ЛАБОРАТОРНАЯ РАБОТА №1 СЧЁТЧИК ГЕЙГЕРА-МЮЛЛЕРА

Поляков Даниил, 19.Б23-фз

Цель работы: изучить счётную характеристику счётчика Гейгера-Мюллера, определить его рабочую точку, разрешающее время, мёртвое время и время восстановления.

Схема установки

- 1 вакуумная камера со счётчиком;
- 2 плата с нагрузочным сопротивлением и переходной ёмкостью;
- 3 источник высокого напряжения;
- 4 пересчётный прибор;
- 5 осциллограф.

Расчётные формулы

• Число импульсов от источника за вычетом фона:

$$m = M - N_{\, \varphi}$$
 M — измеренное число импульсов с источника; $N_{\, \varphi}$ — измеренное число импульсов без источника.

• Разрешающее время счётчика:

$$au = rac{\displaystyle\sum_i m_i - m_\Sigma}{m_\Sigma^2 - \displaystyle\sum_i m_i^2} t$$
 m_i — число импульсов от отдельного источника; m_Σ — число импульсов от нескольких источников одновременно; t — продолжительность измерения.

• Средневзвешенное разрешающее время счётчика:

$$\overline{\tau} = \frac{\sum\limits_{k} p_k \tau_k}{\sum\limits_{k} p_k}, \qquad p_k = \frac{1}{\Delta_{\tau_k}^2} \qquad \begin{array}{l} \tau_k - \text{ разрешающее время счётчика по k-ому} \\ \text{ набору источников;} \\ p_k - \text{ весовые коэффициенты;} \\ \Delta_{\tau_k} - \text{ погрешность τ_k.} \end{array}$$

- Формулы для вычисления погрешностей:
 - Стандартная ошибка среднего:

$$\Delta_{\bar{x}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}}$$
 n — количество измерений; t — коэффициент Стьюдента.

• Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + \ldots} \\ & \circ \quad \Delta_m = \sqrt{\left(\frac{\partial m}{\partial M} \cdot \Delta_M\right)^2 + \left(\frac{\partial m}{\partial N_\phi} \cdot \Delta_{N_\phi}\right)^2} = \sqrt{\Delta_M^2 + \Delta_{N_\phi}^2} \\ & \circ \quad \Delta_\tau = \sqrt{\sum_j \left(\frac{\partial \tau}{\partial m_j} \cdot \Delta_{m_j}\right)^2} = |\tau| \sqrt{\sum_j \left(\left(\frac{1}{\sum_i m_i - m_\Sigma} + \frac{2m_j}{m_\Sigma^2 - \sum_i m_i^2}\right) \cdot \Delta_{m_j}\right)^2} \\ & \quad \exists \mathsf{Десь} \ \{m\}_j = \{m\}_i \cup m_\Sigma \\ & \circ \quad \Delta_{\overline{\tau}} = \sqrt{\sum_k \left(\frac{\partial \overline{\tau}}{\partial \tau_k} \cdot \Delta_{\tau_k}\right)^2} = \frac{1}{\sqrt{\sum_k p_k}} \end{split}$$

Порядок измерений

- 1. Изучим счётную характеристику счётчика и определим его рабочую точку.
 - 1.1. Устанавливаем источник излучения из Na в ячейку счётчика.
 - 1.2. Запускаем счёт импульсов. Начиная с напряжения на аноде 300 В, постепенно увеличиваем его, пока не начнётся регистрация импульсов прибором. Определяем соответствующее пороговое напряжение U_0 счётчика.
 - 1.3. Увеличивая напряжение U с шагом 10 В, измеряем количество импульсов N за промежуток времени 100 с. Для каждого значения напряжения выполняем измерение по 3 раза. Продолжаем измерения, пока не пересечём конец линейного участка характеристики.
 - 1.4. Выбираем рабочее напряжение U примерно посередине линейного участка характеристики.
- 2. Определим разрешающее время счётчика. Измерения проводим при выбранном рабочем напряжении.
 - 2.1. Убрав все источники излучения из счётчика, измеряем фон, т. е. количество импульсов N_{ϕ} , фиксируемых счётчиком за промежуток времени 100 с. Выполняем измерение 3 раза.
 - 2.2. Устанавливая радиоактивные образцы из Bi , Na и Eu в ячейки счётчика всеми возможными комбинациями (по одному, по два и все три одновременно), измеряем количество импульсов M за промежуток времени 100 с. Для каждой комбинации источников выполняем по 3 измерения.
 - 2.3. Повторяем измерение фона аналогичным методом.
- 3. Оценим мертвое время и время восстановления счётчика.
 - 3.1. Устанавливаем все источники излучения в ячейки счётчика. Изменением развёртки добиваемся на осциллографе изображения последовательных импульсов.
 - 3.2. Находим наиболее близко расположенные друг к другу импульсы. Примерно определяем мёртвое время счётчика $t_{\scriptscriptstyle M}$ как промежуток времени между ними.
 - 3.3. Находим наиболее близко расположенные друг к другу импульсы с максимальной амплитудой. Примерно определяем сумму мёртвого времени и времени восстановления счётчика $t_{\scriptscriptstyle \rm M}$ + $t_{\scriptscriptstyle \rm B}$ как промежуток времени между ними.

Результаты

<u>Примечание</u>: построение графика и его аппроксимация выполнены с помощью ПО MATLAB. Стандартная ошибка среднего рассчитана с доверительной вероятностью P=95%.

Продолжительность одного измерения во всех случаях:

$$t = 100 c$$

1. Счётная характеристика счётчика

Пороговое напряжение счётчика:

 $U_0 = 321 \text{ B}$

Таблица 1. Счётная характеристика счётчика

U, B	N			$ar{N}$	
321	1181	1216	1254	1220 ± 90	
330	1594	1522	1591	1570 ± 100	
340	1587	1581	1572	1580 ± 20	
350	1591	1623	1603	1610 ± 40	
360	1700	1658	1603	1650 ± 120	
370	1659	1652	1621	1640 ± 50	
380	1713	1747	1755	1740 ± 60	
390	1763	1699	1749	1740 ± 80	
400	1823	1748	1789	1790 ± 90	
410	2063	1987	1956	2000 ± 140	
420	2202	2104	2286	2200 ± 200	

Наблюдаем, что количество зафиксированных счётчиком импульсов значительно флуктуирует при повторных измерениях, что связано со случайным характером радиоактивного излучения.

График. Счётная характеристика счётчика

Получаем линейный участок в промежутке от 330 до 400 В. Выбираем рабочее напряжение примерно посередине участка:

$$U = 360 \text{ B}$$

2. Определение разрешающего времени счётчика

Таблица 2. Число фоновых импульсов

Фон	N_{Φ}			$ar{N}_{\Phi}$	
в начале	127	108	131	110 + 40	
в конце	106	120	119	119 ± 10	

Таблица 3. Число импульсов от источников по отдельности

Источник	M_i			$ar{M}_i$	m_i	
Bi	8421	8435	8510	8460 ± 120	8340 ± 120	
Na	1664	1684	1647	1670 ± 50	1550 ± 50	
Eu	2914	2802	2768	2800 ± 200	2700 ± 200	

Таблица 4. Число импульсов от нескольких источников и разрешающее время

Источник	M_{Σ}		$ar{M}_{\Sigma}$	m_{Σ}	$\sum m_{ m i}$	T, MC	
Bi + Na	9838	9737	9948	9800	9700	9880	0.7
				± 300	± 300	± 130	± 1.5
Na + Eu	4288 4159	<i>1</i> 150	4322	4300	4100	4300	2
		4139		± 200	± 200	± 200	± 4
Bi + Eu	10386 10450	10251	10400	10280	11000	2.7	
		10430	10331	± 120	± 130	± 200	± 1.2
Bi + Na + Eu	11917 12006	11930	11950	11830	12600	1.3	
			± 120	± 120	± 200	± 0.5	

Во всех случаях число импульсов m_{Σ} , измеренное от нескольких источников одновременно, меньше суммы чисел импульсов $\sum m_i$, измеренных от источников по отдельности. Однако, из-за значительного колебания количества импульсов разрешающее время определяется с плохой точностью.

Средневзвешенное разрешающее время счётчика:

$$\bar{\tau} = 1.4 \pm 0.2 \text{ MC}$$

3. Оценка мёртвого времени и времени восстановления счётчика

Примерное мёртвое время счётчика, определённое как минимальный промежуток времени между последовательными импульсами:

$$t_{\rm M} \approx 0.2 \; {\rm MC}$$

Примерный промежуток времени между импульсами максимальной амплитуды:

$$t_{\rm m} + t_{\rm B} \approx 0.7 \; {\rm MC}$$

Соответственно, время восстановления:

$$t_{\rm b} \approx 0.5 \; \rm MC$$

Выводы

В ходе работы был успешно использован счётчик Гейгера-Мюллера для обнаружения ионизирующего излучения. Для регистрации импульсов к аноду счётчика должно быть приложено достаточное минимальное напряжение. Счётная характеристика счётчика имеет вид кривой с линейным участком, который представляет собой рабочую область счётчика.

Точность счётчика оценивается мёртвым временем, временем восстановления и разрешающим временем. В ходе работы эти параметры были определены. ограниченной разрешающей способности счётчика Из-за количество регистрируемых импульсов отличается от действительного. В нашей работе это отличии зарегистрированного числа проявляется импульсов использовании нескольких источников одновременно от суммы импульсов от источников по отдельности.