

Chapter 3

BOOLEAN ALGEBRA, LOGIC FUNCTIONS and LOGIC GATES

Digital Logic gates

• Draw the logic diagram of the function F = A+B'C

Real Gates

- Logic gates are in integrated form
 - built within a solid piece of silicon called an IC (integrated circuit)

Several gates are included in a single plastic moulding

IC Families

- Transistor-Transistor Logic (TTL)
- Emitter Coupled Logic (ECL)
- Complementary Metal-Oxide-Semiconductor (CMOS)

Levels of IC

- Small-scaleIntegration
 - ICs with 1 to 10gates
- Medium-scale
 Integration
 - —ICs with 10 to 100 gates

- Large-scaleIntegration
 - ICs with 100 to1000s of gates
- Very large-scale Integration
 - ICs with 1000s to millions of gates

Chapter 4

SIMPLIFICATION of LOGIC CIRCUITS

RECALL: Representations of Boolean Functions

- Truth table
 - unique
 - Example:

х	У	F
0	0	0
0	1	1
1	0	1
1	1	1

- Algebraic expression
 - not unique
 - convenient for manipulation

Example: F = x + y

- Logic circuits
 - -not unique
 - close to implementation

Simplification of Boolean functions

- Simpler circuit is faster
- Simpler circuit is less expensive
- Reduce complexity of the gate level implementation
- Reduce signal propagation delays

Ways to simplify Boolean functions

- Boolean Algebra
- Graphical method (Karnaugh Map)
- Tabular method (Quine-McCluskey)

Simplify x'y' + xyz + x'y

Simplify
$$x'y' + xyz + x'y$$

= $x'(y' + y) + xyz$

Comm / Dist.

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

Comm / Dist.

Inv / Iden

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

$$= (x' + x)(x' + yz)$$

Comm / Dist.

Inv / Iden

Dist.

$$= x'(y' + y) + xyz$$

$$= x' + xyz$$

$$= (x' + x)(x' + yz)$$

$$= (x' + yz)$$

Comm / Dist.

Inv / Iden

Dist.

Inv / Iden

Simplify AB + A(B+C) + B(B+C)

Simplification: Boolean Algebra Simplify AB + A(B+C) + B(B+C)= AB+AB+AC+BB+BC

Dist.

Simplify
$$AB + A(B+C) + B(B+C)$$

$$= AB+AB+AC+BB+BC$$

Dist.

$$= AB+AC+B+BC$$

Idempotency

Simplify
$$AB + A(B+C) + B(B+C)$$

$$= AB+AB+AC+BB+BC$$

Dist.

$$= AB+AC+B+BC$$

Idempotency

$$= AB+AC+B$$

Absorption

Simplify
$$AB + A(B+C) + B(B+C)$$

$$= AB+AB+AC+BB+BC$$

Dist.

$$= AB+AC+B+BC$$

Idempotency

$$= AB+AC+B$$

Absorption

$$= B+AC$$

Absorption

Simplification: Graphical method

- Karnaugh map (K-map)
 - alternate way of representing Boolean functions
 - a graphical tool for assisting in the general simplification procedure
 - a simpler way to handle most jobs of manipulating logic functions

General Steps of K-Map Simplification

- Express function in canonical form
- Map expression on a K-Map
- Group 1's or 0's
- Determine the minimum expression

Step 1: Function in Canonical form

Sum of minterms

$$-F(x,y) = x'y' + xy = \sum (0,3)$$

- $-G(a,b,c) = a'b'c + abc' + a'bc = \sum(1,3,6)$
- Product of maxterms

$$-H(x,y) = (x+y')(x'+y) = \prod(1,2)$$

$$-I(a,b,c) = (a+b+c)(a'+b+c') = \Pi(0,5)$$

Step 2: Map expression

Two-variable map

\ YZ					
X	00	01	11	10	
0	m ₀	m ₁	m ₃	m ₂	
1	m ₄	m ₅	m ₇	m ₆	

Three-variable map

Step 2: Map expression

Four-variable map

Mapping Example

•
$$F = x'y'z + x'yz' + xyz' + xyz$$

Mapping Example

• $G=\Sigma(2,4,6,8,12,14,15)$

Step 3: Group 1's (or 0's)

- Grouping Rules:
 - -A group must contain either 1, 2,4, 8 and 16 cells
 - Each cell in a group must be adjacent to one or more cells in that same group.
 - Always include the largest possible group in accordance with the first rule.
 - Each element of a group must be included in at least one group.

Sample Groupings: Four-variable map

Mapping Example

•
$$F = x'y'z + x'yz' + xyz' + xyz$$

Mapping Example

• $G=\Sigma(2,4,6,8,12,14,15)$

A BC	00	01	11	10
0	1		1	
1			1	1

A BC	00	01	11	10
0	1	1		1
1	1	1	1	

AB	0 0	01	1 1 1	0
0 0	1			1
0 1	1	1		1
1 1	1	1		1
1 0	1		1	1

• Determine minimum terms

·		
٥_	Cell	# Variables
2	1	3
٩	2	2
<u>.</u>	4	1
	8	fn's value is 1
م		
وم		

Cell	# Variables
1	4
2	3
4	2
8	1
16	fn's value is 1

