- ➤ Continuous assessment (60%) + Final Examination (40%)
- > Continuous assessment (tentative, from last year)
 - ➤ Three Homework Assignments (30%)
 - ➤ One mini-project (e.g., Implement algorithms with real-world data) (10%)
 - ➤ One Midterm Exam (20%, Oct 30, 2024, tentatively)

 Ω 下界

 Θ 紧

ASYMPTOTIC BOUNDS FOR SOME COMMON FUNCTIONS

Polynomials.

ightharpoonup Let $f(n)=a_0+a_1n+\cdots+a_dn^d$ with $a_d>0$. Then, $f(n)=\Theta(n^d)$.

Logarithms.

 $> \log_a n = \Theta(\log_b n)$ for every constants a > 1 and b > 1.

Logarithms and polynomials.

 $> \log_a n = O(n^d)$ for every a > 1 and b > 0.

Exponentials and polynomials.

 $> n^d = O(r^n)$ for every r > 1 and every d > 0.

Factorials.

 $> n! = 2^{\Theta(n \log n)}$

分治 二进制乘法

a * b 都分成两半

注意到分成
$$x_1y_1*2^n+2^{n/2}*((x_1+y_0)*(x_0+y_1)-x_1y_1-x_0y_0)+x_0y_0$$

可以少一次
$$T(n)=3T(n/2)+n$$
 $O(n^{\log_2 3})=O(n^{1.59})$

主定理

 $T(n) = aT(n/b) + \Theta(n^c)$ $\log_b a$ 如果和 c 一样叠一个 \log 否则选大的。

可滿足性 SAT

• Literal: 二元 (字面量

• Clause: 子句 逻辑表达式

Conjunctive normal form (CNF) (子句的链接)

SAT: 是否可以满足是真的存不存在一组 01

3-SAT:每个只有三个

Poly-Time Reduction 规约

Desiderata 期望

 $X \leq_P Y$ 说如果 X 可以规约到 Y,就是说可以用任意一个 X 问题样例都可以调用几次 Y 来解决。

原始操作 O(1)

Design algorithms.

Y 可以多项式, X 就会做

Establish intractability.

X 做不了, Y 就寄了

Establish equivalence.

双向规约

SET-COVER

点覆盖全部点

VERTEX-COVER

最小点覆盖 选点吧所有边覆盖

 $VERTEX - COVER \leq_P SET - COVER$ 就建每个集合就是点他出去的边(度)

INDEPENDENT-SET.

最大独立集

3-SAT \leq_P INDEPENDENT-SET encoding with gadgets

:m 个等式,m 个三角形,然后相反也连边,然后问题等价于能不能找到大小为 m 个独立及

难度递增: (很多时候都 equiv, 所以我们之关系 decision, 很多时候不行后面就不行了)

- Decision Problem
- Search Problem
- Optimization Problem证 点覆盖和找点覆盖 equiv

P集合: 所有多项式时间可以决定 (decision) 的问题。on a deterministic turing machine。chain

NP 集合: C(s,t), 任意 s 都有一个 t 是 yes, certificate。多项式时间 certifier。多项式时间验证。Nondeterministic polynomial time。tree,不知道去哪,很多选择。certificate 方案? EXP 集合: 判定问题有指数复杂度。

NP-Complete: 所有 NP 问题都能规约到的问题。

SAT ∈ NP-complete (已知条件)

 $SAT \leq_P 3-SAT$

所以考虑 $SAT \leq_P 3 - SAT \leq_P Independent - Set = Vertex_Cover \leq Set - Cover$ 后面这一串都是 NP-Complete

INDIVIDUAL PROJECT

You can choose *one* of the three types of projects to work on:

- *Type I:* Introduce one (new) algorithm and analyze why the algorithm has good performance.
- Type II: Summarize the real-world applications of an algorithm.
- Type III: Implement one algorithm on real-world data sets.

(If you have any other ideas, feel free to discuss them with me.)

INDIVIDUAL PROJECT

Report format (e.g. Introduction + Preliminaries+ Results + Discussion):

- Font: 12-point Times New Roman
- Margin and Spacing: 2.5 cm all round, single column and single-line spacing
- Page limit: no more than 3 pages, including references

Deadline: Dec 20, 2024 (two days after the exam).

