Lecture 8:

Model Selection

Road Map of the Statistics Part

	Lecture 5	Lecture 6	Lecture 7
Quantification Technique	Mean, variance, skewness, & kurtosis	Pearson's Correlation (Linear relationship)	Linear regression (OLS)
Uncertainty & Significance	Gaussian distribution Chi-2 distribution	r, p = scipy.stats. pearsonr(x, y)	results.summary()
Assumptions	Data is Gaussian or follows specific types of distribution Independent Sampling	Data is Gaussian Independent Sampling	x is noise free Error is Gaussian Independent Sampling Equal err variance
Test assumptions	K-S test		Auto-correlation (Effective Sample Size)
Treatment		Bootstrapping	Block Bootstrapping

What will be covered in this lecture?

- 1. Fitting a quadratic function
- 2. Fitting a polynomial
- 3. What is a good model?
 - 3.1 Training, Validation, and Testing sets
 - 3.2 Cross Validation
 - 3.3 Bayesian Information Criteria
- 4. Interpolation vs. Extrapolation

Find other functional forms: a Quadratic Function

$$\mathrm{T}=lpha_2t^2+lpha_1t+lpha_0$$


```
import statsmodels.api as sm

t = years - np.mean(years)

X = np.column_stack((t**2, t, np.ones(len(t))))

model = sm.OLS(GMST, X)

results = model.fit()

GMST_hat = results.fittedvalues
```

Find other functional forms: Polynomial

$$\mathbf{T} = \sum_{i=0}^n lpha_i t^i$$

Residual Error Decreases with the Degree of Polynomial

But does a lower error suggests a

better model?

The purpose of building models: Make Predictions

A good model is one that can better generalise and predict unseen data.

Training Error vs. Prediction Error

Let's leave part of the data (say after 2000) out for evaluating prediction error,

and fit the model on remaining data.

Over Fitting: The regression learns noise rather than actual function form.

Account for overfitting: Training, Validation, and Testing Set

For Large Dataset

Fit the model

Evaluate prediction error to select the best model

Evaluate prediction error of the selected model

Account for overfitting: Cross Validation

For Small Data but sufficient computational resource

- (1) Break datasets into several chunks,
- (2) Leave each chunk out at a time to evaluate prediction error,
- (3) Loop over all chunks and pull error estimates together to get an averaged view of prediction error.
- (4) Loop over all possible models and select the model with the lowest prediction error.

N_blocks = ...

for ct_m in all possible models:

for ct in np.arange(N_blocks):

Fit model on remaining blocks

Predict on the target block

Save prediction error in an array

Average prediction error over all blocks

Find the model with the lowest prediction error

Account for overfitting: Bayesian Information Criterion (BIC)

For Insufficient Computational Resource

Since complex models tend to generalise worse, we can penalise complex models by adding a penalty term to the loss function, such that these models are less preferred.

Dep. Variab	 le:	y				 R-squared:		 0.714	
Model:				0LS	Adj.	R-squared:		0.712	
Method:		Least Squares			F-statistic:		428.7		
Date: Time: No. Observations: Df Residuals:		Mon,	05 Feb 2	024	<pre>Prob (F-statistic):</pre>			1.40e-48	
			11:34		Log-Likelihood: AIC: BIC:		31.252		
			174 172					-58.50 -52.19	
				172					
Df Model:				1					
Covariance Type:	Type:		nonrob	ust					
========	coe	f :	std err	=====	 t	======= P> t	[0.025	0.975]	
const	-0.072	 2	0.015	 -4	 .686	0.000	 -0.103	-0.042	
x1	0.006		0.000		.706	0.000	0.006	0.007	
Omnibus:		=====	4.	===== 837	 Durbi	======= n–Watson:		0.335	
Prob(Omnibus):			0.	089	Jarqu	e-Bera (JB):		4.856	
Skew:			0.	376	Prob(JB):		0.0882	
Kurtosis:		2.679		679	Cond. No.			50.2	

OLS Regression Results

BIC vs. Cross Validation

The two results do not appear to be consistent with one another...

Breaking down Cross-Validation Results

If we focus on predicting middle chunks, CV and BIC appears to be consistent.

Interpolation vs. Extrapolation

The underlying process or data distribution is non-stationary (the climate is changing) Values of predictor variables associated with these chunks are not bounded by training data.

Be specifically careful when applying model to data distribution not trained upon!!!

Road Map of the Statistics Part

