Домашнее задание на 08.06 (Алгебра)

Емельянов Владимир, ПМИ гр №247

№1 Чтобы избавиться от иррациональности в знаменателе, положим

$$x = \sqrt[3]{7}$$
, тогда $\sqrt[3]{49} = x^2$, $x^3 = 7$

Наша дробь превращается в

$$\frac{1+55x - 8x^2}{1 - 2x - 4x^2}$$

Обозначим знаменатель

$$D(x) = 1 - 2x - 4x^2$$

Найдём многочлен

$$P(x) = a + bx + cx^2$$

такой, что D(x) P(x) — просто рациональное число. Тогда

$$\frac{1+55x-8x^2}{D(x)} = \frac{(1+55x-8x^2)P(x)}{D(x)P(x)}$$

Распишем

$$P(x) = a + bx + cx^{2},$$
 $D(x) P(x) = (1 - 2x - 4x^{2})(a + bx + cx^{2})$

При перемножении и сведении всех степеней x к остаткам по модулю $x^3-7=0$ (то есть используя $x^3=7$ и $x^4=7x$) получаем:

$$D(x) \, P(x) \, = \, \left(a - 28 \, b - 14 \, c\right) \, + \, \left(-2a + b - 28c\right) x \, + \, \left(-4a - 2b + c\right) x^2$$

Чтобы в этом произведении не было членов с x и x^2 , решаем систему:

$$\begin{cases}
-2a+b-28c=0, \\
-4a-2b+c=0.
\end{cases} \implies b = \frac{-114a}{55}, \quad c = \frac{-8a}{55}$$

Пусть a = 55, тогда b = -114, c = -8

Тогда

$$P(x) = 55 - 114x - 8x^{2}$$
$$D(x)P(x) = 3359$$

То есть:

$$\frac{1+55x - 8x^2}{1-2x-4x^2} = \frac{(1+55x - 8x^2)P(x)}{3359}$$

Вычислим:

$$(1+55x - 8x^2)P(x) = (1+55x - 8x^2)(55 - 114x - 8x^2) =$$

= $3359 + 3359x - 6718x^2$

Получаем:

$$\frac{1+55x-8x^2}{1-2x-4x^2} = \frac{3359+3359x-6718x^2}{3359} = 1+x-2x^2 = 1+\sqrt[3]{7}-2\sqrt[3]{49}$$

Ответ: $1 + \sqrt[3]{7} - 2\sqrt[3]{49}$

№2 Рассмотрим число

$$x = \sqrt{5} - \sqrt{3} + 1.$$

Пусть

$$y = x - 1 = \sqrt{5} - \sqrt{3}.$$

Найдём минимальный многочлен для y над \mathbb{Q} .

Поскольку все \mathbb{Q} -автоморфизмы поля $\mathbb{Q}(\sqrt{5},\sqrt{3})$ независимо меня-

ют знаки у $\sqrt{5}$ и $\sqrt{3}$, число $y=\sqrt{5}-\sqrt{3}$ имеет ровно четыре значения $\pm\sqrt{5}\pm\sqrt{3}$, и его минимальный многочлен:

$$(y-(\sqrt{5}-\sqrt{3}))(y-(\sqrt{5}+\sqrt{3}))(y-(-\sqrt{5}-\sqrt{3}))(y-(-\sqrt{5}+\sqrt{3}))=$$

После раскрытия скобок получаем:

$$y^4 - 16y^2 + 4$$

Искомый минимальный многочлен для x:

$$x^4 - 4x^3 - 10x^2 + 28x - 11$$

Ответ: $x^4 - 4x^3 - 10x^2 + 28x - 11$

№3 Рассмотрим поле $\mathbb{F}_2=\{0,1\}$ с обычной арифметикой по модулю 2 Возьмём неприводимый над \mathbb{F}_2 многочлен

$$f(x) = x^3 + x + 1.$$

Поскольку $\deg f = 3$ и f неприводим, фактор-кольцо

$$\mathbb{F}_2[x]/(f(x))$$

является полем порядка $2^3 = 8$. Обозначим в этом поле класс образующий $x \bmod f$ через

$$\alpha$$
 (то есть $\alpha^3 = \alpha + 1$ в \mathbb{F}_8).

Тогда все элементы \mathbb{F}_8 можно записать в виде

$$a_2 \alpha^2 + a_1 \alpha + a_0, \quad a_i \in \{0, 1\},$$

Таблица сложения в \mathbb{F}_8

+	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2+\alpha+1$
0	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
1	1	0	$\alpha + 1$	α	$\alpha^2 + 1$	α^2	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$
α	α	$\alpha + 1$	0	1	$\alpha^2 + \alpha$	$\alpha^2+\alpha+1$	α^2	$\alpha^2 + 1$
$\alpha + 1$	$\alpha + 1$	α	1	0	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	α^2
α^2	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2+\alpha+1$	0	1	α	$\alpha + 1$
$\alpha^2 + 1$	$\alpha^2 + 1$	α^2	$\alpha^2+\alpha+1$	$\alpha^2 + \alpha$	1	0	$\alpha + 1$	α
$\alpha^2 + \alpha$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$	α^2	$\alpha^2 + 1$	α	$\alpha + 1$	0	1
$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	α^2	$\alpha + 1$	α	1	0

Таблица умножения в \mathbb{F}_8

×	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2+\alpha+1$
						0		
1	0	1	α	$\alpha + 1$	α^2	$\alpha^2 + 1$	$\alpha^2 + \alpha$	$\alpha^2 + \alpha + 1$
α	0	α	α^2	$\alpha^2 + \alpha$	$\alpha + 1$	1	$\alpha^2 + \alpha + 1$	$\alpha^2 + 1$
$\alpha + 1$	0	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^2 + 1$	$\alpha^2 + \alpha + 1$	α^2	1	α
α^2	0	α^2	$\alpha + 1$	$\alpha^2 + \alpha + 1$	$\alpha^2 + \alpha$	α	$\alpha^2 + 1$	1
$\alpha^2 + 1$	0	$\alpha^2 + 1$	1	α^2	α	$\alpha^2+\alpha+1$	$\alpha + 1$	$\alpha^2 + \alpha$
						$\alpha + 1$		
$\alpha^2 + \alpha + 1$	0	$\alpha^2+\alpha+1$	$\alpha^2 + 1$	α	1	$\alpha^2 + \alpha$	α^2	$\alpha + 1$

№4 Надо доказать, что если $K[\alpha]$ конечно как векторное пространство над K, то уже само кольцо $K[\alpha]$ является полем, то есть

$$K[\alpha] = K(\alpha)$$

1) Предположим, что $\dim_K K[\alpha]=n<\infty.$ Тогда семейство векторов

$$1, \alpha, \alpha^2, \alpha^3, \ldots$$

не может быть линейно независимым навечно, ибо в K[lpha] как K-пространстве всего конечная размерность.

Значит, найдутся коэффициенты $c_0, c_1, \ldots, c_m \in K$, не все нули, такие, что

$$c_0 \cdot 1 + c_1 \alpha + c_2 \alpha^2 + \dots + c_m \alpha^m = 0$$
 B F .

 Это означает, что α является корнем некоторого ненулевого многочлена

$$p(x) = c_0 + c_1 x + \dots + c_m x^m \in K[x]$$

По определению, это и значит, что α алгебрично над K. В частности, существует единственный многочлен минимальной степени

$$m_{\alpha}(x) \in K[x], \qquad m_{\alpha}(\alpha) = 0$$

И $\deg m_{\alpha} = d \le m \le n$

2) Так как α алгебрично, то

$$K[\alpha] \cong K[x]/(m_{\alpha}(x))$$

Поскольку $m_{\alpha}(x)$ неприводим над K, фактор кольцо $K[x]/(m_{\alpha}(x))$ — поле, а значит $K[\alpha]$ тоже поле.

Следовательно:

$$K[\alpha] = K(\alpha)$$