Определение 1. (Предел функции по Гейне) Пусть функция f определена в некоторой окрестности $\mathcal U$ точки a кроме, быть может, самой точки a. Число b называется пределом f в точке a, если для каждой сходящейся к a последовательности (x_n) , элементы которой отличны от a и принадлежат \mathcal{U} , верно равенство $\lim_{n\to\infty} f(x_n) = b$. Обозначения: $b = \lim_{x\to a} f(x)$ или $f(x)\to b$ при $x\to a$ («f(x) стремится к b при x, стремящемся к a»).

Задача 1. а) Зависит ли определение 1 от выбора окрестности \mathcal{U} ? **б)** Влияет ли значение f в точке a на существование предела f в a и его значение? **в)** Может ли функция иметь два предела в точке?

Задача 2. Дайте определение того, что функция f не имеет предела в точке a.

Определение 2. (Предел функции по Коши́.) Пусть функция f определена в некоторой окрестности $\mathcal U$ точки a кроме, быть может, самой точки a. Число b называется пределом f в точке a, если для любой окрестности \mathcal{V} точки b найдется такая окрестность \mathcal{W} точки a, что при всех $x \neq a$ из \mathcal{W} число f(x) лежит в \mathcal{V} .

Задача 3. Докажите эквивалентность определений 1 и 2.

Задача 4. Найдите следующие пределы (если они существуют):

а)
$$\lim_{x\to 1} \{x\}$$
; б) $\lim_{x\to 1} [x]$; в) $\lim_{x\to 3} \frac{x^3-6x^2+9x}{x-3}$; г) $\lim_{x\to -1} \frac{x^2+4x+1}{x^2+2x+1}$; д) $\lim_{x\to 0} x \sin \frac{1}{x}$; е)* $\lim_{x\to +\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{\sqrt{x+1}}$.

Задача 5. Дайте определение **a)** предела функции при $x \to +\infty$;

б) того, что f(x) стремится к $+\infty$, при $x \to a$ (где $a \in \mathbb{R}$ или $a = +\infty$).

Задача 6. Найдите пределы (если они существуют) при $x \to +\infty$ функций из задачи 4, а)-д).

Задача 7. Сформулируйте и докажите а) теоремы о пределе суммы, разности, произведения и отношения двух функций; б) «принцип двух милиционеров» для функций

Задача 8. Найдите пределы при $x \to \pm \infty$ функции $f(x) = \frac{P(x)}{Q(x)}$, где P(x), Q(x) — многочлены.

Задача 9. а) Пусть функции f и g определены на \mathbb{R} , причём $\lim_{x \to a} f(x) = A$ и $\lim_{x \to A} g(x) = B$. Обязательно ли тогда $\lim_{x\to a} g(f(x)) = B$? **б)** А если g(A) = B?

Задача 10. Докажите неравенства: **a)** $\sin x < x$ при x > 0; **б)** $x < \operatorname{tg} x$ при $0 < x < \pi/2$.

Задача 11. (Первый «замечательный» предел) Докажите, что $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Задача 12. Найдите: a) $\lim_{x\to 0} \frac{\sin \alpha x}{x}$; б) $\lim_{x\to 0} \frac{1-\cos x}{x}$; в) $\lim_{x\to a} \frac{\sin x - \sin a}{x-a}$; г) $\lim_{x\to a} \frac{\cos x - \cos a}{x-a}$; д) $\lim_{x\to +\infty} \frac{\log_2 x}{x}$.

Задача 13. Найдите: а) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$; б) $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$ $(n\in\mathbb{N})$; в)* $\lim_{x\to 1} \frac{\sqrt[m]{x}-1}{\sqrt[n]{x}-1}$ $(m,n\in\mathbb{N})$.

Задача 14. Докажите, что: **a)** $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e;$ **б)** $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e;$

Задача 15. (Bторой «замечательный» npeden) Докажите, что $\lim_{x\to 0} (1+x)^{1/x} = e$.

Задача 16. Определите предел слева (справа) функции f в точке a ($\lim_{x \to a+0} f(x)$; $\lim_{x \to a-0} f(x)$).

Задача 17. Приведите пример функции, которая в точке a a) имеет разные пределы слева и справа; б) имеет предел слева, но не имеет предела справа; в) не имеет предела ни справа, ни слева.

Задача 18. Докажите, что функция, монотонная на некотором интервале, имеет предел как слева, так и справа в каждой точке этого интервала.

Задача 19*. Приведите пример функции, определенной на \mathbb{R} , не равной тождественно нулю ни на каком интервале, но имеющей в каждой точке нулевой предел.

Задача 20^* . Может ли функция, определенная на \mathbb{R} , иметь в каждой точке бесконечный предел?

1 a	1 6	1 B	2	3	4 a	4 6	4 B	4 г	4 Д	4 e	5 a	5	6	7 a	7 6	8	9 a	9 6	10 a	10 б	11	12 a	12 б	12 B	12 Г	12 Д	13 a	13 б	13 B	14 a	14 б	15	16	$\begin{vmatrix} 17 \\ a \end{vmatrix}$	17 б	17 B	18	19 2	20