Package 'metagene'

March 4, 2018

```
Version 2.10.1
Date 2017-10-13
Title A package to produce metagene plots
Author Charles Joly Beauparlant
      <charles.joly-beauparlant@crchul.ulaval.ca>, Fabien Claude Lamaze
      <fabien.lamaze.1@ulaval.ca>, Rawane Samb <rawane.samb.1@ulaval.ca>,
      Cedric Lippens < lippens.cedric@protonmail>,
      Astrid Louise Deschenes <a href="mailto:Astrid-Louise.Deschenes@crchudequebec.ulaval.ca">Astrid-Louise.Deschenes@crchudequebec.ulaval.ca</a>
      and Arnaud Droit <arnaud.droit@crchuq.ulaval.ca>.
Author@R c(person(`Charles", `Joly Beauparlant",
      email=``charles.joly-beauparlant@crchul.ulaval.ca"),
      person("Fabien Claude", "Lamaze",
      email=``fabien.lamaze.1@ulaval.ca"), person(``Rawane", ``Samb",
      email=``rawane.samb.1@ulaval.ca"), person(``Astrid
      Louise", "Deschenes", person("Cedric", "Lippens",
      email=``lippens.cedric@protonmail.com"),
      email=``Astrid-Louise.Deschenes@crchudequebec.ulaval.ca"),
      person(``Arnaud", ``Droit",
      email=``arnaud.droit@crchuq.ulaval.ca"))
Maintainer Charles Joly Beauparlant < charles.joly-beauparlant@crchul.ulaval.ca>
Description This package produces metagene plots to compare the behavior of
      DNA-interacting proteins at selected groups of genes/features. Bam files
      are used to increase the resolution. Multiple combination of group of bam
      files and/or group of genomic regions can be compared in a single analysis.
      Bootstraping analysis is used to compare the groups and locate regions with
      statistically different enrichment profiles.
biocViews ChIPSeq, Genetics, MultipleComparison, Coverage, Alignment,
      Sequencing
License Artistic-2.0 | file LICENSE
```

BugReports https://github.com/CharlesJB/metagene/issues

Depends R (>= 3.4.0), R6 (>= 2.0), GenomicRanges, BiocParallel

LazyData true

VignetteBuilder knitr

2 avoid_gaps_update

Imports rtracklayer, gplots, tools, GenomicAlignments, GenomeInfoDb, GenomicFeatures, IRanges, ggplot2, muStat, Rsamtools, DBChIP, matrixStats, purrr, data.table, magrittr, methods, utils, ensembldb, EnsDb.Hsapiens.v86, stringr

Suggests RUnit, BiocGenerics, similaRpeak, knitr, BiocStyle, rmarkdown

RoxygenNote 6.0.1

NeedsCompilation no

R topics documented:

avoid gans undate

avoid_gaps_apaace	
Bam_Handler	4
bed_file_filter	6
exon_by_gene_with_observed_transcripts	6
get_demo_bam_files	7
get_demo_design	8
get_demo_metagene	8
get_promoters_txdb	9
metagene	10
plot_metagene	13
promoters mm9	16
write_bed_file_filter_result	16
	18
	Bam_Handler bed_file_filter exon_by_gene_with_observed_transcripts get_demo_bam_files get_demo_design get_demo_metagene get_demo_regions get_promoters_txdb metagene permutation_test plot_metagene promoters_hg18 promoters_hg19 promoters_mm10 promoters_mm9 write_bed_file_filter_result

avoid_gaps_update

Is is a function designed to remove values <= to 'gaps_threshold'. Nucleotides local and global positions, bins, size of regions/genes and exons will be recalculated. To use on metagene's table during RNA-seq analysis. Not made for ChIP-Seq analysis or to apply on matagene's data_frame. A similar function is implemented in produce_data_frame() with same arguments. The unique goal of this function is to allow permutation_test which match the plot created using avoid_gaps, bam_name and gaps_threshold arguments in the produce_data_frame function.

Description

Is is a function designed to remove values <= to 'gaps_threshold'. Nucleotides local and global positions, bins, size of regions/genes and exons will be recalculated. To use on metagene's table during RNA-seq analysis. Not made for ChIP-Seq analysis or to apply on matagene's data_frame. A similar function is implemented in produce_data_frame() with same arguments. The unique goal of this function is to allow permutation_test which match the plot created using avoid_gaps, bam_name and gaps_threshold arguments in the produce_data_frame function.

avoid_gaps_update 3

Usage

```
avoid_gaps_update(table, bam_name, gaps_threshold = 0)
```

Arguments

table A data.table from produce_table(...) function of metagene.

bam_name A reference bam_name to allow the same removal (position in bam) of values

for other bam file.

gaps_threshold A threshold under which values will be removed.

Value

A data.table with values <= to 'gaps_threshold' removed

```
## Not run:
bam_files <- c(</pre>
system.file("extdata/c\_al4\_945MLM\_demo\_sorted.bam", package="metagene"),\\
system.file("extdata/c\_al3\_362PYX\_demo\_sorted.bam", package="metagene"),\\
system.file("extdata/n_al4_310HII_demo_sorted.bam", package="metagene"),
system.file("extdata/n_al3_588WMR_demo_sorted.bam", package="metagene"))
region <- c(
system.file("extdata/ENCFF355RXX_DPM1less.bed", package="metagene"),
system.file("extdata/ENCFF355RXX_NDUFAB1less.bed", package="metagene"),
system.file("extdata/ENCFF355RXX_SLC25A5less.bed", package="metagene"))
mydesign \leftarrow matrix(c(1,1,0,0,0,0,1,1),ncol=2, byrow=FALSE)
mydesign <- cbind(c("c_al4_945MLM_demo_sorted.bam",</pre>
                    "c_al3_362PYX_demo_sorted.bam",
                    "n_al4_310HII_demo_sorted.bam",
                    "n_al3_588WMR_demo_sorted.bam"), mydesign)
colnames(mydesign) <- c('Samples', 'cyto', 'nucleo')</pre>
mydesign <- data.frame(mydesign)</pre>
mydesign[,2] <- as.numeric(mydesign[,2])-1</pre>
mydesign[,3] <- as.numeric(mydesign[,3])-1</pre>
mg <- metagene$new(regions = region, bam_files = bam_files,</pre>
                                                               assay = 'rnaseq')
mg$produce_table(flip_regions = FALSE, bin_count = 100,
                                 design = mydesign, normalization = 'RPM')
mg$produce_data_frame(avoid_gaps = TRUE,
                        bam_name = "c_al4_945MLM_demo_sorted",
                        gaps_threshold = 10)
mg$plot()
tab <- mg$get_table()</pre>
tab <- avoid_gaps_update(tab,</pre>
       bam_name = 'c_al4_945MLM_demo_sorted', gaps_threshold = 10)
tab1 <- tab[which(tab0$design == "cyto"),]</pre>
tab2 <- tab[which(tab0$design == "nucleo"),]</pre>
library(similaRpeak)
perm_fun <- function(profile1, profile2) {</pre>
   sim <- similarity(profile1, profile2)</pre>
   sim[["metrics"]][["RATIO_NORMALIZED_INTERSECT"]]
}
```

4 Bam_Handler

Bam_Handler

A class to manage BAM files.

Description

This class will allow to load, convert and normalize alignments and regions files/data.

Usage

Bam_Handler

Format

A BAM manager

Value

Bam_Handler\$new returns a Bam_Handler object which contains coverage related information for every BAM files.

Constructor

```
bh <- Bam_Handler$new(bam_files, cores = SerialParam())</pre>
```

bam_files A vector of BAM filenames. The BAM files must be indexed. i.e.: if a file is named file.bam, there must be a file named file.bam.bai or file.bai in the same directory.

cores The number of cores available to parallelize the analysis. Either a positive integer or a BiocParallelParam. Default: SerialParam().

paired_end If TRUE, metagene will deal with paired-end data. If FALSE, single-end data are expected

Bam_Handler\$new returns a Bam_Handler object that contains and manages BAM files. Coverage related information as alignment count can be obtain by using this object.

