

Bài giảng môn học:

Kỹ nghệ tri thức và học máy

Chương 2: Thu thập và chuẩn bị dữ liệu (phần 02)

Đặng Văn Nam dangvannam@humg.edu.vn

Nội dung

- 1. Giới thiệu
- 2. Tạo đối tượng cơ bản trong Pandas
 - Series
 - Dataframe
- 3. Quan sát và truy xuất dữ liệu trong DataFrame
- 4. Replacing Values, Rename Columns
- 5. Lọc dữ liệu trong DataFrame
- 6. Xác định các tham số thống kê: Sum, Cumsum, Min, Max, Mean, Median, Std
- 7. Giá trị duy nhất (Unique)
- 8. Time series data

1. Giới thiệu

1. Giới thiệu

Pandas là một thư viện mã nguồn mở được xây dựng dựa trên NumPy, sử dụng để thao tác và phân tích dữ liệu. Với Pandas chúng ta có thể:

- Xử lý tập dữ liệu khác nhau về định dạng: chuỗi thời gian, bảng không đồng nhất, ma trận dữ liệu
- Import dữ liệu từ nhiều nguồn khác nhau như CSV, DB/SQL...
- Xử lý vô số phép toán cho tập dữ liệu: subsetting, slicing, filtering, merging, groupBy, re-ordering, and re-shaping,..
- Xử lý dữ liệu mất mát theo mong muốn.
- Xử lý, phân tích dữ liệu tốt như mô hình hoá và thống kê.
- Tích hợp tốt với các thư viện khác của python. https://pandas.pydata.org/

1. Giới thiệu

Pandas làm việc thông qua 3 đối tượng Series, DataFrame, Panel

^{1 #}Kiểm tra phiên bản của thư viện Pandas

² **import** pandas **as** pd

³ print('Version Pandas: ',pd.__version__)

2. Series, DataFrame trong Pandas

2.1 Series

 Series là mảng một chiều (1D) giống như kiểu vector trong Numpy, hay như một cột của một bảng, nhưng nó bao gồm thêm một bảng đánh index.

2.1 Series

Tạo Series sử dụng phương thức;

pd.Series(data, index, dtype, name)

```
1 #Tạo một đối tượng series
2 #index mặc định đánh số từ 0
3 data = pd.Series([2.8, 3, 4.44, 5])
4 data

0 2.80
1 3.00
2 4.44
3 5.00
dtype: float64
```

```
#Mỗi một đối tượng series bao gồm 2 thành phần
| #1. Values
| #2. index
| print('Values:', data.values)
| print('Indices:', data.index)
```

```
Values: [2.8 3. 4.44 5. ]
Indices: RangeIndex(start=0, stop=4, step=1)
```

```
print('Values:', data.values)
print('Indices:', data.index)

Values: [0.25 0.5 0.75 1. ]
Indices: Index(['a', 'b', 'c', 'd'], dtype='object')
```

2.2 DataFrame

DataFrame: Cấu trúc dạng bảng 2D, kích thước có thể thay đổi được. Dữ liệu một cột là đồng nhất nhưng có thể không đồng nhất giữa các cộ

2.2 DataFrame

Tạo DataFrame sử dụng phương thức;

pd.DataFrame(data, index, columns,dtype)

```
#Tao môt DataFrame từ một biến Dict
#Chỉ số được tạo mặc định từ 0
data_dict = {
    'apples': [3, 2, 0, 1],
    'oranges': [0, 3, 7, 2]}

purchases = pd.DataFrame(data_dict)
purchases
```

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

	apples	oranges
June	3	0
Robert	2	3
Lily	0	7
David	1	2

3. Quan sát và truy cập dữ liệu trong DataFrame

3.1 Quan sát dữ liệu

- Đọc file dữ liệu mẫu: csv_Data_loan (Bài 06)
- Đây là file dữ liệu cho biết thông tin về các khoản vay cho các mục đích khác nhau của người dùng Mỹ.

3.1 Quan sát dữ liệu

- CONG NGHE THONG TIN

 KHOA

 CONG NGHE THONG TIN

 A

 THE TARRACTION TEXTS A

 A

 THE TARRACTION TEXTS A
- df.info() : Hiển thị thông tin chi tiết biến DataFrame
- df.head(n): Hiển thị n dòng đầu tiên của biến df (default = 5)
- df.tail(n): Hiển thị n dòng cuối cùng biến df (default = 5)
- df.shape: Hiển thị kích thước (rows x columns) của biến df
- df.columns: Tên các cột trong biến df
- df.isnull(): Kiểm tra dữ liệu rỗng trong biến df
- df.isnull().sum(): Tính tổng các dòng dữ liệu null trong df
- df.count(): Tổng số dòng dữ liệu không null trong df
- df.size : Số phần tử của biến df (=rows x columns)
- df.dtypes : Kiếu dữ liệu của từng columns trong df

3.1 Quan sát dữ liệu

- KHOA

 CONG NGHÉ THÔNG TIN

 THE TARROTTON TECHNOLOGY

 TO THE TARROTTON TECH
- df.describe() : Một số đặc trưng thống kê của biến df
 - Tham số include ='O': thống kê các cột có kiểu dữ liệu Object
 - Tham số include='all': Thống kê tất cả các cột trong df

```
#Quan sát một số đặc trưng thống kê của df
#Thống kê các cột dữ liệu Object
df_loan.describe(include='0')
```

		term	home_ownership	purpose	addr_state	verification_status
С	ount	163987	163987	163987	163987	163987
un	ique	2	6	14	50	2
	top	36 months	MORTGAGE	debt_consolidation	CA	verified
	freq	129950	79714	93261	28702	104832

 df[['Col1', 'Col2', 'Col3']]: Chỉ truy cập dữ liệu của các cột có tên Col1, Col2, Col3 trong dataframe df

```
#Truy xuất dữ liệu theo cột
#Lấy dữ liệu của một cột
df_state = df_loan[['addr_state']]
df_state.head()
```

	addr_state
0	AZ
1	GA
2	IL
3	CA
4	AZ

```
#Truy xuất dữ liệu theo cột
#Chỉ lấy dữ liệu của 3 cột: loan_amnt, int_rate, purpose
df_loan1 = df_loan[['loan_amnt','int_rate','purpose']]
df_loan1.head()
```

	loan_amnt	int_rate	purpose
0	5000	10.65	credit_card
1	2500	15.27	car
2	2400	15.96	small_business
3	10000	13.49	other
4	5000	7.90	wedding

 df.iloc[[index_row],[index_col]]: Truy cập tới dữ liệu của hàng và cột qua chỉ số index_row, index_col (tương tự như với Numpy)

```
#Sử dụng .iloc truy xuất dữ liệu như với Numpy
#Truy xuất 10 dòng dữ liệu từ [10 --> 20) tất cả các cột
df loan.iloc[10:20,:]
```

	loan_amnt	term	int_rate	emp_length	home_ownership	annual_inc	purpose	addr_state	dti	delinq_2yrs	revol_util	total_acc	bad_loan l
10	9000	36 months	13.49	0.0	RENT	30000.00	debt_consolidation	VA	10.08	0.0	91.70	9.0	1
11	3000	36 months	9.91	3.0	RENT	15000.00	credit_card	IL	12.56	0.0	43.10	11.0	0
12	10000	36 months	10.65	3.0	RENT	100000.00	other	CA	7.06	0.0	55.50	29.0	1
13	1000	36 months	16.29	0.0	RENT	28000.00	debt_consolidation	МО	20.31	0.0	81.50	23.0	0
14	10000	36 months	15.27	4.0	RENT	42000.00	home_improvement	CA	18.60	0.0	70.20	28.0	0
15	3600	36 months	6.03	10.0	MORTGAGE	110000.00	major_purchase	СТ	10.52	0.0	16.00	42.0	0

 df.loc[[name_index],[name_col]]: Truy cập tới dữ liệu của hàng và cột qua name_index, tên cột name_col

```
#Truy cập từ dòng 20 đến dòng 25 của df
#chỉ lấy dữ liệu 4 cột: loan_amnt, home_ownership, purpose, addr_state
df_loan.loc[20:25,['loan_amnt','home_ownership','purpose','addr_state']]
```

	loan_amnt	home_ownership	purpose	addr_state
20	10000	RENT	debt_consolidation	CA
21	6000	RENT	major_purchase	CA
22	15000	MORTGAGE	credit_card	IL
23	15000	RENT	debt_consolidation	NY
24	5000	RENT	other	PA
25	4000	MORTGAGE	debt_consolidation	FL

Туре	Notes
df[val]	Select single column or sequence of columns from the DataFrame; special case conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set values based on some criterion)
df.loc[val]	Selects single row or subset of rows from the DataFrame by label
<pre>df.loc[:, val]</pre>	Selects single column or subset of columns by label
<pre>df.loc[val1, val2]</pre>	Select both rows and columns by label
<pre>df.iloc[where]</pre>	Selects single row or subset of rows from the DataFrame by integer position
<pre>df.iloc[:, where]</pre>	Selects single column or subset of columns by integer position
<pre>df.iloc[where_i, where_j]</pre>	Select both rows and columns by integer position
<pre>df.at[label_i, label_j]</pre>	Select a single scalar value by row and column label
df.iat[i, j]	Select a single scalar value by row and column position (integers)
reindex method	Select either rows or columns by labels
get_value, set_value methods	Select single value by row and column label

4. Replacing Values, Rename columns

4.1 Replacing Values

 Thay thế 1 giá trị trong Dataframe, thực hiện tương tự như với Numpy. Sử dụng loc; loc để xác định phần tử cần cập nhật,

thay đổi giá trị

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	credit_card	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	other	CA
4	5000	RENT	wedding	AZ
5	3000	RENT	car	CA
6	5600	OWN	small_business	CA
7	5375	RENT	other	TX
8	6500	OWN	debt_consolidation	AZ
9	12000	OWN	debt_consolidation	CA
10	9000	RENT	debt_consolidation	VA

1	#Thay thế giá trị purpose: credit card> wedding
	#của index đầu tiến
3	<pre>df new.loc[0,'purpose'] = 'wedding'</pre>
4	df_new

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	wedding	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	other	CA

```
1 #Thay thế giá trị thuộc tính loan_amnt: 2400 --> 8800
2 #của index = 2
3 df_new.iloc[2,0] = 8800
4 df_new
```

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	wedding	AZ
1	2500	RENT	car	GA
2	8800	RENT	small_business	IL
3	10000	RENT	other	CA

4.1 Replacing Values

df.replace(): Thay thế các giá trị trong toàn bộ DataFrame.
 (tham số inplace=True|False áp dụng thay đổi cho dataframe hiện tại hay không?).

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	credit_card	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	other	CA
4	5000	RENT	wedding	AZ
5	3000	RENT	car	CA
6	5600	OWN	small_business	CA
7	5375	RENT	other	TX
8	6500	OWN	debt_consolidation	AZ
9	12000	OWN	debt_consolidation	CA
10	9000	RENT	debt_consolidation	VA

	loan_amnt	home_ownership	purpose	addr_state
0	5000	MORTGAGE	credit_card	AZ
1	2500	MORTGAGE small_busine		GA
2	2400	MORTGAGE	small_business	IL

2 3	<pre>#Thay thế nhiều giá trị trong DataFrame #RENT> MORTGAGE #car> small_business df_new.replace({'RENT':'MORTGAGE',</pre>	01
-----	--	----

	loan_amnt	home_ownership	purpose	addr_state
0	5000	MORTGAGE	wedding	AZ
1	2500	MORTGAGE	small_business	GA
2	8800	MORTGAGE	small_business	IL
3	10000	MORTGAGE	other	CA
4	5000	MORTGAGE	wedding	AZ
5	3000	MORTGAGE	small_business	CA
6	5600	OWN	small_business	CA
7	5375	MORTGAGE	other	TX
8	6500	OWN	debt_consolidation	AZ
9	12000	OWN	debt_consolidation	CA
10	9000	MORTGAGE	debt_consolidation	VA

4.1 Replacing Values

df.replace(): Thay thế các giá trị theo từng cột (tham số inplace=True|False áp dụng thay đổi cho dataframe hiện tại hay không?).

