CNN을 활용한 독사와 비독성 뱀의 분류 모델 개발

Da-Eun Kim

김 다 은

Abstract

본 연구에서는 CNN을 활용해 독사와 비독성 뱀을 분류할 수 있는 이미지 분류 모델을 개발한다. 실험에는 ResNet50과 이를 기반으로 한 사용자 정의 모델인 OurModel의 성능 비교가 있다. OurModel의 구조와 레이어 구성을 다양하게 조정하고 데이터셋에 대한 성능을 최적화한 후, 두 모델의 정확도와 손실값을 측정해 본 실험에 어떤 모델이 더 적합할지 비교하고자 한다. 이를 통해 독사와 비독성 뱀의 효과적인 분류를 위한 최적의 모델을 찾는데 기여할 것으로 기대한다.

1. 서 론

국내 여름철에 뱀에 물리는 사건 사고가 자주 발생한다. 표 1과 같이 소방청에 따르면 2021년의 뱀 포획 건수는 약 10,000건으로 4년간의 데이터를 봤을 때 매년 점점 증가하는 추세이다[1]. 또한 세계 보건 기구의 보고에 의하면 연간 독사에 교상되는 환자 수는 약 30만 명에 달하며, 이 중 사망자수는 약 3 - 4만 명이라고 한다[2]. 이렇게 뱀을 마주치는 일이 일상에서 빈번하게 발생하지만, 일반인은 뱀의 형태를 보고 맨눈으로 독의 유무를 구별하기 쉽지 않다. 또한 독성이 있는 뱀인지 아닌지에 따라 물렀을 때 대처하는 방법이 달라빠른 대응이 어렵다. 그래서 본 보고서는 뱀 영상을 주었을때 독성을 가진 뱀인지 아닌지 알기 위해 학습을 수행한다. 독사와 비독성 뱀의 여러 종류와 특징을 학습시켜 일생 생활에 적용이 가능한 신경 모델을 구축하고자 한다.

표 1 최근 4년간 뱀 포획 구조 건수

* 제공: 소방청(단위: 건)

				. •	
연도		2018년	2019년	2020년	2021년
구조	전국	5,781	7,279	9,400	10,759
	서울	230	269	357	345
건수	경기	1,473	1,829	2,424	2,711

2. 본 론

2.1 데이터 세트

데이터 세트는 독사(Venomous) 1055개와 비독성 뱀(Non Venomous) 712개로 구성된다. 데이터는 kaggle의 오픈 데이터셋을 사용했다. 두 모델은 뱀의 머리 모양을 기반으로 분류할 수 있으며 독사는 삼각형, 비독성 뱀은 원형 모양이다.

데이터는 "snake.zip" 압축 파일 안에 저장되어 있으며 train과 test 폴더가 있다. 각 폴더 안에는 두 개의 서브 디렉 토리(Venomous, Non Venomous)가 존재하며 해당 클래스에

속하는 JPG 이미지 파일들이 포함된다.

2.2 수행 환경

수행 환경은 Google Colab을 활용하여 파이토치(PyTorch)를 이용해 CNN 모델을 구현하였다. 64비트 운영 체제를 탑재한 기기에서 GPU를 활용해 연산 성능을 향상했으며, Keras와 TensorFlow 라이브러리를 이용해 모델의 학습을 수행한다.

2.3 알고리즘

이 연구에서는 TensorFlow 프레임워크와, Keras 라이브러리를 활용하여 독사와 비독성 뱀의 분류 문제를 해결하기 위한 CNN 모델을 개발하였다. 본 연구의 핵심 알고리즘은 ResNet50과 사용자 정의 모델인 OurModel이다. OurModel은 ResNet50의 기능을 기반으로 한 사용자 정의 모델로, 다음과 같은 두 가지의 특징을 가지고 있다.

1) 다층 연결 레이어의 추가: 여러 개의 Dense Layer를 추가하고, 이를 병렬로 연결해 더 복잡한 특징을 학습한다. 이는 그림 1에서 확인할 수 있으며 입력 이미지의 특성 추출과 이미지 분류 작업을 위해 Dense Layer와 ReLU 활성화 함수를 결합해 사용하였다.

