ANALISIS MULTIVARIAT Pertemuan 1

Wahyu Sri Utami, S.Si., M.Sc.

Program Studi Sains Data Universitas Teknologi Yogyakarta

Materi Kuliah

Materi Kuliah

1stilah Penting Dalam Analisis Data

Elemen/unit sampling → sesuatu yang menjadi objek penelitian

Ex. Orang (pelanggan, staf, turis, dsb); Unit Organisasi (negara, departemen, Perguruan tinggi, pasar, Perusahaan, dsb); benda, dsb.

- Karakteristik/Atribut → hal-hal yang dimiliki oleh elemen
- Variabel → sesuatu yang nilainya berubah-ubah menurut waktu atau berbeda menurut elemen/tempat. Umumnya Karakteristik merupakan variable.

Ex. Nasabah Bank memiliki variable: jumlah tabungan, gaji, usia, tingkat kepuasan, sikap, motivasi, loyalitas

Perusahaan memiliki variable: jumlah modal, jumlah karyawan, jumlah produksi, jumlah penjualan, jumlah pajak yang dibayar, jumlah sumbangan sosial, dsb.

- Populasi → Kumpulan yang lengkap dari keseluruhan elemen yang sejenis namun dapat dibedakan berdasarkan karakteristiknya.
- Sampel → Bagian dari populasi
- Sensus → cara pengambilan data untuk menghasilkan data parameter
- Sampling → metode pengumpulan sampel untuk menghasilkan data perkiraan atau estimator
- Sampling Error → kesalahan yang terjadi pada data estimator yang disebabkan oleh penelitian yang tidak menyeluruh. Berguna untuk mengukur tingkat ketelitian data estimator.

Segi	Survei Sampel	Sensus
Tenaga	 Jumlah relatif sedikit 	 Jumlah sangat besar
	 Dapat dipilih yang berkualitas 	 Lebih sulit untuk memilih yang
		berkualitas seluruhnya
Waktu	 Lebih cepat 	Lebih lama
Biaya	 Lebih murah 	Lebih mahal
Kedalaman dan kualitas	 Biasanya kualitas data lebih baik 	 Kualitas data kurang baik, hal ini
data	 Pertanyaan yang lebih sulit bisa 	akibat dari kualitas tenaga
	dipergunakan	pengumpul
		Pertanyaan sederhana
Penyajian Data	 Data tidak bisa disajikan sampai ke 	 Data bisa disajikan sampai ke
	tingkat yang paling rendah	tingkat yang paling rendah, karena
		semua unit dalam populasi
		dikumpulkan
Kesalahan (Error)	 Adanya kesalahan sampel 	Tidak ada kesalahan sampel
	 Adanya kesalahan bukan dari 	 Adanya kesalahan bukan dari
	sampel, namun relatif kecil	sampel yang besar

Pengukuran

- Pengukuran adalah pemberian nilai/angka dengan aturan tertentu pada atribut suatu elemen.
- Contoh: Johny diminta untuk memberikan penilaian tentang kepuasan terhadap layanan suatu Restoran dengan Skala Likert 5 butir

5 : sangat puas

4 : puas

3 : netral

2 : tidak puas

1 : sangat tidak puas

Penskalaan (Scalling)

- Penskalaan adalah penempatan nilai dalam suatu garis bilangan untuk memudahkan dalam melakukan perbandingan.
- Dapat dilakukan dengan alat ukur seperti timbangan, meteran, thermometer, dsb. Selain itu, juga dapat digunakan garis bilangan untuk mengurutkan skala Likert.

- Alat ukur dikatakan Valid jika mampu mengukur apa yang seharusnya diukur.
- Timbangan yang rusak, pertanyaan yang tidak jelas adalah contoh alat ukur yang tidak valid.
- Alat ukur dikatakan Handal (Reliabel) jika digunakan berkali-kali dalam kondisi yang bervariasi memberikan hasil yang sama.

Tipe Data

• Nominal: tidak bisa diurutkan, tidak dapat dilakukan operasi hitung

Ex. Jenis kelamin, agama, suku bangsa, Alamat, jawaban Ya/Tidak, dsb

• Ordinal: dapat diurutkan, tidak dapat dilakukan operasi hitung

Ex. Skala Likert, Nilai Akhir kuliah, ranking kelas, dsb.

