

Natural Language Processing for Fact-Checking and Claim Assessment

Intermediate report of project advancement

Othman EL HOUFI Dimitris KOTZINOS

MSc Research in Data Science & Machine Learning

December 14, 2021

Abstract

As false information and fake news are propagating though out the internet and social networks, the need of fact-checking operations becomes necessary in order to maintain a truthful digital environment where general information can be reliably exploited whether in politics, finance and other domains. The need of this online claim assessment comes from the fact that fake news and false information can have a big negative impact on politics, economy (2016 USA Elections) and public health (COVID-19).

A number of solutions have been proposed to deal with this problem and limit the spread of false information, both manual and automatic. Of course the manual approaches done on websites such as *PolitiFact.com*, *FactCheck.org* and *Snopes.com* don't construct a viable solution for the long term as the speed and scale of information propagation increase exponentially rendering this manual fact-checking operation where human fact-checkers can't scale up at the same rate limited and incapable of solving the problem.

Here, we present our contribution in this regard: an automated solution for fact-checking using Wikipedia's articles for claim verification. The algorithm uses NLP techniques in order to extract the so-called claim from the user input, then, using Wikipedia's API, it retrieves all the relevant articles and assesses with a degree of confidence if the claim is true, false or unable to decide due to lack of information showing evidence (sentences in articles) and probabilities for each resulted case.

Keywords: Natural Language Processing, Wikipedia, Information retrieval, Text processing, Natural Language Inferencing, Fact-Checking, Document retrieval, Sentence retrieval, Fake-news.

Contents

1	Introductio	on	•
	1.1 Project	Context	
	1.2 Use case	e scenario	4
2	Identified c	challenges and solutions	Ę
	2.1 Fact-Ch	necking challenges	Į.
		work and solutions	
	2.2.1	Styled based fake news detection	E
		Propagation based fake news detection	
	2.2.3	Credibility based fake news detection	7
3	Conclusion		8
4	Perspective	es s	ç

Introduction

1.1 Project Context

From a social and psychological perspective, humans have been proven irrational and vulnerable when differentiating between truth and false news (typical accuracy ranges between 55% and 58%), thus fake news obtain public trust relatively easier than truthful news because individuals tend to trust fake news after repeated exposure (*Validity effect*), or if it confirms their pre-existing beliefs (*Confirmation bias*), or simply due to the obligation of participating socially and proving a social identity (*Peer pressure*). The social sciences are still trying to comprehend the biological motivations that makes fake news more appealing to humans.

On the other hand, the growth of social media platforms resulted in a huge acceleration of news spreading whether true or false. As of Aug. 2017, 67% of Americans get their news from social media. These platforms even give the user the right to share, forward, vote and participate to online discussions. All of this made the problem of fake news spreading more and more dangerous, our economies for example, are not robust to the spread of falsity, false rumors have affected stock prices and the motivations for large-scale investments, as we witnessed after a false tweet claimed that Barack Obama was injured in an explosion which caused \$130 billion drop in stock value. Another recent example is related to public health where rumors about COVID-19 vaccines and drug companies influenced people in their decision on getting vaccinated.

That being said, is there a way to monitor the spread of fake news through social media? Or more specifically, how can we differentiate between fake news and truthful news, and at what level of confidence can we do that?

From a computer engineering perspective, different approaches were studied:

- Knowledge-based Fake News Detection: a method aims to assess news authenticity by comparing the knowledge extracted from to-be verified news content with known facts, also called fact-checking.
- Style-based Fake News Detection: focuses on the style of writing, i.e. the form of text rather than its meaning.
- Propagation-based Fake News Detection: a principled way to characterize and understand hierarchical propagation network features. We perform a statistical comparative analysis over these features, including micro-level and macro-level, of fake news and true news.
- Credibility-based Fake News Detection: the information about authors of news articles can indicate news credibility and help detect fake news.

