Dinámica y Cinemática

Proyecto final

Bustelo, Nicolás - 61431 Feldman, Santiago - 62012 Hormachea, Jose Conrado - 61439 Nieto, Franco - 61459

GRUPO 6

Motivación

En Física I precisan más instrumentos para el laboratorio.

La opción actual resulta muy costosa y presenta problemas de compatibilidad con algunas computadoras

Requerimientos:

Dispositivo 1:

• Determinar mediante ecuaciones dinámicas el momento de inercia baricéntrico de diferentes objetos.

Dispositivo 2:

• Observar el efecto del aire en la caída de objetos livianos y con gran sección transversal y determinar la relación entre la masa del objeto y su velocidad terminal.

Dispositivo 1: Inertia

Funcionamiento:

El dispositivo censa la rotación del cuerpo en función del tiempo. Luego de tomar las muestras, calcula la velocidad y aceleración. Con estos datos se puede calcular la inercia del cuerpo utilizando las leyes de Newton.

Diagrama de bloques del sistema Inertia

Inertia

Componentes:

Inertia

INERCIA

Rotación vs. Tiempo

Dispositivo 2: Free Fall

Funcionamiento:

Censa la distancia en función del cuerpo para un objeto en caída libre. Luego se calculan las derivadas para obtener velocidad y aceleración. Con estos datos, se puede obtener el rozamiento del aire.

Diagrama de bloques del sistema Free Fall

Free Fall

Componentes:

Free Fall

CAIDA LIBRE

Distancia vs. Tiempo

Imagen del dispositivo final:

Funcionamiento Servidor Web

SSID: INERTIA-X o FREEFALL-X

CONTRASEÑA: 123456789

IP: 192.168.1.1

Costos:

INERTIA		FREE FALL		HORAS TRABAJO	
ENCODER	\$55.407,00	ULTRASÓNICO	\$39.479,00	COSTO HH	\$5.000,00
RODAMIENTO	\$1.018,98			HS DISEÑO	10
ESP32	\$12.708,00	ESP32	\$12.708,00	HS PROGRAMACIÓN	25
РСВ	\$3.000,00	РСВ	\$3.000,00	HS ENSAMBLE	2
PROTOTIPADO 3D	\$14.000,00	PROTOTIPADO 3D	\$11.000,00		
Varilla	\$14.500,00	Varilla	\$14.500,00		
TOTAL MATERIALES	\$100.633,98	TOTAL MATERIALES	\$80.687,00	TOTAL HH	\$185.000,00
TOTAL PROYECTOS	\$366.320,98				

Propuesta Final de Dispositivos

Inertia y Free Fall

- Realizados con componentes disponibles a nivel local
- Servidor web para evitar problemas de compatibilidad
- Impresión 3d para las carcasas y armado
- Bajo consumo eléctrico
- Replicable

Comparación con los sensores Vernier

Pros

- Precio
- Facilidad de uso
- No requiere instalación de soft

Contras

- Tiempo de respuesta del sensor ultrasonido más lento
- Menor resolución (Free Fall)
- Componentes impresos menos rígidos (Inertia)

Fin?

