CSC 422

State space search

Learning content

- What is **search** (a.k.a. **state-space search**)?
- What are these concepts in search?
 - Initial state
 - Actions / transition model
 - State space graph
 - Step cost / path cost
 - Goal test (cf. goal)
 - Solution / optimal solution
- What is the difference between **expanding** a state and **generating** a state?
- What is the **frontier** (a.k.a. **open list**)?

Representing actions

- The number of actions / operators depends on the **representation** used in describing a state.
 - -In the 8-puzzle, we could specify 4 possible moves for each of the 8 tiles, resulting in a total of **4*8=32 operators**.
 - On the other hand, we could specify four moves for the "blank" square and we would only need 4 operators.
- Representational shift can greatly simplify a problem!

State Space Search - Example

- generated by "move blank" operations
- ↑ -- up
- ← -- left
- \ -- down
- $\bullet \rightarrow$ -- Right

Representing states

- What knowledge needs to be represented in a state description to adequately describe the current state or situation of the world?
- The size of a problem is usually described in terms of the number of states that are possible.
 - Tic-Tac-Toe has about 39 states.
 - Checkers has about 10⁴⁰ states.
 - Rubik's Cube has about 10¹⁹ states.
 - Chess has about 10^{120} states in a typical game.

Formalizing Search in a State Space

- A state space is a directed graph, (V, E) where V is a set of nodes and E is a set of arcs, where each arc is directed from a node to another node
- node: a state Remember, state space is not a solution space
 - state description
 - plus <u>optionally other information</u> related to the parent of the node, operation used to generate the node from that parent, and other <u>bookkeeping data</u>
- arc: an instance of an (applicable) action/operation.
 - the source and destination nodes are called as parent (immediate predecessor) and child (immediate successor) nodes with respect to each other
 - ancestors (predecessors) and descendents (successors)
 - each arc has a fixed, non-negative cost associated with it, corresponding to the cost of the action

Formalizing Search in a State Space

- State-space search is the process of searching through a state space for a solution
- This is done by **making explicit** a sufficient portion of an **implicit** state-space graph to include a goal node.
 - Initially V={S}, where S is the start node; when S is expanded, its successors are generated and those nodes are added to V and the associated arcs are added to E.
 - This process continues until a goal node is generated (included in V) and identified (by goal test)
- During search, a node can be in one of the three categories:
 - Not generated yet (has not been made explicit yet)
 - **OPEN**: generated but not expanded
 - CLOSED: expanded
- Search strategies differ mainly on how to select an OPEN node for expansion at each step of search

State Space Search Algorithm

STATE SPACE SEARCH

A *state space* is represented by a four-tuple [**N,A,S,GD**], where:

N is the set of nodes or states of the graph. These correspond to the states in a problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps in a problem-solving process.

S, a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of **N**, contains the goal state(s) of the problem. The states in **GD** are described using either:

- 1. A measurable property of the states encountered in the search.
- A property of the path developed in the search, for example, the transition costs for the arcs of the path.

A solution path is a path through this graph from a node in **S** to a node in **GD**.

Example of State Space Search Algorithm

Key procedures to be defined

- EXPAND -Generate all successor nodes (leaf nodes)
- GOAL-TEST Test if state satisfies all goal conditions
- QUEUEING-FUNCTION
 - Used to maintain a ranked list of nodes that are candidates for expansion
- Typical node data structure includes:
 - State at this node
 - Parent node (root)
 - Depth of this node (number of operator applications since initial state)
 - Cost of the path (sum of each operator application so far)

Some issues

- Search process constructs a search tree, where
 - root is the initial state and
 - leaf nodes are nodes
 - not yet expanded (i.e., they are in the list "nodes") or
 - having no successors (i.e., they're "dead ends" because no operators were applicable and yet they are not goals)
- Search tree may be infinite because of loops even if state space is small
- Return a path or a node depending on problem.
 - 8-puzzle returns a path
- Changing definition of the QUEUEING-FUNCTION leads to different search strategies

Evaluating search strategies

- A **solution** is a sequence of operators that is associated with a path in a state space from a start node to a goal node.
- The **cost of a solution** is the sum of the arc costs on the solution path.
 - If all arcs have the same (unit) cost, then the solution cost is just the length of the solution (number of steps / state transitions)

Evaluating search strategies

Completeness

- Guarantees finding a solution whenever one exists

Time complexity

How long (worst or average case) does it take to find a solution?
 Usually measured in terms of the number of nodes expanded

Space complexity

 How much space is used by the algorithm? Usually measured in terms of the maximum size of the "nodes" list during the search

• Optimality/Admissibility

— If a solution is found, is it guaranteed to be an optimal one? That is, is it the one with minimum cost?

Water Jug Problem

Given a full 5-gallon jug and an empty 2-gallon jug, the goal is to fill the 2-gallon jug with exactly one gallon of water.

- State = (x,y), where x is the number of gallons of water in the 5-gallon jug and y is # of gallons in the 2-gallon jug
- Initial State = (5,0)
- Goal State = (*,1), where * means any amount

Operator table

Name	Cond.	Transition	Effect
Empty5	_	$(x,y) \rightarrow (0,y)$	Empty 5-gal. jug
Empty2	_	$(x,y) \rightarrow (x,0)$	Empty 2-gal. jug
2to5	x ≤ 3	$(x,2) \rightarrow (x+2,0)$	Pour 2-gal. into 5-gal.
5to2	$x \ge 2$	$(x,0) \rightarrow (x-2,2)$	Pour 5-gal. into 2-gal.
5to2part	y < 2	$(1,y) \rightarrow (0,y+1)$	Pour partial 5-gal. into 2-gal.

Water Jug Problem (cont.)

- To solve this we have to make some assumptions not mentioned in the problem. They are
- 1. We can fill a jug from the pump.
- 2. we can pour water out of a jug to the ground.
- 3. We can pour water from one jug to another.
- 4. There is no measuring device available.

This is one of the solution

0 - 3

3-0

3-3

4-2

0-2

2-0

Water Jug Problem (cont.)

Water Jug Problem - Example

State Rules/Condition

```
(X, Y) if X < 4 \rightarrow (4, Y)
                                                  Fill the 4-gallon jug
      (X, Y) if Y < 3 \rightarrow (X, 3)
                                                  Fill the 3-gallon jug
      (X, Y) if X = d \& d > 0 \rightarrow (X-d, Y)
                                                  Pour some water out of the 4-gallon jug
      (X, Y) if Y = d \& d > 0 \rightarrow (X, Y - d)
                                                  Pour some water out of 3-gallon jug
     (X, Y) if X > 0 \rightarrow (0, Y)
                                                  Empty the 4-gallon jug on the ground
     (X, Y) if Y > 0 \rightarrow (X, 0)
                                                  Empty the 3-gallon jug on the ground
      (X, Y) if X + Y \le 4 and
                                                  Pour water from the 3-gallon jug into the
      Y > 0 \rightarrow 4, (Y - (4 - X))
                                                  4-gallon jug until the gallon jug is full.
 8.
      (X, Y) if X + Y \ge 3 and
                                                  Pour water from the 4-gallon jug into the
                                                  3-gallon jug until the 3-gallon jug is full.
      X > 0 \rightarrow (X - (3 - Y), 3))
      (X, Y) if X + Y \le 4 and
                                                  Pour all the water from the 3-gallon jug
      Y > 0 \rightarrow (X + Y, 0)
                                                  into the 4-gallon jug
      (X, Y) if X + Y \le 3 and
                                                  Pour all the water from the 4-gallon jug
10.
      X > 0 \rightarrow (0, X + Y)
                                                  into the 3-gallon jug
                                                  Pour the 2-gallons water from 3-gallon
11.
      (0,2) \rightarrow (2,0)
                                                  jug into the 4;gallon jug
      (2, Y) \rightarrow (0, Y)
                                                  Empty the 2-gallons in the 4-gallon jug on
12.
                                                  the ground.
```

Fig. 2.3. Production rules (operators) for the water jug problem.

Water Jug Problem - Example

Water in 4-gallon jug (X)	Water in 3-gallon jug (Y)	Rule applied
0	0	
0	3	2
3	0	9
3	3	2
4	2	7
0	2	5 or 12
2	0	9 or 11

Fig. 2.4 (a). A solution to water jug problem.

x	Y	Rule applied (Control strategy)
0	0	
4	0	I-
1	3	8
1	0	6
0	1	10
4	1	1
2	3	8

Fig. 2.4 (b). 2nd solution to water jug problem.

CLASS EXERCISE

- Representing a Sudoku puzzle as a search space
 - What are the states?
 - What are the operators?
 - What are the constraints (on operator application)?
 - What is the description of the goal state?
- Let's try it!

	3		
			1
3			
		2	