Introduction to Conformal Prediction with Application on Imbalanced Diabetes Classification

Mabrouka Salmi

Master en Inteligencia Computacional e IOT Escuela Politécnica Superior de Córdoba Universidad de Córdoba - UCO, Córdoba, España

April 13, 2024

- 1 Introduction
- 2 Conformal Prediction
- 3 Methodology & Experimental work
- 4 Conclusions & Future Work

- 1 Introduction
- 2 Conformal Prediction
- Methodology & Experimental work
- 4 Conclusions & Future Work

• Traditional ML produces bare predictions

```
Points prediction, ex: diabetes prediction based on a set of features (Pima Indian Diabetes dataset).

print(model.predict(x_test)): ['diabetes']

print(model.predict_proba(x_test)): [[0.8 0.2]]
```

- Traditional ML produces bare predictions
- How good is the prediction?

How close is that to the true value? Can we trust the model?

- Traditional ML produces bare predictions
- How good is the prediction?
- Anticipating past performance on unseen/future data

The accuracy on test data 77% -> we assume similar accuracy on production data

How confident are the model's predictions on new data?

- Traditional ML produces bare predictions
- How good is the prediction?
- Anticipating past performance on unseen/future data
- Estimating the prediction uncertainty

To quantify the uncertainty, using sets/intervals that "likely contain the true prediction"

(Frequentist/Bayesian Approach: uncalibrated, data)

(Frequentist/Bayesian Approach: uncalibrated, data distribution/prior assumptions)

• Per-instance confidence estimates: Interval/set predictions

- Per-instance confidence estimates: Interval/set predictions
- Not reliant on prior probabilities / non-parametric

- Per-instance confidence estimates: Interval/set predictions
- Not reliant on prior probabilities / non-parametric
- Model Agnostic

- Per-instance confidence estimates: Interval/set predictions
- Not reliant on prior probabilities / non-parametric
- Model Agnostic
- The approach is thoroughly validated and straightforward to put into practice.

- 1 Introduction
- 2 Conformal Prediction
- 3 Methodology & Experimental work
- 4 Conclusions & Future Work

Intuition behind it

Exchangeability

Assume that calibration and test data are exchangeable; the joint probability distribution is not dependent on the order of its arguments.

Non-conformity measures (NCM)

It assesses how much out-of-place the example appears (not conform to a collection of samples)

The randomness is judged based on the proportion of the examples having larger values of NCM than the example in hand;

Low value: rare examples look more out-of-place High value: Most examples look more out-of-place

Intuition behind it

The procedure of prediction (classification)

 A hypothetical example is created of the test example and the hypothetical label: a hypothetical completion

The procedure of prediction (classification)

- A hypothetical example is created of the test example and the hypothetical label: a hypothetical completion
- Assessment of the randomness of the hypothetical completion

Intuition behind it

The procedure of prediction (classification)

- A hypothetical example is created of the test example and the hypothetical label: a hypothetical completion
- Assessment of the randomness of the hypothetical completion
- Include labels where the degree of randomness relative to the training set is higher than a chosen significance level α

 α is user defined

Validity property

How similar is the hypothetical completion to the existing data in the dataset

Validity property

- How similar is the hypothetical completion to the existing data in the dataset
- The p-value: determine the fraction of data points in the training dataset, including the hypothetical completion itself, whose NCM is greater than or equal to the hypothetical completion's NCM

Validity property

- How similar is the hypothetical completion to the existing data in the dataset
- The p-value: determine the fraction of data points in the training dataset, including the hypothetical completion itself, whose NCM is greater than or equal to the hypothetical completion's NCM
- The prediction set includes possible label values for which the p-values exceed a chosen significance level.

Validity property

- How similar is the hypothetical completion to the existing data in the dataset
- The p-value: determine the fraction of data points in the training dataset, including the hypothetical completion itself, whose NCM is greater than or equal to the hypothetical completion's NCM
- The prediction set includes possible label values for which the p-values exceed a chosen significance level.
- An error occurs when the prediction set fails to contain the actual label

Validity property

- How similar is the hypothetical completion to the existing data in the dataset
- The p-value: determine the fraction of data points in the training dataset, including the hypothetical completion itself, whose NCM is greater than or equal to the hypothetical completion's NCM
- The prediction set includes possible label values for which the p-values exceed a chosen significance level.
- An error occurs when the prediction set fails to contain the actual label
- CPs exhibit conservative asymptotic validity: error rates converge a.s to values less than/equal to the significance level.

Efficiency

The prediction sets can contain any subset of the label space
 Y, including the entire label space Y and the empty set

Efficiency

- The prediction sets can contain any subset of the label space Y, including the entire label space Y and the empty set
- Makes the prediction sets as small as possible

Efficiency

- The prediction sets can contain any subset of the label space
 Y, including the entire label space Y and the empty set
- Makes the prediction sets as small as possible
- Depends on the choice of NCM.

Transductive CP

Select a non-conformity Measure

• The inverse probability or the hinge loss: 1P(yx), P(yx) is the classification score for the actual class.

Transductive CP

Select a non-conformity Measure

- The inverse probability or the hinge loss: 1P(yx), P(yx) is the classification score for the actual class.
- How much far is the classification score produced by our model to the probability score produced by the ideal classifier.

Train the underlying classifier model

Train the model 2m, m: the number of test instances.
 Computationally expensive for huge datasets (refer to ICP)
 Better prediction intervals for medium and small datasets

Compute nonconformity scores for training set

 For both models for the training set augmented with the given test point

Transductive CP

Train the underlying classifier model

• Train the model 2m. m: the number of test instances. Computationally expensive for huge datasets (refer to ICP) Better prediction intervals for medium and small datasets

Compute nonconformity scores for training set

- For both models for the training set augmented with the given test point
- One test point at a time

Compute the p-values

• Compute the p-value for each test point twice (2 classes)

Construct the predictions set

• Include or exclude potential labels H_0 : the label can be included

Compute the p-values

- Compute the p-value for each test point twice (2 classes)
- How well it fits the training set

Construct the predictions set

- Include or exclude potential labels H_0 : the label can be included
- If the p-value for the corresponding hypothetical label is larger than the significant level, we include such a label

Transductive CP

Compute the p-values

- Compute the p-value for each test point twice (2 classes)
- How well it fits the training set

Construct the predictions set

- Include or exclude potential labels H₀: thelabelcanbeincluded
- If the p-value for the corresponding hypothetical label is larger than the significant level, we include such a label
- Empty set of predictions refers to an anomaly or a prediction error.

Inductive CP

• Split the data into training, calibration, and test

Inductive CP

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)

Inductive CP

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)
- Choose a nonconformity measure

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)
- Choose a nonconformity measure
- Compute the nonconformity scores

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)
- Choose a nonconformity measure
- Compute the nonconformity scores
- Compute the P-values for each instance of the calibration dataset

Inductive CP

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)
- Choose a nonconformity measure
- Compute the nonconformity scores
- Compute the P-values for each instance of the calibration dataset
- Fix a significance level in [0,1]

Inductive CP

- Split the data into training, calibration, and test
- Train the underlying classifier model on training data (only once)
- Choose a nonconformity measure
- Compute the nonconformity scores
- Compute the P-values for each instance of the calibration dataset
- Fix a significance level in [0,1]
- Include(or exclude) the hypothetical label: if the p-value is larger than the significance level, include, Else, exclude.

Label Conditional CP

Label-conditional conformal prediction incorporates label information into the nonconformity scoring process.

- Computing the nonconformity scores is conditioned on the predicted label
- More accurate prediction in class imbalance contexts.

- Introduction
- 2 Conformal Prediction
- 3 Methodology & Experimental work
- 4 Conclusions & Future Work

Methodology

- Research question: How does conformal prediction perform in classifying imbalanced medical data compared to traditional machine learning methods?
- Pima Indian Diabetes Dataset
- Three CP algorithms: Transductive, Inductive, Label-Conditional Classifier
- Base classifier Random Forest
- Evaluation metrics: error rate (validity), average number of classes per prediction (efficiency), and accuracy

Preliminary results

Table 1: Conformal prediction models results on Pima diabetes dataset

CP Model\Metric	Error Rate	Avg N of classes
Inductive CP	0.1034	1.30
Transductive CP	0.1168	1.3311
Label-Conditional CP	0.1168	1.3831

Preliminary results

Figure 1: Comparison of model accuracies for diabetes classification

Discussion

- CP model exceeds the non-CP model in terms of accuracy.
- CP models achieve optimal accuracy, in particular, Inductive CP with the lowest error rate
- The obtained classification accuracy is better than that of achieved in a recent survey of ML algorithms for Pima Indian Diabetes (accuracy up to 80%)
- Further assessment of the predictions could inform more on the efficiency of the CP models.

- Introduction
- 2 Conformal Prediction
- Methodology & Experimental work
- 4 Conclusions & Future Work

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.
 - CP models improved the prediction accuracy of diabetes cases

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.
 - CP models improved the prediction accuracy of diabetes cases
 - Promising results on moderately imbalanced and small medical data

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.
 - CP models improved the prediction accuracy of diabetes cases
 - Promising results on moderately imbalanced and small medical data

- An initial evaluation of three CP models against non-CP.
- CP models improved the prediction accuracy of diabetes cases
- Promising results on moderately imbalanced and small medical data
- Future work

- An initial evaluation of three CP models against non-CP.
- CP models improved the prediction accuracy of diabetes cases
- Promising results on moderately imbalanced and small medical data
- Future work
 - Comprehensive analysis of the CP algorithms on imbalanced medical data with different features.

- An initial evaluation of three CP models against non-CP.
- CP models improved the prediction accuracy of diabetes cases
- Promising results on moderately imbalanced and small medical data
- Future work
 - Comprehensive analysis of the CP algorithms on imbalanced medical data with different features.
- Review on the original work

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.
 - CP models improved the prediction accuracy of diabetes cases
 - Promising results on moderately imbalanced and small medical data
- Future work
 - Comprehensive analysis of the CP algorithms on imbalanced medical data with different features.
- Review on the original work
 - Preliminary review on CP

- This study presents a preliminary exploration of Conformal Prediction (CP) models in the classification of imbalanced medical data
 - An initial evaluation of three CP models against non-CP.
 - CP models improved the prediction accuracy of diabetes cases
 - Promising results on moderately imbalanced and small medical data
- Future work
 - Comprehensive analysis of the CP algorithms on imbalanced medical data with different features.
- Review on the original work
 - Preliminary review on CP
 - Lack of an experimental/ thorough review; update with the advancements; consensus on best practices for CP