Machine Learning and Artificial Intelligence

Lab 04 – Principal Component Analysis

The problem

We want to recognise and classify images of handwritten figures https://en.wikipedia.org/wiki/MNIST_database

For this lesson, we only consider images of "0" and "1" \rightarrow the training set size is reduced to about 12000 images

Feature Extraction

Problem: each image is a 28x28 matrix.

Feature extraction: How can I describe the points of the training set in a compact way?

Idea

Reduce the dimensionality of the space, while retaining as much information as possible.

Idea

Dimensionality reduction:

- Project the data into a space such that:
 - The first direction is the direction of maximum variance.
 - The second direction is the one of maximum variance, orthogonal to the first one.
 - And so on....
- Information → Variance

- The eigenvectors of the covariance matrix encode the principal directions.
- The largest eigenvalues occur in the directions of maximum dispersion of the data.

How to apply it:

- 1. Subtract from each x^k , $k=1\dots M$, the mean $m=\frac{1}{M}\sum_{k=1}^M x^k$, obtaining in this way the centered data $\{x_c^{\ k}\}$
- 2. Calculate the covariance matrix C from the centered data.
- 3. Calculate the eigenvalues and eigenvectors of the covariance matrix.

```
>> D,V = np.linalg.eigh(C)
>> # D vector of eigenvalues, V matrix with eigenvectors in its columns
```

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html

How to apply it (2):

- 4. Sort the eigenvalues from largest to smallest (the eigenvectors corresponding to the largest eigenvalues encode the main directions).
- 5. The transformation matrix T, that is used to reduce the data into N dimensions, is made of the first N eigenvectors (columns of V), corresponding to the N largest eigenvalues.
- 6. Compute ω^k , i.e., the data projected into the desired dimensions by multiplying x_c^k , k=1...M by T. Each ω^k is composed of single components a_i^k , i=1...N (the new features).

How many eigenvectors to use?

 Each eigenvector "carries" a certain variance, which can be seen as the amount of information with respect to the data.

 "Good" data, i.e., tractable, have low dimensions and high variance.

Practical problem

- Appearance-based recognition of faces.
- Consider each point x^k , k = 1 ... M as the image of a face.

Gray levels

$$\mathbf{x}^{(2)} = \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \\ \vdots \\ x_N^{(2)} \end{bmatrix}$$

$$\mathbf{x}^{(M)} = \begin{bmatrix} x_1^{(M)} \\ x_2^{(M)} \\ \vdots \\ x_N^{(M)} \end{bmatrix}$$

Jsually, M << N

EigenFaces

- The image of a face x can be projected in the same way in a new space obtaining $\omega^k = [a_1^k, a_2^k, ... a_N^k]$.
- The reconstruction g is given from the sum of the multiplications of the components a_i^k of the image x, with the corresponding eigenfaces e_i , $i=1\dots N$, used for the projection.

Recognition with eigenfaces

Data analysis

- Apply PCA, obtaining the eigenfaces $e_i, i = 1 ... N \equiv V$ and the components a_i^k , i=1...N for each image.
- Calculate the threshold b)

$$\Theta = \max \left\{ \left\| \omega^{j} - \omega^{k} \right\|_{2} \right\} for j, k = 1, \dots M$$

14

- Given a new image to recognise x^{te}
 - Subtract the mean of the training dataset m, obtaining x_c^{te}
 - Project x_c^{te} into the new space and obtain $\omega^{te} = [a_1, a_2, ..., a_N]$
 - Calculate the set of distances

$$(\epsilon^k) = \|\omega^{te} - \omega^k\|_2$$
 for $k = 1, ..., M$

Recognition with eigenfaces

3. Reconstruct the face using eigenfaces and components

$$g = \sum_{i=1}^{K} a_i e_i \quad or \ g = V \omega^{te}$$

4. Calculate the distance between the "unknown" starting face and the reconstructed face.

$$\xi = \|g - x_c^{te}\|_2$$

- 5. If
 - $\xi \ge \Theta$ \rightarrow it's not a face
 - $\xi < \Theta$ and $\epsilon^k \ge \Theta$, $(k = 1, ..., M) \rightarrow$ it's a new face
 - $\xi < \Theta$ and $\min\{\epsilon^k\} < \Theta$ it's a known face, more precisely the $k_{best} th$, where:

$$k_{best} = argmin_k \{ \epsilon^k \}$$

