

Praktikum Copmuter Vision

bei Jun.-Prof. Dr. Benjamin Risse

Smart Camera Operator

Vorgelegt von:

Tobias Johanning Markus Konetzny Tabea Preusser nr nr 428026
@wwu.de @wwu.de t_preu04@wwu.de M.Sc. Informatik M.Sc. Informatik M.Sc. Informatik

Münster, den 05.03.2020

Inhaltsverzeichnis

1.	Einleitung	1
2.	Entwurfsentscheidungen	4
	2.1. Programmiersprache	4
	2.2. Setup	4
	2.3. Versionsverwaltung	4
	2.4. Toolselection	5
	2.5. Maschine Learning	5
3.	Anwendungsaufbau	6
	3.1. Programmaufbau	6
	3.2. Video-Pipeline	6
	3.3. Zustandautomat	7
4.	Implementierung	8
	4.1. Phase 1	8
	4.2. Phase 2	8
	4.3. Phase 3	
5.	Ergebnisauswertung	12
	5.1. Planung	12
	5.2. Umsetzung und Zielerreichung	13
	5.3. Verbesserungen	13
6.	Schlussfolgerung und Ausblick	14
Ar	hang A. Videos	15
	A.1. Ergebnisse	15
	A.2. Siegerehrung	

1. Einleitung

Motivation

Im Rahmen eines Projektes des Unternehmens Rimondo sollte ermöglicht werden, dass die Abdeckung der Videoaufnahme von Reitsportturniere maximiert werden soll. Dazu sollen neben den internationalen auch von möglichst vielen, im besten Falle sogar allen, nationalen Turnieren in NRW Videoaufnahmen erstellt werden können, was später auch auf ganz Deutschland erweitert werden soll. Neben Bereitstellung der Turnieraufnahmen in der Mediathek von Rimondo sind auch Live-Aufnahmen in der Zukunft geplant. Alleine 2018 fanden in NRW über 600 nationale und 82 internationale Reitsportturniere statt, von denen nur ein Bruchteil verfilmt wurde. Dabei stellt das grundlegende Problem die hohen Personalkosten der Kameraleute dar, die für stundenlange professionelle Aufnahmen benötigt werden. Während dies für internationale Turniere, wie das "Turnier der Sieger" in Münster, möglich über Fernsehsender zu finanzieren ist, sind die Kosten für die kleineren, regionalen Turniere nicht rentabel. Da jedoch die Kundengruppe, welche aus den Turnierteilnehmern und deren Fans besteht, mit über 98.000 Mitgliedern in Reitsportvereinen in NRW als mögliche Kunden, großes Potenzial darstellt, wird eine Lösung benötigt. Aus diesem Grund wurden Projektgruppen von Informatikstudenten der WWU vor die Aufgabe gestellt die Kameraführung für Reitsportturniere zu automatisiert, indem ein "Smart Camera Operator" im Rahmen eines Praktikums erstellt wird. Dies sollte eine Software umfassen, welche in der Lage ist den Kameramann für Turnieraufnahmen im Pferdesport zu ersetzen.

Aufgabenstellung und Zielsetzung

Die Erstellung des "Smart Camera Operators" zur Videoaufnahme von Reitsportturnieren sollte in drei Phasen unterteilt erreicht werden, wobei die Wahl der Methoden und Verfahren freigestellt wurde.

Die erste Phase hatte die Erstellung von Trainingsdaten von Pferden und Reitern zum Ziel, womit die Vorarbeit für die weitern Phasen geleistet wurde. Dazu hat Rimonod auf einer Online Platform ca. 1300 Frames aus Reitvideos zur Verfügung gestellt, auf denen mithilfe eines Labeling-Tools die Position der Reiter und Pferde eingetragen werden sollte. Jeder Teilnehmer des Praktikums hatte vom 24.10.2019 bis zum 14.11.2019 Zeit in den Bildern mindestens 200 Reiterpaare, genauer 400 Reiter oder Pferde, zu kennzeichnen. Diese Daten wurden anschließend von Rimondo ausgewertet und in Form einer Datenbank

1. Einleitung

für die zweite Phase des Projektes weiterverwendet.

Die zweite Phase, vom 19.11.2019 bis 19.12.2019, umfasste das Training eines Detektors anhand der zuvor erstellten Datenbank. Dieser soll in der Lage sein anhand von Reitern und Pferden auch Reiterpaare zu erkennen. Als Grundlage zum Training des Detektors wurde mehrstündiges Videomaterial von Weitwinkel-Kameras von Reitern aus derselben Reithalle zum Testen zur Verfügung gestellt. Es sollen erste Videos erstellt werden, die anhand der Region of Interest (Roi) aus den Frames der detektierten Reiterpaare erstellt werden, wobei noch kein großer Wert auch flüssige Bildübergänge gelegt werden musste. Zudem soll dieser Detektor genutzt werden, um weitere Bilddaten zu labeln und den Detektor mit diesen Daten weiter zu trainieren.

Unser persönliches Ziel in dieser Phase ist einen bereits robusten Tracker mit dem bereitgestellten Videomaterial zu ermöglichen, weshalb wir direkt mit Maschine Learning beginnen wollen. Folglich lag der Fokus mehr auf der Detektion von Reiter und Pferd als konkret auf dem Reiterpferdepaar. Wir wollten direkt bei der Bestimmung der Rois besonders die Randfallbehandlung des Sichtfeldes einbeziehen und zunächst alle Reiterpaare gemeinsam im Bildausschnitt haben. Weiter wollten wir den Aspekt des Labelling weiterer Daten, für Videos und Bilder mithilfe einer GUI umsetzen.

In der dritten Phase soll der endgültige "Smart Camera Operator", vom 20.12.2019 bis 6.3.2020 erstellt werden. Es wird dazu weites Videomaterial zur Verfügung gestellt, welches mehrere Reithallen Indoor und Outdoor abdeckt. Dabei soll die genauere Lokalisierung des Reiterpaars für eine robustere Implementierung des Trackers genutzt werden. Außerdem soll das Tracking der Rois flüssiger werden, wobei beispielsweise ein Kalmanfilter sowie Entzerrung des Bildes eingesetzt werden können. Unser Ziel war es ein Flüssiges Video mithilfe eines passenden Filters zu erreichen, wobei wir einen Gaußfilter ausprobieren wollten. Weiter wollten wir den Reiterpaar Detektor verbessern, indem wir Sprünge und Verschwinden eines Paares einbeziehen, wodurch Probleme wie das Auftauchen im Spiegel gelöst werden sollen. Ebenfalls sollte das Verdeckungsproblem des beobachteten Paares in Angriff genommen werden, um ein einzelnes Reiterpaar erfolgreich zu tracken. Weiter sollte der Detektor durch weitere Daten aus Indoor und Outdoor Aufnahmen erweitert werden, um Vielseitigkeit zu erlangen

Aufbau der Arbeit

In Kapitel 2 gehen wir auf die grundlegenden Entwurfsentscheidungen bezüglich verwendeter Hard- und Software sowie den Computer Vision Methoden ein. Weiter werden in Kapitel 3 der Anwendungsaufbau mit den genutzten Verfahren und die Benutzeroberfläche genauer beleuchtet. Die Implementierung des Detektors und Trackers wird in Kapitel 4 erläutert und anschließend werden die erreichten Ziele in Kapitel 5 diskutiert. Zum Schluss fasst Kapitel 6 das erfolgte Projekt zusammen und gibt einen Ausblick auf mögliche Verbesserungen

1. Einleitung

dafür wichtige Schwerpunkte.

2. Entwurfsentscheidungen

2.1. Programmiersprache

Für die Wahl der Programmiersprache haben wir zunächst die Vorkenntnisse aller Gruppenmitglieder in verschiedenen erlernten Sprachen abgeschätzt und betrachtet welche Sprachen einen einfachen Einstieg in das Thema Maschine Learning erlauben. Deshalb viel unsere Wahl trotz geringerer Geschwindigkeit im Vergleich zu C++ auf Python, da ohne viel Vorwissen schnell ein erster funktionierender Prototyp erstellt werden kann und wir zudem unserer Kenntnisse in dieser Sprache vertiefen können.

Für Python gibt es eine Vielzahl geeigneter Entwicklungsumgebungen wie Eclipse oder Visual Studio, die Wahl fiel jedoch auf die kostenlose Variante von PyCharm, mit der alle Gruppenmitglieder vertraut waren.

2.2. Setup

Mit dem Ansatz im Verlauf des Projektes Maschine Learning zu verwenden, wurde recht schnell deutlich wie wichtig eine gute Hardware Ausrüstung ist, um gute Performance beim Training des Models und bei der Detektion zu erreichen. Während die Umsetzung auch ausschließlich mit CPU möglich ist, besticht der Einsatz von GPU mit deutlicher Geschwindigkeit. Um diesen Vorteil zu nutzen, haben wir uns entschlossen für das Training mit dem kostenlosen Cloud-Service von Google Colaboratory in Verbindung mit Google Drive zu arbeiten, der ebenfalls kostenlos GPU Nutzung ermöglicht. Dabei stehen uns 25 GB Ram und je nach Zuweisung eine Tesla T4 GPU mit ca.8 GB oder eine Tesla K80 GPU mit ca. 12 GB zur Verfügung, was einen 25-fachen Geschwindigkeitsvorteil von GPU gegenüber CPU darstellt. Passend zur Wahl der Programmiersprache arbeitet Google Colab mit Jupyter Notebooks und hat bereits die meisten Bibliotheken installiert, wobei fehlende mit Kommandozeilen Befehlen noch hinzugefügt werden können.

2.3. Versionsverwaltung

Um Änderungen an Dateien und Quellcode zu erfassen und sinnvoll zu strukturieren, bietet sich aufgrund von Zusammenarbeit mehrerer Gruppenmitglieder der Einsatz einer Versionsverwaltung an. Durch Organisation mit Zeitstempeln

2. Entwurfsentscheidungen

und Benutzerkennungen kann gemeinsam an Dateien gearbeitet, Änderungen nachvollzogen, Dateien wiederhergestellt und Zugriffe koordiniert werden. Die Wahl, mit welcher Versionsverwaltung das Projekt umgesetzt werden sollte, fiel auf Git als verteiltes System, welches wir in Form von Github nutzen. Dies hat den Grund, dass Git von der genutzten Entwicklungsumgebung PyCharm unterstützt wird und alle Mitglieder unserer Gruppe bereits Github durch vorherige Projekte vertraut waren, sodass relativ wenig Einarbeitungszeit erforderlich war. Die Einbindung in Google Colab ist mit Github ebenfalls möglich, indem das jeweilige Projekt geclont wird, was wir für die Datenbank und Maschine Learning benötigten.

2.4. Toolselection			
Opencv			
Numpy			
Scipy			
tensorflow			
keras			
Pandas			
pyqt5			
2.5. Maschine Learning			
Vergleich und Auswahl			
Yolo			
ImageAI			
Mask rcnn			

3. Anwendungsaufbau

3.1. Programmaufbau

Klassendiagramm

Schnittstelle zwischen Gui und Backend: Operator Gui nutzt das Designpattern des Model View Controller: Controller MainWindow?, Model= Backend, View= Widgets

3.2. Video-Pipeline

Abb. 1.: Video-Pipeline Phase 2

Anhand der Ziele von den Phasen zwei haben wir die Vorgehensweise mit einer Video-Pipeline geplant, welche wir dann schrittweise mit sinnvoller Aufgabenteilung umsetzen konnten. Die erste Version umfasst dabei lediglich die grundlegenden Funktionen, die für das sinnvolle bestimmen der Rois nötige sind. So wird hier pro Frame eines Videos für alle Detektionen ein gemeinsamer Bildausschnitt berechnet und diese zu einem Ausgabevideo zusammengefügt. Diese Video-Pipeline konnten wir dann in der dritten Phase um weiter Aspekte erweitern, wobei diesmal der Fokus auf der Qualität des Ausgabevideos lag. Die

3. Anwendungsaufbau

Detektion konnte auf Frames mit geringerer Auflösung schneller durchgeführt werden, weshalb die Größe der gefundenen Boxen anschließen angepasst werden musste. Anstatt dem vorherigen Ansatz alle Reiter und Pferde zu verfolgen, wird nun ein einzelnes Reiterpaar ausgewählt. Die Qualität des Ausgabevideos wird durch weniger sprunghafte Unterschiede in der Größe der aufeinanderfolgen Rois verbessert, sodass der Bildfluss flüssiger wird. Zusätzlich wird nun auch die Audiodatei des Ursprungsvideos dem Ausgabevideo hinzugefügt.

Abb. 2.: Video-Pipeline Phase 3

3.3. Zustandautomat

4.1. Phase 1

Wie vorgesehen hat jedes Gruppenmitglied die Online-Platform von Rimondo genutzt um auf Bilder aus einer Reithalle 400 Reiter oder Pferde zu markieren. Dazu wurden Bounding Boxen um die erkannten Reiter bzw. Pferde eingezeichnet, die ein passendes Label zur Unterscheidung hinzufügten. Die gesamten erstellten Daten wurden am Ende der Phase von Rimondo in eine Datenbank umgewandelt mit welcher in der nächsten Phase der geplante Detektor entwickelt werden sollte.

4.2. Phase 2

Training des Model

Bevor wir mit dem Training des Detektors angefangen haben, mussten wir uns in die Thematik von Image Detection und in die Verwendung von Mask Rcnn einlesen und an diese an einigen Beispielen testen.

Im ersten Schritt haben wir die bereitgestellten Daten aus der Datenbank von Phase 1 aufbereitet, um diese zum Training zu verwenden. Dazu haben wir die Datenbank aufgeteilt, sodass pro Frame eine csv Datei mit allen Labeln im Format "image,label,x,y,width,height" existierte. Da jeder Frame mehrfach gelabelt wurde, haben wir mithilfe von Schwellwerten die zusammengehörigen Dopplungen bestimmt und davon den durchschnittlichen Wert abgespeichert.

Anschließend haben wir die hohe Auflösung der Frames verringert, um die Trainingszeit zu verringern. Zuletzt haben wir die Daten in einer passenden Ordnerstruktur (3) von "accepted_images" und dem darin liegenden Ordner "annotations" in ein Github Projekt eingebunden, sodass das Training von Google Colab aus erfolgen kann.

Im zweiten Schritt haben wir die benötigten Klassen zum Training erstellt. Dazu wurde die Klasse RiderConfig als Unterklasse der Config Klasse von Mask Renn erstellt, in der die Parameter individuell angepasst wurden. Wichtig war die Anzahl der

accepted_images
img2.png
img3.png
annotations
img2.csv
img3.csv

Abb. 3.: Ordnerstruktur Training

zu detektierenden Klassen, die neben Reiter und Pferd auch den Hintergrund

Masken Reiter Pferd Beispiel

Abb. 4.: Segmentierung von Reiter und Pferd nach dem Training der zweiten Phase

umfasst. Zudem wurde die Leistung der verfügbaren GPU angepasst sowie die Trainings- und Validierungsschritte pro Epoche. Weiter wurde die Klasse RiderDataset als Unterklasse der Dataset Klasse von Mask Rcnn erstellt. In dieser wurden die nötigen Funktionen zum Laden des Datensatzes in Trainings und Test Modus, zum Laden der Masken und extrahieren der Boxen anhand von Eckpunkten aus den cvs Dateien überschrieben.

Damit konnten wir im dritten Schritt mit dem Training des Models beginnen konnten, wozu wir aufbauend auf den MS COCO Gewichten Transfer Lernen genutzt haben. Für das Training haben wir den Datensatz in 70% Trainings-,15 % Test- und 15% Validierungsdaten unterteilt. Die erste Version unseres Detektors haben wir mit 75 Epochen mit 500 Schritten trainiert, bis der Verlust pro Epoche sehr gering wurde. Die damit erreichte Leistung unseres Detektors war für die bereitgestellten Videos ausreichend zuverlässig(siehe 4), sodass wir danach mit diesem die ersten Videos erstellen konnten

genauer

Zur vielfältigen Nutzung des erstellten Detektors, haben wir das Training mit weiteren gelabelten Bilddaten ermöglicht, um den Detektor auch in anderen Hallen zuverlässiger verwenden zu können. Dazu werden die Bilder eines Ordners nacheinander angezeigt, wobei die detektierten Pferde und Reiter mit farbigen Bounding Boxen eingezeichnet werden. Anhand dieser Boxen kann der Nutzer entscheiden, ob die Daten geeignet sind, sodass die akzeptierten Bilder und deren Boxen wie in der Ordnerstruktur von 3 wiederum abgespeichert werden, um den Detektor damit weiter zu trainieren.

Extraktion der Rois

Mithilfe von OpenCV werden alle Frames des Eingabevideos einzeln durchlaufen und der zuvor trainierte Detektor auf jedes einzeln angewandt. Dadurch haben wir pro Frame alle erkannten Reiter und Pferde mittels Bounding Boxen abgespeichert und anhand dieser weiter die Rois berechnet, da unser Fokus aus Zeitgründen noch nicht auf Erkennung von Reiterpaaren lag. Wir verfolgten hier den Ansatz zunächst alle Reiter und Pferde in den Rois abzubilden und erst in der dritten Phase zu selektieren um auf ein einzelnes Paar zu fokussieren. Dieser Modus kann weiterhin gut für Aufwärmphasen der Reit-

