

สารบัญ

1.	แกม	งจำลองการเดินรถไฟฟ้าเพื่อการเรียนรู้ (RSU Railway Application)	5
	1.1.	วัตถุประสงค์	5
	1.2.	ข้อกำหนดของระบบเบื้องต้น	6
	1.3.	ข้อควรระวัง	6
2.	การ	ติดตั้ง	6
3.	RSU	J RAILWAY APPLICATION	7
	3.1.	เริ่มต้นการใช้งาน	7
	3.2.	วิธีการตั้งค่าเส้นทางเดินรถ (SET ROUTE)	7
	3.2.	1. เพิ่มเส้นทางการเดินรถ	9
	3.2.	2. ลบเส้นทางการเดินรถ	12
	3.3.	วิธีการตั้งค่าตารางการเดินรถ (SET TIME TABLE)	13
	3.3.	1. เพิ่มตารางการเดินรถ	14
	3.3.	2. ลบตารางการเดินรถ	17
4.	วิธีตั้	้งค่าตารางการเดินรถให้กับรถไฟ (SET CARS)	18
5.	วิธีก	ารเดินรถไฟ	19
6.	រិ ត ិ	ารคูสถานะของรถไฟแต่ละคัน	20
7.	រិ ត ិ	ารหยุดเดินรถแบบฉุกเฉิน	21
	7.1.	การหยุดเดินรถฉุกเฉินทั้งระบบ (SYSTEM EMERGENCY BREAK)	21
	7.2.	การหยุคเดินรถฉุกเฉินของรถไฟแต่ละขบวน (STOP)	22
8.	การ	บันทึกเหตุการณ์ (SAVE LOG)	23
9.	ฮาร์	คแวร์ที่เกี่ยวข้อง	23

9.1.	Feeder Track & Control Tomix	23
9.2.	Control Device	25

สารบัญรูปภาพ

รูปที่ 1 ภาพรวมการทำงานของแบบจำลองการเดินรถไฟฟ้า	6
รูปที่ 2 แผนที่การเดินรถทั้งระบบ	7
รูปที่ 3 ตัวอย่างการกำหนดเส้นทางเดินรถ	7
รูปที่ 4 หน้าต่างเส้นทางการเดินรถ	
รูปที่ 5 หน้าต่างตารางการเดินรถ	
รูปที่ 6 หน้าต่างตั้งค่ารถไฟ	
รูปที่ 7 ตัวอย่างการวิ่งรถ	
รูปที่ 8 สถานะของรถไฟแต่ละขบวนภาพรวม	
รูปที่ 9 สถานะของรถไฟแต่ละขบวน	20
ง รูปที่ 10 การหยุคเดินรถฉุกเฉิน	
ง ง ง ง ง ง ง ง ง ง ง ง ง ง ง ง ง ง ง	

1. แบบจำลองการเดินรถไฟฟ้าเพื่อการเรียนรู้ (RSU Railway Application)

1.1. วัตถุประสงค์

แบบจำลองการเดินรถไฟฟ้า จัดทำขึ้นเพื่อใช้ในการศึกษาการจำลองการเดินรถเสมือนจริง เพื่อให้ผู้ใช้ สามารถเข้าใจระบบการเดินรถไฟฟ้าภาพรวม ตั้งแต่การกำหนดตารางเวลาการเดินรถของรถไฟแต่ละคัน วิธีการ กำหนดเส้นทางเดินรถไฟ สามารถจำลองการหยุดรถแบบทั่วไป การหยุดรถแบบฉุกเฉิน (Emergency break) การสับราง (Point movement) วิธีการรับ-ส่งข้อมูล และสามารถบันทึกรายละเอียดการเดินรถในรูปแบบ CSV (Comma Separated Value) โดยแอปพลิเคชันที่ใช้ควบคุมมีชื่อว่า "RSU Railway Application" แอปพลิเคชันนี้ สามารถเดินรถไฟได้ 2 แบบ คือ การจำลองในแอปพลิเคชันเพียงอย่างเดียว (Simulator) และแบบสั่งงานไปที่ แบบจำลองการเดินรถไฟฟ้า (Model) ผ่านการส่งสัญญาณแบบไร้สาย (Wireless fidelity) ซึ่งอยู่บนมาตรฐาน IEEE 802.11

แบบจำลองการเดินรถไฟฟ้าแบบออกเป็น 3 ส่วน ประกอบด้วย

- RSU Railway Application พัฒนาโดยใช้ภาษา Swift (Swift language) ซึ่งเป็นภาษาคอมพิวเตอร์ที่
 ทำงานอยู่บนระบบปฏิบัติการ iOS เนื่องจาก Swift เป็นภาษาคอมพิวเตอร์ที่ออกแบบให้มีประสิทธิภาพ
 สูงและง่ายต่อการพัฒนาโดยนำข้อดีของภาษาสมัยใหม่เข้ามามากมาย เช่น Type Inference, Clean
 Syntax, No semicolons, Closures, Generics
- 2. RSU Server พัฒนาโคยใช้ Node JS เป็นตัวจัดการข้อมูลต่างๆ ในระบบ อีกทั้งยังเป็นตัวกลางในการรับ-ส่งข้อมูลระหว่างแอปพลิเคชันกับแบบจำลองผ่านระบบสัญญาณแบบไร้สาย
- 3. โมเดลการเดินรถไฟฟ้า เป็นการนำฮาร์ดแวร์ต่างๆ มาใช้งานในระบบ ทั้ง Arduino UNO, Arduino Nano รวมไปถึงเซ็นเซอร์แบบต่างๆ เพื่อจำลองการเดินรถเสมือนจริง ทั้งสัญญาณจราจร, ควบคุมความเร็ว ของรถไฟ, การตรวจจับตำแหน่งของรถไฟแต่ละช่วงเวลา รวมไปถึงการเดินรถ สำหรับรายละเอียดของฮาร์ดแวร์สามารถดูบทที่ 9

รูปที่ 1 ภาพรวมการทำงานของแบบจำลองการเดินรถไฟฟ้า

1.2. ข้อกำหนดของระบบเบื้องต้น

ความต้องการของระบบต่อไปนี้จำเป็นสำหรับการใช้งานแอปพลิเคชัน

	ความต้องการ
Operating system	Mac OS version 10.14 (or later).
CPU	2.5GHz quad-core Intel Core i5 with 6MB on-chip shared L3 cache
Memory	4 GB
Hard disk space	400 Mb
Hardware interfaces	WiFi IEEE 802.11

1.3. ข้อควรระวัง

ก่อนเริ่มใช้งานแอปพลิเคชันร่วมกับแบบจำลองรถไฟฟ้าจำลอง ผู้ใช้ต้องมั่นใจว่าทั้งสองได้เชื่อมต่อ สัญญาณอินเตอร์เน็ตที่อยู่ใน subnet mask เคียวกัน

หมายเหตุ: คำเตือน! ผู้ใช้ควรมีความรู้พื้นฐานของระบบการเดินรถไฟฟ้า

2. การติดตั้ง

การเดินรถไฟฟ้าเพื่อการเรียนรู้ เป็นแอปพลิเคชันในรูปแบบระบบปฏิบัติการแบบเดี่ยว (Standalone Application) รองรับระบบปฏิบัตการ MacOS เพียงระบบปฏิบัติการเดียว

3. RSU RAILWAY APPLICATION

3.1. เริ่มต้นการใช้งาน

ดับเบิ้ลคลิ๊กที่สัญลักษณ์รูปรถไฟ น่ำ ในส่วน ของ Dock ที่หน้าจอ จากนั้นแผนที่การเดินรถทั้งหมด (สายสี บานเย็นและ สายสีฟ้า) จะปรากฏที่หน้าจอ

รูปที่ 2 แผนที่การเดินรถทั้งระบบ

3.2. วิธีการตั้งค่าเส้นทางเดินรถ (SET ROUTE)

ก่อนการเดินรถไฟฟ้าจำเป็นต้องกำหนดเส้นทางเดินรถ จาก รูปที่ 3 แสดงให้เห็นว่าเมื่อรถไฟอยู่ที่สถานี B2 สถานนีถัดไปคือ B3, B4, B5, B11, B1 จากนั้นจะไปที่จุดกลับรถ TB₁ ตามลำดับ

