МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по общей физике

4.3.1. Изучение дифракции света

Выполнила студентка группы Б06-103: Фитэль Алена

Долгопрудный, 2023 г.

1 Введение

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

2 Теоретические сведения

А. Дифракция Френеля

Рисунок 1: Схема установки 1.

При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определеяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы – спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношением:

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a – расстояние от щели до плоскости Π .

Б. Дифракция Фраунгофера на щели

Дифракцию Фраунгофера можно наблюдать на установке Рис. 1, но для удобства к подобной установке добавляется объектив O_2 .

Рисунок 2: Схема установки 2.

Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 . Каждому значению θ соответствует в этой плоскости точка, отстоящая от оптической оси на расстоянии

$$X = f_2 \tan \theta \approx f_2 \theta. \tag{2}$$

При $\theta=0$ разность хода между лучами нулевая, поэтому в центре поля зрения дифракционный максимум. Первый минимум соответствует θ_1 такому, что в точке наблюдения разность хода пробегаем все значения от 0 до 2π . Аналогично рассуждая, для m-й полосы

$$\theta_m = \frac{m\lambda}{D} \tag{3}$$

Расстояние X_m тёмной полосы от оптической оси из (2) и (3)

$$X_m = f_2 m \frac{\lambda}{D} \tag{4}$$

В. Дифракция Фраунгофера для двух щелей

Для наблюдения дифракции Фраунгофера на двух щелях S_2 заменим экраном \Im с двумя щелями. При этом для оценки влияния ширины входной щели на чёткость вместо S_1 поставим щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими

Рисунок 3: Схема установки 3.

через левую, а другое — через правую щели, накладываются друг на друга. Светлая интерфереционная полоса наблюдается в случаях, когда разность хода равна целому числу длин волн. Таким образом, угловая координата максимума порядка m равна

$$\theta_m = \frac{m\lambda}{d},\tag{5}$$

где d – расстояние между щелями. Отсюда расстояние между соседними интерфереционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d} \tag{6}$$

Число интерференционных полос укладывающихся в области центрального максимума равна отношению ширины главного максимума $\frac{2\lambda f_2}{D}$ к расстоянию между соседними полосами:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta f} = \frac{2d}{D}. (7)$$

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении ширины картинка пропадает и появляется вновь, но полосы при этом сильно размыты и видны плохо.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рисунок 4: Схема установки 4.

В отсутствие щели S_2 линзы O_1 и O_2 создают на плоскости Π изоюражение щели S_1 и это изображение рассматриваются микроскопом M. Таким образом, установку можно рассматривать как оптический инструмент, предназначенные для получения изображения предмета. Если перед O_2 расположить S_2 , то изображение

объекта будет искажено из-за дифракции. Чем меньше ширина щели, тем сильнее искажение. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое расстояние между объектами (источниками), которые всё ещё воспринимаются как раздельные. Поместим вместо S_1 экран Θ с двумя щелями с расстоянием d. Тогда на S_2 будут падать два пучка света с углом

$$\varphi = \frac{d}{f_1} \tag{8}$$

Из геометрии расстояние l между изображениями щелей в плоскости Π равно

$$l = \varphi f_2 = d \frac{f_2}{f_1}. \tag{9}$$

Ширина $\Delta \varphi$ определяется дифракцией на S_2 . Условия, при которых изображения различимы разные для разных наблюдателей, поэтому используют критерий Рэлея – максимум одного дифракционного пятна должен совпадать с минимумом другого. В наших условиях это значит, что угловая полуширина $\frac{\lambda}{D}$ равна угловому расстоянию $\frac{l}{t_2}$.

3 Обработка результатов

3.1 Дифракция Френеля на щели

Длина волны для этой работы $\lambda = 578$ нм.

1. Запишем ширину щели S_2 , измеренную с помощью микрометрического винта щели (b_1) и шкалы микроскопа (b_2) :

$$b_1 = 0,40 \pm 0,02 \text{ mm}$$

$$b_2 = 0.38 \pm 0.01 \text{ mm}$$

- 2. Добившись наибольшей чёткости дифракционной картины, найдем резкое изображение щели (чёткие края без дифракционных полос). Начальное положение микроскопа координата по шкале линейки $x_0 = 35.9 \pm 0.1$ см, расположенной на оптической скамье.
- 3. Приближая микроскоп к щели, снимем зависимость количества темных полос на экране от расстояния микроскопа до плоскости наблюдения. Зависимость количества полос от расстояния до плоскости наблюдения представлена в Таблице 1. Здесь a_m смещение от положения x_0 , z_m находится из формулы (1).

n	m	x_m , cm	a_m , MM	$2z_m$, mkm	σ_{2z_m} , MKM
1	2	39,2	33	391	8
2	3	38,8	29	448	11
3	4	38	21	441	15
4	5	37,7	18	456	18
5	6	37,5	16	471	21
6	7	37,3	14	476	24

Таблица 1: Зависимость $z_m = f(a_m)$.

