The δ -Bounded ε -Non-Dominated Multi-Objective User Equilibrium (δ -EBR-MUE): Model, Theory and Approximation

Your Name

Abstract

This paper introduces a novel multi-objective user equilibrium model under bounded rationality, termed the δ -EBR-MUE, which integrates two rationality constraints: (i) weakly ε -non-dominated path choice, and (ii) travel time boundedness relative to the shortest path. We provide a complete mathematical formulation, establish existence via a set-valued fixed-point argument, and propose a support function approximation for the non-dominated frontier. Numerical experiments validate the behavioral implications and demonstrate the diversity of solutions beyond classical DUE or BRUE models.

1 Notation and Preliminaries

Let \mathcal{W} denote the set of origin-destination (OD) pairs. For each OD pair $w \in \mathcal{W}$, let \mathcal{P}^w denote the set of all feasible paths, and d^w the total travel demand.

Let $\mathbf{f} = (f_p^w)_{p \in \mathscr{D}^w, w \in \mathscr{W}}$ denote the path flow vector. The feasible flow set is defined as:

$$\Lambda := \left\{ \mathbf{f} \in \mathbb{R}_+^{|\mathscr{P}|} : \sum_{p \in \mathscr{P}^w} f_p^w = d^w, \ \forall w \in \mathscr{W}
ight\}.$$

Each path p is associated with a bi-objective cost vector:

$$\mathbf{C}_n(\mathbf{f}) := (t_n(\mathbf{f}), c_n(\mathbf{f})),$$

where $t_p(\mathbf{f})$ and $c_p(\mathbf{f})$ represent travel time and monetary cost under flow \mathbf{f} .

Dominance and ε -Non-Dominance

Definition 1.1 (Strict Dominance). Given two paths p and q for OD pair w, path q strictly dominates path p, denoted

$$\mathbf{C}_{q}(\mathbf{f}) \prec \mathbf{C}_{p}(\mathbf{f}),$$

if and only if:

$$t_q(\mathbf{f}) < t_p(\mathbf{f})$$
 and $c_q(\mathbf{f}) < c_p(\mathbf{f})$.

Definition 1.2 (ε -Strict Dominance). For tolerance vector $\varepsilon = (\varepsilon_t, \varepsilon_m)$, path q ε -strictly dominates path p if:

$$t_q(\mathbf{f}) + \varepsilon_t < t_p(\mathbf{f})$$
 and $c_q(\mathbf{f}) + \varepsilon_m < c_p(\mathbf{f})$.

Definition 1.3 (ε -Weakly Non-Dominated Path). Path p is ε -weakly non-dominated if it is not ε -strictly dominated by any $q \in \mathscr{P}^w$, i.e.,

$$\phi_p^{\varepsilon}(\mathbf{f}) := \max_{q \in \mathscr{P}^w} \max \left\{ t_q - t_p + \varepsilon_t, \ c_q - c_p + \varepsilon_m \right\} \le 0.$$

Figure 1: Illustration of ε -dominance in the time-cost objective space. The red box indicates the ε -tolerance area around the reference path p. Paths inside this box are not ε -strictly dominating p. Path q_1 strictly dominates p, q_2 ε -dominates p, and q_3 does not dominate p.

Example: ε -Nondominated Flow Region Between Two Paths

Consider two alternative paths p and q connecting the same origin-destination pair. Let the scalar flow on path p be denoted as f_p , and on path q as f_q . The bi-objective cost vectors for these two paths are given by:

$$\mathbf{C}_{p}(f) = \begin{pmatrix} C_{p}^{1}(f) \\ C_{p}^{2}(f) \end{pmatrix} = \begin{pmatrix} 2 + f_{p} \\ 4 + f_{p}^{2} \end{pmatrix},$$

$$\mathbf{C}_{q}(f) = \begin{pmatrix} C_{q}^{1}(f) \\ C_{q}^{2}(f) \end{pmatrix} = \begin{pmatrix} 1 + 2f_{q} \\ 5 + f_{q} \end{pmatrix}.$$

We consider an ε -dominance relation with tolerance vector $\varepsilon = (\varepsilon^1, \varepsilon^2) = (0.5, 0.5)$. The cost vector $\mathbf{C}_q(f)$ is said to ε -dominate $\mathbf{C}_p(f)$ if:

$$C_q^1(f) \leq C_p^1(f) - \varepsilon^1 \quad \text{and} \quad C_q^2(f) \leq C_p^2(f) - \varepsilon^2.$$

Therefore, the set of flow pairs $(f_p, f_q) \in \mathbb{R}^2_+$ under which path p is not ε -dominated by path q is:

$$\mathscr{F}_{\varepsilon} = \left\{ (f_p, f_q) \in \mathbb{R}^2_+ \mid C_q^1(f) > C_p^1(f) - \varepsilon^1 \quad \text{or} \quad C_q^2(f) > C_p^2(f) - \varepsilon^2 \right\}.$$

This region can be visualised in the (f_p, f_q) -space as the set where the ε -dominance condition does not hold. Due to the nonlinear nature of the cost functions, the set $\mathscr{F}_{\varepsilon}$ is generally non-convex.

2 Mathematical Formulation of the δ -EBR-MUE Model

Let \mathcal{W} be the set of origin-destination (OD) pairs, and \mathcal{P}^w the set of feasible paths for $w \in \mathcal{W}$. For each path $p \in \mathcal{P}^w$:

- f_p^w : flow on path p;
- $\mathbf{C}_p = (t_p(\mathbf{f}), c_p(\mathbf{f}))$: travel time and cost;
- $T_w^{\mathrm{UE}}(\mathbf{f}) := \min_{p \in \mathscr{P}^w} t_p(\mathbf{f}).$

A path p is said to be ε -non-dominated and δ -bounded if:

(i)
$$\nexists q \in \mathscr{P}^w$$
: $\mathbf{C}_q(\mathbf{f}) \prec \mathbf{C}_p(\mathbf{f}) - \varepsilon$,

(ii)
$$t_p(\mathbf{f}) \leq T_w^{\mathrm{UE}}(\mathbf{f}) + \delta$$
.

Let $\phi_p^{\varepsilon}(\mathbf{f}) := \max_{q \in \mathscr{D}^w} \max \{t_q - t_p + \varepsilon_t, c_q - c_p + \varepsilon_m\}$ and $\phi_p^{\delta}(\mathbf{f}) := t_p(\mathbf{f}) - T_w^{\mathrm{UE}}(\mathbf{f}) - \delta$. The δ -EBR-MUE conditions are:

$$\begin{split} &f_p^w \cdot \phi_p^{\varepsilon}(\mathbf{f}) = 0, \quad \phi_p^{\varepsilon}(\mathbf{f}) \geq 0, \\ &f_p^w \cdot \phi_p^{\delta}(\mathbf{f}) = 0, \quad \phi_p^{\delta}(\mathbf{f}) \leq 0, \\ &\sum_{p \in \mathscr{P}^w} f_p^w = d^w, \quad f_p^w \geq 0. \end{split}$$

Interpretation of $\phi_p^{\varepsilon}(\mathbf{f})$. The expression $\phi_p^{\varepsilon}(\mathbf{f}) := \max_{q \in \mathscr{P}^w} \max \{t_q - t_p + \varepsilon_t, c_q - c_p + \varepsilon_m\}$ quantifies the worst-case ε -dominance violation for path p.

- The inner max evaluates whether any path q offers a sufficient improvement in either time or cost to make path p strictly dominated beyond the tolerance ε .
- The outer max scans all such potential dominating paths q.

If $\phi_p^{\varepsilon}(\mathbf{f}) > 0$, it means there exists a path q that ε -dominates p in at least one dimension. Therefore, path p is considered infeasible under the δ -EBR-MUE behavioral rule. Conversely, $\phi_p^{\varepsilon}(\mathbf{f}) = 0$ implies that p is weakly ε -non-dominated.

3 Existence of δ -EBR-MUE

Let the feasible set be:

$$\Lambda := \left\{ \mathbf{f} \in \mathbb{R}_+^{|\mathscr{P}|} : \sum_{p \in \mathscr{P}^w} f_p^w = d^w, \forall w \in \mathscr{W}
ight\}.$$

Define a set-valued map:

$$\Phi(\mathbf{f}) := \left\{ \tilde{\mathbf{f}} \in \Lambda : \tilde{f}_p^w > 0 \Rightarrow p \in \mathscr{A}_w^{\varepsilon, \delta}(\mathbf{f}) \right\},\,$$

where $\mathscr{A}_{w}^{\varepsilon,\delta}(\mathbf{f})$ is the set of all paths satisfying the two criteria above. Under continuity of \mathbf{C}_{p} , compactness of Λ , and closedness of Φ , Kakutani's fixed-point theorem ensures existence of an equilibrium $\mathbf{f}^{*} \in \Phi(\mathbf{f}^{*})$.

4 Existence of δ -EBR-MUE

We now establish the existence of a flow vector $\mathbf{f}^* \in \Lambda$ satisfying the conditions of the δ -EBR-MUE model.

Theorem 4.1 (Existence of δ -EBR-MUE). Suppose that:

- 1. The feasible set of flows $\Lambda := \left\{ \mathbf{f} \in \mathbb{R}_+^{|\mathscr{P}|} : \sum_{p \in \mathscr{P}^w} f_p^w = d^w, \ \forall w \in \mathscr{W} \right\}$ is nonempty, compact, and convex;
- 2. The path cost functions $t_p(\mathbf{f})$, $c_p(\mathbf{f})$ are continuous with respect to \mathbf{f} ;
- 3. The parameters $\varepsilon_t, \varepsilon_m, \delta \geq 0$ are fixed;

Then there exists a flow vector $\mathbf{f}^* \in \Lambda$ satisfying the following conditions for all OD pairs $w \in \mathcal{W}$ and all $p \in \mathcal{P}^w$:

$$f_p^{w*} > 0 \Rightarrow \begin{cases} \phi_p^{\mathcal{E}}(\mathbf{f}^*) = 0, & (\varepsilon\text{-non-dominance}) \\ \\ t_p(\mathbf{f}^*) \leq T_w^{\mathrm{UE}}(\mathbf{f}^*) + \delta, & (\text{time-bounded}) \end{cases}$$

Proof. We reformulate the equilibrium as a fixed point of a set-valued map.

Define the feasible flow set:

$$\Lambda = \left\{ \mathbf{f} \in \mathbb{R}_{+}^{|\mathscr{P}|} : \sum_{p \in \mathscr{P}^{w}} f_{p}^{w} = d^{w}, \forall w \in \mathscr{W} \right\},$$

which is nonempty, convex, and compact.

Define for each OD pair w the set of acceptable paths under flow f:

$$\mathscr{A}_w^{\varepsilon,\delta}(\mathbf{f}) := \left\{ p \in \mathscr{P}^w \ : \ \phi_p^\varepsilon(\mathbf{f}) = 0, \ t_p(\mathbf{f}) \leq T_w^{\mathrm{UE}}(\mathbf{f}) + \delta \right\}.$$

Then define the set-valued mapping:

$$\Phi(\mathbf{f}) := \left\{ \tilde{\mathbf{f}} \in \Lambda \ : \ \tilde{f}_p^w > 0 \Rightarrow p \in \mathscr{A}_w^{\varepsilon, \delta}(\mathbf{f}), \ \forall w \in \mathscr{W} \right\}.$$

We claim that this map $\Phi: \Lambda \rightrightarrows \Lambda$ satisfies the conditions of Kakutani's fixed-point theorem:

- The domain Λ is compact and convex (from assumption);
- For each \mathbf{f} , the image $\Phi(\mathbf{f})$ is convex: since selecting flows on acceptable paths preserves linearity and the feasible set is convex;
- The graph of Φ is closed: because both $\phi_p^{\varepsilon}(\mathbf{f})$ and $t_p(\mathbf{f})$ are continuous in \mathbf{f} , the acceptance set $\mathscr{A}_w^{\varepsilon,\delta}(\mathbf{f})$ varies upper hemicontinuously with \mathbf{f} .

By Kakutani's theorem, there exists $\mathbf{f}^* \in \Lambda$ such that $\mathbf{f}^* \in \Phi(\mathbf{f}^*)$, i.e., a δ -EBR-MUE exists. \square

Algorithm: Iterative Solution for δ -Bounded Rational Multi-Objective Non-Strictly Dominated User Equilibrium (δ -EBR-MUE)

Input:

- OD demand set $\{d_w\}_{w \in W}$
- Path sets $\{\mathscr{P}_w\}_{w\in W}$ for each OD pair
- Time cost tolerance parameter $\delta > 0$
- Path cost function $\mathbf{C}_p(\mathbf{f})$, including time and other objectives
- Initial feasible path flow $\mathbf{f}^{(0)}$ satisfying demand conservation
- Maximum number of iterations K_{\max} and convergence tolerance ε

Output: Path flow vector \mathbf{f}^* satisfying the δ -EBR-MUE equilibrium conditions.