Bam_Handler 5

Methods

```
bh$get_aligned_count(bam_file)
bam_file The name of the BAM file.
 bg$get_bam_name(bam_file)
bam file The name of the BAM file.
 bh$get_rpm_coefficient(bam_file)
bam_file The name of the BAM file.
 bh$index_bam_files(bam_files)
bam_files A vector of BAM filenames.
 bh$get_bam_files()
 bh$get_coverage(bam_file, regions)
                                                                    force_seqlevels = FALSE)
bam file The name of the BAM file.
regions A not empty GRanges object.
force_seqlevels If TRUE, Remove regions that are not found in bam file header. Default: FALSE.
    TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?se-
     qinfo.
 bh$get_normalized_coverage(bam_file, regions)
                                                                                force_seglevels = FALSE)
bam file The name of the BAM file.
regions A not empty GRanges object.
force_seqlevels If TRUE, Remove regions that are not found in bam file header. Default: FALSE.
    TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?se-
    qinfo.
 bh$get_noise_ratio(chip_bam_file, input_bam_file)
chip bam file The path to the chip bam file.
input_bam_file The path to the input (control) bam file.
```

```
bam_file <- get_demo_bam_files()[1]</pre>
bh <- metagene:::Bam_Handler$new(bam_files = bam_file)</pre>
bh$get_aligned_count(bam_file)
```

Description

Extract a list of ranges defined by the bed_file_content_gr argument from the ebgwot GRangesList. Equivalent to the exonsByOverlaps of GenomicFeatures.

Usage

```
bed_file_filter(ebgwot, bed_file_content_gr, reduce = TRUE)
```

Arguments

ebgwot A GRangesList object provided by the exon_by_gene_with_observed_transcripts function.
bed_file_content_gr

A GRanges object containing ranges of interest.

reduce If the returned GRanges object will be reduce or not.

Value

A GRanges object that contains exons by genes selected.

Examples

```
exon_by_gene_with_observed_transcripts
```

Extract exons by genes for which data are available in quantification files

Description

Extract exons by genes for which data are available in quantification files

get_demo_bam_files 7

Usage

```
exon_by_gene_with_observed_transcripts(adb, quantification_files)
```

Arguments

Value

A GRangesList object containing exons by genes for which data are available in quantification files.

Examples

get_demo_bam_files

Get BAM filenames for demo

Description

Get BAM filenames for demo

Usage

```
get_demo_bam_files()
```

Value

A vector of BAM filenames

```
bam_files <- get_demo_bam_files()</pre>
```

8 get_demo_metagene

get_demo_design

Get a demo design object

Description

Get a demo design object

Usage

```
get_demo_design()
```

Value

A data.frame corresponding to a valid design.

Examples

```
mg <- get_demo_design()</pre>
```

 ${\tt get_demo_metagene}$

Get a demo metagene object

Description

Get a demo metagene object

Usage

```
get_demo_metagene()
```

Value

A metagene object

```
mg <- get_demo_metagene()</pre>
```

get_demo_regions 9

get_demo_regions

Get regions filenames for demo

Description

Get regions filenames for demo

Usage

```
get_demo_regions()
```

Value

A vector of regions filenames

Examples

```
regions <- get_demo_regions()</pre>
```

get_promoters_txdb

Extract Entrez genes promoters from TxDb object.

Description

Extract Entrez genes promoters from TxDb object.

Usage

```
get_promoters_txdb(txdb, upstream = 1000, downstream = 1000)
```

Arguments

txdb A valid TxDb object.

upstream The number of nucleotides upstream of TSS.

downstream The number of nucleotides downstream of TSS.

Value

A GRanges object that contains the promoters infos.

```
## Not run:
    # require(TxDb.Hsapiens.UCSC.hg19.knownGene)
    txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
    promoters_hg19 <- get_promoters_txdb(txdb)
## End(Not run)</pre>
```

10 metagene

metagene

A class to manage metagene analysis.

Description

This class will allow to load, convert and normalize alignments and regions files/data. Once the data is ready, the user can then chose to produce metagene plots on the data (or a subset of the data).

Usage

metagene

Format

A metagene experiment manager

Value

metagene\$new returns a metagene object which contains the normalized coverage values for every regions and for every BAM files.

Constructor

```
mg <- metagene$new(regions, bam_files, padding_size = 0,</pre>
```

cores = SerialParam

regions Either a vector of BED, narrowPeak or broadPeak filenames, a GRanges object or a GRangesList object.

bam_files A vector of BAM filenames. The BAM files must be indexed. i.e.: if a file is named file.bam, there must be a file named file.bam.bai or file.bai in the same directory.

padding_size The regions will be extended on each side by the value of this parameter. The padding_size must be a non-negative integer. Default = 0.

cores The number of cores available to parallelize the analysis. Either a positive integer or a BiocParallelParam. Default: SerialParam().

verbose Print progression of the analysis. A logical constant. Default: FALSE.

force_seqlevels If TRUE, Remove regions that are not found in bam file header. Default: FALSE. TRUE and FALSE respectively correspond to pruning.mode = "coarse" and "error" in ?seqinfo.

paired_end If TRUE, metagene will deal with paired-ended data. If FALSE, single-ended data are expected. Default: FALSE

assay 'chipseq' or 'rnaseq', the two available options. Default: 'chipseq'

metagene\$new returns a metagene object that contains the coverages for every BAM files in the regions from the regions param.

