First delivery - ADEI

Alex Rubio i Josep Bernad 6 de març de 2019

Contents

1	Presentation	1
	1.1 R Markdowns document	. 1
2	Bank client data	1
	2.1 Description	. 1
3	Loading packages	2
4	Loading data	2
5	Univariate Descriptive Analysis	3
	5.1 Transform missing and wrong data to NA's	. 4
	5.2 Create new factors corresponding to qualitative concepts	. 5
	5.2.1 Month	. 5
	5.2.2 Job	
	5.2.3 Pdays	
	5.2.4 Education	
	5.2.5 Extra Factorization	
	5.3 Create new factors corresponding to quantitative concepts	
	5.3.1 Age discreatization	
6	Exploratory Data Analysis	10

1 Presentation

1.1 R Markdowns document

This is an R Markdown document. We are showing some examples of EDA. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com. Use * to provide emphasis such as italics and bold.

Create lists: Unordered * and + or ordered 1. 2.

- 1. Item 1
- 2. Item 2
 - Item 2a
 - Item 2b

2 Bank client data

2.1 Description

Input variables:

1. age (numeric)

- 2. job: type of job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- 3. marital: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- divorced or widowed)
 4. education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown', 'lliterate', 'professional.course', 'university.degree', 'univer
- 5. default: has credit in default? (categorical: 'no', 'yes', 'unknown')
- 6. housing: has housing loan? (categorical: 'no', 'yes', 'unknown')
- 7. loan: has personal loan? (categorical: 'no', 'yes', 'unknown')# related with the last contact of the current campaign:
- 8. contact: contact communication type (categorical:'cellular', 'telephone')
- 9. month: last contact month of year (categorical: 'jan', 'feb', 'mar',..., 'nov', 'dec')
- 10. day_of_week: last contact day of the week (categorical:'mon','tue','wed','thu','fri')
- 11. duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.
- 12. campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13. pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14. previous: number of contacts performed before this campaign and for this client (numeric)
- 15. poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success') # social and economic context attributes
- 16. emp.var.rate: employment variation rate quarterly indicator (numeric)
- 17. cons.price.idx: consumer price index monthly indicator (numeric)
- 18. cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19. euribor3m: euribor 3 month rate daily indicator (numeric)
- 20. nr.employed: number of employees quarterly indicator (numeric)
- 21. y has the client subscribed a term deposit? (binary: 'yes', 'no')

