Simulação Física para Jogos

Mark Joselli mark.joselli@pucpr.br

Sumário

- * Aula passada
- * Objetivos de hoje
- * Cinemática
- * Exercicio

Aula Passada

* Revisão de Vetores

Objetivos de Hoje

* Revisão de cinemática

Introdução

- * As leis de fisica nos dizem como colocar e mover os objetos em um jogo.
- * No mundo rela existem muitos fatores, de forma que nem todos podem ser calculados em um game;
- * Em um game é mais importante o aspecto visual e a resposta rapida do que a realidade;
- * Alguns fatores devem ser adaptados de forma que a aplicação fique interativa;

Cinematica

- * Greco quer dizer movimento;
- * é o ramo da Física que se ocupa da descrição dos movimentos dos corpos, sem se preocupar com a análise de suas causas (Dinâmica);

Corpos

- * Geralmente trabalha-se com partículas ou pontos materiais;
- * Nesses corpos:
 - * todos os seus pontos se movem de maneira igual
 - * são desprezadas suas dimensões em relação ao problema.

Referencial

- * Trata-se de um ponto de referência S em relação ao qual é definido o vetor posição do corpo em função do tempo.
- * Este vetor nos fornece a posição do corpo em um dado instante t.
- * De forma a facilitar os cálculos;
 - * Assume-se geralmente como origem do sistema de coordenadas a posição do corpo no instante inicial;
- * 0 instante t é escolhido arbitrariamente;
 - * Assume-se geralmente como o instante em que se dispara o cronômetro para a análise do fenômeno.

Referência

Unidades

- *Em um game não temos unidades tão bem definidas;
- *Mas para facilitar nossos calculos utilizaremos as unidades do SI;
- *Tempo em milisegundos (1s/1000), segundos (1000ms), minutos (60s), hora (3600s);
- *Peso em miligramas (0,001g), gramas (1000mg), kilogramas (1000g);
- *Espaço em:
 - *milimetros (0,001g), metros (1000mg), kilometros (1000g);
 - *Ou em pixels (px);

Velocidade

- * A velocidade de um corpo é dada pela relação entre o deslocamento de um corpo em determinado tempo.
- * Pode ser considerada a grandeza que mede o quão rápido um corpo se desloca.
- * A análise da velocidade se divide em dois principais tópicos: Velocidade Média e Velocidade Instantânea.

Velocidade

- * É uma grandeza vetorial:
 - * tem um módulo (valor numérico),
 - * uma direção (Ex.: vertical, horizontal,...)
 - * e um sentido (Ex.: para frente, para cima, ...)
- * As unidades de velocidade adotadas serão:
 - * m/s (metro por segundo);
 - * km/h (quilômetro por hora);
 - * px/s (pixels por segundo)

Velocidade média

- * Velocidade média é a razão do deslocamento pelo intervalo de tempo.
- * A velocidade média pode ser considerada escalar se for considerada apenas o módulo do deslocamento.
- * Pode-se definir a velocidade média como:
 - * $Vm = \Delta S/\Delta t$

* Um carro se desloca de Rio de Janeiro até Niteroi. Sabendo que a distância entre as duas cidades é de 13 km e que o percurso iniciou as 5 horas e terminou as 8 horas, calcule a velocidade média do carro durante o trajeto:

* Vados:

- * Unidades: Km,h,Km/h
- * Posição final: S = 13km
- * Tempo inicial: $T_0 = 5h$
- * Tempo final: $T_f = 8h$

* Um carro se desloca de Rio de Janeiro até Niteroi. Sabendo que a distância entre as duas cidades é de 13 km e que o percurso iniciou as 5 horas e terminou as 8 horas, calcule a velocidade média do carro durante o trajeto:

* Vados:

* Resolução

- * Unidades: Km,h,Km/h
- * Posição final: S = 13km
- * Tempo inicial: $T_0 = 5h$
- * Tempo final: $T_f = 8h$

- * $\Delta s = S_f S_0 = 13 0 = 13 \text{ km}$
- * $\Delta t = t_f t_0 = 8 5 = 3$

