Analysis I Lecture 8

Daniel Yu

October 28, 2024

Contents

1	Limits	3
2	Differentiable functions	4
	2.1 Chain Rule	F

CONTENTS 2

1 Limits

Definition 1. Let $f: X \to Y$, (X, ρ_x) , (Y, ρ_y) metric spaces $x_0 \in X$. Then,

$$f(x) \to y_0$$
 in Y as $x \to x_0$..

"f(x) converges to y_0 as x converges to x_0 ". Alternatively, this is written as:

$$\lim_{x \to x_0} f(x) = y_0.$$

if and only if $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$f(B_{\delta}^{oX}(x_0)) \subseteq B_{\varepsilon}^Y(y_0).$$

Note. This does not necessarily mean continuity because we are considering the punctured ball B_{δ}^{oX} so it is not necessarily true that $f(x_0) = y_0$., Think of a discontinuous jump, this converges to y_0 but is not continuous

Remark. We are interested of the behavior of the function around the point not the point itself.

Proposition 1. $f: X \to Y$ is continuous at $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$.

Proof. (\Rightarrow) Assume that $f \in C(x_0)$ then $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$f(B_{\delta}^X(x_0)) \subseteq B_{\varepsilon}^Y(f(x_0)).$$

by definition of continuity. Then trivially, this implies that the image of the punctured ball must also be a subset of $B_{\varepsilon}^{Y}(f(x_0))$. Then the limit of $\lim_{x\to x_0} f(x) = f(x_0)$.

 (\Leftarrow) . Assume that $\lim_{x\to x_0} = f(x_0) \Rightarrow \forall \varepsilon > 0 \exists \delta > 0$ such that

$$f(B_{\delta}^{oX},(x_0) \subseteq B_{\varepsilon_{\varepsilon}}^{Y}(f(x_0)) \Rightarrow f(B_{\delta}^{X}(x_0)) \subseteq B_{\varepsilon}^{Y}(f(x_0)).$$

since $f(x_0) \in B_{\varepsilon}^Y(f(x_0))$. Thus, $f \in C(x_0)$.

Corollary 1.] We can extend the definition of $\lim_{x\to x_0} f(x)$ also in the case when $f=X\setminus\{x_0\}\to Y$ is not defined at x_0

1 LIMITS 3

Proposition 2. $f: X \to \mathbb{R}, g: X \to \mathbb{R} \ x_0 \in X$. Then

1. If there exist $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ then $\lim_{x\to x_0} (f(x)+g(x)) = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$.

Proof. Assume that $\lim_{x\to x_0} f(x) = A$ and $\lim_{x\to x_0} g(x) = B$. Take $\varepsilon > 0$, by definition $\exists B_{\delta_1}^X(x_0)$ such that

$$f\left(B_{\delta_1}^{oX}(x_0)\right) \subseteq \left(A - \frac{\varepsilon}{2}, A + \frac{\varepsilon}{2}\right) \Rightarrow \|f(x) - A\| < \frac{\varepsilon}{2} \text{ since } \|x - x_0\| < \delta_1, x \neq x_0.$$

Similarly, since $\lim_{x \to x_0} g(x) = B \Rightarrow \delta_2 > 0$ such that

$$||g(x) - B|| < \frac{\varepsilon}{2} \text{ since } ||x - x_0|| < \delta_2, x \neq x_0.$$

Then take $\delta = \min(\delta_1, \delta_2)$. Then, for $||x - x_0|| < \delta, x \neq x_0$ we have

$$\begin{split} \|(f(x)-A)+(g(x)-B)\| &= \|\left(f(x)+g(x)\right)-(A+B)\| \\ &\leq \|f(x)-A\|+\|g(x)-B\| \\ &< \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\ &= \varepsilon. \end{split}$$

Thus, the limit of f(x) + g(x) is A + B.

- 2. If $\exists \lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} g(x)$ then $\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$.
- 3. If $\exists \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x)$ and $\lim_{\substack{x \to x_0 \\ y \to x_0}} g(x)$ and $\lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) \neq 0 \\ (g(x) \neq 0 \\ \forall x \in X)$. Then, $\lim_{\substack{x \to x_0 \\ y \to x_0}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to x_0 \\ x \to x_0}} \frac{f(x)}{g(x)}$.

2 Differentiable functions

Definition 2. Let $f:(a,b)\to\mathbb{R}$ and $x_0\in(a,b)$. f is differentiable at a point x_0 if $\exists\alpha\in\mathbb{R},r:(a,b)\setminus\{x_0\}\to\mathbb{R}$ such that $r(x)\to 0$ as $x\to x_0$ such that $\forall x\in(a,b),x\neq x_0$, we have:

$$f(x) = f(x_0) + \alpha(x - x_0) + f(x)(x - x_0).$$

If f is differentiable at x_0 , then we set $f'(x_0) = \alpha$ and call it the derivative of f at x_0 .

Note. α is the derivative and $\alpha(x-x_0)$ represents the tangent line at x_0 . r(x) is the error term (goes to 0 as $x \to x_0$).

Note. If f is differentiable at x_0 then we write that $f \in D(x_0)$

Remark. The above definition is equivalent to the "usual" (calculus) definition of the limit is:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

We can rewrite r(x) as:

$$r(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \to 0.$$

and,

$$r(x)(x - x_0) = f(x) - f(x_0) - f'(x_0)(x - x_0).$$

which after some rearrangment gives us the definition of f(x)

Remark. If $f \in D(x_0)$ then we can set $r(x_0) = 0$. Then, $f : (a,b) \to \mathbb{R}$ and $r \in C(x_0)$ and $f(x) = f(x_0) + \alpha(x - x_0) + f(x)(x - x_0)$ holds for all $x \in (a,b)$

Remark. $f \in D(x_0) \Leftrightarrow f(x) = f(x_0) + \alpha(x - x_0) + f(x)(x - x_0)$ holds for $x \in (x_0 - \varepsilon, x_0 + \varepsilon) \subseteq (a, b)$ for some $\varepsilon > 0$

Proposition 3. If $f \in D(x_0) \Rightarrow f \in C(x_0)$. (differentialbility is stronger than continuity)

Proof. If $f \in D(x_0)$ then $\forall x \in (a, b)$,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x)(x - x_0).$$

where $r(x_0) = 0$ and $r \in C(x_0) \Rightarrow r(x) \to r(x_0) = 0$ as $x \to x_0$. Let's consider the limit of f:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} [f(x_0) + f'(x_0)(x - x_0) + r(x)(x - x_0)]$$

$$= \lim_{x \to x_0} f(x_0) + \lim_{x \to x_0} f'(x_0)(x - x_0) + \lim_{x \to x_0} r(x)(x - x_0)$$

$$= \lim_{x \to x_0} f(x_0) + \lim_{x \to x_0} f'(x_0) \lim_{x \to x_0} (x - x_0) + \lim_{x \to x_0} \lim_{x \to x_0} r(x)(x - x_0)$$

$$= f(x_0) + f'(x_0) \cdot 0 + 0 \cdot 0$$

$$= f(x_0).$$

By the proposition since

$$\lim_{x \to x_0} f(x) = f(x_0).$$

then f is continuous at x_0

Proposition 4. If $f, g: (a, b) \to \mathbb{R}$ and $f, g \in D(x_0)$, then

- 1. $(\alpha f + \beta g) \in D(x_0)$ and $(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$
- 2. $f \times g \in D(x_0)$ and $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0)$

Proof. We need to consider for $x \neq x_0$, the equality $\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} + \frac{f(x)g(x) - f(x)g(x_0)}{x - x_0}$

$$\lim_{x \to x_0} (f \times g)(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} g(x_0) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} f(x) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= g(x_0)f'(x_0) + f(x_0)g'(x_0).$$

and we are done!

3. If $g(x_0) \neq 0$ then $\frac{f}{g} \in D(x_0)$ and $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

Note. Since $f \in D(x_0) \Rightarrow f \in C(x_0)$. On the other side, $g(x_0) \neq 0$ and hence by continuity $g(x) \neq 0$ for $x \in (x_0 - \delta, x_0 + \delta)$ for some $\delta > 0$. This is so that $\frac{f}{g}$ is defined over some small interval $(x - \varepsilon, x + \varepsilon)$ which is needed for definition of differentiability at a point.

2.1 Chain Rule

Consider the composed function: $(g \cdot f)(x) = g(f(x)), x \in (a,b)$ where $f:(a,b) \to \mathbb{R}$ such that $f((a,b)) \subseteq (c,d), g:(c,d) \to \mathbb{R}$

Theorem 1. In the situation above, if $f \in D(x_0)$ and $g \in D(f(x_0))$ then $g \cdot f \in D(x_0)$ and

$$(g \cdot f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Proof. Assume that $f \in D(x_0)$ and $g \in D(f(x_0))$ then $\forall x \in (a,b)$,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r_x(x)(x - x_0).$$

where $r_x \in C(x_0)$ and $r_x(x_0) = 0$. Similarly, $\forall y \in (c, d)$

$$g(y) = g(y_0) + g'(y_0)(y - y_0) + r_y(y)(y - y_0).$$

where $r_y \in C(y_0)$ and $r_y(y_0) = 0$. Then from here follows:

$$\begin{split} g(y) &= g(f(x)) = g(f(x_0)) + g'(f(x_0))(f(x) - f(x_0)) + r_y(f(x))(f(x) - f(x_0)) \\ &= g(f(x_0)) + g'(f(x_0))(f(x_0) + f'(x_0)(x - x_0) + r_x(x)(x - x_0) - f(x_0)) \\ &+ r_y(f(x))(f(x_0) + f'(x_0)(x - x_0) + r_x(x)(x - x_0) - f(x_0)) \\ &= g(f(x_0)) + g'(f(x_0))(f'(x_0)(x - x_0) + r_x(x)(x - x_0)) + r_y(f(x))(f'(x_0)(x - x_0) + r_x(x)(x - x_0)) \\ &= g(f(x_0)) + g'(f(x_0))f'(x_0)(x - x_0) \\ &+ [g'(f(x_0))r_x(x)(x - x_0) + r_y(f(x))f'(x_0)(x - x_0) + r_y(f(x))r_x(x)(x - x_0)] \\ &= g(f(x_0)) + [g'(f(x_0))f'(x_0)](x - x_0) + [g'(f(x_0))r_x(x) + r_y(f(x))f'(x_0) + r_y(f(x))r_x(x)](x - x_0) \\ &= g(f(x_0)) + \alpha(x - x_0) + r(x)(x - x_0). \end{split}$$

Thus, $g'(f(x_0))r_x(x) + r_y(f(x))f'(x_0) + r_y(f(x))r_x(x) = r(x)$. All we need to do is show that $r(x) \to 0$ as $x \to x_0$, then it will follow that $g \cdot f \in D(x_0)$. A quick observation reveals that $r_x(x) \to 0$ as $x \to x_0$ and since $r_2 \in C(f(x_0))$ and $f \in C(x_0) \Rightarrow r_2 \cdot f \in C(x_0) \Rightarrow r_y(f(x)) \to r_y(f(x_0)) = 0$ since $g(x) \in D(x_0)$ as $x \to x_0$. Thus, $r(x) \to 0$ as $x \to x_0$.