Testing Discussion for SEG2105 Assignment 1

Hypothesis

<u>Design</u>	<u>Advantages</u>	<u>Disadvantages</u>
2: Store polar coordinates only	Stores Polar coordinates only	Needs to process input and convert to either Polar or Cartesian. Slower for initializing cartesian points
3: Store cartesian coordinates only	Stores Cartesian coordinates only	Needs to process input and convert to either Polar or Cartesian Slower for initializing polar points
5: Abstract class with designs 2 and 3 as subclasses	- Would have the most efficient run time - Only stores 1 coordinate which is efficient on memory	Cannot be instantiated

Performance Analysis

Runtime for Different Method calls				
<u>Methods</u>	<u>Design 2</u>	<u>Design 3</u>	<u>Design 5</u>	
getX	Min 570	Min 4925	Min 21	
	Median 1759.5	Median 6923	Median 43	
	Max 2849	Max 8921	Max 65	
getY	Min 609	Min 30	Min 19	
	Median 1072.5	Median 59.5	Median 28.8	
	Max 1536	Max 89	Max 41	
getRho	Min 25	Min 29	Min 24	
	Median 64	Median 74.5	Median 37	
	Max 103	Max 120	Max 50	
getTheta	Min 23	Min 2822	Min 17	
	Median 45	Median 3906	Median 28	
	Max 67	Max 4990	Max 39	
convertStroragetoPolar	Min 949	Min 22	Min 1743	
	Median 1476	Median 41.5	Median 1346.5	
	Max 2002	Max 61	Max 950	
convertStroragetoCarte sian	Min 24	Min 2589	Min 20	
	Median 57	Median 3613.4	Median 75	
	Max 90	Max 4879	Max 130	
getDistance	Min 1690	Min 23	Min 27	
	Median 2840.5	Median 51.5	Median 56	
	Max 3991	Max 80	Max 85	
rotatePoint	Min 6504	Min 2910	Min 8445	
	Median 8201.5	Median 5760	Median 9536.5	
	Max 9899	Max 8610	Max 10628	

Test Case Results from 3 Different Designs.

Design 2 Test:

CartesianPolar Coordinates Conversion Program

Enter the type of Coordinates you are inputting ((C)artesian / (P)olar): C

Enter the value of X using a decimal point(.): 7.0

Enter the value of Y using a decimal point(.): 29.0

You entered: Stored as Cartesian (7.0,29.0)

After asking to store as Cartesian: Stored as Cartesian (7.0,29.0)

After asking to store as Polar: Stored as Polar 29.832867780352596,1.333947565847976

Design 3 Test:

CartesianPolar Coordinates Conversion Program

Enter the X Coordinate using a decimal point(.):2.0

Enter the Y Coordinate using a decimal point(.):10.0

Stored as Cartesian (2.0,10.0)

Do you want to convert to polar yes

After asking to convert to Polar: Converted to (10.1980390271855,1.37340076694501)

Design 5 Test:

CartesianPolar Coordinates Conversion Program

Enter the type of Coordinates you are inputting ((C)artesian / (P)olar): P

Enter the Rho Coordinate using a decimal point(.):80.02323

Enter the Theta Coordinate using a decimal point(.):52.033489753

Stored as Polar (80.02323,52.033489753)

Do you want to convert to cartesian yes

After asking to convert to Cartesian: Converted to (49.23035293872719,63.087952012735805

Conclusion from 3 Different Designs.

The outcomes of our tests supported our hypothesis that Design 5 would be the most time-effective of the three executed designs. Design 2 accepts either polar or cartesian coordinates, giving it a constant startup time for both types of coordinates. When polar and cartesian coordinates were used, the initialization time for Design 2 was almost exactly the same. As expected, Design 2 was noticeably slower for initializing cartesian points than Design 3. Since Design 3 can only take cartesian points as stores, it has an advantage over Design 2 in the initialization of cartesian points. The most effective design, Design 5, easily outperformed both Designs 2 and 3. Since Design 5 was an abstract class we had to create instances of subclasses Design 2 and 3 in order to run and analyze Design 5 runtimes. Cartesian and polar coordinates could both be accepted by Design 5 and initialized relatively quickly. It was much quicker to store and decide which coordinate to initialize by having both types of coordinates be subclasses of an abstract superclass compared to Design 2, which had to store only one type of coordinate while it waited for the flag to indicate which type it was, and then had only one pair of instance variables initialize which point to create.