B99

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07H 21/04, C12Q 1/68

(11) International Publication Number:

A1

WO 96/24604

(43) International Publication Date:

15 August 1996 (15.08.96)

(21) International Application Number:

PCT/US96/01883

(22) International Filing Date:

9 February 1996 (09.02.96)

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(30) Priority Data:

4

386,844 485,573 10 February 1995 (10.02.95)

7 June 1995 (07.06.95)

5) US

(71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; Fifth floor, 640 Memorial Drive, Cambridge, MA 02139 (US).

(72) Inventor: FALB, Dean, A.; 22 Cypress Road, Wellesley, MA 02181 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US). Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF CARDIOVASCULAR DISEASE

(57) Abstract

The present invention relates to methods and compositions for the treatment and diagnosis of cardiovascular disease, including, but not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restonesis, and arterial inflammation. Specifically, the present invention identifies and describes genes which are differentially expressed in cardiovascular disease states, relative to their expression in normal, or non-cardiovascular disease states, and/or in response to manipulations relevant to cardiovascular disease. Further, the present invention invention describes genes via the ability of their gene products to interact with gene products involved in cardiovascular disease. Still further, the present invention provides methods for the identification and therapeutic use of compounds as treatments of cardiovascular disease. Moreover, the present invention provides methods for the diagnostic monitoring of patients undergoing clinical evaluation for the treatment of cardiovascular disease, and for monitoring the efficacy of compounds in clinical trials. Additionally, the present invention describes methods for the diagnostic evaluation and prognosis of various cardiovascular diseases, and for the identification of subjects exhibiting a predisposition to such conditions.

٥.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	TE.	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhetan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	8Z	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Letvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE.	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Ft	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF CARDIOVASCULAR DISEASE

This application is a continuation-in-part of copending application serial number 08/485,573, filed June 7,
1995, which is a continuation-in-part of co-pending
application serial number 08/386,844, filed February 10,
1995, each of which is hereby incorporated by reference in
its entirety.

10

1. INTRODUCTION

The present invention relates to methods and compositions for the treatment and diagnosis of cardiovascular disease, including, but not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation. Genes which are differentially expressed in cardiovascular disease states, relative to their expression in normal, or non-cardiovascular disease states are identified. Genes are also identified via 20 the ability of their gene products to interact with other gene products involved in cardiovascular disease. The genes identified may be used diagnostically or as targets for therapeutic intervention. In this regard, the present invention provides methods for the identification and 25 therapeutic use of compounds in the treatment and diagnosis of cardiovascular disease. Additionally, methods are provided for the diagnostic monitoring of patients undergoing clinical evaluation for the treatment of cardiovascular disease, for monitoring the efficacy of compounds in clinical 30 trials, and for identifying subjects who may be predisposed to cardiovascular disease.

2. BACKGROUND OF THE INVENTION

Cardiovascular disease is a major health risk
throughout the industrialized world. Atherosclerosis, the
most prevalent f cardiovascular dis ases, is the principal
cause f h art attack, str ke, and gangrene of the

extremities, and th reby the principle cause of death in the United States. Atheroscler sis is a complex diseas involving many cell types and molecular factors (for a detailed review, see Ross, 1993, Nature 362: 801-809). 5 process, in normal circumstances a protective response to insults to the endothelium and smooth muscle cells (SMCs) of the wall of the artery, consists of the formation of fibrofatty and fibrous lesions or plaques, preceded and accompanied by inflammation. The advanced lesions of 10 atherosclerosis may occlude the artery concerned, and result from an excessive inflammatory-fibroproliferative response to numerous different forms of insult. For example, shear stresses are thought to be responsible for the frequent occurrence of atherosclerotic plaques in regions of the 15 circulatory system where turbulent blood flow occurs, such as

The first observable event in the formation of an atherosclerotic plaque occurs when blood-borne monocytes adhere to the vascular endothelial layer and transmigrate

20 through to the sub-endothelial space. Adjacent endothelial cells at the same time produce oxidized low density lipoprotein (LDL). These oxidized LDL's are then taken up in large amounts by the monocytes through scavenger receptors expressed on their surfaces. In contrast to the regulated

25 pathway by which native LDL (nLDL) is taken up by nLDL specific receptors, the scavenger pathway of uptake is not regulated by the monocytes.

branch points and irregular structures.

These lipid-filled monocytes are called foam cells, and are the major constituent of the fatty streak.

30 Interactions between foam cells and the endothelial and SMCs which surround them lead to a state of chronic local inflammation which can eventually lead to smooth muscle cell proliferation and migration, and the formation of a fibrous plaque. Such plaques occlude the blood vessel concerned and 35 thus restrict the flow of blood, resulting in ischemia.

Ischemia is a condition characteriz d by a lack of xygen supply in tissues of organs due to inadequat

perfusion. Such inadequate perfusion can have number of natural causes, including atheroscler tic or restenotic lesions, anemia, or stroke, to nam a few. Many medical interventions, such as the interruption of the flow of blood 5 during bypass surgery, for example, also lead to ischemia. In addition to sometimes being caused by diseased cardiovascular tissue, ischemia may sometimes affect cardiovascular tissue, such as in ischemic heart disease. Ischemia may occur in any organ, however, that is suffering a lack of oxygen supply.

The most common cause of ischemia in the heart is atherosclerotic disease of epicardial coronary arteries. By reducing the lumen of these vessels, atherosclerosis causes an absolute decrease in myocardial perfusion in the basal

- 15 state or limits appropriate increases in perfusion when the demand for flow is augmented. Coronary blood flow can also be limited by arterial thrombi, spasm, and, rarely, coronary emboli, as well as by ostial narrowing due to luetic aortitis. Congenital abnormalities, such as anomalous origin
- 20 of the left anterior descending coronary artery from the pulmonary artery, may cause myocardial ischemia and infarction in infancy, but this cause is very rare in adults. Myocardial ischemia can also occur if myocardial oxygen demands are abnormally increased, as in severe ventricular
- 25 hypertrophy due to hypertension or aortic stenosis. The latter can be present with angina that is indistinguishable from that caused by coronary atherosclerosis. A reduction in the oxygen-carrying capacity of the blood, as in extremely severe anemia or in the presence of carboxy-hemoglobin, is a
- 30 rare cause of myocardial ischemia. Not infrequently, two or more causes of ischemia will coexist, such as an increase in oxygen demand due to left ventricular hypertrophy and a reduction in oxygen supply secondary to coronary atherosclerosis.
- The principal surgical approaches to the treatment of isch mic ath rosclerosis are bypass grafting, endarterectomy, and percutane us translum nal angioplasty

(PCTA). The failure rate after these approaches due to restenosis, in which the occlusions recur and often become ven wors, is extraordinarily high (30-50%). It appears that much of the restenosis is due to further inflammation, 5 smooth muscle accumulation, and thrombosis.

Very recently, a modified balloon angioplasty approach was used to treat arterial restenosis in pigs by gene therapy (Ohno et al., 1994, Science 265: 781-784). A specialized catheter was used to introduce a recombinant

10 adenovirus carrying the gene encoding thymidine kinase (tk) into the cells at the site of arterial blockage.

Subsequently, the pigs were treated with ganciclovir, a nucleoside analog which is converted by tk into a toxic form which kills cells when incorporated into DNA. Treated

15 animals had a 50% to 90% reduction in arterial wall thickening without any observed local or systemic toxicities.

Because of the presumed role of the excessive inflammatory-fibroproliferative response in atherosclerosis and ischemia, a number of researchers have investigated, in the context of arterial injury, the expression of certain factors involved in inflammation, cell recruitment and proliferation. These factors include growth factors, cytokines, and other chemicals, including lipids involved in cell recruitment and migration, cell proliferation and the control of lipid and protein synthesis.

For example, the expression of PDGF (platelet derived growth factor) or its receptor was studied: in rats during repair of arterial injury (Majesky et al., 1990, J. Cell Biol. 111: 2149); in adherent cultures of human

30 monocyte-derived macrophages treated with oxidized LDL (Malden et al., 1991, J. Biol. Chem. 266: 13901); and in bovine aortic endothelial cells subjected to fluid shear stress (Resnick et al., 1993, Proc. Natl. Acad. Sci. USA 90: 4591-4595). Expression of IGF-I (insulin-like growth factor-I) was studied after balloon deendothelialization of rat aorta (C rcek et al., 1990, Circulation Research 66: 1755-1760).

Oth r studies have focused on the expression of adhesion-moleculs on the surface of activated endoth lial c lls which mediat monocyte adhesion. These adhesion molecules include intracellular adhesion molecule-1, ICAM-1

- 5 (Simmons et al., 1988, Nature, 331: 624-627), ELAM
 (Bevilacqua et al., 1989, Science 243: 1160-1165; Bevilacqua
 et al., 1991, Cell 67: 233), and vascular cell adhesion
 molecule, VCAM-1 (Osborn et al., 1989, Cell 59: 1203-1211);
 all of these surface molecules are induced transcriptionally
- 10 in the presence of IL-1. Histological studies reveal that ICAM-1, ELAM and VCAM-1 are expressed on endothelial cells in areas of lesion formation in vivo (Cybulsky et al., 1991, Science 251: 788-791; 1991, Arterioscler. Thromb. 11: 1397a; Poston et al., 1992, Am. J. Pathol. 140: 665-673). VCAM-1
- 15 and ICAM-1 were shown to be induced in cultured rabbit arterial endothelium, as well as in cultured human iliac artery endothelial cells by lysophophatidylcholine, a major phospholipid component of atherogenic lipoproteins. (Kume et al., 1992, J. Clin. Invest. 90: 1138-1144). VCAM-I, ICAM-1,
- 20 and class II major histocompatibility antigens were reported to be induced in response to injury to rabbit aorta (Tanaka, et al., 1993, Circulation 88: 1788-1803).

Recently, cytomegalovirus (CMV) has been implicated in restenosis as well as atherosclerosis in general (Speir, 25 et al., 1994, Science 265: 391-394). It was observed that the CMV protein IE84 apparently predisposes smooth muscle cells to increased growth at the site of restenosis by combining with and inactivating p53 protein, which is known to suppress tumors in its active form.

The foregoing studies are aimed at defining the role of particular gene products presumed to be involved in the excessive inflammatory-fibroproliferative response leading to atherosclerotic plaque formation. However, such approaches cannot identify the full panoply of gene products that are involved in the disease process, much 1 ss id ntifying those which may serve as therapeutic targets for

th diagnosis and tr atment of various forms of cardiovascular dis ase.

3. SUMMARY OF THE INVENTION

5 The present invention relates to methods and compositions for the treatment and diagnosis of cardiovascular disease, including but not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation. Specifically, genes are identified and described which are differentially expressed in cardiovascular disease states, relative to their expression in normal, or non-cardiovascular disease states.

"Differential expression", as used herein, refers to both quantitative as well as qualitative differences in 15 the genes' temporal and/or tissue expression patterns. Differentially expressed genes may represent "fingerprint genes," and/or "target genes." "Fingerprint gene," as used herein, refers to a differentially expressed gene whose expression pattern may be utilized as part of a prognostic or 20 diagnostic cardiovascular disease evaluation, or which, alternatively, may be used in methods for identifying compounds useful for the treatment of cardiovascular disease. "Target gene", as used herein, refers to a differentially expressed gene involved in cardiovascular disease such that 25 modulation of the level of target gene expression or of target gene product activity may act to ameliorate a cardiovascular disease condition. Compounds that modulate target gene expression or activity of the target gene product can be used in the treatment of cardiovascular disease.

30 Further, "pathway genes" are defined via the ability of their products to interact with other gene products involved in cardiovascular disease. Pathway genes may also exhibit target gene and/or fingerprint gene characteristics. Although the genes described herein may be differentially expressed with respect to cardiovascular disease, and/or their products may int ract with gene products important to cardiovascular disease, the genes may

also be involved in mechanisms important to additional cardiovascular processes.

The invention includes the products of such fingerprint, target, and pathway genes, as well as antibodies 5 to such gene products. Furthermore, the engineering and use of cell- and animal-based models of cardiovascular disease to which such gene products may contribute are also described.

The present invention encompasses methods for prognostic and diagnostic evaluation of cardiovascular

10 disease conditions, and for the identification of subjects exhibiting a predisposition to such conditions. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of cardiovascular disease.

The invention also provides methods for the identification of compounds that modulate the expression of genes or the activity of gene products involved in cardiovascular disease, as well as methods for the treatment of cardiovascular disease which may involve the

20 administration of such compounds to individuals exhibiting cardiovascular disease symptoms or tendencies.

The invention is based, in part, on systematic search strategies involving in vivo and in vitro cardiovascular disease paradigms coupled with sensitive and 25 high throughput gene expression assays. In contrast to approaches that merely evaluate the expression of a given gene product presumed to play a role in a disease process, the search strategies and assays used herein permit the identification of all genes, whether known or novel, that are 30 expressed or repressed in the disease condition, as well as the evaluation of their temporal regulation and function during disease progression. This comprehensive approach and evaluation permits the discovery of novel genes and gene products, as well as the identification of an array of genes 35 and gene products (whether novel or known) involved in novel pathways that play a major r le in the disease path logy. Thus, the invention allows one to define targ ts useful f r

diagnosis, monitoring, rati nal drug scre ning and design, and/or other therapeutic int rvention.

In the working examples described herein, eight novel human genes are identified that are demonstrated to be 5 differentially expressed in different cardiovascular disease states. Additionally, the differential expression of four previously identified human genes is described. The identification of these genes and the characterization of their expression in particular disease states provide newly 10 identified roles in cardiovascular disease for both the novel genes and the known genes.

Bcl-2 and glutathione peroxidase are the products of known genes that are shown herein to be down regulated in monocytes of patients exposed to an atherogenic high fat/high 15 cholesterol diet. Furthermore, counteracting the downregulation of bcl-2 under atherogenic conditions, as described herein, may ameliorate atherosclerosis. Accordingly, methods are provided for the diagnosis, monitoring in clinical trials, and treatment of 20 cardiovascular disease based upon the discoveries herein regarding the expression patterns of bcl-2 and glutathione peroxidase. Because these two genes were known to be involved in preventing apoptosis, the discovery of their down-regulation under atherogenic conditions provides a 25 novel, positive correlation between apoptosis and atherogenesis. Accordingly, methods provided herein for diagnosing, monitoring, and treating cardiovascular disease may also be based on a number of genes involved in the apoptotic pathway, including but not limited to ICE (IL-1 30 converting enzyme); Bad; BAG-1 (Bcl-2 associated athanogene 1, Takayama et al., 1995, Cell 80: 279-284); BAX (Bcl-2 associated X protein, Oltvai et al., 1993, Cell 74: 609-619); BclX, (Boise, et al., 1993, Cell 74: 597-608); BAK (Bcl-2 antagonist killer, Farrow et al., 1995. Nature 374: 631-733); 35 and Bcl-X_s (Tsujmoto et al., 1984, Science 226: 1097-1099). The cardiovascular dis ases that may be so diagnosed, monitored in clinical trials, and treated include but are not

limit d to atherosclerosis, isch mia/reperfusion, and r stenosis.

rchd005, rchd024, rchd032, and rchd036 are newly identified genes that are each up-regulated in endothelial 5 cells treated with IL-1. Accordingly, methods are provided for the diagnosis, monitoring in clinical trials, and treatment of cardiovascular disease based upon the discoveries herein regarding the expression patterns of rchd005, rchd024, rchd032, and rchd036.

- Cyclooxygenase II (COX II), also known as endoperoxide synthase, and Manganese Superoxide Dismutase (MnSOD) are known genes, and rchd502, rchd523, rchd528, and rchd534 are newly identified genes, that are each upregulated in endothelial cells subjected to shear stress.
- 15 Accordingly, methods are provided for the diagnosis, monitoring in clinical trials, screening for therapeutically effective compounds, and treatment of cardiovascular disease based upon the discoveries herein regarding the expression patterns of COX II, MnSOD, rchd502, rchd523, rchd528, and rchd534.

More specifically, each of these genes is upregulated either by IL-1 (rchd005, rchd024, rchd032, and rchd036) or by shear stress (COX II, MnSOD, rchd502, rchd523, rchd528, and rchd534). For those genes that have a causative

- 25 effect on the disease conditions treatment methods can be designed to reduce or eliminate their expression, particularly in endothelial cells. Alternatively, treatment methods include inhibiting the activity of the protein products of these genes. For those genes that have a
- 30 protective effect in responding to disease conditions, treatment methods can be designed for enhancing the activity of the products of such genes.

In either situation, detecting expression of these genes in excess of normal expression provides for the

35 diagnosis of cardiovascular disease. Furthermore, in testing the efficacy of compounds during clinical trials, a decrease in the lev l of the expression f these genes corresp nds to

a return from a dis as condition to a normal stat, and thereby indicates a positive eff ct of th compound. The cardiovascular diseases that may be so diagnosed, monitored in clinical trials, and treated include but are not limited to atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation.

Membrane bound target gene products containing extracellular domains can be a particularly useful target for treatment methods as well as diagnostic and clinical 10 monitoring methods. The rchd523 gene, for example, encodes a transmembrane protein, which contains seven transmembrane domains and, therefore, can be readily contacted by other compounds on the cell surface. Accordingly, natural ligands, derivatives of natural ligands, and antibodies that bind to 15 the rchd523 gene product can be utilized to inhibit its activity, or alternatively, to target the specific destruction of cells that are in the disease state. Furthermore, the extracellular domains of the rchd523 gene product provide especially efficient screening systems for 20 identifying compounds that bind to the rchd523 gene product. Compounds that bind the receptor domain of the rchd523 gene product, for example, can be identified by their ability to mobilize Ca2 and thereby produce a fluorescent signal, as described in Section 5.5.1, below.

Such an assay system can also be used to screen and identify antagonists of the interaction between the rchd523 gene product and ligands that bind to the rchd523 gene product. For example, the compounds can compete with the endogenous (i.e., natural) ligand for the rchd523 gene

30 product. The resulting reduction in the amount of ligand-bound rchd523 gene transmembrane protein will modulate the activity of disease state cells, such as endothelial cells. Soluble proteins or peptides, such as peptides comprising one or more of the extracellular domains, or portions and/or

35 analogs thereof of the rchd523 gene product, including, for exampl, soluble fusion proteins such as Ig-tailed fusion proteins, can be particularly useful for this purpose.

Similarly, antibodies that are sp cific to one or mor of the extracellular domains of the rchd523 product provide for the r ady detection of this target gene product in diagnostic tests or in clinical test monitoring.

5 Accordingly, endothelial cells can be treated, either in vivo or in vitro, with such a labeled antibody to determine the disease state of endothelial cells. Because the rchd523 gene product is up-regulated in endothelial cells under shear stress, its detection positively corresponds with 10 cardiovascular disease.

Such methods for treatment, diagnosis, and clinical test monitoring which use the rchd523 gene product as described above can also be applied to other target genes that encode transmembrane gene products, including but not limited to rchd502, which each contains 12 transmembrane domains, and rchd528, which contains one transmembrane domain in addition to its extracellular domain.

The examples presented in Sections 6-9, below, demonstrate the use of the cardiovascular disease paradigms 20 of the invention to identify cardiovascular disease target genes.

The example presented in Section 10, below, demonstrates the use of fingerprint genes in diagnostics and as surrogate markers for testing the efficacy of candidate 25 drugs in basic research and in clinical trials.

The example presented in Section 11, below, demonstrates the use of fingerprint genes, particularly rchd523, in the imaging of a diseased cardiovascular tissue.

The example presented in Section 12, below,

30 demonstrates the use of target genes, particularly rchd523,
in screening for ligands of target gene product receptor
domains, as well as antagonists of the ligand-receptor
interaction.

35 4. <u>DESCRIPTION OF THE FIGURES</u>

FIG.1. In vivo cholesterol differential display. mRNA prepared from human monocytes isolated from the blood of

patients on different di ts. cDNA prepared from one patient on a high fat di t/high serum cholesterol (lanes 1,2) and low fat diet/low s rum cholesterol (lanes 3,4) was displayed using the forward primer T₁₁XG and the reverse primer OPO14 (agcatggctc). The DNA corresponding to marked band (#14) was excised and amplified for sequence analysis.

FIG.2. Band #14 Northern blot analysis. A random primer-labeled band #14 probe was hybridized with a Northern blot prepared from the same patient's monocytes used in 10 differential display. An 8 kb band was seen in the low fat/low cholesterol conditions, and not in the high fat/high cholesterol conditions.

FIG.3. Quantitative RT-PCR analysis of mouse bc1-2 mRNA levels in apoE-deficient mice. Monocyte RNA from apoE-15 deficient and control mice was compared using primers for mouse bc1-2 (for-cacccctggcatcttctccttcc/rev-atcctccccagttcaccccatcc) shown in the upper panel and mouse γActin (for-cctgatagatgggcactgtgt/rev-gaacacggcattgtcactaact) shown in the lower panel. A 1:3 dilution series of each input cDNA was done in pairs with the left band in each pair deriving from wild-type cDNA and the right band from apoE-deficient cDNA.

FIG.4. RT-PCR quantification of human glutathione peroxidase (HUMGPXP1) cDNA from human clinical samples cDNA

25 prepared from RNA derived from blood monocytes of the same patient under a high fat diet (serum cholesterol level = 200; top panel) and a low fat diet (serum cholesterol level = 170; bottom panel). Dilution series of amplification products using GPX1.3 primers derived from HUMGPXP1 sequences 1121
30 1142 (for-aagtcgcgcccgcccctgaaat) and 1260-1237 (revgatcctggcaccgtccgtctga) is shown in the left portion of each panel. Dilution series of amplification products using human actin primers (for-accctgaagtacccat/revtagaagcatttgcggtg) is shown in the right portion of each

35 panel. The HUMGPXP1 band decreased in intensity under a high fat diet (compare top left to bottom left), whereas the actin

control band was qually intens under ach diet (compare top right to bottom right).

FIG.5. IL-1 activated HUVEC differential display.

mRNA prepared from control HUVEC (lanes 9,10), 1 hr. of 10

5 units/ml IL-1 treatment (lanes 7,8), or 6 hr. treatment
 (lanes 11,12), was used in differential display reactions
 with the forward primer OPE7 (agatgcagcc) and reverse primer
 T₁₁XA, which is an equimolar mix of oligonucleotides where X
 is G, C, or A. The DNA corresponding to marked band,

10 rchd005, was excised and amplified for Northern analysis and

subcloning.

FIG.6. Northern blot analysis of endothelial IL-1 inducible rchd005. $2\mu g$ of total RNA from control, 1 hr. and 6 hr. samples was eluted on an agarose gel, blotted, and

15 incubated with a ³²P labeled probe prepared from amplified rchd005 sequences. The indicated band migrated with markers corresponding to approximately 7.5kb.

FIG.7. A Northern blot prepared from shear stressed RNA and hybridized with the same rchd005 probe 20 detects a 7.5 kb band up-regulated most strongly at 1 hr.

FIG.8. Band rchd005 DNA sequence. The sequence was determined by sequencing the insert of pRCHD005, resulting from the ligation of amplified rchd005 sequences into the TA cloning vector.

- prepared from control HUVEC (lanes 3,4), 1 hr. of 10 units/ml IL-1 treatment (lanes 1,2), or 6 hr. treatment (lanes 5,6), was used in differential display reactions with the forward primer OPG20 (tctccctcag) and reverse primer
- 30 $T_{11}XC$, which is an equimolar mix of oligonucleotides where X is G, C, or A. The DNA corresponding to marked band, rchd024, was excised and amplified for Northern analysis and subcloning.

FIG.10. Northern blot analysis of endothelial IL-1 35 inducible band rchd024. $2\mu g$ of total RNA from control, 1 hr. and 6 hr. samples was eluted on an agarose gel, blotted, and incubat d with a ^{32}P labeled prob pr pared from amplified

band rchd024 sequences. The indicated band migrated with markers corresponding to approximat ly 10 kb.

FIG.11. Sh ar str ss Northern blot analysis of endothelial IL-1 inducible band rchd024. A Northern blot 5 prepared from shear stressed RNA and hybridized with the same rchd024 probe detected a 10 kb band up-regulated most strongly at 6 hr.

FIG.12. Band rchd024 DNA sequence. The sequence was determined by sequencing the insert of pRCHD024,

10 resulting from the ligation of amplified rchd024 sequences into the TA cloning vector.

FIG.13. IL-1 activated HUVEC differential display for rchd032. mRNA prepared from control HUVEC (lanes 3,4), 1 hr. of 10 units/ml IL-1 treatment (lanes 1,2), or 6 hr.

- 15 treatment (lanes 5,6), was used in differential display reactions with the forward primer OPI9 (tggagagcag) and reverse primer T₁₁XA, which is an equimolar mix of oligonucleotides where X is G, C, or A. The DNA corresponding to marked band, rchd032, was excised and 20 amplified for Northern analysis and subcloning.
 - FIG.14. RT-PCR quantification of rchd032 cDNA from IL-1 activated HUVEC's cDNA prepared from RNA derived from control, 1hr., and 6 hr. IL-1 activated HUVEC's. Shown in lanes 1,2, and 3 are a 5 fold dilution series of input cDNA
- 25 amplified in the upper panel with rchd032 primers (for-atttataaaggggtaattcatta/rev-ttaaagccaatttcaaaataat), and in the lower panel with human actin primers (for-accctgaagtaccccat/rev-tagaagcatttgcggtg). A band at the 1:125 dilution in lane 3 is visible in the 6 hr. sample but 30 not in the control.

FIG.15. Band rchd032 DNA sequence. The sequence was determined by sequencing the insert of pRCHD032, resulting from the ligation of amplified rchd032 sequences into the TA cloning vector.

FIG.16. IL-1 activated HUVEC differential display for rchd036. mRNA prepar d from control HUVEC (lanes 3,4), 1 hr. of 10 units/ml IL-1 treatment (lanes 1,2), or 6 hr.

tr atment (lanes 5,6), was used in differential display reactions with the forward prim r OPI17 (ggtggtgatg) and r v rs prim r T₁₁XC, which is an equimolar mix of oligonucleotides where X is G, C, or A. The DNA corresponding to marked band, rchd036, was excised and amplified for Northern analysis and subcloning.

FIG.17. Northern blot analysis of endothelial IL-1 inducible band rchd036. 2μg of total RNA from control (lane 1), 1 hr. (lane 2), and 6 hr. (lane 3) samples was eluted on 10 an agarose gel, blotted, and incubated with a ³²P labeled probe prepared from amplified band rchd036 sequences. The indicated band migrated with markers corresponding to approximately 8 kb.

FIG.18. Band rchd036 DNA sequence. The sequence 15 was determined by sequencing the insert of pRCHD036, resulting from the ligation of amplified rchd036 sequences into the TA cloning vector.

FIG.19. Laminar shear stress HUVEC differential display. mRNA prepared from control HUVEC (lanes 3,4), 1 hr.

- 20 (lanes 1,2) of 10 dyn/cm² laminar shear stress treatment or 6 hr. treatment (lanes 5,6), was used in differential display reactions with the forward primer OPE7 (agatgcagcc) and reverse primer T₁₁XA, which is an equimolar mix of oligonucleotides where X is G, C, or A. The DNA
- 25 corresponding to marked band, rchd502, was excised and amplified for Northern analysis and subcloning.

FIG.20. Northern blot analysis of shear stress inducible band rchd502. $2\mu g$ of total RNA from control, 1 hr. and 6 hr. shear stressed samples was eluted on an agarose

- 30 gel, blotted, and incubated with a ³²P labeled probe prepared from amplified band rchd502 sequences. The indicated band migrates with markers corresponding to approximately 4.5 kb.
- FIG.21. Northern blot analysis of shear stress inducible band rchd502 on IL-1 blot. 2μg of total RNA from 35 control (lane 1), 1 hr. (lane 2), and 6 hr. (lane 3) IL-1 induc d HUVEC samples was luted on an agarose g l, blotted, and incubated with a ³²P labeled probe prepared from amplified

band rchd502 s qu nces. A 4.5 kb band is seen which was not up-regulat d by IL-1.

FIG.22. DNA and encoded amino acid s quence of the rchd502 gene.

- FIG.23. Laminar shear stress HUVEC differential display for rchd505. mRNA prepared from control HUVEC (lanes 3,4), 1 hr. (lanes 1,2) or 6 hr. (lanes 5,6) of 10 dyn/cm² laminar shear stress treatment was used in differential display reactions with the forward primer OPE2 (ggtgcgggaa)
- 10 and reverse primer $T_{11}XA$, which is an equimolar mix of oligonucleotides where X is G,C, or A. The DNA corresponding to marked band, rchd505, was excised and amplified for Northern analysis and subcloning.
- FIG.24. Northern blot analysis of shear stress
 15 inducible band rchd505. 2μg of total RNA from control, 1 hr.
 and 6 hr. shear stressed samples was eluted on an agarose
 gel, blotted, and incubated with a ³²P labeled probe prepared
 from amplified band rchd505 sequences. The indicated band
 migrated with markers corresponding to approximately 5.0 kb.
- FIG.25. Northern blot analysis of shear stress inducible band rchd505 on IL-1 blot. 2μg of total RNA from control (lane 1), 1 hr. (lane 2), and 6 hr. (lane 3) IL-1 induced HUVEC samples was eluted on an agarose gel, blotted, and incubated with a ³²P labeled probe prepared from amplified band rchd505 sequences. A 5.0 kb inducible band is seen.
 - FIG.26. Laminar shear stress HUVEC differential display for rchd523. mRNA prepared from control HUVEC (lanes 3,4), 1 hr. (lanes 1,2) or 6 hr. (lanes 5,6) of 10 dyn/cm² laminar shear stress treatment was used in differential
- 30 display reactions with the forward primer OPI11 (acatgccgtg) and reverse primer T₁₁XC, which is an equimolar mix of oligonucleotides where X is G,C, or A. The DNA corresponding to marked band, rchd523, was excised and amplified for Northern analysis and subcloning.
- FIG.27. RT-PCR quantification of rchd523 cDNA from sh ar str ss d endothelial cell cDNA pr pared from RNA derived from control, 1hr., and 6 hr. shear stressed HUVEC's.

Shown in lanes 1,2, and 3 are a 5-fold diluti n series of input cDNA amplifi d in the upper pan 1 with rchd523 primers (for-atgccgtgtgggttagtc/r v-attttatgggaaggtttttaca), and in lanes 4 and 5, a 5-fold dilution series using human actin primers (for-accctgaagtaccccat/rev-tagaagcatttgcggtg). A band at the 1:5 dilution in lane 2 is visible in the 6 hr. sample but not in the control.

FIG.28. DNA and encoded amino acid sequence of the rchd523 gene.

- fIG.29. Laminar shear stress HUVEC differential display for rchd528. mRNA prepared from control HUVEC (lanes 3,4), 1 hr. (lanes 1,2) or 6 hr. (lanes 5,6) of 10 dyn/cm² laminar shear stress treatment was used in differential display reactions with the forward primer OPI19 (aatgcgggag)
- 15 and reverse primer $T_{11}XG$, which is an equimolar mix of oligonucleotides where X is G,C, or A. The DNA corresponding to marked band, rchd528, was excised and amplified for Northern analysis and subcloning.

FIG.30. Northern blot analysis of shear stress
20 inducible band rchd528. 2µg of total RNA from control (lane
1), 1 hr. (lane 2), and 6 hr. (lane 3) shear stressed samples
was eluted on an agarose gel, blotted, and incubated with a
32P labeled probe prepared from amplified band rchd528
sequences. The indicated band migrated with markers
25 corresponding to approximately 5.0 kb.

FIG.31. DNA and encoded amino acid sequence of the rchd528 gene.

FIG. 32. Restriction map of plasmid pScR-bcl2.

FIG.33. Northern blot analysis of expression of

30 rchd036 mRNA under shear stress. RNA was prepared from HUVEC's that were untreated (control) and treated with shear stress for 1 hr. and 6 hr. The blot was probed with labeled rchd036 DNA.

FIG.34. Northern blot analysis of expression of 35 rchd534 mRNA under shear stress. RNA was prepared from HUVEC's that w r untreated (control) and treated with shear

stress for 1 hr. and 6 hr. The blot was pr bed with label d rchd534 DNA.

FIG.35. DNA and encoded amino acid sequenc of th rchd534 gene.

5

5. <u>DETAILED DESCRIPTION OF THE INVENTION</u>

Methods and compositions for the diagnosis and treatment of cardiovascular disease, including but not limited to atherosclerosis, ischemia/reperfusion,

- 10 hypertension, restenosis, and arterial inflammation, are described. The invention is based, in part, on the evaluation of the expression and role of all genes that are differentially expressed in paradigms that are physiologically relevant to the disease condition. This
- 15 permits the definition of disease pathways and the identification of targets in the pathway that are useful both diagnostically and therapeutically.

Genes, termed "target genes" and/or "fingerprint genes" which are differentially expressed in cardiovascular

- 20 disease conditions, relative to their expression in normal, or non-cardiovascular disease conditions, are described in Section 5.4. Additionally, genes, termed "pathway genes" whose gene products exhibit an ability to interact with gene products involved in cardiovascular disease are also
- 25 described in Section 5.4. Pathway genes may additionally have fingerprint and/or target gene characteristics. Methods for the identification of such fingerprint, target, and pathway genes are described in Sections 5.1, 5.2, and 5.3.

Further, the gene products of such fingerprint,

30 target, and pathway genes are described in Section 5.4.2,
antibodies to such gene products are described in Section
5.4.3, as are cell- and animal-based models of cardiovascular disease to which such gene products may contribute, in
Section 5.4.4.

35 Methods for the identification of compounds which modulate the expression of genes or the activity of gene products involv d in cardiovascular dis ase are described in

S ction 5.5. Methods for monitoring the efficacy of compounds during clinical trials ar described in Section 5.5.4. Additionally described below, in Section 5.6, are methods for the treatment of cardiovascular disease.

Also discussed below, in Section 5.8, are methods for prognostic and diagnostic evaluation of cardiovascular disease, including the identification of subjects exhibiting a predisposition to this disease, and the imaging of cardiovascular disease conditions.

10

5.1. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES

This section describes methods for the identification of genes which are involved in cardiovascular disease, including but not limited to atherosclerosis,

- 15 ischemia/reperfusion, hypertension, restenosis, and arterial inflammation. Such genes may represent genes which are differentially expressed in cardiovascular disease conditions relative to their expression in normal, or non-cardiovascular disease conditions. Such differentially expressed genes may
- 20 represent "target" and/or "fingerprint" genes. Methods for the identification of such differentially expressed genes are described, below, in this section. Methods for the further characterization of such differentially expressed genes, and for their identification as target and/or fingerprint genes, 25 are presented, below, in Section 5.3.

