EXERCISES 5 (INTERSECTION THEORY)

Let X be a variety, and \mathcal{F} be a coherent \mathcal{O}_X -module. The sheaf of meromorphic sections of \mathcal{F} is the sheaf of \mathcal{K}_X -modules $\mathcal{K}_X(\mathcal{F}) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{K}_X$.

Exercise 1. Assume that X is integral with generic point η . Show that $\mathcal{K}_X(\mathcal{F})$ is the constant sheaf with value \mathcal{F}_{η} .

Exercise 2. A global section of $\mathcal{K}_X(\mathcal{F})$ is regular if the induced morphism $\mathcal{K}_X \to \mathcal{K}_X(\mathcal{F})$ is injective. Assume that X has no embedded points (i.e. $\mathrm{Ass}(X)$ is the set of generic points of X), and that \mathcal{F} is locally free of rank one. Show that $\mathcal{K}_X(\mathcal{F})$ admits a regular global section.

Exercise 3. Let \mathcal{L} be a locally-free \mathcal{O}_X -module of rank one, and $s \in H^0(X, \mathcal{L})$. We consider the closed subscheme Z(s) defined by the ideal image of the morphism $\mathcal{L}^{\vee} \to \mathcal{O}_X$ induced by s. We say that s is a regular section of \mathcal{L} if the induced morphism $\mathcal{O}_X \to \mathcal{L}$ is injective.

- (i) Show that s is regular if and only if Z(s) is an effective Cartier divisor.
- (ii) Show that the associations $D \mapsto (\mathcal{O}(D), 1_D)$ and $(\mathcal{L}, s) \mapsto Z(s)$ induce a correspondence

$$\left\{ \begin{array}{l} \text{pairs } (\mathcal{L}, s) \text{ with} \\ \mathcal{L} \text{ a line bundle on } X, \\ s \text{ a regular section of } \mathcal{L}. \end{array} \right\} \longleftrightarrow \{\text{effective Cartier divisors on } X\}.$$

Exercise 4. Let X be an integral scheme, and \mathcal{L} a locally-free \mathcal{O}_X -module of rank one, and s a regular meromorphic section of \mathcal{L} . For every open subscheme U of X, we may view $\mathcal{L}(U)$ as an $\mathcal{O}_X(U)$ -submodule of \mathcal{L}_{η} (where η is the generic point of X), and we define

$$\mathcal{D}_s(U) = \{ \alpha \in \mathcal{O}_X(U) | \alpha s \in \mathcal{L}(U) \}.$$

- (i) Show that \mathcal{D}_s is a coherent ideal of \mathcal{O}_X , called the *sheaf of denominators of* s, and that we have an injective morphism of \mathcal{O}_X -modules $\mathcal{D}_s \to \mathcal{L}$.
- (ii) Let $f: Y \to X$ be dominant morphism, with Y integral. Show that

$$\mathcal{D}_s\cdot\mathcal{O}_Y\subset\mathcal{D}_{f^*s}.$$

- (iii) Let $b: B \to X$ be the blow-up of the closed subscheme whose ideal is $\mathcal{D}(s)$ in X. Show that
 - (a) B is integral,
 - (b) b is birational,
 - (c) there are effective Cartier divisors D and E on B such that

$$b^*\mathcal{L} = \mathcal{O}(D) \otimes \mathcal{O}(E)^{\vee}$$
 and $b^*s = 1_D \otimes 1_E^{\vee}$.

(iv) Show that $b: B \to X$ is universal among the dominant morphisms $f: Y \to X$ with Y integral and \mathcal{D}_{f^*s} locally free of rank one.