

NIZK from Bilinear Maps

BIU Winter School 2019

Jens Groth, DFINITY

Bilinear maps

Background

Bilinear maps

Setup describing $(p, G_1, G_2, G_T, e, g, h)$

- Prime *p*
 - Size of prime related to security level, could for instance choose $|p| \approx 256$
- Cyclic groups G_1 , G_2 , G_T of order p
 - Written multiplicatively with neutral elements 1 in this talk
 - Generators g, h such that $G_1 = \langle g \rangle, G_2 = \langle h \rangle$
- Map $e: G_1 \times G_2 \rightarrow G_T$
 - Non-degenerate: $e(g, h) \neq 1$
 - Bilinear: For all $a, b \in \mathbf{Z}_p$: $e(g^a, h^b) = e(g, h)^{ab}$

Generic bilinear group operations

- Canonical representation of group elements
 - So easy to determine whether u = v
- Efficient algorithms to
 - Decide membership in the three groups, e.g., $u \in G_1$
 - Compute group operations in the three groups, e.g., $u \cdot v$ in G_2
 - Evaluate the bilinear map, e.g., e(u, v)
- We refer to these as the generic group operations

Types of bilinear maps

- In pairing-based cryptography, usually the source groups G_1 (G_2) are subgroups of elliptic curves over a finite field F_q (F_{q^e}), the target group G_T a multiplicative subgroup of $F_{q^k}^*$, and the bilinear map a pairing $e: G_1 \times G_2 \to G_T$
- The underlying mathematical details of the groups and the bilinear map will not be important for these lectures, but it is worth noting the classification of Galbraith, Paterson and Smart [GPS04]
 - Type I: Symmetric setting where $G_1 = G_2$
 - Type II: Asymmetric setting $G_1 \neq G_2$ with an efficiently computable isomorphism $\psi: G_2 \to G_1$
 - Type III: Asymmetric setting $G_1 \neq G_2$ where there is no efficiently computable isomorphism in either direction

Efficiency

- Type III pairings are currently the most efficient
 - So unless otherwise specified we work in the type III setting
- Size of group element representations
 - \circ For $a \in \mathbf{Z}_p$, $u \in G_1$, $v \in G_2$, $w \in G_T$ expect |a| < |u| < |v| < |w|
- Cost of operations
 - \circ Multiplications in G_1 cheaper than multiplications in G_2 cheaper than multiplications in G_T
 - \circ Exponentiations in G_1 cheaper than exponentiations in G_2 cheaper than exponentiations in G_T
 - Bilinear map the most expensive

Getting used to bilinear maps

- Recall $e: G_1 \times G_2 \rightarrow G_T$
 - Non-degenerate: $e(g, h) \neq 1$
 - Bilinear: For all $a, b \in \mathbb{Z}_n$: $e(g^a, h^b) = e(g, h)^{ab}$
- Exercises
 - What does the equation $e(u, v)e(u, w) = y^a z$ implicitly assume about which groups u, v, w, y, z, a belong to?
 - If you see the equation e(u, u) = z are you in a type I, II or III setting?
 - $\circ \quad \text{Reduce } e(g^a,h)e\big(g^b,h\big)\,,\ e(g,h^a)e\big(g^b,h\big)\,,\ e\big(g^a,h^{-b}\big)e(u,v)e(f,h)^c\;,\ \textstyle\prod_{i=1}^n e(g,h^{a_i})^{b_i}$
 - O Reduce e(u,v)e(u,w), $e(u,v^a)e(u^b,v)$, $e(g^a,v^{-b})e(f,w)e(u,v)^c$, $\prod_{i=1}^n e(u^a,v_i^b)^{\frac{c_i}{ab}}$
 - Show that if e(u, v) = 1 then u = 1 or v = 1

Answers

- What does the equation $e(u, v)e(u, w) = y^a z$ implicitly assume about which groups u, v, w, y, z, a belong to? $u \in G_1, v, w \in G_2, y, z \in G_T, a \in \mathbf{Z}_p$
- If you see the equation e(u, u) = z are you in a type I, II or III setting?

Type I because
$$u \in G_1$$
, $u \in G_2$ indicates $G_1 = G_2$

O Reduce $e(g^a,h)e(g^b,h)$, $e(g,h^a)e(g^b,h)$, $e(g^a,h^{-b})e(u,v)e(g,h)^c$, $\prod_{i=1}^n e(g,h^{a_i})^{b_i}$

```
e(g^{a},h)e(g^{b},h) = e(g,h)^{a}e(g,h)^{b} = e(g,h)^{a+b}
e(g,h^{a})e(g^{b},h) = e(g,h)^{a}e(g,h)^{b} = e(g,h)^{a+b}
e(g^{a},h^{-b})e(u,v)e(g,h)^{c} = e(g,h)^{-ab}e(g,h)^{c}e(u,v) = e(g,h)^{c-ab}e(u,v)
\prod_{i=1}^{n} e(g,h^{a_{i}})^{b_{i}} = \prod_{i=1}^{n} e(g,h)^{a_{i}b_{i}} = e(g,h)^{\sum_{i=1}^{n} a_{i}b_{i}}
```

- o Interesting follow-up question, is $e(g^{a+b}, h)$ or $e(g, h^{a+b})$ or $e(g, h)^{a+b}$ more "reduced"?
 - Recall cost hierarchy expo in $G_1 \le \exp in G_2 \le \exp in G_T \le pairing$
 - So maybe $e(g^{a+b}, h)$ cheaper to compute at cost of 1 expo in G_1 and 1 pairing
 - However, if e(g,h) used often, precompute to get $e(g,h)^{a+b}$ at amortized cost of 1 expo in G_T

Answers

• Reduce e(u,v)e(u,w), $e(u,v^a)e(u^b,v)$, $e(g^a,v^{-b})e(f,w)e(u,v)^c$, $\prod_{i=1}^n e(u^a,v_i^b)^{\frac{c_i}{ab}}$

Because g generates G_1 we can write any $u \in G_1$ as $u = g^x$ Similarly, we can write any $v, w \in G_2$ as $v = h^y$ and $w = h^z$

- All we know is such $x, y, z \in \mathbb{Z}_p$ exist, we may not know what they are

$$e(u,v)e(u,w) = e(g^{x},h^{y})e(g^{x},h^{z}) = e(g,h)^{x(y+z)} = e(u,vw)$$

$$e(u,v^{a})e(u^{b},v) = e(u,v)^{a}e(u,v)^{b} = e(u,v)^{a+b}$$

$$e(g^{a},v^{-b})e(f,w)e(u,v)^{c} = e(g,v)^{-ab}e(g^{x},v)^{c}e(f,w) = e(g^{-ab}u^{c},v)e(f,w)$$

$$\prod_{i=1}^{n} e(u^{a},v_{i}^{b})^{\frac{c_{i}}{ab}} = \prod_{i=1}^{n} e(u,v_{i})^{ab\cdot\frac{c_{i}}{ab}} = \prod_{i=1}^{n} e(u,v_{i})^{c_{i}} = e(u,\prod_{i=1}^{n}v_{i}^{c_{i}})$$

Show that if e(u, v) = 1 then u = 1 or v = 1

 $e(u,v)=e(g^x,h^y)=e(g,h)^{xy}$ is the same as $1=e(g,h)^0$ Since $e(g,h)\neq 1$ it generates G_T so we have xy=0 implying x=0 or y=0

Decisional Diffie-Hellman assumption

- We will assume the DDH problem is hard in both G_1 and G_2
 - Also known as the Symmetric External DH (SXDH) assumption
- The DDH assumption in G_1 over setup $(p, G_1, G_2, G_T, e, g, h)$
 - Define for adversary *A* the following experiment

```
b \leftarrow \{0,1\}
x, y, z \leftarrow \mathbf{Z}_p^*
u = g^x, v = g^y
w = g^{bxy+(1-b)z}
b^* \leftarrow A(p, G_1, G_2, G_T, e, g, h, u, v, w)
```

- The assumption says that for any realistic (computationally bounded) adversary $\Pr[b=b^*] \approx \frac{1}{2}$
- The DDH assumption in G_2 over setup $(p, G_1, G_2, G_T, e, g, h)$ is defined similarly

ElGamal encryption

- Key generation in group G_1 assuming setup $(p, G_1, G_2, G_T, e, g, h)$
 - Pick $x \leftarrow Z_p$ and let this be the secret key. Let the public key be $y = g^x$
- Encryption of $m \in G_1$
 - Pick $r \leftarrow Z_p$ and return ciphertext $c = \text{Enc}(y, m; r) := (g^r, y^r m)$
- Decryption of $c = (u, v) \in G_1^2$
 - Return plaintext $m = Dec(x, u, v) := vu^{-x}$
- IND-CPA secure under DDH assumption in G₁
- ElGamal encryption in G_2 similar

Pairing-based proofs

Statements we want to prove

Groth-Sahai proofs

- Two computationally indistinguishable types of common reference string
 - Binding common reference string
 - Perfect completeness
 - Perfect soundness
 - Hiding common reference string
 - Perfect completeness
 - Perfect zero-knowledge

$$g, u, g', u' \in G_1, h, v, h', v' \in G_2$$

$$g, u, g', u' \in G_1, h, v, h', v' \in G_2$$

Statements

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_j \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = 1$$

 \circ Multi-exponentiation equation in G_1 defined by $A_i, T \in G_1, b_i, \gamma_{ij} \in \mathbb{Z}_p$ (analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbf{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Witness $X_1, ..., X_m \in G_1, Y_1, ..., Y_n \in G_2, x_1, ..., x_{m'}, y_1, ..., y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k

NP completeness

- SAT formula ϕ : $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3 \lor x_4 \lor x_5) \land \cdots$
- Witness $x_1 = \text{true}, x_2 = \text{false},...$
- Can rewrite ϕ as a set of quadratic equations
 - \circ Encode true as 1 and false as 0 in Z_p
 - For each variable x_i have the quadratic equations $x_i \cdot 1 + 1 \cdot y_i = 0$ and $x_i \cdot 1 + x_i \cdot y_i = 0$ The first equation gives us $y_i = -x_i$ The second equation gives us $x_i \cdot (1 - x_i) = 0$ so $x_i \in \{0,1\}$, i.e., it encodes true or false
 - Translate each clause into a quadratic equation that involves an extra variable y' Example $(x_1 + (1 x_2) + x_3) \cdot y_1' = 1$, $((1 x_3) + x_4 + x_5) \cdot y_2' = 1$, ... Such inverses y_1', y_2' , ... exist in \mathbf{Z}_p if and only if the clauses are satisfied

Arithmetic circuit

- Arithmetic circuit over Z_p
- Instance describes circuit wiring, gates and some of the inputs and outputs
- Witness is values on the wires that satisfy all gates
- Can reduce an arithmetic circuit to quadratic equations

$$x_1 \cdot 1 + x_2 \cdot (-1) + 1 \cdot y_1 = 0$$

$$x_2 \cdot y_1 = 0$$

Practical cryptography

- When constructing cryptographic protocols more likely to encounter statement like "This is a ciphertext encrypting a signature on m"
 - Suppose we have an ElGamal ciphertext $(u, v) \in G_1$ under public key $y \in G_1$
 - Suppose the claim is it encrypts a weak Boneh-Boyen signature $m \in \mathbb{Z}_p$ of the form $\sigma = g^{\frac{1}{x+m}}$, which satisfies the verification equation $e(\sigma, wh^m) = e(g, h)$ where the public key is $w = h^x$
 - o Instance defined by setup $(p, G_1, G_2, G_T, e, g, h)$ and $u, v, y \in G_1, w \in G_2, m \in \mathbf{Z}_p$ Witness is randomness $r \in \mathbf{Z}_p$ used in encryption and secret signature $\sigma \in G_1$

Exercise

• Rewrite statement as a set of pairing-product, multi-exponentiation and quadratic equations

A solution

- Equations over variables $\sigma, f \in G_1, r \in \mathbb{Z}_p$
 - Pairing-product equation defined by wh^m , $h \in G_2$ $e(\sigma, wh^m)e(f, h) = 1$
 - Multi-exponentiation equations

$$f^{1} = g^{-1}$$
$$g^{r} = u$$
$$y^{r}\sigma = v$$

• When all equations satisfied, then indeed (u,v) is an ElGamal ciphertext encrypting a weak Boneh-Boyen signature σ on $m \in \mathbb{Z}_p$ satisfying the verification equation $e(\sigma, wh^m) = e(g,h)$

Why not $e(g, wh^m) = e(g, h)$? Because Groth-Sahai proofs only guarantee zero-knowledge when the target element is 1 (Can be generalized to ZK for this equation though [G-Escala 2013])

Writing the top equation in full, it is $1^r \cdot \sigma^0 f^1 \cdot \sigma^{0r} f^{0r} = g^{-1}$ where with the previous notation $A_1 = 1, b_1 = 0, b_2 = 1$ $\gamma_{11} = 0, \gamma_{12} = 0, T = g^{-1}$

A warm-up proof system

Perfect soundness, but modest privacy

Extended bilinear map

• We define an extended map $E: G_1^2 \times G_2^2 \to G_T^4$ by

$$E\left(\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, (d_1, d_2) \right) = \begin{pmatrix} e(c_1, d_1) & e(c_1, d_2) \\ e(c_2, d_1) & e(c_2, d_2) \end{pmatrix}$$

- Exercise
 - O Show the map is bilinear on the left hand side, i.e.,

$$E\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, (d_1, d_2) \right) = E\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, (d_1, d_2) \right) E\left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, (d_1, d_2) \right)$$

using entry-wise product for the vectors and matrices

And the same for the right hand side

Extended bilinear map

• We define an extended map $E: G_1^2 \times G_2^2 \to G_T^4$ by

$$E\left(\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, (d_1, d_2) \right) = \begin{pmatrix} e(c_1, d_1) & e(c_1, d_2) \\ e(c_2, d_1) & e(c_2, d_2) \end{pmatrix}$$

- Exercise solution
 - O Show the map is bilinear on the left hand side, i.e.,

$$E\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, (d_1, d_2) \right) = \begin{pmatrix} e(a_1b_1, d_1) & e(a_1b_1, d_2) \\ e(a_2b_2, d_1) & e(a_2b_2, d_2) \end{pmatrix} = \begin{pmatrix} e(a_1, d_1)e(b_1, d_1) & e(a_1, d_2)e(b_1, d_2) \\ e(a_2, d_1)e(b_2, d_2) & e(a_2, d_2)e(b_2, d_2) \end{pmatrix}$$

$$= \begin{pmatrix} e(a_1, d_1) & e(a_1, d_2) \\ e(a_2, d_1) & e(a_2, d_2) \end{pmatrix} \begin{pmatrix} e(b_1, d_1) & e(b_1, d_2) \\ e(b_2, d_1) & e(b_2, d_2) \end{pmatrix} = E\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, (d_1, d_2) \right) E\left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, (d_1, d_2) \right)$$
using entry-wise product for the vectors and matrices

Warm-up proof system

- Common reference string consists of setup and random $u \in G_1$, $v \in G_2$
- Suppose we have an instance with a single pairing-product equation e(X,Y) = T
- The prover encrypts X as $(c_1, c_2) = (g^r, u^r X)$ and Y as $(d_1, d_2) = (h^s, v^s Y)$
- Let us apply the extended bilinear product to the ciphertexts

$$E\left(\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, (d_1, d_2) \right) = E\left(\begin{pmatrix} g \\ u \end{pmatrix}^r \begin{pmatrix} 1 \\ X \end{pmatrix}, (d_1, d_2) \right)$$
$$= E\left(\begin{pmatrix} g \\ u \end{pmatrix}, (d_1, d_2)^r \right) E\left(\begin{pmatrix} 1 \\ X \end{pmatrix}, (d_1, d_2) \right)$$

Warm-up proof system

$$\begin{split} &= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{1}{X}, (h, v)^s (1, Y)\right) \\ &= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{1}{X}^s, (h, v)\right) E\left(\binom{1}{X}, (1, Y)\right) \\ &= E\left(\binom{g}{u}, (d_1, d_2)^r (h, v)^t\right) E\left(\binom{1}{X}^s \binom{g}{u}^{-t}, (h, v)\right) \binom{1}{1} \quad \frac{1}{e(X, Y)} \\ \text{using random } t \leftarrow \mathbf{Z}_p \end{split}$$

• The prover sets $(\pi_1, \pi_2) = (d_1^r h^t, d_2^r v^t)$ and $(\theta_1, \theta_2) = (g^{-t}, Xu^{-t})$ and returns the full proof $(c_1, c_2, d_1, d_2, \pi_1, \pi_2, \theta_1, \theta_2)$

Verification

• The verifier given the proof $(c_1, c_2, d_1, d_2, \pi_1, \pi_2, \theta_1, \theta_2)$ for e(X, Y) = T accepts if and only if

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix},(\pi_1,\pi_2)\right)E\left(\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix},(h,v)\right)\begin{pmatrix}1&1\\1&T\end{pmatrix}$$

- Perfect completeness when e(X,Y) = T follows from the calculations
- Exercise
 - Show that the proof system gives a proof of knowledge of X, Y such that e(X, Y) = T
 - Hint: suppose you know the knowledge extraction keys a, b such that $u = g^a, v = h^b$. Now decrypt the columns with a and the rows with b

Knowledge soundness

Solution

- Let us define the knowledge extractor to return $X = c_1^{-a}c_2$ and $Y = d_1^{-b}d_2$
- Recall that by definition

$$E\left(\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, (d_1, d_2) \right) = \begin{pmatrix} e(c_1, d_1) & e(c_1, d_2) \\ e(c_2, d_1) & e(c_2, d_2) \end{pmatrix}$$

• Decrypting the columns with $a \in \mathbb{Z}_p$ gives us

$$\left(e(c_1,d_1)^{-a}e(c_2,d_1),e(c_1,d_2)^{-a}e(c_2,d_2)\right) = \left(e(c_1^{-a}c_2,d_1),e(c_1^{-a}c_2,d_2)\right)$$

Obecrypting the row with $b \in Z_p$ gives us

$$e(c_1^{-a}c_2, d_1)^{-b}e(c_1^{-a}c_2, d_2) = e(c_1^{-a}c_2, d_1^{-b}d_2)$$

 \circ So vertical and horizontal decryption gives us e(X,Y)

Analyzing the verification equation

• The verification equation is

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix},(\pi_1,\pi_2)\right)E\left(\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix},(h,v)\right)\begin{pmatrix}1&1\\1&T\end{pmatrix}$$

- We just saw the left hand side decrypts to e(X, Y)
- The matrix $E\left(\begin{pmatrix} g \\ u \end{pmatrix}, (\pi_1, \pi_2)\right)$ decrypts to $e\left(g^{-a}u, \pi_1^{-b}\pi_2\right) = e\left(1, \pi_1^{-b}\pi_2\right) = 1$
- The matrix $E\left(\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, (h, v)\right)$ decrypts to $e\left(\theta_1^{-a}\theta_2, h^{-b}v\right) = e\left(\theta_1^{-a}\theta_2, 1\right) = 1$
- And the matrix $\begin{pmatrix} 1 & 1 \\ 1 & T \end{pmatrix}$ decrypts to T so we get $e(X,Y) = 1 \cdot 1 \cdot T$

Generalizing to more complex equation

• For a pairing-product equation defined by $A_i \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbf{Z}_p$, $T \in G_T$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = T$$

The prover ElGamal encrypts each variable

$$(c_{1,i}, c_{2,i}) = (g^{r_i}, u^{r_i}X)$$
 $(d_{j,1}, d_{j,2}) = (h^{s_j}, v^{s_j}Y_j)$

The prover computes

$$(\pi_1, \pi_2) = \prod_{i \in [m]} (1, B_i)^{r_i} \cdot \prod_{i \in [m]} \prod_{j \in [n]} (d_{j,1}, d_{j,2})^{\gamma_{ij} r_i} \cdot (h, v)^{-t}$$

$$(\theta_1, \theta_2) = \prod_{i \in [n]} (1, A_i)^{s_j} \cdot \prod_{i \in [m]} \prod_{j \in [n]} (1, X_i)^{\gamma_{ij}} \cdot (g, u)^t$$

Generalizing to more complex equation

The verifier accepts the proof if and only if

$$\prod_{j \in [n]} E\left(\begin{pmatrix} 1 \\ A_j \end{pmatrix}, (d_{j,1}, d_{j,2})\right) \cdot \prod_{i \in [m]} E\left(\begin{pmatrix} c_{1,i} \\ c_{2,i} \end{pmatrix}, (1, B_j)\right) \cdot \prod_{i \in [m]} \prod_{j \in [n]} E\left(\begin{pmatrix} c_{1,i} \\ c_{2,i} \end{pmatrix}, (d_{j,1}, d_{j,2})\right)^{\gamma_{ij}}$$

$$= E\left(\begin{pmatrix} g \\ u \end{pmatrix}, (\pi_1, \pi_2)\right) \cdot E\left(\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, (h, v)\right) \cdot \begin{pmatrix} 1 & 1 \\ 1 & T \end{pmatrix}$$

- Perfect completeness
 - Many calculations, home exercise
- Perfect soundness
 - Proof of knowledge, as before by decrypting on both dimensions

Multi-exponentiation equations

• Multi-exponentiation equation in G_1 defined by A_j , $T \in G_1$, b_i , $\gamma_{ij} \in \mathbf{Z}_p$

$$\prod_{j \in [n']} A_j^{\gamma_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}\gamma_j} = T$$

Can be mapped to pairing product equation by instead proving

$$\prod_{j\in[n']}e(A_j,h^{y_j})\cdot\prod_{i\in[m]}e(X_i,h^{b_i})\cdot\prod_{i\in[m]}\prod_{j\in[n']}e(X_i,h^{y_j})^{\gamma_{ij}}=e(T,h)$$

• Multi-exponentiation equation in G_2 similar

Quadratic equations

• Quadratic equation defined by a_i , b_i , γ_{ij} , $t \in \mathbf{Z}_p$

$$\sum_{j\in[n']}a_jy_j+\sum_{i\in[m']}x_ib_i+\sum_{i\in[m']}\sum_{j\in[n']}x_i\gamma_{ij}y_j=t$$

Can be mapped to pairing product equation by instead proving

$$\prod_{j \in [n']} e(g^{a_j}, h^{y_j}) \cdot \prod_{i \in [m]} e(g^{x_i}, h^{b_i}) \cdot \prod_{i \in [m]} \prod_{j \in [n']} e(g^{x_i}, h^{y_j})^{\gamma_{ij}} = e(g, h)^t$$

Multiple equations

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
- Witness $X_1, \dots, X_m \in G_1, Y_1, \dots, Y_n \in G_2, x_1, \dots, x_{m'}, y_1, \dots, y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k
- The prover encrypts all variables in the witness as

$$(c_{1,i}, c_{2,i}) = (g^{r_i}, u^{r_i} X_i)$$

$$(d_{j,1}, d_{j,2}) = (h^{s_j}, v^{s_j} Y_j)$$

$$(c'_{1,i}, c'_{2,i}) = (g^{r'_i}, u^{r'_i} g^{x_i})$$

$$(d'_{j,1}, d'_{j,2}) = (h^{s'_j}, v^{s'_j} Y_j)$$

- For each equation eq_k the prover generates proof elements $\pi_{k,1}$, $\pi_{k,2}$, $\theta_{k,1}$, $\theta_{k,2}$
- The full proof for all equations being simultaneously satisfiable is $(c_{1,1}, ..., \theta_{q,2})$
- The verifier checks verification equations for k = 1, ..., q
 - Note the verification equations reuse the commitments $(c_{1,1}, c_{2,1}, ..., d'_{n',1}, d'_{n',2})$ to variables but each equation has a separate quadruple $(\pi_{k,1}, \pi_{k,2}, \theta_{k,1}, \theta_{k,2})$

Security

- Perfect completeness
- Perfect soundness
 - Each commitment decrypts to unique X_i , Y_j or g^{x_i} , h^{y_j}
 - Decrypting the verification equations horizontally and vertically shows each equation satisfied
- Privacy?
 - Witness-indistinguishable in the generic group model where attacker can only do generic group operations [Deshpande-G-Smeets]
 - Provably not zero-knowledge in the generic group model [Deshpande-G-Smeets]
- But we want zero-knowledge under standard assumptions (DDH)!

Groth-Sahai proofs

Soundness and witnessindistinguishability/zero-knowledge

Commitments

- Let us extend the setup to include $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- Now the prover will make commitments to $X \in G_1$ and $Y \in G_2$ of the form

$$\left(g^r(g')^{r'}, u^r(u')^{r'}X\right)$$
 and $\left(h^s(h')^{s'}, v^s(v')^{s'}Y\right)$

- More precisely, for $X \in G_1$ the prover picks random $r, r' \leftarrow \mathbf{Z}_p$ and computes a commitment as $(c_1, c_2) = (g, u)^r (g', u')^{r'} (1, X)$
- The core observation to make is that we can now have two setups
 - Binding setup $(g', u') = (g^{\alpha}, u^{\alpha})$
 - Hiding setup $(g', u') = (g^{\alpha}, u^{\alpha}g^{-1})$

Indistinguishable under DDH

Exercise: Show commitments are perfectly binding and hiding, respectively

Commitments

- Let us extend the setup to include $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- For $X \in G_1$ the prover picks random $r, r' \leftarrow \mathbf{Z}_p$ and computes a commitment as $(c_1, c_2) = (g, u)^r (g', u')^{r'} (1, X)$
- We now have two computationally indistinguishable setups
 - Binding setup $(g', u') = (g^{\alpha}, u^{\alpha})$
 - Hiding setup $(g', u') = (g^{\alpha}, u^{\alpha}g^{-1})$
- Exercise solution
 - In the binding setup $(c_1, c_2) = (g^{r+\alpha r'}, u^{r+\alpha r'}X)$ embeds unique X
 - In the hiding setup $(c_1,c_2)=\left(g^{r+\alpha r'},u^{r+\alpha r'}\left(g^{-r'}X\right)\right)$ is random for all X

Proof example

- Common reference string with $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- Suppose we have an instance with a single pairing-product equation e(X,Y) = T
- Prover commits to X and Y as

$$(c_1, c_2) = (g^r(g')^{r'}, u^r(u')^{r'}X)$$
 and $(d_1, d_2) = (h^s(h')^{s'}, v^s(v')^{s'}Y)$

Let us apply the extended bilinear map to the commitments

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix}^r\begin{pmatrix}g'\\u'\end{pmatrix}^{r'}\begin{pmatrix}1\\X\end{pmatrix},(d_1,d_2)\right)$$
$$= E\left(\begin{pmatrix}g\\u\end{pmatrix},(d_1,d_2)^r\right)E\left(\begin{pmatrix}g'\\u'\end{pmatrix},(d_1,d_2)^{r'}\right)E\left(\begin{pmatrix}1\\X\end{pmatrix},(d_1,d_2)\right)$$

Proof example

$$\begin{split} &= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{g'}{u'}, (d_1, d_2)^{r'}\right) E\left(\binom{1}{X}, (h, v)^s (h', v')^{s'} (1, Y)\right) \\ &= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{g'}{u'}, (d_1, d_2)^{r'}\right) E\left(\binom{1}{X}^s, (h, v)\right) E\left(\binom{1}{X}^{s'}, (h', v')\right) E\left(\binom{1}{X}, (1, Y)\right) \\ &= E\left(\binom{g}{u}, (\pi_1, \pi_2)\right) E\left(\binom{g'}{u'}, (\pi_1', \pi_2')\right) E\left(\binom{\theta_1}{\theta_2}, (h, v)\right) E\left(\binom{\theta_1'}{\theta_2'}, (h', v')\right) \begin{pmatrix} 1 & 1 \\ 1 & e(X, Y) \end{pmatrix} \end{split}$$

• The proof elements are then randomized using $t, t', t'', t''' \leftarrow \mathbf{Z}_p$ $(\pi_1, \pi_2) \mapsto (\pi_1, \pi_2)(h, v)^t (h', v')^{t'} \qquad (\theta_1, \theta_2) \mapsto (\theta_1, \theta_2)(g, u)^{-t} (g', u')^{-t''}$ $(\pi'_1, \pi'_2) \mapsto (\pi'_1, \pi'_2)(h, v)^{t''} (h', v')^{t'''} \qquad (\theta'_1, \theta'_2) \mapsto (\theta'_1, \theta'_2)(g, u)^{-t'} (g', u')^{-t'''}$

Security

• The verifier given the proof $(c_1, c_2, d_1, d_2, \pi_1, \pi_2, \pi_1', \pi_2', \theta_1, \theta_2, \theta_1', \theta_2')$ for e(X, Y) = T accepts if and only if

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix},(\pi_1,\pi_2)\right)E\left(\begin{pmatrix}g'\\u'\end{pmatrix},(\pi_1',\pi_2')\right)E\left(\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix},(h,v)\right)E\left(\begin{pmatrix}\theta_1'\\\theta_2'\end{pmatrix},(h',v')\right)\begin{pmatrix}1&1\\1&T\end{pmatrix}$$

- Perfect completeness when e(X,Y) = T follows from the calculations
- On a binding setup, where $(g', u') = (g, u)^{\alpha}$ and $(h', v') = (h, v)^{\beta}$, decryption vertically and horizontally shows the proof system is perfectly sound

Privacy

- On a hiding setup, where $(g', u') = (g^{\alpha}, u^{\alpha}g^{-1})$ and $(h', v') = (h^{\beta}, v^{\beta}h^{-1})$, the proof system is perfectly witness indistinguishable
 - Commitments $(c_1, c_2), (d_1, d_2)$ are uniformly random
 - Proof elements $\pi_1, \pi_2, \pi'_1, \pi'_2$ are uniformly random due to the rerandomization
 - \circ Conditioned on these the verification equation uniquely determines θ_1 , θ_2 , θ_1' , θ_2'
 - So impossible to tell whether the prover used a witness (X,Y) such that e(X,Y)=T or used another witness (X',Y') also satisfying e(X',Y')=T
- What about zero-knowledge? Given *T* can we simulate a proof?
 - Hard in general, given arbitrary T it is infeasible to find solution to $\prod_{i=1}^{n} e(A_i, B_i) = T$ so the simulator cannot satisfy the verification equation
 - O But if T = 1 the problem is easy, just pick X = 1, Y = 1 and we have e(X, Y) = TAnd because the proof is witness indistinguishable, this witness is as good as any other

Statements - witness indistinguishability

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_i \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = T$$

• Multi-exponentiation equation in G_1 defined by $A_i, T \in G_1, b_i, \gamma_{ij} \in \mathbb{Z}_p$ (analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbf{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Witness $X_1, \dots, X_m \in G_1, Y_1, \dots, Y_n \in G_2, x_1, \dots, x_{m'}, y_1, \dots, y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k

Statements – zero-knowledge

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_i \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = 1$$

• Multi-exponentiation equation in G_1 defined by $A_j, T \in G_1, b_i, \gamma_{ij} \in \mathbb{Z}_p$

(analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbf{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Witness $X_1, ..., X_m \in G_1, Y_1, ..., Y_n \in G_2, x_1, ..., x_{m'}, y_1, ..., y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k

Commitments to field elements

- Setup includes $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- Now the prover will make commitments to $x \in \mathbb{Z}_p$ and $y \in \mathbb{Z}_p$ of the form $(q^{r}(q')^{x}, u^{r}(u'q)^{x})$ and $(h^{s}(h')^{y}, v^{s}(v'q)^{x})$
- More precisely, for $x \in \mathbb{Z}_p$ the prover picks random $r \leftarrow \mathbb{Z}_p$ and computes a commitment as $(c_1, c_2) = (g, u)^r (g', u'g)^x$
- Recall the two setups
 - Binding setup $(g', u') = (g^{\alpha}, u^{\alpha})$
 - Hiding setup $(g', u') = (g^{\alpha}, u^{\alpha}g^{-1})$

Indistinguishable under DDH

- So on binding setup $(c_1, c_2) = (g^{r+\alpha x}, u^{r+\alpha x} g^x)$, an encryption of g^x
- And on hiding setup $(c_1, c_2) = (g^{r+\alpha x}, u^{r+\alpha x})$, where r perfectly hides x

Proof example for quadratic equation

- Common reference string with $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- Suppose we have an instance with a single quadratic equation

$$xy = t$$

Prover commits to x, y as

$$(c_1, c_2) = (g^r(g')^x, u^r(u'g)^x)$$
 and $(d_1, d_2) = (h^s(h')^y, v^s(v'h)^y)$

• Let us apply the extended bilinear map to the commitments

$$E\left(\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, (d_1, d_2) \right) = E\left(\begin{pmatrix} g \\ u \end{pmatrix}^r \begin{pmatrix} g' \\ u'g \end{pmatrix}^x, (d_1, d_2) \right)$$
$$= E\left(\begin{pmatrix} g \\ u \end{pmatrix}, (d_1, d_2)^r \right) E\left(\begin{pmatrix} g' \\ u'g \end{pmatrix}^x, (d_1, d_2) \right)$$

Proof example

$$= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{g'}{u'g}^x, (h, v)^s (h', v'h)^y\right)$$

$$= E\left(\binom{g}{u}, (d_1, d_2)^r\right) E\left(\binom{g'}{u'g}^{xs}, (h, v)\right) E\left(\binom{g'}{u'g}^x, (h', v'h)^y\right)$$

$$= E\left(\binom{g}{u}, (d_1, d_2)^r (h, v)^t\right) E\left(\binom{g'}{u'g}^{xs} \binom{g}{u}^{-t}, (h, v)\right) E\left(\binom{g'}{u'g}, (h', v'h)\right)^{xy}$$
for any $t \in \mathbf{Z}_p$

• The prover computes the proof elements as (using uniformly random $t \leftarrow \mathbf{Z}_p$) $(\pi_1, \pi_2) = (d_1, d_2)^r (h, v)^t$ and $(\theta_1, \theta_2) = (g', u'g)^{xs} (g, u)^{-t}$

Verification

• The verifier given the proof $(c_1, c_2, d_1, d_2, \pi_1, \pi_2, \theta_1, \theta_2)$ for xy = t accepts if and only if

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix},(\pi_1,\pi_2)\right)E\left(\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix},(h,v)\right)E\left(\begin{pmatrix}g'\\u'g\end{pmatrix},(h',v'h)\right)^{t}$$

- Perfect completeness when xy = t follows from the calculations
- On a binding setup, where $(g', u') = (g, u)^{\alpha}$ and $(h', v') = (h, v)^{\beta}$, decryption vertically and horizontally shows the proof system is perfectly sound
 - o It is not a proof of knowledge though, decryption gives you g^x and h^y instead of x, yTake for instance $(c_1, c_2) = (g^r(g')^x, u^r(u'g)^x) = (g^{r+\alpha x}, u^{r+\alpha x}g^x)$ and all you get is g^x

Witness indistinguishability

- On a hiding setup, where $(g', u') = (g^{\alpha}, u^{\alpha}g^{-1})$ and $(h', v') = (h^{\beta}, v^{\beta}h^{-1})$, the proof system is perfectly witness indistinguishable
 - Commitments (c_1, c_2) , (d_1, d_2) are uniformly random
 - The proof elements π_1 , π_2 , θ_1 , θ_2 are uniformly random conditioned on satisfying the verification equation

$$E\left(\begin{pmatrix}c_1\\c_2\end{pmatrix},(d_1,d_2)\right) = E\left(\begin{pmatrix}g\\u\end{pmatrix},(\pi_1,\pi_2)\right)E\left(\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix},(h,v)\right)E\left(\begin{pmatrix}g'\\u'g\end{pmatrix},(h',v'h)\right)^t$$

