

Natural Language Processing

Some screenshots are taken from NLP course by Jufrasky — Used only for educational purpose

Sequence Modeling

Sequence Modelling

- English Word Classes and Tag Sets
- POS-Tagging
- Rule-based approach to POS- Tagging
- HMM POS-Tagging
- Hidden Markov Model
- Forward algorithm and Viterbi Algorithm

- Thrax of Alexandria (100 BCE) was the first two write grammatical sketch for Greek
- Defined syntax, diphthong, clitic and analogy
- Noun, verb, pronoun, preposition, adverb, conjunction, participle and article
- Basis for all European language

- Many names for PoS Tagging: Lexical categories, Word classes, Morphological classes, Lexical tags and so on...
- Labelling with PoS gives more information about a word and its neighbours
 - Not only verbs versus nouns but more like about possessive pronouns and personal pronouns
 - Possessive pronouns my, your, our her, his
 - Personal pronouns I, you, he, she

- Penn Treebank 45 word classes (Marcus et al., 1993)
- C5 tagset 61 word classes (Lanchaster UCREL Project 1997)
- Brown Corpus 87 word classes (Francis et al., 1979 and 1982)
- C7 tagset 146 word classes (Garside et al., 1997)

- Uses of PoS:
 - Parsing
 - Information Extraction
 - Machine Translation

Methods to do PoS Tagging

- Rule-based tagging
- Statistical methods (HMM tagging and Maximum Entropy Tagging)
- Transformation-based tagging
- Memory-based tagging

English Word Classes

Closed Class

Open Class

adverbs

verbs

nouns

No new additions For example: Prepositions

new nouns, adjectives, verbs and adverbs are added regularly

adjectives

- Nouns:
 - Proper nouns names of a person, company name and so on (capitalised and not proceeded by an article)
 - Common nouns This if two types
 - Count nouns Singlular / Plural (Eg. goat / goats)
 - Mass nouns (Eg. Snow, Salt)

- Verb action or processes
 - Eg. draw, provide, differ, go
 - Morphological forms Eg. eat, eats, eating, eaten
- Auxillary Verbs discussed in closed forms

- Adjectives describes properties or qualities of a noun
 - Eg. white, black, old, young, good, bad
 - There are languages with no adjectives Korean

- Adverbs Modifying verbs or adverbs
 - Eg. Unfortunately, John walked home extremely slowly yesterday
 - Four types directional, degree, manner, temporal

- Closed Class differ with respect to languages
 - Prepositions on, in, under, ovber, by, at
 - Determiners a, an, the, this that
 - Pronouns he, she, who, I
 - Conjunctions and, but, or
 - Auxillary verbs can, may should, are
 - Particles up, down, on, off, in, out
 - Numerals one, two, three, first second

- Prepositions that occur before nouns
- Particle used in combination with a verb
 - Sometimes verb and auricle act as a single semantic unit
 - Above point gives a very different meaning
 - For Eg. turn down reject, rule out eliminate, find out discover
 - Extremely difficult to classify it is a preposition or particle

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

Particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

- Determiners: comes with noun, articles included
- Conjunction: Doing two phrases / sentences
 - Coordinating injunctions and, or, but
 - Subordinating injunctions I thought that you might come
- Pronouns:
 - Personal pronouns you, she, I
 - Possesive pronouns my, your, his
 - Wh-pronouns what, who, whom, whoever

Conjunctions

and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
so	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

- Auxillary Verbs:
 - Semantic features of the verb whether the action is present, past or future
 - For eg. be, do, have, had, are, an, could, may, might, must, shall, should, will, would

- Others:
 - interjection: oh, as, hey, alas, um
 - negatives: no, not
 - politeness markers: please, thank you

- Process of assigning a part of speech pr other syntactic class marker to each word in the corpus
- Tokenisation is required, in general, before PoS Tagging
- Input: A string of words and a special tagset
- Output: A single best tag for each word

Penn Treebank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	or "
POS	possessive ending	's	"	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

- Example of output:
 - Book/VB that/DT flight/NN
 - Book is ambiguous it may be NN or VB
 - Does/VBZ that/DT flight/NN serve/VB dinner/ NN ?/.
 - that can be a determiner or complementiser
 - Does that flight serve dinner
 - I though that it will be rain today

Part of PoS tagging is to disambiguate

- How hard is tagging problem?
 - Good news: Most words in English are unambiguous that is, they have only one tag
 - Bad news: many of the common English words are ambiguous!
 - can auxiliary ('to be able'), a noun or a verb

- DeRose (1988) reports that
 - 11.5% words in *Brown corpus* are ambiguous
 - 40% of *Brown tokens* are ambiguous
 - Fortunately many of the 40% ambiguous tokens are easy to disambiguate
 - All choices are not equally likely a will be mostly a
 determiner than being part of an acronym or an initial

- Usage of the word back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB

		87-tag	Original Brown	45-tag	Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2	-7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Rule-based PoS Tagging

- Rule-based tagger EngCG
 - it is based on the Constraint Grammar architecture of Karlsson et al (1995)

Rule-based PoS Tagging

- The earliest algorithms were based on a two stage architecture (Harris, 1962; Klein and Simmons, 1963; Greene and Rubin, 1971)
 - The first stage used a dictionary to assign each word a list of potential parts-of-speech
 - The second stage used large lists of hand-written disambiguation rules to find the single part-of-speech for each word

Rule-based PoS Tagging

- Modern rule-based approaches to part-of-speech tagging have a similar architecture
- The dictionaries and the rule sets are vastly larger than in the 1960's
- One of the most comprehensive rule-based approaches is the Constraint Grammar approach (Karlsson et al., 1995a)
- We takeup EngCG tagger for our study (Voutilainen, 1995, 1999)

- The EngCG ENGTWOL lexicon is based on the two-level morphology and has about 56,000 entries for English word stems
- It counts a word with multiple parts-of-speech (e.g., nominal and verbal senses of hit) as separate entries
- But it does not count the inflected and derived forms
- Each entry is annotated with a set of morphological and syntactic features.

ENGTWOL Lexicon

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	N	GENITIVE SG
furniture	N	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	V	PRESENT -SG3 VFIN
show	N	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	PCP2	SV
occurred	V	PAST VFIN SV

SG for singular, SG3 for other than third-person-

singular.

NOMINATIVE means non-genitive and PCP2 means past participle. PRE, CENTRAL, and POST are ordering slots for determiners (predeterminers (all) come before determiners (the): all the president's men).

NOINDEFDETERMINER means that words like furniture do not appear with the indefinite determiner a. SV, SVO, and SVOO specify the subcategorization or complementation pattern for the verb. SV means the verb appears solely with a subject (nothing occurred); SVO with a subject and an object (I showed the film); SVOO with a subject and two complements: She showed her the ball.

- In the first stage of the tagger, each word is run through the two-level lexicon transducer
- All the entries for all possible partsof-speech are returned.
- For example take the phrase:
 - Pavlov had shown that salivation...

- EngCG then applies a large set of constraints 3,744 constraints in the EngCG-2 system for the input sentence
- This constraints rule out incorrect parts-of-speech
- The constraints are used in a negative way, to eliminate tags that are inconsistent with the context
- For example one constraint eliminates all readings of that except the ADV (adverbial intensifier) sense (this is the sense in the sentence it isn't that odd)


```
Given input: "that"

if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */

(+2 SENT-LIM); /* and following which is a sentence boundary, */

(NOT -1 SVOC/A); /* and the previous word is not a verb like */

/* 'consider' which allows adjs as object complements */

then eliminate non-ADV tags

else eliminate ADV tag
```


- Probabilities usage for tagging is quite old:
 - Probabilities in tagging was first used by Stolz et al. (1965)
 - A complete probabilistic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976)
 - Various stochastic taggers were built in the 1980s (Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988)
 - We shall study a particular stochastic tagging algorithm generally known as the Hidden Markov Model or HMM tagger

- Hidden Markov Model is a special case of Bayesian inference
- Bayesian inference or Bayesian classification was applied successfully to language problems as early as the late 1950s, including the OCR work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace (1964) on applying Bayesian inference to determine the authorship of the Federalist papers
- Part-of-speech tagging is a sequence classification task
- The observation is a sequence of words and it is our/system's job to assign them a sequence of part-of-speech tags

- Let's take this sentence: Secretariat is expected to race tomorrow
- Out of all sequences of n tags t^n find the one for which $P(t^n|w^n)$ is highest
- $\hat{t}_1^n = argmax_{t_1}P(t_1^n \mid w_1^n)$
 - How to find this?

