

Elementi di Programmazione con Python e Analisi dei Dati Lezione 3: Pandas

Stefano Andreozzi, PhD

30 novembre 2020

per una crescita intelligente, sostenibile ed inclusiva

www.regione.piemonte.it/europa2020

- Pandas: libreria per la manipolazione di dati in formato seguenziale o tabellare
- Caratteristiche principali
 - Caricamento e salvataggio di formati standard per dati tabellari, quali CSV (Comma-separated Values), TSV (Tab-separated Values), file Excel e formati per database
 - Semplicità nella esecuzione di operazioni di indicizzazione e aggregazione di dati
 - Semplicità nella esecuzione di operazioni numeriche e statistiche
 - Semplicità nella visualizzazione dei risultati delle operazioni
- sito ufficiale del progetto: info aggiuntive, documentazione etc.
- · sintassi comune import pandas as pd
- tutorial: https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-forbeginners/
- repository del tutorial

Per ricapitolare

- · obiettivo: analizzare un dataset CSV con l'aiuto della libreria Pandas in python
 - quali sono le evidenze estratte dai dati?
 - tenere in considerazione la distribuzione delle variabili e le informazioni contestuali
 - dati spesso sparsi e sporchi
 - importanza della compattazione e pulizia
- csv semplice tabella di dati, con un record per riga e una variabile per colonna
- terminologia di pandas: la tabella è chiamata Dataframe e ognuna delle colonne è detta Series

Scelta del dataset I

- open dataset per esplorarne i contenuti
- csv sui posti letto negli ospedali italiani preso da dati.salute.gov.it
- È un buon dataset per due motivi:
 - contiene informazioni concrete sulla sanità nazionale (dati provenienti dal mondo reale)
 - dati disordinati, incompleti e non abbastanza documentati

```
import pandas as pd
import matplotlib.pyplot as plt
import requests
url = 'http://www.dati.salute.gov.it/imgs/C_17_dataset_96_0_upFile.csv'
r = requests.get(url, allow_redirects=True)
open('C_17_dataset_96_0_upFile.csv', 'wb').write(r.content)
csv=pd.read_csv('C_17_dataset_96_0_upFile.csv', sep=';')
```

- l'istruzione pd.read_csv() dà un errore UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 1: invalid start byte
- · che significa?

- i file di testo non sono tutti uguali
- non coperto dal corso: approfondimenti nella documentazione
 - · Standard encodings
 - Unicode HOWTO
- il più delle volte pandas si aspetta Unicode Transformation Format a 8 bit (UTF-8)
- si usa l'opzione encoding= 'unicode_escape'

```
import pandas as pd
import matplotlib.pyplot as plt
import requests
url = 'http://www.dati.salute.gov.it/imgs/C_17_dataset_96_0_upFile.csv'
r = requests.get(url, allow_redirects=True)
open('C_17_dataset_96_0_upFile.csv', 'wb').write(r.content)
r csv=pd.read_csv('C_17_dataset_96_0_upFile.csv', sep=';',encoding='unicode_escape')
```

Ispezione di dati e tipo

- lanciamo le istruzioni print (csv.head()) e print (csv.dtypes)
- otteniamo

	Anno	Codice Regione I	Descrizione Regione		Posti	letto Day	Hospital	Posti l	etto Da	y Surgery	Totale	posti
0	2010	10	PIEMONTE				15			0		
1	2010	10	PIEMONTE				0			0		
2	2010	10	PIEMONTE				0			0		
3	2010	10	PIEMONTE				0			0		
4	2010	10	PIEMONTE				0			0		
Anno			int64			Codice tip	o struttu	ra		floa	t64	
Codio	e Regi	one	int64			Descrizion	e tipo st	ruttura		obj	ect	
Descr	izione	Regione	object			Codice dis	ciplina			in	t64	
Codio	e Azie	nda	int64			Descrizion	e discipl	ina		obj	ect	
Tipo	Aziend	a	int64			Tipo di Di	sciplina			obj	ect	
Codice struttura			int64	int64		N° Reparti				int64		
Subco	dice		object			Posti lett	o degenza	ordinar	ia	in	t64	
Denom	inazio	ne Struttura/Sta	bilimento object			Posti lett	o degenza	a pagam	ento	in	t64	
Indir	izzo		object			Posti lett	o Day Hos	pital		in	t64	
Codio	e Comu	ne	int64			Posti lett	o Day Sur	gery		in	t64	
Comune			object	object		Totale posti letto				int64		
Sigla Provincia			object	object		dtype: object						

