A TEXT, BOOK OF INORGANIC CHEMISTRY. VOLUME IX. PART II.

In TEN VOLUMES. Medium Svo. Cloth. All prices net. . Fostage extra

INOR ANIC CHEMISTRY

EDITED BY

J. NE WYON ERIEND, D.S. F.I.C., Ph.D.

Volum I., Third Edition Pp.1-Rv | 385. \$128. 64. PART I. An Introduction to Modern Inorganic Chemistry. By J. A. REYDON FRIEND, D.Sc. (B'ham), Ph.D. (Wurz.); H. F. V. LITTEE, R.Sc. (Lond.), A.R.C.S., Chief Chemist to Thorium, Ltd.; W.E. S. Torner, D.Sc. (Lond.).
PART II. The Inert Gases (Group 0 in the Periodic Table).
By R. V. A. Briscoe, D.Sc. (Lond.), A.R.C.S.

VOLUME II.
In the Press.
VOLUME III.

179 Aikali Metals and their Congeners Group I. of the Periodic Table). By A. DAMIESON WALKER, Ph.D. (Reid.). Tits Alkaline Earth Metals and their Associates (Group

Volume 1V. Pp. i-xx + 485.

11. of the Periodic Table). By Miss M. S. Leslie, D.Sc. Aluminium and its Congeners, including the Rare Carth Metals (Group 111. of the Periodic Table). By M. F. V. Little, B.Sc. (Lond.), A.R.C.S., Chief Chemist to Thorum, Ltd.

Volume V. Pusi-xxi + 468 Volume VI. By R. M. CAVEN, D.Sc. (Lond.), F.I.C.

Ni rogen and its Congeners (Group V. of the Periodic Table). By E. B. R. PRIDEAUX, M.A., D.Sc.

VOLUME_VC1.

PART I. Oxygen, By J. Newton Friend, D.Sc., and Douglas F. Twise, D.Sc., F.I.C.
VART H. Sulphur, Selenium, and Tellurium. By Douglas F. Twiss, D.Sc., and J. Newton Friend, D.Sc.

PAGE 114. Chromium and its Congeners. By Arriur V. Elmitdee, B.Sc. F.I.C., and R. H. Vallage, B.Sc., A.I.C.

VOLUME VIII. 17th Halogens and their Allies (Group VII. of the Periodic Second Impression. Table). By GEOFFREY MARTIN, D.Sc., Ph.D., and EINEST Pp. i-xviii + 337. A. Dancaster, B.Sc. (Lond.).

PART I. Pp. i-xvii + 367. 18s. PART II. Pp.

Part J. Cobalt, Nickel, and the Eiements, of the Piatinum Group. By 7. Newton Friend, D.Sc. (B'ham).

PART II. Iron and its Compounds P By J. Newton FRIEND II.Sc.

PART III.
In preparation.
Volume X.

First III. The Metallurgical Chemistry of Iron. By J. Newron Friend, D.Sc., and W. H. HATEIELD, D.Met.

Whe Metal Ammines, with a General Introduction to the Theory of Complex Inorganic Substances. By Miss M. M. J. SUCHERLAND, D.Sc., F.I.C.

LONDON: CHAR GRIFFIN & CO., LTD., EXETER ST., STRAND, W.C.2

PERIODS	GROUP 0.	GROUP I.	Grote II.	Group III.	GROUP IV.	GROUP V.	GROUP V. GROUP VI. GROUP VII.	GROUP VII.	GBove VIII.
First short period .	# 4 8	н 11.668 49.4	-3 .	0-II •	C 12-005	• N 14·01	O 16-00	F 19-3	Ý
Second-abort period	Ne 20-2	Na 23-00	Mg 24-32	• Al	Si 28-3	aP 31-04	S 8	C1 35-46	•
First of Even series long Period Odd	\$ 38° 38° 38° 38° 38° 38° 38° 38° 38° 38°	K 89-10 Cu 63-57	Ch 40.07 40.07 65.37	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Ti 48 1 Ge 72.5	V 51.0 As 74.96	Cr 52-0 Se 79-2	Mn 54.93 Br . • 79.92	Fe Co Ni 55-84 58-97 55-68
Second Even series . bong Period Old	¥ & ;.	Rb 85.45 105.88	Sr 87-63 Cd 112-4	X 88.7 In 114.8	Zr 90.6 Sn 11×.7	Cb 33-1 120-2	Mo 96-0 127-5	 126-92	Ru Rh Pd 101-7 102-9 106-7-
Third (Even series , long pariod (Odd ,,	1302	Cs 132-81	Ba	THE RABE	:	:		•	
Fourth Even series long of period Odd	:	Au 487.2	 Hg 200-6	METALS TI	Pb 207-20	Ta Bi 181.5 Bi 208.0	W 184-0	. ,	O ₃ Ir Pr 190-9 193-1, 1972
Fifth long period	Nt 2224		Es 226-0	:	Th 9 232.4		U 2 8.2		
Formula of oxfides .	::	R,O RH	RO RH ₁	R,O, RH,	RO, RH,	R,0, RH,	RO3 RH2	в,0,	RO.
Volume in this series of text-books	T7.	. 2	·m	*	* 123	, G			
		• The Inte	mational Ato	mic Weights fo	The International Atomic Weights for 1918 are adopted in this Table.	opted in this	Fable.	•	

A TEXT-BOOK OF INORGANIC CHEMISTRY

J. NEWTON FRIEND, D.Sor, Ph.D., F.I.C.,

VOLUME IX. PART II.

IRON AND ITS COMPOUNDS.

J. NEWTON FRIEND,
D.SO. (B'HAM), PH.D (WÜRZ), F.I.C.

With Frontispiece and 8 Illustrations.

LONDON:
CHARLES GRIFFIN & COMPANY, LTMITED.
EXETER STREET, STRAND, W.Q.2:
1921.

[All rights reserved]

GENERAL INTRODUCTION TO THE SERIES.

During the past few years the civilisal world has began to realise the advantages accruing to scientific research, with the result that an ever-increasing amount of time and thought is being devoted to various branches of science.

No study has progressed more rapidly than chemistry. This science may be divided roughly into several branches: namely. Organic, Physical, Inorganic, and Analytical Chemistry. It is impossible to write any single text-book which shall contain within its two covers a thorough treatment of any one of these branches, owing to the vast amount of information that has been accumulated. The need is rather for a series of text-books dealing more or less comprehensively with each branch of chemistry. This has already been attempted by enterprising firms, so far as physical and analytical chemistry are concerned; and the present series is designed to meet the needs of inorganic chemists. One great advantage of this procedure lies in the fact that our knowledge of the different sections of science does not progress at the same rate. Consequently, as soon as any particular part advances out of proportion to others, the volume dealing with that section may be easily revised or rewritten as occasion requires.

Some method of classifying the elements for treatment in this way is clearly essential, and we have adopted the Periodic Classification with slight alterations, devoting a whole volume to the consideration of the elements in each vertical column, as will be evident from a glance

at the scheme in the Frontispiece.

In the first volume, in addition to a detailed account of the Elements of Group 0, the general principles of Inorganic Chemistry are discussed. Particular pains have been taken in the selection of material for this volume, and an attempt has been made to present to the reader a clear account of the principles upon which our knowledge of moder-Inorganic Chemistry is based.

At the outset it may be well to explain, that it was not intended to write a complete text-book of, hysical Chemistry, Numerous excellent works have already been devoted to this subject, and a volume on such lines would scarcely serve, as a suitable introduction to this series. Whilst Physical Chemistry deals' with the general principles applied to all branches of theoretical chemistry, our aim has been to emphasise their application to Inorganic Chemistry, with which branch of the subject this series of text-books is exclusively concerned. To this end practically all the illustrations to the laws and principles discussed in Volume I dear with inorganic substances.

Again, there are many subjects, such as the methods employed in the accurate determination of atomic weights, which are not generally regarded as forming part of Physical Chemistry. Yot these are subjects of supreme importance to the student of Inorganic Chemistry and are accordingly included in the Introduction.

Hydrogen and the aninfonium salts are dealt with in Volume II, along with the Elements of Group I. The position of the rare earth metals in the Periodic Classification has for many years been a source of difficulty. They have all been included in Volume IV, along with the Elements of Group III, as this was found to be the most suitable place for them. . .

Many alloys and compounds have an edual claim to be considered in two or more yolumes of this series, but this would entail unnecessary duplication. For example, allow of copper and tin might be dealt with in Volumes II and V respectively. Similarly, certain double salts-such, for example, as forrous ammonium sulphate-might wry logically be included in Volume II under ammonium, and in Volume IX under iron. As a general rule this difficulty has been overcome by treating complex substances, containing two or more metals or bases, in that volume dealing with the metal or base which belongs to the highest group of the Periodic Table. For example, the alloys of copper and tin are detailed in Volume V along with tin, since copper occurs carlier, namely, in Volume II. Similarly, ferrous ammonium sulphate is discussed in Volume IX under iron, and not under ammorium in Volume II. The ferro-cyanides are likewise dealt with in Volume IX.

But even with this arrangement it has not always been found easy to adopt a perfectly logical line of treatment. . Hor example, in the chromates and permanganates the chromium and manganese function as part of the acid radicles and are analogous to sulphur and chlorine in sulphates and perchlorates; so that they should be treated in the volume dealing with the metal acting as base, namely, in the case of potassium permangadate, under potassium in Volume II. But the alkah permanganates possess such close analogies with one another that separate treatment of these salts hardly seems desirable. They, are therefore considered in Volume VIII.

Numerous other httle irregularities of a like nature occur, but it is hoped that, by means of carefully compiled indexes and frequent crossreferencing in the texts of the separate volumes, the student will

experience no difficulty in finding the information he requires.

Particular care has been taken with the sections dealing with the atomic weights of the elements in question. The figures given are not necessarily those to be found in the original memoirs, but have been revalculated, except where otherwise stated, using the following fundamental values:

```
Oxygen = 18.000.
Sulphur = 82.065.

    Ifydrogen*

              = 1.00762.
 Sodium = 22.996.
Potassium = 89.100.
                                  * Fluorine = 19.015.
 Silver
              = 107.880.
                                 . Chlorine = 85.457.
 Carbon
               = 12.003.
                                    Bromine = 72.916.
 Nitrogen
               = 14.008.

    Iodine

                                              = 126.920.
```

By adopting this method it is easy to compare directly the results of earlier investigators with those of more recent date, and moreover it renders the data for the different elements strictly comparable throughout the whole series.

Our aim has not been to make the volumes absolutely exhaustive.

as this would render them unnecessarily bulky and expensive; rather has it been to contribute concise and sugglestive accounts of the various topics, and to append numerous references to the leading works and memoirs dealing with the same. Every effort has been made to render these references accurate and reliable, and it is hoped that they will prove a useful feature of the series. The more important abbreviations, which are substantially the same as those adopted by the Chemical Society are detailed in the subjoined lists, np. xy to xxy.

Society, are detailed in the subjoined lists, pp. xv to xxv.

In order that the series shall attain the maximum utility, it is necessary to arrange for a certain amount of uniformity throughout, and this involves the suppression of the personality of the individual author to a corresponding extent for the sake of the common welfare. It is at once my duty and my pleasure to express my sincere appreciation of the kind and ready manner in which the authors have accommodated themselves to this task, which, without their hearty co-operation, could never have been successful. Finally, I wish to acknowledge the unfailing courtesy of the publishers, Messrs. Charles Griffin and Go., who have done everything in their power to render the work straightforward and easy.

J. NEWTON FRIEND

March 1921

PREFACE.

THE position occupied by iron amongst the elements is unique. Indeed, it is not too much to say that, without abundant supplies of this metal, civilisation as we know it to-day would not be possible.

Owing to the importance of iron and the enormous amount of research that has been carried out upon it and upon its compounds, it was felt that the subject deserved a separate book in this series, and, as has already been mentioned in the Preface to Part I, of this volume, Part II. was accordingly assigned to it. As the work progressed, however, it became evident that the amount of matter requiring treatment could not be efficiently condensed into a single book, and it has therefore been decided to again subdivide this volume, namely into Parts II. and III -the former to deal with the chemistry of Iron and its Com, pounds, and the latter to be devoted to a study of the Metallurgical Chemistry of Iron. Only in this way did it appear possible for iron to receive the detailed and eareful treatment it so well deserves.

The literature relating to iron is extraordinarily voluminous, but it is believed that the references given in the text are reasonably complete. In almost every case the original memors have been consulted, and although it is too much to hope that the references are entirely free from error, it is believed that any such errors will be relatively few and of

minor importance.

The addition of the Table of Dates of Issue of Journals (pp. xviii-xxv) will, it is hoped, enhance the value of this volume. It is believed that the list is perfectly correct, as all the figures have been effected against the volumes on the shelves of the Library of the Cherneal Society by Mr F. W. Clifford and his Staff.

The Author desires to express his sincere thanks to Mr H. F. V. Little, B.Sc., D.I.C., who wrote the section on the Atomic Weight of Iron; to Mr R. H. Vallance, B.Se., A.I.C., who has carefully read through the whole of the work in proof; to Mr G, C. Lloyd and his Staff at the Iron and Steel Institute; and particularly to Mr F. W. Clifford and his Staff at the Library of the Chemical Society for their generous assistance.

. J. N. F. '

March 1921.

CONTENTS.

THE PERIODIC TABLE (Frontispiece)	PAGE Î V
GENERAL INTRODUCTION TO THE SERIES	vii
Preface	• xi
List of Arbiceviations	xv
Table of Dates of Issue of Journals	xviți
CHAPTER I. The Early History of Iron	1
The Importance of Iron —Stone Age—Meteoric Iron —Bronze Age—Delhi Pillar—Writings of Pliny—Currency Bars—Iron in Sussex—Production of Coal, Iron Ore, Pig Iron, and Steel.	•
CHAPTER II. The Mineralogy of Iron	• 8
Classification of Minerals—Native Iron—Meteorites—Magnetites—Hagnatites—Carbonates—Sulphides—Miscellaneous Minerals containing Iron—Tables of Minerals with Physical Characteristics.	
CHAPTER III. Preparation and Properties of Pure Iron	, • 3 4
Preparation—Electrolytic Iron—Electro-deposition—Physical Properties—Density—Melting-Point—Specific Heat—Expansion—Spectrum—Allotropy—Occlusion of Cases—Absorption of Nascent Hydrogen—Permerbility to Gases—Chemical Properties—Action of Adds—Action of Alkalies—	. 4
Passivit Properties of Iron Powder—Iron Sponge—Iron Amalgum—Colloidal Iron—Pyrophoric Iron—Iron as a Catalyst—Iron dons—Atomic Weight.	••.
CHAPTER IV. The Corrosion of Iron	67
The Chemistry of Corrosion—Bechaftism of Corrosion—Ferroxyl—Influence of Dissolved Salts upon Corrosion—Corrosion and Ionisation—The Chemical Nature of Rust.	
CHAPTER V. General Properties of Iron Salts	78
Ferrons and Ferrio Compounds—Iron Salts as Catal sts—Iron Salts as Negative Catal sts—Oxidation of Ferrons Salts—Ferrons Salts as Reducing Agents—Photochemical Oxidation—Reduction of Ferrio Salts—Photochemical Reduction—Reduction to Metallic Fron.	•

Iron and Curbon and the Elements of Groups IV. and III. Iron and Curbon aron Carbonates—Tron Carbonyls—Ferrous Carbonates—Complex fron Carbonates—Thocarbonates. Iron and Cyanogan—Ferrous Cyanodo—Constitution of Ferro- and Ferri-cyanides—Ferroyandes—Topoles—Double Salts with Mercuric Cyanide—Ferricyandes—Iron Denvatives of Ferro- and Ferri-cyandes—Prussian Blue. Contacyanide Derivatives of Iron—Nitroso Peata-cyanoferrates—Carbonyl—Penta-cyanoferrites—Nitros—Penta-cyanoferrites—Apun Penta-cyanoferrites—Apun Penta-cyanoferrates—(Sulphito Penta-cyanoferrates).

Thiocyanates—Forro hexathocyanates—Forri hexathiocyanates.
Iron and Silicon—Silicines—Gribo and Meta Silicates—Forrous Fluosilicate.
Iron and Boron—Bondes—Chior and Brem Berates

LIST OF CHIEF ABBREVIATIONS EMPLOYED IN THE REFERENCES.

	•	•
	ABBREVIATED TITLE.	• JOURNAL.
	Afhandl. Fys. Kem	Ashanslingat i Fysik, Kenii och Mineralogi.
	Amer. Chem. J	American Chemical Journal.
	Amer. J. Nci	American Journal of Science.
•	Anal. Fis. Quim	Anales de la Sociedad Española Física y Quimica.
	Analysta	The Affalyst.
	Annalen .	Justus Liebig's Annalen der Chenne.
	Ann. Chim.	Annales de Clumie (1719-1815, and 1914 +).
	Ann. Chim. anal.	Annales de Chimit analytique appliquée à l'Industrie,
	•	l'Agriculture, à la Pharmacie, et à la Biologie.
	Ann. Chim. Phys	Annales de Chimo et de Physique (Paris) (1816-1913).
	Ann. Mines	Annales des Mines.
	Ann. Pharm	Annalen der Pharmacie (1832-1839).
	Ann. Phys. Chem	Annalen der Physik und Chenne (1819-1899).
	Ann. Physik .	Annalen der Physik (1799-1818, and 1900 +).
	Ann. Physik, Beibl	Annalen der Physik, Beiblattes.
	Ann. Sci. Univ. Jassy .	Annales scientifiques de l'Université de Jassy.
	Arbeiten Kasserl. Gesundheits-	·
	amle	Arbeiten aus dem Kniserlichen Gesundheitsamte.
	Arch. exp. Pathol. Pharmak.	Archiv für experimentelle Pathologie und Pharmakologie.
	Arch, Pharm	Archiv der Pharmazie
	Arch. Sci. phys. nat	Archives des Sciences physique et naturelles, Geneva.
	Atti Acc. Torino	Atti della Reale Accademia delle Scienze di Terino.
	Atti R. Accad. Lincei	Atti della Reale Accademia Lucci.
	BA. Reports	British Association Reports
	Ber	Berichte der Deutschen chemischen Gesellschaft.
	Rer. Deut. physikal. Ges	Beriehte der Dentschen physikalischen Gesellschaft.
	Bot. Zeil	Botanische Zeitung.
	Bull, Acad. Sci. Cracow .	Bulletin international de l'Académie des Sciences de
		Cracovic
	Bull. Acad. roy. Belg	Académie royale de Belgique Bulletin de le Classe des
		Sciences
	Bull. de Belg.	Buffetin de la Société chimique Beigique.
	Bull. Soc. chim.	Bulletin de la Société chimique de France.
	Bull. Soc. france Man.	Bulletin de la Société française de Muiéralogie.
		Bulletin de la Société minéralogique de France.
	Bull, U.S. Geol. Survey	Bulleting of the United States Geological Survey.
	Centr. Min.	Centralblatt für Mineralogie,
	Chem. Ind.	Die Chemische Industrie.
	Chem. News	Chemical News.
		Chemisch Weekblad.
	Chem. Zentr	Chemisches Zentralbiatt.
	Chem. Zeit.	Chemiker Zeitung (Cothen).
	Compt. rend	Comptes readus hebdomadaires des Séances de l'Académis
	Coult's Assertes .	des Sciences (Paris). Chemische Annalen für die Freunde der Naturlehre, von
	Crell's Annalen	L. Crelle.
	Dinul nold 7 * *	Dingler's polytechnisches Journal.
	Dingl. pole. J	Annalen der Physik (1900–1906).
	Electroch. Met. Ind	Electrochemical and Metallurgical Industry.
	, meccarolite, mes. 1744	encontentation of a far butter kicut infranta.

Gilbert's Annalen

Tiorn, di Ssienze Naturali ed Econ. Geol. Mag.

Geol. Mag.
Rat. Zeitsch. Metallographie .
Jahrb. kk. geol, Reichsanst. .

Janto. Mitter.
Januache Zeitsch.
J. Amer Chem. Soc.
J. Chem. Soc.
J. Chim. phys.

J. Chim. phys. .
J. Gasbeleuchtung
J. Geology . . .

J. (4eology . J. Ind. Eng. Chem. J. Inst. Metals .

J. Miner. Soc.

J. Pharm. Chim.
J. Physical Chem.
J. Physique

J. prakt. Chem. . J. Russ. Phys. Chem. Soc.

J. Soc. Chent Ind. Landw. Jahrh. Mem. Paris Acad.

Münch Med. Wochenschr. Nature Nuovo Cim.

Ofvers, K. Vet. Akid. Forh. .

Phys. Review Physikal. Zeitsch. Pogg. Annalen

Rec. Trav chim.

Proc. Chem. Soc. Proc. K. Akhd Welensch. Amsterdam

Proc. Roy. Irish Acad. Proc. Roy. Phil. Suc. Glasgow Proc. Roy. Soc. Proc. Roy. Soc. Edin.

Berlin.

JOURNAL Engineering and Mining Journal, Cazzetta chimica Italiana.

Allgomeines Jeuraal der Chemle. Anfialen der Physik (1799–1826).

Giornald di Scienze Naturali ed Eponomièht, Geological Magazine. Internationalo Zeitschrift fur Metallographie. Jahrbuch der kaiserlich-königlichen geologischen Reichsan-

stalt. Janrbuch für Mineralogie.

Jahresbericht über die Fortschritte der Chemio, Jenarsche Kerschrift für Naturwissenschaft. ** Journal of the American Chemical Society. Journal of the Chemical Society. Journal de Chimie physique.

Journal de Chimie physique. Journal fur Gasbelenshtung. Journal of Goology.

Journal of Industrial and Engineering Chemistry.

Journal of the Institute of Metals.

Mineralogical Magazine and Journal of the Mineralogical

Society.

Journal de Pharmacie et de Chimie.

Journal of Physical Chemistry.

Journal de Physique.

Journal fur praktische Chemie.

Journal of the Physical and Chemical Society of Russia

(Petrograd).
Journal of the Society of Chemical Industry.
Landwirtschaftliche Jahrbucher.

Mémoirs présentés par divers savants à l'Académie des Sciences de l'Institut de France. Monteur scientifique.

Monatshefte für Chemie und verwandte Theile anderer
Wissenschafteit.
Mündener Medizinische Wochenschrift.

Nature. Il nuovo Cimento.

Ofversigt af Kongliga Vetenskaps-Akademiens Förhand.

Oesterreichische Chemiker-Zeitung. Archive fur die gesammte Physiologie des Menschen und der Thore.

Pharmazeutische Zentralhalle.
Pharmazeutische Post.
Philosophical Magazine (The London, Edinburgh, and

Dublin.
Philosophical Transactions of the Royal Society of London.
Physical Review.
Physical Review.

Poccondorff's Anualen des Physik und Chemie (1824-1877)

1875)
Proceedings of the Chemical Societye
Roninklijke Akademie van Wetonschappen te Amsterdam
Proceedings (English Version).

Proceedings of the Royal Irish Academy.

Proceedings of the Royal Philosophical Society of Glasgow.

Proceedings of the Royal Society of London.

Proceedings of the Royal Society of London.
Proceedings of the Royal Society of Edinburgh.
Recueil dos Travaux chimiques des Pay-Bas et de la Belgique.
Reports of the Royal Institution.

Journal für Chemie und Physiks
Sitzungsberichte der Königlich-Preussischen Akademie de
Wissenschaften zu Berlin, e

ABBREVIATED TITLE.	JOURNAL.
Sitzungsber K. Akad. Wiss.	Sitzungsberichte der Königlich bayerischen Akademie der Wissenschaften zu Wien.
Sci. Proc. Roy. Dubl. Soc	Scientific Proceedings of the Royal Dublin Society?
Techn. Jahresber • •	Jahresbericht über de Leistungen der Cheoilschen Technologie.
Trans. Amer. Hiettrochem.	Transactions of the American Electrochemical Society.
Trans. Chem. Soc	Transactions of the Chemical Society.
Trans. Inst. Min. Eng.	Transactions of the Institution of Mining Engineers.
Trav. et Mém. du Bureau .	Travaux et Mémoires du Bureau International des Polds
intern. des Poids et Mes.	et Mosures.
Verh. Ges. deut. Naturforsch. Aerzie	Verhandlung der Gesellschaft deutscher Naturforscher und Aerzae.
Wied. Annalen	Wiedermann Annalen der Physik und Chemia (1877- 189).
Wissenschaftl. Abhandt.	Wissenschaftliche Abhandlungen der physikalisch-tech-
phys. tech. Reichsanst	mischen Reichsanstalt.
Zeitsch. anal. Chem.	Zeitschrift für analytische Chemie.
Zeitsch. angew. Chem	Zeitschrift für angewandte Chemie.
Zeitsch. anorg. Chen	Zeitschrift für anorganische Chemie.
Zestsch. Chem. Ind. Kolloide.	Kritische Zeitschrift für Chemie. Zeitschrift für Chemie und Industrie des Kolloide (continued as Kolloid-Zeitschrift).
·Zeitsch. Elektrochem	Zeitschrift für Elektrochemie.
Zeitsch. Rryst. Min	Zoitschrift für Krystallographie und Mineralogie.
Zeitsch. Nahr. Senuss-m	Zeitschrift für Untersuchung der Nahrungs- und Genuss- mittel.
Zeitsch. physikal. Chem	Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre.
Zeitsch. physiol. Chem.	Hoppe Seyler's Zeitschrift für physiologische Chemie.
Zeitsch. wiss. Photochem	Zeitschrift für wissenschaftliche Photographie, Photo- physik, und Photochemie.

TABLE OF DATES OF ISSUE OF JOURNALS.

For the sake of easy reference, a list is appended of the more important journals in chronological order giving the dates of issue of their corresponding series and volumes. In certain cases the volumes have appeared with considerable irregularity; in others it has occasionally happened that volumes begun in one calendar year have extended into the next year, even when this has not been the general habit of the series. To still further complicate matters, the title-pages in some of these latter volumes bear the litter date—a most illogical procedure. In such cases the volume number appears in the accompanying columns opposite both years. In a short summary of this kind it is impossible to give full details in each case, but the foregoing remarks will serve to explain several appearent anomalies.

	•						_	*		
Year	Amer J Sci	Ann Chim Phys	Ann Min,	Arch Pharme	Dingl.	Gilbert's Annalen.	J. Pharm. Chen.	Phil. Mag.	Phila Trans	Pogg Annalen.
1800 1 2 • 3 4	•	(1) 32-35 • 36-39 1 • 40 43 • 41-47 1 • 48-51	 :		·	4-6 7-9 10-12 13-15 16-18	• 	5-8 8 11 11 -14 14 17 17-20	90 91 92 93 94	
1805 6 7 8	٠ 	52-55 56-60 61-61 65-68 09-72	;. ;;.	•	 	19 21 22-24 25-27 28-30 31-38	 (1) i*	20-28 23-26 26-29 29-32 33, 34	95 96 97 98 99	
1810 11 12 13 14		78-76 77-80 81-84 85-88 89-92			.*. 	34-36 37-39 40-42 43-45 46-48	2 3 4 5 6	35, 36 37, 38 39, 40 41, 42 43, 44	100 101 102 103 104	
1815 16 17 18 18	 (1) 1	93-96 (2) 1-3 4 6• 7-9 10-12	 F, 2			49-51 52-54 55-57 58-60 61-63	(2) 1 2 3 4	45, 46 47, 48 49, 50 51, 52 58, 54	105 106 107 108 •109	
1820 21 22 23 24	3 4, 5 0 7, 8	13-15 66-18 19-21 22-24 25-27	5 6 4 7 8 9	1, 2° 3-6 7-10	1-8 4-6 7-9 10-12 13 15	70-72 78-75 76	6 7 8 9	55, 56 57, 58 59, 60 61, 62 63, 64	110 411 112 113 114	1, 2
1825 26 27 28 29	10, 11 12 13, 14 15, 16	28-30 31-33 84-36 37-39 40-42	(2) 1, 2	11-14 16-19 20-23 24-26 27-30	19-22 28-26	Continueda as Pogg.	11 12 13 • 14 15 •	65, 66 67, 68 (2)1, 2 3, 4 5, 6	115 116 117 118 11\$e	3-5 6-8 9-11 12-14 15-17

		•	TES OF IS	SUE OF JOURNALS.		X1
Sitzungsber. K. Akad. Wiss. Wien.	**		•	. 8 4.00 01 01 01 01 01 01 01 01 01 01 01 01 0	15-18 19-22 23-27 28-33 : 34-38	Yearly).
Quart. Chem Soc	:::::	14112	· : : 1		80000	one vol.
Proc.	••: :¤	• :	`::: := ;	• • • • • • • • • • • • • • • • • • •	≠ o o i	1919 (
Pogg. Annalen.	18-20 21-23 24-26 27-30 31-33	34-36 37-39 40-42 43-45 48-45	25 - 51 - 51 - 51 - 51 - 51 - 51 - 51 -	2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	54-96 27-99 106-102 103-105 106-108	Often referred to the Service S. verice S. verice 2 verice 1 1873 - 1887 - 1910 : Serice 5 vols. 1-9. 1911-1919 (one vol.
Phil. Trans	120 122 123 124	22.22.25 22.25 22.	130 131 133 134	80000000000000000000000000000000000000	244 244 244 244 244 244 344 344 344 344	vols. 1
Phil. Mag.	7, 8 9, 10 11, 83, 11 2, 83 4, 5	6, 7 8, 9 0, 11 12, 13	18, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	ಷ್ಟ್ರೀಪ್ ಕ್ಷ್ಮಿಪ್ರೀಶ್ರೀ ಪ್ರತಿಗಳಕ್ಕೆ ಕ್ಷ್ಮಿಪ್ರೀಶ್ರೀ ಪ್ರವರ್ಣದಲ್ಲಿ ಕ್ಷ್ಮಿಪ್ರೀಶ್ರೀ ಪ್ರವರ್ಣದಲ್ಲಿ ಕ್ಷ್ಮಿಪ್ರೀಶ್ರೀ	. 9 10 11, 12 13, 14 17, 18	Series 5.
Mon.*		i . · ·	• : .	1.00	22.8	-1910
J. prakt. Chem.	: :: - []	7-9 10-12 13-15 16-18	19-21 25-24 28-30 31-33	31-03 37-03 37-03 48-43 48-45 44-51 55-55-51 61-63	7.4-66 7.7-69 7.3-75 7.8-78	24, 1887
J. Pharm Chim.	15 13 13 13 13	22828	26 27 3, 1, 2 5, 6	2. S 11. 12. 13. 14. 15. 16. 15. 18. 19. 20. 20. 22. 22. 25. 25. 25. 25. 25. 25. 25. 25	29, 29 29, 30 31, 32 34, 34	rols 1
Dingl. Poly.J.	35-38 39-42 43-47 48-50 51-54	55-58 59-62 63-66 67-70 71-74	75-48 79-82 83-86 87-90 91-94	95-38 99-102 103-106 107-110 111-114 115-118 119-122 113-126 127-130	135-138 135-142 143-146 147-150 151-154	Series 4
Compt.	:: • ::	ကြွန်တ်ထိ ကြေးမသ	10. 12.13 14.15 16.17 18.17	ប្បុស្មានស្គ្រា ស្ត្រាស់ ស្ត្ ក្រុសស្ត្រាស់ ស្ត្រាស់ ស្ត្ ក្រុសស្ត្រាស់ ស្ត្រាស់ ស្ត្	04.04.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	821-128
Bull. Soc. chim.	1::::	:::::	: :.)		:::==	181
Arch. Pharm	31-34 46-47 44-47	(2) I-4 5-8 9-12 13-16 17-20	21-24 25-26 29-33 33-36	44-148 44-148 558-552 57-552 57-55 56-56 57-73 77-80	81-84 85-88 89-92 93-96	a role
Ann. Mines.	7 - 6 3-1, 2 5, 6	7 8 9,10 9,10 12,14 15,16	17,e18 19, 20 (4:1, 2 3, 4 5, 8	######################################	9.9 11.9 15.13 18.13 18.13 18.13	Sories
Ann. Chinh. Phys.	43-45 49-48 49-51 52-55 56-57	58-60 61-83 84-68 67-69	73-75. (341-3 4-6 7-9 10-12	13-15 16-18 10-21 22-24 22-24 23-30 31-33 35-36 37-39	43-45 46-48 49-51 52-54 55-57	V Sorios
Annalen.	: :12	13-16 17-20 21-24 25-28 29-32	\$7-40 \$7-40 45-48	53-56 61-68 61-68 65-68 69-72 77-80 81-80 89-92	93-96 97-100 101-104 105-108 109-112	arred to
Amer. J. Sci.	25, 23 23, 23 22, 23 23, 23	26.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	38, 39 40, 41 44, 48 46, 45	2, 4 5, 60 11. 12. 12. 13. 14. 15. 16. 16. 16. 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	19, 20 21, 23, 24 25, 28	Often refe
Z car.	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 88 88 88 88 88 88	1840 142 143 143	484 484 744 850 850 850 450 450	1855 56 57 58 59	•

	-	-						-					
ar Ar	chem. J.	Amer. J. Sci.	Analyst	Annalen.	Annalen Snppl.	Ang. Chim. Phys.	Ann. • Mines.	Arch. Pharm.	Ber.	Bull. Soc. chim.	Chem.	Chem. Tride	Chem.
186	•	29, 30	;	113-116	• :-	38-60 28-60	17, 18	101-104	:	€1 0	1, 2	:	
		33,34	: :	121-124	- ta	64-65	(6) 1, 2	109-112	: :	•	က် ကို မိ	:	-
## ## ## ## ## ## ## ## ## ## ## ## ##	: : 	35, 36	:	125-128	\$1 m	67-69		113-116	:	5 (9) 1 9	8,0	: ;	
	_		:		• 4	2 7.1					; ;	:	•:
186		6,5	:	133-136	e, 4	9 0	oo ç	121-124	:	დე. ფი	11, 12	•	:
67.		43, 44	: 4:	141-044	r va	10-12	11, 12	129-132	: :	, r. 00 00	15, 14	:	;
		45,46	.:	145-148	ь,	13-15	13, 14	133-136	0	9, 10	17, 18	: :	; ;
	_	24.4	: .	149-152	:	16-18	15. 16	137-140	24	11, 12	134 20	:	· :
1870		49, 50	•	153-156	7	19-21	17, 18	147-144	₀	13, 14	21, 22	:	•
	_	(3) 1 2	:	157-160	:	22-24	19, 20	145-148	4	15, 16	23,24	• ;	:
~ £		₩ 6 00°4	:	161-164	6 0	25-27	(7) 1,22	149-150, 201	ب د مد	17, 18	25, 26	<u> </u>	: :
- 1		, , , ,	:	165 170	:	28-30	er d	201-203	5 t	19, 20	27, 28	:	:
•		°.	:	1/1-1/4	:	(c)	o ć	C02-603		27, 22	08,82	:	:
187	*:	2,	• ; •	175-179	:	1	7,8	206,207	8	23, 24	31, 32	:	•
•		11, 12	0	180-183	:	6-	9, 10	208, 209	o, ç	25, 26.	38, 34	,	: :
		200	1 00	190-194	:	13-15	13, 12	210, 211	3:	20 20	27,36	: •	٦,
78	_	•17, 18	•	195-199	: :	16-18	15, 16	214, 215	13	31, 32	39, 30	: •	61 6
.188		19 20	810	200-905		10_91	× 41	916 917	<u>«</u>	20 24		•	•
90	60	21, 23	9	206-210	: :	22-24	19, 20	218, 219	1 7	35, 36	43,42	• ; 	* ,`
60	o,	23, 24	14	211-215	: :	25-27	(8) 1, 2	220	15	37, 38	45, 46	:	٥٩
8	*	22° 50	ထဋ္ဌ	216-221	:	28-30	က် (၈)	221	3 2,	39, 40	47, 48		•
δ .	o`	27,72	1	977-775	:	(6) 1-3		222	17	41, 42	49, 50	i	. og
188	6,7	29, 30	2	227-231	:	4-6	7, 8	223	18	43. 44	51.52		
ž 6		31, 32	11	232-236	:	7-9	9, 10	204	19	45, 46	53, 64	: :	2
0 0		83,34	122	237-242	:	10-12	11, 12	225	8	47, 48	6 55, 56		2=
		27, 38	2 4	250-256	:	16-18	15, 14	22.6	5 6	48,50	57, 58	%	12
				-	:	01101	01 (61	197		(e) 1, 4	52, 60	4,5	81
					Andrea I am A O to a to								

*Joining series 1 and 2 together. Also written as (3) 1, 2, 3, êtc.

TABLE OF DATES OF ISSUE OF JOURNALS.

Team Complex (complex principles) Dinglet (complex principles) Dinglet (complex principles) Dinglet (complex principles) June (compl		4	•		•			
Compt. Physical	Mag.	378	888	38.28	8 3444	8 5 5 4 4 6 8 • • •	22722	
Compt. Dingt. Dingt. Occasetta. J. Amer. J. Chem. Soc. Chim. J. Pharm. Chem. Chem. Soc. Chem. Chem. Roads Scients. Mon. Soc. Chem. Chem. Chem. Chem. Chem. Chem. Roads Scients. Mon. Soc. Chem. Chem. Chem. Chem. Chem. Chem. Chem. Roads Scients. Mon. Soc. Chem.	F. E.	19,	2,8,8	8,5,5,5	g Si±genjerj	r g g i	o, ti ti ti ti	ដ្ឋមន្ត្រ
Compt. Pingt. Dingt. Chem. Chem. Soc. Chem. Roads Scients S		<u></u>	• •		0000	E. 62522	82828	82294
Compt. Pingt. Dingt. Chem. Chem. Soc. Chem. Roads Scients S	fatur •	: :	: : :	1 : 1 :-	• ပေး့ က်ော်ထ [ွ]			
Compt. Dingl. Coloration J. Chem. J. Pharm. J. Prakt. J. Burst. J. Soc. E0, 51 1165-158		****				, 415 57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28822	
Compt. Dingl. Coloration J. Chem. J. Pharm. J. Prakt. J. Burst. J. Soc. E0, 51 1165-158	Mon. iente	₩.	in &	~ ∞ ∞ Ω Ω	25.44	28222	ឌឌដូឌឌ	27 28 28 3, 32 3, 32 3, 32 3, 32
Compt. Pily E. Dingl. Gazetta. Uham. Soc. J. Chem. Soc. J. Pharm. J. Prakt. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Lud. J. Soc. J. Soc. J. J. Soc. J. J. Soc. J. J.								4,000
Compt. Pily E. Dingl. Gazetta. Uham. Soc. J. Chem. Soc. J. Pharm. J. Prakt. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Phys. Chem. Soc. J. Lud. J. Soc. J. Soc. J. J. Soc. J. J. Soc. J. J.	onats	: :	:::	::: :	11.1	: •: :::	H 01 03 4 70	∞€ -∞⊛Ω
Compt. Ding! Gazzetta J. Amer. J. Chon. J. Pharm. J. Prakt. J. Buss. 50, 51 156-158 Soc. Chum. Chem. Soc. 50, 51 165-168 37, 38 79-81 56, 55 164-166 37, 38 79-81 56, 57 164-170 39, 40 82-84 56, 57 164-170 39, 40 82-84 56, 57 171-174 <t< td=""><td></td><td>••</td><td>•</td><td>•</td><td></td><td>-</td><td>•</td><td></td></t<>		••	•	•		-	•	
Compt. Ding! Gazzetta J. Amer. J. Chon. J. Pharm. J. Prakt. J. Buss. 50, 51 156-158 Soc. Chum. Chem. Soc. 50, 51 165-168 37, 38 79-81 56, 55 164-166 37, 38 79-81 56, 57 164-170 39, 40 82-84 56, 57 164-170 39, 40 82-84 56, 57 171-174 <t< td=""><td>J. So. Chem Ind.</td><td>. : :</td><td>) • :</td><td>::::</td><td>. 🕻 : : :</td><td>;;;;;</td><td>: : ଜୁଲ୍ପାନ</td><td>410000</td></t<>	J. So. Chem Ind.	. : :) • :	::::	. 🕻 : : :	;;;;;	: : ଜୁଲ୍ପାନ	410000
Compt. Dingl. Toly F. Chan. Chem. Soc. J. Chem. Chem. Chem. Soc. J. Pharm. Chem. Chem. Chem. Soc. J. Pharm. Chem. Chem. Soc. J. Pharm. Chem. Soc. Soc. Soc. Soc. Soc. Soc. Soc. Soc		<u></u>				•		
Compt. Dingl. Toly F. Chan. Chem. Soc. J. Chem. Chem. Chem. Soc. J. Pharm. Chem. Chem. Chem. Soc. J. Pharm. Chem. Chem. Soc. J. Pharm. Chem. Soc. Soc. Soc. Soc. Soc. Soc. Soc. Soc	Phys. Chem	• : :	· : :	· 👀 : : "	. ଜା ପ୍ୟାର	,	51 52 44 50	22022
Compt. Dingl. Gazzetta J. Amer. J. Chem. J. Pharm. Trend. Poly J. Gazzetta Chem. Soc. Ch			•	,	•			
Compt. Dingl. Gazzetta J. Amer. J. Chem. J. Pharm. Trend. Poly J. Gazzetta Chem. Soc. Chum. Soc. Ch	rakt. Iem.	80.4	90	2007 2007 2007 2007 2007 2007 2007 2007	61460			
Compt. Dingt. Gazzetta Cham. J. Cham. Frond. 50, 51 156-158 52, 53 156-152 54, 55 1155-158 56, 57 1176-178 56, 67 1176-178 56, 67 1176-178 56, 67 1176-178 56, 67 1176-178 57, 71 155-186 58, 67 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-191 58, 69 187-190 58, 69 187-191		823	28.89	9.001	(9)	2 111111	28888	
Compt. Dingt. Gazzetta Cham. J. Cham. Frond. 50, 51 156-158 52, 53 156-152 54, 55 1155-158 56, 57 1176-178 56, 67 1176-178 56, 67 1176-178 56, 67 1176-178 56, 67 1176-178 57, 71 155-186 58, 67 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-190 58, 69 187-191 58, 69 187-190 58, 69 187-191	arm.	88	21 41 45	/140 α -	2 7 7 8 2 2 5 2 7 7 8 2 2 5	3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	24087	24586
Compt. Dingt. Gazzetta Chem. J. Amer. J. Chem. rend. Poly. S. Soc. Soc. Soc. Soc. Soc. Soc. Soc.	Chu			~	15,13	8 8 8 8 9 19 19 19 19 19 19 19 19 19 19 19 19 1		1 46 523
Compt. Ding!. Gazzetta Ohan. J. Amer. J. Fred. Chan. T. Chan. Chan	! !		-	ڪ		• • •	m = 0.0 mm	m of 02 with
Compt. Ding!. Gazzetta Ohan. J. Amer. J. Fred. Poly F. Sag. Sag. Sag. Sag. Sag. Sag. Sag. Sag	Chen Soc.	; :	16	20 138 20 138	8 2 2 2 2	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20 1 2 2 3.	
Compt. Dingl. Gazzetta. 50, 51 116-158 52, 53 119-152 54, 55 118-158 56, 57 118-178 60, 67 178-182 64, 85 118-190 70, 71 115-188 70, 71 115-188 70, 71 115-188 80, 69 111-114 80, 81 205-208 81, 85 222-208 81, 85 222-220 81, 85 222-220 81, 85 222-220 81, 85 222-220 81, 95 232-222 82, 93 232-232 90, 91 235-28 90, 91 235-28 100, 101 225-28 115-188 92, 93 232-222 84, 85 222-220 88, 87 227-220 88, 89 227-220 88, 89 227-220 89, 97 227-220 89, 97 227-220 100, 101 225-28 100, 107 227-270 100, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270	-i							
Compt. Dingl. Gazzetta. 50, 51 116-158 52, 53 119-152 54, 55 118-158 56, 57 118-178 60, 67 178-182 64, 85 118-190 70, 71 115-188 70, 71 115-188 70, 71 115-188 80, 69 111-114 80, 81 205-208 81, 85 222-208 81, 85 222-220 81, 85 222-220 81, 85 222-220 81, 85 222-220 81, 95 232-222 82, 93 232-232 90, 91 235-28 90, 91 235-28 100, 101 225-28 115-188 92, 93 232-222 84, 85 222-220 88, 87 227-220 88, 89 227-220 88, 89 227-220 89, 97 227-220 89, 97 227-220 100, 101 225-28 100, 107 227-270 100, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270 108, 107 227-270	Amer Soc	::	:::	. : : :	: :::.	: ::::	ପ୍ରକ୍ଷର	~*****
Compt. Dingl. rend. Poly. F. 50, 51 156-158 54, 53 159-162 55, 55 167-162 55, 55 117-174 56, 67 177-182 82, 85 179-184 66, 67 187-184 66, 67 187-184 67, 71 195-184 70, 71 195-184 70, 71 195-184 70, 71 195-184 70, 71 195-184 70, 71 195-184 82, 83 197-222 84, 85 231-224 84, 85 231-224 84, 85 231-224 84, 85 231-224 86, 87 227-226 88, 89 231-224 88, 89 231-224 88, 89 231-224 88, 89 231-224 88, 89 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 88, 80 231-224 100, 101 255-283 106, 107 227-270			•	<u> </u>	<u>.</u>			
Compt. Poing! Fig. 55 1156-158 50, 51 1166-158 54, 55 116-1168 56, 57 117-174 56, 67 117-174 56, 67 117-174 56, 67 117-184 66, 67 117-184 66, 67 118-186 66, 67 118-186 67, 77 207-218 77, 77 207-218 77, 77 207-218 78, 79 207-228 88, 88 20, 221-228 88, 89 21-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 88, 89 221-228 100, 101 256-258 104, 105 106, 107 257-270 106, 107 257-270	Jazzett	; :	111	: : : :		4 10.00 Land	132	25 7 2 5
Compt rend, 15, 55, 51, 55, 55, 55, 55, 55, 55, 55		8 28 628	\$ 2 2	882 882	8 6 8 6 7	7 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8,2,2,2,2	250 250 240 240 240 240 240 240 240 240 240 24
Compt rend, 15, 55, 51, 55, 55, 55, 55, 55, 55, 55	Ding Poly.	156-1	163-1 104-1 171-1	176-1 179-1 183-1 187-1	195-1 195-1 203-2 207-2	22.22.22.22.22.22.22.22.22.22.22.22.22.	22.22.23	2852-2858-2857-2857-2857-2857-2857-2857-
O. C.								
	Comp Tend	50,5	200 200 200 200 200 200 200 200 200 200				ପ୍ରସ୍ଥ ପ୍ରସ୍ଥ ଅନ୍ତ ପ୍ରସ୍ଥ ସ୍ଥ ଅନ୍ତର୍ଥ ପର୍ଷ ପର୍ଷ ପର୍ଷ	100,170,1100,1100,1100,1100,1100,1100,1
1888 888 888 888 888 888 888 888 888 88				10 45 1- 00 00	9-99	r ingrap	82483	
	, M	200	*	8 4000	.55	181	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2000000

									•								Į.,	
Zeitsch. physikal. Chem.		•	: * :	;	::	::	•	: :	; 4 • •	• :	: !	::	1,	: :	• : *			. 7 . 7
Zeitsch. Nrys	: :	:	::	,• :	: :	;	• 1)::: :	:	:		ກ ຄື ເທື່ອຊື່	200	ရှိ တဲ့ ဝီ [∽	7, 8 8, 9 -1 0	10, 11		13, 14, 15
Zeitsch., angew. Chem.	;	• :	•	•:	:	# (: :	`::	:	:	· ;	: :	•	: ;	: :	•	•	-8
Zeitsch. anal. Chem.	•	- 0	:1 65	4, 1	n ·o ı	~ 00	6 ₀ 2	11	<u>က</u> က	14	929	18	19	22	53 53	24	26 25	283
Wied.	11			•	,	::	•	•	:	:	GE ,		9-11	15-14	18-20 21-23	24-26	30-32	33-35 36-38
Stahl und Eisen.	: :	: :	;:		:	•	.: :	. :		•.	: :	: •	;	• ~ 01	eo 44	rol	p I-	œ ø
Sitznngsber . • K. Akad. Wiss, Wien.	39-42	, 1	47, 48	51, 52	55.55 5.05 5.05 5.05 5.05 5.05 5.05 5.0	57, 58	61, 62	654 66	69, 70	71, 72	75, 76	79, 78	81,82	85.84 85,86	82, 88	91, 92	95, 94	93
Trav. Chim.		•	٠.		• ;		:	፥	፥	•:	٠ :	٠.		:-	ଟୀ ୧୨	স	တက	ρ- ∞
Quart. J. Chem. Soc.	• 57	Continued	Chem. Soc.		• :			· : .	: . ;			:	:		: :		::	:
Proc. Roy. Soc	10, 11	11, 12	12, 13 •	14	15, 16	16, 17 17, 18	18.49	20,23	22, 23	23, 24	25, 26 25, 26	27, 28 28, 29, 30	-30, 31	33, 32, 33 33, 34	34, 35, 36	38, 39	40, 41	43, 44, 45
Chen.	:	- : ·	: :	•	: •	: .	:	•	: :	. :	••	• :	•	: :			C1 6	14 10
Pogg Annalen	109-111	115-117	118-120	124-128	127-129	133-135 136-138	139-141	145-147	151-153	154-156	001	Continued as Wied.	Annalen.	* •		. :	: :	: :*:
Phil. Trans.	150	152	153	155	156 157	158	160	162	164			168, 169	•	172	174	176	177 A 178	179
				•			1870			w								·

TABLE OF DATES OF ISSUE OF JOURNALS. xxiii

Analyst, Annalsm Ohim. Mines. Pharm. Berr. Phys.
Annaleng Chim. Phys. Phys. 256-260 19-21 2571-256 22-24 2572-277 28-27 2584-283 (7) 1-3 254-298 10-12 254-298 10-12 254-298 10-12 254-298 10-12 254-298 10-12 255-27 (8) 1-3 250-287 (8) 1-3 2

				<u>•</u>	<u>* </u>	;	-		-	•			1
Phil.	3 81		24	4 6 8	.82	400	222	18	222	188	0,6	# 98 88 88	
E A	6,1,8		8,1,		6 ,6	ന്ന് ⊾് •	• 6 H	12.7	100	ផ្តេ		8, 55, 50	. i.
• .	2001	249	200	52		7967	123	2	• 6	22.2	988	9224	_[
استيا	24.2	်ဆို ဝိ		, 8, 6 6, 58, 58		68, 70,	61 THE	£ 50	80.00	6 0 0 6 0 0 6 0 0 6 0 0 7 0 0 8 0 8	95	6,1	٠ †
Nati re.	1,0,0	150		52,		65, 67, 69,	173		92.99	98,	96,	200	-
	88.4			2 62 6	- 		655		728				7
Mon. *	85,8			51, 5 53, 5 53, 5	5,5	58 59 60, 61		28,0			88	8 8 8 8 8	+
	60 60 60	44	च च	4 10 10	ići 	≱	000	. 9 %		\$1°-00		•	_
Mongtsh.						•					•		
a o	122	12 12	17	202	22	828	822	88	822	3 4 73	38	38	'
_=								•					_
J. Soc. Chem. Ind.	- 62 <u>-</u>	- 61 69	40	12	60	222	25.4) 	30 3	- 01 % 5	w65	38 38	
g-		•			- 21	010101	900	1 01 01	01000	້	99	90 90	
	•					•	-	•		-		P	-
Phys. Chem. Soc.	21 22 2	1 51 2 1	22 28	3 23	8 2	35	388	4 6 6	24 53	\$ \$ \$ 9	7.4	:::	
, 40 4											•		
• ਦੂਰ	2,44	8 0	54	60 88 60 60 88 60	5.2	98 88 89 1	24.5	80	00 00 0 01 44 8	£ \$	9 20	38 100	
prakt. Chem.	£,6,4			55, 15		65. 67, 69,		1,6	£83,	39,	93,	95, 97, 99,	١.
						•		•					
J. Physical Chem.	::		: :		410	. 01~∞	901	- ୧ 1 ୧୨	4101	122	60	222	_
F. C.			: :	1 : 1							- 61	010101	
•	014	6 % 6	~~~ ~	•	~~~		. T		64		٠	~ · ·	-
Pharm. Chim.	-01.25 -01.25		1,4,	6,7,9 9,8 9,8	·HA	15, 16 17, 18 19, 20		988		9,89	7, 15	15, 16 17, 18 19, 20	.
# D	6161	\$ 75° 85°	9	-4 0	23	7777	20 83 2	ลิล์ลิ	E		11 31	775	
P wid	•		•	:			•						-
Find. Eng. Cleem.	: :	: (:	;		: :	111	: :	: :-	01 00	41.60	~ ∞	92	
	<u> </u>			-	•	1			:			01 02	
Per 3.		8 6 2	20	747	* * S	8 8 8		96 96		104	108	112 \$14	
J. Chem.	59,	63, 65,	67, 69,	73,73	77,	85. 85.	8 8 8 E	ရှိတွင် အတိတ်	ක් රි ක්	103, 105,	107,	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ľ
-	1				-	•		•	•				
J. Amer. Chem. Soc.	222	15	17	282	ំន្តន	2622	888	385	• 22 22 2	200	A. 00	86 04 14 14 14	1
-్రో					•					•			_
#	•		• (•		_ 4.		•	•	
Gazzetta	88	3 63 63	22.53	2 23 23	8 2	20 80 90.	్ స్ట్రహ్మ	8 8 8 6	0 4	444.	4.5	48 49	
5	<u> </u>												-
7	282	287-290 287-290 291-294	802	303-306 307-310 311-814	20.60	r-00 0a	-0	4 60 4	10,401	- & a			
Ding!.	200	25.0	200	25-1	25	317 318 319	320 821	3 85 85	8 60 6	828	1-1	: : :	
) pa()	. 61619	200	00	0000					*	•			_
T OF	822	282	88	882	. 82	0 0 0 0 0 0 0 0	288	888	. g =:	122	22	18 11	
.	, An -1		an -	••	- - -						-		

ļ .	-			2002	•	• •
Zeitsch. physikal. Chem.	7 5 7 9 10 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0	11, 12 18-15 16-18 19-21 22-24	25-27 28-81 32-35 39-42	56 -58 54-57 54-57 58-60	70-74 75-77 78-80 81-86	.89, 36 91, 92 92
Zeitsch. Kryst.	16, 17, 18 19, 20 26, 21	21, 22, 24, 25, 26-28, 29	- S		48, 49, 50 50-52 52, 53	الله الله الله الله الله الله الله الله
Zeitsch. Flektro- Chem.	••! : :		99 1	0 11 12 12 12 12 12 12 12 12 12 12 12 12	12 H HHM	22222
Zeitsch. afforg. Chem.	1,2	8-10 11, 12, 13	19-12 19-22 29-25 29-33 39-33	38-42 43-48 45-52 52-56 56-60 61-65	65-69 69-73 73-79 79-83 84-90	90-93 94-98 99-101 102-104 106-109
Zeitsch. angew. Chem.		2 8 9 0 5	6 6 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22022	*84882	23.00 20.00 20.00
Zeitsch.	30.83	8 2 8 8 8 9	88 88 88 0 0 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		52 52 53 53	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Wied.	39-41 42-44 45-7	51-53 54-56 57-59 60-63	Con- tinued as Annalen der	Physik	•	35 37 38 38 38 55 38 65 38 65
Stabl nnd Eisen.	110	21 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18		62 52 78 78 78 78 78 78 78 78 78 78 78 78 78	0.000000	38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Sitzungsber. K. Akad. Wiss. Wien.	99 100 101 102	103 104 105 106	108	114 116 116 118 118	119 120 121 122 • 123	Remainder of vol.
Rec. Trav. Chim.	9 10 11 12	•			a & & & & & & & & & & & & & & & & & & &	35 37 37 38 Rem
Proc. Roy. Sec.	47, 48, 49 49, 50 50, 51, 52, 52, 53, 54	59, 56, 57 59, 60 60, 61, 62 62, 63, 64	68, 67 68, 69 69, 70 70, 72	74-76 74-76 78, 79, 80 80, 81 82, 83	0.44, 83, 88, 88, 88, 88, 88, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 9	
Proc. Ohem. Soc.	an-was	•	•	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		of matter of scientific interestmow shandoned.
Physikal. Zeitsch.	1111		வு <i>ற</i> அம	. భ్రావ ల రె _ల ి	Hangara, e	•
Phil.	A. 181 182 183 184	187, 188- 187, 188- 189, 190 191	194, 195 196, 5197 198, 199 200-4002 203	204, 205 206 207 207–209 209, 210	210, 211 211, 212 212, 213 215, 214	\$216, 217 \$216 217
Year	90.00	1895 2995 2097 2998 2998	1900 01 02 03	1906 007 008 009	•	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

•A •TEXTBOOK OF **CHEMIST** INORGANIC

VOL. IX. PART II. IRON AND ITS COMPOUNDS.

CHAPTER 1.

THE EARLY HISTORY OF IRON.

The important part played by iron in the development of modern civilisation renders a study of the history of this metal one of peculiar interest. In whichever direction we turn we are confronted by articles of iron, large and small, essential and ornamental. It is iron in some form or other that constitutes the framework both of our railways and of our mercantile marine. Without these rapid means of transport the huge populations of London and our larger cities could not be fed and supplied with the necessaries of civilised life as we know it to-day. Again; reinforced concrete,1 the building material of the future, owes what strength and adaptability it possesses almost entirely to its iron frame, and as our supplies of building stone become depleted we shall be driven to placing increased reliance upon this material. Of all the . metals known to science, iron takes the foremost place in the service of man. Indeed, the wonderful progress that has been made during the last hundred years would not have been possible had not the carth possessed an abundant supply of iron or its ores.

At the dawn of the human cra man would scize upon any stones, branches, or other hard materials lying at hand for purposes of offence, defence, or the chase. Later on it would occur to him to improve upon the natural shapes by chipping, and ife would soon discover that flint is particularly amenable to such treatment. Thus would originate the flint weapons and tools which have been discovered in large quantities in modern times, and which antiquaries have made use of to throw interesting light upon the manner in which primitive man lived

during what has been aptly termed the Stone Age.

In all probability during his search for suitable stones early man occasionally stumbled across meteoric iron. Finding that it did not crack on being hammered,2 that it possessed great tenacity and

¹ See Friend, Trans. Concrete Inst., 1917-18, 9. The impression mared by many writers, namely, that meteoric from is usually brittle and anworkable in the cold, appears to be erroneous (Zimmer, J. Iron Steel Inst., 1916, II., 306).

admitted of being rubbed to a fine, hard edge, he would prepare from

it his most valued weapons.

This does not constitute the beginning of what antiquaries term the Iroh Age, for man at this period did not recognise any relationship between metallic iron and the red or brown earthy hæmatites around bim. He regarded the iron merely as a particularly useful but unfortunately rare kind of stone, and not as a substance that he could • manufacture for himself. •

Interesting side-lights on the customs of prehistoric man are afforded by the behaviour of his modern representatives in uncivilised countries. Thus Ross in this Arctic explorations in 1818 came across certain the strings who carried knives consisting of blades of meteoric iron set in the translations. The micros of metal hand have detailed in the string handles in the string handless in the string into bone handles.1 The pieces of motal had been detached with great labour from the softest of three masses & metal of meteorie origin at Melville Bay, and had then been cold worked with stone hammers.

It has been urged that meteoric iron is too scarce to have ever been used to any appreciable extent by prehistoric man. This is hardly the case, however, for some 246 tons of the metal are known to science, and in prehistoric times meteoric iron would be even more plentiful than now imasmuch as the accumulations derived from meteoric showers of the previous ages could be drawn upon. As the metal, owing to its hickel content, is usually highly resistant to corrosion, it would not decay so rapidly by exposure as the ordinary manufactured metal.

Ages clapsed before man discovered that certain "stones," on being heated in a fire, yielded a new "stone" capable of being hammered Snto useful shapes, and differing from the original stone in most of its other properties. This new product is now called copper or bronze, according to its composition. At first, no doubt, it was a matter of accident whether bronze or copper was produced. In districts such as Cornwall, where copper and bu ores occur in association, they would be reduced together as one and the same, yielding what may be termed a "natural bronze." In Hungary, where copper ores are associated with those of antiniony, early implements consist of an alloy of copper containing up to 45 per tent, of antimony. Similarly Egyptian implements contain arsenic, whilst those from Germany contain

The discovery that bronze is not obtained from a single ore but a from a mixture of at least two ores represents a high standard of metallurgical knowledge, soon to be followed, if not indeed already preceded, by the discovery of iron. The question now arises as to how many years iron—whether native, meteoric, or manufactured—has been known to and used by different peoples. Just as the nations to-day differ in the relative degrees of their eivilisations, so in past ages some of the peoples were living in their stone age whilst others were using implements of bronze and yet others had become familiar with iron. Thus Britain was passing through her stone period at a time when iron was already known in Assyria, in Egypt, and probably also in China. Again, at the time of the Roman invasion of Britain the southern tribes, used brouze implements and were familiar with

¹ Zimmer, loc. cit. Gowland, Hurley Memorial Lecture for 1912, Royal Anthropological Institut&. See Brough J. Iron Steel Inct., 1906, L., 233.

iron, whilst the northern tribe of Brigantes was still in their stone age. Iron was known in Egypt at least some 8500 B.C., although it did not come into common use probably until the fifth or sixth century B.C. Possibly the iron found its way thither from Ethiopia, where iron smelting was probably practised at an carlier date than in Egypt. During blasting operations within the Great Pyranud at Gizeh in 1867. an from tool was found, which, if coeval with the pyramid, proves, that iron was known in Egypt at the time of the Fourth Dynasty

-that is some 5500 years ago.*

The first general group of iron tools found in Egypt dates back to * the time of the Assyrian Invasion of 6660s.c., and was found at Thehes. The Assyrians themselves appear to have made chain mail about

900 B.C.3

The Israelites were familiar with iron, and several interesting allusions to the metal occur in Holy Writ. Og, King of Bashan, c. 1200 B.c., is stated to have had an iron bedstead. It is generally accepted that iron was introduced into Palestine about this time by the Philistines," who were a far more cultured race than the Israelites, with whom they were constantly coming into conflict.

. The oldest examples of iron used in Pulestine are two wedge-shaped lumps found in the famous water passage at Gezer.7 The passage was scaled up about 1450 to 1250 B.C., several hundred years before the use of iron became general in Palestine; but although these are simply stray pieces of metalathey show that iron was known prior to these dates. Excavations at Gezer, Lachish, and Megiddo have brought to light numerous tools, weapons, and ornaments of iron, dating in some cases as far back as the time of David, namely, about 1000 B.c. An interesting example is that of a ring comented to a finger-bone by rust, showing that it had been used for personal adormnent.8

It is not improbable that India acquired her knowledge of iron from Babylon 9; at any rate iron was worked in India at an From a passage in the Black Yajuveda it would early date. appear that some form of iron cannon was used in the Vedic Age, namely between 2000 and 1000 s.c. 10 Between 500 and 200 ssc. iron appears to have been in quite common use, particularly for

war weapons.

The famous pillar at Delhi has frequently been described, and owing to a regrettable series of errors the date of 912 B.C. has repeatedly been assigned to it. In reality it only dates back to about A.D. 300. It is 28 feet 8 inches in height, 22 feet being vertically above ground and 20 inches below. Its upper diameter is 121 inches; its lower, 161 inches; whilst its total weight is approximately 6 tons. 11 The legend

Petric (ibid., 1912-1., 182) gives 7000 to 6000 s.c., but his system of chronology is

CHIEFOR.

See J. V. Day, Proc. Phil. Soc. Glasgow, April 12, 1871; also King and Hall, Egypt and Western Asia in the Light of Recent Discourries (S.P.C.K., 1907).

Louis, Proc. Durham Phil. Soc., 1911, 4, Part 2.

See Gen. iv. 22; Deut. iv. 20; Num. xxxv. 16, etc.

Daut. iii 11

^{*} Dout. iii. 11.

<sup>Boul. in. 11.
Soe I Sam. xiii. 19-22; Josh. xvii. 16-18; Judges i. 19, jv. 3.
Macalister, Palestine Exploration Fund, Quarterly Statement, 1908, p. 101.
See Handcock, The Archaeology of the Holy Land (Unwin, 1916), p. 210.
Y. Smith, J. Iron Steel Inst., 1912, I., 183.
Noogi, J. Rof. Soc. Arts., 1914, 63, 43.
Hadfield, J. Iron Steel Inst., 1912, I., 134.</sup>

IRON AND ITS COMPOUNDS.

connected with this famous pillar asserts that the metal had been driven so deep into the ground that it had pierced the head of the king of screents who supports the earth. It had thus a remarkably sure foundation. A Rajah doubted this and ordered the pillar to be dug up, with the result that its end was observed to be moist with the expent's blood. On attempting to replace the pillar, however, it was found impossible to transfix the wily reptile; and the pillar, in consequence, remained loose and shaky, symbolic of the Rajah's faltering faith. It has been suggested that the city of Delhi owes its name to the pillar, the Hindoo term being Dhelli, or unstable. Sanskrit authorities are inclined to the opinion, however, that the word Delhi means the Heart's Delight, and has nothing whatever in common with the pillar. A remarkable feature of the pillar is its freedom from fust. This is no doubt due to some peculiarity of its surface layer, for pieces broken away appear to rust with case² •Hadfield ³ analysed one such sample, and found it to contain: -

Carbon		0.080 pc	er echt.
Silicon .	• .	0.046	"
Sulphur .		0.006	,,
Phosphorus '	٠.	0.114	,,
Manganese*	• .	0 000	**

The high phosphorus and low carbon, sulphur, and manganese contents all tend towards reduction of corroditality, but do not suffice to explain the general immunity of the pillar from corrosion. It has been suggested that the employment of stone anvils may have siliconised the surface and thus rendered it less susceptible to corrosion.

Turning now to Europe, it appears that Greece was the first country to use iron, namely, about 1400 s.c. ⁵ Homer (s.c. 880) was thoroughly familiar with the metat, and frequently alludes to it in both his Iliad and Odyskey. Iron, gold, and bronze are repeatedly mentioned as Indicative of wealth at the time of the Trojan war, which was fought at the transition of the Grecian bronze and iron ages, namely, c. 1400

It is an interesting observation that although Homeric agricultural implements were made of icon, the weapons were made of bronze with but two exceptions. The explanation appears to be that when iron was first made its quality was uncertain. Warriors, therefore, refrained from using it until artificers had gained sufficient experience to produce æccliable metals

It is said that Pheidon deposited in the Heraum certain iron bars that had, prior to his time, namely, n.c. 500, served as money; and Waldstein, during his exeavations at this site, discovered a bundle of iron rods which are believed to be the remains of Pheidon's gift.

The close of the Minoan age in Crete, c., 1400 to 1100 B.C., was the period of transition from bronzecto iron in that island, and coincides with the Homeric age referred to above.

¹ This is not actually the case, for the pitlar is very firmly fixed in the ground. 2 See Desch, J. West Scotland Iron Steel Inst., 1914, 21, 176.

Hadfield, log cd.
Carulla, J. Iron Steel Inst., 1908, I., 85.

Montelius, J. Iron Steel Inst., 1900, II., 514.

Lang, The World of Homes (Longmans, 1910), chapter x.

The Romans, several centuries later, were skilled metallurgists, and developed to a remarkable extentathe iron resources of their empire. Pliny, who compiled his famous Natural History nearly two thousand years ago, gives a considerable amount of information relative to the ores of iron and the properties of the metal. He discourses at considerable length upon the tendency of the metal to rust. "Nature," he writes,1 "in conformity with her usual benevolence, has limited the power of iron by inllicting upon it the punishment of rust, and has thus displayed her usual foresight in rendering nothing in existence more perishable than the substance which brings the greatest dangers mon perishable mortality.

Pliny was also aware of the fact that some kinds of iron are less. resistant to corrosion than others, and specifically mentions? a species that "is more particularly liable to rust." He further states ^{a "}that there is in existence at the city of Zeugma, upon the Euphrates, artiron chain by means of which Alexander the Great constructed a bridge across the rivers; The links of which that have been replaced are attacked

with rust, while the original links are totally exempt from it."

This passage is remarkable as being a very early, if not indeed the earliest, statement of the relative corrodibilities of two kinds

The Britons were familiar with from for at least a century prior to the Roman invasion of 55 n.c.. South Wales being regarded as possibly the early home of the iron trade.4 Cresar mentions that the Britons used iron bars for enrrency, probably employing them for purposes of exchange, marriage portions, etc., in a similar manner to that inwhich the loggon kullutty 5 (iron spade-like articles) of the natives of Central Africa or the iron ingot of Cambodia are nised at the present day. Some of the bars may be seen in the British Museum, whilst others, found near Worcester, are lodged in the Museum of that city.7 In appearance they resemble swords, having a flat and slightly tapering blade, with blunt edges, and a rude kind of handle formed by turning up the edges at one end. Two of the bars were examined by Gowland, who gives the following analyses: -

		Bar A.	 Bar B.
• Carbon		tracc per cent.	•0.08 per cent.
• Silicon		0.09 ,	0 02 .,
	٠.	0.69 •.,	0.85
• Manganese	•	uil.	mil.
Nickel • • ·		0.23	•mil.

Bar A, examined under the microscope, revealed a structure similar to that exhibited by meteoric iron, whilst Bar B resembled iron produced by direct reduction from ore and forged from a bloom.

The bars have lost somewhat in weight in consequence of rusting,

- Pliny, book 33, chap. xl. Translated by Bostock and Riley, 1857.
 Pliny, ibid., chap. xli.
- Pliny, ibid., chap. xhii.
 Wilkins, The History of the Iron, Steel, Tinplate, and Other Trades of Wales (Merthyr
- Tydfil, 1903).

 Schweinfurth, The Heart of Africa 1868-71, (Sampson Low), vol. i. p. 125.

 R. A. Smith Proc. Soc. Antiq., 1905, 20, 179; 1915, 27, 69, 76; Archwological J.
- 1013, 19, (4), 421.
 7 Friend, Trans. Worsestershire Nat. Club, 1919, 7, Part 2.

but, making allowances for this, the weights appear originally to have approximated to 309 grams or to some multiple or sub-multiple of this amount. In all, six different idenominations have been found, of the following presumed standard weights:—

Quarter unit .	• .		÷	. 77	grams.
Half unit			.•	. 154.5	**
Unit	٠.			. 809	,,
Unit and one half	•			*. ° 463·5	ຸ, ຄ
Double unit				. ദി8 പ	**
Quadruple unit .	Ų	•		. 1236	> > *

The reason for choosing the third weight, namely 309 grams, as the unit, and not the smallest weight, namely 77 grams, lies in the fact that in the Cardiff Museum is a bronze weight, which was found in association with channeled bronze ornaments of Late Celtic character, near Neath in Glamorganshire. On the top of this weight is engraved the figure 1, and it weighs 309 grams. Another similar weight laade of basalt, and also marked with a 1, is to be found (or was, prior to 1914) in the Mainz Museum.

These relies suggest that not merely was there a standard British weight corresponding to 300 grams, but that the same standard had

been adopted throughout a large portion of Europe.

Boadicea was familiar with the use of iron, and the wheels of the early British war chariots were encircled with iron tyres, as is proved by remains found in Yorkshire, although it is very doubtful if they were fitted with scythes for laming hostile infantry, as was at one time believed. Undoubtedly many of the weapons wielded by Boadicea's troops against the Romans, A.D. 61, were also made with or strengthened by iron.

During Roman times a considerable iron trade was established in Britain. In A.D. 120 Hadrian established an arms factory at Bath, where iron from the Forest of Dean was worked. But in the unsettled periods immediately succeeding the Roman occupation the industry lapsed, to be revived again shortly before the Norman Conquest. This latter invasion produced such an upheaval in the country that the trade again declined until about the fourteenth century.

In 1850 or thereabouts east iron was produced in Sussex, which county was at that period one of England's most important centres of the eron industry. The introduction of east iron made it possible to utilise our ores to far greater advantage than would otherwise have been the case, and constituted an important advance in the metallurgy

of iron. It was in the little Sussex village of Buxted that

"Master Huggett and his man John. They did east the first cannon,"

and many of the village churches and churchyards are graced by iron tombstones which date back several centuries.

Prior to 1653 there were 42 iron forges in Sussex, and 27 furnaces. The industry employed some 50,000 men and furnished the main supply of ordnance for national defence. About this time, however, the fuel

shortage began to be serious, the supply of charcoal becoming very scarce. Before 1664 the number of furnaces was reduced to 11, and in 1667 the forges numbered only 18 1 It was no! until 1809, however, that the last Sussex forge was extinguished namely at Ashburnham.

Towards the close of the eighteenth century there was considerable improvement in the trade in other parts of the country, for coke was now being used. In 1790 England possessed no fewer than 81 coke and 25 charcoal furnaces. In 1917 the total number of blast furnaces was 496, and of these an average of 324 were in blast at any moment during the year. The enormous growth in the output of pig iron since 1740 is well illustrated by the following table.

PRODUCTION OF PIG FRON IN THE UNITED KINGDOM.

Year.	Pig Iron. Tons.	Year,	Fig 1ron. Tons.
•			,
P740	17,350	1870	5,963,515
1788	• 63,300	1880	7,749,283
* 18 06	243,851	1890	7,905,000
1820	368,000	1900	8,908,570
1830	677,417	1910	10,216,745
1840	1,396,400	1913	10,260,315
1850	2,249,000	1918	9,072,000
1860	3,889,752	1919	7.398,000

The output for 1913 constituted a record up to the outbreak of war in 1914, in which latter year the production fell by about 10 per cent, and remained at approximately 9 million tons until 1919.—the latest returns available at the time of writing,-in which year there was a marked decline in production.

The world's production in tons of east, iron ore, pig iron, and steel for 1913—the last year for which complete records are available—is given in the following table,2 and indicates the exormous quantities of fuel, ore, and metal annually handled, and their consequent importance to modern civilisation.

TABLE

¹ Compiled from that supplied by the Statistical Reports for 1916 and 1918 of the Iron, Steel, and Allied Trades Federation, and from the J. Iron Steel Institute.

* Statistical Report for 1916.

Country.	Coal.	Iron Ore.	Pig Iron.	Steel.
United Kingdom	287,472,000	15,997,328	10,260,315	7,663,876
Canada	. 15,012,000	307,684	1,015,118	1,042,503
Newfoundland		868,102	}	
Australia •	11,322,000		46,563	• • •
New Zealand .	. * 1,888,000	• •		į · •
Union S. Africa	. 10,732,000			
India	-16,208,000	370,845	• •	• •
Tunis (exports to	0 "	279,071		
U.K.)				
Austria-Hungary	* 17,519,000		2,380,864	2,625,879
•	† 36,179,000) ' 1	•	•
Belgium	. 22,842,000		2,184,690	
France	40,811,000		5,311,316	4,635,160
Algeria	1 080 000	1,349.000	. %	
Holland	1,873,000		• • •	
Germany	*191,511,000 + 87,116,900		19,291,920	18,958,81
Italy.	701,000		426,755	¥33,500
Russia	33,369,000		61,557,000	
Portugal	. 00,000,000	49,182	6 -, 100 -, 000	1,001,00
Spain	4,293,000			241,99
Norway	.,,,	78,936		
Sweden	361,000	7, 175, 571	730,257	590,88
United States .	.569,960,000			
China	. 2,185,000			
Brazil				
Greece		310,078		
		•		
Total .	1,351,351,000	170,935,334	77,895,724	76,317,87
	•	1		
	• • Cold.	t Lignite.		

CHAPTER #11.

THE MINERALOGY OF IRON

Next to aluminium, iron is the most abundant and widely distributed metal in the crust of the Carth.1 It is seldon found free in mature owing to the extreme readiness with which it combines with moist air to form the hydrated oxide known as rust. Such ferruginous minerals as coptain a sufficiently high percentage of iron, possess a suitable chemical composition, and occur in nature in large quantity, are termed ores and are used for the commercial extraction of iron. Owing to their economic importance the ores of iron have been studied. with unusual care, and the suitability of the more important types for metallurgical purposes is discussed in Part III. of this volume.

The various minerals containing iron may be conveniently classified according to the state of the chemical combination of the fron, and the system adopted here is schematically represented as follows: —

- 1. Native Iron.
 2. Oxides \begin{cases} \text{Magnetites, Fe_3O_4.} \\ \text{Hæmatites} \begin{cases} \text{Red, anhydrous ores, Fe_3O_3.} \\ \text{Red-brown, hydrated ores, Fe_2O_3.} \\ \text{Red-brown, hydrated ores, Fe_2O_3.} \end{cases} \]
- 4. Sulphides pyrites.
- 5. Miscellaneous Minerals.

NATIVE IRON.

As has already been mentioned, iron seldom occurs in the free state in nature on account of the readiness with which it oxidises on exposure. to a moist atmosphere. Native iron is frequently of meteoric origin, and contains varying quantities of alloyed nickel. Usually the nickel ranges from 1 to 10 per cent., but the metallic particles contained in the meteorite which fell near Middlesbrough in 1881 possessed no less than 21-32 per cent. of nickel,! whilst the Santa Catharina siderite 5 contained 84 per cent., and Oktibbeha County sidefite 60 per cent. of

- See this agrical, Vol. I., 3rd edition, p. 8.
 Meteorites consisting mainly of metallic iron alloyed with nickel are termed siderites. Meteorites consisting mainly of metallic from alloyed with flicked are termed starries. Siderolites differ from the above in containing stony matter as well as native metal. Aerolites consist essentially of stony matter.

 3 On the structure of meteoric iron see Fracukal and Tammann, Zeitsch. anorg. Chem., 1908, 60, 416; Osmoda and Cartaud, Compt. rend., 1903, 137, 1057.

 See J. Iron Steel Inst., 1883, II., 716.

 Discovered in 1875. Bescribed by Lunay, Compt. rend., 1877, 85, 84. Regarded by some as of terrestrial origin.
- some as of terrestrial origin.

nickel. Owing largely to the presence of this element, meteoric iron presents a whitish fracture, and resists corrosion extraordinarily well.1

• The following analyses of metedrites, arranged in chronological . order, will prove of interest as illustrating the variation in composition. that has been met with by different investigators:---

					<u>. </u>		
Number	1.	2.	3.	4.	5.	6.	7. •
			•				
Date when found	21913	1906	a 1906	1004	1892	1881	1876
	Mt. Edith,			Okauo,	Williams.		Rowton
LOUISITEY.	West	alusta.	vihe.	Japan.	town,	bro'.	(Shrop.
	Australia.		Missouris		Kentucky	(Yorks.).	shire).
•		Sweden.		•	١	·	
Weight	355 Hs.	16·5 lbs.	38 lhs.	10°4 lbs.	68∙2 lb¤.	{3 lbs. 81 oz.	6.85 lbs.
Density	7.86	7.9	7.61	7.98	8-1		٠
Analysis :			İ		1	•	ŀ
Го	89-500	91.20	89-015	94.85	94-54	76.99	• 91·15
Ni , .	9.450	8.02	9.660	4.44	7.26	·21·32	8.67
Со	0.625	0.69	0.545	0.48	0 52	1.69	0.34
(r	1	0 01		• • •	0.05		
Cu	0 013	0.01 •	0.025	trace	•0.03	1	trace
P	0.316	0.05	0.365	0.23	0.12	`	• • •
<u>c</u>	0.017		0.015		0.004	1	•
Si	0 005	•••	0.003	• • •	trace		
8	0.005	•••	₹.002		017		
	, i	ı	1	1	J.	1	

Foote, Amer. J. Sci., 1914, 37, 391.
 Hogborn, Zeitsch. Kryst. Min., 1914, 53, 408.
 G. P. Megrill, Proc. U.S. National Museum, 1912, 43, 595; Engineering and Mining 7, 1913, 95, 350.
 O-370 per cent. of ferric oxide was also present.
 Chilashige and Hiki, Zeitsch. enorg. Chem., 1912, 77, 197.

E. F. Howell, Amer. J. Sci., 1908, (4), 25, 49.
 Flight, Jairh. Min., 1884, 2, Ref. 28. The analysis of the metallic portion is given only. Of the remaining constituents 60 per cent. were soluble silicates and 40 per cent.

7. See Flight, Jahrb. Min., 1884, 2, Ref. 28; also An Introduction to the Study of Meteorites, 1908, p. 66.

It will be observed that all of the meteorites contain, in addition to nickel, a small quantity of cobalt, whilst the carbon content is extremely small. Carbon is sometimes present in meteoric iron in the form of minute diamonds.2 The Rowton specimen is interesting as being the first inderite observed to fall in Great Britain, and may be seen in the Natural History Museum, South Kensington. The Perryuille siderite is the first recorded instance of the presence of ruthenium in meteoric iron. In addition to traces of this element, traces of iralium, palladium, and platinum were detected.

The largest known meteorie mass is the Ahnighito, brought by Peary from Western Greenland in 1895. It how lies in the New York Museum, and weighs 861 tons.

A magnificent collection of meteorites is contained in the South Kensington Natural History Museum, London, and a full account of them is given in the little handbook, nistory Auscum, London, and a 1011 account of them is given in the little handbook, printed by order of the trustees, entitled An Introduction to the Study of Meteorites, 1908. The reader is also referred to Meteorites, by Farrington (Chicago, 1915), and to Handbuck der Mineralchemie, by Rammelaberg (Leipzig, 1860).

See Friedel, Compt. rend., 1892, 115, 1037; Foote, Amer. J. Sci., 1891, 42, 413.

In 1870 Nordenskiöld found some large masses of iron containing 1 or 2 per cents of nickel at Oyifak in Western Greenland. They weighed 9000, 20,000, and 50,000 lbs, respectively, and, though formerly regarded as meteoric, are now believed to be of terrestrial origin,2 having been reduced from basalt by some natural process.

Grains of Awaruite, an alloy of nickel and iron, have been found in the sands of certain New Zealand and Canadian rivers, containing as much as 67.6 per cent. nickel.3 Souesite 4 and Josephinite 5 are names given to similar alloys,6 the former from British Columbia, and the latter found enclosed within water-worn pebbles in Josephine and Jackson Counties, Oregon, U.S.A. An allow containing some 7 per cent. of nickel is frequently termed kanflesite, one corresponding to the formula Fe, Ni, (38 per cent. Ni), taenite 8; and FcNi (60 per cent. nickel), octibbehite.

Native iron has been found in the coal measures of Missouri, 10 at depths ranging from 35 to 51 feet, which preclude the possibility of meteoric origin. Most probably the metal has been formed by reduc-The fragments of iron weighed on the average 0.5 gram, but a larger mass of 45.4 grams was also discovered. The metal was soft (hardness on Mohs' scale 11 4), mallcable, and, on fracture, silver-white in appearance. Different specimens yielded the following analyses:--

		• l.	Îı.	HI.
Fc .		99.16	99-39	97·10 per cent.
SiO ₂		0.37	0.31	1.65 ,, _
C .	.	0.065	?	• ?
Ρ.	.	0.207	0.13 •	.0.176 •,,
		İ	•	

In no case was cobalt, nickel, or copper present. The donsities ranged from 7.43 to 7.88.

- Analyses are given by Winkler (Zeitsch. Kryst. Min., 1903, 37, 286) of a weathered sample of the metal. F. Wohler (Jahrb. Min., 1879, p. 832) gaves an analysis of the metal itself. See also Nordenskield, Compt. real., 1893, 116, 677; Moissan, tbid., p. 1209; Törnebohm, Jahrb. Min., 1879, p. 173.
 C. Winkler, Chem. Zentr., 1600, 1., 1307; Zeitsch. Kryst. Min., 1903, 37, 286;
 C. Benedicks, Metallurgie, 1911, 8, 65.
- Skey, Trans. W. Zealand Inst., 1885, 18, 401; Johnston, Summary Report Gol.
- Skey, Trans. C. Legana 1821, 1900, 10, 20; somewor, Sammay Report 1900.

 Survey, Canada, for 1910, 1911, p. 256.

 G. C. Hoffmann, Amer. J. Sci., 1905, (4), 19, 319.

 Melville, Amer. J. Sci., 1892, (3), 43, 509.

 These names might very well be disponsed with, and all three clloys—Josephinite, Souesite, and Awaruite—known by the earlier name of Awaruite. See Jamieson, Amer. J. Sci., 1905, (4), 19, 413.

 See Cohen and Weinschenk, Jahrb. Mfn., 1892, 11., Ref. 244.
- ** See Clueth and Weinschenk, Junio. April, 1092, 11., 1092, 11., 1093.

 ** See Tetcher Min. Mag., 1908, 15, 147; 1899, 12, 171.

 ** Taylor, Amer. J. Sci., 1857, 24, 243.

 ** Allen, Amer. J. Sci., 1897, (4), 4, 99.

 ** Moha scale of hardness is indicated by the following substances, arranged in order of the control of t their ascending hardnesses :-
 - 5. Apatite. *

 - 2. Rock salt. 3. Calcite. 6. Orthoclase.
 - 4. Fluorspan
- 7. Quartz.
- 8. Topaz. 9. Corundum.
- 10 Diamond.

The dust showers which at various times have fallen in Italy and Sieily frequently contain grains of metallic iron. Similar grains are found in the sands of the Sahara desert, and it is not improbable that the dust showers referred to are terrestrial phenomena, the sand being. transported from the desert by eyelones.1 In numerous other places small grains of iron have been found, and a terrestrial origin is ascribed to the metal in all of these cases.

Traces of metallic iron have been found 2 in basaltic rocks, such as those from the Glant's Causeway. They were detected by pulverising the rock, separating the magnetic grains, and subjecting them to the action of an acidulated solution of copper supphate in the field of a microscope. Small depositions of copper in crystalline bunches indicated the presence of traces of native iron. Grains of native iron mixed up with limonite and organic matter have been found in petrified wood.2 Iron edystallises in the cubic system, its cleavage being octahedral. Hardness 4-5; density, when pure, 7-86 (mean value).

A specimen of what may be termed "native east iron" is stated by Inostzanzeff³ to have been obtained from Russian Island, Vladivostok. Analysis showed it to contain

Iron •	٠.	93.87	per cent.
Carbon (free)		2.87	٠, •
Carbon (combined)		0.33	٠,
Silicon		1.55	٠,,

and small quantities of manganese, sulphur, etc. In micrographical structure, as well as in composition, the metal resembled east iron, and it is supposed to have been formed by the interaction of coal and iron ore in a sedimentary rock induced by the heat from an intruded igneous

A carbide of iron occurs as Cohenite (Fe, Co, Ni)3C, in meteorites in distorted crystals, probably belonging to the cubic system.⁴ It possesses a metallic lustre, is tin-white in colour when pure, becoming bronze-yellow upon exposure to air. Hardness 5·5 to 6; density 6 977.5

MAGNETITES.

•Magnetite or Lodestone, Fe₃O₁ or Fe₂O₃.FcO, is the richest form of iron ore, containing when pure 72 4 per cont. of metal. Magnetite crystals are usually octahedra and dodecahedra, and are well developed in some chlorite schists. Good crystals have been found at Nornmark in Wermland. They are not scratched by a knife, their hardness on Mohs' scale ranging from 5.5 to 6.5, and their density front 4.9 to 5.2. Magnetites in the massive form are widely distributed, occurring in large quantities. in India, Sweden, South Africa, Russia, Siberia, Canada, and the United States. The Indian deposits 7 are located in

Tatchini, Compt. rend., 1880, 90, 1568.
 Seq Dana, A System of Mineralogy (Wiley, 1889), p. 16.
 Inostzanzeff, Zeitsch. Kryst. Min., 1911, 50, 61.

Spencer, Min. Mag., 1802, 13, 496.
 Weinschenk, Adnalen K. naturhist. Museum, Wien, 1889, 4, 94; Cohen and Weinschenk schenk, ibid., 1891, 6, 131

See Bogdenowitsch, Stahl und Eisen, 1912, 32, 990.
See V. Ball, Economic Geology of India.

the Madras Presidency, and are estimated at milliards of tons, but, owing to the scarcity of fuel, they have not been worked on a large seale. Of even greater magnitude are the American deposits in the neighbourhood of Lake Superior, which form the largest source of iron ore in the world. The metal in these ore, ranges from 55 to 69 per cent.

 Some of the Swedish magnetites are very pure, and are used in the manufacture of Swedish iron, which is noted for its high quality. As the name implies, numerite possesses magnetic properties, sometimes exhibiting polarity. Specimens possessing the most powerful magnetism are found in Siberia and the Harz Mountains. It is on account of this property that the ores can be concentrated magnetically on a commercial scale. The colour varies from brownish grey to iron black. When compact, the mineral is opaque, but translucent dendrites have been found in mica, exceedingly thin, and ranging in colour from almost colourless to pale smoky brown. The mineral has a subconchoidal fracture which is bright when fresh. It is fusible only with difficulty; soluble in hythrochloric acid. •

According to Nicander, the name magnetite is derived from Magnes, the shepherd, who discovered it in consequence of his shoe-nails being drawn from their soles as he drove his flocks to pasture. More probably the name is derived from Magnesia, a town in Asia Minor, where magnetite was discovered.

A pseudomorph of magnetite has been described under the name of dimagnetite,2 which crystallises in clongated prisms, black in colour and possessed of feeble histre. It occurs implanted on crystals of magnetite, is magnetic, and probably has an analogous composition to magnetice. Several varieties of magnetite are known in which the ferrous or ferric, or even both, irons are more or less replaced by other inetals. The more important of these are: --

Chromite, chromo-ferrite, sidero-chrome, or chrome iron ore, FcO.Cr₂O₃, in which the ferric oxide of magnetite is replaced by chromium sesqui-oxide. This ore constitutes the main source of chromium compounds, and, on account of its infusibility.³ is sometimes utilised in furnaces for linings. Chromite is widely distributed, being found in Sweden,4 Germany, Northern Cancasus,5 India, Canada, the United States, Rhodesia, New Caledonia, Turkey and Greece. Rhodesia yields more chrome iron ore than any other courtry, the production in 1912 amounting to 61,857 tons.7 Chromite occurs in small quantities in most meteorites.8 The ore resembles magnetite in appearance, having a black colour and a similar crystalline form. It sometimes exhibits magnetic properties; hardness 5.5; density 4.8 to 4.6. It leaves a brown streak.

¹ See Fuchs and de Launay, J. Iron Steel Inst., 1994, 4., 408, From Praité des Uites

¹ See Fulhwand de Launay, J. Iron Stiel Inst., 1994, 1., 408, strome traue acc oues Minéraux et Metalliferes, vol. 1 pp. 708-712.

2 Shepard, Amer. J. Sci., 1852, (2), 13, 392.

3 W. Il. Patterson gives the metting-point of various chrone iron ores as ranging from 1545° to 1730° C. (J. Iron Steel Inst., Carnegte Schol. Memoirs, 1914, 6, 238).

4 See Tegengren, Teknisk Tidskrift, 1913, 43, 26.

5 In the province of Kuban (Besdorodko, Jahrb. Min., 1912, 34, 783).

5 See report by Phalen, U.S. Geol. Survey, 1912, Miheral Resources for 1911, Part I., 270 p. 979.

Diller, U.S. Geol. Survey, Mineral Resources for 1913, Part 1., p. 57 ct seq.
 See analyses by Tassin, Proc. U.S. National Museum, 1908, 34, 685.

On the origin of chromite see Pratt, Amer. J. Sci., 1899, (4), 7, 281.

Acids do not attack chromite, but fusion with alkali hydrogen sulphates effects its decomposition. The Grecian ore, which occurs mainly in the Eastern Provinces and in the island of Skyros, is particularly refractory on account of the impurities it contains. Chrome iron ores containing some Fe₂O₃ may be regarded as mixtures of chromite and chromitic (p. 17). Platiniferous chromites are found in the Urals.

Franklinite. (Mn, Zn)O.Fc₂O₃, is a magnetite in which the ferrous oxide is more or less replaced by zinc oxide and manganous oxide, which latter imparts a red colour to the ore. It is found in New Jersey, U.S.A., in large black octahedra, and in recognition of its zinc content is frequently called zincite. It is slightly magnetic. Hardness 5.5 to 0.5. Density 5.07 to 5.2. It is infusible in the blowpipe; soluble in

concentrated hydrochloric acid.2

Ilmenite, titanic iron ore or ferrous titanite, FcO.TiO₂, is the ore in which titanium was first discovered. It takes its name from the Ilmen Mountains. In the massive form it occurs in Norway, whilst in Canada, the United States, India, and New Zealand, it is met with as sand. Well-formed crystals are rare, but differ from those of the preceding minerals in that they belong to the hexagonal system, and not to the cubic. They have almost the same angles (viz. 94° 29') as those of harmatic (viz. 94° 0') (vide infra).

Ilmenite is faintly but decidedly magnetic; hardness 5.5; density 4.8. It usually contains from 26 to 30 per cent. If titanium, although specimens have been found containing considerably more and considerably less than this amount. The density falls with increase of titanium, and the axial ratio a:c likewise falls, indicating an increase in the vertical axis, c. This is well illustrated by the following data:—3

Per cont.	Desisity.	Axial Ratio, a : r.
, 44		
5.60	5.041	1:1.368
21.58	4.910	1:1:3716
47.68	4.852	1:1.3772
49.68	4.614	1:1,379
57.28	٠, ه.	1:1:3851

The formula for imenite may also be written as Fc₂O₃. Ti₂O₃, and, on account of the difficulty of determining the state of oxidation of the titanium, it is not easy to decide, from chemical considerations alone, which formula is correct. although the balance of chemical evidence appears to support the formula FcO.TiO₃. The mineral crystallises, however, in the rhombohedral-tetartohedral division of the hexagonal

Vogel, Jahresber., 1873, p. 291; Duparo and Rubies, Anal. Fis. Quim., 1913, 11, 367.

Berthier, Ann. Mines, 1819, 4, 489; Seyms, Amer. J. Sci., 1876, 12, 210. For analyses see Stone, Zeitsch. Kryst. Min., 1888, 14, 291.

Doby and Melozer, Zeitsch. Knyst. Min., 1804, 39, 526; Sustschinsky, bid., 1903, 57

^{37, 57.}Manchot and Heffner, Zeitsch. anorg. Chem., 1912, 74, 79.

Koenig and Pfodten, Ber., 1889, 22, 1485,

system, and the axial ratio in no case I lies between that of hamatite, Fe₂O₃₅,

a: c=1: 1.859,

and that of artificial titanium sesqui-oxide, Ti₂O₃, namely

a: c=1:1.816

as it might be expected to do if it were an isomorphous mixture of Fe₂O₃. Ti₂O₃. This lends strong support to the view that the mineral is a titalite of ferrous iron, namely FeTiO3,2

Other varieties of this mineral are known as kibdelophane's and crichtonite, containing about 30 per cont. of titanium; menaccanite, 5 hystastite, and uddevallite, containing some 25, 15 to 20, and 10 per cent, of titanium respectively.

In Gelkielite, from Ccylon, part of the iron is replaced by magnesium, thus (Mg, Fe)O.TiQ. Density 3.976. Axial ratio,⁶

 $a \cdot : c = 1 : 1 \cdot 370.$

It is isomorphous with senaite, (Fc, Mn, Pb)O.TiO₂, which is likewise hexagonal, having axial ratios

 $a \cdot c = 1 : 0.997$

The crystals are black, thin crystals showing a greenish colour by transmitted light.

Bixbyite, FcO.MhQ₂, ocenrs as brilliant black, enbic crystals, possessed of metallic lustre. The composition of bixbyite might also be written as $\mathrm{Fe_2O_3.Mn_2O_3.}$ If such were correct, however, the mineral might be expected to crystallise in the hexagonal system, and belong to the hæmatite group.

Magnesio-ferrite or magno-ferrite, MgO.Fc.O3, is a variety of magnetite in which the ferrons oxide has been replaced by magnesia. It crystallises in regular octahedra, and resembles magnetite in colour and general appearance. It is magnetic; hardness 6 to 6.5; density. 4.57 to 4.65. It has been found around the finniaroles of Vesuvius. Hydrochloric acid attacks it only with difficulty. •

In Ludwighte part of the magnesium oxide is replaced by ferrous oxide, and boric oxide is associated with the ferric oxide. Thus $(Mg, Fe)O.Fe_2O_3.B_2O_3$, or perhaps $3MgO.B_2O_3 + FeO.Fe_2O_3$.

HÆMATITES.

The hamatites consist essentially of ferric oxide, Fe₂O₃, and may be divided into two groups according as they are anhydrous or contain

- ¹ See the foregoing table.
 ² Penfield and Foote, Amer. J. Sci., 1897, [4], 4, 108; Zeitsch. Kryst. Min., 1897, 28, 596.

 - Rammelsberg, Pogg. Annulen, 1858, 194, 497.

 Marignac, Ann. Chim. Phys., 1845, 14, 50.

 From Menacoan near Helston in Cornwall. Found as sand in a stream.
 - Sustachinsky, loc. cit.
- 7 Hussak and Reitinger, Zeitsch. Kryst. Min., 1903, 37, 550; Hussak and Prior, Min.
- Hasak and Rettinger, Zetech. Hydr. 24th, 1950, 37, 300, 1898, 12, 30.

 'Penfield and Foote, Amer. J. Sci., 1897, (4), 4, 195.

 'Rammelsberg, Pogs. Snnalen, 1859, 107, 451.

 'Schaller, Apier. J. Sci., 1910, (4), 30, 146; Mallard, Bull. Soc. Min., 1888, 11, 316; Beaard, Bull. Acad. roy. Bely., 1885, 9, 547.

combined water. The former are usually red in colour, whence the word "hæmatite," from the Greek haima, blood.1. The hydrated hæmatites vary in colour from red to dark brown, according to the amount of water they contain. Perfectly pure anhydrous ferric oxide contains 70 per cent. of iron, but the red haematites used in this country for commercial purposes average more nearly 60 per cent. of metal. The crystalline variety is known as specular iron ore, iron glance or lookingglass ore, and is obtained mainly from metamorphic rocks, but also occurs as a product of volcanic heat—as, for example, in Italy, some very beautiful crystals being found in the neighbourhood of Etna and Vesuvius. The ore is found in France, Switzerland, and elsewhere in . Europe, fine specimens having been obtained from St Gothard. The island of Elba has long been famous for its beautiful crystals, even Ovid (48 B.C. to A.D. 18) drawing attention to them. Other sources are India, Canada, Mexico, and the United States of America.

The crystals belong to the hexagonal system; hardness 5:5 to 6.5;

density 4.5 to 5.3.

 Micaceous fron ore is the name given to crystaline ferric oxide exhibiting a foliated structure of dark grey scales that glisten like mica. No mica, however, is present in the ore. It is found in the Lake Superior district, U.S.A., but the finest crystals come from Elba. Prfor to the European war of 1913 micaecous ore was raised in Devonshire 3 and sent to Germany under the name of shining orc. Hardness 6; density 5.2.

An octahedral variety is known as martite. It is black in colour, sometimes appearing bronzed, but it has a reddish brown streak, which serves to distinguish it from magnetite, as also the fact that it is not magnetic, or at best only very feebly so. Hardness 6 to 7; density 4.35 to 5.38. Martife's probably a pseudomorph of magnetite—that is, it may have been derived from that mineral by oxidation, without appreciable alteration of the crystalline form. This change may be effected in the laboratory by prolonged heating of magnetite in the blowpipe.4

A hard, compact, nectular variety of hæmatite is found in Cumberland in the carboniferous limestone series of Cleator Moor, in Furness in North Laneashire, and to a less extent in Devonshire, and from its shape is termed kidney ore. The ore is very low in phosphorus, and is particularly valuable for making Bessengr pig iron -that is, pig iron c suitable for the mamifacture of steel by the acid Bessenier process. The Furness ore appears to have been worked in prehistoric times

. The colour of the ore varies from red to iron-black, and exhibits quite a metallic appearance. When scrateged or powdered the colour becomes bright red. . The Brixham ore is used in the manufacture of

Softer, earthy forms of red hamatite are also found in Cumberland, the colours of which vary from bright to dull red. They are known as ruddle or sometimes as puddle ore, as they are used for lining the

The jeweller's bloodstone is not homestite, however, but a variety of chalcedony.
 See H. Soott, J. Iron Shel Inst., 1895, 1., 141.
 See J. S. Martin, Trans. Manthester Geol. Soc., 1895, 23, 162; Worth, Trans. Devon

Assoc., 1875, 7, 225.

Friedel, Bull. Soc. franc. Min., 1894, 17, 150.
See J. L. Shar, J. Iron Steet Inst., 1892, 1., 306.

hearths of puddling furnaces. Spain and America likewise yield large

quantities of earthy red hæmatite.

Immense deposits of a variety known as red fossil ore occur in the. United States, containing from 80 to 50 per cent. of iron and from 0 \$ to 0.7 of phosphorus. Red ochre is another form of anhydrous. ferric oxide, but the term is also used for a variety of turgite.

Hamatite ores, rich in iron, are found in China.1

The problem of the origin of the hæmatites has been the subject of much discussion. The view is largely held that, in the instance of Cumberland and Lancashire, the hamatite has gradually replaced the calcium carbonate, molecule by molecule. This is supported by the Tact that the ore and rock appear to have "grown together," as the miners express it, the ore gradually passing into the limestone and. possessing precisely similar stratifications, and dip. Again, casts of mollusca and other fossils characteristic of carboniferous limestone have been found in the hamatite, as well as crystals of hamatite pseudomorphic with calcite.2 It does not follow, however, that all hæmatites are necessarily formed in this way; local conditions must always be taken into consideration. Admitting for the sake of argument the foregoing or metasomatic origin of the north-country hæmatites, the next point of interest is to determine how this molecular substitution could have taken place. The formation of anhydrous ferrice. oxide would appear to postulate an application of heat in some way or other, and volcanic activity seems to be the most easy way by which such heat might be forthcoming. It seems possible, therefore, that the carboniferous strata were overlain by ferriginous Permian and Triassic deposits. Waters, charged with ferrous iron in solution by passage* through these deposits, percolated through the limestone beneath, dissolving out the calcium earbonate and leaving ferrous carbonate. This slowly oxidised, and under the influence of heat yielded anhydrous

Red hæmatite has been found at Torquay, apparently pseudomorphic with pyrites, which is remarkable, for although pyrites is frequently exidised to limonite, it is indeed rarely that it is converted into anhydrous hamatite. It is suggested that pyrites was converted ainto ferrie chloride by the action of sea water, and that this reacted with ·limestone to yield anlightous ferric oxide in some such manner as that 'indicated above.

Chromitite occurs as dull, magnetic crystals, resembling magnetite, and has a mean composition represented by the formula Fe₂O₃.Cr₂O₃.

As already stated, hydrated hæmatites usually differ from the anhydrous in colour. As the percentage of water increases the colour changes from bright red to dark brown. Turgite, or hydro-hæmatite,

A. Bordeaux gives a description of the Chinese mineral resources, Trans. Canadian

1 A. Bordeaux gives a description of the Chingse mineral resources, Trans. Cumassan Mining Institute, 1913, 16, 351.

See Goodchild, Trans. Cumberland Assoc., 1882, Part vii., p. 116; Proc. Geol. Assoc., 1889, 11, 62; Kimball, Amer. J. Sci., 1891, (3), 42, 231; Shaw, Trans. Fed. Inst. Min. Eng., 1892, 3, 580; Kendall, The Iron Orges of Great Britain and Ireland, 1893, p. 303.

Compare de Launay, Compt. rend., 1897, 124, 689; Ann. Mines, 1897, 12, 178; Kimball, Amer. J. Sci., 1891, 42, 231.

Solly, Min. Mag., 1889, 3, 183.

Jovitschitsch, Bull. Soc. franc. Min., 1912, 35, 511; Monatsh., 1999, 30, 39.

For a detailed study of these see Posnjak and Merwin, Amer. J. Sci., 1919, 47, 311.

See Samoilofi (Zeitsch. prakt. Geol., 1903, 11, 302) for an account of the turgite of Russis.

2Fc, O2. H.O. is a common ore which contains about 5 per cent. of water. It occurs as an earthy deposit frequently known as red hæmatite and as red ochre; it is also found in a compact, fibrous condition, and in botryoidal and stalactitic forms, similar to limonite, for which ore it has frequently been mistaken. It may usually be distinguished by its redder colour, its red streak, and its greater hardness. Hardness 5 to 6; density 3.56 to 4.7. When heated in a tube it splinters in a characteristic manner, which serves to distinguish it from limonite and other ores of analogous composition.

One of the most important of the brown hæmatites is limonite, 2Fc₂O₃.3H₂O, which contains some 15 per cent. of water. It is found in mammillary and stalactitic forms of various shades of brown. If calso occurs in concretionary form. . The name "limonite" is derived from the Greek leimon, a meadow, and was first used 1 to designate

the hog ores (see below).

Limonite is found in relatively small quantity in the Forest of Dean, where iron ores were worked in Roman times. It is called brush ore, locally, when it occurs in stalactitic, reniform or compact masses, containing some 80 per cent, of ferrie oxide or 56 per cent, of metallic iron; and smith ore when incoherent and containing only 54 to 58 per

cent. of ferric oxide (38 to 41 per cent. of iron).²
Fine varieties of earthy limonite, more or less contaminated with clay, etc., are known as ochres, slennas, and umbers, the colour of the last named being darker, probably on account of the presence of manganese. Others and numbers are found in several parts of England. notably in Derbyshire, Oxfordshire, Devon, and Cornwall. The name 'umber is derived from Umbria, a town now known as Spoleto, in Italy, where umber was first obtained. Sienna likewise received its name from the Italian town of the same name. Turkey umbers are acknowledged to be the finest. They really come from Cyprus, but received their name through having been imported from Constantinople at a time when their true origin was unknown. Siennas are found in the Harz, in Tuscany, and in America.34

. Large deposits of brown hematite occur in Northamptonshire, the beds extending into Lincolnshire and Oxfordshire. The ore is abundant

in the U.S.A.

A fibrous variety of limonite is known as wood iron ore. Goethite, Fe₂O₃.II₂O, is named after the famous German poet, Goethe, * who was also a mineralogist of considerable repute. It occurs as black ordrown rhombie crystals, the parameters of which are

a:b:c=0.66:1<1.089.

The crystals are usually blackish brown in colour, but appear red by transmitted light. They yield a red streak; hardness 5 to 5.5; density 4.0 to 4.4

Goethite contains some 68 per cent. of iron. It has been found in Somerset, Cornwall, and Gloucester, some very fine crystals coming from Lost withiel in Cornwall. On the Continent it has been found in

¹ By Hausmann, Handbuck Min., 1813.

J. W. Watsor, The Geologist, 1858, 1, 217, 266.

Classification and analyses of ochros are given by Gin, Compt. rend. Assoc. franc. Ar., 1895, 23, (2), 512: For analyses of ochros, umbers, and siennas, see Hurst, Chem., Nas., 1889, 39, 17d.

numerous districts such as Saxony, Nassau, etc., whilst quantities are present in U.S.A. Other names for the ore are pyrrho-siderile, and rubinglimmer. Acicular varieties are known as needle iron stone and onegite, the latter occurring in quartz in a similar manner to the penethating needles of rutile so frequently met with. Aventurine oligoclase. or sunstone owes its beautiful internal reflective powers to the presence of crystals of hæmatite or Goethite. A velvety variety of Goethite is known as sammet-blende, from the German Sammet, velvet. A variety of Goethite occurs as fine red seales which may be recognised under the microscope by their dichroism. This serves also to distinguish them from hæmatite. Lepidocrite is a form of Goethite presenting a fibroscalv structure.

Hydrogoethite, 3Fc, O3, 4H2O, has been found in Russia in thin red veins in limonite. Under the microscope it is seen to consist of trans-

parent plates or needles, with a distinct cleavage.

Limnite, Ec. O3.3H2O, and xantho-siderite, Ec. O3.2H2O, closely resemble limonite in appearance, but are usually slightly lighter in colour and contain more water. The former name is derived from the Greek limne, a marsh, and the ores are frequently termed bog or lake ore. They are found in different localities, such as Ircland, Sweden, and America. They consist of deposits of hydrated ferric oxide, probably oxidised from ferrous salts and thrown out of solution by lowly organisms.3 Large deposits of chromiferous brown harmatite, containing about 2 per cent. of chilomium, occur in Greece 4 and in Cuba. 5 Xanthosiderite also occurs in crystalline form as golden needles.6

Laterite is a similar mineral, which is found in India, and contains

varying quantities of iron and aluminium hydroxides.

Minette is a brown harmatite found in Luxemburg, Lorraine, and Rhineland. It consists of oolitic grains bound together by a cement of chalk, clay, or silica, and may contain anything from 0.5 to 20 per cent. of phosphorus. Minette is therefore largely used in basic steel manufacture. Brown hæmatites also occur in Russia, Poland, and China. Spain exports large quantities of hæmatite, which vary in colour from red in the almost anhydrous "rubio" ores to brown.9

Esmeraldalte, Fc2O2.4II2O, occurs as pod-shaped inclusions in limonite in Esmeralda Country, Nevada. It is glassy, brittle, and

possesses a yellowish-brown streak. 10.

¹ Zemjatschensky, Zeitsch, Kryst. Min., 1892, 20, 184? Samoiloff, Zeitsch. Kryst. Min., 1901, 35, 272.

Hormann, J. prakt. Chem., 1842, 27, 53; J. D. Dank, Mineralogy, 1868, p. 178.
 Mumford has isolated in iron bacillus from Bridgewater Canal Tunnels, Worsley, Lancs.
 It precritates iron as a naxture of exides corresponding to beg ore Proc. Chem. Soc., 1913, 29, 79.
 See also Ellis, Igon Bacteria (Methuen, 1920); Raumer, Zeitsch. anal. Ohem., 1903, 42, 590; Iron Bacteria, Harder, U.S. Geol. Survey, Professional Paper, No. 113, 1920.

4 H. K. Scott, J. Iron Steel Inst., 1913, I., 447.

See D. A. Willey, Engineering Magazine, 1913, 44, 867; J. S. Cox, Bull. Amer. Inst.

See D. A. Willey, Engineering Magazine, 1913, 44, 807; J. S. Cox, Duis, Amer. Amer. Mining Eng., 1911, b. 199, etc.

Schmid, Pegg. Annalen, 1851, 84, 495.

The word laterite is derived from the Letin later, a brick, since the mineral is often used for building purposes. For analyses of Indian laterite see Warth, Geol. Mag., 1903, 78, 164; Chem. News, 1903, 87, 256; Bauer compares laterite and bauxite, Al.O., 2H.O. (Jahrb. Min., 1898, ii. 163).

See E. Sahroedter, J. Iron Steel Inst., 1889, I., 114; Wandesleben, ibid., 1892, II., 665.

See Gill, J. Iron Steel Inst., 1882, I., 63.

Bakle and Schaller, Bull. Dept. Geol., Univ. California, 1901, 2, 355.

Many minerals are known in which ferric oxide is associated with other metallic oxides. Thus Arizonite or ferric titanite, Pe Os. 8TiO,

is a dark, steel-grey mineral found in Arizona.1

Plumbo-ferrite, (Pb, Fe, Cu) O.Fe, O3, occurs in Sweden and elsewhere as hexagonal plates, in appearance like molybdenite, but yielding a pale redestreak.2

Cuprous ferrite, CuFcO2 or Cu2O.Fe2O3, occurs as the mineral delafossite in Arizona.3 It yields tetragonal crystals,

$$a : c = 1 : 1.94$$
;

of hardness 5.5, black, with black streak, and non-magnetic.

CARBONATES.

These consist essentially of ferrons carbonate, FeCO3, the purest form of which is spathle iron ore, which occurs both in the crystalline and the massive form. It is mined in Russia, Poland, the Balkans, Styria (Austria), Westphalia, and other parts of Germany. Its phosphorus content is low, but a considerable quantity of manganese is present. It is usually of a light brown colour and is possessed of a pearly lustne.

Styrian ore is obtained by quarrying, there being three kinds of veins, each several yards in thickness, the richest of which contains some 45 per cent, of metallic iron. In 1913 the production of ore amounted to 1,950,000 tons. It is estimated that the reserve of rich ore exceeds 200 million tons. It is practically free from sulphur, contains 0.01 per cent. of phosphorus and 2.23 per cent. of manganese.4

When crystalline, spathic ore is known as siderite or chalybite. The crystals belong to the hexagonal system

a=0.81715

and Cornwall has yielded many fine specimens.5

The theoretical percentage of metallic iron is 18-3. Hardness 3-5 to 4.5; depsity 3.7 to 3.9. It is brown or grey in colour and leaves a white streak. It readily oxidises when wet, being converted into limonite. Siderite from East Pool Mine, Cornwall, has been found containing cobalt, nickel, and even indium and rubidium in small quantity.

The spathic ores of the Breudon Hills, West Somerset, were at one time worked largely for the manufacture of Spiegeleisen, as they contained some 12 per cent, of manganese, probably as carbonate, since ferrous and manganese carbonates are isomorphous. The ore was worked in early times, perhaps by the Romans.

Staffordshire, West Yorkshire, and South Wales, yield an argitlaceous iron ore, also known as clay iron stone, which contains some 10 per cent. of clay and from 30 to 40 per cent. of metallic iron. The Staffordshire ore has many local names; when found in concretionary

- Palmer, Amer. J. Sci., 1909, (4), 28, 353. Igelström, Jahrb. Min., 1896, I., Ref. 15; from Gcol. För. Förh., 1894, 16, 594.

* Rogers, Amer. J. Sci., 1913, (4), 35, 290.

*Nagel, Fon Age, 1014, 94, 482.

*Hutchinson, Mist. Mag., 1903, 13, 200.

*Hartley and Ramage, Trans. Chem. Soc., 1897, 71, 533.

¹ See Morgane, Traks. S. Wales Inst. Eng., 1870, 6, 79; Quart. J. Geol. Soc., 1869,

and globular masses it is called sphaero-siderite. It contains about 0.25 per cent. of phosphorus. Cleveland iron stone is one of the lowest grades of ore worked for iron in this country, and contains about 88 per cent. of metalliceiren. It occurs in bands in the Middle Lias, the most important band being nearly 20 feet thick. Its phosphorus content is high, averaging 6.75 per cent. The bluish-green colour of the ore is due to ferrous silicate. Traces of zine, gallium, nickel, and cobalt have been detected in the ore.1

Under the microscope the ore has an appearance suggestive of cooline limestones from which it has very probably been formed by molecular replacement of the calcium carbonate by ferrous carbonate, through the infiltration of waters coataining the latter in solution.20

Beneath the brown hæmatite ores of Northamptonshire, an impure unaltered ferrous earbonate deposit occurs which is bluish or greenishgrey in appearance. The depth at which it lies represents the depth to which weathering or oxidation of the upper layers has occurred.

A clay iron stone containing some 35 per cent, of iron has been worked from Roman times, if not earlier, in the Weald of Sussex and

Kent, charcoal being used as the fuel.

In Linlithgow and Lanark a clay iron stone occurs, impregnated with some 15 per cent, of carbonaccons matter. It is also found in North Staffordshire and in South Wales, and is known as blackband Iron stone. The carbonaccous material present is often sufficient to allow the ore to be calcined without the further addition of finel. A product containing 50 to 70 per cent, of iron is yielded.

An ore, containing magnesium carbonate in the proportion represcatted by the formula 2FeCO₃, MgCO₃, is known as sidero-piesite, and has been found at Salzburg and in Nova Scotia. Pistomesite, FcCO3-MgCO3, is found at Salzburg and Picchnont; and mesitite. FeCO, 2MgCO, at Picdmont. Ankerite is 2CaCO₃,MgCO₃,FcCO₃.

SULPHIDES.

fron pyrites, pyrite, marquisite, or mundic is the name given to a brass-coloured sulphide of iron to which the formula FeS, is usually ascribed. It often occurs in coal, and is known by miners as "brass" or "fool's gold." The spontaneous combustion of coal is frequently facilitated by the oxidation of iron pyrites to iron sulphate. It often crystallises in cubes, the faces showing striations; but a very characteristic form is the pentagonal dodecanedron, usually termed the pyritohedron. Hardness 6 to 6.5; density 4.8 to 5.2. It leaves a greenish or brownish-black streak.

Peruvian pyrites is called stone of the Incas, because the ancient sovereigns of Peru attributed great virtues to it. Rings, amulets,

¹ See The Geology of North Cleveland, by Barrow (Mem. Geol. Survey), 1885; The Jurassic Bocks of Britain, by Fox-Strangways (Mem. Geol. Survey), 1892, vol. i.; The Iron Ores of Great Britain, by Dick Mem. Geol. Survey); also Scrivenor, Min. Mag., 1903, 13, 348.

1903, 13, 348.

Sorby, Proc. Geof. Polytech. Soc. West Riding, 1856-7, 3, 460; Proc. Geof. Soc., 1878-9, p. 56.

^{*} Louis, Trans. New Zeal. Inst., 1878-9, 5, 50.

* Breithaupt, Pogg. Annalen. 1827, 11, 170; 1847, 70, 148; Gibbs, ibid., 1847, 71, 566; Ettling, Annalen, 1852, 99, 203.

* Reachia assiss. Valura Villera

mirrors, etc., were made of it. A century ago iron pyrites was used in this country to a considerable extent for feminine ornaments.

Pyrites occurs in rocks of all ages, both eruptive and sedimentary. In some cases it is evidently an original nineral, whilst in others it has been formed as a secondary product. Large quantities are found in Spain and are used in the manufacture of sulphuric acid, ferrous sulphate, and ferric oxide.

sulphate, and ferric oxide.

Iron pyrites is found in masses in the "twenty-inch" coal seam of the Forest of Dean, the masses being locally called "dogs." It is common in coal measures generally, having probably been formed by the reducing action of organic matter on waters charged with iron sulphate in solution. Explosive pyrites is the name given to a variety of pyrites found in Cork, which decrepitates violently upon application of gentle heat. The decrepitation is due to the presence of carbon dioxide under high pressures confined in minute cavities in the mineral. Decrepitation usually begins at about 30° to 35° C., and it has been suggested that the explosions which sometimes occur is domestic grates may be due to the presence in the coal of this variety of pyrites. Frequently metals other than iron are associated with pyrites, chief among which are copper, nickel, cobalf, tin, gold, thallium, and silver.

When oxidised by weathering, the final product of pyrites is hydrated ferric oxide or rust, as stated above, but the method of oxidation depends upon circumstances. In the absence of carbon dioxide or carbonates, it is usual for oxidation to ferrous sulphate to first take place; whence the mineral supperas or melanterite (see below). This, in course of time, oxidises to limonite. In the presence of carbon dioxide, however, it appears that the sulphate is not first formed, but the readily oxidisable

carbonate, which is then converted into limonite.3

The presence of pyrites in mineral veins is frequently betrayed by the brown, rusty appearance of the upper parts of the deposits. This is well exemplified in the case of certain copper lodes, the iron of the contained copper pyrites having become converted into hydrated ferric oxide or rust. Such weathered zones are known as gozzans, and frequently present a cavernous or honeycombed appearance, due to the removal of pyritic material. In France the gozzan is termed the chapeau de fer, and in Germany der ciserne Hut, and an old adage states that

"A Lode that wears no iron hat Is never tikely to be fat."

Marcasite or white iron pyrites is the name given to a shombic variety of pyrites which occurs in concretions, known locally as "fairy balls" and "thunderbolts,", Its crystallographic elements are 5

• • $a \cdot b : c = 0.7662 : 1 ? 1.2842$

The exterior of the nodules is often brownish, but when broken spen they exhibit a radiating structure, usually pale yellow in colour,

See Gems, by Castellani, translated by Brogden (London, 1871).

Brount, Trans. Chem. Soc. 1885, 47, 593.
 J. W. Evans, Min. Mag., 1900, 12, 371. See also Weed and Penrose, J. Geology, 804.

See Rudler, A Handbook to a Collection of the Minerals of the British Islands, 1905.
 H. M.S.O., Wyman, London).
 Prior, Min. May., 1903, 13, 217.

although pure marcasite is probably tin-white in appearance.1 It rapidly tarnishes, and it is difficult to keep a fracture bright for museum purposes. Concretions of marcasite are found in chalk and in many clays. Hardness 6 th 6.5; density 4.7 to 4.8.2

* Owing to its jagged outline marcasite is frequently known as

cockscomb pyfites and spear pyrites.

Cobalt-nickel pyrites, (Fc, Co, Ni)S₂, has been found in Westphalia as small cubic crystals, steel-grey in colour, giving a greyish-black streak. Density 4.7; hardness 5 to 5.5. Iron nickel pyrites, (Fe, Ni)S,

occurs in Norway and in the Sudbury district, Ontario 5
Pyrrhotite ormagnetic pyrites, Fc.S. or 5FcS.Fc.S. is slightly redder than ordinary pyrites, from which, however, it may be readily distinguished, both on account of its magnetic properties and by its greater softness. Hardness 3.5 to 4.5; density 4.4 to 4.7. It occurs in Cornwall, in the lavas of Vesuvius, and in various other parts of Europe; in Canada and the U.S.A. Two varieties are known: namely a-pyrrhotite, which is rhombic; and β -pyrrhotite, which is hexagonal.

Troillte, FeS, is brownish in colour, and occurs in nodules in most

meteorites containing iron. Hardness 4; density 4.7 to 4.8.7

• Copper pyrites or chalcopyrite, Cu₂S.Fe₂S₃, is a brass-coloured sulphide which crystallises in the tetragonal system, but is isomorphous with pyrites, since its crystallographic elements are 8

a: c = 1: 0.9853.

It yields a greenish-black streak; hardness 3.5 to 4; density 4.1 to 4.3. It should contain some 34.6 per cent, of copper and 80.5 per cent. of iron; but the percentage of iron is frequently higher, due probably to admixture of iron pyrites. Copper pyrites constitutes the most important copper ore in Cornwall. It is found also in Scotland, Sweden, and many other parts of Europe, in Australia, and the U.S.A. Barnhardtite, 2Cu₂S.Fc₂S₃, resembles the previous ore in appearance, and receives its name from the place of its discovery, namely, larnhardt's Land.9 A varying mixture of sulphides of fron and copper is present in the mineral known variously as erubescite, Bornite, and horseflesh ore. The name Bornite was given in honour of Ignatius von Born, who had charge of the mineral collection in Vienna. It is not a happy name however, since it is hable to be confused with bournonite, a thio-antimonite of copper and lead. Its copper content ranges from 50 to 70 per cent., and its iron from 6 to 20 per cent. When fresh its fracture is reddish brown, but it tarnishes rapidly, yielding peacock colours. Crystalline forms (oubic) occur in Cornwall, chiefly at the Carn Brea, Tincroft, and Cook's Kitchen mines near Redruth.

¹ H. N. Stekes, U.S. Geol. Survey, Bulletin No. 186, 1901.

The chemical constitution of marcasite is discussed on p. 141. The surface characters of pyrites and marcasite, as examined through the microscope, are described by Poschl, Zeiteck. Kryst. Min., 1911, 48, 572.

Hemplein, Centr. Min., 1914, p. 129.

Vogt. Zeiteck. Kryst. Min., 1895, 44, 199.

T. L. Walker, Amer. J. Sci., 1894, (3), 47, 312.

Bee Breithaupt, J. prajt. Ohem., 1835, 4, 265; Rammelsberg, Pogg. Annales, 1864,

^{121, 387, 1} Haidiffgor, Sitzungsber. K. Akad. Wiss. Wien, 1863, (2), 47, 283; Smith, Amer. J. Soft 1885, 70, 156; Mennier, Ann. Chim. Phys., 1869, 17, 38.

Prior, Min. Mag., 1903, 13, 217.

Genth. Amer. J. Sci., 1856, 19, 17; 1859, 28, 247.

Hardness 8; density 4.4 to 5.5. The usually accepted formula, CuaFeSa, was based on analyses of Cornish crystals, but the Canadian

mineral 1 corresponds more closely to Cu5FeS4.

In this connection it is interesting to note that Roman coins and other bronze objects which were thrown into certain thermal springs as votive offerings and have since been examined are found to ·have become partially converted into various sulphides of copper, including chalcopyrite and crubescite.

A double sulphide of copper and iron known as Chalmerslte, CuFe, S. occurs in the ore deposits of the Prince of Wales Sound, Alaska, and in small quantities in Brazil. It is massive, pale yellow in colour, and strongly magnetic, which latter property enables it to be readily separated from the copper pyrites with which it is intimately associated. Density 4.04 to 4.68. The crystals are rhombic.

$$a:b:c=0.5784:1:0.9649,$$

and isomorphous with copper glance.

Cubanite, CuS.Fe₂S₃, is a bronze-coloured mineral found 4 in Cuba,

whence its name. Hardness 4, density 4-0 to 4-2.5

A black variety of blende, occurring in Cornwall 6 and elsewhere, is known as marmatite,7 and has the composition corresponding to

Pentlandite, a double sulphide of iron and nickel approximating to 2FeS.NiS, occurs as cubic, bronze-coloured crystals in Argyllshire, Inveraray, and Cornwall. Hardness 3.5 to 1; density 4.6.

Arsenical pyrites 8 or mispickel, FeS2. FeAs2, containing 34 per cent. of iron, occurs in rhombic crystals, with frequent twinning, and of the following parametersu-

$$a:b:c=1.7588:1:1.4793.$$

'It is a grey mineral; hardness 5 5 to 6; density 6 to 6 4. It is found in Devon and Cornwall (where it is worked on a small scale), Silesia, Norway, Sweden, and U.S.A., and constitutes an important source of arsenic. If cobalt is also present the minefal is known as glaucodote.9 When struck with a hammer, mispickel possesses the characteristic odour of arsenic and is hence known by Cornish miners as arsenical mundle or simply as arsenic. The ore readily oxidises, and when weathered gives rise to arsenates such as scorodite, etc. (see below).

Pacite 10 consists of rhombic crystals of FcS24FcAs2. A double sulphide of inon and chromium, FeS.Cr₂S₃, occurs as the rare mineral daubreelite 11 associated with troilite. It possesses a brilliant

metallic lustre, is black in colour, but not magnetic. Density 5.0. Harrington, Amer. J. Sci., 1903, (4), 16, 151.
 See also analyses by Kraus and Goldsberg, ibid., 1914, (4), 37, 539.
 Johnston, Econ. Geol., 1917, 12, 519.

Johnston, Econ. Geol., 1917, 12, 519.

Hussak, Centr. Min., 1906, p. 332; 1902, p. 69.

Breithaupt, Pogg. Annalen, 1843, 59, 325.

Saheidhauer, Pogg. Annalen, 1845, 64, 299; Schneider, J. prakt. Chem., 1895, (2), 52, 555.

Church, J. Chem. Soc., 1866, 19, 130; Collins, Min. Mag., 1879, 3, 91.

Boussingault, Pogg. Annalen, 1829, 17, 399.

See analyses and crystallograph to studies by Scherer, Zeitsch. Kryst. Min., 1893, 21, 354.

Breithaupt and Plattner, Pogg. Annalen, 1849, 77, 187; Breithaupt, J. frakt. Chem., 1835, 4, 253. See also Fletcher, Min. Mag., 1904, 14, 54.

Breithaupt, Begg. und Hitten-mannische Zeitung, 1866, 25, 167.

J. L. Smith, Amer. J. Sci., 1876, 12, 109; 1878, 16, 270.

MISCELLANGOUS MINERALS CONTAINING IRON.

Copperas or melanterite, FcSO, 7H,O, occurs in nature as the result. of the oxidation of pyrites or mareasite. It yields greenish, monoclinic crystals, of lardness 2, and density when pure 1.832. A rhombic variety of the heptahydrate is known as tauriscite. Heat decomposes the heptahydrates, yielding at 200° to 250° C. the monohydrate. FeSO4. HaO, found in flature as ferropalladite, and at high temperatures. • ferric oxide. Coppers is isomorphous with Boothite, CuSO, 711,0, and with plannite, 2 (Fe, Cu)SO, 711,0, which latter occurs in California as blue, transparent crystals. Copperas has also been found as a blitish green crust on limonite in Carinthia. Its density is 1.8 to 1.95. The isomorphism of these minerals is evident from the following data:---4

Mclauterite	_	• .	1.1828 : 1 : 1.5497	75° 44'.
Pisanite .		•	1.1670:1:1.5195 .	75° 80'.
Boothite	. •	• .	1.1022 : 1 : 1.5000	74° 24′

All these minerals lose 6 molecules of water at 200° to 250° C.

Salvatorite, FeSO4.2CuSO1.21H2O, appears to be a dimorphous variety of pisanite. A ferric sulphate, Fe₂(SO₄)₃.9H₂O, occurring in hexagonal prishs in Coquimbo is known as Coquimbite. It is white to yellowish brown in colour. Janosite 7 is a greenish yellow efflorescence occurring in Hingary, and possessed of the same composition. It crystallises in rhombic plates. The decahydrate, Fe₂(\$0₄)₃, 10H₂O₄ occurs as monoclinic crystals in quenstedtlte. Ferronatrite (see p. 162), Na₃Fe(SO₄₎₃.3H₂O, occurs as a greenish-white mineral in Chili.⁸

Halotrichite or ferrous alum, FeSO Al2(SO 1)3.24 II 2O, occurs in a several localities, including Persia, where it is used by the natives for making ink. In Baluebistan it ocenrs as a white inflorescence on decomposed slate, and is used for dyeing, its local name being khaghal.10 It has recently been found in Elba in fibrons masses, white or faintly blue in colour, and possessed of a siky lustre. Density 1 90; hardness 2.5. Analysis shows a slight deficit of water due to partial dehydration in dry air. 11

Other sulphates are copiapite, 2 3Fe2Q3.8SQ.27H2O 13; amarantite, 4 Fe₂O₃.2SO₃.7 4 C₂O; fibroferrite, 16 Fe₂O₃.2SO₃.10H₂O; castanite, 66

Scharizer, Zeitsch. Kryst. Min., 1903, 37, 529.

Scharizer, Zeitsch. Aryst. Mun., 1903, 37, 529.
 Zisani, Compt. rend., 1859, 48, 807.
 Leitmeier, Conr. Min., 1917, p. 321. See also Horn, Amer. J. Sci., 1914, (4), 37, 40.
 Schaller, Bull. Dept. Geot. Univ. California, 1903, 3, 191.
 Hertz, Zeitsch. Ryst. Min., 1898, 26, 16.
 Rose, Pogg. Annalen, 1833, 27, 310.
 Bockh and Emszt, Abstr. Chem. Soc., 1905, ii. 536.
 Machievach, Amer. I. Sci. 280, 28, 244.

Bockh arti Emst., Abstr. Chem. Soc., 1905., ii. 536.

Mackintosh, Amer. J. Sci., 1889, 38, 244.

Rammelsberg, Pogg. Annalen, 1848, 43, 399; Clark, Amer. J. Sci., 1884, 28, 24.

Hooper, J. Asiatic Soc. Bengal, 1903, 72, 236.

Milloevich, Atti R-Accad. Lincei, 1915, (5), 24, ii. 501.

Smith, Amer. J. Sci., 1854, 18, 875; Manusse, Jahrb. Min., 1913, I., Ref. 386; Darapsky, Jahrb. Min., 1890, 1, 62; Mackintosh, Amer. J. Sci., 1889, 38, 242; Scharizer, Zeiteck. Kryst. Min., 1913, 52, 372.

Perornula given by Wirth and Bakke, Zeitsch. anorg. Chem., 1914, 87, 13. See also p. 161.

also p. 161.
In alfusion to its red colour (Mackintosh, Amer. J. Sci., 1889, 38, 242).

10 Rose, Popp Annalen, 1633, 27, 316; Prideaux, Phil. Mag., 1842, 18, 397; Manales, Zeitsch. Kryst. Min., 1911, 49, 202.

10 Darapaky, Jahrb. Min., 1890, 2, 267. 1 4 4 .

Fe₂O₃, 2SO₃, 6H₂O; botryogen, FeO.MgO.Fe₂(SO₄)₃, 18H₂O; roemerite, 2 FcSO₄.Fc₂(SO₄)₃12H₂O; planoferrite, Fc₂O₃.SO₃.15H₂O; paposite, 2Fc₂O₃.8SO₃.10H₂O. Iron associated with tellurium occurs as durden. ite, Fe₂O₂.8TcO₂.4H₂O, in Honduras, and as emmonsite in Colorado.

Rhabdite is a crystalline phosphide of iron approximating in composition to (Ni, Fc)₃P. It is found in meteorites in the form of minute tetragonal prisms. Density 6.8 to 6.8.

Vivianite, Fc₃(PO₄)₂.8H₂O, occurs as monoclinic crystals, isomor-

phous with crythrite, Co, (AsO,), 8H2O, and perhaps also with annabergite, Ni3(AsQ4)2.8II2O. Its crystallographic elements are :-

a:b:c=0.7489:1.0.7017. $\beta=75^{\circ} 84'.$

Some specimens obtained from Cornwall are beautifully crystallised, possessing a pale, bluish green tint. Others are nodular, deep blue in colour, pulverulent, and sometimes enclose crystals of dark brown colour, which exhibit a reddish line by reflected light. Both the green and the brown specimens yield the same results upon analysis, so that their difference in colour is most probably due to a difference in the degree of oxidation of a small portion of the iron. The crystals offer a very perfect cleavage parallel to the clino-pinacoid. The pure mineral is probably colourless, the tints usually observed being due to some of the iron becoming oxidised. The density ranges from 2.6 to 2.7. Some good crystals have yielded the value of 2.587.9

The mineral was discovered by Vivian, in Cornwall, whence its name. An earthy variety found in peat mosses is known as blue iron earth. In paravivlanite, from Russia,10 part of the iron is replaced by manganese and magnesium, thus (Fe, Mn, Mg)3(PO4)2.8H2O. Kertschenite, (Fe, Mn, Mg)Q. Fe₂O₃.P₂O₅.7H₂O, likewise found in Russia,

occurs as very dark green crystals.

Tamanite,11 the same mineral as anapaite, (Ca, Fe)3(PO4)2.4II2O,12

occurs in pale greenish erystalline masses.

An anhydrous mixed phosphate of manganese, calcium, and divalent iron occurs as Graftonites (Fe, Mn, Ca)3(PO4)2, which occurs as salmoncoloured, monoclinic crystals, the crystallographic elements of which are

a:b:c=0.886:1:0.582. $\beta = 66^{\circ}$.

• Triphyllite, Li (Fe, Mn)PO4, occurs as light green, rhombic crystals, which become dark through oxidation.13

Which become dark through existation. 18

Haidinger, Pogg. **iundan, 1828, 12, 491; Scharizer, loc. cit. The mineral described as Palachetie (Eakle, Bull. Dep. Geol. Univ. California, 1903, 3, 421) is the same as botryogen (Eakle, Amer. J. Sci., 1903, (4), 16, 379.

** Oralich, Sitzungsber. K. Akad. Wisa. Wien, 1858, 78, 272. Scharizer, loc. cit.

** Darapaky, Jahrb. Min, 1800, 1, Mpm. 49.

** Dana and Wells, Amer. J. Sci., 1890, 40, 80.

** Hillebrand, Zeilsch. Kryst. Min., 1887, 12, 492; Proc. Colorado Soc., 1885, 2, i. 20; Amer. J. Sci., 1904 (4), 18, 438.

** Flight, Phil. Trans., 1882, 173, 891.

** See Rath. Pogg. Annalen, 1809, 136, 405; Fisher, Amer. J. Sci., 1850, 9, 84; Flight, Chem. News, 1870, 22, 260; Dudley, Amer. J. Sci., 1890, 40, 120.

** Katser, Techer. Min. Mit., 1897, 16, 504.

** Popolf, Cent. Min., 1908, 9, 12.

** Popolf, Zeitsch. Kryst. Min., 1903, 37, 267.

** Baoha, Sitzungsber. K. Akad. Wiss. Berlin, 1902, p. 18.

** Penfield, Amer. J. Sci., 1900, (4), 9, 20. See also Penfield and Prais, ibid., 1896, (3), 381.

Ludhamite is a green hydrated form of ferrous phosphate found in Cornwall 1 and elsewhere. On heating it disintegrates into bluish green plates, in contradistinction to viviante which turns white and exfoliates under similar treatments

Ferric phosphate occurs in nature as phospho-siderite, 4FcPO, 7H.O. and strengite, FePO, 2H,O. Possibly these two minerals are the same.

A basic ferric phosphate, known as Dufrenite, Fc2(OH)3.(PO1), is found as rhombic crystals, dark green in colour, and named after Dufrénoy, the French mineralogist. Hardness 8.5 to 4; density 8.2 to 8.4. A ferric phosphate, Fe₂O₃.P₂O₅.6H₂O or FePO₁8H₂O, occurs in monoclinic needles as Koninckite in Felgium.

Beraunite 5 is FcPO1.2Fc2(PO1)(OII)3.4H2O, and occurs in reddish brown monoclinic crystals. • Childrenite 6 is a hydrated phosphate of iron and aluminium with a little manganese. It crystallises in vellow or brown rhombic prisms. • When more manganese is present the

mineral is called eophosphorite.7

Lölingite, EcAs, occurs in Saxony and Norway in rhombic crystals. Hardness 5 to 5.5; density 6.8 to 8.7. Greyish in colour, it gives a greyish black streak. When heated in an open tube a white sublimate of arsenious oxide or "white arsenic" is obtained; in the absence of air metallic arsenic is volatilised to a dark sublimate.

Leucopyrite, FeAs. FeAs₂, resembles the previous mineral in appear-

ance, hardness, and density.

Berthlerite, FeS.Sb₂S₃, occurs in clongated rhombic prisms of density 4 to 4.3; hardness 2 to 3. It has a steely appearance. Heated in air, oxides of sulphur and antimony are evolved. It is readily

soluble in hydrochloric acid, evolving hydrogen sulphide.

Scorodite, FeAsO4.2H2O, occurs as pale green or brown rhombic erystals of density 3:1 to 3:3; hardness 3.5 to 4. It owes its name (Greek skorodon, garlie) to the fact that, when heated, it emits the characteristic odour of arsenic. It occurs in Cornwall, and in a readily oxidisable form as a deposit from certain geysers in Yellowstone Park, 10 U.S.A. A hydrated arsenate of iron and aluminim is known as Liskeardite.11

A basic arsenate, 2FeAsO₄.Fe(OII)₃.5II₂O, is known as iron sinter, , or pharmaco-siderite in consequence of the poisonous character of arsenic (Greek pharmakon poison). It crystallises in small, green cubic

crystals, for which reason it is also known as cube ore.12

A hydrated arsenate of iron and calcium from Yukon is termed Yukonite. Its composition approximates to 13 (Ca₃, Fe₂)As₂O₈, 2Fe(OII)₈. 5H.O. It is brownish olack; resinous, and amorphous. Density c. 2.65.

Maskelyne and Elight, J. Chem. Soc., 1871, 24, 1; Fukuch, Beitr. Min.: Japan, 1912, No. 4, 192.
 Bruhhs and Busz, Zeitsch. Heyse Min., 1889, 27, 555.
 Kinch and Butler, Min. Mag., 1887, 7, 65; Kinch pibid., 1889, 8, 112.
 Ceshro, Amer. J. Sci., 1887, 29, 342.
 Streng, Jahrb. Min., 1881, 1, 102; Wherry, Proc. U.S. National Museum, 1914, 47, 501.
 Church, J. O'Rem. Soc., 1873, 26, 103; Lévy, Brandes J., 1823, 16, 274; Drugman, Min. Mag., 1915, 17, 193.
 Brush and Dana, Amer. J. Sci., 1878, 16, 35; Drugman, loc. cit.
 Brethber. Ass. Chish. Phys., 1827, 25, 361; Prog. Annillen, 1827, 11, 478.

- Brush and Dana, Amer. J. Sci., 1878, 16, 35; Drugman, loc. cit.

 Berthier, Am. Chim. Phys., 1827, 35, 361; Pogg. Annilen, 1827, 11, 478.

 Bournon, Phil. Trans., 1801, p. 191; Damour, Am. Chim. Phys., 1844, 10, 412.

 Hague, Mmer. J. Sci., 1887, (3), 34, 171.

 Makedyme, Nature, 1878, 13, 426; Riight, Trans. Chem. Soc., 1883, 43, 140.

 Makedyme, Nature, 1878, 13, 426; Riight, Trans. Chem. Soc., 1883, 43, 140.

 Bow W. Philips, Trans. Geol. Soc., 1811, 1, 23; Hartloy, Min. Mag., 1899, 12, 152.

 Pyrredi and B. P. D. Graham, Trans. Roy. Soc. Canada, 1913, (3), 7, 54.

Ferrous untimonate, 2FcO.Sb₂O₅ or FcSbO₃, is found in the cinnabar gravels of Tripuly, and is termed Tripulyte. It is dull, greenish yellow in colour, possessing a canary-yellow streak. When heated, antimony oxide vaporises, leaving ferric oxide behind. Density 5-82 Derbylite is ferrous antimonate associated with titanate, 2FeSbO₂. 5FcTiO₂. It crystallises in the rhombic system, its elements beings2

$$a:b:c=0.96612:1:0.55025.$$

It is black in colour, with a resmous lustre.

An ortho-silicate of iron, termed favalite or iron olivine, Fe,SiO4, was first found on Payal Island in the Azores. It had crystallised in tabular rhombs of Fc₂SiO₄, very similar to the ferrous silicate present in certain slags.3 The axial ratios 4 are

$$a:b:c=0.46000:1.0.58112.$$

It is quite possible that it was simply a lump of slag from a ship's ballast. Fayalite has also been found at Rockport.5

Olivine, Fc₂SiO₄+xMg₂SiO₄, is a variable mixture of ferrous and magnesium ortho-silicates, olive green in colour, and of density about 8.8 to 8.5. It is a common constituent of rocks.

Anthophyllite, or magnesium iron metasilicate, (Mg, Fc) SO₃, crystallises in the rhombic system. A pure iron anthophyllite. FeSiO₃, has been found at Rockport, but is rare.6 It is white to light brown in colour.

Sodium ferric metasilicate is found as acmite or ægirite, Na₂Fc₂(SiO₃)₁. Its crystals are blackish green in colour, and possess the following crystallographic elements: -9

$$a:b:c=1.1014:1:0.6043.$$
 $\beta=73^{\circ}27'.$

Hydrated ferric metasilicates are found as Müllerite, Fe₂O₃, 3SiO₂, 214 Q, 10 and hontronite, Fc₂O₃.3SiO₂.5H₂O.¹¹

Astrolite, (Al, Fe), Fc(Na, K), (SiO3), H2O, a metasilicate of almminium, iron, and alkali metals, occurs in Saxony 12 as small spherical balls, with radially fibrous structure.

Glauconite, the green constituent of many rocks, if pure, would be represented by the formula KFc(SiO₃)₂.11₂O, that is, potassium ferrice metasilicate. 13

Cronstedtite occurs in Cornwall, associated with vivianite. also met with in association with Hisingerite in acicular needles in

```
Hussak and Prior, Min. Mag., 1897, 11, 302.
```

^{*} Hussak and Prior, ibid., 176. Mackintosh, Amer. J. Sci., 1891, Hidden and Mackintosh, Amer. J. Sci., 1891, • 41, 439.

^{*} Soellner, Zeitsch. Kryst. Mon., 1911, 49, 138.

* Warren, Amer. J. Sci., 1903, (4), 16, 337; Penfield and Forbes, ibid., 1896, (4), 1, 129; Zeitsch. Kryst. Min., 1896, 26, 143.

Warren, Amer. J. Sci., 1903, (4), 16, 337.

^{**}Warren, Amer. J. Sch., 1800, (2), 10, 301.

** Kirck daugh, a point, referring to the sharp points of the crystals.

** Egir was the Icelandic Neptune.

** Palache and Warren, Amer. J. Sci., 1911, (4), 31, 533.

** Zambonini, Zeitarh. Kryst. Min., 1899, 32, 157.

10 San Kamit. Md. 1800, 21, 553.

See Kovář, ibid., 1899, 31, 523.
 Reinisch, Centr. Min., 1904, p. 108.

c. 11 Reinisch, Ventr. Min., 1992, p. 1995, Glarke, Honograph U.S. Geol. Survey, 1903, 43, 243.

cavities in iron pyrites. Its usual structure is fibrous and radiating, and it consists essentially of ferrous silicate and hydrated ferric oxide.1

Hisingerite likewise occurs in Cornwall, as derk brown, amorphous, reniform masses. Its hardness is 2.75, and density 1.74. It yields a conchoidal fracture and leaves a rust-brown streak. Its composition 3 approximates to Fe₂O₂, 2SiO₂, 2H₂O.

Other silicates are pinguite, 4 2Fc₂O₃.6SiO₂.3H₂O + xH₂O; hoeferite, 4 2Fc₂O₃.4SiO₂.7H₂O.

Numerous other silicates are known in which iron is one of the constituent metals. As a source of real they are all ascless for commercial purposes, since the percentage of the metal is low.

Wolframite, (Fe, Mn)WO, is a black mineral associated with cassi terite in Cornwall and elsewhere. It yields monoclinic crystals which may be distinguished by their lustre and perfect single cleavage.

Hardness.5.5; density 7.3.5

Ferritungstite_Fc2O3.WO3.6H3O, an alteration product of Wolframite, is a pale other, which under the microscope is seen to consist of hexagonal

plates.6

 Ferrous chloride is present in rinnelte, FeCl₂.3KCl.NaCl. which occurs in large, fenticular masses in beds of rock salt at Wolkramshausen in the Harz, and as a kiescrite-rinneite rock in Hanover.7 It crystallises in the hexagonal system, and when a hot, saturated solution is allowed to cool, potassium chloride separates out.

Douglasite, FcCl₂.2KCl.2H₂O, occurs in the Stassfurt deposits,

associated with carnallite. Density 2:16.

Ferric chloride has been found as a brown incrustation on lava, particularly in the neighbourhood of Vesnvius. It is then known as molysite, FeCl₂. In combination with alkali efflorides, ferric chloride is found as kremersite," KCl.NH₃Cl.FcCl₃vii₂O, and Erythrosiderite, 2KCl.FeCl_a.H₂O, both minerals being found in minute quantities in the neighbourhood of Vesuvius.

Lagonite is an ochre-coloured incrustation consisting of iron borate, Fc₂O₃.3B₂O₃.3H₂O. It occurs as an incrustation by layoons in Tuscany, 10 A natural nitride of iron has been found in the lava of Etna, as the

mineral siderazote.11

For the sake of easy reference, the foregoing minerals are given in the accompanying tables, together with their chemical compositions and more important physical characteristics.

¹ Steinmann, Somreiggers J., 1821, 32, 69: Maskelyncoand Flight, J. Chem. Soc., 1871, 24, 1.

<sup>1871, 24, 1.

2</sup> Church, J. Chem. Soc., 1870, 23, 3.

3 Church, Joc. cit.; Clarke, Amer. J. Sci., 1887, 34, 133.

4 Katzer, Tsch. Min. Mill., 1895, 14, 483.

5 Analyses are given by Wherry, Proc. U.S. National Museum, 1914, 47, 501.

8 Schaller, Amer. J. Sci., 1913, (4), 32, 161.

7 Booke, Chem. Zeit., 1908, 32, 1228; Jahrb. Min., 1911, L., 48; Rinne and Kolb, Centr. Min., 1912, p. 337. Schleider (Centr. Min., 1909, p. 503) found a higher sodium chloride content, but this appears to have been due to the mechanically admixed salt.

Proch Rev. 1811, 12, 239.

Precht, Ber., 1881, 13, 2328.
 Kremers, Pogg. Annalen, 1851, 84, 79.
 Beohi, Amer. J. Sci., 1854, 17, 129.
 Silvestri, Pogg. Annalen, 1876, 157, 165.

	• •	1	١	_
	1		Hard.	
Name.	Composition.	Density.	nesc.	Remarks.
Maine.	Coluboration & F		Mohs'	
•			Sgale.	
		· ·	-6	
*	•	•		0
Acmite]	N. T. (CO.)	0 - 00	800	35 15 0 · 4
Ægirite	Na ₂ Fe ₂ (SiO ₃)	3.5-3.6	6-6-5	Monoclinic.
Amarantite	Fe ₂ O ₃ ,2SO ₃ ,7H ₂ O	2.0	2·I	Triclinic.
Anaparte	FeCa2(PO4)2.4H2O	٠		Palo green.
Ankorite	2CaCO ₃ .MgCO ₃ .FeCO ₃	2.9-3	3.5-4	Hexagonal. c " o
Anthophyllite	(Mg, Fe)SiO ₃	5.5-6	3-1-3-2	Rhombic.
Argillaccous iron ore .	See Clay iron stone	٠.,		· •
Arizonite e	Fe ₂ O ₃ .3TiO ₂	4.25	5.5	
Arsenic		` .		
Arsenical mundic	FoS ₂ . FeAs ₂	6-6-4	5.5-6	Rhombio.
Arsenical pyrites				
Astrolite	(Fe, Al, Na, K)SiO3.H2O	2.75	3.5	? rhombic.
Awaruite	Alloy of Fe and Ni	8.1	- 5	67-74 per cent. Ni.
Barnhardtite	2Cu ₂ S.Fo ₂ S ₃	8·1 4·5	3.5	Massive. Bronze yellow.
		١,	•	Conchoidal fracture.
Beraunite	$\text{FePO}_4.2\text{Fe}_2(\text{PO}_4)(\text{OH})_3$.	2.8-2.9		Monoclinic.
	4H ₂ O			•
Berthlerite	FeS.Sb ₂ S ₃	4,4.3	2-3	Rhombio.
Blxbyite	FeO.MnO,	4.95	6-6.5	Cubio.
Blackband	Carbonaceons FeCO ₃			
Blue iron earth	Earthy variety of vivianite			" #.
Bog ore	Hydraued Fe ₂ O ₃		6.	Brown, earthy.
Bornite	Sulphides of Fe and Cu	4.4-5.5	3.3	Cubic, also massivo.
Botryogen	Essentially ferric sulphate	2.0-2.1	2-2.5	Monoclinic.
Brush ore	Variety of limonite			Stalactitic and reniform.
Castanite	Fe ₃ O ₃ .2SO ₃ .8H ₂ O	2.1	3	Monoclinic.
Chalcopyrite	See Copper pyrites		21.	
Chalmersite	CuFo ₂ S ₃	4-4.7	3.5	Rhombie and massive. Pale
Chalmhite #	.U U 41.:		1	yellow.
Chalybite	See Spathic on	9100	. : .	1311
Chimiento	Hydrated phosphate of Fe	3.1-3.2	4.5-5	Rhombie.
Chrome from ore	See Chromite			
Chromite	FoO.Cr.O.	4.3-4.6	5.5	Cubic.
Chromitite	Fo ₂ O ₃ , Cr ₂ O ₃	3.1	1	
ontoing to	203V8.01303	3.1	••	Cabic. Magnotio, like mag- netite.
Chromoferrite	See Chromite			
Clay Iron stone	Impure FeCO			Earthy. 30-40 percent. Fe.
Cleveland Iron stone .	Variety of clay iron stone			About 33 per cent. Fe.
Cobalt-nickel pyrites .	(Fo, Co, Ni)S	4.70	5-5.5	Cubic.
Cookscomb pyrites .	Variety of marcasits			•
Cohenite	(Fe, Co, Ni)aC	6.977	5.5-6	Cubic.
Copiapit	3F6, O ₃ .88O ₃ .27H ₃ O	2.1	2.5	
Copper pyrites	Cu.S. FeS.	4·1-4·3	3·5-4 2	Monoolinic. Tetragonal.
Coppersa	FoSO ₄ .7H ₂ Q	1.83		Monoclinic.
Coquimbite	Fe ₈ (SO ₄), 9H ₈ O	2.	2-2.5	Hexagonal.
Crichtonite	FeTiO, 4FeQ.2Fe,O,.3SiO,.4H,O CuS.Fe,S,	4.7-4.8		About 30 per cent. Ti.
Cronstedtite	4FeQ 2Fe, 0, 3SiO, 4H, 0	3.3-3.4	3.5	Acicular needles.
Ouhanite		4-4-2	4. 4	Cubie.
Cabe ore	See Iron sinter			
Daubreelite	FeS.Cr ₂ S ₃	5	١ ٠٠ ١	Massine, black Non-
	•	20	l `	magnetic.
Delafossite	CuFeO,	.::	5.5	Tetragonal.
Derbylite	2FeSbO, 5FeTiO,	4.53	5	Rhombie
Dimagnetite	Fe ₁ U ₄	5.79	5.5-6.5	
Douglante	Fe.O. FeCL.2KCl.2H.O Fe.OH) PO.	2.18		Monoclinica
Dufrenite	Fe ₂ (OH), PO, Fe ₂ O ₂ , 3TeO ₂ , 4H ₂ O	3.2-3.4	3-5-4	Rhombio.
Durdento	\$1410°21.00°411°10		2-2.5	Greenish yellow. Massive.
		1	1	
x 1				

Remarks Rema	ţ	<u> </u>				AUT. 15
Emmonsite Hydrated ferric tellurite Erubescite Fertheedderite Fe					1 •	1
Emmonsite Emmonsite Enhosphorite Erubescite Erythroddigite Ferchardigite Fercitangatite Ferritangatite Ferritan		•	•			
Emmonsite Emphosphorite Erubescite Exphanologist Erubescite Exphanologist Erupescite Exphanologist Explanologist		Name.	Composition.	Density.		Remarks
Emmonsite Bophosphorite Frubescite Erythreedderite See Fron divine Ferritungstite			· ·		200010	
Eophosphorite Variety of childrenite cicler in Mn			•	•	Seale.	· • •
Eophosphorite Variety of childrenite cicler in Mn		, ,		<u></u>		
Eophosphorite Variety of childrenite cicler in Mn	٠		l			
Erubeseite Richarderite Prof. See Bornate Erythroadderite Prof. See Bornate Prof. Se						
Erytheseite		Sophosphorite		3.1-3.5	6	Khombic.
Erythroedderite 2KCl, k-Cl, H, O 2.58 2.5 Red, rhombic crystals. Crystalite Fero, and of the printingstite Fero, and and and and and and and and and and			richer in Mn			•
Pameraldate Ford, 4H, 0 See Iron divine From the properties Ford, 2M, 3H, 0 From the properties Ford, 2M, 10H, 0 See Zincite Geikichite Geikichite Geikichite Geikichite Georgia Graftonite Ford, 2M, 10H, 0 See Zincite Geikichite Geikichite Graftonite Ford, 2M, 10H, 0 See Zincite Geikichite Ford, 2M, 10H, 0 See Zincite Geikichite Ford, 2M, 10H, 0 See Zincite Graftonite Ford, 2M, 10H, 0 See Zincite See Zincite Graftonite Ford, 2M, 10H, 0 See Zincite See Zincite Graftonite Ford, 2M, 10H, 0 See Zincite			See Bornte	•	•	The state of the same of the s
Forgithe Ferritungstite Fe 10, Wo, OH 10 Ferronatrito Fe 10, Wo, OH 10 Ferronatrito Fe 10, Wo, OH 10 Ferronatrito Fe 10, 280 10H 10 Franklinite Sec Zincite (Mg. Fe 10. TiO 2 3976 Gelikolite (Mg. Fe 10. TiO 3976 Gelikolite			Acci. reci. H ₂ O	4.50		
Ferritungstite Ferronatrite Na,Fe(S),B,3H,0 Franklinite Geikiclite Geikiclite Gilaucodote Geochite Graftonite (Fe, Mn, Ca),(PO, 1, 10) Graftonite (Fe, Mn, Ca),(PO, 1, 10) Hisingorite Hydrogentite Hydrogentite Hydrogentite Hydrogentite Hydrogentite Hydrogentite Hydrogentite Hydrogentite Fro, D, 10, 10 Iron glance Iron glance Iron, native Iron clivine Iron pyrites Iron sinter See Eyrites Iron sinter See Eyrites Iron sinter See Specular ore Iron, native Iron solivine Iron pyrites Iron sinter See Pyrites Iron sinter See Pyrites Iron sinter See Pyrites Iron sinter See Pyrites Iron sinter See Pyrites Iron sinter See Pyrites Iron sinter Kendersite Kendersite Kendersite Kendersite Kendersite Kendersite Kendersite Kendersite Kendersite Kendersite Fro, 3H,0 Kominckite Fro, 3H,0 Kendersite Lepidocrite Lepidocrite Limonite Lepidocrite Limonite Lepidocrite Fro, 2P,0, 3H,0 Limonite See Magnetito Fro, 2P,0, 3H,0 Limonite Clilingite Looking-glass ore Ladwigite Magnosterite Roberts Silky Straw-yellow fibers Silky Illustre See Zincite (Mg, Fe)0, 10, 20, 39, 4 5, 5, 5, 6, 6, 6, 6, 5 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,			rego,411,0		1	COME DIRCK, VILTEGUS.
Ferronatrito Fibroferrice Fe ₃ 0, 280, 10H ₂ 0 Franklinite Geikichite Geikichite Geikichite Geratonite Fe ₂ 0, 280, 10H ₂ 0 Gratonite Fe ₂ 0, 280, 10H ₂ 0 Gratonite Fe ₂ 0, 280, 10H ₂ 0 Gratonite Fe ₃ 0, 281, 10H ₂ 0 Gratonite Haimforite Fe ₃ 0, 2810, 2814, 10H ₃ 0 Haimforite Haimforite He ₄ 0, 2810, 2814, 10H ₃ 0 Horse-fiesh ore Hydrogoethite Hydrohematite Hystatite Hystatite Hystatite Hystatite Iron glance Iron, native Iron glance Iron glance Iron shire Iron pyrites Iron shire	۱			•		t havegonal .
Fibroferrite Fe ₃ 0, 28O ₂ , 10H ₁ 0 Franklinite Geikicite Gilaucodote (Lo, Fe)O.TiO ₂ Goothite Graftonite (Fe, Mn (Ca), (Fo), Hn (Ca), (Fo), (Fo), Hn (Ca), (Fo), (F			No Forson 2H ()	9.5		
Franklinite . Sec Zincite Geikieite . (Mg, Fe)0.TiO ₂ . 3-976			Es O SCO 1014 O			
Franklinite . Geikielite . (Mg, Fe)t.TiO; . (Mg, Fe)t.Tio; . (Mg, Fe, O, Mg, Fe, O,		ribioletino	10203.2003.101130			
Geikielite (Mg, Fe)0.TiO, (2.5) 6 5 Galaucodote (C.5, Fe)Ass 5.96 8 5 Fe)Ass 5.96 8 5 Fe)Ass 5.96 8 5 Fe)Ass 5.96 8 5 Fe)Ass 6.97 Fe)Ass 6	٠,	Franklinite	See Zincite		1	
Glaucodote Goothite Goothite Fe ₁ 0, st 10 (Constitute Graftonite Fe ₂ 0, st 10 (Fe, Mn, Ca) ₃ (PO ₄) ₂ (Fe, Mn, Ca) ₃ (PO ₄) ₂ (Fe, Mn, Ca) ₃ (PO ₄) ₂ (Fe, Mn, Ca) ₃ (PO ₄) ₂ (Fe ₂ 0, 4SiO ₄ , 2H ₄ O) 3-67 (Fe ₂ O ₄ , 2SiO ₄ , 2H ₄ O) 3-67 (Fe ₂ O ₄ , 4H ₄ O) 3-7 (Fe ₂ O ₄ , 4H ₄ O) 3-7 (Fe ₂ O ₄ , 4H ₄ O) 3-7 (Fe ₂ O ₄ , 4H ₄ O) 3-7 (Fe ₂ O ₄ , 4H ₄ O) 3-7 (Fe ₂ O ₄ O ₄ O) (Fe ₂ O ₄				3 976		Hexagonal.
Goethite Grattonite Historichite Historichite Historichite Historichite Historichite Historichite Horse-flesh ore Hydrogoethite Hydrogoethite Hydrogoethite Hydrogoethite Hydrogoethite Hystatite Hystatite Hystatite Hystatite Hystatite Hystatite Hystatite Hystatite Historichite Hystatite Hystatite Hystatite Historichite Hystatite Hystat			(Co, Fe)AsS			
Grationite (Fe Mn, Ca) ₁ (PO _c) ₁ 34-11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				4-74	5.55	Rhombic.
Italotrichite FeSO, Al, (SO ₂), 24H ₄ O 1.74 2.75 Dark brown, massive.			(Fe, Mn, Ca), (PO ₄),			
Hisingerite Fe ₂ (0 ₂ 2Si(0 ₂ 2H ₁ (0) 2.3-2.4 1-3	-		$[FeSO_4.Al_4(SO_4)_3.24H_4O]$	1.90		
Horse-flesh ore See Bornite SFe ₂ O ₂ -8H ₂ O ₃ H ₃ O See Bornite SFe ₂ O ₃ -8H ₃ O See Figure Hystatite RetTiO ₂ See Specular ore Fe ₂ SiO ₃ H ₃ O See Figure Since Specular ore See Specular ore Fe ₂ SiO ₃ H ₃ O See Figure Since Specular ore See Specular ore See Specular ore Fe ₂ SiO ₃ See Specular ore See Specular ore See Specular ore Fe ₂ SiO ₃ See Specular ore See Spec	į	Hisingerite	Fe ₂ O ₃ .2SiO ₂ .2H ₂ Q			
Horse-ficsh ore Hydrogoethite 3Fc0,24H ₂ 0 Hydrogoethite 1FcTiO ₂ Ilmenite FcTiO ₃ Ilmenite FcTiO ₃ Iron glance See Specular ore Iron, native Fe Iron olivine Fc ₂ SiO ₄ Iron sinter 2FcAsO ₄ Fc(OH) ₂ -5H ₄ O Janosite Fc ₂ O ₃ H ₂ O ₃ H ₄ O Kamasite Alloy of Fe and N ₁ Kiddelophane Fc ₂ O ₃ H ₂ O ₃ H ₄ O Lagonite Fc ₂ O ₃ 3B ₂ O ₃ 3H ₄ O Lagonite Fc ₂ O ₃ 3B ₂ O ₃ 3H ₄ O Lagonite FcAs ReAs Limite See Bagnetite Leucopyrite FcAs ReAs Limite FcAs ReAs Looking-glass ore Ladianite FcAs ReAs Looking-glass ore Ladianite FcAs FcAs Magnetite FcAs FcAs Magnet	i	Hoeferite	2Fe ₂ O ₃ .4SiO ₂ .7H ₂ O	2.3-24	1-3	Green, earthy.
Hydrohematite Hystatite Hy	1	Horse-flesh ore . • .	See Bornite .			
Hystatite FeTiO 5 5 5 5 5 5 5 5 5	-		3Fe ₂ O ₃ .4H ₂ O	3.7	4	Red.
Imenite Fe0. TiO ₂ 15.5-5 3-6 Itexagonal. Iron glance See Specular ore Iron, native Fe See Specular ore Fe,SiO ₄ 14-2 15.5-5 6-5 Itexagonal. Iron olivine Fe,SiO ₄ 14-2 15.5-5 6-5 Itexagonal. Iron sinter See Specular ore Fe,COP ₄ 15.5-5 6-6-5 Itexagonal. Iron olivine Fe,SiO ₄ 14-2 15.5-5 6-5 Itexagonal. Iron sinter See Specular ore See Specular ore See Specular ore Laterite Similar to limite Lepidocrite FeAs ReAs 15-5-5 Itexagonal. Iron olivine FeO. See Specular ore Laterite See Specular ore Ladianite FeAs ReAs 15-4-5 5-5-5 Itexagonal. Iron olivine FeO. See Specular ore Ladianite FeAs ReAs 15-4-5 5-5-5 Itexagonal. Iron olivine FeO. See Specular ore Ladianite FeAs ReAs 15-4-4 5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-5-5-5 Itexagonal Cubic Rhombic. Iron olivine FeO. See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs See Specular ore Ladianite FeAs Reas 15-5-5-5 Itexagonal Cubic Rhombic. Iron olivine Fe ₂ SiO ₄ 31-4 5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-5-5-5 See Magnetite FeAs Reas 15-5-5-5 See Magnetite FeAs Reas 15-4-4 5 See Magnetite FeAs Reas 15-5-5-5 5 See Magnetite FeAs Reas 15-5-5-5-5 See Magnetite FeAs Reas 15-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-			See Turgite			
Iron glance See Specular ore Fe 173-7-8 4-5 Cubic Rhombic Fe SiO 1-4-2 1-5 1-4-2	1		FeTiO _{3 e}			
Iron, native Fe Iron olivine Fe,Si() See Pyrites Iron sinter 2FeAs(),Fe(OH),5H4O 2-8 3 2-5 2-2-5 3 2-5 3 2-5 3 2-5 3 3 3 3 3 3 3 3 3				1.5-5	5~6	Hexagonal.
Iron olivine Iron pyrites Iron sinter Janosite Janosite Josephinite Alloy of Fe and Ni Kamasite Alloy of Fe and Ni Kibdelophane Kidney ore Kepo Koninckite Lagonite Lake ore Lagrite Leucopyrite Leucopyrite Leucopyrite Leucopyrite Leucopyrite Leucopyrite Liminite Lepidocrite Liskardite Lodestone Loding glass ore Ludianite Loding glass ore Ludianite Loding fee Lodestone Lodestone Loding fee Lodestone		iron glance.		7.3.7.0	1 .	Cubia
Iron pyrites Iron sinter 2 Fe Ast, Fe(OH), 5H4O Janosite Fe, Sol, MH, O Alloy of Fe and Ni Kamaaite Alloy of Fe and Ni Kibdelophane FeTito, Kidney ore Fe ₂ O, Koninokite Fe ₂ O, 3H ₂ O, 3H ₄ O Lagonite Lagonite Feto, See Bog ore Laterite Leucopyrite Leucopyrite Leucopyrite FeAs, FeAs, Limmite Leidstone Lolingite FeAs Looking-glass ore Ladiamite Looking-glass ore Ladiamite Looking-glass ore Ladiamite Looking-glass ore Ladiamite Fe ₂ O, Magnetite Fe ₃ O, Magnetite Fe ₄ O, Magnetite Fe ₅ O, Magnetite FeS, Magneti		iron, native				
Iron sinter 2Fc As0, Fe(OH), 5H ₄ O 2-8. 3 2-5 1 Josephinite. Alloy of Fe and Ni Kindelophane FeFO, 3H ₄ O 3H ₅ O 3H ₄ O 4-6. 4-7 Kindelophane FeFO, 3H ₄ O 4-6. 4-7 Kremersite. Kcl.NH, CFECl., H ₄ O Lagonite Fe ₂ O ₃ 3B ₂ O ₃ 3H ₄ O 5-8 Eo Bog ore Laterite. Similar to limite Lepidocrite. Fibro-scaly goethite Letucopyrite FeAs FeAs. FeAs. FeO, 3H ₄ O 1 Josephinite. FeO, 3H ₄ O 1 Josephinite. FeO, 3H ₄ O 2-7 5-5-5 Liminite. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeO, 3H ₄ O 1 Josephinite. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. FeAs. FeAs. FeO, 3H ₄ O 1 Josephinite. FeAs FeAs. Fe	1			9-4-2	0.0	Kilomote.
Janosite Fe ₂ (SO ₂) ₃ (9H ₂ f) Alloy of Fe and Ni Kamasite Alloy of Fe and Ni Kibdelophane FeFiO ₃ 4-6 4-7 Alloy of Fe and Ni Kibdelophane FeFiO ₃ 4-6 4-7 Alloy of Fe and Ni Kibdelophane FeFiO ₃ 4-6 4-7 Alloy of Fe and Ni Kibdelophane FeFiO ₃ 4-6 4-7 Alloy of Fe and Ni Kibdelophane FeFiO ₃ Alloy of Fe and Ni Kibdelophane FeFiO ₃ Alloy of Fe and Ni Kibdelophane FeFiO ₃ Alloy Alloy of Fe and Ni Kibdelophane FeFiO ₃ Alloy Alloy Alloy of Fe and Ni Kibdelophane FeFiO ₃ Alloy				9.5 2	1.5	Cubic
Josephinite . Alloy of Fe and Ni Kamasite . Alloy of Fe and Ni Kibdelophane . FeTito,	-					
Kamasite Alloy of Fe and Ni Kibdelophane FeTiO ₂ Kidney ore Fe ₀ O ₃ Koninckite Fe ₀ O ₂ SH ₄ O Kremersite KCl.NH ₂ Cl.FeCl ₃ H ₄ O Lagonite Fe ₂ O ₃ SB ₂ O ₃ SH ₄ O Lake ore See Bog ore Laterite Sumitar to limnite Lepidocrite FeAs FeAs ₂ Limnite Fe ₃ O ₃ SH ₄ O Limnite Pe ₄ O ₃ SH ₄ O Limnite Pe ₅ O ₅ SH ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O Limnite Pe ₅ O ₅ SH ₅ O See Magnetite Pe ₅ O ₅ SH ₅ O Locking-glass ore Locking-glas			Alloy of Fe and Ni			
Kibdelophane Kidney ore Koninckite Kremersite Lagonite Fe ₂ O ₃ B ₁ O See Bog ore Laterite Lepidocrite Lepidocrite Lepidocrite Lepidocrite Lepidocrite Lepidocrite Lepidocrite Lepidocrite Leucopyrite Lepidocrite	٠				•	7 per eent. Ni.
Kidney ore Koninokite Fe ₁ O ₂ 3H ₂ O Coubic RePO ₄ 3H ₂ O Coubic Representation Coubic Coubic Coubic Coubic Coubic Coubic Coubic Representation Coubic Representation Coubic Representation Coubic Coubic Representation Coubic Representation Coubic Coubic Representation Coubic Coubic Representation Coubic Representation Coubic Representation Coubic Coubic Representation Coubic Representation Coubic	i			4.6 4.7	1	
Kremersite . KC.NH.(J.F.cl., H.1) Lagonite . Fe_2O_3B_1O_3H_1O			Fe.O.			Rehiform, massive.
Kremeraite . KCl.NH,Cl.FeCl ₂ .H ₂ O . See Bog ore Laborite . Similar to limnite . Fibro-scaly goethete . Leucopyrite . FeAs, Se As,	-	Koninckite.	PePO₄3H₃O	2.3	3.5	Monoclinic.
Lake ore Lagrite Smilar to limnite Lepidocrite Fo.S. Fe.As. Lepidocrite Fo.S. Fe.As. Limnite Fo.S. Fe.As. Liskeardite Fo.S. Hydrated arsenate of Fe. and Al Lodestone Fo.S. Looking-glass ore Ludwigite Fo.S. Ludwigite Fo.S. Magnetite Fo.S. Magnet				P.		('ubic
Lake ore Laterite See Bog ore Smiller to limnite Lepidocrite Feb. Feb. Feb. Feb. Feb. Feb. Feb.		Lagonite	Fe ₂ O ₂ .3B ₂ O ₂ .3H ₂ O			Brown incrustation.
Lepidocrita		Lake ore	See Bog ore	•		· · · ·
Lemopyrite FeAs ReAs See Magnetite FeAs ReAs See Magnetite FeAs ReAs See Magnetite FeAs ReAs See Magnetite See Magnetite FeAs ReAs See Magnetite See M	ļ	Laterite	Similar to limnite •	•	•	
Limnite . Fe, 0, 3H, 0 Liskeardite . Hydrated argenate of Fe and Al Lodestone . See Magnetite . FeAs, Lodking-glass ore Ludkingte . FeAs, Ludwigite . (Fe, Mg) O. Fe, 0, B, 0, Magnetite . Magnetite . Fe, 0, 4 Magnetite . Fe, 0, 4 Magnetite . Fe, 0, 4 Magnetite . Fe, 0, 4 Magnetite . Fe, 0, 4 Magnetite . Fe, 0, 4 Magnetite . FeS, Magnesioferrite . See					- : -	D1 15.
Limonite	Ì		FeAs.FeAs		b=5·5	
Liskeardite. Hydrated arsenate of Fe and Al See Magnetite FeAs. Coking-glass ore Licitamite . FeAs. See Special rore Licitamite . FeAs. See Magnetite . Magnetite . FeAs. See Magnetite . See Magnetite . FeAs. See Magnetite . Se			re ₂ O ₂ .3H ₂ O		2	
Todestone . See Magnetito . FeAs, Locking-glass ore Ludwigite . TeOs. P. Qu. 9H, O . Ludwigite . (Fe, Mg) O. Fe, Og. BaO. Magnetite pyrites . Fes. Magnetite .	ı		ZF6,U,3H,U	9-5.5		
Lodestone See Magnetite FeAs		Lismeardite		•	7.	
Lolingite		Ladadawa	San Magnetite			HULOUS.
Locking-glass ore Ludlamite . 7Fe0.2P.Qu.9H.O Ludwigite . (Fe, Mg)O.Fe.O. B ₂ O. Magnetic pyrites . Fe ₂ O. Magnetite . Fe ₃ O. Magnetite . Teology . Magnetite . Te	1			6.8.7.4	BK.5	Bhombic.
Ludianite 7FeO.2P.Q.9H.O 3-1 3-4 3-9 4 5-4 5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-4-7 3-5 4-5 6-6-5 4-7-48 4-7-48 6-6-5 4-7-48 6-6-5 4-7-48 6-6-5 4-7-48 6-6-5 4-7-48 6-6-5 4-7-48	1	Looking-aless ore	See Specular ore		• •	• •
Ludwigite (Fo, Mg)O.Fe ₂ O ₂ ·B ₂ O ₃ 3.9-4 5 6.6-5 6.6-5 MgO, Fe ₂ O ₃ 4.57-4.65 6.6-5	1			3.1	3-4	Monoclinic.
Magnesioferrite MgO_Fe_O_s 4-57-4-65 6-6-5 4-4-7 3-6-4-5 Wo varieties, hoxagonal and rhomble. Magnesite Fe_O_s 4-9-5-2 5-5-6-5 Cubic. Magnesite See Magnesioferrite FeS_s 4-7-4-8 6-6-5 Rhomble. Marcasite FeS_s 4-7-4-8 6-6-5 Rhomble.	ij		(Fe, Mg)O, Fe, Os, Ba()-	3.9-4		
Magnetic pyrice . 4FcS.Fe,S4 4.4.4.7 3.5.4.5 Two varieties, hoxagonal and rhomble. Magnetite . Fc,Q4 4.9.5.2 5.5.6.5 Cubic. Magnetite . FcS. 4.7.48 6.6.5 Rhomhic. Margnatite . FcS.4ZnS 3.9.41 . Cubic.	1		MgO.Fe.O.			
Magnetite . Fe ₂ O ₄ 4.9-5-2 5.5-6-5 Cubio. Magnoferrite . See Magnesioferrite 4.7-48 6-6-5 Rhombic. Marmatite . FeS.4ZnS 3-9-41 . Cubio.	1		4FeS.Fe.S.	4.4.4.7	3-5-4-5	Two varieties, hoxagonal
Magnoferrite See Magnesioferrite 4-7-48 6-6-5 Rhomhic. Marmatitie FS3.4ZnS 3-9-4-1 Cubic.	I	>				and rhomblo.
Magnoferrite See Magnesioferrite Magnoferrite See Magnesioferrite 4.7-4.8 6-6-5 Rhomhic. FeS. Magnesities 3-9-4-1 Cubic.	J	Magnetite		4.9-5.2	5-5-6-5	Cubio.
Marcasite FeS. 47-48 6-6-5 Rhombic.	1		See Magnesioferrite			
Marmatite	1	Marcaeite .	FeS,		6-6.5	
Martice Fe Us	4	Marmatite	FeS.4Zn8		2.7	
	1	Martito	Fe ₂ U ₃	#.9-0.3	0-1	mann of magnetice

Name.	Composition.	Density.	Hard- ness. Mohs' Scale.	Remarks.
•				
			-с	•
Melanterite	See Copperas	•	١. ا	
Menaecanite	See Ilmenite	• • •	• • ·	• •
Mesitite	FeCO ₃ .2MgCO ₃	3.3-3.4	3.5-4	Hexagonal.
Mieaeeous iron ore .		5.2		
micaconda titili ofe .	Fo ₂ () ₃	0.7	°,¢	Foliated variety of specular
Minette	Hydrated ForO3 e		١	aron.
Mispiekei	Man Amamaul survites			
Molysite	FeCl _a		l :: '	Brown incrustation.
Mundio . C	See Pyrites			Diowii inclustation.
Needle iron Stone	See Goethite		1	An acicular variety.
Nontrouite	Fe ₂ O ₃ .3S ₁ O ₂ .5H ₂ O	2.15		Yellow, earthy.
Ookre. of	Variety of limonite	1.1		Yellow, earthy.
Octibbehite	Alloy of Fe and Ni	•••		60 per cent. Ni.
Olivino ,	Fe2SiO4.Mg2SiO4	3.3-3.5	6.5 7	Bhombic.
Onegite	See Goethite	٠	03.	An acteniar variety.
Paoite	FcS,4FeAs	6.3		Rhambie.
Pentiandite	2FcS.NiS	4.6	3.5-4	Cubic.
Pharmaco-siderite	See Iron sinter		00.	cubic. c
Phosphosiderite .	2FcPO4.7H2O	2.70	3.75	Rhombie.
Pinguite	2Fe,O,.6SiO,.Ag.	2.73	l	Yellow green, earthy.
Pisanite	(Fe, Cu)SO ₄ .7H ₂ O	1.95	:.	Monoclinic.
Pistomesite	FeCO ₃ .MgCO ₃	3.4		Hexagonal.
Pianoferrite (Fe ₂ O ₃ .SO ₃ .15H ₂ O a			Rhombic.
Plumbo-ferrite	(Pb, Fe, Cu)O.Fe ₂ O ₃			Hexagonal.
Puddle ore ' .	Fe ₂ O ₂			Red, carthy.
Pyrices	FeS ₂	4.8-5.2	6-6-5	Cubic.
Pyrrho-sidorite .	See Goethite		1	
Pyrrhotite	See Magnetic pyrites		1	
Quenstedtite .	Fe ₂ (SO ₄) ₃ .10H ₂ O	2.1	2.5	Monoclinic.
Red fossit ore .	. ← Ro ₂ O ₂		1	Red, earthy.
Red isomatite ,	Generic name for anh.			
i	Fe ₂ O ₃ . Also given to			-
- 6 C	turgito		t .	
Redochre	o∱See Tyrgite and Red			
8.	hæmatite			
Rhabdite .	(Ni, Fe) _a P	6.3-6.8		Tetragonal.
Rinneite "	FeCla.3KCl.NaCl			Hexagonal.
Roemerite	e FeSO ₄ . Fe ₃ (SO ₄) ₃ .12H ₃ O	2.2	3-3.5	Triclinic.
Rubingliumer .	See Goethitee 4	• •	1 · · c	00
Rudule	Fe ₃ O ₃		`	Red, earthy. •
Sammet-biende . Soorodite ^t	Velvety variety of Coethite	3.5	. * .	
consider.	FeAsO, 2H ₂ O	3.1-3.3	3.5-4	Rhombic.
Senaite	(Fe, MnyPb)O.TiO	. 4.8	14	Hexagonal.
Shining are	Micacedus iron ore			A Devonshire variety.
Siderazote	· Fe ₂ N			Thin coating on lava.
Siderite	Con Cuathia	L		Non-crystalline.
Sidero-chrome	Sce Spathic ore			٠٠
Sidero-plesite .	See Chronite .	3.6-3.7		Tf
Sienna	2FeCO ₃ .MgCO ₃	3.0-3.1	\$ · · ·	Hexagonal.
HOTTING	Fo ₂ O ₃ .Aq			An earthy variety of limo-
Smith ore	Variate of limanita			nite containing Mn.
Somenite	Variety of limonite	8.2		7E non name Ni
Spathic ore.	Alloy of Fe and Ni		0.5 4.5	75 per cent. Ni.
Spann nucitae	FeCOs	3.7-3.9	9.0-#.0	Hoxagonal.
Spear pyrites . Specular iron ore	Variety of mercasite	4.5-5.3	5.5 a.r	Waraganal " 0
Sphero-siderite .	Fe ₂ O ₂ Variety of clay iron stone	4.0-0.3	10.0-0.0	Hexagonal Company
Olimpiania n	TO MAY OUT A	2.7-2.8	l ••	Concretionary.
MARKATER ST	e Fero.2H.O	2.1-5.0	1	Rhombio

. •			Hard- ness	Remarks.
Name.	Composition.	rensity	Moh-	Remarks.
.		•	Scare	
Tænite	Alloy of Fe and Ni			43 per cent, Nr.
Tauriscite	FeSO ₄ ,7H ₉ O			Rhombic.
Titanic iron ore.	Fe'Irti, • •	4,5 5	5-6	Hexagonal.
Triphyllite	La(Fe, MrP)PO ₄	3.58	•	Rhombic.
Tripuhite .	2160 Sb ₁ O ₃	5 <u>8</u> 82		Yellgav.
Troilite	FeS	4,7-4-8	4	Massive. Possibly hexa-
			1	gonal .
	2Fe ₂ O ₃ H ₂ O • •	35 47	5-6	Red, earthy
	FeTiO ₃	4.8		About 70 per cent. Ti.
Umber	Fe ₂ O ₃ .Aq			Dark brown, earthy.
Vivianite	Fe ₅ (PO ₄) ₃ .8H ₂ O ₄	2.6-2.7	152	Monochnie • •
	Sec Marcasite	-:.]	NA CONTRACTOR
Wolframite.	(Fe, Mn)WO.	7.3	5.5	Monoclinic.
	Variety of Innonite	•	0.0	Erbrons.
Xantho-siderite	$\mathrm{Fe_2O_3}2\mathrm{H_2O}$	2.7	2.5	Acicular.
Yukonite	♥Ca ₃ , Fe ₂)As ₂ O ₈ 2Fe(OH) ₃	2 65		Dark, resmous, massive.
Zincite . • .	(Mn, Fe)O, Fe ₂ Q ₆ • 5 H ₂ O		5-5-6-5	Cubič,

Other Sources of Iron.—It should be mentioned that iron is a minor constituent in an indefinite number of other minerals and rocks. Thus, it is present in small quantities in serpentine, blottle, normbleride, garnets, etc.—Indeed, the mean percentages of ferrons and ferric oxides in British and American igneous rocks have been calculated to be as follows.—I

British rocks				$\frac{1}{5} \cdot 34$	2 40
	•	-	-		
American rocks				2.65	3 345

so that the total amount of iron distributed throughout the igneous rocks of the world is very considerable.

Further, the brown and red colours of soil, clay, and sandstone are largely due to iron; ² sea, spring, and river waters contain dissolved ron compounds; and the metal also enters into the minual and vegetable organism, being an essential constituent of hamoglobin and chlorophyll. Spectroscopic examination of light from the sun and many fixed stars, ³ reveals the presence of iron, thus showing that the metal is wid by diffused throughout the universe.

¹ Harker, Geol. Mag., 1899, 6, 220.

On the ferruginous colouring matters of soils see Spring, Rec. Trav. Chapt. 1898, 17, 202.

Lockyer, Proc. Roy. Soc., 1807, 61, 148, 213.

Chapter III.

PREPARATION AND PROPERTIES OF PURE IRON.

Preparation.- 1. One of the earliest methods of obtaining a pure iron consists in reducing ferrous chloride by heating in an atmosphere of hydrogen.1 The iron is deposited in the form of cubic crystals of microscopic size.

2. Reduction of iron oxide, carbonate, or oxalate in a current of hydrogen results in the formation of a very pure iron. The reaction is fairly rapid at 600° C., but higher temperatures are more efficient, whilst at lower temperatures the product is usually contaminated with ferrous

oxide (see p. 109).

3. Iron may be reduced from its salts by means of zinc. Thus at high temperatures ferrous chloride is reduced by zine vapour, whilst aqueous solutions of ferrous salts are reduced by metallic zine at their

boiling-points, yielding finely divided iron.

4. An exceptionally pure form of reduced iron has been obtained by Lambert and Thomson 4 by reduction of pure, colourless crystals of ferric nitrate. 50 The crystals were first converted into oxide or basic nitrate by ignition in an iridium boat.6 The whole was then introduced into a silica tube and heated in an electric resistance furnace to just above 1000° C in a current of pure hydrogen gas, obtained by

the electrolysis of barium hydroxide solution.

5. Electrolytic Iron. -- Iron may be obtained in a high state of purity by electrolysing a mixed solution containing 20 per cent. of ferrous sulphate (calculated as beSO4.7420) and 5 per cent. of magnesium. sulphate (MgSO, 71120). Some 25 grams of sodium hydrogen carbonate are added to every 6 littles of the solution, whereby a skin of ferric hydroxide forms on the surface of the bath and protects the liquid from oxidation. A precipitate settles to the bottom and is allowed to remain undisturbed. An anode of wrought iron is employed, the cathode being made of copper, thinly silvered and jodised, and maintained in rotation. The best results are obtained with a current density of 0.8 ampere per sq. decimetre of cathode, and a temperature of 15°

¹ Peligot, Compt. rend., 1844, 19, 670.

**Poumarde, Compt. rend., 1849, 29, 518. *

Capitainc, Compt. rend., 1839, 9, 737; Davis, Chem. News, 1874, 30, 292.

Lambert and J. C. Thomson, Trans. Chem. Soc., 1910, 97, 2426.

Prepared as indicated on pc 177.

Richards (Proc. Amer. Acad., 1900, 35, 253) prepared pure iron is a somewhat analogous manner, but used vessels of platinum instead of iridium. He states that his from invariably omtained traces of platinum and that a trace of this metal remained after dissolving the iron in soid.

to 18°C. The bath is kept continuously at work, and 20 to 25 grams of carbonate are added every three or four days.

Both the magnesium sulphate and the sodium hydrogen carborate appear to be essential constituents of the both, and the good quality of the metal is attributed to the small concentration of hydrogen ions

which prevents the deposited iron from containing occluded hydrogen. Numerous attempts have been made to prepare iron by the electrolysis of ferrous chloride, but with this salt an elevated temperature is essential for good results, namely, 60° to 70° C. The current density at the cathode should not exceed 0.4 ampers per sq. decimetre, and the quality of the deposit is improved by rotation of the cathode.2

According to Noyes, the minimum potential required for the electrolysis of an aqueous solution of a ferrous salt at 20° C. is 0.66 volt, when electrodes of electrolytic iron are employed.3. This value falls by 0.007 volt per degree rise in temperature up to 110 C., when it attains a minimum. Further rise in temperature necessitates an increased

Hicks and O'Shea recommend the electrolysis of a 5 per cent. solution of ferrous chloride to which ammonium chloride hus been added in sufficient quantity to establish the ratio

$FeCl_2: NII_3Cl=1:2.$

Any ferric chloride present is reduced to ferrous by shaking with reduced iron. A thin copper plate serves as cathode, is cleaned with dilute nitric acid, rubbed with cotton-wool and sand, and finally washed with potassium evanide and then with water. Swedish iron constitutes the anode, and is placed in a porous cell to prevent the spongy carbon, which normally separates from the metal, from reaching the enthode. The sulphur in the metal passes into solution as sulphate, and requires removal at intervals with the anode liquor. A current of 0.08 to 0.2 ampere per sq. decimetre of cathode surface is recommended? the voltage being 0.7. The iron content of the bath should not fall below the equivalent of about 4 per cent, of ferrous chloride!

Skrabal 6 obtained a very pure iron by electrolysis of a solution of ferrous ammonium oxalate, the metal being deposited on a cathode of platinum foil. The electrode thus prepared was now used as anode in an acidified solution of ferrous sulphate, an E.M.F. of 0.4 volt being employed, the cathode again consisting of platinum foil. The netal thus obtained was white and crystalline; it dissolved slowly in warmed, dilute sulphusic acid, Laving no residue, and evolving a pure, odourless hydrogen. To prevent oxidation of the bath, the electrolysis was carried out in an atmosphere of carbon dioxide, and the cathode separated from the anode by means of a porous diaphragm. Excellent

¹ Maximowitsch, Zeitsch. Elektrochem., 1965, 11, 52; Ryss and Bogomolny, ibid., 1906, 12, 697. Isonz electrolysed a solution of ferrous and magnesium sulphates in 1870, using magnesium carbonate to maintain neutrality. His metal was not very satisfactory, being magnesium carronate to maintain neutrativy. In most was not very sense obtained as a hard, grey deposit containing a considerable quantity of occluded gases, mainly hydrogen, nitrogen, and oxides of carbon (Bull. Soc. ahim., 1870, (2), 13, 551).

Byss and Bogomolny, loc. cit.; Plaff, Zeitsch. Elektrochem., 1910, 16, 217.

Noyes, Compt. rend., 1919, 169, 971.

Hicks and O'Shea, Electrician, 1895, p. 843; Chem. Zentr., 1896, I., 293.

Skrabal, Ber., 1902, 35, 3404. See also Watts and Li, Trans. Amen. Electrochem. Soc., 1914, 2c. 839.

results were also obtained 1 with ferrous animonium sulphate. With this salt a concentration of 70 grams of the hexahydrate (NH4)2SO4. FeSO4.6H2O per litre is recommended, with a maximum cathode current density of 0.5 ampere per sq. decimetre, working at a temperature of 15° to 18° C.,2 or not less than 26 grams per litre, with a cathodic current density of 0.2 to 0.65 ampere per sq. decimetre, the surface of the bath being protected from exidation by a layer of solid paraffin, a stirrer being employed, and the wrought-iron anodes enclosed in linen bags; 3 or a saturated solution, with a current density of 1 ampere at 30° C.4 Acidified solutions of ferrous sulphate have been used under various conditions, the best results being obtained, according to Pfaff, with a current density of 2 aniperes per sq. decimetre at the cathode, a temperature of 70° C, and a concentration of at least two equivalents of ferrous sulphate per litre and 0.01 equivalent of subharrie acid.⁵

Electrolytic iron deposited from solution at ordinary pressures and temperatures is apt to be admixed with ferric hydraxide, and to contain hydrogen 6 and earbon. The last-named element is commonly derived from the oxalates or tartrates in the baths, when these are used, and as the result of transfer from the anodes. The earbon may be free, combined as carbide, or present as occluded carbon monoxide or

Electrolytic iron is frequently brittle, a property that is usually attributed to occluded hydrogen;7 but there are probably other auxiliary causes.8

Iron has also been obtained from solutions of its salts in organic solvents by electrolysis between platinum electrodes. A solution of ferric chloride in methyl chloride conducts electricity well, and may be used for the purpose. Produced in this way, however, the metal is particularly hable to be contaminated with earbon, 10

Electro-deposition of Iron on Copper.-Deposits of iron are frequently applied to engraved copper plates to harden their surfaces and thus increase their life for printing purposes. Various solutions are recommended for this purpose. A simple one " yielding good results consists of

Ferrous ammonium sulphate. . 1 lb. or 100 grams. .• 1 gallon " 1 litre.

This solution must be perfectly neutral for use. Another useful mixture contains ferrous chloride and ammonium chloride in molecular proportions to the extent of 50 to 60 grams per litre, or

```
Skrabal, Zeitsch-Elektrochem., 1904, 20, 749.
```

Ryss and Bogomolny loc cit.

Amberg, Zeitsch. Ekcktrochem., 1908, 14, 326.

Plaff, loc. cit.; A. Müller, Metallurgie, 1909, 6, \$45; Burgess and Hambuechen, Electrochem. Ind., 1904, 2, 184; Klein, Gull. Soc. Encourag. Industrie nat., 1868, 15, 286.
Pfaff, loc. cit.; Lee, Dissertation, Dresden, 4906.

See Kremann and Broymesser, Monatch., 1917, 38, 359, etc.

¹ See Coulson, Trans. Acner. Electrochem. Soc., 1917, 32, 238; Guillet, J. Iron Steel Inst., 1914, Il., 66.

^{*} W. E. Hughes, J. Iron Steel Inst., 1920, I., 321.

* Timmermans, Bull. Soc. chim. Belg., 1906, 20, 305.

* To Archibald and Figuet, Trans, Roy. Soc. Canada, 1917-18, (3), 12, 10

11 See Electropiating, Barolay and Hainaworth (Arnold, 1912).

FeCl. 2NH Cl. lb., or 50 grams. 1 gallon, " 1 litre."

This works well with a current density of 0.15 to 0.17 ampere per sq. decimetre, the initial density being 0.2 ampere antil a thin deposit has been obtained on the cathode. Voltage 0.7. The anades should consist of pure Swedish charcoal iron. These become covered with a black carbonaccous slime after a time, and require cleaning. It is desirable that the anodic area should somewhat exceed that of the cathode.

Electro-deposition of Copper on Iron - It is frequently desirable to protect iron by coating it superficially with copper. The following bath is recommended? for the electro-deposition of this metal upon iron:—

Copper sulphate 60 grams. Sodium hydroxide • . 50 Sodium potassium tastrate 159 •Water 1000

with a cathode density of 0.1 to 0.5 ampere per sq. decimetre and an anode density not exceeding 1.04 amperes. As this bath evolves no

dangerous fumce, it is preferable to eyanide baths.

• Physical Properties of Pure Compact Iron.— The properties of iron are affected to such a remarkable and unique extent by the presence of small quantities of alloying elements, chief amongst which is carbon, that these phenomena are an important study in themselves. It is not intended in this section, therefore, to deal with the physical properties of any commercial iron other than the chemically pure and compact metal. For a discussion of the physical and metallurgical properties of various types of commercial iron and its alloys, the reader is referred to Part III, of this volume. Pure iron is a white metal which can be readily machined in a lathe, and even ent with a knife. It erystallises according to the cubic system, but crystals are rare, the metal being usually massive. Deudritic crystals may be obtained artificially with branches parallel to the cubic axes.4 Shock apparently assists or induces crystallisation in iron.⁵

Pure iron, prepared by reducing ferrons chloride with hydrogen at temperatures up to about 800° C., usually separates in small hexahedra, although it sometimes yields rhombic dodecahedra and tetrakishexahedra,6 The mechanical properties of the individual crystals of iron vary with the crystallographic orientation. For example, the metal is brittle in the direction of the planes of cleavage, but exhibits considerable plasticity in other directions.7 In compact iron the crystals are separated from each other by an amorphous cement, which acts as a binding agent. The metal is ductile and malleable. It possesses considerable tenacity, a wire 2 mm. in diameter being capable of supporting 250 kgms. This value is greatly influenced by the presence of alloying elements, particularly carbon.

Hicks and Q'Shea, Electrician, 1895, p. 843.
 Brown and Mathers, J. Physical Chem., 1906, 10, 39.
 Wohler, Pogy. Annalen, 1832, 26, 182; Fuchs, Annalen, 1852, 34, 257.
 Capitaine, Compt. rend., 1839, 9, 737; Ann. Chim. Phys., 1841, (3), 2, 120.
 Kohn, Repertoire de chimie appliquée, 1858, 1, 55.
 Osmond and Cartaud, Chem. Zentr., 1902, 1., 842—from Ann. Mines, 1900, 17, 110; 1901, 18, 113.
 Osmond and Frémont, Compt. rend., 1905, 141, 361.
 Baudrimont, Ann. Chim. Phys., 1850, (3), 30, 3 M.
 Sae this volume, Part. III.

^{*} See this volume, Part III.

At a low temperature, such as that of liquid air, pure iron is very brittle; 1 indeed most alloys of iron, with the exception of those containing nickel, lose in ductility as the temperature falls.

The density of the metal varies somewhat according to its mechanical

history, the usual values obtained for the pure metal ranging from

7.85 to 7.88.2

As a rule the density of a metal decreases with cold working, and iron appears to be no exception. Iron filings are less dense than the compact metal from which they are obtained, as indicated by the following data ¿--

Density. Pure compact iron 7.8558Filings from ditto 7.8172Decrease in density 0.0386

The effect of cold-drawing of wire upon the density of the metal is clearly shown by the following data, obtained with iron piano-wire. The density has been calculated for a vacuum at 4° C. 6

> Mean Density. Piano-wire annealed 7.7970cold drawn 7 77722 Decrease in density 0.0198

Upon annealing the density tends to return to its original value.⁵

The density of solid iron near its melting-point is 6.95, whilst that of the liquid metal a few degrees higher in temperature is 6.88.6

Addition of carbon effects a reduction in the density of the metal. The melting-point of iron has frequently been determined; the most reliable results are as follow:--- 8

Melting Poult.	Authority. 6
. 1505	Carpenter and Keeling, J. Iron Steft Inst., 1904, I., 242.
1505	Carpenter, J. Iron Steel Inst, 1908, 111., 290.
1510 1533+1	Saklatwalla, <i>ibid.</i> , 1908, II., 92. Burgess and Waltenberg, J.
1390 T.I	Washington Mead. Sct., 1913, 88, 361; Zeitsch. anorg.
	Chem., 1913, 88, 361.

Dewar and Hadfield, Proc. Roy. Soc., 1905, 74, 326.
 Landolt, Physikalisch-chemische Tabellyn, p. 163 (Berlin, 1912).

¹ Lowry and Parker, Trans. Chem. Soc., 1915, 107, 1005. * Kahlbaum and Sturm. Zeitsch. anorg. Chem., 1005, 46, 217.

Further data are given by Chappell and Lovin, Ferrum, 1913, 10, 271.
W. C. Robert, and Wrightson, Ann. Chim. Phys., 1883, (5), 30, 274.

See this volume, Part 111. *(* The earlier values of Pouillet (Traité de physique, 1836, 3, 789), Pictet (Compl. rende, 1879, 88, 1315), etc., are now of historical interest only.

According to Knocke, the colatilisation of iron in vacuo is sufficiently great to be detected at 755° C.2 The metal boils 3 at 2450° C. ±50° C. at 86 mm. pressure. .

Moissan succeeded in volutilising iron in his electric furnace with a current of 350 amperes at 70 volts. In a few minutes a sublimate or distillate of iron was obtained on a water-cooled tube has a grey powder mixed with some brilliant and malleable scales, and possessed of the same chemical properties as the finely divided metal. The distillation of iron in this manner is difficult on account of the violent frothing caused by the boiling metal evolving occluded gases.5

The specific hear of iron rises with the temperature.

The following values for the specific heat of a sample of pure iron (Fe 99.87 per cent.) for temperatures ranging from 0 to 100 ° C. are given by Griffiths, the extreme temperature ranges being 1.4° a :--

•	Temperature C		Specific Hear		
	()		•	0.1045	
•	10	.		0.1059	
	20.5		•	0.1078	
	50·3°		•	0.1105	
•	97.5	•		0.1137	

For intermediate temperatures, the specific heat (S_t) may be calculated from the equation

$$S_t = 0.1045 (1 + 0.001520t - 0.00000617t^2).$$

Other recent results are: -

Temperature Interval.	Specific Heat.	Authority.
17 to 100	0.10988	Tilden, Phil. Trans., 1900, A, 194, 233.
17 to 100	0.1098	Schimpf, Zeitsch. physikal. Ghem., 1910, 71, 257.
-188 to +20	0.0859	Richards and Jackson, ibid., 1910, 70, 414.
-185 to +20	0.095	Nordmeyer and Bernoulli, Ber. deut. physikal. Ges., 1907.5, 175.

¹ Knocke, Ber., 1909, 42, 206.

*Ruff and Bormann, Zeitsch. anorg. Cheff., 1914, 88, 259; Greenwood, Proc. Roy. Soc., 1909, A, 23, 326; 1910, 4, 83, 483.

* Moissan, Compt. rend., 1893, 116, 4429; Traité de Chimie Minérale, 1905, IV 307.

* Moissan, Compt. rend., 1906, 142, 425.

² For the influence of iron, through supposed vaporisation at ordinary temperatures, on photographic plates, see Pellat, Compt. rend., 1898, 123, 1338; 4896, 123, 104. Contrast Colson, ibid., 1896, 123, 49.

Moissan, Compt. rend., 1906, 142, 425.

Obtained from the American Rolling Company. Density 7.858. Analysis showed it to contain the following percentages of impurity:—sulphur, 0.021; manganese, 0.036; oxygen, 0.015; phosphorus, 0.005; silicon, trace; nitrogen, 0.0026; carbon, 0.012; phosphorus, 0.040; hydrogen, 0.0005.

E. H. Griffiths and E. Griffiths, Proc. Roy. Soc., 1913, A, 88, 543

The mean specific heats of pure iron 1 between 0° and t° , where t ranges from 200° to 1100° C., are given as follow: -2.

			A	
	Temporature Range.	• Specific•Heat.	Tempelature Range. °C.	* Specific Heat.
1	0 to 200 0 ,, 300 0 ,, 400 0 ,, 500 0 ,, 600	0·1175 0·1233 6·1282 0·1338 0·1396	0 to 700 0 ,, 800 0 ,, 900 0 ,, 1000 0 ,, 1100	0·1487 0·1597 0·1644 * 0·1557 0·1534

There is marked discontinuity above 900° C.

The specific heat of iron appears to be very slightly increased by cold working.3

The coefficient of linear expansion of iron with ise of temperature has been determined 1 for a pure iron containing

Carbon		٠.	0.057	per cent.
Manganese			0.13	,,
Silicon	•.		0.05	

The results are as follow:

Temperature Interval "C,	Total Expansion per Unit Length.	Coefficient of Expansion per UC.
0,(ο 100	0.0011	0.000011
0 , 200	0.0023	0.0000115
" •0 300 "	0.0036	0.000012
* 0 ₄ ., 100	0.0050	0.0000125
* 6 ,, 500 ⁴	0 0065	0.00@013
0 600	▼ 0.0081	0.0000135
0 ,, 700	0.00975	0.000014
0 , 800	0.01125	0.000014

When heated to 950° C. in an inert atmosphere, iron is disintegrated, ematting particles at right angles to its surface and assuming an etched appearance.

carbon, 0.01 per cent.; silicon, 0.02 per cent.; sulphur, 0.03 per cent.; phosphorus, 0.04 per cent.; manganese, trace.

¹ For a full discussion up to 1907 sec Oberhoffer, Metallurgie, 1907, 4, 427, 447, 486. Other data are given by Brown, Trans. Roy. Dublin Soc., 1907, (2), 9, 59; Behn, Wied. Annalen, 1808, 66; 237—for metals containing 0-5 per cent. carbon p Pirani (Ber. deut. physikal. Ges., 1912, 14, 1037) between 110° and 970° C. Lecher (viol., 1907, 5, 647) gives relative values obtained by an electrical method. Schmitz, Proc. Roy. Soc., 1903, 72, 177; Naccari, Gazzetta, 1888, 18; Pionchon, Ann. Chim. Phys., 1887, 11, 72; Compt. rend., 1880, 103, 1122. Earlier data are those of Dulong and Potit (Ann. Chim. Phys., 1818, (2), 7, 113); Regnault, ibid., 1843, (3), 9, 322.

4 Harker, Phil. May., 1905, (6), 10, 430. The composition of the iron was as follows:—carbon, 0-01 per cent.; silicon, 0-02 per cent.; silicon, 0-02 per cent.; silicon, 0-02 per cent.; silicon, 0-03 per cent.; silicon, 1830, 1900

¹ Chappell and Levin, Fernen, 1913, 10, 271. 4 Le Chatelier, Compt. rend., 1899, 129, 331. 5 Kaye and Even, Proc. Roy. Soc., 1913, A, 89, 58.

The refractive index of iron, for sodium light, is 1.85.1 The most intense lines in the spectrum of iron are as follow:--2

Arc 3: 3020.75, 3021 19, 3647.72, 3440.77, 3441.13, 3466.02, 3490.73, 3565.64, 3570.24, \$570.29, 3581.34, 3581.38, 3609.01, 8618.91, 3631 60, 3648 00, 3705 74, 3708 06, 3709 39, 3720 09, 3722 73, 3735 02, 3737-30, 3745-70, 3748-40, 3749-62, 3763-92, 3763-99, 3816-00, 3820-61, 3824-60, 3826-07, 3828-00, 3834-10, 3860-03, 3886-15, 4045-99, 4068-74, 4063 77, 4071 92, 1260 68, 4271 95, 1308 09, 4325 97, 1383 71, 4404 95, 4415-31, 5167-67, 5233, 15, 5269-70, 5324-38, 5365-00, 5867-61, 5870-13, • 5383 · 58, 5404 · 34, 5411 · 15, 5415 · 40, 5424 · 30, 5420 · 94, 5445 · 28, 5447 · 15,

5455-81, 5573-09, 5586-98, 5615-89, 6400-25, 6495-25, Spark: 2599-50, 2739-63, 2749-41, 2755-80, 4045-99, 4308-10, 4325,97, 4383 73, 4401 95.

Allotropy of Iron. When a bar of pure iron is allowed to cool from its melting-point to 0° C., its time-temperature cooling curve exhibits three breaks, or arrests, designated by the symbols Δr_0 , Δr_0 , and Δr_2 respectively. The carrests are due to evolution of a small amount of heat consequent upon some internal alteration in the metal, whereby the rate of cooling is retarded. Indeed, the evolution of heat at the $\bar{\Lambda}r_3$ point is sufficient to raise the temperature of the iron by a very appreciable amount. The phenomenon is termed reculescence. Similarly, on reheating the metal, three arrests, due to heat absorption, are

Ross, Physical Review, 1911, 33, 549.
 See also Kundt, Wied Annalen, 1888, 34, 469, from Sitzangsher. K. Akad. Il iss. Berlin, 1888, p. 255.
 Exner and Haschek, Die Spekteen der Elemente bei normalem Deuck (Lupzig and

Wicn, 1911).

³ For further researches on the are and spark spectra of iron see Amslie and Fuller, Trans Roy. Soc Canada, 1918, 12, (3), 65, Hoeltzenbein, Zeitsch, wiss Photochem., 1917, 16, 225; Lang, thid , 1916, 15, 223, dameki, thid., 1914, 13, 173; Viefhaus, ibid., pp. 209, 225; kan2, thol., 1916, 15, 223. dameki, thol., 1914, 13, 173; Viethaus, ibid., pp. 209, 245; Burms, thol., 235, also 1913, 12, 207; Goos, thol., 1913, 12, 276; 1912, 13, 1, 306; Eversheim, Ann. Physik, 1914, (1), 36, 197; 1909, (4), 36, 815; Burssq, and Fabry, Ann. Physik, 1912, (4), 38, 245; Cample rend, 1908, 146, 751; 1906, 143, 165; Kayser, Zeitsch, viss. Photochem., 1911, 9, 173; Hartmann, Physikal. Zeitsch, 1909, 15, 121; Euger, Ber, deat physikal. Gess., 1906, 11, 369; Zeitsch viss. Photochem., 1909, 7, 329; Pollok and Leonard, **Eci. Proc. Roy. Dublin Soc., 1907, (2), 11, 217; Keller, Chem. Ceptr., 1906, 11, 1231; from Zeitsch, wiss. Photochem., 1906, 4, 209; Lockypr and Baxandall, Proc. Roy. Soc., 1904, 74, 255; Adency, Trans. Roy. Dublin Soc., 1901, (2), 7, 331; Croy, Phil. Mag., 1901, (5), 50, 497; Lockyer, Proc. Roy. Soc., 1937, 60, 476; 1893, 54, 359; Laveing and Dowar, ibid., 1881, 22, 225, 402. Onethe flame spectrum of iron see Hemsalech, Phil. Mag., 1918; 36, 209, 281; Compd. rend., 1916, 163, 757; Lockyer, and Goodson, Proc. Roy. Soc., 1016, A, 92, 260. Hemsalech and de Wattevile, Compt. and Goodson, Proc. Roy. Soc., 1016, A, 92, 260 hendalech and de Watteville, Compt. rend., 1910, 150, 329; 1908, 146, 748, 859, 962; Auerhach, Zeitsch. wiss Photochem., rend, 1910, 150, 329; 1908, 146, 748, 859, 962; Auerhaeh, Zeitsch. wiss Photochem., 1909, 7, 41; Abstr. Chem. Soc., 1909, ji. 270; de Wattevike, Phil. Trans., 1904, A; 204, 339; Perry, Chin. News. 1884, 49, 241; Lockyer, Compl. rend., 1881, 92, 904. The infra-red spectrum of iron nas been studied by Randall and Barker, Astrophys. J., 1916, 49, 42; Lehmann, Chim. Zentr., 1901, 1., 81. The racaum time spectrum of iron: Pollok, Sci. Proc. Roy. Dublin Soc., 1912, 13, 253. The farnace spectrum of iron: King, Ann. Physik, 1905, (4), 416, 360. The spectrum of iron developed by exploiting gases: Liveing and Dewar, Phil. Mag., 1884, (5), 18, 161. On the magnetic resolution of the iron spectrum, see Gratidyk, Arch. Nerland, 1912, (3A), 2, 192; Luttig, Hartmann, and Peterke, Ann. Physik. 1912, (4), 28, 43.

see crattays, Arca. Acerand, 1912, (3A), 2, 192; Luttig, Hartmann, and Peterke, Ann. Physik, 1912, (4), 38, 43.

If the ison contains carbon—preferably about 0.25 per cent,....a fourth acrest is observed, designated as Ar, on the cooling curve, and Ar, on the reheating curve. Ar, occurs at approximately 690° C., and is generally recognized as due to a cleange in the condition of the carbon which, at higher temperatures, is held in solid solution, but at the Ar, point begins to separate out in combination with some iron as triferrocarbide or computitions in 1951. comentitie (see p. 195).

Symbols introduced by Osmond: A=arrét, and r=refroidissement.

Barrett, Phil. Trans., 1873, (4), 46, 472.

observed at temperatures denoted by Ac_2 , Ac_3 , and Ac_4 . The points occur at approximately the following temperatures:-

Ac3 910° C. • Ac₂ 770° C. 1404° C. Ar. 760° C. Ar₃ 890° C. Ar. 1401° C.

The point now known as Ar_3 was the first to be discovered, it being observed that, during the cooling of a piece of iron from a high temperature, on reaching "a very dull heat, a sudden accession of temperature occurred, so that it glowed once more with a bright heat."

It will be observed that the Ac points are slightly higher than the corresponding Ar points, but are indicative of the same phenomena. The divergence is explained by assuming that a certain amount of inertia or resistance to change exists, known as lag, which tends to lower the temperature of arrest during cooling, and probably to raise it slightly

during heating.

When determinations are made of the variation of other physical properties of iron, with rise or fall of temperature, discontinuities or abrupt changes are usually observed at temperatures approximating to the various A points. The first of these to be observed was the sudden clougation manifested by iron wire, at a temperature not stated, when allowed to cool from red heat to about 15° C.3 This populiarity, announced by Gore in 1869, was confirmed by Barrett, who also showed that during the heating of the wire an interruption of the expansion of the metal occurred at approximately the same temperature. The elongation of the metal on cooling was found to occur simultaneously with the recalescent point now known as the Ar_3 point.

 The electric resistance of pure iron increases from 0° C, to a maximum at 757° C., corresponding to the Λ_2 point, and then falls to a minimum at 891° C.—the Λ_3 point. On cooling the reverse changes occur at practically the same temperatures.4 The presence of hydrogen under atmospheric pressure does not materially affect the resistance of the

metal up to 920° C.5

The thermo-electric potential differences between platinum and iron at various temperature reach a maximum at 850° C_{\bullet}^{-6} —a temperature

closely approximating to the Λ_3 point.

The magnetic susceptibility of iron rapidly increases at 1365° C., when the metal is ruised to this temperature from a lower one, and the reverse change takes place at 1310° C. on cooling from a higher temperature. These points evidently correspond to the Λc_4 and $\tilde{\Lambda} r_4$ points respectively.

The foregoing results are usually interpreted as indicating that iron is capable of existing in four allotropic modifications, designated respectively as α , β , γ , and δ ferrite, the points A_2 , A_3 , and A_4 representing their transition temperatures (that is, the temperatures at which the

1 c=chauffage

³ Barrett, Phil. Trans., 1873, (4), 46, 472, ³ Gore, Proc. Roy. Soc., 1869, 17, 280.

Gore, Proc. Roy. Soc., 1809, 17, 280.

Burgess and Kellberg, J. Washington Acad. Sci., 1914, 4, 436. See also Honda and Ogura, Science Reports Univ. Sendai, 1914, 43, 113; Le Chatelier, Compt. rend., 1890, 110, 283. The resistance of iron at low temperatures has been determined by Schimank, Ann. Physik, 1914, (4), 45, 706.

Sieverts, Interpata Zeitsch. Mejallographie, 1912, 3, 36. See also Harding and D. P. Smith, J. Amer. Chem. Soc., 1918, 40, 1508.

Laschtschenke, Bykoff, and Efremoff, J. Russ. Phys. Chem. Soc., 1910, 48, 279. See also Bronderskin Compt. erad. 1913, 156, 699.

also Broniewskin Compt. rend., 1913; 156, 699.

arrests, on cooling or reheating, would be observed were it not for the lagging). Thus a ferrite is the ordinary variety of pure iron, stable below A_2 , at which point both b_1 and β ferrite are in equilibrium. Between A_2 and A_3 the β ferrite constitutes the realer phase; between A_3 and $A_4 \gamma$ ferrite is stable, whilst above A_4 δ ferrite exists. This may be represented diagrammatically as follows:—1

Many metallurgists, however, incline to the view that β ferrite is really a solid solution of γ in a ferrite ²; in other words, the assumption is made that when iron cools below A_a the conversion of γ ferrite into a ferrite is not quite complete, a few y molecules remaining dissolved in the a until the A2 point is reached, at which point the transformation

is completed, a freely alone remaining.³ Whether this view be accepted or not, it is convenient to retain the name β ferrite to indicate that particular phase of the metal between

the A_2 and A_3 points.

 α , β , and γ ferrite crystallise in the cubic system, 4 but present well-marked specific characters indicative of varying internal structures. It has been suggested 5 that δ ferrite is monatomic iron, Fe; γ ferrite is diatomic, Fe₂; and β ferrite is triatomic, Fe₃. At present, however, very little is known of the structure of the iron molecule.

Carbon readily dissolves in y ferrite, is soluble to a slight extent in

 β ferrite, but is practically insoluble in α ferrite.

For a more detailed discussion of this subject and its bearing upon

the neetallargy of iron and steel, see this volume, Part III.

Occlusion of Gases.-- Iron readily absorbs or "occludes" gases,6 and may contain from ten to twenty times its own volume of gas. Meteoric iron usually contains hydrogen, nitrogen, helium, and onides of earbon. The gases are evolved on heating the metal in vacuo, the different gases being characterised by a definite temperature of evolu-tion. The gases most usually occluded by terrestrial iron are the oxides of carbon, nitrogen, and hydrogen, and sometimes the last traces of them are held very tenaciously by the metal, a third heating in

The mean temperatures given for the A₂, A₃ and R₄ points are those of Rue and his co-workers, Ferrum, 1914, 11, 257; 1915, 13, 1.
 Benedicks, J. Iron Steel Inst., 1912, 11, 242; 1914, 1, 407; Carpenter, ibid., 4013, 1, 315. Le Chatefier (Rev. Metallographic, 1904, 1, 213) appears to have been the first to suggest that the A₃ point is not connected with allotsopic change.
 See Carpenter, J. Iron Steel Inst., 1973, 3, 315, and the interesting discussion, pp. 327-320.

pp. 327-360.
Osmond and Cartaud, Compl. rend., 1906, 142, 1530; 1906 143, 44, Ann. Mines,

1900, (9), 18, 113.
Weiss, Trans. Faraday Soc., 1912, 8, 153. Contrast Honda and Takagi, J. Iron Steel Inst., 1915, JI., 181.

Steel Inst., 1916, 41., 181,
See Neumann and Streintz, Monglah., 1892, 12, 656. See also Deville and Troont,
Compt. rend., 1868, 66, 83; 1863, 57, 894, 695; Cailletet, ibid., 1805, 60, 344; 1864, 58,
327, 1057; Deville, ibid., 1864, 59, 102; 1864, 58, 328; Troont and Hautefeuille, ibid.,
1875, 80, 788; 1873, 76, 562; Graham, Ber., 1879, 12, 93; Compt. rend., 1867, 64, 1067;
Baxter, Anar. Chem. J., 1899, 22, 362; Heyn, Stahl and Kisen, 1900, 20, 837; Kichards
and Behr. Zeitsch. physikal. Chem., 1907, 58, 301. The absorption of hydrogen by thin
films of iron on glass has been studied by Heald, Physikal. Zeitsch., 1907, 8, 659.

Belloc, Compt. rend., 1907, 145, 1280.

vacuo to 1100° C. still yielding some gas. 1 Müller 2 showed that the gases occluded in iron are, for the most part, mechanically held in therpores of the metal, for they are liberated on boring, only a very little more gas being obtained when the bodings are heated to redness in vacuo. Helium is absorbed by iron, but less readily than hydrogens? Iron wire absorbs increasing quantities of hydrogen when heated in an *atmosphere of that gas from 400° C. upwards, but on cooling the whole of the gas is evolved. The solubility is independent of the superficial area of the metal, so that the phenomenon is an example of true solution and not of adsorption, which is purely a superficial effect. At constant temperature the solubility of the gas is directly proportional to the square root of the pressure " in both the solid and the molten metal. At constant pressure the solubility of hydrogen increases with the temperature. The curve connecting the solubility with the temperature does not indicate any change in the neighbourhood of the A2 point, but a rapid increase in solubility manifests itself in the neighbourhood of the A₃ point—that is, between 850° and 900° C—When the molten metal solidifies in an atmosphere of hydrogen, it exhibits the phenomenon of "spitting," The power to occlude gases is closely connected with the amorphous cement layers between the ferrite crystals (see p. 54).

Absorption of Nascent Hydrogen - Iron readily absorbs nascent When saturated with this gas, iron is characterised by unusual brittleness (see p. 54), but, on prolonged exposure to air, or more rapidly on heating, the hydrogen is evolved and the metal regains

its usual physical properties.8

A ready method of studying these changes consists in immersing iron wires in very dilute sulphuric acid. Under these conditions the metal will absorb some twenty times its volume of hydrogen. The brittleness appears to be due to the adsorption of the gas by the thin intercrystalline eament joining the ferrite crystals together (see p. 51), the ecment thus increasing in volume to such a degree as to force the crystals apart somewhat, thus reducing the intercrystalline collesion.9

The property of absorbing nascent hydrogen is shared by steel and east iron, but the ourer forms of the metal are more readily affected. Cast iron was found by Ledebin 10 to require a very prolonged exposure to a relatively concentrated acid to produce a well-defined effect, possibly on account of its high silicon content. The general results Obtained by Ledebur are given in the table on p. 15. Iron and steel wires were used, ranging in diameter from 0 065 to 0 140 inch. It will be observed that the hydrogenised wires possessed substantially the same tenacity, but their elongation decreased, whilst their brittleness showed a substantial increase. Exposure to air at the ordinary temperature gradually restored the wires to their normal state, -- a change that was rapidly brought about by ignition to cherry-red heat in an inert atmosphere.

```
<sup>2</sup> Müller, Ber., 1879, 12, 83; 1881, 14, 6.

    Tilden, Proc. Roy. Soc., 1896, 59, 218.

**Tilden, Pryc. Roy. Soc., 4896, 59, 218.

Steverts, Zeitsch. physikal. Chem., 1907, 60, $29.

Steverts, ibid., 1911, 77, 591.

Sieverts, loc. cil.; Juristh, Stahl und Eisen, 1914, 34, 252.

See Thoma, Zeitsch. physikale Chem., 1889, 3, 69.

W. H. Johnsch. Proc. Roy. Soc., 1875, 23, 168; Mem. Manchester Lil. Phil. Soc., 1872-3, 12, 74; 1873-4, 13, 100; Reynolds, ibid., 1873-4, 13, 93.

Andrew, Trais. Faraday Soc., 1919, 14, 232.

Ledebur, Stahl und Eisen, 1887, 7, 681.
```

¹ Boudouard, Compt. rend., 1907, 145, 1283.

Series.	Treatment.	Tenacrt • per sq	Fenacity in Tonsper sq. mch.	Elongation. Per cent.	Per cent.	Number of times the metal co	mes the metal c be bent.
		Normal.	Hydrogemsed	Normal.	Hydrogenised.	Normal.	Hydrogenia
H	Uncleaned wires immersed 24 hours in 1 per cent, sulphuric	£3.‡¢	21.66	3.5	Φ.	10.2	0.8
11.	acid and examined after 3 days. Cleaned wires immersed 23 licins in 2.5 per cent. supplure acid	60-19	26.00		7: 61	. T.T.	lo s
III.	and examined immediately. Wires connected with a block of zine and immersed in 2.5 per	52.76	52.19	• 0.	2.5	10.0	6.8
IV.	Examined inmediately. Similar to Series III. Wires examined 4 don't have	. 51.11	51.17	3.0	•° 2.9	10.1	7.5
*	Similar to Series III. Wires heated to cherry red for 15 minutes in an inert atmosphere	27.24	28.51	F7.9	16.9	16.2	14.6

Permeability to Gases. - Closely connected with the power to occlude gases is the property of transfusion, by virtue of which gases are able to pass through iron. In 1863 Cailletet ¹ showed that nascent hydrogen could pass through an iron vessel immerfed in sulphuric acid at the ordinary temperature, and this has been confirmed by numerous later . investigators.2

This diffusion of nascent hydrogen is not inhibited even by a pressure of 14 atmospheres. Molecular hydrogen only passes through iron at a measurable velocity when the temperature is raised. Below 325° C. the velocity is mappreciable, at 350° C. it becomes perceptible, and at

850° C, the velocity is some forty times as great.3

Iron is softened by prolonged exposure at 500° to 1000° C. to the transfusion of hydrogen, for the gas reduces and removes the small quantities of non-metallic impurities usually existing in the metal. Thus, for example, sulphur, phosphorus, and carbon are reduced and escape as volatile hydrides, the metal being purified to a corresponding extent.4

The optimum temperature-range for this purpose lies between 950° and 1000° C., hydrogen containing small quantities of water vapour proving most efficient. The time of decarburisation is necessarily somewhat lengthy, and averages not less than some 4 or 5 days. The following results 5 may be regarded as typical:—

Time of	Carbon	. Per cent.	Sutphur.	Per cent.
Decarburisation Days.	Before.	After.	Before.	After.
4 5 4 5 5 5 5	0.094 0.182 0.326 0.683	0.076 0.015 0.027 0.026 0.035	0·025 0·030 0·026 0·016•	0·017 0·017 0·018 0·006 0·008
12	1.67	0.035	0.042	0.008

No doubt if the decarburisation process were very greatly prolonged, the earbon and sulphur would be reduced to infinitesimal quantities. Analogous reactions take place between hydrogen and molten iron.⁶

Chemical Properties of Pure Compact Iron.—When exposed to dry air at ordinary temperatures, iron retains its silver-white appearance. If the air, however, is moist, and the temperature fluctuating so that liquid water collects on the surface of the metal, oxidation or rusting occurs (see Chap. IV.).

¹ Cailletet, Compt. rend., 1863, 66, 84

^{**}See Reynolds, Mem. Manchester Lit. Phil. Soc., 1873-4, 13, 93; Winkelmann, Ann. Physik, 1905, (4), 17, 590; Charpy and Bonnerot, loc. cit.

**Charpy and Bonnerot, loc. cit.

**Charpy and Bonnerot, Compt. rend., 1913, 156, 394.

**Campbells, Tron Steel Inst., 1919, II., 407.

**Schwife, Machael France, 1819, 11., 407.

Schmitz, Stahlund Eisen, 1919, 39, 373, 406.

When heated in air or oxygen a piece of polished iron undergoes no apparent change below a temperature of about 150° C. Further heating results in tarnishing. As this is niercly slight superficial oxidation, the temperature at which it becomes distinctly visible depends upon the duration of the experiment. Thus, for example, prolonged heating at 170° C. may result in the production of a pale straw colour, although for short periods of time a temperature of 220° C. is normally required to produce the same effect. Given reasonably uniform conditions, however, the extent of the oxidation, which may be judged by the characteristic hues imparted to the iron, is a fairly accurate indication of the temperature. Workmen avail themselves of this with remarkable skill in tempering steels, the data usually accepted 2 being as follows:--

Colour.	Temperature.	Colour.	Temperature, °C.
Pale yellow	220 230 243 265 265	Purple Bright blue . Full blue . Dark blue .	277 288 293 316

These tempering colours are obtained even in the presence of such dry air as that obtained by continued exposure to phosphorus pentoxide,3 clearly proving that the reaction is one of direct oxidation of the metal, and therefore entirely distinct from ordinary rusting which involves a preliminary solution of the metal (see p. 67). The oxide produced is usually believed to have the composition represented by the formula Fe₃O₄. According to Mosander. this is correct in so far as the extreme outer layers of oxide are concerned, those occurring nearer the metal itself having some such formula as Fe₂O₃.6FeO₂ or Fe₃O₄.5FeO. This does not necessarily imply the existence of a definite compound, however; it is more reasonable to assume that ferrous oxide is first formed, and this is relatively slowly converted into ferroso-ferric oxide on • account of the difficulty experienced by the oxygen in penetrating the outer layers. Hence the above substance is really a mixture of Fe O4 and FcO.

When iron wire is strongly heated in an atmosphere of oxygen it burns with a brilliant flame. A pleasing lecture experiment consists in holding a bunch of fine iron wire in the upper part of a Buasen flame and allowing a jet of oxygen from a gas cylinder to impinge upon the

A modification of this experiment consists in placing 5 a small piece of glowing wood charcoal on a heap-of purified iron filings and a stream

¹ T. Turnef, Proc. Birm. Phil. Soc. 1889, vi., part ii.; Guillet and Portovin, Revue Métallurgie: Mémoires, vi. p. 102; Loowenherz, Zeitsch. Instrumentenkunde, 9, 316. Roberts showed that these colours are due to the formation of oxide, as they are not produced by heating iron in vacuo (Trans. Inst. Mech. Eng. 1881, p. 710).

Howe, The Metallurgy of Steel, 2nd ed., 1891, 1., 23.
 Priene, J. Iron Steel Inst., 1909, II., 172.
 Mosander, Pogs. Annalg., 1826, 6, 35. Küspert, Chem. Zenfr., 1906, IL., 87; from Zeitsch. phys.-chem. Unterr., 19, 186.

of oxygen directed upon it. Vigorous combustion ensues, the whole

fusing to a white-hot mass of ferroso-ferric oxide, Fe₃O₄.

According to Charpy, when iron is heated in contact with carbon • (graphite) it does not become carburised even at 950° C. unless at least traces of oxygen or an oxide of carbon are present, hut this is disputed.

Iron absorbs silicon, when heated with that element, at tempera-

tures considerably below 950° C3

When heated in steam electrolytic iron undergoes no change until about 330° C., when tamishing begins to take place. At 400° C. a small but measurable quantity of hydrogen is formed; and the velocity of the reaction increases rapidly with further rise of temperature. The reaction appears to take place in three stages, involving §

1. Dissociation of the steam,

2. Formation of ferrous oxide,

8. Oxidation to ferroso-ferric oxide.

$$3\text{FeO} \downarrow O_{+} = \text{Fe}_3 \Theta_4$$
.

For ordinary iron shavings, the lowest temperature at which hydrogen is evolved is about 300° C., and the optimum yield is obtained at 800° C.5

If the reaction is allowed to take place in an enclosed space, it does not proceed to completion. Equilibrium is set up, and the reaction obeys the law of Mass Action.6 The initial and final stages of the equilibrium may be represented as foilows: -

$$3 \text{Fe} + 4 \Pi_2 O_5 = \text{Fe}_3 O_4 + 4 \Pi_2.$$

Designating the pressure of water vapour as p_1 when equilibrium has been reached, and the hydrogen pressure as p_2 . Prenner obtained the • following mean values for the ratio p_1/p_2 :

When magnetic oxide of iron is heated in a cutrent of hydrogen gas, one of the gaseous phases, namely steam, is swept away, with the

See Giolitti and Astorri, Gazzetta, 1910, 40, i. 1; Giolitti and Carnevali, Atti R.

Accod. Sci. Torino, 1910, 45, 337.
Lobeau, Bull. Soc. chim. 1902, (3), 27, 44.
Friend, J. West Scotland from teel Inst., 1910, 17, 66; J. Iron Steel Inst., 1909, IL, 172.
Lettermann, Chem. Zentr., 1906, I., 952.

¹ Charpy and Bonnerot, Compt. rend., Poll, 153, 671; 1910, 150, 173; Guillet and Griffiths, ibid., 1909, 149, 125.

This was first proved by Deville (Annalen, 1871, 157, 71; Compt. rend., 1870, 70, 1105, 1201; 1870, 71, 30) and Chaudron (Compt. rend., 1914, 159, 237), and subsequently confirmed by Preuner (Zeitsch. physikal. Chem., 1904, 47, 385).

result that the oxide is readily reduced to the metal. The same is true for the other oxides of iron, and the reduction has been observed to commence at relatively law temperatures, namely at about 305°C, with magnetic oxide and 37°C, with ferrons oxide. Hilpert 2 finds that if the ferrous oxide has not previously been heated above 400°C, it can be reduced at 280° C. in hydrogen; but if previously heated to 1200° €, reduction is not apparent below 330° C. This shows that the • physical condition of the oxide has an important influence upon its dissociation pressure. 4 . •

• The exidation of iron with steam is used technically as a means of protecting the metal against corresion. This is the principle of the

Bower-Barff process.

With nitrons oxide at 200° C. ferrons oxide is produced.4 Nitrogen is absorbed by the heated metal to a slight extent, particularly when melted under a high pressure of the gas, yielding the nitride. The nitride is also produced by heating the metal to 800 %, in an atmosphere of ammonia, the physical properties of the metal undergoing considerable alteration.

When iron is heated in contact with earbon and its oxides, many interesting reactions occur. At 900° C. In a current of carbon dioxide iron yields ferrous oxide, whilst at 4200 C, magnetite is produced, which is both magnetic and crystalline. Ignition in carbon monoxide at

1000° C. vields ferrous oxide.

The reaction between carbon moneyide and iron at 650° C. involves the deposition of carbon in those cases where the gas is allowed to pass over the metal in a continuous stream. If, however, the gas and metal are allowed to remain in contact in a closed vessel at 450° C., no carbon is deposited; but a carbide, most probably cementite, Fe₃C, is formed, and an oxide. The iron may be dissolved in acid without leaving any earbonaceons residue. What the precise nature of the reactions may be is not certain.7 The products appear to be the result of many balanced reactions which may be represented by the following equations: - -

$$\begin{array}{lll} \bullet (L) & -3Fc + 2CO ? & Fc_3C + (\ref{10}_2, \\ (ii.) & -2CO = -C \P | CO_2, \\ (iii.) & Fc_3C \pm 1CO_2, & -3FcO \mp 5CO. \ \, \bullet \end{array}$$

The earbide content falls with increase of pressure of earbon dioxide, becoming nil with a partial pressure of 43 per cent, of carbon dioxide, the remaining gas being earbon monoxide. At 850 C., iron decomposes carbon monoxide, yielding triferro carbide (cementite) and carbon dioxide; thus

$$3Fe+2CO=Fe_3C_6+CO_2, \qquad \qquad$$

The iron carbide now decomposes more carbon monoxide, yielding the

Glaser, Zeitsch. anorg. Chem., 1903, 36, 1.
 Hilpert, Ber., 1909, 42, 4575.
 Somewhat analogous conclusions have been drawn from the behaviour of cupric oxide (Allmand, Trans. Chem. Soc., 1910, 97, 603)

Sabatier and Senderens, Compt. rend., 1892, 114, 1429.

^{**} Andrews, J. Iron Steel Inst., 1912, 11., 210; Rogstadius, J. prakt. Chem., 1862, 86, 307.

**Tissandier, Compt. rend., 1872, 74, 531.

**Carpenter and C. C. Smith, J. Iron Steel Inst., 1918, II., 139; Ealoke, Ber., 1913, 743.

VOL. IX. : 11.

dioxide and unstable higher carbides of iron, which latter dissociate

into free earhon and cementite.1

When carbon monoxide and hydrogen saturated with water vapour is passed over iron at 250° to 300° C., several interesting changes may take place. Formaldehyde may be detected in the distillate and a fatty substance, m.pt. 35° to 36° C., isolated by extraction with ether.²

These reactions recall the behaviour of nickel under analogous

conditions.3

Iron is readily corroded by moist chlorine at atmospheric temperatures, and when strongly heated in a current of the day gas yields ferric chloride, which volatilises and condenses on a cooler part of the apparatus in a heantifully crystalline form.

A small ball of steet wool, if sprinkled with antimony, will ignite in chlorine at the ordinary temperature. Tron is not attacked by an-

hydreus liquid chlorine.5

When heated in hydrogen chloride, iron yields ferrous chloride, free

hydrogen being evolved.6

Heated to dull reduces in bromine vapour, iron yields a yellow erystalline dibrounide, FeBr2, or the dark red ferrie saft, FeBr3, according to circumstances, excess of bromine vapour being essential to produce the latter compound.

Heated with excess of iodine, iron yields a grey mass of ferrous iodide; the same salt is formed when iron filings are triturated with

iodine (ste below).

When heated together, iron and sulphur readily unite to yield non-

magnetic ferrous sulphide.

Sulphur dioxide, when dry, has no action on iron, even at 100° C., but the metal is slightly attacked by the moist gas.7 Liquid sulphur dioxide has fikewise but fittle action under atmospheric pressure, but in refrigerators, where the temperature is liable to rise somewhat during compression of the gas, corrosion of the iron is appreciable.

When heated to 150° to 200° C. in scated tubes with thionyl chloride,

ferric chloride is obtained in accordance with the equation

$$2Fe+4SOCl_2=2FeCl_3+2SO_2+S_2Cl_2$$

If, however, the ractal is present in excess, ferrous sutphide and chloride result. Thus

$$3 \operatorname{Fe} + 2 \operatorname{SOCl}_2 - 2 \operatorname{FeCl}_2 + \operatorname{FeS} + \operatorname{SO}_2.$$

Nickel is not attacked under these conditions. When hented with sulpauryl chloride, SO₂Cl₂, enhydrous ferric chloride is obtained, large crystals being formed in favourable circumstances. Sulphuryl fluoride, SO₂F₂, is without action on iron, even at red heat.10

- 1 Hilpert and Dieckmann, Ber., 1915, 48, 1281. Compare Gautier and Clausmann, Compt. rend., 1910, 151, 16.
 - Gautier and Clausmann, ibid., p. 355.

 - Gee this volume, Part I., p. 93.
 Ohmann, Chem. Zentr., 1914, I., 331.
 - See this series, Vol. VIII. (1915), p. 63.
 See Isambert, Compt. rend., 1886, 102, 423.
 - * Lange, Zeitsch. angew. Chem., 1899, 12, 275, 303, 595; Harpf, ibid., p.c195.

 North and Hageman, J. Amer. Chem. Soc., 1912, 34, 890.

 North, Bulk Soc. chim., 1911, (4), 9, 646.

 - 20 Moissan and Lebeau, Compt. Fend., 1901, 132, 374.

Silicon tetrachloride vapour is decomposed by iron at high temperatures, yielding diferrosilicide and ferrous chloride.1

Nitric oxide is reduced by moist iron over mercury, yielding a mixture of nitrous oxide and nitrogen.2 The nitrous oxide is slowly reduced to

nitrogen.3

Iron precipitates copper, silver, antimony, lead, and tin from solutions of their salts. In the case of tin the deposit may be exceedingly small, as it forms a thin protecting layer on the surface of the iron. For this reason iron dissolves intich less rapidly in an acid if a tin salt is present. A pretty experiment consists in immersing a strip of iron in a tube containing a solution, the bottom half of which consists of a concentrated electrolyte in which sometin salt is dissolved, and the upper half a dilute solution of the electrolyte without any tin. The lower portion of the iron strip becomes covered with crystals of tin, whilst the apper postion is quite free, although if completely immersed in the lower portion no tin deposit would be visible.4

In the precipitation of silver from dilute solutions of silver nitrate, unworked iron is found to be more active than the worked or strained

metal.5

The precipitation of copper from solution by means of iron is used commercially as a wet method of extracting copper from pyrites.6 The kind of scrap iron used appears to influence very markedly the physical condition in which the copper is precipitated. The mud which collects when neutral copper sulphate solutions are reduced in this manner contains a basic ferric sulphate, Fe₂(OH)₄,SO₅, but addition of a little dilute sulphuric and prevents this, and anables a clean deposit of copper to be obtained.

Iron dissolves in ammonium persulphate solution, yielding ferrous

sulphate, a portion of which undergoes further oxidation.8.

A solution of bleaching powder rapidly attacks irou, with evolution. of oxygen. A concentrated solution of ferric chloride has little action on iron, but the metal readily dissolves in a dilute solution. 10

Iron has been recommended 11 as an electrode, together with carbon in a galvanic cell, the electrolyte being a concentrated solution of ferric chloride. The iron dissolves, yielding ferrous chloride,

$$2 \mathrm{FeCl}_3 + \mathrm{Fe} = 3 \mathrm{FeCl}_2,$$

which is converted into the ferric state again by passage of chlorine gas. The generated current, of course, passes in the direction from the carbon to the iron through the connecting wire. The cell may be

```
Vigouroux, Compt. rend., 1905, 141, 828.
```

See this series, Volume II.
Essner, Bull. Soc. chim., 1891, (3), 6, 147.

² Sabatier and Senderens, ibit, 1895, 120, 1158.

² Sabatier and Senderens, ibid., p. 1212.

⁴ Thiel and Keller, Zeitsch. anorg. Chem., 1910, 68, 220.

⁵ Senderens, Bull. Soc. chim., 1897, (3), 15, 691.

^{*} Turrentine, J. Physical Chem., 1907, 11, 623. See also Levi, Migliorini, and Ercolin Gazzetta, 1908) 38, i. 583.

White, J. Soc. Chem. Ind., 1903, 22, 132.

 ¹⁴ Spring, Rec. Trav. Chim., 1897, 16, 237.
 ¹ Panling, Zeitsch. Elektrochem., 1897, 3, 332.

varied by immersing the carbon in ferric chloride solution in a porous cell, surrounded by a solution of sodium chloride into which the iron

electrode is made to dip.1

Iron and iodine interact in the presence of water, evolving heat, ferrous iodide passing into solution. The reaction appears to take place in stages involving the formation of ferric iodide, which decomposes into ferric oxide and hydrogen iodide, the last-named attacking the free iron with the formation of ferrous iodide.2

The Action of Acids upon Iron. - As a general rule, when acids act upon iron hydrogen gas is evolved and the metal passes into solution in the form of a lerrous salt. Thus, for example, dilute sulphuric acid solution reacts as follows:---

$$Fe + H_2SO_4 = FeSO_1^c + H_2.$$

Probaged exposure of such solutions to the air results in the more or less complete conversion of the ferrous salt to the ferric condition, which may either remain in solution or be precipitated as a basic salt according to circumstances. After exposure to acid attack, the undissolved pieces of iron very frequently exhibit a peculiar brittleness, but revert to their original condition if kept for one or two days at ordinary temperatures, or in the course of a few hours if gently warmed. This phenomenon was first observed by Johnson ine 1873, and the following year was proved by Reynolds to be entirely due to the occlusion of hydrogen within the porce of the metal (see p. 54).

The pures forms of iron (wrought iron and steel) appear to be much more susceptible to this kind of reaction than east iron.3 If the attacking acid is readily reducible by hydrogen, many secondary reactions may take place. Thus with nitric acid, oxides of nitrogen and ammonia may be evolved; whilst with scleme acid a deposit of elementary sclenium is obtained (see below). When iron is exposed to the action of acids that are also powerful oxidisers -such as, for example, fairly concentrated scintions of nitrie and chromic acids, - it is frequently rendered inert or passive. Its surface may remain perfectly bright, but the metal does not show any appreciable solution in the acid, and if removed and immersed in ddinte solutions of such salts as copper and silver sulphates, no reaction takes place, although ordinary active iron would cause an immediate precipitation of the more electronegative metal.

Sulphuric neid, in all stages of dilution, attacks iron. Hydrogen is evolved in the case of the diluted acid, both in the cold and on warming. The concentrated acid yields hydrogen in the cold, but sulphur dioxide is the main gaseous product at 160° C.5 There is no hydrogen sulphide evolved.

Hydrochloric acid readily dissolves iron, hydrogen being evolved, ferrous chloride passing into solution. The cate of solution appears to be doubled for each rise of 10° C. in temperature for concentrations of acid ranging from 25 to 216 graps per litre. Increase in concentra-

Küster, Zeitsch. Elektrochem., 1897, 3, 383.
 Floury, J. Pharm., 1887, (5), 16, 529.

Lodebur, Steht lind Essen, 1837, 7, 681.

Keir, Phil. Trans., 1790, 80, 359; Wetzlar, Schweigger's J., 1827, 49, 470. For an account of passivity, see p. 55.

Berthelof, Am. Chim. Phys., 1898, (?), 14, 176; Adie, Proc. Chem. Sec., 1899, 15, 132.

tion of the acid likewise accelerates the rate of solution, the velocity being doubled for each increase of 30 grams of hydrogen chloride per litre. The presence of arssnious exide exerts a remarkably retarding effect upon the activity of the acid.¹

. The action of nitrie acid upon iron is both interesting and involved.2

When iron is dissolved in acid of density 1 40, both nitrogen peroxide and nitric oxide are obtained in proportions varying with the amount of solvent. It is believed that the nitric oxide is not a primary product of the reaction, but a secondary product formed by reduction of the peroxide.³

On reducing the density of the agid to 4:30, nitrons exide is formed in amount equivalent to 7 per cent, of the iron dissolved. With neid of density 1:25, the reaction is further complicated, nitrogen and ammonia being produced; the former gas reaches a maximum on the case of acid sol density 1:45, and then falling whilst the ammonia reaches a maximum with acid of density 1:05.4

In the case of the very dilute acid of density less than 1-034, solution is not accompanied by evolution of gas, but with the formation of ferrous nitrate and ammonium nitrate.² If acid of density ranging from 1-034 upwards to 1-115 be employed, the resulting solution consists of a mixture off ferrous nitrate and ferric ultrate, the proportion of the latter increasing with the density of the acid. With acid of greater density than 1-115, ferric nitrate is the mann product, and acid of density 1-33 is therefore recommended for the preparation of this salt.²

The pure, anhydrous acid, free from nitrous acid and dissolved oxides of nitrogen, is without action on pure qualities of iron 4 even at the boiling-point.

In nitric acid of density 1-45 iron remains bright and refuses to dissolve. When removed and immersed in solutions of copper supplies, no change takes place. In other words, the metal has been rendered "noble" or "passive."

Carbonic acid acts on iron, yielding ferrous carbonate or soluble ferrous hydrogen carbonate, and evolving hydrogen,

$$\mathbf{Fe} + \mathbf{CO_2} + \mathbf{H_2O} - \mathbf{FeCO_3} + \mathbf{H_2}$$
.

*This reaction proceeds slowly but acadily in the cold, and is accelerated by vigorous shaking and the employment of iron filings.

Scienic acid dissolves from with the production of terrons scienate, FeScO₁, and a deposit of scienium which collects on the surface of the undissolved metal, thereby greatly retarding the reaction. No hydrogen is evolved, and the scienium is presumably obtained by the action of nascent hydrogen upon the excess of scienic acid. Thus:—

$$6H + H_2SeO_4 - 4H_2O + Se.$$

¹ Conroy, J. Soc. Chem. Ind., 1901, 20, 316.

* Scheurer, Kestner, Ann. Chim. Phys., 1859, (3), 55, 330; Acworth and Armstrong, J. Chem. Soc., 1877, 32, 54. See also Montemartin. Gazzetta, 1892, 22, 250.

Freer and Higley Amer. Chem. J., 1899, 21, 377.
 Veley and Manley, Proc. Roy. Soc., 1897, 62, 223.

*Keir, Phil. Trans., 1790, 80, 359; Wetzlar, Schweigger's J., 1827, 49, 470. For an

account of passivity, see p. 55.
See Bruno, Bull. Soc. chim., 1907, (4), 1, 661; Petit, Compt. rend., 1896, 123, 1276; also this volume, p. 68.

The net result of the feaction may be represented by the equation

$$3F_{c}+4H_{2}S_{c}O_{4}=3F_{c}S_{c}O_{4}+S_{c}+4H_{2}O.$$

Chloric acid, both dilute and in concentrated solution, attacks iron. the metal dissolving without evolution of hydrogen, the chlorie aciti being reduced.1

Aqueous hypochlorous acid slowly attacks iron, both hydrogen and

ehlorine being evolved.2

The Action of Alkelies upon Iron.—Dilute 3 solutions of the hydroxides of the alkali and alkaline earth metals are capable of preserving iron for an indefinite period from corrosion, provided they are kept out of contact with earbon clioxide, etc. When exposed to the open air, the alkali is readily neutralised by absorption of carbon dioxide, and the iron begins to corrode. Concentrated solutions of caustic soda or potash exert a slight solvent action apon iron, but they inhibit corrosion even when continuously exposed to the air, because solutions of their earbonates at similar concentrations likewise inhibit corrosion, so that the absorption of earbon dioxide from the air is immaterial. By continued immersion in a saturated solution of sodium hydroxide at 100° C., wrought iron is rendered brittle owing to the absorption of hydrogen. If, however, the immersion is still further prolonged, the metal loses its brittleness. It has been suggested that the initial brittleness 4 is due to the more rapid absorption of hydrogen by the amorphous layers between the crystals of the metal than by the crystals themselves, whereby a certain amount of expansion occurs, forcing the crystals apart and weakening their cohesion. After prolonged immersion, however, the hydrogen has had time to diffuse into the crystals themselves, and thus to reduce the intercrystalline strain so that the brittleness disappears.

When iron is made the anode in a concentrated solution of caustic soda or potash, a low current density (about 0.001 ampere per sq. centimetre) being employed, the metal is oxidised to the alkali ferrate 5 and passes into solution. Sodium hydroxide acts more rapidly than potassium hydroxide, probably on account of the superior solubility

of sodium ferrate.

When electrolytic iron toll is immersed in concentrated solutions of sodium or potassium hydroxide for several weeks, and, after thorough cleaning, allowed to corrode in distilled water, the latter gradually becomes contaminated with traces of sodium or potassium salts, the presence of which can be detected by the spectroscope or by the usual Bunsen flame test.6 Similar results have been obtained with lithium hydroxide, barium hydroxide, and with ammonia. It appears probable that the alkali penetrates in minute quantities into the metal between the ferrite eristals, possibly in consequence of a certain amount of porosity in the intercrystalline ecment. This theory is supported by -the fact that iron which has been soaked in alkali invariably "pits

¹ Hendrixson, J. Amer. Chem. Soc., 1904, 26, 747.

^{*} White, J. Soc. Chem. Ind., 1903, 22, 132.

^{*} Of the order of 0.1 per cent.

J. H. Andrew Trans. Faraday Soc., 1919, 14, 232; 1914, 9, 316.
 Haber, Zeitsch. Elektrochem., 1901, 7, 215, 724; Pick. ibid., p. 713.
 Friend, Trans Chem. Soc., 1912, 101, 50.

^{*} Perkins, ilid., 1914, 105, 102.

badly when allowed to corrode; and pitting is usually associated with electro-chemical activity between the boundaries of the crystals.1

On boiling pure fron gently in concentrated sodium hydroxide solution, ferrous oxide passes into solution, and upon exposure to air oxidation to ferric oxide takes place.2

Fused caustic soda and potash, particularly under the influence of

pressure, attack iron readily.3

Between 550° and 660° C. fused caustic botash attacks iron appreciably, but the liberation of hydrogen or potassium or the formation of •water has not been demonstrated. What, therefore, the precise action is, remaius uncertain.4

In the case of fused caustic soda between 400° and 720° C. the evolution of hydrogen and the formation of water have both been observed, indicative of the production of a compound Fc(ONa), Since eaustic soda can be thoroughly dehydrated at 400° C, and undergoes no further loss on heating to 720" C., the formation of water en heating with iron cannot be due to simple decomposition according to the equation

 $2 NaOH = Na_2O + H_2O.$

At white heat, according to Deville, metallic sodium is obtained. When fixed with sodium peroxide, iron yields dark red tabular

erystals of the monohydrate, Fe₂O₃, II₂O₅. Density 3:8.7

Passivity of Iron. In 1790 Keir alrew attention to the fact that a piece of iron, when placed in contact with nitric acid of density 1:45, is rendered inactive or passive. It does not appear to dissolve in the acid "; when placed in a dilute solution of copper sulphate it does not effect the deposition of copper; and when immersed in ordinary water it exhibits remarkable resistance to corrosion. And this, in many ' cases, to quote the words of Keir "without the least diminution of metallic splendour or change of colour" (see p. 57).

Nitric acid is not the only medium which may be employed for the passivification of iron. Other acids such as chromic, 10 lodie, 11 arsenie, 12 . chloric, 12 hydronic ric, 13 etc., exert a similar action, as also do mixtures of two or more acids or acids and certain salts, such, for example, as sulphuric and nitrons acids, or a mixture of there with potassium iodate, etc. 11 Iron may also be rendered passive by immersion in aqueous solutions of many oxidising metallic salts such as silver

See Aitchison's theory of the mechanism of corrosion, p. 71.
 Haber, loc. cit.
 See Kestner, Bull. Soc. chim., 1897, 15, (3), 1250; Gröves, Proc. Chem. Soc., 1903, 158; Venator, Chem. Zeit., 1886, 10, 319, 380.
 Le Blane and Weyl, Ber., 1912, 45, 2300.
 Le Blane and Bergmann, Ber., 1909, 42, 4728.
 Leville, Ann. Chim. Phys. 1875, (3), 42, 5

Deville, Ann. Chim. Phys., 1855, (3),43, 5.
 Dudley, Amer. Chem. J., 1902, 28, 59.
 Keir, Phil. Trans., 1790, 86, 359.

Although originally thought to be insoluble in nitric acid, this is not actually the case (Faraday, Experimental Researches, series viii. §§ 947, 996; Bolck, Dissertation, Halle a/S., 1888).

Beetz, Pogg. Annolen, 1844, 62, 234: 1844, 63, 420; 1846, 67, 180, 286, 385.
 Phillips, Phil. Mag., 1848, (3), 33, 509.
 Boutmy and Chateau, "Cosmos," Revue des Sciences, 1801, 19, 117; Phillips, loc.

12 When stirred (Turrentine, J. Amer. Chem. Soc., 1911, 33, 803).

14 Schönbein, Pogg. Annaken, 1838, 41, 42; Daniell, Phil. Trans., 1836, 126, 114.

nitrate, 1 lead nitrate, potassium permanganate, soluble bichromates, etc. Hydrogen peroxide passivifies the metal, and a piece of cleaned electrolytic foil may be immersed in a warm, dilute solution of perhydrol without evincing any sign of corrosion, even although its surface is continuously swept with bubbles of oxygen due to the catalytic deconposition of the poroxide. Similarly iron may be rendered passive by making it the anode in an electrolyte containing water.2

Gases, also, may cause iron to assume the passive state. Compressed nitrie oxide is a case in point.3 The vapours of concentrated nitric acid have for many years been known to act similarly.4 .

Dry nitrogen peroxide induces a more intense passivity than nitrie acid when allowed to come into contact with iron- an observation which suggests an explanation for the fact that iron is only rendered passive by nitric acid which is either yellow or red, whilst passive iron is actually rendered active by immersion in colourless nitric acid solutions. Apparently only acids of such concentrations as are capable of vielding introgen peroxide in contact with the metal are able to exert a passivifying action. This is further supported by the fact that by passing nitrogen peroxide into those concentrations of nitric acid in which iron is normally active, the metal becomes passive,5

Testing for Passicity. According to Heathcote, iron may be regarded as passive when no chemical action can be detected by the unaided eye after immersing, shaking, and finally holding motionless a piece of the metal in vitrie acid of density 1-20, at the room temperature (15° to 17° C.). This is a preferable method to that of Schonbein, who employed nitrie acid of density 1-35 in a similar manner, because this latter concentration of acid is sufficient to render active iron passive,8 whereas acid of density 1:20 does not do so, at the room temperature.

It is important to note this temperature restriction, however, for whereas nitric acid of density 1-250 does not render iron passive at 0° C. yet if the temperature is raised to 10° C. or above, the metal is

readily passivitied 9 by it.

Dinstan 10 recommends as a convenient test for passivity the employment of a 0-5 per cent, solution of copper sulphate. This solution at once deposits a film of copper on active iron, whilst the passive metal will remain, ofttinges for hours, bright and apparently entirely un.

The action of distilled water on iron may also be used as a test for passivity. A ctive iron immersed in it usually shows visible sighs of

¹ Bergmann (Optiscula Chemica et Physica, 1779-88, 3, 140. See also de Benneville, J. Iron Sted Inst., 1897, M., 40. Seuderens (Ball. Soc. chim., 1896, 15, 691; 1897, 17, 279) had already observed, prior to the discovery by Keir of the passivity of iron, that this metal dots not precipitate silver from concentrated aqueous solutions of silver nitrate.

2 Daman Rev. 1821, v. 1922

³ Remann, Ber., 1881, 14, 1436

^{*} Varenne, Compt. rend., 1879, 89, 783; 1880, 90, 998.

<sup>Ronard, ibid. 1874, 79, 159.
Young and Hogg, J. Physical Chem., 1915, 19, 617.
Heathcote, J. Soc. Chem. Ind., 1907, 26, 896.</sup>

⁷ Schönbein, Pogg. Annalen, 1836, 37, 390, 590. Compare Noad, Phil. Mag., 1837, (3), 10, 276; 1838, (3), 11, 48.
 Faraday and Schönbein, Phis. Mag., 1836, 9, 53, 122.

^{*} Young and Hogg, loc. cit.

¹⁰ Dunstan, Trans. Chem. Soc., 1911, 99, 1835. 11 Dunstan, Joe. cit.

corrosion in from 8 to 10 minutes, whilst the passive metal may remain perfectly bright for an hour or more. When, in this latter case, corrosion begins, the action is very local for a considerable time.

Passivity is also readily detected electrically by the difference in potential between passive and active iron, the former having a lower potential. This is a particularly convenient method of detecting passivity caused by anodic polarisation.

Cause of Passicity. Several theories have been suggested to account for passivity, but no one theory suffices to explain every case. The probability is that several kinds of passivity exist any that not a few

of the different theories are correct in acrtain cases.

(1) The oxide theory, apparently the first to be suggested, postulates the formation of a thin layer of oxide upon the surface of the metal, thereby protecting the underlying portions from reacting. Such an action is not at all uncommon. Thus ordinary lead is well known to resist atmospheric corrosion by reason of the thin protective film of suboxide formed on its surface. Aluminum behaves similarly, and the difficulty of finding a suitable solder for the metal is connected with this oxide layer. The theory receives substantial support from the fact that most passivifying agents are oxidisers, and is in entire harmony with the fact that passivity is a surface phenomenon and can be removed by mechanical processes or by heating in a reducing atmosphere.

The action of 3 per cent, ozone in the cold is a sensitive method of detecting a film of oxide on a metallic surface, inasmuch as a visible deposit of oxide is immediately produced. Iron which has been passivified by immersion in nitric acid or anodically in dilute sulphuric acid instantly reacts with ozone, showing that its surface is coated with exide.3 Active iron, on the other hand, exhibits no such sensitiveness towards ozone. The nature of the oxide is uncertain. It has been suggested 4 that it is not likely to be higher than FeO, but may be

FcO.

Exception to this oxide theory, however, has been taken by Müller and Königsberger,5 on the ground that the reflecting power of iron, rendered passive anodically when immersed in alkalme solution, remains undimmed, whereas if a layer of oxide were formed an alteration would • be expected. But it is not necessary to postulate the formation of a thick layer of oxide. If of merely molecular dimensions, it would still preserve the underlying metal from attack, whilst a thickness comparable with that of the length of a light wave would be necessary to affect the reflecting power.

Manchou Ber., 1909, 42, 3942.
Bennett and Burnham, Trons. Amer. Electrochem. Soc., 1916, 29, 217.
See also Haber and Goldschmidt. Zeitsch. Elektrochem., 1906, 12, 49.
V. J. Müller and Konigsborger, Zeitsch. Elektrochem., 1907, 13, 659; 1909, 15, 742; Physikal. Zhitsch., 1904, 5, 415, 797; 1905, 6, 847, 849; 1906, 7, 766; Müller, Zeitsch. Elektrochem., 1905, 11, 823.
See Findlay, Ann. Reports Chem. Soc., 1907, 4, 28; also Krasha, Zeitsch. Elektrochem., 1909, 15, 490, 981, with the reply of Müller and Königsberger, ibid., p. 742.

See Flade, Zeitsch. physikal. Chem., 1941, 70, 543, etc.
 See Schönbern and Faraday. Phil. May., 1836, (3), 9, 53, 122 , 1837, (3), 10, 175;
 Pogg. Annalen, P34, 39, 342; Schönbern, ibid., 1836, 37, 393; 1836, 38, 444; 1838, 44, 42; 1838, 43, 1: 1843, 59, 149, 421; Boetz, loc. ett.; von Martens, Pogg. Annalen, 1844, 61, 121; Wetzlar, Schwerger's J., 1827, 49, 470; 1827, 50, 88, 129; Schönbein, Das Verhalten des Einens zum Sauerstoff (Bascl, 1837).

On the other hand, when highly polished iron rods are immersed in concentrated nitric acid a visible dulling usually ensues. This is exactly what might be anticipated in accordance with the oxide theory. inasmuch as such a powerful oxidiser might easily induce the formation

of a sufficient thickness of oxide to be visible.

(2) Gaseous Fum Theory .- It is well known that gases frequently adhere with extraordinary tenacity in the form of thin films to solid surfaces, and it has been suggested that some such gaseous film is the cause of the passivity assumed by iron in certain circumstances. The film need not ascessarily be one of oxygen, although in perhaps the majority of cases this may be the predominant gas.2 Nitrio oxide 3 or nitrogen 4 gas may likewise induce passivity in this manner.

It may be presumed that whilst vascous films of widely differing gases may in the main behave alike, they will yet show minor differences or coentricities in their behaviour. An explanation is thus forthcoming for the differences in the behaviour of irons passivified in various ways. Thus, for example, iron that has been rendered passive by anodic polarisation in sulphinic acid differs slightly from that passivified by immersion in concentrated nitric acid. In the former case it is therefore presumed that the metal is covered with a film of gascous oxygen, but in the latter with a film of some oxide of nitrogen.5

This, like the oxide theory, has much to trecommend it. explanation is afforded for the superficial nature of passivity, and the theory also offers an explanation for the passivity induced in certain eases where oxygen cannot be the cause.

A close connection has been found to exist between passivity and photo-electric behaviour. Thus dry, active iron is found to exhibit a considerably higher photo-electric activity than the metal readered passive by immersion in concentrated nitric acid or by anodic polarisation in dilite sulphuric acid; and this is regarded as supporting the gaseous film theory.6

(3) Physical Theories. Several theories have been put forward according to which the phenomena of passivity are due to a physical change in the superficial laters of the iron. What the precise nature

of that change may be remains a matter of controversy.

According to some authorities," passivity is the normal state of pure iron, the metal only being rendered active by the presence of some catalyst, such as hydrogen or hydrogen ions, which increases its solution pressure. This view receives powerful support from the experiments of Lambert and Thonison,8 who prepared specimens of exceptionally

¹ Heathcote, J. Soc. Chem. Ind., 1947, 26, 899.

Fredenhagen, loc. cit. H. S. Allen, Proc. Roy. Soc., 1913, A, 88, 70.

^{**} See Oshan, Pogg. Annglen, 1855, 96, 498; de Regnon, Compt. rend., 1874, 79, 299; Mulhmann and Frauenberger, Zeitgh. Ekktrochem, 1904, 10, 929.

**Mousson, Pogg. Annalen, 1836, 39, 330; Varenna, **Compt. rend., 1879, 89, 783; 1880, 90, 998; Ann. Chim. Phys., 1880, (3), 19, 251; 1880, 20, 240; Fredenhagen, Zeitsch. physikal, Chem., 1903, 43, 1; 1908, 63, 1; Zeitsch. Elektrochems, 1905, 11, 857; 1908, 6, 707 1906, fz, 797.

⁴ St Edmé, Compt. rend., 1861, 52, 930; 1888, 106, 1079.

Foorster, Abhandlungen der Bunsen Gesellschaft, 1909, No. 2; Grave, Zeitsch. physikal. hem., 1911, 77, 513. See also Ader, ibid., 1912, 80, 385; and Le Blanc, Boltzmann estechnift, 1904, p. 183.

Lambert and Thomson, Trans. Chem. Soc., 1910, 97, 2226.

pure iron by methods already indicated (see p. 34) and found them to be

remarkably inert or passive.

Other investigators 1 have suggested allotropy as a possible cause, a layer of passive, allotropic metal being formed in contact with the passivifying reagent. This, however, is simply substituting another name for passivity masmuch as no explanation of this type of allotropy is forthcoming. If this allotropy is due to a rearrangement of the atoms in consequence of change of valency, this theory is equivalent to that of Krüger and Finkelstein,2 who regard ordinary active iron as the •ferrous or divalent variety, the passive metal being ferric or trivalent. Since valency is an electrical phenomenon, the valency hypothesis is equivalent to assuming an electrical difference between the active and passive metal. This is the basis of Muller's theory.3

An attractive hypothesis is that of Smits, who inclines to the view that iron contains, in addition to uncharged atoms and free electrons, two kinds of ions, α and β , which differ in their feactivity, and which are in equilibrium with one another. Thus:-

The production of the passive state is attributed to a disturbance of this equilibrium. During anodic polarisation of iron the more reactive or a ions dissolve with greater rapidity than equilibrium can be established, with the result that an excess of "noble," inert, or passive β ions collects on the surface of the metal, tending to render M passive. This explains why passivity is purely a surface phenomenon. Hydrogen ions, like halogens, are assumed to catalytically accelerate the conversion of a into β ions until equilibrium is re-established.

When iron is immersed in a passivifying reagent such as nitric acid, not only do the a ions dissolve with great rapidity; but the acid, being a powerful oxidiser, quickly removes any hydrogen ions from the surface of the metal and thus reduces the tendency for equilibrium to be re-established, and the metal again becomes thoroughly passive.

If, now, the current density is increased to such an extent that oxygen begins to be evolved at the anode, all the hydrogen ions, normally present in ordinary iron, will be completely expelled from the surface of the metal, the tendency for reversion to equilibrium of the α and β ions being reduced to a minimum. In other words, the metal is rendered thoroughly passive.

If, on the other hand, iron is immersed in a solution of ferrous chloride, although the α ions rapidly dissolve passivity is not induced because the chlorine and halogen ions rapidly readjnst the equilibrium, and the β ions never accumulate in sufficient excess on the metallic surface to produce passivity.

Iron which has been passivified anodically can be rendered active

See especially Keir, loc. cit.; Senderens, Bull. Soc. chim., 1896, (3), 15, 691; 1897, (3), 17, 279; de Bengeville, J. Iron Steel Inst., 1807, 11, 40; Hittorf, Zeitsch. physikal. Chem., 1898, 25, 729; 1899, 30, 481; 1900, 34, 385; Zeitsch. Elektrochem., 1898, 4, 482; 1899, 6, 6; 1900, 7, 168.
 Finkelstein, Zeitsch. physikal. Chem., 1901, 39, 91.
 W. J. Müller, Zeitsch. physikal. Chem., 1904, 48, 577; Zeitsch. Elektrochem., 1905, 11, 765, 823 o. Fredenhagen, Zeitsch. physikal. Chem., 1908, 63, 4.
 Smits, Proc. K. Akad. Wetensch. Amsterdam, 1913, 16, 191. See also Smits and Kobry de Bruyn, ibid., 1917, 19, 880; Smits, J. Soc. Chem. Ind., 1916, 35, 928; Smits and Aten, Zeitsch, physikal. Chem., 1915, 90, 723; De Ingenieur, 1915, p. 337.

by the introduction of halogen ions; by the electrolysis of a mixed solution of ferrous sulphate and chloride passivity can be made a periodic phenomenon.1.

From the foregoing it is evident that widely divergent views are held as to the cause of passivity. For further particulars the reader is referred to the subjoined references.2

An instructive series of papers on passivity was read at the general discussion on the subject held by the Faraday Society, November 12, 1913. The papers are printed in the Transactions of the Society for 1914, vol. ix.

Properties of Iron Powder.- Iron powder, as obtained by the reduction of ferrous or ferric salts, is considerably more chemically reactive than the compact metal. Thus, the powder obtained by reduction of iron oxide, carbonate or oxalate in a current of hydrogen at 440° C, is pyrophoric, becoming incandescent upon exposure to moist air. It decomposes acctylene with incandescence, depositing free earbon and yielding small quantities of benzene.3 Reduced iron absorbs some 2 per cent, of nitrogen at atmospheric temperature, the solubility of the gas being proportional to the square root of the pressure.\(^1\) According to Sieverts, Kahlbanni's reduced iron absorbs nitrogen at 900° C., and this is quantitatively released on cooling.5

When maintained at 310° to 320° C, for about forty-eight hours, pyrophoric iron is transformed into the non-pyrophoric form, the change being accompanied by an increase in volume. Probably the pyrophoric form consists of a mixture of molecules of different kinds which are

not in a state of equilibrium.

Nitrogen peroxide is decomposed by reduced iron at the ordinary

1 Smits and Lobry de Broyn, Proc. K. Akad. Wetensch. Amsterdam, 1919, 21, 382; 1916, 18, 807.

Fechner, Schwinger's J., 1828, 53, 129; 1830, 59, 413; Pogg. Annalen, 1839, 47, 1;
Braconnot, Ann. Gim. Phys., 1833, (2), 52, 286; Pogg. Annalen, 1833, 29, 174; Herschel, Braconnot, Ann. Chim. Phys., 1833, (2), 52, 286; Popp. Annalen, 1833, 29, 174; Herschel, Ann. Chim. Phys., 1833, (2), 54, 87; Popp. Annalen, 1831, 32, 214; Andrews, Phil. Mag., 1838, 11, 305; Proc. Roy. Soc., 189049, 181; von Martens, Popp. Annalen, 1842, 55, 437, 612; 1844, 61, 127; Scheurer-Keetner, Ann. Chim. Phys., 1859, (3), 55, 330; Heldt, J. prakt. Chem., 1863, 50, 167, 257; Ordway, Amer. J. Sci., 1805, (2), 40, 316; Thomlison, J. Chem. Soc., 1869, 22, 725; le Blanc, Zeitsch. Elektrochem., 1900, 6, 472, 1905, 11, 7055; Ostwald, thid., 1901, 7, 635; Zeitsch. Physikal. Chem., 1901, 7, 635; Zeitsch. Physikal. Chem., 1903, 9, 442; Sackfr, thid., 1904, 10, 811; 1906, 54, 611; 1908, 14, 607; E. Muller and Spitzer, Zeitsch. anoff. Chem., 1906, 50, 3215; Görden and Clark, J. Amer. Chem. Soc., 1906, 28, 1534; Zeitsch. Elektrochem., 1906, 12, 769. Huber and Mayland, bud., 1907, 13, 309; Faust, ibid., p. 161; Byers, J. Amer. Chem. Soc., 1908, 30, 1718; Kistukovsky, Sventh Internat. Cong. Applied Chem., 1903, Sect. X. 56; Alvarez, Zeitsch. Elektrochem., 1909, 15, 142; Byers and Darrin, J. Amer. Chem. Soc., 1910, 32, 750; Schoch and Randolph, J. Physical Chem., 1910, 14, 719; Flade and Koch. Zeitsch. Elektrochem., 1911, 48, 336; Zeitsch. physika. Chem., 1914, 88, 307, 509; Turrentue, J. Amer. Chem. Soc., 1911, 38, 803; Byers and Morgan, ibid., p. 1757; Grabe, Zeitsch. Elektrochem., 1912, 18, 189; Byers and Langdon, J. Amer. Soc., 1913, 35, 750, 2004; 1916, 38, 362; M'Leod. Brown, Chem. New, Langdon, J. Amer. Soc., 1913, 35, 750, 2004; 1916, 38, 382; M'Lood-Brown, Chem. News,
 1913, 407, 15; Hanaman, Dissertation, Tech. Hoghschule, Berlin, 1913; Lathert, Zeitsch. 1913, 207, 15; Tathaman, Descrittion, 1902, Hogmetulle, Berlin, 1913; gather, Zeitsch. Physikal. Chem., 1914, 86, 567; Foersler and co-workers, Zeitsch. Elektrochem., 1916, 22, 85;
 Btapenhorst, Zeitsch. physikal. Chem., 1917, 92, 238.
 Moissan and Moureu, Bull. Soc. chim., 1896, 15, 1296.
 Jurisch, Stahl und Eisen, 1914, 34, 252.
 Sieverts, Zeitsch. physikal. Chem., 1907, 60, 129.
 Smits, Ketther, and de Geo, Proc. K. Akad. Weiensch. Amsterdam, 1914, 16, 999.
 Sea also Smits, ibid., 1913, 16, 699.

also Smits, ibid, 1913, 16, 699.

temperature, the metal becoming incandescent and yielding a mass of ferric oxide, Fe₂O_{3.}1 Nitrous oxide is reduced at 170° C., and nitric oxide at 200° C., ferrous oxide resulting.

Nitric oxide is almost quantitatively converted into ammonia when mixed with hydrogen and passed over the warmed metal.2 The reaction begins at about 800° C., and is very rapid at 350° C.

When heated in a continuous current of carbon monoxide at 650° C. a considerable quantity of earbon is deposited. If, however, the earbon monoxide is admitted to a closed vessel containing the heated metal, absorption of the gas takes place, possibly with the formation of cementite—that is, iron carbide, Fc3Q .

In contact with air and water from powder readily rusts at ordinary temperature. When warmed with water, hydrogen gas is evolved. Dilnte solutions of sodium and potassium hydroxides are decomposed at their boiling-points in a similar manner. Under the influence of gentle heat iron powder decomposes steam- a reaction that has been recommended as a most convenient one for rapidly obtaining small quantities of pure hydrogen. The gas is evolved at considerably lower temperatures than when compact iron is used, decomposition proceeding slowly, in the presence of Kahlbanni's reduced iron, at about 250° C.5

Finely divided iron decomposes sulphuric acid of density 1.75 at 200° C., Viciding sulphur dioxide.

It is spontaneously inflamorable in sulphur vapour, the ignition

temperature lying below 448° C.7 The exceptionally pure reduced metal obtained by Lambert 8 and Thomson possessed several minimal properties. Thus, it exhibited remarkable inertness or "passivity." remaining free from rust_upon

prolonged exposure to air and tapwater.

Cold, dilute sulphuric and natric acids had very little action on the metal, but on warning the iron readily dissolved. Aqueous hydrogen chloride attacked the metal even in the cold. Saturated solutions of the sulphate or nitrate of copper exerted no action at ordinary temperatures; even after an exposure of several months to copper sulphate solution, no change could be detected in the iron when examined nuder the microscope. On raising to 100° C., however, the iron gradually dissolved, copper being simultaneously deposited.

Solutions of copper chloride, when concentrated, immediately attacked the metal, depositing copper. Even dilute solutions (less than one per cent.) attacked the iron, although slowly.

Copper was also denosited on the metal if the latter was subjected to pressure in an agate mortar prior to being placed in the copper sulphate solution. Pressure with a quartz rod whilst immersed in the solution had a like effect.

² Adhikary, Chem. News, 1915, 112, 163.

¹ Sabatier and Senderens, Compt. rend, 1892, 114, 1429; 1892, 115, 237; 1895, 120, 618.

Hall and Juibourt, Gmelin Kraut, n. 390; Ramann, Bec., 1881, 14, 1433; Birnie, Chem. Weekblad, 1907, 4, 291; Friend, J. Iron Steel Inst., 1908, II., 5.

⁴ Birnie, Chem. Zenkr., 1907, I., 1771.

Friend, J. West Scotland Iron Steel Inst., 1910, 17, 66.
 Hart, Inglish Patent, 13950 (1885).

Ohmann, Chem. Zentr., 1911, I., 458.
 Lambert and Thomson, Trans. Chem. Soc., 1910, 97, 2426.

Lambert, ibid., 1912, 101, 2056.

These remarkable results might be attributed to a film of hydrogen protecting the metal in the first experiments from attack in copper' sulphate solution, the film being disrupted in the later experiments t by the pressure; but specimens of the metal which had been heated for several hours at 1000° C, in a vacuum, until spectroscopic tests showed that all hydrogen had been removed, behaved in precisely the same manner.

When the pure metal was treated with ferroxyl (see p. 72), unlike ordinary iron, a remained quite bright for an indefinite time, manifesting no tendency to corrode. On applying pressure locally, however, corrosion set in, a pink colour developing round the pressed portion, and Turnbull's blue appearing round the unpressed parts, indicating

solution of the metal.

Iron sponge is produced commercially, notably in Sweden, whence it was prior to the Great European War, exported to Germany for use in open-hearth steel-manufacture. The process consists in heating iron ore and coal placed in alternate layers in a vessel scaled against the entrance of air. The source of heat is producer gas made from an inferior type of coal, and the vessel is successively heated and cooled for from five to seven days. The maximum temperature attained during the heatings ranges from 1050° to 1200° C. The resulting spongy iron consists of approximately 1

Iron .				96 to 97 ⁴	per cent.
Sulphur .	•	. •		0.01 to 0.02	,,
Phosphorns	٠	•	•	0.012	**
Silica .				1.4	

Spongy iron acts as a powerful reducer towards organic matter dissolved in water.2 In some cases marsh gas is produced. The

organic nitrogen is in nearly all cases reduced to nitrogen.3

Iron amalgam cannot be obtained by direct union of the elements. By introduction of a 1 per cent, sodium amalgam into a concentrated solution of ferrous sulphate an iron amalgam is obtained as a viseid mass, which is attracted by a magnet in small pellets. It may also be prepared by triturating powdered iron, mercuric chloride, and water. A more convenient method, perhaps, consists in electrolysing with a very weak current resaturated solution of ferrous sulphate. A buildle • of iron wire serves as anode, whilst the cathode consists of platinum foil dipping into a small dish of merenry. . The iron amalgamates with the energy, and at the conclusion of the process excess of the latter element is squeezed out, leaving an amalgam of buttery consistency and containing from 10 to 12 per cent of iron.4

Ramann 5 recommends addition of a small quantity of water to a mixture of sodium amalgam and finely divided iron. The product is squeezed to remove excess of mercury, a crystolline amalgam being left which contains 15.75 per cent. of iron and corresponds to the formula Fe₂Hg₃. Iron amalgam blackens both upon exposure to air and water.

¹ Handy, Proc. Eng. Soc. Western Pennsylvania, 1913, 29, 1. See also Stahl und Eisen,

See experiments by Hatton, Trans. Chem. Soc., 1881, 39, 258.
 See this series, Volume VII.

⁴ Joule, Mem. Manchester Lit. Phil. Soc., 1865, (3), 2, 115; Fowler, Trans. Chem. Soc., 1901, 79, 290. Ramann, Ber., 1881, 14, 1433.

When heated, meleury is expelled, and a porque iron left behind.

slow oxidation in air ferrous oxide is produced.1

Colloidal iron, together with a small quantity of ferrous hydroxide and a ferrous salt, is obtained by electrolysing a solution of pure gelatin and a dilute solution of an alkali chloride or sulphate between iron electrodes.2 The sol resembles those of lead and bismuth in that it bears a positive charge. The majority of metallic sols, on the other hand, are negative.

Colloidal solutions affirm in other have been obtained 3 by allowing sparks to pass between iron wire clippings immersed in that liquid and

connected up with an induction coil. • •

Pyrophoric Iron.—Mention has already been made of the fact that reduction of iron oxide, carbonate, or oxalate in a current of hydrogen or carbon monoxide results in the formation of a very pure iron in the form of a black powder. If the temperature is kept low throughout the experiment -namely at about 435° C., the resulting iron powder, usually contaminated with ntore or less ferrons oxide." is pyrophoric, becoming incandescent when exposed to the air in consequence of the heat set free by the rapid oxidation of the metal.7 Complete reduction to metallic iron at this temperature, however, is exceedingly slow in taking place. Ferrous oxide is first formed, and it was not until the passage of hydrogen had been continued for ninety-six hours that Moissan was, in his experiments, able to obtain the iron entirely free from oxide. At 600° C, the reaction proceeds fairly rapidly but the reduced iron is not pyrophoric.

Pyrophoric iron decomposes water rapidly at 50° to 60° C., and its action is perceptible even below 10° C. Its reactivity appears to be independent of the presence of occluded gases or the presence of earbon,

and to be solely dependent upon its fine state of division.

Iron as a Catalyst. Metallic iron can, insegrtain oreninstances, act as a catalyst, in this respect resembling, albeit feebly, the more noble elements of Group VIII. of the Periodic Table. Thus, for example, iron assists the production of ammonia from a mixture of nitrogen and hydrogen at 800° to 1000° C. mider a pressure of 100 atmospheres. No ammonia is obtained under these conditions in a porcelain vessel if iron or any other catalyst be excluded.8

• When reduced iron is heated with certain nitregenous organic substances and metallic sodium, a cyamide is formed, the iron apparently. acting as catalyser, being alternately oxidised and reduced." The presence of potassium cyanide in blast furnaces is thus readily accounted form

Metallic iron sometimes behaves as a negative catalyst. Thus, for example, the activity of palladium as a hydrogen carrier is reduced by contact with iron, whereas cobalt and nickel exert no such influence.10

```
<sup>1</sup> Férée, Bull. Se. chim., 1901, (3), 25, $15.
```

Serono, Arch. Farm., sperim, 1910, 9, 152.

Serono, Arch. Farm. sperim, 1910, 9, 152.

Svedberg, Ber., 1905, 38, 3610.

Zangerle, Reg. Pharm., 1857, 6, 27.

Birnie, Chom. Zentr., 1884, p. 85; Moissan, vide infra.

Moissan, Traité de Chimse Minérale, 1905, vol. iv.; Ann. Chim. Phys., 1880, (5),

⁷ This is made the basis of an effective lecture experiment. See Newth, Chemical

Jellinck, Zeitsch. anorg. Chem., 1911, 71, 121.
 Remsen, Amer. Chem. J., 1881, 3, 134.
 Paal, Ber., 1911, 44, 1013.

Iron Ions. The transport numbers and mobilitie for iron ions at infinite dilution in solutions of ferrous and ferric chlorides respectively are as follow: -

•		Transport Number.	Mobility.
•			
Persons ion 1 .		0.414	46
Ferric ion 2 .	• •	0.396	0 43

The ferric ion appears to be less hydrated than the ferrous ion, which is associated with 60 molecules of water.

Approximate Atomic Weight. That the atomic Atomic Weight. weight of from is applicatinately 56, and not a multiple or submultiple of this amount, is indicated by various considerations.

1. The mean specific heat of iron is approximately 0-110. Assuming a mean atomic heat of 6.4, the atomic weight of iren, according to

Dulong and Petit's Law, is approximately 58.

- 2. As already indicated, 3 from closely resembles manganese in many of its ehemical properties, and the three elements iron, equal, and nickel constitute very fitting intermediaries between nunganese and copper-Reference to the Periodic Table? shows that the only manner in which this relationship can be harmonised with the Periodic Law is to assume that the atomic weights of these three metals lie between 51-93 (the atomic weight of manganese) on the one hand and 63:57 (the atomic weight of copper) on the other.
- 3. Ferric sulphate yields, with the sulphates of the alkali metals, a series of well-defined crystalline salts which are isomorphous with similar series yielded by aluminum sulphate. By the application of Mitscher Keh's Law, therefore, analogous formula are to be anticipated, so that the general formula for these iron alums is

$$\mathbf{M}_{2}\mathbf{SO}_{\mathbf{t}}.\mathbf{Fe}_{2}(\mathbf{SO}_{1})_{\mathbf{J}}.\mathbf{2HI}_{2}\mathbf{O}.$$

Analyses of these compounds indicate that the atomic weight of iron is 56.

Exact Combining Weight and Atomic Weight. - The early determinations of the atomic weight of iron are of no present value, and little need be said concerning them. Most investigators chose to determine the composition of ferric oxide; Wackenfoder, 5 Syanberg and Norlin,6 Erdmann and Marchand,7 and Rivot 8 worked by reducing the weighed oxide to nictal in a stream of hydrogen, while Berzelius, Maumene, 10 and also Symberg and Norlin 6 converted a known weight

```
Marinković, Monatsh., 1915, 36, 831. .
<sup>3</sup> Hopfgartner, ibid., p. 751.
2 See this volume, Part I., Chapter I.
```

See Frontispiece.

<sup>Wackerneder, Arch. Pharm., 1843, 35, 279; 36, 22.
Wackerneder, Arch. Pharm., 1844, 50, 432.
Erdmann and Mcrehand, Annalen, 1844, 52, 212; J. prakt. Chem., 1844, 33, 1.
Rivot, Annalen, 1851, 78, 214.
Berzelius, Erzelius Jahresber., 1844, 25, 43.
Maumené, Ann. Chim. Phys., 1850, (3), 30, 380.</sup>

of iron into ferric oxide by oxidation. Their results are summarised in the following table :-

Date.	Experimenter.	Method.	Per cent. of Iron in Ferric Oxide.	Atomic Wt. of Iron (O=16).
1843 1844 ", ", 1850 1851	Wackenroder	Reduction Oxidation Reduction Oxidation Reduction	69-988 70-020 69-953 70-035 70-009 70-001 69-330	55-97 56-05 55-88 56-09 66-03 56-00 51-24

The only other early determinations to be mentioned are Dumas' analyses of anhydrons ferrous and ferric chloride, in which the amount of silver required to combine with the chlorine was determined,1 and a few experiments by Winkler,2 in which a weighed amount of iron was dissolved in a solution of iodine in potassium iodide, the excess of iodine being determined by titration with sodium thiosulphate. The results were as follow (Cl=35.457, I=326.92, Ag = 107.880): -

```
2Ag : FeCl_2 : : 100.000 : 58.866
                                                                 • Fe = 56.09
2 expts. Dimas.
                                                                    Fe := 56.23
                          3Ag : FeCl<sub>3</sub> : : 100-000 : 50-244
        Winkler.
                          L: Fe: 100 000: 22:145
                                                                    Fe = 56.21
```

Modern work on the atomic weight of iron begins in 1900 with Richards and Baxter's analyses of ferric oxide 3 by reduction to the metal in a stream of hydrogen. Richards and Baxter found that the exact determination of this ratio is a matter of extreme difficulty, and regarded their experiments as preliminary in character. The mean result was as follows (O=16.000):--

7 expts. Fe₂O₃: 2Fe::
$$100.000: 69.9576$$
 Fe= 55.887

* Three years later Baxter made another determination of the atomic weight of iron, analysing anhydrous ferrous bromide for the purpose. The salt was sublimed in a porcelain tube, which introduced a little sodium bromide into it; due allowance was made for this source of error, and the following results obtained (Ag =107-880, Br = 79.916):—

4 expts. FcBr₂: 2AgBr:: 57.4195: 100.000 Fe=
$$55.833$$

2 , FeBr₂: 2Ag:: 99.960: 100.000 Fx²= 55.842

At the time these experiments were made an erroneous value for the atomic weight of silver was in use, in consequence of which the value Fe = 55.87, in confirmation of that deduced from the oxide analyses, was deduced from the brontide analyses. With the establishment of the modern value for the atomic weight of silver, it accordingly

Dumas, Ann. Chim. Phys., 1859, (3), 55, 187.
 Winkler, Zeitsch. anorg. Chem., 1895, 8, 291.
 Richards and Baxter, Proc. Amer. Acad., 1900, 35, 253.

Bexter, ihid., 1903, 39, 245.

became desirable to repeat the preceding work in order to determine the source and magnitude of the errors involved in it. Hence, in 1911, Baxter, Thorvaldson, and Cobb 1 repeated the analyses of ferrous bromide, which they were able to obtain quite free from sodium bromide by utilising fused quartz apparatus in its preparation. Their preliminary analyses gave the following results (Ag = 107.880, Br=79.916):—

Fe = 55.840 $\begin{array}{l} FeBr_2 \bullet 2Ag :: 99 \cdot 9598 :: 100 \cdot 0000 \\ FeBr_2 :: 2AgBr :: 57 \cdot 4221 :: 100 \cdot 9000 \end{array}$ Fe = 55.840

and the final experiments gave almost identical results:

 $\begin{array}{l} {\rm FeBr_2:2Ag::99.0583:100.0000} \\ {\rm FeBr_2:2AgBe::57.4214:100.0000} \end{array}$ 11 expts. Fe = 55.83811 ,,

The essential accuracy of Baxter's earlier work on the bromide was

Baxter and Thorvaldson 2 extended the preceding investigation by making a number of analyses of ferrons bromide prepared from meteoric iron. The results were as follow:

 $\mathrm{FeBr}_2 : 2\mathrm{Ag} :: 99.9561 : 100.0000^{-6}$ Fe = 55.8345 expts. FcBr₂: 2AgBr:: 57-4191: 100-0000 Fe = 55.829

These results are a trifle lower than the preceding, but in each series of five experiments two are of doubtful value as the result of a modification of the method of analysis; excluding the doubtful analyses, the above two results become Fe = 55.837 and Fe = 55.835 respectively.

"The preceding results leaving little doubt that Richards and Baxter's analyses of ferrie oxide are affected by a slight, but, nevertheless, appreciable error, Baxter and Hoever 2 undertook a thorough revision of this process. For full details of their work, which, though apparently quite simple, was, in reality, extremely difficult, the reader must be referred to the original memoir. The result was as follows (O=16.000):-

 $Fc_2O_2: 2Fe:: 100.0000: 69.9427$

The preceding result requires slight correction. Baxter and Hoover found that at 1050° to 1100°sC., the temperature at which they prepared and reduced their ferric oxide, there was a slight doubt as to the stability of the ferric oxide. Five grams of the oxide when ignited to constant. weight in oxygen, lost in weight when ignited in air, the loss being onefifth of a milligram. The subsequent researches of Sosman and Hostetter 4 have shown that this loss in weight is due to the dissociation of ferric oxide into magnetic oxide, and oxygen. Thus the higher weight is the correct weight of ferric oxide. Baxter and Hoover, however, chose the lower, regarding the higher weight as due to occluded oxygens. The necessary correction to the atomic weight of iron is -0.2007, and so the corrected value is Fe=58.810. Of the twelve analyses on which this result is based, seven were made with terrestrial and five with meteoric iron, and no difference in the results was observed.

The International Committee for 1920 give the value

Fe == 55.84.

Baxter, Thorvaldson, and Cobb, J. Amer. Chem. Soc., 1911, 339319.

Bayter and Thorvaldson, *ibid.*, 1911, 33, 337.
 Baxter and Hoover, *ibid.*, 1912, 34, 1667.
 Sosman and Hostetter, *ibid.*, 1916, 38, 1188. See this volume, p. 117.

CHAPTER IV. THE CORROSION OF IRON.

The Chemistry of Corrosion. When exposed to the combined action of air and liquid water iron readily oxidises or "corrodes," being converted into a brown, porons mass of ferric oxide in various stages of hydration. This oxide is popularly termed "rust." Any attempt to explain the changes taking place thiring the corrosion of iron must take into account the collowing facts:

1. Dry air or oxygen has no effect upon iron at the ordinary temperature. If, however, the metal is heated in either of the gases, superficial oxidation takes place, the action being visible at about 220° C., when the metal acquires a pale yellow tint. This, as the temperature rises, gives place to a straw colour, and ultimately to purple and blue, but no rust is formed.

2. Liquid water alone, at ordinary temperatures, has no appreciable action on iron. A piece of polished iron may be kept for an indefinite time in a hermetically scaled tube in contact with air-free distilled water without undergoing any appreciable change.

Pure Swedish iron has been kept by the author under these conditions for twelve years, during which time, apart from the increst trace of tarnishing, which could only be detected under a bright-light, the metal appeared to undergo no change whatever. Even at its boiling-point water appears to have no action on compact iron, although the linely divided metal decomposes it with evolution of hydrogen gas.

3. A mixture of air or oxygen and water vapour has no action on tion, provided the temperature is not allowed to fail to that at which liquid water begins to be deposited.2

On allowing the temperature to fluctuate, however, so that liquid water forms upon the iron, corrosion readily takes place. This disposes of the possibility that rusting is a simple case of direct oxidation, such as occurs when the metal is heated in air.

The fact thus established that the presence of liquid water is essential to corrosion points to the conclusion that before from can rust it must pass into solution, presumably first in the ferrous state from Winth it is then precipitated by atmospheric oxygen in the form of hydrated ferric oxide or rust. In other words, the reaction is essentially ionic.

In the majority of cases of acrial and aqueous rusting there can be little doubt that one of the most active and important agents is carbonic acid. This unites with the iron, forming ferrous carbonate, FeCO3, or

¹ For a detailed account of this subject with full references up to 1911, see Friend, The Corrosion of Iron and Steel (Longmans, 1911).

² Dunstan, Jonett, and Goulding, Trans. Chem. Soc., 1905, 87, 1957.

perhaps the soluble blearbonate, FeH2(CO3)2, according to the equation :--

 $Fc+2CO_2+2H_2O = FeH_2(CO_3)_2 + 2H$,

the nascent hydrogen uniting with any dissolved oxygen to form water. The ferrous carbonate thus produced is next converted into rust by the oxygen of the air with the simultaneous liberation of carbon dioxide, which is now free to attack more iron. Thus a small quantity of carbon dioxide is able to assist eatalytically the conversion of an infinite quantity of iron into rust.

In the presence of excess of carbon dioxide free oxygen is not, according to Paul, cosential to corrosion. As the result of several series of experiments carried out with iron in contact with air-free water and carbon dioxide, this investigator concludes that under these

special conditions the reactions involved are as follow:--

1. Solution of some iron and evolution of hydrogen gas:

$$Fe + CO_2 + II_2O = FCO_3 + 2H.$$

2. The ferrous carbonate is decomposed by water into ferrie oxide, carbonic acid, and formic acid: --

$$2\operatorname{FeCO}_3 + 2\operatorname{H}_2\operatorname{O} = \operatorname{Fe}_2\operatorname{O}_3 + \operatorname{H}_2\operatorname{COOH} + \operatorname{H}_2\operatorname{CO}_3.$$

The carbonic acid is then free to dissolve more iron, but after each neutralisation its amount is reduced by some 50 per cent., in consequence of the formation of forfaic acid.

"3. The formic acid attacks the free metal, yielding ferrous formate:-

$$Fe + 2H.COOH = Fc(CHO_2)_2 + 2H.$$

4. A portion of the formate is reduced by nascent hydrogen, yielding some formaldehyde and ferrie oxide : -

$$2\mathrm{Fe}(\mathrm{CHO_2})_2 + 4\mathrm{H} = \mathrm{Fe_2O_3} + 3\mathrm{H.CHO} + \mathrm{H.COOH.}$$

The formaldehyde, being inert, passes out of the system, whilst the liberated formic acid'is free to attack more metal.

From the foregoing it is evident that the ultimate fate of the carbon dioxide is conversion into formald chyde, so that a trace of carbon dioxide cannot be expected to cetalytically assist the oxidation of an infinite quantity of iron, as, theoretically, it should be capable of doing according to the simple cycle first described as occurring in the presence of cir. Paul suggests that these reactions probably take place during the ordinary atmospheric corresion of iron. Very possibly such is the case to a minute extent, but a great deal more evidence would be required before accepting these complicated cycles as representing the main course of corrosion. Amany case, however, the theory is very suggestive, and worthy of further investigation, for reduction of carbon dioxide in aqueous solution to formaldchyde is nct an entirely new idea, Fenton 2 having effected it hy the nascent hydrogen generated from amalgamated magnesium, and observed that the presence of ferric hydroxide assists the reaction.

The problem as to whether or not a pure iron will rust in the presence of pure water and pure oxygen alone is one which has been the subject

¹ Paul, Boiler Chemistry and Feed Water Supplies (Longmans, 1919), chapter x. . Fentori, Trans. Chem. Soc., 1907, 91, 687.

of considerable discussion. It is well known that many reactions which take place readily when the reagents are of mere commercial purity proceed only with difficence when the substances are carefully purified. Thus, for example, commercial zine dissolves with great rapidity in dilute sulphuric acid, whilst the pure metal is highly resistant to solution. Again, commercial hydrogen peroxide, which usually contains small quantities of dissolved salts, readily attacks iron, yielding a voluminous precipitate of rust. But the metal remains untarnished in a solution of Merck's pure hydrogen peroxide in pure distilled water, despite the fact that its surface it swept by a continuous stream of oxygen bubbles from the peroxide which it is catalytically assisting to decompose.

The question, therefore, as to whether or not pure liquid water and pure oxygen are alone sufficient to induce corrosion is one of con-

siderable theoretical interest; and opinions are divided.

Berzelais was aware that iron does not rust when immersed in aqueous solutions of alkali hydroxides, and during the greater part of last century this fact was regarded as definitely proving that the presence of an acid or negative radicle is essential to corrosion. In 1903, however, Whitney suggested that, water being an electrolyte and split up, albeit to only a minute extent, into hydrogen and hydroxylions, renders it unnecessary to assume that any substance other than oxygen is required to effect the corrosion of iron in water. The condition of equilibrium between the whole and the ionised molecules of water may be represented as follows:—

$$nH_2O = (n-1)H_2O + H' + OH'$$
,

where n represents a large whole number, the precise value for which is uncertain. If, now, a piece of iron is placed in the water, a minute portion will pass into solution in the ionic condition, free, gaseous, molecular hydrogen being deposited upon the surface of the undissolved metal. Thus:—

$$Fe^{0}+2H^{2}+2OH^{2}-Fe^{0}+H_{2}+2OH^{2}.$$

Some of the ferrous and hydroxyl ions unite to form un-ionised ferrous hydroxide, until equilibrium is attained, according to the equation:—

$$Fe'' + 2OH' - Fe(OH)$$

The admission of oxygen to the system serves the double purpose of oxidising the diberated molecular hydrogen and converting the ferrous hydroxide into the basic ferric derivative, popularly known as rust. These two changes disturb the equilibrium, more iron passing into solution to be converted in turn, into a further quantity of rust.

into solution to be converted, in turn, into a further quantity of rust.

According to this theory, therefore, the presence of an acid-in unnecessary; and the inhibiting power of alkalies is attributed to the suppression of aqueous ionisation by the presence of so many additional

hydroxyl ions in accordance with the law of Mass Action.

Theoretically, it should be a simple matter to decide whether or not pure water, pure oxygen, and pure iron are alone sufficient to induce corrosion. In practice, however, the problem is one of extreme difficulty, owing to the elaborate precautions that must be taken to obtain each of the three substances in a pure condition, for any small trace of impurity, acting as a catalyst, may be sufficient to effect the oxidation

of an indefinitely large quantity of the metal.

The extreme difficulty of removing traces of earbon dioxide from the walls of any apparatus was probably first realised by Moody. This investigator placed a piece of pure Swedish iron (99.8 per cent. Fe) in a tube containing a 1 per cent, solution of chronic acid to clean its surface, and a current of pure earbon dioxide free air was passed through the apparatus for several weeks in order to remove all traces of foreign gase. Water was now distilled on to the inetal, washing the chromic acid away, and the passage of air continued. The metal did not rust.

Similar results may be obtained in a much simpler manner 2 by means

Fig. 1.

of the apparatus shown in fig. 1. A is a small iron cylinder closed at one end, the other end being fitted with a stopper and tules so agranged as to allow a constant stream of water to circulate through the eylinder to keep it coof. The whole is inscrted in a flask containing a twicenormal solution of alkali hydroxide, and well shaken to remove all traces of carbon dioxide. Upon inserting in a water bath pure earbon dioxide-free water condenses on A in a continuous stream, washing away the alkali. The metal may be kept for an indefinitely long time in contact with the air and pure condensed water without corroding.

These experiments appear to prove fairly conclusively that pure oxygen and pure water are not sufficient to effect the corrotion of the purer forms of iron.

Unless the surface of the iron is cleaned and freed from condensed or occluded gases

by a preliminary washing with chromic acid or alkali hydroxide, as in the experiments described, contact with pure water and oxygen invariably leads to corvosion, as is to be expected. It has therefore been urged that the cleansing reagents referred to above render the iron passive (see p. 57), so that the results are misleading. In 1910, however, Lambert and Thomson described their experiments with iron of an exceptionally pure character (see p. 34), prepared by reduction of highly purified ferric nitrate. The metal was found to be remarkably mert or passive, and could be exposed to the combined action of water and oxygen for several months without undergoing any visible oxidation. Passivity is thus one of the characteristic

Lambert and Thomson, Trans. Chem. Soc., 1910, 97, 2426.

^{*} Moody, Trans. Chem. Soc., 1906, 89,720. Friend, Proc. Chem. Soc., 1910, 26, 179.

² See the experiments of Whitney, loc. cit.; Dunstan, Jowett, and Goulding, Trans. Chem. Soc., 1905, 93, 1358; Heyn and Bauer, Mitt. königl. Material-priningsamt, 1908, 1908, 93, 1358; Heyn and Bauer, Mitt. königl. Material-priningsamt, 1908,

properties of purdiron, and it is very justly dained that any passivity induced in the metals used by Moody and by Friend is simply due to the thorough cleansing of the metallic surfaces, and is, to that extent,

an indication of their purity.1

. The Mechanism of Corrosion .- An attractive theory of the mechanism of corrosion has been outlined by Aitchison.2 Compact iron, when examined under the microscope (see Part III.), is seen to consist of crystals of ferrite separated from each other by an amorphous cement. It is reasonable to suppose that the solution pressure of this cement differs from that of the ferrice, for differences of this kind invariably occur between amorphous and crystalline varieties of substances. Upon immersion in an electrolyte, therefore, such as ordinary tap water or aqueous solutions of morganic selfs, a difference of potential exists leading to corrosion. If the cement is positive to the ferrite, it is the cement that will oxidise away y and vice versa. In a perfectly annealed speciment in which there is but little mechanical strain, the action will, in the mam, be confined to that between the cement and ferrite. If, however, there is any appreciable potential difference between the erystals of ferrite themselves, this will increase the effect, the total observed corrosion being the sum of the two actions.

The solution pressure of the cement night, conceivably, he between that of the more positive and the more negative ferrite crystals, in which ease the comeat would function cathodically towards the one

and anodically towards the other.

Taking the simplest case, however, in which the ferrite is at practically the same potential throughout, the corrosion will proceed at the junctions of the crystals and the cement. The action will not of necessity be confined to one face of contact, but may be expected to proceed at a maximum rate on that plane resulting in the formation of a pit.

Corrosion is further accelerated by the presence of impurities such as oxides, sulphides, carbides, phosphides, and silicates. Alige these are invariably at a lower potential than the ferrite. The influence of " alloying elements '48 particularly interesting. With earbon, for example, comentite or iron carbide. Fe.C. is formed, and as this is electro-negative to ferrite, the latter corrodes at the points of contact. Addition of carbon, therefore, to iron tends to enhance its→orrodibility. If a third element is added to the system, its influence upon corrosion is determined largely by the manner in which it detributes itself.5 If it dissolves in the ferrite, reducing its solution pressure, it reduces the potential difference between the ferrile and comentite, and thus enhances the resistance of the whole to corrogion. Nickel behaves in this manner, the whole of the metal passing into solid solution with the ferrite until the steel contains more than 8 per cent. of nickel. Such steels, therefore, do not readily corrode.

If, on the other hand, the third element is associated entirely with

Compare Moody, Proc. Chem. Soc., 1909, 25, 34.
 Aitchison, J. Iron Steel Inst., 1916, 1., 77.

^a See Cobb, ebid., 1911, L., 170.

⁴ The corrodibilities of steels and other alloys of iron are discussed in Part III. of this volume.

Altchison, loc. cit. See also Trans. Chim. Soc., 1915, 107, 1531; 1916, 109, 288; Arnold and Read, J. Iron Steel Inst., 1910, I., 169; 1911, 1., 249; 1912, 1., 215; J. Inst., Mech. Eng., 1914, L., 233; 1945, I., 247.

the carbon and forms part of the carbide, the corrodibility of the alloy will not be appreciably affected. Vanadium, tungsten, and molybdenum are eases in point, their saturation percentages in the earbide being approximately as follows:—

Vanadium . . . 5.4 per cent. Tingsten . . . 11.7 . ., Mölybdenum 19.0 .,

Below these concentrations the metals do not pass into solid solution, but remain entirely associated with the earbide.

The behaviour of chromium is increasing, for this metal distributes itself between the ferrite and carbide, and tends to reduce the corrodibility of the alloy to an extent determined by the portion that passes into solid solution.

Ferroxyl.—An effective method of showing that differences of potential exist between different parts of a piece of iron consists in utilising the ferroxyl indicator devised jointly by Cushman and Walker. A 1-5 per cent. solution of agar-agar jelly is prepared, a few drops of phenolphthalein added, and the whole rendered perfectly neutral whilst hot by titration either with alkali or acid as occasion requires. A small quantity of potassium ferricyanide solution is now added, and the solution poured into a shallow dish to cool. A clean sample of iron is placed on the solidified jelly and covered with a layer of warm solution, and the whole allowed to cool. After a few hours some very beautiful colour effects will have developed, and may be preserved for several months by keeping the surface of the agar covered with alcohol.

Where the iron remains bright the agar assumes a pink colour indicative of the presence of hydroxyl ions. At those points where the iron passes into solution the familiar colour of Turnbull's blue com-

pound (see p. 227) makes its appearance.

The Influence of Dissolved Salts upon Corrosion.— The presence of salts dissolved in water may greatly influence the manner in which the iron is attacked. Many salts exert a distinct chemical action on the metal. Thus, for example, when immersed in solutions of copper sulphate, iron readily dissolves, an equivalent amount of copper being precipitated in accordance with the equation:—

$$Fe+CuSO_4=FeSO_4+Cu$$
.

On the other hand, iron remains perfectly bright and free from all traces of corrosion when immersed in solutions of the chromates or bichromates of the alkali metals, unless; indeed, the solutions are excessively dilute. This is generally attributed to the formation of a thin film of oxide on the surface of the metal which shields the underlying portions from aftack, but this is not the only explanation, as has been seen (p. 71).

Ammonium salts are very corrosive, particularly in warm or hot solutions, probably on account of the case with which they undergo hydrolysis. For example, a saturated solution of ammonium sulphate is less corrosive than distilled water at 6° C., but at 18° C. it is

Cushman, U.S. Dept. Agriculfure, Bulletin No. 30, Washington, 1907; J. Iron Steel
 Inst., 1909, I., 333
 Walker, J. Amer. Chem. Soc., 1907, 29, 1257.

much more corrolive. Again, on boiling irol drillings in a concentrated solution of ammonium chloride, hydrogen and ammonia are evolved, ferrous chloride passing into solution. Thus:--,2

$$Fe+2NH_4Cl=FeCl_2+2NH_3+II_2$$
.

When ammonium natrate solutions are heated in contact with iron, an analogous reaction occurs; ammonia is evolved, whilst the iron suffers appreciable corrosion under the action of the liberated nitric acid.8

It is instructive to examine the effect of exposing iron plates to the action of salt solutions of varying concentrations by determining the losses in weight consequent poor corrosion. Curve ACLS (fig. 2) shows diagrammatically the usual type of results obtained. The point A indicates the loss in weight of the plate immersed in distilled water to which no salt has been added.

The presence of small quantities of the dissolved salt effects an increase in the corrosion of the iron, a maximum being reached at C,

known as the critical concentration. Further increase in the quantity of the salt reduces the corrosion to nil at L, which point is termed the limiting concentration, and from this point onwards, until saturation is reached, the liquid is non-corrosive.

There are several salts that behave in this way at atmospheric temperatures, the more important being ammonium acctate; potassium bromate, carbonate, cyanide, ferricyanide, ferricyanide, iodate, and permanganata; diso hum hydrogen phosphate; and sodium borate and carbonate. In the case of potassium chlorate the points L and S appear to be practically coincident, whilst for the majority of salts the point S lies somewhere to the left of L, namely at S'-that is to say, saturation occurs before the limiting concentration is reached. Generally speaking, at the ordinary temperature, concentrated solutions of salts are less corrosive than distilled water—that is, the point S' lies below the level of A, exceptions being ammonium sulphate, aluminium

- ¹ Friend and Barnet, J. Iron Steel Inst., 1915, I., 336.

- 2 Santi, Chem. Zentr., 1904, II., 1625. 3 Seo Prideaux and Caven, J. Soc. Chem. Ind., 1919, 38, 353T, Heyn and Bauer, Mitt. königl. Material prüfungsamt, 1908, 26, 2. Friend and Barnes, J. Iron Steel Inst., 1975, 1., 336.

sulphate, ferrous sulphate, and (at temperatures in the neighbourhood of 6° C.) sodium sulphate, potassium nitrate, and barium chloride.

Sufficient data have not as yet been accumulated to allow of a complete explanation of the form of the enryc ACLS. The initial rise from A to C is probably connected with the number of ions introduced into the solution with rise of salt concentration. As the latter increases, however, another factor begins to make itself felt, namely, the decreased solubility of oxygen in the solution. This acts in the opposite direction, by retarding corrosion. This is shown in fig. 3, where the relative corrodibilities of Kahlbanni's pure from foil in various concentrations of sodium chloride solution are depicted at 10° C, and 23 5° C., the relative solubility curve for oxygen being represented by the broken line.

On raising the temperature above that of the atmosphere, the tendency is for the critical concentration to fall—in other words, the point C (fig. 2) is pushed towards the left. Hence a solution that is

more correspond than fresh water at the ordinary temperature may prove to be less corrospy than fresh water at higher temperatures.

For example, a 3 per cent, solution of common salt at 10° C, is much more corrosive than tap water at the same temperature; but as the temperature rises the relative corrosivity falls, so much so that at 21° C, the salt solution is the less corrosive of the two. Since sea water contains some 8 per cent, of soding chloride, it is of interest to inquire into the effect of temperature upon its corrosive powers. The few laboratory tests that have been carried out on the subject 2 indicate that at temperatures below 13° C, sea water is more corrosive than tap water, whilst at all higher temperatures it is less sp. Now, in the western part of the tropical Pacific Ocean a temperature of 32° C. is sometimes attained, and in the Red Sea and Persian Gulf temperatures of 34.4° C, and 85.5° C, respectively have been registered. Such waters should therefore prove less corrosive than river waters at the same temperatures.

In the Arctic Ocean, on the other hand, where the temperature lies in the neighbourhood of 0° C., the sea water is more corrosive than fresh.

The solubility of exygen in distilled water at either temperature is taken as 100° C., and the corrodibilities of iron in distilled water, as measured by loss in weight, are likewise taken as 100 (see Friend and Barnet, loc. cit.).
 Friend and Brown, Trans. Chem. Soc., 1911, 99, 1302.

The foregoing observations are of great importance to marine engineers, and further research on the subject is eminently desirable.

Mention has already been made of the fact (see pp. 54, 69) that iron may be preserved from corrosion by immersion in dilute solutions of

An interesting case arises when iron is immersed in alkaline solutions, containing inorganic salts. For example, iron will-remain bright in a 1 per cent, solution of caustic potash for an indefinite time, but upon addition of potassium chloride corrosion readily takes place. It is possible, however troincrease the alkali to such an extent that corrosion is entirely prevented, no matter how concentrated the solution of chloride. The minimum amount of alkali required rises with the percentage of chloride until saturation of the latter is arrived at. This is indicated in fig. 4. AK represents the solubility curve of potassium chloride in aqueous solutions of potassium hydroxide, and GF the maximum concentration of the chloride that navy be present in the

corresponding alkali solution without causing corrosion. Within the area CEA, therefore, corrosion readily takes place, but outside this area corrosion is impossible.

A characteristic feature of the corresion under these conditions, however, is the tendency to "pit." This is a formed localised corrosion, the rust eating deeply into the metal at small isolated areas. Undoubtedly the rusting is originated by some irregularity—chemical or physical—in the metal, each pit being started at some point however the crystal grains. Even Kalibanin's pure electrolytic foil readily pits in this manner, although when immersed in neutral solutions it usually corrodes fairly uniformly over its entire surface. The masses of rust formed during pitting are rich in terrous oxides—Sometimes filaments of rust spread out in hair-like growths, brown in colour, which float or sink according to the density of the solution in which they are produced.

In practice such corrosion may prove disastrons. For example, an iron boiler might lose several pounds in weight through uniform superficial corrosion and yet not be much the worse. But a single ounce removed through pitting might be sufficient to perforate the metal and lead to serious consequences. The employment of wealty alkaline feed waters containing dissolved salts in ordinary boilers is a dangerous

procedure, for the foregoing reason. The remedy would appear to lie in the addition of sufficient alkali to render the liquid non-corrosive.

Corrosion and Ionisation.-Iron will remain untarnished for in-• definite periods in the presence of concentrated solutions of the carbonates of the alkali metals, even in the presence of small quantities of other salts. If, however, the alkali carbonate is very dilute, it cannot entirely inhibit corrosion. Now, the minimum quantities of alkali carbonate required to inhibit the corrosive actions of a given concentration of various other salts of the same askali metal have been determined. The results show that, if the added salts are arranged in order according to the amount of alkali carbonate required to inhibit corrosion, they are also not merely in the order of the relative strengths of their acid radicles, but the relative quantities of carbonate bear a general relationship to the numerical values found for the strengths of the acids by electrical conductivity methods. This is well illustrated in the following table :--

	Sodium Salts Concentration N/20).					Relative Conceptration of Na ₂ C() ₃ inhibiting Corrosion.	Relative Strengths of the Free Acids.2
Chloride			•			100	100
Iodi d e						89	98
Bromide*						. 72	98
Nitrate						54	98
Sulphate		•				52	70
Fluoride						39	10.5
Acetate						9	2

The close connection between ionisation and corrosion in dilute solution thus receives interesting confirmation.

The Chemical Nature of Rust .- Both the physical condition and chemical composition of rust vary considerably according to the conditions under which corrosion has taken place. Dunstan 3 gives the result of analysing (A) rust collected from iron apparatus rusted in the laboratory, and (B) gust from an iron railing exposed for thirty years. to the air within twenty yards of the sea. His data are as follow:

			•		
*	•	•	. A.	В.	Calculated for Fe ₁ O ₂ .H ₂ O.
Ferrous iron	•		€ 0 -13	3.25	•
Ferrie iron	.4	١.	60.93	59.25	62.8
Hydrogen		. •	1.01	1.17	1.8
Oxygen		.	34-35	35.70	35.9
Carbon dioxide .		.	0.15		
Ammonia			0.006		١
Insoluble matter			3.20	0.60	
•		- t		i .	1

Friend and Marshall, Trans. Chem. Soc., 1914, 105, 2776.
 Calculated from electric conductivities.
 Dunstan, Jowett, and Goulding, Trans. Chem. Soc., 1905, 87, 1864.

From this it is evident that ordinary rust produced by exposure of iron

to air corresponds very closely to the formula Fe₂O₃.H₂O.1

When iron is completely immersed in distilled water there is usually no pitting, and the metal becomes covered with a loosely adherent cover of brown oxide, in which there may or may not be a trace of greenish ferrous oxide. When the metal is only partially immersed in water, a particularly vigorous oxidation takes place at the surface of the liquid, for at this point the latter is relatively rich in dissolved oxygen. The resulting mass of rust is frequently high in ferrous oxide. A somewhat similar result obtains when iron is exposed alternately to the action of water and air, the poportion of ferrous oxide in the mass depending upon the difficulty experienced by the atmospheric oxygen in penetrating its surface. This is clearly shown 2 by the following analyses of samples of rust obtained from the unpainted interiors of iron flushing tanks in constant use. Several of the tanks had been unscraped for years, and the sides were blistered with masses of rust, brown without but black within. Every sample when placed in dilute aqueous hydrogen chloride effervesced briskly, evolving carbon dioxide. The analyses were as follows:—

No. of Sample	. 1.	2.	3.	4.	5.	6.
Percentage of iron a	s	•			•	
ferrie oxide .		51.12	64.60	65.13	£8 ⋅89	67.46
Percentage of iron a	5 00 00	00 57	25.74	05.00	00.10	04.4
ferrous oxide . Percentage of iron a	«	ļ				•
ferrous carbonate	. 11.40	12.31	9.66	9.21	7.98	8.14

The Corrosion of Wrought Iron, Cast Iron, and Steel This subjects is discussed in Part III. of this volume, together with the influence of various impurities and alloying elements.

¹ Other analyses of rust are given by Calvert, Chem. News, 1871, 23, 98; Jamieson, Mn. Proc. Inst. Civil Engineers, 1881, 65, 323; Weinwurm, Chem. Zeit., 1893, 17, 101; Gaines, Chem. News, 1970, 101, 209; T. Steel, J. Soc. Chem. Ind., 1910, 29, 1141; Donath and Indra, Chem. Zeit., 1911, 35, 773; Moody, vyle inffn; J. 11. Paul, Boiler Chemistry and Feed Water Supplies (Longmark, 1919), pp. 126-120.
2 Moody, Trans. Chem. Soc., 1906, 89, 726

CHAPTER V. GENERAL PROPERTIES OF IRON SALTS.

Salts of Iron may be roughly divided into two groups, according as the iron behaves as a divalent or trivalent atom. Salts of divalent iron are termed ferrous, and in neutral or faintly alkaline solution are readily oxidised to ferric compounds, in which the iron has a valency of three, Ferrous salts, when hydrated, are usually greenish in colour, copperas or ferrous sulphate being typical. Anhydrous ferrous salts are white or pale yellow in colour, as witness ferrous chloride and bromide. Ferric salts, when crystalline, are also white and opaque (ferric sulphate), colourless (ferric nitrate), or yellow (ferric chloride), although many basic compounds are brown. When in combination with other salts, various colours may appear -- as, for example, in the ease of iron alim, the delicate violet hue of which is well known. Iron salts impart a distinct and bitter taste to water, one part of iron per million of water being distinctly perceptible to the average individual.

A peculiar property of ferrous salts consists in their power, when in solution,² of uniting with nitric oxide, the limit of combination being reached with one molecule of NO to one atom of iron. The substances thereby produced hre very mustable, partaking of the nature of additive or associated compounds. Two of these compounds have been isolated, namely, FeSC, NO3 and FeHPO1 NO1; and several other salts, such as FeCl₂.NO and FeBr₂.NO, have been shown to exist in solution. In this respect ferrous salts closely resemble salts of divalent copper, which yield, with nitric oxide, additive compounds of the type ${\rm CuX_2.NO.^5}$ Ferric salts—for example, ferric chloride - also combine with nitric oxide to yield unstable compounds. Both ferrous and ferrie salts readily decompose barium peroxide, the former after being first oxidised to ferrie. The reaction, in the case of ferrie chloride, takes place according to the equation: - 6

$$6 BaO_2 + 4 FcCl_2 + 6 H_2 O = 3O_2 + 4 Fc(OH)_3 + 6 BaCl_2.$$

Iron Salts as Catalysts -- Schönbein, in 1857, drew attention to the fact that ferrous salts are capable of acting as oxygen-carriers in certain circumstances,7 but it was not until thirty-seven years had clapsed that

See Rideal, Water Supplies (Crosby Lockwood, 1914).

^{*} Whether squeous, alcoholic, ethereal, or in acetic acid (Thomas, Bull. Soc. chim.,

Whether squeous, accounce, etherea, at the squeous of the squeous accounce, etherea, at the squeous of the squeous squ

attention was again drawn to the subject by the observation of Fenton 1 that hydrogen peroxide oxidises tartaric acid to dihydroxymaleic acid in the presence of a ferrous salt-to particular, ferrous sulphate. He explained this to the assumption that the divalent iron replaces the two non-hydroxylic hydrogen atoms of tartaric acid, and, upon oxidation by the peroxide to the trivalent condition, breaks away from them. Thus

Suggestise as this theory is, there are other reactions in which ferrous sulphate acts as a catalyser, in which the above explanation cannot possibly hold, and several other theories have been offered. Manchot and Wilhelms 2 Selieve that a highly oxidised compound of iron, such as Fe O or Fe O 2H O2, is formed by contact of the ferrons salt and peroxide, and that this is reduced by the oxidisable substance. Brode 3 reached a Somewhat similar conclusion, suggesting that the peroxide and ferrons salt unite to form an intermediate, highly oxidised compound, whilst Minimiery ¹ combines the essent'ad features of these tw∂ theories into a very attractive hypothesis, according to which ferrous sulphate and hydrogen peroxide unite to form ferrous sulphate perhydrol,

He arrives at this in the following manner. In view of the retention of a molecule of water by the isomorphous members of the ferrons sulphate series, they may be regarded as hemisulphate hemilydick of the type

With hydrogen peroxide, therefore, ferrous sulphate reacts as follows :--

$$\begin{array}{c} \operatorname{Fe} \Big\langle \frac{\operatorname{SO}_{4} H}{\operatorname{OH}} + \frac{\operatorname{OH}}{\operatorname{OH}} \Big\rangle \to & \operatorname{Fe} \Big\langle \frac{\operatorname{SO}_{4} H}{\operatorname{ODH}_{4}} + \frac{\operatorname{OH}_{4}}{\operatorname{OH}_{4}} \Big\rangle \end{array}$$

This perhydron bears a resemblance in constitution to Caro's permonosulphuric acid, H₂SO₅, or

and may be expected to possess the properties of a powerful oxidiser. The reason why such a compound acts more powerfully than hydrogen peroxide itself is attributed to the fact that it is an electrolyte, whereas

- Fenten, Trans. Chem. Soc., 1894, 65, 899; Proc. Chem. Soc., 1898, 14, 119.
- Manchot and Wilhelms, Ber., 1901, 34, 2479.
 Brode, Zeitsch. physikal. Chem., 1901, 37, 257.
 Mummerys J. Soc. Chem. Ind., 1913, 32, 889.

hydrogen peroxide, for all practical purposes, is not. This perhydrol is alternately produced from, and reconverted into, ferrous sulphate, when an oxidisable substance is present, together with hydrogen

peroxide.

Methyl, ethyl; and propyl alcohols are oxidised by permanganate or hydrogen peroxide in the presence of ferrous salts. If ferrous sulphate is employed, the ethyl alcohol is, in dilute solution, oxidised by the permanganate to aldehyde; but in the presence of ferrous oxalate the oxidation proceeds further, acetic and resulting. Thus

CH₃·CH₂OH→CH₃·CHO→CH₃·COOH.

These reactions proceed so regularly that they may be followed up quantitatively. Ferrie salts have no catalytic influence upon these reactions. 1 Iron salts, however, can act as oxygen-carriers in the absence of such powerful oxidisers as hydrogen petoxide and potassium permanganate. Thus, for example, it is well known that, upon exposure to sunlight, iodine is ordinarily liberated from a solution of mercuric iodide in potassium iodide. Curiously enough, if traces of iron salts are rigidly excluded, the liberation of iodine does not take place.2

Ferrous salts accelerate the oxidation of sulphurous acid to sulphuric

acid in the presence of oxygen.3 •

Ferrous chloride accelerates the oxidation of stannous chloride solution in air, the maximum effect being obtained with one molecule of FcCl, to 100 molecules of Sngl,.4

Egrrous salts accelerate markedly the reaction between persulphates and iodides, as represented, in the case of the potassium salts, by the

equation

$$K_2S_2O_8 + 2KI = 2K_2SO_4 + I_2.5$$

In acid solution chlorates are reduced to chlorides by soluble iodides. For example, in the case of the potassium salts the reaction proceeds as follows :

$$KClO_3 + 6KL + 3H_2SO_4 = KCl + 3K_2SO_4 + 3I_2 + 3H_2O.$$

Addition of a small quantity of a ferric or ferrous salt greatly accelerates the reaction,6 due to the alternate formation of ferric iodide and reduction to the ferrous salt as follows :-

$$\begin{array}{c} {\rm KClO_3 + 6FcI_2 + 6KIr + 3H_4SO_4 = KCl + 3K_2SO_4 + 6FcI_3 + 3H_2O}, \\ {\rm 6FcI_2 = 6FcI_2 + 3I_2}. \end{array}$$

It is well known that a mixed solution of ordinary mercuric chloride and ammonium oxalate undergoes decomposition when exposed to light, mareurous chloride being precipitateli and carbon dioxide evolved. The reaction may be represented by the equation

$$2 \text{HgCl}_2 + (\text{NH}_4)_2 \text{C}_2 \text{O}_4 = 2 \text{HgCl} + 2 \text{NH}_4 \text{Cl} + 2 \text{CO}_2$$

1 Doroschevski and Bardt, J. Russ. Phys. Chem. Soc., 1914, 46, 754, 1669.

H. S. Hatfield, Zeitsch. Elektrochem., 1813, 19, 617.

 Møyer, Ber., 1887, 20, 3058.
 Warynski and Towtkiewicz, Ann. Chim. anal., 1913, 18, 130. See Noyes, Zeitsch. physikal. Chem., 1806, a1, 16.

psikal. Chem., 1200,021, 10.

Prioc, Zeitsch. physikal. Chem., 1898, 27, 474.

Green, J. Physical Chem., 1908, 12, 389; Pisarahovski and Averkiev, J. Ruse. Phys. Chem. Soc., 1975, 47, 2057.

This change, which proceeds at a measurable rate, has been utilised in quantitative determinations of the intensity of light-so-called actinometric measurements. The sensitiveness of the reaction, however, is largely dependent upon the purity of the salts, traces of iron salts increasing the sensitiveness in proportion to the amount of iron-provided the amount is very small. Indeed, there is reason to believe that if the solution were entirely free from iron no photochemical effect would • be observed.1

Hydrochloric acid is without action on gold, but addition of a small quantity of ferric chloride causes the gold to dissolve, the ferric salt presumably acting as a chlorine-carrier 2 in the presence of hydrochloric acid and oxygen. Salts of iron an arcgrequently used in organic chemical processes as halogen-carriers.3

Iron Salts as Negative Catalysts. In certain cases small qualities of ferrous salts act as retarding agents in chemical reactions, and may therefore be termed negative catalysts. For example, ferrous sulpliate has long been known 4 to lunder the action of nitric acid on metals.

Traces of ferric salts retard the dissolution of mercury in nitric acid, a phenomenon which is attributed to decomposition of the nitrous acid by the catalytic alternate reduction and oxidation of the iron radicle.

Oxidation of Ferrous Salts. Ferrous salts are readily converted into ferrie derivatives in a variety of ways. Thus their solutions are gradually oxidised upon exposure to air, with the deposition of basic ferric salts. The rate of exidation by air in the presence of free acids is, in the case of ferrons sulphate, proportional to the partial pressure of the oxygen.6 Hence the addition of inert soluble salts, such as the chlorides and sulphates of sodium, potassium, or magnesium, to the solution reduces the rate of oxidation in proportion as they decrease the solubility of the oxygen.7

At 60° C, the relative rates of oxidation of ferrous clatoride, sulphate, and acctate, are as follow: 1:10:100. The oxidation appears to depend upon the im-ionised portion of the dissolved salt. In alkaline solution oxidation of ferrous iron is fairly rapid, but

certain acids retard the reaction. Ferrous sulphate, for example, in the presence of free sulphure acid, is very stable in air. Concentrated •hydrochloric acid assists the oxidation, as also do traces of certain substances, such as platinic and cupric chlorides, palladium nitrate, etc.

The aerial oxidation of solutions of ferrous salts may be accelerated by ectain micro-organisms, known as iron bacteria. Mumford ¹⁰ describes an organism through the agency of which a dilute solution of ferrous ammonium surphate was completely oxidised to ferrie hydroxide in

Winther, Zeitsch. 2015. Photochem., 1910, 3, 197, 237; 1900, 7, 409.

Milhiney, Amer. J. Sc., 1896, (4), 2, 283.
 See, for example, L. Meyor, Annalen, 1885, 231, 195; Scheufelen, ibid., p. 452;
 Meyer and Scheufelen, Ber., 1885, 18, 2017; Wilgerodt, J. prakt. Chem., 1885, (2), 31, 539; Page, Annalen, 1884, 225, 196; Aronheim, Ber., 1875, 8, 1400; 1876, 9, 1788.
 Millon, Coppl. rend., 1842, 19, 904; Veley, Phil. Trans., 1891, A, 182, 279.
 Ray, Trans. Chem. Soc., 1911, 99, 1672.

M'Bain, J. Physical Chem., 1901, 5, 623; Ennos, Proc. Camb. Phil. Soc., 1913, 17. Compare Baskerville and Stevenson, J. Amer. Chem. Soc., 1911, 33, 1104.
 MacArthur, J. Physical Chem., 1916, 20, 545. See B. 152.

See Müller and Kapeller, Zeitsch. Elektrochem., 1908, 14, 76.

Wayndi, Ann. Chim. anal., 1909, 14, 45.

Munitord, Trans. Chem. Soc., 1913, 103, 645.

VOL. IX. : II.

fewer than thirty-six hours at 37° C., no iron remaining in solution. There can be no doubt that the natural deposits of bog iron ofe, occurring in Sweden and elsewhere, owe their existence to the action of these lowly organisms.1

The presence of platinum also appears to accelerate the oxidation

of solutions of ferrous salts.2

The action of hydrogen peroxide upon ferrous salts is interesting in view of the possible connection between ferrous salts acting as oxygencarriers in the blood. The decomposition of the peroxide is hindered or "poisoned" by the presence of arsenions oxide bydrogen sulphide carbon monoxide, and other well-known poisons, and the subject is worthy of careful consideration. 3 1

The isnal oxidising media, such as permanganates, bichromates, etc.,4 react instantaneously with ferrons salts, yielding in acid solution the normal ferrie salts. Many methods for the quantitative determination of Iron are based on these reactions. Thus, for example, with potassium permanganate the oxidation of ferrons sulphate proceeds as follows:--

$$10 FeSO_4 + 2 KMnO_1 + 8 H_2 SO_1 - 5 Fe_2 (SO_4)_3 + K_2 SO_4 + 2 MnSO_4 + 8 H_2 O_5$$

The persistence of the pink colour of the permanganate indicates with great accuracy when sufficient of this reagent has been added. With potassium bichromate the reaction proceeds according to the equation

$$\frac{6 F_{CS} O_1 + K_2 Cr_2 O_7 + 7 H_2 SO_4 - K_2 SO_4 + 3 Fc_2 (SO_4)_3 + Cr_2 (SO_4)_3 + 7 H_2 O_7 }{6 F_{CS} O_4 + 3 Fc_2 (SO_4)_3 + Cr_2 (SO_4)_3 + 7 H_2 O_7 }$$

the end point of the reaction being determined by removing a drop of the mixture and testing with a solution of potassium ferricyanide, which remains colourless if no ferrous salt is present, but otherwise

yields a deep blue colory (see p. 242).

The mechanism of the oxidation of ferrons salts in the various ways mentioned above has been studied by Manchot, who concludes that the first action. to produce a high and generally unstable oxide, termed a primary oxide, which then decomposes into the final oxidation product (that is, the ferrie compound) and active oxygen, which latter then oxidises a further portion of the ferrous salt to ferrie.

Ferrous Salts as Reducing Agents .- Owing to their ready oxidisubility, ferrous salts are frequently employed as mild reducing agents. Thus ferrievanides are reduced to ferrocyanides by ferrous sulphate in

alkaline solution (see p. 224).

in photography ferrous sulphate is used for the reduction of anric chloride, metallic gold being precipitated. Thus

,
$$A_{11}Cl_{3} + 3FeSQ_{4} = A_{11} + FeCl_{3} + Fe_{2}(SO_{4})_{3}$$
.

On adding a solution of a ferrous salt to an ammoniscal solution of a cupric salt, ferric hydroxide is precipitated, the enpric salt being reduced to cuprous and remaining in solution. This affords a convenient

1 See also Ellis, Iron Bacteria (Methuen, 1920).

 Jordis and Vierling, thid., 1904, 10, 679. Warynski, loc. cit.
 Fischer and Brieger, Zeitsch. physikal. Chem., 1912, 80, 412; 1912, 78, 582; Rocchi, Chem. Zentr., 1911, 11., 1870.

⁴ The rate of oxidation of ferrous salts with chromic acid has been studied by Benson, J. Physical Chem., 1903, 7, 1.

⁸ Manchot, Annalen, 1902, 32\$, 93, 105; Zeitsch. anorg. Chem., 1901, 27, 370, 420.

method of preparing ammoniacal cuprous solutions for the absorption

of carbon monoxide in gas analysis.1

Ferrous salts reduce nitrites to nitric oxide. On addition, for example, of bacium nitrite to ferrous sulphate, barium sulphate is precipitated, and the liquid turns brown. Ferric hydroxide and a basic ferric nitrate are next precipitated, nitric oxide heing evolved. Apparently the first product of the reaction is ferrous nitrite, which then spontaneously decomposes in accordance with the equation 2

$$6\mathrm{Fe}(\mathrm{NO_2})_2 = 10\mathrm{NO} + \sqrt{\mathrm{e_2O_3}} + 2\mathrm{Fe_2O_3}.\mathrm{N_2O_3}$$

Photochemical Oxidation. Mercuric chloride solution is reduced by ferrous chloride under the influence of light, mercurous chloride being precipitated.

 $\mathbf{HgCl_2} \cap \mathbf{F_gCl_2} = \mathbf{FeCl_3} + \mathbf{HgCl_2}$

If the relative proportion of mercuric chloride is small, the rate of reduction is almost independent of the concentration of the ferrous salt, and the sensitiveness to light increases with dilution.3 Equimolecular solutions, however, do not vary to the same extent, but their maximum sensitiveness occurs at a concentration of 3 gram-molecules of each salt per litre. The presence of oxygen is without appreciable influence on the equippole ular solutions.

Reduction of Ferric Salts. The reverse reactions, namely conversion of ferric salts into ferrous, are blewise basily effected by means of the usual reducing agents, such as nascent hydrogen, sulphur dioxide etc. By the introduction of zine into an acidified solution of a ferric salt, reduction is rapidly cansed. Excess of acid slightly retards the reaction. This affords a convenient method of volumetrically determining the presence of ferric iron, the solution after reduction being titrated with permanganate.

Zine dust is particularly rapid in its action, even in neutral solution. In this latter case, however, the from is partially precipitated as ferric hydroxide. The reduction takes place with case in absolute alcohol, and is entirely independent of the presence of occluded hydrogen in the zinc. It would appear, therefore, that the zinc acts directly as a decidorinator, and that the reduction is not effected by nascent hydrogen.5 Thus :--

$$2\mathrm{FeCl}_3 + \mathrm{Zn} - 2\mathrm{FeCl}_2 \geqslant \mathrm{Zn} \mathfrak{S}_2^{\mathbf{z}}.$$

Sulphur dioxide may be passed into a solution of a ferric salt for a similar purpose, or it may be generated in the solution by addition of an alkali sulphite and a little dilute mineral acid. Thus, ferrie sulphate is reduced in accordance with the equation

Fe₂(SO₁)₃+SO₂+2
$$\Pi_2$$
O = 2FeSO₄+2 Π_2 SO₄.

The reducing action of thiosulphates on ferric salts is interesting,

Cumming and Smith, loc. cft.; Austen and Hurst, Chem. News, 1882, 46, 287.

Frischer, Chem. Zeit., 1908, 32, 1005 a. Hertmann, Chem. Zentr., 1307, L., 1394, from Chem. Ind., 1907, 30, 152;
 Biddle, Amer. Chem. J., 1901, 26, 377.
 Piccini and Zuco, Gazzetta, 1885, 15, 475.
 Wisther, Zeitsch. urss. Photochem., 1912, 11, 60.
 Carnegie, Trans. Chem. Soc., 1888, 53, 468;
 Cummung and H. Sfhith, Proc. Roy. Noc. Edin., 1912, 33, 12.
 Carnegie, Loc. cit.
 Carnegie, Loc. cit.
 Carnegie, Loc. cit.
 Carnegie, Loc. cit.

ranking as one of the few tetramolecular reactions that have been studied. The reduction proceeds in accordance with the ionic equation

 $2 \text{Fe}^{"} + 2 \text{S}_2 \text{O}_3^{"} = 2 \text{Fe}^{"} + \text{S}_4 \text{O}_6^{"}.$

Reduction of ferric salts with potassium iodide is usually regarded as taking place as follows,2 in the case of ferric chioride:-3

$$2\operatorname{FeCl}_3 + 2\operatorname{KI} = 2\operatorname{FeCl}_2 + 2\operatorname{KGI} + \operatorname{I}_2;$$

$$2FeCl_3+2KI=2FeCl_2+2KGl+I_2\,;$$
 or with ferric sulphate :—
$$Fe_2(SO_4)_3+2KI=2FeSO_4+K_2SO_4+I_2.$$

It is quite possible, however, that intermediate iodo-compounds are first formed, and, being mustable, rapidly decompose, liberating iodine.5 Thus:

$$\begin{aligned} ^\bullet \! 2 & \text{FeCl}_2 \cdot \text{Cl} + 2 \text{KI} = & 2 \text{FeCl}_2 \text{I} + 2 \text{KCl}, \\ & 2 \text{FeCl}_2 \text{I} = & 2 \text{FCCl}_2 + \text{I}_2, \end{aligned}$$

and

$$\begin{aligned} & \frac{\text{FeSO}_{1}}{\text{FeSO}_{1}}.\text{SO}_{1} + 2\text{KI} = & 2\text{FeSO}_{1}\text{I} + \text{K}_{2}\text{SO}_{1}^{\bullet}, \\ & 2\text{FeSO}_{1}\text{I} = & 2\text{FeSO}_{4} + \text{I}_{2}. \end{aligned}$$

A useful reducing agent is stannous chloride, which reacts with ferric chloride as follows :-- 2

the reaction being one of the third order or trimolecular 6 and not bimolecular, as Kahlenberg suggested, in neutral solution. In the presence of acid the reaction apparently approximates to one of the second order, but the role played by the acid is not clear.

Photochemical Reduction.—Ferrie salts are reduced by organic substances under the influence of light. Thus an alcoholic solution of ferric chloride, when exposed to smilight, is converted into ferrous chloride, the alcohol being oxidised to aldehyde. For example, in the case of methyl 8 and ethyl alcohols: -

$$\begin{array}{l} 2 \mathrm{heCl_3} + \mathrm{CH_3OH} = 2 \mathrm{FeCl_2} + \mathrm{H.CHO} + 2 \mathrm{HCl,} \\ 2 \mathrm{FeCl_3} + \mathrm{CH_3.CH_2OH} = 2 \mathrm{FeCl_2} + \mathrm{CH_3.CHO} + 2 \mathrm{HCl.} \end{array}$$

In this reaction the light acts, not as a catalyst, but as a source of energy. The quotient.

Time required for decolorisation
Concentration of fervic chloride

In such few cases as it has proved possible to determine. Hewitt and Mann, Trans. Chem. Soc., 1913, 103, 324.

^{*} The reaction is reversible, for under certain conditions ferrous salts reduce iodine.

^{**}Saubert and Chrer, & Eisch. anorg. Chem., 1895, 9, 212; Seubert, ibid., 1894, 5, 334; Seubert and Dorrer, ibid., p. 339; Carnegie, Chem., 1895, 9, 212; Seubert, ibid., p. 339; Carnegie, Chem. News, 1889, 60, 87.

**Seubert and Rohrer, & Eisch. anorg. Chem., 1894, 7, 137.

**Seubert and Dorrer, ibid., 1894, 5, 411; Orlov, Chem. Phys. Chem. Soc., 1913, 45, ...

Noyes, Zeitsch. physikal. Chem., 1895, 16, 546; 1895, 18, 118.

Kahlenberg, J. Amer. Chep. Soc., 1894, 16, 314.

Benrath, J. prakt. Chem., 1909, (2), 80, 283.

is nearly constant, from which it is concluded that the amount of light energy required to reduce a definite quantity of ferric chloride is nearly

constant and independent of the concentration.

Similarly a ferric salt of an organic acid is reduced by similarly.

ferrie oxalate being a well-known example.1 •

$$\text{Fe}_{2}^{\bullet}(C_{2}O_{4})_{3} = 2\text{Fe}C_{2}O_{4} + 2\text{CO}_{2}.$$

In this case the progress of the reaction may be followed by noting the rate of evolution of carroon dioxide. The blue prints used by engineers are prepared by exposing to light, under a drawing which serves as negative, sheets of paper previously soaked in a solution of an organic ferric salt. After a suitable explaine the paper is washed with a solution of potassium ferricyanide, which gives the characteristic Turnbull's blue colour where the light has effected the reduction of the ferric salt.2

Ultraviolet light, such as that, for example, crafted by an electric spark passing between ahuminum terminals, is very active in reducing ferric salts, its activity being greatly increased by the presence or sugar. Alteration of temperature appears to exert only a small

influence.

It is interesting to note that ferrice salts of organic acids such as citric, tartanic, etc., are not as a rule ferric salts in the ordinary accepta-tion of the term. The iron has entered into the electro-negative midele in an analogous manner to copper in the organic copper derivatives. In ferric oxalate and in the ferricyanides, which latter do not contain hydroxylic or carboxylic groups, the iron is similarly in the negative

Ferrons oxalate is only slightly soluble in water, but the double salt $K_2 Fe(C_2O_4)_2.2H_2O$ dissolves more readily. The iron is mainly present in solution as the complex amon $Fe(C_2O_4)_2$'s but this is not very stuble, owing to dissociation, which takes place as follows:--

$$\operatorname{Fc}(C_2O_4)_2" * \simeq \operatorname{Fc}C_2O_4 + C_2O_4",$$
 (Solid)

unless an excess of alkali oxalate is present, ferrous oxalate being precipitated.5

The magnetic properties of from calts have been the subject of a

considerable amount of investigation.

Reduction of Iron Salts to Metallic Iron. - Both ferrous and fewic salts can be reduced to the metal in a variety of ways. In solution many of them are reduced by the introduction of more electro-positive metals such as magnesium, zinc, or alaminimm, as also by electrolysis. In the dry way they are reduced by heating in a current of hydrogen

these dates, however.

The photochemical sensitiveness of various organic salts has been examined by Winther and Howe, Zeitech. wies. Photochem., 1914, 14, 196; Jodibauer, loc. cit.

Ross, J. Amer. Chem. Soc., 1906, 28, 786.

Pickering, Trans. Chem. Soc., 1913, 103, 1358.

See Baur, Zeitsch. physikal, Chem., 1908, 63, 683 : Jodibauer, chid., 1904, 59, 59.3;
 Lemoine, Compt. rend., 1895, 121, 817; 1895, 120, 441; 1883, 97, 1208; Roloff, Zeitsch. physikal. Chem., 1894, 13, 3274, Jodin, Compt. rend., 1882, 94, 1315; Exter, J. Chem. Soc. Abetr., 1881, p. 670.
 The reaction was known and made use of in actinometry long before the chem.

Shappand and Mees, Trans. Chem. Soc., 1905, 87, 189.
 Pandi, Compt. rend., 1908, 147, 56, etc.

. FROM AND ITS (COMPOUNDS.

r carbon monoxide, or with zine dust or by ignition with carbon in an ir blast (see Chapter III.).

When ferrie acctate solution is exposed to hydrogen gas at 350° C. and under 230 atmospheres' pressure, ferrie oxide is precipitated as an anhydrous red mass, insoluble in water but soluble in hydrochloric cid. At 400° C and under a pressure of 420 atmospheres, metallic on is obtained.

Alloys of Iron: These are dealt with in Part III. of this volume.

¹ Ipatiefland Werchowsky, Ber., 1909, 42, 2078.

CHAPTER VI.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS.

Iron Hydride.- It is a moot point as to whether or not a hydride of iron is capable of existence. It has been suggested that ferrous hydride results on treating ferrous iodide with zmc ethyl. Thus

 $FeI_2 + ZnEt_2 = ZnI_2 + FeII_2 + 2C_2II_4$

but the evidence is not conclusive.

IRON- AND FLUORINE.

Ferrous fluoride, VeF2, may be obtained as colourless monoclinic crystals of density 4-09 by heating reduced iron or anhydrons ferrous chloride to redness in a current of dry hydrogen fluoride.² In the amorphous condition it results on passing hydrogen fluoride over ferrous chloride in the cold.

It volatilises at 1100°C,, and is reduced by hydrogen at high tempera-tures to metallic iron. It dissolves slowly in water, and the solution

gradually deposits hydrated ferric oxide.

The tetrahydrate, FcF2.4H2O, results in the form of white of faintly green prisms when iron is dissolved in aqueous hydrogen fluoride and the solution allowed to crystallise at the ordinary temperature. On. warming gently the crystals lose their combined water, and the anhydrous salt is left. The crystals are more soluble in hydrogen fluoride solution than in pure water. The solution decolorises permangazate, the ferrie salt being obtained, and the same result accrues. albeit more slowly, by simply exposing the aqueons solution to the atmosphere.

The mineral acids dissolve the crystals completely. When ignited in air, ferric oxide is obtained, as also when the crystals are fused with an alkali carlymate. Double salts formed by union with the finorides of the alkali and certain other metals have been described.3 These may be termed •

Ferro Luorides or Fluoterrites.

Thus, for example with ammonium fluoride two salts have been obtained—namely ammonium trifluoferrite, NH₄FcF₃,2H₂Q or

Wanklyn and Carius, Annalen, 1861, 120, 69. See also Dupasquier, Compt. read.,
 1842, 14, 511; Fresenius and Schlossberger, Annalen, 1844, 31, 413.
 Pouleno, Compt. read., 1892, 115, 941; Ann. Chim. Phys., 1804, (7), 2, 5.
 Marignac, Ann. Chim. Phys., 1860, (3), 60, 306; 1873, (4), 30, 45? R. Wagner, Ber.,
 1886, 19, 897; Barteczko, Dissertation, Bern, 1900; Weinland and Koppen, Zeitsch. anorg. Chem., 1900, 22, 286.

FeF₂.NH₄F.2H₂O (green); and the tetrafluoferrite, (NH₄)₂FeF₄ or FeF₂.2NH₄F (brown). With potassium fluoride the flesh-coloured trifluoferrite, KFcF3.2112O or FcF2.KF.2H2O, is formed. The tetra-

fluoferrite, K2FcF4, is also known.1

Aluminium pentafluofecrite, AlFcF₅.7H₂O or FcF₂.AlF₃.7H₂O₅, is obtained as small, greenish-white crystals on mixing a solution of ferrous carbonate in dilute hydrofluoric acid with one of aluminium hydroxide in the same acid and concentrating over lime at the ordinary temperature.2,

The ferric analogue, FeF₂FeF₃.7H₂O, has also been obtained (see

• Sillcon hexafluoferrite, SiFcF6.0112O, is more generally known as ferrous fit osiilcate, FcSiF₆.6ll₂O (sec. p. 240).

Ferric fluoride may be obtained in the hydrated condition by dissolving ferric hydroxide in aqueous hydrogen fluoritle, or by oxidation of ferrous fluoride with nitric acid in the presence of hydrofluoric acid. Upon evaporation crystals of the nonahydrate, 2FcF₃.9H₂O, separate out, which, at 100° C., yield the hexahydrate, 2FcF365H2O, and when gently heated in gaseous hydrogen fluoride, evolve water yielding the anhydrous salt, FeF3.

The last-named is also obtained when hydrogen fluoride is passed over red-hot iron, ferric oxide, or ferric chloride; 4 or by heating the double salt, ferric anunyminm fluoride, FcF₃.3NH₄F, in an

inert gas.

*At 1000°C, ferric fluoride partially volatilises and partially crystallises to small green crystals, possibly triclinie,4 of density 3.18. When fused with alkali earbonates it yields ferme oxide, as also when ignited in air or steam. iiydrogen reduces the salt at dull red heat. Boiling water dissolves only traces of the anhydrons salt. Aqueous solutions of ferric fluoride are colourless, and their electric conductivity very small, so that but little ionisation takes place. Determinations of the freezing points of dilute solutions 5 indicate a molecular weight corresponding to the simple formula FeF₃. Addition of ammonium hydroxide causes the precipitation of a yellow basic fluoride.6

It has been suggested that the formula for the hexahydrate would. be more correctly 7 represented as Fe₂F₄(OH)₂(HF)₂.4H₂O, since only two atoms of fluorine enter-into double decomposition with barium chloride solution, although the vaction is complicated by the precipitation of barium ferrifluoride $\mathrm{Ba_3(FeF_6)_2}$. Again, on boiling the salt with alcohol, two molecules of hydrogen fluoride are readily evolved, whilst the remaining fluorine is expelled very slowly. On prolonged heating at 95°C. all exyfluoride, Fo₂OF₄, is produced:—⁷

$$Fc_2F_4(OH)_2(HF)_2.4H_2O = Fc_2OF_4 + 5H_2O + 2HF.$$

1 Wagner, loc. cit.

Weinland and Koppen, Zeitsch. anorg. Chez., 1900, 22, 266.

Speransky, J. Rhss. Chem. Sec., 1892, 24, 304.
 Scheurer-Kastner, Ann. Chim. Phys., 1863, (3), 68, 471.

Recours, Compt. rend., 1912#154, 655.

The heat of neutralisation, Fc(OH), 3HF. Aq., is 23,745 calories (Petersen, Zeitsch. physikal. Chem., 1889, 4, 384; Ber., 1888, 21, 3257).

Poulenc, Compt. rend., 1892, 115, 941; Ann. Chink Phys., 1894, (7), 2,5.

COMPOUNDS OF TRON WITH HYDROGEN AND THE HALOGENS. 80

These reactions appear to indicate that four of the fluorine atoms are attached to the iron considerably more firmly than the remaining two

Some double salts have been described, and those of general • FeF₃.3MF, or M₃FeF₆, formula

are known as ferrifluorides or hexafluoferrates. They form an isomorphous series, likewise Romorphous with corresponding double fluorides of aluminium and chromium.2

Ferrifluorides or Muniferrates, M3FcF6.

These salts are usually known as ferrillnorides. Ammonlum ferrillnorides (NII₄)₃FeF $_6$, is prepared by nearly neutralising a solution of ferric fluoride in hydrofluorie acid with ammonia, and evaporating.3

Barium ferrifluoride, Ba₃(FcF₆)₂, is obtained as a precipitate when barium chloride is added to an aqueous solution of ferric fluoride.

Potassium ferrifluoride, K₃FeF₆, may be obtained in a similar manner to the sodium salt, which it closely resembles.⁵ • Sodium ferrifluoride, Na₃FeF₆, is obtained on adding ferric chloride or fluoride to a neutral solution of sodium fluoride. it is formed as a white, crystalline precipitate, which is only sparingly soluble in water. It does not give a red colour with thiocyanates, thus indicating that the iron atom is part of the negative radicle.

The subhydrate, 2Na₃FcF₆·H₂O, has also been obtained.⁷

Sodium fluoride and ferrie fluoride yield a cutegtic mixture, melting at 892°-C, and corresponding in composition to the formula 65 NaF. 35FeF₃.8

Thallous ferrifluoride, 3TlF.2FcF₃, is obtained as pink crystals on evaporating a solution of thallous fluoride and excess of ferricfluoride.9

Ferrous diferrifluoride, FcFc2F3.10H2O, or FcF2.2FeF3.10H2O, obtained by the action of hydrogen fluoride on iron in the presence of nitric acid, crystallises in colourless octahedra, which appear fleshcoloured in thick layers. It gives the ordinary ferrous and ferric reactions only after addition of an acid. 10

Ferrous monoferrifluoride, FcF₂.FcF₃.7H₂O, is obtained as yellow crystals on mixing a solution of ferric hydroxide in dilute hydrofluoric

See Recours, Compt. rend., 1913, 156, 1618; 1912, 154, 655; Aphraim and Barteczko,
 Zeitsch. anorg. Chem., 1909, 61, 238; Christensett J. prakt. Chem., 1887, (2), 35, 161;
 Guyot, Compt. rend., 1870, 71, 274; Nickles, J. Pharm. Thins., 1866, (4), 16, 14; 1868,
 (4), 7, 16; Marignac, loc. cit.; Befzelius, Pogg. Annales, 1825, 4, 129.
 Helmolt, Zeitsch. anorg. Chem., 1893, 3, 115.
 Marignac, Ann. Chim. Phys., 1860, (3), 60, 306; 1873, (4), 30, 46; Wagner, Ber.

^{1886, 19, 896.}

⁴ Recours, Compt. rend., 1912, 154, 655. .

^{*} Recoura, **comparation, **comparat

acid with a solution of ferrous carbonate in the same acid and con-

centrating at the ordinary temperature over lime.1

Cobalt ferrifluoride, CoF2.FcF3.7II2O (rose-coloured), nickel ferrifluoride, NiF2.FcF3.7H2O (green crystals), and zinc ferrifluoride, ZnF₂.FcF₃.711₂O · (faintly red crystals), have been obtained in an analogous manner.

IRON AND CHLORINE

Ferrous chloride, FeCl₂, may be obtained in the anhydrous condition in a variety of ways. A convenient method consists in heating to dull red heat excess of iron filings in a current of chlorine, of animonium chloride, or of gaseous hydrogen chloride, the latter methods being preferable, as the first-named generally yields small quantities of the ferrie salt. Ferrous chloride also results when ferrie chloride is heated in a current of pure hydrogen; but care must be taken that the temperature does not use too high, or the ferrous chloride will itself be reduced.

When a current of low density is passed through dilute ethereal solutions of ferrie chloride, reduction to ferrous chloride takes place at the cathode.4

If the hydrated salt, FcCl₂,4H₂O, is dissolved in ammonium chloride solution, evaporated to dryness, and subsequently heated in the absence of air, the water and ammonium chloride escape, leaving the anhydrous ferrous chloride behind.5

Anhydrous ferrons chloride as obtained by these methods is a white sealy crystalline substance when pure, but usually it possesses a yellow colour in consequence of the presence of traces of the ferrie salt. Its density is 2.53. It readily dissolves in alcohol and in water, with the latter yielding a colourless solution which turns green upon exposure to air.

When heated strongly in air ferric chloride and oxide are produced, the former volutilising. Thus:—

$$12FeCl_2 + 3O_2 = 8FeCl_3 + 2Fe_2O_3$$
.

When heated in steam, ferrons chloride yields hydrogen chloride and coso-ferric oxide:— ${}_{3}{\rm FeCl_2} \pm 4\Pi_2{\rm O} = {\rm Fe_3O_4} + 6\Pi{\rm Cl} + \Pi_2.$ ferroso-ferric oxide:--

$$3 \text{FeCl}_2 + 4 \text{H}_2 O = \text{Fe}_3 O_4 + 6 \text{HCl} + \text{H}_2$$

In the absence of air, ferrous chloride fuses at red heat and volatilises at yellow heat? Its vapour density has been determined under various conditions, both in an atmosphere of introgen and of gaseous hydrogen chloride. At bright yellow heat in the latter gas the densities obtained in two experiments corresponded to molecular weights of 192 1 and 188.8 respectively-values that he midway between those for the simple molecule FcCl₂ (namely 126-8) and the double molecule Fc₂Cl₄ (namely 258-6), respectively. This suggests that the vapour consists of a

- Weinland and Koppen, Zeitsch. akorg. Chem., 1900, 22, 266.
 Geuther and Forsberg, Annalen, 1861, 120, 273.
 Wohler, Annalen, Suppl., 1865-66, 4, 255.
 H. E. Williams, J. Amer. Chem. Soc., 1912, 34, 1014.
 E. Williams, J. Amer. Chem. Soc., 1912, 34, 1014.

 - See Geuther and Försberg, Annalen, 1861, 120, 273.
 Wöhler and Liebig, Pogg. Annalen, 1831, 21, 582.
 Meyer, Ber., 1879, 12, 1193; 1884, 17, 1336.

COMPOUNDS OF TRON WITH HYDROGEN AND THE HALOGENS. 91

mixture of double and single molecules in equilibrium with each other, as represented by the equation

. At 1300° to 1500° C. dissociation into single molecules of FeCl is complete. $^{\rm 1}$

In boiling solutions of organic liquids such as pyridine, ferrous

chloride appears to have the simple formula FeCl2,2

An ethereal solution of ferrous chloride heated in a sealed tube with ethylene absorbs the gas, yielding a compound, FcCl₂,C₂H₄,2H₄O, in the form of colourless, needle-shaped crystals, readily soluble in water.³

Ferrons chloride unites with bromme to yield an unstable chloro-

hromide, FeCl₂Br (see p. 106),

Ferrous chloride readily absorbs ammonia, yielding a voluminous white mass, which on warming evolves some of the gas again, whilst on heating to above 350° C. reduction takes place, iron nitride being produced. Two definite compounds have been obtained, namely the diammoniate, FcCl₂.2NH₃, and the hexammoniate, FcCl₂.6NH₃; whilst the existence of the monammoniate, FcCl₂.NH₃, has been detected. Between the temperatures of -18° and 350° C, the reaction is reversible, the equilibrium being represented as follows:—4

$$xNH_3+FeCl_2 = FeCl_2.xNH_3.$$

The hexammoniate is formed at the ordinary temperature, and the diammoniate by heating the hexammoniate to 100° C. in hydrogen.⁵

The dissociation pressures and heats of dissociation of these compounds have been determined as follow:-- 6

		_		Temperature.	Dissociation Pre ssic e. mm.	Heat of Dissociation.
FeCl ₂ .6NH ₃	1		,	90	270	18.65
FeCl ₂ .2NH ₃		• :	•	230 277	121 3 555	20·8 20·7
FeCl ₂ .NII ₃		:		214·5· 277	5.8 54.4	22·5° 23·1

With methylamine, ferrous chloride yields two compounds: namely, a white voluminous compound containing six molecules of methylamine, FcCl₂.6CH₃NH₂; and agrey compound, FeCl₂.2CH₃NH₂.

Werner, Zeitsch. anorg. Chem., 1897, 15, 1.

¹ Nilson and Pettersson, Trans. Chem. Soc., 1888, 53, 828.

Kachler, J. prakt. Chem., 1869, 106, 254.
 Girardet, Bull. Soc., chim., 2010, (4), 7, 1028; Fowler, Trans. Chem. Soc., 1901, 79, 285; Miller, Amer. Chem. J., 1895, 17, 570.
 Miller, J. oc. cit.

Biltz and Hüttig, Zeitsch, anorg. Chem., 1919, 109; 89.

The hydrazinate, FeCl₂.2N₂H₄, has also been prepared.¹

A study of the vapour tensions of hydrated ferrous chloride indicates the existence of four hydrates-namely the hexahydrate, FeCl₂ 6H₂O; tetrahydrate, FeCl₂.4H₂O; dihydrate, FeCl₂.2H₂O; and monohydrate, FeCl₂.H₂O.2 Of these, the best known are the tetra- and di-hydrates, the former being the usual hydrate under normal conditions.

The tetrahydrate, FeCl2.4II2O, is readily obtained in the form of bluish monoclinic crystals when iron is dissolved in aqueous hydrogen chloride and the solution evaporated out of contact with air The density of the crystals is 1.937. They deliquesce upon exposure to . air, acquiring a greenish colour consequent upon slight oxidation.

The tetrahydrate is converted into the dihydrate, FeCl, 2H,O, on

gentle healing, the transition temperature for the phases

$$\mathrm{FcCl_2.4H_2O} = \mathrm{FcCl_2.2H_2O} + 2\mathrm{H_2O}$$

being 65.2° C.4 From a saturated solution it separates out at 72.6° C.5 In a saturated solution of ferrous magnesium chloride the dihydrate forms at 43.2° C.6 The dihydrate is also formed by allowing the tetrahydrate to effloresce at the ordinary temperature in a vacuum, it and by passing a current of dry hydrogen chloride through a saturated solution of ferrous chloride, when it is obtained as fine, transparent pale-green needles, which do not alter in a vacuum. 'The heats of formation of the anhydrous and hydrated salts are given as follow: -

 $[Fe]+(Cl_2)+Aq.$ $-FeCl_2.Aq.+99,950$ calories, whence $[FeCl_2] + Aq. = FeCl_2 Aq. + 17,900$ calories.

 \bullet [Fe] +2(HCl) = [FcCl₂] +(H₂) +60,000 calories, $[Fe]+2HCl.Aq.=FeCl_2Aq.+H_2+21,320$ calories, $-FeCl_2$] +2 H_2O = $FeCl_2$.2 H_2O] +6920 calories, 10 $[FcCl_2.2H_2O] + 2H_2O = [FeCl_2.4H_2O] + 2520 \text{ calories,}^{10}$ $[FeCl_2] + 2[H_2O] = [FeCl_2.2H_2O] + 6400 \text{ calories},^{11}$ (solid) $[FeCl_22II_2O] + 2[H_2O] = [FeCl_2.4II_2O] + 2600 \text{ talorics.}^{11}$

(solid) The heat of solution of the dihydrate at 20° C. is 8700 calories. A monohydrate, FeCl₂.H₂O, has been described by Lesecur. 12 The solubility of ferrous chloride in water is as follows: - 13

53 Temperature, "C. **450** _118 Grame FeCl, per 100 grams solution . 40.5 *40.9 41.0 42.5 44.4 45.0 45.9 49.2 51.3 51.0 51.7

```
1 Franzen and O. von Mayer, Zeitsch. anorg. Chem., 1905, 60, 247.
```

Lescour, Ann. Chim. Phys., 1894 (7), 2, 78.

**Lescour (lot. cit.; B.dl. Soc. chim., 1894, (3), 11, 853) states that by the same method he distained the hexahydrate, FeCl., 614,0.

*Kremann and Noss, Monatsh., 1912, 33, 1205.

**Bocke, Sitzungsber. K. Akad. Wiss. Berlin, 1909, 24, 632.

**Bocke, Jahb. Min., 1911, I., 48.

Sabatier, Compt. rend., 1881, 93, 56; Bull. Loc. chim., 1889, (3), 1, 88

Sabatier, Bull. Soc. chim., 1894, (3), 11, 546.

^{*} Thomsen, Thermochemistry, translated by Burke (Longmans, 1908), p. 264.

Babatier, Bull. Spc. chim., 1681, (2), 36, 197.
 Sabatier, ibid., 1889, (3), 1, 96.
 Lescour, loc. cit.

¹⁸ Etard, Ann. Chim. Phys., 1854, (7), 2, 503.

COMPOUNDS OF IRON WITH MYDROGEN AND THE HALOGENS. 99

The specific gravities of solutions of ferrous chloride at 15.5° C. at various concentrations are as follow: - 1

	Grams of FeCl ₂ in 100 c.c. of Solution.	Specific Gravity at 15.5° C.
	5·19 10·27	1.0459 1.0892
,	19·73 30·16 44·65	1·1668 • 1·2528 • 1·3674
	54.20	1.4439

Ferrous chloride in acid-solution is partially oxidised by sulphur dioxide to the ferric salt, sulphur being deposited. Solutions of ferrous chloride in various solvents such as water, alcohol, ethylacetate, pyridine, etc., absorb nitric oxide, the extent of absorption depending upon the concentration of the iron salt, the temperature, gaseous pressure, and the nature of the solvent. The limit of absorption is reached with one molecule of NO to one atom of iron. Presumably the compound Fet NO exists in solution, most probably combined with the solvent.³ It has not as yet been isolated.⁴

Dry ferrous chloride also absorbs nitrogen peroxide, yielding a fairly stable compound 4FcCl₂.NO₂, which does not lose its nitrogen peroxide content even in vacuo.⁵ In the presence of moisture more of the gas is absorbed, but the reaction is complicated.

Ferrochlorides or Chlorferrites.

Ferrous chloride readily unites with other metallic chlorides to form double salts, a considerable variety of which Is known. Those of formula M₂FeCl₄ recall the chlor-ruthenites, M₂RnCl₄, already discussed. § The best-known double salts are as follow: --

Ammonium tetrachlorferrite, (NII₄)₂FcCl₄ or FcCl₂.2NII₄Cl, is readily

Dunn, J. Soc. Cheg. Ind., 1902, 21, 396.
 Smythe and Wardlaw, Proc. Durham Phil. Soc., 1913-14, 5, 187.

See Graham, Phil. May., 1828, 4, 265, 331; Cay. Ann. Chim. Phys., 1885, (6), 5, 145; Thomas, Bull. Soc. chim., 1898, (3), 19, 343, 444; Manchot and Zechentinayer, Annalen, 1906, 350, 368; Manchot and Huttner, ibid., 1910, 372, 1532; 20, 48 By passing nitric oxid. into a saturated ethereal solution of ferric chloride until no more gas is absorbed, and subsequently concentrating the solution over sulphuric acid, Thomas (Compt. rend., 1895, 120, 447; the result is disputed by Bellucci, Gazzetta, 1914, 44, ii. 384) isolated a substance in the form of black needles 'to which ac ascribed the composition represented by the formula, Fe(12, ND+2A2.). At 60° small yellow crystals of an analydrous companyl series obtained to which the formula, ke(2) NA was crystals of an anhydrous compound were obtained, to which the formula, kell, NO, was given. The substance proved to be readily, soluble in water without gascous evolution, yielding a yellow solution the colour of which deepened on warming, and from which caustic alkalies precipitated ferrous hydroxids.

A second solid substance, brownish yellow in colour, is described (Thomas, Compt. rend., 1895, 121, 128) as resulting on heating ferric chloridy in a current of nitric oxide. Partial reduction takes place, leaving a residue of composition corresponding to the formula, 2FeCl₂.NO. A red hygroscopic and unstable compound, 10FeCl₂.NO, is also

described.

⁵ Thomas, Compt. rend., 1897, 124, 366. This volume, Part I.

obtained by concentrating a mixed solution of the constituent salts.1 It is slowly soluble in water. The solution is reduced by zine at the boiling-point, depositing metallic iron.

Cæslum tetrachlorferrite,2 ('s,FcCl4,2H,O. Cæslum trichlorferrite, 2 (SFeCl₃, 211₂O.

Magnesium tetrachlorferrite, MgFc(l₄.8H₂Ot

Potassium tetrachlorferrite, K₂Fc(l₄.2H₂O or 2KCl.Fc(l₂.2H₂O.—

This salt occurs in nature as *Douglasite* (see p. 29) and is formed by mixing solutions of ferrous chloride and potassium chloride at the boiling-point and concentrating in the warm.4 It is stable up to 85° C. The monohydrate, K₂FeCl₄.H₂O, is described ⁵ as forming red, hygrosequia names

seopic prisms,
Potassium trichlorferrite, 6 KFeCL 2H₂Q Rubidium tetrachlorferrite, 11b₂FeCl₄,2H₂O. Rubidium trichlorferrite;7 HbFeCl_a215O.

Sodium chloride does not appear to yield double salts of this type, a but the double sodium-potassium salt, FeCl, 3KCl, NaCl, occurs in nature as rinneite (see p. 29).

When ferroboron is heated in chlorine, iridescent green crystals of

8FeCl₂.BCl₃ are obtained.

With stannic chloride, ferrous stannichloride, FcSnCl6,6Il2O, is obtained. 10

Ferric chloride, FeCl₃, occurs in nature in the lava of Vesuvius, as the mineral molysite. In the laboratory it is prepared in the anhydrous condition by passing a rapid current of dry chlorine through a retort over heated iron wire, advantageously ent into pieces some 6 mm, in length. The ferric chloride volatilises and condenses as beautiful crystals on the upper, cooler portions of the retort.

At The end of the operation the heating is discontinued and the chlorine expelled from the apparatus by a rapid current of carbon dioxide. The salt is now rapidly transferred to a tube and hermetically

scaled.

Ferric chloride may also be obtained by passing a current of dry, gaseous hydrogen chloride over heated amorphous ferric oxide; by passing chlorine over heated ferrous chloride; and by heating together ferrous sulphate and talcium chloritle. 11

As prepared by any of these methods ferric chloride consists of darla iridescent, hexagonal scales, which appear red by transmitted light, but exhibit a green lystre when viewed by reflected light. It melts under pressure at 301° C., but volatilises at 280° to 285° C., at

Winkler, Rep. Fharm., 1836, 59, 171.
 See also Hisinger and Berzelius, Gilbert's Annalen, 1807, 27, 273; Vigel, J. prakt Chem., 1834, 2, 192; Chassevaut, Ann. Chim. Phys., 1893, (6), 30, 5.
 Wilke-Dorfurt and Heyne, Rev., 1912, 46, 1012.

Booke, Jahrb. Min., 1911, 1., 48.

Schabus, Strungsber. K. Akad. Wiss. Vien, 1850, 4, 456

Bohabus, Nizungster. A. Akua. 10 188. F. 1811, 1000,
 Fritzsche, J. prakt. Chem., 1839, 18, 488.
 Boeke, Jahrb. Min., 1917, 1, 48.
 Wilke-Dörfurt and Heyne, Ber., 1912, 45, 1012.
 Boeke, Chem. Lett., 1908, 32, 1228.
 J. Hoffmang Zeitsch. anorg. Chem., 1910, 66, 361.
 Biron, J. Russ. Phys. Chem. Soc., 1904, 36, 489.
 Daville and Troost. Count. rend., 1861, 52, 920.

¹¹ Deville and Troost, Compt. rend., 1861, 52, 920.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS. 95

atmospheric pressure, its real melting-point at 760 mm. being 808° C.1 Between 821° and 442° C. its vapour density in an atmosphere of chlorine is practically constant, and corresponds to the double formula Fe₂Cl₆.2

At temperatures above 500° C. anhydrous ferric chloride dissociates into the ferrous salt and free chlorine, the equilibrium being represented by the equation !-- .

$$\bullet \operatorname{Fe}_{2}\operatorname{Cl}_{6} = \operatorname{Fe}_{2}\operatorname{Cl}_{1} + \operatorname{Cl}_{2}.$$

The dissociation is already perceptible at 122° C., 1 that is very small, becoming appreciable only at temperatures in the neighbourhood of 500° C.

At higher temperatures still, the ferrous chloride dissociates into simple molecules of FeCl₂. These facts probably suffice to account for the low results obtained for the density of ferric chloride in an inert atmosphere, such as nitrogen, since under these conditions dissociation might well be expected to proceed to a greater extent at any given temperature than in an atmosphere of chlorine, by the law of Mass

In boiling solutions of alcohol, ether, pyridine, and other organic solvents, ferric chlorale appears to exist as simple molecules of FeCl, if the interpretation usually placed upon the results that have been obtained is regarded as correct.6

When heated in a current of hydrogen, ferric chloride is reduced to the ferrous salt, provided the temperature is not allowed to rise too high; otherwise further reduction cusues. Traces of reduction can be detected after several hours at temperatures as low as 100° C.8 Heated in oxygen, chlorine is evolved, leaving a residue of_ferric oxide; and, when heated in steam, gaseous hydrogen chloride and ferric oxide are produced. Anhydrous ferric chloride absorbs nitric oxide at ordinary temperatures, yielding a brown mass having the composition 2FeCl_{ac}NO. On raising the temperature to 60° C., the proportion of nitric baide is • reduced to one half, a red powder, of composition corresponding to 4FcCl_a.NO, being obtained. At temperatures at which ferric chloride begins to volatilise reduction takes place, ferrous chloride being produced. In ethercal solution ferric ebloride is reduced by nitric oxide at the ordinary temperature to the terrons salt, which latter absorbs excess nitric oxide yielding a compound to which the formula FeCl. NO+21120 (vide supra, p. 93, footnote 4) has been given, which crystallises out at the ordinary temperature. If, however, the temperature is first raised to approximately 60° C., small yellow crystals of the anhydrous compound, FeCl₂.NO, are stated to result; but this is disputed,

¹ Hachmeister, Zeitsch. anorg. Chem., 1910, 100, 145; Carnelley, Trans. Chem. Soc.,

 ^{1880, 37, 125.} Friedel and Crafts, Compt. rend., 1888, 107, 301; Biltz, Zeitsch. physikal. Chem., 1902, 40, 185, 211. The results support the earlier work of Deville and Troost, Ann. Chim. Phys., 1860, (3), 58, 280.

Fireman and Portner, J. Physical Chem., 1904, 8, 500.

Grünewald and Meyer, Ber., 1888, 21, 687.

Muller, Compt. rend., 1894, 18, 641; Werner, Zeitsch. anorg. Chem., 1897, 15, 1.

See Turner, Molecular Association (Longmans, 1915), chapter ix.

Wohler, Annalen, Suppl., 1865-66, 4, 255.
 Phillipe, Amer. Chem. J., 1894, 16, 255.

Thomas, Compt. rend., 1835, 120, 447; Resson, ibid., 1889, 108, 1012.

as has been already mentioned (see foothote, p. 93). With nitrogen peroxide in the cold, ferric chloride yields a brownish-yellow, deliquescent powder, of composition represented by the formula FcCl₃.NO₂. This substance is stable in air as also in a vacuum, but is decomposed by water, yielding nitrous acid.¹

FcCl_a.NOCl is obtained as a black, crystalline substance when ferric chloride is heated in the dried vapours from aqua regia.² It is very hygroscopic and dissolves in water, evolving oxides of nitrogen. When heated it readily fines and volatilises without decomposition. In a scaled tube it mults at 116° C2

Anhydrous ferric chloride readily absorbs aumtonia at the ordinary temperature, yielding the hexammoniate, FcCl₃.6NH₃. This decomposes upon extosure to air, yielding the pentammoniate, FcCl₃.5NH₃, which is stable in a dry atmosphere. When heated to 100° C, the tetrammoniate, FcCl₃.4NH₃, results.⁴

The anhydrous salt when heated to dull reduces with metallic

calcium is reduced to iron.5

Ferric chloride combines with other to form a dark red, highly deliquescent solid of composition FcCl₃·(C₂H₅)₂O. All is soluble in water and alcohol, and at 100° C. decomposes quantitatively, yielding the oxychloride FcOCl:—

$$F_{CCl_{3}}(C_{2}H_{5})_{2}O = {}^{\bullet}_{2}C_{2}H_{5}Cl + F_{C}OCl.$$

The heats of formation of anhydrous ferric chloride and of its hydrates are as follow:

$$\begin{array}{l} 2 | Fe | + 2 (Cl_2) + Aq. = 2 Fe Cl_2 . Aq. + 199,900 \ \ calories.^7 \\ \bullet 2 Fe Cl_2 . Aq. + (Cl_2) - 2 Fe Cl_3 . Aq. + 55,540 \ \ calories.^8 \end{array}$$

whence

$$2[Fe] + 3(Cl_2) + Aq. - 2FcCl_3.Aq. + 255,440 \text{ calories};$$

again,

$$2[\operatorname{FeCl}_3] + \operatorname{Aq} = 2[\operatorname{FeCl}_3.\operatorname{Aq}, +63,360 \text{ calories},]^5$$

whence, by subtraction,

$$2[Fe]+3(Cl_2)=2[FeCl_3]+192,080$$
 calories,

$$\begin{array}{c} 2[\mathrm{FeCl_3}] + 5[\mathrm{H_2O}] = [2\mathrm{ReCl_3.5H_2O}] + 14,400 \ \mathrm{calories},^{10} \\ \mathrm{c} \quad [2\mathrm{FeCl_3.5H_2O}] + \mathrm{Aq.} = 2\mathrm{FeCl_3.Aq.} + 42,000 \ \mathrm{calories},^{10} \ \mathrm{at} \ 20^{\circ} \ \mathrm{C.} \end{array}$$

Anhydrous ferric chloride is very deliquescent, and the study of its solubility in water is interesting, there being four distinct curves corresponding to the appearance of four hydrated salts, namely, 2FeCl₃.4H₂O

```
Thomas, Bull. Soc. chim., 1896, (3), 15, 1001.
Weber, Pogg. Annalen, 1863, 118, 481.
van Heteren, Zeitsch. anorg. Chem., 1899, 22, 277.
Miller, Amer. Chem. J., 1896, 17, 570.
Hackspill, Bull. Soc. chim., 1907, (4), 41, 895.
Forster, Cooper, and Yarrow, Trans. Chem. Soc., 1917, 111, 809.
Soe p. 92.
Thomsen, Thermochemistry, translated by K. A. Burke (Longmans, 1968), p. 204.
```

Thomsen, Thermochemistry, translated by K. A. Bittee (Longinaus, 1965), p. 2021.
Thomsen, loc. cit., Sabatier (Compt. rend., 1881, 93, 56; Bull. Soc. chim., 1881, (2),

36, 197) obtained a closely similar value, namely, 63,400 calories.

10 Sabatier, Bull. Soc. chim., 1889, (3), 1, 90.

compounds of Iron with hydrogen and the halogens. 97 (m. pt. 73.5° C.), 2FeCl₃.5H₂O (m. pt. 56° C.), 2FeCl₃.7H₂O (m. pt. 82.5° C.), and 2FeCl₃.12H₂O (m. pt. 37° C.) respectively. From the last point of discontinuity, namely F in figure 5 (66° C.), onwards the salt is antiydrous and is deposited from solution in that condition.¹

SOLUBILITY OF FERRIC CHLORIDE IN WATER.

(The melting-points are given in **bold** type.)

• '	•	0.1				
*Solid phase 2FeCl3.	12H ₂ O.		•	•		
Temperature, °C.		0 20	30	37	30 27.4	20 8
Grams FeCl _s in		•	•			
grams H ₂ () .	. 49.52	74-39 91 8	₱06 8	150·0 2	01.7 219.0	31.1 246.7
Solid phase 2FeCl _a .7	O 43	•			•	•
	•	20	20		30	og
Temperature, 'C.		20	32	• 32.5	30	25
Grams FcCl ₃ in grams H ₂ O .	100	204-4	244 0	257-6	272.	4 280.0
grams 1130 .	•	_0116	•	207.0	212	2000
Solid phase 2FeCl ₃ .5	5H ₂ O,	-				
Temperature, "C.	• .	12 27	35	50	55	56 55
Grams FcCl ₃ in	100	• •	•			
grams H ₂ O .	. 2	318, 267.5	281.6	315.2	344.8	360·4 365·0
	\	•			•	
Solid phase 2FgCl ₃ 4						
Temperature, C.		55	60	69	73.5	70 66
Grams Fett, in						
grams H ₂ O .	359∙:	365 9	372.8	387.7	450.2 5	02.4 525.0
Solid phase FeCl ₃ .					•	
Temperature, °C.		66		75	80	100
Grams FeCl ₂ in	100	00		10	60	• 100
grame_H ₂ ()		525.9	5	11.4	525-9	535-8
D	•	3200	•			

A study of the curves in fig. 5 is particularly interesting from the point of view of the Phase Rule. AB represents the various states of equilibrium between ice and ferric chloride solutions, a minimum temperature being reached at the eryohydric points B, which is -55° C. At this point ice, solution, and the dodceanydrate of ferric chloride are in equilibrium. The number of degrees of freedom is nit—in other words, the system is invariant, and if heat be subtracted the liquid phase will solidily without change of temperature until the whole has become a solid mass of ice and dodceahydrate. Further abstraction of heat merely lowers the temperature of the system as a whole.

If, starting at the point B, heat be added to the system, ice will melt, and more of the dodecanydrate will dissolve in accordance with the equilibrium curve BCH, which is the solubility curve of this hydrate in water. At 87° C, the dodecanydrate melts, and if anhydrous ferric chloride be added to the system, the temperature at which the dodecanydrate remains in equilibrium with the solution is lowered until the cutectic point C is reached at 27.4° C. At this point the whole solidifies to a solid mixture of the dodecanydrate and heptahydrate.

The curve has been followed in the direction of the broken line CH to +8° C., the solution being supersaturated with respect to the dodeca-hydrate. Similarly the curve ED has been continued backwards until

¹ See Roozeboom, Zeitsch. physikal. Chem., 1892, 10, 477.

it intersects CH at H at 15° C. This is a metastable triple point or eutectic, and is capable of realisation experimentally on account of the fact that the heptahydrate is not so readily formed.

Curves EF and FG represent the solubilities of the tetrahydrate and

the anhydrous salt respectively.

The following are the transition temperatures or entectic points corresponding to the points B, C, H, D, E, and F in fig. 5:-

The dodecahydrate,1 2FcCl, 12H,O, is obtained as deliqueseent erystals by treating solid commercial ferric chloride with a current of hydrogen chloride, filtering the resulting liquid, and concentrating over potash in vacuo.2 "

The same hydrate is obtained on allowing a concentrated solution of ferric chloride to evaporate slowly in the cold. It separates out as reniform masses of lemon-yellow crystals, or in opaque, yellow rhomoic prisms, according to circumstances. This hydrate melts at 87° C.

The heptahydrate, 2FeCl3.7H2O, first obtained by Roozeboom, yields monoclinic crystals, somewhat darker than the preceding hydrate, but readily distinguished by their dichroism, the colours ranging from yellow to blue. When exposed to the air at room temperature, the crystals become coated with the yellow dodecally drate. They melt at 82.5° C.

¹ Known to, and described by, Mohr (Annalen Pharm., 1839, 29, 173), and Fritzsche (J. prakt. Chem., 1839, 18, 479). Engel, Compt. rend., 1887, 164, 1708.

Roozeboom states them to be monoclinic.
Sabatier, ibis., 1881, 93, 56.

⁴ Rooseboom, loc. cit.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS. 99

The pentahydrate, 2FeCl. 5H,O, may be prepared by heating the preceding hydrate to 100° C. for several hours, when hydrogen chloride is evolved. Upon slowly cooling deep red cry tals of the pentahydrate are deposited. It also results on keeping crystels of the dodecahydrate in vacuo over sulphuric acid. Liquefaction to a brown solution at first takes place, but finally deep red deliquescent crystals of the ponta, hydrate separate out. These melt at 56° C. and deliquesce upon

When treated with a current of dry hydrogen chloride, the pentahydrate readily hquefics, and if saturated with the gas at 25° C. and then cooled to 0° C, it deposits yellow lamella of the acid salt FeCl, HCl,

The tetrahydrate, 2FeCl, 4H, Q, first obtained by Roozeboom, crystallises in the rhombic system. The crystals appear pleochroic in polarised light, the colours ranging from yellow to brown. They melt at 73.5° C.

Aqueous solutions of ferric chloride are conveniently prepared by dissolving iron in hydrochloric acid and subsequently saturating the solution with chlorine to oxidise the ferrous salt to the ferric condition. After standings the solution should still smell of chlorine, otherwise sufficient of the gas has not been added. Excess may now be removed by bubbling carbon dioxide through the warm solution. Other methods of preparation consist in dissolving ferric hydroxide in aqueous hydrochloric acid; and by oxidation of ferrous chloride in the presence of hydrochloric acid by some oxidiscr sach as nitric acid.

In concentrated solution ferric chloride is somewhat only in appearance, and dark brown in colour. When such a solution is diluted with water, a considerable amount of heat is liberated in consequence of hydrolysis 7; thus

$$FeCl_3 + 3H_2O = zFe(OH)_3 + 3HCl$$

Very dilute solutions of ferric chloride are practically colourless when freshly prepared, but become brownish yellow on keeping, owing to the separation of ferric hydroxide in accordance with the above

For example, fresh solutions containing less than 1-1 per cent. of ferrie chloride appear colourless in a 40-cm, tube, but after several hours become yellow, the colour intensifying during forty-eight hours after preparation,

Excessively dilute solutions of ferrec chloride give no coloration with potassium ferrocyanide, the salt being completely hydrolysel and converted into colloidal ferric hydroxide (see p. 125).

Sabatier, loc. cit.; Bull. Soc. chim., 1889, (3), 1, 88.

A Roozeboom, loc. cit.

Believecto contain six molecules of water by Wittstein (Repertorium Pharm., 1844,
 36, 30) and Ordway (J. Pharm. Chim., 1844, (8), 5, 201), but shown by Pritzsche and
 Bingel, Compt. rend., 1887, 104, 1708.
 Sabetian Locality, Bull Containing the principles of the pentally drate.

Sabatier, Bull. Soc. chim., 1881, (2), 36,497; Engel, loc. cit.

Ditz. Chem. Zeit., 1901, 25, 109. For a companion of the colours of ferrie, cupric, and cobatt chlorides in solution under various conditions, see Donnan and Bassett, Trans. Them. Soc., 1902, 81, 955. Other notes on the colours of ferric chloride solutions are given by Schaer, strck. Pharm., 1901, 239, 257, 340.

Lemoine. Compt. rend., 1893, 116, 880.

Lemoine. Compt. rend., 1893, 116, 880.

Autoffy and Giglio, Gazzetta, 1895, 25, ii. 1. Of the order of 0-00083 per cent.

The hydrolysis of ferric chloride may be illustrated for lecture purposes by filling a tube to about three-fourths of its height with a 5 to 10 per cent. solution of gelatin rendered pink with faintly alkaline phenolphthalein. When the gelatin has solidified, a 10° per cent. solution of ferric chloride is added. As diffusion proceeds downwards, two layers become increasingly distinct—namely, the lower, colourless layer, due to the more rapid diffusion of the acid liberated by hydrolysis: and the upper, opaque layer of brown ferric hydroxide.1

An interesting lecture experiment to illustrate suppression of hydrolysis of ferrie chloride under certain conditions consists in diluting a solution of the sait until it is practically colourless. Concentrated hydrochlorid acid is now added, and the solution assumes a yellow colour, characteristic of the un-ionised FcCl3-molecule.2 The addition of glycerol to a solution likewise intensifies the colour, and this is attributed to diminished dissociation consequent upon the introduction of a sub-

stance possessing a lower dielectric constant.

Mensurement of the electric resistance of aqueous solutions of ferric chloride indicates a gradual increase in conductivity after dilution, a definite maximum value ultimately being reached for each concentration of the salt. The time required to reach a final stage of equilibrium varies with the concentration of the salt. For a 0.000 normal solution some three hours are required, whilst a week is wall for a 0.0006normal solution.3 This increase in conductivity is usually attributed to the gradual liberation of hydrochloric acid in accordance with the cquation. $FcCl_3 + 3H_2O \Rightarrow Fc(OH)_3 + 3HCl.$

The difficulty, however, is to understand the extreme slowness with which equilibrium is attained, for the hydrolysis should take place with great rapidity. In order to account for this, the change has been regarded as taking place in stages as follows: -- 4

$$F_cCl_3 \Rightarrow F_cCl_2(OII) \Rightarrow F_cCl(OII)_2 \Rightarrow F_c(OII)_3.$$

This theory, however, cannot be regarded as altogether satisfactory.

Spring, on the other hand, holds that ferric chloride in solution dissociates into ferrous chloride and chlorine, in the same manner as when heated in the gaseous state:--

$$FeCl_3 \rightleftharpoons FeCl_2 + Cl.$$

The obloring then reacts with water, yielding hydrogen chloride and oxygen, which latter combines with the ferrous chloride to yield the oxychloride; Fc₂Cl₂O, until the equilibrium represented by the following equation is attained:—

$${}^2\mathrm{FeCl}_2\!+\!\mathrm{H}_2^4\mathrm{O}\!+\!2\mathrm{Cl}\!\Longrightarrow\!\!\mathrm{Fe}_2\mathrm{Cl}_4\mathrm{O}\!+\!2\mathrm{HCl}.$$

A suggestive theory, supported by ultra-microscopic examination of dilute ferric chloride solutions has been advanced by Wagner,

Yanzetti, Gazzetta, 1908, 38, 1i. 98.
 See Byk and Jaffe, Zeitsch. physikal. Chem. 1909, 68, 323.
 Goodwin, Zeitsch. physikal. Chem., 1896, 21, 1.

^{*}Antony and Giglio, Gazzetta, 1895, 25, ii. 1.

* Spring, Rec. Trav. Chim., 1897, 16, 237. Supported by Jufereff, Zeitsch. anorg. Chem., 1908, 59, 82.

* Wagner, Monatsh., 1913, 34, 95, 931.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS. 10.

according to which hydrolysis is instantaneous, but the gradual change in electric conductivity is due to changes in the superficial magnitude of the colloid particles. At first the colloid particles are small, and thus present in tote an chormous surface which adsorbs practically the whole . of the liberated acid. Gradually the particles increase in size, becoming less numerous, so that the total superficial area falls, liberating proportional amounts of the adsorbed acid. Wagner's theory appears to the present author to be the most satisfactory that has as yet been advanced.

Ferric chloride decomposes sodium nitrite in aqueous solution with evolution of oxides of nitrogen. The reaction is believed 1 to take place in two stages, namely:---

$$\begin{array}{l} 2 Fe Cl_3 + 6 NaNO_2 = 2 Fe (NO_2)_3 + 6 NaCl, \\ 2 Fe (NO_2)_3 + 3 H_2O = 2 Fe (O11)_3 + 3 NO_2 + 3 NO. \end{array}$$

A solution of ferric chloride decomposes lead sulphide or powdered galena with ease on warming, the products being ferrous chloride, lead ehloride, and sulphur.2

$$2FeCl_3 + PbS = 2FeCl_2 + PbCl_2 + S.$$

A similar reaction takes place with copper pyrites or with copper sulphides. Thus

$$2FeCl_3+CnS = 2FeCl_2+CuCl_2+S$$
,
 $2FeCl_3+Cu_2S=2FeCl_2+2CuCl+S$.

and

This reaction has been utilised in the separation of copper from pyrites, a solution of ferric chloride being allowed to slowly percolate through the ore raised in heaps, the residual ferrous chleride being oxidised to ferric and used over again.3

Ferrie chloride is readily reduced by suitable reagents to the ferrous salt. Metallic zinc or iron, or even nascent hydrogen, effects the reduction in aqueous solution. Alkali sulphides reduce it with deposition of sulphur, and alkali iodides 4 with liberation of iodine, thus :-

$$2\text{FeCl}_3 + 2\text{KI} = 2\text{FeCl}_2 + 2\text{KCl} + I_2$$

Alcoholic solutions of ferric ciloride are reduced by light,5 which acts, not as a catalyst, but as a generator of the necessary chemical energy. Ferrous chloride, hydrogen chloride, and formaldehyde are

the primary products of the reaction.

Dilute solutions of ferric chloride in pure anhydrous ether are rapidly reduced to ferrous chloride upon exposure to direct sunlight. The chlorine is used up, partly in chlorinating the other and partly in exidation processes, so that the reaction is not reversible in the dark. More concentrated solutions yield ferrous chloride and a black organic compound containing iron.7

¹ Matuschek, Chem. Zeit., 1905, 29, 31: See also Pesci, Chem. Zentr., 1888, p. 1023.

Gabba, Chem. Zentr., 1889, p. 667.
See Carnegie, Chem. News, 1884, p. 516.
See Carnegie, Chem. News, 1889, 60, 87; also this volume, p. 134.

<sup>See p. 84.
See Benrath, J. prakt. Chem., 1905, (2), 72, 220; 1909, (2), 80, 283.
Puxeddu, Gazzetta, 1920, 50, i. 154.</sup>

Ferric chloride is reduced by aqueous stannous chloride, solution in accordance with the following equation (see p. 84):

$$2\operatorname{FeCl}_{3} + \operatorname{SnCl}_{2} = 2\operatorname{FeCl}_{2} + \operatorname{SnCl}_{4}$$

Acid Chlorides - Several acid salts of ferric chloride have been described. On saturating the pentahydrate, 2FcOl. 5H,O, with hydrogen chloride at 25 °C. and cooling the liquid so obtained to 0° C., the compound, FcCl, IICl, 211,0, is obtained in the form of yellow, crystalline lamella. The compounds, FeCl3.HCl.4H2O and FeCl3.HCl. 6H2O, have been obtained respectively as greenish erystals, melting at -8° C., and yellow crystals, melting at -6° C.²

Ferric chloride unites with chlorides of other metals to yield several series of double salts, resembling in composition the double chlorides of certain of the platinum metals. These are conveniently grouped as

follows :--

Tetrachlorferrates, MFcCl,

Ammonlum tetrachlorferrate, NII4FeCl4, or FeCl3.NII4Cl, obtained by heating the two substances together, is interesting as possessing a definite boiling-point, namely 386° C. A salt of similar empirical composition has been obtained 4 by crystallisation from mixed solutions of ferric chloride and ammonium chloride in the form of onve-brown needles, which, however, are unstable.

Cæsluth tetrachlorferrate, 2CsPcCl4.112O, or possibly anhydrous, is

extremely hygroscopic.5

Cuprous tetrachlorferrate, CuFcCl₄, melts at 320° C. If crystallised from an aqueous solution, the tetrahydrate, CuFeCl₄.4Il₂O, is obtained.⁶

Pentachlorferrates, M2FeCl5.

Ammonium pentachlorferrate, (NII₄)₂FeCl₅.II₂O, associated with varying quantities of animonium chloride, is known popularly as ammonio-chloride of iron. It is used medicinally, and is obtained as garnet cubes by erystallising from a solution of the mixed chlorides.7

Cassium pentachlorferrate, 7, 9 Cs2FcCl5, H2O, has been obtained as a

Glucinum pentachlorferrate, 8 GlFcCl₅.H₂O.

Magnesium pentachlorferrate, MgFcCl₅.

Potassium pentachlorferrate, MgFcCl₅. M₂FcCl₅. M₂O, is obtained by dissolving ferric chloride in concentrated hydrochloric acid, adding potassium chloride, and allowing to crystallise. It is a red, deliquescent sait, decomposed by water.

Rubidium pentachlorferrate, Rb2FcCl5.H2O.

- Sabatier, Bull. Soc. chim., 1881, (2), 36, 197; Compt. reng., 1887, 104, 1849.
 Roozeboom and Schreinemakers, Zeitsch. physikal. Chim., 1894, 15, 588.
 Hachmeister, Zeitsch. anorg. Chem., 1910, 199, 145.

 - Mohr, Zeitsch. physikal. Chem., 1898, 27, 193.4 Walden, Amer. J. Sci., 1894, (3), 48, 283. Herrmann, Zeitsch. anorg. Chem., 1911, 71, 257.

 - * Fritzsche, J. paskt, Chem., 1839, 18, 483; Mohr, Zeitsch. physikal. Chem., 1898, 27,
 - Neumann, Annalen, 1888, 244, 328; Ber., 1885, 18, 2890. Walden, Amer. J. Sci., 1894, (3), 48, 283; Zeitsch. anorg. Chem., 1894, 7, 331.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS, 103

Thallium pentachlorferrate, 1 Tl. FeCls.

Apparently no double salts with sodium exist, at any rate between 0° and 60° C.

Hexachlorferrates, M. FcCia.

Cæsium hexacklorferrate,3 Cs3FcCl6.II2O.

Miscellaneous Double Salts.

From solutions of ferric and ammonium chlorides, cubic crystals of 2FeCl₃.NH₄Gl.4H₂O have been isolated similarly.

Ferric chloride yields solid solutions with zine chloride and with lead chloride, but no compounds appear to be formed.⁵ The existence of the double salt FeCl₃-2RF ⁶ has not been confirmed.⁷

Ferric ammonium antimony chloride, 2FeCl3.9NII4Cl.3SbCl4, crystallises in black octahedra from solutions of the constituent chlorides

in concentrated hydrochloric acid.8

With sulphur tetrachloride the donble compound SCl4 FeCl3 is obtained as a yellow, crystalline precipitate; with phosphorus oxychloride, the compound 2FeCl3.POCl3 separates on warming.9

A double chloride of phosphorus and iron, FcCl₃·PCl₅, has been isolated ¹⁹ by acting on ferric oxide with phosphorus pentachloride. It

also results on direct union of the two chlorides.

With alkaloids ferric chloride yields complexes, many of which are characterised by definite melting points.11

Ferroso-ferric chloride, Fe₃Cl₈.18H₂O, or FeCl₂.2FeCl₂.18H₂O, results when the corresponding oxide, Fc3O1, is dissolved in concentrated aqueous hydrogen chloride and evaporated over-sulphuric acid. The salt separates out as a yellow crystalline mass, which readily deliquoces. 18

Ferrous perchlorate, Fc(ClO₄)₂.6H₂O, may be prepared either by the solution of iron in perchloric acid 13 or by the interaction of solutions

of ferrous sulphate and barium perchlorate.14

On evaporation light green crystals are produced which evolve water at 100° C, and decompose completely at higher temperatures.

Ferric perchlorate, Fc(CO₄), results on dissolving hydrated ferric exide in perchloric acid. It has not been obtained in crystalline form.

• Ferrous chlorate, Fc(ClO₃)₂, is probably formed in solution when ferrous sulphate and barium chlorate solutions are allowed to react. It is very unstable, however.15

Ferric chlorate, Fc(ClO₃)₃, is obtained when chlorine is passed

```
<sup>1</sup> Scarpa, Atti R. Accad. Lincei, 1912, (5), 21, ii. 718.

<sup>2</sup> Hinrichsen and Sachsel, Zeitsch. physikal, Chem., 1904, 50, 81.
    Walden, loc. cit.
Mohr, Zeitsch. physikal. Chem., 1898, 27, 193.
Herrmann, loc. cit.
Guyot, J. Chem. Soc., 1871, 24, 854.

Greeff, Ber., 1913, 46, 2511,

Ephraim and Weinberg, Ber., 1909, 42, 4447.

Ruff and Einbeck, Ber., 1904, 37, 4513.

Weber, J. prakt. Chem., 1859, 76, 410.

See Scholtz, Bes. deut. pharm. Ges., 1908, 18, 44.

Lefort, J. Pharm. Chim., 1869, (4), 17, 81.
```

Roscoe, Annalen, 1862, 121, 355.
 Sgrullas, Ann. Chim. Phys., 1831, (2), 46, 305.
 Wächter, J. prakt. Chem., 1843, 30, 321.

through water containing hydrated ferric oxide in suspension. Its heat of formation is given by Thomsen 1 as follows :-

 $2[Fe(OH)_3]+6HClO_3Aq.+Aq.=2Fe(ClO_3)_3Aq.+82,840$ calories.

Oxychlorides - Numerous basic- or oxy-chlorides of iron have been described at various times, but it is very doubtful if the chemist is justified in regarding these as separate chemical entities.² For example, Béchamp found that, on oxidising ferrous chloride with nitrie acid in the presence of a small quantity of hydrochloric acid, an insoluble, yellow residue was obtained, of composition corresponding to the formula FcCl3.6Fc2O3. On treatment with water a product, 2FeCl3. 17Fe₂O₃, Yesulted, whilst addition of ammonium hydroxide induced the formation of a still more basic residue, namely FeCl, 72Fc, O2. Such precipitates are of little theoretical interest,

A crystalline oxychloride is obtained 3 when solutions of ferric chloride containing not less than 80 per ecnt, of the salt are heated in sealed tubes to 150°-160° C. in the presence of a few fragments of magnesium carbonate to neutralise the liberated hydrochloric acid. The crystals consist of lustrons rhombic prisms, reddish brown in colour, and of composition corresponding to the formula 2FcCl3.Fc2O3.2Fc(OH)3. These, on contact with hot water, retain their crystalline form, although they lose their chlorine as hydrogen chloride, being converted com-

pletely into oxide corresponding in composition to Goethite.

If, in the foregoing method of preparation, an 85 to 90 per cent. solution of ferric chloride is maintained at 225° to 280° C, for some time, an oxychloride of composition FeCl₃.Fe₂O₃ is obtained as reddish brown lamella, whilst between 300° and 340° C. large plates of brownish

black 2FeCl₃.3Fe₂O₃ result.

Upon heating analydrous ferric chloride in a slow current of carbon dioxide seturated with water vapour, the oxychloride FeCl₃.Fc₂O₃ is produced at 275° to 300° C. in the form of reddish brown needles, whilst larger and darker needle-shaped crystals of 2FeCl₃.3Fe₂O₃ result if the temperature is raised to between 350° and 400° C.

IRON AND BROMINE.

Ferrous bromide, FeBr2, may be prepared in the anhydrous form as a yellow crystalline mass by heating iron to dull redness in an atmosphere of bromine vapour. When the reaction is complete, the bromine is replaced by earbon dioxide or air, heating being discontinued. The dry salt is rapidly transferred to a glass, tube and hermetically scaled. It readily absorbs ammonia at the ordinary temperature, yielding a white hexammoniate, FeBr. 6NH₃. This dissociates on heating, yielding a darker sak, the dimmoniate, FeBr, 2NH3; whilst at higher temperatures the monammoriate, FeBr. NH3, is obtained as a dark grey mass.

¹ Thomsen, Thermochemistry, translated by Burke (Longmans, 1908), p. 123. ² See Pettenkofer, Repertorium Pharm., 1892, (23, 41, 289; Béchamp, Ann. Chim. Phys., 1859, (3), 57, 296; Ordway, Amer. J. Sci., 1858, (2), 26, 197; Phillips, Phil. Mag., 1833,

^{(3), 2, 76.}Rousseau, Compt. rend., 1890, 110, 1032; 1891, 113, 542; 1893, 116, 183.

Berthemot, Ann. Chim. Phys., 1830, (2), 44, 391; Scheufelen, Annalen, 1885, 231,

^{*} Ephraim, Ber., 1912, 45, 1322.

COMPOUNDS OF IRON, WITH HYDROGEN AND THE HALOGENS. 105

The following data have been obtained 1 for these compounds:-

•	1	•		Te	emperature. °C.	Dissociation Pressure, mm.	Heat of Dissociation, ('als.
FeBr ₂₄ 6NII ₃				•	107	126	14.9
FeBr ₂ .2NH ₃	•	•			215 •	11.5 ●	21.9
,, ,,	• .	• .			230	23.5	21.9
** 11	•		٠.		e 7.	126	22.3
FeBr ₂ NH ₃				•	215	5.7	22.6
,,					230	• 9.7	22.8
,, ,,,		• .	•	:	277	6145	23.1

On dissolving in water and subsequent crystallisation in the cold, the hexahydrate, FcBr2.6112O, is obtained in bluish green, rhombic prisms. The same salt may be more readily prepared by dissolving iron in hydrobromic acid.

At 50°C, the salt loses two molecules of water, yielding green crystals of the tetrahydrate, FeBr, 111,0. Upon further heating more water is

expelled.

Both the aqueous and alcoholic solutions of ferrous bromide absorb nitric oxide,2 the limit of absorption being reached with one molecule of NO to each atom of iron. The compound FcBraNO has not been isolated.

Anhydrous ferrous bromide absorbs dry nitrogen peroxide, yielding a stable compound. 4FcBr₂,NO₂, which retains its nitrogen peroxide even in vacuo. In the presence of moisture more peroxide is absorbed, • but the reaction is complex, bromine being evolved.3

Ferrous bromide unites with ethylene 4 and acetylene.

The solubility of ferrous bromide in water is given as follows: - 5

The heat of formation is

[Fe]+(Br₂)+Aq.=FcBr₂.Aq.+78,070 calories.
6

A few double salts with the bromides of the alkali metals have been

Ferric bromide, FeBr3, results when iron is heated in excess of

¹ Biltz and Huttig, Zeitsch. anorg. Chem., 1819, 109, 89.

Thomas, Compt. rend., 1897, 524, 366.
Chofnack, Zeitsch. Chem., 1863, 6, 419.
Etard, Ann. Chim. Phys., 1894, (7), 2, 503.

^{*}Thomas, Compt. rend., 1896, 123, 943; Bull. Soc. chim., 1898, (3), 19, 343, 419; Manchot, Ber., 1914, 47, 1601.

Thomsed, Thermochemistry, translated by Burke (Longmans, 1908), p. 318.
Walden, Zeitsch. anorg. Chem., 1894, 7, 331.

bromine vapour, when ferrous bromide is heated from 170° to 200° C, with twice its weight of bromine, and when sulphur monobromide, S₂Br₂, is passed over ferric oxide ² at 450° to 650° C. It is a dark red, erystalline but deliquescent substance, yielding a red solution in water. At boiling-point the solution dissociates to ferrous bromide and free bromine. On heating away from air ferric bromide partly sublimes and partly dissociates. When dry the salt is reduced by nitric oxide with the formation of ferrous and nitrosyl bromides. 4

The aqueous solution upon concentration in the ordinary way

decomposes with the precipitation of insoluble basic bromides.

The hexahydrate, FcBr₃·6H₂O, separates as dark green needles when the dark brown solution obtained by the action of bromine under water is slightly evaporated and concentrated in a desiceator over sulphuric acid. It is soluble in alcohol and other, and melts at 27° C without decomposition.⁵

The heat of formation 8 is

Double salts with the bromides of ammonium and the alkali metals have been obtained. These may be grouped into two classes, namely:—

Tetrabromferrates, MFeBr₁.

Ammonlum tetrabromferrate, NH₄FcBr₄,2H₂O, and Cæsium tetrabromferrate, CsFcBr₄, being the best-known salts;

Pentabromferrates, M. FeBr.

Consider pentabromferrate, Cs₂FeBr₅.H₂O. Rubidium pentabromferrate, Rb₂FeBr₅.H₂O.

Fetric chloro-bromide, FcCl₂Br, is obtained as an unstable crystalline substance by heating ferrons chloride and excess bromine in scaled tubes at 100° C. The crystals are dark coloured and lustrous, appearing green by reflected light and quite opaque, even in thin sections. Although insoluble in bromine, they readily dissolve in water, ether, or alcohol, their solubility in ether rendering easy their separation from ferrous chloride. The crystals readily decompose on warming, but sublime unchanged if heated in a tube containing a slight excess of bromine.

Ferrous bromate, Fc(BrO₃)₂, is obtained in regular octahedra on dissolving ferrous early nate in bromic acid and concentrating in vacuo.

Ferric bromate results as a syrupy liquid on dissolving freshly precipitated ferric hydroxide in dilute bromic acid and concentrating in vacuo.

```
    Schoufelen, Annalen, 1885, 231, 152.
    Barre, Bull. Soc. chim., 1912, (4), 11, 433.
    de Koninck, Zeitsch. angew. Chem., 1889, p. 149.
    Thomas, Compt. rentl., 1897, 124, 360.
    Bolschakoff, J. Russ. Chem. Soc., 1898, 30, 3865 Chem. Zentr., 1898, II., 460.
    Borthelot. Swe Moissan, Traité de Chimie Minérale, 1905, iv., p. 338.
    Walden, Zeitsch. anorg. Chem., 1894, 7, 331; Amer. J. Soi., 1894, (3), 48, 283;
    Pfeiffer, ibid, 1902, 31, 231.
```

⁶ Lapormand, Compt. rend., 1893, 116, 820.

COMPOUNDS OF IRON WITH HYDROGEN AND THE HALOGENS, 107

Oxybromides are described by Béchamp 1 and Ordway, 2 but are probably not separate chemical entities.

IRON AND HODINE.

Ferrous iodide, FeI2, is obtained when the constituent elements are allowed to react in the presence of water, heat being evolved 3 when iron filings are triturated with iodine; and by heating iron filings in a crucible to which small quantities of iodine are continually added. When the mass reaches a red heat, excess of iodine is added and the whole heated until iodine vapour ceases to escape. On cooling, a grey crystalline mass is obtained, which melts at 177° C.4 Ferrous iodide also results when clean iron wire clippings are heated in nitrogen gas saturated with iodine vapour. The salt is formed as deep red plates which appear almost black when thick. It is very deliquescent, but when kept in a desiccator turns white and subsequently evolves iodine, becoming grey or black. The white compound is believed to be the dihydrate, FcIs.2H₂O. The annydrous salt readily absorbs ammonia, forming the hexammoniate, FeI₂.6NH₃, as a voluminous powder.7 It is decomposed by water, and is converted by bromine vapour into ferric bromide, ammonium bromide, and ammonium bromo-iodobromide, NILBr. IBr.

When heated, the hexammoniate yields the diammoniate, FeI2.2NII3. No monanmoniate has as yet been obtained. The dissociation pressures and heats of dissociation of the two compounds have been determined as follow: --8

•				Temperature. °C.	Dissociation Pressure. mm	Heat of Disconistion ('als.
FeI ₂ .6NH ₃			•	153	206	16.5
FeI ₂ .2NH ₃		•		215	6.1	22.5
", "				231	12.1	22.6
9 - 11				278 .	85.4	22.8

An aqueous solution of ferrous iodide is readily prepared by warning iron filings and iodine together in water, when a colourless solution is obtained. This, however, is not stable in air, as it absorbs exygen, liberating free jodine. If a little sugar be added to the clear solution, oxidation is retarded, and the crystalline pentalydrate, Poly5H,O, may be isolated.

- ¹ Bechamp, Ann. Chim. Phys., 1859, (3), 57, 296. ² Ordway, Amer. J. Sci., 1859, (2), 26, 197.
- Fleury, J. Pharm., 1887, (5), 16, 529; also his volume, p. 52.

 Garius and Wanklyn, Annalen, 1861 120, 69. See also Thomson, Compt. rend.,
- 862, 55, 645.
 C. L. Jackson and Derby, Ames Chem. J., 1900, 24, 15.
 A dihydrate was also mentioned by Lescour, Ann. Chim. Phys., 1894, (7), 2, 78.
- Compare ferrous chloride and bromide, pp. 91, 105.

 Biltz and finttig, Zeitsch. anorg. Chem., 1919, 109, 89. Compare Ephraim, Naturwiss., 919, 7, 49; Chem. Zentr., 1919, d., 409.

A solution containing ferrous iodide and water in the proportion of 1 to 8.5 molecules respectively, deposits a deliquescent hexahydrate, FcI_{2.6}II₂O, at -16° C. This, on warming to +8° C., yields the tetrahydrate, FcI_{2.4}II₂O. The nonapydrate, FcI_{2.9}II_{3.0}O, and monohydrate, FcI_{3.9}II_{4.0}O, are also stated to exist.

FeI $_2$, H_2 O, are also stated to exist. Ferric iodide, FeI $_3$, has not as yet been prepared, but the possibility of its existence is perhaps indicated by the fact that hydrated ferric

oxide dissolves in hydrodic acid, yielding a brown solution.

Two ferrous per-iodates are described by Kinnnins, 3 namely Fe $_5(IO_6)_2$ and FeH $_3(IO_6)_1$. The former is a brick-red crystalline salt produced on adding ferrous sulphate to a solution of $K_4 E_2 O_6$. FeH $_3(IO_6)$ results as a light brown powder on adding a solution of $Na_2H_3IO_6$ to ferrous

Two ferric per-lodates have been prepared, anamely $FeIII_2O_9$ and $Fe(IO_4)_3$. The former is obtained by drying at 100° C, the light brown precipitate resulting from the interaction of solutions of ferric chloride and $Na_2II_3IO_9$. It is also formed when $K_4I_2O_9$ is used instead of the sodium salt. It is a reddish-brown powder, stable towards boiling dilute nitric acid. With concentrated nitric acid, however, $Fe(IO_4)_3$ is formed as a bright yellow powder.

Ferrous iodate. -On addition of potassium iodate to ferrous sulphate solution, a pale yellow precipitate is obtained, consisting probably of

ferrous iodate.4

Ferric lodate, Fe₂O₃,I₂O₅ is obtained as a brown precipitate ⁵ on mixing hot solutions of an alkali todate and a ferric salt. Small crystals may be prepared by addition of an acid solution of iron in nitric acid to sodium iodate. The precipitate first formed readily dissolves, and upon concentration of the solution the salt crystallises out. It is stable in air at 62 Emary temperatures, but decomposes when heated.

Volkmann, J. Russ. Phys. Chem. Soc., 1894, 1, 239.

³ Lescteur, loc. cit.

¹ Kimmins, Trans. Chem. Sqc., 1889, 55, 148.

Rammelsberg, Pogg. Annalen, 1838, 44, 559

⁵ Datte, Ann. Chim. Phys., 1890, (6), 21, 157.

CHAPTER VII.

IRON AND THE ELEMENTS OF GROUP VI.

IRON AND OXYGEN.

Ferrous oxide, FeO, does not occur free in nature on account of the case with which it absorbs oxygen, yielding ferrie oxide. It is execedingly difficult to prepare in a pure state. It results in a more or less impure condition when ferric oxide is heated to 300° C, in a current of hydrogen, and is then pyrophoric, becoming incandescent upon exposure to air, and reverting to its original ferric condition. After keeping in an atmosphere of hydrogen for some twelve hours, however, it loses this property. This method of preparation is not altogether satisfactory, however, since the product is hable to be contaminated with ferroso-ferric oxide, Fe₃O₄. Moissan 1 obtained a fairly pure product on heating ferric oxide in hydrogen for twenty minutes at about 500° G.

A better method consists in reducing ferric oxide in a current of pure, dry carbon monoxide at 500° Caror with a mixture of equal

parts of carbon monoxide and dioxide at red leat.2

When hydrogen mixed with water vapour is passed over heated ferric oxide, ferrous oxide is formed in increasing amount with rise of temperature. Thus at 700° C, the product contains 85 per cent, of FcO, and at 800° C. some 92 per cent. FcO. Perfectly pure ferrous oxide is not obtained, however, even at \$1100° C. *Neither does it seem possible to obtain the pure oxide from reduced iron by exidation with a mixture of steam and hydrogen.

Errous oxide is also formed, together with metallic iron, when ferrous exalate is heated to 150° 160° °C., and allowed to cool in an atmosphere of carbon dioxide. To avoid separation of carbon or the formation of iron carbide, it is advantageous to heat ferrous exalate gradually up to 520° in a current of introgen.⁵ The temperature is finally raised to about 900° C. The product is grey in colour, and dissolves completely in hydrochloric acid, evolving hydrogen, indicating the presence of some free iron. Metallic iron may be exidited to befrous oxide by ignition in carbon monoxide at 1000° (. 6; or by heating with ferric oxide, according to the reaction: -7

$$Fe_2O_3 + Fe = 3FeO.$$

Debray, Compt. rend., 1857, 45, 1018.

¹ Moissan, Congst. rend., 1877, 84, 1296.

Debray, Compt. rend., 1857, 45, 1018.
 Hilpert and Beyer, Ber., 1011, 44, 1608.
 Liebig, Annalen, 1855, 95, 116; Moissan, Ann. Chim. Phys., 1880, (5), 21, 199.
 Mixter, Amer. J. Sci., 1913, (4), 36, 55.
 Tiasandier, Compt. rend., 1872, 74, 531.
 Mills, Patentblatt, 17, 362.

P. 45 AE. When nitrous oxide is passed over iron at 200° C. ferrous oxide is produced, and also when iron is heated in steam to 850° C.2

Iron amalgam yields ferrous oxide upon slow oxidation by exposure

According to Moissan,4 ferrors oxide can exist in two polymorphicmodifications, according as it is produced at high or at lower temperatures. The variety obtained at the lower temperatures, namely below 600° C., is more chemically reactive, uniting with oxygen, upon exposure to air, with such rapidity that the whole mass becomes incandescent. It decomposes water, slowly in the cold but with considerable rapidity at the boiling-point. It is readily soluble even in dilute acids, such as acetic acid, and easily displaces appropria from its salts.

When obtained at 1000° C., or if heated to this temperature after production at lower temperatures, ferrous oxide is no longer pyrophorie; it does not decompose water, neither is it soluble in dilute acetic acid.

Both varieties of ferrous oxide are reduced by hydrogen gas to the free metal. If the oxide has not previously been heated above 400° C., the reaction begins at about 280° C.; but if it has been previously heated to about 1200° C., it cannot be reduced by hydrogen below 330° C.5

The foregoing observations, however, do not necessarily prove that two polymorphic forms of ferrous oxide ear exist. The observed chemical differences may well be due to the variation in the state of subdivision of the oxide, that produced at the lower temperatures being the more finely subdivided.

Ferrous oxide is reduced to metallic iron at 850° C, by a mixture of carbon monoxide and dioxide in the proportion of 10 parts CO to 4

parts CO., 6

Chloring dissolved in carbon tetrachloride, reacts even at -18° C. with violence upon ferrous oxide, yielding ferric oxide and chloride. Thus:-

$$\mathbf{^{^{\circ}}6FeO} + \mathbf{3Cl_2} - \mathbf{2Fe_2O_3} + \mathbf{2FeCl_3}.$$

Ferrous oxide dissolves in acids to yield well-defined series of ferrous salts, which are pretty stable when dry or present in acid solution, but readily oxidise in moist air and in neutral or alkaline solution. They are usually colourless or pale green.

Ferrous oxide obtained by slow reduction of ferric oxide in hydrogen at 800° C. readily reacts with sulphur dioxide on warming, the mass becoming incandescent. Clouds of sulphur and sulphur dioxide arc

evolved, a solid residue of sulphide and oxide remaining.8

When ferrors oxide is heated with pure forms of carbon, no reaction takes place below 650° C. Above this temperature reduction occurs, but the rate of reaction depends greatly upon the mode of preparation of the carbon. Thus sugar charcoal is relatively inert, a vigorous

³ Férée, Bull. Soc. chim., 1900, (3), 25, 618.

¹ Sabatier and Senderens, Compt. rend., 1892, 114, 1429. * Friend, J. West Scotland Iron Steed Inst., 1910, 17, 66.

Moissan, Ann. Chim. Phys., 1880, (5), 21, 199; Traité de Chimie Minérale, 1905, iv. 340.

Hilpert, Ber., 1909, 42, 4575. Compare Glaser, Zeitsch. anorg. Chem., 1903, 36, 1.

Akerman and Särnström, Dingl. Poly. J., 1883, 248, 291.

Michael and Murphy, jun., Amer. Chem. J., 1910, 44, 365.

Hammok, Trans. Chem. Soc., 1917, 111, 379.

reduction not taking place until about 800° C. Carbon obtained by burning acetylene in chlorine reacts wigorously at 650° C.1

The heat of formation of ferrous xide is as follows :-

$$[Fe]+(O)=[FeO]+64,600 \text{ calories},^2$$

 $[Fe]+(O)=[FeO]+64,300 \text{ calories},^3$

and at 680° C. and under constant pressure,

$$[Fe] + (Q) = [FeO] + 67,350 \text{ calories.}^4$$

• Ferrous hydroxide, Fc(OH)2, may be obtained in the crystalline form as green hexagonal prisms by deposition from sodium hydroxide. solution. Even after washing with elcohol and other and drying out of contact with air, the prisms oxidise immediately they are brought into contact with oxygen, developing considerable heat and yielding a residue of ferrie oxide.5

In the amorphous condition ferrous hydroxide is usually prepared as a white precipitate by addition of sodinm or potassium hydroxide to a solution of a ferrous salt in the complete absence of air.6 The precipitate is washed in an atmosphere of nitrogen and dried with ether. If air is present, the precipitate assumes a green colour which becomes greenish black in consequence of the formation of hydrated magnetic oxide, and ultimately turns brown owing to further oxidation to ferric

If, however, after precipitation, the supernatant mother liquor is poured off and solid potassium hydroxide is added to the residue, the ferrous hydroxide shrinks in volume to a greenish grey pulverulent precipitate which is considerably more stable, and oxidises in air direct to ferric hydroxide without the intermediate formation of magnetic oxide.7

Such ferrous hydroxide suspended in potassium hydroxide solution is slowly oxidised by nitric oxide to ferme hydroxide, the nitric oxide being largely converted into ammonia.7

Ferrous hydroxide is not completely precipitated from solutions of ferrous salts by ammonium hydroxide in the presence of ammonium chloride.

As ordinarily prepared, ferrous hydroxide undergoes exidation upon expessive to moist air with such rapidity as to become incandescent. It readily dissolves in dilute acids yielding ferrous salts.

Towards iodic acid and the salts of such readily reducible metals as mercury and platinum, ferrous hydroxide acts as a reducing agent. It can even decompose water, slowly in the cold but more rapidly on boiling, the solution becoming turbid in air, and possessing a distinctly ferruginous taste. Solutions of the alkali hydroxides readily dissolve ferrous hydroxide; even ammonium hydroxide acts similarly, and in the

```
    Falcke, Zeitsch. Elektrochem., 1915, 21, 37; Ber., 1913, 46, 743.
    Le Chatelier, Compt. rend., 1895, 120, 624. See also Ruff and Gerston, Ber., 1913,

16, 394.

Mixter, Ameg. J. Sci., 1913, (4), 36, 556

Baur and Glaesaner, Zeitsch. physikal. Chem., 1903, 43, 354, de Schulten, Compt. rend., 1889, 109, 266.

Schmätt, Annalen, 1840, 36, 101.

Divors and Haga, Trans. Chem. Soc., 1885, 47, 364.

Liebig and Wöhler, Pogg. Annalen, 1831, 21, 582.
```

presence of air or oxygen the ferrous hydroxide is rapidly converted: by this means into hydrated ferric oxide. The heat of formation of ferrous hydroxide is given as follow:—1

 $[Fe]+(O)+H_{2}O=[Fe]OH)_{2}]+68,280$ calories.

• The dihydrate, FcO.2H2O, has been found in clay near Cuxhaven, in a more or less impure form as hard, yellowish-brown lumps, which

erumble upon exposure to air.2

Ferroso-ferric oxide, Triferric tetroxide, Magnetite, or Magnetic oxide of iron, Te₃O₄, occurs in nature as the mineral magnetite (see p. 12) and may be regarded as a compound of ferrous oxide and ferric oxide, namely FeO.Fe₂O₃, or as ellegicrrous salt of hypothetical metaferrous field, namely FeFe2O4. It has a black, metallic appearance, and crystallises in octahedra and dodecahedra, of hardness 5.5 to 6.5, and density approximately 4.99 to 5.2. It was first recognised as a definite oxide of iron by Gay Lussae, who obtained it by the action of steam on iron. As its name would appear to imply, magnetite possesses magnetic properties, being attracted by a magnet. It is quite possible, however, that the name of the ore does not really refer to the magnet, but to Magnesia, a town in Lydia, Asia Minor, where the ore was first found. In the laboratory the oxide may be obtained in a variety of ways. Thus, when iron is heated in steam to upwards of 820° C,4 it becomes covered with a skin of magnetic oxide, the layers underneath consisting of various amounts of ferrons exide associated with magnetic exide in solid countion. If the iron is in the form of very thin plates, these may, by prolonged heating in the steam, be converted completely into the higher oxide.

Magnetic oxide also occurs as a superficial layer when iron is heated to sum realess in air—that is, at a temperature of 625° to 650° C. The oxide beneath the offtermost skin has the composition 5 represented

by the formula Fe_3O_4 &FeO.

When ferrie oxide is maintained at 1500° C, in nitrogen 6 or at very high temperatures in an, such as those obtaining in the electric furnace. it is reduced to me; netite, for which reason it is possible, though scarcely profitable, to apply magnetic concentration to harmatites at high temperatures. When iron burns in pxygen, the magnetic oxide is produced. and also when ferris oxide is heafed to 400° C. in a current of hydfogen saturated with water vapour at 30° to 50° C.8 At higher temperatures products increasingly rich in terrous oxide are obtained. Thus :--,

On heating reduced iron in carbon dioxide at 440° ('., and by reducing ferric oxide by hydrogen or earbon monoxide at 500° C., Moissan has been able to obtain the magnetic oxides

¹ Thomsen, Thermochemistry, translated by Burke (kongmans, 1908), p. 265.

<sup>Hart, Chem. Zeit., 1908, 32, 746.
Gay Lussac, Ann. Chim. Phys., 1811, (1), 30, 163; 1816, (2), 1, 33.
Friend, Hull, and Brown, Trans. Chem. Soc., 1911, 99, 969.</sup>

⁵ See Mosander, Pogg. Annalen, 1826, 6, 35. Mügge, Jahrb. Min. Best. Band, 1911, 32, 491. See also Sidot, Compt. rend., 1869, 69, 201. U
See this volume, Part III.

[.] Wilpert and Beyer, Ber., 1911, 44, 1608.

Grystals of magnetic oxide have been obtained in a variety of ways, such as by calcination of sodium cyrbonate and ferrous chloride; by fusion of potassium sulphate and non phosphala; by the action of hydrogen chloride upon heated ferrous oxide; and by ignition of ferrous fluoride with boric anhydride!

When strongly heated with excess of sodium chloride for several hours ferric oxide is converted into black crystals of magnetic oxide. Pure iron wire, heated to 1200° C. in a current of carbon dioxide, yields crystalline magnetic oxide, the crystals frequently exhibiting magnetic polarity. The presence of moisture facilitates the formation

of larger crystals.6

When iron wire is subjected to prolonged fusion with sodium sulphate, it is converted into magnetite, the sodium sulphate acting catalytically being first reduced to sulphite and re-oxidised to sulphate by the oxygen of the atmosphere. Ferrons sulphide may be oxidised to magnetite in a similar manner. As obtained in this manner, the crystalline magnetic oxide closely resembles the natural product. Its crystals are opaque, magnetic octahedra, possessed of a metallic lustre. Hardness 6 to 6.5 p density, 5.21 to 5.25. The crystals are not affected by steam or carbon dioxide at bright red heat, are not attacked by diluted mineral acids, and are but slowly dissolved by the concentrated acids or aqua regia.

Ordinary magnetic oxide of iron melts at 1527° C.8 Its specific heat is 0·1655.9 When heated with platinum to 1600° C. in contact with air, magnetic oxide is reduced to the metal, oxygen being evolved, the iron passing into solid solution in the platinum. Under low oxygen pressures reduction in the above manner can take place at 1400° C. When heated in air for a prolonged period at 1300° C., the oxide is almost completely converted into ferric oxide. According to the reversible reaction $4Fe_3O_4 + O_2 = 6Fe_2O_3,$

magnetic oxide has no perceptible dissociation pressure at 1350° C.12

It does not react appreciably with sulphur dioxide at dull redness. 18 Raised to white heat in a current of hydrogen sulphide, it yields ferrous sulphide, accompanied by the evolution of hydrogen, sulphur dioxide, and a little sulphur trioxide. 14

When placed in freshly-fused potassium hydrogen sulphate, a crystal of magnetite is only slightly attacked; but at a higher temperature there is an energetic action.

Hydrogen reduces magnetic oxide to the metal, the reaction being perceptible at 305° C.15

```
    Liebig and Wohler, Poyg. Annalen, 1831, 21, 582.
    Debray, Compt. eend., 1861, 52, 985.
    Deville and Caron, ibid., 1858, 46, 704.
    Thompson, Trans. Ceramic Soc., 1918, 17, (2), 3.10.
    Donau, Monatsh., 1904, 25, 181.
    Gorgeu, Compt. rend., 1837, 104, 1174.
    Hilpert and Kohlmeyer, Ber., 1909, 42, 4581.
    Abt, Wied. Annalen, 1897, (2), 62, 474.
    Sosman and Hostetter, J. Washington Acad. Sci., 1915, 5, 293.
    Honda and Soné, Sci. Rep. Tohoku Imp. Univ., 1914, 3, 223.
    Waldes, J. Amer. Chem. Soc., 1908, 30, 1350.
    Hammick, Trans. Chem. Soc., 1917, 111, 379.
    Gantier, Compt. rend., 1906, 143, 7.
    Glaser, Zeitsch. anorg. Chem., 1903, 36, 1.
    VOL. IX.: II.
```

Magnetic oxide dissolves in hydrochloric acid. If the latter is ne present in sufficient quantity to yield a complete solution of ferror and ferric chlorides, ferric oxide and ferrous chloride are produced.

The heats of formation of magnetite are as follo :-

```
3|\text{Fe}_2O_3| = 2[\text{Fe}_3O_4] + (O) - 45,180 \text{ calories.}^1
      _{4} 3| Fe] + _{4}(O) _{5}-| Fe_{3}O_{4}| + 265,200 calories.<sup>2</sup>
        3|Fe| +4(0) =|Fe<sub>3</sub>O<sub>4</sub>| + 265,790 calories.3
• [FcO] + [Fc_2O_3] = [Fc_3O_4] + 9200 \text{ calories.}^3
    c 3 FeO + (O) = Fe<sub>3</sub>O<sub>4</sub> + 85,800 calories.4
       3 |FeO| + \langle O \rangle = |Fe_3O_4| + 75,600 \text{ calories.}^{-1}
   3[FeCO_3] + (O) = [Fe_3O_4] + 3CO_2 + 0 calories.
```

and at 490° C. under constant pressure,5

3[Fe] +
$$\S(O)$$
 = [Fe₃O₄] + 267,380 calories.

According to Moissan, magnetic oxide of iron exists in two polymorphic forms, according to its method of preparation. The one form, obtained by high temperature methods, such as the combustion of iron in oxygen, the action of steam on iron at red heat and the calcination of ferric oxide at bright red heat, is characterised by its insolubility in concentrated boiling nitric acid, by its high density (5 to 5.09), and by its resistance to further oxidation when heated in air.

. The seeped variety resembles the former in its black appearance and magnetic properties, but differs from it in density (4.86), in its solubility in nitric acid, and in its tendency to oxidise to ferric oxide when calcined in air. It is converted into the other variety when raised to white-heat 'hi' nitrogen. As explained in the case of ferrous oxide, however; these differences may simply be due to variations in the states of aggregation of the oxide, according to its method of preparation. Several substances, such as 4FeO.Fe₂O₃, ⁷ 3FeO.Fe₂O₃, ⁸ etc., ⁹ have

been described. It is highly probable, however, that these are not

definite chemical entities.

When ferroso-ferric ammonium carbonate (see p. 202) is decomposed by a hot concentrated solution of potassium hydroxide in the absence of air, hydrated ferroso-ferrie oxide separates out, which, when dried at 100° C., corresponds in composition to the formula Fe₂O₃, 4FeO.5H₂O. It is readily acted on with air, yielding hydrated ferric oxide, Fe₂O₃.H₂O. 10

A bluish black oxide, corresponding in composition to 2FcO.3Fe₂O₃, is described 11 as resulting when potassium nitrate is added to a boiling

solution of ferrous sulphate rendered alkaline with ammonia.

```
Le Chatelier, Compt. rent., 1895, 126, 623.
       42 Ruff and Görsten, Ber., 1912, 45, 63.
        <sup>2</sup> Mixter, Amer. J. Sci., 1913, (4), 36, 55. Compare Berthelot, Compt. rend., 1881,

MIXCET, American Ber., 1913, 46, 384.
Ruff and Gersten, Ber., 1913, 46, 384.
Ruff and Glaessner, Zeitsch, physikal. Chem., 1903, 43, 354.
Moissan, opus cit., p. 342; Ann. Chim. Phys., 1880, (5), 21, 199.
Berthier, Ann. Chim. Phys., 1824, (2), 27, 19.
Doebereiner, Arch. Phartz., 1845, (2), 41, 29.
See Mosander, loc. cit.; Laurent and Holms, Ann. Chim. Phys., 1835, (2), 60, 330.
Hauser. Ber., 1907, 40, 1958.
```

Hydraled Magnetic Oxide. Hagnetic oxide dissolves in hydrochloric acid, and the solution so bbtained yields, on pouring into an excess of sodium hydroxide solution, a black precipitate which, on drying, is attracted by a magnet. It is the monohydrate, Fe₃O₄.H₂O. The sesqui-hydrate, 2Fe₃O₄.8H₂O, is obtained by precipitation in

an analogous manner from mixed solutions of ferrous and ferric salts in the proportions theoretically required. The precipitate is dark green to black in colour, and strongly magnetic. It may be washed in the presence of air without oxidising, and loses water only, on

Ferric oxide, Iron sesqui-oxide, Fe.O. occurs in abundant quantities in nature, both in the massive and crystalline forms, the former being known as red hamatites, whilst the latter are termed specular iron (see p. 16) when the crystals are rhombolicdra and scalenohedra, or

micaceous iron when in thin translucent scales.

In the laboratory ferric oxide may be obtained in a variety of ways. Thus when ferric hydroxide or sulphate is strongly heated ferric oxide remains behind, and the same applies if ferric chloride or sulphide, ferrous oxide or carbonate, or indeed the majority of ferrous salts,3 are heated in contact with air. Several of these methods are adopted on a manufacturing scale. For example, in the manufacture of sulphuric acid 4 iron pyrites is reasted in air, leaving a residue of ferric oxide. Thus:--

$$2FcS_2 + 110 = 4SQ_2 + Fc_2O_3$$
.

Ferrie oxide is manufactured in large quantities for use as a pigment by roasting ferrous sulphate obtained by weathering iron pyrites, as

described on page 147.

Ferrie oxide is also prepared from liquors containing ferrie salts in solution, and which are otherwise waste products in many has infracturing processes. If ferrous salts are present, they are first oxidised by addition of nitric acid or bleaching powder. The acid is neutralised by addition of soda or lime, ferric hydroxide being precipitated. The washed product is finally dehydrated by heat, becoming perfectly anhydrous at 500° C. upwards.5

Ferric oxide, in a more or less impure condition, is manufactured for pigmentary purposes by the ignition of natural ferric hydroxides such as ochres (see p. 18). The colour of the final product depends largely upon the completeness with which the water has been expelled. Thus Venetian reds are produced after ignition at dull red heat for some eight hours; ten hours' heating yields light reds; twelve hours the

so-called Indian reds; and so on a Crystalline Ferric Oxide. Small crystals of ferric oxide may be obtained by fusing amorphous ferric oxide with sodium borate (borax), and extracting them from the cooled mass with the aid of filute aqueous

See this series, Volume VII.

Liobig and Wohler, Pogg. Innalen, 1831, 21, 583; Lefort, Compt. rend., 1852, 34, 488.
 See Preuss, Annalen, 1838, 26, 96; Wohler, ibid., 1838, 28, 92.
 i.e. salts whose acids are volatile at high temperatures.

See this series, volume vii.

Carmelley and J. Walker, Trans. Chem. Soc., 1888, 53, 89,

The action of heat on ochres and the production of allotropic forms has been studied by Bouchonnes. Bull. Soc. chim., 1912, (4), 11, 0; 1911, (4), 9, 345.

See A Treatise on Colour Manufacture, by Zerr and Kübenkamp. Translated by C. Mayer (Chas. Griffin & Co., 1908); also Bradford, Proc. Paint Varnish Soc.. 1920. No. 3, p. 135.

nitric or hydrochloric acid.1 Passage of gaseous hydrogen chloride ove the ferric oxide at red heat; of team containing some annionium fluoride over the oxide at 600° C.*; of ammonium chloride over ferric oxide at 700° C.*; or of vaporised ferric chloride over heater lime, results in the formation of small erystals of ferric oxide Crystals have been found, produced by the first, of these methods, in fron pipes which have for many years conducted alternately hydrogen chloride and air in a plant connected with Deacon's process for the manufacture of chlorine. Crystals have also been found as broducts of smelting operations, whilst crystals having the form of specular iron have been found in iron rust from a building seven hundred to eight hundred years old. By heating mixed solutions of the sulphates of copper and iron (ferrous) in scaled tabes to 210° C. for ten hours, crystals resembling those of micaceous iron are produced.7 When ferric sulphate is heated, it decomposes, yielding hexagonal lamella of ferric oxide, having a density of 4.95 at 14° C.8

Ferric oxide, pseudomorpheus with magnetite, may be obtained by heating magnetite crystals in the blow-pipe flame for several hours; oxidation takes place, the crystals retaining their original form almost

unaltered, but losing their magnetic properties.9

Ferrie oxide may be obtained in an exceptionally gure condition, 10 very useful for analytical purposes, by dissolving a piece of metallie iron, preferably of high parity, in hydrochloric acid, diluting, and precipitating as sulphide by passage of hydrogen sulphide, any copper, etc., with which the metal is contaminated. The clear filtrate is evaporated to small bulk, oxidised with nitric acid, evaporated to dryness with hydrochloric acid, taken up with water, and extracted with ether. The ethereal solution is distilled, and the residual ferrous and ferrie chlorides dissolved in diluted hydrochloric acid, reduced with sulphur dioxide and precipitated as ferrous oxalate with the ammonium salt. After thorough washing the oxalate is ignited to ferric oxide.

Pure ferrie oxide is recommended for the standardising of permanganate solutions for volumetric analysis. It is dissolved in hydrochloric acid, reduced with stannous chloride, and titrated with permanganate.11

As obtained by any of the foregoing methods, ferric oxide is an extremely stable substance, soluble in acids only with difficulty. It metts at 1565° C., 12 and freezes at 1562° to 1565° C.13

```
    Hauer, Nitzung ber. K. Akad. Wies, Wien, 1854, 13, 456.
    Deville, Compts rend., 1861, 52, 126x.
```

3 Bruhns, Chem Zentr., 1889, 11., 886; Arctowski, Zeitsch. anorg. Chem., 1894,

6, 377.
Arctowski, Bull. Acad. royl. Belg., 1894, (3), 27, 933; Zeitsch. anorg. Chem., 1894,

Munroe, Amer. J. Sci., 1907, (4), 24, 485.
Roscoe and Schorlemmer, Trealise of Chemistry, vol. ii. (Macmillan & Co., 1907).
de Senarmont, Ann. Chim. Phys., 1851, (3, 32, 144.
Lachaud and Lepierre, Compt. rend., 1892, 114, 915.
Friedel, Bull. Soc. fran. Min., 1894, 17, 150.
Brandt, Chem. Zeil., 1916, 40, 605, 631.
Brandt, & Dos, 32, 812, 830, 840, 851.
Hilpert and Kohlmeyer, Ber., 1909, 42, 4581.
Kohlmeyer, Metallurgle, 1909, 6, 323.
Kohlmeyer, Metallurgle, 1909, 6, 323.

Kohlmeyer, Metallurgle, 1909, 6, 323.

Its cubical coefficient of expansion with rise of temperature

Its specific heats for various temperature intervals are as follow:—

Temperature Interv	l. Specific Heat.	Molecular Heat.
÷191·9 to ·81 -191•9 , • -80		} 11:59
- 73·6 ,, 0 - 78·8 ,, 0	0.1318 0.1818	} 21.05.
3·9 ,, 43 3·2•,, 44	- 1	}. 25.53

At about 2500° to 3000° C, it shows signs of volatilising.

It erystallises in tabular hexagonal scales belonging to the hexagonal system, and possesses a steel-like lustro. The edges are ruby-red in colour, and give a red streak. Density, 5-187 to 5·193.4

At 640° C. ferrie oxide appears to undergo a polymorphic change, 5 The magnetic properties of ferric oxide are ordinarily very feeble, but when heated to a very high temperature, as, for example, in the cleetric furnace,7 or oxy-hydrogen flame,8 it becomes magnetic, owing to conversion into the magnetic oxide, Fe₃O₄. It is not reducible by solid carbon, in the absence of gases, below 950° C, When heated with platinum to 1600° C. in the air, ferric oxide is reduced to the metal, oxygen being evolved and the iron passing into solid solution in the platinum. 10 Under low oxygen pressures the temperature of reduction may be as low as 1200° C

When heated to 480° C., under a pressure of twelve atmospheres of oxygen, ferric oxide undergoes no chemical change, a higher oxide not being formed.11

With magnetic oxide ferric oxide yields a continuous series of solid. solutions, ranging from Fe₂O₃ down to practically Fe₃O₄ itself. No intermediate oxides have been detected.12

 Fizeau, Ann. Chim. Phys., 1866, (4), 8, 335.
 Russell, Physikal. Zeitsch., 1912, 13, 59. Other data are given by Abt, Wied. Annalen, 1897, 62; 474. Compare also Lallemand, Ann. Chim. Phys., 1863, (3), 69, 223; Malagutti and Lallemand, ibid., 1862, (3), 64, 214.

Elsner, J. prakt. Chem., 1866, 99, 257.

Kohlmeyer, Metallurgie, 1900, 5, 323.

- * Kohlmeyer, Metalturyte, 1904, b., 323.

 * Keppeler and d'Ans, Zeitsch. physikal. Chem., 1908, 62, 89.

 * See Malagutti, Ann. Chim. Rhys., 1863, (3), 69, 214; Latlemand, ibid., p. 223; de Luca, Compt. rend., 1862, 55, 615; Smith, Ann. Chim. Phys., 1844, (3), 10, 120; Plücker, Pogg. Annalen, \$488, 74, 321.

 * Moissan, Compt. rend., 1892, 115, 1034.

 * Read, Trans. Chem. Soc., 1894, 65, 314.

 * Charpy and Bonnerot, Compt. rend., 1910, 151, 644.

 * Charpy and Bonnerot, Compt. rend., 1910, 151, 644.

- 18 Soeman and Hostetter, J. Washington Acad. Sci., 1915, 5, 293.

Milbauer, Eighth Inter. Cong. App. Chem., 1912, 2, 183.
 Souman and Hostetter, J. Amer. Chem. Soc., 1916, 38, 807.

The dissociation pressures of ferrid oxide between 1100° and 1400° C. are as follow: -- 1

Temperature.	Pressure (mm. mercury).
1100	5.0⊾
• 1150	7.0
1200 • •	9.0 •
1250 •	20.0
1300	59.5
1350	166.0
1400	• 454.0

Ferric oxide is reduced to ferrous oxide or the metal, according to circumstances, by carbon monoxide. At temperatures below 1000° C. the dry gas is more effective than the moist, but at 1050° C, both moist and dry gases behave alike,2 At and below 850° C, the iron is converted into carbide.3 At 700° C, the reaction

$$3\mathrm{Fe}_2\mathrm{O}_3+\mathrm{CO}_2=2\mathrm{Fe}_3\mathrm{O}_4+\mathrm{CO}_2$$

also takes place.4

"Ferric oxide is reduced to metallic iron when strongly heated in a current of hydrogen, the water vapour formed during the reduction being rapidly carried away in the current of gas.

The temperature at which reduction begins depends on the tempera-

ture to which the oxide has previously been heated.5

In the case of hydrogen gas the reaction usually begins at about 880° C. with the formation of magnetic oxide. Thus: -

$$3Fc_2O_3 + H_2 = 2Fc_3O_4 + H_2O_5$$

Carbon monoxide is active eyen at 240° C.5 At 500° C. ferrous oxide is formed: --

$$Fe_3O_4 + H_2 = 3FcO + H_2O;$$

and at 600° C. complete ceduction to metallic iron is effected :-

• FeO+
$$H_2$$
=Fe+ H_2 O.

The metal obtained at this temperature, however, is not pyrophorie.6

It must be remembered that the foregoing temperatures are only approximations, and refer to experiments of ordinary duration. For

Chem., 1903, 43, 354.

Chem., 1903, 43, 354.

Hithert, Ref., 1909, 42, 4576. Compare Glaser (Zeitsch. anorg. Chem., 1903, 36, 1), who gives 287° C. as the commencing temperature.

Moissan, ppus cit., p. 347.

Walden, J. Amer. Chem. Soc., 1908, 30, 1350. Slightly different data are given: Treadwell, Zeitsch. Elektrochem., 1916, 22, 414. See also Hostetter and Sosman, J. Amer. Treadwell, Zeitsch. Elektrochem., 1995, 140, 40.

Chem. Soc., 1916, 38, 1188.

Boudouard, Compt. rend., 1905, 140, 40.

Hilpert and Dieckmann, Ber., 1915, 48, 1281.

See Braithwaite, Chem. News, 1895, 72, 211; Baur and Glacssner, Zeitsch. physikal.

example, the last reaction, stated to begin at about 600° C., will take place, albeit very slowly, at considerably lower temperatures. Thus, after minety-six hours of treatment, Moissan was able to reduce the oxide to metallic iron at 440° C., and the metal was then pyrophoric.

If, however, the reduction is made to take place in a more or less confined area, various equilibria are set up, according to circumstances.

Thus :-

$$\begin{array}{c} F \overline{\epsilon}_2 O_3 + 3 H_2 - 2 F c + 3 H_2 Q, \\ F c_2 O_3 + 3 C O_2 - 2 F c + 3 C O_2, \end{array}$$

and these reactions are still further complicated by the formation of

ferrous oxide and magnetic oxide. Ferric oxide is rapidly reduced by nascent hydrogen. If added to

hydrochloric acid in which metallic iron is dissolving, it is reduced and quickly dissolved, yielding ferrous chloride.2

Ferrie oxide is not attacked by thionyl chloride, SOCl2, at the ordinary temperature. At 130° C, the following reaction readily takes place :- -

$$Fc_2O_3 + 3SOCl_2 = 2FcCl_3 + 3SO_2$$

the ferric chloride crystallising out in green hexagonal plates.3

Heated with sulphur, ferric oxide yields ferrous sulphide and sulphur dioxide. With hydrogen sulphide at white heat hydrogen and sulphur dioxide arc evolved :-- 4

Ferric oxide reacts slowly at 700° to 800° C, with sulphur dioxide, yielding sulphur trioxide and magnetic oxide:

$$3{\rm Fe_2O_3} + {\rm SO_2} - 2{\rm Fe_3O_4} + {\rm SO_2}^5$$

Below 600° C, there is no action.

Ferric oxide is attacked by chlorine at high temperatures, yielding a sublimate of ferric chloride, the same salt being also produced upon ignition of the oxide in hydrogen chloride. Ammonia, under similar conditions, is oxidised to water, a nitride of iron being produced.

Ferric oxide is dissolved by hydrochloric acid. Nitric acid does not attack the ignited oxide. Sulphuric acid, particularly a mixture

of 8 parts of acid with 3 parts of water, effects its solution.8.

When heated with calcium sulphate, ferric oxide causes the expulsion of sulphur trioxide, and a similar reaction takes place with lead and magnesium sulphates.

- 1 See this volume, Part III., where the reactions taking place in the blast furnace

- are discussed.

 2 Bornträger, Zeitsch. anal. Chem., 1896, 95, 170.

 3 North and Hagemann, J. Amer. Chem. Moc., 1913, 35, 352.

 4 Gautier, Compt. rend., 1906, 143, 7.

 5 Keppeler, Zeitsch. angew. Chem., 1908, 21, 579; Hammick, Trans. Chem. Soc., 1917, 111, 379.
 Weber, Pogg. Annalen, 1861, 112, 619; Jahresber., 1861, 14, 148.
 Deville, Compt. rend., 1861, 52, 1264.
 Mitscherlich; J. prakt. Chem., 1860, 81, 110; Siewert, Jahresber., 1864, 17, 286.
 Scheurer-Kestner, Compt. rend., 1884, 99, 876.

The heats of formation of armydipus ferric exide below 400° C. are given as follow :---

e of a god that help

 $2[Fe] + 3(O) = [Fe_2Q_3] + 194,400 \text{ calories.}^1$ $2[Fe] + 3(O) = [Fe_2Q_3] + 192,200 \text{ calories.}^2$ $2[FeO] + (O) = [Fe_2O_3] + 65,200 \text{ calories.}^1$ $2[FeO] + (O) = [Fe_2O_3] + 63,700 \text{ calcries.}^2$ $2[Fe_3O_4] + (O) = 3[Fe_2O_3] + 54,500 \text{ calories.}^2$

Ferric Oxide as a Catalyst.--Ferric oxide possesses the power of catalytically proporting the combination of sulphur dioxide and oxygen at red heat. The action is perceptible at temperatures just above 400° C., attaining a maximum at 625° C. when 70 per cent. of the sulphur dioxide is converted into trioxide. The origin of the ferric oxide is of considerable importance, that prepared from the hydroxide being particularly active. Admixture of copper oxide increases the efficiency, as does also the presence of arsenic at temperatures above 700 °C.4

In commercial practice, the ferric oxide is obtained from pyrites einder, and experience shows that its catalytic activity is greatest if the ferrie oxide is used fresh and not first allowed to get cold. It appears that if the air required for oxidation of the pyrites is dried previous to admission to the burners, the resulting mixture of sulphur dioxide and air is more sensitive to the action of the entalyst than is otherwise the ease. Under highly favourable conditions 90 per cent. of the sulphur dioxide is converted into sulphur trioxide, and a conversion of 60 per cent. is quite readily obtained.

Owing to the high temperature required, however, there appears to be a loss of sulphur trioxide through dissociation when the process is carried, out on a commercial scale. A process has therefore been patented according to which the conversion of the sulphur dioxide into trioxide is rendered practically complete by passing the partially converted gases emerging from the ferrie oxide chamber through a second

chamber containing platinum as catalyst.6

The manner in which the ferric oxide is able to function as a catalyst has been the subject of discussion. According to one theory, it is supposed to undergo alternate reduction to magnetic oxide and oxidation to ferrie oxide; thus: -

$$^{\prime} \begin{array}{l} 3 Fe_2 O_3 + SO_2 \stackrel{\prime}{=} 2 Fe_3 O_4 + SO_3, \\ 4 Fe_3 O_4 + O_2 = 6 Fe_2 O_3. \end{array} .$$

It has also been suggested that sulphur dioxide and oxygen combine with the ferrie oxide to form ferrie sulphate, which then dissociates nto the trioxide, regenerating the ferrie oxide. Thus:-

A third theory 7 has been put forward by Keppeler, according to

1 Le Chatelier, Compt. rend., 1895, 120, 623.

Mixter, Amer. J. Sci., 1913, (4), 36, 55.
 Lunge and Reinhardt, Zeitsch. angew. Chem., 1904. 17, 1041.
 Lunge and Pollitt, ibid., 1902, 15, 1105.

6 See English Patents, 17203 (1898), 24748 (1899).

^a English Patent, 24748 (1899).

'Keppeler and his co workers, Zeitsch. angew. Chem., 1908, 27, 532, 577.

which the catalytic action is attributable to a physical cause, the gases being condensed on the surface of the ferric oxide and uniting under these conditions. This theory explains the similarity existing between the catalytic activities of ferric oxide and platinum, and harmonises very satisfactorily with the conclusions of Bone and Wheeler, relative to the eatalytic activity of ferric oxide and other heated surfaces in the surface combustion of mixtures of hydrogen and oxygen.1

Many other reactions are known in which ferric oxide acts as a eatalyser. Thus, it assists the decomposition of mercuric oxide at temperatures between 360° and 480° C₂ and the oxidation of carbon monoxide with steam, the reaction proceeding very slowly at 250° C.

but rapidly at 400° C.3

It assists catalytically the conversion of sodium chloride into sodium sulphate when heated in a current of air along with finely divided pyrites. It also accelerates the decomposition of potassium chlorate when heated with this salt, much in the same way as manganese dioxide has long been known to do. More chlorine is evolved during the decomposition, however, and under certain conditions the oxygen is evolved at an even lower temperature than when manganese dioxide

Polymorphism of Ferric oxide. The yellow colour in certain bricks is stated to be due to a yellow modification of anhydrous ferric oxide

rendered stable by alumina.6

It may well be, however, that the colour of ferrie oxide is defermined by the size of the grain rather than by any variation in molecular structure.7 Thus, brown and violet samples of ferrie oxide are converted into the yellowish red variety by alternate grinding and washing -processes which, in view of the chemical stability of ferric oxide, are hardly likely to effect a molecular transformation.

Hydrated ferric oxide, Fc(OH)3.Aq., occurs in nature in various stages of hydration, the hest-known minerals being (see pp. 17-19) as

follow: -

Turgite, 2Fc,O3.H2O. Goethite, Fc₂O₃.H₂O₄ Hydrogoethite, 3Fc₂O₃ H₂O. Limonite, 2Fc₂O₃.3H₂O. Xanthosiderite, Fe₂O₃.2H₂O. Limnite, Fe₂O₃.3H₂O. Esmeraldaite, Fc₂O₃.4H₂O.

When heated with water under enormous pressures (some 5000 atmospheres) ferrie oxide becomes hydrated. At 42.5° C. it yields brown iron stone; at 42.5° to 62.5° C., Goethite, Fe₂O₃, H₂O, and at

See Bone and Wheeler, Phil. Trans., 1906, A, 200, 1; also this series, Volume VII.
 Taylor and Hulett, J. Physical Chem., 1913, 17, 565.
 Armstrong and Hilditch, Proc. Roy. Soc., 1920, A, 97, 265.
 Krutwig, Rec. Trav. Chim., 1897, 16, 176.
 Hodgkingon and Lowndes, Chem. News, 1888, 58, 309; 1889, 59, 63; Mills and Donald, Trans. Chem. Soc., 1882, 41, 18; Fowler and Grapt, Trans. Chem. Soc., 1890, 57, 278. See also this series, Volume VII., Part I.
 Scheetzs J. Physical Chem., 1917, 21, 570; Tommasi, Bull. Soc. chim., 1882, (2), 885.

<sup>38, 152.
7</sup> Wöhler and Condrea, Zeitsch. angew. Chem., 1908, 21, 481.

Ruff, Ber., 1901, 34, 3417.

higher temperatures, a hydro-hærtatite, 2Ft2O3.H2O, resembling

turgite in composition.1

Ferric hydroxide, dried at 100° L., gradually becomes rehydrated upon prolonged exposure to a saturated atmosphere.2 Although the above substances are usually described as hydrates of ferric oxide, it is by no means certain that all of them are to be regarded as definite chemical entities.3 They are mostly hygroscopic substances, the amount of water they contain at any moment fluctuating with the temperature and humidity of the atmosphere. The task of determining precisely how much of the contained water is merely physically attached to the. oxide, and how much is chemically combined with it, is not easy.

 Precipitated ferric hydroxide becomes gradually dehydrated when its temperature is raised. At 557 C. it attains the composition ${\rm Fe_2O_3.3H_2O}$, and with further rise in temperature, more water is gradually evolved until at about 385° C., a substance represented by the formula 10Fc₂O₃·H₂O is obtained, which remains constant in weight for several hours at 385° to 415° C. At 500° C, the oxide is perfectly dehydrated, and its weight remains constant.4

The subhydrate, 2Fe₂O₃, H₂O, occurs in nature as the mineral turgite (see p. 17). It may be prepared in the laboratory 5 by boiling ferric hydroxide with distilled water for prolonged periods, when it becomes partially dehydrated and loses its gelatinous appearance. It still contains from 4 to 6 per cent. of water, approximating to a composition of 2Fe₂O₃, H₂O. The same effect is produced by heating the hydroxide for 1000 to 2000 hours at 50° to 60° C., the resulting oxide having a brick-red appearance, and a density of 4.5, and generally resembling red hæmatile. It seems reasonable to suppose that the change may take place at still lower temperatures, given sufficient time, and it is thus unnecessary to postulate the need for high temperatures to account for the production of some of our deposits of red hematite.

The monohydrate, Fe, O, II,O, occurs in nature as the mineral Goethite (see p. 18), which is regarded as a definite crystalline hydroxide 6 and not as a colloid like limonite. The monohydrate may be prepared in the laboratory in the amorphous condition by the prolonged boiling of the brown previpitate resulting from the addition of alkali to ferric chloride solution? The colour gradually changes from brown to brickred, and the resulting hydrate is remarkably resistant to acid attack.

Boding concentrated nitric acid has but little effect, and even concentrated of the con trated hydrochloric acid buly attacks it after prolonged digestion at the boiling-point. After some hours of treatment with acctic acid at 100 °C. a colourless colloidal solution is obtained, from which addition of a trace of sulphuric acid effects the precipitation of the insoluble monohydrate. If, however, the solution is prepared in the cold, it possesses a winceted colour and reacts like a ferric sait.

¹ See Tommasi, Ber., 1879, 12, 1929.

See Homman, Ber., 1879, 12, 1929.
 Cross (Chem. News, 1883, 47, 239) continued his experiments for 192 days.
 See Fischer, Leitsch. anorg. Chem., 1910, 66, 37; van Bemmelen, Rec. Trav. Chim., 1899, 78, 80; wan Bemmelen and Klobbie. J. prakt. Chem., 1892, (2), 46, 497.
 Carnolley and Walker, Trans. Chem. Noc., 1888, 53, 89; Ramsay, J. Chem. Soc., 1877, 32, 395.
 Davies, ibid., 1806, 19, 69.
 Fischer, Zeitsch. anorg. Chem., 1910, 66, 37; Posnjak and Merwin, Amer. J. Sci., 1919, 47, 311.

^{47, 311.} Saint Gilles, Compt. rend., 1855, 40, 508, 1243; Ann. Chim. Phys., 1856, (3), 46, 47. See also Bancroft. J. Physical Chem., 1915, 19, 232

When iron is exposed to moit air, it readily becomes coated with a light, friable, and prous mass of oxide, which is brown in colour, and is generally termed rust. Numerous analyses of rust have been published from time to time, which prove that its composition varies according to the age and method of formation of the rust. When formed by exposure to ordinary air its composition corresponds fairly closely to the formula Fe₂O₃.H₂O.

