U. S. Appln. : 09/368,670 Amendment

analog of a natural substrate of the NS3 protease was inhibitory led us to the peptide analogs of the present invention.

At page 106, lines 1 through 11; replace the paragraph with the following:

The substrate used for the HCV NS3 protease radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[¹²⁵I-Y]TW [SEQ. ID NO. 3] were incubated with the recombinant NS3 protease in the absence or in the presence of inhibitors. The separation of substrate from products was performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[¹²⁵I-Y]TW [SEQ. ID NO. 4] product found in the filtrate (with or without inhibitor) allowed for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 106, lines 19 through 25; replace the paragraph with the following:

Substrate: DDIVPC-SMSYTW [SEQ. ID NO. 2], 25 μM final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono-iodinated substrate(biotin-DDIVPC-SMS[125I-Y]TW) [SEQ. ID NO. 3] (≈ 1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl. 5 mM DTT, 0.01% NP-40).

At page 107, lines 18 through 32; replace the paragraph with the following:

The enzyme was cloned, expressed and prepared according to the protocol described in Example 37. The enzyme was stored at -80°C, thawed on ice and diluted just prior to use in the assay buffer containing the NS4A cofactor peptide.

The substrate used for the NS3 protease/ NS4A cofactor peptide radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[125I-Y]TW [SEQ. ID NO. 3] are incubated with the recombinant NS3 protease and the NS4A peptide cofactor KKGSVVIVGRIILSGRK [SEQ. ID NO. 5] (molar ratio enzyme: cofactor 1:100) in the absence or presence of inhibitors. The separation of substrate from products is performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[125I-Y]TW [SEQ. ID NO. 4] product found in the filtrate allows for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 108, lines 4 through 14; replace the paragraph with the following:

Assay buffer: 50 mM Tris HCl, pH 7.5, 30% (w/v) glycerol, 1 mg/mL BSA, 1 mM TCEP (TCEP added just prior to use from a 1 M stock solution in water).

Substrate: DDIVPCSMSYTW [SEQ. ID NO. 2], 25 μ M final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono iodinated substrate biotin DDIVPC SMS[¹²⁵I Y]TW [SEQ. ID NO. 3] (~1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl, 5 mM DTT, 0.01% NP-40).

NS4A Cofactor peptide: KKGSVVIVGRIILSGRK [SEQ. ID NO. 5], 2.5 μ M final concentration (from a 2 mM stock solution in DMSO stored at -20°C).

U. S. Appln. 109/368,670 Amendment

At page 109, line 10 through page 110, line 8; replace the paragraph with the following:

The NS2-NS5B-3' non coding region was cloned by RT-PCR into the pCR®3 vector (Invitrogen) using RNA extracted from the serum of an HCV genotype 1b infected individual (provided by Dr. Bernard Willems, Hôpital St-Luc, Montréal, Québec, Canada). The NS3-NS4A DNA region was then subcloned by PCR into the pFastBac™ HTa baculovirus expression vector (Gibco/BRL). The vector sequence includes a region encoding a 28-residue N-terminal sequence which contains a hexahistidine tag. The Bac-to-Bac™ baculovirus expression system (Gibco/BRL) was used to produce the recombinant baculovirus. The full length mature NS3 and NS4A heterodimer protein (His-NS3-NS4AFL) was expressed by infecting 10⁶ Sf21 cells/mL with the recombinant baculovirus at a multiplicity of infection of 0.1-0.2 at 27°C. The infected culture was harvested 48 to 64 h later by centrifugation at 4°C. The cell pellet was homogenized in 50mM NaPO₄, pH 7.5, 40% glycerol (w/v), 2mM β-mercaptoethanol, in presence of a cocktail of protease inhibitors. His-NS3-NS4AFL was then extracted from the cell lysate with 1.5% NP-40, 0.5% Triton X-100, 0.5M NaCl, and a DNase treatment. After ultracentrifugation, the soluble extract was diluted 4-fold and bound on a Pharmacia Hi-Trap Ni-chelating column. The His-NS3-NS4AFL was eluted in a >90% pure form (as judged by SDS-PAGE), using a 50 to 400 mM imidazole gradient. The His-NS3-NS4AFL was stored at -80° C in 50 mM sodium phosphate, pH 7.5, 10% (w/v) glycerol, 0.5 M NaCl, 0.25 M imidazole, 0.1% NP-40. It was thawed on ice and diluted just prior to use. The protease activity of His-NS3-NS4AFL was assayed in 50 mM Tris-HCl, pH 8.0, 0.25 M sodium citrate, 0.01% (w/v) n-dodecyl-β-D-maltoside, 1 mM TCEP. Five (5) μM of the internally quenched substrate anthranilyl-DDIVPAbu[C(O)-O]-AMY(3-NO₂)TW-OH [SEQ. ID NO. 6] in presence of various concentrations of inhibitor were incubated with 1.5 nM of His-NS3-NS4AFL for 45 min at 23°C. The final DMSO concentration did not exceed 5.25%. The reaction was terminated with the addition of 1M MES, pH 5.8. Fluorescence of the N-terminal product was

U. S. Appln. 109/368,670 Amendment

monitored on a Perkin-Elmer LS-50B fluorometer equipped with a 96-well plate reader (excitation wavelength: 325 nm; emission wavelength: 423 nm). A non-linear curve fit using the Hill model was then applied to the % inhibition-concentration data and 50% effective concentration (IC $_{50}$) was calculated through the use of SAS (Statistical Software System, SAS Institute Inc., Cary, N.C.).

At page 111, lines 12 through 29; replace the paragraph with the following:

The specificity of the compounds was determined against a variety of serine proteases: human leukocyte elastase, porcine pancreatic elastase and bovine pancreatic α -chymotrypsin and one cysteine protease: human liver cathepsin B. In all cases a 96-well plate format protocol using a colorimetric p-nitroaniline (pNA) substrate specific for each enzyme was used. Each assay included a 1 h enzyme-inhibitor pre-incubation at 30°C followed by addition of substrate and hydrolysis to $\approx 30\%$ conversion as measured on a UV Thermomax® microplate reader. Substrate concentrations were kept as low as possible compared to K_M to reduce substrate competition. Compound concentrations varied from 300 to 0.06 μ M depending on their potency. The final conditions for each assay were as follows: 50mM Tris-HCl pH 8, 0.5 M Na₂SO₄, 50 mM NaCl, 0.1 mM EDTA, 3% DMSO, 0.01% Tween-20 with;

[100 μ M Succ-AAPF-pNA [SEQ. ID NO. 7] and 250 pM α -chymotrypsin], [133 μ M Succ-AAA-pNA and 8 nM porcine elastase], [133 μ M Succ-AAV-pNA and 8 nM leukocyte elastase]; or

[100 mM NaHPO₄ pH 6, 0.1 mM EDTA, 3% DMSO, 1mM TCEP, 0.01% Tween-20, 30 μ M Z-FR-pNA and 5 nM cathepsin B (the stock enzyme was activated in buffer containing 20 mM TCEP before use)].

At pages 114 through 126, replace Tables 1 through 3 with the following amended Tables 1 to 3:

AAA SEQ ID (%) NO.	113 8	85.4 ± 1.6 9	100.3 ± 1.8 10	-113.85 ± 4.9	- 82.8 ± 0.8 -	98.8 ± 2.6 11	85.9 ± 1.1 12	101.15 ± 1.65 13	99.2 ± 5 14	102.95 ± 3.65 15	16	109.7 ± 6.9 17	72.4 ± 2.4 18	103.65 ± 3.8 19	594+285 20
Other MS (MH+)	703	717	646 1	703 11	717	717	8 289	701 10	689	729 10	703	703 1	717	743 10	691 5
PPE Other (µМ)															
HILE (µM)															_
IC ₅₀ (µM)	46	29	26	8.5	1.5	16*	85*	31	*08	24*	79	92*	26*	20*	28*
PI	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cys	Cvs
>	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Abu
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Ile	Chg	Val
P4	Ile	Ile	Ile	Ile	lle	Ile	Ile	Ile	Val	Chg	Tbg	Leu	lle	Ile	Ile
P5	Asp	Asp	Asp	D-Asp	D-Glu	Glu	Val	Tbg	Asp	Asp	Asp	Asp	Asp	Asp	Asp
1.6	Asp	Clu			Asp	Asp	Asp	Asp	Asp	dsv.	Asp	Asp	Asp	Asp	Asp
В	Ac	Ac	DAD		Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac
Tab. 1 Comp.	101	102	103	104	1					•		•		•	

