09 Generalizing regression results

Agoston Reguly

Data Analysis 2: Regression analysis

Generalizing: reminder

Generalizing Results

- We have uncovered some pattern in our data. We are interested in generalize the results.
- Question: Is the pattern we see in our data
 - ► True in general?
 - or is it just a special case what we see?
- Need to specify the situation
 - to what we want to generalize

Case Study

- Inference the act of generalizing results
 - From a particular dataset to other situations or datasets.
- From a sample to population/general pattern = statistical inference
- ▶ Beyond (other dates, countries, people, firms) = external validity

Generalizing Linear Regression Coefficients from a Dataset

We estimated the linear model

Case Study

- \triangleright $\hat{\beta}$ is the average difference in y in the dataset between observations that are different in terms of x by one unit.
- \triangleright \hat{v}_i best guess for the expected value (average) of the dependent variable for observation i with value x_i for the explanatory variable in the dataset.
- Sometimes all we care about are patterns, predicted values, or residuals, in the data we have
- Often interested in patterns and predicted values in situations that are not limited to the dataset we analyze.
 - To what extent predictions / patterns uncovered in the data generalize to a situation we care about

Statistical Inference: Confidence Interval

- ► The 95% CI of the slope coefficient of a linear regression
 - similar to estimating a 95% CI of any other statistic.

$$CI(\hat{eta})_{95\%} = \left[\hat{eta} - 2SE(\hat{eta}), \hat{eta} + 2SE(\hat{eta})\right]$$

- Formally: 1.96 instead of 2. (computer uses 1.96 mentally use 2)
- ► The standard error (SE) of the slope coefficient
 - is conceptually the same as the SE of any statistic.
 - measures the spread of the values of the statistic across hypothetical repeated samples drawn from the same population (or general pattern) that our data represents

Generalizing Results

p-values

Standard Error of the Slope

The simple SE formula of the slope is

$$SE(\hat{\beta}) = \frac{Std[e]}{\sqrt{n}Std[x]}$$

► Where:

Generalizing Results

- ► Residual: $e = y \hat{\alpha} \hat{\beta}x$
- Std[e], the standard deviation of the regression residual,
- ► Std[x], the standard deviation of the explanatory variable.
- \sqrt{n} the square root of the number of observations in the data.
 - ▶ Smaller sample may use $\sqrt{n-2}$.

Standard Error of the Slope

The simple SE formula of the slope is

$$SE(\hat{\beta}) = \frac{Std[e]}{\sqrt{n}Std[x]}$$

► Where:

Generalizing Results

- ► Residual: $e = y \hat{\alpha} \hat{\beta}x$
- ► Std[e], the standard deviation of the regression residual.
- Std[x], the standard deviation of the explanatory variable.
- \sqrt{n} the square root of the number of observations in the data.
 - ▶ Smaller sample may use $\sqrt{n-2}$.

- ► A smaller standard error translates into
 - narrower confidence interval,
 - estimate of slope coefficient with more precision.
- ► More precision if
 - smaller the standard deviation of the residual – better fit, smaller errors.
 - larger the standard deviation of the explanatory variable – more variation in x is good.
 - more observations are in the data.
- ► This formula is correct assuming homoskedasticity

Heteroskedasticity Robust SE

Generalizing Results

- ► Simple SE formula is not correct in general.
 - Homoskedasticity assumption: the fit of the regression line is the same across the entire range of the x variable
 - In general this is not true

Case Study

- ▶ Heteroskedasticity: the fit may differ at different values of x so that the spread of actual v around the regression is different for different values of x
- ► Heteroskedastic-robust SE formula (White or Huber) is correct in both cases
 - ▶ Same properties as the simple formula: smaller when Std[e] is small, Std[x] is large and n is large
 - E.g. White formula uses the estimated errors' square from the model and weight the observations when calculating the $SE[\hat{\beta}]$
 - ▶ Note: there are many heteroskedastic-robust formula, which uses different weighting techniques. Usually referred as 'HC0'. 'HC1'. 'HC4'.

The CI Formula in Action

Generalizing Results

- Run linear regression
- Compute endpoints of CI using SE
- ▶ 95% CI of slope and intercept

- ► In regression, as default, use robust SE.
 - In many cases homoskedastic and heteroskedastic SEs are similar.
 - ► However, in some cases, robust SE is larger and rightly so.
- \triangleright Coefficient estimates. R^2 etc. are remain the same.

Case Study: Gender gap in earnings?

- Earning determined by many factor
- ► The idea of gender gap:
 - ▶ Is there a systematic wage differences between male and female workers?

Case Study: Gender gap - How data is born?

Case Study

00000000

- Current Population Survey (CPS) of the U.S.
 - Administrative data
- ► Large sample of households
- Monthly interviews

- Rotating panel structure: interviewed in 4 consecutive months, then not interviewed for 8 months, then interviewed again in 4 consecutive months
- ► Weekly earnings asked in the "outgoing rotation group"
 - In the last month of each 4-month period
- See more on MORG: "Merged outgoing rotation group"
- Sample restrictions used:
 - Sample includes individuals of age 16-65
 - Employed (has earnings)
 - Self-employed excluded

p-values

Case Study: Gender gap - the data

- ▶ Download data for 2014 (316,408 observations) with implemented restrictions N = 149,316
- Weekly earnings in CPS
 - Before tax

- Top-coded very high earnings
 - ► at \$2,884.6 (top code adjusted for inflation, 2.5% of earnings in 2014)
- Would be great to measure other benefits, too (yearly bonuses, non-wage benefits). But we don't measure those.

Case Study: Gender gap - control for hours

Case Study 000000000

- Need to control for hours
 - Women may work systematically different in hours than men.
- Measure usual weekly working hours.
- Divide weekly earnings by 'usual' weekly hours (part of questionnaire)

Usual Weekly Hours

Earning per hour

Gender	mean	p25	p50	p75	p90	p95
Male	\$ 24	13	19	30	45	55
Female	\$ 20	11	16	24	36	45
% gap	-17%	-16%	-18%	-20%	-20%	-18%

▶ 17% difference on average in per hour earnings between men and women

Case Study: Gender gap transform w In

► To use simple linear regression we take logs.

Usual Weekly Hours in logs

Earning per hour in logs

Case Study: Gender gap in comp science occupation - Analysis

p-values

▶ One key reason for gap could be women being sectors / occupations that pay less. Focus on a single one: Computer science occupations, N = 4.740

$$ln(w)^E = \alpha + \beta \times G_{female}$$

- ▶ We regressed log earnings per hour on G binary variable that is one if the individual is female and zero if male.
- ▶ The log-level regression estimate is $\hat{\beta} = -0.1475$
 - female computer science field employee earns 14.7 percent less, on average, than male with the same occupation in this dataset.
- Statistical inference based on 2014 data.
 - ► SE: .0177; 95% CI: [-.182 -.112]
 - Simple vs robust SE Here no practical difference.

Case Study: Gender gap in comp science occupation - Generalizing

p-values

- ► In 2014 in the U.S.
 - the population represented by the data
- ▶ we can be 95% confident that the average difference between hourly earnings of female CS employee versus a male one was -18.2% to -11.2%.
- ► This confidence interval does not include zero.
- Thus we can rule out with a 95% confidence that their average earnings are the same.
 - ► We can rule this out at 99% confidence as well

Case Study: Gender gap in market analyst occupation

- Market research analysts and marketing specialists, N=281, where females are 61%.
 - Average hourly wage is \$29 (sd:14.7)
- ▶ The regression estimate is $\hat{\beta} = -0.113$:
 - Female market research analyst employee earns 11.3 percent less, on average, than men with the same occupation in this dataset.
- ► Generalization:

- \triangleright $SE[\hat{\beta}]$: .061; 95% CI: [-.23 +0.01]
 - We can be 95% confident that the average difference between hourly earnings of female CS employee versus a male one was -23% to +1% in the total US population
- This confidence interval does include zero. Thus, we can not rule out with a 95% confidence that their average earnings are the same. (p = 0.068)
- ▶ More likely, though, female market analysts earn less.
 - ▶ we can rule out with a 90% confidence that their average earnings are the same

Generalizing Results

- ► Testing hypotheses: decide if a statement about a general pattern is true.
- ▶ Most often: Dependent variable and the explanatory variable are related at all?
- ► The null and the alternative:

$$H_0: \beta_{true} = 0, \ H_A: \beta_{true} \neq 0$$

► The t-statistic is:

$$t = \frac{\hat{\beta} - 0}{SE(\hat{\beta})}$$

▶ Often t = 2 is the critical value, which corresponds to 95% CI. $(t = 2.6 \rightarrow 99\%)$

Language: significance of regression coefficients

- ► A coefficient is said to be "significant"
 - ▶ If its confidence interval does not contain zero
 - ► So true value unlikely to be zero
- ► Level of significance refers to what % confidence interval
 - Language uses the complement of the CI
- ► Most common: 5%, 1%
 - ► Significant at 5%
 - ightharpoonup Zero is not in 95% CI, Often denoted p < 0.05
 - ► Significant at 1%
 - ► Zero is not in 99% CI, (*p* < 0.01)

Ohh, that p=5% cutoff

- When testing, you start with a critical value first
- ▶ Often the standard to publish a result is to have a p value below 5%.
 - Arbitrary, but... [major discussion]
- If you find a result that cannot be told apart from 0 at 1% (max 5%), you should say that explicitly.

External validity

Dealing with 5-10%

Generalizing Results

- Sometimes regression result will not be significant at 5% but will be at 10%.
- ► What not to do? Well avoid:
 - ► a barely detectable statistically significant difference (p=0.073)

p-values

- \triangleright a margin at the edge of significance (p=0.0608)
- not significant in the normally accepted statistical sense (p=0.064)
- slight tendency toward significance (p=0.086)
- \triangleright slightly missed the conventional level of significance (p=0.061)
- More here

Dealing with 5-10%

Generalizing Results

- ▶ Sometimes regression result will not be significant at 1% (5%) but will be at 10%.
- ▶ What to take? It depends. (our view...)
- ▶ Sometimes you work on a proposal. Proof of concept.
 - To be lenient is okav.
 - ► Say the point estimate and note the 95% confidence interval.

p-values

- Sometimes looking for a proof. Beyond reasonable doubt.
 - Gender equality to be defended for a judge.
 - Here you wanna be below 1%
 - If not, say the p-value and note that at 1% you cannot reject the null of no difference
- ▶ Publish the p-value. Be honest...

Our two samples. What is the source of difference?

- Computer and Mathematical Occupations
 - ▶ 4740 employees, Female: 27.5%
 - ► The regression estimate of slope: -0.1475 ; 95% CI: [-.1823 -.1128]
- ► Market research analysts and marketing specialists
 - ▶ 281 employees, Female: 61%
- The regression estimate of slope is -0.113; 95% CI: [-.23 +0.01]
- Why the difference?

- Computer and Mathematical Occupations
 - ▶ 4740 employees, Female: 27.5%
 - ► The regression estimate of slope: -0.1475 ; 95% CI: [-.1823 -.1128]
- ► Market research analysts and marketing specialists
 - ▶ 281 employees, Female: 61%
- ▶ The regression estimate of slope is -0.113; 95% CI: [-.23 +0.01]
- Why the difference?
 - ► True difference: gender gap is higher in CS.
 - ▶ Statistical error: sample size issue → in small samples we may find more variety of estimates. (Why? Remember the SE formula.)
- Which explanation is true?

Our two samples. What is the source of difference?

- Computer and Mathematical Occupations
 - ▶ 4740 employees, Female: 27.5%
 - ► The regression estimate of slope: -0.1475 ; 95% CI: [-.1823 -.1128]
- ► Market research analysts and marketing specialists
 - ▶ 281 employees, Female: 61%
- ► The regression estimate of slope is -0.113; 95% CI: [-.23 +0.01]

p-values

- Why the difference?
 - True difference: gender gap is higher in CS.
 - Statistical error: sample size issue \longrightarrow in small samples we may find more variety of estimates. (Why? Remember the SE formula.)
- ► Which explanation is true?
 - We do not know!
 - Need to collect more data in CS industry.