Controllo del tipo di dato e prime analisi

Controllo del tipo

- importante controllare che il tipo di dato sia quello che ci si aspetta per ogni campo
- specialmente in versioni legacy di Pandas alcune colonne numeriche potrebbero essere scambiate per testuali (object)
- perché valori come N.D. in colonne che dovrebbero contenere solo numeri

Prime analisi:

- Per adesso ci limitiamo all'anno 2014
- per iniziare ci concentriamo sulla variabile "Totale posti letto" (numero totale di letti nell'ospedale)
- utilizziamo la funzione describe() per ottenere delle statistiche descrittive
- costruiamo un istogramma per vedere come la variabile è distribuita.

```
csv2014 = csv[ csv['Anno'] == 2014 ]
beds2014 = csv2014['Totale posti letto']
print(beds2014.describe())
histogram = beds2014.hist( bins=50 )
histogram.set_title( 'Distribuzioni letti per ospedale - 2014' )
histogram.set_xlabel( 'numero di letti' )
histogram.set_ylabel( 'numero di ospedali' )
plt.show()

© 2020 Stefano Andreozzione
```

Risultati

count	11696.000000
mean	18.859268
std	21.572361
min	1.000000
25%	7.000000
50%	13.000000
75%	23.000000
max	332.000000

· chi mi sa spiegare?

- abbiamo visualizzato i posti per reparto e non per ospedale!!!
- usiamo groupby

```
|\cos y|^2 = |\cos y|^2 + |\cos y|^2 = |\cos y
beds2014= csv2014.groupby('Denominazione Struttura/Stabilimento')['Totale posti letto'].
                                                   sum ()
print(beds2014.describe())
4 histogram = beds2014.hist(bins=50)
5 histogram.set_title( 'Distribuzioni letti per ospedale - 2014')
6 histogram.set_xlabel( 'numero di letti')
           histogram.set_ylabel( 'numero di ospedali')
8 plt.show()
```


count	1320.000000
mean	167.104545
std	191.253464
min	1.000000
25%	56.750000
50%	104.500000
75%	198.000000
max	1591.000000

- Il sistema ospedaliero italiano è quindi composto di pochi grossi ospedali e molti piccoli ospedali
- Questo rispecchia la presenza di grandi città in Italia, nelle quali la densità abitativa è maggiore e così la necessità di ospedali capienti, mentre nelle tante zone meno popolate ci sono altrettante strutture più piccole.
- Media e varianza di una variabile possono dare falsi indizi, è buona pratica guardare la distribuzione reozzi
 10

Letti di ospedale: sorting

- · regione con più ospedali?
- beds2014= csv2014.groupby('Descrizione Regione')['Totale posti letto'].sum()
- ottengo un oggetto di tipo Series
- ripristino un DataFrame: beds2014_2=beds2014.to_frame().reset_index()
- ordino dalla regione con più posti letto a quella con meno posti letto: beds2014_2=beds2014_2.sort_values(beds2014_2.columns[1], ascending=False)

	Descrizione Regione	Totale posti	letto
8	LOMBARDIA		38519
6	LAZIO		21955
4	EMILIA ROMAGNA		18876
3	CAMPANIA		18504
20	VENETO		18400
11	PIEMONTE		17703
16	SICILIA		16689
14	PUGLIA		13046
17	TOSCANA		12619
15	SARDEGNA		5924
2	CALABRIA		5857
7	LIGURIA		5833
9	MARCHE		5772
5	FRIULI VENEZIA GIULIA		5028
0	ABRUZZO		4483
18	UMBRIA		3164
13	PROV. AUTON. TRENTO		2132
12	PROV. AUTON. BOLZANO		2106
1	BASILICATA		2029
10	MOLISE		1422
19	VALLE D'AOSTA		517

Per approfondire

· proposte:

- FACILE: plottare la distribuzione della variabile "Posti letto Day Hospital"
- MEDIO: raggruppare i "Posti letto Day Hospital" in base al "Comune".
- DIFFICILE: trovare gli ospedali più capienti in base al "Tipo di Disciplina"
- tutorial
- altri approfondimenti su Pandas
- · Summarising, Aggregating, and Grouping data in Python Pandas
- gestire Excel su Pvthon, 1: xlwt
- gestire Excel su Python, 2: openpyxl
- · gestire Excel su Python, 3: XlsxWriter
- avanzato: parallelizzazione dei DataFrame e di altre strutture dati (es. numpy) con Dask

