## LINEAR ALGEBRA, NUMERICAL AND COMPLEX ANALYSIS

#### **MA11004**

## **SECTIONS 1 and 2**

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India



Webpage: <a href="http://www.facweb.iitkgp.ac.in/~jkumar/">http://www.facweb.iitkgp.ac.in/~jkumar/</a>

# **REVIEW of Complex Line Integrals**

## **COMPLEX LINE INTEGRALS**

Let f(z) be a continuous function of a complex variable z in some domain  $D \in \mathbb{C}$ .

The integral of f(z) along a path C in D is denoted as

$$\int_{C} f(z) dz$$
 C is called the path of integration

**Definition:** 

$$\lim_{n \to \infty} \sum_{m=1}^{n} f(\xi_m) (z_m - z_{m-1}) = \int_{c} f(z) dz$$

If C is a closed path, then the line integral is denoted by  $\oint_C f(z)dz$ 



#### **EVALUATION OF LINE INTEGRALS**

$$\int_{C} f(z) dz = \int_{C} [u(x,y) + iv(x,y)][dx + idy] = \int_{C} (u dx - v dy) + i \int_{C} (v dx + u dy)$$

Here the path C is piecewise smooth curve and the function f(z) is continuous on C.

**(A) Without Parameterize the Curve:** Let the path C be given by y = y(x);  $a \le x \le b$ 

$$\int_{C} f(z) dz = \int_{a}^{b} \{u(x, y(x)) - v(x, y(x)) y'(x)\} dx + i \int_{a}^{b} \{v(x, y(x)) + u(x, y(x)) y'(x)\} dx$$

#### **EVALUATION OF LINE INTEGRALS**

$$\int_{C} f(z) dz = \int_{C} [u(x,y) + iv(x,y)][dx + idy] = \int_{C} (u dx - v dy) + i \int_{C} (v dx + u dy)$$

Here the path C is piecewise smooth curve and the function f(z) is continuous on C.

**(B) Parameterize the Curve:** (i) Let the path C be represented by z=z(t) where  $a \le t \le b$ .

$$\int_C f(z)dz = \int_a^b f(z(t)) \dot{z}(t) dt$$

(ii) Let the path C be represented by z=z(t)=x(t)+iy(t) where  $a\leq t\leq b$ .

$$\int_{C} f(z) dz = \int_{a}^{b} \{u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t)\} dt$$

$$+i \int_{a}^{b} \{v(x(t), y(t))x'(t) + u(x(t), y(t))y'(t)\} dt$$

**Example:** Evaluate  $\int_C z^2 dz$  where C is the straight line joining (0,0) to (2,1)

## Approach - I

$$z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy = 3y^2 + 4iy^2$$

$$dz = dx + idy = 2dy + idy = (2+i)dy$$

$$\int_{C} f(z) dz = \int_{0}^{1} (3+4i)y^{2}(2+i)dy = \frac{2+11i}{3}$$



**Approach - II** Write C is parametric form z(t) = 2t + it;  $0 \le t \le 1$ 

$$\int_C f(z)dz = \int_0^1 (2t + it)^2 (2+i)dt = \int_0^1 (3+4i)t^2 (2+i)dt = \frac{2+11i}{3}$$

## **SIMPLE CLOSED CURVE**

A closed curve that does not intersect (or touch) itself anywhere is called a simple closed curve.



## SIMPLY AND MULTIPLY CONNECTED DOMAINS

A domain D is called simply-connected if any simple closed curve which lies in D can be shrunk to a point without leaving D.

A domain D is called simply connected if every simple closed curve encloses only points of D.

A region which is not simply connected is called multiply-connected.



**Multiply Connected Domain** 

**Cauchy Integral Theorem** 

#### **CAUCHY INTEGRAL THEOREM**

If f(z) is analytic in a simply connected domain D, then for every simple closed C in D,

$$\oint_C f(z) dz = 0$$

**Proof:** Take an additional assumption that the derivative f'(z) is continuous.

$$\oint_C f(z)dz = \oint_C (u + iv) (dx + idy)$$

$$= \oint_C (u dx - v dy) + i \oint_C (v dx + u dy)$$

We know from the C-R equations,

$$f'(z) = u_{x} + iv_{x} = v_{x} - iu_{y}$$

$$\oint_C f(z)dz = \oint_C (u \ dx - v \ dy) + i \oint_C (v \ dx + u \ dy)$$

Since f'(z) is assumed to be continuous then it implies continuity of  $\,u_x$  ,  $v_x$  ,  $v_y$  ,  $u_y$ 

Hence, by Green's theorem 
$$\oint_C u \ dx - v \ dy = \iint_R \left( -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy$$
 R is the region bounded by C

Using C-R equations 
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
, we get  $\oint_C (udx - vdy) = 0$ 

Similarly, we can show that 
$$\oint_C (vdx + udy) = 0$$

$$\oint_C f(z)dz = \oint_C (u \, dx - v \, dy) + i \oint_C (v \, dx + u \, dy) = 0$$

#### **REMARK-1**

• The condition that f(z) is analytic in D is sufficient for  $\oint_C f(z)dz = 0$  rather than necessary.

One can easily show that  $\oint_C \frac{1}{z^2} dz = 0$  where C is the unit circle centred at origin

The result does not follow due to the Cauchy theorem as  $\frac{1}{z^2}$  is not analytic in |z| < 1

Simply connectedness of the domain is essential one.

One can show that  $\oint_C \frac{1}{z} dz = 2\pi i$  where C is the unit circle lying in the annulus  $\frac{1}{2} \le |z| \le \frac{3}{2}$ 

Note that  $\frac{1}{z}$  is analytic in the domain but the domain is not simply connected so Cauchy theorem is not applicable.

## **Independence of Path (a consequence of Cauchy Integral Theorem)**

If f(z) is analytic in a simply connected domain D, then  $\int_C f(z) \, dz$  is independent of the path C in D.

$$\int_{C_1 \cup C_2^*} f(z) \ dz = 0 \quad \text{(using Cauchy Integral Theorem)}$$

$$\Rightarrow \int_{C_1 \cup C_2^*} f(z) \ dz = \int_{C_1} f(z) \ dz + \int_{C_2^*} f(z) \ dz = 0$$

$$\Rightarrow \int_{C_1} f(z) \ dz - \int_{C_2} f(z) \ dz = 0 \ \Rightarrow \int_{C_1} f(z) \ dz = \int_{C_2} f(z) \ dz$$

The value of the integral between two points is independent of the path if f(z) is analytic throughout a simply connected domain containing the path.





## **Existence of Primitive (A consequence of Independence of Path)**

Let f(z) be analytic in a simply connected domain D. Then f has a primitive in D, that is, there exists F(z) such that F'(z) = f(z).

#### **Sketch of the Proof:**

Consider a fixed point  $z_0$  in D. Then, due to independence of path, we can define a function F(z) as

$$F(z) = \int_{z_0}^{z} f(z) dz + A = \int_{z_0}^{z} f(\xi) d\xi + A$$
 A depends upon  $z_0$ 

$$\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z}\int_{z}^{z+\Delta z}[f(\xi)-f(z)]d\xi < \epsilon \qquad \text{Continuity of } f \text{ and independence of path}$$

$$\Rightarrow F'(z) = f(z)$$

## **Another consequence of Independence of Path (Fundamental Theorem of Complex Line Integral)**

Let f(z) be analytic in a simply connected domain D. Then for all paths C in D joining two points  $z_0$  and  $z_1$  in D, we have:

$$\int_C f(z) dz = F(z_1) - F(z_0)$$
 Here  $F$  is the primitive of  $f$ , i.e.,  $F' = f$ .