"Differential expression" as used herein refers to both quantitative as well as qualitative differences in the genes' temporal and/or tissue expression patterns. Thus, a differentially expressed gene may have its expression

- 30 activated or completely inactivated in normal versus cardiovascular disease conditions (e.g., treated with oxidized LDL versus untreated), or under control versus experimental conditions. Such a qualitatively regulated gene will exhibit an expression pattern within a given tissue or
- 35 cell type which is detectable in either control or cardiovascular disease subjects, but is not detectable in b th. Alternatively, such a qualitatively regulated gene

will exhibit an expression pattern within a given tissue or cell type which is detectabl in eith r control or experimental subjects, but is not detectable in both.

"Detectable", as used herein, refers to an RNA expression

5 pattern which is detectable via the standard techniques of differential display, reverse transcriptase- (RT-) PCR and/or Northern analyses, which are well known to those of skill in the art.

Alternatively, a differentially expressed gene may

10 have its expression modulated, i.e., quantitatively increased or decreased, in normal versus cardiovascular disease states, or under control versus experimental conditions. The degree to which expression differs in normal versus cardiovascular disease or control versus experimental states need only be

15 large enough to be visualized via standard characterization techniques, such as, for example, the differential display technique described below. Other such standard characterization techniques by which expression differences may be visualized include but are not limited to quantitative

20 RT-PCR and Northern analyses.

Differentially expressed genes may be further described as target genes and/or fingerprint genes.
"Fingerprint gene," as used herein, refers to a differentially expressed gene whose expression pattern may be utilized as part of a prognostic or diagnostic cardiovascular disease evaluation, or which, alternatively, may be used in methods for identifying compounds useful for the treatment of cardiovascular disease. A fingerprint gene may also have the characteristics of a target gene.

"Target gene", as used herein, refers to a differentially expressed gene involved in cardiovascular disease in a manner by which modulation of the level of target gene expression or of target gene product activity may act to ameliorate symptoms of cardiovascular disease. A 35 target gene may also have the characteristics of a fingerprint gene.

A variety of methods may be utilized for the identification of g n s which are involved in cardiovascular dis ase. Thes meth ds include but are not limited to the experimental paradigms described, below, in Section 5.1.1.

5 Material from the paradigms may be characterized for the presence of differentially expressed gene sequences as discussed, below, in Section 5.1.2.

5.1.1. PARADIGMS FOR THE IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES

10

One strategy for identifying genes that are involved in cardiovascular disease is to detect genes that are expressed differentially under conditions associated with the disease versus non-disease conditions. The sub-sections below describe a number of experimental systems, called paradigms, which may be used to detect such differentially expressed genes. In general, the paradigms include at least one experimental condition in which subjects or samples are treated in a manner associated with cardiovascular disease, in addition to at least one experimental control condition lacking such disease associated treatment. Differentially expressed genes are detected, as described herein, below, by comparing the pattern of gene expression between the experimental and control conditions.

Once a particular gene has been identified through the use of one such paradigm, its expression pattern may be further characterized by studying its expression in a different paradigm. A gene may, for example, be regulated one way in a given paradigm (e.g., up-regulation), but may be regulated differently in some other paradigm (e.g., down-regulation). Furthermore, while different genes may have similar expression patterns in one paradigm, their respective expression patterns may differ from one another under a different paradigm. Such use of multiple paradigms may be useful in distinguishing the roles and relative importance of particular g nes in cardiovascular disease.

5.1.1.1. FOAM CELL PARADIGM - 1

Among the paradigms which may be utilized for the identification of differentially express d g nes involved in atherosclerosis, for example, are paradigms designed to 5 analyze those genes which may be involved in foam cell formation. Such paradigms may serve to identify genes involved in the differentiation of this cell type, or their uptake of oxidized LDL.

One embodiment of such a paradigm, hereinafter

10 referred to as Paradigm A. First, human blood is drawn and peripheral monocytes are isolated by methods routinely practiced in the art. These human monocytes can then be used immediately or cultured in vitro, using methods routinely practiced in the art, for 5 to 9 days where they develop more

15 macrophage-like characteristics such as the up-regulation of scavenger receptors. These cells are then treated for various lengths of time with agents thought to be involved in foam cell formation. These agents include but are not limited to oxidized LDL, acetylated LDL,

- 20 lysophosphatidylcholine, and homocysteine. Control monocytes that are untreated or treated with native LDL are grown in parallel. At a certain time after addition of the test agents, the cells are harvested and analyzed for differential expression as described in detail in Section 5.1.2., below.
- 25 The Example presented in Section 6, below, demonstrates in detail the use of such a foam cell paradigm to identify genes which are differentially expressed in treated versus control cells.

5.1.1.2. FOAM CELL PARADIGM - 2

Alternative paradigms involving monocytes for detecting differentially expressed genes associated with atherosclerosis involve the simulation of the phenomenon of transmigration. When monocytes encounter arterial injury,

35 they adhere to the vascular endothelial layer, transmigrate across this layer, and locat b tween the endoth lium and the layer of smooth muscle cells that ring the artery. This

phenomenon can be mimicked in vitro by culturing a layer of endoth lial cells isolated, for example, from human umbilical cord. Once the endothelial monolayer forms, monocytes drawn from peripheral blood are cultured on top of the endothelium in the presence and absence of LDL. After several hours, the monocytes transmigrate through the endothelium and develop into foam cells after 3 to 5 days when exposed to LDL. In this system, as in vivo, the endothelial cells carry out the oxidation of LDL which is then taken up by the monocytes. As described in sub-section 5.1.2. below, the pattern of gene expression can then be compared between these foam cells and untreated monocytes.

5.1.1.3. FOAM CELL PARADIGM - 3

15 Yet another system includes the third cell type, smooth muscle cell, that plays a critical role in atherogenesis (Navab et al., 1988, J. Clin. Invest., 82: 1853). In this system, a multilayer of human aortic smooth muscle cells was grown on a micropore filter covered with a 20 gel layer of native collagen, and a monolayer of human aortic endothelial cells was grown on top of the collagen layer. Exposure of this coculture to human monocytes in the presence of chemotactic factor rFMLP resulted in monocyte attachment to the endothelial cells followed by migration across the 25 endothelial monolayer into the collagen layer of the subendothelial space. This type of culture can also be treated with LDL to generate foam cells. The foam cells can then be harvested and their pattern of gene expression compared to that of untreated cells as explained below in 30 sub-section 5.1.2.

5.1.1.4. IN VIVO MONOCYTE PARADIGM

An alternative embodiment of such paradigms for the study of monocytes, hereinafter referred to as Paradigm B,

35 involves differential treatment of human subjects through the dietary control of lipid c nsumption. Such human subjects are held on a low fat/low cholesterol diet for three w eks,

at which time blood is drawn, m nocyt s are isolated according to the methods routinely practic d in the art, and RNA is purified, as describ d bel w, in sub-section 5.1.2. These same patients are subsequently switched to a high fat

- 5 /high cholesterol diet and monocyte RNA is purified again.
 The patients may also be fed a third, combination diet
 containing high fat/low cholesterol and monocyte RNA may be
 purified once again. The order in which patients receive the
 diets may be varied. The RNA derived from patients
- 10 maintained on two of the diets, or on all three diets, may then be compared and analyzed for differential gene expression as, explained below in sub-section 5.1.2.

The Example presented in Section 7, below, demonstrates the use of such an in vivo monocyte paradigm to 15 identify genes which are expressed differentially in monocytes of patients maintained on an atherogenic diet versus their expression under a control diet. Such a paradigm may also be used in conjunction with an in vitro preliminary detection system, as described in Section 7, 20 below.

5.1.1.5. ENDOTHELIAL CELL - IL-1 PARADIGM

In addition to the detection of differential gene expression in monocytes, paradigms focusing on endothelial 25 cells may be used to detect genes involved in cardiovascular disease. In one such paradigm, hereinafter referred to as Paradigm C, human umbilical vein endothelial cells (HUVEC's) are grown in vitro. Experimental cultures are treated with human IL-1\beta, a factor known to be involved in the

- onditions involved in the atherosclerotic state.

 Alternatively experimental HUVEC cultures may be treated with lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins or oxidized human LDL. Control
- 35 cultures are grown in the absence of these compounds.

After a c rtain period of exposure treatm nt, xperim ntal and control cells are harv sted and analyzed for

differ ntial gene expr ssion as described in sub-section 5.1.2, b low. The Example pr sent d in S ction 8, bel w, d monstrates th use of such an IL-1 induced endothelial cell paradigm to identify sequences which are differentially 5 expressed in treated versus control cells.

5.1.1.6. ENDOTHELIAL CELL - SHEAR STRESS PARADIGM

In another paradigm involving endothelial cells,

10 hereinafter referred to as Paradigm D, cultures are exposed
to fluid shear stress which is thought to be responsible for
the prevalence of atherosclerotic lesions in areas of unusual
circulatory flow. Unusual blood flow also plays a role in
the harmful effects of ischemia/reperfusion, wherein an organ
15 receiving inadequate blood supply is suddenly reperfused with
an overabundance of blood when the obstruction is overcome.

Cultured HUVEC monolayers are exposed to laminar sheer stress by rotating the culture in a specialized apparatus containing liquid culture medium (Nagel et al.,

- 20 1994, J. Clin. Invest. 94: 885-891). Static cultures grown in the same medium serve as controls. After a certain period of exposure to shear stress, experimental and control cells are harvested and analyzed for differential gene expression as described in sub-section 5.1.2, below. The Example
- 25 presented in Section 9, below, demonstrates the use of such a shear stressed endothelial cell paradigm to identify sequences which are differentially expressed in exposed versus control cells.

In all such paradigms designed to identify genes

30 which are involved in cardiovascular disease, including but
not limited to those described above in Sections 5.1.1.1

through 5.1.1.6, compounds such as drugs known to have an
ameliorative effect on the disease symptoms may be
incorporated into the experimental system. Such compounds

35 may include known therapeutics, as well as compounds that ar
not useful as therapeutics du t their harmful side effects.

Test cells that are cultured as explained in the paradigms

d scribed in Sections 5.1.1.1 through 5.1.1.6, for example, may b expos d to on of these compounds and analyzed for differential gene expression with resp ct to untreated c lls, according to the methods described below in Section 5.1.2.

5 In principle, according to the particular paradigm, any cell type involved in the disease may be treated at any stage of the disease process by these compounds.

Test cells may also be compared to unrelated cells (e.g., fibroblasts) that are also treated with the compound, in order to screen out generic effects on gene expression that might not be related to the disease. Such generic effects might be manifest by changes in gene expression that are common to the test cells and the unrelated cells upon treatment with the compound.

By these methods, the genes and gene products upon which these compounds act can be identified and used in the assays described below to identify novel therapeutic compounds for the treatment of cardiovascular disease.

20 5.1.2. ANALYSIS OF PARADIGM MATERIAL

In order to identify differentially expressed genes, RNA, either total or mRNA, may be isolated from one or more tissues of the subjects utilized in paradigms such as those described earlier in this Section. RNA samples are 25 obtained from tissues of experimental subjects and from corresponding tissues of control subjects. Any RNA isolation technique which does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Sambrook et al., 1989, Molecular Cloning, A 30 Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel, F.M. et al., eds., 1987-1993, Current Protocols in Molecular Biology, John Wiley & Sons, Inc. New York, both of which are incorporated herein by reference in their entirety. Additionally, large numbers of tissue samples may readily be 35 processed using techniques well known to those of skill in

the art, such as, for example, th single-st p RNA isolation

process of Ch mczynski, P. (1989, U.S. Patent No. 4,843,155), which is incorporated herein by ref rence in its entirety.

Transcripts within th collected RNA samples which represent RNA produced by differentially expressed genes may 5 be identified by utilizing a variety of methods which are well known to those of skill in the art. For example, differential screening (Tedder, T.F. et al., 1988, Proc. Natl. Acad. Sci. USA 85:208-212), subtractive hybridization (Hedrick, S.M. et al., 1984, Nature 308:149-153; Lee, S.W. et al., 1984, Proc. Natl. Acad. Sci. USA 88:2825), and, preferably, differential display (Liang, P., and Pardee, A.B., 1993, U.S. Patent No. 5,262,311, which is incorporated herein by reference in its entirety), may be utilized to identify nucleic acid sequences derived from genes that are differentially expressed.

Differential screening involves the duplicate screening of a cDNA library in which one copy of the library is screened with a total cell cDNA probe corresponding to the mRNA population of one cell type while a duplicate copy of the cDNA library is screened with a total cDNA probe corresponding to the mRNA population of a second cell type. For example, one cDNA probe may correspond to a total cell cDNA probe of a cell type derived from a control subject, while the second cDNA probe may correspond to a total cell cDNA probe of the same cell type derived from an experimental subject. Those clones which hybridize to one probe but not to the other potentially represent clones derived from genes differentially expressed in the cell type of interest in control versus experimental subjects.

Subtractive hybridization techniques generally involve the isolation of mRNA taken from two different sources, e.g., control and experimental tissue, the hybridization of the mRNA or single-stranded cDNA reverse-transcribed from the isolated mRNA, and the removal of all hybridized, and therefore double-stranded, sequences. The remaining non-hybridized, single-stranded cDNAs, potentially represent cl nes derived from genes that are differentially

express d in th two mRNA sources. Such single-stranded cDNAs are then used as th starting mat rial for the construction of a library comprising clon s d rived from differentially expressed genes.

- The differential display technique describes a procedure, utilizing the well known polymerase chain reaction (PCR; the experimental embodiment set forth in Mullis, K.B., 1987, U.S. Patent No. 4,683,202) which allows for the identification of sequences derived from genes which are
- 10 differentially expressed. First, isolated RNA is reversetranscribed into single-stranded cDNA, utilizing standard techniques which are well known to those of skill in the art. Primers for the reverse transcriptase reaction may include, but are not limited to, oligo dT-containing primers,
- 15 preferably of the reverse primer type of oligonucleotide described below. Next, this technique uses pairs of PCR primers, as described below, which allow for the amplification of clones representing a random subset of the RNA transcripts present within any given cell. Utilizing
- 20 different pairs of primers allows each of the mRNA transcripts present in a cell to be amplified. Among such amplified transcripts may be identified those which have been produced from differentially expressed genes.

The reverse oligonucleotide primer of the primer

25 pairs may contain an oligo dT stretch of nucleotides,
preferably eleven nucleotides long, at its 5' end, which
hybridizes to the poly(A) tail of mRNA or to the complement
of a cDNA reverse transcribed from an mRNA poly(A) tail.
Second, in order to increase the specificity of the reverse

30 primer, the primer may contain one or more, preferably two,
additional nucleotides at its 3' end. Because,
statistically, only a subset of the mRNA derived sequences
present in the sample of interest will hybridize to such
primers, the additional nucleotides allow the primers to

35 amplify only a subset of the mRNA derived sequences present in the sample of int rest. This is pr ferred in that it allows mor accurate and compl te visualization and

characterization of each of the bands representing amplifi d sequences.

The forward primer may contain a nucleotide sequence expected, statistically, to have the ability to 5 hybridize to cDNA sequences derived from the tissues of interest. The nucleotide sequence may be an arbitrary one, and the length of the forward oligonucleotide primer may range from about 9 to about 13 nucleotides, with about 10 nucleotides being preferred. Arbitrary primer sequences 10 cause the lengths of the amplified partial cDNAs produced to be variable, thus allowing different clones to be separated by using standard denaturing sequencing gel electrophoresis.

PCR reaction conditions should be chosen which optimize amplified product yield and specificity, and,

15 additionally, produce amplified products of lengths which may be resolved utilizing standard gel electrophoresis techniques. Such reaction conditions are well known to those of skill in the art, and important reaction parameters include, for example, length and nucleotide sequence of oligonucleotide primers as discussed above, and annealing and elongation step temperatures and reaction times.

The pattern of clones resulting from the reverse transcription and amplification of the mRNA of two different cell types is displayed via sequencing gel electrophoresis and compared. Differences in the two harding matter

25 and compared. Differences in the two banding patterns indicate potentially differentially expressed genes.

Once potentially differentially expressed gene sequences have been identified via bulk techniques such as, for example, those described above, the differential 30 expression of such putatively differentially expressed genes should be corroborated. Corroboration may be accomplished via, for example, such well known techniques as Northern analysis and/or RT-PCR.

Upon corroboration, the differentially expressed 35 genes may be further characterized, and may be identified as target and/or fingerprint genes, as discussed, below, in Section 5.3.

Also, amplified sequences of differentially xpressed genes obtained through, for example, diff rential display may be used to isolate full length clones of the corresponding gene. The full length coding portion of the 5 gene may readily be isolated, without undue experimentation, by molecular biological techniques well known in the art. For example, the isolated differentially expressed amplified fragment may be labeled and used to screen a cDNA library. Alternatively, the labeled fragment may be used to screen a 10 genomic library.

PCR technology may also be utilized to isolate full length cDNA sequences. As described, above, in this Section, the isolated, amplified gene fragments obtained through differential display have 5' terminal ends at some random 15 point within the gene and have 3' terminal ends at a position preferably corresponding to the 3' end of the transcribed portion of the gene. Once nucleotide sequence information from an amplified fragment is obtained, the remainder of the gene (i.e., the 5' end of the gene, when utilizing 20 differential display) may be obtained using, for example, RT-PCR.

In one embodiment of such a procedure for the identification and cloning of full length gene sequences, RNA may be isolated, following standard procedures, from an 25 appropriate tissue or cellular source. A reverse transcription reaction may then be performed on the RNA using an oligonucleotide primer complimentary to the mRNA that corresponds to the amplified fragment, for the priming of first strand synthesis. Because the primer is anti-parallel 30 to the mRNA, extension will proceed toward the 5' end of the The resulting RNA/DNA hybrid may then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid may be digested with RNAase H, and second strand synthesis may then be primed with a poly-C primer. 35 two primers, the 5' portion of the gene is amplified using Sequ nces obtained may then be isolated and recombin d with previ usly isolated s quences to generate a full-length

cDNA of the differentially expressed gen s of the invention. For a revi w of cloning strategies and rec mbinant DNA techniques, see e.g., Sambrook et al., 1989, supra; and Ausubel et al., 1989, supra.

5

5.2. <u>IDENTIFICATION OF PATHWAY GENES</u>

This section describes methods for the identification of genes, termed "pathway genes", involved in cardiovascular disease. "Pathway gene", as used herein, 10 refers to a gene whose gene product exhibits the ability to interact with gene products involved in cardiovascular disease. A pathway gene may be differentially expressed and, therefore, may additionally have the characteristics of a target and/or fingerprint gene.

interactions may be employed for identifying pathway gene products by identifying interactions between gene products and gene products known to be involved in cardiovascular disease. Such known gene products may be cellular or

20 extracellular proteins. Those gene products which interact with such known gene products represent pathway gene products and the genes which encode them represent pathway genes.

Among the traditional methods which may be employed are co-immunoprecipitation, crosslinking and co-purification 25 through gradients or chromatographic columns. Utilizing procedures such as these allows for the identification of pathway gene products. Once identified, a pathway gene product may be used, in conjunction with standard techniques, to identify its corresponding pathway gene. For example, at

- 30 least a portion of the amino acid sequence of the pathway gene product may be ascertained using techniques well known to those of skill in the art, such as via the Edman degradation technique (see, e.g., Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co.,
- 35 N.Y., pp.34-49). The amino acid sequence obtained may be used as a guid for th generation of oligonucleotide mixtures that can be used to scr en for pathway gene

sequences. Scr ning made be accomplished, for example by standard hybridization or PCR techniques. Techniques for the generation of oligonucleotid mixtures and screening are well-known. (See, e.g., Ausubel, supra., and PCR Protocols: 5 A Guide to Methods and Applications, 1990, Innis, M. et al., eds. Academic Press, Inc., New York).

Additionally, methods may be employed which result in the simultaneous identification of pathway genes which encode the protein interacting with a protein involved in 10 cardiovascular disease. These methods include, for example, probing expression libraries with labeled protein known or suggested to be involved in cardiovascular disease, using this protein in a manner similar to the well known technique of antibody probing of λgt11 libraries.

in vivo, the two-hybrid system, is described in detail for illustration only and not by way of limitation. One version of this system has been described (Chien et al., 1991, Proc. Natl. Acad. Sci. USA, 88:9578-9582) and is commercially available from Clontech (Palo Alto, CA).

Briefly, utilizing such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to a known protein, and the other consists of the 25 activator protein's activation domain fused to an unknown protein that is encoded by a cDNA which has been recombined into this plasmid as part of a cDNA library. The plasmids are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacz) whose 30 regulatory region contains the activator's binding sites. Either hybrid protein alone cannot activate transcription of the reporter gene, the DNA-binding domain hybrid because it does not provide activation function and the activation domain hybrid because it cannot localize to the activator's 35 binding sites. Interaction of the two proteins reconstitutes the functional activator protein and r sults in expr ssion of

th reporter gene, which is detected by an assay for the report r gene product.

The two-hybrid system or relat d methodology may be used to screen activation domain libraries for proteins that interact with a known "bait" gene protein. Total genomic or cDNA sequences may be fused to the DNA encoding an activation domain. Such a library and a plasmid encoding a hybrid of the bait gene protein fused to the DNA-binding domain may be cotransformed into a yeast reporter strain, and the resulting transformants may be screened for those that express the reporter gene. These colonies may be purified and the library plasmids responsible for reporter gene expression may be isolated. DNA sequencing may then be used to identify the

For example, and not by way of limitation, the bait gene may be cloned into a vector such that it is translationally fused to the DNA encoding the DNA-binding domain of the GAL4 protein. Also by way of example, for the isolation of genes involved in cardiovascular disease,

proteins encoded by the library plasmids.

- 20 previously isolated genes known or suggested to play a part in cardiovascular disease may be used as the bait genes. These include but are not limited to the genes for bFGF, IGF-I, VEGF, IL-1, M-CSF, TGFβ, TGFα, TNFα, HB-EGF, PDGF, IFN-γ, and GM-CSF, to name a few.
- A cDNA library of the cell line from which proteins that interact with bait gene are to be detected can be made using methods routinely practiced in the art. According to the particular system described herein, for example, the cDNA fragments may be inserted into a vector such that they are
- 30 translationally fused to the activation domain of GAL4. This library may be co-transformed along with the bait gene-GAL4 fusion plasmid into a yeast strain which contains a lacZ gene driven by a promoter which contains the GAL4 activation sequence. A cDNA encoded protein, fused to the GAL4
- 35 activation domain, that interacts with bait gene will r constitute an active GAL4 pr tein and thereby driv expression of the *lacZ* gen . Colonies which express *lacZ* may

be d tected by their blue color in the presence of X-gal. The cDNA may then be purified from the sestrains, and used to produce and isolate the bait generacting protein using techniques routinely practiced in the art.

Once a pathway gene has been identified and isolated, it may be further characterized as, for example, discussed below, in Section 5.3.

10

5.3. CHARACTERIZATION OF DIFFERENTIALLY EXPRESSED AND PATHWAY GENES

Differentially expressed genes, such as those identified via the methods discussed, above, in Section 5.1.1, pathway genes, such as those identified via the methods discussed, above, in Section 5.2, as well as genes identified by alternative means, may be further characterized by utilizing, for example, methods such as those discussed herein. Such genes will be referred to herein as "identified genes".

Analyses such as those described herein will yield information regarding the biological function of the identified genes. An assessment of the biological function of the differentially expressed genes, in addition, will allow for their designation as target and/or fingerprint genes. Specifically, any of the differentially expressed genes whose further characterization indicates that a modulation of the gene's expression or a modulation of the gene product's activity may ameliorate cardiovascular disease will be designated "target genes", as defined, above, in Section 5.1. Such target genes and target gene products, along with those discussed below, will constitute the focus of the compound discovery strategies discussed, below, in Section 5.5.

Any of the differentially expressed genes whose further characterization indicates that such modulations may not positively affect cardiovascular disease, but whose expr ssion patt rn contributes to a gene expression "fingerprint patt rn" correlativ of, for example, a

cardiovascular disease condition will be designated a "fingerprint gene". "Fing rprint patterns" will be more fully discussed, below, in Section 5.8. It should be noted that each of the target genes may also function as fingerprint genes, as may all or a subset of the pathway genes.

It should further be noted that the pathway genes may also be characterized according to techniques such as those described herein. Those pathway genes which yield information indicating that they are differentially expressed and that modulation of the gene's expression or a modulation of the gene product's activity may ameliorate cardiovascular disease will be also be designated "target genes". Such target genes and target gene products, along with those discussed above, will constitute the focus of the compound discovery strategies discussed, below, in Section 5.5.

It should be additionally noted that the characterization of one or more of the pathway genes may reveal a lack of differential expression, but evidence that 20 modulation of the gene's activity or expression may, nonetheless, ameliorate cardiovascular disease symptoms. In such cases, these genes and gene products would also be considered a focus of the compound discovery strategies of Section 5.5, below.

In instances wherein a pathway gene's characterization indicates that modulation of gene expression or gene product activity may not positively affect cardiovascular disease, but whose expression is differentially expressed and which contributes to a gene expression fingerprint pattern correlative of, for example, a cardiovascular disease state, such pathway genes may additionally be designated as fingerprint genes.

Among the techniques whereby the identified genes may be further characterized, the nucleotide sequence of the 35 identified genes, which may be obtained by utilizing standard t chniques well known to those of skill in the art, may b used to further characteriz such genes. For example, the

sequence of the identified genes may reveal homologies to one or mor known s quenc motifs which may yi ld information regarding the biological function of the identified gene product.

Second, an analysis of the tissue distribution of the mRNA produced by the identified genes may be conducted, utilizing standard techniques well known to those of skill in the art. Such techniques may include, for example, Northern analyses and RT-PCR. Such analyses provide information as to whether the identified genes are expressed in tissues expected to contribute to cardiovascular disease. Such analyses may also provide quantitative information regarding steady state mRNA regulation, yielding data concerning which of the identified genes exhibits a high level of regulation in, preferably, tissues which may be expected to contribute to cardiovascular disease.

Such analyses may also be performed on an isolated cell population of a particular cell type derived from a given tissue. Additionally, standard in situ hybridization 20 techniques may be utilized to provide information regarding which cells within a given tissue express the identified gene. Such analyses may provide information regarding the biological function of an identified gene relative to cardiovascular disease in instances wherein only a subset of 25 the cells within the tissue is thought to be relevant to cardiovascular disease.

Such an in situ hybridization analysis is described in the example in Section 14, below. Specifically, the roles of the rchd502 and rchd528 genes in cardiovascular disease

30 were further demonstrated by detecting high levels of their expression specifically within the endothelial cells of diseased tissue removed from a human cardiovascular disease patient, and not in any other cell type present in the tissue, including smooth muscle cells and macrophages. These results clearly demonstrate how detection of differentially xpressed gen s in the paradigms described herein leads to

biologically r levant, novel, specific targets for the treatment and diagnosis of cardiovascular disease.

Third, the sequences of the identified genes may be used, utilizing standard techniques, to place the genes onto 5 genetic maps, e.g., mouse (Copeland & Jenkins, 1991, Trends in Genetics 7: 113-118) and human genetic maps (Cohen, et al., 1993, Nature 366: 698-701). Such mapping information may yield information regarding the genes' importance to human disease by, for example, identifying genes which map 10 near genetic regions to which known genetic cardiovascular disease tendencies map.

Fourth, the biological function of the identified genes may be more directly assessed by utilizing relevant in vivo and in vitro systems. In vivo systems may include, but are not limited to, animal systems which naturally exhibit cardiovascular disease predisposition, or ones which have been engineered to exhibit such symptoms, including but not limited to the apoE-deficient atherosclerosis mouse model (Plump et al., 1992, Cell 71: 343-353). Such systems are discussed in Section 5.4.4.1, below.

The use of such an in vivo system is described in detail in the example provided in Section 7, below, confirming the role of the target gene bcl-2 (see Table 1, in Section 5.4.1, below). Briefly, bcl-2 expression first was 25 shown to be down-regulated in the apoE-deficient atherosclerosis mouse model. Then, a transgenic mouse was engineered bearing the human bcl-2 gene under the control of a promoter which is induced in monocyte foam cells under atherogenic conditions. To test the effect of the induction 30 of bcl-2 under such conditions, the transgenic mouse is crossed with the apoE-deficient mouse. apoE-deficient progeny bearing the highly expressible bcl-2 gene are then examined for plaque formation and development. Reduction in plaque formation and development in these progeny confirms 35 the effectiveness of intervening in cardiovascular disease through this targ t gene.

In vitro systems may include, but are not limited to, cell-based systems comprising cell typ s known or suspect d of involvement in cardiovascular disease. Such systems are discussed in detail, below, in Section 5.4.4.2.

In further characterizing the biological function of the identified genes, the expression of these genes may be modulated within the in vivo and/or in vitro systems, i.e., either over- or underexpressed, and the subsequent effect on the system then assayed. Alternatively, the activity of the product of the identified gene may be modulated by either increasing or decreasing the level of activity in the in vivo and/or in vitro system of interest, and its subsequent effect then assayed.

The information obtained through such

15 characterizations may suggest relevant methods for the treatment of cardiovascular disease involving the gene of interest. For example, treatment may include a modulation of gene expression and/or gene product activity.

Characterization procedures such as those described herein

20 may indicate where such modulation should involve an increase or a decrease in the expression or activity of the gene or

gene product of interest.

For example, genes which are up-regulated under disease conditions may be involved in causing or exacerbating 25 the disease condition. Treatments directed at down-regulating the activity of such harmfully expressed genes will ameliorate the disease condition. On the other hand, the up-regulation of genes under disease conditions may be part of a protective response by affected cells. Treatments directed at increasing or enhancing the activity of such up-regulated gene products, especially in individuals lacking normal up-regulation, will similarly ameliorate disease conditions. Such methods of treatment are discussed, below, in Section 5.6.

5.4. DIFFERENTIALLY EXPRESSED AND PATHWAY GENES

Id ntified genes, which include but are not limited to differ ntially expressed g nes such as those identified in Section 5.1.1, above, and pathway genes, such as those identified in Section 5.2, above, are described herein. Specifically, the nucleic acid sequences and gene products of such identified genes are described herein. Further, antibodies directed against the identified genes' products, and cell- and animal-based models by which the identified genes may be further characterized and utilized are also discussed in this Section.

5.4.1. DIFFERENTIALLY EXPRESSED AND PATHWAY GENE SEQUENCES

The differentially expressed and pathway genes of the invention are listed below, in Table 1. Differentially expressed and pathway gene nucleotide sequences are shown in FIGS. 8, 12, 15, 18, 22, 28, 31, and 35.

Table 1 lists differentially expressed genes
identified through, for example, the paradigms discussed,
above, in Section 5.1.1, and below, in the examples presented
in Sections 6 through 9. Table 1 also summarizes information
regarding the further characterization of such genes.

differentially expressed gene is described under the column headed "Paradigm of Original Detection". The expression patterns of those genes which have been shown to be differentially expressed, for example, under one or more of the paradigm conditions described in Section 5.1.1 are summarized under the column headed "Paradigm Expression Pattern". For each of the tested genes, the paradigm which was used and the difference in the expression of the gene among the samples generated is shown. "1" indicates that gene expression is up-regulated (i.e., there is an increase in the amount of detectable mRNA) among the samples generated, while "1" indicates that gene expressi n is downregulated (i..., there is a decrease in the amount f

detectable mRNA) among the samples generated. "Detectable" as used herein, refers to levels of mRNA which are detectable via, for exampl, standard Northern and/or RT-PCR techniques which are well known to those of skill in the art.

5 Cell types in which differential expression was detected are also summarized in Table 1 under the column headed "Cell Type Detected in". The column headed "Chromosomal Location" provides the human chromosome number on which the gene is located. Additionally, in instances 10 wherein the genes contain nucleotide sequences similar or homologous to sequences found in nucleic acid databases.

The genes listed in Table 1 may be obtained using cloning methods well known to those skilled in the art,

references to such similarities are listed.

- 15 including but not limited to the use of appropriate probes to detect the genes within an appropriate cDNA or gDNA (genomic DNA) library. (See, for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, which is incorporated by reference herein in
- 20 its entirety). Probes for the novel sequences reported herein may be obtained directly from the isolated clones deposited with the NRRL or ATCC, as indicated in Table 2, below. Alternatively, oligonucleotide probes for the novel genes may be synthesized based on the DNA sequences disclosed
- 25 herein in FIGs. 8, 12, 15, 18, 22, 28, 31, and 35. Such synthetic oligonucleotides may be similarly produced based on the sequences provided for the previously known genes described in the following references: Cleary et al., 1986, Cell 47: 19-28 (bcl-2); Takahashi et al., 1990, J. Biochem
- 30 108: 145-148 (glutathione peroxidase); and Jones et al., 1993, J. Biol. Chem. 268: 9049-9054 (prostaglandin endoperoxide synthase II), each of which is incorporated herein in its entirety.

The sequence obtained from clones containing

35 partial coding sequences or non-coding sequences can be used to obtain the entire coding region by using the RACE method (Chenchik, et al., 1995, CLONTECHniqu s (X) 1: 5-8; Barnes,

1994, Proc. Natl. Acad. Sci. USA 91: 2216-2220; and Cheng et al., Proc. Natl. Acad. Sci. USA 91: 5695-5699).
Oligonucleotid s can b designed based on the sequence obtained from the partial clone that can amplify a reverse transcribed mRNA encoding the entire coding sequence. This method was used, as described in the example in Section 9, below, to obtain the entire coding region of the rchd523 gene.

Alternatively, probes can be used to screen cDNA

10 libraries prepared from an appropriate cell or cell line in which the gene is transcribed. For example, the genes described herein that were detected in monocytes may be cloned from a cDNA library prepared from monocytes isolated as described in Section 7.1.1, below. In fact, as described in detail in the example in Section 9, below, this method was applied in order to obtain the entire coding region of the rchd534 gene. Briefly, the up-regulation of this gene was detected, under Paradigm D, in HUVEC's subjected to shear stress. Then, amplified partial sequence of the rchd534 gene

20 was subcloned. The insert was then isolated and used to probe a cDNA library prepared from shear stress treated HUVEC's. A cDNA clone containing the entire rchd534 coding region was detected, isolated, and sequenced.

The genes described herein that were detected in

25 endothelial cells may also be cloned from a cDNA library
constructed from endothelial cells isolated as described in
Progress in Hemostasis and Thrombosis, Vol. 3, P. Spaet,
editor, Grune & Stratton Inc., New York, 1-28.
Alternatively, the genes may be retrieved from a human

30 placenta cDNA library (Clontech Laboratories, Palo Alto, CA),
according to Takahashi et al., 1990, supra; a HUVEC cDNA
library as described in Jones et al. 1993, supra; or an acute
lymphoblastic leukemia (SUP-B2) cDNA library as described in
Cleary et al., 1986, supra, for example. Genomic DNA

35 libraries can be prepared from any source.

