Machine learning HW 3

Understanding Machine Learning: From Theory to Algorithms[Exercises for chapters 6 and 9]
Mehrnaz jalili:400422061- Arash Sajjadi:400422096

Email: Mehrnazjalili1991@gmail.com Email: arash.sajjadi@yahoo.com Date: December 14, 2021

chapter 6

Exercise 6.2:

The basic assumptions of the question: $|\mathcal{X}| < \infty$ $k \leq |\mathcal{X}|$

1. $\mathcal{H}_{=k}^{\mathcal{X}} = \left\{ h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| = k \right\}$

Let $C \subseteq \mathcal{X}$ such that $|C| = k + 1 \Rightarrow \nexists h \in \mathcal{H}_{=k}$ s.t $h_C(x) = 1$

Let $C \subseteq \mathcal{X}$ such that $|C| = |\mathcal{X}| - k + 1 \Rightarrow \nexists h \in \mathcal{H}_{=k}$ s.t $h_C(x) = 0$

From ① and also ② we have $VCdim(\mathcal{H}_{=k}) \leq \min\{k, |\mathcal{X}| - k\}$

Now if we prove that $VCdim(\mathcal{H}_{=k}) \ge \min\{k, |\mathcal{X}| - k\}$, the desired result will be achieved. So we will continue the proof path to $VCdim(\mathcal{H}_{=k}) \ge \min\{k, |\mathcal{X}| - k\}$

Let $C = \{x_1, ..., x_m\}$ such that $m \leq \min\{k, |\mathcal{X}| - k\}$. Get the label $(y_1, ..., y_m) \in \{0, 1\}^m$ corresponds to C. also we donate $\sum y_i$ by s Let E be a set of k - s arbitrary members of $\mathcal{X} - C$ so $E \subseteq \mathcal{X} - C$ ③

suppose $h \in \mathcal{H}_{=k}$ be a hypothesis which satisfies $\forall X_i \in C : h(x_i) = y_i$ and, by the same function, we assign one member of label E to all members. Therefore, we were able to generate all possible functions on C with this set of hypotheses. 4

From 3 and 4 we conclude that C is shattered by mathcal H which means:

 $VCdim(\mathcal{H}_{=k}) \ge min\{k, |\mathcal{X}| - k\} \text{ so } VCdim(\mathcal{H}_{=k}) = min\{k, |\mathcal{X}| - k\}$

2. $\mathcal{H}_{at-most-k} = \left\{ h \in \{0,1\}^{\mathcal{X}} : |\{x : h(x) = 1\}| \le k \text{ or } |\{x : h(x) = 0\}| \le k \right\}$

Let $C \subseteq \mathcal{X}$ such that $|C| = k + 1 \Rightarrow \exists h \in \mathcal{H}$ s.t $h_C(x) = 1 \Rightarrow \text{VCdim}(\mathcal{H}_{at-most-k}) \leq k$

Let $C \subseteq \mathcal{X}$ such that $|C| = m \le k, C = x_1, ..., x_2$ With the same inference as the previous question we have $\operatorname{VCdim}(\mathcal{H}_{at-most-k}) \ge k$

From ① and ② we conclude that $VCdim(\mathcal{H}_{at-most-k}) = k$

Exercise 6.6:(VC-dimension of Boolean conjunctions)

Problem assumptions: \mathcal{H}^d_{con} , $x_1,...,x_d$, $s \geq 2$

- 1. There are three choice for each variable. $(x_i, \bar{x}_i, \text{None of them})$ $\Rightarrow |\mathcal{H}^d_{con}| = 3^d$
- 2. conclude that: $VCdim\left(\mathcal{H}_{con}^d\right) \leq \left\lfloor \log\left(\left|\mathcal{H}_{con}^d\right|\right) \right\rfloor \leq 3\log(d)$
- 3. We have to show that \mathcal{H}_{con}^d shatters the set of unit vectors $\{e_i, i \leq d\}$
- 4. show that VCdim $(\mathcal{H}_{con}^d) \leq d$
- 5. \mathcal{H}^{d}_{con} be monotone boolean conjunctions over $\{0,1\}^{d}$

 \checkmark We examine answers 3, 4 and 5 together.

If the variable appears with its negation, it is assigned to -1 and otherwise to 1. $x_1 \wedge \bar{x}_1 \mapsto -1$ $e_i = [0, 0, ..., \underbrace{1}_{i \text{th}}, ..., 0, 0]$ We make the matrix X from the e_i vectors.

$$X = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{bmatrix}_{(d+1)\times(d+1)} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$

This matrix is invertible with Determinant d+1. Therefore, $Xw=Y\Rightarrow w=X^{-1}Y$ So d+1 points can be shattered as a result: VCdim $\geq d+1$ ①

According to Radon's theorem, the d+2 points cannot be shattered. as a result: VCdim $\leq d+1$ ② From ① and ②, we can conclude that VCdim = d+1

Exercise 6.9:

Let \mathcal{H} be the class of signed intervals. $\mathcal{H} = \{h_{a,b,c} : a \leq b, s \in \{-1,1\}\}$ when

$$h_{a,b,c}(x) = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{if } x \notin [a,b] \end{cases}$$

We claim that $VCdim(\mathcal{H}) = 3$. At the beginning we have to show that $VCdim(\mathcal{H}) \geq 3$ for this purpose let $C = \{x_1, x_2, x_3, x_4\}$ such that $x_i < x_i + 1$. We can easily find out that the label (-1, +1, -1, +1) is not obtained by hypothesis \mathcal{H}

Exercise 6.10:

1. For every algorithm, there exists a distribution \mathcal{D} , for which $\min_{h\in\mathcal{H}} L_{\mathcal{D}}(h) = 0$, but;

$$\mathbb{E}[L_{\mathcal{D}}(A(S))] \ge \frac{k-1}{2k}$$

$$k = \frac{d}{m} \Rightarrow \mathbb{E}[L_{\mathcal{D}}(A(S))] \ge \frac{d-m}{2d}$$

2. If \mathcal{H} is PAC learnable, then $VCdim(\mathcal{H}) < \infty$ Suppose if $VCdim(\mathcal{H}) = \infty$ then \mathcal{H} is not PAC learnable.

$$L_{\mathcal{D}}(A(S)) \le \min L_{\mathcal{D}}(h) + \epsilon$$

Fundamental Theorems Of Machine Learning: If \mathcal{H} is Agnostic PAC learnable $\Rightarrow \mathcal{H}$ is PAC learnable.

So, we can conclude that $\Rightarrow \mathbb{P}[L_{\mathcal{D}}(A(S)) \geq \epsilon] < \delta$

Exercise 6.11:

 $d = \max_{i} \operatorname{VCdim}(\mathcal{H}_i) \geq 3$ and also $\mathcal{H} = \bigcup_{i=1}^r \mathcal{H}_i$

1. we have to show that:

$$\operatorname{VCdim}\left(\bigcup_{i=1}^{r} \mathcal{H}_i\right) \le 4d \log(2d) + 2 \log(r)$$

According to definition, we have:

$$\tau_{\mathcal{H}}(k) \le \sum_{i=1}^{r} \tau_{\mathcal{H}_i}(k) \Rightarrow \tau_{\mathcal{H}}(k) \le rm^d \Rightarrow k \le d\log(m) + \log(r)$$

Now, let $a \le 0$ and b > 0. Then, $x > 4a \log(2a) + 2b \Rightarrow x \le a \log(x) + b$. Therfore,

$$\Rightarrow k \le 4d\log(2d) + 2\log(r)$$

2. It is clear that $VCdim(\mathcal{H}_1) = VCdim(\mathcal{H}_2) = d$ also $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_{\in}$ and $k \geq 2d + 2$ we are trying to show that $\tau_{\mathcal{H}}(k) < 2^k$.

$$\begin{split} \tau_{\mathcal{H}}(k) &\leq & \tau_{\mathcal{H}_1}(k) + \tau_{\mathcal{H}_2}(k) \\ &\leq \sum_{i=0}^d \binom{k}{i} + \sum_{i=0}^d \binom{k}{i} \\ &= \sum_{i=0}^d \binom{k}{i} + \sum_{i=0}^d \binom{k}{k-i} \\ &= \sum_{i=0}^d \binom{k}{i} + \sum_{i=k-d}^d \binom{k}{i} \\ &\leq \sum_{i=0}^d \binom{k}{i} + \sum_{i=d+2}^d \binom{k}{i} \\ &< \sum_{i=0}^d \binom{k}{i} + \sum_{i=d+1}^d \binom{k}{i} &= \sum_{i=0}^k \binom{k}{i} = 2^k \end{split}$$

chapter 9

Exercise 9.1:

primary assumptions: $\ell | h(\mathbf{x}, y) = |h(\mathbf{x}) - y|$ and $|c| = \min_{a>0} a$ s.t $c \le a$ and $c \ge a$

