小结: 电子的基本性质

- 电子是什么?
 - 一种自旋1/2的基本粒子; 电荷量: -1.6e-19 C; 质量: 9.1e-31 kg; 磁矩: 9.3e-24 J/T
- 电子的状态?
 - 由薛定谔方程解出 $-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = -i\hbar\frac{\partial\psi}{\partial t}$
- 电子的个数: 归一化条件
- 算符、本征态、平均值

本征态 $\hat{O}\psi=\alpha\psi$ 本征值=物理量的值 非本征态,物理量无法良好定义,平均值为 $\int\psi^*\hat{O}\psi dV$

小结: 自由电子的基本性质

- 自由电子(V=0)的存在形式是怎样的?
 - 平面波(德布罗意波)的线性叠加(波包)

$$\psi(\mathbf{x},t) = \int A(\mathbf{k})e^{i(\mathbf{k}\cdot\mathbf{x}-\omega)} d\mathbf{k} \quad \vec{\mathbf{x}} \quad \psi = \psi_0(\mathbf{x},t)e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$$

- 色散关系(能带) $E = \hbar\omega = \frac{\hbar^2 \mathbf{k}^2}{2m}$ $\mathbf{v} = \frac{d\omega}{d\mathbf{k}} = \frac{\hbar\mathbf{k}}{m} = \frac{\mathbf{p}}{m}$
- 动量 $p = \hbar k$
- 波包可对应经典质"包"模型,有速度(群速度),牛顿第二定律仍适用(准经典近似)

第二部分: 能带结构

- 自由电子的状态
- •原子中电子的状态
 - 氢原子模型
 - 多电子原子模型
- 晶体中电子的状态
 - 化学键
 - 共价键在晶体中的推广与紧束缚模型
- 绝缘体、半导体、导体的区别

原子是什么?

- 原子: 组成物质的基本单元之一
 - 等于原子核加若干电子
- 原子核: 一个复合粒子
 - 由若干个质子、若干个中子组成
 - 原子核不是质点
- 电子: 数量等于质子数(原子序数)
 - 电中性条件
 - 为什么正常原子都是电中性的?

原子是什么?

- 原子的大小怎么衡量?
 - 利用另一个原子和它接触
- 原子的形状怎么描述?
 - 是球形吗?

电子状态的求解

- 如何求解电子状态?
 - 1. 解薛定谔方程,得到波函数,同时得到能量-波矢关系(色散关系)

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

• 2. 利用能量-波矢关系, 算得群速度(波包速度)

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}}$$

• 3. 在准经典近似下,利用群速度列出运动方程(类似于F=ma)并求解

氢原子中的电子

原子核产生库伦势, 电子落入势场中

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t} \qquad V = -\frac{e^2}{4\pi\epsilon_0 r}$$

氢原子中的电子

$$-\frac{\hbar^2}{2m}\nabla^2\psi - \frac{e^2}{4\pi\epsilon_0 r}\psi = -i\hbar\frac{\partial\psi}{\partial t}$$

 $\psi = R(r)Y(\theta, \phi)T(t)$ (个/ \downarrow) 自旋

径向波函数 球谐函数 时域波函数

$$R(r) = R_{10}(r), R_{20}(r), R_{21}(r), \dots, R_{nl}(r), \dots$$

一系列解,其中n为大于1的整数,称为主量子数; I为<n的非负整数,称为角量子数

$$Y(\theta, \phi) = Y_{00}(\theta, \phi), Y_{10}(\theta, \phi), Y_{11}(\theta, \phi), Y_{1-1}(\theta, \phi), ..., Y_{lm}(\theta, \phi), ...$$

—系列解,其中I为角量子数;m为-I,-I+1,...,I,称为磁
量子数

$$T(t) = e^{-i\omega t}$$
 $\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^3n^2}$ n为主量子数

氢原子中电子的性质

$$\psi = R(r)Y(\theta, \phi)e^{-i\omega} \quad (\uparrow/\downarrow)$$

- $\hat{E}\psi = i\hbar \frac{\partial \psi}{\partial t} = \hbar\omega\psi = E\psi$
- • ψ 为能量本征态,能量是确定的

•
$$E = \hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2}$$
 n为主量子数

- 动量和位置没有良好定义
 - $\widehat{p}\psi = -i\hbar\nabla\psi \neq \alpha\psi$
 - $\hat{x}\psi = x\psi \neq \alpha\psi$

还能知道什么性质?

