_						
7	Super VIP Cheatsheet: Aprendizado de Máquina	4			uques de aprendizado de máquina	10
			4.1		cas de classificação	10
			4.2		cas de regressão	11
	Afshine Amidi e Shervine Amidi		4.3	3	ão de modelo	
			4.4	ł Diagn	óstico	12
	13 de Outubro de 2018	5	Re	evisão		13
			5.1		abilidades e Estatística	13
			5.2		ra Linear e Cálculo	15
Co	onteúdo		_	5.2.1		
				5.2.2	Operações de matriz	15
1	Aprendizado supervisionado 2			5.2.3	Propriedades da matriz	
1	1.1 Introdução ao Aprendizado Supervisionado			5.2.4	Cálculo com matriz	17
	1.2 Notações e conceitos gerais					
	1.3 Modelos lineares					
	1.3.1 Regressão linear					
	1.3.2 Classificação e regressão logística					
	1.3.3 Modelos Lineares Generalizados					
	1.4 Máquinas de Vetores de Suporte					
	1.5 Aprendizado Generativo					
	1.5.1 Análise Discriminante Gaussiana 4					
	1.5.2 Naive Bayes					
	1.6 Métodos em conjunto e baseados em árvore					
	1.7 Outras abordagens não paramétricas					
	1.8 Teoria de Aprendizagem					
2	Aprendizado não supervisionado 6					
	2.1 Introdução ao aprendizado não supervisionado 6					
	2.2 Agrupamento					
	2.2.1 Maximização de expectativa 6					
	2.2.2 Agrupamento k -means 6					
	2.2.3 Agrupamento hierárquico 6					
	2.2.4 Métricas de atribuição de agrupamento					
	2.3 Redução de dimensão					
	2.3.1 Análise de componente principal					
	2.3.2 Análise de componente independete					
3	Aprendizado profundo 8					
	3.1 Redes neurais					
	3.2 Redes neurais convolucionais					
	3.3 Redes neurais recorrentes					

1 Aprendizado supervisionado

1.1 Introdução ao Aprendizado Supervisionado

Dado um conjunto de dados $\{x^{(1)},...,x^{(m)}\}$ associados a um conjunto de resultados $\{y^{(1)},...,y^{(m)}\}$, nós queremos construir um classificador que aprende como predizer y baseado em x.

□ Tipos de predição – Os diferentes tipos de modelo de predição estão resumidos na tabela abaixo:

	Regressão	Classificador
Resultado	Contínuo	Classe
Exemplos	Regressão linear	Regressão logística, SVM, Naive Bayes

☐ Tipos de modelo – Os diferentes modelos estão resumidos na tabela abaixo:

	Modelo discriminativo	Modelo generativo
Objetivo Estimar diretamente $P(y x)$		Estimar $P(x y)$, deduzir $P(y x)$
O que é aprendido	Fronteira de decisão	Probabilidade da dist. dos dados
Ilustração		
Exemplos	Regressões, SVMs	GDA, Naive Bayes

1.2 Notações e conceitos gerais

□ Hipótese – A hipótese é denominada h_{θ} e é o modelo que escolhemos. Para um determinado dado de entrada $x^{(i)}$ o resultado do modelo de predição é $h_{\theta}(x^{(i)})$.

□ Função de perda – A função de perda é definida como $L:(z,y) \in \mathbb{R} \times Y \longmapsto L(z,y) \in \mathbb{R}$ que recebe como entradas o valor z previsto correspondente ao valor real y e retorna o quão diferente eles são.

Quadrático	Logística	Hinge	Entropia cruzada
$\frac{1}{2}(y-z)^2$	$\log(1 + \exp(-yz))$	$\max(0,1-yz)$	$-\left[y\log(z)+(1-y)\log(1-z)\right]$
$y\in\mathbb{R}$	y = -1 $y = -1$ $y = 1$	y = -1 z y = 1	y = 0 $y = 1$ $y = 1$
Regressão linear	Regressão logística	SVM	Rede neural

 \square Função de custo – A função de custo J é normalmente usada para avaliar a performance de um modelo e é definida usando a função de perda L como:

$$J(\theta) = \sum_{i=1}^{m} L(h_{\theta}(x^{(i)}), y^{(i)})$$

 $\hfill \Box$ Gradiente descendente — Definindo $\alpha \in \mathbb{R}$ como a taxa de aprendizado, a regra de atualização para o gradiente descendente é expressa usando a taxa de aprendizado e a função de custo J como:

$$\theta \longleftarrow \theta - \alpha \nabla J(\theta)$$

Observação: O gradiente descendente estocástico (GDE) atualiza o parâmetro baseado em cada exemplo de treinamento e o gradiente descendente em lote em um conjunto de exemplos de treinamento.

□ Probabilidade – A probabilidade de um modelo $L(\theta)$ dado os parâmetros θ é usada para encontrar os parâmetros ótimos θ pela maximização da probabilidade. Na prática, é usado o logaritimo da probabilidade (log-likelihood) $\ell(\theta) = \log(L(\theta))$ que é mais simples para se otimizar. Tem-se:

$$\theta^{\text{opt}} = \underset{\theta}{\text{arg max } L(\theta)}$$

□ Algoritimo de Newton – O algoritmo de Newton é um método numérico que encontra θ tal que $\ell'(\theta) = 0$. Sua regra de atualização é:

$$\theta \leftarrow \theta - \frac{\ell'(\theta)}{\ell''(\theta)}$$

Observação: a generalização multidimensional, também conhecida como o método de Newton-Raphson, tem a seguinte regra de atualização:

$$\theta \leftarrow \theta - \left(\nabla_{\theta}^2 \ell(\theta)\right)^{-1} \nabla_{\theta} \ell(\theta)$$

1.3 Modelos lineares

1.3.1 Regressão linear

Assume-se que $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$

 \square Equações normais – Definindo X como o desenho da matriz, o valor θ que minimiza a função de custo em uma solução de forma fechada é dado por:

$$\theta = (X^T X)^{-1} X^T y$$

 \square Algoritimo MMQ – Definindo α como a taxa de aprendizado, a regra de atualização do algoritmo de Média de Mínimos Quadrados para um conjunto de treinamento de m pontos, também conhecida como a regra de atualização de Widrow-Hoff, é dada por:

$$\left| \forall j, \quad \theta_j \leftarrow \theta_j + \alpha \sum_{i=1}^m \left[y^{(i)} - h_{\theta}(x^{(i)}) \right] x_j^{(i)} \right|$$

Observação: a regra de atualização é um caso particular do gradiente ascendente.

