Projekt Universal Actuator Drive **Dokumentation**

Diplomingeniør Elektronik Bachelorprojekt efterår 2017

Ingeniørhøjskolen Aarhus Universitet Vejleder: Arne Justesen

19. december 2017

Nicolai H. Fransen Studienr. 201404672 Jesper Kloster Studienr. 201404571

Indhold

ln	dhol	1	2
1	Kra	vspecifikation	3
	1.1	Aktørbeskrivelse	4
		1.1.1 Aktør: Bruger	5
		1.1.2 Aktør: Thermal Knife load	5
		1.1.3 Aktør: Pyro load	5
	1.2	Fully dressed use cases	6
		1.2.1 Use case 1 - Aktiver Thermal Knife load	6
		1.2.2 Use case 2 - Aktiver Pyro load	7
	1.3	Ikke-funktionelle krav	8
2	Acc	epttest	9
	2.1	Tests	9
		2.1.1 Test af ikke-funktionelle krav	11

1 Kravspecifikation

Kravene til produktet er prioriteret ved brug af MoSCoW metoden. Her er kravene for produktet inddelt i fire kategorier, hvor de vigtigste elementer er prioriteret højest. **Must** benævner de krav som er vigtigst at opfylde, og som er absolut nødvendigt for produktet. **Should** er de krav produktet bør opfylde. **Could** er kravene som produktet evt. kunne opfylde, hvis projektets tidsramme tillader det. **Won't** er krav som ikke vil blive opfyldt inden for projektets tidsrammer, men evt. kan tages med i senere iterationer.

Følgende opdeling viser kravene udvalgt for dette projekt:

Must - Have et funktionsdygtigt power-modul

- Ikke påvirke andre moduler ved fejl

- Have et termisk design, kompatibelt med vakuum

- Underbygges med en P-Spice model

Should - Have programmerbar udgangsstrøm og -spænding

- Have stabil regulering

- Have overstrømsbeskyttelse på udgangen

- Have overspændingsbeskyttelse på udgangen

Could – Have mulighed for brug til mere end to forskellige typer loads

- Konstrueres med EEE komponenter

Won't – Have feedback til brugeren når valgt load er aktiveret

- Have galvanisk adskillelse

Figur 1.1: Aktør-kontekst diagram

Figur 1.2: Use case diagram

1.1 Aktørbeskrivelse

I det følgende afsnit beskrives systemets aktører. Ved hver aktør angives typen, samt en kort beskrivelse af aktørens funktion og/eller hvordan de påvirker systemet.

5

1.1.1 Aktør: Bruger

Type:

Primær

Beskrivelse:

Brugeren interagerer med systemet, ved at indstille den ønskede load type.

1.1.2 Aktør: Thermal Knife load

Type:

Sekundær

Beskrivelse:

Thermal Knife load er en load type, hvor et varmelegeme opvarmes langsomt. Denne type bruges til at skære reb over, og derved udløse diverse bevægelige dele.

1.1.3 Aktør: Pyro load

Type:

Sekundær

Beskrivelse:

Pyro load er en load type, hvor en glødetråd opvarmes hurtigt. Denne type bruges til at detonere en krudtladning, og derved sprænge en bolt, som frigør diverse bevægelige dele.

1.2 Fully dressed use cases

1.2.1 Use case 1 - Aktiver Thermal Knife load

Mål:

At aktivere Thermal Knife load

Initiering:

Brugeren

Aktører:

Brugeren (Primær)

Thermal Knife load (Sekundær)

Referencer:

Ingen

Samtidige forekomster:

En

Forudsætning:

Hverken Use case 1 eller Use case 2 er under udførelse

Resultat:

Thermal knife load er aktiveret

Hovedscenarie:

- 1. Brugeren vælger Thermal knife load
- 2. Systemet indstiller strøm og spænding til Pyro load
- 3. Systemet aktiverer Thermal knife load

1.2.2 Use case 2 - Aktiver Pyro load

Mål:

Aktiver Pyro load

Initiering:

Bruger

Aktører:

Bruger (Primær) Pyro load (Sekundær)

Referencer:

Ingen

Samtidige forekomster:

En

Forudsætning:

Hverken Use case 1 eller Use case 2 er under udførelse

Resultat:

Pyro load er aktiveret

Hovedscenarie:

- 1. Brugeren vælger Pyro load
- 2. Systemet indstiller strøm og spænding til Pyro load
- 3. Systemet aktiverer Pyro load

1.3 Ikke-funktionelle krav

I dette afsnit beskrives de ikke-funktionelle krav. Her opstilles f.eks. krav om præcision, brugervenlighed samt produktets dimensioner.

- Inputspændingen skal være mellem 26-100V
- Der må maksimalt trækkes en peak-strøm fra inputkilden på 150% af inputstrømmen
- Skal opretholde en outputspænding på op til 21V, $\pm 2\%$ ved 2,5A $\pm 5\%$
- Skal opretholde en outputstrøm op til 5A $\pm 5\%$, ved 15V $\pm 2\%$
- Der må maksimalt være en ripple-spænding på 50mV pk-pk ved fundamental ripple frekvens
- Der må maksimalt være switching spikes på 100mV pk-pk
- Skal kunne omsætte op til 75W
- Skal operere med et tab på maksimalt 5W
- Skal implementeres i et volumen mindre end 17x75x100mm på forsiden af PCB, samt 3x75x100mm på bagsiden PCB'et
- Skal kunne operere med en omgivelsestemperatur mellem -35°C og 65°C
- Skal have stabil regulering med 10dB gain og 50 graders fasemargin ved:
 - 21V/2,5A ved høj og lav indgangsspænding 5A/3 Ω ved høj og lav indgangsspænding
- Reguleringen skal have en risetime på maksimalt 0,5ms
- Reguleringen skal have et overshoot på maksimalt 5%