Velocidade Instantanea

- * A velocidade instantanea tem um conceito diferente: conforme o corpo anda durante o percurso, ele normalmente para, anda, e muda de velocidade. No carro é a velocidade marcada no velocimetro;
- * A velocidade instantânea de um móvel será encontrada quando se considerar um intervalo de tempo (Δt) infinitamente pequeno, ou seja, quando o intervalo de tempo tender a zero (Δt -> 0).
- * Se estivermos viajando a uma velocidade constante a velocidade instantanea é igual a velocidade media;

Movimento Uniforme

- * Quando um móvel se desloca com uma velocidade constante, diz-se que este móvel está em um movimento uniforme (MU).
- * Particularmente, no caso em que ele se desloca com uma velocidade constante em trajetória reta, tem-se um movimento retilíneo uniforme.
- * Uma observação importante é que, ao se deslocar com uma velocidade constante, a velocidade instantânea deste corpo será igual à velocidade média, pois não haverá variação na velocidade em nenhum momento do percurso.

Movimento Uniforme

* A equação horária do espaço pode ser demonstrada a partir da fórmula de velocidade média.

*
$$V = \Delta s/\Delta t$$

*
$$\Delta s = S - S_0$$

$$* S = S_0 + V*t$$

* Um personagem inicialmente está na posição 100px. Sabendo que a sua velocidade média é de 20px/s, calcule qual a distancia percorrida depois de 3s.

* Um personagem inicialmente está na posição 100px. Sabendo que a sua velocidade média é de 20px/s, calcule qual a distancia percorrida depois de 3s.

* Vados:

* Posição final: $S = ? S_0 = 100px ; t_0 = 0; t_f = 3s; v = 20px/s$

* Resolução

*
$$S = S_0 + V * \Delta t$$

* S= 100 + 20*3 = 160px

Movimento Uniformemente Variado

- * Também conhecido como movimento acelerado
- * Consiste em um movimento onde há variação de velocidade, ou seja, o móvel sofre aceleração à medida que o tempo passa.
- * I.E. tem aceleração constante e diferente de zero.
- * Na física, acelerar significa basicamente mudar de velocidade, tanto tornando-a maior, como também menor.

Aceleração

* Assim como para a velocidade, podemos definir uma aceleração média se considerarmos a variação de velocidade em um intervalo de tempo, e esta média será dada pela razão:

 $a_{m} = \Delta V / \Delta t$

* Um carro está indo inicialmente a 20 m/s, depois de 20 segundos está a 10m/s. Qual foi a aceleração neste intervalo em m/s?

* Um carro está indo inicialmente a 20 m/s, depois de 20 segundos está a 10m/s. Qual foi a aceleração neste intervalo em m/s?

* Vados

- $* V_0 = 20 \text{ m/s}$
- * $V_f = 10 \text{ m/s}$
- * t = 20
- * $a = (10-20)/20 = -0.5 \text{m/s}^2$

Velocidade em tunção do tempo

$$a_{\rm m} = \Delta v / \Delta t$$

*
$$\Delta v = v - v_0$$

*
$$V_f = V_0 + a * t$$

Velocidade em tunção do tempo

* Com aceleração constante

*
$$V = (V_0 + V_f)/2$$

. Sabemos que: $v = \Delta s/\Delta t$

*
$$\Delta s/\Delta t = (v_0 + v_f)/2$$

*
$$\Delta s = \frac{1}{2} (v_0 + v_f) \Delta t$$

Velocidade em tunção do tempo

. Sabemos que: $\Delta s = S - S_0$

*
$$S = S_0 + \frac{1}{2} * (v_0 + v_f) * \Delta t$$

*
$$S = S_0 + \frac{1}{2} * (v_0 + v_0 + a * \Delta t) * \Delta t$$

*
$$S = S_0 + v_0 * \Delta t + \frac{1}{2} * a * \Delta t^2$$

* O jogador está no carro a uma velocidade de 90km/h. Ele aperta os freios até parar. Sabendo que o freio desacelera o carro a uma taxa de -5m/s², quanto tempo ele leva para parar? Quanto ele andará até parar?