TABLE

•			Differentially Expressed and Pathway Genes	V Expressed a	nd Pathway	Genes		
	Gene	Seq. ID #	Paradigm of Original Detection	Paradigm Expr. Pattern	Cell Type Detected in	Chromosomal Location	Ref	Seg.
Ω.	Band 14: bcl-2		B (Section 5.1.1.4)	0	Monocytes		1	
	Glutathione peroxidase		60	1	Monocytes		2	
	rchd005	1	C (Section 5.1.1.5)	-	Endothelial		New 3	FIG. 8
10	rchd024	2	ິວ	ŧ	Endothelial	4	New	FIG. 12
	rchd032	3	υ	#	Endothelial		New	FIG. 15
	rchd036	4	ی	-	Endothelial	15	New	FIG. 18
	rchd502	ស	D (Section 5.1.1.6)	ı	Endothelial		New 4	FIG. 22
15	rchd505: COX II		Q	•	Endothelial		5	
	rchd523	9	D	=	Endothelial	7	New	FIG. 28
	rchd528	7	Q	•	Endothelial		New 6	FIG. 31
	rchd530; MnSOD		Q	ĮĮ.	Endothelial		7	
20	rchd534	36	Ω	t =	Endothelial	15	New 8	PIG 35

Cleary et al., 1986, Cell 47: 19-28.

Takahashi et al., 1990, J. Biochem. 108: 145-148.

Shark Na K-Cl corransporter, Xu et al., 1994 Proc. Natl. Acad. Sci. U.S.A. 91: 2201-2205.

Rat matrin F/G Hakes et al., 1991 Proc. Natl. Acad. Sci. U.S.A. 88: 6186-6190.

Jones et al., 1993, J. Biol. Chem. 268: 9049-9054.

Xenopus Xotch (homolog of Drosophila Notch), Coffman et al., 1990, Science 249: 1438-1441.

Heckl, 1988, Nucl. Acids Res. 16: 6224.

Drosohila Mothers against dpp (Mad), Sekelsky et al., 1995, Genetics 139: 1347-1358.

25

Table 2, bel w, lists isolated clones that contain sequences of the novel genes list d in Table 1. Such clones were produced from amplified a quences of the indicated differential display band which were subcloned into the TA 5 cloning vector (Invitrogen, San Diego, CA), as described in Section 6.1, below. Also listed in Table 2, below, are the strains deposited with the NRRL or ATCC which contain each such clone. Such strains were produced by transforming E. coli strain INVαF' (Invitrogen) with the indicated plasmid, 10 as described in Section 6.1, below. The names of the plasmids containing the entire coding region of a novel gene bear the prefix pFCHD, and the names of the strains carrying these plasmids bear the prefix FCHD.

TABLE 2

	GENE	Strain Deposited with NRRL	Plasmid Clone Contained within Deposited Strain
5	rchd005	RCHD005	pRCHD005
	rchd024	RCHD024	pRCHD024
	rchd032	RCHD032	pRCHD032
10	rchd036	RCHD036	pRCHD036
	rchd502	FCHD502SF	pFCHD502SF
		FCHD502SJ	pFCHD502SJ
15		RCHD502	pRCHD502
13	rchd523	FCHD523	pFCHD523
		RCDH523	pRCHD523
	rchd528	FCHD528A	pFCHD528A
20		FCHD528B	pFCHD528B
		FCHD528C	pFCHD528C
		RCHD528	pRCHD528
25	rchd534	FCHD534	pFCHD534

As used herein, "differentially expressed gene"
(i.e. target and fingerprint gene) or "pathway gene" refers
to (a) a gene containing at least one of the DNA sequences
disclosed herein (as shown in FIGS. 8, 12, 15, 18, 22, 28,
31, and 35), or contained in the clones listed in Table 2, as
deposited with the NRRL or ATCC; (b) any DNA sequence that
encodes the amino acid sequence encoded by the DNA sequences
disclosed herein (as shown in FIGS. 8, 12, 15, 18, 22, 28,
31, and 35), contained in the clones, listed in Table 2, as
deposited with the NRRL or ATCC or contained within th
coding region of the g n to which the DNA sequences

disclosed herein (as shown in FIGS. 8, 12, 15, 18, 22, 28, 31, and 35) or contained in the cl nes listed in Table 2, as deposited with the NRRL or ATCC, belong; (c) any DNA sequence that hybridizes to the complement of the coding sequences

- 5 disclosed herein, contained in the clones listed in Table 2, as deposited with the NRRL or ATCC, or contained within the coding region of the gene to which the DNA sequences disclosed herein (as shown in FIGS. 8, 12, 15, 18, 22, 28, 31, and 35) or contained in the clones listed in Table 2, as
- 10 deposited with the NRRL or ATCC, belong, under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C (Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology,
- 15 Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a gene product functionally equivalent to a gene product encoded by sequences contained within the clones listed in Table 2; and/or (d) any DNA sequence that hybridizes to the complement
- 20 of the coding sequences disclosed herein, (as shown in FIGS. 8, 12, 15, 18, 22, 28, 31, and 35) contained in the clones listed in Table 2, as deposited with the NRRL or ATCC, or contained within the coding region of the gene to which DNA sequences disclosed herein (as shown in FIGS. 8, 12, 15, 18,
- 25 22, 28, 31, and 35) or contained in the clones, listed in Table 2, as deposited with the NRRL or ATCC, belong, under less stringent conditions, such as moderately stringent conditions, e.g., washing in 0.2xSSC/0.1% SDS at 42°C (Ausubel et al., 1989, supra), yet which still encodes a functionally equivalent gene product.

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the DNA sequences (a) through (c), in the preceding paragraph. Such hybridization

35 conditions may be highly stringent or less highly stringent, as described above. In instanc s wherein the nucleic acid molecules are deoxyoligonucle tides ("oligos"), highly

string nt conditions may refer, __g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-bas oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos). These nucleic acid 5 molecules may act as target gene antisense molecules, useful, for example, in target gene regulation and/or as antisense primers in amplification reactions of target gene nucleic acid sequences. Further, such sequences may be used as part of ribozyme and/or triple helix sequences, also useful for 10 target gene regulation. Still further, such molecules may be used as components of diagnostic methods whereby the presence of a cardiovascular disease-causing allele, may be detected.

The invention also encompasses (a) DNA vectors that contain any of the foregoing coding sequences and/or their

15 complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences; and (c) genetically engineered host cells that contain any of the foregoing

20 coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell. As used herein, regulatory elements include but are not limited to inducible and non-inducible promoters, enhancers, operators and other elements known to

25 those skilled in the art that drive and regulate expression. The invention includes fragments of any of the DNA sequences disclosed herein.

In addition to the gene sequences described above, homologues of such sequences, as may, for example be present in other species, may be identified and may be readily isolated, without undue experimentation, by molecular biological techniques well known in the art. Further, there may exist genes at other genetic loci within the genome that encode proteins which have extensive homology to one or more domains of such gene products. These genes may also be identified via similar techniques.

For xample, the isolated differentially express d g ne sequence may be labeled and used to screen a cDNA library constructed from mRNA btained from the organism of interest. Hybridization conditions will be of a lower 5 stringency when the cDNA library was derived from an organism different from the type of organism from which the labeled sequence was derived. Alternatively, the labeled fragment may be used to screen a genomic library derived from the organism of interest, again, using appropriately stringent 10 conditions. Such low stringency conditions will be well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 15 1989, Molecular Cloning, A Laboratory Manual, Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current

Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.

Further, a previously unknown differentially 20 expressed or pathway gene-type sequence may be isolated by performing PCR using two degenerate oligonucleotide primer pools designed on the basis of amino acid sequences within the gene of interest. The template for the reaction may be cDNA obtained by reverse transcription of mRNA prepared from 25 human or non-human cell lines or tissue known or suspected to express a differentially expressed or pathway gene allele.

The PCR product may be subcloned and sequenced to insure that the amplified sequences represent the sequences of a differentially expressed or pathway gene-like nucleic 30 acid sequence. The PCR fragment may then be used to isolate a full length cDNA clone by a variety of methods. example, the amplified fragment may be labeled and used to screen a bacteriophage cDNA library. Alternatively, the labeled fragment may be used to screen a genomic library.

PCR technology may also be utilized to isolat full 35 length cDNA s quences. For xample, RNA may be isolated, foll wing standard procedures, from an appropriate cellular

or tissue source. A r v rse transcription reaction may be p rformed on the RNA using an oligonucleotid primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may 5 then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid may be digested with RNAase H, and second strand synthesis may then be primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment may easily be isolated. For a review of 10 cloning strategies which may be used, see e.g., Sambrook et al., 1989, supra.

In cases where the differentially expressed or pathway gene identified is the normal, or wild type, gene, this gene may be used to isolate mutant alleles of the gene.

15 Such an isolation is preferable in processes and disorders which are known or suspected to have a genetic basis. Mutant alleles may be isolated from individuals either known or suspected to have a genotype which contributes to cardiovascular disease symptoms. Mutant alleles and mutant allele products may then be utilized in the therapeutic and diagnostic assay systems described below.

A cDNA of the mutant gene may be isolated, for example, by using PCR, a technique which is well known to those of skill in the art. In this case, the first cDNA

25 strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying the mutant allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant gene to that of the n rmal gene, the mutation(s) responsible for the

l ss or alteration of function of the mutant gen product can b asc rtained.

Alt rnatively, a gen mic or cDNA library can be constructed and screened using DNA or RNA, respectively, from 5 a tissue known to or suspected of expressing the gene of interest in an individual suspected of or known to carry the mutant allele. The normal gene or any suitable fragment thereof may then be labeled and used as a probed to identify the corresponding mutant allele in the library. The clone containing this gene may then be purified through methods routinely practiced in the art, and subjected to sequence analysis as described, above, in this Section.

Additionally, an expression library can be constructed utilizing DNA isolated from or cDNA synthesized 15 from a tissue known to or suspected of expressing the gene of interest in an individual suspected of or known to carry the mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with 20 antibodies raised against the normal gene product, as described, below, in Section 5.4.3. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) In cases where the mutation 25 results in an expressed gene product with altered function (e.g., as a result of a missense mutation), a polyclonal set of antibodies are likely to cross-react with the mutant gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to 30 sequence analysis as described in this Section, above.

5.4.2. DIFFERENTIALLY EXPRESSED AND PATHWAY GENE PRODUCTS

Differentially expressed and pathway gene products include those proteins encoded by the differentially expressed and pathway g ne sequences d scrib d in Secti n 5.4.1, above. Specifically, differentially expressed and

pathway gene products may include differ ntially xpressed and pathway g ne polypeptides encoded by th differ ntially expr ssed and pathway gene sequences c ntained in the clones listed in Table 2, above, as deposited with the NRRL or ATCC, 5 or contained in the coding regions of the genes to which DNA sequences disclosed herein (in FIGS. 8, 12, 15, 18, 22, 28, 31, and 35) or contained in the clones, listed in Table 2, as deposited with the NRRL or ATCC, belong, for example.

In addition, differentially expressed and pathway 10 gene products may include proteins that represent functionally equivalent gene products. Such an equivalent differentially expressed or pathway gene product may contain deletions, additions or substitutions of amino acid residues within the amino acid sequence encoded by the differentially 15 expressed or pathway gene sequences described, above, in Section 5.4.1, but which result in a silent change, thus producing a functionally equivalent differentially expressed on pathway gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, 20 solubility, hydrophobicity, hydrophilicity, and/or the

amphipathic nature of the residues involved.

For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral 25 amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Functionally equivalent", as 30 utilized herein, refers to a protein capable of exhibiting a substantially similar in vivo activity as the endogenous differentially expressed or pathway gene products encoded by the differentially expressed or pathway gene sequences described in Section 5.4.1, above. Alternatively, when 35 utilized as part of assays such as those described, below, in Section 5.5, "functionally equivalent" may refer to peptides capable of interacting with other c llular or extrac llular

mol cules in a manner substantially similar to the way in which the corresponding portion of the endogenous differ ntially expressed or pathway gen product would.

The differentially expressed or pathway gene

5 products may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing the differentially expressed or pathway gene polypeptides and peptides of the invention by expressing nucleic acid encoding differentially expressed or pathway

- 10 gene sequences are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing differentially expressed or pathway gene protein coding sequences and appropriate transcriptional/translational control signals. These methods
- 15 include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA capable of encoding differentially
- 20 expressed or pathway gene protein sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M.J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.
- A variety of host-expression vector systems may be utilized to express the differentially expressed or pathway gene coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also
- 30 represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the differentially expressed or pathway gene protein of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis)
- 35 transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expr ssion vect rs containing differentially expressed or pathway gen protein coding sequences; y ast

(e.g. Saccharomyces, Pichia) transf rmed with recombinant yeast xpression vectors containing the differentially expressed or pathway g n protein coding s quences; ins ct cell systems infected with recombinant virus expression 5 vectors (e.g., baculovirus) containing the differentially expressed or pathway gene protein coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expres-10 sion vectors (e.g., Ti plasmid) containing differentially expressed or pathway gene protein coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., 15 metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use 20 intended for the differentially expressed or pathway gene protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion 25 protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which the differentially expressed or pathway gene protein coding sequence may be ligated individually into 30 the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. vectors may also be used to express foreign polypeptides as 35 fusion proteins with glutathione S-transferase (GST). gen ral, such fusion proteins are s luble and can easily be purified fr m lysed cells by adsorption to glutathione-

agarose beads followed by elution in the pr sence of free glutathion. The pGEX vectors are designed to includ thrombin or factor Xa pr teas cl avage sites so that the cloned target gene protein can be released from the GST 5 moiety.

In a preferred embodiment, full length cDNA sequences are appended with in-frame Bam HI sites at the amino terminus and Eco RI sites at the carboxyl terminus using standard PCR methodologies (Innis et al., 1990, supra) and ligated into the pGEX-2TK vector (Pharmacia, Uppsala, Sweden). The resulting cDNA construct contains a kinase recognition site at the amino terminus for radioactive labelling and glutathione S-transferase sequences at the carboxyl terminus for affinity purification (Nilsson, et al., 1985, EMBO J. 4: 1075; Zabeau and Stanley, 1982, EMBO J. 1: 1217.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda

20 cells. The differentially expressed or pathway gene coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of differentially expressed or pathway gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera

30 frugiperda cells in which the inserted gene is expressed.

(E.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S.

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an 35 adenovirus is used as an expression vector, the differentially expressed or pathway gen c ding sequence of inter st may b ligated to an adenovirus

Patent No. 4,215,051).

transcription/translation control complex, e.g., the late promoter and tripartite lead r s quenc. This chimeric gene may then be insert d in the adenovirus gen me by in vitro or in vivo recombination. Insertion in a non-essential region

- 5 of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing differentially expressed or pathway gene protein in infected hosts. (E.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also
- 10 be required for efficient translation of inserted differentially expressed or pathway gene coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire differentially expressed or pathway gene, including its own initiation codon and
- 15 adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the differentially expressed or pathway gene coding sequence is inserted, exogenous translational control
- 20 signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of
- 25 a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544).
- In a preferred embodiment, cDNA sequences encoding the full-length open reading frames are ligated into pCMVβ replacing the β-galactosidase gene such that cDNA expression is driven by the CMV promoter (Alam, 1990, Anal. Biochem. 188: 245-254; MacGregor & Caskey, 1989, Nucl. Acids Res. 17: 35 2365; Norton & Corrin, 1985, Mol. Cell. Biol. 5: 281).
- In addition, a host c ll strain may be chosen which modulates the expr ssion of the inserted sequences, or

modifies and processes the gene product in the specific fashion desir d. Such modifications (.g., glycosylation) and processing (.g., cleavage) of protein products may be important for the function of the protein. Different host 5 cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which 10 possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, etc.

- For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the differentially expressed or pathway gene protein may be engineered. Rather than using expression vectors which contain viral origins of
- 20 replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered
- 25 cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form
- 30 foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the differentially expressed or pathway gene protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds
- 35 that affect the endogenous activity of the differentially expressed or pathway gene pr t in.

A number of sel ction systems may be used, including but not limited to th herp s simpl x virus thymidine kinas (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & 5 Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk', hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to 10 methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 15 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.

An alternative fusion protein system allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni^{2*} nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

When used as a component in assay systems such as 30 those described, below, in Section 5.5, the differentially expressed or pathway gene protein may be labeled, either directly or indirectly, to facilitate detection of a complex formed between the differentially expressed or pathway gene protein and a test substance. Any of a variety of suitable 1 labeling systems may be used including but not limited to radi isotopes such as 125I; enzyme labelling systems that

gen rate a detectable colorimetric signal or light when expos d to substrate; and fluorescent labels.

Wh r r combinant DNA technology is used to produce the differentially expressed or pathway gene protein for such 5 assay systems, it may be advantageous to engineer fusion proteins that can facilitate labeling, immobilization and/or detection.

Indirect labeling involves the use of a protein, such as a labeled antibody, which specifically binds to

10 either a differentially expressed or pathway gene product. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library.

5.4.3. DIFFERENTIALLY EXPRESSED OR PATHWAY GENE PRODUCT ANTIBODIES

Described herein are methods for the production of antibodies capable of specifically recognizing one or more differentially expressed or pathway gene epitopes. antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitopebinding fragments of any of the above. Such antibodies may be used, for example, in the detection of a fingerprint, target, or pathway gene in a biological sample, or, alternatively, as a method for the inhibition of abnormal target gene activity. Thus, such antibodies may be utilized as part of cardiovascular disease treatment methods, and/or may be used as part of diagnostic techniques whereby patients may be tested for abnormal levels of fingerprint, target, or pathway gene proteins, or for the presence of abnormal forms of the such proteins. 35

For the production of antibodies to a diff rentially express d or pathway gene, various host

animals may be immunized by injection with a differentially xpr ssed or pathway gen protein, or a portion thereof. Such host animals may include but are not limited to rabbits, mice, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on th host species, including but not limited to Freund's (complet and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

In a preferred embodiment, peptide sequences corresponding to amino sequences of target gene products were selected and submitted to Research Genetics (Huntsville, AL) for synthesis and antibody production. Peptides were modified as described (Tam, J.P., 1988, Proc. Natl. Acad. Sci. USA 85: 5409-5413; Tam, J.P., and Zavala, F., 1989, J. Immunol. Methods 124: 53-61; Tam, J.P., and Lu, Y.A., 1989, Proc. Natl. Acad. Sci. USA 86: 9084-9088), emulsified in an equal volume of Freund's adjuvant and injected into rabbits at 3 to 4 subcutaneous dorsal sites for a total volume of 1.0 ml (0.5 mg peptide) per immunization. The animals were boosted after 2 and 6 weeks and bled at weeks 4, 8, and 10. 25 The blood was allowed to clot and serum was collected by centrifugation.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as target gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, may be immunized by injection with differentially expressed or pathway gene product supplemented with adjuvants as also described above.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production

of antibody molecules by continuous cell lin s in cultur. These include, but are n t limited to the hybridoma technique of K hl r and Milstein, (1975, Nature 256:495-497; and U.S. Patent No. 4,376,110), the human B-cell hybridoma technique

- 5 (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG,
- 10 IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

In addition, techniques developed for the

15 production of "chimeric antibodies" (Morrison et al., 1984,
Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984,
Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452454) by splicing the genes from a mouse antibody molecule of
appropriate antigen specificity together with genes from a

- 20 human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.
- Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce differentially
- 30 expressed or pathway gene-single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific

35 epitopes may be generated by known techniques. For example, such fragments include but are n t limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the

antibody molecule and the Fab fragments which can be generat d by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab xpression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

5.4.4. CELL- AND ANIMAL-BASED MODEL SYSTEMS

Described herein are cell- and animal-based systems

10 which act as models for cardiovascular disease. These systems may be used in a variety of applications. For example, the cell- and animal-based model systems may be used to further characterize differentially expressed and pathway genes, as described, above, in Section 5.3. Such further

- 15 characterization may, for example, indicate that a differentially expressed gene is a target gene. Second, such assays may be utilized as part of screening strategies designed to identify compounds which are capable of ameliorating cardiovascular disease symptoms, as described,
- 20 below, in Section 5.5.4. Thus, the animal- and cell-based models may be used to identify drugs, pharmaceuticals, therapies and interventions which may be effective in treating cardiovascular disease. In addition, as described in detail, below, in Section 5.7.1, such animal models may
- 25 be used to determine the LD_{50} and the ED_{50} in animal subjects, and such data can be used to determine the in vivo efficacy of potential cardiovascular disease treatments.

5.4.4.1. ANIMAL-BASED SYSTEMS

Animal-based model systems of cardiovascular disease may include, but are not limited to, non-recombinant and engineered transgenic animals.

Non-recombinant animal models for cardiovascular disease may include, for example, genetic models. Such 35 genetic cardiovascular disease models may include, for xample, apoB or apoR d fici nt pigs (Rapacz, et al., 1986, Science 234:1573-1577) and Watanabe heritable hyperlipidemic

(WHHL) rabbits (Kita et al., 1987, Proc. Natl. Acad. Sci USA 84: 5928-5931).

Non-recombinant, non-genetic animal models of atherosclerosis may include, for example, pig, rabbit, or rat 5 models in which the animal has been exposed to either chemical wounding through dietary supplementation of LDL, or mechanical wounding through balloon catheter angioplasty, for example.

Additionally, animal models exhibiting

10 cardiovascular disease symptoms may be engineered by utilizing, for example, target gene sequences such as those described, above, in Section 5.4.1, in conjunction with techniques for producing transgenic animals that are well known to those of skill in the art. For example, target gene sequences may be introduced into, and overexpressed in, the genome of the animal of interest, or, if endogenous target gene sequences are present, they may either be overexpressed or, alternatively, be disrupted in order to underexpress or inactivate target gene expression, such as described for the 20 disruption of apoE in mice (Plump et al., 1992, Cell 71: 343-353).

In order to overexpress a target gene sequence, the coding portion of the target gene sequence may be ligated to a regulatory sequence which is capable of driving gene

25 expression in the animal and cell type of interest. Such regulatory regions will be well known to those of skill in the art, and may be utilized in the absence of undue experimentation.

The use of such a genetically engineered animal30 based system is described in detail in the example provided in Section 7, below, for the target gene bcl-2 (see Table 1, in Section 5.4.1, above). Briefly, bcl-2 expression first was shown to be down-regulated in the apoE-deficient atherosclerosis mouse model. Then, a transgenic mouse was engineered bearing the human bcl-2 gene under the control of a promoter which is induced under atherog nic conditions. To test the effect of the induction of bcl-2 under such

conditions, the transgenic mouse is crossed with the apoE-deficient mous. apoE-deficient progeny bearing the highly xpr ssible bcl-2 gene are then examined for plaque formation and development. Reduction in plaque formation and development in these progeny confirms the effectiveness of intervening in cardiovascular disease through this target gene.

For underexpression of an endogenous target gene sequence, such a sequence may be isolated and engineered such 10 that when reintroduced into the genome of the animal of interest, the endogenous target gene alleles will be inactivated. Preferably, the engineered target gene sequence is introduced via gene targeting such that the endogenous target sequence is disrupted upon integration of the 15 engineered target gene sequence into the animal's genome.

Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate cardiovascular disease animal models.

Gene targeting is discussed, below, in this Section.

Any technique known in the art may be used to introduce a target gene transgene into animals to produce the founder lines of transgenic animals. Such techniques

- 25 include, but are not limited to pronuclear microinjection
 (Hoppe, P.C. and Wagner, T.E., 1989, U.S. Pat. No.
 4,873,191); retrovirus mediated gene transfer into germ lines
 (Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA
 82:6148-6152); gene targeting in embryonic stem cells
- 30 (Thompson et al., 1989, Cell 56:313-321); electroporation of embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814); and sperm-mediated gene transfer (Lavitrano et al., 1989, Cell 57:717-723); etc. For a review of such techniques, see Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229,
 35 which is incorporated by reference herein in its entirety.
 - The present invention pr vid s for transgenic animals that carry the transgene in all their cells, as well

as animals which carry the transgen in som , but not all their cells, i.e., mosaic animals. The transgene may b integrated as a single transgen or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene 5 may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko, M. et al., 1992, Proc. Natl. Acad. Sci. USA 89: 6232-6236). The regulatory sequences required for such a cell-type specific activation will depend upon the 10 particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the target gene transgene be integrated into the chromosomal site of the endogenous target gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors 15 containing some nucleotide sequences homologous to the endogenous target gene of interest are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous target gene. 20 transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene of interest in only that cell type, by following, for example, the teaching of Gu et al. (Gu, et al., 1994, Science 265: 103-106). The regulatory sequences required for such a 25 cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. Recombinant methods for expressing target genes are described in Section 5.4.2,

Once transgenic animals have been generated, the expression of the recombinant target gene and protein may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of th transg ne in the tissues of th transgenic animals may also be assess d using techniques which include but are not

limited to Northern bl t analysis of tissue samples obtained fr m th animal, in situ hybridization analysis, and RT-PCR. Samples of target gene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for 5 the target gene transgene gene product of interest.

The target gene transgenic animals that express target gene mRNA or target gene transgene peptide (detected immunocytochemically, using antibodies directed against th target gene product's epitopes) at easily detectable levels 10 should then be further evaluated to identify those animals which display characteristic cardiovascular disease symptoms. Such symptoms may include, for example, increased prevalence and size of fatty streaks and/or cardiovascular disease plaques.

- 15 Additionally, specific cell types within the transgenic animals may be analyzed and assayed for cellular phenotypes characteristic of cardiovascular disease. In the case of monocytes, such phenotypes may include but are not limited to increases in rates of LDL uptake, adhesion to 20 endothelial cells, transmigration, foam cell formation, fatty streak formation, and production of foam cell specific products. Cellular phenotype assays are discussed in detail in Section 5.4.4.2, below. Further, such cellular phenotyp s may include a particular cell type's fingerprint pattern of 25 expression as compared to known fingerprint expression profiles of the particular cell type in animals exhibiting cardiovascular disease symptoms. Fingerprint profiles are described in detail in Section 5.8.1, below. Such transgenic animals serve as suitable model systems for cardiovascular 30 disease.
 - Once target gene transgenic founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include but are not limited to:
- 35 outbreeding of founder animals with more than one integration site in order to stablish s parate lines; inbreeding of separat lines in order to produce compound target gene

transgenics that express the target gene transgene of interest at higher levels because of the eff cts of additive expressi n of each target gene transgene; crossing of heterozygous transgenic animals to produce animals homozygous 5 for a given integration site in order both to augment expression and eliminate the possible need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; breeding animals to different inbred genetic backgrounds so 10 as to examine effects of modifying alleles on expression of the target gene transgene and the development of cardiovascular disease symptoms. One such approach is to cross the target gene transgenic founder animals with a wild type strain to produce an F1 generation that exhibits 15 cardiovascular disease symptoms. The F1 generation may then be inbred in order to develop a homozygous line, if it is found that homozygous target gene transgenic animals are viable.

5.4.4.2. <u>CELL-BASED ASSAYS</u>

Cells that contain and express target gene sequences which encode target gene protein, and, further, exhibit cellular phenotypes associated with cardiovascular disease, may be utilized to identify compounds that exhibit anti-cardiovascular disease activity.

Such cells may include non-recombinant monocyte cell lines, such as U937 (ATCC# CRL-1593), THP-1 (ATCC# TIB-202), and P388D1 (ATCC# TIB-63); endothelial cells such as HUVEC's and bovine aortic endothelial cells (BAEC's); as well as generic mammalian cell lines such as HeLa cells and COS cells, e.g., COS-7 (ATCC# CRL-1651). Further, such cells may include recombinant, transgenic cell lines. For example, the cardiovascular disease animal models of the invention, discussed, above, in Section 5.4.4.1, may be used to generate cell lines, containing one or more cell types involved in cardiovascular dis ase, that can be used as cell cultur mod ls for this disorder. Whil primary cultures deriv d

from the cardiovascular disease transgenic animals of the invention may be utilized, the generation of continuous cell lines is pref rr d. For examples of techniques which may b used to derive a continuous cell line from the transgenic 5 animals, see Small et al., 1985, Mol. Cell Biol. 5:642-648.

Alternatively, cells of a cell type known to be involved in cardiovascular disease may be transfected with sequences capable of increasing or decreasing the amount of target gene expression within the cell. For example, target gene sequences may be introduced into, and overexpressed in, the genome of the cell of interest, or, if endogenous targ t gene sequences are present, they may be either overexpressed or, alternatively disrupted in order to underexpress or inactivate target gene expression.

In order to overexpress a target gene sequence, the coding portion of the target gene sequence may be ligated to a regulatory sequence which is capable of driving gene expression in the cell type of interest. Such regulatory regions will be well known to those of skill in the art, and may be utilized in the absence of undue experimentation. Recombinant methods for expressing target genes are described in Section 5.4.2, above.

For underexpression of an endogenous target gene sequence, such a sequence may be isolated and engineered such 25 that when reintroduced into the genome of the cell type of interest, the endogenous target gene alleles will be inactivated. Preferably, the engineered target gene sequence is introduced via gene targeting such that the endogenous target sequence is disrupted upon integration of the 30 engineered target gene sequence into the cell's genome. Transfection of host cells with target genes is discussed, above, in Section 5.4.4.1.

Cells treated with compounds or transfected with target genes can be examined for phenotypes associated with 35 cardiovascular disease. In the case of monocytes, such phenotypes include but are not limit d to increases in rat s of LDL uptake, adhesion to endothelial cells, transmigration,

foam cell formation, fatty streak formation, and production by foam cells of growth factors such as bFGF, IGF-I, VEGF, IL-1, M-CSF, TGF β , TGF α , TNF α , HB-EGF, PDGF, IFN- γ , and GM-CSF. Transmigration rates, for example, may be measured using the in vitro system of Navab et al., described in

Section 5.1.1.3, above, by quantifying the number of monocytes that migrate across the endothelial monolayer and into the collagen layer of the subendothelial space.

Similarly, HUVEC's can be treated with test

10 compounds or transfected with genetically engineered target
genes described in Section 5.4.2, above. The HUVEC's can
then be examined for phenotypes associated with
cardiovascular disease, including, but not limited to changes
in cellular morphology, cell proliferation, cell migration,

15 and mononuclear cell adhesion; or for the effects on production of other proteins involved in cardiovascular disease such as ICAM, VCAM, PDGF- β , and E-selectin.

Transfection of target gene sequence nucleic acid may be accomplished by utilizing standard techniques. See, 20 for example, Ausubel, 1989, supra. Transfected cells should be evaluated for the presence of the recombinant target gene sequences, for expression and accumulation of target gene mRNA, and for the presence of recombinant target gene protein production. In instances wherein a decrease in target gene expression is desired, standard techniques may be used to demonstrate whether a decrease in endogenous target gene expression and/or in target gene product production is achieved.

5.5. SCREENING ASSAYS FOR COMPOUNDS THAT INTERACT WITH THE TARGET GENE PRODUCT

The following assays are designed to identify compounds that bind to target gene products, bind to other cellular or extracellular proteins that interact with a target gene product, and interfere with the interaction of the target gene product with oth r cellular or extrac llular proteins. For example, in the case f the rchd523 gene

product, which is a transmembrane rec ptor-typ protein, such t chniques can identify ligands for such a r ceptor. An rchd523 gen product ligand can, for xample, act as the basis for amelioration of such cardiovascular diseases as

- 5 atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation, given that rchd523 upregulation is specific to endothelial cells. Such compounds may include, but are not limited to peptides, antibodies, or small organic or inorganic compounds. Methods for the
- 10 identification of such compounds are described in Section 5.5.1, below. Such compounds may also include other cellular proteins. Methods for the identification of such cellular proteins are described, below, in Section 5.5.2.
- Compounds identified via assays such as those

 15 described herein may be useful, for example, in elaborating the biological function of the target gene product, and for ameliorating cardiovascular disease. In instances whereby a cardiovascular disease condition results from an overall lower level of target gene expression and/or target gene
- 20 product in a cell or tissue, compounds that interact with the target gene product may include compounds which accentuate or amplify the activity of the bound target gene protein. Such compounds would bring about an effective increase in the level of target gene product activity, thus ameliorating
 25 symptoms.

In some cases, a target gene observed to be upregulated under disease conditions may be exerting a
protective effect. Compounds that enhance the expression of
such up-regulated genes, or the activity of their gene
30 products, would also ameliorate disease symptoms, especially
in individuals whose target gene is not normally upregulated.

In other instances mutations within the target gene may cause aberrant types or excessive amounts of target gene

35 proteins to be made which have a deleterious effect that leads to cardiovascular disease. Similarly, physiological conditions may cause an xcessive incr ase in target gene

expression leading to cardiovascular disease. In such cases, compounds that bind target g ne protein may be id ntified that inhibit the activity of the bound target gene protein. Assays for testing the effectiveness of compounds, identified by, for example, techniques such as those described in this Section are discussed, below, in Section 5.5.4.

5.5.1. IN VITRO SCREENING ASSAYS FOR COMPOUNDS THAT BIND TO THE TARGET GENE PRODUCT

- In vitro systems may be designed to identify compounds capable of binding the target gene of the invention. Such compounds may include, but are not limited to, peptides made of D-and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see
- 15 e.g., Lam, K.S. et al., 1991, Nature 354:82-84), phosphopeptides (in, for example, the form of random or partially degenerate, directed phosphopeptide libraries; see, e.g., Songyang, Z. et al., 1993, Cell 72:767-778), antibodies, and small organic or inorganic molecules.
- 20 Compounds identified may be useful, for example, in modulating the activity of target gene proteins, preferably mutant target gene proteins, may be useful in elaborating the biological function of the target gene protein, may be utilized in screens for identifying compounds that disrupt
- 25 normal target gene interactions, or may in themselves disrupt such interactions.

The principle of the assays used to identify compounds that bind to the target gene protein involves preparing a reaction mixture of the target gene protein and 30 the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex which can be removed and/or detected in the reaction mixture. These assays can be conducted in a variety of ways. For example, one method to conduct such an assay would involve anchoring the target gene or the test substance onto a solid phase and detecting target gene/test substance c mplexes anchored on the solid phase at the end of th

reaction. In one mbodiment of such a method, the target g n protein may b anchored onto a solid surface, and the test comp und, which is not anchored, may be lab l d, ith r directly or indirectly.

- In practice, microtitre plates are conveniently utilized. The anchored component may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an
- 10 immobilized antibody, preferably a monoclonal antibody, specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.
- In order to conduct the assay, the nonimmobilized

 15 component is added to the coated surface containing the
 anchored component. After the reaction is complete,
 unreacted components are removed (e.g., by washing) under
 conditions such that any complexes formed will remain
 immobilized on the solid surface. The detection of complexes
- 20 anchored on the solid surface can be accomplished in a number of ways. Where the previously nonimmobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously nonimmobilized component is not pre-labeled, an
- 25 indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the previously nonimmobilized component (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).
- Alternatively, a reaction can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for target gene product or the test compound to anchor any complexes formed in solution, and
- 35 a labeled antibody specific for the other component of the possible complex to d tect anchor d complexes.

- 16 mm

Compounds that are shown to bind to a particular

targ t gene product through on of the methods described above can be further tested f r their ability to elicit a biochemical r sp nse from the target gene protein. A particular embodiment is described herein for receptor 5 proteins involved in signal transduction, including but not

- proteins involved in signal transduction, including but not limited to the rchd523 gene product. Compounds that interact with a target gene product receptor domain, can be screened for their ability to function as ligands, i.e., to bind to the receptor protein in a manner that triggers the signal
- 10 transduction pathway. Useful receptor fragments or analogs in the invention are those which interact with ligand. The receptor component can be assayed functionally, i.e., for its ability to bind ligand and mobilize Ca" (see below). These assays include, as components, ligand and a recombinant
- 15 target gene product (or a suitable fragment or analog) configured to permit detection of binding.

For example, and not by way of limitation, a recombinant receptor may be used to screen for ligands by its ability to mediate ligand-dependent mobilization of calcium.

- 20 Cells, preferably myeloma cells or Xenopus oocytes, transfected with a target gene expression vector (constructed according to the methods described in Section 5.4.2, above) are loaded with FURA-2 or INDO-1 by standard techniques. Mobilization of Ca²⁺ induced by ligand is measured by
- 25 fluorescence spectroscopy as previously described (Grynkiewicz et al., 1985, J. Biol. Chem. 260:3440). Ligands that react with the target gene product receptor domain, therefore, can be identified by their ability to produce a fluorescent signal. Their receptor binding activities can be
- 30 quantified and compared by measuring the level of fluorescence produced over background.

The rchd523 gene product consists of a G protein-coupled receptor with multiple transmembrane domains. The Ca^{2+} mobilization assay, therefore, can be used to screen

35 compounds that are ligands of the rchd523 receptor. This screening method is described in detail with respect to rchd523 in the example in Section 12, below. Identification

of rchd523 ligand, and measuring the activity of the ligandreceptor compl x, leads to the identification of antagonists of this interaction, as d scribed in Section 5.5.3, below. Such antagonists are useful in the treatment of 5 cardiovascular disease.

5.5.2. ASSAYS FOR CELLULAR OR EXTRACELLULAR PROTEINS THAT INTERACT WITH THE TARGET GENE PRODUCT

Any method suitable for detecting protein-protein interactions may be employed for identifying novel target protein-cellular or extracellular protein interactions.

These methods are outlined in Section 5.2., supra, for the identification of pathway genes, and may be utilized herein with respect to the identification of proteins which interact with identified target proteins. In such a case, the target gene serves as the known "bait" gene.

5.5.3. ASSAYS FOR COMPOUNDS THAT INTERFERE WITH INTERACTION BETWEEN TARGET GENE PRODUCT AND OTHER COMPOUNDS

The target gene proteins of the invention may, in vivo, interact with one or more cellular or extracellular proteins. Such proteins may include, but are not limited to, those proteins identified via methods such as those

20

- 25 described, above, in Section 5.5.2. For the purposes of this discussion, target gene products and such cellular and extracellular proteins are referred to herein as "binding partners". Compounds that disrupt such interactions may be useful in regulating the activity of the target gene
- 30 proteins, especially mutant target gene proteins. Such compounds may include, but are not limited to molecules such as antibodies, peptides, and the like described in Section 5.5.1. above.

The basic principle of the assay systems used to 35 identify compounds that interfere with the interaction b twe n the target gene protein, and its cellular or extracellular protein binding partner or partn rs involves

preparing a r action mixture containing the target gene protein and the binding partner under conditions and for a time sufficient to allow the two prot ins to interact and bind, thus forming a complex. In order to test a compound

- 5 for inhibitory activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound may be initially included in the reaction mixture or may be added at a time subsequent to the addition of target gene and its cellular or extracellular binding partner.
- 10 Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the target gene protein and the cellular or extracellular binding partner is then detected. The formation of a complex in the control reaction, but not in
- 15 the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the target gene protein and the interactive binding partner protein. Additionally, complex formation within reaction mixtures containing the test compound and a normal target
- 20 gene protein may also be compared to complex formation within reaction mixtures containing the test compound and mutant target gene protein. This comparison may be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal target

25 gene proteins.

The assay for compounds that interfere with the interaction of the binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring one of the binding partners onto a solid 30 phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being 35 tested. For example, test compounds that interf re with the interaction between the binding partners, e.g., by

c mp titi n, can be identified by conducting the reaction in

the presenc of the test substance; <u>i.e.</u>, by adding the test substance to the r action mixture prior to or simultaneously with th target g ne protein and interactive cellular or extracellular protein. Alternatively, test compounds that disrupt preformed complexes, <u>e.g.</u> compounds with higher binding constants that displace one of the binding partners from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed.

The various formats are described briefly below.

In a heterogeneous assay system, either the target gene protein or the interactive cellular or extracellular binding partner protein, is anchored onto a solid surface, and its binding partner, which is not anchored, is labeled, either directly or indirectly. In practice, microtitre

- 15 plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody specific for the
- 20 protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the binding partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is

- 25 complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the binding partner was pre-labeled, the detection of label
- 30 immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the binding partner (the antibody, in turn, may be directly
- 35 labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the ord r of addition of reaction

compon nts, test comp unds which inhibit complex formation or which disrupt preformed complexes can be d tected.

Alternatively, the reaction can b conducted in a liquid phase in the presence or absence of the test compound, 5 the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, 10 depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.

In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed 15 complex of the target gene protein and the interactive cellular or extracellular protein is prepared in which one of the binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Patent No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the binding partners from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt target gene protein-cellular or extracellular protein interaction can be identified.

In a particular embodiment, the target gene protein can be prepared for immobilization using recombinant DNA techniques described in Section 5.4.2, supra. For example, the target gene coding region can be fused to a glutathione—30 S-transferase (GST) gene, using a fusion vector such as pGEX-5X-1, in such a manner that its binding activity is maintained in the resulting fusion protein. The interactive cellular or extracellular protein can be purified and used to raise a monoclonal antibody, using methods routinely
35 practiced in the art and described above, in Section 5.4.3. This antibody can be labeled with the radioactive isot pe
125I, f r exampl, by methods routinely practiced in the art.

In a het rogeneous assay, e.g., th GST-target gen fusion protein can be anchor d to glutathion -agaros beads. Th interactive cellular or extracellular binding partner protein can then be added in the presence or absence of the test

5 compound in a manner that allows interaction and binding to occur. At the end of the reaction period, unbound material can be washed away, and the labeled monoclonal antibody can be added to the system and allowed to bind to the complexed binding partners. The interaction between the target gene

10 protein and the interactive cellular or extracellular binding partner protein can be detected by measuring the amount of radioactivity that remains associated with the glutathioneagarose beads. A successful inhibition of the interaction by the test compound will result in a decrease in measured

Alternatively, the GST-target gene fusion protein and the interactive cellular or extracellular binding partner protein can be mixed together in liquid in the absence of the solid glutathione-agarose beads. The test compound can be added either during or after the binding partners are allowed to interact. This mixture can then be added to the glutathione-agarose beads and unbound material is washed away. Again the extent of inhibition of the binding partner interaction can be detected by adding the labeled antibody and measuring the radioactivity associated with the beads.

15 radioactivity.

In another embodiment of the invention, these same techniques can be employed using peptide fragments that correspond to the binding domains of the target gene protein and the interactive cellular or extracellular protein,

- 30 respectively, in place of one or both of the full length proteins. Any number of methods routinely practiced in the art can be used to identify and isolate the protein's binding site. These methods include, but are not limited to, mutagenesis of one of the genes encoding the proteins and
- 35 screening for disruption of binding in a coimmunoprecipitation assay. Comp nsating mutations in the target gene can b s lected. Sequ nce analysis of the gen s

encoding the respective proteins will r veal the mutations that correspond to the r gion of the prot in involved in interactiv binding. Alternatively, one protein can be anchored to a solid surface using methods described in this 5 Section above, and allowed to interact with and bind to its labeled binding partner, which has been treated with a proteolytic enzyme, such as trypsin. After washing, a short, labeled peptide comprising the binding domain may remain associated with the solid material, which can be isolated and identified by amino acid sequencing. Also, once the gene coding for the for the cellular or extracellular protein is obtained, short gene segments can be engineered to express peptide fragments of the protein, which can then be tested for binding activity and purified or synthesized.

15 For example, and not by way of limitation, target gene can be anchored to a solid material as described above in this Section by making a GST-target gene fusion protein and allowing it to bind to glutathione agarose beads. interactive cellular or extracellular binding partner protein 20 can be labeled with a radioactive isotope, such as 35S, and cleaved with a proteolytic enzyme such as trypsin. Cleavage products can then be added to the anchored GST-target gene fusion protein and allowed to bind. After washing away unbound peptides, labeled bound material, representing the 25 cellular or extracellular binding partner protein binding domain, can be eluted, purified, and analyzed for amino acid sequence by techniques well known in the art; e.g., using the Edman degradation procedure (see e.g., Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & 30 Co., N.Y., pp. 34-49). Peptides so identified can be produced, using techniques well known in the art, either synthetically (see e.g., Creighton, 1983, supra at pp. 50-60) or, if the gene has already been isolated, by using recombinant DNA technology, as described in Section 5.4.2, 35 supra.

A particular emb diment of the invention f atures a

method of scr ning candidate comp unds for their ability to antagonize the interaction between ligand and the receptor domain of a target gene product, including but not limited to the receptor domain of the rchd523 gene product. 5 gene product, which is a G protein-coupled receptor protein containing multiple transmembrane domains, is especially useful in screening for antagonists of ligand-receptor The method involves: a) mixing a candidate interactions. antagonist compound with a first compound which includes a 10 recombinant target gene product comprising a receptor domain (or ligand-binding fragment or analog) on the one hand and with a second compound which includes ligand on the other hand; b) determining whether the first and second compounds bind; and c) identifying antagonistic compounds as those 15 which interfere with the binding of the first compound to the second compound and/or which reduce the ligand-mediated release of intracellular Ca".

By an "antagonist" is meant a molecule which inhibits a particular activity, in this case, the ability of ligand to interact with a target gene product receptor domain and/or to trigger the biological events resulting from such an interaction (e.g., release of intracellular Ca").

Preferred therapeutics include antagonists, e.g., peptide fragments (particularly, fragments derived from the N25 terminal extracellular domain), antibodies (particularly, antibodies which recognize and bind the N-terminal extracellular domain), or drugs, which block ligand or target gene product function by interfering with the ligand-receptor interaction.

- Because the receptor component of the target gene product can be produced by recombinant techniques and because candidate antagonists may be screened in vitro, the instant invention provides a simple and rapid approach to the identification of useful therapeutics.
- Specific receptor fragments of interest include any portions of the target gen products that are capable of interaction with ligand, for xample, all or part of the N-

t rminal xtracellular domain. Such portions include the transmembran s gments and portions of the receptor deduced to be extracellular. Such fragm nts may be useful as antagonists (as described above), and are also useful as 5 immunogens for producing antibodies which neutralize the activity of the target gene product in vivo (e.g., by interfering with the interaction between the receptor and ligand; see below). Extracellular regions may be identified by comparison with related proteins of similar structure 10 (e.g., other members of the G-protein-coupled receptor superfamily); useful regions are those exhibiting homology to the extracellular domains of well-characterized members of the family.

Alternatively, from the primary amino acid

15 sequence, the secondary protein structure and, therefore, the extracellular domain regions may be deduced semi-empirically using a hydrophobicity/hydrophilicity calculation such as the Chou-Fasman method (see, e.g., Chou and Fasman, Ann. Rev. Biochem. 47:251, 1978). Hydrophilic domains, particularly ones surrounded by hydrophobic stretches (e.g., transmembrane domains) present themselves as strong candidates for extracellular domains. Finally, extracellular domains may be identified experimentally using standard enzymatic digest analysis, e.g., tryptic digest analysis.

candidate fragments (e.g., all or part of the transmembrane segments or any extracellular fragment) are tested for interaction with ligand by the assays described herein (e.g., the assay described above). Such fragments are also tested for their ability to antagonize the interaction between ligand and its endogenous receptor using the assays described herein. Analogs of useful receptor fragments (as described above) may also be produced and tested for efficacy as screening components or antagonists (using the assays described herein); such analogs are also considered to be useful in the invention.

Of particular interest ar receptor fragments encompassing the extracellular main-t rminal domain (or a

lligand binding fragm nt thereof). Also of interest ar the target gen product extracellular loops. Peptide fragments derived from these extracellular loops may also be used as antagonists, particularly if the loops cooperate with the samino-terminal domain to facilitate ligand binding. Alternatively, such loops and extracellular N-terminal domain (as well as the full length target gene product) provide immunogens for producing anti-target gene product antibodies.

Binding of ligand to its receptor may be assayed by

10 any of the methods described above in Section 5.5.1.

Preferably, cells expressing recombinant target gene product (or a suitable target gene product fragment or analog) are immobilized on a solid substrate (e.g., the wall of a microtitre plate or a column) and reacted with detectably-

- 15 labelled ligand (as described above). Binding is assayed by the detection label in association with the receptor component (and, therefore, in association with the solid substrate). Binding of labelled ligand to receptor-bearing cells is used as a "control" against which antagonist assays
- 20 are measured. The antagonist assays involve incubation of the target gene product-bearing cells with an appropriate amount of candidate antagonist. To this mix, an equivalent amount to labelled ligand is added. An antagonist useful in the invention specifically interferes with labelled ligand

25 binding to the immobilized receptor-expressing cells.

An antagonist is then tested for its ability to interfere with ligand function, i.e., to specifically interfere with labelled ligand binding without resulting in signal transduction normally mediated by the receptor. To

- 30 test this using a functional assay, stably transfected cell lines containing the target gene product can be produced as described herein and reporter compounds such as the calcium binding agent, FURA-2, loaded into the cytoplasm by standard techniques. Stimulation of the heterologous target gene
- 35 product with ligand or another agonist leads to intracellular calcium rel ase and the conc mitant fluorescence of the calcium-FURA-2 complex. This provides a convenient means for

m asuring agonist activity. Inclusion of potential antagonists along with ligand allows for the screening and identification of authentic r ceptor antagonists as those which effectively block ligand binding without producing fluorescence (i.e., without causing the mobilization of intracellular Ca"). Such an antagonist may be expected to be a useful therapeutic agent for cardiovascular disorders.

Appropriate candidate antagonists include target gene product fragments, particularly fragments containing a 10 ligand-binding portion adjacent to or including one or more transmembrane segments or an extracellular domain of the receptor (described above); such fragments would preferably including five or more amino acids. Other candidate antagonists include analogs of ligand and other peptides as 15 well as non-peptide compounds and anti-target gene product antibodies designed or derived from analysis of the receptor.

This screening method is described in detail with respect to the rchd523 gene in the example in Section 12, below. Because the rchd523 gene product is a G protein-20 coupled receptor, antagonists of the interaction between the rchd523 gene product and its natural ligand provide excellent candidates for compounds effective in the treatment of cardiovascular disease.

5.5.4. ASSAYS FOR AMELIORATION OF CARDIOVASCULAR DISEASE SYMPTOMS

Any of the binding compounds, including but not limited to compounds such as those identified in the foregoing assay systems, may be tested for the ability to 30 ameliorate cardiovascular disease symptoms. Cell-based and animal model-based assays for the identification of compounds exhibiting such an ability to ameliorate cardiovascular disease symptoms are described below.

First, cell-based systems such as those described, 35 above, in Section 5.4.4.2., may be used to identify compounds which may act to ameli rate cardi vascular disease symptoms. For example, such cell systems may be exposed to a compound,

suspected of exhibiting an ability to ameliorat cardiovascular dis ase symptoms, at a sufficient concentration and for a tim sufficient to elicit such an amelioration of cardiovascular disease symptoms in the 5 exposed cells. After exposure, the cells are examined to determine whether one or more of the cardiovascular disease cellular phenotypes has been altered to resemble a more normal or more wild type, non-cardiovascular disease phenotype. For example, and not by way of limitation, in the 10 case of monocytes, such more normal phenotypes may include but are not limited to decreased rates of LDL uptake, adhesion to endothelial cells, transmigration, foam cell formation, fatty streak formation, and production by foam cells of growth factors such as bFGF, IGF-I, VEGF, IL-1, M-15 CSF, TGFβ, TGFα, TNFα, HB-EGF, PDGF, IFN-γ, and GM-CSF. Transmigration rates, for example, may be measured using the

15 CSF, TGFβ, TGFα, TNFα, HB-EGF, PDGF, IFN-γ, and GM-CSF. Transmigration rates, for example, may be measured using the in vitro system of Navab et al., described in Section 5.1.1.3, above, by quantifying the number of monocytes that migrate across the endothelial monolayer and into the 20 collagen layer of the subendothelial space.

In addition, animal-based cardiovascular disease systems, such as those described, above, in Section 5.4.4.1, may be used to identify compounds capable of ameliorating cardiovascular disease symptoms. Such animal models may be

- 25 used as test substrates for the identification of drugs, pharmaceuticals, therapies, and interventions which may be effective in treating cardiovascular disease. For example, animal models may be exposed to a compound, suspected of exhibiting an ability to ameliorate cardiovascular disease
- 30 symptoms, at a sufficient concentration and for a time sufficient to elicit such an amelioration of cardiovascular disease symptoms in the exposed animals. The response of the animals to the exposure may be monitored by assessing the reversal of disorders associated with cardiovascular disease,
- 35 for example, by counting the number of atherosclerotic plaques and/or m asuring their size before and after treatment.

With regard to intervention, any treatments which reverse any aspect of cardiovascular disease symptoms should b considered as candidat s for human cardiovascular disease therapeutic intervention. Dosages of test agents may be determined by deriving dose-response curves, as discussed in Section 5.7.1, below.

Additionally, gene expression patterns may be utilized to assess the ability of a compound to ameliorate cardiovascular disease symptoms. For example, the expression 10 pattern of one or more fingerprint genes may form part of a "fingerprint profile" which may be then be used in such an assessment. "Fingerprint profile", as used herein, refers to the pattern of mRNA expression obtained for a given tissue or cell type under a given set of conditions. Such conditions 15 may include, but are not limited to, atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation, including any of the control or experimental conditions described in the paradigms of Section 5.1.1, above. Fingerprint profiles may be generated, for example, 20 by utilizing a differential display procedure, as discussed, above, in Section 5.1.2, Northern analysis and/or RT-PCR. Any of the gene sequences described, above, in Section 5.4.1. may be used as probes and/or PCR primers for the generation

and corroboration of such fingerprint profiles.

Fingerprint profiles may be characterized for known states, either cardiovascular disease or normal, within the cell- and/or animal-based model systems. Subsequently, these known fingerprint profiles may be compared to ascertain the effect a test compound has to modify such fingerprint

30 profiles, and to cause the profile to more closely resemble that of a more desirable fingerprint.

For example, administration of a compound may cause the fingerprint profile of a cardiovascular disease model system to more closely resemble the control system.

35 Administration of a compound may, alternatively, cause the fing rprint profil of a control system to begin to mimic a cardiovascular dis ase state. Such a compound may, for

exampl, be us d in furth r characterizing th compound of interest, or may be used in the generation of additional animal models.

5 5.5.5. MONITORING OF EFFECTS DURING CLINICAL TRIALS

Monitoring the influence of compounds on cardiovascular disease states may be applied not only in basic drug screening, but also in clinical trials. In such 10 clinical trials, the expression of a panel of genes that have been discovered in one of the paradigms described in Section 5.1.1.1 through 5.1.1.6 may be used as a "read out" of a particular drug's effect on a cardiovascular disease state.

For example, and not by way of limitation, Paradigm
15 A provides for the identification of fingerprint genes that
are up-regulated in monocytes treated with oxidized LDL.
Thus, to study the effect of anti-oxidant drugs, for example,
in a clinical trial, blood may be drawn from patients before
and at different stages during treatment with such a drug.

- 20 Their monocytes may then be isolated and RNA prepared and analyzed by differential display as described in Sections 6.1.1 and 6.1.2. The levels of expression of these fingerprint genes may be quantified by Northern blot analysis or RT-PCR, as described in Section 6.1.2, or by one of the
- 25 methods described in Section 5.8.1, or alternatively by measuring the amount of protein produced, by one of the methods described in Section 5.8.2. In this way, the fingerprint profiles may serve as surrogate markers indicative of the physiological response of monocytes that
- 30 have taken up oxidized LDL. Accordingly, this response stat may be determined before, and at various points during, drug treatment. This method is described in further detail in the example in Section 10, below.

This method may also be applied to the other

35 paradigms disclosed herein. For example, and not by way of limitati n, the fing rprint profile of Paradigm B r v als that bcl-2 and glutathione peroxidase are both down-regulated

in the monocytes of patients exposed to a high lipid diet,
e.g. cholesterol or fat, that leads to high serum LDL levels.
Drugs may be tested, f r exampl, for their ability to
ameliorate the effects of hypercholesterolemia in clinical
trials. Patients with high LDL levels may have their
monocytes isolated before, and at different stages after,
drug treatment. The drug's efficacy may be measured by
determining the degree of restored expression of bcl-2 and
glutathione peroxidase, as described above for the Paradigm A
10 fingerprint profile.

5.6. COMPOUNDS AND METHODS FOR TREATMENT OF CARDIOVASCULAR DISEASE

Described below are methods and compositions

15 whereby cardiovascular disease symptoms may be ameliorated.

Certain cardiovascular diseases are brought about, at least in part, by an excessive level of gene product, or by the presence of a gene product exhibiting an abnormal or excessive activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of cardiovascular disease symptoms. Techniques for the reduction of target gene expression levels or target gene product activity levels are discussed in Section 5.6.1, below.

diseases are brought about, at least in part, by the absence or reduction of the level of gene expression, or a reduction in the level of a gene product's activity. As such, an increase in the level of gene expression and/or the activity of such gene products would bring about the amelioration of cardiovascular disease symptoms.

In some cases, the up-regulation of a gene in a disease state reflects a protective role for that gene product in responding to the disease condition. Enhancement 35 of such a target gene's expression, or the activity of the targ t gen product, will reinf roe the protective effect it ex rts. Some cardiovascular disease states may result from

an abnormally low 1 vel of activity of such a protective gen. In these cases also, an increase in the level of gene expression and/or the activity of such gene products would bring about the amelioration of cardiovascular disease

5 symptoms. Techniques for increasing target gene expression levels or target gene product activity levels are discussed in Section 5.6.2, below.

10

5.6.1. COMPOUNDS THAT INHIBIT EXPRESSION, SYNTHESIS OR ACTIVITY OF MUTANT TARGET GENE ACTIVITY

As discussed above, target genes involved in cardiovascular disease disorders can cause such disorders via an increased level of target gene activity. As summarized in Table 1, above, and detailed in the examples in Sections 8 and 9, below, a number of genes are now known to be upregulated in endothelial cells under disease conditions. Specifically, rchd005, rchd024, rchd032, and rchd036 are all up-regulated in endothelial cells treated with IL-1.

Furthermore, rchd502, rchd523, rchd528, rchd534, COX II, and MnSOD are all up-regulated in endothelial cells subjected to shear stress. In some cases, such up-regulation may have a causative or exacerbating effect on the disease state. A variety of techniques may be utilized to inhibit the expression, synthesis, or activity of such target genes and/or proteins.

For example, compounds such as those identified through assays described, above, in Section 5.5, which exhibit inhibitory activity, may be used in accordance with the invention to ameliorate cardiovascular disease symptoms. As discussed in Section 5.5, above, such molecules may include, but are not limited to small organic molecules, peptides, antibodies, and the like. Inhibitory antibody techniques are described, below, in Section 5.6.1.2.

For example, compounds can be administered that compet with endogenous ligand for the rchd523 gene product.

The resulting r duction in th amount of ligand-bound rchd523

g ne transmembrane prot in will modulated endothelial cell physiology. Compounds that can b particularly us ful for this purpose includ, for example, soluble proteins or peptides, such as peptides comprising one or more of the extracellular domains, or portions and/or analogs thereof, of the rchd523 gene product, including, for example, soluble fusion proteins such as Ig-tailed fusion proteins. (For a discussion of the production of Ig-tailed fusion proteins, see, for example, U.S. Patent No. 5,116,964.).

- 10 Alternatively, compounds, such as ligand analogs or antibodies, that bind to the rchd523 gene product receptor site, but do not activate the protein, (e.g., receptor-ligand antagonists) can be effective in inhibiting rchd523 gene product activity.
- 15 Further, antisense and ribozyme molecules which inhibit expression of the target gene may also be used in accordance with the invention to inhibit the aberrant target gene activity. Such techniques are described, below, in Section 5.6.1.1. Still further, also as described, below, in 20 Section 5.6.1.1, triple helix molecules may be utilized in inhibiting the aberrant target gene activity.

5.6.1.1. INHIBITORY ANTISENSE, RIBOZYME AND TRIPLE HELIX APPROACHES

Among the compounds which may exhibit the ability to ameliorate cardiovascular disease symptoms are antisense, ribozyme, and triple helix molecules. Such molecules may be designed to reduce or inhibit mutant target gene activity. Techniques for the production and use of such molecules are 30 well known to those of skill in the art.

Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, e.g., between the -10 and +10 r gions f the target gene nucleotid sequence of interest, are preferred.

Ribozymes are enzymatic RNA molecul s capable of catalyzing the sp cific cleavage of RNA. The m chanism of ribozym action inv lves sequ nc specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known catalytic sequence responsible for mRNA cleavage. For this sequence, see U.S. Pat. No. 5,093,246, which is incorporated by reference herein in its entirety. As such within the scope of the invention are engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences encoding target gene proteins.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the molecule of interest for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and 20

- 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate sequences may also be evaluated by
- 25 testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription should be single stranded and composed of deoxyribonucleotides. The 30 base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which 35 will result in TAT and CGC triplets across the three associat d strands of th resulting triple helix. The

pyrimidine-rich molecul s provide base complementarity to a

purin -rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid m lecul s may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC paris, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.

Alternatively, the potential sequences that can be 10 targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for 15 a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

It is possible that the antisense, ribozyme, and/or triple helix molecules described herein may reduce or inhibit the transcription (triple helix) and/or translation

- 20 (antisense, ribozyme) of mRNA produced by both normal and mutant target gene alleles. In order to ensure that substantially normal levels of target gene activity are maintained, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal activity may be
- 25 introduced into cells via gene therapy methods such as those described, below, in Section 5.7. that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments are being utilized. Alternatively, it may be preferable to coadminister normal target gene
- 30 protein into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.

Anti-sense RNA and DNA, ribozyme, and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA molecules.

35 These include techniques for chemically synthesizing oligodeoxyribonucle tid s and olig ribonucleotid s well known in the art such as for example solid phase phosphoramidite

chemical synth sis. Alternatively, RNA molecul s may be generated by in vitro and in vivo transcription of DNA s quences encoding the antisense RNA molecul. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Various well-known modifications to the DNA molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothicate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

5.6.1.2. ANTIBODIES FOR TARGET GENE PRODUCTS

20 Antibodies that are both specific for target gene protein and interfere with its activity may be used to inhibit target gene function. Such antibodies may be generated using standard techniques described in Section 5.4.3., supra, against the proteins themselves or against 25 peptides corresponding to portions of the proteins. Such antibodies include but are not limited to polyclonal, monoclonal, Fab fragments, single chain antibodies, chimeric antibodies, etc.

In instances where the target gene protein is
intracellular and whole antibodies are used, internalizing antibodies may be preferred. However, lipofectin liposomes may be used to deliver the antibody or a fragment of the Fab region which binds to the target gene epitope into cells. Where fragments of the antibody are used, the smallest inhibitory fragment which binds to the target protein's binding domain is pr ferred. For example, peptides having an amino acid segu nc corresponding to the domain of the

variable region of the antibody that binds to the target gene protein may be used. Such peptides may be synthesized chemically r produced via recombinant DNA technology using methods well known in the art (e.g., see Creighton, 1983,

- 5 supra; and Sambrook et al., 1989, supra). Alternatively, single chain neutralizing antibodies which bind to intracellular target gene epitopes may also be administered. Such single chain antibodies may be administered, for example, by expressing nucleotide sequences encoding single-
- 10 chain antibodies within the target cell population by utilizing, for example, techniques such as those described in Marasco et al. (Marasco, W. et al., 1993, Proc. Natl. Acad. Sci. USA 90:7889-7893).

In some instances, the target gene protein is

15 extracellular, or is a transmembrane protein, such as the rchd523 gene product. Antibodies that are specific for one or more extracellular domains of the rchd523 gene product, for example, and that interfere with its activity, are particularly useful in treating cardiovascular disease. Such

20 antibodies are especially efficient because they can access the target domains directly from the bloodstream. Any of the administration techniques described, below in Section 5.7 which are appropriate for peptide administration may be utilized to effectively administer inhibitory target gene 25 antibodies to their site of action.

5.6.2. METHODS FOR RESTORING OR ENHANCING TARGET GENE ACTIVITY

Target genes that cause cardiovascular disease may 30 be underexpressed within cardiovascular disease situations. As summarized in Table 1, above, and detailed in the example in Sections 7, below, several genes are now known to be down-regulated in monocytes under disease conditions. Specifically, bcl-2 and glutathione peroxidase gene

35 expression is down-regulated in the monocytes of patients exposed to a high lipid di t, <u>e.g.</u> chol sterol or fat, that l ads to high serum LDL levels. Alternatively, the activity

of target gen products may b decreased, leading to th d v lopm nt of cardiovascular disease symptoms. Such downregulation of target gene expression or decrease of target gene product activity might have a causative or exacerbating 5 effect on the disease state.

In some cases, target genes that are up-regulated in the disease state might be exerting a protective effect. As summarized in Table 1, above, and detailed in the examples in Sections 8 and 9, below, a number of genes are now known

- 10 to be up-regulated in endothelial cells under disease conditions. Specifically, rchd005, rchd024, rchd032, and rchd036 are all up-regulated in endothelial cells treated with IL-1. Furthermore, rchd502, rchd523, rchd528, rchd534, COX II, and MnSOD are all up-regulated in endothelial cells
- 15 subjected to shear stress. A variety of techniques may be utilized to increase the expression, synthesis, or activity of such target genes and/or proteins, for those genes that exert a protective effect in response to disease conditions.

Described in this Section are methods whereby the

20 level of target gene activity may be increased to levels
wherein cardiovascular disease symptoms are ameliorated. The
level of gene activity may be increased, for example, by
either increasing the level of target gene product present or
by increasing the level of active target gene product which

25 is present.

For example, a target gene protein, at a level sufficient to ameliorate cardiovascular disease symptoms may be administered to a patient exhibiting such symptoms. Any of the techniques discussed, below, in Section 5.7, may be utilized for such administration. One of skill in the art will readily know how to determine the concentration of effective, non-toxic doses of the normal target gene protein, utilizing techniques such as those described, below, in Section 5.7.1.

Additionally, RNA sequences encoding target gene prot in may be directly administ red to a patient exhibiting cardiovascular disease symptoms, at a concentration

sufficient to produce a level of targ t gene protein such that cardiovascular dis ase symptoms are ameliorated. Any of the techniqu s discussed, below, in Section 5.7, which achieve intracellular administration of compounds, such as, for example, liposome administration, may be utilized for the administration of such RNA molecules. The RNA molecules may be produced, for example, by recombinant techniques such as those described, above, in Section 5.4.2.

Further, patients may be treated by gene

10 replacement therapy. One or more copies of a normal target gene, or a portion of the gene that directs the production of a normal target gene protein with target gene function, may be inserted into cells using vectors which include, but are not limited to adenovirus, adeno-associated virus, and

15 retrovirus vectors, in addition to other particles that introduce DNA into cells, such as liposomes. Additionally, techniques such as those described above may be utilized for the introduction of normal target gene sequences into human cells.

Cells, preferably, autologous cells, containing normal target gene expressing gene sequences may then be introduced or reintroduced into the patient at positions which allow for the amelioration of cardiovascular disease symptoms. Such cell replacement techniques may be preferred, for example, when the target gene product is a secreted, extracellular gene product.

5.7. PHARMACEUTICAL PREPARATIONS AND METHODS OF ADMINISTRATION

The identified compounds that inhibit target gene expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to treat or ameliorate cardiovascular disease. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of cardiovascular disease.

5.7.1. EFFECTIVE DOSE

Toxicity and th rap utic efficacy of such compounds can be determined by standard pharmaceutical procedur s in cell cultures or experimental animals, e.g., for determining 5 the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

- animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any
- employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal
- 25 models to achieve a circulating plasma concentration range that includes the IC_{50} (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in
- 30 humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

5.7.2. FORMULATIONS AND USE

Pharmaceutical compositions for use in accordance with the pres nt invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

Thus, the compounds and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g.,

- 15 pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch
- 20 glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water
- 25 or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin
- 30 or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as 35 appropriate.

Preparations for oral administration may be suitably formulated to give controlled rel as of the active compound.

For buccal administration the compositions may tak 5 the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from 10 pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a 15 valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds may be formulated for parenteral

20 administration by injection, e.g., by bolus injection or
continuous infusion. Formulations for injection may be
presented in unit dosage form, e.g., in ampoules or in multidose containers, with an added preservative. The
compositions may take such forms as suspensions, solutions or

25 emulsions in oily or aqueous vehicles, and may contain
formulatory agents such as suspending, stabilizing and/or
dispersing agents. Alternatively, the active ingredient may
be in powder form for constitution with a suitable vehicle,
e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, <u>e.g.</u>, containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described

35 previously, the compounds may also be formulated as a depot pr parati n. Such long acting formulations may b administered by implantation (for example subcutaneously or

intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polym ric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may 10 for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

5.8. DIAGNOSIS OF CARDIOVASCULAR DISEASE ABNORMALITIES

- A variety of methods may be employed, utilizing reagents such as fingerprint gene nucleotide sequences described in Section 5.4.1, and antibodies directed against differentially expressed and pathway gene peptides, as described, above, in Sections 5.4.2. (peptides) and 5.4.3.
- 20 (antibodies). Specifically, such reagents may be used, for example, for the detection of the presence of target gene mutations, or the detection of either over or under expression of target gene mRNA.

The methods described herein may be performed, for 25 example, by utilizing pre-packaged diagnostic kits comprising at least one specific fingerprint gene nucleic acid or antifingerprint gene antibody reagent described herein, which may be conveniently used, e.g., in clinical settings, to diagnose patients exhibiting cardiovascular disease symptoms or at 30 risk for developing cardiovascular disease.

Any cell type or tissue, preferably monocytes, endothelial cells, or smooth muscle cells, in which the fingerprint gene is expressed may be utilized in the diagnostics described below.

5.8.1. DETECTION OF FINGERPRINT GENE NUCLEIC ACIDS

DNA or RNA from the cell type or tissue to be analyzed may easily be isolated using procedures which are 5 well known to those in the art. Diagnostic procedures may also be performed "in situ" directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents such as 10 those described in Section 5.1. may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo, G.J., 1992, PCR in situ hybridization: protocols and applications, Raven Press, NY).

