ST5201: Basic Statistical Theory Chapter 1-9: Review

CHOI Yunjin stachoiy@nus.edu.sg

Department of Statistics and Applied Probability National University of Singapore (NUS)

Thursday 9th November, 2017

Outline

- Announcement
- Some information about final
- Review

Announcement

- Assignment 4 released.
 - Due on 14th of November by 9 pm

Information about final

- Does it cover the things before midterm?
 - Yes. Chapter 1 to 9 are all subject to the final exam.
- Will the tables be provided?
 - Yes.
- How can I review my midterm paper?
 - You can email me (stachoiy@nus.edu.sg) to make an appointment. The last day you can review your paper is 15th of November.

Probability

- Sample Space
 - The set that contain all the possible outcomes
 - Can be finite or infinite
- Probability Measure
 - $P(\Omega) = 1$
 - $0 \le P(A) \le 1$
 - $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i), \{A_i\}$ are disjoint
- Apply the properties of probability measure to random variables:
 - For discrete r.v.'s, the *summation* of PMF over all the possible values is 1.
 - For cont. r.v.'s, the *integral* of PDF over the support is 1.
 - For discrete r.v.'s, $0 \le P(X = x_i) \le 1$ for any x_i
 - For cont. r.v.'s, $f(x) \ge 0$ for any $x \Leftarrow f(x)$ can be larger than 1.
 - $P(X \in A)$ can be calculated by summation (for discrete r.v.) or integral (for cont. r.v.)

Probability

- Sample Spaces With Equally-likely Outcomes
 - \blacksquare Identify the cardinality of the sample space n
 - \blacksquare Identify the cardinality of event of interest m
 - Probability: m/n
- Generally used counting methods:
 - \blacksquare Sampling with replacement: n^r permutations
 - Sampling without replacement: ${}_{n}P_{r}$ permutations
 - Sampling without replacement: ${}_{n}C_{r}$ combinations
- Conditional Probability
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - For discrete r.v.'s, $p_{X|Y}(x|y) = \frac{P(X=x,Y=y)}{P(Y=y)}$
 - For cont. r.v.'s, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

Probability

- Multiplication Law
 - Events: $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$
 - \blacksquare Discrete r.v.'s: $p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y) = p_{Y|X}(y|x)p_X(x)$
 - Cont. r.v.'s: $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$
- Law of Total Probability
 - Events: $P(A) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$, where B_i is a division of Ω
 - Discrete r.v.'s: $p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y)$
 - Cont. r.v.'s: $f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy$
- Bayes Rule
 - Events: $P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^n P(B_i)P(A|B_i)}$, where B_i is a division of Ω
 - r.v.'s: not referred
- Independence
 - Events: $P(A \cap B) = P(A)P(B)$
 - r.v.'s: will be referred later

Random Variables

- Random Variable: a function from Sample Space to Real Numbers
 - A function of a random variable is also a random variable
 - Example: X|Y = y is a r.v.; E(X|Y) is a r.v.
 - However, E(X|Y=y) is a constant
- Discrete r.v.'s: PMF/CDF/MGF
 - \blacksquare Bernoulli r.v.: 2 outcomes, parameter p, mean p, variance pq
 - Binomial r.v.: n+1 outcomes, parameters n and p, mean np, variance npq; can be viewed as summation of n Bernoulli r.v.'s
 - Geometric r.v.: $\Omega = \{1, 2, 3, \dots\}$, parameter p, mean 1/p, variance $(1-p)/p^2$; number of trials until first success
 - \blacksquare Negative Binomial r.v.: $\Omega = \{r, r+1, r+2, \cdots\},$ parameter $r, \, p$
 - Hypergeometric r.v.
 - Possion r.v.: $\Omega = \{0, 1, 2, 3, \dots\}$, parameter λ , mean λ , variance λ variance; related to Poisson Process
 - For 2 indept Poisson r.v.'s., $X + Y \sim Pois(\lambda_x + \lambda_y)$

Random Variables

- Continuous r.v.'s
 - Characterization: PDF/CDF/MGF
 - Difference between PDF and PMF: 1. To calculate the probability of an event, we take integral of PDF and summation of PMF; 2. PDF f(x) means $P(X \in (x, x + \Delta)) \approx f(x)\Delta$, and PMF p(x) means P(X = x) = p(x); 3. Hence, f(x) can be larger than 1, but p(x) cannot

■ Examples:

- Uniform r.v.: parameter a and b, mean (a + b)/2, variance $(b a)^2/12$
- Exponential r.v.: parameter λ , mean $1/\lambda$, variance $1/\lambda^2$
- Gamma r.v.
- Beta r.v.
- Normal r.v.: parameter μ and σ^2 , mean μ , variance σ^2 Use Z-table to check probabilities and quantiles
- Functions of a r.v., where Y = g(X)
 - Find CDF of Y with $F_Y(y) = P(Y \le y) = P(g(X) \le y)$, which is an event about X; then figure out the PDF by derivation
 - Change-of-Variable Technique

Joint Distributions

- Joint dist of 2 discrete r.v.'s
 - Joint PMF: p(x, y) = P(X = x, Y = y)
 - Joint Probability for any set C: $P((X,Y) \in C) = \sum_{(x,y) \in C} p(x,y)$
 - Marginal pmf: $p_X(x) = P(X = x) = \sum_y p(x, y)$
- Joint dist. of 2 cont. r.v.'s
 - Joint PDF: integrable function f(x,y); integration over \mathbb{R}^2 is 1
 - Joint Probability for any set C: $P((X,Y) \in C) = \int_C \int f(x,y) dx dy$
 - Marginal pdf: $f_X(x) = \int_y f(x,y)$
 - Generalization to more than 2 r.v.'s
- Difficulty here $P((X,Y) \in C)$:
 - Figure out the region to integrate
 - \blacksquare According to the region, figure out the limits for x and y
 - Integration
 - Example: Let (X,Y) be uniformly distributed over a region C (figure representation), what is $f_{X,Y}$?

Independence, & Conditional Prob

- Conditional Dist.
 - Given Y = y, X|Y = y is a new r.v.
 - X|Y = y has its own pdf/pmf, we want to figure that out
 - $p_{X|Y}(x|y) = p_{X,Y}(x,y)/p_Y(y), \ f_{X|Y}(x|y) = f_{X,Y}(x,y)/f_Y(y)$
- Independence
 - F(x,y) = F(x)F(y) for any x and y, or f(x,y) = f(x)f(y)/p(x,y) = p(x)p(y).
 - Shortcut to show independence: If f(x, y) can be written as the product of a function about x and a function about y, i.e. f(x, y) = g(x)h(y) for any function g and h, then X and Y are indept.
 - When X and Y are independent, h(X) and g(Y) are also independent
 - If X and Y are indept, then X|Y = y is the same with $X \Rightarrow E(X|Y) = E(X)$.

Review: Independence

When X and Y are indept., then h(X) and g(Y) are also indept, as long as $h(\cdot)$ and $g(\cdot)$ are well-defined functions

- It is possible that $h(\cdot)$ and $g(\cdot)$ are not well defined, say, h(x) = 1/x when $X \sim Ber(.5)$, $g(y) = \ln(Y)$ when $Y \sim N(0,1)$. In this case, take care of the domain of functions and range of r.v.'s
- Another example is the inverse function. For example, when 3X and 2Y + 1 are independent, then X and Y are independent, here h(x) = x/3, and g(y) = (y 1)/2.
- However, we cannot say that when X and Y^2 are independent, X and Y are independent, when $X \sim N(0,1)$, $Y \sim N(0,1)$. It is impossible to find a function from Y^2 to Y (cannot define the sign of $\sqrt{Y^2}$). On the other hand, in this example, if $Y \sim Binomial(3,0.4)$, $\sqrt{Y^2}$ will work, and the independence claim stands.

Functions of r.v.'s

- Change-of-Variable Technique
 - 1 r.v. Let Y = g(X), if $g(\cdot)$ is differentiable and strictly monotonic, then

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, & \text{if } y = g(x) \text{ for some } x \\ 0, & \text{if } y \neq g(x) \text{ for all } x \end{cases}$$

Note: Find the inverse function of $g(\cdot)$ first, and then take the derivative of this inverse function.

■ 2 r.v.'s: Let $U = g_1(X, Y)$, $V = g_2(X, Y)$, where g_1 and g_2 have cont. partial derivatives, and there exist h_1, h_2 so that $X = h_1(U, V)$, $Y = h_2(U, V)$ for all values X and Y, then

$$f_{U,V}(u,v) = \begin{cases} f_{X,Y}(h_1(u,v), h_2(u,v))|J^{-1}|, & (u,v) \in S^* \\ 0, & \text{otherwise,} \end{cases}$$

$$\text{where } J = \det \left[\begin{array}{cc} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \\ \end{array} \right].$$

Note: The result should contain u and v only. Take care of S^* .

Functions of Jointly Dist. r.v.'s

Convolution

- Summation of 2 indept. r.v.'s
- $f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$
- Later, we introduced MGF to figure out the sum of 2 indept r.v.'s.
- Special case: order statistics
 - For *n* independent r.v.'s, order them by $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$.
 - PDF:

$$f_{X_{(k)}}(x) = \frac{n!}{(n-k)!(k-1)!} f(x) F^{k-1}(x) [1 - F(x)]^{n-k}$$

- Special case: $f_{X_{(1)}}(x) = nf(x)[1 F(x)]^{n-1}$
- Special case: $f_{X_{(n)}}(x) = nf(x)F^{n-1}(x)$

Expectation

- Definition: $E(X) = \sum_{x} xp(x)$, $E(X) = \int_{-\infty}^{\infty} xf(x)dx$
- Intuition: Long-run average
- Properties
 - \blacksquare $E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx;$
 - $\blacksquare E(g(X,Y)) = \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx;$
 - For any linear function $h(X_1, X_2, ..., X_n)$, $E[h(X_1, X_2, ..., X_n)] = h(E(X_1), E(X_2), ..., E(X_n))$
 - Example:

$$E(aX + bY) = aE(X) + bE(Y),$$

no matter whether X and Y are indep. or not.

■ Markov's Inequality: non-negative r.v.,

$$P(X \ge a) \le E(X)/a$$

Variance & Standard Deviation

- Motivation: Discribe the "spread" of the r.v.
- Definition: $E[(X \mu)^2]$, where $\mu = E(X)$; $SD(X) = +\sqrt{Var(X)}$
- Properties:
 - $\operatorname{Var}(X) = E(X^2) [E(X)]^2$
 - If Y = a + bX, then $Var(Y) = b^2 Var(X)$, SD(X) = |b|SD(X)
 - \blacksquare Only when X and Y are independent,

$$Var(X + Y) = Var(X) + Var(Y).$$

Otherwise
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$
.

■ Chebyshev's Inequality: any r.v.,

$$P(|X - \mu| \ge a) \le Var(X)/a^2$$

Covariance & Correlation Coefficient

■ Covariance

- Cov(X,Y) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y)
- positively correlated/negatively correlated/uncorrelated
- Remark: Independence ⇒ Uncorrelated; Uncorrelated ⇒ Independence
- Properties: Var(X) = Cov(X, X), $Cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j)$.
- Correlation coefficient
 - $\text{ } Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$
 - Remark: $-1 \le Corr(X, Y) \le 1$.
 - Properties: Corr(a + bX, c + dY) = sign(b)sign(d)Corr(X, Y)

Conditional Expectation

- Conditional Expectation
 - $E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)$ for discrete r.v.; $E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$ for cont. r.v.
 - Interpretation: Note that X|Y=y is a new r.v., E(X|Y=y) is the expectation on this r.v.
- Law of Total Expectation
 - E[X|Y] is a function of Y. A function of a r.v. is also a r.v..

$$E[E(X|Y)] = E(X)$$

■ Random sum:

$$E(\sum_{i=1}^{N} X_i) = E(E(\sum_{i=1}^{N} X_i | N)) = E(NE(X_1)) = E(N)E(X_1).$$

Moment Generating Function

- Moment Generating Function
 - $M_X(t) = E(e^{tX})$: a function of t, not r.v.
 - Characterization of a r.v. (similar as CDF/PDF/PMF)
 - Calculate moments:

$$E[X^k] = \frac{d^k}{dt^k} M_X(t)|_{t=0}$$

■ For indept. r.v.'s $X_1, X_2, ..., X_t$

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

- Linear Transformation: $M_{aX+b}(t) = e^{bt} M_X(at)$.
- With MGF, find out the summation of two indept Poisson r.v. is still Poisson r.v., the summation of two indept. normal r.v. is still normal r.v.
- MGF for common distributions

MGF: examples

	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$(pe^t+1-p)^n$	пр	np(1-p)
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\exp\{\lambda(e^t-1)\}$	λ	λ
Geometric with parameter $0 \le p \le 1$	$x = 0, 1, 2, \dots$ $p(1 - p)^{x-1}$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial with parameters r, p ; $0 \le p \le 1$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
	$n = r, r + 1, \dots$			

