

HT32 系列 Flash 烧录

文件编码: AN0465S

概述

此手册描述了 HT32 系列单片机的 Flash 烧录方法,适用于 HT32 全部系列 Cortex-M0+或是 Cortex-M3 MCU。

内嵌 Flash 的 HT32 系列单片机可用几种方式烧录,即在线系统烧录 In-System Programming (ISP)、在线应用烧录 In-Application Programming (IAP) 或在线电路烧录 In-Circuit Programming (ICP)。

应用程序运行时,IAP 是一个很重要的 Flash 烧录方式。例如: 韧体升级,通过特殊的通信方式 (如 USB、USART、I²C Slave、SPI Slave等) ,使用 IAP 烧录方式,会将 Flash 主区块分为 IAP 及 AP 两个区块,由 IAP 区块来负责更新 AP 区块。IAP 区块的韧体需通过 ICP 或Writer 预先烧录到 Flash。

在更新 Flash 内存方面,ISP 和 IAP 相似,不同之处在于 ISP 是利用 Holtek 公司提供的启动加载程序 (Bootloader)来执行烧录,使用 USART 或 USB 与启动加载程序进行通讯。启动加载程序在 MCU 出厂前会预先烧录在 Flash 信息区块,用户无法变更启动加载程序的内容。

ICP 可用于下载整个 Flash 的资料。透过 Joint Test Action Group (JTAG) 和 Serial Wire Debug (SWD)接口,可以对 Flash 主区块进行烧录,ICP 的特色在于不需要 MCU Flash 空间内的韧体运作,使用整合开发环境 (IDE,例如 Keil MDK-ARM 或 IAR EWARM)搭配 ICE,对空白 MCU 的烧录动作,就称为 ICP 类型的烧录方式,另外 Holtek e-Link32 Pro 支持脱机烧录,也称为 ICP 烧录。

Flash 接口分别由 Cortex-M0+/M3 内核的总线对指令和数据进行访问。其使用一个缓冲器以减少指令及数据提取的等待时间。Flash 操作包括烧录、页擦除和整体擦除操作,也可进行非法读取及写保护。

特性

- 每个页为 1K Bytes 或 512 Bytes (实际大小请参考各型号 User Manual FMC 章节)
- 通过缓冲器及较宽的读取接口减少存取等待时间
- 具有 Flash 烧录/页擦除/整体擦除的功能
- 防止非法读取保护
- 页擦除及烧录保护

Flash 内存结构

Flash 内存包含一个主区块和一个信息区块。主区块由多个页组成,每个页的大小为 1K Bytes 或 512 Bytes。详情请参考表 1 及表 2。

Flash 内存可以 32-bit (4 Bytes) 的宽度进行烧录,主要用于指令和数据储存。Flash 内存依据 Cortex-M 系列的内存配置,映射在于 HT32 系列的特定位置,由 0x00000000 开始。

主区块烧录操作由 Flash 内存控制器 Flash Memory Controller (FMC) 控制,FMC 管理烧录和

擦除流程。

信息区块是为启动加载程序保留的,启动加载程序用作 ISP,使用 USART 或 USB 重新烧录 主区块。若特定 BOOT 脚位在上电或复位过程中被拉低,单片机会进入启动加载程序模式。 Flash 内存也可被保护以防止不合法的读/烧录/页擦除操作的发生,详情见 2.4 节。

当烧录或擦除操作正在执行时,读操作无法实现。请注意任何烧录或擦除操作执行前,内部高速 RC 振荡器 (HSI) 都必需在使能状态。

表 1 Flash 内存结构 (以 HT32F52352 为范例)

块类型	名称	地址	页保护位	大小
	Page 0	0x0000_0000 ~ 0x0000_01FF	OB_PP [0]	512 Bytes
	Page 1	0x0000_0200 ~ 0x0000_03FF	OB_PP [0]	512 Bytes
	Page 2	0x0000_0400 ~ 0x0000_05FF	OB_PP [1]	512 Bytes
	Page 3	0x0000_0600 ~ 0x0000_07FF	OB_PP [1]	512 Bytes
	:	:	:	:
主区块	;	:	:	:
	Page 252	0x0001_F800 ~ 0x0001_F9FF	OB_PP [126]	512 Bytes
	Page 253	0x0001_FA00 ~ 0x0001_FBFF	OB_PP [126]	512 Bytes
	Page 254	0x0001_FC00 ~ 0x0001_FDFF	OB_PP [127]	512 Bytes
	选项字节	实体: 0x0001_FE00 ~ 0x0001_FFFF 别名: 0x1FF0_0000 ~ 0x1FF0_01FF	OB_CP [1]	512 Bytes
信息区块	启动加载 程序	0x1F00_0000 ~ 0x1FF0_0FFF	NA	4 KB