2 Accepttest

2.1 Tests

Use case under test	Use case 1 - Aktiver Thermal Knife load			
Scenarie	Hovedscenarie			
Prækondition	Hverken Use case 1 eller Use case 2 er under udførelse			
Step	Handling	Forventet	Faktisk	Vurdering
1	Brugeren	Reb bliver		
	vælger Ther-	brændt over		
	mal Knife			
	load			

Tabel 2.1: Test for Use case 1 - Start bil - Hovedscenarie

Use case under test	Use case 2 - Aktiver Pyro load			
Scenarie	Hovedscenarie			
Prækondition	Hverken Use case 1 eller Use case 2 er under udførelse			r udførelse
Step	Handling	Forventet	Faktisk	Vurdering
1	Brugeren	Krudtladning		
	vælger Pyro	bliver an-		
	load	tændt		

Tabel 2.2: Test for Use case 1 - Start bil - Hovedscenarie

2.1. TESTS 11

2.1.1 Test af ikke-funktionelle krav

Krav	Test	Forventet	Resultat	Vurdering
Input- spændingen skal være mel- lem 26-100V Der må mak- simalt trækkes en peak-strøm fra inputkilden på 150% af in- putstrømmen	Indgangs- spændingen måles med et voltmeter Udgangen belastes af en 3Ω modstand, og der måles strøm på ind- gangen med	resultat Indgangs- spændingen er mellem 26-100V Peakstrømmen overstiger ik- ke 150% af steady state strømmen		
Skal opret- holde en outputspæn- ding på op til 21V ±2% ved 2,5A ±5%	oscilloskop Der indsættes en load på 5Ω og udgangsstrøm og -spænding måles med oscilloskop	Spændingen ligger på 12,5V ±2% og strøm- men på 2,5A ±5%		
Skal opretholde en outputstrøm op til 5A ±5% ved 15V ±2%	Der indsættes en load på 5Ω og udgangsstrøm og spænding måles med oscilloskop	Spændingen ligger på 15V ±2% og strøm- men på 3A ±5%		
Der må maksimalt være en ripplespænding på 50mV pk-pk Der må maksimalt være switching spikes på 100mV	Der indsættes en load på 3Ω og pk-pk må- les med oscil- loskop	Ripple- spændingen er under 50mV pk-pk		
pk-pk Skal kunne omsætte op til 75W	Der indsættes en load på 3Ω og der måles på oscil- loskopet om der holdes en spænding på $15V \pm 2\%$ samt en strøm på $5A \pm 5\%$	Der måles en spænding på 15V ±2% samt en strøm på 5A ±5% hvilket giver 75W		

Krav	Test	Forventet resultat	Resultat	Vurdering
Skal operere med et tab på maksimalt 5W	Der indsættes en load på 3Ω Indgangs-spænding og strøm måles og omregnes til effekt. Det samme gøres for udgangs-	hinanden gi-		
Skal implementeres i et volumen mindre end 17x75x100mm på forsiden af PCB'et, samt 3x75x100mm på bagsiden af PCB'et	spænding og -strøm. Med målebånd måles dimen- sionerne af PCB'et først på forsiden og derefter på bagsiden.	Dimensionerne overskri- der ikke 17x75x100mm på forsiden af PCB'et og 3x75x100mm på bagsiden af PCB'et		
Skal kunne operere med en omgivel- sestemperatur mellem -35°C og 65°C	Der indsættes en load på 3Ω og der måles på oscilloskopet om der holdes en spænding på 15V ±2% samt en strøm på 5A ±5%. Først testes ved -35°C og derefter ved 65°C	15V ±2% samt en strøm på 5A ±5% hvil- ket giver 75W		

2.1. TESTS 13

Krav	Test	Forventet	Resultat	Vurdering
		resultat		
Skal have stabil regulering med 10dB gain og 50 graders fasemargin ved 21V/2,5A ved en indgangsspænding på 26V og 100V	Først indstilles indgangs- spændingen til 26V og vha. oscilloskopets network ana- lyser genereres et bodeplot ved at måle over loaden. Dette gen- tages med en indgangs- spænding på 100V	På bodeplottet ses en stabil regulering med 10dB gain og 50 graders fase margin for både 26V og 100V		
Skal have stabil regulering med 10dB gain og 50 graders fasemargin ved 5A/3Ω ved en indgangsspænding på 26V og 100V	Først indstilles indgangs- spændingen til 26V og vha. oscilloskopets network ana- lyser genereres et bodeplot ved at måle over loaden. Dette gen- tages med en indgangs- spænding på 100V	På bodeplottet ses en stabil regulering med 10dB gain og 50 graders fase margin for både 26V og 100V		
Reguleringen skal have en risetime på maksimalt 0,5ms	Ved en load på 3Ω, udgangsstrøm på 5A ±5% og udgangsspænding på 15V ±2% måles risetime med et oscilloskop på udgangen ved et step på indgangen	Der måles en risetime på maksimalt 0,5ms		

Krav	Test	Forventet	Resultat	Vurdering
		resultat		
Reguleringen	Ved en load	Der måles et		
skal have et	på 3Ω , ud-	overshoot på		
overshoot på	gangsstrøm	maksimalt 5%		
maksimalt 5%	på 5A ±5% og			
	udgangsspæn-			
	ding på 15V			
	$\pm 2\%$ måles			
	overshoot med			
	et oscilloskop			
	på udgangen			
	ved et step på			
	indgangen			