 \square LWR – Regressão Ponderada Localmente (Locally Weighted Regression), também conhecida como LWR, é uma variação da regressão linear que sempre pondera cada exemplo de treinamento em sua função de custo por $w^{(i)}(x)$, que é definida com o parâmetro $\tau \in \mathbb{R}$ como:

$$w^{(i)}(x) = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

1.3.2 Classificação e regressão logística

 \square Função sigmoide — A função sigmoide g, também conhecida como função logística, é definida como:

$$\forall z \in \mathbb{R}, \quad g(z) = \frac{1}{1 + e^{-z}} \in]0,1[$$

 \square Regressão logística – Se assume que $y|x;\theta \sim$ Bernoulli (ϕ) . Tem-se a seguinte fórmula:

$$\phi = p(y=1|x;\theta) = \frac{1}{1+\exp(-\theta^T x)} = g(\theta^T x)$$

Observação: não existe uma fórmula de solução fechada para o caso de regressão logística.

□ Regressão softmax – A regressão softmax, também chamada de regressão logística multiclasse, é usada para generalizar a regressão logística quando existem mais de 2 classes. Por convenção, definimos $\theta_K=0$, que faz com que o parâmetro de Bernoulli ϕ_i de cada classe i seja igual a:

$$\phi_i = \frac{\exp(\theta_i^T x)}{\sum_{j=1}^K \exp(\theta_j^T x)}$$

1.3.3 Modelos Lineares Generalizados

□ Família exponencial – Uma classe de distribuições é chamada de família exponencial se ela puder ser escrita em termos de um parâmetro natural, também chamado de parâmetro canônico ou função de link η , uma estatítica suficiente T(y) e de uma função de partição de log $a(\eta)$ e é dada por:

$$p(y;\eta) = b(y) \exp(\eta T(y) - a(\eta))$$

Observação: em geral tem-se T(y) = y. Também, $\exp(-a(\eta))$ pode ser definido como o parâmetro de normalização que garantirá que as probabilidades somem um.

Na tabela a seguir estão resumidas as distribuições exponenciais mais comuns:

Distribuição	η	T(y)	$a(\eta)$	b(y)
Bernoulli	$\log\left(\frac{\phi}{1-\phi}\right)$	y	$\log(1 + \exp(\eta))$	1
Gaussiana	μ	y	$\frac{\eta^2}{2}$	$\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right)$
Poisson	$\log(\lambda)$	y	e^{η}	$\frac{1}{y!}$
Geométrica	$\log(1-\phi)$	y	$\log\left(\frac{e^{\eta}}{1-e^{\eta}}\right)$	1

□ Suposições de GLMs – Modelos Lineares Generalizados (GLM) visa predizer uma variável aleatória y através da função $x \in \mathbb{R}^{n+1}$ e conta com as 3 seguintes premissas:

(1)
$$y|x; \theta \sim \text{ExpFamily}(\eta)$$

(2)
$$h_{\theta}(x) = E[y|x;\theta]$$

$$(3) \quad \eta = \theta^T x$$

 $Observação: \ m\'inimos \ quadrados \ ordin\'arios \ e \ regress\~ao \ log\'astica \ s\~ao \ casos \ especiais \ de \ modelos \ lineares \ qeneralizados.$

1.4 Máquinas de Vetores de Suporte

O objetivo das máquinas de vetores de suporte (support vector machines) é encontrar a linha que maximiza a distância mínima até a linha.

 \square Classificador de margem ideal – O classificador de margem ideal h é definido por:

$$h(x) = \operatorname{sign}(w^T x - b)$$

onde $(w, b) \in \mathbb{R}^n \times \mathbb{R}$ é a solução para o seguinte problema de otimização:

$$\min \frac{1}{2}||w||^2 \qquad \text{tal como} \qquad \boxed{y^{(i)}(w^Tx^{(i)} - b) \geqslant 1}$$

□ Perda de Hinge – A perda de articulação é usada na configuração das máquinas de vetores de suporte (SVMs) e é definida como:

$$L(z,y) = [1 - yz]_{+} = \max(0,1 - yz)$$

 \square Kernel – Dado um mapeamento de parâmetro ϕ , o kernel K é definido como:

$$K(x,z) = \phi(x)^T \phi(z)$$

Na prática, o kernel K definido por $K(x,z) = \exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$ é chamado de kernel Gaussiano e é comumente usado.

Separabilidade não-linear ⇒ Uso de mapeamento de kernel ϕ ⇒ Limite de decisão no espaco original

Observação: é dito que é usado o "truque de kernel"(kernel trick) para calcular a função de custo usando o kernel porque na verdade não precisamos saber o mapeamento explítico de ϕ . que é muito complicado. Ao invés, apenas os valores K(x,z) são necessários.

□ Lagrangiano – O Lagrangiano L(w,b) é definido por:

$$\mathcal{L}(w,b) = f(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

Observação: os coeficientes β_i são chamados de multiplicadores Lagrangeanos.

1.5Aprendizado Generativo

Um modelo generativo primeiro tenta aprender como o dado é gerado estimando P(x|y), o que pode ser usado para estimar P(y|x) usando a regra de Baves.

1.5.1 Análise Discriminante Gaussiana

 \Box Configuração - A Análise Discriminante Gaussiana assume que y e x|y=0 e x|y=1 são tais que:

$$y \sim \text{Bernoulli}(\phi)$$

$$|x|y = 0 \sim \mathcal{N}(\mu_0, \Sigma)$$
 et $|x|y = 1 \sim \mathcal{N}(\mu_1, \Sigma)$

☐ Estimativa – A tabela a seguir resume as estimativas que encontramos ao maximizar a probabilidade:

$$\widehat{\phi} \qquad \widehat{\mu_j} \quad (j = 0,1) \qquad \widehat{\Sigma}$$

$$\frac{1}{m} \sum_{i=1}^{m} 1_{\{y^{(i)} = 1\}} \qquad \frac{\sum_{i=1}^{m} 1_{\{y^{(i)} = j\}} x^{(i)}}{\sum_{i=1}^{m} 1_{\{y^{(i)} = j\}}} \qquad \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T$$

1.5.2Naive Bayes

□ Premissas – O modelo de Naive Bayes assume que os parâmetros (features) de cada dado do conjunto são independentes:

$$P(x|y) = P(x_1, x_2, ...|y) = P(x_1|y)P(x_2|y)... = \prod_{i=1}^{n} P(x_i|y)$$

 \square Soluções –Maximizar o logaritimo da probabilidade nos dá as seguintes soluções, com $k \in$ $\{0,1\},l \in [1,L]$

$$P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)} = k\}$$

 $P(y=k) = \frac{1}{m} \times \#\{j|y^{(j)} = k\} \qquad \text{et} \qquad P(x_i = l|y = k) = \frac{\#\{j|y^{(j)} = k \text{ et } x_i^{(j)} = l\}}{\#\{j|y^{(j)} = k\}}$

Observação: Naive Bayes é amplamente utilizado para classificação de texto e detecção de spam.

Métodos em conjunto e baseados em árvore

Esses métodos podem ser usados tanto para problemas de regressão quanto de classificação.

□ CART – Árvores de Classificação e Regressão (CART), normalmente conhecida como árvores de decisão (decision trees), podem ser representadas como árvores binárias. Elas tem a vantagem de serem facilmente interpretadas.

□ Floresta aleatória – É uma técnica baseada em árvore que usa um grande número de árvores de decisão construídas a partir de um conjunto aleatórios de parâmetros. Ao contrário de uma simples árvore de decisão, esta técnica é de difícil interpretação mas geralmente alcança uma boa performance, sendo um algorítimo popular.

Observação: florestas aleatórias são um tipo de métodos de conjunto.

□ Boosting – A ideia dos métodos de boosting é combinar vários tipo de aprendizes fracos (weak learners) para formar um mais forte. Os principais tipos estão resumidos na tabela abaixo:

Boosting adaptativo	Gradiente de boosting
- De grands coefficients sont mis sur les erreurs pour s'améliorer à la prochaine étape de boosting - Connu sous le nom d'Adaboost	- Les modèles faibles sont entrainés sur les erreurs résiduelles

1.7Outras abordagens não paramétricas

□ k-vizinhos próximos – O algortimo de k-vizinhos próximos, normalmente conhecido como k-NN, é uma abordagem não paramétrica onde a resposta do dado é determinada pela natureza

dos seus k vizinhos no conjunto de treinamento. Ele pode ser usado tanto em configurações de classificação como regressão.

Observação: Quanto maior o parâmetro k, maior o viés, e quanto menor o parâmetro k, maior a variância.

Teoria de Aprendizagem

 \square Limite de união – Dado que $A_1,...,A_k$ são k eventos. Temos que:

$$P(A_1 \cup \ldots \cup A_k) \leqslant P(A_1) + \ldots + P(A_k)$$

$$A_1 \cup A_2 \cup A_3$$

$$A_1 \qquad A_2 \qquad A_3$$

 \square Desigualdade de Hoeffding - Dado que $Z_1,...,Z_m$ são m iid variáveis extraídas de uma distribuição de Bernoulli do parâmetro ϕ . Seja $\widehat{\phi}$ a média amostral deles e fixado $\gamma > 0$. Temos

$$P(|\phi - \widehat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

Observação: essa desigualdade também é chamada de fronteira Chernoff.

 \square Erro de treinamento – Para um dado classificador h, é definido o erro de treinamento $\widehat{\epsilon}(h)$, também conhecido como o risco ou o erro empírico, como:

$$\widehat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{\{h(x^{(i)}) \neq y^{(i)}\}}$$

☐ Provavelmente Aproximadamente Correto (PAC) – PAC é uma estrutura (framework) em que numerosos resultados da teoria de aprendizagem foram provados, e tem o seguinte conjunto de premissas:

• o conjunto de treino e teste seguem a mesma distribuição

• os exemplos de treinamento foram extraídos de forma independente

 \square Shattering – Dado um conjunto $S = \{x^{(1)}, ..., x^{(d)}\}$, e um conjunto de classificadores \mathcal{H} , diz-se que \mathcal{H} destrói (shatters) S se para qualquer conjunto de rótulos $\{y^{(1)}, ..., y^{(d)}\}$, temos:

$$\exists h \in \mathcal{H}, \quad \forall i \in [1,d], \quad h(x^{(i)}) = y^{(i)}$$

 \Box Teorema da fronteira superior - Seja $\mathcal H$ uma class de hipótese finita tal que $|\mathcal H|=k$ e seja δ e o tamanho da amostra m fixado. Então, com a probabilidade de ao menos $1-\delta$, temos:

$$\widehat{\epsilon(h)} \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\left(\frac{2k}{\delta}\right)}$$

□ Dimensão VC – A dimensão Vapnik-Chervonenkis (VC) de uma classe de hipótese infinita \mathcal{H} , denominada $VC(\mathcal{H})$ é o tamanho do maior conjunto que é destruído (shattered) por \mathcal{H} .

Observação: a dimensão VC de $\mathcal{H} = \{ set \ of \ linear \ classifiers \ in \ 2 \ dimensions \} \ \acute{e} \ 3$

□ Teorema (Vapnik) – Dado \mathcal{H} , com $VC(\mathcal{H}) = d$ e m o número de exemplos de treinamento. Com a probabilidade de ao menos $1 - \delta$, temos que:

$$|\epsilon(\widehat{h}) \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + O\left(\sqrt{\frac{d}{m}\log\left(\frac{m}{d}\right) + \frac{1}{m}\log\left(\frac{1}{\delta}\right)}\right)$$

2 Aprendizado não supervisionado

2.1 Introdução ao aprendizado não supervisionado

□ Motivação – O objetivo do aprendizado não supervisionado (unsupervised learning) é encontrar padrões em dados sem rótulo $\{x^{(1)},...,x^{(m)}\}$.

 $\hfill \Box$ Desigualdade de Jensen – Seja fum função convexa e Xuma variável aleatória. Temos a seguinte desigualdade:

$$E[f(X)] \geqslant f(E[X])$$

2.2 Agrupamento

2.2.1 Maximização de expectativa

 \square Variáveis latentes – Variáveis latentes são variáveis escondidas/não observadas que dificultam problemas de estimativa, e são geralmente indicadas por z. Aqui estão as mais comuns configurações onde há variáveis latentes:

Configuração	Variável latente z	x z	Comentários
Mistura de k gaussianos	$\operatorname{Multinomial}(\phi)$	$\mathcal{N}(\mu_j, \Sigma_j)$	$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$
Análise de fator	$\mathcal{N}(0,I)$	$\mathcal{N}(\mu + \Lambda z, \psi)$	$\mu_j \in \mathbb{R}^n$

 \square Algoritmo – O algoritmo de maximização de expectativa (EM - Expectation-Maximization) fornece um método eficiente para estimar o parâmetro θ através da probabilidade máxima estimada ao construir repetidamente uma fronteira inferior na probabilidade (E-step) e otimizar essa fronteira inferior (M-step) como a seguir:

• E-step: Avalia a probabilidade posterior $Q_i(z^{(i)})$ na qual cada ponto de dado $x^{(i)}$ veio de um grupo particular $z^{(i)}$ como a seguir:

$$Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)};\theta)$$

• M-step: Usa as probabilidades posteriores $Q_i(z^{(i)})$ como grupo específico de pesos nos pontos de dado $x^{(i)}$ para separadamente estimar cada modelo do grupo como a seguir:

$$\theta_{i} = \underset{\theta}{\operatorname{argmax}} \sum_{i} \int_{z^{(i)}} Q_{i}(z^{(i)}) \log \left(\frac{P(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})} \right) dz^{(i)}$$

2.2.2 Agrupamento k-means

Nós indicamos $c^{(i)}$ o grupo de pontos de dados i e μ_i o centro do grupo j.

 \square Algoritmo – Após aleatoriamente inicializar os centróides do grupo $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$, o algoritmo k-means repete os seguintes passos até a convergência:

 $\hfill\Box$ Função de distorção – A fim de ver se o algoritmo converge, nós olhamos para a função de distorção (distortion function) definida como se segue:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

2.2.3 Agrupamento hierárquico

□ Algoritmo – É um algoritmo de agrupamento com uma abordagem hierárquica aglometariva que constrói grupos aninhados de uma maneira sucessiva.

