

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

UZUPEŁNIA ZDAJĄCY

KOD						Pl	ESE	L		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

19 MAJA 2015

Godzina rozpoczęcia: 9:00

WYBRANE:
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1_**1**P-152

Zadanie 1. Systemy pozycyjne

W *szóstkowym* systemie pozycyjnym liczby reprezentujemy za pomocą cyfr od 0 do 5. Poniżej przedstawiono przykłady liczb zapisanych w systemie dziesiętnym oraz szóstkowym:

System dziesiętny	System szóstkowy			
4	4			
8	12			
39	103			
216	1000			

Zadanie 1.1. (2 pkt)

W poniższych działaniach wszystkie liczby są zapisane w systemie szóstkowym. Uzupełnij brakujące argumenty działań (liczbami zapisanymi w systemie szóstkowym), tak aby ich wyniki były poprawne.

$$10_6 * \dots = 1000_6$$
 $425_6 - \dots = 41_6$
 $154_6 / \dots = 55_6$

Miejsce na obliczenia.									

Zadanie 1.2. (5 pkt)

Zapisz w wybranej przez siebie notacji (lista kroków, schemat blokowy, wybrany język programowania) algorytm obliczający wartość liczby zapisanej w systemie szóstkowym. Twój algorytm powinien być zgodny z poniższą specyfikacją.

Specyfikacja:

Dane:

 d – dodatnia liczba całkowita, długość zapisu pewnej liczby w systemie szóstkowym

C[1..d] – tablica d-elementowa zawierająca kolejne cyfry szóstkowego zapisu tej liczby, poczynając od cyfry najmniej znaczącej.

Wynik:

w – wartość liczby

Przykład:

Dla d = 4 i C[0,0,0,1] wynikiem jest w = 216.

Algorytm:

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	2	5
egzaminator	Uzyskana liczba pkt.		

Zadanie 2. Dwie tablice

Rozważ następujący algorytm, który jest zgodny z poniższą niepełną specyfikacją:

Dane:

n, k – dodatnie liczby całkowite, A[1..n] – tablica n liczb całkowitych z przedziału <1, k>

Wynik:

T[1..k] – tablica k liczb całkowitych z przedziału <0, n> i takich, że dla $1 \le i \le k$ wartości T[i] oznacza

Krok 1. dla kolejnych i = 1, 2..., k wykonaj $T[i] \leftarrow 0$

Krok 2. dla kolejnych i = 1, 2..., n wykonaj pozycja $\leftarrow A[i]$ $T [pozycja] \leftarrow T [pozycja]+1$

Zadanie 2.1. (3 pkt)

Podaj w tabeli wyniki działania powyższego algorytmu dla podanych liczb naturalnych n i k oraz tablic A. Uzupełnij **opis wyniku w specyfikacji**.

n	k	A	T
6	6	[3, 5, 6, 2, 1, 4]	
7	4	[2, 3, 4, 2, 3, 1, 2]	
7	3	[3, 2, 3, 2, 3, 2, 3]	
5	8	[3, 3, 1, 5, 8]	

Miejsce na obliczenia.		

Zadanie 2.2. (4 pkt)

Wykorzystując algorytm z zadania 2.1., zapisz w wybranej przez siebie notacji algorytm, który w danej tablicy *A* znajdzie element występujący najczęściej w tej tablicy.

Uwaga: element występujący najczęściej to taki, którego liczba wystąpień jest **większa** od liczby wystąpień **każdego** innego elementu. Na potrzeby tego zadania przyjmijmy, że w tablicy *A* zawsze istnieje taki element.

Twój algorytm powinien być zgodny z poniższą specyfikacją.

Przykład:

W tablicy [1, 2, 3, 2, 2] elementem występującym najczęściej jest 2. W tablicy [1, 2, 3, 3, 2, 3, 3, 3] elementem występującym najczęściej jest 3.

Specyfikacja:

Dane:

n, k – dodatnie liczby całkowite A[1..n] – tablica n liczb całkowitych z przedziału <1, k> W*ynik*:

y – element występujący w tablicy A najczęściej.

	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	3	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 3. Test

<u>Uwaga:</u> W każdym z poniższych zadań poprawna jest tylko jedna odpowiedź.

Zadanie 3.1. (1 pkt)

Zaznacz poprawną odpowiedź.

Jaką ostatnią cyfrę w zapisie dziesiętnym ma liczba 2²⁰¹⁵?

- A. 2
- B. 4
- C. 6
- D. 8

Zadanie 3.2. (1 pkt)

Zaznacz poprawną odpowiedź.

Jaki serwer tłumaczy adres IP na adres domenowy i odwrotnie?

- A. serwer pocztowy
- B. serwer WWW
- C. serwer FTP
- D. serwer DNS

Zadanie 3.3. (1 pkt)

Zaznacz poprawne dokończenie zdania.

Klucz podstawowy w tabeli bazy danych

- A. zawiera wartości wyłącznie numeryczne.
- B. umożliwia jednoznaczna identyfikację wiersza.
- C. umożliwia jednoznaczną identyfikację kolumny.
- D. nie może służyć do łączenia z inną tabelą.

Zadanie 3.4. *(1 pkt)*

Zaznacz poprawną odpowiedź.

W komórce C2 wpisano formułę taką, jak poniżej, a następnie przekopiowano ją do komórki C6. W rezultacie uzyskano w komórce C6 następującą wartość:

	A	В	С
1.	Produkcja	Sprzedaż	Magazyn
2.	30	20	=SUMA(\$A\$2:A2)-SUMA(\$B\$2:B2)
3.	20	10	
4.	30	25	
5.	15	18	
6.	23	18	

- A. 36
- B. 27
- C. 22
- D. 5

Zadanie 3.5. (1 pkt)

Zaznacz poprawną odpowiedź.

W komórce C2 wpisano formułę taką, jak poniżej, a następnie przekopiowano ją do komórki C4. W rezultacie uzyskano w komórce C4 następującą wartość:

	Α	В	С
1.	I	II	Zaliczenie
2.	1	2	=JEŻELI(ORAZ(ŚREDNIA(A2:B2)>=2;ORAZ(A2<>1;B2<>1));"zdał";"nie zdał")
3.	2	2	
4.	5	1	

- A. 3
- B. zdał
- C. nie zdał
- D. PRAWDA

Zadanie 3.6. (1 pkt)

Zaznacz poprawną odpowiedź.

Który z poniższych formatów plików nie służy do zapisywania filmów?

- A. mov
- B. avi
- C. mp3
- D. mp4

	Nr zadania	3.1.	3.2.	3.3.	3.4.	3.5.	3.6.
Wypełnia	Maks. liczba pkt.	1	1	1	1	1	1
egzaminator	Uzyskana liczba pkt.						

BRUDNOPIS (nie podlega ocenie)