

학습 **내용**

- 01 보조기억장치의 개념
- 02 자기 기억장치
- 03 광기억장치
- 04 기타 기억장치

학습 **목표**

- 보조기억 장치의 특징에 대해 설명할 수 있다.
- 자기 디스크 기억장치의 원리와 특성에 대해 설명할 수 있다.
- RAID 기억장치와 그 종류에 대해 설명할 수 있다.
- 광기억장치의 특징과 종류에 대해 설명할 수 있다.

지난시간 돌아보기

- 8주차. 주기억장치-

지/난/시/간/의/ 학/습/내/용

기억장치의 개요

반도체를 사용한 주기억장치

가상 기억장치

지난시간 돌아보기

기억장치의 개요

- ✓ 기억장치 액세스의 유형
 - 데이터를 액세스하는 방법: 순차적 액세스, 직접 액세스, 임의 액세스, 연관 액세스

지난시간 돌아보기

반도체를 사용한 주기억장치

✓ RAM

- 주로 주기억장치로 사용됨
- 휘발성 기억장치로 전원 공급이 중단되면 기억장치 내의 데이터가 지워짐
- 종류 : DRAM, SRAM

✓ ROM

- 기억장치의 일부를 구성하며 일반적으로 바이오스에 많이 사용됨
- 전원 공급이 중단되어도 ROM에 저장된 데이터가 지워지지 않고 유지할 수 있음
- 종류 : Mask ROM, PROM, EPROM, EEPROM, 플래시 메모리 등

가상 기억장치

지난시간 돌아보기

√ 개념

- 보조기억장치와 같이 기억 용량이 큰 기억장치를 마치 주기억장치처럼 사용함 **생각** 해보기

보조기억장치의 개발 과정에 대해 알고있나요?

보조기억장치의 개념

- 1) 개요
- 2) CPU, ROM, RAM, 보조기억장치의 관계
- 3) 보조기억장치의 분류 방법

- 4) 접근 방법에 따른 분류
- 5) 컴퓨터 규모에 따른 분류
- 6) 보조기억장치의 평가 기준

- 보조기억장치
 - ▶ 주기억장치의 저장용량 부족을 보완하며, 비휘발성 특징을 이용해 데이터를 반영구적으로 저장하는 기억장치

- 기억장치 시스템에서의 보조기억장치
 - ▶ 기억장치의 계층적 구조에서 보조기억장치는 가장 하위 단계에 위치함
 - ▶ 동작 속도는 저속이고 가격이 저렴하지만 많은 양의 데이터를 저장함

■ 기억장치 시스템에서의 보조기억장치

기억장치 시스템의 계층적 구조 개념적 표현

■ 보조 기억장치의 연결 단자

IDE 방식의 연결

■ 병렬 케이블을 이용하여 IDE(Integrated Drive Electronics) 병렬 인터페이스에 연결된 것을 보여줌

SATA 방식의 연결

- 최근에 많이 사용되고 있는 SATA (Serial Advanced Technology Attachment) 방식을 보여줌
- SATA 어댑터와 장치들은 비교적 속도가 빠른 직렬 연결을 이용하여 연결됨

① 컴퓨터 전원을 켜면 CPU는 자동적으로 ROM에 저장된 프로그램들을 실행시켜서 부팅을 수행한다.

② 완전하게 부팅이 되면, 사용자는 보조기억장치에 저장된 응용 프로그램을 실행시켜서 주기억장치의 RAM에 프로그램 명령들을 적재한다.

❸ CPU는 RAM에서 실행할 명령어 데이터를 가지고 와서 처리를 한다.

4 처리된 결과는 다시 RAM으로 보낸다.

⑤ 모든 처리가 완료가 되면 RAM에 저장된 결과들이 보조기억장치에 저장한다.

