

Hardy-Weinberg Equilibrium

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level P3

The Hardy-Weinberg principle states that, given certain conditions, genotype frequencies will remain constant at

$$p^2 + 2pq + q^2 = 1$$

where

- ullet p^2 is the proportion of homozygotes for the allele for which the proportion is given by p
- ullet 2pq is the proportion of heterozygotes in the population
- ullet q^2 is the proportion of homozygotes for the allele for which the proportion is given by q

Note that p+q=1.

Part A

Equal proportions >

A gene has two alleles (\mathbf{A} , \mathbf{a}) in a population. The proportion of allele \mathbf{A} in the population (given by p) is 0.5.

Find q, the proportion of allele **a** in this population.

Assuming the population is in Hardy-Weinberg equilibrium, what percentage of individuals will be homozygous for allele **A**?

P

Part B Unequal proportions >

A gene has two alleles (\mathbf{A} , \mathbf{a}) in a population. The proportion of allele \mathbf{A} in the population (given by p) is 0.8.

Find q, the proportion of allele **a** in this population.

Assuming the population is in Hardy-Weinberg equilibrium, what percentage of individuals will be homozygous for allele **a**?

p

Part C

How many heterozygotes? >

A gene has two alleles (**A**, **a**) in a population of $2\,000$ individuals.

65% of the copies of this gene in this population are allele **A**.

How many individuals would you expect to be heterozygous in this population?

P

Part D Disequilibrium >
A gene has two alleles (A , a) in a population. The proportion of allele A in the population (given by p) is 0.5 .
The genotype frequencies are as follows:
• AA: 45% of individuals • Aa: 10% of individuals • aa: 45% of individuals
Which of the following reasons may explain why this population is not in Hardy-Weinberg equilibrium for this gene? Select all that apply.
The population is very small and so genotype frequencies are highly affected by genetic drift.
Homozygotes prefer to mate with individuals of the opposite homozygote genotype.
Recent emigration out of the population has occurred.
Recent immigration into the population has occurred.
Heterozygotes have a higher fitness than homozygotes.
Heterozygotes have a lower fitness than homozygotes.
Homozygotes prefer to mate with individuals of the same genotype.
The population is very large and so genotype frequencies are highly affected by genetic drift.
P

Created for isaacphysics.org by Lewis Thomson

Albino Rabbits

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level P3

The Hardy-Weinberg principle, represented by the equations below, can be used to estimate the frequency of alleles in a population.

$$p^2 + 2pq + q^2 = 1$$

$$p+q=1$$

Albino rabbits have white fur as these individuals are unable to produce the pigment melanin. The ability to produce melanin is controlled by a gene with a dominant allele (**B**), resulting in brown fur, and a recessive allele (**b**), resulting in an albino.

Of the 60 rabbits in a pet shop, 45 are brown.

A student decided to use the Hardy-Weinberg principle to estimate the frequencies of the alleles in this group of rabbits.

Part A

Hardy-Weinberg calculation ∨

Using the Hardy-Weinberg equations, estimate the frequency of the dominant allele in this group.

Give your answer to 2 decimal places.

p

Part B Hardy-Weinberg conditions >	
Why was it not appropriate to use the Hardy-Weinberg principle to estimate the frequencies of alleles in this group	
of rabbits in the pet shop? Select all that apply.	
natural selection is likely to be occurring	
mating is not likely to be random	
mating is likely to be random	
rabbits will regularly be leaving the pet shop (and new rabbits will be brought in)	
the number of rabbits is very small	
albinism is a mutation	
P	

Adapted with permission from OCR A Level Biology A, June 2014, Control, Genomes and Environment, Question 6b

Question deck:

Budgie Genotypes

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level P3

The Hardy-Weinberg principle, represented by the equations below, can be used to estimate the frequency of alleles and genotypes in a population.

$$p^2 + 2pq + q^2 = 1$$

$$p+q=1$$

A breeder of birds keeps a population of 86 budgerigars in one enclosed area. Two distinct phenotypes are present, blue feathers and green feathers. Feather colour is controlled by one gene:

- **G** is the allele for green feathers
- g is the allele for blue feathers

Only 17 of the budgerigars have blue feathers.

Part A

Heterozygous individuals ∨

Estimate the number of heterozygous individuals in the population.

P

Part B

Homozygous dominant individuals >

Estimate the number of homozygous dominant individuals in the population.

P

Part C Hardy-Weinberg conditions >	
The Hardy-Weinberg principle does not apply to all populations.	
Which of the following are conditions in which the Hardy-Weinberg principle does not apply?	
the population size is extremely small	
the population size is extremely large	
mating is random	
mating is non-random	
one allele is more common than the other	
one allele has a selective advantage over the other	
individuals are migrating into the population	
individuals are migrating out of the population	
	P

Question deck:

Flour Beetle Eye Colour

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level P3

In flour beetles one gene controlling eye colour is located on chromosome 5. Flour beetles have two copies of chromosome 5 in each cell. One allele causes black eyes and a second allele causes red eyes.

The allele for black eye (B) is dominant over the allele for red eye (b).

 ${3\over 4}$ of the alleles present in a population of 1600 flour beetles were the dominant B allele.

