

Cat Checker - Elimination Classification

Pet care and food space company

Spring Board Project

Topics/Agenda

Objective **Data Preparation** Data exploration and Hypothesis Validation **Feature Engineering** Train model to predict the elimination and non-05 elimination activity

- Train model to predict the urination and defecation
- 07 | Business Insights

08 | Conclusion

Objective

01. Objective

Smart Litter Sytem

objective of this project is to develop a solution approach to correctly classify the events as elimination or non-elimination and further classify the elimination events into urination and defecation.

Pet Care and food space

Relation between

- Cat Activity vs Senson signals
- Cat Activity vs time
- Cat Activity Vs Cat Power use
- Cat weight Vs Activity
- Type of Cat vs Activity

- a) Decisions on data selection
- b) Decisions on merging the data, joining key
- c) Decisions on the target variable

Is Provided data is sufficient?

Elimination is depending on cat behavior:

- 1) Cat Activity/Behavior
- 2) Duration of Activity
- 3) Cat power/energy used by cat
- 4) Cat Type
- 5) Cat Weight
- 6) Load sensor data(lc0, lc1, lc1, lc3)
- 7) Time & Season

Convert CSV File to Data frame of each load sensor reading

Duration of Activity

	t	lc0	lc1	lc2	lc3	timestamp	sum	filename
0	0 days 00:00:00	4814	2504	5337	701	0.000	13356	Raw_data\VA0000000000017\RXZIbnRJbmZvcm1hdGlv
1	0 days 00:00:00.025000	4656	2789	5481	497	0.025	13423	$Raw_data \VA00000000000017 \RXZ IbnRJbmZvcm1hdGlv$
2	0 days 00:00:00.050000	4566	3137	5583	483	0.050	13769	$Raw_data \verb VA0000000000017 RXZ IbnRJbmZvcm1hdGlv$
3	0 days 00:00:00.075000	4640	3449	5724	628	0.075	14441	$Raw_data \verb VA0000000000017 RXZ bnRJbmZvcm1hdGlv$
4	0 days 00:00:00.100000	4741	3531	5806	808	0.100	14886	$Raw_data \verb VA0000000000017 RXZ IbnRJbmZvcm1hdGlv$
5	0 days 00:00:00.125000	4731	3768	5903	853	0.125	15255	$Raw_data \VA00000000000017 \RXZ IbnRJbmZvcm1hdGlv$
6	0 days 00:00:00.150000	4794	3720	5919	983	0.150	15416	$Raw_data \verb VA0000000000017 RXZ bnRJbmZvcm1hdGlv$
7	0 days 00:00:00.175000	4841	3750	5896	1050	0.175	15537	$Raw_data \VA00000000000017 \RXZ IbnRJbmZvcm1hdGlv$
8	0 days 00:00:00.200000	4851	3451	5782	1104	0.200	15188	$Raw_data \verb VA0000000000017 RXZ IbnRJbmZvcm1hdGlv$
9	0 days 00:00:00.225000	4772	2904	5659	1137	0.225	14472	$Raw_data \ VA00000000000017 \ RXZ lbnRJbmZvcm1hdGlv$

We have 13075 csv file. Each has 4 load sensor reading with time gap of 0.025 sec

Each csv has json file which has property of the event occurs.

Data Selection / Extraction from load sensors

Load sensor merge at statistical measure

Lc sum MeanLc sum MinLc sum MedianLc sum Max.Lc sum StdLc sum RangeLc sum entropyLc sum rmsLc sum skewLc sum kurtosis

From **4 sensors** value of : Mean, Max, Min, std, log energy entropy

Mean Minimum 4*4 = 16 Features

Std Maximum

Duration of Activity

Total = 26 Features Extract for statistical measure

Convert JSON File to Data frame

Device_ID	Event_ID	Event_start_time	Tags	Free_text	Name_of_cat	Weight_of_cat	Tare_weight
0 VA0000000000017	RXZlbnRJbmZvcm1hdGlvbjo0OWQ4M2l3MS1kNDZmLTRiYj	2020-09-05T10:56:11-05:00	[urination, cat in box]	None	Ryan	6589	None
1 VA0000000000017	RXZIbnRJbmZvcm1hdGIvbjo0YmI3ZDc5YS0wNzMwLTQ0MT	2020-07-18T14:41:37-05:00	[cat in box, synapse_labeled, urination]	14:42:15\t14:43:09\tConfirmed activity, cat in	Ryan	6935	None
2 VA0000000000017	RXZIbnRJbmZvcm1hdGlvbjo0ZTBhMDVhOC0wZml2LTQ2MG	2020-09-03T15:43:43-05:00	[cat in box, urination]	None	Ryan	5139	None
3 VA0000000000017	RXZIbnRJbmZvcm1hdGlvbjo1NGEwMTg2My01NDhjLTRhYT	2020-09-01T12:02:05-05:00	[non_elimination, cat in box]	None	Ryan	6983	None
4 VA0000000000017	RXZ IbnRJbmZvcm1hdGlvbjo1YzQwMzE4MS1lNzhkLTQ3Nz	2020-08-08T06:47:11-05:00	[cat in box, synapse_labeled, urination]	6:47:16\t6:48:59\tConfirmed activity, cat in t	Ryan	7017	None
5 VA0000000000017	RXZIbnRJbmZvcm1hdGlvbjo1ZWQyODcxZS0wYTI1LTQxMW	2020-09-07T04:33:29-05:00	[cat in box, urination]	None	Ryan	6105	None
6 VA0000000000017	RXZIbnRJbmZvcm1hdGlvbjo2MGlxMzM3My03NmlwLTRhZT	2020-09-01T10:24:09-05:00	[cat in box, defecation]	None	Ryan	6019	None
7 VA0000000000017	RXZIbnRJbmZvcm1hdGIvbjo2MWE0NzMzZS02NTkzLTRINm	2020-09-03T06:57:17-05:00	[cat in box, urination]	None	Ryan	6139	None
8 VA0000000000017	RXZIbnRJbmZvcm1hdGIvbjo2ZGEzODIiYy02M2I1LTRmNz	2020-07-08T02:34:30-05:00	[urination, cat in box]		Ryan	7147	None
9 VA0000000000017	RXZ IbnRJbmZvcm1hdGlvbjo2ZjYwZTlhNC05OWNhLTRIOD	2020-07-29T06:28:40-05:00	[cat in box, synapse_labeled, urination]	6:29:16\t6:30:11\tConfirmed activity, cat in t	Ryan	7127	None

Data Merging with Joining key Extract Diff. Activity from Tags and free text Event Time features Elimination Vomit Year Month JSON FILE: **CSV FILE:** EVENT_ID File Name Defecation Jumped Day Time Urination Cat Rubbing Features that may not impact Cat In box Drift Device ID Final Synapse labelled Covering & Digg. Tare Weight Dataset

