occurs with probability at most α . So in all three cases, $\tau^a = \tau^b$ or $\tau^a < \tau^b$ or $\tau^a > \tau^b$, we have $\Pr(\mathcal{I}_v^- \supseteq \tau_{\min}) \ge 1 - \alpha$, proving (ii).

By a parallel argument, we obtain analogous $1-\alpha$ upper intervals, \mathcal{I}_c^+ and \mathcal{I}_v^+ , of the form $(-\infty, \tilde{\tau})$ for τ if $\tau^a = \tau^b = \tau$ or without restrictions for τ_{max} . Taking the intersections, $\mathcal{I}_c = \mathcal{I}_c^- \cap \mathcal{I}_c^+$ and $\mathcal{I}_v = \mathcal{I}_v^- \cap \mathcal{I}_v^+$, of two one-sided $1-\alpha/2$ intervals yields analogous two-sided $1-\alpha$ intervals for τ if $\tau^a = \tau^b = \tau$ or without restrictions for the interval $[\tau_{\min}, \tau_{\max}]$. In most cases, \mathcal{I}_v can be constructed by taking the union of \mathcal{I}_c and the two two-sided intervals constructed from the matched sets using each separate version of control. When this union is disjoint, \mathcal{I}_v is the shortest interval that contains all three intervals.

In case (ii), the proof above that $\Pr(\mathcal{I}_v \supseteq \tau_{\min}) \ge 1 - \alpha$ is similar to, but not quite identical to, results in Lehmann (1952), Berger (1982) and Laska and Meisner (1989). These authors proposed tests that would invert to yield as a confidence interval the shortest interval \mathcal{I}_* containing $\{\tau_0 : P_{\tau_0}^a > \alpha \text{ or } P_{\tau_0}^b > \alpha\}$, whereas \mathcal{I}_v is the shortest interval containing $\{\tau_0 : P_{\tau_0} > \alpha \text{ or } P_{\tau_0}^b > \alpha\}$, thereby ensuring $\mathcal{I}_v \supseteq \mathcal{I}_c$. Of course, $\mathcal{I}_v \supseteq \mathcal{I}_*$, but unlike \mathcal{I}_* , our method ensures that \mathcal{I}_v and \mathcal{I}_c both simultaneously cover $\tau^a = \tau^b = \tau$ at rate $1 - \alpha$ when there is actually only a single version of treatment. Because \mathcal{I}_c is built using all of the data and under stronger assumptions, it is unlikely that \mathcal{I}_* will be much shorter than \mathcal{I}_v ; however, this logical possibility is the price for reporting the usual interval, \mathcal{I}_c , without multiplicity correction.

Why not report a single robust interval like \mathcal{I}_* instead of two intervals, \mathcal{I}_c and \mathcal{I}_v , that have slightly more nuanced coverage properties? A simple example may help illustrate the advantage of reporting \mathcal{I}_c and \mathcal{I}_v over \mathcal{I}_* . Suppose that \mathcal{I}_* and \mathcal{I}_v both contain zero but \mathcal{I}_c does not. If we choose to report \mathcal{I}_* then we have little additional information to determine why \mathcal{I}_* contains zero – is Fisher's sharp null true or is the smaller of the two versions of