Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

(Currently amended) Haloalkyl-earboxamides- A haloalkyl carboxamide of the formula (f)

formula (f)

in which

R stands for hydrogen or halogen,

R1 stands for hydrogen or methyl,

R² stands for methyl, ethyl or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

 R^3 stands for halogen or $C_1\text{-}C_4$ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

 $R^4 \ stands \ for \ hydrogen, \ C_1-C_8 \ alkyl, \ C_1-C_6 \ alkylsulfinyl, \ C_1-C_6 \ alkylsulfinyl, \ C_1-C_6 \ alkylsulfinyl, \ C_1-C_6 \ alkylsulfinyl, \ C_1-C_4 \ haloalkylsulfinyl, \ C_1-C_4 \ haloalkylsulfinyl, \ halo-C_1-C_4-alkoxy-C_1-C_4-alkyl, \ C_3-C_8 \ haloalkylsulfinyl, \ halo-C_1-C_4-alkoxy-C_1-C_4-alkyl, \ C_3-C_8 \ haloalkylsulfinyl, \ halo-C_1-C_3-alkyl, \ (C_1-C_3 \ alkoxy)carbonyl-C_1-C_3-alkyl, \ (C_1-C_3 \ alkoxy)carbonyl-C_1-C_3-alkyl, \ halo-(C_1-C_3 \ alkoxy)carbonyl-C_1-C_3-alkyl, \ halo-(C_1-C_3 \ alkoxy)carbonyl-C_1-C_3-alkyl) \ with 1 to 13 \ fluorine, chlorine and/or bromine atoms in each case; \ (C_1-C_8 \ alkyl)carbonyl, \ alkyl)carb$

 $(C_1\text{-}C_8 \quad alkoxy) carbonyl, \qquad (C_1\text{-}C_4\text{-}alkoxy-C_1\text{-}C_4\text{-}alkyl) carbonyl, \qquad (C_3\text{-}C_8 \quad cycloalkyl) carbonyl; \\ (C_1\text{-}C_6 \quad haloalkyl) carbonyl, \qquad (C_1\text{-}C_6 \quad haloalkoxy) carbonyl, \qquad (halo-C_1\text{-}C_4\text{-}alkoxy-C_1\text{-}C_4\text{-}alkyl) carbonyl, \qquad (C_3\text{-}C_8 \quad haloaycloalkyl) carbonyl \quad with \quad 1 \quad to \quad 9 \quad fluorine, \\ chlorine \quad and/or \quad bromine \quad atoms \quad in \quad each \quad case; \quad or \quad -C(=O)C(=O)R^5, \quad -CONR^6R^7 \quad or \quad -CHNR^8R^9, \\ \end{cases}$

R⁵ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₄-C₄-alkoxyl₁-C₄-alkyl halo-C₁-C₄-alkoxyl-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁶ and R⁷ stand independently of one another in each case for hydrogen, C₁-C₈ alkyl, C₄-C₄-alkoxyl₊-C₄-alkyl C₁-C₅-alkoxyl-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁶ and R⁷, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains ean-contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁸ and R⁹, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains ean-contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

R10 stands for hydrogen or C1-C6 alkyl,

M stands in each case for a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R^{11} , or stands for a thiazole ring substituted by R^{11-A}

R¹¹ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R11-A stands for hydrogen, methyl, methylthio or trifluoromethyl,

A stands for the group of the formula (Al)

$$R^{12}$$
 R^{13}
 R^{14}
(A1), in whice

 R^{12} stands for hydrogen, cyano, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl- C_1 - C_1 -alkyl,

 R^{13} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or C_1 - C_4 alkylthio.

 $R^{14} \ stands \ for \ hydrogen, \ C_1\text{-}C_4 \ alkyl, \ hydroxy\text{-}C_1\text{-}C_4 \ alkyl, \ C_2\text{-}C_6 \ alkenyl, \ C_3\text{-}C_6 \ cycloalkyl, \ C_1\text{-}C_4\text{-}alkylthio\text{-}C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4 \ haloalkyl, \ C_1\text{-}C_4\text{-}alkyl, \ c_1\text{-}c$

or

A stands for the group of the formula (A2)

 R^{15} and R^{16} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 $m R^{17}$ stands for halogen, cyano or $m C_1\text{-}C_4$ alkyl, or $m C_1\text{-}C_4$ haloalkyl or $m C_1\text{-}C_4$ haloalkoxy with 1 to 5 halogen atoms in each case,

or

A stands for the group of the formula (A3)

 R^{18} and R^{19} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{20} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A4)

 R^{21} stands or hydrogen, halogen, hydroxy, cyano, C_1 - C_6 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio in each case with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A5)

R²² stands for halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio or C₁-C₄ haloalkoxy in each case with 1 to 5 halogen atoms,

 R^{23} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy in each case with 1 to 5 halogen atoms, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$R^{25}$$
 (A6), in which

R²⁴ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R25 stands for C1-C4 alkyl,

