

Basic FPGA Architecture

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Overview

- All Xilinx FPGAs contain the same basic resources
 - Slices (grouped into CLBs)
 - IOBs
 - Programmable interconnect
 - Other resources
 - Memory
 - Multipliers
 - Global clock buffers
 - Boundary scan logic

Virtex-II Architecture

Outline

- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Slices and CLBs

Simplified Slice Structure

Detailed Slice Structure

Look-Up Tables

Α	В	С	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0 1 1
0	1	0	0	1
0	1	0	1	1
	-	-	-	
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Connecting Look-Up Tables

Fast Carry Logic

MULT_AND Gate Improves Performance

Flexible Sequential Elements

Shift Register LUT (SRL16CE)

Shift Register LUT Example

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

IOB Element

SelectIO Standard

- Differential signaling standards
 - LVDS, BLVDS, ULVDS
 - LDT
 - LVPECL
- Single-ended I/O standards
 - LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)
 - PCI-X at 133 MHz, PCI (3.3V at 33 MHz and 66 MHz)
 - GTL, GTLP
 - and more!

Easier
and
More
Flexible
I/O Design!

Digital Controlled Impedance (DCI)

- DCI provides
 - Output drivers that match the impedance of the traces
 - On-chip termination for receivers and transmitters
- DCI advantages
 - Improves signal integrity by eliminating stub reflections
 - Reduces board routing complexity and component count by eliminating external resistors
 - Eliminates the effects of temperature, voltage, and process variations by using an internal feedback circuit

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Other Virtex-II Features

- Distributed RAM and block RAM
 - Distributed RAM uses the CLB resources (1 LUT = 16 RAM bits)
 - Block RAM is a dedicated resources on the device (18-kb blocks)
- Dedicated 18 x 18 multipliers next to block RAMs
- Clock management resources
 - Sixteen dedicated global clock multiplexers
 - Digital Clock Managers (DCMs)

Distributed SelectRAM Resources

- Uses a LUT in a slice as memory
- Synchronous write
- Asynchronous read
- RAM and ROM are initialized during configuration
- Emulated dual-port RAM
 - One read/write port
 - One read-only port

Block SelectRAM Resources

- Up to 3.5 Mb of RAM in 18-kb blocks
 - Synchronous read and write
- True dual-port memory
 - Each port has synchronous read and write capability
 - Different clocks for each port
- Supports initial values
- Synchronous reset on output latches
- Supports parity bits
 - One parity bit per eight data bits

Dedicated Multiplier Blocks

Global Clock Routing Resources

- Sixteen dedicated global clock multiplexers
 - Eight on the top-center of the die, eight on the bottom-center
 - Driven by a clock input pad, a DCM, or local routing
- Global clock multiplexers provide the following:
 - Traditional clock buffer (BUFG) function
 - Global clock enable capability (BUFGCE)
 - Glitch-free switching between clock signals (BUFGMUX)
- Up to eight clock nets can be used in each clock region of the device
 - Each device contains four or more clock regions

Digital Clock Manager (DCM)

- DCMs provide the following:
 - Delay-Locked Loop (DLL)
 - Digital Frequency Synthesizer (DFS)
 - Digital Phase Shifter (DPS)
- Up to four outputs of each DCM can drive onto global clock buffers
 - All DCM outputs can drive general routing

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Spartan-3 versus Virtex-II

- Lower cost
- Smaller process = lower core voltage
 - .09 micron versus .15 micron
 - Vccint = 1.2V versus 1.5V
- Different I/O standard support
 - New standards: 1.2V LVCMOS,1.8V HSTL, and SSTL
 - Default is LVCMOS, versus LVTTL

- More I/O pins per package
- Only one-half of the slices support RAM or SRL16s (SLICEM)
- Fewer block RAMs and multiplier blocks
 - Same size and functionality
- Eight global clock multiplexers
- Two or four DCM blocks
- No internal 3-state buffers
 - 3-state buffers are in the I/O

SLICEM and SLICEL

Spartan-3E Features

- More gates per I/O than Spartan-3
- Removed some I/O standards
 - Higher-drive LVCMOS
 - GTL, GTLP
 - SSTL2_II
 - HSTL_II_18, HSTL_I, HSTL_III
 - LVDS_EXT, ULVDS
- DDR Cascade
 - Internal data is presented on a single clock edge

- 16 BUFGMUXes on left and right sides
 - Drive half the chip only
 - In addition to eight global clocks
- Pipelined multipliers
- Additional configuration modes
 - SPI, BPI
 - Multi-Boot mode

Virtex-II Pro Features

- 0.13 micron process
- Up to 24 RocketIO™ Multi-Gigabit Transceiver (MGT) blocks
 - Serializer and deserializer (SERDES)
 - Fibre Channel, Gigabit Ethernet, XAUI, Infiniband compliant transceivers, and others
 - 8-, 16-, and 32-bit selectable FPGA interface
 - 8B/10B encoder and decoder
- PowerPC™ RISC processor blocks
 - Thirty-two 32-bit General Purpose Registers (GPRs)
 - Low power consumption: 0.9mW/MHz
 - IBM CoreConnect bus architecture support

