

PROJETO MTCD E MP

AVALIAÇÃO DE CRÉDITO

Jéssica Generoso - nº125765 Joan Concha - nº126550 Manuel Martins - nº131408 Meda Račaitytė - nº127575

Business Understanding

Problema

Uma empresa financeira procura melhorar a eficiência na gestão de crédito

Solução

Desenvolvimento de um sistema inteligente para segmentar clientes em escalões de pontuação de crédito

Data Understanding

Segmentação dos Clientes

3 níveis:

- Poor;
- Standard;
- Good;

Segmentos dos Dados

- Dados identificadores;
- Informações financeiras;
- Comportamento de crédito;
- Comportamento de pagamento;
- Outras variáveis;

Funções

- Substituição de valores pela mediana, moda ou valor escolhido
- Formulação de gráficos (gráfico de pontos, histograma e boxplot)
- Cálculos e determinação de valores (outliers, moda, upper bound e lower bound)

Resultam em...

- Maior eficiência
- Menor complexidade
- Normalização dos métodos

Outras decisões

 Eliminação das variáveis de identificação (ID de empréstimo, ID de cliente, Nome e NSS)

Variáveis numéricas

- Identificação de valores estranhos ou omissos;
- Substituição de valores estranhos ou omissos pela mediana;
- Determinação dos lower bound e upper bound (IQR);
- Vizualização dos outliers;
- Substituição dos outliers pela mediana;
- Visualização dos dados (histograma e boxplot);

Exceções

- Idade;
- Mês;

Variáveis categóricas

- Identificação de valores estranhos ou omissos;
- Substituição de valores estranhos ou omissos pela moda;
- Implementação da codificação one-hot-encoding dummy, labeling e lumping;

Divisão de Dados

Normalização

Priação de samples

- Conjunto de treino ²/₃ e conjunto de teste ¹/₃;
- Classe maioritária "Standard" e minoritária "Good";
- Criação da amostra estratificada;

 Aplicação da padronização;

- Under-sample: 17.796 observações;
- Over-sample: 53.346 observações;

Estudo das correlações -Variáveis numéricas

- Correlação de Spearman escolhida para captar relações não-lineares.
- Forte correlação identificada (*cutoff* = 0.75):
 - Rendimento Anual vs Salário Mensal Líquido (Spearman = 0.9).

Cinco maiores diferenças entre os coeficientes de Pearson e Spearman*

	-			•
1ª Variável	2ª Variável	Coeficiente	Coeficente de	Diferença
1 Vallavet	2 Vallavet	de Pearson	Spearman	relativa (%)
Num_of_Loan	Total_EMI_per_month	0,45	0,57	12,13
Annual_Income	Amount_invested_monthly	0,52	0.58	6,59
Num_of_Loan	Outstanding_Debt	0,52	0,46	6,21
Monthly_Inhand_Salar	Amount_invested_monthly	0,48	0,53	5,38
Num_of_Loan	Monthly_Balance	-0,43	-0,47	4,32

Heatmap de correlações - Spearman

^{*} Heatmap de correlações para Pearson nos Anexos.

Estudo das correlações - Variáveis categóricas

Nominais (V de Cramér)

Ordinais (τ de Kendall)

Valores de τ na ordem de 0,03 para todas as variáveis (**Grupo de Idades**, **Mix de Crédito**, e **Avaliação de Crédito**).

Conclusões:

- Possível exclusão das variáveis Ocupação,
 Grupo de Idades, Mix de Crédito.
- Possível exclusão do Tipo de Empréstimo: fortemente correlacionado com o Número de Empréstimos (ambas indicadores de empréstimos).

^{*} Rácio de correlação η (Tipo de Empréstimo vs Número de Empréstimos) = 0,963737

Seleção das variáveis importantes - Recursive Feature Elimination (RFE)

Número ótimo de variáveis para a modelação

Recursive feature selection

Outer resampling method: Cross-Validated (10 fold)

Resampling performance over subset size:

Variables	Accuracy	Kappa	AccuracySD	KappaSD	Selected
5	0.7114	0.5670	0.017406	0.026112	
6	0.7348	0.6022	0.010430	0.015645	
7	0.7421	0.6132	0.010302	0.015451	
8	0.7520	0.6280	0.011645	0.017469	
9	0.7546	0.6318	0.010109	0.015163	
10	0.7532	0.6297	0.011538	0.017307	
11	0.7536	0.6304	0.008324	0.012485	
12	0.7547	0.6321	0.008141	0.012210	
13	0.7565	0.6347	0.009318	0.013976	
14	0.7593	0.6390	0.010789	0.016183	*
15	0.7562	0.6344	0.008637	0.012955	
38	0.7547	0.6320	0.006356	0.009527	

