Algorithms

Recursion

Hee-Kap Ahn
Graduate School of Artificial Intelligence
Dept. Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)

Reductions

Reducing one problem A to another problem B.

- We know how to solve B efficiently, and use this to solve A.
- We write an algorithm for A using an algorithm for B as a subroutine.

Algorithm for A

Phase (1): Convert instance I to instance f(I).

Phase (2): Execute the black box on f(I).

Phase (3): Convert solution S to solution h(S).

Reductions

Correctness. Assumption – The black box solves *B* correctly.

- The correctness of the algorithm for A is independent on the correctness of the algorithm for B.

We may not know exactly how the black boxes are implemented.

Running time. The running time T_B of the algorithm for B matters to the running time T_A of the algorithm for A.

 $T_A = T_B +$ time for Phases (1) and (3).

Recursion and Induction

Recursion. A kind of reduction. Simplify the original problem.

- If the given instance can be solved directly, solve it directly.
- Otherwise, reduce it to one or more simpler instances of the same problem.

Recursive reductions must lead to a base case.

Algorithm for computing *n* factorial:

$$f(n) = \begin{cases} 1 & \text{if } n = 1 \\ f(n-1) \cdot n & \text{if } n > 1 \end{cases}$$
 base case

The peasant multiplication algorithm:

$$x \cdot y = \begin{cases} 0 & \text{if } x = 0 \\ \lfloor x/2 \rfloor \cdot (y+y) & \text{if } x \text{ is even} \\ \lfloor x/2 \rfloor \cdot (y+y) + y & \text{if } x \text{ is odd} \end{cases}$$

Let $x' = \lfloor x/2 \rfloor$ and y' = y + y. The given instance $x \cdot y$ is reduced to $x' \cdot y'$, a simpler instance because x' < x. If repeated, it decreases eventually to 0 (the base case).

Tower of Hanoi

Given a tower of n disks placed at peg A among three pegs (A, B, C), Move the tower of n disks at peg A to peg C:

- Allowed to use a third spare peg as an occasional placeholder.
- Not allowed to place a disk on top of a smaller disk.

Tower of Hanoi

Given a tower of *n* disks placed at peg A among three pegs (A, B, C), Move the tower of *n* disks at peg A to peg C:

- Allowed to use a third spare peg as an occasional placeholder.
- Not allowed to place a disk on top of a smaller disk.

- 1. Move n-1 smaller disks to B. (simpler instance)
- 2. Move the largest disk to C. (base case)
- 3. Move n-1 smaller disks from B to C. (simpler instance)

Tower of Hanoi

- 1. Move n-1 smaller disks to B. (simpler instance)
- 2. Move the largest disk to C. (base case)
- 3. Move n-1 smaller disks from B to C. (simpler instance)

Reduction

n-disk

Tower of Hanoi problem

(n-1)-disk Tower of Hanoi problem

(n-1)-disk Tower of Hanoi problem

Hanoi(n, A, C, B)if n > 0 then Hanoi(n - 1, A, B, C)move disk n from A to C Hanoi(n - 1, B, C, A) Recurrence for the running time:

$$T(n) = \begin{cases} 0 & \text{if } n = 0 \\ 2T(n-1) + O(1) & \text{if } n \ge 1 \end{cases}$$

Thus,
$$T(n) = 2^n - 1$$
.

Find a key k in a sorted list L[0:n-1].

- If $j i \le 1$ for L[i : j], solve it directly (base case).
- Otherwise,
 - compare k with L[m] for $m = \lfloor (j-i)/2 \rfloor$, and
 - recurse either on L[i:m-1] or on L[m:j] (simpler instance).

L

Find a key k in a sorted list L[0:n-1].

- If $j i \le 1$ for L[i : j], solve it directly (base case).
- Otherwise,
 - compare k with L[m] for $m = \lfloor (j-i)/2 \rfloor$, and
 - recurse either on L[i:m-1] or on L[m:j] (simpler instance).

L

Find a key k in a sorted list L[0:n-1].

- If $j i \le 1$ for L[i : j], solve it directly (base case).
- Otherwise,
 - compare k with L[m] for $m = \lfloor (j-i)/2 \rfloor$, and
 - recurse either on L[i:m-1] or on L[m:j] (simpler instance).

Find a key k in a sorted list L[0:n-1].

- If $j i \le 1$ for L[i : j], solve it directly (base case).
- Otherwise,
 - compare k with L[m] for $m = \lfloor (j-i)/2 \rfloor$, and
 - recurse either on L[i:m-1] or on L[m:j] (simpler instance).

