However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Programs were mostly entered using punched cards or paper tape. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Techniques like Code refactoring can enhance readability. Many applications use a mix of several languages in their construction and use. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug.