ECE 459/559 Secure & Trustworthy Computer Hardware Design

PUF Metrics & Applications

Garrett S. Rose Spring 2017

PUF Experiment Example

- Fabricated 200 "identical" chips with arbiter PUFs using TSMC 0.18µ technology on 5 different wafer runs
- Security
 - What is probability that challenge produces different responses on different PUFs?
- Reliability
 - What is probability that PUF output for specific challenge changes with temperature?
 - With voltage fluctuations?

Inter-Chip Distance (Uniqueness)

- Apply random challenges and observe many response bits
- Determine Hamming Distance between responses of different chips – Ideal: 50%

Environmental Variations

What happens when we change the voltage and temperature?

Ring Oscillator (RO) PUF

- Structure relies on delay loops and counters instead of MUX-based switches and flop-based arbiters
- Better results on FPGA more stable than APUF

Reliability of RO PUFs

- Aging:
 - Negative Bias Temperature Instability (NBTI)
 - Hot Carrier Injection (HCI)
 - Temperature Dependent Dielectric Breakdown
 - Interconnect Failure
- Temperature:
 - Slows down the device

Reliability Enhancement

 Environmental changes have a large impact on frequency (even relative frequencies)

Thoughts about RO PUF

- ROs whose frequencies are far apart are more stable than ones with closer frequencies
- Possible advantage: do not use all pairs, only stable ones
- Easy to watch distance in the counter and pick ROs with far apart frequencies
 - Can be done during enrollment
- RO PUF allows easier implementation for both ASIC & FPGA
- APUF good in resource constrained platforms, e.g. RFIDs
- RO PUF better for FPGAs and in secure processor design

PUF Application - Authentication

 Same challenges should not be used to prevent man-in-the-middle attacks

PUF Application - Key Generation

- Instability (lack of reliability) is a problem
- Many crypto protocols require specific mathematical properties not found in PUF generated numbers
- How can we use PUFs to generate crypto keys?
 - Error correction process: initialization and regeneration
 - Need one-way function to generate key from PUF output

Crypto Key Generation

- Initialization: PUF responses generated and error correcting code (e.g., BCH) computes a syndrome (public info)
- Regeneration: PUF uses syndrome from initial phase to correct changes in the responses
- Clearly, syndrome reveals information about the circuit and introduces security vulnerabilities

Experiments with RO PUFs

- Experiments done on 15 Xilinx Virtex4 LX25 FPGAs (90nm)
- Placed 1024 ROs in each FPGA as a 16-by-64 array
- Each RO consisted of 5 INVs and 1 AND, implemented using look-up tables
- Goal is to know if PUF responses are unique (for security) and reproducible (for reliability and security)

Primary PUF Security Metrics

Inter-chip distance

- How many PUF output bits are different between PUF A and PUF B?
- Measure of <u>uniqueness</u>
- If PUF produces uniformly distributed, independent random bits, inter-chip distance should be 50%

Intra-chip distance

- How many PUF response bits change when re-generated again from one PUF with or without environmental variation?
- Indicates the reproducibility or reliability of the PUF
- Ideally, intra-chip distance should be 0%

Probability Distribution for Inter-Chip Distance

- 128 bits produces from each PUF
- X-axis: number of PUF response bit differences for 2 FPGAs
- Y-axis: probability
- Purple bars show results from 105 pair-wise comparisons
- Blue line shows binomial distribution with fitted parameters (n=128, p=0.4615)
- Average inter-chip distance 0.4615 ~ 0.5

Probability Distribution for Intra-Chip Distance

- PUF responses generated at 2 different environmental conditions
- Change temperature from 20C to 120C and core voltage from 1.2V to 1.08V altered PUF responses by ~0.6 bits (0.48%)
- Intra-chip distance is much lower than inter-chip PUF responses did not change much from small to moderate

Configurable Ring Oscillator PUF

Pair which has maximum difference in frequency is selected

Table 1. Frequency differences in a configurable RO pair

$c_1 c_2 c_3$	Frequency of ROs in CLB i	Frequency of ROs in CLB j	$\Delta \mathrm{f}$
000	f_0	f'_0	$ f_0 - f'_0 $
001	f_1	f'_1	$ f_1 - f'_1 $
010	f_2	f'_2	$ f_2 - f'_2 $
011	f_3	f'3	$ f_3 - f'_3 $
100	f_4	f' ₄	f ₄ - f' ₄
101	f_5	f' ₅	$ f_5 - f'_5 $
110	f_6	f' ₆	f 6 - f'6
111	f_7	f' ₇	f 7 - f'7

Configurable Ring Oscillator PUF

- A higher difference in frequency leads to higher reliability
- Also adds redundancy... always good thing for computer systems

Summary

- Two key metrics for physical unclonable functions:
 - Inter-chip distance (a.k.a. uniqueness)
 - Intra-chip distance (a.k.a. reliability)
- Ring oscillator PUF is good for FPGA implementations
- Configurable RO PUF designed to help improve reliability

