Ortogonalizacijos algoritmas

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2015 m. sausio 13 d.

Turinys

Ortogonalizacijos algoritmas Izomorfinės Euklido erdvės

Vektoriaus ilgis

Tegul (V, \langle, \rangle) – Euklido erdvė. Apibrėžkime funkciją $\| \| : V \to \mathbb{R}_+$,

$$||u|| := \sqrt{\langle u, u \rangle}, \quad u \in V.$$

Nesunku įsitikinti, kad ši funkcija tenkina tokias sąlygas:

- 1. Kiekvienam $u \in V$, $||u|| \ge 0$ ir $||u|| = 0 \Leftrightarrow u = \mathcal{O}$.
- 2. Kiekvienam $u \in V$, kiekvienam $a \in \mathbb{R}$, $||au|| = |a| \cdot ||u||$.
- 3. Su visais $u, v \in V$, $||u+v|| \le ||u|| + ||v||$ (trikampio nelygybė).

Apibrėžimas 1

Skaičius $||u|| := \sqrt{\langle u, u \rangle}$ vadinamas Euklido erdvės vektoriaus u ilgiu. Vektorius, kurio ilgis lygus 1, vadinamas normuotu vektoriumi.

Nesunku įsitikinti, kad jei $u \neq \mathcal{O}$, tai $\frac{u}{\|u\|}$ – normuotas vektorius.

Lygiagretainio taisyklė

Teiginys 2 (Lygiagretainio taisyklė)

Tarkime, kad (V, \langle, \rangle) – Euklido erdvė. Tada bet kuriems vektoriams u, $v \in V$ teisinga lygybė

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

Šią lygybę galima interpretuoti taip: lygiagretainio istrižainių ilgių kvadratų suma lygi jo kraštinių ilgių kvadratų sumai.

Apibrėžimas 3

Euklido erdvės (V,\langle,\rangle) vektoriai u ir v vadinami **ortogonaliais** ir žymima $u\perp v$, jei jų skaliarinė sandauga lygi nuliui, t. y., jei $\langle u,v\rangle=0$.

Ortogonali vektorių šeima

Apibrėžimas 4

Euklido erdvės (V, \langle, \rangle) vektorių šeima v_1, v_2, \ldots, v_n vadinama **ortogonalia**, jei $v_i \perp v_j$, $i \neq j$, $i, j = 1, 2, \ldots, n$. Vektorių šeima v_1, v_2, \ldots, v_n vadinama **ortonormuota**, jei ji ortogonali ir kiekvienas šios šeimos vektorius yra normuotas, t. y. $\|v_j\| = 1$, $j = 1, 2, \ldots, n$.

Teiginys 5[']

Euklido erdvės (V, \langle, \rangle) ortogonali nenulinių vektorių šeima v_1, v_2, \ldots, v_n yra tiesiškai nepriklausoma.

Ortogonali vektorių šeima

Įrodymas.

Tegul v_1,v_2,\ldots,v_n – ortogonali nenulinių vektorių šeima. Tarkime, kad $\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{R}$ ir

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathcal{O}.$$

Šios lygybės abidvi puses skaliariškai padauginę iš vektoriaus v_j , gauname

$$\begin{split} \langle \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n, \mathbf{v}_j \rangle &= \langle \mathcal{O}, \mathbf{v}_j \rangle = 0, \\ \alpha_1 \langle \mathbf{v}_1, \mathbf{v}_j \rangle + \cdots + \alpha_n \langle \mathbf{v}_n, \mathbf{v}_j \rangle &= 0, \\ \alpha_j \langle \mathbf{v}_j, \mathbf{v}_j \rangle &= 0. \end{split}$$

Kadangi $v_j \neq \mathcal{O}$, tai $\langle v_j, v_j \rangle > 0$, todėl $\alpha_j = 0$. Ši lygybė galioja su visais $j = 1, 2, \ldots, n$, todėl vektorių šeima v_1, v_2, \ldots, v_n yra tiesiškai nepriklausoma.

Ortogonalizacijos algoritmas

Dabar suformuluosime teoremą iš kurios išplaukia, kad kiekvienoje baigtinės dimensijos Euklido erdvėje galima išrinkti ortonormuotą bazę.

Teorema 6 (Ortogonalizacijos algoritmas)

Tarkime, kad (V, \langle, \rangle) – Euklido erdvė, o v_1, v_2, \ldots, v_n – tiesišai nepriklausoma erdvės V vektorių šeima. Tada egzistuoja tokia ortonormuota vektorių šeima u_1, u_2, \ldots, u_n , kad kiekvienam $j=1,2,\ldots,n$,

$$L(v_1,v_2,\ldots,v_j)=L(u_1,u_2,\ldots,u_j),$$

čia $L(v_1, v_2, \dots, v_j)$ – vektorių v_1, v_2, \dots, v_j tiesinis apvalkalas.

