Euler Beta Integral

Selberg Integra

A_n Selberg Integral

Beta Integrals

S. Ole Warnaar

Department of Mathematics and Statistics

Wallis formula (1656)

$$\frac{\pi}{2} = \frac{2^2}{1 \cdot 3} \cdot \frac{4^2}{3 \cdot 5} \cdot \frac{6^2}{5 \cdot 7} \cdots$$
$$= \prod_{n=1}^{\infty} \frac{(2n)^2}{(2n-1)(2n+1)}$$

Selberg Integra

An Selberg Integral

• Gamma function (Euler 1720s)

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^{x-1}}{x(x+1)\cdots(x+n-1)} \qquad x \neq 0, -1, -2, \dots$$
$$= \int_0^\infty t^{x-1} e^{-t} dt \qquad \operatorname{Re}(x) > 0$$

 A_n Selberg Integral Since $=\frac{\pi}{4}$ Wallis' formula is equivalent to

$$2\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = \Gamma(1/2)\Gamma(3/2)$$

or, by $x^2 = t$, to

$$\int_0^1 t^{1/2-1} (1-t)^{3/2-1} dt = \Gamma(1/2)\Gamma(3/2).$$

This led Euler to the discovery of a more general integral.

A_n Selberg Integral • Euler beta integral (1730s)

$$\int_0^1 t^{\alpha-1} (1-t)^{\beta-1} \mathsf{d}t = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

for $Re(\alpha) > 0$, $Re(\beta) > 0$.

Replacing $(\beta,t) \to (\zeta,t/\zeta)$ with $\zeta \in \mathbb{R}$ and letting $\zeta \to \infty$ using Stirling formula returns the integral representation of the gamma function.

Replacing $(\alpha, \beta, t) \to (\zeta^2 + 1, \zeta^2 + 1, 1/2 - x/(2\zeta))$ and letting $\zeta \to \infty$ yields the Gaussian integral

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} dx = 1.$$

Much more on this later ...

For those with poor eyesight ...

Let $\beta = n + 1$ with n = 0, 1, 2, ...

$$\int_0^1 t^{\alpha - 1} (1 - t)^n dt = \sum_{k = 0}^n (-1)^k \binom{n}{k} \int_0^1 t^{k + \alpha - 1} dt$$
$$= \sum_{k = 0}^n \frac{(-1)^k}{k + \alpha} \binom{n}{k}$$
$$= \frac{n!}{\alpha(\alpha + 1) \dots (\alpha + n)}$$

A_n Selberg Integral

Orthogonal polynomials

Set t = (1 - x)/2 in the Euler beta integral and replace

$$(\alpha,\beta) \rightarrow (\alpha+1,\beta+1).$$

Then

$$\int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} dx = 2^{\alpha+\beta+1} \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}.$$

The distribution dw(x) on [-1,1] given by

$$dw(x) = (1-x)^{\alpha}(1+x)^{\beta}dx$$

is that of the Jacobi (orthogonal) polynomials $P_n^{(\alpha,\beta)}(x)$.

Beta Integrals

Euler Beta Integral Wallis formula Gamma functio Euler beta integral Orthogonal polynomials

An Selberg

$$\int_{-1}^{1} P_{m}^{(\alpha,\beta)}(x) P_{n}^{(\alpha,\beta)}(x) dw(x)$$

$$= \delta_{mn} \frac{2^{\alpha+\beta+1} \Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{n! (2n+\alpha+\beta+1) \Gamma(\alpha+\beta+n+1)}.$$

Proof of the orthogonality and norm-evaluation follows immediately from the Rodrigues formula

$$(1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x) = \frac{(-1)^{n}}{2^{n}n!} \frac{d^{n}}{dx^{n}} \Big[(1-x)^{\alpha+n}(1+x)^{\beta+n} \Big]$$

(which may be taken as the definition of the Jacobi polynomials) and the Euler beta integral.

The one proof that all (good?) talks are supposed to have ...

To leading order the Rodrigues formula gives

$$x^{\alpha+\beta}P_n^{(\alpha,\beta)}(x)$$
 "=" $\frac{1}{2^n n!}\frac{d^n}{dx^n}x^{\alpha+\beta+2n}$

so that

$$P_n^{(\alpha,\beta)}(x) = \sum_{k=0}^n c_{nk} x^k$$

with

$$c_{nn}=\frac{(\alpha+\beta+n+1)\cdots(\alpha+\beta+2n)}{2^n n!}.$$

Selberg Integra

A_n Selberg Integral Without loss of generality assume that $m \leq n$.

