Continual Prototype Evolution: Learning Online from Non-Stationary Data Streams

Matthias De Lange

KU Leuven matthias.delange@kuleuven.be

Tinne Tuytelaars

KU Leuven tinne.tuytelaars@kuleuven.be

https://arxiv.org/pdf/2009.00919.pdf

Roadmap

- Learner-Evaluator framework
- Data incremental learning
- Prior Work
- CoPE
 - Evolving prototypes
 - Balanced replay
 - PPP-loss
- Future work

Roadmap

- Learner-Evaluator framework
- Data incremental learning
- Prior Work
- CoPE
 - Evolving prototypes
 - Balanced replay
 - PPP-loss
- Future work

Follow along:

https://arxiv.org/pdf/2009.00919.pdf

Slides in Slack!

Current paradigms defined in terms of 'task' information

Scenario Required at test time			
Task-IL	Solve tasks so far, task-ID provided	-	
Domain-IL	Solve tasks so far, task-ID not provided		
Class-IL	Solve tasks so far and infer task-ID	-	

Current paradigms defined in terms of 'task' information

Scenario	Required at test time		
Task-IL	Solve tasks so far, task-ID provided	-	
Domain-IL	Solve tasks so far, task-ID not provided	-	
Class-IL	Solve tasks so far and infer task-ID	-	

What exactly is a task?

What exactly is a task?

Grouped data subset by designer → Explicit bias by design

[1]

Algorithmically, e.g. every K new classes → Implicit bias by design

How to define task-free setups?

Current paradigms defined in terms of 'task' information

Scenario	Required at test time		
Task-IL	Solve tasks so far, task-ID provided	-	
Domain-IL	Solve tasks so far, task-ID not provided	-	
Class-IL	Solve tasks so far and infer task-ID	_	

What exactly is a task?

How to define task-free settings?

Current paradigms defined in terms of 'task' information

Scenario	Required at test time	[
Task-IL	Solve tasks so far, task-ID provided	-
Domain-IL	Solve tasks so far, task-ID not provided	
Class-IL	Solve tasks so far and infer task-ID	

What exactly is a task?

What resources are available?

How to define task-free settings?

Current paradigms defined in terms of 'task' information

Scenario	Required at test time	· [
Task-IL	Solve tasks so far, task-ID provided	-
Domain-IL	Solve tasks so far, task-ID not provided	
Class-IL	Solve tasks so far and infer task-ID	-

What exactly is a task?

What resources are available?

How to define task-free settings?

What information is available when?

Current paradigms defined in terms of 'task' information

Scenario	Required at test time	
Task-IL	Solve tasks so far, task-ID provided	-
Domain-IL	Solve tasks so far, task-ID not provided	
Class-IL	Solve tasks so far and infer task-ID	

What exactly is a task?

What resources are available?

How to define task-free settings?

How are training & testing interacting?

What information is available when?

How are training and testing interacting?

- Standard ML
 - Static training (iid)
 - Static testing (iid)
- Continual learning
 - Continual training from non-stationary data (non-iid)
 - Static evaluation (iid)
 - → Is evaluation sequential? = Undefined
 - → "Stop training for evaluation?" = Undefined
 - → Wait? How is it 'continual' training then? = Undefined?
 - → What about drifting concepts? (continual evaluation)

Concept drift 1-on-1

Testing phase:

"You still know my pal Felix?"

Testing phase:

Questions? matthias.delange@kuleuven.be

Training phase:

Concept:

Felix

"You still know my pal Felix?"

Testing phase:

Training phase:

Concept:

Felix

Learn other cats

Questions? matthias.delange@kuleuven.be

"You still know my pal Felix?"

Training phase:

Concept:

Felix

Learn other cats

Current paradigms defined in terms of 'task' information

Scenario	Required at test time	[_
Task-IL	Solve tasks so far, task-ID provided	-
Domain-IL	Solve tasks so far, task-ID not provided	
Class-IL	Solve tasks so far and infer task-ID	

What exactly is a task?