Chance Events And Size of Data

- Finding patterns by chance may go away with more observations
 - Individual observations may be less influential
 - Effects of idiosyncratic events may average out
 - E.g.: more dates
 - Specificities to a single dataset may be less important if more sources
 - E.g.: more hotels
- ► More observations help only if
 - Errors and idiosyncrasies affect some observations but not all
 - Additional observations are from appropriate source
 - If worried about specificities of Vienna more observations from Vienna would not help

Prediction uncertainty

- ► Goal: predicting the value of *y* for observations outside the dataset, when only the value of *x* is known.
- ▶ We predict y based on coefficient estimates, which are relevant in the general pattern/population. With linear regression you have a simple model:

$$y_i = \hat{\alpha} + \hat{\beta}x_i + \epsilon_i$$

Prediction uncertainty

Generalizing Results

- Goal: predicting the value of v for observations outside the dataset, when only the value of x is known
- We predict y based on coefficient estimates, which are relevant in the general pattern/population. With linear regression you have a simple model:

$$y_i = \hat{\alpha} + \hat{\beta}x_i + \epsilon_i$$

▶ The estimated statistic here is a predicted value for a particular observation \hat{y}_i . For an observation j with known value x_i this is

$$\hat{y}_j = \hat{\alpha} + \hat{\beta} x_j$$

Generalizing Results

- ► Goal: predicting the value of *y* for observations outside the dataset, when only the value of *x* is known.
- ▶ We predict y based on coefficient estimates, which are relevant in the general pattern/population. With linear regression you have a simple model:

$$y_i = \hat{\alpha} + \hat{\beta}x_i + \epsilon_i$$

The estimated statistic here is a predicted value for a particular observation \hat{y}_j . For an observation j with known value x_j this is

$$\hat{y}_j = \hat{\alpha} + \hat{\beta} x_j$$

- Two kinds of intervals:
 - lacktriangle Confidence interval for the predicted value/regression line uncertainty about \hat{lpha},\hat{eta}
 - ▶ Prediction interval uncertainty about $\hat{\alpha}$, $\hat{\beta}$ and ϵ_i

- ► Confidence interval (CI) of the predicted value = the CI of the regression line.
- ▶ The predicted value \hat{y}_i is based on $\hat{\alpha}$ and $\hat{\beta}$ only.
 - ▶ The CI of the predicted value combines the CI for $\hat{\alpha}$ and the CI for $\hat{\beta}$.
- ▶ What value to expect if we know the value of x_j and we have estimates of coefficients $\hat{\alpha}$ and $\hat{\beta}$ from the data.
- ▶ The 95% CI of the predicted value 95% $CI(\hat{y}_i)$ is
 - ▶ the value estimated from the sample
 - plus and minus its standard error.

Confidence interval of the regression line II.

▶ Predicted average y has a standard error (homoskedastic case)

$$95\%CI(\hat{y}_j) = \hat{y} \pm 2SE(\hat{y}_j)$$

$$SE(\hat{y}_j) = Std[e]\sqrt{\frac{1}{n} + \frac{(x_j - \bar{x})^2}{nVar[x]}}$$

- ▶ Based on formula for regression coefficients, it is small if:
 - ightharpoonup coefficient SEs are small (depends on Std[e] and Std[x]).
 - \triangleright Particular x_i is close to the mean of x
 - We have many observations *n*
- \triangleright The role of n (sample size), here is even larger.
- ▶ Use robust SE formula in practice, but a simple formula is instructive

Model:

- ▶ In wage = $\alpha + \beta$ age
- Only one industry: market analysts, N = 281
- Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.</p>

VARIABLES	In wage		
age	0.014**		
	(0.003)		
Constant	2.732**		
	(0.101)		
Observations	281		
R-squared	0.098		

