

Wydział Informatyki	Imię i nazwis 1. Kawa Mi c 2. Smyda T c	chał	Rok: II	Grupa: 5	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Fale podłuż	Nr ćwiczenia: 29			
Data wykonania: 07.11.2023	Data oddania: 13.11.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:

Fale podłużne w ciałach stałych

Ćwiczenie nr 29

Kawa Michał Smyda Tomasz

Spis treści

1	W st	ep Cel ćwiczenia	3 3
2	Opi	s ćwiczenia	3
3	Ukł	ad pomiarowy	3
4	\mathbf{Prz}	ebieg doświadczenia	4
5	$\mathbf{W}\mathbf{y}$	niki pomiarów	4
6	Opr	racowanie wyników pomiaru	4
	6.1	Niepewności pomiarowe typu B	4
	6.2	Badanie mosiężnego pręta	5
		6.2.1 Wyznacznenie prędkości dźwięku w ośrodku	5
		6.2.2 Wyznaczenie modułu Younga materiału	5
	6.3	Badanie stalowego pręta	5
		6.3.1 Wyznacznenie prędkości dźwięku w ośrodku	6
		6.3.2 Wyznaczenie modułu Younga materiału	6
	6.4	Badanie miedzianego pręta	6
		6.4.1 Wyznacznenie prędkości dźwięku w ośrodku	6
		6.4.2 Wyznaczenie modułu Younga materiału	6
	6.5	Badanie aluminiowego pręta	7

6.5.1 Wyznacznenie prędkości dźwięku w ośrodku	7	Wnioski		7
			Wyznacznenie prędkości dźwięku w ośrodku	

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie długości fali λ , prędkości fali v oraz modułu Younga E dla różnych materiałów na podstawie pomiaru czestotliwości f fal dźwiękowych w pręcie.

2 Opis ćwiczenia

Prędkość rozchodzenia się fali w pręcie wytworzonym z jednorodnego materiału o gęstości ρ dana jest wzorem:

$$v = \sqrt{\frac{E}{\rho}}$$

Po przekształceniu otrzymujemy wzór na moduł Younga:

$$E = \rho v^2$$

W badanym pręcie fala wywołana przez nas interferuje z falą odbitą, tworząc falę stojącą. Odległość między węzłami tej fali stanowi połowę jej długości, więc:

$$l = \frac{1}{2}\lambda$$

Po określeniu częstotliwości f fali oraz odległości l między węzłami (w tym przypadku jest ona równa długości pręta), przy użyciu wzoru poprzedniego możemy wyprowadzić wzór na prędkość rozchodzenia się fali:

$$v = 2lf$$

Korzystając z poprzednich wzorów możemy wyrazić moduł Younga w postaci

$$E = 4\rho l^2 f^2$$

3 Układ pomiarowy

Głównymi elementami stanowiska były 4 pręty wykonane z różnych materiałów: aluminium, miedzi, stali oraz mosiądzu, o długościach ok. 200 cm każdy i komputera z zainstalowanym oprogramowaniem Zelscope do mierzenia częstotliwości fal. Dodatkowo w skład układu pomiarowego wchodziły:

- suwmiarka o dokładności 0,005 cm;
- miarka o dokładności 0,1 cm;
- waga elektroniczna o dokładności 1 g;
- mikrofon;
- młotek, który służył do wprowadzdania prętu w drgania.

4 Przebieg doświadczenia

Na początku ćwiczenia zapoznaliśmy się z nieznamym wcześniej przez nas oprogramowaniem Zelscope dostępnym na komputerze. Następnie wykonaliśmy pomiary na danych próbkach materiałów, w celu obliczenia wartości gęstości danych materiałów oraz porównaliśmy je z wartościami tablicowymi. Później wprowadzaliśmy pręty w ruch drgający za pomocą młotka, uderzając pręt z przeciwnego końca, gdzie znajdował się mikrofon i zapisywaliśmy częstotliwości dla odpowiednich harmonicznych. Na końcu zmierzyliśmy długości prętów.

5 Wyniki pomiarów

Materiał	Średnica	Długość	Objętość	Masa	Gęstość	Wartość tablicowa gęstości
próbki	[cm]	[cm]	$[\mathrm{cm}^3]$	[g]	$\left[rac{ m g}{ m cm^3} ight]$	$\left[\frac{\mathrm{g}}{\mathrm{cm}^3}\right]$
Mosiądz	1,2	12	13,57	114	8,4	8,73
Stal	1,2	12	13,57	106	7,81	7,9
Miedź	1,2	12	13,57	120	8,84	8,96
Aluminum	1,6	12	24,13	69	2,86	2,7

Tabela 1: Wyniki pomiaru gęstości materiałów

6 Dalsze wyniki oraz ich opracowanie

6.1 Niepewności pomiarowe typu B

Zasadniczymi niepewnościami były przyrządy pomiarowe z pewnymi niedokładnościami: suwmiarka, miarka, waga elektroniczna i mikrofon:

- niedokładność suwmiarki: $u(d_s) = 0.005$ cm;
- niedokładność miarki: $u(d_m) = 0.01$ cm;
- niedokładność wagi: u(m) = 1 g;
- niedokładność mikrofonu: u(f) = 25 Hz

6.2 Badanie mosiężnego pręta

Nr	Częstotliwość fali	$u(\lambda_i)$	Długość fali	$u(v_i)$	Prędkość fali
harmonicznej	[Hz]	[m]	[m]	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
1	889,41	0,00020	4,042	101	3594,995
2	1758,82	0,00010	2,021	51	3554,575
3	2647,06	0,000067	1,347	34	$3565,\!59$
4	3535,29	0,000050	1,011	25	3574,178
5	4429,41	0,000040	0,808	20	3578,963
6	5282,35	0,000033	0,674	17	3560,304

Tabela 2: Wyniki dla mosiądzu

6.2.1 Wyznacznenie prędkości dźwięku w ośrodku

Prędkość dźwięku $\overline{v}_{\mathrm{CuZn}}$ w pręcie mosiężnym wynosi:

$$u(\overline{v}_{\mathrm{CuZn}}) \approx 21 \; \frac{\mathrm{m}}{\mathrm{s}}$$

$$\overline{v}_{\rm CuZn} = \frac{\sum_{i=1}^{6} v_i}{6} \approx 3571 \text{ m/s}$$

6.2.2 Wyznaczenie modułu Younga materiału

Wyliczając wartość modułu Younga otrzymujemy:

$$E = 107,143 \text{ GPa}$$

$$U(E) = 19,859 \text{ GPa}$$

Porównując wartość otrzymaną z tablicową równą 103 GPa - 124 GPa, stwierdzamy, że wyliczona wartość jest prawidłowa.

6.3 Badanie stalowego pręta

Nr	Częstotliwość fali	$u(\lambda_i)$	Długość fali	$u(v_i)$	Prędkość fali
harmonicznej	[Hz]	[m]	[m]	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
1	1258,82	0,00020	3,936	98	4954,716
2	2517,65	0,00010	1,968	49	4954,735
3	3776,47	0,000067	1,312	33	4954,729
4	5070,59	0,000050	0,984	25	4989,461
5	6329,41	0,000040	0,787	20	4981,246
6	7588,24	0,000033	0,656	16	4977,885

Tabela 3: Wyniki dla stali

6.3.1 Wyznacznenie prędkości dźwięku w ośrodku

Prędkość dźwięku $\overline{v}_{\rm FeC}$ w pręcie stalowym wynosi:

$$u(\overline{v}_{\rm FeC}) \approx 23 \frac{\rm m}{\rm s}$$

$$\overline{v}_{\rm FeC} = \frac{\sum_{i=1}^{6} v_i}{6} \approx 4967 \frac{\rm m}{\rm s}$$

6.3.2 Wyznaczenie modułu Younga materiału

Wyliczając wartość modułu Younga otrzymujemy:

$$E = 192,679 \text{ GPa}$$

$$U(E) = 25,798 \text{ GPa}$$

Porównując wartość otrzymaną z tablicową równą 190 GPa - 210 GPa, stwierdzamy, że wyliczona wartość jest prawidłowa.

6.4 Badanie miedzianego pręta

Nr	Częstotliwość fali	$u(\lambda_i)$	Długość fali	$u(v_i)$	Prędkość fali
harmonicznej	[Hz]	[m]	[m]	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
1	964,71	0,00020	3,972	99	3831,828
2	1929,41	0,00010	1,986	50	3831,808
3	2882,35	0,000067	1,324	33	3816,231
4	3835,29	0,000050	0,993	25	3808,443
5	4811,76	0,000040	0,794	20	3820,537
6	5788,24	0,000033	0,662	17	3831,815

Tabela 4: Wyniki dla miedzi

6.4.1 Wyznacznenie prędkości dźwięku w ośrodku

Prędkość dźwięku $\overline{v}_{\mathrm{Cu}}$ w pręcie miedzianym wynosi:

$$u(\overline{v}_{\rm Cu}) \approx 23 \; \frac{\rm m}{\rm s}$$

$$\overline{v}_{\rm FeC} = \frac{\sum_{i=1}^6 v_i}{6} \approx 3822 \ \frac{\rm m}{\rm s}$$

6.4.2 Wyznaczenie modułu Younga materiału

Wyliczając wartość modułu Younga otrzymujemy:

$$E = 129,116 \text{ GPa}$$

$$U(E) = 21,953 \text{ GPa}$$

Porównując wartość otrzymaną z tablicową równą 110 GPa - 135 GPa, stwierdzamy, że wyliczona wartość jest prawidłowa.

6.5 Badanie aluminiowego pręta

Nr	Częstotliwość fali	$u(\lambda_i)$	Długość fali	$u(v_i)$	Prędkość fali
harmonicznej	[Hz]	[m]	[m]	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	$\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$
1	1294,12	0,00020	4,004	100	5181,656
2	2600	0,00010	2,002	50	5205,2
3	3894,12	$0,\!000067$	$1,\!335$	33	5198,65
4	5176,47	0,000050	1,001	25	5181,646
5	6505,88	0,000040	0,801	20	5211,21
6	7788,24	0,000033	0,667	17	5194,756

Tabela 5: Wyniki dla aluminium

6.5.1 Wyznacznenie prędkości dźwięku w ośrodku

Prędkość dźwięku $\overline{v}_{\mathrm{Cu}}$ w pręcie aluminiowym wynosi:

$$u(\overline{v}_{\rm Cu}) \approx 23 \; \frac{\rm m}{\rm s}$$

$$\overline{v}_{\rm FeC} = \frac{\sum_{i=1}^{6} v_i}{6} \approx 5195 \,\,\frac{\mathrm{m}}{\mathrm{s}}$$

6.5.2 Wyznaczenie modułu Younga materiału

Wyliczając wartość modułu Younga otrzymujemy:

$$E = 77,206 \text{ GPa}$$

$$U(E) = 9.834 \text{ GPa}$$

Porównując wartość otrzymaną z tablicową równą 69 GPa, stwierdzamy, że wyliczona wartość jest prawidłowa.

7 Wnioski

Wszystkie wyliczone wartości są zgodne z wartościami tablicowymi, więc można uznać, że całość doświadczenia została przeprowadzona z powodzeniem. Na podstawie tabel 2-5 widać również, że prędkość fali w materiałach nie zależy od częstotliwości.