A refinement of weak order intervals into distributive lattices

Hugh Denoncourt

April 10, 2011

Let s_i denote the adjacent transposition $(i \ i + 1)$.

The length $\ell(w)$ of $w \in S_n$ is the minimum number of adjacent transpositions required to express an element.

Left weak Bruhat order is defined by the covering relations

$$v \prec w \iff w = s_i v \text{ and } \ell(w) = \ell(v) + 1.$$

So $s_1 < s_2 s_1$ (213 < 312) in the left weak Bruhat order.

An inversion of $w \in S_n$ is a pair (i,j) such that i < j and w(i) > w(j).

Example

- (1,3) is an inversion of 2413 \leftrightarrow 2413
- (2,3) is an inversion of 2413 \leftrightarrow 2413
- (2,4) is an inversion of 2413 \leftrightarrow 2413

The inversion set of $w \in S_n$ is the set of all inversions of w.

Well Known Fact

A permutation is uniquely determined by its inversion set.

The Lehmer code of $w \in S_n$ is the *n*-tuple (c_1, \ldots, c_n) , where c_i is the number of inversions whose first coordinate is i.

Example

From the previous slide, the inversion set of 2413 is

$$\{(1,3),(2,3),(2,4)\}.$$

The Lehmer code of 2413 is (1,2,0,0).

The Lehmer code bijection

1. The Lehmer code determines a bijection

$$\mathbf{c}:S_n\to\prod_{i=1}^n[0,n-i]$$

2. If v < w in the weak order, then $\mathbf{c}(v) < \mathbf{c}(w)$ in the product order. The converse is false.

The weak order on S_4 versus the product order on $[0,3]\times[0,2]\times[0,1]$.

The rank-generating function of the weak order on S_4 is given by

$$F(q) = (1+q)(1+q+q^2)(1+q+q^2+q^3).$$

Some open questions regarding the interval Λ_w and its rank-generating function

These are from a recent paper of Wei's:

- 1. For what $w \in S_n$ is the rank-generating function $F(\Lambda_w, q)$ rank-symmetric (i.e. palindromic)?
- 2. When is $(1+q)(1+q+q^2)(...)$ divisible by $F(\Lambda_w,q)$?
- 3. When is $F(\Lambda_w, q)$ a product of cyclotomic polynomials?

Other interesting questions:

- 1. For which permutations $u, v \in S_n$ do we have $F(\Lambda_u, q) = F(\Lambda_v, q)$?
- 2. Given $w \in S_n$, what is the minimum dimension d such that Λ_w can be embedded in \mathbb{N}^d .

The FTFDL (Birkhoff)

A distributive lattice satisfies the distributive laws:

$$x \lor (y \land z) = (x \lor y) \land (x \land z)$$
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Every distributive lattice can be realized as a lattice of sets, where $\lor \leftrightarrow \cup$ and $\land \leftrightarrow \cap$ and $\le \leftrightarrow \subseteq$. What is this lattice of sets like?

For every finite distributive lattice L, there is a poset P such that $L \cong J(P)$, where J(P) is the set of all order ideals of P.

order ideal \leftrightarrow element/vertex element/vertex \leftrightarrow join-irreducible natural labeling \leftrightarrow maximal chain order-preserving map \leftrightarrow multichain antichain \leftrightarrow boolean sublattice

order ideal ↔ element/vertex

elements/vertices \leftrightarrow join-irreducibles

antichain ↔ boolean sublattice

The extended Lehmer code

Let $w \in S_n$. We denote the *i*-th coordinate of the Lehmer code by $c_i(w)$.

Let $c_{i,j}(w)$ be the number of inversions whose first coordinate is i and whose second coordinate is less than j.

We call the matrix of $c_{i,j}(w)$'s the extended Lehmer code of w.

Example

Let
$$w = 561324$$
. Then $c_1(w) = 4$ and $c_{1,5}(w) = 2$.

561324

Detecting inversions with the codes

If
$$i < j$$
 then $c_i(w) \le c_i(w) + c_{i,j}(w) \iff (i,j) \notin I(w)$.

A theorem

We denote the weak order interval [id, w] by Λ_w . Stembridge showed that Λ_w is distributive if and only if w is a fully commutative element.

We can use the extended Lehmer code to detect relations in the weak order. These statements are equivalent:

- 1. For every $(i,j) \notin I(w)$ we have $c_i(v) \leq c_j(v) + c_{i,j}(w)$.
- 2. In the weak Bruhat order, we have $v \leq w$.

From this technical fact, we can prove that the set of Lehmer codes are a sublattice of \mathbb{N}^n .

Theorem (D)

Let $w \in S_n$. The subposet $\mathbf{c}(\Lambda_w)$ of \mathbb{N}^n is a distributive lattice.

The interval [12345, 23541] in the weak order is not distributive. The set $\mathbf{c}([12345, 23541])$ of Lehmer codes is a distributive lattice.

For a given $w \in S_n$, can we describe the base poset?

Let $L_w = \mathbf{c}(\Lambda_w)$. We let P_w denote a finite poset such that $L_w \cong J(P_w)$. What does P_w look like?

The P_w recipe

- 1. For each nonzero coordinate i of the Lehmer code, construct a chain $C_i(w)$ whose size is given by the code.
- 2. The x-th element of $C_i(w)$ and the y-th element of $C_j(w)$ are related if and only if

$$y \leq x - c_{i,j}(w)$$
.

Let w = 41528637 so that $\mathbf{c}(w) = (3, 0, 2, 0, 3, 1, 0, 0)$. First we draw the chains.

Let w = 41528637 so that $\mathbf{c}(w) = (3, 0, 2, 0, 3, 1, 0, 0)$.

The non-inversions are (1,3), (1,5), (1,6), (3,5), and (3,6). The relevant extended codes are $c_{1,3}(w)=1$, $c_{1,5}(w)=2$, $c_{1,6}(w)=2$, $c_{3,5}(w)=1$, and $c_{3,6}(w)=1$.

$$y \leq x - c_{i,j}(w)$$

Further Exploration I

A weak order interval is rank-symmetric if the poset P_w is self-dual. There are other known sufficient conditions (w is separable - Wei), but no known characterization.

Combining results due to Lakshmibai-Sandhya and Carrell-Peterson, an interval [id, w] in the *strong* Bruhat order is rank-symmetric if and only if w avoids 4231 and 3412.

There can be no pattern avoidance criteria for rank-symmetry of weak order intervals. For $u \in S_p$ and $v \in S_q$, let $u \times v$ denote the image of the usual embedding of $S_p \times S_q$ into S_{p+q} . The rank-generating functions $F(\Lambda_u,q)$ and $F(\Lambda_{u^{-1}},q)$ are the reverse of one another. Therefore $F(\Lambda_{u \times u^{-1}},q) = F(\Lambda_u,q)F(\Lambda_{u^{-1}},q)$ is symmetric and $u \times u^{-1}$ contains u as a pattern.

Further Exploration II

In type D_4 , under the usual labeling of the Coxeter graph, the element $s_2s_1s_3s_4s_2s_4s_3s_1s_2$ has a rank-generating function that is not the rank-generating function of a distributive lattice. This element arose in a paper of Green-Losonczy to demonstrate the existence of inversion triples that are not contractible. Do "contractible elements" always have the rank-generating function of a distributive lattice?

What about type B?

Can the results be obtained or rephrased using the ω -sorting orders of Armstrong?

Can the construction of this talk be used to calculate the order dimension of a weak order interval?