0.1 Homework 4

0.1.1 Mean-field Solutions for Extended Hubbard Model

The Hamiltonian of the extended Hubbard model can be written as:

$$\hat{H} = -t \sum_{\langle i,j \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \mathbf{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_{i} n_{j}$$

where:

- $c^{\dagger}_{i\sigma}$ and $c_{i\sigma}$ are the fermionic creation and annihilation operators for an eletron with spin σ at site i.
- $n_{i\sigma}=c_{i\sigma}^{\dagger}c_{i\sigma}$ is the number operator for electrons with spin σ at site i.
- $n_i = \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i\sigma}$ is the number operator for total electrons at site i.
- U>0 is the strength of the on-site interaction between electrons.
- V>0 is the strength of the interaction between electrons at neighboring sites.
- t > 0 is the hopping strength of the electrons.

We consider the case of half-filling for two lattice sites ($\langle N \rangle = \langle n_{1\uparrow} + n_{1\downarrow} + n_{2\uparrow} + n_{2\downarrow} \rangle$). In the mean-field approximation, calculate the ground state energy E_{MF} . Please consider initial mean-field values with following four cases.

1. Case 1: Paramagnetic(PM). Initial mean-field value $\langle n_{i\sigma} \rangle = \frac{1}{2}$.

2. Case 2: Ferromagnetic(FM). Initial mean-field value $\langle n_{i\uparrow} \rangle = 1$ and $\langle n_{i\downarrow} \rangle = 0$.

3. Case 3: Anti-ferromagnetic(AFM). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha$ and $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha$.

4. Case 4: Charge density wave(CDW). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 - \alpha$ and $\langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha$.