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Virtex-4 Architecture Has the Most Advanced Feature Set

RocketIO™ Multi-Gigabit **Transceivers** 622 Mbps-10.3 Gbps

Advanced CLBs 200K Logic Cells

XtremeDSP™ Technology Slices 256 18x18 GMACs

PowerPC™ 405

Smart RAM New block RAM/FIFO

> Xesium Clocking **Technology** 500 MHz

Tri-Mode Ethernet MAC 10/100/1000 Mbps

1 Gbps SelectIO™ ChipSync™ Source synch, with APU Interface **XCITE Active Termination** 450 MHz, 680 DMIPS

Choose the Platform that Best Fits the Application

Virtex[™]-5 Family: First 65nm FPGAs

Continuing the Drive for Innovation

Enhanced

36Kbit Dual-Port Block RAM / FIFO with Integrated ECC

550 MHz Clock Management Tile with DCM and PLL

SelectIO with ChipSync
Technology and XCITE DCI

Advanced Configuration Options

25x18 DSP Slice with Integrated ALU

Tri-Mode 10/100/1000 Mbps Ethernet MACs

Most Advanced High-Performance Real 6LUT Logic Fabric

PCI Express® Endpoint Block

System Monitor Function with Built-in ADC

Next Generation PowerPC®
Embedded Processor

RocketIO[™] Transceiver Options
Low-Power GTP: Up to 3.75 Gbps
High-Performance GTX: Up to 6.5 Gbps

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
 - Appendix

Review Questions

- List the primary slice features
- List the three ways a LUT can be configured

Answers

- List the primary slice features
 - Look-up tables and function generators (two per slice, eight per CLB)
 - Registers (two per slice, eight per CLB)
 - Dedicated multiplexers (MUXF5, MUXF6, MUXF7, MUXF8)
 - Carry logic
 - MULT_AND gate
- List the three ways a LUT can be configured
 - Combinatorial logic
 - Shift register (SRL16CE)
 - Distributed memory

Summary

- Slices contain LUTs, registers, and carry logic
 - LUTs are connected with dedicated multiplexers and carry logic
 - LUTs can be configured as shift registers or memory
- IOBs contain DDR registers
- SelectIO[™] standards and DCI enable direct connection to multiple
 I/O standards while reducing component count
- Virtex[™]-II memory resources include the following:
 - Distributed SelectRAM™ resources and distributed SelectROM (uses CLB LUTs)
 - 18-kb block SelectRAM resources

Summary

- The Virtex[™]-II devices contain dedicated 18x18 multipliers next to each block SelectRAM[™] resource
- Digital clock managers provide the following:
 - Delay-Locked Loop (DLL)
 - Digital Frequency Synthesizer (DFS)
 - Digital Phase Shifter (DPS)

Where Can I Learn More?

- User Guides
 - www.xilinx.com → Documentation → User Guides
- Application Notes
 - www.xilinx.com → Documentation → Application Notes
- Education resources
 - Designing with the Virtex-4 Family course
 - Spartan-3E Architecture free Recorded e-Learning

Outline

- Overview
- Slice Resources
- I/O Resources
- Memory and Clocking
- Spartan-3, Spartan-3E, and Virtex-II Pro Features
- Virtex-4 Features
- Summary
- Appendix

Double Data Rate Registers

- DDR registers can be clocked
 - By Clock and NOT(Clock) if the duty cycle is 50/50
 - By the CLK0 and CLK180 outputs of a DCM

- If D1 = "1" and D2 = "0", the output is a copy of Clock
 - Use this technique to generate a clock output that is synchronized to DDR output data

Dual-Port Block RAM Configurations

 Configurations available on each port

Configuration	Depth	Data Bits	Parity Bits
16k x 1	16 kb	1	0
8k x 2	8 kb	2	0
4k x 4	4 kb	4	0
2k x 9	2 kb	8	1
1k x 18	1 kb	16	2
512 x 36	512	32	4

- Independent configurations on ports A and B
 - Supports data-width conversion, including parity bits

Clock Buffer Configurations

- Clock buffer (BUFG)
 - Low-skew clock distribution
- Clock enable buffer (BUFGCE)
 - Holds the clock output Low when Clock Enable (CE) is inactive
 - CE can be active-High or active-Low
 - Changes in CE are only recognized when the clock input is Low to avoid glitches and short clock pulses

Clock Buffer Configurations

- Clock multiplexer (BUFGMUX)
 - Switches from one clock to another, glitch-free
 - After a change on S, the BUFGMUX waits for the currently selected clock input to go Low
 - The output is held Low until the newly selected clock goes Low, then switches

