Kalman Filter

Computer Vision (CS0029)

One Tracking Approach

- You can detect objects at every frame independently
 - Ex: background subtraction
- But the it could be incorrect sometimes
- The object could be occluded sometimes

Tracking as induction

- Given corrected estimate for frame t:
 - Predict for frame t+1
 - Correct for frame t+1
- Recursive algorithm (Bayesian filter):

$$Bel(x_t) = p(z_t|x_t) \int p(x_t|u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Why Filtering (Simple example)

 Sensor/measurement/tracking result from image always have errors

 Jitter could cause problem when high level inference is needed in the temporal domain

Prediction and Correction

Prediction

•
$$P(X_t|y_0,\ldots,y_{t-1}) = \int P(X_t|X_{t-1})P(X_{t-1}|y_0,\ldots,y_{t-1})dX_{t-1}$$
 Dynamics model Corrected estimation from previous step

Correction

Observation Predicted estimation

•
$$P(X_t|y_0,...,y_{t-1},y_t) = \frac{P(y_t|X_t)P(X_t|y_0,...,y_{t-1})}{\int P(y_t|X_t)P(X_t|y_0,...,y_{t-1})dX_{t-1}}$$

Kalman Filter

A way to implement Bayes filter

- Linear Dynamics
 - Predictions are based upon a linear function of the current belief
- Assume Gaussian noise about how things might change and the measurement
 - After prediction and having a measurement, add Gaussian noise

Linear Dynamics Model

- State undergoes linear transformation plus Gaussian noise
 - $X_t \sim N(D_t X_{t-1}, \Sigma_{d_t})$
 - X_t : state at time t and it is a Gaussian distribution
 - $D_t X_{t-1}$: mean of the state is the linear function of previous belief
 - D_t : a scalar or matrix (transformation)
 - Usually D_t is constant over time
 - Σ_{d_t} : Covariance matrix/Gaussian noise

Linear Measurement Model

- Observation model: measurement is linearly transformed state plus noise
 - $y_t \sim N(M_t X_t, \Sigma_{m_t})$
 - y_t : measurement is a Gaussian distribution
 - M_tX_t : mean of the measurement is the linear function of the state
 - M_t : a scalar or matrix (transformation)
 - Σ_{m_t} : Covariance matrix/Gaussian noise
- X_t : we do not know, hidden states

Kalman Filter

- Both prediction state and measurement state are represented by Gaussian
 - You only need to maintain them by means and covariances

The Kalman Filter: 1D State

$$P(X_t|y_0,\ldots,y_{t-1})$$

Mean and std. dev.

Of predicted state: μ_t^p , σ_t^p

 $P(X_t|y_0,...,y_t)$

Mean and std. dev. Of predicted state: μ_t^c , σ_t^c

Make measurement

Time advances (t-1 to t)

1D Karman Filter: Prediction

Linear dynamics model defines predicted state evolution with noise

$$X_t \sim N(DX_{t-1}, \sigma_d^2)$$

The distribution for next predicted state is also a Gaussian

$$P(X_t|y_0,...,y_{t-1}) \sim N(\mu_t^p, (\sigma_t^p)^2)$$

Predict the mean: $\mu_t^p = D\mu_{t-1}^c + Bu_{t-1}$

Predict the uncertainty : $\left(\sigma_t^p\right)^2 = \sigma_d^2 + D\sigma_{t-1}^c$

1D Karman Filter: Correction

With linear, Gaussian dynamics and measurements, the corrected distribution to be:

$$P(X_t|y_0,...,y_t) = N(\mu_t^c, (\sigma_t^c)^2)$$

Update the mean:

- 1. calculate innovation: $\hat{y_t} = y_t \mu_t^p$
- 2. calculate Kalman gain, K_t : $(K_t)^2 = \frac{(\sigma_t^p)^2}{(\sigma_t^p)^2 + \sigma_m^2}$
- 3. update the mean: $\mu_t^c = \mu_t^p + K_t * \widehat{y_t}$

Update the uncertainty, σ_t^c : $(\sigma_t^c)^2 = (1 - K_t) * (\sigma_t^p)^2$

Example

- We want to estimate the temperature overtime
- Thermometer's uncertainty(standard deviation) is 4
- We assume the temperature does not change from t-1 to t, but the uncertainty (standard deviation) of this assumption is also 4
- If we want to estimate temperature at time t, we have estimated the temperature is 23 and the uncertainty (standard deviation) is 3. And the measurement at time t is 25.
- Predict the mean:
 - D = 1
 - $\mu_{t-1}^c = 23$
 - $\mu_t^p = 1*23=23$
- Predict the uncertainty:
 - σ_d :4
 - $\sigma_{t-1}^{c}:3$
 - $\sigma_t^p = \sqrt{4 + 1 * 3} = 5$

- Update the mean:
 - Innovation:
 - $y_t = 25$
 - $\mu_{t-1}^c = 23$
 - $\hat{y}_t = 25-23=2$
 - Kalman gain:
 - σ_m : 4
 - $K_t = \sqrt{\frac{5^2}{5^2 + 4^2}} = 0.78$
 - Update the mean:
 - $\mu_t^c = 23 + 0.78 \times 2 = 24.56$

Predict the mean: $\mu_t^p = D\mu_{t-1}^c$

Predict the uncertainty: $\left(\sigma_t^p\right)^2 = \sigma_d^2 + D\sigma_{t-1}^c$

Update the mean:

- 1. calculate innovation: $\hat{y_t} = y_t \mu_t^p$
- 2. calculate Kalman gain, K_t : $(K_t)^2 = \frac{(\sigma_t^p)^2}{(\sigma_t^p)^2 + \sigma_m^2}$
- 3. update the mean: $\mu_t^c = \mu_t^p + K_t * \widehat{y_t}$

Update the uncertainty, σ_t^c : $(\sigma_t^c)^2 = (1 - K_t) * (\sigma_t^p)^2$

• Update uncertainty:

•
$$\sigma_t^c = \sqrt{(1-0.78) * 5^2} = 2.35$$

Now, we have the temperature estimation and its uncertainty at time t. The, if we get the temperature measurement of time t+1 from the thermometer, we can calculate the temperature and uncertainty at t+1 by the same process.

Practice

- We want to estimate the temperature overtime
- Thermometer's uncertainty(standard deviation) is 4 (σ_m)
- We assume the temperature does not change from t-1 to t, but the uncertainty (standard deviation) of this assumption is also 4 (σ_d)
- So, we have the temperature estimation 24.56(μ_t^c) and its uncertainty 2.35 (σ_t^c) at time t
- We have temperature measurement at t+1 is 25.3
- We have temperature measurement at t+2 is 25.5
- What is the temperature estimation and uncertainty at t+2?

Predict the mean: $\mu_t^p = D\mu_{t-1}^c$

Predict the uncertainty: $\left(\sigma_t^p\right)^2 = \sigma_d^2 + D\sigma_{t-1}^c$

Update the mean:

1. calculate innovation: $\hat{y_t} = y_t - \mu_t^p$

2. calculate Kalman gain, K_t : $(K_t)^2 = \frac{(\sigma_t^p)^2}{(\sigma_t^p)^2 + \sigma_m^2}$

3. update the mean: $\mu_t^c = \mu_t^p + K_t * \widehat{y_t}$

Update the uncertainty, σ_t^c : $(\sigma_t^c)^2 = (1 - K_t) * (\sigma_t^p)^2$

N-Dimensional Kalman Filter

Predict (1-D)

$$\mu_t^p = D\mu_{t-1}^c$$

$$\left(\sigma_t^p\right)^2 = \sigma_d^2 + D\sigma_{t-1}^c^2$$

Predict (1-D)

$$\widehat{y}_{t} = y_{t} - \mu_{t}^{p}$$

$$(K_{t})^{2} = \frac{(\sigma_{t}^{p})^{2}}{(\sigma_{t}^{p})^{2} + \sigma_{m}^{2}}$$

$$\mu_{t}^{c} = \mu_{t}^{p} + K_{t} * \widehat{y}_{t}$$

$$(\sigma_{t}^{c})^{2} = (1 - K_{t}) * (\sigma_{t}^{p})^{2}$$

Predict (N-D)

$$X_t^p = DX_{t-1}^c$$

$$\Sigma_t^p = \Sigma_d + D_t \Sigma_{t-1}^c D_t^T$$

Predict (N-D)

$$\widehat{y_t} = y_t - X_t^p$$

$$K_t = \Sigma_t^p (\Sigma_t^p + \Sigma_m)^{-1}$$

$$X_t^c = X_t^p + K_t (\widehat{y_t} - X_t^p)$$

$$\Sigma_t^c = (I - K_t) \Sigma_t^p$$

Parameters

- Parameters you have to choose to use Kalman Filter
 - D: linear dynamics
 - σ_d : noise/error of the prediction
 - σ_m : noise/error of the measurement
 - μ : state vector

Predict (1-D)

$$\mu_t^p = D\mu_{t-1}^c$$

$$(\sigma_t^p)^2 = \sigma_d^2 + D\sigma_{t-1}^c^2$$

Predict (1-D)

$$\widehat{y}_t = y_t - \mu_t^p$$

$$(K_t)^2 = \frac{(\sigma_t^p)^2}{(\sigma_t^p)^2 + \sigma_m^2}$$

$$\mu_t^c = \mu_t^p + K_t * \widehat{y}_t$$

$$(\sigma_t^c)^2 = (1 - K_t) * (\sigma_t^p)^2$$

Parameters

- Temperature example
 - $\mu = [t]$
 - D = [1]
- A truck moves on a straight rails.

•
$$\mu = \begin{bmatrix} x \\ v \end{bmatrix}$$
• $D = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$

• If the truck move on a 2D plane

Tracking with Kalman Filters

Background subtraction and Kalman Filter

https://www.youtube.com/watch?v=MxwVwCuBEDA

Summary

- Kalman filter
 - Represent the state using Gaussian distribution (mean is the estimation and standard deviation is the uncertainty)
 - Predict the state at time t+1 from state at time t by linear dynamics assumption
 - Combine the prediction with uncertainty at time t+1 and measurement with uncertainty at time t+1 to estimate the state at time t+1

