

JAN 25, 2024

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocols.io. 4r3l22j3pl1y/v1

External link:

https://clellandlab.ucsf.edu/protocols

Protocol Citation: Katie Jing Kay Lam, Claire D Clelland 2024. PCR and Gel electrophoresis/purification protocol. protocols.io https://dx.doi.org/10.17504/protoc ols.io.4r3l22j3pl1y/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Created: Jan 25, 2024

PCR and Gel electrophoresis/purification protocol

Katie Jing Kay Lam¹, Claire D Clelland¹

¹University of California, San Francisco

Katie Jing Kay Lam
University of California, San Francisco

ABSTRACT

This protocol describes Polymerase chain reaction PCR, Gel electrophoresis and Gel purification.

Last Modified: Jan 25, 2024

MATERIALS

PROTOCOL integer ID: 94167

Keywords: PCR, Gel

electrophoresis, Gel purification

A	В	С
Reagent	Manufacturer	Catalog No.
DNA preparation		
QuickExtract DNA Extraction Solution	Biosearch Technologies	76081-768
PCR		
BioMix Red	Meridian Life Sceiences	C755F25
Dimethyl sulfoxide (DMSO)	Sigma Aldrich Fine Chemicals Biosciences	D8418
Gel electrophoresis		
Quick-Load Purple 1 kb Plus DNA Ladder	New England Biolabs Inc.	N0550S
SYBR Safe DNA Gel Stain	Invitrogen	S33102
TAE Buffer (Tris-acetate-EDTA) (50X)	Thermo Scientific	B49

A	В
Equipment	Manufacturer
PCR	
Thermal Cycler	Bio-Rad
Gel electrophoresis	
LI-COR Odyssey M Imager	LI-COR
PowerPac HC Power Supply	Bio-Rad
Sub-Cell GT Horizontal Electrophoresis System	Bio-Rad

DNA preparation by QuickExtract™

 ${f 1}$ Wash cells (from a 96-well plate) with 100 μL PBS & aspirate

protocols.io

2	Add 30 µL QuickExtract"	and scra	pe well bottom	with p	ipette tip to	detach c	ells
_	Add 30 pt Quicktatiact	and Scra	pe wen botton	i witti p	ipette tip te	uctacii	·

- Transfer cells to labelled PCR tubes
 Vortex for 15 secs
- 4 Incubate at 65°C for 6 mins
 Vortex for 15 secs
- 5 Incubate at 98°C for 2 mins
- لجها
 - 6 Store at -20°C

7

Figure 1. Procedure for using QuickExtract DNA Extraction Solution [1]

Primer preparation

- 8 Resuspend IDT primers with H₂O to 100 µM E.g. 20 nmol of primer (marked on tube label) - Add 200 μ L H₂O
- 9 Dilute primer to 10 µM in a new microcentrifuge tube

E.g. 20 μ L + 180 μ L H₂O

10 Store at -20°C

PCR reaction setup

11 Prepare Master Mix – Number of reactions + 1 (as extra)

Master Mix using BioMix Red - for one 20 µL reaction

А	В
BioMix Red	10 μL
DMSO	0.6 µL
Forward primer (10 µM)	1 μL
Reverse primer (10 µM)	1 μL
RNase/DNase-free H2O	6.4 µL

Master Mix using BioMix Red - for one 20 μL reaction

А	В
Q5 High-Fidelity 2X Master Mix	10 μL
Forward primer (10 µM)	1 μL
Reverse primer (10 µM)	1 μL
RNase/DNase-free H2O	7 μL

12 For each PCR tube: 1 μL DNA sample + 19 μL Master Mix

13 Bio-Rad Thermal Cycler – Select/Edit Protocol

PCR Cycle

A	В	С
Step	Temperature	Time
Enzyme Activation	94°C	3 mins
Denaturation	94°C	30 secs
Annealing	50-65°C	30 secs
Primary Extension	72°C	1 min/kb
Repeat from step 2 (34x)		
Secondary Extension	72°C	5 mins
Hold	4°C	∞

Note: Annealing temperature should be 5-10°C lower than Tm of primers

Gel electrophoresis preparation

14 Make 1x TAE buffer

Add 36 mL 50X TAE Buffer Add diH_2O up to 1800 mL

15 Gel preparation on Bio-Rad Sub-Cell GT Electrophoresis Cell system

Figure 2. Bio-Rad Sub-Cell GT Cell [2]

