32031 Feedback Quiz, 2022/23, Week 10: General Revision I Open books. 10–15 minutes. Not for credit. To be marked in class.

Question 1 \clubsuit Let <i>C</i> be the binary linear code with generator matrix $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$. Fill in the correct responses below.
• List the codevectors of $C: C = \{$
• C is a $\left(\begin{array}{c} \square \end{array}, \begin{array}{c} \square \end{array}, \begin{array}{c} \square \end{array} \right)$
• C is a $\begin{bmatrix} \Box \end{bmatrix}$, $\begin{bmatrix} \Box \end{bmatrix}$ code
• The dimension of the dual code C^{\perp} is \square
• The weight enumerator of <i>C</i> is $W_C(x,y) =$
• If C is transmitted down $BSC(p)$ then the probability of an undetected error is
$P_{ m undetect} =$
where the most significant term (the term with the lowest power of p) is
Tick true statements:
C is a self-orthogonal code
C is a self-dual code
\bigcap C is an MDS code
C is a perfect code
\bigcap C is a Hamming code
- If true, what are r and q in $\operatorname{Ham}(r,q)$? $r = \boxed{} q = \boxed{}$
C is a simplex code
- If true, what are r and q in $\Sigma(r,q)$? $r = \boxed{} q = \boxed{}$
\bigcap C is the even weight code E_n
\bigcap C is a cyclic code
- If true, what are the generator polynomial and the check polynomial?
g(x) = $h(x) =$

CORRECTED

32031 Feedback Quiz, 2022/23, Week 10: General Revision I

Open books. 10–15 minutes. Not for credit. To be marked in class.

Question 1 \clubsuit Let *C* be the binary linear code with generator matrix $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$. Fill in the correct responses below.

• List the codevectors of $C: C = \{$ 0000, 0101, 1010, 1111 $\}$

Explanation: The zero vector, the top row of G, the sum of the rows of G, the bottom row of G

• C is a $(\boxed{4}, \boxed{4}, \boxed{2})_{\boxed{2}}$ code

Explanation: The length of C is 4 which is the number of columns in the generator matrix. The dimension of C is 2 which is the number of rows in the generator matrix. $C = \{0000, 0101, 1010, 1111\}$ which shows that d(C) = w(C) = 2. C is binary so q = 2.

• C is a $\begin{bmatrix} \boxed{4} \end{bmatrix}$, $\begin{bmatrix} \boxed{2} \end{bmatrix}$, $\begin{bmatrix} \boxed{2} \end{bmatrix}$ code

Explanation: Due to the square brackets, the middle parameter is the dimension, which is 2, the number of rows in the generator matrix.

- The dimension of the dual code C^{\perp} is $\boxed{2}$ *Explanation:* dim $C^{\perp} = n - \dim C = 4 - 2 = 2$
- The weight enumerator of *C* is $W_C(x,y) = x^4 + 2x^2y^2 + y^4$

Explanation: The length of the code is n = 4, the codevector 0000 of weight 0 contributes x^4 , the codevectors 0101 and 1010 of weight 2 each contribute x^2y^2 , and the codevector 1111 of weight 4 contributes y^4 .

• If C is transmitted down BSC(p) then the probability of an undetected error is

$$P_{\text{undetect}} = 2(1-p)^2 p^2 + p^4$$

where the most significant term (the term with the lowest power of p) is $2p^2$

Explanation: To obtain P_{undetect} , delete the x^4 term from $W_C(x,y)$ then substitute x = 1 - p, y = p. Clearly the term with the lowest power of p when P_{undetect} is expanded will be $2p^2$.

CORRECTED

Tick	true	statements
------	------	------------

\boxtimes	C is a self-orth	nogor	nal code
	Evolanation ·	Vec	the inn

Explanation: Yes, the inner product of each codevector with itself and of each pair of codevectors is $0 \in \mathbb{F}_2$. Alternatively, check that $GG^T = \mathbf{0}$ where G is the generator matrix

$\bigotimes C$ is a self-du	ual code
-----------------------------	----------

Explanation: Yes, C is self-orthogonal and also $k = \frac{1}{2}n$ because k = 2 and n = 4

C is an MDS code

Explanation: No, $k \neq n - d + 1$ as $2 \neq 4 - 2 + 1$

 \bigcap C is a perfect code

Explanation: No, a code with even d cannot be perfect; here d = 2

 \bigcap C is a Hamming code

- If true, what are r and q in $\operatorname{Ham}(r,q)$? r = q = q

Explanation: Hamming codes are perfect, C is not

 \bigcap C is a simplex code

- If true, what are r and q in $\Sigma(r,q)$? r = q

Explanation: All non-zero codevectors of $\Sigma(r,q)$ are of the same weight, but C has vectors of weight 2 and 4

 \bigcap C is the even weight code E_n

Explanation: Not all vectors of even weight are in C, for example $1100 \notin C$

 \bigotimes C is a cyclic code

- If true, what are the generator polynomial and the check polynomial?

Explanation: We are given that C is linear, and it is easy to see that C is closed under the cyclic shift. The generator polynomial is the monic polynomial of least degree in C, this is the polynomial $1+x^2$ which corresponds to 1010. The check polynomial is $h(x) = \frac{x^4-1}{1+x^2} = \frac{x^4-1}{x^2-1} = x^2+1$.