simple et/ou composés [clé ; valeur] :

```
["Adil"; 27]["Hiba"; 23]
```

Remarque:

• Faire une insertion séquentielle (1^{er} élément à la position 0, 2^{em} à la position 1, ...) \rightarrow SD Linéaire \rightarrow O(n)

- O Question: Comment faire pour éviter insertion séquentielle?
- O Réponse :
 - Table de m éléments : Position dans [0, m-1]
 - Loi pour trouver la position de l'élément (clé, val) à insérer
 - Proposition:
 - Associer la clé à une position de 0 à m-1
 - · Via une fonction qui retourne une valeur modulo m : appelée Fonction de Hachage (FH)
- Exemple :
 - Associer à la clé (chaine de caractères), la somme modulo m des positions de chaque lettre dans l'alphabet
 - A = 0, B = 1, C = 2, ..., Z = 25
 - Taille de la table m = 7, clé = "Adil"
 - Hash("Adil") = (0 + 3 + 8 + 11) mod(7)
 = 22 mod(7)
 = 1

- Exemple (suite) :: insérer [clé ; valeur] :
 - ["Adil"; 27]
 - ["Hiba"; 23]
 - ["Ali"; 25]
 - •
- Association:

•
$$Hash("HIBA") \equiv (7 + 8 + 1 + 0) \mod(7)$$

$$\equiv$$
 16 mod(7)

= 5

• Hash("ALI")
$$\equiv (0 + 11 + 8) [7]$$

 $\equiv 19 [7]$

	Clé	Valeur(s)
0		
1	"Adil"	27
2	"Hiba"	23
3		
4		
5	"Ali"	25
6		

Table 1. Exemple de Table de Hashage

- Opérations à faire :
 - o Trouver si une clé est dans la TH
 - Si oui, retourner la valeur correspondante
 - o Insérer une paire (clé, valeur) dans la TH
 - o Supprimer une paire (clé, valeur) de la TH
 - 0 ...
- Rôle de la Fonction de Hashage (FH) est de connecter une clé (dans l'exemple précédant une chaine de caractères) à un slot (N° clé)
- Cas particulier : insérer "OMAR" dans la table 1
 - O Hash("OMAR") = 1 [7]
 - o Or dans TH 1, le slot N° 1 est déjà rempli par "Adil" !!
 - → Collision

- Q : comment gérer la collision
- Solution 1: chainage

- Pour une clé K, Hash(K) = i
- →Insérer [K; val_K] à la fin de la liste / Slot i

- Gestion de Collision par chainage
 - o Supprimer ("Simon"):
 - Hash ("Simon") = 5

- · Gestion de Collision par chainage
 - o Complexité = coût (t) pour une TH de <u>n éléments</u> répartis sur <u>m slots</u>:
 - Supprimer TH avec m slots
 - Insérer n éléments à la TH
 - O Worst case:
 - Tous éléments en collision dans le même slot
 - Insertion, recherche, suppression: O(n)

- Gestion de Collision par chainage
 - o Cas moyen:
 - $P[h(k_i) = j] = 1/m$
 - o Taille moyenne liste de chaque slot : n / m

0

1

Nbr moyen = n / m éléments

i

n-1

- Gestion de Collision par chainage
 - o Exemple:
 - Si m = 100 et n = 200; nbr moyen / slot = 200 / 100 = 2
 - o Taille moyenne liste de chaque slot : n / m
 - Nommée : Load Factor α

$$\circ \alpha = \frac{\text{# elemts ds TH}}{\text{# slots ds TH}}$$

- o Remarque:
 - Par convention : O(append) dans liste (dynamique) ~ O(1)
 - Pour plus de précisions, voir <u>analyse amortie</u>.

- Gestion de Collision par chainage
 - \circ Paramètre α_{lim} , définit par les concepteurs
 - \circ Problème : si α_{lim} est dépassé ? (càd $\alpha > \alpha_{lim}$)
 - La TH devient trop pleine,
 - Nombre de collisions augmente,
 - Ralentissement des opérations d'insertion, la recherche et la suppression.
 - → Changer les conditions de la TH pour ne pas ressembler à une SD Linéaire
 - o ReHashing:
 - Redimensionnement de la TH lorsqu'elle atteint le seuil de capacité
 - Création d'une nouvelle table de taille 2m (par convention)
 - La taille est une puissance de 2 ou un nombre premier (cf analyse plus loin)
 - Recalcule des Codes de Hachage :
 - Les nouveaux slots adéquats sont recalculés en fonction de la nouvelle taille de la table.
 - o Réinsérer les éléments existants de TH originale dans la nouvelle table.
 - Libérer l'ancienne table

