Relaxation Behavior of Network Polymers with Random Connectivity

Hiroshi Sasaki

Toagosei Co., Ltd.

July 19, 2023

- 1 はじめに
 - 本研究の目標とアプローチ
 - ゴムの強靭性

本研究の目標とアプローチ

目標

- 高分子材料の破壊耐性向上の設計指針を得たい。
- 耐久性、可逆性に優れた材料として、 ゴム材料(柔らかいネットワーク)をターゲット

アプローチ

- 実験的アプローチ
 - 超分子前駆体から構造明確な三分岐ネットワーク
 - フィラー無添加での高い破断伸びと強度
 - 既知のモデルとの多数の整合点と、よくわからない点。
- ◆ シミュレーションでモデルを構築
 - 単純化したモデルで小さなスケールから始めたい。
 - 長さの揃ったストランドで MD シミュレーション

本研究の目標とアプローチ

- 「接着接合」への高分 子の利用
 - 柔らかさを生かした「弾性接着接合」
 - 耐久性、可逆性に優れたゴム材料に注目
- 耐久性が不明確
 - とくに疲労破壊に 対して

破壊エネルギーとヒステリシスロス

- ヒステリシスロス
 - 変形履歴による力学応答変化
 - サイクル変形でエネルギー散逸
- 破壊エネルギーと正の相関^a
 - 変形温度にも強く依存
 - SBR のガラス転移温度との距離?
- ヒステリシスロス発生の起源
 - 粘弾性に基づくもの
 - 結晶化に由来するもの
 - 添加したフィラーに起因

^aK.A.Grosch, J.A.C.Harwood, A.R.Payne, Rub., Chem. Tech., 41, 1157(1968)

^bA.R.Payne, J.Poly.Sci.:Sympo., 48, 169(1974)

S-S curves for SBR at veried temp. and speed

高速変形で SBR でも伸びきり効果が発現 a

^aT.L. Smith, R.A. Dickie, J. Pol. Sci. part A-2, 7 635 (1969)

ゴムの破壊と時間温度換算則

ゴムの破壊について

クラック先端での大変形を伴う非線形現象だが、 時間温度換算則の成立が多数報告 ^a

^aSmith T., Stedry P., J. Appl. Phys., 31 1892 (1960)

亀裂先端近傍での大変形

時間温度換算則の成立

Fig. 1. Ultimate properties of an SBR rubber measured at different strain rates and temperatures. Data plotted against the logarithm of the time to break (4) reduced to -10° C. (Data from work cited in faotnote 1.)