- 4. Построим график зависимости величины $2\xi_n$ от n. Поскольку суммарная ширина зон Френеля не меняется и равна D, график должен представлять горизонтальную прямую. Аппроксимируем полученную зависимость горизонтальной прямой методом хи-квадрата. Полученная таким образом ширина щели $D=460\pm70$ мкм. Видно, что ширина френелевских зон величина порядка ширины щели.
- 5. Для исследования дифракции Френеля на препятствии поставим вместо щели S_2 рамку с тонкой вертикальной нитью. Настроим микроскоп на резкое изображение нити. При удалении микроскопа от нити на её фоне всегда наблюдается чётное число тёмных дифракционных полос (светлый центр).

Рисунок 5: График зависимости сумманой толщины зон Френеля от их числа.

3.2 Дифракция Фраунгофера на щели

Фокусное расстояние линз $f_{O_1}=10.8$ см, $f_{O_2}=13.8$ см. Диаметр щели по показаниям микрометрического винта $D=370\pm 5$ мкм.

1. Измерим с помощью винта поперечного перемещения микроскопа координаты X_m нескольких дифракционных минимумов. Результаты занесем в табл. 2 и построим график зависимости минимумов от их номеров.

m	$\mathbf{x}_{max},$	$\mathbf{x}_{min},$	x, mm
-3	1,6	1,52	1,56
-2	1,82	1,76	1,79
-1	1,98	2,02	2
1	2,48	2,42	2,45
2	2,68	2,62	2,65
3	2,9	2,82	2,86

Таблица 2: Координаты минимумов дифракции Фраунгофера

2. По наклону графика методом наименьших квадратов определим среднее расстояние между соседними минимумами: $\Delta X = 217 \pm 2$ мкм. Пользуясь этим результатом, с помощью формулы (4) получим значение D:

$$D=rac{f_2m\lambda}{X_m}=rac{f_2\lambda}{\Delta X}=368\pm 3$$
 MKM.

Рисунок 6: График зависимости $X_m = f(m)$.

3.3 Дифракция Фраунгофера на двух щелях

Получим дифракционную картину от двух щелей. Ширина центрального максимума при $b=0.055\pm0.001$ равна

$$X=1.10\pm0.03~\mathrm{mm}$$

и он включает в себя n=13 светлых промежутков. Первое исчезновение интерференционных полос при

$$b_0 = 0.40 \pm 0.01$$
 mm.

Расстояние между минимумами равно:

$$\delta x \approx \frac{X}{n} = 0.085 \pm 0.006 \text{ mm}$$

Из формулы (6):

$$d = \frac{\lambda f_2}{\delta x} = 0.94 \pm 0.07 \text{ mm}.$$

Это значение отличается от замеренного: фактическое расстояние между щелями $d_{measured} = 0.70 \pm 0.02$ мм.

3.4 Влияние дифракции на разрешающую способность

Запишем максимальную ширину щели $b_{measured}=0,092\pm0,001$ мм, при которой еще различимо изображение шели.

Для проверки справедливости критерия Релея рассчитаем эту величину по формуле

$$b_0 = \frac{\lambda}{d} F_1 = 0,089 \pm 0,003 \; \mathrm{mm}$$

4 Обсуждение результатов и вывод

В ходе работы было изучено явление дифракции света - дифракция Френеля на щели и на препятствии, дифракция Фраунгофера на одной и двух щелях, влияние дифракции на разрешающую способность оптических приборов.

- При исследовании явления дифракции Френеля на щели было полученно, что ширина зон Френеля совпадает по порядку величины с действительной шириной щели, измеренной микрометрическим винтом.
- При дифракции на препятствии при удалении микроскопа от нити на её фоне всегда наблюдали чётное число тёмных дифракционных полос и светлый центр.
- Значение для ширины щели, вычисленное по формуле (4), совпадает в пределах погрешности с величиной, измеренной по микрометрической шкалой:

$$D_{measured} = 370 \pm 5 \; \mbox{мкм}$$
 $D = 368 \pm 3 \; \mbox{мкм}$

Это подтверждает теоретические выкладки и говорит о выполнении предложенной теории.

• При исследовании явления дифракции Фраунгофера на двух щелях было получено значение расстояния между щелями, совпадающее в пределах погрешости 2δ с измеренным по микрометрической шкале:

$$d=0.94\pm0.07$$
 мм $d_{measured}=0.70\pm0.02$ мм

• В ходе работы была произведена оценка влияния дифракции на разрешающую способность оптического прибора. В результате измерений получаем, что $b_0 < b_{measured}$.