

Outline

INTRO

ALGEBRA?

Mathematical system that consists of:

- > Operands: variables or values from which values can be constructed
- Operators: symbols denoting procedures that construct new values from given values

Example:

$$ax^2 + bx - y = 0$$

INTRO

- Relational Algebra: a formal query language
- The relational algebra is important because:
 - 1. It provides a formal foundation for relational model operations;
 - 2. It is used as a basis for implementing and optimizing queries in the query processing and optimization modules that are integral parts of relational database management systems (RDBMS).
- **Relational Algebra** consists of :
 - Basic Operator (selection, projection, union, intersect, difference, crossproduct)
 - Additional Operator (renaming, join, division)

SELECTION AND PROJECTION

SCHEMA

DataPasien			
IDPasien	asien NoKTP Nama Pasien		
PS00006	3507254111940001	Lidra Trifidya	
PS00007	3606125204940003	Yutika Amelia Effendi	

Dokter			
NID	KodePoli	Nama	
D009	P01	Dr. Budikusnaedi	
D0010	P02	Dr. Hariyanto Kusuma	
D0011	P02	Dr. Sri Herianti	
D0012	P03	Drg. Elvin Purwantari	

Pemeriksaan				
IDPeriksa	NID	IDPasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

SELECTION

Selection operators: pick certain rows

$$T1 := \sigma_{C}(T2)$$

- C is a condition (as in "if" statements) that refers to attributes of T2
- **T1** is all those tuples of **T2** that satisfy **C**

SELECTION

Example 1 : A patient who has IDPasien PS00006

 $\sigma_{IDPasien="PS00006"}(DataPasien)$

DataPasien			
IDPasien NoKTP Nama Pasien			
PS00006	3507254111940001	Lidra Trifidya	

SELECTION

Example 2: Patients who are handled by a doctor with NID D009 on 01 January 2015

$$\sigma_{NID=`D009` \land TglPeriksa=`01-Jan-15`}(Pemeriksaan)$$

Pemeriksaan				
IDPeriksa	NID	IDPasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu

PROJECTION

Projection operators: pick certain columns

```
T1 := \pi_{C}(T2)
```

- C is a list of attributes from the schema of T2
- T1 is constructed by looking at each tuple of T2, extracting the attributes on list C, L, in the order specified, and creating from those components a tuple for T1

PROJECTION

Example 1: Show IDPeriksa and IDPasien on Table Pemeriksaan

 $\pi_{IDPeriksa, IDPasien}(Pemeriksaan)$

Pemeriksaan		
IDPeriksa	IDPasien	
C001	PS00006	
C002	PS00007	
C003	PS00007	
C004	PS00007	

SELECTION AND PROJECTION

Example 1 : Show IDPeriksa and IDPasien of Patients who are handled by a doctor with NID D009 on 01 January 2015

 $\pi_{IDPeriksa, IDPasien}(\sigma_{NID=`D009` \land TglPeriksa=`01-Jan-15`}(Pemeriksaan))$

Pemeriksaan		
IDPeriksa IDPasien		
C001	PS00006	

- **Union**: *RUS returns a relation instance containing all tuples that occur in either* relation instance *R or relation instance S (or both)*
- Intersection: R∩S returns a relation instance containing all tuples that occur in both R and S
- **Set-difference**: *R–S returns a relation instance containing all tuples that occur* in *R but not in S.*

Union

Dokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0002	Bedah Saraf	Achmad Fahmi	
D0003	Anak	Sulis	
D0004	Anak	Prima	

KepalaDokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0003	Anak	Sulis	

Dokter ∪ KepalaDokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0002	Bedah Saraf	Achmad Fahmi	
D0003	Anak	Sulis	
D0004	Anak	Prima	

Intersection

Dokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0002	Bedah Saraf	Achmad Fahmi	
D0003	Anak	Sulis	
D0004	Anak	Prima	

KepalaDokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0003	Anak	Sulis	

Dokter ∩ KepalaDokter				
NID	KodePoli	Nama		
D0001	Bedah Saraf	Agus Turchan		
D0003	Anak	Sulis		

Set-Difference

Dokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0002	Bedah Saraf	Achmad Fahmi	
D0003	Anak	Sulis	
D0004	Anak	Prima	

KepalaDokter			
NID	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	
D0003	Anak	Sulis	

Dokter – KepalaDokter			
NID	KodePoli Nama		
D0002	Bedah Saraf	Achmad Fahmi	
D0004	Anak	Prima	

3

SCHEMA

DataPasien				
IDPasien NoKTP Nama Pasien				
PS00006	3507254111940001	Lidra Trifidya		
PS00007	3606125204940003	Yutika Amelia Effendi		

Dokter			
NID KodePoli Nama			
D009	P01	Dr. Budikusnaedi	
D0010	P02	Dr. Hariyanto Kusuma	
D0011	P02	Dr. Sri Herianti	
D0012	P03	Drg. Elvin Purwantari	

Pemeriksaan				
IDPeriksa	NID	IDPasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

Renaming operators: changes attribute names for a relation without changing any values.

There are two ways to express renaming:

1. T1 :=
$$\rho_{A_1 \rightarrow Att_1,...,A_n \rightarrow Att_n}$$
 (T2)

2.
$$T1 := \rho (A_1 \rightarrow Att_1, ..., A_n \rightarrow Att_n, T2)$$

where T1 has attributes $Att_1,...,Att_n$ and the same tuples as T2

Renaming tables: changes the name of table

There are two ways to express renaming:

- 1. T1 $= \rho_D$ (T2)
- 2. T1 $= \rho(D, T2)$

where **T1** is a table **T2** whose name is changed to **D**

Example 1: Change IDPeriksa of Table Pemeriksaan to NomorUrut and IDPasien of Table Pemeriksaan to KodePasien

 $\rho_{IDPeriksa \to NomorUrut,IDPasien \to KodePasien}$ (Pemeriksaan) **or** $\rho(IDPeriksa \to NomorUrut,IDPasien \to KodePasien,Pemeriksaan)$

Pemeriksaan				
NomorUrut	NID	KodePasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

Example 1 : Change the name of Table Pemeriksaan to Table DaftarPemeriksaan

 $\rho_{DaftarPemeriksaan}(Pemeriksaan)$ or $\rho(DaftarPemeriksaan, Pemeriksaan)$

		DaftarPeme	riksaan	
IDPeriksa	NID	IDPasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

Example 1: Change the name of Table Pemeriksaan to Table DaftarPemeriksaan, change IDPeriksa to NomorUrut and change IDPasien to KodePasien

 $\rho_{DaftarPemeriksaan(IDPeriksa \to NomorUrut,IDPasien \to KodePasien)}$ (Pemeriksaan) **or** $\rho(DaftarPemeriksaan(IDPeriksa \to NomorUrut,IDPasien \to KodePasien), Pemeriksaan)$

		DaftarPemeri	ksaan	
NomorUrut	NID	KodePasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

CROSS-PRODUCT, JOIN, AND DIVISIONS

CROSS-PRODUCT

Cross-Product operators: a relation instance whose schema contains all the fields of R (in the same order as they appear in R) followed by all the fields of S (in the same order as they appear in S)

 $R1 := R2 \times R3$

- Pair each tuple of **R3** with each tuple of **R2**.
- Schema of **R3** is the attributes of **R1** and then **R2**, in order

CROSS-PRODUCT

Dokter				
NID KodePoli Nama				
D0002	Bedah Saraf	Achmad Fahmi		
D0004	Anak	Prima		

KepalaDokter			
NID KodePoli Nama			
D0001	Bedah Saraf	Agus Turchan	
D0003	Anak	Sulis	

	$\mathbf{Dokter} \times \mathbf{KepalaDokter}$					
NID	KodePoli	Nama	NID	KodePoli	Nama	
D0002	Bedah Saraf	Achmad Fahmi	D0001	Bedah Saraf	Agus Turchan	
D0002	Bedah Saraf	Achmad Fahmi	D0003	Anak	Sulis	
D0004	Anak	Prima	D0001	Bedah Saraf	Agus Turchan	
D0004	Anak	Prima	D0003	Anak	Sulis	

Join combines information from two or more relations

• Join is cross product operation, followed by selection and projection

Type of Join:

- Theta-join (conditional join)
- Natural join
- Left Outer Join
- Right Outer Join
- Full Outer Join

Theta Join (Conditional Join)

$$R1 := R2 \bowtie_{\mathcal{C}} R3$$

- Take Product R3 and R2
- Apply σ_C to the result
- The special case of theta join is Equijoin (having equality operator as the condition C)

Theta Join

Α		
NIDA	NameA	
1	K	
5	L	

В		
NIDB	NameB	
1	М	
2	N	

	$A \bowtie_{A.NIDA < B.NIDB} B$				
NIDA	NameA	NIDB	NameB		
1	К	2	N		

Equijoin

$$R1 := R2 \bowtie_C R3$$

- The condition (**C**) consists solely of equalities (=)
- Equijoin is a theta join using equality operator
- In Equijoin, the join operation do an additional projection in which one of the attribute in the condition is dropped

Equijoin

Dokter			
NID KodePoli Nama			
D0001	Bedah Saraf	Agus Turchan	
D0004	Anak	Prima	

KepalaDokter				
NIDKepala KodePoli Nama				
D0001	Bedah Saraf	Agus Turchan		
D0003	Anak	Sulis		

Dokt	Dokter $\bowtie_{Dokter.NID=KepalaDokter.NIDKepala}$ KepalaDokter				
NID	KodePoli	Nama	KodePoli	Nama	
D0001	Bedah Saraf	Agus Turchan	Bedah Saraf	Agus Turchan	

Because of equijoin, only one of the attribute in the condition, i.e.

Dokter.NID=KepalaDokter.NIDKepala, is chosen, so **KepalaDokter.NIDKepala** is projected out.

Natural Join

A useful join variant (natural join) connects two relations by:

- Equating attributes of the same name, and
- Projecting out one copy of each pair of equated attributes

 $R1 := R2 \bowtie R3$

Natural Join

Dokter			
NID KodePoli Nama			
D0001	Bedah Saraf	Agus Turchan	
D0004	Anak	Prima	

KepalaDokter			
NID KodePoli Nama			
D0001	Bedah Saraf	Agus Turchan	
D0003	Anak	Sulis	

Dokter ⋈ KepalaDokter			
NID KodePoli Nama			
D0001	Bedah Saraf	Agus Turchan	

Because both of Table Dokter and Table KepalaDokter have same names of attributes, so only one NID, one KodePoli and one Nama are chosen.

Natural Join

Dokter				
NID KodePoli Nama				
D0001	Bedah Saraf	Agus Turchan		
D0004	Anak	Prima		

KepalaDokter				
NIDKepala KodePoliKepala NamaKepala				
D0001	Bedah Saraf	Agus Turchan		
D0003	Anak	Sulis		

Dokter ⋈ KepalaDokter					
NID	KodePoli	Nama	NIDKepala	KodePoliKepala	NamaKepala
D0001	Bedah Saraf	Agus Turchan	D0001	Bedah Saraf	Agus Turchan
D0001	Bedah Saraf	Agus Turchan	D0003	Anak	Sulis
D0004	Anak	Prima	D0001	Bedah Saraf	Agus Turchan
D0004	Anak	Prima	D0003	Anak	Sulis

Because there is no equated attributes of Table Dokter and Table KepalaDokter, each tuple in Table Dokter is paired with each tuple in Table KepalaDokter (natural join becomes cross-product)

Left Outer Join

- ❖ It is left join in SQL
- The relational algebra of left outer join is shown below.

$$R1 := R2 \bowtie_{c} R3$$

Left Outer Join

Α	
NIDA NameA	
1	К
5	L

В	
NIDB	NameB
1	M
2	N

$A\bowtie_{A.NIDA>B.NIDB}$ B				
NIDA	NameA	NIDB	NameB	
1	K	NULL	NULL	
5	L	1	M	
5	L	2	N	

Right Outer Join

- ❖ It is right join in SQL
- The relational algebra of left outer join is shown below.

$$R1 := R2 \bowtie_c R3$$

Right Outer Join

Α	
NIDA NameA	
1	К
5	L

В		
NIDB	NameB	
1	M	
2	N	

$A\bowtie_{A.NIDA < B.NIDB} B$			
NIDA	NameA	NIDB	NameB
NULL	NULL	1	M
1	K	2	N

Full Outer Join

- ❖ It is full join in SQL
- The relational algebra of left outer join is shown below.

$$R1 := R2 \bowtie_{c} R3$$

Full Outer Join

Α	
NIDA	NameA
1	K
5	L

В	
NIDB	NameB
1	М
2	N

$A \bowtie_{A.NIDA \leq B.NIDB} B$			
NIDA	NameA	NIDB	NameB
1	K	2	N
5	L	NULL	NULL
NULL	NULL	1	M

DIVISION

Division

$$R1 := R2/R3$$

- All attributes in **R3** (denominator) must also be presented in **R2** (numerator)
- **R2** has some extra attributes
- The schema of the result relation R1 contains the attributes defined in R2 and not defined in R3

DIVISION

Division

A

sno	pno
s1	p1
s1	p 2
s1	р3
s1	p4
s2	p 1
s2	p 2
s3	p2
s4	p 2
s4	p4

snopnoA/B1B1s1**p**2 s3 pno B2s4 p2p4 snoA/B2s1 pno **B**3 s4 **p**1

p2

p4

sno

s1

A/B3

EXPRESSION TREE AND INTRODUCTION OF QUERY OPTIMIZATION

EXPRESSION TREE

- Leaves: can be called operands -- either variables standing for relations or particular,
 constant relations
- Interior nodes: can be called operators -- applied to their child or children

EXPRESSION TREE

Example 1 : Show IDPeriksa and IDPasien of Patients who are handled by a doctor with NID D009 on 01 January 2015

 $\pi_{IDPeriksa, IDPasien} (\sigma_{NID=`D009` \land TglPeriksa=`01-Jan-15`} (Pemeriksaan))$

$$\pi_{IDPeriksa,\,IDPasien}$$
 $\sigma_{NID=`D009` \land TglPeriksa=`01-Jan-15`}$
 $Pemeriksaan$

EXPRESSION TREE

Example 2 : Show ID of patient, name of patient, name of doctors and the check date on 01 January 2015

 $\pi_{NoKTP,Nama\ Pasien,Nama,TglPeriksa}(\sigma_{TglPeriksa=`01-Jan-15`}(Dokter\bowtie(DataPasien\bowtie Pemeriksaan)))$

QUERY OPTIMIZATION

- Relational Algebra can be used in query optimization by comparing the query with expression tree
- Example: Show ID of patient, name of patient, name of doctors and the check date on 01 January 2015

EXERCISES

SCHEMA

DataPasien(<u>IDPasien: string</u>, NoKtp: integer, Nama Pasien: string)

Dokter(NID: string, KodePoli: string, Nama: string)

Poli(*KodePoli*: string, NamaPoli: string)

Pemeriksaan (IDPeriksa: string, NID: string, IDPasien: string, TglPeriksa: date, Diagnosa: string)

IDPasien	NoKTP	Nama Pasien
PS00006	3507254111940001	Lidra Trifidya
PS00007	3606125204940003	Yutika Amelia Effendi

NID	KodePoli	Nama
D009	P01	Dr. Budikusnaedi
D0010	P02	Dr. Hariyanto Kusuma
D0011	P02	Dr. Sri Herianti
D0012	P03	Drg. Elvin Purwantari

KodePoli	NamaPoli		
P01	Bedah Umum		
P02	Mulut		
P03	THT		

IDPeriksa	NID	IDPasien	TglPeriksa	Diagnosa
C001	D009	PS00006	01-Jan-15	Radang Usus Buntu
C002	D010	PS00007	02-Jan-15	Gigi Berlubang
C003	D011	PS00007	10-Feb-15	Flu
C004	D019	PS00007	02-May-15	Radang Usus Buntu

Create the relational algebra, the expression tree and the table result

- 1. Select id of patient and check date of patient who got "Gigi Berlubang" or "Flu
- 2. Select KTP number and name of patients who checked on May
- 3. Select name of patients, name of doctors, the doctor's poly, and check date of patients who handled by doctor Dr. Budikusnaedi
- 4. Select a pair of doctors who are in the same poly (a pair cannot contain of same doctor)
- 5. Select patients who had been checked in all poly

Fill the results of the questions based on the below tables

R2 = (В	С)
	5	6	
	7	6 8	
	9	10	

6.
$$\sigma_{A*B>5}(R)=...$$

7.
$$\pi_{\rm C}({\rm R2}) = ...$$

8.
$$R \times S = ...$$

9.
$$R \bowtie_{R.B < R2.C} R2 = ...$$

$$10.\pi_{C}$$
 (S \bowtie (R \bowtie R2))= ...