

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 6: K-Map(2.7)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: ramahto@fullerton.edu **Phone No**: 657-278-7274

Karnaugh Maps

Switching/Boolean functions can generally be simplified by using the algebraic techniques. However, two problems arise when algebraic procedures are used:

- 1. The procedures are difficult to apply in a systematic way.
- 2. It is difficult to tell when you have arrived at a minimum solution.

The Karnaugh map method is generally faster and easier to apply than other simplification methods.

Two- Variable Karnaugh Maps

Just like a truth table, the Karnaugh map of a function specifies the value of the function for every combination of values of the independent variables.

Example: Two – Variable K-map

	D		
Α		0	1
	0	a ₀ = 1	a ₂ = 0
	1	a ₁ = 1	a ₃ = 0

R

Since A changes and B' does not the answer is B'

Karnaugh Maps (2 – Variable MINTERM Rules)

$$F(A,B) = A'B' + AB' = (A' + A)B' = B'$$

$$F(A,B) = A'B+AB = (A'+A)B = B$$

$$F(A,B) = A'B'+A'B = A'(B'+B) = A'$$
B

$$F(A,B) = AB'+AB = A(B'+B) = A$$

How to Do 2 Groups

 Now suppose F(A,B) = A'B+A'B' +AB, the Karnaugh Map looks like

Since A' does not change in the RED terms but B does then A' remains and B is eliminated.

Since B does not change in the BLUE terms but A does then B remains and A is eliminated.

So,

$$F(A,B) = A'B + A'B' + AB = A' + B$$

Rules for Combining Squares (Simplification, Elimination)

- Can combine 2^k adjacent cells; where 0≤k≤n and n is the number of variables; implies that
 - Can combine 1, 2, 4, 8, 16, etc, cells; a power of 2
 - Cannot combine 3, 5, 6, 7, 9, etc cells
- 2. Want to combine the largest number of cells possible to eliminate as many variables as possible, implies that:
 - Combine 2 cells, eliminate 1 variable
 - Combine 4 cells, eliminate 2 variables
 - Combine 8 cells, eliminate 3 variables
 - Combine 2ⁿ, eliminate n variables
- 3. Once a minterm (maxterm) is used we can use it again
- 4. Avoid redundancy!!!

Karnaugh Maps (2 – Variable MAXTERM Rules)

Any 2 maxterms in adjacent squares that are ANDed will cause removal of the different variable

Looking Back

 Now suppose F(A,B) = A'B+A'B' +AB, the Karnaugh Map looks like

So,
$$F(A,B) = M_2 = A' + B$$

Some times it easier to work the maxterms than the minterms and vice versa

Examples: 2 – Variable K-Maps

EX: simplify the function

$$F(X,Y) = XY' + X'Y \longrightarrow XOR$$
 gate

These 2 configurations that result in selecting the 2 minterms by themselves.

These Represent an

$$F(X,Y) = X'Y + XY' \longrightarrow XNOR$$
 gate

Practice Problem

Simplify the function F(X,Y) = X'Y' + XY' + X'Y

Since X' does not change in the RED terms but Y does then X' remains and Y is eliminated.

Since Y' does not change in the BLUE terms but X does then Y' remains and X is eliminated.

Three- Variable Karnaugh Maps

As with the 2 variable K-MAP the truth table is moved mapped into the table as shown

Gray Code

Α	В	С	F	Term	Coeff
0	0	0	0	m ₀	a ₀
0	0	1	0	m_1	a_1
0	1	0	0	m ₂	a ₂
0	1	1	1	m ₃	a ₃
1	0	0	1	m ₄	a ₄
1	0	1	1	m ₅	a ₅
1	1	0	1	m ₆	a ₆
1	1	1	1	m ₇	a ₇

Α	В	С	Terms
0	0	0	m ₀
0	0	1	m_1
0	1	1	m ₃
0	1	0	m ₂
1	1	0	m ₆
1	1	1	m ₇
1	0	1	m ₅
1	0	0	m ₄

The table uses a gray code for the columns so that the Absorbtion property holds

Groupings of 2

BC

A'B'

01

00

A'B

10

So a group of 2 variables across to adjacent columns eliminates the variable that changes between columns.

Q&A

