CSE 150 Homework 4

Pedro Sousa Meireles A15677282

Fall 2018

1 Maximum Likelihood Estimation

$$P_{ML}(X_i = x | pa_i = \pi) = \frac{count(X_i = x, pa_i = \pi)}{\sum_{x'} count(X_i = x', pa_i = \pi)}$$

$$P(Y = y) = \frac{count(Y = y)}{T}$$

$$P(X = x | Y = y) = \frac{count(X = x, Y = y)}{count(Y = y)}$$

$$P(Z = x | Y = y) = \frac{count(Y = y, Z = z)}{count(Y = y)}$$
(b)
$$P(Z = z) = \frac{count(Z = z)}{T}$$

$$P(Y = y | Z = z) = \frac{count(Y = y, Z = z)}{count(Z = z)}$$

$$P(X = x | Y = y) = \frac{count(X = x, Y = y)}{count(Y = y)}$$

(c) Left DAG:

$$\begin{split} P(X=x,Y=y,Z=z) &= P(Y=y) \cdot P(X=x|Y=y) \cdot P(Z=z|Y=y) \\ &= \frac{count(Y=y)}{T} \cdot \frac{count(X=x,Y=y)}{count(Y=y)} \cdot \frac{count(Y=y,Z=z)}{count(Y=y)} \\ &= \frac{count(X=x,Y=y) \cdot count(Y=y,Z=z)}{T \cdot count(Y=y)} \end{split}$$

Right DAG:

$$\begin{split} P(X=x,Y=y,Z=z) &= P(Z=z) \cdot P(Y=y|Z=z) \cdot P(X=x|Y=y) \\ &= \frac{count(Z=z)}{T} \cdot \frac{count(Y=y,Z=z)}{count(Z=z)} \cdot \frac{count(X=x,Y=y)}{count(Y=y)} \\ &= \frac{count(X=x,Y=y) \cdot count(Y=y,Z=z)}{T \cdot count(Y=y)} \end{split}$$

(d) No. Every conditional independence implied by one graph is also present in the other. The only variables that are conditional independent are X and Z given Y. All other combination of variables are conditionally dependent. Given that both graphs gave the same conditional independence relations it is consistent with the result of item C.

2 Survey

Done

3 Statistical language modeling

	w	$P_u(w)$		
	NINETEEN	0.0028588174836726445		
(a)	NOT	0.0021457733600835156		
	NEW	0.001900350279776441		
	NINE	0.0017613053303564415		
	NINETY	0.0012920576727483372		
	NO	0.0010485914217056834		
	NOW	0.0007126160671875371		
	N.	0.0006647838218553515		
	NATIONAL	0.0005965149408928713		
	NEXT	0.00042879021256620473		
	NEWS	0.0004290959671387705		
	NUMBER	0.0003488781974804209		
	NORTH	0.0002554640604701336		
	NEVER	0.0002425367571420538		
	NIGHT	0.00023650727697105726		
	NEARLY	0.0002124871977502921		
	NEAR	0.00021042029683974764		
	NEED	0.00020837785629500844		

	w'	$P_u(w' w = HAVE)$
	<unk></unk>	0.4116813942572601
(b)	BEEN	0.17246178649415317
	TO	0.08213301769351646
	A	0.06311299769392462
	THE	0.028934103385645192
	NO	0.015738454317258833
	NOT	0.01344462357911063
	SAID	0.013040550192853207
	HAD	0.01128956551907104
	AN	0.010897736780882022

(c)
$$L_u = -50.562145130091004$$

$$L_b = -43.04832187498447$$

The bigram model yields the highest log-likelihood.

(d)
$$L_{u} = -44.72653897141283 \\ L_{b} = UNDEFINED$$

The pairs of adjacent words that are not observed in the corpus are (RECENT \rightarrow OFFICIALS) and (INCORPORATED \rightarrow PRICES). Since P(word|evidence)=0 when there is no observation in the corpus, the total probability is 0, which makes the log-likelihood undefined, because 0 is not in log function domain.