- Gestion de Collision par chainage
 - o Temps de Rehashing:
 - T(ReH) = O(m + n), en prenant en considération O(append) = O(1)
 - Cependant, ce coût est amorti, car les opérations ultérieures sont plus rapides grâce à la table agrandie.
 - Espace Mémoire : Le rehashing peut également entraîner une augmentation temporaire de l'utilisation de la mémoire.
 - o En résumé du ReHashing:
 - Redimensionnement dynamique pour gérer des quantités croissantes d'éléments
 - Maintenir l'efficacité des tables de hachage
 - Maintenir les performances optimales.

Fonction de Hashage (FH)

- Conception des Fonctions de Hashage (FH)
 - O Utilisées dans :
 - cryptographie,
 - BD: MD5,
 - Blockchain (bitcoin): SHA256, Etherum: SHA3,...
 - o Bonne FH évite au plus les collisions:
 - $x1 \neq x2$, h(x1) = h(x2)
- Changement de 1 bit en input → changement de > 50% bits en output
- Python implémente FH pour types:
 - o int, string et float

Fonction de Hashage (FH)

- Challenge 1:
 - o Besoin de hasher # types de clés au-delà des nombres:
 - Listes / tableaux
 - Tuples
 - Strings
 - Autres objets définis
- Challenge 2:
 - o S'assurer que la FH ne souffre pas de trop de collisions

Fonction de Hashage (FH)

- Exemple 1: hasher une liste de nombres (n éléments, m slots)
 - o Idée faire somme de tous ai modulo(m)

```
O Hash([a1, a2, ..., an], m) = (a1 + a2 + ... + an)[m]
= (a2 + a1 + ... + an)[m] = Hash([a2, a1, ..., an], m)
...
= (an + ... + a2 + a1)[m] = Hash([an, ..., a2, a1], m)
```

- Proposer une famille de FH : FMH = $\{h_1, ..., h_N\}$ telle que pour tout h_i , le nombre de collision de h_i () appliqué à la TH soit raisonnable.
- Si la taille de la TH = m, alors FMH est universelle si pour $h_i \in FMH \forall k_1, k_2 \neq k_1 \neq k_2$, $Pr(h_i(k_1) = h_i(k_2)) \leq 1/m$
- Exemple de coneption d'une famille de FH :
 - o Soient clés ∈ { 1, ... , n }
 - Choisir p nombre premier tp p > n
 - Soit la famille $\{h_1, ..., h_{p-1}\}$ de FH tq : $h_a(j) = ((a*j)[p])[m] / a \in \{1, ..., p-1\}$
 - \circ Ex: n = 10, p = 13, m = 7, H = { h₁, ..., h₁₂}
 - $h_5(j) = ((5j)[13])[7]$
 - $h_5(10) = (50[13])[7] = 11[7] = 4$
 - h₈ (10) = (80 [13]) [7] = 2[7] = 2

m=7 14

```
\circ Question : est ce que { h_1, ..., h_{p-1} } est universelle ?
o Réponse :
     ■ Soient k_1, k_2 tq k_1 \neq k_2, en collision :
               ((a * k_1)[p])[m] = ((a * k_2)[p])[m]
    • C\dot{a}d: ((a * k_1 - a * k_2)[p])[m] = 0
    • Soit \beta = a(k_1 - k_2)[p], alors \beta[m] = 0 sachant que \beta < p
             m
                  2m 3m
                                                               n
    alors \beta \in \{0, m, 2m, 3m, ..., \chi m\}
    tq \gamma = \lfloor \frac{p}{m} \rfloor partie entière de \frac{p}{m}, et (\gamma + 1) m > p
    Exemple (suite): m = 7, p = 61, y = 8
                                                                  p = 61
```

8m = 56

63

- D'où : a (k₁ k₂) [p] ∈ {0, m, 2m, 3m, ..., y m}
 D'après le théorème de Bezout / Euclide étendu, et puisque p est premier :
- $a \in \{ (k_1 \overline{k_2})^{-1}_{p} 0, (k_1 k_2)^{-1}_{p} m, (k_1 k_2)^{-1}_{p} 2m, ..., (k_1 k_2)^{-1}_{p} \gamma m \}$

