Бинарные операции по модулю

Урок 2.2

В этом видео_

- Работа с остатками
- Основные свойства деления с остатком

Остатки: определения и возможный диапазон_

- r остаток от деления a на b>0, если a = qb + r, r ≥ 0, r наименьшее возможное
- r = 0 тогда и только тогда, когда а делится на b(a = qb + 0)
- Если r > b, то $r = b + r_1$, то есть $0 < r_1 < r$; $a r_1 = a (r b) = (a r) + b$; a r делится на b, так как r остаток. То есть $a r_1$ делится на b и $r_1 < r$ противоречит минимальности r

Тем самым $0 \le r < b$

Единственность остатка_

- Если a = by + k, где 0 ≤ k < b, то k остаток от деления a на b
- Пусть это не так, и a = bx + r, где $r \ne k$, $0 \le k < b$
- Тогда a bx = r u a by = k. Вычитаем из первого второе, получаем: by bx = r k
- b(y x) = r k; из ограничений на k и r видим, что -b < r - k < b. Так как r ≠ k, то правая часть не делится на b, в то время как левая делится. Противоречие. Значит, остаток является единственным

Периодичность остатков_

$$a = bq + r$$
, тогда $a + 1 = bq + (r + 1)$

- Если 0 ≤ r < b − 1, то 0 ≤ (r + 1) < b,
 значит, (r + 1) остаток
- Если r = b 1, то a + 1 = bq + (b 1) + 1 = b(q + 1) + 0, то есть 0 остаток

Аналогично, a - 1 = bq + (r - 1)

- Если 0 < r < b − 1, то 0 ≤ (r − 1) < b,
 значит, (r − 1) остаток
- Если r = 0, то a 1 = bq 1 = b(q 1) + (b 1), то есть (b 1) остаток

То есть после каждых b последовательных увеличений/уменьшений остатки повторяются

Понятие сравнимости по модулю_

- Из периодичности остатков следует, что все числа вида а + kb имеют такой же остаток при делении на b, что и а, то есть эквивалентны с точки зрения взятия остатка от деления на b
- Если x и y дают одинаковый остаток при делении на b, то говорят, что они сравнимы (или равны) по модулю b
- Запись: $x \equiv y \pmod{b}$ или даже $x = y \pmod{b}$
- Остаток от деления а на b обозначается а mod b

Оператор взятия остатка: проблемы и решение_

- Оператор взятия остатка %: a % b. Но с отрицательными числами он работает **не так**
- -a % b = -(a % b); например, -7 % 5 = -2— не в том диапазоне!
- На самом деле -a = -qb r = -q(b q) + (b r), то есть остаток равен b-r (-7 mod 5 = 3). Как исправить?

Оператор взятия остатка: проблемы и решение_

- Оператор взятия остатка %: a % b. Но с отрицательными числами он работает **не так**
- -a % b = -(a % b); например, -7 % 5 = -2 не в том диапазоне!
- На самом деле -a = -qb r = -q(b q) + (b r), то есть остаток равен b-r (-7 mod 5 = 3). Как исправить?
- -b < a % b < b, прибавим b: 0 < (a % b) + b < 2b, снова берём остаток. То есть a mod b реализуется как ((a % b) + b) % b

Остаток суммы и разности_

- Пусть $a = bq + r_a$, $c = bk + r_c$, где $r_a = a \mod b$, $r_c = c \mod b$
- Тогда $a + c = bq + r_a + bk + r_c = b(q + k) + r_a + r_c$, то есть: (a + c) mod $b = (a \mod b + c \mod b) \mod b$
- Аналогично, $a c = b(q k) + r_a r_c$, то есть: $(a c) \mod b = (a \mod b c \mod b) \mod b$

Остатки и умножение_

1. Умножение по модулю

```
Пусть a = bq + A, c = bk + C, где A = a \mod b, C = c \mod b. ac = (bq + A)(bk + C) = b^2qk + b(kA + qC) + AC = b(bqk + kA + qC) + AC
```

Отсюда ac mod b = (a mod b * c mod b) mod b

2. Масштабирование остатка

Умножим обе части равенства $a = bq + r_a$ на целое k > 0, получим $ka = (kb)q + kr_a$; так как $0 \le r_a < b - 1$, то $0 \le kr_a < (b - 1)k < bk - 1$, kr_a — остаток, то есть $ak \mod bk = k$ ($a \mod b$)

Реализация вычислений по модулю_

```
long long norm(long long d, long long MOD) {
return ((d % MOD) + MOD) % MOD; }
long long Madd (long long x, long long y, long long MOD) {
return norm (norm(x, MOD) + norm (y,MOD), MOD); }
long long Msub (long long x, long long y, long long MOD) {
return norm (norm(x, MOD) - norm (y,MOD), MOD); }
long long Mmul (long long x, long long y, long long MOD) {
return norm (norm(x, MOD) * norm (y,MOD), MOD); }
```


Задача про числа Фибоначчи_

• Числа Фибоначчи: a0 = a1 = 1, ax = ax - 1 + ax - 2 для x > 1. Найти N-е число Фибоначчи по заданному модулю

Задача про числа Фибоначчи: рекурсия?_

- Числа Фибоначчи: $a_0 = a_1 = 1$, $a_x = a_{x-1} + a_{x-2}$ для x > 1. Найти N-е число Фибоначчи по заданному модулю
- При рекурсивном вычислении по формуле f(x) = f(x-1) + f(x-2) каждый шаг рекурсии порождает при раскрытии 2, то есть на втором шаге (f(x-2) + f(x-3)) + (f(x-3) + f(x-4)) 4 слагаемых, далее 8, 16... O(2n) операций слишком много!

Задача про числа Фибоначчи: никакой рекурсии!_

- Числа Фибоначчи: $a_0 = a_1 = 1$, $a_x = a_{x-1} + a_{x-2}$ для x > 1. Найти N-е число Фибоначчи по заданному модулю
- При рекурсивном вычислении по формуле f(x) = f(x-1) + f(x-2) каждый шаг рекурсии порождает при раскрытии 2, то есть на втором шаге (f(x-2) + f(x-3)) + (f(x-3) + f(x-4)) 4 слагаемых, далее 8, 16... $O(2^n)$ операций слишком много!
- Правильнее в цикле вычислять что-то наподобие fib3 = fib2 + fib1; fib1 = fib2; fib2 = fib3; Тогда всего O(n) операций

Подведем итог_

• Сложенние, вычитание и умножение по модулю

