Priority Queues

Outline

- Single-Ended Priority Queue
 - Binary Heap
 - ▶ Leftist Tree
 - Binomial Heap
- Double-Ended Priority Queue
 - ▶ Interval Heap

ADT: SEPQ

- Objects: a set of <key,object>
- Operations:
 - Insert(PQ,k,obj): insert <k,obj> into PQ
 - ▶ ExtractMin(PQ): remove the object of min key
 - ▶ Min(PQ): return the object of min key
 - DecreaseKey(PQ,k,obj): decrease the key value of obj to k
 - ▶ Union(PQ₁,PQ₂): union PQ₁ and PQ₂ into one priority queue.

ADT: DEPQ

- Objects: a set of <key,object>
- Operations:
 - Insert(PQ,k,obj): insert <k,obj> into PQ
 - ▶ ExtractMin(PQ): remove the object of min key
 - ▶ Min(PQ): return the object of min key
 - ▶ ExtractMax(PQ): remove the object of max key
 - ▶ Max(PQ): return the object of max key
 - ChangeKey(PQ,k,obj): Change the key of obj to k

Binary Heap (Min)

- ▶ A binary tree H of n nodes
 - The nodes are in n consecutive positions in H's array representation
- Every node stores a key-object pair.
 - A's key≤B's key if A is B's parent.
- This is a nice structure for finding minimum!
 - ▶ The root has the minimum key.

Example: binary heap

1	2	3	4	5	6	7	8	9	10
1	5	2	6	9	4	8	7		

1	2	3	4	5	6	7	8	9	10
1	5	2	6	9	4	8	7	3	

1	2	3	4	5	6	7	8	9	10
1	5	2	3	9	4	8	7	6	

1	2	3	4	5	6	7	8	9	10
1	3	2	5	9	4	8	7	6	

1	2	3	4	5	6	7	8	9	10
1	3	2	5	9	4	8	7	6	

1	2	3	4	5	6	7	8	9	10
1	3	2	5	9	4	8	7	6	

1	2	3	4	5	6	7	8	9	10
6	3	2	5	9	4	8	7		

1	2	3	4	5	6	7	8	9	10
2	3	6	5	9	4	8	7		

1	2	3	4	5	6	7	8	9	10
2	3	4	5	9	6	8	7		

Binary Heap

- Pros
 - Array-based
 - ▶ Iterative implementation is easy
 - ▶ Almost in place (O(1)-space overhead)
- **Cons**
 - ▶ Slow union: takes O(n)-time

Leftist Tree

- ▶ A binary tree with external leaves
 - Root: r
 - S-value of a node v: the shortest length from v to any leaf in subtree rooted v.
 - \triangleright S(v)=o if v is an external leaf
 - \blacktriangleright S(v)=min(S(v.L),S(v.R))+1
 - For any node v, $S(v.L) \ge S(v.R)$.
 - The shortest path from r to leaf is the rightmost path.

Leftist Tree

Min Heap Property: Parent's key is no greater than child's key.

Meld Operation

- ▶ The basic operation on leftist trees.
- ▶ Insert(PQ,k,obj)
 - Meld PQ and a one-node leftist tree whose root is <k,obj>
- ExtractMin(PQ)
 - Meld the left subtree and right subtree, then return the original root.
- DecreaseKey(PQ,k,obj)
 - Homework

18

Meld

- ▶ Two phases:
- 1. Merge the rightmost paths into one.O(logn)
- 2. Rebuild the S-values and swap
 v's subtrees if
 S(v.L)<S(v.R).
 O(logn)

Complexity of Meld

- It is obvious that melding two leftist tree takes $O(S(r_1)+S(r_2))$ -time where r_1 and r_2 are roots.
- Target: O(logn)
- The rest part is to prove the size of a leftist tree is at least 2^{S(r)}-1, where r is its root.

