

Exercise 6.3

6. In figure, if \triangle ABE \cong \triangle ACD, show that \triangle ADE \sim \triangle ABC.

Ans. It is given that \triangle ABE $\cong \triangle$ ACD

 \therefore AB = AC and AE = AD

$$\Rightarrow \frac{AB}{AD} = \frac{AC}{AE}$$

$$\Rightarrow \frac{AB}{AC} = \frac{AD}{AE}$$
(1)

 \therefore In \triangle s ADE and ABC, we have,

$$\frac{AB}{AC} = \frac{AD}{AE}$$
 [from eq.(1)]

And \angle BAC = \angle DAE [Common]

Thus, by SAS criterion of similarity, $\Delta ADE \sim \Delta ABC$

7. In figure, altitude AD and CE of a \triangle ABC intersect each other at the point P. Show that:

- (i) \triangle AEP \sim \triangle CDP
- (ii) \triangle ABD $\sim \triangle$ CBE
- (iii) \triangle AEP \sim \triangle ADB
- (iv) \triangle PDC $\sim \triangle$ BEC

Ans. (i) In Δ s AEP and CDP, we have,

$$\angle AEP = \angle CDP = 90^{\circ} [\because CE \bot AB, AD \bot BC]$$

 $And \angle APE = \angle CPD[Vertically opposite]$

... By AA-criterion of similarity, \triangle AEP \sim \triangle CDP

(ii) In ∆s ABD and CBE, we have,

$$\angle$$
 ADB = \angle CEB = 90°

 $And \angle ABD = \angle CBE[Common]$

 \triangle By AA-criterion of similarity, \triangle ABD \sim \triangle CBE

(iii) In \triangle s AEP and ADB, we have,

$$\angle AEP = \angle ADB = 90^{\circ} [\because AD \bot BC, CE \bot AB]$$

 $And \angle PAE = \angle DAB[Common]$

... By AA-criterion of similarity, \triangle AEP \sim \triangle ADB

(iv) In \triangle s PDC and BEC, we have,

$$\angle$$
 PDC = \angle BEC = 90° [: CE \perp AB, AD \perp BC]

 $And \angle PCD = \angle BEC[Common]$

... By AA-criterion of similarity, \triangle PDC \sim \triangle BEC

8. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that \triangle ABE \sim \triangle CFB.

Ans. In \triangle s ABE and CFB, we have,

$$\angle$$
 AEB = \angle CBF[Alt. \angle s]

$$\angle A = \angle C$$
 [opp. $\angle s$ of a $\parallel gm$]

... By AA-criterion of similarity, we have

 Δ ABE ~ Δ CFB

9. In figure, ABC and AMP are two right triangles, right angles at B and M respectively. Prove that:

(i) \triangle ABC \sim \triangle AMP

$$\frac{CA}{PA} = \frac{BC}{MP}$$

Ans. (i) In \triangle s ABC and AMP, we have,

$$\angle$$
 ABC = \angle AMP = 90° [Given]

 \angle BAC = \angle MAP [Common angles]

... By AA-criterion of similarity, we have

 Δ ABC ~ Δ AMP

(ii) We have \triangle ABC $\sim \triangle$ AMP [As prove above]

$$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$$

10. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE at \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, show that:

$$\frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$

- (ii) \triangle DCB $\sim \triangle$ HE
- (iii) △ DCA ~ △ HGF

Ans. We have, $\triangle ABC \sim \triangle FEG$

$$\Rightarrow \angle A = \angle F....(1)$$

And
$$\angle C = \angle G$$

$$\Rightarrow \frac{1}{2} \angle_{\mathbf{C}} = \frac{1}{2} \angle_{\mathbf{G}}$$

$$\Rightarrow \angle 1 = \angle 3$$
 and $\angle 2 = \angle 4$ (2)

[\because CD and GH are bisectors of \angle C and \angle G respectively]

∴ In ∆s DCA and HGF, we have

$$\angle A = \angle F[From eq.(1)]$$

$$\angle 2 = \angle 4$$
[From eq.(2)]

... By AA-criterion of similarity, we have

$$\Delta$$
 DCA $\sim \Delta$ HGF

Which proves the (iii) part

We have, \triangle DCA $\sim \triangle$ HGF

$$\Rightarrow \frac{AG}{FG} = \frac{CD}{GH}$$

$$\Rightarrow \frac{CD}{GH} = \frac{AC}{FG}$$

Which proves the (i) part

In Δ s DCA and HGF, we have

$$\angle 1 = \angle 3$$
[From eq.(2)]

$$\angle B = \angle E[: \Delta DCB \sim \Delta HE]$$

Which proves the (ii) part

********* END ********