مسئلهی ۱. مهمونی علی جان (۲۰ نمره)

علی جان که در مهمانی حوصلهاش سر رفته است به بالکن رفته و سوال زیر را برای امتحان پایان ترم طرح کرده است. رشته باینری دوبیتی A را در اختیار داریم. در هر مرحله، به ترتیب سه حرکت زیر را برای بروزرسانی رشته A انجام می دهیم:

۱. رشته باینری دوبیتی B را از میان تمامی رشته های باینری دوبیتی انتخاب میکنیم. با این فرض که احتمال انتخاب تمامی رشته های ممکن با یکدیگر برابر است.

۲. از میان عملیات های بیتی X or X or X or X or X است، یکی را انتخاب میکنیم. X و X اعمال میکنیم و نتیجه را در رشته X ذخیره میکنیم. X عملیات منتخب را روی رشته های X و X اعمال میکنیم و نتیجه را در رشته X

فرض کنید از رشته ۱۱ شروع کنیم. بهطور میانگین، چند مرحله بعد به رشته ۰۰ میرسیم؟

مسئلهی ۲. سوال خسته (۲۰ نمره)

طراح این سوال چون تازه از کوه برگشته حال داستان گفتن برای سوال ندارد و فقط میخواهد لتک امتحان را بزند و برود بخوابد. و برود بخوابد. فرض کنید X_1, X_2, \dots, X_n متغیرهای تصادفی مستقل با توزیع یکنواخت در بازه (a,b) باشند. حال متغیر تصادفی Y را به صورت زیر تعریف میکنیم:

$$Y = \min\{X_1, X_2, ..., X_n\}$$

امید ریاضی متغیر تصادفی Y را محاسبه کنید.

مسئلهی ۳. موبایل زندان رفته (۲۰ نمره)

بهزاد که به تازگی موبایلش را پس گرفته، به قدری خوشحال است که تصمیم گرفته سوال زیر را برای امتحان بدهد. فرض کنید X_i ها دنباله ای از متغیرهای تصادفی مستقل و از یک توزیع یکسان با میانگین μ و واریانس σ^{Y} هستند. از طرفی N یک متغیر تصادفی مستقل از X_i ها با میانگین μ_N است که میتواند مقادیر X_i :... را اتخاذ کند. تعریف میکنیم:

$$S_N = \sum_{i=1}^N X_i$$

الف (۱۰ نمره)

را بدست آورید. $E[{S_N}^\mathsf{Y}|N]$ و $E[S_N|N]$

ب (۱۰ نمره)

را بدست آورید. $var(S_N)$ و $E[S_N]$

مسئلهی ۴. اصن نگران نباش (۱۵ نمره)

طراح این سوال نیز مانند سوال ۲ حال طراحی داستان ندارد و فقط میخواهد یک نصیحت به شما در مورد امتحان بکند که "حاجی اصن نگران نباش".

الف (۵ نمره)

 $Pr(X_i \geqslant t) \leqslant 1/t$ نشان دهید

ب (۵ نمره)

 $Pr(X_i \geqslant t + 1) \leqslant 1/t^{\gamma}$

ج (۵ نمره)

 $Pr(X \geqslant 1 + \Upsilon\sqrt{n}) \leqslant 1/\Upsilon$

مسئلهی ۵. امال، میر، کاپیتان، همون همیشگی (۱۵ نمره)

فرض کنید میر و کاپیتان تصمیم گرفتند به ۲ گروه از دانشجویان آمار درس ML بدهند. هر گروه شامل ۹ دانشجو است و گروه کاپیتان در آزمون نمره میانگین ۱۵ با واریانس ۲.۵ و گروه میر میانگین ۱۷ با واریانس ۲ را کسب کرده است. (برای استفاده از جدول درجه آزادی را برابر ۱۶ در نظر بگیرید)

الف (۲ نمره)

گلی برای نشان دادن یکسان بودن عملکرد کاپیتان و میر باید از چه آزمونی استفاده کند؟

ب (۱۰ نمره)

با سطح ۹۵ درصد فرض خود را بیازمایید. ($\sqrt{\Upsilon} = 1/4$)

ج (٣ نمره)

گلی با حداکثر چه دقتی میتواند ادعا کند که کیفیت تدریس میر و کاپیتان یکسان نیست؟ (بر اساس اعداد موجود در جدول پاسخ خود را بیان کنید محاسبه مقدار دقیق لازم نیست)

مسئلهی ۶. گلی کشته شد (۲۰ نمره)

حسین مدتی ناراحت است. امیرحسین برای کمک به حسین تبدیل به یک غول چراغ جادو شده است و میتواند γ آرزو برای حسین با استفاده از توزیع میرگلی برآورده کند. توزیع میرگلی به این صورت است که خروجی آن یکی از γ حالت γ حالت میرگلی، γ است. امیرحسین (غول چراغ جادو) از توزیع میرگلی، γ داده گرفته است که به یکی از γ حالت فوق هستند. حسین می خواهد ببیند هر کدام از γ , γ , γ ها چه مقداری دارند. با استفاده از تخمینگر MLE به حسین کمک کنید.

 $(p_{\mathsf{Y}} = \mathsf{I} - p_{\mathsf{I}} - p_{\mathsf{Y}}$ کنید که جمع احتمال ها باید ۱ بشود در نتیجه کنید که جمع

با لبخند قشنگ تری :)

t-test table

cum. prob	t.50 0.50	t.75 0.25	t _{.80}	t.85 0.15	t.90 0.10	t.95 0.05	t _{.975} 0.025	t.99 0.01	t.995 0.005	t.999 0.001	t.9995 0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df	0.000	4 000	4.070	4 000	0.070	0.044	40.74	24.00	00.00	040.04	000 00
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965 4.541	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638 1.533	2.353 2.132	3.182 2.776	3.747	5.841 4.604	10.215 7.173	12.924 8.610
4 5	0.000	0.741	0.941	1.190 1.156	1.476	2.132	2.776	3.365	4.032	5.893	6.869
6	0.000	0.727	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856 0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450 3.435	3.725 3.707
26 27	0.000	0.684	0.855	1.057	1.315 1.314	1.708	2.050	2.479	2.771	3.435	3.690
28	0.000	0.683	0.855	1.056	1.313	1.703	2.032	2.473	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
-	Confidence Level										