UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

TOKEN GRAFY Bakalárska práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

TOKEN GRAFY Bakalárska práca

Študijný program: Aplikovaná informatika

Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: Mgr. Dominika Mihálová

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Timotea Chalupová

Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)

Študijný odbor:informatikaTyp záverečnej práce:bakalárskaJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Token grafy

Token graphs

Anotácia: Cieľom bakalárskej práce je implementovať algoritmy na token grafoch.

Súčasťou práce je naštudovať a vytvoriť prehľad vlastností token grafov.

Vedúci: Mgr. Dominika Mihálová

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 04.10.2023

Dátum schválenia: 05.10.2023 doc. RNDr. Damas Gruska, PhD.

garant študijného programu

študent	vedúci práce

ČESTNÉ PREHLÁSENIE	
Čestne prehlasujem, že bakalársku prácu	som vypracovala samostatne, len s použitím
uvedenej literatúry a za pomoci konzultác	zií mojej školiteľky.
Bratislava, 2024	Timotea Chalupová

POĎAKOVANIE

...

abstrakt

abstract

Obsah

Slo	vník		1
Úv	od		2
1.	Východ	lisková kapitola	3
1	.1. Zál	kladné pojmy	3
	1.1.1	Jednoduchý graf	3
	1.1.2	Pravidelný graf	3
	1.1.3	Cesty a cykly	3
	1.1.4	Hranová a vrcholová súvislosť	4
	1.1.5	Vyfarbovanie	4
	1.1.6	Girth	4
	1.1.7	Euler	4
	1.1.8	Hamilton	4
	1.1.9	Isomprphism	5
	1.1.10	Tree	5
	1.1.11	Planar	5
1	.2. Tol	ken grafy	6
	1.2.1. 2	Základné vlastnosti	6
1	.3. An	alýza technológií	6
	1.3.1.	Programovací jazyk	6
	1.3.2.	Knižnice	6
2.	Návrh .		8
3.	Implem	nentácia	9
4.	Testova	anie	10
5.	Použitá	literatúra	11

SLOVNÍK

Endpointy

Vrcholy u a v definujúce hranu $\{u,v\}$ sa nazývajú endpointy

ÚVOD

V dnešnom rýchlo vyvíjajúcom sa svete, plnom rôznych informačných technológií, je

dôležité hľadať nové algoritmy a dátové štruktúry, ktoré môžu nájsť uplatnenie nielen

v teoretickej informatike ale aj v praxi. V matematike, v informatike a rovnako aj v reálnom

svete sa veľké množstvo problémov dá znázorniť pohybom objektov po vrcholoch grafu.

Z toho dôvodu sú token grafy významnou matematickou štruktúrou, ktorá nachádza využitie

v analýze grafov, grafovej teórii a distribuovaných systémoch. Ich výskum a analýza môžu

poskytnúť užitočné poznatky pre optimalizáciu algoritmov.

•••

V prvej kapitole si objasníme základné pojmy z teórie grafov, ktoré sú nevyhnutné pre

porozumenie danej problematike. (Spomenieme termíny ako sú ...). Taktiež sa pozrieme na

porovnanie technológií

V druhej kapitole si priblížime

V tretej....

Ciel'om je...

2

1. VÝCHODISKOVÁ KAPITOLA

1.1. Základné pojmy

V tejto kapitole vysvetlíme základné pojmy a definície, ktoré sú nevyhnutné pre vypracovanie našej práce.

1.1.1 Jednoduchý graf

Definícia: Jednoduchý graf je usporiadaná dvojica množín G = (V, E), kde V je neprázdna množina vrcholov G, a E, množina hrán G, je množina dvojíc vrcholov. Každá hrana G môže byť vyjadrená ako $\{u, v\}$, kde u a v sú odlišné vrcholy, t. j. $u, v \in V$, $u \neq v$ [4, s. 497].

Jednoduchý graf je jedným zo základných pojmov v teórii grafov. Neformálne napísane jednoduchý predstavuje matematickú štruktúru, ktorá sa skladá z množiny vrcholov a množiny hrán. V tomto type grafu sa nenachádzajú žiadne zložitejšie prvky, ako sú slučky alebo viacnásobné hrany.

1.1.2 Pravidelný graf

Definícia: Ak v je vrcholom grafu G, potom stupeň v označený ako deg(v), je počet hrán pripadajúcich na v, pričom každá slučka sa počíta dvakrát. Jednoduchý graf, v ktorom majú všetky vrcholy rovnaký stupeň sa nazýva pravidelný graf, presnejšie k-pravidelný graf [4, s. 499].

Pre jednoduchý graf, stupeň vrcholu je číslo vyjadrujúce počet susedov tohto vrcholu. To znamená že v k-pravidelnom grafe má každý vrchol presne k susedov, pričom k je z intervalu 0 až |V(G)| - 1.

1.1.3 Cesty a cykly

Definícia: Predpokladajme že G = (V, E) je graf a $v, w \in V$ sú dvojice vrcholov. Cesta v G z v do w je striedavá postupnosť vrcholov a hrán: $P = \langle v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, e_k \rangle$ pri čom endpointy hrany e_i sú vrcholy $\{v_{i-1}, v_i\}$, pre $1 \le i \le k$, $v_0 = v$ a $v_k = w$. Hovoríme že cesta P prechádza cez vrcholy $v_0, v_1, v_2, ..., v_{k-1}, v_k$ a prechádza hranami $e_1, e_2, ..., e_k$ a cesta má dĺžku k, nakoľko prechádza k hranami [4, s. 540]. Cesta sa nazýva cyklus ak

začína a končí v tom istom vrchole, čiže ak v = w a jej dĺžka je väčšia ako nula, takže ak $k \ge 1$. Ak cesta alebo cyklus neobsahuje žiadnu z hrán viac ako jeden raz, hovoríme o jednoduchej ceste respektíve o jednoduchom cykle [5, s. 679].

