# Comparison of Marvel and DC Characters

Team Members: [Jizhou Cheng, Jiahao Li]

2024-12-18

### Introduction

This report aims to compare Marvel and DC characters based on three key attributes: **eye color**, **alignment**, and **gender**. The purpose of this analysis is to identify patterns and differences between the two companies' character designs, providing insights into their creative strategies and diversity.

We used publicly available data sources, cleaned the raw data, and visualized the results through tables and charts. Statistical tests were performed to validate the observed differences.

# **Purpose**

The purpose of this study was to analyze differences in the eye color, alignment, and gender distributions of Marvel and DC characters to identify patterns and trends in their character designs. This analysis aims to uncover:

- Differences in creative approaches between the two companies.
- Insights into character diversity and design trends.
- Key aspects that make each company's characters unique.

# **Data Description**

The dataset contains the following columns:

- page\_id: Unique ID for the character's page.
- name: Name of the character.
- eye: Eye color of the character.

- align: Alignment (Good, Neutral, Evil).
- sex: Gender of the character (Male, Female, etc.).
- gsm: Gender or sexual minority status.
- alive: Character status (alive or deceased).
- company: Data source (Marvel or DC).

### Methods

### **Data Import and Cleaning**

The raw data files were cleaned and processed as follows:

```
# Load necessary packages
library(dplyr)
library(ggplot2)
library(knitr)
# Import raw data
marvel <- read.csv("~/Downloads/marvel-wikia-data.csv")</pre>
dc <- read.csv("~/Downloads/dc-wikia-data.csv")</pre>
# Standardize column names
names(marvel) <- tolower(trimws(names(marvel)))</pre>
names(dc) <- tolower(trimws(names(dc)))</pre>
# Combine datasets
combined_data <- bind_rows(</pre>
  marvel %>% mutate(company = "Marvel"),
  dc %>% mutate(company = "DC")
)
# Remove missing or blank values
cleaned_data <- combined_data %>%
  filter(!is.na(name) & name != "") %>%
  mutate(
    eye = tolower(trimws(eye)),
    align = tolower(trimws(align)),
    sex = tolower(trimws(sex))
```

```
# Save cleaned data to CSV
write.csv(cleaned_data, "~/Downloads/cleaned-comic-characters.csv", row.names = FALSE)
```

### Variables of Interest

The three attributes analyzed were: - **Eye Color**: Distribution and comparison of eye colors across Marvel and DC characters. - **Alignment**: Analysis of alignments (Good, Neutral, Evil) for characters in each company. - **Gender**: Examination of gender distributions.

# Results

# **Eye Color Distribution**

**Table: Eye Color Distribution** 

Table 1: Eye Color Distribution by Company

| company                  | eye                | count |
|--------------------------|--------------------|-------|
| $\overline{\mathrm{DC}}$ |                    | 3628  |
| DC                       | amber eyes         | 5     |
| DC                       | auburn hair        | 7     |
| DC                       | black eyes         | 412   |
| DC                       | blue eyes          | 1102  |
| DC                       | brown eyes         | 879   |
| DC                       | gold eyes          | 9     |
| DC                       | green eyes         | 291   |
| DC                       | grey eyes          | 40    |
| DC                       | hazel eyes         | 23    |
| DC                       | orange eyes        | 10    |
| DC                       | photocellular eyes | 48    |
| DC                       | pink eyes          | 6     |
| DC                       | purple eyes        | 14    |
| DC                       | red eyes           | 208   |
| DC                       | violet eyes        | 12    |
| DC                       | white eyes         | 116   |
| DC                       | yellow eyes        | 86    |
| Marvel                   |                    | 9767  |
| Marvel                   | amber eyes         | 10    |
| Marvel                   | black eyeballs     | 3     |

| company | eye             | count |
|---------|-----------------|-------|
| Marvel  | black eyes      | 555   |
| Marvel  | blue eyes       | 1962  |
| Marvel  | brown eyes      | 1924  |
| Marvel  | compound eyes   | 1     |
| Marvel  | gold eyes       | 14    |
| Marvel  | green eyes      | 613   |
| Marvel  | grey eyes       | 95    |
| Marvel  | hazel eyes      | 76    |
| Marvel  | magenta eyes    | 2     |
| Marvel  | multiple eyes   | 7     |
| Marvel  | no eyes         | 7     |
| Marvel  | one eye         | 21    |
| Marvel  | orange eyes     | 25    |
| Marvel  | pink eyes       | 21    |
| Marvel  | purple eyes     | 31    |
| Marvel  | red eyes        | 508   |
| Marvel  | silver eyes     | 12    |
| Marvel  | variable eyes   | 49    |
| Marvel  | violet eyes     | 11    |
| Marvel  | white eyes      | 400   |
| Marvel  | yellow eyeballs | 6     |
| Marvel  | yellow eyes     | 256   |

# Chart: Characters with the Most Common Eye Color: Blue Eyes in Marvel and DC





# Chi-Square Test for Eye Color

To determine whether the eye color distributions between Marvel and DC are statistically different, we performed a Chi-Square Test.

Pearson's Chi-squared test

data: eye\_contingency
X-squared = 387.13, df = 26, p-value < 2.2e-16</pre>

|                | company      |              |
|----------------|--------------|--------------|
| eye            | DC           | Marvel       |
|                | 3969.2299759 | 9425.7700241 |
| amber eyes     | 4.4448264    | 10.5551736   |
| auburn hair    | 2.0742523    | 4.9257477    |
| black eyeballs | 0.8889653    | 2.1110347    |
| black eyes     | 286.5431420  | 680.4568580  |
| blue eyes      | 907.9298728  | 2156.0701272 |

| brown eyes         | 830.5898934 | 1972.4101066 |
|--------------------|-------------|--------------|
| compound eyes      | 0.2963218   | 0.7036782    |
| gold eyes          | 6.8154005   | 16.1845995   |
| green eyes         | 267.8748711 | 636.1251289  |
| grey eyes          | 40.0034376  | 94.9965624   |
| hazel eyes         | 29.3358542  | 69.6641458   |
| magenta eyes       | 0.5926435   | 1.4073565    |
| multiple eyes      | 2.0742523   | 4.9257477    |
| no eyes            | 2.0742523   | 4.9257477    |
| one eye            | 6.2227570   | 14.7772430   |
| orange eyes        | 10.3712616  | 24.6287384   |
| photocellular eyes | 14.2234445  | 33.7765555   |
| pink eyes          | 8.0006875   | 18.9993125   |
| purple eyes        | 13.3344792  | 31.6655208   |
| red eyes           | 212.1663802 | 503.8336198  |
| silver eyes        | 3.5558611   | 8.4441389    |
| variable eyes      | 14.5197662  | 34.4802338   |
| violet eyes        | 6.8154005   | 16.1845995   |
| white eyes         | 152.9020282 | 363.0979718  |
| yellow eyeballs    | 1.7779306   | 4.2220694    |
| yellow eyes        | 101.3420419 | 240.6579581  |
|                    |             |              |

#### **Results:**

• Chi-Square Statistic: 387.13

• Degrees of Freedom: 26

• **p-value**: < 2.2e-16

#### **Conclusion:**

The p-value is significantly less than 0.05, indicating that the differences in eye color distributions between Marvel and DC are statistically significant. This suggests that the two companies have distinct creative strategies for character eye color, with Marvel showing a broader range of unique eye colors compared to DC.

# **Alignment Distribution**

Table: Alignment Distribution

Table 2: Alignment Distribution by Company

| company | align              | count |
|---------|--------------------|-------|
| DC      |                    | 601   |
| DC      | bad characters     | 2895  |
| DC      | good characters    | 2832  |
| DC      | neutral characters | 565   |
| DC      | reformed criminals | 3     |
| Marvel  |                    | 2812  |
| Marvel  | bad characters     | 6720  |
| Marvel  | good characters    | 4636  |
| Marvel  | neutral characters | 2208  |

Chart: Characters with the Most Common Alignment: Bad Characters in Marvel and DC

# Characters with the Most Common Alignment: Bad Character



### **Chi-Square Test for Alignment**

To determine whether the alignment distributions between Marvel and DC are statistically different, we performed a Chi-Square Test.

Pearson's Chi-squared test

data: align\_contingency
X-squared = 604.86, df = 4, p-value < 2.2e-16</pre>

company

| align              | DC           | Marvel      |
|--------------------|--------------|-------------|
|                    | 1011.3461671 | 2401.653833 |
| bad characters     | 2849.1337229 | 6765.866277 |
| good characters    | 2212.9309041 | 5255.069096 |
| neutral characters | 821.7002406  | 1951.299759 |
| reformed criminals | 0.8889653    | 2 111035    |

#### Results:

• Chi-Square Statistic: 604.86

• Degrees of Freedom: 4

• **p-value**: < 2.2e-16

#### **Conclusion:**

The alignment distribution also shows significant differences between Marvel and DC characters. Marvel tends to have more characters with neutral and diverse alignments, while DC shows a stronger focus on traditional "good" and "evil" characters.

#### **Gender Distribution**

**Table: Gender Distribution** 

Table 3: Gender Distribution by Company

| company | sex                    | count |
|---------|------------------------|-------|
| DC      |                        | 125   |
| DC      | female characters      | 1967  |
| DC      | genderless characters  | 20    |
| DC      | male characters        | 4783  |
| DC      | transgender characters | 1     |
| Marvel  |                        | 854   |
| Marvel  | agender characters     | 45    |
| Marvel  | female characters      | 3837  |
| Marvel  | genderfluid characters | 2     |
| Marvel  | male characters        | 11638 |

Chart: Characters with the Most Common Gender: Male Characters in Marvel and DC

Characters with the Most Common Gender: Male Characters 11638 12000 -



# Chi-Square Test for Gender

To determine whether the gender distributions between Marvel and DC are statistically different, we performed a Chi-Square Test.

