Surprise Quiz 3

Q1. Consider a MIPS instruction that aims to perform a certain calculation using an immediate value(12 bits).

Where i is the immediate value, the initial value of t0 is **0x 0000 0060**. What should be the value of i (in hexadecimal) such that the value of t0 becomes **0x 0000 0B51**?

(Note: If your answer is 0xABCD enter ABCD as the answer and use upper case.)

Ans: AF1

Solution:

i = 0x 0000 0B51 - 0x 0000 0060 = 0x AF1 (12 bits)

Q2. Consider the MIPS code snippet, initial value of **\$t0** is **128** and **\$s0** is **0.** All the numbers are in decimal format (*Base-10*).

What is the value of **\$s0** after jumping to **exit**?

Note: srl -> shift right logical, bgtz -> branch on greater than zero, j ->jump

Note: Write the answer in Decimal (Base-10) number format.

Ans: 255

Solution:

Line No.	Operation	t0	s0
Initially		128	0
1.	-		
2.	s0 = s0 xor t0	128	128
3.	Shift content of t0 right by 1 bit	64	128
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	64	192
3.	Shift content of t0 right by 1 bit	32	192
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	32	224
3.	Shift content of t0 right by 1 bit	16	224
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	16	240
3.	Shift content of t0 right by 1 bit	8	240
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	8	248

3.	Shift content of t0 right by 1 bit	4	248
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	4	252
3.	Shift content of t0 right by 1 bit	2	252
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	2	254
3.	Shift content of t0 right by 1 bit	1	254
4.	t0 > 0 goto label		
1.	-		
2.	s0 = s0 xor t0	1	255
3.	Shift content of t0 right by 1 bit	0	255
4.	t0 = 0 goto line 5		
5.	Jump to exit	0	255
7.	-	0	255

Final value of s0 is 255.

Q3. Consider the following MIPS program:

```
fun1:
2
       bgez $a0, fun2
3
       jr $ra
4
   fun2:
5
       addi $sp, $sp,
       sw $ra, 0($sp)
6
       addi $a0, $a0, -1
7
       jal fun1
8
       Īw $ra, 0($sp)
9
       mul $v0, $v0, $a1
10
       addi $sp, $sp, 4
11
12
       ir $ra
13 main:
14
       li $v0, 1
       li $a0, 2
15
       li $a1, 2
16
17
       jal fun1
```

If the program execution begins from main and the initial value of \$sp is **0xA210**. Then what is the least possible value of **\$sp (in hexadecimal format)**?

Note: bgez-> branch on greater than or equal to zero, jr jump register, jal->jump

Note: bgez-> branch on greater than or equal to zero, jr jump register, jal->jump and link, sw-> store word, lw->load word.

(Note: If your answer is 0xABCD enter ABCD as the answer and use upper case. If your answer is 0x00AB12 enter AB12 as the answer.)

Ans:					
	_	_	 	_	

Ans: A204

Soln:

Tracing the sequence of execution:

Line No.	Operation	Register Values	Call Frame
14. li \$v0, 1	Set register \$v0 =	v0 = 1,	main

	2	sp = 0xA210	
15. li \$a0, 2	Set register \$a0 = 2	v0 = 1. a0 = 2, sp = 0xA210	main
16. li \$a1, 2	Set register \$a1 = 2	v0 = 1, a0 = 2, a1 = 2, sp = 0xA210	main

