Eletroquímica

Ramo da química na qual estuda as reações que envolvem transferência de elétrons para a transformação de energia ou vice e versa (reações redox).

Oxidação	
Perde elétrons	
Aumenta o NOX	
Agente Redutor	

Redução
Ganha elétrons
Diminui o NOX
Agente Oxidante

Número de Oxidação (NOX)

É a carga elétrica real de cada íon em uma substância, ou seja, é o número de elétrons que o átomo realmente ganhou ou perdeu em uma reação química. A soma dos NOXs de cada íon em uma substância deve ser igual a carga total da molécula.

Substâncias com NOX fixo:

Nox		Exemplos	
Metais Alcalinos (família 1: Li, Na, K, Rb, Cs, Fr)	+1	NaC1 +1	K ₂ SO ₄ +1
Metais Alcalino-Terrosos (Família 2: Be, Mg, Ca, Sr, Ba, Ra)	+2	CaO +2	MgCl ₂ +2
Zinco	+2	ZnSO ₄ +2	
Prata	+1	AgC1 +1	
Alumínio	+3	Al ₂ (SO ₄) ₃ +3	

Vale ressaltar que os compostos orgânicos também possuem NOX e sua análise é minusiosa. Quanto maior o NOX de um composto orgânico, pior será o combustível. Essa análise deve ser efetuada pensando na molécula e na eletronegatividade de cada composto.

Potenciais Padrão de redução

Para melhor análise das reações de oxido-redução, existe uma tabela de potencial padrão * de redução na qual exibe a reação em si e sua diferencia de potencial (ddp). Quanto maior o E_{red} , maior será a força do agente oxidante (reduz). A equação inversa descrita na tabela é a E_{oxi} .

^{*}A referência para a tabela é o Hidrogênio (E_{red}° = 0,00 V) e a condição padrão é []=1,0 mol/L; T=25°C e P=1 bar