3 Loading packages

4 Loading data

```
#rm(list=ls())
# Load Required Packages: to be increased over the course

#setwd("C:/Users/lmontero/Dropbox/DOCENCIA/FIB-ADEI/PRACTICA/BankMarketing")
#setwd("D:/DOCENCIA/FIB-ADEI/PRACTICA/BankMarketing")

# Josep
#setwd("/Users/SigmundFreud/Developer/r-studio/laboratory-adei/data-directory")
#file_path <- "Users/SigmundFreud/Developer/r-studio/laboratory-adei/data-directory"

# Alex
setwd("D:/Google Drive/Uni/ADEI/data-directory")
file_path <- "D:/Google Drive/Uni/ADEI/data-directory"

#load(pasteO("D:/Google Drive/Uni/ADEI/data-directory", "5000_samples.RData"))
load(path.expand("D:/Google Drive/Uni/ADEI/data-directory/5000_samples.RData"))
summary(df)</pre>
```

```
Min.
            :17.00
                     admin.
                                 :1288
                                          divorced: 546
                                          married:3029
##
    1st Qu.:32.00
                     blue-collar:1156
    Median :38.00
                     technician: 831
                                          single :1416
            :39.97
                                          unknown:
##
    Mean
                     services
                                 : 471
##
    3rd Qu.:47.00
                     management: 345
##
    Max.
            :92.00
                     retired
                                 : 187
##
                     (Other)
                                 : 722
##
                   education
                                    default
                                                     housing
                                                                       loan
##
    university.degree
                        :1431
                                         :3939
                                                         :2226
                                                                          :4138
                                 no
                                                 no
                                                                  no
##
    high.school
                         :1169
                                 unknown:1061
                                                  unknown: 112
                                                                  unknown: 112
##
    basic.9y
                         : 758
                                 yes
                                                         :2662
                                                                          : 750
                                                  yes
                                                                  yes
    professional.course: 668
##
##
    basic.4y
                         : 493
                         : 272
##
    basic.6y
##
    (Other)
                         : 209
##
                           month
                                       day_of_week
                                                       duration
         contact
##
                                       fri: 948
    cellular :3182
                                                           :
                                                                4.0
                              :1679
                                                    Min.
                      may
    telephone:1818
                              : 907
                                      mon:1017
                                                    1st Qu.: 104.0
                      jul
                                       thu:1031
##
                                                    Median : 181.0
                              : 699
                      aug
##
                      jun
                              : 660
                                       tue:1005
                                                    Mean
                                                           : 263.7
##
                      nov
                              : 502
                                       wed: 999
                                                    3rd Qu.: 328.0
##
                              : 323
                                                            :3078.0
                      apr
                                                    Max.
                       (Other): 230
##
                           pdays
                                           previous
##
       campaign
                                                                  poutcome
##
    Min.
           : 1.000
                      Min.
                              : 0.0
                                        Min.
                                               :0.0000
                                                          failure
                                                                      : 493
##
    1st Qu.: 1.000
                      1st Qu.:999.0
                                        1st Qu.:0.0000
                                                          nonexistent:4315
##
    Median : 2.000
                      Median :999.0
                                        Median :0.0000
                                                                      : 192
                                                          success
##
    Mean
           : 2.647
                      Mean
                              :957.9
                                        Mean
                                                :0.1772
                      3rd Qu.:999.0
##
    3rd Qu.: 3.000
                                        3rd Qu.:0.0000
##
    Max.
            :42.000
                              :999.0
                                        Max.
                                               :5.0000
                      Max.
##
##
     emp.var.rate
                        cons.price.idx
                                         cons.conf.idx
                                                              euribor3m
##
            :-3.4000
                       Min.
                               :92.20
                                         Min.
                                                 :-50.80
                                                                   :0.634
    1st Qu.:-1.8000
                        1st Qu.:93.08
##
                                         1st Qu.:-42.70
                                                           1st Qu.:1.344
##
    Median: 1.1000
                       Median :93.88
                                         Median :-41.80
                                                           Median :4.857
            : 0.1029
##
    Mean
                       Mean
                               :93.58
                                         Mean
                                                 :-40.59
                                                           Mean
                                                                   :3.641
    3rd Qu.: 1.4000
                        3rd Qu.:93.99
                                         3rd Qu.:-36.40
                                                           3rd Qu.:4.961
##
    Max.
            : 1.4000
                       Max.
                               :94.77
                                                 :-26.90
                                                                   :5.045
                                         Max.
                                                           Max.
##
##
     nr.employed
                      У
           :4964
                    no:4416
##
    Min.
    1st Qu.:5099
##
                    yes: 584
    Median:5191
##
##
    Mean
            :5168
    3rd Qu.:5228
##
##
    Max.
            :5228
##
```

5 Univariate Descriptive Analysis

Creem factors per cada variable posant abans NA a aquells valos erronis o faltants.

5.1 Transform missing and wrong data to NA's

```
#Default
sel<-which(df$default=="unknown");length(sel)</pre>
## [1] 1061
df$default[sel] <- NA</pre>
df$default <- factor(df$default)</pre>
summary(df$default)
     no NA's
## 3939 1061
#marital
sel<-which(df$marital=="unknown");length(sel)</pre>
## [1] 9
df$marital[sel] <- NA</pre>
df$marital <- factor(df$marital)</pre>
summary(df$marital)
## divorced married
                         single
                                     NA's
        546
##
                 3029
                           1416
#Housing
sel<-which(df$housing=="unknown");length(sel)</pre>
## [1] 112
df$housing[sel] <- NA</pre>
df$housing <- factor(df$housing)</pre>
summary(df$housing)
     no yes NA's
## 2226 2662 112
#Loan
sel<-which(df$loan=="unknown");length(sel)</pre>
## [1] 112
df$loan[sel] <- NA
df$loan <- factor(df$loan)</pre>
summary(df$loan)
     no yes NA's
## 4138 750 112
sel<-which(df$job=="unknown");length(sel)</pre>
## [1] 43
df$job[sel] <- NA
df$job <- factor(df$job)</pre>
summary(df$job)
##
           admin.
                    blue-collar entrepreneur
                                                      housemaid
                                                                     management
##
             1288
                            1156
                                             181
                                                             132
                                                                            345
```

```
##
         retired self-employed
                                      services
                                                       student
                                                                   technician
##
              187
                             152
                                            471
                                                           100
                                                                          831
                           NA's
##
      unemployed
##
                              43
              114
#Education
sel<-which(df$education=="unknown");length(sel)</pre>
## [1] 207
df$education[sel] <- NA</pre>
df$education <- factor(df$education)</pre>
summary(df$education)
##
                                    basic.6v
               basic.4v
                                                          basic.9v
##
                                          272
                                                               758
                    493
##
           high.school
                                  illiterate professional.course
##
                   1169
                                                               668
                                        NA's
##
     university.degree
##
                   1431
                                          207
#Pdays
sel<-which(df$pdays==999);length(sel)</pre>
## [1] 4793
df$pdays[sel] <- NA
df$pdays <- factor(df$pdays)</pre>
summary(df$pdays)
##
      0
                 2
                      3
                            4
                                 5
                                      6
                                            7
                                                 8
                                                           10
                                                                11
                                                                      12
                                                                           13
                                                                                 15
##
           5
                12
                     62
                           17
                                 5
                                     48
                                           13
                                                 5
                                                                                  3
##
     16
          17
                18 NA's
                 1 4793
##
5.2
      Create new factors corresponding to qualitative concepts.
5.2.1 Month
#Modify factor levels label
df$f.month <- factor(df$month, labels=paste("Month", sep="-", levels(df$month)))</pre>
table(df$f.month)
## Month-apr Month-aug Month-dec Month-jul Month-jun Month-mar Month-may
         323
                    699
                                19
                                          907
                                                     660
                                                                66
                                                                         1679
## Month-nov Month-oct Month-sep
         502
# Define new factor categories: 1-Spring | 2-Summer | 3-Resta
df$f.season <- 3
# 1 level - spring
sel<-which(df$f.month %in% c("Month-mar", "Month-apr", "Month-may"))</pre>
df$f.season[sel] <-1</pre>
# 2 level - Summer
sel<-which(df$f.month %in% c("Month-jun", "Month-jul", "Month-aug"))</pre>
```

```
df$f.season[sel] <-2</pre>
table(df$f.season); summary(df$f.season)
##
##
      1
           2
                3
## 2068 2266 666
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
      1.00
              1.00
                      2.00
                               1.72
                                       2.00
                                                3.00
df$f.season<-factor(df$f.season,levels=1:3,labels=c("Spring","Summer","Aut-Win"))</pre>
summary(df$f.season)
   Spring Summer Aut-Win
##
      2068
              2266
                        666
5.2.2 Job
#Modify factor levels label
df$f.job <- factor(df$job, labels=paste("Job", sep="-", levels(df$job)))</pre>
table(df$f.job)
##
##
          Job-admin.
                        Job-blue-collar Job-entrepreneur
                                                               Job-housemaid
##
                1288
                                   1156
                                                                          132
##
      Job-management
                            Job-retired Job-self-employed
                                                                 Job-services
##
                 345
                                    187
                                                       152
                                                                          471
##
         Job-student
                        Job-technician
                                            Job-unemployed
                 100
##
                                    831
                                                       114
# Define new factor categories: 1-selfemployed | 2-worker | 3-other
df$f.jobsituation<-3
# 1 level - self-employed
sel<-which(df$f.job %in% c("Job-entrepreneur", "Job-housemaid", "Job-self-employed"))</pre>
df$f.jobsituation[sel] <- 1</pre>
# 2 level - worker
sel<-which(df$f.job %in% c("Job-admin","Job-blue-collar","Job-management","Job-services","Job-technicia
df$f.jobsituation[sel] <- 2</pre>
table(df$f.jobsituation); summary(df$f.jobsituation)
##
##
           2
      1
   465 2803 1732
##
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
             2.000
                     2.000
                              2.253
                                      3.000
                                              3.000
##
df$f.jobsituation<-factor(df$f.jobsituation,levels=1:3,labels=c("Self-employed","Worker","Other"))
summary(df$f.jobsituation)
## Self-employed
                         Worker
                                        Other
                                         1732
##
             465
                           2803
```