	,						_										
SEQ ID NO.	22	23	24	25	26	27	28	29	30	31	32	l	33	34	35	ı	36
AAA (%)	9.66	96.8 ± 1	87.0 ± 3.0	N.S.	101	91.0 ± 4.5	107.6	106.3 ± 8.2	94.02 ± 3.19	100.2	107	100.9 ± 3.6	9.0 ± 8.66	107			
MS (MH+)	753	705	719	229	809	685	669	269	711	683	713	713	269	642			
IC ₅₀ HLE PPE Other MS (μM) (μM) (μΜ+)																	
PPE (µM)							>300										
HLE (µM)							>300										
IC ₅₀ (μM)	25*	133*	06	*9 2	1.7	315	220	210	210	45	£09*	7.4	270*	123	24	36	39
E	Cys	Cys	Cys	Cys	Cys	Abu	Nva	AlGly	Acpe	Acca	Nva	Nva	Nva	Nva	Cys	Acca	Acca
M	Phe	Val	Ile	Ala	Hyp(4-Bn)	Pro	Pro	Pro	Pro	Pro	Pip	Pro	Pro	Pro	Glu	Glu	Glu Chg Val Glu(OBn) Acca
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Glu	Glu	Val
P4	lle	Ile	Пе	lle		Ile	Ile	Ile	Ile	Ile	Ile	lle	Ile	Ile	Chg Glu	Chg Glu	Chg
P5	Asp	Asp										D-Glu				D-Cilu	Glu
9.1	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	γsb	Asp	Asp	Asp	Asp		\Asp.	dsV	Asp
В	Ac	Ac	Ac	Ac	Ac	Ac	Λc	Ac	Ac	Ac	Ac	Ac	Ac	DAD	Ac	Ac	Ac
rab. 1 Zomp. #	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133

AAA SEQID	NO.	37	•			38	39	40	41	42	43		1		•	
AAA	(%)	107	103	96.3 ±	1.7	95	28.7	101.9	112	104	114		101.7	± 5.4	93.4 ±	7
MS	(MH+)	805	682	819		819	819	819	855	855	861		849		845	
HLE PPE Other	(мм) (мм) (мм)			>300 >300 >300*	*								>300			
PPE	(mm)			>300									>300			- 1 m
	(mm)			>300								,	>300			
IC50	(mm)	7.2	0.93	9.0		9.4*	6.7*	6.4*	0.39	0.71	2.6		0.033		0.12	
Ы		Nva	Nva	Nva		Nva	Nva	Nva	Nva	Nva	Nva		Cys		Nva	÷
R ₁₃		O-Bn	O-Bn	O-Bn		o-tolyl-methoxy	m-tolyl-methoxy	p-tolyl-methoxy	1-NpCH ₂ O	2-NpCH ₂ O	4-tert-butyl-	phenyl)-methoxy	O-Bn		O-Bn	
P3		Val	Val	Val		Val	Val	Val	Val	Val	Val		Val		Val	
P4		Ile	Ile	Ile		Ile	Ile	Ile	Ile	Ile	Ile		Chg		Chg	2.
P6 P5	000	Asp	D-Val	Ċ	Glu	Asp	Asp	Asp	Asp	Asp	Asp		D-	Glu	<u>'</u>	Clu
P6		Asp	Asp	Asp		Asp	Asp	Asp	Asp	Asp	Asp		Asp		Asp	1
В		Ac	Ac	Ac		Ac	Ac	Ac	Ac	Ac	Ac		Ac		Ac	
Tab.2	Comp	201	202	203		204	205	206	207	208	209		210		211	1= 1

Θ.	Ţ=-	1	I		-×		<u> </u>				- (-)	
SEQ ID NO.	'	1		1	4	45	1	46	1		,	1
AAA (%)	99.4 ±	101.8	104.1		100.6 ± 0.8	94.6 ±	111.2	95.7	1	! :	Z.S.	N.S.
MS (MH+)	803	698	895	879	789	818	910	740	269	683	869	737
HLE PPE Other (μΜ) (μΜ)			>300		Ī		İ			1		
PPE (µM)	>300	î	>300			3		İ				
HLE (µM)	>300		>300									
IC ₅₀ (µM)	0.21	9£0.0	0.028	0.014	09	8	0.49	2.3	31	22	20	21
P	Acca	Nva	Nva	Acca	Nva	Nva	Nva	Nva	Nva	Nva	Nva	Nva
R ₁₃	O-Bn	2-NpCH2O	2-NpCH ₂ O	1-NpCH ₂ O	Bn	Ph(CH ₂) ₃	O-Bn	1-NpCH20	1-NpCH ₂ O	1-NpCH ₂ O	1-NpCH2O	1-NpCH ₂ O
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val	Val
P4	Ile		Chg	Chg	Ile	Ile	:	Ile	N(Me)II e	Ile	Ile	Ile
P6 P5	D- Glu	D- Glu	Asp D-	DClu	Asp	Asp	D-Glu	Asp	1	:	:	
P6	Asp.	Asp	Asp	Asp	Asp	Asp	Asp			: I		
£ 8	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	DAD	DAD	DAE	0
Tab.2 Comp	212	213	214	215	216	217	218	219	220	221	222	223

SEQ ID NO.	-	1 1 1 1 1 1	47		1	48		ı	t	· · · - ·
AAA (%)	N.S.	+					-	-		
MS (MH ⁺)	737	929 707 635 613.4	818	675.4		929.2		' -	720 (M+Na)	598
HLE PPE Other (μM) (μM)				!		<u> </u>		<u> </u>	!	
Н <u>ГЕ</u> РРЕ (µМ) (µМ		000					1		·	
		009<	_				ļ	ļ		
IC ₅₀ (μM)	56	45 0.76 3 35	3.3	2.6	1.4	0.14	41	12	4.0	5.5
<u>-</u> Z	Nva	Nva Acca Acca	Nva	Acca	Acca	Acca	Acca	Acca	Nva	Acca
R ₁₃	1-NpCH ₂ O	1-NpCH ₂ O 1-NpCH ₂ O 1-NpCH ₂ O O-Bn	Val Ph(CH2)3	Chg 1-NpCH ₂ O	1-NpCH2O	(3I-Ph) CH ₂ O	O-Bn	1-NpCH ₂ O	1-NpCH2O	1-NpCH ₂ O
P3	Val	Val Val Val	Val	Chg	Chg	Val	Chg	Chg	Val	Val
P4	. Ile	Chg Chg Chg	al	Chg	Chg	lle .	Chg	Chg	Gly ithioxo- Ile	Ille
P6 P5			Asp Asp Ile		. 1	Glu Île	:	1	Gly	
P6			Asp	1		Asp (. 1
- B		Ac DAE Ac Ac	230 Ac	Ac	AcOCH ₂ - C(O)			Boc	Ac	237 DAE
Tab.Z Comp	224	225 226 227 228	230	231	232	233	234	235	236 Ac	237

AAA SEQID (%) NO.		1	'		1	1	1	1			119±1 49
HLE PPE Other MS (μM) (μM) (мH+)	(M+Na)	195									803.6
IC ₅₀ I (μΜ)			7	2	18	36	35	0	5.0	33	10
	1	27	27	42		3	<u>c</u>	···	<u> </u>	<u> </u>	
17	-	Acca	Acca	Асса	Acca	Acca	Acca	Acca	Acca	Acca	Nva
R ₁₃		(4Br-Ph)O	(2Br-Ph)O	(3Br-Ph)O	z o	(4Br-Ph)S	O m		O	O	Ph(CH ₂) ₂
<u> </u>		Val	Val	· Val	Val	Val	Val	Val	·Val	Val	Val
P4		Chg	Chg	Chg	Chg	Chg	Chg	Chg	Chg	Chg	Ile
P5		. 1	1			-		.			Asp
P6		1	1					* 1			Asp Asp He
В	į		!				ř	i	i.	i	!
	1	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac
Tab.2 Comp	.!	238	239	240 Ac	241	242 Ac	243	244 Ac	245	246	247

AAA SEQ ID (%) NO.	1	1	1	1			!	1
AAA (%)					91±1	<u> </u>		
MS (MH+)					651.4		: : :	, :
HLE PPE Other (µM) (µM)					1	! !		
PPE (µM)			<u>.</u>	+ · · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>	
HLE (µM)								
IC ₅₀ (μM)	3.6	6.7	4.5	13	20	28	5.7	4.5
Ы	Acca	Acca	Acca	Acca	Nva	Acca	Acca	Acca
v.						С(0)ОН	MeC(0)	
R ₁₃	Z O	0(1		ZZ	1-NpCH2O		ZI	NON
	OHO OHO	(4I-Ph)O	z	O(0)0	1-Np			
P3	Chg	Val	Val	Val	Val	Val	Val	Val
P4	Chg	Chg	Chg	Chg	Chg	Chg	Chg	Chg
. P5			: :	.	.	*		
P6 P5 P4	.	. 1	: 1	. ‡	} }		*	1
9		1	ı	I				:
Tab.2 Comp	248 Ac	249 Ac	250 Ac	251 Ac	252 Ac	253 Ac	254 Ac	255 Ac

