# Workshop M2: Phase Diagrams and Introducing Non-Metals

#### **LEARNING OUTCOMES**

- Understand the principles of developing phase equilibrium diagrams and their applications for metallic alloys.
- Understand the initial concepts of materials selection.

### Activity 1: Phase Equilibrium Diagrams – Binary System

As a group, construct a Phase Equilibrium Diagram representing a binary alloy system of two elements *A* and *B*, using the following data:

- (a) A melts at 1290°C and B melts at 950°C
- (b) A is soluble in B in the solid state to the extent of 12% A in B at 720°C, and 4% A in B at room temperature (20°C)
- (c) *B* is soluble in *A* in the solid state to the extent of 18% B in A at 720°C and 8% B in A at room temperature (20°C)
- (d) A eutectic is formed at 720°C at a composition of 32% A

Assume that the solid solution of B in A is known as  $\alpha$  - phase, and that the solid solution of A in B is known as  $\beta$ - phase. Label all phase fields and phase boundary lines (solidus, liquidus, solvus). Assignment Project Exam Help You may draw your graph here, or copy and paste it in.



#### Activity 2: Phase Equilibrium Diagrams - Application and Interpretation

You are given an alloy at 860°C, and asked to describe the equilibrium solidification regime, by identifying specifically the phase compositions and approximate phase proportions that exist.

(a) Obtain your individual %B alloy composition by double-clicking on the Excel insert and entering the last 2 digits of your student ID. *Please ask your tutor if you cannot open the Excel sheet.* 

| last 2 digits of your student ID | %В |
|----------------------------------|----|
| 98                               | 39 |

Label your phase diagram in Activity 1 with a vertical line for your alloy composition (eg: 25%B)

(b) Label your diagram with S1 and S2 to denotes the solid transitions below.

| Point on diagram                | Solidification: | Temperature<br>(∘C) |  |  |
|---------------------------------|-----------------|---------------------|--|--|
| S1                              | begins at       | 900°C               |  |  |
| se Assignment Project Exam Help |                 |                     |  |  |

(c) Determine the compositions of the α-phase and liquid phase, for the alloy at 860°C, labelling P1 artifactory DOWCOGET.COM (β-20) 28

| labelling PT  | ar privaty out of the private of the | JWCO  | uci.co        | d = 58-30 - 28 - 639 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|----------------------|
| Point on      | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comp  | osition       | W-58-13-45-0%        |
| diagram<br>P1 | Addhawe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chat  | DØ WC         | Oder 180-32 = 689    |
| P2            | liquid<br>phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32 %A | <i>6</i> € %B | /*                   |

(d) Identify which specific phases exist for your alloy at the given temperature. Apply the Lever Law to estimate the % of each phase for your alloy at 860°C. Show your working below, and label the appropriate lines on your graph.

|                               | Name of phase                                                                        | % of phase in alloy at 860∘C |
|-------------------------------|--------------------------------------------------------------------------------------|------------------------------|
| Phase 1                       | 2 - Phose                                                                            | 6297                         |
| Phase 2                       | 2- prose<br>liquid prose                                                             | 10 6807                      |
| Show your<br>working<br>here: | $\beta = \frac{58-30}{58-13} = \frac{28}{45} = 62$ $\beta = \frac{100-32}{100} = 18$ | 70                           |

## **Activity 3: Materials Selection Exercise**

Below is a list of materials:

| Polyvinyl chloride                     | Tin-Lead alloy | Al – 4% Cu alloy | Borosilicate glass |
|----------------------------------------|----------------|------------------|--------------------|
| CFRP (carbon fibre reinforced plastic) |                | Polycarbonate    | Carbon steel       |

Select from this list *one* material that you think is best suited for *each* of the following applications, and give at least *one* reason or selection criteria for each choice: (NB. Materials listed can be selected more than once). Consider function, appearance and cost as factors for selection.

| Application                              | Material           | Reason for Material Choice                             |
|------------------------------------------|--------------------|--------------------------------------------------------|
| A car headlight shield                   | Bordsilicate glass | wed to maintain optical clanty                         |
| A transparent Sisting III                | phylar ond Ple     | Strong Xtransparent Slagge                             |
|                                          | . ,                | J                                                      |
| The outer skin components of an aircraft | AL-4%              | der.com<br>It is light weight material haire           |
| Add                                      | Wechat             | enough strength powcoder                               |
| The walls of a steam boiler              | Carbon Steel       | It can own bear the Pressure                           |
|                                          | Carron Sibec       | It can owny bear the pressure without producing cracks |
| A garden irrigation tube                 | polyvingt Chlonole | good mechanical properties                             |
| Solder                                   | tin-read among     | laco matting Doint                                     |
|                                          | WITHERE WOOD       | 1000 menting Point                                     |