Hospital Surge Prediction using Google Trends

Laura, Casey, Tzu-Hsuan, Aparajita, Solvejg

Roadmap

- Motivation Why hospital surges? Why Google Trends?
- **Data** What datasets are we using?
- Model & Performance What is the best predictive model?
 Does performance differ by city?
- Caution & Conclusion What are the assumptions and conclusions of the analysis?

Why Hospital Surges?

SCIENCE

America's Hospitals Have Never Experienced Anything Like

This

If they run out of space, where will all the sick people go?

SARAH ZHANG MARCH 25, 2020

13 Deaths in a Day: An 'Apocalyptic' Coronavirus Surge at an N.Y.C. Hospital

Hospitals in the city are facing the kind of harrowing increases in cases that overwhelmed health care systems in China and Italy.

Sources: 1,2,3

'There's No Place for Them to Go': I.C.U. Beds Near Capacity Across U.S.

By Lauren Leatherby, John Keefe, Lucy Tompkins, Charlie Smart and Matthew Conlen Dec. 9, 202

Despite available data, hospital surge planning remains a challenge

- Increase bed capacity
- Postpone elective surgeries ⁴
- Move beds to waiting rooms and parking garages ⁵

- → Reported data has **not** always been **dependable** ^{6,7}
 - Varies state by state
- → Novel data source to help predict needs?

Google searches could offer novel, timely data for hospital surge planning

COVID-19 prediction using Google Trends has been done at the **state level**

Researchers in Asia, Europe, and the US have conducted similar work 9,10

Previous domestic work mainly focuses on national and state geographies 11

Target is COVID-19 case prediction

Inspired by this previous work, we conduct our analysis at the metropolitan city level and attempt to predict hospital surges

Previous prediction work focuses on cases and deaths

We focus on hospitalization instead ¹²

Use COVID-19 Reported Patient Impact and Hospital Capacity by Facility datasource ¹³

Calculate surge by 7 day average proportion of ICU capacity

Sum of avg beds takenSum of avg beds available

We use 'Pytrends' to extract search data

- → Top google search queries stored in Google Trends
- → Available by city, state, region
- → Normalized on a scale of 1:100

Pytrends is an open-source Application Programming Interface (API)

Use COVID-19 symptoms as keywords

Vomit Diarrhea Fatigue

Smell Taste

Fever Chills

10 common COVID-19 symptoms ¹⁴

Throat Cough Breath

Create a ~6 month panel dataset for the city-level geography

Extract data on 210 cities in the US

Data ranges 25 weeks, from 07/31/2020 to 1/21/2021

Used fuzzy-wuzzy search to merge metro areas

Metropolitan	Cities	Zip Codes
Minneapolis-St. Paul/MN	Minneapolis, MN, St. Paul, MN	98424, 98431
Seattle-Tacoma/WA	Seattle, WA, Tacoma, WA	98424, 98431

We defined surge using the distribution of citylevel hospital capacity

- → Used longitudinal data on 108 cities
- → Observation is a city for specific week
- → "Surge" for a city as at or above 3rd quartile in given week
- → 657 of 2431 (27%) observations were at surge

Most frequent search words found at higher rates in states with dangerous levels of capacity

Throat Fever Taste Smell

Most searched COVID-19 terms

Maximum search rates found in states that reached over 95% hospital capacity for at least one week in the dataset

We built classifiers to predict surge with varying

success

Best classification models

- → K-Nearest Neighbors (KNN)
- → Random Forest (RF)
- → Support Vector Machine (SVM)
- → Decision Tree

Explored the impact of city demographics on model performance

Assess variation in predictive model accuracy by county characteristics ^{15, 16, 17}

Demographic comparison of correctly-predicted metro areas

Found no significant difference between metros with/without 1+ correct surge prediction when comparing characteristics

 $210 to 108 \rightarrow$

Limited by the size of dataset which diminished significantly in merging

Assumptions/Limitations

Assume patients go to hospital in metro of residence

Open-Source API PyTrends is not official

Lose data when merging

Limited information on rural areas

Conclusion

Hospital surge prediction can save lives and communities

Explore the power of an unconventional datasource

→ Using city level geography, which has not been done before

K-Nearest Neighbors model performed best on our data

→ 83 percent accuracy

Conclusion - continued

Hoped to understand differences in **demographic characteristics** for successfully predicted cities but limited by data size

Despite the limitations, had success predicting hospital surges with 83% accuracy using 10 google keywords

References

- 1. Zhang, Sarah. "America's Hospitals Have Never Experienced Anything Like This." The Atlantic, Atlantic Media Company, 25 Mar. 2020, www.theatlantic.com/science/archive/2020/03/coronavirus-hospitals-need-more-beds/608677/.
- 2. Leatherby, Lauren, et al. "There's No Place for Them to Go': I.C.U. Beds Near Capacity Across U.S." The New York Times, 7 Dec. 2020, www.nytimes.com/interactive/2020/12/09/us/covid-hospitals-icu-capacity.html.
- 3. Abelson, Reed. "Covid Overload: U.S. Hospitals Are Running Out of Beds for Patients." The New York Times, The New York Times, 27 Nov. 2020, www.nytimes.com/2020/11/27/health/covid-hospitals-overload.html.
- 4. "State Guidance on Elective Surgeries." Ambulatory Surgery Center Association (ASCA), www.ascassociation.org/asca/resourcecenter/latestnewsresourcecenter/covid-19/covid-19-state.
- 5. Kremer, Rich. "Mayo Clinic Puts Hospital Beds In Ambulance Garage, Lobbies As COVID-19 Surges." Wisconsin Public Radio, 30 Nov. 2020, www.wpr.org/mayo-clinic-puts-hospital-beds-ambulance-garage-lobbies-covid-19-surges.
- 6. White, Easton R, and Laurent Hébert-Dufresne. "State-level variation of initial COVID-19 dynamics in the United States." PloS one vol. 15,10 e0240648. 13 Oct. 2020, doi:10.1371/journal.pone.0240648
- 7. "About CDC COVID-19 Data." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 25 Nov. 2020, www.cdc.gov/coronavirus/2019-ncov/cases-updates/about-us-cases-deaths.html#:~: text=CDC%20tracks%20COVID%2D19,territories%20report%20their%20cases.
- 8. "Remote Monitoring of COVID-19 Symptoms Early Prediction of Aggressive COVID-19 Progression and Hospitalization." Mayo Clinic, 4 May 2020, www.mayo.edu/research/remote-monitoring-covid19-symptoms/people-with-covid19.
- 9. Venkatesh, U, and Periyasamy Aravind Gandhi. "Prediction of COVID-19 Outbreaks Using Google Trends in India: A Retrospective Analysis." Healthcare informatics research vol. 26,3 (2020): 175-184. doi:10.4258/hir.2020.26.3.175
- Ciaffi, J., Meliconi, R., Landini, M.P. et al. Google trends and COVID-19 in Italy: could we brace for impact? Intern Emerg Med 15, 1555–1559 (2020). https://doi.org/10.1007/s11739-020-02371-7
- Mavragani, A., Gkillas, K. COVID-19 predictability in the United States using Google Trends time series. Sci Rep 10, 20693 (2020). https://doi.org/10.1038/s41598-020-77275-9

References - continued

- 12. UNDERPAYMENT BY MEDICARE AND MEDICAID FACT SHEET. AMERICAN HOSPITAL ASSOCIATION, Dec. 2017, www.aha.org/system/files/2018-01/medicaremedicaidunderpmt%202017.pdf.
- 13. U.S. Department of Health & Human Services. "COVID-19 Reported Patient Impact and Hospital Capacity by Facility." HealthData.gov, 15 Mar. 2021, healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u.
- 14. "Symptoms of Coronavirus." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 22 Feb. 2021, www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html.
- 15. Schneider, Jacob. "Google Trends Metro Area GIS Shape File." Google Sites, sites.google.com/view/jacob-schneider/resources.
- 16. USDA Economic Research Service, https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
- 17. U.S. Census Bureau. American Community Survey, 2019 American Community Survey 1-Year Estimates. Accessed using censusapi R package.

Thank you!