AAA SEQ ID (%) NO.	1	1	1	· · · · · · · · · · · · · · · · · · ·	· -			
MS (MH+)	! !				: :	ļ -	631 (M+Na)	771 (M+Na)
PPE Other (μΜ)		:			·	!	! ! !	
HLE PP (µN)		>300						
IС ₅₀ (µМ)		2.2	16	78	0.18	28	40	17
Ы	Acca	Acca	Acca	Лсса	Cys	Cys	Acca	Acca
R ₁₃	Z-Z // ω	ō z	Z y	N N N N N N N N N N N N N N N N N N N	O-Bn	O-Bn	1-NpCH ₂ O	1-NpCH ₂ O
P3	Val	Val	Val	Val	Val	Val	Val	Val
P4	Chg	Chg	Chg	Chg	. Ile	Chg	lle lle	
P6 P5	1	,	. 1	. !	Asp D-Glu lle			, 1
- P6	: !	1	. 1	1	Asp	•	. !	0 4
<u>B</u>	4c	Ąc	Ac	Ac	Ac	Ac Ac	Ac	263 HOOC Me Me CO
Tab.2 Comp	256 Ac	. 257 Ac	258 Ac	259 7	260 Ac	261	262	263

AAA SEQ ID (%) NO.		1 1 1	1 1	1	1	 ! ! !			1
1 2					-				
HLE PPE Other MS (μM) (μM) (μM+)	811	811	721.4	721.4	665.1	835.5 (M-H)	745 (M-H)	!	
HLE PPE Other MS (µM) (µM) (µM+	_: : :					8)		- (0	1
PPE (µM)		·		· · · · · · · · · · · · · · · · · · ·	. . 	1			
						: :			-
IC ₅₀ (µM)	6.4	10	9.7	12	24	2:2	2.0	3.8	27
<u>E</u>	Acca	Acca	Acca	Acca	Acca	Лсса	Лсса	Acca	Acca
R ₁₃	1-NpCH ₂ O	1-NpCH ₂ O	1-NpCH ₂ O	Val 1-NpCH ₂ O	Val (3Br-Ph)CH ₂ O	Val 1-NpCH ₂ O	Val 1-NpCH ₂ O	1-NpCH ₂ O	(3,5-Br ₂ -Ph)CH ₂ O
P3	Val	Val	Val	Val	Val	Val	Val	Val	Val
P4	lle –	. Ile	Ile	Ile I	Chg	Chg	Chg	Chg	Chg
P5	. 1	: 1		* {		. 1		. 1	
<u>P</u>	1	8	,	 	1	. . 8	٠	*	: I !
<u>.</u>		Brocom (H000 th	HOOM HOOM	o	Broxx**	HUUUH	HOO - N - N - O - O O O O O O O O O O O O	٠ : :
Tab.2 Comp	264 Bno	265 BK	266 Ho	267 HD	268 Ac	269 Br	270 .	27.1	272 A

AAA SEQID (%) NO.	20	1		
AAA (%)	i Lower	La va	!	
r MS A				
HLE PPE Other (μM) (μM)				- v=
η) (μ (μ	<u> </u>	<u> </u>		
IC ₅₀ (µМ)	17.5	9.7.	6.2	
Ы	Nva	Cys	Acca	i
R ₁₃				СН2ОН
ř		İ) [
3	H	工	<u> </u>	
P3	Val	Val H	Val	0
P4			Val	0
P4			Chg Val	
P4			Val	0
i	Asp Asp lle Val H	Asp D-Val Ile Val H	Chg Val	0
P4			Chg Val	0

Table 3

P6

P5

P4

P3

P2

P1 R_{1a} R_{1} R_{1} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{4} R_{5} R_{4} R_{5} R_{5} R_{4} R_{5} $R_{$

TAB 3 Cpd#	В	P6	P5	P4	РЗ	W	P1			MS (MH+)		SEQ ID NO.
301	Ac	Asp	Asp	Ile	Val	22, N " Me	Nva	98*		713	99.8	51
302	Ac	Asp	Asp	lle	Val	Me zzy	Nva	89*		713	102	52
303	Ac	Asp	Asp	 Ile	Val	HIII	Nva	44*		753	104.4	53
304	Ac			Chg	Val	O III	Acc a	1.1		 		
						N CIOF T						

Please insert the attached paper Sequence Listing after the Abstract on page 185.

IN THE CLAIMS:

Please amend the claims as follows: