ব্যবহারিক জ্যামিতি

অনুশীলনী - ৭.১

ত্রিভুজ অঙ্কনঃ

- কোনো নির্দিষ্ট ত্রিভুজ অঙ্কন করতে যে উপাত্তগুলো প্রয়োজন।
 - ১. তিনটি বাহু অথবা
 - ২. দুইটি বাহু ও তাদের অন্তর্ভুক্ত কোণ অথবা
 - ৩. দুইটি কোণ ও তাদের সংলগ্ন বাহু অথবা
 - 8. দুইটি কোণ ও একটির বিপরীত বাহু অথবা
 - ৫. সমকোণী ত্রিভুজের অতিভুজ ও অপর একটি বাহু অথবা
 - ৬. দুইটি বাহু ও তাদের একটির বিপরীত কোণ।

গুরুত্বপূর্ণ তথ্যাসমূহ:

- i. কোনো ত্রিভুজের আকার আকৃতি নির্দিষ্ট করার জন্য সবগুলো বাহু ও কোণের প্রয়োজন হয় না।
- ii. যেকোনো তিনটি অংশ নির্দিষ্ট করলে ত্রিভুজটি নির্দিষ্ট হয় না। যেমন, ত্রিভুজের তিনটি কোণ দেওয়া থাকলে বিভিন্ন আকারের অসংখ্য ত্রিভুজ আঁকা যায় (যাদের সদৃশ ত্রিভুজ বলা হয়)।
- iii. একটি বাহু দেওয়া থাকলে সমবাহু ত্রিভুজ আঁকা সম্ভব। কেননা এক্ষেত্রে তিনটি বাহুর মান সমান এবং প্রত্যেকটি কোণের মান 60° ।
- iv. চাঁদার সাহায্য ছাড়া সহজেই আঁকা যায় এরূপ কোণগুলোর মধ্যে উল্লেখযোগ্য হলো $30^\circ, 45^\circ, 60^\circ, 90^\circ$ ।

অনুশীলনীর সমাধান

ি নিম্নে প্রদত্ত উপাত্ত নিয়ে ত্রিভুজ অঙ্কন কর:

ক. তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 3 সে.মি., 3.5 সে.মি., 2.8 সে.মি.।

<u>সমাধান</u>: বিশেষ নির্বচন: মনে করি, একটি ত্রিভুজের তিনটি বাহু a=3 সে.মি., b=3.5 সে.মি. c=2.8 সে.মি. দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কনঃ

- (১) যেকোনো রশ্মি BE থেকে a এর সমান BC রেখাংশ কেটে নিই।
- (২) B ও C কে কেন্দ্র করে যথাক্রমে b ও c এর সমান ব্যাসার্ধ নিয়ে BC এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরস্পর A বিন্দুতে ছেদ করে।
- (৩) A,B ও A,C যোগ করি। তাহলে ABC-ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: অঙ্কনানুসারে, BC=a=3 সে.মি., AB=b=3.5 সে.মি. এবং AC=c=2.8 সে.মি.

অতএব, ΔABC -ই নির্ণেয় ত্রিভুজ।

খ. দুইটি বাহুর দৈর্ঘ্য 4 সে.মি., 3 সে.মি. এবং অন্তর্ভুক্ত কোণ 60° ।

সমাধান:

বিশেষ নির্বচনঃ মনে করি, একটি ত্রিভুজের দুটি বাহু a=4 সে.মি. ও b=3 সে.মি. এবং a ও b বাহুর অন্তর্ভুক্ত কোণ 60° দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) যেকোনো রশ্মি BE নিই । BE থেকে a এর সমান BC অংশ কেটে নিই ।
- (২) BC এর B বিন্দুতে $\angle CBF = \angle x = 60^\circ$ আঁকি।
- (৩) BF হতে BA=b কেটে নিই, যা BF কে A বিন্দুতে ছেদ করে।
- (8) A, C যোগ করি। তাহলে ABC ত্রিভুজই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: BC = a = 4 সে.মি., AB = b = 3 সে.মি.

এবং $\angle ABC = \angle x = 60^{\circ}$ [অঙ্কনানুসারে]

অতএব, ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

গ. দুইটি কোণ 60° ও 45° এবং এদের সংলগ্ন বাহুর দৈর্ঘ্য 5 সে.মি.।

সমাধান:
a
5 সে.মি.

B
60°

F
A
E

45°

B
60°

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের একটি বাহু a=5 সে.মি., $\angle B=60^\circ$ ও $\angle C=45^\circ$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশ্মি BD থেকে a এর সমান করে BC নিই।
- (২) BC রেখাংশের B ও C বিন্দুতে যথাক্রমে $\angle CBE = \angle B$ এবং $\angle BCF = \angle C$ আঁকি।
- (৩) BE ও CF পরস্পর A বিন্দুতে ছেদ করে। তাহলে ΔABC -ই উদ্দিষ্ট গ্রিভুজ।

প্রমাণ: অঙ্কনানুসারে, $\triangle ABC$ -এ BC = a = 5 সে.মি., $\angle ABC = \angle B = 60^\circ$ এবং $\angle ACB = \angle C = 45^\circ$ $\therefore \triangle ABC$ -ই নির্ণেয় ত্রিভুজ।

ঘ. দুইটি কোণ 60° ও 45° এবং 45° কোণের বিপরীত বাহুর দৈর্ঘ্য 5 সে.মি.।

সমাধানঃ

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের দুইটি কোণ $\angle A=45^\circ$ ও $\angle B=60^\circ$ এবং $\angle A$ এর বিপরীত বাহু a=5 সে.মি., দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) যেকোনো রশ্মি BD থেকে a এর সমান করে BC কেটে নিই।
- (২) BC রেখাংশের B ও C বিন্দুতে $\angle B=60^\circ$ এর সমান করে যথাক্রমে $\angle CBF$ ও $\angle DCE$ আঁকি।
- (৩) BC রেখার যে দিকে $\angle B$ অবস্থিত সেই দিকে C বিন্দুতে $\angle A$ এর সমান করে $\angle ECG$ আঁকি।
- (8) CG রেখা BF রেখাকে A বিন্দুতে ছেদ করে। তাহলে ΔABC -ই উদ্দিষ্ট গ্রিভুজ।

প্রমাণঃ অঙ্কানুসারে, $\angle ABC = \angle ECD$ । এই কোণ দুটি অনুরূপ বলে $BA \parallel CE$ এখন, $BA \parallel CE$ এবং AC তাদের ছেদক

 \therefore $\angle BAC$ = একান্তর $\angle ACE$ = $\angle A$

অতএব $\triangle ABC$ এ $\angle BAC = \angle A = 45^\circ$, $\angle ABC = \angle B = 60^\circ$ এবং BC = a = 5 সে.মি.

সুতরাং ΔABC -ই নির্ণেয় ত্রিভুজ।

ঙ. দুইটি বাহুর দৈর্ঘ্য যথাক্রমে 4.5 সে.মি. ও 3.5 সে.মি. এবং দ্বিতীয় বাহুর বিপরীত কোণ 30°।

<u>সমাধান</u>: বিশেষ নির্বচন: মনে করি, কোনো ত্রিভুজের দুইটি বাহু c=4.5 সে.মি., b=3.5 সে.মি. এবং b বাহুর বিপরীত কোণ $\angle B=30^\circ$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশ্মি BD এর B বিন্দুতে $\angle B=30^\circ$ এর সমান করে $\angle DBE$ আঁকি।
- (২) BE রেখা থেকে c এর সমান করে BA নিই।
- (৩) এখন A বিন্দুকে কেন্দ্র করে b এর দৈর্ঘ্যের সমান ব্যুসার্ধ নিয়ে BD রেখার উপর একটি বৃত্তচাপ আঁকি। বৃত্তচাপটি BD রেখাকে C ও C' বিন্দুতে ছেদ করে। A, C ও A, C'যোগ করি। তাহলে ΔABC এবং ABC'উভয়ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: অন্ধনানুসারে, $\triangle ABC$ -এ BA=c, AC=b এবং $\angle ABC=\angle B=30^\circ$ এবং $\triangle ABC'$ -এ BA=c, AC'=b এবং $\angle ABC'=\angle B=30^\circ$ \therefore $\triangle ABC$ এবং $\triangle ABC'$ উভয়ই নির্ণেয় ত্রিভুজ।

চ. সমকোণী ত্রিভুজের অতিভুজ ও একটি বাহুর দৈর্ঘ্য যথাক্রমে 6 সে.মি. ও 4 সে.মি.।

সমাধানঃ

বিশেষ নির্বচনঃ মনে করি, কোনো সমকোণী ত্রিভুজের অতিভুজ a=6 সে.মি. ও এর সংলগ্ন এক বাহু b=4 সে.মি. দেওয়া আছে। ত্রিভুজটি আঁকতে হবে। অন্ধনঃ

- (১) যেকোনো রশাি BD থেকে b এর সমান করে BC কেটে নিই।
- (২) B বিন্দুতে BE লম্ব আঁকি।
- (৩) C কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি। যেন এটি BE কে A বিন্দুতে ছেদ করে।
- (8) A, C যোগ করি। তাহলে, ΔABC -ই উদ্দিষ্ট ত্রিভুজ। প্রমাণ: অঙ্কনানুসারে, অতিভুজ AC=a=6 সে.মি. BC=b=4 সে.মি. এবং $\angle ABC=$ এক সমকোণ।
- ∴ ∆ABC-ই উদ্দিষ্ট ত্রিভুজ।

২ নিম্নে প্রদত্ত উপাত্ত নিয়ে ত্রিভুজ অঙ্কন কর:

ক. ভূমি 3.5 সে.মি., ভূমি সংলগ্ন একটি কোণ 60° ও অপর দুই বাহুর সমষ্টি 8 সে.মি.।

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের ভূমি a=3.5 সে.মি., ভূমিসংলগ্ন একটি কোণ $\angle x=60^\circ$ এবং অপর দুই বাহুর সমষ্টি s=8 সে.মি. দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) যেকোনো রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই । BC রেখাংশের B বিন্দুতে $\angle x=60^\circ$ এর সমান $\angle CBF$ আঁকি ।
- (২) BF রশ্মি থেকে s এর সমান BD অংশ কেটে নিই।
- (৩) C,D যোগ করি। C বিন্দুতে CD রেখাংশের যে পাশে B বিন্দু আছে সেই পাশে $\angle BDC$ এর সমান করে $\angle DCG$ আঁকি।
- (8) CG রশ্মি BD কে A বিন্দুতে ছেদ করে। তাহলে, ΔABC -ই উদ্দিষ্ট গ্রিভুজ। প্রমাণ: ΔACD এ $\angle ADC = \angle ACD$ [অঙ্কন অনুসারে]

$$AC = AD$$

এখানে, $\triangle ABC$ এ $\angle ABC = \angle x = 60^{\circ}$

BC = a [অঙ্কন অনুসারে]

এবং BA + AC = BA + AD = BD = s।

অতএব, ΔABC -ই নির্ণেয় ত্রিভুজ।

খ. ভূমি 5 সে.মি., ভূমি সংলগ্ন একটি কোণ 45° ও অপর দুই বাহুর অন্তর 1 সে.মি.।

সমাধান:

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের ভূমি a=5 সে.মি., ভূমিসংলগ্ন সূক্ষকোণ 45° এবং অপর দুই বাহুর অন্তর d=1 সে.মি. দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঞ্চন:

- (১) যেকোনো একটি রশ্মি BF থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই।
- (২) BC রেখাংশের B বিন্দুতে $\angle x = 45^\circ$ এর সমান $\angle CBE$ আঁকি।
- (৩) BE রশ্মি থেকে d এর সমান BD অংশ কেটে নিই।
- (8) *C*, *D* যোগ করি।
- (৫) DC রেখাংশের যে পাশে E বিন্দু আছে সেই পাশে C বিন্দুতে $\angle EDC$ এর সমান $\angle DCA$ আঁকি। CA রশ্মি BE রশ্মিকে A বিন্দুতে ছেদ করে। তাহলে, ΔABC -ই উদিষ্ট ত্রিভুজ।

প্রমাণ: $\triangle ACD$ এ $\angle ADC = \angle ACD$ \therefore AC = AD সুতরাং দুই বাহুর অন্তর, AB-AC = AB-AD = BD = d = 1 সে.মি. । এখন, $\triangle ABC$ এ BC = a = 5 সে.মি., AB-AD = d = 1 সে.মি. এবং $\angle ABC = \angle x = 45^\circ$ । সুতরাং, $\triangle ABC$ -ই নির্ণেয় ত্রিভুজ।

♦♦ অনুশীলনীর ২(ক) ও ২(খ) নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

একটি ত্রিভুজের ভূমি, a=4 সে.মি. এবং ভূমি সংলগ্ন কোণ, $x=30^\circ$

- ক. পেন্সিল ও কম্পাসের সাহায্যে 30°কোণ আঁক।
- খ. ত্রিভুজের দুই বাহুর সমষ্টি s=6 সে.মি. হলে, বর্ণনাসহ ত্রিভুজটি আঁক।
- গ. ত্রিভুজের অপর বাহু দুইটির অন্তর d=2.5 সে.মি. হলে, বর্ণনাসহ ত্রিভুজটি আঁক।

নিজে নিজে চেষ্টা কর।

গ. ভূমি সংলগ্ন কোণ দুইটি যথাক্রমে 60° ও 45° ও পরিসীমা 12 সে.মি.।

বিশেষ নির্বচনঃ মনে করি, একটি ত্রিভুজের পরিসীমা p=12 সে.মি., এবং ভূমি সংলগ্ন দুটি কোণ $\angle x=60^\circ$ ও $\angle y=45^\circ$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) যেকোনো একটি রশ্মি DF থেকে পরিসীমা p এর সমান করে DE অংশ কেটে নিই।
- (২) D ও E বিন্দুতে DE রেখাংশের একই পাশে যথাক্রমে $\angle x$ এর সমান $\angle EDL$ এবং $\angle y$ এর সমান $\angle DEM$ আঁকি।

