2020-06-19 Lernkontrolle von	
Zu Monotonie-Extremetellen	

Abgabe bitte bis

Aufgabe 1

& F-3 0

Untersuche die Funktion f auf Monotonie. Benutze den Monotoniesatz.

a)
$$f(x) = x^3 - 3x^2 + 1$$

a)
$$f(x) = x^3 - 3x^2 + 1$$
 $f'(x) = 3x^2 - 6x$

Bestimmung der Nullstellen von f': $3x^2 - 6x = 0$

Ausklammern:
$$3 \times (x-2)$$

Nullstellen: $x_1 = 0$; $x_2 = 2$

Monotonie intervalle $I_1 = (-\infty; 0); I_2 = (0; 2);$

 $I_3 = (2; \circ)$ Wegen f'(-1) = > 0 gilt in

1, f' > 0 und f ist strong monoton steigend

Es gilt: f'(1) = < 0. f ist in 12 Theng

monoton fallend. f'(3) = > 0.

fist in 13 threng monoton Heigend.

Bestimmung der Nullstellen von f':

(10a)

Aufgabe 2

Gib die gesuchten Stellen(x-Werte), Werte(y-Werte) und Punkte(2 Koordinaten) für den Graphen der Funktion f mit $D_f = [-1; 12]$ an. Extremstellen(6 Stück):

X1= 2, X2= 9, X2= 2 xq=-1 X5=11

Extremwerte (6 Stück) $y_1 = \frac{4}{1}$, $y_2 = -3$, $y_3 = 3$, $y_4 = 0$, $y_5 = -1$, $y_6 = -1$

Hochpunkte(3): $H_1(2/4)$; $H_2(7/3)$; $H_3(12/1)$ globales Maximum(y-Wert): 4

Tiefpunkte(3): $T_{1}(-1/0); T_{2}(4/-3); T_{3}(11/-1)$ globales Minimum (y-Wert): -3

Aufgabe 3

Bestimme mögliche Extremstellen der Funktion f.

a)
$$f(x) = x^4 - 6x^2 + 3$$

Ableitung: $f'(x) = 4 \times 3 - 12 \times$

Nullstellen von f' bestimmen: 4 x 3-12 x

Ausklammern: $4 \times (x^2 - 3)$

Nullstellen von f': $x_1 = \sqrt{3}$; $x_2 = 0$; $x_3 = -\sqrt{3}$

E2(0/f(0)) = (0/3) E3(-V31/f(-V31)) = (-V31/-6)

b)
$$f(x) = \frac{1}{2}x^4 + \frac{4}{3}x^3 - 3x^2 + 5$$

