import seaborn as sns

sns.set(style="whitegrid")

basic_stats = df.describe()

basic_stats

plt.rcParams["figure.figsize"] = (10, 6)

Cardiac Arrest Data Analysis(Python Project)

```
Dataset Overview
   1. Rows: 1.025
   2. Columns: 14
   3. Target Column: target - Likely indicates presence (1) or absence (0) of heart disease.
   4. Includes features like:
   • age, sex, cp (chest pain type), trestbps (resting BP), chol (cholesterol), fbs (fasting blood sugar)

    restecg, thalach (max heart rate), exang (exercise-induced angina)

   · oldpeak, slope, ca (major vessels), thal
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load the uploaded dataset
df = pd.read_csv('/content/drive/MyDrive/cardiac arrest/cardiac arrest dataset.csv')
df.head()
₹
                                                                                                           \blacksquare
         age sex cp trestbps chol
                                       fbs restecg thalach exang oldpeak slope ca thal target
      0
          52
                    0
                                  212
                                          0
                                                           168
                                                                                     2
                                                                                        2
                1
                            125
                                                                    0
                                                                            1.0
                                                                                               3
                                                                                                       0
                                                                                                            ıl.
          53
                1
                    0
                            140
                                  203
                                                   0
                                                           155
                                                                    1
                                                                            3.1
                                                                                    0
                                                                                        0
                                                                                               3
                                                                                                       0
      2
          70
                    0
                                  174
                                          O
                                                   1
                                                          125
                                                                            2.6
                                                                                    0
                                                                                        0
                                                                                               3
                                                                                                       0
                            145
          61
                    0
                            148
                                  203
                                                           161
                                                                    0
                                                                            0.0
                                                                                     2
                                                                                               3
                                                                                                       0
                                          0
                                                                    0
          62
                0
                            138
                                  294
                                                   1
                                                           106
                                                                            19
                                                                                               2
                                                                                                       0
                                                                                     1
                                                                                        3
 Next steps: ( Generate code with df

    View recommended plots

                                                                   New interactive sheet
df.info()
→ <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1025 entries, 0 to 1024
     Data columns (total 14 columns):
          Column
                    Non-Null Count Dtype
      0
                     1025 non-null
          age
                                      int64
      1
          sex
                     1025 non-null
                                      int64
                     1025 non-null
      3
          trestbps 1025 non-null
                                      int64
          chol
                     1025 non-null
                                      int64
                     1025 non-null
                                      int64
                     1025 non-null
          restecg
          thalach
                     1025 non-null
                                      int64
          exang
                     1025 non-null
                                      int64
          oldpeak
                     1025 non-null
                                      float64
                     1025 non-null
      10 slope
                                      int64
                     1025 non-null
                                      int64
      11 ca
      12
          thal
                     1025 non-null
                                      int64
                     1025 non-null
      13 target
                                      int64
     dtypes: float64(1), int64(13)
     memory usage: 112.2 KB
import matplotlib.pyplot as plt
```

₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000	1025.
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336585	1.071512	1.
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.472772	1.175053	0.
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000000	0.000000	0.
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	0.000000	0.000000	1.
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000000	0.800000	1.
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1.000000	1.800000	2.
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	1.000000	6.200000	2.

Next steps: Generate code with basic_stats

• View recommended plots

New interactive sheet

Basic Exploration Summary

- Basic Statistics:
 - Average Age: ~54.4 years
 - Average Maximum Heart Rate (thalach): ~149 bpm
 - Cholesterol (chol): Mean ~246 mg/dL, with a high outlier up to 564
 - Target values are balanced: about 51% have heart disease (1)
- Missing Values: There are no missing values in any column.

missing_values = df.isnull().sum()
missing_values

Visual Analysis

```
# 1. Distribution of Age, Thalach, Cholesterol
fig, axs = plt.subplots(1, 3, figsize=(18, 5))
sns.histplot(df['age'], kde=True, ax=axs[0], color="skyblue")
axs[0].set_title("Age Distribution")
sns.histplot(df['thalach'], kde=True, ax=axs[1], color="lightgreen")
axs[1].set_title("Max Heart Rate (thalach) Distribution")
sns.histplot(df['chol'], kde=True, ax=axs[2], color="salmon")
axs[2].set_title("Cholesterol Distribution")
```

plt.tight_layout()
plt.show()

Insights from Distribution Plots

- 1. Age: Most patients are between 45-65 years.
- 2. Max Heart Rate (thalach): Most values range from 130-170 bpm, which aligns with typical stress-test results.
- 3. Cholesterol: Distribution is skewed, with some outliers above 400 mg/dL, which may indicate risk.

Correlation Heatmap

```
# Calculate correlation matrix
correlation_matrix = df.corr()

# Plot heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap="coolwarm", square=True)
plt.title("Correlation Heatmap of Cardiac Dataset")
plt.show()
```


Correlation Heatmap Insights

- thalach (max heart rate) has a strong negative correlation with target → Lower max heart rate is often linked to heart disease.
- cp (chest pain type) shows a positive correlation with target → Certain chest pain types are associated with heart disease.
- exang (exercise-induced angina) has a strong negative correlation with target → If angina is triggered during exercise, risk is higher.
- oldpeak, ca, slope, and that also show notable relationships with the target.

Visual Comparison of Key Features by Heart Disease Status (target)

```
# Create a figure with subplots
fig, axs = plt.subplots(1, 3, figsize=(18, 5))
# Max Heart Rate by Target
sns.boxplot(data=df, x='target', y='thalach', ax=axs[0], palette="Set2")
axs[0].set_title("Max Heart Rate vs Target")
axs[0].set_xlabel("Heart Disease (0 = No, 1 = Yes)")
axs[0].set_ylabel("Max Heart Rate (thalach)")
# Cholesterol by Target
sns.boxplot(data=df, x='target', y='chol', ax=axs[1], palette="Set1")
axs[1].set_title("Cholesterol vs Target")
axs[1].set_xlabel("Heart Disease (0 = No, 1 = Yes)")
axs[1].set_ylabel("Cholesterol (mg/dL)")
# Chest Pain Type by Target
sns.countplot(data=df, x='cp', hue='target', ax=axs[2], palette="pastel")
axs[2].set_title("Chest Pain Type vs Target")
axs[2].set_xlabel("Chest Pain Type")
axs[2].set_ylabel("Count")
axs[2].legend(title="Heart Disease")
plt.tight_layout()
plt.show()
```

→ /tmp/ipython-input-10-4113898720.py:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.boxplot(data=df, x='target', y='thalach', ax=axs[0], palette="Set2") /tmp/ipython-input-10-4113898720.py:11: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend

