STAT6038 week 3 lecture 8

Rui Qiu

2017-03-09

ANOVA (Analysis of Variance Table In general,

Source	df	SS	MS	F	p-value
Regression (Model)	k = p - 1	$SS_{Regression}$	$MS_{Reg} = \frac{SS_{Reg}}{k}$	$\frac{MS_{Reg}}{MS_{Errors}}$	
Residuals (Errors)	n-1	SS_{Errors}	$MS_{Errors} = \frac{SS_{Errors}}{n-p}$		
Total	n-1	SS_{Total}			

Table 1: ANOVA table in details

 $p = \text{number of parameters in the model } \{\beta_0, \beta_1, \dots, \beta_k\}$

k= number of variables or number of slope coefficients (excluding β_0) $\{\beta_1,\beta_2,\ldots,\beta_k\}.$

For simple linear regression (SLR), $(p = 2, \beta_0, \beta_1 \text{ and } k = 1, \beta_1)$.

F is Fisher test statistics.

For SLR,

Source	df	SS	MS	F	p-value
Regression (Model)	1	$\sum (\hat{Y}_i - \bar{Y})^2$	$\sum (\hat{Y}_i - \bar{Y})^2$	MSR/MSE	
Residuals (Errors)	n-2	$\sum (Y_i - \hat{Y}_i)^2$	$\frac{\sum (Y_i - \hat{Y}_i)^2}{n - 2}$		
Total	n-1	$\sum (Y_i - \bar{Y})^2$			

Table 2: ANOVA table for SLR

Note that we use s_y^2 to estimate SS_{Total}

$$s_y^2 = \frac{1}{n-1} \sum (Y_i - \bar{Y})^2.$$