

Deep Image Demosaicking using a Cascade of Convolutional Residual Denoising Networks

Filippos Kokkinos, Stamatis Lefkimmiatis

Skolkovo Institute of Science and Technology, Moscow, Russia

1. Motivation - Contributions

- Demosaicking and denoising are among the most crucial steps of modern digital camera pipelines and their joint treatment is a highly ill-posed inverse problem where at-least two-thirds of the information are missing and the rest are corrupted by noise.
- * Reconstruction errors in the early stages produce unsatisfying end results.
- We designed a novel deep network that
- is inspired by classical image regularization approaches and optimization strategy.
- tackles the demosaicking and denoising problem jointly.
- performs very well even when trained on small datasets and using a small number of parameters.
- works with any Color Filter Array (CFA).

2. Problem Formulation

degradation matrix

gaussian i.i.d

- lacksquare Demosaicking : estimate $\mathbf{x} \in \mathbb{R}^N$ according to the model : $\mathbf{y} = \dot{\mathbf{M}}\mathbf{x} + \mathbf{n}$
- ullet $\mathbf{M} \in \mathbb{R}^{N imes N}$ is a diagonal binary and singular matrix that models the CFA pattern
- ► Variational problem formulation (P1):

- Two challenges arise, how to:
- Efficiently minimize $Q(\mathbf{x})$ function
- ullet Properly define $\phi(\mathbf{x})$ to constrain the set of solutions
- ►We opt to design a network that successfully overcomes both challenges

3. Majorization Minimization (MM) Framework

- Minimize (P1) via successive minimization of a surrogate/majorizer function $\tilde{Q}(\mathbf{x},\mathbf{x}^{(t)})$ that upper-bounds (P1)
- lteratively solve $\mathbf{x}^* = \operatorname*{arg\,min}_x Q(\mathbf{x})$ via $\mathbf{x}^{(t+1)} = \operatorname*{arg\,min}_x \tilde{Q}(\mathbf{x};\mathbf{x}^{(t)})$
- Deriving a majorizer of the data-fidelity term:

$$\tilde{d}(\mathbf{x}, \mathbf{x}_0) = \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + d(\mathbf{x}, \mathbf{x}_0)$$

- Where $d(\mathbf{x}, \mathbf{x}_0) = \frac{1}{2\sigma^2} (\mathbf{x} \mathbf{x}_0)^T [\alpha \mathbf{I} \mathbf{M}] (\mathbf{x} \mathbf{x}_0)$ is a distance function between \mathbf{x} and \mathbf{x}_0
- lacklose For requirements to hold, $d(\mathbf{x},\mathbf{x}_0)$ needs to be PSD matrix therefore $\alpha>\|\mathbf{M}\|_2\geq 1$
- ► The majorizer take the following form that resembles a denoising problem (P2):

$$\tilde{Q}(\mathbf{x}, \mathbf{x}_0) = \frac{1}{2(\sigma/\sqrt{a})^2} \|\mathbf{x} - \mathbf{z}\|_2^2 + \phi(\mathbf{x}) + c, \text{ where } \mathbf{z} = \mathbf{y} + (\mathbf{I} - \mathbf{M})\mathbf{x}_0$$

4. Residual Denoising Network (ResDNet)

- ►We need to derive a network that works for a wide range of noise levels to solve (P2)
- Make use of D CNNs layers with weight normalization and PReLU activation function
- Implement a residual approach to subtract the noise realization
- Projection Layer normalizes the noise realization estimate to have the desired variance σ .

$$\mathcal{P}_{\mathcal{C}}\left(\mathbf{y}\right) = \varepsilon \frac{\mathbf{y}}{\max(\|\mathbf{y}\|_{2}, \varepsilon)}, \quad \varepsilon = e^{\gamma}\theta, \quad \theta = \sigma\sqrt{N-1}$$
Number of pixe

5. Demosaicking Network Architecture

- ►Unroll *K* Majorization Minimization iterations as a network and use *ResDNet* for each denoising step
- Promote parameter sharing in each step to keep a low number of parameters (~380.000)
- Extrapolate results of each iteration to accelerate MM Framework

6. Comparisons & Results

► Bayer Demosaicking PSNR performance evaluation:

	noise-free		noisy	
	linRGB	sRGB	linRGB	sRGB
Non-ML Methods:				
bilinear	30.9	24.9	-	-
Zhang(NLM) [2]	38.4	32.1	-	-
Getreuer [41]	39.4	32.9	-	_
Heide [5]	40.0	33.8	-	-
Trained on MSR Dataset:				
Khasabi [14]	39.4	32.6	37.8	31.5
Klatzer [19]	40.9	34.6	38.8	32.6
Bigdeli [42]	-	-	38.7	-
ours	41.0	34.6	39.2	33.3
Trained on MIT Dataset:				
Gharbi (sRGB)[20]	41.6	35.3	38.4	32.5
Gharbi (linRGB)	42.7	35.9	38.6	32.6
ours* (linRGB)	42.6	35.9	N/A	N/A

Evaluation an simulated data:

	Kodak	McM	Vdp	Moire
Non-ML Methods:				
bilinear	32.9	32.5	25.2	27.6
Adobe Camera Raw 9	33.9	32.2	27.8	29.8
Buades [4]	37.3	35.5	29.7	31.7
Zhang (NLM) [2]	37.9	36.3	30.1	31.9
Getreuer [41]	38.1	36.1	30.8	32.5
Heide [5]	40.0	38.6	27.1	34.9
Trained on MSR Dataset:				
Klatzer [19]	35.3	30.8	28.0	30.3
ours	39.2	34.1	29.2	29.7
Trained on MIT Dataset:				
Gharbi $[20]$	41.2	39.5	34.3	37.0
ours*	41.5	39.7	34.5	37.0

Zhang Gharbi et al. Ours

Fuji XTRANS Demosaicking evaluation:

	noise-free		
	linear	sRGE	
Trained on MSR Datasets	:		
Khashabi [14]	36.9	30.6	
Klatzer [19]	39.6	33.1	
ours	39.9	33.7	
Trained on MIT Dataset:			
Gharbi [20]	39.7	33.2	