In this project we will focus on the method of **Knowledge-based Fake News Detection** also called **Fact-Checking**. The goal is not to implement an algorithm that scans social networks for real time fake news detection, but rather we will create a model that can assess with a degree of confidence the truthfulness or falseness of a claim given by a user as an input by exploiting Wikipedia's articles as a source of true knowledge and export evidence that validates or refutes the subjected claim.

1.2 Use case scenario

Suppose that while browsing the internet or talking to people you come across a claim that says "The former U.S president John F. Kennedy died in September 22, 1963", as it is a general truth and not a relative truth it should be easier to verify the validity of this claim as well as find evidence that proves it.

Using the platform we will create, you can simply write the claim you like to verify with no regards to a specific linguistic rule, the model will extract relevant articles from Wikipedia using an API, then it retrieves sentences relative to your claim and apply a comparison in order to assess if the claim is True, False, or Not Enough Information as well as giving a percentage of confidence and evidence of the results that were processed straight from Wikipedia's database.

Combing back to our example, the model should return that "John F. Kennedy died in November 22, 1963" so the input claim is false.

Figure 1.1: General Model Processing Pipeline

Identified challenges and solutions

2.1 Fact-Checking challenges

In order for the model to work each layer/part of the system must answer to a specific task, the combination of results made by each layer constructs a robust model that is able with a degree of confidence to fact-check a claim as well as present evidence of the assessment. Although for each layer to work as intended we must find solutions to these challenges:

- Claims Spotting: the model must be robust to linguistic changes, we must deal with different phrasing for the same or similar claims. For every "reasonable" input we must extract the target claim.
- Articles Retrieving: as Wikipedia holds millions of articles, the model must look for a limited number of relative articles to the input claim with an order of degree of correlation.
- **Time Recording:** relative articles in Wikipedia can be outdated, for example Britain belongs to the European Union is an outdated knowledge. The model must be sensitive to the timestamps of articles.
- Sentences Retrieving: in each article retrieved from Wikipedia's database we must extract sentences relative to our input claim in order to apply a "kind of" comparison as well as present the winning sentences as evidence to the user.
- Sentence Comparison: here we must create a model or use a pre-existing natural language inferencing model in order to compare retrieved sentences from Wikipedia's articles and the input claim.
- Credibility Evaluation: not all informations in Wikipedia are true.

These can be regarded as main challenges of our Fact-Checking project, but, evidently, other problems can be presented for example the verifiability of claims, not all claims can be verifiable, especially if it is an personal opinion or a personal belief, in this case the model must not give a True or False assessment but it should tell the user that there is not enough information (NEI) to make such an assessment.

2.2 Related work and solutions

2.2.1 Styled based fake news detection

A study done by *Piotr Przybyła* named *Capturing the Style of Fake News* in 2020 from Institute of Computer Science, Polish Academy of Sciences, in order to detect fake news or in other words assess the credibility of an article by looking at the style of writing rather than the meaning of the words and sentences.

The purpose of this study was to prove that general-purpose text classifiers, despite their good performance when evaluating simplistically, they overfit to sources of documents in training data. In contrast to this method, a truly style-based prediction that uses an analysis of the stylometric model shows that it focuses on sensational and affective vocabulary, known to be typical for fake news.

Fake news sources usually attempt to attract attention for short-time financial or political goal (Allcott and Gentzkow 2017) rather than to build a long-term relationship with the reader, in this perspective, the language used by these sources tend to be informal, sensational and affective (Bakir and McStay 2017). This can be used to build a classifier for indicating low credibility.

First of all they started by gathering a corpus of 103,219 documents from 223 online sources labeled by media experts like *PolitiFact* and *Pew Research Center*. Then they designed two models: a neural network and a model based on features used in stylometric analysis. This has a purpose to demonstrate that the stylometric features based model captures the affective language elements.

