BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam – July 19 2022 Written Exam for Computer Science

IMPORTANT NOTE:

Unless further clarification is provided, assume that arithmetical operations are performed over boundless data types (no *overflow / underflow*).

Furthermore, arrays and vectors are indexed starting from 1.

1. Let us consider the algorithm ceFace(a, b), where a and b are natural numbers ($1 \le a, b \le 10000$ at the initial call).

```
Algorithm ceFace(a, b):

While (a MOD 10 = b MOD 10) AND (a ≠ 0) AND (b ≠ 0) execute

a ← a DIV 10

b ← b DIV 10

EndWhile

If ((a = 0) AND (b = 0)) then

return True

else

return False
EndIf
EndAlgorithm
```

The algorithm ceFace(a, b) returns *True* if and only if:

- A. a and b have the same number of digits
- B. \boldsymbol{a} and \boldsymbol{b} are equal
- C. a and b are written using the same digits, but in different sequence
- D. the last digit of a is equal with the last digit of b
- **2.** Let us consider the algorithm f(a, n) where n is a natural number $(2 \le n \le 10000)$ and a is an array of n natural numbers $(a[1], a[2], ..., a[n], -100 \le a[i] \le 100$, for i = 1, 2, ..., n). The local variable b is an array.

```
Algorithm f(a, n):
    i ← 2
    b[1] ← a[1]
    While i ≤ n execute
        b[i] ← b[i - 1] + a[i]
        i ← i + 1
    EndWhile
    return b[n]
EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns the sum of all elements of array a.
- B. The algorithm returns the sum of the last two elements of array a.
- C. The algorithm returns the last element of array a.
- D. The algorithm returns the sum of the last n-1 elements of array a.

3. Which of the following algorithms returns the number of distinct prime factors of a given natural number n ($5 < n < 10^5$ at the initial call).

```
B.
     // The length of array prime is n
                                                              Algorithm nrFactoriPrimi B(n):
     // prime[i] is True, if
                                                                  d ← 2
     // the number i is prime and False
                                                                  nr ← 0
     // otherwise
                                                                  While n > 1 execute
     Algorithm nrFactoriPrimi_A(n, prime):
                                                                       p ← 0
         d ← 2
                                                                       While n MOD d = 0 execute
         nr ← 0
                                                                           p \leftarrow p + 1
         p ← 0
                                                                           n ← n DIV d
         While n > 0 execute
                                                                       EndWhile
              While n MOD d = 0 execute
                                                                       If p > 0 then
                  p \leftarrow p + 1
                                                                           nr \leftarrow nr + 1
                  n ← n DIV d
                                                                       EndIf
              EndWhile
                                                                       If d = 2 then
              If p \neq 0 then
                                                                           d \leftarrow d + 1
                  nr \leftarrow nr + 1
                                                                       else
              EndIf
                                                                           d \leftarrow d + 2
              d \leftarrow d + 1
                                                                       EndIf
              While prime[d] = False execute
                                                                   EndWhile
                  d \leftarrow d + 1
                                                                   return nr
              EndWhile
                                                              EndAlgorithm
              p ← 0
                                                         D.
         EndWhile
                                                              Algorithm nrFactoriPrimi_D(n):
         return nr
                                                                  nr ← 0
     EndAlgorithm
                                                                  d ← 2
C.
                                                                  While d * d \le n execute
     Algorithm nrFactoriPrimi_C(n):
                                                                       If n MOD d = 0 then
         nr ← 0
                                                                           nr \leftarrow nr + 1
                                                                       EndIf
         For d \leftarrow 2, n execute
              If n MOD d = 0 then
                                                                       While n MOD d = 0 execute
                   nr \leftarrow nr + 1
                                                                           n ← n DIV d
              EndIf
                                                                       EndWhile
              While n MOD d = 0 execute
                                                                       d \leftarrow d + 1
                   n ← n DIV d
                                                                   EndWhile
              EndWhile
                                                                   return nr
         EndFor
                                                              EndAlgorithm
         return nr
     EndAlgorithm
```

4. Let us consider the algorithm ceFace(n, m), where n is a natural number ($0 \le n \le 1000$) with the last digit not equal to 0.

```
Algorithm ceFace(n, m):
    If n = 0 then
        return m
    else
        return ceFace(n DIV 10, m * 10 + n MOD 10)
    EndIf
EndAlgorithm
```

What is the result of the call ceFace(n, 0)?

- A. 0 (regardless of the value of n)
- B. n (regardless of the value of n)
- C. The sum of the digits of n
- D. The reverse of number n

5. Let us consider the algorithm f(x, n) where n is a natural number $(2 \le n \le 10000)$, and x is an array of n natural numbers $(x[1], x[2], ..., x[n], 1 \le x[i] \le 10000$, for i = 1, 2, ..., n).

```
Algorithm f(x, n):
    For i = 1, n - 1 execute
        If x[i] = x[i + 1] then
            return False
        EndIf
    EndFor
    return True
EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns False if two random elements of the array x are distinct.
- B. The algorithm returns False if two random elements of the array x are equal.
- C. The algorithm returns False if two consecutive elements of the array x are equal.
- D. The algorithm returns False if the first two elements of the array x are equal.
- **6.** Let us consider the algorithm f(x, n) where x and n are natural numbers $(0 \le n \le 10000, 0 \le x \le 10000)$.

```
1. Algorithm f(x, n):
2.
        If n = 0 then
3.
             return 1
4.
        EndIf
        m \leftarrow n DIV 2
5.
        p \leftarrow f(x, m)
6.
        If n \text{ MOD } 2 = 0 \text{ then}
7.
8.
             return p * p
9.
        EndIf
10.
        return x * p * p
11.EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns x at the power of n.
- B. If on line 7, we replace n MOD 2 with m MOD 2, then the algorithm returns x at the power of n.
- C. Because of the recursive call on line 6, the lines 7, 8, 9, 10 will never be executed.
- D. The algorithm returns 1 if n is an even number or it returns x if n is an odd number.
- **7.** Considering that all multiplications and divisions require a constant amount of time, what can be stated about the time complexity of the algorithm considered in problem statement **6**?
 - A. The time complexity depends on parameters x and n.
 - B. The time complexity does not depend on the parameter x.
 - C. The time complexity is $O(\log \log n)$.
 - D. The time complexity is logarithmic based on the parameter n (O(log n)).
- **8.** Let us consider the algorithm afişare(n), where n is a natural number $(1 \le n \le 10000)$.

```
Algorithm afişare(n):

If n ≤ 4000 then

Write n, " "

afişare(2 * n)

Write n, " "

EndIf

EndAlgorithm
```

What will be displayed for the call afişare(1000)?

- A. 1000 2000 4000
- B. 1000 2000 4000 4000 2000 1000
- C. 1000 2000 4000 2000 1000
- D. 1000 2000 2000 1000
- **9.** Which could be the values of an array so that, applying the binary search method for value 36, it will be successively compared with values 12, 24, 36:

```
A. [2, 4, 7, 12, 24, 36, 50]
B. [2, 4, 8, 9, 12, 16, 20, 24, 36, 67]
C. [4, 8, 9, 12, 16, 24, 36]
D. [12, 24, 36, 42, 54, 66]
```

10. Which of the following mathematical expressions are equivalent to x MOD y for all strictly positive natural numbers x and y (0 < x, $y \le 10000$)?

```
A. x DIV y
B. x - (y * (x DIV y))
C. x - (x * (x DIV y))
D. x DIV y + y DIV x
```

11. Let us consider variable n that stores a natural number. Which of the following expressions is *True* if and only if n is divisible by 2 and by 3?

```
A. (n DIV 2 = 0) OR (n DIV 3 \neq 0) B. (n MOD 3 = 2) OR (n MOD 2 = 3) C. (n MOD 2 \neq 1) AND (n MOD 3 = 0) D. (n MOD 2 = 0) AND (n MOD 3 \neq 1)
```

12. Let us consider variable n that stores a natural number. Which of the following expressions is *True* if and only if n is divisible by 2 and by 3?

```
A. (n MOD 2) - (n MOD 3) = 0 
B. (n MOD 2) - (n MOD 3) < 0 
C. (n MOD 2) + (n MOD 3) > 0 
D. (n MOD 2) + (n MOD 3) = 0
```

13. Let us consider the algorithm f(n), where n is a natural number $(1 \le n \le 100)$. The operator "/" stands for real division (ex. 3 / 2 = 1.5). State the effect of the algorithm.