* O jogador está no carro a uma velocidade de 90km/h. Ele aperta os freios até parar. Sabendo que o freio desacelera o carro a uma taxa de -5m/s², quanto tempo ele leva para parar? Quanto ele andará até parar?

* Pados: V = 0; $V_0 = 90 \text{km/h} = 25 \text{ m/s}$; $a = -5 \text{m/s}^2$

* Vf = V0 + a*t -> 0 = 25 - 5 * t -> t = 5s

* $S = S_0 + V_0 * \Delta t + \frac{1}{2} * a * \Delta t^2$

* $S = 0 + 25*5 + \frac{1}{2}*(-5)*(5)^2$

* S = 62,5 m

Gravidade

*
$$g = 9.8 \text{m/s}^2$$

$$*a=g$$

*
$$V_f = V_0 - g^* t$$

*
$$S = S_0 + V_0 * \Delta t - \frac{1}{2} g * \Delta t^2$$

Movimento em mais de uma dimensão

- * A grande diferença entre movimento 20 e 30, e o 10, é que envolve a direção;
- * Lembrando deslocamento, velocidade e aceleração são vetores;

Peslocamento em 1 d

Peslocamento em 20

Peslocamento como Vetores

Peslocamento como Vetores

* Suponha que um objeto no game se movimenta do ponto [50,400] para o ponto [650,100]. Qual foi o deslocamento desse objeto?

- * Suponha que um objeto no game se movimenta do ponto L50,4001 para o ponto L650,1001.Qual foi o deslocamento desse objeto?
 - * Pados: r₀ = [50,400]; r=[650,100]
 - * $\Delta r = r r_0$
 - * $\Delta r = [650, 100] [50, 400] = [600, -300]$

Velocidade

* 0 mesmo se aplica a velocidade

* $V = \Delta r / \Delta t$

* Suponha que um objeto no game se movimenta do ponto [50,400] para o ponto [550,100] em 3s. Qual a velocidade media desse objeto?

* Suponha que um objeto no game se movimenta do ponto L50,4001 para o ponto L650,1001 em 3s. Qual a velocidade media desse objeto?

* $V = \Delta r / \Delta t$

* V = [6000, -300]/3 = [200, -100]

A equação do MUV

- * $r = r_0 + v_0 + t + \frac{1}{2} + a + t^2$
- * $V = V_0 + a * t$

* Um avião no game tem velocidade de 10 m/s em um angulo de 53°, quando ele é acelerado a uma taxa de 5m/s² @ 30°. Qual será a nova velocidade em 3s?

- * Um avião no game tem velocidade de 10 m/s em um angulo de 53°, quando ele é acelerado a uma taxa de 5m/s² @ 30°. Qual será a nova velocidade em 3s?
 - * Pados: $V_i = 10 \text{m/s} @ 53^\circ$; t = 3s; $a = 5 \text{m/s}^2 @ 30^\circ$
 - * Como estamos em coordenadas polares. Temos de calcular elas em velocidade cartesiana. Sendo assim:
 - * x corresponde a magnitude * cos(@)
 - * y corresponde a magnitude * sin(@)

*
$$v_x = 10 * \cos(53) = 6$$

*
$$v_y = 10 * \sin(53) = 8$$

$$* a = 5 \text{m/s}^2 @ 30^\circ$$

*
$$a_x = 5 * \cos(30) = 4.3$$

*
$$a_y = 5 * \sin(30) = 2.5$$

$$*$$
 $a = [4.3 2.5]$

$$* V = V_0 + a * t$$

Exercício - nave espacial

Usando vetores, faça com que uma nave rotacione e se desloque em direção à posição que o usuário clicar com o mouse;

Independentemente da posição em que o objeto esteja na tela, o tempo de deslocamento de um ponto até a posição clicada deve ser de 0.5 segundos.

Desenvolva o sistema de disparo de projéteis e considere seu deslocamento como um MUV.

