Kyle Franson

Curriculum Vitae

☑ kfranson@utexas.edu

**** +1-989-423-6187

0 0000-0003-4557-414X

& kfranson.github.io

Education _____

Ph.D. Astronomy, The University of Texas at Austin

Expected Spring 2025

Advisor: Brendan P. Bowler

B.S. Physics, University of Michigan

Sep. 2015 - May 2019

Minor in Computer Science

Thesis: Orbit Extension and Refinment for Trans-Neptunian Objects Found in the

Dark Energy Survey Advisor: David W. Gerdes

Positions _____

The University of Texas at Austin

University Fellow Starting Sep. 2024
NSF Graduate Research Fellow 2021 – Present
Graduate Research Assistant 2019 – 2021

University of Michigan

Undergraduate Research Assistant

2016 - 2019

Research Interests _____

- Understanding the formation, evolution, and atmospheres of long-period giant planets.
- Efficiently discovering and imaging new giant planets through astrometric accelerations.
- Testing evolutionary models with direct mass measurements of substellar companions.

Awards and Honors

University Graduate Continuing Fellowship	2024
UT Graduate School Professional Development Award	2022
NSF Graduate Research Fellowship	2021
Frank N. Edmonds, Jr. Memorial Fellowship in Astronomy	2021
McDonald Observatory B.O.V. Student Second Year Defense Award	2021

Grants _____

James Webb Space Telescope, NASA/STScI

\$25k (Sci PI)	Establishing the Formation of AF Lep b with NIRCam: The Lowest-Mass	Cycle 2 DD
	Imaged Exoplanet with a Dynamical Mass	

Keck Observing Support, NASA

Treem Obberviii	S Support, Mish	
\$5k (Sci PI)	Establishing the Dynamical Mass and Orbit of AF Lep b	2023
65k (Sci PI)	Imaging Giant Planets Around Young Accelerating Stars	2021 - 2023

WIYN NN-Explore Observing Support, NASA

\$6k (Sci PI) Optimizing Target Selection of Direct Imaging Planet Campaigns using
Accelerating Stars 2021

PI Observing Programs _____

I I Obbei v		
James Webb S	pace Telescope	
6.4 hours (PI)	Establishing the Formation of AF Lep b with NIRCam: The Lowest-Mass Imaged Exoplanet with a Dynamical Mass	JWST Cycle 2 DD
Keck Observat	- · · · · · · · · · · · · · · · · · · ·	
6 nights (PI)	Imaging Giant Planets Around Young Accelerating Stars	NASA/Keck
·8 ()		(2021A/B, 2022B, 2023A/B)
		NOIRLab/Keck
		(2023A, 2024A)
1 night (PI)	Establishing the Dynamical Mass and Orbit of the Giant Planet	NOIRLab/Keck (2024A)
	AF Lep b	NASA/Keck (2023B)
Subaru		
4 nights (PI)	Imaging Giant Planets Around Young Accelerating Stars	Gemini-Subaru Exchange
ME (CDIED)		(2022A, 2023A/B, 2024B)
VLT/SPHERE		EGO
56 hours (PI)	Imaging Giant Planets Around Young Accelerating Stars	ESO (P109 – P113)
WIYN		(F109 - F113)
7.3 nights (PI)	Optimizing Target Selection of Direct Imaging Campaigns us-	NASA NN-Explore
110 11181100 (1 1)	ing Accelerating Stars	(2021B, 2022B, 2023A,
		2024A, 2024B)
SOAR		, ,
2.5 nights (PI)	Optimizing Target Selection of Direct Imaging Campaigns us-	NOIRLab
	ing Accelerating Stars	(2021A, 2021B, 2022B)
MINERVA-Au		
108 hours (PI)	Enabling Dynamical Mass Measurements of Planets Around	NASA NN-Explore
TT 11 TO 1	Accelerating Stars	(2023A - 2024B)
Hobby-Eberly	-	M-D11 Ob
74 hours (PI)	Enabling Dynamical Mass Measurements of Planets Around	McDonald Observatory
9 hours (PI)	Accelerating Stars Testing Evolutionary Models with a New Substellar Dynami-	(2023-1 – 2024-2) McDonald Observatory
9 Hours (1 1)	cal Mass	(2019-3, 2020-1, 2020-3)
Harlan J Smit		(2013 6, 2020 1, 2020 6)
22 nights (PI)	Optimizing Target Selection of Direct Imaging Campaigns us-	McDonald Observatory
(4 1)	ing Accelerating Stars	(2021-3-2022-3,
		2023-3-2024-2)
		,

Scientific Presentations _____

Contributed Talk	Exoplanets V, Leiden NL	June 2024
Invited Talk	UC Santa Cruz PLUNCH Seminar, Santa Cruz CA	May 2024
Invited Talk	University of Hawaii IfA Seminar, Honolulu HI	April 2024
Contributed Talk	AAS 243 Winter Meeting, New Orleans LA	Jan. 2024
Invited Talk	Notre Dame Astrophysics Seminar, South Bend IN	Sep. 2023
Contributed Talk	GMT Community Science Meeting, Washington DC	Sep. 2023
Invited Talk	Exocoffee Seminar, MPIA, virtual	July 2023
Contributed Talk	ERES VII, New Haven CT	June 2023
Contributed Talk	SACNAS NDiSTEM Conference, San Juan PR	Oct. 2022
Contributed Talk	Keck Science Meeting, Pasadena CA	Sep. 2022
Contributed Talk	In the Spirit of Lyot 2022, Leiden NL	June 2022

Publications.

First-author publications: 4, Total publications: 19

Total first-author citations: 75, Total citations: 419. (NASA/ADS)

First-author h-index: 4, Total h-index: 13.

First-Author Publications:

4. Astrometric Accelerations as Dynamical Beacons: A Giant Planet Imaged inside the Debris Disk of the Young Star AF Lep

Franson, K.; Bowler, B. P.; Zhou, Y.; et al. [16 total]; 2023, ApJL, 950, L19

3. Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B Franson, K.; Bowler, B. P.; 2023, AJ, 165, 246

2. Astrometric Accelerations as Dynamical Beacons: Discovery and Characterization of HIP 21152 B, the First T-Dwarf Companion in the Hyades

Franson, K.; Bowler, B. P.; Bonavita, M.; et al. [31 total]; 2023, AJ, 165, 39

1. Dynamical Mass of the Young Substellar Companion HD 984 B

Franson, K.; Bowler, B. P.; Brandt, T. D.; Dupuy, T. J.; Tran, Q. H.; Brandt, G. M.; Li, Y.; Kraus, A. L.; 2022, AJ, 163, 50

Co-Author Publications:

- 19. The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. V. Do Self-consistent Atmospheric Models Represent JWST Spectra? A Showcase with VHS 1256–1257 b Petrus, S.; Whiteford, N.; Patapis, P; et al. [122 total]; 2924, ApJL, 966, L11
- 18. Deep $Pa\beta$ Imaging of the Candidate Accreting Protoplanet AB Aur b Biddle, L. I.; Bowler, B. P.; Zhou, Y.; **Franson, K.**; Zhang, Z.; 2024, AJ, 164, 172
- 17. The discovery of two new benchmark brown dwarfs with precise dynamical masses at the stellar-substellar boundary

Rickman, E. L.; Ceva, W.; Matthews, E. C.; Ségransan, D.; Bowler, B. P.; Forveille, T.; Franson, K.; Hagelberg, J.; Udry, S.; Vigan, A.; 2024, A&A, 684, A88

- 16. The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. IV. NIRISS Aperture Masking Interferometry Performance and Lessons Learned Sallum, S.; Ray, S.; Kammerer, J.; et al. [123 total]; 2024, ApJL, 963, L2
- 15. ELemental abundances of Planets and brown dwarfs Imaged around Stars (ELPIS). I. Potential Metal Enrichment of the Exoplanet AF Lep b and a Novel Retrieval Approach for Cloudy Self-luminous Atmospheres Zhang, Z.; Mollière, P.; Hawkins, K.; Manea, C.; Fortney, J. J.; Morley, C. V.; Skemer, A.; Marley, M. S.; Bowler, B. P.; Carter, A. L.; Franson, K.; Maas, Z. G.; Sneden, C.; AJ, 166, 198
- 14. Surveying nearby brown dwarfs with HGCA: direct imaging discovery of a faint, high-mass brown dwarf orbiting HD 176535 A