1.1.4 Hranová a vrcholová súvislosť

Definícia: Nech G = (V, E) je súvislý graf. Množinu A:

 $A \subseteq V$ nazývame vrcholovým rezom grafu G, ak graf $(V \setminus A, \{e | e \in E, e \cap A = \emptyset\})$ je nesúvislý.

 $A \subseteq E$ nazývame hranovým rezom grafu G, ak graf $(V, E \setminus A)$ je nesúvislý.

Definícia: Minimálna veľkosť hranového rezu sa nazýva hranová súvislosť grafu G, označujeme $k_E(G)$. Graf sa nazýva k-hranovo súvislý, ak $k \le k_E(G)$. Minimálna veľkosť vrcholového rezu sa nazýva vrcholová súvislosť grafu G, označujeme $k_V(G)$. Graf sa nazýva k-vrcholovo súvislý, ak $k \le k_V(G)$ [6, s. 8].

Hranová súvislosť je teda minimálny počet hrán potrebných vymazať aby sme dostali neprepojené grafy.

Podobne vrcholová súvislosť predstavuje minimálny počet vrcholov, ktorých odstránením dostaneme neprepojené grafy.

1.1.5 Vyfarbovanie

Definícia: Pod pojmom vyfarbovanie jednoduchého grafu rozumieme priradenie farby každému vrcholu grafu tak, aby žiadne dva susedné vrcholy nemali priradenú rovnakú farbu [5, s. 727].

1.1.6 Girth

Definícia: Girth grafu G označený ako g(G) je dĺžka najmenšieho cyklu v G. Ak neexistuje v G žiaden cyklus $g(G) = \infty$ [7].

1.1.7 Euler

...

1.1.8 Hamilton

...

1.1.9 Isomprphism

...

1.1.10 Tree

...

1.1.11 Planar

•••

1.2. Token grafy

1.2.1. Základné vlastnosti

Majme graf G s n vrcholmi a k je kladné celé číslo. Aby sme sa vyhli triviálnym prípadom, budeme predpokladať že $n \ge k+1$. Počet vrcholov $F_k(G)$ je:

$$\left|V(F_k(G))\right| = \binom{n}{k}$$

1.3. Analýza technológií

V tejto podkapitole sa zameriame na niekoľko rôznych programovacích jazykov a knižníc, ktoré sme vzájomne porovnávali, aby sme našli najvhodnejšie technológie na implementáciu token grafov.

1.3.1. Programovací jazyk

Python je vysokoúrovňový interpretovaný jazyk. Medzi jeho základné vlastnosti patrí jednoduchá syntax, ktorá zlepšuje čitateľnosť. Výhodou je veľké množstvo knižníc slúžiace na prácu s webovými aplikáciami, s vývojom hier ale aj databázami a mnoho ďalšími. Taktiež je multiplatformový, takže aplikácia naprogramovaná v tomto jazyku môže byť spustená na zariadeniach s rôznymi operačnými systémami bez potreby upravovať kód. Python je na rozdiel od staticky typovaných jazykov, kde je potrebné vopred deklarovať typy všetkých dát, typovaný dynamicky [1].

1.3.2. Knižnice

NetworkX je open-source knižnica pre jazyk Python, používaná najmä na vytváranie, manipuláciu a študovanie štruktúry, dynamiky a funkcií grafových štruktúr. Poskytuje veľké množstvo algoritmov na analýzu, ako sú vzdialenosti medzi uzlami, hľadanie najkratšej cesty, hľadanie najmenšieho cyklu a mnoho ďalších. Zaujímavosťou je, že vrcholom grafu môže byť čokoľvek, od textového reťazca až po obrázky [2].

Tkinter je open-source knižnica pre jazyk Python, určená predovšetkým na tvorbu používateľského rozhrania pre desktopové aplikácie. Vývojárom poskytuje množstvo nástrojov na vytváranie, manipuláciu a správu grafických komponentov, ako sú napríklad tlačidlá alebo polia na zadávanie textu. Tkinter je schopný práce s viacvláknovým prostredím, čo umožňuje efektívne riadenie viacerých úloh súčasne. Je obľúbený hlavne vďaka jednoduchej syntaxi a intuitívnemu používaniu [3].

1.4. Analýza existujúcich systémov

•••

1.4.1. Gephi

•••

1.4.2. Cytoscape

...

2. NÁVRH

ERD

3. IMPLEMENTÁCIA

4. TESTOVANIE

5. POUŽITÁ LITERATÚRA

[1] https://www.python.org/doc/
[2] https://networkx.org/documentation/stable/
[3] https://docs.python.org/3/library/tkinter.html
[4] kniha
[5] Kenneth H. Rosen, Discrete Mathematics and Its Applications
[6] https://edu.fmph.uniba.sk/~winczer/diskretna/pred8z03.pdf
[7] http://people.qc.cuny.edu/faculty/christopher.hanusa/courses/634sp12/Documents/634sp12 ch1-4.pdf
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]