Мониторинг человекопотока на основе анализа видео

Предпроектное исследование

Точность

60-70%

Ограничение мест применения

Точность

90-95%

Высокая стоимость внедрения

Точность

90-95% Технически сложно

Точность

90-95%

Минимальные затраты

Библиотека OpenCV

- Непрерывная адаптация среднего сдвига (Camshift)
- Оптический поток (Optical Flow)
- Вычитание фона (Background Subtraction)
- Машинное обучение (Machine Learning)
- Обнаружение объекта (Object Detection)

Концептуальное проектирование

Описание системы мониторинга

Описание системы мониторинга

Трекинг объекта

Трекинг объекта

Техническое проектирование

Фоновое изображение

Изображение переднего плана

Слепок переднего плана

Видео кадр

Предобработка

Моделирование фона

М. переднего плана

Верификация результатов

Слепок переднего плана

Вычисление порога

Th = 25

Th = 100

Th = 200

$$B(x,y,t) = I(x,y,t-1) => |I(x,y,t-1) - B(x,y,t)| > Th$$

Блок-схема алгоритма работы счетчика

Блок-схема алгоритма добавление точки в трек

Результаты

Входные данные

Выходные данные

Результаты

Входные данные

Область применения и недостатки

Применим для:

• Слабопоточные систем с хорошим освещением

Недостатки:

- Некорректное срабатывание при близком движение объектов
- Необходимость предварительной настройки
- Работает на любых движущихся объектах
- Требуется хорошая освещенность

Статистика

Видео используемое для отладки:

Максимальная точность - 84,5%

Реальное кол-во людей: 32

Подсчитанное кол-во людей: 27

Длительность видео: 75 сек.

близкое движение (4 человека)

потеря трека (1 человек)

Статистика

Выводы

- Система имеет высокую точность*
- Быстрая и простая развертка
- Применима для любых движущихся объектах
- Не требовательна к качеству входного видео
- Не подходит для задач с точностью ~100%
- Не подходит для сильнопоточных систем

Спасибо за внимание