Elementary Graph Algorithms with Applications

Dr. Sachin Tripathi

Department of CSE, Indian School of Mines, Dhanbad.

Outline...

- 1 Representations of Graphs
- 2 Depth First Search
- 3 Topological Sort
- 4 Strongly Connected Components
- 5 Single Source DAG Shortest Path Problem and Application

Adjacency-list and Adjacency-matrix Representation

Adjacency list

The adjacency-list representation of a graph G=(V,E) consists of an array Adj of |V| lists, one for each vertex in V. For each $u\in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u,v)\in E$.

Adjacency-matrix

The adjacency-matrix representation of a graph G=(V,E), we assume that the vertices are numbered $1,2,\ldots,|V|$ in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a $|V|\times |V|$ matrix $A=(a_{ij})$ such that

$$(a_{ij}) = egin{cases} 1 & ext{if (i,j)} \in \mathsf{E} \\ 0 & ext{otherwise}. \end{cases}$$

Representation of Undirected Graph

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	l	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0
(c)					

Adjacency matrix

Representation of Directed Graph

graph

Adjacency list

Adjacency matrix

Depth First Search

```
DFS(G)
   for each vertex u \in G, V
       u.color = WHITE
       u.\pi = NIL
   time = 0
   for each vertex u \in G.V
       if u color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
    time = time + 1
                                  // white vertex u has just been discovered
    u.d = time
    u.color = GRAY
    for each v \in G.Adi[u]
                                  // explore edge (u, v)
        if v.color == WHITE
             v.\pi = u
             DFS-VISIT(G, \nu)
   u.color = BLACK
                                  // blacken u: it is finished
    time = time + 1
```

Run time complexity is $\theta(V + E)$

Dr. Sachin Tripathi ISM, Dhanbad

u.f = time

DFS Example

Properties of Depth First Search

Depth-first search yields valuable information about the structure of a graph.

- DFS can be used to classify the edges of input graph G = (V, E), This edge classification can be used to glean important information about a graph. For Example:- Directed graph is acyclic iff DFS search yields no back edges.
 - Types of edges are Tree, Back, Forward and Cross
- If we represent the discovery of vertex u with a left parenthesis "(u" and represent its finishing by a right parenthesis "u)", then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested. i.e.,

Topological Sort

Topological sorting problem: given digraph G = (V, E), find a linear ordering of vertices such that: for all edges (v, w) in E, v precedes w in the ordering

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
 - 3 **return** the linked list of vertices

Time complexity is $\theta(V + E)$

Example 1:

Example 2:

How we Define?

Strongly Connected Component

strongly connected component of a directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, we have both $u \to v$ and $v \to u$; that is, vertices u and v are reachable from each other.

Observations.

- 1: Graph and Transpose of a graph have exactly the same strongly connected components. i.e., u and v are reachable from each other in G, iff they are reachable from each other in G^T .
- 2: The finishing time of each source in DFS forest is always greater than their descendant.

Strongly Connected Components

BFS(G,s)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^T
- 3 call DFS(G^T) but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Time complexity is $\theta(V + E)$

Graph for Strongly Connected Components (Example 1)

Example 2 (Tutorial)

Circle all of the strongly connected components of following directed graph.

Single Source DAG Shortest Path

By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in $\theta(V + E)$ time. The algorithm for this is:

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source (G, s)
- 3 **for** each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

RELAX
$$(u, v, w)$$

1 **if**
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$

Consider The Graph where 's' is the source

Application (Critical path in PERT chart analysis)

Critical Path: It is the longest path through the DAG corresponding to the longest time perform an ordered sequence of jobs. It can be found either by:

- negating the edge weight and running DAG shortest path algorithm.
- Running DAG shortest path with the modification that replace ∞ to $-\infty$ in line two of the initialize single source algorithm and > by < in relax procedure.

Thank you