Q1 stands for S (sulfur), O (oxygen), SO, SO2 or CH2,

p stands for 0, 1 or 2, whereby R^{25} stands for identical or <u>different various</u> groups if p is 2,

or

A stands for the group of the formula (A7)

R²⁶ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A8)

$$(A8)$$
, in which

R²⁷ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A9)

$$R^{28}$$
 (A9), in which

 R^{28} and R^{29} stand independently of one another for hydrogen, halogen, amino, $C_1\hbox{-} C_4 \text{ alkyl or } C_1\hbox{-} C_4 \text{ haloalkyl with } 1 \text{ to } 5 \text{ halogen atoms},$

 R^{30} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (Al0)

 R^{31} and R^{32} stand independently of one another for hydrogen, halogen, amino, nitro, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{33} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (All)

 R^{34} stands for hydrogen, halogen, amino, $C_1\text{-}C_4$ alkylamino, di- $(C_1\text{-}C_4$ alkyl)amino, cyano, $C_1\text{-}C_4$ alkyl or $C_1\text{-}C_4$ haloalkyl with 1 to 5 halogen atoms,

R35 stands for halogen, C1-C4 alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A12)

 R^{36} stands for hydrogen, halogen, amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 alkyl)amino, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{37} stands for halogen, $C_1\hbox{-} C_4$ alkyl or $C_1\hbox{-} C_4$ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A13)

R38 stands for halogen, C1-C4 alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A14)

R39 stands for hydrogen or C1-C4 alkyl,

R40 stands for halogen or C1-C4 alkyl,

or

A stands for the group of the formula (A15)

$$(A15)$$
, in which

R41 stands for C1-C4 alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

$$N$$
 (A16), in which

 R^{42} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A17)

 R^{43} stands for halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio or C_1 - C_4 haloalkoxy with 1 to 5 halogen atoms in each case.

or

A stands for the group of the formula (A18)

$$\mathbb{R}^{45}$$
 $\mathbb{N}_{\mathbb{R}^{44}}^{47}$ (A18), in which

 $R^{44} \ stands \ for \ hydrogen, \ cyano, \ C_1-C_4 \ alkyl, \ C_1-C_4 \ haloalkyl \ with \ 1 \ to \ 5 \ halogen$ $atoms, \ C_1-C_4 \ alkyl-C_1-C_4 \ alkyl, \ hydroxy-C_1-C_4 \ alkyl, \ C_1-C_4 \ alkyl-C_1-C_4 \ alkyl-C$

alkyl)aminosulfonyl, C_1 - C_6 alkylcarbonyl or in each case <u>optionally</u> possibly substituted phenylsulfonyl or benzoyl,

 R^{45} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{46} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{47} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A19)

(A19), in which

R⁴⁸ stands for C₁-C₄ alkyl.

 (Currently amended) Haloalkyl carboxamides A haloalkyl carboxamide of the formula (I) according to Claim 1, in which

R stands for hydrogen, fluorine, chlorine or bromine,

R1 stands for hydrogen or methyl,

R² stands for methyl, ethyl or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, see see or tert-butyl with single or multiple, the same or different various, substitution by fluorine, chlorine or bromine[[.]],

R³ stands for fluorine, chlorine, bromine, iodine or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, see <u>sec-</u> or tert-butyl with single or multiple, the same or <u>different various</u>, substitution by fluorine, chlorine or bromine[[.]],

R4 stands for hydrogen, C1-C4 alkyl, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, C1-C4-alkoxy-C1-C4-alkyl, C3-C6 cycloalkyl; C1-C4 haloalkyl, C1-C4 haloalkylthio, C1-C4 haloalkylsulfinyl, C1-C4 haloalkylsulfonyl, halo-C1-C3-alkoxy-C1-C3-alkyl, C3-C8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C1-C3-alkyl, (C1-C3 alkyl)carbonyl-C1-C3-alkyl, (C1-C3 alkoxy)carbonyl-C1-C3alkyl; halo-(C1-C3 alkyl)carbonyl-C1-C3-alkyl, halo-(C1-C3 alkoxy)carbonyl-C1-C3-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C1-C6 alkyl)carbonyl, (C₁-C₃-alkoxy-C₁-C₃ alkyl)carbonyl, (C_3-C_6) (C_1-C_4) alkoxy)carbonyl, cycloalkyl)carbonyl; (C1-C4 haloalkyl)carbonyl, (C1-C4 haloalkoxy)carbonyl, (halo-C1-C3-alkoxy-C1-C3-alkyl)carbonyl, (C3-C6 halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R5, -CONR6R7 or -CH2NR8R9,

 R^5 stands for hydrogen, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 cycloalkyl; C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

 R^6 and R^7 stand independently of one another in each case for hydrogen, C_1 - C_6 alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkoxy- C_1 - C_3 -alkoxy- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁶ and R⁷, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains can contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰.