Merged Dataset

Device_ID		Event_ID	Name_of_cat	Weight_of_cat	Tare_weight ind	ex lc_sum_mear	lc_sum_std	time_span	min_total_load	max_total_load	median_total_load	std_total_load	skew_total_load	kourtosis_total_load	range_total_load log_e	_entrototal_	load lc_max_4	_sensor
0 VA0000000000017	RXZlbnRJbmZvcm1hdGlvbjo0OWQ4M2	213MS1kNDZmLTRIYj	Ryan	6589	NaN	0 10112.07	2961.45	151.97	7982	16035	8214.0	2961.45	0.93	-1.11	8053		-8.55	4777.92
1 VA0000000000017	RXZlbnRJbmZvcm1hdGlvbjo0Yml3ZDc5	5YS0wNzMwLTQ0MT	Ryan	6935	NaN	1 10049.85	3453.25	111.97	6796	14962	6825.0	3453.25	0.13	-1.97	8166		-8.20	5344.23
2 VA0000000000017 F	RXZIbnRJbmZvcm1hdGlvbjo0ZTBhMDVI	hOC0wZml2LTQ2MG	Ryan	5139	NaN	2 11050.50	2572.06	102.37	8739	15311	8875.0	2572.06	0.31	-1.84	6572		-8.21	4815.72
3 VA0000000000017	RXZlbnRJbmZvcm1hdGlvbjo1NGEwMT	g2My01NDhjLTRhYT	Ryan	6983	NaN	3 9855.52	2384.83	66.37	8786	16092	8795.0	2384.83	1.89	1.69	7306		-7.76	3067.45
lc_min_4_sensor std_of_	_mean_4_sensor PSD_15_to_20H	z_mean PSD_15_to_2	20Hz_std pow	er_by_cat non_e	elimination urina	tion defecation	synapse_labe	led cat_on_e	edge cat_rubbin	g_box partial_c	at_in_box vomit	Act_jumped Ac	ct_paws Act_drift	Act_feet5mm Act_	digging_cover Date	Time E	VENT_MONTH	hour
-1406.29	2349.53	97.96	72.72	2358.4	0	1 0		0	0	0	0 0	0	0 0	0	0 2020-09-05	10:56:11	9	10
-2520.61	3097.21	80.68	63.16	1630.7	0	1 0		1	0	0	0 0	0	0 0	0	0 2020-07-18	14:41:37	7	14
921.63	1501.45	16.64	15.70	2432.5	0	1 0		0	0	0	0 0	0	0 0	0	0 2020-09-03	15:43:43	9	15
1248.88	714.40	231.68	63.10	923.2	1	0 0		0	0	0	0 0	0	0 0	0	0 2020-09-01	12:02:05	9	12

Dataset prepare after statistical measure on the load sensor and activity extract from the tags and free text

Data Cleaning: Missing Value

A) Impute Missing value :Tare value

Linear relation between tare value and last value of the sensor

B) Impute Missing value: Cat Name

```
list = {}
for i in range(0, len(dataset)):
    if dataset['Name_of_cat'][i] != 'None':
        list.update({dataset['Device_ID'][i] : dataset['Name_of_cat'][i]})

dataset['Name_of_cat'].fillna('0' , inplace = True)

for i in range(0, len(dataset)):
    if dataset['Name_of_cat'][i] == '0' :
        dataset['Name_of_cat'][i] = list[dataset['Device_ID'][i]]
```

Each **Device ID** has unique **Cat name** so impute by same

Data Cleaning: Treated Outlier Value

Box plot of weight of all cat

Box plot of time span by cat

· Distribution after treating outlier of weight

Distribution after treating outlier of weight

After Exploring Cat Weight so, find some cat name that has more or less weight, so Treat the Outlier of by Cat Name median weight value

By Exploring Time span, find no particular reason for the large duration so treat by upper bound value of IQR method.

Distribution of load sensor sum mean

03. Data Exploration

- 1. Time duration of activities
- 2. Statistical measures of load sensor data differ for each activity
- Activities' behaviour visualization of raw signals for different activities
- 4. For elimination (defecation and urination) usually the cat digs up the litter, eliminates and covers it up. Relation between digging up and covering activity differ between urination and defecation
- 5. Summary of activity patterns

Activity: Non-Elimination, Urination and Defecation

In Non-Elimination there is no pattern but happens in short time

In Non-Elimination there is pattern that happens in short time

In Elimination(Urination) there is no pattern that happens.

In Elimination(Urination) there is pattern that happens in short time with non-Eli.

In Elimination(defecation) there is more disturbance or less stable in signal

Clearly shows how different activity takes time for non-elimination

Activity: Non-Elimination, Urination and Defecation

There is no pattern in the total load sensor measure in the activity

In elimination, low time span there is Urination

There more total load mean in the elimination activity

There more total load median in the **elimination** activity

There more total load std in the elimination activity

Std deviation of load has no pattern for elimination activity

Load signal statistics vs Target Variable

Mean of four load has higher in case of elimination overall

Log energy entropy of total load has lower in elimination overall

Std of four mean load sensor has more in elimination overall

Log energy entropy of total load has lower in defecation overall

Max of four load mean sensor has more in elimination overall

Activity takes to more on elimination

Activity: Non-Elimination, Urination and Defecation

There is no pattern in the total load sensor mean in the activity

Mean of std of load has no pattern for elimination activity

There is no pattern in the total load std measure in the activity

Std deviation of load has no pattern for elimination activity

There is no pattern in the defecation and urination activity

Observation:

- Time span of Elimination and non-elimination was more and also for log energy entropy in elimination
- Mean of std of load each sensor is higher for elimination
- · Total load mean has lower in non-elimination activity
- There is no pattern in Urination vs Defecation

Activity A) Drift

Drift activity load sensor change/drop at last 10 second only with less stable load

Activity B) Cat Rubbing Box

Starting and ending load was same that means activity happen between

Time span of activity is usually takes minimum 40seconds

Time span of activity is no pattern with time duration

Drift activity takes to less on elimination

Rubbing activity takes to less on elimination

Activity C: Cat on the Edge

Cat on edge activity load sensor has no pattern in raw signals with time

Activity D: Jumped

Jumped activity load sensor change very high at any point of time

Time span of activity is usually takes minimum 40seconds

Time span of activity is usually takes more time(60seconds)

Cat on the edge activity takes to less on elimination

Jumped takes to almost same on elimination vs non elimination

Activity E : Vomit

Vomit activity load sensor has no pattern in raw signals with time

Activity F: Digging & Covering

Digging activity load sensor change adaptively before 10 sec. for 20 sec

Time span of activity is usually takes minimum 50seconds

Time span of activity is usually takes minimum 40seconds

Vomit activity takes to less on elimination

Digging activity takes to more on elimination

There is no major difference in activity digging and urination or defecation

Digging activity load sensor higher in digging compare to no digging

Chi2 test between Urination and activity

		Activity	p_value
	0	Act_drift	7.769518e-20
alue	1	cat_rubbing_box	7.286858e-11
6071	2	Act_digging_cover	5.006966e-10
9106	3	vomit	1.415266e-05
	4	cat_on_edge	2.470266e-05
8091	5	partial_cat_in_box	1.035731e-04
7733	6	Act_jumped	5.895888e-03
8185	7	Act_paws	1.298164e-02
0135	8	Act_feet5mm	1.278497e-01

n value

Chi2 test between elimination and activity

There is less difference in other activity vs digging activity of load sensor

Observation:

- All activity has no impact less impact on elimination compare to digging and covering
- Almost all activity takes less time than digging and covering with minimum time of 40 second
- Digging and covering has more load compare to the other activity
- There is no relation between behaviour of digging in urination and defecation activity
- Total load mean has lower in nonelimination activity
- There is relation between activity and elimination

Features & Cat behavior

- Perform appropriate data transformation/aggregation (Look for time domain, frequency domain features)
- cat have a specific behaviour pattern?
- 3. Are the patterns similar across different cat morphologies?
- 4. the relationship of features with target variable

Feature A: Signal Processing (Power Spectral Density)

Transformations between time and frequency-domain

- Fast Fourier Transform (FFT): It is an
 efficient algorithm for calculating the
 Discrete Fourier Transform (DFT) and is
 the de facto standard to calculate a
 Fourier Transform.
- Power Spectral Density: Similar to the FFT, it describes the frequency spectrum of a signal. But in addition to the FFT it also takes the power distribution at each frequency (bin) into account.
- Autocorrelation: The auto-correlation function calculates the correlation of a signal with a time-delayed version of itself.

PSD Distribution for urination

PSD Distribution for defecation

Feature A:Power Spectrum Density

2.5 - 2.5 - 2.0 -

We can divide the whole frequency in 4 parts

PSD Having impact on the elimination

PSD Having impact on the urination

Feature that are Extracted from the data

PSDF_0_5Hz_Mean

PSDF_5_10Hz_Mean

PSDF _10_15Hz_Mean

PSDF _15_20Hz_Mean

PSDF_0_5Hz_Median

PSDF _5_10Hz _Median

PSDF _10_15Hz_ Median

PSDF _15_20Hz _Median

PSDF _0_5Hz_Maximum

PSDF_5_10Hz _Maximum

PSDF _10_15Hz_ Maximum

PSDF _15_20Hz _Maximum

PSDF _0_5Hz_Minimum

PSDF _5_10Hz _Minimum

PSDF _10_15Hz_ Minimum

PSDF _15_20Hz _Minimum

PSDF _0_5Hz_Std

PSDF_5_10Hz_Std

PSDF _10_15Hz_ Std

PSDF _15_20Hz _Std

21

20 Features

Feature B: Cat Weight

Weight of the Cat Beed can be Bin

Low less weight cat breed has less elimination compare to more weight

Decision on Bins:

On the basis of Weight there is pattern and type of cat that are occurs:

- Weight less than 3400 'Marlowe', 'Meera'
- Weight more than 6500 weight Ryan', 'Lexi', 'Zeb', 'Simon'

Feature C: Cat elimination event time

In elimination, low time span there is Urination

0.35

0.25

In elimination, low time span there is Urination

Usually elimination happens in early moring(05-07), evening(17-19) and night(21-22)

Feature D: Cat Elimination Month wise

August to October nonelimination process is more likely be done

Feature Selection Process

Features

VIF Selection

Backword elimination

Final Features

Total Features 70

Features created by dummy Feature of Time, name removed

Features 25

Features having corelated Have removed

Features 16

Features that are important Has been selected

Final features

Features not having corelation Having p value < 0.05

Feature Selection

PSD_5_to_10Hz_mea	31	Device_ID	0
PSD_5_to_10Hz_st	32	Event_ID	1
PSD_10_to_15Hz_ma	33	Event start time	2
PSD_10_to_15Hz_mir	34	Name of cat	3
PSD_10_to_15Hz_media	35		-
PSD_10_to_15Hz_mean	36	Weight_of_cat	4
PSD_10_to_15Hz_str	37	lc_sum_mean	5
PSD_15_to_20Hz_ma	38	lc_sum_std	6
PSD_15_to_20Hz_mir	39	time_span	7
PSD_15_to_20Hz_media	40	min_total_load	8
PSD_15_to_20Hz_mean	41	max_total_load	9
PSD_15_to_20Hz_str	42	median total load	10
power_by_ca	43	skew total load	11
non_elimination	44	kourtosis total load	12
urination	45		
defecation	46	range_total_load	13
Is_cat_Bo	47	log_e_entrototal_load	14
cat_on_edg	48	lc_max_4_sensor	15
cat_rubbing_bo	49	lc_min_4_sensor	16
mixe	50	std_of_mean_4_sensor	17
partial_cat_in_bo	51 52	max_of_std_4_sensor	18
vomi Act jumpe	53	min_of_std_4_sensor	19
Act_dimpel	54	mean of std 4 sensor	20
Act_digging_cove	55	std of std 4 sensor	21
cat_on_to	56	last sum	22
Date	57	PSD 0 to 5Hz max	23
Tim	58		
EVENT MONTH	59	PSD_0_to_5Hz_min	24
hou	60	PSD_0_to_5Hz_median	25
Weight bin	61	PSD_0_to_5Hz_mean	26
Time_bir	62	PSD_0_to_5Hz_std	27
Month_bir	63	PSD_5_to_10Hz_max	28
std_total_powe	64	PSD_5_to_10Hz_min	29

0	PSD_10_to_15Hz_median
1	PSD_5_to_10Hz_median
2	mean_std_sensor_power
3	PSD_0_to_5Hz_median
4	last_sum
5	median_total_load
6	log_e_entrototal_load
7	power_by_cat
8	PSD_15_to_20Hz_median
9	PSD_15_to_20Hz_min
10	PSD_0_to_5Hz_max
11	range_total_load
12	lc_max_4_sensor
13	PSD_10_to_15Hz_min
14	PSD_5_to_10Hz_max
15	lc_min_4_sensor
16	PSD_10_to_15Hz_max
17	max_of_std_4_sensor
18	skew_total_load
19	min_of_std_4_sensor
20	PSD_5_to_10Hz_min
21	PSD_0_to_5Hz_min
22	PSD_15_to_20Hz_max
23	kourtosis_total_load
24	non_elimination

