- 8. 利用高斯公式计算曲面积分:
- (1) $\underset{\Sigma}{\bigoplus}$ z dx dy, 其中 Σ 是柱面 $x^2 + y^2 = a^2$ (a > 0)和z = 0, z = 1 所围的外侧.

(2) $\underset{\Sigma}{\bigoplus} xz dx dy + xy dy dz + yz dz dx$, 其中 Σ 为平面 x+y+z=1, x=0, y=0, z=0 所围立体表面的外侧.

(3) $\iint_{\Sigma} dydz + ydzdx + 2zdxdy$, 其中 Σ 是圆锤面 $z = -\sqrt{x^2 + y^2}$ 被平面 z = -1 所截下的有限部分曲面的上侧.

解:补咖Σ: Z=-1, x+y=≤1. 取T侧

\$\forall dyde + y dzds +2\forall dyg = (\forall - \limits) dydz + ydzds +2\forall dsd = -\forall .

(4) $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧.

解. 补-圆面 I, 许空 a, 取下侧

9. 求向量场 $\overrightarrow{u}(x,y,z)=xy^2\overrightarrow{i}+ye^z\overrightarrow{j}+x\ln(1+z)^2\overrightarrow{k}$ 在点P(1,1,0)处的散度 $\overrightarrow{div u}$

#: $P = 3y^2$ $Q = ye^2$ $R = 8h(1+z)^2$ $\frac{\partial P}{\partial x}|_{(1,1,0)} = 1$ $\frac{\partial P}{\partial z}|_{(1,1,0)} = \frac{2X}{1+z}|_{(1,1,0)} = 2$ 1. $\frac{\partial P}{\partial z}|_{(1,1,0)} = \frac{\partial P}{\partial z} + \frac{\partial P}{\partial z} + \frac{\partial P}{\partial z} = 4$