Methods

```
mg$plot(region_names = NULL, design_names = NULL, title = NULL, x_label = NULL)
```

region_names The names of the regions to extract. If NULL, all the regions are returned. Default: NULL.

metagene 11

design_names The names of the experiments to extract. If a design was added to the metagene object, design_names correspond to the column names in the design, otherwise design_names corresponds to the BAM name or the BAM filename. If NULL, all the experiments are returned. Default: NULL.

title A title to add to the graph. If NULL, will be automatically created. Default: NULL

x_label X-axis label to add to the metagene plot. If NULL, metagene will use generic label. Default: NULL.

```
mg$produce_table(design, bin_count, noise_removal,
```

normalization, flip_regions, bin_s

design A data. frame that describe to experiment to plot. see plot function for more details. NA can be used keep previous design value. Default: NA.

bin_count The number of bin to create. NA can be used to keep previous bin_count value. A bin count value of 100 will be used if no value is specified. Default: NA.

noise_removal The algorithm to use to remove control(s). Possible values are NA, NULL or "NCIS".
By default, value is NULL. Use NA keep previous noise_removal value (i.e. if produce_table was called before). See Liand and Keles 2012 for the NCIS algorithm.

normalization The algorithm to use to normalize samples. Possible default, value is NULL and no normalization will be performed. Use NA keep previous normalization value (i.e. if produce_table was called before).

flip_regions Should regions on negative strand be flip_regions? Default: FALSE.

bin_size Deprecated.

```
mg$produce_data_frame(alpha = 0.05, sample_count = 1000,
```

avoid_gaps = FA

alpha The range of the estimation to be shown with the ribbon. 1 - alpha / 2 and alpha / 2 will be used. Default: 0.05.

sample_count The number of draw to do in the bootstrap calculation. Default: 1000.

avoid_gaps Provide the possibility to remove values = 0 and refit the data_frame for this suppression. Default: FALSE.

gaps_threshold It works with avoid_gaps argument. It lets to remove values <= at gaps_threshold.
Default: 0.</pre>

mg\$get_params()

mg\$get_design()

mg\$get_regions(region_names = NULL)

region_names The names of the regions to extract. If NULL, all the regions are returned. Default: NULL.

mg\$get_table = function()

mg\$get_matrices = function()

mg\$get_data_frame(region_names = NULL, design_names = NULL)

region_names The names of the regions to extract. If NULL, all the regions are returned. Default: NULL.

design_names The names of the experiments to extract. If a design was added to the metagene object, design_names correspond to the column names in the design, otherwise design_names corresponds to the BAM name or the BAM filename. If NULL, all the experiments are returned. Default: NULL.

12 permutation_test

```
get_plot = function()
get_raw_coverages = function(filenames)
```

filenames The name of the file to extract raw coverages. Can be the filename with the extension of the name of the bam file (if a named bam files was used during the creation of the metagene object). If NULL, returns the coverage of every bam files. Default: NULL.

```
get_normalized_coverages = function(filenames)
```

filenames The name of the file to extract normalized coverages (in RPM). Can be the filename with the extension of the name of the bam file (if a named bam files was used during the creation of the metagene object). If NULL, returns the coverage every bam files. Default: NULL.

```
mg$export(bam_file, region, file)
```

bam_file The name of the bam file to export.

region The name of the region to export.

file The name of the ouput file.

```
mg$add_design(design = NULL, check_bam_files = FALSE)
```

design A data. frame that describe to experiment to plot. See plot function for more details. NA can be used keep previous design value. Default: NA.

check_bam_files Force check that all the bam files from the first columns of the design are present in current metagene object. Default: FALSE

```
mg$unflip_regions()
mg$flip_regions()
mg$unflip_regions()
```

Examples

```
region <- get_demo_regions()[1]
bam_file <- get_demo_bam_files()[1]
mg <- metagene$new(regions = region, bam_files = bam_file)
## Not run:
    df <- metagene$plot()
## End(Not run)</pre>
```

permutation_test

Perform a permutation test on 2 tables

Description

The goal of this function is to calculate the values of a test performed by FUN after each of sample_count permutations.