Features by reducing co-linearity

05. Train Model to Elimination & Non-Elimination

Right Modeling Technique

- Different modelling technique for prediction
- Justification of the models based on
 - Hold out validation : Create train, test and validation datasets
 - Model Performance using the evaluation metrics:
 Confusion Matrix, Multiclass overall and class wise metrics
- Residual analysis
 - O Summarize the cause/patterns in misclassifications

06 -Model: Elimination and Non-Elimination

Class imbalance & Test Train Split

	Non elimination	Class %
0	8358	0.67
1	4073	0.33

		Class %
Train	7458	0.60
Test	2486	0.20
Validation	2486	0.20

Accuracy of different model

Result Summary of Models

	LOGIT REGRESSION (Threshold value = 0.5)			LOGIT REGRESSION (Threshold value = 0.4)			LOGIT REGRESSION (Threshold value = 0.6)			XG Boost (Hyperparameter by Grid search)		
	Train	Valid	Test									
Accuracy	81.7	82.4	83.4	79.97	80.45	83.4	80.7	81.2	82.5	88.12	85.28	86.33
Recall	0.92	0.93	0.92	0.85	0.85	0.92	0.96	0.97	0.97	0.97	0.95	0.94
Precision	0.83	0.83	0.85	0.85	0.86	0.85	0.79	0.80	0.81	0.87	0.85	0.87
Fi-Score	0.87	0.88	0.88	0.85	0.85	0.88	0.87	0.87	0.88	0.92	0.90	0.90

05 - Model: Elimination and Non-Elimination

Train Test: Logistic regression

Logit Regression Results						
Dep. Variable: non_	elimination	No. Obse	rvations:	745	8	
Model:	Logit	Df R	esiduals:	744	7	
Method:	MLE	1	Of Model:	10	0	
Date: Sun, 11	1 Dec 2022	Pseud	o R-squ.:	0.284	2	
Time:	01:46:41	Log-Li	kelihood:	-3482.	3	
converged:	True		LL-Null:	-4732.	4	
Covariance Type:	nonrobust	LLR	p-value:	0.00	0	
	coe	f std err	z	P> z	[0.025	0.975]
COI	nst -7.3019	0.541	-13.494	0.000	-8.362	-8.241
time_sp	an 6.8023	0.580	11.734	0.000	5.666	7.938
log_e_entrototal_lo	ad 17.1176	0.943	18.160	0.000	15.270	18.965
min_of_std_4_sens	sor -1.5052	0.249	-8.044	0.000	-1.993	-1.017
mean_of_std_4_sens	sor -2.6806	0.433	-6.196	0.000	-3.529	-1.833
PSD_0_to_5Hz_m	ax -3.9483	0.511	-7.721	0.000	-4.951	-2.946
power_by_	cat -0.3478	0.189	-1.839	0.066	-0.718	0.023
EVENT_MON	TH 0.0948	0.110	0.857	0.391	-0.122	0.310
Weight_bins_more_weig	ght 0.9345	0.137	6.840	0.000	0.667	1.202
Time_bin_Time_day_Nig	ght 0.3538	0.076	4.669	0.000	0.205	0.502
Month_bin_Month_Nov_J	uly 0.3471	0.088	3.958	0.000	0.175	0.519

ROC-AUC Curve for the validation set

Features that can be related by negative coef. sign have negative impact on the elimination of cat

Log energy entropy, PSD and time has high in coef. So more important

05 – Model Interoperability : Elimination and Non-Elimination

Shap value Graph

Mean Shap value from the XG Boost model

ROC-AUC Curve for the Test set

Shap value impact on the model

Shap value impact on the XG Boost model

cols importance

0.432988

0.153114

0.107625

0.074057

0.053374

0.051115

0.049244

0.041573

0.036933

mean_std_sensor_power

log e entro total load

skew_total_load

ROC-AUC Curve for the validation set

05 - Model Misclassification: Elimination and Non-Elimination

For lower PSD 0-5Hz there is misclass.

No impact of misclass on Max. load value

For low mean std there is misclass.

