LEARNING DISTRIBUTED REPRESENTATION OF MULTI-FIELD CATEGORICAL DATA

REFERENCE

Wen, Ying, et al.
"Cat2Vec: Learning Distributed Representation of Multi-field Categorical Data." (2016).

- 멀티-필드 카테고리컬 데이터의 분포된 표현
- 카테고리 필드 간 상호작용 탐구가 중요, 필요
 - Inter-field

- ▶ 저자들은 NLP 씬의 Word2Vec에서 영감을 받아
 - Cat2Vec을 제안
 - Categories to vectors
- Cat2Vec
 - 저차원 연속 벡터가 각 카테고리에 대해 학습

- ▶ 신경 게이트(neural gate)
 - Inter-field 카테고리 간 상호작용 탐색
- 물링 레이어(Pooling layer)
 - 정보가 많은 조합을 선택

- 실험에서
 - Cat2Vec을 적용해 큰 성능 향상을 얻음

- 에이터는 서로 다른 추상 레벨로 구성
 - 저-추상: 이미지, 비디오, 오디오 등
 - 고-추상: 자연어, 로그 데이터 등
- 고-추상 데이터들은
 - 통상 이산적이고
 - 아토믹 심볼을 포함함

- 고-추상 데이터를 다루기 위해
 - ▶ 잘 알려진 기법은 임베딩(enbedding)
 - 이산적 토큰을 저-차원 연속 공간으로 임베딩
 - ▶ 신경망의 입력으로 넣을 수 있도록
 - 고 후 신경망이 잠재 패턴을 학습하도록 진행

- 멀티-필드 카테고리컬 데이터
 - 고-추상 데이터의 한 부류
 - 각 필드의 카테고리들이 이종적(hetero-)
- 이러한 데이터는
 - 추천 시스템, 소셜 링크 예측, 계산적 광고 등
 - 트랜잭션 로그에서 잘 발생

- 멀티-필드 카테고리컬 데이터의 예
 - iPinYou 데이터셋:

TARGET	GENDER	WEEKDAY	CITY	Browser
1	MALE	TUESDAY	BEIJING	CHROME
0	FEMALE	Monday	Shanghai	IE
1	FEMALE	TUESDAY	Hongkong	IE
0	MALE	TUESDAY	BEIJING	CHROME
NUMBER OF CATEGORY	2	7	351	6

- ▶ 인터-필드(inter-field) 카테고리들의
 - 의존성에 대한 명시가 없음
 - 두 솔루션이 주로 사용됨

- 1. 필드 간 특징들을 사람이 직접 조합하기
 - 비용이 높음
 - 특징/파라미터 공간이 커지면 불가능
- 2. 함수 또는 신경망으로 특징 임베딩하기
 - aimless하게 브루트포스로 찾아
 - 효율이 떨어짐

- 본 페이퍼에서 제안하는 방식
 - 비지도
 - 멀티-필드 카테고리컬 데이터의 분포된 표현을 학습

- ▶ 신경 게이트로부터 탐색
- ▶ K-max 풀링 레이어로 선택
 - ▶ 전통적인 아프리오리(Apriori) 알고리즘과 유사하게 동작

- 효율적 학습을 위해
 - 카테고리 벡터를 추정하기 위한
 - ▶ 판별기(discriminant) 학습 방법을 제안

One-hot 표현

[0,1] ,
$$[0,1,0,0,0,0,0]$$
, $[0,\dots,0,1,0,\dots,0]_{351}$, $[1,0,0,0,0,0]$
Gender:Male Weekday:Tuesday City:Beijing Browser:Chrome

- 문제
 - 차원의 저주
 - 관계성을 담지 못함 (필드 간, 카테고리 간)

- 분포된 표현 (Distributed representation)
 - ▶ d-차원 벡터로 매핑
 - 》일반적으로 d는 하이퍼파라미터
 - 원래 카테고리 수 보다 (현저히) 작은 값
- 의미적 유사성이 거리로써 표현됨
 - 코사인 유사도
 - ▶ 유클리디언 거리 등

- 분포된 표현 (Distributed representation)
- Word2Vec
 - 단어를 벡터로 표현
 - 의미적 유사도 판단 가능
 - (+) 연산이 가능

- ▶ 신경 게이트
 - 카테고리 쌍의 상호 작용을 파악하기 위함
- ▶ K-max 풀링 레이어
 - 가장 중요한 상호 작용을 선별하기 위함
- 의 두 구조를 반복
 - 높은 레벨의 상호 작용을 탐색하기 위함

Pairwise Interaction Sample Encoding Module

CAT2VEC: INTERACTION LAYER

- 상호 작용 레이어
 - 카테고리 쌍의 상호 작용을 평가하기 위해 게이트 사용
 - 게이트는 상호 작용 결과를 반환

CAT2VEC: INTERACTION LAYER

- 수학적으로, 게이트는 함수
 - $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$
 - > 카테고리 벡터 c_i, c_j 를 입력으로 벡터 $c_{i,j}'$ 를 반환
 - $c'_{i,j} = f(c_i, c_j)$

CAT2VEC: INTERACTION LAYER

- ▶ 게이트*f* 는 다양하게 구성할 수 있음
 - $f^{ ext{sum}}(oldsymbol{c}_i, oldsymbol{c}_j) = oldsymbol{c}_i + oldsymbol{c}_j, \ f^{ ext{mul}}(oldsymbol{c}_i, oldsymbol{c}_j) = oldsymbol{c}_i \odot oldsymbol{c}_j,$
- 더 복잡하게는:
 - $f^{\text{highway}}(\boldsymbol{c}_i, \boldsymbol{c}_j) = \boldsymbol{\tau} \odot g(\mathbf{W}_H(\boldsymbol{c}_i + \boldsymbol{c}_j) + \boldsymbol{b}_H) + (1 \boldsymbol{\tau}) \odot (\boldsymbol{c}_i + \boldsymbol{c}_j),$
 - > g는 비선형 함수
 - $\tau = \sigma(W_{\tau}(c_i + c_j) + b_{\tau})$ 인 transform gate

CAT2VEC: K-MAX POOLING LAYER

- $lackbox{K}$ 개의 최대 상호 작용 아웃풋 벡터 $c_{i,j}'$ 를 선택
 - ▶ K는 학습 샘플의 원래 카테고리 수

- ▶ 상효 작용 및 K-max 풀링 연산을 반복
 - 수 차례 반복
 - 다른 필드 간 높은 레벨의 상호 작용을 포착하기 위함
- 이후 최종 상호 작용 벡터 표현을 예측
 - 전 연결 레이어를 통해

- Cat2Vec의 학습 방법
 - 에이터의 비지도 학습
 - 모델의 지도 학습

▶ 판별기 Cat2Vec 모델

- 샘플 인코딩 모듈에
 - 참 또는 거짓 샘플을 입력
- 이코딩된 샘플 벡터는
 - ightharpoonup MLP를 통해 참일 확률 p를 예측

- 거짓 샘플이 카테고리 벡터 학습에 영향을 끼침
- 거짓 샘플의 제작 과정
 - 학습 셋에서 무작위로 샘플을 하나 선택
 - 무작위로 여러 카테고리들을 선택
 - 같은 필드에 속하도록 무작위로 교체

- ▶ 판별기 네트워크는 새 샘플이 참인지 아닌지를 학습
- 판별기 네트워크 손실 함수
 - 평균 크로스 엔트로피
 - 올바른 예측의 우도를 최대화

판별기 네트워크 손실 함수

$$L = \frac{1}{M} \sum_{i=1}^{M} -y_i \log(p_i) - (1 - y_i) \log(1 - p_i)$$

- ▶ *M* : 샘플의 수
- i번째 샘플의 레이블 $y_i \in \{1,0\}$: {참, 거짓}
- p_i : 참일 확률의 예측값

EXPERIMENT

- 클릭률 (Click-through rate, CTR)
 - 광고를 본 사용자가 해당 광고를 클릭하는 빈도의 비율
- iPinYou 데이터셋
 - > 23개의 필드
 - 이 중 카테고리가 10개 이상인 18개 필드를 선택해 사용

- ▶ CTR 추정을 위한 기존 방법
 - ▶ 원-핫 데이터 표현에 기반한 LR (Logistic Regression)
 - Factorisation-Machine Supported Neural Networks (FNN)
 - Convolutional Click Prediction Model (CCPM)
- 이 방법들은 예측 성능 향상에만 힘씀
 - 멀티-필드 카테고리컬 데이터의 표현 학습이나
 - 너 나은 표현에 대해 고심하지 않음

- Cat2Vec-FNN-1
 - K-max 풀링 결과를 concatenate 해서 최종 벡터 표현을 형성, 예측
- Cat2Vec-FNN-2
 - ▶ K-max 풀링 결과와 카테고리 임베딩으로 최종 벡터 표현을 형성, 예측
 - > 카테고리 임베딩의 영향력이 조금 더 있을 것으로 예상

실험 결과:

Table 3: AUC of CTR prediction on iPinYou dataset.

MODEL	LR	FM	CCPM	FNN	Cat2Vec-FNN-1	Cat2Vec-FNN-2
AUC	0.8323	0.8349	0.8364	0.8453	0.8599	0.8640

다른 기존의 방법들을 상회

하이퍼 파라미터의 변경:

▶ 드롭아웃 0.1, interaction 2, tanh에서 제일 좋은 성능을 보임

CONCLUSION

44

CONCLUSION

- Cat2Vec
 - 멀티-필드 카테고리컬 데이터를 효과적으로 임베딩
- 다른 방법들과는 달리, Cat2Vec은
 - 높은 레벨의 상호 작용을 탐색할 수 있도록 함

CONCLUSION

- 추후 더 복잡하고 정교한 게이트를 설계해
 - 인터-필드 카테고리의 상이한 상호 작용 패턴에
 - 관련된 탐색도 진행할 예정

LEARNING DISTRIBUTED REPRESENTATION OF MULTI-FIELD CATEGORICAL DATA