5.2.3 Pdays

```
table(df$pdays)
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18
## 1 5 12 62 17 5 48 13 5 9 7 2 4 8 3 1 4 1
# Define new factor categories: 1-contacted / 2-not contacted
df$f.prev_contacted<-2
# 1 level - contacted
sel<-which(df$pdays %in% c(1:20))</pre>
df$f.prev_contacted[sel] <- 1</pre>
# 2 level - not contacted
sel<-which(df$pdays %in% c(21:1000))</pre>
df$f.prev_contacted[sel] <- 2</pre>
table(df$f.prev_contacted); summary(df$f.prev_contacted)
##
##
      1
           2
   206 4794
##
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
           2.000
                    2.000
                            1.959
                                     2.000
                                              2.000
df$f.prev_contacted<-factor(df$f.prev_contacted,levels=1:2,labels=c("Contacted","No-contacted"))
summary(df$pdays)
##
     0
           1
                2
                     3
                          4
                               5
                                    6
                                         7
                                                        10
                                                                            15
                                               8
                                                            11
                                                                  12
                                                                       13
##
     1
           5
               12
                    62
                         17
                               5
                                   48
                                        13
                                                                             3
         17
               18 NA's
##
     16
##
      1
           4
                1 4793
5.2.4 Education
#Modify factor levels label
df$education <- factor(df$education, labels=paste("Edu", sep="-", levels(df$education)))
table(df$education)
##
##
              Edu-basic.4y
                                      Edu-basic.6y
                                                               Edu-basic.9y
##
                       493
                                                272
                                                                        758
##
           Edu-high.school
                                    Edu-illiterate Edu-professional.course
##
                      1169
                                                                        668
##
     Edu-university.degree
##
# Define new factor categories: 1-mandatory | 2-nonmandatory | 3-other
df$f.education<-3
# 1 level - mandatory
sel<-which(df$education %in% c("Edu-basic.4y", "Edu-basic.6y", "Edu-basic.9y", "Edu-high.school"))
df$f.education[sel] <- 1</pre>
```

```
# 2 level - nonmandatory
sel<-which(df$education %in% c("Edu-professional.course", "Edu-university.degree"))</pre>
df$f.education[sel] <- 2</pre>
table(df$f.education); summary(df$f.education)
##
##
           2
      1
                3
## 2692 2099 209
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
                                      2.000
##
             1.000
                    1.000
                              1.503
                                              3.000
df$f.education<-factor(df$f.education,levels=1:3,labels=c("Mandatory","Non-Mandatory","Other"))
summary(df$f.education)
##
       Mandatory Non-Mandatory
                                        Other
##
            2692
                           2099
                                          209
5.2.5 Extra Factorization
#Housing
df$f.housing<-factor(df$housing,labels=paste("f",sep=".",levels(df$housing)))</pre>
table(df$f.housing);summary(df$f.housing);
##
## f.no f.yes
## 2226 2662
## f.no f.yes NA's
## 2226 2662
                 112
#Marital
df$f.marital<-factor(df$marital,labels=paste("f",sep=".",levels(df$marital)))</pre>
table(df$f.marital);summary(df$f.marital);
##
## f.divorced f.married
                            f.single
          546
                    3029
                                1416
## f.divorced f.married
                            f.single
                                           NA's
##
          546
                    3029
                                1416
#Default
df$f.default<-factor(df$default, labels=paste("f",sep=".",levels(df$default)))</pre>
table(df$f.default);summary(df$f.default)
##
## f.no
## 3939
## f.no NA's
## 3939 1061
df$f.loan<-factor(df$loan,labels=paste("f",sep=".",levels(df$loan)))</pre>
```

```
table(df$f.loan);summary(df$f.loan)
##
## f.no f.yes
## 4138 750
## f.no f.yes NA's
## 4138
                112
         750
#Contact
df$f.contact<-factor(df$contact,labels=paste("f",sep=".",levels(df$contact)))</pre>
table(df$f.contact);summary(df$f.contact)
##
## f.cellular f.telephone
##
          3182
## f.cellular f.telephone
##
          3182
                      1818
#Day of Week
df$f.day<-factor(df$day_of_week,labels=paste("f.day",sep=".",levels(df$day)))</pre>
table(df$f.day);summary(df$f.day)
## f.day.fri f.day.mon f.day.thu f.day.tue f.day.wed
        948
                  1017
                           1031
                                      1005
## f.day.fri f.day.mon f.day.thu f.day.tue f.day.wed
                  1017
                           1031
                                      1005
5.3
     Create new factors corresponding to quantitative concepts.
5.3.1 Age discreatization
summary(df$age)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
     17.00
           32.00
                    38.00
                             39.97
                                     47.00
                                             92.00
qulist<-quantile(df$age,seq(0,1,0.25),na.rm=TRUE)
varaux<-factor(cut(df$age,breaks=qulist,include.lowest=T))</pre>
table(varaux)
## varaux
## [17,32] (32,38] (38,47] (47,92]
##
     1353
              1248
                      1202
                              1197
tapply(df$age,varaux,median)
## [17,32] (32,38] (38,47] (47,92]
        29
                35
                        43
varaux<-factor(cut(df$age,breaks=c(17,30,40,50,88),include.lowest=T))</pre>
table(varaux)
## varaux
## [17,30] (30,40] (40,50] (50,88]
##
      887 2003 1252
                               856
```

```
tapply(df$age,varaux,median)
## [17,30] (30,40] (40,50] (50,88]
##
        28
                35
                                 55
                         45
\label{f:age-factor} $$ df_{age,breaks=c(17,30,40,50,88),include.lowest=T)} $$
summary(df$f.age)
## [17,30] (30,40] (40,50] (50,88]
                                        NA's
       887
              2003
                       1252
                                856
levels(df$f.age)<-paste0("f.age-",levels(df$f.age))</pre>
```

6 Exploratory Data Analysis