Named Entity Recognition (NER) - Complete Guide

What is Named Entity Recognition?

Named Entity Recognition (NER) is a natural language processing technique that identifies and classifies named entities in text into predefined categories such as person names, organizations, locations, dates, and more. It's a crucial component in information extraction and text understanding systems.

NER Pipeline Steps

```
Raw Text Input

Text Preprocessing
(Tokenization, Normalization)

Feature Extraction
(Word embeddings, POS tags, etc.)

Entity Detection
(Identify potential entities)

Entity Classification
(Assign entity types)

Post-processing
(Validation, Correction)

Structured Output
(Labeled entities with types)
```

Detailed Steps:

- 1. **Text Preprocessing**: Clean and tokenize the input text
- 2. **Feature Extraction**: Extract relevant features for each token
- 3. Sequence Labeling: Use models to predict entity labels
- 4. Entity Boundary Detection: Identify start and end of entities
- 5. Entity Classification: Assign appropriate category labels
- 6. **Post-processing**: Validate and refine results

Categories of Named Entities

Entity Type	Code	Description	Examples
Person	PER/PERSON	Names of people	"John Smith", "Marie Curie"
Organization	ORG	Companies, institutions	"Google", "Harvard University"
Location	LOC/GPE	Geographic locations	"New York", "Mount Everest"
Date	DATE	Dates and times	"January 15, 2024", "yesterday"
Money	MONEY	Monetary values	"\$100", "€50"
Percentage	PERCENT	Percentage values	"25%", "half"
Facility	FAC	Buildings, airports, highways	"Brooklyn Bridge", "JFK Airport"
Product	PRODUCT	Objects, vehicles, foods	"iPhone", "Toyota Camry"
Event	EVENT	Named hurricanes, battles	"World War II", "Hurricane Katrina"
Work of Art	WORK_OF_ART	Titles of books, songs	"The Great Gatsby", "Bohemian Rhapsody"
Language	LANGUAGE	Named languages	"English", "Spanish"
Nationality	NORP	Nationalities, groups	"American", "Buddhist"

Python Programs for NER

Program 1: Basic NER with spaCy

```
import spacy
# Load the English language model
nlp = spacy.load("en core web sm")
def extract entities(text):
  """Extract named entities from text using spaCy"""
  doc = nlp(text)
  entities = []
  for ent in doc.ents:
     entities.append({
       'text': ent.text,
       'label': ent.label,
       'description': spacy.explain(ent.label ),
       'start': ent.start char,
       'end': ent.end char
     })
  return entities
# Example usage
sample text = """
Apple Inc. was founded by Steve Jobs in Cupertino, California on April 1,
1976.
The company is now worth over $2 trillion and employs more than
150,000 people worldwide.
*****
entities = extract entities(sample text)
print("Named Entities Found:")
print("-" * 50)
for entity in entities:
  print(f"Text: {entity['text']}")
```

```
print(f''Label: {entity['label']} ({entity['description']})")
print(f''Position: {entity['start']}-{entity['end']}")
print("-" * 30)
```

Output:

Named Entities Found:

Text: Apple Inc.

Label: ORG (Companies, agencies, institutions, etc.)

Position: 1-10

Text: Steve Jobs

Label: PERSON (People, including fictional)

Position: 26-36

Text: Cupertino

Label: GPE (Countries, cities, states)

Position: 40-49

Text: California

Label: GPE (Countries, cities, states)

Position: 51-61

Text: April 1, 1976

Label: DATE (Absolute or relative dates or periods)

Position: 65-78

Text: over \$2 trillion

Label: MONEY (Monetary values, including unit)

Position: 108-123

T (150,000

Text: more than 150,000

Label: CARDINAL (Numerals that do not fall under another type)

