Matematiikan ja tilastotieteen laitos Topologia I Korvaavan kurssikokeen 15.3.2010 ratkaisut

1. Osoita, että puoliavaruus

$$A = \{(x, y, z) \in \mathbf{R}^3 \,|\, x + y + z > 0\}$$

on avoin joukko \mathbb{R}^3 :ssa.

Ratk. Väite. A on avoin \mathbb{R}^3 :ssa.

Tod. Määritellään $f: \mathbf{R}^3 \to \mathbf{R}$, f(x,y,z) = x+y+z kun $(x,y,z) \in \mathbf{R}^3$. Polynomina f on jatkuva kuvaus. Pätee $A = \{(x,y,z) \mid f(x,y,z) > 0\} = f^{-1}]0, \infty[$. Tunnetusti väli $]0,\infty[$ on avoin \mathbf{R} :ssä. Siten A on avoin \mathbf{R}^3 :ssa avoimen joukon alkukuvana jatkuvassa kuvauksessa $f: \mathbf{R}^3 \to \mathbf{R}$.

2. Osoita, että yhtälö

$$d(x,y) = |e^{-x} - e^{-y}|, \text{ kun } x, y \in \mathbf{R},$$

määrittelee metriikan joukossa \mathbf{R} .

Ratk. Väite. d on metriikka \mathbf{R} :ssä.

Tod. Ensinnäkin $d(x,y) = |e^{-x} - e^{-y}| \ge 0$ kaikilla $x,y \in \mathbf{R}$. Olkoon $x,y,z \in \mathbf{R}$.

$$(M1) \quad d(x,y) = \left| e^{-x} - e^{-y} \right| = \left| e^{-x} - e^{-z} + e^{-z} - e^{-y} \right| \le \left| e^{-x} - e^{-z} \right| + \left| e^{-z} - e^{-y} \right| = d(x,z) + d(z,y).$$

(M2)
$$d(x,y) = |e^{-x} - e^{-y}| + |e^{-y} - e^{-x}| = d(y,x).$$

(M3)
$$d(x,y) = |e^{-x} - e^{-y}| = 0 \Leftrightarrow e^{-x} - e^{-y} = 0 \Leftrightarrow e^{x} = e^{y} \Leftrightarrow x = y.$$

3. Tarkastellaan funktioavaruutta $E=C\big([0,1],\mathbf{R}\big)=\{$ jatkuvat funktiot $f:[0,1]\to\mathbf{R}\}$ ja sen osajoukkoa

$$A = \{ f_n : [0,1] \to \mathbf{R} \mid f_n(x) = \sqrt[n]{x}, \ n \in \mathbf{N} \}.$$

Merkitään vakiofunktiota jossa $x \mapsto 1$ kaikilla x, lyhyesti $\mathbf{1}$:llä, jolloin $\mathbf{1} \in E$.

- (a) Määrää etäisyys $d(\mathbf{1},A)$, kun E:ssä on supnormin $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$ luoma metriikkaa d. Päteekö $\mathbf{1} \in \bar{A}$ (\bar{A} on A:n sulkeuma), kun käytetään tätä metriikkaa? Perustelu.
- (b) Etäisyys $e(\mathbf{1}, A)$, kun E:ssä käytetään L_2 -normin $||f||_2 = \left(\int_0^1 f(x)^2 dx\right)^{1/2}$ luomaa metriikkaa e.

Ratk. (a) Selvästi $0 \le f_n(x) \le 1$ kaikilla $x \in [0,1]$ ja $n \in \mathbb{N}$. Olkoon $f_n \in A$. Silloin $|\mathbf{1}(x) - f_n(x)| = 1 - f_n(x) \le 1 - 0 = 1$ kaikilla $x \in [0,1]$, ja toisaalta $|\mathbf{1}(0) - f_n(0)| = 1$. Siten kaikilla $f_n \in A$ pätee

$$d(\mathbf{1}, f_n) = \sup\{|\mathbf{1}(x) - f_n(x)| : x \in [0, 1]\} = 1.$$

Siten

$$d(\mathbf{1}, A) = \inf\{d(\mathbf{1}, f_n) \mid f_n \in A\} = 1.$$

Koska $\bar{A} = \{ f \in E \mid d(f, A) = 0 \}$ ja $d(\mathbf{1}; A) = 1 \neq 0$, niin $\mathbf{1} \notin \bar{A}$.

(b) Olkoon $f_n \in A$. Silloin

$$e(\mathbf{1}, f_n)^2 = \|\mathbf{1} - f_n\|_2^2 = \int_0^1 (\mathbf{1}(x) - f_n(x))^2 dx = \int_0^1 (1 - \sqrt[n]{x})^2 dx$$

$$= \int_0^1 \left(1 - 2x^{1/n} + x^{2/n}\right) dx = \int_0^1 \left(x - \frac{2n}{n+1} x^{\frac{n+1}{n}} + \frac{n}{n+2} x^{\frac{n+2}{n}}\right)$$

$$= 1 - \frac{2n}{n+1} + \frac{n}{n+2} = \frac{2}{(n+1)(n+2)} < \epsilon^2,$$

kun $n \geq n_{\epsilon}$ eräällä $n_{\epsilon} \in \mathbf{N}$. Siis

$$e(\mathbf{1}, A) = \inf\{e(\mathbf{1}, f_n) \mid f_n \in A\} < \epsilon \text{ kaikilla } \epsilon > 0.$$

Siten e(1, A) = 0.

Huom. $\mathbf{1} \in \bar{A}$, kun metriikkana on e.

4. Olkoon F niiden \mathbf{R}^2 :n pisteiden (x,y) joukko, joilla pätee

$$\sin(n(x+y)) \le xy$$
 kaikilla $n \in \mathbf{N}$.

Osoita, että F on suljettu joukko ${\bf R}^2$:ssa. Pidetään tunnettuna, että funktio sin : ${\bf R} \to {\bf R}$ on jatkuva.

Ratk. Kiinnitetään n ja merkitään $F_n = \{(x,y) \in \mathbf{R}^2 \mid \sin(n(x+y)) \leq xy\}$. Silloin $F = \cap \{F_n \mid n \in \mathbf{N}\}$. Määritellään kuvaukset $f_n : \mathbf{R}^2 \to \mathbf{R}$, $f_n(x,y) = \sin(n(x+y)) - xy$, $n \in \mathbf{N}$. Koska $(x,y) \mapsto n(x+y)$ on polynomina jatkuva ja tunnetusti sin : $\mathbf{R} \to \mathbf{R}$ on jatkuva, yhdistettynä kuvauksena $(x,y) \mapsto \sin(n(x+y))$ on jatkuva. Vastaavasti polynomikuvaus $(x,y) \mapsto xy$ on jatkuva, ja jatkuvien erotuksena lopulta kukin f_n on jatkuva. Pätee

$$F_n = \{(x, y) \in \mathbf{R}^2 \mid f_n(x, y) \le 0\} = f_n^{-1}] - \infty, 0], \quad n \in \mathbf{N}.$$

Siten F_n on \mathbf{R}^2 :ssa suljettu suljetun välin $]-\infty,0]$ alkukuvana jatkuvassa kuvauksessa $f_n:\mathbf{R}^2\to\mathbf{R}$. Siten $F=\cap F_n$ on suljettujen leikkauksena suljettu.