MC/MS 4112 Artificial Intelligence

Dr. Sumanto Dutta

School of Computer Applications
Kalinga Institute of Industrial Technology (KIIT)

Required Reading

 Peter Norvig and Stuart J. Russell - "Artificial Intelligence: A Modern Approach"

• Grading:

- Quizzes (MCQ)
- Midterm
- Endterm

Goals of this Course

- To introduce you to a set of keys:
 - Paradigms &
 - Techniques
- Teach you to identify when and how to use
 - Heuristic search
 - Constraint satisfaction
 - Machine learning
 - Logical inference
 - Bayesian inference
 - Policy construction
- Highlight directions for AI-based Projects

Outline

- History and Present
- What is AI?
- State of the Art
- Challenges

<u>Historical Perspective</u>

- (4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski
 - formalizing the laws of human thought
- (16th C+) Gerolamo Cardano, Pierre Femat, James Bernoulli, Thomas Bayes
 - formalizing probabilistic reasoning
- (1950+) Alan Turing, John von Neumann, Claude Shannon
 - thinking as computation
- (1956) John McCarthy, Marvin Minsky, Herbert Simon, Allen Newell
 - Start of the field of AI

1946: ENIAC heralds the dawn of Computing

1950: Turing asks the question....

I propose to consider the question:
"Can machines think?"
--Alan Turing, 1950

1956: A new field is born

- We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire.
- Dartmouth Al Project Proposal;
 J. McCarthy et al.; Aug. 31,
 1955.

1956-1966

1950: Turing Test for Machine Intelligence

1956: Al born at Dartmouth College Wrkshop

1964: Eliza – the chatbot psychotherapist

• 1966: Shakey – general purpose mobile robot

Al Winters

- 1974 1980: Winter #1
 - Failure of machine translation
 - Negative results in Neural nets
 - Poor speech understanding
- 1987 1993: Winter #2
 - Decline of LISP
 - Decline of specialized hardware for expert systems

Lasting effects

- Economist07] "Artificial Intelligence is associated with systems that have all too often failed to live up to their promises."
- [Pittsburgh BT06] "Some believe the word 'robotics' actually carries a stigma that hurts a company's chances at funding."

1996: EQP proves that Robbin's Algebras are all boolean

[An Argonne lab program] has come up with a major mathematical proof that would have been called creative if a human had thought of it. -New York Times, December, 1996

1997: Deep Blue ends Human Supremacy in Chess

Deep Blue had Kasparov in deep thought (CNN) VS.

The cunning Deep Blue

(CNN)

I could feel human-level intelligence across the room

-Gary Kasparov, World Chess Champion (human)

In a few years, even a single victory in a long series of games would be the triumph of human genius.

Success Story: Chess

Does Deep Blue use AI?

"If it works, its not Al!"

Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap its wings.

Drew McDermott

ರ

1999: Remote Agent takes Deep Space 1 on a galactic ride

For two days in May, 1999, an Al Program called Remote Agent autonomously ran Deep Space 1 (some 60,000,000 miles from earth)

2004 & 2009

2005: Cars Drive Themselves

 Stanley and three other cars drive themselves over a 132 mile mountain road

2005: Cars Drive Themselves

 Stanley and three other cars drive themselves over a 132 mile mountain road

2011: IBM's Watson

And Ken Jennings pledges obeisance to the new Computer Overlords..

2011: IBM's Watson

https://www.youtube.com/watch?v=WFR3IOm_xhE

2016: AlphaGo

© https://www.buzzfeednews.com/article/alexkantrowitz/were-in-an-artificial-intelligence-hype-cycle

Brain V/s Hardware

10¹¹ neurons 10¹⁴ synapses cycle time: 10⁻³ sec

10⁷ transistors 10¹⁰ bits of RAM cycle time: 10⁻⁹ sec

Computer vs. Brain

HUMAN BRAIN -v- COMPUTER

	BRAIN	COMPUTER
Size and Weight	Volume 1500 cm ³ , Weight 3.3 lbs.	Variable Weight and Size.
Construction	Neurons and Synapses	Chips, Circuits, Artificial Neurons
Structure	Bio-Genetic Programmed, Self-Learning	Pre-Programmed, Al+ML Learning to Learn
Memory	Increases by Connecting Synapses	Increased by Adding More/Better Chips
Memory Power	Teraflops (100 Trln calculations/sec)	Megabytes, Terabytes, and Zettabytes
Memory Density	10 ⁷ circuits/cm ³	10 ¹⁴ Bits/cm³ , and now Qubits
Info Storage	In Electrochemical and Electric Impulses	In Numeric / Symbolic Form (Binary Bits)
Info Transmission	Chemicals Fire Action Potential in Neurons	Communicates via Electrical Coded Signals
Input Tools	Human Sensory Organs	Keyboard, Mouse, Camera, Touch, Vision
Energy use	12 watts of Power; 5-10 Joules/sec	Gigawatts of Power; 10-16 Joules/sec

Sources: Various; Diagram by Frank Feather (Note: Computers are constantly advancing)

What is Intelligence?

- Dictionary.com: capacity for learning, reasoning, understanding, and similar forms of mental activity
- Ability to perceive and act in the world
- Reasoning: proving theorems, medical diagnosis
- Planning: take decisions
- Learning and Adaptation: recommend movies, learn traffic patterns
- Understanding: text, speech, visual scene

Dimensions of the Al Definition

human-like vs. rational

thought *vs*. behavior

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

Thinking Humanly

- Cognitive Science
 - Very hard to understand how humans think
 - Post-facto rationalizations, irrationality of human thinking
- Do we want a machine that beats humans in chess or a machine that thinks like humans while beating humans in chess?
 - Deep Blue supposedly DOESN'T think like humans...
- Thinking like humans important in Cognitive Science applications
 - Intelligent tutoring
 - Expressing emotions in interfaces... HCI
- The goal of aeronautical engg is not to fool pigeons in flying!