Then

$$\int_{-1}^{1} P_{m}^{(\alpha,\beta)}(x) P_{n}^{(\alpha,\beta)}(x) dw(x)$$

$$= \sum_{k=0}^{m} c_{mk} \frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1} x^{k} \frac{d^{n}}{dx^{n}} \Big[(1-x)^{\alpha+n} (1+x)^{\beta+n} \Big] dx$$
(Rodrigues)
$$= \sum_{k=0}^{m} \frac{c_{mk}}{2^{n}} \delta_{kn} \int_{-1}^{1} (1-x)^{\alpha+n} (1+x)^{\beta+n} dx$$
(k times integration by parts)
$$= \delta_{nm} \frac{2^{\alpha+\beta+1} \Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{n! (2n+\alpha+\beta+1) \Gamma(\alpha+\beta+n+1)}$$
(Euler beta integral & c_{nn})

Selberg Integra

An Selberg

Of course you should all care about the Jacobi polynomials since the Gegenbauer polynomials $C_n^{\lambda}(x)$ are nothing but

$$C_n^{(\lambda)}(x) = \frac{(2\lambda)(2\lambda+1)\cdots(2\lambda+n-1)}{(\lambda+1/2)(\lambda+3/2)\cdots(\lambda+n-1/2)} P_n^{(\lambda-1/2,\lambda-1/2)}(x).$$

The fabulous Leopold Gegenbauer, Austria's favourite mathematician.

A_n Selberg Integral

In fact, even non-Austrian's care (like the French and Russians) . . .

$$T_n(x) = \frac{2^{2n}(n!)^2}{(2n)!} P_n^{(-1/2, -1/2)}(x)$$

Chebyshev I

$$U_n(x) = \frac{2^{2n+1}((n+1)!)^2}{(2n+2)!} P_n^{(1/2,1/2)}(x)$$
 Chebyshev II

Legendre

$$P_n(x) = P_n^{(0,0)}(x)$$

Laguerre

$$L_n^{(\alpha)}(x) = \lim_{\beta \to \infty} P_n^{(\alpha,\beta)}(1 - 2x/\beta)$$

Selberg integral

Selberg integral (1944)

$$\begin{split} \int\limits_{[0,1]^n} \prod_{i=1}^n t_i^{\alpha-1} (1-t_i)^{\beta-1} \prod_{1 \leq i < j \leq n} |t_i - t_j|^{2\gamma} \mathrm{d}t \\ &= n! \prod_{i=0}^{n-1} \frac{\Gamma(\alpha + i\gamma)\Gamma(\beta + i\gamma)\Gamma(\gamma + i\gamma)}{\Gamma(\alpha + \beta + (n+i-1)\gamma)\Gamma(\gamma)} \end{split}$$

for $Re(\alpha) > 0$, $Re(\beta) > 0$, $Re(\gamma) > \cdots$.

Euler Beta Integral

Selberg Integral Selberg integral Macdonald's conjectures A_{n-1} B_n and D_n $I_2(m)$ Exceptional groups

Macdonald's conjectures (1982)

Let G be a finite reflection group or finite Coxeter group. That is, G is a finite group of isometries of \mathbb{R}^n generated by reflections in hyperplanes through the origin.

The reflection group B_2 of order 8 (isomorphic to the signed permutations of (1,2)), with 4 reflecting hyperplanes.

Normalise (up to sign) so that each hyperplane is of the form

$$a_1x_1+\cdots+a_nx_n=0$$

with

$$a_1^2+\cdots+a_n^2=2.$$

Form the polynomial

$$P(x) = \prod_{\alpha=1}^{N} \left(a_1^{(\alpha)} x_1 + \dots + a_n^{(\alpha)} x_n \right),$$

N being the number of hyperplanes.

Geometrically, P(x) gives the product of the distances of the point $x = (x_1, ..., x_n)$ to the hyperplanes (up to a factor $2^{N/2}$).

groups A_n Selber Integral By its action on \mathbb{R}^n the reflection group G acts on polynomials in $x=(x_1,\ldots,x_n)$.

The *G*-invariant polynomials form an \mathbb{R} -algebra $\mathbb{R}[f_1, \dots, f_n]$ generated by n algebraically independent polynomials f_1, \dots, f_n .

The f_1, \ldots, f_n are not unique but their degrees d_1, \ldots, d_n are.

A_n Selbe Integral Let φ be the Gaussian measure on \mathbb{R}^n :

$$d\varphi(x) = \frac{e^{-|x|^2/2}}{(2\pi)^{n/2}} dx.$$

Macdonald conjectured in 1982 that for every finite reflection group

$$\int_{\mathbb{P}^n} |P(x)|^{2\gamma} d\varphi(x) = \prod_{i=1}^n \frac{\Gamma(d_i \gamma + 1)}{\Gamma(\gamma + 1)}.$$

For the trivial group A_0 of order 1 (mapping $\mathbb R$ to $\mathbb R$ by the identity map; i.e., no reflecting hyperplanes), P(x)=1 and the conjecture corresponds to the Gaussian integral

$$\int\limits_{\mathbb{R}}\mathsf{d}\varphi(x)=1.$$

• The reflection group A_{n-1}

 A_{n-1} is the symmetry group of the (n-1)-simplex.

The 3-simplex or tetrahedron.

It is a group of order n! (isomorphic to the symmetric group \mathfrak{S}_n) generated by the $\binom{n}{2}$ hyperplanes

$$x_i - x_i = 0 \qquad 1 \le i < j \le n.$$

The polynomial P(x) is given by the Vandermonde product

$$P(x) = \prod_{1 \le i < j \le n} (x_i - x_j).$$

The *G*-invariant polynomials are the symmetric polynomials in x, generated by the elementary symmetric functions e_1, \ldots, e_n :

$$e_r(x) = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Hence the degrees are given by $(d_1, d_2, \ldots, d_n) = (1, 2, \ldots, n)$.

Macdonald's conjecture for A_{n-1} is thus

$$\int_{\mathbb{R}^n} \prod_{1 \le i < j \le n} |x_i - x_j|^{2\gamma} \, \mathrm{d}\varphi(x) = \prod_{i=1}^n \frac{\Gamma(i\gamma + 1)}{\Gamma(\gamma + 1)}$$

better known as Mehta's integral.

This follows from the Selberg integral by taking

$$(\alpha,\beta)=(\zeta+1,\zeta+1) \qquad t_i=rac{1}{2}\Big(1-rac{x_i}{\sqrt{2\zeta}}\Big) \qquad \zeta o\infty.$$

• The reflection groups B_n and D_n

In these two cases the Macdonald conjecture is

$$\int\limits_{\mathbb{R}^n} \prod_{i=1}^n |x_i|^{2\gamma} \prod_{1 \leq i < j \leq n} |x_i^2 - x_j^2|^{2\gamma} d\varphi(x) = \prod_{i=1}^n \frac{\Gamma(2i\gamma + 1)}{\Gamma(\gamma + 1)}$$

and

$$\int_{\mathbb{R}^n} \prod_{1 \le i < j \le n} |x_i^2 - x_j^2|^{2\gamma} \, \mathrm{d}\varphi(x) = \frac{\Gamma(n\gamma + 1)}{\Gamma(\gamma + 1)} \prod_{i=1}^{n-1} \frac{\Gamma(2i\gamma + 1)}{\Gamma(\gamma + 1)}$$

and follows again from the Selberg integral:

$$\mathsf{B}_n: \ (\alpha,\beta)=(\gamma+1/2,\zeta+1) \qquad t_i=rac{x_i^2}{2\zeta} \qquad \zeta\to\infty$$

$$\mathsf{D}_n: \ (\alpha,\beta)=(1/2,\zeta+1) \qquad \qquad t_i=rac{\mathsf{x}_i^2}{2\zeta} \qquad \zeta o \infty$$

Euler Beta Integral

Selberg Integral
Selberg integra
Macdonald's
conjectures
A_{n-1}
B_n and D_n
I₂(m)
Exceptional
groups

• The dihedral group $I_2(m)$

 $I_2(m)$ is the symmetry group of a regular m-gon,

The 3-gon, 4-gon and pentagon.

It is a group of order 2m generated by the m lines of reflection

$$\sqrt{2}x\sin\left(\frac{i\pi}{m}\right) - \sqrt{2}y\cos\left(\frac{i\pi}{m}\right) = 0$$
 $0 \le i \le m-1$.

The polynomial P(x, y) is given by

$$P(x,y) = \prod_{i=0}^{m-1} \left[\sqrt{2}y \cos\left(\frac{i\pi}{m}\right) - \sqrt{2}x \sin\left(\frac{i\pi}{m}\right) \right]$$
$$= -2^{1-m/2}(-r)^m \sin(m\phi).$$

For $I_2(4)$ (symmetry group of the square) the invariant polynomials are of the form

$$\sum_{i,j} c_{ij} (xy)^{2i} (x^{2j} + y^{2j})$$

generated by $x^2 + y^2$ and x^2y^2 of degree 2 and 4.

More generally, for $I_2(m)$ the invariant polynomials are generated by

$$x^2 + y^2$$

and

$$x^m \sum_{i \ge 0} \left(-\frac{y^2}{x^2} \right)^i \binom{m}{2i}$$

so that the degrees are 2 and m.

12(m)

Macdonald's conjecture for $I_2(m)$ (in polar coordinates) is thus

$$\frac{2^{2\gamma - m\gamma - 1}}{\pi} \int_0^\infty r^{2m\gamma + 1} e^{-r^2/2} dr \int_0^{2\pi} |\sin(m\phi)| d\phi$$

$$= \frac{\Gamma(2\gamma + 1)\Gamma(m\gamma + 1)}{\Gamma^2(\gamma + 1)}$$

which is (almost) trivially true.

Euler Bet

Selberg Integr Selberg integ Macdonald's conjectures A_{n-1} B_n and D_n I₂(m) Exceptional groups

A_n Selbei Integral • The exceptional reflection groups

For E_6 , E_7 , E_8 , F_4 the proof is hard but follows from a uniform proof for all crystallographic reflection groups due to Opdam.

For the non-crystallographic groups H_3 and H_4 the proof is hard (Opdam, Garvan).

 A_{n-1} versus

 \bullet A_{n-1} versus A₁

We have seen that the Vandermonde product

$$\Delta(t) = \prod_{1 \leq i < j \leq n} (t_i - t_j)$$

and hence also the Selberg integral

$$\int_{[0,1]^n} \prod_{i=1}^n t_i^{\alpha-1} (1-t_i)^{\beta-1} \prod_{1 \le i < j \le n} |t_i - t_j|^{2\gamma} dt$$

are connected to the reflection group A_{n-1} .

In the following we are going to depart from this point of view and will label the Selberg integral by the Lie algebra or root system A_1 as explained below.

The root system

 A_n

• The root system A_n

Recall that the reflection group A_n is generated by the $\binom{n+1}{2}$ hyperplanes

$$x_i - x_j = 0 \qquad 1 \le i < j \le n+1.$$

Let ϵ_i be the *i*th standard unit vector in \mathbb{R}^{n+1} .

The normals $\pm (\epsilon_i - \epsilon_i)$ for $1 \le i \le j \le n+1$ are known as roots and form the root system A_n .

The roots $a_i = \epsilon_i - \epsilon_{i+1}$ for 1 < i < n form a basis in the root system and are known as simple roots.

Beta Integrals

Euler Beta

Selberg Integra

An Selberg

ilitegral

A₁

The root system

A_n

A_n Selber integral

q-Binomia

- D:----:

Theorem

a-Rinomi:

Theorem

q-Binomia

Theorem II

a-Binomia

O--- D--bl----

The root system A_2 with simple roots in pink.

The root system

 A_n

The Cartan matrix C of A_n is given by

$$\left(a_{i}\cdot a_{j}\right)_{1\leq i,j\leq n}=egin{pmatrix}2&-1&&&&\\-1&2&-1&&&\\&&-1&&\ddots&\\&&&\ddots&-1&\\&&&&-1&2\end{pmatrix}$$

The A_n Dynkin diagram encodes the adjaceny matrix 2I - C:

To each simple root a_s attach a set of variables

$$t^{(s)} = (t_1^{(s)}, \dots, t_{k_s}^{(s)})$$

such that $0 < k_1 < k_2 < \cdots < k_n$.

Set $k_0 = k_{n+1} = 0$ and let $\alpha, \beta_1, \dots, \beta_n, \gamma \in \mathbb{C}$ subject to several mild restrictions, such as

$$\operatorname{Re}(\alpha) > 0, \ \operatorname{Re}(\beta_1) > 0, \dots, \operatorname{Re}(\beta_n) > 0.$$

Set

$$(\alpha_1,\ldots,\alpha_{n-1},\alpha_n)=(1,\ldots,1,\alpha).$$

Selberg Integra

An Selberg Integral

A_{n_1} vers

The root system

An

integral

q-Binomial

Theorem I

q-Binomia Theorem

a-Rinomia

Theorem II

a-Rinomial

Theorem III

Define the generalised Vandermonde product

$$\Delta(u,v) = \prod_{i,j\geq 1} (u_i - v_j)$$

and let

$$C^{k_1,...,k_n}[0,1] \subseteq [0,1]^{k_1+\cdots+k_n}$$

be an integration domain, somewhat too technical for a talk.

Euler Beta Integral

Selberg Integra

An Selberg

Integral

An-1 vers

The root

 A_n Selberg

integral

q-Binomia Theorem

q-Binom

I heorem

q-Binomia

I heorem

q-Binomia

Theorem I

g-Binomia

Theorem III Open Problem A_n Selberg integral

$$\int_{C^{k_1,...,k_n}[0,1]} \prod_{s=1}^{n} \prod_{i=1}^{k_s} (t_i^{(s)})^{\alpha_s - 1} (1 - t_i^{(s)})^{\beta_s - 1}$$

$$\times \prod_{s=1}^{n-1} |\Delta(t^{(s)}, t^{(s+1)})|^{-\gamma} \prod_{s=1}^{n} |\Delta(t^{(s)})|^{2\gamma} dt^{(1)} \cdots dt^{(n)}$$

$$= \prod_{1 \le s \le r \le n} \prod_{i=1}^{k_s - k_{s-1}} \frac{\Gamma(\beta_s + \cdots + \beta_r + (i + s - r - 1)\gamma)}{\Gamma(\alpha_r + \beta_s + \cdots + \beta_r + (i + s - r + k_r - k_{r+1} - 2)\gamma)}$$

$$\times \prod_{s=1}^{n} \prod_{i=1}^{k_s} \frac{\Gamma(\alpha_s + (i - k_{s+1} - 1)\gamma)\Gamma(i\gamma)}{\Gamma(\gamma)}.$$

q-Binomial

Theorem I

• The *q*-binomial theorem I

For $k \in \mathbb{N}$ and $z \in \mathbb{C}$ the q-Pochhammer symbols are

$$(a;q)_k = (1-a)(1-aq)\cdots(1-aq^{k-1})$$

$$(a; q)_{\infty} = (1 - a)(1 - aq)(1 - aq^2) \cdots$$

and

$$(a;q)_z = \frac{(a;q)_{\infty}}{(aq^z;q)_{\infty}}.$$

Then the *q*-binomial theorem is given by

$$\sum_{k=0}^{\infty} \frac{(b;q)_k}{(q;q)_k} z^k = \frac{(bz;q)_{\infty}}{(z;q)_{\infty}}.$$

q-Binomial Theorem I

Let

$$\int_{0}^{1} f(x) d_{q}x = (1 - q) \sum_{i=0}^{\infty} f(q^{i}) q^{i}$$

be the Jackson or *q*-integral.

Euler Beta Integral

Selberg Integral

Integral

A_{n-1} versus

An Selberg

q-Binomial

Theorem I

Theorem

q-Binomi

a-Binomi

Theorem 1

I heorem I

Theorem III Open Problem Then the q-binomial theorem with $z=q^{\alpha}$ and $b=q^{\beta}$ may be written as the q-beta integral

$$\int_0^1 t^{\alpha-1}(tq;q)_{\beta-1} \, \mathrm{d}_q t = \frac{\Gamma_q(\alpha) \Gamma_q(\beta)}{\Gamma_q(\alpha+\beta)},$$

where Γ_q is the q-gamma function:

$$\Gamma_q(x) = (1-q)^{1-x}(q;q)_{x-1}.$$

In the $q \rightarrow 1^-$ limit the q-binomial theorem thus yields the Euler beta integral.

 A_{n-1} vers

The root sys

A_n

q-Binomial

a-Binomial

Theorem I

q-Binomi

I heorem

q-Binomi

Theorem

q-Binomia

Theorem III
Open Problem

Macdonald polynomials

Let x be an n-letter alphabet with letters x_1, x_2, \ldots, x_n and let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a partition

The q-shift operator T_{q,x_i} is defined as

$$T_{q,x_i}(f(x)) = f(x_1,\ldots,x_{i-1},qx_i,x_{i+1},\ldots,x_n).$$

and Macdonald's commuting family $\{D_r\}_{r=0}^n$ of q-difference operators is given by

$$D_r = t^{\binom{r}{2}} \sum_{\substack{I \subseteq [n] \\ |I| = r}} \prod_{\substack{i \in I \\ j \notin I}} \frac{tx_i - x_j}{x_i - x_j} \prod_{i \in I} T_{q, x_i}.$$

Euler Beta

Selberg Integral

An Selberg Integral

A₁

A_n Selberg

integral q-Binomia

q-Binomial

I heorem

Theorem

q-Binomia

Theorem

q-Binomia

Theorem III Open Problem Defining the generating series of the D_r as

$$D(u;q,t) = \sum_{r=0}^{n} D_r u^r$$

the Macdonald polynomials $P_{\lambda}(x;q,t)$ are the eigenfunctions of D(u;q,t) with eigenvalue

$$\prod_{i=1}^n (1 + ut^{n-i}q^{\lambda_i}).$$

For q = t the Macdonald polynomials simplify to the well-known Schur functions

$$P_{\lambda}(x;t,t) = s_{\lambda}(x) = \frac{\det_{1 \leq i,j \leq n}(x_i^{\lambda_j+n-j})}{\det_{1 < i,j < n}(x_i^{n-j})}.$$

Beta Integrals

Euler Beta

Selberg Integra

Integral

A_{n-1} versus A₁

The root syste

A_n A_n Selberg

integral q-Binomia

q-Binomia

Theorem

q-Binomial

i neorem

q-Binomia

I heorem I

q-Binomia

Theorem III
Open Problems

Cauchy identity

Given a partition λ , each of its squares s is assigned four integers, known as the arm-length a(s), leg-length I(s), arm-colength a'(s) and leg-colength I'(s).

The arm-length of \blacksquare is 4. The leg-length of \blacksquare is 3. The arm- and leg-colengths of \blacksquare are both 2.

Λ

A₁

The root system

integral

Theorem I

Theorem

g-Binomial

Theorem I

Theorem

- Di----i

q-Binomia

Theorem III Open Problems The Cauchy identity for Macdonald polynomials is

$$\sum_{\lambda} P_{\lambda}(x; q, t) P_{\lambda}(y; q, t) \prod_{s \in \lambda} \frac{1 - q^{a(s)} t^{l(s)+1}}{1 - q^{a(s)+1} t^{l(s)}}$$

$$= \prod_{i, i \geq 1} \frac{(tx_{i}y_{j}; q)_{\infty}}{(x_{i}y_{j}; q)_{\infty}}.$$

When q = t this reduces to the well-known Cauchy determinant

$$\det_{1 \le i \le j \le n} \left(\frac{1}{1 - x_i y_j} \right) = \frac{\Delta(x) \Delta(y)}{\prod_{i j=1}^{n} (1 - x_i y_j)}.$$

Euler Beta

Selberg Integra

A_n Selberg Integral

A_{n_1} versu

A_{n-1} vers

The root sy

An Selberg

q-Binomia

q-Binomia

Theorem

q-Binomi

Theorem

q-Binomial

Theorem II

q-Binomial Theorem III Open Problem

• The q-binomial theorem II

The power sums p_r are given by $p_0 = 1$ and

$$p_r(x) = \sum_{i \geq 1} x_i^r.$$

The map $\epsilon_{b,t}$ — acting on symmetric functions of y — is defined by its action on the p_r :

$$\epsilon_{b,t}(p_r(y)) = \frac{1-b^r}{1-t^r}.$$

A theorem of Macdonald states that

$$\epsilon_{b,t}\big(P_{\lambda}(y;q,t)\big) = \prod_{s \in \lambda} \frac{t^{l'(s)} - b \, q^{a'(s)}}{1 - q^{a(s)} t^{l(s)+1}}.$$

a-Binomial Theorem II

It may also be shown that

$$\epsilon_{b,t}\bigg(\prod_{i,j\geq 1}\frac{(tx_iy_j;q)_\infty}{(x_iy_j;q)_\infty}\bigg)=\prod_{i\geq 1}\frac{(b\,x_i;q)_\infty}{(x_i;q)_\infty}.$$

Applying the map $\epsilon_{b,t}$ to the Cauchy identity we thus obtain an *n*-dimensional analogue of the *q*-binomial theorem:

$$\sum_{\lambda} P_{\lambda}(x;q,t) \prod_{s \in \lambda} \frac{t^{l'(s)} - b \, q^{a'(s)}}{1 - q^{a(s)+1} t^{l(s)}} = \prod_{i=1}^{n} \frac{(b \, x_i; q)_{\infty}}{(x_i; q)_{\infty}}$$

If n=1 then $x=(x_1), \lambda=(k)$ and

$$P_{(k)}(x;q,t) = x_1^k, \qquad \prod_{s \in \lambda} \frac{t^{l'(s)} - b \, q^{a'(s)}}{1 - q^{a(s) + 1} t^{l(s)}} = \frac{(b;q)_k}{(q;q)_k}$$

so that we recover the classical q-binomial theorem (with $z \to x_1$).

g-Binomial

Theorem II

Taking

$$x_i = q^{\alpha + \gamma(n-i)}$$
 for $1 \le i \le n$
 $t = q^{\gamma}$
 $b = q^{\beta}$

in the *n*-dimensional *q*-binomial theorem yields an *n*-dimensional q-integral, generalising the q-beta integral.

In the $q \to 1^-$ limit this gives the Selberg integral.

To prove the A_n Selberg integral we need a further generalisation of the *q*-binomial theorem!

q-Binomial

Theorem III

• The *q*-binomial theorem III

One may prove a q-binomial theorem of the form

$$\sum_{\lambda^{(1)},\ldots,\lambda^{(n)}} P_{\lambda^{(1)}}(x^{(1)};q,t)\cdots P_{\lambda^{(n)}}(x^{(n)};q,t)$$

 \times (stuff with arms and legs) = infinite product

with
$$x^{(s)}=(x_1^{(s)},\ldots,x_{k_s}^{(s)})$$
 and $k_1\leq k_2\leq\cdots\leq k_n$.

$$\Rightarrow$$
 A $(k_1 + \cdots + k_n)$ -dimensional q -integral

$$\Rightarrow$$
 The A_n Selberg integral.

Euler Beta Integral

Selberg Integra

A_n Selberg Integral

Integral

A_{n-1} ver

Α₁

The root syst

^n

integral

q-Binomia

THEOREM I

Theorem

D: .

4 D....

THEOREM

Theorem

I heorem

q-Binomi:

Open Problems

Open problems

Can we evaluate the integral

$$\begin{split} \int\limits_{C^{k_1, \dots, k_n}[0,1]} \prod_{s=1}^n \prod_{i=1}^{k_s} (t_i^{(s)})^{\alpha_s - 1} \big(1 - t_i^{(s)}\big)^{\beta_s - 1} \\ \times \prod_{s=1}^{n-1} \bigl| \Delta \big(t^{(s)}, t^{(s+1)} \big) \bigr|^{-\gamma} \prod_{s=1}^n \bigl| \Delta \big(t^{(s)} \big) \bigr|^{2\gamma} \; \mathsf{d} t^{(1)} \cdots \mathsf{d} t^{(n)} \end{split}$$

when

$$(\alpha_1,\ldots,\alpha_{n-1},\alpha_n)\neq (1,\ldots,1,\alpha)$$
?

Can we remove the ordering

$$0 \leq k_1 \leq k_2 \leq \cdots \leq k_n ?$$

 Can we generalise to other root systems and/or reflection groups?

Beta Integrals

Euler Beta

Selberg Integra

Integral

A_{n-1} versus

The root syste

An

integral

q-Binomia Theorem I

g-Binomia

- D:----

Theorem

q-Binomi

g-Binomia

Theorem I

Open Problems

The End