

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, 15/57, 15/67, 15/85, 9/64, C07K 14/72, C12Q 1/68, A61K 48/00		A1	(11) International Publication Number: WO 00/49147 (43) International Publication Date: 24 August 2000 (24.08.00)
(21) International Application Number: PCT/EP00/01368 (22) International Filing Date: 18 February 2000 (18.02.00)		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 199 07 099.7 19 February 1999 (19.02.99) DE 60/120,848 19 February 1999 (19.02.99) US			
(71) Applicant (for all designated States except US): THERAGENE BIOMEDICAL LABORATORIES GMBH [DE/DE]; Am Klopferspitz 19, D-82152 Martinsried (DE).			
(72) Inventor; and (75) Inventor/Applicant (for US only): HAUSER-FUNKE, Charlotte [DE/DE]; Romanstr. 95, D-80369 München (DE).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(74) Agents: HELBING, Jörg et al.; von Kreisler Selting Werner, Deichmannhaus am Dom, D-50667 Köln (DE).			
(54) Title: HORMONE-HORMONE RECEPTOR COMPLEXES AND NUCLEIC ACID CONSTRUCTS AND THEIR USE IN GENE THERAPY			
(57) Abstract			
<p>The invention relates to the use of a nucleic acid construct comprising at least one hormone responsive element and a transgene for preparing an agent for gene transfer. It further relates to particular nucleic acid constructs comprising at least one hormone responsive element and a transgene, wherein one of said at least one hormone responsive elements is not functionally linked to the transgene, vectors comprising such nucleic acid constructs and compositions of matter comprising such nucleic acid constructs wherein the hormone responsive elements of the constructs are coupled to a hormone-hormone receptor complex. The nucleic acid constructs, plasmids, and compositions of matter of the invention have applications in gene therapy, particularly in the treatment of human blood clotting disorders, such as hemophilia. They may also be used to up- or down-regulate target genes and for the delivery of vaccines.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Hormone -Hormone Receptor Complexes and Nucleic Acid Constructs and Their Use in Gene Therapy

5

Background of the Invention

1. Object of the Invention

The invention relates to the use of a nucleic acid construct comprising at least one hormone responsive element and a transgene for preparing an agent for gene transfer. It further relates to particular nucleic acid constructs comprising at least one hormone responsive element and a transgene, wherein one of said at least one hormone responsive elements is not functionally linked to the transgene, vectors comprising such nucleic acid constructs and compositions of matter comprising such nucleic acid constructs wherein the hormone responsive elements of the constructs are coupled to a hormone-hormone receptor complex. The nucleic acid constructs, plasmids, and compositions of matter of the invention have applications in gene therapy, particularly in the treatment of human blood clotting disorders, such as hemophilia. They may also be used to up- or down-regulate target genes and for the delivery of vaccines.

25 2. Summary of the Related Art

Gene therapy is a method that holds great promise for many diseases and disorders. In general, it involves the transfer of recombinant genes or transgenes into somatic cells to replace proteins with a genetic defect or to interfere with the pathological process of

an illness. In principle, gene therapy is a simple method. In practice, many disadvantages must still be overcome.

Research in gene therapy has concentrated on ways to most effectively incorporate DNA into cells of a patient. Viral vectors are 5 currently the widely used vehicles in clinical gene therapy approaches. In terms of efficacy in gene expression, the viral delivery systems have major advantages over techniques using DNA-lipid formulations as delivery vehicles or over mechanical methods, such as the gene gun. Although there are a variety of viral systems tested for gene 10 therapeutical strategies, retroviral vectors and adenoviral vectors are presently the most widely used vehicles (Salmons, B. and Gunzburg, W. H., *Hum. Gene Ther.*, Vol. 4, 129, 1993; Kasahara, N. A., et al., *Science*, Vol. 266, 1373, 1994; Ali, M., et al., *Gene Ther.*, Vol. 1, 367, 1994.). Still, these systems have major disadvantages, such as 15 potential viral contamination. Other safety concerns continue to hamper the development of clinical application of gene therapy using these viral systems. For example, recombinant retroviruses have the disadvantage of random chromosomal integration, which may lead to activation of oncogenes or inactivation of tumor-suppressor genes. 20 Also, repetitive use of recombinant adenoviruses has caused severe immunological problems (Elkon, K. B. et al., *Proc. Natl. Acad. Sci. USA*, Vol. 94, 9814, 1997). The humoral response resulted in the production of antibodies to adenovirus proteins preventing subsequent infection. Immunosuppressive drugs may ameliorate these effects, but 25 they place an additional burden on the patient (Dai, Y., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 92, 1401, 1995).

Yet another viral delivery system involves adenoassociated virus (AAV). The AAV requires coinfection with an unrelated helper virus. Although such recombinant AAV virions have proven useful for 30 introducing several small gene sequences into host cells, gene

delivery systems based on those particles are limited by the relative small size of AAV particles. This feature greatly reduces the range of appropriate gene protocols. Moreover, the need to also use a helper virus adds a complicating factor to this delivery system (Muzychka, N.,
5 Curr. Top. Microbiol. Immunol., Vol. 158, 97, 1992).

Though safer, non-viral gene therapy approaches are also unsatisfactory. Problems with inefficient gene delivery or poor sustained expression are major drawbacks. Yet the methods available such as the direct injection of DNA into cellular compartments, or the
10 application of mixtures of DNA with cationic lipids or polylysine allowing the transgene to cross the cell membrane more easily, have not overcome these hurdles (Felgner, P., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 84, 7413, 1987; Behr, J.-P., *Bioconjugate Chemistry*, Vol. 5, 382, 1994).

15 Introduction of naked DNA (polynucleotide) sequences (including antisense DNA) into vertebrates, is reported to be achieved by injection into tissues such as muscle, brain or skin or by introduction into the blood circulation (Wolff, J. A., et al., *Science*, Vol. 247, 1990; Lin, H., et al., *Circulation*, Vol. 82, 2217, 1990; Schwartz, B., et al.,
20 *Gene Ther.*, Vol. 3, 405, 1996). Also, a direct gene transfer into mammals has been reported for formulations of DNA encapsulated in liposomes and DNA entrapped in proteoliposomes containing receptor proteins. Although injected naked DNA leads to transgene expression, the efficiency is by far not comparable to viral-based DNA delivery
25 systems. A limitation of the method of naked DNA injection is the fact that transgene expression is dose-dependent. The gene expression is saturable, and an increase in the amount of DNA injected leads to decreased protein production per plasmid. Thus, protein expression can dramatically decrease, if the amount of DNA injected is above a
30 certain threshold.

Among the genetic disorders that the skilled artisan has sought to overcome using these prior art methods are those relating to blood clotting disorders, and in particular, hemophilia (Lozier, J. N. and Brinkhous, K. M., *JAMA*, Vol.271, 1994; Hoeben, R. C., *Biologicals*, 5 Vol. 23, 27, 1995). For example, hemophilia A and B are X-linked, recessive bleeding disorders caused by deficiencies of clotting factors VIII and IX, respectively (Sadler, J. E. et al., in: *The Molecular Basis of Blood Diseases*, 575, 1987). The incidence of hemophilia is about 1 in 5,000 male births. Hemophiliacs suffer from excessive bleeding due 10 to the lack of clotting at the site of wounds. The inability to clot properly causes damage to joints and internal tissues as well as posing risks to the proper treatment of cuts.

Treatment of hemophilia A is possible by the administration of the blood clotting factor VIII. Until recently, factor VIII preparations 15 had to be prepared by concentrating blood from donors, posing the risk of contamination by infectious agents, such as HIV and hepatitis. The gene for factor VIII has been cloned (e.g., Vehar et al., *Nature* Vol. 312, 337 1984) allowing for the production of a recombinant product. Although recombinant methods provide factor VIII of higher 20 purity than blood concentrates, the exogenous supply of factor VIII to a patient still requires repeated doses throughout the lifetime of the patient, an inconvenient and expensive solution.

Other forms of hemophilia include hemophilia B, caused by a defect in the gene coding for Factor IX. The gene therapy systems 25 described above have been attempted for the treatment of hemophilia A and B with factors VIII and IX, respectively. (See e.g., WO 94/29471). However, these systems have the disadvantages already discussed above.

On the other hand, the classical model of the action of hormones 30 is based on the concept of binding interaction of the hormone to an

intracellular receptor, located in the cytoplasm or the nucleus (Evans, R., *Science*, Vol. 240, 889, 1988). These intracellular receptors remain latent until exposed to their target hormone. When so exposed, the hormone receptor changes its conformation after the 5 hormone is bound and translocates in the activated form into the cell nucleus where it binds as a dimer to hormone responsive elements in the promoter region of hormone-regulated genes (Beato, M., *Cell*, Vol. 56, 335, 1989; O'Malley, B., et al., *Biol. Reprod.*, Vol. 46, 163, 1992). The hormone responsive elements are enhancer elements 10 usually located in the 5' flanking region of the specific hormone-induced gene, i.e., are functionally linked to the specific hormone induced gene. DNA constructs comprising a hormone responsive element and a nucleic acid sequence encoding a protein of interest are disclosed in U.S. Pat. Nos. 5,688,677 and 5,580,722 and are taught to 15 be suitable for expression of the protein of interest.

An example of such intracellular receptors is the steroid receptor. Steroid receptors belong to a superfamily of ligand-dependent transcription factors characterized by a unique molecular structure. The centrally located highly conserved DNA-binding domain 20 defines this superfamily. The second important and relatively invariant region is the COOH-terminal ligand-binding domain. An example of such a receptor is the progesterone receptor mediated by the steroid progesterone. At the progesterone receptor, progesterone acts as a natural agonist whereas it displays potent antimineralocorticoid 25 properties both at the molecular and the systemic level. Besides classical effects on the uterus, antiepileptic, anxiolytic, hypnotic and anesthetic properties have been attributed to progesterone according to numerous studies.

Methods have been proposed for the use of mutant hormone 30 receptors, including mutant steroid receptors for gene therapy. For

example, such methods are disclosed in WO 93/23431, WO 98/18925, WO 96/40911. Moreover, WO 98/33903 discloses a genetic construct comprising a steroid responsive element from a tissue specific gene, a coding sequence, and an SV40 enhancer.

5

Brief Description of the Invention

The object of the present invention is to overcome the disadvantages of the previous gene therapy delivery systems. It was found that a hormone-hormone receptor complex possesses the ability to drag a nucleic acid construct having one or more hormone responsive element(s) through the cell membrane into a cell. It was also found that if the construct comprises further functional sequences besides the hormone responsive elements (hereinafter "transgenes"), the functional sequences exert their function. The hormone responsive element may also enhance the expression of the transgene. Moreover, it was found that steroid hormones are very effective mediators for the transfer of nucleic acid constructs through the cell membranes into a cell. The present invention thus provides

- (1) the use of a nucleic acid construct comprising at least one hormone responsive element (hereinafter referred to as "HRE") and a transgene for preparing an agent for gene transfer (said at least one HRE being functionally linked to the transgene or not);
- (2) a preferred embodiment of (1) above, wherein the agent further comprises a hormone-hormone receptor complex;
- (3) a nucleic acid construct comprising at least one HRE and a transgene, wherein one of said at least one HREs is not functionally linked to the transgene;
- (4) a vector comprising the nucleic acid construct of (3) above;

- (5) a transformed cell or transgenic organism comprising the nucleic acid construct as defined in (3) above or the vector as defined in (4) above;
- (6) a composition of matter comprising a nucleic acid construct comprising at least one HRE and a transgene as defined in (3) above and/or a vector as defined in (4) above, said at least one HRE being coupled to a hormone-hormone receptor complex;
- (7) a preferred embodiment of (6) above, wherein the transgene is a gene encoding a blood clotting factor;
- (8) a preferred embodiment of (7) above, wherein the blood clotting factor is factor IX;
- (9) a preferred embodiment of (7) above, wherein the blood clotting factor is factor VIII;
- (10) a pharmaceutical composition comprising the nucleic acid construct as defined in (3) above and/or the composition of matter as defined in (6) to (9) above;
- (11) a method for preparing the composition of matter as defined in (6) above, which method comprises admixing the nucleic acid construct with the hormone receptor and the hormone;
- (12) a method for gene transfer which comprises administering the agent as defined in (1) and (2) or the composition of matter as defined in (6) to (9) above to an organism or to a cellular system;
- (13) a method for delivering into an organism or into a cellular system a nucleic acid encoding a transgene to be expressed in the cells of the organism or the cells of the cellular system, which method comprises administering an agent as defined in (1) above or composition of matter as defined in (6) to (9) above to the organism or to the cellular system so that the hormone in the composition interacts with the cell membrane and therewith enhances diffusion

and transport of the nucleic acid that is coupled to the hormone-hormone receptor complex across the membrane and into the cell;

5 (14) a method of treating blood clotting disorders comprising administering a therapeutically effective amount of the composition of matter as defined in (7) above to an organism or to a cellular system;

(15) a method of treating hemophilia B, comprising administering a therapeutically effective amount of the composition of matter as defined in (8) above to an organism or to a cellular system;

10 (16) method of treating hemophilia A, comprising administering a therapeutically effective amount of the composition of matter as defined in (9) above to an organism or to a cellular system;

(17) use of a steroid hormone for preparing an agent for gene transfer; and

15 (18) a method for gene transfer which comprises administering a nucleic acid construct to an organism or to a cellular system, wherein the nucleic acid construct contains a transgene and is encapsulated in a steroid hormone.

In a preferred embodiment of (1) to (16) above the hormone responsive element is a steroid responsive element (SRE), most preferably a progesterone responsive element (PRE). In embodiments (2) and (6) to (16) the receptor preferably is a steroid receptor, most preferably, a progesterone receptor. Similarly, the hormone is preferably a steroid, most preferably, progesterone.

25 The present invention thus provides a delivery system for gene therapy that should overcome the prior art disadvantages. The presence of the hormone responsive element on the nucleic acid carrying a transgene encourages the binding of a hormone-hormone receptor complex. Thus, the present invention uses the activated 30 hormone receptor as a link (or binding compound) between the

nucleic acid carrying the transgene and the hormone known to interact with the cell membrane. The general known biological activity mediated by the HREs is not the primary effect utilized in the present invention, but might be an additional effect when regulation of the 5 transgene is desired. The general principle is depicted in Figure 1. The hormone responsive element is preferably present as a nucleic acid dimer sequence or nucleic acid multimer sequence. Even in an inverse orientation, the hormone responsive element will exert its proper function. The hormone-hormone receptor complex contains a 10 hormone receptor that becomes activated after binding of its specific hormone. The hormone receptor in the activated state is able to recognize and bind to its specific hormone responsive element, which in the present invention is present within the nucleic acid comprising the desired transgene, e.g., a human blood-clotting factor.

15 Vaccination is another aspect of the embodiment (12) defined above. Introducing a nucleic acid construct or composition of matter of the invention comprising a gene for an antigen or containing a viral sequence into a cell (DNA vaccines) using the method mentioned above may also provide a way to stimulate the cellular immune 20 response.

Brief Description of the Drawings

Figure 1 shows the concept of gene transfer of the present invention 25 (with HRE = hormone responsive element, HR = hormone receptor, H = hormone, blank circles = lipophilic matrix).

Figure 2 is a diagram of the vector pTGF_G1.

Figure 3 is a diagram of the vector pTGF_G5.

Figure 4 is a diagram of the vector pTGF_G20.

30 Figure 5 is a diagram of the vector pTGF_G33.

- Figure 6 is a diagram of the vector pTGF36.
- Figure 7 is a diagram of the vector pTGF53.
- Figure 8 is a diagram of the vector pTGF64.
- Figure 9 is the DNA sequence of vector pTGF36 (SEQ ID NO: 1).
- 5 Figure 10 shows the protein sequence of factor IX encoded by vector pTGF36 (SEQ ID NO: 2).
- Figure 11 shows a GFP concentration curve for cell homogenates after transfection with pTGF5 and pTGF20, respectively.
- 10 Figure 12 shows corresponding light (a and c) and fluorescent (b and d) micrographs of HeLa cells transfected with pTGF5 (a and b) and pTGF20 (c and d), respectively.
- Figure 13 shows the amount of GFP expressed by utilizing the favoured vectors of the invention in a transfection experiment. Relative fluorescence units from mock and background can be clearly separated.
- 15 Figure 14 shows the additive effect of human clotting factor IX on clotting activity of mouse blood.
- Figure 15: hPR (A-form) was expressed in insect cells and purified by cobalt²⁺ affinity chromatography as described in Example 5. The final preparation (85µg protein) was separated on a denaturing 7,5% SDS-polyacrylamid gel, followed by staining with coomassie® R250 (lane A) or western blotting with hPR-specific staining (lane C). Lane B: Molecular mass standard. Arrows indicate the two highly enriched protein species (94 and 74 kDa) accessible to immunodetection.
- 20 Figure 16: Domain structure of hPR-B (numbers on the top of the bar represent amino acid positions within the polypeptide sequence).
- Figure 17 shows the mean values of the difference in the clotting time of Example 9.
- 25 Figure 18 shows the clotting time detected in Example 9.

Figure 19 shows the activity of human progesterone receptor as determined in Example 8.

Figure 20: shows the amino acid sequence of the hPR B-Form. The start methionine 165 of the hPR A-Form is underlined (SEQ ID NO: 5 18).

Figure 21 shows the nucleic acid sequence of the mRNA coding for hPR. The reading frame for the hPR B-form starts at position 176, the reading frame for the hPR A-Form at position 668. The respective start codons ATG are underlined (SEQ ID NO: 19). The sequences of 10 Figures 20 and 21 are taken from Genbank, accession number AF016381.

Detailed Description of the Invention

15 **1. Definitions**

"Nucleic acid" means DNA, cDNA, mRNA, tRNA, rRNA. The nucleic acid may be linear or circular, double-stranded or single-stranded.

"Nucleic acid construct" refers to a composite of nucleic acid 20 elements in relation to one another. The nucleic acid elements of the construct may be incorporated into a vector in such an orientation that a desired gene may be transcribed, and if desired, a desired protein may be expressed.

"Transgene" refers to a functional nucleic acid sequence which is 25 transcriptionally active (with or without regulatory sequences).

"Gene transfer" includes "gene therapy".

"Hormone responsive element" (HRE) refers to regions of nucleic acids, and in particular, DNA, which regulate transcription of genes in response to hormone activation. HREs are typically about 10-30 40 nucleotides in length, and more usually, about 13-20 nucleotides in

- length. As explained above, HREs become activated when a hormone binds to its corresponding intracellular receptor causing a conformational change, so that the receptor has increased affinity for the HRE and binds to it. The HRE, in turn, stimulates transcription.
- 5 A "steroid responsive element" (SRE) is an HRE that regulates transcription of genes in response to steroid activation. A "progesterone responsive element" (PRE) is an HRE/SRE that regulates transcription of genes in response to progesterone activation.
- 10 A "hormone receptor" refers to a receptor which binds to and is activated by a hormone. A "steroid receptor" refers to a receptor which binds to and is activated by a steroid hormone. A "progesterone receptor" is a receptor which binds to or is activated by the steroid hormone progesterone.
- 15 "Functionally linked" refers to configurations of the nucleic acid construct, where the HRE (or SRE/or PRE) is located within the construct so that it can stimulate transcription of the transgene. "Not functionally linked" refers to configurations where the HRE is so remotely located from the transgene that it cannot stimulate its transcription.
- 20 "Gene" refers to DNA sequence encoding a polypeptide, optionally including leader and trailer sequences and introns and exons.
- 25 "Vector" refers to any genetic construct, such as a plasmid, phage, cosmid, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. The term includes cloning and expression vehicles.
- 30 "Promoter" refers to a region of regulatory DNA sequences for the control of transcription of a gene to which RNA polymerase binds.

The promoter forms an initiation complex with RNA polymerase to initiate and drive transcription activity. "Enhancers" may activate the complex or "silencers" may inhibit the complex. A "tissue-specific promoter" is a promoter found in the DNA of tissue for transcription of genes expressed in this specific tissue.

"Organism" refers to a multicellular living entity including vertebrates such as mammals (especially humans, cattle, rodents, dogs) and invertebrates.

"Cellular system" includes cell cultures, e.g., primary cell cultures (especially those suitable for reimplantation), stem cells, blood cells, tissue samples and whole organs and immortalized cell cultures.

"Therapeutically effective dose" of the products of the invention refers to a dose effective for treatment or prophylaxis, for example, a dose that yields effective treatment or reduction of the symptoms of hemophilia. It is also a dose that measurably activates expression of a target gene as determined by measurements of target protein levels, or a dose that is predictable to be effective for treatment or prophylaxis by extrapolating from *in vitro* or *in vivo* data. The determination of a therapeutically effective dose is within the purview of one skilled in the art.

"Encodes" or "encoding" refers to a property of the nucleic acid sequence of being transcribed (in case of DNA) or translated (in the case of mRNA) into a polypeptide *in vitro* or *in vivo* when placed under the control of appropriate regulatory sequences.

For the purposes of this application, "express", "expressing" or "expression" shall refer to transcription and translation of a gene encoding a protein.

2. Detailed Description and Examples

As stated above, an object of the present invention is to provide a new and improved delivery system for gene therapy. The invention thus provides nucleic acid constructs comprising at least one HRE and 5 a transgene wherein one of said at least one HREs is not functionally linked to the transgene, and compositions of matter comprising such nucleic acid construct wherein said at least one HRE is coupled to a hormone-hormone receptor complex (embodiments (3) and (6) defined above). A preferred embodiment of the nucleic acid construct 10 and of the composition of matter of the invention is one where the hormone responsive element is a steroid responsive element (SRE), and the receptor is a steroid receptor. Most preferably, the hormone responsive element is a progesterone responsive element (PRE), and the receptor is a progesterone receptor.

15 Potential HREs for use in the present invention have been previously described. For example, GREs (Scheidereit, C., et al., *Nature*, Vol. 304, 749, 1983; von der Ahe, D., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 83, 2817, 1986), EREs or PREs (Chambon, P., et al., *Rec. Prog. Horm. Res.*, Vol., 40, 1, 1984; Klock, G., et al., *Nature*, 20 Vol. 329, 734, 1987). As already stated above, the most preferred HRE for the invention is a PRE. Specifically, the preferred PRE is described in Example 1, i.e., is the double stranded DNA sequence comprised of SEQ ID NOs: 3 and 4. The nucleic acid for use in the invention comprises at least one hormone responsive element. 25 Preferred is a nucleic acid comprising more than one HRE. For example, the nucleic acid may comprise three to ten, preferably three to five HREs. The most preferred embodiment is a nucleic acid comprising three to five PREs.

Potential hormone receptors for use in the present invention 30 are, for example, estrogen receptors, mineralocorticoid receptors,

glucocorticoid receptors, retinoic acid receptors, androgen, calcitriol, thyroid hormone or progesterone receptors and orphan receptors. Such receptors have been previously described. (Green, S., et al., *Nature*, Vol. 320, 134, 1986; Green, G. L., et al., *Science*, Vol. 231, 5 1150, 1986; Arriza, J. L., et al., *Science*, Vol. 237, 268, 1987; Hollenberg, S. M., et al., *Nature*, Vol. 318, 635, 1985; Petkovitch, M., et al., *Nature*, Vol. 330, 444, 1987; Giguere, V., et al., *Nature*, Vol. 330, 624, 1987; Tilley, W., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 86, 10 327, 1989; Baker, A. R., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 85, 3294, 1988; Weinberger, C., et al., *Nature*, Vol. 324, 641, 1986; Sap, J., et al., *Nature*, Vol. 324, 635, 1086; Misrahi, M., et al., *Biochem. Biophys. Res. Commun.*, Vol. 143, 740, 1987; Kastner, P., et al., *Cell*, 15 Vol. 83, 859, 1995). These receptors may be from human or other mammalian sources, although human is preferred. Nucleotide and/or amino acid sequences of human steroid receptors are available in the GenBank: mineralocorticoid receptor: M16801; glucocorticoid receptor α : M10901; glucocorticoid receptor α_2 : U01351; glucocorticoid receptor β : M11050; retinoic acid receptor α : AF088888 (exon 1), AF088889 (exon 2), AF088890 (exon 3), AF088891 (exon 4), 20 AF088892 (exon 5 and 6), AF088893 (exon 7), AF088894 (exon 8), AF088895 (exon 9 and complete cDNA); retinoic acid receptor γ : M24857; androgen receptor: M27423 (exon 1), M27424 (exon 2), M27425 (exon 3), M27436 (exon 4), M27427 (exon 5), M27428 (exon 6), M27429 (exon 7), M27430 (exon 8); thyroid hormone receptor α_1 : 25 M24748, thyroid hormone receptor α_2 : J03239; progesterone receptor: AF016381; somatotropin receptor: J00148; vitamin D receptor (calcitriol receptor): J03258.

The skilled person will understand that expression of the receptor proteins can be achieved by standard methods, e.g. via PCR-cloning of the known cDNAs from cDNA libraries and overexpression of 30

the corresponding proteins in suitable expression vectors, such as, for example, the vectors of the present invention, in suitable host cells, e.g., COS cells. Accordingly, subsequent purification of the cytosolic fraction can be achieved by routine methods such as affinity chromatography purification. For this purpose, various suitable antibodies against the desired receptor are commercially available. For example, polyclonal antibodies against the mouse progesterone receptor that have a sufficiently high cross-reactivity for the human protein are available from Dianova (Hamburg, Germany). Likewise, further purification can be achieved by standard methods, e.g., chromatographical methods such as ion-exchange chromatography and/or FPLC.

The most preferred receptor is the progesterone receptor. Preferably, the receptor is a human progesterone receptor. Such a human progesterone receptor (from T47D human breast cancer cells) is disclosed in US Patent No. 4,742,000, and cells expressing this receptor have been deposited (ATCC deposit number HTB, 133). As already described above, it would be routine to purify such a receptor from the cytosol using receptor specific antibodies. In addition, US Patent No. 4,742,000 discloses a method for purification of the human progesterone receptor using a specific steroid affinity resin (cf. Grandics et al., Endocrinology, Vol. 110, 1088, 1982).

Briefly, the cytosolic fraction of the T47D cells is passed over Sterogel, a commercial preparation of deoxycorticosterone coupled to Sepharose® 2B that selectively binds the progesterone receptor. After washing with loading buffer, the bound receptor is eluted with a buffer containing progesterone. The eluted steroid-receptor complex is then chromatographed on DEAE-Biogel and eluted stepwise with a buffer containing 0.2M NaCl. Subsequently, the bound progesterone can be

readily exchanged. As described above, further purification can be achieved by routine methods well-known to the skilled person.

An alternative method is disclosed in Example 5.

The structure of the hPR polypeptide is depicted in Fig. 16. The hPR polypeptide is composed of distinct structural domains. Naturally the human progesterone receptor (hPR) is expressed as two different sized proteins termed hPR-B (120 kDa) and hPR-A (94 kDa). HPR-A is a truncated but otherwise identical form of hPR-B, that is missing 165 the N-terminal amino acids (see Fig. 20, SEQ ID NO: 18). Both forms seems to be indistinguishable regarding their progesterone or DNA binding properties. In human cells the A and B forms of hPR are produced from the same gene by alternate initiation of translation at two different AUG start sites within the same RNA transcript. As it was reported earlier hPR-A and B can be expressed in *Spodoptera frugiperda* (Sf9) cells as biological fully active polypeptides (Christensen et al., Mol. Endocrinol. 5, 1755ff (1991); Elliston et al., JBC 267, 5193-5198 (1992)).

The carboxyl terminus of the hPR polypeptide as shown in Fig. 16 comprises a progesterone binding domain (PBD) but also contains sequences responsible for the association with heat shock proteins and receptor dimerization. The hinge region provides a flexible link between the DNA-binding domain (DBD) and the PBD but is also thought to contain elements for receptor dimerization as well as nuclear localization. Binding of the hPR to its corresponding target sites at the chromosomal DNA (PREs, Progesterone Responsive Elements) is known to be mediated by the DBD. The remaining N-terminal trans-activation domain (TAD) consists of regions specific for the *in vivo* function of the hPR as a transcriptional gene activator.

Even though the N-terminus also seems to contribute directly to the homodimerization of hPR after progesterone binding, it has been

demonstrated that a fragment comprising only the hinge region and the PBD was the minimal C-terminal fragment to mediate progesterone dependent hPR-hPR-interaction (Tetel *et al.*, Mol. Endocrinol. 11, 1114ff. (1997). It is believed that genetically 5 engineered hPR polypeptides lacking either in part or completely the TAD (amino acids 1 to 556) might be expressed as structurally stable and fully soluble dimers in the presence of progesterone. Complexes with such a truncated hPR (provided that said truncated hPR exhibits DNA-binding activity as well as progesterone-binding activity) may 10 functionally replace the complexes with the full length form of the described recombinant hPR-A or hPR-B proteins, since still mediating the contact between the plasmid DNA and the progesterone. Thus, the hPR in embodiments (2) and (6) to (16) of the invention preferably is 15 a PR comprising nucleic acids 557 to 933 of natural hPR shown in SEQ ID NO: 18.

Effective expression of such a truncated version of hPR is possible in the baculovirus system but also in other eukaryotic expression systems, such as cultivated mammalian cells or yeast cells. Furthermore, also an *E. coli* overexpression strain is a possible 20 system for the production of those polypeptides. In this case, the fusion of such a truncated hPR-version to a suitable polypeptide sequence, e.g. a histidine containing sequence or the GST (glutathion S- transferase) protein, might be helpful to overcome insolubility problems as well as to facilitate the isolation and purification of the 25 expressed protein.

Mutated versions of these receptors and derivatives thereof, that still retain the function of the receptors to bind a ligand and thereby become activated and bind DNA and regulate transcription, may also be employed in the invention. Such derivative may be a 30 chemical derivative, variant, chimera, hybrid, analog, or fusion.

The third component of the gene transfer system of the invention is the hormone. The hormone in the agent of embodiment 2 and in the composition of matter of embodiment (6) include synthetic and natural hormones, preferably steroid hormones, such as estrogen, 5 testosterone, glucocorticoid, androgen, thyroid hormone, and progesterone or derivatives thereof. These are widely available. Progesterone is most preferred. For example, natural micronized progesterone is the preferred progesterone from which has been marketed in France since 1980 under the trademark of UTROGESTAN® 10 and is still available in Germany under the trademark UTROGEST®. Its properties are similar to the endogenous progesterone, in particular, it has antiestrogen, gestagen, slightly antiandrogen and antimineralocorticoid properties. The natural micronized progesterone in said marketed products is dispersed in a matrix as described 15 hereinbelow.

The above micronized progesterone has advantages that make it a suitable carrier for genes or nucleic acid constructs to target cells. Specifically, the synergistic effect of the double process of micronization and suspension in long-chain fatty acids residues of an 20 oil results in increasing progesterone absorption. It has been demonstrated that after oral administration of 100 mg of UTROGESTAN®, peak plasma progesterone levels were obtained after 1-4 hours in most cases (Padwick, M. L., et al., *Fertil. Steril.*, Vol. 46, 402, 1986). Later on, the levels declined substantially, although they 25 were still elevated at 12 hours. Even at 84 hours the levels were slightly higher than baseline. A U.S. kinetic study confirmed earlier work demonstrating the bioavailability of oral micronized progesterone. They showed a peak effect at 2 hours followed by rapid decrease in plasma progesterone level (Simon, J. A., et al., *Fertil.*, 30 *Steril.*, Vol. 60, 26, 1993).

A further advantage of using progesterone as a carrier is the low level of disadvantageous side effects. Orally administered progesterone adversely affects neither plasma lipids (Jensen, J. et al., Am. J. Obstet. Gynecol., Vol. 156, 66, 1987) nor carbohydrate metabolism (Mosnier-Pudar, H. et al., Arch. Mal. Coeur, Vol 84, 1111, 1991). Further, progesterone does not affect liver enzymes (ASAT, ALAT, AFOS), sex-hormone binding-globulin (SHBG) synthesis or HDL-cholesterol levels at daily doses of 200 mg and 300 mg. Although the plasma levels of deoxycorticosterone may increase substantially during UTROGESTAN® treatment, there are strong indications that the mineralocorticoid effects of this progesterone metabolite are completely counteracted by the anti-mineralocorticoid effects of progesterone itself. This is apparent from a comparative study (Corvol, P., et al., In: Progesterone and progestins. Raven Press, New York, 179, 1983) in which oral UTROGESTAN® was capable of antagonizing the mineralocorticoid effects of 9- α -fluorohydrocortisone.

In the agent of embodiment (2) and in the composition of matter of embodiment (6) of the invention the molar ratio of HRE (or SRE/or PRE) within the nucleic acid construct to hormone receptor is preferably from 1:1 to 1:10, more preferably from 1:2 to 1:5. On the other hand, the molar ratio of hormone to hormone receptor is preferably at least 1000:1, more preferably at least 10000:1. Thus, the hormone is present in a large excess relative to the hormone receptor and the HRE, which is desirable in view of the ability of the hormones to transfer nucleic acid constructs through cell membranes.

The skilled artisan will appreciate that the agent of embodiments (1) and (2) and the pharmaceutical composition of embodiment (10) may contain other components capable of assisting in introducing the nucleic acid into a cell for the purpose of gene therapy (matrix compounds). Specifically, the agent and the composition, especially

the hormone component thereof, may contain the following matrix compounds: glucose and related compounds (such as D-sorbitol, D-mannitol); solubilizing adjuvants (such as alcohols, e.g., ethanol); polyhydric compounds such as glycerine, polyethylene glycol and 5 polypropylene glycol; nonionic surface active compounds, ionic surface active compounds such as lecithin; oily compounds such as sesame oil, peanut oil soybean oil, corn oil, etc.; starches and their derivatives such as cyclodextrines and hydroxyalkylated starches; stabilizers such as human serum albumin, preservatives such as benzyl alcohol and 10 phenol; and the like. The preferred matrix contains β -cyclodextrine, glycerine, lecithin and/or corn oil. For example, the pharmaceutical composition of hormone-hormone receptor nucleic acid complex of the invention may be provided orally to humans or animals as a gelatin capsule. Progesterone therein (preferably in micronized form) could 15 be present in a concentration of 50 to 1000 mg, preferably 200 -300 mg dissolved in a 35 % or 40 % β -cyclodextrin solution or in cornoil or gycerol with peanut oil together with lecithin.

Alternatively, when - due to the selection of appropriate matrix components - the pharmaceutical composition is in a pasty, gel-like 20 form, it may be provided topically.

The nucleic acid construct of embodiments (1) to (16) of the present invention may - aside from the transgene and the HREs, SREs, or PREs already disclosed above - further contain promoter, enhancer, and/or silencer sequences. The promoter may be ubiquitous 25 or tissue-specific. Of the ubiquitous promoters, the CMV promoter is most preferred. However, a tissue-specific promoter is preferred over a ubiquitous promoter. For example, the tissue-specific promoters envisioned for the instant invention include α_1 -antitrypsin (further promoters).

The nucleic acid construct may further comprise additional sequences such as the ampicillin resistance gene. Other reporter sequences known to the skilled artisan may also be included, such as, for example, the green fluorescent protein (GFP), luciferase, β -galactosidase or chloramphenicolacetyltransferase (CAT). As an enhancer sequence, the SV40 intron and SV40 Poly A are most preferred. The nucleic acid construct may further contain inducible promoters such as, for example, a MMTV (Mouse Mammary Tumor Virus) promoters inducible via glucocorticoides and Ecdyson-inducible insect promoters.

A preferred nucleic acid construct contains sequentially from the 5' to the 3' end: a PRE, a CMV promoter, a gene of interest, SV40 Intron and SV40 poly A enhancer sequence, and an ampicillin resistant gene. Further PREs are evenly distributed on the vector backbone.

The nucleic acid construct may further contain origin of replication sequences (especially eukaryotic origin of replication sequences), elements for gene targeting, integrational sequences (e.g., AAV-ITR, transposon IS), 3'-UTR, "switch" systems (e.g., TET system, Cre/loxP or Flp/ftr system).

The transgene may be chosen from those encoding proteins lacking in a variety of genetic disorders or involved in conditions related to inappropriate responses to hormones, for example, hormone-dependent cancers such as breast, ovarian, and endometrial cancers and prostate cancer. The transgene may also be used to replace a defective gene resulting in such genetic disorders as hemophilia, von Willebrand disease, and cystic fibrosis. The transgene includes mutations of such gene or a gene encoding a fusion product. The nucleic acid construct of the present invention may comprise more than one transgene.

In particular, the transgene may replace genes for a blood clotting factor, and preferably a human blood-clotting factor. The genes encoding factor VIII and factor IX (shown in Fig. 2, SEQ ID NO: 2), involved in hemophilia A and B, respectively, are good candidates 5 for the invention. Other candidates include the gene encoding von Willebrand factor, factor IV, factor X, or protein C.

Other useful transgenes include, but are not limited to, hormone genes such as the genes encoding for insulin, parathyroid hormone, luteinizing hormone releasing factor (LHRH), α and β seminal inhibins 10 and human growth hormone; hormone receptor genes such as the glucocorticoid receptor, the estrogen receptor, the progesterone receptor, the retinoic acid receptor; growth factors such as vascular endothelial growth factor (VEGF), nerve growth factor, epidermal growth factor; enzyme genes; genes encoding cytokines or 15 lymphokines such as interferons, granulocytic macrophage colony stimulating factor (GM-CSF), colony stimulating factor-1 (CSF-1), tumor necrosis factor (TNF), and erythropoietin (EPO); genes encoding inhibitor substances such as α_1 -antitrypsin, and genes encoding substances that function as drugs, e. g., genes encoding the 20 diphtheria and cholera toxins, ricin or cobra venom factor. Also, antisense sequences may be administered as genetic material.

Another aspect of the present invention is vectors comprising the nucleic acid constructs of embodiment (3) of the present invention. These vectors may be used in the composition matter of 25 embodiment (6) of the present invention. Preferably, however, the nucleic acid sequence for use in the invention is circular rather than linear. The vectors may be capable of expressing the nucleic acid in the nucleic acid construct transiently or permanently (including episomally). As noted above, the nucleic acid construct therein may 30 further contain additional elements.

The composition of matter of embodiment (6) of the invention can be prepared by admixing the nucleic acid construct with the hormone receptor and the hormone. Preferably, an aqueous solution of nucleic acid construct was added to the oily suspension containing 5 the hormone at ambient temperature under stirring.

Embodiment(s) of the invention relates to transfected and transformed cells or transgenic organism comprising these vectors and/or nucleic acid constructs. Within the scope of this invention, a transfected cell is one in which foreign DNA has been incorporated. 10 Methods of transfection may include microinjection, CaPO₄ precipitation, electroporation, liposome fusion, or gene gun.

Transformation refers to introducing genetic material into a cell, such as the vectors or nucleic acid constructs of the invention, rendering the cell transiently or permanently altered so that the cell 15 expresses a specific gene product or is otherwise altered in its expression. Transformation may be achieved by *in vivo* or *in vitro* techniques, although *in vivo* transformation is preferred.

A further embodiment of the present invention is pharmaceutical compositions comprising a therapeutically effective dose of the nucleic 20 acid constructs of the invention and a hormone. The hormone is preferably a steroid, and most preferably, progesterone, as described above. The dose is dependent on the condition to be treated, the characteristics of the patient, and the result sought to be achieved. Determining dosage is within the realm of the skilled artisan.

25 The pharmaceutical composition (or, alternatively, the composition of matter, the nucleic acid construct, or the vector) of the present invention may be administered orally, intravenously, intramuscularly, subcutaneously, topically, through mucosa (including buccal, nasal spray) or by gene gun. Oral administration (of a

micronized hormone dispersion) is preferred. Delivery may be systemic or directed at certain tissue.

The invention further includes a method of introducing into a cell a nucleic acid construct encoding a gene of interest, e.g., a human blood-clotting factor, to express the blood-clotting factor in the cell. In 5 this method, the nucleic acid encoding a human blood-clotting factor is combined with a nucleic acid construct comprising at least one hormone responsive element (HRE), preferably a progesterone responsive element.

10 The mixture of nucleic acid bound to the hormone-hormone receptor complex together with an excess of hormone, preferably progesterone, will be used to introduce the nucleic acid into a cell by various methods known to the skilled artisan and outlined above. The cell-uptake will be stimulated by the interaction of the hormone with 15 the cell membrane. The hormone or steroid interacts with the lipid bilayer of the cell membrane not only through membrane perturbation but also through activation of certain hormone- or steroid-sensitive membrane receptors. This has been demonstrated for progesterone and other steroids. Last but not least, it is known that hormones are 20 able to cross the cell membrane by diffusion. In the present invention, the nucleic acid bound to the hormone-hormone receptor complex should be transported through the membrane during the process of diffusion or uptake.

Another aspect of the invention is a method of treating a blood 25 clotting disorder by administering a therapeutically effective amount of the composition of matter of the invention to an organism. This method involves the administration and dosage considerations already discussed.

Embodiments (17) and (18) of the invention pertain to the use 30 of a steroid hormone for preparing an agent for gene therapy and/or

gene transfer and to method for gene therapy and/or gene transfer which comprises administering a nucleic acid construct to an organism or to a cellular system, wherein the nucleic acid construct contains a transgene and is encapsulated in a steroid hormone. Suitable steroid 5 hormones are enumerated hereinafter. The preferred steroid hormone in said embodiments of the invention is a natural micronized steroid hormone, in particular a natural micronized progesterone. In a preferred embodiment, the micronized hormone is solubilized/dispersed in a lipophilic matrix as described hereinafter.

10 Experiments have been performed to illustrate the technical aspects of the present invention. These experiments are described in examples 1 to 9 below. The skilled artisan will be readily recognize that the invention is not limited to these examples.

15 **Examples**

Example 1: Construction of Vectors

Production of the vector pTGF1: The vector pUC19 (MBI Fermentas) 20 was digested with XbaI, treated with Klenow enzyme and religated. This XbaI deleted vector was then digested with EcoRI, treated with Klenow enzyme and religated in order to delete the EcoRI site. For insertion of a XbaI site in the SacI site of this vector it was digested with SacI, treated with T4-polymerase, dephosphorylated with alkaline 25 phosphatase and ligated with the XbaI-linker CTCTAGAG (Biolabs #1032). Another XbaI-site was inserted by digesting the newly produced vector with HindIII, treating it with Klenow, dephosphorylating it with alkaline phosphatase and ligating it with the XbaI-linker CTCTAGAG (Biolabs #1032). This vector was named 30 pUC19/X.

In order to destroy the XbaI-site present in the vector phGFP-S65T (Clontech) this vector was digested with XbaI, treated with Klenow enzyme and religated resulting in the vector pGFP/0. A 2.3 kb fragment containing the GFP-Gene was isolated after digesting pGFP/0 with MluI, treating it with Klenow enzyme and digesting it with BamHI. This fragment was inserted into the multiple cloning site of the vector pUC19/X which was digested with SalI, treated with Klenow enzyme and digested with BamHI. The resulting vector was named pTGFG1 (Figure 2).

Starting with this vector all the vectors described in Table 1 were obtained. At the restriction sites for PstI, KpnI, Ehel, EcoO109 and/or SapI a PRE(ds) was inserted giving rise to plasmids carrying the GFP gene and up to five PREs. By exchanging the GFP gene with a FIX gene a set of FIX expression plasmids were obtained. By excising the GFP gene the cloning vectors without a transgene were obtained.

Production of the insert PRE(ds): The oligonucleotides (Metabion) PRE-S (5'-GGG GTA CCA GCT TCG TAG CTA GAA CAT CAT GTT CTG GGA TAT CAG CTT CGT AGC TAG AAC ATC ATG TTC TGG TAC CCC-3'; SEQ ID NO: 3) and PRE-AS (5'-GGG GTA CCA GAA CAT GAT GTT CTA GCT ACG AAG CTG ATA TCC CAG AAC ATG ATG TTC TAG CTA CGA AGC TGG TAC CCC-3'; SEQ ID NO: 4) were hybridized and phosphorylated by kinase reaction, resulting in the insert PRE(ds).

Production of the vector pTGFG5: The vector pTGFG1 was digested with EcoO109I, treated with Klenow enzyme and dephosphorylated with alkaline phosphatase. It was then ligated with the PRE(ds) insert,

resulting in the vector pTGF5 (Figure 3), i.e., a vector which carries a PRE at position C of Fig. 2.

Production of the vector pTGF20: The vector pTGF1 was digested with KpnI, treated with T4-polymerase and dephosphorylated with alkaline phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGF7. This vector pTGF7 was digested with PstI, treated with T4-polymerase and dephosphorylated with alkaline phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGF11. Subsequently, pTGF11 was digested with EcoO109I, treated with Klenow enzyme and dephosphorylated with alkaline phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGF20 (Figure 4). This vector carries a PRE at positions A, B and D of Fig. 2.

Production of the vector pTGF33: In a similar manner PRE(ds) were inserted at the restriction sites for PstI, KpnI, EheI, EcoO109 and SapI in vector pTGF1 giving rise to the plasmid pTGF33 (Figure 5), which is a vector that carries the GFP gene and five PREs, one each in position A, B, C, D, E (Figure 2).

Production of the vectors pTGF36, pTGF53 and pTGF64: The vector pUC19 (MBI Fermentas) was digested with SalI, treated with Klenow enzyme and dephosphorylated with alkaline phosphatase. It was ligated to the NotI-linker GCGGCCGC (Biolabs # 1045), resulting in the vector pUC19/N.

A 1.4 kb fragment containing the open reading frame of the human clotting factor IX, isolated from a human cDNA library (see example 2), was inserted into the PstI-site of the vector pUC19/N which was digested with PstI, treated with T4-polymerase and

5 dephosphorylated with alkaline phosphatase. From the resulting vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG5 resulting in the vector pTGFG36 shown in Figure 6. This vector is a preferred one for delivery of Factor IX into the cell, and its DNA sequence is provided in Figure 9 (SEQ ID NO: 1).

10 In a similar manner plasmids pTGFG53 and pTGFG64 (shown in Figures 7 and 8) were obtained by exchanging the GFP gene in plasmids pTGFG20 and pTGFG33 by the FIX gene.

15 Production of the insert ALLG(ds): The oligonucleotides (Metabion) ALLG1/1 (5'-AGC TTG ACC TCG AGC AAG C-3') (SEQ. ID NO: 5) and ALLG2 (5'-GGC CGC TTG CTC GAG GTC A-3') (SEQ. ID NO: 6) were hybridized and phosphorylated by kinase reaction, resulting in the inserts ALLG(ds). The insert ALLG (ds) was constructed to introduce into the vector of choice a sequence with a multiple cloning site for the possible introduction of other transgenes.

20 Table 1 gives an overview of the available vectors with different transgenes and a different number of PREs in various positions. The positions of the PREs are given according to Figure 2. For the underlined vectors a map is provided (Figures 3 to 8).

Table 1: Vectors of the invention

Plasmid	Trans-gene	PRE	Plasmid	Trans-gene	PRE	Plasmid	Trans-gene	PRE
pTGFG0	--	--	pTGFG18	GFP	BDE	pTGFG34	FIX	E
<u>pTGFG1</u>	GFP	--	<u>pTGFG19</u>	GFP	BCD	<u>pTGFG35</u>	FIX	A
pTGFG2	FIX	--	<u>pTGFG20</u>	GFP	ABD	<u>pTGFG36</u>	FIX	D
pTGFG3	GFP	E	pTGFG21	GFP	CDE	pTGFG37	FIX	C

<u>pTGFG4</u>	GFP	A	pTGFG22	GFP	ACD	pTGFG38	FIX	B
<u>pTGFG5</u>	GFP	D	pTGFG23	GFP	ABC	<u>pTGFG53</u>	FIX	ABD
<u>pTGFG6</u>	GFP	C	pTGFG24	GFP	ABE	<u>pTGFG64</u>	FIX	ABCDE
<u>pTGFG7</u>	GFP	B	pTGFG25	GFP	ACE	pTGFG66	--	A
<u>pTGFG8</u>	GFP	BC	pTGFG26	GFP	ADE	pTGFG67	--	D
<u>pTGFG9</u>	GFP	BE	pTGFG27	GFP	BCE	pTGFG68	--	C
<u>pTGFG10</u>	GFP	BD	pTGFG28	GFP	BCDE	pTGFG69	--	B
<u>pTGFG11</u>	GFP	AB	pTGFG29	GFP	ACDE	pTGFG82	--	ABD
<u>pTGFG13</u>	GFP	CD	pTGFG30	GFP	ABCE	pTGFG95	--	ABCDE
<u>pTGFG14</u>	GFP	AC	pTGFG31	GFP	ABDE			
<u>pTGFG15</u>	GFP	DE	pTGFG32	GFP	ABCD			
<u>pTGFG16</u>	GFP	AD	<u>pTGFG33</u>	GFP	ABCDE			

For the DNA sequence of pTGFG 36, pTGFG 53, pTGFG 64, pTGFG 67, pTGFG 82 and pTGFG 95, see SEQ ID NOs: 1 and 13 to 17, respectively.

5

Example 2: Isolation of Human Factor IX cDNA

Factor IX cDNA was amplified from human liver cDNA (Clontech) using two primers overlapping the start and termination codon of the factor IX open reading frame resulting in a 1387 bp fragment containing the entire open reading frame. Restriction sites for EcoRI (upstream) and BamHI (downstream) were included at the end of each primer to facilitate cloning. Amplification was performed with Pwo polymerase (Boehringer Mannheim) in 50 ml reaction volume [10 mM Tris HCl pH 8.85, 25 mM KCl, 5 mM (NH₄)₂SO₄, 2 mM MgSO₄] with 30 incubation cycles at 96°C for 1 min, 60°C for 1 min, 72°C for 2 min, followed by a final extension step at 72°C for 10 min.

Reaction products were ligated into the EcoRI- and BamHI-sites of pUC19 and transformed into *E. coli* DH5-a. Positive clones were

selected. Sequences were confirmed by cycle sequencing (Amersham) from both ends with labeled primers (IR-700) and automated analysis on the LiCor sequencing system (MWG, Biotech).

The following primers were used :

- 5 GGAATTCCGCAAAGGTTATGCAGCGCGTGAACATGATCATGGC
(upstream; SEQ. ID NO: 7)
CGCGGATCCATTAAGTGAGCTTGTCCCCCTTAATCC (downstream;
SEQ. ID NO: 8)

10 **Example 3: Expression and Quantification of the Marker Protein GFP**

15 Method 1: HeLa cells were transfected by electroporation with plasmids pTGFG5 or pTGFG20. Transfected cells were harvested and the cell pellets were homogenized and lysed in a buffer containing phosphate buffered saline (pH 7.5) and 10 mM PMSF. The concentration of green fluorescent protein (GFP) in the cell homogenate was determined by competitive ELISA.

20 For this purpose, GFP was coated in a defined concentration on microtiter plates. Then, GFP samples were added in the presence of anti-GFP antibody. After several washing steps a labeled secondary antibody was added in order to trace the first antibody. The colorimetric reaction was measured photometrically (extinction). Generally, the more GFP was added the less antibody was left to bind 25 the coated GFP. Thus, reduction of extinction corresponded to higher GFP concentration in the sample.

A concentration curve of GFP was determined by linear regression (Figure 11) using bovine serum albumin (BSA) as a reference. A mean value of 2.4 mg GFP/ml for pTGFG5 (1 PRE) and 30 5.2 mg GFP/ml for pTGFG20 (3PREs) was found.

Figures 12 a-d show micrographs of HeLa cell cultures transfected with pTGFG5 (Fig. 12 a and b) and pTGFG20 (Fig. 12 c and d), respectively. Figures 12 a and c represent light microscopic views as controls, and Fig. 12 b and d show the corresponding cell patches in the fluorescent mode. Routinely, more than 50% of the cells expressed GFP, indicating very efficient transfection, the presence of only one PRE showing more efficient expression.

Method 2: 293 T cells were transfected with pTGFG 5, 20 and 33 using calcium phosphate method and fluorescence was detected with a fluorimeter (Labsystems, Extinction: 485 nm Emission: 520 nm). In the case of the mock transfection, non GFP-expressing DNA was used. Background indicates the fluorescence of the empty plate (96-well plate, Dynex, Immulon-4). The results are summarized in Fig. 13.

Again the vector with just one PRE (pTGFG5) shows the highest expression.

Example 4: Human Factor IX Quantification by ELISA Assay

HeLa cells were transfected either by electroporation or using liposome reagent DOTAP (Boehringer Mannheim) with plasmids pTGFG36, pTGFG53 and pTGFG64. These plasmids contain the cDNA of human clotting factor IX. Recombinant human factor IX was secreted into the supernatant of the cell culture and quantified using a sandwich ELISA method.

0.11 M sodium citrate and 10 mM PMSF were added in order to prevent degradation of human factor IX. The enzyme-immunological in vitro assay "Asserachrom IX:AG" from Boehringer-Mannheim was used in order to determine the concentration of expressed human

clotting factor IX. The factor IX-standard from Octapharma AG was used as a standard in aqueous solutions of 28 IU/ml.

In six different transfection experiments, in which HeLa cells with plasmids containing human factor IX-cDNA (pTGFG36, 53 and 5 64) were transfected using either electroporation or lipid-transfection reagent (DOTAP, Boehringer Mannheim), a concentration range of 3-25 ng/ml human clotting factor IX was reached.

Example 5: Production and Purification of hPR (A Form)

10

1. Cloning of the human progesterone receptor: The cloning was performed as follows: Total human RNA was isolated from human white blood cells or liver cells using cell lysis in guanidinium hydrochloride buffer and CsCl-density centrifugation.
- 15 For cloning of the hPR coding sequence, hPR specific cDNA was prepared and used for amplification of the hPR coding sequence in two fragments by PCR.
The following oligonucleotide primers were selected based on the published mRNA sequence (Genbank: NM_000926 and X51730).
- 20 Oligonucleotides used were obtained from MWG, Ebersberg or Metabion, München. All primers used are listed 5' to 3', bases added to introduce restriction sites are in capital letters and restriction sites used for cloning are underlined.
hPGR-5'-primer: CGA GGA tcc agt cgt cat gac tga gc (SEQ ID NO: 9);
25 hPGR-3'-primer: GCA GAA TT cat tat aaa aac tca aga cct cat aat cct gac (SEQ ID NO: 10);
hPGR-internal primer (Sal I) 1: ctc ctc ggg gtc gac cct gg (SEQ ID NO: 11);
hPGR-internal primer (Sal I) 2: cca ggg tcg acc ccg agg ag (SEQ ID NO: 12).

Synthesis of cDNA was performed using 3 µg of total RNA and 200 pmol of the 3'-primer with SuperScript II reverse transcriptase (Gibco BRL). Reaction volume was 50 µl and buffer was used as 5 recommended, supplemented with RNase Inhibitor and 10 mM DTT and 1 mM dNTPs. Before adding the enzyme, samples were heated to 80°C for 10 min, followed by 10 min at 72°C and 10 min at 42°C. SuperScript II RT was added at 42°C and reaction was continued for 15 min at 42°C, 15 min at 50°C and 1 h at 58°C.

10

The cDNA obtained from this synthesis reaction was used to amplify the hPGR coding sequence in two fragments by PCR. One fragment (5') with 5'-primer and internal primer 2 and one fragment (3') with 3' primer and internal primer 1. Reaction setup in 50 µl was : Pwo polymerase (Roche Diagnostics), buffer as supplied by Roche Diagnostics, supplemented with DMSO, 50 pmol of each primer and 0.2 mM dNTPs. Reaction conditions were: 10 min 96°C followed by 35 cycles of 1 min 96°C, 2 min at 59°C, 2 min 72°C and a final extension step at 72°C for 10 min.

15

PCR-products were purified by gel electrophoresis and digested with Sal I. The BamHI and Hind III sites introduced in the primer were not used to avoid cutting at two internal restriction sites of the hPR coding sequence. Both fragments were ligated into pBluescript SK+ vector 20 cut with EcoRV through blunt end ligation into the vector and sticky end ligation through the internal Sal I site. Vectors containing the appropriate insert were identified by mini-prep, restriction digest and sequencing. The obtained vector was designated pTGhPR1.

2. Production of hPR (A-form): Initially, the gene for hPR-B inclusive its 3'-UTR was cut out from pTGH PR1 and cloned in frame in the multiple cloning site of the expression plasmid pFASTBAC HTc (BAC-to-BAC Baculovirus Expression System, Life Technologies). This 5 resulted in an expression cassette of a N-terminally histidine-tagged version of hPR-B under expression control of the viral polyhedrin promotor as shown below. A rTEV protease cleavage site is located between the six histidine residues and the initial methionine of the hPR-B reading frame, which allows removal of the histidine residues 10 from the expressed protein. The N-terminal region of the expression cassettes is shown below.

MSYYHHHHHHDYDIPPTENLYFQ**GAMGIRNST-**hPR-gen**
6 x His _____
15 spacer _____
rTEV cleavage site

Amino acids are presented in the single letter code. The cleavage site of the rTEV protease is represented by **

In order to generate the expression cassette for the truncated hPR-A form, the DNA sequence encoding for the amino acids between Met 1 and Met 165 of the hPR-B form was removed using a PCR-based strategy. Two primer pairs were designed which allowed amplification 25 of either a DNA fragment just downstream of the start AUG of the hPR-B gene and a DNA-fragment just upstream of the AUG coding for Met 165, respectively. In a subsequent PCR reaction these two DNA fragments were annealed to each other at their homologous 3'-ends, and amplified using the outermost amplification primers. The resulting 30 DNA-fragment was digested by EcoRI and Mlu I and the cleavage product was exchanged against the corresponding fragment of the

hPR-B expression cassette in the pFASTBAC HTc vector. Thereby the reading frame coding for an N-terminal histidine tagged version of the hPR-A polypeptide (94kDa) was restored.

This 6×His-tag was utilised for affinity purification of the protein 5 by immobilized cobalt²⁺ affinity chromatography on a TALON® resin (Clontech). The procedure, following the method of Boonyaratanaornkit et al. Mol. Cell. Biol.18, 4471 (1998), was as follows (all steps were carried out at 0 to 8°C):

Sf9 cells were cultivated in monolayer culture in serum free SF900 10 medium. Viral infection of the cells was done at a multiplicity of infection (MOI) of 5-8.

The harvesting was done 48 hours after infection with baculovirus containing the hPR expression cassette and lysed mechanically by homogenising in buffer A containing 20 mM Tris-Cl pH 8.0, 350 mM 15 NaCl, 10 mM imidazol, 5% glycerol and a cocktail of proteinase inhibitors (Complete™ EDTA-free, Roche Diagnostics, Penzberg, Germany). After a 10 min centrifugation at 10000 × g, supernatant originating from 10⁸ cells was incubated for 1 h with 0.5 ml settled TALON® resin equilibrated in buffer A. TALON® was washed with 20 volumes of buffer A. hPR-A was eluted with 10 Vol buffer B, containing 20 all ingredients of buffer A, but 100 mM imidazol. The eluate was concentrated 50-fold and dialysed against 100 volumes buffer C (PBS + 100 nM progesteron) by centrifugal ultrafiltration at a molecular exclusion size of 10 kDa (Centricon Plus-20 PL-10, Millipore, Eschborn, 25 Germany).

3. Determination of identity, purity and yield of hPR-A: Purity and yield of the product were determined by application on denaturing reducing polyacrylamid- gelectrophoresis according to Laemmli, U. 30 et al., Nature 227, 680-685 (1970) and subsequent staining with

coomassie® blue R250. By this one-step procedure hPR-A was enriched to a final specific hPR content of 0.2 - 0.5 mg hPR/mg protein. As depicted in Figure 15, lane A, the final preparation consisted predominantly of two distinct protein species displaying apparent molecular masses of 94 and 74 kDa (Fig. 15, arrows).
5

Yield was estimated by parallel separation of standardised protein preparations. Data taken from a set of three separate experiments hint at a typical yield of 30 µg enriched hPR A-receptor per 10^8 cells.

10 Identity of hPR was determined by immunodetection of the product transferred to nitrocellulose by western blotting with mouse monoclonal antibodies directed against recombinant hPR (PR Ab-1, Oncogene, Cambridge, MA, USA).

15 The final product was transferred to nitrocellulose BA-83 and immunostained as described above. As presented in Figure 15, lane C, three major protein bands were detected, including the two dominant protein species described above. The smaller sized bands may display copurified proteolytic fragments of hPR.

20 Intracellular GFP from adherent cells was detected by a fluorimeter after media was taken off and PBS (colourless) was added. The results are summarized in Fig. 13.

Example 6: Clotting Activity of Human Clotting Factor IX from Transfected 293 T Cells

25 A concentration range of 55 - 95 ng/ml human clotting factor IX has been reached by transfection of 293 T-cells with plasmids containing human factor IX-cDNA (pTGFG 36, 53, 64 and 2) in 11 different experiments using ELISA (Example 4).

30 Clotting activity was determined with a partial thromboplastin time

assay using Cephalin (phosphatidyl ethanolamine) activation with a manual coagulation instrument (ML-2, Instrumentation Laboratories). For the study, 100 µl undiluted supernatant from transfected 293 T-cells, 100 µl deficiency plasma (Progen) and 100 µl Cephalin (Instrumentation Laboratories) were incubated for 5 minutes at 37°C. Coagulation was started by adding 100 µl CaCl₂. Sample coagulation time was compared to normal plasma.

Number of cells [/ml]	Factor IX-concentration [ng/ml]	Clotting time [s]
2,1 × 10 ⁵	36	45
8,7 × 10 ⁵	20	79

- 10 Normal plasma: 37 – 39 s
 Factor IX deficient plasma: 137 – 140 s

Example 7: Analysis of an Additive Effect of Human Clotting Factor IX on the Clotting Time of Mice Blood

- 15 1. Clotting time: Clotting activity was determined with a partial thromboplastin time assay using Cephalin (phosphatidyl ethanolamine) activation with a manual coagulation instrument (KC 4 A, Amelung).
- 20 For the study, 5 µl mouse blood, 20 µl deficiency plasma (Progen) ad 100 µl physiological NaCl and 100 µl DaPPTin (Progen) were incubated for 2 minutes at 37°C. Coagulation was started by adding 100 µl CaCl₂.
- To analyse the additive effect, human clotting factor IX (housestandard, Octapharma) was added to the mouse blood and 25 diluted 1:10 within the system. As it is shown in Figure 15, the additive effect of human clotting factor IX on clotting activity can be

detected up to a limit concentration of 0,07 mIU hFIX/ml (= 31,5 ng/ml).

2. ELISA: The addition of human clotting factor IX to the mouse blood
 55 was monitored by ELISA as described in Example 4. Citrate plasma was made out of mouse blood and human clotting factor IX was added in different concentrations.

No.	Description	Concentration [mIU/ml] hFIX added	Extinction at 405 nm [-]
1.	Mouse Citrate Plasma	7	0,204
2.	Mouse Citrate Plasma	2	0,130
3.	Mouse Citrate Plasma	-	0,099
4.	Control: 1.+2. Antibody without antigen	-	0,096
5.	Control: 1. Antibody without antigen	-	0,072
6.	Control: 2. Antibody without antigen	-	0,085
7.	Substrate (ABTS)	-	0,072

10 Mouse plasma without the addition of human clotting factor IX showed an extinction of 0,099 at 405 nm background. When added human factor IX in a concentration of 2 mIU/ml (= 9 ng/ml human factor IX) the detection limit is reached. It can be deduced that the antihuman factor IX antibodies used in the ELISA are not cross-reactive with
 15 mouse coagulation factor IX.

Example 8: Cloning and Activity Testing of the Human Progesterone Receptor (hPR)

2. Activity Testing: The human progesterone receptor encoded in plasmid pTGHPR1 (s. Example 8.1 above) was tested for its physiological activity. In a functional form and after activation with a progestin like R5020 the receptor should be able to induce the expression of luciferase from a Mouse Mammary Tumor Virus (MTV) promoter.
- 10 To test this 293T cells were grown in phenol red-free DMEM supplemented with 10% charcoal-filtrated fetal calf serum and with or without 10 nM of R5020 (NEN) in 6 well plates. Transfections were performed by the calcium phosphate method using 2 µg of a pSG-hPR1 constructt and pMTV-luc (Hollenberg et al., 1985, Cell 55, p899-906) per well. One day after transfection the cells were washed in PBS and the luciferase expression assayed with the Berthold luciferase kit according to the manufacturer's directions in a fluorimeter (Labsystems). The controls were as follows: R5020 was omitted (PR+MTV) and both plasmids alone were transfected with (PR+R5020, MTV+R5020) and without R5020 (PR, MTV). As positive control a plasmid with a CMV-driven luciferase gene was transfected (pCMV-luc).

As can be seen in Figure 19, there is a clear induction of luciferase expression when all the necessary elements are present, that is human progesterone receptor, progestin R5020 and the MTV-driven luciferase gene (PR+MTV+R5020). The error bars give the standard deviation of a threefold experiment, the readout is relative light units (RLU).

Example 9: Oral Gene Transfer in *in vivo* Animal Experiment

Purpose of experiment: The object of this pilot study is to prove oral gene transfer in an *in vivo* animal experiment. Successful gene transfer is established by coagulation measurement: an additive effect of expressed human factor IX on the coagulation time of healthy murine whole blood is expected. The presence of expression of human factor IX in mouse blood is quantitated by ELISA.

Animals: The animals employed are 35 male C57BL/6J mice from Iffa 10 Credo, France, with an initial age of 9 weeks and a weight of 23-33 g. The mice are kept in groups of 7 animals each in conventional test animal cages with wooden chips in the Institut für Experimentelle Onkologie und Therapieforschung der Technischen Universität München.

15 The animals are fed ad libitum with "Altrum Ratten und Mäuse Haltung" and are given tap water, also ad libitum.

The test animal cages are kept at an ambient temperature of 19-24°C and a humidity of 55-5%. The room is additionally provided with an automatic light supply which maintains a 12 hours rhythm.

