1. DEFINITION: Two-Sided Limit

Notation:
$$\lim_{x\to a} f(x) = L$$

Words: the limit of f(x), as x approaches a, is L.

It means: As the x-values get closer t closer to a (larger t smaller than a) the y-values of f(x) get close to L. Infact, the y's can be forced arbitrarily close to L.

Evaluate the limits below numerically. Estimate the limit to 4 decimal places, if possible.

1

$$2. \lim_{x \to 0} \frac{\sin(x)}{x} = \boxed{1}$$

1 - 12 /				
X	Sin(X)/X			
0.1	0. 99 833			
0.01	0.99998			
0.001	0.99999			
0	DNE			
- 0.001	0.99999			
-0.01	0.99998			
-0.1	0.99833			
4. $\lim_{x \to 0} \frac{1}{x}$	$\lim_{x \to -1} \frac{ x+1 }{x+1} = \boxed{\text{DNF}}$			

3.
$$\lim_{x \to 2} \frac{\cos(x)(x-2)}{3x^2 - 5x - 2} = \boxed{0.0594}$$

×	$\cos(x)(x-2)/(3x^2-5x-2)$
2.1	-0.069157
2.01	-0.060486
2.001	<u>-0.15955</u>
2.00001	-0.05945
2.	
1.99999	-0.059448
1.999	-0.05 9345
1.99	-0.058397
1.9	-0.04825
* * 1	1 [

$$5. \lim_{x \to 1} \frac{1}{x - 1} = \boxed{\mathcal{D}_{NE}}$$

X	[x+1] /	(x+1)
-0.9	1	from page2
-0.99	1	
-0.999	1	_ X->-1+ X+1
-0.9999	1	_
-1	DNE	_
-1.0001	-	lim x+1 +
-1,001	-1	$\lim_{x \to -1^{-}} \frac{ x+1 }{x+1} = \boxed{-1}$
-1.01	-	
-1.1	-1	•

X	1/(x-1)	from page 2
1.1	10	- - -
1.0	100	$\lim_{x\to 1^+} \frac{1}{x-1} = +\infty$
1.001	1000	.
1.000	10,000	
	DNE	
0.9999	-10,000	lim 1 = -00
0.999	-1000	x->1- x-1
0.99	-100	
0.9	-10	
•	2-2 The L:	imit of a Function

6. DEFINITION: One-Sided Limits

Notation:

lim f(x)=L x-values approach x=a only on the right or above or from x-values larger than x=a.

Limits can also be evaluated graphically.

7. The function g(x) is graphed below. Use the graph to fill in the blanks.

- (a) $\lim_{x \to 4^{-}} g(x) = \underline{\begin{array}{c} 16 \\ \\ \text{(b)} \lim_{x \to 4^{+}} g(x) = \underline{\begin{array}{c} 4 \\ \\ \text{(c)} \lim_{x \to 4} g(x) = \underline{\begin{array}{c} 2005 \\ \\ \text{(d)} g(4) = \underline{\begin{array}{c} 16 \\ \\ \text{(e)} \lim_{x \to 8} g(x) = \underline{\begin{array}{c} 5 \\ \\ \text{(f)} g(8) = \underline{\begin{array}{c} -5 \\ \end{array}} \\ \end{array}}$

- (f) g(8) =___

8. The function h(x) is graphed below. Use the graph to fill in the blanks.

- (a)
- (b) $\lim_{x \to 4^+} h(x) =$ ______
- (d) h(4) =
- (e) $\lim_{x \to 8} h(x) =$ ______

9. Find any vertical asymptotes of $f(x) = \frac{2}{x+5}$ and *justify* your answer using a limit.

Justification:

$$\lim_{X \to -5^+} \frac{2}{x+5} = +\infty$$

as
$$x = -5^+$$
 (#\$ like -4.9,-4.99)
 $x + 5 \to 0^+$

10. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3 \quad \lim_{x \to 4^{+}} f(x) = 0$$

$$f(0) = -2 \qquad \qquad f(4) = 1$$