Fingerprint gene nucleotide sequences, either RNA

15 or DNA, may, for example, be used in hybridization or
amplification assays of biological samples to detect
cardiovascular disease-related gene structures and
expression. Such assays may include, but are not limited to,
Southern or Northern analyses, single stranded conformational

20 polymorphism analyses, in situ hybridization assays, and
polymerase chain reaction analyses. Such analyses may reveal
both quantitative aspects of the expression pattern of the
fingerprint gene, and qualitative aspects of the fingerprint
gene expression and/or gene composition. That is, such

25 aspects may include, for example, point mutations,
insertions, deletions, chromosomal rearrangements, and/or
activation or inactivation of gene expression.

Such an in situ hybridization analysis is describ d in the example in Section 14, below. Specifically, high

30 levels of expression of the rchd502 and rchd528 genes were detected specifically within the endothelial cells of diseased tissue removed from a human cardiovascular disease patient, and not in any other cell type present in the tissue, including smooth muscle cells and macrophages. These

35 results clearly demonstrate how the target genes described h rein provide for n vel diagnoses of cardiovascular disease. Furtherm r, because these diagnoses are corr lated with

specific target genes, they allow for m re specifically directed methods of tr atm nt of cardiovascular dis as .

Preferred diagnostic methods for th det ction of fingerprint gene-specific nucleic acid molecules may involve 5 for example, contacting and incubating nucleic acids, derived from the cell type or tissue being analyzed, with one or more labeled nucleic acid reagents as are described in Section 5.1, under conditions favorable for the specific annealing of these reagents to their complementary sequences within the 10 nucleic acid molecule of interest. Preferably, the lengths of these nucleic acid reagents are at least 9 to 30 nucleotides. After incubation, all non-annealed nucleic acids are removed from the nucleic acid:fingerprint molecule The presence of nucleic acids from the fingerprint 15 tissue which have hybridized, if any such molecules exist, is then detected. Using such a detection scheme, the nucleic acid from the tissue or cell type of interest may be immobilized, for example, to a solid support such as a membrane, or a plastic surface such as that on a microtitre

20 plate or polystyrene beads. In this case, after incubation, non-annealed, labeled fingerprint nucleic acid reagents of the type described in Section 5.1. are easily removed. Detection of the remaining, annealed, labeled nucleic acid reagents is accomplished using standard techniques well-known to those in the art.

Alternative diagnostic methods for the detection of fingerprint gene specific nucleic acid molecules may involve their amplification, e.g., by PCR (the experimental embodiment set forth in Mullis, K.B., 1987, U.S. Patent No.

- 30 4,683,202), ligase chain reaction (Barany, F., 1991, Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli, J.C. et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D.Y et al., 1989, Proc. Natl. Acad. Sci. USA 86:1173-
- 35 1177), Q-Beta Replicase (Lizardi, P.M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, foll wed by the d tection of the

amplifi d molecules using t chniques well known to thos of skill in the art. These d tection schemes are especially us ful for th detection of nucleic acid mol cules if such molecules are present in very low numbers.

- In one embodiment of such a detection scheme, a cDNA molecule is obtained from an RNA molecule of interest (e.g., by reverse transcription of the RNA molecule into cDNA). Cell types or tissues from which such RNA may be isolated include any tissue in which wild type fingerprint
- 10 gene is known to be expressed, including, but not limited, to monocytes, endothelium, and/or smooth muscle. A fingerprint sequence within the cDNA is then used as the template for a nucleic acid amplification reaction, such as a PCR amplification reaction, or the like. The nucleic acid
- 15 reagents used as synthesis initiation reagents (e.g., primers) in the reverse transcription and nucleic acid amplification steps of this method are chosen from among th fingerprint gene nucleic acid reagents described in Section 5.1. The preferred lengths of such nucleic acid reagents are
- 20 at least 15-30 nucleotides. For detection of the amplified product, the nucleic acid amplification may be performed using radioactively or non-radioactively labeled nucleotides. Alternatively, enough amplified product may be made such that the product may be visualized by standard ethidium bromide
- 25 staining or by utilizing any other suitable nucleic acid staining method.

In addition to methods which focus primarily on the detection of one nucleic acid sequence, fingerprint profiles, as discussed in Section 5.5.4, may also be assessed in such 30 detection schemes. Fingerprint profiles may be generated, for example, by utilizing a differential display procedure, as discussed, above, in Section 5.1.2, Northern analysis and/or RT-PCR. Any of the gene sequences described, above, in Section 5.4.1. may be used as probes and/or PCR primers 35 for the generation and corroboration of such fingerprint profiles.

Antibodies dir cted against wild type or mutant fingerprint g ne peptides, which are discussed, above, in Section 5.4.3, may also be used as cardiovascular disease 5 diagnostics and prognostics, as described, for example, herein. Such diagnostic methods, may be used to detect abnormalities in the level of fingerprint gene protein expression, or abnormalities in the structure and/or tissue, cellular, or subcellular location of fingerprint gene 10 protein. Structural differences may include, for example, differences in the size, electronegativity, or antigenicity of the mutant fingerprint gene protein relative to the normal fingerprint gene protein.

Protein from the tissue or cell type to be analyzed

15 may easily be detected or isolated using techniques which are
well known to those of skill in the art, including but not
limited to western blot analysis. For a detailed explanation
of methods for carrying out western blot analysis, see
Sambrook et al, 1989, supra, at Chapter 18. The protein

20 detection and isolation methods employed herein may also be
such as those described in Harlow and Lane, for example,
(Harlow, E. and Lane, D., 1988, "Antibodies: A Laboratory
Manual", Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, New York), which is incorporated herein by reference

25 in its entirety.

Preferred diagnostic methods for the detection of wild type or mutant fingerprint gene peptide molecules may involve, for example, immunoassays wherein fingerprint gene peptides are detected by their interaction with an anti30 fingerprint gene specific peptide antibody.

For example, antibodies, or fragments of antibodies, such as those described, above, in Section 5.4.3, useful in the present invention may be used to quantitatively or qualitatively detect the presence of wild type or mutant fingerprint gene peptides. This can be accomplished, for example, by immunofluorescence techniques employing a fluor scently labeled antibody (se below) c upled with light

microscopic, flow cytometric, or fluorimetric detection. Such techniques are especially preferr d if the fingerprint g ne p ptides are expressed on th c ll surface.

The antibodies (or fragments thereof) useful in th 5 present invention may, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for in situ detection of fingerprint gene In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto 10 a labeled antibody of the present invention. The antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the fingerprint gene peptides, but also their 15 distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such

Immunoassays for wild type or mutant fingerprint gene peptides typically comprise incubating a biological sample, such as a biological fluid, a tissue extract, freshly harvested cells, or cells which have been incubated in tissue culture, in the presence of a detectably labeled antibody capable of identifying fingerprint gene peptides, and detecting the bound antibody by any of a number of techniques well known in the art.

in situ detection.

The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier 30 such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled fingerprint gene specific antibody. The solid phase support 35 may then be washed with the buffer a second time to remove unbound antibody. The amount of bound label on solid support may then be detected by conventional means.

By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases,

- 5 natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled
- 10 molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc.
- 15 Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

The binding activity of a given lot of anti-wild 20 type or mutant fingerprint gene peptide antibody may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

- One of the ways in which the fingerprint gene peptide-specific antibody can be detectably labeled is by linking the same to an enzyme and use in an enzyme immunoassay (EIA) (Voller, "The Enzyme Linked Immunosorbent Assay (ELISA)", Diagnostic Horizons 2:1-7, 1978,
- 30 Microbiological Associates Quarterly Publication,
 Walkersville, MD; Voller, et al., J. Clin. Pathol. 31:507-520
 (1978); Butler, Meth. Enzymol. 73:482-523 (1981); Maggio,
 (ed.) Enzyme Immunoassay, CRC Press, Boca Raton, FL, 1980;
 Ishikawa, et al., (eds.) Enzyme Immunoassay, Kgaku Shoin,
- 35 Tokyo, 1981). The enzyme which is bound to the antibody will react with an appr priate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety

which can be detected, for example, by spectrophotometric, fluorimetric or by visual m ans. Enzymes which can be used to d tectably label th antibody includ, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-5 steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

- Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect fingerprint gene wild type or mutant peptides through the use of a radioimmunoassay (RIA) (see, for
- 20 example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by such means as the use of a gamma counter or a
 25 scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the 30 most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The antibody can also be detectably labeled using 35 fluorescence emitting metals such as 152 Eu, or others of the lanthanid series. These metals can be attached to the antibody using such metal chelating groups as

di thylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably label d by coupling it to a chemiluminescent compound. The presence of 5 the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, 10 acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

In some cases, differentially expressed gene products identified herein may be up-regulated under cardiovascular disease conditions and expressed on the surface of the affected tissue. Such target gene products allow for the non-invasive imaging of damaged or diseased cardiovascular tissue for the purposed of diagnosis and directing of treatment of the disease. For example, such differentially expressed gene products may include but are not limited to atherosclerosis specific adhesion molecules responsible for atherogenesis, or monocyte scavenger receptors that are up-regulated in response to oxidized LDL, which are discussed in Section 2, above. Alternatively,

35 tissues with atherosclerotic or restenotic lesions.

As described in the exampl in Secti n 9, below, the rchd523 gene is a gene that is up-r gulated in

in tissues suffering from ischemia/reperfusion or other

other such surface proteins may be specifically up-regulated

endothelial cells und r shear stress. Furthermor, the rchd523 gene encodes a nov 1 G protein-coupled receptor, containing an extracellular amin terminal domain, in addition to seven transmembrane domains. The rchd523 gene 5 product, therefore, provides an excellent tool for imaging cardiovascular disease conditions. This technique can be applied similarly to other transmembrane gene products, such as the rchd502 and rchd528 gene products. An example illustrating the use of this method in accordance with the invention is provided in Section 11, below.

Monoclonal antibodies, as described in Section 5.6.1.2, above, which specifically bind to such surface proteins, such as the rchd523 gene product, may be used for the diagnosis of cardiovascular disease by in vivo tissue 15 imaging techniques. An antibody specific for a target gene product, or preferably an antigen binding fragment thereof, is conjugated to a label (e.g., a gamma emitting radioisotope) which generates a detectable signal and administered to a subject (human or animal) suspected of 20 having cardiovascular disease. After sufficient time to allow the detectably-labeled antibody to localize at the diseased or damaged tissue site (or sites), the signal generated by the label is detected by a photoscanning devic . The detected signal is then converted to an image of the 25 tissue. This image makes it possible to localize the tissue in vivo. This data can then be used to develop an appropriate therapeutic strategy.

Antibody fragments, rather than whole antibody molecules, are generally preferred for use in tissue imaging.

30 Antibody fragments accumulate at the tissue(s) more rapidly because they are distributed more readily than are entire antibody molecules. Thus an image can be obtained in less time than is possible using whole antibody. These fragments are also cleared more rapidly from tissues, resulting in a lower background signal. See, e.g., Haber et al., U.S. Patent No. 4,036,945; Goldenberg et al., U.S. Patent No. 4,331,647. The divalent antigen binding fragment (Fab'), and

the monovalent Fab ar specially preferred. Such fragments can be prepared by digestion of the whole immunoglobulin molecul with the enzym s pepsin or papain according to any of several well known protocols. The types of labels that 5 are suitable for conjugation to a monoclonal antibody for diseased or damaged tissue localization include, but are not limited to radiolabels (i.e., radioisotopes), fluorescent labels and biotin labels.

Among the radioisotopes that can be used to label 10 antibodies or antibody fragments, gamma-emitters, positronemitters, X-ray-emitters and fluorescence-emitters are suitable for localization. Suitable radioisotopes for labeling antibodies include Iodine-131, Iodine-123, Iodine-125, Iodine-126, Iodine-133, Bromine-77, Indium-111, Indium-15 113m, Gallium-67, Gallium-68, Ruthenium-95, Ruthenium-97, Ruthenium-103, Ruthenium-105, Mercury-107, Mercury-203, Rhenium-99m, Rhenium-105, Rhenium-101, Tellurium-121m, Tellurium-122m, Tellurium-125m, Thulium-165, Thulium-167, Thulium-168, Technetium-99m and Fluorine-18. The halogens 20 can be used more or less interchangeably as labels since halogen-labeled antibodies and/or normal immunoglobulins

would have substantially the same kinetics and distribution and similar metabolism.

The gamma-emitters Indium-111 and Technetium-99m 25 are preferred because these radiometals are detectable with a gamma camera and have favorable half lives for imaging in vivo. Antibody can be labelled with Indium-111 or Technetium-99m via a conjugated metal chelator, such as DTPA (diethlenetriaminepentaacetic acid). See Krejcarek et al.,

30 1977, Biochem. Biophys. Res. Comm. 77:581; Khaw et al., 1980, Science 209:295; Gansow et al., U.S. Patent No. 4,472,509; Hnatowich, U.S. Patent No. 4,479,930, the teachings of which are incorporated herein by reference.

Fluorescent compounds that are suitable for 35 conjugation to a monoclonal antibody include fluorescein sodium, fluorescein isothiocyanate, and T xas Red sulfonyl chloride. S e, DeBelder & Wik, 1975, Carbohydrate Res arch

44:254-257. Those skilled in the art will know, or will be able to ascertain with no more than routine xperimentation, the r fluor scent compounds that are suitable for labeling monoclonal antibodies.

5

15

6. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN RESPONSE TO PARADIGM A: IN VITRO FOAM CELL PARADIGM

According to the invention, differential display

may be used to detect genes that are differentially expressed in monocytes that were treated so as to simulate the conditions under which foam cells develop during atherogenesis.

6.1. MATERIALS AND METHODS

6.1.1. CELL ISOLATION AND CULTURING

Blood (~200 ml) was drawn into chilled 20 ml vacutainer tubes to which 3 ml of citrate phosphate dextrose (Sigma) was added. Blood was then pooled into 50 ml tubes and spun in the Beckman GS-6R at 1250 RPM for 15 minutes at The upper clear layer (~25 ml) was then removed with a pipette and discarded and replaced with the same volume of The blood was then mixed, and spun again at 2680 RPM for 15 minutes at 4°C. The upper layer was then removed and discarded, and the buffy coat at the interface was removed in ~5 ml and placed in a separate 50 ml tube, and the pipette was washed with 20 ml PBS. Cells were added to a T flask and stored at 4°C for 16 hours. A small aliquot of the cells were then removed and counted using a hemacytometer. 30 The final red blood cell concentration in the buffy coat population was then adjusted to 1.5 X 10⁹/ml with PBS, the cells were added to Leucoprep tubes (Becton Dickinson) after being allowed to come to room temperature, and spun at 2300 RPM for 25 minutes at 25°C. The upper clear layer was 35 removed and discarded and the turbid layer over the gel was removed and pooled in 50 ml tubes. Samples wer then diluted

to 50 ml with PBS (25°C) and spun at 1000 RPM for 10 minut s.

The supernatant was then remov d, and the pellet was resuspended in 50 ml PBS. This procedure was repeated 3 more times. After th last spin, the cells wer resuspended in a small volume of PBS and counted.

- Tissue culture dishes were coated with bovine collagen before monocytes were plated out. 1/6 volume of 7X RPMI (JRH Biosciences) was added to Vitrogen 100 collagen (Celtrix) which was then diluted 1:10 with RPMI to a final concentration of 0.35 mg/ml. Collagen mixture was then added
- 10 to plates (2.5 ml/100 mm dish) and placed at 37°C for at least one hour to allow for gel formation. After gel formation has taken place, the RPMI was removed and cells were added in RPMI/10% plasma derived serum (PDS). PDS was prepared by drawing blood into chilled evacuated tubes
- 15 containing 1/10th volume 3.8% sodium citrate. Blood was then transferred into new Sorvall tubes and spun at 14,000-16,000 RPM for 20 minutes at 4°C. Plasma layer was removed and pooled in new tubes to which 1/50th volume 1M CaCl₂ was added. Plasma was mixed and aliquoted into new Sorvall tubes
- 20 and incubated at 37% for 2 hours to allow for fibrin clot formation. The clot was then disturbed with a pipette to allow it to contract and tubes were spun at 14,500 RPM for 20 minutes at 25°C. Supernatant was collected, pooled, and heat inactivated at 56°C prior to sterile filtration and freezing.
- Purified human monocytes were cultured in 10% PDS/RPMI containing 5 units/ml of Genzyme recombinant human MCSF for 5 days before being treated with LDL, oxidized LDL, acetylated LDL (all LDL at 50 μg/ml), lysophosphatidylcholine (Sigma, 37.5 μM), or homocysteine (Sigma, 1mM). After
- 30 incubation with these reagents for periods ranging from 2 hours up to 3 days, the media was withdrawn and the cells were dissolved in RNA lysis buffer and RNA was prepared as described, above, in Section 6.1.
- Lipoproteins For oxidation, human LDL (Sigma) was 35 first diluted to 1 mg/ml with PBS and then dialyzed against PBS at 4°C overnight. LDL was then diluted to 0.3 mg/ml with PBS. CuSO₄·5H₂O was then added to 5uM final concentration,

ر 🚣 🛦

and the solution was incubated in a T flask in a 37°C incubator for 24 hr. LDL solution was then dialyz d at 4°C against 0.15M NaCl/0.3mM EDTA for 2 days with several changes, before being removed and concentrated using an 5 Amicon spin column by spinning for 1 hr. 4000 RPM at 4°C.

For acetylation, 1 ml of 5 mg/ml LDL was added to 1 ml of a saturated solution of NaOAc in a 15 ml tube on ice on a shaker at 4°C. 8 μ l of acetic anhydride was added 2 μ l at a time over 1 hr. LDL was then dialyzed for 48 hr. against 10 0.15M NaCl/0.3 mM EDTA at 4°C for 48 hr. with several changes. Final concentrations of derivatized LDL's were determined by comparing to a dilution curve of native LDL analyzed at OD₂₈₀, with 0.15M NaCl/0.3mM EDTA used as diluent in all cases.

15

6.1.2. <u>ANALYSIS OF PARADIGM MATERIAL</u> <u>Differential Display:</u>

Removal of DNA: The RNA pellet was resuspended in H,0 and quantified by spectrophotometry at OD260. Approximately 20 half of the sample was then treated with DNAse I to remove contaminating chromosomal DNA. RNA was amplified by PCR using the following procedure. 50 ul RNA sample (10-20 μ g), 5.7 μ l 10x PCR buffer (Perkin-Elmer/Cetus), 1 μ l RNAse inhibitor (40 units/ μ l) (Boehringer Mannheim, Germany) were 25 mixed together, vortexed, and briefly spun. 2 μ l DNAse I (10 units/ μ l) (Boehringer Mannheim) was added to the reaction which was incubated for 30 min. at 37°C. The total volume was brought to 200 μ l with DEPC H₂O, extracted once with phenol/chloroform, once with chloroform, and precipitated by 30 adding 20 μ l 3M NaOAc, pH 4.8, (DEPC-treated), 500 μ l absolute ETOH and incubating for 1 hour on dry ice or -20°C overnight. The precipitated sample was centrifuged for 15 min., and the pellet was washed with 70% ETOH. was re-centrifuged, the remaining liquid was aspirated, and 35 the pellet was resuspended in 100 μ l H₂0. The concentration of RNA was measur d by reading the OD, ...

First strand cDNA synthesis: For ach RNA sample duplicate reactions w re carried out in parallel. 400 ng RNA plus DEPC H_20 in a total volume of 10 μl were added to 4 μl $T_{11}XX$ reverse primer (10 μM) (Operon). The specific primers 5 used in each experiment are provided in the Description of the Figures in Section 4, above. The mixture was incubated at 70°C for 5 min. to denature the RNA and then placed at r.t. 26 μ l of reaction mix containing the following components was added to each denatured RNA/primer sample: 8 10 μ l 5x First Strand Buffer (Gibco/BRL, Gaithersburg, MD), 4 μ l O.1M DTT (Gibco/BRL), 2 μ l RNAse inhibitor (40 units/ μ l) (Boehringer Mannheim), 4 μ l 200 μ M dNTP mix, 6 μ l H₂0, 2 μ l Superscript reverse transcriptase (200 units/ μ l) (Gibco/BRL). The reactions were mixed gently and incubated for 30 min. at 15 42°C. 60 μ l of H₂0 (final volume = 100 μ l) were then added and the samples were denatured for 5 min. at 85°C and stored at -20°C.

PCR reactions: 13 μl of reaction mix was added to each tube of a 96 well plate on ice. The reaction mix contained 6.4 μl H₂0, 2 μl 10x PCR Buffer (Perkin-Elmer), 2 μl 20 μM dNTP's, 0.4 μl ³⁵S dATP (12.5 μCi/μl; 50 μCi total) (Dupont/NEN), 2 μl forward primer (10 μM) (Operon), and 0.2 μl AmpliTaq Polymerase (5 units/μl) (Perkin-Elmer). Next, 2 25 μl of reverse primer (T₁₁XX, 10 μM) were added to the side of each tube followed by 5 μl of cDNA also to the sides of the tubes, which were still on ice. The specific primers used in each experiment are provided in the Description of the Figures in Section 4, above. Tubes were capped and mixed, 30 and brought up to 1000 RPM in a centrifuge then returned immediately to ice. The PCR machine (Perkin-Elmer 9600) was programmed for differential display as follows:

94°C 2 min. *94°C 15 sec. *40°C 2 min. *ramp 72°C 1 min. *72°C 30 sec.

35

* = X40

72°C 5 min. 4°C hold

When the PCR machine reached 94°C, the plate was 5 removed from ice and placed directly into the Perkin-Elmer 9600 PCR machine. Following PCR, 15 μl of loading dye, containing 80% formamide, 10 mM EDTA, 1 mg/ml xylene cyanol, 1 mg/ml bromphenol blue were added. The loading dye and reaction were mixed, incubated at 85°C for 5 min., cooled on 10 ice, centrifuged, and placed on ice. Approximately 4 μl from each tube were loaded onto a prerun (60V) 6% acrylamide gel. The gel was run at approximately 80V until top dye front was about 1 inch from bottom. The gel was transferred to 3MM paper (Whatman Paper, England) and dried under vacuum. Bands 15 were visualized by autoradiography.

Band isolation and amplification: Differentially expressed bands were excised from the dried gel with a razor blade and placed into a microfuge tube with 100 μl H₂0 and heated at 20 100°C for 5 min., vortexed, heated again to 100°C for 5 min., and vortex again. After cooling, 100 μl H₂0, 20 μl 3M NaOAC, 1 μl glycogen (20 mg/ml), and 500 μl ethanol were added and chilled. After centrifugation, the pellet was washed and resuspended in 10 μl H₂0.

The isolated differentially expressed bands were then amplified by PCR using the following reaction conditions:

58 μ l H,0 10 μl 10x PCR Buffer 10 ul. 200 um dNTP's 30 10 μ l 10 μ M reverse primer 10 μ l 10 µM forward primer 1.5 μ 1 amplified band $0.5 \mu 1$ AmpliTaq polymerase (5 units/ μ 1) (Perkin Elmer)

PCR was performed using the program described in this Section, above, for differential display. Aft r PCR, glycerol loading dyes were added and samples w re loaded onto

a 2% preparative TAE/Biogel (Bio101, La Jolla, CA) agaros gel and eluted. Bands w re then xcised from th gel with a razor blade and vort xed for 15 min. at r.t., and purified using the Mermaid kit from Bio101 by adding 3 volumes of Mermaid high salt binding solution and 8 μ l of resuspended glassfog in a microfuge tube. Glassfog was then pelleted, washed 3 times with ethanol wash solution, and then DNA was eluted twice in 10 μ l at 50°C.

- Subcloning: The TA cloning kit (Invitrogen, San Diego, CA) was used to subclone the amplified bands. The ligation reaction typically consisted of 4 μ l sterile H₂O, 1 μ l ligation buffer, 2 μ l TA cloning vector, 2 μ l PCR product, and 1 μ l T4 DNA ligase. The volume of PCR product can vary,
- 15 but the total volume of PCR product plus H_2O was always 6 μ l. Ligations (including vector alone) were incubated overnight at 12°C before bacterial transformation. TA cloning kit competent bacteria (INV α F': endal, recAl, hsdRl7(r-k, m+k), supE44, λ -, thi-1, gyrA, relAl, ϕ 80lacZ α Δ M15 Δ (lacZYA-argF),
- 20 deoR+, F') were thawed on ice and 2 μ l of 0.5 M β mercaptoethanol were added to each tube. 2 μ l from each
 ligation were added to each tube of competent cells (50 μ l),
 mixed without vortexing, and incubated on ice for 30 min.
 Tubes were then placed in 42°C bath for exactly 30 sec.,
- 25 before being returned to ice for 2 min. 450 μ l of SOC media (Sambrook et al., 1989, supra) were then added to each tube which were then shaken at 37°C for 1 hr. Bacteria were then pelleted, resuspended in ~200 μ l SOC and plated on Luria broth agar plates containing X-gal and 60 μ g/ml ampicillin
- 30 and incubated overnight at 37°C. White colonies were then picked and screened for inserts using PCR.

A master mix containing 2 μ l 10x PCR buffer, 1.6 μ l 2.5 mM dNTP's, 0.1 μ l 25 mM MgCl₂, 0.2 μ l M13 reverse primer (100 ng/ μ l), 0.2 μ l M13 forward primer (100 ng/ μ l), 0.1 μ l

35 AmpliTaq (Perkin-Elmer), and 15.8 μ l $\rm H_2O$ was made. 40 μ l of the master mix were aliqu ted int tubes of a 96 well plate, and whole bacteria were added with a pipette tip prior to

PCR. Th PCR machine (Perkin-Elmer 9600) was programmed for insert screening as follows:

94°C 2 min.

*94°C 15 sec.

*47°C 2 min.

* = X35 *ramp 72°C 30 sec.

*72°C 30 min.

4°C hold

Reaction products were eluted on a 2% agarose gel and compared to vector control. Colonies with vectors containing inserts were purified by streaking onto LB/Amp plates.

Vectors were isolated from such strains and subjected to sequence analysis, using an Applied Biosystems Automated

15 Sequencer (Applied Biosystems, Inc. Seattle, WA).

Northern analysis: Northern analysis was performed to confirm the differential expression of the genes corresponding to the amplified bands. The probes used to 20 detect mRNA were synthesized as follows: typically 2 μ l amplified band (~30 ng), 7 μ l H₂0, and 2 μ l 10x Hexanucleotide mix (Boehringer-Mannheim) were mixed and heated to 95°C for 5 min., and then allowed to cool on ice. The volume of the amplified band can vary, but the total volume of the band 25 plus H₂O was always 9 μ l. 3 μ l dATP/dGTP/dTTP mix (1:1:1 of 0.5 mM each), 5 μ l α^{32} P dCTP 3000 Ci/mM (50 μ Ci total) (Amersham, Arlington Heights, IL), and 1 μ l Klenow (2 units) (Boehringer-Mannheim) were mixed and incubated at 37°C. After 1 hr., 30 μ l TE were added and the reaction was loaded 30 onto a Biospin-6™ column (Biorad, Hercules, CA), and centrifuged. A 1 μ l aliquot of eluate was used to measure incorporation in a scintillation counter with scintillant to ensure that $10^6 \text{cpm}/\mu l$ of incorporation was achieved.

The samples were loaded onto a denaturing agarose gel.

35 A 300 ml 1% gel was made by adding 3 g of agarose (SeaKem™

LE, FMC BioPr ducts, Rockland, ME) and 60 ml of 5x MOPS

buff r to 210 ml st ril H2O. 5x MOPS buff r (0.1M MOPS (pH

7.0), 40 mM NaOAc, 5mM EDTA (pH 8.0)) was made by adding 20.6 g of MOPS to 800 ml of 50mM NaOAc (13.3 ml of 3M NaOAc pH 4.8 in 800 ml sterile H₂O); then adjusting the pH to 7.0 with 10M NaOH; adding 10 ml of 0.5M EDTA (pH8.0); and adding H₂O to a final volume of 1L. The mixture was heated until melted, then cooled to 50°C, at which time 5 μl ethidium bromide (5mg/ml) and 30 ml of 37% formaldehyde of gel were added. The gel was swirled quickly to mix, and then poured immediately.

2μg RNA sample, 1x final 1.5x RNA loading dyes (60% formamide, 9% formaldehyde, 1.5X MOPS, .075% XC/BPB dyes) and $\rm H_2O$ were mixed to a final volume of 40 μl. The tubes were heated at 65°C for 5 min. and then cooled on ice. 10 μg of RNA MW standards (New England Biolabs, Beverly, MA) were also denatured with dye and loaded onto the gel. The gel was run overnight at 32V in MOPS running buffer.

The gel was then soaked in 0.5 μg/ml Ethidium Bromide for 45 min., 50 mM NaOH/0.1 M NaCl for 30 min., 0.1 M Tris pH 8.0 for 30 min., and 20x SSC for 20 min. Each soaking step was done at r.t. with shaking. The gel was then photographed along with a fluorescent ruler before blotting with Hybond-N membrane (Amersham), according to the methods of Sambrook et al., 1989, supra, in 20x SSC overnight.

For hybridization, the blot was placed into a roller

25 bottle containing 10 ml of prehybridization solution
consisting of 50% formamide and 1x Denhardt's solution, and
placed into 65°C incubator for 30 min. The probe was then
heated to 95°C, chilled on ice, and added to 10 ml of
hybridization solution, consisting of 50% formamide, 1x

30 Denhardt's solution, 10% dextransulfate, to a final
concentration of 10° cpm/ml. The prehybridization solution
was then replaced with the probe solution and incubated
overnight at 42°C. The following day, the blot was washed
three times for 30 min. in 2x SSC/0.1% SDS at room

35 temperature before being covered in plastic wrap and put d wn

for exposure.

RT-PCR Analysis: RT-PCR was performed to d tect differ ntially expressed levels of mRNA from the genes corresponding to amplified bands. First strand synthesis was conducted by mixing 20 μl DNased RNA (-2 μg), 1 μl oligo dT 5 (Operon) (1 μg), and 9.75 μl H₂0. The samples were heated at 70°C for 10 min., and then allowed to cool on ice. 10 μl first strand buffer (Gibco/BRL), 5 μl 0.1M DTT, 1.25 μl 20 mM dNTP's (500 μM final), 1 μl RNAsin (40 units/μl) (Boehringer Mannheim), and 2 μl Superscript Reverse Transcriptase (200 units/μl) (Gibco/BRL) were added to the reaction, incubated at 42°C for 1 hr., and then placed at 85°C for 5 min., and stored at -20°C.

PCR was performed on the reverse transcribed samples. Each reaction contained 2 μl 10x PCR buffer, 14.5 μl H₂0, 0.2 15 μl 20 mM dNTP's (200 μM final), 0.5 μl 20 μM forward primer (0.4 μM final), 0.5 μl 20 μM reverse primer (0.4 μM final), 0.3 μl AmpliTaq polymerase (Perkin-Elmer/Cetus), 2 μl cDNA dilution or positive control (~40 pg). The specific primers used in each experiment are provided in the Description of the Figures in Section 4, above. Samples were placed in the PCR 9600 machine at 94°C (hot start), which was programmed as follows:

94°C 2 min. (samples loaded)
*94°C 45 sec.

25 * = 35x *55°C 45 sec.

*72°C 2 min.

72°C 5 min.

4°C hold

Reactions were carried out on cDNA dilution series and 30 tubes were removed at various cycles from the machine during 72°C step. Reaction products were eluted on a 1.8% agarose gel and visualized with ethidium bromide.

6.1.3. CHROMOSOMAL LOCALIZATION OF TARGET GENES

once the nucleotide sequence has been determined, the presence of the gene on a particular chromosome is det cted. Oligonucleotide primers based on the nucleotide sequence of

the target gene are used in PCR reactions using individual human chromosomes as templates. Individual samples of each the two nty-three human chromosomes are commercially available (Coriel Institute for Medical Research, Camden, NJ). The 5 chromosomal DNA is amplified according to the following conditions: 10ng chromosomal DNA, 2µl 10x PCR buffer, 1.6µl 2.5mM dNTP's, 0.1µl 25mM MgCl₂, 0.2µl reverse primer (100ng/µl), 0.2µl forward primer (100ng/µl), 0.1 µl Taq polymerase, and 15.8µl H₂0. Samples are placed in the PCR 9600 machine at 94°C (hot start), which is programmed as follows:

```
94°C 2 min. (samples loaded)
*94°C 20 sec.

15 * = 35x *55°C 30 sec.

*72°C 30 sec.

72°C 5 min.

4°C hold
```

20 7. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN RESPONSE TO PARADIGM B: IN VIVO MONOCYTES

In an alternative embodiment of the invention, genes differentially expressed in monocytes were detected under highly physiologically relevant, in vivo conditions.

According to Paradigm B, human subjects were held in a

- According to Paradigm B, human subjects were held in a clinical setting and the fat/cholesterol content of their diets was controlled. Monocytes were isolated at different stages of treatment, and their gene expression pattern was compared to that of control groups.
- By use of Paradigm B, the human bcl-2 gene was identified. Its expression decreases in response to the atherogenic conditions of high fat/high cholesterol (FIG.1). The Apo E-/- mouse is the first mouse model of atherosclerosis with pathology similar to that of human plaque development (Plump et al., 1992, Cell 71: 343-353).
 - Serum cholesterol 1 vels in these mic on a chow di t is fiv

times higher than those of control littermates. To address wh ther the regulation of the mouse bcl-2 gene is also affected by serum cholest rol levels, monocytes from apoE-deficient mice and littermate wild-type controls were purified and mouse bcl-2 mRNA levels were compared using quantitative RT-PCR. By this method, mouse bcl-2 mRNA levels were significantly lower in the apoE-deficient mice relative to the wild-type controls (FIG.3).

The differential expression pattern of the human 10 glutathione peroxidase gene (HUMGPXP1) was also discovered. The differential expression of HUMGPXP1 was initially detected in a preliminary detection system, described, below, in Section 7.1.2. Once HUMGPXP1 sequences were obtained, the gene's differential expression pattern was verified and 15 characterized under the physiologically relevant conditions of Paradigm B. Glutathione peroxidase is known to be involved in the removal of toxic peroxides that form in the course of growth and metabolism under normal aerobic conditions and under oxidative stress. Human plasma 20 glutathione peroxidase gene was originally isolated from a human placenta cDNA library (Takahashi et al., 1990, J. Biochem. 108: 145-148). It has been shown to be expressed in two human cell lines of the myeloid lineage (Porter et al., 1992, Clinical Science 83: 343-345). Other studies have also 25 linked reduced levels of this enzyme with heart attack risk (Guidi, et al., 1986, J. Clin. Lab Invest. 46: 549-551; Wang et al., 1981, Klin. Wochenschr. 59: 817-818; Kok et al.,

30 Glutathione peroxidase has not been previously known to be down-regulated in human monocytes under cardiovascular disease conditions, as described herein.

Sklodowska, 1990, J. Am. Med. Assoc. 263: 949-950).

Interestingly, bcl-2 has been recognized as playing a key role in preventing apoptosis, and expression of

1989, J. Am. Med. Assoc. 261: 1161-1164; and Gromadzinska &

35 glutathione peroxidase in the absence of bcl-2 is able to compensate for this loss by pr venting ap ptosis (Hockenbery et al., 1993, Cell 75: 241-251). These findings regarding

bcl-2 and HUMGPXP1, described herein in this section, suggested a novel rol for the monocyte in plaque formation which involves ap ptosis induction caused by high LDL concentrations inside the cell, or perhaps by oxidative 5 stress in the cell mediated by oxidized LDL.

To confirm this relationship between apoptosis and atherosclerosis, the ability of bcl-2 expression to ameliorate atherosclerosis is tested. Because bcl-2 is normally down-regulated under atherogenic conditions, a

- 10 transgenic mouse strain is engineered in which the human bcl-2 gene is expressed under the control of the scavenger receptor promoter, which is induced in monocyte foam cells under atherogenic conditions. This transgenic mouse is then crossed with an apoE-deficient atherosclerotic mouse model.
- 15 The ability of the increased expression of the bcl-2 target gene to ameliorate atherosclerosis is demonstrated by a decrease in initiation and progression of plaque formation observed in the transgenic apoE-deficient mouse.
- The identification of the differential expression of 20 these genes, therefore, provides targets for the treatment and diagnosis of cardiovascular disease. Intervening in the apoptotic pathway through Bcl-2 and glutathione peroxidase, may lead to lesion regression or prevention of plaque formation, or both. Furthermore, the discovery of a
- 25 connection between the apoptotic pathway and atherosclerosis demonstrates the effectiveness of the methods described herein in identifying the full panoply of gene products that are involved in the atherosclerotic disease process. Furthermore, the down-regulation of bc1-2 and HUMGPXP1 under
- 30 Paradigm B provides a fingerprint for the study of the effect of excess LDL on monocytes.

7.1. MATERIALS AND METHODS

7.1.1. IN VIVO CHOLESTEROL STUDIES

Patients were held in a clinical setting for a total of 9 weeks during which time their lipid intake was very 5 tightly controlled. There were a total of 3 diets, and each patient was held on each diet for 3 weeks. Patients were healthy young (third decade of life) individuals with no history or symptoms of heart disease or dislipidemias. The 3 diets are described below:

10

American Heart Association Diet II

fat 25%

cholesterol 80 mg/1000 kCal

polyunsaturated/saturated fat 1.5

15

Average American Diet

fat 43%

cholesterol 200 mg/1000 kCal

polyunsaturated/saturated fat 0.34

20

Combination Diet

fat 43%

cholesterol 80 mg/1000 kCal

polyunsaturated/saturated fat 0.34

25

The 3 diets were isocaloric, and the individual components of each diet may vary with the participant's preference as long as the lipid levels in the diet were maintained.

30 <u>Cell Isolation</u>

At the end of each 3 week diet period, blood was drawn from each patient after a 12 hour period of fasting and monocytes were purified. 50 ml of blood was drawn into 5 evacuated tubes containing 1.4 ml each of citrate phosphate 35 dextrose to prevent coagulation. Blood was pooled into 50 ml tubes and spun at 400g (1250 RPM/Sorvall RC3B) for 15 minut s at 4°C. The upper serum layer (~ 25 ml) was then remov d

with a pipette and replac d with phosphate buffered salin (PBS) at 4° C. The blood was mixed and then spun at 1850 x g (2680 RPM) for 15 minutes at 4°C. Most of the clear upper layer was removed with a pipette, before the buffy coat at 5 the interface was taken in ~5 ml. The buffy coat was placed into a separate 50 ml tube, and the pipette used to remove it was washed with 20 ml PBS. A small aliquot of these cells was then diluted 1:1000 in PBS and counted under a microscope using a hemacytometer. Red blood cell concentration was then 10 adjusted with PBS to a final concentration of 1.5x109/ml, and 10 ml aliquots were added to Leucoprep Becton Dickinson) tubes for monocyte isolation. Tubes were spun for 25 minutes at 25°C in a Sorvall RT6000 with the brake off. Most of the clear upper layer was discarded, and the turbid layer above 15 the gel was saved and pooled in 50 ml tubes. The volume of each tube was then increased to 50 ml with 25°C PBS, and spun at 1000 RPM (Sorvall RC3B) for 10 minutes at 4°C. The liquid was then discarded, the pellet was resuspended in 50 ml PBS, and spun again. This process was repeated 3 more times. 20 final cell pellet was then resuspended in 2 ml RNA lysis buffer (Sambrook et al., 1989, supra) and frozen for subsequent RNA isolation as described above in Section 6.1.1. Differential display, Northern analysis, RT-PCR, subcloning, and DNA sequencing were carried out as described, 25 above, in Section 6.1.2.

7.1.2. PRELIMINARY DETECTION SYSTEM

The preliminary detection system described in this section was used to identify sequences that are

30 differentially expressed in a readily assayed, in vitro system. Sequences that showed some homology to those thought to be involved in cardiovascular disease were then used as specific primers or probes, or both, in Paradigm B, wherein the differential expression was ascertained under

35 physiologically relevant conditions, as described in section

7.1.1, above.

Cell culture Blood (~100 ml) was drawn from healthy human donors into vacutainer tubes containing heparin (Becton Blood was diluted 1:1 with PD (Phosphat Dickins n). buffered saline (PBS) without Ca or Mg, plus 0.3mM EDTA), and 5 layered onto Ficoll (Lymphocyte Separation Media - Organon Teknikon) as 30 ml of blood/7 ml ficoll in a 50 ml bluecapped Falcon tube, and centrifuged at 2000 RPM for 25 min. at room temperature (r.t.). The buffy coat was removed with a pipette, transferred to another 50 ml tube, diluted to 30 10 ml with PD, and centrifuged at 1200 RPM for 10 min. at r.t. The pellet was resuspended in 30 ml PD and the previous centrifugation step was repeated. The pellet was resuspended in 40 ml RPMI (2mm 1-Glutamine + penicillin/streptomycin), plated onto 4 plates, and incubated at 37°C for 2 hours. 15 Supernatant was removed, and the plates were washed 3x with PBS at 37°C. Plates were finally resuspended in 10 ml each with RPMI/20% human AB serum (Sigma, St. Louis, MO). On day 5, the media was changed and 100 units/ml of human γ -IFN (Genzyme) were added. On day 7, the media was removed and 20 replaced with RPMI/20% human LDL-deficient serum + 100 units/ml of human γ -IFN. Native, oxidized, and acetylated LDL were each added to one plate with the fourth plate serving as control. After the specified incubation time (5 hr. or 24 hr.) the media was removed and the cells were 25 resuspended in 2 ml guanidine isothiocyanate RNA lysis buffer (Sambrook et al., 1989, supra). Lysed cells were then syringed with 23 G. needle, layered over 5.7M CsCl, and centrifuged for 20 hr. at 35K RPM. RNA was isolated according to the method of Sambrook et al., 1989, supra. 30 Lipoproteins were prepared as described, above, in section 6.1.1. Differential display, Northern analysis, RT-PCR, subcloning, and DNA sequencing were carried out as described, above, in Section 6.1.2. For differential display, the primers used were T, CC (reverse) and OPE4 35 (forward), consisting of 5'GTGACATGCC3'. For RT-PCR, the first strand cDNA was prim d with T11CC, and PCR r actions

w re carri d out with rfhmal5 primers (for-

catgcctgtagaaaaaggtt/rev-cttcatagaatctaagccta), and mous γ actin prim rs (for-cctgatagatgggcactgtgt/rev-gaacacggcattgtcactaact).

7.1.3. TRANSGENIC APOE-DEFICIENT MOUSE EXPRESSING HUMAN bc1-2

Transgenic mice bearing a construct (FIG. 32) with the mouse scavenger receptor regulatory element (5kb) (M. Freeman, et al., 1995, unpublished results) driving

- 10 expression of the human bcl-2 gene (hbcl-2) were produced. The scavenger receptor regulatory element (ScR) is known to activate reporter gene expression in peritoneal macrophages in transgenic mice (M. Freeman, 1995, unpublished results). This 5 kb fragment is linked to the human bcl-2 cDNA (Cleary,
- 15 et al., 1986, supra) via a NotI restriction site. Human growth hormone (hGH) sequences (Mayo, et al., 1983, Nature 306: 86-88) are then ligated onto the 3' end of this construct through filled-in BamHI and EcoRV sites to provide message stability. This construct is then digested with XhoI
- 20 and the 9 kb ScR-hbcl2-hGH sequences are purified away from vector sequences. Another plasmid sample is digested with KpnI to yield a fragment with only 1.5kb of scavenger receptor regulatory sequences which provide a lower level of expression. These fragments are then injected independently
- 25 into mouse embryos derived from the FVB and C57BL/6 mouse strains according to standard protocols (Hogan, et al., Manipulating the Mouse Embryo, 1994, Cold Spring Harbor Laboratory Press). Following birth, tail sections are cut from mice derived from injected embryos and analyzed for the
- 30 presence of transgene sequences using hbcl-2 sequences as probes on Southern blots.

Transgenic mice bearing the ScR-hbcl2-hGH construct are then bred to wild-type mice of the same respective strain, and then the offspring are backcrossed to produce 35 homozygous lines of mice. These mice are then bred to apoEdeficient mice. Offspring are analyzed for presenc of the ScR-hbcl2-hGH by preparing tail sections and probing with

hbcl-2 s quences on South rn blots. Offspring are then analyzed for 1 si n formation and progression according to the methods of Plump, et al., 1992, supra.

5 7.2. RESULTS

Differential display analysis was carried out on monocyte RNA derived from the blood of patients whose serum cholesterol levels were manipulated through fat/cholesterol intake in their diets. FIG.1 shows band #14 which was 10 present in the low dietary fat/low serum cholesterol conditions and goes away in the high dietary fat/high serum cholesterol conditions. When a radioactively labeled probe was prepared from band #14 and hybridized with a Northern blot prepared from RNA from the same patient (FIG.2), an 8 kb 15 band was seen which was present in low serum cholesterol and disappeared in high serum cholesterol conditions. When band #14 sequences were subcloned, sequenced, and compared with the sequence database a 98% (203/207 bp) sequence similarity with the human bcl-2 gene (Cleary et al., 1986, Cell 47, 19-20 28) was obtained, indicating that band #14 is bcl-2.

Glutathione peroxidase (HUMGPXP1) in expression in monocytes was examined to determine its physiological relationship to bcl-2. Differential expression of HUMGPXP1 was first detected in a preliminary detection system using 25 monocytes cultured in vitro. Human monocytes were prepared as described above in subsection 7.1.2. Cells were lysed after 5 hours and RNA was prepared. Differential display analysis was carried out, and regulated bands were isolated and characterized. The DNA sequence was determined from a 30 number of independent subclones of amplified sequences of one such regulated band designated band 15. Using the BLAST program (Altschul, et al., 1990, J. Mol. Biol. 215: 403-410), a 176/177 (99%) sequence similarity was found between band 15 a sequence for human plasma glutathione peroxidase exon 1 35 (HUMGPXP1). This sequence occurs upstream of the reported transcription start sit . Nonetheless, RT-PCR analysis confirm d that th band 15 sequences are in fact within the

same transcription unit as sequences downstream of the r p rted transcription start site.

Based on this preliminary result, the gene expression pattern of glutathione peroxidase (HUMGPXP1) was further 5 analyzed for verification and characterization in physiologically relevant samples according to Paradigm B. Monocytes derived from human blood under atherogenic conditions (high serum cholesterol) and healthy conditions (low serum cholesterol) were examined with RT-PCR. As shown in FIG.4, there appears to be 2-3 fold less cDNA amplified by the HUMGPXP1 primers from the high fat/cholesterol monocytes than in the low fat/cholesterol monocytes, while the actin control bands are the same.

Monocytes from apoE-deficient mice and littermate

15 wild-type controls were purified and mouse bcl-2 mRNA levels
were compared using quantitative RT-PCR. By this method,
mouse bcl-2 mRNA levels were significantly lower in the apoEdeficient mice relative to the wild-type controls (FIG.3).

These results demonstrate that bc1-2 is an excellent 20 target gene for intervening in lesion formation and development. It was previously known that, under normal conditions, bc1-2 expression prevents apoptosis. The observed down-regulation of bc1-2 caused by atherogenic conditions, therefore, provides an explanation of how such atherogenic conditions may lead to plaque formation. By down-regulating the normally protective bc1-2 gene, high serum cholesterol triggers a series of events, entailing the induction of the apoptotic pathway, which results in programmed cell death, which in turn causes an inflammatory 30 response and subsequent plaque formation.

This model may be tested by counteracting the observed down-regulation of bcl-2. The human bcl-2 gene is placed in the ScR-hbcl2-hGH construct in which it is transcribed by a promoter that is activated in monocyte foam cells under atherogenic conditions. This construct is then introduced into an apoE-deficient mouse that otherwise serves as a model for atheroscl rosis. The effect of bcl-2 expression on

atherosclerosis is evidenced by the reduction in plaque initiation and dev lopment in th apoE-deficient mice bearing the construct. Amelioration of ather sclerosis may, therefore, be accomplished by such intervention in the down-5 regulation of the bcl-2 target gene.

- 8. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN RESPONSE TO PARADIGM C: IL-1 INDUCTION OF ENDOTHELIAL CELLS
- according to the invention, differential display was used to detect four novel genes that are differentially expressed in endothelial cells that were treated in vitro with IL-1. Three of these genes, rchd024, rchd032, and rchd036, are not homologous to any known gene. The fourth gene, rchd005, is 70% homologous to a cloned shark gene called bumetanide-sensitive Na-K-Cl cotransport protein. A human homolog of this gene has been reported, but the sequence has not yet been published (1994, Proc. Natl. Acad. Sci. USA 91: 2201-2205).
- The discovery of the up-regulation of these four genes provides a fingerprint profile of IL-1 induced endothelial cells. This fingerprint profile can be used in the treatment and diagnosis of cardiovascular diseases, including but not limited to atherosclerosis, ischemia/reperfusion, hypertension, restenosis, and arterial inflammation.

8.1. MATERIALS AND METHODS

Primary cultures of HUVEC's were established from normal term umbilical cords as described (In Progress in Hemostasis and Thrombosis, Vol. 3, P. Spaet, editor, Grune & Stratton Inc., New York, 1-28). Cells were grown in 20% fetal calf serum complete media (1989, J. Immunol. 142: 2257-2263) and passaged 1-3 times before activation.

For activation, cells were cultured with 10 units/ml of human IL-1 β for 1 or 6 hr. before lysis in guanidinium isothiocyanate RNA lysis buffer (Sambrook et al., 1989,

supra). Lysed cells w re then syringed with a 23 G. needle, layer d over 5.7M CsCl, and centrifuged f r 20 hr. at 35K.

Alternatively, cells were induced in the presence of 100 μ M lysophosphatidylcholine, or 50 μ g/ml oxidized human LDL 5 (Sigma) for periods of 1 or 6 hr. RNA was isolated as described, above, in Section 6.1. Differential display, Northern analysis, RT-PCR, subcloning, and DNA sequencing were carried out as described, above, in Section 6.1.2, except that Northern blot hybridizations were carried out as 10 follows: for pre-hybridization, the blot was placed into roller bottle containing 10 ml of rapid-hyb solution (Amersham), and placed into 65°C incubator for at least 1 hr. For hybridization, 1x107 cpm of the probe was then heated to 95°C, chilled on ice, and added to 10 ml of rapid-hyb 15 solution. The prehybridization solution was then replaced with probe solution and incubated for 3 hr at 65°C. following day, the blot was washed once for 20 min. at r.t. in 2x SSC/0.1% SDS and twice for 15 min. at 65°C in 0.1x SSC/0.1% SDS before being covered in plastic wrap and put 20 down for exposure.

Chromosomal locations were determined according to the method described in Section 6.1.3, above. For rchd024, the primers used were for-cccatagactaggctcatag, and revtttaaagagaaattcaaatc.

25

8.2. RESULTS

HUVEC's were activated with 10 units/ml IL-1\$ for 1 or 6 hours and compared to resting HUVEC's using differential display. As shown in FIG.5, a band marked rchd005 is present 30 in lanes 11 and 12 (IL-1, 6 hr.) but not in lanes 9 and 10 (control), or lanes 7 and 8 (IL-1, 1 hr.). This band, rchd005, was isolated and subcloned and sequenced. When a probe prepared form this band was used to screen a Northern blot, expression was seen at 6 hr., but not at 1 hr. or in 35 the control (FIG.6). However, when this same probe was hybridiz d to a Northern blot prepared from shear stressed RNA, according to Paradigm D described in S ction 9, below, a

different pattern of up-r gulation was also seen (FIG.7).

Expression was up at 1 hr. and then nearly disappeared by 6 hr. Amplified rchd005 DNA was subclon d and sequenced.

Sequence analysis revealed an approximately 360 bp insert

5 (FIG.8) with 70% sequence similarity to a cloned shark gen called bumetanide-sensitive Na-K-Cl cotransport protein.

Another IL-1 inducible band, rchd024, is shown in FIG.9.

Northern analysis on IL-1 up-regulated RNA reveals a 10 kb message present at 6 hr. (FIG.10) that also shows a low level

10 of up-regulation under shear stress at 6 hr. (FIG.11). The DNA sequence was obtained from subclones of amplified DNA (FIG.12). Database searching revealed no significant sequence similarities. A PCR amplification experiment determined that the rchd024 gene is located on human

15 chromosome 4.

Band rchd032 was isolated on the basis of its differentially increased expression after 6 hr. treatment with IL-1 (FIG.13), which was confirmed by RT-PCR analysis (FIG.14). Amplified rchd032 sequences were subcloned and sequenced (FIG.15). No significant homology to any known gene was found.

Band rchd036 was also isolated on the basis of its differential expression 6 hr. after IL-1 treatment (FIG.16). Northern analysis (FIG.17) revealed an 8 kb band which was 25 up-regulated 6 hr. after IL-1 treatment. Another Northern analysis was performed testing rchd036 under the shear stress condition of Paradigm D, which are described in the example in Section 9, below. Interestingly, rchd036 is not induced by shear stress, as indicated by the lack of any band after 30 either 1 hr. or 6 hr. of treatment (FIG.33). This result provides an example of an IL-1-inducible endothelial cell gene that is not regulated by shear stress, indicating that these induction pathways can be separated, and may provide for drugs with greater specificity for the treatment of 35 inflammation and atherosclerosis. The DNA sequence was obtain d from subcl nes of amplified DNA (FIG.18), and a search of the database revealed no s quence similarities.

PCR amplification xperiment determined that the rchd036 gene is locat d on human chromosome 15.

9. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY

EXPRESSED IN RESPONSE TO PARADIGM D: ENDOTHELIAL CELL

SHEAR STRESS

According to the invention, differential display was used to detect genes that are differentially expressed in endothelial cells that were subjected to fluid shear stress in vitro. Shear stress is thought to be responsible for the prevalence of atherosclerotic lesions in areas of unusual circulatory flow. Using the method of Paradigm D, four bands with novel DNA sequences were identified.

rchd502 is homologous to rat matrin F/G mRNA sequence
15 (Hakes, et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88:6186-6190). This rat gene has been shown to encode a protein which functions as a prostaglandin transporter, and has been designated PGT (Kanai et al., 1995, Science 268: 866-869). In fact, the sequences in rchd502 encode the homologous

- 20 twelve transmembrane domains found in the PGT gene. Furthermore, rchd502 was demonstrated to be up-regulated by shear-stress but not by IL-1. It therefore provides an excellent novel tool for diagnosis and treatment of cardiovascular disease.
- 25 The complete sequence of the rchd523 gene reveals that it encodes a novel G protein-coupled receptor protein, consisting of 375 amino acids and seven transmembrane domains. At the amino acid level, rchd523 is 40% indentical to the Angiotensin II receptor. The discovery of such a
- 30 novel protein is particularly useful in designing treatments as well as diagnostic and monitoring systems for cardiovascular disease. In carrying out signal transduction, G proteins play an important early role in the pathways that cause changes in cellular physiology. The rchd523 gene
- 35 product, therefore, provides an exc llent target for interventi n in the treatm nt of cardiovascular disease.

Th sequence of the coding region for rchd528 was partially det rmined. Sequence alignment revealed that the partial rchd528 sequence contains an extracellular domain with particularly strong homology to epidermal growth factor 5 (EGF) repeats.

Furthermore, as transmembrane proteins, the rchd502, rchd523, and rchd528 gene products can be readily accessed or detected on the endothelial cell surface by other compounds. They provide, therefore, excellent targets for detection of cardiovascular disease states in diagnostic systems, as well as in the monitoring of the efficacy of compounds in clinical trials. Furthermore, the extracellular domains of these four gene products provide especially efficient screening systems for identifying compounds that bind to them. Such compounds, can be useful in treating cardiovascular disease by modulating the activity of the transmembrane gene products.

The sequence of the complete coding region of the rchd534 gene was also obtained. The rchd534 gene encodes a novel protein consisting of 235 amino acids, homologous to the Drosophila gene Mothers against decapentaplegic (Mad) (Sekelsky et al., 1995, Genetics 139: 1347-1358). The rchd534 gene is also significantly similar to a sequence of unknown function from Caenorhabditis elegans, identified in the C. elegans genome project (Wilson, et al., 1994, Natur 25 368: 32-38). MAD is in the same pathway as Decapentaplegic (dpp), which is a Drosophila homolog of bone morphogenic protein-4/Transforming growth factor-β (TGF-β).

Also using the method of Paradigm D, the previously identified human prostaglandin endoperoxide synthase type II, 30 also known as cyclooxygenase II (COX II), was identified (band rchd505). This gene was previously known to be involved in inflammation, and to be up-regulated by IL-1 (Jones et al., 1993, J. Biol. Chem. 268: 9049-9054), but its up-regulation by shear stress was previously unknown. This result confirmed the general effectiveness of the techniqu s us d acc rding to the invention in the detection of genes involved cardiovascular disease.

The sequenc of another up-regulated gene, designated as rchd530, was sh wn t b identical to the previously identified human manganese superoxide dismutase gene (MnSOD). The up-regulation of MnSOD under shear stress was not 5 previously known.

The up-regulation of these six genes in shear stressed endothelial cells provides a fingerprint for the study of cardiovascular diseases, including but not limited to atherosclerosis, ischemia/reperfusion, hypertension, and 10 restenosis. The fact that one of these genes, rchd502, is not up-regulated under Paradigm C (IL-1 induction) provides an extremely useful means of distinguishing and targeting physiological phenomena specific to shear stress.

The importance of the induction of these genes in

15 endothelial cells under disease conditions was further
analyzed by testing the effect of estrogen on their
expression. Studies in postmenopausal women on estrogen
replacement therapy and in animal models have demonstrated
that estrogen has an atheroprotective effect in reducing

20 incidence of coronary artery disease (Science 269:771-773,
1995). While these studies demonstrate that estrogen has an
effect in the liver in reducing LDL levels and increasing HDL
levels, these lipoprotein changes are not thought to be
responsible for all of the cardioprotective effects of

25 estrogen.

The identification of target genes that are differentially expressed under certain disease conditions provides for further analysis of the effect of estrogen on cardiovascular disease. The effect of estrogen on target 30 gene expression in endothelial cells was, therefore, compared to particular paradigm expression patterns. Specifically, given that the estrogen receptor is a transcription factor (Kumar and Chambon, Cell 55:145-156, 1988), genes that are induced by shear stress were examined for regulation by 35 estrogen in HUVEC's. In addition to estrogen, treatment with strogen receptor agonists/antagonists tam xifen (Grainger et al., Nature Medicine 1:1067-1073, 1995) and raloxifene (Black

t al., J. Clin. Invest. 93:63-69, 1994), which also hav been reported to have cardioprotective effects, were xamin d. The results d monstrate that rchd528, which is upregulated by shear stress, is also up-regulated by estrogen, and suggest that shear stress and estrogen may play similar roles in cardiovascular disease.

9.1. MATERIALS AND METHODS

Primary cultures of HUVEC's were established from

10 normal term umbilical cords as described (In Progress in
Hemostasis and Thrombosis, Vol. 3, P. Spaet, editor, Grune &
Stratton Inc., New York, 1-28). Cells were grown in 20%
fetal calf serum complete media (1989, J. Immunol. 142: 22572263) and passaged 1-3 times before shear stress induction.

For induction, second passage HUVEC's were plated on tissue culture-treated polystyrene and subjected to 10 dyn/cm² laminar flow for 1 and 6 hr. as described (1994, J. Clin. Invest. 94: 885-891) or 3-10 dyn/cm² turbulent flow as previously described (1986 Proc. Natl. Acad. Sci. U.S.A. 83: 20 2114-2117).

To examine the effect of estrogen on target gene expression, HUVEC's were cultured in serum free endothelial cell basal medium supplemented with lug/ml insulin, lug/ml transferrin, 50 ug/ml gentamycin, and 200ug/ml fatty acid-

- 25 free BSA. Cells were treated with either estradiol, tamoxifen, or raloxifene at 1nm final concentration for 4 or 16 hours before lysis and RNA isolation. For rchd528, the DNA fragment comprising bases 1600-2600 was used as a probe in Northern analysis.
- RNA was isolated as described, above, in Section 6.1. Differential display, Northern analysis, RT-PCR, subcloning, and DNA sequencing were carried out as described, above, in Section 6.1.2, except that Northern blot hybridizations were carried out as described, above, in Section 8.1.
- cDNAs containing larger portions or complete coding regions of the g nes were obtained either by RACE, or by probing cDNA libraries, or both. The RACE procedure was

carried ut using a kit according to the manufacturer's instructions (Cl ntech, Palo Alto, CA; see also: Chenchik, et al., 1995, CLONTECHniques (X) 1: 5-8; Barnes, 1994, Proc. Natl. Acad. Sci. USA 91: 2216-2220; and Cheng et al., Proc.

5 Natl. Acad. Sci. USA 91: 5695-5699). Primers were designed based either on amplified sequences, or on sequences obtained from isolates from the cDNA libraries. Template mRNA was isolated from shear stressed HUVEC's.

Amplified sequences, which contained portions of the 10 genes, were subcloned and then used individually to retrieve cDNAs encoding the corresponding gene within cDNA libraries. Probes were prepared by isolating the subcloned insert DNA from vector DNA and labeling with ³²P as described above in Section 6.1.2. The libraries used included individual human

- 15 heart, human pancreas, and human lung cDNA libraries, (Clontech, Palo Alto, CA); and a cDNA library prepared from mRNA which was isolated from shear stressed HUVEC's as described in this section, above. The HUVEC cDNA library was produced according to well-known methods (Sambrook et al.,
- 20 1989, supra), using the bacteriophage λ-ZAP vector (Stratagene, La Jolla, CA). Libraries were screened by each respective probe using well-known methods (Sambrook et al., 1989, supra). Plaques from the libraries that were detected by the probes were isolated and the cDNA insert within the 25 phage vector was sequenced.

Determination of chromosomal location was carried out according to the method described in Section 6.1.3, above. The primers used for rchd523 were (for-atgccgtgtgggttagtc) and (rev-attttatgggaaggtttttaca); and for rchd534 were (for-30 cttttctgcgtctcccat) and (rev-agacatcagaaactccaacc).

Northern blot analyis of RNA extracted from various human organs and tissues was performed using commercially available pre-blotted filters (Clontech, Palo Alto, CA).

9.2. RESULTS

or 6 hr. and compar d to static contr l cells in differential display. As shown in FIG.19, a band (rchd502) is identified

which is found in lanes 5,6 (6 hr.) but not in lanes 1,2 (control). This band was excis d, amplified, and s quenced. North rn analysis using amplified rchd502 sequences revealed a 4.5 kb band that is up-regulated at 6 hr. compared to 5 controls (FIG.20). When rchd502 probe was hybridized to a Northern blot prepared from IL-1 induced endothelial cells, up-regulation of a 4.5 kb band is not seen (FIG.21). This result provides the first example of a shear stress-inducible endothelial cell gene that is not regulated by IL-1,

- 10 indicating that these induction pathways can be separated, and may provide for drugs with greater specificity for the treatment of inflammation and atherosclerosis. The sequence of the amplified region of rchd502 was used to design probes for cloning the entire gene.
- Both 5' and 3' RACE reactions were carried out to obtain a 2.2kb cDNA containing the entire coding sequence of the rchd502 gene. Based on the sequence information from RACE, a phage clone was isolated from a human pancreas library which contains all but the first 200 base pairs of
- 20 the rchd502 coding region. This clone was designated pFCHD502SF. The remaining 200 base pairs were obtained through amplification from a human lung library by PCR with specific primers. A fragment comprising base pairs 1-265 of the rchd502 gene was subcloned into the TA cloning vector to
- 25 produce plasmid pFCHD502SJ. Thus, rchd502 is represented by two subclones, pFCHD502SJ comprising base pairs 1-265, and pFCHD502SF comprising base pairs 201 through the 3' end of the coding region, including 3' untranslated sequence.

The complete sequence encompassing the entire coding 30 region is shown in FIG.22. rchd502 shows strong homology (81.4%) to the rat PGT gene, which encodes a prostaglandin transporter (Kanai et al., 1995, supra). It contains twelve transmembrane (TM) domains. The approximate bounds of each of the twelve TM domains are as follows:

35 TM1: about amino acid 31 to about amino acid 52.

TM2: about amino acid 68 to about amino acid 89.

TM3: about amino acid 102 to about amino acid 121.

TM4: about amino acid 173 to about amino acid 194.

TM5: about amino acid 206 to about amino acid 227.

TM6: about amino acid 259 to about amino acid 280.

TM7: about amino acid 315 to about amino acid 337.

5 TM8: about amino acid 366 to about amino acid 385.

TM9: about amino acid 403 to about amino acid 423.

TM10: about amino acid 510 to about amino acid 530.

TM11: about amino acid 555 to about amino acid 575.

TM12: about amino acid 607 to about amino acid 627.

Shear stress band rchd505 decreased 1 hr. and 6 hr. after shear stress, as compared to untreated control cells (FIG.23). Northern analysis revealed differential expression except that rchd505 was up-regulated after 1 hr. and 6 hr. shear stress treatment (FIG.24). This same band was

15 similarly up-regulated in cells treated with IL-1 according to Paradigm C (FIG.25). Sequence analysis revealed that rchd505 is the previously characterized human endoperoxide synthase type II, also known as cyclooxygenase II (COX II).

rchd523 was detected under differential display as a 20 band up-regulated after 1 hr. and 6 hr. shear stress treatment (FIG.26). The 6 hr. up-regulation of rchd523 was confirmed by RT-PCR (FIG.27). Amplified rchd523 sequences were subcloned, and an isolate was sequenced and designated pRCHD523. The RACE procedure was used to obtain a 2.5 kb

25 cDNA containing the entire coding sequence of the rchd523 gene. The cDNA isolate containing the complete coding sequence of rchd523 is designated pFCHD523. Sequence analysis revealed that the rchd523 gene product encodes a novel G protein-coupled receptor, consisting of 375 amino

30 acids and seven transmembrane domains. At the amino acid level, rchd523 is 40% indentical to the Angiotensin II receptor. A PCR amplification experiment determined that the rchd523 gene is located on human chromosome 7.

rchd528 was also detected as an up-regulated band 35 after 1 hr. and 6 hr. shear stress treatment (FIG.29). This result was confirmed by N rthern analysis in which probes of rchd528 amplified sequence detected an approximately 8 kb

messag that was up-regulated moderately after 1 hr., and upregulat d v ry strongly after 6 hr. (FIG.30). The amplified
sequ nces were subcl ned and sequenced. This sequence
information was used for initial probing of a cDNA library to
5 isolate the rchd528 gene.

The amplified sequence was used for initial probing of a shear stressed HUVEC cDNA library to isolate a partial clone of rchd528. The RACE procedure was then used in combination with probing a human heart cDNA library and PCR amplification to obtain overlapping clones encompassing th entire rchd528 coding region. The complete coding region of the rchd528 gene is contained in the following three plasmids each containing a segment of the rchd528 gene cloned into pBluescript: pFCHD528A, comprising nucleotides 1-1200; pFCHD528B, comprising nucleotides 237-2982; and pFCHD528C, comprising nucleotides 2982 through the 3' end of the coding region. The DNA sequence comprising the complete coding region of the rchd528 gene is shown in FIG.31.

Based on homology to a number of different proteins,

the rchd528 gene product was shown to contain an
extracellular domain comprising the epidermal growth factor
(EGF) repeat motif. The approximate bounds of the EGF repeat
are from about amino acid 1089 to about amino acid 1122.
There is a signal peptide domain extending from about amino
acid 5 to about amino acid 28. Also, there is a
transmembrane domain extending from about amino acid 1348 to
about amino acid 1370. In addition, there is an asparagine
hydroxylation site consensus sequence from about amino acid
1140 to about amino acid 1151. Northern blot analysis of
mRNA isolated from a variety of human organs and tissues

revealed that rchd528 is very highly expressed in the heart.

The effect of estrogen on the expression of rchd528 in endothelial cells was also examined. Northern blot analysis revealed significant up-regulation of rchd528 after overnight treatment with estrogen compared to control cells.

A band designated rchd530 corresponded to a sequence strongly up-regulated in HUVECs after six hours of

sh ar stress (FIG. 36). This up-regulation is greater for laminar shear str ss than for turbulent shear stress. Sequenc analysis revealed that rchd530 is identical to human manganese superoxide dismutase (MnSOD). The induction of MnSOD by shear stress was not previously known. MnSOD was also demonstrated to be induced by six hours of treatment with IL-1.

rchd534 also was detected as being up-regulated in response to shear stress. Northern analysis revealed that 10 rchd534 is strongly induced after 6 hours of shear stress treatment (FIG.34). The amplified sequences were subcloned, sequenced, and re-isolated for use as a probe for retrieving full-length rchd534 cDNA. A 3.3kb λ-ZAP clone was sequenced to reveal full-length rchd534 cDNA (FIG.35). This clone 15 containing the entire coding region the rchd534 gene was designated pFCHD534. The encoded protein consists of 235 amino acids. A PCR amplification experiment determined that the rchd523 gene is located on human chromosome 15.

An initial comparison with sequences in the database 20 revealed no homologies between rchd534 and any known DNA sequences. A subsequently performed search revealed that rchd534 is a homolog of the Drosophila gene Mothers against decapentaplegic (Mad) (Sekelsky et al., 1995, Genetics 139: 1347-1358), and is also significantly similar to a sequence of unknown function from Caenorhabditis elegans, identified in the C. elegans genome project ((Wilson, et al., 1994, Nature 368: 32-38).

rchd534 was also shown not to be regulated by IL-1 when tested under the conditions of Paradigm C, as described 30 in Section 8, above. Just like rchd502, rchd534 is an example of a shear stress-inducible endothelial cell gene that is not regulated by IL-1, confirming that these induction pathways can be separated, and may provide for drugs with greater specificity for the treatment of 35 inflammation and atherosclerosis.

