МС-16: Точечные оценки и их свойства

Аудиторное задание

1. Пусть $X_1, X_2, ..., X_n$ — выборка из равномерного распределения на [a; b], причём значение параметра a известно. Какие из перечисленных ниже функций являются статистиками?

a)
$$T_1 = 2\bar{X}$$
; 6) $T_2 = X_{(n)} - \frac{a}{n}$; c) $T_3 = \frac{X_{(1)}}{b-a}$.

2. Пусть $\hat{\theta} = T(X_1, \dots, X_n)$ оценка параметра θ , а $b = E(\hat{\theta}) - \theta$ – смещение. Доказать формулу

$$\Delta = Var(\hat{\theta}) + b^2,$$

где $\Delta = E[(\hat{\theta} - \theta)^2]$ — среднеквадратичная ошибка оценки (MSE — Mean Squared Error) .

3. Дана случайная выборка $X_1, X_2, ..., X_n$ из некоторого распределения с математическим ожиданием μ и дисперсией σ^2 . Даны три оценки μ :

$$\hat{\theta}_1 = \frac{X_1 + X_2}{2}; \ \hat{\theta}_2 = \frac{X_1}{4} + \frac{X_2 + \dots + X_{n-1}}{2n-4} + \frac{X_n}{4}; \ \hat{\theta}_3 = \bar{X}.$$

- а) Какая из оценок является несмещённой? б) Какая из оценок является более эффективной, чем остальные?
- **4.** Пусть X случайная величина, которая имеет равномерное распределение на отрезке $[0; \theta]$. Рассмотрим выборку объёма 3 и класс оценок вида $\hat{\theta} = c \cdot \bar{X}$ неизвестного параметра θ . Найдите такое c, чтобы:
 - а) оценка $\hat{\theta}$ несмещённая;
 - б) оценка $\hat{\theta}$ эффективная в рассматриваемом классе. Здесь под эффективностью оценки понимается свойство, что оценка обладает наименьшим $\Delta = E[(\hat{\theta} \theta)^2]$ (среднеквадратичная ошибка оценки).
- **5.** Пусть выборка X_1, \ldots, X_n соответствует распределению $N(m, \theta^2)$. Найти величину C, при которой оценка $\hat{\theta} = \frac{c}{n} \sum_{i=1}^n |X_i m|$ будет несмещённой оценкой параметра θ .
- **6.** Пусть $X_1, ..., X_n$ есть результаты n повторных независимых наблюдений над случайной величиной X, функция распределения которой $F(x;\theta)$ ($x \in \mathbb{R}$) известна с точностью до параметра θ , и $\hat{\theta}_n$ несмещённая оценка θ , причём $Var(\hat{\theta}_n) < \infty$. Определить, является ли $\hat{\theta}_n^2$ несмещённой оценкой θ^2 .
- **7.** В 17 независимых испытаниях случайная величина X значение 3 приняла 9 раз, а значение 5–8 раз. Найдите несмещенную оценку дисперсии Var(X).
- **8.** Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 361, 375, 313, 426, 389, 404, 373, 383 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 371 м.

- **9.** Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 365, 377, 313, 424, 385, 402, 372, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- **10.** Пусть X_1, \ldots, X_n такая выборка, что $X_i = \theta + \varepsilon_i, i = 1, 2, \ldots, n, \theta$ неслучайный скалярный параметр, ε_i независимые случайные величины с $E(\varepsilon_i)=0$, $\mathrm{Var}(\varepsilon_i)=d_i \leq d < \infty$, $\forall i \geq 1$. Доказать, что $\overline{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ является несмещённой и состоятельной оценкой параметра θ .
- **11.** Пусть $X_1, X_2, ..., X_n$ выборка объёма n из равномерного закона $Unif([-\theta;\theta])$, где θ неизвестный параметр. В качестве оценки параметра θ^2 рассмотрим статистику $\hat{\theta} = \frac{3}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$. Является статистика $\hat{\theta}$ несмещённой оценкой параметра θ^2 ?
- **12.** Пусть X_1, X_2, X_3, X_4 —выборка из $N(0; \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 2X_2 + 3X_3 + 4X_4}{10}; \quad \hat{\theta}_2 = \frac{X_1 + 4X_2 + 4X_3 + X_4}{10}.$$

- а) Покажите, что обе оценки несмещённые.
- б) Какая из оценок оптимальная?

Домашнее задание

1. Выборочные значения случайной величины X представлены в следующей таблице:

x_i	-3	-2	0	1	4
n_i	7	10	9	4	10

Найдите несмещенную оценку для дисперсии генеральной совокупности при условии: а) математическое ожидание генеральной совокупности известно и равно 0; б) математическое ожидание генеральной совокупности неизвестно.

- **2.** В итоге четырех измерений некоторой величины одним прибором (без систематических ошибок) получены следующие результаты: 7, 10, 12, 14. Найти: а) выборочное среднее результатов измерений; б) смещенную и исправленную выборочные дисперсии ошибок прибора.
- **3.** Пусть $Y_k = \beta x_k + \varepsilon_k$, k = 1, ..., n, где x_k некоторые константы, а ε_k независимые одинаково распределённые случайные величины, $\varepsilon_k \sim N(0; \sigma^2)$.
- а) Является ли оценка $\hat{\theta}_1 = \frac{\sum_{k=1}^n Y_k}{\sum_{i=1}^n x_i}$ несмещённой оценкой параметра β ?
- б) Является ли оценка $\hat{\theta}_2 = \frac{1}{n} \sum_{k=1}^n \left(\frac{Y_k}{x_k} \right)$ несмещённой оценкой параметра β ?
- в) Найдите дисперсии обеих оценок.
- **4.** Исследователь получил два наблюдения X_1 и X_2 случайной величины X, причём он предполагает, что второе наблюдение два раза важнее первого. В качестве оценки математического ожидания θ случайной величины X используется оценка вида $\hat{\theta} = aX_1 + 2aX_2$. Известно отношение $\frac{\sigma^2}{\theta^2} = \frac{3}{5}$. Найдите «лучшую» оценку такого вида, используя среднеквадратичный подход сравнения. Является ли эта оценка несмещённой?

- **5.** Пусть $X_1, X_2, ..., X_n$ выборка объёма n из равномерного закона $Unif([-\theta;\theta])$, где θ неизвестный параметр. В качестве оценки параметра θ^2 рассмотрим статистику $\hat{\theta} = \frac{3}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$. Является статистика $\sqrt{\hat{\theta}}$ несмещённой оценкой параметра θ^2 ?
- **6.** Пусть ε_i обозначает ошибку i-го измерения радиуса шара R. Предполагается, что ошибки измерений независимые и одинаково распределённые случайные величины, $\varepsilon_i \sim N(0; \sigma^2)$. Пусть X_1, \ldots, X_n результаты n независимых измерений радиуса шара R. Найдите несмещённую оценку объёма шара $V = \frac{4}{3}\pi R^3$, если: а) σ^2 известна; б) σ^2 неизвестна.