### BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-92388 (P2001-92388A)

(43)公開日 平成13年4月6日(2001.4.6)

| (51) Int.Cl. <sup>7</sup> | 識別記号       | FI          | テーマコード(参考) |
|---------------------------|------------|-------------|------------|
| G09F 9/3                  | 37         | G09F 9/37   | Z          |
| G02F 1/                   | 1339 5.0.0 | G02F 1/1339 | 500        |

審査請求 未請求 請求項の数9 OL (全 20 頁)

(71)出願人 000005498 特願2000-162356(P2000-162356) (21)出願番号 富士ゼロックス株式会社 東京都港区赤坂二丁目17番22号 平成12年5月31日(2000.5.31) (22)出願日 (72) 発明者 酒巻 元彦 神奈川県足柄上郡中井町境430 グリーン (31) 優先権主張番号 特願平11-205722 テクなかい 富士ゼロックス株式会社内 平成11年7月21日(1999.7.21) (32)優先日 (72) 発明者 山口 善郎 (33)優先権主張国 日本(JP) 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内 (74)代理人 100079049 弁理士 中島 淳 (外3名)

最終頁に続く

### (54) 【発明の名称】 画像表示媒体の製造方法

### (57) 【要約】

【課題】 対向する基板の間に均一に粉体状の表示要素 を封入できる画像表示媒体の製造方法を提供する

【解決手段】 第1ローラ保持軸22にセットされた第1のフィルムローラ50から引出された第1の平板状基板50aに対し、第1の静電式塗布装置10によりスペーサ粒子を格子状にパタニングした後、第1定着器16により定着して第1の平板状基板50a状にスペーサを形成した後、第2の静電式塗布装置12により黒色の粒子を全面に塗布し、さらに、その上に、第3の静電式塗布装置14により日色の粒子を全面に塗布した後、ブレード18によりスペーサ上部の黒色粒子と白色粒子とを取り除いてから、第2ローラ保持軸24にセットされた第2のフィルムローラ52から引出された第2の平板状基板52aが重ねられ、第2定着器20によりスペーサ上部と第2の平板状基板52aとを固着する。



【特許請求の範囲】

【請求項1】 平板状の第1の基板と、前記平板状の第 1の基板と重ね合わせたときに該第1の基板との距離を 一定に保持するスペーサを備えた第2の基板のスペーサ 側と、の少なくとも一方に、複数の色材粒子を保持さ せ、

前記第1の基板と前記第2の基板との間に前記色材粒子 が配置されるように前記第1の基板と前記第2の基板の スペーサとを固定する画像表示媒体の製造方法。

【請求項2】 前記第2の基板に前記色材粒子を保持さ せたときに、前記スペーサの上面に保持された前記色材 粒子を取り除く請求項1に記載の画像表示媒体の製造方 法。

【請求項3】 平板状の第1の基板及び平板状の第2の 基板の一方又は両方に複数の色材粒子を保持させ、前記 第1の基板及び前記第2の基板の一方にスペーサ部材を 保持させ、

前記第1の基板と平板状の第2の基板との間に前記色材 粒子とスペーサ部材が配置されるように前記スペーサ部 材と前記第1の基板及び前記第2の基板とを固定する画 像表示媒体の製造方法。

【請求項4】 前記複数の色材粒子とスペーサ部材とを 中間転写体に転写し、該中間転写体から平板状の第1の 基板に保持させる請求項3に記載の画像表示媒体の製造 方法。

【請求項5】 平板状の第1の基板及び平板状の第2の 基板の一方をマスクした状態で前記平板状の第1の基板 及び平板状の第2の基板の一方又は両方に複数の色材粒 子を保持させ、

前記マスクを解除した後に前記第1の基板及び前記第2 の基板の一方にスペーサ部材を保持させ、

前記第1の基板と平板状の第2の基板との間に前記色材 粒子とスペーサ部材が配置されるように前記スペーサ部 材と前記第1の基板及び前記第2の基板とを固定する画 像表示媒体の製造方法。

【請求項6】 前記スペーサ部材は網状部材であること を特徴とする請求項1乃至請求項5の何れか1項に記載 の画像表示媒体の製造方法。

【請求項7】 前記スペーサ部材又は前記スペーサ部材 を接着するための接着剤が弾性材料であることを特徴と 40 する請求項1乃至請求項6の何れか1項に記載の画像表 示媒体の製造方法。

【請求項8】 前記スペーサ部材は樹脂であることを特 徴とする請求項1乃至請求項7の何れか1項に記載の画 像表示媒体の製造方法。

【請求項9】 互いにはめ合わせ可能な形状の平板状の 第1の基板及び平板状の第2の基板の一方又は両方に複 数の色材粒子を保持させ、

前記第1の基板と平板状の第2の基板とをはめ合わせる ことにより前記第1の基板と前記第2の基板とを固定す 50 板、又は、第2の基板のスペーサ側、又は、第1の基板

る画像表示媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像表示媒体の製 造方法にかかり、特に、画像を繰り返し表示することが 可能な画像表示媒体の製造方法に関する。

[0002]

【従来の技術】従来より、電気的な力を利用して表示基 板に所望の画像を表示する電子ペーパー技術が知られて いる。このような電子ペーパー技術は、大別して、例え ば、電気泳動、サーマルリライタブル、液晶及びエレク トロクロミー等の技術を利用したもの等のように、対向 する基板の間に液体の表示要素もしくは表示要素を液体 中に分散させた表示液体を封入した構成のものと、図2 0に示すように、マトリクス電極92及び電荷輸送層9 4を順に積層した2つの表示基板90a、90bの間 に、導電性着色トナー96と白色粒子98と封入した構 成等のように、対向する基板の間にトナーのような粉体 状の表示要素を封入した構成のものとがある。

【0003】前者の対向する基板の間に液体の表示要素 もしくは表示要素を液体中に分散させた表示液体を封入 した構成の電子ペーパーの製造方法は一般的に知られて いる。例えば、液晶ディスプレイは、基板間を真空引き して液体の表示要素もしくは表示要素を液体中に分散さ せた表示液体を基板間に吸引させることにより作成され る。

[0004]

【発明が解決しようとする課題】しかしながら、後者の 対向する基板の間にトナーのような粉体状の表示要素を 30 封入した構成の電子ペーパーの製造方法は一般的に知ら れていない。このような構成の電子ペーパーを作成する 技術として粉体を分散媒に分散させて真空引きした基板 間に注入した後、分散媒を蒸発させることが考えられる が、基板間に充填された分散媒を完全に蒸発させること は難しく、現実的ではない。

【0005】以上のことから、本発明は、対向する基板 の間に均一に粉体状の表示要素を封入できる画像表示媒 体の製造方法を提供することを目的とする。

[0006]

【課題を解決するための手段】上記目的を達成すべく、 請求項1に記載の画像表示媒体の製造方法は、平板状の 第1の基板と、前記平板状の第1の基板と重ね合わせた ときに該第1の基板との距離を一定に保持するスペーサ を複数備えた第2の基板のスペーサ側と、の少なくとも 一方に、複数の色材粒子を保持させ、前記第1の基板と 前記第2の基板との間に前記色材粒子が配置されるよう に前記第1の基板と前記第2の基板の複数のスペーサと を固定する。

【0007】すなわち、請求項1の発明では、第1の基

3

と第2の基板のスペーサ側との両方に色材粒子を保持させた状態で第1の基板と第2の基板のスペーサとを固定することにより、対向する2つの基板間に均一に色材粒子を封入している。

【0008】特に、帯電特性の異なる2種類の色材粒子を用いる場合には、第1の基板に一方の帯電特性を有する色材粒子を付着させ、また、第2の基板のスペーサ側に他方の帯電特性を有する色材粒子を付着させるようにすると好ましい。

【0009】すなわち、請求項1の画像表示媒体の製造方法は、第1の基板と第2の基板のスペーサとを固定しているため、第1の基板と第2の基板との距離が常に一定距離に保たれる。また、色材粒子を少なくとも一方の基板に保持させるため、例えば、色材粒子が全く封入されていない領域があるなどのように、第1の基板と第2の基板の間に封入した色材粒子の量がスペーサにより画定された領域ごとに異なるなどの不都合が生じる恐れがなく、全ての領域で均一に色材粒子を封入できる。

【0010】また、色材粒子を基板に保持させる方法としては、以下の方法が使用できる。例えば、色材粒子を帯電させ、表面に静電潜像が形成された基板に帯電した色材粒子を直接保持させたり、表面に静電潜像が形成された中間転写体に帯電した色材粒子を保持させ、この中間転写体から前記基板に帯電した色材粒子を転写する保持させる等の静電記録法を利用した方法が使用できる。また、静電記録法として、電子写真法、マルチスタイラス電極、液体現像法、静電塗装法などを使えば所望のパターンで色材粒子を塗布できる。

【0011】また、別の方法として単純に基板に色材粒子を供給し、保持させる方法などが使用できる。このよ 30 うな方法としては、スクリーン印刷法、ブレード塗布法、ロール塗布法、スプレー塗布法、ギャップコート塗布法、バーコート塗布法などを使用することができ、これらの方法により色材粒子を供給することにより、色材粒子層を基板上に塗布できる。

【0012】また、色材粒子をエアブロー等で空間中に 浮遊させ、ある一定時間基板を前記空間中で保持または 通過させ、色材粒子の降下により均一な色材粒子層を基 板上に形成する粒子降下法を利用することもできる。

