Semi-Supervised Sequence Modeling with Cross-View Training

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc V. Le

Computer Science Department, Stanford University

Google Brain

EMNLP 2018

Motivation

Lack of labeled data

- Information from large amounts of unlabeled data can improve the performance of supervised NLP models
- Pre-training does not learn labeled data (generally representations)

Self-Training

Algorithm 1 Self-training.

```
1: Initialize:
2: Given (X_{train}, y_{train}) = (X_l, y_l)
3: while stopping criteria not met do
      Train classifier C_{int} from (X_{train}, y_{train})
                                                           Student
   Use C_{int} to predict class label y_u of X_u Teacher
      Select confidence sample (X_{conf}, y_{conf}); (X_{conf}, y_{conf}) \in
   (X_u, y_u)
      Remove selected unlabeled data X_u \leftarrow X_u - X_{conf}
      Combine newly labeled data (X_{train}, y_{train}) \leftarrow (X_I, y_I) \cup
   (X_{conf}, y_{conf})
9: end while
                                                   //blog.csdn.net/tvh70537
```

Drawbacks of Self-Training

• The model acts as both a teacher and a student

- The model already produces the predictions it is being trained on
- Adding noise to the student's input, training the model so it is robust to input perturbations on CV

• Applying noise is difficult for discrete inputs like text

Cross-View Training (CVT)

• Multi-view learning: train the model to produce consistent predictions across different views of the input

• CVT adds auxiliary prediction modules (student)

• a restricted view of the input example

representation learning

Inputs Seen 1	by Auxiliary	Prediction	Modules
---------------	--------------	------------	---------

Auxiliary 1: They traveled to _______

Auxiliary 2: They traveled to Washington ______

Auxiliary 4: ______ by plane

Auxiliary 3: Washington by plane

Cross-View Training

• Supervised Learning: Learning on a Labeled Example

• Supervised Loss:

$$\mathcal{L}_{\sup}(\theta) = \frac{1}{|\mathcal{D}_l|} \sum_{x_i, y_i \in \mathcal{D}_l} CE(y_i, p_{\theta}(y|x_i))$$

Cross-View Training

• Unsupervised Learning:

Unsupervised Loss:

$$\mathcal{L}_{\text{CVT}}(\theta) = \frac{1}{|\mathcal{D}_{ul}|} \sum_{x_i \in \mathcal{D}_{ul}} \sum_{j=1}^k D(p_{\theta}(y|x_i), p_{\theta}^j(y|x_i))$$

KL divergence

Cross-View Training

Notes:

• The model alternates learning on a mini-batch of labeled examples and learning on a mini-batch of unlabeled examples

Hold the primary module's parameters fixed during unsupervised training

• The auxiliary prediction modules are only used during training

CVT Model on Sequence Tagging

Loss

Primary Prediction Module

Auxiliary
Prediction
Modules

primary prediction module

$$p(y^t|x_i) = \text{NN}(h_1^t \oplus h_2^t)$$

= softmax(U \cdot \text{ReLU}(W(h_1^t \oplus h_2^t)) + b)

auxiliary prediction modules

$$p_{\theta}^{\text{fwd}}(y^t|x_i) = \text{NN}^{\text{fwd}}(\overrightarrow{h}_1^t(x_i))$$

$$p_{\theta}^{\text{bwd}}(y^t|x_i) = \text{NN}^{\text{bwd}}(\overleftarrow{h}_1^t(x_i))$$

$$p_{\theta}^{\text{future}}(y^t|x_i) = \text{NN}^{\text{future}}(\overrightarrow{h}_1^{t-1}(x_i))$$

$$p_{\theta}^{\text{past}}(y^t|x_i) = \text{NN}^{\text{past}}(\overleftarrow{h}_1^{t+1}(x_i))$$

CVT Model on Dependency Parsing

- Each word receives one in-going edge (u, t, r)
- going from word x_i^u (called the "head") to it (the "dependent") of type r (the "relation").

treats dependency parsing as a classification task

CVT Model on Dependency Parsing

primary prediction module

$$p_{\theta}((u,t,r)|x_i) \propto e^{s(h_1^u(x_i) \oplus h_2^u(x_i), h_1^t(x_i) \oplus h_2^t(x_i), r)} \quad s(z_1,z_2,r) = \text{ReLU}(W_{\text{head}}z_1 + b_{\text{head}})(W_r + W) \\ \text{ReLU}(W_{\text{dep}}z_2 + b_{\text{dep}})$$

auxiliary prediction modules

$$p_{\theta}^{\text{fwd-fwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{fwd-fwd}}(\overrightarrow{h}_{1}^{u}(x_{i}),\overrightarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{fwd-bwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{fwd-bwd}}(\overrightarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{bwd-fwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{bwd-fwd}}(\overleftarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

$$p_{\theta}^{\text{bwd-bwd}}((u,t,r)|x_{i}) \propto e^{s^{\text{bwd-bwd}}(\overleftarrow{h}_{1}^{u}(x_{i}),\overleftarrow{h}_{1}^{t}(x_{i}),r)}$$