turniere genutzt werden, bei denen mehrere Reiterpaare auf dem Turnierplatz sind. Die Umsetzung ist als austauschbarer Filter konzipiert, der eine Gesamt-Bounding-Box anhand der maximalen und minimalen Eckpunkte aller detektierten Bounding-Boxen bestimmt. Ausgehend von der Gesamt-Bounding-Box müssen für die Erstellung erster Videos noch nötige Sonderfälle beachtet werden. So wird der Zoom unter 480 Pixel verhindert, um eine gute Bildqualität zu ermöglichen. Die längere Seite der Bounding-Box ist ausschlaggebend für die Berechnung der passenden Ratio des Bildausschnittes, sodass dann die optimalen Eckpunkte berechnet werden können. Wichtig ist es noch die Ränder eines Frames zu berücksichtigen und die Ratio entsprechend zu korrigieren. Im letzten Schritt werden die Rois mithilfe der kalkulierten Gesamtbox aus jedem Frame ausgeschnitten . Nachdem alle Frames auf die gleiche Größe gebracht werden, was durch die gleiche Ratio aller Frames keine Verzerrung zur Folge hat, werden die Frames mit OpenCV in ein Ausgabevideo geschrieben.

Reiterpaare

4.3. Phase 3

Weiterentwicklung des Detektors

Mit Beginn der dritten Phase wurden weitere Reitvideos zur Verfügung gestellt, welche in verschiedenen Hallen sowie im Außenbereich gefilmt wurden. Der erste Test mit dem Detektor der zweiten Phase verlief nicht sonderlich zufriedenstellend, wodurch wir mehrere Probleme identifizieren konnten. Zum einen wurden nicht alle Reiter und Pferde, die weit entfernt von der Kamera waren, korrekt detektiert. Dieses Ergebnis war aufgrund des zuvor recht einseitigen Trainings nicht verwunderlich, da sich die Hintergründe, Reiter und Pferde unterschieden. Zum anderen wurden auch viele sitzende Personen als Reiter identifiziert und einige Gegenstände wie beispielsweise Pflanzen als fehlerhaft erkannt. Nachdem wir jedoch ungefähr 100 weitere Frames pro neuer Umgebung ausgewählt und damit den Detektor weiter trainiert hatten, wurden ein Großteil der Fehler beseitigt.

Benutzeroberfläche

Im Hinblick auf die Kundengruppe haben wir das Kennzeichnung weiterer Bilddaten und die Konvertierung eines Videos für autonome Kameraführung in eine GUI eingebunden. Die GUI wurde mit PyQt5 erstellt und das Standardaussehen durch Einbinden eines Stylesheets modifiziert. Mit dieser minimalen Benutzeroberfläche kann der Nutzer nun zunächst auswählen ob weitere Daten gelabelt werden sollen oder ein Video umgewandelt werden soll. Bei der Auswahl weiter Bilddaten können sowohl Ordner mit Bildern als auch Videos mithilfe extrahierter Frames verwendet werden. Dazu kann der Nutzer pro Bild entscheiden ob die eingezeichnete Detektion gut genug ist diese akzeptieren oder ablehnen und im Anschluss den Detektor damit weiter trainieren. Für

die Umwandlung eines Videos wird nach Auswahl der Datei und der Auflösung des Ausgabeformates ein Video unseres Smart Camera Operators erstellt.

Reiterpaar

Sprünge/Verschwinden

Verdecken

5. Ergebnisauswertung

Qualitative Auswertung:

- Diskussion Zielerreichung
- Untersuchung der Bedienung
- Empfehlung noch nicht implementierter Funktionen

Bugs:

- Prototyp
- fehlender Praxistest
- bisher nur Grundfunktionen

Verbesserungen:

- Performance für Live Übertragung
- Model Training erweitern
- Festlegung welchem Reiterpaar situationsbedingt gefolgt werden soll
- Bildentzerrung?

Zusammenfassung der Beobachtungen

- Einstufung der Fehler und ihre Wichtigkeit
- Fehlertoleranz
- Ursachenanalyse
- Verbesserungsvorschläge
- Interssenskonflike(Performance und Zeitaufwand)
- Beurteilung der Resourcen (Zeit, Vorwissen, erworbene Kenntnisse)
- Effektivität
- Effizienz
- Zufriedenstellung/Akzeptanz
- Aufgabenangemessenheit
- Erlernbarkeit
- Erwartungskonformität

5.1. Planung

• Einhaltung von Zeitabläufen/Phasen

5.2. Umsetzung und Zielerreichung

Umsetzung GUI

- Genereller Überblick
- Spezielle Bedienelemente
- Ausführung vorgegebener Handlungsabläufe
- Leichte Erlernbarkeit

Umsetzung Detektor

Umsetzung Tracker

5.3. Verbesserungen

6. Schlussfolgerung und Ausblick

Ausblick:

 \bullet Einsatzmöglichkeiten für Turniere und Trainingsstunden

A. Videos

- A.1. Ergebnisse
- A.2. Siegerehrung