3) 보조기억장치의 분류 방법

4) 접근 방법에 따른 분류

■ 순차적 접근 및 직접 접근

순차적 접근(Sequential Access)

- 데이터가 저장되는 순서에 따라 접근 순서가 결정되며, 접근 시간은 데이터의 저장 위치에 따라 다름
- 대표적인 보조기억장치로는 자기 테이프와 카세트 테이프가 있음

직접 접근(Direct Access)

- 원하는 데이터가 저장된 기억장소 근처로 이동한 다음, 순차적 검색을 통해서 원하는 데이터에 접근하는 방법
- 접근 시간은 원하는 데이터의 위치와 이전 접근위치에 따라 결정됨
- 하드 디스크, 플로피 디스크, CD-ROM, DVD 등이 있음

■ 중대형 컴퓨터 보조기억 장치

자기 테이프 장치 (Magnetic Tape)

- 투명 플라스틱 테이프 표면에 자성 재료인 산화철 분말을 바른 것
- 전원의 변화와 전자석의 작용에 의해 자성 분말에 자장을 만들어 반영구적 상태로 저장됨

자기 디스크 장치 (Magnetic Disk)

- 금속 원판을 여러 장 동일 축에 고정시키고, 디스크에는 원주를 따라 동심원 트랙이 있고 각각의 트랙은 섹터로 나눠지는 구조를 가짐
- 개인용에서 사용하는 하드 디스크가 비슷한 구조

자기 드럼 장치 (Magnetic Drum) • 알루미늄 합금체 원통형 표면에 자성 자료를 바른 기억장치로 트랙들은 각각 자신의 헤드를 가지고 있음

자기 카드 장치 (Magnetic Card)

- 용량이 큰 기억장치로 테이프의 주행장치와 제어 회로로 구성됨
- 순차적으로만 자료를 읽고 쓸 수 있는 기억장치

■ 개인용 컴퓨터 보조기억 장치

플로피 디스크

하드 디스크

CD-ROM

CD-RW

DVD

- 이동성을 갖는 보조기억장치로 플로피 디스크 드라이버를 통해서 데이터를 저장하고 읽을 수 있음
- 보통 디스켓(Diskette)이라고 함

■ 개인용 컴퓨터 보조기억 장치

플로피 디스크 하드 디스크 CD-ROM CD-RW DVD

- 컴퓨터에 내장되어 있어 가장 많이 쓰이는 기억장치임
- 기억장치기술의 급속한 발전으로 인해서 가격대비 성능이 가장 우수한 기억장치

■ 개인용 컴퓨터 보조기억 장치

플로피 디스크 하드 디스크 CD-ROM CD-RW DVD

- 멀티미디어 데이터를 저장할 수 있는 기억장치로 용량과 가격 비율이 가장 저렴함
- 읽기 동작만 가능하고 1, 2, 4, ···, 24 배속 등의 속도로 발전하고 있음

■ 개인용 컴퓨터 보조기억 장치

• 읽기만 가능한 CD-ROM의 단점을 극복하여 쓰기 동작이 가능한 매체임

■ 개인용 컴퓨터 보조기억 장치

플로피 디스크

하드 디스크

CD-ROM

CD-RW

DVD

- 고품질의 멀티미디어 데이터를 저장할 수 있는 대용량의 저장장치로 CD-ROM보다 7배 이상 더 저장할 수 있음
- 소음과 변형이 적어 뛰어난 안정성을 갖고 있음

6) 보조기억장치의 평가 기준

6) 보조기억장치의 평가 기준

- 1 저장 용량
 - 보조기억장치의 가장 중요한 성능 평가 요소
- 2 접근 속도(Access Time)
 - 접근 시간은 기억장치에서 데이터를 판독/기록하는 데 걸리는 시간
 - 접근 속도는 밀리 초로 측정되며, 기억장치 계층 구조에서와 같이 하드 디스크는 플로피 디스크보다 빠르고 자기 디스크는 자기 테이프보다 빠름
- 3 전송률
 - 데이터가 인출되어서 주기억장치로 전송되는데 걸리는 시간을 나타냄

6) 보조기억장치의 평가 기준

4 크기

- 다양한 휴대용 디지털기기에서 소형의 보조기억장치가 필요함
- 크기에 따라 저자 용량에 영향을 받을 수 있어 너무 작은 크기에서는 많은 데이터를 저장할 수 없음

