Mo Tu We Th Fr Sa Su	W	Memo No	Sum
LEC32 st	kes' theon	em ont 225.1.	25]
Stokes:	\$F. dr =	-//s Court Fli	nds
(IS)) STOKES AN	P POTH-	INDPEMOE	Væ.
		-connected if	
closed hop i	Example:		ace 'mside
u ()	le a	origin remon simply-connec circk up a	ted
Speece w/ 2-ax		is mt sim	
defined (Jy.		

Recall: if F= # is a gradient, then curlf=0 Theorem: if ourle =0 and f defined in simply -com ested region, then F is gradient field and & ScFidr 1s path-independent

Prof: assume curl F = 0,

SuFdr-/c, F.dr = ScFdr

can find 5 because region is simply connected = Ss(aurif) ds =0

Remark: Topology classifies surfaces in space:

Stokes and "surface independence" (Proof) stakes

fe Fur= SS(VXF)·ndS = SS(VXF). nds Ss. (VXF) nuls -Ssz=Ss=s, (VXF).nds

= SSO div (UXF) dV

By disorgence thm

\tilde{\t	Z	7	R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			_
Date	1	/	

		Date		
Can cheek: dw(T	7χ[=] = σχΕ =	o ali	wys!	(R Q2
$\vec{F} = \langle P, Q, R \rangle$;		12/2x 4/2y 2/6 P & R		2 - Rx / x - Py >
div (9xF) = (Ry-Q2),		•	(Qx-1	Pylt
$= R_{yx} - Q_{xx} + $ $= 0$			£ - \$78	
T. (TXF) =0 0 [Note: for 'real' v	•		v) =0	ò
TUPICS: For UNIT	7			
Signal - rect: du - cyl: dv		rdz		
tcyl: dV	= 120	erdo	1116	

-sphereical: $dv = \rho^* sim \phi d\rho d\phi d\phi$ A application: -Nass, -Any value of t

-moment of imenting

-Gravitational attraction on mass at 0

斑 图 图	
Mo Tu We Th Fr Sa Su	Memo No
	Date / /
JsF'nds	=> Formulus for Rids
ds	ex: Ads = dxdy
(flux of S)	becomes S. dry
Rids	· horizental plane y-z plane n=;
	· sphere $\hat{n} = \hat{a}(x,y,\pm)\pm$, cylinder $\hat{n}=\pm\frac{\alpha x}{\alpha}$
d	s=a2sin pd & do ds=adrdo
+ general case.	· Z=+(x,y), Ads=(-tx,-ty, Doxdy
	mal vector: $\hat{n}dS = \pm \frac{\vec{N}}{\vec{N} \cdot \vec{K}} \cdot dx dy$
	Sc P 200 dx + Q dy + Rd+ teize C -) express in angle variable
	rgence thm $ \iint_{S} \vec{F} \cdot \vec{n} dS \xrightarrow{\text{stokes thm}} \int_{C} \vec{F} \cdot d\vec{r} $
	= III p (div F) dV (2) 35
	$d\vec{r} = I/s(\nabla x\vec{F}) \cdot \tilde{n}'dS$ states' theorem
	Tany S bunday by C
t(P)-t(P)= le	∇f 'dr' curl=0, tind poential
-12 D	curl=0, find poential

D. e