What resources are available?

How to define task-free settings?

How are training & testing interacting?

What information is available when?

What about drifting concepts?

Answers

- Two-agent framework: Learner & Evaluator
 - Operate independently
 - Generalizable to any data stream
 - No notion of task required
 - Generalizable to any evaluation
 - Concept drift Continual Learning
 - Horizon \mathcal{D}_t Operational memory \mathcal{M}

How are training & testing interacting?

What exactly is a task? How to define task-free settings?

What about drifting concepts?

What information is available when? What resources are available?

- Observes non-stationary data stream S with data samples $(\mathbf{x}_i, \mathbf{y}_i)$
- Horizon \mathcal{D} : The observable subset of \mathcal{S}
 - Simultaneously available to the learner
- Processing batch *B*: Small-scale sampling for stochasticity/multiple updates

Questions? matthias.delange@kuleuven.be

- Application/setup determine horizon \mathcal{D}_{i}
 - Offline (standard iid ML)
 - Online (non-iid)

$$\begin{array}{ccc} & \mathcal{D} = S \\ & \mathcal{D} = B \end{array}$$

$$\mathcal{D} = B$$

- Horizon D → Memory for observable data of S
- Operational Memory $\mathcal{M} \rightarrow$ Memory for operation of CL algorithm
 - Memory <u>after processing</u> the data
 - E.g. episodic memory

- Memory usage
 - Horizon $\mathcal{D} \rightarrow$ Dependent setup/application
 - Operational Memory $\mathcal{M} \rightarrow$ Dependent CL algorithm

The Evaluator

- Evaluation data stream S_{eval}
- Evaluating horizon \mathcal{D}_{eval} , e.g. subset of seen concepts in S_{eval}
- Evaluate $f_{\theta}: \mathcal{X} \to \mathcal{Y}$
 - Asynchronously on-demand
 - Or with periodicity ρ

The Evaluator

- Concept distributions in S_{eval} can be
 - Static → Measure forgetting in CL
 - Dynamic → Concepts drift, performance on current distribution?

Rewind: Concept drift

Cat identification system

Roadmap

- Learner-Evaluator framework
- **Data incremental learning**
- **Prior Work**
- CoPE
 - **Evolving prototypes**
 - Balanced replay
 - PPP-loss
- Future work

Data incremental learning

Redefine current paradigms:

When is the horizon \mathcal{D}_t replaced?

→ Application/setup

	learner	evaluator	
task incremental		$(\mathbf{x}_i, \mathbf{y}_i, t_i)$	→ Task transitions
class incremental	$(\mathbf{x}_i,\mathbf{y}_i,t_i)$	$(\mathbf{x}_i,\mathbf{y}_i)$	→ Class-subset transitions
domain incremental	$(\mathbf{x}_i, \mathbf{y}_i, t_i)$	$(\mathbf{x}_i,\mathbf{y}_i)$	→ Domain transitions
data incremental	$(\mathbf{x}_i,\mathbf{y}_i)$	$(\mathbf{x}_i,\mathbf{y}_i)$	→ Data stream subsets, no assumptions

information presented to

Roadmap

- Learner-Evaluator framework
- Data incremental learning
- Prior Work
- CoPE
 - Evolving prototypes
 - Balanced replay
 - PPP-loss
- Future work

Prior Work

- Online data incremental learning ($\mathcal{D}=B$)
 - Replay: Reservoir, GSS, MIR
 - Parameter isolation methods: CURL, CN-DPM
- Class incremental: iCaRL, GEM

Roadmap

- Learner-Evaluator framework
- Data incremental learning
- Prior Work
- CoPE
 - Evolving prototypes
 - Balanced replay
 - PPP-loss
- Future work

CoPE: Continual Prototype Evolution

Operates

- Online
- Data incremental
- Imbalanced data

CoPE: Continual Prototype Evolution

- 3 components
 - continually evolving prototypes
 - Balanced replay
 - Pseudo-prototypical proxy loss (PPP-loss)

- Prototypes → Nearest Neighbour classifier
- CL literature: recalculated on task transitions with the FULL memory
 - Exhaustive recalculation
 - Dependent on task transitions
 - Static and outdated between task transitions!
- CoPE updates <u>online batch-wise</u> with high momentum
 - √ Low resource usage
 - ✓ Only dependent batch transition
 - ✓ Always representative!

