Q1: Show, using the definition of the big-Oh, that the function f(n) = 0.5n + 255 is O(n) Big-O(n)

n is valid for all value so,

g(n) = 225/0.5 = 510

g(n) = n. For all n > 510

g(n) > f(n) Therefore, f(n) = O(n).

Q2: Using the big-Oh notation, the worst-case running time of the following algorithm:

Big-O:

The worst case of the algorithm n^3 because the three nested loop are working. n (belong to outer loop) * n (belong to inner loop) * n (belong to mood condition) O (n^3) .

Q3: Describe the worst case running time of the following (a, b and c) codes in "big-Oh" notation in terms of the variable n.

- A) The worst case is $O(n^4) = (n^*n^*n^*n) = n^4$ because of the nested loop.
- B) The worst case is O(n) => (B and the function f3 are returning the values so the time complexity of returning the function is O(n+n) which is equal to O(2n), so that removing constant so the O(n))

Q4 Suppose you have a queue Q, which contains two elements in the following order: 5 4.

A)

Q.insert(3);

Q.insert(8);

Q.remove();

Q.remove();

Q.remove();

Q.insert(9);

5	4				
5	4		(1)	3	
5	4	3		8	
4	3	8			
3	8				
8					
8	9				

B)

5	4	3		
5	4	3	8	
4	3	8		
3	8			
8				
1				
1	2			
1	2	3		
1	2	3	4	
1	2	3	4	5

C) Code file is attached

Q5: What will be output of the following programs?

The outer will run < 3 and the inner loop will run < I, Stack output will be

В	
Α	
С	
Α	
В	
Α	

Queue Output will be

а	b	а	С	а	b

Q6 Design and analyze an algorithm that for a given positive integer n counts the number of different ways to write n as a sum of 1, 2, 3, and 4. For examples, if n = 4, the output should be 8, as Code:

```
}
}
```

output:

8

Q7: Write the code to satisfy the requirement, output should be as depicted in figure (attach screenshots of the program output in word file and submit code as separate file)

Output:

```
Input: SORTINGEXAMPLE
Pivot: E SORTINGEXAMPLE
Recurse Left: AERTINGEXSMPLO
Recurse right: AEEGILMNOPRSTX
Sorted: AEEGILMNOPRSTX
```

Code:

```
public class Quicksort {
  public static void main(String[] args) {
     String temp = "SORTINGEXAMPLE";
    int[] arr = ConvertIntemp(temp);
     int low = 0;
    int high = arr.length-1;
    System.out.println("Input: "+ temp);
    sort(arr,low,high);
     System.out.println("Sorted: "+ConvertInString(arr));
  static int[] ConvertIntemp(String temp){
    int[] arr = new int[temp.length()];
    for (int i = 0; i < temp.length(); i++) {
      arr[i] = Integer.parseInt(String.valueOf((int) temp.charAt(i)));
    return arr;
  static String ConvertInString(int[] temp){
    String arr = "";
    for (int i = 0; i < \text{temp.length}; i++) {
       arr += String.valueOf((char) temp[i]);
```

```
return arr;
static void sort(int arr[], int low, int high){
  if (low < high){</pre>
     int pi = partition(arr, low, high);
          System.out.print("Recurse right: ");
          System.out.print("Recurse Left: ");
          System.out.print(ConvertInString(arr)+"\n");
     sort(arr, low, pi-1);
     sort(arr, pi+1, high);
static int partition(int arr[], int low, int high){
  pivot = arr[high];
     System.out.println("Pivot: "+((char) pivot)+" "+ConvertInString(arr));
  for (int j=low; j<high; j++)
     if (arr[j] < pivot)
        i += swap(arr, i+1, j);
  return (i+swap(arr,i+1,high));
public static int swap(int arr[], int i, int j) {
  int temp = arr[i];
```

Q8. Evaluate and write the result for the following given expression, take values for the operands (show detailed work/dry run)

i) abc*+de*f+g*+

Input	Postfix	Infix
abc*+de*f+g*+	bc*+de*f+g*+	А
abc*+de*f+g*+	c*+de*f+g*+	Ab
abc*+de*f+g*+	*+de*f+g*+	Abc
abc*+de*f+g*+	+de*f+g*+	a(b*c)
abc*+de*f+g*+	de*f+g*+	(a+(b*c))
abc*+de*f+g*+	e*f+g*+	(a+(b*c))d
abc*+de*f+g*+	*f+g*+	(a+(b*c))de
abc*+de*f+g*+	f+g*+	(a+(b*c))(d*e)
abc*+de*f+g*+	+g*+	(a+(b*c))(d*e)f
abc*+de*f+g*+	g*+	(a+(b*c))((d*e)+f)
abc*+de*f+g*+	*+	(a+(b*c))((d*e)+f)g
abc*+de*f+g*+	+	(a+(b*c))(((d*e)+f)*g)
abc*+de*f+g*+		((a+(b*c))+(((d*e)+f)*g))