Soit
$$s = (k_1 - k_2)^{-1}_p$$
, $(s.s^{-1} = 1 [p])$

Donc: $a \in \{ s.0, s.m, 2s.m, ..., y s.m \}$

Càd γ possibilités de la valeur de <u>a</u> pour avoir collision (rappel $a \in \{1, ..., p-1\}$)

 \rightarrow y possibilités sur (p-1), causent une collision

Pr(h_i(k₁) = h_i(k₂)) =
$$\frac{Y}{p-1}$$
 = $\frac{p}{m}$. $\frac{1}{p-1}$ = $\frac{1}{m}$. $\frac{p}{p-1} \sim \frac{1}{m}$ (puisque $\frac{p}{p-1} \sim 1$)

D'où

Pr(h_i (k₁) = h_i (k₂)) >~
$$\frac{1}{m} \le \frac{2}{m}$$

D'où cette famille de FH est <u>presque universelle</u>,

○ D'où Pr(collision (x, y))
$$\leq \frac{2}{m}$$

$$\sum_{y \in TH} \Pr(Collision(x,y)) \le \sum_{y \in TH} \frac{2}{m} \le \frac{2.n}{m}$$

$$\sum_{y \in TH} \Pr(Collision(x,y)) \le 2.\alpha$$

D'où si la famille H est presque universelle, la longueur moyenne d'une liste $L(x) \le 2.\alpha$

 \rightarrow Coût moyen: insertion, suppression, recherche ~ 2. α

- Gestion de Collisions Solution 2;
 - Hachage à Adressage ouvert :
 - Idée élément = (clé, val) / slot dans la TH
 - Si place libre : insérer (clé , val) dans le slot approprié
 - Sinon, trouver une place alternative,
- · Sondage Linéaire :
 - o pour insérer (k, v) dans TH
 - Calculer Hach(k) = j
 - Tenter d'insérer / slot j
 - Si ok, terminer
 - Sinon:
 - Tenter slot j + 1
 - Sinon tenter slot j + 2

• ...

- Sondage Linéaire :
 - o pour chercher une clé k dans TH : de même
 - Calculer Hach(k) = j
 - Chercher dans le slot j
 - Si ok, terminer
 - Sinon:
 - Chercher dans le slot j + 1
 - Chercher dans le slot j + 2
 - ...

• Sondage Linéaire : Pseudo code Insertion | Recherche k dans TH

```
Insertion (k, v):
i \leftarrow 0
Répéter:
        j \leftarrow h(k,i)
        si TH[ j ] = NULL
                 TH[ j ] = ( k , v )
                 retourner j
        sinon
                 i \leftarrow i + 1
jusqu'à i = m
sii = m
        Err ("Débordement TH")
```

```
Recherche (k, v):
i \leftarrow 0
Répéter:
j \leftarrow h (k, i)
si TH[j] = (k, v):
retourner j
sinon
i \leftarrow i + 1
jusqu'à (TH[j] = NULL ou i = m)
retourner NULL
```

```
    Tq h (k,i) = (h'(k) + a.i) [m], (a: pas, h': est une FH)
```

- Sondage Linéaire :
 - Suppression de (k , v) de la table TH :
 - Semble de même que insertion et recherche, mais
 - Exemple : soient k1, k2, k3 \neq tq : h(k1) = h(k2) = h(k3) = j, tq h est une FH
 - Scénario:

Suppression de (k2, v2)

- \circ j = h (k2)
- \circ TH[j] = (k1, v1) ≠ (k2, v2)
- \circ j = j + 1, TH [j] = (k2 , v2)
- Suppression en mettant TH[j] = NULL

Recherche (k3, v3)

- h (k3) = j,
- TH[j]=(k1,v1)≠(k3,v3)
- j = j + 1, TH [j] = NULL
- Arret → (k3, v3) ∉ TH:
- FAUX

- Sondage Linéaire :
 - Conclusion / suppression :
 - Après suppression d'une clé dans la TH, remplacer par une valeur spéciale et non pas par NULL
 - o Inconvénients:
 - Formation de clusters : perte de temps pour l'insertion ou recherche
 - o En conclusion :
 - Sondage linéaire efficace pour la gestion de collision si la TH n'est pas trop pleine.

