Семинар 6. Исследование свойств стационарных процессов: АR-процессы

План занятия

- 1. Идентификация и анализ свойств AR-процессов (Gretl).
- 2. Решение задач: стационарность и основные свойства АR-процессов.

1. Идентификация и анализ свойств AR-процессов.

Пример 1.1. Файл: AR.dta откройте в Gretl.

Были сгенерированы белый шум, MA и AR-процессы 1, 2-го порядков (N=200): y1, y2, y3, y4, y5, y6.

Вопросы:

• Какими свойствами обладают ACF/PACF для AR-процессов, как порядок AR влияет на поведение ACF/PACF? Как различить AR-процессы разных порядков?

•		AR(1)	MA(1)	БШ
	ACF			
	PACF			

• Как константа в уравнении процесса влияет на математическое ожидание ARпроцесса?

Процесс	Уравнение	Переменная
белый шум	$y_t = \mathcal{E}_t$	
MA(1)	$y_{t} = \mathcal{E}_{t-1} + \mathcal{E}_{t}$	
AR(1)	$y_t = 0.7 y_{t-1} + \varepsilon_t$	
AR (1) с константой	$y_t = 5 - 0.7 y_{t-1} + \varepsilon_t$	Подсказка: E(y _t)=3
AR (1) взрывной процесс	$y_t = -1.3y_{t-1} + \varepsilon_t$	
AR (2) с константой	$y_t = 1 + 1.3 y_{t-1} - 0.4 y_{t-2} + \varepsilon_t$	Подсказка: E(y _t)=10

По виду графика, ACF и PACF определите, к какому AR-процессу относятся сгенерированные процессы? Обоснуйте почему.

Проанализируйте поведение временного ряда

- постройте график временного ряда;
- постройте графики автокорреляционной и частной автокорреляционной функции;

По мере выполнения заданий заполните таблицу:

Сгенерированный процесс	Предполагаемый	Обоснование
(Переменная)	процесс	
y1		
y2		
у3		
y4		
y5		

Пример 1.2. Идентификация процесса: Анализ младенческой смертности (Gretl)

Файл: млад смерт.gdt

Данные: младенческая смертность в России за период 1960-2017 гг.

Источник данных: Демоскоп http://www.demoscope.ru/weekly/pril.php

1. Постройте график временного ряда младенческой смертности в России. Опишите динамику, сделайте вывод о стационарности ряда.

По поведению коррелограммы (график автокорреляционной и частной автокорреляционной функции) сделайте вывод о стационарности ряда и попытайтесь идентифицировать процесс.

Самостоятельно. Что можно сказать о типах процессов, описываемых младенческую смертность в Украине, Белоруссии, Молдове?

2. Решение задач: стационарность и основные свойства АR-процессов.

2.1. Вычислить:

$$(1-0.2L)\cdot 4; \quad \frac{1}{(1-0.3L)}\cdot 3; \quad \frac{1}{L^2-1.3L+0.4}\cdot 2$$

- 2.2. **AR(1).** Проверьте стационарность процесса и определите математическое ожидание: $y_t = 5 0.7 y_{t-1} + \varepsilon_t$. Определите влияние константы в уравнении математическое ожидание, сравните со случаем MA(1).
- 2.3. **AR(2).** Проверьте стационарность процесса: $y_t = 2 0.5 y_{t-1} + 0.5 y_{t-2} + \varepsilon_t$.
- 2.4. **AR(2).** Проверьте стационарность процесса (случай комплексных корней): $y_t = 1 + 1.3y_{t-1} 1.4y_{t-2} + \varepsilon_t$.

2.5. Рассмотрите основные свойства **AR**(2)-процесса:

$$y_t = 1 + 1.3y_{t-1} - 0.4y_{t-2} + \varepsilon_t$$

- Показать, стационарен ли $\bf AR$ -процесс и представить $\bf AR$ -процесс в виде $\bf MA$, если это возможно.
- Рассчитайте $E(y_t)$, $V(y_t)$, $\gamma(k)$, $\rho(k)$, $\rho_{vacm}(k)$, k=1,2,3. Постройте схематично графики $\rho(k)$, $\rho_{vacm}(k)$, k=1,2,3. Опишите поведение коррелограмм и обобщите на случай **AR** (**p**)-процесса.
- Рассчитайте прогноз на 3 шага вперед, ошибку прогноза, дисперсию ошибки прогноза и постройте 95% доверительный интервал прогноза, предположив, что $y_T = 0.5$; $\sigma^2 = 1$.

Домашнее задание (ТДЗ) 6. AR-процессы

Даны процессы

(1)
$$y_t = 4 + 0.3 y_{t-1} + 0.1 y_{t-2} + \varepsilon_t$$

(2)
$$y_t = -2 + 0.2 y_{t-1} - 0.5 y_{t-2} + \varepsilon_t$$

- 1. Для процессов (1)- (2) показать, стационарны ли процессы (через корни характеристического уравнения).
- 2. AR-процесс (1) представить в виде $MA(\infty)$, если это возможно.
- 3. Для процесса (1) рассчитайте $E(y_t)$, $V(y_t)$, $\gamma(k)$, k=1,2,3. Представьте подробные вычисления.
- 4. Для процесса (1) рассчитайте $\rho(k)$, $\rho_{\textit{часm}}(k)$ (по формулам Юла-Уолкера с выводом), k=1,2,3. Постройте схематично графики АСF и РАСF.

- **5***. Дополнительное задание (самоконтроль, сдавать не нужно) Вывести условие стационарности для AR(2): $y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t$ в терминах α_1 , α_2 .
- **6***. Дополнительное задание (самоконтроль, сдавать не нужно) Для процесса (с комплексными корнями характеристического уравнения)

$$y_t = 5 + 0.5 y_{t-1} - 0.1 y_{t-2} + \varepsilon_t$$

получить МА(∞)-представление (выпишите первые 4 члена разложения).

Напишите решение задач (скан рукописного варианта) и краткий отчет с выводами и полученными графиками, где это необходимо. Приветствуется сдача работы в группе по 2 человека (не забывайте указывать авторов).

Выполненная домашняя работа загружается в SmartLMS. Срок выполнения – 1 неделя.

Задания, отмеченные звездочками (*), не загружаются в LMS, выполняются по желанию в качестве дополнительного материала для самостоятельного изучения.