MGF: examples-cont'd

	Probability density function $f(x)$	Moment generating function, $M(t)$	Mean	Variance
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential with parameter $\lambda > 0$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma with parameters $(s,\lambda), \lambda > 0$	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^s$	$\frac{s}{\lambda}$	$\frac{s}{\lambda^2}$
Normal with parameters (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2

Properties of Normal Distribution

Suppose $X \sim N(\mu, \sigma^2)$, then

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$, $SD(X) = \sigma$

$$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$$

■ If
$$Y = a + bX$$
, then

$$Y \sim N(a + b\mu, b^2\sigma^2)$$

 $M_Y(t) = e^{(a+b\mu)t + b^2\sigma^2t^2/2}$

If X and Y are independent, $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, then

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Suppose (X, Y) is a bivariate normal vector with parameters μ_X , μ_Y , σ_X , σ_Y , ρ , then

$$X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2)$$

$$Corr(X,Y) = \rho, Cov(X,Y) = \rho \sigma_X \sigma_Y$$

■
$$X|Y = y \sim N(\mu_X + \rho \sigma_X(y - \mu_Y)/\sigma_Y, (1 - \rho^2)\sigma_X^2)$$

 $Y|X = x \sim N(\mu_Y + \rho \sigma_Y(x - \mu_X)/\sigma_X, (1 - \rho^2)\sigma_Y^2)$

$$E(X|Y) \sim N(\mu_X, \rho^2 \sigma_X^2), E(Y|X) \sim N(\mu_Y, \rho^2 \sigma_Y^2)$$

Convergence of R.V.'s

- Three types of convergence: a sequence of r.v.'s
 - Convergence in distribution: point-wise convergence of CDF $F_{X_n}(x) \to F_X(x)$, for any x where $F_X(x)$ is cont.
 - Convergence in probability: relevant with sample space $P(|X_n X| \le \epsilon) \to 0$, as $n \to \infty$
 - Almost sure convergence: relevant with sample space; point-wise convergence for r.v.'s X_n ("points" means "outcomes") $P(X_n(\omega) \to X(\omega)) = 1$
 - Property: a.s. convergence ⇒ Convergence in Prob ⇒ Convergence in Dist.

Convergence of R.V.'s

Properties of convergence:

- If $X_n \xrightarrow{P} \mu$ and $g(\cdot)$ is a continuous function, then $g(X_n) \xrightarrow{P} g(\mu)$
- If $X_n \stackrel{d}{\to} \mu$ and $g(\cdot)$ is a continuous function, then $g(X_n) \stackrel{d}{\to} g(\mu)$
- If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$, then $X_n + Y_n \stackrel{P}{\to} X + Y$
- If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$
- Slutsky's Theorem: If $X_n \stackrel{d}{\to} X$ in distribution and $Y_n \stackrel{P}{\to} a$, a is a constant, then
 - $Y_n X_n \stackrel{d}{\to} aX$
 - $\blacksquare Y_n + X_n \stackrel{d}{\to} X + a$

Limit Theorems

- Law of Large Number (LLN)
 - Conditions: independent, share μ and σ
 - \blacksquare Results: $\bar{X}_n \stackrel{a.s./P}{\Longrightarrow} \mu$
 - Application: Monte Carlo method for integration
- Central Limit Theorem (CLT)
 - \blacksquare Conditions: i.i.d, μ , σ , and mgf exists in a neighborhood of 0
 - Results: $\sqrt{n} \frac{\bar{X}_n \mu}{\sigma} \xrightarrow{d} Z \Leftrightarrow \frac{\sum_{i=1}^n X_i n\mu}{\sqrt{n}\sigma} \xrightarrow{d} Z, Z \sim N(0, 1)$
 - Applications in many fields, especially for unknown distribution.
 - Normal approximations of Poisson distribution

