Question 1-1.4-9p

1

EE24BTECH11041 - Mohit

1) Let $\mathbf{A}(4,2)$, $\mathbf{B}(6,5)$ and $\mathbf{C}(1,4)$ be the vertices of Δ ABC. Find the coordinates of points \mathbf{Q} and \mathbf{R} on medians BE and CF respectively such that BQ: QE = 2:1 and CR: RF = 2:1.

Variable	Description
CF is median	\mathbf{F} is mid point of AB
BE is median	\mathbf{E} is mid point of AB
Three points makes a triangle whose co-ordinates are	A,B,C
Centroid of triangle	G

TABLE 1: Variables Used

Solution:-

 \mathbf{F} is the mid point of AB

$$\mathbf{F} = \frac{A+B}{2} = \frac{\binom{4}{2} + \binom{6}{5}}{2} = \binom{5}{\frac{7}{2}}$$

 \mathbf{E} is the mid point of AC

$$\mathbf{E} = \frac{A+C}{2} = \frac{\binom{4}{2} + \binom{1}{4}}{2} = \binom{\frac{5}{2}}{3}$$

By section formula,

$$\mathbf{R} = \frac{B + KA}{1 + K}$$

It is given that $\frac{BQ}{QE} = \frac{2}{1}$ So,

$$\mathbf{Q} = \frac{B+2E}{1+2} = \frac{\binom{6}{5} + 2\binom{\frac{5}{2}}{3}}{3} = \binom{\frac{11}{3}}{\frac{11}{3}}$$

It is given that $\frac{CR}{RF} = \frac{2}{1}$ So,

$$\mathbf{R} = \frac{C + 2F}{1 + 2} = \frac{\binom{1}{4} + 2\binom{5}{\frac{7}{2}}}{3} = \binom{\frac{11}{3}}{\frac{11}{3}}$$

Hence, Co-ordinates of ${\bf Q}$ and ${\bf R}$ are

$$\mathbf{Q}\left(\frac{11}{3}, \frac{11}{3}\right)$$
 and $\mathbf{R}\left(\frac{11}{3}, \frac{11}{3}\right)$

Fig. 1.1: Plot of Triangle ABC