รูปที่ 3 ตัวอย่างการกำหนดเส้นทางเดินรถ

การตั้งค่าเส้นทางสามารถทำได้โดยไปที่ Edit -> Set Route

จากนั้นหน้าต่างการตั้งค่าเส้นทางการเดินรถจะแสดงอยู่ตำแหน่งค้านล่างของแผนที่ โดยแอปพลิเคชันได้ กำหนดเส้นทางการเดินรถพื้นฐานที่จำเป็นไว้ให้

รูปที่ 4 หน้าต่างเส้นทางการเดินรถ

3.2.1. เพิ่มเส้นทางการเดินรถ

• กดปุ่ม 🖿 ในส่วนของ "Route Name" จากนั้นตั้งชื่อเส้นทางและกดปุ่ม Enter

• กดปุ่ม 进 ในส่วนของ "Station" จากนั้นเลือกสถานีต้นทาง

• ใส่เวลาที่ต้องการให้รถไฟจอด ณ สถานีนั้นในช่อง Dwell โดยมีหน่วยเป็นวินาที

• กด โน เพื่อเลือกสถานีถัดไป โดยแอปพลิเคชันจะกรองสถานีที่สามารถเดินรถต่อไปได้ให้ผู้ใช้เลือก โดยอัตโนมัติ จากนั้นโปรแกรมจะคำนวนระยะเวลาเดินรถระหว่างสถานี โดยระยะเวลาเดินรถจะแสดง ที่ช่อง Duration มีหน่วยเป็นวินาที

• กด 🗖 ในหน้าต่างของสถานีหากต้องการลบสถานี โดยแอปพลิเคชันจะลบจากสถานีสุดท้าย ผู้ใช้ไม่ สามารถเลือกลบสถานีตรงกลางได้

3.2.2. ลบเส้นทางการเดินรถ

• เลือกเส้นทางที่ต้องการจะลบ จากนั้นกดปุ่ม 🗖

3.3. วิธีการตั้งค่าตารางการเดินรถ (SET TIME TABLE)

เมื่อผู้ใช้ตั้งค่าเส้นทางการเดินรถแล้ว จากนั้นให้กำหนดตารางการ เดินรถ โดยตารางการเดินรถนั้นเป็นการรวมเส้นทางการเดินรถแต่ละ เส้นทางและระบุเวลาการเดินรถเพื่อมอบหมายให้รถไฟแต่ละคัน โดย การตั้งค่าให้ผู้ใช้เลือกที่ Edit -> Set Time Table

จากนั้นหน้าต่างการตั้งค่าตารางการเดินรถจะแสดงอยู่ตำแหน่งค้านล่างของแผนที่ โดยแอปพลิเคชันได้ กำหนดตารางการเดินรถพื้นฐานที่จำเป็นไว้ให้

รูปที่ 5 หน้าต่างตารางการเดินรถ

3.3.1. เพิ่มตารางการเดินรถ

• กดปุ่ม 🛨 ในส่วนของ "Time Table Name" จากนั้นตั้งชื่อและกดปุ่ม Enter

• กดปุ่ม 🛨 ในส่วนของ "Start Time Table" จากนั้นเลือกเส้นทางการเดินรถ โดยเส้นทางการเดินรถที่ แสดงในแอปพลิเคชันได้มาจากที่ผู้ใช้ตั้งค่าไว้ในบทที่ 3.2

• กด 🖭 เพื่อเลือกเส้นทางถัดไป โดยแอปพลิเคชันจะกรองเส้นทางที่สามารถเดินรถต่อไปได้ให้ผู้ใช้ เลือกโดยอัตโนมัติ

• จากนั้นให้ผู้ใช้กำหนดเวลาในการเริ่มวิ่งแต่ละเส้นทางการเดินรถโดยระบบจะยึดเวลาจากเครื่อง คอมพิวเตอร์ ณ ขณะนั้นเป็นค่าเริ่มต้น

