Mobilne systemy komunikacyjne

Spis treści

- Infrastruktura systemów komórkowych
- Rejestracja
- Przenoszenie połączenia
- Roaming
- Multicasting (multiemisja)
- Bezpieczeństwo i prywatność

MS (mobile station), BS (base station), BSC (BSController), MSC (mobile switch center), and PSTN (public switched telephone network)

System komórkowy

VLR/HLR

- VLR zawiera informację o wszystkich wizytujących MS-ach w danym obszarze zarządzanym przez MSC
- VLR posiada wskaźniki do HLR-ów wizytujących MS-ów
- VLR pomaga w rozliczeniach oraz pozwoleniach dostępu wizytujących MSów

Przekierowanie rozmowy do MS-a w obszarze wizytowanym

Rejestracja

- System bezprzewodowy musi wiedzieć czy MS w danej chwili znajduje sie w swoim domowym obszarze czy w jakimś innym obszarze (rutowanie przychodzących rozmów)
- Jest to realizowane przez periodyczną wymianę sygnałów między BS-ami i MS-ami nazywanych sygnałami znacznika (beacons)
- BS periodycznie rozsyła sygnał znacznika (co 1 sek), aby odnajdywać i testować MS-y znajdujące się wokół niej
- Każdy MS nasłuchuje sygnałów znacznika (boje sygnalowe); jeżeli usłyszał sygnał znacznika, którego nie słyszał do tej pory to dodaje go do tablicy aktywnych znaczników sygnałowych
- Ta informacja jest używana przez MS do odnajdywania najbliższej BS
- Sygnał znacznika zawiera taką informację jak: identyfikator sieci komórkowej, znacznik czasu, adres bramki, idendyfikator obszaru stronicowania, itp.

Używanie telefonu mobilnego poza obszarem subskrypcji

Kroki rejestracji

- MS nasłuchuje sygnałów znacznika czasowego; jeśli odbierze nowy znacznik to MS dodaje go do tablicy aktywnych znaczników sygnałowych
- Jeżeli MS zdecyduje, że musi komunikować się poprzez nowy BS to jądro tablicy inicjuje proces przeniesienia połączenia
- MS lokalizuje najbliższy BS poprzez przetwarzanie poziomu użytkownika
- Wizytowany BS wykonuje przetwarzanie poziomu użytkownika i określa
 - Kim jest jest użytkownik
 - Jakie są jego uprawnienia dostępu
 - Jaki jest jego domowy MSC, który prowadzi jego rozliczenia
- Domowy MSC wysyła odpowiednią odpowiedź autoryzacji do bieżącego obsługującego BS
- BS zatwierdza/nie zatwierdza dostęp użytkownika

Zastosowania i charakterystyki sygnałów znacznika czasowego

- W USA te sygnały są transmitowane przez system AMPS (Advanced Mobile Phone System) lub CDPD (Cellular Digital Packet Data) system
- W Europie i Azji przez system drugiej generacji GSM
- W zależności od aplikacji sygnały o różnych częstotliwościach są używane

Zastosowania i charakterystyki sygnałów znacznika czasowego

Application	Frequency band	Information carried		
Cellular networks	824–849 MHz (AMPS/CDPD), 1,850–1,910 MHz (GSM)	Cellular IP network identifier, gateway IP address, paging area ID, timestamp		
Wireless LANs (discussed in Chapter 14)	902–928 MHz (industrial, scientific, and medical band for analog and mixed signals) 2.4–2.5 GHz (ISM band for digital signals)	Traffic indication map		
MANETs (discussed in Chapter 13)	902–928 MHz (ISM band for analog and mixed signals) 2.4–2.5 GHz (ISM band for digital signals)	Network node identity		
GPS	1575.42 MHz	Timestamped orbital map and astronomical information		
Search and rescue	406 and 121.5 MHz	Registration country and ID of vessel or aircraft in distress		
Mobile robotics	100 kHz-1 MHz	Position of pallet or payload		
Location tracking	300 GHz-810 THz (infrared)	Digitally encoded signal to identify user's location		
Aid to the impaired	176 MHz	Digitally coded signal uniquely identifying physical locations		

Przeniesienie połączenia

- Jest to zmiana zasobów radiowych z danej komórki do przyległej
- Przeniesienie połączenia zależy od rozmiaru komórki, jej długości granic, siły sygnału, zanikania sygnału, odbicia, itp.
- Przeniesienie połączenia może być inicjalizowane przez MS lub BS i może nastapić z powodu
 - Połączenia radiowego
 - Zarządzania sieciowego
 - Kwestii związanych z jakością obsługi

Przeniesienie połączenia (cd.)

