KU LEUVEN

Ontwerp, analyse en implementatie van een convolutionair neuraal netwerk voor gelijktijdige spraak en beeldherkenning

Overview

- 1. Problem sketch
- 2. Current research
- 3. Neural networks
- 4. Dataset: TCDTIMIT
- 5. Objectives
- 6 Lipreading
- 7. Speech (audio)
- 8. Sensor fusion

1. Problem sketch

Speech recognition is useful:

- Automatic subtitles
- Assisting hearing impaired
- Human-computer interation (Siri)
- International meetings (translations)

- Until now: mostly audio
- Use images (lipreading) → robustness, performance

2. Research

In the past:

- Mostly audio SR
- Acoustic model: formants, fricatives,...
- Record sounds, statistical correlation of spectrals
 - → Hidden Markov Models (HMM)
- Language model on top
- Often limited in scope (eg. Phone support)

2. Research

Current:

•

- Still mostly audio
- Acoustic model: formants, fricatives,...
- Record sounds, statistical correlation of spectrals
 - → Convolutional Neural Networks

- Language model on top (possibly DNN?)
- Much broader in scope (Siri, Cortana, SR 'in the wild')

3. Neural Networks

Simple units with nonlinear output function

3. Neural Networks

- Goal: Pattern Recognition → high-dimensional input data
- Fully connected Nns don't scale
 - We want to reduce # parameters
 - •
- Brain also uses specialized neurons
- → Convolutional Neural Networks
- •
- Layers in 3D ≈ trainable filters
- parameter sharing + pooling
- Layer types: CONV, ReLu, Pool, FC,...

http://www.mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.php

Alternatives:

- GRID: large dataset, but small vocabulary
- VidTIMIT: small dataset
- Many non-public databases (Google etc)

•

TCDTIMIT:

- Many speakers, high quality
- Continuous speech, good coverage of phonemes and visemes. (TIMIT)
- Available to other researchers.
- Content:
 - 2255 sentences from TIMIT
 - 59 volunteers (98 sentences each)
 - 3 professional lipspeakers (377 sentences each)
 - ~25 phonemes/sentence
 - Total: 235k phoneme examples; ~ 6k each

Harte, N.; Gillen, E., "TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech," Multimedia, IEEE Transactions on , vol.17, no.5, pp.603,615, May 2015 doi: 10.1109/TMM.2015.2407694

•

- Issues downloading & extracting
- Lacking documentation
- Very little support
- Files missing
- After processing:
 - time mismatch phoneme- frame
 - frames missing
 - Other issues

- → write own software to extract data from videos
 - → make available for other researchers using that database

- Goal: labeled frames of phoneme pronounciation
 - SW pipeline:
 - Extract phoneme time information
 - **Extract frames**
 - Remove invalid frames
 - Extract faces, mouths
 - Grayscale and compress
 - Pickle for simple loading in Python

Frame	Phoneme
16	sil
34	sh
37	iy
40	hh
44	ae
45	d
47	У
49	uh

38 x sa1_34_sh.jpg (2KB)

•

- Train/test/validation set splits:
- For each speaker:
 - 80% training set
 - 10% validation set
 - 10% test set
 - Baseline results from database paper (using HMM)

	Split 1 (Table 4.1)		Split 2	
	Train set	Test set	Train set	${\rm Test\ set}$
%correct		46.78	41.18	46.97
%accuracy	36.50	34.77	35.53	35.61

Harte, N.; Gillen, E., "TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech," Multimedia, IEEE Transactions on , vol.17, no.5, pp.603,615, May 2015 doi: 10.1109/TMM.2015.2407694

5. Objectives

- Combine lipreading and audio to achieve:
 - Better performance (we use more information)
 - Better robustness (low quality recording, background noise,...)
 - → use best information source available

•

- Work on phonemes, not words or sentences
 - Simpler; also smaller networks needed
 - Language independent (if you have a dataset)
 - Possible to put language model on top

6. Lipreading

- Most SR research focused on Audio (phonemes)
- Here, just phonemes used for lipreading (possible information loss + solve ambiguity by language model)
- Classification problem: 39 phonemes
- Networks tested: 1) CIFAR 10 8 layer network
 - 2) ResNet 50 layerscifar
 - 3) simple 6-layer ConvNet
- No time-aspect (yet)