Figure 2.1: From Piotr Przybyła paper - The largest 15 LDA (Latent Dirichlet Allocation) topics in the corpus, each shown with the six most significant keywords, an identifier and bars illustrating number of credible and non-credible documents associated with it

Stylometric classifier: the architecture of this classifier is generally based on a collection of stylystic features followed by a linear modeling. The features are:

- number of sentences, average sentence length (in words) and average word length (in characters),
- number of words matching different letter case schemes (all lower case, all upper case, just first letter upper case, other), represented as counts normalized by the document length,
- frequencies of POS uni-grams, bi-grams and trigrams, represented as counts normalized by the document length (if present in at least 5 documents),
- frequencies of words belonging to the 182 word categories in the expanded GI dictionary, represented as counts normalized by the document length.

Neural network classifier: the applied solution was BiLSTMAvg a neural network with architecture based on elements used in natural language processing, i.e. word embeddings (Mikolov et al. 2013) and bidirectional LSTM (Hochreiter and Schmidhuber 1997). The following layers are included:

- An embedding layer, representing each token using a 300-dimensional word2vec vector trained on Google News,
- Two LSTM layers, forward and backward, representing each sentence by two 100-dimensional vectors (output of the last cell in a sequence),
- A densely-connected layer, reducing the dimensionality to 2 and applying softmax to compute class probability,
- An averaging layer, representing each document's class probability scores by averaging the scores for all its sentences.

The neural network is implemented and trained in TensorFlow for 10 epochs with sentence length limited to 120 tokens and document length limited to 50 sentences.

In order to understand if general-purpose text classifiers can capture document style without overfitting to features like the source or topic of document and to compare with the two classifiers they created, they evaluated two baseline models: bag of words and BERT.

The evaluation protocol consisted on running the model learning and prediction in a 5-fold cross validation (CV) scenario and comparing it's output to target labels. They used accuracy as a metric of evaluation rather than precision or recall.

Method	doc. CV	topic CV	source CV
Stylometric	0.9274	0.9173	0.8097
BiLSTMAvg	0.8994	0.8921	0.8250
Bag of words	0.9913	0.9886	0.7078
BERT	0.9976	0.9965	0.7960

Figure 2.2: From Piotr Przybyła paper - Classification accuracy of our stylometric and neural classifiers compared to baselines in three evaluation scenarios, simulating, respectively, a new document from known sources and topics, a document from unknown topic and a document from unseen source

The obtained results shows that stylometric based classifier loses 10% of the accuracy on unseen sources even if it has more consistent performance over evaluation scenarios. Piotr Przybyła explains this drop in accuracy by assuming that the model specialize in the style of individual sources rather than the general style of fake news. Nevertheless, he was able to prove that his model takes into account the affective words in order to classify fake news.

2.2.2 Propagation based fake news detection

2.2.3 Credibility based fake news detection

Conclusion

Ces dernières années, de nombreuses techniques différentes de création d'empreintes digitales et d'indexation ont été proposées et sont maintenant utilisées dans des produits commerciaux. Dans ce projet, nous avons examiné de plus près l'une de ces techniques, qui a été développée à l'origine pour le système d'identification audio *Shazam*. Nous avons discuté des idées principales qui sous-tendent ce système, mais il y a de nombreux paramètres qui doivent être ajustés afin de trouver un bon compromis entre les différentes exigences, notamment la robustesse, la spécificité, l'évolutivité et la compacité. Les aspects importants sont les suivants :

- les paramètres de la STFT (longueur de la fenêtre, taille du saut) qui déterminent les résolutions temporelle et spectrale,
- la stratégie de sélection et d'extraction des pics spectraux (avec ses paramètres de voisinage),
- la taille des zones cibles (utilisées pour définir les triplets), et
- des structures de données appropriées pour le hachage.

Bien que ce système est robuste à de nombreux types de distorsions du signal, l'approche de création d'empreinte discutée n'est pas conçue pour gérer les déformations temporelles. La correspondance des cartes de constellation ainsi que les différences d'horodatage (timestamp) dans les paires de pics sont toutes deux sensibles aux différences de tempo relatif entre la requête et le document de base de données. Par conséquent, il est nécessaire d'utiliser d'autres techniques pour être invariant aux modifications de l'échelle de temps.