CoPE updates online batch-wise with high momentum

$$\mathbf{p}^c \leftarrow \alpha \mathbf{p}^c + (1 - \alpha) \mathbf{\bar{p}}^c$$
, s.t. $\mathbf{\bar{p}}^c = \frac{1}{|B^c|} \sum_{\mathbf{x}^c \in B^c} f_{\theta}(\mathbf{x}^c)$

	Prototype Momentum			
	0.1	0.9	0.95	0.99
Split-MNIST	93.49 ± 0.70	94.11 ± 0.34	93.96 ± 0.30	93.94 ± 0.20
Split-CIFAR10	44.48 ± 3.19	48.02 ± 2.49	47.98 ± 3.14	48.92 ± 1.32
Split-CIFAR100	15.79 ± 1.16	21.62 ± 0.69	21.56 ± 0.58	20.01 ± 1.81

- But, how do the prototypes remain representative?
 - → Ever evolving latent space with each update
 - → Non-stationary data → Catastrophic forgetting

- Other 2 components:
 - Balanced replay
 - PPP-loss

CoPE: Component 2, Balanced replay

CoPE: Component 2, Balanced replay

- Prior: deem each class equally important
 - Storage: Dynamic class memory \mathcal{M}_r^c based on reservoir sampling
 - **Easy Retrieval**: Uniform = class-balanced batch
 - → Keeps all class-prototypes up-to-date
- Replay benefits:
 - 1. Combat catastrophic forgetting
 - 2. Latent batch information for all classes

- Pseudo-Prototypical Proxy loss
- Batch B not only gives supervision about instance category
 - → Also relational information in the latent space!
- Construct per instance, one-against-all subsets:

$$B^c = \{(\mathbf{x}_i, y_i = c) \in B\}$$
 and B^k

Construct per instance, one-against-all subsets:

$$B^c = \{(\mathbf{x}_i, y_i = c) \in B\}$$
 and B^k

- Define prototype proxy sets:
 - $\bullet \quad \text{Attractor} \quad \mathbb{P}^c_i = \{\mathbf{p}^c\} \cup \{\hat{\mathbf{p}}^c_j = f_\theta(\mathbf{x}^c_j) \mid \forall \mathbf{x}^c_j \in B^c, \ i \neq j\}$
 - Repellor $\mathbb{U}_i^c = \{\mathbf{p}^c, \ \hat{\mathbf{p}}_i^c = f_{\theta}(\mathbf{x}_i^c)\}$

Pseudo-prototypes

$$P_{i} = P(c|\mathbf{x}_{i}^{c}) \prod_{\mathbf{x}_{j}^{k}} (1 - P_{i}(c|\mathbf{x}_{j}^{k}))$$

$$P(c|\mathbf{x}_{i}^{c}) = \mathbb{E}_{\tilde{\mathbf{p}}^{c} \in \mathbb{P}_{i}^{c}} [P(c|\mathbf{f}_{i}^{c}, \tilde{\mathbf{p}}^{c})], \quad P_{i}(c|\mathbf{x}_{j}^{k}) = \mathbb{E}_{\tilde{\mathbf{p}}^{c} \in \mathbb{U}_{i}^{c}} [P(c|\mathbf{f}_{j}^{k}, \tilde{\mathbf{p}}^{c})]$$

with $\tilde{\mathbf{p}}^c$ a proxy for the latent mean of class c in

$$P(c|\mathbf{f}, \tilde{\mathbf{p}}^c) = \frac{\exp(\mathbf{f}^T \tilde{\mathbf{p}}^c / \tau)}{\exp(\mathbf{f}^T \tilde{\mathbf{p}}^c / \tau) + \sum_{k \neq c} \exp(\mathbf{f}^T \mathbf{p}^k / \tau)}$$

$$P_i = P(c|\mathbf{x}_i^c) \prod_{\mathbf{x}_i^k} (1 - P_i(c|\mathbf{x}_j^k))$$

$$\mathcal{L} = -\frac{1}{|B|} \left[\sum_{i} \log P(c|\mathbf{x}_{i}^{c}) + \sum_{i} \sum_{\mathbf{x}_{j}^{k}} \log(1 - P_{i}(c|\mathbf{x}_{j}^{k})) \right]$$

Questions? matthias.delange@kuleuven.be

PPP-loss ablation

Including/excluding pseudo-prototypes in PPP-loss

Optimal prototypes?

- We approximate the mean of the latent distribution
 - → Optimal for Bregman divergences

$$d_{\varphi}(\mathbf{f}_i, \mathbf{f}_j) = \varphi(\mathbf{f}_i) - \varphi(\mathbf{f}_j) - (\mathbf{f}_i - \mathbf{f}_j)^T \nabla \varphi(\mathbf{f}_j)$$

- E.g. squared Euclidian distance $\varphi(\mathbf{f}) = ||\mathbf{f}||^2$
- We constrain $||\mathbf{f}_i||=||\mathbf{f}_j||=1$, resulting in $\frac{1}{2}||\mathbf{f}_i-\mathbf{f}_j||^2=1-\cos\angle(\mathbf{f}_i,\mathbf{f}_j)$
- · We need similarity o $\cos \angle (\mathbf{f}_i, \mathbf{f}_j) = \mathbf{f}_i^T \mathbf{f}_j$

Experiments

Learner:

- Online processing with |B|=10
- S subdivided in task-like sequence (to compare with iCaRL/GEM)
 - → CoPE learner is unaware of this! (not provided)

Evaluator:

 held-out dataset of static concepts in S_eval, evaluating with the subset of seen concepts Y in D_eval using the accuracy metric.

Balanced data streams

	Split-MNIST	Split-CIFAR10	Split-CIFAR100
iid-offline iid-online	98.44 ± 0.02 96.57 ± 0.14	83.02 ± 0.60 62.31 ± 1.67	50.28 ± 0.66 20.10 ± 0.90
finetune GEM iCARL CURL (Rao et al., 2019) DN-CPM (Lee et al., 2020)	19.75 ± 0.05 93.25 ± 0.36 83.95 ± 0.21 92.59 ± 0.66 93.23 ± 0.09	18.55 ± 0.34 24.13 ± 2.46 37.32 ± 2.66 $ 45.21 \pm 0.18$	3.53 ± 0.04 11.12 ± 2.48 10.80 ± 0.37 $ 20.10 \pm 0.12$
reservoir MIR GSS	92.16 ± 0.75 93.20 ± 0.36 92.47 ± 0.92	42.48 ± 3.04 42.80 ± 2.22 38.45 ± 1.41	19.57 ± 1.79 20.00 ± 0.57 13.10 ± 0.94
CoPE-CE CoPE (ours)	91.77 ± 0.87 93.94 ± 0.20	39.73 ± 2.26 48.92 ± 1.32	18.33 ± 1.52 21.62 ± 0.69

"Sure dude, but you just tweaked the buffer size?"

Imbalanced experiments

- Not just the balancing memory scheme (CoPE-CE)
- The PPP-loss encourages prototype-based clusters each update

Summary

Learner-evaluator framework

→ 2 agents, horizon (task), concept drift

Data incremental learning

→ Any data stream (task info)

CoPE

- Online data incremental
- Continually evolving prototypes
- → Balanced replay
- → PPP-loss
- Future? → Apply for concept drift, beyond classification/supervised learning

Code https://github.com/mattdl

Questions? matthias.delange@kuleuven.be