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	credit_card	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	RENT other	
4	5000	RENT	wedding	AZ
5	3000	RENT	car	CA
6	5600	OWN	small_business	CA
7	5375	RENT	other	TX
8	6500	OWN	debt_consolidation	AZ
9	12000	OWN	debt_consolidation	CA
10	9000	RENT	debt_consolidation	VA

	loan_amnt	home_ownership	purpose	addr_state
0	5000	RENT	credit_card	Arizona
1	2500	RENT	car	Georgia
2	2400	RENT	small_business	Illinois
3	10000	RENT	other	California
4	5000	RENT	wedding	Arizona
5	3000	RENT	car	California

4.2 Rename Columns

df.rename(): thay thổi tên cột trong DataFrame

	Số tiền vay	Tình trạng nhà ở	Mục đích vay tiền	Địa chỉ
0	5000	RENT	credit_card	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	other	CA
4	5000	RENT	wedding	AZ

#Đổi tên cột sang viết hoa df_new.rename(str.upper, axis='columns')	02

	SÓ TIÈN VAY	TÌNH TRẠNG NHÀ Ở	MỤC ĐÍCH VAY TIỀN	ĐịA CHỈ
0	5000	RENT	credit_card	AZ
1	2500	RENT	car	GA
2	2400	RENT	small_business	IL
3	10000	RENT	other	CA
4	5000	RENT	wedding	AZ

Mô tả file dữ liệu: Data_Patient.csv

File dữ liệu chứa thông tin của 300 bệnh nhân bị bệnh tim mạch

Mỗi dòng ứng với thông tin của một bệnh nhân, bao gồm 9 thuộc

tính

⊿ A	В	С	D	E	F	G	Н	I 🖪
1 id	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_7	feature_8
2 Patient_01	63	Male	Typical angina	145	233	150	6	0
3 Patient_02	67	Male	Asymptomatic	160	286	108	3	1
4 Patient_03	67	Male	Asymptomatic	120	229	129	7	1
5 Patient_04	37	Male	Non-anginal pain	130	250	187	3	0
6 Patient_05	41	Female	Atypical angina	130	204	172		0
7 Patient_06	56	Male	Atypical angina	120	236	178	3	0
8 Patient_07	62	Female	Asymptomatic	140	268	160	3	1
9 Patient_08	57	Female	Asymptomatic	120	354	163	3	0
10 Patient_09	63	Male	Asymptomatic	130	254	147	7	1
11 Patient_10	53	Male	Asymptomatic	140	203	155	7	1
12 Patient_11	57	Male	Asymptomatic	140	192	148	6	0
13 Patient_12	56	Female	Atypical angina	140	294	153	3	0
14 Patient_13	56	Male	Non-anginal pain	130	256	142	6	1
15 Patient_14	44	Male	Atypical angina	120	263	173	7	0
16 Patient_15	52	Male	Non-anginal pain	172	199	162	7	0
17 Patient_16	57	Male	Non-anginal pain	150	168	174	3	0
18 Patient_17	48	Male	Atypical angina	110	229	168	7	1
19 Patient_18	54	Male	Asymptomatic	140	239	160	3	0
20 Patient_19	48	Female	Non-anginal pain	130	275	139	3	0
21 Patient_20	49	Male	Atypical angina	130	266	171	3	0
- →	Data_Patient	\oplus			: (D
Ready								+ 100%

Chi tiết thông tin của một bệnh nhân như sau:

- id: Mã của bệnh nhân (số)
- Feature_1: Tuổi của bệnh nhân (số)
- Feature_2: Giới tính của bệnh nhân (chuỗi: Male Female)
- Feature_3: Cho biết loại triệu chứng đau ngực mà bệnh nhân này mắc phải, với 4 giá trị: (Typical angina, Atypical angina, Non-anginal pain, Asymptomatic)
- Feature_4: Huyết áp của bệnh nhân đơn vị: mmhg (số)
- Feature_5: Chỉ số cholesterol của bệnh nhân đơn vị: mg/dl (số)
- Feature_6: Thông số nhịp tim của bệnh nhân đơn vị: lần/phút (số)
- Feature_7: Chỉ số Thalassemia của bệnh nhân chỉ gồm 3 giá trị (3: Bình thường | 4: Khiếm khuyết cố định | 7: Kiếm khuyết có thể đảo ngược)
- Feature_8: Cho biết bệnh nhân có bị bệnh tim hay không? (0: Không bị bệnh tim mạch | 1: Bị bệnh tim mạch)