- Sondage Quadratique:
 - o h (k , i) = (h'(k) + a.i + b.i²) [m] , tq b ≠ 0 , i = 0, 1, ... , m-1; a, b = constantes et h'(k) est une FH
 - o Exemple:
 - Soit $h(k, i = 0) = (h'(k) + i^2)[m], tqb = 1, a = 0$ et choisir h'(k) = 3k + 4[m]
 - Prendre m = 10, puis
 - Insérer dans l'ordre, les éléments : 32,70,17,14, on aura :

- h(32,0)=h(32)=h'(32)+0²[10]=96+4[10]=0
- h (70,0) = h (70) = h'(70) + 0² [10] = 210 + 4 [10] = 4
- h(17,0)=h(17)=h'(17)+0²[10]= 51+4[10]=5
- h(14,0)=h(14)=h'(14)+0²[10]= 42+4[10]=6

- Sondage Quadratique:
 - Exemple (suite):
 - Puis, insérer dans TH l'élément : 22,

```
• h(22,0) = h(22) = h'(22) + 0^{2}[10] = 66 + 4[10] = 0  (rempli)
• h(22,1) = h'(22) + 1^{2}[10] = 67 + 4[10] = 1  (libre)
```

• Puis, insérer dans TH l'élément : 30

```
• h(30,0) = h(30) = h'(30) + 0^{2}[10] = 90 + 4[10]

• h(30,1) = h'(30) + 1^{2}[10] = 90 + 5[10]

• h(30,2) = h'(30) + 2^{2}[10] = 90 + 8[10]

= 8 \checkmark (libre)
```

• Puis, insérer dans TH l'élément : 60

```
• h(60,0) = h(60) = h'(60) + 0^{2}[10] = 180 + 4[10] = 4  (rempli)

• h(60,1) = h'(60) + 1^{2}[10] = 180 + 5[10] = 5  (rempli)

• h(60,2) = h'(60) + 2^{2}[10] = 180 + 8[10] = 8  (rempli)

• h(60,3) = h'(60) + 3^{2}[10] = 180 + 13[10] = 3  (libre)
```

- Remarque: cluster (secondaire) lors de l'insertion de 60 car h'(60) = h'(30)
- Sondage quadratique mieux que le sondage linéaire, mais le problème de clustering persiste.

- Double hachage
 - \circ h (k,i) = (h₁(k) + i.h₂(k))[m], tq h₁, h₂: FH
 - o Exemple:
 - m = 10
 - $h_1(k) = 3k + 4$
 - $h_2(k) = 2k + 5$
 - o Reprenons l'exemple précédant :
 - insertion de 32, 70, 17, 34 de même puisque i = 0 :
 - Insertion de 22
 - $h(22,0) = h_1(22)$

 $= 66 + 4 [10] = 0 \times (rempli)$

• h (22 , 1) = h_1 (22) + $1.h_2$ (22)

= 70 + 49 [10] = 9 **(libre)**

- Double hachage
 - o Exemple (suite) :
 - insérer dans TH l'élément : 30

•

- Tourne indéfiniment (dégénérescence):
 - \circ Ici (m = 10, h1(k) = 3k + 4, h2(k) = 2k + 5) car 5 et 10 ne sont pas premiers entre eux
- Risque : ne pas visiter tous les slots de la TH

- Double hachage
 - \circ En général $h_2(k) \land m = 1$, pour éviter la dégénérescence
 - o Ex:
 - $m = 2^a$ et h_2 produit toujours un nombre impair
 - m = p (premier) et h₂ < p

- Cuckoo Hashing (Cuckoo : espèce d'oiseau)
 2 TH, 2 FH : h1 () et h2 ()
 - 0 2 Nabil 3 4 Salma 5 6 8 9

- X = { Nabil, Salma, Salim, Imad, Noura, Ikbal, Omar }
- h1 ('Nabil') = 3
- h1 ('Salma') = 5

TH1, FH1

TH2, FH2

- Cuckoo Hashing (Cuckoo: espèce d'oiseau)
 - o 2 TH, 2 FH: h1() et h2()

Nabil

- X = { Nabil, Salma, Salim, Imad, Noura, Ikbal, Omar }
- h1 ('Nabil') = 3
- h1 ('Salma') = 5
- h1 ('Salim') = 3
 - o h2('Nabil') = 1