Thinking Rationally: laws of thought

- Aristotle: what are correct arguments/thought processes?
 - Logic

- Problems
 - Not all intelligent behavior is mediated by logical deliberation (reflexes)
 - What is the purpose of thinking?

Acting Humanly: Turing's Test

 If the human cannot tell whether the responses from the other side of a wall are coming from a human or computer, then the computer is intelligent.

Acting Humanly

- Loebner Prize
 - Every year in Boston
 - Expertise-dependent tests: limited conversation
- What if people call a human a machine?
 - Shakespeare expert
 - Make human-like errors
- Problems
 - Not reproducible, constructive or mathematically analyzable

Acting rationally

- Rational behavior: doing the right thing
- Need not always be deliberative
 - Reflexive
- Aristotle (Nicomachean ethics)
 - Every art and every inquiry, and similarly every action and every pursuit is thought to aim at some good.

Acting → Thinking?

- Weak Al Hypothesis vs. Strong Al hypothesis
 - Weak Hyp: machines could act as if they are intelligent
 - Strong Hyp: machines that act intelligent have to think intelligently too

Rational Agents

- An agent should strive to do the right thing, based on what it can perceive and the actions it can perform. The right action is the one that will cause the agent to be most successful
- Performance measure: An objective criterion for success of an agent's behavior
- E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc.

Ideal Rational Agent

"For each possible percept sequence, does whatever action is expected to maximize its performance measure on the basis of evidence perceived so far and built-in knowledge."

- •Rationality vs omniscience?
- Acting in order to obtain valuable information

What is *artificial* intelligence (agent view)

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

Human agent:

- eyes, ears, and other organs for sensors
- hands, legs, mouth, and other body parts for actuators

Robotic agent:

- cameras and laser range finders for sensors
- various motors for actuators
- We will revisit this view in detail later in the course

Examples: Formal Cognitive Tasks

- Games
 - Chess
 - Checkers
 - Othello
- Mathematics
 - Logic
 - Geometry
 - Calculus
 - Proving properties of programs

Examples: Expert Tasks

- Engineering
 - Design
 - Fault Finding
 - Manufacturing planning
- Medical
 - Diagnosis
 - Medical Image Analysis
- Financial
 - Stock market predictions

Examples: Perceptual Tasks

- Perception
 - Vision
 - Speech
- Natural Language
 - Understanding
 - Generation
 - Translation
- Robot Control

What is *artificial* intelligence (algorithmic view)

- A large number of problems are NP hard
- Al develops a set of tools, heuristics, ...
 - to solve such problems in practice
 - for naturally occurring instances
- Search
- Game Playing
- Planning
- •

Recurrent Themes

- Weak vs. Knowledge-based Methods
 - Weak general search methods (e.g., A* search)
 - primarily for problem solving
 - not motivated by achieving human-level performance
 - Strong AI -- knowledge intensive (e.g., expert systems)
 - more knowledge ⇒ less computation
 - achieve better performance in specific tasks
 - How to combine weak & strong methods seamlessly?

Recurrent Themes

- Logic vs. Probabilistic vs. Neural
 - -In 1950s, logic dominates
 - attempts to extend logic
 - −1988 − Bayesian networks
 - efficient computational framework
 - -2013 deep neural networks
 - powerful representation across modalities

Areas of AI and Some Dependencies

Al as Engineering

- How can we make software systems more powerful and easier to use?
 - Speech & intelligent user interfaces
 - Autonomic computing
 - SPAM detection
 - Mobile robots, softbots & immobots
 - Data mining
 - Modeling biological systems
 - Medical expert systems...

Mathematical Calculation

Introducing MATHEMATICA5 Παρουσιάζουμε το

Featuring a new generation of advanced algorithms with unparalleled speed, scope, and scalability •

$$\partial_r^2 u = -\left[E' - \frac{l(l+1)}{r^2} - r^2\right] u(r)$$

$$e^{-2s} \left(\partial_s^2 - \partial_s\right) u(s) = -\left[E' - l(l+1)e^{-2s} - e^{2s}\right] u(s)$$

$$e^{-2s} \left[e^{\frac{1}{2}s} \left(e^{-\frac{1}{2}s}u(s)\right)'' - \frac{1}{4}u\right] = -\left[E' - l(l+1)e^{-2s} - e^{2s}\right] u(s)$$

$$e^{-2s} \left[e^{\frac{1}{2}s} \left(e^{-\frac{1}{2}s}u(s)\right)''\right] = -\left[E' - \left(l + \frac{1}{2}\right)^2 e^{-2s} - e^{2s}\right] u(s)$$

$$v'' = -e^{2s} \left[E' - \left(l + \frac{1}{2}\right)^2 e^{-2s} - e^{2s}\right] v$$

Shuttle Repair Scheduling

@ Daniel C Wald

47

Europa Mission ~ 2018

Credit Card Fraud Detection

∆C

Speech Recognition

Autonomous Navigation: NAVLAB 1

NAVLAB 2

52

NAVLAB 11

© Daniel S Weld

Limits of Al Today

- Today's successful AI systems
 - operate in well-defined domains
 - employ narrow, specialize knowledge
- Commonsense Knowledge
 - needed in complex, open-ended worlds
 - Your kitchen vs. GM factory floor
 - understand unconstrained Natural Language

54