Lab 7
School of Computer Science Engineering and Technology

Course: B. Tech.	Type: Core
Course Code: CSET301	Course Name: Artificial Intelligence and Machine Learning
Year: 2025	Semester: Odd
Date: [Insert Date]	Batch: 2023-2027

CO-Mapping

	CO1	CO2	CO3	CO4	CO5
Lab		\checkmark	√		

Lab Assignment 7: Comparative Study of Linear Regression and Polynomial Regression

Objective:

To understand and compare the performance of linear regression and polynomial regression models on a dataset by evaluating key performance metrics including R² (coefficient of determination) and MAE (Mean Absolute Error).

Dataset:

You may use the publicly available dataset:

https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv

Instructions:

- 1. Data Loading and Preprocessing:
 - Load the dataset.
 - Identify features (independent variables) and target (dependent variable).
- 2. Model Implementation:
 - Implement Linear Regression from scratch or using libraries.
 - Implement Polynomial Regression (choose polynomial degree 2 or 3 for comparison).
- 3. Training and Prediction:
 - Split the dataset into training and testing sets.
 - Train both models on the training data.
 - Predict outputs on the test set.
- 4. Performance Metrics Calculation:

Calculate and compare the following metrics for both models:

- R² (Coefficient of Determination): Measures how well the regression predictions approximate the real data points.
- MAE (Mean Absolute Error): Measures the average magnitude of errors in predictions, without considering their direction.

5. Plotting:

- Plot the data points along with both regression lines/curves.
- Visualize and interpret the fit of each model.

6. Discussion:

- Compare the strengths and weaknesses of linear vs. polynomial regression based on metrics and plots.
- Discuss when polynomial regression might be preferred.
- Relate findings with overfitting and underfitting concepts.