Задание 2

НКА и алгоритмы поиска подстрок

Литература:

- 1. Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений. М.: Вильямс, 2002.
- 2. $Axo\ A.,\ Ульман\ \mathcal{A}.$ Теория синтаксического анализа, перевода и компиляции М.: Мир, 1978. Гл. 0, 2.
- 3. Серебряков В.А., Галочкин М.П., Гончар Д.Р., Фуругян М.Г. Теория и реализация языков программирования. М.: МЗ-пресс, 2006.
- 4. Шень. А. X. Программирование: теоремы и задачи М.: МЦНМО, 2004.
- 5. Журавлёв Ю.И., Флёров Ю.А, Вялый М.Н. Дискретный Анализ. Формальные системы и алгоритмы. М.: МЗ-пресс, 2010.

Ключевые слова 1 :язык, регулярные выражения, конкатенация, объединение, итерация, конечные автоматы (KA), детерминированные U инерминированные U инерминированные

Упражнения из этого задания вовсе не обязательно техать. Задачи, помеченные звёздочкой указывают на трудность задачи, но не переводят их в разряд необязательных. Стоит хотя бы попытаться их решить.

1 Построение по регулярному выражению конечного автомата

На семинаре мы разобрали алгоритм построения детерминированного конечного автомата по регулярному выражению. Однако, его нельзя на-

¹минимальный необходимый объём понятий и навыков по этому разделу)

звать простым. Построить недетерминированный автомат по регулярному выражению гораздо проще. В каком-то смысле, если вы имеете дело с регулярным выражением, вы имеете дело с НКА.

Напомним, что помимо обычных переходов недетерминированные автоматы, имеют также ε -переходы, т.е. переходы вида $\delta(q_i, \varepsilon) = q_j$. Наличие таких переходов означает, что попав в состояние q_i , автомат может перейти в состояние q_i не обрабатывая следующий символ слова.

Пример 1.

Легко видеть, что данный автомат принимает язык, состоящий из слов, оканчивающихся на 1. При прочтении 1, автомат переходит из состояния q_0 в q_1 , дальше, если во входном слове ещё остались необработанные символы, автомат делает ε -переход из состояния q_1 в q_0 и продолжает обработку слова.

Для построения НКА по PB будем использовать определение регулярного языка. Напомним определение класса регулярных языков REG.

- $\varnothing \in \mathsf{REG}$.
- $\bullet \ \forall \sigma \in \Sigma : \ \{\sigma\} \in \mathsf{REG}.$
- $\bullet \ \, \forall X,Y \in \mathsf{REG} \ \, : \ \, X \cdot Y, \ \, X|Y, \, \, X^* \in \mathsf{REG}.$
- Больше нет регулярных языков.

Мы будем строить НКА по PB из каждого пункта данного определения. С первыми двумя пунктами проблем нет – их я оставляю как лёгкое упражнение. Перейдём сразу к третьему пункту. Допустим уже построены автоматы \mathcal{A} и \mathcal{B} для регулярных языков X и Y соответственно. Мы будем предполагать, что оба автомата имеют всего одно принимающее состояние. Если в автомате несколько принимающих состояний, то можно построить эквивалентный ему автомат с единственным принимающим

состоянием, добавив к множеству состояний состояние q_F , которое будет единственным принимающим, и добавив ε -переходы в q_F из старого множества $F \colon \forall q \in F : \delta(q, \varepsilon) = q_F$. Будем схематично обозначать автоматы эллипсами, и помечать в них только начальное и принимающее состояние. Таким образом, автомат \mathcal{A} имеет вид

В дальнейшем, мы будем предполагать, что начальное состояние на схеме находится слева, а принимающее справа. Построим явно автомат распознающий $X \cdot Y$, $L(\mathcal{A}) = X$, $L(\mathcal{B}) = Y$.

Для этого по автомату \mathcal{A} распознающему язык X и автомату \mathcal{B} , распознающему язык Y мы строим автомат, распознающий $X \cdot Y$ объединяя множества состояний \mathcal{A} и \mathcal{B} так, что $q_0 = q_0^{\mathcal{A}}, q_F^{\mathcal{A}} = q_0^{\mathcal{B}}, F = \{q_F^{\mathcal{B}}\}$. Опять получили автомат с единственным принимающим состоянием.

Упражнение 1. Доказать, что построенный автомат распознаёт язык $X \cdot Y$.

Для построения языка X|Y используем следующую конструкцию:

Упражнение 2. Доказать, что построенный автомат распознаёт язык X|Y.

И наконец перейдём к построению автомата для языка X^* :

Упражнение 3. Доказать, что построенный автомат распознаёт язык X^* .

Задача 1. Постройте НКА по регулярному выражению $a(ab|b)^*b$.

2 НКА и ДКА

Как мы обсудили на семинаре, если НКА \mathcal{A} имеет множество состояний $Q_{\mathcal{A}}$, то построенный по нему ДКА \mathcal{B} имеет множество макросостояний $Q_{\mathcal{B}} \subseteq 2^{Q_{\mathcal{A}}}$, где $2^Q_{\mathcal{A}}$ — множество всех подмножеств множества $Q_{\mathcal{A}}$. Таким образом, на число состояний автомата \mathcal{B} мы имеем верхнюю оценку $|Q_{\mathcal{B}}| \leqslant 2^{|Q_{\mathcal{A}}|}$. Таким образом, число состояний в ДКА ограниченно экспоненциальной функцией от числа состояний в НКА, но существует ли язык, для которого эта оценка достигается? На самом деле, когда мы говорим об оценках такого рода, нам требуется рассматривать ни один какой-то язык, а последовательность языков, по которым мы и сможем установить экспоненциальную зависимость.

Задача 2. Определим язык $L_i = \{w \mid |w| = n, w[n-i] = 1\}$, то есть в язык L_i в ходят все слова, в которых 1 стоит на i-ом месте от конца². Постройте НКА для языка L_3 . По построенному НКА постройте ДКА.

Задача 3^* . Докажите, что на языках L_i между НКА и построенными по ним ДКА достигается экспоненциальный разрыв.

²Во избежании путаницы, первый с конца символ – это последний символ слова.

3 Алгоритм Кнута-Морриса-Пратта и его связь с автоматами

HKA – очень удобный инструмент для описания автоматов, которые ищут слова в тексте. Например, автомат

проверяет имеет ли поданное на вход слово подслово *ababab*.

Задача 4. Постройте по данному автомату детерминированный.

Как мы уже обсуждали, для алгоритмической проверки принадлежности слова языку, распознаваемому НКА, по нему следует строить ДКА. Однако, в специальных случаях, используемых на практике, подобно описанному выше, есть более удобные алгоритмы и один из них — алгоритм Кнута-Морриса-Пратта. Этот алгоритм подробно описан в 10-ой главе книги А. Шеня «Программирование. Теоремы и задачи». Её можно в свободном доступе скачать здесь. Я рекомендую изучить КМП-алгоритм по этой книге, в этом разделе я лишь скажу пару слов о его связи с автоматами, а точнее дам на эту тему пару задач.

В основе этого алгоритма – использование для поиска слова вычисления префикс-функции.

Определение 1. Назовём префикс-функцией функцию l(), которая возвращает самый длинный несобственный префикс слова w, являющийся одновременно его суффиксом.

Пример 2. Приведём пример вычисления префикс-функции.

$$l(a^{n+1}) = a^n$$
$$l(ababa) = aba$$
$$l(abb) = \varepsilon$$

 $^{^{3}}$ То есть префикс, не совпадающий со всем словом w.

У префикс функции есть важное свойство — все несобственные префиксы слова w, которые являются его суффиксами лежат в последовательности $l(w), l(l(w)), \ldots$

Задача 5^* . Докажите, что в ДКА, распознающем язык $\Sigma^*w\Sigma^*$ не может быть меньше состояний чем элементов последовательности $l(w), l(l(w)), \dots$

Задача 6* . Приведите алгоритм построения ДКА для языка $\Sigma^*w\Sigma^*,$ использующий префикс-функцию.

4 Дополнительные задачи

Задача 7. Приведите протокол работы КМП-алгоритма при поиске подслова *abba* в слове *abbbababbab*.