Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Домашнее задание по дисциплине «Основы конструирования и технологии производства радиоэлектронных средств»

Выполнил ст. группы РЛ6-61 Филимонов С.В..

Преподаватель Руденко Н.Р.

Информация из ОСТов

Выбор диаметров монтажных отверстий, диаметров контактной площадки, установочный размер и варианты установки выбирались в соответствии с ГОСТ 29137-91 «Формовка выводов и установка изделий электронной техники на печатные платы».

Диаметр монтажного отверстия $D_{\rm M}$ определяется путём прибавления к номинальному диаметру выводов ИЭТ 0.1...0.5мм. Определяем диаметр для каждого ИЭТ, выбирая оптимальные 0.3 или 0.4 мм.

Диаметр контактной площадки $D_{\mathsf{K}\mathsf{\Pi}}$ определяется путём прибавления к диаметру монтажного отверстия 0.6 мм (2*b = 2*0.3 = 0.6м для первого класса точности).

Установочный размер в мм для резисторов, конденсаторов и диодов вариант 1:

Установочный размер в мм для резисторов и конденсаторов вариант 2:

Причём l_0 иR:

	_	_
1.6.	Минимальный размер от корпуса ИЭТ до места изгиба при формовке выв	юдов <i>l</i> ₀ , мм:
	для резисторов, конденсаторов. для микросхем в других ИЭТ в корпусах типа 4 по ГОСТ 17467	
	для микросхем и других 11.51 в корпусах типа 4 по ГОСТ 17407	1,0
	для полупроводниковых приборов	
	для дросселей.	3,5
1.7.	Минимальный внутренний радиус изгиба выводов R , мм:	
	для выводов диаметром или толщиной до 0,5 мм включительно	0,5
	для выводов диаметром или толщиной свыше 0,5 до 1,00 мм включительно	1,0
	для выводов диаметром или толщиной свыше 1,0 мм	1,5

При расчёте установочной площади к габаритным размерам прибавляется 1 мм в качестве расстояния между соседними элементами

Электронные компоненты, входящие в состав устройства

Компонент	Внешний вид	Диаметр монтажного отверстия, диаметр контактной площадки, установочный размер, варианты установки
Резистор (29 шт.: 1.5МОм(3 шт.), 1МОм, 33кОм (6 шт.), 22 кОм, 16 кОм (3 шт.), 10 кОм(11 шт.), 1 кОм (3 шт.), 47 Ом)	Установочная площадь (по 2-му варианту установки): $S_{\text{Vct.}1} = 8 \bullet 4, 5 \approx 36 \text{мi}$ $S_{\text{Vct.}1\Sigma} = 7 \bullet 56 = 252 \text{мi}$	$D_{\text{KП}} = 1,6$ мм Вариант установки 1: 0.5 $l_y = L + 2l_0 + 2R + 2 + 0,6$ $\approx 12,5$ мм Вариант установки 2: 1 1 1 1 1 1 1 1 1 1
Конденсатор (1шт. 0.01 мкФ)	$D=6$ мм, $L=14$ мм, $d=0,6$ м Установочная площадь (по 2-му варианту установки): $S_{\text{Vст.}3}=9,3 \bullet 7=65$ мм $S_{\text{Vст.}3\Sigma}=2 \bullet 65=130$ ми	$D_{ m K\Pi}=1$ мм $D_{ m K\Pi}=1,6$ мм Вариант установки 1: $ \begin{array}{c} 0.5 & 14 \\ \hline & 20 & 0.6 \\ \hline & l_y=L+2l_0+2R+\\ =14+1+2+0,6 \\ \approx 20$ мм Вариант установки 2:

	$F=5$ мм, $L=4,2$ мм, $T=3,8$ г $W=3,8$ мм, $H=5$ мУстановочная площадь: $S_{ extsf{Vct}.5}=5,2ullet 4,8pprox 25$ мі $S_{ extsf{Vct}.5\Sigma}=1ullet 25=25$ м	$l_y=F=5$ МГ
Конденсатор (1шт. 0.033 мкФ)	$D=7$ мм, $L=14$ мм, $d=0,6$ м Установочная площадь (по 2-му варианту установки): $S_{\text{VCT}.6}=9,8 \bullet 8=79$ мм $S_{\text{VCT}.6\Sigma}=1 \bullet 79=79$ мм	$D_{\text{KП}} = 1,6$ мм Вариант установки 1: $l_y = L + 2l_0 + 2R + 2l_0 + 2R + 2l_0 +$
Конденсатор (4шт. 0.1 мкФ)	$D=6$ мм, $L=14$ мм, $d=0$ Установочная площадь (по 2-му варианту установки): $S_{\text{VCT}} = 9.3 \bullet 7 = 6$ $S_{\text{VCT}} = 2 \bullet 65 = 65$	$D_{ m K\Pi}=1$ мм $D_{ m K\Pi}=1,6$ мм $D_{ m K\Pi}=1$

		$l_y = \frac{D+d}{2} + 0.5$ $= \frac{6+0.6}{2} + 0.5$ $\approx 5 \text{MN}$
Конденсатор (1шт. 1 мкФ)	$B = 4$ мм. $L = 5.6$ мм. H $A = 5$ мм Установочная площадь: $S_{\text{VCT }A} = 6.6 \bullet 4 \approx 1$ $S_{\text{VCT }A} = 3 \bullet 26 = 1$	$D_{ m M}=1$ mn $D_{ m K\Pi}=1,6$ mn $J_{ m M}=1$
Конденсатор (2 шт. 4.7 мкФ)	$E - 5$ мм $L - 4.2$ $W = 3,8$ мм, $H = 5$ Установочная площадь: $S_{\text{VCT}.5\Sigma} = 5.2 \cdot 4.8 \approx$ $S_{\text{VCT}.5\Sigma} = 1 \cdot 25 = 2$	$D_{ m M}=1,4{ m MN}$ $D_{ m K\Pi}=2{ m MN}$
Конденсатор (2шт. 6.8 мкФ)	D - 7 $I - 1$ $I - 1$	$D_{ m M}=1$ м $D_{ m Kn}=1,6$ м Вариант установки 1:

Установочная площадь (по 2-му варианту установки): $\begin{array}{c} l_{v} = L + 2l_{0} + 2R + \\ = 14 + 1 + 2 + 0, 6 \\ \approx 20 \text{mn} \end{array}$ $S_{\text{VCT }6} = 9.8 \bullet 8 = 7$ $S_{\text{VCT }6\Sigma} = 1 \bullet 79 = '$ Вариант установки 2: Конденсатор $D_{\rm M} = \sqrt{0, 6^2 \bullet 2, 5^2}$ $D_{\mathrm{K\Pi}} = 3, 2 \underline{\mathrm{MI}}$ подстроечный шайба 10 $l_y = 10$ mn Установочная площадь: $S_{\text{VCT 7}} = 31 \bullet 12 =$ $S_{\text{VOT}} = 1 \bullet 372 =$ Катушка $D_{\rm K\Pi} = 1 {\rm M} {\rm M}$ $D_{\rm K\Pi} = 1,6 {\rm M} {\rm I}$ индуктивности Ø 0,6 10 $A=7\mathrm{MM}, B=9,8\mathrm{MM}, \mathbf{C}=6\mathrm{M}$

	$D=6$ мм Y становочная площадь: $S_{ extsf{VCT}.11}=11ullet 7=77$ мм $S_{ extsf{VCT}.11\Sigma}=1ullet 77=77$ мі	$l_y=10$ mn
Операционный усилитель К140УД6 (3 шт)	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.6 8.7 8.7 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9	$D_{ m K\Pi}=1,2$ МП $D_{ m K\Pi}=1,8$ МП $17,5$ $l_y=17,5$ МП
Транзистор КТ315	$S_{\text{VCT.}8\Sigma} = 1 \bullet 133 = 133$ мі	$D_{ m M}=0,9{ m MN}$ $D_{ m K\Pi}=1,5{ m MN}$

Транзистор $D_{\rm K\Pi} = 0,9 {\rm MI}$ $D_{\rm K\Pi} = 1,5 {\rm MI}$ KT814 Установочная площадь: $l_{v}=\dot{5}$ MN $S_{ extsf{vct.}8} = \pi \bullet 6, 5^2 pprox 133 extsf{MI}$ $S_{\text{VCT}.8\Sigma} = 1 \bullet 133 = 133 \text{MI}$ $D_{\rm M}=1$ MN Реле $D_{\mathsf{K}\mathsf{\Pi}} = 1,6\mathsf{M}\mathsf{N}$ РЭС-55А (3 шт.) $\dot{l}_y = 12,5$ MN ∮1,2 max ∮0,9 max 31,5 max Установочная площадь: $S_{\mathrm{VCT.1}} = 8 \bullet 4, 5 pprox 36 \mathrm{MeV}$ $S_{ extsf{vct}.1\Sigma} = 7 \bullet 56 = 252 extsf{MI}$ Микросхема $D_{\rm M}=0,8{\rm MI}$ **KXA058** $D_{\rm K\Pi}=1,4 {\rm M}{\rm I}$ (1 шт.) $l_y = 15$ mn Установочная площадь: $S_{\mathrm{VCT}.10} = 20, 5 \bullet 8, 5 \approx 174 \mathrm{M}$

 $S_{ extsf{vct}.10\Sigma} = 1 \bullet 174 = 174$ MI

Определение размеров печатной платы

При определении полной площади печатной платы вводят коэффициент её увеличения $K_s=(1,5..3$:

$$S_{\mathsf{пл}} = K_S \sum_{i}^{N} S_{\mathsf{уст},\Sigma i} + S$$

Найдём
$$\sum_{i}^{N} S_{\mathsf{yct},\Sigma}$$
:
$$\sum_{i}^{N} S_{\mathsf{yct},\Sigma i} = \sum_{i=1}^{15} S_{\mathsf{yct},\Sigma i} = 252 + 64 + 130 + 78 + 25 + 79 + 133 + 88 + 174 + 77 + 242 = 1548$$
м Примем $K_s = 1$, ξ Тогда:
$$K_S \sum_{i}^{N} S_{\mathsf{yct},\Sigma i} = 1, 5 \bullet 1961 \approx 2322$$
м

Примем следующие размеры платы без краевых полей a=90мм, b=27,5м, что примерно соответствует соотношению 1:3. Тогда:

$$S_{\text{пл}} = 90 \bullet 27, 5 = 2475 \text{мм}^2$$
 все элементы поместились.

Найдём $S_{\rm KП}$, приняв расстояние от элемента на краю плату до конца платы 5 мм, то есть размер платы становится a=100мм, b=37,5м:

$$S_{\rm KR} = 100 \bullet 5 \bullet 2 + (37, 5 - 0, 5 \bullet 2) \bullet 5 \bullet 2 = 1365$$

Общая площадь печатной платы:

$$S_{\text{пл}} = 2322 + 1365 = 3687$$
м при размерах

a = 100мм, b = 37,5мм, чтопримерносоответствуетсоотношени

Плата в программе:

