Association - Two Categorical Variables

Ryan Miller

Introduction

- ► Describing and summarizing data are both extremely useful, they are often the first steps in any statistical analysis
- However, the broader goal of statisticians is to establish relationships between multiple variables, rather than to merely describe these variables individually
 - We will refer to an observed relationship between variables as an association

Contingency Tables

- Given data containing two categorical variables, we can display frequencies for each combination of the variables in a contingency table (sometimes called a two-way frequency table)
- ▶ Below is a two-way frequency table describing the Golden State Warriors historic 2015-16 season:

	Win	Loss
Home	39	2
Away	34	7

Practice

What do you think the raw data that was used to construct this table looks like? Try writing out a few rows.

	Win	Loss
Home	39	2
Away	34	7

Note that you'd only be able to discern the last two columns from the contingency table you were given

Date	Орр	Location	Win
10/27/2015	NOP	Home	W
10/30/2015	HOU	Away	W
10/31/2015	NOP	Away	W
11/2/2015	MEM	Home	W
11/4/2015	LAC	Home	W
11/6/2015	DEN	Home	W
11/7/2015	SAC	Away	W
11/9/2015	DET	Home	W
11/11/2015	MEM	Away	W
11/12/2015	MIN	Away	W
11/14/2015	BRK	Home	W
11/17/2015	TOR	Home	W
11/19/2015	LAC	Away	W
11/20/2015	CHI	Home	W
11/22/2015	DEN	Away	W
11/24/2015	LAL	Home	W
11/27/2015	PHO	Away	W
11/28/2015	SAC	Home	W
11/30/2015	UTA	Away	W
12/2/2015	CHO	Away	W
12/5/2015	TOR	Away	W
12/6/2015	BRK	Away	W
12/8/2015	IND	Away	W
12/11/2015	BOS	Away	W
12/12/2015	MIL	Away	L
12/16/2015	PHO	Home	W
12/18/2015	MIL	Home	W

Margins

A useful preliminary step when working with contingency tables is to add *table margins*:

	Win	Loss	Row Total
Home	39	2	41
Away	34	7	41
Column Total	73	9	82

Margins

A useful preliminary step when working with contingency tables is to add *table margins*:

	Win	Loss	Row Total
Home	39	2	41
Away	34	7	41
Column Total	73	9	82

- ► These are sometimes called marginal distributions
 - ► The marginal distribution of the "win" variable (win/loss) is characterized by the frequencies 73, 9 and the proportions 0.89, 0.11
 - ► The marginal distribution of the "location" variable (home/away) is characterized byt the frequencies 41, 41 and the proportions 0.5, 0.5

Conditional Proportions

- In order to determine whether the variables in a contingency table are associated, we need to use *conditional proportions*.
- For any table there are two types of conditional proportions
 - **Row proportions** are calculated using each row's total, the bottom table show how to calculate these

	Win	Loss	Row Total
Home	39	2	41
Away	34	7	41
Column Total	73	9	82

	Win	Loss	Row Total
Home	39/41 = 0.95	2/41 = 0.05	1
Away	34/41 = 0.83	7/41 = 0.17	1
Column Total	73/82 = 0.89	9/82 = 0.11	1

Conditional Proportions

► Column proportions are calculated similarly

	Win	Loss	Row Total
Home	39	2	41
Away	34	7	41
Column Total	73	9	82

	Win	Loss	Row Total
Home	39/73 = 0.53	2/9 = 0.22	41/82 = 0.5
Away	34/73 = 0.47	7/41 = 0.78	41/82 = 0.5
Column Total	1	1	1

Conditional Distributions and Association

- Two variables are associated if the distribution of one variable depends upon the other value
- For example, we might compare the distribution of win/loss proportions conditional upon a game being at home with the distribution of win/loss proportions conditional upon a game being away
 - ▶ If these distributions differ, the variables "location" and "win" are associated

Practice

- 1. Using the row proportions given below, do you think there is an association between whether the Warriors were home/away and winning?
- 2. How would you explain this association?

	Win	Loss	Row Total
Home	0.95	0.05	1
Away	0.83	0.17	1
Column Total	0.89	0.11	1

- 1. Yes, there is an association between "location" and "win"
- The warriors look to be more likely to win when playing at home. In other words, the distribution of wins/losses for home games differs from the distribution of wins/losses for away games.

A few closing comments

- ► First, row and column proportions tell you fundamentally different things
 - In our example, row proportions can describe the proportion of wins conditional on the game being at home
 - Compare that to column proportions, which can describe the proportion of home games conditional on that game being a win

A few closing comments

- First, row and column proportions tell you fundamentally different things
 - In our example, row proportions can describe the proportion of wins conditional on the game being at home
 - Compare that to column proportions, which can describe the proportion of home games conditional on that game being a win
- ► The row proportions suggest how often home games were won, while the column proportions suggest how often wins were home games
 - This doesn't seem to matter much here, but let's look at another example real quickly

Practice

- ► Were crew members on the Titanic more likely to survive than 1st class passengers?
 - Use row or column proportions from the contingency table below to support your answer

	Survived	Died
Crew	212	673
1st Class	203	122

No, using *row proportions* we see that $\frac{212}{623+212} = 0.24$, or 24% of the crew survived; while $\frac{203}{122+203} = 0.62$, or 62% of first class passengers survived

	Survived	Died
Crew	212	673
1st Class	203	122

No, using *row proportions* we see that $\frac{212}{623+212}=0.24$, or 24% of the crew survived; while $\frac{203}{122+203}=0.62$, or 62% of first class passengers survived

	Survived	Died
Crew	212	673
1st Class	203	122

- Notice that this particular question cannot be answered using column proportions
 - The proportion of survivors who were crew is $\frac{212}{212+203}=0.51$, while the proportion of survivors who were first class passengers is $\frac{203}{212+203}=0.49$

No, using *row proportions* we see that $\frac{212}{623+212}=0.24$, or 24% of the crew survived; while $\frac{203}{122+203}=0.62$, or 62% of first class passengers survived

	Survived	Died
Crew	212	673
1st Class	203	122

- Notice that this particular question cannot be answered using column proportions
 - The proportion of survivors who were crew is $\frac{212}{212+203} = 0.51$, while the proportion of survivors who were first class passengers is $\frac{203}{212+203} = 0.49$
 - But conditioning on the column variable is problematic in this scenario because the marginal distribution of 1st class/crew is heavily skewed towards crew
 - In other words, most of the survivors were crew members because there were so many more crew members, not because individual crew members were more likely to survive

