4.3 Isotropic Elastic Materials

4.3.1 Constitutive Equations for Isotropic Elastic Materials

Cauchy Stress and Isotropy

A material is said to be **isotropic** if a rotation of a particle (in the undeformed state) has no influence on the stress tensor. From §2.8.6, the condition of isotropy is then

$$\sigma(\mathbf{F}^{\diamond}) = \sigma(\mathbf{F}) \rightarrow \sigma(\mathbf{F}\mathbf{Q}^{\mathrm{T}}) = \sigma(\mathbf{F})$$
 (4.3.1)

where the superscript \lozenge refers to deformations relative to the rotated reference configuration, Fig. 2.8.6. (This is often expressed in the equivalent form $\sigma(F) = \sigma(FQ)$.)

A Cauchy elastic material automatically satisfies the isotropy condition when the Cauchy stress is an arbitrary tensor-valued function of the left Cauchy-Green tensor:

$$\mathbf{\sigma} = \mathbf{\sigma}(\mathbf{b}) \tag{4.3.2}$$

To see this, note that $\sigma(\mathbf{b}(\mathbf{F})) = \sigma(\mathbf{F}\mathbf{F}^{\mathrm{T}})$, so

$$\sigma(\mathbf{b}(\mathbf{F}\mathbf{Q}^{\mathrm{T}})) = \sigma((\mathbf{F}\mathbf{Q}^{\mathrm{T}})(\mathbf{F}\mathbf{Q}^{\mathrm{T}})^{\mathrm{T}}) = \sigma(\mathbf{F}\mathbf{Q}^{\mathrm{T}}\mathbf{Q}\mathbf{F}^{\mathrm{T}}) = \sigma(\mathbf{F}\mathbf{F}^{\mathrm{T}}) = \sigma(\mathbf{b}(\mathbf{F}))$$
(4.3.3)

Note that the condition of isotropy 4.3.1 must be satisfied for the particular rotation $\mathbf{Q} = \mathbf{R}$, so a condition to be satisfied by isotropic materials is

$$\sigma(\mathbf{F}) = \sigma(\mathbf{F}\mathbf{R}^{\mathrm{T}}) = \sigma(\mathbf{v}) = \sigma(\mathbf{b}^{1/2}) = \sigma(\mathbf{b})$$
(4.3.4)

where \mathbf{v} is the left stretch tensor, and again one has 4.3.2.

In addition to satisfying the condition of isotropy, the stress must satisfy the condition of objectivity: $\sigma^* = \sigma(b^*)$, where the superscript * refers to objectivity transformations, §2.8.3. This requirement is automatically satisfied since both the Cauchy stress and the left Cauchy-Green tensors are objective spatial tensors:

$$\boxed{\mathbf{Q}\boldsymbol{\sigma}(\mathbf{b})\mathbf{Q}^{\mathrm{T}} = \boldsymbol{\sigma}(\mathbf{Q}\mathbf{b}\mathbf{Q}^{\mathrm{T}})}$$
 Isotropy Condition for the (objective) Cauchy Stress (4.3.5)

PK2 Stress and Isotropy

From 3.5.7 and 2.8.58, a rigid body rotation of the reference configuration alters the PK2 stress according to

$$\mathbf{S}^{\diamond} = J^{\diamond} \mathbf{F}^{\diamond -1} \mathbf{\sigma}^{\diamond} \mathbf{F}^{\diamond -T} = J (\mathbf{F} \mathbf{Q}^{\mathrm{T}})^{-1} \mathbf{\sigma} (\mathbf{F} \mathbf{Q}^{\mathrm{T}})^{-T} = \mathbf{Q} \mathbf{S} \mathbf{Q}^{\mathrm{T}}$$
(4.3.6)

On the other hand, **S** is objective when written as a function of the material tensor **C**. Then, since $\mathbf{C}^{\diamond} = \mathbf{Q}\mathbf{C}\mathbf{Q}^{\mathrm{T}}$ (see Eqns. 2.8.58),

$$QS(C)Q^{T} = S(QCQ^{T})$$
 Isotropy Condition for the (objective) PK2 Stress (4.3.7)

Isotropic Tensor Functions

The constitutive relations 4.3.5 for the Cauchy stress and 4.3.7 for the PK2 stress are very similar. In general, the second-order tensor-valued function **T** of the second-order tensor variable **B** is an **isotropic tensor functions** if

$$T(QBQ^{T}) = QT(B)Q^{T}$$
 Isotropic Tensor Function (4.3.8)

for all orthogonal tensors \mathbf{Q} . Thus, $\boldsymbol{\sigma}$ is an isotropic tensor function of the tensor variable \mathbf{b} and \mathbf{S} is an isotropic tensor function of the tensor variable \mathbf{C} . Isotropic functions are discussed in the Appendix to this Chapter, §4.A, and there it is shown that, for symmetric \mathbf{T} and symmetric \mathbf{B} , \mathbf{T} must take the form

$$T(B) = \alpha_0 I + \alpha_1 B + \alpha_2 B^2$$
 Form for a symmetric isotropic tensor function of a symmetric tensor (4.3.9)

where α_0 , α_1 , α_2 are scalar functions of the principal scalar invariants of **B**, 1.9.38, 1.9.46:

$$\alpha_i = \alpha_i \{ \mathbf{I}_{\mathbf{B}}, \mathbf{II}_{\mathbf{B}}, \mathbf{III}_{\mathbf{B}} \} \tag{4.3.10}$$

Since the set of principal scalar invariants, the set $\{trS, trS^2, trS^3\}$ and the set of eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$ uniquely determine one another, the coefficients α_i can be taken to be functions of any one of these three sets.

Equation 4.3.9 can be rewritten in various alternative forms using the Cayley-Hamilton theorem, 1.9.45:

$$\mathbf{B}^{3} - \mathbf{I}_{\mathbf{B}} \mathbf{B}^{2} + \mathbf{II}_{\mathbf{B}} \mathbf{B} - \mathbf{III}_{\mathbf{B}} \mathbf{I} = \mathbf{0}, \qquad (4.3.11)$$

for example

$$\mathbf{T}(\mathbf{B}) = \beta_0 \mathbf{I} + \beta_1 \mathbf{B} + \beta_{-1} \mathbf{B}^{-1}$$
 (4.3.12)

where

$$\beta_0 = \alpha_0 - II_R \alpha_2, \quad \beta_1 = \alpha_1 + I_R \alpha_2, \quad \beta_{-1} = III_R \alpha_2.$$
 (4.3.13)

The Cauchy-Elastic Solid

Since for an isotropic Cauchy-elastic solid, the Cauchy stress is an isotropic tensor function of the left Cauchy-Green strain, $\sigma = \sigma(\mathbf{b})$, Eqn. 4.3.5 (a consequence of isotropy and objectivity) and since σ and \mathbf{b} are symmetric, it follows from 4.3.9 that the Cauchy stress takes the form

$$\mathbf{\sigma} = \alpha_0 (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{I} + \alpha_1 (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{b} + \alpha_2 (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{b}^2$$
(4.3.14)

or, alternatively, from 4.3.12, the form

$$\mathbf{\sigma} = \beta_0 (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{I} + \beta_1 (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{b} + \beta_{-1} (\mathbf{I}_{\mathbf{b}}, \mathbf{II}_{\mathbf{b}}, \mathbf{III}_{\mathbf{b}}) \mathbf{b}^{-1}$$
(4.3.15)

and these scalar functions are related through 4.3.13.

Similar forms hold for the PK2 stress as a function of the right Cauchy-Green strain.

4.3.2 Strain Energy and Isotropy

Consider the strain energy $W = W(\mathbf{F})$. From §2.8.4, objectivity requires that (see Eqn. 2.8.46),

$$W(\mathbf{F}) = W(\mathbf{U}) \tag{4.3.16}$$

Also, the right stretch tensor is the square–root of the right Cauchy-Green tensor, so one can write $W = W(\mathbb{C})$, which is clearly objective, since $W(\mathbb{C}) = W(\mathbb{C}^*)$. In addition to the objectivity requirement, isotropy requires that $W(\mathbb{C}) = W(\mathbb{C}^{\diamond})$, or, 2.8.58b

$$W(C) = W(QCQ^{T})$$
 Isotropy Condition for the (objective) Strain Energy (4.3.17)

Isotropic Scalar Functions

The strain energy of Eqn. 4.3.17 is also an isotropic function; in general, the scalar function ϕ of the second-order tensor variable **B** is an **isotropic scalar functions** if

$$\phi(QBQ^T) = \phi(B)$$
 Isotropic Scalar Function (4.3.18)

for all orthogonal tensors \mathbf{Q} . Thus, W is an isotropic scalar function of the tensor variable \mathbf{C} . It is shown in the Appendix to this Chapter, §4.A, that, for symmetric \mathbf{B} , ϕ must take the form

$$\phi(B) = \phi(\{I_B, II_B, III_B\})$$
 Form for an isotropic scalar function of a symmetric tensor (4.3.19)

Section 4.3

Thus the strain energy for an isotropic elastic material must be a function only of the three principal scalar invariants of the right Cauchy-Green strain (or of the three principal values λ_i). Since the invariants for the right- and left-Cauchy-Green strain tensors are the same (see Eqn. 2.2.15), the strain energy can also be expressed as a function of the invariants of **b**.