Probability III: Assignment 1

30th July, 2025.

Yogeshwaran D.

Problems to be discussed in Aug 4th class with a quiz on some problems at the end.

- 1. Suppose \mathcal{A} is an algebra closed under the formation of countable disjoint unions. Is \mathcal{A} a σ -algebra ?
- 2. ★ Find examples of the following: (1) An algebra that is not a σ -algebra; (2) A λ -system that is not a σ -algebra; (3) A π system that is not an algebra; (4) A π -system that is not a λ -system; (5) A λ -system that is not a π -system.
- 3. Atomic Algebras: Let A_{α} , $\alpha \in I$ be a disjoint partition of Ω . Define $\mathcal{F} := \{ \cup_{\alpha \in J} A_{\alpha} : J \subset I \}$. Show that \mathcal{F} is a σ -algebra.
- 4. Suppose that \mathcal{F}_n are algebras such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ (increasing class of algebras) then $\cup_n \mathcal{F}_n$ is an algebra. Are increasing classes of σ -algebras are closed under unions?
- 5. Show that a σ -algebra cannot be countably infinite. Is the same true for an algebra?
- 6. By interval I, we refer to an interval (a, b] for $a \leq b$. Define \mathcal{B}_0 to be the collection of all finite unions of disjoint intervals in $\Omega = (0, 1]$. Show that \mathcal{B}_0 is an algebra but not a σ -algebra. Defining $\mu(a, b] := b a$ and for $B \in \mathcal{B}_0$, define $\mu(B) := \sum_i \mu(I_i)$ where $B = \bigcup_i I_i$ for disjoint intervals I_i . Show that μ is well-defined on \mathcal{B}_0 . Further show that μ is countably additive on \mathcal{B}_0 .
- 7. Show that $\sigma(\mathcal{B}_0) = \sigma\{(a,b] : 0 \le a \le b \le 1\} = \mathcal{B}((0,1])$, the Borel σ -algebra of (0,1].
- 8. Let $\mathcal{C} = \{(a,b] : -\infty < a \leq b < \infty\}$ and F be a non-decreasing and right continuous function on \mathbb{R} . Define \mathbb{P}_F on \mathcal{C} by $\mathbb{P}_F((a,b]) = F(b) F(a)$. Show that \mathbb{P}_F is a countably additive function on \mathcal{C} .
- 9. Let $\mathbb{P}: \mathcal{A} \to [0, \infty]$ be a finitely additive and countably subadditive set function on an algebra \mathcal{A} . Is \mathbb{P} countably additive? Is it necessary that \mathcal{A} be an algebra?