Benchmarking integration of single-cell differential expression

User Guide

1. GitHub folder structure

- o [code] contains the core Python & R scripts used in this study
 - 'Data-Preparation' contains the sample data and scripts for data preparation step
 - ✓ 'COVID19-data' includes scripts for preparation of COVID-19 data
 - ✓ 'LUAD-data' includes scripts for preparation of LUAD data
 - ✓ 'model-based-simulation' includes scripts for simulating scRNA-seq data using Splatter
 R package
 - ✓ 'model-free-simulation' includes scripts for simulating scRNA-seq data using MCA and
 Pancreatic data
 - 'DE-Workflow-Implementation' contains implementation of each workflow used in this study
 - 'Result-Evaluation' contains R scripts for evaluating DE analysis results
 - ✓ **'Execution-Example-Two-Batch'** includes scripts for reproducing the figures in the paper on F_{0.5}-score, partial AUPR, DEG sign checking, etc.

- ✓ 'COVID19-LUAD-Analysis' gives scripts for evaluating COVID-19 and LUAD scRNA-seq data analyses (e.g., cumulative score curves, false positive, CPU times, etc.)
- ✓ 'Simulation-Analysis' includes scripts for evaluating both model-based and model-free simulated scRNA-seq data analyses
- o [data] contains figures and tables of the experimental results

2. Input and output of DE workflows

o <method-category>_<DE-method-name>: the format of the name of a DE workflow script

R BEC_combat	BEC_format_python_output
BEC_limma_bec	BEC_limmatrend_BECdata
R BEC_mnn	R BEC_pseudobulk
R BEC_QP	R BEC_RISC
R BEC_scmerge	R BEC_Seurat
R BEC_zinbwave	R COV_DESeq2
R COV_DESeq2_zinbwavedata	R COV_edgeR
R COV_edgeR_zinbwavedata	R COV_limmatrend
R COV_limmavoom	R COV_MAST
R DE_Wilcoxson	R EVAL_aupr_2b
EVAL_check_deg_sign_2b	B EVAL_check_logfc_without_de_method
R EVAL_deg_qval_vs_logfc_EVALlysis	R EVAL_fbeta_2b
R EVAL_fbeta_qval_logfc_2b	R EVAL_logFC_EVALlysis
R EVAL_save_DE_result	■ EVAL-heamap-data
R META_DESeq2_sepdata	R META_edgeR_sepdata
■ META_ES	META_FEM
R META_limmatrend_sepdata	META_LogNormalize
R META_REM	META_wFisher

- <method-category> includes 'BEC', 'COV', 'META', 'DE', 'EVAL' (for evaluation) indicating the characteristic of a method.
- < method-name > indicates the specific DE method

o input:

■ A count matrix (genes × cells)

Data frame of cell information (e.g., group, batch)

Data frame of gene information (e.g., gene IDs, index)

o output:

■ BEC methods: a matrix of batch-corrected values (genes × cells)

Wilcoxson test: a data frame of DE analysis results

DE workflows for covariate models and BEC data analysis: a data frame of DE analysis results

• Meta-analysis methods: a data frame of DE analysis results

Name	Туре	Value
MetaDE.Res\$`voom+FEM`	list [5] (S3: MetaDE.ES)	List of length 5
🕖 mu.hat	double [2609]	0.1070 -0.0710 -0.1316 -0.1213 0.0643 0.0697
mu.var	double [2609]	0.00920 0.00920 0.00919 0.00919 0.00918 0.00919
🕖 zval	double [2609]	1.116 -0.741 -1.373 -1.266 0.671 0.727
pval	double [2609]	0.8677 0.2294 0.0849 0.1028 0.7489 0.7664
FDR	double [2609 x 1]	0.939 0.592 0.416 0.433 0.881 0.893

3. How to use the sample codes

All libraries required for testing Python (version >= 3.8) code are listed in the file 'requirements.txt' including:

- anndata==0.8.0
- helpers==0.2.0
- matplotlib==3.5.3
- numpy==1.23.1
- pandas==1.4.4
- scanorama==1.7.2
- scanpy==1.9.1
- scgen==2.1.0
- scipy==1.9.1
- scvi==0.6.8
- seaborn==0.12.1
- torch==1.12.1
 - ✓ Python codes include 'BEC_scanorama.py', 'BEC_scgen.py', 'BEC_scvi.py' for implementing 'scanorama', 'scgen', and 'scvi' methods, respectively
 - ✓ After installing the required libraries, a Python code can be used directly in the command line as follows:

\$>python BEC_scanorama.py

✓ Python codes are run separately, and the results will be integrated later via an R wrapper function from 'BEC_format_python_output.R'

• '_sample_run.R' shows how to use each method provided in the 'DE-Workflow-Implementation'

```
dir_refscript='ref_scrip
     files.sources = list.files(dir_refscript,full.names = T)
 3
4
5
6
7
8
    sapply(files.sources, source)
    run_combat(count,cellinfo)
    load('combat.rda')
    run_wilcox(processed, cellinfo=cellinfo,is.log=T,former.meth = 'combat')
load('combat+wilcox.rda')
 9
10
11
12
    run_format_python(cellinfo, meth='scvi')
run_wilcox(processed, cellinfo=cellinfo,is.log=T,former.meth = 'scvi')
13
14
15
16
17
     load('scvi+wilcox.rda')
    #example-2 on processing a COV method
run_limmavoom(count,cellinfo,cov=T)
18
19
     load('limmavoom.rda')
20
21
22
    run_LogNormalize(count,cellinfo,separate = T,former.meth = '')
23
24
     load('LogNormalize_sep.rda')
run_limmatrend_sep(processed=processed,cellinfo=cellinfo,former.meth = 'LogNormalize')
    load('LogNormalize_sep+limmatrend_sep.rda')
run_wFisher(res,processed=processed,cellinfo=cellinfo,former.meth='LogNormalize_sep+limmatrend')
     load('LogNormalize_sep+limmatrend_sep+wfisher.rda')
```

- O Results from each DE workflow are shown as follows:
 - LogNormalize_sep.rda
 - LogNormalize_sep_sep+es_sep.rda
 - LogNormalize sep sep+es sep sep+FEM.rda
 - LogNormalize_sep_sep+es_sep_sep+REM.rda
 - LogNormalize sep sep+limmatrend sep.rda
 - LogNormalize_sep_sep+limmatrend_sep_sep+wfisher.rda
 - MAST.rda
 - MAST Cov.rda
 - Seurat.rda
 - Seurat+wilcox.rda
 - cellinfo.txt
 - combat.rda
 - combat+limmatrend.rda
 - combat+wilcox.rda

4. Visualization

- o 'EVAL_fbeta_2b.R'
 - ✓ Gather all the output results and visualize the F-beta results

- o 'EVAL_aupr_2b.R'
 - ✓ Gather all the output results and illustrate the partial AUPR curves

o 'EVAL_check_deg_sign_2b.R'

✓ Gather all the output results and illustrate the ratio of DEGs altered their signs

o 'EVAL _fbeta_qval_logfc_2b.R'

Gather all the output results and visualize the F-beta results using both *q*-value and fold change cutoffs

