

val(2

問題轉換

章節大綱

- 7.1 何謂問題轉換?
- 7.2 將不同系統代表問題轉換成 二分圖上之配對問題
- 7.3 將二分圖上之配對問題轉換成 網路流量問題
- 7.4 將網路流量問題轉換成 線性規劃問題
- 7.5 問題轉換的技巧

有一位數學家和他的太太被問到以下的問題:「假如你在地下室而你想要燒開水,你會怎麼做?」這位數學家說他會上樓到廚房而且在那裡燒水,他的太太也有類似的回答。現在兩人再被問到下面的問題:「假如你在廚房而你想要燒水,你會怎麼做?」數學家的太太說:「這簡單,我會將水壺裝水後開始煮水。」數學家回答說:「還有更簡單的解決方法,我會先走到地下室,接下來的問題,我之前就解決過了。」 笑話一則

7.1 何謂問題轉換?

「什麼是問題轉換 (problem transformation)?」

簡言之:「將陌生的問題轉換成熟悉的問題後,藉由解決此熟 悉的問題,間接地解決原來的陌生問題。」

問題轉換是將不易求解的陌生問題,轉換成較熟悉的問題。因為較熟悉的問題存有已知的解法,故利用此現成的解法解決此熟悉的問題,同時也間接地找到原來陌生問題的答案。

粗略地說,問題轉換是一種借刀殺人的技倆,在金庸的武俠小說中有點像 乾坤大挪移神功,可以輕易地將敵人的猛烈攻擊轉化於無形。下圖表達這個概 念,也請注意轉換的方式(下圖中彎彎曲曲的線)可能有很多種。

圖 7.1 問題轉換是將陌生的問題轉換成熟悉的問題

以下,將分節展現四個不同問題(包含不同系統代表問題、二分圖上之配 對問題、網路流量問題及線性規劃問題)之間的轉換,來說明這個技巧。

7.2 將不同系統代表問題轉換成 二分圖上之配對問題

第一個例子是,將**不同系統代表問題**(systems of distinct representatives) 轉換成二分圖上之配對問題(matching problem in bipartite graphs)。首先, 解釋此兩個問題後,再說明其中的轉換。

表 7.1 不同系統代表問題

問題	學校有若干社團,各有其固定成員若干名。學校要求每個社團須選出一位社長,而 且不同社團的社長不可以同一人兼任 請你幫所有社團(任意)選出其社長,以利社務進行。注意同一人可參加多個社團
輸入	所有社團及其成員
	$(1)S_{7} = \{1, 2\}, S_{2} = \{2, 3, 4\}, S_{3} = \{1, 3\}, S_{4} = \{1, 2, 3\}$
	$(2)S_{1} = \{1, 2\}, S_{2} = \{2, 3, 4\}, S_{3} = \{1, 3\}, S_{4} = \{1, 2, 3\}, S_{5} = \{2, 3\}$
輸出	(1) $S_{_7}$ ={1, 2}, $S_{_2}$ ={2, 3, 4}, $S_{_3}$ ={1, 3}, $S_{_4}$ ={1, 2, 3},其中粗體數字代表社長
	(2) 無解

接下來,說明二分圖上之配對問題。

表 7.2 二分圖上之配對問題

問題	一個圖的點(vertex)可切割成兩個的集合 S 和 T ,使得所有的線(edge)都只從 S 連接到 T ,則稱此圖為二分圖(bipartite graphs)。此問題是在一個二分圖上選擇最多的線,使 得被選出的線沒有共用端點(endpoint)
輸入	二分圖 $G=(S, T, E)$,此處 S, T 為點集合而 E 為線集合 S ① ② ③ ④ T ① ② ③ ④
輸出	最大配對 M(虛線), 此處 M 為 E 的子集合 S T 1 2 3 4

「如何將 不同系統代表問題 轉換成 二分圖上之配對問題?」

「兩個問題乍看起來一點都不像。」

「可以將 不同系統代表問題 利用『圖』來表示嗎?」

「什麼是圖?」

「圖是在幾個點中,用一條線連起兩個點,代表兩個點之間的關係。」

「點有什麽用涂?」

「點代表你關心的事物。你關心什麼?」

「哪些人可以當某一個社團的社長。」

「主要的事物是什麼?」

「好像是『人』和『社團』。」

「這些事物之間的關連是什麼?」

「哪個『人』擔任這個『社團』的社長。」

「如果『人』和『社團』都用點代表,則連接點和點之間的線 代表什麼關係?」

「當某『人』擔任某『社團』的社長,則連接此兩點。」

「可以畫出一個圖嗎?」「此圖是一個二分圖嗎?」

「『人』和『社團』各分一邊,剛好是二分圖。」

「原來的不同系統代表問題,現在是在二分圖上找尋什麼?」

「找很多線,但是線不可共用端點。」

「這是怎樣的問題?」

「這是配對問題, 哈!哈!我完成了問題的轉換!」

以上的討論,可以將不同系統代表問題轉換成二分圖上之配對問題。轉換 後,依據表 7.1 的輸入,可以畫出以下的二分圖(圖 7.2)。此圖的最大配對, 即可以代表在計團中選出的計長清單。