氢原子中电子波函数的名称

原子中电子波函数通称"原子轨道"(atomic orbital)

s轨道(sharp) p轨道(principle) d轨道(diffusive) f轨道(fundamental)

原子轨道的常见名称

	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7
I = 0	1 s	2s	3s	4 s	5s	6s	7s
l = 1		2р	3р	4p	5p	6р	7p
I = 2			3d	4d	5d	6d	
I = 3				4f	5f		

氢原子轨道的形态: 径向

 $\psi = R(r)Y(\theta, \phi)T(t)$ 径向波函数 $R(r) = R_{nl}(r)$ 3s 2s 1s 3p 3d

图 2-4 类氢原子径向函数的 $R_{n,l}(r)$ -r 图

主量子数n的内涵

• 主量子数n决定了径向波函数R(r)的延展度(距离原子核的平均距离)和原子大小

• 主量子数n个,平均距离个,势能提高,总能量

提高

$$E = \hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2}$$

$$E = \frac{-1}{n^2} \cdot \frac{6 \text{ eV}}{n^2}$$

$$E = \frac{-1 \cdot 6 \text{ eV}}{n^2}$$

因此,主量子数有时叫做电子层数;层数越高,能量越高

氢原子轨道的形态: 角向

 $\psi = R(r)Y(\theta, \phi)T(t)$

球谐函数
$$Y(\theta, \phi) = Y_{lm}(\theta, \phi)$$

$$I = 1, m = \pm 1$$

$$I = 1, m = 0$$

氢原子轨道的形态: 角向

氢原子轨道的形态: 角向

 $\psi = R(r)Y(\theta, \phi)T(t)$ 球谐函数 $Y(\theta, \phi) = Y_{lm}(\theta, \phi)$

图 2-6 s、p、d 原子轨道的平面角度分布

角量子数I和磁量子数m的内涵

- s轨道(I=0): 波函数没有"波动"性质
- p轨道(I = 1)
 - I = 1, m = 0: 波函数没有"波动"性质
 - I = 1, m = ±1: 波函数"绕着原子核传播"
- d轨道(I = 2)
 - I = 2, m = 0: 波函数没有"波动"性质
 - I = 2, m = ±1: 波函数"绕着原子核传播"
 - I = 2, m = ±2: 波函数"绕着原子核传播", "波长"更小

角量子数I和磁量子数m的内涵

- m不等于零: 电子好像在绕着原子核"转"
- 电荷移动形成电流, 环形电流产生磁场
- 称为轨道磁矩; m因而称之为磁量子数

角动量和磁矩

- 轨道磁矩-磁量子数m = -I, -I+1, ..., I
- 轨道角动量-角量子数I = 0, 1, 2, ...
- 自旋磁矩-自旋量子数m。= ±1/2
- 自旋角动量-自旋s = 1/2

严格地说,此处"角动量" 指的是角动量的大小; "磁矩"指的是角动量z方 向的分量,体现为磁矩

• 都是磁性质,自旋磁矩可以和轨道磁矩耦合使得电子能量发生变化,称为自旋-轨道耦合

氢原子里电子有哪些性质?

- 能量: 主量子数n (正整数) $E = \hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2}$
- 轨道角动量:角量子数I(非负整数, <n)
- 轨道磁矩:磁量子数m (-I,-I+1,...,I)
- 自旋角动量: 自旋s = 1/2
- 自旋磁矩: 自旋量子数m_s = ±1/2
- 1s, 2s, 2p(2p_x, 2p_y, 2p_z), 3s, 3p(3p_x, 3p_y, 3p_z), 3d(3d_{xy}, 3d_{yz}, 3d_{zx}, 3d_{x^2-y^2}, 3d_{z^2}), 4s, ...

氢原子轨道的形态

$$\psi = R(r)Y(\theta, \phi)T(t)$$

(c) Radial probability

氢原子轨道的形态

求解氢原子中的电子状态

- 如何求解电子状态?
 - 1. 解薛定谔方程,得到波函数,同时得到能量-波矢关系(色散关系)

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

• 2. 利用能量-波矢关系, 算得群速度(波包速度):

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}}$$

• 3. 在准经典近似下,利用群速度列出运动方程并求解

电子的束缚态和非束缚态

自由电子
$$\psi = \psi_0 e^{i(\mathbf{k} \cdot \mathbf{x} - \omega)}$$
 $(\frac{\hbar^2 \mathbf{k}^2}{2m} = \hbar \omega)$

含有波矢量,可以传播,是非束缚态能量 $\hbar\omega$ 和动量 \hbar **k**是连续的

氢原子中电子
$$\psi = R_{nl}(r)Y_{lm}(\theta,\phi)e^{-i\omega t}$$
 $(\hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2})$

不含波矢量,不能传播,是束缚态 (bounded states)

含有角频率,具有能量 $\hbar\omega$,没有动量能量 $\hbar\omega$ 是不连续的(量子化的)

原子: 电子的束缚态

原子核产生库伦势, 电子落入势场中

$$V = -\frac{e^2}{4\pi\epsilon_0 r}$$

"电子云": 束缚态

波包: 传播态 wave packet with Vg<Vp

求解氢原子中的电子状态

- 如何求解电子状态?
 - 1. 解薛定谔方程,得到波函数,同时得到能量-波矢关系(色散关系):能量和波矢没有关系

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

• 2. 利用能量-波矢关系,算得群速度(波包速度): 没有速度

$$\boldsymbol{v} = \frac{d\omega}{d\boldsymbol{k}}$$

• 3. 在准经典近似下,利用群速度列出运动方程并求解: 没有运动方程

束缚态的电子:不做宏观运动,只会发生极化等现象→散射等

氢原子和电磁场的相互作用

束缚态电子可与电磁波发生作用,发生弹性散射 例如XRD

束缚态电子可与电磁波发生作用,发生跃迁(非弹性):

满足能量守恒 $E_2 - E_1 = \hbar \omega$

为什么不需满 足动量守恒?