10. EXAMPLE: USE OF GENES UNDER PARADIGM A AS SURROGATE MARKERS IN CLINICAL TRIALS

According to the inv ntion, the fingerprint profile derived from any of the paradigms described in Sections 5 5.1.1.1 through 5.1.1.6 may be used to monitor clinical trials of drugs in human patients. The fingerprint profile, described generally in Section 5.5.4, above, indicates the characteristic pattern of differential gene regulation corresponding to a particular disease state. Paradigm A, 10 described in Section 5.1.1.1, and illustrated in the example in Section 6, above, for example, provides the fingerprint profile of monocytes under oxidative stress. This profile gives an indicative reading, therefore, of the physiological response of monocytes to the uptake of oxidized LDL. 15 Accordingly, the influence of anti-oxidant drugs on the oxidative potential may be measured by performing differential display on the monocytes of patients undergoing clinical tests.

20 10.1. TREATMENT OF PATIENTS AND CELL ISOLATION

Test patients may be administered compounds suspected of having anti-oxidant activity. Control patients may be given a placebo.

Blood may be drawn from each patient after a 12 hour 25 period of fasting and monocytes may be purified as described, above, in Section 7.1.1. RNA may be isolated as described in Section 6.1.1, above.

10.2. ANALYSIS OF SAMPLES

RNA may be subjected to differential display analysis as described in Section 6.1.2, above. A decrease in the physiological response state of the monocytes is indicated by a decreased intensity of those bands that were up-regulated by oxidized LDL under Paradigm A, and an increased intensity of those bands that were down-regulated by oxidized LDL under Paradigm A, as described in Section 6.2, above.

11. EXAMPLE: IMAGING OF A CARDIOVASCULAR DISEASE CONDITION
According to the invention, differentially expr ssed
gen products which are localized on the surface of affected
tissue may be used as markers for imaging the diseased or
5 damaged tissue. Conjugated antibodies that are specific to
the differentially expressed gene product may be administered
to a patient or a test animal intravenously. This method
provides the advantage of allowing the diseased or damaged
tissue to be visualized non-invasively.

10 For the purposes of illustration, this method is described in detail for the rchd523 gene product. The principles and techniques can be applied to any identified transmembrane target gene product, including, for example, the rchd502 and rchd528 gene products.

15

11.1. MONOCLONAL CONJUGATED ANTIBODIES

The differentially expressed surface gene product, such as the rchd523 gene product, is expressed in a recombinant host and purified using methods described in 20 Section 5.4.2, above. Preferably, a protein fragment comprising one or more of the extracellular domains of the rchd523 product is produced. Once purified, it is be used to produce F(ab')₂ or Fab fragments, as described in Section 5.4.3, above. These fragments are then labelled with 25 technetium-99m (99mTc) using a conjugated metal chelator, such as DTPA as described in section 5.8.3, above.

11.2. <u>ADMINISTRATION AND DETECTION OF IMAGING AGENTS</u>

Labeled MAb may be administered intravenously to a 30 patient being diagnosed for atherosclerosis, restenosis, or ischemia/reperfusion. Sufficient time is allowed for the detectably-labeled antibody to localize at the diseased or damaged tissue site (or sites), and bind to the rchd523 gene product. The signal generated by the label is detected by a 35 photoscanning device. The detect d signal is then converted to an image of the tissue, revealing c lls, such as

endoth lial c lls, in which rchd523 gene expression is upregulated.

12. EXAMPLE: SCREENING FOR LIGANDS OF THE rchd 523 GENE PRODUCT AND ANTAGONISTS OF rchd523 GENE PRODUCT-LIGAND INTERACTION

The rchd523 gene product is a member of the G proteincoupled receptor protein family, containing multiple transmembrane domains. The receptor binding activity of this 10 protein family is detected by assaying for Ca2 mobility through the membrane of cells in which the receptor gene is expressed. This assay, described below, is used to identify ligands that bind to the rchd523 gene product receptor. Establishing this ligand-receptor activity then provides for 15 a screen in which antagonists of the ligand-receptor interaction are identified. An antagonist is detected by its ability to inhibit the Ca2+ mobility induced by ligandreceptor binding. Such antagonists, therefore, provide compounds that are useful in the treatment of cardiovascular 20 disease, by counteracting the activity of the product of this target gene which is up-regulated in the disease state.

Binding of ligand to the rchd523 gene product is measured as follows. The cDNA containing the entire coding region of the rchd523 gene is removed from pFCHD523 and

- 25 placed under the control of a promoter that is highly expressed in mammalian cells in an appropriate expression vector. The resulting construct is transfected into myeloma cells, which are then loaded with FURA-2 or INDO-1 by standard techniques. Ligands are added to the cell culture
- 30 to test their ability to bind to the rchd523 receptor in a manner that triggers signal transduction, as measured by Ca²⁺ mobilization across the cell membrane. Mobilization of Ca²⁺ induced by ligand is measured by fluorescence spectroscopy as described in Grynkiewicz et al., 1985, J. Biol. Chem.
- 35 260:3440. Ligands that react with the target gene product rec ptor domain are identified by th ir ability to produc a fluorescent signal. Their receptor binding activities ar

quantified and compared by m asuring the level of fluorescence produc d over background.

Candidate antagonists are then screened for their ability to interfere with ligand-receptor binding. Myeloma 5 transfectants expressing rchd523 gene product are treated with ligand alone, and ligand in the presence of candidate antagonist. Candidate antagonists that cause a reduction in the fluorescence signal are designated antagonists of the ligand-rchd523 receptor interaction.

10

13. POLYCLONAL ANTIBODIES TO TARGET GENE PEPTIDE SEQUENCES

Peptide sequences corresponding to the indicated amino sequences of cDNAs were selected and submitted to Research Genetics (Huntsville, AL) for synthesis and antibody

- 15 production. Peptides were modified as described (Tam, J.P., 1988, Proc. Natl. Acad. Sci. USA 85: 5409-5413; Tam, J.P., and Zavala, F., 1989, J. Immunol. Methods 124: 53-61; Tam, J.P., and Lu, Y.A., 1989, Proc. Natl. Acad. Sci. USA 86: 9084-9088), emulsified in an equal volume of Freund's
- 20 adjuvant and injected into rabbits at 3 to 4 subcutaneous dorsal sites for a total volume of 1.0 ml (0.5 mg peptide) per immunization. The animals were boosted after 2 and 6 weeks and bled at weeks 4, 8, and 10. The blood was allowed to clot and serum was collected by centrifugation.

25

30

35

The peptides used ar summarized below:

	rchd502	Amino Acids #'s	Sequence
5	fchd502.1	294-308	DEARKLEEAKSRGSL
	fchd502.1	435-449	SSIHPQSPACRRDCS
	fchd502.3	627-640	RVKKNKEYNVQKAA
10	rchd523		
	fchd523.1	243-258	RAHRHRGLRPRRQKAL
	fchd523.2	360-372	IPDSTEQSDVRFS
15	rchd528		
	fchd528.1	1393-1410	SPYAEYPKNPRSQEWGRE
	fchd528.2	1467-1481	NPSFISDESRRRDYF
20	rchd534		
	fchd534.1	54-69	EFSDASMSPDATKPSH
	fchd534.2	112-125	LEQRSESVRRTRSK
25	fchd534.3	182-197	RSGLQHAPEPDAADGP

14. LOCALIZATION OF NOVEL GENES BY IN SITU HYBRIDIZATION The expression of two target genes, rchd502 and rchd528, was examined by in situ hybridization. The expression was detected in human carotidendarterectomy samples, i.e., human cardiovascular tissue in a diseased state, taken from a living patient suffering from cardiovascular disease. The expression pattern for each gene was observed to be similar to the pattern detected for the positive control, which is known to be constitutively expr ssed in endoth lial cells. These results provide

further evid no of the rol of both rchd502 and rchd528 in cardiovascular disease. The detection of high levels of expression of these target genes specifically within the endothelial cells of diseased tissues allows for more precise diagnosis, as well as more precise treatment methods, than simple detection of atherosclerotic lesion provides.

14.1 Methods

7μm paraffin embedded sections of human carotid
10 endarterectomy samples were deparaffinized in xylenes,
rehydrated through graded ethanol series and post-fixed with
4% PFA/PBS for 15 minutes. After washing with PBS, sections
were digested with 2 μg/ml proteinase K at 37° for 15
minutes, and again incubated with 4% PFA/PBS for 10 minutes.
15 Sections were then washed with PBS, incubated with 0.2 N HCl
for 10 minutes, washed with PBS, incubated with 0.25% acetic
anhydride/1 M triethanolamine for 10 minutes, washed with PBS
and dehydrated with 70% ethanol and 100% ethanol.

Hybridizations were performed with 35S-radiolabeled 20 (5x10° cpm/ml) cRNA probes encoding 1) the 0.8 kB SmaI fragment segment of the coding region of the human von Willebrand factor gene, 2) a fragment containing portions of the novel gene rchd502 (sequence base pairs 3-1195, excluding bases 396-622), and 3) a fragment of the novel gene fchd528

- 25 (sequence base pairs 3718-6407) in the presence of 50% formamide, 10% dextran sulfate, 1x Denhardt's solution, 600 mM NaCl, 10 mM DTT, 0.25% SDS and 100 μmg/ml tRNA for 18 hours at 55°. After hybridization, slides were washed with 5x SSC at 55°, 50% formamide/2x SSC at 55° for 30 minutes, 10
- 30 mM Tris-HCl(pH 7.6)/500 mM NaCl/1 mM EDTA (TNE) at 37° for 10 minutes, incubated in 10 μ g/ml RNase A in TNE at 37° for 30 minutes, washed in TNE at 37° for 10 minutes, incubated once in 2x SSC at 50° for 30 minutes, and dehydrated with 70% ethanol and 100% ethanol. Localization of mRNA transcripts
- 35 was detected by dipping slides in Kodak NBT-2 photo mulsion and xposing for 7 days at 4°, followed by development with Kodak Dektol developer. Slides were count retained with

Haemot xylin and Eosin and photographed. Controls for the *in* situ hybridization experiments included the use of a sense probe which showed no signal above background levels.

5 14.2 Results

The rchd502 and rchd528 genes each displayed a similar expression patter to the positive control signal from von Willebrand factor, a constitutively expressed endothelial cell marker. Signal was detected for both rchd502 and 10 rchd528 over most endothelial cells lining the luminal surface of the carotid artery, as was also observed for von Willebrand factor. None of the three genes examined showed expression in any other cell type present in the tissue, including smooth muscle cells and macrophages.

15

15. <u>DEPOSIT OF MICROORGANISMS</u>

The following microorganisms were deposited with the Agricultural Research Service Culture Collection (NRRL),

20 Peoria, Illinois, on January 11, 1995 and assigned the indicated accession numbers:

	<u>Microorganism</u>	NRRL Accession No.
	RCHD005	B-21376
25	RCHD024	B-21377
	RCHD032	B-21378
	RCHD036	B-21379
	RCHD502	B-21380
	RCHD523	B-21381
30	RCHD528	B-21382

The following microorganisms were deposit d with th Agricultural Research S rvice Culture Collection (NRRL), P oria, Illin is, on June 6, 1995 and assigned the indicated accession numbers:

5 Microorganism NRRL Accession No.

FCHD523 B-21458 FCHD534 B-21459

The following microorganisms were deposited with the

10 American Type Culture Collection (ATCC), Rockville, Maryland,
on February 7, 1996, and assigned the indicated accession
numbers:

	Microorganism	ATCC Accession No.
	FCHD502SF	· · · · · · · · · · · · · · · · · · ·
15	FCHD502SJ	•

The following microorganisms were deposited with the American Type Culture Collection (ATCC), Rockville, Maryland, on February 9, 1996, and assigned the indicated accession 20 numbers:

Microorganism	ATCC Accession No.
FCHD528A	
FCHD528B	
FCHD528C	

25

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

International Application No: PCT/

MICROORGANISMS Optional Sheet in connection with the microorganism referred to on page 144-145, lines 1-35 of the description
Optional Sheet in connection with the microorganism referred to on page 144-145, lines 1-35 of the description
A. IDENTIFICATION OF DEPOSIT
Further deposits are identified on an additional sheet *
Name of depositary institution *
Agricultural Research Culture Collection (NRRL) International Depositary Authority
Address of depositary institution (including postal code and country) * 1815 N. University Street
Peoria, IL 61604 US
Date of deposit ' January 11, 1995 Accession Number ' B-21376
B. ADDITIONAL INDICATIONS ' (leave blank if not applicable). This information is continued on a separate attached sheet
C. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE ' O' O
D. SEPARATE FURNISHING OF INDICATIONS * (leave blank if not applicable)
The indications listed below will be submitted to the international Bureau later " (Specify the general nature of the indications e.g., "Accession Number of Deposit")
E. This sheet was received with the International application when filed (to be checked by the receiving Office)
(Authorized Officer)
☐ The date of receipt (from the applicant) by the International Bureau *
was
Form PCT/RO/134 (January 1981)

International Application No: PCT/ /

Form PCT/RO/134 (cont.)

N/A

Agricultural Research Culture Collection (NRRL) International Depositary Authority 1815 N. University Street Peorie, IL 61604 US

Accession No.	Date of Deposit
B-21377	January 11, 1995
B-21378	January 11, 1995
B-21379	January 11, 1995
B-21380	January 11, 1995
B-21381	January 11, 1995
B-21382	January 11, 1995
8-21458	June 6, 1995
B-21459	June 6, 1995
American Type Culture Collection	50116 O, 1535
12301 Parklawn Drive	
Rockville, MD 20852	
us	
N/A	February 7, 1996
N/A	February 7, 1996
N/A	February 9, 1996
N/A	February 9, 1996

February 9, 1996

February 9, 1996

WHAT IS CLAIMED IS:

1. An isolat d nucleic acid containing the following nucleotide sequence:

```
rchd005 (SEQ ID NO.:1),
     rchd024 (SEQ ID NO.:2),
     rchd032 (SEQ ID NO.:3),
     rchd036 (SEQ ID NO.:4),
     rchd502 (SEQ ID NO.:5),
     rchd523 (SEQ ID NO.:6),
10
     rchd528 (SEQ ID NO.:7), or
     rchd534 (SEQ ID NO.:36).
   or the nucleotide sequence of a gene or gene fragment
   contained in the following clone as deposited with the NRRL:
     pRCHD005 (in NRRL Accession No. B-21376),
15
     pRCHD024 (in NRRL Accession No. B-21377),
     pRCHD032 (in NRRL Accession No. B-21378),
     pRCHD036 (in NRRL Accession No. B-21379),
     pRCHD502 (in NRRL Accession No. B-21380),
20
     pFCHD502SF (in ATCC Accession No.
                                               ),
     pFCHD502SJ (in ATCC Accession No.
                                               ),
     pRCHD523 (in NRRL Accession No. B-21381),
     pFCHD523 (in NRRL Accession No. B-21458),
     pRCHD528 (in NRRL Accession No. B-21382),
     pFCHD528A (in ATCC Accession No.
25
                                              ),
     pFCHD528B (in ATCC Accession No.
                                              ),
     pFCHD528C (in ATCC Accession No.
     pFCHD534 (in NRRL Accession No. B-21459).
```

- 30 2. An isolated nucleic acid which hybridizes under stringent conditions to the nucleotide sequence of Claim 1 or its complement, or to the gene or gene fragment contained in the clone of Claim 1 as deposited with the NRRL.
- 35 3. An isolated nucleic acid which encodes an amino acid sequence ncoded by the nucleotide s quenc of Claim 1 or its

complement, or th g ne or g ne fragment contained in the clone of Claim 1 as deposited with the NRRL.

- 4. A nucleotide vector containing the nucleotide sequence 5 of Claim 1, 2 or 3.
- An expression vector containing the nucleotide sequence of Claim 1, 2 or 3 in operative association with a nucleotide regulatory element that controls expression of the 10 nucleotide sequence in a host cell.
 - 6. A genetically engineered host cell containing the nucleotide sequence of Claim 1, 2 or 3.
- 7. A genetically engineered host cell containing the nucleotide sequence of Claim 1, 2 or 3 in operative association with a nucleotide regulatory element that controls expression of the nucleotide sequence in the host cell.

20

- 8. A substantially pure gene product encoded by the nucleic acid of Claim 1, 2, or 3.
- An antibody that immunospecifically binds the gene
 product of Claim 8.
 - 10. A transgenic animal in which the nucleic acid of Claim 1, 2 or 3 is an expressed transgene contained in the genome of the animal.

- 11. A transgenic animal in which expression of genomic sequences encoding the gene product of Claim 8 is prevented or suppressed.
- 35 12. A method for diagnosing cardiovascular disease, comprising detecting, in a patient sample, a gene or its gene

product which is differentially expressed in cardiovascular dis as states.

- 13. The method of Claim 12 in which the cardiovascular 5 disease is atherosclerosis.
 - 14. The method of Claim 12 in which the cardiovascular disease is ischemia/reperfusion.
- 10 15. The method of Claim 12 in which the cardiovascular disease is hypertension.
 - 16. The method of Claim 12 in which the cardiovascular disease is restenosis.

15

- 17. The method of Claim 12 in which the gene is upregulated in individuals genetically predisposed to cardiovascular disease.
- 20 18. The method of Claim 17 in which the gene encodes a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homolog of rat GPT, a COX II protein, an rchd523 protein, an rchd528 protein, an MnSOD protein, or an rchd534 protein.

25

- 19. The method of Claim 12 in which the gene is down-regulated in individuals genetically predisposed to cardiovascular disease.
- 30 20. The method of Claim 19 in which the gene encodes a glutathione peroxidase protein or a Bcl-2 protein.
 - 21. The method of Claim 12 in which the gene is upregulated by treatment with IL-1.

35

22. The method f Claim 21 in which the gene encodes an Na-K-Cl cotransporter prot in homologue, an rchd024 protein,

an rchd032 protein, an rchd036 protein, a COX II prot in, or an MnSOD prot in.

- 23. The method of Claim 12 in which the gene is up-5 regulated by treatment with shear stress.
- 24. The method of Claim 23 in which the gene encodes an Na-K-Cl cotransporter protein homologue, an rchd024 protein, a rat GPT protein homologue, a COX II protein, an rchd523
 10 protein, an rchd528 protein, an MnSOD protein, or an rchd534 protein.
- 25. The method of Claim 12 wherein the gene is down-regulated by treatment of individuals with a high fat/high 15 cholesterol diet.
 - 26. The method of Claim 25 in which the gene encodes a glutathione peroxidase protein or a Bcl-2 protein.
- 20 27. A method for treating cardiovascular disease, comprising administering a compound that modulates the synthesis or expression of a target gene, or the activity of a target gene product to a patient in need of such treatment.
- 25 28. The method of claim 27 in which the cardiovascular disease is atherosclerosis.
- 29. The method of claim 27 in which the cardiovascular disease is ischemia/reperfusion.
 30
 - 30. The method of claim 27 in which the cardiovascular disease is hypertension.
- 31. The method of claim 27 in which the cardiovascular 35 disease is restenosis.

32. The method of Claim 27 in which the compound inhibits the xpr ssion of the target gene, or the synthesis or activity of the target gene product.

5 33. The method of Claim 32 in which the gene encodes a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homolog of rat GPT protein, a COX II protein, an rchd523 protein, an rchd528 protein, an MnSOD protein, or an rchd534 protein.

10

- 34. The method of Claim 27 in which the compound is an antisense or ribozyme molecule that blocks translation of the target gene.
- 15 35. The method of Claim 34 in which the gene encodes a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homologue of rat GPT protein, a COX II protein, and rchd523 protein, an rchd528 protein, an MnSOD protein, or an rchd534 protein.

20

- 36. The method of Claim 27 in which the compound is complementary to the 5' region of the target gene and blocks transcription via triple helix formation.
- 25 37. The method of Claim 36 in which the gene encodes a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homologue of rat GPT protein, a COX II protein, and rchd523 protein, an rchd528 protein, an MnSOD protein, or an rchd534 protein.

- 38. The method of Claim 27 in which the compound is an antibody that neutralizes the activity of the target gene product.
- 35 39. The method of Claim 38 in which the gene product is a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homologu of rat

GPT protein, a COX II prot in, and rchd523 prot in, an rchd528 protein, an MnSOD protein, or an rchd534 protein.

- 40. The method of Claim 27 in which the compound enhances 5 the expression of the target gene, or the synthesis or activity the target gene product.
 - 41. The method of Claim 40 in which the target gene encodes Bcl-2 or glutathione peroxidase.

10

- 42. A method for treating cardiovascular disease, comprising administering nucleic acid encoding an active target gene product to a patient in need of such treatment.
- 15 43. The method of Claim 42 in which the nucleic acid encodes Bcl-2 or glutathione peroxidase.
- 44. A method for treating cardiovascular disease,comprising administering an effective amount of a target gene20 product to a patient in need of such therapy.
 - 45. The method of Claim 44 in which the gene product is Bcl-2 or glutathione peroxidase.
- 25 46. A method of monitoring the efficacy of a compound in clinical trials for the treatment of cardiovascular disease, comprising detecting, in a patient sample, a gene or its gene product which is differentially expressed in cardiovascular disease states.

- 47. The method of Claim 46 in which the cardiovascular disease is atherosclerosis.
- 48. The method of Claim 46 in which the cardiovascular 35 disease is ischemia/reperfusion.

49. The method of Claim 46 in which the cardiovascular disease is hypert naion.

- 50. The method of Claim 46 in which the cardiovascular 5 disease is restenosis.
 - 51. The method of Claim 46 in which the gene is upregulated in individuals genetically predisposed to cardiovascular disease.

10

- 52. The method of Claim 51 in which the gene encodes a Na-K-Cl cotransporter protein homologue, an rchd024 protein, and rchd032 protein, an rchd036 protein, a homolog of rat GPT protein, a COX II protein, and rchd523 protein, an rchd528

 15 protein, an MnSOD protein, or an rchd534 protein.
 - 53. The method of Claim 46 in which the gene is down-regulated in individuals genetically predisposed to cardiovascular disease.

- 54. The method of Claim 53 in which the gene encodes a glutathione peroxidase protein or a Bcl-2 protein.
- 55. The method of Claim 46 in which the gene is up25 regulated by treatment with IL-1.
- 56. The method of Claim 55 in which the gene encodes an Na-K-Cl cotransporter protein homologue, an rchd024 protein, an rchd032 protein, an rchd036 protein, a COX II protein, or 30 an MnSOD protein.
 - 57. The method of Claim 46 in which the gene is upregulated by treatment with shear stress.
- 35 58. The method of Claim 57 in which the gene encodes an Na-K-Cl cotransport r protein homologue, an rchd024 prot in, a rat GPT protein homologue, a COX II protein, an rchd523

prot in, an rchd528 prot in, an MnSOD protein, or an rchd534 protein.

- 59. The method of Claim 46 wherein the gene is down-5 regulated by treatment of individuals with a high fat/high cholesterol diet.
 - 60. The method of Claim 59 in which the gene encodes a glutathione peroxidase protein or a Bcl-2 protein.

- 61. A method for identifying a compound that modulates the activity of a multiple transmembrane domain receptor target gene product, comprising:
- contacting a first cell expressing the multiple

 15 transmembrane domain receptor target gene product with a test compound and an activator of the multiple transmembrane domain receptor target gene product, measuring the level of intracellular calcium release within the first cell and comparing the level to that of a second multiple
- 20 transmembrane domain receptor target gene product-expressing cell which has been contacted with the activator but not with the test compound so that if the level of intracellular calcium release within the first cells differs from that of the second cell, a compound which modulates the activity of a 25 multiple transmembrane domain receptor target gene product has been identified.
- 62. The method of Claim 61 wherein the multiple transmembrane domain receptor target gene product is an 30 rchd523 gene product.
 - 63. The method of Claim 61 wherein the cell is a <u>Xenopus</u> oocyte cell.
- 35 64. The method of Claim 61 wherein the cell is a my loma cell.

7853-041 (Sheet 1 of 42)

FIG. 1

7853-041 (Sheet 2 of 42)

FIG. 2

7853-041 (Sheet 3 of 42)

march Bc1-2 ->

BAction -

FIG. 3

7853-041 (Sheet 4 of 42)

FIG. 4

7853-041 (Sheet 5 of 42)

FIG. 5

7853-041 (Sheet 6 of 42)

FIG. 6

7853-041 (Sheet 7 of 42)

FIG. 7

7853-041 (Sheet 8 of 42)

RCHD005.COMPLETE(1>288)-	10 	20	30 	40	54	6.
wances.complete(1>288).	SECTIAGATECA	CCTGCAAATT	A A CHIPTON A	7777777000		CLACA TTTT
	GCTTAGATGCAG	CCIGCOONTI	notes such	TTTTCATCTTC	TOMACCOT	כניד.טז
RCHD005.COMPLETE(1>288)-	70 	80 	90 	100	110	tạc
· · · · · · · · · · · · · · · · · · ·	TCCIATGGCCTAA		WILE CARD A PER			
RCHD005.COMPLETE(1>268)->	130	140	150	160	170	16.
- (1/200)->	ATTICIOCAGGIAT	ATTICACCO	COLUMNICATION			
	190	200	210	220	235	. 12
RCHD005.COMPLETE(1>288)->	CCCAAATATTTCA	CCOLON ALONY		TYTTE		
	250	260	270	280		
RCHD005.COMPLETE(1>288)->	AAAGGTTATGGGAAA	WATAATGAAC C	TOMOGRA	CTSCATCTAAC	<u>cc</u>	

FIG. 8

7853-041 (Sheet 9 of 42)

9/42

7853-041 (Sheet 10 of 42)

FIG. 10

7853-041 (Sheet 11 of 42)

FIG. 11

7853-041 (Sheet 12 of 42)

	10	20	30	40	50
RCHD024.COMPLETE.SEQ(1>178)->	AAAAATAAATA	AATTAAAGTCT AATTAAAGTCT	CACACCAATIT	CCCNCICIEN CCCNCICIEN	ATATAAG
	60	70	80	90	100
RCHD024.COMPLETE.SEQ(1>178)->	CACATTAACCC	CAGGAGGAGCC	NGNCTACAC	MACCICION	ATGAGAA
	110	120	130	140	150
RCHD024.COMPLETE.SEQ(1>178)->	TTTACCAGTCT				
	160	170	معدل		
RCHD024.COMPLETE.SEQ(1>178)->	CTTTAAATTCT				

FIG. 12

7853-041 (Sheet 13 of 42)

FIG. 13

FIG. 14

7853-041 (Sheet 15 of 42)

	1	10	20	30	40	SO
RCHD032.COMPLETE.SEQ(1>101)->	CCCTA	TTCXTTAX	TINCACTIVEN	AAATTGGAAA	TOGGATAAG	MATCT
	باينين	60	70	80	90	100
RCHD032.COMPLETE.SEQ(1>101)->	AAAGT	AACCAGCT	IATCITIGAA IATCITIGAA	CAATATTATT	TTGAAATTGG	CTTTA
RCHD032.COMPLETE.SEQ(1>101)->	<u>.</u>					

FIG. 15

7853-041 (Sheet 16 of 42)

16/42

7853-041 (Sheet 17 of 42)

FIG. 17

7853-041 (Sheet 18 of 42)

	_	.0	20	30	40	50
RCHD036.COMPLETE.SEQ(1>184)->	CCCLLCCLC	TEATECET	ACAAGAAAT	CATACATAC	MACACTOTA	TAC
	GCCITGCTG	STEATECCT	XCAAGAAA T	GYTTACATAC	AAACACTCTA	TAC
	_	0	70	80	90 	100
RCHD036.COMPLETE.SEQ(1>184)->	ATCTAACTC	CCANANAG	GACCAGCTA'	MACCECIAC	GAAAAAGA	CAA
	ATCTAACIC	CCAAAAAG	GACCAGCTA:	Micegelia	AGAAAAAGA	CAA
	<u> 11</u> 11	-	120 	130	140	15C
RCHD036.COMPLETE.SEQ(1>184)->	CCATTTCACA	GGYGCGITA	SCHOOL ON W	AAGACCTAAC	TCACITAAG	<u> </u>
			_			iC.
	16 <u>لىيىلىيى</u>	0 <u></u>	170 <u>-1444-1444</u>	180		
RCHD036.COMPLETE.SEQ(1>184)->	TACAAACAGA TACAAACAGA					

FIG. 18

7853-041 (Sheet 19 of 42)

FIG. 19

7853-041 (Sheet 20 of 42)

FIG. 20

7853-041 (Sheet 21 of 42)

2182

FIG. 21

7853-041 (Sheet 22 of 42)

I EA	i NG G	G GG (L CTC	CI	C CC	C W	K I	. c	C GC	S G TC	C C3	(G (X	3 : 3C A(s SC G	d AC A	T CC 1	S CT 1	T NCT #	S NGC (R CGA	A GCC	20 6 0
									. œ		C AT	T AA	<i>' '</i>	o T	e Tog	v v	L TC 1	c C	Q ZAA (G GGC (r CIC	40 120
									S C AG		Y C TA			K S					T CC /	I ATT (E Sag	60 180
-	. I	R 3C 1	P ITT	GGG	r Cr	S C TC	S C AG	s T TC	S T TC	S A TCC	G GG	r cr	I C AI	: : T T(S S	s X T	l Tg a	n at g	e Ag a	I NTC #	s VGC	. 80 240
								v T GIV	S C AGO	Y TAC	F	ວ ຄວ 1	S C AG	c cc	7 S	7 : 1 G C	H AC C	r GT C	P CA C	R GT (L TG	100 300
I AT	r GG	; ;	I	G	G . 007	L CT	F C TI	L C CTV	λ 3 GC7	, ect	G . GG7	λ 20 1	. F	C AI	יי ביו ביי ביו		r :	L :	P CAC	H AC T	F TC	120 360
L	s	3	E	P	Y	Q	Y	Ŧ	L TTC	A	s	T	G	N	. N		s	R.	t.	0	1	140 420
E	L		С	Q	ĸ	H	W	Q	D GAC	L	P	P	s	ĸ			.	s 1		T 1	0	160 480
N	₽	,	Q	K	. E	T	s	s	M ATG	w	G	L.	м	v	v) T	. 1	7 . 1		180 540
G	I	(G	T	v	P	I	Q	P CCA	P	G	I	s	Y	v	Б) F			2	200 600
P	s	1	N	s	P	L	Y	I	s TCC	1	L	F	A	ī	s	υ						220 660
F	G	,	Y	L	L	G	s	v		L	o	I	F	v	ם	Y	G		u	7 N		240
T	A	1	A	v	N	L	v	P	G	D	P	R	w	I	G	A	w	ш	Τ.			720 260
L	L	1		s	S	λ	L	L	V GTT	L	Ŧ	s	F	P	P	F	P	2	D			780 280
A	M	P	>	ı	G	A	ĸ	R	A	P	Α	T	A	D	E	A	R	K	Ŧ.	•		840 300
٠.	MIG	,	,L #	NI.W	G.A.	GCA		AGG	CCT	CCT	GCC	ACA	CCX	GAT	CYY	. GCJ	A AG	3 AAC	II	G GA	G	900
	A GCC			S	R AGA	G GGC	S	L CTG	CIC V	D GAT	F	I Att	K	R	F	P	C	I	F	L	_	320
																						960
R AGG	CIC	CI	G A	M TG	N N	S TCA	CIC	P TTC	OIC V	L CTG	e <u>ic</u> A	GIC V	CTG	A GCC	Q CAG	TGC	T ACC	P TTC	S TCC	s TC	c	340 1020
OIC OIC	I ATT	QC.	T G	G GC (L CTC	s TCC	T ACC	F TTC	L CTC	N AAC	K AAG	F TTC	L CTG	E GAG	K AAG	CAC Õ	Y TAT	G G	T	S		360 1080
																						1000
GCA	ecc •	TA:	T G	CC 2	N NAC	TTC	CIC	I ATT	G GCT	A GCT (V STG	YYC N	cic r	CCI P	A GCT	OCY Y	. GCC	L TTG	G	M OTA S	3	380 1140
L CTG	P TTT	G	A G	G Ga j	I ATC	CIC CIC	M ATG	K AAG	R CGC '	P ITT (V FTT	P TTC	S TCT	L CTA	CYY Ö	A GCC	I ATT	S.	R	I T	.	400 1200
																						1400
A GCT	ACC	ACC	: : A:	i ic i	I VIC .	T ACC	ATC	S TCC .	M ATG	I ATC (L TT	C	CIT V	©CI	L TTG	F TTC	F TTC	h atg	G GCEA	C TGC	•	420 1260

FIG. 22A 22/42

7853-041 (Sheet 23 of 42)

S	T AC	ф (200)	T	v oro	A GCC	E GAN	V GTC	Y TAC	P	CCI	S	T T	S TCA	S AGT	S	I KTA	H	P	Q G CAG	440 1320
s	P	A	c	R	R	D	c	s	c	P	D	s	I	F	н	P	v	c	G	460
TCI	, cci	. ecc	TGC	. œ	AGG	GAC	TGC	TCG	TGC	CCA	GAT	TCI	ATC	TIC	CAC	ccc	CIC	TO	. CCY	1380
D	N	G	I	E	Y	L	\$	P	С	H	A	G	С	s	N	I	N	M	s	480
GYC	TAA :	' GGA	ATC	GAG	TAC	CIC	TCC	CCI	TGC	CAT	ccc	GGC	TGC	AGC	MC	ATC	AAC	ATG	AGC	1440
s	λ	T	S	K	Q	L	I	Y	L	N	С	S	С	v	T	G	G	s	A	500
TCI	, CCN	ACC	TCC	λλG	CYY	CTG	ATC	TAT	TTG	XXC	TGC	AGC	TGT	CIC	YCC	GGG	GGA	TCC	GCT	1500
																			F	520
TCA	. GCA	AAG	ACA	OGA	TCG	TGC	CCT	GIC	ccc	TOT	GCC	CAC	TTC	CIG	CIC	œ	GCC	ATC	TTC	1560
L	I	S	P	v	s	L	I	A	C	I	s	H	N	P	L	Y	M	M	v	540
CTC	ATC	TCC	TIC	GTG	TCC	CTG	ATA	ccc	TGC	ATC	TCC	CAC	AAC	ccc	CIC	TAC	ATG	ATG	CIT	1620
L	R	V	V	N	Q	E	E	K	s	F	λ	I	G	v	Q	P	L	L	H	560
CIG	CGT	GTG	GTG	AAC	CAC	GAG	GAA	AAG	TCA	TT	œc	ATC	GGC	GIG	CAG	TTC	TIG	TIG	ATG	1680
R	L	L	A	W	L	P	s	₽	λ	L	Y	G	L	T	I	D	н	s	C	580
CCC	TTG	CTG	GCC	TGG	CTG	CCY	TCT	CCY	GCC	CIC	TAT	œc	CIC	ACC	ATT	GAC	CXC	TCC	TGC	1740
I	R	W	N	S	L	C	L	G	R	R	G	A	C	A	Y	Y	D	N	D	600
ATC	CGG	TGG	AAC	TCG	CTG.	TCC	TIG	GGG	AGG	CCA	œ	CCC	TGC	GCC	TAC	TAT	GAC	AAC	GAT	1800
A	L	R	D	R	Y	L	G	L	Q	M	G	Y	K	A	L	G	M	L	L	620
GCT	CIC	CCA	GAC	AGG	TAC	CIG	GGC	CIG	CAG	ATG	GCC	TAC	AAG	ccc	CIG	GCC	ATG	CTG	CTG	1860
L	С	F	I	Ş	W	R	v	K	ĸ	N	K	E	Y	N	V	Q	ĸ	λ	A	640
CIT	TGC	TTC	ATC	AGC	TGG	AGG	CIG	AAG	NAG	AAC	λλG	GAG	TAC	AAC	CTC	CAG	λAG	ccc	GCA	1920
		I																		643
GGC	CIC	ATC	TGA																	1929

CCCCACCCTGCCCACTGYCCTGCACAGAGAGTGGACCTTGACTCYTCCACACCTGCCTATACTCACTAATGTTAACA

COTCATTTCCTRTTTGTATTTTTAAMAAGA

FIG. 22B

7853-041 (Sheet 24 of 42)

FIG. 23

7853-041 (Sheet 25 of 42)

control 60 min. 360 min.