Importância das variáveis selecionadas

	Good	Poor	Standard	Overal1	var	Variables	Resample
1	86.605379	30.298184	24.8359803	47.246514	Delay_from_due_date	38	Fold02
2	80.005719	28.330615	22.0517793	43.462705	Num_Credit_Card	38	Fold06
3	36.897872	39.870251	27.7885167	34.852213	Num_of_Delayed_Payment	38	Fo1d09
4	41.117889	4.133939	49.6361248	31.629318	Changed_Credit_Limit	38	Fold06
5	32.645842	32.228333	29.0510903	31.308422	Total_EMI_per_month	38	Fold10
6	32.182460	42.799597	17.6231052	30.868387	Outstanding_Debt	38	Fold07
7	30.480505	24.049243	38.0331900	30.854313	Credit_MixStandard	38	Fold01
8	33.038072	49.830585	9.2175089	30.695389	Interest_Rate	38	Fold07
9	39.715794	28.974291	17.9609927	28.883692	Annual_Income	38	Fold05
10	35.553355	28.515188	19.1158484	27.728131	Monthly_Inhand_Salary	38	Fold05
11	36.826681	14.689230	30.5460026	27.353971	Credit_MixGood	38	Fold02
12	37.530968	28.510482	12.5295157	26.190322	Num_Credit_Inquiries	38	Fold03
13	26.535529	29.232666	17.9979110	24.588702	Num_Bank_Accounts	38	Fold03
14	32.628105	22.863381	8.2603045	21.250597	Age	38	Fold01

- Número ótimo de variáveis preditoras = 14 (12 numéricas e 2 codificadas em one-hot).
- Variáveis selecionadas ordenadas pela sua importância (Overall).

Estudo das correlações (pós-RFE) - Variáveis numéricas

Exclusão da variável que representa o Salário
 Mensal Líquido (menor importância do que a Remuneração Anual para o modelo).

Importância das variáveis selecionadas

	Good	Poor	Standard	Overall	var	Variables	Resample
1	86.605379	30.298184	24.8359803	47.246514	Delay_from_due_date	38	Fo1d02
2	80.005719	28.330615	22.0517793	43.462705	Num_Credit_Card	38	Fold06
3	36.897872	39.870251	27.7885167	34.852213	Num_of_Delayed_Payment	38	Fo1d09
4	41.117889	4.133939	49.6361248	31.629318	Changed_Credit_Limit	38	Fo1d06
5	32.645842	32.228333	29.0510903	31.308422	Total_EMI_per_month	38	Fold10
6	32.182460	42.799597	17.6231052	30.868387	Outstanding_Debt	38	Fo1d07
7	30.480505	24.049243	38.0331900	30.854313	Credit_MixStandard	38	Fold01
8	33.038072	49.830585	9.2175089	30.695389	<pre>Interest_Rate</pre>	38	Fo1d07
9	39.715794	28.974291	17.9609927	28.883692	Annual_Income	38	Fo1d05
10	35.553355	28.515188	19.1158484	27.728131	Monthly_Inhand_Salary	38	Fo1d05
11	36.826681	14.689230	30.5460026	27.353971	Credit_MixGood	38	Fo1d02
12	37.530968	28.510482	12.5295157	26.190322	Num_Credit_Inquiries	38	Fo1d03
13	26.535529	29.232666	17.9979110	24.588702	Num_Bank_Accounts	38	Fo1d03
14	32.628105	22.863381	8.2603045	21.250597	Age	38	Fold01

Matriz de correlações - Spearman

Modeling - Regressão logística

Pós-RFE com GridSearch

Conjunto de treino

- Conjunto de dados: *Down-sample*
- Categoria de referência: "Good"
- Métricas:
 Accuracy- 69,45%
 Sensitivity- 69,45%
 Specificity- 84,73%
 AUC- 82,37%

Conjunto de teste

- Dados normalizados
- Métricas:
 Accuracy- 64,54%
 Sensitivity- 64,54%
 Specificity- 82,27%
 AUC- 81,91%

Evaluation - Regressão logística

- Taxa de juro, número dos cartões de crédito, dívida pendente e mix de crédito foram as variáveis mais relevantes;
- Clientes com limites de crédito estáveis e dívidas reduzidas tendem ser classificados como "Good";
- O modelo identifica bem clientes de maior risco "Standard" e "Poor";

Pré-RFE

Conjunto de treino

- Conjunto de dados: *Down-sample*
- Métricas:
 Accuracy 69,33%
 Sensitivity 69,32%
 Specificity 84,66%
 AUC- 78,52%

Conjunto de teste

- Dados normalizados
- Métricas:
 Accuracy 66,45%
 Sensitivity 66,45%
 Specificity 83,23%
 AUC- 77,63%

Evaluation - Árvores de Decisão

Conjunto de Treino

- Taxa de juros é o fator mais relevante;
- Taxas mais baixas levam a classificação "Standard" e "Good";
- Dívidas Pendentes elevadas e Históricos de empréstimo curtos levam a classificação "Poor" ou "Standard";

Modeling- Árvores de Decisão

Conjunto de Teste

- Dívida pendente é o fator mais relevante;
- Dívidas pendentes mais baixas e
 Limites de Crédito estáveis tendem a ser classificados como "Standard";
- Dívidas elevadas e taxas de juro altas aumentam probabilidade de classificação "Poor";
- Valores baixos de Mix do Crédito levam a classificação "Good";

Modeling - Florestas Aleatórias

Pós-RFE com GridSearch

- Validação cruzada com 10 divisões
- Objetivo: reduzir o risco de overfitting e avaliar a robustez

Conjunto de treino

- Conjunto de dados: Down-sample
- Métricas:
 Accuracy 74,80%
 Sensitivity 74,80%
 Specificity 84,70%
 AUC- 89,52%

Conjunto de teste

- Dados normalizados
- Métricas:
 Accuracy 67,23%
 Sensitivity 67,22%
 Specificity 83,61%
 AUC- 85,75%

Evaluation - Florestas Aleatórias

- O modelo apresenta overfitting;
- Perfis financeiros estáveis com baixo endividamento e histórico consistente são classificados como "Good";
- Características financeiras instáveis levam a classificações como "Standard" ou "Poor";

Modeling - Redes Neuronais

Pré-RFE

Conjunto de treino

- Conjunto de dados: Down-sample
- Métricas:
 Accuracy 72,39%
 Sensitivity 72,39%
 Specificity 86,20%
 AUC- 86,14%

Conjunto de teste

- Dados normalizados
- Métricas:
 Accuracy 66,34%
 Sensitivity 66,34%
 Specificity 83,17%
 AUC- 84,39%

Modeling-Redes Neuronais

- Unidades ocultas:

 Para menos de 4, desempenho menor
 Para maior de 4, não existem melhorias
 significativas
- Impacto do weight decay: Baixo
- Melhor configuração:
 Entre 4 a 6 unidades ocultas com valores
 baixos ou moderados de weight decay, pois
 maximizam a accuracy

Evaluation - Redes Neuronais

- Mix de crédito e dívidas pendentes são os fatores de maior importância no modelo;
- Taxas de juros têm significância na classificação;

Modeling-SVM

Pós-RFE com GridSearch

Conjunto de treino

- Conjunto de dados: Down-sample
- Métricas:

Accuracy - 70,34% Sensitivity - 70,34% Specificity - 85,17% AUC- 81,66%

Conjunto de teste

- Dados normalizados
- Métricas:
 Accuracy 64,04%
 Sensitivity 64,04%
 Specificity 82,02%
 AUC- 80,71%

Evaluation - SVM

- A taxa de juro é a variável que se destaca como importante em todas as classes de avaliação de crédito;
- Número de créditos solicitados e dívida pendente têm um forte impacto para classificação "Good" e "Poor";
- Classificação "Standard" é influenciada pelo mix de créditos e número de pagamentos em atraso;

Deployment

Melhores versões:

Accuracy entre 69% e 74% no conjunto de treino; Accuracy entre 64% e 67% no conjunto de teste;

Modelo com melhores resultados:

Florestas Aleatórias

Implementação:

Integração no sistema interno para automatizar análise de risco; Suporte a decisões rápidas e precisas;

Monitorização:

Plano contínuo com revisões periódicas; Adaptação a mudanças nos dados ou no comportamento dos clientes;

Sugestões/Melhorias

Data Preparation:

Aplicar transformações para corrigir enviesamentos e melhorar a qualidade dos dados usados para modelação;

Data Preprocessing:

Testar técnicas de *oversampling*, como *SMOTE*, para aumentar/equilibrar o número de classes da variável alvo; Explorar escalas alternativas, como Min-Max, para normalizar os dados;

Modeling:

Avaliar o desempenho de algoritmos como *XGBoost* e *Naive Bayes Classifier*, para potencial melhoria da precisão e robustez do modelo; Aplicar métodos avançados de procura de hiperparâmetros, como a Otimização Bayesiana.

Tarefa

Conseguimos criar um modelo capaz de prever a sobrevivência de um passageiro na tragédia do Titanic?

Data Understanding

- Identificação das variáveis;
- Identificação dos valores omissos;
- Seleção das variáveis a serem incluídas no modelo de previsão;

Valores Omissos

- Age \rightarrow 177/891;
- Cabin \rightarrow 687/891;
- Embarked \rightarrow 2/891;

Limpeza dos dados

- Eliminação das variáveis de identificação e da variável
 Cabine;
- Substituição de valores omissos pela moda
- Implementação da codificação one-hot-encoding dummy (Embarque)

Modelação

Modelos formulados:

- Regressão Logística;
- Árvore de Decisão;
- Floresta Aleatória;
- SVM;
- Redes Neuronais;

Métricas de avaliação

	Metric	Value
	Accuracy	0.83959
\checkmark	Sensitivity	0.939227
!	Specificity	0.678571
	AUC	0.884299

Importância das variáveis

Variable	Overall
Sex	60.69027
Fare	43.8036
Pclass	20.11386
Age_Group	16.95763
SibSp	12.24627
Parch	10.44823
Embarked_S	4.939207
Embarked_Q	1.620579

Perguntas?

Anexos

Heatmap de correlações - Pearson