Ortogonalizacijos algoritmas

Įrodymas

Įrodysime matematinės indukcijos būdu pagal n. Jei n=1, tai teoremos tvirtinimas teisingas. Tegul v_1, v_2 – tiesiškai nepriklausomi vektoriai. Reikia sukonstruoti tokią ortonormuotą vektorių sistemą u_1, u_2 , kad

$$L(v_1) = L(u_1)$$

 $L(v_1, v_2) = L(u_1, u_2)$

Tegul $u_1:=\frac{v_1}{\|v_1\|}$. Tada u_1 – normuotas vektorius ir $L(v_1)=L(u_1)$. Nagrinėkime vektorių $tu_1+v_2,\ t\in\mathbb{R}$. Skaičių t parinksime taip, kad vektorius tu_1+v_2 būtų statmenas vektoriui u_1 . Taigi

$$tu_1 + v_2 \perp u_1 \Leftrightarrow \langle tu_1 + v_2, u_1 \rangle = 0 \Leftrightarrow$$
$$\Leftrightarrow t\langle u_1, u_1 \rangle + \langle v_2, u_1 \rangle = 0 \Leftrightarrow t = -\frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle}.$$

Vadinasi, vektorius

$$u_2' := -\frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + v_2$$

yra statmenas vektoriui u_1 . Įsitikinsime, kad

$$L(v_1, v_2) = L(u_1, u_2').$$

lš tikrųjų, kadangi $v_1 \in \mathit{L}(\mathit{u}_1)$ ir $\mathit{u}_2' \in \mathit{L}(\mathit{v}_1,\mathit{v}_2)$, tai

$$L(u_1, u_2') \subset L(v_1, v_2).$$

Kita vertus $v_1 = \|v_1\|u_1 \in L(u_1) \subset L(u_1,u_2')$ ir

$$v_2 = \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + u_2' \in L(u_1, u_2'),$$

todėl $L(v_1, v_2) \subset L(u_1, u_2')$. Taigi $L(v_1, v_2) = L(u_1, u_2')$.

Vektorius $u_2' \neq \mathcal{O}$. Iš tikrųjų, jei vektorius u_2' būtų nulinis, tai

$$v_2=\frac{\langle v_2,u_1\rangle}{\langle u_1,u_1\rangle}u_1\in L(v_1),$$

o tai reikštų, kad vektoriai v_1 ir v_2 – tiesiškai priklausomi. Pažymėję $u_2:=\frac{u_2'}{\|u_2'\|}$, gauname ortonormuotą vektorių sistemą u_1,u_2 , tenkinančią sąlygas

$$L(v_1) = L(u_1)$$

 $L(v_1, v_2) = L(u_1, u'_2) = L(u_1, u_2)$

Dabar tarkime, kad teorema teisinga bet kuriai tiesiškai nepriklausomai vektorių šeimai $v_1, \ldots, v_k, \ k < n, \ n > 2$. Įrodysime, kad teorema teisinga tiesiškai nepriklausomai vektorių šeimai v_1, \ldots, v_n .

Vektorių šaimai v_1,\ldots,v_{n-1} galioja indukcinė prielaida, todėl egzistuoja tokia ortonormuota vektorių šeima u_1,u_2,\ldots,u_{n-1} , kad kiekvienam $j=1,2,\ldots,n-1$,

$$L(v_1, v_2, \ldots, v_j) = L(u_1, u_2, \ldots, u_j).$$

Nagrinėkime vektorių

$$t_1u_1 + t_2u_2 + \cdots + t_{n-1}u_{n-1} + v_n, \quad t_j \in \mathbb{R}.$$
 (1)

Skaičius t_j parinksime taip, kad (1) vektorius būtų statmenas vektoriams u_1, \ldots, u_{n-1} . Taigi

(1) vektorius
$$\perp u_j \Leftrightarrow$$

$$\langle t_1 u_1 + t_2 u_2 + \dots + t_{n-1} u_{n-1} + v_n, u_j \rangle = 0 \Leftrightarrow$$

$$t_1 \langle u_1, u_j \rangle + t_2 \langle u_2, u_j \rangle + \dots + t_{n-1} \langle u_{n-1}, u_j \rangle + \langle v_n, u_j \rangle = 0 \Leftrightarrow$$

$$t_j \langle u_j, u_j \rangle + \langle v_n, u_j \rangle = 0 \Leftrightarrow t_j = -\frac{\langle v_n, u_j \rangle}{\langle u_i, u_i \rangle}.$$