注意:图中"轨道"为示意

电子-光子作用

$$E = \hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2}$$
 n为主量子数

$$E = \frac{-13.6 \text{ eV}}{n^2}$$

电子通常处于能量最低的基态 可用吸光、升温等方法将电子激发到其它高能级

电子-光子作用

$$E = \hbar\omega = -\frac{me^4}{32\pi^2\epsilon_0^2\hbar^2n^2}$$
 n为主量子数

$$E = \frac{-13.6 \text{ eV}}{n^2}$$

高能量电子倾向于发射光子, 跃迁回低能级

相关实验手段?

氢原子光谱 (spectrum)

• 氢原子轨道的能级可由光谱观测

原子发射光谱

emission spectrum

氢原子发射光谱

光子能量/波长不连续(量子化)

氢原子发射光谱

原子吸收光谱

absorption spectrum

氢原子吸收光谱

小结: 氢原子中的电子

- 氢原子中电子状态
 - 库仑势、束缚态
 - 量子数 (n l m s m_s) 标记状态: 原子轨道
 - 1s, 2s, 2p(2p_x, 2p_y, 2p_z), 3s, 3p(3p_x, 3p_y, 3p_z), 3d(3d_{xy}, 3d_{yz}, 3d_{zx}, 3d_{x^2-y^2}, 3d_{z^2}), 4s, ...
 - 电子能级、原子大小
- 氢原子中电子和电磁场的相互作用
 - 电子-光子作用
 - 发射光谱和吸收光谱

原子核产生库伦势, 电子落入势场中

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t} \qquad V = -\frac{Ze^2}{4\pi\epsilon_0 r}$$
?

原子核产生库伦势, 电子落入势场中

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = i\hbar\frac{\partial\psi}{\partial t} \quad V = -\frac{Ze^2}{4\pi\epsilon_0 r} + \frac{e^2}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r_1}|} + \cdots$$
原子核 电子1 其它电子

• 复杂, 薛定谔方程无精确解

• 但原子轨道仍和氢原子相似,可用量子数($n \, l \, m$ $s \, m_s$)标记

•区别: 轨道能量和n、l同时有关

- 复杂,薛定谔方程无精确解
- 但原子轨道仍和氢原子相似

© 2012 Encyclopædia Britannica, Inc.

泡利不相容原理

- 电子自旋1/2, 为费米子, 满足泡利不相容原理
 - 任意两个电子波函数必须交换反对称

电子1波函数 $\psi_1(r_1)$ 电子2波函数 $\psi_2(r_2)$ 总波函数必须为 $\psi_{12}(r_1,r_2) = \frac{1}{\sqrt{2}}\psi_1(r_1)\psi_2(r_2) - \psi_2(r_1)\psi_1(r_2)$ 将 r_1 、 r_2 交换后得到 $\psi_{12}(r_2,r_1) = \frac{1}{\sqrt{2}}\psi_1(r_2)\psi_2(r_1) - \psi_2(r_2)\psi_1(r_1)$ = $-\psi_{12}(r_1,r_2)$ 负号="反对称"

•特例:不能有两个波函数(即 n l m s m_s)完全 一样的电子

如有,总波函数为 $\psi_{12}(r_1,r_2) = \frac{1}{\sqrt{2}}\psi(r_1)\psi(r_2) - \psi(r_1)\psi(r_2) = 0$ 等于什么都没有

- 轨道能量和n、l同时有关
- 电子通常处于能量最低的状态(基态)
- 不能有两个波函数完全一样的电子

4f 000000 $\psi_{1s} \rightarrow \psi_{2s} \rightarrow \psi_{2p} \rightarrow \dots$

2p O O

1s 🔾

电子从低能量到高能量 依次"填入"原子轨道

图 2-13 原子的电子能级示意

• 电子自旋在任意方向上的分量有+1/2(个)和-1/2(↓)两个取值

 $\psi_{1s}(\uparrow)$ 和 $\psi_{1s}(\downarrow)$ 不同

 5p
 4d
 0
 0

 5s
 4d
 0
 0

 4p
 4p⁶
 3d
 3d

 4s
 4s²
 3d
 3d

 3p
 3p
 3p⁶

 3s
 3s²
 2p⁶

 2s
 2s²
 2p⁶

 1s
 1s²

 图 2-13
 原子的电子能级示意

每个原子轨道可"填入" 两个自旋相反的电子

元素周期表

按电子数排序

Periodic table of the elements showing the valence shells

© Encyclopædia Britannica, Inc.

半导体材料中的常见元素

d轨道填入电子后能量降低

d、f轨道在填入电子后 能量会降低

填入就降低, 无需填满

半导体材料中的常见元素

Si: 14个电子; 1s² 2s² 2p⁶ 3s² 3p²

Ge: 32个电子; 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p²

原子光谱

webelements.com

电离能和电子亲和能

电负性表

Pauling参考了元素的电子亲和能/电离能,编制了电负性表

Periodic table of electronegativity using the Pauling scale

alevelchemistry.co.uk