1. [3 punts] Sigui $X = \mathbb{Z}$. Definim els següents subconjunts

$$U_n = egin{cases} \{n\} & n ext{ senar} \ \{n-1, n, n+1\} & n ext{ parell} \end{cases}$$

i definim la família $\mathcal{B} = \{U_n | n \in \mathbb{Z}\}.$

- (a) Proveu que la família τ formada per tots els subconjunts de X que es poden escriure com unions d'elements de \mathcal{B} és una topologia.
- (b) Donats enters n < m, definim $I_{n,m} = \{n, n+1, \ldots, m\}$, calculeu $\operatorname{Int}(I_{n,m})$, $\operatorname{Cl}(I_{n,m})$ i $\partial I_{n,m}$.
- (c) Sigui $f_k: X \to X$ definida com $f_k(x) = x + k$, per a quins valors de k és f_k un homeomorfisme?

Solució:

- (a) Cal comprovar que es compleixin dues condicions:
 - X és la unió de tots els $U_n \in \mathcal{B}$ ja que

$$\mathbb{Z} = \bigcup_{n \, \mathrm{parell}} \{n-1, n, n+1\} = \bigcup_{n \, \mathrm{parell}} U_n \subset \bigcup_{U_n \in \mathcal{B}} U_n.$$

- Sigui $x \in U_n \cap U_m$. Cal veure que existeix U_k amb $x \in U_k \subset U_n \cap U_m$. Tenim les següents possibilitats:
 - i. $n \le m$ senars. Aleshores si la intersecció és no buida tenim que n = m aleshores la intersecció és $\{n\} = U_n$.
 - ii. n senar i m parell. Aleshores si la intersecció és diferent del buit tenim que n=m-1 o n=m+1 i per tant és del tipus U_n .
 - iii. $n \le m$ parells. Aleshores si la intersecció és no buida tenim que o bé n=m o n=m-2 o n=m+2. En aquests casos la intersecció és U_n , $\{m-1\}=U_{m-1}$ o $\{m+1\}=U_{m+1}$.

Amb aquestes dues condicions vam veure a teoria que la família τ és tancada per interseccions finites, i que recobreix X, i per tant τ és una topologia en \mathbb{Z} .

- (b) Observeu que si k és senar, aleshores és interior a qualsevol sunconjunt que el contingui. Si k és parell, aleshores serà interior a un conjunt si k-1 i k+1 també pertanyen al conjunt. Farem casos:
 - Si n i m són senars, aleshores $I_{n,m} = \bigcup_{n \leq i \leq m} U_i$ és obert, i $\operatorname{Int}(I_{n,m}) = I_{n,m}$. $I_{n,m}$ no és tancat ja que el complementari conté n-1 i m+1 que són parells però no U_{n-1} ni U_{m+1} . El tancat més petit que conté $I_{n,m}$ és $\{n-1,n,\ldots,m,m+1\}$. Els punts adherents que cal afegir són n-1 i m+1. La frontera és $\{n-1,m+1\}$.
 - Si n i m són parells, aleshores per l'argument anterior tenim que n i m no són interiors i $I_{n,m}$ no és obert. L'interior és l'obert més gran contingut a $I_{n,m}$ que en aquest cas és $\operatorname{Int}(I_{n,m}) = \{n+1,\ldots,m-1\}$. El complementari de $I_{n,m}$ és obert, i per tant $\operatorname{Cl}(I_{n,m}) = I_{n,m}$. En aquest cas la frontera és $\{n,m\}$.
 - Si n és senar i m és parell aleshores fent servir els arguments anteriors tenim que $\operatorname{Int}(I_{n,m})=\{n,\ldots,m-1\},\ \operatorname{Cl}(I_{n,m})=\{n+1,\ldots,m\},\ i\ \partial I_{n,m}=\{n+1,m\}.$

• Si n és parell i m és senar aleshores fent servir els arguments anteriors tenim que $Int(I_{n,m}) = \{n+1,\ldots,m\}, \ Cl(I_{n,m}) = \{n,\ldots,m+1\}, \ i \ \partial I_{n,m} = \{n,m+1\}.$

Observeu que si k és senar, aleshores és interior a qualsevol sunconjunt que el contingui.