<u>TH1 , FH1</u>

TH2, FH2

- Cuckoo Hashing (Cuckoo : espèce d'oiseau) o 2 TH, 2 FH: h1() et h2()
 - 0 2 Salim 3 4 Salma 5 6 Imad 8 9

Nabil

- X = { Nabil, Salma, Salim, Imad, Noura, Ikbal, Omar }
- h1 ('Nabil') = 3
- h1 ('Salma') = 5
- h1 ('Salim') = 3 o h2('Nabil') = 1
- h1 ('Imad') = 8

• Cuckoo Hashing (Cuckoo: espèce d'oiseau)

o 2 TH, 2 FH: h1() et h2()

TH1, FH1

Salma
Salim

TH2 , FH2

- X = { Nabil, Salma, Salim, Imad, Noura, Ikbal, Omar }
- h1 ('Nabil') = 3
- h1 ('Salma') = 5
- h1 ('Salim') = 3h2('Nabil') = 1
- h1 ('Imad') = 8
- h1 ('Noura') = 5
 - h2('Salma') = 1
 - h1 ('Nabil') = 3
 - h2('Salim') = 6
- En résumé :
 - Si trop de déplacement > Log (n):
 - → Choisir 2 autres FH aléatoirement
 - Si taille TH trop petite/n
 - → Rehashing

- Hachage Parfait:
 - o Idée : ne pas avoir de collision
 - O Utilisation de TH très volumineuse :
 - Soit H une famille de FH universelle et n clés ≠ k₁, ..., k_n:
 - Étape 1 : choisir aléatoirement une FH, $h \in H$
 - Étape 2 : créer TH à k.n² (k.n² = m) slots / k à déterminer
 - Étape 3 : insérer chaque clé dans TH
 - Étape 4 : Si une collision se produit : abandonner et amler à Étape 1
 - Remarque : Probabilité : Pr (boucle ∞) ≠ 0, mais très improbable
 - Probabilité collision k_i ≠ k_i:

• Pr (h(k_i) = h (k_j))
$$\leq \frac{c}{m} = \frac{c}{k.n^2}$$

Probabilité d'avoir <u>au moins</u> une collision :

=
$$Pr_{Coll}((K_1, K_2) | (K_1, K_3) | ... | (K_1, K_n) | (K_2, K_3) | ... | (K_2, K_n) | ... | (K_{n-1}, K_n))$$

$$\leq \frac{c}{\mathsf{k.n^2}} \cdot \frac{n(n-1)}{2} \leq \frac{c}{2\mathsf{k}}$$

- TH très volumineuse:
 - O Probabilité de collision p_{coll}:
 - si k = 2C: p_{coll} = Pr (<u>au moins</u> une collision) $\leq \frac{1}{4}$
 - o Probabilité de ne pas avoir de collision = 1 p_{coll}
 - Càd Pr (aucune collision) ≥ $\frac{3}{4}$ (75%)
 - Q : Probabilité Pr (boucle ∞) = Pr (toutes itérations échouent) = ?
 - Analogie:
 - Soit une pièce de monnaie tq: Pr ("Pile") = $\frac{1}{4}$, Pr ("Face") = $\frac{3}{4}$
 - On jette la pièce, jusqu'à avoir la "Face"
 - Probabilité de ne pas réussir à avoir "Face" dans les 100 premiers essais :

= Pr ("Pile") dans 100 premiers essais =
$$(\frac{1}{4})^{100}$$
 = $\frac{1}{4^{100}}$: probabilité négligeable

- TH très volumineuse :
 - o Analogie:
 - Q: Nombre moyen d'essais pour avoir "Face"?
 - Rép: cf livre Intro à l'Algorithmique CLRS:
 - E = $\frac{1}{1-\frac{1}{4}} = \frac{4}{3}$ (interprétation : il faut en moyenne $\frac{4}{3}$ essais pour avoir "Face")
 - Dém:
 - E = $\sum_{1}^{\infty}(n p_n)$, or p_n = $(\frac{1}{4})^{n-1}$. $\frac{3}{4}$ / $tq p_n$: proba avoir "Face" à la $n^{\rm eme}$ itération
 - Si $q \in]-1$, 1 [, alors $\sum_{1}^{\infty}(nq^n) = \frac{q}{(1-q)2}$
 - Or $q = \frac{1}{4}$ et Σ n. $q^{n-1} = \frac{\Sigma \text{ n.qn}}{q} = \frac{1}{(1-q)2}$
 - D'où, par analogie, le nombre moyen de réitérer l'essai d'insertion dans la TH pour ne pas avoir de collision est $\frac{4}{3}$ (Proba_{Coll} = Proba Réitérer $\circlearrowleft \le \frac{1}{4}$)