Les empreintes digitales utilisant les pics spectraux sont conçues pour être très sensibles à une version particulière d'un morceau de musique. Par exemple, face à une multitude d'interprétations différentes d'une chanson par le même artiste, le système d'empreintes digitales est susceptible de choisir la bonne, même si elles sont pratiquement indiscernables par l'oreille humaine. En général, les systèmes d'identification audio sont conçus pour cibler l'identification d'enregistrements qui sont déjà présents dans la base de données. Par conséquent, ces techniques ne sont généralement pas généralisables aux enregistrements en direct ou aux performances qui ne font pas partie de la base de données.

Perspectives

Comme décrit avant, il y a de nombreux paramètres qui doivent être ajustés afin de trouver un bon compromis entre les différentes exigences, notamment la robustesse, la spécificité, l'évolutivité et la compacité. Trouver des valeurs optimales à ces paramètres pourra augmenter largement les performances de notre application du point de vue de la robustesse aux distorsions, voire aussi du point de vue la mémoire utilisée et la vitesse de recherche d'une correspondance. Or, ce n'est pas une simple tâche, de plus les paramètres de notre application augmente, le processus de trouver des valeurs optimales à ces paramètres devient très compliqué.

Parmi les solutions que nous envisageons comme extension à notre application est l'utilisation d'un modèle de réseau neurones artificielles qui prendra en entrée les paramètres de notre application, et la sortie sera divisée sur les différentes exigences voulues tel que la robustesse, la mémoire, et le temps de recherche.

Ce réseau sera entraîné sur une large base d'apprentissage qui provienne de plusieurs tests déjà effectués d'une manière dynamique, par exemple nous allons exécuter la reconnaissance des morceaux sur une large collections de musiques tout en ajoutant du bruit et d'autres distorsions et aussi en variant le temps d'enregistrement du microphone, les résultats obtenus feront une très bonne base d'apprentissage pour notre réseau de neurones artificielles. Peut-être même on pourra ajuster les paramètres de notre application dynamiquement par rapport à chaque situation.

Bibliography

- [1] Avery L. Wang. An industrial-strength audio search algorithm. In *Proceedings of the 4th Symposium Conference on Music Information Retrieval*, 2003.
- [2] Peter Grosche, Meinard Müller, and Joan Serrà: Audio Content-Based Music Retrieval. In Meinard Müller and Masataka Goto and Markus Schedl (ed.): Multimodal Music Processing, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2012.
- $[3] \ Audio \ Identification: \ https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S1_AudioIdentification.html.$
- [4] J. Haitsma, T. Kalker, and J. Oostveen, "Robust Audio Hashing for Content Identification". In *n International Workshop on Content-Based Multimedia Indexing*, 2001.
- [5] C.J. Burges, J. C. Patt, and S. Jana, "Distortion discriminant analysis for audio fingerprinting". In *IEEE Transaction on Speech and Audio Proc*, 2003.
- [6] 6.050J/2.110J Information, Entropy and Computation Spring 2008 6.05https://mtlsites.mit.edu/Courses/6.050/2008/notes/mp3.html.
- [7] Seeing circles, sines, and signals https://jackschaedler.github.io/circles-sines-signals/sound.html.
- [8] Piotr Indyk, Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality.
- [9] Jerome Schalkwijk, A Fingerprint for Audio https://medium.com/intrasonics/a-fingerprint-for-audio-3b337551a671.
- [10] Jang et al. Pairwise Boosted Audio Fingerprint, 2009.
- [11] Short-Time Fourier Transform. In Sensor Technologies for Civil Infrastructures, 2014.
- [12] Nasser Kehtarnavaz. In Digital Signal Processing System Design (Second Edition), 2008.