

POHON

Deasy Sandhya Elya Ikawati, S. Si, M. Si

Matematika Informatika Politeknik Negeri Malang 2020

DEFINISI

 Pohon adalah terhubung yang sirkuit

graf tak-berarah tidak mengandung

Hutan (*forest*) adalah

- kumpulan pohon yang saling lepas, atau
- graf tidak terhubung yang tidak mengandung sirkuit. Setiap komponen di dalam graf terhubung tersebut adalah pohon.

Hutan yang terdiri dari tiga buah pohon

SIFAT-SIFAT (PROPERTI) POHON

- **Teorema.** Misalkan G = (V, E) adalah graf tak-berarah sederhana dan jumlah simpulnya n. Maka, semua pernyataan di bawah ini adalah ekivalen:
 - 1. *G* adalah pohon.
 - 2. Setiap pasang simpul di dalam *G* terhubung dengan lintasan tunggal.
 - 3. *G* terhubung dan memiliki m = n 1 buah sisi.
 - 4. G tidak mengandung sirkuit dan memiliki m = n 1 buah sisi.
 - 5. *G* tidak mengandung sirkuit dan penambahan satu sisi pada graf akan membuat hanya satu sirkuit.
 - 6. G terhubung dan semua sisinya adalah jembatan.
- Teorema di atas dapat dikatakan sebagai definisi lain dari pohon.

POHON BERAKAR (ROOTED TREE)

• Pohon yang satu buah simpulnya diperlakukan sebagai akar dan sisi-sisinya diberi arah sehingga menjadi graf berarah dinamakan **pohon berakar** (*rooted tree*).

(a) Pohon berakar

(b) sebagai perjanjian, tanda panah pada sisi dapat dibuang

Pohon dan dua buah pohon berakar yang dihasilkan dari pemilihan dua simpul berbeda sebagai akar

TERMINOLOGI PADA POHON BERAKAR

Anak (child atau children) dan Orangtua (parent)

b, c, dan d adalah anak-anak simpul a, a adalah orangtua dari anak-anak itu

2. Lintasan (path)

Lintasan dari *a* ke *j* adalah *a*, *b*, *e*, *j*.

Panjang lintasan dari *a* ke *j* adalah 3.

3. Saudara kandung (sibling)

f adalah saudara kandung e, tetapi g bukan saudara kandung e, karena orangtua mereka berbeda.

4. Upapohon (subtree)

5. Derajat (degree)

Derajat sebuah simpul adalah jumlah upapohon (atau jumlah anak) pada simpul tersebut.

Derajat *a* adalah 3, derajat *b* adalah 2, Derajat *d* adalah satu dan derajat *c* adalah 0.

Jadi, derajat yang dimaksudkan di sini adalah derajat-keluar.

Derajat maksimum dari semua simpul merupakan derajat pohon itu sendiri. Pohon di atas berderajat 3

6. Daun (leaf)

Simpul yang berderajat nol (atau tidak mempunyai anak) disebut **daun**. Simpul h, i, j, f, c, l, dan m adalah daun.

7. Simpul Dalam (internal nodes)

Simpul yang mempunyai anak disebut **simpul dalam**. Simpul b, d, e, g, dan k adalah simpul dalam.

8. Aras (level) atau Tingkat

9. Tinggi (height) atau Kedalaman (depth)

Aras maksimum dari suatu pohon disebut **tinggi** atau **kedalaman** pohon tersebut. Pohon di atas mempunyai tinggi 4.

POHON TERURUT (ORDERED TREE)

Pohon berakar yang urutan anak-anaknya penting disebut **pohon terurut** (*ordered tree*).

(a) dan (b) adalah dua pohon terurut yang berbeda

POHON N-ARY

• Pohon berakar yang setiap simpul cabangnya mempunyai paling banyak *n* buah anak disebut **pohon** *n-ary*.

Gambar Pohon parsing dari kalimat A tall boy wears a red hat

• Pohon *n-ary* dikatakan **teratur** atau **penuh** (*full*) jika setiap simpul cabangnya mempunyai tepat *n* anak.

POHON BINER (BINARY TREE)

- \square Adalah pohon *n*-ary dengan n=2.
- Pohon yang paling penting karena banyak aplikasinya.
- Setiap simpul di dalam pohon biner mempunyai paling banyak 2 buah anak.
- Dibedakan antara anak kiri (left child) dan anak kanan (right child)
- Karena ada perbedaan urutan anak, maka pohon biner adalah pohon terurut.

Gambar Dua buah pohon biner yang berbeda

Gambar (a) Pohon condong-kiri, dan (b) pohon condong kanan

Gambar Pohon biner penuh

Pohon Biner Seimbang

Pada beberapa aplikasi, diinginkan tinggi upapohon kiri dan tinggi upapohon kanan yang seimbang, yaitu berbeda maksimal 1.