- Table de Hachage de 2 niveaux:
 - o Supposons que:
 - On connait toutes les clés à l'avance
 - On connait n_j = nbr élément qui hachent j^{eme} slot, avec Σ n_j = n_j
 - On ne peut pas insérer de nouvelles clés
 - SD: TH où les slots sont des TH
 - Taille TH = n = m (n : est le nombre d'éléments à insérer)

- Table de Hachage de 2 niveaux:
 - O Supposons qu'on veut insérer n éléments au TH de 2ème niveau (parfaite):
 - \circ # total slots $\leq \Sigma$ nj²
 - o Théorème 11.10 (CLRS): $E[\Sigma nj^2] < 2n$ (Rappel: $\Sigma n_j = n$)
 - o Interprétation :
 - Quantité moyenne de mémoire / TH secondaire de hachage parfait est < 2n

- Exemple:
 - Soit T la table de bits de taille 9 et soient les 2 FH :
 - h1(x) = 2x + 1[9]
 - h2(x) = 4x + 1[9], et
 - $X = \{7, 11, 26\}$
 - o T est initialisée à des 0
 - o Pour signaler qu'un $x \in X$, il suffit de mettre :
 - T[h1(x)]=1,T[h2(x)]=1
 - Insérer 7 : h1(7) = 6 , h2(7) = 2
 - Insérer 11 : h1(11) = 5 , h2(11) = 0
 - Insérer 26 : h1(26) = 8 , h2(26) = 6
 - \circ Requete: 12, 28, 8 \in X?

		2						
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0
1	0	1	0	0	1	1	0	0
1	0	1	0	0	1	1	0	1

- Exemple:
 - \circ Requete: 12, 28, 8 \in X?
 - Vérifier 12 :
 - $h_1(12) = 7$, $h_2(12) = 4$, or T[7] = 0 et T[4] = 0 $\rightarrow 12 \notin X$
 - Vérifier 28 :
 - $h_1(28) = 3$, $h_2(28) = 5$, or T[3] = 0 et T[5] = 1 $\rightarrow 28 \notin X$ (sinon il faut que $T[h_1(28)] = T[h_2(28)] = 1$)
 - Vérifier 8 :
 - $h_1(8) = 8$, $h_2(8) = 6$, or T[8] = 1 et T[6] = 1 $\rightarrow 8 \in X$
 - **FAUX**
 - → Jugement faux ou FAUX POSITIF
- EN RÉSUMÉ :
 - \circ Si y \in X \Rightarrow h₁(y) = h₂(y) = 1
 - (pas d'équivalence, uniquement ⇒)

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0
1	0	1	0	0	1	1	0	0
1	0	1	0	0	1	1	0	1

- D'où le Bloom filter est une Structure de Données (SD) probabiliste
 - Jugement qu'un élément x ∉ X est correcte à 100 %
 - \circ Jugement qu'un élément $x \in X$ est correcte à p % (p ≤ 100)
- Idée de base d'un Bloom Filter:
 - o k fonctions de hachage : h₁, ..., h_k
 - TH de m bits nommé T:
 - o Pour insérer x à l'ensemble X:

 0
 0
 - Il faut mettre à 1:

```
T[h_1(x)], T[h_2(x)], ..., T[h_k(x)]
```

- Si jugement d'appartenance est correcte à un pourcentage p%
- →Possibilité d'avoir des faux positifs de recherche est à (100 p) %
- Temps d'insertion θ (k)

m -1

- Calcul de la proba d'avoir des faux positifs :
 - o k fonctions de hachage : h₁, ... , h_k
 - o TH de m bits nommé T:
 - o Pour insérer n éléments à l'ensemble X
- Lors de l'insertion d'un élément x via une FH $h_a(x)$
 - \circ La proba qu'un bit i soit choisi pour basculer vers 1 est $\frac{1}{m}$
 - \rightarrow La proba que le bit i ne soit pas choisi par $h_a(x)$ est $1 \frac{1}{m}$
 - \circ Pour a = 1, 2, ..., k; la proba que le bit ne soit pas basculé vers 1 est $(1 \frac{1}{m})^k$
 - \circ Généralisation, $x \in \{x_1, ..., x_n\}$
 - Proba que le bit i ne soit pas basculé vers 1 est $[(1 \frac{1}{m})^k]^n = (1 \frac{1}{m})^{kn}$
 - Si kn et m >> , alors $(1-\frac{1}{m})^{kn} \sim e^{-\frac{1}{m}}$, (car lim $(1-\frac{1}{kn})^{t} \sim e^{-1}$, pout t très grand)
 - D'où proba qu'un bit i soit basculé vers 1 est : 1 e = m

