- Расчетная работа №5
 - Вариант задания
 - 1. Принципиальная схема
 - 2. Расчеты общего тока и ветвей
 - 2.1 Расчет силы тока для каждой ветви
 - 2.2. Общий ток
 - 3. Таблица и первое правило Кирхгофа
 - 3.1 Таблица ответов
 - 3.2 Доказательство первого правила Кирхгофа
 - 4. Как изменится общий ток цепи если исключить из схемы резистор R4
- Расчетная работа №6
 - Вариант задания
 - 1. Принципиальная схема
 - 2. Расчеты сили тока и
 - 2.1. Расчеты силы тока каждой ветви цепи
 - Рэкв. для каждоый ветви цепи:
 - Ідля каждоый ветви цепи:
 - 2.2 Расчет напряжения падения на каждом резисторе
 - 3. Таблица и второе правило Кирхгофа
 - 3.1 Таблица напряжений падания каждого резистора
 - 3.2 Доказательство второго правила Кирхгофа

Расчетная работа №5

Вариант задания

$\mathcal{N}_{\underline{o}}$	R_1	R_2	R_3	R_4	R_5	R_6	U(GB)
варианта	Ω	Ω	Ω	Ω	Ω	Ω	V
1	100	100	500	500	1000	100	26

1. Принципиальная схема

2. Расчеты общего тока и ветвей

2.1 Расчет силы тока для каждой ветви

1.
$$I_{R1} = \frac{26}{100} = 0,26$$
A

2.
$$I_{R2} = \frac{26}{100} = 0,26$$
A

3.
$$I_{R3} = \frac{26}{500} = 0,052$$
A

$$4. I_{R3} = \frac{26}{500} = 0,052A$$

1.
$$I_{R1} = \frac{26}{100} = 0,26A$$

2. $I_{R2} = \frac{26}{100} = 0,26A$
3. $I_{R3} = \frac{26}{500} = 0,052A$
4. $I_{R3} = \frac{26}{500} = 0,052A$
5. $I_{R4} = \frac{26}{1000} = 0,026A$
6. $I_{R5} = \frac{26}{100} = 0,26A$

6.
$$I_{R5} = \frac{26}{100} = 0,26$$
A

2.2. Общий ток

$$\sum_{I_{R1}}^{I_{R6}} = 0,26+0,26+0,052+0,052+0,026+0,26=0,91A$$

3. Таблица и первое правило Кирхгофа

3.1 Таблица ответов

3.2 Доказательство первого правила Кирхгофа

$$\frac{1}{R_{\text{9KB.}}} = \frac{1}{100} + \frac{1}{100} + \frac{1}{500} + \frac{1}{500} + \frac{1}{1000} + \frac{1}{100} = 0,035 \Rightarrow R_{\text{9KB.}} = 28,57\Omega$$

$$I_{\text{BX}} = \frac{U}{R} = \frac{26}{28.85} = 0,91A$$

$$I_{\text{BbIX}} = I_{R1} + I_{R2} + I_{R3} + I_{R4} + I_{R5} + I_{R6} I_{\text{BbIX}} = 0,26 + 0,26 + 0,052 + 0,052 + 0,026 + 0,26 = 0,91A$$

$$I_{\text{BX}} = I_{\text{BMX}} \{ I_{\text{BX}} = 0,91A \\ I_{\text{BMX}} = 0,91A \}$$

Сумма токов входящих в узел равна сумме токов исходящих из узла.

Первый закон Кирхгофа доказан

4. Как изменится общий ток цепи если исключить из схемы резистор R4

$$I_{\text{BMX}} = I_{R1} + I_{R2} + I_{R3} + I_{R5} + I_{R6} I_{\text{BMX}} = 0, 26 + 0, 26 + 0, 052 + 0, 026 + 0, 26 = 0, 86A$$

Общий ток цепи уменьшится

Расчетная работа №6

Вариант задания

1. Принципиальная схема

2. Расчеты сили тока и ΔU

2.1. Расчеты силы тока каждой ветви цепи

1.
$$R_{\text{3KB}.R1,R2} = R1 + R2 = 100 + 100 = 200\Omega$$

2.
$$R_{3KB.R3,R4,R5} = R3 + R4 + R5 = 500 + 50 + 100 = 650\Omega$$

3.
$$R_{\text{3KB}.R6,R7,R8,R9} = R6 + R7 + R8 + R9 = 100 + 400 + 100 + 200 = 800\Omega$$

І для каждоый ветви цепи:

1.
$$I_1 = \frac{U}{R_{\text{9KB},R1,R2}} = \frac{26}{200} = 0, 13A$$

2. $I_2 = \frac{U}{R_{\text{9KB},R3,R4,R5}} = \frac{26}{650} = 0, 04A$
3. $I_3 = \frac{U}{R_{\text{9KB},R6,R7,R8,R9}} = \frac{26}{800} = 0, 0325A$

№ ветви цепи	Ω	Α
1. Ветвь (R1+R2)	200	0,13
2. Ветвь (R3+R4+R5)	650	0,04
3. Ветвь (R6+R7+R6+R9)	800	0.0325

2.2 Расчет напряжения падения на каждом резисторе

1.
$$\Delta U_{R1} = U \times I_1 = 100 \times 0, 13 = 13V$$

2.
$$\Delta U_{R2} = U \times I_1 = 100 \times 0, 13 = 13V$$

3.
$$\Delta U_{R3} = U \times I_1 = 500 \times 0,04 = 20V$$

4.
$$\Delta U_{R4} = U \times I_1 = 50 \times 0,04 = 2V$$

5.
$$\Delta U_{R5} = U \times I_1 = 100 \times 0,04 = 4V$$

6.
$$\Delta U_{R6} = U \times I_1 = 100 \times 0,0325 = 3,25V$$

7.
$$\Delta U_{R7} = U \times I_1 = 400 \times 0,0325 = 13V$$

8.
$$\Delta U_{R8} = U \times I_1 = 100 \times 0,0325 = 3,25V$$

9.
$$\Delta U_{R9} = U \times I_1 = 200 \times 0,0325 = 6,5V$$

3. Таблица и второе правило Кирхгофа

3.1 Таблица напряжений падания каждого резистора

$$\Delta U_{R1}$$
 ΔU_{R2} ΔU_{R3} ΔU_{R4} ΔU_{R5} ΔU_{R6} ΔU_{R7} ΔU_{R8} ΔU_{R9} 13V 13V 20V 2V 4V 3,25V 13V 3,25V 6,5V

3.2 Доказательство второго правила Кирхгофа

Алгебраическая сумма всех напряжений любой замкнутой цепи должна равняться нулю.

Т.к. каждая ветвь нашей схемы предстовляет замкнутую цепь и мы имеем 3 ветви, следовательно мы имеем 3 цепи, следовательно общее напряжение будет равно напряжению падения каждой отдельной ветви:

1.
$$U_{GB} - \Delta U_{R1} - \Delta U_{R2} = 26 - 13 - 13 = 0$$

2.
$$U_{GB} - \Delta U_{R3} - \Delta U_{R4} - \Delta U_{R5} = 26 - 20 - 2 - 4 = 0$$

3.
$$U_{GB} - \Delta U_{R6} - \Delta U_{R7} - \Delta U_{R8} - \Delta U_{R9} = 26 - 3,25 - 13 - 3,25 - 6,5 = 0$$

Из расчетов видно что сумма напряжений каждой (ветви) замкнутой цепи равна нулю. Следовательно второе правило Кирхгофа доказано.