ECE 215 Fall 2025

Objective 1.0: Course Overview

ABOUT ME

Your Turn!

HOW TO CONTACT YOUR INSTRUCTORS

- Offices: 2F4 (Col Jurado), 2E36A (Lt Col Booth)
- Outlook: Official (e.g., bedrest, SCA, etc.)
- Teams: Questions, problems, concerns
- EI (Col Jurado): Use this link to book time on my calendar. Walk-ins are okay if my door is open.
- EI (Lt Col Booth): Prefer Outlook calendar invite (pick any available time) or schedule here but walk-ins okay, too! (if available)

WHY ARE YOU HERE?

Navy LSRS

Air Force JSTARS

WHY ARE YOU HERE?

ECE Quantities

WHY DO WE CARE ABOUT ELECTRIC CIRCUITS?

Absolute Maximum Ratings1

 $T_{\Delta} = 25^{\circ}C$ unless otherwise noted.

Symbol	Description	Value
V _{IN} , V _{SW} , V _{OUT}	IN, SW, OUT to GND or PGND	-0.3 to 6.0
V _{RSET} , V _{EN} , V _{FLEN} , V _{SCL} , V _{SDA} , V _{CT} , V _{FLOUTA} , V _{FLOUTB}	RSET, EN, FLEN, SCL, SDA, CT, FLOUTA, FLOUTB to GND, PGND, or FLGND	V _{IN} + 0.3
I _{OUT}	FLOUT1 and FLOUT2 ²	2200

ECE 215 (Fall 2025)

MORE APPLICATIONS

ECE Quantities

Electricity generation, transmission, and distribution

Source: Adapted from National Energy Education Development Project (public domain)

MORE APPLICATIONS

RETHINKING LEARNING

- How do you know when you've learned something?
- Has the way we do grading helped you know what you've learned?
- What would help you feel more confident that you've truly learned something?

COURSE PHILOSOPHY

 You should know what you're learning

> Very granular learning objectives that tell you exactly what you will be able to do by the end of the semester

COURSE PHILOSOPHY

- You should know what you're learning
- Making mistakes is a part of learning

You shouldn't be punished for committing to the learning process

COURSE PHILOSOPHY

ECE Ouantities

- You should know what you're learning
- Making mistakes is a part of learning
- Revision of work is necessary to learn

- Revision allowed on quiz problems
- One resubmission
- You will practice how resubmissions work on Quiz 0 (comprised of math problems that should be review!)

COURSE PHILOSOPHY

ECE Ouantities

- You should know what you're learning
- Making mistakes is a part of learning
- Revision of work is necessary to learn
- Grading should support learning and partial credit doesn't really tell us anything

- Grading is very clear (1 or 0)
- Instructions are specific (exact specifications provided)
- Focus on mastery through regular quizzes, midterm, and final examinations

SYLLABUS AND COURSE CONTENT

Let's take a look:

https://usafa-ece.github.io/ece215-book/intro.html

LET'S GET STARTED!

• Objective 1: I can calculate the voltages, currents, and power associated with devices in a simple DC-powered circuit using tools such as KVL, KCL, voltage and current dividers, Ohm's Law, and the power equation.

CHARGE

• All matter is made up of: $molecules \leftarrow atoms \leftarrow particles$

ECE Ouantities

- Charge is a physical property of matter that causes it to experience force.
- Charge is quantized

$$q_p = +1.6 \times 10^{-19}$$
 Coulombs $q_e = -1.6 \times 10^{-19}$ Coulombs

Like charges repel, opposites attract

CURRENT

- Current is the strength of the flow of electrons
- Current: $I = \frac{dq}{dt} \rightarrow 1A = \frac{1C}{s}$
- Convention: Current flows from high potential to low potential (+ to -)
- Current is measured through a point
- Current has magnitude and direction

VOLTAGE (POTENTIAL)

- Voltage is the potential for electrons to do work
- Energy to move charge

• Voltage:
$$V = \frac{\Delta E}{da} \rightarrow 1V = \frac{1J}{C} = \frac{1N * m}{C}$$

- Convention: Positive terminal (+) = higher potential
- Potential is measured between 2 points
- Potential exists ALWAYS, even if no current flowing
- Potential has magnitude and polarity

PAUSE! WHAT ABOUT BATTERIES?

- What do they store?
 - Current?
 - Voltage?
 - Charge?
- Ex: If a battery stores 24A·h , how many does it hold?
- What about how electric companies bill users? What unit do they use?
 - •
 - So what are customers paying for?

RESISTANCE

Introductions

 Resistance is a measure of how much a material resists electron flow

ECE Ouantities

- Resistance "eats up" power
- Measured in Ohms (Ω)
- Resistance is size/shape of pipe
- Describes fundamental physical property
- A material w / length L and cross-sectional area A will have resistance:

$$R = \frac{\rho L}{A}$$
 \rightarrow ρ is resistivity

• Q: Why use gold or aluminum if copper has a lower resistivity?

Resistance

material	$\rho(\Omega \cdot \mathbf{m})$
copper	1.72×10^{-8}
gold	2.45×10^{-8}
aluminum	2.8×10^{-8}