- Calcul de la proba d'avoir des faux positifs :
 - \circ Pour avoir un faux positif / élément y, il faut que k bits i_1, \dots, i_k soient mis à 1 aux endroits :
 - T[h₁(y)], T[h₂(y)], ..., T[h_k(y)]
 - Càd Proba (Faux Positifs) ~ (1 e^{- m})^k
 - \blacksquare A.N: (n, m, k) = (5.10³, 25.10³, 3)
 - Proba (Faux Positifs) = 0.09

- Appliquée en général aux flux de données : $x_1, x_2, ..., x_W \in \{x_1, x_2, ..., x_N\} / N \le W = taille$
- · Problème:
 - o Estimer la fréquence (approximative) d'apparition d'un élément,
 - o Pas nécessairement exacte, mais avec une tolérance
- Exemple: traitement d'URLs par un web server
 - o W: nbr d'URL à traiter, N: nbr d'URL uniques
 - N est non connu à l'avance
 - o Objectif:
 - Calculer ApproxCount (x_j) à une tolérance ϵ .w pour δ .N éléments
 - $A.N: \delta = 0.99 (99\%), w = 10^9, \epsilon = 10^{-6}, \epsilon.W = 1000$
 - o Interprétation :
 - Pour 99% des éléments, donner une estimation du NbrOcc à une erreur ne dépassant pas 1000.

- Idée de base :
 - Utiliser m compteurs c(1), ..., c(m) tq m << W
 - \circ Choisir famille FH, H = { h₁, h₂, ..., h_N}
 - \circ Incrémenter le compteur de l'élément du flux x_i : c[h(x_i)] ++
 - \circ Pour connaitre l'approximation du compteur de \ddot{K} = c[h(\ddot{K})]
- Analyse de l'erreur du CMS:
 - On sait que ApproxCount (j) ≥ count(j), (count : Réel)
 - o Pour une famille de FH universelle :

•
$$Pr_{i \neq j}(h(i) = h(j)) \leq \frac{C}{m}$$

- o Alors:
 - $E[ApproxCount(j)] = count(j) + \sum_{i \neq j} Pr(Collision(i,j)).Count(i)$

$$\leq$$
 count(j) + $\frac{c}{m}\sum_{i\neq j}$ Count(i)

$$\leq$$
 count(j) + $\frac{c}{m}W$

E[ApproxCount(j) - count(j)]
$$\leq \frac{C}{m}W$$

E[Erreur(j)]
$$\leq \frac{c}{m}W$$

- Analyse de l'erreur du CMS:
 - Inégalité de Markov, pour E(X), Pr(X)

$$\Pr(X \ge t) \le \frac{E(X)}{t}$$

- Application (Err ← X):
 - Pr (Err(j) ≥ ε.W) $\leq \frac{1}{ε.W} \frac{c}{m} W$

$$\leq \frac{C}{m\epsilon}$$

→ Pr (Err(j) ≥ ε.W) ≤
$$\frac{1}{e}$$

$$\rightarrow$$
 Question: $\frac{1}{e} \le 1 - \delta$?,

A.N: c = 1,
$$\epsilon$$
 = 10⁻⁶, e = 2.73 \rightarrow Pr (Err(j) $\geq \epsilon$.W) $\leq \frac{1}{e} \sim 0.37 = 37\%$: Insuffisant!

o Solution : utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)

- Analyse de l'erreur du CMS:
 - Solution: utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)
 - o Exemple :
 - Soient les FH h_i(), et les tables T_i,
 i = 1, 2, 3, 4, toutes de taille 16,
 initialisées à 0
 - Soient x, y, z, t : éléments représentant les adr ip :
 - input 1 : x = 192.170.10.1
 - o $h_1(x) = 1, h_2(x) = 6,$ $h_3(x) = 3, h_4(x) = 1,$
 - \circ Il faut incrémenter $T_i[h_i(x)],$

