

Monolithic Bridge-on-Diaphragm Transducer with Piezoelectric Excitation Fabricated by Laser Micromachining

A. Schumacher, Th. Fabula, H.-J. Wagner and M. Alavi

Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft für angewandte Forschung e. V., Villingen-Schwenningen, F.R.G.

Principle of fabrication

Photolithographic patterning of the masking layer Local destruction of {111} crystal planes by laser melting Anisotropic etching

Schematic diagram of a monolithic microbridge with triangular cross section and with slope angle of 35° formed by laser machining and anisotropic etching

Experimental setup

Schematic diagram of the experimental satup includin a cw pumped Nd:YAG laser system with Q-switch and a computer-controlled xy-table for precise positioning of the silicon wafer

Experimental realization

SEM micrograph of a monolithic bridge-on-diaphragm (

imensions: Bridge: $120 \mu m \times 40 \mu m \times 1950 \mu m$ Diaphragm: $5000 \mu m \times 5000 \mu m \times 150$

Frequency spectrum

Frequency spectrum of the fundamental flexure modes Z1 and Z2 obtained by optical measurements (laser vibrometer and spectrum analyzer)

BOD-structure as pressure sensor

Change of resonance frequency f due to an applied pressure difference p-p_e

Experimental realization

SEM micrograph showing the clamping region of the microbridge

Resonance frequencies

Mode	frequency [kHz]		measured
	FEM	experiment	Q-factor
Z1 —	77.6	77.4	370
Z2 -	213.6	217.3	1 200
Z3 —	417.9	426.7	

Resonance frequencies of the fundamental flexure modes Z1, Z2, Z3 obtained by Finite Element Analysis (FEM) in comparison with experimental data.

Geometrical data of the microbridge: length = 1.95 mm thickness = 38 μ m slope angle = 35°

Pressure sensitivity

Resonance frequency (flexure mode Z1) as a function of pressure difference measured by piezoacoustic excitation and optical detection

Piezoelectric excitation

Excitation and detection of resonant microbridge via piezoelectric thin film (ZnO)