The monohydrate has been obtained in crystalline form in several ways, such as, for example, by the action of concentrated potassium

•hydroxide solution myon potassium nitreprusside.²
When iron is attacked by fused sodium peroxide, dark red, tabular crystals of a monohydrate, Fe_2O_3 , H_2O_3 are obtained, of density 8.8 at 27° C. The hydrate is magnetic, and when heated to low redness a magnetic form of anhydrous ferric oxide is obtained.3

Crystals of Goethite have been maintained under a pressure of 9500 atmospheres for 26 days at 15° C. without showing any loss of water, although almost all the water is expelled when the crystals are immersed in water for 7 days at 320° to 330° C. mder a pressure of 185 atmospheres.4

An instable variety of Fc₂O₂.11₂O is obtained by partially de-

hydrating the dihydrate by exposure in a desiceator.

Ferrous acid, Fc₂O₃.H₂O, or HFcO₂, possesses the same empirical

formula as the monohydrate, and is discussed on p. 129.

The sesqui-hydrate, 2Fc₂O₃.3H₂O, is generally regarded as resulting when the normal trihydrate is allowed to dry in a vacuum. It occurs in nature as the mineral *limonite* (see p. 18), and is a valuable source of iron. It is probably not a chemical entity but a colloidal substance containing adsorbed water.5

A satisfactory explanation for the yellow colour of limonite las not as yet been offered. Possibly the colour is due to the adsorption of an

iron salt, but this has not been proved.6

A substance having a composition corresponding to the dihydrate, Fe₂O₃.2Il₂O, is obtained by dissolving reduced iron in hot, diluted sulphuric acid and heating until the acid begins to fame and the iron is transformed into a faintly red, crystalline powder. The acid is poured off and the precipitate shaken with sodium hydroxide solution and finally washed with water. The substance is formed as brownish plates of density 3234 at 15° C.7

It is probably not a delinite hydrate. It loses water when kept in a desiccator, yielding a substance corresponding in composition to the monohydrate, Fe₂O₃, H₂O, but which is not very stable, and is probably

not the normal monohydrate.

The trihydrate, Fe₂O₃,311₂O, or Fe(OII)₃, is the brown voluminous precipitate obtained on adding an alkali to a solution of a ferric salt, The reaction is delicate, 1 part of iron in 80,000 parts of water

¹ See p. 77, where analyses and references are given.

Roussin, Ann. Chim. Phys., 1858, (3), 92, 285. See the criticish of van Bemmelen and Klobbie, J. prakt. Chem., 1892, (2), 46, 497.

Dudley, Amer. Chem. J., 1902, 28, 59. See also Brunck and Graebe, Ber., 1880, 13, 725.

Spezia, Alth. R. Accad. Sci. Torlino, 1911, 46, 682.

Fisches loc. cit.; Posnjak and Merwin, Amer. J. Sci., 1919, 47, 311.

Bancroft, V. Physical Chem., 1915, 19, 232.

Vesterberg, Ber., 1906, 39, 2270. See also Weltzien, Annalen, 1866, 138, 129; Muck, Jahresber., 1867, 20, 287.

being detectable by the precipitate obtained if ammonia is the alkali

employed.1

A mixed solution of ferrous sulphate and hydrogen earbonate deposits ferric hydroxide upon standing, ever in the dark, 2 Its heat of forma-

 $2[Fe] + 3(O) + 3H_2O = 2[Fe(OII)_3] + 191,150$ calories.³

If the trihydrate is boiled with water for several hours it gradually assumes a brick-red colour, being converted into the monohydrate, Fc_2O_3,H_2O (see p. 122). The triby drate is readily soluble in acids yielding . ferric salts. It also is slightly soluble in ordinary distilled water, namely, to the extent of 0.151 mgm. of Fe(OII)3 per litre at 20° C.4

Freshly precipitated ferric hydrodide adsorbs arsenious acid from solution; the extent of adsorption is diminished by the presence of sodium hydroxide, but addition of sodium chloride appears to have no influence.⁵ It has therefore been recommended as an antidote in cases of arsenie poisoning. The amount of adsorption is given by the expression

 $y = 0.631 \times \sqrt[5]{x}$

when y and x are the amounts of acid adsorbed and remaining in solution respectively. The following data illustrate the general agreement between the calculated and observed values of x:

. "	r (calculated)	x (observed)
•		-
0.251	0.010	0.010
0.115	0.123	0.107
. 0.549	0.498	0.195
0.712	1.826	1.898
0.821	3.740	* 3.875

Ferrie hydroxide dissolves in fused sodium hydroxide, and, if the latter is present in excess, lastrons needles and lamella of composition approximating to 20Fc₂O₃,32H₂O,3Na₂O are obtained. These disselve reachly in acids, and begin to lose water at 120° C., becoming anhydrous at dull red heat. The resulting product, 20FC₂O₃.3Na₂O, resembles specular humanite in appearance and is conceivably a solution of sodium ferrate in ferric oxide. By heating ferric hydroxide with sodium hydroxide to 110° C.; a product resembling Goethite, Fe₂O₃.H₂O, is obtained, but again admixed with small quantities of sodium oxide.6 . •

Curtman and St John, J. Amer. Chem. Soc., 1912, 34, 1679; Hampe, Chem. Zentr., 39, 2, 900.

² Molisch, Keitsch. Kryst, Min., 1913, 53, 92. 4889, 2, 906.

A. Bonsen, R. S. Britter, translated by Burke (Longmans, 1908), p. 265.
 Almkvist, Zeitsch. anorg. Chem., 1918, 103, 240.
 Biltz, Ber., 1904, 37, 3138. See Boswell and Duckson, J. Amer. Chem. Soc., 1918, 40, 1783; Mecklenburg, Zeitsch. physikal. Chem., 1913, 83, 609; Lockemann and Lucius, tbid., 1913, 83, 735; Lockemann, Verh. See. deut. Naturforsch. Aertze, 1911, 11, 25; Jockemann and Paucke, Zeitsch. Chem. Ind. Kolloide, 1911, 8, 273; Taylor, The Chemistry of Colloids (Arnold, 1915). Rousseau and Bernheim, Compt. rend., 1888, 106, 1530.

Ferric hydroxide dissolves in potassium hydroxide in the presence of ozone, yielding potassium perferrate.

On passing a current of air into a hot, concentrated solution of sodium hydroxide containing ferrichydroxide in suspension, an appreciable quantity of iron passes into solution without colouring the liquid. On standing for several days the liquid becomes turbid owing to separation of ferric hydroxide, but is readily clarified again by warming. Probably sodium ferrate is formed in solution.

Ferric hydroxide is readily soluble in mineral acids yielding the • corresponding ferric salt, and in ferric chloride solution yielding oxy compounds which are acidic in their behaviour, decomposing carbonates, and can therefore hardly be termed basic chlorides.3 It dissolves in aqueous oxalic acid to an extent directly proportional to the concentration of the acid, no definite basic oxalate being formed at 25° C. from solution.4 It does not combine with carbon dioxide when freshly precipitated and suspended in water.⁵

It dissolves to a considerable extent in a concentrated solution of aluminim sulphate,6 yielding a brown solution which may be evaporated to dryness without decomposition. Addition of water

induces the formation of a basic salt, 3Fc₂O₃.SO₃.3H₂O₄

Inasmuch as the majority of ferric salts in the crystalline state are whitish, the question arises as to why ferric hydroxide should be brown. Perric hydroxide can be obtained as a white precipitate on. adding a freshly prepared and concentrated solution of a ferric salt to cooled ammonium hydroxide solution, but it rapidly becomes brown due, it has been suggested, to molecular condensation or aggregation. When kept under water for a year, ferric hydroxide changes in colour from brown to yellowish red, and about 30 per cent, becomes insoluble in dilute acids. Possibly these changes are due to a similar cause,

A mineral having a composition corresponding to a tetrahydrate, Fc₂O₃.4H₂O, has been found as an inclusion in limonite in Esmeralda Country, Nevada, whence the name Esmeraldaite (see p. 19). It is glassy and brittle, but possesses a yellowish brown streak. Its density A substance of similar composition 9 is obtained when the is 2.58. voluminous precipitate of hydrated oxide, resulting from addition of ammonia to dilute ferric chloride solution, is allowed to dry in the air. It is vitreous in appearance, black in colour when viewed in mass, although thin sections appear red by transmitted light. Its density is 2.436 at 15° C. Pressure does not decompose it, but it loses water when placed in a desiceator.

Colloidal ferric hydroxide. Ferric hydroxide may be obtained in colloidal solution 10 by adding 5 c.c. of 33 per cent. ferrie chloride to a litre of boiling water and removing the chloride remaining, together

with the hydrochloric acid, by dialysis. *

¹ Mailfert, Compt. rend., 1882, 94, 860. ² Zirnité, Chem. Zeit., 1888, 12, 355. **See p. 104; also Nicolardot, Ann. Chim. Phys., 1905, 6, 334; Weyman, J. Soc. Chem. Ind., 1918, 37, 333T.

**Cameron and Robinson, J. Physical Chem., 1909, 13, 157.

**Raikow, Chem. Zeit., 1907, 31, 55, 87.

Tommasi and Pellizzari, Bull. Soc. chim., 1882, (2), 37, 196.

Spring, Rec. Trav. Chim., 1898, 17, 222; Bull. Soc. chim., 1899, (3), 21, 87.

See this series, Volume I., pp. 78–86.

Another method consists in boiling a solution of ferric nitrate with copper filings or zinc dust. The ferric nitrate need not be specially isolated for the purpose, but may be made merely as an intermediate product during the course of the reaction-if, for example, iron filings containing copper are treated with concentrated nitric acid. After dilution and filtration, the solution is dialysed, whereby a deep red liquid is obtained, containing colloidal ferric hydroxide.1

By saturating a solution of ferric chloride with ammonium carbonate and purifying the solution thus obtained by dialysis, ferric hydroxide is readily obtained in the colleidal state,2 or by dialysing the solution obtained by adding ammonia to a solution of ferric effloride in such small quantities at a time that the ferric hydroxide at first thrown out is completely dissolved on stirring. The clear, dark brown solution so obtained searcely tastes of iron. The last traces of chlorine are not removed in this way, although the colloid is free from ammonium salts.3

When a 10 per cent, solution of ferric chloride is poured into excess of ammonia, the colloidal ferric hydroxide initially produced is coagulated by the ammonium chloride. On evaporating to dryness and washing with water, the ammonium salt washes out, and then the ferric hydroxide deflocculates, passing into subsequent wash waters as a red colloidal solution.4

On addition of a dilute solution of potassium permanganate to one of ferrous chloride, and subjecting to dialysis, the pure colloidal hydroxide is readily obtained.⁵ The sol is also obtained by oxidising a solution of ferrous chloride containing one gram equivalent of FeCl₂ per litre with a 3 per tent, solution of hydrogen peroxide.

The colloid, as usually prepared, is electro-positive in character, and may be precipitated from solution by electrolysis, by the addition of small quantities of electrolytes, or by the action of an oppositely charged colloid, such, for example, as (negative) arsenious sulphide, whereby the two electrical charges neutralise each other.7 The smallest quantities of a few electrolytes required to precipitate colloidal ferric hydroxide from solution are given in the following table :- 8

Electrolyte.	Concentration in Gram-molecules per Litre of Solution.	Electrolyte.	Concentration in Gram-molecules pe Litre of Solution.
${ m KNO_3} \ { m Ba(NO_3)_2}$	0.0119 .0140	$egin{array}{cccc} K_2SO_4 & . & . & . \\ MgSO_4 & . & . & . \end{array}$	0.00020 -00022
NaCl lBaCl	. 00925	K ₂ Cr ₂ O ₇ .	- 00019

¹ Cohen, J. Amer. Chem. Soc., 1914, 36, 19

² Dumansky, J. Russ. Phys. Chem. Soc., 1904, 36, 1067,

Wobbe, Chem. Zentr., 1900, L. 165.
 Kratz, J. Jaysical Chem., 1912, 16, 126.
 See Wright, Trans. Chem. Soc., 1883, 180

Aratz, J. Araystem Chem., 1912, 1922.

43, 156.

One gram equivalent of KMnO₄ in 600 c.C., and one gram equivalent of FeCl. in 1000 c.c. Dilute to 2000 c.c. Neidle and Crounbie, J. Amer. Chem. Soc., 1916, 38, 2607.

Neidle and Barab, bibl., 1917, 39, 71.

W. Eiltz, Ref., 1904, 37, 1995. Billiter, Zeitsch. physikal. Chem., 1905, 51, 142.

See Hardy, Zeitsch. physikal. Chem., 1900, 33, 385; also Pappada, Zeitsch. Chem. Ind. Kolloide, 1911, 2, 233; Freuadlich, Zeitsch. physikal. Chem., 1903, 44, 129.

From the above it is clear that it is the negative ion which influences the precipitation most, the divalent ions being considerably more effective than the monovalent.

Non-electrolytes, even in concentrated solution, have usually no

action on the colloid.

When the colloidal solution is boiled with Fehling's solution (made by mixing copper sulphate and alkaline sodium potassium tartrate solutions), the colloid is precipitated along with cuprous oxide.

It is possible also to prepare colloidal ferric hydroxide with a negative This may be done by adding slowly 100 e.c. of 0.01-normal ferric chloride solution to 150 c.e. of 0.01-normal sodium hydroxide, the mixture being continuously slaken during the process.2

Ferric hydroxide is not unique in this respect, for stannic hydroxide has likewise been prepared both as a positive 4 and a negative 4 colloid.

Negative colloidal ferric hydroxide may be converted into the positive colloid by adding it to a very dilute solution of sodium hydroxide (0.005-flormal) with constant shaking. In order to account for this amphi-electrical behaviour, it is suggested that the potential difference at the surface of colloidal particles is due to adsorption of ions from the solution. Hence the sign depends upon whether entions or anions are in excess in the layers nearest the particles.5

The composition and nature of precipitated ferric hydroxide have been made the objects of considerable research. When precipitated, from aqueous solutions the hydroxide contains very varying quantities of water, and the problem has been to determine in what manner that water is associated with the complex. This has been attempted in a variety of ways, such as by measuring the rate of dehydration at constant temperature 6; by studying the dehydration at different temperatures 7; by determining the vapour pressures during deleydration,8 eter A particularly useful method is that of Foote and Saxton, 10 which consists in freezing the precipitate at low temperatures and calculating the quantity of water physically attached to it by observing dilatometrically the change in volume undergone in consequence of the expansion of this water in forming ice. If, in the case of ferric hydroxide, this amount is subtracted from the total amount, as determined by finally heating to redness and weighing the anhydrous farris oxide, Fe₂O₃, the difference gives the weight of water chemically combined.

Dumansky, loc. cit.

² Powis, Trans. Chem. Soc., 1915, 107, 818. See also Fischer, Biochem. Zeitsch., 1910,

³ Glixelli, Kalloid Zeitsch., 1913, 13, 194.

<sup>Glixelli, Aquota Zeitsch., 1915, 13, 194.
Blitz, Ber., 1904, 37, 1095.
Powis, loc. cit., Compare Pauli and Matula, Kollofd Zeitsch., 1917, 21, 39.
Ramsay, J. Chem. Soc., 1877, 32, 395.; Tschermak, Zeitsch. physikal. Chem., 1905, 53, 349.; Zeitsch. anorg. Chem., 1909, 63, 230., Monatsh., 1912, 33, 1151.
Carnelley and Walker, Trans. Chem. Syc., 1888, 53, 59.; Baikow, Kolloid Zeitsch.,</sup>

^{1907, 2, 374.}

van Beminelen, Zeitsch. anorg. Chem., 1893, 5, 467; 1897, 13, 233; 1899, 20, 185; Zsigmondy, Bachmann, and Stevenson, 1814, 1912, 75, 189; Bachmann, 1814, 1913, 79, 202;

Anderson, Zeitsch. physikal. Chem., 1914, 88, 191.

See Foote, J. Amer. Chem. Soc., 1908, 30, 1388; Muller Thurgau, from Fischer, Beitr. Biol. Pfanz., 1911, 10, 200, 232; Fischer, Biochess. Zeitsch., 1906, 13, 58; 1909, 20, Kolloid Zeitsch., 1911, 8, 291; Beitr. Biol. Pflanz., 1911, 10, 133.
 Foote and Saxton, J. Amer. Chem. Soc., 1916, 38, 588.

Application of certain of these methods, and particularly the lastnamed, to precipitated ferric hydroxide, indichtes that its contained. water is present in three ways, namely :-

(a) Very loosely attached, which readily freezes out at about

-5° €.

(b) More intimately associated with the precipitate, and considerably more difficult to remove. It is known as capillary water and requires a temperature of the order of 430° C, to effect its complete removal by freezing.

(c) Chemically combined. This amount corresponds to the formula

Fe₂O₃.4₅25 H₂O for the hydroxide.¹

Attempts to determine the molecular weight of colloidal ferric hydroxide lead to very high values. Thus, a colloidal solution prepared by addition of animonium carbonate to ferrie chloride solution was purified by dialysis, and the freezing-point determined of that portion which would not pass through a collodion membrane. The point was only slightly lower than that of the filtrate, indicative of a molecular weight of 3120 for the colloid.2

A result of this kind is uncertain, however, owing to the exceedingly small difference in temperature to be registered. Thus Kraft I found a calloidal solution containing 3-38 per cent, of ferric hydroxide, and 0-098 per cent, of ferric chloride froze at a temperature within 0,001° C, of the , freezing-point of pure water. Other investigators 4 have sometimes obtained negative and at other times positive differences in the freezing-

Similar difficulties are encountered when attempts are made to determine the molecular weight by means of measurements of the osmotic pressures of colloidal solutions,5 the observed pressures being exceedingly small, thus indicating a high molecular weight, but one of uncertain value.

For particulars of further researches on colloidal ferric hydroxide

the reader is referred to the subjoined references.

The heat of coagulation of colloidal ferric hydroxide with potassium oxalate has been studied by Doermekel.⁷

1911, 43, 546; Duclaux (J. Chim. phys., 1909, 7, 405) found .. molecular weight of 115,000.
 Kraft, Ber., 1899, 32, 1608.

Malitano and Meleck Compt. rend., 1906, 143, 1141.
See van der Feeu, Chem. Weekblad, 1916, 13, 453.
Carli, Zeitsch. physikal. Chem., 1912, 85, 263; Kuriloff, Zeitsch. avorg. Chem., 1912, 1008. 79, 88; Michel, Compt. rend., 1908, 147, 1052, 1288; Malittano and Mehel, ibid., 1908, 147, 803; 1908, e46, 338; 1907, 145, 185, 1275; Giol.tti, Gazzetta, 1908, 38, 11, 252; Foote, J. Amer. Carh., Soq. 1908, 30, 1388; A. Muller, Zeulsch, anorg, Chem., 1908, 57, 311, 2018, 201 Dunfansky, J. Russ. Phys. Chem. Soc., 1907, 39, 743; 1906, 38, 596; 1905, 37, 213, 502; Fischer, Habilitations-schrift, Breslau, 1907; Oechsner, Bull. Acad. roy. Belg., 1907, p. 34; Giolitti, Cazzetta, 1906, 36, ii. 157; Giolitti and Battisti, ibid., 1906, 36, ii. 433; Duclaux, Compt. rend., 1905, 143, 296; Mallitano, Compt. rend., 1906, 142, 1277, 1418; 1906, 143, 171; 1905, 141, 660, 680, 1245; Tribot and Chrôtien, Compt. rend., 1905, 140, 144; Linder and Picton, Trans. Chem. Soc., 1905, 87, 1918; van Bemmelen, Zeitsch. anorg. Chem., 1890, 20, 185; Rec. Trav. Chim., 1888, 7, 106; Ewan, Proc. Roy. Soc., 1844, 56, 286; Sohneider, Annalen, 1890, 257, 59; Sabanéeff, J. Russ. Phys. Chem. Soc., '889, '21, 515; Grimaux; Comgt. rend., 1884, 98, 105, 1485, 1578; de la Source, Compt. rend., 1880, 90, 1352.
7 Doorinokel, Zeitsch. anerg. Chem., 1910, 66, 20.

Ferrites, MFeO.

Ferric oxide unites with many bases to form ferrites, to which the general formula M2O.Fe2O3, or MFeO2, is given. The free acid HFeO2 possesses the same empirical formula as the monohydrate of ferric oxide, Fe,O3.H3O.

Ferrous acid, HFcO2, is obtained 1 by the action of water on sodium ferrite, NaFeO₂. It has the same crystalline form and transparency as the sodium salt, but differs from Goethite in that it begins to lose water below 100° C., whereas Goethite is stable even at 300° C.

Calcium ferrite, Ca(FeO₂)₂, is formed as deep red or nearly black erystals 2 by heating together ferric oxide and calcium oxide. •

It also results on adding limewater to a neutral solution of ferric chloride and igniting the resulting brown precipitate.3 It appears to dissociate at its melting-point. A basic ferrite, Ca(FeO₂)₂.CaO, is produced as black crystals on heating finely powdered ferric oxide and calcium carbonate at temperatures considerably below 1385° C. Three other basic ferrites have been described, namely Ca(FeO2)2, 2CaO,4 2Ca(FeO₂)₂.CaO,⁴ and 3Ca(FeO₂)₂.2CaO,⁵ but the existence of these has been disputed, 2. 6

Cobalt ferrite, Co(FeO₂)₂, is obtained by addition of normal sodium hydroxide solution to a mixed solution of cobalt nitrate and ferrinchloride, and igniting. It is a black powder, magnetic when cold, but non-magnetic above 280° to 290° C.?

Cupric ferrite, Cu(FeO₂)₂ is obtained ⁸ by adding black copper oxide to neutral ferric chloride solution, and igniting. It also results 9 by heating copper oxide and ferric oxide to a high temperature, the ferrite being separated from uncombined oxide by making use of its density and magnetic properties. It is strongly magnetic.

Cuprous ferrite, CuFeO₂, occurs in nature as the mineral delafossite (see p. 20). It is not magnetic, is easily fusible, and readily soluble in hydrochloric or sulphuric acid. The crystals are tetragonal, possibly isomorphous with the sodium salt. 10 It is obtained artificially hy melting together euprous and ferric oxides in a current of nitrogen. It then results as a crystalline mass, faintly magnetic.11.

• Ferrous ferrite, Fc(FcO2)2, is more commonly known assessmentite, Fe₃O₄ (see p. 12).

Magnesium ferrite, Mg(FcO₂)₂, occurs in nature as magnesio-ferrite (see p. 15) and crystallises in the cubic system. It may be prepared in crystalline form by heating ferruginous magnesia to redness in a current of air and hydrogen chloride. It also results when sodium or potassium hydroxide is added to a solution of magnesium sulphate and ferric

```
    van Benmelen and Klobbie, J. prakt. Chem., 1892, (2), 46, 497.
    Sosman and Merwin, J. Washington Acad. Sci., 1916, 6, 532.
```

VOL. IX. : II.

List, Ber., 1878, 11, 1512.
 Hilpert and Kohlmeyer, Berr, 1909, 42, 4581. ⁵ Campbell, J. Ind. Eng. Chem., 1915, 7, 835.

Campbell, Vol., 1919. 11, 116.
 Elliot, Magnetic Combinations (Gottingen, 1862); Hilpert, Ber., 1909, 42, 2248. List Ber., 1878, 11, 1512; Hilpert, ibid., 1909, 42, 2248.
 Walden, J. Amer. Chem. Soc., 1908, 30, 1350.

¹⁰ Rogers, Amer. J. Sci., 1913, (4), 35, 290. ¹¹ Hilpert, Ber., 1999, 42, 2248.

chloride, and the precipitate ignited.1 It is then obtained as a brown

magnetic powder.

Nickel ferrite, Ni(FcO2)2, is obtained on addition of potassium hydroxide to a mixed solution of a nickel salt, and ferric chloride, and igniting. It is a brown substance, strongly magnetic.

Potassium ferrite, KFeO2, is prepared in an analogous manner to

the sodium salt (vide infra), but erystalkses in regular octahedra.3

Sodium ferrite, NaFcO2, is obtained 4 by continued heating of ferric oxide in corcentrated sodium hydroxide solution, and by heating ferric oxide with fused sodium carbonate or chloride. The salt crystallises in hexagonal plates, which, when treated with water, yield ferrous acid, 'HFcO,.

Zinc ferrite, Zu(FcO2)2 or ZnO.Fc2O3, occurs in nature as franklinite (see p. 14) and may be artificially prepared in the laboratory in a variety of ways,5 such as by fusing an intimate mixture of the sulphates of sodium, zinc, and ferric iron at cherry-red heat, and extracting the melt with boiling water. Any basic zine sulphate is removed with dilute acctic acid. Crystalline zinc ferrite also results when zinc chloride is heated in moist air with ferric chloride or bematite. The zinc chloride may be replaced by the corresponding fluoride.".

As obtained by these methods crystalline zine ferrite closely resembles the natural franklinite. If crystallises in regular octahedra, small crystals being reddish brown and translucent, whilst the larger ones are opaque. Their hardness is 6.5 and density 5.33, the corresponding values for the mineral being H-5.5 to 6.5 and D=5 to 5.2 respectively. The crystals are not magnetic, are resistant to heat, and are but slowly attacked by acids. The natural mineral is magnetic, but this is attributed to impurities.6

Ferrates, M.FeO.

Although the dioxide FcO, has not been isolated, ecrtain compounds of it with basic metallic oxides are known, and designated as ferrates.

Barium ferrate, BaFeQ₃, is best produced by heating a mixture of ferric and barium hydroxides to 600° C, in a current of oxygen.⁸ It is a friable, black, amorphous substance, stable up to about 650° C. Cold water decomposes it slowly, warm water somewhat more rapidly, with evolution of exygen. Acids readily effect its decomposition, yielding barium and ferric salts. If hydrochloric acid is used, free chlorine and oxygen are simultaneously liberated.

List, Ber., 1878, 71, 1512. C. Gorge - Tompt. rend., 1887, 104, 580.

¹ List, Ber., 1878, 11, 1512. 2 List, loc. cit.

List, toc. cn.
 van Bemurchen and Klobbie, loc. cit.
 Sohaffgotsch, Pogg. Annalen, 1837, 43, 117; Salm Horstmar, J. prakt. Chem., 1852, 55, 349; van Bemmelen and Krobbie, J. prakt. Chem., d892, (2), 46, 497.
 Ebelmen, Ann. Chim. Phys., 1851, (3), 33, 47; Daubrée, Compt. rend., 1854, 39, 135;

See Manchot and Withelms (Ber., 1901, 34, 2470; Annalen, 1902, 325, 105), whose experiments suggest the formation of Fe₂O₅. The action of hydrogen peroxide on ferrous chloride, ferrous or ferric hydroxide, or ferric chloride results in the formation of a pale red substance which is very sastable—so much so that its composition cannot be establed. lished with on tainty. It may be FeO (Pellini and Meneghini, Gazzetta, 1909, 39, i. 381; Zeitsch. anorg. Chem., 1909, 62, 203). Moeser and Berck, Ber., 1909, 42, 4279.

Strontium ferrate, SrFeO₃, is produced by evaporating to dryness a mixed solution of ferric and strontium nitrates, and heating in a current of oxygen to attemperature not exceeding 600° C. until no more oxides of nitrogen are evolved. It is also produced by suspending freshly precipitated ferric hydroxide in a concentrated solution of strontium hydroxide, and heating the resulting brownish precipitate to 800° C. It resembles the barium salt.

Perferrates, M2FeO4.

Attempts to prepare iron trioxide have hitherto proved abortive, but compounds of this oxide with basic metallic oxides are known, and designated as perferrates.

Barlum perferrate, BaFcO4•H2O, is obtained as a purple precipitate on addition of barium chloride to a solution of the calcium salt 3 or of

barium chromate to a solution of sodium perferrate.

Barium perferrate is the most stable salt of the series. It is insoluble in water, and its suspension in water may be boiled without decomposition. It is practically unaffected by dilute sulphuric acid in the cold. Apart from this it is readily attacked by acids, even carbonic: dilute hydrochloric or nitric acid decomposes it instantly, yielding salts of barium and iron.5 When treated in the cold with very dilute liydrochloric acid, chlorine is evolved and the solution assumes a red colour probably due to the presence of the FeO4" ion.6 Acetic acid reacts similarly. On boiling, the solution evolves oxygen, and becomes colourless.

The composition of barium perferrate is proved indometrically by means of the reaction 5

$$2BaFcQ_4 + 8KI + 16HCl = 2BaCl_2 + 2FeCl_2 + 8KCl + 8H_2O + 4I_2$$

Calcium perferrate, CaFeO4, is obtained by adding ferric chloride solution to bleaching powder, and boiling.3 It is soluble in water.7

Potassium perferrate, K2FeO4, may be prepared in a variety of ways. It results when chlorine acts on ferric hydroxide suspended in potassium hydroxide solution :---

$$2\text{Fe}(\text{OII})_3 + 10\text{KOH} + 3\text{Cl}_2 = 2\text{K}_2\text{Fe}O_4^{\dagger} + 6\text{KCl} + 8\text{H}_2O_3$$

The efflorine in the above reaction may be replaced by ozone 8 or sodium

hypechlorite.9

On adding a piece of potassium hydroxide to ferrie chloride solution in a test-tube, together with a few drops of bromine, a brown mass is obtained which dissolves in water, yielding the intense red colour characteristic of potassium perferrate. 10

Potassium perferrate crystallises from the warm solution in micro-

- Moeser and Borck, Ber. 1909, 42, 4279.
 Rose, Pogg. Annalen, 1843, 59, 315.
 Bloxam, Chem. News, 1886, 54, 43.

- Rosell, J. Amer. Chem. Soc., 1895, 17, 760.
 de Mollins, Ber., 1871, 4, 626.
 Baschieri, Gazzetta, 1906, 36, ii. 282.
 Not include, as stated by Fremy.

- Mailert, Campl. rend., 1882, 94, 860.
 Forster, Her., 1879, 12, 846.
 Bloxam, Chem. News, 1886, 54, 43; Moeser, Arch. Phdrm., 1895, 235, 521.

scopic black prisms or sharp pyramids, and is isomorphous with potassium sulphate, sclenate, and chromate. The solution is stable. and may be kept for days without decomposition, particularly if a small quantity of a mineral salt is present. Acids, ammoniacal salts, and reducing agents readily effect its decompositione

Sodium perferrate, Na₂FeO₄, may be prepared in an analogous manner to the potassium sait already described. It also results when ferric oxide is firsed with sodium peroxide and the cooled mass treated

with ice. Sodum perferrate then passes into solution.3

Strontium perferrate, SrF(O₄, is obtained ⁴ by double decomposition of the potassium salt and a saturated, neutral solution of strontium bromide. The precipitate is washed with alcohol and other. Obtained in this manner, the strontum ferrate is not pure, but contains admixed ferric oxide. It is deep red in coloni, slightly soluble in water, and readily decomposed by acids. It is useful for preparing aqueous solutions 4 of the perferrales of the less common alkali metals. lithium, rubidium, easium – of calcium and magresium.

IRON. AND SULPHUR.

Subsulphides. Several supposedly subsulphides of iron have been described from time to time, namely Fe S. Fe,S. and Fa,S.. The lastnamed is produced when from is heated in an atmosphere of earbon disulphide vapour, at 1300° to 1400° C., and allowed to cool in the disulphide vapour. It is a crystalline body of density 6.96, and soluble in dilute mineral acids evolving hydrogen sulphide and hydrogen. It does not alter when exposed to air, and is oxidised only with difficulty.

Errous sniphide, FeS, occurs in nature as the mineral troilite (see b. 23), which is found in nodules in the majority of meteorites containing iron. When crystalline it appears to belong to the hexagonal system, and has probably been formed in the presence of excess of iron.5 It may be obtained by the direct union of iron and sulphur at red heat, If the iron is in the form of filings and is intimately mixed with the sulphur, the mass becomes meandescent when once the reaction has been started. Synthetic iron disniphide, heated above 700° C., is converted into ferrous sulphide. u,

When irou pytites. FeS₂, is licated to bright reduces in the absence of air or in hydrogen, it yields ferrous sulphide. In crystalline form ferrous sulphide is produced by passing hydrogen sulphide over ferrous oxide at high temperatures 11 or over metallic irox at dull red heat.12

1 Retgers, Zeitsch. physikil. Chem., 1892, 10, 529.

Dentam Smith's statement (Phil. May., 1813, (3), 23, 217) that it turns green on standing is incorrect (Rosell, J. Amer. Chem. Soc., 1895, 17, 760). Smith was misled by his solution containing manganose as an impurity,

3 Rosell, loc. cit.

Eidmann auf Moeser, Ber., 1903, 2642290.

Arviedeon, Pogg. Amalen, 1824, 1, 32.

Ibid., p. 806.

⁷ Gautier and Hallopeau, Compt. rend., 1889, 108, 806.

Linek, Ber., 1899, 32, 881.

Linck, Ber., 1899, 32, 881.
 Gedel, Chey. Zentr., 1993, IL. 445, from J. Gasbeleuchtung, 1905, 48,4400.
 See Ross, Pogl. Annalen, 1825, 5, 533; Plattner, ibid., 1839, 47, 366; Schaffgotsch, ibid., 1849, 50, 533; Loebe and Becker, Zeitsch. anorg. Chem., 1912, 77, 301.
 Sidot, Compt. rend., 1898, 66, 1257.
 Lorenz, Ber., 1891, 44, 1504.

If iron wire is used exposed in a bundle to the hydrogen sulphide, it readily becomes encrusted with tiny crystals, silver-white in appearance when first prepared. The crystals 1 are regarded as belonging to the

hexagonal system,

The same reaction appears to take place at the ordinary temperature when iron and sulphur are brought into contact under cuormons pressures, namely of the order of 6500 atmospheres. The product resembles ordinary ferrous sulphide in that it is homogeneous under the microscope, and evolves a continuous stream of hydrogen sulphide when immersed in dilute sulphuric acid. 3 •

Ferrous sulphide has a bhuish black appearance, reminiscent of that of magnetic oxide, but it is not magnetic. Density 1-67. It is stable when heated in hydrogen or in the absence of air, but when heated in air it readily oxidises to ferrous sulphate, whilst at red heat all the subhur is expelled, red ferric oxide remaining.

When exposed to steam at red heat ferrous subplide is decomposed, yielding hydrogen, hydrogen sulphide, and ferroso-ferric oxide. Thus: -

$$_{2}3FeS + 4H_{2}O = Fe_{3}O_{1} + 3H_{2}S + H_{2}.$$

At higher temperatures sulphur dioxide and sulphur are also formed.

When heated in a current of chlorine, ferric chloride and sulphur ehloride distil øyer. 1

When heated in a scaled tube at 150° to 200° C, with thionyl chloride, ferrous sulphide is exidised to ferric chloride. Thus: --5

$$6FcS + 16SOCl_2 = 6FcCl_3 + 8SO_2 + 7S_2Cl_2$$
.

Ferrous sulphide is reduced when heated with manganese, yielding metallic iron : -

the reaction being exothermic. This reaction is of great practical importance in connection with the desulphurisation of steel.⁶ Liquid ferrous sulphide freezes at 1171 °C.,7 and melts at 1187 °C.8 The hear of formation of ferrous sulphide from iron and sulphur has been determined as :--

$$\begin{array}{l} [Fe] + [S] = [FeS] + 23,070 \text{ calories.}^9 \\ [Fe] + [S] = [FeS] + 18,800 \text{ calories.}^{10} \\ \end{array}$$

When heated to about 130° C., both ordinary commercial ferrous sulphide and meteoric troilite undergo a polymorphic change, 11 and, on

- Groth, see Lorenz, loc. cit., Linck, Ber., 1899, 32, 881.
 Spring, Ber., 1883, 16, 999.
 Gautier, Compt. rend., 1906, 142, 1465; 1901, 132, 189; Regnault, Ann. Chim. Phys., 1836, (2), 62, 379.
 Rose, Pogg. Anhalen, 1837, 42, 510.
 North and Conover, J. Amer. Uhem. Sch., 1915, 37, 2486.

 - See this volume, Part III.
- Friedrich, Metallurgie, 1908, 5, 23, 50; 1007, 4, 479.

 Biltz (Zeitsch. anorg. Chem., 1908, 59, 275) heated precipitated ferrous sulphide in nitrogen and obtained the value 1197° ±2°

 Parrayano and de Cesaris, Gazzetta, 1917, 47, i. 144 (for reduced from). Berthelot

- found, for the precipitated sulphide 24,000 calories, and Thomsen 23,780 calories.

 10 Mixter, Amer. J. Sci., 1913, (4), 36, 55.

 11 Le Chatelier and Ziegler, Bull. Soc. Encouragement Ind., 1902, p. 388; Treitschke and Tammann, Zeitsch. anorg. Chem., 1906, 49, 320; Rinne and Boeke, ibid., 1907,

cooling, a break in the cooling curve is observed at this point. Synthetic ferrous sulphide which does not contain any excess of free iron exhibits no such break, although with 7 per cent. of free iron the transition point is very marked at 138° C., and further addition of iron does not change it. It appears, therefore that the excess of iron catalytically assists the change in the case of synthetic ferrous sulphide. Troilite, on the other hand, does not contain excess of iron, but possibly its carbon content behaves catalytically in an analogous manner. Ferrous sulphide, stable at ordinary temperatures, is thus known as the α variety, that above 130° (c. being termed the β variety. When heated to 298° (c. a second polymorphic transformation occurs.

As ordinarily prepared, ferrous sulphide readily dissolves in dilute sulphuric or hydrochloric acid, évelving hydrogen sulphide—a reaction that affords a convenient laboratory method of preparing the gas. When pure, however, ferrous sulphide dissolves extremely slowly in the cold acids. The presence of free iron acts as an accelerator of the reaction, the nascent hydrogen produced by its solution in acid effecting the reduction of the adjacent particles of ferrous sulphide to hydrogen sulphide and metallic iron.³

$$\begin{array}{l} F_{c}Cl_{2}+(NH_{5})_{2}S\!=\!F_{c}S+2NH_{4}Cl, \\ 2F_{c}Cl_{3}+3(NH_{4})_{2}S\!=\!2F_{c}S\!+\!6NH_{4}Cl\!+\!S. \end{array}$$

Hydrated ferrous sulphide is slightly soluble in water, yielding a greenish solution. From electric conductivity measurements its solubility has been calculated 4 as $70\cdot1\times10^{-6}$ gram-molecules per litre.

Ferrous sulphide is insoluble in aqueous caustic soda or potash, although the mixture of ferrous sulphide and sulphur formed on adding ammonium sulphide to ferric chloride yields a dark green solution.

Addition of dilute acid causes the evolution of hydrogen sulphide, a ferrous salt passing into solution. For this reason ferrous sulphide cannot be completely precipitated by passage of hydrogen sulphide through a neutral solution of a ferrous salt of a mineral acid, as the reaction is reversible, according to the equation:—

In acid solution—for example, sulphuric acid—no precipitate is obtained nuless the pressure of the hydrogen sulphide is increased. The greater the concentration of the acid the higher must be the pressure of the hydrogen sulphide.

Ferrous sulphide may, however, he precipitated from solutions of ferrous salts in the presence of sodium acetate—a fact that was known to Gay-Lussac—and even from ferrous acetace in the presence of acetic, acid, and from solutions of iron in citric or succinic acids.

- Rinne and Boeke, loc. cit.
 Loebe and Becker, Zeitsch. anorg. Chem., §912, 77, 301.
 Lipschitz and Hasslinger, Monatsh., 1905, 26, 217.
- Weigel, Zeitsch. physikal Chem., 1907, 58, 293.
 Konschegg and Malfatti Zeitsch. anal. Chem., 1906, 45, 747.

Patlos and Cambi, Atti R. Accad. Lincei, 1906, (5), 15, ii. 787; Bruni and Pados, bid., 1905, (5), 14, ii. 525.

Winderlich, Zeitsch. physikal. Chem. Unterr., 1917, 39, 254.

Ferrous sulphide is oxidised by acidulated hydrogen peroxide solution, yielding ferric sulphate or hydrolysed products of this salt.¹ With ammoniacal zinc chloride no reaction occurs at the ordinary temperature, but at 160° to 170° C. in a scaled the ferrous hydroxide and zinc sulphide are produced.2

Ferrous sulphide unites with other metallic sulphides to form stable double compounds. Many of these occur in nature as minerals, a few of the more important being pyrrhotite or magnetic pyrites, 5FcS.Fc₂S₃ (see p. 23); Pentlandite, 2FcS.NiS; marmatite, FcS.4ZnS; and Daubreelite, FcS.Cr2S3.

These and other more or less stable sulphides have been prepared in the laboratory. Thus 3FeS.2MnS is formed when ferrons and manganous sulphides are fused together. It melts at 1362° C., and forms solid solutions in all proportions with manganous sulphide.

FeS, Cr₂S₃ results 4 on heating a mixture of iron, chromium hydroxide,

and sulphur, as a black insoluble compound.

FeSAl₂S₃ 5 results when ferrous sulphide of pyrites is reduced with metallic aluminium. Thus :---

$$4\text{FeS} + 2\text{Al} = \text{FeS.Al}_2\text{S}_3 + 3\text{Fe},$$

 $2\text{FeS}_2 + 2\text{Al} = \text{FeS.Al}_2\text{S}_3 + \text{Fe}.$

and

On melting gold and iron together in the presence of sulphur, FeS.Au₂S is obtained.6

A study of the freezing-point curves for mixtures of ferrous and cuprous sulphides appears to indicate the existence of three compounds, namely:-

2Cu₂S.FcS, which is stable at all temperatures below the freezingpoint;

3Cu₂S.2FeS, which undergoes a change at 180° to 230° C., fretallic copper being set free, and a product rich in sulphur renuming; • 2Cu₂S.5FeS, which breaks up into the first compound and free ferrous sulphide at temperatures between 500° and 600° C.7

On calcium sodium thiosulphate with ferrous oxalute, Na₂S.2FeS is obtained as bronze-coloured prisms.⁸ The corresponding potassium compound, K2S.2FeS, is formed on reducing potassium ferric sulphide, K2S.Fc2S3, with hydrogen; or by heating iron (1 part) with sulphur 45 parts) and potassium earbonate (6 parts). It yields and le-shaped crystals or thick tablets, resembling potassium permanganate in appearance.9

Ferrous thio-antimonite, 3FeS.Sb₂S₃, or Fe₃Sb₂S₆, is obtained on precipitation of a ferrous salt with potassium thio-antimonite (see p. 194). Hydrated ferric sulphide, 19 Fo.S., Aq., is readily produced by

Hernández, Anal. Fis. Quim.; 1908, 6, 476.
 Stokes, J. Amer. Chem. Soc., 1907, 29, 304.

Rohl, Iron Steel Inst. Carnegie Mem., 1912, 4, 28.

 Gröger, Sitzungsber. K. Akad. Wiss. Wugn, 1880, (2), 81, 531.
 Houdard, Compt. rend., 1997, 144, 801; Int. Metallurgic, 1907, 4, 786. Maclaurin, Trans. Chem. Soc., 1896, 69, 1260.

Bornemann and Schreyer, Metalludjie, 1909, 6, 619.
 Brünner, Arch. Sci. Phys. Nat., 1865, 22, 68.

Schneider, Pogg. Annalen, 1869, 136, 460; Preis, J. prakt. Chem., 1869, 107, 10.
See also Malfatti, Zeitsch. anal. Chem., 1909, 48, 352.

10 The literature dealing with this substance contains many conflicting statements.

The data here given appear to be well established, however.

treating moist ferric hydroxide (or the hydroxide suspended in water) with hydrogen sulphide:--1

$$2Fe(OH)_3 + 3H_2S = Fe_2S_3 + 3H_2O$$
.

It is thus produced during the commercial purification of coal gas from sulphuretted, hydrogen.2 In the laboratory preparation of the pure substance the reaction should be continued for several hours in the absence of sir, the precipitated sulphide being black when the

reaction is complete.3

A precipitate of ferrie sulphide is also obtained when ammonium sulphide is added to a solution of a ferric salt, the alkali remaining in excess.4 If, however, the ferrie salt is present in excess, the precipitate appears to consist of a mixture of ferrous sulphide and free sulphur. As obtained by either of the foregoing methods, the sulphide is hydrated and unstable in air. Dilute hydrochloric acid decomposes it completely into ferrous chloride, with evolution of hydrogen spliphide and a simultaneous deposition of sulphur. "When boiled with water it yields ferric hydroxide and hydrogen sulphide.

In the moist condition in the absence of air, or in the presence of excess hydrogen sulphide, ferrie sulphide is transformed into a mixture

of disulphide and ferrous sulphide: -4

$$Fe_2S_3 = FeS_2 + FeS$$
.

This transformation, which takes a week at the ordinary temperature, may be effected in a few hours at 60° C. Upon exposure to air in the presence of alkaline substances, ferric sulphide becomes light yellow in colour, and sulphur is deposited.

Anhydrous ferric sulphide, Fc₂S₃, is obtained by exposing the hydrated compared in a vacuum over phosphorus pentoxide. It is then pyrophorie if suddenly-brought into the air; otherwise it is quite stable.

Anhydrous ferric sulphide is produced in massive form by gently heating iron and sulphur together. As obtained in this way it is a vellow, non-magnetic mass, soluble in dilute mineral acids, density 4.4s

Ferric sulphide yields stable compounds with the sulphides of certain other metals. Some of these occur free in nature. Thus conner pyrites is generally regarded as Cu₂S.Fc₂S₃ (see p. 23); Barnhardtite, 2Cu₂S.Fc₂S₃ (see p. 23); Cubanite, CuS.Fc₂S₃ (see p. 24).

These are amongst the best known. Other more or less stable

double sulphides have been prepared in the laboratory.

Potasslum ferric sulphide, K₂S.Fc₂S₃ or K₂Fc₂S₄, may be obtained by feating together iron and sulphur with potassium carbonate. The sulphide is extracted with water, and, upon concentration, purplish needle-shaped crystals are obtained, of density 2.86. These are combustible when keated in air, but are radiced to a black mass of K_2S_2FeS or $K_4Fe_2S_3$ upon ignition in hydrogen.

Sodium ferric sulphide, Na₂S.Fe₂S₃, may be obtained in a similar

Wright, Trans. Chem. Soc., 1883, 43, 156; Malfatti, Zeitsch. anal. Chem., 1908,

<sup>47, 133.

*</sup> See this series, Volume V., p. 93; Gedel, J. Gasbelcuchtung, 1905, 48, 400; Stokes,

Rodt, Zeitsch, angew. Chow., 1916, 29, (1), 422; Mecklenburg and Rodt, Zeitsch. anorg. Chem., 1018, 162, 130.

Stokes, loc. cit.

Schneider, Pogg. Annales, 1869, 136, 460; Brunner, Chem. Zentr., 1889, 11., 554.

manner to the potassium salt, or by heating four parts of sodium thiosulphate with one of iron. As obtained in this way, sodium ferrie sulphide forms dark green acicular crystals, which gradually disintegrate upon exposure to air, becoming voluminous, and linally a brownish black powder.

When heated, sodium ferric sulphide is converted into oxide. With concentrated hydrochloric acid it yields hydrogen snlphide, free sulphin being deposited. It is insoluble in water; but, when boiled with an aqueous solution of potassium eyanide, it yields potassium ferrocyanide.

 Sodium ferric stilphide occurs in the * black ash ** kquors formed in the Leblane Soda Process.2 and a convenient wet method of producing it in the laboratory consists in adding a solution of a ferric salt to excess of sodium sulphide solution. It also results when excess of sodium polysnlphide acts on a solution of a ferrous salt.3

The constitution assigned by Schneider 1 is:

$$\begin{array}{c} Na - S \\ \bullet \\ Na - S \end{array} \rangle Fe = \begin{array}{c} S \\ S \end{array} \rangle Fe.$$

Cuprous ferric sulphide, Cu₂\$.Fe₂\$₃, occurs in nature as copper pyrites, chalcopyrite, or towarite, and is one of the commonest ores of copper (sec 12 23). It is tetragonal, possessed of a brass-yellow colour, and exhibits a conchoidal fracture. It is decomposed by nitric acid, and tarnishes upon exposure to air. Irequently yielding beautiful irideseent surfaces, a blue colour predominating. Masses of such tarnished ore are found in Cornwall, and are known as peaceck ore. The blue colour is probably due to the formation of a surface layer of cupric sulplude or covellite, CuS.

Chalcopyrite may be distinguished from iron pyrites by its relative softness, and by the fact that with intrie acid it yields a green solution which becomes blue on addition of excess of autmonia -one of the characteristic reactions for copper. Blistered copper ore is a botryoidal or reniform variety, with a smooth brassy appearance.

Small crystals of artificial copper pyrites are obtained by the action of hydrogen sulphide upon a mixture of copper oxide and ferric oxide gently warmed in a glass tube.

Copper pyrites may be obtained in the laboratory in the wet way by shaking a weakly ananomacal solution of express chloride with potassium ferrie sulphide until the solution no longer contains copper: - *

$$K_2S.Fc_2S_3 + 2CuC1 = 2KC1 + Cu_2S.Fc_2S_3$$
.

The crystals obtained are practically identical with the natural copper

Another method consists in heating copper carbonate and ferrie sulphate with water containing hydrogen sulphide. The reaction is carried out in a closed tube, and the heating prolonged for several days.

The internal structure of copper pyrites, CnFeS₂, has been studied • by means of their X-ray interference phenomena.8

- Faktor, Chem. Zentr., 1905, II., 1218. 2 Sec this series, Volume II.
- Mecklenburg and Rodt, Zeitsch. anorg. Chem., 1918, 102, 130.
- 4 Selfneider, loc. cit.
- Doelter, Zettsch. Kryst. Min., 1886, 11, 29.
- Schneider, J. prakt. Chem., 1888, (2), 38, 569.
 Burdiek and Eflis, J. Amer. Chem. Soc., 1917, 39, 2518. ⁷ Doelter, loc. cit.

Iron disulphide, FcS, occurs in nature as the mineral mundic or iron pyrites belonging to the cubic system. When broken it exhibits a conchoidal fracture. It is pale brass-yellow in colour, and of hardness 6.5; by both of these features it is readily distinguishable from copper

pyrites, which is darker in colour and softer (hardness 3.5-4).

The word pyrites (Greek $\pi \hat{v} \rho$, fire) was used by the ancients to include a number of minerals which yield sparks when struck with a hammer. Iron pyrites is frequently found of botryoidal, spherical, or stalactitic form, having been deposited from solutions containing iron sulphate through the agency of organic matter. For this reason pyrites is froquently found in coal, and is known to miners as brass or fools' gold. Most probably its presence assists the spontaneous inflammability of coal, although it is not such an important factor as was at one time believed.

Frequently fossils are found, particularly in London Clay, consisting of pyrites, the decaying organism having presumably reduced sulphates

of iron present in the inlittrating waters.

When pure the density of iron pyrites is 5:027 at 25° C,2 Nickel and culalt are sometimes present, probably as isomorphous intermixtures of their corresponding sulphides; copper-may also be present, perhaps as chalcopyrite. Thallium, silver, and even gold have been found in pyrites, the last-named in sufficient quantity to render the mineral a profitable source of that precious metal, as, for example, in British Columbia, where auriferous pyrites is largely worked.

From electric conductivity measurements the solubility of pyrites

in water has been calculated as follows: -3

– Gram-molecules per Litre. Pyrites from Freiberg . . 18.9×10^{-6} Artificial pyrites . . 10.8×10^{-6}

Aerated waters charged with calcium carbonate appear to decompose pyrites very slowly at the ordinary temperature, yielding limonite. Thus:—4

$$4 \text{FeS}_2 + 15 \overset{\bullet}{\text{O}}_2 + 3 \overset{\bullet}{\text{H}}_2 \overset{\bullet}{\text{O}} + 8 \text{CaCO}_3 = 2 \text{Fe}_2 \overset{\bullet}{\text{O}}_3 - 3 \overset{\bullet}{\text{H}}_2 \overset{\bullet}{\text{O}} + 8 \text{CaSO}_4 + 8 \text{CO}_2.$$

Distilled water, in the presence of air, slowly oxidises pyrites to ferrous sulphate and sulphuric acid.

Sulphur monocleoride has no action on pyrites in the cold, but

effects its complete decomposition at 140° C.5

Another form of iron disniphide occurs in nature as the mineral marcasite, which possesses a radiated structure and is frequently found as irregular balls on chalky downs. When broken open the fracture exhibits a fibrous crystalline structure radiating from the centre-whence the name radiated pyrites. The fresh fracture is almost white in colour, and if quite pure the marcasite would probably be quite tin-white in appearance. When pure, its density at 25° C. is .

```
See this series, Volume VII., where the subject is discussed at length,
```

Allen, Crenshaw, and Johnston, Amer. J. Sci., 1912, (4), 33, 169.
 Weigel, Zeitsch. physikal. Chem., 1907, 58, 293. See also Doelter, Monatsh., 1890,

Evans, Min. Mag., 1900, 42, 371.
 E. F. Smith, J. Amer. Chem. Soc., 1898, 20, 289.

^{*} An Arabic or Moonsh word.

¹ Stokes, U.S. Geological Survey, Bulletin 186, 1901,

4.887.1° Marcasite has in general a defisity of 4.68 to 4.85. It oxidises more readily than pyrites, becoming covered, upon exposure to air, with

white fungus-like growths of ferrous sulphate.

When heated to 450° C. and upwards, marcasite changes slowly into pyrites, but this change does not appear to be reversible.2 It is not accelerated by pressures even of 10,000 atmospheres, but the change increases in rapidity with rise of temperature, being accompanied by an evolution of heat 1 and a decrease in the electrical resistance of the mineral.3 A. sample of marcasite on being heated to 610° C. increased in density from 4.887 to 4.911, changed in colour, and gave the chemical reactions characteristic of pyrites (see v. 140). The density (4.911) is too low for ordinary pyrites (5.02), but apparently that is due to the porosity of the product obtained in der the experimental conditions.

Sulphur monochloride has no action on marcasite in the cold, but

decomposes it completely at 140° C.4

In order to facilitate a comparative study of the two sulphides, their more important chemical and physical properties are listed in the accompanying table: -

	Pyrites.	Marcasite.
Colour	Brass-vellow	White
	Striated cubes or pentagonal dodcea- hedra	
Crystal system	Cubic	Rhombia. • •
	black	Greyish to brownish black.
Density range	4.8 to 5.2	4.7 to 4.8.
Density at 25° C, when pure.	5.027	4.887.
Fracture	Conchoidal	Uneven, radiating.
Hardness (Molis' scale)		6 to 6.5. Frequently a trifle softer than pyrites.
Hardness relative to topaz (1000) ⁵	182 to 199	134 to 140.
Specific heat	0.1306	0₄1332. •
Heat of combustion		1550 calories.
Effect of heating to 450° C.		Converted into pyrites.
Action of air	More stable than mar- easite	Readily oxidises.
Action of caustie soda solution		Fairly resistant.
Action of nitric acid,		Sulphur deposited.
density 1.4	271.05tves Compretty	• aslanara

Allen, Crenshaw, and Johnston, Anger. J. Sci., 1912, (4), 33, 169.
 Allen, J. Washington Acad. Sci., 1911, 1, 170; Arbeiter Chem. Zentr., 1913, 1., 1933.
 Königsberger and Reichenheim, Neues Jahrb., 1900, 11., 36.

⁴ Smith, F. Amer. Chem. Soc., 1898, 20, 289. Poschi, Zelick. Kryst. Min., 1911, 48, 572. Determined by the volume of material removed by a weighted diamond, the lower values being obtained when the diamond was weighted 20 grams, and the higher 50 grams, for each mineral.

When pyrites and marcasite are not distinctly crystallised it is frequently difficult to distinguish between them, as the foregoing characteristics are not clearly discernible. A convenient chemical method has Deen devised, however, which enables a discrimination to be made with certainty. It consists in boiling the mineral with iron alum, containing I gram of ferric iron and 16 c.c. of 25 per cent. sulphuric acid per litre. The proportion of sulphur pxidised in the case of pyrites is 60 4 per cent. of the total supplier contained in the mineral; in the case of marcasite it is only 18 per cent.2 The reaction may be considered as taking place in two stages, namely :---

$$\begin{aligned} & \text{FeS}_2 + \text{Fe}_2(\text{SO}_4)_3 = 3 \text{FeSO}_4 + 2 \text{S}, \\ & \text{6Fe}_2(\text{SO}_4)_3 + 2 \text{S} + 8 \text{H}_2 \text{G} = 12 \text{FeSO}_4 + 8 \text{H}_2 \text{SO}_4. \end{aligned}$$

A labile phase of iron disulphide occurs in nature under the name melnikovite. It is a black, finely divided substance, which impregnates certain miocene clays in Russia, and differs in many respects from the black hydrated sulphide of iron usually found in black mids of lakes. In composition it corresponds to the formula FeS,. It is magnetic, and its true density is probably 4.2 to 4.8. Cold, dilute hydrochloric acid readily attacks it, evolving hydrogen sulphide. It has probably been derived from a colloidal deposit of autiron sulphide.3

Laboratory Preparation of Iron Disulphide. In the laboratory iron disalphide may be prepared by several wet methods. Thus, it is formed when ferrous snlphide is boiled with flowers of sulphur; and when softium trismphide is added slowly to a boiling solution of ferrous sulphate, provided excess of the trisulphide is avoided. Sulphur is simultaneously precipitated.4 It is obtained also by boiling the freshly precipitated monosulphide suspended in water with sulphur in the *absence of alkalies 5; by the action of sodium thiosulphate solution upon ferrous sulphate 6 in scaled tubes at temperatures even below 100° C.:

$$4\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3+\mathrm{FeSO}_4-\mathrm{FeS}_2+3\mathrm{S}+4\mathrm{Na}_2\mathrm{SO}_4;$$

by the action of hydrogen sulphide upon ferrons thiosulphate,7 or on Terric or ferrons sulphate 6, by heating metallic iron with a solution of sulphur dioxide at about 200° C,8 or phosphorus penta-sulphide and »ferric chloride ':

$$6 {\rm FeCl_3} + 2 {\rm P_2S_5'} \!=\! 3 {\rm FeCl_2} \! + \! 3 {\rm YeS_2} + \! 4 {\rm PSCl_3}.$$

As obtained by these methods, the iron disulphide is usually either aniorphotis or consists of a mixture of minute crystals of pyrites and marcasite. By prolonging the reactions crystals can be obtained of

¹ Stokes loc. cft.

For other reactions see Stokes, J. Amer. Chem. Noc., 1907, 29, 307.

Doss, Jahrb. N. in. 1912, 33, 662.
 Senarmont, Ann. Chim. Phys., 1851; 32, 129; 1850, 30, 129; Compt. rend., 1849, 28, 693; Rodt, Zeitsch. angew. Chem., 1916, 29, (1), 422.

^{*} Rodt, Mitt. K. Material prufungsamt, 1918, 36, 93. Allen, Crenshaw, and Johnston, Amer. J. Sci., 1919, (4), 33, 169. See p. 166, where this reaction is explained.

Feld, Zeitsch. ungew. Chem., 1911, 24, 290.

^{*} Geitner, Annalen, 1864, 129, 350.

^{, *} Glatzel, Ber., 1890, 23, 87.

sufficient size to render possible an examination under the microscope. By heating an intimate mixture of ferric oxide, sulphur, and ammonium chloride, Wöhler 1 obtained small brass-yellow crystals, probably of

pyrites.

Constitution of Pyrites and Marcasite. When marcasite is heated to 200° C. in scaled tubes with copper sniphate solution, the product contains iron in the ferrous state only. Pyrites, under similar treatment, yields about 20 per cent. of its iron in the ferrous form, the remainder being ferrie. It has therefore been suggested? that mareasite is represented by the formula ³

or a polymeride, whilst pyrites is 4Fe¹¹S₂.Fe¹. 2

On the other hand, both marcasite and pyrites, when heated with excess of bismuth chloride in an atmosphere of dry carbon dioxide,

yield only ferrous iron.4

Further, when heated to a red heat in an atmosphere of carbon dioxide, pyrites loses half its sulphur, and the residue consists of ferrous sulphide. A similar result is obtained when pyrites is heated at 300° to 400° C. in steam.5

From these experiments it would appear that the iron is present in both numerals in the ferrous state." The evidence is thus seen to be conflicting and unreliable. The heat of combistion of the two minerals is the same, namely (550 calories.8 which suggests a similar state of valency of the iron in both, and thus lends support to the latter view. The heat of formation is likewise the same, assuming the non-to-be in the ferrous state. Some difference in the molecular structure of the minerals is to be anticipated, and Arbeiter 10 suggests the following graphical (bringle : -

Formation of Pyrites and Marcagite in Nature. As has already Deen mentioned, from disalphide is obtained in both crystalline varieties -pyrites and marcasite by the action of hydrogen sulphide upon a solution of ferrie sulphate at the ordinary temperature. The reaction begins with the reduction of ferrie sulphate to the ferrous sait with the deposition of sulphur:

$$Fe_{2}(SO_{4})_{3} + H_{2}S = 2FeSO_{4} + H_{2}SO_{4} + S.$$

1 Wohler, Annalen, 1836, 17, 260.

- Brown, Proc. Amer. Phil. Soc., 1804, 33, 225; Chem. News, 1895, 71, 120, 131, 144, 155, 171, 179.
 This formula was suggested by Loczka for pyrites (Zeitsch. Kryst. Min., 1894, 33, 501).

- Plummer, J. Amer. Chem. Soc., 1911, 33, 1487.
 Benedek, Zeitsch. Kryst. Min., 1916, 48, 447.
 See also Morgan and E. F. Smith, J. Amer. Chem. Syc., 1901, 23, 107.

7 Stokes, loc. cit.

- Cavazzi, Zeitsch. Kryst. Min., 1900, 32, 515.
 Mixter. Amer. J. Sc., 1913, (4), 36, 55.
 Arbeiter, Chem. Zentr., 1913, 1, 1933

This is followed by the formation of the disulphides, if the reaction is carried out in a closed vessel where the hydrogen sulphide is prevented from oxidation or escape.

$$FeSO_4 + H_2S + S = FeS_2 + H_2SO_4c$$

At the ordinary temperature this reaction is very slow, but at 200° C. it is fairly rapid. The dark deposit is microcrystalline. On earrying out the reaction in a scaled tube at 100° C. with a solution containing 1 per cent. of free sulphuric acid, mareasite is the only product. Higher temperatures and reduction of acidity favour the production of pyrites, distinct crystals being produced at 200° C. Iron pyrites is formed in neutral or afkaline solutions, as, for example, by the action of sodium holysulphide on a ferrous salt. Mareasite is not produced under these conditions.1 The foregoing results are in harmony with the observation that, whilst iron pyrites in nature is usually formed in deep veins from hot alkaline solutions, marcasite is produced near the surface from acid solutions.2

Thus a recent formation of pyrites has been observed at Karlsbad, in the well-known springs, which have a temperature of about 55° C. The waters are faintly alkaline and contain dissolved sulphates and a trace of hydrogen sulphide.3 Similarly the Tuscan lagoens are gradually depositing pyrites, whilst the hot vapours of the Icelandic furnarolls are slowly converting the ferrous silicate of the rocks into pyrites.4

Certain micro-organisms may indirectly facilitate the formation of natural pyrites and mareasite by evolving hydrogen sulphide as a product of reduction of sulphates. A considerable number of betteria, algae, flagellata, and infusoria exhibit this kind of

-activity.5

It is not probable, however, that they are directly responsible for any large quantity of pyrite or marcasite formation for several reasons.⁶ Thus, for example, pyrites is usually formed at considerable depths, but micro-organisms are relatively superlicial inhabitants of the soil. Again, pyrites is not infrequently associated with copper pyrites and analogous ninerals, which indicates the presence of copper in the original solutions. Now, copper is exceedingly poisonous to most micro-organisms. Knally, mareasite could hardly be produced direct by micro-organisms, as the presence of free acid, which is a condition of its formation, is fatal to organisms.

It seems fairly well agreed amongst geologists that pyrites has also been formed in certain cases by direct clystallisation from rock magmas. This could never happen with marcasite, kowever, owing to its instability

at temperatures above 450° C.

Artificial crystals of marcasite closely resemble the natural mineral in colour, lustre, and axial ratios. Thus:—

Allen, J. Washington Acad. Sci., 1911, 1, 170; Stokes, loc. cit.; Allen, Crenshaw, and Johnston, Amer. J. Sci., 1912, (4), 33, 169.
 See Palla, Jahrb. Min., 1887, II., Mem. 5.

Daubrée, déglogie expérimentale (Paris, 1879), p. 93.

Bussen, Dogs, Annalen, 1851, 83, 259.

Beyerinck, Compt. rend., 1893, 116, 1494.

Allen, Crunshaw, and Johnston, loc. cit.

Marcasitô.	•			Axial Ratio,
Natural	•			0.7662 : 1 : 1.2342 1
_ ,	•	•	•	
do.	4	•	•	$0.7623:1:1.2167^{2}$
do. • •	•.			*0.7580 : 1 : 1.2122 3
Artificial				$0.7646 \cdot 1:1.2176.4$

The striations likewise agree with rhombic rather than with cubic

The chief commercial use of pyrites (including marcasite) is in the manufacture of sulphuric acid.⁵ The pyrites, on being roasted in air, yields sulphur dioxide and a residue of ferric oxide. Thus:—

$$4 {\rm FeS_2} \! + \! 11 {\rm O_2} \! = \! 8 {\rm Fe_2 O_3} \! + \! 8 {\rm SO_2}.$$

A small quantity of sulphur trioxide is also formed, its proportion

ranging from 0.1 to about 8.5 per cent.6

Magnetic pyrites or pyrrhotite is a mineral of somewhat variable composition ranging from 5FeS.Fe₂S₃ to 9FeS.Fe₂S₃, and is thus intermediate between ferrous sulphide (troilite) and iron pyrites. Some of the purest specimens yield an analysis closely approximating to that of ferrous sulphide. This is particularly the ease with specimens derived from meteorites, the excess of sulphur having perhaps been lost during the heating of the meteorite.

Pyrrhotite has been prepared ⁷ artificially by heating ferrous chloride and sodium carbonate with water in a rifle-barrel at 200° C. for 16 days in an atmosphere of hydrogen sulphide and carbon dioxide. The reaction proceeds easily between 80° and 225° C.8 at the lower temperature, yielding hexagonal crystals, and at the higher temperature rhombic ones.

In view of these experiments it seems probable that the natural mineral has been produced at a relatively low temperature from ferrous salts dissolved in water by the action of hydrogen sulphide on slightly acid solutions of a ferrous salt. *

Artificial pyrrhotite has also been obtained by passing hydrogen sulphide over heafed ferrous chloride, air having been previously expelled by passage of carbon dioxide³; and by decomposing marasite or iron pyrites with hydrogen sulphide at temperatures above 575° C.⁸ The reaction may be first detected at about this temperature and proceeds fairly rapidly at 665° C. The mineral is not a definite compound, but in all probability a solid solution of sulphur in ciron sulphide. 10

- Prior, Min. Mag., 1903, 13, 217.
 Gemacher, Zeitsch, Kryst. Min., 1888, 13, 242.
 Goldschmdt, Winkeltabellen (Berlin, 1817).
- Larsen, Amer. J. Sci., 1912, (4), \$3, 216.
- See this series, Volume VII.
- Scheurer Kestner, Compt. rend., 1884, 99, 917; 1885, 100, 636.
 Doelter, Zeitsch. Kryst. Min., 1888, 13, 324; Weinschenk, ibid., 1890, 17, 499; Durocher, Compt. rend., 1851, 32, 823.

 Allen, J. Washington Acad. Sci., 1911, 1, 170; Allen, Crenshaw, and Johnston,
- Amer. J. Sci., 1912, (4), 33, 169.
- Dollter, toc. cit.

 Dollter, J. Washington Acad. Sci., 1911, 1, 170; Arbeiter, Chem. Zenkr. 1913, 1., 1933;

 Local Def 203: Lindström. Ofv. Akad. Stockholm, 1875, 32, Habermehl, Jahrb. Min., 1880, 2, Ref. 303; Lindström, Ofv. Akad. Stockholm, 1875, 32.

and.

The following data are interesting as illustrating the fall in density with rise of dissolved sulphur :--1

6-11	4.755
. 1	
1.96	4.677
3.27	1.632
3.74	4.619
· 1.77	4.585
6.04	4.520
	3.74 . 1.77

The change from pyrite to pyrrhotite when heated in an atmosphere of hydrogen sulphide is represented by the reversible reaction:—

$$\operatorname{FeS}_2$$
 - $\operatorname{FeS}(S)_x + (4-x)S$,

which is endothermic in the direction of left to right, a marked absorption of heat being evident at about 665° C., at which temperature pyrites is transformed into pyrrhotite. At 565 'C, pyrrhotite is stable in an atmosphere of hydrogen sulphide, whilst at 550°C, it gradually passes over into pyrites. The transition temperature is thus approximatchy 565° C. Pyrrhotite melts at 1183° C. in a current of hydrogen sulphide.2

There has been considerable discussion as to the crystal system to which pyrrhotite belongs. It is generally regarded as hexagonal,³ but several investigators have concluded that it is really rhombic,4 and the suggestion has even been made that the mineral is monoclinic. It seems highly probable that the nuneral occurs in two varieties - namely α pyrrhotite, which is rhombic; and β pyrrhotite, which is hexagonal β ; the a variety being produced from solution at a higher temperature \sim (sirea 225° C.) than the β (sirea 80° C.).

The axial ratios for the rhombie variety vary between the limits

0.5793:1:0.9267

0.5793; 1:0.9927,

whilst for the hexagonal variety the value, for a lies between 0.8632 and 0.8742. . .

Pyrrhotite is readily distinguished from ordinary pyrites by its

¹ These data refer to the artificial product (Allen, Crenshaw, and Johnston, loc. cit.).

Allen, Crenshaw, and Johnston, loc. c.t.

Allen, Crenstaw, and Johnston, loc. Cd.
 See Dano, A System of Mineralogy (Wiley, 1889).
 Streng, Jahrb. Min., 1878, p. 797 (contrast Streng, ibid., 1882, L., 183); Vrba,
 Zeitsch, Kryst. Min., 1879, 3, 190; Frenzel, Min. Petr. Mitt., 1881, 3, 297; von Sachsen-Cohurg, ibid., 1888, 10, 451; Both, Zeitsch. Kryst. Min., 1884, 9, 300; Nie d., ibid., 1899,
 31, 53; Kaisen Centr. Min., 1900, p. 261.
 Larsen, Amer. J. Sci., 1912, (4), 33, 218. See also Weiss, Centr. Min., 1906,

p. 338.

softness, 3.5 to 4.5 (pyrites, 6 to 6.5), and by its crystal form and magnetic properties.1 Its specific heat is 0.1539.2

The solubility of pyrrhotite in water, as calculated from electric conductivity measurements, is 53.6 × 10⁻⁶ gram-molecules per litre.

Oxysulphides of iron are not known in nature; but a substance, to which the formula ${\rm Fe_2O_3.3Fe_2S_3}$ is given, has been obtained by the action of hydrogen surphide on ferrie oxide at temperatures below red heat.4

Ferrous sulphite, FcSO₃,3H₂O, is obtained by dissolving iron in aqueous sulphurous acid in the absence of air. Upon concentration the salt is deposited as colourless crystals. The reaction is somewhat complicated, for no hydrogen gas is liberated during the solution of the iron, the nascent hydrogen reddeing some of the sulphurous acid (or ferrous sulphite) to thiosulphuric acid (or ferrous thiosalphate).5 Thus: -- *

$$2Fc + 3H_2SO_3 = FcSO_3 + FcS_2O_3 + 3H_2O$$
.

The thiosulphate, being very soluble in water, remains in solution.

Ferrous sulphite also results when solutions of ferrous salts and sodium sulphite atteract, and when fermus hydroxide is dissolved in aqueous sulphurous acid. In these circumstances a red solution is usually obtained, probably because of interaction with dissolved oxygen. The colour quickly disappears, however, particularly on warming. On concentration the salt crystallises out.

On passing a current of sulphur dioxide into an aqueous suspension of freshly precipitated ferrous sulphide, the latter passes into solution and ferrous sulphite is gradually deposited: 7

$$\mathbf{FeS} + \mathbf{SO_2} + \mathbf{H_2O} - \mathbf{FeSO_3} + \mathbf{H_2S}.$$

On prolonging the passage of sulphur dioxide the salt dissolves and the... acid sulphite, Fe(HSO3)2 is produced in solution. The normal salt is re-deposited on boiling, but the solution now contains ferrous thiosulphate in consequence of the reaction between a portion of the dist solved acid salt and sulphur produced by hydrogen sulphide and sulphur dioxide inter-reacting. Thus: -

$$Fc(HSO_3)_2 + S - FcS_2Q_3 + H_2O + SO_2.$$

· rerrons sulphite sobition readily oxidises in our, yielding a red solution. From its colourless solutions alkalies precipitate ferrous hydroxide.

Ferric sulphite, Fe₂(SO₂)₃, has not been isolated. It is obtained in unstable solution on dissolving ferric hydroxide in sulphurous acid.

If the ferric hydroxide is pure and well washed, it dissolves exceedingly

1 For a discussion of its magnetic properties and crystol system see Kaiser, Centr.

Min. 1004 p. 261 Min., 1906, p. 261.

Abt, Wied Annalen, 1897, (2), 62, 474.

³ Weigel, Zertsch. physikal. Chem., 1907, 58, 293

See Rammelsberg, Pogg. Annalen, 1864, 121, 337.
 Berthollet, Ann. Phys., 1830, 22, 2, 58; Fordos and Gélis, J. Phurm. Chim., 1843, (3), 4, 333

Scubert and Elten, Zeilsch, aborg, Chem., 1893, 4, 44; See also Muspratt, Annalen, 1847, 64, 240; Phil. Mag., 1847, (3), 30, 414; Berthier, Ann. Chym. Phys., 1832, (2), 370.
 Henderson and Weiser, J. Amer. Chem. Soc., 1913, 35, 239.

slowly, yielding a yellow solution. As ordinarily precipitated from solution, however, the hydroxide dissolves rapidly. The solution is unstable, the yellow colour changing to green as the ferric salt undergoes reduction to ferrous dithionate in the course of a few hours :-- 3

$$Fc_2(SO_3)_3 = FcS_2O_6 + FeSO_3$$
.

Hasic ferric sulphites, such as $FE_2(SO_3)_3$. $7Fe(OH)_3$ and $Fe_2(SO_3)_3$. $6Fe(OH)_3$, have been prepared.4

Fefri-Sulphites.

· A well-defined series of complex alkali salts of ferric sulphite has been prepared,5 analogous to the derri-sulphate derivatives of ferrie

sulpliate (ec. p. 162), but containing one SO₄ radicle.

Potassium ferri-tetrasuiphite, K_2 Fe₂(SO₃)₄, K_2 SO₄ or K_4 Fe₂(SO₃)₄, SO₄, is obtained by adding sedimm hydrogen sulphite solution to one of potassium ferro-heptanitroso sulphide, KFe4(NO_{J7}S₃ (see p. 179), in alcohol and allowing to stand at the ordinary temperature for a couple of weeks. The salt separates as yellow, microscopic needles, insoluble in cold water. Acids dissolve the salt readily, and boiling with water effects the precipitation of ferric hydroxide.

Potassium ferri-disuiphite, $K_3Fc(SO_3)_2SO_4$, results when a solution of potassimi ferro-heptanitroso sulphide is digested at 4° C, with sodinm kydrogen sulplite for about a month. It yields histrous, dark yellow leatlets which are practically insoluble in cold water, but in boiling evater are decomposed, yielding ferric hydroxide and a soluble

ferrie salt.

Potassium ferri-sulphite, KFc(SO₃)SO₄, is prepared by the action of potassium hydrogen sulplute upon ferric ammonium aliim. - It erystallises in slender needles, which are sparingly soluble in cold water. With hot water ferrous and potassium sulphates pass into solution, leaving an insoluble yellow residue.

* Ammonium ferri-suiphite, NII₃, i'c(\$O₃)\$O₄, Ii₂O, may be obtained by treating ferric ammoining almit with ammonium hydrogen sulphite. It crystallises in slender, yellow needles which are but slightly soluble timeoid and hot water. Prolonged boiling decomposes the salt.

Sodlum ferri-disulphite, Na₃Fe(SO₃)₂SO₄-6H₂O, may be prepared by digesting a solution of sodium fer-to-hoptantroso sulphide with sodium hydrogen sulphite for several days. It erystallises in flat, yellow prisms, and closely resembles the corresponding potassium saft.

Sodium hydrogen ferri-tetrasuiphite, Na₂H₂Fc₂(SO₃)₄SO₄·2H₂O₅ results on dissolving freshly precipitated ferric hydroxide in a concentrated solution of sodium hydrogon sulphite and sulphureus acid. On - concentration over sulphyric acid a crystalline mixture of this salt with the preceding is obtained, and separation is effected by treating this mixture with a solution of sodium hydrogen sulphite. The salt cervstallises out in bright, olive-green needles.

2 Gelis, Ann. Chim Phys., 1862, (3), 65, 222."

⁴ Carpenter, Trans. Chem. Soc., 1902, 81, 1.

³ See p. 168. According to Burguet (Compt. rend., 1859, 49, 587), the reaction is $Fe_2(SO_8)_8 - FeSO_4 + FeSO_3 + SO_2$

Koene, Pogg. Annalen, 1844, 63, 444; Seubert and Elten, loc. cit. Hofmann, Zeitsch. anorg Chem., 1897, 14, 282.

Ferrous sulphate.—The usual form of this salt is the heptahydrate, FeSO4.7H₂O, which is obtained when iron is dissolved in dilute sulphuric acid and the solution allowed to crystallise. The crystals belong to the monoclinic system, and owing to their green colour the salt has long been known as green vitriol. The density of the pure salt at 14.8° C. is 1.8987, and at 15° C. 1.899 ± 001 , and it is stable in contact with a saturated solution of fefrous sulphate up to 56.6° C which is the trailsition point of the hepta- to the tetra-hydrate under these conditions.³ It occurs native as the mineral melandente or copperas, which may be crystalline, but is more usually massive. Mixell crystals of the heptahydrates of ferrous and enpric sulphates occur as pisante, (Fe, Cu)SO_{4.7}H₂O, in the form of blue transparent crystals. Both these minerals are isomorphous with Boothite, CuSO 1.71120.1

Drainage water from coal mines is frequently charged with ferrous sulphate consequent upon the oxidation of pyrites in the coal, and upon evaporation yields the impure salt. The salt is readily obtained in a pure state by dissolving electrolytic iron in dilute sulphuric acid and allowing to crystallise, preferably in an inert atmosphere. Commercially ferrous sulphate is obtained by exposing heaps of pyrites to the oxidising action of the air. Ferrous sulphate and free sulphuric acid drain off into tanks, the acid being neutralised with scrap iron: -

$$\begin{array}{c} {\rm FeS_2} + 70 + {\rm H_2O} = {\rm FeSO_4} + {\rm H_2SO_4}, \\ {\rm H_2SO_4} + {\rm Fe} = {\rm FeSO_1} + {\rm H_2}. \end{array}$$

The salt obtained in this way is not pure, but contains small quantities of ferric sulphate and the sulphates of metals such as manganese naturally occurring in the pyrites. Copper sulphate is removed by allowing the liquors to remain a sufficient length of time in contact with the scrap iron, the copper being precipitated out:

$$C_HSO_4 + Fe = FeSO_4 + Cn$$
.

Perrie sulphate is removed by re-crystallisation, but small quastities of the other salts remain.

When exposed to the air the ordinary commercial salt gradually oxidises, yielding a basic salt. It is easily dried, however, by powdering and repeatedly pressing between the lolds of fifter paper. It is then quite stable in air at 15° C, and neither oxidises, effloresces, nor deliquesces. When heated in chloroform vapour a mixture of ferrons and ferric chlorides is produced.6

The salt melts at 64° C.7 When heated in vacuo, ferrous sulphate heptahydrate undergoes dehydration, six molecules of water being removed at 140°C., complete dehydration being effected at a slightly higher temperature. When heated in a tube open at both ends, ferrous sulphate begins to decompose at 150°C., yielding ferrie sulphate, Fc₂(SO₄)₃,8 and at higher stomperatures, in the presence of air, ferric

Andreac, Zeitsch. physikal. Chem., 1911, 76, 191.
 Retgers, ibid., 1889, 3, 280.

^{**}Fraenckel, Zeitsch. amorg. Chem., 1907, 55, 223.

**Fraenckel, Zeitsch. amorg. Chem., 1907, 55, 223.

**For crystedlographic data, see: p. 25.

**de Forerand, Compt. rend., 1914, 158, 29.

**Conduchée ibid., 1914, 158, 1189.

**Tilden, Trans. Chem. Soc., 1884, 45, 266.

**Hofmann and Wanjukow, Met. Chem. Eng., 1912, 10, 172; Bull. Amer. Inst. Min., 1912, 192, 260. Eng., 1912, p. 889.

oxide results. Its coefficient of expansion per degree C. rise in temperature 1 is 7.2×10^{-5} .

Its specific heat is as follows :---

Temperature Range, °C.	Specific Heat of FeSO ₄ ,7H ₂ O.
78 Pto 22	0.292 ± 0.002
€ 190-0 22 -	0.231 ±0.002
190.0 78.4	0.182 ± 0.004

and its molecular specific heat between 22° and 45° C. is $96\cdot 2$ calories.² The heat of hydration of the heptahydrate is 1912 calories,³ and its heat of solution is -4323 calories at $13\cdot 5^{\circ}$ C.⁴

Crystals of the heptahydrafe possess the same vapour tension at 44.01° C, as magnesimu sulphate, MgSO₄,7H₂O. Below this temperature their dissociation pressure is greater, and above it is less, than that of the magnesimu salt.⁵ In the case of zine sulphate, ZnSO₄,7H₂O, the equilibrium temperature between the two salts is 16.4° C.⁶

Examination of ferrons sulphate crystals by X-ray methods indicates that the seven molecules of water are not symmetrically disposed or equivalent in their structural relations to the other constituents.⁷

The heptahydrate is dimorphous, a rhombic variety occurring in nature as tauriscite * in a more or less impure condition. It has not been isolated in a pure condition in the laboratory, but Raminelsberg *

obtained it in association with rhombic magnesium sulphate.

Experiment shows that crystals of magnesium sulphate heptahydrate, MgSO_P7H₂O_s will hold up to 19 per cent, of ferrous sulphate, MgSO_P7H₂O_s m solid solution. Now, the pure magnesium salt is rhombic, and has a density of 1-277, whilst the usual form of ferrous sulphate is monoclime, density 1-898. The mixed crystals, however, are rhombic. Determination of their density shows that it is not the mean value as calculated from the densities of the constituent salts, but is slightly less. In other words, it appears that the magnesium sulphate is mixed with a ferrous sulphate of density 1-875, rhombic inform, and too mistable to exist alone when quite pure under ordinary conditions. Similarly crystals of ferrous sulphate heptahydrate can hold 54 per cent, of magnesium sulphate in solid solution. The mixed crystals are, in 11 sease, monoclime, and their density is greater than the mean calculated from the densities of the constituents. It would

```
    Andreae, Zeitsch, physikal, Chem., 1911, 76, 491.
    Jackson, J. Amer. Chem., Soc., 1912, 34, 1470.
    Holla and Accame (Atti R. Accad.
    Lincei, 3913, (b), 22, ii 199) give the molecular heat as 92 147.
    Cohen, Zeitsch, physikal, Chem., 1907, 36, 517.
```

de Forerand, Compt. rend., 1914, 158, 20.

⁵ Rolls, Att. R. Accad. Lincer, 1911, (5), 20, 112.

⁸ Rolla and Ansaldo, ibld., 1912, (5), 21, i. 272.

Johnsen, Physikal. Zeitsck., 1915, 16, 269. Compare p. 79.

¹ See p. 25; Also Blans, Monalsh., 1883, 4, 833

Rammelsberg, Pogg. Annalen, 1854, 91, 321; also Volger, Jahrb. Min., 1855, p. 152.

thus appear that in this case the ferrous sulphate is associated with a monoclinic variety of magnesium sulphate heptahydrate, of density 1 691, but which is too mustable to exist alone in ordinary circumstances. Hence the two heptahydrates are isodimorphous.1

The hexahydrate, FeSO4.6112O, results on passing hydrogen chloride into a saturated solution of ferrous sulphate. Ferrous chloride separates first, and, concentrating the mother liquor, tabular crystals of ferrons

sulphate hexahydrate separate out.2

When a crystal of copper sulphate, CuSO, 511,O. B introduced into a supersaturated solution of ferrous subhate, triclinic crystals of the pentahydrate,3 FeSO4.5H2O, separate ont, isomorphous with the copper salt, and of density 1.89.

The pentahydrate may also be obtained by allowing an acidified solution of ferrons sulphate to concentrate in yacuo. The heptahydrate erystallises first, next the pentahydrate, and finally the tetrahydrate.4 FeSO, 4H₂O, the relative proportions of these hydrates depending upon the amount of free sulphuric acid in solution.

The tetrahydrate is also formed when the heptahydrate is kept for several days over concentrated shiphnric acid.⁵ It is monochnic, and isomorphous with the corresponding hydrate of manganous sulphate, MnSO₁.4H₂O. Its limits of stability in contact with a saturated solution of ferrons sniphate are 56 6° C. to 6t F C. Its heat of solution at 13.5° C. is 1599 calories,7 and its molecular heat is 63.587 calories.8

The trihydrate, $FeSO_1.311_2O_5$ ° and dihydrate, $FeSO_4.211_2O_5$ 10 have also been obtained - the former, by solution of the heptahydrate in concentrated hydrochloric acid; the latter by separation from a concentrated solution of ferrous sulphate on addition of sulpharit acid in small quantities at a time. The existence of this latter hydrate is clearly indicated by a break in the tune-dehydration curve at 100° C.11

The monohydrate, FeSO4.112O, seems m. nature as the mineral ferro-palladite, in Chili, 12 and results when the heptahydrate is heated to 140° C. in vacuo, or is allowed to effleresee for prolonged periods in dry air, 13 and by passing air, dried over sulphuric acid. over the heptahydrate at 100°C.14 It also results by bringing the heptahydrate into

* Rolla and Accame, Atti R. Accad. Linea, 1913, (5), 22, ii 109

See Miers, Minimaliny (Macmillan, 1902), p. 230., also Retgers, Zeitsch. physikal.
 Chem., 1889, 3, 497; Blaas, loc. ett.
 Hensgen, Ber., 1878, 11, 1775., also de Boisbandian, Ans. Chem. Phys., 1869, (4).

^{18, 255.}

Marignac, Vol. Mines, 1856, (5), 9, 11. Liebig and Kopp, Judgester, 1867, p. 152.
 Marignac, Re. ett.
 Scharizer, Zeitzelt Kryst. May, 1898, 30, 209; do Forciando Compl. vond., 1914.

^{158, 20.} Fraenckel, Zeitsch. anorg. Chem., 1997, 55, 223 Compare Regnault, Ann. Chim. Phys., 1841, 1, 201.

<sup>Kane, Agnalen, 1836, 19, 7; Kuhng, Schwenger's J., 1831, 61, 235
Bonsdorff, Bericht Versamml, deut Naturfasch Artice Prog. 1837, p. 124; Pogg.</sup> Annalen, 1834, 31, 81.

11 Haimay, J. Chem Soc., 1877, 32, 381

12 Scharizer, Zest. Kryst. Vin., 1903, 37, 520.

Scharizer, loc. cjt.
 Hannay, J. Chem. Soc., 1877, 32, 390.

contact with sulphuric acid of concentration not less than 12.5 normal.1 and by addition of concentrated sulphuric acid to saturated aqueous solutions of ferrous sulphate.2 This is conveniently effected by dissolving 400 grains of the pure heptahydrate in 200 e.c. of 50 per cent. sulphuric acid on the water-bath. Almost immediately after solution is complete, the monohydrate separates out as a white, crystalline powder. It is dried with alcohol and ether, and finally over sulphuric acid.3 The salt is permanent in air, and is not hygroscopic. It is useful, therefore, for standardising permanganate solutions for volumetric analysis. It clings most tenaciously to its combined water, but may be made to part with it to a small extent by heating to 100° C. in a current of air dried over phosphorus pentoxide. The suggestion has therefore been made (see p. 79) that the salt is a hemilydrol of the formilia

Fe SO₄H OH.

It is stable in contact with ferrous sulphate solution at temperatures above 64.4" C., which point is the transition temperature in these circumstances between the mono- and tetra-hydrates. Its heat of solution in water at 13.5° C. is 7538 calories. It absorbs ammonia

The anhydrous salt, FeSO₄, is extremely difficult to prepare in a state of purity. It results, more or less contaminated with a basic salt, when any hydrate is heated in vacuo to a temperature somewhat above 140° C. It is stated also to result when the heptahydrate is dissolved in concentrated sulphuric acid.8 It then separates as microscopic prisms. It is white in appearance, insoluble both in alcohol and in concentrated sulphuric acid. Its heat of solution 6, in water is 14,901 calories at 13.5° C. Density 2 841. At dull red heat it decomposes yielding first a basic sulphate and finally ferric oxide. Thus z-

$$2\text{FeSO}_4 = \text{Fe}_2^* \overline{\text{O}}_3 + \text{SO}_3 + \text{SO}_2$$
.

- Ferrous sulphate readily dissolves in water, and if acidified with dilute sulphuric acid the solution is fairly stable in the cold.2 Exposure to light accelerates its rate of exidation. The solubility of ferrous sulphate in water has been determined at different temperatures by many investigators, 10 the most recent and reliable work being that of Ffaenckel, who gives the following data:-

Wirth, Zeitsch anong Chem., 1913, 74, 360.
 Etard, Compt. rend., 1878, 87, 502; Fremin, J. Russ. Chem. Soc., 1888, 20, 468;
 Lescour, Ann. Chim. Phys., 1866, (7), 19, 213, 416, 537; Scott. Trans. Chem. Soc., 1897,
 71, 564; Florentine Bull. Soc. chim., 1913, (4), 13, 352.
 Florentin, loc. cit. * Florentin, loc. cit. Hannay, J. Chem. Soc., 1877, 32, 390, Fraenckel, Zeitsch. anorg. Chem., 1905, 55, 223. de Forenand, Compt. rend., 1914, 158, 20.

Ge FOTONINI, Comp., rena., 1913, 150, 50.

Peterrs, Zeisch, anorg. Chem., 1912, 77, 131.

Bolas, Annalen, 1874, 172, 100; J. Chem. Noc., 1874, 21, 260.

Warynski, Ann. Chim. ancl., 1809, 14, 45.

See Etax'i, Compt. rend., 1888, 106, 740; Ann. Chim. Phys., 1894, (7), 2, 503; Mulder, Scheikundige Verhandl., 1864, III., (3), 141; Tobler, Annalen, 1858, 95, 193.

These results are shown graphically in fig. 6. At 25° C. 100 grams of saturated solution contain 22.98 grams (0.1508 mol.) of FeSO₄. Wirth, Zeitzch. angewe Chem., 1913, 26, 81.

TEMPERATURE °C

The density of a solution of ferrous sulphate, saturated and in contact with erystals of the salt, at 8.9° C. is 1:1949.1 .

The rate of oxidation of ferrous sulphate solution upon exposure to air is proportional to the partial pressure of the oxygen? Hence it is reduced by addition of concentrated solutions of mert soluble salts, such as chlorides and sulphates of sodium, potassium, and magnesium, owing to their presence causing a decrease in the solubility of the oxygen." The oxidation depends upon the un-ionised portion of the dissolved salt.

Ferrons sulphate undergoes hydrolysis when its solution is boiled with potassium iodide and iodate. Thus :-

$$3{\rm FeSO_4} + 5{\rm KI} + {\rm KIO_3} + 3{\rm H}_2{\cal O} = 3{\rm Fe}({\rm OH})_2 + 3{\rm K}_2{\rm SO}_4 + 3{\rm I}_2.$$

The excess of iodate then oxidises the ferrous hydroxide to the ferric condition.4

$$6Fc(OH)_2 + KIO_3 + 3II_2O = KI + 6Fc(OH)_3.$$

Ferrous Sulphate as a Reducing Agent.—Ferrous sulphate is frequently used as a mild reducing agent. Thus, auric chloride is reduced to the metal in aqueous solution -a reaction made use of in photographic toning: ---

$$AuCl_3 + 3FeSO_4 = Au + FeCl_3 + Fe_2(SO_1)_3.$$

Silver salts are similarly reduced to the metal; tlms:

$$Ag_2SO_4 + 2FeSO_4 = 2Ag + Fe_2(SO_4)_3$$

and

$$3AgNO_3 + 3FeSO_1 - 3Ag + Fe_2(SO_4)_3 + Fe(NO_3)_{a}$$

These reactions with silver are particularly interesting inasmuch as Landolt 5 finds that they are accompanied by a toss in weight greater than that attributable to experimental error, and suggests that the atoms lose a small portion of their mass in the reaction, the detached particles passing through the walls of the containing vessel.6

Under the influence of light, potassium ferricyanide is reduced to ferrocyanide by ferrous sulphate in alkaline solution (see p. 224), ,

Potassium permanganate is instantaneously decolorised by ferrous sulphate in acid solution, being reduced to manganous sulphate. Thus :--

$$-10 \text{FeSO}_4 + 2 \text{KMnO}_4 + 8 \text{H}_2 \text{SO}_4 = 5 \text{Fe}_2 (\text{SO}_4)_3 + \text{K}_2 \text{SO}_1 + 2 \text{MnSO}_4 + 8 \text{H}_2 \text{O}.$$

Similarly potassium bichromate is reduced to chromic sulphate in accordance with the equation:

$$6 FeSO_4 + K_2 Cr_2 O_7 + 7 H_2 2O_4 = K_2 SO_4 + Cr_2 (SO_3)_3 + 3 Fe_2 (SO_3)_3 + 7 H_2 O_3$$

- Sonstadt, Trans. Chem. Soc., 1906, 86, 343.
 Ennos, Broc. Camb. Phil. Soc., 1913, 17, 182.
 MacArthur, J. Physical Chem., 1916, 20, 5-5.

- ** Macarthur, J. Prysical Chem., 1910, 20, 350.

 S. E. Moody, Amer. J. Sci., 1903, (4), 22, 176.

 Landolt, Zeitsch, physikale Chem., 1904, 55, 589.

 Sea Surde, Nuovo Cimento, 1904, (5), 8, 45; Landolt, Ber., 1893, 26, 1820; Zeitsch, physikal, Chem., 1803, 12, 1; Heydweiller, Ann. Physik, 1901, 5, 394; Rayleigh, Nature, 4901, 64, 181; Joly, Trans., Roy. Dublin Soc., 1903, 8, \$3.

Aqueous solutions of ferrous sulphate readily absorb nitric oxide,1 the extent of absorption depending upon the concentration of the iron, the temperature, and the pressure. The limit of absorption is reached when one molecule of NO is present to each atom of iron and the brown solution undoubtedly contains the compound FeSQ $_4$ -NO, probably more or less combined with the solvent.² The addition of small quantities of sulphuric acid to the solution of ferrous sulphate tends to diminish the absorption of intric oxide, the equilibrium represented by the equation

$$- FeSO_4 + NO = FeSO_4 \cdot NO$$

being pushed towards the left. Further increase of the acid, llowever, assists absorption, a maximum being reached in the prescuce of $82\,$ per cent, of acid. Under these conditions the solution is cherry red in colour. The colour is not due to the formation of ferrous nitroso sulphonate,³

as assumed by Raschig.4 The complex salt FeSO₁NO may be isolated by adding a concentrated agricous solution of nitric oxide in ferrous sulphate to ice-cold sulphunic acid in an atmosphere of nitric oxide; the compound crystallises in small red leaflets, but is very unstable.⁵ A second complex salt of the formula FeSO₁NO FeSO₁.13H₂O has also been obtained 6 by addition of cohyl alcohol to aqueous ferrous sulphate in an atmosphere of intric oxide. It crystallises in small rectangular plates brown in colour and which slowly decompose on exposure to air.

On addition of nitric acid to a solution of ferrous sulphate acidified with sulphuric acid, nitric oxide is formed, a portion of the ferrous salt being oxidised to ferric. Thus:-

$$6 FeSO_4 \pm 3 H_2 SO_4 \pm 2 HNO_3 \pm 3 Fe_2 (SO_4)_3 + 4 H_2 O_{\pm} 2 NO_5$$

This is the basis of the "ring test "for nitro acid or sitrates, which usually consists in pouring a cold solution of ferrons sulphate gently down the sides of an inclined test-tube on to a layer of concentrated sulphyric acid, containing the intrate. Since ferric sulphate yields a red compound, possibly Fe₂(SO₁)₃, 4NO, with nitric oxide in the presence of concentrated sulphuric acid (see p. 161), the colour of the ring formed at the junction of the two liquids will depend upon whether the nitric oxide compound is formed in the concentrated acid or in the aqueous layer, being brown in the latter, but ruddy in the former.

The dark colour of the nitrie oxide derivative may be utilised in the volumetric estimation of nitric acid, as its appearance depends upon the presence of excess ferrous sulphate in solution. Further addition of nitric acid oxidises this remaining ferrous sulphate and, when oxidation is complete, the colour disappears. The discharge of

 ¹ Gay, Compt. rend., 1879, 89, 410; Ann. Chim. Phys., 1885, (6), 5, 145.
 Manchot and Zechentmayer, Annalen. 1906, 350, 368; Usher, Zeitsch. physikal.
 Ohem., 1908, 62, 622; Hufner, ibid., 1907, 59, 416.
 Mahchot Zeitsch. angew. Chem., 1910, 23, 2113.

⁴ Raschig, ibil., 1905, 18, 1281.

Manchot and Huttner, Annalen, 1910, 372, 153.
Manchot and Huttner, loc. c.s.

the colour is found to be sufficiently definite to enable the end point

to be determined with reasonable accuracy.1 .

The formation of this brown compound can advantageously be utilised as a method of detecting ferrous salts in the presence of other metals that would obscure the more usual ferricyanide reaction.2 The solution to be tested is thixed with an equal volume of concentrated Sulphuric acid, and a crystal of potassium nitrate added. The last-named becomes surrounded with red-brown streaks of the nitroso compound.

A mixed solution of ferrous sulphate and catechol in the presence of an alkali reachly absorbs oxygen, giving a deep red colour. The reaction is exceedingly sensitive, and is recommended as a delicate test

for oxygen,3

Ferrous subhate has been used as a dressing for crops, but apparently it is beneficial only when the soil contains an excess of lime, which is thereby converted into gypsum. It is this last-flamed salt which really benefits the soil.4 Ferrous salts in general are toxic and are usually regarded as one cause of sterility of badly acrated soils.

The double sulphate with sodium, FeSO₄, Na₂SO₄, 4H₂O₄, has been

prepared ⁵ by crystallisation of the mixed solutions above 45° C.

Double Sulphates of the Type (M,", N")SO4.xH2O, or M"SO₄, N "SO₄, xH₂O.

, Ferrous sulphate yields, with the sulphates of certain divalent metals, mixed salts of the general type (M", N")SO₁,H₂O. They are prepared by, mixing solutions of the constituent sulphates, and then adding concentrated sulphuric acid, when the mixed sulphates separate out on cooling.

Ferrous copper sulphate, (Fe, Cu)SO₄.H₂O₅ or CuSO₄.2FeSO₄.3H₂O₅ occurs in yellowish brown crystals which are not hygroscopic in ordinary air, but take up water in a warm atmosphere saturated with

moisture.6

* The brown colour increases in depth from both ends of the series, the maximum-being reached with 18 per cent, of Iron and 16 per cent, of copper. The crystals are perfectly homogeneous under the microscope. When gently heated they become chocolate-brown and finally manye, but the original colour igrestored upon exposure to air,

The origin of the brown colour has been a matter of discussion. The monohydrates of forrous sulphate and copper sulphate are white and pale blue respectively, so cannot be the direct cause of the colour. Neither is the brown due to ferric salts or to cuprous oxide. The suggestion has been made 7 that it is the result of an oscillation of electrons due to the presence of metals in different stages of exidation, . the copper being saturated whilst the iron is not.

* Scott, Trans. Chem. Soc., 1897, 71, 564.

Allmand, Zeitech. anone. Chem., 1909, 61, 202.

Mangé, Chen. Sentr., 1919, 11., 720, from Lind. stimique, 1918, 8, 255. See also Bownian and W. W. Scott, J. Ind. Eng. Chem., 1915, 7, 766; Bellucci, Ann. Chim. Applicate, 1914, 1, 549.
 Blum, Zeitsch. anal. Chem., 1905, 44, 10.
 Binder and Weinland, Ber., 1913, 46, 255.

⁴ See Boiret and Paturel, Ann. Agron., 1891, 18, 418; Delacharbonny and Destremx, Bied. Centr., 1889, p. 9; Griffilhs, Trans. Chem. Soc., 1887, 51, 215; 1886, 49, 114; 1885, 47, 40; 1884, 45, 71; Russell, Soil Conditions and Plant Growth (Longmans, 1912).

Mohr, Zeitsch. anal. Chem., 1873, 12, 373; Biltz, ibid., 1874, 13, 126.

Ferrous cadmium sulphate,1

Ferrous chromous sulphate 2 (pale, yellowish green).

Ferrous magnesium sulphate,3

Ferrous manganese salphate 2 (very faint pink), and

Ferrous zinc sulphate 2,4 (white, well crystallised) have also been prepared.

Double Sulphates of the Type, M'2RO4.M"RO 6H2Q.

Ferrous sulphate readily combines with sulphates of the alkali metals and of ammonium to form well-defined crystalline salts of the

 $\mathrm{M'}_{2}\mathrm{SO}_{4}.\mathrm{FeSO}_{4}^{4}.6\mathrm{H}_{2}\mathrm{O}.$

They are all monoclinic in structure and belong to an extensive class of isomorphous salts of the general formula :- $\mbox{\ \ }$

where M' stands for ammonium of an alkali metal, M" for (ferrous) iron, cobalt, nickel, manganese, copper, cadmium, magnesium, or zine; and R for sulphur, selehium, telluruum, or chromium.

These salts have been easefully studied by Tutton, who gives their axial angles any ratios as follow:

Sulphate.	a:b · • •	ß
Ferrous ammonum 6 potassium ., rubidium ., casium .	. 0·7377 : 1 : 0·4960 . 0·7377 : 1 : 0·5020 . 0·7377 : 1 : 0·5004 . 0·7261 : 1 : 0·4953	106° 50′ 104° 32′ 105° 44′ 106° 52′

It will be observed that if the ammonium salt be excepted the axial angle steadily increases with the molecular weight. On the other hand, the axial ratios of the first three salts are very close, the easium salt here proving exceptional.

In the following table are given the densities and molecular volumes **≠**f the salts: -7

Sul	phate.	Molecular • Weight.	Density at 20° C.	Molecular Volume.
,, rub	moaium . assium . idium .	389-32 431-16 523-26 617-26	$\begin{array}{c} 1.864 \\ 2.177 \\ 2.518 \\ 2.796 \end{array}$	208 · 86 193 · 05 207 · 81 220 · 77

- Retgers, Zeitsch. physikal, Ghem., 1895, K., 595; Stortenbeker, Ibid., 1990, 34, 108.
 Scott. Trans. Chem. Soc., 1897, 71, 564
 Seo Moissen, Traité de Chimie Minégale (Paris, 1905), vol. iv.
 Murrann, Sitzungsber. K. Akad. Wien. Wien, 1858, 27, 102.
 Tatson, Broc. Roy. Soc., 1913, A, 88, 361; Trans. Chem. Soc., 1896, 69, 344; 1893,
- 53, 337.
 The values found by Murmann and Rotter (Sitzungsber. K. Akad. Wiss. Wien, 1859, 34, 763) were a. b: c=0.7466: 1:0.4950. β=106° 48'. 7 Tutton, loc. cit.

It is interesting to note that by interchanging rubidium for ammonium very little alteration is effected in the molecular volume, despite the fact that two atoms (Rb2) now take the place of ten (2NII4). The densities steadily rise with the molecular weight, and the same is true for the molecular volume if the ammonium salt be excepted.

The solubilities of the salts in water at 25° C, are as follow:— !

•	SulpPate,	•	Gram molecules per Latre of Water,	Grams of An- hydrous Salt pe Jatre of Water
Ferrous a	anmonium	روز	1:011	351
• •	ootassiimi			365 2
	rubidium		0.579	212
,,	carsinm		1.967	1011

The high solubility of the easinm saft is interesting in view of the

low solubility of ferric easium alum (see p. 164).

Ferrous ammonium sulphate or Mohr's salt, FcSO4.(NH1)2SO4. 61120, may be prepared by adding a saturated solution of ammonium sulphate at 40° C, to the requisite quantity of ferrous sulphate dissolved also at 40° C. in the smallest amount of water. The solution, on cooling, deposits an abundant crop of pale green crystals, monochnic, and of density 1.804 at 20° C. The salt is kept dry by pressure between Illter papers.

Ferrous ammonium sulphate is a stable salt at ordinary temperatures, and its solutions in the cold do not readily oxidise. Hence it is largely used in the laboratory for standardising solutions of potassium permanganate for volumetric analysis. Its solubility in water is as follows: 4

According to Locke, 351 grams of the anhydrons salt dissolve into one litre of water af 25° C. These solutions readily absorb nitric oxide in a precisely similar

massier to those of pure ferrous sulphate."

Ferrous potassium sulphate, FcSO₁K₂SO₄6H₂O₆ may be prepared in a similar manner to the ammonium saft. It yields monoclinic

. 19.6 24.5 30.9 36.5 41 - 100 grams water .

Locke, Amer. Ghem. J., 1902, 27, 455.
 Tobler, Annalen, 4855, 95, 193. This tigger is of doubtful accuracy.
 Class No. 5 holohodral pusmatic (Baumdauer, Perg. Annalen, 1873, 150, 619; con-

firmed by Tutton, loc. cit.). • Tobler, loc. cit. These data are of doubtful accuracy.

⁶ Locke, Amer. Chem. J., 1902, 27, 459.

^{*} Tobler, ker. cit.

These data, however, are only approximately correct. From the solution of this salt in water three definite hydrates can be obtained according to the temperature of crystallisation. This is well illustrated by fig. 7, where the vertical column gives the solubility of the salt (expressed in the original memoir as \$.c. of KMnOa).10

The dihydrate is colourless, the tetrahydrate faintly green, and the hexabydrate distinctly green. The transition temperatures are as

follow :-

 $\begin{array}{lll} FeSO_1, K_2SO_1, GH_2O_2 = FeSO_1, K_2SO_1, H_2O_2, 21I_2O_3 at \ 30^\circ C, \\ FeSO_1, K_2SO_1, GH_2O_2 = FeSO_1, K_2SO_1, 21I_2O_2, 21I_2O_3 at \ 54^\circ C, \\ FeSO_4, K_2SO_1, GH_2O_3 = FeSO_1, K_2SO_1, 21I_2O_3 at \ 54^\circ C, \end{array}$

The tetra- and di-hydrates may also be obtained by crystallisation from solutions containing varying quantities of sulphuric Acid.

Ferrous aluminium sulphate, FeSO₄,Al₂(SO₄)₃,2411,0, occurs in nature as halotrichite (see p. 25), and may be prepared in the laboratory by concentration of a solution containing ferrous and aluminium Aulphates in equimolecular proportions. At first lerrous sulphate

crystallises out, but this is followed by the double adt. The salt is washed with alcohol and other. It is white in colour, but exhibits a green fluoresecnee. It melts on warming, and decomposes

to oxides at high temperatures. .

The salt has also been found as an elllorescence on bricks which have been continuously exposed to sulphur dioxide in bleaching chambers. When the clilorescent mass is broken up it exhibits a silken or fibrous mass of white crystals not unlike asbestos in texture, whence the popular names of hair sat and feather alum.

Basic ferrous sulphate, FeSO, FeO, is apparently obtained in

Kuster and Thiel, Zeitsch. amorg. Che'y., 1899, 21, 416
 See Mitscherlich and Brewster, Schuenger', J. 1820, 33, 344; de Scharmont, Ann. Chim. Phys., 1851, 33, 391; Marigulac, Ann. Min., 1856, (55.9, 19; Lanck, Credt. Annalen,

Wirth, Zeitsch. anorg. Chem., 1913, 26, 81.
 Paterson, Trans. Chem. Soc., 1896, 69, 66.

solution when a 80 per cent. solution of ferrous sulphate is electrolysed between iron electrodes by a very weak current in the dark. After a few weeks the liquid becomes dark green in colour, but upon exposure to light it decomposes, depositing ferrous hydroxide in the absence of air.1

The acid sulphate, FeSO₄.5H₂SO₄.5H₂O,² is obtained when excess of sulphuric acid is added to a concentrated solution of ferrous sulphate. It yields iridescent crystals, with a brilliant lustre, but which are unstable, decomposing at 95° to 97° C. into the monohydrate. Thus:-

$$FeSO_1.5H_2SO_4.5H_2O = FeSO_4.H_2O + 5H_2SO_4.4H_2O.$$

Other acid sulphates, namely 2FcO.3SO₃.2H₂O, FcO.2SO₃.H₂O, and FeO.4SO, 3H,O, have been described.3

The following acid double sulphates have been prepared: - 4

 $\begin{array}{l} {\rm 2FeSO_4.Cr_2(SO_4)_3.H_2SO_4.2H_2Q,} \\ {\rm 2FeSO_4.Al_2(SO_4)_3.H_2SO_4,} \end{array}$ 2FcSO₄.2ZnSO₄.H₂SO₄, 2FcSO₄.2ZnSO₄.H₂SO₄, and FeSO₄.NiSO₄.H₂SÕ₄.>

Ferric sulphate, Fc_z(SO₄)₃, is readily obtained in the anhydrous condition by heating the nonahydrate to about 175° C., 5 or by heating ferrous or any of the ferrie anymonium sulphates (see p. 162) for prolonged periods in the presence of annuouium sulphate.

A convenient method of preparing anhydrous ferric sulphate consists in boiling 10 grams of ferrous sulphate with 100 c.c. of concentrated sulphuric acid for about an hour. When cold the bulk of the acid is poured off, the remainder being washed away with alcohol and finally with anhydrous other. The salt is dried in an oven till constant weight is attained.6 Pickering 7 found that it was necessary, in order to effort the complete removal of excess of sulphuric acid, to heat until the product assumes a light brown colour while hot, becoming pink on cooling, the colour being due to the presence of traces of ferrie oxide.

" It is, when pure, a white powder, slowly soluble in water, yielding a

deep brown solution.

When heated, fevric sulphate dissociates into ferric oxide, sulphur trioxide, sulphur dioxide, and oxygen, equilibrium being established if the operation is carried out in a closed vessel.8

The equilibrium between ferric sulphate and its decomposition pro-

ducts is given by the equation :-

$$Fe_{3}(SO_{4})_{3} = Fe_{2}O_{3} + 3SO_{3},$$

- Tichvinsky, J. Russ. Chem. Soc., 1893, 25, 311; Bull. Soc. chim., 1894, (3), 12, 851.

 Eremin, J. Russ. Chem. Soc., 1888, 20, 468.

 Kenrick, J. Physical Chem., 1908, 12, 693.

 Etard, Compt. r.nd., 1878, 87, 692.

 See Recours. ibid., 1907, 144, 1427; Wirtl and Bakke, Zeitsch. anory. Chem., 1914, 87, 13. The temperatures 5t which the natura: mineral cognimbite, Fe₃(SO₄₎₂, 9H₂O, loses its water varies somewhat with the particular specimens tested.

 Milhauer, and Quadrat, Zeitsch. and. Chem., 1911, 50, 601.

 Pickering, Trans. Chem. Soc., 1880, 27, 807.

 - Pickering, Trans. Chem. Soc., 1880, 37, 807.
 Bodonstein and Suzuki Zeitsch. Elektrochem., 1919. 16, 912.

and the variation of the gaseous pressure with temperature is given by the expression :- 1

$$\log p = 11.8626 - 44720/4.584$$
T.

The SO₃ itself, of course, partly dissociates, equilibrium being established according to the equation :-

$$2SO_3 = 2SO_2 + O_2$$
.

p therefore represents the total pressure of all three gases, and T lies between 638° and 721° C.

At lower temperatures the pressures are as follow:—

Temperature. • C.	Pressure.
599	. 53
630	102.5

When heated to 530° C. in open air, ferric sulphate decomposes completely, leaving a residue of ferric oxide.3 Several hydrates are known.

The trihydrate, Fc₂(SO₁)₃,3H₂O, is obtained as a yellow mass on dehydrating the uonahydrate at about 100° C. In alcohol it dissolves readily, yielding a solution from which barium chloride is unable to precipitate the SO4 as barium sulphate. It is believed, therefore, that the composition of the salt is more correctly represented by the formula Fe₂(SO₃)₃ (OH)₆, analogous in constitution to the green chromium sulphate pentahydrate, 4 Cr2(SO4)3.5II2O.5 It combines with two moleculcs of ethyl alcohol to form the compound $Fe_2(SO_4)_3$, $(OII)_4$, $(OC_2U_4)_4$,

the ethoxy groups replacing two hydroxyl groups.

The nonahydrate, Fc₂(SO₄)₃.911₂O, occurs in nature as cognimbite. (sec p. 25) in hexagonal prisms, and as rhombic crystalline plates under the name of Janosite. It may be prepared in the laboratory by evapor ting a solution of ferric hydroxide in excess of sulphuric acid, and taking to dryness, when a mixture of normal and acid sulphates is produced. Upon exposure to moist air, and subsequent washing with alcohol, the nonahydrate, Fc₂(SO₄)₃.9H₂O, is obtained as violet hexagonal plates, density 2:116. Recoura describes a second variety of this salt, which results on allowing the above yellow salt to stand in a moist atmosphere for several days. Its empirical composition appears to be the same.7 . *

Keppeler and d'Ans, Zeitsch, physikal. Chem., 1908, 62, 39; Keppeler, d'Ans, Sundell, and Kaiser, Zeitsch. angew. Chem., 1908, 532, 577.
 Wohler, Plüddemann, and P. Wohler, Ber., 4908, 41, 703.

B. Hofmann and Wanjukow, Met. Chem. Eng., 1912, 10, 172. Friedrich (Centr. Men.,

^{1912,} pp. 174, 207) gives 705° C.

Recours, Compl. rend., 1911, 153, 1223, 1907, 144, 1427.

See this series, Volume VII.

Scharizer, Zeitsch. Kryst. Min., 1907, 43, 113. The ratio SO₂Fe₂O₂, should lie between 3 and 4. If more sulphuric soid is present, the soid sulphate alone is produced.

Recours, Comps. rend., 1907, 144, 1427.

The decahydrate, Fc2(SO4)2.10H2O, occurs in nature as quenstedtite, in monoclinic crystals, the crystallographic elements being :- 1

$$a:b:c=0.3940:1:0.4058.$$
 $\beta=78^{\circ}7.5'_{2}$

It is obtained as the stable solid in contact with acidified solutions of ferric sulphate containing from 25 to 28 per cent, of SO3,2 or by the combined action of nitric and sulphuric acids on ferrous'sulphate.3

Ferrie sulphate is slowly soluble in water, and dissolves more readily in the presence of ferrous sulphate,4 but its solubility is lowered by addition of aluminium sulphate.6

The densities of various concentrations of the salt in water at 17.5° C, are given as follow: -

A neutral solution of ferric sulphate upon concentration does not deposit crystals of the nonahydrate, but a mixture of yellowish green copiapite (see p. 161), and the white acid sulphate, Fe₂(SO₄)₃.H₂SO₄.8H₂O (see p. 161).

Upon dilution, ferric sulphate solutions readily undergo hydrolysis, precipitates being obtained which, however, have no well-defined

composition.7

• A study of the electric conductivities of aqueous solutions of the salt indicates that the hydrolysis proceeds in two stages, embodying (1) a rapid change maccompanied by precipitation, and (2) a slower change, progressing at a measurable rate, and accompanied by the production of a so-called basic salt.8 Colloidal ferric hydroxide does not appear to be formed during hydrolysis, the salt thus differing from ferrie chloride and nitrate.

Ferrle sulphate also undergoes hydrolysis when its solution is boiled with potassium todate and todide. 10 Thus: -..

$$Fe_2(SO_4)_3 + 5KI + KIO_3 + 3\Omega_2O = 2Fe(OH)_3 + 3K_2SO_4 + 3CO_4O = 2Fe(OH)_3 + 3CO_4O = 2FO(OH)_3 + 3CO_4O = 2FO(OH)_3 + 3CO_4O = 2FO(OH)_3 + 3CO_4O = 2FO(OH)_3 + 3CO_5O = 2FO(OH)_3 + 3CO_5O = 2FO(OH)_3 + 3CO_5O = 2FO(OH)_3$$

In dilute solution ferric sulphate is reduced by metallic iron to ferrons sulphate. (1) In contact with platinum the velocity of the reaction is increased, but rise of temperature has the reverse effect.

Copper is readily dissolved by ferrie sulphate solution, and the action is not affected by light. The reaction is practically instantaneous on the surface of the metal, so that the observed velocity in the solution is governed by the rate of stirring.12

Linck, Jahrb. Min., 1888, 1, 213.
 Cameron and Gobinson, A. Physical Chem., 1967, 111, 641.

3 Bertels, Jahresber , 1874, 27, 268.

Nilson and Pettersson, B_t., 1880, 13, 1450.
Wirth and Bakke, Zeitsch. anorg. Chem., 1914, 87, 47.

Franz, J. prükt Chem., 1872. (2), 5, 574.
 Camerqu and Robinson, J. Physical Chem., 1907, 111, 641; Recours, Compt. rend., 1905, 141, 168; 1905, 144, 168.
 Wells, J. Amer. Chem. Soc., 1909, 31, 107.

Antony and Gigli, Cazzelja, 1896, 26, i. 293.

S. E. Moody, .:mer. J. Sci., 1906, (4), 22, 176.
 Esaner, Bull. Soc. chim., 1891, (3), 6, 147; Thorpe, Trans. Chem. Soc., 1882, 41, 287.
 Schluederberg, J. Physical Chem., 1908, 12, 574.

Ferric sulphate is insoluble in condentrated sulphuric acid and in

concentrated hydrochloric acid.

A solution of ferric sulphate in 90 per cent, sulphuric acid forms an intense redisolution with nitric oxide, probably due to formation of a complex salt of formula Fc2(SO3)3.4NO, which, however, has not been isolated.1

Ferrie sulphate in solution possesses a remarkable power of com bining with animal or vegetable substances,2 and it cannot be extracted from the combination by hydrochloric acid. Barium chloride solution may be boiled with the compound without undergoing any change. Meat treated with forme sulphate solution retains its red colour, but becomes exceedingly hard, so that it can hardly be scratched with the finger-nail,

Numerous basic salts a occur in nature (see p. 25), chief amongst which are umarcatite, Fc₂O₃, 2SO₃, 7H₂O; fibro-ferrite, Fc₂O₃, 2SO₃, 10H₂O; castanite, * Fe₂O₃, 2SO₂, 8H₂O; * a copiapite, * 3Fe₂O₃, 8SO₃, 27H₂O * or 2Fe₂O₃, 3SO₃, 18H₂O, * and plangterrite, Fe₂O₃, SO₃, 15H₂O.

Botryogen contains ferrous and magnesium oxides associated with

ferric sulphate, thus: FeO.MgO.Fe₂(SO₄)₃,18H₂O.

A basic sulphate, of formula 2Fe₂O₃.SO₃ or Fe₂(SO₄)₃.5Fe₂O₃,⁶ is precipitated from dilute solutions of ammonium iron alum upon prolonged standing, but no basic sulphates are formed by mixing ferric sulphate solutions with freshly precipitated ferric hydroxide.8 heating ferric sulphate solution in scaled tubes at \$150° C, and \$275° C. respectively, crystalline products have been obtained, corresponding to the formulae 3Fe₂O₃.4SO₃.9H₂O and 10Fe₂O₃.SO₃.H₂O. *

A basic ferric sulphate under the name of chemical sand is used commercially to neutralise the alkah present in waste soap lyes from which the glycerme is to be recovered. It is manufactured by asixing dry and finely powdered iron ore (oxide) with concentrated sulphuric acid, and allowing the fluid mass to spread out on an iron floor. When solidilication has taken place, the mass is broken up and heated at a temperature of 200° to 280° C. for some hours, when it is ready for use, and consists essentially of ferric oxide and ferric sulphate. 10

An acid sulphate, termed ferric tetrasulphate, Fc₂(SO₄)₃.H₂SO₄, 81120, may be obtained by dissolving the anhydrous sulphate in 20-normal sulphuric acid, and allowing the white crystalline product to dry, 11 . It is produced, together with α copialite, when a neutral solution of ferric sulphate is concentrated. It is soluble in water, and decomposes at 100° C. The sulphuric acid may be replaced by sulphates

- Manchot, Annalen, 1910, 372, 175.
 Rohart, Compt. rend., 1883, 96, 1705.

³ See list by Mackintosh, Amer. J. 88ci., 1889, (3), 38, 242. It is not here suggested that these are all definide compounds. • :-

- that these are all definite compounds.

 Wirth and Bakke, Zeitsch. aporg. Chem., 1914, 87, 13. Ordenary committees termed a to distinguish it from a similar substance tailed jecopamite, the composition of which is slightly different, namely, 21s, 0, 580, 1814,0 (Wirth and Bakke's formula).

 Scharizer, Zeitsch. Kryst. Myn., 1907, 43, 513; 1909, 46, 427.

 Pickering, Trans. Chem. Soc., 1883, 43, 182; 1880, 37, 807.

 See p. 164; also Pickering, Trans. Chem. Soc., 1997, 97, 1981.

 Cameron and Robinson, J. Physical Chem., 1907, 11, 641.

 Athanasesco, Compt. rend., 1936, 103, 271.

 See Martin, Industrial and Manufacturing Chemistry (Granne) (Lockwood 1919).

10 See Martin, Industrial and Manufacturing Chemistry (Organu) (Lockwood, 1913),

p. 123.

11 Scharizes, Zeitsch, Kryst. Min., 1901, 35, 345; Recours, Compt. rend., 1903, 137, 118; Komar, Chem. Zeit., 1906, 30, 15, Wirth and Bakke, loc. cit. VOL. IX. : II.

of the alkali and other metals yielding well-defined compounds, for which reason the salt is frequently termed ferri disulphuric acid, the formula being expressed as H[Fe(SO₄)₂]4H₂O. When exposed over concentrated sulphuric acid it slowly loses five molecules of water, yielding 2H[Fe(SO₄), [3H₂O, the same change taking place rapidly at 98° C.

Double Sulphates.

Fc₂(SO₄)₃.FcSO₄.4(NH₄)₂SO₄.3H₂O is obtained ¹ as colourless needles when ferrous sulphate is added to fused ammonium sulphate, the latter being in excess. The salt dissolves slowly in cold water. Density 2.02.

Fe₂(SO₁)₃·3(NII₄)₂SO₄ results ¹, on heating the preceding compound in the presence of excess ammonium sulphate. It crystallises in white

prismatic needles, of density 2.31 at 14° C.

Fc₂(SO₄)₃·(NII₄)₂SO₄·is obtained ⁴ in a similar manner to the preeeding salt, the hesting being more prolonged with yields hexagonal crystals, of density 2:45 at 14° C. When further heated it yields ferric sulphate, Fe₂(SO₁)₃, and at higher temperatures ferric oxide, Fe₂O₃,

Mixed double sulphates, such as (Cr, Fc)₂(SO₄)₃,(NII₄)₂SO₄, and

(AI, Fc)₂(SO₄)₃,(NII₄)₂SO₄, have also been prepared.²

Ferri-Sulphates.

• Ammonlum ferri-disulphate, $N11_4$ [Fc(SO₁)₂], is prepared by heating a solution of ferrie ammonium alum with sulphuric acid for some hours.3 It is a white crystalline powder, sparingly soluble in water.

The potassium salt, $K[Fe(SO_1)_2]\Pi_2O_1$, is obtained in a similar

manner.3

Trisodlum ferri-trisulphate, $Na_3|Fc(SO_4)_3|3H_2O_5$ occurs in nature as ferro-natrite, in Chili. It may be prepared by heating sodium sulphate decalydrate. Na₂SO₄ 10H₂O, until it melts in its combined water, and the adding sulphuric acid and ferric sulphate.4 It separates as a white substance, which is slowly dissolved by water with decomposition. The salt may also be obtained by allowing a mixture of acid sodium sulphate and ferri-disulphuric acid to remain in contact with a moist atmosphere for several months, when the complex salt crystallises out in greenish white hexagonal crystals. It is completely dehydrated, at 100° C.5

. A basic salt, $2\mathrm{Na}_2\mathrm{O.Fe}_2\mathrm{Q}_3.48\mathrm{O}_3.7\mathrm{H}_2\mathrm{O}$, has also been prepared.⁶ \approx When barium chloride is added to sulphuric acid or soluble sulphate solutions containing dissolved ferric salts, the precipitated barium sulphate is contaminated with iron. This has been variously attributed to adsorption of ferric compounds, and to the formation of solid solutions of ferrie salts and barium sulphate. Smkh, however, does not regard either of these explanations as, sat sfectory, and attributes the phenomenon to the formation of insoluble barium ferri-disulphate," Ba[Fc(SO₄)₂]₂.xII₂O, which is admixed with barium sulphate.

- 1 Lachaud and Lepierre, Compt. rend., 1892, 114, 915.
- ² Klobb, Compt. rend., 1893, 117, 311. Weinland and Enagraber, Zeitsch. anorg. Chem., 1913, 84, 340.
 Skrabal, Zeitsch. anorg. Chem., 1904, 38, 319.

6 Skrabal, loc. cit. Scharizer, Zeitsch. Kryst. Min., 1905, 41, 209. G. M.P. Smith, J. Amer. Chem. Soc., 1917, 39, 1152. See also Karavglanow, Zeitsch. anal. Chem., 1917, 56, 225.

. Ferric Alums.

Ferric sulphate unites with sulphates of the alkali metals and ammonium to yield well-delined crystalline salts of general formula:—

$$M_2SO_4$$
, $Fe_2(SO_4)_3$, $24II_2O$.

The iron alums are isomorphous, not merely with one another, but with the wide series of salts known as alums of generic formula:—

in which M may, as before, be animorium or an alkali metal, whilst R may stand not merely for Fe, but also for Al, Cr, Co, Ga, In, Mn, Rh, Ti, or V. All possible combinations of these have not as yet been prepared, but such as are known crystallise in the cubic system as regular octahedra or as combinations of the octahedron and cube.

The internal structure of crystals of various alums has been studied by Bragg's X-ray method, and the conclusion arrived at is that the water of crystallisation is not to be regarded as in any way distinct from the other constituents of the molecule, since its removal necessitates the destruction of the crystalline structure. Werner's generic formula for the alums is in complete harmony with this, namely:—

$$\left[R[(H_2O)_2]_6 \right]_{SO_4M}^{SO_4}.$$

Sometimes the formula for an alum is written as

indicative of an associated sulphate amon. The trivalent metal, however, figures among the cations along with the alkah metal, and does not enter the amon. Thus, for example, in the case of the iron alums, the iron is one of the positive radicles; it does not constitute part of the negative radicle, as in the case of the ferroeyanides. Hence a solution of an iron alum gives all the reactions of a ferric salt. Raoult 2 has shown that the molecular depression of the freezing-point of water by - to quote a specific example ferric potassium alum, namely 85.0° C., is practically identical with the sum of the molecular depressions produced separately by potassium sulphate and ferric sulphate, namely 82.1° C. In aqueous solution, therefore, the alum appears to be dissociated into its constituents.

The refractive indices for the D-line and densities of the iron alums are as follow:—

Ale	Im.	•	• 1	•	Refractive Index.	Hensity.	
Ammonium				•	1.4848	1.718	•
Potassium	•		•		1.48169	• 1.806	•
Rubidium Cæsium	•	•			1 48234	1 916 2 061	
Thallium .	•		•		1.523652	2.385	

Vegard and Schjelderup, Ann. Physik, 1917, (2), 54, 146.
 Raoult, Compt. real., 1884, 99, 914.

The refractive index is seen to increase with the molecular weight, except in the case of the iron ammonium alum.

The solubilities of the alums in water at 25° C, are as follow: -2

•	Alum.		•		m-molecules dis ved per Litre of Water.	f Grams of (Anhydrous Atum per Litre of Water.
Ammoniu	n •.•	•		• • • • • • • • • • • • • • • • • • • •	 1.659	
Rubidium Cæsium Tlfallium				•	0·293 0·045 0·799	97·4 17·1

The relatively low solubility of the cosimm soft is remarkable in view of the great solubility of ferrous casimm sulphate (see p. 156).

Ferric ammonlum alum or Iron ammonium alum, $(NII_4)_2SO_4$. Fc₂(SO_4)₃:24H₂O, has been obtained by electrolysing a solution of ferrous sulphate and ammonium sulphate.³ The cathode consists of platinum wire immersed in a cidified ferrous sulphate solution contained in a porous pot. An acidulated solution of ferrous and ammonium sulphates surrounds the pot, and is contained in a platinum dish which serves as amode. A current of 0.04 ampère is passed through the cell, and after several hours crystals of the alum are deposited round the anode.

Aqueous solutions of the alum rapidly become turbid when dilute, although concentrated solutions remain clear for several months. Addition of aumonium sulphate increases the hydrolysis, whilst sulphuric acid exerts a marked retarding influence. The precipitate consists of a basic sulphate of iron, $2 {\rm Fe_2O_3.SO_3}$, and the hydrolysis is believed 4 to follow the course indicated by the equations:

 $2Fe_2(SO_4)_3+2(NH_4)_2SO_4+5H_2O=2Fe_2O_3.SO_3+5H_2SO_4+2(NH_4)_2SO_4;$ or, expressing the change ionically :

$$\begin{split} 4 Fe^{***} + 4 N U_1 + 8 SO_1 '' + 5 H_2 O_2 &\simeq 2 Fe_2 O_3 . SO_3 + 10 H + 4 N H_4 + 5 SO_4 '', \\ or \\ 4 Fe^{***} + SO_4 '' + 5 H_2 O_2 &\simeq 2 Fe_2 O_3 . SO_3 + 10 H \;. \end{split}$$

The fact that ferric hydroxide is not one of the products of hydrolysis explains why ammonium sulphate does not retard the reaction.

On addition of concentrated sulpharic acid to a solution of the alum a white precipitate is obtained which contains ferric and ammonium surplintes in some uncertain state of combination. The precipitate when dry is stable in air, slowly soluble in cold water, but readily soluble in hot hydrochloric acid, and is possibly an ammonium sait of ferri-sulphuric acid (see p. 162).

```
    Soret, Compt. rend., 1884, 49, 867.
    Locke, Amer. Chem. J., 1901, 26, 166, 332.
    Howe and O'Noal, J. Amer. Chem. Soc., 1898, 20, 759.
    Rae, Trans. Chem. Soc., 1916, 109, 1331.
    See also Wagner, Monatsh., 1913, 34, 95.
```

The densities of various concentrations of iron-ammonium alum solutions in water at 32.5° C. are as follow:—1

Grams (NH ₄) ₄ SO ₅ , Fe ₅ (SO ₄) ₅ , 24H ₅ O in 100 Grams H ₂ O.	Dencity.	
20.00 15.00 10.00 5.02 2.01 0.80	1.07960 1.45907 1.03801 1.01670 1.00376 0.99849	

Ferric potassium alum, K₂SO₄,Fe₂(SO₄)₃,2HI₂O, may be obtained by mixing together concentrated solutions of potassium and ferric sulphates in the requisite proportions and allowing to stand for some days at 0° C,, when the salt crystallises out in violet octahedra.

It cannot be obtained as readily by electrolysis as the ammonium salt, owing to the relatively slight solubility of potassium sulphate.

Addition of potassium hydrovide to a solution of the alum, and subsequent evaporation yields a crop of crystals yellowish brown in colour and possessing peculiar optical properties like tournaline. Their composition is given as $5K_2SO_4.2Fc_2(SO_4)_2.(OH)_2.16H_2O$. The crystals decompose to iron alum and a basic salt.

The densities of various concentrations of the alimi in water at 17.5°C, are given 2 as follow:

Iron ahını (yer cent.) . 5 10 15 20 25 80
Density . 1-0268 - 1-0466 1-0672 1-0894 1-1136 1-1422

Ferric rubidium alum, Rb₂SO₄,Fc₂(SO₄)₉,24H₂O, and ferric cæsium alum, Cs₂SO₄,Fc₂(SO₄)₉,24H₂O, have been obtained ³ by electrolysis in an analogous manner to the iron ammobium alum. They are of a delicate violet colour, turning slightly greenish upon exposure to air. Their solubilities in water with rise of temperature are as follow: -4

Temperature, °C	25.	30	35	40∙
Grams Rb ₂ SO ₄ .Fc ₂ (SO ₄) ₃ per litre of water	97.4	202.4	(1)	(ā) •
Grams Cs ₂ SO ₄ Fc ₂ (SO ₄) ₃ per litre of water	17-1	25.2	27 ·5	60.4

Ferric magnesium ailum, MgSO₄.Fc₂(SO₄)₃.24II₂O, has also been obtained.⁶

Ferroso-ferric sulphates occur in nature. Rumerile (see p. 26) is a

Rae, loc. cit.
 Franz, J. prakt. Chem., 1872 (2), 5, 274.
 Howe and O'Neal, loc. cit.

Locke, Amer. Chem. J., 1901, 26, 166, 332.

Decomposition into basic salt takes place at this temperature.
 Bastick, J. Pharm. Chim., 1854, 13, 639.

mineral with yellow triclinic crystals and a composition represented by FeSO₄.Fe₂(SO₄)₃.12H₂O. Its crystallographic elements are:—1

$$a: b: c=0.8791:1:0.8475,$$

 $a=89^{\circ}44', \beta=1.92^{\circ}17', \gamma=95^{\circ}18'.$

The salt may be prepared artificially by allowing a mixture of powdered ferrous sulphate and acid ferric sulphate to remain in contact with moist air for severel mouths. It is then obtained as a reddish brown, crystalline powder.² It decomposes in moist air, yielding ferrous and ferric sulphates; the latter giving a copiapite and the acid sulphate.

In voltaite the iron is partly replaced by other metals yielding isomorphous salts. By adding ferrons sulphate to fused numonium sulphate a compound of Terroso-ferrie sulphate with ammonium sulphate has been obtained namely, ferroso-ferric tetrammonium sulphate,3 FeSO₄·Fe₂(SO₄)₃. 4(NII₄)₄SO₄.3II₂O as colourless needles, of density 2.02. It dissolves slowly in cold water, yielding a basic salt on warming. When heated with aminonium sulphate it yields ferric triammonium sulphate, referred to above.

The following acid salts have also been obtained !—4

 $FeSO_4.Fe_2(SO_4)_3.2H_2SO_4$ $NiSO_1$, $Fc_2(SO_4)_3$, $2II_2SO_4$, and $2MnSO_4$, $Fc_2(SO_4)_3$, $3II_2SO_4$.

Ferrous amldo-sulphonate, Fc(SO3.NH2)2.(?)5H2O, is obtained by dissolving iron wire in aqueous amido-sulphonic acid, and concentrating in vacuo.5 The crystals are bluish green in colour, deliquescent, and execedingly soluble in water, from which they are not precipitated by alcohol, thereby differing from ferrous sulphate. The crystals appear to contain 5 molecules of combined water.

Ferric amido-sulphonate, Fc(SO₃,NH₂)₃, is prepared ⁵ by dissolving ferric hydroxide and aundo-sulphonic acid together in water. The solution obtained is bright brown in colour, and dries up into an opaque, amorphous, brittle mass, which is brown in colour, very soluble in water, but not at all deliquescent. It possesses the astringent taste of fetric salts of inorganic acids, and not that of the citrate or tartrate, the inference being that the iron constitutes the positive ion and is not; included in the negative radicle.

Ferrous thiosulphate, FeS₂O₃.511₂O, may be prepared by passing hydrogen sulphide through a cold solution of ferrous sulphiate and sodium thiosalphate. The precipitate consisting of sulphur and ferrous sulphide is washed and suspended in water through which a current of sulphur dioxide diluted with hydrogen is passed. The reactions are :- 6

$$2FeS + 3SO_{2} = 2FeS_{1}O_{1} + S,$$

$$FeF + 3SO_{2} = FeS_{4}O_{6},$$

$$FeS + 3SO_{2} = FeS_{3}O_{6} + S.$$

Blaas, Monatsh., 1883, 4, 837
 Scharizer, Zeitsch. Kryst. M. n., 1003, 37, 529.
 Lachaud ant Lepherre, loc. cit.
 Etard, Compt. rend., 1878, 87, 602.
 Divers and Haga, Trans. Chem. Soc., 1896, 69, 1834.

Feld, Zeitsch. angew. Chem., 1911, 26, 290.

A further quantity of the sulphide is then added to remove excess sulphur dioxide and to reduce the polythionates :-

$$\begin{aligned} & FeS_3O_6 + FeS = 2FeS_2O_3 + S, \\ & FeS_3O_6 + FeS_9 = 2FeS_2O_3. \end{aligned}$$

The salt may also be obtained by triturating a concentrated solution of ferrous sulphate with barium thiosulphate, but it is less pure, as it contains some tetrathionate as well.2 He results when sulphur is digested with ferrous sulphate solution, and when iron is dissolved in aqueous sulphurous acid.3. This latter reaction is somewhat complicated, ferrous sulphite being first produced, thus:

$$Fe \models H_2SO_3 = FeSO_3 \vdash 2H_\bullet$$

The nascent hydrogen then attacks either the sulphurous acid (or ferrous sulphure), reducing it to thiosulphuric acid (or ferrous thiosulphate). Thus :-

On concentration ferrous sulphite, being much less soluble, crystallises out first, leaving the thiosulphate in solution (see p. 145).

The salt yields green erystals, readily soluble in water. They belong to the triclinic system, their crystallographic elements being as follow:--4 •

$$a:b:e^{-1}.37673 \pm 1:0.57814,$$

 $a:=104^{\circ}.57', \beta=98^{\circ}.8.5', \gamma=89^{\circ}.40',$

The salt readily oxidises in air, yielding a basic ferric compound.

The double salt, Fe₂S₂O₃,3Na₂S₂O₃,8H₂O, is obtained ⁵ by precipitating a mixed solution of ferrons iodide and sodium thiosulphate with alcohol. It forms bright green crystals, readily soluble in water

Ferrous disulphate or Ferrous pyrosulphate, FeS2O2, is precipitated as a white powder by mixing a saturated solution of ferrous sulphate with several times its volume of concentrated subpluric acid. Examined under the microscope, it is seen to consist of fine prismatic. erystals, which absorb water on exposure to air.

Ferrous tetrathionate, FeS₃O₆, results in unstable solution on adding ferrous thiosulphate solution in small quantities at a time to ferric chloride:-

$$2\mathrm{FeO}_3 + 2\mathrm{FeS}_2\mathrm{O}_3 + \mathrm{FeS}_1\mathrm{O}_6 + 3\mathrm{FeCl}_2,$$

The product readily decomposes, evolving sulphur dioxide. Thus:

$$-\text{FeS}_1O_6 \cdot \text{FeSO}_{\P} + \text{SO}_2 + 2\text{S}.$$

Ferrous dithionate, PeS2O8, is readily obtained by double decomposition of solutions of the barium salt and ferrous sulphate. The dithionate is also formed by dissolving ferric hydroxide in sulphurous

¹ Vortmann and Padberg, Ber., 1889, 22,2637; Rammelsberg, Pogg. Annalen, 1842, 56, 306.

Feld, log. cil.
 Berthollet, Ann. Chim. Phys. s1833 (2), 2, 58; Vogel, J. prakt. Chem., 1836, 8, 102;
 Fordos and Gélis, J. Pharm. Chon., 1843, (3), 4, 333.
 Fock and Khiss, Ber., 1889, 22, 3310.
 Vortmann and Padberg, Ber., 1889, 22, 2637.

Bolas Trans. Chem. Soc., 1874, 27, 212.

acid, and allowing to stand for some hours. If the ferric hydroxide is pure and well washed, it dissolves exceedingly slowly 2; the ordinary, freshly precipitated hydroxide dissolves rapidly. On standing, the yellow solution becomes green, as the ferric iron becomes reduced to ferrous. The reaction apparently takes place in stages involving the intermediate formation of ferric sulphite – which salt, however, has not been isolated. Thus:

$$\begin{aligned} &2Fc(OH)_{3} + 3SO_{3} + Fe_{2}(SO_{3})_{3} + 3H_{2}O, \\ &Fe_{2}(SO_{3})_{3} = FcS_{2}O_{6} + FcSO_{3}, \end{aligned}$$

On passing sulphur dioxide into cold solutions of ferric sulphate, ferrous dithionate is formed.³ With a 2 per cent, solution of ferric sulphate, 80 per cent, of the sulphate is converted into dithionate at 0° C., but this amount diminishes as the temperature rises, none being formed at 95° C. The equilibrium may be represented by the equation:—

$$\mathrm{Fe_2(SO_4)_6} + 3\mathrm{SO_2} + 2\mathrm{H_2O} = -2\mathrm{FeS_2O_6} + 2\mathrm{H_2SO_4}.$$

It is interesting to note that ruthenium sulphate behaves in a precisely similar manner.⁴ On concentration bluish green crystals are obtained, which are unstable in air. ⁴They contain 5 or 7 molecules of combined water, and belong to the trichine system. At 18-5° C., 1 part of the heptahydrate dissolves in 0.59 part of water.⁵

The following double salts have been prepared:-- 6

$$\begin{array}{l} FeS_2O_6.3(NH_4)_2S_2@_6.6H_2O \ (monoclinic), \ and \\ tFeS_2O_6.18(NH_4)_2S_2O_6.33H_2O. \end{array}$$

Ferric dithionate has not been isolated, as its solution decomposes yielding ferric sulphate, ferrons dithionate, sulphurons and sulphuric acids.

TRON AND SELENIUM.

When iron and sclenium are heated together to a high temperature, combination takes place, but the product usually contains more sclenium than corresponds to the monoselende or ferrous sclenide, FeSe. By heating the product in hydrogen, however, the monoselenide results, 7.8 further reduction to a sub-sclenide not taking place, although the sclenides of nickel and cobalt are reduced to sub-sclenides under like conditions.

• Ferrous sclenide was first obtained by Divers and Shimidzu by heating a mixture of wrought-iron filings and sclenum in a graphite pot. When the mixture had grown hot, a considerable portion of the selenium had volatilised and a further portion was added which combined with the from with very liftle loss, causing vivid ignition and complete liquelaction. The product thus obtained 'closely resembles iron sulphide. It is not very sensitive to acids, but when warmed with

```
Gélis, Ann. Chim. Phys., 1862, (3), 65, 222.
Carpenter, Trans. Chem. Soc., 1802/61, 1.
Anthony and Manasse, Gazzetta, 1899, 29, 1, 483.
This volume, Part 1., p. 149.
Klüss, Annalen. 1888, 246, 179; Chem. Lentr., 1888, p. 215.
Klüss, loc. cit.
Fabre, Thèse de Doctorat, 1886; Ann. Chim., 1887, 10, 520.
Fonces-Diacon, Compt. rend., 1900, 130, 1710; Bull. Soc. chim., 1900, 23, 811.
Divers and Shimidzu, Trans. Chem. Soc., 1885, 49, 441.
```

dilute hydrochloric acid, after first powdering, hydrogen selenide is steadily evolved. The heat of formation of solid, crystalline ferrous

sclenide is 184,400 calories.1

Ferric selende or inon sesqui-selende, Fc.S., was obtained by Little by heating iron to redness in selenium vapour, cooling, and fusing the product with excess of selenium under a layer of borax. It also results when hydrogen selenide is passed over ferric oxide at red

heat.³ It is a grey crystalline powder.

Iron disclenide, FeSc₂ is prepared by heating anhydrous ferric chloride to dull red heat in hydrogen sclenide.³ When ignited in

oxygen, it yields ferric oxide and selenium dioxide.

Two other selenides, namely Fe₃Se₄ and Fe₇Se₃ or Fe₃Se₄.4FeSe,* have been described.3

Iron Selenites. Although metallic iron does not appear to be soluble in selenous acid, yet selenites of iron are readily obtained in a variety of ways. When sedium sclenite is added to ferrous sulphate solution, a white precipitate of ferrous selenite, FeScO₃, is obtained. This becomes darker on exposure to air in consequence of oxidation. If the white precipitate is dissolved in hydrochloric acid, a portion of the selenium separates out, whilst ferric chloride and selenous acid remain in solution. Thus: -

$$4F_4SeO_3 + 12HCl = Se + 4FeCl_3 + 3SeO_2 + 6H_2O$$
.

Several ferric selenites have been described, and may be divided

into three groups, namely basic, neutral, and acid salts.

Basic Salts. The salt, 3Fe₂O₃.8SeO₂.28H₂O, is obtained as a yellow, voluminous precipitate on adding sodium selenite solution to one of ferric chloride fat room temperature. This, when heated to 230°-250°C. for several hours with water in a sealed tube, yields insoluble sellow crystals 5 of Fe₂O₃,2SeO₂. This latter salt may also be obtained by heating the decallydrated neutral salt in the same manner.

Neutral Salts. Fe₂O₃:3SeO₂:xH₂O. The following hydrates have been described: decahydrate, nonanydrate, heptahydrate, trihydrate, 5 monohydrate.5

Acid Salts.---The following salts are known: Fe₂O₃,4SeO₂,8H₂O₃* Fe₂O₃, 4SeO₂,9H₂O,⁶ Fe₂O₃,4SeO₂,H₂O,€ and Fe₂O₄,6SeO₂,2H₂O,⁵

Ferrous selenate, FeScO₄. Iron dissolves in aqueous selenic acid, yielding ferrous selenate and a deposit of selenium, which collects upon the surface of the imdissolved metal and shields it from further attack. The rate of solution is thereby so greatly retarded that as a method of preparing ferrous scienate it is not to be recommended. The net result of the action may be represented by the equation: $2\text{Fe} + 4\text{H}_2\text{SeO}_4 = 3\text{FeSeO}_4 + \text{Se}_7 + 4\text{H}_2\text{O}_{\bullet}$

$$\mathbf{3Fe} + 4\mathbf{H}_{2}\mathbf{SeO}_{4} = \mathbf{3FeSeO}_{4} + \mathbf{Se}_{4} + 4\mathbf{H}_{2}\mathbf{O}_{.\bullet}$$

- ¹ Fabre, Compt. rend., 1886, 103, 345.

 Fonzes-Diacon, Compt. rend., 1900, 130, 1710; Bull. Soc. chim., 1900, 23, 811.

 Muspratt, J. Chem. Soc., 1848, 2, 52.

 Boutzoureano, Ann. Chim. Phys., 1889, (6), 18, 289; Bull. Soc. chim., 1887, (2),

48, 209.

Nilson, Ball. Soc. chim., 1875, 23, 49

No bydregen is evolved. Presumably the scienium as produced by the action of

* Tutton, Proc. Roy. Soc., 1918, A, 94, 352.

Ferrous carbonate is likewise but slowly attacked by sclenic acid; a better method of preparing ferrous sclenate consists in dissolving ferrous sulphide in a concentrated solution of the acid.¹ The hydrogen sulphide evolved reduces a portion of the sclenic acid in accordance with the equation:

$$11_{2}ScO_{4} + 3H_{2}S = Sc + 3S + 4H_{2}O$$
.

The solution is therefore filtered and when allowed to crystallise at 0°C, yields monocline crystals of the heplahydrate, FeSeO₄.7H₄O, isomorphous with ferrous sulphate, FeSO₄.7H₂O. The crystals are much less stable, however, rapidly becoming opaque. When crystallised from warm solutions the pentahydrate, FeSeO₄.5H₂O, is obtained isomorphous with copper sulphate, CuSO₂.5H₂O₂ and ferrous sulphate, FeSO₁.5H₂O₂.

Double Selenates.

Ferrous sclenate yields double sclenates with salts of the alkali metals. Their general formula is :---

and they all crystallise in the holohedral class of the monoclinic system, and are isomorphous with the other salts of this series (see p. 155). The crystals rapidly decompose at temperatures very little above 0° C., so that a study of their crystallographic elements and optical properties is a task of considerable difficulty. The following salts have been studied: $z^{3} = 0$.

Potasslum ferrous selenate, K₂ScO₄,FcScO₄,6H₂O.

```
a : b : c =0.7490 : 1 : 0.5044. β=-103° 50′.

Density at 20° C., 2.494.

Molecular volume, 210.39.
```

Rubldlum ferrous selenate, Rb₂ScO₄,FeScO₄,6H₂O.

Cæsium ferrous selenate, Cs2ScO4, FcScO1, 6H2O.

Ammonium ferrous selenate, $(NH_1)_2$ ScO₄. FcScO₄. GH_2O .

```
c=0.7433 : 1': 0.5000. $=106° 9'. \
Recsity at 20° C., $\pm$-191. \
Molecular volume, $20-39. \
**
```

Ferrie Sglenium Alums.

Ferric rubidium selenium alum, Rb₂SeO₄,Fe₂(SeO₄)₃,24H₂O, is obtained when the requisite amount of subidium carbonate is added to

Tutton, Proc. Roy. Soc., 1918, A. 94, 352.
 Wohlwill, Annalen, 1860, 214, 169.
 Tutton, Phil. Trans., 1919, A₈218, 395.

a solution of freshly precipitated ferricehydroxide in excess of aqueous sclenic acid.1

The alum crystallises out in pale violet crystals, belonging to the cubic system. Its density at 15° C, is 2.1308. At 40° to 45° C, the

crystals melt in their combined water, yielding a red liquid.

Ferric cæsium selenium alum, ('s2SqO4, Fe2(ScO4)3,24H2O, prepared in an analogous manner to the preceding salt. vields violet crystals of density 3.6176 at 15° C. These most in their combined water at 55° to 60° C.

TRON AND TERLURIUM.

Iron combines with tellurinm when the two elements are heated together in an inert atmosphere, yielding ferrous telluride,2 FeTe, as a hard grey crystalline mass. Stable in moist air, it is but slowly attacked by acids in the cold, although bromine water readily effects its solution.3

Ferric tellurite occurs in hature as the mineral durdenite in Honduras,4 associated with metallic tellurium. Hardness 2 to 2.5. Its chemical composition closely approaches that represented by the formula Fe₂O₃.3TcO₂.4H₂O₃ or Fc(TcO₃)₃.4H₂O. Emmonsite is another naturally occurring ferric tellurite found in Colorado 5 as vellowish green scales, associated with lead carbonate and quartz.

IRON AND CHROMIUM.6

Ferrous chromite, FeO.Cr₂O₃, occurs in nature as chromite (see It may be prepared in the laboratory by heating to a high temperature an intimate mixture of iron filings, ferrous carbonate, and potassium bichromate, covered with a thin layer of cryolite. The cooled product is extracted with water and concentrated acids in succession; a residue is obtained containing chromite as small vetaliedra, enbg-octahedra, and enbes.⁷

Ferrous chromate does not appear to be capable of existing. When solutions of ferrous sulphate and chromic acid, or its alkali salts, are mixed at low temperatures, the iron is oxidised, basic ferric sulphates resulting, the chromium being correspondingly reduced. Hithe ferrous

sulphate is in excess, ferroso-ferric sulphate festilts.

 Numerous basic double, ferric thromates have been prepared. namely :---

 $3K_2O.6Fc_2O_3.2CrO_4$ —obtained by the action of ferrous sulphate on polassium chromate at 0° C., at which temperature it is dried with alcohol and ether. It is black in appearance, but brown when moist-

4K.O.3Fe,O.4CrO. - a yellowish brown micro-crystalline precipitate, obtained by addition of excess of polassium chromate to ferrous sulphate solution.

¹ Roncagliolo, Gazzetta, 1905, 35, 44, 553.

² Margottet, Thèse de Paris, 1879.

Exhau Ann Oliver Blue, 1889.

Pabre, Ann. Chim. Phys., 1986, (6), 14, 110.

Dana and Wells, Agert. J. St., 1890, 40, 78,

Hillebrand, ibid., p. 81; Zeitsch. Kryst. Min., 1887, 12, 492.

* For alloys of iron and chromium, see this volume, Part III. Meunier, Compt. rend., 1888, 107, 1153. Lepierre, wid., 1894, 119, 1215.

4Na₂O.7Fc₂O₃.10CrO₃ and •6(NH₄)₂O.5Fe₂O₃.6CrO₃ are obtained in a similar manner to the preceding salt, but replacing potassium chromate by sodium and ammonium chromates respectively.

Other complexes that have been prepared are:

```
\begin{array}{l} 7K_2O.6Fc_2O_3.10CrO_3\ ;\ 4K_2O.3Fc_2O_3.11CrO_3.9H_2O\ ;\\ 6K_2O.2Fc_2O_3.9CrO_3.6H_2O\ ;\ 6K_2O.3Fc_2O_3.70CrO_3.9H_2O\ ;\\ 2K_2O.2Fc_2O_3.7CrO_3.7H_2O\ ;\\ 3K_2O.2Fc_2O_3.6GrO_3\ ;\ 5K_2O.4Fc_2O_3.16CrO_3.8H_2O\ . \end{array}
```

Ferric ammonium thromate, $(NH_1)_2CrO_4$, $Fe_2(CrO_4)_3$, $4H_2O$, and ferric potassium chromate, K_2CrO_4 , $Fe_2(CrO_4)_3$, $4H_2O$, have been prepared 2 as dark red crystalline plates by the slow evaporation of mixed solutions of ferric chloride and ammonium (or potassium) dichromate.

¹ Lepterre, loc. cit. 2 Hensgen, Ber., 1879, **r**2, 1656.

CHAPTER VIII.

IRON AND THE ELEMENTS OF GROUP '

IRON AND NITROGEN.

Iron nitride, Diferro-nitride, Fe₂N or Fe₄N₂.- That pron combines with nitrogen was first observed by Depretz, who gave to the compound the formula Fe₁N₂. A natural intride of iron has been found in the lava of Etna ' as the mineral siderazote. When heated in hydrogen ammonia is evolved, metallic iron constituting the residue. The importance of carefully studying the manner in which iron combines with nitrogen has been mercasingly emphasised within the last decade, because the presence of introgen in steel has been shown to affect very materially the mechanical properties of the metal. For example, the absorption of 0.3 per cent, of introgen entirely suppresses the critical changes occurring in pure iron,3 and prolonged heating in vacuo is necessary toeffect the complete expulsion of the gas. Nitrogenised steels are brittle, showing an increase in hardness and tenucity, accompanied by a decrease in elongation and ductility—these properties resulting from the tendency of the introgen to retain the iron in the gammasform, and the earbide in solution. Tubes of malleable iron, after exposure for several days to ammonia at 800 °C., become so brittle that they can be broken like porcelain with a blow from a hammer. A rod of soft charcoal iron, after like treatment, becomes so hard that it can be used as a drill.4

Nitrogen is slightly soluble in iron, the solubility being proportional to the square root of the pressure."

Iron and steel absorb small quantities of introgen when heated to above 1200° C., and when melted under a high pressure of the gas. Under ordinary conditions, however, merely heating the metal in nitrogen yields no perceptible quantity of intride.8

Continuous heating of the reduced metal is stated to result in a small amount of nitrogen absorption," as also exposure of the finely divided reduced metal at the ordinary temperature to nitrogen.10

- Depretz, Ann. Chim. Phys., 1829, (2), 42, 122,
 Silvestri, Pogg. Annaba., 1876, 157, 165
 Andrews, J. Iron Steel Inc., 1912, 11., 210. Andrews, J. Iron Steel Inst., 1912, 11., 210.
 Beriby and Henderson, Trans. Chem. Soc., 1901, 79, 1250.
 See also Tschischevski, J. Iron Steel Inst., 1915, 11, 47;
 Branne, R.c., Metallurgie, 1905, 2, 497.
 Jurisch, Stahl und Eisen, 1914, 34, 252.
 Sieverts and Krumbhaar, Ber., 1919, 13, 893.
 Andrews, Ioc. etc.; Rogstadius, J. prais. Chem., 1862, 86, 397.
 Seo Baur and Voerman, Zeitsch. physikal. Chem., 1905, 52, 407.
 Sieverts, Mat. 1917, 56, 192.
- - Sieverts, ibid., 1907, 60, 129.
- 10 Rogetadine, J. makt. Chem., 1862, 86, 307; Briegleb and Geuther, Annalen, 1862,1

To obtain iron nitride indirect methods must be adopted. These

may be enumerated as follows:--

1. Heating ferrous chloride in a current of dry ammonia,1 the optimum temperature for the reaction being 480° C 2 Forous bromide may be used instead of the chloride.3

2. Heating reduced iron in a current of dry ammonia at about 414° C., when hydrogen is rapidly evolved. The heating is continued

until the reaction is complete and no more hydrogen is liberated.

3. Heating electrolytic iron foil in dry ammonia at temperatures ranging, from 600° to 1000° C: Hancmann by this means succeeded in preparing iron nitride containing 11-1 per cent, of nitrogen, the product thus corresponding to the formula Fc2N or Fc4N2. The most • favourable temperature appears to be 650° to 700° C., in a rapid current of ammorea, the nitride peeling off in thin flakes if the metal is thick. Any carbon combines with the nitrogen and is removed.

4. Heating spongy iron in dry ammonia, the optimum temperature being 450° to 475° $\rm C.^7$

5. Iron amalgam when heated in ammonia vapour loses its mercury

content and is gradually converted into nitride.8

As prepared by any of the above methods, iron nitride is a grey powder of density about 6.25,8 and soluble in dilute hydrochloric and sulphuric acids, yielding ferrons and ammonium salts. Nitric acid, even when concentrated, only acts slowly. Gascous hydrogen chloride attecks it at 220° C., the reaction becoming vigorous at 350° C., ammonium and ferrous chlorides resulting. When heated in oxygen, Terric oxide is produced, nitrogen (not its oxides) being set free; the reaction is detectable at 200° C. Hydrogen reduces it, the reaction beginning at 350° C. and being very rapid at 600° C.

He ted in vacuo or in nitrogen it begins to decompose at 500° C., and at 600° C. artrogen is rapidly evolved. This reduction takes place even under a pressure of 18 atmospheres of nitrogen. For this reason there is no nitride formation when iron is heated at these temperatures

in nitrogen.9

It has been suggested 10 that the constitution of iron nitride is represented by the formula: -11

¹ Frémy, Vog pt rend., 1861, 52, 322; Warren, Chem. News, 1887, 55, 155; G. J. Fowler, Chem. News, 1900, 82, 245; Tryns. Chem. Soc., 1901, 79, 285.

Flywler, Chem. News, 1900, 62, 245; 176 ns. Chem. Soc., 1901, 79, 285.

Girardet, Bull, Sec. chim., 1910, (4), 7, 1028.

Flywler, Trans. Chem. Soc., 1901, 79, 285.

Stahlschmidt, Pagg. Annalen, 1865, 175, 37; Fowler, loc. cit.; Chem. News, 1893, 68, 152; Beilby and Henderson, Trans. Chem. Soc., 1901, 79, 1245.

Hanemann, Kaungural Dissertation, Technische Hochschule, Berlin, 1913.

Charpy and Bonnerot, Compt. rend., 1914, 155, 794. See also Braune, Rev. Metal-largie, 1905, 2, 497. Allen (Chem. News, 1880, 41, 231) heated iron wire in ammonia and obtained a product containing 2.5 per cent. of nitrogen.
White and Kirschhraun, J. Amer. Chem. Soc., 1906, 28, 1343.

Fowler, loc. cit.

Charpy and Bonnerot, log cit. See also Maxted, J. Soc. Chem. Ind., 1918, 37, 105.
 Fowler and Hartog, Trans. Chem. Soc., 1901, 79, 299.

11 White and Kirschbraun (loc. cit.) suggest that this nitride may be a solid solution of iron nitride in iron, namely, $Fe_3N_4+Fe_{\rightarrow}Fe_4N_{\pi}$

The heat of formation of iron nitride is as follows:

$$2[Fc] + (N) = [Fc_2N] + 3040$$
 calories.

Two other intrides of iron have been prepared, namely, ferrous nitride, Fe₈N₂, and ferric nitride, Fe₈N. The former is described as a black, oxidisable powder, obtained by heating lithium nitride with ferrous potassium charide. The ferric nitride. FeN, resulted when lithium nitride was heated with ferric potassium chloride. It is a black substance, which, on being heated in air, oxidises to ferric oxide. These substances are, presumably, ferrous and ferric substituted miniminas, the constitutional formulae being:—

respectively.

Nitro-iron, Fe₂(NO₂).—Attempts to prepare nitro-iron, analogous to nitro-nickel and nitro-cobalt, have, been successful. It presumably results as an intermediate product when nitrogen peroxide diluted with nitrogen is passed over reduced from. The peroxide is absorbed, but the resulting compound deflagrates even in a greatly diluted atmosphere of nitrogen peroxide. The corresponding cobalt and mckel derivatives, namely $Co_2(NO_2)$ and $Ni_2(NO_2)$, respectively, are considerably more stable.³

Several triple nitrites of iron have been prepared, namely :--

Ferrous lead potassium nitrite⁴;
Ferrous barium potassium nitrite,⁴ FeBaK₂(NO₂)₆;
Ferrous calcium potassium nitrite^{4, 9};
Ferrous strontium potassium nitrite^{5, 5};
• Ferrous lead thallium nitrite.⁹

Rerrous nitrate.—The anhydrous salt has not been prepared. And hexahydrate, Fc(NO₃)₂·6H₂O, is very unstable, and is, in consequence, somewhat difficult to isolate. It may be obtained in solution by dissolving either ferrous sulphide or inctallic iron in dilute nitric acid, of density ranging from 1-034 to 1-15. If metallic iron and acid of lower density be employed, the iron dissolves without any evolution of gas, and with the formation of ferrous nitrate and ammonium nitrate. By using iron and acid within the above-mentioned range of densities, ferrous nitrate is obtained, together with some ferric intrate, the percentage of the latter increasing with the density of the acid. If the acid density is greater than 1-115, ferric nitrate is the main product.

Ferrous nitrate may also be obtained in solution by grinding lead anitrate with an equivalent quantity of ferrous sulphate in the presence of dilute alcohol; double decomposition takes place, the ferrous nitrate passing into solution. Upon evaporation at room temperature the sait

```
    Fowler and Hartog, loc. cit.
    Guntz, Compt. rend., 1902, 135, 738.
    Sabatier and Senderens, BEM. Soc. chim., 1693, (3), 9, 669.
    Przibylla, Zeitsch. anorg. Chem., 1897, 15, 419.
    No simple formula has been assigned.
    Przibylla, Zeitsch. anorg. Chem., 1896, 18, 448.
    Scheurer-Rentper, Ann. Chim. Phys., 1859, (3), 55, 330.
```

crystallises out as bright green chombic prisms, which are faintly stable at 0° C. They melt at 60.5° C., but rapidly decompose when the temperature is raised by even a very small amount above this point. At higher temperatures a residue of ferric oxide is obtained?

The solubility of ferrous nitrate in water at various temperatures is

given as follows: -2

Between 9° and 24° C, the composition of the saturated solution is given by the expression: - '

Fe(NO₃)₂
$$\pm$$
 (14·198 - 0·11242 t)H₂O.

A break in the solubility curve at -12° C, indicates the formation of another hydrate, namely, the nonahydrate, Er(NO₃)₂.9H₂O₃, which, however, has not been isolated. Its solibility in water is as follows:---

The heat of formation of the dissolved salt is: --

$$\begin{array}{ll} -- & [Fe] + (N_2) + 3(O_2) + Aq. = Fe(NO_3)_2 . Aq. + 119,000 \ calories, \\ 211NO_3 . Aq. + [Fe(O11)_2] = Fe(NO_3)_2 . Aq. + 21,500 & ., \end{array}$$

Ferric nitrate, $Fc(NO_3)_3$, is conveniently obtained by dissolving iron in nitric acid of density 4 1-3 until the colour of the solution changes through green to dark red. An equal bulk of nitric acid of density 1.43 is now added, and the liquid allowed to cool.1

The saft separates out in hydrated crystals, which are usually pale violet in colour, the execut of hydration varying according to circumstances. Two definite hydrates are known 5: namely, the nonahydrate, 6 Fc(NO₃)₃,9H₂O, which yields pale red deliquescent monoclinic crystals,⁷ of the following crystallographic elements: --

$$a:b:c=1.1296:1:1.9180, \beta=131°34',$$

and the hexchydrate.8 Fc(NO₃).6H₂O, which crystallises in cubes melting at 60.5 °C.

The crystals readily dissolve in water to a yellowish brown solution. In mitrie acid they are much less soluble, and admit of ready recrystallisation from this acid. The crystals of nonahydrate melt at 40° C., yielding a dark red liquid (Ordway).

Although Serric nitrate crystals are usually pale violet in colour, when perfectly pure the salt is colourless. Ordway mentions having obtained colorrless crystals, and this is confirmed by the more recent .

- Ditte, Compt. rend., 1879, 89, 641.
 Funk, Ber., 1899, 32, 96; Ordway, Amer. J. Sci., 1865, 40, 325.
- * With more dilute acid ferrous nitrate is apt to be formed. See p. 175.
- Ordway, Amer. J. Sci., 1850, 9, 30.
- Ditte (loc. cit.) has described a third-namely, the trihydrate, Fe(NO3)3. 3H3O.
- Ordway, J. prakt. Chem., 1851, 53, 64.
 Surgunoff, Bult. Acad. Sci. Petrograd, 1913, p. 407.
- 4 Hausmann, Annalen, 1854, 89, 109; Wildenstein, J. prakt. Chem., 1861, 84, 243.
- Funk, Ber., 1899, 32, 16.

work of Eambert and Thomson, who took elaborate precantions to prepare a very pure salt. A pure specimen of ferric chloride, free from arsenie, sulphate, alkali, or alkaline earth metals, was dissolved in conductivity water and electrolysed between iridium electrodes. The deposit of iron on the cathode was dissolved in pure diluted nitric acid, and the solution concentrated on the water-both. The salt was crystal-lised from solution in concentrated intre acid, separated from the mother liquor, and recrystallised several times from the concentrated acid. The crystals so obtained were colourless or white when seen in bulk.

Ferric nitrate in aqueous solution is reduced by metalic silver to the ferrous condition, equilibrium being ultimately attained according to the equation

$$Ag + Fe(NO_3)_3 = AgNO_3 + Fe(NO_3)_2$$
.

In dilute solution ferric nitrate is hydrolysed, yielding colloidal ferric hydroxide and free niftic acid. Such solution gives no coloration with potassium ferrocyanide. In less dilute solutions, to which potassium ferrocyanide has already been added, the blue colour gradually intensifies owing to the continued re-formation of ferric nitrate, as the equilibrium represented by the equation

$$\operatorname{Fe}(\operatorname{Oll})_3 + 3\operatorname{HNO}_3 = \operatorname{Fe}(\operatorname{NO}_3)_3 + 3\operatorname{H}_2\operatorname{O}_3$$

is disturbed, owing to removal of ferric nitrate as insoluble Prussian blue.3 Aqueous solutions of ferric nitrate containing less than 0.1 per cent. are quite colourless.

The heat of formation of ferrie intrate is given by Berthelot as

follows :-

$$2[Fe] + 3(N_2) + 9(O_2) + Aq. = 2Fe(NO_3)_3.Aq. + 314.300$$
 calories.

Numerous basic ferric nitrates have been described. They are uncrystallisable substances, and contain varying amounts of water. Hausmann, by boiling solutions of ferric intrace, obtained the following supposed compounds: 8Fc₂O₃·2N₂O₅.3H₂O, 36Fc₂O₃.N₂O₅.48H₂O, and 8Fc₂O₃, N₂O₅, 12H₂O.

Scheurer-Kestner identified $2\mathrm{Fe}_2\mathrm{O}_3\mathrm{N}_2\mathrm{O}_5\mathrm{H}_2\mathrm{O}, 2\mathrm{Fe}_2\mathrm{O}_3^*\mathrm{N}_2\mathrm{O}_5\mathrm{2H}_2\mathrm{O},$ and $4\mathrm{Fe}_2\mathrm{O}_3\mathrm{N}_2\mathrm{O}_5\mathrm{3H}_2\mathrm{O}$. Comeron and Robinson, bowever, have proved that no definite basic intrates of iron are formed from solutions. Han at 25° C., the solid phase under these conditions consisting of a solid solution of ferric oxide, intric acid, and water. It seems unlikely, therefore, that the substances described by Hausmann and Scheurer-Kestner are definite compounds,

An acid nitrate, Fc₂O₃.4N₂O₅.18H₂O or 2Fc(NO₃)₂.2HNO₃.17H₂O; appears also to have been prepared, although later affeligts to obtain the salt proved abortive.

With easium nitrate the Jonble salt, CSNO, Fe(NO3), 711,0, 48 formed 8 as pale yellow deliquescent crystals, richting at 33° to 36° C.

- Lambert and Thomson, Trans. Com. Soc., 1910, 97, 2426.

- Noyes and Brann, J. Amer. Chem. Soc., 1912, 34, 1016.
 Aptony and Gigh, Gazzetta, 1896, 26, i. 293.
 Hausmann, Annalen, 1854, 86, 109.
 Scheurer-Kestner, Ann. Chim. Phys., 1859, 69, 55, 330.
 Carpen and Dahiman, J. Dhanash Chim. 1009, 56, 44
 - Cameron and Robinson, J. Physical Chem., 1909, 53, 649
 - 7 Cameron and Robinson, loc. cit.
 - Wells and collaborators, Amer. Chem. J., 1901, 36, 275.

VOL. IX. : II.

NITROSO SALTS.

Ferrous salts readily combine in solution with nitric oxide to form nitroso derivatives, in which one molecule of nitric oxide is combined for each atom of ferrous iron. These substances, several of which are described in connection with their respective negative radicles (see pp. 93, 95, 105, 152, 161), readily dissociate in solution in accordance with the reversible reaction:

By lowering the temperature, by raising the pressure, or by increasing the concentration of the free zeid, the equilibrium is shifted from right to left, the amount of the introse salt being proportionately increased, but never in excess of the above-mentioned ratio. When the increase is due to addition of acids, the colour of the solution changes, and the absorption band in the yellow region of the spectrum disappears. This is indicative of a change of constitution, complex amions being formed which are more stable than the nitrose cations.

Ferro-heptanitroso Sulphides, MFc4(NO)7S3.

Nitroso derivatives of a more complex and more stable character than the foregoing were discovered by Roussin in 1858.2 This investigator observed that a black voluminous precipitate is obtained when a mixture of ammonium sulphide and alkali intrite is added to an aqueous solution of ierrous sulphate. On boiling, the precipitate passes into solution. The liquid is fiftered, and, upon cooling, black crystals separate out, the composition of which has been the subject of considerable discussion. The reaction does not proceed in perfectly neutral solution, a green liquor only being produced, consisting of sulphides of iron and sodum, entirely free from any introso derivative. The presence of a small quantity of acid, however, results in the formation of the nitroso derivative, probably because it liberates nitrons a acid, which acts direct upon the ferrous salt.

"Roussin, as the result of his analyses, attributed to the nitroso derivative a formula which, translated into modern equivalents, becomes

HaFea(NO) S.

Other later investigators have obtained similar substances either by an exact repetition of Roussin's method or by adopting slight modifications of the same. The various formulae suggested by them for the nitroso derivative are given in the accompanying table:——

Formula.	Authority.
2 410 01 01	200 100
$\mathbf{Fe}_{\mathbf{g}}(\mathbf{NO}_{\mathbf{g}})_{\mathbf{g}}\mathbf{S}_{\mathbf{g}}(\mathbf{NII}_{\mathbf{g}})_{\mathbf{g}}$.	Porezinsky, Annalen, 1863, 125, 302. Demel, Ber., 1879, 12, 461, 1948.
$ \begin{array}{c} \{ K_2Fc_7(NO)_{12}S_5, 2H_2O \\ Fc_6(NO)_{10}S_5, 4H_2O \\ 2[Fc_3(NO)_4S_2NO_2]3H_2O \end{array} . $	Pavel, ibid., p. 1407, 1949. Rosenberg, ibid., p. 1715. Marie and Marquis, Compt. rend., 1896,
2[1 c3(175)](-31703]D1130 .	122, 137,

Seo Köhlschütter and Sazanoff, Ber., 1911, 44, 1423; Gay, Ann. Chim. Phys., 1885, .
 5, 5, 145; Peligot, ibid., 1833, (2), 54, 17.
 Roussin Compt. rend., 1858, 46, 224; Ann. Chim. Phys., 1858, (3), 52, 285.

In 1882, however, Pavel reconsidered his formula, and suggested MFe_•(NO)₇S_a,

where M represents ammonium or one of the alkali metals. This formula has since been accepted by the majority of workers in this field.2

Cryoscopic measurements of the sodium and potassium salts give values for the molecular weights equal to half those corresponding to the simple formula MF(4(NO),S3, and thus indicate that the salts are completely dissociated into the ions M and Fe₄(NO)₂S'₃; also electric conductivity measurements show that the salts are derived from a monobasic acid, and that they have the simple molecular formula; -3

$$[\mathrm{MFe}_4(\mathrm{NO})_7\mathrm{S}_3]_n$$
, where $n = 1$.

The ferro-heptanitroso sulphides constitute a well-defined series of crystalline salts. • In so far as the salts of the alkali metals are concerned, the order of their solubilities in water is as follows:

Potassium, sodnun, ammonium, rubidium, and casimm.

The potassium salt is the most soluble, whilst the casimm salt is quite insoluble in water. Both the rubidium and the easimn salts may be prepared by double decomposition of dilute solutions of their chlorides with the introso salts of sodium or potassium. The thallium salt may be prepared in a similar manner by means of thallium sulphate. The nitroso salts of the alkaline earth metals calcium, barium and magnesium-are very soluble in water.

Potassium ferro-heptanitroso sulphide, KFc₁(NO)₇S₃, H₂O, — To prepare this salt, Pavel * raised a solution of potassium intrite to boiling, added sodium sulplide, and, finally, with repeated shaking, a solution of ferrous sulphate in small quantities at a time. Upon crystalligation the nitroso derivative separated out in monoclinic crystals which were purified by recrystallisation from warm water and carbon disalphide in succession, and finally dired over phosphorns pentoxide.

The same compound results when a dilute solution of potassium sulphide or sulphydrate is added to one of ferrous sulphate containing nitrie oxide.

When a solution of potassium ferro-dinitroso thiosilphate, KFc(NO)₂S₂O₃.H₂O₃ is boiled, sulphur dioxide is expelled, and ferrie if droxide precipitated. Upon concentrating the clear solution obtained by filtering, crystals of potassium ferro-heptaintroso sulphide are obtained.5

When acted upon with dilute sulphuric acid, the potassium salt yields the Iree acid, hydrogen ferro-heptanitroso sulphine, $111e_4(NO)$, S, as an insoluble, amorphous precipitate. It is very unstable. When boiled with dilute potassium hydroxide solution, the potassium heptanitroso derivative yields potassium ferro-dinitroso sulphide, KFe(NO) S. 2H₂O (see p. 181).

¹ Pavet, Ber., 1882, 15, 2606. 2 See Rosenberg, Arkiv Kem. Min. Geol., 1911, 4, (3), e1; Cambi, Att. R. Ascad. Lincei, 1908, (5), 17, i. 292; 1907, (5), 16, ii. 658; Bellucci and Cesaris, bid., 1908, (5), 17, i. 424; 1907, (5), 16, ii. 740; Bellucci and Venditorra bid., 1905, (5), 14, i. 25, 98; Hofmann and Wiede, Zeitsch. caorg. Chem., 1895, 9, 296; Marchlewski and Sachs, bid., 1892, 2, 175.

2 Bellucci and Camarali, Att. R. Ascad. Lince., 1907, (6), 46, ii. 544.

Bellucci and Carnevali, Aus R. Accad. Linces, 1907, (5), 16, ii. 584.

Pavel, Ber., 1879, 12, 1407.
 Hofmadn and Wiede, Zeitsch. georg. Chem., 1895, 9, 295.

Sodium ferro-heptanitroso sulphide, NaFe (NO), S3.2H2O, may be obtained in a similar manner to the potassium salt by boiling a solution of sodium ferro-dinitroso thiosulphate, as also by the action of sodium nitrite and sulphide solutions upon ferrous sulphate. In this latter reaction the sodium sulphide may be replaced by sodium thiocarbonate, Na₂CS₃.

The constitution ¹ of this salt has been represented as follows:—

Upon crystallisation the salt is obtained as monoclinic needles. It is more readily soluble in water than the potassium salt. It begins to decompose at 80° C., evolving nitric oxide. Heated with concentrated sulphnric acid, the salt decomposes; evolving nitric oxide, nitrogen, and hydrogen sulphide; sulphur is precipitated out, and, upon evaporating the liltered solution, ferric sulphate and sodium and ammonium sulphates are left. On the other hand, when treated with ice-cold concentrated. sulphuric acid, a portion only of the sodium heptanitreso derivative is decomposed, and the liberated iron atoms replace those of sodinm in the remaining unattacked portion, yielding ferrous ferro-heptanitroso, sulphate, Fc[Fe₄(NO),S₃]₂. This salt may also be obtained by double decomposition of the sodium salt with ferrous sulphate. The resulting precipitate is washed, recrystallised from other, and finally from water. It begins to decompose at 55° C.

Animonium ferro-heptanitroso sulphide, NII₄Fe₄(NO)₅S₃.II₂O, is readily obtained by double decomposition of the sodium salt with ammonifin earbonate. The precipitated salt is washed and recrystallised. from warm water rendered family alkaline with ammonia. It may be prepared by passing mitric oxide for some ten hours into freshly precipitated ferrous sulphide suspended in water, without previous addition of ammonia. The salt is extracted from the excess of ferrous sulphide with warm alcohol, and recrystallised from water.2

It also results when nitric oxide is passed through a mixture of ferrous hydroxide and carbon disulphide saturated with ammonia. The ferrous hydroxide is obtained by precipitation from ferrous sulphate, and the passage of nitrie oxide is maintained for some eight hours. The ammonium salt is extracted from the mixture with hot alcohol. The same salt is formed even without the addition of ammonia, by the action of nitric oxide on ferrous hydroxide suspended in carbon disulphide.2006

The crystals are monoclinic prisms, less soluble than those of the sodium salt, but, like the latter, they begin to decompose at 80° C.

By warming the solutions of this salt with the hydroxides of the alkaline earth metals until ammonia ceases to escape, the corresponding salts of calcium, barium, and magnesium have been obtained. These, however, are less stable than the at monium salt.

Rosenberg, Arkir Kem. Min. Geol., 1911, 4, (3), 1. 1 Hofmann and Wiede, Zeitsch. anorg. Chem., 1885, 9, 285.

181

Tetramethyl ammonium ferro-heptanitroso sulphide, N(CH₃)4. Fe₄(NO)₇S₈, yields triclinic crystals:—1

$$a:b:c=0.8648:1:1.3125.$$
 $\alpha=87^{\circ}29.5$. $\beta=106^{\circ}7'.$ $\gamma=93^{\circ}44'.$ Density, $2.056.$

The tetra-ethyl salt, is likewise triclinic, possessing the following crystallographic clements :- -2

Heptanitroso ferro-sulphides of the following metals have also been obtained: 2

Cæslum, $CsFe_1(NO)_7S_3.\Pi_2O$. Rubldium, RbFc₄(NO)₇S₃,H₂O₆ and Thallium, TlF $c_4(NO)_7S_3$.H.O.

Of these the first-named is readily obtained by adding a solution of exsimm chloride to one of sodium heptanitroso ferro-sulphide, when the cæsium derivative is precipitated as an insoluble black crystalline powder. The rubidium derivative, obtained in an analogous manner, presents a similar appearance. The thallium salt is likewise difficultly soluble in water, and is obtained by double decomposition with thallmin sulphate and the potassium derivative.

The hydrazine, $N_2\Pi_4$. Fe₄(NO)₇S₂, and the hydroxylamine. NH2OH.Fe (NO)7S3, derivatives have been prepared.3

Ferro-dinitroso Sulphides, MFc(NO),S.

On boiling potassium ferro-heptaratroso sulphide with dilute potassium hydroxide, ferric hydroxide is deposited, and, upon concentra-. tion of the litered liquid, dark red crystals of potassium ferro-dinitroso sulphide are obtained, to which the formula $KF((NO)_2S.2\Pi_2O_2)$ is ascribed. The reaction may be represented as follows:

$$2\mathrm{KFe_4(NO)_7S_3} + 4\mathrm{KOH} = 6\mathrm{KFe(NO)_2S} + \mathrm{Fe_2O_3} + \mathrm{N_2O} + 2\mathrm{H_2O}.$$

The reverse transformation is effected by treatment with carbon dioxide, dilute acids, or ferrous chloride.5

The sodium salt, NaFr(NO)₂S.tH₂O, may be prepared in an analogous manner. It was the first salt of this series to be obtained, and Roussin, ats discoverer, gave to it a formula which, translated into modern equivalents, becomes $3Na_2S.Fe_2S_3(NO)_2$.

The ammonlum salt cannot be obtained by beiling the ammoning hepta derivative with ammonium hydroxide, nor by the action of ammonia upon the free acid. It results, however, when the free acid is treated with ammonium sulphide. It is very unstable. The cashum, iron, and thallium salts have been prepared. The last named is quite insoluble in water and in alcohol.

The free acid is obtained by decomposing the sodium or potassium

¹ Zambonini, Zeitsch. Kryst. Min., 1910, 47, 620. ² Pavel, Ber., 1879, 12, 1407.

Bellucci and Cecchetti, Atti R. Accad. Lincei, 1906, (i), 15, ii. 467.

Pavel: Ber., 1882, 15, 2600.

See Rosenberg, Arkiv Kem. Min. Geol., 1911, 4, (3), 1.

Roussin, Compt. rends 1858, 46, 224.

salt with dilute mineral acid. It is a yellowish brown amorphous substance, insoluble in water, more soluble in alcohol, and readily soluble in earbon disulphide. . It slowly decomposes on standing,

Ferro dinitroso Thiosalphates, MFc(NO)2S2O3.

Potasslum ferro-dinltreso thiosuiphate, KFr(NO)2S2O3, H2O, results when intrie oxide is passed into a concentrated mixed solution of ferrous sulphate and potassium thiosuphate at room temperature. The solution becomes deep brown in colour, and reddish brown crystals of the potassium salt are obtained on concentration. The salt is but slightly soluble in cold water, and is insoluble in water-free alcohol and in other. Concentrated sulphuric acid dissolves it without decomposition, yielding. a greenish yellow solution.

Alkalies partly decompose the salt in the warm, whilst ammonia

effects its complete decomposition.

The sodium salt I NaFe(NO)₂S₂O₃.211₂O, is obtained in a similar manner to the preceding salt. It yields either laminated or needleshaped crystals, which are glistening black in appearance. They are appreciably more soluble in water than those of the potassium salt, and yield a deep brown solution. The salt is fairly stable below 0° C., but above that temperature continuously evolves mitric oxide. When its aqueous solution is boiled, sulphur dioxide is expelled and ferric bydroxide precipitated. Upon concentrating the clear solution obtained by filtering, crystals of sodium ferro-heptanitroso sulphide, •NaFe₄(NO)₇S₃.H₂O₅ separate ont.²

The ammonium salt, (NH₄)Fe(NO)₂S₂O₃·H₂O, may be prepared in an analogous manner. It may be recrystallised from warm water,

when it yields flat prisms, black in colour,

The rubidium and cæsium salts 2 have also been prepared, namely RbFe(NQ)₂S₂O₃H₂O and CsFe(NO)₂S₂O₃. Thallinm, apparently, does not yield an analogous salt under like conditions.

Nitroso pentacyanoferrates, M2[Fe(CN)5NO].

For a distrission of these salts see Chapter IX.

IRON AND PHOSPHORUS.

Iron Phosphides .- Iron unites with phosphorus in several proportions: Nine supposed phosphides have been described, and four of them certainly exist "; these are, Fe₃P, Fe₂P, FeP, and Fe₂P₃.

 Triferro phosphide, Fe_aP, occurs as crystals embedded in a cutectie mixture of this phosphide and from when phosphorus and iron containing more than 84-4 per cent, of iron are fused together. Its density is 6.74, and melting-point 1110°C. It dissolves in concentrated aqueous hydrogen chloride, evolving pure hydrogen. Thus:-3

$$Fc_3'P + 6HCl + 4H_2O\omega 3FcCl_2 + H_3PO_4 + 11H.$$

Triferro phosphide has been found in a cavity of pig iron from a blast furnace near Middlesbrough, in the form of small tin-white needles,

- ¹ R. A. Hofmann and Wiede, Zeitsch. anorg. Chem., 1895, 8, 318.

 ¹ Hofmann and Wiede, ibid., 1895, 9, 295.
- * La Chatelier and Wologdine, Compt. rend., 1909, 140, 709.

strongly magnetic and lustrous. The crystals belong to the sphenoidalhemihedral class of the tetragonal system, with the ratio

$$a: c=1:0.3469$$
.

Save for the absence of nickel the crystals are identical with rhabdite

(see p. 26).

Diferro phosphide, Fe₂P, may be obtained by heating finely divided iron with copper phosphide in an electric furnace.² On dissolving the residue in nitric acid crystalline needles remain, of density 6.56, and melting at 1290° C. Diferro phosphide may also be obtained by fusing iron and phosphorus together and subsequently separating the more magnetic impurities. It is insoluble in acids, except aqua regia. *Fluorine attacks it at red heat. When heated in air it oxidises to a basic ferric phosphate.

Iron monophosphide, FcP, results when vaporised phosphorus is passed over diferro phosphide at red heat, until no further increase in weight occurs.3 It has also been prepared by heating phosphorus and iron together at red heat, and also by the action of hydrogen phosphide upon ferric chloride, ferrous sulphide, or ferrous chloride? at red heat,

Heated in air it loses part of its phosphorus, ferric phosphate

remaining. Iron sesqui-phosphide, Fc₂P₃, may be prepared by heating ferrie chloride to dell reduces in phosphorus vapour, sor by the action of phosphorus iddde upon reduced iron. It crystallises in brilliant grey needles, is not magnetic, and is insoluble in hydrochloric and in-aitric acid, as also in aqua regia. It loses phosphorus when heated in air at bright red heat, and is slowly attacked by chlorine at dulf red fleat.

In addition to the foregoing, several other phosphides have been described, but the evidence in favour of these being separate chemical entities is not so convincing. Bose believed that he had prepared triferro tetraphosphide, Fe_aP_1 , by the action of hydrogen phosphide upon pyrites: -

 $4PH_3 + 3KeS_2 - Fe_3P_4 + 6H_2S$.

The product is bluish grey in appearance, permanent in air, but, when heated to a high temperature, it oxidises to phosphorus pentoxide and an iron phosphate, the former being evolved as finnes. Density • 5 · 04. It is not magnetic. 11

By reduction of iron phosphate in hydrogen, or by passing vapours of phosphorus trichloride, tribronide, or tri-iodide over reduced iron at red heat, Granger obtained 12 grey prismatic crystals of composition

- ¹ Spencer, Min. Mag , 1916, 17, 340.
- Maronneau, Compt. rend., 1900, 130, 65th. Le Chatcher and Wologdine, loc. cit.

 Le Chateller and Wologdine, loc. cit.
- 4 Schrotter, Silzungsher, K. Albul, Wiss, Wien, 1849, 2, 301.
- Freeze and Rose, Pogg. Annalen 1832, 24, 301.
- * Struve, Bull. Acad. Sci. Petrograd, 1860 1, 453.

 7 Dennis and B. S. Cushmin, J. Amer. Chem. Soc., 1894, 10, 411.

 8 Granger, Compt. rend., 1895, 122, 936; **Mull. Soc. chim., 1896, (3), 15, 4086; Clem.

- News, 1898, 77, 227.

 Le Chatelier and Wologdine, loc. cit.

 For further details of the iron phosphorus alloys see this volume, Part III.

 Rese, Pagg. Annalen, 1826, 6, 212; Freeze and Rese, ibid., 1832, 24, 301; Freeze,
- ibid., 1887, 132, 225.

 18 Granger, Compt. rend., 1896, 123, 176; Bull. Soc. chim., 1896, (3), 15, 1086; Chem. News, 1898, 77, 227.

Fc₄P₈. Fc₅P₂ has also been described 1 as forming glistening heedles, almost insoluble in concentrated nitrie and in dilute sulphuric acid,

but readily soluble in aqua regia.

Ferrous hypophosphite, Fc(H₂PO₂)₂, results on dissolving iron in hypophosphiorous acid, air being carefully excluded. The metal dissolves with evolution of hydrogen gas, and the salt passes into solution. It is also obtained by double decomposition of solutions of ferrous sulphate and the param salt. Ferrous hypophosphite crystallises in green octahedra, which readily oxidise on exposure to hir.

Ferric hypophosphite, Fc(H₂PO₂)₃, is obtained as an insoluble white powder on dissolving freshly precipitated ferric hydroxide in dilute hypophosphorous acid in the cold, and allowing to evaporate. It decomposes on warming, yielding a mixture of ferrous and ferric hypophosphites; on warming with acids an evolution of hydrogen phosphide

takes place.

Ferrous phosphite, FeIIPO₃, is prepared ⁵ as a white powder on saturating phosphorus trichloride with ammonia and mixing with a solution of ferrous sulphate. The precipitate is washed with hot water and dried in a vacuum over sulphuric acid. When heated it decomposes with incandescence, evolving hydrogen gas.

Ferric phosphite, Fc₂(HPO₃)₃, has been obtained only in solution ⁶ by dissolving freshly precipitated ferric hydroxide in phosphorous acid. On dilution with water a basic phosphite is obtained of probable composition Fc₂(HPO₃)₃2Fc(OH)₃.

A basic ferric phosphite, Fe₃(HPO₃)₆.Fe(OH)₅.5H₂O, has been

describe 7.7

Ferrous orthophosphate occurs in nature in the octahydrated form as vivianite (see p. 26), Fe₃(PO₃)₂.8H₂O, in monoclinic crystals. When perfectly pure the crystals are colourless. In most specimens are tinged with a greenish blue in consequence of slight oxidation. They melt at 1114° C.

The salt may be obtained by heating diferrous orthophosphate with water to 250° C. 12; by heating in a scaled tube mixed solutions of sodium phosphate and ferrous sulphate ¹³ in an atmosphere of carbon dioxide; or by electrolysis of sodium phosphate solution, using an iron anode. ¹⁴

A powder containing at least 90 per cent, of the octahydrated ferrous phosphate is obtained by mixing solutions of sodium acetate (2 parts), sodium phosphate (10 parts), and ferrous sulphate (8 parts), and allowing to stand in the absence of air-for several days. The precipitate is collected on a calico filter and dried at 40°C. 15 If the liquid

```
1 Kuhn, Chem* Zest., 1910, 34, 45.
2 Rose, Porg. Annalen, 1828, 12, 292.
3 Wultz, Tinst Chim. Phys., 1846, (3), 16, 196.
4 Rose, Pogg., Annalen, 1827, 9, 35.
5 Grätzner, Arch. Pharm., 1897, 235, 693.
5 Berger, Compt. rend., 1904, 138, 1500.
8 Rømmelsberg, Pogg. Annalen, 1846, 64, 251, 405.
6 Colourloss crystals have been found at Delaware in Pennsylvania.
10 Deville. Compt. rend., 1864, 59, 40.
11 Cusack, Proc. Roy. Irigh. Acad., 1897, (3), 4, 399.
12 Debray, Ann. Chim. Mys., 1861, (3), 61, 437.
13 Horgford, Stizungsber. K. Akad. Wiss. Wien, 1873, 67, 466.
14 Bequerel, Ann. Chim. Phys., 1833, (2), 54, 149.
15 E. J. Evans, Pharm. J., 1897, (4), 4, 144.
```

and precipitate are maintained together at a temperature of 60° to 80° C. for a week, small crystals develop.

The salt is insoluble in water; it readily exists in air, becoming bluish in colour.

The hexahydrate, Fe (PO4)2.6H2O4 has been prepared by the prolonged heating at 88° C, of finely powdered ferrons carbonate held in suspension in an aqueous solution of ammonium phosphate: The same substance results if a solution of ferrous carbonate in carbonic acid is heated with ammonium phosphate.1 Gautier suggests that the mineral vivianite has originated in a similar manner to this, but that the reaction has proceeded for a longer time and at a lower temperature, which would •explain the higher water content of the mineral.

Ferrous hydrogen orthophosphate, FeIIPO, HgO, has been obtained by dissolving iron in boiling phosphoric acid solution. The solt crystallises out in colourless needles which become bluish in air; it is insoluble in water, but readily dissolves in dilute acids and in ammonia. When heated with water to 250° C., it is converted into vivianite.2

On adding ammonium phosphate solution to ferrous chloride in alcohol saturated with nitric oxide at 0° C., a viscid oily liquid is precipitated, which crystallises when placed in a freezing mixture. Upon careful purification at low temperatures, brown flaky crystals are obtained, which melt at 16° C., and have the composition represented by the formula FeHPO, NO.3 Upon exposure to air it exidises

slowly, yielding white ferric phosphate.

Ferrous dihydrogen orthophosphate, Fc(H₂PO₄)₂·2H₂O, is obtained by dissolving iron in excess of phosphoric acid solution in a current of hydrogen gas. Excess of acid is removed by washing with ether, and the substance dried in hydrogen.4 Obtained in this way the salt is a white, crystalline powder, which readily oxidises in air, yielding a ferric salt. It is insoluble in alcohol, but readily dissolves in water.

Ferric orthophosphate. The dihydrate, FePO, 2H2O, occurs in nature as strengite (see p. 27), and may be obtained in the laboratory in crystalline form by heating a concentrated solution of ferric chloride with phosphoric acid in a scaled tube at 180° to 190° C for several hours, when it separates out as small rose-econored monoclinic crystals, of density 2.74 at 15° C. The crystals closely resemble those of strengite, but the latter are shombic. They are insoluble in nitric acid, but dissolve in hydrochloric acid.5

The amorphous dihydrate results as a yellowish-white precipitate on mixing solutions of sodium phosphate and ferrie chloride or sulphate. It may also be formed by dissolving iron in excess of phosphoric acid and exposing to the air 2, by saturating a 48 per cent, solution of phosphoric acid on the water-bath with from powder : by boiling solutions of ferrie metaphosphate, ferrie dihydrogen orthophosphate, or of acid ferric phosphate, or by evaporating a mixed solution of ferric chloride (4 molecules) and disodium hydrogen phosphate (1 molecule)

¹ Gautier, Compt. rend., 1893, 116, 1401

Debray, Ann. Chin. Phys., 1861, (3), 61, 437.

Manchot, Ber., 1914, 47, 1601.

Erlenmeyer, Annalen, 1878, 194, 176.

de Schutten, Compt. rend., 1885, 100, 1522.
 Heydenreich, Chem. News, 1861, 4, 158

⁷ Erlenmyer, Amalen, 1878, 194, 176.

with an excess of nitric acid. As the liquid becomes syrupy, a copious

separation of the phosphate occurs.1

For the preparation of the pure salt, Caven 2 recommends addition of ferric chloride solution to one of orthophosphoric acid-made by boiling glacial metaphosphoric acid with water until it ceases to give any precipitate with barium chloride-in such proportions that rather more than twice as much acid, calculated as \$1,20,\$ is present as is required to precipitate the iron. The precipitate thus obtained appears, when suspended in water, perfectly white; when strained on calico, it possesses a slightly bluish tint. Since hot water hydrolyses the salt. the washing should be conducted in the cold.

The resulting salt, whilst readily soluble in dilute unineral acids, is insoluble in cold acetic acid, pliosphoric acid, and sodium phosphate. It is slightly soluble in citric and tartaric acid solutions, and readily dissolves in dentral aqueous ammonium citrate, vielding a green solution with a brownish tent.3 The salt is insoluble in water, but hot water hydrolyses it, and hoiling with excess of ammonia solution converts it into a mixture of ferric hydroxide 4 and ferric phosphate, or if the ammonia is present in great excess the ferric phosphate may be

entirely decomposed. Thus :-

$FePO_4 + 3NII_4OII = Fc(OII)_3 + (NII_4)_3PO_4$.

The reaction is reversible, and on boiling a suspension of freshly precipitated ferric hydroxide in an aqueous solution of ammonium phosphate, ammonia is liberated and ferric phosphate remains. In consequence of this reversibility, and owing to the volatility of ammonia and the active mass of the ammonium phosphate produced, it is not easy to carry the first-named reaction to completion, namely, in the direction of from left to right in the foregoing common.

These facts have an important bearing on the separation and estima-

tion of iron by means of ferric phosphate.

The trihydrate, FePO 1.3112O, occurs in nature as the mineral Koninckite

(see p. 27).

By heating molecular proportions of ferric chloride or acctate with phosphoric acid on the water-bath for two days, the pentahydrated salt, 2FePO, 5H₂O, is obtained as a pink powder, sparingly soluble in water and clilinte acids. It may be regarded as the ferric salt of hydrogen ferri-diorthophosphate, II, [Fe(PO1)2]5II2O, and therefore written as Fe[Fe(PO4)2]5H4O. Several alkali derivatives are known. the more important of which are as follow :-

Sodlum ferri-diorthophosphate, NaH₂[Fc(PO₁)^o₂]H₂O, is obtained by heating for a prolonged period on the water-batk a solution of ferrie hydroxide in phosphoric acid and soflium hydroxide. It yields pale, pink crystals, which gradually absorb moisture, yielding the trihydrate.

¹ Arth, Bull. Soc. chim., 1889, (3), 2, 324.

Arth, Bull. Soc. chim., 1889, (3), 2, 324.

2 Caven, J. Soc. Chem. Ind., 1896, 15, 17.

3 Hoydenreich, Chem. News, 1861, 4, 158.

4 Caven, loc. cit.; Rantimelsberg, Watts Dictionary of Chemistry, edition 1877, Art.

5 Phosphates "(Longmans).

5 The colloidat phosphate, prepared by the action of concentrated ampionium hydroxide on ferric phosphate, has been studied by Holmes and Rindfusz, J. Amer. Chem. Soc., 1916,

Ammonium ferri-diorthophosphate, NH4.H2[Fe(PO4)2], was first obtained by Danziger 1 by addition of a large excess of di-ammonium hydrogen phosphate to a strongly acid solution of ferric chloride. It is then formed as a white precipitate. If obtained in an analogous manner to the preceding salt, it yields plak, microscopic, hexagonal crystals. In the absence of a sufficient quantity of ammonia the acid salt, [Fe(PO₄), H₃]NH₃.7H₂O, is obtained

Sodium ferri-triorthophosphate, Nall [Fe(PO₄),]H,O. results when sodium chloride or phosphate is heated on the water bath with a solution of ferric hydroxide in phosphoric acid. It is a pale red, crystalline

powder, sparingly soluble in water.

Colloidal ferric phosphate is obtained by dissolving ferric phosphate in ammoniacal di-ammonium hydrogen phosphate and dialysing the solution until all electrolytes have been washed away. The colloidal solution thus obtained is tasteless and without action on lamus. Addition of electrolytes, such as alkali chlorides, effects its gelatinisation.

Both potassium derrocyanide and thocyanate cause gelatinisation also, but induce no colour change, showing the absence of free ions from

the solution.2

Ferric dihydrogen orthophosphate, Ft(II₂PO₁)₃, results when ferric oxide is dissolved in phosphoric acid until a precipitate begins to appear. The solution is washed free from excess of acid with other and dried,3 whereby a pick crystalline powder is obtained. When boiled with water, it yields ferrie orthophosphate, FcPO₁.211₂O.

With water at the ordinary temperature it yields the anliedrous phosphate FePO, and free phosphoric acid. The greater the propor-

tion of water, the more complete the decomposition.

With a large excess of cold water a precipitate of composition

6Fc₃PO₄.Fc₃(HPO₄)_a has been obtained.

Acid ferric orthophosphate, Fc₂O₃.2P₂O₅.8H₂O or (FcPO₁.IF₃PO₄)₂. 511,0, is obtained in the form of pink crystals when ferre phosphate is dissolved in excess of phosphoric acid and the solution concentrated over sulphuric acid.3 When boiled with water, neutral ferric orthophosphate, FcPO4.2112O, results.

Basic ferric phosphates occur in nature as the mine als dufrenite,

 $Fe_2(OH)_3(PO_4) \;; \; \mathit{.beraunite}, \; FePO_4, 2F_{12}(PO_4)(OH)_1, tH_2Q.$

Ferrous metaphosphate, Fc(PO3), is prepared by the action of fused Inctaphosphoric acid on ferrous phosphate, oxalate, or chloride, or even The selt is metallic iron, at red heat in a current of carson dioxide obtained as a white insoluble powder, infiffected by hydrochloric or nitric acid, but attacked by hot concentrated sulphuric acid.

Ferric metaphosphate, Fc₂O₃.3P₂O₅.6H₂O or Fc(PO₃)₅.3H₂O, has been prepared by dissolving ferric dvide in glacial phosphoric acid at 100° C, and maintaining the hquid at this temperature for several hours. The salt separates out in small crystals which take the form of pink rhombic plates derived from a monoclinic prism. The crystals are decomposed by water.

Frienmeyer, Annalen, 1878, 194, 176.

See Cohen, J. Amer. Chem. Soc., 1907, 29, 714
 Sell, Proc. Camb. Phil. Soc., 1904, 12, 388. See also Schuender, Zeitsch. anorg. Chem., 1894, 5, 84.

⁴ Otto, Chem. Zentr., 1887, p. 1563. · Colani, Compt. rend., 1914, 158, 794; Ludert, Zeitsch. anorg. Chem., 1894, 5, 37. · Hautefeuille and Margottet, Compt. rend., 1888, 106, 135.

If the foregoing reaction is carried out at 150° to 200° C., crystals of the dihydrate, Fc(PO₃)₃.2H₂O, are obtained as pink, rectangular amellar which are more stable towards water and are not attacked by alcohol.

At temperatures above 200° C. the anhydrous salt, Fc(PO₃)₃, is obtained, the form of which depends upon the temperature at which arystallisation is allowed to take place. This saft was not first made known to science by this method, however, but 2 by addition of ferric chloride to an excess of diluted metaphosphoric acid, concentration of the liquid, and finally heating the residue to 315° C. (600° F.).

It may also be prepared by addition of ferric oxide, phosphate,³ or of anhydrous ferrous sulphate ⁴ to metaphosphoric acid until no more of the salt will dissolve. The whole is then heated until the sulphuric

acid has been expelled and crystallisation sets in.

As obtained in this manner, the salt is insoluble in water and in dilute acid, but soluble in concentrated sulphuric acid. Density 3 02.

Ferrous pyrophosphate, Fc₂P₂O₇, is obtained ⁵ as an unstable white powder by double decomposition of ferrous subphate and sodium pyrophosphate; by heating ferrous orthophosphate; and by reduction of ferric phosphate with hydrogen. Upon exposure to air it turns green and ultimately brown.

Ferric pyrophosphate, Fe₄(P₂O_{7)₃,9H₂O, is obtained as a white precipitate on adding ferric chloride solution to an equivalent amount of sodium pyrophosphate.⁶ It is soluble in ferric chloride, in excess of}

sodium pyrophosphate, and also in acids.

When pretipitated ferric hydroxide is dissolved in a 48 per cent. aqueous solution of phosphoric acid, in the proportion of one molecule of Fc(OH)₃ to seven of H₃PO₄, a solution is obtained from which:—⁷

(i.) With excess of cold water, a greyish yellow precipitate is obtained, __of composition 4FcPO₄.Fc₂(HPO₄)₃.

(ii.) With boiling water, a precipitate of formula 6FcPO₁.Fe₂(HPO₄)₃ results.

(iii.) On boiling the filtrate from (ii.), the precipitate has the formula 4FePO₄,2Fe₂(IIPO₄)₃.

(iv.) On precipitation with alcohol, a substance 2FcPO₁.3Fc₂(HPO₃)₃ is obtained.

Are these to be regarded as definite compounds?—Probably not. v Complex pyrophosphates analogous to ferri-orthophosphates in which atoms of iron enter the negative radicle, have been prepared. Thus, sodium ferri-pyrophosphate, Na₆[Fe₂(P₂O₇)₃].9H₂O, analogous to sodium ferri-pyrophosphate, Na₆[Fe₂(P₂O₇)₃].9H₂O, analogous to sodium ferri-pyrophosphate as a pale violet micro-crystalline precipitate from a 15 per cent. solution of sodium pyrophosphate saturated with, ferric pyrophosphate. The copper and silver salts, Cu₃[Fe₂(P₂O₇)₃].12H₂O and Ag₆[Fe₂(P₂O₇)₃].4H₂O respec-

```
Hautefeuitte and Margottot, loc. cit.

Maddirell, Phil. Mag., 1847, 30, 322.

Hautefeuitte and Margottet, Compt. rend., 1883, 96, 849, 1142.

Johnson, Ber., 1889, 22, 970.

Schwarzenberg, Annalin, 1848, 65, 153.

Ridenour, Amer. U. Phanki., 72, 125.

Frignmeger, Annalen, 1878, 194, 176.
```

Pascal, Compt. rend., 1908, 146, 231; Rosenheim and Triantaphyllides, Ber., 1915, 43, 582.

tively, have been obtained from the sodium salt by double decomposition.

Hydrogen ferri-pyrophosphate, H₆[Fe₂(P₂O₇)₃].7H₂O, results as a white solid when ferric pyrophosphate is heated for twelve hours at 50° C. with syrupy pyrophosphoric acid in acctone.

Sodium ferro-pyrophosphate, Na Fc (P2O7)3, and sodium ferro- and ferri-metaphosphates, Na₄Fe(PO₃)₆ and Na₃Fe(PO₃)₆, have similarly

been prepared.1

Alkali ferro-pyrophosphates reduce solutions of gold and silver salts in the cold, the free metals being obtained in the colloidal condition. Mercuric salts are reduced, yielding first moreurous salts and finally colloidal mercury, which is grey by reflected light, but a reddish brown colour by transmitted light. Cupric salts are reduced to colloidal cuprous hydroxide, which is yellow by transmitted light and affords a delicate reaction for copper. At 100° C. metallic copper is deposited as a thin film on glass. Solutions of platinum salts are not reduced even on boiling.2

Two series of complex aminonio-salts have been prepared of general

formulæ :--3

$$\begin{array}{ll} ^\bullet I. & [Fe_4(NH_3)_{21+4n}^\bullet(P_2O_7)_n](P_2O_7)_{3-n} \\ II. & [Fe_4(NH_3)_{12-4m}(P_4O_7)_{3+m}]R_{4m}, \end{array}$$

and

where R is an acid radicle, and n and m are small, whole numbers, of the order of 2 or 3.

Triphosphates.—A series of salts termed triphosphates, of general formula MNa₃P₃O₁₀, has been described. where M represents a divalent metal. The ferrous salt. 2FeNa₃P₃O₁₀.23H₂O, results on adding sodium triphosphate, Na₅P₃O₁₀, to a solution of ferrous sulphate. It crystallises in silky, white needles, which are stable when dry, but rapidly oxidise in contact Nith water.

The negative radicle of these salts appears to be compounded of the pyrophosphate, P_2O_7'''' , and metaphosphate, PO_3' , radicles, so that the analydrous salt may be written as $FcNa_3(P_2O_7,PO_3)$.

Ferrous thio-orthophosphite, ${\rm Fc_3(PS_3)_2}$ is prepared 5 by heating a mixture of ferrous sulphide, sulphur, and red phosphorus. It crystallises in black, hexagonal lamine which are very stable, resisting markedly the action of acids and alkalies.

Ferrous thlo-orthophosphate, Fe₃(PS₄)₂, results 6 on locating together ferrous sulphide and phosphorus pentasulphide, the latter being present

in excess of that required by the equation.

•
$$3 \text{FeS} + \frac{1}{2}S_5 = \text{Fe}_3(PS_4)_2$$
.

The excess of pentasulphide distils away, leaving a black residue contaminated with ferrous sulphide, from which it is readily freed by treatment with dilute hydrochloric acid.

Ferrous thio-orthophosphate is a black crystalline substance which

¹ Pascal, Comp. rend., 1908, 146, 231; Rosenheim and Triantaphyllides, Ber., 1915,

Pascal, Compt. rend., 1908, 146, 802.

Pagcal, ibid., 1908, 145, 2709

Stange, Zeitsch. anorg. Chem., 1896, 12, 444.

Ferrand, Compt. rend., 1896, 122, 621; Ann. Chim. Phys., 1899, 17, 40 Glatzel, Zeitsch anorg. Chem., 1893, 4, 186.

leaves a mark like graphite. When heated it does not fuse but burns. leaving a brown residue. It is insoluble in water and dilute acids.

Ferrous thio-pyrophosphite, Fc2P2S6, has been obtained 1 by heating a mixture of sulphur and red phosphorus with excess of iron wire to redness and maintaining at this temperature for several hours. It yields greyish black hexagonal plates which appear brown by transmitted light. They are attacked by nitric acid, but more easily by this acid containing a little potassium chlorate.

Ferrous thio-pyrophosphate, Fe₂P₂S₇, has been obtained by heating the metal or its sulphide with sulphur and phosphorus as in the preparation of the preceding salt. It crystallises in lustrous lamella, which are

insoluble in cold nitric acid.2

IRON AND ARSENIC.

Iron sub-arsenide, Fe₂As. -The possibility that this substance can exist is indicated by the shape of the freezing-point enrye of arseniciron alloys.3

Iron mon-arsenide, FeAs, is obtained by heating iron in excess of arsenic in the absence of air. This may be effected by heating iron in a current of arsenie vapour at \$35° to 385° C.,4 or with arsenie in a bomb tube at 680° C.5 It also results when the di-arsenide, FcAs2, is • reducedat 680° C. in a current of hydrogen.

As obtained by these methods, iron mon-arsenide is a silver-white orystallee substance, of density 7.83, and melting at 1020° C. It is

non-unguetic.

Iron mon-arsenide has been found as dark, steel-grey rhombic crystals, of density 7-94, in the hearth of an old furnace in Cornwall.6

Iron sesqui-arsenide, Fe₂As₃, results when iron is heated in arsenic vapour at 295° to 415° C. Density 7/22.

Iron df-arsenide, FeAc₂, occurs as the mineral *tolingite*, and may be prepared artificially by heating iron in arsenic vapour at 430° to 618° C.? Hilpert and Dicekmann 5 recommend heating finely powdered iron and arsenic in a bomb tube to c. 700° C. On treatment with dilute acid the pure di-arsenide is obtagied as a silver-grey powder, of density 7.88. Insoluble in hydroel-loric acid, both dilute and concentrated, it is slowly oxidized by nitric acid, yielding arsenic acid. Heated with, concentrated sulphnice acid, sulphnir dioxide is evolved. When heated in air it burns, yielding arsenious oxide and ferrie oxide. It is nonmagnetic. 6

Iron thio-arsenide FcAsS, or FcS₂, FcAs₂, occurs in nature as the mineral mispickel; arsenical pyrites or arsenopyrite (see p. 24, where erystallographie data are given). If cobalt is also present, the mineral is known as glandodote, (I'e, Co)AsS. When the arsenide is in excess,

the mineral is called pacite, FeS, 4FeAs,

Constitution. Many suggestions have been made as to the consti-

Friedel, Bull. Soc. chim., 1894, 11, 1057; Compt. rend., 1894, 119, 260.

Ferrand, Compt. rend., 1896, 122, 886.
 Friedrich, Metallurgie, 1907, 4, 129.
 Beutell and Lorenz Centr. Min., 1016, p. 10.

Hi pert and Dieckmann, Ber., 1911, 44, 2378
 Headdon, Amer. J. Sci., 1898, (4), 5, 93.

Beutell and F. Lorenz, Centr. Min., 1916, p. 10.

tution of mispickel. The structural formula suggested by Beutell 1 may be written .

Fo S Fe

This, however, offers no explanation for the fact that the percentage of sulphur in the crystals obtained from various localities shows considerable variation, as little as 18.05 per cent, and as much as 22.47 per cent. having been found.2

· Chemical methods for determining the constitution lead to conllieting conclusions, precisely as in the case of iron pyrites (see p. 141), owing to uncertainty as to the state of valency of the iron in the mineral. The formula usually accepted is FeS₂. FeAs₂.

When heated in the absence of air, mispickel loses much of its

arsenic.3 This is explained on the assumption that the iron disulphide decomposes into free sulphur and ferrous sulphide:

The sulphur then attacks the di-arsenide, causing the expulsion of the arsenic :--

$$FeAs_2 + S = FeS + 2As$$
.

Combining the above reactions, the equation may be represented as

$$FeAs_2.FeS_2 = 2FeS + 2As.$$

Loczka therefore favours the formula FcAs₂,FcS₂ for mispicke

On the other hand, when mispickel is heated in hydrogen, the whole of the sulphur is evolved as hydrogen sulphide,4 whereas both pyrites and marcasite under similar conditions lose only half their sulpluir, being converted into ferrous sulplinde, FeS (see p. 141). There facts suggest that the pyrites molecule is absent, and that if iron-disulphide is actually present, it is in some other form than ordinary pyrites.

The formula

is suggestive.

Ferrous met-arsenite, FeO.As₂O₃ or Fe(AsO₂)₂ has been obtained by the action of potassium hydrogen arsenite, K2O.As2O2.H2O3 upon a dilute solution of ferrous sulphate. It is greenish in colour, becoming brown upon exposure to air.6 When a hot, saturated solution of arsenious acid containing ferrous iodide is allowed to cool, crystals of , the compound FcI2-4As2O3.12II2O are obtained, which slowly exidise in air, and in vacuo over concentrated sulphusic yield up all their combined water. The iodide character of the salt is suppressed, from which

Beutell, Centr. Min., 1911, p. 316.
 Arzruni and Baerwald, Jahrh. Min., 1884, 1, Ref. 10.
 Loc2ka, Zeitsch. Kryst. Min., 1889, 13, 41.

Starke, Shock, and E. F. Smith, J. Amer. Chem. Soc., 1897, 19, 248; Laghtfoot, ibid., 1894, 16, 624. See also Rammelsberg, Jahrb. Min., 1897, 11., 45. Reichard, Ber., 1898, 27, 1039.

it may be inferred that the iodine has combined with the arsenion

oxide to yield a complex negative radicle.

Ferric arsenite, 4Fc₂O₃.As₂O₃.5H₂O, may be prepared by shaking freshly precipitated ferric hydroxide with an aqueous solution of arsenious oxide, or by adding sodium arsenite (or an aqueous solution of arsenious oxide) to ferric acetate. It is brown in colour, and oxidised by the air when muist.2 .

By the action of potassinm hydrogen arsenite, K.O.As,O. H.O. on dilute aqueous ferric chioride a yellow peaker of composition Fe₂O₃. As₂O₃ or FeAsO₃ has been obtained,³ A substance of similar chemical composition has been found in a crystalline deposit formed during the Deacon process of making chlorine. The crystals of the pure salt are monoclinic, their crystallographic elements being:-4

$$a:b:c=0.9405:1:0.6234.$$
 $\beta=105^{\circ}10.5'.$

The pentahydrate, FcAsO3.5II2O, found with the preceding salt,

crystallises in the rhembie system.

On adding freshly precipitated ferric arsenite to potassium hydroxide solution until no more dissolves, and subsequently evaporating, the soluble potassium salt, $6K_2O.5Fe_2O_1.9As_2O_3.24H_2O$, is obtained as a reddish brown amorphons substance, which dissolves in water, yielding an alkaline solution,5

Ferrous ortho-arsenate, Fe₃(AsO₄)₂,6H₂O, occurs in nature as the mincrabsimplesite.

It may be prepared by the action of disodium hydrogen arsenate upon fewous sulphate solution :---6

$$4FeSO_4 + 4Na_2HAsO_4 = Fe_3(AsO_4)_2 + Fe(H_2AsO_4)_2 + 4Na_2SO_4$$
,

and gradually undergoes exidation upon exposure to moist air, yielding ferrie & senate and ferrie oxide.

Ferric-orthe-arsenate occurs in nature as the mineral scorodite, FcAsO4.211,0, and may be produced artificially by heating iron to 150° C, with a solution of arsenie acid, or by heating ferric arsenate in a similar manner with arsenic acid.9

The mosoleydrate, FeAsO₄, H₂O₅ is precipitated from solution.

The salt, when dried ineair, is a dull white insoluble substance, containing one molecule of water. When heated at 100° C, it becomes anhydrous. On treatment with sodium hydrogen carbonate solutions both the monohydrate and the anhydrons saft cause effervescence to take place, a soluble double arsenate being produced. It would appear, therefore, that the hydrated salt is acidic, and determinations of its basicity indicate that its formula is FeO.AsO₂(OH)₂.7 •

Colloidal ferric arsenate is prepared by the action of amnionium

hydroxide on the insoluble salt.10

```
1 Weinland and Gruhl, Arch. Pharm., 1917, 255, 467.
2 See Fehling, Annalen, 1850, 74, 87.

    Reichard, Ber., 1894, 27, 1019.
    Arzuni and Schütz, Zeitech Kryst. Min., 1894, 23, 529.
    Dobbin, Pharm. J., 1904, (4), 18, 585.
    Wittstein, Jahresber., 1866, 19, 243.

  Duncan, Pharm. S., 1905, (4), 26, 71.
Verneuil and Bourgeois, Compt. rend., 1880, 90, 223.
```

10 Holmes and Rindfusz, J. Amer. Chem. Soc., 1916. 38, 19702 .

Metzke, Jahrb. Min., 1898, I., 169

The anhydrous salt has been found as a deposit in the Deacon process for the preparation of chlorine, in the form of black prismatic crystals, belonging to the monoclinic system. Its crystallographic elements are :-

> a:b:c=0.6155:1:0.3221.β=77° 8'.

Density 4.82.1

A hydrated acid salt, 2Fe₂(HAsO₄)₃.9H₂O, results when solutions of disodium hydrogen arsenate and ferric chloride are mixed. The salt separates out as a white precipitate, soluble in aqueous hydrogen chloridc.

On addition of disodium arsenate, Na₂lIAsO₄, to iron ammonium alum, in the proportion of two molecules of the former to one of the latter, a precipitate of composition, Fc₂O₃, As₂O₅, is obtained, which varies in tint according to circumstances.2 Thus, on adding a small quantity of the arsenate to the alim solution a white precipitate is obtained; but, on reversing the procedure, the precipitate is brownish. The white precipitate turns yellow, and finally brown, however, when washed with water. In the presence of large excess of either constituent the basic saft, 3Fc₂O₃.2As₂O₅, is obtained. The following substances have also been prepared: 4Fc2O3.3As2O5, Fc2O3.As2O5.17H2O, 2Fe₂O₃.8As₂O₅.22·5H₂O, and Fe₂O₃.8As₂O₅.16·7H₂O.

Several basic arsenates occur as minerals, namely, iron sinter or pharmaco-siderite, 3FcAsO4.Fc(OH)3.6H2O; Yukonite, (Ca3, Fe2)As2O8.

2Fe(OII)3.5II2O.

arsenates, ammonium ferric ortho-greenate, double (NH₄)H₂AsO₄, FeAsO₄, and potasslum ferric arsenate, possibly represented by the formula KH2AsO4. FeAsO4, have been obtained.

An arsenate containing copper-namely, CuFc₄As₄O₁₇ or CuO. 2Fe₂O₃.2As₂O₅ - has been found in the form of rhombic crystals as a deposit during the manufacture of chlorine by the Deacon process.4

Other double ferric arsenates are: K2O.Fe2O3.2As2O5, Na2O.Fe2O4.

2As₂O₅, 8K₂O.2Fc₂O₃.3As₂O₅, and 3Na₂O.2Fc₂O₃.3As₂O₅.

IRON AND ANTIMONY.

Ferro mono-antimonide, FcSb.-By heating iron and antimony together in a crucible alloys of the two metals, in varying proportions, have been obtained. Laborde 6 concluded, & a result of studying the density and specific heat, that a compound, Fe₃Sb₄, is formed; but Maey, from an examination of the specific volumes of the alloys concludes that the compound formed is more correctly represented by the formula FeSb.

The di-antimonide,8 FeSb2, is obtained in an analogous manner and occurs as crystals in raw antimony obtained in the commercial

extraction of this metalloid.

```
    Ježek and Šimek, Zeitsch. Kryst. Mis., 1914, 54, 188.
    Metzke, Zeitsch. anorg. Chem., 1899, 19, 457.
    Curtman, J. Amer. Chem. Soc., 1910, 32, 626.
    Arrivni and Schütz, Zeitsch. Kryst. Min., 1894, 23, 529.
    Lefeyre, Compt. rend., 1890, 111, 36.
    Laborde, ibid., 1896, 123, 227.
    Maey, Zeitsch. physikal. Chem., 1901, 38, 292.
    Kurnakoff and Konstantinoff. J. Russ. Phys. Chem. Soc., 1908, 40, 227.
```

VOL. IX. : II.

It crystallises according to the rhombic system, the axial ratios being

 $a:b:c=0.75909 \cdot 1:0.96872.$

It melts at 732° C., and at that temperature undergoes partial decomposition into triferro di-antimonide, Fc3Sb2 :-

$$3\text{FeSb}_2 \Longrightarrow \text{Fe}_3 \text{Sb}_2 + 4\text{Sb}$$
.

Ferrous thio-antimonite, FraSb₂S₆ or 3FcS.Sb₂S₃, is obtained by precipitation from a solution of a soluble ferrous salt with a dilute solution of potassium thio-antimonite.2 It is readily oxidised, and always contains potassium if prepared from concentrated solutions. Ferrous metantimonate, $Fc(Sb\Omega_3)_2$. FeO or $2FcO.Sb_2O_5$, occurs in

nature as tripuhyte (see p. 28).

Ferric metantimonate, 2Fc(SbO₃)₃.13H₂O, has also been obtained.³ Ferric ortho-autimonate, Fc₂O₃.Sb₂O₅ or FeSbO₄, is obtained in the heptahydrated condition, 2FeSbO4.7H2O, by addition of excess of a concentrated solution of a ferric salt to a boiling solution of sodium antimonate. The di-antimonate, Fe₂O₃.2Sb₂O₅.11Jl₂O, prepared by precipitating iron ammonium alum with potassium antimonate,3 is a yellow salt which becomes anhydrous at 100° C.

¹ Iskull, Zeitsch. Kryst. Min., 1906, 42, 374.

² Pouget, Compt. rend., 1899, 123, 104.

Beilstein and Blase, Ghem. Zentr., 1889, p. 803.

⁴ Ebel, Ber., 1889, 22, 3044.

CHAPTER IX.

IRON AND THE ELEMENTS OF GROUPS IV. AND III.

• HRON AND CARBON.

Triferro carbide, Fc₃C, known to the metallurgist as cementite, occurs in meteorites associated with the carbides of mekel and cobalt, as the mineral Cohenite, (Fe, Co, Ni)₃C (see p. 12). It occurs normally in steel, and was first isolated ¹ by acting on steel with a solution of potassium bichromate in sulphuric acid. The inetal dissolves, leaving the cementite as a black powdery residue.

A variation of this method consists in using bars of steel as anodes in baths of dilute acid, platinum plates suspended in porous cells serving

as cathodes.2

 $oldsymbol{X}$ better method consists in first preparing a steel very rich in carbide and then effecting the isolation of the latter by dissolution of the free inctal in acid.3 To this end 1000 grams of iron are heated with arelamp or sugar earbon (100 grams), to white heat, and poured on to a large iron plate to solidify. After removing any scale, etc., the mass is powdered, digested for several weeks with normal acetic acid, and then with 1-normal hydrochloric acid. Any remaining earlion is removed by levigation, and the residual cementite washed with alcohol and ether, and finally dried in a vacuum.

As obtained in this manner, concutte is grey in colour and very buttle; it can be powdered in the hand. Its hardness is 3.2 to 3.3; density 4 at 21°C, 7-396; molecular volume 24.34. It crystallises in useudo-hexagonal form. The specific heat of cementite, as calculated from data obtained with carbon steels, is 0.1581.

The heat of formation of cementite has been determined by different investigators with very varying results, as indicated in the accompanying table :--

 $3[Fe]+(C)=[Fe_3C]+x$ calories.

¹ Abel, Iron, 1883, r, 76; 1885, t, 115; Proc. Inst. Mech. Eng., 1883, p. 56; 1885,

p. 30.

2 Osmond and Werth, Ann. Mines, 1885, 8, 5, Arnold and Read, Trans. Chem. Soc.,

2 Osmond and Werth, Ann. Mines, 1885, 8, 5, Arnold and Read, Trans. Chem. 1895, 13, 38; Camp. 1894, 65, 788; Mylne, Foerster, and Schoene, Zeitsch. amorg. Chem., 1895, 13, 38; Campbell, Amer. Chem. J., 1897, 18; 836.

Amer. Chem. J., 1897, 18; 836.
 Moissen, Compt. rend., 1897, 124, 716; Ruff and Gersten, Ber., 1912, 45, 63.

<sup>Moissan (Compt. rend., 1897, 124, 716) linds a density of 7.07 at 16° C.
Groth, Chemische Krystallographie, 1906, vol. 1.
Oberhoffel and Melithen, Metarurgie, 1908, 5, 173.</sup>

Value of x (calories).	Authority.
-15,800 No sensible heat evolution. +2270 +8940 +8494	Ruff and Gersten, Ber., 1918, 46, 894; 1912, 45, 68. Baykoff, Rev. Metallurgie; Mem., 1911, 8, 815. Germiloff, J. Russ. Metall. Soc., 1911, p. 851. Schenk', Semiller, and Falke, Ber., 1907, 40, 1704. Campifell, J. Iron Steel Inst., 1901, I., 211.

The exidence is admittedly conflicting, but the balance of evidence is distinctly in favour of the view that ecmentite is an andothermic

substance, as indicated by the results of Ruff.

The suggestion has frequently been made that cementite is not a compound, but a solid solution of earbon in iron. This view is not generally accepted, however, as otherwise a whole series of solid solutions. containing varying percentages of carbon might be expected to exist, which is not the ease.

When damp, cementite is rapidly oxidised in air, yielding a mixture of hydrated oxide and carbonaccous material. It is not altered by exposure to dry air; when very finely divided, it burns in air below '150° C, becomes incandescent in bromine vapour at about 100° C., in chloring at a somewhat lower temperature, and in sulphur vapour at about 500° C.2 Although insoluble in concentrated nitric acid, cementite dissolves in nitrie acid of density 1.18 to 1.2, yielding a brown-coloured solution, the depth of colour being proportional, other things being equal, to the amount of carbide in solution. By dissolving a given weight of steel in nitrie acid, therefore, and comparing the colour obtained with that when the same weight of a steel of known composition is employed, it is possible to estimate with considerable accuracy the amount of comentite in the first steel. This is known as the Eggertz test, and is largely used in steel works.

Comentite is less readily attacked than metallic iron by dilute hydrochloric acid; it is gradually dissolved by a normal solution of the acid, and feadily in a concentrated solution, the gaseous products

being hydrogen and hydrocarbons.3

The molecule of cementite is probably not represented by the simple formula Fe₃C, but by (Fe₃C), where n is some whole number greater than unity. At present there appears to be no method of determining the value to be assigned to n.

When if on containing comentite is maintained at a temperature a little above 706° C. for some time, the carbide dissociates almost completely into $\dot{\gamma}$ iron and graphite. This is quite in accordance with the view that cementite is an endothermic compound.

A consideration of the influence of cementite upon the metallurgical properties of iron is reserved for later discussion.

1 See, for example, Bayloff, loc. cit.

2 Moissen, loce cit.

Mylius, loc. cih; Campbell, loc. cit.
Ruff and Goocke, Metallurgie, 1911, 8, 417; Zeitsch. angew. Chem.; 1911, 24, 1134.
See this volume, Part III.

Diferro carbide, Fe.C.—By heating pure iron in a graphite crucible in contact with carbon, in an electric vacuum furnace, Ruff and Goecke 1 have been able to determine the solubility of carbon in liquid iron at temperatures ranging from 1220° to 2626° C., and to prepare a diferro carbide, Fe.C. the existence of which was suspected as resulting when cementite is subjected to prolonged annealing below 600° C. The results were obtained by suspending the crucible in the furnace, and when the desired temperature had been reached and maintained for a sufficient length of time the crucible was released by a mechanical device and dropped into ice water. The neetal was thus rapidly quenched without fear of this sociation due to slow-cooling. The combined carbon was then estimated, the results being as follows:—

Temperature.		Combined Carbon. Per cent	Temperature.	Combined Carbon. Per cent.		
	1220	4 58	2169	8-21		
	1305	4 4.81	2220	9.60		
	1522	5.46	2271	8.97		
	1628	5.78	2320	8·61		
	1823	6.59	2420	8·09		
	2020 \$	6·95	2475	7·78		
	2122	7·51	2626	7·45		

These results, when plotted in the form of a curve (see fig. 8), exhibit

a break at 1887° C., corresponding to the composition of cementite, Fet. A maximum occurs at 2220° C., with 9-60 per cent. of combined carbon, which corresponds to diferro carbide, Fe₂C. Up to this temperature

¹ Ruff and Goecke, Zeitsch. angew. Chon., 1911, 24, 1834; Metallurgie, 1911, 8, 418; Ruff, ibid., pp. 488, 497.

R. D. Campbell and Kennedy, J. Iron Steel Inst., 1902, II., 288; Benrelicks, Metallurgie, 1909, 6, 567.

it was observed that the molten mass remained uniformly liquid, with a bright reflecting surface. Above this temperature graphite began to separate out, but the temperature had to be raised very earefully, as otherwise the whole mass became suddenly ejected from the crucible, in consequence of the violent decomposition of the diferro carbide into iron and free graphite, with evolution of heat, the compound being endothermic.

Both earbides, Fe₃C and Fe₂C, are thus endothermic compounds at temperatures above 700° C., and the diminished solubility of graphite in iron above 2220° C. is due to dissociation of the diferro carbide.

Below 2220° C. the reaction **

$$3Fe_2C \rightleftharpoons 2Fe_3C + C$$

obtains, whilst at 1837° C. the cohentite dissociates:-

Iron dicarbide, F&C2.--A substance of this composition has been prepared 1 by allowing melts of iron, containing from 6 to 10 per cent. of carbon, to cool. Crystallisation begins at 2380° to 2000° C., a pale, yellow earbide separating out, with a silvery reflex. It is slowly attacked by nitrie acid, and, when immersed in dilute copper sulphate solution, becomes coated with a film of metallic copper.

When anunonium ferrocyanide, or its double empound with " ammontum chloride, is heated, a black magnetic powder is obtained. This, upon ignition in air, is completely transformed into ferric oxide without any change in weight, and is believed 2 to be the diearbide, FeC.

Several other carbides have been described, namely, the monocarbide, FeC; tetraferro carbide, Fe₄C (which decomposes into y iron and graphite at temperatures below 1130°,C.); FcC₄,4 Fe₃C₂,4 Fe₅C, and Fe₁₂C. The two last-named are obtained by the prolonged action of carbon monoxide on iron at red heat. Fe12C is more readily soluble in sulphuric acid than Fe₅C, which quables the latter to be separated : ~

 $Fe_{12}C + 12H_0SO_4 = 12FeSO_4 + CH_4 + 10H_2$

Iron Carbonuls.

Several compounds of iron and carbon mouoxide are known. Monday and Quincke were the first to obtain experimental evidence of the existence of volatile iron earbonyls; they succeeded in volatilising reduced iron in a current of carbon monoxide to a very slight extent, and concluded that a tetracarbonyl, Fc(CO)₄, had been produced corresponding to the nickel analogue, Ni(CO)₄, which had been prepared the previous year. A few months later Mond and Langer succeeded in the previous year. in isolating the iron carbonyl, and found it to be not the tetra but the penta derivative.

```
    Wittorf, J. Russ. Phys. Chem. Sec., 1911, 43, 1613.
    Ljubavin, ibid., 1912, 44, 609.
```

Wittorf, loc. cit.

Franck, Stahl will Eisen, 1896, 16, 585; Chem. Zeetr., 1896, II., 573.

Gautier and Claustrain, Compt. reed., 1910, 151, 16.
 Mand and Quincke, Trans. Chem. Soc., 1891, 59, 604.
 Mond, Langer, and Quincke, ibid., 1890, 57, 720

Mond and Langer, ibid., p. 1090.

Iron pentacarbonyl, Fe(CO), was obtained by Mond and Langer by allowing finely divided iron, obtained by reduction of ferrous oxalate in a current of hydrogen, to remain twenty-four hours in an atmosphere of carbon monoxide. The gas was gradually absorbed, and, on warming the whole to 120° C. The carbonyl distilled over and condensed in a tube kept at -20° €.1

As obtained in this way iron pentacarbonyl is a somewhat viscous liquid, pale yellow in colour, which solidifies at about -21° C, to a mass of yellow needle-shaped crystals. On heating the vapour it dissociates into metallic iron and carbon monoxide, dissociation being practically complete at 216° C.2

The empirical formula, Fc(CQ)5, has been confirmed in several analyses, and the fact that the molecule is single and correctly represented by the above formula, when the carbonyl is dissolved in benzene, has been proved by eryoscopic measurements. The solid earbonyl melts at $-19\cdot5^\circ$ to -20° C., and the liquid boils at $102\cdot5^\circ$ C., under 760 mm, pressure. • Its density at various temperatures has been determined as follows: -

Temperature.	Density.
0	• 1.4937
21.1	1-4565
10	1 4330
60	1.3825

Its mean coefficient of expansion with rise of temperature is 000188. Its vapour pressure at various temperatures is as follows:

78 0 16:1 18:4 * 35 57 7 Temperature, °C. Vapour pressure in mm. 110° 16.0 25.9 28.2 52.0 133.0 811.2 .

The halogens decompose solutions of the earbonyl in carbon tetrachloride with the formation of ferrous salts. In the presence of excess of chlorine, however, ferric chloride is formed. The velocity of reaction Talls rapidly from chlorine to iodine.

Iron pentacarbonyl is adsorbed by metalic iron.³

The fact that the halogens decompose the pentaearbonyl, yielding ferrous salts, apparently suggests that the iron is merely divalent in the carbonyl. If so, the structural formula is presumably; 4

Gascous hydrogen chloride and bromide are without action upon. liquid iron pentacarbonyl, but hydrogen iodide reacts with it, yielding

¹ Stoffel (Them. Weekblad, 1911, 3, 722) has investigated the conditions governing the formation of Fe(CO), and shows that the presence of amounts accelerates the reaction.

2 Devar and H. O. Jones, Proc. Roy. Soc., 1905, A, 75, 558.

2 Stoffel, Eighth Inter. Cong. App. Chem., 1912, 2, 225.

4 Mond, loc. cit.; Gladstone, Phil. Mag., 1893, (5), 35, 204; Friend, The Theory of Valency (Longmans, 1909), p. 117, contrast Silva, Bull. Soc. chim., 1897, (3), 15, 835.

ferrous iodide, carbon monoxide, and hydrogen. When exposed to sunlight, the pentacarbonyl, either alone or in solution, decomposes, vielding:—

Diferro nonacarbonyl, Fc₂(CO)₀, which separates out as orangered crystals, which are stable in dry air. The maction is as follows:—

•
$$2\text{Fe}(CO)_5 \rightleftharpoons \text{Fe}_2(CO)_9 + \text{CO}$$

The electric are only induces the above change slowly, whilst the acetylene flame has very little influence. Elue light is most effective, the activity falling as the red end of the spectrum is approached. Variation of pressure up to 125 atmospheres is without influence, whilst heating to 60° or 100° C. entirely inhibits the change. The reaction induced by light is slowly reversed in the dark. The reaction proceeds more readily in other, alcohol, or light petroleum solution than in benzenc.

To obtain the nonacarbonyl in a pure condition, the penta derivative is dissolved in dry ether or light petroleum, and exposed to sunlight. The resulting crystals are dried over sulphuric acid and solid paraffin. The nonacarbonyl is practically insoluble in ether, benzene, or light petroleum; slightly more soluble in ethyl alcohol or acctone; and more so in pyridine. Its density at 18° C. is 2.085. On warming, it decomposes at about 100° C., yielding the pentacarbonyl, free iyon, and carbon monoxide. Thus:—

$$2Fc_2(CO)_9 = 3Fc(CO)_5 + Fe + 8CO.$$

When crystals of the nonaearbonyl are warmed with certain solvents to from 50° to 90° C., in an atmosphere of carbon dioxide, they dissolve, yielding green solutions which contain a third carbonyl, namely:—

Iron tetracarbonyl, Fc(CO), the analogue of nickel carbonyl. Dewar and Jones 2 obtained it in the form of dark green prismatic crystals from the green tolnene solution. Iron tetracarbonyl is stable under ordinary conditions, but dissociates into metallic iron and carbon monoxide at 140° to 150° C. The crystals have a density of 1996 at 18° C., and are soluble in toluene, light petroleum, etc., yielding dark green solutions which slowly decolorise at 100° C., and rapidly at 140° C., metallic iron being deposited. From cryoscopic measurements it appears that the tetracarbonyl has a high molecular weight when dissolved in between.

Ferro-nickel nonacarbonyl, FeNi(CO), appears to be formed when iron pentacarbonyl is dissolved in nickel tetracarbonyl.

Ferrous carbonate, FcCO₃, occurs in nature as spatic iron ore (see p. 20), which, however, is not pure, even in the crystalline form, as it contains several other isomorphous carbonates. When crystalline, the mineral is generally known as chalybite of siderite. The crystals belong to the hexagonal system, and are brown in colour. Upon exposure to moisture and air they are gradually converted into hydrated ferric oxide. When heated, they begin to decompose at about 400° C.4 in air.

In the laboratory ferrous carbonate may be obtained as a white.

¹ Dewar and Jones, Proc. Roy. Soc., 1905, A, 76, 558; 1907, A, 75, 66.

Devar and Jones, loc. cit.

Dewar and Jones, ibid., 1905, A, 76, 558.

Friedrich and L. G. Smith, Centr. Min., 1973, pp. 616, 651, 684.

precipitate by adding sodium carbonate to a solution of ferrous sulphate in the absence of air. If air is present, the precipitate rapidly turns green in consequence of oxidation, carbon dioxide is evolved, and ultimately the mass consists almost entirely of ferric hydroxide.

If the air is entirely excluded, the original white precipitate may be

washed and dried and kept in a hornetically scaled tube.

Microscopic crystals of ferrous carbonate have been obtained by precipitating the salt from a ferrous solution with sodium hydrogen carbonate, and heating the mixture in closed tubes for twelve to thirtysix hours at 150° C.

The heat of formation of ferrous carbonate is 1

$$[\mathrm{FeO}] + (\mathrm{CO}_2) = [\mathrm{FeCO}_3] + 25,200 \text{ calories.}$$

Ferrous hydrogen carbonate or ferrous blcarbonate, YcH2(CO3)2, exists in solutions obtained by dissolving ferrous oxide or carbonate in water charged with excess of carbon dioxide. On exposure to air carbon dioxide is evolved, and a precipitate is obtained consisting essentially of ferric hydroxide.2

The solubility of ferrous carbonate in water and in aqueous solutions of certain mineral salts under a pressure of two atmospheres of carbon dioxide is as follows:--3

Salt	Concentration in Grams per Litre	FeCO ₃ Grams per Litre at Ut' to 18° C.		
•	0.0	G-1907		
MgCl ₂ .6H ₂ O	86-9 700-0 1150-0 1437-5 1725 2300	5-8403 - 1-5555 4-4587 - 1-6934 - 5-3975 9-0524		
Na ₂ SO ₄ .10H ₂ O	{Saturated at 14° C.	•7·9428 •9·578		
MgSO ₄ .7H ₂ O	105.8 Saturated at 18° C.	0-2428 7-8922		

Ferrous potassium carbonate, FcK2(CO3)2.4112O, may be prepared by mixing, out of contact with air, a concentrated solution of ferrous chloride with excess of potassium carbonate. At first a white precipitate of ferrous carbonate is formed, which soon dissolves to a greenish solution from which the double salt crystallics in nearly white scales.

[·] Ferric carbonate is too unstable to exist in the dry state. It is

¹ Le Chatelier, Compt. rend., 1695, 120, 623.

^{*} Just (Ber., 1907, 40, 3695) has studied the kinetics of the autoxidations of ferross hydrogen carbonste in water.

* Ehlort and Hempel, Zeitsch. Elektrochem., 1912, 18, 727.

* W. C. Reynolds, Trens. Chart. Soc., 1898, 73, 202.

produced when a ferrie salt is precipitated with sodium carbonate, but rapidly loses carbon dioxide, leaving a precipitate consisting mainly

of ferrie hydroxide.

Complex Iron Carbonates.—Complex ammonium iron carbonates have been prepared in solution by adding excess of ammonium carbonate to ferrous or cerric salts in aqueous solutions. Ferric ammonium carbonate solution is blood-red in colour, and stable when kept in a closed vessel, but deposits ferric hydroxide on evaporation. Ferrous ammonium carbonate yields a colourless solution, which, upon oxidation in a limited supply of air, yields doubly refracting green prisms of basic ferroso-ferric ammonium carbonate, NII, CO₂₄Fe.CO₃.Fe.CO₃.Fe.CO₃.Fe.CO₂₄Fe.CO₃₅ This, when treated with alkali hydroxides, yields magnetic ferroso-ferrice oxide (see p. 144).1

A basic carbonate is obtained by grinding crystals of ferric chloride with a slight excess of crystallised sodium carbonate until no more carbon dioxide is evolved. The now liquid mixture is mixed with water, and the precipitate allowed to settle, and aried. The proportion of carbon dioxide present is liable to vary, as washing the precipitate induces hydrolysis. A substance of composition approximating to

7Fc₂O₃.CO₂.8II₂O has been obtained.^{2*}

Ferrous thlocarbonate, FeCS_a-On adding an alkali thiocarbonate to ferrous sulphate solution a red liquid is obtained, which gradually, becomes darker in colour on standing. The solution is believed to contain ferrous thiocarbonate (Rerzelius).

Ferrous exythiocarbonate, Fe CO, is sometimes formed in natural waters in solution as the result of combination between ferrous sulphide and carbon dioxide. It has been detected in the waters of the Rhonc.3

Ferrous thlocarbonate hexammoniate, Fc₂C₂S₇.6NH₃.2H₂O, is prepared by warming a mixture of ferrons hydroxide, aqueous ammonia, and carbon disulphide. It yields black tetragonal prisms, with violet iridescence. On exposure to air it decomposes with heat, ferric hydroxide resulting.4

IRON AND CYANOGEN.

Ferrous cyanide is obtained 5 as a yellow powder on heating hydrogen ferroeyanide, $H_4Fc(CN)_6$ in the absence of air to 300° C. Hydrogen cyanide is evolved. It is also obtained on heating ammonium ferrocyanide in the absence of air.⁶ Ferrous cyanide is stuble, in the absence of oxygen, but even in cold air it rapidly becomes worm, and when gently heated it glows, yielding ferric oxide.

• The constitution of ferrous eyanide is discussed by Browning, who suggests that it is really an isocyanide, for, when warmed with potassium

e Browning, Trans. Chem. Soc., 1900, 77, 1234.

^{**} Hauser, Ber., 1905, 38, 2707.

** Feist, Mrch. Pharm., 1909, 247, 439.

** Causse, Compt. rend., 1900, 131, 947.

** Wiede and K. A. Hofmann, Zeitsch. anorg. Chem., 1806, 11, 379.

** Robiquet (see Dammer. Handbuch der anorganischen Chemie, 1893, III., 364) believed that ferrous cyanide resulted Then Prussiane blue was reduced by hydrogen sulphide.

*Hofmann (Agealen, 1907, 352, 54) shows that this cannot be correct.

** Berzelius, Ann. Chim. Phys., 1820, (1), 15, 228.

** Rrowning. Trans. Chem. Soc., 1900, 77, 1234.

ethyl sulphate in a current of hydrogen, it yields ethyl isocyanide. The formula for ferrous eyanide is thus Fe(NC)2, rather than Fe(CN)3.

Ferric cyanide is not known, but large numbers of complex derivatives of both ferrous and ferric eyanides have been prepared in which the iron enters into the negative radicle. These are known as ferroand ferri-cyanides respectively.

Constitution of Ferro- and Ferri-cyanides.

The constitution of hydrogen and alkali ferrocyanides has for many years been a matter of dispute. Both Graham and Erlenmeyer's believed that the cyanogen radicles were present in groups of three, as in evanuric acid, $C_3N_3(\mathrm{OH})_{\rm p}$ so that the formula for hydrogen ferroeyanide becomes: -

Etard and Bémont 2 and Friedel 3 suggested the cyclic formula : -

whilst Browning 4 writes hydrogen ferrocyanide as :--

The results obtained for the osmotic pressures and electric conductivities of aqueous solutions of calcium and strontium ferrocyanides (see pp. 208 and 220) indicate that these molecules possess the double formula, $M_4[Fe(CN)_6]_2$. On the other hand, tetra-ethyl ferrocynnide is known to have the single formula, $(C_2\Pi_5)_4Fe(CN)_6$.

Each of the two latter graphical formulae as written above assumes that the iron and hydrogen are attached directly to the introgen and not to the earbon atoms. This is supported, in so far at the hydrogen atoms are concerned, by Freund's a preparation of ethyl ferrocyanide from silver ferrocyanide and ethyl iodide :

$$-4C_2H_5I+Ag_4[\operatorname{Ke}(\operatorname{CN})_6]=4AgI+(C_2H_6)_4[\operatorname{Fe}(\operatorname{CN})_6].$$

The ester, on heating, decomposed, yielding ethyl isocyanide, C₂H₅NC.

As has already been mentioned, hydrogen ferrocyanide, when

· Freund, Ber., 1888, 21, 931, •

¹ Graham, Elements of Chemistry, 1842, 1, 200; Frienmeyer, Lehrbuch der organischen Chemie, 1807, 148.

Etard and Bemont, Compt. gend., 1884, 99, 972, 1024.

Friedel, Mid., 1887, 104, 994.

Browning, Trans. Chem. Soc., 1900, 77, 1234.

Buchbock, Zeitsch. physikal. Chem., 1897, 23, 157.

heated in the absence of air, yields ferrous cyanide, and if the tooyanide constitution be accepted for this salt, it may be inferred that the same

grouping, namely Fc(NC), occurs in hydrogen ferrocyanide.

To this extent, therefore, the two foregoing formulæ agree, but Browning suggests that his formula is probably more nearly correct as it offers a more ready explanation for the formation of nitroprussides, etc., no rupture of a hexatomic ring being necessary. Thus, potassium nitroprusside becomes:—

Neither formula, however, explains the fact that the potassium atoms are labile, whilst the iron atom is not. Deniges overcomes this difficulty by the formula:—

In common with Browning's formula, 'thus scheme admits of the ready formation of nitroprussides without disrupting a 'ring. Further-more, since the iron is not attached in the same way, as the potassium atoms, being linked to earbon instead of nitrogen, a difference in stability may reasonably be expected.

The weakness of this formula lies in the fact that the only available evidence on the subject points to the conclusion that the iron is attached directly to nitrogen, and not to the carbon as here represented, ferrous

eyanide having the isocyanic structure.2

According to Werner's theory (see this series, Vol. X.), the formulæ of hydrogen ferro- and ferri-yanide should be written [Fc(CN)₆]H₄ and [Fc(CN)₆]H₃ respectively, the six cyanogen groups being co-ordinated with the iron atom, and constituting the nucleus around which hover the replaceable hydrogen atoms.

In 1911 Briggs believed that he had succeeded in isolating two isomerides of potassium fetrocyanide, and suggested their representation by the following stereo-isomeric schemes:—

Deniges, Bull. Soc. chim., 1916, 20, 79. Browning, loc. cit.

Briggs, Trans. Chem. Doc., 1911, 99, 1019. See also p. 212.

'In 1899 Locke and Edwards concluded, that potassium ferrioyanide exists in two someric forms. This has been disputed; and the evidence is certainly even less substantial than in the base of the ferrocyanide under discussion. See Locke and Edwards, Amer. Chem. J., 1899, 21, 193, 413; Bellucci and Sabatini, Alti R. Locad Linnes, 1911, (5), 25, 179.

WHICH BUT I HAVE

although it was not possible to determine which isomeride corresponded

to each particular scheme.

Bennett, however, dissented from this view. Having prepared the two "isomerides" according to the directions given by Briggs and measured their angles, he concluded that there can be no doubt of their crystallographic identity. Briggs * therefore reinvestigated the problem, and showed that the so-called β ferrocyanides are in reality unixed crystals of ferrocyanide and equopentacyanoferrite, K3[Fe(CN),1H2O]. (See p. 215.)

There still remains, however, the possibility of isomerism of the inorganic ferrocyanides being ultimately discovered, comparable · with the undoubted isomerism manifested by the tetramethyl salt,

(CH₃)₄Fe(CN)₆.3

Now, Werner's formula does not admit of the possibility of isomerism of ferrocyanides. This is not the ease, however, with the formula of Deniges, Browning, and of Etard, several rearrangements being possible. According to Friend's shell theory three isomerides, namely, ortho, meta, and para, are possible. Thus:—

In an analogous manner three isomerides are, theoretically, possible for potassium ferrievanide, K₃Fe(CN)₆, in which the central iron atom is trivalent. All of these cyclic schemes are in harmony with the isoeyanic structure of ferrous cyanide. They also serve to explain why.

the potassium ions are ionisable, whereas the iron atom, bound within the centre of the shell, constitutes part of the negative radicle.

When a solution of potassium ferrocyanide reacts with rather less than one equivalent of a ferfic salt, a blue hydrated precipitate of a-soluble Prussian blue, or territo potassium ferrocyanide Fe"K[Fe"(CN), is obtained. Now, Hofmann and his co-workers 5 have shown that this precipitate is identical with that prepared under precisely similar conditions by the addition of a ferrous salt to potassium ferricyanide, although in this case ferrous potassium ferricyanide, Fe"K[Fe"(CN)a], might be expected. It is therefore assumed that the latter salt is unstable, and, at the moment of formation, undergoes intramolecular rearrangement to the former complex. •

By adopting the shell formula, however, the difficulty at once

* Hartley, ibid., 1913, 103, 1196. * Friend, ibid., 1916, 109, 715.

Bennett, Trans. Chem. Soc., 1917, 111, 490. See also Piutti, Ber., 1912, 45, 1830;
 Hauser and Biesalski, ibid., p. 3516; Wells, Amer. Chem. A, 1913, 49, 205.
 Beiggs, Teans. Chem. Soc., 1920, 147, 1926.

⁵ Hofmann and to workers, Annales, 1904, 337, 1.

disappears, for the two salts are seen to be identical without fearrangement. For example, 1, 4 ferrocyanide reacts with a ferric salt yielding 2, 8, 5 ferric 6 potassium 1, 4 ferrocyanide, which is clearly the same as 1, 4 ferrous 6 potassium 2, 3, 5 ferricyanide obtained by the action of a ferrous salt on potassium 1, 2, 4 ferricyanide. Thus:-

Ferrocyanides, M₄[Fc(CN)₆].

The reactions of soluble ferrocyanides are in general typified by thos of the potassium salt, the properties of which are therefore discussed in detail (see p. 212).

Hydrogen ferrocyanide, Ferro-cyanic acid, H₄[Fc(CN)₆], is conveniently prepared by adding concentrated aqueous hydrogen chloride solution to a saturated solution of potassium ferrocyanide, in the cold ;-

$$K_4[Fc(CN)_6] + 4HCl = 4KCl + H_4[Fc(CN)_6].$$

The precipitate, dried in the absence of air, is dissolved in alcohol and re-precipitated as a white powder on addition of ether, but apparently combined with two molecules of other, which, however, evaporateaway upon exposure to air, leaving the pure acid as a residue.3

Ferrocyanic acid is also obtained when a solution of insoluble Prussian blue in hot, concentrated hydrochloric acid is allowed to stand

(see p. 22%).

Hydrogen ferrocyanide is soluble in water and possesses a strong acid reaction. The solution decomposes on boiling, evolving gaseous hydrogen cyanide, and yielding a white precipitate of ferrous cyanide. Thus :--

$$_{\epsilon}$$
 H₄[Fe(CN)₆] = 4HCN+Fe(CN)₂.

- 1 These views have been vigorously attacked by E. E. Turner, Trans. Chem. Soc., 1916, 109, 1130. "
 Liebig, Annalen, 1853, 87, 127; Joannis, Ann. Chim. Phys., 1882, (5), 26, 484.
- Etard and Bémont, Compt. rend., 1884, 99, 972, 1024.

 Borzelius, Bohwelgger's J., 1820, 30, 57; Adie and Browling, Trans. Chem. Soc., 1900, 77, 150.

Upon exposure to air hydrogen ferrocyanide absorbs oxygen, yielding hydrogen cyanide and a ferric salt of the original acid. Thus:-

$$7H_4[Fe(CN)_6] + O_2 = 24IFCN + 2H_2O + Fe_2[Fe(CN)_6]_9$$

Heated in the absence of air to 300° C., a pale yellow powder (ferrous

cyanide) is obtained, hydrogen cyanide being evolved. The heat of neutralisation of ferrocyanic acid with 4 molecules of

potassium hydroxide is
$$H_4Fc(CN)_6 + 4KOH = !K_4Fc(CN)_6 + 4H_2O + 57,000 \; calories$$

at 12° C.3 The heat of formation of lerrocyanic acid from its elements is -122,000 calories.

Aluminium ferrocyanide, Al₄ [Fc(CN)₆]₃,17H₂O, is formed when solutions of alum and potassium ferrocyanide are mixed in the cold, the alum being (presumably) in excess 6; otherwise the double aluminium

ammonium salt is produced.

Aluminium ammonium ferrocyanitle, Al(NII₄)Fc(CN)₆.4II₂O, is formed as a jelly on mixing equivalent solutions of aluminium chloride wind ammonium ferrocyanide. The salt is difficult to isolate, but is obtained as a precipitate by centrifugating at 3000 revolutions per minute. The precipitate is washed with acctone and other and dried in vacuo. It resembles the potassium salt in appearance, being dark green and transparent in lumps, but a light blinsh green when powdered. At 100° C, it becomes anhydrous and assumes a deep blue colour.

Aluminium potassium ferrocyanide (see p. 218).

Ammonium ferrocyanide, (NH₄)₄Fe(CN)₆.3H₂O, may be obtained either by the action of ammountm hydroxide upon Prussian blue, or by neutralising hydrogen ferrocyanide with ammonia.7 On concentrating the solution over potassium hydroxide in a vacuum, the salt crystallises out in thin, greensh-yellow plates, or the salt may be precipitated from solution with alcohol.8 When heated in the absence of air, ammoninin ferrogyanide yields ferrous evanide." The aqueous solution of the salt is very instable, being decomposed on merely warming, yielding, amongst other products, animonium eyanide." When boiled in contact with air, it yields a dull green deposit of Fe '2Fe '(NII4), Fe"(CN), 4.817, O.10

The double salt with ammonium chloride, (NH₄) Fr(CN)6 NH₄Cl, 3H2O, is obtained as pale yellow or brown crystals by gooling warm, mixed solutions of ammonium ferrocyanide and ammonium chloride in the presence of sodium eyanide or of acetic acid respectively. The anhydrous salt has also been obtained.8

Reemann and Carius, Annavan, 1888, 123, 1888, 137, 65. Compared Joannas, Compt. 1990, 77, 150.

Chrétien and Guinchant, Compt. And., 1903, 137, 65. Compared Joannas, Compt. rend., 1882, 94, 725.

Berthelot, Thermochimie, 11., 294.

Wyvouboff, Ann. Chim. Phys., 1879, (5), 18, 446.

Robinson, Trans. Chem. Soc., 1909, 95, 1353.

Bunsen, Pegg. Annalan, 1835, 36, 404; Bitiggs, Trans. Chem. Soc., 1911, 99, 1019.

Etard and Bémont, Compt. rend., 1885, 100, 198.

Berrelius, Ann. Chim. Phys., 1820, (1), 15, 228.

Williams, Proc. Chem. Soc., 1913, 29, 54.

Briggs, Jos. cit.

Browning, TransaChem Soc., 1900, 77, 1234. See also Rammelsberg, Pogg. Annalen.
 1851, 38, 364; 1851, 42, 111; Etard and Bemest, Compl. rend., 1882, 99, 972, 1024.
 See Robiquet, Ann. Chem. Phys., 3819, (1), 12, 277. Paul and Bemont, bec. cik;

Reemann and Carius, Annalen, 1860, 113, 39 ; Adie and Browning, Trons, Chehn Soc.

Barium ferrocyanide, BarFe(CN), 6H2O, is readily prepared by boiling Prussian blue (see p. 225) with the requisite quantity of barium hydroxide solution. It also results when ferrous sulphate and barium evanide solutions interact.

Upon concentration the salt crystallises in mongclinic prisms.

Cadmium ferrocyanide.—On addition of potassium ferrocyanide to solutions of cadmium saits, complex precipitates containing cadmium and potassium in varying proportions are obtained.

The hepta-ammoniate has been prepared, namely Gd₂Fe(CN)_{6.7}NH_{3.2} Cadmium ammonium and cadmium potassium ferto cyanides are

known.8

Cæsium ferrocyanide, Cs₄Fc(CN)₆+(?)6H₂O, has been prepared by

neutralising hydrogen ferrocyanide with egsium hydroxide.4

Calcium ferrocyanide, $Ca_2Fe(CN)_0.xII_2O$ (where x=11,5 or 12,6), may be obtained by boiling Prussian blue with the calculated quantity of milk of lime. It is also formed when hydrogen evanide is passed into a suspension of lime and ferrons hydroxide in water. The salt crystallises in pale yellow triclinic prisms, which are more soluble in cold water than in hot.

The density of the salt is 1.68. At 500° C., in the absence of air of oxygen, it decomposes, yielding calcium cyanamide. Thus:-

$$Ca_2Fc(CN)_6 = 2CaCN_2 + Fc + N_2 + 4C.$$

The osmotic pressures of solutions of calcium ferrodyanide in water have been determined for various concentrations, and the results indicate that the negative radicles are associated, yielding the double

ion [Fe(CN)6]2""".

Calclum ammonium ferrocyanide, (NIi₄)₂CaFc(CN)₆, results on inixing cold concentrated solutions of calcium chloride and ammonium ferrodyanide, in equimolecular proportions, washing the precipitate and drying in air or at 100° C. It also results on boiling potassium calcium ferrocyanide (see, o. 219) with water containing a large excess of ammonum chloride.

One part of the salt dissolves in 888 parts of water at 15° to 17° C. Cerium ammonium ferrocyanide, (NH₄).CcFe(CN)₆, is obtained ⁸ on mixing, in the cold, concentrated solutions of cerium chloride and ammonium ferrocyanide. • No description of the salt has been given.

Cerium potassium ferrocyanide (see p. 219).

Cerium sodium Serrocyanide (sec p. 220). Cobalt ferrocyanide, Ca₂Fe(CN)₆.7H₂O₇⁰ is obtained by neutralising the free acid with cobalt hydroxide. It is less stable than the corresponding nickel salt. It is green in colour; oxidised by chlorine water to ferricyanide and by bromine water to hydrated cobaltic oxide. 10

- 1 Howe and Campbell, J. Amer. Chem. Soc., 1895, 20, 29.

 Peters, Zeitsch. ans.y. Chem., 1912, 77, 137.9

 See Küller and Falk, J. Amer. Chem. Soc., 1904, 26, 952; Miller and Fisher, ibid., 1900, 22, 537; 1902, 24, 228.

 Briggs, loc. cid.

 Briggs, loc. cid.
- Briggs, 60c. Cit.
 Berkeley, Hartley, and Burton, Phil. Trans., 1908, A, 209, 177; Berkeley, Hartley, and Stephenson, ibid., p. 319.

 - Joannis, Compt. rend., 1882, 94, 725.
 Brown, Trans. Chem. Soc., 1907, 91, 1826.

 - Robingon, ibid., 1909, 95, 1353.
 Wyrouboff, Jahresber., 1876, 29, 311.
 Werner, Zeitsch. anal. Ohem., 1919, 58, 23.

poiling with concentrated hydrochloric acid, the acid salt CoH.Fe(CN).4H.O, is obtained.1

The tri-ammoniate, Co. Fe(CN), 3NH, has been prepared.2

Copper (cupric) ferrocyanide, Cu₂[Fc(CN₂), Aq., is obtained as a brown precipitate by mixing solutions of copper sulphate and potassium ferrocyanide, the former salt being present in excess. An interesting experiment consists in preparing in a gas jar a saturated solution of copper sulphate and thluting some 50 per cent. A drop of saturated potassium ferrocyanide solution is now introduced by means of a pipette and rapidly sinks to the bottom of the jar. It does not mix with the copper sulphate solution, for its surface which came into contact with the latter solution is now covered with a thin and invisible membrane of copper ferrocyanide. After lying at the bottom of the jar a little while, the drop will be seen to increase slightly in bulk, and then rise up through the copper sulphate solution to the top of the jar. This is due to water passing through the copper ferrocyanide membrane and reducing the density of the polassium ferrocyanide solution.4

Evidence has been obtained suggestive of the possible existence of the trihydrate, Cu. Fc(CN)6.3118O.5.

The salt is largely used in experimental work dealing with osmosis. The pores in a copper ferrocyanide membrane are exceedingly fine, ranging from \ll to 60 $\mu\mu$ in diameter, the average being from 15 to The osmotic action is not due to a selective mechanical filtration, but to selective adsorption on the surface of the membrane. Hence such membranes as have the smallest pores and expose the

greatest superlicial area are the most efficient semipermeable structures. Copper ferrocyanide may be obtained in colloidal form of high chemical purity by prolonged dualysis of the solution obtained by mixing equivalent solutions of sodium ferroeyanide and copper shloride (or sulphate).8

The molecular weight of colloidal copper ferrocyanide has been

calculated as 700,000.

When boiled with concentrated nitric acid, a ferroferricyanide is obtained 10 of the composition

$$Cn_7 \|Fe''Fe'''(CN_{212}^{\bullet})_2 30 \mathbb{M}_2 O.$$

When boiled with concentrated hydrochloric acid, the acid salt CuH2Fe(CN), 4H2O, is obtained as a yellow, insoluble substance J1 This, when digested with solutions of the chlorides of the alkali metals,

Williams, Proc. Chem. Soc., 1912, 28, 317.
 Peters, Zeinch. anorg. Chem., 1917, 77, 137.

Namely, at least five molecules of copper sulphate to one of possessem ferrosyanida (E. Müller and co-workers, J. pratt Chem., 1912, 86, 82).

^{**}Thiel, Zeitsch. Elektrochem., 1906, 72, 229.

**Thiel, Zeitsch. Elektrochem., 1906, 72, 229.

**Tinker, Proc. Roy. Soc., 1915, A, 93, 268.

**See Tinker, loc. cit.; Beutner, J. Physical Chem., 1913, 17, 344.

**Tinker, Proc. Roy. Soc., 1916, A, 92, 357. By \(\mu\) is generally understood 0.001 mm.

Tinker, 170c. 109, 150c., 150c, 150c., 150c

o. vol. ix.: ii.

liberates hydrochloric acid, yielding alkali cupriferrocyanides. Thus, for example, with potassium chloride :- 0

$$CuIl_2Fo(CN)_6+2KCl=CuK_2Fo(CN)_6+2HCl.$$

With sodium chloride solution in the cold only half the hydrogen is replaced, thus :-- c

This latter salt, when digested with potassium or ammonium chloride,

yields CuNaKFc(('N), or CuNaNH4Fc(CN), respectively.

The acid salt Cull, Fe(CN), thus behaves as a dibasic acid, namely cupriferrocyanic acid, and gives rise to a definite series of salts known as cupriferrocyanides, which are discussed on p. 211.

Cuproferrocyanides, M2Cu2Fe(CN)6.

Ammonlum cuproterrocyanide, (NII42/Cu2Fe(CN)6, results 1 when cuprous evanide is boiled with a solution of ammonium ferrocyanide containing ammonium sulphite, and hydrogen passed through the mixture. It may also be obtained by double decomposition of the sodium salt with ammonium nitrate. It crystallises in small, colourless six-sided prisms, which readily decompose both under water and on mere exposure to air or in a vacuum.

Barium cuproferrocyanide, BaCu₂Fc(CN)₆ and calcium cuproferrocyanide, CaCu Fc(CN), are obtained by boiling copper cyanide with the corresponding ferrocyanides. They crystallise in colourless, hexagonal prisms which cannot be distinguished from one another.

Lithium cuproferrocyanide, Li₂Cu₂Fe(CN)₆, is obtained by boiling cuprous eyanide with a solution of lithium ferrocyanide containing lithium sulphite, hydrogen gas being simultaneously bubbled through the solution. It crystallises in colourless, hexagonal prisms.

Magnesium cuproferrocyanide, $MgCu_2Fe(CN)_6$, results ¹ on boiling cuprous cyanide with a solution of magnesium ferrocyanide. It crystallises in colourless, hexagonal prisms which, however, are unstable,

turning beown on keeping.

Potassium cuproferrocyanide, K₂Cu₂Fe(CN)₆, is prepared ¹ by boiling enprous eyanide with a solution of potassium ferrocyanide containing a little potassium sulphite; or by boiling cuprous chloride or potassium cuprons eyanide with potassium ferrocyanide solution. When rapidly cooled, the solution yields colourless cubes, but the crystals are liable to

undergo partial exidation, turning yellow or brown in colour.

Sodlum cuproferrocyanide, Na₂Cu₂Fc(CN)₆, results ¹ on adding a cold, saturated solution of sodium copper eyanide to a hot solution of sodium ferrocyanide; or by boiling a solution of sodium ferrocyanide with cuprous connide in the presence of a little sodium sulphite, and cooling is an atmosphere of hydrogen. It crystallises in minute colourless hexagonal prisms, which are conveniently dried over sulphuric acid in a vacuum.

It retains 27.5 per cent: of water. In air it slowly oxidises, turding brown. It is insoluble in water, alcohole and ether.

Strontium cuproferrocyanide, SrCu₂Fc(CN)₆, is obtained in a similar manner to the barium salt, which it closely resembles.

Messner Zeilech. anorg. Chem., 1895, 8, 308. * Messner, ibid., 1895, 9, 128.

Cupriferrocuanides, M.CuFc(CN).

Ammonium cupriferrocyanide; (NH₄)₂OuFt(CN)₆, is prepared ¹ by boiling a mixed solution of cupric and ammonium ferrocyanides. erystallises in brownish red cubes, and is best dried in a vacuum over sulphuric acid. The following four salts are obtained in an analogous manner:-

Barium cupriferrocyanide, 1 BaCuFc(ON)6, and calcium cupriferro-

cyanide, CaCuFe(CN), yield small, brown, quadratic prisms.

*Lithium eupriferrocyanide, Li₂CuFe(CN), crystallises in red plates or brownish red needles.

Magnesium eupriferroeyanide, MgCnFc(CN), separates in violet-

brown crystals, containing 44°3 to 44°5 per cent. of water.

Potassium cupriferrocyanide, K₂CnFc(CN)₆, results ² on boiling cuprous eyanide with an excess of potassium ferrieyauide solution :--

$$2ChCN + 4K_3Fe(CN)_6 = 2K_6CuFe(CN)_6 + 2K_4Fe(CN)_6 + (CN)_2,$$

*ad by digesting cupriferrocyanic acid with potassium chloride solution.3 It crystallises in brownish red, quadratic prisms.

Potassium ferrous cupriferroeyanide, K₂Fc₂Cu[Fc(CN)₆]₂.—Probably this is the beautiful violet compound 1 obtained when a solution

of a cupric salt acts on ferrous potassium ferrocyanide, K₂Fe[Fe(CN)₆].

Sodium eupriferrocyanide, Na₂CuF₆(CN)₆ is prepared by boiling solutions of cupric salts and sodium ferrocyanide, and by boiling cupric. ferrocyanide with sodium ferrocyanide and, after filtering, allowing the clear solution to evaporate in air. It yields histrons brown crystals, insoluble in cold water, but decomposed when boiled with water, dilute acids, or alkalies.

Strontium cupriferrocyanide, SrCuFc(CN)6, is obtained in a similar manner to the calcium salt, which it closely resembles.

When a copper sulphate solution is added to excess potassium ferroeyanide, a mixture of di-potassium cupric and di-potassium tricupric ferrocyanides is produced, namely $K_2CuFe(CN)_6$ and $K_2Cu_3[Fe(CN)_5]_2$ respectively.

If cuprous chloride is substituted for cupric sulphate theu different cuprous potassium ferrocyanides are obtained according to circumstances, namely K₂Cu ₂[Fc(CN)₆]; KCu Cu ₃[Fc(CN)₆]₂; and KCu ₃[Fc(CN)₆]. The last of these is obtained, when cuprous chloride is in great excess, as a white precipitate.

Ferrous ferrocyanide (see p. 227).

Lead ferrocyanide, obtained by precipitation with potassium ferroeyanide, always contains some of this latter salt, from which it cannot be freed by washing.

Lithium ferrocyanide, Li₄Fc(CN)₆.9H₂O, yields deliqueseent mono-

elinie crystals.

Magnesium ferrocyanide, Mg₂Fe(CN)₆+Aq., may be prepared as

Messner, Zeitsch. ahorg. Chem., 1895, 8, 308.
Messner, ibid., 1895, 9, 120.
Williams, Proc. Chem. Soc., 1912, 28, 317.
Miller and Fisher, J. Amer. Chem. Soc., 1900, 22, 537.

pale yellow needles, in similar ways to the calcium salt. The amount of water is uncertain, being of the order of 10 1 or 12 2 molecules.

Magnesium ammonium terrocyanide, Mg(NH₄)₂Fe(CN)₆, is obtained³ by mixing concentrated solutions of magnesium chloride and ammonium ferrocyanide in equivalent proportions. The anhydrous salt separates out as small white crystals which remain unaltered at 120° C. A saturated solution of the salt contains 2.48 grams per litre.

Magnesium potassium ferrocyanide (see p. 219).

Manganese ferrocyanide, Mn₂Fc(CN)₆, is a white substance, which is turned green by chlorine water and oxidised to brown ferricyanide by bromine water.4

On boiling with concentrated, hydrochloric acid, the acid salt,

MnH₂Fe(CN)₆.5H₂O, is obtained.5

The divammoniate, Mn₂Fe(CN)₆.2NH₃, has been prepared.⁶

Mercuric ferrocyanide, Hg₂Fe(CN)₆, is white in appearance. Chlorine water turns it green, and bromine water brown.

Double Salts with Mercuric Cyanide.

A series of stable salts has been prepared 8 containing mercuric cyanide associated with the ferrocyanide molecule. The first to be discovered was the potassium salt, K4Fe(CN)6.8Hg(CN)2.4H2O, by Kane, which is readily obtained by allowing a mixed solution of potassium ferrocyanide and mercuric evanide to evaporate. Other 'salts in this series are those of

Ammonium, 5 (NH₄), 4 Fc(CN)₈.3Hg(CN)₂:2H₂O; Cæsium, 9 Cs, 4 Fc(CN)₈.3Hg(CN)₂; and Rubidium, 5 Rb, 4 Fc(CN)₈.3Hg(CN)₂.4H₂Q.

Nickel, ferrocyanide, Ni₂Fe(CN)₆.Aq., 10 is bluish green in colour, stable towards chlorine water, but oxidised to brown ferricyanide with bromine water.4

On boiling with concentrated hydrochloric acid, the acid salt,

NiH2Fc(CN)6.BH2O, is obtained.5

The following ammoniates have been prepared: namely, Ni₂Fc(CN)_a.

5NH_a.4H₂O, 11 and Ni₂Fc(GN)₆.7NH₃.6

Potassium ferrocyanide, K4Fc(CN)6.8H2O, is the most important salt of ferrocyanic acid, and is known in commerce by the more familiar name of yellow prussiate of potash.12 It results when a solution of

¹ Bette, Annalen, 1836, 22, 152; 1836, 23, 115.

* Coleman, see Roscoe and Schorlemmer, A Treatise on Chemistry, vol. ii. (Macmillan * & Co.), 1907, p. 12:22.

Rabinson, Zrans. Chem. Soc., 1909, 95, 1353.
F. F. Werner, Zeitsch. and Uhem., 1919, 58, 23.
Williams, Proc. Chem. Soc., 1912, 28, 317.

Peterf, Zeitsch. anorg. Chem., 1912, 77, 137.

7 Kane, J. praks. Chem., 1840, 19, 405.
Williams, Proc. Chem. Soc., 1912, 28, 317; Strombolm, Zeitsch. anorg. Chem., 1913,

84, 208.

Strömholm, Zeitsch. gnorg. Chem., 1914, 90, 370.

Wyrouboff, Jahresber, 1970, 29, 311.

Reprose, bid., 1850, p. 358; Gintl. ibid., 1868, p. 305.

This wilt has been studied by Bunsen, Pogg. Annalen, 1835, 36, 404; Wyrouboff, Ann. Ohim. Phys., 1869, (4), 16, 293; Dufet, Compt. rent., 1895, 120, 377; Briggs, Frans. Chem. Soc., 1911, 99, 1019.

potassium cyanide is added in excess to one of a ferrous salt, so that the precipitate first formed completely redissolves. It may also be prepared by allowing iron to dissolve in an air-free solution of potassium cyanide:-

$$6KCN + Fc + 2H_2O = K_4[Fe(CN)_d] + 2KOH + H_2,$$

and by the action of potassium hydroxide solution on ferrous evanide :-

$$3\mathrm{Fe}(\mathrm{CN})_2 + 4\mathrm{KOH} = \mathrm{K_4Fe}(\mathrm{GN})_6 + 2\mathrm{Fe}(\mathrm{OH})_2.$$

. The old commercial method of preparing the salt lay in heating nitrogenous material, such as horn, weel, feathers, blood, etc., with potash and iron turnings. The mass was ultimately heated to fusion to complete the reaction, wooled, and extracted with boiling water. The solution contained potassium ferrocyanide, thiocyanate, carbonate, and sulphide. The first-named was crystallised out, but the yield was seldom more than 20 per cent. of the quantity theoretically obtainable from the nitrogen content of the organic material consumed.

The chemistry of the reactions involved has been made the subject

*****∗of considerable study.¹

Another method 2 consists in passing the vapour of trimethylamine into a retort at red heat. The resulting products are passed into sulphurie acid, whereby ammonium evanide is converted into hydrogen eyanide, which is now absorbed in potash to yield the corresponding cyanide. Ferrous hydroxide, prepared by addition of milk of lime to a solution of ferrous chloride, is added to the evanide solution, and the liquid, after filtering, deposits a relatively pure crop of potassium ferrocyanide.

Alkali thiocyanates may be made the starting-point for the pre-paration of ferrocyanides. The potassium salt is mixed with twice the weight of iron filings necessary to form ferrons sulphide, and with double the quantity of ferrous hydroxide, in a freshly precipitated condition, to form ferrocyanide. The mixture is maintained for some twelve hours under agitation in a closed vessel at 110° to 220° C. Potassium ferroeyanide is formed, together with Prussian blue, and extracted from the residue with water.3

From 1885 to 1895 potassium ferrocyanide was manufactured very largely from spent oxide of iron, used in purifying coal gas from hydrogen sulphide. Coal gas, as it leaves the retorts, contains hydrogen cyanide, formed by the action of ammonia on red-hot parbon. Thus:--

$$NH_3 + C = HCN + H_2$$
.

The hydrogen cyanide yields ammonia again in contact with heated water vapour :-

$$HCN+H_2O=NH_3+CO$$

• the ammonia uniting with the free acid to form ammonium evanide. The relative proportions of ammonia and cyanide in coal gas thus, vary with the conditions.

The oxide of iron employed in gas works is the hydrated ferric

See Liebig, Annales, 1841, 38, 20; R. Hoffmann, ital., 1860, 113, 81; Ewan, article on "Cyanides," Dictionary of Applied Chemistry, Thorpe (Longmans, 1912).
 Willim, Bull. Soc. chinf., 1884, 41, 449, 13
 Sternberg, Dingl. Poll. J., 1885, 257, 539.

compound. It absorbs the hydrogen sulphide in the coal gas, yielding ferrous and ferrie sulphides; the ammonium cyanide, also present in the gas, reacts with the iron compounds, forming ferrocyanide and, ultimately, Prussian blue. The last-named was frequently converted into calcium ferrocyanide by intimate admixture with lime, and dissolved in cold water. Potassium chloride solution was next added, whereby the potassium calcium ferrocyanide, K₂CaFe(CN)₈, was precipitated, to be converted into potassium ferrocyanide by boiling with potassium carbonate.

Wet methods are now largely employed for the preparation of potassium ferroeyanide from roal gas, and, whilst several have been patented and found to work well, it will suffice, for present purposes.

to mention one method only.

The crude coal gas is washed with ferrous sulphate solution, whereby the latter is converted into a suspension of ferrous sulphide in ammonium sulphate solution. This reacts with the animonium eyanide, yielding ferrous ferroeyanide, $\text{Fe}_2[\text{Fe}(\text{CN})_6]$, according to circumstances. Potassium ferroeyanide, $(\text{NH}_4)_2\text{Fe}[\text{Fe}(\text{CN})_6]$, according to circumstances. Potassium ferroeyanide may be obtained from these by treatment with line, as in the spent oxide process. By repeatedly dissolving in water and precipitating with alcohol, the salt can be obtained in a very pure state.

What appeared to be two forms of the salt, designated as α and β respectively, were prepared by Briggs.² The former was obtained from the pure commercial salt by dissolving it in water with A per cent. of its weight of potassium evanide. After twenty-four hours alcohol was added, and a white crystalline precipitate of the a salt obtained. Upon recrystallisation, if the crystals were large, they were lemon-yellow in colour, but otherwise quite white; density at 20° C. 1.889. At 20° C. 100 grams of saturated solution contained 25.0 grams of the a trihydrated salt, $K_4[Fe(CN)_6].3H_2O$. The β salt was obtained by dissolving the pure commercial salt in water with 1 per cent, of its weight of dilute acctic acid (1 part acid, 10 parts water); and allowing to stand in the absence of air. After twenty-four hours the addition of alcohol yielded a cream-coloured precipitate. Upon recrystallisation orange-coloured crystals were obtained, of more intense colour than the a sell; of slightly less density, namely 1.882 at 20° C., and rather less soluble in water, 100 grams of saturated solution at 20°C, containing 24 G grams of the salt.

Solutions of the a salt, upon prolonged standing, are converted into the β variety, a process that is hastened by the addition of 1 per cent. of agetic acid. Cyanides, alkalies, and ammonia, induce the reverse

transformation.

Bennett, however, having prepared these two "isomerides" according to the directions given by Briggs, and measured their angles, concluded that the two forms are identical crystallographically. He drew attention to the fact that the more intense colour of the \$\beta\$ salt might easily arise from slight decomposition induced by its acid method of preparation; in support of this, it is significant that the most striking difference of colour occurs in the ammonium salt, which is the most

¹ Mecklenburg, Zeitsch. anbrg. Chem., 1910, 67, 322.

Briggs, loc. cif. See also p. 204.

Besnett, Trais. Chem. Soc., 1917, 111, 490. See also Piutti, Ber., 1912, 45, 1830;
Hauser and Biesalski, ibid., p. 3616; Wells, Amer. Chem. J., 1913, 49, 205.

unstable of all, its aqueous solution being decomposed on simply warn ing. The differences in density and solubility are too slight to be ver definite evidence either way. Again, Kolthoff 1 found no difference i the physical properties of solutions of a and β ferrocyanide, excep their colour.

Briggs 2 therefore reinvestigated the matter, and showed that th supposed isomeride or B variety consists of mixed crystals of potassium ferrocyanide and aquiopentacyanoferrite, $K_{\rm J}[{\rm Fe}({\rm CN})_5\Pi_2{\rm O}]$, the amoun of the latter being too small to detect by qualitative analysis. Since the β salt is formed when the α variety is repeatedly recrystallised from water, it is concluded that the compounds are, in aqueous solution, in a state of equilibrium, thus?---

$$\mathbf{H_2O} + \mathbf{K_4[Fe(CN)_6]} = \mathbf{K_3[Fe(CN)_6.H_2O]} + \mathbf{KCN}.$$

It must not be overlooked, however, that isomerism has been definitely discovered 3 in the case of tetramethyl ferrocyanide (CH₃) Fe(CN)₆, and it is always possible that isomerides of inorganic salts of ferroevanic acid may be capable of existence.

Potassium ferrocyanide crystallises with three molecules of water which are completely expelled at 110" C., leaving the anhydrous sal in the form of a white powder. Crystals of potassium ferrocyanide in common with the few other hydrated crystals which have been examined, are permeable to water vapour. This has been demonstrated by cementing crystals with wax into the necks of small flasks containing phosphorus pentoxide, and noting any Alteration in weight after exposure to moist air. An increase was observed, which was slow but steady and continuous. It is not suggested that the crystals are porous in the ordinary mechanical sense in which, for example, unglazed earthen ware is porous. Rather is it believed that the layers of the crysta inside the flask give up their proisture to the dry air in contact witl the phosphorus pentoxide; these dehydrated layers take up water from the next layers, and so on, intil the layers are reached in direct contact with the moist air. The net result is thus that the water passes through the crystal from the wet to the dry atmosphere.

The crystals of potassium ferroeyanide are tough and difficult to powder. They are non-poisonous, but act as an aperient. When the dry anhydrons salt is heated to incipient fusion in a vacuum no gas is evolved, potassium eyanide and ferrous potassium ferrocyanide being produced:---5

 $2K_4Fc(CN)_8 = FcK_2Fc(CN)_8 + 6KCN.$

At red heat the latter salt is further decomposed, evolving free cymogen

 $FeK_2Fe(CN)_6 = 2Fe + 2KCN + 2C_2N_2^{\bullet \bullet}$

. This is a convenient method of preparing potassium cyanide, although · wasteful in so far as the nitrogen is concerned, in that one third of this element is lost as eyanogen.

. The solubility of potassium ferroryanide in water has been doter

- Kolthoff, Chen. Weekblad, 1919, 16, 1496.
 Briggs, Trans. Chem. Soc., 1920, 127, 1926.
 Hartley, ibid., 1913, 103, 1196.

 - Bakor and Adlam, ibid., 1911, 99, 507.

 Etall and Bémont, Compt. rend., 1885, 100, 108.

mined by a number of investigators, but the results do not flarmonise. The only reliable figures appear to be those of Briggs, quoted above; of Harkins and Pearce, namely, that at 25° C. 100 grams of water dissolve 24.796 grams of K₄Fc(CN)₆; and of Grube, that one litre of saturated solution at 25 °C. contains 819.4 grams of K4Fe(CN)6.8H2O. The solubility is increased by the presence of sodium ferrocyanide.

The density of potassium ferrocyanide solution at 8.9° C., saturated and in contact with crystals of the salt, is 1 1191,5 and at 25° C. 1 09081.6 The contractions resulting when given volumes of potassium ferrocyanide solutions are mixed with equal volumes of water have been measured

by Wade.7

Solutions of potassium ferrocyanide are gradually decomposed by light, ferric hydroxide being precipitated.8 Addition of an alkali sulphide to a fresh solution of the terrocyanide effects the gradual precipitation of ferrous sulphide in sunlight but not in the dark. reason appears 10 to be as follows :-

1. Potassium ferrocyanide dissociates normally in solution into

potassium and ferrocyanogen ions:-11

$$K_4Fc(CN)_6 = 4K' + Fc(CN)_6''''$$
.

2. Under the influence of light the ferrocyanogen ion dissociates thus :--

$$Fe(CN)_6'''' = Fc'' + 6CN'.$$

This reaction is reversible, proceeding from right to left in the dark. It is these iron ions which are precipitated as ferrous sulphide, in the presence of an alkali sulphide, or as ferric hydroxide in neutral or

alkaline solution by the action of atmospheric oxygen.

Upon prolonged exposure to light, a solution of potassium ferrocyanide deposits Prussian blue (see p. 225), whilst on continued boiling ammonia is evolved. With ferrous salts it yields an immediate white precipitate of ferrous potassium ferrocyanide, K2Fe[Fe(CN)6], which readily absorbs oxygen, becoming blue. The presence of dilute hydrochloric or sulphuric acid, or the employment of excess of the ferrous salt, accelerates the formation of the blue colour, and the reaction is exceedingly delicate.12

With ferric saks Prussian blue (see p. 225) is obtained, but the reaction is a time-reaction, and is retarded by the presence both of acids and salts. In very dilute solution no colour may be produced, or only an indefinite green after several hours,13 although the blue colour may be

14 Vorlander, loc. cit.

Wallace, Tans. Chem. Soc., 1855, 7, 80; Etard, Ann. Chim. Phys., 1894, [7], 2, 526; Schiff, Annalen, 1800, 113, 350; Michel and Krafft, Ann. Chim. Phys., 1858, [3], 526; Schift, Annulen, 1800, 113, 350; Michel and Krafit, Ann. Cmm. Pays., 1808, [9],
417, 478.
Briggs, loc. cit.
Harkins and Rogree, J. Ager. Chem. Soc., 1916, 38, 2714.
Grube, 1914. Taken from Seidell, Solubilities (Crosby Lookwood, 1920).
Sonstadt, Trans. Chem. Soc., 1906, 89, 343.
Harkins and Fearce, loc. ck.
Wade, Trans. Chem. Soc., 1899, 75, 254.
Matuschek, Chem. Zeit., 1901, 25, 565.
See Berthelot, Ann. Chim. Phys., 1900, (7), 21, 204. He does not mention that light is necessary to effect this decomposition.

is necessary to effect this decomposition.

13 Haber, Zeitsch. Elektrocherh., 1905, 10, 847; Foster, Trans. Chem. Soc., 1906, 89, 912.

14 Contrast Jones and Bassett, Amer. Chem. J., 1905, 34, 280.

15 Vorlander, Ber., 1913, 46, 181.

produced by the addition of concentrated solutions of many salts to the dilute solutions of the reagents. Probably the explanation lies in the precipitation by the salts of Prussian blue, which is first formed in colourless colloidal form.1

Carbon dioxide decomposes potassium ferrocyanide solution at 72° to 74° C., liberating hydrogen eyanide and precipitating ferrous potassium ferroeyanide. Continued passage of earbon dioxide through a boiling solution of potassium ferrocyanide results in the precipitation of ferric hydroxide and the formation of potassium carbonate and hydrogen cyanide, or its decomposition products, ammonia and formaldchyde.80

When potassium ferrocyanide is heated with concentrated sulphuric acid, carbon monoxide is evolved. This reaction has been known for many years, but it was not until 1900 that the reaction was thoroughly investigated.5

Concentrated sulphuric acid dissolves dry anhydrous potassium ferroeyanide, yielding potassium hydrogen sulphate and hydrogen ferrocvanide :---

$$K_4F_c^2(CN)_6+4M_2SO_4=4KHSO_4+H_4F_c(CN)_6$$

This solution is decomposed on warming, earbon monoxide being evolved, although even at 200° C, the rate of evolution is slow.

If a little water is present, earbon monoxide is readily formed on warming, the best result being attained with acid of concentration corresponding to H₂SO₄, 2H₂O, when dry anhydrous potassium ferroevenide is employed; the reaction is then complete at 180° C.:--6

$$\begin{array}{l} K_{4}[Fe(CN)_{6}] + 8(H_{2}SO_{4}.2H_{2}O) \\ = 4KHSO_{4} + FeSO_{4} + 3(NH_{4})_{2}SO_{4} + 6CO + 10H_{2}O. \end{array}$$

This is a very convenient method of preparing pure carbon monoxide. •When heated with dilute sulphuric acid hydrogen cyanide is evolved, and Everitt's salt remains beland:--7

$$2K_4[Fc(CN)_6] + 3H_2SO_4 = 3K_2SO_4 + K_2Fc''[Fc''(CN)_6] + 5HCN \\ (Eventt's salt).$$

Its aqueous solution upon saturation with chlorine darkens in colour, and upon concentration yields potassium ferricyanide, K₃[Fe''(CN)₆]:-

$$2\mathrm{K}_4[\mathrm{Fe^{..}(CN)_6}] + \mathrm{Cl}_2 = 2\mathrm{KCl} + 2\mathrm{K}_3[\mathrm{Fe^{...}(CN)_6}].$$

Potassium ferrocyanide is similarly oxidised by notassium bromate in acid solution; thus:

$$6K_4Fe(CN)_6+KBrO_3+6HCl=6K_3Fe(CN)_6+KBr+6KCl+8H_2O_5$$

Kato, Mem. Col. Sci. Eng. Kyoto, 1908, 1, 252.
 Autenrieth, Arch. Pharm., 1893, 231, 99.
 Matuschek, Chem. Zeit., 1901, 25, 815. See also Autenrieth, Chem. Zeit., 1898, 22, 868; Kurze Anleitung zur Auffindung der Gifte, 1892, p. 2; Gigli, Chem. Zeit., 1898, 22, 775.
 Doebereiner, Schweiger's J., 1820, 28, 107; Fownes, Phil. Mag., 1844, (3), 24, 21.
 Adie and Browning, Trans. Chem. Soc., 1900, 77, 150.
 Adie and Browning, Oc. cit.
 Everit, Phil. Mag., 1835, (3), 6, 97.

the reaction being quantitative under certain well-defined conditions.1 It probably takes place in three stages, namely :---

- $\begin{array}{ll} (1) & 2KB_1O_3 + 12HCl = 2KCl + Br_2 + 5Cl_2 + 6H_2O. \\ (2) & 2K_4Fe(CN)_6 + Br_2 = 2KBr + 2K_3Fe(CN)_6, \\ (3) & 10K_4Fe(CN)_6 + 5Q_2 = 10KCl + 10K_3Fe(CN)_6. \end{array}$

With potassium permanganate oxidation to ferrievanide proceeds quantitatively in acid solution, the reaction affording a useful volu-

metric method of estimating ferrocyanides if carried out under certain well-defined conditions,2 Mixed solutions of potassium ferrocyanide and p-nitroso dimethyl aniline are at first yellow in colour, but become green very rapidly on . exposure to light, due, perhaps, to the production of colloidal Prussian

blue under the influence of a catalyst generated by the nitroso compound.3 Solutions of potassium ferrocyanide are catalytically decomposed when boiled with euppous chloride in the presence of hydrochloric acid.4 The action appears to consist in the alternate formation of cuprous eyanide and regeneration of cuprons chloride, hydrogen cyanide being evolved. By collecting the evolved acid in alkak, and afterwards titrating excess of the latter, the amount of ferrocyanide originally present may be conveniently estimated.

If a few drops of potassinm ferrocyanide solution are added to dilute. hydrogen peroxide (1 per cent.), and kept in the dark, decomposition of the latter is exceedingly slow. On placing in diffect sunlight for a few moments, however, brisk evolution of oxygen takes place and continues, even after removal from the light. The effect is not due to rise of temperature, but, presumably, to some eatalyst generated uniler the infinence of the light.5

Potassium ferrocyanide finds application in commerce in the manufacture of Prussian blue, and also for ease-hardening of steel.6

Double Salts.-When equal parts of potassium ferrocyanide and afamonium chloride are dissolved in water at 100° C, and allowed to cool, pale yellow hexagonal crystals are obtained of composition NH4KH2Fc(CN)6.2NH4Cl. The neutral salt, (NH4)3KFc(CN)6.2NH4Cl, has also been obtained.

Potassium aluminium ferrocyanide, KAlFc(CN)₆.4H₂O.—Considerable difficulty attends the preparation of this salt, which forms a jelly on mixing equivalent solutions of aluminium chloride and potassium ferroeyanide. · By centrilingating at 3000 revolutions per minute it may be isolated as a precipitate, washed with acctone and ether, and dried in vacuo. The salt is dark green, and transparent when in bulk, but when powdered is light bluich green. At 100° C. it becomes anhydrous and assumes a deep blue colorfr.

• Potassium basium fetrocyanide, K.BaFe(CN)6.3II2O, results as a

de Koninck and Joassart, Bull. Soc. chim. Belg., 1914, 28, 144.

See E. Müller and Diefenthaler, Zeinch, anorg. Chem., 1910, 67, 418; Mecklenburg, * See E. Crumer and Decentrater, Zettech, anorg. Chem., ibid., 1910, 67, 322.

**Gallenkanp, Chem. Zeit., 1916, 40, 235.

*Williams, J. Soc. Chems Ind., 1912, 31, 468.

*Kistiakowsky, Zeitsch. physikal. Chem., 1900, 35, 431.

See this yolume, Part III.

*Etard and Bennot, Compt. rend., 1885, 100, 108.

*Robinson, Trans. Chem. Soc., 1909, 95, 1363.

crystalline deposit on mixing dilute solutions of potassium ferrocyanide and barium chloride.1

Potassium calcium ferrocyanide, K2CaFe(CN)6, is obtained by mixing cold concentrated solutions of potassium f reocyanide and calcium chloride in molecular proportions. The precipitate is washed in cold water and dried in air or at 100° C.

One part of the sait dissolves in 244 parts of water at 15° to 17° C.2 Potasslum cerium ferrocyanide, KCeFe(CN)6, is obtained as a white crystalline precipitate on mixing cold concentrated solutions of cerium chloride and potassium ferroeyanide.3 The salt undergoes no change when heated to 100° C.

Potassium magnesium ferrocyanide, K2MgFc(CN)6, is obtained in the anhydrons condition by mixing cold concentrated solutions of potassium ferrocyanide and magnesimm chloride.3 After a short time a white micro-crystalline precipitate is formed, which is not affected by heating to 120° C. When moist the salt soon becomes cream-colonred, owing to slight decomposition, possibly under the influence of atmospheric carbon dioxide.

A saturated aqueous solution of the salt contains 1-95 grams per litre. The heptahydrate, 2K2MgFa(CN)6.7H2O, is prepared by mixing dilute solutions of potassium ferroeyanide and magnesium chloride at the boiling-point.

Potassium mercuric ferrocyanide, KallgFc(CN) may be obtained as a faintly blue powder by the interaction of mercuric chibride and potassium ferrocyanide solutions.4 It is insoluble in water, but is decomposed by acids.

 Potassium ammonium barium ferrocyanide, K, BaFc(CN)c. $\frac{4(NH_{\bullet})_2BaFe(CN)_6,15H_2O}{cyanide}, \frac{k_2CdFe(CN)_6,4(NH_4)_2CdFe(CN)_6,2H_2O}{cyanide}, \frac{k_2CdFe(CN)_6,4(NH_4)_2CdFe(CN)_6,2H_2O}{cyanide}, \frac{k_2CaFe(CN)_6,4(NH_4)_2CaFe(CN)_6,2H_2O}{cyanide}, \frac{k_2CaFe(CN)_6,2H_2O}{cyanide}, \frac{k_2CaFe(CN)_6,$ potassium ammonium magnesium ferrocyanide, K₂MgFc(fN)₈.5(NH₄)₂ MgFc(CN)₆.10H₂O: have been prepared.⁵

Silver ferrocyanide, Ag₄F₅(CN)₆, is obtained as a white precipitate by double decomposition of a silver salt with potassium ferrocyanide.

With nitric acid it yields orange-red silver ferricyanide.

Sodium ferrocyanide, Na₄Fc(CN)₆,1011₂O, may be prepared in an analogous manner to the potassium salt. 7 • It may also be prepared by •boiling Prussian blue with aqueous solutions of sodium carbonate or

Its solubility in water is as follows:-

Temperature, °C	. * 20	•30	42	60	80 ื	98.5
Grams Na Fe(CN) per 10	0			• •		00.0
. grams H ₂ O	. 17.9	23.5	30.2	42.5	59 🚅	68.0

Bunsen, Pogg. Annalen, 1835, 36, 404. Wyrouboff gives 5 molecules of combined vater (Ann. Chim. Phys., 1870, 21, 279).
 Brown, Trans. Chem. Soc., 1907, 91, 1824.

Robinson, ibid., 1909, 95, 1353. Fernekes, J. Amer. Chem. Soc., 1906, 28, 87.

Dains, ibid., 1907, 29, 727.
See Valents, Chem. Zeit., 1916, 40, 398.
! It was studied by Bunsen (Pogg. Annalen, 1835, 36, 413) and Pebal (Annales, 1886, 33, 165).
Conrey, J. Soc. Chan. Ind., 1898, 17, 104.

At 25° C., 20.725 grams of Na₄Fe(CN)₈ dissolve in 100 grams of water.1 the density of the solution being 1.0595. It yields beautiful monoclinic crystals, pale, yellow in colour. Alcohol precipitates the nonahydrate, Na₃Fe(UN)₆.9H₂O, from the aqueous solution of the salt.

Sodium cerium ferrocyanide, NaCeFc(CN), is obtained 2 on mixing cold concentrated solutions of cerium chloride and sodium ferrocyanide.

No description of the salt is given.

Strontium ferrocyanide, Sr₂Fe(CN)₆, 14H₂O, is obtained as a soluble salt by neutralising hydrogen ferrocyanide with the hydroxide or carbonate of strontium. The salt crystallises in monoclinic prisms containing 14 molecules of water,3 of which seven are lost on exposure to air and a further six when kept over concentrated sulphuric acid.

A study of the osmotic pressures and electric conductivities of that the negative radicles are associated to double ions, namely $[Fe(CN)_{\theta}]_2^{"""}$. csolutions of strontium ferrocyanide in water leads to the conclusion

Thallium ferrocyanide, Tl4Fe(CN)8.2H2O has been prepared b is formed as yellow crystals by adding a hot concentrated solution of thallous sulphate to one of potassium, ferrocyanide and allowing to, cool.6 It is sparingly soluble in cold water but more readily in hot? and in potassium ferrocyanide solution. If dilute solutions of thallous sulphate and potassium ferroeyanide are mixed and alcohol added, a complex potassium thallium ferrocyanide, K₄Fe(CN)₆,K₃T₁Fe(CN)₆,6H₂O, is obtained.8

Zinc ferrocyanide, Zn₂Fc(CN)'₆.(3 or 4)H₂O ⁹ is a white powder. The following ammoniates have been prepared, namely Zn₂Fc(CN)₆.

6NH₃.2H₂O 10 and Zn₂Fe(CN)₆.7NH₃.11

Zinc potassium ferrocyanide, Zn₂K₂|Fe(CN)₆|₂, is obtained as an insoluble precipitate on adding an excess of potassium ferrocyanide to a zine salt in aqueous solution.12

By adding sulphuric acid to a portion of the clear solution and estimating the excess of potassium ferroeyanide by titration with · permanganate, the method may be made a convenient one for the estimation of zinc.13

Eerricyanides.

Hydrogen ferricyanide, Ferricyanic acid, H₃[Fe(CN)₆], muy be obtained as crystalline brown needles by the action of dilute sulphuric acid upon lead ferricyanide and subsequent concentration of the

```
<sup>1</sup> Ha:kins and Pearce, J. Amer. Chem. Soc., 1916, 38, 2714.
```

Robinson, Trans. Chem. Soc., 1909, 95, 1353.

Coleman, quoted by Roscoe and Schirolomner, A Treatise on Chemistry, vol. ii.
(Macmillap & Co.), 1907, p. 1232; Berkeley, Hartley, and Stephenson, Ph.:. Trans., 1909,
A. cog. 319. Bets (Annalen, 1836, 22, 148) and Wyrouboff (Ann. Chim. Phys., 1869, (4),

A. cog. 379. Betts Analen, 1836, 22, 148) and Wyrouboff (Ann. Chim. Phys., 1869, (4), 16, 287; 1870, (4), 21, 274, gave 15H,0.

*Berkeley, Hartley, and Stephonson, loc. cit.

*Kuhlmann, Compt. rend., 1862, 55, 607; Lamy and Descloiseaux, ibid., 1868, 66, 1148; Robinson, Trans. Chem. Soc., 1909, 95, 1333.

*T. Fischer and Benzian, Chem. Zeit., 1902, 26, 49.

*See Crooks, Chem. News, 1861, 3, 303.

*Schendeler, Mag. Pharm., 35, 71; Wyrouboff, 80c, cit.

*Tissier, Compt. rend., 1857, 45, 232.

1 Peters, Zaitech. anorg. Chem., 1912, 77, 137.

Miller and Falk. J. Amer. Chem. Soc., 1904, 26, 952.

13 Maurice. Ann. Chim. anal., 1913, 18, 342.

decented solution. The product is not pure, however. A pure acid is believed to result on decomposition with hydrochloric acid, silver ferrieyanide, prepared by the action of silver nitrate on potassium ferricyanide.2

Ammonium ferricyanide, 2(NH₄)₃[Fe(CN)₆].H₂O, may be prepared in a similar manner to the potassium salt (vide infra). It yields red monoclinic prisms, which readily dissolve in water. The solution hydrolyses upon standing, and is more sensitive to the action of light

in this respect than is the potassium salt.3

Barium ferricyanide, $\rm Ba_3[Fe(CN)_6]_220H_2O$, is prepared by neutralising ferricyanic acid with barium carbonate and evaporating to crystallisation in racuo.2 • It also results on boiling a solution of barium ferrocyanide with lead dioxide.4. It yields reddish brown crystals. These are soluble in water without decomposition. The salt is decomposed on warming with acids. The compound Ba₂[Fe(CN)₆], 2BaBr₆. 20H,O, has been obtained.5

Barlum potassium ferrityanide, BaKFc(CN), 4112O, first isolated by Bette,6 who regarded it as a trillydrate, is conveniently prepared by addition of the requisite quantity of potassium sulphate to a solution of barium ferricyanide and allowing the filtered liquid to evaporate.7

Barlum sodium ferricyanide, BaNaFc(CN)6.3H2O, and Barlum ammonium ferricyanide, BaNII₄.Fc(CN)₆.4II₂O, have also been prepared.

Blsmuth ferricyanide.—This salt is precipitated from bismuth salts by solutions of potassium ferrievanide. It is straw-coloured and

insoluble in concentrated nitric acid. Calcium ferricyanide, Ca₃ [Fc(CN)₆]₂(?)12H₂O, may be obtained * by oxidising aqueous calcium ferrocyanide with calcium plumbate and earbon dioxide under pressure, at the ordinary temperature. solid salt is separated by evaporation under reduced pressure. " The salt may also be obtained by oxidation of calcium ferrocyanide with chlorine 10 and by neutralising ferricyanic acid with calcium carbonate.

It yields needle-shaped crystals, which are stable in dry air.

Calcium potassium ferricyanide, CaK.Fe(CN) 3H2O, crystallises in a

deep red plates, and is more stable than the simple calcium salt.

Calcium ammonium ferricyanide, CaNH4.Fc(CN)6.8H2O, and Calcium sodium ferricyanide, CaNa.Fc(CN), 5H2O, have also been obtained.

Cobalt ferricyanide, $Co_3[Fe(CN)_6]_2$, is a red precipitate resulting when -potassium ferrieyanide and cobalt sulphate solutions are mixed. The ammoniates $Co_3[Fe(CN)_6]_2.4NII_3.6H_2O^{-11}$ and $Co_3[Fe(CN)_6]_2.8NII_8^{-12}$ have been prepared.

Copper ferricyanide, Cu₃[Fc(CN)₆]₂, is a greenish brown pregipitate obtained on mixing solutions of copper sulphate and potassium ferricyanide. 13 The precipitate has a constant composition, no matter what

relative proportions of the two salts are used.

¹ Joannis, Compt. rend., 1882, 94, 449
2 Fischer and P. Müller, Uhem. Zeit., 1901, 25, 321.
3 Eder, Mondsh., 1885, 6, 495.
4 Rammelsberg, J. prakt. Chem., 1889, (2), 39, 455.
4 Rammelsberg, J. prakt. Chem., 1889, (2), 39, 455.
5 Bette, Ann. Pharm., 1837, 23, 124.
5 Locke and Edwards. Amer. Chem. J., 1899, 21, 193.
6 Kossnen, Chem. Zeit., 1893, 17, 1712.
7 Fischer and Müller, loc. cit.
8 Bette, Loc. cit.

Bette, loc. cil.
Peters, Zeisch. anorg. Chem., 1912, 77, 137.
E. Maller, Wegeling and Kellerhof, J. prakt. Chem., 1912, 88, 11 Braun, Annalen, 1863, 425, 164.

If ammoniacal cupric hydroxide is added to potassium ferficyanide the pent-ammoniate, Cu₃[Fc(CN)₆]₂.5NH₃, is obtained as black, stable crystals. The salt Cu₃[Fc(CN)₆]₂.16NH₃ has also been obtained. Lead ferricyanide, Pb₃[Fc(CN)₆]₂.16H₂O, is obtained by double

decomposition of lead nitrate with potassium ferricyanide. It yields dark reddish brown crystals.

Lead ferricyanide nitrate, Pb₃ [Fe(CN)₆]₂, Pb(ND₃)₂, 12H₂O, and Lead potassium ferricyanide, PbK[Fc(CN)₆].3[L₂O, have been described.3

Magnesium ferricyanide, Mg3[Fc(CN)6]2.10H2O, is prepared in an analogous manner to the barium salt, and dried over sulphuric acid. The aqueous solution decomposes when warmed.

Magnesium ammonium ferricyanide, $MgNII_4$. $Fc(CN)_6$. $4II_2O$. Magnesium potassium ferricyanide, MgK. $Fc(CN)_6$. $4II_2O$, and Maghesium sodium ferricyanide, MgNaFc(CN)6.6H2O, have also been obtained.

Mercuric ferricyanide, Hg3[Fc(CN)6]2, may be obtained by adding a concentrated aqueous solution of potassium ferricyanide to a solution of mercuric chloride in alcohol and ether. The precipitate is bright yellow in colour, and fairly stable when dry.5

Mercurous ferricyanide, Hg3[Fc(CN)6], is obtained as a flocculent cream-coloured precipitate on the addition of mercurous nitrate to potassium ferricyanide solution.⁵ It turns blue on exposure to air.

Potassium ferricyanide, K₃[Fe(CN)₆], known connicreially as red prussiate of potash, was discovered by Gmelin in 1822, and is obtained by the chlorination of potassium ferrocyanide: -6

$$2K_4[Fe(CN)_6]+Cl_2 = 2K_3[Fe(CN)_6]+2KCl,$$

and subsequent re-erystallisation, whereby the more soluble potassium chloride remains in solution. It yields dark red monoclinic prisms of density 1.8, which dissolve in water to a yellow solution.7 solubility is as follows: --

- Bhuluri, Zeitsch. anorg. Chem., 1913, 81-406.
- Peters, ibid., 1912, 77, 137.

 Schuler, Sitzungeber, Akad. Wiss. Wien, 1879, 79, 302; Rammelsberg, J. prakt. Chem., 1889, (2), 39, 435.
 - ⁶ Fischer and Muller, Chem. Act., 1901, 25, 321; Bette, Ann. Pharm., 1837, 23, 124. ⁶ Fernekos, J. Amer. Chem. Soc., 1906, 28, 602.
- **Fernekos, J. Amer. Chem. Soc., 1906, 28, 602.

 **This reaction has been studied by Gillet, Bull. Soc. chim. Belg., 1912, 26, 236.

 **A supposed isotheride named potassium \$\beta\$ ferricyanide, \$K_5[Fer*(CN)_1], H_5O, was described as obtained. (Locke and Edwards, Amer. Chem. J., 1890, 21, 193, 413) from the a salt by treatment with small quantities of mineral stids. It is formed on concentration as elive-columed orpsials, which readily dissolve in water. It reacts similarly to the \$\alpha\$ salt, yielding characteristic precipitates with solutions of Salts of the heavy metals, although in some cases the \$\beta\$ ferricyanides thus obtained are appreciably different from the more common a salts. Tife evidence, however, is far from conclusive. With reference to the constitution of this salt see I. Bellucci ared Sabatini, Att. R. Accad. Lincei, 1911, (5), 20, i. 176, 239; \$\beta\$ Gazzella, 1920, 50, i. 23; Piutti, \$\beta\$r., 1912, 45; 1830; Wells, \$\beta\$mer. Chem. J. 1913, 49, 205. Hauser and Biesalski (Ber., 1912, 45, 3516) suggest that the \$\beta\$ salt is saft ordinary one containing some Prussian hine as impurity. Since the foregoing was written, Briggs (Trans. Chem. Soc., 1920, 5x27, 1026) bas shown, however, that the \$\beta\$-salt iconsists of mixed crystals of potassium ferricyanide and aquopentacyano(errate, K_5[Fe(CN)_5, H_5O] (See p. 335.)

 *Wallace, Trans. Chem. Soc., 1855, 7, 80.

The above data are only approximately correct, and further research on the subject would be welcome. According to Grube, one litre of saturated solution at 25° C. contains 385.5 grams of K₃Fe(CN)₆. The solution on exposure to light yields a blue precipitate, ferrocyanide remaining in solution. It is reduced by sodium amalgam to ferroeyanide, and hydrogen peroxide has the same effect :---

$$4K_3[Fe^{-1}(CN)_6] + 2H_2O_2 = 3K_4[Fe^{-1}(CN)_6] + H_4[Fe^{-1}(CN)_6] + 2O_2.$$

When oxidised, di-potassium perferricyanide, K2Fe(CN)2, is stated to be produced, but the salt is probably a pentacyanoferrate, K. Fe''(CN), With solutions of ferrous salts potassium ferricyanide yields a deep blue precipitate, originally called Turnbull's blue, but now believed to 'be identical with Prussian blue.4

In neutral solution potassium ferrieyanide undergoes hydrolysis to • a small extent, ferric hydroxide being precipitated. Thus: -5

•
$$K_3$$
Fc(CN)₆+3HOH = Fc(OH)₃+3KCN+3HCN.

The hydrolysis is accelerated by light. Hydrolysis also appears? to take place to a slight extent according to the equation -

$$K_3F\xi(CN)_6+H_2O_{5,1}^*K_2Fc(CN)_5H_2O+KCN$$
,

aquo penta-cyanoferrate resulting. The solution is reduced by hydrogen sulphide, slowly at the ordinary temperature, but rapidly on warming. Thus: --8 • . •

$$6K_3Fe(CN)_6 + 3H_2S = 4K_4Fe(CN)_6 + K_2Fe.Fe(CN)_6 + 6HCN + 8S.$$

Potassium ferricyanide is reduced in alkaline solution to ferroeyanide in other words, the salt under these conditions is able to function as an oxidiscr, thus:--

$$2K_3\mathrm{Fe}(CN)_6 + 2\mathrm{KOH}_{\times} \geq 2K_4\mathrm{Fe}(CN)_6 + H_2O + O.$$

The reaction velocity has been studied 9 at 90° C, with interesting results. The velocity at first decreases slightly, then increases rapidly to a maximum, after attaining which it falls again. The reason for the increased velocity lies in the autocatalytic action of the potassium ferrocyanide produced during the reaction.

Below 60° C. and in the dark, the alkaline solution of potassium

ferrocyanide is \$table.10

An aqueous solution of potassium ferricyanide is readily reduced by hydrochloric acid into ferrocyanide. Thus:—

$$2II_3Fe(CN)_6 + 2IICI \rightleftharpoons 2II_4Fe(CN)_6 + Cl_2$$

the reaction proceeding to completion if the chlorine is removed as, for example, by addition of reduced silver. Ferric chlorido acts similarly-

- ¹ Grube, 1916. Taken from Scidell, opus cit.

- Städeler, Annalen, 1809, 151, 1.

 Cambi, Gazzetta, 1911, 41, 1. 157.

 Hofmann, Heine, and Rochtlen, Annalen, 1904, 337, 1. Also see pt 227.

 See Poster, Trans. Chem. Soc., 1906, 89, 910; Matuschek, Chem. Zeit., 1901, 25, 411, 522, 565. See Eder, Monatsh., 1885, 6, 495.

Briggs, loc. cit.
Verefitori, Atti R. Accad. Lincei, 1906, (5), 15, i. 374.
Grube, Zeitsch. anorg. Chem., 1914, 84, 190; Prudhomme, Bull. Soc. chim., 1903, (3), 29, 1010; Fredenhagen, Zeitsch. anorg. Chem., 1902, 29, 396.

18 Kassner, Arch. Phage., 1896, 234, 330.

not because it dissociates on solution into ferrous chloride and chlorine. but because it undergoes hydrolysis, the liberated hydrochloric acid

acting as indicated above.

Hydrobromic acid; ferric bromide, and the chlerides and bromides of zinc and aluminium all react in an analogous, manner.1 potassium iodide in the presence of a zinc salt the reaction is quantitative, and may be used in the volumetric estimation of ferricyanides:-2

$$, 2K_3Fe(CN)_6 + 2KI \Longrightarrow 2K_4Fe(CN)_6 + I_2.$$

Potassium ferrievanide is reduced to ferrocyanide by an alkaline solution of ferrous sulphate.

Potassium ferricyanide is quantitatively reduced by an alkaline solution of hydrazine sulphate, the reaction proceeding as follows:

$$4K_{3}Fe(CN)_{6}+4KOH=4K_{4}Fe(CN)_{6}+2H_{2}O+O_{2},$$

 $N_{2}H_{4}+O_{2}=N_{2}+2H_{2}O.$

By effecting the reduction in a nitrometer and measuring the nitrogen evolved, the amount of hydrazine or potassium ferricyanide originally present can readily be calculated.3

Hydroxylamine similarly reduces the salt, yielding nitrous oxide

and nitrogen.3 Thus :--

$$\begin{array}{l} 4 N H_2.O H + O_2 = 2 N_2 + 6 H_2 O, \\ 6 N H_2.O H + O_2 = 12 N_2 O + 2 N H_3 + 6 H_2 O. \end{array}$$

Indigo is readily bleached by the salt.

When distilled with potassium eyanide, potassium ferrocyanide, hydrogen cyanide, and aminonium carbonate are produced:—4 and

$$2K_3F_{e}(CN)_6 + 2KCN + 2H_2O = 2K_4F_{e}(CN)_6 + HCN + NH_3 + CO_2$$

Continued passage of carbon dioxide through a boiling solution of potassium ferricyanide results in the precipitation of ferric hydroxide and the formation of potassium carbonate and hydrogen cyanide or its *decomposition products, ammonia and formic acid.5

Sodium ferricyanide, 2Ne₃[Fe(CN), H₂O, may be obtained in a similar manner to the preceding salt. It yields deliquescent ruby-red

prisms, soluble ir water.

Strontium ferricranide, Sr₃[Fe(CN)₆]₂.14H₂O, obtained in an analogous manner to the harium salt, crystallises in reddish brown

prisms.6

Strontium potassium ferricyanide, SrKFe(CN), 3H, O; Strontium sodium ferricyanide, SrNaFe(CN), 3H2O; and Strontium ammonium ferricyanide, SrNH, Fe(CN), 3H2O; have also been prepared.

Thakium ferri yanide does not appear to have been obtained, but

1 Gillet, Buhlasch. chim. Belgr, 1912, 26, 236. For the action of bromine on potassium ferrioyanide, see Reynolds, Trans. Chem. Sec., 1888, 53, 767.

Mecklenburg, Zeitsch. anory Chem., 1910, 67, 322. The kinetics of this reaction have

been studied by Donnan and le Rossignol, Trans. Chem. Soc., 1903, 83, 703; Just, Zeitsch. physikal. Chem., 1908, 63, 51".

Ray and Sen, Zeitsch. asorft. Chem., 1912, 76, 380. "
Bloxam, Chem. News, 1883, 48, 73.
Maturchal, Chem. Zeit., 1901, 25, 815.
White and D. Martin, 1901, 25, 815.

* Fischer and P. Müller, Chem. Zeil., 1901, 25, 321.

various double potassium thallium salts have been isolated. potassium ferricyanide and thallous sulphate solutions are mixed and allowed to crystallise, red needles of KaTl [Fe(CN)6] are obtained. These are decomposed by pure water.1 •

Zinc ferricyanide, Zn₂[Fc(CN)₆]₂, is precipitated as an insoluble orange-coloured salt on adding potassium ferricyanitle to a solution of

a zine salt.

The ammoniate, $Zn_3[Fc(CN)_6]_2.12NH_3$, has been isolated.

Iron Derivatives of Ferro- and Ferri-cyanides.

Some of these derivatives, such as Prussian blue, are of considerable commercial importance on account of their characteristic deep colour. As a general rule, the derivatives which are devoid of colour contain iron in one stage of oxidation only within the molecule, whilst the coloured compounds possess divalent and trivalent atoms of iron respectively. It would appear, therefore, that the colour is in some way connected with the presence of similar atoms in more than one stage of oxidation. Thus, ferrous potassium ferrocyanide, Fe K₂[Fe"(CN)₄], is white, the iron atoms in the positive and negative radicles respectively being divalent. Upon exidation, however, Prussian blue, Fe''K[Fe''(CN)₆] is obtained, the iron atom of the negative radicle remaining divalent, whilst the positive iron ion is trivalent.

An analogous case is afforded by the deep indigo colour of sulphur sesqui-oxide, S₂O₄ which contains sulphur atoms in two degrees of valency,3 whereas sulphur dioxide and trioxide are both colourless.

Ferrous hydrogen ferrocyanide, H_2 Fe[Fe(CN)₆], results when hydrogen ferrocyanide solution is heated to $110^\circ-120^\circ$ C.⁴ with exclusions sion of air. It readily oxidises to ferric hydrogen ferrocyanide, Fe"II[Fc"(CN)a].HeO, which is a blue compound, insoluble in water, oxalic acid, and ammonium oxalate solutions.

Ferrous potassium ferrocyanide, FcK2[Fc(CN)6], is obtained as a white precipitate when potassium ferrocyanide reacts with an equimolecular quantity of a ferrous salt :-

$$\operatorname{FeCl}_2 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] = \operatorname{FeK}_2[\operatorname{Fe}(\operatorname{CN})_6] + 2\operatorname{KG}.$$

It readily absorbs oxygen, yielding Prussian blue.

Everitt's salt also has the formula FcK Fc(CN), and is isomeric with the previous salt. It is obtained when dilute subhuric acid and potassium ferrocyanide are heated together:— 5

$$2K_4[Fe(CN)_6] + 3H_2SO_4 = 3K_2SO_4 + K_2Fe[Fe(CN)_6] + 6HCN.$$

It is a pale yellow crystalline powder which, upon exidation with

hydrogen peroxide, yields Williamson's violet (see p. 226).

The Prussian Blues -- Several of these are known, namely: a soluble Prussian blue, 4Fc KIFc (CN), 7H2O. This compound is obtained when a solution of potassium ferrorey and contracts with rather less than one equivalent of a ferric salt. It occurs as a deep

¹ T. Fischer and Benzian, Chem. Zeit., 1902, 26, 49.

Peters, Zeitech. anorg. Chem., 1912, 77, 137.

Peters, Zeitech. anorg. Chem., 1912, 77, 137.

See this series, Volume VII.

Reemann and Carius, Annalon, 1860, 113, 39; Etand and Bémont, Compt. rend., 1884, 99, 1024; Hofmann, Arnoldi, and Hieadlmaier, Annalen, 1907, 352, 54.

Everitt, Phil. Mag., 1836, (3), 6, 97.

See Volachin, J. Ryss. Phys. Chem. Soc., 1908, 40, 480.

blue precipitate, which when washed with alcohol and dried yields a beautiful blue powder exhibiting a bronze cast by reflected light. It is soluble in pure water, but is precipitated on the addition of salts. Aqueous solutions of oxalic acid dissolve it, whilst alkalies decompose it, precipitating ferric hydroxide. A similar blue-coloured precipitate, known as Turnbull's blue (the soluble variety), is formed when rather less than one equivalent, of a ferrous salt interacts with potassium ferricyanide. According to Skraup 2 and Hofmann, 2 the two precipitates are identical, but this is denied by Mudler.4

 β soluble Prusslan blue is produced when molecular proportions of a ferrous salt and potassium ferrocyanide are brought together in neutral solution and oxidised with hydrogen peroxide. It is rapidly decomposed by ammonia, but is not soluble in oxalic acid solution.⁵ It is isomeric with the γ variety, and the formula Fe. K[Fe(CN),].H2O is

attributed to it.

y soluble Prusslan blue is obtained when molecular proportions of a ferrous salt and potassium ferroeyanide are brought together in cold, acid solution and oxidised with nitric acid or hydrogen peroxide. Hofmann regards it as consisting of two molecules of $KFc[Fc(CN)_6]+Aq$. and suggests the asymmetrical formula

Isomeric with this salt is ? Williamson's violet or Williamson's 'blue, KFc" [Fc(CN)₆] +11₆O, obtained by suspending Everitt's salt in one per cent, sulphuric acid and adding nitric acid or hydrogen peroxide. A ferric salt may be used as oxidising agent. The compound is insoluble in water, but forms a suspension which appears dark purple by reflected light, but greenish blue by transmitted light. It is insoluble in oxalic acid and is not decomposed by dilute nuneral acids or by digestion with ferric chloride, but 4 per cent. ammonium hydroxide converts it aftersome hours into ferric hydroxide and alkali ferrocyanide.⁵ Hofmann and Resenscheek suggest the symmetrical constituțional formula :--

$$KFe(CN)_{\delta} \xrightarrow{Fe} Fe(CN)_{\delta}K + H_2O$$

the water also being constitutional in some way.

When ferric ammonium alum and potassium ferrigyanide are acted upon with hydrogen peroxide in the presence of free hydrochloric acid, a blue substance, Fe₂(CN)₁₈.10H₂O, is obtained, having properties similar to Williamson's violet, but less stable towards dilute ammonium hydroxide.7

Insoluble Prussian blue, Fe [Fc(CN)6]3,+Aq., is obtained when

- · 1 Guignet, Compt. rend., 1889, 108, 178,

 - Skraup, Annalen, 1877, 186, 371.
 Hofmann, Hoine, and Hochtlen, loc. cit.: Hofmann, J. prakt. Chem., 1909, 85, 150.
 - E. Müller and Stanisch, .'. prakt. Chem., 1900, (2, 79, 61.
 K. A. Hofmann and Resenscheck, Annalen, 1905, 340, 267.

 - . Messner. Zeitsch. anorg. Chem., 1895, 9, 126.
 - Hormann and Resenscheck, loc. cit.

potassium ferrocyanide is treated with an excess of a ferric salt, the ratio, in the case of ferric chloride, FCCl3/K4Fc(CN)6, being greater than 1-33. The same product is obtained when a soluble Prussian blue is acted upon by a ferric saft, and is stated to be identical with insoluble Turnbull's blue, which is the salt obtained by addition of excess ferrous salt to potassium ferricyanide and washing in full exposure to air; but this is denied by Muller, who gives it the formula KFe"Fe", [Fe(CN),]3.

The substance is insoluble in water and in dilute mineral acids, but dissolves in oxalic acid, yielding a blue solution at one time largely used for ink. When drice, the salt contains 9.10 molecules of water, and if heated strongly in air it burns, leaving a residue of ferric oxide. Alkalies decompose it, precipitating ferrie hydroxide, soluble ferrocyanides

passing into solution :--

$$Fe_4[Fe(CN)_6]_3 + 12NaOH = 4Fe(OH)_3 + 3Na_4[Fe(CN)_6]_5$$

whilst not concentrated hydrochloric acid effects its solution, hydrogen ferroeyanide eventually separating ont. Heated with concentrated sulphuric acid, the ayanogen group is decomposed, the nitrogen yielding ammonium sulphate. When fused with a mixture of ammonium

nitrate and sulphate, sulphate of iron is produced.

Commercial Preparation and Uses of Prussian Blue. - Prussian blue was discovered accidentally in 1704 by Diesbach. 4 and is highly valued as a pigment on account of its remarkable intensity of colour. It was manufactured in Great Britain in 1770, and sold at 2 guincas per lb. One pound of Prussian blue will perceptibly tinge some 600 lbs. of white lead. The pigment is sometimes prepared commercially by the direct method of adding a ferric salt to a solution of potassium ferroevanide; but it is more usual to adopt an indirect method, namely to add a ferrous salt to potassium ferrocyanide and subsequently to oxidise the white precipitated mass of ferrous potassium ferrocvanide. Chemically it consists of a variable mixture of some or all of the Prussian blues already described.

Ferrous ferrocyanide, Fc2 [Fc(CN)6], is formed when an aqueous solution of hydrogen ferrocyanide is heated until hydrogen eyanide

ceases to be evolved.6

Ferric ammonium ferrocyanide, FcNn₄[Fc(CN)₆], results when potassium ferrocyanide is heated with a solution of hydroxylamine hydrochloride. It is a deep blue insoluble powder.7 The hydrated salt FeNH₄[Fe(CN)₆].H₂O is known as Monthiers' blue, having been obtained by Monthier as the result of oxidising the white precipitate thrown down by the action of potassium ferrocyanide upon ammoniacal ferrous chloride solution. It may also be prepared by dissolving iron wire in a solution containing ammonia, ammonium chloride, and

Hofmann, Heine, and Hochtlen, loc. cit.

¹ Müller and Stanisch, J. prukt. Chem., 1909, (2), 80, 158.

B. Hüller and Stanisch, J. prakt. Chem., 1909, (2), 79, 81.

E. Müller and Stanison, J. arakt. Chem., 1809, (2), 79, 31.

Kopp, Geschicht der Chemie, 1833-47, 4, 360.

For details of the various processes the reader is referred to A Treatise on Colour Manufacture, by Zorr and Rübenkann, translated by C. Mayor, (Chas. Griffin & Co.), 1908.

E. Müller and Treadwell, J. prakt. Chem., 1908, (2), 80, 170

Hofmann and Arnoldi, Ber., 1906, 39, 2204.

Monthiers, J. Pharm., 1846, (3), 9, 282.

potassium ferrocyanide, and oxidising the green precipitate, thereby obtained, with hydrogen peroxide.1

A compound of the same formula is obtained by oxidation in neutral solution of the compound obtained by reducing Prussian blue with

hydrogen sulphide.

The corresponding potassium salt, FcK[Fe(CN)₆],H₂O, has already been described under the name of Williamson's violet. This when atreated with excess of chlorine yields a green hydratea mass known as Prussian green. Its composition corresponds to the formula Fe(CN)₃, but its constitution is probably represented by $(Fe[Fe(CN)_6])_n$, i.e. ferric ferricyanide.2

PENTACYANIDE DÉRIVATIVES OF IRON.

One of the evanogen groups of both ferro- and ferri-evanides is capable of being replaced by other radicles, such as CO, SO, NO, NO, H2O, NH3, AsO2, etc., thereby yielding pentacyanide derivatives of the types Mx [Fe"(CN), R] and Mx 1 [Fe4 (CN), R] respectively, the value for x varying according to the negative radicle introduced.

Nitroso Penta-Cyano-ferrates of Nitroso Penta-ferricyanides, $M_{s}[Fe(CN)_{s}NQ].$

Hydrogen nitroso ferricyanide or nitroprussic acid, H₂[Fe(CN)₅NO]. is obtained by decomposition of the silver salt with hydrochloric acid or by the action of dilute sulphune acid upon the barium salt. It is also formed when nitric oxide is bubbled through an acidified solution of potassium fetrocyanide. The reaction proceeds in two stages, namely, (a) oxidation to the ferricyanide, and (b) substitution of the cyanogen radicle by NO:--

$$H_3[Ec(CN)_6] + NO = H_2[Ec(CN)_5NO] + HCN.$$

Concentration in vacuo yields dark-red needles, which readily

deliquesce. Its most important calt is Sodium nitroprusside. Na₂[Fc(CN)₅NO]2H₂O, which is usually obtained by accomposing the potassium salt with sodium carbonate. Potassium carbonate is exceedingly soluble in water, so that sodium nitroprusside is readily obtained in pure form by crystallisation.

It may be conveniently prepared by heating potassium ferrocyanide with 50 per cent, pitric acid solution on a water bath until a drop of the solution gives no colour with ferrous sulphate. The whole is cooled, the liquid poured from the precipitate, neutralised with sodium earbondte, and taken to dryness. Extraction with water, filtration from the insoluble iron compounds, and crystallisation from the clear aqueous solution yields the salt in ruby-coloured, rhombic prisms. The reactions involved may be represented as follows :--

$$\begin{array}{c} 2K_{4}Fe(CN)_{6} + 3HNO_{3} = 2K_{3}Fe(CN)_{6} + 2KNO_{3} + H_{2}O + HNO_{3}. \\ 2K_{3}Fe(CN)_{6} + 3HNO_{3} = 2K_{2}[Fe(CN)_{5}NO] + 2KCN + H_{2}O + HNO_{3}. \\ K_{2}[Fe(CN)_{5}NO] + Na_{2}CO_{3} = Na_{2}[Fe(CN)_{5}NO] + K_{2}CO_{3}. \end{array}$$

- ¹ Hofmann, Arnoldi, and Hiendlmaier, Annales, 1907, 352, 54.
- Messner, Zeitsch. anorg. Uhem., 1895, 9, 136.

 For the nomenclature of these substances see Hofmang. Annales, 1903, 312, 1.

 Playfair, Phil. Mbg., 1850, (3), 36, 197, 271, 348.

 Playfair, Annales, 1852, 74, 317; Kyd, ibid., 240.

Another method I consists in dissolving 84.5 grams of sodium nitrate in 150 grams of water at 70° C., and mixing with 216 grams of sodium hydrogen sulphite and a solution of 82 grams of potassium ferricyanide in 250 grams of water, also at 70° C. The mixture is boiled until evolution of gas ceases and the cooled liquid mixed with 54 grams of sodium hydrogen sulphite. The deep red liquid deposits crystals of sodium nitroprusside.

When potassium ferricyanide is warmed with a solution of bleaching. powder to 70° C. a considerable evolution of gas takes place, and a reddish deposit of ferric oxide and calcium carbonate is formed. The filtered solution is concentrated and the potassium nitroprusside extracted with alcohol, and converted into the insoluble copper salt by addition of enpric chloride. • This latter is decomposed with sodium hydroxide, yielding the sodium salt, which may be further purified by dissolving in a little water, addition of alcohol, and subsequent evaporation after filtering off any insoluble material.2 . The constitution to be assigned to sodium microprusside in particular, and hence to uitroprussides in general, has been a subject of debate. Browning's 3 formula is :-

whilst Friend 4 suggests

in harmony with his shell theory of complex salts. From a combined study of the electric conductivity in dilute aqueous solution and the depression of the freezing-point in water, it has been concluded that the salt under these conditions yields the following ions:

Na', Na', and Fc(CN), NO".

The suggestion is therefore made that the salt is more correctly represented by the single formula, $Na_2[Fe(CN)_5NO]$, than by the double formula given above. In order to harmonise the double cyclic formula with this, it is merely necessary to assume that the double negative radicle [Fe(CN)₅NO]₂"" itself dissociates into two Fr(CN)₅NO" ions in solution in solution.

This assumption has its parallel in the case of triphenylmethyl, *C(C₈H₆)₃, which in solution has the simple formula, but is regarded as associated in the solid condition to hexaphenyl ethane, (C. H.), C. C(C,H,)3.6

- 1 Prudhomme, Compt. rend., 1890, 111, 45.
 2 Jensen, J. Pharm. 1885, (5), 11, 315.
 3 Browning, Trans. Chem. Soc., 1909, 77, 1238.
 4 Friend, Void., 1910, 109, 721.
 5 Burrows and Turner, ibid., 1919, 115, 1429.
 7 Techitechibabin, Ber., 1905, 38, 771; Piccard, Annalen, 1911, 381, 347.

Further, a study of the dehydration of the solid sodium salt supports the suggestion that the salt has the double formula 1 [Na₂Fe(CN)₅NO]₂. 4H₂O, for its complete dehydration is a matter of some difficulty, the last molecule of water elinging tenaciously to the salt.. If the single formula, $Na_2Fq(CN)_5NO.2H_2O$, be assumed, it is necessary to postulate the existence of half a molecule of water.

Properties.—An aqueous solution of sodium nitroprusside deposits Prussian blue on exposure to light. In the presence of alkali sulphidesas, for example, ammonium sulphide—it yields a beautiful purple colour, which is very characteristic, and so sensitive that the presence of 0 0000018 grain of hydrogen sulphide in 0 004 e.e. can easily be detceted.2 Ammonium hydroxide does not hinder the colour formation. but eaustic alkalies destroy it. It gradually fades on standing, in consequence of oxidation of the sulphide to sulphite. The composition of the purple substance is uncertain, but Hofmann 3 suggests the formula Na₃[Fe(CN)₅(O: N.SNa)], since, by the action of thio-urea, US(NH₂)₂, upon sodium nitroprusside, he obtained the complex defivative Na₃[Fe(CN)₅(O: N.SCNII.NH₂)], as a carmine-red powder, elosely similar to the substance under discussion.4

Hydrochlorie acid decomposes sodium nitroprusside, yielding hydrogen eyanide and ferrie chloride. The ferrie chloride then reacts

with excess of the nitroprusside to form ferrie nitroprusside.5

Concentrated sulphuric acid decomposes the salt, but the reactions involved are very complex.4 In part they appear to proceed as follows :--

$$\begin{array}{l} 2N\hat{a}_{2}Fc(CN)_{5}NO + 7H_{2}SO_{4} + 5H_{2}O = \\ 2II(NO)SO_{4} + NaHSO_{4} \\ + NH_{4}HSO_{4} + FeSO_{4} \\ + 2(NH_{4})_{2}SO_{4} \\ + 5CO + Na_{3}Fc(CN)_{5}. \end{array}$$

The pentacyanide derivative unites with the carbon monoxide to yield sodium earbonyl ferroeyanide, Na₃[Fe(CN)₆.CO], which again interacts with the ferrous sulphate to yield the ferrous derivative, Fe₃[Fe(CN)₅CO]₂, characterised by its violet colour (see p. 232).

Neutral potassium permanganate is without action on the salt. Sodium amalgam 7 reduces it to sodium ferrocyanide and ammonia. Thus :---

$$12 \text{Na}_2 [\text{Fe}(\text{CN})_6, \text{NO}] + 16 \text{Na} + 54 \text{H} \\ = 10 \text{Na}_4 \text{Fe}(\text{CN})_6 + 12 \text{NH}_3 + \text{Fe}_2 \text{O}_3 + 9 \text{H}_2 \text{O}.$$

Reduction in neutral solution with a zinc-copper couple causes the evolution of nitrogen. In acid solution (dilute sulphuric) sodium amalgam causes the formation of Prussian blue.

Socium hydroxide solution converts the salt into the nitrito derivative, Na₄[Fe(CN)₅, NO₂]10H₂O (see p. 284), whilst ammonium

- 1 Guareschi, Adi P. Accad. Sci. Torino, 1915, 50, 881.
- Reicherd, Zeitsch. anal. Chem., 1964, 43. 222.

- Heioherd, Zeitsch. anal. Chem., 1905, 43, 222.

 Hofmann, Annalen, 1900, 312. 1.

 Percirà, using potassium sulphide in metanol, obtained a violet, hygroscopic precipitate, readily oxidised in air, to which he gave the formula Na₂Fe(CN)₂, K₄S₂.2H₄O (Anal. Fis. Quim., 1915, 13, 27, 39).

 Bhaduri, Zeitsch. anorg. Chem., 1913, 84, 95.

 Percirà, Anal. Fis. Quim., 1915, 13, 466. Compare also Bhaduri, loc. cit.

 Bhaduri, loc. cit.

hydroxide yields, at 0° C., the ammoniate Na₃[Fe(CN)₅.NII₃], and at the ordinary temperature Na₂(NH₄)[Fe(CN)₅.NH₃] (see p. 284).

When heated to 440° C. in a vacuum, sodium nitroprusside decom-

poses, evolving nitric oxide and cyanogen.

Sodium nitroprusside is a convenient reagent to use in preparing nitroprussides of the heavy metals, such as copper and nickel, which, yield insoluble nitroprissides, and may therefore be estimated volumetrically in this manner by titration, using sodium sulphide as indicator,2 In this connection it is well to note that solutions of sodium nitroprusside may be preserved for months unaltered if stored in the dark in a bottle of non-alkaline glass. A trace of sulphuric acid greatly .. enhances the stability of the solution against the effect of light and of alkali from glass.3 Light rapidly induces decomposition.4

The di-ammoniate, Na₂Fe(CN)₅.Ne₂2NH₃, has been prepared.⁵ Ammonium nitroprusside, (NH₁)₂[Fe(CN)₅NO], obtained by decomposing the barium salt with ammonium sulphate, crystallises in reddish plates, which are readily soluble in water.

Barium nitroprusside, BalFc(CN)5NO[3H2O, is prepared by precipitating a solution of the sodium salt with zine sulphate and boiling the zine salt thus obtained with a suspension of precipitated barium carbonate. The liltered solution of the barium salt is evaporated under reduced pressure, and the salt erystallised from alcohol.6

Cobalt netroprusside, Co[Fc(CN)₅NO], obtained by double decomposition of a soluble cobalt salt with sodium nitroprusside, is a red salt, possessing an appreciable solubility in water. It dissolves in acids, but is insoluble in potassium hydroxide or ammonia solution. This latter property enables it to be separated from the corresponding nickel salt. whick readily dissolves in ammonia. ⁷

Nickel nitroprusside, Ni[Fe(CN)₅NO], obtained in a similar manner to the preceding salt, is dark green when anhydrons, but upon exposure to moist air becomes ashen grey. It is insoluble in acids, but readily dissolves in ammonia to a brownish yellow liquid. Potassium hydroxide turns it lemon-vellow.

Potassium nitroprusside, K₂[Fc(CN)₅NO], may be obtained by the interaction of a ferrous salt with the nitrite and eyanide of potash :- 9

$$\begin{aligned} 5\text{KCN} + 2\text{FeSO}_4 + \text{KNO}_2 + \text{II}_2\text{O} \\ = & \text{K}_2[\text{Fe}(\text{CN})_5\text{NO}] + \text{Fe}(\text{OH})_2 + 2\text{K}_2\text{SO}_4, \end{aligned}$$

or by the action of potassium nitrite on ferrievanides at 100° C.10

A convenient method consists in decomposing the barium salt with the calculated amount of potassium sulphate, and, after liltering off the insoluble barium sulphate, evaporating at low temperature under reduced pressure. The residue is purified by recrystallisation from 95 per cent. alcohol, when it separates as pale jank, anhydrous crystals. 11

- ¹ Etard and Bémont, Compt. rend., 1884, 99, 972, 1024.
- Zuccari, Ann. Chim. Applicata, 1914, 2, 287; 1915, 3, 277; Boll. Chim. Farm., 1914, 321.
- 53, 321. Eder, Monatsh., 1885, 6, 495.

