

Bank Note Authentication-Approach

Nityanandan P

THE OBJECTIVE

Develop a classification model to detect if a bank note is a fake one or a legitimate one using CART.

Challenge: The data contains only 4 attributes and all are numerical. There are no missing values also.

I have handled the data here using multiple python libraries.

APPROACH

Problem Definition:

 Predicting whether a bank note is real or fake using CART.

Data Exploration:

 There are no missing data and I have just visualized the data.

Data Preparation:

 Feature scaling done to normalize the data

Splitting the data:

 The data is split into train and test sets

Validation:

- Accuracy
- Precision
- Recall
- F1 score
- 5 fold cross validation
- Logloss

Modelling:

- Logistic Regression
- Decision Tree Classifier
- Decision Tree using Gini
- Decision Tree using Entropy
- Random Forest Classifier

• There are no missing data. The dataset is clean and balanced. The one thing that I had to do was to add column names as the data was a .txt file without any column names.

	variance	skewness	kurtosis	entropy	class
0	3.62160	8.66610	-2.8073	-0.44699	0
1	4.54590	8.16740	-2.4586	-1.46210	0
2	3.86600	-2.63830	1.9242	0.10645	0
3	3.45660	9.52280	-4.0112	-3.59440	0
4	0.32924	-4.45520	4.5718	-0.98880	0
1367	0.40614	1.34920	-1.4501	-0.55949	1
1368	-1.38870	-4.87730	6.4774	0.34179	1
1369	-3.75030	-13.45860	17.5932	-2.77710	1
1370	-3.56370	-8.38270	12.3930	-1.28230	1
1371	-2.54190	-0.65804	2.6842	1.19520	1

No missing values:

Since there are no missing data and the dataset is a balanced one, I
just went on with Exploratory data Analysis and visualization.

Balanced data:

762610

Name: class, dtype: int64

Distribution of the attributes:

• From the graphs the following inferences were made:

○ Variance: Normally distributed – No skew

○ Skewness: Normally distributed – No skew

Kurtosis: Positive skew

Entropy: Negative skew

 Following is a heatmap showing how the independent variables are related to the target variable:

 This shows that only kurtosis is positively related to class, meaning as kurtosis increases, there is a higher possibility of a bank note being genuine.

DATA PREPARATION

- The data was normalized using StandardScaler from Sci-kit Learn because the range of the attributes were different. This would help fit the data into a model easily.
- When we look at the graphs in the previous slide, we can see that the variance ranges from -10 to 7.5, skewness from -15 to 15, kurtosis from -5 to 20 and entropy from -10 to 4.
- Since the data has a lot of negative values and some attributes are skewed StandardScaler plays an important role by scaling the data such that it is centred around 0.

• Logistic Regression:

[[150 9] [0 116]]					
		precision	recall	f1-score	support
	0	1.00	0.94	0.97	159
	1	0.93	1.00	0.96	116
accurac	y			0.97	275
macro av	g	0.96	0.97	0.97	275
weighted av	g	0.97	0.97	0.97	275

• Cross Validation:

[0.98636364 0.99090909 0.98173516 0.99543379 0.97260274]

Decision Tree Classifier:

Cross Validation:

[0.99090909 0.98636364 0.98173516 0.98630137 0.98173516]

• Decision Tree Classifier Using Gini:

[[149 10] [13 103]]				
	precision	recall	f1-score	support
0	0.92	0.94	0.93	159
1	0.91	0.89	0.90	116
accuracy			0.92	275
macro avg	0.92	0.91	0.91	275
weighted avg	0.92	0.92	0.92	275

Log Loss:

The log loss score is: 2.888726738389992

Decision Tree Classifier Using Entropy:

Log Loss:

The log loss score is: 0.753587841296783

DECISION TREE - BEFORE PRUNING

DECISION TREE - AFTER PRUNING - GINI

We can see that the nodes have been reduced after pruning.

DECISION TREE - AFTER PRUNING - ENTROPY

We can see that the nodes have been reduced after pruning.

Random Forest Classifier:

[[158 1] [1 115]]				
	precision	recall	f1-score	support
0	0.99	0.99	0.99	159
1	0.99	0.99	0.99	116
accuracy			0.99	275
macro avg	0.99	0.99	0.99	275
weighted avg	0.99	0.99	0.99	275

• Cross Validation:

[1. 0.99545455 1. 0.98630137 0.99543379]

SORTING MODELS AS PER THE ACCURACY

	Model	Score
4	Random Forest	99.272727
1	Decision Tree	98.181818
3	Decision Tree Entropy	97.818182
0	Logistic Regression	96.727273
2	Decision Tree Gini	91.636364

- We can see that the accuracy of Random Forest Classifier is better than Decision Tree
 Classifier and Logistic Regression. Random Forest Classifier is a collection of decision
 trees and they limit overfitting, so they are typically more accurate than single decision
 trees.
- Decision Tree Classifier is better than Logistic Regression here because, the latter just fits a best line to divide the space into two, but the decision tree can bisect into multiple smaller regions.
- Here the Decision Tree with Entropy criterion performs well because of the short depth and Decision Tree with Gini criterion performs well because the depth is more.

REFERENCES

• https://towardsdatascience.com/decision-tree-build-prune-and-visualize-it-using-python-12ceee9af752

• https://stackoverflow.com/questions/59365994/how-to-create-column-names-from-txt-files-in-pandas-dataframe

 https://scikitlearn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

THANK YOU