

AULA PASSADA VIMOS

DUALIDADE-

Relação entre os problemas Primal e Dual Teorema da Folga Complementar

AULA PASSADA VIMOS

DUALIDADE- Resultados importantes

- ➤ Teorema da Dualidade Fraca (COTA SUPERIOR)
- ➤ Teorema da Dualidade Forte

Teorema da dualidade fraca

$$\prod_{j=1}^{n} c_{j} x_{j} \leq \prod_{j=1}^{m} b_{i} y_{i} \qquad (3)$$

$$\begin{array}{cccc}
& \underset{\longrightarrow}{\min} imize \ w = \underset{\longrightarrow}{\overset{m}{\bigcup}} \ b_{i}y_{i} \\
& \underset{\longrightarrow}{\boxtimes} sujeito \ a & \underset{\longrightarrow}{\overset{m}{\bigcup}} \ a_{ij}y_{i} \ \square \ c_{j} & (j=1,...,n) \\
& \underset{\longrightarrow}{\square} & y_{i} \ \square \ 0 & (i=1,...,m)
\end{array}$$

Resultado a partir da desigualdade:

se encontramos uma solução primal viável $(x_1^*, ..., x_n^*)$

e uma solução dual viável (y₁*,...,y_m*) tal que

$$\prod_{j=1}^{n} c_{j} x_{j}^{*} = \prod_{i=1}^{m} b_{i} y_{i}^{*}$$

Então nós concluímos que ambas soluções são ÓTIMAS

TEOREMA DE DUALIDADE FORTE

Se o primal (P)

(P)
$$\begin{cases} \max imize \ z = \sum_{j=1}^{n} c_{j} x_{j} \\ sujeito \ a \quad \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad (i = 1, ..., m) \end{cases}$$
tem uma solução ótima
$$x_{j} \ge 0 \qquad (j = 1, ..., n)$$

$(x_1^*, x_2^*, ..., x_n^*)$

Então o dual (D)

tem uma solução ótima

$$\sum_{i=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$
 (1)

 $(y_1^*, y_2^*, ..., y_m^*)$

tal que

VIMOS TAMBÉM A SEGUINTE RELAÇÃO

RELAÇÃO ENTRE OS PROBLEMAS PRIMAL E DUAL

• Dual do dual é sempre o problema primal.

Um corolário do Teorema da Dualidade a partir desta relação COROLÁRIO:

O Problema primal tem uma solução ótima se o somente se o problema dual tem uma solução ótima.

o que você ainda pode concluir?

problema primal ilimitado => problema dual

problema dual ilimitado => problema primal
e quanto a ser inviável?

Se um dos dois problemas primal ou Dual for ilimitado então o conjunto viável do outro problema é vazio.

Prova :Segue diretamente do teorema da dualidade fraca.

Na verdade, suponha que o problema primal é ilimitado e, portanto, $z=c^tx \to +\infty$.

Por contradição, suponha que o problema dual seja viável. Então existiria uma solução, e

Pela teoria da dualidade fraca, teríamos que $w=b^t y$ seria um limite superior para o valor da função objetivo do primal $z=c^t x$, uma contradição porque (P) é ilimitado

Teorema 2 Se PROBLEMA PRIMAL tem solução viável mas a função objetivo é ilimitada, então o PROBLEMA DUAL não tem solução viável Se PROBLEMA DUAL tem solução viável mas a função objetivo é ilimitada, então o PROBLEMA PRIMAL não tem solução VIÁVEL

EXEMPLO 1.

Considere. O seguinte PPL

Maximize
$$z = 2x_1 + x_2$$

subject to

(P)
$$x_1 + 2x_2 \le 8$$

$$3x_1 + 4x_2 \le 18$$

$$x_1 \ge 0, \quad x_2 \ge 0.$$

O seu dual é dado por

O conjuntos de soluções viáveis de (P) é mostrado em (a) e o conjuntos de soluções viáveis de (D) é mostrado em (b). .

A solução ótima do primal é x_1 =6 e x_2 =0 e z=12 e a solução ótimo do Dual é w_1 =0, w_2 =3/2 e pelo Teorema Forte da Dualidade (TFD)

Exemplo 2

Primal

maximize $z=2x_1 + x_2$ sujeito a $3x_1 - 2x_2 \le 6$ $x_1 - 2x_2 \le 1$

$$x_1 \ge 0$$
, x_2 , ≥ 0

Dual

minimize w= $6y_1 + y_2$ sujeito a $3y_1 + y_2 \ge 2$

EXEMPLO 2.

Considere. O seguinte PPL

Maximize
$$z = 2x_1 + x_2$$

Ç

(P)
$$3x_1 - 2x_2 \le 6$$
$$x_1 - 2x_2 \le 1$$
$$x_1 \ge 0, \quad x_2 \ge 0.$$

O seu dual é dado por

Minimize
$$z' = 6w_1 + w_2$$

(D) Sujeito a

$$3w_1 + w_2 \ge 2$$
$$-2w_1 - 2w_2 \ge 1$$
$$w_1 \ge 0, \quad w_2 \ge 0.$$

Na figura abaixo

O conjuntos de soluções viáveis de (P) é mostrado em (a). O Problema primal tem solução ótima ilimitada. Observe que por exemplo, x_1 =0, x_2 assume valores tão grandes quanto se queira , e nesse caso $z=x_2$, também será tão grande quanto se queira.

As restrições do Dual (D) são mostradas em (b). Observe que não há solução viável para o problema

Exemplo3

Primal

maximize
$$z = x_1 + x_2$$

sujeito a
 $-x_1 + x_2 = 4$
 $x_1 - x_2 = 4$
 $x_1, x_2, \ge 0$

Dual

minimize
$$w = 4y_1 + 4y_2$$

sujeito a

$$-y_1 + y_2 ≥ 1$$

$$y_1-y_2 \ge 1$$

y₁, y₂ irrestritos

Ambos problemas são inviáveis

É possível mostrar que nem o problema (P), nem o problema (D) têm um solução viável

EXEMPLO 3.

Considere. O seguinte PPL

Maximize
$$z = 3x_1 + 2x_2$$

Sujeito a
 $2x_1 - 2x_2 \le -1$
 $-2x_1 + 2x_2 \le -4$
 $x_1 \ge 0, \quad x_2 \ge 0.$

Minimize $z' = -w_1 - 4w_2$ Sujeito a $2w_1 - 2w_2 \ge 3$ $-2w_1 + 2w_2 \ge 2$ $w_1 \ge 0, \quad w_2 \ge 0$. Na figura abaixo,

Os gráficos das restrições do problema primal são mostrados em (a) e os das restrições do dual são mostrados em (b). Nenhum dos problemas têm uma solução viável . Problemas são inviáveis.

Temos o seguinte corolário do Teorema da Dualidade (combinações Primal-Dual)

DUAL						
PRIMAL		ÓTIMA	INVIÁVEL	ILIMITADO		
	ÓTIMA		IMPOSSÍVEL TEOREMA 3)	IMPOSSÍVEL TEOREMA 2		
	INVIÁVEL	IMPOSSÍVEL (TEOREMA 3)	POSSÍVEL EXEMPLO 3	POSSÍVEL EXEMPLO2		
	ILIMITADO	IMPOSSÍVEL (TEOREMA 2)	POSSÍVEL EXEMPLO 2	IMPOSSÍVEL (TEOREMA 2)		

Problemas Primal Dual

Problema de programação linear na forma canônica

Programação linear na forma padrão

Referência:Chvátal, V. *Linear Programming* 1983

Bazaraa, M.; Jarvis, J; Sherali, H. Linear Programming and Network Flows

Relações entre os problemas primal e dual

PROBLEMA PRIMAL	PROBLEMA DUAL	
maximize	minimize	
Coeficientes da função objetivo	Lado direito das restrições	
Coeficientes da i-ésima restrição	Coeficientes da i-ésima variável, um em cada restrição	
i-ésima restrição é uma desigualdade ≤	i-ésima variável é ≥0	
i-ésima restrição é uma igualdade	i-ésima variável é irrestrita	
j-ésima variável é irrestrita	j-ésima restrição é uma igualdade	
j-ésima variável é ≥ 0	j-ésima restrição é uma desigualdade ≥	
Número de variáveis	Número de restrições	

PRIMAL	MAXIMIZE		DUAL
	≥0	≥ C _j	
VARIÁVEIS	≤0	≤C _J	RESTRIÇÕES
	IRRESTRITAS	=C _J	
	≤b _i	≥ 0	
RESTRIÇÕES	≥b _i	≤0	VARIÁVEIS
	=b _i	irrestrita	

DANDO CONTINUIDADE

- ➤ Folga Complementar/ Certificado de Otimalidade
- O Método Dual Simplex

Pode-se achar mais vantajoso, em certos casos, aplicar o simplex ao problema dual que diretamente ao problema primal. (a solução ótima do primal pode ser prontamente encontrada no dicionário

(tableau) final aplicado ao problema dual)

Por exemplo: m=99, n=9 => dicionário simplex tem 100 linhas no problema primal mas somente 10 no dual. Provavelmente será melhor resolver o problema dual, dado que o número de iterações guarda proporcionalidade com o número de linhas.