5 분리 여부

• 탈착이 가능한 하드 디스크는 이동성과 여러 컴퓨터에 쉽게 장착할 수 있음

6 비용

- 저장 용량에 비해 그 비용은 저렴한 편임
- 접근 속도가 빠를수록 가격도 높아짐

자기 기억장치

- 1) 개요
- 2) 하드디스크 주요 구성 요소
- 3) 데이터 조직

- 4) 디스크 포맷팅
- 5) 자기디스크 물리적 특징
- 6) 자기디스크 성능 척도

- 자기 기억장치
 - ▶ 자기성을 유지하여 자속의 방향에 따라서 2진 정보를 기억하는 장치
 - ▶ 비휘발성 기억장치로서 자기코어와 같은 주기억장치와 자기디스크, 자기테이프 등의 보조기억장치로 사용함
 - ▶ 자성을 띠는 물질로 코팅된 플라스틱이나 금속을 이용한 원형 평판으로 만들어진 저장장치
 - 예 하드디스크(Hard Disk) 또는 플로피디스크(Floppy Disk)

2) 하드디스크 주요 구성 요소

■ 주요 구성 요소

헤드를

이동시키는 장치

- ▶ 컴퓨터를 동작시키기 위해 필요한 프로그램과 데이터가 저장되는 곳
- ▶ 기술이 급속히 발전해 대용량으로 커져가고 있고 가격은 점점 낮아지는 추세임

실제 정보가 저장되는 원형평판 장소로 다수의 (Circular Platter) 트랙들로 구성 전도성 코일을 통해 표면을 헤드 자화 시킴으로써 데이터를 (Head) 디스크 팔 저장하거나 검색하는 장치 (Disk arm) 구동장치 디스크 팔을 (Actuator) 움직이는 모터

3) 데이터 조직

- 데이터 조직
 - ▶ 원형 평판은 동심원 형태의 트랙(Track)으로 구성
 - ▶ 트랙의 폭(Width)은 헤드의 폭과 동일
 - 헤드가 이동하면서 트랙에 데이터를 기록하거나 읽게 됨

Inter-track Gab

등각속도(Constant angular velocity: CAV) 방식

- 트랙들 사이는 일정 공간
- 자기장의 간섭이나 헤드의 정렬 잘못으로 발생하는 오류를 감소

3) 데이터 조직

- 데이터 조직
 - ▶ 원형 평판은 동심원 형태의 트랙(Track)으로 구성
 - ▶ 트랙의 폭(Width)은 헤드의 폭과 동일
 - 헤드가 이동하면서 트랙에 데이터를 기록하거나 읽게 됨

Inter-track Gab

등각속도(Constant angular velocity: CAV) 방식

- 모든 트랙은 동일한 수의 비트를 저장함
- 디스크가 안쪽 부분이 더 높은 밀도를 갖게 됨
- 동일 트랙 길이에서 보다 많은 비트를 저장함

3) 데이터 조직

■ 데이터 조직

3) 데이터 조직

- 등각 속도 방식의 특징
 - ▶ 일정한 속도로 회전하는 상태에서 트랙의 위치에 관계없이 데이터를 동일한 비율 액세스
 - ▶ 디스크를 읽고 쓰는 장치가 간단해짐
 - ▶ 트랙의 바깥쪽이 안쪽보다 길지만 동일한 비트의 데이터를 저장하게 되기 때문에 저장 공간이 낭비됨
 - ▶ 각각의 트랙은 다수의 섹터(Sector)에 의해서 구성됨
 - ▶ 각각의 섹터들은 Inter-sector Gab을 통해 구분됨

디스크 포맷팅

■ 디스크 포맷팅

▶ 디스크의 구성을 검사하고, 그에 관한 정보와 트랙의 시작점, 섹터의 시작과 끝을 구분하기 위한 제어 정보 등을 디스크상의 특정 위치에 저장하는 과정

트랙의 용량

- 2데이터를 저장할 수 있는 용량과 제어 정보를 저장하는 용량을 합한 크기
- ▶ 데이터 영역과 제어 정보 영역 사이에 일정한 간격을 두어 구분함

제어정보

- 섹터를 구분하는데 필요한 식별자 또는 주소
- SYNCH 바이트, 트랙 번호, 헤드 번호, 섹터 번호, 오류검출 코드 (ID 필드) 등으로 구성
 - SYNCH 바이트는 트랙의 시작을 구분하는 특수한 비트 패턴

4) 디스크 포맷팅

5) 자기디스크 물리적 특징

■ 자기 디스크에서의 헤드

5) 자기디스크 물리적 특징

■ 자기 디스크의 이동성에 따른 분류

제거 불가능 디스크 (Non-removable Disk)

- 디스크 드라이브를 컴퓨터 내부에 고정시킨 디스크
- 하드디스크가 이에 해당함

제거 가능 디스크 (Removable Disk)

- 디스크를 드라이브로부터 분리하여 이동시킬 수 있고 다른 드라이브에 삽입하여 데이터를 읽거나 쓸 수 있는 디스크
- 플로피디스크가 이에 해당

5) 자기디스크 물리적 특징

■ 자기 디스크의 이동성에 따른 분류

6) 자기디스크 성능 척도

■ 디스크를 읽고 쓰는 동작

6) 자기디스크 성능 척도

■ 디스크 액세스 시간(Access Time)

- 1) 개요
- 2) CD (Compact Disk) 3) CD-ROM
- 4) CD-R

- 5) CD-RW
- 6) DVD
- 7) 블루레이 디스크

1) 개요

■ 광기억장치

- ▶ 알루미늄 금속성 원판의 표면에 레이저 광선을 이용하여 정보를 기록하는 장치
- ▶ 약한 레이저 광선을 쏘여서 그 반사광의 강약을 인지하여 읽어내기를 하는 대용량의 저장매체

광 디스크에 디지털 데이터를 기록하는 방법과 재생하는 방법

- 디스크 표면에 레이저를 쏘아 태운 부분과 그렇지 않은 부분으로 정보를 기록함
- 기록된 정보를 읽기 위해서는 강도가 약한 레이저 광선을 디스크 표면에 쏘아 반사시킨 뒤에, 반사된 빛을 광 다이오드에서 수신해서 다시 전기신호로 만듬

1) 개요

- 광 디스크 장점
 - 1/ 대용량의 정보를 기록할 수 있어 멀티미디어 데이터를 저장하는데 주로 사용함
 - 2/ 자기 디스크 기억장치와 다르게 거의 영구적으로 보관할 수 있음
 - 3/ 임의 접근 방법으로 동작하기 때문에 대용량으로 저장된 정보를 갖고 있지만 정보를 신속하게 읽을 수 있음

2) CD (Compact Disk)

- CD (Compact Disk)
 - ▶ 디지털화 된 음향정보를 저장하는 디스크
 - ▶ 데이터를 한번 기록하게 되면 다시 지워 사용할 수 없음
 - ► CD의 표준
 - 12cm 디스크를 사용
 - 약 60분 분량의 음향 정보를 저장

CD와 CD-ROM

- 유사한 기술을 사용함
- CD-ROM 플레이어가 보다 정교하고 오류 정정 장치를 가지고 있음

3) CD-ROM

- CD-ROM
 - ▶ 음향 CD와 동일한 기술로 제조함
 - ▶ 데이터를 저장할 때는 레이저를 사용하여 표면상에 흠집을 만들어 디지털 정보를 저장함
 - ▶ 저장된 정보를 검색할 때는 저 전력 레이저를 이용하여 반사되는 빛의 강도에 따라 디지털 신호를 검출함

자기디스크와 CD-ROM

- 상대적으로 대용량에 저렴한 가격으로 대량 복제가 가능함
- 읽기 기능만 가능하고 내용을 변경하는 것이 불가능함
- 액세스 시간이 자기 디스크보다 훨씬 오래 소요됨

4) CD-R

- CD-ROM
 - ▶ WORM (Write-Once Read-Many CD)으로 사용자가 데이터를 한 번은 기록할 수 있음
 - ▶ 한번의 기록만이 가능하고 등각속도(CAV) 방식을 이용하여 속도를 향상시킴

쓰기 동작

저장될 데이터에 따라 레이저로 열을 발생시켜 염료층의 해당 피트(Pit)부분들을 융해

읽기 동작

강도가 낮은 레이저 빛을 이용하여 반사 명암에 따라 데이터 검출

4) CD-R

CD-ROM

5) CD-RW

- CD-ROM
 - ▶ 재 기록이 가능한 Compact Disk
 - ▶ 기본적인 구조는 CD-R과 동일하고 약 1000번 정도 재기록이 가능함
 - ▶ CD-E (CD-Erasable)라는 용어로도 사용함
 - ▶ 액체 상태를 냉각하는 방식에 따라 '0', 또는 '1'에 해당하는 정보를 기록함

결정 상태(Crystal Phase)

- 입사되는 빛에 대하여 일정한 각도로 반사
- 디지털 정보 '1'이 기록
- 가열 후 서서히 냉각
- 원자들이 규칙적으로 배열

비정질 상태(Amorphous Phase)

- 입사되는 빛에 대하여 불규칙 난반사
- 디지털 정보 '0'가 기록
- 가열 후 급속 냉각
- 원자들이 무질서하게 배열

6) DVD

DVD

- ▶ CD와 동일한 크기를 가지며 디스크에 Television 방송 수준의 화질로 디지털 비디오를 저장하기 위해 설계됨
- ▶ 기록 용량은 일반 CD의 6~8배 정도로 매우 큰 저장 용량
- ▶ 큰 저장 용량을 갖기 때문에 게임 및 교육용 소프트웨어 등에서 더욱 현실감 높은 미디어를 제공함
- ▶ CD에서 사용되는 레이저에 비해 파장이 짧은 레이저를 사용하여 기록하는 용량을 증가시킴

6) DVD

- DVD
 - ▶ 레이어(Layer) 당 4.7Gbyte를 저장할 수 있어, 2중 레이어를 사용하는 경우 8.5Gbyte까지 저장이 가능함
 - ▶ DVD-R, DVD-RW
 - ▶ 아직 표준안이 마련되어 있지 않은 상태임

7) 블루레이 디스크

- 블루레이 디스크
 - ▶ DVD보다 5배 이상의 데이터 저장이 가능해서, HD 비디오를 저장할 수 있으며, 차세대 광 기록 저장매체로 불림
 - ▶ 저장된 데이터를 읽기 위해 DVD에 비해 훨씬 짧은 파장의 레이저를 사용함
 - 더 많은 데이터를 담는 것이 가능함
 - 단층(싱글 레이어)의 블루레이 디스크는 25GByte 데이터를 기록 할 수 있음

일반영화	고화질(HDTV)
13시간 저장	2시간 분량 저장

7) 블루레이 디스크

- 블루레이 디스크
 - ▶ 데이터용 블루레이 디스크, 기록 가능 블루레이 디스크, 재기록 가능 블루레이 디스크 등 여러 종류가 있음
 - ▶ 저작권 보호 및 인증 기능이 추가되어서 무단 복제를 막고 디스크의 무단 제작을 막을 수 있음

RAID

- ▶ 저렴하고 크기가 작은 여러 개의 독립된 하드 디스크들을 묶어 하나의 기억장치처럼 사용할 수 있는 방식
 - 여러 개의 독립된 디스크들이 일부 중복된 데이터를 나눠서 저장하고 성능을 향상시키는 기술을 의미함

레벨

데이터를 나누는 방법들을 의미하며 레벨에 따라 신뢰성, 성능 향상이 가능함

▶ 신뢰도 문제를 해결하기 위해, 여분의 디스크들(Redundant Disks)에 오류 발생시 데이터를 복구하기 위한 패리티 정보를 저장함

RAID

최초에 RAID가 제안되었을 때는 5가지의 레벨이 존재했으며 이후에 다른 레벨들이 추가됨

- ▶ 레벨에 따라서 서로 다른 신뢰성과 성능향상을 보여줌
- ▶ 레벨에서 그룹화된 디스크들은 하나의 불륨처럼 사용되기 때문에 RAID 불륨(Volume)이라고 함

■ RAID 레벨 0

▶ 2개 이상의 디스크를 사용하여 2개 이상의 볼륨을 구성한 구조로 여분(Redundancy) 디스크를 포함하지 않아서 오류 검출 기능은 없음

스트라이핑 (Striping) 모드

- 단순히 볼륨마다 디스크를 나열해 놓음
- 높은 신뢰성을 요구하기 보다는 성능과 용량을 중요시하는 시스템에 사용함
- ▶ 특정 데이터를 기록할 때는 볼륨의 수만큼 나누어서 각 볼륨 내의 같은 디스크와 같은 섹터에 병렬로 분산 저장함

- RAID 레벨 0
 - ▶ 데이터 접근 요구들이 하나의 디스크에 집중되지 않고 분산되며, 검색과 데이터 전송이 병렬로 이루어져 성능이 향상됨
 - 데이터의 읽기 · 쓰기 성능이 매우 향상됨

컴퓨터 시스템에서 초당 수천 개의 입출력 요구가 발생하는 경우

• RAID 레벨 0은 여러 디스크에 입출력 요구들을 균등하게 분배함으로써 ※높은 입출력 처리율을 제공할 수 있음

- RAID 레벨 0의 구조
 - ▶ 4개의 불륨으로 구성되어 있고 각 볼륨은 4개의 디스크로 구성됨
 - ▶ 각 디스크 스트립(Strip)들은 각 볼륨에 순차적으로 배당되어 있어, 저장될 데이터가 라운드 로빈(Round Robin) 방식으로 분산 저장됨

볼륨 1 볼륨 3 볼륨 2 볼륨 4 디스크 스트립 0 디스크 스트립 2 디스크 스트립 1 디스크 스트립 3 디스크 스트립 4 디스크 스트립6 디스크 스트립 5 디스크 스트립 7 디스크 스트립 8 디스크 스트립 10 디스크 스트립 9 디스크 스트립 11 디스크 스트립 12 디스크 스트립 14 디스크 스트립 13 디스크 스트립 15

■ RAID 레벨 0의 구조

RAID 레벨 0의 단점

- 오류 검출 기능을 제공하지 않기 때문에 어떠한 오류도 복구하지 못함
- 데이터가 분할되어 있기 때문에 볼륨을 구성하는 디스크 하나만 고장이 나도 데이터를 복구할 수 없음

빠른 속도가 필요한 시스템에서는 적절한 방법이나 데이터의 안정성이 요구는 시스템에서는 바람직한 방법이 아님

- RAID 레벨 1
 - ▶ 여분의 디스크가 포함되지 않지만 동일한 RAID 볼륨을 추가적으로 구성됨
 - 추가된 볼륨이 원래의 볼륨과 동일하기 때문에 미러링(Mirroring) 모드라고 함

장점

- 단순히 모든 데이터들을 반사 디스크에 복사하고 비교를 통해서 오류에 대한 검사와 수정을 할 수 있음(오류에 대해 강인하여 신뢰성 높음)
- 실시간으로 모든 데이터에 대한 복구가 가능하여 디스크에 오류가 발생 하더라도 중요한 데이터는 즉시 사용이 가능함

단점

- 쓰기 동작은 두 개의 디스크 중 탐색 시간과 회전 지연이 더 긴 디스크에 영향을 받게 되어 성능저하가 발생함
- 동일한 물리적 디스크 공간을 두 배로 사용하기 때문에 시스템을 구성하는 비용이 많이 듦

- RAID 레벨 1
 - ▶ 시스템 소프트웨어와 데이터 및 중요한 파일을 저장하는 디스크로 사용됨

- RAID 레벨 1의 구조
 - ▶ 디스크에 데이터를 읽고 기록할 때마다 동일한 작업이 반사 디스크에도 수행됨
 - ▶ 볼륨 내의 디스크가 고장이나 오류가 발생하면 다른 볼륨의 디스크를 사용하여 정상적으로 읽기와 쓰기 작업이 가능함

- RAID 레벨 2
 - ▶ 레벨 0의 병렬 접속 기술을 사용하며, 여분의 디스크를 추가해 오류검사를 통해 신뢰성을 높임
 - ▶ 4개의 볼륨 구성에 3개 볼륨을 추가한 구조

■ RAID 레벨 2

볼륨

- 3개의 볼륨이 추가된 이유는 패리티 정보가 각 데이터 볼륨에 대응되는 비트에 대해 계산되기 때문임
- 볼륨 0과 볼륨 1, 볼륨 1과 볼륨 2, 그리고 볼륨 2와 볼륨 3간의 패리티를 계산해서 별도로 저장함
- ▶ 패리티 정보는 해밍 코드를 사용하기 때문에 단일 비트 오류에 대해 검출과 수정이 가능하고, 두 비트의 오류에 대해서는 검출만 가능함
- ▶ 레벨 1에 비해 적은 수의 볼륨을 사용하지만 볼륨에 대한 비용이 많은 들어가며, 추가로 필요한 볼륨의 수는 데이터가 저장되는 볼륨의 수에서 1만큼 작음

■ RAID 레벨 3

- ▶ RAID 레벨 2에서 오류검출에 사용할 패리티 정보를 저장하기 위해 필요한 볼륨의 개수는 일반 데이터가 저장되는 볼륨의 개수에서 -1하면 됨
- ▶ RAID 레벨 3에서는 추가 볼륨의 단점을 조금 더 개선하여, 오직 1개의 볼륨만으로 패리티 정보를 저장할 수 있어 볼륨의 추가 비용이 적게 듦
- ▶ 각 볼륨의 동일한 위치에서 동시에 오류가 발생하거나 고장이 날 경우 복구하기가 어렵다는 단점이 있음
 - ➡ 최근 출시되는 디스크의 성능은 우수해서 동시의 오류나 고장이 나는 경우는 아주 드묾

■ RAID 레벨 3

- RAID 레벨 3에서 데이터 볼륨과 검사 볼륨
 - ▶ 오류가 발생하면, 추가 볼륨에서 패리티 비트와 각 볼륨의 스트립 디스크에 남아 있는 다른 데이터 정보를 사용하여 결함이 발생한 데이터를 복구함

■ RAID 레벨 3에서 데이터 볼륨과 검사 볼륨

i번째 비트에 대한 패리티 계산

→ 이런 오류에 대한 복구 방식은 RAID 레벨 3~RAID 레벨 6까지 사용되고 있으며, RAID 레벨 3는 저장된 데이터들이 매우 작은 스트립으로 분산되어 있어, 병렬 전송을 통해서 높은 데이터 전송률을 얻을 수 있음

- RAID 레벨 4
 - ▶ 레벨 3은 바이트 단위로 데이터를 분할하고 패리티 정보를 계산하지만, 레벨 4는 미리 정해진 블록 단위로 데이터를 분할하고 패리티를 계산함
 - ▶ 블록 단위로 데이터를 처리하기 때문에 레벨 3보다 좀 더 향상된 성능을 가짐
 - 독립적인 입출력 요구들을 병렬로 처리할 수 있음
 - ▶ 이 접근방식은 RAID 레벨 4~RAID 레벨 6까지 적용됨
 - RAID 레벨 4는 데이터 볼륨들에서만 독립 접근이 가능하고 패리티 디스크에 대해서는 병목 현상이 발생함

■ RAID 레벨 4

■ RAID 레벨 4의 검사 디스크 수정

■ RAID 레벨 4의 검사 디스크 수정

패리티 정보를 구하는 관계식

- RAID 레벨 5
 - ▶ 레벨 4에서는 패리티 디스크들이 동일 볼륨에 속해 있기 때문에 데이터의 변화가 빈번한 경우 패리티 디스크 볼륨은 큰 부하를 받게 됨
 - ▶ 레벨 5에서는 패리티 비트를 저장하는 볼륨을 별도로 설치하지 않고 데이터를 저장하는 볼륨에 패리티 비트를 분산하여 저장함
 - ▶ 레벨 4와 동일한 볼륨의 수가 필요함
 - N개의 데이터 볼륨을 필요로 하는 경우 RAID 레벨 5는 N+1개의 볼륨을 필요로 함

■ RAID 레벨 5

볼륨 1	볼륨 2	볼륨 3	볼륨 4	볼륨 5
디스크 스트립 0	디스크 스트립 1	디스크 스트립 2	디스크 스트립 3	p(0~3)
디스크 스트립 4	디스크 스트립 5	디스크 스트립 6	p(4~7)	디스크 스트립 7
디스크 스트립 8	디스크 스트립 9	p(8~11)	디스크 스트립 10	디스크 스트립 11
디스크 스트립 12	p(12~15)	디스크 스트립 13	디스크 스트립 14	디스크 스트립 15
p(16~19)	디스크 스트립 16	디스크 스트립 17	디스크 스트립 18	디스크 스트립 19

- RAID 레벨 5
 - ▶ 결과적으로 RAID 레벨 5방식은 모든 패리티 비트들이 볼륨에 라운드 로빈 방식으로 분산 저장함으로써 패리티 볼륨에 대한 병목현상을 방지함
 - ▶ 레벨 5는 용량과 비용을 중요시하는 응용 환경에서 적합함
 - ➡ 가격과 성능 측면으로 보면 RAID 레벨 5가 더 우수함

- RAID 레벨 6
 - ▶ 신뢰성에 좀 더 기반을 둔 구성임
 - ▶ 레벨 5에서는 2개의 볼륨에서 동시에 오류가 발생할 경우 복구하기 힘들지만 레벨 6은 패리티 정보를 하나 더 추가해서 동시에 오류가 발생해도 복구가 가능함
 - ▶ 가로 방향과 세로 방향의 패리티 정보가 생성되고 각각 저장되어서, N개의 데이터 볼륨을 필요로 하는 경우 RAID 레벨 6는 N+2개의 볼륨 필요함
 - ▶ P와 q가 두 종류의 패리티 정보임

■ RAID 레벨 6

볼륨 1 	볼륨 2	볼륨 3	볼 륨 4	볼륨 5	볼륨 6
디스크스트립0	디스크스트립1	디스크스트립2	디스크스트립3	p(0~3)	q(0~3)
디스크스트립4	디스크스트립5	디스크스트립6	p(4~7)	q(4~7)	디스크스트립7
디스크스트립8	디스크스트립9	p(8~11)	q(8~11)	디스크스트립11	디스크스트립11
디스크스트립12	p(12~15)	q(12~15)	디스크스트립14	디스크스트립15	디스크스트립15
p(16~19)	q(16~19)	디스크스트립17	디스크스트립18	디스크스트립19	디스크스트립19

■ RAID 레벨 6

장점

• 아주 높은 데이터의 신뢰성을 제공함

단점

- 쓰기 동작을 할 때 마다 두 개의 패리티를 갱신해야 함
- 두 종류의 패리티 정보를 저장할 수 있는 추가적인 볼륨이 필요함

보조기억장치

✓ 보조기억장치의 개념

- 주기억장치에 비해 용량이 매우 크기 때문에 대용량의 데이터를 읽거나 저장할 수 있음
- 가장 대표적인 보조기억장치: 자기 디스크를 사용하는 하드 디스크, 플로피 디스크, CD, DVD 등이 있음

자기 기억장치

✓ 디스크를 읽고 쓰는 동작

- 헤드를 해당 트랙으로 이동 : 탐색시간
- 데이터가 포함된 섹터가 헤드 아래로 회전되어 올 때까지 : 회전 지연시간
- 데이터를 전송: 데이터 전송 시간

광기억장치

✓ 개념

- 알루미늄 금속성 원판의 표면에 레이저 광선을 이용하여 정보를 기록하는 장치
- 약한 레이저 광선을 쏘여서 그 반사광의 강약을 인지하여 읽어내기를 하는 대용량의 저장매체

✓ 종류

- CD, CD-ROM, CD-R, CD-RW, DVD, 블루레이 디스크

기타 기억장치

✓ RAID 기억장치

- 가격이 저렴하고 크기가 작은 여러 개의 하드 디스크들을 묶어 하나의 기억장치처럼 사용할 수 있게 하는 방식