Complexity of Meld

- ▶ Prove $|T| \ge 2^{S(r)} 1$ by induction
- \blacktriangleright Basis: S(r)=1
 - ▶ Since the tree has a root r and 2^{S(r)}−1=1, the statement is true.
- Induction hypothesis:
 - \blacktriangleright The statement is true for S(r) < k.
- An important observation:
 - If $S(r') \ge k-1$ where r' is the root of T', then we have $|T'| \ge 2^{k-1}-1$. (By induction hypothesis)

Important Observation

Complexity of Meld

- Inductive step: S(r)=k
 - Recall: For v∈T, we have $S(v.L) \ge S(v.R)$ & S(r)=min(S(r.L),S(r.R))+1=S(r.R)+1
 - Note that S(r.R)=k-1< k. By induction hypothesis, the right subtree has size at least $2^{k-1}-1$.
 - Note that $S(r.L) \ge S(r.R)$. By the important observation, the left subtree has size at least $2^{k-1}-1$, too.
 - $|T| \ge 1 + 2^{k-1} 1 + 2^{k-1} 1 = 2^k 1$. We are done.

Homework 11.1

- ▶ a) How to initialize an n-element leftist tree?
- ▶ b) Suppose we redefine the S-value to the size of the subtree. Will the meld operation still work? If yes, what is the time complexity of meld operation?
- c) How to implement decrease key? What is the time complexity of your implementation?
- ▶ d) What is a skew heap? Compare skew heaps and leftist trees.

Binomial Tree

- A recursive tree structure
- ▶ Binomial tree of order o: A single root r
- ▶ Binomial tree of order k:
 - ▶ Has a root r
 - r has k children $c_0,...,c_{k-1}$ such that c_i is the root of a binomial tree of order i.
 - Has exactly 2^k nodes.

Binomial Heap

- An n-element binomial heap consists of several binomial trees
 - ▶ Each tree has the min heap property
 - Let $b_db_{d-1}...b_0$ be the binary representation of n. I.e., $n=\sum_{i\in[d]}b_i2^i$. Then the binomial heap has b_i binomial tree of order i.
 - Stores a pointer to the binomial tree containing minimum element.

Example: 11 elements

Merge Trees

- ▶ Merge binomial trees: (NOT Heaps!!)
 - ▶ Apply on two trees T_0 and T_1 of same order!
 - ▶ Output a binomial tree of order d+1 if the inputs are trees of order d.
 - Assume K_0 and K_1 is the keys of the roots of T_0 and T_1 respectively. If $K_i < K_{1-i}$, then make T_{1-i} as a subtree of T_i .
 - ▶ Time complexity: O(1)

Merge Trees: Example

Merge: Example

Merge Heaps

- ▶ D: the max order of binomial trees in $H_0=T_{0,0}\cup...\cup T_{0,D}$ and $H_1=T_{1,0}\cup...\cup T_{1,D}$.
 - If H_i has a binomial tree of order d, then T_i ,d is the tree, otherwise $T_{i,d} = \emptyset$.
- Output a binomial heap $H=T_0 \cup ... \cup T_{D+1}$ and the pointer to minimum element.
- Concept: Adding two binary numbers
 - Order: from low to high

Merge Heaps

Concept: adding two binary numbers

```
T_0 = \emptyset
                                                  T<sub>d</sub>: carry & sum
  For d = 0 to D do
     if T_{o,d} \neq \emptyset \neq T_{1,d} then T_{d+1} = merge(T_{o,d}, T_{1,d});
      else if T_{0,d} = \emptyset and T_{1,d} \neq \emptyset \neq T_d then
         T_{d+1}=merge(T_{1,d},T_d), T_d=\emptyset;
      else if T_{1,d} = \emptyset and T_{0,d} \neq \emptyset \neq T_d then
         T_{d+1}=merge(T_{o,d},T_d), T_d=\emptyset;
      else T_{d+1}=\emptyset, T_d=T_{0,d}\cup T_{1,d};
  Output \{T_0,...,T_{D+1}\}
                                            For convenience, let T \cup \emptyset = T.
▶ Minimum: easy in O(D)
```


