

Medical Image Segmentation for Realizing Human Digital Twin

Approaches and Technical Methods

SYED HASNAIN RAZA SHAH

Outline

- 1. Recap
- 2. Approaches & Technical Methods
- 3. Implementation

Outline

1. Recap

- 2. Approaches & Technical Methods
- 3. Implementation

Problem

• To identify precise structure of bones and muscles from CT/MRI images in order to build human digital twin

- Lack of research focusing on Segmentation of Bones and Muscles
- Advancing Healthcare

Motivation

- Personalized treatment strategies, optimizing outcomes and reducing risks.
- Assisment in surgical planning, leading to safer and more efficient surgical procedures.
- Segmentation-driven digital twins are at the forefront of biomedical research and technology.

• Understanding State-of-the-art techniques for medical image segmentation

Research Goals

• Aquiring the latest Vision Transformer-based expertise

• Development of segmentation model for bones and muscles on Visible Korean

Visible Korean Dataset

- Full-body scans of a Korean man and a woman, and the corresponding CT, MRI, and segmentation masks
- The segmentation mask consists of a total of 13 major categories
 - MRI: 4mm (256x256, 12bit)
 - o CT:1mm (512,512, 12bit, 1702 in total)
 - BodySlice: 1mm (2048x1216, 24bit, 1702 in total)

1. Recap

2. Approaches & Technical Methods

3. Implementation

Approaches & Technical Methods

Medical Image Segmentation on Automatic Cardiac Diagnosis Challenge (ACDC)

Rank	Model	Avg DSC 1	Paper	Code	Result	Year	Tags 🗹
1	FCT	93.02	The Fully Convolutional Transformer for Medical Image Segmentation	0	Ð	2022	
2	MERIT	92.32	Multi-scale Hierarchical Vision Transformer with Cascaded Attention Decoding for Medical Image Segmentation	0	Ð	2023	
3	nnFormer	92.06	nnFormer: Interleaved Transformer for Volumetric Segmentation	0	Ð	2022	
4	TransCASCADE	91.63	Medical Image Segmentation via Cascaded Attention Decoding	0	Ð	2022	
5	PVT-CASCADE	91.46	Medical Image Segmentation via Cascaded Attention Decoding	0	Ð	2022	
6	SwinUnet	90.00	Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation	0	Ð	2021	
7	TransUNet	89.71	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	
8	MISSFormer	87.9	MISSFormer: An Effective Medical Image Segmentation Transformer	0	Ð	2021	
9	R50-ViT-CUP	87.57	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	
10	R50-AttnUNet	86.75	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	

Fully Convolutional Transformer

Neither Transformer-CNN hybrid nor Transformer-UNet

Uses *FCT layer* as building block

- consists of convolutional layers followed by Gelu activation function
- convolutional attention module replacing linear projection with Depthwise-Convolutions, removes positional encoding
- wide focus module contains dilated convolutions and convolutional layer for feature aggregation

Multi-scale Heirarchical Vision Transformer (MERIT)

$$\hat{y} = \alpha \times p1 + \beta \times p2 + \gamma \times p3 + \psi \times p4$$

- combines MaxViT and Cascaded Decoders
- captures both multi-scale and multi-resolution features

Global Self-attention Layer (×2)

SwinUnet

5

Fig. 2. Swin transformer block.

TransUnet

Model	Pros	Cons
FCT	 Outperforms existing models Compact, accurate and robust Able to reduce model parameters five times smaller than nnFormer and three times smaller than TransUNet and LeViT-Unet 	 Still relies on CNNs which may limit its ability to handle complex and diverse data distributions. Uses fixed number of attention layers and heads which may not be optimal for different datasets
MERIT	 Captures multi-scale and multi-resolution features Improves generalizability using self attention at multiple scales Incorporates attention-based decoder 	Requires more computational resources and memory due to multi-scale and cascade design
nnFormer	 Able to model both local and global dependencies in 3d data Exploits the advantage of convolutional and self attention operation in an interleaved manner 	 High computation cost Complex architecture and hard to interpret behaviour and results
SwinUnet	 Benefits of Swin Transformer and Unet Enables multi-scale feature learning 	 Requires pre-trained swin transformer model sensitive to window size require longer training time due to patch merging and splitting
TransUnet	Employs benefits of both transformer and CNN	requires pre-trained ViT models as the backbone of the Transformer encoder

Our Initial Approach

Medical Image Segmentation on Automatic Cardiac Diagnosis Challenge (ACDC)

Rank	Model	Avg DSC 1	Paper	Code	Result	Year	Tags 🗷
1	FCT	93.02	The Fully Convolutional Transformer for Medical Image Segmentation	0	Ð	2022	
2	MERIT	92.32	Multi-scale Hierarchical Vision Transformer with Cascaded Attention Decoding for Medical Image Segmentation	0	Ð	2023	
3	nnFormer	92.06	nnFormer: Interleaved Transformer for Volumetric Segmentation	O	Ð	2022	
4	TransCASCADE	91.63	Medical Image Segmentation via Cascaded Attention Decoding	O	Ð	2022	
5	PVT-CASCADE	91.46	Medical Image Segmentation via Cascaded Attention Decoding	0	Ð	2022	
6	SwinUnet	90.00	Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation	0	∌	2021	
7	TransUNet	89.71	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	
8	MISSFormer	87.9	MISSFormer: An Effective Medical Image Segmentation Transformer	0	Ð	2021	
9	R50-ViT-CUP	87.57	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	
10	R50-AttnUNet	86.75	TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation	0	Ð	2021	

Outline

- 1. Recap
- 2. Approaches & Technical Methods
- ${\bf 3. Implementation}$

Implementation

Data Preprocessing

VK-Male

VK-Male with Musclular Mask

VK-Male with Skeletal Mask

- Using body slice images of a full-body male (total of 1,702 images) and bone/muscle segmentation masks.
- Bone and muscle segmentation masks consist of 191 and 265 subcategories, respectively.
- For each consecutive slice, a musculoskeletal segmentation mask was created by integrating bone subcategories and muscle subcategories respectively.

Implementation

Dataset

- Visible Korean Body Slice (1702 in total)
- Preprocessed GT Masks
- 6:2:2 (train:validation:test)

Training Setting

RTX 4090

Tensorflow 2.0

Pytorch

Performance Measure

Dice coefficient