CVT Model on Sequence-to-Sequence Learning

primary prediction decoder:

• LSTM decoder with attention mechanism

auxiliary prediction decoders:

- Apply attention dropout, randomly zeroing out attention weights
- predict the next word in the target sequence

$$p_{\theta}^{\text{future}}(\boldsymbol{y}_{i}^{t}|\boldsymbol{y}_{i}^{< t},\boldsymbol{x}_{i}) = \operatorname{softmax}(W_{s}^{\text{future}}a_{t-1}^{\text{future}})$$

CVT Model on Sequence-to-Sequence Learning

Unsupervised Loss:

- cannot get an output distribution over the vocabulary from the primary decoder at each time step
- produce hard targets for the auxiliary modules by running the primary decoder with beam search on the input sequence

CVT & Multi-Task Learning

Supervised learning:

- randomly select a task
- update \mathcal{L}_{sup} using a mini-batch of labeled data for that task

Unsupervised learning:

- jointly across all tasks
- update \mathcal{L}_{CVT} using a mini-batch of unlabeled data
- all-tasks-labeled examples

Experiment

seven tasks:

- Combinatory Categorial Grammar (CCG) Supertagging: CCGBank
- Text Chunking: CoNLL-2000
- Named Entity Recognition (NER): CoNLL-2003
- Fine-Grained NER (FGN): OntoNotes
- Part-of-Speech (POS) Tagging: Wall Street Journal portion of the Penn Treebank
- Dependency Parsing: Penn Treebank converted to Stanford Dependencies version 3.3.0
- Machine Translation: English-Vietnamese translation dataset from IWSLT 2015

Results

Method	CCG	Chunk	NER	FGN	POS	Dep.	Parse	Translate
Method	Acc.	F1	F1	F1	Acc.	UAS	LAS	BLEU
Shortcut LSTM (Wu et al., 2017)	95.1				97.53			
ID-CNN-CRF (Strubell et al., 2017)			90.7	86.8				
JMT [†] (Hashimoto et al., 2017)		95.8			97.55	94.7	92.9	
TagLM* (Peters et al., 2017)		96.4	91.9					
ELMo* (Peters et al., 2018)			92.2					
Biaffine (Dozat and Manning, 2017)						95.7	94.1	
Stack Pointer (Ma et al., 2018)						95.9	94.2	
Stanford (Luong and Manning, 2015)								23.3
Google (Luong et al., 2017)								26.1
Supervised	94.9	95.1	91.2	87.5	97.60	95.1	93.3	28.9
Virtual Adversarial Training*	95.1	95.1	91.8	87.9	97.64	95.4	93.7	_
Word Dropout*	95.2	95.8	92.1	88.1	97.66	95.6	93.8	29.3
ELMo (our implementation)*	95.8	96.5	92.2	88.5	97.72	96.2	94.4	29.3
ELMo + Multi-task*†	95.9	96.8	92.3	88.4	97.79	96.4	94.8	_
CVT*	95.7	96.6	92.3	88.7	97.70	95.9	94.1	29.6
CVT + Multi-task* [†]	96.0	96.9	92.4	88.4	97.76	96.4	94.8	_
CVT + Multi-task + Large*†	96.1	97.0	92.6	88.8	97.74	96.6	95.0	_

Model Generalization

Datasets Size & Model Size

Multi-Task & Auxiliary Module

Model	CCG	Chnk	NER	FGN	POS	Dep.
CVT-MT w/out parallel	-	-	_		97.74 97.71	-

Model	CCG	Chnk	NER	FGN	POS
Supervised CVT	94.8 95.6	95.5 97.0	95.0 95.9	86.0 87.3	97.59 97.66
no fwd/bwd	-0.1	-0.2		0	-0.01
no future/past	-0.3	-0.4	-0.4	-0.3	-0.04

Generalizable Representations

Model	CCG	Chnk	NER	FGN	POS	Dep.
Supervised CVT-MT frozen ELMo frozen	95.1	96.6	94.6	83.2	97.59 97.66 97.50	92.5