Лабораторная работа №10

Анализ алгоритмов улучшенных методов сортировки массивов

Цель работы: Закрепление знаний алгоритмов сортировки. Приобретение навыка анализа и оценки алгоритмов улучшенных методов сортировки.

Подготовка к работе: Изучить алгоритмы улучшенных методов сортировки и провести анализ и оценки алгоритмов улучшенных методов сортировок.

Контрольные вопросы

- 1. В чем заключается особенность алгоритма Шелла? Опишите суть алгоритма.
- 2. В чем заключается особенность алгоритма быстрой сортировки? Опишите суть алгоритма.
- 3. В чем заключается алгоритм пирамидальной сортировки? Опишите суть метода
- 4. В чем заключается сортировка разделением? Опишите суть метода.
- 5. В чем заключается алгоритм сортировки слиянием? Опишите суть метода

Задание

Выполнить исследование улучшенных методов сортировки (алгоритм Шелла, алгоритм быстрой сортировки, алгоритм пирамидальной сортировки, radix) для числового массива и связанного списка (по тем же данным) по времени выполнения и указанным параметрам. (мощность массива n=10, 50, 100, 1000, 10000, 100000).

- 1. Провести анализ проведенных расчетов для лучшего, среднего и лучшего случаев для всех улучшенных алгоритмов сортировки массива. Для всех видов сортировок , для структур данных (массив, статический список односвязный и двусвязный список) использовать одни и те же приготовленные заранее данные, записанные в файлы. Численный эксперимент проводить для лучшего случая (данные отсортированы в заданном порядке), для среднего случая (случайным образом сформированы данные), для худшего случая (данные отсортированы в обратном порядке). Для мощностей-
 - ✓ N 10, 50 диапазон случайных данных -100 до 100;
 - ✓ N 100 -1000 до 1000;
 - ✓ N -1000 10000 до 10000.

И так далее

- 2. Провести анализ проведенных расчетов для лучшего, среднего и лучшего случаев для всех улучшенных алгоритмов сортировки односвязанного списка. (для тех же данных и параметров). Параметр сложности: количество операций сравнений; количество операций перестановок. Показать зависимость от мощности данных. Обоснованный вывод по результатам анализа.
- 3. Провести анализ проведенных расчетов для лучшего, среднего и лучшего случаев для всех улучшенных алгоритмов сортировки двусвязанного списка (для тех же данных и параметров). Параметр сложности: количество операций сравнений; количество операций перестановок. Показать зависимость от мощности данных. Обоснованный вывод по результатам анализа.

Результаты анализа представить в виде таблицы Excel и графиков-

✓ Представить выводы

Пример

1. Сортировка шелла

Сложность для лучшего случая – Q(n * logn)

Сложность для среднего случая - Q(n* logn)

Сложность для худшего случая – $O(n^2)$

Время, кол-во сравнений и перестановок для сортировки шелла (массив)									
кол-во элементов:	10	50	100	500	1000	10000	100000		
Время	0	0	0	0	0	0	0		
сравнения	22	203	503	3506	8006	120005	1500006	лучши	
перестановки	0	0	0	0	0	0	0	случай	
Время	0	0	0	0	0	0	46		
сравнения	31	359	861	6409	14913	259248	4167991	средн	
перестановки	14	185	420	3175	7419	144283	2718400	случай	
Время	0	0	0	0	0	0	0		
сравнения	27	263	668	5116	11716	172578	2244585	худши	
перестановки	13	105	260	2100	4700	62560	844560	случай	

кол-во								
элементов:	10	50	100	500	1000	10000	100000	
Время	0	0	0	0	0	0	15	
сравнения	22	203	503	3506	8006	120005	1500006	лучший
перестановки	0	0	0	0	0	0	0	случай
Время	0	0	0	0	0	16	94	
сравнения	31	359	861	6409	14913	259248	4167991	средний
перестановки	14	185	420	3175	7419	144283	2718400	случай
Время	0	0	0	0	0	15	47	
сравнения	27	263	668	5116	11716	172578	2244585	худший
перестановки	13	105	260	2100	4700	62560	844560	ступай

Из анализа четырех предыдущих алгоритмов мы можем сделать вывод: чем меньше элементу нужно пройти до его позиции в отсортированном массиве — тем меньше выполняется перестановка и тем меньше нужно сделать сравнений. Первые четыре перемещают каждый элемент только на одну позицию при каждом элементарном шаге. В итоге таких шагов все равно приходится делать приблизительно в². Чтобы сделать серьеное улучшение производительности — необходимо найти способ передвитать элементы более чем на одну позицию за элементарный шаг. В связи с описанным становится понятно, почему сортировка шелла не эффективна для связного списка: данная сортировка требует возможности получать доступ к любому элементу в последовательности за константное время. Данный метод является улучшением

кол-во								
элементов:	10	50	100	500	1000	10000	100000	
Время	0	0	0	0	0	0	0	сортиро
сравнения	9	49	99	499	999	9999	99999	ка
перестановки	0	0	0	0	0	0	0	пузыры
Время	0	0	0	0	0	0	0	шейкерн
сравнения	9	49	99	499	999	9999	99999	ая
перестановки	0	0	0	0	0	0	0	сортиро
Время	0	0	0	0	0	0	0	сортиро
сравнения	9	49	99	499	999	9999	99999	ка
перестановки	0	0	0	0	0	0	0	вставкой
Время	0	0	0	0	0	266	29688	сортиро
сравнения	36	1176	4851	124251	498501	49985001	4999850001	ка
перестановки	9	49	99	499	999	9999	99999	выборол
Время	0	0	0	0	0	109	13312	быстрая
сравнения	31	255	606	4008	9009	125439	1600016	сортиро
перестановки	6	31	63	255	511	5904	65535	
Время	0	0	0	0	16	156	19563	пирамид
сравнения	119	901	2081	13789	30470	405077	5040128	альная
перестановки	31	257	616	4176	9316	126696	1597434	сортиро