# **Automatic Control**

#### Loop shaping design of feedback control systems

-135

Part II: Lag network

Automatic Control – M. Canale

# Nichols Chart 150 100 $\omega_{\text{c,des}}$ Open-Loop Gain (dB) . Sp $\omega_{\text{c,des}}$ -100 -150 -270

Open-Loop Phase (deg)

# Example

- The simplest way to obtain magnitude attenuation is through a gain attenuation.
- In fact, if L(s) is multiplied by a gain K, such that |K|<1, the resulting Nichols diagram is down-shifted by the quantity  $K|_{dB} < 0$ .
- However, since this procedure reduces the dcgain of L(s), leads in general, to steady state performance degradation.

#### Example



In this situation,  $\angle L(j\omega_{c,des})$  is such that the point corresponding to  $\omega_{c,des}$  is outside the influence of the constant magnitude loci.

It can be noticed that, in order to make  $\omega_{\text{c.des}}$ crossover frequency, a magnitude attenuation action is required.

Automatic Control – M. Canale

AC L16 2

## Example



- In this regard, a viable solution is to introduce magnitude attenuation in a neighbourhood of  $\omega_{c,des}$ only, without modifying the dc-gain of L(s).
- This can be achieved thorugh a suitable controller which does not modify the dc-gain (i.e. its dc-gain is 1) and introduces magnitude attenuation from a given frequency.

Automatic Control – M. Canale

-225

AC L16 3

Automatic Control – M. Canale

#### The lag network

The just introduced example motivates the use of the

lag network 
$$\rightarrow$$
  $C_{I}(s) = \frac{1 + \frac{s}{m_{I}\omega_{I}}}{1 + \frac{s}{\omega_{I}}}, \omega_{I} > 0, m_{I} > 1$ 

A lag network is described by a proper tf with:

- a real negative pole at −ω<sub>I</sub>
- a real negative zero at  $-m_I \omega_I$

Note also that:

$$\lim_{s\to 0} C_{I}(s) = \lim_{s\to 0} \frac{1 + \frac{s}{m_{I}\omega_{I}}}{1 + \frac{s}{\omega_{I}}} = 1$$

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L16 5

#### The lag network: effects before 70 0.01:0.1 60 50 after 10:100 100:1000 20 10 -10 -20 -30 -40 -50 -135

In the Nichols plane, the magnitude attenuation effect produces a negative vertical shift of the frequency interval of interest

AC L16 7

## The lag network: frequency response



 $C_{I}(s) = \frac{1 + \frac{s}{m_{I}\omega_{I}}}{1 + \frac{s}{\omega_{I}}}, \omega_{I} > 0, m_{I} > 1$ 

→ Magnitude attenuation ←

#### Phase lag

the greater is  $m_{\rm I}$ , the larger is the amount of the phase lag and the magnitude decrease

Automatic Control – M. Canale

AC L16 6

#### The lag network: design

- Parameter  $m_I$  is designed on the basis of the magnitude attenuation needed at  $\omega_{c,des}$ .
- In this regard, the key idea is to place the lag network so that the "flat" zone of its magnitude behavior is located in a suitable neighbourhood of  $\omega_{c,des}$ .
- In this way, the lag network produces a vertical negative shift of the Nichols diagram in a neighbourhood of  $\omega_{c,des}$  as shown in the previous page.



Automatic Control – M. Canale

AC\_L16 8

### The lag network: design

- In order to fix parameter  $m_I$ , we note that, after the introduction of the lag network, the loop function becomes  $L'(s)=C_I(s)L(s)$
- Then, since at  $\omega_{c,des}$ , the magnitude of  $|C_I(j\omega)|$  must be  $1/m_I$  (flat zone), we have

$$\begin{aligned} \left| \mathcal{L}'(j\omega_{c,des}) \right| &= \left| \mathcal{C}_{I}(j\omega_{c,des}) \right| \left| \mathcal{L}(j\omega_{c,des}) \right| = 1 \\ \left| \mathcal{L}'(j\omega_{c,des}) \right| &= \frac{1}{m_{I}} \left| \mathcal{L}(j\omega_{c,des}) \right| = 1 \end{aligned} \Rightarrow m_{I} = \left| \mathcal{L}(j\omega_{c,des}) \right| \\ &= \left| \mathcal{C}_{I}(j\omega_{c,des}) \right| = 1/m_{I}$$

Automatic Control – M. Canale

Automatic Control – M. Canale

AC L16 9

#### The lag network: design

• Parameter  $\omega_I$  is designed in order to place the flat zone at  $\omega_{c,des}$  and to limit the phase lag that occurs near  $\omega_{c,des}$ 



#### The lag network: design

- It is worth noting that a rough evaluation of  $m_I$  can be obtained using the universal magnitude diagram of a *lead* network\*.
- Suppose that a magnitude decrease of about 17.5 dB is needed at  $\omega_{\rm c,des}$



In this case, a value of  $m_I < 8$  can been chosen:

 $\rightarrow$  roughly  $m_I = 7.7, 7.8$ )

The exact procedure leads to:

$$m_I = \left| \mathcal{L}(j\omega_{c,des}) \right| = 17,5 \, dB = 7.5$$

\* Note that the magnitude diagram of a lag network has the same behavior of the lead network one except for the sign.