1101 +1011 11000

1101 +1011 11000

$$101_2 + 1001_2 = 11110_2$$

Extract Minimum

Extract Minimum

Extract Minimum

Lazy Merge & Insertion

- We don't have to perform O(logn)-time REAL merge for every merge & insertion.
- ▶ Just chain two lists of binomial trees into one. O(1)-time
- Update the minimum if necessary. O(1)
- Delay the REAL merges until extract minimum. O(logn) per operation

Lazy Merge

Lazy Merge

Lazy Merge: Extract Min

Lazy Merge: Extract Min

- DecreaseKey(PQ,k,obj):
 Decrease the key value of obj to k.
- We need to find out where is the node storing <k',obj> where k' is the key value before the invocation of DecreaseKey.

Index	Key	Value		
1	0	紅		
2	4	橙		
3	1	黄		
4	5	綠		
5	3	藍		
6	7	靛		
7	6	紫		

Decrease 紫's key to 2

We need to know 紫's index!

Index	Key	Value		
1	0	紅		
2	4	橙		
3	1	黄		
4	5	綠		
5	3	藍		
6	7	靛		
7	6	紫		

Sequential search: O(n)-time

Use Value as the key of map!

Мар Кеу	Map'	Value
Value	Index	Key
紅	1	0
橙	2	4
黄	3	1
綠	4	5
藍	5	3
靛	6	7
紫	7	6

Search by BST Map: O(logn)-time

Search by hash map: expected O(1)-time

Array Based vs Link Based

- Array based implementations need faster map since they might need to modify O(logn) key-value pairs/entries.
 - Example: Binary heap
- Some link based implementations do not need to any key-value pair/entry.
 - Change the links only. The key-value pair stays at the same place.
 - Example: Binomial heap

Homework 11.2

- a) How to initialize an n-element binomial heap?
- b) Will the lazy merge policy increase the performance? Explain your answer.
- c) What is a Fibonacci heap? Compare Fibonacci heaps and binomial heaps.

Interval Heap

- ▶ [L,R] denotes the interval $\{x:L \le x \le R\}$.
- ▶ [L,R] \subseteq [L',R'] if and only if L' \leq L \leq R \leq R'.
- \blacktriangleright \subseteq is a partial ordered relation.
 - ▶ If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- Interval heap: a variant of binary heap
 - ▶ Each node stores an interval [L,R]. Only EXCEPTION: the last node can store only one value x.
 - Interval heap property: If A is B'parent, then interval $[L_A,R_A] \subseteq [L_B,R_B]$.

91

Example: Interval Heap

i	1	2	3	4	5	6	7	8	9
Li	1	1	3	2	3	3	6	2	
Ri	2	6	7	4	5	7	6	2	
ki	2	2	2	2	2	2	2	0	

i	1	2	3	4	5	6	7	8	9
Li	1	1	3	2	3	3	6	2	
Ri	2	6	7	4	5	7	6	2	
ki	2	2	2	2	2	2	2	0	

i	1	2	3	4	5	6	7	8	9
Li	1	1	3	2	3	3	6	2	
Ri	7	6	2	4	5	7	6	2	
ki	2	2	2	2	2	2	2	0	

i	1	2	3	4	5	6	7	8	9
Li	1	1	2	2	3	3	6	2	
R _i	7	6	3	4	5	7	6	2	
ki	2	2	2	2	2	2	2	0	

i	1	2	3	4	5	6	7	8	9
Li	1	1	2	2	3	3	6	2	
Ri	7	6	7	4	5	3	6	2	
ki	2	2	2	2	2	2	2	0	

Homework 11.3

- a) How should we perform change key operation on an interval heap?
- ▶ b) Can we apply the idea of interval heap property to priority queue supporting meld/merge operation such as leftist trees or binomial heaps? If yes, what modification must to be done? If no, explain the reason.