 $T_1[1] \leftarrow 0+1, T_2[6] \leftarrow 0+1, T_3[3] \leftarrow 0+1, T_4[1] \leftarrow 0+1,$

- Analyse de l'erreur du CMS:
 - Solution: utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)
 - o Exemple :
 - Soient les FH h_i(), et les tables T_i,
 i = 1, 2, 3, 4, toutes de taille 16,
 initialisées à 0
 - Soient x, y, z, t : éléments représentant les adr ip :
 - input 2: y = 75.245.0.1
 - o $h_1(y) = 1, h_2(y) = 2, h_3(y) = 4, h_4(y) = 6,$
 - Il faut incrémenter
 T_i[h_i(y)],
 T₁[1] ← 1+1. T₂[2] ←

```
T_1[1] \leftarrow 1+1, T_2[2] \leftarrow 0+1,

T_3[4] \leftarrow 0+1, T_4[6] \leftarrow 0+1,
```


- Analyse de l'erreur du CMS:
 - Solution: utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)
 - o Exemple :
 - Soient les FH h_i(), et les tables T_i,
 i = 1, 2, 3, 4, toutes de taille 16,
 initialisées à 0
 - Soient x, y, z, t : éléments représentant les adr ip :
 - input 3: Z = 10.125.22.10
 - o h₁(z) = 3, h₂(z) = 4, h₃(z) = 1, h₄(z) = 6,
 - o Il faut incrémenter $T_i[h_i(z)],$

 $T_1[3] \leftarrow 0+1, T_2[4] \leftarrow 0+1, T_3[1] \leftarrow 0+1, T_4[6] \leftarrow 1+1,$

- Analyse de l'erreur du CMS:
 - Solution: utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)
 - o Exemple :
 - Soient les FH h_i(), et les tables T_i,
 i = 1, 2, 3, 4, toutes de taille 16,
 initialisées à 0
 - Soient x, y, z, t : éléments représentant les adr ip :
 - input 4: t = 192.170.10.1
 - o $h_1(x) = 1, h_2(x) = 6,$ $h_3(x) = 3, h_4(x) = 1,$
 - \circ Il faut incrémenter $T_i[h_i(x)],$

 $T_1[1] \leftarrow 2+1, T_2[6] \leftarrow 1+1, T_3[3] \leftarrow 1+1, T_4[1] \leftarrow 1+1,$

- Analyse de l'erreur du CMS:
 - Solution: utiliser k tables de comptage au lieu d'une seule, (i.e une table / FH)
 - o Exemple:
 - Calcul # occurrence :
 - Ex v = 192.170.10.1 (v = x = t)
 - $h_1(v) = 1, h_2(v) = 6,$ $h_3(v) = 3, h_4(v) = 1,$
 - $T_1[1] = 3$, $T_2[6] = 2$, $T_3[3] = 2$, $T_4[1] = 2$,
 - Les occurrences de v dans les tables : (3, 2, 2, 2)
 - ApproxCount(v) = min (3, 2, 2, 2) = 2
 - En conclusion : On prend le min pour minimiser l'Erreur

- Analyse de l'erreur du CMS:
 - On sait que pour chaque TH:

Pr (Err(j)
$$\geq \epsilon$$
.W) $\leq \frac{1}{e}$

o Pour que toutes les k FH font l'erreur :

Pr (Err(j)
$$\geq \epsilon . W$$
) $\leq (\frac{1}{e})^k$
 $\leq 1 - \delta$?

- Pour que $(\frac{1}{e})^k \le 1 \delta$, il suffit que :
 - $k \ge \ln(1 \delta)$
- \circ Ex : si δ = 0.99 \rightarrow k = 5
- En résumé : cas général CMS
 - o k compteurs; k FH: h₁, ..., h_k; k Tables de comptage
 - ApproxCount(v) = Min $\{T_1[h_1(v)], T_2[h_2(v)], ..., T_k[h_k(v)]\}$
- EX: $\varepsilon = 10^{-6}$, W = 10^{9} , $\delta = 0.9$, m = $\frac{e}{\varepsilon} \sim 3.10^{6} \rightarrow k = -\ln(1 \delta) \sim 3$
- Interprétation : utiliser 3 tables de compteurs / résultats correctes à une tolérance 1000 pour 90% des éléments.

