## Genome assembly and annotation

**MMB-114** 

#### Schedule

Day 1: Basics of UNIX and working with the command line

Day 2: Handling of Nanopore/Illumina data

Day 3: Check-up

Day 4: Genome assembly

Day 5: Genome annotation

Day 6: Metabolic pathway analysis



#### Learning outcomes

#### After completing this module, you will be able to:

- Choose the most adequate platform for your genome sequencing experiment
- Investigate and judge the quality of sequencing data
- Make use of a variety of tools to:
  - Process whole genome sequencing data
  - Assemble and annotate whole genome sequencing data
  - Predict metabolic pathways from assembled and annotated genomes

### **Practical things**

 All exercises and presentations can be found from: https://github.com/karkman/MMB-114 Genomics

 We will start every day at 10.00 with an introductory lecture and then some exercises

• REP7: Materials and methods for bioinformatics part **DL Friday 10.11.** 

# Whole genome sequencing (WGS)

### The evolution of sequencing



https://doi.org/10.3389/fbioe.2020.01032

## Genomes OnLine (GOLD) database

#### **Projects by Domain** 250,000 ARCHAEA **BACTERIA EUKARYOTE** 200,000 - VIRUS **METAGENOMIC** 150,000 100,000 50.000 1998 2022 2003 2005 2007 2009 2011 2013 2015 2017 https://gold.jgi.doe.gov/statistics

## Why whole genome sequencing?

- Escherichia and Shigella as an example
- 16S rRNA gene cannot resolve the two genera (or these belong to the same genus)
- What can you tell about your bacteria based on the 16S rRNA gene?



## Escherichia-Shigella WGS vs. 16S





### **Pangenomes**

- Bacterial species can have very diverse genomes
- Bacterial lifestyle affects pangenome size
- Pangenome: All genes from the studies strains
- Core-genome: genes shared by all strains
- Accessory genome: genes shared by only one or few strains









### Genomics can be used to study

- Physiology
- Evolution
- Pathogenesis
- Novel industrial processes
- Novel diagnostic/ epidemiologic tests
- Extra-chromosomal elements



https://doi.org/10.1371/journal.ppat.1001078

#### The new tree of life

- Isolation of most microorganisms from the environment is not trivial
- Recent metagenomic assessments suggest the existence of up to 1 trillion microbial species in our planet
- But < 10,000 bacterial species have been described so far



https://doi.org/10.1038/nmicrobiol.2016.48

#### **Your strains**

#### What was done by you in the lab?

- Isolation of the strain
- DNA extraction
- DNA measurements
  - Purity, integrity, contamination

## What was done at the sequencing lab?

- Quality control (size, amount)
- Library preparation with the Nextera kit
- Sequencing with Illumina MiSeq

## Illumina library preparation

#### Size selection

Correct amount of input DNA to avoid under- and overtagmentation

#### **Adapter ligation**

Flow cell adapters
Sequencing primers

Sequencing indexes

Optional indexes for multiplexing

Biases in the first bases have been observed



## Illumina sequencing

- Good compromise between size, amount and error rate of reads
- The longer the reads the better.
- Current long-read technologies are becoming more relevant due to lower price and better sequence quality



https://www.youtube.com/watch?v=fCd6B5HRaZ8

#### **Bioinformatics**

 Interdisciplinary field that develops and applies computational methods to analyse biological data such as DNA and protein sequences

Biology meets information science

#### A rapidly-evolving field

- Software development
- Amount and type of data generated

## **UNIX** and **CSC**

#### **UNIX**

- Family of computer operating systems (OS)
  - Linux, macOS, Solaris, OpenBSD
- Key characteristics
  - Multitasking
  - Multiuser
  - Multiprocessing
  - Portable

### The UNIX philosophy

"The idea that the power of a system comes more from the relationships among programs than from the programs themselves"

- Use of plain text for storing data
- Use of a hierarchical filesystem
- Use of a large number of simple programs performing a limited, well-defined function
- Use of a command-line interpreter ("shell") to combine these programs to perform complex tasks

