

MATEMATIKA PEMINATAN

VEKTOR II

Tujuan Pembelajaran

Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.

- 1. Memahami tentang pembagian vektor.
- 2. Memahami tentang teorema Menelaus.
- 3. Dapat melakukan operasi perkalian dua vektor.
- 4. Dapat menentukan sudut antara dua vektor.
- 5. Dapat menentukan panjang dari jumlah dan selisih vektor.
- 6. Dapat menentukan proyeksi suatu vektor pada vektor lain.

A. Pembagian Vektor

1. Pembagian Ruas Garis

Titik P membagi ruas garis AB dengan perbandingan m:n, sehingga $\overrightarrow{AP}:\overrightarrow{PB}=m:n$. Ada 2 kemungkinan posisi titik P terhadap ruas garis AB, yaitu titik P di dalam AB atau titik P di luar AB. Untuk mengetahui pengaruh posisi titik P terhadap tanda perbandingan ruas garis, perhatikan tabel berikut.

Perbedaan	Posisi Titik P	
	Titik P di dalam AB	Titik P di luar AB
Gambar	A P B	A B P

Perbedaan	Posisi Titik P		
	Titik P di dalam AB	Titik P di luar AB	
Tanda perbandingan	\overrightarrow{AP} dan \overrightarrow{PB} mempunyai arah yang sama, sehingga m dan n mempunyai tanda yang sama.	\overrightarrow{AP} dan \overrightarrow{PB} mempunyai arah yang berlawanan, sehingga m dan n mempunyai tanda yang berlawanan.	
Perbandingan ruas garis	$\overrightarrow{AP} : \overrightarrow{PB} = m : n$ $\overrightarrow{AP} : \overrightarrow{AB} = m : (m+n)$	$\overrightarrow{AP} : \overrightarrow{PB} = m : -n$ $\overrightarrow{AP} : \overrightarrow{AB} = m : (m - n)$	

Diketahui layang-layang PQRS yang diagonal-diagonalnya berpotongan di titik O. Jika panjang $\overrightarrow{PO} = \overrightarrow{OR} = 4$ cm, $\overrightarrow{OS} = 6$ cm, dan $\overrightarrow{QO} = 10$ cm, tentukan perbandingan-perbandingan berikut!

a. $\overrightarrow{PO}:\overrightarrow{OR}$

c. $\overrightarrow{QO}:\overrightarrow{SO}$

b. $\overrightarrow{PO} : \overrightarrow{PR}$

d. $\overrightarrow{QO}:\overrightarrow{SQ}$

Pembahasan:

Layang-layang pada soal dan unsur-unsur yang diketahui dapat digambarkan sebagai berikut.

Berdasarkan gambar tersebut, diperoleh:

a. $\overrightarrow{PO}: \overrightarrow{OR} = 4:4=1:1$

b. $\overrightarrow{PO} : \overrightarrow{PR} = 4 : (4 + 4) = 4 : 8 = 1 : 2$

c. $\overrightarrow{QO}: \overrightarrow{SO} = \overrightarrow{QO}: (-\overrightarrow{OS}) = 10: (-6) = 5: -3$

d. $\overrightarrow{QO}: \overrightarrow{SQ} = \overrightarrow{QO}: (-\overrightarrow{QS}) = 10: -(10+6) = 5: -8$

2. Pembagian dalam Bentuk Vektor

Misalkan \vec{a} , \vec{b} , dan \vec{P} berturut-turut merupakan vektor posisi dari titik A, B, dan P. Jika titik P membagi ruas garis AB dengan perbandingan \vec{AP} : $\vec{PB} = m$: \vec{n} , berlaku rumus berikut.

Contoh Soal 2

Diketahui vektor posisi dari titik C dan D berturut-turut adalah \vec{c} dan \vec{d} . Jika titik P membagi ruas garis CD dengan perbandingan $\overrightarrow{CP}: \overrightarrow{PD} = 2:3$, tuliskan vektor posisi dari titik P dalam \vec{c} dan \vec{d} !

Pembahasan:

Oleh karena perbandingan $\overrightarrow{CP}: \overrightarrow{PD} = 2:3$, maka m = 2 dan n = 3.

Dengan menggunakan rumus pembagian ruas garis dalam bentuk vektor, diperoleh:

$$\vec{p} = \frac{m\vec{d} + n\vec{c}}{m+n} = \frac{2\vec{d} + 3\vec{c}}{2+3} = \frac{2}{5}\vec{d} + \frac{3}{5}\vec{c}$$

Jadi, vektor posisi dari titik P dalam \vec{c} dan \vec{d} adalah $\vec{p} = \frac{2}{5}\vec{d} + \frac{3}{5}\vec{c}$.

Contoh Soal 3

Diketahui titik E(11, 3) dan F(6, 8). Jika titik P membagi ruas garis EF dengan perbandingan $\overrightarrow{EP}: \overrightarrow{PF} = -2:7$, tentukan koordinat titik P!

Pembahasan:

Oleh karena perbandingan $\overrightarrow{EP}: \overrightarrow{PF} = -2:7$, maka m = -2 dan n = 7.

Dengan menggunakan rumus pembagian ruas garis dalam bentuk vektor, diperoleh:

$$\vec{p} = \frac{m\vec{f} + n\vec{e}}{m+n} = \frac{-2\binom{6}{8} + 7\binom{11}{3}}{-2+7} = \frac{\binom{65}{5}}{5} = \binom{13}{1}$$

Jadi, koordinat titik P adalah (13, 1).

B. Teorema Menelaus

Diketahui sebuah segitiga ABC. Titik Y terletak pada sisi AC dan titik Z terletak pada sisi AB. Melalui titik Y dan Z dibuat garis YZ. Garis CB dan YZ diperpanjang sehingga berpotongan di titik X seperti pada gambar berikut.

Teorema Menelaus disebut juga dengan teorema Ceva.

Perhatikan gambar berikut!

Diketahui koordinat titik A(4, 8) dan B(8, -2). Jika perbandingan $\overrightarrow{BX}: \overrightarrow{XC} = 1:2$ dan $\overrightarrow{CY}: \overrightarrow{YA} = 4:1$, tentukan koordinat titik Z!

Pembahasan:

Mula-mula, tentukan perbandingan $\overrightarrow{AZ}:\overrightarrow{ZB}$ dengan menggunakan teorema Menelaus.

$$\frac{\left| \overrightarrow{AZ} \right|}{\left| \overrightarrow{ZB} \right|} \cdot \frac{\left| \overrightarrow{BX} \right|}{\left| \overrightarrow{XC} \right|} \cdot \frac{\left| \overrightarrow{CY} \right|}{\left| \overrightarrow{YA} \right|} = 1$$

$$\Leftrightarrow \frac{\left|\overrightarrow{AZ}\right|}{\left|\overrightarrow{ZB}\right|} \cdot \frac{1}{2} \cdot \frac{4}{1} = 1$$

$$\Leftrightarrow \frac{\left|\overrightarrow{AZ}\right|}{\left|\overrightarrow{ZB}\right|} \cdot 2 = 1$$

$$\Leftrightarrow \frac{\left|\overrightarrow{AZ}\right|}{\left|\overrightarrow{ZB}\right|} = \frac{1}{2}$$

Ini berarti,
$$\frac{\left| \overrightarrow{AZ} \right|}{\left| \overrightarrow{ZB} \right|} = \frac{m}{n} = \frac{1}{2}$$

Selanjutnya, tentukan koordinat titik Z dengan menggunakan rumus pembagian ruas garis dalam bentuk vektor.

$$\vec{z} = \frac{m\vec{b} + n\vec{a}}{m+n} = \frac{1\binom{8}{-2} + 2\binom{4}{8}}{1+2} = \frac{\binom{16}{14}}{3} = \frac{\binom{16}{3}}{\frac{14}{3}}$$

Jadi, koordinat titik Z adalah $\left(\frac{16}{3}, \frac{14}{3}\right)$.

C. Perkalian Skalar Dua Vektor (Perkalian Titik atau *Dot Product*)

Perhatikan gambar berikut!

Pangkal vektor \vec{a} dan \vec{b} berimpit di satu titik

Hasil perkalian skalar vektor \vec{a} dan \vec{b} adalah suatu bilangan real yang dapat ditentukan dengan rumus berikut.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

dengan θ adalah sudut antara vektor \vec{a} dan \vec{b} .

Perkalian skalar vektor \vec{a} dan \vec{b} disebut juga dengan perkalian titik \vec{a} dan \vec{b} atau $\vec{a} \cdot \vec{b}$ (dibaca \vec{a} dot \vec{b}). Syarat perkalian skalar dua vektor adalah pangkal kedua vektor harus berimpit di satu titik.

Perhatikan gambar vektor di R³ berikut!

Jika diketahui komponen vektornya, misalnya $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \operatorname{dan} \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, perkalian

skalar dua vektor dapat ditentukan dengan rumus berikut.

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$$

Tips: Cukup kalikan elemen-elemen yang seletak.

Sekarang, perhatikan gambar berikut ini!

Jika vektor \vec{a} tegak lurus vektor \vec{b} ($\theta = 90^{\circ}$), diperoleh:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos 90^{\circ} = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3 = 0$$

Contoh Soal 5

Perhatikan gambar berikut!

Tentukan nilai dari $\vec{a} \cdot \vec{b}$!

Pembahasan:

Syarat perkalian skalar dua vektor adalah pangkal kedua vektor harus berimpit di satu titik. Oleh karena itu, vektor \vec{b} harus digeser sedemikian rupa hingga pangkalnya berimpit dengan pangkal vektor \vec{a} .

Berdasarkan gambar tersebut, diketahui $\theta = 180^{\circ} - 45^{\circ} = 135^{\circ}$ (sudut berpelurus).

Dengan demikian, diperoleh:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
$$= (4)(6) \cos 135^{\circ}$$
$$= 24 \left(-\frac{1}{2} \sqrt{2} \right)$$
$$= -12\sqrt{2}$$

Jadi, nilai dari $\vec{a} \cdot \vec{b} = -12\sqrt{2}$.

Contoh Soal 6

Diketahui $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ dan $\vec{b} = -5\hat{i} - 2\hat{j} + 4\hat{k}$. Tentukan nilai dari $\vec{a} \cdot \vec{b}$!

Pembahasan:

Oleh karena yang diketahui komponen vektornya, maka cukup kalikan elemen-elemen yang seletak.

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$= (2)(-5) + (-3)(-2) + (1)(4)$$

$$= -10 + (6) + (4)$$

$$= 0$$

Jadi, nilai dari $\vec{a} \cdot \vec{b} = 0$.

Sifat-Sifat Perkalian Skalar Dua Vektor

- a. $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
- b. $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$
- c. Komutatif: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- d. Distributif: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- e. Tidak asosiatif: $\vec{a} \cdot (\vec{b} \cdot \vec{c}) \neq (\vec{a} \cdot \vec{b}) \cdot \vec{c}$
- f. Tidak memiliki elemen identitas
- g. Tidak memiliki invers

Diketahui $\vec{a} = 4\hat{i} + 2\hat{j} - 5\check{k}$, $\vec{b} = \hat{i} + 3\hat{j} + x\check{k}$, dan $\vec{c} = 6\hat{i} + 5\hat{j} + 2\check{k}$. Jika vektor \vec{a} tegak lurus vektor \vec{b} , hasil dari $2\vec{a} + 3\vec{b} - \vec{c}$ adalah (UN 2015)

A.
$$5\hat{i} + 8\hat{j} + 6\hat{k}$$

B.
$$5\hat{i} + 8\hat{j} - 6\hat{k}$$

C.
$$5\hat{i} - 8\hat{j} + 6\hat{k}$$

D.
$$6\hat{i} + 5\hat{j} - 8\hat{k}$$

E.
$$6\hat{i} - 5\hat{j} + 6\hat{k}$$

Pembahasan:

Mula-mula, tentukan nilai x.

Oleh karena vektor \vec{a} tegak lurus vektor \vec{b} , maka $\vec{a} \cdot \vec{b} = 0$

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ x \end{pmatrix}$$

$$\Leftrightarrow$$
 0 = 4 + 6 - 5 x

$$\Leftrightarrow$$
 5 $x = 10$

$$\Leftrightarrow x = 2$$

Ini berarti, $\vec{b} = \hat{i} + 3\hat{j} + 2\hat{k}$.

Selanjutnya, tentukan $2\vec{a} + 3\vec{b} - \vec{c}$.

$$2\vec{a} + 3\vec{b} - \vec{c} = 2 \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 8 \\ 4 \\ -10 \end{pmatrix} + \begin{pmatrix} 3 \\ 9 \\ 6 \end{pmatrix} - \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ 8 \\ -6 \end{pmatrix}$$

Jadi, hasil dari $2\vec{a}+3\vec{b}-\vec{c}=5\hat{i}+8\hat{j}-6\hat{k}$.

D. Sudut antara Dua Vektor

Misalkan \vec{a} dan \vec{b} adalah vektor-vektor di Rⁿ. Besarnya sudut antara vektor \vec{a} dan \vec{b} (θ) dapat ditentukan dari rumus perkalian titik dua vektor, yaitu sebagai berikut.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\Leftrightarrow \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

$$\Leftrightarrow \theta = \arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right)$$

Dengan demikian, rumus untuk menentukan sudut antara dua vektor adalah sebagai berikut.

$$\theta = \arccos\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$$

Pertanyaan yang muncul terkait materi ini tidak terbatas pada nilai θ saja, tetapi juga dapat ditanyakan nilai sin θ , tan θ , dan sebagainya. Jika θ bukan sudut istimewa, nilai sin θ dan tan θ dapat ditentukan berdasarkan nilai cos θ yang telah diperoleh sebelumnya. Dalam penentuan tersebut, kamu dapat memanfaatkan identitas berikut.

Identitas Pythagoras:
$$\sin^2 \theta = 1 - \cos^2 \theta \iff \sin \theta = \sqrt{1 - \cos^2 \theta}$$

Identitas perbandingan:
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Contoh Soal 8

Jika θ merupakan sudut antara vektor $\vec{a}=2\hat{i}-3\hat{j}+5\hat{k}$ dan $\vec{b}=-3\hat{i}-5\hat{j}+2\hat{k}$, tentukan nilai dari sin θ !

Pembahasan:

Tentukan dahulu nilai dari θ .

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \left|\vec{b}\right|}$$

$$\Leftrightarrow \cos \theta = \frac{\begin{pmatrix} 2 \\ -3 \\ -5 \\ 5 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \\ 2 \end{pmatrix}}{\sqrt{2^2 + (-3)^2 + 5^2} \cdot \sqrt{(-3)^2 + (-5)^2 + 2^2}}$$

$$\Leftrightarrow \cos\theta = \frac{-6+15+10}{\sqrt{38}\cdot\sqrt{38}}$$

$$\Leftrightarrow \cos \theta = \frac{19}{38}$$

$$\Leftrightarrow \cos \theta = \frac{1}{2}$$

$$\Leftrightarrow \theta = 60^{\circ}$$

Jadi, nilai dari $\sin \theta = \sin 60^\circ = \frac{1}{2}\sqrt{3}$.

E. Rumus Panjang dari Jumlah dan Selisih Vektor

Misalkan \vec{a} dan \vec{b} adalah vektor-vektor di \mathbf{R}^n , serta θ adalah sudut antara vektor \vec{a} dan \vec{b} . Panjang dari jumlah dan selisih vektor \vec{a} dan \vec{b} dapat ditentukan dengan rumus berikut

rumus berikut.

$$|\vec{a} \pm \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \pm 2|\vec{a}||\vec{b}|\cos\theta = |\vec{a}|^2 + |\vec{b}|^2 \pm 2\vec{a}\cdot\vec{b}$$

Contoh Soal 9

Diketahui vektor \vec{a} dan \vec{b} dengan $|\vec{a}| = 4$, $|\vec{b}| = 3$, dan $|\vec{a} + \vec{b}| = 5$. Jika θ adalah sudut antara vektor \vec{a} dan \vec{b} , nilai cos 2θ adalah (UN 2015)

- A.
- B. $\frac{4}{5}$
- C. 0
- D. $-\frac{1}{2}$
- E. -1

Pembahasan:

Dengan menggunakan rumus panjang dari jumlah dua vektor, diperoleh:

$$\left|\vec{a} + \vec{b}\right|^2 = \left|\vec{a}\right|^2 + \left|\vec{b}\right|^2 + 2\left|\vec{a}\right|\left|\vec{b}\right|\cos\theta$$

$$\Leftrightarrow 5^2 = 4^2 + 3^2 + 2(4)(3)\cos\theta$$

$$\Leftrightarrow$$
 25 = 25 + 24 cos θ

$$\Leftrightarrow$$
 24 cos θ = 0

$$\Leftrightarrow \cos \theta = 0$$

$$\Leftrightarrow \theta = 90^{\circ}$$

Jadi, nilai $\cos 2\theta = \cos 2(90^{\circ}) = \cos 180^{\circ} = -1$.

F. Proyeksi Suatu Vektor pada Vektor Lain

Jika vektor \vec{a} diproyeksikan pada vektor \vec{b} , akan dihasilkan vektor \vec{c} yang segaris dengan vektor \vec{b} seperti gambar berikut.

Dengan menggunakan rumus perbandingan trigonometri pada segitiga siku-siku, diperoleh:

$$\cos\theta = \frac{\left|\vec{c}\right|}{\left|\vec{a}\right|}$$

$$\Leftrightarrow |\vec{c}| = |\vec{a}| \cos \theta$$

$$\left(\text{Substitusikan } \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \right)$$

$$\Leftrightarrow \left| \vec{c} \right| = \left| \vec{a} \right| \frac{\vec{a} \cdot \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}$$

$$\Leftrightarrow \left| \vec{c} \right| = \frac{\vec{a}.\vec{b}}{\left| \vec{b} \right|}$$

Oleh karena nilai $|\vec{c}|$ merupakan suatu bilangan real (skalar), maka $|\vec{c}|$ disebut **proyeksi skalar** vektor \vec{a} pada \vec{b} , atau panjang proyeksi vektor \vec{a} pada \vec{b} .

$$\left(\left| \vec{c} \right| = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|} \right)$$

Sementara itu, vektor hasil proyeksi \vec{a} pada \vec{b} dinyatakan sebagai **proyeksi vektor** \vec{a} pada \vec{b} . Proyeksi vektor \vec{a} pada \vec{b} dapat ditentukan dengan rumus berikut.

$$\left(\vec{c} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2} \cdot \vec{b}\right)$$

Agar kamu dapat membedakan proyeksi skalar dan proyeksi vektor dengan baik, perhatikan tabel berikut.

Tabel Perbedaan Proyeksi Skalar dan Proyeksi Vektor Ortogonal Vektor \vec{a} pada \vec{b}

Proyeksi Vektor	Proyeksi Skalar Ortogonal Vektor \vec{a} pada \vec{b}	Proyeksi Vektor Ortogonal Vektor \vec{a} pada \vec{b}
Nama lain	Proyeksi skalar/panjang proyeksi vektor \vec{a} pada \vec{b}	Proyeksi vektor/vektor proyeksi \vec{a} pada \vec{b}
Rumus	$\left \vec{c} \right = \left \vec{a}_{\bar{b}} \right = \frac{\vec{a} \cdot \vec{b}}{\left \vec{b} \right }$	$\vec{c} = \vec{a}_{\bar{b}} = \frac{\vec{a} \cdot \vec{b}}{\left \vec{b}\right ^2} \cdot \vec{b} = \frac{\left \vec{c}\right \cdot \vec{b}}{\left \vec{b}\right }$
Hasil	Bilangan real (skalar atau konstanta)	Vektor

Contoh Soal 10

Tentukan panjang proyeksi vektor $\vec{a}=7\hat{i}-\hat{j}-9\hat{k}$ pada $\vec{b}=\hat{i}-2\hat{j}-2\hat{k}$, kemudian tentukan proyeksi vektornya.

Pembahasan:

Panjang proyeksi vektor \vec{a} pada \vec{b} dapat dirumuskan sebagai berikut.

$$\left| \vec{c} \right| = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|} = \frac{\begin{pmatrix} 7 & 1 \\ -1 & -2 \\ -9 & -2 \end{pmatrix}}{\sqrt{1^2 + (-2)^2 + (-2)^2}} = \frac{7 + 2 + 18}{\sqrt{9}} = \frac{27}{3} = 9$$

Sementara itu, proyeksi vektor \vec{a} pada \vec{b} dapat dirumuskan sebagai berikut.

$$\vec{c} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2} \cdot \vec{b} = \frac{27}{9} \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ -6 \end{pmatrix} = 3\vec{i} - 6\vec{j} - 6\vec{k}$$

Jadi, panjang proyeksi vektor \vec{a} pada \vec{b} adalah 9, sedangkan proyeksi vektornya adalah $3\vec{i} - 6\vec{j} - 6\vec{k}$.

Contoh Soal 11

Diketahui vektor $\vec{a} = 2\hat{i} - p\hat{j} + 3\hat{k}$ dan $\vec{b} = \hat{i} - 2\hat{j} + 2\hat{k}$. Jika $|\vec{c}|$ adalah panjang proyeksi vektor \vec{a} pada \vec{b} , dan $|\vec{c}| = 4$, nilai p adalah (UN 2015)

- A. -4
- B. -2
- C. 2
- D. 4
- E. 8

Pembahasan:

Dengan menggunakan rumus panjang proyeksi vektor \vec{a} pada \vec{b} , diperoleh:

$$\left| \vec{c} \right| = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|}$$

$$\Leftrightarrow 4 = \frac{\begin{pmatrix} 2 \\ -p \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}}{\sqrt{1^2 + (-2)^2 + 2^2}}$$

$$\Leftrightarrow 4 = \frac{2 + 2p + 6}{3}$$

$$\Leftrightarrow$$
 12 = 8 + 2 p

$$\Leftrightarrow p = 2$$

Jadi, nilai p adalah 2.

G. Perkalian Silang Dua Vektor (Cross Product)

Berbeda dengan perkalian skalar dua vektor, hasil perkalian silang dua vektor adalah suatu vektor. Perkalian vektor \vec{a} dan \vec{b} ditulis sebagai $\vec{a} \times \vec{b}$ (dibaca \vec{a} kali silang \vec{b} atau \vec{a} cross

 \vec{b}). Vektor hasil $\vec{a} \times \vec{b}$ tidak sebidang dengan \vec{a} dan \vec{b} , tetapi tegak lurus dengan bidang yang memuat keduanya. Ini berarti, $\vec{a} \times \vec{b}$ tegak lurus dengan \vec{a} dan $\vec{a} \times \vec{b}$ tegak lurus dengan \vec{b} . Untuk lebih jelasnya, perhatikan gambar berikut.

Perkalian silang vektor $\vec{a} = (a_1, a_2, a_3)$ dan $\vec{b} = (b_1, b_2, b_3)$ dapat ditentukan dengan rumus berikut.

$$\vec{a} \times \vec{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \hat{i} - \begin{vmatrix} a_1 & a_3 \\ b_i & b_3 \end{vmatrix} \hat{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \hat{k}$$

Selain itu, perkalian vektor \vec{a} dan \vec{b} juga dapat ditentukan dengan menggunakan determinan matriks 3×3 berikut.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot \begin{vmatrix} \hat{i} & \hat{j} \\ a_1 & a_2 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot b_1 \cdot b_2$$

$$= (a_2b_3)\hat{i} + (a_3b_1)\hat{j} + (a_1b_2)\hat{k} - \left[(a_1b_3)\hat{j} + (a_3b_2)\hat{i} + (a_2b_1)\hat{k} \right]$$

Sifat-Sifat Perkalian Silang Dua Vektor

- 1. Tidak komutatif: $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$, karena $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$
- 2. Distributif: $\vec{a} \times (\vec{b} \pm \vec{c}) = \vec{a} \times \vec{b} \pm \vec{a} \times \vec{c}$
- 3. $m(\vec{a} \times \vec{b}) = (m\vec{a}) \times \vec{b} = \vec{a} \times (m\vec{b}), m \text{ konstanta real}$
- 4. Tidak asosiatif: $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$
- 5. $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$
- 6. $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{b} \cdot \vec{c}) \vec{a}$

Diketahui vektor $\vec{p} = 3\hat{i} + \hat{j} + 5\hat{k}$ dan $\vec{q} = \hat{i} + \hat{j} - 2\hat{k}$. Buktikan bahwa vektor $\vec{p} \times \vec{q}$ tegak lurus vektor \vec{p} dan \vec{q} .

Pembahasan:

Mula-mula, tentukan $\vec{p} \times \vec{q}$.

$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 5 \\ 1 & 1 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 5 \\ 1 & 1 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 5 \\ 1 & 1 & -2 \end{vmatrix}$$

$$= -2\hat{i} + 5\hat{j} + 3\hat{k} - \left[-6\hat{j} + 5\hat{i} + \hat{k} \right]$$

$$= -7\hat{i} + 11\hat{j} + 2\hat{k}$$

Selanjutnya, hitung nilai dari $(\vec{p} \times \vec{q}) \cdot \vec{p}$.

$$(\vec{p} \times \vec{q}) \cdot \vec{p} = \begin{pmatrix} -7 \\ 11 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$$
$$= -21 + 11 + 10$$
$$= 0$$

Oleh karena $(\vec{p} \times \vec{q}) \cdot \vec{p} = 0$, maka $\vec{p} \times \vec{q}$ tegak lurus vektor \vec{p} . Setelah itu, hitung nilai dari $(\vec{p} \times \vec{q}) \cdot \vec{q}$.

$$(\vec{p} \times \vec{q}) \cdot \vec{q} = \begin{pmatrix} -7 \\ 11 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
$$= -7 + 11 - 4$$
$$= 0$$

Oleh karena $(\vec{p} \times \vec{q}) \cdot \vec{q} = 0$, maka $\vec{p} \times \vec{q}$ tegak lurus vektor \vec{q} .

Jadi, terbukti bahwa vektor $\vec{p} \times \vec{q}$ tegak lurus vektor \vec{p} dan \vec{q} .