TERMS

;++;:;++;

FORMULAS

• $\sqcap = (b-a) \times \frac{1}{(b-a)}$ (finite curve)

•
$$Z = \frac{x-\mu}{\sigma}$$
 (z-score)

•
$$X \sim N(\mu, \sigma)$$

•
$$\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

•
$$SEM = \frac{s}{\sqrt{n}}$$
 (compute standard error)

•
$$t = \frac{\bar{X} - \mu_0}{\frac{\bar{S}}{\sqrt{n}}}$$
 [NP]

•
$$t = \frac{\bar{x}}{\frac{\bar{s}_d}{\sqrt{n}}}$$
 [matched pair]

•
$$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}} \sim t(K)$$
 [NHST]

•
$$(\bar{x} \pm t^{**} \times \frac{s}{\sqrt{n}})$$
 [confidence interval]

•
$$\bar{x} - t^{**} \times \frac{s}{\sqrt{n}} < \mu < \bar{x} + t^{**} \times \frac{s}{\sqrt{n}}$$
 [confidence interval when sample mean given]

• $IQR = Q_3 - Q_1$

• K = 1.5

• Lower fence: $Q_1 - K \times IQR$

• Upper fence: $Q_3 + K \times IQR$

•
$$t = \frac{\Delta \bar{x} - \Delta \mu}{\frac{\Delta s}{\sqrt{s}}}$$

• df = n - 1

• $df(\text{treatment}) = k - 1 \text{ (k)} \leftarrow \text{number of categories}$

• df(error) = N - k (N) \leftarrow total sample size.

• MSTr = SSTr/(k-1) SSTr \leftarrow sum of treatment

• MSE = SSE/(N-k) SSE \leftarrow sum of error

• $F = \frac{MSTr}{MSE}$

• $C = 1 - \alpha$ [confidence level]

•
$$((\bar{x}_1 - \bar{x}_2) - t^{**} \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}), ((\bar{x}_1 - \bar{x}_2) + t^{**} \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}) \left[\operatorname{qt}(\frac{\alpha}{2}, 347.41, \text{ lower.tail} = F) \implies t^{**} \right]$$