#### Pearson's Chi-squared test

```
data: gender_contingency
X-squared = 255.67, df = 6, p-value < 2.2e-16</pre>
```

#### company sex DC Marvel 290.0990031 6.889010e+02 13.3344792 3.166552e+01 agender characters female characters 1719.8514954 4.084149e+03 genderfluid characters 0.5926435 1.407356e+00 genderless characters 5.9264352 1.407356e+01 male characters 4865.8996219 1.155510e+04 transgender characters 0.2963218 7.036782e-01

#### Results:

• Chi-Square Statistic: 255.67

• Degrees of Freedom: 6

• **p-value**: < 2.2e-16

#### Conclusion:

The gender distribution analysis reveals significant statistical differences between Marvel and DC. While both companies have a predominance of male characters, Marvel includes slightly more non-binary and diverse gender representations than DC.

# **Summary and Conclusions**

#### **Key Observations**

#### 1. Eye Color:

- Marvel characters exhibit a wider variety of eye colors, including gold and red.
- DC characters primarily feature traditional eye colors like blue and brown.

#### 2. Alignment:

- Marvel has more neutral characters compared to DC.
- DC focuses on clear distinctions between good and bad characters.

#### 3. Gender:

- Both companies are male-dominated.
- Marvel features slightly more female and non-traditional gender characters.

#### Conclusion

Marvel demonstrates a greater emphasis on diversity in eye color, alignment, and gender, while DC tends to focus on traditional traits and roles. These differences reflect distinct creative approaches and target audiences.

# References

• Data source: FiveThirtyEight Comic Characters.

• Marvel data: Marvel Wikia

• DC data: DC Wikia

# **Appendix**

```
# Load necessary packages
library(dplyr)
library(ggplot2)
library(knitr)
# Import raw data
marvel <- read.csv("~/Downloads/marvel-wikia-data.csv")</pre>
dc <- read.csv("~/Downloads/dc-wikia-data.csv")</pre>
# Standardize column names
names(marvel) <- tolower(trimws(names(marvel)))</pre>
names(dc) <- tolower(trimws(names(dc)))</pre>
# Combine datasets
combined_data <- bind_rows(</pre>
  marvel %>% mutate(company = "Marvel"),
  dc %>% mutate(company = "DC")
)
# Remove missing or blank values
```

```
cleaned_data <- combined_data %>%
  filter(!is.na(name) & name != "") %>%
  mutate(
    eye = tolower(trimws(eye)),
    align = tolower(trimws(align)),
    sex = tolower(trimws(sex))
  )
# Save cleaned data to CSV
write.csv(cleaned_data, "~/Downloads/cleaned-comic-characters.csv", row.names = FALSE)
eye_distribution <- cleaned_data %>%
  group_by(company, eye) %>%
  summarise(count = n(), .groups = "drop")
# Table
knitr::kable(eye distribution, caption = "Eye Color Distribution by Company")
# Plot eye color with labels
ggplot(eye\_distribution, aes(x = eye, y = count, fill = company)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = count), position = position_dodge(width = 0.8), vjust = -0.5, size =
  labs(title = "Characters with the Most Common Eye Color: Blue Eyes in Marvel and DC", x =
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Contingency table for eye color and company
eye_contingency <- xtabs(~ eye + company, data = cleaned_data)</pre>
# Perform chi-square test
eye_test <- chisq.test(eye_contingency)</pre>
# Print results
eye_test
# Check expected values
eye_test$expected
align_distribution <- cleaned_data %>%
  group_by(company, align) %>%
  summarise(count = n(), .groups = "drop")
# Table
knitr::kable(align_distribution, caption = "Alignment Distribution by Company")
# Plot alignment with labels
ggplot(align_distribution, aes(x = align, y = count, fill = company)) +
  geom_bar(stat = "identity", position = "dodge") +
```

```
geom_text(aes(label = count), position = position_dodge(width = 0.9), vjust = -0.5, size =
  labs(title = "Characters with the Most Common Alignment: Bad Characters in Marvel and DC",
# Contingency table for alignment and company
align_contingency <- xtabs(~ align + company, data = cleaned_data)</pre>
# Perform chi-square test
align_test <- chisq.test(align_contingency)</pre>
# Print results
align_test
# Check expected values
align_test$expected
gender_distribution <- cleaned_data %>%
  group_by(company, sex) %>%
  summarise(count = n(), .groups = "drop")
# Table
knitr::kable(gender_distribution, caption = "Gender Distribution by Company")
# Plot gender distribution with labels
ggplot(gender_distribution, aes(x = sex, y = count, fill = company)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = count), position = position_dodge(width = 0.6), vjust = -0.5, size =
  labs(title = "Characters with the Most Common Gender: Male Characters in Marvel and DC", x
# Contingency table for gender and company
gender_contingency <- xtabs(~ sex + company, data = cleaned_data)</pre>
# Perform chi-square test
gender_test <- chisq.test(gender_contingency)</pre>
# Print results
gender_test
# Check expected values
gender_test$expected
```