Do ponto de vista teórico

Dualidade aponta um modo sucinto e elegante de fornecer otimalidade de soluções de PPL:

- •Uma solução ótima do problema dual fornece um "certificado de otimalidade" para o problema primal e vice versa.
- •Mais ainda, o teorema de dualidade assegura que para toda solução ótima há um certificado de otimalidade.

Vejamos a seguir

(2)

O Impacto desse fato

Estudante deve resolver o problema

Aplicando o Método Simplex o estudante acha simultaneamente solução ótima $x_1^*, x_2^*, ..., x_n^*$ e uma

solução ótima y₁*, y₂*, ..., y_m* do problema dual

•Professor tem um modo fácil de checar se a resposta está correta. Para chegar

a *viabilidade* da apresentada solução ótima , ele verificará as desigual da desigual $a_{ii}x_{i} \le b_{i}$ i=1,2,...m

ald ades
$$a_{ij}x_j \le b_i$$
 $i=1,2,...m$

$$x_j^* \square 0 \qquad j=1,2...m$$

Para checar a *otimalidade*, ele deve verificar as desigualdad $e_{a_{ij}y_i^* \Box c_j \ j=1,2,...,n}$

Claramente envolve menos esforço computacional

VAMOS DEDUZIR AS CONDIÇÕES DE FOLGA COMPLEMENTAR

Pela dualidade fraca temos

$$\prod_{j=1}^{n} c_j x_j \leq \prod_{j=1}^{n} (A^t y)_j x_j = \prod_{i=1}^{m} (Ax)_i y_i \leq \prod_{i=1}^{m} b_i y_i$$

x solução ótima para (P) e y solução ótima de (D)

Portanto, todas as desigualdades são iguais

$$\forall j \quad c_j x_j = (A^t y)_j x_j$$

$$\forall i \quad b_i y_i = (Ax)_i y_i$$

$c_j x_j = (a_{ij} y_i) x_j$ $c_{j} \leq \square \ a_{ij} y_{i}$ Restrições do Dual

Implicações práticas da dualidade certificado de OTIMALIDADE

ASSIM: TEMOS

OU

$$c_{j} = \prod_{i=1}^{m} a_{ij} y_{i}$$

$$x_{j} = 0$$

$$b_i y_i = \left(\prod_{j=1}^n a_{ij} x_j \right) y_i$$

$$b_{i} \leq \square \ a_{ij} x_{j}$$

 $b_i \leq \square a_{ii} x_j$ RESTRIÇÕES DO PRIMAL

ASSIM: TEMOS

$$b_i = \prod_{j=1}^n a_{ij} x_j$$

OU

$$y_i = 0$$

Concluindo que Implicações práticas da dualidade certificado de OTIMALIDADE

Se x é solução ótima para o PRIMAL e y é solução ótima para o DUAL

então para todo j:

$$c_{j} = \prod_{i=1}^{m} a_{ij} y_{i} \quad ou \quad x_{j} = 0$$

para todo i:

$$b_{i} = \prod_{j=1}^{n} a_{ij} x_{j} \quad ou \quad y_{i} = 0$$

Folga Complementar como certificado de otimalidade

TEOREMA: Seja $x_1^*, x_2^*, ..., x_n^*$ uma solução viável de (1) e $y_1^*, y_2^*, ..., y_m^*$ uma solução viável de (2). São condições necessárias e suficientes para otimalidade de $x_1^*, x_2^*, ..., x_n^*$ e $y_1^*, y_2^*, ..., y_m^*$:

i=1

e

Folga complementar a luz das variáveis de folga

Ao introduzir as variáveis de folga, as condições (3) e (4) ganham simplicidade na interpretação

Considere o PPL na forma canônica e o seu dual

$$\max_{j=1}^{n} c_{j}x_{j}$$

$$\text{Sujeito } a \bigcap_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad (i=1,...,m)$$

$$x_{j} \square 0 \quad (j=1,...,n)$$

Introduzindo as variáveis de folga, obtemos;

$$x_{n+i}=b_i-\Sigma_j a_{ij}x_j$$
 i= 1,2, ...,m
 $y_{m+j}=-c_j+\Sigma_i a_{ij}y_i$ j= 1,2,...,n