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, <u>or</u>

R⁸ and R⁹, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains ean contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

R10 stands for hydrogen or C1-C4 alkyl,

M stands for one of the following cyclics

whereby the bond marked with an asterisk ("*") is a link with the amide, and the bond marked with "#" is a link with the haloalkyl group,

R11 stands for hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R11-A stands for hydrogen, methyl or trifluoromethyl,

A stands for the group of the formula (Al)

$$\mathbb{R}^{12}$$
 \mathbb{R}^{13}
 \mathbb{R}^{14}
(A1), in which

 R^{12} stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with

1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl,
cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

- 15 -

or

A stands for the group of the formula (A2)

 R^{15} and R^{16} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

 R^{17} stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A3)

 R^{18} and R^{19} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

 R^{20} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A4)

R²¹ stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy or C₁-C₂ haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A5)

 R^{22} stands for fluorine, chlorine, bromine, iodine, hydroxy, cyano, C_1 - C_4 alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms.

R²³ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂ alkylsulfinyl or C₁-C₂ alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$R^{25}$$
 Q^{1} Q^{1} Q^{25} $Q^{$

R²⁴ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁵ stands for methyl or ethyl,

Q1 stands for S (sulfur), SO2 or CH2,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

 R^{26} stands for methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

R²⁷ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

or

A stands for the group of the formula (A9)

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

- 18 -

 R^{30} stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (A10)

R³¹ and R³² stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{33} stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (Al1)

R³⁴ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁵ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A12)

R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁷ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with I to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

 R^{38} stands for fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A14)

R39 stands for hydrogen, methyl or ethyl,

R⁴⁰ stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

R⁴¹ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A16)

$$N$$
 (A16), in which

 R^{42} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A17)

 R^{43} stands for fluorine, chlorine, bromine, iodine, hydroxy, C_1 - C_4 alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C_1 - C_2 haloalkyl or C_1 - C_3 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A18)

 R^{44} stands for hydrogen, methyl, ethyl, C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, hydroxymethyl, hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

 R^{45} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{46} stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{47} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A19)

$$\mathbb{R}^{48}$$
 (A19), in which

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

- 3. (Currently amended) A process for synthesizing a haloalkyl <u>carboxamide</u> earboxamides of the formula (I) according to Claim 1, <u>comprising</u> eharacterized in that
 - a) reacting a carboxylic acid derivative derivatives of the formula (II)

in which

A has the meaning specified as defined above in Claim 1 and

X1 stands for halogen or hydroxy,

are reacted with an aniline derivative derivatives of the formula (III)

$$\begin{array}{c|c}
M & R^2 \\
R^4 & R^3
\end{array}$$
(III)

in which

R, R1, R2, R3, R4 and M have the meanings specified as defined above in Claim 1,

possibly optionally in the presence of a catalyst, possibly optionally in the presence of a condensation agent, possibly optionally in the presence of an acid binder and possibly optionally in the presence of a diluent,

or

b) reacting a hexylcarboxanilide hexylcarboxanilides of the formula (I-a)

in which

R, R^1 , R^2 , R^3 , M and A have the meanings specified <u>as defined above</u> in Claim 1, are reacted with a <u>halide</u> halides of the formula (IV)

$$R^{4-A} - X^2$$
 (IV)

in which

X2 stands for chlorine, bromine or iodine,

 $R^{+\Lambda}$ stands for C_1 - C_8 alkyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_4 - C_6 alkoxy. C_4 - C_4 -alkyl, C_3 - C_8 eveloalkyl; C_1 - C_6 haloalkyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 alkyl)carbonyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl; halo- $(C_1$ - C_3 alkyl)carbonyl- C_1 - C_3 -alkyl, halo- $(C_1$ - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; $(C_1$ - C_8 alkyl)carbonyl, $(C_1$ - C_8 alkoxy)carbonyl, $(C_1$ - C_8 -alkyl)carbonyl, $(C_1$ - C_8 -alkoxy)carbonyl, $(C_1$ - C_8 -alkoxy)carbonyl

in the presence of a base and in the presence of a dilution medium.

4. (Currently amended) Media A composition for combating undesirable microorganisms, eharacterized—by containing comprising at least one haloalkyl carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.

5. (Cancelled)

- 6. (Currently amended) Processes A method for combating undesired microorganisms, eharacterized in that comprising applying at least one haloalkyl carboxamide earboxamides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their environment, in accordance with Claim 1.
- 7. (Currently amended) Processes A method for preparing a composition synthesizing materials to combat undesired microorganisms, characterized in that comprising mixing at least one haloalkyl carboxamide earboxamides of the formula (I) according to Claim 1 are-mixed with extenders and/or surface-active materials, according to Claim 1.
- 8. (Withdrawn-currently amended) Aniline derivatives An aniline derivative of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & R \\
 & R \\
 & R^3
\end{array}$$
(III)

in which R, R^1 , R^2 , R^3 , R^4 and M have the meanings specified <u>as defined above</u> in Claim 1.