The dark matter of the genome and blood pressure regulation – modeling non-coding genetic mechanisms in cellular models and rats

Aron Geurts, PhD
Department of Physiology
Oct 6, 2024

Acknowledgements

P01HL149620

Andy Greene, PhD

Geurts, PhD

Aron Geurts, PhD

Allen Cowley, PhD

Sid Rao, MD, PhD

Anne Kwitek, PhD

Yong Liu, PhD

Pengyuan Liu, PhD

Mingyu Liang, MD, PhD

Curt Sigmund, PhD Paul Auer, PhD

Mike Widlansky, MD

Hong Xue, PhD Manoj Mishra, PhD Ranjan Pandey, PhD Atrayee Ray, PhD Chun Yang, PhD

Joan Qiu, PhD

Monika Tutaj, PhD

Cary Stelloh Terry Kurth Mark Vanden Avond Mike Grzybowski, MS Jason Klotz, MBA Bhavika Therani Lishu He

UNIVERSITY OF FLORIDA CoM

Abdel Alli, PhD

Kristie Usa

Niharika Bala, PhD

SOUTH-SIDE CREW

Mindy Dwinell, PhD

Akiko Takizawa, PhD

Angela Lemke

Becky Schilling

Allison Zappa

Joe Herbst

Tristan Dooley

Lynn Lazcares

Christopher Bach

Emily Novak (past)

RODENT MODEL RESOURCE

Shawn Kalloway (past)

Jamie Foeckler (past)

Tiffany Raatz

Human BP SNPs -> rat orthology & human iPSC-derived cell types

Overall hypothesis: Non-coding, non-transcribed SNPs must exert their effects on phenotypes by modifying expression of gene(s) in some tissue(s) to modify one or more physiological mechanisms relevant to the trait.

•PMCID: PMC11096100

- <1% missense or nonsense variants,
- >20% >10-kbp from nearest gene

•PMCID: PMC703516

Synteny and sequencelevel conservation

rs1173771 (rs771)

GWAS Catalog (ebi.ac.uk)

We deleted the entire homologous noncoding region in SS using CRISPR-Cas9

Systolic blood pressure was reduced in Δ LD male rats

CRISPR-SpCas9 gene edited iPSC models reveal similar effects of the haplotype and single rs771 on Npr3

Deletion model

Haplotype reconstituted models

Single rs1173771 edited model

NPR3 encodes NPR-C, a multifunctional receptor

- In the vasculature, NPR-C binds C-type natriuretic peptide (CNP), mediates the effect of CNP on vascular function and structure, and plays an important role in preserving vascular homeostasis in vivo.
 - Moyes, et al. J Clin Invest. 2014; PMID: 25105365
 - Villar, et al. Cardiovasc Res. 2007; PMID: 17391657
- In the kidney, NPR-C facilitates the clearance of atrial, Btype, and C-type natriuretic peptides (ANP, BNP, CNP) from the circulation via endocytosis.
 - Maack, et al. Science, 1987; PMID: 2823385
 - Almeida, et al. Am J Physiol. 1989; PMID: 2537040

ΔLD has tissue-specific effects on Npr3 expression and function

Mesenteric Artery

Kidney

The BP elevating haplotype increases contact frequency between the LD region and the Npr3 promoter

rs1882961 C->T (rs961)

riskAllele	pValue pValueAnnotation	riskFrequency	orValue	beta	ci	Mapped Genes	traitName	Traits	bkgTraits	accessionId	locations	pubmedId	author
							Systolic blood	systolic blood					
rs1882961-?	3.00E-13 -	NR	-	-	-	LINC02920,CYCSP42	pressure	pressure	-	GCST007087	21:15184047	30595370	Kichaev G

GWAS Catalog (ebi.ac.uk)

No evidence of eQTL, 120-kb away from nearest gene

Editing this conserved region in SS rats results in sex-divergent effects on blood pressure traits

Effects on local genes (very preliminary data)

log2FC KO/WT, FDR<0.05

Overall conclusions

- The majority of loci (now >2,000) associated with blood pressure are non-coding and hundreds of functional SNP may be quite distant from the genes they regulate
- Human iPSCs can be engineered to harbor blood pressure elevating and lowering alleles and haplotypes then differentiated to study their effects on gene expression
- At least some human non-coding loci can be manipulated in animal models to provide functional evidence of their role in complex traits
- Unlike knockout models, each engineered SNP model will have unique tissue(s)-specific (and sex-specific!) effects on gene(s) expression and phenotypes, leading to complex hypotheses about their mechanisms

Thanks! Questions?

After all, aren't we all just fat rats, stuck in the manhole covers of life?

12:31 PM - 27 Feb 2019

Systolic blood pressure was reduced in ΔLD male rats

Proposed mechanisms by which non-coding SNPs could influence genes and blood pressure

<u>Lift Genome Annotations (ucsc.edu)</u>

Conservation n in rats extends to a ~30.4-kbp region