- Randomization $((\pi_1, \pi_2) = (d_1, d_2)^r (h, v)^t)$ makes π_1 uniformly random
- The top left corner of the verification equation then uniquely determines θ_1 , the bottom left corner uniquely determines θ_2 , and now the right top corner uniquely determines π_2

Proof size

- The common reference string has 8 elements $g, u, g', u' \in G_1, h, v, h', v' \in G_2$
- For a system of equations $\{eq_1, ..., eq_q\}$ over variables X_i, Y_j, x_i, y_j

Variable/equation	Elements in G ₁	Elements in G ₂
$X \in G_1, x \in \mathbf{Z}_p$	2	0
$Y \in G_2, y \in \mathbf{Z}_p$	0	2
Pairing product	4	4
Multi-exponentiation in G_1	2	4
Multi-exponentiation in G_2	4	2
Quadratic	2	2

- Proofs may in some cases be smaller than the instance
 - For instance for q pairing-product equations over $X_1, \dots, X_m, Y_1, \dots, Y_n$ with many non-trivial γ_{ij} instance size is around mnq and proof size is 2m + 2n + 8q

Statements - witness indistinguishability

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_i \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = T$$

• Multi-exponentiation equation in G_1 defined by $A_i, T \in G_1, b_i, \gamma_{ij} \in \mathbb{Z}_p$ (analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbf{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Witness $X_1, \dots, X_m \in G_1, Y_1, \dots, Y_n \in G_2, x_1, \dots, x_{m'}, y_1, \dots, y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k

Statements – zero-knowledge

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_i \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = 1$$

○ Multi-exponentiation equation in G_1 defined by A_j , $T \in G_1$, b_i , $\gamma_{ij} \in \mathbf{Z}_p$

(analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbb{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Witness $X_1, \dots, X_m \in G_1, Y_1, \dots, Y_n \in G_2, x_1, \dots, x_{m'}, y_1, \dots, y_{n'} \in \mathbf{Z}_p$ satisfying all eq_k

Simulation strategy

Use trivial witness

$$X_1 = 1, ..., X_m = 1$$
 $Y_1 = 1, ..., Y_n = 1$ $x_1 = 0, ..., y_{n'} = 0$

Works well for the pairing-product equations

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = 1$$

Maybe not so well for the other equations? For instance

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

with non-trivial $t \neq 0$

Zero-knowledge for non-trivial targets

• A quadratic equation with $t \neq 0$ can be rewritten as

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + 1 \cdot (-t) + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = 0$$

- Observe $(g', u'g) = (g, u)^0 (g', u'g)^1$ is commitment to 1 with r = 0
 - \circ On a binding string (g', u'g) is perfectly binding to 1, so we have perfect soundness
 - On a hiding string, $(g', u'g) = (g, u)^{\alpha}(g', u'g)^{0}$ so it is also a commitment to 0
 - The simulator can use $x_1 = \cdots = y_{n'} = 0$ and "1 = 0" to simulate proof
 - By perfect witness indistinguishability, the simulated proof looks exactly like a real proof

Zero-knowledge for non-trivial targets

• A multi-exponentiation equation in G_1 with $T \neq 1$ can be rewritten as

$$\prod_{j \in [n']} A_j^{y_j} \cdot (T^{-1})^1 \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = 1$$

- Using $(h', v'h) = (h, v)^0 (h', v'h)^1$ is commitment to 1 with s = 0
 - o On a binding string it is unconditionally binding, so we have perfect soundness
 - On a hiding string also commitment to 0 since $(h', v'h) = (h, v)^{\beta}(h', v'h)^{0}$, so we can simulate a proof using the trapdoor β
- Btw, the proofs you prove/simulate are exactly the same as in the WI case

Statements – zero-knowledge

- Instance $\phi = \{eq_1, ..., eq_q\}$, equations over variables $X_i \in G_1, Y_j \in G_2, x_i, y_j \in \mathbf{Z}_p$
 - Pairing product equation defined by $A_j \in G_1$, $B_i \in G_2$, $\gamma_{ij} \in \mathbb{Z}_p$

$$\prod_{j\in[n]} e(A_j, Y_j) \cdot \prod_{i\in[m]} e(X_i, B_i) \cdot \prod_{i\in[m]} \prod_{j\in[n]} e(X_i, Y_j)^{\gamma_{ij}} = 1$$

 \circ Multi-exponentiation equation in G_1 defined by $A_j, T \in G_1, b_i, \gamma_{ij} \in \mathbb{Z}_p$ (analogous for G_2)

$$\prod_{j \in [n']} A_j^{y_j} \cdot \prod_{i \in [m]} X_i^{b_i} \cdot \prod_{i \in [m]} \prod_{j \in [n']} X_i^{\gamma_{ij}y_j} = T$$

• Quadratic equations defined by $a_j, b_i, \gamma_{ij}, t \in \mathbf{Z}_p$

$$\sum_{j \in [n']} a_j y_j + \sum_{i \in [m']} x_i b_i + \sum_{i \in [m']} \sum_{j \in [n']} x_i \gamma_{ij} y_j = t$$

• Simulate all proofs using $X_i = 1$, $Y_j = 1$, $x_i = 0$, $y_j = 0$ and trapdoors α , β