Position: 136-152

Program 2: Resume Parser using NER

```
import spacy
import re
from collections import defaultdict
class ResumeParser:
  def init (self):
     self.nlp = spacy.load("en core web sm")
  def extract contact info(self, text):
     """Extract contact information from resume text"""
     # Email extraction
    email pattern = r' b[A-Za-z0-9. \%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z0-9.]+
                          z]{2,}\b'
     emails = re.findall(email pattern, text)
     # Phone extraction
    phone pattern = r'(\+\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]
                                .\s]?\d{3}[-.\s]?\d{4}'
     phones = re.findall(phone pattern, text)
     return {
       'emails': emails,
       'phones': [phone[1] if phone[0] else phone for phone in phones]
     }
  def extract entities by type(self, text):
     """Extract and categorize named entities"""
     doc = self.nlp(text)
     entities = defaultdict(list)
     for ent in doc.ents:
       entities[ent.label ].append(ent.text)
     return dict(entities)
  def parse resume(self, resume text):
    """Main function to parse resume"""
    contact info = self.extract contact info(resume text)
     entities = self.extract entities by type(resume text)
```

```
return {
       'contact info': contact info,
       'organizations': entities.get('ORG', []),
       'locations': entities.get('GPE', []),
       'dates': entities.get('DATE', []),
       'skills mentioned': entities.get('PRODUCT', []),
       'all entities': entities
     }
# Example usage
sample resume = """
John Doe
Software Engineer
Email: john.doe@email.com
Phone: (555) 123-4567
Experience:
Software Engineer at Google Inc. (2020-2023)
- Developed applications using Python and JavaScript
- Worked on machine learning projects
Education:
Bachelor of Science in Computer Science
Stanford University (2016-2020)
Located in Palo Alto, California
Skills: Python, Java, React, TensorFlow
parser = ResumeParser()
results = parser.parse resume(sample resume)
print("Resume Parsing Results:")
print("=" * 50)
print(f"Contact Info: {results['contact info']}")
print(f"Organizations: {results['organizations']}")
print(f"Locations: {results['locations']}")
print(f"Dates: {results['dates']}")
```

Program 3: NER Visualization with spaCy

```
import spacy
from spacy import displacy
def visualize entities(text, style="ent"):
  """Visualize named entities in text"""
  nlp = spacy.load("en core web sm")
  doc = nlp(text)
  # Generate HTML visualization
  html = displacy.render(doc, style=style, jupyter=False, page=True)
  # Save to file
  with open("ner visualization.html", "w", encoding="utf-8") as f:
    f.write(html)
  print("Visualization saved to 'ner visualization.html")
  # Print entity information
  print("\nEntity Analysis:")
  print("-" * 40)
  for ent in doc.ents:
    print(f"\{ent.text:20\} \mid \{ent.label\_:10\} \mid \{spacy.explain(ent.label\_)\}")
# Example usage
news text = """
Breaking News: Tesla CEO Elon Musk announced on Twitter that the
company
will build a new Gigafactory in Austin, Texas by December 2024.
The $5 billion investment will create 10,000 jobs and produce
500,000 vehicles annually.
visualize entities(news text)
```

Output

Entity Analysis:

Elon Musk	PERSON	People, including fictional
Twitter	PERSON	People, including fictional
Austin	GPE	Countries, cities, states
Texas	GPE	Countries, cities, states
December 2024	DATE	Absolute or relative dates or
		periods
\$5 billion	MONEY	Monetary values, including unit
10,000	CARDINAL	Numerals that do not fall under
another type		
500,000	CARDINAL	Numerals that do not fall under
another type		
annually	DATE	Absolute or relative dates or periods

NER Use Cases in Daily Life

Business Applications:

- **Customer Service**: Automatically extract customer names, account numbers, and issues
- **Email Processing**: Identify important contacts, dates, and action items
- **Document Management**: Auto-tag documents with companies, people, and locations

Content & Media:

- News Analysis: Track mentions of politicians, companies, and events
- **Social Media Monitoring**: Identify trending people, places, and topics
- Content Recommendation: Suggest related articles based on extracted entities

Healthcare:

- **Medical Records**: Extract patient names, medications, and treatment dates
- Clinical Research: Identify study participants and medical conditions

• Insurance Processing: Extract policy numbers, dates, and claim amounts

Finance:

- Transaction Processing: Identify merchants, amounts, and dates
- Fraud Detection: Flag unusual patterns in entity mentions
- Investment Research: Track company mentions and financial figures

Personal Applications:

- **Email Organization**: Auto-sort emails by sender, company, or topic
- Calendar Management: Extract meeting participants and locations
- Travel Planning: Identify destinations, dates, and booking references