Lecture 9

问题定义:能不能找到一个 01 背包 bitset 起来和事 W

证明 $3 - SAT \leq_P SUBSET - SUM*$

More Story

Knapsack: 重量和 $\leq B$ (weight limit) 价值 $\geq V$ (target value)

Partition

Subset-Sum \leq_P Knapsack

 $3SAT \leq_P SUBSET - SUM \equiv_P PARTITION \leq_P KNAPSACK$ 也都是 NP Hard

Six Basic NP-Complete problems

- 3-Satisfiability (3-SAT)
- 3-Dimensional Matching (3DM) $3SAT \le_p 3DM$

Exact Cover by 3-Sets (X3C) $3DM \le_p X3C$

- Vertex Cover (VC)
- Independent Set (IS)
- Hamiltonian Cycle (HC) 3SAT \leq_p HC, VC \leq_p HC
- Partition

记不住,太多了

3-Dimensional Matching (3DM)

Exact Cover by 3-Sets (X3C)

 $3DM \leq_P X3C$

和 2D 差不多,就是不覆盖全匹配上

Exact Cover by 3-Sets (X3C)

Given: a set U with |U| = 3n and a collection C of 3-element subsets of U.

Question: Does C contain an exact cover for U, that is, a subcollection $C' \subseteq C$ such that every element of U occurs in exactly one member of C'?

Theorem. 3DM≤ $_p$ X3C.

 $3DM: T \subseteq X \times Y \times Z$

X3C: $U = X \cup Y \cup Z$ (unordered)

 $M \subseteq T$ is a matching with size n for 3DM iff $M \subseteq U$ is a 3-exact-cover for U

就是三个元素 并起来包含所有

Hamiltonian Cycle Problem 哈密顿路径

Travelling Salesman Problem (TSP) 旅行商问题

Strong NP-completeness: 如果数值也是多项式,还是做不了,就是强 NPC

近似算法

线性规划

线性规划是 P 的,可以多项式解决

ellipsoid method 线性解决

Knapsack

按比例排序,选 $v_1, v_2, v_3, \dots v_i$ 要么选前 v_{i-1} ,要么选最大的一个,这个 ratio 肯定能做到 1/2

点覆盖

随便找排列,任意两个全选,但至少要选一个,所以不超过两倍

最小权点覆盖

Set 覆盖 (集合覆盖

最多 $\ln n$

最多 $n \times (1-1/k)$ (OPT = k) 一轮后 每次都可以乘 $\frac{k-1}{k}$ log 次变 1,如果 OPT 变小了会更大 用放缩 $(1-\frac{1}{k})^k < (1/e)$

TSP

满足三角形不等式

随便删一个是生成树放小

放大了, dfs 搜一遍, 系数 2

随机变量

乘积可以加必须独立

MARKOV'S INEQUALITY

对于任意的 α

$$Pr[X \geq lpha imes E(x)] \leq rac{1}{lpha}$$

得非负,退一下
 $E(x) \geq \sum x imes Pr[X = x] \geq a imes Pr[X \geq a]$

Lecture 12

Union Bound

Law of Total Probability: 全概率公式

(Waiting for a First Success)

THE MAX-SAT PROBLEM

满足最多的事件

因为期望 $\alpha = \frac{7}{8}$, 所以至少存在一个

probabilistic method.

期望时间复杂度

$$\frac{7}{8}m \leq \lfloor \frac{7}{8}m \rfloor + pm$$

期望跑 8m 次

Las Vegas Algorithm

期望复杂度,肯定对

Monte Carlo Algorithms

确定多项式, 很小可能错

De-randomization

去随机化

按位贪心 对的对的

COMPUTATIONAL GEOMETRY

Affine Combination 仿射组合

Convex Combination: 和唯一都是正的

Lecture 13

Advanced DS

Bloom Filter

是否为集合一个元素

不在集合里可能会给错误答案 (False Positive 给的答案是为 True,但其实是 False) False negative 不可能

就哈希一波

Online Stochastic Decision - Making

Secretary Problem

Online 必须马上决定

n/e 算概率

Prophet Inequality

比 decision making之外知道分布了

没有很好的 rule 可以比 1/2 好 (Max,额可以做到 1/2吗