15.1 Volume:

> Big tray: ~ 300 mL Small tray: ~ 150 mL

15.2 Gel percentage: 1.5-2%

E.g. For 2% gel: 2 g agarose + 100 mL 1X TAE buffer

- 15.3 Heat in microwave until completely dissolve
- 15.4 Add SYBR™ Safe DNA Gel Stain E.g. 15 μ L for 150 mL of gel
- 15.5 Pour onto the tray

Note: Remove big bubbles

- 15.6 Put in the comb (15/20 well)
- 15.7 Let it cool until solidify

Running gel electrophoresis

16 Make sure the gel is solidified completely

- 17 Carefully remove comb from gel
- 18 Put tray into Bio-Rad Sub-Cell GT Cell

Note: Make sure the wells are placed near the end of the negative (black) terminal

19 Add 1X TAE buffer to the Sub-Cell GT Cell if needed

Note: Make sure the gel is submerged in TAE buffer completely

20 Carefully load DNA ladder & PCR products

Notes:

- Submerge pipette tips into the well before dispensing PCR product
- Prevent touching the wall of wells, which might break the gel
- Recommend dispensing liquid by pressing to the first stop only to prevent creating air bubbles, which could lead to loss of PCR product

Figure 3. Submerging pipette tips in the well [3]

21 Set 100-140V on the Bio-Rad Power Supply

Notes:

Voltage depends on gel size

Make sure the gel is connected to the power supply properly - Black to Black; Red to Red

Figure 4. Gel connected to power supply [3]

22 START

Gel imaging - LI-COR Odyssey M Imager

23 Position the gel in LI-COR Odyssey M Imager

Figure 5. LI-COR Odyssey M Imager [4]

Open LI-COR Acquisition Software Select:

- Scan
- Username: _____

Imager: Odyssey M --> Connect

- Gel --> Connect
- Draw Scan Area --> Next
- 488 SYBR Safe --> Save
- Focus offset (mm): 2.00 --> Scan
- Wait for scan to finish

Figure 6. New England BioLabs Quick-Load® Purple 1 kb Plus DNA Ladder on a 1.0% TBE agarose gel [5]

PCR for gel purification

29 Run a 50 μL reaction instead of 20 μL

Master Mix using BioMix Red – for one 50 μL reaction

A	В
BioMix Red	25 μL
DMSO	1.5 µL
Forward primer (10 µM)	2.5 µL
Reverse primer (10 µM)	2.5 µL
RNase/DNase-free H2O	16 μL

Master Mix using Q5 – for one 50 µL reaction

A	В
Q5 High-Fidelity 2X Master Mix	25 μL
Forward primer (10 µM)	2.5 µL
Reverse primer (10 µM)	2.5 µL
RNase/DNase-free H2O	17.5 µL

31 For each PCR tube: $2.5 \,\mu L$ DNA sample + $47 \,\mu L$ Master Mix

32

Bio-Rad Thermal Cycler - Select/Edit Protocol

A	В	С
Step	Temperature	Time
Enzyme Activation	94°C	3 mins
Denaturation	94°C	30 secs
Annealing	50-65°C	30 secs
Primary Extension	72°C	1 min/kb
Repeat from step 2 (39x)		

Note: Annealing temperature should be 5-10°C lower than Tm of primers

Gel extraction - modified from Qiagen MinElute Gel Extraction Kit^[6]

Oct 25 2024

- 33 Run gel electrophoresis as instructed above
- 34 Excise the desired gel band under UV light
- 35 Transfer the gel slice into a 1.5 mL tube
- 36 Add 0.6 mL Qiagen Buffer QG
- 37 Incubate at 50°C until gel has completely dissolved

Note: Mix the tube every 1-2 mins to help dissolve the gel

38 Add 100 µL 100% isopropanol & mix by inverting

46

https://dx.doi.org/10.17504/protocols.io.4r3l22j3pl1y/v1

Incubate at 42°C for 3 mins

protocols.io

47 Centrifuge at 13000 rpm for 1 min

Repeat previous three steps to increase product yield

Note: Reload with the purified DNA product instead of adding new Buffer EB

49

Figure 7. Gel extraction workflow [3]