Algebra FE integer

March 10, 2025

Problem. Determine all functions $f: \mathbb{N} \to \mathbb{N}$ such that for every positive integer n we have

$$2n + 2001 \le f(f(n)) + f(n) \le 2n + 2002$$

Solution. f(n) = n + 667 is the only solution. Clearly it works, let's prove it's the only one.

In general we will prove that if $c \in \mathbb{N}$, then f(n) = n + c is the only solution to $2n + 3c \le f(f(n)) + f(n) \le 2n + 3c + 1$ so let's focus on this equation instead.

Let's say $f(n) \neq (n+c)$ for some n, then

if f(n) = n + c + k where k > 0 then

 $f(n) + c - 2k \le f(f(n)) \le f(n) + c - (2k - 1)$

if f(n) = n + c - k where k > 0 then

 $f(n) + c + 2k \le f(f(n)) \le f(n) + c + (2k+1)$

This means if f(a) > a + c then f(f(a)) < f(a) + c and vice versa.

Let's say $f(n) \neq n+c$ for all n, choose a p such that $f(p) \neq p+c$, if f(p) < p+c choose $p \coloneqq f(p)$. Now we have f(p) > p+c. let's define the sequece

$$T_0 = p, T_n = f(T_{n-1})$$

Let's define another integer sequence $G_k = T_k - T_{k-1} - c$. Note that $G_1 > 0$ and G_k alternates sign hence G_k is positive for odd k and negative otherwise.

Note that for any number j

$$T_{2j} - T_0 - 2jc = \sum_{i=1}^{i=j} (G_{2i-1} + G_{2i})$$

Note that for even m we have $G_m \leq -(2G_{m-1}-1)$ Now as $G_1 = k > 0$, this implies $G_2 \leq -(2k-1)$ and $G_3 \geq 2(2k-1) \geq 2k$. Hence for odd m we have $G_m \geq 2G_{m-2}$. Hence $G_{2t-1} \geq 2^{t-1}k$. Now note that $G_{2i-1} + G_{2i} \leq G_{2i-1} - (2G_{2i-1}-1) \leq 1 - G_{2i-1} \leq 1 - 2^{i-1}k$.

Hence

$$T_{2j} - T_0 - 2jc = \sum_{i=1}^{i=j} (G_{2i-1} + G_{2i}) \le \sum_{i=1}^{i=j} (1 - 2^{i-1}k) = (j - (2^j - 1)k).$$

So

$$T_{2j} \le T_0 + (2c+1)j - (2^j - 1)k.$$

Now note that if j is big enough then right hand side will be negative hence T_{2j} will be negative which is a contradiction. Therefore we have f(n) = n + c. QED

Exploration. N/A

 $\textbf{Tags.}\ \ \textit{Algebra}\ \ ,\ \textit{functional equation}\ \ ,\ \textit{FE}\ \ ,\ \ \textit{natural numbers}\ \ ,\ \ \textit{Number theory},\ \ \textit{inequality}$