**Sketch of the Proof:** Since the integral  $\int_{z_0}^{z} f(z) dz$  is indepedent of path, we can define

$$F(z) = \int_{z_0}^{z} f(\xi) d\xi + A$$

A depends upon the fixed constant  $z_0 \in D$ 

Substituting 
$$z = z_0$$
, we get  $F(z_0) = A$   $\Rightarrow F(z) - F(z_0) = \int_{z_0}^{z} f(\xi) d\xi$ 

$$\Rightarrow F(z_1) - F(z_0) = \int_{z_0}^{z_1} f(\xi) d\xi$$

**Example:** Evaluate  $\int_C z^2 dz$  where C is the straight line joining (0,0) to (2,1)

$$\int_{C} z^{2} dz = \int_{0}^{2+i} z^{2} dz = \left[\frac{z^{3}}{3}\right]_{0}^{2+i}$$

$$=\frac{1}{3}(8+12i-6-i)$$

$$=\frac{1}{3}(2+11i)$$

#### **REMARK-2**

Cauchy's theorem can also be applied to multiply connected domain.

Construct cross-cut AH.

Then, the region bounded by ABDEFGAHKJIHA is simply connected.

The Cauchy's theorem implies:

$$\oint_{ABD\cdots IHA} f(z)dz = 0$$

$$\Rightarrow \oint_{ABDEFGA} f(z)dz + \oint_{AH} f(z)dz + \oint_{HKJIH} f(z)dz + \oint_{HA} f(z)dz = 0$$



$$c_1$$
 $c_2$ 
 $c_2$ 
 $c_3$ 
 $c_4$ 
 $c_5$ 
 $c_7$ 
 $c_8$ 
 $c_8$ 
 $c_8$ 
 $c_8$ 
 $c_9$ 
 $c_9$ 

$$\Rightarrow \oint_{ABDEFGA} f(z)dz + \oint_{AH} f(z)dz + \oint_{HKJIH} f(z)dz + \oint_{HA} f(z)dz = 0$$

Using 
$$\oint_{AH} f(z)dz = -\oint_{HA} f(z)dz$$

$$\oint_{ABDEFGA} f(z)dz + \oint_{HKJIH} f(z)dz = 0$$
Anti-clockwise Clockwise

$$\Rightarrow \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz = 0$$

## **More General Result:**

$$\oint_C f(z)dz + \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz + \oint_{C_3} f(z)dz = 0$$



## **REMARK - 3** As a consequence of above remark, we have following result:

Let f(z) be analytic in a domain D bounded by two simple closed curve  $C_1$  and  $C_2$  and also on  $C_1$  and  $C_2$ . Then

$$\oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$$

When  $C_1$  and  $C_2$  are both traversed counter clockwise.

## From previous remark, we have

$$\oint_{ABDEFGA} f(z)dz + \oint_{HKJIH} f(z)dz = 0$$

$$\Rightarrow \oint_{ABDEFGA} f(z)dz - \oint_{HIJKH} f(z)dz = 0$$

$$\Rightarrow \oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$$



## **SUMMARY (Evaluation of Line Integral)**

(A) Without Parameterize the Curve: Let the path C be given by y = y(x);  $a \le x \le b$ 

$$\int_{C} f(z) dz = \int_{a}^{b} \{u(x, y(x)) - v(x, y(x)) y'(x)\} dx + i \int_{a}^{b} \{v(x, y(x)) + u(x, y(x)) y'(x)\} dx$$

**(B)** Parameterize the Curve: Let the path C be represented by z=z(t) where  $a \le t \le b$ .

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t)) \dot{z}(t) dt$$

(C) If f(z) is Analytic in a simply connect domain D: (i) For every simple closed C in D,  $\oint_C f(z) dz = 0$ 

(ii) There exists an analytic function F(z) with F'(z) = f(z) in D then along any path joining  $z_1$  and  $z_2$  in D

$$F(z_1) - F(z_0) = \int_{z_0}^{z_1} f(z) dz$$