Дія групи на множині

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

9 листопада 2022

Дія групи на множині

Незай G — група, M — множина.

Група G діє на множині M, якщо для довільних елементів $m \in M$ та $g \in G$ визначений елемент $m^g \in M$, причому

- ② $(m^{g_1})^{g_2} = m^{g_1g_2}$ для всіх $m \in M$, $g_1, g_2 \in G$.

(G, M) — група G діє на множині M

 m^g — образ точки m під дією елемента $g \in G$

9 листопада 2022

Дія групи на множині: приклади

- **①** Група S_n діє на множині $\{1, 2, ..., n\}$.
- О Група № діє на множині
 - ▶ вершин;
 - сторін;
 - осей симетрії.

Дія групи на множині: приклади

- Група поворотів куба діє на множині
 - ▶ вершин;
 - ребер;
 - прямих, що проходять через середини протилежних граней;
 - діагоналей;
 - граней.

Дія групи на множині: природна дія групи на собі

О Група G діє на собі правими зсувами:

$$x^g = xg$$
, $x, g \in G$.

Отрупа G діє на собі спряженням:

$$x^g=g^{-1}xg,\quad x,g\in G.$$

О Дія правими зсувами на правих класах суміжності за довільною підгрупою Н:

$$(Hx)^g = Hxg.$$

Дія групи на множині: індукована дія

Задано (G, M). Задамо дію групи G на множині

$$M^{k} = \{(m_{1}, \dots, m_{k}) | m_{i} \in M\} :$$

$$(m_{1}, m_{2}, \dots, m_{k})^{g} = (m_{1}^{g}, m_{2}^{g}, \dots, m_{k}^{g}).$$

$$G = \mathcal{A}_3, M = \{1, 2, 3\}, M^2 = \{(a, b) \mid a, b \in M\}:$$

$$(1, 2)^{\varepsilon} = (1, 2), \quad (1, 2)^{(123)} = (2, 3), \quad (1, 2)^{(132)} = (3, 1).$$

Дія групи на множині визначає перетворення $\varphi(g)$ множини M:

$$m \stackrel{\varphi(g)}{\longleftrightarrow} m^g$$
.

Твердження

Для довільного $g \in G$ перетворення $\varphi(g)$ є бієкцією на множині M.

Доведення.

$$\varphi(g)(\varphi(g^{-1})(m)) = (m^{g^{-1}})^g = m^{g^{-1}g} = m^e = m =$$

$$= m^{gg^{-1}} = (m^g)^{g^{-1}} = \varphi(g^{-1})(\varphi(g)(m)) \implies$$

 $\varphi(g)$ та $\varphi(g^{-1})$ взаємно обернені $\Rightarrow \varphi(g)$ та $\varphi(g^{-1})$ бієктивні.

Дія групи на множині визначає перетворення $\varphi(g)$ множини M:

$$m \stackrel{\varphi(g)}{\longleftrightarrow} m^g$$
.

Твердження

Відображення $g\mapsto \varphi(g)$ є гомоморфізмом групи G у симетричну групу S(M).

Доведення.

Для довільної точки $m \in M$:

$$\varphi(gh)(m) = m^{gh} = (m^g)^h = (\varphi(g)(m))^h = \varphi(h)(\varphi(g)(m)) = (\varphi(g)\varphi(h))(m)$$

$$\Rightarrow \varphi(gh) = \varphi(g)\varphi(h).$$

8/14

9 листопада 2022

Приклади

О Група D₄ діє на множині

```
вершин  \text{сторін} \\ \text{осей симетрії} \} \quad \Rightarrow \text{гомоморфізм в $\mathcal{S}_4$.}
```

🗿 Група поворотів куба діє на множині

```
вершин \Rightarrow гомоморфізм в \mathcal{S}_8; ребер \Rightarrow гомоморфізм в \mathcal{S}_{12}; діагоналей \Rightarrow гомоморфізм в \mathcal{S}_4; прямих, що проходять через середини протилежних граней \Rightarrow гомоморфізм в \mathcal{S}_3; граней \Rightarrow гомоморфізм в \mathcal{S}_6.
```

Ядро дії

 $\mathit{Ядром}$ дії групи G на множині M називається множина

$$Ker = \{g \in G \mid m^g = m \ \forall m \in M\}.$$

Зауваження

 $Ker = Ker \varphi$.

Дія називається точною, або ефективною, якщо її ядро тривіальне.

Якщо G діє на M точно, то говорять про групу підстановок або про точне зображення групи підстановками.

Приклади

- **①** S_n діє точно на множині $\{1, 2, ..., n\}$.
- ② Дія групи *G* на собі правими зсувами є точною.
- **3** Дія групи G на собі спряженням не є точною. Її ядром є Z(G).

Твердження

Нехай K — ядро дії (G, M). Тоді для $g_1, g_2 \in G$

$$m^{g_1} = m^{g_2} \ \forall m \in M \iff Kg_1 = Kg_2.$$

Доведення.

(⇒)

$$m^{g_1} = m^{g_2} \ \forall m \in M \quad \Rightarrow \quad m = m^{g_2g_1^{-1}} \quad \Rightarrow \quad g_2g_1^{-1} \in K \quad \Rightarrow \quad Kg_1 = Kg_2.$$

(⇔)

$$Kg_1 = Kg_2 \implies \exists k \in K : g_1 = kg_2 \implies m^{g_1} = m^{kg_2} = (m^k)^{g_2} = m^{g_2}.$$

9 листопада 2022

Подібні групи

Нехай група G діє точно на множині M, а група G' діє точно на множині M'. Групи G та G' називаються *подібними*, якщо існують такі бієкція

$$\psi: M \to M'$$

та ізоморфізм

$$\varphi:G\to G'$$
,

що

$$\psi(m^g) = (\psi(m))^{\varphi(g)}$$
 для всіх $m \in M, g \in G$.

Подібні групи: приклад

Розглянемо групи

$$G_1 = \langle (1234) \rangle$$
, $G_2 = \langle (1324) \rangle$, $G_3 = \langle (1234)(56) \rangle$.

$$G_1 \simeq G_2 \simeq G_3 \simeq C_4$$
.

$$G_1$$
 та G_2 подібні: $1\stackrel{\psi}{\mapsto} 1$, $2\stackrel{\psi}{\mapsto} 3$, $3\stackrel{\psi}{\mapsto} 2$, $4\stackrel{\psi}{\mapsto} 4$.

 G_1 та G_3 неподібні, G_2 та G_3 неподібні.