PREDICATE (FIRST-ORDER) LUGIC

Ex.1: When is
$$\varphi = \neg (A \Rightarrow B) \lor \neg B$$
 true?

Sol: By truth table, wheneve B is false (so
$$\varphi = \neg B$$
).

A B
$$A \Rightarrow B$$
 $T(A \Rightarrow B)$ TB φ

T T T F F F

F T F F F

F F T F F

F F T F F

$$Ex. 2$$
: Simplify $(A \Rightarrow B) \lor (B \Rightarrow A)$.

$$(A \Rightarrow B) \vee (B \Rightarrow A) = (\neg A \vee B) \vee (\neg B \vee A)$$
 material imp.
 $= \neg A \vee B \vee \neg B \vee A$ assoc.
 $= (A \vee \neg A) \vee (B \vee \neg B)$ comm. $+ assoc$.
 $= T \vee T$ law of excl. mid.
 $= T$ $\Rightarrow A \vee \neg A = T$

So this formula is a tautology.

Ex. 4: F(x) = "person x is my friend", <math>P(x) = "person x is perfect".How can we say "none of my friends are perfect" in predicate logic?

Sol: There are 3 equivalent ways:

- ① 4x. F(x) => ¬P(x)
- ② \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)
- 3 7 (3x. F(x) x P(x))

MATHEMATICAL INDUCTION (OVE IN)

To prove some predicate P: N -> {T, 1} true for all ne N, we prove

- 1) Base case: P(0) holds.
- 2) Inductive case: assume P(k) holds for some k, Then P(k+1) holds.

[Next week: generalise to inductively-def'd sets other Than N.]

Ex. Use induction to prove that $\forall n \in \mathbb{N}$. $f(n) = n^2$, where

$$f: N \rightarrow N$$
, $f(n) = \begin{cases} 0 & \text{if } n=0 \\ 2n-1+f(n-1) & \text{if } n>0 \end{cases}$

Pf. Base case is true since f(0) = 0. Next, assume That P(n) holds for some $n \in \mathbb{N}$, i.e. $f(n) = n^2$. Then

$$f(n+1) = 2(n+1) - 1 + f(n)$$

= $2n+1 + f(n)$
= $2n+1 + n^2$
= $(n+1)^2$.