(c) L'aplicació f_k és bijectiva amb inversa $f_k^{-1}(x) = x - k = f_{-k}(x)$. Per comprovar que l'aplicació f_k és contínua només cal veure que l'antiimatge d'un obert de la base és obert. Si k = 2l és parell tenim que

$$f_k^{-1}(U_{2n+1}) = f_k^{-1}(\{2n+1\}) = \{2(n-l)+1\} = U_{2(n-l)+1}$$

i

$$f_k^{-1}(U_{2n}) = f_k^{-1}(\{2n-1,2n,2n+1\}) = \{2(n-l)-1,2(n-l),2(n-l)+1\} = U_{2(n-l)}.$$

El mateix argument demostra que $f_{-k}=f_k^{-1}$ és contínua i per tant és homeomorfisme. Si k és senar, $f_k^{-1}(U_1)=f_k^{-1}(\{1\})=\{1-k\}$, i com que 1-k és parell, no és obert. Per tant, no és contínua.

- 2. [2 punts] Sigui X un espai topològic i $A \subset X$. Diem que A és un tancat regular si A = Cl(Int(A)).
 - (a) Proveu que si $U \subset X$ és obert, aleshores B = CI(U) és un tancat regular.
 - (b) Siguin $A, B \subset X$ tals que A és un tancat regular. Proveu que si $\partial A \cap Int(B) \neq \emptyset$ aleshores $Int(A) \cap Int(B) \neq \emptyset$.

Solució:

- (a) Observeu que Cl(Int(B)) = Cl(Int(Cl(Int(U)))) = Cl(Int(U)) = B per un exercici de la llista. Però anem a provar que Cl(U) = Cl(Int(Cl(U))) amb doble inclusió. De la inclusió $U \subset Cl(U)$, tenim que $U \subset Int(Cl(U))$ ja que U és obert. I per tant aplicant la clausura a la inclusió tenim $Cl(U) \subset Cl(Int(Cl(U)))$. D'altra banda $Int(Cl(U)) \subset Cl(U)$, i aplicant la clausura a la inclusió tenim finalment
- $Cl(Int(Cl(U))) \subset Cl(Cl(U)) = Cl(U).$ (b) Sigui $x \in \partial A \cap Int(B)$. Com que $x \in Int(B)$, existeix $x \in V \subset B$ obert. Com que $x \in \partial A$ tenim que $x \in Cl(A) = Cl(Int(A))$. Per tant, $V \cap Int(A) \neq \emptyset$. Tots els punts de $V \cap Int(A) \subset V$ són interiors a B. Aleshores $Int(A) \cap Int(B) \neq \emptyset$.

 Una altra manera de resoldre-ho és la següent. Suposem que $Int(A) \cap Int(B) = \emptyset$, i provarem que $\partial A \cap Int(B) = \emptyset$. Aleshores $Int(B) \subset X \setminus Int(A)$. Per tant, està contingut a l'interior, és a dir, $Int(B) \subset Int(X \setminus Int(A)) = X \setminus Cl(Int(A)) = X \setminus A \subset X \setminus \partial A$ ja que A és tancat $(\partial A \subset A)$.
- 3. [2 punts] Sigui X un espai topològic i $A \subset X$. Considerem A amb la topologia subespai.
 - (a) Proveu que $K \subset A$ és tancat si i només si existeix $L \subset X$ tancat tal que $K = A \cap L$.
 - (b) Donat $D \subset A$, sigui $\operatorname{Cl}_A(D)$ la clausura com a subconjunt d' A i $\operatorname{Cl}_X(D)$ com a subconjunt d' X. Proveu que $\operatorname{Cl}_A(D) = \operatorname{Cl}_X(D) \cap A$.
 - (c) Sigui $D \subset A$ un subconjunt dens. Proveu que si A és dens a X, aleshores D també és dens a X.

Solució:

(a) Observeu que si K és un tancat a X aleshores $X \setminus K = U$ és obert, i per tant, tenim $A \cap K = A \cap (X \setminus U) = A \setminus (A \cap U)$ on $A \cap U$ és un obert a la topologia subespai. Així $A \cap K$ és tancat a la topologia subespai.

Suposem que $K \subset A$ és tancat en A. Aleshores $A \setminus K$ és obert, i existeix $U \subset X$ obert tal que $A \setminus K = A \cap U$. Aleshores $K = A \setminus (A \setminus K) = A \cap (X \setminus U)$.

- (b) Com que $D \subset \operatorname{Cl}_X(D) \cap A$ i $\operatorname{Cl}_X(D) \cap A$ és tancat en A ja que $\operatorname{Cl}_X(D)$ és tancat en X, tenim que $\operatorname{Cl}_A(D) \subset \operatorname{Cl}_X(D) \cap A$. Ara, $\operatorname{Cl}_A(D)$ és tancat a la topologia subespai, i existeix un tancat $K \subset X$ tal que $\operatorname{Cl}_A(D) = A \cap K$. Aleshores $D \subset K$ i per tant $\operatorname{Cl}_X(D) \subset K$. Per tant, $\operatorname{Cl}_X(D) \cap A \subset K \cap A = \operatorname{Cl}_A(D)$.
- (c) Com que A és dens en X i D dens en A tenim $\operatorname{Cl}_X(A) = X$ i $\operatorname{Cl}_A(D) = A$. Volem veure que $\operatorname{Cl}_X(D) = X$. Sabem que $A = \operatorname{Cl}_A(D) = \operatorname{Cl}_X(D) \cap A$. Per tant $A \subset \operatorname{Cl}_X(D)$. Aleshores com que $\operatorname{Cl}_X(D)$ és tancat, $X = \operatorname{Cl}_X(A) \subset \operatorname{Cl}_X(D)$. I per tant, $\operatorname{Cl}_X(D) = X$.
- 4. [2 punts] Siguin X, Y i Z espais topològics, i p_X : $X \times Y \to X$, p_Y : $X \times Y \to Y$ les projeccions a cada factor.
 - (a) Si X i Y tenen la propietat Hausdorff, aleshores $X \times Y$ també.
 - (b) Sigui $f: Z \to X \times Y$, proveu que f és contínua si i només si $p_X \circ f$ i $p_Y \circ f$ són contínues.

Solució:

- (a) Siguin $(x_1, y_1) \neq (x_2, y_2) \in X \times Y$. Aleshores o bé $x_1 \neq x_2$ o bé $y_1 \neq y_2$. Si $x_1 \neq x_2$, existeixen oberts $U_1, U_2 \subset X$ amb $x_1 \in U_1, x_2 \in U_2$ i $U_1 \cap U_2 = \emptyset$. Aleshores $(x_1, y_1) \in U_1 \times Y$ i $(x_2, y_2) \in U_2 \times Y$, on $U_1 \times Y, U_2 \times Y \subset X \times Y$ són oberts amb $(U_1 \times Y) \cap (U_2 \times Y) = \emptyset$. Si $x_1 = x_2$ i $y_1 \neq y_2$ aleshores existeixen oberts $V_1, V_2 \subset X$ amb $y_1 \in V_1, y_2 \in V_2$ i $V_1 \cap V_2 = \emptyset$. Aleshores $(x_1, y_1) \in X \times V_1$ i $(x_2, y_2) \in X \times V_2$, on $X \times V_1, X \times V_2 \subset X \times Y$ són oberts amb $(X \times V_1) \cap (X \times V_2) = \emptyset$.
- (b) Les projeccions p_X i p_Y són contínues, aleshores si f és contínua tenim que les composicions $p_X \circ f$ i $p_Y \circ f$ són contínues.

Per provar que f és contínua n'hi ha prou amb comprovar que l'antiimatge d'un obert bàsic és obert ja que la topologia producte té una base formada per oberts de la forma $U \times V$ on $U \subset X$ i $V \subset Y$ són oberts. Podem descriure $U \times V = (U \times Y) \cap (X \cap V)$, i observeu que $p_X^{-1}(U) = U \times Y$ i $p_Y^{-1}(V) = X \times V$.

Aleshores

$$f^{-1}(U \times V) = f^{-1}((U \times Y) \cap (X \cap V)) = f^{-1}(p_X^{-1}(U) \cap p_Y^{-1}(V)) = f^{-1}(p_X^{-1}(U)) \cap f^{-1}(p_Y^{-1}(V))$$

és obert ja que $p_X \circ f$ i $p_Y \circ f$ són contínues i per tant $f^{-1}(p_X^{-1}(U)) \cap f^{-1}(p_Y^{-1}(V))$ és obert.