

Customer Device Driver Document

Documents Number:

Preliminary Information

Revision: 0.1

Release Date: Nov, 03, 2003

UART Driver

Revision History

Revision	Date	Author	Comments
0.1	11/03/2003	Arthur Shieh	Draft version, revised from MTK Device Driver design document

Table of contents

Revis	on History	2
Figure	s index	ξ
1	ntroduction	(
1.1	Overview	(
1.2	References	6
2	rchitecture	7
2.1	Block Diagram	7
2.2	Functional Overview	
3	ibrary Module	10
3.1	Module	10
3.2	Data Structures	10
3.2	Data Structures	10
3.2	2 IO_level	10
3.2	3 UART buffer	10
3.2	4 UART_baudrate	10
3.2	5 UART_bitsPerCharacter	11
3.2	6 UART_stopBits	11
3.2		11
3.2	8 UART_flowCtrilviode	11
3.2		
	10 UART_ESCDetectStruct	
3.3		
3.3 3.3	1 1 1 - '	
3.	_	
3.		
3.		
3.		
3.	•	
3.	·	
3.3	·	
3.3	10 UART_CtrlDTR	
3.3	11 UART_CtrlDCD	17
3.3	12 UART_CtrlRI	18
3.3	13 UART_ReadHWStatus	18
3.3	14 UART_CtrlBreak	18
3.3	15 UART_Purge	19
3.3	16 UART_GetBytesAvail	19
3.3	17 UART_GetTxRoomLeft	
	18 UART_GetTxISRRoomLeft	
	19 UART_CIrRxBuffer	
	20 UART_CIrTxBuffer	
3.4	Message	21

Prelimina	UART Driver	
3.4.1	UART_READY_TO_WRITE_IND	21
3.4.2	UART_READY_TO_READ_IND	21
3.4.3	UART_ESCAPE_DETECTED_IND	21
311	HART DOR CHANGE IND	22

UART Driver

Figures index

Figure 1 UART Driver Buffer Structure Block Diagram	7
Figure 2 UART flow control for transmitting Data	
Figure 3 UART flow control for receiving Data	9
Figure 4 Escape sequence detection	. 13

UART Driver

Introduction

1.1 **Overview**

This document describes the function of the UART driver. This driver is a generic interface to work with PPP, CSD, ATCI, L2R, and TST tasks. For system developers, the customization work is to adjust the ring buffer size.

1.2 References

- M16x50, Enhanced UART with FIFOs and IrDA support product specification
- MT6205B GSM baseband Processor Datasheet

UART Driver

2 Architecture

2.1 Block Diagram

Figure 1 UART Driver Buffer Structure Block Diagram

2.2 Functional Overview

In UART Driver, each UART port has 3 ring buffers, Rx, Tx and ISR Tx. For UART operations, the tasks, which request UART service in system, will send or receive data through Rx or Tx ring buffer. Only the system debug/trace information will go through ISR Tx ring buffer, which has higher priority, to ensure timely delivery of debug/trace information.

For system developers, it is necessary to adjust the ring buffer length if the UART status is always busy, that is, the ring buffer is always stuffed with too many request to handle other requests. The physical UART data transmission and reception is handled by interrupt.

UART Driver

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 8 of 22

UART Driver

Figure 3 UART flow control for receiving Data

The UART driver implements both hardware level and software-level flow control.

The software flow control is implemented over the ring buffer management. The protocol stack, or the tasks requesting UART service have to judge if the ring buffers have enough space for transmitting or receiving data. If returned size information from driver is not matching the requested size, then the task which request the UART service needs to wait until a incoming message showing the Rx buffer is not empty or the Tx buffer is not full. Then the next transaction can be carried on.

For embedded flow control, MT6205 implements MODEM control and Xon/Xoff flow control. For details please refer to M16550/M16C450, Enhanced UART with FIFOs and IrDA support product specification and MT6205B GSM baseband Processor Datasheet.