(e) The optimal value of λ is 0.48.

```
(f) In [1]: words = []
           for line in open("hw4_vocab.txt"):
             words.append(line.split()[0])
           counts = []
           for line in open("hw4_unigram.txt"):
             counts.append(int(line.split()[0]))
           bigram = []
           for line in open("hw4_bigram.txt"):
             bigram.append([int (x) for x in line.split()])
  In [2]: unigram = list(zip(words, counts))
  3.1 (a)
  In [3]: probabilities = []
           for i in range(0, 499):
               probabilities.append([words[i], counts[i]/sum(counts)])
  In [4]: [v for v in probabilities if v[0][0] == 'N' or v[0][0] == 'n']
  Out[4]: [['NINETEEN', 0.0028588174836726445],
            ['NOT', 0.0021457733600835156],
            ['NEW', 0.001900350279776441],
            ['NINE', 0.0017613053303564415],
            ['NINETY', 0.0012920576727483372],
            ['NO', 0.0010485914217056834],
            ['NOW', 0.0007126160671875371],
            ['N.', 0.0006647838218553515],
            ['NATIONAL', 0.0005965149408928713],
            ['NEXT', 0.00042879021256620473],
            ['NEWS', 0.0004290959671387705],
```

```
['NUMBER', 0.0003488781974804209],
         ['NORTH', 0.0002554640604701336],
         ['NEVER', 0.0002425367571420538],
         ['NIGHT', 0.00023650727697105726],
         ['NEARLY', 0.0002124871977502921],
         ['NEAR', 0.00021042029683974764],
         ['NEED', 0.00020837785629500844]]
3.2 (b)
In [5]: words[35]
Out[5]: 'HAVE'
In [6]: biDist = [[words[v[1]-1],v[2]] for v in bigram if v[0] == 36]
In [7]: s = sum([v[1] for v in biDist])
        biDist = [[v[0], v[1]/s] for v in biDist]
In [8]: biDist = sorted(biDist, key=lambda x: x[1])
In [9]: biDist[-10:]
Out[9]: [['AN', 0.010897736780882022],
         ['HAD', 0.01128956551907104],
         ['SAID', 0.013040550192853207],
         ['NOT', 0.01344462357911063],
         ['NO', 0.015738454317258833],
         ['THE', 0.028934103385645192],
         ['A', 0.06311299769392462],
         ['TO', 0.08213301769351646],
         ['BEEN', 0.17246178649415317],
         ['<UNK>', 0.4116813942572601]]
3.3 (c)
In [10]: import math
         def probUnigram(word):
             return probabilities[words.index(word)][1]
         def probBigram(word, evidence):
             dist = [[words[v[1]-1],v[2]]  for v in bigram if v[0] == words.index(evidence)+1]
             psum = sum([v[1] for v in dist])
             prob = [v[1] for v in dist if v[0] == word]
             if len(prob) == 0:
                 return 0
             else:
                 return prob[0]/psum
In [11]: def logLikelihoods(sentence):
             lu = 1
             1b = 1
             sent = sentence.split()
```

```
for i in range(0, len(sent)):
                 lu = lu * probUnigram(sent[i])
                 if i == 0:
                     lb = lb * probBigram(sent[i], "<s>")
                 else:
                     lb = lb * probBigram(sent[i], sent[i-1])
             if lu != 0:
                 lu = math.log(lu)
             else:
                 lu = "UNDEFINED"
             if lb != 0:
                 lb = math.log(lb)
             else:
                 1b = "UNDEFINED"
             return lu, lb
In [12]: lu, lb = logLikelihoods("TEN BILLION DOLLARS DIDN'T LAST VERY LONG")
         print(lu)
         print(lb)
-50.562145130091004
-43.04832187498447
3.4 (d)
In [13]: lu, lb = logLikelihoods("THE RECENT OFFICIALS SAID THEY INCORPORATED PRICES")
         print(lu)
         print(lb)
-44.72653897141283
UNDEFINED
In [14]: print(probBigram("THE", "<s>"))
         print(probBigram("RECENT", "THE"))
         print(probBigram("OFFICIALS", "RECENT"))
         print(probBigram("SAID", "OFFICIALS"))
         print(probBigram("THEY", "SAID"))
         print(probBigram("INCORPORATED", "THEY"))
         print(probBigram("PRICES", "INCORPORATED"))
0.15865263383617936
0.0007153649126219887
0
0.22033277138459284
0.020327686493360808
1.1064884482606001e-05
```

3.5 (e)

```
In [15]: def mixedProb(word, evidence, 1):
             return (1-1)*probUnigram(word) + 1*probBigram(word, evidence)
         def mixedLL(sentence, 1):
             lm = 1
             sent = sentence.split()
             for i in range(0, len(sent)):
                 if i == 0:
                     lm = lm * mixedProb(sent[i], "<s>", 1)
                 else:
                      lm = lm * mixedProb(sent[i], sent[i-1], 1)
             return math.log(lm)
In [16]: lambdas = [i/100 \text{ for } i \text{ in range}(0,100)]
         lls = [mixedLL("THE RECENT OFFICIALS SAID THEY INCORPORATED PRICES", 1) for 1 in lambdas]
In [17]: import matplotlib.pyplot as plt
In [18]: plt.plot(lambdas, lls)
         plt.xlabel('lambda')
         plt.ylabel('log-likelihood')
         plt.show()
```



```
In [19]: lambdas[lls.index(max(lls))]
Out[19]: 0.48
```

4 Markov modeling

(a) Unigram model

τ	a	b	С	d
$P_1(\tau)$	0.25	0.25	0.25	0.25

(b) Bigram model

$P_2(\tau' \tau)$	a	b	С	d
a	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$
b	0	$\frac{3}{4}$	$\frac{1}{4}$	0
С	0	0	$\frac{2}{3}$	$\frac{1}{3}$
d	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$

(c) Likelihoods

$$P_{\mathcal{U}}(S) = P_{\mathcal{U}}(T_1)$$

$$P_{\mathcal{U}}(S) = P_{\mathcal{U}}(T_2)$$

$$P_{\mathcal{U}}(S) = P_{\mathcal{U}}(T_3)$$

$$P_B(T_1) < P_B(S)$$

$$P_B(T_2) < P_B(S)$$

$$P_B(T_3) = P_B(T_2)$$

$$P_U(S) < P_B(S)$$

$$P_U(T_1) = P_B(T_1)$$

$$P_U(T_2) > P_B(T_2)$$

$$P_U(T_3) > P_B(T_3)$$

(d) Likelihoods

$$S = D$$

$$T_1 = A$$

$$T_2 = C$$

$$T_3 = B$$