- (৩) কোণ দুইটির দ্বিখন্ডক DG ও EH আঁকি। মনে করি, DG ও EH রশ্বিদ্বয় পরস্পরকে A বিন্দুতে ছেদ করে।
- (8) A বিন্দুতে $\angle ADE$ এর সমান $\angle DAB$ এবং $\angle AED$ এর সমান $\angle EAC$ আঁকি। AB এবং AC রশ্মিদ্বয় DE রেখাংশকে যথাক্রমে B ও C বিন্দুতে ছেদ করে।

তাহলে, ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণঃ $\triangle ADB$ এ $\angle ADB = \angle DAB$ [অঙ্কন অনুসারে]

$$\therefore AB = DB$$

আবার, $\triangle ACE$ এ $\angle AEC = \angle EAC$; $\therefore CA = CE$.

সুতরাং, $\triangle ABC$ এ AB + BC + CA = DB + BC + CE = DE = p = 12 সে.মি.,

$$\angle ABC = \angle ADB + \angle DAB = \frac{1}{2} \angle x + \frac{1}{2} \angle x = \angle x = 60^{\circ}$$

এবং $\angle ACB = \angle AEC + \angle EAC = \frac{1}{2} \angle y + \frac{1}{2} \angle y = \angle y = 45^{\circ}$

সুতরাং, ΔABC -ই নির্ণেয় ত্রিভুজ।

💿 একটি ত্রিভুজের ভূমি সংলগ্ন দুইটি কোণ এবং শীর্ষ থেকে ভূমির উপর অঙ্কিত লম্বের দৈর্ঘ্য দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: সাধারণ নির্বচন: একটি ত্রিভুজের ভূমি সংলগ্ন দুইটি কোণ এবং শীর্ষ <u>থেকে ভূ</u>মির উপর অঙ্কিত লম্বের দৈর্ঘ্য দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

বিশেষ নির্বচনঃ মনে করি, একটি ত্রিভুজের ভূমি সংলগ্ন দুইটি কোণ $\angle x$ ও $oldsymbol{\angle} y$ এবং শীর্ষবিন্দু হতে ভূমির উপর অঙ্কিত লম্বের দৈর্ঘ্য d দেওয়া আছে। ত্রিভূজটি আঁকতে হবে।

অঙ্গন:

- (১) যেকোনো সরলরেখা AG হতে AD=d নিই।
- (২) AD রেখার A ও D বিন্দুতে যথাক্রমে PAO ও MDN লম্ব রেখা আঁকি ।
- (৩) PQ রেখার A বিন্দুতে $\angle PAB = \angle x$ এবং $\angle QAC = \angle y$ আঁকি। $A\widetilde{B}$ ও AC রশ্মি দুইটি MN-কে যথাক্রমে B ও \widetilde{C} বিন্দুতে ছেঁদ করে। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: PQ এবং MN রেখাদ্বয় AD রেখার উপর লম্ব বলে তারা সমান্তরাল। $\angle ABC =$ একান্তর $\angle PAB = \angle x$

এবং $\angle ACB$ = একান্তর $\angle QAC = \angle y$

অতএব, $\triangle ABC$ -এ $\angle AB\widetilde{C} = \angle x$, $\angle ACB = \angle y$

এবং উচ্চতা AD = d

 $∴ \Delta ABC$ -ই নির্ণেয় ত্রিভুজ \Box

♦♦ অনুশীলনীর ২(ক) ও ৩নং প্রশ্নের আলোকে সুজনশীল প্রশ্নোত্তর ♦♦

একটি ত্রিভুজের ভূমি 3.5 সে.মি. ভূমি সংলগ্ন একটি কোণ 60°ও অপর দুই বাহুর সমষ্টি 8 সে.মি.।

- পেন্সিল কম্পাসের সাহায্যে 60° কোণ আঁক।
- বিবরণসহ ত্রিভুজটি আঁক।
- ভূমিকে উচ্চতী ধরে বাকী তথ্যগুলো ব্যবহার করে একটি ত্রিভুজ আঁক।

নিজে নিজে চেষ্টা কর।

🙎 সমকোণী ত্রিভুজের অতিভুজ ও অপর দুই বাহুর সমষ্টি দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: সাধারণ নির্বচন: সমকোণী ত্রিভুজের অতিভুজ ও অপর দুই বাহুর সমষ্টি দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