2) Adam 최적화 알고리즘의 활용: OurModel에서는 Adam 최적화 알고리즘을 이용하여 모델의 학습 속도와 정확도를 향상했다.

또한 Matplotlib를 활용해 두 모델의 성능을 비교한 결과를 그래프로 시각화하였다. 이를 통해 두 모델의 정확도 및 손실 값을 비교해 어떤 모델이 더 효과적인지 확인하였다.

그림 1 레이어 구조

3. 결 과

그림 2는 ResNet50과 OurModel의 학습 결과를 나타낸 그래 프이다. 두 모델은 epoch을 100으로 학습시켰을 때 가장 높은 정확도를 보였으며, 표 2에서 확인할 수 있듯이 OurModel의 정확도는 약 0.8847로 ResNet50의 정확도인 약 0.8438보다 높다. 또한 OurModel의 손실값은 약 0.3128로 ResNet50의 손실값인 약 0.3221보다 낮다. 그림 2를 통해 OurModel의 정확도와 손실값의 그래프가 ResNet50에 비해서 안정적으로 나타나는 것을 확인할 수 있다. 이러한 결과들은 OurModel이 독사와비독성 뱀을 분류하는 데에 높은 효과를 갖추고 있음을 보여준다.

그림 2 ResNet50과 OurModel의 정확도와 손실값

표 2 모델 별 정확도와 손실값

	Val_loss	Val_accuracy (%)
ResNet50	0.322174728	0.843866169452667
OurModel	0.312884956598281	0.884758353233337

4. 고 찰

이 연구의 초기에는 데이터셋의 규모가 약 2,000개로 비교적 소규모였기 때문에 일반적으로 소규모 데이터셋을 처리할때 효과적인 ResNet18으로 모델을 선정하였다. 그러나 독성뱀 이미지와 비독성뱀 이미지 간에 명확한 특징이 나타나지않아 학습이 어려워졌으며, 결과적으로 손실값이 높고 정확도가 낮게 나와 두 데이터셋에 대해 적절하게 분류가 되지 않았다. 이러한 상황에서 더 복잡한 데이터셋을 다룰 수 있는 모델의 필요성을 인식하게 되었고, 하이퍼파라미터를 다양하게 변경하며 여러 시도를 해본 결과 복잡한 특성을 구분할 수 있는 ResNet50으로 선정하게 되었다.

ResNet50을 기반으로 한 새로운 분류 모델인 OurModel을 만들었으며, snake.ipynb의 데이터셋을 정확하게 분류할 수 있도록 epoch의 수를 100으로 늘리고 추가적인 Dense Layer를 도입하여 더 깊은 학습이 가능하도록 조정하였다. 특히 모델의 학습 속도와 정확도를 개선하기 위해 경사하강법의 필요성을 느껴 Adam 최적화 알고리즘을 도입하였으며, 노이즈의 감소를 위해 Average Pooling Layer를 사용하는 등 이론적인지식을 실제 모델에 적용하며 최적화시키는 경험을 했다.

5. 결 론

본 연구에서는 CNN을 활용해 ResNet50과 OurModel이라는 두 가지 이미지 분류 모델을 개발했다. 독사와 비독성 뱀 이미지를 분류할 때의 두 모델의 성능을 비교하고자 본 실험을 수행했다.

ResNet50을 기반으로 만든 OurModel에서는 Dense Layer와 Average Pooling 레이어를 추가하고 epoch 수를 100으로 늘 렸더니 정확도가 약 0.8847으로 ResNet50의 정확도인 약 0.8438보다 높게 나타났다. 이러한 결과로 보아 OurModel은 이 데이터셋에 대해 ResNet50보다 우수한 성능을 보이며, 특히 독사와 비독성 뱀과 같이 데이터의 특징이 뚜렷하지 않아 분류가 어려운 이미지 데이터셋의 분류에 대해 사용하면 좋은 성능이 나올 것으로 기대된다.

참고문헌

[1] 한국어 APA 웹페이지 / 내주-참고문헌 앗, 뱀? 도심 아파트에 '독사' 출몰…혹시 물렸다면 . (2023).

https://www.hani.co.kr/arti/animalpeople/human_animal/109 2335.html.

[2]

https://ir.ymlib.yonsei.ac.kr/bitstream/22282913/134796/1/T01 3040.pdf