

What Is Claimed Is:

1. A nonwoven barrier fabric, comprising
 - a) a fine-denier spunbond layer comprising a plurality of continuous thermoplastic filaments having a denier of between 0.7 and 1.2 denier;
 - b) a barrier layer material deposited uniformly onto the fine denier spunbond layer and the layers consolidated to form a composite fabric; and
 - c) said composite fabric having a hydrostatic head to barrier layer basis weight ratio of about at least 4.9 cm/gsm.
2. A nonwoven barrier fabric as in claim 1, wherein:
 - 10 said thermoplastic filaments are chosen from the group consisting of polyolefins, polyesters and the blends thereof.
 3. A nonwoven barrier fabric as in claim 2, wherein:
 - 15 said polyolefins are chosen from the group consisting of polypropylene, polyethylene, and blends thereof.
 4. A nonwoven barrier fabric as in claim 1, wherein: the continuous filaments may comprise bicomponent, multicomponent profiles and the blends thereof.
 5. A nonwoven barrier fabric as in claim 1, wherein the barrier layer is selected from the group consisting of melt-blown, cellulosic pulp,
 - 20 microporous film and monolithic film.
 6. A nonwoven barrier fabric as in claim 5, wherein:
 - 25 said melt-blown barrier layer having fiber diameters in the range of about 1 to 10 microns and a basis weight of less than or equal to about 10 grams/meter².
 7. A nonwoven barrier fabric as in claim 6, wherein:
 - 30 said melt-blown barrier layer having a basis weight in the range of 1 to 8 grams/ meter².
 8. A nonwoven barrier fabric as in claim 1, wherein:
 - said means of consolidation are chosen from the group consisting of pressure bonding, thermal calendering, and through-air bonding.

9. A nonwoven barrier fabric, comprising:
- 5 a) a first fine-denier spunbond layer comprising a plurality of continuous thermoplastic filaments having a denier of between 0.7 and 1.2 denier;
- 10 b) a barrier layer material deposited onto the first fine denier spunbond layer;
- 15 c) a second spunbond layer deposited onto the barrier layer;
- 20 d) the first fine denier spunbond layer, the barrier layer, and the second spunbond layer being consolidated into a composite fabric structure; and
- 25 e) said composite fabric having a hydrostatic head to barrier layer basis weight ratio of about at least 4.9 cm/gsm.
10. A nonwoven barrier fabric as in claim 9, wherein the second spunbond layer is a fine-denier spunbond layer comprising a plurality of continuous thermoplastic filaments having a denier of between 0.7 and 1.2 denier.
11. A nonwoven barrier fabric as in claim 9, wherein:
said thermoplastic filaments are chosen from the group consisting of polyolefins, polyesters and blends thereof.
12. A nonwoven barrier fabric as in claim 9, wherein: said thermoplastic filaments of the first fine denier spunbond layer and the second spunbond layer comprise different thermoplastic polymers.
13. A nonwoven barrier fabric as in claim 10, wherein:
said barrier layer is a melt-blown barrier layer having fiber diameters in the range of 1 to 10 microns and a basis weight less than or equal to about 10 grams/meter².
14. A nonwoven barrier fabric, comprising:
- 30 a) a first fine-denier spunbond layer comprising a plurality of continuous thermoplastic filaments having a denier of between 0.7 and 1.2 denier;
- b) a first barrier layer material deposited onto the first fine denier spunbond layer;

- c) a second barrier layer deposited onto the first barrier layer;
- d) a second spunbond layer deposited onto the second barrier layer;
- e) said layers being consolidated into a composite fabric structure;

and

- 5 f) said composite fabric having a hydrostatic head to barrier layer basis weight ratio of about at least 4.9 cm/gsm.

15. A nonwoven fabric as in claim 14, wherein the second spunbond layer is a fine-denier spunbond layer comprising a plurality of continuous thermoplastic filaments having a denier of between 0.7 and 1.2 denier.

10 16. A nonwoven fabric, as in claim 14, wherein:

said consolidation method includes thermal calendering said laminate fabric structure to exhibit a hydrostatic head rating of at least about 50 cm.

17. A disposable waste-containment garment, comprising;
an absorbent core,

15 a liquid pervious topsheet,
a liquid impervious backsheets,
said liquid impervious backsheets comprising a fine-denier composite fabric,
said fine-denier composite fabric having a hydrostatic head to barrier layer basis weight ratio greater than 4.9 cm/gsm.

20 18. A disposable waste-containment garment as in Claim 17, wherein the garment is a diaper.

19. A disposable waste-containment garment as in Claim 17, wherein the garment is a catamenial device.

25 20. A disposable garment comprising,
a gown having a front panel, a pair of back panels extending from opposed sides of the front panel, and a pair of sleeve panels, wherein one or more of the respective panels are comprised of a fine denier composite fabric having a hydrostatic head to barrier basis weight ratio of about at least 4.9 cm/gsm.

30 21. A disposable garment as in claim 20 wherein said gown is a medical gown.

22. A disposable garment as in claim 20 wherein said gown is an industrial protective garment.

23. A battery separator, comprising

5 a) a first fine-denier spunbond layer comprising a plurality of continuous polyolefin filaments having a denier of between 0.7 and 1.2 denier;

b) a barrier layer material deposited onto the first fine denier spunbond layer;

c) the first fine denier spunbond layer, the barrier layer, and the second spunbond layer being consolidated into a battery separator; and

10 e) said battery separator having a hydrostatic head to barrier layer basis weight ratio of about at least 4.9 cm/gsm.

24. A battery separator as in claim 24, wherein the barrier layer comprises one or more layers of melt-blown polyolefin microfibers.