Find a key k in a sorted list L[0:n-1].

- If $j i \le 1$ for L[i : j], solve it directly (base case).
- Otherwise,
 - compare k with L[m] for $m = \lfloor (j-i)/2 \rfloor$, and
 - recurse either on L[i:m-1] or on L[m:j] (simpler instance).

Recurrence for the running time: $T(n) = T(\lceil n/2 \rceil) + O(1)$.

By induction, we can verify the running time of $T(n) = O(\log n)$.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.

Sort a list of numbers.

Developed by John von Neumann in 1945.

1. Split the list into two halves,

- 2. Recursively mergesort each half, (simpler instance)
- 3. Merge them into a single sorted list.


```
\frac{\mathsf{mergesort}(\mathsf{A}[1:n])}{\mathsf{if}\ n > 1\ \mathsf{then}}
m \leftarrow \lfloor n/2 \rfloor
\mathsf{mergesort}(\mathsf{A}[1:m])
\mathsf{mergesort}(\mathsf{A}[m+1:n])
\mathsf{merge}(\mathsf{A}[1:n],m)
```

```
\begin{array}{l} \mathbf{merge}(A[1:n],m) \\ i \leftarrow 1; j \leftarrow m+1 \\ \mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{if} \ j > n \ \mathbf{then} \\ B[k] \leftarrow A[i]; i \leftarrow i+1 \\ \mathbf{else} \ \mathbf{if} \ i > m \ \mathbf{then} \\ B[k] \leftarrow A[j]; j \leftarrow j+1 \\ \mathbf{else} \ \mathbf{if} \ A[i] < A[j] \ \mathbf{then} \\ B[k] \leftarrow A[i]; i \leftarrow i+1 \\ \mathbf{else} \\ B[k] \leftarrow A[j]; j \leftarrow j+1 \\ \mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ A[k] \leftarrow B[k] \end{array}
```

Correctness by induction.

merge merges $A[1 : \lfloor n/2 \rfloor]$ and $A[\lfloor n/2 \rfloor + 1 : n]$ into a single sorted list B[1 : n] correctly, assuming the sublists are sorted.

Proof by induction on the number of merged elements.

mergesort correctly sorts any input lists.

(Proof by induction on *n*)

If $n \leq 1$, the algorithm does nothing.

Otherwise, by the induction hypothesis, the algorithm correctly sorts the two sublists of size $\leq \lceil n/2 \rceil$ (by two recursive calls to **mergesort**).

Then they are merged correctly into a single sorted list by **merge**.

Since **merge** can be done in linear time, the running time of **mergesort** is

$$T(n) = 2 \cdot T(n/2) + O(n) = O(n \log n).$$

Quicksort

Sort a list of numbers.

1. Choose a **pivot** element from the list.

(base case: n < 1)

Developed by Tony Hoare in 1959.

- 2. Partition the list into three sublists:
 - sublist containing the elements smaller than the pivot,
 - sublist containing the pivot element,
 - sublist containing the elements larger than the pivot.
- 3. Recursively quicksort the first and last sublists (simpler instances).

```
\begin{array}{l} \mathbf{quicksort}(A[1:n]) \\ \mathbf{if} \ n \leq 1 \ \mathbf{then} \\ \mathbf{return} \ A \\ \mathbf{else} \\ \mathbf{Choose} \ a \ \mathsf{pivot} \ \mathsf{element} \ A[p] \\ r \leftarrow \mathbf{partition}(A,p) \\ \mathbf{quicksort}(A[1:r-1]) \\ \mathbf{quicksort}(A[r+1:n]) \end{array}
```

```
\begin{array}{l} \mathbf{partition}(A[1:n],p) \\ \mathbf{swap}\ A[p] \leftrightarrow A[n] \\ \ell \leftarrow 0 \\ \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ n-1\ \mathbf{do} \\ \mathbf{if}\ A[i] < A[n]\ \mathbf{then} \\ \ell \leftarrow \ell+1 \\ \mathbf{swap}\ A[\ell] \leftrightarrow A[i] \\ \mathbf{swap}\ A[n] \leftrightarrow A[\ell+1] \\ \mathbf{return}\ \ell+1 \end{array}
```

Quicksort

Correctness by induction.

- quicksort correctly sorts, assuming partition works correct.

Analysis.

- partition runs in O(n) time.
- Recurrence for the running time: T(n) = T(r-1) + T(n-r) + O(n)

r can be any value $1 \le r \le n$.

- **Best case.** the median element is always chosen for r: $T(n) \le 2T(n/2) + O(n) = O(n \log n)$.
- Worst case. r = 1 or r = n: $T(n) \le T(n-1) + O(n) = O(n^2)$. You may choose as r the median of three elements. But, in worst case, $T(n) \le T(1) + T(n-2) + O(n) = O(n^2)$.
- Average case. Usually r of rank between n/10 and 9n/10. $T(n) = O(n \log n)$.

We will see later that the median element can be found in O(n) time, though the process is complicated and the hidden constant in the running time is large.

Recursion tree

$$T(n) = a \cdot T(\lceil n/b \rceil) + O(n^d)$$

Each problem of size n is divided into a subproblems of size n/b.

- Base case: after $\log_b n$ levels, the problem size becomes 1.
- k-th level: a^k subproblems, each of size n/b^k .

$$a^k \cdot O((n/b^k)^d) = O(n^d)(a/b^d)^k$$
.

- The total work done at all the levels:

$$\sum_{k=0}^{\log_b n} O(n^d) (a/b^d)^k.$$

$$T(n) = a \cdot T(\lceil n/b \rceil) + O(n^d) = \sum_{k=0}^{\log_b n} O(n^d) \cdot (a/b^d)^k$$

Master theorem:

(level-by-level series)

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \text{ (decreasing)} \\ O(n^d \log n) & \text{if } d = \log_b a \text{ (equal)} \\ O(n^{\log_b a}) & \text{if } d < \log_b a \text{ (increasing)} \end{cases}$$

As k goes from 0 to $\log_b n$, they form a geometric series with ratio a/b^d .

- 1. $a/b^d < 1$, that is, $d > \log_b a$. The series is decreasing, and its sum is just given by the first term, $O(n^d)$.
- 2. $a/b^d = 1$, that is, $d = \log_b a$. All $O(\log n)$ terms of the series are equal to $O(n^d)$.
- 3. $a/b^d > 1$, that is, $d < \log_b a$. The series is increasing and its sum is given by its last term, $O(n^{\log_b a})$: $n^d (\frac{a}{b^d})^{\log_b n} = n^d (\frac{a^{\log_b n}}{(b^{\log_b n})^d}) = a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}$.

$$T(n) = a \cdot T(\lceil n/b \rceil) + O(n^d) = \sum_{k=0}^{\log_b n} O(n^d) \cdot (a/b^d)^k$$

Master theorem:

(level-by-level series)

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \text{ (decreasing)} \\ O(n^d \log n) & \text{if } d = \log_b a \text{ (equal)} \\ O(n^{\log_b a}) & \text{if } d < \log_b a \text{ (increasing)} \end{cases}$$

Binary search. T(n) = T(n/2) + O(1). Since $a = 1, b = 2, d = 0, d = \log_b a$ and $T(n) = O(n^d \log n) = O(\log n)$.

Mergesort. T(n) = 2T(n/2) + O(n). Since $a = 2, b = 2, d = 1, d = \log_b a$ and $T(n) = O(n^d \log n) = O(n \log n)$.

Quicksort. If the pivot always lands in the middle third of the sorted array,

$$T(n) \le T(n/3) + T(2n/3) + O(n)$$
. $T(n) = O(n \log n)$

Try a few levels of the recursion tree!

- the sum of problem sizes on any level is at most n.
- the tree depth is $\log_{3/2} n = O(\log n)$.

For two **complex numbers**
$$x = a + bi$$
, $y = c + di$, $xy = (a + bi)(c + di) = ac - bd + (bc + ad)i$

For two **complex numbers**
$$x = a + bi$$
, $y = c + di$, $xy = (a + bi)(c + di) = ac - bd + (bc + ad)i$ $= ac - bd + ((a + b)(c + d) - ac - bd)i$

For two *n*-bit numbers? (*n* is a large number)

Requires 4 n/2-bit multiplications, handled by four recursive calls. Therefore $T(n) = 4 \cdot T(n/2) + O(n) = O(n^2)$.

But $x_L y_R + x_R y_L$ can be computed from $x_L y_L$ and $x_R y_R$ using one more recursive multiplication $(x_L + x_R)(y_L + y_R)$. (Karatsuba 1960)

$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R.$$


```
multiply(x, y)
Input: Two n-bit integers x and y
Output: Their product

if n = 1 then
   return xy

x_L, x_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of x

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rfloor bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rceil bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rceil bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rceil bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rceil bits of y

y_L, y_R = \text{leftmost } \lceil n/2 \rceil, rightmost \lfloor n/2 \rceil bits of y

y_L, y_R = \text{leftmost } \lceil
```

A constant factor improvement, occuring at every level of recursion. Therefore

$$T(n) = 3 \cdot T(n/2) + O(n) = O(?).$$

Integer Multiplication - FFT-based ones

Splitting two n-bit numbers into k pieces, each with n/k bits, and then compute the product of the numbers using only 2k-1 recursive multiplications?

For any fixed k, Toom-Cook algorithm runs in $O(n^{1+1/(\lg k)})$ time.

Taking this divide-and-conquer strategy further \rightarrow the **Fast Fourier transform** by Gauss

The fast Fourier transform (FFT) is a very efficient algorithm for calculating the discrete Fourier Transform (DFT) of a sequence of numbers.

In 1971, $O(n \log n \log \log n)$ -time algorithm by Schönhage and Strassen. The first FFT-based integer multiplication algorithm. Fastest in practice.

In 2019, $O(n \log n)$ -time algorithm by Harvey and van der Hoeven.

Matrix Multiplication

For two $n \times n$ matrices X and Y, Z = XY has (i, j)-th entry

$$Z_{ij} = \sum_{k=1}^{n} X_{ik} Y_{kj}.$$

Matrix Multiplication

For two $n \times n$ matrices X and Y, Z = XY has (i, j)-th entry

$$Z_{ij} = \sum_{k=1}^{n} X_{ik} Y_{kj}.$$

Brute force. n^2 entries, each taking O(n) time. In total, $O(n^3)$ time.

Divide and Conquer!

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

$$XY = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

There are 8 size-n/2 products and a few $O(n^2)$ -time additions.

$$T(n) \leqslant 8 \cdot T(n/2) + O(n^2),$$

which is $O(n^3)$.

Matrix Multiplication

Divide and Conquer. by Volker Strassen.

$$XY = \begin{bmatrix} \frac{P_5 + P_4 - P_2 + P_6}{P_3 + P_4} & \frac{P_1 + P_2}{P_1 + P_5 - P_3 - P_7} \end{bmatrix} = \begin{bmatrix} \frac{AE + BG}{CE + DG} & \frac{AF + BH}{CE + DH} \end{bmatrix}$$
 where
$$P_1 = A(F - H) \quad P_5 = (A + D)(E + H)$$

$$P_2 = (A + B)H \quad P_6 = (B - D)(G + H)$$

$$P_3 = (C + D)E \quad P_7 = (A - C)(E + F)$$

$$P_4 = D(G - E)$$

There are 7 size-n/2 products and eighteen $O(n^2)$ -time additions.

$$T(n) \leqslant \frac{7}{3} \cdot T(n/2) + O(n^2).$$

By master theorem, $T(n) = O(n^{\log_2 7}) \approx O(n^{2.81})$.

Linear-Time Selection

Given a list S of numbers and an integer k, find the k-th smallest element in S.

Reduction:

- 1. choose a pivot v from S,
- 2. split S into 3 sublists with respect to v, and
- 3. recurse on one of them.

$$S = \langle 2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1 \rangle$$

$$selection(S, k) = \begin{cases} selection(S_L, k) & \text{if } k \leq |S_L| \\ v & \text{if } |S_L| < k \leq |S_L| + |S_v| \end{cases}$$

$$selection(S_R, k - (|S_L| + |S_v|)) & \text{if } k > |S_L| + |S_v|.$$

If the smallest element is chosen for v repeatedly, $T(n) = O(n^2)$ as

$$T(n) = T(n-1) + O(n).$$

To avoid this worst-case behavior, magically choose a good pivot quickly!

Choose v randomly!

If we are
$$=$$

$$\begin{cases} \text{lucky (}S_L \text{ and } S_R \text{ are balanced in their sizes)} & \to \Theta(n) \text{ time,} \\ \text{unlucky (Otherwise)} & \to \Theta(n^2) \text{ time.} \end{cases}$$

 S_L and S_R are **balanced** if the have size at most 3/4 of that of S.

New algorithm: repeat choosing v randomly until it is good, and then recurse.

For each chosen v, it spends O(n) time to check if v is good or not. The expected running time $T(n) \leq T(3n/4) + O(c \cdot n)$.

c: average number of consecutive splits (or choices of v) to find a good split.

Clearly c = 2. So we can conclude that T(n) = O(n).

- 1. Divide the input array S into $\lceil n/5 \rceil$ blocks, each containing 5 elements, except possibly the last one.
- 2. Find the median of each block and collect them into a new array *T*.

- 1. Divide the input array S into $\lceil n/5 \rceil$ blocks, each containing 5 elements, except possibly the last one.
- 2. Find the median of each block and collect them into a new array *T*.
- 3. Recurse on *T* and find the median *M* of *T*.

- 1. Divide the input array S into $\lceil n/5 \rceil$ blocks, each containing 5 elements, except possibly the last one.
- 2. Find the median of each block and collect them into a new array *T*.
- 3. Recurse on *T* and find the median *M* of *T*.
- 4. Partition S into two subarrays using M.
- 5. If *M* is the *k*th smallest element of *S*, we are done. Otherwise, we recursively search one of the two subarrays.

Given a list S of numbers and an integer k, find the k-th smallest element in S.

The key insight is that

- (a) M is larger than $\lceil \lceil n/5 \rceil/2 \rceil 1 \approx n/10$ medians.
- (b) Each such median is larger than two other elements in its block.
- \implies M is larger than at least 3n/10 elements in S.
- (c) Similarly, M is smaller than at least 3n/10 elements in S.
- (d) The recursive call is on an array of size 7n/10.

Given a list S of numbers and an integer k, find the k-th smallest element in S.

The key insight is that

- (a) M is larger than $\lceil \lceil n/5 \rceil / 2 \rceil 1 \approx n/10$ medians.
- (b) Each such median is larger than two other elements in its block.
- \implies M is larger than at least 3n/10 elements in S.
- (c) Similarly, M is smaller than at least 3n/10 elements in S.
- (d) The recursive call is on an array of size 7n/10.

$$T(n) \leqslant O(n) + T(n/5) + T(7n/10)$$

$$T(n) \le O(n) + T(n/5) + T(7n/10)$$

 $\le O(n) + O(n/5) + T(n/25) + T(7n/50) + O(7n/10) + T(7n/50) + T(49n/100)$

Given a list S of numbers and an integer k, find the k-th smallest element in S.

$$T(n) \leqslant O(n) + T(n/5) + T(7n/10)$$

 $\leq O(n) + O(n/5) + T(n/25) + T(7n/50) + O(7n/10) + T(7n/50) + T(49n/100)$
 $O(9n/10) O(81n/100)$

$$T(n) \leqslant O(n) + T(n/5) + T(7n/10) = O(n)$$

Why 5 for the block size?

5 is the smallest odd block size achieving exponential decay in the analysis.

If 3 is used,
$$T(n) \le T(n/3) + T(2n/3) + O(n)$$
, implying $T(n) \le O(n \log n)$.

Given *n* points in the plane, find a pair with smallest Euclidean distance.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

Given *n* points in the plane, find a pair with smallest Euclidean distance.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

Divide and Conquer. Divide the point set P into two equal-sized subsets P^L and P^R along x-median x_{mid} and solve the problem recursively.

Given *n* points in the plane, find a pair with smallest Euclidean distance.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

Divide and Conquer. Divide the point set P into two equal-sized subsets P^L and P^R along x-median x_{mid} and solve the problem recursively.

Preprocessing. Sort the points in P by x-coordinates (sorted list P_x), and by y-coordinates (sorted list P_y).

In the recursion,

- Two sorted lists P_x^L and P_x^R can be computed in O(1) time from P_x .
- P_y^L and P_y^R can be constructed in O(n) time by scanning P_y once.

Given *n* points in the plane, find a pair with smallest Euclidean distance.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

Divide and Conquer. Divide the point set P into two equal-sized subsets P^L and P^R along x-median x_{mid} and solve the problem recursively.

Preprocessing. Sort the points in P by x-coordinates (sorted list P_x), and by y-coordinates (sorted list P_y).

In the recursion,

- Two sorted lists P_x^L and P_x^R can be computed in O(1) time from P_x .
- P_y^L and P_y^R can be constructed in O(n) time by scanning P_y once.

The minimum δ of the two smallest distances, returned from each subproblem.

The sorted list of points in the left (and right) gray strip by y-coordinates can be obtained from P_y^L (and P_y^R) in O(n) time.

Consider a grid over the gray strips with cell dimension $\delta/2 \times \delta/2$.

Among the points in the gray strip, let s_i denote the point with the i-th smallest y-coordinate.

Claim. If $|i-j| \ge 12$, then s_i and s_j are at least δ apart.

- No two points lie in same $\delta/2 \times \delta/2$ box.
- Two points at least 2 rows apart are at least $2(\delta/2)$ apart.

$$T(n) \leqslant 2T(n/2) + O(n)$$
, implying $T(n) = O(n \log n)$.

