University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Functions of random variables

Functions of one random variable

a. Method of cdf:

Let $X \sim \Gamma(\alpha, \beta)$. Find the distribution of Y = cX, c > 0. With the method of cdf we begin with the cdf of Y as follows.

$$F_Y(y) = P(Y \le y)$$

 $F_Y(y) = P(cX \le y)$

$$F_Y(y) = P(X \le \frac{y}{c})$$

$$F_Y(y) = F_X(\frac{y}{c})$$
 Now differentiate on both sides w.r.t. y

$$f_Y(y) = \frac{1}{c} f_X(\frac{y}{c})$$

Assignment Project Exam Help $\frac{Assign restriction}{c \Gamma(\alpha)\beta^{\alpha}}$

 $f_{Y}(y) = \frac{y^{\alpha-1}e^{-\frac{y}{\beta c}}}{https:/powcoder.com}$

Therefore, $Y \sim \Gamma(\alpha, c\beta)$.

Add WeChat powcoder

b. Method of transformations

It is originated from the method of cdf. In general, to find the pdf of a function of a random variable we use the following theorem.

Let X be a continuous random variable with pdf f(x). Let Y = g(X), either increasing or decreasing. Then the pdf of Y is given by

$$f_Y(y) = f_X[w(y)] \left| \frac{d}{dy} w(y) \right|,$$

where w(y) is the inverse function of g (the value of x such that g(x) = y). We can also use the following notation, by defining $g^{-1}(y)$ as the value of x such that g(x) = y.

$$f_Y(y) = f_X[g^{-1}(y)] \left| \frac{d}{dy} g^{-1}(y) \right|,$$

Apply the theorem to the example above:

$$Y = cX$$
, here $g(X) = cX$, and therefore $w(y) = g^{-1}(y) = \frac{y}{c}$.

Assignment Project Exam Help

 $f_Y(y) = h_{t_Y}^{f_X(y)} \int_{g_{c}}^{1} \frac{1}{f_{C}(\alpha)(c\beta)^{\alpha}} /powcoder.com$
 $f_Y(y) = \frac{y^{\alpha} P_e^{-\frac{y}{\beta c}}}{\Gamma(\alpha)(c\beta)^{\alpha}}$

Add WeChat powcoder

c. Method of MGF

Using the uniqueness theorem. Let $X \sim \Gamma(\alpha, \beta)$. Find the distribution of Y = cX, c > 0. Then

$$M_Y(t) = M_X(ct) = (1 - \beta t)^{-\alpha}.$$

Therefore, $Y \sim \Gamma(\alpha, c\beta)$.

Joint probability distribution of functions of random variables

We can extend the idea of the distribution of a function of a random variable to bivariate and multivariate random vectors as follows.

Let X_1, X_2 be jointly continuous random variables with pdf $f_{X_1X_2}(x_1, x_2)$. Suppose $Y_1 =$ $g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$. We want to find the joint pdf of Y_1, Y_2 . We follow this procedure:

- 1. Solve the equations $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ for x_1 and x_2 in terms of y_1 and y_2 to get $x_1 = h_1(y_1, y_2)$ and $x_2 = h_2(y_1, y_2)$.
- 2. Compute the Jacobian: $\mathbf{J} = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix}$. (\mathbf{J} is the determinant of the matrix of partial derivatives.)

To find the joint pdf of Y_1, Y_2 use the following result: $f_{Y_1,Y_2}(y_1, y_2) = f_{X_1,X_2}(x_1, x_2) |\mathbf{J}|^{-1}$, where $|\mathbf{J}|$ is the absolute value of the Jacobian. Here, x_1, x_2 are the expressions obtained from step (1) above, $x_1 = h_1(y_1, y_2)$ and $x_2 = h_2(y_1, y_2)$.

Example 1 Assignment Project Exam Help

Let X_1 and X_2 be independent exponential random variables with parameters λ_1 and λ_2 respectively. Find the joint probability density function of $X_1 + X_2$ and $X_1 - X_2$. https://powcoder.com

Solution:

Since X_1 and X_2 are independent the joint pdf of X_1 and X_2 is

$$f_{X_1,X_2}(x_1,x_2)$$
 And f_{X_2} echatopowcoder

Let $U = X_1 + X_2$ and $V = X_1 - X_2$. We solve for x_1 and x_2 to get $x_1 = \frac{u+v}{2}$ and $x_2 = \frac{u-v}{2}$.

We compute now the Jacobian: $\mathbf{J} = \begin{vmatrix} \frac{\partial u}{\partial x_1} & \frac{\partial u}{\partial x_2} \\ \frac{\partial v}{\partial x_1} & \frac{\partial v}{\partial x_2} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2.$

Finally, we find the joint pdf of U and V:

$$f_{U,V}(u,v) = \lambda_1 e^{-\lambda_1 \frac{u+v}{2}} \lambda_2 e^{-\lambda_2 \frac{u-v}{2}} \times \frac{1}{2} = \frac{\lambda_1 \lambda_2}{2} e^{-\lambda_1 \frac{u+v}{2} - \lambda_2 \frac{u-v}{2}}$$

Example 2

Suppose X and Y are independent random variables with $X \sim \Gamma(\alpha_1, \beta)$ and $Y \sim \Gamma(\alpha_2, \beta)$. Compute the joint pdf of U = X + Y and $V = \frac{X}{X+Y}$ and find the distribution of U and the distribution of V. Also show that U, V are independent.

Solution:

A random variable X is said to have a gamma distribution with parameters α, β if its probability density function is given by

$$f(x) = \frac{x^{\alpha - 1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)\beta^{\alpha}}, \quad \alpha, \beta > 0, x \ge 0.$$

Here $X \sim \Gamma(\alpha_1, \beta)$ and $Y \sim \Gamma(\alpha_2, \beta)$, therefore,

$$f_X(x) = \frac{x^{\alpha_1 - 1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha_1)\beta^{\alpha_1}}, \text{ and } f_Y(y) = \frac{y^{\alpha_2 - 1} e^{-\frac{y}{\beta}}}{\Gamma(\alpha_2)\beta^{\alpha_2}}$$

Because X, Y are independent, the joint pdf of X and Y is the product of the two marginal pdfs:

$$f_{XY}(x,y) = f_X(x)f_Y(y) = \frac{x^{\alpha_1 - 1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha_1)\beta^{\alpha_1}} \frac{y^{\alpha_2 - 1}e^{-\frac{y}{\beta}}}{\Gamma(\alpha_2)\beta^{\alpha_2}} = \frac{x^{\alpha_1 - 1}y^{\alpha_2 - 1}e^{-\frac{x + y}{\beta}}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\beta^{\alpha_1 + \alpha_2}}.$$
Tow follow the two seps above: Project Exam Help

- 1. Solve the equations u = x + y and $v = \frac{x}{x+y}$ in terms of x and y. We get: x = uv and y = u(1-v). **https://powcoder.com**
- 2. Compute the Jacobian: $\mathbf{J} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ \frac{y}{(x+y)^2} & \frac{x}{(x+y)^2} \end{vmatrix} = -\frac{1}{x+y} = -\frac{1}{u}.$ $\mathbf{Add} \quad \mathbf{We} \quad \mathbf{D} \quad \mathbf{We} \quad \mathbf{We} \quad \mathbf{D} \quad \mathbf{We} \quad \mathbf{We$

Finally to find the joint pdf of U, V use x = uv and y = u(1 - v) in the joint pdf of X, Y: $f_{UV}(u, v) = \frac{(uv)^{\alpha_1 - 1}[u(1-v)]^{\alpha_2 - 1}e^{-\frac{u}{\beta}u}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\beta^{\alpha_1 + \alpha_2}}, \text{ multiply by } \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1 + \alpha_2)} \text{ and rearrange to get :}$

$$f_{UV}(u,v) = \frac{u^{\alpha_1 + \alpha_2 - 1} e^{-\frac{u}{\beta}}}{\Gamma(\alpha_1 + \alpha_2)\beta^{\alpha_1 + \alpha_2}} \times \frac{v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} \Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}.$$

Therefore,

$$f_{UV}(u,v) = \frac{u^{\alpha_1 + \alpha_2 - 1} e^{-\frac{u}{\beta}}}{\Gamma(\alpha_1 + \alpha_2)\beta^{\alpha_1 + \alpha_2}} \times \frac{v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)},$$

where, $B(\alpha_1, \alpha_2) = \int_0^1 v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} dv = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}$ is the Beta function.

We observe that

- a. U, V are independent.
- b. $U \sim \Gamma(\alpha_1 + \alpha_2, \beta)$.
- c. $V \sim \text{Beta}(\alpha_1, \alpha_2)$.

Example 3

Suppose X_1, X_2, X_3 be independent random variables that follow $\Gamma(\alpha_i, 1), i = 1, 2, 3$ distribution. Let

$$Y_1 = \frac{X_1}{X_1 + X_2 + X_3}$$

$$Y_2 = \frac{X_2}{X_1 + X_2 + X_3}$$

$$Y_3 = X_1 + X_2 + X_3$$

denote 3 new random variables. Show that the joint pdf of Y_1, Y_2, Y_3 is given by

$$f(y_1, y_2, y_3) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} (1 - y_1 - y_2)^{\alpha_3 - 1}.$$

(Random variables that have a joint pdf of this form follow the Dirichlet distribution.)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder