Chapter 15

UTILITY APPLICATIONS OF POWER ELECTRONICS

15-1	Introduction
15-2	Power Semiconductor Devices and Their Capabilities
15-3	Categorizing Power Electronic Systems
15-4	Distributed Generation (DG) Applications
15-5	Power Electronic Loads
15-6	Power Quality Solutions
15-7	Transmission and Distribution (T&D) Applications
	References
	Problems

INTRODUCTION

- Distributed Generation (DG)
 - Renewable Resources (Wind, Photovoltaic, etc.)
 - Fuel Cells and Micro-Turbines
 - Storage Batteries, Super-conducting Magnetic Storage, Flywheels
- Power Electronic Loads Adjustable Speed Drives
- Power Quality Solutions
 - Dual Feeders
 - Uninterruptible Power Supplies
 - Dynamic Voltage Restorers
- Transmission and Distribution (T&D)
 - High Voltage DC (HVDC) and HVDC-Light
 - Flexible AC Transmission (FACTS)
 - Shunt Compensation
 - Series Compensation
 - Static Phase Angle Control and Unified Power Flow Controllers

POWER SEMICONDUCTOR DEVICES AND THEIR CAPABILITIES

Figure 15-1 Power semiconductor devices.

CATEGORIZING POWER ELECTRONIC SYSTEMS

Solid-State Switches

Figure 15-2 Back-to-back thyristors to act as a solid-state switch.

Converters as an Interface

Figure 15-3 Power electronics interface.

Voltage-Link Systems

Fig. 15-4 Block diagram of the voltage-link systems.

Current-Link Systems

Figure 15-5 Block diagram of the current-link systems.

DISTRIBUTED GENERATION (DG) APPLICATIONS

Figure 15-6 Distributed Generation (DG) systems.

Wind-Electric Systems

Figure 15-7 Doubly-fed induction generators for wind-electric systems.

Photovoltaic (PV) Systems

Figure 15-8 Photovoltaic systems.

Fuel Cell Systems

Energy Storage Systems

Figure 15-9 Flywheel storage system.

Micro-Turbines

POWER ELECTRONIC LOADS

Figure 15-10 Adjustable-speed drive.

POWER QUALITY SOLUTIONS

Dual Feeders

Figure 15-11 Dual-feeders.

Uninterruptible Power Supplies

Figure 15-12 Uninterruptible power supplies.

Dynamic Voltage Restorers

Figure 15-13 Dynamic voltage restorers.

TRANSMISSION AND DISTRIBUTION (T&D) APPLICATIONS

High Voltage DC (HVDC) Transmission

Figure 15-14 HVDC system block diagram (transformers are not shown).

Medium Voltage DC (MVDC)

Figure 15-15 Block diagram for medium-voltage dc transmission systems.

Flexible AC Transmission Systems (FACTS)

Figure 15-16 Power flow on a transmission line.

$$P = \frac{E_1 E_2}{X} \sin \delta$$

Shunt-Connected Devices to Control the Bus Voltage Magnitude

Figure 15-17 Shunt-connected devices for voltage control.

X

Series-Connected Devices to Control the Effective Series Reactance

Figure 15-18 Thyristor-controlled series capacitor.

Unified Power Flow Controller (UPFC)

- 1. controlling the voltage magnitude E
- 2. changing the line reactance X, and/or
- 3. changing the power angle δ .

Figure 15-19 UPFC.

$$P_{1} = 3\operatorname{Re}(\overline{E}_{3}\overline{I}^{*})$$

$$P_{2} = P_{1}$$

$$Q_{1} = 3\operatorname{Im}(\overline{E}_{3}\overline{I}^{*})$$

$$Q_{2} \neq Q_{1}$$