Usage

```
permutation_test(table1, table2, sample_size, sample_count, FUN, ...)
```

plot_metagene 13

Arguments

table1	The first table.
table2	The second table.
sample_size	The number of element to draw for each table.
sample_count	The number of permutations.
FUN	The function to use to compare the 2 table. First two params must be numeric vector and the return must be a single numeric value.
	Extra param for FUN.

Details

Each round of the permutation test, two new matrices will be randomly sampled from using the combination of the two original tables. The means of each columns will be calculated to produce the vectors that will be sent FUN.

Value

A vector of numeric corresponding to the result of each permutation.

Examples

plot_metagene

Produce a metagene plot

Description

Produce a metagene plot

Usage

```
plot_metagene(df)
```

promoters_hg18

Arguments

df

a data.frame obtained with the get_data_frame function. Must have the following columns: "region", "design", "bin", "value", "qinf" and "qsup".

Value

A 'ggplot' object.

Examples

```
region <- get_demo_regions()[1]
bam_file <- get_demo_bam_files()[1]
mg <- metagene$new(regions = region, bam_files = bam_file)
mg$produce_data_frame()
df <- mg$get_data_frame()
p <- plot_metagene(df)</pre>
```

promoters_hg18

Promoters regions of hg18 Entrez genes.

Description

Each regions have a width of 2000 nucleotide centered at the transcription start site.

Usage

```
promoters_hg18
```

Format

A GRanges object with 19742 ranges.

Value

A GRanges.

See Also

```
get_promoters_txdb
```

```
data(promoters_hg18)
```

promoters_hg19 15

promoters_hg19

Promoters regions of hg19 Entrez genes.

Description

Each regions have a width of 2000 nucleotide centered at the transcription start site.

Usage

```
promoters_hg19
```

Format

A GRanges object with 23056 ranges.

Value

A GRanges.

See Also

```
get_promoters_txdb
```

Examples

```
data(promoters_hg19)
```

promoters_mm10

Promoters regions of mm10 Entrez genes.

Description

Each regions have a width of 2000 nucleotide centered at the transcription start site.

Usage

```
promoters_mm10
```

Format

A GRanges object with 23653 ranges.

Value

A GRanges.

See Also

```
get_promoters_txdb
```

```
data(promoters_mm10)
```

promoters_mm9

Promoters regions of mm9 Entrez genes.

Description

Each regions have a width of 2000 nucleotide centered at the transcription start site.

Usage

```
promoters_mm9
```

Format

A GRanges object with 21677 ranges.

Value

A GRanges.

See Also

```
get_promoters_txdb
```

Examples

data(promoters_mm9)

```
write_bed_file_filter_result
```

Transforms the bed_file_filter function output into a file.BED readable by metagene.

Description

Transforms the bed_file_filter function output into a file.BED readable by metagene.

Usage

```
write_bed_file_filter_result(bed_file_filter_result, file = "file_name",
    path = "./")
```

Arguments

```
bed_file_filter_result
```

A GRanges object : the output of bed_file_filter function.

file the name of the output file without the extension path The path where the function will write the file

Value

output of write function

Index

```
*Topic datasets
     Bam_Handler, 4
     metagene, 10
     promoters_hg18, 14
     promoters_hg19, 15
     \texttt{promoters\_mm10}, \textcolor{red}{15}
     promoters_mm9, 16
avoid\_gaps\_update, \\ 2
Bam_Handler, 4
{\tt bed\_file\_filter, 6}
{\tt exon\_by\_gene\_with\_observed\_transcripts},
{\tt get\_demo\_bam\_files, \ref{files}, \ref{files}}
\verb"get_demo_design", 8
{\tt get\_demo\_metagene, 8}
get_demo_regions, 9
get\_promoters\_txdb, 9, 14-16
\textit{metagene}, \textcolor{red}{10}
permutation_test, 12
plot_metagene, 13
promoters_hg18, 14
promoters_hg19, 15
promoters_mm10, 15
promoters_mm9, 16
write\_bed\_file\_filter\_result, \\ 16
```