Yêu cầu 1.1:

- Đọc dữ liệu từ file Data_Patient.csv vào biến kiểu dataframe: df_patient với cột feature_1 là cột chỉ số (index_col)
- Hiển thị thông tin tổng quan của tập dữ liệu
- Hiển thị thông tin của 10 bệnh nhân đầu tiên và 5 bệnh nhân cuối cùng của tập dữ liệu.
- Đặt lại tên cáq cột dữ liệu trong
 - ➤ Feature_2 → Gender
 - ➤ Feature_3 → Type
 - ➤ Feature_4 → Blood_pressure
 - Feature_5 → Cholesterol
 - ➤ Feature_6 → Heartbeat
 - ➤ Feature_7 → Thalassemia
 - Feature_8 → Result

Yêu cầu 1.2:

- Sử dụng phương thức .describe() cho biết:
 - Thuộc tính Age:
 - Tuổi của bệnh nhân trẻ nhất
 - Tuổi của bệnh nhân già nhất
 - Thuộc tính Cholesterol:
 - Cholesterol trung bình của các bệnh nhân
 - Độ lệch chuẩn của giá trị này trong toàn bộ tập dữ liệu
 - Bao nhiêu bệnh nhân giới tính nam (Male)
 - Có bao nhiêu giá trị khác nhau của thuộc tính Type.
 Giá trị xuất hiện nhiều nhất là giá trị nào, bao nhiêu lần

Gender	Туре
300	295
2	4
Male	Asymptomatic
205	139
	300 2 Male

Yêu cầu 1.3:

 Cho biết những cột nào trong dữ liệu có chứa missing data và số lượng missing là bao nhiêu?

Yêu cầu 1.4:

- Hiển thị thông tin của các bệnh nhân:
 - Bệnh nhân có index: Patient_100; Patient_150; Patient_200
 - Bệnh nhân ở vị trí 255 đến 260, với 3 thuộc tính: Age, Gender và
 Result

	Age	Gender	Туре	Blood_pressure	Cholesterol	Heartbeat	Thalassemia	Result
id								
Patient_100	45	Male	Asymptomatic	115	260	185	3.0	0
Patient_150	52	Male	Typical angina	152	298	178	7.0	0
Patient_200	50	Female	Asymptomatic	110	254	159	3.0	0

-		
42	Female	0
67	Female	0
76	Female	0
70	Male	0
57	Male	1
44	Female	0
	67 76 70 57	57 Male

<u>Yêu cầu 1.5:</u>

- Thay đổi giá trị cho thuộc tính Gender: Male → 0,
 Female →1
- Thay đổi giá trị cho thuộc tính Result: 0 → No, 1 → Yes
- Cập nhật giá trị thuộc tính Thalassemia của bệnh nhân có index: Patient_05 bằng giá trị 4.0

	Age	Gender	Туре	Blood_pressure	Cholesterol	Heartbeat	Thalassemia	Result
id								
Patient_01	63	0	Typical angina	145	233	150	6.0	No
Patient_02	67	0	Asymptomatic	160	286	108	3.0	Yes
Patient_03	67	0	Asymptomatic	120	229	129	7.0	Yes
Patient_04	37	0	Non-anginal pain	130	250	187	3.0	No
Patient_05	41	1	Atypical angina	130	204	172	4.0	No

• Để lọc dữ liệu trong DataFrame có thể sử dụng nhiều cách khác nhau

```
# # # ! # ! # ! # ! # ! # Cách 1:

df_male1 = df_bmi[df_bmi.Gender=='Male']

df_male1.head(2)
```

2	<pre>#Cách 2: sử dụng phương thức query df_male2 = df_bmi.query('Gender=="Male"')</pre>
3	df_male2.head(2)

	Personal	Gender	Height_cm	Weight_kg	
0	P1	Male	174	96	
1	P2	Male	189	87	

	Personal	Gender	Height_cm	Weight_kg
0	P1	Male	174	96
1	P2	Male	189	87


```
#Cách 3: sử dụng iLoc
df_male3 = df_bmi.loc[(df_bmi.Gender=="Male")]
df_male3.head(2)
```

	Personal	Gender	Height_cm	Weight_kg
0	P1	Male	174	96
1	P2	Male	189	87

 Sử dụng toán tử & (and) - | (or) - ~ (not) để kết hợp nhiều điều kiện trong khi lọc dữ liệu

df_p2

```
#Kết hợp nhiều tiêu chí lọc dữ liệu
#lọc người có giới tính Femal và cân nặng dưới 70kg
df_p1 = df_bmi[(df_bmi.Gender =='Female') & (df_bmi.Weight_kg<70)]
df_p1</pre>
```

	Personal	Gender	Height_cm	Weight_kg
24	P25	Female	172	67
25	P26	Female	151	64
32	P33	Female	195	65
51	P52	Female	176	54

1	#Kết hợp nhiều tiêu chí tìm kiếm
2	#Lọc người có chiều cao > 195 cm hoặc cân nặng > 150kg
3	<pre>df_p2 = df_bmi[(df_bmi.Height_cm >195) (df_bmi.Weight_kg>150)</pre>

	Personal	Gender	Height_cm	Weight_kg
28	P29	Female	163	159
29	P30	Male	179	152
34	P35	Female	157	153
36	P37	Female	197	114

O	2)

1	# toán tử ~ - Not
2	<pre>df_p3 = df_bmi[~(df_bmi.Weight_kg<155)]</pre>
3	df_p3

	Personal	Gender	Height_cm	Weight_kg
28	P29	Female	163	159
65	P66	Female	179	158

Sử dụng phương thức .isin() để kết lọc dữ liệu theo một tập hợp

```
#Loc ra những người có cân nặng bằng 150, 155 và 160kg
# phương thức isin (tương tự như in)
df_p4 = df_bmi[df_bmi.Weight_kg.isin([150,155,160])]
df_p4
```

	Personal	Gender	Height_cm	Weight_kg
102	P103	Male	161	155
106	P107	Male	166	160
123	P124	Female	184	160
134	P135	Female	171	155
135	P136	Female	183	150

6. Tính toán min, max, mean, median, std, sum, cumsum

6. Đặc trưng thống kê trong DataFrame

Sử dụng phương thức .max(), min(), sum(), mean(), median(), cumsum(), std() để tính các đặc trưng thống kê cho DataFrame hoặc theo từng cột.

```
#tim Max, Min của thuộc tính cân nặng
w_max = df_bmi['Weight_kg'].max()
w_min = df_bmi['Weight_kg'].min()
print('Cân nặng lớn nhất:',w_max, '(kg)')
print('Cân nặng nhỏ nhất:',w_min, '(kg)')
```

```
Cân nặng lớn nhất: 160 (kg)
Cân nặng nhỏ nhất: 50 (kg)
```

```
#tim Mean, Median của chiều cao
h_mean = df_bmi['Height_cm'].mean()
h_median = df_bmi['Height_cm'].median()
print('Chiều cao trung bình:',h_mean, '(cm)')
print('Trung vị:',h_median, '(cm)')
```

```
Chiều cao trung bình: 169.944 (cm)
Trung vị: 170.5 (cm)
```

```
#tìm độ lệch chuẩn của chiều cao, cân nặng
h_std = df_bmi['Height_cm'].std()
w_std = df_bmi['Weight_kg'].std()
print('sdt của chiều cao:', h_std)
print('sdt của cân nặng:', w_std)
```

```
sdt của chiều cao: 16.37526067959376
sdt của cân năng: 32.38260746964435
```

7. Xác định giá trị duy nhất (Unique)

7. Unique

- df.unique(): liệt kê danh sách các giá trị khác nhau trong một cột dữ liệu của DataFrame.
- df.value_counts(): Tính tổng số theo từng giá trị khác nhau trong một cột dữ liệu của DataFrame. Kết quả là một đối tượng series.

```
1 #Xác định giá trị duy nhất trong một cột
2 df bmi['Gender'].unique()
```

```
array(['Male', 'Female'], dtype=object)
```

```
1 #Vẽ đồ thi thể hiện kết quả
  plt.barh(unique_gender.index, unique_gender.values)
```

<BarContainer object of 2 artists>

```
1 #Thống kê số lượng theo giá trị duy nhất
  unique gender = df bmi['Gender'].value counts()
  unique gender
```

