数字电路学习笔记(六):组合逻辑电路

JoshCena

注:由于作者对硬件了解有限,本文不会强调各类逻辑门的硬件实现,而侧重于理论的设计。(也不排除在我搞懂半导体后回来填坑的可能;虽然即使是我毕业于半导体专业的的物理老师,也只是推荐我一本《半导体物理》而已)

组合逻辑,就是之前讲过的黑箱逻辑。

如果一个电路的输入是 x, y, z, 输出是 a, 则某一时刻的 a 只由那一时刻的 x, y, z 的值决定。就像一个"直肠子",信号随进随出,不会影响其后的输出。我们可以这样形式化地表示组合逻辑:

$$y = f(x_1, x_2, \dots, x_n)$$

其中 y 为输出, x_1, x_2, \ldots, x_n 为输入。有时电路不止有一个输出,但我们可以把它简单地看成若干电路的拼接。组合逻辑设计的关键之处,就在于找出这个函数关系 f。

一、组合逻辑电路的设计

相信我,这是我最后一次用这个事例:

某档案室有三把钥匙,分别由主任与两个保管员保管。主任的钥匙可以直接开门,而两个保管员的钥匙则只有同时插入才能开门。档案室大门还有一个防盗装置,激活时无论什么钥匙都无法开门。

这是文字表述的任务要求;在第三节中,我们写出了逻辑式: $X = (A + BC) \cdot D'$,并在第五节中,介绍了许多得出逻辑式的方法。无论如何,我们已经有了一个逻辑式。

接下来, 画出逻辑图:

就是这样——在实际生产中,只要有了这个图,设计实际的集成电路就简单了,只要把对应的符号换成门电路元件即可。

二、小技巧

一般的组合逻辑电路设计步骤:人狠话不多,先暴力列真值表,然后直接写出逻辑式,一顿操作化简后,用最简式画出电路图;但这样做,却往往会花费不少时间在化简上,还可能忽略了潜在的更优设计。本章将给出几种常见的小技巧。

利用无关项

无关项,指所对应的变量取值并不会出现在实际情况中的项。一般情况下,因为缺少定义,这些变量的值对应的输出无论是 0 还是 1,都是合法的。(想到了 C++ 中的 i=i++; ,无论编译器给出什么结果,都是符合规范的)

考虑一个小例子: 设计一个四舍五入器。输入是二进制下的一位整数,输出 0 (表示 0) 或 1 (表示 10)。比如: (A,B,C,D)=(0,1,1,1),则其对应整数 7,而 $\mathrm{round}(7)=10$,所以输出 Y=1。列出真值表:

A	B	C	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	×
1	0	1	1	×
1	1	0	0	×
1	1	0	1	×
1	1	1	0	×
1	1	1	1	×

注意到,从 (A,B,C,D)=(1,0,1,0) 到 (A,B,C,D)=(1,1,1,1) 的取值都是没有意义的,因为其对应的十进制数大于 9。我们从正常思路入手:

$$Y = A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D$$
$$= A'BD + A'BC + AB'C'$$

但是,应当知道这不一定是最简情况,因为我们没有利用那六种可以随意决定输出的取值。我 们再次使用卡诺图:

	AB				
CD		00	01	11	10
	00			×	✓
	01		✓	×	√
	11		✓	×	×
	10		✓	×	×

其中 ✓ 是一定要圈到的地方(一定要使其为 1); × 是可圈可不圈(其值无所谓),并使得圈最大,最少。一番思索后,画出三个圈:

	AB				
CD		00	01	11	10
	00			í×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	01		17	:×`\	✓
	11		13	××	×
	10		1	\×,	×,

此时的表达式,为 Y = A + BC + BD。这从形式上便觉得简洁不少。后面的逻辑图略去。

本来这一章准备了若干个技巧,但在漫长的拖延过程中忘记了。除此之外,应该还有一个"**利用集成电路**",但发现各类集成电路仍未出场,所以留至下次。

本章极短,为了将接下来整章留给各类组合逻辑器件与集成电路。