Announcements

□ Homework for tomorrow...

Ch. 30: CQ 10, Probs. 18, 20, & 22

CQ3: The answer lies in your (recently used) garden hose (look inside while turning it on).

30.4: 9.3 x 10⁻⁴ m

30.6: a) 4.6 x 10²¹ b) 4.3 x 10⁻¹² m

30.8: a) $v_d = 7.5 \times 10^{-6} \text{ m/s}$

b) $\tau = 2.1 \times 10^{-14} \text{ s}$

□ Office hours...

MW 10-11 am

TR 9-10 am

F 12-1 pm

■ Tutorial Learning Center (TLC) hours:

MTWR 8-6 pm

F 8-11 am, 2-5 pm

Su 1-5 pm

Chapter 30

Current & Resistance

(Conductivity and Resistivity & Resistance and Ohm's Law)

Review...

□ Drift velocity...

$$v_d = \frac{e\tau}{m}E$$

□ Electron current...

$$i_e = \frac{n_e e \tau A}{m} E$$

□ Current...

$$I \equiv \frac{dQ}{dt} = i_e e$$

Review...

□ Current Density...

$$\boxed{J \equiv \frac{I}{A} = n_e e v_d}$$

□ Kirchoff's Junction Rule...

$$\Sigma I_{in} = \Sigma I_{out}$$

The current density in this wire is

1.
$$4 \times 10^6 \,\text{A/m}^2$$
.

$$(2.)$$
 2 × 10⁶ A/m².

3.
$$4 \times 10^3 \,\text{A/m}^2$$
.

4.
$$2 \times 10^3 \,\text{A/m}^2$$
.

5. Can't tell without knowing the length.

$$L = 2.8 \times 10^{-3} \qquad \frac{8A}{4.6 \times 10^{6} m^{2}} = 2.0 \times 10^{6} A/m^{2}$$

$$L \times L = 4.0 \times 10^{6} m^{2}$$

$$A = 4.0 \times 10^{6} m^{2}$$

Conductivity and Resistivity

How is the current density, *J*, related to the *E*-field driving the current?

$$J = n_e e V_d \qquad V_d = \frac{e T}{m} E$$

$$J = n_e e \cdot \frac{e T}{m} E$$

$$J = \left(\frac{n_e e^2 T}{m}\right) E$$

$$J = \sigma E$$

Conductivity and Resistivity

How the current density, *J*, is related to the *E*-field driving the current:

$$J = \sigma E$$

where
$$\sigma = \frac{n_e e^2 \tau}{m} = \text{conductivity}$$

$$\begin{bmatrix} \sigma \end{bmatrix} = \frac{T}{E} = \frac{A/m^2}{\Delta V/m} = \frac{1}{\Delta m}$$

$$\frac{A}{m^2} \frac{Am}{m^2 \Delta V} = \frac{A}{Vm} = \Omega_{\frac{1}{m}}$$

Conductivity and Resistivity

How the current density, J, is related to the E-field driving the current:

$$J = \sigma E$$

Where
$$\sigma = \frac{n_e e^2 \tau}{m} = \text{conductivity}$$

$$[\sigma] = \Omega^{-1} m^{-1}$$

Conductivity and Resistivity

How the current density, *J*, is related to the *E*-field driving the current:

$$J = \sigma E$$

Notice:

- 1. *Current* is caused by the *E*-field exerting forces on the charge carriers.
- 2. The *current density* (& *current*) depend *linearly* on the *strength* of the *E*-field.
- 3. The *current density* also depends on the *conductivity* of the material.

Both segments of the wire are made of the same metal. Current I_1 flows into segment 1 from the left.

How does current I_1 in segment 1 compare to current I_2 in segment 2?

Rule

- 1. $I_1 > I_2$. Kirchoffs Junction
- 3. $I_1 < I_2$.
- 4. There's not enough information to compare them.

Both segments of the wire are made of the same metal. Current I_1 flows into segment 1 from the left.

How does current density J_1 in segment 1 compare to current density J_2 in segment 2?

$$(1) J_1 > J_2.$$

2.
$$J_1 = J_2$$
.

3.
$$J_1 < J_2$$
.

4. There's not enough information to compare them.

Both segments of the wire are made of the same metal. Current I_1 flows into segment 1 from the left.

How does the electric field E_1 in segment 1 compare to the electric field E_2 in segment 2?

- $\underbrace{C_1} \quad E_1 > E_2.$
 - $E_1 = E_2$ but not zero.
 - $E_{1} < E_{2}$. 3.
 - Both are zero because metal is a conductor. 4.
 - There's not enough information to compare them. 5.

