Mem.
$$y'' + py' + qy = f(x), p, q \in \mathbb{R}$$

Для начала y'' + py' + qy = 0 - ЛОДУ₂

$$C_2'(x) = C_1 e^{(\lambda_1 - \lambda_2)x}$$

Рассмотрим три случай для $\lambda_{1,2}$

1) $\lambda_{1,2} \in \mathbb{R}, \lambda_1 \neq \lambda_2$ - случай различных вещественных корней

$$C_2(x) = \int C_1 e^{(\lambda_1 - \lambda_2)x} dx = \frac{C_1 e^{(\lambda_1 - \lambda_2)x}}{\lambda_1 - \lambda_2} + C_2 = \underbrace{\frac{C_1}{\lambda_1 - \lambda_2}}_{\tilde{C}} e^{(\lambda_1 - \lambda_2)x} + C_2$$

Тогда,
$$y(x) = C_2(x)e^{\lambda_2 x} = (\tilde{C_1}e^{\lambda_1 - \lambda_2}x + C_2)e^{\lambda_2 x} = C_1e^{\lambda_1 x} + C_2e^{\lambda_2 x}$$
 - решение ЛОДУ, $\lambda_1 \neq \lambda_2$

2) $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$ - случай вещ. кратных корней

$$C_2'(x) = C_1 e^{0x} = C_1 \Longrightarrow C_2(x) = \int C_1 dx = C_1 x + C_2$$

$$y(x)=(C_1x+C_2)e^{\lambda x}=C_1xe^{\lambda x}+C_2e^{\lambda x}=y(x)$$
 - решение ЛОДУ, $\lambda_1=\lambda_2$

3) $\lambda = \alpha \pm i\beta \in \mathbb{C}$ - случай комплексно сопряженных корней

Так как $\lambda_1 \neq \lambda_2$, то аналогично первому случаю $y(x) = C_1 e^{(\alpha + i\beta)x + C_2 e} + C_2 e^{(\alpha - i\beta)x}$ - решение ЛОДУ Получим \mathbb{R} -решения:

$$y(x) = C_1 e^{\alpha x} e^{i\beta x} + C_2 e^{\alpha x} e^{-i\beta x} = e^{\alpha x} (C_1(\cos\beta x + i\sin\beta x) + C_2(\cos\beta x - i\sin\beta x)) = e^{\alpha x} (C_1 + C_2)\cos\beta x + e^{\alpha x} i(C_1 - C_2)\sin\beta x$$

$$Rey(x) = \underbrace{(C_1 + C_2)e^{\alpha x}\cos\beta x}_{u(x)}, Imy(x) = \underbrace{(C_1 + C_2)e^{\alpha x}\sin\beta x}_{v(x)} \quad y(x) = u(x) + iv(x)$$

Так как y(x) - решение ЛОДУ:

$$u'' + iv'' + pu' + ipv' + qu + iqv = 0$$

$$(u''+pu'+qu)+i(v''+pv'+qv)=0 \quad \forall x\in [\alpha;\beta], \text{ то есть } z\in \mathbb{C} \text{ и } z=0 \\ \int u''+pu'+qu=0,$$

$$\begin{cases} v'' + pv' + qv = 0 \end{cases}$$

Тогда можно считать решением $y(x)=u(x)+v(x)=C_1e^{\alpha x}\cos\beta x+C_2e^{\alpha x}\sin\beta x$ - решение ЛОДУ, $\lambda_{1,2}\in\mathbb{C}$

Nota. Ни про одно из полученных решений нельзя сказать, что оно общее (см. след. пункт) Также еще не решено ЛНДУ $_2$

4.5.3. Свойства решений $\Pi \Pi Y_2$

Def.
$$Ly \stackrel{def}{=} y''(x) + py'(x) + qy(x)$$
 - лин. дифф. оператор $L: E \subset C^2_{[a;b]} \to F \subset C_{[a;b]}$

Nota. Все определения лин. пространства, базиса, лин. независимости, лин. оболочки сохраняются

И ЛДУ $_2$ записывается как Ly = 0 - ЛОДУ $_2$, Ly = f(x) - ЛНДУ $_2$

Th. 1. $\exists y_1, y_2$ - частные решение ЛОДУ, то есть $Ly_1 = 0, Ly_2 = 0$ Тогда Ly = 0, если $y = C_1y_1 + C_2y_2$

$$Ly = y'' + py' + qy = (C_1y_1 + C_2y_2)'' + p(C_1y_1 + C_2y_2)' + q(C_1y_1 + C_2y_2) = C_1Ly_1 + C_2Ly_2 = 0$$

Def.
$$y_1, y_2$$
 - лин. нез. $\iff C_1 y_1 + C_2 y_2 = 0 \implies \forall C_1 = 0 \iff \nexists k : y_2 = k y_1, k \in \mathbb{R}$

Mem. Для определения лин. независимости в Линале использовали rqA или $\det A$ Введем индикатор лин. независимости

Заметим, что если y_1, y_2 - лин. зав., то y_1', y_2' - лин. зав.

Def.
$$W \stackrel{\text{обозн}}{=} \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$$
 - определитель Вронского или вронскиан

Th. 2.
$$y_1, y_2$$
 - лин. зав. $\Longrightarrow W = 0$ на $[a; b]$

$$\begin{vmatrix}
y_2 = ky_1 \\
y_2' = ky_1' \Longrightarrow W = \begin{vmatrix}
y_1(x) & y_2(x) \\
y_1'(x) & y_2'(x)
\end{vmatrix} = 0$$

Th. 3.
$$x_0 \in [a; b], \quad \exists W(x_0) = W_0$$

Toppe
$$W_0 = 0 \Longrightarrow W(x) = 0 \forall x \in [a; b]$$

Тогда
$$W_0 = 0 \Longrightarrow W(x) = 0 \forall x \in [a; b]$$
 $W_0 \neq 0 \Longrightarrow W(x) \neq 0 \forall x \in [a; b]$

$$\exists y_1(x), y_2(x)$$
 - реш ЛОДУ,

$$\begin{cases} Ly_1 = 0 & | \cdot y_2 \\ Ly_2 = 0 & | \cdot y_1 \end{cases} \iff \begin{cases} y_1''y_2 + py_1'y_2 + qy_1y_2 = 0y_2''y_1 + py_2'y_1 + qy_1y_2 = 0 \end{cases}$$

$$(y_1''y_2 - y_2''y_1) + p(y_1'y_2 - y_2'y_1) = 0$$

$$W'(x) + pW(x) = 0$$

$$\frac{dW(x)}{W(x)} = -pdx$$

$$W(x) = Ce^{-\int_{x_0}^x p dx}$$

$$W_0 = Ce^{-\int_{x_0}^{x_0} p dx} = C$$

Тогда
$$W(x) = W_0 e^{-\int_{x_0}^x p dx} \Longleftrightarrow \begin{bmatrix} W_0 = 0 \Longrightarrow W(x) = 0 \\ W_0 \neq 0 \Longrightarrow W(x) \neq 0 \end{bmatrix}$$
 $\forall x \in [a; b]$

Th. 4.
$$y_1, y_2$$
 - лин. нез. $\Longrightarrow W(x) \neq 0$ на $[a;b]$

□ Докажем от противного

$$\exists \exists x_0 \in [a;b] \mid W(x_0) = 0 \Longrightarrow W(x) = 0 \forall x \in [a;b] \iff \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1(x)y_2'(x) - y_2(x)y_1'(x) \forall x \in [a;b]$$

Можно поделить на y_1^2 , так как y_1, y_2 - лин. нез. Тогда $\frac{W}{v_1^2} = \left(\frac{y_2}{v_1}\right)' = 0 \Longrightarrow \frac{y_2}{v_1} = k \in \mathbb{R} \longleftrightarrow y_2 = ky_1$ - лин. зав., противоречие

Nota. Общее решение ЛОДУ₂ - это семейство всех решений (интегральных кривых), каждое из которых проходит через точку $(x_0, y_0) \in D$ и ему соответствует свой и единственный набор (C_1, C_2)

Th. 5. y_1,y_2 - лин. нез. решения ЛОДУ, тогда $\overline{y}(x) = C_1y_1 + C_2y_2$ - общее решение ЛОДУ $_2$ \Box Нужно убедиться, что через точку $(x_0,y_0)\in D$ проходит и только одна кривая $\overline{y}(x_0)$

Зададим НУ:
$$\begin{cases} y_1(x_0) = y_{10} \\ y_2(x_0) = y_{20} \end{cases}$$
, тогда $\overline{y}(x_0) = C_1 y_{10} + C_2 y_{20} -$ задача Коши $\overline{y}'(x_0) = C_1 y'_{10} + C_2 y'_{20} -$

Знаем, что
$$\overline{y} = C_1 y_1 + C_2 y_2$$
 - решение (просто, не общее)

Тогда в $x_0 \begin{cases} C_1 y_{10} + C_2 y_{20} = \overline{y}_0 \\ C_1 y_{10}' + C_2 y_{20}' = \overline{y}_0' \end{cases} \iff \begin{pmatrix} y_{10} & y_{20} \\ y_{10}' & y_{20}' \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \overline{y}_0 \\ \overline{y}_0' \end{pmatrix}$ - система крамеровского типа

$$\begin{vmatrix} y_{10} & y_{20} \\ y_{10}' & y_{20}' \end{vmatrix} = W_0 \neq 0 \Longleftrightarrow \exists ! (C_1, C_2)$$
 - решение СЛАУ

Таким образом через всякую x_0 проходит одна! кривая $\overline{y}(x) = C_1 y_1 + C_2 y_2$

Nota. Вывод: если найдены какие-либо лин. нез. $y_1, y_2,$ то общее решение ЛОДУ $_2$ будет $C_1y_1 + C_2 + y_2 = \overline{y}$

Def. Такие $\{y_1, y_2\}$ называется ФСР ЛОДУ $_2$

Nota. Тогда, найденные решения ЛОДУ - все общие

- 1) $\lambda_1 \neq \lambda_2$: $\Phi CP \{e^{\lambda_1 x}, e^{\lambda_2 x}\}, \lambda_i \in \mathbb{R}$
- 2) $\lambda_1 = \lambda_2 = \lambda$: Φ CP $\{e^{\lambda x}, xe^{\lambda x}\}$
- 3) $\lambda_{1,2} = \alpha \pm i\beta \in : \Phi CP \{e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x\}$

Th. 6. Решение ЛНДУ Ly = f(x)

 $\overline{y}(x): L\overline{y} = 0$ - общее решение ЛОДУ

 $y^*(x) : Ly^*(x) = f(x)$ - частное решение ЛНДУ

Тогда $y(x) = \overline{y} + y^*$ - общее решение ЛНДУ

 \square Lab. \square