

A regenerable VOC control system (RVCS) for characterizing properties of sorbents used in separation technologies

Sara D. Nolek

Oscar A. Monje

ESC - Team QNA

Space Life Sciences Laboratory

Kennedy Space Center, FL 32899

Introduction

Bed and System Design

Methods

- Thermal Regeneration
- Static Adsorption Test
- Pressure Swing Adsorption and Regeneration

Testing

Discussion

- Adsorptive Capacities
- Roll-over Effect

Conclusions

Bed design

- 2 bed diameters
 - Adjust contact times with gas stream flowrate and bed diameter
- Measurements
 - Temperature
 - 25%, 50%, 75% length of bed
 - Inlet/outlet
 - Humidity
 - Inlet/outlet
 - Pressure
 - Inlet/outlet

System Design

- Gas stream
- Operation through test bed
- Analysis
 - FTIR
 - GC
 - Dewpoint hygrometer
 - CO₂, P, T, Rh sensors
 - Datalogger

Methods cont.

- Static adsorption test
 - Simulated spacecraft gas stream
 - 6000 ppm CO₂
 - 52% Relative Humidity
 - 1-5 ppm VOC
 - 23°C ambient temperature

Typical data set collected in the RVCS during a static test measuring breakthrough curves of CO₂ and water vapor

Methods

Thermal regeneration

- Zeolites require high temperature for desorption (>300°C)
- Heating system designed/built for high temperature but also ability to hold stable at intermediate temperature
- Reverse flow sweep gas

Methods cont.

- PSA (Pressure Swing Adsorption)
 - <0.5 Torr (0.04 kPa) vacuum</p>
 - Capability to cycle at integral minute intervals

Inlet (PreRH) and outlet (PostRH) relative humidities of a Zeolite 13X bed undergoing 8 min PSA cycles. The bed kept the air exiting the bed dry.

Testing

- Flow rate/carrier gas/pre & post accuracy
 - Does N₂ compete with the CO₂ or the VOC adsorption?
 - Test with He vs. N₂ as carrier gas
 - Does the flow rate affect the CO₂ breakthrough or VOC adsorption?
 - Test with higher flow vs. lower flow
 - Is the carryover from previous measurement enough to skew results?
 - Test "stickiness" of VOC for pre/post concentration error

Testing cont.

- What are the effects of
 - Single VOC on CO₂ adsorption/CO₂ on VOC adsorption?
 - Water on CO₂ adsorption?
 - Water on VOC adsorption/VOC on water adsorption?
 - Adsorption effects of multiple VOCs?
- Comparison with adsorption models

Discussion

Adsorptive capacities

Rollover effect

Stickiness of VOCs to system components

Small diameter sorbents (powder)

Adsorptive capacity and rollover effect

Breakthrough curve of toluene + water. Once water begins to breakthrough, roll-over of toluene is observed as the water displaces the adsorbed toluene off the bed.

Conclusions

Recap of system uses

Correlation with models

Future capabilities to be added

Acknowledgement

 Support of this research was provided by NASA's Exploration Life Support and Habitation Systems Project

— Atmosphere Revitalization Element and NASA's ISS research.

