- (w) $(\psi \rightarrow \phi) \lor (\delta \rightarrow \gamma) \vdash (\psi \rightarrow \gamma) \lor (\delta \rightarrow \phi)$
- (x) $\psi \vdash (\psi \land \varphi) \lor (\psi \land \neg \varphi)$

Nota: Caso uses regras derivadas, terás que as mostrar separamente.

- 25. Justifique a veracidade ou falsidade das afirmações seguintes. Se $\Sigma \vdash \varphi$ apresente uma dedução. Caso contrário, indique uma valorização que satisfaz Σ mas não satisfaz φ .
 - (a) $\neg \delta, \delta \lor \varphi \vdash \varphi$
 - (b) $\varphi \land \neg \varphi \vdash \neg (\delta \rightarrow \psi) \land (\delta \rightarrow \psi)$
 - (c) $\neg(\neg\delta \lor \varphi) \vdash \delta$
 - (d) $\delta \vee \psi, \neg \psi \vee \varphi \vdash \delta \vee \varphi$
 - (e) $\neg(\delta \rightarrow \psi) \vdash \psi \rightarrow \delta$
 - (f) $\neg \phi \vdash \phi \rightarrow \psi$
 - (g) $\vdash (\neg \delta \rightarrow \delta) \rightarrow \delta$
 - (h) $\neg \delta \rightarrow \neg \psi \vdash \neg \psi \rightarrow \neg \delta$
- 26. Justifica a validade ou falsidade de cada uma das afirmações seguintes, apresentando demonstrações ou contra-exemplos:
 - (a) se $\vdash \psi$, então $\delta_1, \ldots, \delta_n \vdash \psi$;
 - (b) se $\delta_1, \ldots, \delta_n \vdash \psi$, então $\vdash \psi$;
 - (c) se $\delta_1, \delta_2 \vdash \psi$, então $\delta_2, \delta_1 \vdash \psi$;
 - (d) se $\delta_1, \delta_2 \vdash \varphi \rightarrow \psi$ e $\delta_1, \delta_2 \vdash \varphi$, então $\delta_1, \delta_2 \vdash \psi$;
 - (e) se $\delta_1, \delta_2 \vdash \varphi \rightarrow \psi$ e $\delta_1 \vdash \varphi$, então $\delta_1, \delta_2 \vdash \psi$;
 - (f) se $\delta_1, \delta_2 \vdash \phi \rightarrow \psi$ e $\delta_1 \vdash \phi$, então $\delta_1 \vdash \psi$;
 - (g) se $\delta_1 \vdash \varphi \rightarrow \psi$ e $\delta_2 \vdash \varphi$, então $\delta_1, \delta_2 \vdash \psi$;
 - (h) se δ , $\delta \vdash \psi$ se e só se $\delta \vdash \psi$.
- 27. Mostra sem usar a completude de DN as seguintes equivalencias dedutivas. Nota que tens de mostrar que da primeita fórmula se deduz a segunda e vice-versa.
 - (a) $\neg(\delta_1 \wedge \delta_2) + \neg \delta_1 \vee \neg \delta_2$
 - (b) $\neg(\delta_1 \lor \delta_2) \dashv \vdash \neg \delta_1 \land \neg \delta_2$
 - (c) $\delta_1 \rightarrow \delta_2 + \neg \delta_1 \lor \delta_2$

 - (e) $\neg \delta_1 \wedge \delta_2 \vdash \delta_1 \vee \delta_2$
 - (f) $\neg \delta_1 \wedge \neg \delta_2 \vdash \delta_1 \rightarrow \delta_2$
 - (g) $\delta_1 \wedge \delta_2 \vdash \delta_1 \vee \delta_2$
 - (h) $\delta_1 \wedge \neg \delta_2 \vdash \neg (\delta_1 \wedge \delta_2)$
 - (i) $(\psi \land \varphi) \land \delta + \psi \land (\varphi \land \delta)$
 - (i) $(\psi \lor \varphi) \lor \delta + \psi \lor (\varphi \lor \delta)$
 - (k) $\neg(\neg\delta_1 \land \neg\delta_2) + \delta_1 \lor \delta_2$

- (1) $\delta \rightarrow \phi + (\delta \rightarrow (\delta \land \phi)) \land ((\delta \land \phi) \rightarrow \delta)$
- (m) $\delta_1 \rightarrow \delta_2 + \neg (\delta_1 \ \land \ \neg \delta_2)$
- (n) $\delta \rightarrow \phi + (\phi \rightarrow (\delta \lor \phi)) \land ((\delta \lor \phi) \rightarrow \phi)$
- (o) $\delta_1 \wedge \delta_2 + \neg(\neg \delta_1 \vee \neg \delta_2)$
- $\text{(p)} \ (\delta \to \phi) \ \land \ (\phi \to \delta) \dashv \vdash (\delta \ \lor \ \phi) \to (\delta \ \land \ \phi)$
- (q) $(\delta \rightarrow \phi) \dashv \vdash (\neg \phi \rightarrow \neg \delta)$
- $(r) \ (\delta \rightarrow \phi) \ \land \ (\phi \rightarrow \delta) \dashv \vdash (\delta \ \lor \ \phi) \rightarrow (\delta \ \land \ \phi)$
- (t) $(\phi \lor \psi) \rightarrow \delta + (\phi \rightarrow \delta) \land (\psi \rightarrow \delta)$
- (u) $(\delta \lor \phi) \land (\delta \lor \psi) + \delta \lor (\phi \land \psi)$
- (v) $\varphi \to (\psi \land \delta) + (\varphi \to \psi) \land (\varphi \to \delta)$