Dans tout l'énoncé,

- Les vecteurs sont des vecteurs colonnes.
- Leb est la mesure de Lebesque sur \mathbb{R} et Leb $^{\otimes n}$ est la mesure de Lebesgue sur \mathbb{R}^n .
- Pour p > 0 et $\lambda > 0$, on appelle loi Gamma (p, λ) , la loi de densité donnée par [attention : convention différente du polycopié] :

$$f_{p,\lambda}(x) := \frac{\lambda^{-p}}{\Gamma(p)} \exp(-x/\lambda) \ x^{p-1} \ , \quad x > 0 \ .$$

On note Gcdf_p et Gqf_p la fonction de répartition et la fonction quantile de la $\operatorname{Gamma}(p,1)$. Nous rappelons

- Si la variable aléatoire Y est distribuée suivant une loi $\operatorname{Gamma}(p,\lambda)$ avec $p>0,\ \lambda>0$, alors Y/λ est distribuée suivant une loi $\operatorname{Gamma}(p,1)$.
- Si la variable aléatoire Y est distribuée suivant une loi $\operatorname{Gamma}(p,\lambda)$ avec $p>0,\ \lambda>0$ alors $\mathbb{E}[Y]=p\lambda$ et $\operatorname{Var}(Y)=p\lambda^2$.
- La loi du χ^2 centré à n degrés de liberté est une loi Gamma(n/2,2).
- Soit (X_1, \ldots, X_n) n variables aléatoires indépendantes, et pour tout $i \in \{1, \ldots, n\}$, la loi de X_i est la loi Gamma (p_i, λ) pour $p_i > 0$, $\lambda > 0$. Alors, $\sum_{i=1}^n X_i$ est distribuée suivant une loi Gamma $(\sum_{i=1}^n p_i, \lambda)$.

Exercice 1. Soit $Z = (X_1, \dots, X_n)$ un n-échantillon du modèle $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \{p_{\theta}.dLeb, \theta \in \Theta := \mathbb{R}_+^*\})$ où p_{θ} est la densité de Weibull définie par

$$x\mapsto p_{\theta}(x)=rac{c}{\theta}\,x^{c-1}\mathrm{e}^{-x^c/\theta}\mathbbm{1}_{\mathbb{R}_+}(x)\;,\quad c \text{ est une constante positive connuclear}$$

Soit $\theta_0 > 0$. On considère le test

$$H_0: \theta \le \theta_0$$
, contre $H_1: \theta > \theta_0$.

- 1. Montrer que, pour tout $\theta \in \Theta$, $(X_i)^c$ est, sous \mathbb{P}_{θ} , distribuée suivant une loi exponentielle de paramètre θ , de densité $q_{\theta}(y) := \theta^{-1} e^{-y/\theta} \mathbb{1}_{\mathbb{R}_+}(y)$ [qui est aussi Gamma $(1, \theta)$].
- 2. Montrer que la famille $\{p_{\theta}(\cdot), \theta \in \Theta\}$ est à rapport de vraisemblance monotone.
- 3. Soit $\alpha \in]0,1[$. Déterminer un test U. P. P. (α) pour ces hypothèses. On explicitera le calcul des constantes dans la définition de la fonction critique du test en fonction de la fonction quantile $\operatorname{Gqf}_n(\cdot)$.
- 4. Montrer que la fonction puissance du test est donnée par

$$\theta \mapsto 1 - \operatorname{Gcdf}_n(\theta_0 \operatorname{Gqf}_n(1-\alpha)/\theta)$$

Exercice 2. Soit (X_1, \ldots, X_n) un *n*-échantillon du modèle $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{p_{\theta}.dLeb, \theta \in \Theta\})$, où $\theta := (\mu, \sigma^2) \in \Theta := \mathbb{R} \times \mathbb{R}_+^*$, et p_{θ} est la densité de probabilité d'une loi Gaussienne de moyenne μ et variance σ^2 . Nous considérons les estimateurs de μ^2 donnés par

$$T_{1,n} := (\bar{X}_n)^2$$
 où $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$

$$T_{2,n} := (\bar{X}_n)^2 - \frac{1}{n} S_n^2$$
 où $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

On rappelle que Y est une variable aléatoire gaussienne centrée réduite, alors $\mathbb{E}[Y^4] = 3$.

- 1. Montrer que, pour tout $\theta \in \Theta$, sous $\mathbb{P}_{n,\theta}$
 - (a) la variable aléatoire \bar{X}_n suit une loi gaussienne dont on déterminera la moyenne et la variance.
 - (b) la variable S_n^2 est indépendante de \bar{X}_n et $(n-1)S_n^2/\sigma^2$ est distribuée suivant une loi Gamma dont on précisera les paramètres.
 - (c) Montrer que $\mathbb{E}_{\theta}[S_n^2] = \sigma^2$ and $\mathbb{E}_{\theta}[S_n^4] = \sigma^4(1 + 2/(n-1))$.
- 2. Calculer le biais de l'estimateur et le risque quadratique de l'estimateur $T_{1,n}$ de μ^2 .
- 3. Calculer le biais et le risque quadratique de l'estimateur $T_{2,n}$ de μ^2 .
- 4. L'estimateur $T_{1,n}$ de μ^2 est-il admissible pour le risque quadratique?
- 5. Montrer que les suites d'estimateurs $\{T_{1,n}, n \geq 2\}$ et $\{T_{2,n}, n \geq 2\}$ sont consistantes.
- 6. Montrer que pour tout $\theta = (\mu, \sigma^2) \in \mathbb{R}^* \times \mathbb{R}_+^*$ (i.e. $\mu \neq 0$), $\sqrt{n}(T_{1,n} \mu^2)$ converge sous $\mathbb{P}_{n,\theta}$ vers une loi gaussienne dont on déterminera la variance. Même question pour $\sqrt{n}(T_{2,n} \mu^2)$.
- 7. Montrer que pour tout θ tel que $\mu = 0$, $nT_{1,n}$ converge en loi sous $\mathbb{P}_{n,\theta}$ vers une loi que l'on caractérisera. Même question pour $nT_{2,n}$. Commenter.

Exercice 3. Soit $Z := (X_1, \ldots, X_n)$ un *n*-échantillon du modèle statistique du modèle exponentiel translaté $\mathcal{E}(a, \lambda)$ de densité par rapport à la mesure de Lebesgue

$$\left(\mathbb{R};\mathcal{B}(\mathbb{R});\left\{f_{\theta}\cdot \mathrm{Leb},\theta:=(a,\lambda)\in\Theta:=\mathbb{R}\times\mathbb{R}_{+}^{*}\right\}\right),\quad \text{où}\quad f_{\theta}(x):=\lambda^{-1}\mathrm{e}^{-(x-a)/\lambda}\mathbb{1}_{[a,\infty[}(x)$$

Nous notons, pour $\theta \in \Theta$,

$$p_{\theta}(x_1, \cdots, x_n) := \prod_{k=1}^n f_{\theta}(x_k),$$

et $\mathbb{P}_{\theta} := p_{\theta} \cdot \operatorname{Leb}^{\otimes n}$. Soit $X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n:n}$ les statistiques d'ordre de l'échantillon; puisque les variables aléatoires $(X_k)_{k=1}^n$ ont des lois à densité par rapport à la mesure de Puisque les variables aléatoires $(X_k)_{k=1}^n$ ont des lois à densité par rapport à la mesure de Lebesgue, on a $\mathbb{P}_{\theta}(X_i = X_j) = 0$ pour tout $i \neq j$ et $\theta \in \Theta$. Par suite, il existe, \mathbb{P}_{θ} -p.s. une unique permutation, que nous notons $\sigma(Z) = [\sigma_1(Z), \ldots, \sigma_n(Z)]$ de $\{1, \cdots, n\}$ telle que

$$X_{k:n} = X_{\sigma_k(Z)}, \qquad X_{\sigma_1(Z)} < X_{\sigma_2(Z)} < \dots < X_{\sigma_n}(Z), \quad \mathbb{P}_{\theta} - \text{p.s.}$$

Nous notons S_n l'ensemble des permutations de l'ensemble $\{1,\ldots,n\}$.

1. Montrer que pour toute fonction h mesurable bornée

$$\mathbb{E}_{\theta}\left[h\left(X_{1:n},\cdots,X_{n:n}\right)\right] = \sum_{\tau \in \mathcal{S}_n} \mathbb{E}_{\theta}\left[h\left(X_{\tau_1},\cdots,X_{\tau_n}\right) \mathbb{1}_{\left\{X_{\tau_1} < X_{\tau_2} < \cdots < X_{\tau_n}\right\}}\right]$$
(1)

2. En déduire que sous \mathbb{P}_{θ} , la loi jointe des statistiques d'ordre $X_{1:n}, X_{2:n}, \ldots, X_{n:n}$ admet une densité par rapport à Leb^{$\otimes n$}, densité donnée par

$$(y_1, \cdots, y_n) \mapsto \varphi(\theta; y_1, y_2, \dots, y_n) := n! \, p_{\theta}(y_1, \cdots, y_n) \, \mathbb{1}_{\{a \leq y_1 < y_2 < \dots < y_n\}}$$

On considère la transformation

$$U_1 := nX_{1:n}, \qquad U_k := (n-k+1)(X_{k:n} - X_{(k-1):n}), \quad \text{pour } k \in \{2, \dots, n\};$$
 (2)

Remarquons que pour tout $(u_1, \ldots, u_n) \in \mathbb{R}^n$,

$$\sum_{i=1}^{n} u_i = nu_1 + \sum_{i=2}^{n} (n-i+1)(u_i - u_{i-1}).$$
(3)

- 3. Montrer que, sous \mathbb{P}_{θ} , les variables aléatoires (U_1, \ldots, U_n) sont indépendantes. Déterminer également la loi de chacune de ces variables.
- 4. Démontrer que sous \mathbb{P}_{θ} , la statistique $T_1 := \sum_{i=1}^n (X_{i:n} X_{1:n})$ est indépendante de $X_{1:n}$ et suit une loi $\operatorname{Gamma}(n-1,\lambda)$.
- 5. Construire, en utilisant T_1 , un intervalle de confiance pour λ avec une probabilité de couverture de 1α , où $\alpha \in [0, 1[$.
- 6. Établir que sous \mathbb{P}_{θ} , la statistique $T_2 := X_{1:n}$ suit une loi $\mathcal{E}(a, \lambda/n)$.
- 7. Justifier sans calcul que la fonction $a \mapsto F_n(a) := (T_2 a)/\{(n-1)^{-1}T_1\}$ est pivotale pour le paramètre θ .
- 8. Question bonus! Prouver que, pour tout $\theta \in \Theta$, la loi de $F_n(a)$ par rapport à la mesure de Lebesgue est donnée par l'équation suivante :

$$t \mapsto n \left(1 + \frac{nt}{n-1} \right)^{-n} \mathbb{1}_{[0,\infty[}(t) . \tag{4})$$

9. En se servant de la fonction pivotale $F_n(a)$, construire un intervalle de confiance pour a avec une probabilité de couverture de $1-\alpha$.

Exercice 4. On cherche à expliquer une variable quantitative Y_i (réponse) par une régression linéaire à un facteur $[1, x_i]^{\top}$, $i \in \{1, ..., n\}$, $x_i \in \mathbb{R}$. On pose $\theta := (\boldsymbol{\beta}, \sigma^2) \in \Theta := \mathbb{R} \times \mathbb{R}^* \times \mathbb{R}^*_+$, avec $\boldsymbol{\beta} := [\beta_0, \beta_1]^{\top}$. Nous posons $\mathbf{Y} := [Y_1, ..., Y_n]^{\top}$, $\mathbf{y} := [y_1, ..., y_n]^{\top}$. Nous supposons que, pour tout $\theta \in \Theta$, \mathbf{Y} est un vecteur Gaussien, de moyenne $[\beta_0 + \beta_1 x_1, ..., \beta_0 + \beta_1 x_n]^{\top}$ et de covariance $\sigma^2 \mathbf{I}_n$, i.e. la densité de \mathbf{Y} par rapport à la mesure de Lebesgue sur \mathbb{R}^n est

$$p_{\theta}(\mathbf{y}) := \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left(-\frac{1}{2} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 x_i)^2\right)$$

Posons $\mathbf{x} := [x_1, \dots, x_n]^\top$, $\mathbf{1} := [1, \dots, 1]^\top \in \mathbb{R}^n$, et $\mathbf{X} := [\mathbf{1}, \mathbf{x}]$. Avec ces notations, nous pouvons écrire de façon équivalente

$$p_{\theta}(\mathbf{y}) = \frac{1}{\sqrt{2\pi\sigma^2}^n} \exp\left(-\frac{1}{2}\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2\right)$$

Nous supposons que la matrice \mathbf{X} , de taille $n \times 2$, est de rang 2 et nous posons $H := \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ le projecteur orthogonal sur $\mathrm{Vect}(\mathbf{X})$.

Nous notons

$$\bar{Y} := \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\mathbf{1}^{\top} \mathbf{Y}}{\|\mathbf{1}\|^2} \quad \text{et} \quad \bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{\mathbf{1}^{\top} \mathbf{x}}{\|\mathbf{1}\|^2}.$$

1. Montrer que les estimateurs du maximum de vraisemblance $\hat{\boldsymbol{\beta}} := [\hat{\beta}_0, \hat{\beta}_1]^{\top}$ et $\hat{\sigma}^2$ de (β_0, β_1) et σ^2 sont donnés par

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} := (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y} = \begin{bmatrix} \bar{Y} - \hat{\beta}_1 \bar{x} \\ \frac{\sum_{i=1}^n Y_i (x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} \end{bmatrix}$$
 (5)

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \frac{1}{n} \| (\mathbf{I}_n - H) \mathbf{Y} \|^2$$
 (6)

Nous remarquons que \mathbb{P}_{θ} -p.s., $\hat{\beta}_1 \neq 0$.

- 2. Démontrer que, sous $\mathbb{P}_{\beta,\sigma^2}$, $\hat{\beta}$ est un vecteur gaussien dont on précisera la moyenne et la covariance.
- 3. Montrer que les statistiques $\hat{\sigma}^2$ et $\hat{\beta}$ sont indépendantes. Déterminer la distribution de la statistique $\hat{\sigma}^2$.

Nous posons, $S^2 := (n/(n-2))\hat{\sigma}^2$ et pour $\boldsymbol{\beta} := [\beta_0, \beta_1]^\top \in \mathbb{R} \times \mathbb{R}^* : \phi := -\beta_0/\beta_1$, et $\delta := -\phi + \bar{x}$.

4. Montrer que, pour tout $\theta \in \Theta$,

$$\mathbb{E}_{\theta} \left[\bar{Y} - \delta \hat{\beta}_1 \right] = 0 .$$

5. Montrer que, pour tout $\theta \in \Theta$,

$$Cov_{\theta}(\bar{Y}, \hat{\beta}_1) = 0$$
.

6. Montrer que, pour tout $\theta \in \Theta$,

$$\operatorname{Var}_{\theta}\left(\bar{Y} - \delta\hat{\beta}_{1}\right) = \sigma^{2}w(\delta)$$
 où $w(\delta) := \frac{1}{n} + \frac{\delta^{2}}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}$.

7. Montrer que pour tout $\theta \in \Theta$, sous \mathbb{P}_{θ} , $\bar{Y} - \delta \hat{\beta}_1$ est distribué suivant une loi normale centrée de variance $\sigma^2 w(\delta)$ et est indépendante de S^2 .

Nous posons

$$T(\delta) := \frac{\bar{Y} - \delta \hat{\beta}_1}{S\sqrt{w(\delta)}}$$

- 8. Montrer que pour tout $\theta \in \Theta$, sous \mathbb{P}_{θ} , $T^2(\delta)$ est distribuée suivant une loi de Fisher à (1, n-2) degrés de liberté.
- 9. En déduire une région de confiance pour δ de probabilité de couverture $1-\alpha$, $\alpha \in]0,1[$, de la forme $A(\alpha)\delta^2 + B(\alpha)\delta + C(\alpha) \leq 0$ [on déterminera $A(\alpha)$, $B(\alpha)$, et $C(\alpha)$]. Sous quelle condition cette région de confiance est-elle un intervalle?

Exercice 5. Dans cet exercice, nous considérons des observations i.i.d. $(X_i, Y_i)_{1 \le i \le n}$ où Y_i prend des valeurs dans $\{-1, 1\}$ et X_i prend des valeurs dans \mathbb{R}^d . Pour un x donné dans \mathbb{R}^d , nous considérerons le classificateur suivant : $\hat{h}_n(x) = Y_{\phi_n(x)}$ où

$$\phi_n(x) = \arg\min_{i \in [1:n]} ||x - X_i||$$

En d'autres termes, $\phi_n(x)$ est l'indice du voisin le plus proche de x parmi l'ensemble de données $\{X_i; i \in [1:n]\}$. Dans tout l'exercice, nous considérons une paire de variables aléatoires (X,Y) ayant la même loi que (X_i,Y_i) pour tout $i \geq 1$. Et pour éviter toute ambiguïté dans la définition de l'indice $\phi_n(X)$, nous supposons qu'avec probabilité 1, tous les $||X - X_i||$ pour tout $i \in \mathbb{N}$ sont strictement différents.

Rappelons que le classificateur optimal de Bayes est défini par

$$h^{\star}(X) = \begin{cases} 1 & \text{si } \mathbb{P}(Y=1|X) > \mathbb{P}(Y=-1|X) \\ -1 & \text{sinon} \end{cases}$$

et rappelons qu'en définissant $\eta(X) = \mathbb{P}(Y=1|X)$ et $r^{\star}(X) = \min(\eta(X), 1 - \eta(X))$, nous avons

$$R^* = \mathbb{P}(Y \neq h^*(X)) = \mathbb{E}[r^*(X)] \leq \mathbb{P}(Y \neq h(X))$$

pour tout autre classificateur $h: \mathbb{R}^d \to \{-1,1\}$. Le but de cet exercice est de montrer la borne

$$R^{\star} \leq \lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) \leq 2R^{\star}(1 - R^{\star})$$

Définissons $X_{(n)} = X_{\phi_n(X)}$ le voisin le plus proche de X parmi l'ensemble $\{(X_i); i \in [1:n]\}$. Nous admettons que,

— la suite $\{X_{(n)}, (n) \in \mathbb{N}\}\$ converge en probabilité vers X:

$$X_{(n)} \stackrel{\mathbb{P}-\text{prob}}{\longrightarrow} X$$
,

- la fonction η est continue,
- 1. Montrez que, pour tout $x \in \mathbb{R}^d$, $r^*(x)(1-r^*(x)) = \eta(x)(1-\eta(x))$.
- 2. Montrez que pour tout $i \in [1:n]$, nous avons presque sûrement.

$$\mathbb{P}(Y = -1, Y_i = 1, \phi_n(X) = i | X, X_{1:n}) = (1 - \eta(X))\eta(X_i) \mathbb{1}_{\{i\}}(\phi_n(X))$$

3. En notant que, $\eta(X_{(n)}) = \sum_{i=1}^n \eta(X_i) \mathbb{1}_{\{i\}}(\phi_n(X))$, déduisez que, presque sûrement,

$$\mathbb{P}(Y = -1, \hat{h}_n(X) = 1 | X, X_{1:n}) = (1 - \eta(X)) \eta(X_{(n)}),$$

4. De la même manière, montrez que

$$\mathbb{P}(Y = 1, \hat{h}_n(X) = -1 | X, X_{1:n}) = \eta(X)(1 - \eta(X_{(n)})),$$

- 5. Montrez que $\lim_{n\to\infty} \mathbb{E}[\eta(X_{(n)})] = \mathbb{E}[\eta(X)]$.
- 6. Montrez que:

$$\lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) = 2\mathbb{E}[r^*(X)(1 - r^*(X))]$$

7. Déduisez que

$$\lim_{n \to \infty} \mathbb{P}(Y \neq \hat{h}_n(X)) \le 2R^*(1 - R^*)$$

et conclure.