Sample mean and Sample variance

- Sample mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - With LLN, $\bar{X} \to E(X)$; with CLT, the limiting dist. of sample mean is clear
- Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$
 - $E(S^2) = Var(X)$; When the variance of S^2 converges to 0 (which usually holds), $S^2 \to Var(X)$
- Sample standard deviation: $S = \sqrt{S^2}$
 - If $S^2 \to \operatorname{Var}(X)$, then $S \to SD(X)$; S is biased
- Delta Method
 - If $\sqrt{n}(Y_n \theta) \stackrel{d}{\to} N(0, \sigma^2)$, and the function g has nonzero derivative at θ , then

$$\sqrt{n}(g(Y_n) - g(\theta)) \stackrel{d}{\to} N(0, [g'(\theta)]^2 \sigma^2)$$

■ Generalization of CLT and asymptotic normality of MLE

χ^2 -distribution and t-distribution

- $= \chi^2 \text{distribution}$
 - If $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} N(0,1)$, then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$
 - Expectation: n; Variance: 2n; mgf: $(1-2t)^{-n/2}$, t<1/2
 - If $X \sim \chi_n^2$, indept. with $Y \sim \chi_m^2$, $X + Y \sim \chi_{n+m}^2$
 - If the data is normal distributed, $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$
- \blacksquare t-distribution
 - If $X \sim N(0,1)$, indept. with $Y \sim \chi_n^2$, then $\frac{X}{\sqrt{Y/n}} \sim t_n$
 - Expectation: 0 when n > 1; Variance: n/(n-2) when n > 2; mgf does not exist
 - If the data is normal distributed, $\sqrt{n} \frac{\bar{X} \mu}{S} \sim t_{n-1}$
 - When the df $n \ge 30$, t_n is very close to standard normal distribution

χ^2 -distribution and t-distribution

- Use χ^2 -table and t-table: Find the df first, and then identify the quantile
- Use χ^2 distribution and t-distribution to construct confidence interval when data is normal distributed

$$\mu : (\bar{X} - \frac{S}{\sqrt{n}} t_{n-1}(\alpha/2), \bar{X} + \frac{S}{\sqrt{n}} t_{n-1}(\alpha/2))$$
$$\sigma^2 : \left(\frac{(n-1)S^2}{\chi_{n-1}^2(\alpha/2)}, \frac{(n-1)S^2}{\chi_{n-1}^2(1-\alpha/2)}\right)$$

Parameter Estimation

- Parametric model: Estimate the parameter and the whole distribution is known
 - Remark: for any value in the parameter space, there is a corresponding PDF/PMF
 - For example: $f(x) = \begin{cases} c, & 0 < x, y < 1 \\ 0, & \text{otherwise} \end{cases}$ is not parametric distribution, as c can be found as a fixed value.

$$f(x) = \begin{cases} 4c, & 0 < x < 1/2 \\ 4(1-c)/3, & 1/2 < x < 1 \text{ is a parametric distribution} \\ 0, & \text{otherwise} \end{cases}$$
 with parameter space $(0,1)$

- Estimators
 - An estimator is a function of X_1, \dots, X_n , which is also a r.v.

Estimators

- Method of Moments:
 - \blacksquare For K unknown parameters, calculate K lower order moments
 - Express the parameters with these moments
 - Substitute the moments with sample moments to have the estimator
 - Consistent
- Maximum Likelihood Estimates
 - Likelihood function: $L_n(\theta) = f(X_1, X_2, \dots, X_n | \theta)$
 - MLE: maximizer of $L_n(\theta)$
 - Method 1: figure out the maximizer of $L_n(\theta)$ directly
 - Method 2: Find log-likelihood $l_n(\theta) = \ln L_n(\theta)$, calculate the derivative of $l_n(\theta)$ and solve the equation $l'_n(\theta) = 0$. Verify the solution satisfies that $l_n(\theta)$ achieves the maximum
 - Consistent
 - Asymptotic Normality: Fisher information $I(\theta) = -E(l''(\theta))$ under the smoothness condition,

$$\sqrt{nI(\theta)}(\hat{\theta} - \theta) \to N(0, 1)$$

Parameter Estimation

- Assessment of Estimators
 - Sampling distribution: distribution of $\hat{\theta}_n$
 - \blacksquare Consistency: $\hat{\theta} \to \theta$ in probability. Remark: MLE and MM are both consistent
 - Unbias: $E(\hat{\theta}_n) = \theta$, for any n
 - Variance: $Var(\hat{\theta}_n)$ is small
 - Mean Squared Error: $MSE(\hat{\theta}_n) = E(\hat{\theta}_n \theta)^2 = Bias^2 + Var$
 - Remark: MSE converges to $0 \Rightarrow \hat{\theta}_n$ is consistent
- Cramer-Rao Lower Bound
 - For any unbiased estimator $\hat{\theta}_n$,

$$Var(\hat{\theta}_n) \ge 1/(nI(\theta)),$$
 any n .