 $\hfill \Box$ Tipos – Existem diferentes tipos de algoritmos de agrupamento hierárquico que objetivam a otimizar funções objetivas diferentes, os quais estão resumidos na tabela abaixo:

Ligação de vigia	Ligação média	Ligação completa
Minimizar distância	Minimizar a distância média	Minimizar a distância máxima
dentro do grupo	entre pares de grupos	entre pares de grupos

2.2.4 Métricas de atribuição de agrupamento

Em uma configuração de aprendizado não supervisionado, é geralmente difícil acessar o desempenho de um modelo desde que não temos rótulos de verdade como era o caso na configuração de aprendizado supervisionado.

 \Box Coeficiente de silhueta – Ao indicar a e b a distância média entre uma amostra e todos os outros pontos na mesma classe, e entre uma amostra e todos os outros pontos no grupo mais próximo, o coeficiente de silhueta s para uma única amostra é definida como se segue:

$$s = \frac{b - a}{\max(a, b)}$$

 \square Índice Calinski-Harabaz – Indicando por k o número de grupos, B_k e W_k as matrizes de disperção entre e dentro do agrupamento respectivamente definidos como:

$$B_k = \sum_{i=1}^k n_{c(i)} (\mu_{c(i)} - \mu) (\mu_{c(i)} - \mu)^T, \qquad W_k = \sum_{i=1}^m (x^{(i)} - \mu_{c(i)}) (x^{(i)} - \mu_{c(i)})^T$$

o índice Calinski-Harabaz s(k) indica quão bem um modelo de agrupamento define o seu grupo, tal que maior a pontuação, mais denso e bem separado os grupos estão. Ele é definido como a seguir:

$$s(k) = \frac{\operatorname{Tr}(B_k)}{\operatorname{Tr}(W_k)} \times \frac{N-k}{k-1}$$

2.3 Redução de dimensão

2.3.1 Análise de componente principal

 $\acute{\rm E}$ uma técnica de redução de dimensão que encontra direções de maximização de variância em que projetam os dados.

 \square Autovalor, autovetor – Dada uma matriz $A \in \mathbb{R}^{n \times n}$, λ é dito ser um autovalor de A se existe um vetor $z \in \mathbb{R}^n \setminus \{0\}$, chamado autovetor, tal que temos:

$$Az = \lambda z$$

□ Teorema espectral – Seja $A \in \mathbb{R}^{n \times n}$. Se A é simétrica, então A é diagonizável por uma matriz ortogonal $U \in \mathbb{R}^{n \times n}$. Denotando $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, temos:

$$\exists \Lambda \text{ diagonal}, \quad A = U\Lambda U^T$$

Observação: o autovetor associado com o maior autovalor é chamado de autorvetor principal da matriz A.

 $\hfill \square$ Algoritmo – O processo de Análise de Componente Principal (PCA - Principal Component Analysis) é uma técnica de redução de dimensção que projeta os dados em dimensções k ao maximizar a variância dos dados como se segue:

• Etapa 1: Normalizar os dados para ter uma média de 0 e um desvio padrão de 1.

$$\boxed{x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{\sigma_j}} \quad \text{où} \quad \boxed{\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}} \quad \text{e} \quad \boxed{\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2}$$

- Etapa 2: Computar $\Sigma = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T} \in \mathbb{R}^{n \times n}$, a qual é simétrica com autovalores reais
- Etapa 3: Computar $u_1, ..., u_k \in \mathbb{R}^n$ os k principais autovetores ortogonais de Σ , i.e. os autovetores ortogonais dos k maiores autovalores.
- Etapa 4: Projetar os dados em $\operatorname{span}_{\mathbb{R}}(u_1,...,u_k)$. Esse processo maximiza a variância entre todos espaços dimensionais k.

2.3.2 Análise de componente independete

É uma técnica que pretende encontrar as fontes de geração subjacente.

□ Suposições – Nós assumimos que nosso dado x foi gerado por um vetor fonte dimensional n $s = (s_1,...,s_n)$, onde si são variáveis aleatórias independentes, através de uma matriz A misturada e não singular como se segue:

$$x = As$$

O objetivo é encontrar a matriz $W = A^{-1}$ não misturada.

 \square Algoritmo Bell e Sejnowski ICA – Esse algoritmo encontra a matriz Wnão misturada pelas seguintes etapas abaixo:

• Escreva a probabilidade de $x = As = W^{-1}s$ como:

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) \cdot |W|$$

• Escreva o logaritmo da probabilidade dado o nosso dado treinado $\{x^{(i)}, i \in [\![1,m]\!]\}$ e indicando q a função sigmoide como:

$$l(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log \left(g'(w_{j}^{T} x^{(i)}) \right) + \log |W| \right)$$

Portanto, a regra de aprendizagem do gradiente ascendente estocástico é tal que para cada 3 Aprendizado profundo exemplo de treinamento $x^{(i)}$, nós atualizamos W como a seguir:

$$W \longleftarrow W + \alpha \begin{pmatrix} \begin{pmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{pmatrix} x^{(i)}^T + (W^T)^{-1} \end{pmatrix}$$

3.1 Redes neurais

Redes neurais são uma classe de modelos que são construídos com camadas. Os tipos de redes neurais comumente utilizadas incluem redes neurais convolucionais e recorrentes.

□ Arquitetura – O vocabulário em torno das arquiteruras de redes neurais é descrito na figura abaixo:

Camada de entrada

Camada escondida 1

... Camada escondida k Camada de saída

Dado que i é a i-ésima camada da rede e j a j-ésima unidade escondida da camada, nós temos:

$$z_{j}^{[i]} = w_{j}^{[i]T} x + b_{j}^{[i]}$$

onde é definido que w, b, z, o peso, o viés e a saída respectivamente.

□ Função de ativação - Funções de ativação são usadas no fim de uma unidade escondida para introduzir complexidades não lineares ao modelo. Aqui estão as mais comuns:

Sigmoide	Tanh	ReLU	Leaky ReLU
$g(z) = \frac{1}{1 + e^{-z}}$	$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$g(z) = \max(0, z)$	$g(z) = \max(\epsilon z, z)$ with $\epsilon \ll 1$
$\begin{array}{c c} 1 \\ \hline \frac{1}{2} \\ \hline -4 & 0 \end{array}$	1 -4 0 4	0 1	0 1

□ Perda de entropia cruzada – No contexto de redes neurais, a perda de entropia cruzada L(z,y) é comumente utilizada e é definida como se segue:

$$L(z,y) = -\left[y\log(z) + (1-y)\log(1-z)\right]$$

 \square Taxa de apredizado – A taxa de aprendizado, frequentemente indicada por α ou às vezes η , indica a que ritmo os pesos são atualizados. Isso pode ser fixado ou alterado de modo adaptativo. O método atual mais popular é chamado Adam, o qual é um método que adapta a taxa de aprendizado.

