Spannungsmessung

Aufgabe:

Ein Verbraucher mit $R=100~\Omega$ wird an einer realen Spannungsquelle betrieben. Diese lässt sich durch den Innenwiderstand $R_q=10~\Omega$ und die innere, ideale Quelle mit $U_q=1000~V$ beschreiben.

Gemessen wird die am Verbraucher abfallende Spannung U mit einem Spannungsmesser $(R_m=1000\,\Omega).$

Wie groß ist die wahre Spannung (U_w) , die gemessene Spannung (U), die Messabweichung (e) und die relative Messabweichung (e_{REL}) ?

Gegeben: R, R_q , R_m , U_q Gesucht: U_w , U, e, e_{Rel}

Widerstand Verbraucher R	100	Ohm
Idealer Spannungswert U _q	1000	V
Innenwiderstand R _q	10	Ohm
Widerstand Messgerät R _m	1000	Ohm

wahre Spannung (U_w) :

$$U_{\scriptscriptstyle W} = \frac{R}{R_{\scriptscriptstyle q} + R} \cdot U_{\scriptscriptstyle q}$$

gegebene Werte einsetzen:

wahre Spannung U _W	909,0909	<u>v</u>
-------------------------------	----------	----------

gemessene Spannung (U):

$$U = \frac{R \parallel R_M}{R_q + R \parallel R_M} \cdot U_q \qquad \text{mit} \qquad R \parallel R_M = \frac{R \cdot R_M}{R + R_M}$$

Zwischenergebnis für R // R _m	90,909	<u>Ohm</u>

einsetzen in die Formel für U:

gemessene Spannung U	900,9009	<u>v</u>

Messabweichung (e):

$$e = U - U_W$$
 oder: $e = -U \cdot \frac{R \parallel R_q}{R_M}$

Messabweichung e	<u>-8,19</u>	<u>v</u>

relative Messabweichung (e_{REL}):

$$e_{rel} = \frac{e}{U_W}$$

Relative Messabweichung erel	<u>-0,00901</u>	<u>v</u>
------------------------------	-----------------	----------

Spannungsmessung (Rq unbekannt)

Aufgabe:

Ein Widerstand $R = 100 \Omega$ sei mit einer Spannungsquelle (Innenwiderstand R_q) verbunden.

Mit Hilfe eines Spannungsmessgerätes (Messgerätewiderstand $R_m=400\,\Omega$) soll die an R abfallende Spannung U gemessen werden.

Bei einem Messwert von U = 10 V ergibt sich die syst. Messabweichung $e = -100 \ mV$.

Zeichnen Sie die Messschaltung inkl. Ersatzschaltbild der Spannungsquelle und Kennzeichnen Sie alle abfallenden Spannungen.

Berechnen Sie den Innenwiderstand Rq der Spannungsquelle.

Gegeben: R, R_M, e, U

Gesucht: Rq

Widerstand Verbraucher R	100	Ohm
Widerstand Messgerät R _m	400	Ohm
Gemessene Spannung U	10	V
Abweichung e	-100	mV

<u>Lösung:</u>

Innenwiderstand R_q der Spannungsquelle:

$$e = -U \cdot \frac{R \parallel R_q}{R_M}$$
 umformen nach R//Rq und als Ergebnis berechnen:
$$\Rightarrow R \parallel R_q = \frac{e*R_m}{-U}$$

$$\Rightarrow R \parallel R_q = \frac{e * R_m}{-U}$$

R//R _q	<u>4,00</u>	

anschließend

$$R \parallel R_q = \frac{R \cdot R_q}{R + R_q} \qquad \text{nach R}_{\text{q}} \text{ umformen}.$$

$$R \parallel R_q = \frac{R \cdot R_q}{R + R_q} \Rightarrow R \parallel R_q \cdot (R + R_q) = R \cdot R_q$$

$$\Rightarrow (R \parallel R_q) \cdot R + (R \parallel R_q) \cdot R_q = R \cdot R_q$$

$$\Rightarrow (R \parallel R_q) \cdot R + (R \parallel R_q) \cdot R_q - R \cdot R_q = 0$$

$$\Rightarrow (R \parallel R_q) \cdot R - R_q \cdot (R - R \parallel R_q) = 0$$

$$R_q = \frac{(R \parallel R_q)R}{R - (R \parallel R_q)}$$

das berechnete $R \slash \ R_q$ als Wert einsetzen

Innenwiderstand R _q 4,166667 Ohm

Messbereichserweiterung Spannung (1)

Aufgabe:

Ein Spannungsmessgerät mit dem Innenwiderstand $R_m=10000~\Omega$ und dem Bereichsendwert $U_{max}=1~V$ soll auf einen neuen maximalen Bereichswert von U=50~V erweitert werden.

Zeichnen Sie die zu realisierende Schaltung. (Erklären Sie das Prinzip der Schaltung kurz.)

Berechnen Sie den notwendigen Vorwiderstand R_V und den neuen Widerstand des Messgerätes $R_{m,neu}$.

Gegeben: U_{max} , R_M , UGesucht: R_V , $R_{m,neu}$

Widerstand Messgerät R _m	10000	Ohm
erlaubter Bereichsendwert U _{max}	1	V
angestrebter neuer Maximalwert U	50	V

realisierte Schaltung und Erklärung

Nutzung eines Vorwiderstand R_v (d.h. Aufbau eines Spannungsteilers).

→ Am Vorwiderstand fällt ein Teil der zu messenden Spannung ab, die gesamte Messeinrichtung kann also bei höheren Spannungen betrieben werden

notwendiger Vorwiderstand Rv:

$$R_{V} = R_{M} \cdot \frac{U - U_{\text{max}}}{U_{\text{max}}}$$

Werte einsetzen:

Notwendiger Vorwiderstand R _V	490000	<u>Ohm</u>
--	--------	------------

neuer Widerstand des Messgerätes R_{m,neu}:

$$R_{M,NEU} = R_V + R_M$$
 oder:
$$R_{M,NEU} = R_M \cdot \frac{U}{U_{\max}}$$

neuer Widerstand des Messgerätes R _{M,neu}	<u>500000</u>	<u>Ohm</u>

Messbereichserweiterung Spannung (2)

Aufgabe:

Der Messbereich eines Spannungsmessgerätes ($R_m=2000~\Omega$) wird auf $U=100~\rm V$ erweitert. Der für diesen Zweck verwendete Widerstand hat den Wert $R_V=4~M\Omega$.

Berechnen Sie den erlaubten Bereichsendwert U_{max} des unbeschalteten Spannungsmessers. Wie groß ist der Widerstand $R_{m,neu}$ des Spannungsmessers?

Gegeben: R_V , R_M , UGesucht: U_{max} , $R_{m,neu}$

Widerstand Messgerät R _m	2000	Ohm
erweiterter Endwert U	100	V
verwendeter Vorwiderstand R _V	4000000	Ohm

erlaubter Bereichsendwert U_{max} des unbeschalteten Spannungsmessers:

$$R_{\scriptscriptstyle V} = R_{\scriptscriptstyle M} \cdot \frac{U - U_{\scriptscriptstyle \rm max}}{U_{\scriptscriptstyle \rm max}} \qquad \text{umstellen nach $U_{\scriptscriptstyle \rm max}$}$$

$$\Rightarrow U_{max} = \frac{U}{1 + \frac{R_V}{R_M}}$$

erlaubter Bereichsendwert U _{max}	0,049975012	<u>v</u>
--	-------------	----------

Widerstand R_{m,neu:}

$$R_{M,NEU} = R_V + R_M$$
 oder: $R_{M,NEU} = R_M \cdot \frac{U}{U_{\text{max}}}$

Widerstand R _{M,neu}	4002000	<u>Ohm</u>
-------------------------------	---------	------------

Mehrfachumschaltung – Spannung (3 Umschaltpositionen)

Aufgabe:

Ein Spannungsmessgerät wird in eine Mehrfachschaltung integriert. Gegeben ist eine Mehrfachumschaltung mit drei Widerständen.

Berechnen Sie den Gesamtwiderstand der Messschaltung

Ermitteln Sie jeweils den neuen Bereichsendwert U in den drei Schalterpositionen:

Gegeben: U_{max} , R_m , $R_{1,2,3}$ Gesucht: $R_{m,neu}$, $U_{1,2,3}$

Widerstand Messgerät R _m	2,00E+8	Ohm
Bereichsendwert U _{max}	1	V
R ₁	80000	Ohm
R ₂	15000	Ohm
R ₃	5000	Ohm

Gesamtwiderstand der Messschaltung:

Summe der Teil-Widerstände

Gesamtwiderstand R _{M,neu}	100000	<u>Ohm</u>
-------------------------------------	--------	------------

Bereichsendwert U in den drei Schalterpositionen:

Position Oben:

hier gilt: $U = U_{max}$

U	<u>1</u>	<u>v</u>

Position Mitte:

$$\frac{U}{U_{MAX}} = \frac{R_1 + R_2 + R_3}{R_2 + R_3} \quad \Longrightarrow U = U_{MAX} \frac{R_1 + R_2 + R_3}{R_2 + R_3}$$

U <u>5,00</u> <u>V</u>

Position Unten:

$$\frac{U}{U_{MAX}} = \frac{R_1 + R_2 + R_3}{R_3} \implies U = U_{MAX} \frac{R_1 + R_2 + R_3}{R_3}$$

Mehrfachumschaltung - Spannung (2 Umschaltpositionen)

Aufgabe:

Ein Spannungsmessgerät soll durch eine Mehrfachumschaltung so erweitert werden, dass zwei Bereiche mögliche sind.

Zeichnen Sie die Schaltungen (Position 1 und Position 2)

Berechnen Sie den notwendigen Widerstandswerte.

Gegeben: U_1 , U_2 , U_{max} , $R_{m,neu}$, R_m

Gesucht: R₁, R₂

Widerstand Messgerät R _m	3,00E+8	Ohm
Bereichsendwert U _{max}	0,2	V
(neuer Bereichsendwert) U ₁	0,2	V
(neuer Bereichsendwert) U ₂	100	V
(neuer Messwiderstand) R _{m,neu}	1,00E+6	Ohm

Schaltungen:

Position1

Position2

notwendige Widerstandswerte

$$\frac{U_{max}}{U} = \frac{R_2}{R_1 + R_2} = \frac{R_2}{R_{M,neu}}$$

$$\Rightarrow R_2 = R_{M,neu} * \frac{U_{max}}{U}$$

Widerstand R ₂	2000	<u>Ohm</u>
---------------------------	------	------------

$$R_1 = R_{M,neu} - R_2$$

	Widerstand R₁	<u>998000</u>	<u>Ohm</u>	
--	---------------	---------------	------------	--

Strommessung (R, R_m unbekannt)

Aufgabe:

Ein Verbraucher wird an einer realen Spannungsquelle betrieben. Diese lässt sich durch den Innenwiderstand $R_q=2~\Omega$ und die innere, ideale Quelle mit $U_q=10~V$ beschreiben.

Bei einem wahren Strom von $I_w=0.5\,A$ ergibt sich eine Messabweichung von $e=-0.05\,A$.

Wie groß ist der Widerstand des Verbrauchers?

In welchem Wertebereich darf R_m liegen, damit der Betrag der Messabweichung e nicht größer als 0,05 A wird?

Gegeben: e, Iw, Uq, Rq

Gesucht: R, R_m

wahrer Strom I _w	0,5	Α
Messabweichung e	-0,05	Α
Innenwiderstand R _q	2	Ohm
Quellspannung U _q	10	V

Widerstand des Verbrauchers:

$$I_{W} = \frac{U_{q}}{R_{q} + R} \qquad \text{nach R umstellen} \label{eq:lw}$$

$$\Rightarrow R_q + R = \frac{U_q}{I_W}$$

$$\Rightarrow R_q + R = \frac{U_q}{I_W} \qquad \Rightarrow R = \frac{U_q}{I_W} - R_q$$

Widerstand R	<u>8</u>	<u>Ohm</u>
--------------	----------	------------

Wertebereich Rm:

$$e = -I \cdot \frac{R_{\scriptscriptstyle M}}{R_{\scriptscriptstyle q} + R} \qquad \text{nach R}_{\scriptscriptstyle \rm M} \, \text{umstellen}$$

$$\Rightarrow R_M = \frac{e * (R_q + R)}{-I}$$

für die Berechnung wird I benötigt:

$$e = I - I_W$$
 nach I umstellen:

$$\Rightarrow I = e + I_W$$

Zwischenergebnis: I	<u>0,45</u>	<u>A</u>
---------------------	-------------	----------

Strommessung mit Shunt

Aufgabe:

Eine Strommessung soll über eine Spannungsmessung durchgeführt werden.

Wie wird dies realisiert? (kurze Erklärung)

Wie groß muss der Widerstand R_M der gesamten Messeinrichtung sein? Wie groß ist Shunt R_S zu wählen? (Was fällt dabei auf?)

Gegeben: I, U, R_M^* Gesucht: R_M , R_S

zu messender Strom I	10	А
abfallende Spannung U	0,1	V
Messgerät-Widerstand R _M *	1000	Ohm

Messung der Stromstärke:

Shunt-Widerstand wird eingesetzt. Der Strom, der durch den Shunt fließt, erzeugt einen proportionalen Spannungsabfall

Widerstand R_M der gesamten Messeinrichtung:

$$I = \frac{U_M}{R_M}$$

umstellen nach R_M

$$\Rightarrow R_M = \frac{U_M}{I}$$

Widerstand R _M	<u>0,01</u>	<u>Ohm</u>
vviderstand RM	<u>0,01</u>	<u>Onm</u>

Shunt Rs:

$$R_M = R_S \parallel R_M^*$$

ersetzen und nach Rs umstellen

$$R_M = R_S \parallel R_M^* \qquad \qquad R_M = \frac{R_S \cdot R_M^*}{R_S + R_M^*}$$

$$\Rightarrow R_M \cdot (R_S + R_M^*) = R_S \cdot R_M^*$$

$$\Rightarrow R_M R_S + R_M R_M^* = R_S \cdot R_M^*$$

$$\Rightarrow R_M R_S - R_S \cdot R_M^* + R_M R_M^* = 0$$

$$\Rightarrow -R_S \cdot (R_M^* - R_M) + R_M R_M^* = 0$$

$$\Rightarrow R_S = \frac{R_M R_M^*}{(R_M^* - R_M)}$$

Shunt-Widerstand R _S	<u>0,0100001</u>	<u>Ohm</u>

Auffällig ist, dass der Widerstand quasi gleich ist....

→ paralleler Widerstand

Messbereichserweiterung - Strom

Aufgabe:

Es soll eine Messbereicherweiterung im Strombereich realisiert werden. Der Messbereich eines Strommessgerätes wird auf einen neuen Endwert erweitert.

Wie wird dies realisiert? Zeichnen Sie den dazugehörigen Schaltplan! (Hinweis: Verwendung eines Widerstandes R_P)

Wie groß ist der neue Bereichsendwert? Wie groß ist der Widerstand $R_{m,neu}$ der gesamten Messeinrichtung?

Gegeben: R_m , R_P , I_{max}

Gesucht: I, R_{m,neu}

Widerstand Messgerät R _m	10	Ohm
Bereichsendwert I _{max}	0,1	Α
verwendeter Widerstand R _P	0,1	Ohm

Parallelwiderstand:

neuer Bereichsendwert:

$$R_P = R_M \cdot \frac{I_{\text{max}}}{I - I_{\text{max}}}$$

umstellen nach I

$$\Rightarrow I - I_{\text{max}} = R_{\underline{M}} \cdot \frac{I_{\text{max}}}{R_{P}}$$

$$\Rightarrow I = R_M \cdot \frac{I_{\max}}{R_P} + I_{\max}$$

1	<u>10,1</u>	<u>A</u>
---	-------------	----------

Widerstand R_{m,neu}:

$$R_{M,NEU} = R_M \cdot \frac{I_{\max}}{I}$$
 oder: $R_{M,NEU} = R_M \mid\mid R_P$