Algorithm Steps:

- 1. Initialization: Set iteration counter k = 0 and initialize path flow $\mathbf{f}^{(0)}$.
- 2. Compute Path Costs: For current flow $\mathbf{f}^{(k)}$, compute multi-objective path costs:

$$\mathbf{C}_p^{(k)} = \mathbf{C}_p(\mathbf{f}^{(k)}),$$

extracting the time cost component:

$$t_p^{(k)} = \text{time component of } \mathbf{C}_p^{(k)}.$$

3. Determine Minimum Time Cost per OD Pair: For each OD pair w, find the shortest travel time among all paths:

$$t_w^{*(k)} = \min_{p \in \mathscr{P}_w} t_p^{(k)}.$$

4. Filter Feasible Paths: Construct the feasible path set for each OD pair:

$$\mathscr{P}_{\scriptscriptstyle W}^{(k)} = \left\{ p \in \mathscr{P}_{\scriptscriptstyle W} \mid t_p^{(k)} \leq t_{\scriptscriptstyle W}^{*(k)} + \delta, \quad p \text{ is non-strictly dominated} \right\}.$$

Here, a path p is non-strictly dominated if there does not exist another path p' such that:

$$\mathbf{C}_{p'}^{(k)} < \mathbf{C}_{p}^{(k)}$$
 (all objectives strictly less).

5. Flow Reassignment Subproblem: Fixing the feasible path sets $\{\mathscr{P}_w^{(k)}\}$, solve the flow assignment problem:

$$\min_{\mathbf{f} \geq 0} \sum_{w \in W} \sum_{p \in \mathscr{P}_w^{(k)}} \int_0^{f_p} C_p(s) \, ds,$$

subject to:

$$\sum_{p \in \mathscr{P}_w^{(k)}} f_p = d_w, \quad \forall w \in W.$$

Denote the solution by $\mathbf{f}^{(k+1)}$.

6. Check Convergence: If

$$\|\mathbf{f}^{(k+1)} - \mathbf{f}^{(k)}\| \le \varepsilon,$$

terminate and set $\mathbf{f}^* = \mathbf{f}^{(k+1)}$.

7. Iteration: Otherwise increment $k \leftarrow k+1$. If $k > K_{\text{max}}$, terminate with current solution; else return to Step 2.

Flowchart summary:

Algorithm 1 VI-based Algorithm for Solving δ -Bounded ε -Non-strictly Dominated User Equilibrium (δ -EBR-MUE)

Require: Initial flow $\mathbf{f}^{(0)}$, OD demands $\{d^w\}$, path sets $\{\mathcal{P}_w\}$, tolerance $\delta > 0$, $\varepsilon \in \mathbb{R}_+^m$, maximum iteration K_{max}

Ensure: Equilibrium flow f*

- 1: Set $k \leftarrow 0$
- 2: repeat
- 3: Compute the cost vector $\mathbf{C}_p(\mathbf{f}^{(k)}) = (C_p^1, \dots, C_p^m)$ for all p
- 4: for each OD pair $w \in \mathcal{W}$ do
- 5: Find minimum time cost: $\mathscr{T}_w = \min_{p \in \mathscr{P}_w} C_p^1(\mathbf{f}^{(k)})$
- 6: Define feasible path set:

$$\hat{\mathscr{P}}_w := \left\{ p \in \mathscr{P}_w : C^1_p(\mathbf{f}^{(k)}) \leq \mathscr{T}_w + \delta, \; \nexists \; q \in \mathscr{P}_w \; \text{s.t.} \; \mathbf{C}_q \leq \mathbf{C}_p - \varepsilon \right\}$$

- 7: end for
- 8: Define feasible flow set:

$$\mathscr{F}^{oldsymbol{\delta},arepsilon} := \left\{ \mathbf{f} \geq 0 \; \middle| \; \sum_{p \in \mathscr{P}_w} f_p = d^w, \; f_p > 0 \Rightarrow p \in \hat{\mathscr{P}}_w, \; orall w
ight\}$$

- 9: Define operator $F(\mathbf{f}) = (\mathbf{C}_p(\mathbf{f}))_{p \in \cup_w \mathscr{P}_w}$
- 10: Solve the following variational inequality (projected method or proximal point method):

Find
$$\mathbf{f}^{(k+1)} \in \mathscr{F}^{\delta,\varepsilon}$$
 such that $\langle F(\mathbf{f}^{(k+1)}), \mathbf{f} - \mathbf{f}^{(k+1)} \rangle \ge 0$, $\forall \mathbf{f} \in \mathscr{F}^{\delta,\varepsilon}$

- 11: $k \leftarrow k + 1$
- 12: until $\|\mathbf{f}^{(k)} \mathbf{f}^{(k-1)}\| \le \text{tol or } k \ge K_{\text{max}}$
- 13: return $\mathbf{f}^{(k)}$

Algorithm 2 δ -bounded ε -Non-dominated User Equilibrium Solver

Require: Initial flow vector \mathbf{f}^0 , OD demands $\{d^w\}_{w\in\mathcal{W}}$, path sets $\{\mathscr{P}_w\}$, tolerance parameters $\delta > 0$, $\varepsilon \in \mathbb{R}^m_+$, maximum iterations K_{max} Ensure: Approximate equilibrium flow \mathbf{f}^* 1: Set $k \leftarrow 0$ 2: Initialize $\mathbf{f}^{(0)}$ 3: repeat Compute cost vectors $\mathbf{C}_p(\mathbf{f}^{(k)})$ for all paths pfor each OD pair $w \in \mathcal{W}$ do 5: Let $\mathscr{T}_{w}^{(k)} = \min_{n \in \mathscr{P}_{w}} C_{n}^{1}(\mathbf{f}^{(k)})$ 6: ▶ Minimum travel time cost Let $\hat{\mathscr{P}}_{w}^{(k)} \leftarrow \emptyset$ 7: for each path $p \in \mathcal{P}_w$ do 8: if $C_n^1(\mathbf{f}^{(k)}) \leq \mathscr{T}_w^{(k)} + \delta$ and not strictly ε -dominated by other paths in \mathscr{P}_w then Add p to $\hat{\mathscr{P}}_{w}^{(k)}$ 10: end if 11: end for 12: end for 13: Assign flow uniformly over $\hat{\mathscr{D}}_{w}^{(k)}$ for each w, respecting demand d^{w} , to obtain $\mathbf{f}^{(k+1)}$ 14: 16: until $\|\mathbf{f}^{(k)} - \mathbf{f}^{(k-1)}\| \le \text{tol or } k \ge K_{\text{max}}$ 17: return $\mathbf{f}^{(k)}$

5 Support Function Approximation of the ε -Nondominated Set

Let $\mathscr{C}^w := \{\mathbf{C}_p : p \in \mathscr{P}^w\}$ and choose $\mathscr{U}_N \subset \mathbb{S}^1$ directions. Define:

$$\rho_{\mathscr{C}^w}(\mathbf{u}) := \min_{p \in \mathscr{P}^w} \mathbf{u}^\top \mathbf{C}_p.$$

Then:

$$\mathscr{E}_{\varepsilon}^{w} := \left\{ \mathbf{C}_{p} : \forall \mathbf{u} \in \mathscr{U}_{N}, \ \mathbf{u}^{\top} \mathbf{C}_{p} \leq \rho_{\mathscr{C}^{w}}(\mathbf{u}) + \varepsilon_{\mathbf{u}} \right\}.$$

As $N \to \infty$, $\mathcal{E}_{\varepsilon}^w$ converges in Hausdorff distance to the true weakly nondominated frontier.

6 Limiting Case: $\varepsilon = 0$

We consider the limiting case where the dominance tolerance $\varepsilon = (0,0)$. In this case, the δ -EBR-MUE model reduces to a sharper form, where users only accept paths that are not strictly dominated in the cost vector space, while still satisfying the travel time bound.

Definition 6.1 (δ -Bounded Weakly Non-Dominated User Equilibrium (δ -WNUE)). A feasible path flow \mathbf{f}^* is said to satisfy the δ -WNUE condition if:

$$f_p^w > 0 \implies \begin{cases} \mathbf{C}_q(\mathbf{f}^*) \not\prec \mathbf{C}_p(\mathbf{f}^*), & \forall q \in \mathscr{P}^w \\ t_p(\mathbf{f}^*) \le T_w^{\mathrm{UE}}(\mathbf{f}^*) + \delta, \end{cases}$$

Proposition 6.1. Every δ -EBR-MUE with $\varepsilon = 0$ is a δ -WNUE. Conversely, every δ -WNUE is a δ -EBR-MUE with $\varepsilon = 0$.

Proof. Immediate from the definitions: with $\varepsilon = 0$, the ε -non-dominance condition becomes standard weak non-domination. The time-bound condition remains unchanged.

Remark 6.1. As $\varepsilon \to 0$, the δ -EBR-MUE set converges to the set of δ -WNUE flows. However, for any $\varepsilon > 0$, the equilibrium permits a richer variety of solutions, possibly including near-dominated paths, thereby reflecting behavioural flexibility and tolerance.

7 Numerical Example

Consider a simple network with three parallel paths. Let the travel time on each path be $t_p(f) = a_p + b_p f_p$ and cost c_p be fixed. Set:

- a = [3,5,8], b = [0.01,0.01,0.02];
- c = [2, 1.5, 0.5] (monetary units);
- demand d = 1, $\varepsilon = (1.5, 0.5)$, $\delta = 2$.

Compute:

- 1. User Equilibrium (UE);
- 2. Bounded Rational UE (BRUE);
- 3. δ -EBR-MUE using fixed-point iteration.

Compare results in terms of used paths, average cost, and Pareto dominance.