表 2 Flash 内存结构 (以 HT32F12366 为范例)

块类型	名称	地址	页保护位	大小
	Page 0	0x0000_0000 ~ 0x0000_03FF	OB_PP [0]	1 KB
	Page 1	0x0000_0400 ~ 0x0000_07FF	OB_PP [0]	1 KB
	Page 2	0x0000_0800 ~ 0x0000_0BFF	OB_PP [1]	1 KB
	Page 3	0x0000_0C00 ~ 0x0000_0FFF	OB_PP [1]	1 KB
	:	:	:	:
主区块	:	:	;	:
	Page 252	0x0003_F000 ~ 0x0003_F3FF	OB_PP [126]	1 KB
	Page 253	0x0003_F400 ~ 0x0003_F7FF	OB_PP [126]	1 KB
	Page 254	0x0001_F800 ~ 0x0003_FBFF	OB_PP [127]	1 KB
	选项字节	实体: 0x0003_FC00 ~ 0x0003_FFFF 别名: 0x1FF0_0000 ~ 0x1FF0_03FF	OB_CP [1]	1 KB
信息区块	启动加载 程序	0x1F00_0000 ~ 0x1FF0_1FFF	NA	8 KB

AN0465S 2 / 17 November 7, 2017

HT32 系列内嵌 Flash 操作

读操作

内嵌的 Flash 内存和通用内存一样都可进行直接寻址。访问接口从 Flash 内存中读取,并且将指令/数据记忆到缓冲器中。若缓冲器控制寄存器中的使能位 PFBE 被复位,缓冲器可被关闭。默认情况下,缓冲器是开启的。

烧录/擦除操作

Flash 内存控制器 (FMC) 为 Flash 内存提供烧录和擦除的功能。

Flash 烧录

FMC 提供 32-bit 烧录功能,用于写入 Flash 内存。Flash 烧录步骤如下:

- 1. 检查 OPCR 寄存器,确定没有正在运行的 Flash 记忆体操作 (OPM[3:0]=0xE 或 0x6),否则需等到先前的操作完成才可继续进行。
- 2. 写入地址到 TADR 寄存器。
- 3. 写入数据到 WRDR 寄存器。
- 4. 写入烧录命令到 OCMR 寄存器 (CMD[3:0]=0x4)。
- 5. 通过设定 OPCR 寄存器 (设定 OPM[3:0]=0xA) 来提交烧录命令到 FMC。
- 6. 通过检查 OPCR 寄存器的值 (OPM[3:0]=0xE), 直到所有操作都已完成。
- 7. 如有需要,读取并查验 Flash 内存的值 (通过访问 Cortex-M0+/M3 内核的总线)。
- 注意: Flash 必须在擦除后才能执行烧录的动作。对已经写保护页面的写入动作将被忽略。若设置 OIER 寄存器的 OREIEN 位为 1,要求写入写保护页面时,Flash 操作错误中断将被触发。检 查 OISR 寄存器中的 PPEF 位,检测这个条件是否发生。

图 1 Flash 字节烧录操作流程图

页擦除

FMC 提供页擦除功能,用于擦除特殊的 Flash 页面的内容。每个页面均可被单独擦除。页擦除步骤如下:

- 1. 检查 OPCR 寄存器,确定没有正在运行的 Flash 记忆体操作 (OPM[3:0]=0xE 或 0x6),否则需等到先前的操作完成才可继续进行。
- 2. 写入地址到 TADR 寄存器。
- 3. 写入页擦除命令到 OCMR 寄存器 (CMD[3:0]=0x8)。
- 4. 通过设定 OPCR 寄存器 (设定 OPM[3:0]=0xA) 来提交页擦除命令到 FMC。
- 5. 通过检查 OPCR 寄存器的值 (OPM[3:0]=0xE), 直到所有操作都已完成。
- 6. 如有需要,读取并查验 Flash 内存的值 (通过访问 Cortex-M0+/M3 内核的总线)。

必须确认擦除的目标页是否正确。若目标擦除页用于代码或数据,程序执行将会错误。除此之外,对已经写保护页面的擦除动作将被忽略。若设置 OIER 寄存器的 OREIEN 位为 1,要求擦除写保护页面时,Flash 操作错误中断将被触发。检查 OISR 寄存器中的 PPEF 位,检测这个条件是否发生。

图 2 Flash 页擦除操作流程图

AN0465S 4 / 17 November 7, 2017

整体擦除

FMC 提供一个整体擦除功能,用于擦除主区块的所有页面。整体擦除步骤如下:

- 1. 检查 OPCR 寄存器,确定没有正在运行的 Flash 记忆体操作 (OPM[3:0]=0xE 或 0x6),否则 需等到先前的操作完成才可继续进行。
- 2. 写入整体擦除命令到 OCMR 寄存器 (CMD[3:0]=0xA)。
- 3. 通过设定 OPCR 寄存器 (设定 OPM[3:0]=0xA) 来提交整体擦除命令到 FMC。
- 4. 通过检查 OPCR 寄存器的值 (OPM[3:0]=0xE), 直到所有操作都已完成。
- 5. 如有需要,读取并查验 Flash 内存的值 (通过访问 Cortex-M0+/M3 内核的总线)。

当执行完成整体擦除操作时,主区块将被擦除为 0xFFFF_FFFF。整体擦除命令用于 SRAM 中运行的程序或调试工具。

图 3 Flash 整体擦除操作流程图

AN0465S 5 / 17 November 7, 2017

选项字节块

选项字节块可作为独立的 Flash 内存,起始地址为 $0x1FF0_0000$ 。选项字节由 6 个字组成,用于 Flash 非法读取/写保护。

系统复位后,会加载选项字节内容到 FMC 寄存器中。若选项字节校验和结果不正确,OISR 寄存器中的校验和结果错误位 (OBEF) 将被设置为 1,且所有非法读取及写保护的保护将被开启。

表 4 选项字节结构

选项字节	偏移量	描述	复位值
选项字节起始			
OB_PP	0x000 0x004 0x008 0x00C	OB_PP [n]: Flash 内存页擦除/烧录保护位 (n = 0 ~ 30,即 page 0 ~ page 30) 0: 使能 1: 除能 OB_PP [127:31]: 保留位	0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF
OB_CP	0x010	OB_CP [0]: Flash 安全保护位 0: 使能 1: 除能 OB_CP [1]: 选项字节保护位 0: 使能 1: 除能 OB_CP [31:2]: 保留位	0xFFFF_FFFF
OB_CK	0x020	OB_CK [31:0]: Flash 选项字节校验和位 当 OB_PP 或 OB_CP 寄存器的内容不为 0xFFFF_FFFF 时,OB_CK 应设定为 5 个字符选项字节内容之和,其 偏移地址范围为 0x000 ~ 0x010 (0x000 + 0x004 + 0x008 + 0x00C + 0x010)。	0xFFFF_FFFF

AN0465S 6 / 17 November 7, 2017

Flash 保护

Flash 内存的主区块可受保护以避免不被信任的代码非法访问。主区块的页面也可独立受到保护,以避免非预期的写操作。

• 安全保护

此功能可有效避免非法用户的访问。可通过设定选项字节 OB_CP[0]位,使安全保护有效。一旦安全保护使能,Page 0 和选项字节块将自动写保护。在进入调试模式后,Flash 总线访问、烧录和页擦除操作无法执行。执行整体擦除操作以解除安全保护。

- 使能安全保护的步骤如下:
 - 1. 设定 OB CP [0]为 0。
 - 2. 设定 OB_CK 为 5 个字选项字节的和,选项字节的地址为 0x0~0x13。
 - 3. 生成系统复位, 使新的 OB CP 设定有效。
- 除能安全保护的步骤如下:
 - 1. 执行整体擦除, 此步骤时安全保护功能仍然使能。
 - 2. 产生 POR 复位 (上电复位), 使新的 OB CP 设定有效。

• 写保护

通过设定 OB_PP,主区块的每个页可单独使能写保护。如果保护页面执行页擦除或烧录操作,将置位 OISR 寄存器中的 PPEF 位。若 OIER 寄存器中的 OREIEN 位被设置,Flash操作错误中断将由 FMC 触发。

若选项字节块执行了页擦除操作,所有写保护将除能。通过设定 OB_CP [1]为 0,可使选项字节区的写保护有效。若选项字节块已受保护,除能写保护的唯一方式就是执行整体擦除操作。

- 使能写保护的步骤如下:
 - 1. 设定 OB_PP [m:n]为 0,使能相应页面的保护功能。 如果需要,设定 OB_CP [1]为 0,使能选项字节块的保护功能。
 - 2. 设定 OB CK 为 5 个字的选项字节之和,字节选项地址为 0x0~0x13。
 - 3. 生成系统复位,使新的 OB_PP/OB_CP 设定有效。
- 除能主区块页的写保护步骤如下:
 - 1. 擦除选项字节块 (选项字节块没有开启写保护的情况下)。
 - 2. 生成系统复位,使新的 OB_PP 设定有效。
- 除能选项字节块的写保护步骤如下:
 - 1. 执行整体擦除。
 - 2. 生成系统复位, 使新的 OB_CP 设定有效。

AN0465S 7 / 17 November 7, 2017

寄存器描述

FMC 寄存器和复位值如下表所示。

表 5 FMC 寄存器

寄存器	偏移量	描述	复位值							
FMC 起始 ¹	FMC 起始地址 = 0x4008_0000									
TADR	0x000	Flash 目标地址寄存器	0x0000_0000							
WRDR	0x004	Flash 烧录数据寄存器	0x0000_0000							
OCMR	0x00C	Flash 操作命令寄存器	0x0000_0000							
OPCR	0x010	Flash 操作控制寄存器	0x0000_000C							
OIER	0x014	Flash 操作中断使能寄存器	0x0000_0000							
OISR	0x018	Flash 操作中断状态寄存器	0x0001_0000							
	0x020		0xXXXX_XXXX							
PPSR	0x024	 Flash 页擦除/烧录保护状态寄存器	0xXXXX_XXXX							
PPSR	0x028	Flash 贝尔怀/阮水休/F/八芯可仔的	0xXXXX_XXXX							
	0x02C		0xXXXX_XXXX							
CPSR	0x030	Flash 安全保护状态寄存器	0xXXXX_XXXX							
VMCR	0x100	Flash 向量映射控制寄存器	0x0000_000X							

[&]quot;X"代表各种复位值,依据单片机的型号而定,包括Flash值、选项字节值或上电复位设定。

AN0465S 8 / 17 November 7, 2017

Flash 目标地址寄存器 - TADR

此寄存器用于指定页擦除和字节烧录操作的目标地址。

偏移量: 复位值:	0x000 0x0000_0	0000						
	31	30	29	28	27	26	25	24
					TADB			
类型/复位	RW 0	RW0	RW0	RW0	RW0	RW0	RW0	RW0
	23	22	21	20	19	18	17	16
					TADB			
类型/复位	RW 0	RW0	RW0	RW0	RW0	RW0	RW0	RW0
	15	14	13	12	11	10	9	8
					TADB			
类型/复位	RW 0	RW0	RW0	RW0	RW0	RW0	RW0	RW0
	7	6	5	4	3	2	1	0
					TADB			
类型/复位	RW0	RW0	RW0	RW0	RW0	RW0	RW0	RW0

位 字段 描述

[31:0] TADB Flash 目标地址位

在烧录操作时,TADR 寄存器指定写入数据的地址。由于烧录长度为32位,TADR 应设定为字对齐 (4 字节)。烧录操作过程中将忽略 TADB [1:0]。

在页擦除操作时,TADR 寄存器中包含的页地址将被擦除。由于页大小为 1 KB 或 5 12 Bytes,TADB 部分内容将被忽略,以限制目标地址为 1 K/5 12 字节对齐。

此区用于指定 Flash 内存的地址,范围须在 0x0000_0000 ~ 0x1FFF_FFFF 内。否则,若相应中断使能位置位,将产生无效的目标地址中断。

AN0465S 9 / 17 November 7, 2017

Flash 写数据寄存器 - WRDR

此寄存器用于记忆烧录操作写入TADR寄存器中的数据。

偏移量: 复位值:	0x004 0x0000_0	0000						
	31	30	29	28	27	26	25	24
					WRDB			
类型/复位	RW 0 23	RW 0 22	RW 0 21	RW 0 20	RW 0 19	RW 0 18	RW 0 17	RW 0 16
					WRDB			
类型/复位	RW0							
	15	14	13	12	11	10	9	8
					WRDB			
类型/复位	RW0							
	7	6	5	4	3	2	1	0
					WRDB			
类型/复位	RW 0	RW0	RW 0	RW 0	RW 0	RW 0	RW0	RW 0