【0013】また、別の方法としては、内部に磁性体を有する色材粒子を用い、表面に磁気パターンが形成された基板に色材粒子を直接保持させたり、表面に磁気パターンが形成された中間転写体に色材粒子を保持させ、この中間転写体から前記基板に色材粒子を転写する保持させる等の磁気記録法を利用した方法が使用できる。磁気記録法として、マグネトグラフィ法を使えば所望のパターンで色材粒子を塗布できる。

【0014】さらに、色材粒子を分散媒に分散して基板表面に付着させ、該分散媒を蒸発させることにより色材粒子のみを基板に残留させて保持させる方法が使用でき

る。そのような方法として、スクリーン印刷法、ブレード塗布法、ロール塗布法、スプレー塗布法、ギャップコート塗布法、バーコート塗布法、インクジェットのような液体噴射装置などにより基板上に塗布した後、乾燥し分散媒を蒸発させることにより、均一な色材粒子層を基板上に塗布できる。

【0015】また、色材粒子を基板に直接供給した後、 基板を振動させることにより基板上の色材粒子の分布を 均一化させ、基板に保持させる方法などが使用できる。 そのような方法として、色材粒子を基板上にカスケード 現像した後、基板を振動させることで現像した色材粒子 を均一にならして層形成することができ、均一な色材粒 子層を基板上に塗布できる。この振動を加える方法は、 前述したスクリーン印刷法、ブレード塗布法、ロール塗 布法、スプレー塗布法、ギャップコート塗布法、バーコ ート塗布法、粒子降下法にも有効である。

【0016】さらに、所望のパターンに揮発性の液体を 塗布した基板に色材粒子を塗布し、その液体と色材粒子 を付着させることにより色材粒子を所望のパターンで基 板に保持させる方法などが使用できる。このような方法 としては、所望のパターンに揮発性の液体を塗布した基 板上にスクリーン印刷法、ブレード塗布法、ロール塗布 法、スプレー塗布法、粒子降下法などにより色材粒子を 供給して粒子を付着させ、パターン以外の余分な粒子は エア等で吹き飛ばし、さらに揮発性の液体を蒸発させる 方法を使用することができ、これにより、色材粒子層を 所望のパターンで基板上に塗布できる。

【0017】また、所望のパターンの開口部を有するマスクを基板上に載置し、粒子を供給した後、マスクを取り除くことにより色材粒子を所望のパターンで基板に保持させる方法などが使用できる。このような方法としては、所望のパターンの開口部を有するマスクを載置した基板にスクリーン印刷法、ブレード塗布法、ロール塗布法、スプレー塗布法、ギャップコート塗布法、バーコート塗布法、粒子降下法を用いて粒子を供給し、マスクを取り除く方法を使用することができ、これにより、色材粒子層を所望のパターンで基板上に塗布できる。

【0018】また、第2の基板のスペーサは、平板状の基板の表面を切削工具またはレーザなどで切削加工したりサンドプラスト加工を利用したり、リソグラフィ技術を利用してパターンニングすることにより形成できる。【0019】また、スペーサパターンの鋳型面を形成した金型にスペーサ基材を注入して固化させたり、ホットプレスにより成型し第2の基板とすることによりスペーサを備えた第2の基板を形成できる。この方法により不どの流気ができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。この方法によりができる。とによりができる。この方法によりができる。この方法によりが、あらいじめが電力によりができる。などではいいますがあります。

型し冷却して硬化させたりすることにより、大量生産に 適した製法でスペーサを複雑でかつ微細なパターンで形 成することができ、表示画像の高解像度化が可能であ る。

【0020】また、第2の基板のスペーサは、平板状の 基板に配置されたスペーサを固定して形成することもで きる。

【0021】例えば、接着性の分散媒にスペーサ粒子を分散して分散流体とし、この分散流体を、例えば、インクジェット記録装置のような液体噴射装置によって平板状の基板に噴き付け、分散媒の接着力によりスペーサ粒子を基板に固定したスペーサとしたり、スペーサ粒子を揮発性の分散媒に分散して固着層が形成された平板状の基板に供給した後、分散媒を蒸発させ基板表面の固着層の固着力により固定したスペーサとすることができる。

【0022】なお、固着層とは、接着材よりなる接着層、加熱により可塑化する熱可塑性樹脂層及び刺激硬化性樹脂層のいずれかである。なお、刺激硬化性樹脂としては、例えば、紫外線により硬化する紫外線硬化樹脂や、可視光線により硬化する可視光線硬化樹脂や、電子線により硬化する電子線硬化樹脂等を使用できる。

【0023】固着層を熱可塑性樹脂層とした場合は、分散媒を蒸発させた後、加熱して可塑化させた後冷却することにより、スペーサ粒子を第2の基板に固定できる。この方法によれば、簡便かつ低コストな方法でスペーサを持つ基板を作成することができる。また、基板に形成した固着層を刺激硬化性樹脂層とした場合は、分散媒を蒸発させた後、可視光線、紫外線、熱、電子線などの刺激を与えて硬化することにより、スペーサ粒子を第2の基板に固定できる。

【0024】また、スペーサは、表面に固着層が形成されたスペーサ粒子、又は、熱可塑性樹脂又は刺激硬化性樹脂からなるスペーサ粒子を平板状の基板に供給して、スペーサ粒子表面の固着層による固着力で基板に固定して形成することもできる。固着層は上述と同様の構成であるので説明は省略する。

【0025】例えば、スペーサ粒子を帯電させ、表面に 静電潜像が形成された基板に帯電したスペーサ粒子を直 接保持させたり、表面に静電潜像が形成された中間転写 体に帯電した色材粒子を保持させ、この中間転写体から 前記基板に帯電したスペーサ粒子を転写する保持させる 等の静電記録法を利用した方法が使用できる。また、静 電記録法として、電子写真法、マルチスタイラス電極、 液体現像法、静電塗装法などを使えば所望のパターンで スペーサ粒子を塗布できる。

【0026】なお、固着層とは、加熱により可塑化する 熱可塑性樹脂層である。固着層を加熱して可塑化させた 後冷却することにより、スペーサ粒子を第2の基板に固 定できる。この方法によれば、簡便かつ低コストな方法 でスペーサを持つ基板を作成することができる。 【0027】また、別の方法としては、内部に磁性体を 有するスペーサ粒子を用い、表面に磁気パターンが形成 された基板にスペーサ粒子を直接保持させたり、表面に 磁気パターンが形成された中間転写体にスペーサ粒子を 保持させ、この中間転写体から前記基板にスペーサ粒子を を転写する保持させたり、表面以外に基板の裏側に任意 のパターンを形成した磁性体もしくは電磁石などを配置 し、表面にスペーサ粒子を保持させた後、磁性体を取り 除くもしくは電磁石をオフにする等の方法が使用でき る。また、磁気記録法としてマグネトグラフィ法を使え ば所望のパターンでスペーサ粒子を塗布でき、スペーサ 粒子表面の固着層による固着力で基板に固定して形成す ることもできる。なお、固着層は上述と同様の構成であ

【0028】さらに、スペーサ粒子を分散媒に分散して基板表面に付着させ、該分散媒を蒸発させることによりスペーサ粒子のみを基板に残留させて保持させる方法が使用できる。このような方法として、スクリーン印刷法、ブレード塗布法、ロール塗布法、スプレー塗布法、ギャップコート塗布法、バーコート塗布法、インクジェットのような液体噴射装置などにより基板上に塗布し、スペーサ粒子表面の固着層による固着力で基板に固定して形成する方法を使用することもできる。なお、固着層は上述と同様の構成であるので説明は省略する。

るので説明は省略する。

【0029】さらに、所望のパターンに揮発性の液体を 塗布した基板にスペーサ粒子を塗布し、その液体とスペーサ粒子の付着させることによりスペーサ粒子を所望の パターンで基板に保持させる方法などが使用できる。こ のような方法として、所望のパターンに揮発性の液体を 塗布した基板上にスクリーン印刷法、ブレード塗布法、 ロール塗布法、スプレー塗布法、粒子降下法などにより スペーサ粒子を供給して付着させ、パターン以外の余分 なスペーサ粒子はエア等で吹き飛ばし、さらに揮発性の 液体を蒸発させることにより、スペーサ粒子を所望のパ ターンで基板上に塗布し、スペーサ粒子表面の固着層に よる固着力で基板に固定して形成する方法を使用するこ ともできる。なお、固着層は上述と同様の構成であるの で説明は省略する。

【0030】また、所望のパターンの開口部を有するマスクを基板上に静置し、スペーサ粒子を供給した後、マスクを取り除くことによりスペーサ粒子を所望のパターンで基板に保持させる方法などが使用できる。このような方法として、所望のパターンの開口部を有するマスクを静置した基板にスクリーン印刷法、ブレード塗布法、ロール塗布法、スプレー塗布法、ギャップコート塗布法、ハーコート塗布法、粒子降下法を用いてスペーサ粒子を供給し、マスクを取り除くことにより、スペーサ粒子を供給し、マスクを取り除くことにより、スペーサ粒子を所望のパターンで基板上に塗布し、スペーサ粒子表面の固着層による固着力で基板に固定して形成する方法を使用することもできる。固着層は上述と同様の構成で

