$C^{k}(\Omega) \stackrel{def}{=} \{f: \Omega \rightarrow \mathbb{R} \text{ has up to kth order} \}$ $\text{continuous derivatives } \} \text{ $k \ge 0$}$ $e.g. \quad C^{0}(\Omega) = C(\Omega) = \{ \text{conti. func on } \Omega \}$ $C'(\Omega) = \{ \text{conti. func on } \Omega \text{ with } \}$ $\text{continuous derivative } \}$

Def: A sym matrix $A \in \mathbb{R}^{n \times n}$ is called positive semi-definite if $\forall u \in \mathbb{R}^n$, $(u, Au) \stackrel{\text{def}}{=} u \cdot Au) = u^T Au \ge 0$

Prop. (1) If $f \in C'(\Omega)$, then

f is convex $\Leftrightarrow f(y) \ge f(x) + \nabla f(x)(y - x)$ fix $f(y) \ge f(x) + \nabla f(x)(y - x)$ fix

(2) If $f \in C^2(x)$, then

f is convex \Leftrightarrow the Hessian moderix $(\frac{\partial^2 f}{\partial x_i \partial x_j})_{n \times n}$ is positive semi-definite.

Lemma: If h is a convex func, then $\{x \in D(h) : h(x) \le 0\}$ is a convex set.

Proof: Set $B \stackrel{\text{def}}{=} \{x \in D(h) : h(x) \leq 0\}$.

Need to prove: $\forall x, y \in B$, $\forall t \in [0,1]$ $\forall x + (1-t)y \in B$.

ie. $h(tx+(1-t)y) \leq 0$

To show this; we know $h(x) \le 0$, $h(y) \le 0$. Since h is convex, $h(tx+(1-t)y) \le th(x)+(1-t)h(y)$ $\le t\cdot 0+(1-t)\cdot 0$ = 0By the def of B, we have

By the def of B, we have $tx+(1-t)y \in B$.

Def: Let $\alpha \in \mathbb{R}^n$ and $b \in \mathbb{R}$ A func $g(x) = \alpha^T x + b$ is called an affine func.

Lemma: If g is an affine func, then the set $\{x \in \mathcal{D}(g): g(x) = 0\}$ is a convex set.

Proof: Set
$$B \stackrel{\text{def}}{=} \{ x \in D(g) : g(x) = 0 \}$$

Need to prove: Yx, y &B. Y+& [0,1]

$$\Rightarrow$$
 $\pm x + (1-t)y \in B$

i.e. 9(tx+(1-t)y)=0

To show this; we know
$$g(x) = g(y) = 0$$

Since 9 is offine,
$$y(x) = a^{T}x + b$$

So
$$g(tx+(h-t)y)$$
 $tb+(h-t)b$
 $= a^{T}(tx+(h-t)y) + b$

$$= \pm (a^{T}x + b) + (-1)(a^{T}y + b)$$

$$z + g(x) + (1-t)g(y)$$

= $t \cdot 0 + (1-t) \cdot 0$
= 0,

Pof: An optimization problem of the form
$$\min_{x \in \mathcal{X}} f(x)$$
 subject to $h_i(x) \leq 0$ $i=1,\dots, I$ is called a convex optimization problem if f , h_i , h_i are convex functioned g_i , g_j are offine functioned.

Remarla: The optimization problem is equivalent to

$$D$$
 $f(x)$

where $D = D(f) \cap \{x : h_i(x) \le 0 \mid i = 1, ... I\}$

 $\bigcap \left\{ x: g_{j}(x) = 0 , \hat{j} = 1, \dots, J \right\}$

For a convex optimization problem,

then D is convex,