6. Lipreading: Google WLAS

- Nov 2016
- Goal: transcribe videos of mouth motion to characters
- Beats a professional lip reader on videos from BBC television
- 3 parts, merged with alignment mechanism

$$\begin{split} s^v, \mathbf{o}^v &= \mathtt{Watch}(\mathbf{x}^v) \\ s^a, \mathbf{o}^a &= \mathtt{Listen}(\mathbf{x}^a) \\ P(\mathbf{y}|\mathbf{x}^v, \mathbf{x}^a) &= \mathtt{Spell}(s^v, s^a, \mathbf{o}^v, \mathbf{o}^a) \end{split}$$

https://www.youtube.com/watch?v=5aogzAUPilE&feature=youtu.be

6. Lipreading: Google WLAS

$$egin{aligned} s^v, \mathbf{o}^v &= \mathtt{Watch}(\mathbf{x}^v) \ s^a, \mathbf{o}^a &= \mathtt{Listen}(\mathbf{x}^a) \ P(\mathbf{y}|\mathbf{x}^v, \mathbf{x}^a) &= \mathtt{Spell}(s^v, s^a, \mathbf{o}^v, \mathbf{o}^a) \end{aligned}$$

Method	SNR	CER	
	Lips only		
Professional [‡]	-	58.7%	
WAS	-	59.9%	
WAS+CL	-	47.1%	
WAS+CL+SS	-	44.2%	
WAS+CL+SS+BS	-	42.1%	
	Audio only		
LAS+CL+SS+BS	clean	16.2%	
LAS+CL+SS+BS	10dB	33.7%	
LAS+CL+SS+BS	0dB	59.0%	
	Audio a	nd lips	
WLAS+CL+SS+BS	Audio an	nd lips 13.3%	

(end)

MLP

attatt

LSTM

 y_4

6. Lipreading: results Google network

Train and test on lipspeakers:

Train on lipspeakers, test on volunteers:

validation error rate: 57.58% test error rate: 56.68% s

validation error rate: 64.6%

Trainsonrvolunteers, test on lipspeakers:

validation error rate: 74.48% test error rate: 73.53%

validation error rate: 57.58% test error rate: 56.68%

Conclusion similar to TCDTIMIT paper:

"Visual and audio-visual baseline results on the non-lipspeakers were low overall. Results on the lipspeakers were significantly higher."

6. Lipreading: results CIFAR10

• Train and test on lipspeakers:

	validation error rate:	57.05%
•	test error rate:	57.83%

Trained and test on volunteers:

•	validation error rate:	74.48%
•	test error rate:	72.76%

- Training takes about 10x longer than on Google network (500s/epoch)
- Performance not better
- Some more layers, more parameters
- Good network for lipreading

6. Lipreading: results ResNet50

• Train and test on lipspeakers:

	validation error rate:	61.95%
• _	test error rate:	62.45%

Trained and test on volunteers:

•	validation error rate:	74.48%
	test error rate:	72.76%

- Training takes about 5x longer than on Google network (500s/epoch)
- Performance not better
- Many more layers, more complex architecture with more parameters
- -> not well suited for lipreading

6. Lipreading: demo

- Take picture
- Extract face, mouth, convert to grayscale and resize to 120x120x1
- Reshape image for evaluation
- Evaluate, print phoneme predictions

- 1) python preprocessImage.py -i testImages/image.jpg
- 2) python evaluateImage.py -i testImages/image_mouth_gray_resized.jpg -m results/ResNet50/allLipspeakers/allLipspeakers.npz

7. Audio SR

- Two-layer LSTM architecture, MFCC as input
- Train with noise to make more robust
- Two layer LSTM

8. Combining audio and visual

- SR: inherent time aspect
- Lipreading: mostly time-independent, could benefit from limited time aspect
- Audio and video synchronized thanks to labeled dataset
 - -> possible to combine feature vectors
- 'Late fusion': combine output sequences (weighting)
- Weighting determined by:
 - performance of seperate models
 - S/N of audio (if known)
 - Quality of video/image (resolution, face angle, lighting,...)
- Analyse performance:
 - Different amounts of audio and/or image noise
 - Comparison audio only/visual only/ audio-visual