あるので説明は省略する。

【0031】さらに、スペーサは、熱可塑性樹脂よりなるフィルムを、例えばサーマルヘッドなどを用いて熱転写して形成したり、刺激硬化性樹脂よりなるフィルムに刺激を与えて形成してもよい。この方法によれば、ホットプレスなどで基板を加工して所望のパターンを作成することができ、安価で大量生産に適した製法でスペーサを作成することが可能である。また、前記熱可塑性樹脂にあらかじめスペーサ粒子を練り込んだ樹脂を使うこともできる。

【0032】また、平板状の基板に配置するスペーサとして表面に熱可塑性樹脂層を備えた棒状の部材、又は、熱可塑性樹脂からなる棒状の部材を、平板状の基板に配置した後、熱により硬化させて形成したり、刺激硬化性樹脂層を備えた棒状の部材、又は、刺激硬化性樹脂からなる棒状の部材を、平板状の基板に配置した後、刺激により硬化させて形成してもよい。また、棒状の部材は複数を交差させて使用してもよい。熱可塑性樹脂及び刺激硬化性樹脂については上記と同様であるので、説明は省略する。

【0033】また、第2の基板として、高分子樹脂フィルムにスペーサー粒子を練り込み表面の凹凸の出来たフィルムを用いてもよい。この方法によれば、凹部により粒子の封入、凸部に熱可塑性樹脂及び刺激硬化性樹脂を塗布することにより第1の基板との接着が可能となる。

【0034】なお、スペーサは、第1の基板と第2の基板との距離を一定に保つものであればよいが、好ましくは、格子状若しくは網状とするとよい。格子状若しくは網状とすることによって第1の基板と第2の基板との間に多数に画定されたセルが形成されるので、表示媒体を動かしたとき等に色材粒子が表示媒体の部分に集まってしまうのを防げる。また、画定されたセルに封入する色材粒子の色を変えることで他色の表示ができるので好ましい。

【0035】なお、格子状もしくは網状の部材は、ステンレスなどの金属シートやポリイミドなどの樹脂フィルムをエッチングやレーザー加工により孔を空けたり、ニッケルなどの金属を電鋳法により析出形成したり、ステンレスなどの金属線、ナイロンなどの樹脂を網状に編んで作成することができる。また、これらの部材は、必要に応じて樹脂により絶縁材料などのコート、および接着性を持たせるため熱可塑性樹脂などのコートをして使用することができる。

【0036】また、請求項2の発明は、請求項1に記載の画像表示媒体の製造方法において、前記第2の基板に前記色材粒子を保持させたときに、前記スペーサの上面に保持された前記色材粒子を取り除いている。

【0037】すなわち、第2の基板に前記色材粒子を保持させると、第2の基板に設けられたスペーサの上面を含む全面領域に色材粒子が付着する。スペーサの上面に 50

は第1の基板が固定されるため、スペーサの上面に付着 した色材粒子はスペーサと第1の基板との固定と共に固 定される恐れがある。

【0038】スペーサと第1の基板との間に色材粒子が 固定されると、スペーサと第1の基板との接着性が低下 するだけでなく、第1の基板側を表示面としたときに固 定された色材粒子が常に見えてしまい画質を低下させ る。そのため、第2の基板を表示面とするのことによっ てよりよい画質を得ることができるが、さらに請求項2 のように、スペーサの上面に付着した色材粒子を取り除 くことにより、スペーサと第1の基板との接着性を向上 させ、また、第1の基板側を表示面としても第2の基板 を表示面としても画質が低下することなく常に良好に画 像が形成できる表示媒体が得られる。

【0039】スペーサの上面に付着した色材粒子を取り除く手段としては、例えば、スペーサの上面のみと接触するブレードと、第2の基板とを相対的に移動させることにより、スペーサの上面に付着した色材粒子を落とすとよい。

20 【0040】なお、スペーサの主面に付着した色材粒子の量はほぼ等しいため、ブレードと第2の基板とを1方向に相対移動させることにより、スペーサによって画定された各領域には常に1つのスペーサの上面から落された色材粒子が入るので、前記各領域には同じ量の色材粒子が保持されることには変わりがない。

【0041】また、ブレードを使って色材粒子を掻き均すことにより、スペーサによるセル構造や凹部に積極的に色材粒子を均一に充填することもできる。具体的には、第2の基板上に網状の部材を張りつけてスペーサーとし、色材粒子を塗布した後、ブレードにより掻き均すことにより、網状の部材により作成される第2の基板上の凹部に色材粒子を均一に充填することができる。またブレード部材の弾性率を変えることによって、ブレードの網部の凹凸への追従性をコントロールしたり、ブレードの網部に対する角度、網部へ押し付ける力をコントロールすることにより、色材粒子の充填の量を微調整することもできる。さらに網状の部材の凸部に付着した余分な色材粒子を取り除くことも出来る。

【0042】また、請求項3に記載の発明の画像表示媒体の製造方法は、平板状の第1の基板及び平板状の第2の基板の一方又は両方に複数の色材粒子を保持させ、前記第1の基板及び前記第2の基板の一方にスペーサ部材を保持させ、前記第1の基板と平板状の第2の基板との間に前記色材粒子とスペーサ部材が配置されるように前記スペーサ部材と前記第1の基板及び前記第2の基板とを固定する。

【0043】すなわち、請求項3の発明では、前記第1の基板に複数の色材粒子とスペーサ部材を保持させて前記第1の基板と前記第2の基板とを固定したり、前記第1の基板に複数の色材粒子保持させ、前記第2の基板に

固定する。

スペーサ部材を保持させて前記第1の基板と前記第2の 基板とを固定したり、前記第1の基板に少なくとも1種 類以上の色材粒子とスペーサ部材を保持させ、前記第2 の基板に残りの色材粒子を保持させて前記第1の基板と 前記第2の基板とを固定したり、前記第1の基板に少な くとも1種類以上の色材粒子を保持させ、前記第2の基 板に残りの色材粒子とスペーサ部材を保持させて前記第 1の基板と前記第2の基板とを固定することにより、対 向する2つの基板間に均一に色材粒子を封入できると共 に、別工程で基板にスペーサを設ける必要がないのでエ 10 程が簡略であり、好ましい。

【0044】また、請求項4に記載のように、前記複数の色材粒子とスペーサ部材とを中間転写体に転写し、該中間転写体から平板状の第1の基板に保持させることで、より工程が簡略となり好ましい。

【0045】なお、請求項3及び請求項4において、色材粒子及びスペーサ部材を基板に保持させる方法としては、請求項1に記載した方法のうち、以下の方法が使用できる。

【0046】すなわち、表面に静電潜像が形成された基板に帯電した色材粒子及び粒子状のスペーサ部材(以下、スペーサ粒子と称す。)を直接保持させる方法や、表面に静電潜像が形成された中間転写体に帯電した色材粒子及びスペーサ粒子を保持させ、この中間転写体から基板に帯電した色材粒子及びスペーサ粒子を転写する保持させる等の静電記録法を利用した方法が使用できる。なお、この方法を採用した場合の色材粒子とスペーサ粒子は上記請求項1で説明したものと同様のものを使用できるので説明は省略する。

【0047】また、別の方法としては、内部に磁性体を 30 有する色材粒子及びスペーサ粒子を少なくとも1 種類以上用い、表面に磁気パターンが形成された基板に色材粒子及びスペーサ粒子を直接保持させる方法や、表面に磁気パターンが形成された中間転写体に色材粒子及びスペーサ粒子を少なくとも1 種類以上保持させ、この中間転写体から基板に色材粒子を転写する保持させる等の磁気記録法を利用した方法が使用できる。なお、この方法を採用した場合の色材粒子とスペーサ粒子も上記請求項1で説明したものと同様のものを使用できるので説明は省略する。 40

【0048】また、請求項5記載の発明の画像表示媒体の製造方法は、平板状の第1の基板及び平板状の第2の基板の一方をマスクした状態で前記平板状の第1の基板及び平板状の第2の基板の一方又は両方に複数の色材粒子を保持させ、前記マスクを解除した後に前記第1の基板及び前記第2の基板の一方にスペーサ部材を保持させ、前記第1の基板と平板状の第2の基板との間に前記色材粒子とスペーサ部材が配置されるように前記スペーサ部材と前記第1の基板及び前記第2の基板とを固定する。

【0049】すなわち、請求項5記載の発明では、メッシュ状の部材などにより平板状の第1の基板及び平板状の第2の基板の一方をマスクした状態で平板状の第1の基板及び平板状の第2の基板の一方又は両方に複数の色材粒子を保持させる。色材粒子を保持させた後はマスクを解除し、第1の基板及び第2の基板の一方にスペーサ部材を保持させる。そして、第1の基板と平板状の第2の基板との間に色材粒子とスペーサ部材が配置されるよ

10

【0050】このように、マスクした状態で色材粒子を保持させることにより、必要な箇所にのみ色材粒子を保持させることができる。なお、色材粒子を保持させる方法は請求項1で説明した方法を使用することができる。 【0051】なお、請求項6にも記載したように、スペーサ部材は網状部材としてもよい。これにより、簡便に

うにスペーサ部材と第1の基板及び前記第2の基板とを

【0052】また、請求項7にも記載したように、スペーサ部材又はスペーサ部材を接着するための接着剤を弾性材料としてもよい。これにより、第1の基板や管2の基板に対して縦方向又は横方向に応力が働いてもスペーサ部材又はスペーサ部材を接着するための接着剤が仲縮するため、基板をはがれにくくすることができる。