$$\hat{t}_1^n = argmax_{t_1^n} P(t_1^n \mid w_1^n)$$

Use the Bayes' rule:
$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

$$\hat{t}_1^n = argmax_{t_1^n} \frac{P(w_1^n \mid t_1^n)P(t_1^n)}{P(w_1^n)}$$
 Likelihood

$$\hat{t}_1^n = argmax_{t_1^n} P(w_1^n \mid t_1^n) P(t_1^n)$$

NLP

$$\hat{t}_1^n = argmax_{t_1^n} P(w_1^n \mid t_1^n) P(t_1^n)$$

First Assumption:

$$P(w_1^n \mid t_1^n) \approx \prod_{i=1}^n P(w_i \mid t_i)$$
 (probability of word depends only on the present tag)

Second Assumption:

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i \mid t_{i-1})$$
 (present tag depends only on the previous tag)

$$\hat{t_1}^n = argmax_{t_1^n}P(t_1^n \mid w_1^n) \approx armax_{t_1^n}\prod_{i=1}^n P(w_i \mid t_i)P(t_i \mid t_{i-1})$$

- Tag transition probabilities:
- Determiners likely to precede adjs and nouns
 - That/DT boy/NN
 - The/DT blue-eyed/JJ boy/NN
 - In general P(NN|DT) and P(JJ|DT) will be high
- Compute P(NN|DT) by counting in a labeled corpus:

Compute P(NN|DT) by counting in a labeled corpus: $C(t_{i-1}, t_i)$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Treebank Brown Corpus

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Secretariat/NNP is/BEZ expected/VBN to/TO race/VB tomorrow/NR

Use 87-tag
Brown Corpus
TO for infinitive "to"

$$P(NN \mid TO) = .00047$$

$$P(VB \mid TO) = 0.83$$

$$P(race \mid NN) = 0.00057$$

$$P(race \mid VB) = 0.00012$$

$$P(NR \mid VB) = 0.0027$$

$$P(NR \mid NN) = 0.0012$$

 $P(VB \mid TO)P(NR \mid VB)P(race \mid VB) = 0.00000027$

$$P(NN \mid TO)P(NR \mid NN)P(race \mid NN) = 0.00000000032$$

Formalising Hidden Markov Model

- A weighted finite-state automaton is a simple augmentation of the finite automaton in which each arc is associated with a probability
- The probability on all the arcs leaving a node must sum to 1
- A Markov chain is a special case of a weighted automaton in which the input sequence uniquely determines which states the automaton will go through
- While the Markov chain is appropriate for situations where we can see the actual conditioning events, it is not appropriate in part-of-speech tagging
- This is because in part-of-speech tagging, while we observe the words in the input, we do not observe the part-of-speech tags
- A Hidden Markov Model (HMM) allows us to talk about both observed events (like words that we see in the input) and hidden events (like part-of-speech tags) that we think of as causal factors in our probabilistic model

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V=v_1,v_2,,v_V$.
$B = b_i(o_t)$	A sequence of observation likelihoods: , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i .
q_0,q_F	a special start state and end (final) state which are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state.

- INPUT: $O = (o_1 o_2 ... o_T)$ observed words
- OUTPUT: $Q=(q_1q_2...q_T)$ most probable tag sequence, together with its probability

• INPUT: $O = (o_1 o_2 ... o_T)$

observed words

• OUTPUT: $Q = (q_1 q_2 ... q_T)$

most probable tag sequence, together with its probability

	VB	то	NN	PPSS	
<s></s>	.019	.0043	.041	.067	
VB	.0038	.035	.047	.0070	
TO	.83	0	.00047	0	
NN	.0040	.016	.087	.0045	
PPSS	.23	.00079	.0012	.00014	

Transition probabilities between tags (hidden states)

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Observation likelihood from 87-tag brown corpus without smoothing


```
function VITERBI(observations of len T, state-graph of len N) returns best-path
  create a path probability matrix viterbi[N+2,T]
  for each state s from 1 to N do
                                                          ;initialization step
        viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
        backpointer[s,1] \leftarrow 0
   for each time step t from 2 to T do
                                                          recursion step;
     for each state s from 1 to N do
        viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
        backpointer[s,t] \leftarrow argmax \ viterbi[s',t-1] * a_{s',s}
  viterbi[q_F,T] \leftarrow \max_{n=1}^{N} viterbi[s,T] * a_{s,q_F}; termination step
  backpointer[q_F,T] \leftarrow arg_{max}^{N} viterbi[s,T] * a_{s,q_F}
                                                                     ; termination step
     return the backtrace path by following backpointers to states back in time from
backpointer[q_F, T]
```

