

UNIVERSITY^{OF} BIRMINGHAM

Dynamic neural field

Howard Bowman
(based on material prepared by
Dietmar Heinke)

Mind, Brain, and Models

Overview

- Dynamic neuron model
- Dynamic neural field theory
- Application
 - Model of visual search

• Source: Trappenberg p. 190-195

Everything begins with the neuron

Simplifications

- Spikes > Firing rate / population code
- Soma + Dendrites > summation
- Neurotransmitters > weights
- Internal (membrane) activation > weighted summation of incoming activation
- Axon Hillock > activation function
- Synapse: controls interaction

Rate Coding

Hypothesis,

Spiking World

 an assembly of "biological" (spiking) neurons can be represented by a single unit that models the average rate of spiking across that assembly.

Rate Coded Unit

Dynamics

• Greek: force

 Physics: the effect of forces on bodies, i.e. the change of body's motion under the influence of forces.

- Opposite of "static"
- Psychodynamics

Static: Perceptron

Activation function:

$$y_i = g(\sum_{j=1}^{N} w_{ij} \cdot x_j)$$

- w: weights
- y: output activation
- x: input
- g: activation function

Differential equation

 A differential equation is a mathematical equation for a function that relates the value of the function itself and its derivatives.

Applications:

- Physics
- Engineering
- economics

Dynamic neuron model

- Sluggishness of a neuron
- Differential equation:

$$\tau \cdot \frac{\mathrm{d}x(t)}{\mathrm{d}t} = -x(t) + I$$
$$y = f(x)$$

- I: input
- y: output activation
- x: internal (membrane) activation
- f: sigmoid function

Dynamic neuron model

$$\tau \cdot \frac{\mathrm{d}x(t)}{\mathrm{d}t} = -x(t) + I$$

Rate of change = difference between current activation and input activation

Initial value:

$$x(0) = 0$$

Activation function: Sigmoid-function

$$y = f(x) = \frac{1}{1 + e^{-m \cdot (x-s)}}$$

Dynamic neural field theory

 Continuous spatial coordinates are called fields in physics

Neural fields: N-dimensional layers

Short-distance excitation (cooperation)

Long-distance inhibition (competition)

Dynamic neural field theory

Simplified Equations 7.6 – 7.14 (Trappenberg):

$$\tau \frac{dx(k,l)}{dt} = -x(k,l) + \sum_{ij} w(k-i,l-j) \cdot y(i,j) + I(k,l)$$
$$y(k,l) = f(x(k,l))$$

- w: interaction kernel
- I: external input
- y: output activation
- x: membrane activation
- f: sigmoid function

Kernel (2-d)

- C: strength of global inhibition
- σ: spread of excitation
- A: strength of excitation

$$w(i,j) = A \cdot e^{-\frac{i^2 + j^2}{\sigma^2}} - C$$

Bell Shaped in 2-d

Kernel (1-d)

$$w(i) = A \cdot e^{-\frac{i^2}{\sigma^2}} - C$$

- C: strength of global inhibition
- σ: spread of excitation
- A: strength of excitation

Kernel (1-d)

Dynamic neural field

Result

Asymptotic states

Growing activity

Decaying

Memory activity

"Right" level of abstraction

- local computations
- (layered) network of neurons
- dynamic interactions
- non-linearity
- rate code

Reactive Inhibition

Reasons for inhibition

- 1. In field, C does not adapt to "temperature" of field;
- Reactive inhibition:
 - a. Controls activity (bidirectional excitation).
 - **b.** Competition → selection.
 - c. Supports **sparse** distributed representations (consistent with single cell recordings).
 - d. Has localized "regulatory" effect supporting **set-point** behaviour
 - e. Different to **classic Artificial Neural Network** handling of inhibition.

What does sparse mean?

Types of Inhibition

Anticipates excitation

Reacts to excitation

Why is inhibition needed, over and above the leak?

Analogy – air conditioning system and, in general, control theory.

What "problem" can arise from Reacts example?

A neural network model of inhibitory processes in subliminal priming

Howard Bowman

Computing Laboratory, University of Kent at Canterbury, UK

Friederike Schlaghecken

Department of Psychology, University of Warwick, Coventry, UK

Martin Eimer

Department of Experimental Psychology, Birkbeck College, University of London, UK

Negative Compatibility Effect

Experiment:

- prime stimulus << or >>, followed by mask; followed by target, << or >>; followed by speeded response;
- mask makes prime "subliminal".

Behavioural finding

Lateralized Readiness Potential

The Model

No Opponent Process, compatible

No Opponent Process, incompatible

Full Model, with Opponent Process (Masked, ISI 100ms)

Reaction Times from Model, with Opponent Process (Masked, ISI 100ms)

Prediction: Response Systems Oscillate

Figure 33. Separation profiles across conditions in the forced choice condition, in which a 16.666 ms prime is followed by a 100 ms mask and no target is presented.

Visual Search

Theories

- Saliency map
- Serial search
- Parallel search

Visual Search

• Is there a L?

Visual Search

• Is there a L?

Winner take all model of visual search

Reaction times

decreases with contrast (Emergent behaviour)

increases with "number of items"