METODY NUMERYCZNE - LABORATORIUM

Zadanie 1 – Rozwiązywanie równań nieliniowych metodą bisekcji oraz Regula Falsi

Opis rozwiązania

Celem zadania pierwszego było zaimplementowanie oraz porównanie ze sobą dwóch metod rozwiązywania równań nieliniowych - metody bisekcji oraz Regula Falsi. Wymagane również było wdrożenie dwóch kryteriów stopu: osiągnięcie zdanej dokładności obliczeń (oszacowanie wyniku na podstawie wariantu: $|x_i - x_i| < \varepsilon$) oraz wykonanie określonej przez użytkownika liczby iteracji.

Metoda bisekcji (metoda połowienia lub też równego podziału)

Poprzez tą metodę szukamy pierwiastka funkcji f(x) w przedziale domkniętym [a,b] (funkcja musi być ciągła na tym przedziale). Pierwiastek wyznaczamy przez dzielenie przedziału na połowy i wybranie części przedziału, w której znajduje się pierwiastek.

- a) Osiągnięcie zadanej dokładności obliczeń:
- 1. Sprawdzenie czy w punktach a i b wartości funkcji f(x) mają przeciwne znaki, $tzn f(a) \cdot f(b) < 0$
- 2. Dzielenie przedziału na dwie połówki punktem $x_i = \frac{a+b}{2}$.
- 3. Jeżeli punkt x_i spełnia wystarczającą dokładność przybliżenia, działanie algorytmu zostaje zakończone. Jeśli nie, znaleziony punkt dzieli przedział wyjściowy na dwa przedziały: $[a, x_i]$ oraz $[x_i, b]$.
- 4. W przypadku $f(x_0) \cdot f(b) < 0$, to $a = x_0$, w przeciwnym razie $b = x_0$.
- 5. Algorytm wykonuje się tak długo dla kolejnych przedziałów, dopóki $|x_i-x_{i-1}|<\varepsilon$
 - b) Wykonanie określonej przez użytkownika liczby iteracji:

Algorytm działa analogicznie do powyższego, jedynie zamiast dokładności obliczeń użytkownik podaje liczbę iteracji, po którym algorytm ma zakończyć działanie.

Regula Falsi (fałszywa prosta)

Algorytm tej reguły jest bardzo podobny do metody bisekcji. Założenia wstępne dla badanej funkcji w obu algorytmach są identyczne (również szukany jest pierwiastek funkcji f(x) w przedziale domkniętym [a, b] oraz sprawdzenie, czy funkcja w punktach a i b ma przeciwne znaki, tzn. $f(a) \cdot f(b) < 0$).

- a) Osiągnięcie zadanej dokładności obliczeń:
- 1. Dzielimy przedział cięciwą łączącą punkty a i b punktem $x_0 = a \frac{f(a)}{f(b) f(a)}(b a)$.
- 2. Jeżeli punkt x_i spełnia wystarczającą dokładność przybliżenia, działanie algorytmu zostaje zakończone. Jeśli nie, znaleziony punkt dzieli przedział wyjściowy na dwa przedziały: $[a, x_i]$ oraz $[x_i, b]$.
- 3. W przypadku $f(x_0) \cdot f(b) < 0$, to a = x_0 , w przeciwnym razie $b=x_0$.
- 4. Algorytm wykonuje się tak długo dla kolejnych przedziałów, dopóki $|x_i x_{i-1}| < \varepsilon$
 - b) Wykonanie określonej przez użytkownika liczby iteracji:

Algorytm działa analogicznie do powyższego, jedynie zamiast dokładności obliczeń użytkownik podaje liczbę iteracji, po którym algorytm ma zakończyć działanie.

Wyniki

Funkcja wielomianowa:	$f(x)=2x^3+3x^2+4x-1$
-----------------------	-----------------------

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja (eps)	-0,5	1	0,01	8	0.208984375
Reguła Falsi (eps)	-0,5	1	0,01	6	0.203800561
Bisekcja (iteracja)	-0,5	1	-	6	0.2265625
Reguła Falsi (iteracja)	-0,5	1	-	8	0.210033647

a) wykres(zadana iteracja = 6)

b) wykres (eps = 0.01)

Wykres dla $f(x) = 2x^3 + 3x^2 + 4x - 1$ wraz z miejscem zerowym

Funkcja trygonometryczna:

 $f(x) = 3\sin(x) - \cos(x)$

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja (eps)	0	3	0,01	9	0.322265625
Reguła Falsi (eps)	0	3	0,01	3	0.32125433558203953
Bisekcja (iteracja)	0	3	-	3	0.375
Reguła Falsi (iteracja)	0	3	-	9	0.3217505543966422

a) wykres(zadana iteracja = 3)

b) wykres (eps = 0.01)

Funkcja wykładnicza:

 $f(x) = 7^x - 4$

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja (eps)	-1	1	0,01	8	0.7109375
Reguła Falsi (eps)	-1	1	0,01	5	0.709448707657808
Bisekcja (iteracja)	-1	1	-	5	0.6875
Reguła Falsi (iteracja)	-1	1	-	8	0.7123658138727934

a) wykres(zadana iteracja = 5)

b) wykres (eps = 0.01)

Funkcja złożona: $f(x) = x^3 + 5^x - \sin(x)$

Tallinoja ziozofiai / (**)					
Metoda	Kraniec x	Kraniec y	Epsilon	llość iteracji	Miejsce zerowe
Bisekcja (eps)	-2	1	0,01	9	-1.009765625
Reguła Falsi (eps)	-2	1	0,01	11	-1.0054435272206041
Bisekcja (iteracja)	-2	1	-	11	-1.01416015625
Regula Falsi (iteracia)	-2	1	-	9	-0.9892561089997897

a) wykres(zadana iteracja = 9)

b) wykres (eps = 0.01)

-6

Wykres dla $f(x) = x^3 + 5^x - \sin(x)$ wraz z miejscem zerowym

Wnioski

- Warto wspomnieć, że obie metody wskazują tylko jedno miejsce zerowe.
- Obie metody są uniwersalne i łatwe w implementacji
- Obie metody nie są w stanie znaleźć miejsc zerowych otoczonych z obu stron wartościami funkcji o tym samym znaku.
- W większości przypadków Regula Falsi na małych przedziałach, potrzebowała mniej iteracji niż metoda bisekcji, aby znaleźć miejsce zerowe.
- Regula Falsi dla dużych przedziałów wymaga bardzo dużej ilości iteracji, jej wynik odbiega od wyznaczonego miejsca zerowego metodą bisekcji.