Para um par de soluções ótimas para o problema primal e seu dual tem-se:

- (a) Para i=1,2,...,m, o produto da i-ésima variável de folga do problema primal e a i-ésima variável dual é zero. Isto é, $x_{n+i}.y_i=0$ i=1.2,...,m
- (b) Para j=1,2,...,n, o produto da j-ésima variável de folga para o problema dual e a j-ésima variável para o problema primal é zero $y_{m+j}.x_j=0$

em cada um dos n+m pares, pelo menos uma variável deve ter valor zerocondições de folga complementar-

Uma forma mais aplicável do Teorema da Folga Complementar

TEOREMA: Considere o PPL (P)

Uma solução viável x_1^* , x_2^* , ..., x_n^* de (P) é ótima se somente se existem números e y_1^* , y_2^* , ..., y_m^* tais que

$$\Box_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \quad \text{sempre que } x_{j}^{*} > 0 \quad (5)$$

$$y_{i}^{*} = 0 \quad \text{sempre que } \Box_{j=1}^{n} a_{ij} x_{j}^{*} < b_{i} \quad (6)$$

E tal que

$$\Box_{i=1}^{m} a_{ij} y_{i}^{*} \Box c_{j} \quad para \ to do \quad j = 1, 2...n$$

$$y_{i}^{*} \Box 0 \quad para \ to do \quad i = 1, 2...m$$
(7)

Exemplo

Verifique se a solução dada é uma solução ótima para o problema abaixo:

$$x_1^* = 2, x_2^* = 4, x_3^* = 0, x_4^* = 0, x_5^* = 7, x_6^* = 0$$

max imize
$$z = 18x_1 - 7x_2 + 12x_3 + 5x_4 + 8x_6$$

sujeito a
$$2x_1 - 6x_2 + 2x_3 + 7x_4 + 3x_5 + 8x_6 \le 1$$

$$-3x_1 - x_2 + 4x_3 - 3x_4 + 1x_5 + 2x_6 \le -2$$

$$8x_1 - 3x_2 + 5x_3 - 2x_4 + 2x_6 \le 4$$

$$4x_1 + 8x_3 + 7x_4 - 1x_5 + 3x_6 \le 1$$

$$5x_1 + 2x_2 - 3x_3 + 6x_4 - 2x_5 - 1x_6 \le 5$$

$$x_1 \square 0, x_2 \square 0, x_3 \square 0, x_4 \square 0, x_5 \square 0, x_6 \square 0$$

Verificando (5) e(6)

$$2y_{1}^{*} - 3y_{2}^{*} + 8y_{3}^{*} + 4y_{4}^{*} + 5y_{5}^{*} = 18$$

$$-6y_{1}^{*} - y_{2}^{*} - 3y_{3}^{*} + 2y_{5}^{*} = -7$$

$$3y_{1}^{*} + y_{2}^{*} - y_{4}^{*} - 2y_{5}^{*} = 0$$

$$y_{2}^{*} = 0$$

$$y_{5}^{*} = 0$$

Desde que a solução (1/3, 0, 5/3, 1, 0) satisfaz também (7) a solução proposta para o primal é ótima

Exemplo 2

Verifique se a solução dada é uma solução ótima para o problema abaixo:

$$x_1^* = 0, x_2^* = 2, x_3^* = 0, x_4^* = 7, x_5^* = 0$$

max imize
$$z = 8x_1 - 9x_2 + 12x_3 + 4x_4 + 11x_5$$

sujeito a
$$2x_1 - 3x_2 + 4x_3 + x_4 + 3x_5 \le 1$$

$$x_1 + 7x_2 + 3x_3 - 2x_4 + 1x_5 \le 1$$

$$5x_1 + 4x_2 - 6x_3 + 2x_4 + 3x_5 \le 22$$

$$x_1 \Box 0, x_2 \Box 0, x_3 \Box 0, x_4 \Box 0, x_5 \Box 0$$

Desde que a solução (17/5, 0, 3/10) viola (7), isto é, não é solução viável para o dual, a solução proposta para o primal x_1^* , x_2^* , x_3^* , x_4^* , x_5^* não é ótima

observação

Essa estratégia para verificação da otimalidade de uma dada suposta solução é aplicável somente se o sistema de equações (5), (6) tem uma única solução.

O resultado a seguir dá condições sob as quais isso sempre acontece:

TEOREMA: SE x₁*, x₂* x_n* é uma SBV não degenerada então o sistema dado

por (5), (6) tem uma única solução

Por que a hipótese SBV não degenerada? Pense nisso