Mathematical models of systems (2017–2018)

Homework 4

Hand out: March 20, 2018 Hand in: April 15, 2018

- Cooperation in groups of two people of approximately the same level is allowed.
- Everybody hands in his or her own version.
- It is not allowed to copy from each other.
- The exercise numbers refer to the Springer edition of the book which can be downloaded from the website.
- Please typeset your reports by using LATEX. Sharing LATEX files is strictly forbidden. Please send your reports by email to h.l.trentelman@rug.nl

1

Let $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{\text{w+c}}$ be a full plant behavior, with to be controlled variable w and control variable c. Let v be a given non-negative integer. A controller is a system behavior $\mathcal{C} \in \mathfrak{L}^{c+v}$ with system variable (c, v). The behaviors $\mathcal{P}_{\text{full}}$ and \mathcal{C} have the variable c in common, through which they can be interconnected, leading to the interconnected system $\mathcal{P}_{\text{full}} \wedge_c \mathcal{C}$, with full controlled behavior

$$\mathcal{K}_{\text{full}} := \{ \left(\begin{array}{c} w \\ c \\ v \end{array} \right) \mid \left(\begin{array}{c} w \\ c \end{array} \right) \in \mathcal{P}_{\text{full}}, \left(\begin{array}{c} c \\ v \end{array} \right) \in \mathcal{C} \}.$$

Now, let $K \in \mathcal{L}^{w+v}$ be an arbitrary behavior with system variable (w, v). We will say that the controller C implements K if

$$\mathcal{K} = \{ \begin{pmatrix} w \\ v \end{pmatrix} \mid \text{ there exists } c \text{ such that } \begin{pmatrix} w \\ c \\ v \end{pmatrix} \in \mathcal{K}_{\text{full}} \}.$$

If for a given $\mathcal{K} \in \mathfrak{L}^{w+v}$ there exists a controller \mathcal{C} that implements it, then we call \mathcal{K} implementable with respect to $\mathcal{P}_{\text{full}}$.

In this problem we will derive conditions under which a given \mathcal{K} is implementable with respect to \mathcal{P}_{full} . For this, let \mathcal{N} and \mathcal{P} be the hidden behavior and manifest plant behavior, respectively, associated with \mathcal{P}_{full} . In addition, define similar behaviors associated with \mathcal{K} :

$$\mathcal{N}(\mathcal{K}) := \{ w \mid \begin{pmatrix} w \\ 0 \end{pmatrix} \in \mathcal{K} \},$$

and

$$\mathcal{P}(\mathcal{K}) := \{ w \mid \text{ there exists } v \text{ such that } \begin{pmatrix} w \\ v \end{pmatrix} \in \mathcal{K} \}.$$

- **a.** Prove that if $K \in \mathfrak{L}^{w+v}$ is implementable then $\mathcal{N} \subseteq \mathcal{N}(K)$ and $\mathcal{P}(K) \subseteq \mathcal{P}$.
- **b.** Let $\mathcal{K} \in \mathfrak{L}^{w+v}$. Define a controller $\mathcal{C} \in \mathfrak{L}^{c+v}$ by $\mathcal{C} := (\mathcal{P}_{\text{full}} \wedge_w \mathcal{K})_{(c,v)}$. Prove that if $\mathcal{N} \subseteq \mathcal{N}(\mathcal{K})$ and $\mathcal{P}(\mathcal{K}) \subseteq \mathcal{P}$, then \mathcal{C} implements \mathcal{K} . (This controller is called the *canonical controller*).
- **c.** What do the results under a. and b. say about the case that v = 0?

2

Let $\mathcal{P} \in \mathfrak{L}^q$ be a linear differential system. We consider the control problem of stabilization by regular full interconnection, i.e. the problem to find conditions on \mathcal{P} under which there exists a system $\mathcal{C} \in \mathfrak{L}^q$ (a controller) such that the full interconnection $\mathcal{P} \cap \mathcal{C}$ is regular, and the behavior $\mathcal{P} \cap \mathcal{C}$ is stable.

- **a.** Let $R \in \mathbb{R}^{g \times q}[\xi]$ have full row rank. Let $(D \ 0)$ be its Smith form, with $D(\xi) = \operatorname{diag}(d_1(\xi), d_2(\xi), \dots, d_g(\xi))$. Show that $\operatorname{rank}(R(\lambda)) = \operatorname{rank}(R)$ for all λ satisfying $\operatorname{Re}(\lambda) \geq 0$ if and only if all roots λ of the polynomials d_i satisfy $\operatorname{Re}(\lambda) < 0$.
- **b.** Use this to show that if $R \in \mathbb{R}^{g \times q}[\xi]$ is such that $R(\frac{d}{dt})w = 0$ is a minimal kernel representation of \mathcal{P} , then \mathcal{P} is stabilizable (in the sense of behaviors) if and only if there exists $R' \in \mathbb{R}^{(q-g) \times q}[\xi]$ such that

$$\left[\begin{array}{c} R \\ R' \end{array}\right]$$

is Hurwitz.

c. Use the above to prove the following theorem: Given $\mathcal{P} \in \mathfrak{L}^q$, there exists $\mathcal{C} \in \mathfrak{L}^q$ such that the full interconnection $\mathcal{P} \cap \mathcal{C}$ is stable and regular if and only if \mathcal{P} is stabilizable.

3

Consider the plant behavior $\mathcal{P}_{\text{full}}$ with manifest variable $w = (w_1, w_2)$ and control variable $c = (c_1, c_2)$ represented by

$$w_1 + \dot{w}_2 + \dot{c}_1 + c_2 = 0$$
$$c_1 + c_2 = 0$$

- **a.** Compute the manifest plant behavior $(\mathcal{P}_{\text{full}})_w$ and the hidden behavior \mathcal{N} .
- **b.** Show that the desired behavior \mathcal{K} given by $\mathcal{K} = \{(w_1, w_2) \mid w_1 + \dot{w}_2 = 0\}$ is regularly implementable.
- **c.** Show that the controller $\mathcal{C} = \{(c_1, c_2) \mid \dot{c}_1 + c_2 = 0\}$ regularly implements \mathcal{K} .

Consider the full plant behavior $\mathcal{P}_{\text{full}}$ represented by

$$w_1 + \dot{w}_2 + \dot{c}_1 + c_2 = 0$$

$$w_2 + c_1 + c_2 = 0$$

$$\dot{c}_1 + c_1 + \dot{c}_2 + c_2 = 0$$

- **a.** Compute the manifest plant behavior $(\mathcal{P}_{\text{full}})_w$ and the hidden behavior \mathcal{N} .
- **b.** Show that there exists a stabilizing controller for $\mathcal{P}_{\text{full}}$.
- **c.** Prove that $C = \{(c_1, c_2) \mid \dot{c}_2 + 2c_1 + c_2 = 0\}$ is a stabilizing controller.

 $\mathbf{5}$

In this problem we consider the issue of regular implementability by full interconnection. Let $\mathcal{P}, \mathcal{K} \in \mathfrak{L}^q$. Let $R(\frac{d}{dt})w = 0$ and $K(\frac{d}{dt})w = 0$ be minimal kernel representations of \mathcal{P} and \mathcal{K} , respectively.

a. Let F be a polynomial matrix. Show that there exists a polynomial matrix W such that

$$\begin{pmatrix} F \\ W \end{pmatrix}$$

is unimodular if and only if $F(\lambda)$ has full row rank for all $\lambda \in \mathbb{C}$.

b. Use the result under a. to prove that K is regularly implementable by full unterconnection with \mathcal{P} if and only if there exists a polynomial matrix F such that R = FK and $F(\lambda)$ has full row rank for all $\lambda \in \mathbb{C}$.

6

In this problem we study systems represented in what is called *descriptor representation*. In classical systems and control theory, systems in descriptor representation are also often called *singular systems*. A descriptor representation is a representation of the form

$$E\frac{dx}{dt} = Ax + Bu, (1)$$

$$y = Cx + Du, (2)$$

where $E \in \mathbb{R}^{k \times n}$, $A \in \mathbb{R}^{k \times n}$, $B \in \mathbb{R}^{k \times m}$, $C \in \mathbb{R}^{p \times n}$, and $D \in \mathbb{R}^{p \times m}$.

Consider the linear differential system with behavior

$$\mathcal{P}_{\text{full}} = \left\{ \begin{pmatrix} x \\ u \\ y \end{pmatrix} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{n+m+p}) \mid \text{ the equations (1), (2) hold} \right\}.$$

Suppose now we want to control the system $\mathcal{P}_{\text{full}}$. As interconnection variable we take c = (u, y). The variable to be controlled will be w = x. Our aim is to find controllers that in the controlled system achieve stability or pole placement. To be more precise, a controller \mathcal{C} represented by $C_1(\frac{d}{dt})u = C_2(\frac{d}{dt})y$ (with C_1 and C_2 polynomial matrices) is called a *stabilizing controller* if the interconnection of $\mathcal{P}_{\text{full}}$ and \mathcal{C} is regular and if for all x in the controlled system we have $x(t) \to 0$ as $t \to \infty$.

- **a.** Determine the hidden behavior \mathcal{N} and the manifest plant behavior \mathcal{P} .
- **b.** Find necessary and sufficient conditions on E, A, B, C and D for the existence of a stabilizing controller for $\mathcal{P}_{\text{full}}$.
- c. Carefully formulate and prove a similar result for pole placement.

7

Let $\mathcal{P} \in \mathfrak{L}^q$ be a controllable plant. Let $R(\frac{d}{dt})w = 0$ be a minimal kernel representation of \mathcal{P} , R is a polynomial matrix with g rows and q columns. In this problem we want to find a parametrization of all polynomial matrices C such that the controller \mathcal{C} : $C(\frac{d}{dt})w = 0$ stabilizes \mathcal{P} by regular full interconnection. Let C_0 be a polynomial matrix such that

$$\begin{pmatrix} R \\ C_0 \end{pmatrix}$$

is unimodular.

- **a.** Let F be an arbitrary $(q-g) \times g$ polynomial matrix, and let D be a $(q-g) \times (q-g)$ Hurwitz polynomial matrix. Define $C = FR + DC_0$. Show that the controller $C(\frac{d}{dt})w = 0$ stabilizes \mathcal{P} by regular full interconnection.
- **b.** Assume now that C is a polynomial matrix. Prove that there exist polynomial matrices G_{11}, G_{12}, G_{21} and G_{22} such that

$$\begin{pmatrix} R \\ C \end{pmatrix} = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} \begin{pmatrix} R \\ C_0 \end{pmatrix}.$$

c. Prove that, in fact, $G_{11} = I$ and $G_{12} = 0$.

- **d.** Now assume that the controller $C(\frac{d}{dt})w = 0$ stabilizes \mathcal{P} by regular full interconnection. Prove that G_{22} is Hurwitz.
- **e.** Conclude that if $C(\frac{d}{dt})w = 0$ stabilizes \mathcal{P} by regular full interconnection, then there exists a polynomial matrix F and a Hurwitz polynomial matrix D such that $C = FR + DC_0$.