```
Algorithm f(n):
    s ← 0; p ← 1;
    For i ← 1, n execute
        s ← s + i
        p ← p * (1 / s)
    EndFor
    return p
EndAlgorithm
```

- A. Evaluates the expression 1/1 * 1/2 * 1/3 * ... * 1/n
- B. Evaluates the expression 1/1 * 1/(1*2) * 1/(1*2*3) * ... * 1/(1*2*3*...*n)
- C. Evaluates the expression 1/1 * 1/(1+2) * 1/(1+2+3) * ... * 1/(1+2+3+...+n)
- D. Evaluates the expression 1/1 + 1/(1*2) + 1/(1*2*3) + ... + 1/(1*2*3*...*n

14. Let us consider the algorithm prelucrare(s1, lung1, s2, lung2), where s1 and s2 are two arrays of characters of length lung1, respectively lung2 ($1 \le lung1$, $lung2 \le 1000$). The two strings contain only characters having ASCII codes in the interval [1, 125]. The local variable x is an array. Let us consider the algorithm ascii(s, i), which returns the ASCII code of the i-th character of array s.

```
Algorithm prelucrare(s1, lung1, s2, lung2):
    For i = 1, 125 execute
        x[i] \leftarrow 0
    EndFor
    For i = 1, lung1 execute
        x[ascii(s1, i)] \leftarrow x[ascii(s1, i)] + 1
    For i = 1, lung2 execute
         x[ascii(s2, i)] \leftarrow x[ascii(s2, i)] - 1
    ok ← True
    For i = 1, 125 execute
        If x[i] \neq 0 then
             ok ← False
         EndIf
    EndFor
    return ok
EndAlgorithm
```

What is the result of the algorithm?

- A. The algorithm returns *True* if the arrays of characters *s***1** and *s***2** have the same length and *False* otherwise.
- B. The algorithm returns *True* if the arrays of characters *s*1 and *s*2 contain the same characters having the same corresponding frequency and *False* otherwise.
- C. The algorithm returns *True* if in both arrays of characters *s***1** and *s***2** all characters having ASCII codes in the interval [1, 125] appear and *False* otherwise.
- D. The algorithm returns *True* if the two arrays of characters *s***1** and *s***2** use different characters and *False* otherwise.
- **15.** What is the result of converting the binary number 100101100111 into base 10?

A. 2407

B. 2408

C. 1203

D. None of the answers A., B., C.

16. Let us consider an array a of n natural numbers (a[1], a[2], ..., a[n]), the natural number n $(1 \le n \le 10000)$ and a natural number x. Which of the following code sequences display the position having the minimal index where the value x is situated in the array a, or displays -1 if x is not found in a?

```
A.
                                                     B.
    While (i \le n) AND (a[i] = x) execute
                                                         While (i \le n) AND (a[i] \ne x) execute
         i \leftarrow i + 1
                                                              i \leftarrow i + 1
    EndWhile
                                                         EndWhile
    If i ≤ n then
                                                         If i = n + 1 then
        Write i
                                                              Write i
    else
         Write -1
                                                              Write -1
    EndIf
                                                         EndIf
C.
                                                     D.
                                                         i ← 1
    While (i \le n) AND (a[i] = x) execute
                                                         While (i \le n) AND (a[i] \ne x) execute
         i \leftarrow i + 1
                                                              i \leftarrow i + 1
    EndWhile
                                                         EndWhile
    If i = n + 1 then
                                                         If i \le n then
         Write i
                                                              Write i
    else
                                                         else
         Write -1
                                                              Write -1
    EndIf
                                                         EndIf
```

17. Let us consider the algorithm f(x), where x is an integer:

```
Algorithm f(x):
    If x = 0 then
        return 0
    else
        If x MOD 3 = 0 then
            return f(x DIV 10) + 1
        else
            return f(x DIV 10)
        EndIf
EndIf
EndAlgorithm
```

For which value of x does the algorithm return the value 4?

A. 13369

B. 21369

C. 4

D. 1233

18. Let us consider the algorithm f(n, i, j) where n, i and j are natural numbers $(1 \le n, i, j \le 10000$ at the initial call).

```
Algorithm f(n, i, j):
    If i > j then
        Write '*'
    else
         If n \text{ MOD } i = 0 \text{ then}
             f(n, i - 1, j)
         else
             If n DIV i ≠ j then
                  f(n, i + 1, j - 1)
                  Write '0'
                  f(n, i + 2, j - 2)
                  Write '#'
             EndIf
         EndIf
    EndIf
EndAlgorithm
```

What will be displayed upon the execution of the call f(15, 3, 10)?

- A. *000000
- B. *0#000
- C. *0#0000
- D. *0000000

19. Let us consider algorithm ceFace(n, x), where n is a natural number $(1 \le n \le 100)$ and x is an array of n natural numbers (x[1], x[2], ..., x[n]).

What will be the new content of array x after executing the algorithm if n = 6 and x = [5, 3, 2, 1, 1, 1]?

- A. [1, 1, 2, 1, 3, 5] B. [1, 1, 1, 2, 3, 5] C. [5, 3, 2, 1, 1, 1]
- D. None of the other options is correct.

20. Let us consider the algorithm what(n), where n is a natural number $(1 \le n \le 1000)$ at the initial call).

```
Algorithm what(n):
    If n = 0 then
        return True
EndIf
    If (n MOD 10 = 3) OR (n MOD 10 = 7) then
        return what(n DIV 10)
    else
        return False
EndIf
EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns *True* if and only if either *n* can be written using only the digit 3, or *n* can be written using only the digit 7
- B. The algorithm returns False if n contains at least an even digit
- C. The algorithm returns *False* if and only if **n** contains at least one digit **c** where $c \neq 3$ and $c \neq 7$
- D. The algorithm returns True if and only if n does not contain any digit from the set $\{0, 1, 2, 4, 5, 6, 8, 9\}$
- **21.** Let us consider the algorithm calcul(x, n), where x and n are natural numbers ($1 \le x \le 10000$, $1 \le n \le 10000$), and $x \le n$.

```
Algorithm calcul(x, n):
    b ← 1
    For i ← 1, n - x execute
        b ← b * i
    EndFor
    a ← b
    For i ← n - x + 1, n execute
        a ← a * i
    EndFor
    return a DIV b
EndAlgorithm
```

Which of the following statements are true?

- A. If x = 2 and n = 5, then the algorithm returns 10.
- B. The algorithm returns the number of subsets having x elements from the set $\{1, 2, ..., n\}$.
- C. The algorithm returns the number of partial permutations of n elements taken x at a time.
- D. The algorithm returns the number of combinations of n elements taken x at a time.
- 22. At a farm there are chickens and rabbits, each chicken has two legs and each rabbit has four legs. The total number of heads is n and the total number of legs is m ($0 \le n$, $m \le 10^4$). Which of the following algorithms returns *True* and displays all possible pairs of numbers of chickens and rabbits at the farm, or returns *False* if there are no solutions?

```
B.
Algorithm ferma A(n, m):
                                               Algorithm ferma B(n, m):
    found = False
                                                   found ← False
    For i \leftarrow 0, n execute
                                                    For i \leftarrow 0, n execute
        j ← n - i
                                                        For j \leftarrow 0, n execute
        If 2 * i + 4 * j = m then
                                                            If 2 * i + 4 * j = m AND
             found ← True
                                                                               i + j = n then
             Write i, ' ', j
                                                                 found ← True
                                                                 Write i, ' ', j
             Write newline
                                                                 Write newline
    EndFor
                                                            FndTf
    return found
                                                        EndFor
                                                   EndFor
EndAlgorithm
                                                    return found
                                               EndAlgorithm
                                           D.
C.
                                               Algorithm ferma_D(n, m):
Algorithm ferma C(n, m):
    found ← False
                                                    found ← False
    For i ← 0, n execute
                                                    For i ← 0, n execute
                                                        For j \leftarrow 0, i execute
        For j \leftarrow 0, n - i execute
             If 2 * i + 4 * j = m \text{ AND}
                                                            If 2 * i + 4 * j = m AND
                         i + j = n then
                                                                               i + j = n then
                                                                 found ← True
                 found ← True
                 Write i, ' ', j
                                                                 Write i, ' ', j
                                                                 Write newline
                 Write newline
             EndIf
                                                            EndIf
        EndFor
                                                        EndFor
    EndFor
                                                    EndFor
    return found
                                                    return found
EndAlgorithm
                                               EndAlgorithm
```

23. Let us consider a natural number n, which can be written as the product of three natural numbers a, b, c, (n = a * b * c). Which of the following expressions has as result the remainder of the division of n by the natural number d $(1 \le n, a, b, c, d \le 10000)$?

```
A. (a MOD d) * b * c 
B. ((a MOD d) * (b MOD d) * (c MOD d)) MOD d 
C. (a MOD d) * (b MOD d) * (c MOD d) 
D. (a DIV d) * (b DIV d) * (c DIV d)
```

A.

24. Let us consider the algorithm det(a, n, m), where a is an array of n natural numbers (a[1], a[2], ..., a[n]) if $n \ge 1$ or an empty array if n = 0. n and m are natural numbers $(0 \le n \le 100, 0 \le m \le 10^6)$.

```
1. Algorithm det(a, n, m):
2.
         For i \leftarrow 1, n - 1 execute
3.
               For j \leftarrow i + 1, n execute
4.
                    If a[i] > a[j] then
                         \mathsf{tmp} \, \leftarrow \, \mathsf{a[i]}
6.
                         a[i] \leftarrow a[j]
                         a[j] \leftarrow tmp
7.
8.
                    EndIf
9.
               EndFor
         EndFor
10.
11.
         i ← 1
12.
         j ← n
         b ← False
13.
14
         While i < j execute
15.
               If a[i] + a[j] = m then
16.
                   b ← True
               EndIf
17.
```

Which of the following statements are true?

- A. The algorithm returns True if array a contains a pair of numbers having their sum equal to m.
- B. The algorithm always returns False.
- C. The algorithm returns False if n = 0.
- D. Lines 2, ..., 10 of the algorithm sort array *a* in ascending order.
- **25.** Let us consider the algorithm magic(n, a), where a is an array of n natural numbers (a[1], a[2], ..., a[n], $1 \le n \le 10000$).

```
Algorithm magic(n, a):

If n < 2 then
return False
EndIf
For i ← 2, n execute
If a[i - 1] = a[i] then
return True
EndIf
EndFor
return False
EndAlgorithm
```

Which of the following statements are true?

- A. For magic(5, [2, 5, 4, 5, 4]) the algorithm returns *False*.
- B. The algorithm indicates if there are duplicates in the array a, if and only if array a is sorted ascending/descending.
- C. For magic(9, [1, 2, 3, 4, 4, 5, 6, 7, 9]) the algorithm returns *True*.
- D. For magic (5, [9, 5, 5, 2, 4]) the algorithm returns *True*.
- **26.** Let us consider the algorithm f(n, a, b, c) where n is a natural number $(n \le 20)$ and a, b, c three integer numbers.

```
Algorithm f(n, a, b, c):
    If n = 0 then
        return 1
    else
        return f(n - 1, a * a, b + 1, c * 2) + f(n - 1, a - 1, b * b, c + 1) + 1
    EndIf
EndAlgorithm
```

What is the return value of the call f(n, 1, 1, 2)?

```
A. 2^{n+1} - 1
B. n
C. 2^0 + 2^1 + 2^2 + ... + 2^n
D. 2^{n+1}
```

27. Let us consider the algorithms f(n, p) and g(n), where n and p are initially natural numbers $(1 \le n, p \le 10^6)$ at the initial call).

```
Algorithm g(n):
                                                   Algorithm f(n, p):
    If n < 2 then
                                                        If n = 0 then
        return False
                                                            return 1
    EndIf
                                                        EndIf
                                                        If n > 0 AND n \ge p then
    i ← 2
    While i * i ≤ n execute
                                                            c ← 0
                                                            If g(p) = True then
        If n \text{ MOD } i = 0 \text{ then}
             return False
                                                                c \leftarrow c + f(n - p, p + 1)
                                                            EndIf
         EndIf
         i \leftarrow i + 1
                                                            return c + f(n, p + 1)
    EndWhile
                                                        EndIf
    return True
                                                        return 0
EndAlgorithm
                                                    EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm g(n) returns *True* if n is prime and *False* otherwise.
- B. The call f(n, 2) returns the number of distinct ways of writing n as a sum of at least one term of distinct prime numbers in strictly ascending order.
- C. The call f(n, 2) returns the sum of the prime divisors of n.
- D. The calls f(n, 1) and f(n, 2) will return the same result, regardless of n.
- **28.** Let us consider the algorithm AlexB(value, n, k, p), where *value* is an array of n natural numbers (value[1], value[2], ..., value[n]), and n, k and p are natural numbers. Initially the array value has n elements equal to zero. The algorithm afişare(value, n) displays the array value on a single line.

```
Algorithm AlexB(value, n, k, p):
                                              What will be displayed on the 10th line, if n = 5
    p \leftarrow p + 1
                                              and the algorithm is called like: AlexB(value, 5,
    value[k] \leftarrow p
                                              1, 0).
    If p = n then
         afișare(value, n)
                                                  A. 15234
    else
                                                  B. 15404
        For i \leftarrow 1, n execute
                                                  C. 55555
             If value[i] = 0 then
                                                 D. 12543
                 AlexB(value, n, i, p)
             EndIf
        EndFor
    EndIf
    p ← p - 1
    value[k] \leftarrow 0
EndAlgorithm
```

29. Let us consider the algorithm f(n) where n is a natural number $(1 \le n \le 10000)$ at the initial call).

The & operator is the bitwise AND operator; the truth table is:

			Example:		
&	0	1	2 & 7 in binary: 010 & 111 = 010 which is 2 in base 1		
0	0	0	6 & 1 in binary: 110 & 001 = 000 which is 0 in base 1		
1	0	1	o & 1 in binary. 110 & 001 = 000 which is 0 in base 1		

Which of the following statements are **NOT** true?

- A. If n is a power of 2, then f(n) returns value 1.
- B. If n > 16 and n < 32, then f(n) returns a value from the $\{2, 3, 4, 5\}$ set.
- C. The algorithm returns the number of even numbers strictly smaller than n.
- D. The algorithm returns the number of odd numbers smaller than n.

30. Let us consider algorithm calcul(v, n), where n is a non zero natural number $(1 \le n \le 10000)$ and v is an array of n integer numbers (v[1], v[2], ..., v[n]). The instruction return x, y returns the pair of values (x, y).

```
Algorithm calcul(v, n):
    i \leftarrow n DIV 2 + 1
    j \leftarrow i + 1
    k \leftarrow i
    p ← j
    While j ≤ n execute
         While (j \le n) AND (v[i] = v[j]) execute
              j ← j + 1
         EndWhile
         If j - i > p - k then
              k \leftarrow i
              p ← j
         EndIf
         i ← j
         j ← j + 1
    EndWhile
    If j - i > p - k then
         k \leftarrow i
         p ← j
    EndIf
    return p - k, k
EndAlgorithm
```

Which of the following statements are true?

- A. If the array contains only one element, the algorithm returns 0, -1
- B. If n = 2 and the array's two elements are symmetric with respect to 0 (for example -5, 5), the result will be -1, 1
- C. If n = 2 and the array's two elements have consecutive values (for example 3, 4), the algorithm will always return the values 1, 2
- D. One of the numbers returned by the algorithm represents the length of the longest sequence containing equal values from the second half of the array for any even number n > 1

BABEŞ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam – July 19th, 2022

Written Exam for Computer Science

GRADING AND SOLUTIONS

DEFAULT: 10 points

1	В	3 points
2	Α	3 points
3	В, С	3 points
4	D	3 points
5	C, D	3 points
6	Α	3 points
7	B, D	3 points
8	В	3 points
9	В, С	3 points
10	В	3 points
11	С	3 points
12	D	3 points
13	С	3 points
14	В	3 points
15	Α	3 points
16	D	3 points
17	В	3 points
18	В	3 points
19	С	3 points
20	B, C, D	3 points
21	С	3 points
22	A, B, C	3 points
23	В	3 points
24	A, C, D	3 points
25	A, C, D	3 points
26	A, C	3 points
27	A, B, D	3 points
28	Α	3 points
29	C, D	3 points
30	C, D	3 points