NLP

- The algorithm first creates N or four state columns
- The first column corresponds to the observation of the first word "I", the second to the second word "WANT", the third to the third word "TO", and the fourth to the fourth word "RACE"
- We begin in the first column by setting the Viterbi value in each cell to the product of the transition probability and the observation probability (of the first word)
- Then we move on, column by column; for every state in column 1, we compute the probability of moving into each state in column 2, and so on.
- For each state q_i at time t, the value viterbi[s,t] is computed by taking the maximum over the extensions of all the paths that lead to the current cell, following the following equation:

$$v_t(j) = \max_{i=1}^{N} v_{t-i}(i) a_{ij} b_j(a_i)$$

previous Viterbi path probability

transition probability

state observation likelihood

HMM and MEMM

- Hidden Markov Model (HMM)
 - HMMs, forward and Viterbi algorithms
- Maximum Entropy Markov Model (MEMM)
 - For supervised or semi-supervised learning

Both are machine learning models.

They are sequence classifiers/sequence labellers

HMM and MEMM

- A weighted finite automaton (WFA) is a finite automaton with weights defined on the transitions
- The weight is nothing but the probability score
- Weight indicated how likely that path will be taken by the automaton
- Probability of all the transitions leaving a state should sum upto 1
- Markov chain is a special case of WFA where the input sequence uniquely determines which states it goes through

$$Q = q_1q_2 \dots q_N$$
 a set of N states
$$A = a_{01}a_{02} \dots a_{n1} \dots a_{nn}$$
 a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$ a special start state and end (final) state which are not associated with observations.

- Probabilistic Graphical Model / Automaton model
- Markov Assumption: $P(q_i \mid q_1 q_2 ... q_{i-1}) = P(q_i \mid q_{i-1})$

Note:
$$\sum_{j=1}^{n} a_{ij} = 1 \,\forall i$$

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{01}a_{02}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
q_0,q_F	a special start state and end (final) state which are not associated with observations.

$$\pi = \pi_1, \pi_2, ..., \pi_N$$
 an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^n \pi_i = 1$ a set $QA \subset Q$ of legal **accepting states**

where
$$\sum_{i=1}^{n} \pi_i = 1$$

(1) Compute the probability of hot hot hot hot (2) cold hot cold hot

- Markov chain is good for finding the probability of an event or a chain of event that we can observe in the world
- But in reality events will not be directly observable!
- PoS Tags are not directly observable
- What we can see are the sequence of words not tags!
- PoS tags are hidden behind words that is why we can this as Hidden Markov Model
- HMM gives flexibility to talk about both the observed events and the hidden events

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$.
$B = b_i(o_t)$	a sequence of observation likelihoods: , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i .
q_0,q_F	a special start state and end (final) state which are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state.

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$.
$B = b_i(o_t)$	a sequence of observation likelihoods: , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i .
q_0,q_F	a special start state and end (final) state which are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state.

$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the
	probability that the Markov chain will start in state i . Some
	states j may have $\pi_j = 0$, meaning that they cannot be initial
	states. Also, $\sum_{i=1}^{n} \pi_i = 1$
$QA = \{q_x, q_y\}$	a set $QA \subset Q$ of legal accepting states

Markov Assumption:

$$P(q_i \mid q_1 q_2 ... q_{i-1}) = P(q_i \mid q_{i-1})$$

Output Independence

$$P(o_i \mid q_1...q_i...q_T, o_1, ..., o_i..., o_T) = P(o_i \mid q_i)$$

NLP

- Task conceived of by Jason Eisner (2002a)
- You are a climatologist in the year 2799 studying the history of global warming
- You cannot find any records of the weather in Baltimore, Maryland, for the summer of 2007, but you do find Jason Eisner's diary, which lists how many ice creams Jason ate every day that summer
- Our goal is to use these observations to estimate the temperature every day. We'll simplify this weather task by assuming there are only two kinds of days: cold (C) and hot (H)
- Given a sequence of observations O, each observation an integer corresponding to the number of ice creams eaten on a given day, figure out the correct 'hidden' sequence Q of weather states (HOT or COLD) which caused Jason to eat the ice cream

Fully connected or ergodic HMM

Another model is called Bakis — where it is not fully connected

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.