Kedua Tipe Data ini dikatakan sebagai skala Non Metrik / Kategorik

Tipe Data

• Interval: bisa diurutkan, dapat dilakukan operasi hitung, Titik Nol tidak tetap

Ex. Rentang suhu, Rentang Nilai, dsb

• Rasio : dapat diurutkan, dapat dilakukan operasi hitung, Mempunyai titik nol tetap

Ex. Gaji, Nilai, BB, TB, Harga barang, dsb.

Kedua Tipe Data ini dikatakan sebagai skala Metrik

Analisis Univariat

- Misalkan Nasabah suatu bank ditanya tentang Jumlah tabungannya, penghasilan per bulan, umur, tingkat pendidikan, dan jumlah anggota keluarga yang ditanggung tetapi tidak dikaitkan dengan variable lain maka hal ini merupakan variable Tunggal (univariat)
- Variabel Univariat hanya dapat dilakukan analisis untuk melihat gambaran tentang jumlah, rata-rata, persentase, modus, Quartil, Variansi, dsb.
- Selain itu, analisis univariat dapat digunakan untuk melihat distribusi dari data tersebut.

• Contoh Analisis Univariat:

- 1. Uji *Z*
- 2. Uji t-student
- 3. Uji paired t-test, dsb

Analisis Bivariat

- Analisis bivariat melibatkan dua variable yaitu X dan Y.
- Analisis bivariat dapat digunakan untuk melihat keeratan hubungan dari variable X dan Y
- Selain itu, analisis bivariat juga dapat digunakan untuk mengetahui hubungan/pengaruh variable X terhadap variable Y, serta dapat digunakan untuk meramalkan nilai Y di masa depan dengan nilai X tertentu.

Contoh Analisis Bivariat:

- 1. Korelasi (r)
- 2. Regresi Linear Sederhana: $Y = a + bX + \varepsilon$
- 3. Koefisien Determinasi (r^2)

Analisis Multivariat

- Dalam berbagai kasus seringkali ditemukan penyebabnya terdiri atas lebih dari 1 factor.
- Diberikan Y sebagai variable terikat (dependen) dan $X_1, X_2, X_3, \cdots, X_k$ sebagai variable bebas (independent)
- Misal dalam suatu penjualan (Y) terjadi penurunan yang disebabkan karena biaya promosi (X_1) , harga jual (X_2) , mutu pelayanan (X_3) , persaingan produk (X_4) , dsb.

Klasifikasi Analisis Multivariat

Analisis Multivariat

Metode Dependensi

Metode Interdependensi

Satu Variabel Dependen

Anova, Ancova,

Regresi Linear Berganda,

Analisis Diskriminan,

Analisis Konjoin

Lebih dari Satu Variabel Dependen

Manova,

Mancova,

Korelasi Kanonikal

Fokus Pada Variabel

Analisis Faktor

Fokus Pada Objek

Analisis Klaster, PCA, SEM

Analisis Dependensi

- Tujuan:
- 1. memprediksi nilai variable terikat Y berdasarkan nilai > 2 variable bebas
- 2. Mengetahui hubungan antara variable Y dengan >2 variable bebas
- 3. Mengetahui pengaruh nilai variable bebas X_i dengan variable terikat Y

Analisis Interdependensi

Tujuan:

Mengelompokkan suatu set variable menjadi kelompok yang lebih sedikit jumlahnya dan masing-masing kelompok membentuk variable yang baru yang disebut factor. (Reduksi Dimensi)

• Misalkan Y adalah variable terikat dan X_i adalah variable bebas.

1. Regresi Linear Berganda

$Y = a_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$		
Y berskala metrik	X_i bisa berskala metrik atau nonmetrik	

- → Untuk peramalan nilai Y
- \rightarrow Untuk mengetahui hubungan variable X_i dengan Y

2. Analisis Diskriminan Berganda

$Y = b_1 X_1 + b_2 X_2 + \dots + b_n X_n$		
Y berskala nonmetrik	X_i bisa berskala metrik	

- → Untuk meramalkan peluang bahwa suatu objek penelitian akan masuk dalam kelompok tertentu (variable terikat) berdasarkan beberapa variable bebas.
- → Peneliti harus menentukan fungsi diskriminan yang dapat membedakan objek tertentu masuk ke kelompok mana.

3. Analisis Variansi (ANOVA)

$Y = b_1 X_1 + b_2 X_2 + \dots + b_n X_n$		
Y berskala metrik	X_i bisa berskala nonmetrik	

- → Untuk mengetahui dampak beberapa variable bebas yang non-metrik (treatment) terhadap variable tak bebas yang metrik.
- → Pengaruh yang terjadi ditunjukkan dengan adanya perbedaan rata-rata

4. Analisis Variansi Multivariat (MANOVA)

$$Y_1 + Y_2 + Y_3 + \cdots + Y_n = b_1 X_1 + b_2 X_2 + \cdots + b_n X_n$$
 Y_i berskala metrik X_i bisa berskala nonmetrik

- → Untuk mengetahui dampak beberapa variable bebas yang non-metrik (treatment) terhadap beberapa variable tak bebas yang metrik.
- → Pengaruh yang terjadi ditunjukkan dengan adanya perbedaan rata-rata

5. Korelasi Kanonikal

$$Y_1 + Y_2 + Y_3 + \cdots + Y_n = b_1 X_1 + b_2 X_2 + \cdots + b_n X_n$$

Y berskala metrik atau non-metrik

 X_i bisa berskala metrik atau nonmetrik

- → sebagai generalisasi dari regresi linear berganda
- → Untuk mengkorelasikan secara simultan (bersamaan) beberapa variable Y dan beberapa variable X.
- → prinsipnya: mencari bobot untuk variable X dan Y sehingga diperoleh korelasi sederhana yang maksimum (sekuat mungkin) antara suatu set variable Y dan X.

6. Analisis Conjoint

$Y = b_1 X_1 + b_2 X_2 + \dots + b_n X_n$		
Y berskala metrik atau nonmetrik	X_i bisa berskala nonmetrik	

→ Untuk memberikan suatu ukuran kuantitatif mengenai kepentingan relative suatu atribut terhadap atribut yang lain dari suatu produk.

1. Structural Equation Modelling (SEM)

$$Y_1=X_{11}+X_{12}+\cdots+X_{1n}$$
 $Y_2=X_{21}+X_{22}+\cdots+X_{2n}$ \vdots $Y_m=X_{m1}+X_{m2}+\cdots+X_{mn}$ Y_i berskala metrik X_{ij} bisa berskala metrik atau nonmetrik

→ Untuk mengetahui pola hubungan antara variable dan indikatornya, variable yang satu dengan yang lainnya serta kesalahan pengukuran secara langsung untuk memperoleh gambaran menyeluruh mengenai suatu model.

2. Analisis Faktor

- Untuk menemukan variable baru (factor) yang jumlahnya lebih sedikit dibandingkan dengan jumlah variable aslinya yang tidak saling berkorelasi (tidak multicollinearity).
- Faktor tersebut harus mengandung informasi sebanyak mungkin dari variable asli
- Analisis factor terdiri atas PCA dan common factor analysis

3. Analisis Klaster

• Untuk mengelompokkan elemen yang mirip sebagai objek penelitian menjadi klister yang berbeda dan mutually exclusive.

4. Penskalaan Multidimensional

- Untuk membentuk penilaian terhadap similaritas atau preferensi ke dalam jarak yang diwakili dalam ruang multidimensional.
- Teknik ini akan memposisikan objek A dan B sedemikian sehingga jarak antar objek dalam ruang multidimensional menjadi lebih pendek daripada jarak dua pasang objek yang lain.

Review

- 1. Berikan 3 contoh analisis multivariate dalam kehidupan sehari-hari!
- 2. Misalkan diketahui model bivariate $\hat{Y} = 0.5 + 1.25X$. Jelaskan makna dari model tersebut!
- 3. Hasil penghitungan koefisien korelasi menunjukkan hasil r=0.9 dan $r^2=0.81$. Apa makna angka-angka tersebut?Jelaskan!
- 4. Mengapa analisis multivariat jauh lebih realistis untuk memecahkan masalah-masalah sosial dibandingkan analisis bivariat? Jelaskan!