University of Southern Denmark IMADA

Arthur Zimek

Jonatan Møller Gøttcke, Jonas Herskind Sejr

DM566/DM868/DM870: Data Mining and Machine Learning

Spring term 2019

Exercise 5: Distance Measures

Exercise 5-1 Distance functions

Distance functions can be classified into the following categories:

$d: S \times S \to \mathbb{R}_0^+$	reflexive	symmetric	strict	triangle inequality
$x, y, z \in S$:	$x = y \Rightarrow d(x, y) = 0$	d(x,y) = d(y,x)	$d(x,y) = 0 \Rightarrow x = y$	$d(x,z) \le d(x,y) + d(y,z)$
Dissimilarity function	×			
(Symmetric) Pre-metric	X	×		
Semi-metric, Ultra-metric	×	×	X	
Pseudo-metric	X	X		×
Metric	X	×	×	×

So if a distance measure satisfies $d: S \times S \to \mathbb{R}_0^+$ and $\forall x, y, z \in S$ it is reflexive, symmetric, and strict and it also satisfies the triangle inequality, then it is a metric.

As you can see, a pre-metric does not necessarily need to be *strictly* reflexive. Make sure you understand the difference between reflexivity and strictness!

Note: these terms as well as "distance function" are used inconsistently in the literature. In mathematics, "distance function" is commonly used synonymously with "metric". In a database and data mining context, strictness is often not relevant at all, and a "distance function" usually refers to a pseudo-metric, pre-metric, or even just to some dissimilarity function. Do not rely on Wikipedia, it uses multiple definitions within itself!

Decide for each of the following functions $d(\mathbb{R}^n, \mathbb{R}^n)$, whether they are a distance, and if so, which type.

(a)
$$d(x,y) = \sum_{i=1}^{n} (x_i - y_i)$$

(b)
$$d(x,y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

(c)
$$d(x,y) = \sqrt{\sum_{i=1}^{n-1} (x_i - y_i)^2}$$

(d)
$$d(x,y) = \sum_{i=1}^{n} \begin{cases} 1 & \text{iff} \quad x_i = y_i \\ 0 & \text{iff} \quad x_i \neq y_i \end{cases}$$

(e)
$$d(x,y) = \sum_{i=1}^{n} \begin{cases} 1 & \text{iff} \quad x_i \neq y_i \\ 0 & \text{iff} \quad x_i = y_i \end{cases}$$

Exercise 5-2 Induced metric

Given a pseudo-metric d on the set $A: d: A \times A \to \mathbb{R}_0^+$.

Define the equivalence relation \sim such that $x \sim y \Leftrightarrow d(x,y) = 0$.

Let A^{\sim} be the set of equivalence classes of A w.r.t. \sim .

- $\bullet \ \ \text{Which properties has the distance function} \ d^\sim: A^\sim \times A^\sim \to \mathbb{R}_0^+ \ \text{with} \ d^\sim(x^\sim,y^\sim) := d(x,y)?$
- Given a database similar to this one:

r	\boldsymbol{x}	y
1	0	1
2	1	1
3	0	1

r	\boldsymbol{x}	y
4	1	1
5	2	2
6	3	3

Which properties does the following distance function have?

$$\operatorname{euclid}_{xy}((r_1, x_1, y_1), (r_2, x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Explain which records are considered equivalent by this distance function, and discuss whether it is sensible in a database and data mining context to have pseudo-metric distance functions.

Hint: What could be the nature of attribute r in a database context?