- Efficiency: $(nI(\theta))^{-1}/\text{Var}(\hat{\theta}_n)$
- If $Var(\hat{\theta})_n = 1/(nI(\theta))$ ($\hat{\theta}_n$ has efficiency 1), then $\hat{\theta}_n$ is efficient.

Confidence Interval

- Confidence Interval
 - \blacksquare CI is a random interval (L, U)
 - $100(1-\alpha)\%$ CI for θ means that

$$P(\theta \in (L, U)) \ge 1 - \alpha,$$

and $1 - \alpha$ is called *confidence level*

■ A general set-up for (approximate) $100(1-\alpha)\%$ CI:

$$(\hat{\theta} - z_{\alpha/2} \frac{1}{\sqrt{nI(\theta)}}, \hat{\theta} + z_{\alpha/2} \frac{1}{\sqrt{nI(\theta)}}),$$

where $\hat{\theta}$ is MLE, $z_{\alpha/2}$ is $\Phi^{-1}(1-\alpha/2)$, n is the sample size, $I(\theta)$ is Fisher information

■ Meaning: if we construct this interval for N times, about $(1-\alpha)N$ of these intervals contain θ

Hypothesis Testing and Type I, Type II errors

■ Elements in a hypothesis test:

- Null and alternative hypotheses, H_0 and H_a
- Test statistic and testing criteria
- Significance level
- \blacksquare p value and interpretation
- We are expecting making some error, since no one knows the truth

type I error = erroneous rejection of H_0 while H_0 is true. type II error = erroneous retention of H_0 while H_1 is true.

■ Significance level $0 < \alpha < 1$: the probability of committing a type I error.

Likelihood Ratio Tests

LRT for two simple hypotheses

Suppose that $H_0: \theta = \theta_0$ and $H_a: \theta = \theta_1$ are simple hypotheses with $\theta_0, \theta_1 \in \Theta$. The likelihood-ratio test statistic is defined by

$$R = \frac{\operatorname{lik}(\theta_0)}{\operatorname{lik}(\theta_1)}$$

which is a function of the sample x_1, \dots, x_n . A LRT with significance level $0 < \alpha < 1$ is a test that has a rejection region of the form $\{R \le c\}$ where $c \ge 0$ is chosen so that $P(R \le c|H_0) = \alpha$

Generalized Likelihood Ratio Test

The LR test statistic for testing $H_0: \theta \in \Theta_0$ versus $H_a: \theta \in \Theta_1 \equiv \Theta_0^c$ (i.e., $\Theta_0 \cup \Theta_1 = \Theta$) is defined

$$\Lambda = \frac{\max_{\theta \in \Theta_0} \operatorname{lik}(\theta)}{\max_{\theta \in \Theta} \operatorname{lik}(\theta)} = \frac{\max_{\theta \in \Theta_0} \operatorname{lik}(\theta)}{\operatorname{lik}(\hat{\theta})} \le 1$$

which is a function of the sample x_1, \cdots, x_n , where $\hat{\theta}$ is the mle of θ . A generalized LRT with significance level $0 < \alpha < 1$ is a test that has a rejection region of the form $\{\Lambda \leq \lambda_0\}$ where $0 \leq \lambda_0 \leq 1$ is chosen so that $P(\Lambda \leq \lambda_0|H_0) = \alpha$

The two-sided Z Test and T|t test

The two-sided Z Test

The LRT with significance level α for testing

 $H_0: \mu = \mu_0$ against $H_a: \mu \neq \mu_0$ for $N(\mu, \sigma^2)$ with σ known is a test that has a rejection region given by

$$\left\{ |\bar{X} - \mu_0| \ge Z(\alpha/2) \frac{\sigma}{\sqrt{n}} \right\}$$

The two-sided t Test

The LRT with significance level α for testing

 $H_0: \mu = \mu_0$ against $H_a: \mu \neq \mu_0$ for $N(\mu, \sigma^2)$ with unknown σ is a test that has a rejection region (red in the below graph) given by

$$\left\{ |\bar{X} - \mu_0| \ge t_{n-1}(\alpha/2) \frac{S}{\sqrt{n}} \right\}$$

where
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X - \bar{X})^2$$