Female 255 Male 245

Name: Gender, dtype: int64

- Đọc dữ liệu từ file Data_Patient.csv vào biến kiểu dataframe: df_patient với cột feature_1 là cột chỉ số (index_col)
- Đặt lại tên các cột dữ liệu trong Dataframe

7	A	В	С	D	Е	F	G	Н	I
	id	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_7	feature_8
2	Patient_01	63	Male	Typical angina	145	233	150	6	0
3	Patient_02	67	Male	Asymptomatic	160	286	108	3	1
4	Patient_03	67	Male	Asymptomatic	120	229	129	7	1
5	Patient_04	37	Male	Non-anginal pain	130	250	187	3	0
6	Patient_05	41	Female	Atypical angina	130	204	172		0
	Patient_06	56	Male	Atypical angina	120	236	178	3	0
8	Patient_07	62	Female	Asymptomatic	140	268	160	3	1
9	Patient_08	57	Female	Asymptomatic	120	354	163	3	0
10	Patient_09	63	Male	Asymptomatic	130	254	147	7	1
11	Patient_10	53	Male	Asymptomatic	140	203	155	7	1
12	Patient_11	57	Male	Asymptomatic	140	192	148	6	0
13	Patient_12	56	Female	Atypical angina	140	294	153	3	0
14	Patient_13	56	Male	Non-anginal pain	130	256	142	6	1
15	Patient_14	44	Male	Atypical angina	120	263	173	7	0
16	Patient_15	52	Male	Non-anginal pain	172	199	162	7	0
17	Patient_16	57	Male	Non-anginal pain	150	168	174	3	0
18	Patient_17	48	Male	Atypical angina	110	229	168	7	1
19	Patient_18	54	Male	Asymptomatic	140	239	160	3	0
20	Patient_19	48	Female	Non-anginal pain	130	275	139	3	0
21	Patient_20	49	Male	Atypical angina	130	266	171	3	0
	← →	Data_Patient	\oplus			: 1			D
Rea	dy								+ 100%

- ➤ Feature_1 → Age
- ➤ Feature_2 → Gender
- ➤ Feature_3 → Type
- Feature_4 → Blood_pressu
- ➤ Feature_5 → Cholesterol
- ➤ Feature 6 → Heartbeat
- ➤ Feature_7 → Thalassemia
- ➤ Feature_8 → Result

Yêu cầu 2.2:

- Loc dữ liệu trong df_patient thành DataFrame:
 - df_male: chứa danh sách bệnh nhân Nam
 - df_female: chứa danh sách bệnh nhân nữ
 - df_no: danh sách những người không bị bệnh đau tim

Yêu cầu 2.3:

- __ df_yes: danh sách những người bị bệnh đau tim Lọc trong df_patient dưa ra danh sách bệnh nhân thỏa mãn yêu cầu sau:
 - Những người bị mắc bệnh đau tim và trên 70 tuổi
 - Người có giới tính Female, có huyết áp trên 170 mmhg nhưng không bị bệnh đau tim.
 - 3. Những người có triệu chứng đau ngực là Typical angina, giới tính Male và bị bệnh đau tim.

Yêu cầu 2.4: Xác định:

- Chỉ số huyết áp (Blood_pressure) thấp nhất, cao nhất, trung bình, trung vị và độ lệch chuẩn của tập dữ liệu
- 2. Chỉ số nhịp tim (**Heartbeat**) thấp nhất, cao nhất, trung bình, trung vị và độ lệch chuẩn của tập dữ

1. Chỉ số huyết áp:

Min: 94 Max: 200

Mean: 131.6866666666667

Median: 130.0

Std: 17.682497692285477

Chỉ số nhịp tim:

Min: 71 Max: 202

Mean: 149.563333333333333

Median: 152.5

Std: 22.818595118151098

Yêu cầu 2.5: Xác định:

1. Số giá trị khác nhau của thuộc tính **Type**

2. Vẽ đồ thị dạng cột thể hiện kết quả thống kê số lượng theo từng giá trị khác nhau của thuộc tính

Asymptomatic 139
Non-anginal pain 84
Atypical angina 49
Typical angina 23