- Przeniesienie połączenia typu łącze radiowe jest spowodowane mobilnością MS-a. Zależy ono od:
 - Liczby MS-ów w komórce
 - Liczby MS-ów, które właśnie opuściły komórkę
 - Liczby połaczeń generowanych w komórce
 - Liczby połączeń tranferowanych z sąsiednich komórek przez przeniesienie połączenia
 - Liczby i długości połączeń zakończonych w komórce
 - Liczby połączeń, które były przeniesione do sąsiednich komórek
 - Liczby aktywnych połaczeń w komórce
 - Wielkości populacji w komórce
 - Całkowitego czasu trwania połączenia w komórce
 - Czasu pojawienia się połączenia w komórce
 - Itp.

Przeniesienie połączenia (cd.)

- System zarządzania siecią może spowodować przeniesienie połączenia jeżeli pojawi się drastyczne niezbalansowanie obciążenia w przyległych komórkach i wymagane jest optymalne zbalansowanie zasobów
- Przeniesienie z powodu obsługi jest powodowane degradacją jakości obsługi (QoS)

Wybór czasu przeniesienia połączenia

- Czynnikami, które decydują o wyborze właściwego czasu przeniesienia połączenia są:
 - Siła sygnału
 - Faza sygnału
 - Kombinacja siły i fazy sygnału
 - Stopa błędów bitów (BER-bit error rate)
 - Odleglość
- Konieczność przeniesienia połączenia jest określana przez
 - Siłę sygnału
 - Stosunek sygnału nośnika do sygnału interferencji (CIRcarrier to interference ratio)

Inicjalizacja przeniesienia połączenia

Inicjalizacja przeniesienia połączenia (cd.)

- Region X₃-X₄ jest regionem gdzie w zależności od innych czynników przeniesienie połączenia może nastąpić
- Jedna z możliwości przeniesienia połączenia jest jego realizacja w X₅, gdzie siły obu sygnałów są równe
- Jeżeli MS porusza się do tyłu i do przodu wokół X₅, to wynikiem tego będą często wykonywane przeniesienia połaczenia (efekt ping-ponga)
- Dlatego pozwala się MS-owi pracować z bieżącym BS tak długo jak siła sygnału nie zniży się do progowej wartości E
- Różne systemy komórkowe posługują się różnymi procedurami przeniesienia połączenia

Typy przeniesienia połączenia

- Twarde przeniesienie połączenia (break before make)
 - Zwolnienie bieżących zasobów danego BS-a przed uzyskaniem zasobów z następnego BS-a
 - FDMA, TDMA realizują takie przeniesienia
- Miękkie przeniesienie połączenia (make before break)
 - W CDMA, ponieważ ten sam kanał jest używany należy zmienić kode przeniesienia połaczenia jeżeli ten kod nie jest ortogonalny do kodu w następnym BS
 - Dlatego, jest mozliwe aby MS komunikował się jednocześnie z danym BS oraz z nowym BS

Twarde przeniesienie połączenia

Miękkie przeniesienia połączenia (tylko dla CDMA)

- Odbywa się gdy MS przechodzi z komórki znajdującej sie w obszarze zarządzanym przez jeden MSC do komórki zarządzanej przez inny MSC
- sygnały znaczników czasowych oraz użycie HLR-VLR umożliwia roaming wszędzie pod warunkiem, że prowajderzy używają tego samego zakresu częstotliwości

Scenariusze przeniesienia połączenia przy różnych stopniach mobilności

Możliwe sytuacje podczas przeniesienia połączenia

- Załóżmy, że MSC₁ jest właściwe dla danego MS z punktu widzenia jego rejestracji, podliczania, uwierzytelnienia, itp.
- Gdy przeniesienie połączenia następuje z pozycji "a" do "b" to rutowanie jest wykonane przez MSC₁ wyłącznie
- Gdy przeniesienie połączenia następuje z "b" do "c" to dwukierunkowe pointery są ustawiane, aby połączyć HLR należące do MSC₁ z VLR należące do MSC₂
- Gdy przeniesienie połączenia następuje z "d" do "e" to rutowanie informacji z użyciem HLR-VLR może nie być adekwatne ("d" jest w innym obszarze stronicowania-PA)
- PA-obszar pokryty przez jeden lub kilka MSC w celu odnajdywania bieżącej lokalizacji MS-ów
- Koncepcja sieci szkieletowej

Droga transmisji informacji gdy MS przechodzi z "b" do "c"

Ilustracja połączeń MSC (Mobile Switching Center) do sieci szkieletowej oraz rutowanie/rerutowanie