□ Retropropagação - Retropropagação é um método para atualizar os pesos em uma rede neural levando em conta a saída atual e a saída desejada. A derivada relativa ao peso w é computada utilizando a regra da cadeia e é da seguinte forma:

$$\frac{\partial L(z,y)}{\partial w} = \frac{\partial L(z,y)}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w}$$

Como resultado, o peso é atualizado como se segue:

$$w \longleftarrow w - \eta \frac{\partial L(z, y)}{\partial w}$$

☐ Atualizando os pesos – Em uma rede neural, os pesos são atualizados como a seguir:

- Passo 1 : Pegue um conjunto de dados de treinamento.
- Passo 2 : Realize propagação para frente a fim de obter a perda correspondente.
- Passo 3: Retropropague a perda para obter os gradientes.
- Passo 4: Use os gradientes para atualizar os pesos da rede.

 \square Abandono – Abandono (*dropout*) é uma técnica que pretende prevenir o sobreajuste dos dados de treinamente abandonando unidades na rede neural. Na prática, neurônios são ou abandonados com a propabilidade p ou mantidos com a propabilidade 1-p.

3.2 Redes neurais convolucionais

 \square Requisito de camada convolucional – Dado que W é o tamanho do volume de entrada, F o tamanho dos neurônios da camada convolucional, P a quantidade de preenchimento de zeros, então o número de neurônios N que cabem em um dado volume é tal que:

$$N = \frac{W - F + 2P}{S} + 1$$

 \square Normalização em lote – É uma etapa de hiperparâmetro γ,β que normaliza o lote $\{x_i\}$. Dado que μ_B,σ_B^2 são a média e a variância daquilo que queremos conectar ao lote, isso é feito como se segue:

$$x_i \longleftarrow \gamma \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

Isso é usualmente feito após de uma totalmente conectada/camada concolucional e antes de uma camada não linear e objetiva permitir maiores taxas de aprendizado e reduzir a forte dependência na inicialização.

3.3 Redes neurais recorrentes

 \square Tipos de portas – Aqui estão os diferentes tipos de portas (gates) que encontramos em uma rede neural recorrente típica:

Porta de entrada	Porta esquecida	Porta	Porta de saída
Escrever?	Apagar?	Quanto escrever?	Quanto revelar?

□ LSTM –Uma rede de memória de longo prazo (LSTM) é um tipo de modelo de rede neural recorrente (RNN) que evita o problema do desaparecimento da gradiente adicionando portas de 'esquecimento'.

3.4 Aprendizado e controle reforçado

O objetivo do aprendizado reforçado é fazer um agente aprender como evoluir em um ambiente.

 \square Processos de decisão de Markov – Um processo de decição de Markov (MDP) é uma tupla de 5 elementos $(S, A, \{P_{sa}\}, \gamma, R)$ onde:

- S é o conjunto de estados
- A é conjunto de ações
- $\{P_{sa}\}$ são as probabilidade de transição de estado para $s \in \mathcal{S}$ e $a \in \mathcal{A}$
- $\gamma \in [0,1]$ é o fator de desconto
- $R: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ ou $R: \mathcal{S} \longrightarrow \mathbb{R}$ é a função de recompensa que o algoritmo quer maximizar

 \square Diretriz – Uma diretriz π é a função $\pi: \mathcal{S} \longrightarrow \mathcal{A}$ que mapeia os estados a ações.

Observação: dizemos que executamos uma dada diretriz π se dado um estado s nós tomamos a acão $a=\pi(s)$.

 \Box Função de valor — Para uma dada diretriz π e um dado estado s,nós definimos a função de valor V^π como a seguir:

$$V^{\pi}(s) = E\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... | s_0 = s, \pi\right]$$

 \blacksquare Equação de Bellman – As equações de Bellman ótimas caracterizam a função de valor V^{π^*} para a ótima diretriz π^* :

$$V^{\pi^*}(s) = R(s) + \max_{a \in \mathcal{A}} \gamma \sum_{s' \in S} P_{sa}(s') V^{\pi^*}(s')$$

Observação: definimos que a ótima diretriz π^* para um dado estado s é tal que:

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P_{sa}(s') V^*(s')$$

 \square Algoritmo de iteração de valor – O algoritmo de iteração de valor é realizado em duas etapas:

Inicializamos o valor:

$$V_0(s) = 0$$

• Iteramos o valor baseado nos valores anteriores:

$$V_{i+1}(s) = R(s) + \max_{a \in \mathcal{A}} \left[\sum_{s' \in \mathcal{S}} \gamma P_{sa}(s') V_i(s') \right]$$

 $\hfill \Box$ Máxima probabilidade estimada – A máxima probabil
diade estima para o estado de transição de probabilidades como se segue:

$$P_{sa}(s') = \frac{\# \text{vezes que a ação } a \text{ entrou no estado } s \text{ e obteve } s'}{\# \text{vezes que a ação } a \text{ entrou no estado } s}$$

 \square Aprendizado Q – Aprendizado Q é um modelo livre de estimativa de Q, o qual é feito como se segue:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

4 Dicas e truques de aprendizado de máquina

4.1 Métricas de classificação

Em um contexto de classificação binária, essas são as principais métricas que são importantes acompanhar para avaliar a desempenho do modelo.

□ Matriz de confusão – A matriz de confusão (confusion matrix) é usada para termos uma cenário mais completa quando estamos avaliando o desempenho de um modelo. Ela é definida conforme a seguir:

☐ Principais métricas — As seguintes métricas são comumente usadas para avaliar o desempenho de modelos de classificação:

Métrica	Fórmula	Interpretação
Acurácia	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Desempenho geral do modelo
Precisão	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Quão precisas são as predições positivas
Revocação Sensibilidade	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Cobertura da amostra positiva real
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Cobertura da amostra negativa real
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Métrica híbrida útil para classes desequilibradas

□ ROC – A curva de operação do receptor, também chamada ROC (*Receiver Operating Characteristic*), é a área de TPR versus FPR variando o limiar. Essa métricas estão resumidas na tabela abaixo:

Métrica	Fórmula	Equivalente
True Positive Rate	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Revocação, sensibilidade
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$	1-specificity

é a área abaixo da ROC como mostrada na figura a seguir:

Métricas de regressão

☐ Métricas básicas — Dado um modelo de regresão f, as seguintes métricas são geralmente utilizadas para avaliar o desempenho do modelo:

S. total dos quadrados	S. explicada dos quadrados	S. residual dos quadrados
$SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$

□ Coeficiente de determinação – O coeficiente de determinação, frequentemente escrito como \mathbb{R}^2 ou \mathbb{R}^2 , fornece uma medida de quão bem os resultados observados são replicados pelo modelo e é definido como se segue:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

☐ Principais métricas – As seguintes métricas são comumente utilizadas para avaliar o desempenho de modelos de regressão, levando em conta o número de variáveis n que eles consideram:

Cp de Mallow	AIC	BIC	R^2 ajustado
$\frac{\mathrm{SS}_{\mathrm{res}} + 2(n+1)\widehat{\sigma}^2}{m}$	$2\Big[(n+2)-\log(L)\Big]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

onde L é a probabilidade e $\widehat{\sigma}^2$ é uma estimativa da variância associada com cada resposta.