30.4: Conductivity and Resistivity

Define the *resistivity*...

$$\rho = \frac{1}{\sigma} = \frac{m}{n_e e^2 \tau}$$

Conductivity and Resistivity

Define the resistivity...

$$\rho = \frac{1}{\sigma} = \frac{m}{n_e e^2 \tau}$$

$$[\rho] = \Omega \cdot m$$

Conductivity and Resistivity

Define the resistivity...

$$\rho = \frac{1}{\sigma} = \frac{m}{n_e e^2 \tau}$$

TABLE 30.2 Resistivity and conductivity of conducting materials

$$[\rho] = \Omega \cdot m$$

Material	Resistivity (Ωm)	Conductivity $(\Omega^{-1} \mathbf{m}^{-1})$
Aluminum	2.8×10^{-8}	3.5×10^{7}
Copper	1.7×10^{-8}	6.0×10^{7}
Gold	2.4×10^{-8}	4.1×10^{7}
Iron	9.7×10^{-8}	1.0×10^{7}
Silver	1.6×10^{-8}	6.2×10^{7}
Tungsten	5.6×10^{-8}	1.8×10^{7}
Nichrome*	1.5×10^{-6}	6.7×10^{5}
Carbon	3.5×10^{-5}	2.9×10^{4}

^{*}Nickel-chromium alloy used for heating wires.

i.e. 30.6: The *E*-field in a wire

A 2.0 mm diameter aluminum wire carries a current of 800 mA. What is the *E*-field strength inside the wire?

$$R = 1.0 \times 10^{-3} \text{M} \qquad J = 6 E \qquad J = \frac{I}{A} \qquad A = \text{Tr}(1.0 \times 10^{-3} \text{M})^{2}$$

$$I = 500 \times 10^{-3} \text{A} \qquad J = E \qquad J = 2.6 \times 10^{5} \text{A/m}^{2}$$

$$J = 2.6 \times 10^{7} \text{Lim}^{-1}$$

$$J = 2.6 \times 10^{5} \text{A/m}^{2}$$

$$E = 7.4 \times 10^{-3} \text{V/m}$$

Resistance and Ohm's Law

How is the *current*, I, related to the *potential difference*, ΔV in a wire? The potential difference

$$J = O'E$$

$$= \frac{1}{P}E$$

$$T = \frac{1}{P} \stackrel{\Delta V}{\Delta L}$$

$$I = (\frac{A}{PL}) \Delta V$$

$$R = \frac{PL}{A}$$

$$\vdots |E_{S}| = \frac{\Delta V}{\Delta S} = \frac{\Delta V}{L}$$

$$V_{+}$$

$$\vec{E} = \frac{PL}{A}$$

I= 祭

 V_{+} ΔV V_{-} \vec{E} \vec{I}

creates an electric field

inside the conductor

flow through it.

and causes charges to

Area A

Equipotential surfaces are perpendicular to the electric field.

Resistance and Ohm's Law

How is the *current*, I, related to the *potential difference*, ΔV in a wire?

 $I = \frac{\Delta V}{R}$

- Ohm's Law

The potential difference creates an electric field inside the conductor and causes charges to flow through it.

SI Units of *R*?

Equipotential surfaces are perpendicular to the electric field.

Resistance and Ohm's Law

How is the *current*, I, related to the *potential difference*, ΔV in a wire?

 $I = \frac{\Delta V}{R}$

- Ohm's Law

The potential difference creates an electric field inside the conductor and causes charges to flow through it.

SI Units of *R*?

$$[R] = \Omega$$

Equipotential surfaces are perpendicular to the electric field.

Resistance and Ohm's Law

Notice:

- \blacksquare *Resistivity*, ρ , describes *just* the material.
- $lue{}$ Resistance, R, characterizes a specific piece of the conductor with a specific geometry.

Wire 2 has *twice* the length and *twice* the diameter of wire 1. What is the ratio R_2/R_1 of their resistances?

- **1**. 1/4.
- **2**. 1/2.
- **3. 1.**
- 4. 2.
- 5. 4.

Resistance and Ohm's Law

- A battery is a *source* of potential difference $\Delta V_{\rm bat}$.
- The battery *creates* a potential difference $\Delta V_{\text{wire}} = \Delta V_{\text{bat}}$ between the ends of the wire.
- The potential difference in the wire $\Delta V_{\rm wire}$ generates an E-field in the wire.
- The *E*-field establishes a current $I = JA = \sigma AE$ in the wire.
- The current in the wire is determined *jointly* by the battery and the wire's resistance, *R* to be:

 $\Box I = \Delta V_{\text{wire}}/R$

The charge "falls downhill" through the wire, but a current can be sustained because of the charge escalator.

The charge escalator "lifts" charge from the negative side to the positive side. Charge q gains energy $\Delta U = q \Delta V_{\rm hat}$.