Sieć szkieletowa

- Rutowanie odbywa się zgodnie z topologią sieci szkieletowej
- Linie przerywane pokazują możliwe drogi dla połączeń realizowanych dla MS-ów mających różne lokalizacje
- Jedną z opcji jest odnalezienie rutera wzdłuż oryginalnej drogi skąd nowa droga musi się rozpocząć, aby osiagnąć MSC wzdłuż nakrótszej drogi

Domowi agenci (HA-home agents), obcy agenci (FA-foreign agents) oraz mobilne IP

- Dwa ważne softwerowe moduły związane są z ruterami: domowy agent (HA-home agent) oraz obcy agent (FA-foreign agent)
- MS jest również zarejestrowany w ruterze i zwykle ruter najbliższy do domowego MSC (dla danego MS) może być wybrany, aby służyć jako HA
- Gdy MS przenosi się z domowej sieci to softwerowy moduł FA w nowej sieci pomaga dla MS forwardując dla niego pakiety
- Funkcjonalność HA-FA jest w jakiś sposób podobna do HLR-VLR

Domowy MSC i domowy agent (HA) dla poprzedniej sieci

Home MSC	MSC_1	MSC_2	MSC ₃	MSC ₄
Selected router for maintaining its home agent	R ₃	R ₄	R ₆	R ₉

- Jeżeli MS przenosi się do nowej sieci to jego HA pozostaje niezmieniony
- MS odkrywa FA w nowej sieci przez detekcję periodycznych sygnałów znaczników czasowych, które transmituje FA
- MS może również wysłać własną wiadomość (agent solicitation messages) z prośbą o przydział agenta, na którą FA odpowie
- Gdy FA odkryje nowego MS to przydziela mu CoA (care-of address) używając do tego protokołu dynamicznej konfiguracji hosta (DHCP-dynamic host configuration protocol)
- Po otrzymaniu CoA przez MS, rejestruje on swój CoA w swoim HA oraz limit czasu ważności tej rejestracji
- Taka rejestracja jest inicjalizowana albo bezpośrednio przez MS w HA domowego rutera lub pośrednio przęz FA

Ustanowienie połączenia (cd.)

- HA potwierdza swoje zobowiązania poprzez odpowiedź do MS
- Wiadomość wysłana z dowolnego źródła do MS posiadającego domowy adres jest otrzymywana przez HA
- Sprawdzane są zobowiązania, CoA tego MS-a jest wstawiane do pakietu i forwardowane do sieci
- Jeżeli CoA konkretnego FA było użyte to pakiet dojdzie do tego FA, który na podstawie CoA przekaże pakiet do MS-a poprzez poziom łącza
- Takie internetowe środowisko nazywane jest mobilnym IP
- Po upływie czasu zobowiązania, jeżeli MS w dalszym ciągu chce, aby pakiety były forwardowane przez HA to musi odnowić swoją rejestrację
- Gdy MS powraca do swojej domowej sieci to informuje o tym HA, które nie będzie już forwardować pakietów do FA

Rejestracja procesu między FA, MS oraz HA gdy MS przechodzi do obszaru stronicowania

Forwardowanie wiadomości z użyciem pary HA-FA

Rutowanie w ruterach sieci szkieletowej

- Jak FA odnajduje HA danego MS-a ?
- Jedno z możliwych podejś może polegać na posiadaniu przez każdy ruter globalnej tablicy każdego MSC, tak aby móc określić drogę z FA do HA dla danego MS
- Wady: zbyt obszerna informacja wymagana; pewne sieci mogą nie akceptować tego, aby informacja o wszystkich ich ruterach była dostępna dla zewnętrznych sieci (tylko informacja o sieciowych bramach jest dostarczana)
- Rozwiązanie: użycie schematu rozproszonego rutingu

Ilustracja obszarów stronicowania (PAs – paging areas) oraz połączenia ruterów sieci szkieletowej

Rozproszona tablica rutowania oraz lokalizacja obszarów stronicowania

Table at router W		Table at router X		Table at router Y		Table at router Z	
Route to PA	Next hop	Route to PA	Next hop	Route to PA	Next hop	Route to PA	Next hop
1	Χ	1	-	1	Χ	1	Υ
2	Х	2	-	2	Х	2	Υ
3	Х	3	Υ	3	Z	3	-
4	Х	4	Υ	4	Z	4	-
5	Х	5	Υ	5	Z	5	-