Vadinasi, vektorius

$$u'_{n} := -\frac{\langle v_{n}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \cdots - \frac{\langle v_{n}, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle} u_{n-1} + v_{n}$$
 (2)

yra statmenas vektoriams u_1, \ldots, u_{n-1} . Įsitikinsime, kad

$$L(v_1, v_2, \ldots, v_n) = L(u_1, u_2, \ldots, u'_n).$$

Iš tikrųjų, remiantis indukcijos prielaida,

$$L(v_1, v_2, \ldots, v_{n-1}) = L(u_1, u_2, \ldots, u_{n-1}) \subset L(u_1, u_2, \ldots, u'_n).$$

Be to, iš (2) matyti, kad $v_n \in L(u_1, u_2, \dots, u_n')$. Taigi

$$L(v_1, v_2, \ldots, v_n) \subset L(u_1, u_2, \ldots, u'_n).$$

Kita vertus remiantis indukcijos prielaida,

$$L(u_1, u_2, \ldots, u_{n-1}) = L(v_1, v_2, \ldots, v_{n-1}) \subset L(v_1, v_2, \ldots, v_n).$$

lš (2) lygybės matyti, kad $u_n' \in L(v_1, v_2, \dots, v_n)$. Todėl

$$L(u_1, u_2, \ldots, u'_n) \subset L(v_1, v_2, \ldots, v_n).$$

Vadinasi,

$$L(u_1, u_2, \ldots, u'_n) = L(v_1, v_2, \ldots, v_n).$$

Vektorius $u_n' \neq \mathcal{O}$, nes priešingu atveju iš (2) gautume lygybę

$$v_n = \frac{\langle v_n, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \cdots + \frac{\langle v_n, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle} u_{n-1} \in L(v_1, v_2, \dots, v_{n-1}),$$

o tai reikštų, kad vektorių šeima v_1, v_2, \ldots, v_n yra tiesiškai priklausoma.

Taigi $u_n' \neq \mathcal{O}$ ir parinkę $u_n := \frac{u_n}{\|u_n'\|}$, gauname ortonormuotą vektorių šeimą u_1, u_2, \ldots, u_n , kuri su kiekvienu $j \in \{1, 2, \ldots, n\}$ tenkina sąlygą

$$L(u_1, u_2, \ldots, u_j) = L(v_1, v_2, \ldots, v_j).$$

Taigi teorema įrodyta vektorių šeimai v_1, v_2, \ldots, v_n . Remiantis matematinės indukcijos principu, teorema teisinga visiems $n \in \mathbb{N}$.

Išvada 7

Kiekvienoje baigtinės dimensijos Euklido erdvėje egzistuoja ortonormuota bazė.

Pavyzdys 8

Ortogonalizuosime vektorių sistemą $v_1 = (1, 2, 1), v_2 = (-3, -4, -1), v_3 = (-4, -7, 0).$

Sprendimas.

Tegul $w_1 = v_1 = (1, 2, 1)$. Remiantis (2),

$$w_2 = -rac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + v_2 = (-1, 0, 1),$$
 $w_3 = -rac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - rac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 + v_3 = (1, -1, 1).$

Taigi gavome ortogonalizuotą vektorių sistemą w_1, w_2, w_3 . Kiekvieną vektorių normavę, gausime ortonormuotą vektorių sistemą u_1, u_2, u_3 , kur $u_j = \frac{w_j}{||w_i||}$.

Apibrėžimas 9

Euklido erdvės (V,\langle,\rangle_V) ir (W,\langle,\rangle_W) vadinamos **izomorfinėmis** (arba izometrinėmis), jei egzistuoja bijekcija $f:V\to W$, tenkinanti sąlygas:

- 1. Atvaizdis $f: V \to W$ yra **tiesinis**, t. y. bet kuriems $\alpha, \beta \in \mathbb{R}$, $u, v \in V$, $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$.
- 2. Bet kuriems $u, v \in V$, $\langle f(u), f(v) \rangle_W = \langle u, v \rangle_V$.

Teorema 10

Baigtinės dimensijos Euklido erdvės (V, \langle , \rangle_V) ir (W, \langle , \rangle_W) yra izomorfinės tada ir tik tada, kai tiesinių erdvių V ir W dimensijos yra lygios.

Išvada 11

Kiekviena n-matė Euklido erdvė (V, \langle, \rangle) yra izomorfinė standartinei n-matei Euklido erdvei $(\mathbb{R}^n, \langle, \rangle)$.