Chi Squared Distribution

■ Chi Squared Distribution

A random variable X has a χ^2 distribution with k degrees of freedom iff:

$$X=Z_1^2+\cdots+Z_k^2$$

where $Z_i \sim \mathcal{N}(0,1)$

Properties:

- $\mathbb{E}[X] = k$
- $\operatorname{Var}[X] = 2k$

Notation:

- Denoted as χ_k^2
- α th quantile:
 - $\circ \ \ P(X>\chi^2_{k,lpha})=lpha$

Goodness of Fit

■ Goodness of Fit Test

Suppose we have a discrete random variable X with pmf f that takes k values $\{1,2,\ldots,k\}$. A **goodness of fit test** is a test to deremine whether $H_0: f=f_0$ or $f_1: f\neq f_0$

Suppose we observe $X_1,\ldots,X_n\sim f$

- ullet Let O_j denote the number of \$j\$'s we saw in the data
- ullet If the null hypothesis is correct, we expect $O_jpprox E_j:=nf_0(j)$
- ullet We compute the following test statistic that aggregates how far all O_j are from their E_j :

$$T:=\sum_{j=1}^k\frac{(O_j-E_j)^2}{E_j}$$

" Limit of Test Statistic T

$$T \leadsto \chi^2_{k-1}$$
 as $n o \infty$

The reason why we have k-1 instead of k degrees of freedom, the O_j\$'s sum to \$n, which removes a degree

Using this statistic is known as Pearson's Chi Squared Test for Goodness of Fit