5-0 kb

FIG. 24

7853-041 (Sheet 26 of 42)

FIG. 25

7853-041 (Sheet 27 of 42)

FIG. 26

7853-041 (Sheet 28 of 42)

FIG. 27

7853-041 (Sheet 29 of 42)

(chd\$2)

CONTRACTATION TO CONTRACT TO CONTRACTANCE ACCUMENTATION AC	6
CONSTRUCTION OF THE PROPERTY O	14
ACACOTA ENCITOR TO CONCENTRATION OF THE ATTEMPT OF	-
MAGNICTOCHICICAGATACTCHICAGATCHICACTCHICACTGGCCTUTTCCACGATGGCCGACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACTGGCCACACACTGGCCACACACA	219
COCKCOOKACKACCACCACCACCACCACCACCACCACCACCACCACC	294
CHETOCOCT THE CONTROL OF T	377
ACTION CONTROL OF THE PROPERTY	456
ACTICALOGACIANTE ACCOUNTE TITOTAMICATOCATITO ACCOUNTE TO ACCOUNTE	535
TEALMOCTOCACOOCAGAGAC ATG GAT GTG ACT TOC CAA GOC GOC GTA GOC CTG GAG ATG	14
THE COSA GODE ACTE COST COST COST CASE COST CASE COST COST COST COST COST COST COST COST	34
	664 3: 54
I V I 7	724
THE GIVE ATE COSE CITY THE CITY TOSE THE CITY THE COSE ATE COSE THE	74 780
GIG GOC AND ATE CTG GTG GTG AND ATE AGE TTC GOC GAG ANG ATG ACE ATE GOC	94
	840
אום מום כום שנו שום מום מוכ כדר אור כדה מום מכב שוב זכב כדר אוד	114 900
CAG CITY THE LIGHT OF THE A V L C TO THE LIGHT OF THE LIG	134
•	960
THE THE COLD GITE AND ATTE THE AGE AGE GITE THE CITY AGE THE AGE THE GAS.	154 120
CONTRACTOR AND ARABAR C.S.L.P.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B	74
	80
COS CTG AGC TOT COC CTC ATC TOS ATC COA TCC CTG TCA ACC ACG CTG CTG CTC ATC ACC 12	94
OCC OTTO CHE CHE CHE CHE CHE CHE TOC TOC TOC TOT TOT COC CHT CTC CHE CHE CHE CHE CHE CHE CHE CHE CHE CH	
- U W L P 19	10
ONE TOUS CITE CASE GITE ACE CITE ATTE GITE COCE ATTE ATTE GOOD CITE TAGE TAGE TAGE TAGE TAGE TAGE TAGE TA	-
TOC CTC ATT OTC COO CTC CTC CTC ACC CAC CAC CAC CAC CAT CTC CTC	
ORALRHILLAVVLVFFVCWLF 27.	
ENG ANC GITC TITC AND AND GITG CHE CITC CHE COE ACE CHE COT GOE GOT COT TOC 1440	
A G S F R H A H P L T G H I V H L A A F 314 CMG CMG TCT TTC CCC CAT CCC CTC ACG CCC CAT ATT GTC AAC CTC CCC CTC 1500	
1500 at the ALL ace the ATT are ME are ace ace the	

FIG. 28A

7853-041 (Sheet 30 of 42)

S N S C L N P L I Y S P L G E T P R D	
TOT AND AND THE PROPERTY OF TH	
TOE ME AGE TOE CTA ME OUT CTE ATC THE MOE TIT CTE OUT GIR ACE THE AGE GIR A	K);
The real rate of the re	NG 150
CTG AGG CTG TAC ATT GAG CAG AAA ACA AAT TTG CTG AGG CTG TAC ATT GAG CAG AAA ACA AAT TTG CTG CTG CTG CTG CTG CTG CTG CTG CT	
CTG AGG CTG TAC ATT CAG CAG AAA AGA AAT TTG CCG GCC CTG GAC GGC TTC TOT CAC GC	1 35
AND THE COS OCC CTG CAC CTG CA	
A to P A second	7 162
ALRAVEPDSTROSDVRFSSA	
CCC CTG AMG CCC CTC ATT CCA CMC ACC ACC CMG CMG CMG CTCG CAT CTG AGG TTC AGC AGT CC	37
THE ACC ACT OF	C 168
· · ·	
GTG TAG ACROSS	
THE THE PROPERTY OF THE PROPER	379
CTG THE ACHECT-THEOCOCKATHOCOCCACCCACCACTGACACTGACACTGCACACACTGCACACACTGCACACACTGCACACACTGCACACACA	1757
CONCENTRATION OF THE PROPERTY	
CACTION	, 1030
THE PROPERTY OF THE PROPERTY O	
CACCTRONAL TRANSPORT CACCACTA TRANSPORT TRANSPORT TO CACCACTA CACACTA CACCACTA CACCACTA CACCACTA CACCACTA CACCACTA CACCACTA CACCACTA CACCACTA CACACTA CACCACTA CACCACTA CACCACTA CACCACTA CACCAC	1915
COCCOCCA ACCOCCA COCCA C	
COCCODED COMMISSION ACCORDANCE ACC	1004
TOCCOCTOCIO DE SALVOITTE DE COCTOCIO DE COCOCOCIO DE COCOCOCOCIO DE COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	4334
THE TOTAL DESTROSPORT OF THE TOTAL DESTROY OF THE T	
CALL TO THE PARTY OF THE PARTY	2073
OUT OF THE PROPERTY OF THE PARTY OF THE PART	-
CIGTOCHCCTANGCHATCTGCCCCCTAGGCACTCCCCCCCCCCCCCCCCCCC	2152
CTTOPACTION OF THE TOTAL CONTROL OF THE TRACTION OF THE CONTROL OF	4434
TOTAL CONTROL OF THE PROPERTY	
CARLES CONTRACTOR OF THE CONTR	2231
CALLET TO THE TOTAL CONTROL OF THE PARTY AND	
CATACTUCTICIO DE COCCIO MONTECTICA TEL TICCACATORICA CATACONA TOTACACATORICA CATACONA CATACON	2310
ACTION AC	2310
The state of the s	
VIII TO THE PROPERTY OF THE PR	2389
ALCONOMIC CONCENTRATION OF THE PARTY OF THE	
GICACTOCT TO ACATCAACATOCAAT TOCACTOCAATOTOCACTOCCACCTOCACCTOCCACCTOCACCACCTOCACCACCTOCACCACCTOCACCACCACCTOCACCACCACACACA	3440
THE THE PROPERTY OF THE PROPER	2468
THE PARTY OF THE P	
A WARRING TO A STATE OF THE STA	2547
ATCATCATOTAMAACCTTCCCATAMATAACCC	_
	7507

FIG. 28B

7853-041 (Sheet 31 of 42)

FIG. 29

7853-041 (Sheet 32 of 42)

FIG. 30

7853-041 (Sheet 33 of 42)

P S P A R R A L S L A P L A G A G L E L CCT TCC CCG CCT CGC CGC CCG CCG CCC CCTC CGC GGA CCG CGG GAC CCG Q L E R R P E R E P P P T P P R E R R G CAG CTG GAG CGC CGC CGC GAG CCG CCG CCC CCC CGG GAG CGC CGC	74 22
Q L E R R P E R E P P P T P P R E R R G CAG CTG GAG CGC CGC CGC GAG CGC CGC CGC GAG CGC CGC	54 62 74 22
PATPGPSYRAPESCOCK ACG CCC CCC CCC CCC CCC CCC CCC CCC CCC	22
PATPGPSYRAPEPGAATQRG	-
28:	
P S G R A P R G G S A D A A W K H W P E 114 CCC TCC GGC CGG GCC CCC AGA GGC GGG AGC GCG GAT GCT GCC TGG AAA CAT TGG CCA GAA 342	-
S N T E A H V E N I T F Y Q N Q B D F S 134 AGT AAC ACT GAG GCC CAT GTA GAA AAC ATC ACC TTC TAT CAG AAT CAA GAG GAC TTT TCA 402 T V S S E B C U W T T T T T T T T T T T T T T T T T T	-
T V S S K B G V M V Q T S G K S H A A S 154 ACA GTG TCC TCC AAA GAG GGT GTG ATG GTT CAG ACC TCT GGG AAG AGC CAT GCT GCT TCG 462	
D A P E N L T L L A E T A D A R G R S G 174 GAT GCT CCA GAA AAC CTC ACT CTA CTC GCT GAA ACA GCA GAT GCT AGA GGA AGG AGC GGC 522 S S S R T N P T I L P V G Y S L E I A T 194 TCT TCA AGT AGA ACA AAC TTC ACC ACT CTA CTC GCT GAA ACA GCA GAT GCT AGA GGA AGG AGC GGC 174	1
A L T S O S G N I A C T T T G G TAC TCA CTG GAG ATA GCA ACA 582	
S B P D B R I A B P C T T CAC CTG CCA TCC AGC AGT 642	
G T E R A M G L S B R M G L S B R M G M G M G M G M G M G M G M G M G M	
T S A W S P S P L P A T T T T T T T T T T T T T T T T T T	
S R K R N S S G P D I S S G P D I S S I S R R R N S S G P D I S S I S R R R N S S G P D I S S I S R R R N S S G P D I S S I S R R R N S S G P D I S S I S R R R N S S G P D I S S I S R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R N S S G P D I S S I S R R R R R R R R R R R R R R R	
TCT AGG AAG AGA AAT TOO TCA GGA CCA GAT CTC TCC TGG CTG CAT TTC TAC AGG ACA GCA 882 A S S P L L D L S S P S E S T E K L N N 314 GCT TCC TCT CCT CTC TEA GAC CTT TCC TCA CCT TCT GAA AGT ACA GAG AAG CTT AAC AAC 942	
S T G L Q S S S V S Q T K T M H V A T V 334	
P T D G G P R T L R S L T V S L G P V S FTC ACT GAT GGT GGC CCG AGA ACG CTG CGA TCT TTG ACG CTC ACT CTG CGA TCT TTG ACG CTG ACT CTG CGA TCT TTG ACG CTG ACT CTG CTG CTG CTG CTG CTG CTG CTG CTG C	
K T E G F P K D S R I A T T S S S V L L 374	
S P S A V E S R R N S R V T G N P G D E 394	
E F I E P S T E N E F G L T S L R W Q N 414 AA TTC ATT GAA CCA TCC ACA GAA AAT GAA TTT GGA CTT ACG TCT TTG CGT TGG CAA AAT 1242	

7853-041 (Sheet 34 of 42)

																						S AGT	434 1302
CC	c A	M ATG	s TCT	CYC	T AC	E GA	T G AC	v T GT	S TC	R T AG	s G TC	V A GI	7 1 NC GC	A CA C	P CC A	M ATG	R AGA	G GGT) (2)	; ZA G	E AG	I ATC	454 1362
-			H CAC	TGC		L TN	T G AC		S C AGO									G			S CT	A GCT	474 1422
							N S AA		s Tac									S TCT	T AC	T G	V TA	Q	494 1482
S	T G	G GA	G GGA	S AGT	H	T ACI	v eci	L TTC	G GGJ	D GA1	R CAGC	S AG	: Y Т ТА	r r	S CA G	E AG :	S ICT	S TCA	S	TA	T CA	S TCT	514 1542
_							s TCJ			P CCI										i i	D AC	S AGC	534 1602
R CG	A G	e Ag (P	G GGC	CYY	A GCR	L CTA	G . GG7I	D D	S AGT	S 100	A GCC	N AA C	r GC	L I	E AG (D SAC	R AGG	T	T TY	S CT	G GGG	554 1662
V GTC	3 00	P CC 1	s ICI	r crc	G GGC	T	H CAC	T ACC	L TTG	A GCT	T ACT	. C10	T AC	0 17 GG	; ; A AJ	1 1C G	G GG	e gaa	R CG	7 C AC	r 2 x (L CTG	574 1722
R	T	3 2 7 (v MC	T. ACC	cic r	T ACC	N AAC	T ACC	S AGC	M ATG	S	T ACC	T AC	S TC	r GG	; ;	e iaa (A GCA	G GGC	S AG	; ;	P CCT	594 1782
A GCA	, GC		A SCC	M ATG	P CCC	CYY	E GAA	T ACA	E GAG	G	A GCC	S	L CIO	H G CA	v C GI	, 'A A	N AC	V GTG	T	D GA))	D SAC	614 1842
M	G	;	L	v	s	R	S TCA	L	A	A	s	s	A	L	G		v	A	G	T		c	634 1902
Y	G	;	Q	v	R	G	T ACA	A	I	2	0	R	T	s	s	. 1	n	u	т			u	· 654
T	Y	,	L	s	s	T	P TTC	T	ĸ	G	E	R	A	L	E.		s	T	т	D		N	674 2022
s	s		s	s	D	ı	org V	E	s	s	T	s	Y	ī	ĸ	,	.	c	N			•	694 2082
н	s	1	E	Y	s	s		s	н	λ	0	T	R	R	S	,	j .	Ŧ	9	e		•	714 2142
D	G	1	В	Y	λ	Q	P CCT	s	T	E	s	₽	v	Ł	H	7	•	c	N	т.	,	.	734 2202
s	Y	3	r	P	T	I	N Aat .	M	P	N	т	s	v	v	Ť.	r		T	_		٠.		754 2262
P	v	S	3	D	s	s	s TCC 1	s	s	s	s	s	s	S	9	e	- ! •	•	•			-	774 2322
P	L	F	> :	L	P	s	v ore:	s	0	s	н	н	L.	F	S	e		,	T.	Ð		•	794 2382
T	R	λ	. :	S	v	H	L CTA (L	ĸ	s	т	s	D	a.	•	~			ta#		_		814
s	P	S	3 1	P	L	P	v	s	L	T	T	s	T	s	A	Þ	7		c	17			834 2482
									-									- •		~.~	-	~1	4904

7853-041 (Sheet 35 of 42)

Q T T L P Q S S S T P V L P R A R E T CAA ACA ACC TTG CCA CAG TCA TCT TCT ACC CCT GTC CTG CCC AGG GCA AGG GAG ACT C	P 854 CT 2542
V T S F Q T S T M T S F M T M L H S S (GTG ACT TCA TTT CAG ACA TCA ACA ATG ACA TCA TTC ATG ACA ATG CTC CAT AGT AGT C	2 874
TADLIKSOSTBUOTE	
S P S L V S L P T R S T R A V T T W S	
L P P S L T B S S T B O T L P A T S G	T 2742
THE CONTROL THE ALA GAG TOO TOO ACA GAG CAA ACC CIT COA GOO ACA AGO ACC AA	C 2802
TTA GCA CAA ATG TOT CCA ACT TTC ACA ACT ACC ATT CTG AAG ACC TOT CAG COT CTT ATT	2862
T T P G T L S S T A S L V T G P I A V Q ACC ACT CCT GGC ACC CTG TCA AGC ACA GCA TCT CTG GTC ACT GGC CCT ATA GCC GTA CAC	2922
T T A G K Q L S L T H P B I L V P Q I S ACT ACA GCT GGA AAA CAG CTC TCG CTG ACC CAT CCT GAA ATA CTA GTT CCT CAA ATC TCJ	994 2982
TEGGISTERNRVIVDATTGL ACA GAA GGT GGC ATC AGC ACA GAA AGG AAC CGA GTG ATT GTG GAT GCT ACC ACT GGA TTG	1014 3042
I P L T S V P T S A K E M T T K L G V T ATC CCT TTG ACC AGT GTA CCC ACA TCA GCA AAA GAA ATG ACC ACA AAG CTT GGC GTT ACA	1034 3102
A E Y S P A S R S L G T S P S P Q T T V GCA GAG TAC AGC CCA GCT TCA CGT TCC CTC GGA ACA TCT CCT TCT CCC CAA ACC ACA GTT	
V S T A E D L A P K S A T F A V Q S S T GTT TCC ACG GCT GAA GAC TTG GCT CCC AAA TCT GCC ACC TTT GCT GTT CAG AGC AGC ACA	
	1094
CAG TCA CCA ACA ACA CTG TCC TCT TCA GCC TCA GTC AAC AGC TGT GCT GTG AAC CCT TGT L H N G E C V A D N T S R G Y H C R C P CTT CAC AAT GCC GAA TCC GTC CCC CCC CCC CAC ACC ACC ACC CCC CCC C	3282 1114
P S W O G D D C S V D V W D C AGG TGC CCG	3342
THE SEC OF THE ACT OF GREAT GR	1134 3402
PSTATC NN TQGSFICK CPVGCAAC AAT ACT CAG GGA TCC TIT ATC TGC AAA TGC CCG GTT GGG	1154 3462
Y Q L E K G I C N L V R T F V T E F K L TAC CAG TTG GAA AAA GGG ATA TGC AAT TTG GTT AGA ACC TTC GTG ACA GAG TTT AAA TTA	1174 3522
K R T P L N T T V E K H S D L Q E V E N AAG AGA ACT TIT CIT AAT ACA ACT GTG GAA AAA CAT TCA GAC CTA CAA GAA GIT GAA AAT	1194 3582
E I T K T L N M C F S A L P S Y I R S T GAG ATC ACC AAA ACG TTA AAT ATG TGT TTT TCA GCG TTA CCT AGT TAC ATC CGA TCT ACA	1214 3642
V H A S R E S N A V V I S L Q T T F S L GTT CAC GCC TCT AGG GAG TCC AAC GCG GTG GTG ATC TCA CTG CAA ACA ACC TTT TCC CTG	1234
A S N V T L F D L A D R M Q K C V N S C GCC TCC AAT GTG ACG CTA TTT GAC CTG GCT GAT AGG ATG CAG AAA TGT GTC AAC TCC TGC	3702 1254
THE CITY OF GAT AGG ATG CAG AAA TOT GTC AAC TOC TGC	3762

7853-041 (Sheet 36 of 42)

K S S À E V C Q L L G S Q R R I F R A G AAG TCC TCT GCT GAG GTC TGC CAG CTC TTG GGA TCT CAG AGG CGG ATC TTT AGA GCG GG	1274 C 3822
S L C K R K S P E C D K D T S I C T D L AGC TTG TGC AAG CGG AAG AGT CCC GAA TGT GAC AAA GAC ACC TCC ATC TGC ACT GAC CTC	
D G V A L C Q C K S G Y F Q F N K M D H GAC GGC GTT GCC CTG TGC CAG TGC AAG TCG GGA TAC TTT CAG TTC AAC AAG ATG GAC CAG	
S C R A C E D G V B , B	
F G L G G L N C G N D N	4002
A A G G G L L L T T G G G G G ATC GCA	
THE CIT CIT CITY GGC AIC GCA CTG ATT GTT ACC TGT TGC AGA	1374 4122
K N K N D I S K L I F K S G D F Q M S P AAG AAT AAA AAT GAC ATA AGC AAA CTC ATC TTC AAA AGT GGA GAT TTC CAA ATG TCC CCA	1394 4182
Y A E Y P K N P R S Q E W G R E A I E M TAT GCT GAA TAC CCC AAA AAT CCT CGC TCA CAA GAA TGG GGC CGA GAA GCT ATT GAA ATG	1414 4242
HENGSTKNLLQHTDVYYSPTCAT GAG AAT GGA AGT ACC'AAA AAC CTC CTC CAG ATG ACG GAT GTG TAC TAC TCG CCT ACA	1434 4302
S V R N P E L E R N G L Y P A Y T G L P AGT GTA AGG AAT CCA GAA CTT GAA CGA AAC GGA CTC TAC CCG GCC TAC ACT GGA CTG CCA	1454 4362
G S R H S C I F P G Q Y N P S F I S D E GA TCA CGG CAT TCT TGC ATT TTC CCC GGA CAG TAT AAC CCG TCT TTC ATC AGT GAT GAA	1474
S R R R D Y P . GC AGA AGA GAC TAC TIT TAA GTCCAGGAGAGAGGGGACTCATTGCTCTGAGCCAG	4422 1481
TCACCTGGGACCTCTGCTCAGAGGACCGCACCAGGAGGCTGCGCCCCAGGATTTGTCGGGA	4482 4542
GCCACGCTGAGTGGCAAGCAGGAAGAGGGACAGGCATGCCGGGGCGTGACCACAGTGGAGG	4602
AGACAGGTGGATGTGGAACCACAGGCTGCTCATTCAGCACTGCACTGTTACTGTTACTGTGAACG	4662
GGGCGACTATIAGCCAGGGCAGACCACTAGACTTCAGTGCAGGACCTGGTTTTCCCTTC	4722 4782
GTTTGCACTTTAGTAAATTGGGTGGGAGGTTTCCTTTTGGATCTGTTTTGAGACTGTTCC	4842
AGAAAGAAGCTTCCTTTCCCGAGACACTTCCATAGGCAGCAATTTGGTGATTCAYTTGC ASCAAAATACTGGCTTGTTAATTATTTTCCTGCCCAGCRCCTGCGTGCTAAACAACAGAT	4902
EAGGATGASCOTACCACTGAAGTCTGAAGATGTCGCCATTGAACGGACAGTGTTTTCATA	4962
GTTTCTAGGTTGTCTTATGCTACAGTTTCCAAGCCASCCCCACAGTGAGGAAATGTGT	5022 5082
AGGCACCGCACACTGCAATGTGTTTYTTAAGTCAAGGTGACACATGTATTTAAGAT	5142
TTTTTTTAAAATCTCYTTGCAGTTAAATCTCACTTTYTCAAACAAGCCTGGATCAGGGC AAACAACTTATATYTGGTTTTAGCTGGAGGCTCAGCAGGCAGATTGCAGGCAGG	5202
CTITITCATCCATGAGGGCCCAGCCTGGGGCCTGGGACTCTGATCACCATTGTGGAGGCC	5262 5322

WO 96/24604 PCT/US96/01883

7853-041 (Sheet 37 of 42)

AGAGGCAMCTGCGTATGGAGGAAATGTCAAACTGAACGCAGGTTTCACCACTCTAGGA	5382
AAGCAGCTTGTTGACCCCCTGCASCTGGATGTGGTTAGAGGGATGGGCTGAATAGSCAGG	5442
TTAGATTTCCTGCATCAACAGTGCTTTGGGAASCTGTGTGGGATTCCTGAGGAAGAACAGG	5502
CAGCCGAGATGGAGCCACACATGAATTYGCTCACCGGCTACTGCAGCACTTTGTACCCAG	5562
AATCTCATGTCCACAAACCCCATGTAAACTTTCAACCACTCAAAGSTGTTTATTCGGCTG	5622
AAGAAATAACTITTKTTTCTCACCCAGTCATTTGTACCTCTTCATATGGSTATGTCGCAC	5682
CCTCCAGAAACGTGGTTATACTRCCAGTCAGTGTGGGAGAACTGAAGACTTCCGGTTGGT	5742
CGAGGAACTGAGGGTTGACCTTCGGGAAGGAAGTTCCACTCATCTTATTTAT	5802
TEATGTGGGTCCTGCCAGGGAGACATCCAGTACTCGGTGTCTKTAATTGCCACCTGGGGA	5862
ACTOTOTTTATTOCCCTTCTTTOCCCCATCCTGGRTTCGGATGAAGTGAGGGGAATACAG	5922
AGGTIAAAAGAATTGTCTCCACCCTGAAGCGGGGAGTCCCGCTTCACATTTCTGGAAATGG	5982
TECHECCACTEGGGGCACAGTTCTGCCCCGGGCATGGTTGTTTCTTCAAGGTCCTCTAAATA	6042
PARTCCCTATTCTTACATAATCCTTGGCCCTCATGGTTTTAAGCAAGAACTCCTGTGTCCC	6102
PATGGTCTCCACCACCACCATCACCCTGCTGTAGCAAGAGTCCTAGTCAGGGGAGGTGC	6162
ATTTAGTAGTTACATTGCACTTATCCATCAGATAAATAAA	6222
PTGGAGGCTAAAATTTCAAAGTGTCGCCTTTTTGAAATCTTGGGCCTCTCTCT	6282
TAGAACCAATGCCCCTTTGTGGCTCACGGCCTCGCACCTAACTGGAGAGTTCTGAGCTC	6342
TOCASCTCACCTGAGCCCACACACTAGGCTTCTTGGCTTCCCTC	6390

7853-041 (Sheet 38 of 42)

FIG. 32

7853-041 (Sheet 39 of 42)

S28 bloc

7853-041 (Sheet 40 of 42)

FIG. 34

7853-041 (Sheet 41 of 42)

FCI0534

CANTITUDE CONTRACTOR THE CHECKET CITED AT CANTILLA TO CONTRACTOR TO CANTILLA TO CONTRACTOR TO CANTILLA	
OCT TO THE TOTAL CONTROL OF THE PROPERTY OF TH	14
OCULCOOOLIGEOCATICTOTTTCCTMOCAGATOCTCACCTCCAAAGATOOOCIGTMAGTAATUTCCCAAA	22
CTGALLETT TOCCHOCACTORCACCTOTICAL TETTT TOCCTTTACATTTACATTTACATCTACATCCCAL	30
AGTACCCCTT00000CTAACCAGAGOCATOCCTGAGCTGAACCTGAGCTTCTOGTOCACTGAGCTGACTGACTGACTGACT	30
TICTOCACEMOTTOCACCACTTCCTCMOTTCATTCCTCLOCCTCCATGTCCMCCOCCGTTCCACTTCTCATGTCT	46
THE TOTAL PROPERTY OF THE PROP	54:
CIGITAMGTITAGACANATIGGITATTATTTIMMATCHATAMACTITTAMAGTACTAGACACTICTAAGACG	62:
CONTROL CONTROL CONTROL TO THE THE TOTAL CONTROL CONTR	
TECCOLOCTION DE L'ENGLISHE TOUR TERRETTOUR CONTROLLE SECURITAINE DE L'ENGLISHE DE L'ENGLISHE DE L'ENGLISHE DE	700
	779
CTGATALATGGATALATGGATATGGTAGGAGGAGGGGAGATATCATTCAGGGATGAAAAGAGGAGGAGGAGGA	ės e
COMMODICATION TO A TOTAL	937
	016
H S R H G E P I E T Q E S P P P ATTGTATGAAATGAA ATG TOC AGA ATG GOC AAA COC ATA GAG ACA CAA AAA TCT COG CCA CCT 1	16
PYSRLSPRDEYRPLDLSDSTCCCC TAC TCT COC CAC CAC CAC CAC CAC CAC CAC CAC CAC	36 L39
LSYTETEATHE	56
THE REF GAR AGE GAG GET ACE AND TOC CTC ATC ACT GET GOS GOT GAA THE TOA 11	.57
THE RESERVE THE RE	76 59
	96
CAS CAC COS ACE COC GTO COC CTC TAF OCE GTC TAC CAC CAG CCC GTC ACC ATC TTC 13:	19
Y D L P Q G S G P C L G Q L N L E Q R S 11 TAC GAC CTA CCT CAG COC AGC CAC CTC AAC CTG GAG COG COC AGC 137	
ESVERTESKIGFGILLSKEP 13	16
DGVWAVMBGG	9
THE COSE OFFE TOS COSE THE AME COSE COSE CASE CASE ATTE THE COSE AME TOSE COSE ASSE CTS 149	_
DAPGGBALUUR	6
ME GOS COC COC COC COC COC COC COC COC COC C	•
V P D P R R G L Q H A P E P D A A D G 19 TR THE GAS THE GAS COST THE GAS COST THE GAS COST GAS COST GAS COST GAS COST GAS COST GAS	_
P Y D P N S W B 'r e e	
THE SEC CIC ME AGE GIC COE ATE AGE THE GCC ANG GGC TIGG GGG CCC TIGC TAC TICC 1679	-
OF ITS CPC WLEILNNPR - 231	

FIG. 35A

WO 96/24604 PCT/US96/01883

7853-041 (Sheet 42 of 42)

TOO CONTROL OF THE PROPERTY OF	
TOCOME CONTROL OF THE PROPERTY	
CHERCACCTCCACCGACAAAACCCCCCACATATCATCTACCTAC	
ATATATTATACTHOTAATTATOCOGTCATTTTTACAATGTAATTATTTATOTATOCTCCAATGTGTGTATATOCACA	AA 197
NEWGAMOROCOCTT TOOCTTATAATTCTTTCAATACAGATATATTTTCTTTTCT	T 205
TTTTATATATATATAAAGAAAATGATACAGCAGCTAGCTA	CA 213
THATOCCCACACAAAAACTAATACCAGTCACTCCATAATAAAGTATTCCCATTATAGTTTTTTTT	× 2130
TTTTREAMCAGECCAGETROCCCTTCACCCCATCATCATCATCATCATCATCATCATCAT	7 2211
THIRCTITIATIOGATAMCACACAMATICAMOCCACAMATICACATTACTCATAMATAMACCACACAMATICAMOCCACACAMATICAMATICAMOCCACACAMATICAMOCCACACAMATICAMOCCACACAMATICAMAT	G 2292
TICTOT TO TICCTOCCCATOOCTATOOCTGTCCAGTCGATAGGCATOCCGTGGGCAAAAGAATACACTG	5 2371
CONTINUED CONTINU	2450
CCATTTATCCTGCACAAACTCTTCCAGTCTCATGCAGCAGGTTCATGCCCTACCCTACAAAGGCCCAGGTCCATCACC	2529
CCAPCTTTCAGTTATGAGCAGCTALLAGAACACTATTTCTCACCATTTTCTGCAAATTGCCCTGGGCAACAACAC	2608
CANATORICE TELECOCOLOCTACE TOCACIONA CANCIATO DOCCCOTACATO TOTACACO TOCACO	2687
TATTTCCCACCCCCACCCAAAATACCTCACAATCTCCCCATCCACCCTGTATTAATCATTTATGTAAACCCACATC	
THE THE THE THE TRANSPORT OF THE TOTAL CONTROL OF THE TRANSPORT OF THE TRA	2845
CHATTACATACHATTATACACCACCCATATCATTACATCACTTTCTCAACAA	2924
CCTTOCCCAGATAACTAACACCAATGITTCATTGTATATCTTTTTTTTTCTTCGACATTTATATTAACATATTAAGTCCTC	3003
CAGALGTECCTOTOTATTATCTCTTOCTGCATAATAAATTATCCCCAAACTTAAAAAAAAAA	1082
	3083

FIG. 35B

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/01883

A. CLASSIFICATION OF SUBJECT MATERIAL IPC(6): C07H 21/04; C12Q 1/68 US CL: 536/23.1; 435/6 According to International Patent Classification (I	
B. FIELDS SEARCHED	
Minimum documentation searched (classification	system followed by classification symbols)
U.S. : 536/23.1; 435/6	
Documentation searched other than minimum docu	mentation to the extent that such documents are included in the fields searched
Electronic data base consulted during the international APS and Chemical Abstracts	onal search (name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE R	ELEVANT
Category* Citation of document, with indicate	tion, where appropriate, of the relevant passages Relevant to claim No.
Human Plasma Glutati	ued 1994, Yoshimura et al, "The nione Peroxidase-Encoding Gene: and Localization to Chromosome see especially page 294.
Further documents are listed in the continua	tion of Box C. See patent family annex.
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the
'A" document defining the general state of the art which is to be part of particular relevance	and considered principle or theory underlying the invention
E carlier document published on or after the internation	committeest moves of committees so madra an examine each
L* document which may throw doubts on priority chars cited to establish the publication date of another ci	talion or other
special reason (as specified)	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
O" document referring to an oral disclosure, use, exhi- mons	bition or other combination being obvious to a person skilled in the art
P document published prior to the international filing da the priority date claimed	is but later than "&" document member of the same patent family
Date of the actual completion of the international s 21 MAY 1996	Date of mailing of the international search report 10 JUN: 1996
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer DEBORAH CROUCH, PH.D.
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/01883

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7 and 12-26
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/01883

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-7 and 12-26, drawn to a nucleic acid sequence, vectors, cells and a method to diagnose cardiovascular disease by detecting a gene.

Group II, claim(s) 8, drawn to a gene product.

Group III, claim(s) 9, drawn to an antibody.

Group IV, claim(s) 10, drawn to a transgenic animal expressing a transgene.

Group V, claim(s) 11, drawn to a transgenic animal inhibiting expression of a gene.

Group VI, claim(s) 12-26, drawn to a method to diagnose cardiovascular disease by detection of a gene product.

Group VII, claim(s) 27-37, drawn to a method to treat cardiovascular disease by inhibition by antisense, ribozyme or triplex helix formation.

Group VIII, claim(s) 27, 38 and 39, drawn to a method to treat cardiovascular disease by antibody administration. Group IX, claim(s) 27, 40 and 41, drawn to a method to treat cardiovascular disease by enhancing expression. Group X, claim(s) 42 and 43, drawn to a method for treating cardiovascular disease comprising administering a nucleic acid encoding a gene product. Group XI, claim(s) 44 and 45, drawn to a method for treating cardiovascular disease by administering a gene product.

Group XII, claim(s) 46-60, drawn to a method of monitoring by detecting a gene.

Group XIII, claim(s) 46-60, drawn to a method of monitoring by detecting a gene product.

Group XIV, claim(s) 61-64, drawn to a method for identifying a compound that modulates activity of a multiple transmembrane domain receptor target gene product by cell assay.

The inventions listed as Groups I-XIV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The DNA sequence of seq. id. 36 was known in the art at the time of filing. The DNA sequence for plasma glutathione was disclosed in Yoshimura et al (1994) Gene 145 (2), 293-297. As the DNA sequence was known in the art the claims are not linked by a special technical feature as defined by PCT Rules 13.1 and 13.2. Therefore, the holding of lack of unity is proper.