描述

[31:0] WRDB Flash 写数据位 烧录操作的数据值。

字段

位

Flash 操作命令寄存器 - OCMR

此寄存器用于字烧录、页擦除和整体擦除的Flash操作命令。

偏移量: 复位值:	0x00C 0x0000_0	0000						
	31	30	29	28	27	26	25	24
					保留位			
类型/复位								
	23	22	21	20	19	18	17	16
					保留位			
类型/复位								
	15	14	13	12	11	10	9	8
					保留位			
类型/复位								
	7	6	5	4	3	2	1	0
			保留位				CMD	
类型/复位					RW0	RW0	RW0	RW0

位 字段 描述

[3:0] CMD Flash 操作命令

下表显示决定 Flash 操作命令位 CMD[3:0] 的定义。若无效的命令被设定且 IOCMIEN 位为 1,将产生一个无效操作命令中断。

CMD [3:0]	描述
0x0	空闲 - 默认
0x4	字烧录
0x8	页擦除
0xA	整体擦除
其他	保留

Flash 操作控制寄存器 - OPCR

此寄存器用于控制命令操作和检查FMC操作的状态。

偏移量: 复位值:	0x010 0x0000_	000C						
	31	30	29	28	27	26	25	24
					保留位			
类型/复位								
	23	22	21	20	19	18	17	16
					保留位			
类型/复位								
	15	14	13	12	11	10	9	8
					保留位			
类型/复位								
	7	6	5	4	3	2	1	0
		保留位				OPM		保留位
类型/复位				RW0	RW1	RW 1	RW0	

位 字段 描述

[4:1] OPM 操作模式

FMC 的操作模式如下表所示。根据 TADR 寄存器设定的地址,用户可提交 OCMR 寄存器设定的命令。设定该寄存器前,需准备好 TADR、WRDR和 OCMR 寄存器的内容。所有操作已完成后,OPM 字段将由 FMC 硬件配置为 0xE 或 0xF。所有操作完成后,可设定为空闲模式以节省功耗。注意,FMC 的下个操作执行前,应检查操作的状态。前一个操作完成前,TADR、WRDR、OCMR和 OPCR寄存器的内容应保持不变。

OPM [3:0]	描述
0x6	空闲 - 默认
0xA	提交命令到主 Flash
0xE	所有的操作在主 Flash 上完成
其他	保留

AN0465S 11 / 17 November 7, 2017

Flash 操作中断使能寄存器 - OIER

该寄存器用于使能或除能 FMC 中断功能。当相应的中断使能位置位时,FMC 产生中断。

偏移量: 复位值:	0x01 0x00	4 00_0000						
	31	30	29	28	27	26	25	24
					保留位			
类型/复位								
	23	22	21	20	19	18	17	16
					保留位			
类型/复位								
	15	14	13	12	11	10	9	8
					保留位			
类型/复位								
	7	6	5	4	3	2	1	0
		保留位		OREIEN	IOCMIEN	OBEIEN	ITADIEN	ORFIEN
类型/复位				RW0	RW0	RW 0	RW0	RW 0
位	字	段			‡	苗述		

位	字段	描述
[4]	OREIEN	操作错误中断使能位
		0: 除能
		1: 使能
[3]	IOCMIEN	无效操作命令中断使能位
		0: 除能
		1: 使能
[2]	OBEIEN	选项字节校验和错误中断使能位
		0: 除能
		1: 使能
[1]	ITADIEN	无效目标地址中断使能位
		0: 除能
		1: 使能
[0]	ORFIEN	操作完成中断使能位
		0: 除能
		1: 使能

AN0465S 12 / 17 November 7, 2017

Flash 操作中断和状态寄存器 - OISR

0x018

偏移量:

如果一个 Flash 操作完成,该寄存器指示 FMC 中断状态的报告,否则就会发生错误。当 OIER 寄存器中的相应中断使能位置位时,状态位有效。

畑炒 复位		0x018 0x0001_	_0000							
	_	31	30	29	28	27	26	25	24	
						保留位				
类型	/复位									
	_	23	22	21	20	19	18	17	16	
	L				保留位			PPEF	RORFF	
类型	/复位							RO0	RO1	
		15	14	13	12	11	10	9	8	
						保留位				
类型	类型/复位									
	_	7	6	5	4	3	2	1	0	
			保留位		OREF	IOCMF	OBEF	ITADF	ORFF	
类型	类型/复位				WC0	WC0	WC0	WC0	WC0	
<i>(2</i>)	라 KH					T# / P				
位	字段	درا 🚣		TH. 1.3. AH. 10	I= 1. ()	描述				
[17]	PPEF		聚除/烧录位							
			0: 页擦除/烧录保护错误未发生							
			1:由于一个无效的页擦除/烧录操作被应用到受保护的页面,操作错误							
[16]	RORFE		发生一旦新 Flash 操作命令被提交,此位由硬件复位。							
[10]	[10] KOKF		原操作完成标志位 0:最近的 Flash 操作命令还未完成							
			最近的 Fla			L)+X				
						,用于调证	t.			
[4]	OREF		错误标志		1 10011 3 3	> > 114 1 4/14 16	•			
r · 1			无 Flash 搏		发生					
		- 1	OF ASTRONOMINATIONS							

- 1: 最近的 Flash 操作错误
- 当任何 Flash 操作错误 (如无效命令、烧录错误和擦除错误) 发生时,该位被置位。

若 OIER 寄存器中的 OREIEN 位被置位,ORE 中断发生。写入 1 复位此位。

- [3] IOCMF 无效操作命令标志位
 - 0: 无效 Flash 操作命令已被设定
 - 1: 无效 Flash 操作命令已被写入 OCMR 寄存器

若 OIER 寄存器中的 IOCMIEN 位被置位,IOCM 中断发生。写入 1 复位此位。

- [2] OBEF 选项字节校验和错误标志位
 - 0: 选项字节校验和正确
 - 1: 选项字节校验和错误

若 OIER 寄存器中的 OBEIEN 位被置位,OBE 中断发生。写入1复位此位。

- [1] ITADF 无效目标地址标志位
 - 0: 目标地址 TADR 有效
 - 1: 目标地址 TADR 无效

TADR 字段的数据范围为 0x0000_0000 ~ 0x1FFF_FFFF。若 OIER 寄存器中的 ITADIEN 位置位,ITAD 中断发生。写入 1 复位此位。

- [0] ORFF Flash 操作完成标志位
 - 0: Flash 操作未完成
 - 1: 最近的 Flash 命令操作已完成

若 OIER 寄存器中的 ORFIEN 位置位, ORF 中断发生。写入1复位此位。

Flash 页擦除/烧录保护状态寄存器 - PPSR

该寄存器指示 Flash 内存的页保护状态。

偏移量: 复位值:	0x020(0) 0xXXXX	~ 0x02C(3 X_XXXX)					
	31	30	29	28	27	26	25	24
					PPSBn			
类型/复位	ROX 23	ROX 22	ROX 21	ROX 20	ROX 19	ROX 18	ROX 17	ROX 16
					PPSBn			
类型/复位	ROX 15	ROX 14	ROX 13	ROX 12	ROX 11	ROX 10	ROX 9	ROX 8
					PPSBn			
类型/复位	ROX 7	ROX 6	ROX 5	ROX 4	ROX 3	ROX 2	ROX 1	ROX 0
	_	•			PPSBn	•	•	
类型/复位	ROX	ROX	ROX	ROX	ROX	ROX	ROX	ROX

位 字段

描述

[127:0] PPSBn Page n 擦除/烧录保护状态位 (n = 0 ~ 127)

 $PPSB[n] = OB_PP[n]$

0: 相应 Page n 受保护

1: 相应 Page n 未受保护

该寄存器的内容不是动态更新的,只能通过选项字节加载器重载。任何一种复位发生时,该加载器将被启动。当 PPSR 寄存器中的相应位复位时,特殊页不能执行擦除或烧录操作。PPSR [127:0] 的复位值由选项字节 OB_PP [127:0] 决定。HT32 系列不同单片机的主 Flash 内存的总页数是不同的。因此,仅 OB_PP [n:0]和 PPSR [n:0] 是有效的 (n=5)片 Flash 页数 (n=5) - 1)。 OB_PP 和 PPSR 寄存器的其他位是保留位。

Flash 安全保护状态寄存器 - CPSR

该寄存器指示 Flash 内存的安全保护状态。该寄存器的内容不是动态更新的,只能通过选项字节加载器重载。任何一种复位发生时,该加载器将被启动。

偏移量: 复位值:	0x030 0xXXXX	X_XXXX	ζ					
	31	30	29	28	27	26	25	24
					保留位			
类型/复位								
	23	22	21	20	19	18	17	16
					保留位			
类型/复位								
	15	14	13	12	11	10	9	8
					保留位			
类型/复位								
	7	6	5	4	3	2	1	0
				保留位			OBPSB	CPSB
类型/复位							ROX	ROX
位.	字段				描述			

位	字段	描述
[1]	OBPSB	选项字节页擦除/烧录保护状态位
		0: 选项字节受保护
		1: 选项字节未受保护
		OBPSB 位的复位值由选项字节的 OB_CP [1] 位决定。
[0]	CPSB	Flash 内存安全保护状态位
		0: Flash 内存安全保护使能
		1: Flash 内存安全保护除能
		CPSB 位的复位值由选项字节的 OB_CP [0] 位决定。

AN0465S 15 / 17 November 7, 2017

Flash 向量映射控制寄存器 - VMCR

该寄存器用来控制向量映射。VMCR 寄存器的复位值由上电复位期间外部启动引脚 BOOT0 和 BOOT1 的状态决定。

偏移量: 复位值:	0x100 0x0000_	000X						
	31	30	29	28	27	26	25	24
					保留位			
类型/复位								
	23	22	21	20	19	18	17	16
					保留位			
类型/复位								
	15	14	13	12	11	10	9	8
					保留位			
类型/复位								
	7	6	5	4	3	2	1	0
				保留位			VM	ICB
类型/复位							RWX	RWX

位 字段 描述

[1:0] VMCB 向量映射控制位

该 VMCB 位用于控制向量地址为 0x0~0xC 的前 4 个字的映射源。下表显示了向量映射设定。

BOOT1	BOOT0	VMCB [1:0]	描述
Low	Low	00	启动加载器模式 向量映射源为启动加载器区
Low	High	01	SRAM 启动模式 向量映射源为 SBVT0~SBVT3
High	Low	10	主 Flash 模式
High	High	11	向量映射源为主 Flash 内存区

VMCR 寄存器的复位值由上电复位和系统复位期间外部启动引脚BOOT0 和BOOT1 的状态决定。然而,当应用程序执行时,尤其是在 CPU 从启动加载器或 SRAM 区启动时,利用配置 VMCB 位去正确访问 Flash 内存中的 4-Word 向量的方式可暂时改变向量映射的设定。

请留意 HT32 Cortex-M0+系列只有 BOOT1 功能,不具备 SRAM 映射模式。

版本及修改信息

Date 日期	Author 作者	Issue 发行、修订说明
2017.10.25	吴旭宏	第一版

AN0465S 16 / 17 November 7, 2017

免责声明

本网页所载的所有数据、商标、图片、链接及其他数据等(以下简称「数据」),只供参考之用,盛群半导体股份有限公司(以下简称「本公司」)将会随时更改数据,并由本公司决定而不作另行通知。虽然本公司已尽力确保本网页的数据准确性,但本公司并不保证该等数据均为准确无误。本公司不会对任何错误或遗漏承担责任。

本公司不会对任何人士使用本网页而引致任何损害(包括但不限于计算机病毒、系统固障、数据损失)承担任何赔偿。本网页可能会连结至其他机构所提供的网页,但这些网页并不是由本公司所控制。本公司不对这些网页所显示的内容作出任何保证或承担任何责任。

责任限制

在任何情况下,本公司并不须就任何人由于直接或间接进入或使用本网站,并就此内容上或任何产品、信息或服务,而招致的任何损失或损害负任何责任。

管辖法律

本免责声明受中华民国法律约束,并接受中华民国法院的管辖。

免责声明更新

本公司保留随时更新本免责声明的权利,任何更改于本网站发布时,立即生效。

AN0465S 17 / 17 November 7, 2017