20 The test animals are supervised by specialized staff.

Mixture of substances:

Group	Hormone	Hormone receptor	Plasmid	Aqua dest.	Route of administration
1. -	-	-	-	-	-
2. -	100 µl	-	10 µg	-	oral
3. -	-	-	10 µg	100 µl	oral
4. -	-	-	10 µg	50 µl	i.m.
5. -	100 µl	4.35 µg	10 µg	-	oral

Plasmid and hPR: Theragene GmbH
Hormone: Utrogest® by Dr. Kade/Besins Pharma GmbH,
Rigistr. 2, D-12277 Berlin
Aqua dest.: Aqua ad injectabilia Delta-Pharma GmbH, 72793
Pfullingen
Esophageal sound: Vein catheter, diam. 0.5 x 0.9 mm,
Lot 7077 G2221, B. Braun Melsungen AG, Western
Germany
i.m. injection: Micro-Fine 12.7 mm, Becton Dickinson GmbH,
Tullastr. 8-12, D-69126 Heidelberg

Course of experiment: The 35 mice were divided into 5 groups of 7 mice each. One group serves as a control, the second group was daily administered a total of 100 µl of hormone and plasmid via the gastrointestinal tract orally with an esophageal sound, the third group was daily administered a total of 100 µl of plasmid with aqua dest. orally with an esophageal sound, the fourth group was administered a total of 50 µl of plasmid with aqua dest. i.m. into the musculus quadriceps femoris, the fifth group was daily administered a total of 100 µl of hormone, hormone receptor and plasmid orally with an esophageal sound.

About 2-3 hours before the manipulation, the mice were prewarmed under a red light. Immediately before, during and after the manipulation, the mice were examined and supervised by a veterinarian.

Blood sampling from the mice was performed daily from the caudal artery of animals slightly sedated by inhalation anesthesia. For this purpose the artery was punctured with a disposable injection cannula (0.90 x 40 mm). Whole blood welling out of the puncture site (5 µl of blood) was immediately collected with an Eppendorf pipette.

Without further delay, the blood coagulation time in seconds was

determined using an Amelung-Koagulometer KC 4A by means of an aPTT assay (activated partial thromboplastin time). The blood coagulation analysis was always performed by the same person. Immediately after the blood sampling, the bleeding was stopped by
5 compression.

Sedation of the mice was achieved by inhalation anesthesia (active substance: isoflurane: Forene , Abbott GmbH, 65205 Wiesbaden, Western Germany) in a whole body chamber.

The daily manipulation was performed through an overall period of 7
10 days. This was followed by a day (day 8 of experiment) without any manipulation, and at day 9 of experiment, again 5 µl of whole blood was withdrawn from the ventral caudal artery under anesthesia, and the coagulation time established as described above. Further, 0.5-
15 0.75 ml of whole blood was collected intracardially using U-40 insulin syringes (Mikro-Fine 12.4 mm) filled with 50-75 µl of sodium citrate (3.1%), transferred into Eppendorf cuvettes, and about 100 µl of whole blood with citrate was reserved for PCR examination and stored in a cool environment. The remaining citrate blood was centrifuged for
20 10 min using a centrifuge 6000 rpm, 4°C, at 5000 rpm, and the plasma was recovered for the ELISA determination of the factor IX concentration.

Then, the animals were sacrificed using 0.5 ml Narkoren i.p. Immediately after the sacrificing, the animal bodies were dissected.

The following organs were removed from the mice for an
25 immunohistochemical examination: brain, spleen, liver, kidneys, testes, lungs, m. quadriceps femoris, heart, appendix; and frozen at -80°C.

Deviation from the scheduled experimental course: Due to the poor general condition of the mice in the course of the long-term
30 administration series, the administration had to be interrupted at days

3 (except one mouse) and 5 for test group 2 (hormone and plasmid), at days 3 and 5 for group 5 (hormone, hormone receptor and plasmid), and two mice were additionally spared the administration of the reagents at days 2 and 7 of the experiment.

5 The poor general condition is accounted for by the hypnotic effect of the hormone progesterone. It causes the mice to sleep for about 24 hours without eating and drinking. This again has an adverse effect on the water balance of the mice, resulting in exsiccotic phenomena and apathic behavior. Therefore, the mice were prophylactically treated with
10 a subcutaneous administration of 1 ml of 5% glucose solution (Delta Pharma GmbH, 72793 Pfullingen) and 1 ml of Ringer solution (Delta Pharma GmbH, 72793 Pfullingen) when the hormone was administered orally. Among the group which was orally administered hormone, hormone receptor and plasmid, two mice died at days 3 and 6,
15 respectively; they were dissected.

Among the group which was orally administered hormone with plasmid, one mouse was found dead in its cage on day 8 of the experiment; it was also dissected.

20 The results are summarized in Figures 17 and 18. The statistical evaluations were performed according to the generalized linear model with repeated measurements (MANOVA with repeated measurements). In none of the test groups a non-linear course was observed. Therefore, the course was calculated by a simple representation of the linear increase or decrease, namely initial value minus final value per mouse. The particularly interesting difference between the control and the group "plasmid in the hormone with hormone receptor" (group 5) was examined using a T test for independent random samples.

25 Figure 17 shows the mean values of the calculated differences: In the control, for example, this difference was about 50 seconds. The vertical lines show plus and minus one standard deviation from these

values. The T test is based both on the differences between the mean values and on the degree of overlapping which can be seen from these lines: The larger the overlapping, the less is the significance of the mean value differences. Thus, the groups "control" and "plasmid and water i.m." (groups 1 and 5, respectively) are distinguished in a purely numerical way in the mean value, but the degree of overlapping is so high that these groups are not significantly different.

The only significant difference was between group 1 and 5: The decrease of the latter is significantly higher than that of the control ($T = -2.357$; d.f. = 12; $p < 0.05$).

The following Tables contain the concluding statistics and the results of the statistical tests (T test) performed on the differences between the mean values obtained in the course of the test:

15

Group statistics

ADMIN		N	mean value	standard deviation	standard error of the mean value
DIF	control	7	47.3857	58.9946	22.2978
	Hormone, hormone receptor and plasmid orally	7	114.7571	47.3300	17.8891

Test for independent random samples

	Levene test for equal variance		T test for equal mean values							
	F	Significance	T	df	sig. (2-sided)	mean difference	standard error of difference	95% confidence interval of difference		
								lower	upper	
DIF	variances are equal	0.026	0.874	-2.357	12	0.036	-67.3714	28.5869	-129.6570	-5.0858
	Variances are not equal			-2.357	11.461	0.037	-67.3714	28.5869	-129.9833	-4.7596

The human F IX was also detectable in the treated mice of the "hormone-hormone reception and plasmid orally group using an Elisa
 s as described in Example 4.

Claims

1. Use of a nucleic acid construct comprising at least one hormone responsive element (HRE) and a transgene for preparing an agent for gene transfer.
2. The use of claim 1, wherein the at least one HRE is functionally linked to the transgene or not.
- 10 3. The use of claim 1 or 2, wherein the transgene is selected from the group consisting of genes encoding a blood clotting factor, hormone genes, hormone receptor genes, growth factors, enzyme genes, genes encoding cytokines or lymphokines, genes encoding inhibitor substances, genes encoding substances that function as drugs or vaccines, and antisense sequences.
- 15 4. The use of claim 3, wherein the transgene is a gene encoding a blood clotting factor and the agent is suitable for treating hemophilia.
- 20 5. The of claim 4, wherein the human blood clotting factor is selected from the group consisting of factor VIII, factor IX, and von Willebrand Factor (vWF).
- 25 6. The use of claims 1 to 5, wherein the nucleic acid construct comprises 1 to 20, preferably 3 to 10 HRE(s).
7. The use of claim 1 to 5, wherein the at least one HRE is a steroid responsive element, preferably a progesterone responsive element (PRE).

8. The use of claim 5, wherein the HRE is a PRE and the blood clotting factor is factor IX, preferably the factor IX has a nucleotide sequence of 689 to 2071 of SEQ ID NO: 1.
- 5 9. The use of claim 5, wherein the HRE is a PRE and the blood clotting factor is factor VIII.
- 10 10. The use of claim 7 to 9, wherein the PRE has the double stranded DNA sequence comprised of the DNA sequences of SEQ ID NOS: 3 and 4.
11. The use of claims 1 to 10, wherein the construct further comprises functional DNA sequences selected from the group consisting of promoter sequences, enhancer sequences, silencer sequences, origin 15 of replication sequences, integrational sequences, marker genes and switch sequences.
12. The use of claim 11, wherein the construct further comprises a tissue-specific promoter, preferably an α -antitrypsin promoter.
- 20 13. The use according to any one of claims 1 to 12, wherein the agent further comprises a hormone-hormone receptor complex, preferably a steroid-steroid receptor complex.
- 25 14. The use of claim 13, wherein the molar ratio of HRE within the nucleic acid construct to hormone receptor is from 1:1 to 1:10, preferably 1:2 to 1:5, and/or the molar ratio of hormone to hormone receptor is at least 1000:1, preferably at least 10000:1.
- 30 15. The use of claim 13 or 14, wherein the receptor is a progesterone

receptor and the steroid is progesterone or a progesterone derivative.

16. The use of claim 15, wherein the progesterone is natural micronized progesterone solubilized in a liphophilic matrix system
5 and/or the progesterone receptor is hPR-A, hPR-B or comprises the nucleotide sequence of 557 to 933 SEQ ID NO: 9.
17. A nucleic acid construct comprising at least one HRE and a transgene, wherein one of said at least one HREs is not functionally
10 linked to the transgene.
18. The nucleic acid construct of claim 17, which is as defined in claims 3 to 12.
- 15 19. A vector comprising the nucleic acid construct of claim 17 or 18.
20. A transformed cell or transgenic organism comprising the nucleic acid construct as defined in claims 17 or 18 or the vector as defined in claim 19.
- 20 21. A composition of matter comprising a nucleic acid construct comprising at least one HRE and a transgene as defined in claim 17 or 18 and/or a vector as defined in claim 19, said at least one HRE being coupled to a hormone-hormone receptor complex.
- 25 22. The composition of matter of claim 21, wherein the hormone-hormone receptor complex is as defined in claims 13 to 16.
23. The composition of matter of claim 21, wherein the transgene is a
30 gene encoding a blood clotting factor.

24. The composition of matter of claim 21 wherein the blood clotting factor is factor IX.
- 5 25. The composition of matter of claim 21 wherein the blood clotting factor is factor VIII.
- 10 26. A method for preparing the composition of matter as defined in claim 21, which method comprises admixing the nucleic acid construct with the hormone receptor and the hormone.
- 15 27. A pharmaceutical composition comprising the nucleic acid construct of claim 17 or 18, the vector of claim 19, and/or the composition of matter of claim 21 to 25.
- 20 28. The pharmaceutical composition of claim 27, which is suitable for gene transfer, preferably for treating hemophilia.
- 25 29. A method for gene transfer which comprises administering the agent as defined in claims 1 to 16, or the composition of matter as defined in claims 21 to 25 to an organism or to a cellular system.
30. A method for delivering into an organism or into a cellular system a nucleic acid encoding a transgene to be expressed in the cells of the organism or the cells of the cellular system, which method comprises administering an agent as defined in claims 1 to 16 or composition of matter as defined in claims 21 to 25 to the organism or to the cellular system so that the hormone in the composition interacts with the cell membrane and therewith enhances diffusion and transport of the

nucleic acid that is coupled to the hormone-hormone receptor complex across the membrane and into the cell.

31. The method of claim 30, wherein a nucleic acid encoding human factor VIII or factor IX is delivered into the cell.

32. A method of treating blood clotting disorders comprising administering a therapeutically effective amount of the composition of matter of claim 23 to an organism or to a cellular system.

10 33. A method of treating hemophilia B, comprising administering a therapeutically effective amount of the composition of matter of claim 24 to an organism or to a cellular system.

15 34. A method of treating hemophilia A, comprising administering a therapeutically effective amount of the composition of matter of claim 25 to an organism or to a cellular system.

35. Use of a steroid hormone for preparing an agent for gene transfer.

20 36. The use of claim 35, wherein the steroid hormone is a natural micronized steroid hormone, preferably natural micronized progesterone.

25 37. The use of claim 36, wherein the natural micronized steroid hormone is solubilized in a lipophilic matrix system.

38. A method for gene transfer which comprises administering a nucleic acid construct to an organism or to a cellular system, wherein

the nucleic acid construct contains a transgene and is encapsulated in a steroid hormone.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

9/22
Fig. 9

CGCGTTGACATTGATTATTGACTAGTTATAATAGTAATCAATTACGGGTCAATTAGTCATAGCCCATAATGGAGTTC
CCGCTTACATAACTTACCGTAAATGCCCGCCCTGGCTGACCGCCAACGACCCCCGCCATTGACGTCAATAATGACGT
TGTTCCCATACTAAGCCAATAGGACTTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCCACGGCAG
TACATCAAGTGTATCATATGCAAGTACGCCCTATTGACGTCAATGACGGTAAATGCCCGCCCTGGCATTATGCCAG
TACATGACCTTATGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCGGTTTG
GCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGAGTT
TGTTTGGCACAAAATCAACGGACTTCCAAAATGCTGAACAACCTCCGCCATTGACGCAAATGGCGTAGGCGT
GTACGGTGGGAGGTCTATATAAGCAGAGCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAAAC
GACTCACTATAGGGAGACCAAGCTGCATGCCAATTCCGAAAGGTATGCAAGCGCGTGAACATGATCATGGCAGAAC
ACCAGGCCTCATCACCATGCTTTAGGATATCTACTAGTGTGAATGTACAGTGTGATCATGAAAAGC
ACAAAATTCTGAATCGGCCAAGGGTATAATCAGGTAATTGGAAGAGTTGTCAGGAAACCTTGAGAGAGAAATGT
ATGGAAGAAAAGTGTAGTTGAAGAAGCAGAGTGTGACATGCCAATTCCGAAAGGTATGCAAGCGAGCAGT
TGTTGATGGAGATCAGTGTGAGTCAATCATGCTTAAATGGCGCAGTGTGAAAGATGACATTAATTCTATGAATGTT
GGTGTCCCTTGGATTGAAAGGAAAGACTGTGAAATTAGATGTAACTGTAACATGAAATGGCAGATGCCAGCAGTT
TGTAAAAATAGTGTGATAACAAGGTGGTTGCTCTGTACTGAGGGATATGACTGAGAAAACCAGAAGTCTGTGA
ACCAGCAGTGCCTTCCATGTGGAAAGAGTTCTGTTCAAAACCTCTAAGCTCACCGTGTGAGACTGTTTCTG
ATGTGGACTATGTAATTCTACTGAAAGCTGAAACCATTTGGATAACATCACTCAAAGCACCAATCATTAAATGACTC
ACTCGGGTTGTTGGTGAGAAGATGCCAACCCAGGTCAATTCCCTGGCAGGTTGTTGAATGGTAAAGTTGATGCA
CTGTGGAGGCTTATCGTTAATGAAAATGGATTGTAACTGCTGCCACTGTGTTGAAACTGGTGTAAAATTACAGTT
TCGCAGGTGAACATAATTGAGGAGACAGAACATACAGAGCAAAGCGAAATGTAAGTCAATTCTCACCCAC
TACAATGCAAGCTTAAATAAGTACAACCATGACATTGCCCTTCTGGAACACTGGACGAACCCCTAGTGTCAAAACAGCTAC
TACACCTATTGCAATTGCTGACAAGGAATACAGAACATCTCCCTCAATTGGATCTGGCTATGTAAGTGGCTGGGAA
GAGTCTCCACAAAGGGAGATCAGCTTGTGTTGAGTCTGTTAGAGTCCACTGTTGACCGAGCCACATGCTTCA
TCTGAGGAAATTGCAATTGCAACCATGTTCTGCTGTTGAGGAGGAGATGAGATCTGAGGAGGAGATAG
TGGGGGACCCATGTTACTGAAAGTGGAGGACAGTTCTTAAGTGGAAATTAGTGTGGGTTGAGAGACTGCAATGA
AAGGCAAATATGGAATATACCAAGGTATCCGGTATGCAACTGGATTAAGGAAAAAACAGCTCAATTGGA
CGGTGAGCGGCCGCACTCTACTAGAGGATCTTGTGAAGGAACCTACTTCTGTTGACATAATTGACAAACTA
CCTACAGAGATTAAAGCTCTAAGGTAATATAAAATTGTTAAGTGTATAATGTTAAACTACTGATTCTAATTGTTG
TGTATTGTTAGATTCCACCTATGAACTGATGAATGGGAGCAGTGGTGAATGCCCTTAAATGAGGAAAACCTGTTTGT
CAGAAGAAAATGCCATCTAGTGTGAGGACTCTGCTGACTCTCAACATTCTACTCCCTCAGGAAAGAGAGAAAGGTA
GAAGACCCAAGGACTTCCCTCAGAATTGCTAAAGTTTGTGAGTCTGTTAGTAAGTAAACTGCTTGTGCT
TGCTATTACACCACAAAGGAAAAGCTGCACTGCTATAAGAAAATTATGTAAGTAAACTGCTTGTGCT
GGCATAACAGTATAACATACTGTTTCTACTCCACACAGGCAATAGTGTCTGTTAGTAATTAAACTATGCT
CAAATTGGAATATGCAATTGTTGTTAACTGTTTATTGCACTTATAATGGTTACAAATAAGCAATGACATCACAAATT
CACAAATAAGCATTGTTCACTGCAATTGTTGAGTGTGTTGTCACACTCATCAATGTATCTTATCATGCTGGATCC
CCGGTACCCCTAGAGCGAATTAACTGCTGGCGTGTGTTACACGTCGTGACTGGAAAACCTGGCGTACCCAA
CTTAATGCCCTTGCAAGCACATCCCCCTTCCGCACTGGCTTAATGCGAAGAGGCCGACCGATGCCCTTCCAAACA
GTTGCGAGCCTGAATGGCAATGGCGCTGATGCGTATTCTCCTTACGCATCTGCGGTATTTCACACCGCATAT
GGTCACTCTCAGTACAATCTGCTGATGCGCATAGTAAAGCCAGCCCCGACACCCGCTGACCGGCC
TGACGGGCTTGCTGCTCCCGCATCCGCTTACAGAACAGCTGTCAGCTCCGAGCTGCGTGTGAGGTTTC
ACCGTCATACCGAAACGCGCGAGACGAAAGGGGGTACAGCTCGTAGCTAGAACATCATGTTCTGGATATCAGT
TCGTTAGCTAGAACATCATGTTCTGGTACCCCCCTCGTGTACGCTTATTGTTATTCTAAATACATTCAAATAT
TCTTAGACGTCAGGTGGCACTTTCGGGAAATGTGCGCGAACCCCTATTGTTATTCTAAATACATTCAAATAT
GTATCCGCTCATGAGAACATAACCTGATAAAATGCTTCAATAATTGAAAAGGAAAGACTATGAGTATTCAACATTCC
GTGTCGCCCTTATCCCTTTGCGGCATTGCTTCTGTTGCTACCCAGAAACGCTGGTGAAGTAAAGTAAAGAT
GCTGAAGATCAGTGGGTGACGAGTGGGTTACATGAACTGGATCTAACAGCGGTAAAGTCTTGAGAGTTTGC
CGAAGAACGTTCCAAATGATGAGCACTTTAAAGTCTGCTATGTGCGCGGTATTATCCGTATTGACGCCGGCAAG
AGCAACTCGGTGGCCATACACTATTCTCAGAATGACTGGTTGAGTACTCACCAAGTACAGAAAAGCATCTACGGAT
GGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGTATAACACTGCCAACCTACTTCTGACAACGAT
CGGAGGACCGAAGGAGCTAACCGCTTGGCACAACATGGGAGTATGTAACCTGCCCTGATCGTGGGAACCCGGAGC
TGAATGAAAGCCATACCAAACGACGAGCGTGAACCCAGCATGGCTGTACGAAATGGCAACACGTTGCGCAAAC
GGCAACTACTTACTCTAGTCTCCGGCAACAAATTATAGACTGGATGGAGGCGGATAAGTGTGAGGACCACTCTGCG
CTCGGCCCCCTCCGGCTGGTTTATTGCTGATAATTCTGGAGCGGTGAGCGTGGGTCTCGGGTATGTTGAGC
TGGGGCCAGATGGTAAGCCCTCCGTTACGTTGAGTATCTACAGCACGGGAGTCAGGCAACTATGGATGAACGAAATAGA
CAGATGCGTGTGAGAACGAGTGGCTACTGATTAGCTGAACTGGTACTGTCAGACCAAGTTACTCATATATACATTGAGTGA
TTAAAACCTCATTTAAATTAAAGGATCTAGGTGAAGATCTTGTGATAATCTCATGACCAAAATCCCTAACGTG
AGTTTCTGTTCCACTGAGCGTCAGACCCGTAGAAAAGATCAAAGGATCTTCTGAGATCTTGTGAGTACCTTCTG
TGCTGTTGCAAAACAAAAACCCGCTACAGCGGTGTTGCTGGGATCAAGAGCTACCAACTCTTCCGAA
GGTAACCTGGCTTCAGCAGAGCGAGATACCAAAACTGTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAGAAC
CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCTGTACCATGCGCTGCTGGCAGTGGGATAAGTGTGCTTAC
GGGTTGGACTCAAGACGATAGTACCGGATAAGCGCAGCGTGGGCTGAACGGGGGGTCTGACACAGCCCAGTT
GGAGCGAACGACCTACACCGAACCTACAGCGTGTGAGCTATGAGAAAGCGCCACGCTTCCGAAGGGAGAAAGG

10/22

Fig. 9 (continued)

CGGACAGGTATCCGGAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
TATAGTCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATGCTCGTCAGGGGGCGGAGCCTATGGAA
AAACGCCAGCAACCGCCCTTTTACGGTTCTGGCTTTGCTGGCCTTTGCTCACATGTTCTTCCTCGGTTATCCC
CTGATTCTGTGGATAACCGTATTACCGCCTTGAGTGAGCTGATACCGCTCGCCAGCCGAACGACCGAGCGCAGCGAG
TCAGTGAGCGAGGAAGCGGAAGAGCGCCAATACGCAAACCGCCTCTCCCGCGCGTTGGCCGATTCAATTATGCAGCTG
GCACGACAGGTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAAATGTGAGTTAGCTCACTCATAGGCACCC
AGGCTTTACACTTATGCTCCGCTCGTATGTTGTGAAATTGTGAGCGGATAACAATTACACAGGAAACAGCTAT
GACCATGATTACGCCAAGCTCTAGAGCTAGAGCTAGAGAGCTTGCATGCCCTGCAGGTG

11/22
Fig. 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn
35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn
65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
180 185 190

Glu Thr Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu
195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe
210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile
245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn
290 295 300

12/22

Fig. 10 (continued)

Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu
305 310 315 320

Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile
325 330 335

Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr
340 345 350

Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val
355 360 365

Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg
370 375 380

Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His
385 390 395 400

Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val
405 410 415

Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly
420 425 430

Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser
435 440 445

Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
450 455 460

13/22
Fig. 11

Fig. 12a

Fig 12 b

15/22

Fig 12 c

Fig 12 d

16/22
Fig. 13

Detection of GFP expressed from Theragene-vectors (n=16)

Fig. 14

17/22

Fig. 15.

Fig. 16

19/22

Fig. 17

Fig. 18

Fig. 19

21/22

1 MTELKAKGPR APHVAGGPPS PEVGSPLLCR PAAGPFPGSQ TSDTLPEVSA IPISLDGLLF
61 PRPCQGQDPS DEKTQDQQSL SDVEGAYSRA EATRGAGGSS SSPPEKDSDL LDSSVLDLAA
121 PSGPGQSOPPS PPACEVTSSW CLFGPELPED PPAAPATQRV LSPLMSRSGC KVGDSSGTAA
181 AHKVLPRLGS PARQLLLEPAS ESPHWSGAPV KSPQAAAVE VEEEDGSESE ESAGPLLKGK
241 PRALGGAAAG GGAAAVPPGA AAGGVALVPK EDSRFSAPRV ALVEQDAPMA FGRSPLATTV
301 MDFIHVPILP LNHALLAART RQLLEDESYD GGAGAASAF A PPRSSPCASS TPVAVGDFPD
361 CAYPPDAEPK DDAYPLYSDF QPPALKIKEE EEGAEASARS PRSYLVAGAN PAAFPDFPLG
421 PPPPLPPRAT PSRPGEAAVT AAPASASVSS ASSSGSTLEC ILYKAEGAPP QQGPFAAPPC
481 KAPGASGCLL PRDGLPSTS A SAAAAGAAPA LYPALGLNGL PQLGYQAABL KEGLPQVYPP
541 YLNYLRPDSE ASQSPQYSFE SLPOKICLIC GDEASGCHYG VLTCGSKVF FKRAMEGQHN
601 YLCAGRNDI VDKIRRKNCP ACRLRKCCQA GMVLGGRKFK KFNKVRVVRA LDVALPQPL
661 GVPNESQALS QRFTFSPGQD IQLIPPLNL LMSIEPDVIY AGHDNTKPDT SSSLTSLNQ
721 LGERQLLSVV KWSKSLPGFR NLHIDDQITL IQYSWMSLMV FGLGWRSYKH VSGQMLYFAP
781 DLILNEQRMK ESSFYSLCLT MWQIPQEFLK LQVSQEEFLC MKVLLLNTI PLEGLRSQTQ
841 FEEMRSSYIR ELIKAIGLRQ KGVVSSQRF YOLTKLLDNL HDLVKQLHLY CLNTFIQSRA
901 LSVEFPEMMS EVIAAQLPKI LAGMVKPLLF HKK

Fig. 20

22/22

1 ctgaccagcg ccgcctccc cggcccccga cccaggaggt ggagatccct ccggtccagc
 61 cacattcaac acccacttc tcctccctct gcccstatat tcccaaacc ccctccctct
 121 tcctttcc tcctccctg gagacgggg aggagaaaaag gggagtccag tcgtcattgac
 181 tgagctgaag gcaaagggtc cccggctcc ccacgtggcg ggcggccgc cctccccgaa
 241 ggtcgatcc ccactgtgt gtcccccagc cgcaggctcg ttccgggga gccagaccc
 301 ggacacccctt cctgaagttt cggccatacc tatctccctg gacggctac tctccctcg
 361 gcctgccaag ggacaggacc ccccgacga aaagacccagc gaccaggact cgctgtcgga
 421 cgtggagggc gcatattca gagctgaagc tacaagggtt gctggaggca gcagttctag
 481 tccccccagaa aaggacccagc gactgtggc cagttttt gacactctgt tggccccc
 541 aggtccccgg cagagccaa ccagccctcc gcctgccaag gtcaccagct cttggtgcc
 601 gttggggccca gaactttcccg aagatccacc ggctgcccccc gcccaccagc ggggttgtgtc
 661 cccgctcatg agccggctcg ggtcaagggt tggagacccgc tccgggacgg cagctgccc
 721 taaagtgtcg cccggggccca tgtaaccaggc cccggcagctg ctgtccccc cctctgagag
 781 ccctcactgg tccggggccca cagtgaagcc gtctccgcag gccgtgcgg tggaggttga
 841 ggaggaggat ggctctgagt ccgaggagtc tgccggctcg ctctgaagg gcaaaccctcg
 901 ggctctgggt ggcgcggcgg ctggaggagg agccgcggct gtccgcggg gggcggcagc
 961 aggaggcgtc gcccgttcc ccaaggaaga ttcccgcttc tcagcccca ggggtcgccc
 1021 ggtggagcg gacgcggcga tggcccccgg gegctccccc ctggccacca cgggtatgg
 1081 ttcatccac gtgcctatcc tgctctcaaa tcacgccta ttggcagccc gactccggca
 1141 gctgctggaa gacgaaaggta acgacggcgg ggccgggggt gccagccct ttggccggc
 1201 gccggatcca ccctgtgcct cgtccacccc ggtcgtgtc ggcacttcc cccactgcgc
 1261 gtacccggcc gacgcccggc ccaaggacca cgcgtacccct ctctatagcg acttccagcc
 1321 gcccgcctaa aagataaagg aggaggaggaa aggccggag gcctccgcg gtccccg
 1381 ttccctaccc ttggccggta ccaaccggc acgcctcccg gattttccgt tggggccacc
 1441 gccccccgtcg ccgcgcgag cgacccatc cagacccggg gaagccggcgg tgacggccgc
 1501 accccgcact gctcaagtct cgtctgcgtc ctccctgggg tcgaccctgg agtgcattcc
 1561 gtacaaagcg gaggccgcgc cgcggccagca gggccgcgtc ggcgcggccgc octgcaaggc
 1621 gcccggcgcc agcggctgca tgctcccgcc ggacggctcg ccctccaccc cccgcctctgc
 1681 cgccgcgcgc gggccggccc cgcgcgtcta cctgcactc ggccctaacc ggctccgc
 1741 gctcggtctac caggccggcccg tgctcaaggaa gggccgcgc caggctacc cgccttatct
 1801 caactacccgt agggccgatt cagaaggccag ccagagccca caatacagct tggatcatt
 1861 acctcagaag atttgtttaa tctgtgggg tgaagcatca ggctgtcatt atgggtgtc
 1921 tacctgtggg agctgttaagg tcttctttaa gaggcaatg gaaggccagc acaactactt
 1981 atgtgtggaa agaaatgact gcatgttga taaaatccgc agaaaaaact gcccagcatg
 2041 tcgccttaga aagtgtgtc aggctggcat ggtccttgg ggtcaaaaat taaaaaagg
 2101 caataaaatgc agaggctgtca ggcactgtgg tgcgtgtc ctcccacagc cattggcg
 2161 tccaaatgaa agccaaaggcc taagccagag attactttt tcaccaggc aagacataca
 2221 gttgattcca ccactgatca acctgttaat ggcatttggaa ccagatgtga tctatgcagg
 2281 acatgacaac aaaaaacccgt acacccctccag ttctttgtc acaagtccta atcaacttagg
 2341 cgagaggccaa cttcttccat tagtcaaggta gtctaaatca ttgcagggtt ttgcggaaactt
 2401 acatattgtat gaccgataaa ctctcatca gtattctgg atgagcttaa tgggtgtttgg
 2461 tcttaggtgg agatccatc aacatgtcag tggccatgtc ctgtatccat caccgtatct
 2521 aataactaaat gaacagccgaa tggaaaggatc atcattttat tcattatgcc ttaccatgt
 2581 gcagatccca caggaggttt tcaagcttca agttggccaa gaagaggcc tctgtatgaa
 2641 agtattgtta cttcttataa caattccctt ggaaggccca cgaagtccaa cccagtttga
 2701 ggagatgagg tcaagctaca tttagagatc catcaaggca attgtttga ggcaaaaagg
 2761 agttgtgtcg agtcacacgc gtttctatca acttacaaaa cttcttgata acttgcata
 2821 tcttgtcaaa caacttcatc tgcgtgttca gaatacattt atccaggccc gggcactgag
 2881 tggatggtaattt ccagaaatgaa tgcgtgttca acttgcata caattacccca agatattggc
 2941 agggatgggt aaacccttc tcttcataaa

Fig. 21

1

SEQUENCE LISTING

<110> Theragene Biomedical Laboratories GmbH

5 <120> Hormone-Hormone Receptor Complexes and Nucleic Acid
Constructs and Their Use in Gene Therapy

<130> 000065wo/JH/ml

10 <140>
<141>

<160> 19

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 5753

20 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: vector pTGF36

25 <220>

<221> CDS

<222> (689)..(2071)

30 <400> 1

cgcgttgaca ttgattattt actagttattt aatagaatc aattacgggg tcatttagttc 60

atagccata tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac 120

35 cgcggcaacga ccccccggcca ttgacgtcaa taatgacgta tggccata gtaacgcca 180

tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaaactgcc cacttggcag 240

tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300

40 cccgcctggca ttatgcccag tacatgacct tatggactt tcctacttgg cagtagatct 360

acgtatttagt catcgctatt accatggtga tgcgggttttgc acgtacatc aatggcggt 420

45 gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc aatggagtt 480

tgtttggca ccaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540

50 cgcaaatggg cgtaggcgt gtacgggtgg aggtctatat aagcagagct ctctggctaa 600

ctagagaacc cactgcttac tggcttatcg aaattaatac gactcactat agggagaccc 660

aagcttgcat gccaattccg caaaggat atg cag cgc gtg aac atg atc atg 712

Met Gln Arg Val Asn Met Ile Met

55 1

5

60 gca gaa tca cca ggc ctc atc acc atc tgc ctt tta gga tat cta ctc 760
Ala Glu Ser Pro Gly Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu

10

15

20

	agt gct gaa tgt aca gtt ttt ctt gat cat gaa aac gcc aac aaa att Ser Ala Glu Cys Thr Val Phe Leu Asp His Glu Asn Ala Asn Lys Ile 25 30 35 40	808
5	ctg aat cgg cca aag agg tat aat tca ggt aaa ttg gaa gag ttt gtt Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val 45 50 55	856
10	caa ggg aac ctt gag aga gaa tgt atg gaa gaa aag tgt agt ttt gaa Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu 60 65 70	904
15	gaa gca cga gaa gtt ttt gaa aac act gaa aga aca act gaa ttt tgg Glu Ala Arg Glu Val Phe Glu Asn Thr Glu Arg Thr Thr Glu Phe Trp 75 80 85	952
20	aag cag tat gtt gat gga gat cag tgt gag tcc aat cca tgt tta aat Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn 90 95 100	1000
25	ggc ggc agt tgc aag gat gac att aat tcc tat gaa tgt tgg tgg tgg Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro 105 110 115 120	1048
30	ttt gga ttt gaa gga aag aac tgt gaa tta gat gta aca tgt aac att Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile 125 130 135	1096
35	aag aat ggc aga tgc gag cag ttt tgt aaa aat agt gct gat aac aag Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys 140 145 150	1144
40	gtg gtt tgc tcc tgt act gag gga tat cga ctt gca gaa aac cag aag Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys 155 160 165	1192
45	tcc tgt gaa cca gca gtg cca ttt cca tgt gga aga gtt tct gtt tca Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser 170 175 180	1240
50	caa act tct aag ctc acc cgt gct gag act gtt ttt cct gat gtg gac Gln Thr Ser Lys Leu Thr Arg Ala Glu Thr Val Phe Pro Asp Val Asp 185 190 195 200	1288
55	tat gta aat tct act gaa gct gaa acc att ttg gat aac atc act caa Tyr Val Asn Ser Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln 205 210 215	1336
60	agc acc caa tca ttt aat gac ttc act cgg gtt ggt gga gaa gat Ser Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Gly Glu Asp 220 225 230	1384
	gcc aaa cca ggt caa ttc cct tgg cag gtt ttg aat ggt aaa gtt Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val 235 240 245	1432
	gat gca ttc tgt gga ggc tct atc gtt aat gaa aaa tgg att gta act Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr 250 255 260	1480

	gct gcc cac tgt gtt gaa act ggt gtt aaa att aca gtt gtc gca ggt Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly 265 270 275 280	1528
5	gaa cat aat att gag gag aca gaa cat aca gag caa aag cga aat gtg Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val 285 290 295	1576
10	att cga att att cct cac cac aac tac aat gca gct att aat aag tac Ile Arg Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr 300 305 310	1624
15	aac cat gac att gcc ctt ctg gaa ctg gac gaa ccc tta gtg cta aac Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asn 315 320 325	1672
20	agc tac gtt aca cct att tgc att gct gac aag gaa tac acg aac atc Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile 330 335 340	1720
25	ttc ctc aaa ttt gga tct ggc tat gta agt ggc tgg gga aga gtc ttc Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Gly Arg Val Phe 345 350 355 360	1768
30	cac aaa ggg aga tca gct tta gtt ctt cag tac ctt aga gtt cca ctt His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu 365 370 375	1816
35	gtt gac cga gcc aca tgt ctt cga tct aca aag ttc acc atc tat aac Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn 380 385 390	1864
40	aac atg ttc tgt gct ggc ttc cat gaa gga ggt aga gat tca tgt caa Asn Met Phe Cys Ala Gly Phe His Glu Gly Arg Asp Ser Cys Gln 395 400 405	1912
45	gga gat agt ggg gga ccc cat gtt act gaa gtg gaa ggg acc agt ttc Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe 410 415 420	1960
50	tta act gga att att agc tgg ggt gaa gag tgt gca atg aaa ggc aaa Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys 425 430 435 440	2008
55	tat gga ata tat acc aag gta tcc cgg tat gtc aac tgg att aag gaa Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu 445 450 455	2056
60	aaa aca aag ctc act taatgggatc ggtcgagccg ccgcgactct actagaggat Lys Thr Lys Leu Thr 460	2111
	ctttgtgaag gaaccttaact tctgtggtgt gacataattg gacaaactac ctacagagat	2171
	ttaaagctct aaggtaaata taaaattttt aagtgtataa tgggttaaac tactgattct	2231
	aattgttgt gtatttaga ttccaaccta tggaactgat gaatgggagc agtggtgaa	2291
	tgccttaat gagaaaaacc tgffffgctc agaagaaaatg ccatcttagtg atgatgaggc	2351
	tactgctgac tctcaacatt ctactcctcc aaaaaagaag agaaaggtag aagacccaa	2411

ggactttcct tcagaattgc taagttttt gagtcatgct gtgttagta atagaactct 2471
tgcttgctt gctatttaca ccacaaagga aaaagctgca ctgctataca agaaaattat 2531
5 ggaaaaatat tctgtaacct ttataagtag gcataacagt tataatcata acataactgtt 2591
ttttcttact ccacacaggc atagagtgtc tgctattaat aactatgctc aaaaatttgt 2651
tacctttagc ttttaattt gtaaagggt taataagaa tatttgatgt atagtgcctt 2711
10 gactagagat cataatcagc cataccacat ttgttagaggt tttacttgct taaaaaaacc 2771
tcccacacct cccccctgaac ctgaaacata aaatgaatgc aattgttgtt gttaacttgt 2831
15 ttattgcagc ttataatggc tacaaataaa gcaatagcat cacaatttc acaaataaaag 2891
cattttttc actgcattct agttgtgggt tgtccaaact catcaatgtt tcttatcatg 2951
20 tctggatccc cgggtaccct ctagagcgaa ttaattcaact ggcgcgtt ttacaacgtc 3011
gtgactggga aaaccctggc gttacccaac ttaatcgct tgcagcacat ccccctttcg 3071
ccagctggcg taatagcgaa gaggcccgcg ccatcgcccc ttcccaacag ttgcgcagcc 3131
25 tgaatggcga atggcgctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac 3191
accgcataatg gtgcactctc agtacaatct gctctgtatgc cgcatagttt agccagcccc 3251
30 gacaccgcgaa aacaccgcgt gacgcgcctt gacgggctt tctgtcccg gcatccgctt 3311
acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggtttca cctgtatcac 3371
cgaaacgcgcg gagacgaaag ggggggtacc agttcgttag cttagaacatc atgttctggg 3431
35 atatcagctt cgtagctaga acatcatgtt ctggtaaaaa cctcgtgata cgcctatTTT 3491
tataggttaa tgtcatgata ataatggttt ctttagacgtc aggtggact tttcggggaa 3551
40 atgtgcgcgg aacccttatt tgTTTatTTT tctaaataca ttcaaataatg tatccgctca 3611
tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc 3671
aacatttccg tgtgcgcctt attccctttt ttgcggcatt ttgccttctt gttttgtctc 3731
45 acccagaaac gctgggtaaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt 3791
acatcgaact ggatctcaac agcggtaaga tccttggagag ttttcggcccc gaagaacgtt 3851
50 ttccaatgat gagcactttt aaagtctgc tatgtggcgc ggtattatcc cgtattgacg 3911
ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact 3971
caccagtac agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgtc 4031
55 ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga 4091
aggagctaac cgctttttt cacaacatgg gggatcatgt aactcgctt gatcggtggg 4151
60 aaccggagct gaatgaagcc ataccaaacg acgaggctga caccacgatg cctgttagcaa 4211
tggcaacaac gttgcgcaaa ctattaactg gcgaaactact tactctagct tcccgcaac 4271

aattaataga ctggatggag gcggataaaag ttgcaggacc acttctgcgc tcggcccttc 4331
cggtggctg gtttattgct gataaatctg gagccgtga gcgtgggtct cgccgttatca 4391
5 ttgcagcaact gggccagat gttaagccct cccgtatcgt agttatctac acgacgggaa 4451
gtcaggcaac tatggatgaa cggaaatagac agatcgctga gataggtgcc tcactgatta 4511
10 agcattgtta actgtcagac caagtttact cataataact ttagattgtat taaaacttc 4571
attttaatt taaaaggatc taggtgaaga tccttttga taatctcatg accaaaatcc 4631
cttaacgtga gtttcgttc cactgagcgt cagacccgt agaaaaagatc aaaggatctt 4691
15 cttgagatcc ttttttctg cgcgtaatct gctgcttgc aaaaaaaaaa ccaccgctac 4751
cagcggttgtt tggttgccg gatcaagagc taccaactct tttccgaag gtaactggct 4811
20 tcagcagagc gcagatacca aatactgttc ttctagtgtt gccgtatgtt ggccaccact 4871
tcaagaactc tgttagcaccg cctacatacc tcgctctgtt aatcctgtt ccagtggctg 4931
ctgccagtg cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccgata 4991
25 aggccgcagcg gtcgggctga acggggggtt cgtgcacaca gcccagctt gaggcaacga 5051
cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttccgaag 5111
30 ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgacgagg 5171
agcttccagg gggaaacgccc tggtatctt atagctctgtt cgggtttcgc cacctctgac 5231
ttgagcgtcg attttgtga tgctcgtcag gggggcggag cctatggaaa aacgcccagca 5291
35 acgcggcctt tttacggttc ctggccttt gctggcctt tgctcacatg ttcttcctg 5351
cgttatcccc tgattctgtg gataaccgtt ttaccgcctt tgagtgagct gataccgctc 5411
40 gccgcagccg aacgaccgag cgcagcgtt cagtgagcga ggaagcggaa gagcgcccaa 5471
tacgcaaacc gcctctcccc ggcgttggc cgattcatta atgcagctgg cacgacaggt 5531
ttcccgactg gaaagcgggc agtgagcgcac acgcaattaa tgtgagttt ctcactcatt 5591
45 aggccacccca ggcttacac tttatgcttc cggctctat gttgtgtgaa attgtgagcg 5651
gataacaatt tcacacagga aacagctatg accatgatta cgccaaagctc tctagagctc 5711
tagagctcta gagctctaga gagcttgcatt gcctgcaggt cg 5753
50 <210> 2
<211> 461
<212> PRT
55 <213> Artificial Sequence
<223> Description of Artificial Sequence: vector pTGF36
<400> 2
Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
60 1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn
5 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

10 Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn
65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
85 90 95

15 Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
20 115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
130 135 140

25 Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
165 170 175

30 Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
180 185 190

Glu Thr Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu
35 195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe
210 215 220

40 Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Ser Ile
245 250 255

45 Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
50 275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn
290 295 300

55 Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu
305 310 315 320

Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile
325 330 335

60 Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr
340 345 350

Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val
355 360 365

5 Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg
370 375 380

Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His
385 390 395 400

10 Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val
405 410 415

Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly
15 420 425 430

Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser
435 440 445

20 Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
450 455 460

<210> 3
25 <211> 78
<212> DNA
<213> Homo sapiens

<400> 3
30 ggggtaccag cttcgtagct agaacatcat gttctggat atcagcttcg tagctagaac 60
atcatgttct ggtacccc 78

<210> 4
35 <211> 78
<212> DNA
<213> Homo sapiens

<400> 4
40 ggggtaccag aacatgatgt tctagctacg aagctgatat cccagaacat gatgttctag 60
ctacgaagct ggtacccc 78

<210> 5
45 <211> 19
<212> DNA
<213> Homo sapiens

<400> 5
50 agcttgacct cgagcaagc 19

<210> 6
55 <211> 19
<212> DNA
<213> Homo sapiens

<400> 6
60 ggcgcgttgc tcgaggta 19

<210> 7
<211> 43
<212> DNA
<213> Homo sapiens
5
<400> 7
ggaattccgc aaaggtagt cagcgcgtga acatgatcat ggc 43

10 <210> 8
<211> 39
<212> DNA
<213> Homo sapiens

15 <400> 8
cgcgatcca ttaagtgagc ttgtttttt ccttaatcc 39

20 <210> 9
<211> 26
<212> DNA
<213> Homo sapiens

25 <400> 9
cgaggatcca gtcgtcatga ctgagc 26

30 <210> 10
<211> 41
<212> DNA
<213> Homo sapiens

35 <400> 10
gcagaattca ttataaaaac tcaagacctc ataatcctga c 41

40 <210> 11
<211> 20
<212> DNA
<213> Homo sapiens

45 <400> 11
ctcctcgggg tcgaccctgg 20

50 <210> 12
<211> 20
<212> DNA
<213> Homo sapiens

55 <400> 12
ccagggtcga ccccgaggag 20

55 <210> 13
<211> 5905
<212> DNA
<213> Artificial Sequence

60 <220>
<223> Description of Artificial Sequence: vector pTGF53

<400> 13

	cgcgttgcaca ttgattattt	actagttattt	aatagaatc aattacgggg	tcatttagttc	60	
	atagccata tatggagttc	cgcgttacat	aacttacggt	aatggcccg	cctggctgac	120
	cgcggcaacga cccccggcca	ttgacgtcaa	taatgacgt	tgttcccata	gtaacccaa	180
5	tagggacttt ccattgacgt	caatgggtgg	agtatttacg	gtaaaactgcc	caacttggcag	240
	tacatcaagt gtatcatatg	ccaagtgacgc	cccctattga	cgtcaatgac	ggtaaatggc	300
	ccgcctgca ttatgcccag	tacatgaccc	tatgggactt	tcctacttgg	cagtacatct	360
	acgttattgt catcgctatt	accatggtga	tgcggtttt	gcagtgacatc	aatgggcgtg	420
	gatagcgggt tgactcacgg	ggatttccaa	gtctccaccc	cattgacgtc	aatgggagtt	480
10	tgttttggca cccaaatcaa	cgggacttc	aaaaatgtcg	taacaactcc	gccccattga	540
	cgccaaatggg cggtaggcgt	gtacgggtgg	aggtctatat	aagcagagct	ctctggctaa	600
	ctagagaacc cactgctac	tggcttatcg	aaattaataat	gactcaatct	agggagaccc	660
	aagcttgcatt gccaattccg	caaagggttat	gcagcgcgtg	aacatgtatc	tggcagaatc	720
	accaggcctc atcaccat	gccttttag	atatctactc	atgtgtat	gtacagttt	780
15	tcttgatcat gaaaacgcca	aaaaaatttc	gaatccggca	aaagggtata	attcagtaa	840
	atggaaagag ttttgtcaag	ggaaccttga	gagagaatgt	atggaaagaaa	agtgtat	900
	tgaagaagca cgagaagttt	ttgaaaacac	tgaagaaca	actgaatttt	ggaagcagta	960
	tgttgatgga gatcgtgt	agtccaaatcc	atgtttaat	ggcggcagtt	gcaaggatga	1020
	cattaattcc tatgaatgtt	ggtgtccctt	tggatttga	ggaaagaact	gtgaattaga	1080
20	tgtaaacatgt aacattaaga	atggcagatg	cgagcagttt	tgtaaaaata	gtgctgataa	1140
	caaggtgggt tgctccgt	ctgagggata	tcgacttgc	aaaaaccaga	agtccctgt	1200
	accagcagtg ccatttccat	gtggaagagt	ttctgttca	caaacttcta	agtcaccccg	1260
	tgctgagact gttttccctg	atgtggacta	tgtaaattct	actgaagtg	aaaccattt	1320
	ggataacatc actcaaagca	cccaatcatt	taatgacttc	actcgggtt	ttggtgagaa	1380
25	agatgccccaa ccaggtaat	tcccttggca	gggtttttt	aatggtaaaag	ttgtatcatt	1440
	ctgtggggc tctatcgta	atggaaatg	gattgttaact	gtgcggact	gtgttggaaac	1500
	tgggtttaaa attacagtt	tcgcaggta	acataatatt	gaggagacag	aacatacaga	1560
	gcaaaaagcga aatgtgattc	gaattattcc	tcaccacaa	tacaatgcag	ctattaataa	1620
	gtacaaccat gacattgccc	ttctggact	ggacgaaccc	tttagtctaa	acagctacgt	1680
30	tacacctatt tgcatgt	acaaggaata	cacgaacatc	ttccctcaat	ttggatctgg	1740
	ctatgttaat ggctggggaa	gagtcttcca	caaaggaga	tcagctttag	ttcttcagta	1800
	ccttagagtt ccacttgg	accgagccac	atgtcttgc	tctacaaat	tcaccatcta	1860
	taacaacatg ttctgtgt	gcttccatga	aggaggtaga	gattcatgtc	aaggagatag	1920
	tgggggaccc catgttact	aagtggaaagg	gaccgtttt	ttaactggaa	ttattactgt	1980
35	gggtgaagag tggcaatgt	aaggcaaaat	tggatataat	accaaaggat	cccggtatgt	2040
	caactgattt aagaaaaaaa	caaagtcac	ttaatggat	cggtcgagcg	gcccgcactc	2100
	tactagagga tctttgt	ggaaccttac	ttctgtgg	tgacataatt	ggacaacta	2160
	cctacagaga tttaaagctc	taaggtaaat	ataaaat	taagtgtata	atgtgttaaa	2220
	ctactgattc taattttt	tgtat	ttttag	attccaaacct	atggactgt	2280
40	cagtgggta atgcctttaa	tgaggaaaac	ctgtttgt	cagaagaaat	gccatctagt	2340
	gatgtatgg ctactgt	ctctcaacat	tctactcc	aaaaaaagaa	gagaaaggta	2400
	gaagaccca aggacttcc	ttcagaattt	ctaagtttt	tgagtcatgc	tgtgtttagt	2460
	aatagaactc ttgttgc	tgcttattac	accacaaagg	aaaagctgc	actgtatatac	2520
	aagaaaaattt tgaaaaataa	ttctgttacc	ttttaatgt	gcccataacag	ttataatcat	2580
45	aacatactgt tttttcttac	tccacacagg	cataggtt	ctgtatgt	taactatgt	2640
	caaaaaatttgt gtacctttag	cttttaattt	tgtaaagggg	ttaataagga	atatttgat	2700
	tatagtgcct tgactagaga	tcataatcg	ccataccaca	ttttagtgg	ttttacttgc	2760
	tttaaaaaac ctcccacacc	tccccctgaa	cctgaaacat	aaaatgtat	caattgtgt	2820
	tgttaacttg ttatgtc	tttataatgg	ttacaataaa	agcaatagca	tcacaaat	2880
50	cacaaataaa gcattttttt	cactgcattc	tagtgtgg	ttgtccaaac	tcatcaatgt	2940
	atcttatcat gtctggatcc	ccgggggta	ccagctcgt	agctagaaca	tcatgttctg	3000
	ggatattcage ttctgt	gaacatcatg	ttctgttacc	cccgctctag	agcgaattaa	3060
	ttcactggcc gtcgttttac	aacgtcgta	ctggaaaac	cctggcggtt	cccaactaa	3120
	tcgccttgca gcacatcccc	tttcgcac	ctggcgtaat	agcgaagagg	cccgccacca	3180
55	tcgccttcc caacagttgc	gcagcctgaa	tggcaatgg	cgcctgtatc	ggtattttct	3240
	ccttacatgt ctgtcggt	tttcacaccc	catatgttgc	actctcgt	caatctgtct	3300
	tgatggccca tagttaagcc	agccccgaca	cccgccaaaca	cccgctgac	cggccctgac	3360
	ggtttgtctg ctccccggcat	ccgcttacag	acaagctgt	accgtctcc	ggagctgcat	3420
	gtgtcagagg ttttacccgt	catcaccgaa	acgcgcgaga	cgaaaggccg	gggttaccaga	3480
60	acatgtatgtt ctatgtac	agctgtatc	ccagaacatc	atgttctagc	tacgaagctg	3540
	gtacccggc ctctgtatac	gccttatttt	atagtttaat	gtcatgataa	taatgtttc	3600
	ttagacgtca ggtggcactt	ttcgggaaa	tgtgcgcgga	acccctattt	gtttat	3660

	tcaatacat	tcaaatatgt	atccgctcat	gagacaataa	ccctgataaa	tgcttcaata	3720
	atattaaaa	aggaagagta	tgagtattca	acatttccgt	gtgcgcccta	ttccctttt	3780
	tgccgcatt	tgccttcctg	ttttgctca	cccagaaacg	ctggtaaaag	taaaagatgc	3840
	tgaagatcg	ttgggtgcac	gagtgggta	catcgactg	gatctcaaca	gcggtaaagat	3900
5	ccttgagagt	tttcgccccg	aagaacgtt	tccaatatgt	agcaccttta	aagttctgtct	3960
	atgtggcg	gtattatccc	gtattgacgc	cgggcaagag	caactcggtc	gccgcataca	4020
	ctattctcg	aatgacttgg	ttgagtaactc	accagtca	aaaagcatac	ttacggatgg	4080
	catgacagta	agagaattat	gcagtgtgc	cataaccatg	agtgataaca	ctggcccaa	4140
10	cttacttcg	acaacgtcg	gaggaccgaa	ggagctaaacc	gctttttgc	acaaacatggg	4200
	ggatcatgt	actgccttg	atcgtggga	acccggagctg	aatgaaggca	taccaaaca	4260
	cgacggtac	accacgtgc	ctgtacaat	ggcaacaacg	ttgcgaaac	tattaactgg	4320
	cgaactactt	actctagtt	ccggcaaca	attaatagac	tggatggagg	cggataaaagt	4380
15	tgcaggacca	cttctgcgt	cgggccttcc	ggctggctgg	tttattgctg	ataaaatctgg	4440
	agccggtag	cgtgggtctc	gcccgtatcat	tgacgactg	ggccagatg	gtaagccctc	4500
	ccgtatcgta	gttatctaca	cgacggggag	tcaggcaact	atggatgaac	gaaaatagaca	4560
	gatcgcttag	ataggtgcct	cactgattaa	gcattggtaa	ctgtcagacc	aagtttactc	4620
20	atataactt	tagattgatt	taaaacttca	tttttaattt	aaaaggatct	aggtgaagat	4680
	ccttttgat	aatctcatga	ccaaaatccc	ttaacgttag	tttcttcc	actgagcgic	4740
	agacccccgt	aaaaagatca	aaggatctt	ttgagatctt	ttttttctgc	gcgtaatctg	4800
25	ctgcttgc	acaaaaaaaaac	caccgc	acgcgggttt	tggttgcgg	atcaagagct	4860
	accaactt	tttccgaagg	taactggctt	cagcagagcg	cagataccaa	atactgtct	4920
	tctagtgt	ccgttagt	gcccacactt	caagaactt	gtacccgc	ctacatacc	4980
	cgcctgtct	atccgttac	cagttgtc	tgccagtgc	gataagtctg	gtcttacccg	5040
30	gttggactca	agacgatagt	taacggataag	gcccgcgt	cgggctgaac	gggggggttc	5100
	tgcacacagc	ccagcttgg	gcgaacgacc	tacaccgaac	tgagataacct	acagcgttag	5160
	ctatgagaaa	gcgcacacgt	tcccgaaggg	agaaaaggccg	acaggatattc	ggtaaagccgc	5220
	agggtcgaa	caggagagcg	cacgagggag	cttccagggg	gaaacgcctg	gtatctttat	5280
35	agtccctgt	gttttcgcca	cctctgactt	gagcgtcgat	ttttgtgatg	ctcgtcaggg	5340
	ggccggagcc	tatggaaaaa	cgcaccaac	gcccgcctt	tacggttct	ggccttttgc	5400
	tggcctttt	ctcacatgtt	cttctctgc	ttatccccctg	attctgtgga	taaccgtatt	5460
	accgcctt	agtgagctga	taccgc	cgccggccaa	cgaccgagcg	cagcgtact	5520
	gtgagcgagg	aagcggaaga	gcgcacata	cgccaaacccg	ctctccccgc	gcgttgcgg	5580
40	attcattat	gcagctggca	cgacagg	cccgacttgc	aagcgggcag	tgagcgcac	5640
	gcaattaatg	tgagttact	cactcattag	gcaccccg	ctttacactt	tatgccttcc	5700
	gctcgatgt	tgtggaaat	tgtgagcgga	taacaattt	acacaggaaa	cagctatgac	5760
	catgattacg	ccaaagcttc	tagagctcta	gagctctaga	gctctagaga	gcttgcac	5820
	cggggtagca	gcttcgtac	tagaacatca	tgttctggga	tatcagcttc	gtagctagaa	5880
	catcatgttc	tggttaccccg	gtcga				5905
45	<210>	14					
	<211>	6052					
	<212>	DNA					
	<213>	Artificial Sequence					
50	<220>						
	<223>	Description of Artificial Sequence: vector pTGF64					
55	<400>	14					
	cgcgttgcaca	ttgattattt	actagttatt	aatagtaatc	aattacgggg	tcattagttc	60
	atagccata	tatggagttc	cgcggttacat	aacttacgg	aatggcccg	cctggctgac	120
	cgcacacgt	ccccccggca	ttgacgtcaa	taatgacgt	tgttccata	gtaacgcac	180
	tagggactt	ccattgacgt	caatgggtgg	agtatttacg	gtaaaactg	cacttggcag	240
60	tacatcaagt	gtatcatat	ccaaatgtacgc	ccccttattt	cgtcaatgac	gttaaatggc	300
	ccgcctggca	ttatgcac	tacatgac	tatggactt	tcctacttgg	cagtcacat	360
	acgttattat	catcgatatt	accatggt	tgccgtt	gcagtcac	aatgggcgt	420
	gatagcggtt	tgacttcacgg	ggatttccaa	gtctccaccc	cattgcgtc	aatgggaggt	480
	tgttttggca	ccaaatcaa	cgggactt	caaaatgtcg	taacaactcc	gccccatgt	540
	cggaaatgg	cggtagcgt	gtacgggtgg	aggtctat	aagcagacgt	cttggctaa	600
	ctagagaacc	cactgc	tggcttatcg	aaattaatc	gactcactat	agggagaccc	660
	aagcttgc	gccaattccg	caaagg	ttatctactc	agtgtgat	gtacagttt	720
	accaggcctc	atcaccat	gcctttagg	atatctactc	agtgtgat	gtacagttt	780

tcttgatcat gaaaacgcca acaaatttct gaatcgccca aagaggata attcaggtaa 840
 attggaaagag ttttgtcaag ggaaccttgc gagagaatgt atggaagaaa agtgtatgtt 900
 tgaagaagca cgagaagttt tgaaaacac taaaaaaca actgaatttt ggaagcagta 960
 tgttgatggatcgtg agtccaatcc atgtttaaat ggcggcagtt gcaaggatga 1020
 5 cattaatttc tatgaatgtt ggtgtccctt tggatttga gaaaagaact gtgaattaga 1080
 tgaacatgt aacattaaga atggcagatg cgagcagtt tgaaaaataa gtgctgataa 1140
 caaggtggtt tgctctgtt ctgagggata tcgacttgc gaaaaccaga agtccctgtga 1200
 accagcagtccatttccat gtggaaagat ttctgttca caaacttcta agtcacccg 1260
 tgctgagact gttttcctg atgtggacta tgtaaattct actgaagctg aaaccatttt 1320
 10 ggataaacatc actcaaagca ccaatcatt taatgactt actcggtt gttgtggaga 1380
 agatgccaaa ccaggtcaat tcccttggca ggttggttt aatggtaaag ttgatgcatt 1440
 ctgtggaggtc tctatcgta atgaaaatgtt gattgttaact gtcggccact gtgttgaac 1500
 tgggtttaaa attacagtgc tcgcaggatc acataatattt gaggagacag aacatacaga 1560
 gcaaaagcgaatgtgatttccatcaccacatcataatcaga 1620
 15 gtacaaccat gacattgccc ttcttggact ggacgaaacc tttagtgcataa acagctacgt 1680
 tacacctatt tgcattgtc acaaggaata cacgaacatc ttcttcaaat ttggatctgg 1740
 ctatgttaatggcttccaaaggagatcataatattt gtcggccact gtgttgaac 1800
 ccttagagtt ccacttggatc accgagccac atgtttcgta tctacaaatgt tcaccatcta 1860
 taacaacatg ttctgtgtt gttccatgaa aggaggataga gattcatgtc aaggagatag 1920
 20 tgggggaccc catgttactg aagtggaaagg gaccagttt ttaacttgaa ttattatgt 1980
 ggggtgaagag tgcataatgaa aaggcaataa tggatatat accaaggat tccggatgt 2040
 caactggattt aaggaaaaaaa caaagctcac ttaatggat cggtcgagcg gcccgcactc 2100
 tactagagga tctttgtgaa ggaaccttac ttctgtgtt tgacataattt ggacaaacta 2160
 cctacagaga tttaaagctc taaggtaat ataaaattttt taatgttata atgtttaaa 2220
 25 ctactgatc taattttttt tgtagtttag attccaaacctt atggactgtc tgaatgggag 2280
 cagtgggttgc atgcctttaa tgaggaaac ctgttttgc cagaagaaat gccatctgt 2340
 gatgtgagg ctactgtca ctctcaacat tctactccctt caaaaaaaaaa gagaagatg 2400
 gaagacccca aggacttcc ttccaaattt ctaagtttt tgagtcatgc tgggttttagt 2460
 aatagaactc ttgttgcattt tgctatttac accacaaagg aaaaagctgc actgtatac 2520
 30 aagaaaattt tggaaaaata ttctgtaaacc ttatataatg ggcataacag ttataatcat 2580
 aacatactgt ttttcttac tccacacagg cataggtgt ctgttattaa taactatgt 2640
 caaaaatgtt gtaccctttag ctttttattt tgtaaagggg ttaataagga atatttgatg 2700
 tatagtgcct tgacttagaga tcataatcag ccataccacat tggtagagg ttttacttgc 2760
 tttaaaaac ctccccacacc tccccctgaa cctgaaacat aaaatgtatg caattttgt 2820
 35 tggtaactt tttttgcattt cttataatgg ttacaaatataa agcaatgtca tcacaaattt 2880
 cacaataaaaa gcattttttt cactgcattt tagttgtgtt tggccaaac tcatcaatgt 2940
 atcttatcat gtctggatcc ccggggggta ccagcttgc agctagaaca tcatgttctg 3000
 ggatatcagc ttcttagtca gaacatcatg ttctgttacc cccctctaga gcaattaaat 3060
 tcactggccg tggatccatc acgtcgttac tggaaaacc ctggcgatc ccaacttaat 3120
 40 cgccttgcac cacatcccc tttcgccagc tggcgatata gcaagaggc cccgacccgat 3180
 cgccttcccc aacagtgcg cagcctgaat ggcgaatggc ggggttaccag ctgcgtatgt 3240
 agaacatcat gttctggat atcagcttc tagctagaac atcatgtt ggtacccgc 3300
 ctgtatgcgtt attttcttct tacgcatttgc tgggttattt caccacgc atgggtgcact 3360
 ctcagtacaa tctgtctgat tggcgatata ttaagccagc cccgacaccc gccaacaccc 3420
 45 gctgacgcgc cctgcacggc ttgttgcctt cggcgatccg ttacacagaca agctgtgacc 3480
 gtctccggat gctgcattgtc tcaaggatgtt tcaccgtcat caccgaaacgc cgcgagacga 3540
 aaggccacca gaacatgtt ttcttagtca gaagctgata tcccaacata tgatgttcta 3600
 gctacgaagc tggatccctt cctcgatata cgccttattttt tataaggat tgcataatg 3660
 ataatgtttt cttagacgtc aggtggactt tttcgggaa atgtgcgcg aacccttattt 3720
 50 tggttatattt tctaaatataa ttcaaatatg tatecgctca tgagacaata accctgataa 3780
 atgcttcaat aatattgaaa aaggaagatgt atgagtttcc aacatttccg tgcgcctt 3840
 atccctttt ttgcggcatt ttgccttcc tttttgtctt acccgaaac gctgggaaa 3900
 gtaaaagatgt ctgaagatca gttgggtgca cgagtgggtt acatcgactt ggtatctcaac 3960
 agcggtaaaga tccctgagat tttcgccccca gaaagacgtt ttccaaatgt gaggactttt 4020
 55 aaagttctgc tatgtggcgc ggttattatcc cgtattgtc cccggcaaga gcaactcggt 4080
 cggccatc actatttctca gaatgttgc gttgatgtt caccgttcc acggacat 4140
 cttacgtatc gcatgacatg aagagaatata tgcgttgc cccatcaccat gaggatgtac 4200
 actgcggccaaacttacttgc gacaacgtc ggaggaccga aggagactac cgcgtttttt 4260
 cacaacatgg gggatcatgt aactcgctt gatgttggg aaccggagct gaatgaagcc 4320
 60 ataccaaaacg acgacgttgc caccacgtt cctgtatgtt tccggcaac attaataatg ctggatggag 4380
 ctattaactg gcaactact tactctatgt tccggcaac attaataatg ctggatggag 4440
 gcgatataaag ttgcaggacc acttctgcgc tccggcccttc cggctggctt gtttattgtt 4500

	gataaatctg	gagccgttga	gcgtgggtct	cgcgttatca	ttgcagcact	ggggccagat	4560
	ggtaagccct	cccgatctgt	agttatctac	acgacgggaa	gtcaggcaac	tatggatgaa	4620
	cgaatagac	agatcgctga	gataggtgcc	tcactgatta	agcatggta	actgtcagac	4680
	caagttact	cataatact	ttagattgat	ttaaaacttc	attttaattt	aaaaggatc	4740
5	taggtgaaga	tccttttga	taatctcatg	accaaaatcc	cttaacgtga	gtttcggttc	4800
	cactgagcgt	cagaccctgt	agaaaagatc	aaaggatctt	cttgagatcc	ttttttctq	4860
	cgcgtatct	gctgcttgc	aacaaaaaaa	ccaccgtac	cagcgggtgt	ttgtttgcgg	4920
	gatcaagagc	taccaactct	ttttccgaag	gtaatcggt	tcagcagagc	gcagataccat	4980
	aatactgtcc	ttctagtgta	gccgttagta	ggccaccat	tcaagaactc	tgtagcacccg	5040
10	cctacatacc	tcgtctgtct	aatctgtta	ccagtggctg	ctgcccattgg	cgatagaatcg	5100
	tgtcttaccg	ggttggactc	aagacgtatag	ttaccggata	aggcgcagcg	gtcgggctga	5160
	acgggggggtt	cgtgcacaca	gcccagctt	gagcgaacga	cctacaccga	actgagatac	5220
	ctacagcgtg	agctatgaga	aagccccacg	tttccggaaag	ggagaaaaggc	ggacaggatat	5280
	ccgtaaagcg	gcaggggtcg	aacaggagag	cgcacgaggg	agcttccagg	ggaaaacgccc	5340
15	tgttatctt	atagtcctgt	cgggttccgc	cacctctgac	ttgagcgtcg	atttttgta	5400
	tgctcgtag	ggggccggag	cctatggaaa	aacgcccaga	acgcggcctt	ttacggttc	5460
	ctggcctttt	gctggccctt	tgctcacatg	ttctttccgt	cgttatcccc	tgattctgtg	5520
	gataaccgta	ttaccgcctt	tgagtggact	gataccgc	gccgcagccg	aacgaccggag	5580
	cgcagcgtgt	cagtggccg	ggggattccag	aacatgtatg	tctagctacg	aagctgatata	5640
20	cccagaacat	gatgttctag	ctacgaagct	ggtacccca	cggaaagagcg	cccaatacgc	5700
	aaaccgcctc	tccccgcgc	ttggccgatt	cattaatgc	gctggcacga	caggtttccc	5760
	gactggaaag	cggggcgtga	ggccaaacgc	attaatgtg	gttagctcac	tcattaggca	5820
	ccccaggctt	tacactttat	gcttccggct	cgtatgttg	gtggatttgt	gagccgataaa	5880
	caatttcaca	caggaaacag	ctatgaccat	gattacgc	agctctctag	agctctagag	5940
25	ctctagagct	ctagagagct	tgcatggccgg	ggtaccagct	tcgttagctag	aacatcatgt	6000
	tctggatata	cagcttcgt	gctagaacat	catgttctgg	taccccggtc	ga	6052

30 <210> 15
<211> 4344
<212> DNA
<213> Artificial Sequence

35 <220>
<223> Description of Artificial Sequence: vector pTGFG67

	<400>	15	tcattagttc	60			
40	cgcgttaca	ttgattattt	actagtattt	aatagtaatc	aattacgggg	ttatccat	60
	atagccata	tatggagg	tcgcgttacat	aacttacgg	aatatggccc	cttggctgac	120
	cggccaacga	cccccgccca	ttgacgtcaa	taatgacgta	tgttccata	gtAACGCCAA	180
	tagggactt	ccattgacgt	caatgggtgg	agtatttacg	gtaaaactgc	cacttggcag	240
	tacatcaagt	gtatcatatg	ccaaagtacgc	cccctattga	cgtcaatgac	ggtaaatggc	300
	ccgcctggca	ttatgcccag	tacatgaccc	tatgggactt	tcctacttgg	cagtacatct	360
	acgtttagt	catcgctatt	accatggtg	tgccgtttt	gcagtcacatc	aatgggcgtg	420
45	gatagcggtt	tgactcagg	ggattttccaa	gtctccaccc	cattgacgtc	aatgggagtt	480
	tgttttggca	caaaaatcaa	cgggactttc	caaaaatgtcg	taacaactcc	gccccatgt	540
	cgcggatggg	cggtagggcg	gtacgggtgg	aggtctat	aagcagagct	ctctggctaa	600
	ctagagaacc	cactgcttac	tggttatacg	aaattaatac	gactcaactat	agggagaccc	660
	aagcttggacc	tcgagcaagc	ggccgcgact	ctactagagg	atctttgtga	aggaaccta	720
50	cttctgtgg	gtgacataat	tggacaaact	acctacagag	attnaaagct	ctaaggtaaa	780
	tataaaaattt	ttaagtgtat	aatgtttaa	actactgatt	ctaattgttt	gtgtatTTA	840
	gattccaacc	tatggaaactg	atgaatggga	gcagtgggtgg	aatgcctta	atgaggaaaa	900
	cctgttttgc	tcagaagaaa	tgcctatctag	tgatgtgag	gctactgctg	actctcaaca	960
	ttctactcct	ccaaaaaaga	agagaaaagg	agaagacccc	aaggacttcc	cttcagaatt	1020
55	gctaagttt	ttgagtcatg	ctgtgtttag	taatagaact	cttgcttgc	ttgtatTTA	1080
	caccacaaag	aaaaaaagctg	cactgtata	caagaaaaatt	atggaaaaat	attctgttaac	1140
	ctttataagt	aggcataaca	gttataatca	taacatactg	ttttttctta	ctccacacag	1200
	gcatagatgt	tctgtatata	ataatctatgc	tcaaaaaatg	tgtacctta	gtcttttaat	1260
	tttgtaaagg	gttataaaagg	aatatTTGAT	gtatagtgc	ttgacttagag	atcataatca	1320
60	gccatcacac	atttgtagag	gttttacttg	ctttaaaaaa	cctcccccac	ctccccctga	1380
	acctgaaaca	taaaatgaat	gcaattgttg	ttgttaactt	gtttattgc	gcttataatg	1440
	gttacaaata	aaqcaataqc	atcacaaatt	tcacaaataaa	agcatttttt	tcactgcatt	1500

ctagttgtgg tttgtccaaa ctcataatc tatcttatca tgtctggatc cccgggtacc 1560
 ctctagagcg aattaattca ctggccgtcg tttacaacg tcgtactgg gaaaacctg 1620
 gcgttaccca acttaatcg cttgcagcac atccccctt cgccagctgg cgtaatacg 1680
 aaggaggccc caccgatcg ctttccaaac agttgcgcag cctgaatggc gaatgggcc 1740
 5 tgatgcgtta ttttcctt acgcattgt gcggtatttc acacgcata tggtcactc 1800
 tcagtacaat ctgcgtcgat gcccatacg taagccagcc ccgcacacccg ccaacacccg 1860
 ctgacgcgcc ctgacgggct tgcgtcgatcc cggcatccgc ttacagacaa gctgtgaccg 1920
 tctccggag ctgcgtgtt cagagggttt caccgtcata accgaaacgc gcgagacgaa 1980
 agggggggta ccagcttcgt agctagaaca tcatgttctg ggatatcgc ttctgtacta 2040
 10 gaacatcatg ttctgttacc cccctcgta tacgcctatt ttataggtt aatgtcatga 2100
 taataatgtt ttcttagacg tcaggtggc ctttcgggg aaatgtgcgc ggaacctcta 2160
 tttgttatt tttctaaata cattcaaata tgatccgt catgagacaa taaccctgtat 2220
 aaatgctca ataatattga aaaaggaaaga gtatgatgt tcaacatccg cgtgtcgccc 2280
 ttatccctt ttttcggca ttgtgcctt cttgcgttgc tcacccagaa acgctggta 2340
 15 aagtaaaaga tgctgaagat cagttgggt cacgagtggg ttacatcgaa ctggatctca 2400
 acagcggtta gatcgttgcg agtttcgcg ccgaagaacg tttccaaatg atgagcaat 2460
 ttaaagtctt gctatgtggc gcggattat cccgtatttg cggccggca gagcaactcg 2520
 gtcgcgcata acactattct cagaatgact tggttgatgtt ctcaccagtc acagaaaaagc 2580
 20 atcttacgga tggcatgaca gtaagagaat tatgcgtgc tgccataacc atgagtgata 2640
 acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagctt accgcctttt 2700
 tgcacaacat gggggatcat gtaactcgcc ttgatcggtt ggaaccggag ctgaatgaag 2760
 ccataccaaa cgacgagcgt gacaccacga tgcctgtacg aatggcaaca acgttgcgca 2820
 aactattaac tggcgaacta cttaactctag ctccctggca acaattataa gactggatgg 2880
 aggccgataa agttgcagga ccacttctgc gctcgccct tccggctggc tggtttattt 2940
 25 ctgataaatc tggagccggt gagcgtgggt ctgcgttatc cattgcgcg ctggggccag 3000
 atggttaagcc ctcccgatc tgatgttatc acacgcggg gagtcaggca actatggatg 3060
 aacgaaatag acatgcgtt gagataggtt cctcaactgtatc taagcattgg taactgtcag 3120
 accaagtttta ctcataatata cttagattt attaaaact tcaattttaa tttaaaagga 3180
 tctaggtgaa gatcctttt gataatctca tgacaaaaat cccttaacgt gagttttcg 3240
 30 tccactgagc gtcagaccccc gtagaaaaaa tcaaaaggatc ttcttgagat ctttttttc 3300
 tgcgcgtaat ctgcgtctt gaaacaaaaa aaccaccgtt accagcggtt gtttgttgc 3360
 cggatcaaga gctaccaact ctcccttccga aggttaactgg cttcagcaga ggcgcagatac 3420
 caaatactgt tctttctatgt tagccgtatc taggcacca cttcaagaac tctgttagcac 3480
 cgcctacata ctcgtctctg taaatccgtt taccatggc tgctgcccagt ggcgataagt 3540
 35 cgtgtcttac cgggtggac tcaagacat agttaccggta aagggcgccg cggtcggct 3600
 gaacgggggg ttcgtcaca cagcccgatc tggagcgaac gacccatcacc gaactgagat 3660
 acctacagcg tgagctatga gaaagcgcca cgcttcccgaa agggagaaag gccggacaggt 3720
 atcccgtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg 3780
 cctggtatct ttatagtcct gtcgggttcc gccacctctg acttgcgttgc cgattttgt 3840
 40 gatgctcgta agggggccgg agcctatggaa aaaaccccgaa caacgcggcc tttttacgg 3900
 tcctggcctt ttgcgtccct tttgcgtcaca tggatcttcc tgcgttatcc cctgattctg 3960
 tggataaccg tattaccgc tttgagttagt ctgataccgc tcggccgcgc cgaacgaccg 4020
 agcgcacgca gtcagtgcgc gaggaaagccg aagggccccc aatacgcaaa ccgcctctcc 4080
 cccgcgttgc gccgattcat taatgcgtt ggcacacag gtttcccgac tggaaagcg 4140
 45 gcaatgtatc caacgcattt aatgtgatgtt agtgcactca ttaggcacc caggettac 4200
 actttatgtt tccggctgtt atgttgcgtt gaaatgtgag cggataacaa ttccacacag 4260
 gaaacagctt tgaccatgtatc taccgcatac tctctagatc tcttagagctc tagagctcta 4320
 gagagcttcgatc atgcctgcgt gtcg 4344

50 <210> 16
 <211> 4496
 <212> DNA
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: vector pTGF82

60 <400> 16
 cgcgttgcata ttgattattt actagttattt aatgtatc aattacgggg tcattatgttc 60
 atagccata tatggatgtt cgcgttacat aacttacgtt aatggcccg cctggctgac 120
 cggccaaacga ccccccggca ttgacgtcaa taatgcgttgc tggatccata gtaacccaa 180

5	tagggacttt	ccattgcacgt	caatgggtgg	agtatttacg	gtaaaactgcc	cacttggcag	240
	tacatcaagt	gtatcatatg	ccaagtacgc	cccctattga	cgtcaatgac	ggtaaatggc	300
	ccgcctggca	ttatgcccag	tacatgacct	tatgggactt	tcctacttgg	cagtacatct	360
	acgtattagt	catcgctatt	accatggtga	tgcggttttg	gcagtgacatc	aatgggcgtg	420
	gatagcggtt	tgactcacgg	ggatticcaa	gtctccaccc	cattgacgtc	aatgggagtt	480
	tgttttggca	ccaaaatcaa	cgggactttc	aaaaatgtcg	taacaactcc	gccccattga	540
	cgc当地ggg	cggtaggcgt	gtacgggtgg	aggcttat	aagcagagct	ctctggctaa	600
10	ctagagaacc	cactgctac	tggcttatcg	aaattaatac	gactctactat	agggagaccc	660
	aagttgacc	tcgcaaga	ggccgcgact	ctactagagg	atcttggta	agaacaccta	720
	cttctgtggt	gtgacataat	tggacaaact	acccatagag	attaaagct	ctaaaggtaaa	780
	tataaaattt	ttaagtgtat	aatgtgttaa	actactgatt	ctaatgttt	gtgtatTTA	840
	gattccaacc	tatggactg	atgaatggga	gcagtgggtgg	aatgcctta	atgagggaaaa	900
	cctgttttgc	tcagaagaaa	tgccatctag	tgatgatgag	gctactgctg	actctcaaca	960
15	ttctactcct	ccaaaaaaga	agagaaaggt	agaagacccc	aaggacttc	cttcagaattt	1020
	gctaagttt	ttgagtcatg	ctgtgtttag	taatagaact	cttgcttgc	ttgctattt	1080
	caccacaaag	aaaaaagctg	cactgctata	caagaaaatt	atggaaaaat	attctgtaac	1140
	ctttataagt	aggcataaca	gttataatca	taacatactg	ttttttctta	ctccacacag	1200
	gcatagagtg	tctgtctat	ataactatgc	tcaaaaattt	tgtacttta	gttffffttat	1260
	ttgttaaaggg	gttataaagg	aatattttat	gtatagtgcc	ttgactagag	atcataatca	1320
20	gccataccac	atttgttagag	gtttacttgc	ttttttttttt	tttgcataatca	ttttttttttt	1380
	acctgaaaca	taaaatgaat	gcaattgttg	ttgttaactt	gtttatttgc	gtttttttttt	1440
	gttacaaata	aagcaatagc	atcacaattt	tcacaatataa	agcattttttt	toactgcatt	1500
	ctagttgtgg	tttgccaaa	ctcatcaatg	tatcttatca	tgtctggatc	ccccgggggggt	1560
	accagcttcg	tagctagaac	atcatgttct	gggatatcag	ttcgttagct	agaacatcat	1620
25	gttctgttac	ccccctctag	agcgaattaa	ttcactggcc	gtcgttttac	aacgtcgta	1680
	ctgggaaaac	cctggcgta	cccaacttaa	tcgccttgc	gcacatcccc	cttcgcacag	1740
	ctggcgtaat	agcgaagagg	cccgacccga	tcgcccctcc	caacagttgc	gcagcctgaa	1800
	tggcgaaatgg	cgcctgtatc	ggtattttct	ccttacgc	ctgtcggtt	tttcacacccg	1860
	catatgttgc	actctcgat	caatctgtc	tgatgtccga	tagttaagcc	agccccgaca	1920
30	cccgccaaca	cccgctgta	cccccgtacg	ggttgtctg	cttccggat	ccgtttagac	1980
	acaagctgt	accgtctccg	ggagctgc	gtgtcagagg	ttttccatgt	catcaccgaa	2040
	acgcgcgaga	cgaaaggcg	gggttaccaga	acatgatgtt	ctagctacga	agctgatatac	2100
	ccagaacatg	atgttctagc	tacgaagctg	gtaccccccgc	ctcgtgat	gccttattttt	2160
	ataggttaat	gtcatgataa	taatggttt	tttagacgtca	gttggactt	ttcggggaaa	2220
35	tgtgcgcgga	acccttattt	gtttattttt	ctaaatacat	tcaaataatgt	atccgtcat	2280
	gagacaataa	ccctgataaa	tgcttcaata	atattggaaa	aggaagagta	tgagtattca	2340
	acatttccgt	gtcgccctta	ttcccttttt	tgcggcattt	tgccttcctg	tttttgcctca	2400
	cccgaaaaacg	ctgggtaaag	taaaagatgc	tgaagatcag	ttgggtgcac	gagtgggtta	2460
	catcgactg	gatctcaaca	gccccatgt	tttgcagatgt	tttgcggcc	aagaacgttt	2520
40	tccaatgtat	agcactttt	aatgttgc	atgtggcg	gttattatcc	gtatgtacgc	2580
	cgggcaagag	caactcggtc	gccgcataca	ctattctcg	aatgacttgg	ttgagtactc	2640
	accagtccaa	gaaaagcatc	ttacggatgg	catgacatgt	agagaattat	gcagtgtc	2700
	cataaccatg	agtgataaca	ctgcggccaa	tttacttctg	acaacatgtc	gaggaccgaa	2760
	ggagctaa	gttttttgc	acaacatgtgg	ggatcatgt	actcgcttgc	atcggtggaa	2820
45	accggagctg	aatgaagcc	taccaaacga	cgagcgtgac	accacatgc	ctgttagcaat	2880
	ggcaacaacg	ttgcgcacac	tattaactgg	cgaactactt	actctagctt	cccgcaaca	2940
	attaatagac	tggatggagg	cggataaaatgt	tgcaggacca	cttctgttgt	ccggcccttc	3000
	ggctggctgg	tttattgtct	ataaaatctgg	agccgggtgg	cgtgggtctc	gggttatcat	3060
	tgccagactg	ggggccatgt	gtacggccat	ccgtatgtca	gttatatac	cgacggggag	3120
50	tcaggcaact	atggatgaac	aaaatagaca	gatcgctgag	atagggtct	cactgttataa	3180
	gcattggtaa	ctgtcagacc	aatgttactc	atataatactt	tagattgatt	taaaatctca	3240
	tttttaattt	aaaaggatct	aggtgaagat	ctttttgtat	aatctcatga	ccaaaatccc	3300
	ttaacgttag	ttttcgatcc	actgagctc	agacccatgt	gaaaagatca	aggatcttc	3360
	ttgagatctt	ttttttctgc	gcgtatctg	ctgcttgc	acaaaaaaac	caccgttacc	3420
55	acgcgggtgtt	tgtttgcgg	atcaagatgt	ccgtatgttgc	accacactt	tttccgaagg	3480
	cagcagagcg	cagataccaa	atactgtct	tcttagtgc	ccgtatgttgc	ccgaccactt	3540
	caagaactct	gtagcaccgc	ctacatactt	cgctctgtca	atccgttac	cagtggctc	3600
	tggcagtgcc	gataagtctg	gttctaccgg	gttggactca	agacgatagt	taccggatata	3660
	ggcgcagcgg	tcgggtgtaa	cggggggtttc	gtgcacacag	cccacgttgg	agcgaacgc	3720
	ctacaccgaa	ctgagatacc	tacagctgt	gtctatggaa	agcgcacgc	ttcccgaaagg	3780
60	gagaaaggcg	gacaggatatc	cggttaagcgg	cagggtcgaa	acaggagacg	gcacgaggaa	3840
	gcttccaggg	ggaaacgcct	ggatcttta	tagtgcgtc	gggttccgccc	acctctqact	3900

tgagcgtcga ttttgtgat gtcgtcagg gggccggagc ctatggaaaa acgccagcaa 3960
 cgcggcttt ttacggtcc tggcctttg ctggccttt gtcacatgt tcttcctgc 4020
 gttatcccct gattctgtgg ataaccgtat taccgcctt gagttagctg ataccgctcg 4080
 ccgcagccga acgaccggcgc gcagcgtc agtgagcggaa gaagcggaa agcgccta 4140
 5 acgcaaaaccg cctctccccg cgcttggcc gattcattaa tgcaagctggc acgacagg 4200
 tcccgactgg aaagcgggca gtgagcgtca cgcaattaat gtgagtttagc tcactcatta 4260
 ggcacccca gctttacact ttatgcttcc ggctcgatg ttgtgtggaa ttgtgagcgg 4320
 ataacaattt cacacaggaa acagctatga ccatgattac gccaagctct ctagagctct 4380
 10 agagctctag agctctagag agcttgcattt ccgggttacc agcttgcgtag ctagaacatc 4440
 atgttctggg atatcagctt cgtagctaga acatcatgtt ctggtaaaaa ggtcga 4496

<210> 17
 <211> 4644
 15 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: vector pTGF95
 20 <400> 17
 cgcgttgcata ttgattattt actagttattt aatagaatc aattacgggg tcattagttc 60
 atagccata tatggagttc cgcttacat aacttacggt aatggcccg cctggctgac 120
 cggccaaacga ccccccggccaa ttgacgtcaaa taatgacgtt tttccata gtaacggccaa 180
 25 tagggacttt ccatttgcgtt caatgggtgg agtatttacg gtaaaactgccc cacttggcag 240
 tacatcaagt gtatcatatg ccaagtacgc cccctatttga cgtcaatgac ggttaatggc 300
 cccgcttggca ttatgcccag tacatgaccc tatggactt tcttacttgg cagttacatct 360
 acgttattttt catcgctattt accatgggttga tgcgggtttt gcaatgtatc aatggggctg 420
 gatagcgtt tgactcacgg ggatttccaa gtctccaccc catttgcgtc gatgggagtt 480
 30 tggtttggca cccaaaatcaa cgggactttc caaaatgtcg taacaacttcc gccccatttga 540
 cgccaaatggg cggtaggcgt gtacgggtgg aggttctat aagcagagat ctctggctaa 600
 cttagagaaacc cactgttttac tggcttacg aaatataatc gacttactat agggagaccc 660
 aagcttggacc tcgaccaacg ggcgcgtactt ctagatggg atctttgttga aggaacctt 720
 cttctgtgggt gtacataat tggacaaactt accttacagat attaaagct ctaaggtaaa 780
 35 tataaaattt ttaatgttat aatgtgtttaa actactgattt ctaattgtttt gtgtattttt 840
 gattccaaacc tatggaaactt atgaatggga gcaatgggtgg aatgccttta atgagggaaaa 900
 cctgttttgc tcagaagaaa tgccatctat tggatgttgc gcaatgttgc actctcaaca 960
 ttctacttcc cccaaaaaaa agagaaaatg agaagacccc aaggactttc cttcagaatt 1020
 gctaagttttt ttgagtcatg ctgtttttttt taatagaactt ctgtttttttt ttgttattttt 1080
 40 caccacaaag gaaaaatgtt cactgttata caagaaaattt atggaaaaat attctgttac 1140
 ctttataatgtt aggccataaca gttataatca taacataactt tttttttttt ctccacacag 1200
 gcatagatgt tctgttataaataactatgc tcaaaaaattt tttttttttt gttttttat 1260
 ttgttaaaagg gttataatagg aatattttgtt gttatgttgc ttgtacttgc atcataatca 1320
 gccataccac attttttttt gttttttttt cttttttttt cttttttttt cttttttttt 1380
 45 acctgaaaca taaaatgtat gcaattttttt ttgtttaactt gttttttttt gttttttttt 1440
 gttacaaata aagcaatgtt atcacaatattt tcacaaatataa agcattttttt tcaactgtt 1500
 ctagttgtgg tttgtccaaa ctcatcaatg tatcttataa tttttttttt cccgggggggt 1560
 accagtttgc tagttagaaac atcatgtttt gggatatcgtt ctttgcgtactt agaacatcat 1620
 gttctgttac ccccttcttgc gcaatgttgc ttgtttaactt gttttttttt 1680
 50 ctggggaaaaac ccttgcgttac ccccaactttt tggcccttgc gcaatgttgc ttgtttaactt 1740
 ctggcgttac aagcaaggggg cccgcacccga tggcccttgc caacatgttgc gcaatgttgc 1800
 tggcgttacgg cggggatccaa gtttgcgttgc tagatgttgc ttgtttaactt gttttttttt 1860
 gtagcttggaa catcatgtttt gtttgcgttgc tttttttttt tttttttttt 1920
 gtgcgttacccat tttttttttt tttttttttt tttttttttt tttttttttt 1980
 55 gtttgcgttacccat tttttttttt tttttttttt tttttttttt tttttttttt 2040
 cccggcatcc gtttgcgttacccat tttttttttt tttttttttt tttttttttt 2100
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
 acgaagcttgc tttttttttt tttttttttt tttttttttt tttttttttt 2220
 tacgccttattt tttttttttt tttttttttt tttttttttt tttttttttt 2280
 60 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400
 gtagttagtattt tttttttttt tttttttttt tttttttttt tttttttttt 2460

ctgttttgc tcacccagaa acgctggta aagtaaaaga tgctgaagat cagttgggtg 2520
 cacgagtggg ttacatcgaa ctggatctca acagcggtaa gatccttgag agtttcgcc 2580
 ccgaagaacg ttttccaatg atgagcactt taaaagtct gctatgtggc gccgtattat 2640
 cccgtattga cggccggcaa gagcaactcg gtcgcccacat acaactattct cagaatgact 2700
 5 tggttgagta ctcaccagtc acagaaaaac atcttacgga tggcatgaca gtaagagaat 2760
 tatgcagtgc tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga 2820
 tcggaggacc gaaggagcta accgttttt tgacacaacat gggggatcat gtaactcgcc 2880
 ttgatcggtt ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga 2940
 tgcctgttagc aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag 3000
 10 cttccccgca acaattaata gactggatgg aggccgatata agttgcagga ccacttctgc 3060
 gctcggccct tccggctggc tggtttattt ctgataaattc tgagccggc gaggctgggt 3120
 ctcgcggtat cattgcagca ctggggccag atggtaaagcc cttccgtatc gtagttatct 3180
 acacgacggg gagtccggc actatggat aacgaaatag acagatcgct gagatagggt 3240
 cctcactgtat taaggattgg taactgtcg accaaatgtt ctcataatata ctttagattt 3300
 15 attttaaaat tcatttttaa aaaaaggaa tcttagtggata gatcctttt gataatctca 3360
 tgacaaaaat cccttaacgt gagtttctgt tccactgagc gtcagacccc gtagaaaaaga 3420
 tcaaggatc ttctttagat ctttttttc tgccgtatc ctgctgtttt gaaacaaaaaa 3480
 aaccaccgtt accacgggtg gtttgttgc cggatcaaga gctaccaact cttttccga 3540
 20 aggttaactgg cttcagcaga ggcgcagatac caaatactgt cttcttagt tagccgttagt 3600
 taggcccacca cttcaagaac tctgttagcac cgcctacata cttcgtctg ctaatccgt 3660
 taccagtggc tgctgcccgtt ggcgataagt cgtgttctac cgggttggac tcaagacgt 3720
 agttaccgga taaggcgcag cggtcgggtt gAACGGGGGG ttctgtgcaca cagcccacgt 3780
 tggagcgaac gacctacacc gaaactgatc acctacagcg tgagctatga gaaagcgcaca 3840
 cgctcccgaa agggagaaaag cggcagacgtt atccgttaag cggcagggtc ggaacaggag 3900
 25 agcgcacaggg gtagttcca gggggaaacg cttggatctt ttatagtcct gtcgggtttc 3960
 gccacctctg atttgcgtt cgtttttt gatgctcgtc agggggccgg agcctatgg 4020
 aaaacgcggc caacgcggcc tttttacgtt tcctggcctt ttgctggcctt tttgctcaca 4080
 tggatccatc tgccgttatcc cctgattctg tggataaccg tattaccggc tttgagttag 4140
 30 ctgataccgc tcgcgcgcgc cgaacgcaccg agcgcagcga gtcagtggc gagggttacc 4200
 agaacatgat gttcttagcta cgaagctgtat atcccagaac atgatgttct agctacaaag 4260
 ctggtacccc agcggaaagag cggccaaatac gcaaaaccgc tctccccgcg cggtggccga 4320
 ttcatatcgatc cagctggcac gacaggttt ccgactggaa agcgggcagt gagcgaacgt 4380
 caattatgt gagtttagctc actcattagg caccccgaggc ttacactttt atgctccgg 4440
 35 ctcgtatgtt gtgatggattt gtagccggat aacaatttca cacaggaaac agctatgacc 4500
 atgattacgc caagctctc agagctctag agctctagag ctcttagagat cttgcacatg 4560
 ggggttccatc ttctgtatc agaaccatcat gttctggat atcagcttcg tagctagaac 4620
 atcatgttctc ggtaccccg tcga 4644

40 <210> 18
 <211> 933
 <212> PRT
 <213> Homo sapiens

45 <400> 18
 Met Thr Glu Leu Lys Ala Lys Gly Pro Arg Ala Pro His Val Ala Gly
 1 5 10 15

Gly Pro Pro Ser Pro Glu Val Gly Ser Pro Leu Leu Cys Arg Pro Ala
 50 20 25 30

Ala Gly Pro Phe Pro Gly Ser Gln Thr Ser Asp Thr Leu Pro Glu Val
 35 40 45

55 Ser Ala Ile Pro Ile Ser Leu Asp Gly Leu Leu Phe Pro Arg Pro Cys
 50 55 60

Gln Gly Gln Asp Pro Ser Asp Glu Lys Thr Gln Asp Gln Gln Ser Leu
 65 70 75 80

60 Ser Asp Val Glu Gly Ala Tyr Ser Arg Ala Glu Ala Thr Arg Gly Ala
 85 90 95

Gly Gly Ser Ser Ser Pro Pro Glu Lys Asp Ser Gly Leu Leu Asp
 100 105 110

5 Ser Val Leu Asp Thr Leu Leu Ala Pro Ser Gly Pro Gly Gln Ser Gln
 115 120 125

Pro Ser Pro Pro Ala Cys Glu Val Thr Ser Ser Trp Cys Leu Phe Gly
 130 135 140

10 Pro Glu Leu Pro Glu Asp Pro Pro Ala Ala Pro Ala Thr Gln Arg Val
 145 150 155 160

15 Leu Ser Pro Leu Met Ser Arg Ser Gly Cys Lys Val Gly Asp Ser Ser
 165 170 175

Gly Thr Ala Ala Ala His Lys Val Leu Pro Arg Gly Leu Ser Pro Ala
 180 185 190

20 Arg Gln Leu Leu Leu Pro Ala Ser Glu Ser Pro His Trp Ser Gly Ala
 195 200 205

Pro Val Lys Pro Ser Pro Gln Ala Ala Ala Val Glu Val Glu Glu Glu
 210 215 220

25 Asp Gly Ser Glu Ser Glu Glu Ser Ala Gly Pro Leu Leu Lys Gly Lys
 225 230 235 240

30 Pro Arg Ala Leu Gly Gly Ala Ala Ala Gly Gly Ala Ala Ala Val
 245 250 255

Pro Pro Gly Ala Ala Ala Gly Gly Val Ala Leu Val Pro Lys Glu Asp
 260 265 270

35 Ser Arg Phe Ser Ala Pro Arg Val Ala Leu Val Glu Gln Asp Ala Pro
 275 280 285

Met Ala Pro Gly Arg Ser Pro Leu Ala Thr Thr Val Met Asp Phe Ile
 290 295 300

40 His Val Pro Ile Leu Pro Leu Asn His Ala Leu Leu Ala Ala Arg Thr
 305 310 315 320

45 Arg Gln Leu Leu Glu Asp Glu Ser Tyr Asp Gly Gly Ala Gly Ala Ala
 325 330 335

Ser Ala Phe Ala Pro Pro Arg Ser Ser Pro Cys Ala Ser Ser Thr Pro
 340 345 350

50 Val Ala Val Gly Asp Phe Pro Asp Cys Ala Tyr Pro Pro Asp Ala Glu
 355 360 365

Pro Lys Asp Asp Ala Tyr Pro Leu Tyr Ser Asp Phe Gln Pro Pro Ala
 370 375 380

55 Leu Lys Ile Lys Glu Glu Glu Gly Ala Glu Ala Ser Ala Arg Ser
 385 390 395 400

60 Pro Arg Ser Tyr Leu Val Ala Gly Ala Asn Pro Ala Ala Phe Pro Asp
 405 410 415

Phe Pro Leu Gly Pro Pro Pro Pro Leu Pro Pro Pro Arg Ala Thr Pro Ser
420 425 430

5 Arg Pro Gly Glu Ala Ala Val Thr Ala Ala Pro Ala Ser Ala Ser Val
435 440 445

Ser Ser Ala Ser Ser Ser Gly Ser Thr Leu Glu Cys Ile Leu Tyr Lys
450 455 460

10 Ala Glu Gly Ala Pro Pro Gln Gln Gly Pro Phe Ala Pro Pro Pro Cys
465 470 475 480

Lys Ala Pro Gly Ala Ser Gly Cys Leu Leu Pro Arg Asp Gly Leu Pro
15 485 490 495

Ser Thr Ser Ala Ser Ala Ala Ala Gly Ala Ala Pro Ala Leu Tyr
500 505 510

20 Pro Ala Leu Gly Leu Asn Gly Leu Pro Gln Leu Gly Tyr Gln Ala Ala
515 520 525

Val Leu Lys Glu Gly Leu Pro Gln Val Tyr Pro Pro Tyr Leu Asn Tyr
530 535 540

25 Leu Arg Pro Asp Ser Glu Ala Ser Gln Ser Pro Gln Tyr Ser Phe Glu
545 550 555 560

Ser Leu Pro Gln Lys Ile Cys Leu Ile Cys Gly Asp Glu Ala Ser Gly
30 565 570 575

Cys His Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys
580 585 590

35 Arg Ala Met Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp
595 600 605

Cys Ile Val Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Leu
610 615 620

40 Arg Lys Cys Cys Gln Ala Gly Met Val Leu Gly Gly Arg Lys Phe Lys
625 630 635 640

Lys Phe Asn Lys Val Arg Val Val Arg Ala Leu Asp Ala Val Ala Leu
45 645 650 655

Pro Gln Pro Leu Gly Val Pro Asn Glu Ser Gln Ala Leu Ser Gln Arg
660 665 670

50 Phe Thr Phe Ser Pro Gly Gln Asp Ile Gln Leu Ile Pro Pro Leu Ile
675 680 685

Asn Leu Leu Met Ser Ile Glu Pro Asp Val Ile Tyr Ala Gly His Asp
690 695 700

55 Asn Thr Lys Pro Asp Thr Ser Ser Ser Leu Leu Thr Ser Leu Asn Gln
705 710 715 720

Leu Gly Glu Arg Gln Leu Leu Ser Val Val Lys Trp Ser Lys Ser Leu
60 725 730 735

Pro Gly Phe Arg Asn Leu His Ile Asp Asp Gln Ile Thr Leu Ile Gln
 740 745 750

Tyr Ser Trp Met Ser Leu Met Val Phe Gly Leu Gly Trp Arg Ser Tyr
 5 755 760 765

Lys His Val Ser Gly Gln Met Leu Tyr Phe Ala Pro Asp Leu Ile Leu
 770 775 780

10 Asn Glu Gln Arg Met Lys Glu Ser Ser Phe Tyr Ser Leu Cys Leu Thr
 785 790 795 800

Met Trp Gln Ile Pro Gln Glu Phe Val Lys Leu Gln Val Ser Gln Glu
 805 810 815

15 Glu Phe Leu Cys Met Lys Val Leu Leu Leu Asn Thr Ile Pro Leu
 820 825 830

20 Glu Gly Leu Arg Ser Gln Thr Gln Phe Glu Glu Met Arg Ser Ser Tyr
 835 840 845

Ile Arg Glu Leu Ile Lys Ala Ile Gly Leu Arg Gln Lys Gly Val Val
 850 855 860

25 Ser Ser Ser Gln Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Asn Leu
 865 870 875 880

His Asp Leu Val Lys Gln Leu His Leu Tyr Cys Leu Asn Thr Phe Ile
 885 890 895

30 Gln Ser Arg Ala Leu Ser Val Glu Phe Pro Glu Met Met Ser Glu Val
 900 905 910

Ile Ala Ala Gln Leu Pro Lys Ile Leu Ala Gly Met Val Lys Pro Leu
 35 915 920 925

Leu Phe His Lys Lys
 930

40 <210> 19
 <211> 2970
 <212> DNA
 <213> Homo sapiens

45 <400> 19
 ctgaccagcg ccgcctccccc cggccccca cccaggaggt ggagatccct ccgggtccagc 60
 cacattcaac acccactttc tcctccctct gcccctatat tcccgaaacc ccctccctcc 120
 tccctttcc ctcctccctg gagacgggg aggagaaaag gggagtccag tcgtcatgac 180
 50 tgagctgaag gcaaagggtc cccgggtctcc ccacgtggcg ggcggccgc cctccccga 240
 ggtcgatcc ccactgctgt gtgcggccagc cgcagggtccg ttcccgggga gccagaccc 300
 ggacaccttg cctgaagttt cggccatacc tatctccctg gacgggctac tcttccctcg 360
 gcccggccag ggacaggacc cctccgacga aaagacgcag gaccaggcagt cgctgtcgga 420
 cgtggaggcc gcatattcca gagctgaagc tacaagggtt gctggaggca gcagttctag 480
 55 tccccccagaa aaggacagcg gactgtcgga cagtgtcttg gacactctgt tggcgccctc 540
 aggtccccggg cagagccaaac ccagcccttc cgcctcgag gtcaccagct ttgggtgcct 600
 gtttggccccc gaacttcccg aagatccacc ggctgcccccc gccaccggc gggtgtttgc 660
 cccgctcatg agccggtccg ggtcaaggt tggagacagc tccgggacgg cagctgcccc 720
 taaagtgtcg ccccggggcc tgcaccagc ccggcagctg ctgtccccgg cctctgagag 780
 60 ccctcactgg tccggggccc cagtgaagcc gtctccgcag gccgcgtgcgg tggagggttga 840
 ggaggaggat ggctctgagt ccgaggagtc tgccgggtccg cttctgaagg gcaaacctcg 900
 ggctctgggt ggccggccgg ctggaggagg agcccgccgt gtcccgcccg gggccggcagc 960

	aggagggcgtc	gccctggtcc	ccaaggaaga	ttcccgccttc	tcagcgccca	gggtcgccct	1020
	ggtggagcag	gacgcgcga	tggcgccccgg	gcgcgtccccg	ctggccacca	cggtgatgga	1080
	tttcatccac	gtgcctatcc	tgcctctcaa	tcacgcctta	ttggcagccc	gcaactcgcca	1140
5	gctgctggaa	gacgaaaagt	acgacggggg	ggccggggct	gccagcgctt	ttgccccgccc	1200
	gcccggatca	ccctgtgct	cgtcacccc	ggtcgtgtt	ggcgacttcc	ccgactcgcc	1260
	gtacccggcc	gacggcgagc	ccaaggacga	cgcgatccct	cctatacg	acttccagcc	1320
	gcccgcctca	aagataaaagg	aggaggagga	aggcgccgg	gcctccgcgc	gctccccgg	1380
10	ttcctacett	gtggccggtg	ccaaccccg	agccttccc	gatttcccgt	tggggccacc	1440
	gcccccgctg	ccgcccgcag	cgaccccatc	cagacccggg	gaagcgccgg	tgacggccgc	1500
	acccggccagt	gcctcagtct	cgctcgctc	ctcctcgggg	tcgaccctgg	agtgcattct	1560
	gtacaaaagcg	gaggcgccgc	cgccccagca	gggcccgttc	gcgcgcgcgc	cctgcaaggc	1620
	gcccggccgcg	agcgctgcc	tgctcccgcc	ggacggccctg	ccctccacct	ccgcctctgc	1680
15	cgccgcgcgc	ggggcgccccc	cccgctctca	ccctgcactc	gcctcaacg	ggctccccca	1740
	gctcggtac	caggccgcgc	tgctcaaggaa	gggcctggcc	caggcttacc	cggccctatct	1800
	caactacctg	aggccggatt	cagaaggccag	ccagagccca	caatacactg	tcgagtctt	1860
	acctcagaag	atttgtttaa	tctgtgggg	tgaagatca	ggctgttatt	atgggtgtct	1920
	tacctgtggg	agctgttaagg	tcttctttaa	gaggcaatg	gaagggcagc	acaactactt	1980
	atgtgtgttga	agaaaatgact	gcatcggtt	taaaatccgc	agaaaaaaact	gcccagcatg	2040
20	tcgccttaga	aagtgtgtc	aggctggcat	ggtccttgg	ggtcgaaaat	taaaaatgtt	2100
	caataaaagtc	agagttgtga	gagcaactgg	tgctgttgc	ctcccacagc	cattggcggt	2160
	tccaaatgaa	agccaagccc	taagccagag	attcactttt	tcaccagg	aagacataca	2220
	gttgatttcca	ccactgatca	acctgttaat	gagcattgaa	ccagatgtt	tctatgcagg	2280
25	acatgacaac	acaaaacctg	acacctccag	ttctttgtct	acaagtctt	atcaactagg	2340
	cgagaggccaa	cttctttcag	tagtcaagt	gtctaaatca	ttgcagggtt	ttcgaaactt	2400
	acatattgtt	gaccagataa	ctctcattca	gtatttttgg	atgagctt	tgggtttgg	2460
	tcttagatgg	agatcttaca	acatgttca	tggcagat	ctgttattt	cacctgtatct	2520
	aataactaaat	gaacagcgga	tgaaaagaaatc	atcattctat	tctatatt	ttaccatgt	2580
	gcagatccca	caggagttt	tcaagcttca	agttagccaa	gaagagttcc	tctgttatgaa	2640
30	agtattgtt	cttcttaata	caatttcttt	ggaaggccta	cgaagtcaaa	cccagtttga	2700
	ggagatgagg	tcaagctaca	ttagagagct	catcaaggca	attggtttga	ggcaaaaagg	2760
	agttgtgtcg	agctcacagc	gtttctatca	acttacaaaa	cttcttgata	acttgcata	2820
	tcttgtcaaa	caacttcatc	tgtactgctt	gaatacattt	atccagtccc	gggcactgag	2880
	tgttgatattt	ccagaaaatga	tgtctgaagt	tattgtca	caatttaccca	agatatttggc	2940
	aggatgtgt	aaaccccttc	tctttatcaa				2970

INTERNATIONAL SEARCH REPORT

In. International Application No
PCT/EP 00/01368

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7 C12N15/12 C12N15/57 C12N15/67 C12N15/85 C12N9/64 C07K14/72 C12Q1/68 A61K48/00					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols)					
IPC 7 C12N C07K C12Q A61K					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document, with indication, where appropriate, of the relevant passages				Relevant to claim No.
X	WO 94 28150 A (UNIV MCGILL) 8 December 1994 (1994-12-08) page 5, line 1 - line 11 page 6, line 34 -page 7, line 10 page 6, line 24 - line 28 page 10, line 20 - line 25 page 14, line 14 - line 19 claims 1-11 --- -/-/				1,2,6,7, 11,29,30 3-5,8,9
Y					
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.					
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed					
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *S* document member of the same patent family					
Date of the actual completion of the international search			Date of mailing of the international search report		
6 June 2000			26/06/2000		
Name and mailing address of the ISA			Authorized officer		
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016			Hornig, H		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/01368

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	V. BOONYARATANAKORNKIT ET AL.: "High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells" MOL. CELL. BIOL., vol. 18, no. 8, August 1998 (1998-08), pages 4471-4487, XP002139580 ASM WASHINGTON, DC,US cited in the application the whole document ---	1,2,7
X	WO 94 17182 A (RES INST OF THE PALO ALTO MEDI ;LEAVITT JOHN C (US)) 4 August 1994 (1994-08-04) page 16, line 30 - line 36 page 17, line 1 - line 3; claims 1-16 ---	1,2,6,7, 11,29,30
X	WO 93 20218 A (CONNAUGHT LAB ;FILMUS JORGE (CA); KLEIN MICHEL (CA)) 14 October 1993 (1993-10-14) the whole document ---	1,2,6,11
Y	WO 94 29471 A (GENETIC THERAPY INC) 22 December 1994 (1994-12-22) the whole document ---	3-5,8,9
A	WO 93 23431 A (BAYLOR COLLEGE MEDICINE) 25 November 1993 (1993-11-25) cited in the application the whole document ---	
A	BEATO M ET AL: "Transcriptional regulation by steroid hormones" STEROIDS: STRUCTURE, FUNCTION, AND REGULATION, US, ELSEVIER SCIENCE PUBLISHERS, NEW YORK, NY, vol. 61, no. 4, 1 April 1996 (1996-04-01), pages 240-251, XP004026583 ISSN: 0039-128X the whole document ---	
A	BEATO M: "GENE REGULATION BY STEROID HORMONES" CELL, US, CELL PRESS, CAMBRIDGE, MA, vol. 56, no. 3, 10 February 1989 (1989-02-10), pages 335-344, XP000051659 ISSN: 0092-8674 the whole document ---	
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/01368

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KURACHI S. ET AL: "Regulatory mechanism of human factor IX gene: Protein binding at the Leyden-specific region." BIOCHEMISTRY, (1994) 33/6 (1580-1591). , XP002139581 the whole document -----	
A	CROSSLEY M. ET AL: "Recovery from hemophilia B Leyden: An androgen-responsive element in the factor IX promoter." SCIENCE, (1992) 257/5068 (377-379). , XP002139582 the whole document -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	
PCT/EP 00/01368	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9428150	A 08-12-1994	US 5512483 A AU 6791894 A		30-04-1996 20-12-1994
WO 9417182	A 04-08-1994	AU 6087694 A		15-08-1994
WO 9320218	A 14-10-1993	AU 3883393 A BR 9306167 A EP 0633941 A FI 944451 A JP 2701983 B JP 7501456 T NO 943610 A US 5559027 A		08-11-1993 13-01-1998 18-01-1995 26-09-1994 21-01-1998 16-02-1995 30-11-1994 24-09-1996
WO 9429471	A 22-12-1994	EP 0710288 A JP 8511423 T US 5935935 A		08-05-1996 03-12-1996 10-08-1999
WO 9323431	A 25-11-1993	US 5364791 A AU 685054 B AU 4241793 A AU 6065198 A CA 2135644 A EP 0745121 A JP 7509694 T US 5935934 A US 5874534 A		15-11-1994 15-01-1998 13-12-1993 02-07-1998 25-11-1993 04-12-1996 26-10-1995 10-08-1999 23-02-1999