বিশেষ নির্বচনঃ মনে করি. একটি সমকোণী ত্রিভুজের a এবং অপর দুই বাহুর সমষ্টি *b* দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) MN যেকোনো সরলরেখা হতে MC=b কেটে নেই।
- (2) M বিন্দুতে $\angle NMP = 45^{\circ}$ আঁকি \perp
- (৩) C বিন্দুকে কেন্দ্র করে a-এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি। এ ব্রত্তচাপ MP রশ্মিকে A ও A' বিন্দুতে ছেদ করে।
- (8) A, C এবং A', C যোগ করি ।
- (৫) এখন A ও A' বিন্দু হতে MN-এর উপর AB ও A'B' লম্ব আঁকি। তাহলে $\triangle ABC$ বা $\triangle A'B'C$ -ই নির্ণেয় ত্রিভুজ।

প্রমাণ: $\triangle ABM$ -এ $\angle B = 90^{\circ}$ হওয়ায়, $\angle BMA = \angle BAM = 45^{\circ}$: MB = AB

এখন, $\triangle ABC$ -এ $\angle B=90^\circ$ এবং অতিভুজ AC=aআবার AB + BC = MB + BC = MC = b

 \therefore $\triangle ABC$ -ই উদ্দিষ্ট সমকোণী ত্রিভুজ। অনুরূপভাবে দেখানো যায় যে. $\Delta A'B'C$ ও উদ্দিষ্ট সমকোণী ত্রিভুজ।

🕜 ত্রিভুজের ভূমি সংলগ্ন একটি কোণ, উচ্চতা ও অপর দুই বাহুর সমষ্টি দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: সাধারণ নির্বচন: ত্রিভুজের ভূমিসংলগ্ন একটি কোণ, উচ্চতা ও অপর দুই বাহুর সমষ্টি দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের ভূমিসংলগ্ন একটি কোণ $\angle x$, উচ্চতা hএবং অপর দুই বাহুর সমষ্টি a দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো সরলরেখা BP নেই।
- (২) BP রেখার B বিন্দুতে $\angle x$ এর সমান করে $\angle PBM$ আঁকি।

- (৩) BM হতে BN=a কাটি।
- (8) আবার, BP রেখার B বিন্দুতে BQ লম্ব টানি।
- (৫) BQ থেকে BD=h কেটে নিই।
- (৬) এখন D বিন্দুতে BP-এর সমান্তরাল করে DF রশ্মি আঁকি। DF, BM-কে A বিন্দুতে ছেদ করে।
- (৭) A বিন্দুকে কেন্দ্র করে AN-এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি। বৃত্তচাপ BP- কে C ও C'বিন্দুতে ছেদ করে।
- (৮) A, C এবং A, C'যোগ করি। তাহলে, ΔABC বা $\Delta ABC'$ -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: $\triangle ABC$ বা $\triangle ABC'$ -এ $\angle B = \angle x$ এবং উচ্চতা = h কারণ, ত্রিভুজদ্বয় একই সমান্তরাল রেখাদ্বয়ের মধ্যে অবস্থিত।

এখন, $\triangle ABC$ -এ, AB + AC = AB + AN = BN = a

এখন, $\triangle ABC'$ -এ, AB + AC' = AB + AN = BN = a

 $\therefore \Delta ABC$ বা $\Delta ABC'$ -ই উদ্দিষ্ট ত্রিভুজ।

🕓 সমবাহু ত্রিভুজের পরিসীমা দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: সাধারণ নির্বচন: সমবাহু ত্রিভুজের পরিসীমা দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

বিশেষ নির্বচন: মনে করি, কোন সমবাহু ত্রিভুজের পরিসীমা p দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

- (১) যেকোনো রশ্মি PM থেকে PQ=p কেটে নিই।
- (২) পরিসীমা p কে সমত্রিখণ্ডিত করি, যেখানে, $p_1=p_2=p_3$ এবং $p=p_1+p_2+p_3 \ .$
- (৩) যেকোনো রশ্মি AD হতে $AB=p_1$ অংশ কেটে নেই।
- (8) A ও B হতে AD এর একই পাশে যথাক্রমে p_2 ও p_3 এর সমান করে দুইটি বৃভচাপ আঁকি। এরা পরস্পর C বিন্দুতে ছেদ করে।
- (৫) C, A ও C, B যোগ করি।

∴ ∆ABC-ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: ΔABC -এর পরিসীমা $AB+BC+CA=p_1+p_2+p_3=p$ । সুতরাং, ΔABC -ই উদ্দিষ্ট গ্রিভুজ ।

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচন: মনে করি সমাবাহু ত্রিভুজের পরিসীমা p দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন

- (১) DF রশ্মি থেকে DE = p কেটে নিই।
- (২) $\angle x = 60^\circ$ আঁকি। $\angle x$ কে সমদ্বিখন্ডিত করি। D ও E বিন্দুতে $\frac{1}{2} \angle x$ $= 30^\circ এর সমান করে <math>\angle EDG$ এবং $\angle DEH$ আঁকি।
- (৩) DG ও EH পরস্পর A বিন্দুতে ছেদ করে।
- (8) A বিন্দুতে $\angle DAB = \frac{1}{2} \angle x = 30^\circ$ এবং $\angle CAE = \frac{1}{2} \angle x = 30^\circ$ আঁকি এবং AB এবং AC রশাি DE রেখাকে যথাক্রমে B ও C বিন্দুতে ছেদ করে। তাহলে, ΔABC ই উদ্দিষ্ট সমবাহু ত্রিভুজ।

প্রমাণ: $\angle ADB = \angle DAB = \frac{1}{2} \angle x$ সুতরাং AB = DB। অনুরূপভাবে, AC = EC।

 \therefore গ্রিভুজটির পরিসীমা = AB+BC+AC=DB+BC+CE=p $\angle ABC=\angle ADB+\angle DAB=rac{1}{2}\angle x+rac{1}{2}\angle x=\angle x=60^\circ$

 $\angle ACB = \angle AEC + \angle EAC = \frac{1}{2} \angle x + \frac{1}{2} \angle x = \angle x = 60^{\circ}$

∴ $\angle BAC = 60^{\circ}$ । সুতরাং $\triangle ABC$ নির্ণেয় সমবাহু ত্রিভুজ।

৭ ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি স্থুলকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: মনে করি, একটি ত্রিভুজের ভূমি a, ভূমিসংলগ্ন একটি স্থূলকোণ ∠xও অপর দুই বাহুর অন্তর d দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্গন

- (১) যেকোনো রশ্মি BE থেকে a এর সমান BC নিই।
- (২) C বিন্দুতে $\angle x = \angle BCF$ কোণ আঁকি।
- (৩) FC রেখাকে G পর্যন্ত বর্ধিত করি।
- (৪) CG থেকে d এর সমান CD কাটি।
- (৫) B, D যোগ করি।
- (৬) BD রেখাংশের B বিন্দুতে $\angle CDB$ —এর সমান $\angle DBA$ আঁকি । BA রশ্মি CF কে A বিন্দুতে ছেদ করে । তাহলে ΔABC -ই উদ্দিষ্ট গ্রিভুজ ।

প্রমাণ: $\triangle ABD$ -এ $\angle ABD=\angle ADB$ । AB=AD সুতরাং, দুই বাহুর অন্তর AB-AC=AD-AC=CD=d

এখন, ΔABC -এ, AB-AC=d, BC=a এবং $\angle ACB=\angle x$ স্থূলকোণ। অতএব, ΔABC -ই নির্ণেয় স্থূলকোণী ত্রিভুজ।

পঠ্যিবইয়ের কাজের সমাধান

>পাঠ্যবই পৃষ্ঠা-১৪০

ক) প্রদত্ত কোণ সৃক্ষকোণ না হলে, উপরের পদ্ধতিতে অঙ্কন করা সম্ভব নয়। কেন? এ ক্ষেত্রে ত্রিভুজটি আঁকার কোনো উপায় বের কর। খ) ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি সক্ষ্ণকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে। বিকল্প পদ্ধতিতে ত্রিভুজটি অঙ্কন কর।

কাজ 'ক'-এর সমাধান: ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি সৃক্ষকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে ত্রিভুজটি আঁকতে হবে [সম্পাদ্য-২]। প্রদত্ত কোণ সৃক্ষকোণ না হলে উপরের পদ্ধতিতে অঙ্কন সম্ভব নয়। কারণ

 $\angle EDC$ এর সমান করে $\angle DCA$ আঁকলে CA রশ্মি BE রশ্মিকে কোনো বিন্দুতে ছেদ করবে না। তাই কোনো ত্রিভুজ উৎপন্ন হবে না। নিম্নে তা চিত্রের মাধ্যমে দেখানো হলো:

অঙ্কনের বর্ণনা:

- (১) যেকোনো রশ্মি BF থেকে BC=a কেটে নিই।
- (২) B বিন্দুতে $\angle CBE = \angle x$ আঁকি এবং C,D যোগ করি।
- (৩) CD রেখাংশের যে পাশে E বিন্দু আছে সেই পাশের C বিন্দুতে \angle EDC = ∠DCA আঁকি ।

