Esperienza 10: caratteristiche fisiche porte logiche

Gruppo BN Federico Belliardo, Lisa Bedini, Marco Costa

28 marzo 2017

1 Scopo dell'esperienza

Lo scopo dell'esperienza è misurare le caratteristiche statiche e dinamiche delle porte NOT dell'integrato SN74LS04.

2 Materiale occorrente

- Integrato IC SN74LS04;
- trimmer da 2 k Ω , 10 k Ω e 100 k Ω ;
- Arduino Nano;
- Integrato IC SN74LS244;

3 Caratteristiche statiche

Abbiamo montato il circuito come in figura 1. I valori delle componenti sono $R_1 = 1950 \pm 20 \mathrm{k}\Omega$, $R_1 = 100 \pm 1\Omega$.

Figura 1: Circuito utilizzato.

Abbiamo eseguito le misure tramite multimetro digitale. Come incertezze abbiamo preso quelle riportate sul manuale dello strumento. Abbiamo misurato la tensione di alimentazione $V_{CC}=4.85\pm0.03\mathrm{V}$ tramite multimetro digitale (incertezza riportata nel manuale), nei limiti di funzionamento riportati nel datasheet.

3.1 Misura delle tensioni di operazione

Per ottenere diversi valori di V_{in} abbiamo variato opportunamente il trimmer (che ha la funzione di partitore di tensione). Una volta fissata la sua posizione, abbiamo misurato tramite multimetro digitale V_{in} e V_{out} . In tabella 1 e in figura 2 abbiamo riportato le misure ottenute.

Si osserva che V_{out} va da un massimo di $V_{OH,max}=4.3\pm0.1\mathrm{V}$ fino a $V_{OH,min}=3.7\pm0.1\mathrm{V}$, valore subito dopo il quale si osserva una rapida variazione di V_{out} , dopo la quale si ha transizione al livello basso dell'Otput. Come incertezza si è preso il range in cui si distinguono i due regimi. Si può considerare quindi che l'uscita della porta sia al livello alto nella fascia trovata. Pertanto abbiamo stimato $V_{OH}=3.7\pm0.2\mathrm{V}^2$. Abbiamo stimato l'incertezza su questo valore come la differenza fra il primo punto per cui si è osservata la variazione e quello immediatamente precedente.

¹E' lo strumento di misure di tensione in continua con maggiore resistenza interna.

 $^{^{2}}$ In accordo con la definizione data di V_{OH} .

Figura 2: V_{out} in funzione di V_{in} .

V_{in} (V)	V_{out} (V)
0.020 ± 0.001	4.30 ± 0.05
0.095 ± 0.001	4.27 ± 0.05
0.314 ± 0.002	4.11 ± 0.005
0.457 ± 0.003	4.03 ± 0.05
0.515 ± 0.003	3.99 ± 0.05
0.653 ± 0.004	3.90 ± 0.04
0.748 ± 0.005	3.84 ± 0.05
0.838 ± 0.005	3.75 ± 0.05
0.913 ± 0.06	3.42 ± 0.05
1.026 ± 0.006	2.26 ± 0.02
1.032 ± 0.006	2.15 ± 0.02
1.304 ± 0.007	0.144 ± 0.001
1.347 ± 0.007	0.144 ± 0.001
1.448 ± 0.008	0.144 ± 0.001
2.03 ± 0.02	0.144 ± 0.001
2.62 ± 0.02	0.144 ± 0.001
3.04 ± 0.02	0.144 ± 0.001
3.55 ± 0.02	0.144 ± 0.001
4.07 ± 0.03	0.144 ± 0.001
4.61 ± 0.03	0.144 ± 0.001

Tabella 1: Misure dei potenziali $V_{in},\,V_{out}.$

Figura 3: Schema circuitale di NOT TTL (presente negli '04).

Come stima di V_{OL} abbiamo preso 0.14 ± 0.05 V, ossia il valore asintotico. Abbiamo tuttavia una grande incertezza su questa stima: in effetti abbiamo riscontrato difficoltà a prendere misure per valori di V_{out} poco superiori a 0.144V; in particolare, era sufficiente una leggera variazione della posizione del trimmer per portare V_{out} dal valore di 2.15V a 0.144V.

Per quanto riguarda le tensioni in ingresso, si osserva che esse vengono considerate dalla porta come valore basso in un range che va da 0 a 0.8V circa, mentre alto da 1.3V in poi. Per stimare i valori di soglia V_{IL} , V_{IH} , abbiamo preso i valori di V_{in} per i quali si osserva l'inizio della transizione di V_{out} da un livello logico all'altro. Con i dati presi si è stimato $V_{IL}=0.8\pm0.1\mathrm{V}$, dove come incertezza abbiamo preso la differenza di V_{IL} dal primo valore di V_{in} per il quale V_{out} inizia a scendere bruscamente. In modo del tutto analogo si ha $V_{IH}=1.3\pm0.2\mathrm{V}$. I valori stimati risultano tutti in buon accordo con quanto riportato sul datasheet: $V_{IL,att}=0.8\mathrm{V}$, $V_{IH,att}=2\mathrm{V}$, $V_{OL,att}=0.25\mathrm{V}$, $V_{OH,att}=3.4\mathrm{V}$.

Il comportamento che si osserva per valori di V_{in} compresi fra V_{IL} e V_{IH} può essere spiegato in termini del circuito in figura 3.

Quando si supera V_{IL} (ossia si passa da stato basso a alto), il transistor Q1 passa dal regime di saturazione a interdizione; conseguentemente Q2 e Q4 passano da regime di interdizione a saturazione (scorre corrente nella maglia che non contiene Q1) e l'output cambia stato. Dato che le transizioni nei transistor non sono immediate, ed è necessario che le varie giunzioni cambino polarità, si ha una fascia di V_{in} compresa tra V_{IL} e V_{IH} in cui si ha un V_{out} intermedio fra V_{OH} e V_{OL} .

3.2 Misura delle correnti in ingresso

Abbiamo inserito l'amperometro in serie all'ingresso del circuito di figura 1 e abbiamo misurato I_{in} al variare di V_{in}^3 . Per avere più sensibilità sulla misura di corrente si è usato il multimetro analogico e l'incertezza usata è quella riportata nel manuale. Il segno di I_{in} è positivo se entrante nella porta. I dati sono riportati in tabella2 e in figura 4. Ci aspettiamo che per V_{in} a livello basso si abbia una corrente uscente (negativa), in quanto l'input è come se fosse collegato direttamente a V_{CC} tramite la giunzione polarizzata direttamente BE di Q1 (figura 3). Viceversa, se V_{in} è alto, Q1 è in interdizione e quindi si avrà una corrente entrante circa nulla. Si osserva che per V_{in} corrispondenti al valore logico basso, si ha una corrente I_{in} negativa e dell'ordine delle centinaia di μ A (massimo sui 260μ A), mentre per V_{in} su stato alto, si ha una corrente nulla entro l'errore. Abbiamo stimato i valori delle correnti di soglia in corrispondenza dei punti in cui si hanno variazioni brusche dell'andamento di I_{in}^4 . Si ha quindi $I_{IH} = 0.0 \pm 0.5\mu$ A e $I_{IL} = -180 \pm 20\mu$ A I rispettivi valori massimi riportati sul datasheet sono $I_{IL,att} = -0.4$ mA, $I_{IH} = 20\mu$ A. I valori stimati quindi rientrano nei limiti riportati dal costruttore.

3.3 Misura delle correnti in uscita

Per misurare la massima e minima corrente in uscita dalla porta, abbiamo montato il circuito 5 come in figura 5. Per ricavare I_{out} abbiamo misurato la caduta di potenziale $V_{AB} = V_A - V_B$ ai capi della resistenza R_2 tramite multimetro digitale e poi si è diviso per $R_2 = 98 \pm 1\Omega$. Si è preso il segno della corrente positivo se entrante nella porta. Per la misura di I_{OL} si collega l'uscita a V_{CC} e si varia il potenziometro R_1 in figura

 $^{^3{\}rm La}$ procedura per variare V_{in} è la stessa del punto precedente.

⁴Questi sono anche punti in cui V_{in} è prossimo a V_{IL} , V_{IH} .

⁵Il circuito collegato all'ingresso della porta è lo stesso di prima.

