Section 6.5: Linear Model Selection and Regularisation

Duration: 3 hours

Concepts:

Best subset selectionStepwise selectionRidge regression

• The lasso

Textbook section: An Introduction to Statistical Learning, Chapter 6

Materials and Resources	Learning Goals
 Computers for students with R Studio Slides Exercises R Markdown file 	 Understand and implement the methods listed to find the model parameters that give the best test error rate.

Duration	Lesson Section	Learning Objectives		
20 mins	Go through the subset selection section of the slides.	 Best subset selection Forward stepwise selection Backward stepwise selection 		
15 mins	Go through the best subset selection and stepwise selection sections (section 2.1, 2.2) in the R Markdown file as a class.	Use `regsubsets()` to perform best subset selection and forward stepwise selection for a linear model		
20 mins	Go through the indirect error estimation section of the slides.	 Indirect test error estimation (Cp, AIC, BIC, adjusted R^2) 		
20 mins	Go through the indirection error estimation section (2.3) in the R Markdown file as a class.	 Plot adjusted R2, Cp, and BIC Interpret plots to choose the best model size. 		
10 mins	Go through the direct error estimation section of the slides.	Direct error estimationComparison of both methods		
25 mins	Go through the direct error estimation section in the R Markdown file as a class.	 Validation set approach estimating test error K-folds Cross-validation for estimation test error Choose the best model 		
20 mins	Go through the ridge regression and the lasso sections of the slides.	 Ridge regression The lasso Comparison of the two Model interpretability vs prediction accuracy Selecting the tuning parameter 		
30 mins	Go through the ridge regression and lasso section in the R Markdown file as a class.	 Use `glmnet()` to perform ridge regression and the lasso Use `cv.glmnet()` to find the best tuning parameters 		