• • • •



# CAPSTONE PROJECT PRESENTATION

## AUTOMATION WITHIN HANDWRITING ANALYSIS

NAME: SNEHALRAJ CHUGH - 1032181182

AHBAZ MEMON - 1032180046

PRAJAKTA CHAUDHARI - 1032180317 ABHISHEK CHEBOLU - 1032180316

BRANCH: FINAL-YEAR | B.TECH

YEAR: COMPUTER SCIENCE ENGINEERING

GROUP ID - B6

PROF. VARSHA NAIK



## TABLE OF CONTENTS

01 Literature
Survey

02 Research Gap

03 Problem
Statement

04 Tools Required

05 Feasibility

## LITERATURE SURVEY



| Paper Name                                                                           | Consortium         | Author                                                            | Highlights of Paper                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comparative Analysis of Text Extraction from Color Images using Tesseract and OpenCV | IEEE               | AS Revathi<br>Nishi A Modi                                        | Analyses the effect of unprocessed images and preprocessed images on the performance of py tesseract                                                                                                                                                                                                                                                               |
| Optical Charater Recognition using Tesseract and Classification                      | IEEE               | Saurabh Dome<br>Asha P Sathe                                      | The paper presents the design and procedure of the OCR WebApp, which consists of three sections that are: Image-to-Text, Real-time OCR (using webcam), and Handwritten Text Recognition. In this project, OCR uses Tesseract as an engine to display the text to the user and HTR uses a Deep learning model to classify the letters and display them to the user. |
| Personality analysis through handwriting recognition                                 | Taylor and Francis | Ajeet Ram Pathak<br>Abhishek Raut<br>Soham Pawar<br>Mansi Nangare | To identify what kind of personality an individual has, traits can be classified based on an individual's handwriting. And this can be identified using the field 'Graphology'.                                                                                                                                                                                    |

## RESEARCH GAP

Here were some important key pointers we have seen which have been there as the research gaps in the Automation within Handwriting Analysis



#### Generalised Approach

Approaches available have made generic perspective towards the population regarding handwriting analysis



#### Homogenous Database

Different datasets have stored the entities used in the same set together, which creates difficulty in analysis



#### Cross-Relationship

The behavior of one entity in relation to other entity is not stored with analysis



#### Loss/Excluded features

Other features used in bridging the gap between blind, deaf and disabled people are left out

## RESEARCH GAP



#### **Cursive Writing**

With the different types of handwriting & ways to write in english, one of the most difficult arena is cursive writing



#### Forgery

Issues with different people writing in the same way giving out false predictions



#### Pseudo Sentiment

Predictions over incorrect emotions



#### Accuracy

Neural Networks still have a lot of possibility for new things to come up advancement in algorithms to achieve 100% accuracy with less dataset given to train.

## PROBLEM STATEMENT

Dr. Vishwanath Karad

MIT WORLD PEACE

UNIVERSITY PUNE

TECHNOLOGY, RESEARCH, SOCIAL INVOVATION & PARTNERSHIPS

- We want to develop a personal module to assist and better analyse an **individual** through their **handwriting** using **artificial intelligence**, than what has been done so far which is quite **generic** and **limiting**.
- We not only aim to concentrate on recognizing english characters but also focusing on minute details during the data collection and training process
- For example, understanding the **cancelled-out/scribbled words**, the machine can itself add words with **scribbles** as to make the converted text or page **more human-like**.
- We also aim to understand the user's personality and behaviour through their handwritten notes.





## TOOLS REQUIRED

Python 3



TensorFlow



NVIDIA



NLP



OpenCV



Neural network



## FEASIBILITY

### Technical Feasibility

Creation of our own dataset (images) due to lack of data

## Operational Feasibility

Computationally has a chance to perform better than the existing algorithms using new methods

## Market Feasibility

Project has a viability to be converted and capitalised

## Social Feasibility

It could help various types of people in understanding their character

## 

......