Proiect EA 2019 - 2020

Grecu Andrei-George

Grupa 325CA, Facultatea de Automatica si Calculatoare
Universitatea Politehnica Bucuresti
andrei.g.grecu@gmail.com

1. Schema

L1 L2 L3 => G R E

 $L4 L5 L6 \Rightarrow A N D$

 $L1 = R1 = 680 \Omega$

 $L3 = R8 = R9 = 39 \text{ k}\Omega$

 $L4 = R2 = R3 = 12k\Omega$

L2 = [-Vim; Vim] = [-50; 50] mV

L5 => [-Vom; Vom] = [-4; 4] V

L6 = 300Hz

2. Simulare de tip DC Sweep

2.1. Caracteristica de transfer a schemei

2.2. Domeniul tensiunii de intrare pentru care schema funtioneaza linear

Domeniul tensiunii de intrare pentru care schema functioneaza liniar este de [-92.02; 92.24] mV.

2.3. Amplificarea de tensiune a schemei

$$A = \frac{-1.088V}{20mV} = \frac{-1.088V}{20 * 10^{-3}V} = -0.0544 * 10^{3} = -54.4$$

Pentru verificarea domeniului, impartim domeniul de [-5; 5] V la valoarea aflata.

$$\frac{5}{54.4} = 0.0919 V = 91.9 \, mV \approx 92 \, mV \, (valoare \, aflata \, la \, 2.2.)$$

Iar, pentru amplificare, folosim formula de verificare urmatoare:

$$A = \left(1 + \frac{R2 + R3}{R1}\right) \left(-\frac{R5}{R4}\right) \left(1 + \frac{R11}{R10}\right) = \left(1 + \frac{24k}{680}\right) (-1) \left(1 + \frac{1}{2}\right) = -\frac{3}{2} * 36.294 => A = -54.44$$

3. Simulare de tip AC

3.1. Caracteristica de frecventa a schemei

3.2. Banda de trecere a schemei

Frecventa de taiere este de 38.39 Hz.

4. Simulare de tip Transient

4.1. Raspunsul la semnal de tip treapta

4.2. Timpul de crestere

Valoarea stationara, unde se stabilizeaza semnalul, este -54.4mV.

$$90\% * (-54.4 \ mV) = -48.96 \ mV$$

Timpul de crestere este :

$$21.2 - 9.99 = 11.2 \, ms$$

5. Proiectare

5.1. Transferarea noului domeniului de intrare in noul domeniul de iesire

$$A = \frac{-Vim}{Vom} = \frac{-4V}{50 \, mV} = \frac{-4 \cdot 10^3}{50} = -80$$

R1 este necunoscuta noastra =>

$$A = \left(1 + \frac{R2 + R3}{R1}\right) \left(-\frac{R5}{R4}\right) \left(1 + \frac{R11}{R10}\right) = > -80 = \left(1 + \frac{24}{R1}\right) (-1) \left(1 + \frac{1}{2}\right) = > \frac{-80}{-1.5} = \frac{R1 + 24}{R1} = > -80 * R1 = -1.5 * R1 - 36 = > -79.5 * R1 = -36 = > R1 = 0.452 k\Omega$$

 $R1 = 452\Omega \cong 470\Omega$ (conform standardului E24 al rezistentelor)

Inlocuind in schema rezulta:

Verif: $\frac{501.94}{-6.42} = 78.18 \in [72;88]$ (apartine erorii de 10%)

5.2. Modificarea schemei pentru a obtine frecventa de -3dB

Stim ca frecventa este proportionala cu raportul:

$$\frac{1}{\sqrt{R8 * R9 * C1 * C2}}$$

Frecventa de 38.39Hz, aflata la punctul 3.2., trebuie dusa la frecventa data de tabel, 300Hz, si deci trebuie marita de aproximativ 8 ori.

$$\frac{1}{\sqrt{\frac{1}{64} * R8 * R9 * C1 * C2}}$$

Luam R8 si R9 (= $39k\Omega$) si le impartim la 8 pe fiecare => R8 = R9 = $4.875k\Omega$. Dar conform standardului E24 al rezistentelor, vom folosi R8 = R9 = $4.7k\Omega$. Inlocuind in schema rezulta:

Frecventa este de 318.09Hz, cu eroare incadrata in 10% (\in [270; 330]Hz), aproape cat frecventa dorita de 300Hz.

Pentru a compara timpii de crestere la raspunsul semnalului treapta, am facut o simulare de tip transient cu noile valori ale rezistentelor.

Se observa valoarea de stabilizare ca fiind -54,44mV si se face 90% din acesta pentru a afla punctul final al cresterii timpului:

$$0.9 * -54.44mV = 48.99mV$$

Astfel, se observa timpul de crestere de 1.4 ms, si se poate remarca o diferenta semnificativa, timpul a scazut fata de prima masurare, 11.2 ms, mai exact cu aproximativ 10 ms.

6. Concluzie

Proiectul raspunde tuturor cerinteor de analiza si de proiectare, respectand valorile personalizate ale componentelor de circuit din schema propusa. Realizarea cerintelor de rezolva prin executarea a 3 tipuri de simulari : DC sweep, AC si Transient, rezultatele simularile fiind verificate si prin calcule teoretice.

De mentionat ca, amplificarea in tensiune a schemei (semnale foarte lent variabile) este A = -54.4, ceea ce dovedeste ca semnalul de la iesire este amplificat, dar este in antifaza. Mai mult, intre timpul de crestere si valoarea frecventei la -3dB exista o relatie de proportionalitate.

Ca sa transfomam domeniul de intrare, in domeniul de iesire, noua amplificare trebuie sa fie A = -80 (se observa mentinerea variatiei in antifaza a semnalului de iesire fata de semnalul de intrare), si pentru ca simularea schemei sa poate fi aplicata in practica, trebuie modificata rezistenta R1 la 470 Ω .

In plus, pentru a afla noua banda de trecere de 300Hz (o crestere de aproximativ 8 ori), se vor modifica corespunzator rezistentele R8 si R9, metoda teoretica fiind demonstrata si prin metoda practica (metoda folosind cursorul).