Graph Theory Set 5

- 21. Show that the complement of this tree on 7 vertices is planar:
- **22.** Find the least n such that if T is a tree with n vertices, then T^c is not planar.
- **23.** The **crossing number** of a graph G is the minimum number of edge crossings needed to draw G in the plane. Suppose G has V vertices, E edges, and smallest cycle length C.
 - **a.** Show that if G is planar, then $(C-2)E-C(V-2) \leq 0$.
 - **b.** Suppose *G* has crossing number *K*. Show that $(C-2)(E-K)-C(V-2)\leq 0$. Rewritten, this is $E-C(V-2)/(C-2)\leq K$, which gives a lower bound on *K*.
 - **c.** Find the crossing number for the Petersen graph.
 - **d.** Find the crossing number for the **Heawood graph**, a graph with E = 21, V = 14 and C = 6 that is shown below:

- **24.** Let G be planar with V vertices, E edges, and F faces and let G^* be a dual for G.
 - **a.** How many vertices, edges, and faces does G^* have?
 - **b.** Let T be a spanning tree for G. Let T^* be the edges in G^* which do not cross edges in T when G and G^* are superimposed. Show that T^* is a spanning tree for G^* .
 - **c.** Use the above two parts of this exercise to give a new proof that V E + F = 2.
- **25.** Suppose G is connected, not a tree, does not contain $K_{1,3}$ as a subgraph, and does not contain $K_{1,3} + e$ as subgraph. Show that G is Hamiltonian. Hint: Show that the longest cycle in G must contain every vertex.
- **26.** Show the following graph is not Hamiltonian:

