Forma standard (prob 1)

min c^Tx , Ax = b, $x \ge 0$, $x, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$, rang $A = m \le n$ functia obiectiv f : $\mathcal{P} \subseteq \mathbb{R}^k \rightarrow \mathbb{R}$ $f(x_1..x_k) = c^Tx$

Transformarea in forma standard

 $x_1...x_i \le ceva$ -> $x_1...x_i + x_{nou} = ceva$ $x_1...x \ge ceva$ -> $x_1...x_i - x_{nou} = ceva$

Schimbari de var:

$$x_i \le 0 -> x_{nou} = -x_i
 x_i \in R -> x_i = x_{nou1} - x_{nou2}$$

x_{nou} - urile se adauga in fct obiectiv cu coeficient 0

x care verifica restrictiile (Ax=b) sn solutie admisibila

$\sum x_i \lambda_i$ se num:

- -combinatie liniara: λ^Tx
- -combinatie afina: $\Sigma \lambda_i = 1$
- -combinatie convexa: $\lambda_i \in [0, 1]$ dreapta = mt combinatiilor afine segment = mt combinatiilor convexe

M convexa daca $\forall x_1, x_2 \in M$, $\lambda x_1 +$

 $(1-\lambda)x_2 \in M, \lambda \in [0, 1]$

M afina daca $\forall x_1, x_2 \in M$, $\lambda x_1 + (1-\lambda)x_2 \in$ $M, \lambda \in R$

Multimea sol sist Ax=b este mt afina Poliedrul sol admisibile este mt convexa

 $x \in C$ este **punct extremal** al multimii convexe C daca $\nexists x_1, x_2 \in C$, $x_1 \neq x_2$ a.i. $x|_{daca}$ are o directie extremala. sa fie in interiorul segm $[x_1, x_2]$

 $x^* \in \mathcal{P}$ se numeste **varf** al poliedrului \mathcal{P} daca $\exists c \in \mathbb{R}^n$ astfel incat $c^Tx^* < c^Tx$ $\forall x \in \mathcal{P}$

Vect. $x_1...x_p$ sn liniar independenti $\neq \sum x_i \lambda_i$ $= 0 \Rightarrow \lambda_i = 0, \forall i = 1..p$

Vect. $x_1...x_n$ sn liniar independenti \rightleftharpoons det. Matricei formate de acesti vectori ≠ 0

Caracterizarea solutiei extremale ale poliedrului sol admisibile

x este pct extremal al lui P = coloanele lui A corespunzatoare componentelor pozitive ale lui x sunt liniar independente x pct extremal ≠ x solutie de baza $\{v^i : i \in I\}$ mt pct extremale ale \mathcal{P} , atunci $\forall x \in \mathcal{P}$: $x = \lambda_i v_i + \alpha d$, $\lambda_i \ge 0$, $\Sigma \lambda_i = 1$, d = 10 sau d directie extremala Cazul rangA = $m \le n$: Corolar1: $x \in \mathcal{P}$ este p. extremal al lui \mathcal{P} ⇔ este sol. adm de baza prob(1)

Corolar2: \mathcal{P} are cel mult comb(n,m) pct. extremale.

Teorema fundamentala a optimizarii liniare: prob (1) de optimizare liniara fie are optim ∞ fie exista sol optima printre punctele extremale ale poliedrului \mathcal{P} , sunt $C^Tx^* < C^Tx$ sol admisibile de baza pt prob (1)

Teorema: Conditia de optim

Fie B baza primal admisibila. Daca $\forall j \in \underline{\mathcal{R}} r_i \ge 0 \ (r_i = c_i - c_B^T B^{-1} A^j), \text{ adica } \mathbf{c_R}^T - r \text{ din B cu vectorul A, atunci:}$ $c_B^T B^{-1} R \ge 0$, atunci sol de baza $x_B =$ (B⁻¹b, 0) este **solutie optima**.

admite solutii optime multiple. (pentru o baza B primal admisibila).

 ${\cal P}$ este multimea (poliedrul) sol admisibile $\Big|_{\mbox{Se numeste}}$ semispatiu in ${\sf R}^{\sf n}$ multimea de puncte $\{x \in \mathbb{R}^n \mid a^T x \le b\}$ b constanta

> Hiperplanul este o intersectie de 2 semi spatii complementare. Dimensiunea unui liesire din baza: hiperplan este cu 1 mai mica decat dimensiunea spatiului initial.

Intersectia finita a unor semispatii inchise se numeste poliedru.

Un poliedru care este multime nevida si marginita se numeste politop.

d se numeste directie extremala (de recesiune) pentru \mathcal{P} daca $\forall x_0 \in \mathcal{P}, x_0 +$ $\lambda d \in \mathcal{P}$, $\lambda \ge 0$. Un politop este nemarginit

x_B este **solutie de baza** corespunzatoare bazei B daca $x_B = (B^{-1}b, 0)$. Daca $x_R \ge 0$, adica $B^{-1}b \ge 0$, x_B sn solutie admisibila de baza corespunzatoare bazei B care la randul ei sn baza primal admisibila.

Pt Ax = b: fie m = rang(A)

x solutie de baza nedegenerata daca nr de componente nenule = m

x solutie de baza degenerata daca nr de componente nenule < m, adica pt pr de optimizare: inf c^Tx , Ax = b, $x \ge 0$, x = $(x_B, 0) = (B^{-1}b, 0) \ge 0$. Daca $B^{-1}b$ are comp nule, x sn solutie degenerata.

Teorema (optim infinit):

Fie B o baza primal admisibila. Daca $\exists j \in \mathcal{R}$ a.i. $r_i < 0$ si $d^j \ge 0$ atunci pb1 are optim infinit (unde $d^j = (-B^{-1} A^j, e_i)$ si e; = matrice coloana cu 0 pe toate poz si 1 pe poz j)

Teorema (schimbarea bazei):

Fie B baza primal admisibila si x sol coresp bazei B. Presupunem ca ∃j∈R a.i. $r_i < 0$ si $d^j \ge 0$. Fie $\alpha = \min_{k \in \mathcal{R}} \{ -x_k / d_k^j |$ $d_k^j < 0$ = - x_i / d_i^j }. Atunci $x^* = x + \alpha d_i^j$ este sol admisibila de baza pt prob (1) si

Lema substitutiei: Fie B o matrice inversabila de dimensiune n si B' matricea obtinuta prin inlocuirea coloanei

- 1. B' inversabila $\leftrightarrow y_r \neq 0$
- 2. $B^{-1} = Er(@) B^{-1}$

Unde: $Y = B^{-1}A$ si Er(@) este matricea Daca \exists un r_i = 0 cu $j \in \mathcal{R}$ atunci problema unitate de ordin m cu coloana r inlocuita cu: @ = $(-y_1/y_r, ..., -Y_{r-1}/y_r, 1/y_r, -Y_{r+1}/y_r,...$ $-y_m/y_r$

Regula de evitare a ciclarii (Bland) intrare in baza:

- 1. aleg $j \in \mathcal{R}$: $r_i = \min\{r_k, r_k < 0\}$
- 2. Bland: $j \in \mathcal{R}$, $j = \min\{k \in \mathcal{R}, r_k < 0\}$
 - 1. $i \in \mathbf{S}$ a.i $(-x_i)/d_i^j = \min\{(-x_k)/d_k^j,$ $d_{\nu}^{j} < 0$
- 2. Bland: se ia indiciele k minim pt care $\alpha = (-x_k)/d_k^j$

 $x_1, x_2 \in \mathcal{P}$ solutii de baza adiacente daca bazele lor primal admisibile au in comun m-1 coloane

Formularea dualei

Notam $w^T = c_B^T B^{-1}$ min c^Tx , Ax=b, $x \ge 0 \leftrightarrow$ max b^Tw , $A^Tw \le c$

min c^Tx , $Ax \ge b$, $x \ge 0 \leftrightarrow$ max b^Tw , $A^Tw \le c$, $w \ge 0$

Reguli de formare a pb duale:

pr de min -> pr de max (si invers) term. liberi b -> coef. fct. obiectiv b coef fct. obiectiv c -> term liberi c $A \rightarrow A^T$

ineg. concordante -> var. nenegative var. nenegative -> ineg. concordante var. libere -> egalitati (si invers)

Teorema slaba de dualitate

Fie x⁰ solutie admisibila a problemei simple si w⁰ solutie admisibila a problemei duale => $c^Tx^0 \ge b^Tw^0$ Corolar1: daca ajung sa fie egale - sol optime

Corolar2: daca una din pr are f obiectiv nemarginita, atunci cealalta pr nu are sol admisibila.

Teorema tare de dualitate

- 1. Daca una dintre probleme are solutie optima finita, atunci si cealalta are sol optim finita si functiile obiectiv au valori optime egale.
- 2. Daca una dintre probleme are optim infinit, atunci cealalta problema nu are solutie admisibila.

Determinarea unei baze dual admisibile

(1) inf c^Tx, Ax=b, x≥0, rangA=m≤n Fie B o baza care nu e dual admisibila. Luam ecuatia: $\Sigma x_i \leq M$ ($j \in \mathcal{R}$), adaug o var x_0 + Σx_i = M. Avem:

(2) inf $c_1^T x$, $A_1 x = b$, $x_0, x_1...x_n \ge 0$, $x_0 + x_{i1} + x_{i2} + ... + x_{in*m} = M \text{ unde } c_1 = (0 \text{ c})^T,$

 $A_1 = (1 \ 0 \ e^T, \ 0 \ 3 \ R).$

Luam $B_1 = (1 \ 0, 0 \ B)$. Este B_1 dual admisibila?

Pt $j \in \mathcal{R}$: $r_j^{B1} = cj - c_1^{T*} B_1^{-1*} A_1^{j} = r_i^{B}$ Pt $j \in \mathbf{S}$: $r_i^{B1} = \dots = r_i^{B} = 0$

=> B₁ nu e dual admisibila

Luam $B2 = B1 \cup \{k\} \setminus \{0\}$, x0 paraseste baza, x_k intra in baza, k ales a.i r_k = $min\{r_i, r_i<0\}$. Avem:

 $r_i^{B2} = r_i^{B1} - r_k^{B1} \ge 0$, $r_0^{B1} = -r_k^{B1} > 0 => B2 e$ dual admisibila

Teorema fundamentala a dualitatii:

Fie (1) o problema de minimizare si (2) duala acesteia. Atunci putem avea urmatoarele cazuri:

- 1. Ambele probleme au solutii admisibile => ambele probleme au solutii optime si val functiilor obiectiv in solutiile optime sunt egale
- 2. Una dintre probleme are solutii admisibile si celalta nu are, atunci problema care are solutie admisibila are optim infinit
- 3. Niciuna dintre cele 2 probleme nu are solutie admisibila

Teorema ecarturilor complementare

Fie (1) inf c^Tx , $Ax \ge b$, $x \ge 0$ cu duala (2) sup b^Tw , $A^Tw \le c$, $w \ge 0$.

x* e sol optima pt (1) si w* e sol optima pentru (2) $\Leftrightarrow x_i^*v_i^*=0$ si $w_i^*u_i^*=0$, $\forall j=1,n$ \forall i=1,m unde v* = c - A^Tw* si u* = Ax* - b Sau $v^* = A^T w^* - c si u^* = b - Ax^*$

G = (N, A) graf orientat 1-src, m-dst |N| = n,# noduri x = (xj) flux, $j \in N$ $y = (yi), i \in \mathbb{N}, yi =$

$$\sum_{\{j \in N | (i, j) \in A\}} xij - \sum_{\{j \in N | (j, i) \in A\}} xji$$

Conservarea fluxui: yi=0, ∀ i∈N kij = capacitatea arcului (i,j)

1) $x_{ij} = -x_{ij} \forall i, j \in \mathbb{N}$

2) xij = 0, (i,j) ∈ N antisimetrie Problema fluxului maxim:

(1) max f

$$\sum_{j \in N} xij - \sum_{j \in N} xj1 = f$$

$$\sum_{i \in N} xij - \sum_{j \in N} xji = 0$$

$$\sum_{i \in N} xmj - \sum_{j \in N} xjm = -f$$

$$xij \le kij, \forall i,j \in N$$

Fie A - matricea de incidenta nod-arc si $e = (1,0,...,0,-1)^T$

(1) => (2) max f, Ax - $f^*e = 0$, $x \le k \Leftrightarrow$ (3) max f, -A*x+f*e = 0, $x \le k$

pr (3) si duala:

max w^Tk , - A^Tu +w = 0, e^Tu = 1, w≥0

min $\sum wij * kij$, ui - vj = wij i,j \in N, $(i,j) \in \mathbb{X}$

u1-um=1, wij≥0, ∀ i,j∈N

Fie S, Ŝ doua submt de noduri ale grafului G, astfel incat (S∩Ŝ=Ø si S∪Ŝ=N), iar 1∈S si m∈Ŝ. Se numeste taietura suma capacitatilor arcelor (i,j) cu $(x^* = x + \alpha * d^j)$

i∈S si j∈Ŝ si o notam (S,Ŝ), $\sum_{i \in S, j \in \hat{S}} kij$.

Din th. de dualitate de la optim. liniara => Alg Simplex Dual: daca x-sol optima a pr (2) => max f = min Pas1: B - baza dual admisibila (r_i =

 $\sum kij * wij$ (fluxul maxim coincide cu

taietura minima)

Arcul (i,j) sn saturat (in raport cu fluxul x) daca xij = kij. Un drum sn saturat daca are cel putin o muchie saturata.

Cap. reziduala = kij - xij,xij<kij Daca G este o retea, notam Gf retea reziduala daca (i,j)∈A si xij<kij => in Gf capac. arcului (i,j) este xij - kij. (Gf are arce in plus fata de G).

Obs: x flux in G, x^* flux in Gf, $x^T=x+x^*$ flux in G cu val f^T=f+f*

Rezolvam flux maxim fie cu Ford fie cu simplex.

Algoritm Ford

1: xij = 0, $\forall i,j f=0$

2: Det. reteaua reziduala Gf

3: Atat timp cat exista flux de val > x* in Gf:

- a) det x*
- b) det in G x+x*
- c) det Gf

-gen. drum de la 1 la m

-eticheteaza nodurile si citeste etichetele j->eticheta(i, c_i), i-pred lui j, c_i-cap. nod j

 \exists (i,j) si $x_{ij} < k_{ij}$ atunci $c_i = min(c_i, k_{ij} - x_{ij})$ -∃(j,i) si xji>0 atunci cj=min(ci,xji) Creste fluxul de pe muchia (i,j) cu kij-xij si pe muchia opusa pune -xij.

Ala Simplex Primal:

Pas1: Alegem o baza B. Verificam B-1b ≥ 0 (baza primal admisibila) Calc. $r_i = c_i - C_B^T \cdot B^{-1} \cdot A^j, j \in \mathcal{R}$ Pas2: Daca $\forall j \in \underline{\mathcal{R}} r_i \ge 0$, => x sol. optima => STOP. Altfel pt fiecare j∈R cu $r_i < 0$, calc. $d^j = (-B^{-1} A^j e_i)$ si $e_i =$ matrice coloana cu 0 pe toate poz si 1 pe poz j). Valorile in noua matrice se pun in functie de \mathcal{R} si $\mathbf{3}$ (e pe \mathcal{R} si restul pe **3**).

Daca $\exists j$ ∈ \mathbb{R} a.i. r_i <0 si d^j ≥0 => pb are optim infinit => STOP Pas4: schimbarea bazei

Pas3: test de optim infinit

Alegem $j \in \mathcal{R}$ a.i $r_i = \min\{r_k \mid r_k < 0, k \in \mathcal{R}\}$ (cel mai mic ri negativ sau primul, la

Alegem $i \in \mathbf{S}$ a.i. $-x_i / d_k^j = \min_{k \in \mathbf{S}} \{-x_k / d_k^j |$ $d_k^j < 0$ = α

(alegem cel mai mic -x_i / d^j negativ sau primul, la egalitate)

3' = **3** ∪ {j} / {i} si \mathcal{R}' = \mathcal{R} ∪ {i} / {j} Determinam $x^* = (B^{-1}b, 0)$

GOTO PAS2

 $C_i - C_B^T B^{-1} A^j \ge 0, \forall j \in \mathcal{R}$ Fie x = $(B^{-1}b, O)$ sol de baza Daca xi≥0, ∀i∈3 => x e sol optima pt pr

Pas2: calc $y^j = B^{-1}A^j pt \ \forall j \in \mathcal{R}$, Daca $\exists y^j$ ≥ 0 => prob nu are solutie Pas3: Aleg $i \in \mathbf{S}$ a.i $x_i = \min\{x_i, x_i < 0\}$ (cel mai mic x, negativ sau primul, la egalitate)

Aleg $j \in \mathcal{R}$ a.i $\varepsilon = \min\{-r_i / y_i^j, y_i^j < 0\}$ (yi = a j-a coloana a matricei y si luam elem. de pe linia i)

Ex. $\mathbf{3} = \{1, 4\}, \mathcal{R} = \{2, 3\}, y = (1 1 1 0; 0)$ -1 **-1** 1) => y_4^3 = (1 0 0 **-1**) = -1 $3'' = 3 \cup \{j\} \setminus \{i\}, \ \mathcal{R}' = \mathcal{R} \cup \{i\} \setminus \{j\}$ **GOTO PAS2**