 - Eder, Monaish., 1885, 0, 495.

 Peters, Zeitsch. anorg. Chem., 1912, 77, 137.

 Burrows and Turner, Trans. Chem. Noc., 1919, 115, 1420.

 Zuccart, Ann. Chim.Appticata, 1915, 3, 277; Cavalli, Cazzetta, 1897, 27, ii 95.
 Cavalli, loc. cit.; Zuccari, loc. cit.

 Städeler, Annalen, 1869, 151, 1.

 Pridhoma Comput. cond. 1860.

 - 10 Prudhomme, Compt. rend., 1890, 111, 45.
 - 11 Burrows and Turner, loc. oft.

Carbonyl Penta-Cyanoferrites or Carbonyl Penta-Ferrocyanides, $M_3[Fe(CN)_5CO].$

Addition of ferrie chloride to certain liquors produced in the manufacture of Prussian blue in a French factory by the methylamine method (see p. 213) resulted in the precipitation of a violet compound. Several hundred grains of this were isolated by Muller, warmed with potassium carbonate and hydroxide successively, and the filtered solution allowed to crystallise. The product thus isolated crystallised in thin scales and rectangular prisms, and proved to be the potassium salt of an entirely new acid, pamely hydrogen carbonyl ferrocyanide, H3Fc(CN)5.CO. Following up this discovery, Muller succeeded in preparing a series of. well-defined salts.

Constitution.—The constitution to be assigned to these derivatives depends very largely upon the views accepted for the constitution of ferroeyanides in general. The carbonyl group clearly replaces a C: NH group in the ferrocyanide molecuie, or, regarded from another standpoint, divalent oxygen replaces the divalent Nil group without effecting any alteration in the carbon nucleus of the molecule. Adopting his cyclic, formula (see p. 203) for ferrocyanic acid, Friedel 2 therefore suggests the following graphical representation of the change :-

(carbonyl ferrocvanide).

Hydrogen carbonyl ferrocyanide, or carbonyl ferrocyanic acid, H₂[F₂(CN)_b,CO|H₂O, is obtained 3 by the action of hydrogen sulphide on the copper sali in solution. Upon evaporation in the dark over potassium hydroxide, the held separates in colourless tabular crystals. It is acide to litimus, and is sufficiently powerful to decompose alkali carbonates.

The heat of combustion of carbonyl ferrocyanic acid is 809,800 calories, the products being nitrogen, carbon disxide, water, and ferric oxide.4 The heat of formation of the anhydrous acid is -48,600 valories 5; the acid is thus less strongly endothermic than ferrocyanic icid (~122,000 calories).

Barium carbonyl ferrocyanide, Ba₃[Fc(CN)₅.CO]₂11 M₂O, is readily prepared by decomposing the copper salt with a soluble barjum salt, or by neutralising the free seid with barium hydroxide. It loses 10 nolecules of water at 19° C. in vacuo, and becomes anhydrous at 30° C. The heets of solution are: -6

 $[Ba_n[Fc(CN)_n^n(CO)]_a]_{-1}$ Aq. = $Ea_n[Fc(CN)_n(CO)]_a$ Aq. + 16,900 calories, $[Ba_{2}[Fc(CN)_{5}CO]_{2}]$ $[Fc(CN)_{5}CO]_{2}Aq. - 6.900$ calories.

⁵ Muller, loc. cit.

- 1 J. A. Muller, Comps. rend., 1887, 104, 994. 4 .
- Friedel, ibid., 1887, 104, 995.
- Muller, Ann. Chim. Phys., 1889, (6), 17, 93.
 Mullel, Compt. Fend., 1906, 142, 1516.
- Muller, Bull. Soc. chim., 1914, (4), 15, 491.

whence the heat of hydration of the anhydrous salt is 28,800 calories at 17.5° C

Copper carbonyl ferrocyanide, Cu₈[Fe(CN)₅.CO]₂, is obtained 1 by double decomposition in aqueous solution of copper sulphate and potassium carbonyl ferrocyanide. It forms as a yellowish green gelatinous precipitate, which is insoluble in dilute nitric or sulphuric acid, and which becomes an ambydrous dark brown powder at 110° C.

Ferric carbonyl ferrocyanide, Fc[Fc(GN)₅CO], is prepared by double decomposition of an excess of ferric chloride solution and the potassium salt. It resembles indigo in appearance, and contains about 4 per cent. of combined water. Dried at a moderate temperature it yields a

 friable resinous mass with a brilliant conchoidal fracture. Potassium carbonyl ferrocyanide, 2K₃[Fc(CN)₅CO].7H₂O.—The discovery and early preparation of this salt have already been described (see p. 232). Itemmy be prepared in the laboratory by passing moist carbon monoxide over potassium ferrocyanide at 130° $\dot{C}_{\rm c}$. Thus :— 3

$$\mathbf{K_1Fe(CN)_6} + \mathbf{CO} + 2\mathbf{H_2O} + \mathbf{K_3Fe(CN)_5}.\mathbf{CO} + \mathbf{NiI_3} + \mathbf{H.COOK}.$$

It crystallises in thin scales and rectangular prisms. 100 parts of water at 18° C. dissolve \$18 parts of the salt.

The salt is more stable than potassium ferrocyanide towards oxidising media, being unaffected by potassium persulphate, and but slightly oxidised by permangamate or ozone in the absence of sulphuric acid. The salt becomes anhydrous at 120° C. The heats of solution are as

 $[K_3Fe(CN)_5CO] + Aq. = K_3Fe(CN)_5CO.Aq. - 5.200$ calories, $\mathbb{E} K_3(\text{Fc}(\text{CN})_5\text{CO})7\Pi_2\text{O} + \text{Aq.} = 2K_3\text{Fc}(\text{CN})_5\text{CO.Aq.} - 21,800 \text{ calories}, 32$ whence the heat of hydration of the anhydrons salt is 5700 calories at 18° C.

Chlorine appears to oxidise the salt to an unstable carbonyl ferricyanide. Prolonged exposure to chlorine results in the formation of počassium ferricyanide.

Silver carbonyl ferrocyanide, Aga[Fc(CN),CO], is obtained as a white curdy precipitate on addition of the potassium salt to silver nitrate solution in the presence of acetic acid. It rapidly darkens even when protected from the light. Insoluble in boning acetic acid, it is slightly soluble in dilute mineral acids evolving hydrogen cyafide. Potassium hydroxide liberates silver oxide, potassium carbonyl ferrocyanide being simultaneously produced.

Sodium carbonyl ferrocyanide, Na₃[Fc(CN)₅CO].7[LO, is obtained in a similar manner to the potassium salt. It crystallises in pale yellow monocimic needles, which become anhydrous at 110° C.

The heats of solution are as follow: -- 🖔 💪

 $[Na_3Fe(CN)_5,CO] + \Lambda q$. = $Na_3Fe(CN)_5CO$. Λq . + 4800 calories, $[Na_3Fe(CN)_5CO.7H_2^2Q] + \Lambda q. = Na_3Fe(CN)_5CO.\Lambda q. = 7500$ calories,

Muller, Ann. Chim. Phys., 1889, (6), 17, 93.
 Stoecker, Chem. Zentr., 1904, 1., 1406, from J. Clasbeleuchtung, 1904, 47, 338.
 See also Leccoq, Bulle Noc. chim. Belg., 1911, 25, 72; F Smith, Clas World, 1903, 39,
 Stoecker-J. Gasbeleuchtung, 1904, p. 328.
 Muller, Compt. rend., 4887, 104, 904.
 Muller, Bull. Soc. chim., 1903, (3), 29, 1138.
 Muller, Bull. Soc. chim., 1903, (3), 29, 1138.

¹ Muller, ibid., 1903, (3), 29, 1161. 4 Mullef, ibid., 1914,(4), 15, 491.

whence the heat of hydration of the anhydrous salt is 12,300 calories at 15.9° C.

Strontlum carbonyl terrocyanide, Sr₃[Fe(CN)₅CO]₂.4H₂O, may be prepared in a similar manner to the barium salt. It is a yellow hygroscopic powder, which becomes anhydrous at 200° C. The heats of solution are as follow:—1

$$\begin{split} & [Sr_3(Fc(CN)_5CO)_2] + Aq. = Sr_3(Fc(CN)_5CO)_2.Aq. + 39,900 \ calories, \\ & [Sr_3(Fc(CN)_5CO)_2.4H_2O)] + Aq. = Sr_3(Fc(CN)_5CO)_2.Aq. + 32,400 \ calories, \end{split}$$
whence the heat of hydration of the anhydrous salt at 13.3° C. is 7500

calories. Uranyl carbonyl ferrocyanide, (UO2)3[Fe(CN)5CO]25H2O, is gb-... tained 2 as an orange-yellow gelatiuous precipitate on adding the potassium salt to uranium nitract. At 70° C. it becomes red, but acquires the yellow colour again on powdering.

Potasslum calcium carbonyl ferrocyanide, CaK.Fc(CN)₅.CO.5H₂O,

has been obtained as straw-coloured crystals.5

Nitrito Penta-Cyanoferrites or Nifrito, Penta-Ferrocyanides, M4 Fc(CN)5.NO2.

When aqueous sodium nitroprusside solution is treated with sodium hydroxide, the quaternary nitrito sodium salt, Na₄[Fe(CN)₃NO₂]10H₂O, is obtained.4 It crystallises in yellowish red monosymmetric tablets, and is very soluble in water, yielding a dark red coloration with ammonium sulphide.

When sodium hydroxide is allowed to react on a solution of sodium nitroprusside in methyl alcohol, the monohydrated 5 salt is obtained. Thus :-

$$Na_{2}Fe(CN)_{5}$$
. $NO:2H_{2}O+2NaOH=Na_{4}Fe(CN)_{5}$. NO_{2} . $H_{2}O+2H_{2}O$.

With potassium hydroxide the double sodium potassium monohydrated salt, Na₂K₂₁Fe(CN)₅NO₂].11₂O, is obtained.

The silver salt, Ag₄[Fe(CN)₅.NO₂]211₂O, and alkyl nitroso derivatives have also been obtained, and numerous other complex salts are described.

Ammino Perta-Cyanoferrites or Ammonio Penta Ferrocyanides, Ala[Fe(CN)5.NII3].

Sodium ammonio ferrocyanide, Na₃Fe(UN)₅.NII₂, is obtained when ammonium hydroxide is allowed to act at 0° C, on a solution of sodium nitroprusside in wethyl alcohol.5

If the reaction is allowed to proceed at the ordinary temperature, the sockum animonium salt, Na2(NH1)[Fe(CN)6.NH3], is obtained.

$$+ Na_{2}Fe(CN)_{5}^{*}.1^{1}O + 3NII_{3} + II_{2}O_{-\overline{c}}Na_{2}(NII_{4})Fe(CN)_{5}.NII_{3} + NH_{4}NO_{2}.$$

- ¹ Muller, Bull. Soc. chim., 1914, (4), 15, 491.
- Muller, Ann. Chin. Phys., 1889, (6), 17, 93
 Leocoq, Bull. Soc., chin. Belg., 1911, 25, 72.
 Hotmann, Annalen, 1900, 312, 1; Zeitsch. anorg. Ckem., 1896, 11, 278.
 Percra, Anal. Fis. Quim., 1915, 43, 144.
- Hofmann, loc. cit.; Pereira, Anal. Fis. Quima 1915, 13, 444, 166.

Aquo Penta-Cyanoferrites or Aqua Penta-Ferrocyanides, M₂[Fe(CN)₅.H₂O].

Potassium aquo ferrocyanide, K_sFc(CN)_s,H_sO, is obtained by reducing potassium aquo penta-ferricyanide, K. Fc(CN), H.O, with alkaline hydroxylamine chloride, with alkali sulphide, or with formaldchyde and acctone in the presence of alkali.1

Sodium aquo ferrocyanide, 3 Na $Fc(GN)_5$. H_2O , results when sodium nitroprusside reacts with hydroxylamine, etc., or when the salt is oxidised

by potassium hypobromite or hydrogen peroxide.

Aquo Penta-Cyanoferrates or Aquo Penta-Ferricyanides, M₂[Fe(CN)₅.H₂O].

Potassium aquo ferricyanide, K₂Fc(CN)₅.H₂O, is obtained by the prolonged action of chlorine upon potassium ferrocyanide solution. At first potassium ferrievanide is formed, which undergoes further decomposition, the chlorine abstracting one (CN) group, water taking its place. Thus :— 1

$$2\mathbf{K}_{4}\mathrm{Fe}(\mathrm{CN})_{6}+\mathbf{\hat{C}l}_{2}=2\mathbf{K}_{3}\mathrm{Fe}(\mathrm{CN})_{6}+2\mathrm{KCl},$$

followed by

$$\begin{split} & K_3Fc(CN)_8 + Cl_2 = & K_3Fc(CN)_5Cl + CN.Cl. \\ \bullet & K_3Fc(CN)_5Cl + H_2O = & K_2Fe(CN)_5.H_2O + KCl. \end{split}$$

The same salt is produced by the action of a mixed solution of sodium chlorate and hydrochloric acid upon potassium ferrocyanide.

The solution is intensely violet, but the salt is readily precipitated by addition of alcohol. Reduction with alkaline hydroxylamine chloride solution yields potassium aquo penta-ferrocyanide, KaFe(CN), HaO whilst with alkaline potassium sulphite the sulphito penta-ferrocyanide, $K_{5}Fe(CN)_{5}SO_{3}$, is obtained.

In earlier literature this salt is referred to as potassium perferri-

cyanide, the formula, K₂Fe(CN)₆, being ascribed to it.³

Sodium aquo penta - ferricyanide, Na₂Fc(CN₅,H₂O, is readily obtained 2 by the action of nitrous acid or bromine water upon the corresponding ferrite, Na₃Fe(CN)₅.H₂O.

Sulphito Penta-Cyanoferrites of Sulphito Penta-• Ferrocyanides, M₅[Fc(CN)₅.ŠO₆].

Potassium sulphito ferrocyanide, KaFe(CN)5.SO3, is obtained by reduction of potassium aquo ferricyanide, K2Fc(CN)5, H4O, with excess of potassium sulphite in potassium hydroxide.1 It crystatlises from aqueous alcohol in small yellow prisms.

Ferrous thiocyanate, Fc(CNS)2.3112O, is obtained by dissolving iron in an aqueous solution of the free acid. It crystallises in monoclinic prisms, and is readily oxidised by exposure to air.

Ferric thiocyanate, Fe(CNS), 6HO, may be prepared by dissolving ferric hydroxide in aqueous thiocyanic acid, as also by metathetica

Cambie Gazzetta, 19 1., 41., 187.
 Hofmann, Annalen, 1900, 312, 1; Zoitsch. anorg. Chen., 1896, 11, 278.
 See Bong, J. Chem. Soc., 1876, 29, 907; Dammer, Handbuch der anorg. Chem., 3
 Moissan, Traité de Chimie Minérale, 1995, 4, 417.
 Class, Annalen, 1886, 99, 40.

١.

decomposition of a ferrous salt and potassium thiocyanate.1. It crystallises in cubes, deep red in colour, which slowly dissolve in water. yielding an intensely red solution. The formation of this red colour constitutes a delicate method of detecting the presence of traces, of ferrie iron (see p. 242).

In very dilute solution the intensity of colour produced is not quite proportional to the amount of iron present-indeed, the more concentrated solution becomes decolorised on dilution, as also by addition of The decoloration on dilution is usually oxalates, tartrates, etc. explained on the assumption that the water hydrolyses the red undissociated salt into yellow colloidal ferric hydroxide and free thioevanie acid : --

$$2Fc(CNS)_3 + 3H_2O \Longrightarrow 2Fc(OH)_3 + 6HCNS.$$

The effect of the organic acids is attributed to their union with the iron ions of the dissociated ferric thiocyanate, thereby displacing the equilibrium

Fe''' + 8CNS' == Fe(CNS)₃

in the direction of right to left—that is, reducing the concentration of the undissociated coloured salt.2

A modification of this view lies in the theory that the coloured compound is the undissociated double salt 3 Fe(CNS)3.9KCNS, and not simply the simple undissociated molecule Fc(CNS)3. This is apparently supported by the observation that a maximum coloration is produced, save in very dilute solutions, with twelve molecules of potassium thiocyanate to one of ferric chloride. Thus:--

$$FeCl_3+12KCNS=Fc(CNS)_3.9KCNS+3KCl.$$
.

In dilute solution even more potassium thioeyanate is required, no doubt on account of dissociation, as explained above.

Tarugi,4 on the other hand, attributes the colour to the formation of ferrous peroxy, thioeyania, acid, FeH(CNOS)3, according to the reversible reaction :--

$$12FeCl3 + 6KCNS + 6H2O = 2FeH(CNOS)3 + 6KCl + 10FeCl2 + 10HCl,$$

The free acid, $H_3(CNOS)_{\alpha}$ as well as its acid salts, have a red colour. The decolorising laffmence of oxalates, etc., is attributable to their converting the acid or its acid salts into colourless normal salts.

This theory, however, has not met with a wide acceptance.

Ferric throgyanate solution gradually loses its intensity of colour when kept, a reduction of the iron from the ferrie to the ferrous condition being observable.5

- Claus, loc. cit. Ch. n. Farm., 1911, 50, 694; Gazzetta, 1908, 38, ii. 5, 299; 1907, Bongiovanni, Boll. Ch.m. Farm., 1911, 50, 094; Cazzeua, 1903, 30, 11. 0, 209; 1901, 37, 1472; Rosenheim and Cohn, 7 eitsch. anorg. Chem., 1901, 77, 280; Magnanini, Zeitsch. physikal. Chem., 1893, 67, 1; Vernon, 10id., 1893, 67, 66; 1892, 66, 177, 191, 202, 214; Schultze, Chem. Zeit., 1893, 77, 2; Riban, Bull. Soc. chim., 1892, (3), 6, 916; Tatlook; J. Soc. Chem. Ind., 1887, 6, 276, 352; Shilton, Chem. News, 1884, 50, 234; H. Werher, Zeitsch. and Chem., 1883, 22, 44; Dupré, Chem. News, 1875, 32; 15; Pelouse, Ann. Chim. Phys., 1830, (1), 44, 214.
- Phys., 1830, (1), 44, 214.

 Krüss and Moraht, Ber., 1880, 22, 2054, 2001; Zeitsch. anerg. Chem., 1892, 1, 399.

 Tarugi Gaizetta, 1904, 34, ii. 326.

 Stokes and Cain, J. Amer. Chem. Soc., 1907, 29, 412.

The exact course of this reduction is uncertain, but the carbon of the acid radicle is oxidised to carbon dioxide and the sulphur to sulphurie acid. The equation might therefore be written as:-

$$. \ 8 Fe(CNS)_3 + 6 \dot{H}_2 O = 8 Fe(CNS)_2 + 7 HCNS + \dot{CO}_2 + H_2 SO_4 + NH_3.$$

This equation, however, postulates the production of more animonia than is actually found, by about 50 per cent. The nitrogen therefore appears only partly as ammonia, and no definite information has been obtained as to the product or products into which the semaining portion

of the element is converted.1

The beautiful colour of the amethyst is thought to be due to ferric , thiocyanate, and this is supported by the fact that, on licating, the colour of the stone becomes yellow, its absorption spectrum now closely resembling that of ferric oxide orea ferric compound. The calcined stone closely resembles the natural citrine, which latter may have been obtained in an analogous manner from the amethyst through natural agencies.2

Fe(CNS)3.9KCNS.4H2O is obtained 3 by dissolving freshly precipitated ferrie hydroxide in thiocyanic acid, adding the requisite. quantity of potassium thiocyanate, and concentrating over sulphuric acid. The salt yields dark red rhombic prisms, with a greenish reflex. It is fairly stable, but slowly deliquesees upon exposure to moist air. Its solution in pure water is stable, but traces of electrolytes induce decomposition. The corresponding ammonium, sodium, lithium, and exsimm salts have been prepared.

The anhydrous salt, Fe(CNS)3.3KCNS, has been obtained, and is

described below.

Ferro Hexathiogyanates or Hexathiogyanoferrites, $M_4Fc(CNS)_{62}xH_2O$.

Sodium ferrothiocyanate, Na₄Fe(CNS)₆.12H₂O, is prepared by dissolving ferrous carbonate in thiocyanic acid and adding sodium thioevanate.4 The salt crystallises in colourless tablets which are soluble in water, as also in alcohol, yielding bright rose-coloured solutions.

Ferri Hexathiocyanates or Hexathiocyanoferrates, M3Fc(CNS)6.xH2O.

Sodium ferrithiocyanate, Na₂Fc(CNS)₆M2H₂O, is formed by allowing a mixed solution of sedimm and ferric thiocyanateseto crystallise over sulphuric acid. It crystallises in dark given hexagonal or rhombic crystals. These dissolve in water to a deep red solution, and are partially decomposed. In alcohol a violet solution is obtained, from which the salt may be recrystallised inchanged.

The potassium salt, K₃Fc(CNS)₆, is obtained by dissolving freshly precipitated ferrie hydroxide in thiocyanic acid and adding the requisite quantity of potassium thiocyanate. The solution is concentrated over sulphuric acid, when the salt separates out in small hexagonal crystals.

The aqueous solution possesses an intensely red colour.

Philip and Bramley, Trans. Chem. Soc., 1913, 203, 795.

Nabl., Monatsh., 1899, 20, 272.

Kubas and Morabt, Ber., 1889, 22, 2061; Annales, 1890, 260, 206. See also Wells, Amer. Chem. J., 1902, 28, 245.

Rosenheim and Cohn, Zeitsch. anorg. Chem., 1901, 27, 286.

Krüss and Moraht, Ber., 1889, 22, 2061.

IRON, AND SILICON.

When heated together, iron absorbs silicon, even at temperatures considerably below 950° C. 1 a silicide or silicides being produced accord-

ing to circumstances.

Iron silicides are, in general, hard and brittle, thus forming good abrasives. They are white or grey in colour, and may take a good polish. Unattacked by air and water, they are but slowly decomposed by acids, except hydrofluoric, which readily dissolves them. In general their density falls with rise of silicon content.

The freezing-point curves of alloys of iron and silicon 2 indicate the existence of two silicides of iron, namely, the subsilicide, Fe₂Si, and the monosilicide, FeSi; and Jouve regards there as the only two definite silicides that exist. 3 A study of the density curves of solutions of silicon in iron, 4 suggests the possible existence of Fe₂Si, FeSi, FeSi, Fe₃Si₄, and Fe₃Si₄. Of these the distilicide, on the triferro distilicide, Fe₃Si₂, are claimed as having been soluted, but the evidence is not conclusive. A triferro silicide, Fe₃Si, is described by Naske.

Diferro silicide or Iron subsilicide, Fe₂Si, is the form in which silicon occurs in east iron, and may be obtained in several ways: namely, (1) by heating iron in a porcelain dish brasqued with silicon; (2) by heating iron with 10 per cent. of silicon in an electric furnace; and (3) by similarly heating ferric oxide with excess of silicon. • •

It may also be prepared by heating iron in silicon tetrachloride

vapour at 1100° C.: -9

$$SiCl_4+4Fe=Fe_2Si+2FeCl_2$$

or by heating iron and copper silicide containing 10 per cent. of silicon. Diferro silicide, as obtained by these methods occurs as small prismatle crystals, possessed of metallic listre, magnetic, and of density 7.00 at 22° C. Hydrogen fluoride attacks it readily, and aqua regia decomposes it, yielding silica and ferric chloride. Hot potassium hydroxide is with a truction of it. It is decomposed by chlorine with incandescence.

Iron skicide or Iron monosilicide, FcSi, is prepared by heating a mixture of copper silicide and iron filings in an electric furnace. The resulting product is treated with 50 per cent. nitric acid to decompose any copper silicitie, and washed. Obtained in this way, iron silicide occurs as tetrahedral trystels, with a brilliant metallic lustre; they are extremely hard, and have a density of 6·17 at 15° C. Fluorine attacks them at ordinary temperatures, whilst chlorine and bromine decompose them at red heat. Molten alkali-hydroxides attack the silicide, as also do fused mixtures of the alkali nitrates and carbonates. ¹¹

```
<sup>1</sup> Cobesu, Bull. Soc. chim., 1902, (3), 27, 44.

<sup>2</sup> Guertler and Tammann, Zeitsch. anorg. Chem., 1905, 47, 163.

Jonya, Bull. Soc. chim., 19014 (3), 22, 290. Compt. cond. 1902,
```

Jouve, Bul. Log. chim., 1901 (3), 25, 290; Compt. rend. e 1902, 134, 1577.

Trilley, Revue Metalurgie, 1911, 8, 457.

Chalmot, J. Amer. Chem. Soc., 1895, 17, 923; 1899, 21, 59; Lebeau, Compt. rend.

[&]quot;Chalmot, J. Amer. Chem. Soc., 1895, 17, 923; 1899, 21, 59; Lebeau, Compt. rend., 1901, 132, 681.
"Chalmot, loc. cit.

Ngake, Chem. Zeit., 1903, 27, 481.

Chalmot, loc. cit.
 Moissan, Compt. rend., 1895, 721, 621.
 Noske, Chem. Zeit., 1903, 27, 481.
 Vigodroux, ibid., 1905, 741, 828.

¹³ Lebeau, ibid., 1900, 131, 583.

¹⁴ Lebeau, ibid., 1899, 128, 933; Guertler and Tammann, loc. cit.; Vanzetti, Gazzetta, 1906, 36, i. 498.

Iron disilicide, FeSi. - A substance containing iron and silicon in the proportions necessary to the formula FcSi2 is produced by heating iron in excess of silicon in an electric furnace. It occurs as small lustrous crystals.1 .

Ferric sillicide, triferro disilicide, Fe₃Si₂, is obtained by heating a mixture of iron filings, sand, and charcoal in an electric furnace. It is white, crystalline, and of density 6 36; only slightly magnetic. It is a good conductor of electricity. Cold aqua regia slowly attacks it; fusion with potassium nitrate and sodium carbonate rapidly decomposes

it. Hydrofluoric acid also breaks it up.2

Ferrous orthosificate, iron olivine or Favalite, Fe₂SiQ₄, occurs as tabular rhombs in iron slags, of which it is one of the commonest constituents. Its name is derived from Fayal Island (Azores), where it was first found, although probably even that specimen was originally a lump of slag from a ship's ballast. Its crystal elements are:—3

$$a:b:c=0.4632:1:0.5885$$
.

It is the most fusible silicate present in slag, and melts at about 1260° C.4 When heated in hydrogen, reduction begins at 225° C.

Ferrous magnesium orthosificate, (Fc, Mg)SiO₄ or Fc₂SiO₄ + xMg₂SiO₄, where x ranges from 3 to 12, occurs as green rhombic crystals, usually small in size. It is present in slag, being the silicate of highest meltingpoint, namely, about 1400° C. Natural olivines usually melt between 1363° and 1378° C.5

The refractive index of olivine progressively increases with the iron content, and may be used as a criterion of the chemical composition of rock sections.6

Olivine readily decomposes upon exposure, yielding serpentine, Mg₃Si₂O₇.2H₂O.

Ferrous metasilicate, FcSiO₃, has been prepared by fusing the calculated quantities of ferric oxide and silica at 1600° C. Density, 3.44. It melts at 1500°-1550° C.7

The heat of formation of ferrous metasilicate is:

$$\begin{split} & [\mathrm{FeCO_3}] + [\mathrm{SiO_2}] = [\mathrm{FeSiO_3}] + (\mathrm{CO_2}) - 7600 \text{ calories.}^9 \\ & [\mathrm{FeO}] + [\mathrm{SiO_2}] = [\mathrm{FeSiO_3}] + 5000 \text{ calories.}^9 (5905 \text{ calories.}^9). \end{split}$$

Double metasilicates of magnesium and iron occur as the minerals hypersthene and authophyllite (Mg, Fc)SiO₃. A sodium ferrous metasilicate, NaFc(SiO₃)₂, occurs as dark brown or green prisms in quartz under the name of acmite or agirite, and a crystalline substance of similar composition has been prepared by Weyberg 10 by fusing silicic acid, ferric hydroxide, and sodium carbonate with excess of sodium

¹ Lebeau, Compt. rend., 1901, 332, 681; de Chalmot, Amer. Chem. J., 1897-19, 118; also de Chalmot, J. Amer. Chers. Sec. al 895, 17, 923.

² de Chalmot, loc. cit

G. O. Smith, Johns Hogkins Univ. Circulars, 1894,13, 82.

Sólivanov, Reu-Soc. Russa Métall., 1915, 71, 328.

Cusack, Proc. Roy. Irish Acad., 1897, (3), 4, 399.

Backlund, Abstr. Chem. Soc., 1911, ii 616, from Trav. Musée Géol. Pierre le Grand. Acado Sci. Petrograd, 1909, 3, 77.

G. Stein, Zeitsch. anorg. Chem., 1907, 55, 159.

Le Chaclier, Compt. rend., 1805, 120, 623.

Wologdiner ibid., 1915, 157, 121.

Weyberg, Centr. Min., 1905, p. 717.

chloride. The potassium analogue KFe(SiO₃), has been prepared, tout

does not apparently occur in nature.

Crystals of ferrous manganese metasilicate (Fc, Mn)SiO₃, or *iron rhodonite*, have been obtained from Bessemer slags. They belong to the triclinic system, and closely resemble crystals of the mineral.

Ferric silicate. Several, silicates containing ferric iron are known in a natural state, chief among which are Anthosiderile, 2Fe₂O₃.9SiO₄. 2H₂O; Cronstedtite, 3FeO.Fe₂O₃.2SiO₂.3H₂O; Hisingerite, 4Fe₂O₃.9SiO₂. 18H₂O; and Nontronite, Fe₂O₃.3SiO₂.5H₂C. A sidium ferric metasilicate occurs as Crocidolite, 2NaFe¹¹(SiO₃)₂.Fe¹²SiO₃.Na₂SiO₃.

Ferrous fluosilicate, FeSiF, 6112O, has been prepared. It is iso-

morphous with the corresponding salts of cobalt and nickel.4

· IRON AND BORON.

Iron sub-borlde or diferro boride, Fc₂B, is obtained by heating reduced iron and boromin a porcelain tube in an atmosphere of hydrogen. It occurs as steel-grey prisms, of density 7.37 at 18°C., and is attacked by dry air at dull red heat only, whilst moist air readily attacks it at ordinary temperatures. It dissolves in het aqueous solutions of the mineral acids.

Iron monoboride, FcB, is readily formed by heating iron in a stream of vaporised boron chloride. It also results when iron and boron are heated together in the electric furnace. Obtained in this way iron boride forms brilliant yellow-grey crystals, of density 7-15 at 18° C. It does not alter in dry air or oxygen, but moist air renders it ochreous. Chlorine and bromine attack it at red heat and, when heated in

oxygen, it burns brilliantly.

Bromine attacks it at red heat with incandescence; chlorine is less vigorous in its action, whilst iodine and hydrogen iodide have no action, even at 1100° C. The chlorate and nitrate of potassium do not affect it at their melting-points, but at higher temperatures decompose it withincondescence. Firsted alkali hydroxides and carbonates decompose it rapidly. Concentrated sulphuric acid is without action in the cold, but with the boiling acid ferrous sulphate is produced. Dilute nitric acid dissolves it when hot, and the concentrated acid acts vigorously. Dilute hydrochloric acid is without action, and the hot concentrated acid acts only slowly.

Iron diboride, Fck₂, has been prepared in a similar manner to the sub-boride, and represents the maximum limit of combination of iron with borons. Its density is 5; it is slightly yellow in colour, hard, and

friable, being readily oxidised by moist air.7

Other complexes, such as Fc₅B'₆, Fc₃B₄, Fc₂B₃, have been prepared, but are probably not all separate chemical entities.

Ferrous chlorkorate, FeCl₂.6FeO.8B₂O₃ or FeCl₂.6FeB₂O₄.2B₂O₃, is

```
**Niggli, Zeißch. anorg. Chem., 1913, 84, 31.

**Tacconi, Zeitsch. Kfgst., Min., 1914, 54, 392.

**See Tachirwinsky, Centr. Min., 1907, p. 435.

**Dufet, Bull. Soc. Min., 1901, 24, 118.

**du JassSungix, Compt. rend., 1967, 345, 121.

**Moissaf bbd., 1805, 120, 173.

**du Jassonneix, loc. cit.

**J. Hoffmann, Chem. Zeit., 1910, 34, 1349
```

obtained by passing the vapour of ferric chloride over an intimate mixture of iron wire and calcium borate heated to 330° C. The ferric chloride is reduced to ferrous, which immediately reacts with the calcium borate. The mass, on cooling, is extracted with water, any unattacked iron being removed magnetically. Ferrous chlorborate yields greyish, transparent cubes. It is slowly attacked by nitrie acid; fused alkalies rapidly decompose it.

Ferrous bromborate, FcBr₂.6FcO.8B₂O₃ or FcBr₂.6FcB₂O₄.2B₂O₃, is prepared by passing bromine vapour over an intimate mixture of iron (in excess) and boro-natro-calcite, Na₂B₄O₇.Ca₂B₆O₁₂.16H₂O. It yields

greyish white cubes and octahedra.2

¹ Rousseau and Allaire, Compt. rend., 1893, 116, 1195.

² Rousseau and Allaire, ibid., 1893, 116, 1445.

CHAPTER X.

DETECTION AND ESTIMATION OF IRON.

Inon readily lends itself both to detection and estimation.\frac{1}{2} In this chapter the more important methods of detecting and estimating iron in its compounds are discussed. For methods of analysing steels and other alloys the reader is referred to Part III. of this volume.

Detection of Iron.

Dry Tests.—Iron salts, when moistened with hydrochloric acid and heated on a loop of platinum wire in a Bunsen flame, emit a shower of sparks. When heated on charcoal with sodium carbonate in the blow-topipe flame, the compound is converted into a dark-colocréd residue. If potassium cyanide is added to the sodium carbonate and iron compound, and the whole heated on charcoal in the inner flame of the blow-pipe, metallic iron is obtained as a grey, magnetic powder.

If a little of the iron compound is heated with borax on platinum wire in the outer blow-pipe flame, on cooling, a yellow transparent bead is obtained, which becomes bottle-green upon heating in the inner or reducing flame of the blow-pipe, in consequence of reduction to the

ferrous condition.2

Wet Tests.—The presence of iron in solution may readily be detected by a considerable number of sensitive reactions. This ferrous iron gives a greel precipitate of ferrous hydroxide upon addition of excess of animonium hydroxide. With potassium ferricyanide and a trace of acid; a deep blue precipitate—Turnbull's blue—is obtained. With potassium ferrocyanide a white precipitate is obtained in the entire absence of any ferric salt. Ferric iron, on the other hand, is usually characterised by its deep yellow or brown colour. Addition of concentrated hydrochloric acid deepens the colour. With excess of ammonium hydroxide, brown flocculent ferric hydroxide is precipitated. With potassium ferrocyanide solution, a deep blue colour is obtained in acid solution, whilst with potassium ferricyanide there is no action. Potassium talocyanate gives in acid solution a deep red colour, which is not destroyed by hear. Salicylic acid gives a violet colour, provided no free mineral acid is present.

It is usual, in systematic qualitative analysis, to remove silver, lead,.

The green colour of ordinary bottle glass is due to the presence of ferrous iron.

As this is not a text-hook of analysis, the various methods of qualitative and quantitative analysis are not discussed in experimental details. References, however, are appended, so that the student desirous of attempting any of the methods may know where to seek for details.

and mercury from the solution to be analysed, by precipitation as chlorides on addition of hydrochloric acid. The metals capable of precipitation as sulphides with hydrogen sulphide in acid solution are next removed, and the filtrate, boiled to expell any dissolved hydrogen sulphide, is treated with ammonium chloride and excess of ammonium hydroxide. In the absence of phosphites, the precipitate may contain the hydroxides of iron, aluminium, and chromium. The presence of iron is evidenced by the brown colour, if the metal is in the ferrice condition. In any case, the precipitate is treated with sodium peroxide and water, whereby any aluminium is dissolved as sodium aluminate, any chromium as sodium chromate, the iron remaining as insoluble ferrice hydroxide. If desired, a confirmatory test may be applied. For example, the precipitate may be dissolved in hydrochloric acid and potassium ferrocyanide added. The characteristic has colour indicates circu.

If a phosphate was present, the precipitate obtained on addition of ammonium chloride and hydroxide may contain phosphates of such metals as calcium, etc., which are normally precipitated in later groups in systematic analysis. The precipitate is therefore dissolved in dilute hydrochloric acid, and the solution nearly neutralised with sodium carbonate. Sodium acetate is now added, and the whole boiled. The precipitate contains the phosphates of aluminium, chromium, and iron, and is treated, as already indicated, with sodium peroxide and water.

Estimation of Iron.

Gravimetric Methods.—If the iron is already in solution, it is first oxidised to the ferric condition and precipitated as ferric hydroxide by addition of ammonia to the boiling solution. The precipitate is well washed, dried in an oven, ignited in a crueble, and weighed as anhydrous

ferric oxide, Fe₂O₃.

If the iron is not already in solution, the solid to be analysed is digested with hydrochloric acid, or aqua regia, or is brought into a soluble condition by fusion with potassium carbonate or hydrogen sulphate. Silica is filtered off, any copper, lead, etc., precipitated with hydrogen sulphide, and the iron oxidised to the ferric condition with nitric acid. Addition of animonium chloride and bydroxide precipitates the iron, which is filtered off and weighed as Fe_2O_3 . If alminium and chromium are likely to be present, these are first removed, as in quantative analysis, by adding sodium peroxide to the precipitated hydroxide, prior to ignition. After washing away any sodium aluminate and chromate, the pure ferric hydroxide is ignited, as already indicated.

If manganese was originally present, some of it will precipitate out with the iron, and be weighed as $\mathrm{Mn_3O_4}$ along with the $\mathrm{Re_2O_3}$. It it is desired to remove the manganese, the hydroxides, prior to ignition, are dissolved in a minimum quantity of hydrochloric acid; and ammonium carbonate added, under constant agitation, until the precipitate first formed just re-dissolves, leaving the liquid slightly opalescent. Acetic acid and ammonium acetate are now added, the solution boiled for a few moments, filtered hot, and the precipitate, consisting of basic ferric acetate, washed twice with boiling water. The filtrate will be colourless, if the operations have been successfully earried out, and contains the bulk of the manganese as acetate. A small quantity of manganese,

however, will still be entangled in the precipitate, which latter is therefore re-dissolved in acid and precipitated a second time in a precisely

similar manner, washed, and ignited to Fe₂O₂.

"Cupferron" or amino hitroso phenyl hydroxylamine 1 may be used for the direct precipitation of iron in acid solution, in the presence of aluminium, chromium, cobalt, nickel, and zind Copper is precipitated along with the iron, but is easily removed afterwards by treatment with ammonia, in which it is soluble.

The precipitating solution is made by dissolving 6 grams of the amino derivative in 100 grams of water, and may be kept for a week if protected from the light. The solution containing the iron is acidified with concentrated hydrochloric acid and the reagent added until no further precipitation of iron takes place. The precipitate, which is reddish brown in colour, is allowed to settle, washed with twice-normal hydrochloric acid, then with water, ammonia, and water in succession,

and finally ignited to Fc₂O₃.

a-nitroso β -naphthol is a convenient reagent for precipitating iron,² particularly if aluminium is present, since this latter metal is not precipitated by the naphthol.³ The naphthol solution should be made up fresh once a month, as it is rather unstable. For this purpose 4 grams of the solid are dissolved in 150 e.e. of cold glacial acetic acid, and the solution subsequently diluted with an equal quantity of water. should be present in solution as chloride or sulphate, and may be in any state of oxidation - not necessarily all as ferric or all as ferrous metal. The slightly acid solution is mixed with an equal volume of 50 per cent. acetic acid, and an excess of the β -naphthol added. After 6 to 8 hours the solution is filtered, the precipitate,4 washed first with cold 50 per cent, acctic acid and then with water, dried, and ignited, being weighed as Fe₂O₈.

Volumetric methods are largely employed for the rapid estimation of iron in solution. As a rule, the iron must be present in the ferrous condition, and any ferrie iron must first be reduced, the reagents employed varying somewhat with the method of titration. If both the ferrous and ferric contents of a solution are required, the ferrous iron is first determined by titration, then the whole is reduced, and the total iron determined. Subtraction gives the amount of ferric iron originally

present.

Bichronate Method.5-The iron is reduced with stannous chloride or sodium sulphite, and the solution acidified, preferably with sulphurie acid.7 Potassium bichroniate solution is now added from a burette until a spot of the mixture removed on the tip of a glass rod fails to give a blue coloration when mixed with a drop of freshly prepared potassium ferricyanide solution on a white, glazed carthenware tile. The whole of

¹ Bandisch, Chem. Zeit., 1905, 33, 1298; 19f1, 35, 913; Baudisch and King, J. Ind. Rug. Chem., 1911, 3, 327.

Ilinski and von Knorre, fier., 1885, 18, 2748.

Meineke, Zeitsch. angew. Chem., 1898, p. 252.

The Terric precipitate is a voluminous black mass of Fe(C₁₉H₄O.NO),; the ferrous

The terric precipitate use voluminous clack mass of re(V₁₀T₄U.NO)₃; and response that, Fe(C₁₀H₄U.NO)₂, is green.

See p. 82; also Penny, Chem. Gaz., 1850, 8, 330; Schabur, Sitzungsber. R. Akad. Wise. Wien, 1851, 6, 1851; Ressler, Zeibeh, and Chem., 1872, 17, 249.

The reduction may also be effected with zino in dilute sulphuric scid; but it does not give such a dear end-point, owing to formation of zinc ferricyanide with the indicator.

A sharper end-point is obtained than with excess of hydroshloric scid.

the iron has then been oxidised to the ferric state in accordance with the equation :-

$$6F\delta SO_4 + K_2Cr_2O_7 + 7H_2SO_4 = 8F\varepsilon_2(SO_4)_3 + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O. \ \bullet$$

In the absence of acid; the results obtained are too high, the amount of dichromate required to complete the reaction increasing with dilution , of the ferrous salt. With dry ferrous sulphate the result closely approaches the theoretical.1 •

Permanganate Method.—The iron is conveniently reduced with zinc or magnesium in the presence of dilute suppluric acid. A blank experiment should be carried out with the zine or magnesium alone, in • order that a correction may be applied in the event of traces of iron being present as impurity in the metal, and for any carbon which is also liable to affect the titration by Axhicing a portion of the permanganate. No special indicator is required by this method, for the permanganate is added to the solution, acidified with sulphuric acid until a faint pink colour persists, indicating that the permanganate is now present in slight excess, having oxidised all the iron. Thus (see p. 82):--

$$10 \text{FeSO}_4 + 2 \text{KMnO}_4 + 8 \text{H}_2 \text{SO}_4 = 5 \text{Fe}_2 (\text{SO}_4)_3 + \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 8 \text{H}_2 \text{O}.$$

The end-point is unstable in the presence of fluorides, but satisfactory results can, in these circumstances, be obtained by addition of fairly concentrated sulpharic or boric acid solutions.3

Hydrochloric acid also renders the estimation unreliable unless special precautions are taken, the amount of permanganate used being too great. This has been attributed to the intermediate formation of a higher chloride of manganese during the reduction of the permanganate, which only relatively slowly oxidises the ferrous iron to the ferric condition according to the equation

$$\mathbf{MnCl}_{(x \text{ h2})} + x\mathbf{FeCl}_2 \leftarrow x\mathbf{FeCl}_3 + \mathbf{MnCl}_2$$

until equilibrium is established. Consequently, if the titration is carried out rapidly, more permanganate is added than is theoretically necessary before the ferrous iron is completely oxidised, and the pink colour indicative of the end-point appears. An excess of the higher manganese chloride remains in solution.

Addition of manganous sulphate, phosphoric acid, and of other substances to the liquid to be titrated has been found to reduce the

Stannous chlouide is often a convenient reagent to use, as it enables a determination to be made of the quantity of ferrie iron in the presence

Neidle and Witt, J. Amer. Chem. Soc., 1915, 37, 2360.
 Mackintosh, Chem. News, 1884; 50, 75.
 Barnebey, J. Amer. Chem. Soc., 1918, 37, 1481.
 Friend, Trans. Chem. Soc., 1909, 95, 1228. See also Skrabal, Zeitsch. anal. Chem., 1908, 42, 373; Harrison and Idrkin, Analyst, 1908, 33, 43; Birch. Chem. News, 1909, 961; Buchanan, Proc. Roy. Sec. Edin., 11, 1919.
 See Kessler, Annalen, 1861, 118, 48; Zeitsch. anal. Chem., 1863, 1, 329; Timmer-mann, Ber., 1881, 14, 779; Hauffe, Chem. Zeit., 1897, 21, 194; Willoux, Chem. Zentr., 1899, 1, 638; Baxtor and Freverly Amer. Chem. J., 1905, 34, 4109; Harrison and Perkin, loc. cit.; Birch, loc. cit.; Hriend, loc. cit.; A. Müller, Stahl und Eiden, 1908, 26, 1477; Jones and Jeffery, Analyst, 1909, 34, 300; Hargh, J. Amer. Chem. Soc., 910, 32, 539; Barnebey, J. Amer. Chem. Soc., 1914, 36, 1429; Brandt, Chem. Zeit., 1918, 42, 433, 450.

of ferrous. The reaction hinges on the fact that stannous chloride reduces ferric chloride to the colourless ferrous salt. Thus :--

$$2FeCl_3 + SnCl_2 = 2FeCl_2 + SnCl_4$$
.

Concentrated hydrochloric acid is added to the iron solution, the whole raised to boiling and quickly titrated with stannous chloride solution until the solution becomes colourless.

To determine the total iron content, the solution is first oxidised with potassium chlorate, and the ferrie iron solution thus obtained titrated as above. The difference between two such determinations gives the amount of ferrous iron. .

In order that the results should be accurate, especial care must be. taken to ensure uniformity of conditions.1

Colorimetric Tests.—A sensitive test for iron consists in adding a small quantity of hydrazine sulphate to a dilute solution of the iron salt to reduce it to the ferrous condition. Ammonia is now added in excess, and an alcoholic solution of dimeth#1 glyoxime.² The solution is heated to boiling, and then cooled. A faint but detectable rose-red . coloration is obtained in the presence of 1 part of inon per 100,000,000 parts of solution.3

This method may be applied in the gravimetric estimation of iron. Iron may be detected also by the yellow coloration produced in concentrated hydrochloric acid, 1 part of iron per 100,000 being observable. The colour varies with the concentration of the acid, the maximum intensity occurring with 28 per cent. acid.4

Iron in natural waters is frequently estimated colorimetrically by means of the red colour produced by ferric salts with potassium thiocyanate.⁵ The iron is best oxidised with nitric acid, as the results appear to be more trustworthy than when oxidation is effected with hydrochloric acid and potassium chlorate.6 One part of iron in 1,600,000 perts of solution may be detected in this manner.

. A delicate reaction for ferrous iron consists in adding a solution of sodium phospho-tungstate, acidified with hydrochloric acid, to the solution suspected of containing a ferrous salt. The whole is rendered alkaline with caustic soda, when a blue coloration is produced if a ferrous salt is present.84 This reaction is more delicate than that with potassium ferricyanide.

Colorimetric methods are often uncertain in the presence of copper salts, but an accurate method has been worked out, whereby 0.00002

Conveniency perpendicular and the convenience of th

also this volume, p. 236. Gothe, Zeilsch. Nahr. Chnussm., 1914, 27, 076.
Wagner, Zeilsch. anal. Chom., 1881, 20, 349. Compare E. E. Smith (ibid., 1880,

19, 350), who states 1 part in 8,000,000.

Richard and Bidot, J. Pharm. Chima 1909, (6), 29, 230.

Gregory, Traks. Chem. Soc., 1908, 93, 93.

¹ For details the reader is referred to text-books of analysis. See, for example, Scott, Standard Methods of Chemical Analysis, 2nd edition (New York, 1918), p. 221.

² Conveniently prepared by dissolving 10 grams of the solid in a litre of 98 per cent.

gram of iron can be detected in the presence of 0.2 gram of copper. The method hinges on the violet colour produced when salicylic acid dissolved in acctic acid is added to ferric chloride in the presence of excess of sodium acctate. Under these conditions the depth of colour is proportional to the amount of iron present. The blue or green colour of the copper, which might mask the red produced by the iron, is first removed, where necessary, by addition of dilute potassium cyanide solution.

The red colour produced by ferrie iron with acetyl acetone is recommended as the basis of a useful method of estimating the metal colori-

metrically,1

In acid solution ferrous iron gives an intense blue colour with potassium ferricyanide—the so-called Turnbull's blue (see p. 227). The intensity of the colour is so great that one part of iron in 500,000 parts of solution can be detected.²

Iron may also be determined electrolytically.3

1 Pulsifer, J. Amer. Chem. Noc., 1904, 26, 967.

² Wagner, Zeitsch. anal. Chem , 1881, 20, 349.

See Classen, Ber., 1884, 17, 2467. See also this volume, pp. 34–36.

NAME INDEX

ABEL, 195, Aht, 116, 117, 145. Accame, 148, 149. Ackworth, 53. Adeney, 41. Ader, 58. Adhikary, 61. 4. Adie, 52, 206, 207, 217. Adlam, 215. Ainelie, 41. Aitchison, 55, 71. Akermann, 110. Allaire, 241. Allen, 11, 58, 138-140, 142-144, 174. Allmand, 49, 154. Almkvist, 124. Alvarez, 60. Amberg, 36. Anderson, 127. Andreae, 147, 148. Andrews, 44, 54. Andrews, 49, 60, 170. Ans, d', 117, 159. Ansaldo, 148. Anthony, 168. Antony, 99, 100, 130, 177 Arbeiter, 139; 141, 143. Archibald, 36. Arctowski, 116. Armstrons, 53, 121. Arnold, 71, 195. Arnoldi, 225, 227, 228. Aronheim, 81. Arth, 186. Arvfedson, 132. Arzruni, 191-193. Astorr, 48. Aten, 59. Athanasesco, 161. Austen, 83. Autenrieth, 217. Averkiev, 80. BACAMANN, 127. Backlund, 239. Bactwald, 191. Baikow, 127 Baker, 215. Ralake, 25, 158, 160, 161. Ball, 12. Bancroft, 122, 123. Barab, 126.

Barolay, 36.

Bardt, 80.

Barker, 41. Barnebey, 245. Barnet, 73, 74. Barre, 106. Barrett, 41, 42. Barrow, 21. Barteczko, 87, 89. Baschieri, 131. Baskerville, 81. Baskov 989. Bassett, 99, 216. Bastick, 165. Battisti, 128. Bandisch, 244 Baudrimont, 37. Bauer, 19, 70, 73. Baumhauer, 156. Baur, 85, 111, 114, 118, 173. Baxandall, 41. Baxter, 43, 65, 66, 245. Baykoff, 196. Béchamp, 104, 107. Bechi, 29. Becker, 132, 134. Becquerel, 184. Beetz, 55, 57. Behn, 40. Behr, 43. Beilby, 173, 174. Beilstein, 194. Belck, 55. Belloc, 43. Bellucci, 154, 179, 181, 204, 222. Bemmelen, van, 122, 128, 127-130. Bémont, 203, 206, 207, 215, 218, 225, 231. Bémont, 200, 200, 200, 200, Benedek, 141 Benedicks, 11, 43, 197. Bennett, C. W., 57. Bennett, G. M., 205, 214. Bennewille, de, 56, 59. Benrath, 84, 101. Benson, 82. Benzian, 220, 225. Berger, 184. Bergmann, 55, 56. Berkeley, 208, 220. Bernheim, 124. Bernoulli, 39. Bertels, 160. Berthelot, 52, 106, 114, 133, 207, 216. Perthemot, 104. Berthior, 14, 114, 145. Berthollet, 145, 167. Berzelius, 64, 89, 94, 202, 206. 248

Beschorodko. 13. Besson, 95. Bette, 212, 220-222. Bettell, 190, 191. Bentner, 209. Beyer, 109, 112. Beyerinck, 142. Bhaduri, 222, 230. Biddle, 83. Bidot, 246. Biesalski, 205, 214. Billiter, 126. Biltz, 91, 95, 105, 107, 124, 126, 127, 133, 154. Binder, 154. Bineau, 111. Birch, 245. Birnie, 61, 63. Biron, 94. Blaas, 148, 166. Blase, 194. Blanc, le. 55, 58, 60. Blount, 22. Bloxam, 131, 224. Blum, 154. Bockh, 25. Bodenstein, 158. Boeke, 29, 92, 94, 133, 134. Bogdanowitsch, 12. Bogomolny, 35, 36. Boiret, 154. Boisbaudran, de, 149. Bolas, 150, 167. Bölschakoff, 106. Bone, 121. Bong, 235. Bongiovanni, 236. Bonnerot, 46, 48, 117, 174. Bonsdorff, 149. Borck, 130, 131. Bordeaux, 17. Bormann, 39. Bornemann, 135. Bornträger, 119. Boswell, 124. Bouchonnet, 115.

Boudouard, 44, 118. Bourgeois, 192. Bournon, 27. Boussingault, 24. Boutmy, 55. Boutzoureano, 169. Bowman, 154. Braconnot, 60 Bradford, 115. Braithwaite, 118. Bramley, 237. Brandt, 116, 245. Brann, 177. Braun, 221. Braune, 173, 174. Breithaupt, 21, 23, 24. Brewstee, 157. Breymesser, 36. Brieger, 82. Briegleb, 473.

Briggs, 204-208, 212-216, 222, 223. Brede, 79. Brogden, 22. Broniewski, 42. Brough 2. Brown, A. P., 141.

Brown, J. C, 208, 119.

Brown, J. H., 112.

Brown, D. W., 37. Brown, W., 40. Browning, 202-207, 217, 229. Brunner, 135. Brahns, 27, 116. . Prunck, 123. Brmu, 134. Brunner, 136 Bruno, 53. Brush, 27. Bruyn, Lobry de, 59, 60. Buchanun, 245. Buchbock, 263. Burgnet, 146. Buisson, 41. Bunsen, 142, 207, 212, 219 Burdick, 137. Burgess, 36, 38, 42. Burke, 92, 96, 104, 105, 112, 124. Burnham, 57. Burns, 41. Burrows, 229, 231 Burton, 208. Busz. 27. Butler, 27. Byers, 60. Byk, 100. Bykoff, 42. Callletet, 43, 46. Cam, 236. Calvert, 77. Cambi, 134, 170, 235. * Cameron, 125, 160, 161, 177. Campbell, 46, 129, 196, 197, 208. Capitaine, 34, 37. Carles, 87, 107, 207, 225. Carlı. 28 Carnegie, 81, 84, 100. Carnelley, 95, 115, 122, 127. Carnevala 48, 179. Caron, 113. Carpenter, 38, 43, 49, 146, 168. Cartaud, 9, 37, 43. Carulla, 4. Castellante 22. Caushi, 202. Cavalli, 231. Cavazzi, 141. Caven, 78, 186. Cecehetti, 181. Cederholm, 70. Cesafis, de, 133, 179. Cesaro, 27. Chalmos, de, 238, 239. Chappell, 38, 40. Charpy, 46, 48, 117, 17. Chassevant, 94.

Chatelier, le, 40, 42, 43, 111, 114, 120, 163, 182, 183, 201, 239. Chaudron, 48. Chikashlge, 10. Chofnscki, 105. Chrétien, 128, 207. Onristensen, 89. Church, 24, 27, 29. Clark, 25, 60. Clarke, 28, 29 Clausen, 247. Claus, 23#, 236. Clausmann, 50, 198. Coben, 11, 12, 126, 148, 187. Qohn, 236, 237. Colani, 187. Coleman, 212, 220. Collins, 24. Colson, 39. Condrea, 121. Conduché, 147. Sonover, 133. Conroy, 53, 219. Cooper, 96. Coulson, 36. Cox, 19. Crafts, 95. Crenshaw, 138-144. Crew, 41. Crombie, 126. Crookes, 220. Cross, 122. Cumming, 83. Curtinan, 124, 193. Cusack, 184, 239. .. Cushman, A. S., 70, 72. Cushman, B. S., 183. DAINS, 219, Dammer, 235. Damour, 27 Dana, 12, 19, 26, 144, 171. Daniell, 55. Darapsky, 25, 26. Darrin, 60. Dauhree, 130, 142. Davies, 122. Davis, 34. Day, 3. Debray, 109, 113, 184, 185. Delauharbonny, 154. Demel, 178. Deniges, 204 Dennis, 183. Depretz, 173. Derby, 107. Desch, 4. Descloiseaux, 220. Dastremx, 154. L Deussen, 89. Deville, 43, 48, 55, 94, 95, 113, 116, 119, 184. Dewar, 38, 41, 189, 200.

Dick, 21.

Dickson, 124. Dieckmann, 50, 118, 190. Diefenthäler, 218. Diller, 13. Ditte, 108, 176. Ditz, 99, 135. Divers, 111, 165, 168. Dobbin, 192. Dohy, 14. Doebereirer, 114, 217. Doelter, 137, 138, 143. Doerinckel, 128. Donald, 121. Donath, 77. Donau, 113. Donnan, 99, 224. Doroschevski, 80. Dorrer, 84. Doss, 140. Drugman, 27. Duclaux 128, 209. Dudley, 26, 55, 123. Dufet, 212, 240. Dulong, 40. Dumansky, 126, 127, 128. Dumas, 65. Dunn, 93. Dunstan, 56, 67, 70, 75. Duparc, 14. Dupasquier, 87. Dupré, 236. Durocher, 143. EAKLE, 19, 26. Ebel, 194. Ehelmen, 130. Eder, 85, 221, 223, 231. Edwards, 204, 221, 222. Efremoff, 42. Ehlert, 201. Eidmann, 132. Einbeck, 103. Elliot, 129. Ellis, 19, 82, 137. ·Elsner, 117. Elten, 145, 146, Emszt, 25. Engel, 98, 99. 4 Ennos, 81, 152. Ensgraber, 162. Ephraim, 89, 103, 104, 107. Ercolini, 51 Erdmann, 64 Eremine 150, 158. Erlenmeyer, 185, 187, 188, 203. Essner, 51, 180. Etard, 92, 105, 150, 158, 166, 203, 206, 207, 215, 216, 218, 225, 231. Ettling, 21. Evans, E. J., 184. Evans, J. W., 22, 138. Everitt, 217, 225. Eversheim, 41. Ewan, 128, 213. Ewen, 40. Exner, 41.

Fuchs, 13, 37.

FABRE, 168, 169, 171. Fabry, 41. Faktor, 137. Fafcke, 49, 111. Falk, 208, 220. Falke, 196. Faraday, 55, 56, 57. Farrington, 10. Faust, 60. Fechner, 60. Feen, van der, 128. Feiling, 192. Feist, 202. Feld, 140, 166, 167. Fenton, 68, 79. Férée, 63, 110. Fernekes, 219, 222. Ferrand, 189, 190 Findlay, 57. Finger, 41. Finkelstein, 59. Fireman, 95. Fischor, 82, 122, 123, 127, 128, 220-225. Fisher, 26, 208, 211. Fizoau, 117. Flado, 57, 60. Fletcher, 11, 24 Fleury, 52, 107. Flight, 10, 26, 27, 29. Florentin, 150. Fock, 167. Foerster, 58, 60, 195. Fonzes-Diacon, 168, 169. Footo, 10, 15, 127, 128. Forbes, 28. Forcrand, de, 147-150. Fordos, 145, 167. Forsberg, 904 Forster, 96, 131. Foster, 216, 223. Fewler, 62, 91, 121, 174, 175. Fownos, 217. Fox Strangways, 21. Fraenckel, 147-150. Fraenkal, 9. Franck, 198. Franz, 160, 165. Franzen, 92. Frauenberger, 58. Fredenhagen, 58, 59, 223 Freer, 53. Freeze, 183 Fremont, 37. Frémy, 174. Frenzel, 144. Fresenius, 87. Freund, 203. Freundlich, 126. Frevert, 245. Friedel, 10, 16, 95, 116, 190, 203, 232. Friedrich, 133, 159, 190, 200. Friend, 1, 5, 47, 48, 54, 61, 67, 73, 75, 110, 112, 199, 205, 229, 245. Frilley, 238. Frischer, 83. Fritzache, 94, 98, 99, 102.

Fukuchi, 27. Fuller, 41. Eunle, 176. GAAB, 84. Gabba 101. Gaines, 77. Gallenkamp, 218. Gautier, 50, 113, 119, 132, 133, 185, 1989 Gay, 93, 153, 178. Gedel, 132, 136. Gdb, de, 60. Centner, 140. Gélis, 145, 146, 167, 168, Gemacher, 143. Genth, 23. Gersten, 111, 114, 195, 196. Geuther, 90, 173. Gubbs, 21. Gigh, 160, 177, 217. Gigho, 99, 100. Gil. 19. Gillet, 222, 224. Gin, 18. Gintl, 212. Giohtti, 48, 128. Girardet, 91, 174 Gladstone, 199, 236. Glaessner, 111, 114, 118, Glaser, 49, 110, 113, 118, Glatzel, 140, 189. Glinka, 28. Glixelli, 127. Gmehn, 28. Gobley, 99. Goecke, 197. Goldsberg, 24. Goldschmidt, 57, 143 Goodchild, 17. Goodson, 41. Goodwm, 100. Goos, 41. Gordon, 60 Gort, 42. Gorges, 113, 130. Gothe, 246. Goulding, 67, 70, 75. Gowlands 2. Graebe, 123. Graftdyk, 41. Graham, 43, 93, 203. Graham, R. P. D., 27. Grailich, 26. Granger 183. Grant, 121. Grave, 58. Greeff, 89, 103. Green, 80. Greenwood, 39. Gregory, 246. Griffiths, A.B., 154. Griffiths, Co. 48. Griffiths, E., 39. Griffiths, E. H., 39. Grimaux, 128.

Gröger, 135. Groth, 133, 195. Groves, 55. Grufbe, 60, 216, 223. Grünewald, 95. Grützner, 184. Gruhl, 192. Guareschi, 230. Guertler, 238. Guibourt, 61. Guignet, 226. Guillet, 36, 47. Guinchant, 207. Guntz, 175. Guyot, 89, 103. •

* Haber, 54, 55, 57, 60, 216. Habermehl, 143. * Hachmeister, 95, 192. Hackspill, 96. Hadfield, 3, 4, 38. Haga, 111, 166. Hagemann, 50, 119. Hague, 27. Haidinger, 23, 26. Hainsworth, 36. Hall, 3, 61. Hallopeau, 132. Hambuechen, 36. Hammick, 110, 113, 119. Hampe, 124. Hanaman, 60., Handcock, 3. Handy, 62. Hanemann, 174 Hannay, 149, 150. Harder, 19. Harding, 42. Hardy, 126. Harker, 33, 40. Harkins, 216, 220. Harrins, 210, 220. Harrington, 34. Harrisen, 245. Hart, 61, 412. Hartley, 20, 27, 205, 208, 215, 220.

Hartmann, 41.

Hartogr 174, 175. Hasohek, 41. Hasslinger, 134. Hatfield, 80. Hatton, 62. Haufr, 116. Haufle, 245. Hauser, 114, 202, 203, 214.

Hausmann, 18, 176, 177 Hautefeuille, 43, 187, 188. Headden, 190. Heald, 43.

Heathoote, 56, 58, 60. Hedrier, 14. Heine, 223, 226, 227. Heldt, 60. Helmolt, 89.

Hempel, 201

Hemsalech, 41.

Henderson, 145, 173, 174. Hendrixson, 54.

Henglein, 23.

Heasgen, 149, 172. Herapath, 246. Hermann, 19.

Hernández, 138. Herrmann, 83, 1°2, 103.

Herschel, 60. Hertz, 259

Heteren, van, 56. Hewitt, 84.

Heydenreich, 185, 186. Heydweiller, 152.

Heyn, 43, 70, 73. Heyne, 94.

Hicks, 35, 37. Hidden, 28.

Hiendlmaier, 225, 226, 228. Higley, 53.

11iki, 10. c

Hildsteh, 121. Hillebrand, 26, 171.

Hilpert, 49, 50, 109-148, 129, 190. Hinrichsen, 103. Hisinger, 94.

Hittorf, 59. Hodgkinson, 121.

Hochtlen, 223, 227. Hoeltzonbein, 41.

Hoffmann, G. C., 11. Hoffmann, J., 94, 240.

Hofmann, R., 212. Hofmann, 147, 159, 179, 180, 182, 202, 205, 223, 225–228, 230, 234, 235.

Hogborn, 10.

Hogg, 56. Holms, 186, 192. Holms, 114.

Honda, 42, 43, 113.

Hooper, 25. 11oover, 66.

Hopfgartner, 64. Horn, 25.

Horsford, 184.

Horstmar, 130. Hostetter, 66, 113, 117, 118.

Houdard, 135.

Hough, 245.

Howe, 47, 85, 164, 165, 208. Howell, 10.

Hüfner, 153. Hüttner, 246. Hüttig, 91, 135, 107.

Hughes, 36. Hulett, 121. Hull, 112.

Hurff, 83.

Hurst, 18. Hussak, 15, 24, 28. Hutchinson, 20.

Huttner 93, 153. IGELSTROM, 20.

Ilinski, 244. Indra, 77.

inostrancem 12. Ipatieff, 86. Isambert, 50. Iskull, 194.

JACKSON, 39, 107, 148 Jaffo, 100. Jamieson, 11, 77. Janicki, 41. Jassilly, 246. Jassonneix, du, 240. Jeffery, 245. Jellinek, 63. Jensen, 229. Ježek, 193. Jeannis, 206-208. Joassart, 218. Jodin, 85. Jodlbauer, 85. Johnsen, 148. Johnson, 44, 188. Johnston, 11, 24, 138-144 Joly, 152. Jones, 199, 200, 216, 245. Jordis, 82. Joule, 62. Jouve, 238. Jovitschutsch, 17. Jowett, 67, 70, 75 Jufereff, 100. Jurisch, 44, 60, 173. Just, 201, 224.

KACHLER, 91. Rahlbaum, 38. Kahlenberg, 84. Kaiser, 144, 145, 159. Kane, 149, 212. Kapeller, 819 Karavglanow, 162. Kassner, 221, 223. Kato, 217. Katzer, 26, 29. Kaufmann, 114. Kaye, 40. Kayser, 41. Keir, 52, 55, 56, 59. Keeling, 38. Kellberg, 42 Keller, 41, 51. Kellerhof, 221. Kendall, 17. Kennedy, 197. Kenrick, 158. 119, 120, 159, Keppeler, 117, 115 Kessler, 244, 245. Kestner, 55. Kettner, 60. Kimball, 17 Kimmins, 108. · Kinch, 27. King, 3, 41, 244. Kirschbradn, 174. Kistia owsky, 60, 218. Klein, 36. Klobb, 162.

Klobbie, 122, 123, 129, 130. Klüss, 167, 168. Krocke, 39. Knorre, you, 244. Koch, 60. Koenige 14. Konigsberger, 57, 139. Koppen, 87, 90. Kohlneyer, 113, 116, 117, 129. Kohlschutter, 178. Køhn, 37. Kolb. 29. Kolthoff, 215. Komar, 161. Ronneck, de, 106, 218. Konschegg, 134. Konstantmoff, 193. Корр, 149, 227. Kovař, 28. Krafft, 216. Kraft, 128. Kratz, 126. Kraus, 24. Kremann, 36, 92. Kremers, 29. Kruss, 236, 237 Krumbhaar, 173. Krutwig, 121. Kuhne, 149. Kuspert, 47. Kuster, 52, 157. Kuhlmann, 220. Kuhn, 184. Kundt, 41. Kurdoff, 128. Kurmakoff, 193. Kwasnik, 78. Kyd, 228.

LABORDI., 193. Lachaud, 1169 102, 466. Lallenwood, 117. Lambert, 34, 58, 61, 70, 177. Lamy, 220 Lawlolt, 38, 152. Lang 4, 41. Langdon, 60. Lange, 50. Langer, 198. Larsen, 143, 144. Laschtschenko, 42. Lannay, de, 13, 17. Laurent, 114. Lebeau, 48, 50, 238, 239. Lecher, 40, Lecoca, 233, 234, Ledebur, 44, 45, 52. Lee, 369 Lefort, 103, 115. Lehmanh, 41. Leidmeier, 25. Lemoine, 85, 99. Lenormand, 106. Lenz, 35. Leonard, 41.

• ,

Lepierre, 116, 162, 166, 171, 172. Lescour, 92, 107, 108, 150. Martens, von. 57, 60. Martin, 161. Martin, J. S., 16. Maskeleyne, 27, 29. Lettermann, 48. Levi, 51. Mathers, 37. Levin, 38, 40. Matulas 127. Matuschek, 101, 216, 217, 223, 224. Maumené, 64. Maximowitsch, 25. Lévy, 27. Ley, 236. Li, 35. Liebig, 90, 109, 111, 113, 115, 149, 206. Mayer, C., 115, 427.
Mayer, C. von, 92, 246.
Mcklenburg, 124, 136, 137, 214, 224. Lightfoot, 191. . Linck, 132, 133, 157, 160. Linder, 128. Mees, 85. Lindstrom, 143. Meineke, 244. Melczer, 14. Lipschitz; 134. List, 129, 130. Melville, 11. Little, 169. Meneghini, 130. Liveing, 41. Merrill, 10. Lubavin, 198. Merwin, 17, 122, 123, 129-Locke, 156, 164, \$65, 204, 221, 222. Lockemann, 124. Messner, 210, 211. Metzke, 192, 193. •Lockyer, 33, 41. Loczka, 141, 191. Locbe, 132, 134. Meunier, 23, 171 Mourice, 220. Loewenherz, 47. Forenz, 132, 133, 190. Meuthen, 195. Meyer, L., 80, 81. Meyer, V., 90, 95. Michael, 110. Louis, 3, 21. Lowndes, 121. Michel, 128, 216. Lowry, 38. Miers, 149. Luca, de, 117. Lucius, 124. Migliorini, 51. Milbaner, 117, 158. Miller, 91, 96, 208, 211, 220. Ludert, 187. Lüttig, 41. Lunay, 9. Millon, 81. Lunge, 120, 246. Millosevich, 25. Mills, 109. Lussac, Gay-, 112. Mitscherlich, 119. Mixter, 109, 111, 114, 120, 133, 141. Moeser, 130, 131, 132. MACALISTER, 3. . MacArthur, 81, 152. Mohr, 98, 102, 103, 154. Mohs, 11. M'Bain, 81. . M'Ilhiney, 81. Moissan, 11, 39, 50, 60, 63, 106, 109, 110. Maclaurin, 135. M'Leod-Brown, 60. 114, 117, 118, 155, 195, 196, 235, 238, Mackintosh, 25, 28, 161, 245. 240. Mohsch, 124. Maddrell, 188. Mollins, de, 131. Maey, 193. Magnanini. 236. Mond, 198, 199. Montelius, 4. Mailfert, 125, 131. Montemartini, 53. Maitland, 60. Monthiers, 227. Moody, G. T., 70, 71, 77. Moody, S. E., 152, 160. Moralit, 236, 237. Malaguiti, 117. Malfatti, 134, 135, 136. Malfitano, 128. Mallard, 15. Manasse, 25, 168. Morgan, 60, d41. Mandrad, 53.

Mandrad, 64.

Mandrad, 75.

Mandrad, 75.

Mandrad, 64. Mosander, 479, 112, 114. Moures, 60. Mousson, 58. Muck, d 23. Marchand, 64. Marchlewski, 179. Müge, 112.

Müller, A., 36, 128, 245.

Müller, E., 60, 81, 209, 218, 222, 226, 227.

Muller, F. C. G., 44.

Müller, B., 221, 224.

Müller, P. T., 95.

Müller, W. J., 57, 59. Margottet, 171, 187, 438. Marie, 178. Marignac, 15, 87, 89, 149, 157. Marinković, 64. Maronneau, 183. Marquis, 178. Marshall, 75. Mugdan, 60.

Muhlmann, 58. Mulder, 456. Muller, J. A., 232-234. Mumford, 19, 81. Mumnmery, 79. Munroe, 116. Murmann, 155. Murphy, 110. Muspratt, 145, 169. Mylius, 195, 196.

NABL, 237. Naccari, 40. Nagel, 20. Naske, 238. Neal, O', 164, 165. Neidle, 126, 245. Neogi, 3. Neumann, 43, 10 Newth, 63. Nicklès, 89. Nicol. 144. Nicolardot, 125. Nıggli, 240. Nilson, 91, 160, 169. Noad, 56. Nordenskield, 11. Nordmeyer, 39. Norlin, 61. North, 50, 119, 183. Noss, 92. Noyes, 35, 80, 84, 177.

OBERHOFFER, 40, 195.
Obehsner, 128.
Ogura, 42.
Ohmann, 50, 61.
Ordway, 60, 99, 104, 107, 176.
Orlov, 84.
Osaan, 58.
Oshond, 9, 37, 43, 195.
Ostwald, 60.
Otto, 187.

PAAL, 63. Padberg, 167. Padoa, 134. Page, 81. Palache, 28. Palla, 142. Palmer, 20. Pappadà, 126, 209 Parker, 38. Parravano, 133. Pascal, 85, 188, 189. Paterson, 157. Patterson, 13. Paturel, 154. Paucke, 124. Paul, 68, 77. Pauli, 127. Pauling, 51. Pavel, 188-181 Pearce, 216, 220. Pebal, 219.

Peligot, 34, 178. Pellat, 39. Pelini, 130. Pellizzari, 125. Pellouze, 236 Penfield, 15, 26, 26 Penny, 244. Penroce, 22. Percira, 230, 234. Perkin, 245. Perkins, 54. Perry, 41. Pesci, 101. Paterke, 41. Peters, 89, 150, 208, 209, 220, 222, 225, Petersen, 88. Petit, 40, 53. Petrie, 3. Pettenkofer, 101. Pettersson, 91, 160. Palf, 35, 36. Pfeiffer, 106. Pfordten, 14. Phalen, 13. Philip, 237. Philips, 27, 55, 95, 104 Piceard, 229. Piccini, 83. Pick, 54. Pickering, 85, 158, 161. Pictet, 38. Picton, 128. Pignet, 36. Pionchon, 40. Pirani, 40. Prsam, 25. Pisarshevski, 80, Pinti, 205, 214, 222. Plattner, 24, 132. Playfair, 228 Phay, 5 Pluckem 117. Pluddemann, 159. Plummer, 441. Posel, 23, 139. Polhte 120. Pollok, 41. Popoff. 26. Porczinsky, 178. Portevin, 47. Portner, 95. Bosnjak, 17, 122, 123. Pouget, 194. Pouillet, 58. Poulenc, 87, 88. Poumarede, 34, Powis, 127. Pratt, 13, 26. Precht, 29. Preis, 135. Preuder, 48.

Preuss, 115.

Price, 80.

Prideaux, 25, 73. Prior, 15, 22, 23, 28, 143.

Prudhomme, 223, 229, 231. Przibylla, 175. Pulsifer, 247. Puxeddu, 101. QUADRAT, 158. Quincke, 198. RAE, 164, 165. Raikow, 125. Ramage, 20. Ramann, 56, 61, 62.c Rammelsberg, 10, 15, 23, 25, 108, 145, 148, 167, 184, 185, 191, 207, 221, 222. Ramsay, 122, 127. Randall, 41. Randolph, 60. Raoult, 163. Raschig, 153. Rath, 26. Rathert, 60. Raumer, 19. Ray, 81. Rây, 224. Rayleigh, 152. Read, 71, 117, 195. Recoura, 88, 89, 158-161. Reemann, 207, 225. Regnault, 40, 133, 149 Regnon, de 58. Reichard, 191, 192, 230. Reichenheim, 139. Reinhardt, 120. Reinisch, 28. Roitinger, 15. Remsen, 63. Renard, 15, 56. *Resensehock, 226*. Retgers, 132, 147, 149, 155. Reynolds, 44, 46, 201, 224. Reynous, 22, Reynoso, 212. Riban, 236. Richards, 34, 39, 43, 65. Richaud, 246. Rideal, 78. Ridenour, 188. Rindfusz, 186, 192. Rinne, 29, 133, 134. A. Rivot 164. Roberts, 47. Roberts, W. C., 38. Robinson, 125; 160, 177, 207, 208, 212, 218³/₂₂0. Robiquet, 202, 207. c Rocchi, 82. Rodt, 136, 137, 140⁴, Rohl, 135. Rogers, 20, 129. Rogstadius, 173. Rohart, 161. Rohrer, 84. Rolls, 148, 149, Roloff, 85. Roncagliolo, 171. Rooseboom, 97, 98, 99, 102.

Roscoe, 103, 118, 220.

Rose, 25, 131-133, 183, 184 Rosell, 131, 132. Rosenberg, 178–181; Rosenbeim, 189, 236, 237. Ross, 41, 85. Rossignol, le, 224. Roth, 144. . . Rubies, 14. Rudler, 22 Rubenkamp, 115, 227. Ruer, 43. Ruff, 39, 103, 111; 114, 121, 129, 195, 196. Russell, 117. Russell, E. J., 154. Ryss, 35, 36, Sabanéeff, 128. Sabatier, 49, 51, 61, 92, 96, 98, 99, 102, 110,175. Sabatini, 204, 222. Sachs, 26, 179. Sachsel, 103. Sachsen Coburg, von, 144. Sackur, 60. Sarnstrom, 110. St Edme, 58. St Gilles 122. St John, 124. Saklatwalla, 38. Samorloff, 17, 19. Santi, 73. Saxton, 127, 128. Sazanoff, 178. Scarpa, 103. Schabur, 244. Schabus, 94. Schaer, 99. Schaffgotsch, 130, 132. Schaller, 15, 19, 25, 29. Schanzer, 25, 26, 149, 159, 161, 162, 166. Shaw, 16, 17, Scheetz, 121. Scheidhaffer, 24. Schendeler, 220. Schenk, 196. Scherer, 24. Scheufelen, 81, 104, 106. Scheurer-Kestoer, 53, 60, 88, 119, 143, 175, 177. Schiff, 216, Schimank, 42. Schimpf, 39. Schlossberger, 87. Schluederberg, 160. Sohmid, 19. Schmidt, 111. Schmitz, 40, 46. Schneider, 24, 29, 125, 128, 135-137, 187. Schoch, 60. Schonbein 55, 56, 57, 78. Schoene, 195. Scholtz, 103.

· • • •

327	AME	INDE
Mul 1 116, 220.		
M. makers, 102.	٠, •	Sour
13 5.		Spen
edter, 19.		Speri
chrotter, 188.		Spatz
Schütz, 192, 193.		Sprii
Schuler, 221, 222. • Schulten, de, 111, 185.		\$tah
Schulze, 236, 246,		Stan
Schwarzenberg, 188.		Stan
Schweinfurth, 5.		Stup
Scott, 150, 154, 155, 24 Scott, H., 16.		Starl
Scott. H. K., 19		Steel
Scott, H. K., 19. Scott, W. W., 154. Scrivenor, 6, 21		Stein
Serivenor, 6, 21		Step
Seidell, 216, 223.		Step
Sélivanov, 239. • 7		Steve
Sell, 187. Semiller 196.		Stor
Sen, 224.		Stok
Senarmont, de, 116, 140, 157.		∤ ≱ton
Senderens, 49, 51, 56, 59, 61, 110,	175.	Stort
Serono, 63. Serultas, 103.	•	Strei
Soubert, 84, 145, 146.	• •	Stroi
Sevms, 14.		Strie
Shaw, 16, 17.		Stur
Seyms, 14. Shaw, 16, 17. Shea, O', 35, 37. Shepard, 13.	-	Sund
Sheppard, 43.		Surd
Shifton, 236.		Sust
Shimiden 168		Suzu
Shock, 191. Sidot, 112, 132. Sioverts, 42, 44, 60, 173.		Svar
Sidot, 112, 132.		Sved
Siewert, 119.		TAG
Silva, 199.		Tace
Silvestri, 29, 173.		Tak
Simek, 403.		Tafin
Skey, 11. Skrabal, 35, 36, 162, 245.		Tare Tass
Skrada, 33, 40, 102, 245. Skraup, 226. Smith, 23, 25, 117. Smith, C. C., 49. Smith, D., 136. Smith, D.P., 42 Smith, E. F. 246		Tatl
Smith, 23, 25, 117.		Tay
Smith, C. C., 49.		Teg
Smith, D., 136.		This The
Smith E E 246		Tho
Smith, E. E., 246. Smith, E. F., 138, 139, 141, 191. Smith, F., 233. Smith, G. M.P., 162.	•	Tho
Smith, F., 233.		Tho
Smith, G. M'P., 162.		Tho
Smith, G. O., 239. Smith, H., 83. Smith, J. L., 24. Smith, L. G., 200.		Th
Smith, J. L., 24.		Tho
Smith, L. G., 200.		Thu
Smith, R. A., 5. Smith, V., 3.		Tiel
Smith, V., 3.		Tild
Smits, 59, 60. Smythe, 93.		'Pinl
Smythe, 93. Soellner, 28.		Tiss
Solly, 17. Soné, 113.		Tiss
Soné, 113. • •		Tob
Sonstadt, 152, 216 Surby, 21.		Tou
Sprby, 21. Seret, 164.		Tow
Sosman, 66, 113, 117, 118, 129.	•	Tres
VOL. IX.: II.		

```
rce, de la, 128.
ncer, 12, 183.
runsky, 88.
zia, 123.
zer, 60.
ng, 31, 51, 100, 125, 138.
Jeler, 223, 231. a
dschmidt,•174.
nge, 189.
usch, 226, 227.
enhort, 60.
rke, 191.
d. 77.
n. 239.
nmann, 29.
henson, 208, 220.
rberg, 213.
venson, 81, 127.
ocker, 233.
fel,•199.
ces, 23, 135, 136, 138, 140-142, 236, ic. 14.
tenbeker, 155.
antz, 43.
ang, <mark>27, 144</mark>.
mholm, 212.
ive, 183.
rm. 38
dell, 159
18, 152.
gunoff, 176.
 schinsky, 14, 15.
ոեւ, 158
nberg, 64.
dberg, 63.
em 81, 12.
coni, 240.
 agı, 43.
inmann, 9, 133, 238
rugi, 236.
ssin, 13.
łock, 236.
ylor, 11, 121, 124.
gengren, 13.
iel, 51, 157, 209.
omas, 78, 93, 95, 96, 105, 106, omlineon, 60.
tompson, 113, tompson, 22, 96, 104, 105, 112, 124, 11 tompson, 92, 96, 104, 105, 112, 124, 11 tompson, 16, 213, orvaldson, 66, urgau, 127 thvinsky, 158, den, 30, 44, 70, 147, crimans, 36.
ompson, 113.
ker, 209.
hker, 209.

siandiem 109.

sier, 220.

bler, 150, 256.

rnebohm, 11.

mmai, 121, 122, 12t
wtkiewicz, 80.
adwell, 118, 227.
```

Treitschke, 133.
Triantaphyllides, 188, 189.
Tribot, 128.
Troost, 43, 94, 95.
Tschermak, 127.
Tschirkinsky, 240.
Tschirkinsky, 240.
Tschirkinsky, 240.
Tschitschilabin, 229.
Tschugaev, 246.
Turner, E. E., 296, 231.
Turner, T., 47.
Turner, W. E. S. C., 95.
Turnotine, 51, 55, 60.
Tutton, 155, 169, 170.
Tyrrell, 27.

USHER, 153.

VALENTA, 219. Vanzetti, 100, 238. Varenne, 56, 58. Vegard, 163. Voley, 53. Venator, 55. Venditori, 179, 223. Verneuil, 192. Vernon, 236. Vesterberg, 123. Viethans, 41. Vierling, 82. Vigouroux, 51, 238. Voorman, 173. Vogel, 14, 94, 167. Vogt. 23. Volgor, 148. Volkmanin 10. Volschin, 225. Vorländer, 206. Vortmann, 167. Vrba, 144.

WACKENHODER, 04.
Wadde, 276.
Wadder, 103.
Wagner, 87-89, 100, 164, 246, 247.
Walden, 102-106, C13, 118, 129.
Wilker, 70, 72, 122; 127.
Walker, J., 115.
Walker, T. L., 23.
Wallace, 216, 222.
Waltenberg, 38.
Wandesloben, 19.
Wangukow, 147, 169.
Wangukow, 147, 169.
Wangukow, 147, 169.
Wardlaw, 93.
Warren, 28, 174.
Warth, 19.
Wartwille, 19.
Watson, 18.
Watteville, 19.
Watte, 35, 186.
Weber, 96, 103, 119.
Weed, 22.
Wegelin, 221.
Wegelin, 221.
Wegelin, 221.

ι

Zimmermann, 245. Zirnité, 125.

Zsigmondy, 127.

Zuccari, 231.

Zueo, &

Weinberg, 103.* Weinland, 87, 88, 90, 162, 192. Weinschenk, 11, 12, 143. Weinschenk, 21, 12, 140. Weinwrn, 77. Weisef, 145. Weiss, 43, 144. Wellsf 26, 160, 171, 205, 222, 237. Wetzien, 123. Werrhowski, 86. Werner, \$1, 95, 208, 212, 236. Worth, 195. Wetzlar, 52, 53, 57. Weyberg, 239. Weyl, 55. Weyman, 125. Wheeler, 121. Wherry, 27, 29. White, 51, 54, 174. Whitney, 69. Wiede, 179, 180, 182, 202. Wildenstein, 176. Wilhelms, 79, 130. Wilke-Dorfnet, 14. Wilkins, 5. Willenz, 245. Willey, 19. Willgerodt, 81. Williams, 90, 207-2, 218. Willin, 213. Winderlich, 134. Winkelmann, 46. Winkler, 11, 65, 94. Winther, 81, 83, 85. Wirth, 25, 150, 151, 157, 158; 161. Witt, 245. Wittorf, 198. Wittstein, 99, 192. Wobbe, 126. Wohler, 99, 95, 111, 113, 115, 121, 141, 15(Wohler, F., 11. Wohler, P., 159. Wohlwill, 170. Wologdine, 182, 183, 239, Worth, 16 Wright, 126, 136. Wrightson, 38. Wurtz, 184. Wyrouboff, 207, 208, 212, 219, 220. YARROW, 96. Young, 56. Zambonini, 28, 181. Zangerle, 63. Zechentmayer, 93, 153. Zega, 246. Zemjatschensky, 19. Zerr, 115, 227. Ziegler, 133. Zimmer, 1, 2.

SUBJECT INDEX.

Assorption of hydrogen 44. Atomic weight of iron wa. Atids, action on iron, 52. Awaruite, 11, 30. Acion, action on iron, 52.

— carbonyl ferrocyanic, 232.

— ferri-disulphuric, 162.

— ferri-disulphuric, 162.

— ferri-pyrophosphoric, 189.

— ferrocyanie, 200. Barium carbonyl ferrocyanide, 232. - cupriferrocyanide, 211. cuproferrocyanide, 210 ferrate, 130. -- ferrous, 123, 129. — ferricyanide, 22 . - nitroprussie, 228. -- ferridisulphate, 162. Aomite, 28, 30, 239. --- ferrifluoride, 89. Agirite, 30, 239.
Alkalies, action on iron 54, 75. - ferrocyanide, 208 - nitroprusside, 231. Allotropy, 41, 59. -- perferrate, 131. Aluminium ammonium ferrocyanide, 207. potassium ferrioyanide, 221. - ferrocyanide, 207. - ferrocyanide, 218. - ferrofluoride, 88. Barnhardtite, 23, 30, 136. - ferrous sulphate, 157.
- potassium ferrocyanide, 218.
Amarantite, 25, 30, 181. Boraunite, 27, 30. Berthierite, 27, 30. Motite, 33. Ammino penta-cyancerrites, 234 Bismuth ferriovanide, 221. Bixbyite, 15, 30. Black ash, 137. Ammonium cupriferrocyanide, 21 suproferrocyanide, 210. ferrio chromate, 172 Blackbaud, 21, 30. - ferric ferrocyanide, 227. Blistered copper ore, 137. -- ferricyanide, 221. Blue iron earth, 26, 30. - ferri-dinitroso sulphide, 181. - thiosulphate, 182. Bog ore, 19, 30. Boothite, 25, 147. Bornite, 23, 30. - ferri-di-orthophosphate, 187 Botryogen, 26, 30, 161 Bromates, 106.
Bromferrates, 106. - ferri-disulphate, 182. - ferri-fluoride, 89. - ferri-culphite, 146 - ferrocyanide, 207. Bromides, 104-106. - ferrofluoride, 87 Brush ore, 18, 30. - ferro-heptanitroso sulphide, 180. ferfous selenate, 170. Capmium aumonium ferrocyanide, 200 - ferrocyanide, 208-- ferrous aulphace, 155. - potansium ferrocyanide, 208. Casium ferrocyanide, 208. -aulphate, 156. iron alum, 163, 164. nitroprusside, 231. - pentachlorierrate, 102 - tetrabromierrate, 106. ferro-heptanitroso aulfhide, 761 rerrous scienate, 170,
— sulphate, 155, 166.
hexachiererrate, 103,
— iron altin, 163-165.
— penta romferrata, 106, - tetrachiorferrates 102. - tetrachlorferrite, 93. Ankenite, 21, 30.0 Anthophyllite, 28, 30, 239. Anthomderite, 240. Aque penta-oyanoferrate, 230. — penta-oyanoferrite, 235. pentachiorierrate, 102. es selenium alum, 171. — tetrabromferrate, 106. Ageillaceots ore, 20, 30.
Ageillaceots ore, 20, 30.
Assentic, 24, 30.
Amenical, gaugidic, 24, 30
English, 24, 30, 190.
Amenical, gaugidic, 24, 30, 190.
Amenical, gaugidic, 24, 30, 190. tetrachlorierrate, 102. tetrichlorierrite, 94, trichlorierrite, 94 Calcium ammonium fetrocyanida, 208 ferricyanide, 221. - ferrite, 129.

```
266
        Calcium ferrocyanide; 208. — potagatum ferricyanide, 231. — ferrocyanide, 219. Capillary water, 128. Carbides, 195–198.
                                                                                                                                                                                                    Cuproterrosyanidas 211
Cuprous forris autolidos
Ferrito, 130
         Carbon monoxide on iron, 49.
Carbonstes, 20, 200.
         Cerbonyl ferrocyanic soid, 732.
— penta-cyanoterrites, 232.
         Carbonyls, 193-200.
Castanite, 25, 30, 161.
          Cast iron, discovery of, 6.
                     - native, 12.
          Catalytic iron 63.
          Cementite, 195.
          Cerium ammorium ferrocyanide, 208.
                 - potassium ferrocyanide, 210.
        — sodium ferrocyanide, 220.
Chalcopyrite, 25, 30, 137.
Chalmersite, 24, 30.
          Chalybite, 20, 30, 200.
          Chapeau de fer. 22.
          Chemical sand, 161.
     Childrenite, 27, 30.
          Chlorates, 103
          Chlorferrates, 102.
          Chlorierrites, 102.
          Chlorides, 90-104.
          Chlorobromide, 106.
          Chrome ifon ore, 13, 30.
          Chromite, 13, 30, 171.
         Chromoterrite, 17, 30.
Chromoterrite, 13, 30.
          Chromous ferrous suiphete, 155.
         Clay iron stone, 20, 30.
Oleveland iron stone, 21, 30.
        Coal, annual production, 8.
Cobalt ferricyanide, 221.
ferrificanide, 90.
        rerrito, 129.

ferrite, 129.

ferrite, 129.

ferrite, 208.

nite pyritee, 23, 36.

nite pyritee, 23, 36.

Ooksoom pyrites, 23, 30.

Genetic, 12, 30, 19K.

Colloida iron, 68.
         Colorimetric estimation, 246.
         See Cupriss 20, 136, 137

Option, Chapter IV.

and theory, 67.

disspired alts and, 72.

insistic and, 75.

pachanism of, 71.

Paul's theory, 68.

Whitney's theory, 68.

Whitney's theory, 68.

Option of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o
                                                                                                  See Cupric, Ceprous.
```

— tetrachicatercets, 102 Currency bars, 5. Dauberellitz (25, 30, 138. Delafogeite, 21, 30, Dellet fillar, 3. Density, 38.
— influence of cold working, 38. Berbylite, 28, 30. Diferro beride, 240. - carbide, 197. nitride, 173. - nonscarbonyl, 200. - phosphide, 183. - silicide, 51, 238 — sincide, 51, 238.
Dimagnetite, 13, 30.
Dogs, 22.
Douglastie, 29, 30.
Dufrenite, 27, 30.
Durdemite, 30, 171 EISEBNE Hut, Der, 22. Electro-deposition, copper on iron, 37, iron on copper, 36, Electrofytic iron, 34, 247, Emmonsite, 26, 31, 151. Eophosphorite, 27, 31 Erubescite, 23, 31. Erythroslderite, 29, 31. Esmeraldaite, 19, 31, 121, 125, Everitt's salt, 225. Expansion of iron, 40. Explosive pyrites, 22. FAIRY balls, 22. Fayalite, 28, 31, 239. Feather alun, 157. Ferrates, 130-131. Ferric alums, 163. - amideaulphonate, 166. - ammonium alum, 164. - - antimony chloride, 103 -- chromate, 172. - ferrocyanide, 227. ortho-arsenate, 193, arsenite, 192. --- bromate, 107. bromide, 105. carium alum, 165. ourbonfis, 201. ourbony's ferrograpide, 283. chlerate, 103. chloride, 20, 94. acidemits, 102, - ammoniates, 96. - double salts, 103 hydrates, 98, 99, Rydfolysis, 109, reduction (d., 10) reduction (d., 10) solubility, 97, landscoules, 705

- Skoride, 38. - hydroxide, 121. - oolloidal, 125. hypophosphite, 184. icdate, 108. loide, 108. - magnesium alum, 16t. - metaphosphate, 187. - nitrate, 176. - nitrate, 175. Portho-antimonate, 194. - ortho-amenate, 192. —colloidal, 02. orthophosphate 185. - acid, 187. - hatic, 187. - colloidal, 187. oxide, 115. - adsorption, 124 - catalytic, 120. - orystalline, 115. --- monoh dirate, 55, 121, 122.
--- polymorphism, 121.
-- perchlorate, 103. per-iodate, 108. phosphite, 184. potassium alum, 165. - arsenate, 193. - - ohromate, 172. - pyrophosphate, 188. - rubidium alum, 165. salts, reduction of, 83. - selenide, 169. selenites, 169. selenium alums, 170. - silioide, 239. - sulphate, 158 - basio, 161.
- double sulpflates, 162.
- hydrates, 159-160.
- hydrated, 136.
- hydrated, 135.
- sulphite, 145. - tellurite, 171. tetraculphate, 46. thiogyanate, 235. inicyanic acid, 220.
micranides, 290-226.
somaticulum, 203.
midiatiphuric acid, 162.
midiatiphuric acid, 162.
midiatiphuric acid, 162.
midiatiphuric acid, 162.
midiatiphuric acid, 163.
midiatiphuric acid, 162.
midiatiphuric acid, 163.
midiatiphuric acid, 163.
midiatiphuric acid, 163.
midiatiphur

atitation, 203. Ferro di-antimonide, 183. dinferoso sulphides, 178-181. dinotroso thiosulphates, 182. Ferrofluorides, 87–88. Ferro heptanitroso sulphides, 178-181, -- hexathiocyanates, 237. - monantimonide, 193. -- mtrite, 25, 31. - nickel carbonyl, 200. - palladite, 25, 149. • Fer oso-ferrio ammonium aliphate, 166, — chloride, 103. oxido, 112. - sulphates, 185. Ferrous acid, 123, 129.

aluminium sulphate, 15. - amido sulphonate, 186 cammonium sulphate, 155, 156. hromate, 100. - bromborate, 241 bromide, 50, 104 -- ammoniates, 104. - nitroso, 105. - - solubility, 105. - cadmium sulphate, 155. oæsium sulphates 155. carhonate, 200. - chlorate, 103. chlorborate, 240. - chloride, 90. - ammoniates, 91. - nitroso, 93. -- chromate, 171 chromous sulphate,] - copper sulphate, 154. -- cyanide, 202. -- dihydrogen orthophosphate. 185. - disulphate, 167. - ferriffuoride, 89. -- ferrocyanide, 227. - ferro-heptanitroso sulphide, 180. fluoride, 87. fluctilicate, 240. hydrogen carbonate, 201. ferrocyanide, 225.

- erthophosphate, 185.

hydroxide, 111. dihydrate, 112 hypophosphite, 184. iodate, 108. iodide, 10 magniates, 107.

magniatum orthosilicate, 239.

sulphate, 155.

mangahese matsaileate, 240. - sulphate, 185. metantimonate, 194. metantimonate, 187. metantimonate, 187. metantimonate, 192. mitrata, triple, 176. nitrites, triple, 176.

```
Hamatite, ned, 16, 18, 115.
 Ferrous ortho-arsenate, 192.
 - orthophosphate, 184.
                                                         Hair salt, 157.
                                                         Halotrichite, 25, 31, 157.
 - orthosilicate, 239.
                                                         Hexachlorierrates, 103.
Risingerite; 29, 37, 240.
   - oxide, 109
 -oxythiocarbonate, 202.
                                                         History of iron, Chapter I.
Hæferite, 29, 31.
   - perchlorate, 103.
 - periodate, 108.
                                                       Fornblende, [3].
Horseffesh ore, 23, 31.
Hydrazine (170-heptanitrosc sulphide, 181.
phosphite, 184.
   - potassium carbonate, 20
    - ferrocyantide, 225.
- sulphate, 155, 156.
- pyrophosphate, 188.
- pyrosulphate, 167.
                                                        Hydrogen carbonyl ferrocyanide, 232.

— ferricyanide, CCC.
                                                         - ferri-pyrophosphate, 189.
                                                        - forrocyanide, 206.
- ferro-heptanidoso sulphide, 179.
 - rubidium sulphate, 185.
-- selenate, 169.
-- selenide, 168.
                                                           - nitroso ferricyanide, 228.
                                                         Hydrogoethite, 19, 31, 121.
   - selenite, 169.
- sodium metasilicate, 239
                                                         Hydrohematite, 17, 31.
                                                                              ferro Leptapitroso
  – salts, as redusers, 82.
                                                         Hydroxylamine
  - - oxidation 🕩, 81.
                                                              phide, 181.

    sulphate, 147.

                                                         Hypersthene, 239.
   - - acid, 158.
                                                         Hystastite, 15,31
   - — ammoniates, 150
    - basic, 157.
                                                         ILMBNITE, 14, 31.
    - double salts, 154.
                                                         Indian sed, 115.
  Iodates, 108
   - — nitroso, 153.
                                                         Iodides, 107-108.
                                                         Iron. See also Ferric, Ferrous.
   - - reducing action, 152.
  - — solubility, 151. • — sulphide, 132.
                                                         - absorption of hydragen, 4c. acids on, 52.
                                                         age, 2. -- alkalies on, 54, 75.
    - hydrated, 134.
 ---sulphite, 145
  - telluride, 171.
                                                         --- allotropy, 41.
 - tetrathionate, 167.
                                                          - amalgam, 62
 - thio-antimonite, 194.
                                                             ammonium alum, 164.
  - thiocarbonate, 202.
                                                          - - arsenides, 190.
- thiocyanate. 235.
                                                         --- antimonides, 193.
  - thio-hexammoniate, 200
                                                           - atomic weight, 64.

    thio-orthophosphate, 189.
    thio-orthophosphite, 189.

                                                          - carbonates, complex, 2025
                                                          carbonyls, 198-200.
- thio pyrophosphete, 190.

- thio pyrophosphite, 190.

- thiosulphate, 197.
                                                          - chemical properties, 46-55.
- colloidal, 63.
   - titanate, 14.
                                                           - corrosion, Chapter IV.
   - zino sulphate, 165
                                                          - - crystals, 37.
 Ferroxyl, 72.
                                                             density, 38.
 Fibroferrite, 25, 31, 161.
                                                          -- detection, 242.
 Fluorerrates, 89.
Fluorerrites, 87.
                                                          -- di-antimorcide, 103.
                                                          -- di-arsenide, 190.
 Fluorides, 87-90.
                                                          - diboride, 240.
 Franklinite, 14, 31.
                                                          -- dicaroide, 198
                                                          -- diselenide, 169. *
 Garnats, 33.
Geikielite, 15, 31.
                                                          -- disilicide, 239.

    diawlphide, 138.

 Glauconite, 24, 81, 190.

    electro-deposition on copper, 36.
    electrolytic, 34.

 Glauconite, 28.
Glucinum pentachlorfewate, 102.
Goethite, 18, 31, 121, 122.
Gozzan, 22.
                                                          - estimation, 243.
                                                           - expansion, 40.
                                                          --- glance, 16, 31.
 Graftonite, 23, 31.
                                                          — hydride, 87.
— ions, 84.
 Green vitriol, 147.
                                                         meteoris, 2, 9-11.
monantimoni te, 193
monantimoni te, 190.
 HAMATITE, 15. — brown, 17.
  - hydrated, 12
                                                          - monoboride, 240
    origin, 17.
```

iron monocarbide, 198. — monophosphide, 183. Loggoh kulluty, 5. Looking glass ore, 16, 3). monoselenide, 168. Ludiamite, 27, 31. monosilicide, 238. Ludwigite, 15, 31. - native, 9, 31. - nitride, 173. MAGNES, 13 Magnesoferrite 15, 3].
Magnesoferrite 15, 3].
Magnesom ammonium ferrocyanide, 212.
--- cupriferrocyanide, 211.
--- cuproferrocyanide, 210 - occlusion of gases, 43. -- olivine, 28, 31, 239. - ore, production, 8. ores, Chapter II. ferricyanide, 222 ferrite, 129. - passivity, 55. - pentacarbonyl, 199 — ferrocyanide, 211 — ferrous orthosdicate, 23 permeability to gases, 4 – phosphides, 182. physical properties, 3 🚜 ferrons sulphate, 155. - iron alum, 165. powder, properties, 60-preparation of pure, 34. – metasilicate, 239 — pyrites, 21, 38 — pyrophoric, 00 - pentachlorferrate, 102. •... potassimu ferrocyanida, 219 - sulphate, 148. refractive index, 41. tetrachlorferrite, 94 Magnetic pyrites, 23, 31, 135, 14; - rhodonite, 240. - salts as catalysts, 78,81, - general properties of, Chapter Magnetite, 12, 31, 112 Magnoferrite, 15, 31. - sesqui-arscnide, 190. Manganese ferrocyanide, 212. - sesqui-oxide, 115. – ferrous metasilicate, 240. --sesqui-phosphide, 183. ferrous sulphate, 155. sesqui-selenide, 169. Marcasite, 22, 31, 138. – silicide, **23**8. Marmatite, 24, 31, 135 - sinter, 27-31, 193. Marquisite, 21. - specific heat, 🐃. Martite, 16, 31. - sponge, 62. Melanterite, 25, 32, 117 - sub-arsenide, 199. Menaccanite, 15, 32 — sub-boride, 240. Mercuric ferricyanul, 222. ferrocyanide, 212 subsulphides, 132 tetracarbonyl, 190. - double salts, 212 - thio arsenide, 190 potassum ferrocyanide, 219 - volatilisation, 39 • Mercurous ferrevanid, 222. Mesitite, 21, 32. JANOSITE, 23, 31, 159. Meteoric iron, 1, 2, 9-113 Josephinite, 11, 31. Meteorites, analyses of, 10. Meraceous iron ore, 10, 32. KAMASITE, 11931. Mineralogy of Iron, Chapter 11. Kertschenite, 26 Minette, 19, 32. Khaghal, 25. Mispickel, 24, 32, 190 Kidney ore, 16, 31 Mola's salt, 156. . Kibdelophane, 11, 31. Kominekite, 27, 31, 186. Molyate, 29, 32. Monthers' blue, 277 Kremersite, 29, 31. Mullerite, 28. 1 Mandie, M. 32. LAG, 42. Lagonite, 29, 31. Lake ore, 19, 31. Nature from 9, 31.
Natural bronze, 2.
Needle interstone, 19, 32.
Nickel furnifuende, 40.
— feptile, 130. Laterite, 19, 31. Lead ferricyanide, 222. – mitrate, 222 – ferrocyanide, 211. Lepidocrite, 19, 31. - ferrocyanide, 212. Leucopyrite, 27, 31 Limnite, 19, 31, 121 - nitroprusside, 23 5 pyrites, 23. Limonite, 18, 31, 121, 123 Nitrito penta cyanoferrites, 2 · Liakeardite, 27, 31. Nitro iron, 175. Lithum cupriferrocyanide, 211. Nitroprussides, 228-231. Nitroso penta-oyangierrates, : Nitroso salte, 93, 95, 105, 153 Nontronite, 28, 32, 240. - euproferrocyanide, 210. forrogyanide, 211. Ledestone, 12,81. Lölingite, 27, 31, 190.

OCTIBBEHITE, 11, 32 Occlusion of gases, 43. Ochre, 18, 32, 115. Olivine, 28, 32. · Onegite, 19, 32. Ore, definition, 9 Oxybromides, 107. Oxychlorides, 104. Oxysulphides, 145. PACITE, 24, 32, 190. Paposite, 26. Paravivianite, 26. Passivity, 55, 61 allotropic theory, 59. - cause of, 57-60. - gaseous film theory, 58 a oxide theory, 57. - physical theores, 58. - testing for, 56. ·Peacock ore, 137: Pentabromferrates, 103. Pentachlorferrates, 102. Pentacyanide derivatives, 228-235. Pentlandite, 24, 32, 135. Peroblorates, 103. Perferrates, 131. Per-iodates, 108. Pharmacosiderite, 27, 32, 193. Phosphosiderite, 27, 32. Photochemical oxidation, 83. - reduction, 84. Plg iron production, 7, 8. Pinguite, 29, 32. Pisanite, 25, 32, 147. Plstomesite, 21, 32. Planoferrite, 26, 32, 161.
Platiniferous chromites, 14. Plumboferrite. 20, 32.

Potassium aluminium ferrocyanide, 218. - aquo ferricyenide, 235. - ferrodyanide, 255. barium ferrocyanide, 218.

— calcium ferrocyanide, 219.

— carbonyl ferrocyanide, 233. - cerium ferrocyanide, 219. - enpriferrocyanide, 211 - cu proferrocyanide, 21). - ferri chromate, 172. --- salphide, 136 — ferrioyanide, 222. — ferri-digulphate, 162. — ferri-digulphite, 146. ferri-fluoride, 89. - ferri-rolphite, 440. ferri-tetrasulphite, 146, ferrocyanide, 212. ferro-dinitrose sulphide, 181. - thiosulphate, 18k. ferro-heptanitroso Milphide, 179.
ferrous oarbonate, 201.
cupriferrocyanide; 211.

- selenate, 170.

- sulphate, 156.
- iron alum, 163, 165.
- magnesium ferropyanide, 219.

```
Potassium mercurio ferrosymide, 27
       nitroprusside, 231.
       pentachlorferrate, 10
    perferrate, 131,
sulphito ferrocyanide, 235,
       tetrachlorferrite, 94.
      - trichlorferrite, 94
    Prussian blue, 226,
— commercial preparation, 227.
— insolucle, 226.
      - - soluble, 225 -
   Puddle ore, 16, 32.
   Pyrite, 21, 32.
Pyrites, 21, 32.
      - arsenical, 24, 30, 190,
    - cobalt nickel, 23, 30.
    — cockscomb, 23, 30.
    - copper, 23, 30.
- explosive, 22.
    - magnetic, 23, 31, 135.
    - radiated, 138.
    - spear, 23, 32
       white iron, 22, 33.
    Pyrophorie iron, 63.
    Pyrrhosiderite, 19.
    Pyrrhotite; 23, 135, 143.
    QUENSTEDTITE, 25, 32.
    RADIATED pyrites, 138.
    Recalescence, 41.
   Red fossil ore, 17, 32.

hæmatite, 16, 18, 32, 115.

ochre, 17, 18, 32.
    — prussiate of potash, 222.
    Rhabdite, 26, 32, 183.
    Rinneite, 29, 32
    Roomerite, 26, 32, 165.
    Rubidium ferro-heptanitroso sulphide, 18.
   - ferrous selenate, 170.
    -- ferrous sulphate, 155, 156*
    -- iron alum, 163-165.
    -- pentabromferrate, 106
    pentachlorferrate, 102.
tetrachlorferrite, 94.
      - trichlorferrite, 94
    Rubinglimmer, 19, 32
    Rubio ores, 19.
   Ruddle, 16, 32.
   Rust, confposition of, 76.
    Rusting. See Corrosion.
  Salvanorite, 25.
Samma-blende, 19, 32.
Scorodite, 27, 32, 192.
Sensite, 32.
Serporaine, 33. 4 Shining ore, 18, 32. Siderazote, 29, 32, 173. Siderite, 20, 32, 200.
   Siderochrome, 13, 32.
   Sideroplesite 21, 32.
Sienna, 18, 32.
   Silioides, 238.
 Silicon ferrofluoride, 88
```

ver sa bonyl ferrocyanide, ferrocyanide, 219. Simplesite, 192 Smith ore, 18, 32 Sodium ammonio ferrodyanide, 234 - aquo ferricyanide, 235. – — ferrocyanide, 235. – carbonyl ferrocyanide, 2 oupriferrooyanide, 214 - cuproferrecymide, 210. • - ferric sulphide, 136. ferricyanide, 224.
ferri di-orthophosphate. 186. - disulphite, 146.
- metaphosphate, 189.
- pyrop paphate, 188.
- thiocyahate, 237.
- trioutho hosphate, 187.
- trisulphate, 162. --- ferrite, 130. - ferrocyanide, 219. ferro dinitroso sulplade 181. - — thiosulphate, 182. - ferro-heptanitroso sulphide. 180 - ferro-metaphosphiete, 189. - ferro-pyrophosphate, 189. - ferrous metasilicate, 239. - hydrogen ferri-tetrasulplute. 146. -- nitrito pentacyanoferrite, 234. -- nitroprusside, 228 perferrate, 132. Souesite, 11, 32. Spathic iron ore, 20, 32, 200 Spear pyrites, 23, 32. Specific heat, 39. Spectrum, arc, 11. - spark, 41. Specular iron, 16, 32, 115. Sphæro-siderite, 21, 32. Spitting, 44. Steam on iron, 48 Steel production, 8. Stone age, 1. Stone of the lucas, 21. Strengite, 27, 32, 185. Strontium, carbonyl ferrocyanide, 234 •upriferrocyanide, 211. - cuproferrocyanide 210. • ferrate, 131. --- ferrioyanide, 224 — perferrate, 132. Sulphuryl chloride on aron, 50.

TENITE, 11, 33 Tamanite, 26. Tauriscite, 33, 148.

Tempering colours, 47. Tetrabromferrates, 106. Terachiorferrates, 102. Tetrachlorferrites, 93. Petraterro carbide, 198. Thallous fer icyanide, 224. forrifluoride, 89. - ferrocyanide, 220.
- pentachlorierrate, 103.
Thionyl chloride on 1ron, 50. Thunderbolts, 22. Titanic iron ore, 14, 33 Towanite, 137. Tachlorferrites, 94. Inferric tetroxide, 112 Triferro carbide, 195 --- di-antimoinde, 194. - phosplude, 182. silicide, 238. - tetraphosphic™, 183. Emphosphates, 189 Triphyllite, 26, 33 Triple intrites, 175 Tripuliyte, 28, 33. Fronte, 23, 33, 132 Turgite, 17, 33, 121 Turnbull's blue, 223, 226. msoluble, 227

 Under villate, 15, 33 Umber, 18, 33 Uranyl carbonyl ferrocyanide, 234.

VKNETIAN red, 115. Vivianite, 26, 33, 184. Voltaite, 166. Volumetrie 🗪 enalies. 245

Twenty mch seams 22

Wmrn from pyrites, 22, 53 Williamson's violet, 225, 226 Wolframte, 29, 33 Wood 110B ore, 18, 23#

Хамтно-верепете, 19, 33, 121.

YELLOW prussiate of potash, 212. Yukonite, 27, 33, 393.

Zi se ferit yanide, 225. - ferrifluoride, 90. ferrite, 130. - ferrocyanide, 220.

- ferrous sulphate 155.
- potassion ferrocyanide, 220.
- oulphate, 148
Zincile, 14, 33.

PRINTED IN GREAT BRITAIN BY HEIL! AND CO., LT.

