Advanced Linear Algebra

Semester 1, 2022

Prof Timothy Moroney

TARANG JANAWALKAR

Contents

Contents		
		damental Concepts of Linear Algebra
	1.1	Row Echelon Form
	1.2	Elementary Matrix
	1.3	Reduced Row Echelon Form
	1.4	Elimination Matrix
	1.5	Linear Systems
	1.6	Consistency of a Linear System
		1.6.1 Basic and Free Variables
		1.6.2 Singular Matrices

1 Fundamental Concepts of Linear Algebra

1.1 Row Echelon Form

As studied in Linear Algebra, we can solve linear systems by applying the following elementary row operations to any matrix \mathbf{A} .

Type I. Exchange any two rows.

Type II. Multiply any row by a constant.

Type III. Add a multiple of one row to another row.

This allows us to reduce A into row echelon form such that the entries below the main diagonal are zero:

$$\mathbf{R}_{ ext{ref}} = egin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \ & r_{22} & \cdots & r_{2n} \ & & \ddots & dots \ & & & r_{mn} \end{bmatrix}$$

1.2 Elementary Matrix

Mathematically, we can represent these row operations as a matrix which is left multiplied to A.

Definition 1.1 (Elementary matrix). An elementary matrix \mathbf{E}_i is constructed by applying a row operation to the elementary matrix \mathbf{I}_m . Consider a 3 by 4 matrix \mathbf{A} ; a common first elementary row operation might be

$$r_2 \leftarrow r_2 - \frac{a_{21}}{a_{11}} r_1$$

which when applied to \mathbf{I}_3 yields

$$\mathbf{E}_1 = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{a_{21}}{a_{11}} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where the 1 subscript simply indicates the first of many elementary row operations. Left multiplying this to an arbitrary $\bf A$ gives

$$\begin{split} \mathbf{E}_{1}\mathbf{A} &= \begin{bmatrix} 1 & 0 & 0 \\ -\frac{a_{21}}{a_{11}} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \\ &= \begin{bmatrix} a_{11} & a_{12} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} - \frac{a_{12}a_{21}}{a_{11}} & a_{23} - \frac{a_{13}a_{21}}{a_{11}} & a_{24} - \frac{a_{14}a_{21}}{a_{11}} \\ a_{31} & a_{32} & a_{33} & a_{33} \end{bmatrix} \end{split}$$

which has the desired result of eliminating the first column of the second row.

1.3 Reduced Row Echelon Form

As there are infinitely many ways to reduce a matrix to row echelon form, we typically reduce \mathbf{R}_{ref} further into **reduced row echelon form** which is a unique reduction for every \mathbf{A} .

This matrix \mathbf{R}_{rref} (or simply \mathbf{R}) generally requires $m \times n$ elementary row operations and is only useful for theoretical analysis. In reduced row echelon form, any entries in the same column as a pivot must be 0, and each pivot is 1.

1.4 Elimination Matrix

The elementary matrices involved in row reduction can be expressed as a single matrix containing every each row operation.

$$\mathbf{E}_9 \mathbf{E}_8 \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \mathbf{E} \mathbf{A}$$
$$= \mathbf{R}.$$

1.5 Linear Systems

Given the linear system $\mathbf{A}x = \mathbf{b}$ we can augment \mathbf{A} with \mathbf{b} to draw conclusions about the solutions. If we left multiply the elimination matrix \mathbf{E} to $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ we can apply the same operations to \mathbf{b} .

$$\mathbf{E} \begin{bmatrix} \mathbf{A} \mid \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} \mathbf{E}\mathbf{A} \mid \mathbf{E}\boldsymbol{b} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{R} \mid \boldsymbol{z} \end{bmatrix}$$

Therefore

$$\mathbf{R}x = z$$

1.6 Consistency of a Linear System

After reducing the matrix A to R, we can summarise certain characteristics about A.

1.6.1 Basic and Free Variables

Identifying the pivots in R allows us to determine the dimensions of various subspaces of A.

Definition 1.2 (Basic variables). The columns that a pivot corresponds to are known as basic variables (or leading variables).

Definition 1.3 (Free variables). Any columns not corresponding to any pivots are known as free variables (or parameters). Consequently, any variables that are not basic variables are free variables.

In the following example, x_1 , x_3 , and x_4 are basic variables, whereas x_2 and x_5 are free variables.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 6 & 7 \\ 0 & 0 & 0 & 1 & 8 \end{bmatrix}$$

When using backward substitution to solve $\mathbf{R}x = \mathbf{z}$, we assign new variables to any free variables to indicate that they are parameters to the system.

1.6.2 Singular Matrices

After reducing ${\bf A}$ to ${\bf R}$ we can consider its