セル構造を作成することができる。

【0053】また、請求項8にも記載したように、スペーサ部材は樹脂としてもよい。例えば樹脂を第1の基板又は第2の基板の全面に塗布して加熱し硬化させた後、所定の凹凸形状を有した型で押し込むことによりスペーサとして機能させることができる。

【0054】また、請求項9記載の発明の画像表示媒体の製造方法は、互いにはめ合わせ可能な形状の平板状の第1の基板及び平板状の第2の基板の一方又は両方に複数の色材粒子を保持させ、前記第1の基板と平板状の第2の基板とをはめ合わせることにより前記第1の基板と前記第2の基板とを固定する。

【0055】すなわち、請求項9記載の発明では、第1 の基板及び第2の基板が所定の凹凸を有した形状となっている。このため、第1の基板又は第2の基板の凹部に 色材粒子を保持させることができる。そして、第1の基板と第2の基板とは互いにはめ合わせ可能な形状となっている。従って、凸部をスペーサ部材として機能させることができると共に、第1の基板と第2の基板とを接着させないで固定することが可能である。このため、簡易な工程で画像表示媒体を作成することができる。

【0056】また、上記手段などにより、色材粒子を塗布した後、上下電極によりAC印加を行い、色材粒子を流動せしめ、セル内均一塗布を行うことも出来る。

[0057]

【発明の実施の形態】以下、本発明の画像表示媒体の製造方法を用いて、2つの基板間に、色及び特性の異なる 2種類の粒子、例えば、導電製の黒色粒子と絶縁性の白

色粒子とが封入された複数のセルが形成された表示媒体、導電性の白色粒子と絶縁性の黒色粒子とが封入された複数のセルが形成された表示媒体、絶縁性の黒色粒子と絶縁性の白色粒子とが封入された複数のセルが形成された表示媒体、及び複数の色材粒子が封入された複数のセルが形成された表示媒体を製造する場合について説明する。

【0058】(第1の実施の形態)第1の実施の形態では、図1に示すように、大別して、第1の静電式塗布装置10、第2の静電式塗布装置12、第3の静電式塗布装置14、第1定着器16、ブレード18、第2定着器20、第1ローラ保持軸22及び第2ローラ保持軸24を備えたラインを使用し、電子写真法により第1の平板状基板50aに静電気的にスペーサ粒子60と2色の粒子とを塗布して第2の平板状基板52aを貼着する。

【0059】第1のフィルムローラ50及び第2フィルムローラ52は、例えば、PET (ポリエチレンテレフタラート) よりなり、厚さが、例えば、 $50\mu$ mの平板状基板を巻き取ってロール状にしたものである。第1のフィルムローラ50は第1ローラ保持軸22に、また、第2フィルムローラ52は第2ローラ保持軸24に夫々セットされ、それぞれ一端が引出されて次々に搬送される。

【0060】第1ローラ保持軸22と第2ローラ保持軸24との間には、第1ローラ保持軸22側から順に、第1の静電式塗布装置10、第1定着器16、第2の静電式塗布装置12、第3の静電式塗布装置14及びブレード18が配置され、第1のフィルムローラ50から引出された第1の平板状基板は、第1の静電式塗布装置10、第1定着器16、第2の静電式塗布装置12、第3の静電式塗布装置14及びブレード18を順に通過した後、第2フィルムローラ52から引出された第2平板状基板と重ねられ、第2定着器20により固着される。

【0061】第1の静電式塗布装置10は、スペーサ粒子60を静電的に第1の平板状基板50aに設ける装置であり、感光体ドラム31を一様に帯電させる帯電器30、格子状の静電潜像を感光体ドラム31に形成する光書き込み装置32、スペーサ粒子60を帯電させて感光体ドラム31に供給する現像器34、電界を加えて感光体ドラム31上に付着したスペーサ粒子を第1の平板状基板50aに転写するコロトロン36及び転写済みの感光体ドラム31表面に残留したスペーサ粒子を取り除くクリーナ37が感光体ドラム31の周囲に順に設けられた構成である。

【0062】スペーサ粒子60は、図2に示すように、平均粒径が、例えば、 $100\mu$ mのジピニルベンゼンを主成分とする架橋共重合体からなる絶縁性の粒子54の表面に、厚さが、例えば、 $10\mu$ mの熱可塑性樹脂層56が形成された構成の粒子である。

【0063】第1の静電式塗布装置10では、帯電器3

12

0により一様帯電された感光体ドラム31に、光書き込み装置32によって、例えば、単位格子が500 $\mu$ m×500 $\mu$ mの格子状の静電潜像を形成し、帯電状態のスペーサ粒子60を現像器34から供給して格子状の静電潜像に付着させて格子状に配列し、この格子状に配列されたスペーサ粒子60がコロトロン36を通過する際に電界を加えて、感光体ドラム31とコロトロン36との間を搬送される第1の平板状基板50 a上に連続的に転写する。

【0064】感光体ドラム31の下流側には第1定着器16が設けられている。第1定着器16は、スペーサ粒子60が転写された第1の平板状基板50aを加熱する。これにより、第1の平板状基板50aの表面に付着したスペーサ粒子60表面の熱可塑性樹脂層56が溶融して1部が絶縁性の粒子54と第1の平板状基板50aとの間の空隙に移動した状態となる。

【0065】第1定着器16を通過すると、第1の平板 状基板50aは外気により冷やされて、熱可塑性樹脂層 56が第1の平板状基板50aと固着し、スペーサ粒子 60が第1の平板状基板50aに固定される。これによ り、第1の平板状基板50aは、第2の平板状基板52 aとの距離を一定に保持する凸状スペーサを備えた基板 となる。

【0066】第1定着器16の後段には、第2の静電式 塗布装置12が設けられている。この第2の静電式塗布 装置12は、上述の第1の静電式塗布装置10と同様の 構成であるので、同様の符号を付して装置の説明は省略 する。

【0067】第2の静電式塗布装置12の現像器34に は、例えば、平均粒径20μm、抵抗値10-2Ω・cm程度のアモルファスカーボンよりなる真球状導電性黒色粒子等の導電性の黒色粒子62が充填されており、この導電性の黒色粒子62を帯電させて感光体ドラム31に供給する。なお、アモルファスカーボンよりなる真球状導電性黒色粒子62は熱硬化性フェノール樹脂を炭素化焼成して得られる。

【0068】第2の静電式塗布装置12の光書き込み装置32は、帯電器30により全面を帯電させる。そのため、現像器34から供給された帯電状態の真球状導電性40 黒色粒子62は、感光体ドラム31の全面に均一に付着し、コロトロン36を通過する際に加えられた電界により感光体ドラム31とコロトロン36との間を搬送される第1の平板状基板50a上に連続的に転写される。

【0069】したがって、第1の平板状基板50a上には、図3(A)に示すように、スペーサ粒子60の上面を含む全面に真球状導電性黒色粒子62が付着することになる。

【0070】第2の静電式塗布装置12の後段には、第3の静電式塗布装置14が設けられている。この第3の 50 静電式塗布装置14は、上述の第1の静電式塗布装置1 0と同様の構成であるので、同様の符号を付して装置の説明は省略する。

【0071】第3の静電式塗布装置14の現像器34には、隠蔽粒子としての役目を果たす、例えば、平均粒径約20μmのジビニルベンゼンを主成分とする架橋共重合体からなる真球粒子等の絶縁性の白色粒子64が充填されており、現像器34は絶縁性の白色粒子64を帯電させて感光体ドラム31に供給する。

【0072】第3の静電式塗布装置14の光書き込み装置32も上述した第2の静電式塗布装置12の光書き込み装置32と同様に帯電させる。

【0073】そのため、現像器34から供給された帯電 状態の絶縁性の白色粒子64は、感光体ドラム31の全 面に均一に付着し、コロトロン36を通過する際に加え られた電界により感光体ドラム31とコロトロン36と の間を搬送される第1の平板状基板50a上に連続的に 転写される。

【0074】したがって、第1の平板状基板50a上には、図3(B)に示すように、スペーサ粒子60の上面を含む全面に付着した真球状導電性黒色粒子62の層上に、絶縁性の白色粒子64が層状に付着することになる。

【0075】第3の静電式塗布装置14の後段には、ブレード18が設けられており、このブレード装置は、ブレードがスペーサ粒子60の上面と擦れることによってスペーサ粒子60の上面に付着している真球状導電性黒色粒子62及び絶縁性の白色粒子64を払い落とす。これにより、図3(C)に示すように、スペーサ粒子60によって画定された領域内のみに真球状導電性黒色粒子62と絶縁性の白色粒子64とが配置された状態となる。

【0076】ブレード18を通過した第1の平板状基板50aには、第2フィルムローラ52から引出された第2の平板状基板52aが供給されて重ねられた後、第2定着器20により加熱される。これにより、スペーサ粒子60の熱可塑性樹脂層56が溶融する。第2定着器20を通過すると、外気により冷やされて溶融した熱可塑性樹脂層56が第2の平板状基板52aに固着し、スペーサ粒子60の上面部分と第2の平板状基板52aとが40固定される。

【0077】これにより、図3(D)に示すように、対向する第1の平板状基板50aと第2の平板状基板52aとの間に均一に粉体状の色材粒子を封入した画像表示媒体が形成できる。