17. jal fun1	Jump and link to the label fun. Moves execution to line 2.	v0 = 1, a0 = 2, a1 = 2, sp = 0xA210	main ₁₇ ->fun1
2. bgez \$a0, fun2	If \$a0 >= 0 goto line 5 (fun2). Since \$a0 is 2, execution goes to line 5.	v0 = 1, a0 = 2, a1 = 2, sp = 0xA210	main ₁₇ ->fun1
5. addi \$sp,\$sp,-4	Add -4 to register \$sp.	v0 = 1, a0 = 2, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
6. sw \$ra,0(\$sp)	Store the value of register \$ra in the memory address stored in \$sp.	v0 = 1, a0 = 2, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
7. addi \$a0,\$a0,-1	Add -1 to register \$a0	v0 = 1, a0 = 1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
8. jal fun	Jump and link to	v0 = 1,	main ₁₇ ->fun1 ₈

	the label fun. Moves execution to line 2.	a0 = 1, a1 = 2, sp = 0xA20C	->fun1
2. bgez \$a0, fun2	If \$a0 >= 0 goto line 5 (fun2). Since \$a0 is 1, execution goes to line 5.	v0 = 1, a0 = 1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1 ₈ ->fun1
5. addi \$sp,\$sp,-4	Add -4 to register \$sp.	v0 = 1, a0 = 1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
6. sw \$ra,0(\$sp)	Store the value of register \$ra in the memory address stored in \$sp.	v0 = 1, a0 = 1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
7. addi \$a0,\$a0,-1	Add -1 to register \$a0	v0 = 1, a0 = 0, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
8. jal fun	Jump and link to the label fun. Moves execution to line 2.	v0 = 1, a0 = 0, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1 ₈ ->fun1
2. bgez \$a0, fun2	If \$a0 >= 0 goto line 5 (fun2). Since \$a0 is 0, execution goes to line 5.	v0 = 1, a0 = 0, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1 ₈ ->fun1
5. addi \$sp,\$sp,-4	Add -4 to register \$sp.	v0 = 1, a0 = 0, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ ->fun1

6. sw \$ra,0(\$sp)	Store the value of register \$ra in the memory address stored in \$sp.	v0 = 1, a0 = 0, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ ->fun1
7. addi \$a0,\$a0,-1	Add -1 to register \$a0	v0 = 1, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ ->fun1
8. jal fun	Jump and link to the label fun. Moves execution to line 2.	v0 = 1, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1 ₈ ->fun1
2. bgez \$a0, fun2	If \$a0 >= 0 goto line 5 (fun2). Since \$a0 is -1, execution goes to line 3.	v0 = 1, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1 ₈ ->fun1
6. jr \$ra	Return execution to previous call frame. Moves execution to line 9.	v0 = 1, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1
9. lw \$ra, 0(\$sp)	Restore return address of previous call frame from stack.	v0 = 1, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1
10. mul \$v0, \$v0, \$a1	Multiply \$v0 by \$a1 and store in \$v0	v0 = 2, a0 = -1, a1 = 2, sp = 0xA204	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1
11. addi \$sp, \$sp, 4	Add 4 to register \$sp	v0 = 2, a0 = -1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1 ₈ -> fun1

12. jr \$ra	Return execution to previous call frame. Moves execution to line 9.	v0 = 2, a0 = -1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
9. lw \$ra, 0(\$sp)	Restore return address of previous call frame from stack.	v0 = 2, a0 = -1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
10. mul \$v0, \$v0, \$a1	Multiply \$v0 by \$a1 and store in \$v0	v0 = 4, a0 = -1, a1 = 2, sp = 0xA208	main ₁₇ ->fun1 ₈ ->fun1
11. addi \$sp, \$sp, 4	Add 4 to register \$sp	v0 = 4, a0 = -1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1 ₈ ->fun1
12. jr \$ra	Return execution to previous call frame. Moves execution to line 9.	v0 = 4, a0 = -1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
9. lw \$ra, 0(\$sp)	Restore return address of previous call frame from stack.	v0 = 4, a0 = -1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
10. mul \$v0, \$v0, \$a1	Multiply \$v0 by \$a1 and store in \$v0	v0 = 8, a0 = -1, a1 = 2, sp = 0xA20C	main ₁₇ ->fun1
11. addi \$sp, \$sp, 4	Add 4 to register \$sp	v0 = 8, a0 = -1, a1 = 2, sp = 0xA210	main₁ ₇ ->fun1

Minimum value of \$sp is 0xA204.