KLASSZIUKS FIZIKA LABORATÓRIUM

Fényelhajlási jelenségek vizsgálata jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.04.19

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.05.08

Tartalomjegyzék:

1	A mérés célja:	2
2	A mérőeszközök:	2
3	Fontos képletek és összefüggések:	2
4	Mérési adatok kiértékelése:4.1 Egyszeres rés vizsgálata:4.2 Kettős rés vizsgálata:4.3 Hajszálon való elhajlás:4.4 Fresnel-elhajlás egyenes élen:	4 6
5	Diszkusszió:	7

1 A mérés célja:

A mérés célja a fény hullámtermészetéből adódó hullámjelenségek vizsgálata volt. Különböző mérések során (rés, kettős rés, hajszál,..) a fény elhajlását, interferenciáját és intenzitását vizsgáltam. Az elhajlást gömbhullámok interferenciájaként értelmezzük, és ezen interferenciák intenzitásának helyfüggését mértük.

2 A mérőeszközök:

- Rés B
- · Kettős rés B
- Hajszál
- Mérősín
- Mérőprogram
- Ernyő
- Detektor
- Gyűjtőlencse

3 Fontos képletek és összefüggések:

Intenzitás helyfüggése egy rés esetén:

$$I(x) = I_0 \frac{\sin^2(k_1(x - x_0))}{(k_1(x - x_0))^2}$$
 (1)

ahol k_1 konstans, x a detektor poziciója, x_0 a fő maximum helye, I_0 a kezdeti intenzitás.

Inteniztás helyfüggése két rés esetén:

$$I(x) = I_0 \frac{\sin^2(k_1(x - x_0))}{(k_1(x - x_0))^2} \cos^2(k_2(x - x_0))$$
(2)

ahol k_1 , és k_2 konstansok, x a detektor poziciója, x_0 a főmaximum helye, I_0 a kezdeti intenzitás.

Minimumhelyek távolsága:

$$x_n = n \frac{\lambda L}{a} \tag{3}$$

4 Mérési adatok kiértékelése:

4.1 Egyszeres rés vizsgálata:

Az 1. ábrán az egyszeres réshez tartozó intenzitás-eloszlást láthatjuk a detektor pozíciójának függvényében. A mérési adatokat a táblázatban foglaltam össze. A rés detektortól való távolsága $L=220\pm0.05$ cm. A lézer hullámhossza: $\lambda=632.8\pm0.1$ mm

x_n [mm]
-15.093
-3.541
7.044
18.149
40.087
50.621
61.752
72.41

1. ábra

2. ábra

Az illesztés paraméterei:

	merdekség [mm]	tengelymetszet [mm]
érték:	10.916	28.929
hiba:	0.031	0.085

A rés szélességét a

$$a = \frac{\lambda L}{m} = 0.1275 \pm 0.0009 \, mm \tag{4}$$

képlet alapján számoltam. A hiba a

$$\Delta a = a \cdot \left(\frac{\Delta \lambda}{\lambda} + \frac{\Delta m}{m} + \frac{\Delta L}{L}\right) \tag{5}$$

összefüggés alapján számolható.

4.2 Kettős rés vizsgálata:

3. ábra

A rés detektortól való távolsága $L=231\pm0.05~\mathrm{cm}.$

n	$x_n [mm]$
-3	-1.856
-2	7.678
-1	18.365
1	42.437
2	54.058
3	65.471

4. ábra

	merdekség [mm]	tengelymetszet [mm]
érték:	11.386	31.026
hiba:	0.183	0.395

A rés szélességét a

$$a = \frac{\lambda L}{m} = 0.1339 \pm 0.0012 \, mm \tag{6}$$

képlet alapján számoltam. A hiba a

$$\Delta a = a \cdot \left(\frac{\Delta \lambda}{\lambda} + \frac{\Delta m}{m} + \frac{\Delta L}{L}\right) \tag{7}$$

összefüggés alapján számolható.

Másodosztálybeli minimumok:

$x_n [mm]$
23.064
25.564
27.776
30.277
32.777
34.989
37.586
39.991

5. ábra

	merdekség [mm]	tengelymetszet [mm]
érték:	2.414	31.503
hiba:	0.014	0.031

A réstávolság kiszámításához szintén a 3-as képletet alkalmaztam:

$$d = \frac{\lambda L}{m} = 0.606 \pm 0.007 \, mm \tag{8}$$

4.3 Hajszálon való elhajlás:

6. ábra

A hajszál detektortól való távolsága $L=273.9\pm0.05$ cm. Az intenzitás eloszlása szépen hasonlított az egy réshez tartozó intenzítás eloszlásához. Jelen esetben a rés szélessége megegyezik a hajszál vastagságával.

n	$x_n [mm]$
-2	-17.947
-1	5.832
1	59.813
2	84.305

7. ábra

A hajszál vastágságát a

$$a = \frac{\lambda L}{m} = 0.0641 \pm 0.0075 \, mm \tag{9}$$

képlet alapján számoltam. A hibát a többi rés esetén is használt képlettel határoztam meg.

4.4 Fresnel-elhajlás egyenes élen:

8. ábra

A detektortól való távolság $L=172\pm0.05$ cm. Mint az illesztésből is láthatjuk, eleinte követi a mérésem az elvárt alakot, viszont egy ponton túl sajnos jelentősen elkezd csökkenni az intenzitás.

5 Diszkusszió:

A méréseim összeségében sikeresnek mondhatók, egy-két kivétellel. A kettős rés esetén nem sikerült tökéletesen a beállítás, az intenzitáson tapasztalható némi asszimmetria. A Fresnel-elhajlás sajnos csak félig sikerült, többszöri újramérést követően mindig ugyanazt az intenzitás-csökkenést tapasztaltam, ennek ellenére egész szépen tudtam ráilleszteni.