【0078】なお、画像表示媒体を構成させる第1の平板状基板 50a及び、第2の平板状基板 52aの組合せとしては、例えば、それぞれ電荷輸送性材料からなるフィルムに厚さ  $50\mu$ m程度の電極層を形成した 2層構造のフィルムが使用できる。

14

【0079】このような構成の基板を用いることにより、正孔輸送性フィルム側から電界を加えて前記電荷輸送性材料からなるフィルム側に色材粒子を画像データに応じて付着させ、画像を表示させることができる。

【0080】また、別の組合せとしては、例えば、ガラス基板上に複数のITO画素電極を設けた平板状基板と、ガラス基板上にITO電極を全面に設けた平板状基板との組合せが使用できる。この場合、ITO電極表面に電荷輸送材料からなる電荷輸送層を備えた基板を用いる。これにより、複数のITO画素電極を設けた平板状基板例から電界を加えて黒色粒子を画像データに応じて付着させ、画像を表示させることができる。

【0081】電荷輸送性材料としては、例えば、ポリエチレン樹脂中に正孔輸送物質であるN-メチルカルバゾールジフェニルヒドラゾンを約40重量%添加して均一に分散させた後、厚さ $50\mu$ m程度に成形したものや、ポリエチレン樹脂中に正孔輸送物質である $\beta$ ,  $\beta$ -ピス(メトキシフェニル)ピニルジフェニルヒドラゾンを約40重量%添加して均一に分散させた後、厚さ $50\mu$ m程度に成形した正孔輸送性フィルムなどを使用できる。【0082】なお、スペーサ粒子60としては、絶縁性の粒子54の表面に熱可塑性樹脂層56が形成された構成のものを使用した。

【0083】また、第1定着器16及び第2定着器20では、熱を加え熱可塑性樹脂を軟化させスペーザー粒子を固定する。例えば、熱可塑性樹脂層を表面に形成したスペーサ粒子60とした場合、第1定着器16及び第2定着器20では、スペーサー粒子を加熱してスペーサ粒子60を第1の平板状基板50a及び第2の平板状基板50 a及び第2の平板状基板50 a及び第2の平板状基板

【0084】なお、第1の静電式塗布装置10において 光書き込み装置32の代わりに、ピン電極、イオンフロ 一装置等他の静電潜像形成装置を使用することもでき る。

【0085】さらに、スペーサ粒子60を磁性粒子とす ることにより、磁気記録法を用いて第1の平板状基板5 0 a 上にスペーサ粒子60を格子上にパタンニングして 並べることができる。この場合、上記ラインにおいて、 第1の静電式塗布装置10の代わりにマグネトグラフィ などの磁気記録装置を設ればよい。磁気記録装置として は、例えば、図4に示すように、軟磁性薄膜ドラム33 の周囲に、軟磁性薄膜ドラム33の表面に格子状の磁気 パターンを形成する磁気書き込み装置35、スペーサ粒 子60を軟磁性薄膜ドラム33に供給する現像器34、 磁界を加えて軟磁性薄膜ドラム33上に付着したスペー サ粒子を第1の平板状基板50aに転写する磁気発生装 置38及び軟磁性薄膜ドラム33表面に残留したスペー サ粒子を取り除くクリーナ37が順に設けられた構成で ある。この磁気記録装置は磁気を用いる点以外は上述の 50 第1の静電式塗布装置10と同様であるので詳細な説明

は省略する。

【0086】また、スペーサ粒子60、黒色粒子62及び白色粒子64を失々分散媒に分散して分散被とし、この分散液を現像器34から感光体ドラム31に供給するように構成することもできる(すなわち、液体現像)。

【0087】(第2の実施の形態)第2の実施の形態は、上記第1の実施の形態の変形例であり、図5に示すように、第1ローラ保持軸22と第2ローラ保持軸24との間に、第1ローラ保持軸22側から順に、第1の静電式塗布装置12及びブレード18が配置され、第1のフィルムローラ50から引出された第1の平板状基板50aに、第1の静電式塗布装置10及び第1定着器16によりスペーサを形成した後、第2の静電式塗布装置12により黒色粒子62を全面に付着させ、ブレード18によりスペーサ粒子60の上面に付着している黒色粒子62を払い落してさらに搬送する。

【0088】一方、第2のフィルムローラ52から引出された第2の平板状基板52a側には、第3の静電式塗布装置14が設けられており、この第3の静電式塗布装置14により白色の粒子64が第2の平板状基板52aに付着される。

【0089】すなわち、第2の実施の形態では、スペーサが形成された後、黒色粒子62が表面に付着された第1の平板状基板50aと、白色の粒子64が付着された第2の平板状基板52aとを黒色粒子62及び白色の粒子64とが基板間に配置されるように重ね、第2定着器20により加熱して、スペーサ粒子60の上面部分と第2の平板状基板52aとを固定する。

【0090】これにより、対向する第1の平板状基板50aと第2の平板状基板52aとの間に均一に粉体状の色材粒子を封入した画像表示媒体が形成できる。この方法によれば、黒色粒子62と白色粒子64とが逆の電荷に帯電して反発する場合にも問題なく2つの基板間に封入できる。なお、この方法では、白色粒子64がスペーサ粒子60の上面部分と第2の平板状基板52aとの間に挟まれた状態で固定されるがこの粒子は隠蔽粒子であるのではど問題にならない。また、その他は上述の第1の実施の形態と同様であるので説明は省略する。

【0091】(第3の実施の形態)第3の実施の形態は、上記第1の実施の形態の別の変形例であり、図6に示すように、一対の回転ローラ対28により回転する無端ベルト状の中間転写体26に、第1の静電式塗布装置10、第2の静電式塗布装置12、第3の静電式塗布装置14を順に配置し、それぞれ中間転写体にスペーサ粒子60、黒色粒子62及び白色粒子64が転写された中間転写体からコロトロン39により第1の平板状基板50aに一括転写した後、第2の平板状基板50aを合わせて第2定着器20により第1の平板状基板50a

16

と第2の平板状基板52aとの間のスペーサ粒子60の表面の熱可塑性樹脂層56を溶融させ、スペーサ粒子60を介して第1の平板状基板50aと第2の平板状基板52aとを一括して固定する。この方法によれば、定着工程が一回で済むので製造工程が簡略となるという利点がある。なお、その他は上述の第1の実施の形態と同様であるので説明は省略する。

【0092】(第4の実施の形態)第4の実施の形態は、上記第1の実施の形態の変形例であり、図7に示すように、第2の静電式塗布装置12、第3の静電式塗布装置14の代わりに分散媒に分散させた黒色粒子62と分散媒に分散させた白色粒子64とをそれぞれスプレー塗布装置13により第1の平板状基板50aに噴霧した後、乾燥装置15により分散媒を乾燥させることにより黒色粒子62と白色粒子64を第1の平板状基板50a状に均一に保持させる。

【0093】黒色粒子62及び白色粒子64を夫々分散させる分散媒としては、例えば、イソプロピルアルコール水溶液などのアルコール溶液等の揮発性の高い溶液を使用できる。

【0094】なお、この方法は、第2の実施の形態及び第3の実施の形態にも応用できる。この方法によれば、簡単に均一な粒子層を基板上に形成できるという利点がある。なお、その他は上述の第1の実施の形態と同様であるので説明は省略する。

【0095】(第5の実施の形態)第5の実施の形態は、上記第1の実施の形態の変形例であり、図8に示すように、第2の静電式塗布装置12、第3の静電式塗布装置14の代わりに黒色粒子62と白色粒子64とをそれぞれ紛体散布装置17により第1の平板状基板50aに散布した後、加振装置19により第1の平板状基板50aに振動を与えて黒色粒子62と白色粒子64を第1の平板状基板50a状に均一に保持させる。なお、この方法は、第2の実施の形態及び第3の実施の形態にも応用できる。

【0096】この方法によれば、簡単に均一な粒子層を基板上に形成できるという利点がある。なお、その他は上述の第1の実施の形態と同様であるので説明は省略する。

0 【0097】(第6の実施の形態)第6の実施の形態は、 上記第1の実施の形態の変形例であり、図9に示すよう に、第1の静電式塗布装置10の代わりにスクリーン印 刷装置21、加熱装置23とを備えている。

【0098】スクリーン印刷装置21は、例えば、熱硬化性エポキシ樹脂に、例えば、平均粒径が $100\mu$ mの絶縁性スペーサー粒子を分散したものを、例えば、単位格子が $500\mu$ m× $500\mu$ mの格子状に第1の平板状基板50aの表面に印刷する。

【0099】スクリーン印刷装置21の後段には、加熱 50 装置23が設けられており、表面に格子状に印刷された スペーサー粒子分散熱硬化性エポキシ樹脂を加熱して、 熱硬化性エポキシ樹脂を硬化させる。これにより、第1 の平板状基板50aは、第2の平板状基板52aとの距 棚を一定に保持する凸状スペーサを備えた基板となる。

【0100】また、第2フィルムローラ52から引出した第2の平板状基板52aに熱硬化性樹脂塗布装置46が設けられており、この熱硬化性樹脂塗布装置46により、第2の平板状基板52aの第1の平板状基板50aとの貼り合わせ側に熱硬化性樹脂を、例えば、10μm程度の厚さとなるように塗布する。

【0101】これにより、第2定着器20により加熱されたときに、第2の平板状基板52aに塗布された熱硬化性樹脂が硬化して第1の平板状基板50a側に設けられたスペーサ粒子60上面部分と第2の平板状基板52aとが固定される。

【0102】なお、スクリーン印刷装置21が使用できるスペーサー粒子としては、上述の第1の実施の形態で使用した平均粒径が、例えば、100μmのジピニルペンゼンを主成分とする架橋共重合体からなる絶縁性の粒子54等を使用できる。また、スペーサー粒子の分散媒として、熱硬化性エポキシ樹脂を使用したがこれに限らず、その他の熱硬化性樹脂や、上述した刺激硬化性樹脂等を使用できる。

【0103】また、スペーサー粒子として上述の第1の実施の形態で使用したものと同様の構成のものを分散媒に分散したものをスクリーン印刷装置21により印刷するようにもできる。この場合、熱硬化性樹脂塗布装置46は不要となる。

【0104】なお、このスペーサの形成方法は、第1の mの平 実施の形態に限らず、例えば、第2の実施の形態、第4 30 する。 の実施の形態、第5の実施の形態のように、スペーサ粒 【01子を直接第1の平板状基板50a上に固着させて形成す 6のまる方法の代わりに使用できる。 第2点

【0105】(第7の実施の形態)第7の実施の形態は、 上記第6の実施の形態の変形例であり、図10に示すよ うに、スクリーン印刷装置21、加熱装置23の代わり に紫外線硬化樹脂塗布装置40、露光装置42、未露光 樹脂除去装置44とを備えている。

【0106】すなわち、第7の実施の形態では、紫外線 便化樹脂塗布装置 40により第1の平板状基板 50 aの 40 表面に紫外線硬化樹脂層を、例えば、100  $\mu$ m程度の 厚さとなるように塗布して、露光装置 42により、例えば、幅が 10  $\mu$ mの隔壁により単位格子が 100  $\mu$ m× 100  $\mu$ mの格子状に紫外線で露光する。

【0107】その後、未露光樹脂除去装置44により露光されていない領域の紫外線硬化樹脂を取り除き、単位格子が $100\mu$ m× $100\mu$ mの格子状のスペーサを表面に備えた第1の平板状基板50aとなる。

【0108】第7の実施の形態では、紫外線硬化樹脂を使用した場合について述べたが、紫外線硬化樹脂の代わ

18

りに電子線硬化性樹脂等の刺激硬化性樹脂などを使用できる。

【0109】なお、このスペーサの形成方法は、上記第6の実施の形態と同様に、例えば、第1の実施の形態、第2の実施の形態、第4の実施の形態、及び第5の実施の形態のように、スペーサ粒子を直接第1の平板状基板50a上に固着させて形成する方法の代わりに使用できる。

【0110】(第8の実施の形態)第8の実施の形態は、 10 上記第6の実施の形態の変形例であり、図11に示すように、スクリーン印刷装置21、加熱装置23の代わりにアプレーション装置25を備えている。

【0111】アプレーション装置25は、紫外線レーザを備え、この紫外線レーザにより第1のフィルムローラ50から引出された第1の平板状基板50aの表面を、例えば、幅が10 $\mu$ mの隔壁により単位格子が100 $\mu$ m×100 $\mu$ mの格子が残るように、深さ100 $\mu$ m程度までアプレーションを行う。

【0112】これにより、単位格子が $100\mu m \times 10$  $0\mu m$ の格子状のスペーサを表面に備えた第1の平板状 基板50aとなる。この方法によれば、容易にかつ精度 よくスペーサを形成できるという利点がある。

【0113】なお、第8の実施の形態では、紫外線レーザにより第1の平板状基板50aの表面を削り取るため、第1の平板状基板50aは、予めスペーサ形成分の厚さを考慮した厚さのものを使用する。例えば、第1のフィルムローラ50として、PET(ポリエチレンテレフタラート)よりなり、厚さが、例えば、厚さ150 $\mu$ mの平板状基板を巻き取ってロール状にしたものを使用する。

【0114】なお、このスペーサの形成方法は、上記第6の実施の形態と同様に、例えば、第1の実施の形態、第2の実施の形態、第4の実施の形態、及び第5の実施の形態のように、スペーサ粒子を直接第1の平板状基板50a上に固着させて形成する方法の代わりに使用できる

【0115】(第9の実施の形態)第9の実施の形態は、上記第6の実施の形態の変形例であり、スペーサ付き平板状基板51aを巻き取ってロール状にしたものを第1のフィルムローラ51として使用する。

【0116】スペーサ付き平板状基板51aは、上述の第1の実施形態から第8の実施の形態でのスペーサを形成する工程を別に行って形成したものでもよいし、例えば、図12に示すように、放電加工により例えば、深さが100 $\mu$ m、間隔の幅が10 $\mu$ mの100 $\mu$ m×100 $\mu$ mの単位格子の格子状の型を形成した金型70を作成し、熱硬化性樹脂又は刺激硬化性樹脂を流し込んだ後、熱又は刺激を与えて硬化させることにより形成したり、図13に示すように、底面に平板状基板50aを敷設した筐体72の中にスペーサ粒子が分散された分散液

をいれ、溶媒を蒸発させることにより形成できる。

【0117】この場合、スペーサ粒子としては第1の実施の形態で説明した絶縁性の粒子54の表面に熱可塑性樹脂層56(又は刺激硬化性樹脂層)が形成された構成の粒子を用い、溶媒蒸発後に加熱又は対応する刺激を与えることでスペーサ粒子を平板状基板に固着させる。

【0118】また、別の方法として、図14に示すように、接着剤を含む媒体中に第1の実施の形態で説明した絶縁性の粒子54のを分散させ、例えば、インクジェット記録装置のような構成の液体噴射装置によって平板状基板に格子状に吐出させてスペーサ付き平板状基板51 aを得ることもできる。

【0119】この応用として、図15に示すように、接着剤を例えば、インクジェット記録装置のような構成の液体噴射装置によって平板状基板に格子状に吐出させた後、粒子供給装置78によって平板状基板に絶縁性の粒子54を供給することにより接着剤の上に絶縁性の粒子54を付着させて、スペーサ付き平板状基板51aを得ることもできる。

【0120】また、その応用として、図16(A)に示 20 すように、第1の実施の形態で説明した絶縁性の粒子5 4を分散させたインクリボン82などの固体転写材をサーマルヘッド80により軟化させて平板状基板51aとしたり、図16(B)に示すように、インクリボン82などの固体転写材をサーマルヘッド80により軟化させて平板状基板に格子状に転写した後、インクが固まらないうちに粒子供給装置78によって平板状基板に絶縁性の粒子54を供給し、インクパターンに付着した絶縁性の粒子54を加圧装置により付着させて、インクパタ 30 ーンに押し込むことにより、スペーサ付き平板状基板51aとすることもできる。

【0121】また、図17に示すように、流動状態の樹脂86(上記で説明したものと同様のものを使用できる。)を格子状パターンとなるように平板状基板に滴下した後、固化させることにより、スペーサ付き平板状基板51aを得ることもできる。

【0122】さらに、図18に示すように、熱可塑性樹 固着して動きにくくな し、均一かつ移動性に し、均一かつ移動性に し、均一かつ移動性に して なる棒状のスペーサ部材を平板状基板に並列配置し で作ることも出来る。 【0132】このよう で、熱または対応する刺激を与えることにより平板状基 り、電界を加えて色板に固着させ、ことにより、スペーサ付き平板状基板 5 付着させ、画像を表示 1 a を得ることもできる。 【0133】また、別

【0123】このようにして得たスペーサ付き平板状基板51aは、一旦ロール状に巻き取られて図19に示すラインの第1ローラ保持軸22にセットされる。

【0124】このラインは、上述の第1の実施の形態で 状基板52aとの組合せが使用できる。この場合、IT 示したラインから第1の静電式塗布装置10を取り除い 〇画素電極106の表面に誘電体材料からなる絶縁層1 た構成であり、上述したように黒色の粒子62と白色の 50 08を備えた基板を用いる。これにより、複数のITO

粒子64とが表面に均一に塗布された後、第2の平板状基板52aが貼り合わされ、対向する第1の平板状基板51aと第2の平板状基板52aとの間に均一に粉体状の色材粒子を封入した画像表示媒体が形成できる。

20

【0125】なお、本第9の実施の形態においては黒色の粒子62と白色の粒子64とを静電記録装置を用いた静電記録法により供給するようにしたが、もちろん、静電記録法に限らず、上述した全ての方法を採用できる。【0126】(第10の実施の形態)第10の実施の形態は、上記第5の実施の形態の変形例であり、図21に示すように、第1の静電式塗布装置10の代わりにフィルムローラ100から引き出された網状部材100aを第1の平面状基板50a上に接着若しくは熱融着してスペ

【0127】まず、フィルムローラ50から引き出された第1の平面状基板50a上に、第1の接着剤塗布装置102により透明エポキシ系接着剤が塗布される。そして、フィルムローラ100から引き出された網状部材100aが第1の平面状基板50aと接着される。その後、第1定着器16により加熱して接着剤を硬件をせた後、紛体散布装置17により色材粒子103を網上部材100a上に散布する。

ーサーとする場合について説明する。

【0128】散布された色材粒子103はプレード18により均一に均され、網状部材100aの網目部に塗布される。この時、同時に網上部材100aの凸部に付着した色材粒子103は除去される。

【0129】次に、第2の平面状基板52aをフィルムローラ52から引き出し、第2の接着剤塗布装置104により透明エポキシ系接着剤を塗布した後、第1の平面 30 状基板50aと重ね合わせて色材粒子103を封じ込めた後、第2定着器20により加熱して接着剤を硬化させる。

【0130】ここで、色材粒子とは白色及び黒色の絶縁性粒子を混合し振動を与えて摩擦帯電させたものである。

【0131】さらに、予め上下電極間にAC電圧を印可 し色材粒子103を流動化させることにより、部分的に 固着して動きにくくなっている色材粒子103をほぐ し、均一かつ移動性に優れた色材粒子103の塗布状態 を作ることも出来る。

【0132】このような構成の基板を用いることにより、電界を加えて色材粒子103を画像データに応じて付着させ、画像を表示させることができる。

【0133】また、別の組合せとしては、例えば、図22に示すように、ガラス基板上に複数のITO画素電極106を設けた第1の平板状基板50aと、ガラス基板上に複数のITO電極106を全面に設けた第2の平板状基板52aとの組合せが使用できる。この場合、ITO画素電極106の表面に誘電体材料からなる絶縁層108を備えた基板を用いる。これにより、複数のITO

画素電極106を設けた平板状基板側から電界を加えて 色材粒子103を画像データに応じて付着させ、画像を 表示させることができる。

【0134】このように、網状部材をスペーサとして使用することにより、簡便にセル構造を作成できる。また、粒子の電気特性等によらずに簡便に色材粒子を塗布することが可能となる。また、複数の粒子を混合して塗布することも可能である。

【0135】(第11の実施の形態)第11の実施の形態は、基板上に帯状の電極を配置し、その上に型をあわせ、基板と型の間に樹脂を注入し硬化させ、電極固定と同時に絶縁膜を基板上に作成する場合について説明する。

【0136】まず、厚さ5mmのアクリル基板からなる120 mmx120mmの第1の平面状基板50aの上に幅9mm、長さ120mmの短冊状のITO蒸着PETフィルム(東レ製)110を、図23(A)に示すように、ITO面を上に向け、1mmの間隔で配置し、PETフィルムの上端と下端をそれぞれ押え、図23(B)に示すようにITOを配列した上から透明エポキシ系接着剤112を塗布し、その後加熱して硬化させ、上端と下端の押えを外して電極とする。

【0137】そして、基板に透明エポキシ系接着剤114を塗布した際、図23(C)に示すように任意の凹凸を有する型114をあわせる事により、図23(D)に示すように透明エポキシ系接着剤により任意の凹凸を持つスペーサーを作成することができる。

【0138】同様に、第2の平面状基板52aにもITO 蒸着PETフィルム110を配置し、PETフィルム110の上端と下端をそれぞれ押え、ITOを配列した上から透明エポキシ系接着剤112を塗布し、その後加熱して硬化させ、上端と下端の押えを外して電極とする。なお、色材粒子103の塗布等については上記第10の実施の形態と同様であるので説明は省略する。このように、接着剤を使用することにより簡便にマトリックス電極を持ったセル構造を作成することができる。そして、このような構成の基板を用いることにより、電界を加えて色材粒子103を画像データに応じて付着させ、画像を表示させることができる。

【0139】(第12の実施の形態)第12の実施の形態は、乾式スクリーン塗布装置を使い、粉体のみでメッシ 40 ュとブレードを使い、スクリーン印刷により色材粒子を塗布するものであり、マスクの併用により必要なところのみ色材粒子の塗布が可能となるものである。

【0140】まず、ITO電極を蒸着したガラス基板からなる第1の平面状基板50a及び第2の平面状基板52aに所望の電極パターンをエッチングにより作成し、図24に示すように第1の平面状基板50a上にマスク116を報せて必要な部位以外に色材粒子103が塗布されないようにする。

【0141】次に、乾式スクリーン塗布装置18により 50 128が設けれられており、液体塗布装置128により

スクリーンメッシュ上に色材粒子103を減せ、ブレード18で掻き均し、均一に色材粒子を塗布する。その後図示しないマスク除去装置によりマスク116を取り払い、エポキシ系接着剤を両面に塗布したスペーサ部材120を載せた後、第2の平面状基板52aを張り合わせ接着する。なお、その他は上述の第10の実施の形態と同様であるので説明は省略する。

22

【0142】なお、第1の平面状基板50a及び第2の平面状基板52aは、図25に示すように、複数のIT 0 の画素電極106を設けた平板状基板である。この場合、ITO電極106の表面に誘電体材料からなる絶縁層108を備えた基板を用いる。これにより、複数のITO画素電極を設けた平板状基板側から電界を加えて色材粒子を画像データに応じて付着させ、画像を表示させることができる。

【0143】このように、粒子の電気特性等によらずに 簡便に色材粒子を塗布することが可能となる。また、複 数の粒子を混合して塗布することも可能である。さら に、マスクを用いて色材粒子を塗布することにより余分 な部位に色材粒子を塗布するのを防いで必要なところの み色材粒子103を塗布することができる。

【0144】(第13の実施の形態)第13の実施の形態は、上記第12の実施の形態の変形例であり、図26に示すように、乾式スクリーン塗布装置118の代わりにスプレー塗布装置(湿式)122を設けたものである。【0145】スプレー塗布装置122では、分散媒に分散した色材粒子103をスプレーにより塗布する。その後、真空乾燥装置124により100°Cにおいて30分間加熱し完全に分散媒を蒸発させた後、図示しないマスク除去装置によりマスク116を取り除き、エポキシ系接着剤を両面に塗布したスペーサ部材120を載せた後、第2の平面状基板52aを張り合わせ接着する。なお、その他は上述の第12の実施の形態と同様であるので説明は省略する。

【0146】(第14の実施の形態)第14の実施の形態は、上記第13の実施の形態の変形例であり、図27に示すように、スプレー塗布装置(湿式)122の代わりに紛体スプレー塗布装置(乾式)126を設け、密閉した空間に白黒それぞれの色材粒子をスプレーにより気流により浮遊させ基板上に降下させる。

【0147】このように色材粒子を浮遊降下させることにより均一に粒子を塗布することが出来る。また、塗布量の制御についても、降下させる時間を加減することにより正確に制御することが可能である。なお、その他は上述の第13の実施の形態と同様であるので説明は省略する。

【0148】(第15の実施の形態)第15の実施の形態は、上記第14の実施の形態の変形例であり、図28に示すように、揮発性溶媒を塗布するための液体塗布装置

予め揮発性溶媒を塗布する。そこに白黒それぞれの色材 粒子を紛体スプレー装置により126によりスプレー塗 布し、揮発性液体を塗布した部位に付着させる。その 後、エアプロー装置130によりエアプローすることに より余分な色材粒子を除去する。次に、真空乾燥装置 1 24により100°Cで30分間加熱し完全に揮発性液 体を蒸発させた後、エポキシ系接着剤を両面に塗布した スペーサ部材120を載せ、第2の平面状基板52aを 張り合わせ接着する。

【0149】このように、乾式スプレー塗布において、 予め揮発性溶媒により第1の平面状基板50aにパター ンを形成し、色材粒子103をスプレー塗布し、余分な 色材粒子をエアで吹き払った後揮発性溶媒を乾燥するこ とにより、任意のパターンにのみ色材粒子を塗布するこ とが可能となる。これにより、図29に示すような基板 が作成される。なお、その他は上述の第14の実施の形 態と同様であるので説明は省略する。

【0150】(第16の実施の形態)第16の実施の形態 は、第1の平面状基板50a及び第2の平面状基板52 aを、図30に示すように両者をはめ込むことができる ような形状としたものである。これは以下のようにして 作成する。

【0151】まず、アクリル板からなる第1の平面状基 板50aに任意の凹凸パターンを切削機械により作成 し、第1の平面状基板50aの凹凸パターンとかみ合う ようにな凹凸パターンを第2の平面状基板52aに切削 機械により作成する。すなわち、第1の平面状基板50 aの凸部が第2の平面状基板52aの凹部に、第1の平 面状基板50aの凹部が第2の平面状基板52aの凸部 となるようにそれぞれの凹凸パターンを作成する。な お、切削に限らず、金型、UV硬化、レーザーアブレー ション等により凹凸パターンを作成してもよい。

【0152】次に、色材粒子103を第1の平面状基板 50aの凹凸パターン上に散布する。散布した色材粒子 103はスキージーにより均一に均され、図30に示す ように凹凸パターンの凹部に塗布される。そして、第1 の基板の凹凸パターンと第2の基板の凹凸パターンを図 30に示すように重ね合わせる。

【0153】このように、第1の平面状基板50aと第 2の平面状基板50bとを噛み合わせることにより、接 40 着等の工程が不要で簡易に画像表示媒体を作成すること が出来る。

【0154】(第17の実施の形態)第17の実施の形態 は、図31に示すように、スペーサー部材120に弾性 材料を使用したり、図32に示すように、スペーサの接 着剤132に弾性材料を使用したものである。

【0155】スペーサー部材120に弾性材料を使用す ることにより、図31(A)に示すように、横方向(図 中矢印A方向) に力が加わった場合や、図31(B)に 示すように、縦方向(図中矢印B方向)に力が加わった 50 MX)、ポリテトラフルオロエチレンの微粒子(ダイキン