圖 7.2 不同系統代表問題被轉換成二分圖上之配對問題

當最大配對的個數小於社團的個數時,代表無法幫每個社團選出一位專任 的社長。此外,二分圖上之配對問題可用**匈牙利法** (the Hungarian method) 解決之。

將二分圖上之配對問題 轉換成網路流量問題

第二個例子是,將二分圖上之配對問題再轉換成網路流量問題(network flow problem)。首先,解釋網路流量問題後,再說明其中的轉換。

表 7.3 網路流量問題

問題

一個運輸網路是一個有方向的圖。此網路上有一個點為來源點(source) s 及另一個點 匯集點(sink) t。每一條線(edge) e 上有一個值 c(e)(非負整數)代表容量(capacity)。每 一條線 e 上有另一個值 f(e) (非負數)代表此線上的流量(flow)。一個網路流量是在每 一條線 e 上決定其流量 f(e), 其值不可超過其容量 c(e); 而目除了來源點 s 及匯集 點 t 外,每一個點需符合流入流量的總和等於流入流量的總和

網路流量問題是找出一個網路流量,使得自來源點s流出的流量總和為最大

輸入 一個有方向的圖(含有來源點 s 及匯集點 t)及每條線上的容量(斜線左側的值)

輸出 決定網路每一條線的流量(斜線右側的值),使得自來源點s流出的流量總和為最大 此圖最大流量總和為 3+4=7

接下來,我們將二分圖上之配對問題轉換成網路流量問題。首先,將配對 問題的(無方向)二分圖,轉換成網路流量問題的(有方向)網路。以表 7.2 中的 配對問題為例,我們在二分圖 G=(S, T, E)上下分別新增兩點 S 和 t (來源點 及匯集點)。其中來源點 s 連接朝向 S 中所有點,匯集點 T 中所有點連接朝 向點 t。接著,將所有原來 E 中的線改成從 S 指向 T 的方向線,如圖 7.3所示。

圖 7.3 將無方向的二分圖改成有方向性的網路

緊接著,讓網路上每條線上的容量為 1。直覺上,利用二分圖改造的網路 其流量的瓶頸就是原來二分圖的中間連線。當在此網路上找到最大流量時,必 須經過二分圖中的最多連線以傳輸最大流量;也間接地,找到原來二分圖上之 最大配對(圖 7.4 中的粗線)。

圖 7.4 找到最大流量(4)時,也找到原來二分圖上之最大配對(4條粗線)

上述的網路流量問題,可利用**福特-法克森法**(Ford-Fulkerson method) 找到一個整數解。

7.4 將網路流量問題轉換成線性規劃問題

最後的例子是,將網路流量問題轉換成線性規劃問題。線性規劃問題對 我們來說並不陌生,因為在<5.5 節>,我們曾經討論到農夫養豬羊問題(表 5.8)及其對應的線性規劃問題(表 5.9)。接下來,我們正式地定義線性規劃問 題後,再說明兩者間的轉換。

表 7.4 線性規劃問題

```
問題
         給一個目標函數(objective function)
         Z=d, x, +d, x, +···+d, x, 及 m 個線性限制(linear constraint):
         a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n \leq b_1;
         a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n \leq b_2;
         a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m;
         此處 x \ge 0, 而 a_{ij}, b_{ij} 及 d_{ij} 皆為常數,當 1 \le i \le n 且 1 \le j \le m。
         滿足所有線性限制的解為可行解(feasible solution)。此問題為找出所有可行解中,使
         得日標函數最佳化的解
輸入
         極大化(maximize):
         Z=d_1x_1+d_2x_2+\cdots+d_nx_n
         受限於(Subject to)
         a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1;
         a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n \leq b_n;
         a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m;
         X_{1}, X_{2}, \dots, X_{n} \ge 0
輸出
         滿足m個線性限制而且使得Z(=d_1x_1+d_2x_2+\cdots+d_nx_n)擁有最大值的解(x_1,x_2,\cdots,x_n)
```

接下來,我們將網路流量問題轉換成線性規劃問題。首先,重新敘述網路 流量問題如下:

- (1) 一個網路流量是在每一條線 e 上決定其流量 f(e),其值不可超過其容量 c(e);
- (2) 而目除了來源點 s 及匯集點 t 外,每一個點需符合「流入流量的總和等 於流出流量的總和」;
- (3) 網路流量問題是找出一個網路流量使得流出來源點 s 的流量總和為最大。

經觀察會發現,(1)及(2)是和限制式有關,而(3)是闡述目標函數。我們將 逐步將這三個敘述轉換成線性規劃問題。

令變數 x_1, x_2, \dots, x_n 代表每一條線的流量;常數 c_1, c_2, \dots, c_n 代表每 一條線的容量。首先,將上面敘述(3)轉為以下的目標函數式子:

$$\sum_{i \in S} X_i$$
 , 這裡 S 代表所有流出來源點 s 的線集合。 ($\sum_{i \in S} X_i$ 即是將代表所有流出來源點 s 的線上的流量,全部加總起來。)

其次將上面敘述(1)轉為以下的式子:

$$X_i \leq C_i$$
, $\forall i$, $1 \leq i \leq n$ 。
(即每一個流量不可超過其容量。)

最後將上面敘述(2)轉為以下的式子:

$$\sum_{i \text{ A,A,B,L} \text{ v OB}} \left(x_i \right) - \sum_{j \text{ A,A,A,V} \text{ OB}} \left(x_j \right) = 0$$
, $\forall v \in V - \{s,t\}$ 。
(即每一個點,除了來源點 s 及匯集點 t 外,需符合流入流量的總和等於流出流量的總和。)

稍作整理後,網路流量問題就被轉換成下面的線性規劃問題:

極大化

 $\sum_{i \in S} X_i$, 這裡 S 代表所有流出來源點 S 的線集合。

- (1) $X_i \leq C_i, \forall i, 1 \leq i \leq n$.
- (2) $\sum_{i \text{ Aääll } v \text{ Diss}} \left(x_i \right) \sum_{j \text{ Aää} \lambda \text{ } v \text{ Diss}} \left(x_j \right) = 0, \forall v \in V \{s, t\}$
- (3) $X_i \geq 0$, $\forall i$, $1 \leq i \leq n$

如同前面的兩次轉換,線性規劃問題也可以被**簡單法**(simplex method)所解。

7.5 問題轉換的技巧

問題轉換的技巧是將一個陌生問題,轉換成較熟悉的問題。利用較熟悉問題早已存有的解法,間接地解決此陌生問題。

圖 7.5 三個貼地的鐵環(使得彼此不相交)的擺放問題可以 轉換成在四個不同的符號上用括弧正確分隔的問題

當我們面對一個陌生問題時,當當會問:「該轉換到那一個問題呢?」

如果您熟悉的問題本來就不多時,上面的問話就難有答案了;反之,如果 您常常比較兩個問題間的相似處及不同處,應該會對此兩問題產生更深的體會 及洞見。

最後,引用坡利亞先生(G. Polya)在如何解題(How to Solve It)中的一段 話,當作本章的結語:

「你以前看過這個問題嗎?你看過相似的問題嗎?你看過相關 問題嗎?」

「這裡有一個相關而且知道解法的問題。你能利用它嗎?你能 利用它的結果嗎?你能利用它的方法嗎?你可以引入一些輔助 元素來方便利用它嗎?」

「你可以重新表達這個問題嗎?你可以用更不同的方式表達這 個問題嗎?」

學習評量

- 1. 有 n 個大善人想要捐錢給 k 個孤兒院。每個大善人想要捐款的額度有一定的上限,而且針對每一個孤兒院,也有一個最高的捐款額度。為了公平起見,每一個孤兒院接受捐款的總額,也被設定一個最高額度,以免獨佔所有捐款。此問題在於,找出一個捐款的方式,使得整體的捐款達到最高。請將上述問題轉換成一個線性規劃問題。
- 2. 請在一個平面上的二維極點問題 (2-dimension maxima finding,參閱 <2.4~ 節>),和一條直線上的線段包含問題,兩者之間找到一種轉換的方式。注意在下圖中,線段 b 包含線段 a,同時線段 c 也包含線段 a。

3. 輸入一個二分圖(bipartite graphs) G=(S, T, E),請設計一個程式找出此圖的最大配對(maximum matching)。此題可利用匈牙利法(the Hungarian method)[2]解決。

```
輸入:
             (點集合 S 的個數,並且以 1, 2, 3, …編號)
4
             (點集合 T 的個數,並且以 1, 2, 3, …編號)
4
10
             (線集合 E 的個數)
             (以下為線的資料)
2 1
2 2
2 4
3 2
3 3
3 4
4 2
輸出:
             (最大配對的個數)
1 1
             (以下為配對的資料)
2. 4
3 3
4 2
```