• หากเส้นทางไหนรถไฟสามารถวิ่งซ้ำได้ (Loop) แอปพลิเคชันจะอนุญาติให้ผู้ใช้ระบุจำนวนรอบที่จะวิ่ง

• กด โนหน้าต่างของเวลาหากต้องการลบเส้นทาง โดยแอปพลิเคชันจะลบจากเส้นทางสุดท้าย ผู้ใช้ ไม่สามารถเลือกลบเส้นทางตรงกลางได้

3.3.2. ลบตารางการเดินรถ

• เลือกตารางที่ต้องการจะลบ จากนั้นกดปุ่ม 🗖

4. วิธีตั้งค่าตารางการเดินรถให้กับรถไฟ (SET CARS)

เมื่อผู้ใช้ต้องการกำหนดตารางการเดินรถ ให้กับรถไฟแต่ละคัน ให้ผู้ใช้เลือกที่ Edit -> Set Cars

หน้าต่างการตั้งค่ารถแต่ละคันจะแสดงอยู่ตำแหน่งด้านซ้าย พร้อมทั้งหน้าต่างตาราง การเดินรถจะแสดงอยู่ตำแหน่งด้านล่างของแผนที่ เพื่อง่ายต่อการเช็คว่าตารางเดินรถแต่ละ อันเริ่มวิ่งที่เวลาเท่าใหร่ จากนั้นผู้ใช้สามารถเลือกตารางการเดินรถให้แก่รถไฟแต่ละคัน โดยแอปพลิเคชันสามารถรองรับการวิ่งรถทั้งระบบพร้อมกัน 10 คัน

รูปที่ 6 หน้าต่างตั้งค่ารถไฟ

5. วิธีการเดินรถไฟ

หลังจากตั้งค่าส่วนต่างๆเรียบร้อยแล้ว ผู้ใช้สามารถเดินรถได้ 2 แบบ

- การจำลองในแอปพลิเคชันเพียงอย่างเดียว โดยการเลือกที่ "Controller -> Run with Simulator"
- สั่งงานไปที่แบบจำลองการเดินรถไฟฟ้าโดยการเลือกที่ "Controller -> Run with Hardware"

หมายเหตุ:

คำเตือน! หากผู้ใช้เลือกสั่งงานไปที่แบบจำลอง ผู้ใช้ต้องมั่นใจว่าได้วางโมเคลรถไฟไว้ที่ สถานีตรงตามที่ระบุใน Set Cars ในบทที่ 4

รูปที่ 7 ตัวอย่างการวิ่งรถ

6. วิธีการดูสถานะของรถไฟแต่ละคัน

หลังจากเดินรถไฟตามบทที่ 5 ผู้ใช้สามารถดูสถานะของรถไฟแต่ละคัน โดย การเลือกที่ "Car -> Open" จากนั้นสถานะของรถไฟทั้งระบบจะแสดงอยู่ด้างล่าง ของแผนที่

รูปที่ 8 สถานะของรถไฟแต่ละขบวนภาพรวม

รูปที่ 9 สถานะของรถไฟแต่ละขบวน

รถไฟแต่ละขบวนจะแสดงรายละเอียดประกอบด้วย

- 1. รหัสรถไฟ
- 2. สถานะ
 - Unknow ไม่ทราบสถานะ
 - Arrived รถไฟมาถึงสถานี
 - Dwell รถไฟจอครับ-ส่งผู้โดยสาร
 - On the way รถไฟกำลังเดินทางไปที่สถานีถัดไป
 - Emergency Stop รถไฟหยุดฉุกเฉิน
 - Stop จบการทำงาน
- ชื่อสถานีถัดไป
- 4. สถานะความเร็วของรถไฟ จะแสดงในรูปแบบของเปอร์เซ็นต์ (%) โดยความเร็วของระบบจะถูกตั้งค่าที่ 50% เป็นค่าเริ่มต้น ผู้ใช้งานสามารถปรับเพิ่ม-ลด ได้ตามต้องการ โดยค่าสูงสุด คือ 100%

หมายเหตุ: รหัสรถไฟ สีฟ้า หมายถึงรถไฟที่ถูกกำหนดตารางการเดินรถ รหัสรถไฟ <mark>สีแดง</mark> หมายถึงรถไฟที่ไม่ได้กำหนดตารางการเดินรถ