#### The UNIX shell

- Command-line interpreter
- Interprets sequences of text
- Entered by a user
- From a file
- From a data stream
- Primary interface before graphical user interfaces (GUIs) appeared
- Still widely used today
  - Efficient
  - Low memory footprint
  - Advanced scripting

```
Last login: Sun Oct 15 20:22:35 on ttys002
[(base) dyn141-216:~ karkman$ ssh antkark@puhti.csc.fi
 - Welcome
          CSC - Tieteen tietotekniikan keskus - IT Center for Science
       Puhti.csc.fi - Atos BullSequana X400 - 682 CPU nodes - 80 GPU nodes
 Servicedesk: 09-457 2821, servicedesk@csc.fi Switchboard: 09-457 2001
  - User Guide —
  https://docs.csc.fi
  - Manage my account
  https://my.csc.fi/
  Software -
 Available modules can be listed with command: module avail and module spider
    Documentation: https://docs.csc.fi/
    Servicedesk support: servicedesk@csc.fi.
  2023-10-09: Home directories are private to individual users. Home
              directories with incorrect permissions were secured on
             October 9, 2023. For file-sharing within your project group,
              please utilize the /projappl and /scratch folders.
  2023-10-04: GPU monitoring has been improved and seff can now show job
              energy usage in Wh. Keep in mind that the data might not be
              complete until a few minutes after the job has ended.
Last login: Wed Oct 11 17:41:31 2023 from
(base) [antkark@puhti-login11 ~]$
```

#### Some basic UNIX commands

pwd print working directory ("where am I?")

**Is** list ("show folder contents")

**mkdir** make directory (a.k.a. folder)

cd change directory ("go to folder")

ср сору

**mv** move

rm remove

#### Some additional notes

#### Case-sensitive

photo.jpg ≠ PHOTO.jpg

## Does not like spaces and special characters in file/folder names

genome report.txt 
genome\_report.txt 
väitöskirja.txt 
vaitoskirja.txt 
✓

Space after each "word" in the command

Commands have to be typed in a single line, one at a time

After each command, hit "Enter" to execute it

Lines starting with "#" are comments

#### A few tricks:

Tabulator (the key)
History (up arrow)

#### **How to learn UNIX?**

- Bu using it!
  - Trial and error
  - Don't copy/paste, type yourself
- Ask the internet
  - http://stackoverflow.com/
  - http://stackexchange.com/
  - http://askubuntu.com/
  - Search engines

- Online courses/tutorials
  - http://codecademy.com
- Cheat sheets
  - https://www.stationx.net/unixcommands-cheat-sheet/
- Manual pages
  - man program>

#### **CSC - IT CENTER FOR SCIENCE**

- "Non-profit state enterprise with special tasks"
- Provides computing services for academics, research institutes and companies
- Free for academic research
- Owned by Finnish state (70 %) and higher education institutions (30 %)
- Funding from the Ministry of education and culture

#### **Puhti**

- One of the supercomputers at CSC
  - Atos BullSequana X400 cluster based on Intel CPU
- The best suited for bioinformatics
- Has CPU and GPU nodes
- Large collection of pre-installed software (modules)
- Interactive use and batch job scheduling system (SLURM)
- Read more: <a href="https://docs.csc.fi/support/tutorials/puhti-quick/">https://docs.csc.fi/support/tutorials/puhti-quick/</a>

#### The filesystem in Puhti



## Before we start, check if everything is OK in CSC

- Login to <a href="https://my.csc.fi/">https://my.csc.fi/</a>
- Go to Projects
- Click on MMB-114\_Genomics
- Scroll down to Services on the right side and see if access to Puhti is enabled

 Make sure you know your CSC username and password



### **Connecting to Puhti**

- Launch Visual Studio Code
- Down left corner you will have a (green) button with "><", click it</li>
  - If not: Open Extensions (one of the icons on the left) and install Remote -SSH
- Choose "Connect Current Window to Host..."
- Type YOUR\_USER\_NAME@puhti.csc.fi and hit "Enter"
- Type your password and hit "Enter"
- In the following dialogue, type yes and hit "Enter"
- When the down left corner says SSH:puhti.csc.fi, you're connected.

#### **UNIX** exercises

https://github.com/karkman/MMB-114 Genomics

Day 1: UNIX and CSC

## Phylogeny back-up 1/2

Connect to Puhti with VS Code

Open your home folder with Explorer (first tab on the left)

 Copy your 16S sequences to your home folder (drag & drop to VS Code sidebar)

## Phylogeny back-up 2/2

#### Make multiple sequence alignment with mafft

```
module load mafft
mafft your_seqs > your_alignment
module purge
```

#### Inspect your alignment

/scratch/project\_2006616/Envs/alan/alan your\_alignment

#### Make the phylogenetic tree

```
/scratch/project_2006616/Envs/fasttree/bin/fasttree \
-nt -gtr < your_alignment > tree
```

#### Copy the tree to your local computer

## Modify the tree

- Go to <a href="https://itol.embl.de/">https://itol.embl.de/</a>
  - Upload your tree and maybe give it a name
  - Re-root the tree from your furthest outgroup, if needed
  - Change the names and modify the tree as you like.
  - When finished, export the tree as PNG (or as SVG if you want to further modify it)