			Created with Osdag
Company Name	D Y Patil College of Engineering Akurdi Pune	Project Title	Design a cleat angle shear connection
Group/Team Name	DYPCOE	Subtitle	
Designer	Mr.S.J.Payghan	Job Number	Problem 3
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion		
Cleat Angle	Pass	
Cleat Angle		
Connection Properties		
Connection		
Connection Title	Double Angle Web Cleat	
Connection Type	Shear Connection	
Connection Category		
Connectivity	Beam-Beam	
Beam Connection	Bolted	
Column Connection	Bolted	
Loading (Factored Load)		
Shear Force (kN)	100.0	
Components	*	
Column Section	ISMB 450	
Material	Fe 410	
Beam Section	ISMB 300	
Material	Fe 410	
Hole	STD	
Cleat Section	ISA 100X100X8	
Thickness (mm)	8	
Cleat Leg Size B (mm)	100	
Cleat Leg Size A (mm)	100	
Hole	STD	
Bolts on Beam		
Туре	Black Bolt	
Grade	4.8	
Diameter (mm)	16	
Bolt Numbers	5	
Columns (Vertical Lines)	1	
Bolts Per Column	5	

Gauge (mm)	0		
Pitch (mm)	40		
End Distance (mm)	30		
Edge Distance (mm)	30		
Bolts on Column	·		
Туре	Black Bolt		
Grade	4.8		
Diameter (mm)	16		
Bolt Numbers	10		
Columns (Vertical Lines)	1		
Bolts Per Column	5		
Gauge (mm)	0		
Pitch (mm)	40		
End Distance (mm)	30		
Edge Distance (mm)	33.85		
Assembly			
Column-Beam Clearance (mm)	20		

			Created with Osdag
Company Name	D Y Patil College of Engineering Akurdi Pune	Project Title	Design a cleat angle shear connection
Group/Team Name	DYPCOE	Subtitle	
Designer	Mr.S.J.Payghan	Job Number	Problem 3
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Check	Required	Provided	Remarl
Bolt shear capacity (kN)	•	V_{dsb} = ((2*400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 58.012 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V _{dpb} = (2.5*0.491*16*7.7*400)/(1.25*1000) = 48.393 [cl. 10.3.4]	
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*7.7*410)/(1.25*1000) = 49.603 [cl. 10.3.4]	
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]	
Bearing capacity (kN)		Min (48.393, 49.603, 51.535) = 48.393	
Bolt capacity (kN)		Min (58.012, 48.393) = 48.393	
Critical bolt shear (kN)	≤ 48.393	20.156	Pass
No. of bolts		5	
No.of column(s)	≤ 2	1	
No. of bolts per column		5	
Bolt pitch (mm)	\geq 2.5* 16 = 40, \leq Min(32*7.7, 300) = 247 [cl. 10.2.2]	40	Pass
Bolt gauge (mm)	\geq ;2.5*16 = 40, \leq Min(32*7.7, 300) = 247 [cl. 10.2.2]	0	
	≥ 1.7*18.0 = 30.6, ≤ 12*7.7 =		

End distance (mm)	92.4 [cl. 10.2.4]	30	Pass
Edge distance (mm)	≥ 1.7*18.0 = 30.6, ≤ 12*7.7 = 92.4 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥ 100.0	$V_{\rm db}$ = 203.164 [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0- 13.1-14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass
Cleat moment capacity (kNm)	(2*58.012*40 ²)/(40*1000) = 3.5	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16 [cl. 8.2.1.2]	Pass

			Created with Osdag
Company Name	D Y Patil College of Engineering Akurdi Pune	Project Title	Design a cleat angle shear connection
Group/Team Name	DYPCOE	Subtitle	
Designer	Mr.S.J.Payghan	Job Number	Problem 3
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check: Pri	Design Check: Primary Beam Connectivity				
Check	Required	Provided	Remark		
Bolt shear capacity (kN)		$V_{\rm dsb}$ = ((400*0.6126*16*16)/($\sqrt{3}$ *1.25*1000) = 29.006 [cl. 10.3.3]			
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.491*16*8.0*400)/(1.25*1000) = 50.278 [cl. 10.3.4]			
Bearing capacity of beam web (kN)		V_{dpb} = (2.5*0.491*16*9.4*410)/(1.25*1000) = 60.554 [cl. 10.3.4]			
Bearing capacity of cleat (kN)		V_{dpb} = (2.5*0.491*16*8*410)/(1.25*1000) = 51.535 [cl. 10.3.4]			
Bearing capacity (kN)		Min (50.278, 60.554, 51.535) = 51.535			
Bolt capacity (kN)		Min (29.006, 51.535) = 29.006			
Critical bolt shear (kN)	≤ 29.006	20.156	Pass		
No. of bolts		10			
No.of column(s) per angle	≤ 2	1			
No. of bolts per column per angle		5			
Bolt pitch (mm)	\geq 2.5* 16 = 40, \leq Min(32*8.0, 300) = 256 [cl. 10.2.2]	40	Pass		
Bolt gauge (mm)	\geq 2.5*16 = 40, \leq Min(32*8.0, 300) = 256 [cl. 10.2.2]	0			

End distance (mm)	≥ 1.7*18.0 = 30.6, ≤ 12*8.0 = 96.0 [cl. 10.2.4]	30	Pass
Edge distance (mm)	≥1.7*18.0 = 30.6, ≤12*8.0 = 96.0 [cl. 10.2.4]	33.85	Pass
Block shear capacity (kN)	≥100.0	$V_{\rm db}$ = 210.164 [cl. 6.4.1]	Pass
Cleat height (mm)	≥ 0.6*300.0=180.0, ≤ 300.0- 13.1-14.0-17.4-15.0- 5=235.5 [cl. 10.2.4, Insdag Detailing Manual, 2002]	220	Pass
Cleat moment capacity (kNm)	(2*29.006*40 ²)/(40*1000) = 3.5	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 116.16 [cl. 8.2.1.2]	Pass

			Created with OSdag
Company Name	D Y Patil College of Engineering Akurdi Pune	Project Title	Design a cleat angle shear connection
Group/Team Name	DYPCOE	Subtitle	
Designer	Mr.S.J.Payghan	Job Number	Problem 3
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Views	
i k	

			Created with Osdag
Company Name	D Y Patil College of Engineering Akurdi Pune	Project Title	Design a cleat angle shear connection
Group/Team Name	DYPCOE	Subtitle	
Designer	Mr.S.J.Payghan	Job Number	Problem 3
Date	05 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	
7 tal di 11 tal	