7. วิธีการหยุดเดินรถแบบฉุกเฉิน

การหยุดเดินรถแบบฉุกเฉินสามารถหยุดได้ 2 รูปแบบ คือ หยุดทั้งระบบ (System Emergency Break) และ การหยุดเดินรถเฉพาะขบวน (Stop)

7.1. การหยุดเดินรถถุกเฉินทั้งระบบ (SYSTEM EMERGENCY BREAK)

ผู้ใช้สามารถจำลองการหยุครถทั้งระบบโดยการกด ปุ่ม System Emergency Break หรือเลือกที่ "Controller -> System Emergency Break" จากนั้นรถไฟทุกขบวนใน ระบบจะขึ้นสถานะ Emergency Break

หลังจากนั้นผู้ใช้สามารถเลือกที่จะเดินรถต่อทั้งระบบหรือเลือกเดินรถเพียงบางขบวนได้ สามารถกดปุ่ม

Continue

หรือเลือกที่ "Controller -> Continue" หากต้องการเดินรถทั้งระบบ หรือกดปุ่ม

Continue

ในขบวนที่ต้องการเดินรถต่อ

7.2. การหยุดเดินรถฉุกเฉินของรถไฟแต่ละขบวน (STOP)

ผู้ใช้สามารถจำลองการหยุครถทั้งระบบโคยการกดปุ่ม stop ของรถไฟแต่ละคัน หากต้องการให้รถไฟกลับมาเดินรถต่อ ให้กดปุ่ม Continue

รูปที่ 10 การหยุดเดินรถฉุกเฉิน

8. การบันทึกเหตุการณ์ (SAVE LOG)

ผู้ใช้สามารถบันทึกเหตุการณ์การเดินรถได้ โดนการเลือก "Controller->Save Log"จากนั้นเลือกเส้นทางการบันทึก (Path) ใส่ชื่อที่ต้องการ และกดปุ่ม "บันทึก (Save)" เมื่อเปิดไฟล์ที่บันทึก ผู้ใช้จะเห็นรายละเอียดการเดินรถไฟ ทั้งหมด


```
time, train_id, train_name, from_station_id, to_station_id, status, time_table_routine_id, duration,,
    2021/83/86 14.14:51,1586231191, Car02, D02, B02-A, derwell,1585090223, 15. 808368904678862,,
    2021/83/86 14.14:57,1586231191, Car02, D02, B02-A, onTheWay,1585090223, 8. 9991822242736816,,
    2021/83/86 14.14:57,1586231191, Car02, D02, B02-A, arrived,1585090223, 8. 9991822242736816,,
    2021/83/86 14.14:59,1586231191, Car02, D02, B02-A, arrived,1585090223, 8. 9994580484080822,,
    2021/83/86 14.14:59,1586231191, Car02, B02-A, B03-A, downll,1585090223, 9. 99945180484090822,,
    2021/83/86 14:14:59,1586231191, Car02, B02-A, B03-A, downll,1585090223, 9. 9994518048090822,,
    2021/83/86 14:15:02,1586231191, Car02, B02-A, B03-A, and polity, both status, bo
```

รูปที่ 11 บันทึกเหตุการณ์เดินรถ

9. ฮาร์ดแวร์ที่เกี่ยวข้อง

9.1. FEEDER TRACK & CONTROL TOMIX

ชื่อฮาร์ดแวร์	เวอร์ชั่น
Fine Track Curved Track C280-45	1121, 4904810011217, Late Nov., 2002
Fine Track Electric Double Crossover Points N-	1247, 4904810012474, Late Nov., 2002
PX280	

Fine Track (Viaduct) Slab Double Tracks DS280-	1067, 4904810010678, Early Feb., 2006
SL	
Fine Track (Viaduct) Slab Cuved Double Tracks	1168, 4904810011682, Early Feb., 2006
DC465/428-45-SL	
Fine Track Curved Track C391-15(F)	1145, 4904810011453, Late Aug., 2006
Fine Track Super-mini Curved Track C140 (F) (30	1112, 4904810011125, Late Aug., 2005
degree/60 degree, 2 of each)	
Fine Track Electric Points N-PR280-30 (F)	1273, 4543736012733, Late Dec., 2008
(Completely Electrofrog Type)	
Fine Track Wide PC Straght Track S140-WP(F)	1761, 4543736017615, Mid Mar., 2015
Fine Track Straight Tracks S280 (F)	1802, 4543736018025, Early Oct., 2015
Fine Track Slab Tracks S140-SL (F) (Single	1047, 4543736010470, Mid Nov., 2015
Straight)	
Fine Track Curved Tracks C317-45 (F)	1852, 4543736018520, Mid Nov., 2015
Fine Track Curved Tracks C541-15 (F)	1853, 4543736018537, Mid Nov., 2015
Fine Track Rolling Stock Yard Rail Set	91016, 4543736910169, Early Mar., 2018
TNOS New Operation Control System Basic Set	5701, 4543736857013, Late Nov., 2017
Basic Set SD Series E259 `Marine Express	90167, 4543736901679, Late Oct., 2014
Odoriko`	
Basic Set SD Series W7 'Kagayaki' (4-Car set)	90168, 4543736901686, Late Feb., 2015
(Track Layout Pattern A)	
My Plan NR-PC (F) (Fine Track, Track Layout	90950, 4543736909507, Late Nov., 2016
Pattern A+B)	
J.R. Limited Express Series KIHA187-500 `Super	98011, 4543736980117, Mid Sep., 2015
Inaba`	
Concrete Pier Set (10 piers in different heights)	3016, 4904810030164, Early Aug., 2016
Concrete Pier P4-25 Set (5 Piers 25mm High)	3240, 4543736032403, Early Aug., 2016
Point for N Scale driving unit (F)	0107, 4904810001072, Early Aug., 2016
Fine Track Electric Y-Points N-PY280-15 (F)	1240, 4904810012405, Late Apr., 2004

Fine Track Straight Track S18.5 (F) S33 (F)	1099, 4904810010999, Late Apr., 2004
Fine Track TCS 2 Colors Signal (F)	5565, 4904810055655, Late Jul., 2005
Fine Track Mini Curved Track C177 (F) (30	1113, 4904810011132, Late Aug., 2005
degree/60 degree, 2 of each)	
Fine Track Electric Curved Points N-CPR317/280-	1278, 4543736012788, Late Jan., 2009
45 (F)	
D.C. Feeder N for Wide Rail and Slab Rail	5538, 4543736055389, Late Oct., 2009
Sensor for TCS Wide Rail and Slab Rail	5567, 4543736055679, Late Oct., 2009
TCS Automatic Crossing System II (F)	5569, 4543736055693, Late Dec., 2012
Fine Track Wide PC Track S280-WP(F)	1730, 4543736017301, Late May, 2013
Fine Track Curved PC Track C280-45-PC (F)	1191, 4543736011910, Late Apr., 2014
Fine Track Curved PC Track C317-45-PC (F)	1192, 4543736011927, Late Apr., 2014
Fine Track Curved PC Tracks C280-15-PC (F)	1194, 4543736011941, Mid Jan., 2016
Fine Track Rail Set Viaduct Double Track	91043, 4543736910435, Late Sep., 2018
Hierarchical Station Set (Rail Pattern HB-B)	
D.C. Feeder N	5534, 4904810055341, Late Apr., 2004

9.2. CONTROL DEVICE

ชื่อฮาร์ดแวร์	เวอร์ชั่น
Arduino Uno Control	Arduino UNO R3
Module Arduino Wi-Fi	ESP8266 ESP-01
Drive Circuit for Arduino Control	Module L298N
Raspberry Pi Control	Raspberry Pi Zero W
Bridge Circuits	LM2596S
Drive circuit for Raspberry Pi	Mini 298N
Battery for Raspberry pi	3.7V 2000mAh Lithium Battery Li-ion
Track Circuit Control	-

UPS	-
Hall effect Sensor	49E KY-035
DC Adapter	12V 2A
Cable & Connecter	-
Rail Layout	V1.3