Math 240A: Real Analysis, Fall 2019

Homework Assignment 1

Due Friday, October 4, 2019

1. Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of sets. Define

$$\limsup_{n\to\infty} E_n = \{x : x \in E_n \text{ for infinitely many } n\},$$
$$\liminf_{n\to\infty} E_n = \{x : x \in E_n \text{ for all but finitely many } n\}.$$

Prove that

$$\limsup_{n \to \infty} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n \quad \text{ and } \quad \liminf_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n.$$

2. Let X and Y be two sets and $f: X \longrightarrow Y$ a mapping. Let $\{Y_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ be a family of subsets of Y. Prove

$$f^{-1}\left(\bigcup_{\alpha\in\mathcal{A}}Y_{\alpha}\right)=\bigcup_{\alpha\in\mathcal{A}}f^{-1}(Y_{\alpha})\quad\text{ and }\quad f^{-1}\left(\bigcap_{\alpha\in\mathcal{A}}Y_{\alpha}\right)=\bigcap_{\alpha\in\mathcal{A}}f^{-1}(Y_{\alpha}).$$

- 3. Find a bijection from \mathbb{N} to \mathbb{N}^2 .
- 4. Construct a sequence of open sets U_n $(n=1,2,\ldots)$ of \mathbb{R} such that $\bigcap_{n=1}^{\infty} U_n$ is not open.
- 5. Let X be a complete metric space and E a non-empty subset of X. Prove that E is closed if and only if E is complete.
- 6. Let (Y, \mathcal{B}) be a measurable space and X a nonempty set. For any $f: X \to Y$, define $\mathcal{A} = \{f^{-1}(B) : B \in \mathcal{B}\}$. Prove that \mathcal{A} is a σ -algebra of subsets of X.
- 7. An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions (i.e., if $E_n \in \mathcal{A}$ for all $n = 1, 2, \ldots$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$.)
- 8. Does there exist an infinite σ -algebra which has only countably many members? If yes, provide an example. If no, prove it.
- 9. Let X be a nonempty set and \mathcal{E} a class of subsets of X. Let \mathcal{M} be the σ -algebra of subsets of X generated by \mathcal{E} . Prove that \mathcal{M} is the union of the σ -algebra generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .
- 10. Prove Part c and Part d of Proposition 1.2 of the textbook.