9597 H2 Computing Paper

Table of Contents

- 9759 H2 Computing Paper
 - Paper 1 Format
 - Paper 2 Format
 - Contents
 - Module 1: Algorithms and Design
 - <u>1.1 Fundamental Algorithms</u>
 - 1.2 Abstraction
 - 1.3 Modularity
 - 1.4 Programming
 - Module 2: Interface and Interactions
 - 2.1 Interacting with Computers (User Interface)
 - 2.2 Interfacing Computers (Networking)
 - 2.3 Interacting with data (Relational database)
 - Module 3: Systems Engineering
 - 3.1 System Development Cycle (SDC)
 - 3.2 Project Management Techniques
 - 3.3 Network Applications

Paper 1 Format

- Duration: 3 hours 15 min

- Total Marks: 100

- Weighting: 35%

- Number of questions: 4

Paper 2 Format

- Duration: 3 hours

- Total Marks: 100

- Weighting: 65%

- Number of questions: 6

Contents

Module 1: Algorithms and Design

1.1 Fudamental Algorithms

- 1. Search
 - 1.1 Linear / sequential
 - 1.2 Binary search (iterative / recursive)
 - 1.3 Hash table search
- 2. Sorting
 - 2.1 Bubble sort (normal and improved)
 - 2.2 Insertion sort
 - 2.3 Quick sort
- 3. Modulo operations and weighted modulo
- 4. Binary search tree
 - 4.1 Building: iterative / recursive
 - 4.2 Sort: iterative / recursive
 - 4.3 Search: iterative / recursive
 - 4.4 Traversal: recursive (pre-order, in-order, post-order)

1.2 Abstraction

- 1. Data representation
 - 1.1 ASCII code: ord(), chr()
 - 1.2 Unicode
 - 1.3 Binary, octal, hexadecimal
- 2. Data structures and associated operations (insert, delete, search)
 - 2.1 Array: append, pop
 - 2.2 Dictionary: mapping values
 - 2.3 Stack: push, pop
 - 2.4 Queue: enqueue, dequeue
 - 2.5 List: add, delete

1.3 Modularity

- 1. Types of programme errors
- 2. Test cases
 - 2.1 Normal
 - 2.2 Invalid
 - 2.3 Errornous
 - 2.4 Boundary
- 3. Data validation
 - 3.1 Range
 - 3.2 Length
 - 3.3 Format

- 3.4 Data type
- 4. Programme Design
 - 4.1 Modular design
 - 4.2 Top-down approach
- 5. Use of meaningful variable names

1.4 Programming

- 1. I/O operations
- 2. Serial / sequential text files
 - 2.1 Opening / closing files
 - 2.2 Reading / writing files
 - 2.3 Finding locations: seek(), tell()
- 3. Classes and objects
- 4. Encapsulation (not allowing for access to class data from external methods and functions)
- 5. Inheritance: calling super().__init__()
- 6. Polymorphism

Module 2: Interface and Interactions

2.1 Interacting with Computers (User Interface)

- 1. Types of user interfaces
 - 1.1 Command line
 - 1.2 Menu
 - 1.3 Form-based
 - 1.4 Graphical
- 2. Specifications of appropriate interface
- 3. Design considerations (8 Golden Rules)
- 4. Interaction techniques / input methods
 - 4.1 Mouse
 - 4.2 Keyboard
 - 4.3 Voice
 - 4.4 Gesture
 - 4.5 Touch
- 5. Styles of interaction
 - 5.1 Command line
 - 5.2 Menu
 - 5.3 Graphical
 - 5.4 Virtual reality
- 6. Effects and impacts of computers
 - 6.1 Social issues
 - 6.2 Ethical issues
 - 6.3 Economic issues

2.2 Interfacing Computers (Networking)

- 1. Types of networks and examples of them
 - 1.1 Local area network
 - 1.2 Wide area network
- 2. Purposes of networking hardware
 - 2.1 Servers
 - 2.2 Clients
 - 2.3 Switches
 - 2.4 Routers
 - 2.5 Bridges
- 3. Intranet
 - 3.1 Usage
 - 3.2 Reasons for implementing Intranet
- 4. Cloud computing
 - 4.1 Types of services
 - 4.1.1 Application as a service
 - 4.1.2 Infrastructure as a service
 - 4.1.3 Platform as a service
 - 4.2 Benefits of using cloud
 - 4.3 Social and security issues related to cloud storage
- 5. Rate of transmission (baud / bps)
- 6. Types of data transmission
 - 6.1 Synchronous
 - 6.2 Asynchronous
- 7. Modes of data transmission
 - 7.1 Simplex
 - 7.2 Half-duplex

- 7.3 Full-duplex
- 8. Types of switching and their benefits / drawbacks
 - 8.1 Circuit switching
 - 8.2 Packet switching
- 9. Error detection in transmission
 - 9.1 Parity bit check
 - 9.2 Checksums

2.3 Interacting with data (Relational database)

- 1. Attributes of database
 - 1.1 Tables
 - 1.2 Records
 - 1.3 Fields
 - 1.4 Tuples
- 2. Entity-Relationship diagrams
- 3. Data redundancy and data dependency
- 4. Privacy and integrity of data

Module 3: Systems Engineering

3.1 System Development Cycle (SDC)

- 1. Data and processes in software system / applications
 - 1.1 Business systems
 - 1.2 Information systems
 - 1.3 Education systems
 - 1.4 Entertainment systems
- 2. Phases of development
 - 2.1 Specification
 - 2.2 Design
 - 2.3 Development
 - 2.4 Documentation
 - 2.5 Implementation
 - 2.6 Testing / Modification
 - 2.7 Maintenance
- 3. Testing strategies
 - 3.1 Bottom-up testing
 - 3.2 Top-down testing
 - 3.3 White box testing
 - 3.4 Black box testing
 - 3.5 Alpha testing
 - 3.6 Beta testing

3.2 Project Management Techniques

- 1. Purpose of project proposal
- 2. Project management

- 2.1 PERT chart and critical path analysis
- 2.2 Gantt chart
- 3. Importance of team work and roles of team members on a project

3.3 Network Applications

- 1. Methods for creating network app
 - 1.1 Client side scripting
 - 1.2 Server side scripting
- 2. Tools for network application
 - 2.1 Hand-held devices
 - 2.2 Technology standards
 - 2.3 Application software
- 3. Security of network application
 - 3.1 Access rights
 - 3.2 Editing rights
 - 3.3 Password and protected access
- 4. Network security
 - 4.1 Firewalls
- 5. Issues of network applications
 - 5.1 Social issues
 - 5.2 Ethical issues
 - 5.3 Copyright issues