Your Name:	ravis	X	ie

Admissible Heuristics

The Eight Puzzle consists of eight tiles, numbered 1 through 8, placed into a 3-by-3 board. Pieces are initially out of order, and they must be moved into standard 1-8 order by sliding one tile at a time into the empty square on the board. Let's assume the goal state is as shown here in G:

J:

1 2 G: 3 5 4 7 6 8

4 2 1 3 8 7 5

Consider the following heuristics. For each one (except perhaps the Sum of Euclidean distances), compute its value h_i(J) for the state J given above. (When computing sums over the tiles, do not include the blank space as if it were a tile.)

Determine whether the heuristic is admissible. Explain why or why not. Finally, if it is admissible, determine what other heuristics it dominates.

Heuristic	h _i (J)	Admissible?	Why or why not ?	Dominates
$h_0(n) = Zero$	0	Y	Can never overestimate true distance to G.	none
$h_1(n)$ = Hamming (number of tiles out of place)	7	Y	Can never have more than I tiles out of space	ho he ho
$h_2(n)$ = Manhattan distance of tile 1 alone.	5	Y	Can never overestimate true distance to G	ha
$h_3(n)$ = Sum of Manhattan distances for all 8 tiles.	11	Y	true distance to G Never con get over 11 distance to G from J	ho h, h2 h4
$h_4(n)$ = Sum of only the horizontal components of the Manhattan distance for all 8 tiles.	7		Impossible to get over 7 distance	hasha ho
$h_5(n)$ = Sum of only the vertical components of the Manhattan distance for all 8 tiles.	4	\ \ \ \ \	Similar to hala)	h=, h≥
$h_6(n)$ = Sum of Euclidean distances for all 8 tiles.	9.2	Y	By calculation, 9,2 is the largest hb(n) value	h., h., hz, ha

Who were your groupmates for this activity? Write down their names and email addresses:

1. Justin Tran 2. Haokun Caj 3. Vijay 4.

Tran a uw.edu haokun a uw.edu vijay a wwedu

provided by S. Tanimoto. 2021