Li, Y.; Brandt, T. D.; Brandt, G. M.; et al. [20 total]; 2023, MNRAS, 522, 5622

- 13. The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High-contrast Imaging of the Exoplanet HIP 65426 b from 2 to 16 μ m Carter, A. L.; Hinkley, S.; Kammerer, J.; et al. [111 total]; 2023, ApJL, 951, L20
- 12. Rotation Periods, Inclinations, and Obliquities of Cool Stars Hosting Directly Imaged Substellar Companions: Spin-Orbit Misalignments Are Common

Bowler B. P.; Tran, Q. G.; Zhang, Z.; Morgan, M.; Ashok, K. B.; Blunt, S.; Bryan, M. L.; Evans, A. E.; Franson, K.; Huber, D.; Nagpal, V.; Wu, Y.; Zhou, Y.; 2023, AJ, 165, 164

The JWST Early-release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 μm Spectrum of the Planetary-mass Companion VHS 1256-1257 b
 Miles B. F. Biller B. A. Betania B. et al. [111 total], 2022. Art H. 046, L6.

Miles, B. E.; Biller, B. A.; Patapis, P.; et al. [111 total]; 2023, ApJL, 946, L6

- 10. The McDonald Accelerating Stars Survey: Architecture of the Ancient Five-planet Host System Kepler-444 Zhang, Z.; Bowler, B. P.; Dupuy, T. J.; et al. [14 total]; 2023, AJ, 165, 2
- A Jupiter Analog Orbiting The Nearby M Dwarf GJ 463
 Endl, M.; Robertson, P.; Cochran, W. D.; MacQueen, P. J.; Bowler, B. P.; Franson, K.; Holcomb, R.; Beard, C.; Isaacson, H.; Howard, A. W.; Lubin, J.; 2022, AJ, 164, 6
- 8. A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235 Zhou, G.; Wirth, C. P.; Huang, C. X.; et al. [39 total]; 2022, AJ, 163, 289
- 7. The McDonald Accelerating Stars Survey (MASS): Discovery of a Long-period Substellar Companion Orbiting the Old Solar Analog HD 47127

Bowler, B. P.; Endl, M.; Cochran, W. D.; et al. [15 total]; 2021, ApJL, 913, L26

- 6. The McDonald Accelerating Stars Survey (MASS): White Dwarf Companions Accelerating the Sun-like Stars 12 Psc and HD 159062
 - Bowler, B. P.; Cochran, W. C.; Endl, M.; **Franson, K.**; Brandt, T. D.; Dupuy, T. J.; MacQueen, P. J.; Kratter, K. M.; Mawet, D.; Ruane, G.; 2021, AJ, 161, 106
- 5. Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey Khain, T.; Becker, J. C.; Lin, H. W.; et al. [56 total]; 2020, AJ, 159, 133
- 4. Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey Bernardinelli, P. H.; Bernstein, G. M.; Sako, M.; et al. [65 total]; 2020, ApJS, 247, 32
- 3. Evidence for color dichotomy in the primordial Neptunian Trojan population Lin, H. W.; Gerdes, D. W.; Hamilton, S. J.; et al. [48 total]; 2019, Icarus, 321, 426
- 2. Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits Khain, T.; Becker, J. C.; Adams, F. C.; et al. [66 total]; 2018, AJ, 156, 6
- 1. Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination Becker, J. C.; Khain, T.; Hamilton, S. J.; et al. [66 total]; 2018, AJ, 156, 81

White Papers:

1. A Dynamically Informed Planet Search: Using Astrometric Accelerations to Directly Image Mature Giant Planets

Franson, K.; Bowler, B. P.; Teixeira, K.; et al. [16 total]; 2024, Strategic Exoplanet Initiatives with HST and JWST

Service and Outreach.

Referee for A&A, ApJ 2023 – Present

TAURUS/REU Programs

Seminar Co-Lead Summer 2022 – Present Informal Mentor Summer 2021 – Present

Starbound Foundation (Elementary School Planetarium Outreach)

Co-Organizer & Volunteer Fall 2021 – Present
UT Girl Day Volunteer Spring 2020 – Present

UT Astronomy Undergraduate Mentor Spring 2019 – Present

Press Coverage _____

• A Giant Planet Imaged Inside the Debris Disk of the Young Star AF Lep (Franson et al. 2023): [NYTimes], [Sky & Telescope], [Universe Today], [Keck Observatory], [McDonald Observatory]