

UNIX Stadardization and Implementations

System Programming

2019 여름 계절학기

한양대학교 공과대학 컴퓨터소프트웨어학부 홍석준

I. Introduction

- ☐ Proliferation of versions and differences leading to various standardization efforts
- **□** Standardization
 - ISO C
 - IEEE POSIX
 - The Single UNIX Specification
 - FIPS
- **□** Unix Implementations
 - System V Release 4
 - 4.4BSD
 - FreeBSD
 - Linux
 - Mac OS X
 - Solaris

I. ISO C

- ANSI: American National Standards Institute
- ISO/IEC 9899:1990
 - International Organization for Standardization (ISO)
- □ Portability of conforming C programs to a wide variety of operating systems, not just the Unix system
- ☐ The syntax and semantics of the programming language and a standard library
- ☐ ISO/IEC 9899:1999

I. ISO C Standard

<assert.h></assert.h>	verify program assertion
<complex.h></complex.h>	complex arithmetic support
<ctype.h></ctype.h>	character types
<errno.h></errno.h>	error codes
<fenv.h></fenv.h>	floating-point environment
<float.h></float.h>	floating-point constants
<inttypes.h></inttypes.h>	integer type format conversion
<iso646.h></iso646.h>	alternate relational operator macros
	implementation constants
<locale.h></locale.h>	locale categories
<math.h></math.h>	mathematical constants
<setjmp.h></setjmp.h>	nonlocal goto
<signal.h></signal.h>	signals
<stdarg.h></stdarg.h>	variable argument lists
<stdbool.h></stdbool.h>	boolean type and values
<stddef.h></stddef.h>	standard definitions
<stdint.h></stdint.h>	integer types
<stdio.h></stdio.h>	standard I/O library
<stdlib.h></stdlib.h>	utility functions
<string.h></string.h>	string operations
<tgmath.h></tgmath.h>	type-generic math macros
<time.h></time.h>	time and date
<wchar.h></wchar.h>	extended multibyte and wide character support
<wctype.h></wctype.h>	wide character classification and mapping support

I. IEEE POSIX

- ☐ POSIX (Portable Operating System Interface)
- ☐ "POSIX compliant" not restricted to Unix and Unix-like systems
- ☐ No distinction bet'n sys calls and lib functions
- ☐ POSIX.1
 - Originally IEEE Std 1003.1-1988
 - Revision published as IEEE Std 1003.1 − 1990 and ISO/IEC 9945-1:1990
 → POSIX.1
- \Box IEEE Std 1003.1 2001
 - Several 1003.1 amendments
 - 1003.2 standard
 - Portions of the Single UNIX Specification (SUS)
 - ISO/IEC 9899:1999, Programming Languages C
- ☐ Required & optional headers in Figure 2.2, 2.3, and 2.4

I. POSIX.1

<dirent.h></dirent.h>	directory entries
<fcntl.h></fcntl.h>	file control
<fnmatch.h></fnmatch.h>	filename-matching types
<glob.h></glob.h>	pathname pattern-matching types
<grp.h></grp.h>	group file
<netdb.h></netdb.h>	network database operations
<pwd.h></pwd.h>	password file
<regex.h></regex.h>	regular expressions
<tar.h></tar.h>	tar archive values
<termios.h></termios.h>	terminal I/O
<unistd.h></unistd.h>	symbolic constants
<utime.h></utime.h>	file times
<wordexp.h></wordexp.h>	word-expansion types
<arpa inet.h=""></arpa>	Internet definitions
<net if.h=""></net>	socket local interfaces
<netinet in.h=""></netinet>	Internet address family
<netinet tcp.h=""></netinet>	Transmission Control Protocol definitions
<sys mman.h=""></sys>	memory management declarations
<sys select.h=""></sys>	select function
<sys socket.h=""></sys>	sockets interface
<sys stat.h=""></sys>	file status
<sys times.h=""></sys>	process time
<sys types.h=""></sys>	primitive system data types
<sys un.h=""></sys>	UNIX domain socket definitions
<sys utsname.h=""></sys>	system name
<sys wait.h=""></sys>	process control

I. The Single UNIX Specification

☐ X/Open System Interface (XSI)

- A superset of the POSIX.1 standard
- Only XSI-conforming implementations can be called UNIX systems.
- SUSv1 (a.k.a. Spec 1170) in 1994
- SUSv2 in 1997 added support for threads, real-time interfaces, 64-bit processing, large files, and enhanced multibyte character processing.
- SUSv3 in 2001
 - Base Specifications (the same as the IEEE Std 1003.1-2001)
 - Base Definitions, System Interfaces, Shell and Utilities, and Rationale
 - X/Open Curses Issue 4, Version 2
- SUSv3 2004 Edition

I. Unix Family Tree

 http://www.isk.kth.se /kursinfo/6b2019/for /f1/unixhistory.gif

- I. System V Release 4
- ☐ 1989 by AT&T's Unix System Laboratories
- ☐ A merging of SVR3.2, SunOS, 4.3BSD, and Xenix
- ☐ POSIX 1003.1 and X/OPEN XPG3 compliant
- **☐** SVID (System V Interface Definition)
 - Issue 3 defines functionality to qualify as SVR4

I. 4.4BSD

- **☐** Berkeley Software Distribution
- 4.2BSD in 1983, 4.3BSD in 1986, 4.3BSD Tahoe in 1988, 4.3Reno in 1990, and 4.4BSD in 1992
- ☐ BSD Networking Software Release 1.0 in 1989 (from BSD Tahoe) and Release 2.0 in 1991 (from BSD Reno)
- **☐** 4.4BSD-Lite Release 1 in 1994
- **□** 4.4BSD-Lite Release 2 in 1995

I. Other Implementations

☐ FreeBSD based on 4.4BSD-Lite

☐ Linux in 1991 as a grass-root effort

☐ Mac OS X

The core OS is called *Darwin*, which is a FreeBSD/Mach hybrid.

☐ Solaris based on SVR4

☐ AIX (IBM), HP-UX (HP), IRIX (Silicon Graphics), etc.

I. Limits

- ☐ To aid the portability of software
- Compile-time options and limits (headers)
 - Does the system support job control?
 - What's the largest value of a short integer?
- ☐ Run-time limits not associated with a file or directory (sysconf function)
- □ Run-time limits associated with a file or directory (pathconf and fpathconf function)
 - How many characters in a filename?

I. < limits.h>

```
☐ ISO C Limits (Figure 2.6)
  LONG_MAX
                        max value of long
                                                 2,147,483,647
  LONG MIN
                        min value of long
                                            -2,147,483,647
                        max value of unsigned long 4,294,967,295
  ULONG MAX
□ POSIX limits (Figure 2.8)

    – POSIX_OPEN_MAX number of open files per process

                                                         20
                      number of bytes in a pathname

    POSIX PATH MAX

                                                         256
☐ XSI limits (Figure 2.9)

    NL_ARGMAX max value of digit in calls to printf/scanf

                                                         9
    NL_LANGMAX max no. of bytes in LANG environ variable
                                                         14
```


I. Run-time Limits

```
#include <unistd.h>
long sysconf(int name);
long pathconf(const char *pathname, int name);
long fpathconf(int filedes, int name);
☐ The name argument (Figure 2.10 & 2.11)
  – _SC_ARG_MAX
                       max length of arguments to exec ()
  – _SC_CHILD_MAX
                       max no. of processes per real user ID
                       no. of clock ticks per second
  - _SC_CLK_TCK
  – _SC_OPEN_MAX
                       max no. of open files per process
  – _PC_NAME_MAX
                       max no. of bytes in a filename
  – _PC_PATH_MAX
                       max no. of bytes in a relative pathname
```

I. Feature Test Macros

- Feature test macros no any implementation-defined limits
- ☐ _POSIX_C_SOURCE and _XOPEN_SOURCE
 - cc –D_POSIX_C_SOURCE=200112 file.c
 - #define POSIX_C_SOURCE 200112

```
☐ _STDC_ - automatically defined by an ISO C compiler
```

```
#ifdef __STDC__
void *myfunc(const char *, int);
#else
void *myfunc();
#endif
```


I. Primitive System Data Type

□ <sys/types.h> defines some implementation-dependent data types.

```
– caddr_t core address
```

- clock_t counter of clock ticks
- comp_t compressed clock ticks
- dev_t device numbers (major and minor)
- fd_set file descriptors sets
- fpos_tfile position
- gid_t numeric group IDs
- ino ti-node numbers

— ...

☐ Major and minor device numbers

- Historically, 8 bits for both major and minor device no
- Solaris: 14 bits for the major and 18 bits for the minor

Thank you for your attention!!

Q and A