Feature Engineering

- **Definition**: The process of creating new features from existing ones to enhance model performance.
- **Experimental Nature**: It relies on the creativity of the programmer and is highly experimental.

Data Pre-processing

- **Definition**: Transforming the dataset into a form suitable for model training.
- Common Steps:
 - Scaling numeric variables
 - Encoding categorical variables

Key Libraries for Feature Engineering and Pre-processing:

- Pandas
- Scikit-learn
- Tsfresh
- Feature Engine
- NLTK

Handling Extreme Values

- Questions to Ask:
 - Are the extreme values genuine?
 - Are the extreme values erroneous?
- Identification Methods:
 - Mean and Standard Deviation
 - IQR (Interquartile Range)
 - Percentiles (5th, 95th, etc.)
 - Isolation Forest, Box Plot, KDE Plot
- Remedial Steps:
 - o Delete extreme values
 - Cap/Floor values
 - o Represent as missing for later imputation

Handling Missing Values

Questions to Ask:

- Are values missing because they don't exist?
- Were they not recorded?
- · Remedial Steps:
 - Delete missing values
 - Impute using Mean, Median, Mode, Constant, or algorithms like MICE, KNN

Mathematical Operations

- Combining Features:
 - o Aggregations: Sum, Max, Min, Mean
 - o Relativity: Ratios, Differences
- Transformations:
 - Log, Square Root, Reciprocal, Exponential
 - Power Transformations (Box-Cox, Yeo-Johnson)
- Feature Discretization:
 - o Equal Width, Equal Frequency, Arbitrary Intervals, K-Means Clustering

Feature Scaling

- Techniques:
 - Standardization
 - Normalization
 - · Median and IQR Scaling

Handling Categorical Variables

- Steps:
 - 1. Encoding:
 - Ordinal Encoding
 - One-Hot Encoding
 - Rare-label Encoding
 - Frequency Encoding
 - Target Mean Encoding
 - 2. Manipulation:
 - Group rare categories
 - Convert to meaningful values or binary categories

Handling Date and Time Variables

Feature Extraction:

- o Day, Month, Year, Quarter, Weekday
- · Hour, Minute, Second
- New Features:
 - Time lag, Differences between two dates

Handling Text Variables

- Feature Extraction:
 - Frequency of characters, words, and unique words
- Ratios:
 - Take ratios based on the extracted features

Feature Selection

- 1. Filter Methods:
 - Ranking variables based on statistical metrics like Chi-square, F-test, Correlation,
 Mutual Information.
- 2. Wrapper Methods:
 - o Generate subsets of features and train models on each subset. Techniques include:
 - Exhaustive Search
 - Forward Elimination
 - Backward Elimination
- 3. Embedded Methods:
 - Use models like Linear Regression, LASSO, Decision Trees, and Random Forest to select features based on their coefficients or feature importance.

Key Components in Feature Engineering

- 1. Built-in Transformers:
 - Python Class, Python Function, Function Transformer
- 2. Pipeline and Feature Union: Combine various transformations into a cohesive process.

General Sequence of Steps for Data Preprocessing:

- 1. Import Libraries: Pandas, Scikit-learn, etc.
- 2. **Display Settings**: Adjust pandas display options and ignore warnings.
- 3. Read Training Data.
- 4. Transformation Operations (e.g., for specific columns like 'Airline', 'Date of Journey', etc.).
- 5. Feature Selection: Based on individual feature performance.

Feature Engineering and Data Preprocessing

1. Import Libraries

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, OneHotEncoder, PowerTransformer
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif
from sklearn.model_selection import train_test_split
from sklearn.ensemble import IsolationForest
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Data Overview & Display Settings

```
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
```

3. Reading Data

```
# Load your dataset here

df = pd.read_csv('your_dataset.csv')

df.head()
```

Identifying and Handling Extreme Values

4. Identify Extreme Values

Using mean, standard deviation, IQR, and plots:

```
def identify_extreme_values(df, column):
    mean = df[column].mean()
    std_dev = df[column].std()
    iqr = df[column].quantile(0.75) - df[column].quantile(0.25)
    lower_bound = df[column].quantile(0.25) - 1.5 * iqr
    upper_bound = df[column].quantile(0.75) + 1.5 * iqr
```

```
print(f'Mean: {mean}, Std Dev: {std_dev}, IQR: {iqr}')
return lower_bound, upper_bound
```

lower, upper = identify_extreme_values(df, 'column_name')

5. Remedial Steps for Extreme Values

Capping extreme values:

```
df['column_name'] = np.where(df['column_name'] > upper, upper, df['column_name']
df['column_name'] = np.where(df['column_name'] < lower, lower, df['column_name']</pre>
```

6. Visualization of Extreme Values

```
sns.boxplot(df['column_name'])
plt.show()
```

Handling Missing Values

7. Imputation of Missing Values

```
imputer = SimpleImputer(strategy='mean')
df['numeric_column'] = imputer.fit_transform(df[['numeric_column']])
```

8. Creating Indicator Columns for Missing Values

```
df['missing_numeric_column'] = df['numeric_column'].isna().astype(int)
```

Feature Engineering

9. Mathematical Operations on Features

```
df['new_feature'] = df['feature1'] + df['feature2'] # Example: Sum
df['log_feature'] = np.log1p(df['numeric_column']) # Example: Logarithmic Trans
```

10. Polynomial Features

```
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, interaction_only=True)
```

```
poly_features = poly.fit_transform(df[['feature1', 'feature2']])
```

Feature Scaling

11. Feature Scaling

```
scaler = StandardScaler()
df[['numeric_column']] = scaler.fit_transform(df[['numeric_column']])
```

Encoding Categorical Variables

12. One-Hot Encoding

```
ohe = OneHotEncoder()
encoded_cols = ohe.fit_transform(df[['categorical_column']]).toarray()
```

13. Rare-Label Encoding

```
freq_counts = df['categorical_column'].value_counts()
rare_labels = freq_counts[freq_counts < threshold].index
df['categorical_column'] = df['categorical_column'].replace(rare_labels, 'Rare')</pre>
```

Date and Time Feature Engineering

14. Extracting Date Features

```
df['day'] = pd.to_datetime(df['date_column']).dt.day
df['month'] = pd.to_datetime(df['date_column']).dt.month
```

Text Feature Engineering

15. Text Frequency Features

```
df['word_count'] = df['text_column'].apply(lambda x: len(str(x).split()))
```

Feature Selection

16. Filter Method: Chi-Square Test

```
X = df[['feature1', 'feature2']]
y = df['target']
chi2_selector = SelectKBest(chi2, k=5)
X_new = chi2_selector.fit_transform(X, y)
```

17. Wrapper Method: Recursive Feature Elimination

```
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, 5)
fit = rfe.fit(X, y)
```

Putting It All Together

18. Data Preprocessing Pipeline

```
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
numeric_features = ['feature1', 'feature2']
categorical_features = ['category1', 'category2']
numeric_transformer = Pipeline(steps=[
    ('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[
    ('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
   transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)])
clf = Pipeline(steps=[('preprocessor', preprocessor),
                      ('classifier', LogisticRegression())])
clf.fit(X_train, y_train)
```

This notebook structure will help guide the entire data preprocessing and feature engineering workflow. You can adjust specific functions and techniques based on your dataset's requirements.