NMAG436 - HW3 Jan Oupický

1

Let $L := \mathbb{F}_p(V_{w_a})$. w_a is a short WEP by definition for every p and a.

First let p=2. $w_0=y^2+x^3, w_1=y^2+x^3+1$ with partial derivatives $\frac{\partial w_0}{\partial x}(x,y)=x^2, \frac{\partial w_0}{\partial y}(x,y)=0, \frac{\partial w_1}{\partial x}(x,y)=x^2, \frac{\partial w_1}{\partial y}(x,y)=0$. We see that $V_{w_0}(\mathbb{F}_2)=\{(0,0),(1,1)\}, V_{w_1}(\mathbb{F}_2)=\{(1,0),(0,1)\}$. We see that w_0 is not smooth at (0,0) and w_1 at (0,1) therefore they are not smooth.

Theorem 8.4 tells us that L is an EFF iff w is smooth therefore L is not an EFF. Proposition 8.3 5) tell us that the only other option is that the genus of L is 0.

Now let p > 2. Let $f := x^3 + a$. We want to know for which a is f separable. By definition we want to know when $GCD_{\mathbb{F}_p}(f, f') = 1$. Since $f' = 3x^2$ for every a, we can see that f, f' are not coprime iff a = 0. From that we see:

If a=0 then w_a is not smooth by 3.12. 3) which implies that the genus of L is 0 (same reasoning as in the case p=2). If $a\neq 0$ then w_a is smooth and by 8.4 the genus of L is 1.