1 Automi

10 Points

• Sia $L = \{11, 110\}^*$. Costruire un NFA N con 4 stati che riconosca L. Convertire l'NFA N in un DFA M equivalente.

 Enunciare e dimostrare il pumping lemma per linguaggi regolari. Fornire un esempio di utilizzo.

1)

2)

DADE UM DEFUNDACE

Dec DFA

- QD= P(QN) = P(Q0, 41, 92, 93)

Ca): Eqe Qu) 3p ER cue nocau ge q ca E Assais

FD: ERECPIROFI + \$

Dan u e Z e DE QD

5(P,a)= U E (o, (P,a))

e one pon Costribia e L'Equaceuro ma LODE LOD

2) IL anow	Lema	OFFE M	CHG SVA	LE RES	
3 p ca	P2 (u)	٥٠,	& pssize	e dillo co	w = x/3
(m)	2 P	14/30	2412 61	_	
Dan;			•	1	
			the sac T		
SA WE U	1, _ Wm	6 >1	7 R25 en	Rm Sua	ESUA
bc.	د (س و بور)	: re-a			
Pulled of Mata	7P 0	o guen	o w= 5	SAZO CHO	وجه
RIPETO CH	ام الم الم	LA Prim	appa nyme	1200 St	076 In 2
e wy ia	Se Carra	かいか	2 44 2 cod		
	2 -	ó	com. Cld-6		
	5 Wm		1xy) 2 p	e J + L -	=> 14)=0
Parich 5	1) PORTA U	A (ap Su	llo 576 57a	sor xy	iz EL
CSEMP10	S m a l	N(2			
	E 09 1 [1				
SIA P= M	e W	= 24/2			
'X= 0"	4 }>	m (n-y) 14 Ma		
7= 1	5	SI CUNCO	m (m 4) 19 d	7-6	
		7061 G	ا ما ۱۵ ما ۱۵ ما	1	

3 Complessità

10 Points

- Si considerino i linguaggi 3COL = {G : G è un grafo 3-colorabile} e 4COL = {G : G è un grafo 4-colorabile}. Mostrare che 3COL ≤^p_m 4COL.
- Definire le classi di complessità PSPACE ed NPSPACE. Dimostrare che PSPACE = NPSPACE.

1) 5 = , 5 = > 5 = <

Y 65

46263Cd 42) f(c62) E46d

POLLIFE & DOVE ESSER CALCULARICE USO UNA TM F CHE LA CAREN

F pronde in inport 260 grafa

- AG GLAGO UN NORONA G

-Per ogni ve VLG) com Ot v AGGUAGE CONSEECO

OUT BT = 26'3 (6 may prate)

>) 2676266 >> Yu, y, v36 V (v1, v2, v2) = 366

(HONNO 3cocon DIGOS) => (E 4ca CDANONO AD U ON COLDE

=> L G> E 3(a) => f(6) E ac2

(=) (6) 4 300 => \(\frac{1}{2}\cdot\)_{\(\text{U}_1\cdot\)_1\(\text{U}_2\cdot\)_2\(\text{U}_3\cdot\) 4 300

>> Nar Hano CLOI DIEDS

Parcite 2 Cd Cd Cd C anio CHE 26's & 4506

2	2)							P	SΡ	AC	€-	2	l	VV	ς,	.PA	90	-E	;																		_		
	4	=>				P	5	Re) <u>C</u>	C		<u>_</u>		Λ) [>	Pσ	9C	E		Č	کے		Py	en/:	ح														
	<u> </u>					λſ	? <	3P6) C	C		_	f	7	sP/	9 <i>C</i>	6																						
		05	0	7		С)ı		۶۱	4 u)rrf	,																											
					1	_	E	. /\	1 P	S	η (26	; :	<u>-></u>	>	3)	(E	J	J		1	E	Ŋ	SP ₁	ΑC	ક (- V ₁	k\)	<u>e</u> [R	Œ	<u> </u>	n 2h	۲ >)	
										ະ`.)	1	-	6	, -	F) (31	PA	C	Ć	,													P	wo	Ą	€	
																																					_		