Problem

(AMC) In the adjoining figure, CD is the diameter of a semi-circle with center O. Point A lies on the extension of DC past C; point E lies on the semi-circle, and B is the point of intersection (distinct from E) of line segment AE with the semicircle. If length AB equals length OD, and the measure of $\angle EOD$ is 45° , then the measure of $\angle BAO$ is

- (A) 10°
- (B) 15°
- $(C) 20^{\circ}$
- (D) 25°
- (E) 30°

Solution

(B). Connect OB.

Since $AB = OD = OB, \angle BAO = \angle BOA = y$.

Since $\angle OBE$ is the exterior angle of $\triangle ABO$, $\angle OBE = 2y$.

Since $OB = OE, \angle OBE = \angle OEB = 2y$.

Since $\angle EOD$ is the exterior angle of $\triangle AOE$,

 $\angle EOD = 2y + y = 3y = 45^{\circ}.$ $y = 15^{\circ}.$