Para esta tarea se implementó un método de búsqueda guiada, el método que implementé fue búsqueda local iterada, a continuación se desscriben las pertubaciones usadas en el algoritmo y todo lo usado en el mismo.

Primer Perturbación

La primera perturbación fue extraíada de $\ddot{a}sd$; el proceso es extraer r nodos generados aleatoriamente, el primer paso es extraer tomar el nodo v tal que

$$\arg\min_{v\in T} c(v, v_1) - c(v, w),$$

donde el nodo v_1 es el nodo consecutivo a v_1 en el tour y w es el nodo más cercano a v. Es decir que estamos buscando el nodo en el tour tal que minimiza el costo de agregar (v, w) y eliminar (v, v_1) . Una vez v está seleccionado tomamos al azar entre los aristas (w_{2i-1}, w_{2i}) para i = 1, 2, 3 donde los w_{2i-1} son los 3 más cercanos a v seleccionados entre k nodos generados aleatoriamente, todo lo anterior está reflejado en el siguiente pseudocódigo

Algorithm 1 Primer Perturbación

- 1: Entrada: Tour T, número de nodos a extraer r, parámetro k
- 2: Salida: Tour perturbado T'

3:

- 4: Seleccionar aleatoriamente r nodos del tour T
- 5: for cada nodo v seleccionado do
- 6: Sea v_1 el nodo consecutivo a v en el tour
- 7: Sea w el nodo más cercano a v que no está en T
- 8: Calcular $c(v, v_1) c(v, w)$
- 9: Seleccionar v si minimiza
- 10: end for
- 11: Escoger aleatoriamente aristas (w_{2i-1}, w_{2i}) para i = 1, 2, 3
- 12: Donde w_{2i-1} son los 3 nodos más cercanos a v entre los k de la muestra aleatoria
- 13: Construir el nuevo tour T' borrando las aristas seleccionadas de T
- 14: return T'

Para nuestras pruebas fijamos k=r y usamos $r=\alpha N$ con N el número de ciudades en el tour y α con valores 0.023 y 0.03.

Segunda Perturbación

Para esta perturbación lo que hicimos fue seleccionar 3 índices aleatoriamente i_0, i_1, i_2 y con esto dividir el tour en 4 partes. El segmento tour[0, i_0], tour[i_0 + 1, i_1], tour[i_1 + 1, i_2] y tour [i_2 + 1, N-1] y generar un nuevo tour pero con estos segmentos permutados de la siguiente manera, permutar tour[0, i_0] con tour[i_0 + 1, i_1] y tour[i_1 + 1, i_2] con tour[i_2 + 1, N-1]. Esto nos garantiza un cambio al menos 3 - opt y a lo más 4 - opt haciendo que nos salgamos de la vecindad que estamos explorando que es la 2 - opt.

Búsqueda local iterativa

El algoritmo se implementó tal y como fue visto en clase, el historial de perturbación únicamente fue un set de vectores de perturbaciones tal que si la perturbación ya se había explorado, entonces se volvía a perturbar y continuaba la búsqueda local iterativa. El pseudocódigo de nuestra ILS es el siguiente

Algorithm 2 Búsqueda Local Iterativa

```
1: Entrada: Solución actual act ans, costo cost, matriz de distancias dstMat, nodos cercanos nearNodes,
    parámetro \alpha, índice de hilo threadIdx, tiempo límite T
 2: Salida: Solución optimizada act ans con costo cost
 3: N \leftarrow \text{tamaño de } act \quad ans
 4: Inicializar conjuntos pert history
 5: Iniciar temporizador start
 6: Aplicar búsqueda local sobre act ans y cost
 7: while CurrentExecutionTime(start) \leq T do
       pertCost \leftarrow cost
 8:
       Inicializar perturbation como vector de tamaño N
 9:
       perturbation \leftarrow pert(\alpha, act\ ans, dstMat, nearNodes, cost, pertCost)
10:
       if perturbation \notin pert history then
11:
           Agregar perturbation a pert history
12:
       else
13:
           perturbation \leftarrow pert(\alpha, act\ ans, dstMat, nearNodes, cost, pertCost)
14:
           Agregar perturbation a pert history
15:
16:
       end if
       Aplicar búsqueda local sobre perturbation y pertCost
17:
18:
       if pertCost < cost then
           act ans \leftarrow perturbation
19:
           cost \leftarrow pertCost
20:
       end if
21:
22: end while
23: return act ans, cost
```

En la siguiente página se encuentran los resultados de las ejecuciones del código

Resultados

A continuación la tabla de estadísticos, los plots de medias y los boxplots por perturbación

Estadístico	Instancia d493	Instancia d657	Instancia dsj1000
Mejores soluciones halladas			
N/A	35002	48912	18660188
Primera perturbación $\alpha = 0.02$			
Mínimo	34927	48716	18851503
Máximo	35406	49169	19063675
Promedio	35155.8	48943.53	18953666.2
Primera perturbación $\alpha = 0.05$			
Mínimo	35861	51819	19977883
Máximo	36546	53261	20494738
Promedio	36143.66	54514.51	20296778.63
Segunda perturbación			
Mínimo	35051	49014	19091957
Máximo	35428	49751	19425252
Promedio	35235.66	49355.73	19280190.46
Segunda perturbación			
Mínimo	35051	49014	19091957
Máximo	35428	49751	19425252
Promedio	35235.66	49355.73	19280190.46

Cuadro 1: Comparación de fitness

Figura 1: Gráficas de calidad media.

Figura 2: BoxPlots de la primera perturbación $\alpha = 0.02$.

Figura 3: BoxPlots de la primera perturbación $\alpha = 0.05$.

Figura 4: BoxPlots de la segunda perturbación.

Conclusiones

Como podemos notar la primer perturbación es la que mejores resultados da cuando se tiene un parámetro $\alpha=0.02$, en el caso del reseteo completo no se encuentra muchas mejoras. Y las otras dos perturbaciones se quedan algo lejos de los resultados de esta. Podemos notar que la búsqueda local iterada presenta una

mejora muy importante en este problema y en el caso de las dos primeras instancias se logra incluso mejorar lo mejor hallado y en la tercera nos acercamos bastante.