Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №4

Дослідження використання Arduino в автоматизованих системах контролю та розробка програмного забезпечення для мікроконтролерів.

Керівник	(шдпис)	д.т.н., проф.	Черепанська І. Ю. (дата)
Виконавець	(підпис)		Погорєлов Б. Ю. (дата)

Лабораторна робота №4

Тема роботи

Вивчення можливостей використання платформи Arduino у складі систем автоматичного контролю технологічних параметрів. Розробка алгоритмічно-програмного забезпечення роботи мікроконтролерів в системах автоматизації на прикладі платформи Arduino.

Мета роботи

Вивчити будову, принцип дії та основні характеристики мікроконтролерів на прикладі мікроконтролера ATmega328 платформи Arduino Uno, навчитися підключати до них зовнішні пристрої та засоби автоматизації, вимірювальні пристрої тощо, а також розробляти, завантажувати та налагоджувати алгоритмічно-програмне забезпечення їх роботи.

Обладнання та інструменти

- Arduino Uno R3 на базі мікроконтролера ATmega328.
- Гребінка 40 Pin 1х40, однорядна.
- Персональний комп'ютер.
- Програмне забезпечення для роботи з платформою Arduino.
- Датчики температури.
- З'єднувальні провідники.

					$\Pi M1109.04.00.0$	14.	ЛI	D		
Зм.	Лист	№ докум.	Підпис	Дата	,					
Роз	роб.	Погорелов Б.Ю				٠	Літ.		Аркуш	Аркушів
Пер	рев.	Черепанська І.Ю.			Дослідження використання Arduino в				2	γ
					автоматизованих системах контролю					
Н. І	Контр.				та розробка програмного забезпечення для мікроконтролерів. КПІ ім. І. Сікорського, ПБ с					
Зат	'В.	Черепанська І.Ю.								

Програма миготіння світлодіодом

Завдання: модифікувати скетч Blink у Blink2 та Blink3, зменшивши в 2 та збільшивши у 3 рази відповідно затримку мерехтіння користувацького світлоліода L.

```
Лістинг 1: Програма Blink2 - вбудований світлодіод миготить у 2 рази швидше void setup() { pinMode(LED_BUILTIN, OUTPUT); } 
void loop() { digitalWrite(LED_BUILTIN, !digitalRead(LED_BUILTIN)); delay(500/2);
```


Рис. 4.1: Діаграма миготіння Blink2

Змн.	Арк.	№ докум.	Підпис	Дата

```
Лістинг 2: Програма Blink3 - вбудований світлодіод миготить у 3 рази повільніше void setup () {
   pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
   digitalWrite(LED_BUILTIN, ! digitalRead(LED_BUILTIN));
   delay(500*3);
}
```


Рис. 4.2: Діаграма миготіння Blink3

Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 4.3: Схема підключення терморезистора до мікроконтроллера

Код програми

```
Лістинг 3: Програма для вимірювання температури
```

Результати вимірювання

valueSensor	121	115	134	149	115	149	201	263	460	680	822	905	953
°C	78.29	80.09	74.68	70.95	80.09	70.95	60.47	50.96	29.62	10.36	-3.65	-14.74	-24.09

Рис. 4.4: Таблиця результатів вимірювання

Алгоритм роботи програми

1. Ініціалізується серійний порт для обміну даними з комп'ютером через USB.

						Арк.
					$\Pi M1109.04.00.04~\Pi P$	-
3,,,,,	Ank	N ποκνω	Піппис	Пата	· · · · · · · · · · · · · · · · · · ·	5

Рис. 4.5: Діаграма результатів вимірювання

- 2. Виводиться заголовок стовпців у серійному моніторі.
- 3. У нескінченному циклі (loop()):
 - (а) Зчитується аналогове значення з датчика температури на вході А0.
 - (б) Виконується перетворення аналогового значення у температуру за допомогою формули з використанням коефіцієнта ВЕТА.
 - (в) Виводиться у серійний порт значення сенсора та розрахована температура у градусах Цельсія.
 - (г) Виконується затримка у 500 мс перед наступним зчитуванням значень.

Висновки

В ході виконання лабораторної роботи було вивчено принцип роботи мікроконтролера ATmega328 на платформі Arduino Uno, встановлено та налаштовано програмне середовище Arduino IDE, а також реалізовано програму для вимірювання температури за допомогою датчика.

Відповіді на контрольні питання

1. Платформа Arduino — це апаратно-програмний комплекс, що складається з мікроконтролерів та середовища програмування для розробки автоматизованих систем.

					$TIM1100\ 01\ 00\ 01\ TID$	Арк.
					$\Pi M1109.04.00.04~\Pi P$	
Змн.	Арк.	№ докум.	Підпис	Дата		6

Рис. 4.6: Діаграма алгоритму роботи програми вимірювання температури

- 2. Основні компоненти плати Arduino: мікроконтролер, роз'єми живлення, USB-інтерфейс, цифрові та аналогові входи/виходи, світлодіоди індикації, кварцовий генератор, кнопка скидання.
- 3. Мова програмування Arduino базується на ${\rm C/C}++$ та містить бібліотеки для роботи з апаратними компонентами.
- 4. Основні компоненти програмного забезпечення: середовище розробки Arduino IDE, бібліотеки для роботи з периферійними пристроями, компілятор та засоби завантаження коду на плату.

Змн.	Арк.	№ докум.	Підпис	Дата