Part A Black eyes What is the expected number of flour beetles with black eyes?

Part B Expected ratio of genotypes >

What is the expected ratio of homozygous black eye beetles to heterozygous black eye beetles to red eye beetles? Express your answer as a ratio in its simplest form (e.g. 1 : 2 : 3)

P

Adapted with permission from NSAA 2022 Specimen Paper Section 2 Q30

Question deck:

Plant Heights & Hardy-Weinberg Equilibrium

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level P3

In a particular species of plant, a gene that affects plant height has two codominant alleles (T and t).

- TT plants are tall.
- **Tt** plants are medium-height.
- tt plants are short.

A researcher counts the number of plants of each type in a population of 200 diploid plants. The results are shown in the table below.

Plant phenotype	Observed frequency
Tall	12
Medium-height	136
Short	52

The researcher wants to investigate whether the population is in Hardy-Weinberg equilibrium for this gene.

Part A Allele proportions	
 State the allele proportions below, where p is the proportion of the T (tall) allele q is the proportion of the t (short) allele Give your answers as exact decimals. 	
$p=igcup_q=igcup_q=igcup_q$	
	P

Part B Expected frequencies >		
Using your answers to the previous s	section, fill in the expected frequencies	(assuming Hardy-Weinberg equilibrium) in
Plant phenotype	Observed frequency	Expected frequency
Tall	12	
Medium-height	136	
Short	52	
		8
Part C Conclusion >		
	equencies differ from the expected freconnis not in Hardy-Weinberg equilibrium	
Which of the following may explain w	vhy this population is not in Hardy-Weir	berg equilibrium for this gene?
Heterozygotes have a higher fit	ness than homozygotes.	
Heterozygotes have a lower fitr	ness than homozygotes.	
The population is small and the	erefore allele/genotype frequencies are high	ly affected by genetic drift.
Tall plants cannot successfully		
Tak planto camot successival,	Topi oddoc mar onor c plantoi	
		æ
		'

Created for isaacscience.org by Lewis Thomson

Question deck:

ABO Blood Types & Hardy-Weinberg Equilibrium

Subject & topics: Biology | Evolution | Theory Stage & difficulty: A Level C3

An individual's blood type is determined by two genes: the ABO gene and the RhD gene.

The ABO gene has three main alleles: I^A , I^B , and i (alternatively named I^O). I^A and I^B are codominant, and both are dominant to i.

A genomics study was carried out to measure the relative frequencies of different ABO genotypes in the UK. The genomes of $487\,236$ individuals were sequenced. The results are shown in the table below.

Blood type	Genotype	Frequency
А	l ^A l ^A	36 326
	I ^A i	175 134
В	lΒlΒ	2 787
	l ^B i	44 026
АВ	l ^A l ^B	17 606
0	ii	211 357

Data from https://biobank.ctsu.ox.ac.uk/ukb/field.cgi?id=23165

Answer the questions below to determine whether, based on this sample, the UK population is in Hardy-Weinberg equilibrium for the ABO gene.

Part A

Three alleles >

For a gene with two alleles, where the proportion of one allele is given by p and the proportion of the other allele is given by q, the expected genotype proportions in Hardy-Weinberg equilibrium are:

$$p^2 + 2pq + q^2$$

Fill in the expected genotype proportions in Hardy-Weinberg equilibrium for the ABO gene, where

- p is the proportion of the I^A allele
- q is the proportion of the I^B allele
- ullet r is the proportion of the ${f i}$ allele

Blood type	Genotype	Expected genotype proportion
А	IAIA	
	I ^A i	
В	IBIB	
В	l ^B i	
AB	IAIB	
0	ii	

Items:

p

Part B Allele proportions >	
State the allele proportions below, where	
$ullet$ p is the proportion of the $oldsymbol{I}^{oldsymbol{A}}$ allele	
$ullet$ q is the proportion of the $oldsymbol{I}^{\mathbf{B}}$ allele	
$ullet$ r is the proportion of the $oldsymbol{i}$ allele	
Give your answers to $4\mathrm{sf.}$	
p =	
q =	
r =	

Part C Expected frequencies >

Using your answers in the previous parts, calculated the expected frequency of each genotype in this dataset. You may use your rounded answers from part B. Give your answers to $3 \, \text{sf.}$

Blood type	Genotype	Observed frequency	Expected frequency
Α	IAIA	36 326	
	I ^A i	175134	
B I ^B i	IBIB	2787	
	I ^B i	44026	
АВ	I _A I _B	17 606	
0	ii	211357	

p

Part D Conclusion >	
We can see that the observed frequencies only differ from the expected frequencies by a few hundred individuals. Given the large size of our sample (487236), this is quite a small difference. This suggests that UK population is in Hardy-Weinberg equilibrium for the ABO gene.	the
Based on this, which of the following conclusions are supported? Select all that apply.	
Individuals with the ii genotype have a higher fitness than individuals with any other genotype.	
There is strong selection acting on these alleles/genotypes.	
There is no selection acting on these alleles/genotypes.	
Individuals prefer to have children with individuals of a different blood type to themselves.	
Individuals do not show mating preferences based on blood type.	
	p

Created for isaacscience.org by Lewis Thomson. This question has been established using the UK Biobank Data Field 23165.