UART Driver

Library Module

Module 3.1

drv.lib

Interface\hwdrv

uart_sw.h

custom\drv\misc_drv\{platform}

uart def.c

3.2 **Data Structures**

3.2.1 **UART_PORT**

```
Release For SkyWorth
typedef enum {
    uart_port1=0,
    uart_port2
} UART_PORT;
```

3.2.2

```
} IO level;
```

UART_buffer

```
typedef enum {
        RX_BUF,
        TX BUF
} UART_buffer;
```

UART_baudrate 3.2.4

```
typedef enum
      UART_BAUD_AUTO,
      UART_BAUD_75,
      UART_BAUD_150,
      UART_BAUD_300,
      UART_BAUD_600,
      UART_BAUD_1200,
      UART_BAUD_2400,
      UART_BAUD_4800,
```

MediaTek Confidential

Revision 0.1- Nov 03, 2003

```
UART Driver
Preliminary Information
       UART_BAUD_7200,
       UART_BAUD_9600,
       UART_BAUD_14400,
       UART_BAUD_19200,
       UART_BAUD_28800,
       UART_BAUD_38400,
       UART_BAUD_57600,
       UART_BAUD_115200
}UART_baudrate;
3.2.5
       UART_bitsPerCharacter
                   Release For Skyworth
typedef enum {
       len_5=5,
       len_6,
       len_7,
       len_8
} UART_bitsPerCharacter;
3.2.6
       UART_stopBits
typedef enum {
       sb 1=1,
       sb_2,
       sb_1_5
} UART_stopBits;
       UART_parity
typedef enum {
       pa_none=0,
       pa_odd,
       pa_even
} UART_parity;
3.2.8
       UART_flowCtrlMode
typedef enum {
       fc_none=1,
       fc_hw,
       fc_sw
} UART_flowCtrlMode;
3.2.9
       UARTDCBStruct
Definition:
    typedef struct
```

MediaTek Confidential

Revision 0.1- Nov 03, 2003

UART Driver

```
UART_baudrate
                                           baud;
          UART_bitsPerCharacter
                                           dataBits;
          UART_stopBits
                                           stopBits;
          UART_parity
                                           parity;
          UART_flowCtrlMode
                                           flowControl;
          uint8
                                           xonChar;
                                           xoffChar;
          uint8
          bool
                                           DSRCheck;
} UARTDCBStruct;
```

This structure contains all the parameters used to configure the serial device. The following table contains these data elements and brief descriptions of them.

Members:

Members:	41-
Members	Description
baud	Transmission rate(bits/sec).
dataBits	Size of character.
stopBits	Number of stop bits attached to each character.
parity	Type of parity check.
flowControl	Type of flow control.
xonChar	XON character for software flow control.
xoffChar	XOFF character for software flow control.
DSRCheck	DSRCheck =1→ Target side will check DSR signal to decide whether
. / [] ^	the PC are connected or not.
	DSRCheck =0→ Target side don't use DSR signal to decide whether
	the PC are connected or not.

3.2.10 UART_ESCDetectStruct

Definition:

```
typedef struct
                  EscChar;
          uint8
          uint16 GuardTime;
} UART_ESCDetectStruct;
```

Members:

Members	Description	
EscChar	Three "EscChar" will be treated as an escape sequence.	
GuardTime	Denotes the minimal duration of the rest before the first and after the last	
	character of the escape sequence, and the maximal receiving duration of each	
	escape character. The unit of this parameter is milliseconds. If this character is	
	zero, the driver will not detect the escape sequences.	

MediaTek Confidential

Revision 0.1- Nov 03, 2003

UART Driver

Figure 4 Escape sequence detection

3.3 Function

3.3.1 UART_Open

kal_bool UART_Open(UART_PORT port, module_type owner)

Parameters:

Members	Description	
Port	UART port.	
owner	owner id. The owner after the port is opened.	

Return value:

Return value	Description	
KAL_TRUE(1)	UART open successfully.	
KAL_FALSE(0)	UART open fail.	

Example:

None

3.3.2 UART_Close

void UART_Close (UART_PORT port)

This function is to frees any memory allocated by UART_Open, and disable UART interrupt,...etc. This function must also be called before any actions to access UART interface.

Parameters:

Members	Description
Port	UART port.

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 13 of 22

UART Driver

Return value:

Return value	Description	
TRUE(1)	UART close successfully.	
FALSE(0)	UART close fail.	

Example:

None

3.3.3 **UART_SetOwner**

void UART_SetOwner (UART_PORT port, module_type owner)

This function is to register the owner of UART.

