清华大学试题专用纸

考试课程: 概率论与数理统计 考试时间: 2022 年 6 月 13 日 9: 00-11: 00

		姓名	学号 <u>_20</u>	_班级 <u>.</u>
_	填空题(每空	: 3 分,共 30 分;答案	5均写在答题纸上,注意标	(清题号)
1.	设事件A,B满	$\not\in P(B) = 0.4$, $P(\overline{A} \mid B)$	$P(\bar{A} \bar{B}) = 0.7$, $P(\bar{A} \bar{B}) = 0.3$,	$P(B \mid A) = $
2.	设随机变量 X	Y的分布律为 $P(X=k)$	$=c\cdot\frac{3^k}{k!}, k=1,2,\cdots$ 。 则常	数 <i>c</i> =。
3.	设 X ~ N(1,4), $P(X < a) = \Phi(-1)$	。则 <i>a</i> =	o
4.	设 X ~ N (0,1)	, $Y = X $, $F_Y(y) \not\equiv Y$	的分布函数,则 $F_{V}(2)=$ _	o
5.	随机变量Y服	.从负二项分布 Nb(8,0.	4),则 $\min_{c \in R} E((X-c)^2) = $	o
6.	设随机变量 X	f的密度函数为 $p(x)=$	$= \frac{1}{2}e^{\frac{-1}{2}x}I_{x\geq 0}, \emptyset \ E\left(X^2 \cdot e^{\overline{3}E}\right)$	$= \underline{\qquad} \bullet$
				若使正面次数的比例在 0.45
8.	设总体 X~N	$\left(\mu,0.5^{2}\right)$, X_{1},X_{2},\cdots,X_{n}	,为样本,要使μ的置信系	系数 96%的双侧置信区间长度
	不超过 0.4,则	1样本容量 n 至少要达	到	•
9.	设总体X服从	期望为θ的指数分布,	$, X_1, X_2, \dots, X_n$ 是来自 X 的样	$\not= A, Y = \min(X_1, X_2, \dots, X_n),$
•	则利用Y得到的	的参数θ的无偏统计量	是	•
10.	. 设一批零件的	的长度服从正态分布 N	$V(\mu,\sigma^2)$, 其中 μ 与 σ^2 均差	未知,先从中随机抽取 4 个零件
	测得样本均值	直 \bar{x} = 20 cm,样本标准	差 $s=1$ cm,则 μ 的置信水	平 0.9 的置信区间。
二.	. (10 分)某厂	⁻ 有甲、乙、丙三车间	生产同一种产品,产量分	别占总产量的 60%,30%和 10%。
	•	品率分别是 2%, 5%, 6		
		产品中任取一件, 恰为		
	(2) 若发现-	一件严品为次品,该次	:品来自甲车间的概率?	

- 三. $(8 \, \mathcal{G})$ 设随机变量 $X \sim U(0,2)$, $Y = X^3$, 求随机变量 Y 的分布函数、密度函数、期望和方差。
- 四. (10分)随机变量 X_1 以等可能取值为0和1, X_2 以等可能取值为0,1,2, X_1 和 X_2 相互独立,
 - (1) $Y_1 = X_1 2X_2$, $Y_2 = X_1 + 2X_2$, $\dot{x} Y_1, Y_2$ 的联合分布;
 - (2) 计算相关系数 $\rho(Y_1,Y_2)$ 。
- 五. (10 分) 已知 $(X,Y) \sim N(0,0,2,2,0)$, 求(1) E(X|X+Y); (2) $E(X^2|X+Y=4)$ 。
- 六 (10 分) 抛掷一枚 6 面的色子,出现 1 点至 6 点的概率均为 $\frac{1}{6}$, 抛掷过程是相互独立的。直至首次连续出现 1 点 2 点停止。例如: 3, 2, 3, 5, 1, 1, 6 停止,抛掷 7 次。试求抛掷次数的期望和方差。
- 五. (12分) X_1, X_2, \cdots, X_m 是来自二项分布总体 $X \sim b(n, p)$ 的样本
 - (1) 当n已知时,用矩估计法求参数 p^2 的无偏估计量;
 - (2) 当n已知时,用极大似然估计法求参数p的估计量,并判断无偏性,说明理由;
 - (3) 当n,p均未知时,用矩估计法求参数p的估计量,并判断是否无偏,说明理由。
- 六. (10 分)设某工厂生产一种产品,其质量指标的参数服从正态分布 $N(\mu,3^2)$, $\mu \leq 10$ 为优级, X_1,X_2,\cdots,X_{36} 为来自该正态总体的样本。做假设检验 H_0 : $\mu \leq 10$ VS H_1 : $\mu > 10$ 。
 - (1) 给出显著性水平为 $\alpha = 0.05$ 的拒绝域范围,以及 $\mu = 11$ 时的错误类型和犯错概率;
 - (2) 若希望μ=11时犯错误的概率低于 0.01, 至少需要多大的样本容量。
- 备注 1. 本考卷的样本均为简单随机样本,样本均值 $\overline{X} = \frac{X_1 + \dots + X_n}{n}$,样本方差 $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} \left(X_k \overline{X} \right)^2$
- 备注 2. 指数分布 $X \sim Exp(\lambda)$, $F_X(x) = (1 e^{-\lambda x})I_{x>0}$, $E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$
- 备注 3. 参数为 p 的几何分布的方差为 $\frac{1-p}{p^2}$, 泊松分布 $X \sim P(\lambda)$ 的分布列 $P(X=k) = e^{-\lambda \lambda^k} / k!$
- 备注 4. 分布函数和分位数 (题目解答要严格按照下面给出数值进行计算)

$$\Phi(1.28) = 0.9$$
, $\Phi(1.44) = 0.925$, $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$,

$$\Phi(1) = 0.84$$
, $\Phi(1.25) = 0.89$, $\Phi(1.5) = 0.93$, $\Phi(1.75) = 0.96$, $\Phi(2) = 0.98$, $\Phi(3) = 0.999$

$$P(t(2) > 2.92) = 0.05, P(t(3) > 2.36) = 0.05, P(t(4) > 2.13) = 0.05, P(t(5) > 2.02) = 0.05$$

$$P(t(2) > 1.89) = 0.1, P(t(3) > 1.64) = 0.1, P(t(4) > 1.53) = 0.1, P(t(5) > 1.48) = 0.1$$