V_{in} (V)	$I_{in} (\mu A)$
0.042 ± 0.001	-270 ± 3
0.127 ± 0.002	-263 ± 3
0.396 ± 0.005	-231 ± 3
0.720 ± 0.005	-185 ± 2
1.000 ± 0.006	-148 ± 2
1.066 ± 0.006	-65 ± 1
1.100 ± 0.006	-20.0 ± 0.5
1.143 ± 0.006	-2.0 ± 0.5
1.220 ± 0.007	0.0 ± 0.5
1.270 ± 0.007	0.0 ± 0.5
2.12 ± 0.02	2.0 ± 0.5
3.16 ± 0.02	3.0 ± 0.5
4.00 ± 0.03	4.0 ± 0.5
4.64 ± 0.03	4.0 ± 0.5

Tabella 2: Corrente in ingresso in funzione di V_{in}

Figura 4: Corrente in ingresso alla porta NOT in funzione di V_{in} .

5 in modo che l'uscita sia in stato basso. Per verificare che l'uscita fosse effettivamente nello stato basso, si è controllato V_{out} tramite oscilloscopio. Abbiamo deciso di prendere la misura di corrente in corrispondenza del valore di V_{OL} stimato in precedenza. Tuttavia, in questo modo si ottiene $V_{AB}=4.60\pm0.4 \mathrm{mV}$ e quindi $I_{out}=47\pm1\mu\mathrm{A}$, che risulta più basso del valore riportato sul datasheet $I_{OL,att}=8 \mathrm{mA}$. Abbiamo quindi deciso di prendere una ulteriore misura, in corrispondenza del punto in cui si osservava una brusca variazione di V_{out} e V_{AB} . Ciò avviene per $V_{out}=380\pm3 \mathrm{mV}$ e $V_{AB}=700\pm7$ mV, da cui $I_{out}=7.1\pm1 \mathrm{mA}$. Così si ottiene una stima più vicina al valore nominale. Abbiamo quindi scelto questo valore come I_{OL} . Un motivo per cui fallisce

Figura 5: Schema del circuito utilizzato per la misura delle correnti di uscita.

il metodo di stimare I_{OL} come la I_{out} a V_{OL} è che nelle misure riportate nel grafico 2 non si è riusciti a ottenere misure di V_{out} che non fossero del valore limite 0.144V. In effetti, sempre facendo riferimento allo stesso grafico, si osserva che il V_{out} a cui è stata presa I_{OL} non è così lontano dalla zona in cui l'output è considerato basso. Per la misura di I_{OH} si collega l'uscita al ground facendo in modo che essa sia in stato alto. Abbiamo preso la misura in corrispondenza di $V_{OUT} = 3.7 \pm 0.1$ V, ossia il valore stimato di V_{OH} (in corrispondenza di tale valore si aveva anche una brusca variazione della corrente e di V_{OUT}). Così si ottiene $V_{AB}=-13.8\pm0.2 \mathrm{mV}$ e quindi $I_{OH} = -0.141 \pm 0.001$ mA, valore in accordo con quanto riportato nel datasheet $I_{OH,att} = -0.4$ mA. La strategia di mettere V_{out} pari alla stima del valore di soglia ottenuto in questo caso funziona meglio perchè i dati del grafico 2 coprono un intorno sufficientemente grande del punto in cui avviene la variazione brusca di corrente. Una spiegazione della rapida variazione di I_{in} è che se diminuiamo troppo la resistenza di carico all'uscita della porta NOT, l'integrato deve erogare più corrente affinchè ci sia la giusta differenza di potenziale fra V_{out} e V_A (il quale è tenuto a potenziale costante tramite opportuno collegamento). Se la corrente necessaria supera la corrente massima erogabile, il circuito non funziona più come NOT e quindi si ha una variazione della corrente. Con questi valori si è dato una stima del fanout. Le correnti che determinano tale valore sono I_{OL} e I_{IL} , in quanto I_{IH} è nulla (al più dell'ordine del μ A), e quindi si possono alimentare più facilmente porte quando si è nello stato alto. Si ha $fanout = I_{IL}/I_{OL} = 39 \pm 2$, mentre utilizzando le correnti di soglia nominali si ottiene fanout, att = 20. Il risultato ottenuto è dello stesso ordine di grandezza di quello stimato.

4 Montaggio di Arduino

Abbiamo montato il circuito pulsatore in figura 6. I valori delle componenti, misurate con multimetro, sono

Figura 6: Schema del pulsatore utilizzato.

 $R_1=0.98\pm0.01\mathrm{k}\Omega,\ R_2=1.00\mathrm{k}\Omega,\ R_3=0.98\pm0.01\mathrm{k}\Omega,\ R_4=0.99\mathrm{k}\Omega,\ R_5=9.9\pm0.1\mathrm{k}\Omega,\ C_1=100\pm20\mathrm{nF},\ C_2=100\pm20\mathrm{nF}.$ Successivamente abbiamo verificato il suo comportamento da generatore di onde quadre. La frequenza del segnale dipende dalla posizione del trimmer, e va da qualche Hz ai 50 kHz. L'ampiezza dell'onda picco-picco è pari a $v_{pp}=3.16\pm0.04\mathrm{V}.$ In figura 7 si possono osservare i segnali (misurati tramite oscilloscopio) alle uscite Y_1 e Y_2 .

5 Caratteristiche dinamiche

5.1 Onda in ingresso

Si è generato tramite Arduino un segnale ad onda quadra di frequenza di circa $1.01 \pm 0.01 \, \text{kHZ}$ di ampiezza da 0 a $3.16 \pm 0.04 \, \text{V}$. In figura 8 si può osservare il corretto funzionamento della porta NOT. Si è effettuata la misura

Figura 7: Onde sfasate di $\pi/2$ in uscita a Y_1 , Y_2 . L'ampiezza dei segnali è la stessa, si sono solo usate scale diverse per comodità grafica.

Figura 8: Segnale in ingresso(CH1) e segnale in uscita alla porta NOT (CH2)

tramite oscilloscopio. Le incertezze sui potenziali sono la sensibilità del cursore più il 3% di calibrazione, mentre sui tempi il massimo fra la sensibilità del cursore e la semidispersione dei valori plausibili.

5.2 Misura dei tempi di propagazione

Abbiamo eseguito una misura dei due tempi di propagazione, misurando il tempo fra i segnali in ingresso e in uscita in corrispondenza dei i due punti a metà altezza della rampa in salita (tPLH) e discesa (tPHL) rispettivamente. In figura 9 e 10 si possono osservare il tempo di propagazione tPHL e tPLH rispettivamente.

Figura 9: Tempo di propagazione tPHL.

La misura di tempo è stata eseguita tramite oscilloscopio. L'incertezza sui tempi è dovuta sia alla sensibilità dei cursori, sia all'incertezza sul trovare i punti con il giusto pontenziale. Per stimarla si è presa la semidispersione

Figura 10: Tempo di propagazione tPLH.

sui valori misurati nei punti con potenziale compatibile con la metà entro la sensibilità del cursore dei potenziali⁶. I valori riportati nel datasheet sono $tPHL_{att}=10$ ns e $tPLH_{att}=9$ ns⁷. I valori misurati sono $tPHL=10.2\pm0.2$ ns e $tPLH=12.8\pm0.4$ ns, pertanto sono in buon accordo con quanto riportato dal costruttore.

5.3 Misura del tempo di salita

Abbiamo misurato i tempi di salita t_s e discesa t_d del segnale in uscita e in ingresso, ossia il tempo necessario per passare dal 10% della v_{pp} massima⁸ al 90% (il contrario per il tempo di discesa). In figura 11 abbiamo riportato il tempo di salita del segnale in ingresso per mostrare la procedura di misura utilizzata.

Figura 11: Tempo di salita del segnale in ingresso.

In tabella 3 sono riportati le misure:

Segnale	t_s (ns)	t_d (ns)
Ingresso	8.6 ± 0.2	6.0 ± 0.2
Uscita	36.2 ± 0.2	20.4 ± 0.4

Tabella 3: Tempi di salita e discesa all'ingresso e all'uscita della porta NOT.

6 Conclusioni

L'integrato si comporta come porta NOT entro i potenziali indicati dal costruttore. La stima delle correnti di soglia in uscita I_{OL} , I_{OH} ha riportato alcune difficoltà, e i valori non sono in completo accordo con quanto riportato sul datasheet. Il comportamento dinamico del circuito presenta ritardi nella propagazione del segnale in uscita.

 $^{^6}$ L'oscilloscopio utilizzato consentiva di visualizzare contemporaneamente entrambe le coordinate del punto in cui si prendeva la misura.

⁷ Valori tipici con resistenza di carico $R_L=2\mathrm{k}\Omega.$

 $^{^8{\}rm Ai}$ fini dei calcoli si considera v_{pp} senza overshoot.