উভয়ক্ষেত্রে CAএবং BE রশ্মি ভিন্নমুখী হওয়ায় রশ্মিদ্বয় কখনও পরস্পরকে ছেদ করবে না। ফলে ত্রিভুজ উৎপন্ন হবে না।

সমাধান

প্রদত্ত কোণটি সূক্ষ্মকোণ না হলে সেটি স্থূলকোণ অথবা সমকোণ হতে পারে। উভয়ক্ষেত্রের জন্য সমাধান নিম্নে দেওয়া হলো:

(i) প্রদত্ত কোণটি যদি স্থুলকোণ হয়, তবে সম্পাদ্য-২ রূপটি হয়: ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি স্থূলকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে ত্রিভুজটি আঁকতে হবে।

মনে করি, একটি ত্রিভুজের ভূমি a, ভূমিসংলগ্ন একটি স্থলকোণ $\angle x$ ও অপর দুই বাহুর অন্তর d দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশ্মি BE থেকে a এর সমান BC নিই।
- (২) C বিন্দুতে $\angle x = \angle BCF$ কোণ আঁকি।
- (৩) FC রেখাকে G পর্যন্ত বর্ধিত করি।
- (৪) CG থেকে d এর সমান CD কাটি।
- (৫) B, D যোগ করি ।
- (৬) BD রেখাংশের B বিন্দুতে $\angle CDB$ -এর সমান $\angle DBA$ আঁকি। BAরশাি CF কে A বিন্দুতে ছেদ করে। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: $\triangle ABD$ -এ $\angle ABD = \angle ADB + AB = AD$ সুতরাং, দুই বাহুর অন্তর AB - AC = AD - AC = CD = dএখন, $\triangle ABC$ -এ, AB-AC=d, BC=a এবং $\angle ACB=\angle x$ স্থূলকোণ। অতএব, ΔABC -ই নির্ণেয় স্থলকোণী ত্রিভুজ।

(ii) প্রদত্ত কোণটি যদি সমকোণ হয়, তবে সম্পাদ্য-২ রূপটি হয়: ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি সমকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে ত্রিভুজটি আঁকতে হবে।

বিশেষ নির্বচনঃ কোনো ত্রিভুজের ভূমি a, ভূমিসংলগ্ন সমকোণ $\angle x$ এবং অপর দুই বাহুর অন্তর d দেওয়া আছে ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশাি BE থেকে a এর সমান করে BC রেখাংশ কেটে নিই। BC রেখাংশের C বিন্দুতে $\angle x = 90^\circ$ এর সমান $\angle BCF$ আঁকি।
- (২) FC কে G পর্যন্ত বর্ধিত করি। CG হতে d এর সমান CD রেখাংশ কেটে নিই। B, D যোগ করি।
- (৩) BD রেখাংশের B বিন্দুতে $\angle CDB$ এর সমান করে $\angle DBA$ আঁকি। BA রশ্মি CF কে A বিন্দুতে ছেদ করে। তাহলে, ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: $\triangle ABC$ এ $\angle BCA = \angle x = 90^\circ$ এবং ভূমি, BC = aআবার, $\triangle ABD$ - এ $\angle ABD = \angle BDA$ [অঙ্কন অনুসারে]

 $\therefore AB = AD$ at, AB = AC + CD at, AB - AC = CD at, AB - AC = d

∴ তাহলে, ∆ABC-ই উদ্দিষ্ট ত্রিভুজ।

কাজ 'খ'-এর সমাধান: ত্রিভুজের ভূমি, ভূমি সংলগ্ন একটি সৃক্ষকোণ ও অপর দুই বাহুর অন্তর দেওয়া আছে। বিকল্প পদ্ধতিতে ত্রিভুজটি অঙ্কন কর।

বিশেষ নির্বচনঃ মনে করি, কোনো ত্রিভুজের ভূমি a, ভূমিসংলগ্ন সূক্ষকোণ $\angle x$ এবং অপর দুই বাহুর অন্তর d দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই। BC রেখাংশের B বিন্দুতে $\angle x$ এর সমান $\angle CBF$ আঁকি ।
- (২) BF রশাি থেকে d এর সমান BD অংশ কেটে নিই।
- (৩) C,D যোগ করি। CD এর লম্বদ্বিখণ্ডক PQ আঁকি।

(৪) PQ রশাি BF রশািকে A বিন্দুতে ছেদ করে। A, C যােগ করি। তাহলে, ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

- ∴ *CM* = *DM* [∵ *PQ* লম্বদ্বিখণ্ডক]
- বা, $\angle AMD = \angle AMC = 90^\circ$ [লম্বদ্বিখণ্ডক হওয়ায় প্রত্যেকে এক সমকোণ]
- $\therefore \Delta ADM \cong \Delta ACM$

