חלק א - שאלות תיאורטיות

הסתברות וחוק בייס:

.1

$$p(id\ twin\ \&\ boy) = \frac{1}{300} \cdot \frac{1}{2} = \frac{1}{600}$$

$$p(not\ id\ twin\ \&\ boy) = \frac{1}{125} \cdot \frac{1}{4} = \frac{1}{500}$$

$$p(id\ twin) = \frac{\frac{1}{600}}{\frac{1}{600} + \frac{1}{500}} = \frac{\frac{1}{600}}{\frac{1}{3000}} = \frac{3000}{6600} = \frac{5}{11}$$

$$p(id\ twin) = \frac{5}{11}$$

ב. ההסתברות להוציא עוגיית שוקולד מקערה מספר 1 היא:

$$P(chocolate\ from\ 1) = \frac{0.5 \cdot 0.75}{0.5 \cdot 0.5 + 0.5 \cdot 0.75} = \frac{0.375}{0.625} = 0.6$$

$P(chocolate\ from\ 1) = 0.6$

.2

$$P = \frac{P(yellow from 1994)}{P(yellow from 1994) + P(yellow from 1996)}$$

$$P = \frac{0.5 \cdot 0.2}{0.5 \cdot 0.2 + 0.5 \cdot 0.14} = \frac{0.1}{0.17}$$

$$P = \frac{10}{17}$$

$$P(Hypothesis/Evidence) = \frac{P(E/H) \cdot P(H)}{P(E)}$$
 :בשאלה זו נעזר בחוק בייז.

$$P(H/E) = \frac{0.99 \cdot 0.0001}{0.99 \cdot 0.0001 + 0.001 \cdot (1 - 0.0001)}$$

$$P(H/E) = \frac{1}{102} \rightarrow less then 1\%$$

$$P(H/E) = \frac{P(E/H) \cdot P(H)}{P(E)} = \frac{0.99 \cdot 0.005}{0.99 \cdot 0.005 + 0.01 \cdot (1 - 0.005)}$$

$$P(H/E) = \frac{99}{298}$$

.4

$$p(id\ twin\ \&\ boy) = \frac{1}{300} \cdot \frac{1}{2} = \frac{1}{600}$$

$$p(not id twin \& boy) = \frac{1}{125} \cdot \frac{1}{4} = \frac{1}{500}$$

$$p(id\ twin) = \frac{\frac{1}{600}}{\frac{1}{600} + \frac{1}{500}} = \frac{\frac{1}{600}}{\frac{11}{3000}} = \frac{3000}{6600} = \frac{5}{11}$$

$$p(id\ twin) = \frac{5}{11}$$

Random-Variables

4
- 1
_1

קוביה _1	קוביה _2	מתחלק _ב_3
	1	
1	2	/
	3	•
	3 4	
		/
	5 6	
	1	✓
	2	
2	3	
	4	✓
	5	
	6	
	1	
	2	
		/
3	4	
	5	
	6	/
	1 2	
	2	/
4	3	
	4	
	5	/
	0	
5 6	1	/
	3	
	2 3 4 5	'
	6	
	1	
		,
	3	V
	2 3 4 5 6	
	<u> </u>	,
	Ö	V

12: כמות הפעמים שהסכון מתחלק ב 3 היא

36: מספר האופציות הוא

3 לכן הסתברות הינה $\frac{1}{3}$ למספר שיתחלק ב

 $\frac{2}{3}$ וההסתברות שלא היא

: לכן ניתן לחשב את מצבו של רועי כך

$$P(roy) = \frac{1}{3} \cdot 6\$ + \frac{2}{3} \cdot (-3\$) = 2\$ + (-2\$) = 0\$$$

<u>sum < 12</u>	<u>sum =12</u>	<u>sum>12</u>
<1+6>, <2+6>, <3+6>,<4+6>,<5+6> <1+7>,<2+7>, <3+7>,<4+7> <1+8>,<2+8>, <3+8> <1+9>,<2+9> <1+10>	<2+10> <3+9> <4+8> <5+7>	<3+10>, <4+9>, <5+8> <4+10>, <5+9>,<5+10>
<u>15</u> 25	<u>4</u> 25	<u>6</u> 25

$$P(alex) = 0.24 \cdot 5 + 0.6 \cdot (-6)$$

 $P(alex) = 1.2 - 3.6 = (-2.4)$

אלכס צפוי להפסיד \$2.4

ממוצע וסטיית תקן מחושבים באופן הבא כאשר ח גודל המדגם , p שיעור ...
הגברים באוכלוסייה

$$\mu = n \cdot p$$

$$\mu = 0.4 \cdot 8 = 3.2$$

$$\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.4 \cdot 0.6}{8}}$$

$$\sigma = \frac{\sqrt{3}}{10}$$

 $rac{\sqrt{3}}{10}$ ממוצע הגברים הוא 3.2 וסטיית התקן היא

4.על מנת לחשב נמצא את סטיית התקן והממוצע נתון כי הממוצע 26 וסטיית התקן 2

$$P(26 < X < 30) = P(\frac{26-26}{2} < \frac{X-\mu}{\sigma} < \frac{30-26}{2})$$

$$P(z < 2) - P(z < 0) = 0.977 - 0.5 = 0.477$$

$$P(X > 3) = \frac{0.4 \cdot (5-3)}{2} = \frac{0.8}{2} = 0.4$$

.6

ההסתברות להורה מהחברה הוא: 0.6 ההסתברות למי שאינו הורה מהחברה הוא: 0.4

$$P(3/4 \ parents) = (0.4 \cdot 0.6 \cdot 0.6 \cdot 0.6) \cdot 4$$

 $P(3/4 \ parents) = 0.3456$

.7

$$X = 0.1 \cdot (-10) + 0.35 \cdot (-5) + 0 + 0.35 \cdot 5 + 0.1 \cdot 10$$

 $X = -1 - 1.75 + 1.75 + 1 = 0$