- Proces transmisji wiadomości ze źrodła do wielu odbiorców poprzez użycie adresu grupowego dla wszystkich hostów, które chcą być członkami grupy
- Redukuje to liczbę transmitowanych wiadomości w porównaniu z wielokrotną transmisją do pojedynczych odbiorców
- Jest użyteczny w video/audio konferencjach lub grach, w których bierze udział wielu uczestników

- Multicasting może być realizowany przez tworzenie albo struktury drzewa w oparciu o technikę drzew źródłowych (source based tree), albo struktury drzewa w oparciu o technikę drzew rdzeniowych (core based tree)
- Technika drzew źródłowych: dla każdego źródła w grupie utrzymywana jest najkrotsza droga łącząca członków grupy – źródło jest korzeniem drzewa
- Technika drzew rdzeniowych: konkretny ruter jest obierany rdzeniem i drzewo jest utrzymywane z rdzeniem służącym jako korzeń
 - każde źródło forwarduje pakiet do rutera-rdzenia, który z kolei forwarduje go w drzewie, aby dotrzeć do wszystkich członków multicastowej grupy

- Dwukierunkowe tunelowanie (Bi-directional tunneling-BT) oraz zdalna subskrypcja (Remote Subscription) były zaproponowane przez IETF (Internet Ingeneering Task Force) w celu realizacji multicastingu w Mobile IP
- Przy podejściu BT, gdy MS przechodzi do obcej sieci, HA jest odpowiedzialne za forwardowanie multicastowych pakietów do MS
- W protokole zdalnej subskrypcji, gdy MS przechodzi do obcej sieci, FA (jeżeli jeszcze nie jest członkiem grupy multicastowej) wysyła do drzewa prośbę o przyłączenie; następnie MS otrzymuje bezpośrednio pakiety multicastowe przez FA

- Algorytm oparty na zdalnej subskrypcji jest prosty i zapobiega duplikacji pakietów oraz dostarczaniu pakietów nieoptymalną drogą
- Może spowodować przerwanie dostarczania danych dopóki FA nie będzie przyłączone do drzewa
- Skutkiem jego działania jest powstawanie szeregu drzew typu przyłącz oraz odłącz podczas ciągłego ruchu MS
- Natomiast, przy podejściu BT, HA tworzy dwukierunkowy tunel do FA i kapsułkuje pakiety dla MS
- Następnie FA forwarduje pakiety do MS

- Podejście BT zapobiega utracie danych z powodu poruszania się MS
- Jednak może spowodować duplikację pakietów jeżeli kilka MS-ów należących do tego samego HA, które jednocześnie zapisały się do tej samej grupy multicastowej porusza się do tego samego FA
- Również powoduje Problem conwergencji tunelowej, gdzie jeden FA może posiadać kilka MS-ów zapisanych do tej samej grupy, należących do różnych HA i każdy HA może forwardować pakiet dla swojego MS-a do tego samego FA

Duplikacja pakietów przy użyciu BT (bidirectional tunneling) podejścia

Problem konwergencji tunelowej

- W celu rozwiązania Problemu konwergencji tunelowej, zaproponowano protokół MoM, wg. którego FA wybiera spośród HA jednego HA dla poszczególnej grupy, nazywanego mianowanym prowajderem multicastowej obsługi
- Pozostałe HA nie forwardują pakietów do FA

Ilustracja protokołu MoM

Bezpieczeństwo i prywatność

- Transfer wiadomości w otwartym medium jakim jest przestrzeń powietrzna jest podatny na różne ataki
- Jednym z takich problemów jest "zagłuszanie" przez bardzo silną transmitującą antenę
- Problem można rozwiązać używając metody skakania po częstotliwościach w kolejnych odstępach czasu
- Używa się wielu technik szyfrowania, aby uniemożliwić nieautoryzowanym użytkownikom interpretację sygnałów

Dwie techniki szyfrowania

- Szyfrowanie z kluczem symetrycznym
 - Np. DES, AES
- Szyfrowanie z kluczem publicznym
 - np. RSA

Szyfrowanie z kluczem symetrycznym

- Permutacja bitów przed ich transmisją w uprzednio zdefiniowany sposób – jeden z elementów szyfrowania
- Taka permutowana informacja może być odtworzona z użyciem operacji odwracającej
- Jednym z takich algorytmów jest DES (Data Encrytption Standard)

Funkcja prostej permutacji

Bity informacji przed transmisją oraz po ich otrzymaniu z użyciem DES

```
57 49 41 33 25 17 9 1
61 53 45 37 29 21 13 5
58 50 42 34 26 18 10 2
62 54 46 38 30 22 14 6
59 51 43 35 27 19 11 3
63 55 47 39 31 23 15 7
60 52 44 36 28 20 12 4
64 56 48 40 32 24 16 8
```

(a) Permutation before transmission

```
8 24 40 56 16 32 48 64
7 23 39 55 15 31 47 63
6 22 38 54 14 30 46 62
5 21 37 53 13 29 45 61
4 20 36 52 12 28 44 60
3 19 35 51 11 27 43 59
2 18 34 50 10 26 42 58
1 17 33 49 9 25 41 57
```

(b) Permutation after reception

Szyfrowanie z kluczem symetrycznym

- Złożony schemat szyfrowania polega na transformacji bloków wejściowych w pewną zakodowaną formę
- Zakodowana informacja jest w sposób unikalny zamieniana na informację użyteczną
- Najprostsza tranformacja zakłada logiczną lub arytmetyczną operację lub obie operacje

Proces generyczny kodowania i dekodowania

Permutacja i kodowanie informacji w DES

Uwierzytelnianie

- Ma na celu upewnienie się, że użytkownik jest autentyczny
- Używa się funkcji haszującej działającej na związanej z użytkownikiem unikalnym identyfikatorze (niepełny dowód)
- Inne podejście polega na użyciu dwóch związanych ze sobą kluczy (technika szyfrowania z kluczem publicznym)
- Jeden z nich znany jest tylko dla systemu generującego klucz (klucz prywatny), drugi klucz jest używany przy wysyłaniu do świata zewnętrznego (klucz publiczny)
- Algorytm RSA najbardziej znany system z kluczem publicznym

Kroki uwierzytelnienia klucza publicznego/prywatnego

Uwierzytelnianie (Algorytm RSA)

- W algorytmie RSA 2 duże liczby pierwsze (p, q) są wybierane; n=p*q; wybiera się liczbę e w celu użycia (n,e) jako klucza publicznego i jest ona wysyłana do użytkownika.
- Użytkownik przechowuje ją i kiedykolwiek wiadomość m < n ma być wysłana, użytkownik oblicza $c^{d}|_{mod\,n}$ i wysyła do systemu. Po otrzymaniu c system oblicza $c = m^{e}|_{mod\,n}$ gdzie d jest obliczane na podstawie klucza prywatnego (n,e)

$$c^{d}|_{mod \ n} = (m^{e}|_{mod \ n})^{d}|_{mod \ n} = (m^{e})^{d}|_{mod \ n}$$

$$= m^{ed}|_{mod \ n}$$

- Aby miało to wartość równą m, ed musi być równe 1
- To oznacza, że e oraz d muszą być .. mod n (lub mod p*q)
- To może być spełnione jeżeli e jest liczbą pierwszą w stosunku do (p-1)*(q-1)
- Korzystając z tej zalezności można uzyskać oryginalną wiadomość

Uwierzytelnianie wiadomości przy użyciu klucza publicznego/prywatnego

Uwierzytelnianie MS-a przez BS

Bezpieczeństwo systemów bezprzewodowych

- Podstawowe usługi bezpieczeństwa:
 - Poufność: tylko autoryzowana strona może mieć dostęp do informacji systemu oraz transmitowanych danych
 - Niezaprzeczalność: nadawca i odbiorca nie mogą mogą zaprzeczyć, że transmisja się odbyła
 - Uwierzytelnienie: nadawca informacji jest prawidłowo identyfikowany
 - Integralność: zawartość wiadomości może być modyfikowana tylko przez autoryzowanego użytkownika
 - Dostępność: zasoby są dostępne tylko dla autoryzowanych użytkowników

Bezpieczeństwo systemów bezprzewodowych

- Mechanizmy bezpieczeństwa:
 - Prewencja bezpieczeństwa: wymusza bezpieczeństwo w czasie funkcjonowania systemu
 - Detekcja bezpieczeństwa: odkrywa próby naruszenia bezpieczeństwa
 - Odtworzenie: odtwarzanie systemu do stanu przed naruszeniem bezpieczeństwa

Funkcja kosztu bezpiecznego systemu bezprzewodowego

Kategorie zagrożeń bezpieczeństwa (typy ataków)

Bezpieczeństwo bezprzewodowe

- Ataki aktywne: gdy ma miejsce modyfikacja danych lub fałszywa transmisja danych
 - Maskarada: dany podmiot pretenduje bycie innym podmiotem
 - Replay: przechwycenie informacji i jej retransmisja w celu wywołania nieautoryzowanego efektu
 - Modyfikacja wiadomości
 - Odmowa usługi (Denial of service DoS)
- Pasywne ataki: celem intruza jest uzyskanie informacji (monitorowanie, podsłuchiwanie transmisji)