Improving Fairness Generalization Through a Sample-Robust Optimization Method

Ulrich Aïvodji, Julien Ferry, Sébastien Gambs, Marie-José Huguet and Mohamed Siala

LAAS-CNRS, INSA Toulouse, ETS, UQAM

[1] Context

- Fairness generalization is one of the open challenges in trustworthy Machine Learning
- Current approaches are essentially adhoc with no theoretical framework
- We propose a novel approach to fairness generalization based on distributionally robust optimization
- Our approach can be used with different learning models using different statistical fairness measures
- Empirical results show that our approach outperforms state-of-the-art approaches
- The paper is published in the **Machine Learning** journal in July 2022

[3] The Sample-Robust Fair Learning Problem

- Let \mathcal{D} be a dataset, ϵ an unfairness tolerence, and h a predictive model
- For a given value $d \in [0, 1]$, we define a perturbation set $\mathcal{B}(\mathcal{D}, d)$ as the set of all subsets of \mathcal{D} whose Jaccard distance from \mathcal{D} is less than or equal to d.
- The robustness of h is the largest distance d such that h is fair on each element in $\mathcal{B}(\mathcal{D},d)$
- \bullet Given a distance d, the sample-robust fair learning problem is:

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \qquad f_{obj}(h, \mathcal{D})$$
s.t.
$$Robustness(h, \mathcal{D}, \epsilon) > d$$
(1)

[5] An Integer Programming Approach

- N_a (respectively N_b) is the number of examples in the group A (respectively B)
- M_a (respectively M_b) is the number of examples that satisfy the measure in the group A (respectively B)
- The optimal value can be used to identify the largest perturbation set where the robustness constraint is satisfied

[7] Some Experimental Results (FairCORELS)

• Test error and unfairness of models generated by FairCORELS using our exact and heuristic sample-robust fair methods (Statistical Parity metric, $\epsilon = 0.01$)

[9] Summary

- We propose a novel approach to fairness generalisation inspired by "Distributionally Robust Optimization"
- Our propositions are flexible enough to be used with different models
- We empirically show that our approach is competitive to the state-of-the-art with two learning models on many datasets in the literature using different fairness measures

[2] Statistical Fairness

The COMPAS Example:

- Binary classification task: Recidivism within two years?
- Sensitive attribute: Ethnicity (African-American/Caucasian)
- Protected Groups:
- -A: African-American individuals;
- -B: Caucasian individuals;
- ullet Principle: ensure that some measure \mathcal{M} (e.g., true positive rate) differs by no more than ϵ between several protected groups
- In the particular case of two protected groups (A) and (B) (binary sensitive attribute), one needs to ensure that $|\mathcal{M}(A) \mathcal{M}(B)| \leq \epsilon$

[4] Robustness Evaluation: Intuition

- Suppose that $\exists x_a(x_b)$ examples in A(B) that satisfy the measure \mathcal{M}
- Suppose that $\exists y_a (y_b)$ examples in A(B) that do not satisfy measure \mathcal{M}
- ullet Let \mathcal{D}' be the subset of \mathcal{D} where the colored sets are removed
- If h is not fair on \mathcal{D}' , then h is not robust on the perturbation set defined with the distance between \mathcal{D} and \mathcal{D}'

[6] Experimental Study

- Fair CORELS and TensorFlow Constrained Optimization (TFCO)
- Four fairness metrics:
- -Statistical Parity
- -Predictive Equality
- -Equal Opportunity
- -Equalized Odds
- Four biased datasets:
- -Adult Income dataset
- -COMPAS dataset
- Default Credit dataset
- -Bank Marketing dataset

[8] Some Experimental Results (TFCO)

• Results of the experimental study of the heuristic approach using **TFCO** (error rates and maximum fairness violations)

	Proxy Lagrangian				Lagrangian			
	Train		Test		Train		Test	
Model	Error	Viol.	Error	Viol.	Error	Viol.	Error	Viol.
Adult Income Dataset								
unconstrained	.122	.072	.144	.071	.122	.072	.144	.071
baseline	.141	0	.154	.009	.141	0	.155	.006
validation	.132	002	.158	.004	.134	0	.157	.004
dromasks-10	.14	003	.156	.003	.143	001	.155	003
dromasks-30	.14	004	.157	001	.148	002	.156	003
dromasks-50	.14	003	.157	001	.151	002	.157	003

[10] Future Work

- Can we find an efficient way to approximate the best parameters?
- How to extend the work with other distance functions?

