Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

```
In [2]: # To import dataset
df=pd.read_csv('uber csv')
df
```

Out[2]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_l
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.
199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.
199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.
200000	rows × 9 co	lumns				

200000 rows × 9 columns

In [3]: # To display top 10 rows
 df.head(10)

Out[3]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitud
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.73835
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.72822
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.79084
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.74408
5	44470845	2011-02-12 02:27:09.0000006	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910
6	48725865	2014-10-12 07:04:00.0000002	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.69396
7	44195482	2012-12-11 13:52:00.00000029	2.5	2012-12-11 13:52:00 UTC	0.000000	0.00000
8	15822268	2012-02-17 09:32:00.00000043	9.7	2012-02-17 09:32:00 UTC	-73.975187	40.74576 ⁻
9	50611056	2012-03-29 19:06:00.000000273	12.5	2012-03-29 19:06:00 UTC	-74.001065	40.74178 ⁻
4						>

Data Cleaning and Pre-Processing

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200000 non-null	int64
1	key	200000 non-null	object
2	fare_amount	200000 non-null	float64
3	pickup_datetime	200000 non-null	object
4	<pre>pickup_longitude</pre>	200000 non-null	float64
5	pickup_latitude	200000 non-null	float64
6	dropoff_longitude	199999 non-null	float64
7	dropoff_latitude	199999 non-null	float64
8	passenger_count	200000 non-null	int64
dtyp			

memory usage: 13.7+ MB

```
In [5]: df.describe()
```

Out[5]:

		Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff
СО	unt	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	19999
me	ean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	3
:	std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	
r	nin	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	- 88
2	5%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	4
5	0%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	4
7	5%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	4
n	nax	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	87
4							•

EDA and Visualization

dtype='object')

```
In [8]: sns.pairplot(a[['key', 'fare_amount', 'pickup_datetime']])
Out[8]: <seaborn.axisgrid.PairGrid at 0x27504135bb0>
```



```
In [9]: sns.distplot(a['fare_amount'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='fare_amount', ylabel='Density'>

In [23]: sns.heatmap(a1.corr())

Out[23]: <AxesSubplot:>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

```
In [27]: x=a1[['pickup_longitude', 'pickup_latitude', 'passenger_count']]
y=a1['fare_amount']
```

To split my dataset into training and test data

```
In [28]: from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [29]: from sklearn.linear model import LinearRegression
          lr=LinearRegression()
          lr.fit(x train,y train)
Out[29]: LinearRegression()
In [30]: |print(lr.intercept_)
          11.808108879522996
In [31]:
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[31]:
                          Co-efficient
          pickup_longitude
                            0.008407
            pickup_latitude
                            0.000710
          passenger_count
                            0.078721
```

```
In [32]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[32]: <matplotlib.collections.PathCollection at 0x2750bb7e250>

In [33]: print(lr.score(x_test,y_test))

0.0002406630894357109

In []: