Lead Scoring Case Study Summary

1. Introduction:

- Objective: Enhance lead conversion process by implementing a data-driven lead scoring model.
- Current Challenge: Low lead conversion rate.

2. Data Overview:

- Dataset: Approximately 9000 data points with attributes such as Lead Source, Total Time Spent on Website, Total Visits, Last Activity, etc.
 - Target Variable: 'Converted' indicating whether a lead was converted (1) or not (0).

3. Data Preprocessing:

- Handled 'Select' levels in categorical variables.
- Explored and cleaned the dataset for missing values, outliers, and inconsistencies.
- Dropped columns with a high percentage of missing values.
- Imputed or dropped remaining missing values.

4. Exploratory Data Analysis (EDA):

- Analyzed distribution and imbalance in categorical variables.
- Explored univariate and bivariate relationships.
- Handled outliers in numerical variables.
- Heatmap for numerical vs target column.

5. Logistic Regression Model:

5.1 Feature Engineering:

- Created dummy variables for categorical columns.
- Handled dummy variable trap by dropping one level.
- Split the dataset into train and test set (70% & 30% respectively).

5.2 Model Building:

- Utilized Logistic Regression to predict the probability of leads getting converted.
- Iteratively refined the model by removing variables with high p-values and VIF until finding variables with VIF less than 5 and p-value less than 0.05.

6. Model Evaluation:

- Assessed performance using metrics such as confusion matrix , accuracy, recall, precision, sensitivity, and specificity.
 - Plotted ROC curve to find the optimal cutoff for predictions.

7. Model Refinement:

- Conducted precision-recall trade-off analysis to find an optimal cutoff.

8. Final Model:

- Achieved a balanced model with improved precision and recall.
- Optimal Cutoff: 0.44.

9. Model Evaluation (Final Output):

- FINAL TRAIN DATASET OUTPUT:
 - Accuracy = 0.7845
 - Precision = 0.7840
 - Recall = 0.7771
 - Sensitivity = 0.7771
 - Specificity = 0.8010

- FINAL TEST DATASET OUTPUT:

- Accuracy = 0.7866
- Precision = 0.7829
- Recall = 0.7675
- Sensitivity = 0.7675
- Specificity = 0.8042

	Features	VIF
9	What is your current occupation_Unemployed	2.82
1	Total Time Spent on Website	2.00
0	TotalVisits	1.54
7	Last Activity_SMS Sent	1.51
2	Lead Origin_Lead Add Form	1.45
3	Lead Source_Olark Chat	1.33
4	Lead Source_Welingak Website	1.30
5	Do Not Email_Yes	1.08
8	What is your current occupation_Student	1.06
6	Last Activity_Had a Phone Conversation	1.01
10	Last Notable Activity_Unreachable	1.01

Recommendations and Areas for Improvement:

- 1. Due to significant skewness, the 'Country' column was excluded from the model. Balancing the data could provide valuable insights.
- 2. The 'Specialisation' column with over 36% missing values should be addressed to enhance meaningful insights.
- 3. Explore advertising on popular Social Media platforms, particularly among the younger demographic, to enhance marketing effectiveness.
- 4. Replicate successful strategies observed in metropolitan areas like Mumbai and Thane in other similar demographics.
- 5. Offering introductory course content for free could identify potential 'hot' leads, increasing the likelihood of enrollment.
- 6. Address the low conversion rate among students by breaking courses into affordable segments.
- 7. Direct users opting out of email updates to a questionnaire to gather insights for tailored disengagement or targeted approaches.