## **Inspira Crea Transforma**



# Proyecto Integrador Procesamiento de texto



### **Equipo 4**



Juan Diego Estrada Pérez Ing. Sistemas



Andrés Franco Zapata Ing. Sistemas



Liceth Mosquera Galvis Ing. Eléctrica



Alejandro Palacio Vásquez Ing. Matemático



Johan Steward Rios Ing. Matemático



#### **Contexto**



Minería o Analítica de texto

Primeros estudios 1.950[1]

Respuesta a Tendencias y Avances Tecnológicos

Analizar datos no estructurados

## **Objetivo General**

- 1. Recuperación de la información
- 2. Procesamiento de Lenguajes Naturales (NLP)
- 3. Extracción de la información
- 4. Minería de datos





### **Arquitectura**





### Proceso de Indexación



- Formatos .txt , .pdf y .dc
- Mismo dominio de interés
- 980 documentos
- 13 millones de palabras
- Promedio 12.900 palabras x documento







## Proceso de Búsqueda

Índice Invertido

<Doc, TFIDF, TF, Length>



Estructura de datos más utilizada en los sistemas de búsqueda y recuperación de información

Query

Para **calificar** las búsquedas usamos la función *Okapi BM25 [3]* 

$$score(D, Q) = \sum_{i=1}^{n} IDF(q_i) * \frac{f(q_i, D) * (k_1 + 1)}{f(q_i, D) + k_1 * (1 - b + b * \frac{|D|}{avgdl})}$$

$$k_1 = 1.2, b = 0.75$$

Existen varios tipos de modelos para **calificar** y **recuperar** información



### Proceso de Validación

Valoración Experto

Para hacer las comparaciones seleccionamos a **MetaPy** como el experto [4]

Validación

Para realizar la validación analizamos la matriz de **confusión** [5]

#### MetaPy



• Precisión = 
$$\frac{TP}{TP+FP} \approx 1$$

• Recall = 
$$\frac{TP}{TP+FN}$$



### Proceso de Validación

Valoración Experto

**Ejemplo** 

|                    | Indri | Lucene | MALLET | LIBLINEAR | SVM <sup>MULT</sup> | scikit | CoreNLP  | META     |
|--------------------|-------|--------|--------|-----------|---------------------|--------|----------|----------|
|                    | IR    | IR     | ML/NLP | ML        | ML                  | ML/NLP | ML/NLP   | all      |
| Feature generation | ✓     | ✓      | ✓      |           |                     | ✓      | <b>✓</b> | <b>√</b> |
| Search             | ✓     | ✓      |        |           |                     |        |          | <b>√</b> |
| Classification     | İ     |        | ✓      | ✓         | ✓                   | ✓      | ✓        | <b>√</b> |
| Regression         | İ     |        | ✓      | ✓         | ✓                   | ✓      | ✓        | <b>√</b> |
| POS tagging        | İ     |        | ✓      |           |                     |        | ✓        | <b>√</b> |
| Parsing            | İ     |        |        |           |                     |        | ✓        | <b>√</b> |
| Topic models       | İ     |        | ✓      |           |                     | ✓      |          | <b>√</b> |
| n-gram LM          |       |        |        |           |                     |        |          | ✓        |
| Word embeddings    |       |        | ✓      |           |                     |        | ✓        | <b>√</b> |
| Graph algorithms   |       |        |        |           |                     |        |          | <b>√</b> |
| Multithreading     |       | ✓      | ✓      |           |                     | ✓      | ✓        | ✓        |

| Palabras             | Precision | Recall |
|----------------------|-----------|--------|
| biology              | 1         | 1      |
| activity             | 1         | 0.8    |
| machine learning     | 1         | 0.8    |
| machine              | 1         | 1      |
| math                 | 1         | 0.7    |
| magazine             | 1         | 0.9    |
| mahalanobis distance | 1         | 1      |
| kruskal algorithm    | 1         | 0.8    |
| mathematician        | 1         | 0.9    |
| norm                 | 1         | 0.8    |



### Modelado de Tópicos

**Meta Data** 

MetaData Paser: Desarrollada para navegar sobre el xml utilizando xmlToDict. Convierte XML a diccionario.

Categorización

- Latent Dirichlet Allocation (LDA)[6]
- Clasificar cada documento según su conjunto de palabras
- 10 categorías o Tópicos



#### Referencias

- 1. A. Turing, "Mind a quarterly review of psychology and philosophy," 1950.
- 2. Hanna M. Wallach. 2006. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international conference on Machine learning (ICML '06). ACM, New York, NY, USA, 977-984. DOI: https://doi.org/10.1145/1143844.1143967
- 3. H. Z. Stephen Robertson, The Probabilistic Relevance Framework: BM25 and Beyond. Editorial Board, 2009.
- Massung, S., Geigle, C., & Zhai, C. (2016). MeTA: A Unified Toolkit for Text Retrieval and Analysis, 91–96. https://doi.org/10.18653/v1/p16-4016
- 5. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
- 6. David M Blei, Andrew Y Ng, Michael I JordanJournal of machine Learning research 3 (Jan), 993-1022, 2003