এবং $\angle ABC = \angle x$ ∆ADM ଓ ∆ACM-এ

AD = AC

এখন, AB = AD + BD

বা, AB = AC + d [:: AD = AC এবং BD = d]

>পাঠ্যবই পৃষ্ঠা-১৪১

ত্রিভুজের ভূমি সংলগ্ন দুইটি সূক্ষকোণ ও পরিসীমা দেওয়া আছে। বিকল্প পদ্ধতিতে ত্রিভুজটি অঙ্কন কর।

সমাধানঃ বিশেষ নির্বচনঃ একটি ত্রিভুজের ভূমি সংলগ্ন দুইটি সূক্ষকোণ $\angle x \in \angle y$ এবং পরিসীমা P দেওয়া আছে। বিকল্প পদ্ধতিতে ত্রিভুজটি আঁকতে হবে।

অঙ্কন:

(১) $\angle x$ ও $\angle y$ কে সমন্বিখণ্ডিত করি। যেকোনো রশ্মি DF থেকে DE = P কেটে নিই । D ও E বিন্দুতে $\frac{1}{2} \angle x$ ও $\frac{1}{2} \angle y$ এর সমান করে যথাক্রমে $\angle EDH$

- (২) AD এর লম্বসমদ্বিখণ্ডক MN এবং AE এর লম্বসমদ্বিখন্ডক RS আঁকি। MN,DE কে B বিন্দুতে এবং RS,DE কে C বিন্দুতে ছেদ করে।
- (৩) A,B ও A,C যোগ করি। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ। প্রমাণ: MN রেখা AD এর লম্বদ্বিখণ্ডক হওয়ায় MN রেখাস্থ যেকোনো বিন্দু থেকে Aও D বিন্দু সমদূরবর্তী
- $\therefore BD = AB$

$$\therefore \angle ADB = \angle BAD = \frac{1}{2} \angle x$$

অনুরূপভাবে, $\angle AEC = \angle CAE = \frac{1}{2} \ \angle y$

 \therefore এখন, \triangle ABD এ বহিঞ্ছ $\angle ABC$ = অন্তঃস্থ বিপরীত ($\angle ADB$ + $\angle BAD$)

$$\therefore \angle ABC = \frac{1}{2} \angle x + \frac{1}{2} \angle x = \angle x$$

অনুরূপভাবে $\angle ACB = \frac{1}{2} \angle y + \frac{1}{2} \angle y = \angle y$

আবার, ΔABC - এর পরিসীমা = AB + BC + CA

$$=BD+BC+CE=DE=p$$

∴ ∆ABC- ই উদ্দিষ্ট ত্রিভুজ

পাঠ্যবই পৃষ্ঠা-১৪২

সমকোণী ত্রিভুজের সমকোণ সংলগ্ন একটি বাহু এবং অতিভুজ ও অপর বাহুর অন্তর দেওয়া আছে। ত্রিভুজটি আঁক।

সমাধান: বিশেষ নির্বচন: মনে করি, একটি সমকোণী ত্রিভুজের সমকোণ সংলগ্ন এক বাহু a এবং অতিভুজ ও অপর বাহুর অন্তর d দেওয়া আছে, ত্রিভুজটি আঁকতে হবে।

- (১) যেকোনো রশ্মি BE থেকে a-এর সমান BC অংশ কাটি। C বিন্দুতে BE-এর উপর লম্ব FG সরলরেখা আঁকি।
- (২) CG রশ্মি থেকে d-এর সমান CD অংশ কেটে নিই।
- (৩) B, D যোগ করি। BD রেখাংশের B বিন্দুতে $\angle CDB$ -এর সমান $\angle DBA$ আঁকি। BA রশ্মি CF রশ্মিকে A বিন্দুতে ছেদ করে। তাহলে, ΔABC -ই উদ্দিষ্ট ত্রিভুজ।

প্রমাণ: $\triangle ABD$ -এ, $\angle ABD = \angle ADB$, [অঙ্কন অনুসারে]

 $\therefore AD = AB$

সুতরাং দুই বাহুর অন্তর AB - AC = AD - AC = CD = dএখন, $\triangle ABC$ -এ, AB-AC=d, BC=a এবং $\angle ACB=$ এক সমকোণ। ∴ ∆ABC-ই নির্ণেয় সমকোণী ত্রিভুজ।

📣 লক্ষণীয়: এটি পাঠ্যবইয়ের ১৪০ নং পৃষ্ঠার কাজ শিরোনামে উল্লিখিত 'ক' প্রশ্নের সমাধানের (ii) নং এর অনুরূপ।