24

場合においても、スペーサー部材120が仲縮するた め、接着がはがれてしまうのを防ぐことができる。

【0156】同様に、スペーサの接着剤132に弾性材 料を使用することにより、図32(A)に示すように、 横方向に力が加わった場合や、図32(B)に示すよう に、縦方向に力が加わった場合においても、接着剤13 2が仲縮するため、接着がはがれてしまうのを防ぐこと ができる。

【0157】なお、上記全ての実施の形態では、導電性 の粒子及び絶縁性の粒子を用いることができる。導電性 の粒子は、基板との接触により電荷の移動を行なうこと ができるものであり、安定して電荷を保持できるという 利点がある。したがって導電性粒子を使用することによ り、繰り返し使用での粒子の安定性が良好となり好まし い。また、絶縁性の粒子は、単独の粒子もしくは特性の 異なる複数の粒子の摩擦帯電により帯電分布を持たせた 粒子を電界により駆動することができる。

【0158】基板との接触により電荷の移動を行なう機 能を有する材料としては、たとえば、カーボンブラッ ク、ニッケル、銀、金、錫、などの金属の粒子、あるい はそれらの材料を粒子表面に被覆、あるいは含有した粒 子である。

【0159】具体的には、ジビニルベンゼンを主成分と する架橋共重合体からなる微粒子の表面に無電界ニッケ ルメッキを行った真球状導電性粒子(ミクロパールNI (商品名) ; 積水化学工業製)、さらにその後、金置換 メッキを施した真球状導電性粒子(ミクロバールAU(商 品名);積水化学工業(株)製)があげられる。

【0160】また、熱硬化性フェノール樹脂を炭素化焼 成して得られるアモルファスカーボンの真球状導電性粒 子(ユニペックスGCP、H-Type(商品名);ユニチカ (株) 製:体積固有抵抗≦10-2Ω·cm)、さらに金、銀 などの金属を表面被覆した真球状導電性粒子(ユニベッ クスGCP導電性粒子(商品名);ユニチカ(株)製: 体積固有抵抗≤10<sup>-4</sup>Ω·cm)、シリカ、アルミナの真球 状酸化物微粒子の表面にAg及び酸化錫をコーティングし た真球状導電性粒子(アドマファイン(商品名);

(株) アドマテックス製)、あるいはスチレンやアクリ ルやフェノール樹脂やシリコーン樹脂やガラスなど各種 材料からなる母粒子の表面に導電性の微粉末を付着させ たり、埋め込んだりした粒子が挙げられる。

【0161】また、絶縁性粒子としては、前述したもの に限定されるものではなく、以下の材料を使用すること も可能である。なお、後述する各実施の形態において も、同様に以下の材料を使用することが可能である。

【0162】まず、絶縁性白色粒子としては、酸化チタ ン含有架橋ポリメチルメタクリレートの球状微粒子(積 水化成品工業(株)製MBX-ホワイト)、架橋ポリメチ ルメタクリレートの球状微粒子(綜研化学製ケミスノー

工業(株)製ルプロンし、 Shamrock Technologies In c. 製 SST-2 )、フッ化炭素の微粒子(日本カーボン製CF-100、ダイキン工業製CFGL、CFGM)、シリコーン樹脂微粒子(東芝シリコーン(株)製トスパール)、酸化チタン含有ポリエステルの微粒子(日本ペイント製ビリューシア PL1000ホワイトT)、酸化チタン含有ポリエステル・アクリルの微粒子(日本油脂製コナックNo 1 8 0 0 ホワイト)、シリカの球状微粒子(宇部日東化成製ハイプレシカ)があげられる。

【0163】また、絶縁性黒色の粒子としては、ジビニルベンゼンを主成分とする架橋共重合体からなる真球状粒子(積水化学工業製ミクロパールBB、ミクロパールBBP)、架橋ポリメチルメタクリレートの球状微粒子(積水化成品工業(株)製MBX-ブラック)、また、導電性黒色の粒子としては、フェノール樹脂粒子を焼成したアモルファスカーボンの微粒子(ユニチカ製 ユニベックスGCP)、炭素及び黒鉛質の球状微粒子(日本カーボン製ニカビーズICB、ニカビーズMC、ニカビーズPC)があげられる。

#### [0164]

【発明の効果】以上説明したように本発明によれば、対向する基板の間に均一に粉体状の表示要素を封入できる、という効果がある。

### 【図面の簡単な説明】

【図1】 第1の実施の形態の製造ラインの概略を示す 説明図である。

【図2】 スペーサ粒子の断面図である。

【図3】 (A)はスペーサを備えた第1の基板に、黒 概略構成を示す断値 色粒子を付着させた状態を示す説明図、図3(B)は図 【図26】 第133(A)の状態にさらに白色粒子を付着させた状態を示 30 示す説明図である。 す説明図、図3(C)は図3(B)の状態からスペーサ 【図27】 第14上面に付着した黒色粒子と白色粒子をブレード18によ 示す説明図である。 【図28】 第15回像表示媒体の概略構成を示す断面図である。 示す説明図である。 示す説明図である。

【図4】 磁気記録装置の1構成例を示す概略構成図である。

【図5】 第2の実施の形態の製造ラインの概略を示す説明図である。

【図6】 第3の実施の形態の製造ラインの概略を示す説明図である。

【図7】 第4の実施の形態の製造ラインの概略を示す説明図である。

【図8】 第5の実施の形態の製造ラインの概略を示す説明図である。

【図9】 第6の実施の形態の製造ラインの概略を示す説明図である。

【図10】 第7の実施の形態の製造ラインの概略を示す説明図である。

【図11】 第8の実施の形態の製造ラインの概略を示す説明図である。

26

【図12】 スペーサ付き平板状基板の形成方法の1例を示す説明図である。

【図13】 スペーサ付き平板状基板の形成方法の別の 1例を示す説明図である。

【図14】 液体噴射装置を使用してスペーサ付き平板 状基板を形成する方法の1例を示す説明図である。

【図15】 液体噴射装置を使用してスペーサ付き平板 状基板を形成する方法の別の1例を示す説明図である。

【図16】 サーマルヘッドを使用してスペーサ付き平板状基板を形成する方法の1例を示す説明図である。

【図17】 スペーサ付き平板状基板の形成方法の別の 1例を示す説明図である。

【図18】 スペーサ付き平板状基板の形成方法のさらに別の1例を示す説明図である。

【図19】 第9の実施の形態の製造ラインの概略を示す説明図である。

【図20】 従来の電子ペーパーの概略構成を示す断面図である。

【図21】 第10の実施の形態の製造ラインの概略を 20 示す説明図である。

【図22】 第10の実施の形態に係る画像表示媒体の概略構成を示す断面図である。

【図23】 第11の実施の形態に係る画像表示媒体の概略構成を示す断面図である。

【図24】 第12の実施の形態の製造ラインの概略を示す説明図である。

【図25】 第12の実施の形態に係る画像表示媒体の 概略構成を示す断面図である。

【図26】 第13の実施の形態の製造ラインの概略を 示す説明図である。

【図27】 第14の実施の形態の製造ラインの概略を示す説明図である。

【図28】 第15の実施の形態の製造ラインの概略を示す説明図である。

【図29】 第15の実施の形態に係る画像表示媒体の概略構成を示す断面図である。

【図30】 第16の実施の形態に係る画像表示媒体の 概略構成を示す断面図である。

【図31】 第17の実施の形態に係る画像表示媒体の 40 概略構成を示す断面図である。

【図32】 第17の実施の形態に係る画像表示媒体の 概略構成を示す断面図である。

### 【符号の説明】

10 第1の静電式塗布装置

12 第2の静電式塗布装置

13 スプレー塗布装置

14 第3の静電式塗布装置

15 乾燥装置

16 第1定着器

50 17 粉体散布装置

特開2001-92388

 28

 18
 プレード
 42
 露光装置・

 19
 加振装置
 44
 未露光樹脂除去装置

 20
 第2定着器
 46
 熱硬化性樹脂塗布装置

20第2定着器46熱硬化性樹脂塗布装置21スクリーン印刷装置50第1のフィルムローラ

22第1ローラ保持軸50a第1の平板状基板23加熱装置51第1のフィルムローラ

24第2ローラ保持軸51a第1の平板状基板25アプレーション装置52第2のフィルムローラ

26中間転写体52a第2の平板状基板28回転ローラ対10 54絶縁性の粒子

30帯電器56熱可塑性樹脂層31感光体ドラム60スペーサ粒子

32光書き込み装置62黒色粒子33軟磁性薄膜ドラム64白色粒子

34現像器70金型35磁気書き込み装置72筐体36、39コロトロン78粒子供給装置37クリーナ80サーマルヘッド

 38 磁気発生装置
 82 インクリボン

 40 紫外線硬化樹脂塗布装置
 20 86 流動状態の樹脂

[図1]





[図4] 35 37 37



[図12]



C.



【図5】



【図6】







[図8]



【図9】



[図10]



【図11】





[図19]



【図21】







[図23]

【図25】







[図27]









【図28】

[図29]





# [\(\text{\beta}\) \(\text{\beta}\) \(\te

(A)

120

120

120

500

120

120

120

103

【図31】

【図32】



### フロントページの続き

(72) 発明者 町田 義則

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

(72) 発明者 中山 信行

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72) 発明者 大場 正太

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内 (72) 発明者 重廣 清

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

(72) 発明者 小清水 実

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72) 発明者 柿沼 武夫

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| □ BLACK BORDERS                                         |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| FADED TEXT OR DRAWING                                   |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                     |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ other:                                                |

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.