XSens DOT

Both Wrists Data

Left Wrist:

Right Wrist:

Acceleration

Euler

CNN: Right Wrist

Approach

Approach

Exporter

	Accuracy
Sukor et al.	
Bayat et al.	
da Silva et al.	90%
Drumond et al.	96%
Gomes et al.	
Pavai	

- Using wearable inertial sensors to track everyday human motion has been a popular subject in previous papers in classifying and recognising human activities.
- Plenty of projects involving human activity recognition have already been explored and published.
- However, identifying dance motions from wearable inertial sensors to determine the accuracy of a dance choreography has not been well inspected.