Automatic Control – M. Canale

AC L16 10

# The lag network: design

In order to limit the phase lag at  $\omega_{\rm c,des}$ , the zero of the lag network,  $m_{\rm I}\omega_{\rm I}$  should be sufficiently far from  $\omega_{\rm c,des}$ 

$$\omega_{c,des} \approx \alpha \, m_I \omega_I$$
,  $\alpha \gg 1$ 

$$\Rightarrow \omega_I = \omega_{c,des} / (\alpha m_I)$$

rule of thumb: start with  $\alpha = 10$ 

The greater is  $\alpha$ , the smaller is the phase lag introduced at  $\omega_{c,des}$ 

<u>Remark</u>: the greater is  $\alpha$  the lower is the frequency of the zero  $m_I \omega_I$   $\rightarrow$  the longer is the transient extinction  $\rightarrow$  avoid the use of large  $\alpha$ 

 $\omega_{c,des}$ 

AC L16 11

 $|C_I(j\omega)|$ 

 $C_I(j\omega)^{-10}$ 

#### The lag network: design

- A more efficient procedure can be employed to fix  $\omega_I$  in order to quantify the amount of the phase lag that occurs at  $\omega_{c,des}$
- In this context, the *lead* universal phase diagram\* can be employed



Suppose that for  $\omega_{c,des} = 3 \ rad/s$ , a value of  $m_I = 8$  has been chosen

$$\omega_{norm} = \omega/\omega_{I} = 40$$
 $\angle C_{I}(j\omega_{norm}) = -10^{\circ}$ 
 $(\omega/\omega_{I})|_{\omega=\omega c, des} = 40$ 
 $\omega_{I} = \omega_{c, des} / 40 = 0.075 \text{ rad/s}$ 

$$\omega_{norm} = \omega/\omega_I = 80$$
 $\angle C_I(j\omega_{norm}) = -5^\circ$ 
 $(\omega/\omega_I)|_{\omega=\omega_C,des} = 80$ 
 $\omega_I = \omega_{C,des} / 80 = 0.037 \text{ rad/s}$ 

\* Note that the phase diagram of a lag network has the same behavior of the lead network one except for the sign.

Automatic Control – M. Canale

AC\_L16 13

#### Lag network: design example 1

A plant to be controlled is described by the transfer function

$$G(s) = \frac{2}{(1+0.2s)(1+0.1s)}$$

design a cascade controller C(s) in order to satisfy the requirements below.

$$|\mathbf{y}_{d_a}^{\infty}| \leq 0.1$$
,  $d_a(t) = \delta_a t \varepsilon(t)$ ,  $|\delta_a| \leq 1 \rightarrow C_{SS}(s) = \frac{10}{s}$ 

• 
$$\hat{s} \le 20\% \rightarrow T_p = 1.72 dB, S_p = 3.63 dB$$

• 
$$t_r \le 1 \ s \rightarrow \omega_{c,des} = 1.9 \ rad/s$$

#### The lag network: design

- We have established two different procedure to tune the value of  $\omega_I$  of a lag network
  - 1. (more empirical) :  $\omega_I = \omega_{c,des}/(\alpha m_I)$
  - 2. (more precise) :  $\omega_I = \omega_{c,des} / \omega_{norm}$
- Procedure 1.  $\rightarrow \alpha$  defines the "distance" of the network zero  $m_I \omega_I$  wrt  $\omega_{c,des}$  .
- Procedure 2.  $\rightarrow \omega_{norm}$  quantifies the phase lag introduced at  $\omega_{c,des}$  .
- Comparing the two procedures, we can also compute  $\alpha$  in order to get a given amount of the phase lag at  $\omega_{c,des}$

$$\alpha = \frac{\omega_{norm}}{m_I}$$

Automatic Control – M. Canale

AC L16 14

### Lag network: design example 2

A plant to be controlled is described by the transfer function

$$G(s) = \frac{s + 0.2}{s(s + 0.4)(s + 1)}$$

design a cascade controller C(s) in order to satisfy the requirements below.

$$|e_r^{\infty}| \le 0.2$$
,  $r(t) = 2t\varepsilon(t) \rightarrow C_{SS}(s) = 20$ 

• 
$$\hat{s} \le 10\% \rightarrow T_p = 0.42 \text{ dB,S}_p = 2.68 \text{ dB}$$

• 
$$t_r \le 0.5 \ s, \rightarrow \omega_{c,des} = 4 \ rad/s$$