Semirreação	E° (V)	Semirreação	E° (V)
$F_2 + 2e^- \rightarrow 2F^-$	+ 2,87	Sn ⁴⁺ + 2 e ⁻ → Sn ²⁺	+ 0,15
$O_3 + 2 H^+ + 2 e^- \rightarrow O_2 + H_2O$	+ 2.07	S + 2 H ⁺ + 2 e ⁻ → H ₂ S	+ 0.14
$S_2O_8^{2-} + 2 e^- \rightarrow 2 SO_4^{2-}$	+ 2,01	AgBr + e ⁻ → Ag + Br ⁻	+ 0,07
$Aq^{2+} + e^- \rightarrow Aq^+$	+ 1,98	Ti ⁴⁺ + e ⁻ → Ti ³⁺	+ 0,01
Co ³⁺ + e ⁻ → Co ²⁺	+ 1,81	2 H ⁺ + 2 e ⁻ → H ₂	0,00
$H_2O_2 + 2 H^+ + 2 e^- \rightarrow 2 H_2O$	+ 1,78	Fe3+ + 3 e ⁻ → Fe	-0.04
Au ⁺ + e ⁻ → Au	+ 1,69	$O_2 + H_2O + 2 e^- \rightarrow HO_2^- + OH^-$	- 0.08
Pb ⁴⁺ + 2 e ⁻ → Pb ²⁺	+ 1,67	Pb ²⁺ + 2 e ⁻ → Pb	-0.13
2 HCIO + 2 H ⁺ + 2 e ⁻ → Cl ₂ + 2 H ₂ O	+ 1.63	In ⁺ + e ⁻ → In	-0.14
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	+ 1,61	Sn ²⁺ + 2 e ⁻ → Sn	-0.14
2 HBrO + 2 H* + 2 e ⁻ → Br ₂ + 2 H ₂ O	+ 1,60	AgI + e ⁻ → Ag + I ⁻	-0.15
Mn ³⁺ + e ⁻ → Mn ²⁺	+ 1,51	CH ₃ CO ₂ -+3 H++2 e-→ CH ₃ CHO + H ₂ O	- 0.17
$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$	+ 1,51	Ni ²⁺ + 2 e ⁻ → Ni	-0.23
Au ³⁺ + 3 e ⁻ → Au	+ 1.40	Co ²⁺ + 2 e ⁻ → Co	- 0.28
Cl ₂ + 2 e ⁻ → 2 Cl ⁻	+ 1,36	2 CO ₂ + 7 H ⁺ + 8 e ⁻ → CH ₃ CO ₂ ⁻ + 2 H ₂ O	- 0,29
$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightarrow 2 Cr^{3+} + 7 H_2O$	+ 1.33	In³+ + 3 e⁻ → In	- 0.34
$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+ 1,24	PbSO ₄ + 2 e ⁻ → Pb + SO ₄ ²⁻	- 0,36
$CIO_4^- + 2 H^+ + 2 e^- \rightarrow CIO_5^- + H_2O$	+ 1.23	Ti ³⁺ + e ⁻ → Ti ²⁺	- 0.37
$MnO_2 + 4 H^+ + 2 e^- \rightarrow Mn^{2+} + 2 H_2O$	+ 1.23	Cd ²⁺ + 2 e ⁻ → Cd	- 0.40
O ₂ + 4 H ⁺ + 4 e ⁻ → 2 H ₂ O	+ 1.23	In ²⁺ + e ⁻ → In ⁺	- 0.40
Br ₂ + 2 e ⁻ → 2 Br	+ 1.09	Cr3+ + e ⁻ → Cr2+	- 0.41
$NO_3^- + 4 H^+ + 3 e^- \rightarrow NO + 2 H_2O$	+ 0,96	Fe ²⁺ + 2 e ⁻ → Fe	- 0.44
2 Hg ²⁺ + 2 e ⁻ → Hg ₂ ²⁺	+ 0,92	In ³⁺ + 2 e ⁻ → In ⁺	- 0.44
$CIO^- + H_2O + 2 e^- \rightarrow CI^- + 2 OH^-$	+ 0,89	S + 2 e ⁻ → S ²⁻	- 0.48
Hg ²⁺ + 2 e ⁻ → Hg	+ 0,86	In3+ + e⁻ → In2+	- 0,49
Ag* + e⁻ → Ag	+ 0.80	Cr3+ + 3 e ⁻ → Cr	- 0.74
$NO_3^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$	+ 0.80	Zn ²⁺ + 2 e ⁻ → Zn	- 0.76
Hg ₂ ²⁺ + 2 e ⁻ → 2 Hg	+ 0.79	Cd(OH) ₂ + 2 e ⁻ → Cd + 2 OH ⁻	- 0.81
Fe ³⁺ + e ⁻ → Fe ²⁺	+ 0.77	2 H ₂ O + 2 e ⁻ → H ₂ + 2 OH ⁻	- 0.83
BrO⁻+ H₂O + 2 e⁻→ Br⁻ + 2 OH⁻	+ 0.76	Cr ²⁺ + 2 e ⁻ → Cr	- 0.91
Hg ₂ SO ₄ + 2 e ⁻ → 2 Hg + SO ₄ ²⁻	+ 0.62	SO ₄ ²⁻ + H ₂ O + 2 e ⁻ → SO ₃ ²⁻ + 2 OH ⁻	- 0.93
$MnO_4^{2-} + 2 H_2O + 2 e^- \rightarrow MnO_2 + 4 OH^-$	+ 0.60	PO ₄ 3- + 2 H ₂ O + 2 e ⁻ → HPO ₃ 2- + 3 OH ⁻	- 1.05
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+ 0.56	Mn ²⁺ + 2 e ⁻ → Mn	- 1,18
l ₂ + 2 e ⁻ → 2 l ⁻	+ 0,54	V ²⁺ + 2 e ⁻ → V	- 1,19
I ₃ -+2e-→3I-	+ 0.53	Ti ²⁺ + 2 e ⁻ → Ti	- 1.63
Cu* + e⁻ → Cu	+ 0.52	Al ^{3*} + 3 e ⁻ → Al	- 1,66
$Ag_2CrO_4 + 2e^- \rightarrow 2Ag + CrO_4^2$	+ 0.45	Sc ³⁺ + 3 e ⁻ → Sc	- 2.09
O ₂ + 2 H ₂ O + 4 e ⁻ → 4 OH ⁻	+ 0.40	Mg ²⁺ + 2 e ⁻ → Mg	- 2,36
ClO ₄ ⁻ + H ₂ O + 2 e ⁻ → ClO ₃ ⁻ + 2 OH ⁻	+ 0.36	Ce ³⁺ + 3 e ⁻ → Ce	- 2.48
[Fe(CN) ₆] ³ - + e ⁻ → [Fe(CN) ₆] ⁴ -	+ 0.36	Na* + e⁻ → Na	-2,71
$Cu^{2+} + 2e^- \rightarrow Cu$	+ 0,34	Ca ²⁺ + 2 e ⁻ → Ca	- 2,87
$HCO_3^- + 2 H^+ + 2 H^- \rightarrow HCO_2^- + H_2O$	+ 0.31	Sr ²⁺ + 2 e → Sr	-2.89
Hg ₂ Cl ₂ + 2 e ⁻ → 2 Hg + 2 Cl ⁻	+ 0,27	Ba ²⁺ + 2 e ⁻ → Ba	- 2,91
AgCl + e ⁻ → Ag + Cl ⁻	+ 0.22	Ra ²⁺ + 2 e ⁻ → Ba	- 2.92
$SO_4^{2-} + 4 H^{\dagger} + 2 e^{-} \rightarrow SO_2 + 2 H_2O$	+ 0,22	Cs ⁺ + e ⁻ → Cs	- 2,92
SO4" +4 H +2 e → SO2 + 2 H2O Bi3+ +3 e ⁻ → Bi	+ 0,21	Rb* + e → Cs	- 2,92
$SO_4^{2-} + 4 H^+ + 2 e^- \rightarrow H_2SO_3 + H_2O$	+ 0,20	K ⁺ + e ⁻ → K	- 2,93
	+ 0.16		- 3.05
$Cu^{2+} + e^- \rightarrow Cu^+$	+ 0, 10	Li ⁺ + e ⁻ → Li	- 3,05

Espontaneidade de reações eletroquímicas

 $\Delta G_r = - \text{ n.F. E}$

n= número de mols de elétrons trocados

F= 96485 C/mol

E= ddp da célula $(E_{red}^{\circ} + E_{oxi}^{\circ})$

** E + → espontâneo