((a+(b*c))+(((d*e)+f)*g)) [Now put the value a=1,b=2,c=3,d=4,e=5,f=6,g=7]

(1+(2*3))+(((4*5)+6)*7)) (1+6)+(20+6*7) 7+182

189

-+a*/bc^d

Input String	Prefix Expression	Stack (Infix)
-+a*/bc*def	-+a*/bc*de	f
-+a*/bc*def	-+a*/bc*d	fe
-+a*/bc*def	-+a*/bc*	fed
-+a*/bc*def	-+a*/bc	f(d*e)
-+a*/bc*def	-+a*/b	f(d*e)c
-+a*/bc*def	-+a*/	f(d*e)cb

Muhammad Fahad FA19-BSSE-0014 Am

Input String	Prefix Expression	Stack (Infix)
-+a*/bc*def	-+a*	f(d*e)(b/c)
-+a*/bc*def	- + a	f((b/c)*(d*e))
-+a*/bc*def	-+	f((b/c)8(d^e))a
-+a*/bc*def	-	f(a+((b/c)8(d^e)))
-+a*/bc*def		((a+((b/c)*(d^e)))-f)

```
((a+((b/c)*(d^e)))-f) [Now put the value a=1,b=2,c=3,d=4,e=5,f=6]

((1+((2/3)*(4^5)))-6)

(1+((0.67)*(1024)))-6

(1+682.6)-6

683.6-6

Output: 677.6

C) (((A+B)*C)-((D+E)/F))

Postfix: ab + c * de + f/-

Prefix: -*+abc/+def
```

Q9: Here is an array of ten integers:

5389170264

a) Write the output of this array after the FIRST iteration of the selection sort.

```
import java.util.Arrays;
public class Main {
  public static void main(String[] args) {
    int array[] = {};

    Sorting ob = new Sorting();
    ob.SelectionSorting(array);
  }
} class Sorting{

  void SelectionSorting(int arr[]){
    int length = arr.length,
        swap,
        countloop = 0;
```

Output:

```
j = 1,minIndex = 0,minValue = 5,Check(3<5) => true
j = 2,minIndex = 1,minValue = 3,Check(8<3) => false
j = 3,minIndex = 1,minValue = 3,Check(9<3) => false
j = 4,minIndex = 1,minValue = 3,Check(1<3) => true
j = 6,minIndex = 4,minValue = 1,Check(0<1) => true
j = 7,minIndex = 6,minValue = 0,Check(2<0) => false
j = 8,minIndex = 6,minValue = 0,Check(6<0) => false
j = 9,minIndex = 6,minValue = 0,Check(4<0) => false
            j = 2,minIndex = 1,minValue = 3,Check(8<3) => false
j = 3,minIndex = 1,minValue = 3,Check(9<3) => false
j = 4,minIndex = 1,minValue = 3,Check(1<3) => true
j = 5,minIndex = 4,minValue = 1,Check(7<1) => false
j = 6,minIndex = 4,minValue = 1,Check(5<1) => false
j = 8,minIndex = 4,minValue = 1,Check(6<1) => false
  ------ i = 1 Complete --------
```

b) Then, write the output of this array after FIRST iteration of the loop in an insertion sort.

output:

c) Finally, sort the array using bubble sort.

```
import java.util.Arrays;
import java.util.Scanner;

public class BubbleSorting1 {
    public static void main(String[] args) {
        System.out.println("1) Implement Bubble Sort.\n");

// int length;
// Scanner scan = new Scanner(System.in);

// System.out.print("Enter the Length of the array: ");

// int arr[] = new int[] {5,3,8,9,1,7,0,2,6,4};
    int length = arr.length;
// for (int i = 0; i < length; i++) {</pre>
```

```
// System.out.print("Enter the Value of index: "+i+": ");
arr[i] = scan.nextInt();
}

System.out.println("\nArray before bubble sorting: "+ Arrays.toString(arr));
int swap;
for (int i = 0; i < length-1; i++) {
    for (int j = 0; j < (length-i)-1; j++) {
        if (arr[j] > arr[j+1]) {
            swap = arr[j];
            arr[j] = arr[j+1];
            arr[j+1] = swap;
        }
    }
}

System.out.println("\nArray After bubble sorting: "+ Arrays.toString(arr));
}
```

Output:

```
Array before bubble sorting: [5, 3, 8, 9, 1, 7, 0, 2, 6, 4]

Array After bubble sorting: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Q10: Do as directed (Choose sorting algorithm wisely)

A)

```
0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =1} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =2} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =3} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =4} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =4} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =5} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =6} 0 1 2 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =6} 12 3 4 5 6 7 8 42 24 6 17 30 13 90 47 2 {I =7} It can be sort by insertion sort.
```

- B) Selection sorting Methods
- C) In this case, we use queue
- D) Insertion Sort