Seleção de modelo

U Vocabulário – Ao selecionar um modelo, nós consideramos 3 diferentes partes dos dados que possuímos conforme a seguir:

Conjunto de treino	Conjunto de validação	Conjunto de teste
- Modelo é treinado	- Modelo é avaliado	- Modelo fornece previsões
- Geralmente 80%	- Geralmente 20%	- Dados não vistos
do conjunto de dados	do conjunto de dados	
	Também chamado de hold-out	

□ AUC - A área sob a curva de operação de recebimento, também chamado AUC ou AUROC, Uma vez que o modelo é escolhido, ele é treinado no conjunto inteiro de dados e testado no conjunto de dados de testes não vistos. São representados na figura abaixo:

□ Validação cruzada - Validação cruzada, também chamada de CV (Cross-Validation), é um método utilizado para selecionar um modelo que não depende muito do conjunto de treinamento inicial. Os diferente tipos estão resumidos na tabela abaixo:

k-fold	${\bf Leave}\hbox{-} p\hbox{-} {\bf out}$
- Treino em $k-1$ partes e	- Treino em $n-p$ observações e
teste sobre o restante	teste sobre p restantes
- Geralmente $k=5$ ou 10	- Caso $p=1$ é chamado $leave-one-out$

O método mais comumente usado é chamado k-fold cross validation e divide os dados de treinamento em k partes enquanto treina o modelo nas outras k-1 partes, todas estas em k vezes. O erro é então calculado sobre as k partes e é chamado erro de validação cruzada (cross-validationerror).

Parte	Dados	Erro de validação	Erro de validação cruzada
1		ϵ_1	
2		ϵ_2	$\epsilon_1 + + \epsilon_k$
•	:	:	k
k		ϵ_k	
	Treino Validação		

□ Regularização - O procedimento de regularização (regularization) visa evitar que o modelo sobreajuste os dados e portanto lide com os problemas de alta variância. A tabela a seguir resume os diferentes tipos de técnicas de regularização comumente utilizadas:

LASSO	Ridge	Elastic Net
- Diminui coeficientes para 0 - Bom para seleção de variáveis	Faz o coeficiente menor	Balanço entre seleção de variáveis e coeficientes pequenos
$ \theta _1 \leqslant 1$	$ \theta _2 \leqslant 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
$ + \lambda \theta _1$	$\ldots + \lambda \theta _2^2$	$ \dots + \lambda \left[(1 - \alpha) \theta _1 + \alpha \theta _2^2 \right] $ $ \lambda \in \mathbb{R}, \alpha \in [0, 1] $
$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}$	$\lambda \in \mathbb{R}, \alpha \in [0,1]$

4.4 Diagnóstico

 \square Viés – O viés (bias) de um modelo é a diferença entre a predição esperada e o modelo correto que nós tentamos prever para determinados pontos de dados.

 $\hfill \Box$ Variância – A variância (variance) de um modelo é a variabilidade da previsão do modelo para determinados pontos de dados.

□ Balanço viés/variância — Quanto mais simples o modelo, maior o viés e, quanto mais complexo o modelo, maior a variância.

	Underfitting	Just right	Overfitting
Sintomas	- Erro de treinamento elevado - Erro de treinamento próximo ao erro de teste - Viés elevado	- Erro de treinamento ligeiramente menor que erro de teste	- Erro de treinamento muito baixo - Erro de treinamento muito menor que erro de teste - Alta variância
Regressão			my

 \square Análise de erro – Análise de erro (error analysis) é a análise da causa raiz da diferença no desempenho entre o modelo atual e o modelo perfeito.

 $\hfill \Box$ Análise ablativa — Ablative analysis (ablative analysis) é a análise da causa raiz da diferença no desempenho entre o modelo atual e o modelo base.

5 Revisão

5.1 Probabilidades e Estatística

Introdução a Probabilidade e Combinatória

 \square Espaço amostral – O conjunto de todos os resultados possíveis é chamado de espaço amostral do experimento e é denotado por S.

 \square Evento – Qualquer subconjunto E do espaço amostral é chamado de evento. Isso é, um evento é um conjunto de possíveis resultados do experimento. Se o resultado do experimento está contido em E,então é dito que o evento ocorreu.

 \square Axiomas de probabilidade – Para cada evento E, denotamos P(E) a probabilidade do evento E ocorrer.

(1)
$$\boxed{0 \leqslant P(E) \leqslant 1}$$
 (2) $\boxed{P(S) = 1}$ (3) $\boxed{P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)}$

 \square Permutação – A permutação é um arranjo de r objetos de um conjunto de n objetos, em uma determinada ordem. O número desses arranjos é dado por P(n,r), definido como:

$$P(n,r) = \frac{n!}{(n-r)!}$$

 \square Combinação – A combinação de um arranjo de r objetos de um conjunto de n objetos, onde a ordem não importa. O número desses arranjos é dado por C(n,r), definido como:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Observação: dado que $0 \le r \le n$, então temos que $P(n,r) \ge C(n,r)$.

Probabilidade Condicional

 \square Regra de Bayes - Para eventos A e B tal que P(B) > 0, temos que:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Observação: temos que $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

 \square Partição – Dado que $\{A_i, i \in [\![1,n]\!]\}$ seja tal que para todo $i,\ A_i \neq \varnothing.$ Dizemos que $\{A_i\}$ é uma partição se temos:

$$\forall i \neq j, A_i \cap A_j = \emptyset$$
 e $\bigcup_{i=1}^n A_i = S$

Observação: para qualquer evento B no espaço amostral temos que $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$.

 \blacksquare Extensão da regra de Bayes – Seja $\{A_i, i \in [\![1,n]\!]\}$ uma partição do espaço amostral. Temos que:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

 \square Independência – Dois eventos A e B são independentes se e apenas se tivermos:

$$P(A \cap B) = P(A)P(B)$$

Variável aleatória

 \square Variável aleatória – Uma variável aleatória, normalmente denominada X, é uma função que mapeia todo elemento em um espaço amostral para uma linha verdadeira.

 \Box Função de distribuição cumulativa (CDF) – A função de distribuição cumulativa F, que é monotonicamente não decrescente e é tal que

$$\lim_{x \to -\infty} F(x) = 0 \quad \text{e} \quad \lim_{x \to +\infty} F(x) = 1$$

é definida como:

$$F(x) = P(X \leqslant x)$$

Lembrete: temos que $P(a < X \leq B) = F(b) - F(a)$.

 \square Função densidade de probabilidade (PDF) – A função densidade de probabilidade f é a probabilidade de que X assuma valores entre duas realizações adjacentes da variável aleatória.

 \square Relações envolvendo a PDF e a CDF – Aqui estão as propriedades mais importantes que se deve conhecer dos casos discretos (D) e contínuos (C).

Caso	$\mathbf{CDF}\ F$	PDF f	Propriedades da PDF
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X = x_j)$	$0 \leqslant f(x_j) \leqslant 1$ e $\sum_j f(x_j) = 1$
(C)	$F(x) = \int_{-\infty}^{x} f(y)dy$	$f(x) = \frac{dF}{dx}$	$f(x) \geqslant 0 \text{ e } \int_{-\infty}^{+\infty} f(x) dx = 1$

 \square Variância – A variância de uma variável aleatória, normalmente denominada Var(X) ou σ^2 , é a medida do espalhamento da sua função de distribuição. Ela é determinada por:

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

 \square Desvio padrão – O desvio padrão de uma variável aleatória, normalmente denominado σ , é a medida do espalhamento da sua função de distribuição que é compatível com a unidade da variável aleatória. Ele é determinado por:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

□ Expectativas e Momentos da Distribuição – Aqui estão as expressões do valor esperado E[X], do valor esperado generalizado E[g(X)], do k-ésimo momento $E[X^k]$ e função característica $\psi(\omega)$ para os casos discretos e contínuos:

Caso	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_i f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^{n} f(x_i)e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$

Remarque: on a $e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$.

□ Transformação das variáveis aleatórias – Sejam as variáveis X e Y ligadas por alguma função. Ao denotador f_X e f_Y para as funções de distribuição de X e de Y respectivamente, temos que:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

 \square Regra integral de Leibniz – Seja g uma função de x e possivelmente de c, e a,b fronteiras que podem depender de c. Temos que:

$$\frac{\partial}{\partial c} \left(\int_{a}^{b} g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_{a}^{b} \frac{\partial g}{\partial c}(x) dx$$

 \Box Desigualdade de Chebyshev – Seja X uma variável aleatória com valor esperado μ . Para $k,\sigma>0$, temos a seguinte desigualdade:

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Variáveis aleatórias distribuídas conjuntamente

 \Box Densidade condicional – A densidade condicional de X com respeito a Y, normalmente denotada como $f_{X\mid Y},$ é definida como:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

 \square Independência – Duas variáveis aleatórias X e Y são ditas independentes se:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

 \Box Densidade marginal e distribuição cumulativa – A partir da função de probabilidade de densidade conjunta f_{XY} , temos que:

Caso	Densidade marginal	Função cumulativa
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$
(C)	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y)dy$	$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$

 \square Coveriância – Definimos covariância de duas variáveis aleatórias X e Y, que chamamos de σ_{XY}^2 ou mais comumente de Cov(X,Y), como:

$$Cov(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \square Correlação – Dado que σ_X , σ_Y são os desvios padrão de X e Y, definimos a correlação entre as variáveis aleatórias X e Y, denominada ρ_{XY} , como:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Observação 1: é definido que para qualquer variáveis aleatórias X, Y temos que $\rho_{XY} \in [-1,1]$. Observação 2: Se X e Y são independentes, então $\rho_{XY} = 0$.

□ Distribuições principais – Aqui estão as principais distribuições que não devem ser esquecidas:

Tipo	Distribuição	PDF	$\psi(\omega)$	E[X]	Var(X)
(D)	$X \sim \mathcal{B}(n, p)$ Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$(pe^{i\omega}+q)^n$	np	npq
	$X \sim \text{Po}(\mu)$ Poisson	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
	$X \sim \mathcal{U}(a, b)$ Uniform	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
(C)	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussian	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \text{Exp}(\lambda)$ Exponential	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Estimativa de parâmetro

 \square Amostra aleatória – Uma amostra aleatória é uma coleção de n variáveis aleatórias $X_1,...,X_n$ que são independentes e igualmente distribuidas com X.

 \square Estimador – Um estimador é uma função dos dados que é usada para inferir o valor de um parâmetro desconhecido em um modelo estatístico.

 \square Viés – O viés de um estimador $\hat{\theta}$ é definido como a diferença entre o valor esperado da distribuição de $\hat{\theta}$ e o seu real valor, i.e.:

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta$$

Observação: um estimador é chamado de imparcial (unbiased) quando $E[\hat{\theta}] = \theta$.

 \square Média da amostra – A média da amostra de uma amostra aleatória é usada para estimar a verdadeira média μ de uma distribuição, e é denominada \overline{X} e é definida como:

Observação: a média da amostra é imparcial, i.e $E[\overline{X}] = \mu$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \Box Amostra da variância — A amostra da variância de uma amostra aleatória é usada para estimar a verdadeira variância σ^2 da distribuição, e é normalmente denominada s^2 ou $\hat{\sigma}^2$ e definida por:

Observação: a variância da amostra é imparcial, i.e $E[s^2] = \sigma^2$

$$s^{2} = \hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

 \Box Teorema do Limite Central – Dado que temos uma amostra aleatória $X_1,...,X_n$ seguindo uma determinada distribuição com a média μ e a variância σ^2 , temos que:

$$\overline{X} \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

5.2 Álgebra Linear e Cálculo

5.2.1 Notações gerais

 \square Vetor – Indicamos por $x \in \mathbb{R}^n$ um vetor com n elementos, onde $x_i \in \mathbb{R}$ é o $i^{\acute{e}simo}$ elemento:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

 \square Matriz – Indicamos por $A \in \mathbb{R}^{m \times n}$ uma matriz com m linhas e n colunas, onde $A_{i,j} \in \mathbb{R}$ é o elementos localizado na $i^{\acute{e}sima}$ linha e $j^{\acute{e}sima}$ coluna:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Observação: o vetor x defindo acima pode ser visto como uma matriz $n \times 1$ e é mais particularmente chamado de vetor coluna.

 \square Matriz identidade – A matriz identidade $I \in \mathbb{R}^{n \times n}$ é uma matriz quadrada com uns na sua diagonal e zeros nas demais posições:

$$I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \end{array}\right)$$

Observação: para todas as matrizes $A \in \mathbb{R}^{n \times n}$, nós temos $A \times I = I \times A = A$.

 \square Matriz diagonal – Uma matriz diagonal $D \in \mathbb{R}^{n \times n}$ é uma matriz quadrada com valores não nulos na sua diagonal e zeros nas demais posições:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Observação: nós também indicamos D como diag $(d_1,...,d_n)$.

5.2.2 Operações de matriz

□ Vetor-vetor – Há dois tipos de produtos vetoriais:

• Produto interno: para $x,y \in \mathbb{R}^n$, temos:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

• Produto tensorial: para $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, temos :

$$xy^T = \begin{pmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & & \vdots \\ x_my_1 & \cdots & x_my_n \end{pmatrix} \in \mathbb{R}^{m \times n}$$

 \blacksquare Matriz-vetor – O produto de uma matriz $A\in\mathbb{R}^{m\times n}$ e um vetor $x\in\mathbb{R}^n$ é um vetor de tamanho $\mathbb{R}^n,$ de tal modo que:

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^n$$

onde $a_{r,i}^T$ são vetores linhas e $a_{c,j}$ vetores colunas de A, e x_i são os elementos de x.

□ Matriz-matriz – O produto das matrizes $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times p}$ é uma matriz de tamanho $\mathbb{R}^{n \times p}$, de tal modo que:

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

onde $a_{r,i}^T, b_{r,i}^T$ são vetores linhas e $a_{c,j}, b_{c,j}$ vetores colunas de A e B respectivamente.

 \square Transposta – A transposta de uma matriz $A \in \mathbb{R}^{m \times n}$, indicada por A^T , é tal que suas linhas são trocadas por suas colunas:

$$\forall i, j, \qquad A_{i,j}^T = A_{j,i}$$

Observação: para matrizes A, B, temos $(AB)^T = B^T A^T$.

 \square Inversa – A inversa de uma matriz quadrada inversível A é indicada por A^{-1} e é uma matriz única de tal modo que:

$$AA^{-1} = A^{-1}A = I$$

Observação: nem todas as matrizes quadrada são inversíveis. Também, para matrizes A,B, temos $(AB)^{-1} = B^{-1}A^{-1}$.

 \Box Traço – O traço de uma matriz quadrada A, indicado por ${\rm tr}(A)$, é a soma dos elementos de sua diagonal:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

Observação: para matrizes $A, B, temos tr(A^T) = tr(A) e tr(AB) = tr(BA)$.

□ Determinante – A determinante de uma matriz quadrada $A \in \mathbb{R}^{n \times n}$, indicada por |A| ou det(A) é expressa recursivamente em termos de $A_{\backslash i, \backslash j}$, a qual é a matriz A sem a sua $i^{\acute{e}sima}$ linha e $j^{\acute{e}sima}$ coluna, como se segue:

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

Observação: A é inversível se e somente se $|A| \neq 0$. Além disso, |AB| = |A||B| e $|A^T| = |A|$.

5.2.3 Propriedades da matriz

 \square Decomposição simétrica – Uma dada matriz A pode ser expressa em termos de suas partes simétricas e assimétricas como a seguir:

$$A = \underbrace{\frac{A + A^T}{2}}_{\text{Simétrica}} + \underbrace{\frac{A - A^T}{2}}_{\text{Assimétrica}}$$

 \square Norma – Uma norma é uma função $N:V\longrightarrow [0,+\infty[$ onde V é um vetor espaço, e de tal modo que para todo $x,y\in V,$ nós temos:

- $N(x+y) \leqslant N(x) + N(y)$
- N(ax) = |a|N(x) para a escalar
- se N(x) = 0, então x = 0

Para $x \in V$, as mais comumente utilizadas normas estão resumidas na tabela abaixo:

Norma	Notação	Definição	Caso de uso
Manhattan, L^1	$ x _{1}$	$\sum_{i=1}^{n} x_i $	LASSO
Euclidean, L^2	$ x _{2}$	$\sqrt{\sum_{i=1}^{n} x_i^2}$	Ridge
p -norme, L^p	$ x _p$	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	Inégalité de Hölder
Infini, L^{∞}	$ x _{\infty}$	$\max_{i} x_i $	Convergence uniforme

□ Dependência linear – Um conjunto de vetores é dito ser linearmente dependete se um dos vetores no conjunto puder ser definido como uma combinação linear dos demais.

Observação: se nenhum vetor puder ser escrito dessa maneira, então os vetores são ditos serem linearmente independentes.

 \square Posto da matriz – O posto de uma dada matriz A é indicada por rank(A) e é a dimensão do vetor espaço gerado por suas colunas. Isso é equivalente ao número máximo de colunas linearmente independentes de A.

□ Matriz positiva semi-definida – Uma matriz $A \in \mathbb{R}^{n \times n}$ é positiva semi-definida (PSD) e é indicada por $A \succeq 0$ se tivermos:

$$A = A^T$$
 e $\forall x \in \mathbb{R}^n, \quad x^T A x \geqslant 0$

Observação: de forma similar, uma matriz A é dita ser positiva definida, e é indicada por $A \succ 0$ se ela é uma matriz (PSD) que satisfaz todo vetor x não nulo, $x^TAx > 0$.

 \square Autovalor, autovetor – Dada uma matriz $A \in \mathbb{R}^{n \times n}$, λ é dita ser um autovalor de A se existe um vetor $z \in \mathbb{R}^n \setminus \{0\}$, chamado autovetor, nós temos:

$$Az = \lambda z$$

□ Teorema spectral – Seja $A \in \mathbb{R}^{n \times n}$. Se A é simétrica, então A é diagonalizável por uma matriz ortogonal $U \in \mathbb{R}^{n \times n}$. Indicando $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$, nós temos:

$$\exists \Lambda \text{ diagonal}, \quad A = U \Lambda U^T$$

 \Box Decomposição em valor singular – Para uma dada matriz A de dimensões $m\times n,$ a decomposição em valor singular (SVD) é uma técnica de fatorização que garante a existência de matrizes unitária U $m\times m,$ diagonal Σ $m\times n$ e unitária V $n\times n,$ de tal modo que:

$$A = U \Sigma V^T$$

5.2.4 Cálculo com matriz

 \Box Gradiente - Seja $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ uma função e $A \in \mathbb{R}^{m \times n}$ uma matriz. O gradiente de f a respeito a A é a matriz $m \times n$, indicada por $\nabla_A f(A)$, de tal modo que:

$$\boxed{\left(\nabla_A f(A)\right)_{i,j} = \frac{\partial f(A)}{\partial A_{i,j}}}$$

Observação: o gradiente de f é somente definido quando f é uma função que retorna um escalar.

 \square Hessiano – Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função e $x \in \mathbb{R}^n$ um vetor. O hessiano de f a respeito a xuma matriz simétrica $n \times n$, indicada por $\nabla_x^2 f(x)$, de tal modo que:

$$\left(\nabla_x^2 f(x)\right)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Observação: o hessiano de f é somente definifo quando f é uma função que retorna um escalar.

Operações com gradiente - Para matrizes A,B,C, as seguintes propriedade de gradiente valem a pena ter em mente:

$$\nabla_A \operatorname{tr}(AB) = B^T$$
 $\nabla_{A^T} f(A) = (\nabla_A f(A))^T$

$$\nabla_A \operatorname{tr}(AB) = B^T \qquad \boxed{\nabla_{A^T} f(A) = (\nabla_A f(A))^T}$$

$$\nabla_A \operatorname{tr}(ABA^T C) = CAB + C^T AB^T \qquad \boxed{\nabla_A |A| = |A|(A^{-1})^T}$$