Name:

MATH 321: Homework 4

Due : Turn in a hard copy, neat and stapled.

- 1. Let $X \sim \text{Gamma}(\alpha, \beta)$. Find the MMEs for α and β .
- 2. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. Find the MLE for P(X=0).
- 3. Let X_1, \ldots, X_n be a random sample from $f(x \mid \theta) = \theta x^{\theta-1}$ $0 < x < 1, 0 < \theta < \infty$.
 - (a) Find the MLE for θ .
 - (b) Find the MME for θ .
- 4. Let $X_1, \ldots, X_4 \stackrel{iid}{\sim} (\text{continuous}) \text{ Uniform } (0, \theta), \quad 0 < \theta < \infty.$
 - (a) Find the MLE for θ . We are going to "logic" our way to this MLE (without taking any derivatives). Find the likelihood function like usual. Then think about what the range of θ must be if we actually have collected data (say $\mathbf{x} = \{0.5, 0.1, 2, 3\}$). Then sketch a plot of the likelihood, and it should be clear what the MLE is:)
 - (b) Show that $\hat{\theta}_{MLE}$ is a biased estimator of θ .
 - (c) Find an unbiased estimator of θ as a function of $\hat{\theta}_{MLE}$.

Select answers

1.
$$\hat{\alpha} = \frac{\bar{X}^2}{v}$$
 and $\hat{\beta} = \frac{\bar{X}}{v}$

$$2. MLE = e^{-\bar{X}}$$

3. (a)
$$MLE = \frac{-n}{\sum \ln(X_i)}$$

(b)
$$MME = \frac{\bar{X}}{1 - \bar{X}}$$

- 4. (a)
 - (b)
 - (c)