No impact of misclass on Med. load value

No impact of misclass on log energy entropy

PSD and mean of std that causes the misclassification of activity

All the mis classification activity are equally in distribution

06. Train Model to Urination & Deflamation

Right Modeling Technique

- Identify the right modelling technique
- Justify the models based on
 - Hold out validation : Create train, test and validation datasets
 - Model Performance using the evaluation metrics:
 Confusion Matrix, Multiclass overall and class wise metrics
- Residual analysis
 - O Summarize the cause/patterns in misclassifications

06 - Model: Urination and Defecation

Class imbalance & Test Train Split

	Non elimination	Class %
Urination	6367	0.76
Defecation	1991	0.24

		Class %
Train	7458	0.60
Test	2486	0.20
Validation	2486	0.20

Accuracy of different model

Result Summary of Models

	LOGIT REGRESSION (Threshold value = 0.5)			LOGIT REGRESSION (Threshold value = 0.4)			LOGIT REGRESSION (Threshold value = 0.6)			XG Boost (Hyperparameter by Grid search)		
	Train	Valid	Test	Train	Valid	Test	Train	Valid	Test	Train	Valid	Test
Accuracy	82.11	82.0	83.0	80.81	80.98	83.00	82.83	83.31	84.21	93.32	86.86	86.24
Recall	0.41	0.41	0.44	0.28	0.29	0.44	0.58	0.57	0.61	0.80	0.62	0.62
Precision	0.70	0.73	0.76	0.74	0.79	0.76	0.65	0.69	0.70	0.91	0.76	0.77
Fi-Score	0.52	0.53	0.56	0.41	0.43	0.56	0.61	0.62	0.65	0.85	0.68	0.69

06 - Model Interpretability: Urination and Defecation

Shap value Graph

ROC-AUC Curve for the Train set

ROC-AUC Curve for the Test set

Shap value impact on the model

ROC-AUC Curve for the validation set

ROC-AUC Curve for the validation set

	cols	importance
0	log_e_entrototal_load	0.147310
1	time_span	0.064075
2	skew_total_load	0.054337
3	Weight_bins_good	0.029610
4	PSD_5_to_10Hz_std	0.028865
5	PSD_0_to_5Hz_mean	0.028398
6	mean_std_sensor_power	0.023475
7	Weight_bins_more_weight	0.022785
8	kourtosis_total_load	0.022661
9	PSD_15_to_20Hz_max	0.020380
10	lc_sum_std	0.020286
11	PSD_0_to_5Hz_std	0.019341
12	PSD_5_to_10Hz_mean	0.019064
13	Time_bin_Time_Night_9	0.018460
14	std_total_power	0.018160
15	PSD_15_to_20Hz_std	0.018083

Feature importance of the variables

06 - Model Misclassification: Urination and Defecation

For higher time span then there is misclass.

 $\label{eq:higher PSDF} \mbox{ Higher PSDF tends to miss class.}$

For lower log entropy of std then there is misclass.

No impact of misclass on PSDF mean value

No impact of misclass on skew of load

Higher std of PSD on misclass

07. Business Insight

A) Log energy entropy is directly says that more entropy will cause the non-elimination that is directly impacted on the health of Cat

- **B)** Time taken is directly impact on the type of activity may be used to describe the health that product used
- C) PSD OF Freq 0-5Hz is directly impact on the type of activity may be used to behaviour and health

07. Business Insight

D) Event Month can say the August to October has less impact on the elimination

E) Early morning and evening time have more likely to eliminate and

F) Overall load value of elimination is more compare to the non-elimination

08. Conclusion

- A. If there is an elimination activity done by the cat, then there would be more time, but the log energy entropy would be less.
- B. Energy Entropy of the load sensor can determine the different activities, which we can also use to detect the health of the Cat.
- C. Activity day/month timing also plays an essential part in defining the activity, like the month and day part of the activity.
- D. Cat breed will also impact the urination activity in our case good weight cat has more importance than others.
- E. Each activity(drift, digging, and covering) also play a good part in detecting the elimination but has no impact on defining elimination and defecation.
- F. Starting power density received by the sensor is a lower case of cat elimination.
- G. Distribution of load also plays a part in determining the activity

Thank You

Do you have any questions?

Shubham Verma

Shubham.verma@tigeranalytics.com +91-8077085794

www.tigeranalytics.com