Parameters:

i arameters.			- 1/5	1 I I
Members	Description			ш
port	UART port.			י ון
owner	Owner id.		C, \ \\ \\ \\ \\ \	
Return value: None		FOr	2 ky ''	_
Example: None 3.3.4 UART_SetDCBConfig				

Return value:

Example:

void UART_SetDCBConfig (UART_PORT port, UARTDCBStruct *DCB)

This function is to setup the driver configuration. The parameters are specified in a UARTDCBStruct structure type. The user should allocate memory for the configuration and driver will set these parameters. Besides, Driver will copy the content locally, and keep this data itself.

Parameters:

Members	Description	
port	UART port.	
DCB	Pointer to the device control block of UART	

Return value:

None

Example:

UARTDCBStruct DCBdata;

UART_SetDCBConfig (uart_port1, &DCBdata);

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 14 of 22

UART Driver

3.3.5 UART_ReadDCBConfig

void UART_ReadDCBConfig (UART_PORT port, UARTDCBStruct *DCB)

This function is to read the driver configuration. The parameters are specified in a UARTDCBStruct structure type. The user should allocate memory for the configuration, and driver will copy the content of current DCB to the address which the *DCB point to.

Parameters:

Members	Description	
port	UART port.	
DCB	Pointer to the device control block of UART.	

Return value:

None

Example:

UARTDCBStruct DCBdata;

UART_ReadDCBConfig(uart_port1, &DCBdata);

3.3.6 UART_ConfigEscape

void UART_ConfigEscape (UART_PORT port, kal_uint8 EscChar, kal_uint16 ESCGuardtime)

This function is to change the setting of escape sequence. After calling this function, UART will use new escape configuration to detect escape sequence.

Parameters:

Members	Description
port	UART port.
EscChar	The character of the escape sequence
ESCGuardtime	The guard time of the escape sequence

Return value:

None

Example:

None

3.3.7 UART_GetBytes

kal_uint16 UART_GetBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length, kal_uint8 *status)

This function is to receive data from UART.

Parameters:

Members	Description
port	UART port.

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 15 of 22

UART Driver

Buffaddr	Pointer to the data addr.	
Length	the maximum length	
status	bit 0	
	=1, Escape sequence is detected.	
	=0, Escape sequence is not detected.	
	bit 1	
	=1, break signal is detected.	
	=0, break signal is detected.	
	NOTE:	
	1.When Escape sequence/Break signal is detected, the data in RX/TX	
	buffer is cleared.	
	When Escape sequence is detected, the next call of UART_GetBytes will return no data but Escape detected status set.	

Return value:

The length of bytes actually read.

Example:

None

UART_PutBytes 3.3.8

r SkyWorl kal_uint16 UART_PutBytes(UART_PORT port, kal_uint8 *Buffaddr, kal_uint16 Length)

This function is to send data to UAR

Note: This function is only called in task level.

Parameters:

Members	Description
port	UART port.
Buffaddr	Pointer to the data addr.
Length	the maximum length

Return value:

The length of bytes actually written.

Example:

None

3.3.9 UART_SetFlowCtrl

void UART_SetFlowCtrl(UART_PORT port, kal_bool XON)

This function is to configure the UART flow control. By default, the driver will keep flow control itself, and this function will be a null function.

Note: XON means flow control on, not means software flow control.

HW or SW flow control is set in DCB structure.

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 16 of 22

UART Driver

Parameters:

Members	Description	
port	UART port.	
XON	=1, The flow between PC and Target is connected.	
	=0, The flow between PC and Target is closed.	

Return value:

None

Example:

None

3.3.10 UART_CtrIDTR

Parameters:

3.3.10 UART_CtrIDTR void UART_CtrIDTR (UART	_PORT port, IO_level SDTR)	h
This function is to control the DTR functional pin.		
Parameters:		
Members	Description	
Port	UART port.	
SDTR	= IO_high, DTR on (DTR line is at low level)	
= IO_low, DTR off (DTR line is at high level)		

Example:

3.3.11 UART_CtrIDCD

void UART_CtrlDCD (UART_PORT port, IO_level SDCD)

This function is to control the DCD functional pin.

