Brief review of elementary statistics: parameter estimation, confidence intervals, hypothesis testing

Roger Levy

9.S916: Statistical data analysis for scientific inference in cognitive science

11 April 2024

Running example

- I'm about to join a game of betting on the heads/tails outcome of a potentially bent coin
- I can't inspect the coin, but I can watch the coin being flipped "for a while" and record the outcomes
- The coin flips constitute a sequence of **Bernoulli random** variables conditionally independent of each other given the coin weighting $P(\text{heads}) = \pi$ with $0 \le \pi \le 1$
- Figuring out from observed data what the weighting is likely to be is parameter estimation
- In general, here we will use ${\bf y}$ to refer to observed-outcome **data** and θ to refer to the model parameters to be estimated

Characteristics of estimators

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the **relative frequency estimator**: if we observe *r* instances of heads in *n* coin flips,

"this is an estimator"
$$\frac{r}{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- **Bias** of an estimator is $E[\widehat{\theta}] \theta$

$$E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n}E[r] = \frac{r}{n} = \pi$$
 so $\widehat{\pi}$ is unbiased

• Variance of an estimator is ordinary variance

$$\operatorname{Var}(X) \equiv E[(X - E[X])^2]$$
 $\operatorname{Var}(\widehat{\pi}) = \frac{\pi(1 - \pi)}{n}$ (see reading materials)

Good estimators have favorable bias-variance tradeoff

Maximum likelihood estimation

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

i y_i 1 T 2 T 3 H 4 T

- p refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

This is choosing the maximum likelihood estimate (MLE)

The MLE also turns out to be the relative frequency estimate (RFE)

(repeat slide from lecture 3)

The binomial distribution

- The binomial distribution is a two-parameter probability distribution over the number of successes in a number of independent, identically distributed (iid) Bernoulli trials
- ullet Two parameters: Number of trials n & trial success parameter π
- ullet A binomial-distributed random variable Y is simply the sum of n iid Bernoulli random variables with success parameter π

 A binomial random variable has the following probability mass function:

$$P(Y=r) = \binom{n}{r} \pi^{r} (1-\pi)^{n-r} \qquad \widehat{\xi}_{0.1}^{r}$$

Bayesian parameter estimation

 Assume that the model parameters "intervene" between background knowledge I and data Y:

• Then, if we assume a parametric form for $P(\mathbf{y} \mid \theta)$, we just need the prior $P(\theta \mid I)$

Example for coin flips: the beta distribution

- Express background knowledge I as two "pseudo-count"
- parameters α_1, α_2
- The beta distribution has form

$$P(\pi|\alpha_1,\alpha_2)= \underbrace{\frac{1}{B(\alpha_1,\alpha_2)}}_{ ext{Normalizing constant,}} \underbrace{\pi^{\alpha_1-1}(1-\pi)^{\alpha_2-1}}_{ ext{Where the action is!}}$$
 not of great interest for present purposes $B(\alpha_1,\alpha_2)=\int_0^1 \pi^{\alpha_1-1}(1-\pi)^{\alpha_2-1}d\pi$

• Cool thing about the beta distribution: the posterior is also beta distributed! For y = m successes in n trials:

$$P(\pi|\boldsymbol{y}, \alpha_1, \alpha_2) \propto \overbrace{\pi^m (1-\pi)^{n-m}}^{\text{Likelihood}} \overbrace{\pi^{\alpha_1-1} (1-\pi)^{\alpha_2-1}}^{\text{Prior}}$$

 This property is called conjugacy and is convenient where available!

Example of Bayesian parameter estimation

 I inspect my coin and notice serious irregularities!

- My prior for P(heads): a $\alpha_1=3, \alpha_2=24$ Beta prior
- I flip the coin n = 7 times, it comes up heads m = 2 times

Posterior prediction

 $P(\text{heads}) = \pi$ $P(\pi) = \text{Beta}(\alpha_1, \alpha_2)$ Observe m heads out of n flips

Posterior mean

Beta distribution

Our example

$$E[\pi \mid I] = \frac{\alpha_1}{\alpha_1 + \alpha_2}$$

$$E[\pi \mid I] = \frac{\alpha_1}{\alpha_1 + \alpha_2} \quad E[\pi \mid y, I] = \frac{\alpha_1 + m}{\alpha_1 + \alpha_2 + n}$$

Posterior mode (when it exists)

$$\frac{\alpha_1 - 1}{\alpha_1 + \alpha_2 - 2}$$

$$\frac{\alpha_1 + m - 1}{\alpha_1 + \alpha_2 + n - 2}$$

Posterior predictive distribution

If I flip the same coin k more times, what is the distribution on the resulting # heads r?

$$\overbrace{I} \longrightarrow \underbrace{\theta} \longrightarrow \underbrace{Y}$$

$$P(\boldsymbol{y}_{new}|\boldsymbol{y},I)$$

$$\rightarrow \text{The Beta-Binomial model: } P(r|k,I,\boldsymbol{y}) = \binom{k}{r} \frac{B(\alpha_1+m+r,\alpha_2+n-m+k-r)}{B(\alpha_1+m,\alpha_2+n-m)}$$

Point estimation vs Bayesian prediction

• Say we'll flip the coin k=50 more times

A note on Bayesian priors

- The Bayesian prior is a double-edged sword
 - We get to specify it
 - We have to specify it
- In the above example, we used an informative prior
 - When we have strong domain knowledge, this can potentially be useful in various ways
- In scientific data analysis, however, our general goal is to allow the data to speak to us about what we care about
- For this reason, I generally advocate vague priors for any part of the model whose posterior we care about
- If your qualitative conclusions depend on choice of prior, it is a reason to be wary of the robustness of your analysis!
- As data become plentiful*, choice of prior often but not always recedes in importance
 *What counts as "plentiful" depends on size of the model and structure of the data