18/03/2021-Shift 1

1

EE24BTECH11021 - Eshan Ray

- 1) If the functions are defined as $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$, then what is the common domain of the following functions: f+g, f-g, $\frac{g}{g}$, $\frac{g}{f}$, g-f where $(f\pm g)(x)=$ $f(x) = f(x) \pm g(x), \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

 - a) $0 < x \le 1$
 - b) $0 \le x < 1$
 - c) $0 \le x \le 1$
 - d) 0 < x < 1
- 2) Let α, β, γ be the roots of the equation, $x^3 + ax^2 + bx + c$ $0, (a, b, c \in R \text{ and } a, b \text{ and } a, b \neq 0)$. The system of equations (in u, v, w) given by $\alpha u + \beta v + \gamma w = 0$; $\beta u + \gamma v + \alpha w = 0$; $\gamma u + \alpha v + \beta w = 0$ has non-trivial solutions, then the value of $\frac{a^2}{h}$ is
 - a) 5
 - b) 1
 - c) 0
 - d) 3
- 3) If the equation $a|z|^2 + \overline{\alpha}z + \alpha\overline{z} + d = 0$ represents a circle where a, d are real constants then which of the following conditions are correct?
 - a) $|\alpha|^2 ad \neq 0$
 - b) $|\alpha|^2 ad > 0$ and $a \in R \{0\}$
 - c) $\alpha = 0, a, d \in R^+$
 - d) $|\alpha|^2 ad \ge 0$ and $a \in R$
- 4) $\frac{1}{3^2-1} + \frac{1}{5^2-1} + \frac{1}{7^2-1} + \dots + \frac{1}{201^2-1}$ is equal to :

 - a) $\frac{101}{404}$ b) $\frac{101}{408}$ c) $\frac{99}{400}$ d) $\frac{25}{101}$
- 5) The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx + 1 is also an integer, is:
 - a) 3
 - b) 2
 - c) 1
 - d) 0
- 6) The solutions of the equation

$$\begin{vmatrix} 1 + \sin^2 x & \sin^2 x & \sin^2 x \\ \cos^2 x & 1 + \cos^2 x & \cos^2 x \\ 4 \sin 2x & 4 \sin 2x & 1 + 4 \sin 2x \end{vmatrix} = 0$$

- , $(0 < x < \pi)$, are:

- 7) If $f(x) = \begin{cases} \frac{1}{|x|} & ; |x| \ge 1 \\ ax^2 + b & ; |x| < 1 \end{cases}$ is differentiable at every point of the domain, then the

values of \vec{a} and \vec{b} are respectively:

- a) $\frac{5}{2}$, $-\frac{3}{2}$ b) $-\frac{1}{2}$, $\frac{3}{2}$ c) $\frac{1}{2}$, $\frac{1}{2}$ d) $\frac{1}{2}$, $-\frac{3}{2}$
- 8) A vector **a** has components 3p and 1 with respect to a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If with respect to the new system, a has components p + 1 and $\sqrt{10}$, then a value of p is equal to:
 - a) 1
 - b) -1

 - c) $\frac{4}{5}$ d) $-\frac{5}{4}$
- 9) The sum of all the 4-digit distinct numbers that can be formed with the digits 1, 2, 2 and 3 is:
 - a) 26664
 - b) 122664
 - c) 122234
 - d) 22264
- 10) Choose the correct statement about two circles whose equations are given below:

$$x^{2} + y^{2} - 10x - 10y + 41 = 0$$

$$x^{2} + y^{2} - 22x - 10y + 137 = 0$$

- a) circles have no meeting point
- b) circles have two meeting points
- c) circles have only one meeting point
- d) circles have the same centre
- 11) If α, β are natural numbers such that $100^{\alpha} 199\beta = (100)(100) + (99)(101) +$ $(98)(102) + \cdots + (1)(199)$, then the slope of the line passing through (α, β) and origin is:
 - a) 510
 - b) 550
 - c) 540
 - d) 530
- 12) The value of $3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{1 + \frac{1}{1}$

- a) $3 + 2\sqrt{3}$
- b) $4 + \sqrt{3}$
- c) $2 + \sqrt{3}$
- d) $1.5 + \sqrt{3}$
- 13) The integral $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$ is equal to (where c is a constant of integration)
 - a) $\frac{1}{2} \sin \sqrt{(2x+1)^2 + 5} + c$
 - b) $\frac{1}{2} \sin \sqrt{(2x-1)^2+5} + c$
 - c) $\frac{1}{2} \cos \sqrt{(2x+1)^2+5} + c$
 - d) $\frac{1}{2}\cos\sqrt{(2x-1)^2+5}+c$
- 14) The differential equations satisfied by the system of parabolas $y^2 = 4a(x + a)$ is :
 - a) $y\left(\frac{dy}{dx}\right) + 2x\left(\frac{dy}{dx}\right) y = 0$

 - b) $y\left(\frac{dy}{dx}\right)^2 + 2x\left(\frac{dy}{dx}\right) y = 0$ c) $y\left(\frac{dy}{dx}\right)^2 2x\left(\frac{dy}{dx}\right) y = 0$
 - d) $y \left(\frac{dy}{dx}\right)^2 2x \left(\frac{dy}{dx}\right) + y = 0$
- 15) The real-valued function $f(x) = \frac{\cos ec^{-1}x}{\sqrt{x-[x]}}$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :
 - a) all non- integers except the interval [-1, 1]
 - b) all integers except 0, -1, 1
 - c) all reals except integers
 - d) all reals except the interval [-1, 1]