Parameters:

Members	Description
Port	UART port.
SDCD	= IO_high, DCD on = IO_low, DCD off

Return value:

Example:

None

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 17 of 22

UART Driver

None

3.3.12 UART_CtrIRI

void UART_CtrlRI (UART_PORT port, IO_level SRI)

This function is to control the RING functional pin.

Parameters:

Members	Description
Port	UART port.
SRI	= IO_high, RING on
	= IO_low, RING off

Return value:

None

Example:

None

3.3.13 UART_ReadHWStatus

For Skywort void UART_ReadHWStatus (UART_PORT port, IO_level *SDSR, IO_level *SCTS)

This function is to read the status of the DSR and CTS functional pin.

Parameters:

Members	Description	
port	UART port.	
SDSR	= IO_high, DSR on (DSR line is at low level)	
	= IO_low, DSR off (DSR line is at high level)	
SCTS	= IO_high, CTS on (CTS line is at low level)	
	= IO_low, CTS off (CTS line is at high level)	

Return value:

None

Example:

None

3.3.14 UART_CtrlBreak

void UART_CtrlBreak (UART_PORT port, IO_level SBREAK)

This function is to read the status of the DSR and CTS functional pin.

Parameters:

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 18 of 22

UART Driver

Members	Description
port	UART port.
SBREAK	= IO_high, set break signal
	= IO_low, clear break signal

Return value:

None

Example:

None

3.3.15 UART_Purge

void UART_Purge (UART_PORT port, UART_buffer dir)

Parameters:

Void OART_I dige (OART_I ORT port, OART_bullet dil)			
This function is to clean the I	UART FIFO, not UART ring buffer.	· · · · · · · · · · · · · · · · · · · ·	
Parameters:		CIVINOI !!	
Members	Description		
port	UART port.		
dir	UART_buffer (RX_BUF=0/TX_BUF=1)		
Return value: None Example: None	Release		

3.3.16 UART_GetBytesAvail

kal_uint16 UART_GetBytesAvail(UART_PORT port)

This function is to specify how many bytes in UART Rx ring buffer.

Parameters:

Members	Description
port	UART port.

Return value:

Return value	Description
0~0xffff	The total number of received data in ring buffer

Example:

None

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 19 of 22

UART Driver

3.3.17 UART_GetTxRoomLeft

kal_uint16 UART_GetTxRoomLeft(UART_PORT port)

This function is to specify how much space residual in UART Tx ring buffer.

Parameters:

Members	Description
port	UART port.

Return value:

Return value	Description
0~0xffff	The residual space in Tx ring buffer

Example:

None

3.3.18 UART_GetTxISRRoomLeft

kal_uint16 UART_GetTxlSRRoomLeft(UART_PORT port)

This function is to specify how much space residual in UART TxISR ring buffer.

Parameters:

_			
	Members	Description	
ſ	port	UART port.	

Return value:

Return value	Description
0~0xffff	The residual space in TxISR ring buffer

Example:

None

3.3.19 UART_CIrRxBuffer

void UART_CIrRxBuffer(UART_PORT port)

This function is to clear UART Rx ring buffer.

Parameters:

Members	Description
port	UART port.

Return value:

None

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 20 of 22

UART Driver

Example:

None

3.3.20 UART CIrTxBuffer

void UART_CIrTxBuffer(UART_PORT port)

This function is to clear UART Tx ring buffer.

Parameters:

Members	Description
port	UART port.

Return value:

None

Example:

None

Message

3.4.1

Description:

ase For Skyworl This primitive is used to notify protocol stack to write data to driver.

Local Parameter:

N/A

Reference:

N/A

3.4.2 UART_READY_TO_READ_IND

Description:

This primitive is used to notify protocol stack to read data to driver

Local Parameter:

N/A

Reference:

N/A

3.4.3 UART_ESCAPE_DETECTED_IND

Description:

MediaTek Confidential

Revision 0.1- Nov 03, 2003

Page: 21 of 22

UART Driver

This primitive is used to notify protocol stack that escape sequence is detected.

Local Parameter:

N/A

Reference:

N/A

3.4.4 UART_DSR_CHANGE_IND

This primitive is used to notify protocol stack about changing of DSR status.

Local Parameter:

