

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных технологий

Кафедра прикладной математики

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ № 1 ПО ДИСЦИПЛИНЕ

«Теория массового обслуживания» (вариант №18)

СТУДЕНТА 3 КУРСА бакалавриата ГРУППЫ ИДБ-21-06

3.6	1	TC	D.
My	узафаров	карим .	Риантович

Направление: Информационные сис	стемы и технологии
Отчет сдан « »2023 Оценка	г.
Преподаватель Девятерикова Е.А	Подпись

Моделирование распределений случайных величин и потоков событий.

Цель работы: изучить свойства и характеристики распределений и потоков потока. Сравнить теоретические и модельные значения полученных характеристик.

Задание 1.

Разыграть п значений ДСВ, имеющей распределение Пуассона с параметром $\lambda \tau$ (табл.1). По выборке построить точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации. Сравнить полученные оценки с истинными значениями параметров, рассчитанными по формулам. Построить полигон частот и многоугольник теоретического распределения.

Распределение Пуассона - вероятностное распределение дискретного типа. Распределение Пуассона моделирует число событий, произошедших за фиксированное время т, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью λ и независимо друг от друга.

Для простейшего потока вероятность появления т событий за время т

$$P(m) = \frac{(\lambda \tau)^m}{m!} \cdot e^{-\lambda \tau}$$

равна:

Вероятность того, что за время т не появится ни одного события (ш = 0) равна

$$P(0) = e^{-\lambda \tau}$$

Вероятность появления хотя бы одного события

$$P(m>0) = 1 - e^{-\lambda \tau}$$

Входные данные:

λ	3,5
τ	1,5
n	130

Закон распределения Пуассона (F-правая граница интервала):

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13
р	0,00	0,02	0,07	0,12	0,16	0,17	0,15	0,11	0,07	0,04	0,02	0,01	0,00	0,00
	524	754	231	655	610	440	260	445	511	381	300	097	480	194
	8	9	7	5	4	9	8	6	2	5	3	9	3	
F	0,00	0,03	0,10	0,23	0,39	0,57	0,72	0,83	0,91	0,95	0,98	0,99	0,99	0,99
	524	279	511	167	777	218	479	924	435	817	117	215	695	889
	8	7	4		4	3	1	7	9	4	7	5	9	8
W	0	0,01	0,03	0,16	0,15	0,2	0,17	0,07	0,06	0,04	0,04	0,00	0	0,00
		538	846	153	384		692	692	923	615	615	769		769
i		5	2	8	6		3	3	1	4	4	2		2

Точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации:

$x_{e}=$	5,407692
$s^2 =$	5,034049
s=	2,243669
v =	0,414903

Полигон частот:

χ_i	n_i	w_i
0	0	0
1	2	0,015385
2	5	0,038462
3	21	0,161538
4	20	0,153846
5	26	0,2
6	23	0,176923
7	10	0,076923
8	9	0,069231

9	6	0,046154
10	6	0,046154
11	1	0,007692
12	0	0
13	1	0,007692

Многоугольник теоретического распределения:

Задание 2.

Разыграть п значений НСВ, имеющей показательное распределение с параметром λ (табл.2). По выборке построить точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации. Сравнить полученные оценки с истинными значениями параметров, рассчитанными по формулам. Построить гистограмму, кумуляту и график функции распределения. Визуально убедиться, что выборка осуществлена из экспоненциально распределенной генеральной совокупности с параметром λ . Смоделировать простейший поток событий.

Входные данные:

λ	3,5
n	330

Модель	
<i>χ</i> _θ =	0,264692
s ² =	0,060546
s=	0,246062
v=	0,929616

1еория	
MX=1/λ	0,285714
DX=1/λ ²	0,081633
σX=1/λ	0,285714
varX=σX/MX	1

Гистограмма:

Кумулята и график функции распределения:

Простейший поток событий:

			Время
			поступления
			заявки в
r _i	t _i	№ заявки	СМО
		1	0
0,181249	0,487966	2	0,487966041
0,511093	0,191772	3	0,679738262
0,641316	0,126924	4	0,806661984
0,198675	0,461738	5	1,268399829
0,552049	0,169748	6	1,438147798
0,151433	0,539318	7	1,977465805
0,667287	0,115581	8	2,093047156
0,800348	0,063631	9	2,156678229
0,991577	0,002417	10	2,159095025
0,936186	0,01884	329	87,07755865
0,602435	0,144793	330	87,22235147
0,643422	0,125987	331	87,34833858

Задание 3.

Сформировать (2 способами) выборку п значений НСВ, имеющей распределение Эрланга k-ого порядка с параметром λ (табл.3). По выборке построить точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации. Сравнить полученные оценки с истинными значениями параметров, рассчитанными по формулам. Построить гистограмму, кумуляту и график функции распределения. Визуально убедиться, что выборка осуществлена из генеральной совокупности, имеющей распределение Эрланга k-ого порядка с параметром λ.

Студентам с нечетными номерами вариантов с помощью критерия Пирсона проверить гипотезу о принадлежности выборки к рассматриваемому распределению.

Входные данные:

λ	3,5
k	3
n	530

2 способ

Точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации:

Модель

t _e =	0,829764
s ² =	0,226443
s=	0,47586
v=	0,573488

Теория

MT=k/λ	0,857143
DX=k/λ²	0,244898
σΤ	0,494872
varT	0,57735

Гистограмма:

Кумулята и график функции распределения:

Задание 4.

HCB, Сформировать выборку значений имеющей n гиперэкспоненциальное распределение, используя «смесь» двух показательных распределений с параметрами λ1 и λ2 (табл.3). По выборке построить точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации. Сравнить полученные оценки с истинными рассчитанными формулам. параметров, Построить значениями ПО кумуляту и график функции распределения. Визуально гистограмму,

убедиться, что выборка осуществлена из генеральной совокупности, распределенной по гиперэкспоненциальному закону с параметрами q, $\lambda 1$ и $\lambda 2$.

Входные данные:

λ_1	0,21
λ_2	3,5
q	0,14
n	530

Точечные оценки математического ожидания, дисперсии, СКО и коэффициента вариации:

Модель

ттодопь	
t _e =	3,710454711
$s^2=$	19,06111448
s=	4,365903627
v=	1,176649216

Теория

$MT=q/\lambda_1+(1-q)/\lambda_2$	0,91238
DT=2[q/ $(\lambda_1)^2$ + $(1-q)/(\lambda_2)^2$ - $(MT)^2$	5,65718
σΤ	2,37848
varT	2,6069

Гистограмма:

Кумулята и график функции распределения:

Критерий Пирсона:

 $\alpha = 0,1$

i	лев.гр.	пр.гр.	n_i	p_i	np_i	n_k	np_k	nk - npk	$(n_k - np_k)^2/np_k$
1	-∞	0,00	1	0,01	6,97	1,00	6,97	-5,97	5,12
2	0,00	1,14	188	0,86	456,05	188,00	456,05	-268,05	157,55
3	1,14	2,27	85	0,04	20,74	85,00	20,74	64,26	199,14
4	2,27	3,40	65	0,02	9,91	65,00	9,91	55,09	306,25
5	3,40	4,53	40	0,01	7,69	40,00	7,69	32,31	135,74
6	4,53	5,67	30	0,01	6,06	30,00	6,06	23,94	94,56
7	5,67	6,80	28	0,01	4,78				
8	6,80	7,93	19	0,01	3,77				
9	7,93	9,06	15	0,01	2,97				
10	9,06	10,20	8	0,00	2,34				
11	10,20	11,33	9	0,00	1,85				
12	11,33	12,46	10	0,00	1,46				
13	12,46	13,59	6	0,00	1,15				
14	13,59	14,72	7	0,00	0,90	121.00	22.50	00.40	120.07
15	14,72	15,86	5	0,00	0,71	121,00	22,58	98,42	429,07
16	15,86	16,99	1	0,00	0,56				
17	16,99	18,12	5	0,00	0,44				
18	18,12	19,25	4	0,00	0,35				
19	19,25	20,39	0	0,00	0,28				
20	20,39	21,52	2	0,00	0,22				
21	21,52	22,65	0	0,00	0,17				
22	22,65	23,78	1	0,00	0,13				

23	23,78	24,91	0	0,00	0,11				
24	24,91	$+\infty$	1	0,00	0,40				
сумма			4 0 0						
сум	іма		530,00	1,00	530,00	530,00	530,00	0,00	1327,44

1327,44 – наблюдаемое значение статистического критерия χ2

10,64464068 – критическая точка

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе были изучены свойства и характеристики распределений и потоков потока, а также произведено сравнение теоретических и модельных значений полученных характеристик.