Frist we define a vector called a as $a = (a_1, ..., a_m)$ also, According to the Hint, $\min_{\mathbf{w}} \sum_{i=1}^m |\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i|$ is equal to output of ERM (minimum). Therefore,

$$a_i \ge \langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \Rightarrow \langle \mathbf{w}, \mathbf{x}_i \rangle - a_i \le y_i$$
$$a_i \ge -\langle \mathbf{w}, \mathbf{x}_i \rangle + y_i \Rightarrow -\langle \mathbf{w}, \mathbf{x}_i \rangle - a_i \le -y_i$$

$$A = \begin{bmatrix} X - I_m; -X - I_m \end{bmatrix} \qquad A \in \mathbb{R}^{2m \times (m+d)}$$

$$\mathbf{v} = (w_1, ..., w_d, s_1, ..., s_d) \qquad \mathbf{v} \in \mathbb{R}^{d+m}$$

$$b = (y_1, ..., y_m, -y_1, ..., -y_m)^T \qquad b \in \mathbb{R}^{2m}$$

$$\mathbf{c} = (\underbrace{0, ..., 0}_{d}, \underbrace{1, ..., 1}_{m}) \qquad \mathbf{c} \in \mathbb{R}^{d+m}$$

$$\Rightarrow \min \mathbf{c}^T \mathbf{v} \text{ s.t } A \mathbf{v} \leq b$$

$$\mathbf{c}^{T}\mathbf{v} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \cdot \begin{bmatrix} w_{1}, & \dots & , w_{d}, & a_{1}, & \dots & , a_{m} \end{bmatrix} = (a_{1} + \dots + a_{m}) = \sum_{i=1}^{m} a_{i}$$

Exercise 9.3:

Theorem: $\frac{\langle \mathbf{w}^*, \mathbf{w}^{(T+1)} \rangle}{\|\mathbf{w}^*\| \cdot \|\mathbf{w}^{(T+1)}\|} \ge \frac{\sqrt{T}}{RB}$ and also $T \le (RB)^2$

$$R = \max \|\mathbf{x}_i\| \le 1, \|\mathbf{w}^*\| = m \text{ for all } i \le m \quad y_i \langle \mathbf{w}^*, \mathbf{x}_i \rangle \ge 1$$

$$\Rightarrow B = \min \{\|\mathbf{w}\| : \forall i \in [m], y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1\} \le \sqrt{m} \Rightarrow (BR)^2 \le m$$

 $\forall i \in [d] : \operatorname{Sign}(0) = -1, \operatorname{Sign}(\langle \mathbf{w}, \mathbf{x} \rangle) = y_i$

$$y = \begin{bmatrix} \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}, y = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}, y = \sum_{j < i} e_j, \left\langle \mathbf{w}^{(i)}, \mathbf{x}_i \right\rangle \Rightarrow \text{So it shows the wrong label for everycase.}$$

We engage a vector which is called \mathbf{w}^* equal to $\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{bmatrix}$ with this problem to meet the

requirements of the problem. Since it predicts labels correctly, so: $\mathbf{x}\mathbf{w} = y \Rightarrow \mathbf{w} = \mathbf{x}^{-1}y$. Therfore,

$$\mathbf{x}\mathbf{w} = y$$

Exercise 9.4:

Consider all positive examples of the form $(\alpha, \beta, 1)$; $\alpha^2 + \beta^2 + 1 \le R^2$. Furthermore, $y \langle \mathbf{w}^*, \mathbf{x} \rangle \ge 1$ (linearly separable) We show a sequence of R^2 examples on which the Perceptron makes R^2 mistakes.

$$(\alpha_1, 0, 1); \alpha_1 = \sqrt{R^2 - 1}$$

Now, on round t^th let the new example be such that the following conditions hold:

$$\begin{cases} (a) & \alpha^2 + \beta^2 + 1 = R^2 \\ (b) & \langle \mathbf{w}_t, (\alpha, \beta, 1) \rangle = 0 \end{cases}$$

We show that if $t \leq R^2$ both conditions will be satisfied:

$$\mathbf{w}^{(t-1)} = (a, b, t-1)$$

$$\|\mathbf{w}_{t-1}\| = (t-1)R^2 \Rightarrow a^2 + b^2 + (t-1)^2 = (t-1)R^2$$

$$(a, 0, t-1); a = \sqrt{(t-1)R^2 - (t-1)^2}$$
 Then for every B
$$\langle (a, 0, t-1), (\alpha, \beta, 1) \rangle = 0$$

$$\alpha + 1 \le R^2 \Rightarrow \beta = \sqrt{R^2 - \alpha^2 - 1}$$

$$\alpha^2 + 1 = \frac{(t-1)^2}{\alpha^2} + 1 = \frac{(t-1)^2}{(t-1)R^2 - (t-1)^2} + 1 = \frac{(t-1)R^2}{(t-1)R^2 - (t-1)^2} = R^2 \cdot \frac{1}{R^2 - (t-1)} \le R^2$$

where the last inequality assumes $R^2 \geq t$