Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

13^a lista de exercícios - Funções seno e cosseno.

- 1. Converta de graus para radianos ou vice-versa.
 - (a) 72° .
- **(b)** 54°.
- (c) -45° .
- (d) $\frac{11\pi}{3}$ rad.

- (e) $-\frac{5\pi}{4}$ rad. (f) $-\frac{13\pi}{12}$ rad.
- **2.** Determine sen $t \in \cos t$ para os valores de t abaixo.

(a)
$$t = \frac{\pi}{2}$$
.

(b) $t = \pi$.

(c) $t = -\frac{\pi}{2}$.

(d)
$$t = 2k\pi$$
, em que $k \in \mathbb{Z}$. (e) $t = \frac{\pi}{4}$.

(e)
$$t = \frac{\pi}{4}$$
.

(f)
$$t = -\frac{3\pi}{4}$$

(g)
$$t = \frac{\pi}{3}$$
.

(h)
$$t = \frac{4\pi}{3}$$
.

(i)
$$t = -\frac{5\pi}{3}$$

- 3. Utilize o círculo trigonométrico para verificar que $sen(t+\pi) = -sen t e cos(t+\pi) = -cos t$.
- 4. Toda vez que o coração bate, a pressão sanguínea aumenta e então decresce à medida que o coração relaxa entre as batidas. As pressões sanguíneas máxima e mínima são denominadas pressão sistólica e diastólica, respectivamente. A leitura da pressão é escrita na forma sistólica/diastólica. Por exemplo, a leitura 120/80 é considerada normal. Suponha que a pressão sanguínea p de uma certa pessoa é modelada pela função

$$p(t) = 115 + 25\operatorname{sen}(160\pi t),$$

em que t é medido em minutos e p(t) em mmHq (milímetros de mercúrio).

- (a) Determine o período de p.
- (b) Determine a leitura da pressão deste indivíduo.
- (c) Determine o número de batidas por minuto do coração.
- 5. Utilize as técnicas de construção de gráficos para fazer o gráfico das funções abaixo.
 - (a) $f(x) = 1 + \cos x$.
- **(b)** $f(x) = -\sin x$.
- (c) $f(x) = 4 2 \sin x$.

- (d) $f(x) = \cos\left(x \frac{\pi}{2}\right)$. (e) $f(x) = 3\sin\left(\frac{1}{2}\left(x + \frac{\pi}{4}\right)\right)$.
- 6. Assuma que o ângulo x é dado em graus. Encontre a menor solução da equação $2\cos^2 x + \sin x = 1$ tal que sen $x \neq 1$ e $0 \leq x < 360^{\circ}$.
- 7. Se R e θ satisfazem a equação

$$10\cos(5x) + 30\sin(5x) = R\cos(5x - \theta),$$

calcule $R^2 \cdot \left(\frac{\sin \theta}{\cos \theta}\right)$. (Lembre-se que $\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$.)

- 8. Determine o maior valor da função $f(x) = 175\cos(x) + 420\sin(x) + 10$. (Lembre-se que $\sin(a+b) = \sin a \cos b + \cos a \sin b$).
- 9. Um navegante, a fim de estimar a distância de seu navio até a costa, procedeu da seguinte maneira. Ele sabia que a costa ficava paralela à direção norte-sul, então de um ponto A ele mediu o ângulo visual $\alpha=38^\circ$ formado entre a direção de um farol F situado na costa e a direção norte e então navegou na direção norte por uma distância d=1150 m até um ponto B, no qual o ângulo visual media 2α , como na figura abaixo.

Usando trigonometria ele então pode descobrir a que distância seu navio estava da costa. Que distância era essa? (Dados: $sen(38^\circ) \approx 0,61566$ e $cos(38^\circ) \approx 0,78801$)

- **10.** Se $sen(x) = \frac{1}{16}$, qual é o valor de $\frac{4}{3 sen(x) sen(3x)}$?
- 11. Determine o inteiro $0 \le n \le 90$ tal que

$$\sin 66^{\circ} \cos 13^{\circ} + \cos 68^{\circ} + \cos 79^{\circ} + \cos 90^{\circ} + \cos 101^{\circ} + \cos 112^{\circ} + \cos 66^{\circ} \sin 13^{\circ} = \sin n^{\circ}$$
.

12. Determine a maior raiz (em graus) inteira, no intervalo [0, 360], da equação

$$\cos(11x) + \cos(7x) = 0.$$

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

Gabarito da 13^a lista de exercícios

Funções seno e cosseno.

1.

(a)
$$72^{\circ} = \frac{2\pi}{5} \text{ rad.}$$

(b)
$$54^{\circ} = \frac{3\pi}{10} \, \text{rad.}$$

(c)
$$-45^{\circ} = -\frac{\pi}{4} \text{ rad.}$$

(a)
$$72^{\circ} = \frac{2\pi}{5} \text{ rad.}$$
 (b) $54^{\circ} = \frac{3\pi}{10} \text{ rad.}$ (c) $-45^{\circ} = -\frac{\pi}{4} \text{ rad.}$ (d) $\frac{11\pi}{3} \text{ rad} = 660^{\circ}.$

(e)
$$-\frac{5\pi}{4}$$
 rad = -225° . (f) $-\frac{13\pi}{12}$ rad = -195° .

2.

(a)
$$sen(\pi/2) = 1$$
, $cos(\pi/2) = 0$

(b)
$$\sin \pi = 0$$
, $\cos \pi = -1$

(c)
$$sen(-\pi/2) = -1$$
, $cos(-\pi/2) = 0$

(d)
$$sen(2k\pi) = 0$$
, $cos(2k\pi) = 1$

(e)
$$sen(\pi/4) = \sqrt{2}/2$$
, $cos(\pi/4) = \sqrt{2}/2$

(f)
$$sen(-3\pi/4) = -\sqrt{2}/2$$
, $cos(-3\pi/4) = -\sqrt{2}/2$

(g)
$$sen(\pi/3) = \sqrt{3}/2$$
, $cos(\pi/3) = 1/2$

(h)
$$sen(4\pi/3) = -\sqrt{3}/2$$
, $cos(4\pi/3) = -1/2$

(i)
$$sen(-5\pi/3) = \sqrt{3}/2$$
, $cos(-5\pi/3) = 1/2$

3.

4.

(a)
$$1/80 \,\mathrm{min}$$
.

(c) 80 batidas por minuto.

5.

(a)

(b)

(c)

(d) Período 2π , amplitude 1 e imagem [-1,1].

(e) Período 4π , amplitude 3 e imagem [-3,3].

- **6.** $x = 210^{\circ}$
- **7.** 3000
- **8.** 465
- **9.** 1115,83 m
- **10.** 4096
- **11.** n = 79
- **12.** $x = 350^{\circ}$