Case Study: Earnings and age - CI of regression line

- ► Log earnings and age
 - linearity is only an approximation
- Narrow CI as SE is small
- ► Hourglass shape

Generalizing Results

Smaller as x_j is closer to the mean of x

Confidence interval of the regression line - use

- Can be used for any model
 - ► Spline, polynomial
 - ► The way it is computed is different for different kinds of regressions (usually implemented in R packages)
 - always true that the CI is narrower
 - ▶ the smaller Std[e],
 - ightharpoonup the larger n and
 - ► the larger *Std*[x]
- ▶ In general, the CI for the predicted value is an interval that tells where to expect average *y* given the value of *x* in the population, or general pattern, represented by the data.

Case Study: Earnings and age - different fn form with CI

- Log earnings and age with:
 - Lowess

- Piecewise linear spline
- quadratic function
- 95% CI dashed lines
- ► What do you see?

Prediction interval

- ► Prediction interval answers:
 - Where to expect the particular y_j value if we know the corresponding x_j value and the estimates of the regression coefficients from the data.
- Difference between CI and PI.
 - The CI of the predicted value is about \hat{y}_j : where to expect the average value of the dependent variable if we know x_j .
 - The PI (prediction interval) is about y_j itself not its average value: where to expect the actual value of y_i if we know x_i .
- ▶ So PI starts with CI. But adds additional uncertainty $(Std[\epsilon_i])$ that actual y_j will be around its conditional.
- ► What shall we expect in graphs?

Confidence interval

Generalizing Results

Prediction interval

More on prediction interval

Generalizing Results

► The formula for the 95% prediction interval is

$$95\%PI(\hat{y}_j) = \hat{y} \pm 2SPE(\hat{y}_j)$$

$$\frac{1}{1} (x_i - \hat{y}_i)$$

$$SPE(\hat{y}_j) = Std[e]\sqrt{1 + \frac{1}{n} + \frac{(x_j - \bar{x})^2}{nVar[x]}}$$

- SPE Standard Prediction Error (SE of prediction)
 - It does matter here which kind of SF. you use!

Summarizes the additional uncertainty: the actual y_i value is expected to be spread around its average value.

External validity

- ► The magnitude of this spread is best estimated by the standard deviation of the residual.
- ▶ With SPE, no matter how large the sample we can always expect actual y values to be spread around their average values.
 - In the formula, all elements get very small if n gets large, except for the new element.

Reminder I: Multiple testing

Generalizing Results

- ► You are interested to find patterns
- ► There are hundred options
 - Many examples in medicine
- ▶ By chance you may find a significant relationship at 1%

p-values

- Hence: be very conservative
 - ► Some theory suggests using a very small p-value
 - ▶ Bonferroni correction too conservative

Reminder II: External validity

- ▶ Statistical inference helps us generalize to the population or general pattern
- ▶ Is this true beyond (other dates, countries, people, firms)?

External validity

Generalizing Results

- Statistical inference helps us generalize to the population or general pattern
- Is this true beyond (other dates, countries, people, firms)?

p-values

- As external validity is about generalizing beyond what our data represents, we can't assess it using our data.
 - ▶ We'll never really know. Only think, investigate, make assumption, and hope...

- ► Analyzing other data can help!
- \triangleright Focus on β , the slope coefficient on x.
- ▶ The three common dimensions of generalization are *time*, space, and other groups.
- ➤ To learn about external validity, we always need additional data, on say, other countries or time periods.
 - ▶ We can then repeat regression and see if slope is similar!

Stability of hotel prices - idea

- ► Here we ask different questions: whether we can infer something about the price—distance pattern for situations outside the data:
- ▶ Is the slope coefficient close to what we have in Vienna, November, weekday:
 - Other dates
 - Other cities
 - ▶ Other type of accommodation: apartments
- ► Compare them to our benchmark model result
- ▶ Learn about uncertainty when using model to some types of external validity.

Why carrying out such analysis?

- Such a speculation may be relevant:
 - Find a good deal in the future without estimating a new regression but taking the results of this regression and computing residuals accordingly.
 - Be able to generalize to other groups, date and places.

Benchmark model

Generalizing Results

The benchmark model is a spline with a knot at 2 miles.

$$ln(y)^{E} = \alpha_{1} + \beta_{1}x \mathbb{1}_{x < 2m} + (\alpha_{2} + \beta_{2}x) \mathbb{1}_{x \geq 2m}$$

Data is restricted to 2017, November weekday in Vienna, 3-4 star hotels, within 8 miles.

Benchmark model

Generalizing Results

The benchmark model is a spline with a knot at 2 miles.

$$ln(y)^{E} = \alpha_{1} + \beta_{1}x \mathbb{1}_{x < 2m} + (\alpha_{2} + \beta_{2}x) \mathbb{1}_{x \geq 2m}$$

Data is restricted to 2017, November weekday in Vienna, 3-4 star hotels, within 8 miles.

- ▶ Model has three output variables: $\alpha = 5.02$, $\beta_1 = -0.31$, $\beta_2 = 0.02$
- ightharpoonup α : Hotel prices are on average 151.41 euro (exp(5.02)) at the city center
- ▶ β_1 : hotels that are within 2 miles from the city center, prices are 0.31 log units or 36% (exp(0.31) 1) cheaper, on average, for hotels that are 1 mile farther away from the city center.
- β_2 : hotels in the data that are beyond 2 miles from the city center, prices are 2% higher, on average, for hotels that are 1 mile farther away from the city center.

Comparing dates

Generalizing Results

	(1)	(2)	(3)	(4)
VARIABLES	2017-NOV-weekday	2017-NOV-weekend	2017-DÈC-holiday	2018-JUNE-weekend
U . O O	0.01**	0.4444	0.05**	0.01**
dist_0_2	-0.31**	-0.44**	-0.36**	-0.31**
	(0.038)	(0.052)	(0.041)	(0.037)
dist_2_7	0.02	-0.00	0.07	0.04
	(0.033)	(0.036)	(0.050)	(0.039)
Constant	5.02**	5.51**	5.13**	5.16**
	(0.042)	(0.067)	(0.048)	(0.050)
Observations	207	125	189	181
R-squared	0.314	0.430	0.382	0.306

Note: Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1 Source: hotels-europe data. Vienna, reservation price for November and December 2017, June in 2018

External validity

Comparing dates - interpretation

- November weekday and the June weekend: $\hat{\beta}_1 = 0.31$
 - ► Estimate is similar for December (-0.36 log units)
 - Different for the November weekend: they are 0.44 log units or 55% (exp(0.44) 1) cheaper during the November weekend.
 - ▶ The corresponding 95% confidence intervals overlap somewhat: they are [-0.39,-0.23] and [-0.54,-0.34].
 - Thus we cannot say for sure that the price-distance patterns are different during the weekday and weekend in November.

Comparing across cities

	(1)	(2)	(3)
VARIABLES	Vienna	Amsterdam	Barcelona
dist_0_2	-0.31**	-0.27**	-0.06
	(0.038)	(0.040)	(0.034)
dist_2_7	0.02	0.03	-0.05
	(0.033)	(0.037)	(0.058)
Constant	5.02**	5.24**	4.67**
	(0.042)	(0.041)	(0.041)
Observations	207	195	249
R-squared	0.314	0.236	0.023

Note: Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1Source: hotels data. November 2017, weekday

Comparing across accommodation types

VARIABLES	(1) Hotels	(2) Apartments
VARIABLES	Hotels	Apartments
dist_0_2	-0.31**	-0.26**
	(0.035)	(0.069)
dist_2_7	0.02	0.12
	(0.032)	(0.061)
Constant	5.02**	5.15**
	(0.044)	(0.091)
Observations	207	92
R-squared	0.314	0.134

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Source: hotels data. Vienna, November 2017

Generalizing Results

B1 00000000

- ► Fairly stable overtime but uncertainty is larger
- Variation across cities, may not transfer to other cities
- Apartments similar to hotels
- Evidence of some external validity in Vienna
- External validity in other cities may vary, we do not know
- External validity if model applied beyond data, there is additional uncertainty!