Gambar T_1 dan T_2 adalah pohon seimbang, sedangkan T_3 bukan pohon seimbang.

POHON MERENTANG (SPANNING TREE)

- Pohon merentang dari graf terhubung adalah upagraf merentang yang berupa pohon.
- Pohon merentang diperoleh dengan memutus sirkuit di dalam graf.

- Setiap graf terhubung mempunyai paling sedikit satu buah pohon merentang.
- Graf tak-terhubung dengan *k* komponen mempunyai *k* buah hutan merentang yang disebut hutan merentang (*spanning forest*).

APLIKASI POHON MERENTANG

- 1. Jumlah ruas jalan seminimum mungkin yang menghubungkan semua kota sehingga setiap kota tetap terhubung satu sama lain.
- 2. Perutean (routing) pesan pada jaringan komputer.

(a) Jaringan komputer, (b) Pohon merentang multicast

POHON MERENTANG MINIMUM

- Graf terhubung-berbobot mungkin mempunyai lebih dari 1 pohon merentang.
- Pohon merentang yang berbobot minimum —dinamakan **pohon merentang minimum** (*minimum spanning tree*).

ALGORITMA PRIMS

Langkah 1 : Ambil sisi graf G yang berbobot minimum, masukkan ke dalam T.

Langkah 2: Pilih sisi (u,v) yang mempunyai bobot minimum dan bersisian dengan simpul T, tetapi (U, v) tidak membentuk sirkuit di T. Masukkan (u, v) ke dalam T.

Langkah 3 : Ulangi langkah 2 sebanyak n-2 kali.

CONTOH ALGORITMA PRIMS

T .			
Langkah	Sisi	Bobot	Pohon rentang
1	(1, 2)	10	1 10 2 •
2	(2, 6)	25	1 10 2
3	(3, 6)	15	25
4	(4, 6)	20	1 10 2
5	(3. 5)	35	1 10 2 45 35 3 20 55 5

$$Bobot = 10 + 25 + 15 + 20 + 35 = 105$$

ALGORITMA KRUSKAL

Langkah 0: Sisi dari graf sudah diurut secara menaik berdasarkan bobotnya- dari bobot kecil ke besar;

Langkah 1:T (graf) masih kosong;

Langkah 2 : Pilih sisi (u, v) dengan bobot minimum yang tidak membentuk sirkuit di T. Tambahkan (u, v) ke dalam T;

Langkah 3 : Ulangi langkah 2 sebanyak n-1 kali.

```
procedure Kruskal(input G : graf, output T : pohon)
{ Membentuk pohon merentang minimum T dari graf terhubung -
berbobot G.
Masukan: graf-berbobot terhubung G = (V, E), dengan /V/= n
Keluaran: pohon rentang minimum T = (V, E')
Deklarasi
  i, p, q, u, v : integer
Algoritma
  ( Asumsi: sisi-sisi dari graf sudah diurut menaik
     berdasarkan bobotnya - dari bobot kecil ke bobot
     besar)
  T \leftarrow \{\}
  while jumlah sisi T < n-1 do
    Pilih sisi (u,v) dari E yang bobotnya terkecil
    if (u,v) tidak membentuk siklus di T then
       T \leftarrow T \cup \{(u,v)\}
    endif
  endfor
```

CONTOH ALGORITMA KRUSKAL

Sisi-sisi diurut menaik:

Sisi	(1,2)	(3,6)	(4,6)	(2,6)	(1,4)	(3,5)	(2,5)	(1,5)	(2,3)	(5,6)
Bobot	10	15	20	25	30	35	40	45	50	55

1			
Langkah	Sisi	Bobot	Hutan merentang
0			1 2 3 4 5 6
1	(1, 2)	10	1 2
2	(3, 6)	15	1 2 3 4 5 6
3	(4, 6)	20	1 2 3 5
4	(2, 6)	25	3 5
5	(1, 4)	30	ditolak
6	(3, 5)	35	1 2 5 3

$$Bobot = 10 + 25 + 15 + 20 + 35 = 105$$

- Spanning tree yang dihasilkan tidak selalu unik, meskipun bobotnya tetap sama
- Hal ini terjadi jika ada beberapa sisi yang akan dipilih berbobot sama.

CONTOH

Contoh:

3 buah pohon rentang minimumnya:

Bobotnya sama yaitu = 36

SOAL LATIHAN

Tentukan dan gambarkan pohon merentang minimum dari graf pada gambar tersebut menggunakan:

- a) Algoritma Prim
- b) Algoritma Kruskal

REFRENSI

Munir, Rinaldi, "Matematika Diskrit Ed. Revisi Ke-3", Informatika Bandung, 2012