UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD. Uni Ohm

Contents

Introduction	e
1.0 Scope	4
2.0 Ratings & Dimension	4
3.0 Power Rating	5
4.0 Voltage rating	5
5.0 Structure	6
6.0 Marking	6
7.0 Performance Specification	7
8.0 Explanation of Part No. System	8
9.0 Ordering Procedure	9
10.0 Packing	0
11.0 Precaution for storage/Transportation1	1

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	2/11

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD. Unit Ohm

ISO14001 ISO/TS16949 244546 245468 File Name: Date Edition No. 1 2015.11.26 CS SERIES $\pm 1\% \cdot \pm 5\%$ Amendment Record Signature Prescription of Amended by Checked by Edition **Amend Page Amend Date** amendment

Approved	Approved Checked Prepared		File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	3/11

厚 聲 電 子 工 業 有 限 昆 Щ

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD. Uni Ohm

1.0 Scope:

This file is specification for approve the Current Sensing Chip Resistor made by UNIOHM.

2.0 Ratings & Dimension:

Dimension (mm)

Туре		CS02 (0402)	CS03 (0603)	CS05 (0805)	CS06 (1206)	CS07 (1210)	CS10 (2010)	CS11 (1812)	CS12 (2512)
Power Rating at 70°C		1/10W (1/8WS)	1/10W (1/5WS)	1/8W (1/4WS)	1/4W (1/3WS)	1/3W (1/2WS)	1/2W (3/4WS)	1/2W (3/4WS)	1W
	L	1.00±0.10	1.60±0.10	2.00±0.15	3.10±0.15	3.10±0.10	5.00±0.10	4.50±0.20	6.35±0.10
	W	0.50±0.05	0.80±0.10	$1.25^{+0.15}_{-0.10}$	$1.55^{+0.15}_{-0.10}$	2.60±0.20	2.50±0.20	3.20±0.20	3.20±0.20
Dimension (mm)	Н	0.35±0.05	0.45±0.10	0.55±0.10	0.55±0.10	0.55±0.10	0.55±0.10	0.55±0.20	0.55±0.10
	A	0.20±0.10	0.30±0.20	0.40±0.20	0.45±0.20	0.50±0.25	0.60±0.25	0.50±0.20	0.60±0.25
	В	0.25±0.20	0.30±0.20	0.40±0.20	0.45±0.20	0.50±0.20	0.50±0.20	0.80±0.30	0.80±0.30
Resistance range	±1% ±5%	50mΩ~1Ω	20mΩ~1Ω	10mΩ~1Ω	10mΩ~1Ω	10mΩ~1Ω	10mΩ~1Ω	10mΩ~1Ω	10mΩ~1Ω
Dielectric Withstanding Voltage		100v	300V	500V	500V	500V	500V	500V	500V
Operating Temperature					-55 ~ +1	155℃			

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	4/11

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

ISO14001 ISO/TS16949 244546 2454

45468 REG.-Nr.

2.1 Recommend the size of welding plate by uniohm

規格	A	В	С
CS02 (0402)	0.40	0.60	0.50
CS03 (0603)	0.80	1.00	0.90
CS05 (0805)	1.00	1.00	1.40
CS06 (1206)	2.00	1.20	2.00
CS07 (1210)	2.00	1.20	2.70
CS10 (2010)	3.60	1.40	3.00
CS11 (1812)	3.50	2.10	3.60
CS12 (2512)	3.80	2.10	3.60

3.0 Power rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the load shall be derate as shown in figure 1

4.0 Voltage rating:

Resistors should have a direct-current (DC) continuous voltage rating and an alternating-current (AC) continuous voltage rating relates to Power Rating, formula shown as below:

$$RCWV = \sqrt{P * R}$$

RCWV: Rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (Volt.)

- P: Power Rating (Watt.)
- R: Nominal Resistance (Ohm)

Resistors will be burned out if it overload, such as higher than the maximum value of series' RCWV. And we named 2.5 times RCWV is OVERLOAD Voltage.

Approved	Checked Prepared		File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	5/11

昆 Ш 業 子 有 限

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

ISO14001 ISO/TS16949

5.0 Structure:

- 1. High purity alumina substrate
- 2. Protective covering
- 3. Resistive covering
- 4. Termination (inner) Ni/Cr
- 5. Termination (between) Cu
- 6. Termination (between) Ni
- 7. Termination (outer) Sn

6.0 Marking:

- **6.1** For CS03 size: product Less than $100m\Omega$, there is no marking on the body.
- **6.2** Above (contain) $100m\Omega$ product: 3 digits, the first digit is "R", which as decimal point, the 2^{nd} & 3^{rd} digits are significant.

 $R10 \rightarrow 100 m\Omega$

6.3 $\pm 1\%$, $\pm 5\%$ Tolerance: product below 1Ω show as following, the first digit is "R", which as decimal.

6.4 $\pm 1\%$, $\pm 5\%$ Tolerance: product of 1Ω show as following, the first digit is "1", "R" as decimal.

 $1R00 \rightarrow 1\Omega$

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	6/11

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD. Uni Ohm

7.0 Performance Specification:

Characteristic		Limits	Test Method (JIS-C-5201 & JIS-C-5202)
	CS02 (0402)	50 m Ω ~ 0.1Ω : $≤$ ± 700 PPM/°C 0.11Ω ~ 1Ω : $≤$ ± 200 PPM/°C	
	CS03 (0603)	$\begin{array}{l} 20m\Omega \sim 29.9m\Omega: \leqslant \pm 800 PPM/^{\circ}C \\ 30m\Omega \sim 32.9m\Omega: \leqslant \pm 600 PPM/^{\circ}C \\ 33m\Omega \sim 50m\Omega: \leqslant \pm 400 PPM/^{\circ}C \\ 50.1m\Omega \sim 0.1\Omega: \leqslant \pm 300 PPM/^{\circ}C \\ 0.11\Omega \sim 1\Omega: \leqslant \pm 200 PPM/^{\circ}C \end{array}$	
	CS05 (0805)	$1 25.1 \text{m} \Omega_{\sim} 50 \text{m} \Omega_{\odot} \leq \pm 4.00 \text{PPM} / \text{°C} 1$	
	CS06 (1206)	$10 \text{m}\Omega \sim 14.9 \text{m}\Omega$: $\leq \pm 700 \text{PPM/°C}$ $15 \text{m}\Omega \sim 30 \text{m}\Omega$: $\leq \pm 400 \text{PPM/°C}$ $30.1 \text{m}\Omega \sim 50 \text{m}\Omega$: $\leq \pm 300 \text{ PPM/°C}$ $50.1 \text{m}\Omega \sim 0.1\Omega$: $\leq \pm 200 \text{ PPM/°C}$ $0.11\Omega \sim 1\Omega$: $\leq \pm 150 \text{PPM/°C}$	4.8 Natural resistance changes per temp. Degree centigrade $R_2 - R_4$
Temperature Coefficient	CS07 (1210)	$10mΩ\sim14.9mΩ$: $≤±500PPM/°C$ $15mΩ\sim19.9mΩ$: $≤±400PPM/°C$ $20mΩ\sim50mΩ$: $≤±300PPM/°C$ $50.1mΩ\sim1Ω$: $≤±100PPM/$	$\frac{R_2-R_1}{R_1(T_2-T_1)}*10^6 (PPM/^\circ C)$ $R_1: \ resistance \ value \ at \ room \ temp. \ (T_1)$ $R_2: \ resistance \ value \ at \ room \ temp. \ +100^\circ C \ (Tt_2)$
	$\begin{array}{c c} \text{CS10} & 15\text{m}\Omega \sim 19.9\text{m}\Omega : \leqslant \pm 500 \\ 20\text{m}\Omega \sim 30\text{m}\Omega : \leqslant \pm 300 \\ (2010) & 30.1\text{m}\Omega \sim 50\text{m}\Omega : \leqslant \pm 200 \\ 50.1\text{m}\Omega \sim 0.1\Omega : \leqslant \pm 150 \\ \end{array}$	$\begin{array}{l} 10m\Omega{\sim}14.9m\Omega: \ \leqslant \pm 600 PPM/^{\circ}C \\ 15m\Omega{\sim}19.9m\Omega: \ \leqslant \pm 500 PPM/^{\circ}C \\ 20m\Omega{\sim}30m\Omega: \ \leqslant \pm 300 PPM/^{\circ}C \\ 30.1m\Omega{\sim}50m\Omega: \ \leqslant \pm 200 PPM/^{\circ}C \\ 50.1m\Omega{\sim}0.1\Omega: \ \leqslant \pm 150 PPM/^{\circ}C \\ 0.11m\Omega{\sim}1\Omega: \ \leqslant \pm 100 PPM/^{\circ}C \end{array}$	Test pattern: room temp. (T_1) , room temp. $+100^{\circ}C(T_2)$
	CS11 (1812)	$10 \text{m}\Omega \sim 19.9 \text{m}\Omega$: $\leq \pm 500 \text{PPM/°C}$ $20 \text{m}\Omega \sim 49.9 \text{m}\Omega$: $\leq \pm 400 \text{PPM/°C}$ $50 \text{m}\Omega \sim 0.1\Omega$: $\leq \pm 200 \text{PPM/°C}$ $0.11\Omega \sim 1\Omega$: $\leq \pm 100 \text{PPM/°C}$	
	CS12 (2512)	$\begin{array}{l} 10 \text{m}\Omega {\sim} 14.9 \text{m}\Omega \colon \leqslant \ \pm 600 \text{PPM/°C} \\ 15 \text{m}\Omega {\sim} 19.9 \text{m}\Omega \colon \leqslant \ \pm 400 \text{PPM/°C} \\ 20 \text{m}\Omega {\sim} 30 \text{m}\Omega \colon \leqslant \ \pm 300 \text{PPM/°C} \\ 30.1 \text{m}\Omega {\sim} 50 \text{m}\Omega \colon \leqslant \pm 200 \text{PPM/°C} \\ 50.1 \text{m}\Omega {\sim} 0.1\Omega \colon \leqslant \pm 150 \text{PPM/°C} \\ 0.11\Omega {\sim} 1\Omega \colon \leqslant \pm 100 \text{PPM/°C} \end{array}$	
Short-time	±1%	$\pm (1\% + 0.005\Omega)$ Max.	4.13 Permanent resistance change after the application
overload	±5%	\pm (2%+0.005Ω) Max	of 2.5 times RCWV for 5 seconds.

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	7/11

昆 業 Ш 子 有 限 口

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

ISO14001 ISO/TS16949

Terminal bending		\pm (1%+0.005Ω) Max	4.33 Twist of	f test board: = 3/90 mm for 60Secon	nds	
Solderability		95% coverage Min.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2-3 seconds.			
Dielectric withstanding voltage	No evidence of or insulation br	flashover mechanical damage, arcing eaks down.	90°Cmetallic	shall be clamped in the v-block and shall be te specified in the given lis of seconds.	sted at ac potential	
				ce change after continuecified below:	ious five cycles for	
			STEP	TEMPERATURE	TIME	
Temperature	-	\pm (1.0%+0.005 Ω)Max	1	-55°C±3°C	30 MINS	
cycling			2	ROOM TEMP.	10 15 MIN	
			3	+155°C±2°C	30 MINS	
			4	ROO TEMP.	10 15 MIN	
Soldering heat	Resistance char $\pm (1\%+0.005\Omega)$	9	_	resistor into a solder ba of 260°C±5°C and hold	=	
Load life	±1%	\pm (1.0%+0.005Ω) Max.	7.9 Resistance change after 1,000 hours (1.5 hours			
in humidity	±5%	\pm (3.0%+0.005Ω) Max.	"ON",0.5 hour "OFF") at RCWV in a humidity chamber controlled at 40°C±2°C and 90 to 95% relative humidity.			
Load life	±1%	\pm (1.0%+0.005Ω) Max.	4.25.1 Permanent resistance change after 1,000 hours			
Load life	±5%	\pm (3.0%+0.005Ω) Max.	operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70°C±2°C ambient.			

8.0 Explanation of Part No. System:

The standard Part No. includes 14 digits with the following explanation:

8.1 $1^{st} \sim 4^{th}$: Product series name

Example: CS02、CS03、CS05、CS06、CS07、CS10、CS11、CS12

8.2 5th~6th:

8.2.01 Power rating.

W=Normal Size; S=Small Size; U=Extra Small Size;

"1"~"G"to denotes"1"~"16"as Hexadecimal:1/16W~ 1W:

Wattage	1/2	1/3	1/4	1/5	1/6	3/4	1/8	1/10	1/16	1
Normal Size	W2	W3	W4	W5	W6	/	W8	WA	WG	1W
Small Size	S2	S3	S4	S5	S6	07	S8	SA	SG	1S

8.2.02 For power rating less than 1 watt (contain), the 5th digit will be the letters "W" or "S" to represent the size required & the 6th digit will be a number or a letter code.

Example: WA=1/10W; S4=1/4W-S

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	8/11

昆 業 電 子工 有 限 司

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

Uni Ohm

ISO14001 ISO/TS16949

8.3 7th: Resistance Tolerance.

 $F=\pm 1\%$

 $G=\pm 2\%$

 $J=\pm 5\%$

 $K = \pm 10\%$

8.4 8th~11th: Resistance Value.

8.4.01 For the standard resistance values of E-24 series, the 8th digit is "0",the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number; For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

8.4.02 Power of ten in the 11th digit:

 $I=10^{-1}$

 $K = 10^{-2}$

 $L=10^{-3}$

 $M = 10^{-4}$

8.5 12th~14th digits.

8.5.01 12th: Packaging Type

C=Bulk in (Chip Product)

T=Tape/Reel

8.5.02 13th: Packing Quantity

Packing quantities code:

5=5000pcs C=10000pcs D=20000pcs

Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

8.5.03 14th: Special features of additional information with the following codes:

E: Environmental Protection, Lead Free type.

T/R-5000) 9.0 Ordering Procedure: (Example: CS06 $1/4W \pm 5\%$ $50 \text{m}\Omega$ С S 6 W 4 J 0 T 5 Ε Resistance Value: Wattage: Product Type: E-24 series: Packing WA=1/10WFill-in these 4 The 1st digit will be "0";the2nd quantity: W8=1/8W Digits with current & 3rd digits are for the W4=1/4W 1=1000PCS sensing chip resistor W3=1/3W significant figures of the 2=2000PCS types as follows: W2=1/2Wresistance and the 4th digit 3=3000PCS 1W=1W indicate the numbers of zeros CS02 4=4000PCS S5=1/5WS following. CS03 S4=1/4WS 5=5000PCS CS05 E-96 series value (1%): S3=1/3WS C=10000PCS **CS06** The 1st to 3rd digits are for the S2=1/2WS **CS07** D=20000PCS significant figures OF the 07=3/4WS CS10 resistance and 4th digit CS11 denotes number of zeros CS12 following. Special Feature K=10-2; L=10-3; $M = 10^{-4}$ E= Lead-Free Packing Type: Tolerance: $F=\pm 1\%$ T=Tape/Reel $J=\pm5\%$

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	9/11

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

10.0 Packaging:

10.1 Tapping Dimension:

UNIT: mm

ТҮРЕ	A ± 0.2	B ± 0.2	C ± 0.05	φD+0.1	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T±0.10
CS02 (0402)	0.65	1.15	2.00	1.50	1.75	3.50	4.00	8.00	0.45
CS03 (0603)	1.10	1.90	2.00	1.50	1.75	3.5	4.00	8.0	0.67
CS05 (0805)	1.65	2.40	2.00	1.50	1.75	3.5	4.00	8.0	0.81
CS06 (1206)	2.00	3.60	2.00	1.50	1.75	3.5	4.00	8.0	0.81
CS07 (1210)	2.80	3.50	2.00	1.50	1.75	3.5	4.00	8.0	0.75
CS10 (2010)	2.80	5.40	2.00	1.50	1.75	5.5	4.00	12.0	0.75

UNIT: mm

ТҮРЕ	A±0.2	B±0.2	C±0.05	φD+ 0.1	фD1+0.25	E±0.1	F±0.05	G±0.1	W±0.2	T±0.10
CS11 (1812)	3.50	4.80	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
CS12 (2512)	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	10/11

昆 業 Ш 子 有 限

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

10.2 Dimension:

Unit: mm

ТҮРЕ	TAPING	SIZE	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
CS02 (0402)	Paper	10000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
CS03 (0603)	Paper	5000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
CS05 (0805)	Paper	5000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
CS06 (1206)	Paper	5000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
CS07 (1210)	Paper	5000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
CS10 (2010)	Paper or Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178	13.8
CS11 (1812)	Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178.0	13.8
CS12 (2512)	Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178	13.8

11.0 Precaution for storage/Transportation:

11.1 UNIOHM recommend the storage condition temperature: 15°C~35°C, humidity:25%~75%. (Put condition for individual product)

Even under UNIOHM recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

- **11.2** Store / transport cartons in the correct direction, which is indicated on a carton as a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 11.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - **11.3.01** In high electrostatic;
 - **11.3.02** In direct sunshine, rain, snow or condensation;
 - **11.3.03** Exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂.

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.26	11/11