# **MLProject Pipeline Explanation**

### 1. Data Import & Cleaning

The first step in the pipeline involved importing and cleaning the dataset (T\_ONTIME\_REPORTING.csv). This was handled by import\_and\_format\_data.py and Cleaned\_Data\_Logging.py. The main tasks included:

- Checking for missing values: Key columns such as DEPARTURE\_TIME,
  DEPARTURE\_DELAY, ARRIVAL\_TIME, and ARRIVAL\_DELAY were checked and rows with missing values were removed.
- **Filtering relevant columns**: Only essential columns like YEAR, MONTH, DAY\_OF\_MONTH, DAY\_OF\_WEEK, ORIGIN\_AIRPORT\_ID, DEST\_AIRPORT\_ID, and time-related fields were retained.
- **Formatting timestamps**: The dataset included times stored as integers (e.g., 2400 for midnight). The format\_hour() function was implemented to correctly convert these into datetime.time objects.
- **Splitting into train & test sets**: The cleaned data was split into training (first 3 weeks of the month) and testing (final week).

# 2. Feature Engineering & Preprocessing

The preprocessing phase, managed within Part C - Version 1.py and Part C - Version 2.py, involved:

- **One-hot encoding** of categorical variables, particularly DEST\_AIRPORT, to ensure compatibility with machine learning models.
- Feature engineering: Adding derived features such as:
  - weekday (day of the week).
  - hour\_depart and hour\_arrive, converting scheduled times into seconds past midnight for better model input.
  - Removing extreme delays (delays over 60 minutes) to prevent outliers from affecting model performance.

### 3. Model Training

Model training was conducted using **Ridge Regression** in **Part D - Version 1.py and Part D - Version 2.py**. Key steps included:

- Polynomial feature expansion: Using PolynomialFeatures to generate additional features based on the existing ones, helping the model capture non-linear relationships.
- Hyperparameter tuning:

- alpha, the regularization strength in Ridge regression, was tested across a range of values.
- order, controlling the polynomial feature expansion, was set as a user-defined input.
- Train-validation split: A 70-30 split was used to evaluate the model before testing.
- Logging performance: The Mean Squared Error (MSE) was computed for each model iteration, and the best-performing model was identified.

### 4. Model Evaluation & Tracking

To track and compare models effectively, **MLflow** was integrated into the project:

- Logging key parameters: alpha, order, and the number of training samples were recorded.
- **Artifact storage**: The trained model, log files, and performance plots were saved for later reference.
- Generating performance reports:
  - The final **MSE** on test data was calculated and logged.
  - A scatter plot comparing predicted vs actual delays was generated and stored.

# 5. Challenges & Solutions

### 1. Handling Missing or Incorrect Data

- **Problem**: Some flights had missing times or delays recorded as NaN.
- **Solution**: Used dropna() selectively on essential columns while maintaining sufficient data.

#### 2. Dealing with 24-hour Time Format

- Problem: Flight times were stored as integers but needed conversion to datetime.time.
- Solution: Implemented format\_hour() to standardize time conversion.

### 3. Avoiding Overfitting

- Problem: Higher polynomial orders led to overfitting.
- **Solution**: Regularization (Ridge(alpha)) and cross-validation were used to balance bias and variance.

### 4. MLflow Integration

- Problem: Logging artifacts such as plots and models needed consistent organization.
- **Solution**: Created an **MLflow experiment per run**, logging all essential artifacts automatically.



Here is a sample visualization of the **MLProject pipeline's model performance**, showing **actual vs predicted flight delays**. The red line represents an ideal prediction (where actual = predicted), helping to visualize the model's accuracy.