Deep Learning Seminar

2. Linear Classification

Contents

- 1. Computer Vision
- 2. Classification
 - 2-1) Classification
 - 2-2) Nearest Neighbor
 - 2-3) Cross-Validation
- 3. Linear Classifier
- 4. Loss Function
 - 4-1) Hinge Function
 - 4-2) Softmax Function
 - 4-3) Regularization

Reference: lecture note (Fei-Fei Li) lecture note (Andrew Ng)

모두를 위한 머신러닝 (Sung kim)

1. Computer Vision

Computer Vision

Hubel & Wiesel, 1959

Edge

Edge

Image is public domain

Image is CC BY-5A 2.0

Convolutional Neural Network

Convolutional Neural Network

2012 Krizhevsky et al.

Figure copyright Alex Krizhevsky, Ilya Reproduced with permission.

GPUs

of pixels used in training

IMAGENET

- 2-1) Classification
- 2-2) Nearest Neighbor
- 2-3) Cross-Validation

- Example

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thal is licensed under CC-BY 2.0

Challenges: Occlusion

Challenges: Background Clutter

This image is CCD 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Intraclass variation

This image is CC0 1.0 public domain

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Attempts have been made

Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels): # Machine learning! return model def predict(model, test_images): # Use model to predict labels return test_labels

Example training set

Nearest Neighbor

Nearest Neighbor

How to quantify similarity?

1) L1 Loss

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

2) L2 Loss

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

pixel-wise absolute value differences

Nearest Neighbor

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original

Hyperparameters

Choices about the algorithm that we set rather than learn

(≈ Heuristic Values)

ex) k-fold cross validation, learning rate, epoch, and number of layers

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

Will perform on new data

train test

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

Your Dataset

BAD: No idea how algorithm will perform on new data

test

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!

train	validation	test
-------	------------	------

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

- Deep Learning Pipeline
 - 1. Training Data Loading
 - 2. Training Data Augmentation
 - 3. Deep Neural Network Training with Training Data
 Validation
 - 4. Deep Neural Network Testing with Testing Data
 - 5. Inference with verified Deep Neural Network

This image is CCO 1.0 public domain

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Linear Classification

Linear Classification

Linear Classification

4. Classification Loss Function

- 4-1) Hinge Loss
- 4-2) Softmax Loss
- 4-3) Regularization

cat

car

frog

- Hinge Function

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

* Hinge Loss (Multiclass SVM Loss)

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- Hinge Function

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

2.2

4.9

2.0 -3.1

```
L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)
```

```
= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)
```

$$= \max(0, 2.9) + \max(0, -3.9)$$

= 2.9 + 0

= 2.9

- Hinge Function

cat

3.2

car

5.1

-1.7

frog

Losses:

2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

```
L_i = \sum_{j 
eq y_i} \overline{\max}(0, s_j - s_{y_i} + 1)
```

```
= \max(0, 1.3 - 4.9 + 1) 
+ \max(0, 2.0 - 4.9 + 1)
```

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

- Hinge Function

cat

3.2

1.3

2.2

2.5

car

5.1

4.9

frog

-1.7

2.0

Losses:

2.9

0

-3.1

12.9

```
L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)
```

```
= \max(0, 2.2 - (-3.1) + 1)
```

$$+\max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 6.3) + \max(0, 6.6)$$

$$= 6.3 + 6.6$$

$$= 12.9$$

- Hinge Function

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

C

12.9

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

L = (2.9 + 0 + 12.9)/3
= **5.27**

- Hinge Function

1	4.9	2.5
	1	1 4.9

frog -1.7 2.0 -3.1 Losses: 2.9 0 12.9

Problems

Q: What happens to loss if car scores change a bit?

Q2: what is the min/max possible loss?

Q3: At initialization W is small so all s ≈ 0. What is the loss?

- Softmax Function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where
$$s=f(x_i;W)$$

cat

car

5.1

3.2

-1.7frog

Softmax function

- Softmax Function

- Softmax Function

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

- Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

- Regularization

Hyperparameter (Constant)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

In common use:

L2 regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

- Regularization

$$x=[1,1,1,1]$$
 $R(W)=\sum_k\sum_lW_{k,l}^2$ $w_1=[1,0,0,0]$ $R(w_1)=1$ $w_2=[0.25,0.25,0.25,0.25]$ $R(w_2)=1/4$

$$w_1^Tx=w_2^Tx=1$$

- Regularization

- Final Loss Function

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$$
 Full loss

