

Bitwise Operators

- (1) AND 2 2) OR | 3) XOR ^ (9) NOT ~ (Unavy Op)
- 5) left shift <<) 6) Right Shift >7
- 101 5 8 7 =7 5 101 operate on bits

al. Check/Get the itn bit of number.

$$h = 13$$

$$h = 13$$

$$= 100$$

$$= 100$$

$$= 100$$

$$= 100$$

$$= 100$$

$$n = 34$$

$$i = 3$$

int a=5 int b=2

$$(n \ 8(1 < i)) = = 0$$
 0 bit
7 0 1 bit

$$n = 13$$
 $i = 2$

0 00

Zero

get I'm Bit (n,i) of if ((n & (<u>|«i</u>)) 70) return 1 0(1) else return O Ki = 0100000 return n& ((««))

1=2

Set Bit $n = \frac{n \cdot (1 < \epsilon^i)}{n}$ only when in hit is 1

Count total no of Set bits in number N [one] ans = 0 + 1 + 0 +1 (4) an S = 0 +1+0+1 while (M70) { ans = ans + last_bit $X \otimes X \times X \times X \times X$ linteger o or 1 Time O (Log N)

Q. There is a battle going a N levels above the surface earth. The hero which in at earth can take jumps in power of 2. Minimum jumps he will need to reach level N.

$$13 = 1000$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$8 + 4 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

$$10 + 10 + 1$$

6432166 421 666661060 How many its itr i terations log 65 = 6.xx

lug N

Counting set bit takes log N ilevator

No of sets bits + lag N

Negative Numbers

4 bits

4 bits

$$0 \quad 000$$
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1

How -ve no's are actually stored? L) 2's compliment form I if we add negative no's in his from resut of Subtra Chior-() Flipall bits of 5 1011 (2) Add 1 5 + (-5)

> -5 + 1011 (0000) (=

Computer

$$-5(-3)$$
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 (0)
 $($

Java

(Standard)

get I Bit (N, °)

Range of No's

(a) (a) constraints of an array of size N Apparent $A[i] \leq 10^6$, $N = 10^5$

long int ans = 0

for (int x: avv)
$$\ell$$

ans = ans + x

S 10

(h) given two integers, find axb

System

assumes output is

o nonflow

long ans =
$$long(a) + b$$

 $long \times int$
 $long(a) + b$
 $long \times int$

$$P$$

$$ans = 0$$

$$while (N70) ($$

$$ans = ans + (N81)$$

 $ans = ans + \frac{1}{1}$ n = n 77 I last bit

while (N > 0) of $rem = \frac{N\%2}{ans} = ans + rem$

N=N/2

,

0000

00010 = (2)

output = Decimal to Binary N=13 000 66 ans = 0, p = 1N=13 3 7=1 1101 while (N70) { NRI rem = N %.2 0 X 10 = 00 ans = ans + pxrem 3, 0 1 X100 = 100 p = p*10 X 1000 = 1600 N=N=N N = N/2

while (N70) {

1 x l + 0 x lo + 1 x 100

1101

P1+ = N81

ans = ans + $b \times bit$ $b = b \times 10$

N= N77)