Gestione di file Excel di dimensione elevata

- http://data.dft.gov.uk/road-accidents-safety-data/Stats19-Data1979-2004.zip (242 Mb)
- estrarre incidenti avvenuti a Londra nel 2000
- provare ad aprire il file Accidents7904.csv in Excel (737 Mb)
- il vs computer verosimilmente si pianta oppure vi dice che non riesce a caricare tutti i record
- · come fare?
- pandas_accidents.py

- motivazione: nell'analizzare un dataset (es. sistemi biologici) è possibile che solo poche colonne abbiano senso, le altre magari sono *combinazioni lineari* di altre colonne (variabili latenti)
- controllare se si correlano *linearmente* con qualche altra variabile
- $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$ (coefficiente di Pearson, proporzionale alla variabilità *congiunta* delle due variabili aleatorie X e Y)
 - 0 nessuna correlazione, 1 correlazione massima (stessi valori)
 - correlazione negativa: se una var aumenta, l'altra diminuisce
 - · Guess the correlation!
- correlazione non significa legame causa-effetto!

dataframe.corr() I

Esempio, giocatori NBA

```
# importing pandas as pd
2 import pandas as pd
3 # Making data frame from the csv file
4 df = pd.read_csv("nba.csv")
5 # Printing the first 10 rows of the data frame for visualization
6 df[:10]
```

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
5	Amir Johnson	Boston Celtics	90.0	PF	29.0	6-9	240.0	NaN	12000000.0
6	Jordan Mickey	Boston Celtics	55.0	PF	21.0	6-8	235.0	LSU	1170960.0
7	Kelly Olynyk	Boston Celtics	41.0	С	25.0	7-0	238.0	Gonzaga	2165160.0
8	Terry Rozier	Boston Celtics	12.0	PG	22.0	6-2	190.0	Louisville	1824360.0
9	Marcus Smart	Boston Celtics	36.0	PG	22.0	6-4	220.0	Oklahoma State	3431040.0

tutorial

dataframe.corr() II


```
# To find the correlation among
2 # the columns using pearson method
df.corr(method ='pearson')
```

	Number	Age	Weight	Salary
Number	1.000000	0.028724	0.206921	-0.112386
Age	0.028724	1.000000	0.087183	0.213459
Weight	0.206921	0.087183	1.000000	0.138321
Salary	-0.112386	0.213459	0.138321	1.000000

Che possiamo dire?

Intermezzo: Quartetto di Anscombe

- Graphs in Statistical Analysis: "Graphs are essential to good statistical analysis", The American Statistician, Vol. 27, No. 1. (Feb., 1973), pp. 17-21
- quattro set di dati con stesse statistiche descrittive, ma grafici totalmente differenti
- · qui trovate il dataset e il codice

• PCA (Principal Component Analysis, Pearson e Hotelling, 1933): riduzione di numero di variabili (caratteristiche del fenomeno analizzato) in poche variabili latenti, che da sole sono considerate informative (feature reduction)

· Componente principale: trovare la retta che ha le proiezioni dei dati spalmati in maniera più ampia

- la retta è detta componente principale: i dati proiettati su quella retta hanno una varianza maggiore
- in maniera sistematica: calcolo degli autovettori e autovalori
- autovettore: direzione scelta per disegnare uno degli assi con cui descrivere i dati
- autovalore: quanta varianza c'è lungo quella direzione

componente principale: autovettore avente autovalore maggiore di tutti gli altri

- numero di autovettori pari alle dimensioni del dataset originario, es. due dimensioni
- ogni autovettore deve essere perpendicolare agli altri (indipendenti fra loro)

• riferire i dati in questi nuovi assi (prospettiva maggiormente informativa)

• eventuali assi con autovalori piccoli possono essere eliminati, cioè la dimensione viene scartata

• esempio tridimensionale: età, ore uso internet, ore uso smartphone

- dati raccolti giacciono come su un piano: PCA con terzo autovettore trascurabile
- riduzione da dimensione 3 a dimensione 2

PCA: approfondimenti

- Perché la PCA necessita eventualmente di una normalizzazione dei dati, quando dati differenti hanno scale differenti?
- Una spiegazione un po' più rigorosa della PCA è qui
- Esempio con visualizzazione di dataset a dimensione elevata (1): qui
- Esempio con visualizzazione di dataset a dimensione elevata (2): qui