Package 'ImageSCC'

May 23, 2019

Type Package

Title SCC for Mean Function of Imaging Data
Version 0.1.0
Author Yueying Wang, Guannan Wang and Li Wang
Maintainer Yueying Wang <yueyingw@iastate.edu> and Guannan Wang <gwang01@wm.edu></gwang01@wm.edu></yueyingw@iastate.edu>
Depends R (>= 2.10), MASS, Matrix, BPST, Triangulation, graphics, RSpectra, pracma
Description This R package is the implementation program for manuscript entitled ``Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:
basis.image
boot.image
boot1g.image
cv.image
data1g.image
data2g.image
fit.image
fit.mean
hello
plot.image
scc.image
scc1g.image
scc2g.image
Index 13

2 boot.image

riangulation
, i

Description

Basis genration of all the triangulation

Usage

```
basis.image(Z, V.ests, Tr.ests, d.est, r)
```

boot.image

Triangulation selection for contructing the SCC via bootstrap

Description

The function selects triangulation used for constructing SCC by bootstrap method.

Usage

```
boot.image(Ya, Yb = NULL, Z, d.est, d.band, r, V.est.a, Tr.est.a,
   V.est.b = NULL, Tr.est.b = NULL, V.bands, Tr.bands, lambda,
   nboot = 50, alpha0 = 0.05, adjust.sigma = TRUE)
```

Arguments

Yb an optional matrix containing the second group of imaging data. When Yb is NULL, triangulation selection focuses on one sample SCC, otherwise it focuses on the SCC for mean difference $(\mu_2 - \mu_1)$ between two sets of images. Z a 2-column matrix specifying locations of information. d.est degree of bivariate spline for mean estimation. degree of bivariate spline for SCC. r smoothness parameter. V.est.a the 2-column matrix of vertices' coordinates in the triangulation for estimating mean in the first sample. Tr.est.a the 3-column matrix specifying triangles in the triangulation. Each row contains 3 indices of vertices corresponding to one triangle in the triangulation. V.est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands lists of candidates for triangulations used to construct SCC. 1ambda the vector of the candidates for penalty parameter when estimating mean function. number of bootstrap iterations. Default is 50. a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. Default is TRUE.		Ya	a matrix of data with each row corresponding to one subject/image.
d.est degree of bivariate spline for mean estimation. d.band degree of bivariate spline for SCC. r smoothness parameter. V.est.a the 2-column matrix of vertices' coordinates in the triangulation for estimating mean in the first sample. Tr.est.a the 3-column matrix specifying triangles in the triangulation. Each row contains 3 indices of vertices corresponding to one triangle in the triangulation. V.est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands lists of candidates for triangulations used to construct SCC. 1ambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma alogical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		Yb	NULL, triangulation selection focuses on one sample SCC, otherwise it focuses
d.band degree of bivariate spline for SCC.		Z	a 2-column matrix specifying locations of information.
r smoothness parameter. V.est.a the 2-column matrix of vertices' coordinates in the triangulation for estimating mean in the first sample. Tr.est.a the 3-column matrix specifying triangles in the triangulation. Each row contains 3 indices of vertices corresponding to one triangle in the triangulation. V.est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands lists of candidates for triangulations used to construct SCC. 1ambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		d.est	degree of bivariate spline for mean estimation.
V. est.a the 2-column matrix of vertices' coordinates in the triangulation for estimating mean in the first sample. Tr.est.a the 3-column matrix specifying triangles in the triangulation. Each row contains 3 indices of vertices corresponding to one triangle in the triangulation. V. est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V. bands, Tr. bands lists of candidates for triangulations used to construct SCC. 1ambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		d.band	degree of bivariate spline for SCC.
mean in the first sample. Tr.est.a the 3-column matrix specifying triangles in the triangulation. Each row contains 3 indices of vertices corresponding to one triangle in the triangulation. V.est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands lists of candidates for triangulations used to construct SCC. lambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		r	smoothness parameter.
3 indices of vertices corresponding to one triangle in the triangulation. V.est.b, Tr.est.b optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands lists of candidates for triangulations used to construct SCC. lambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		V.est.a	· · · · · · · · · · · · · · · · · · ·
optional information of triangulation used for estimating mean in the second sample. V.bands, Tr.bands		Tr.est.a	
sample. V. bands, Tr. bands lists of candidates for triangulations used to construct SCC. lambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-			
lists of candidates for triangulations used to construct SCC. the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-			•
lambda the vector of the candidates for penalty parameter when estimating mean function. nboot number of bootstrap iterations. Default is 50. alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-	<u>.</u>		
nboot number of bootstrap iterations. Default is 50. a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-			lists of candidates for triangulations used to construct SCC.
alpha0 a value specifying confidence level of SCC. adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		lambda	
adjust.sigma a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. De-		nboot	number of bootstrap iterations. Default is 50.
		alpha0	a value specifying confidence level of SCC.
		adjust.sigma	

boot1g.image 3

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

Examples

```
# Triangulation information;
data(Brain.V1); data(Brain.Tr1); # triangulation No. 1;
data(Brain.V2); data(Brain.Tr2); # triangulation No. 2;
data(Brain.V3); data(Brain.Tr3); # triangulation No. 3;
#' V.est=Brain.V2; Tr.est=Brain.Tr2;
V.bands=list(V1=Brain.V1, V2=Brain.V2, V3=Brain.V3);
Tr.bands=list(Tr1=Brain.Tr1,Tr2=Brain.Tr2,Tr3=Brain.Tr3);
# Location information;
n1=40; n2=40;
npix=n1*n2
u1=seq(0,1,length.out=n1)
v1=seq(0,1,length.out=n2)
uu=rep(u1,each=n2)
vv=rep(v1,times=n1)
Z=as.matrix(cbind(uu,vv))
ind.inside=inVT(V.est,Tr.est,Z[,1],Z[,2])$ind.inside
# Parameters for bivariate spline over triangulation;
d.est=5; d.band=2; r=1;
# Example 1. One-group SCC;
# simulation parameters
n=50; lam1=0.5; lam2=0.2; mu.func=2; noise.type='Func';
lambda=10^{seq(-6,3,0.5)}; alpha.grid=c(0.1,0.05,0.01);
dat=data1g.image(n,Z,ind.inside,mu.func,noise.type,lam1,lam2)
Y=dat$Y; beta.true=dat$beta.true;
tri.band = boot.image(Ya=Y,Z=Z,d.est=d.est,d.band=d.band,r=r,V.est.a=V.est,Tr.est.a=Tr.est,V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V.bands=V
tri.band$tri.band
V.band=tri.band$V.band.a; Tr.band=tri.band$Tr.band.a;
# Example 2. Two-group SCC;
# simulation parameters
na=50; nb=60; lam1=0.5; lam2=0.2; mu1.func=1; delta=0.3;
noise.type='Func'; lambda=10^{seq(-6,3,0.5)}; alpha.grid=c(0.10,0.05,0.01);
dat=data2g.image(na,nb,Z,ind.inside,mu1.func,noise.type,lam1,lam2,delta)
Ya=dat$Ya; Yb=dat$Yb; beta.true=dat$beta.true;
beta.diff=beta.true[,2]-beta.true[,1]
V.est.a=V.est.b=V.est;
Tr.est.a=Tr.est.b=Tr.est;
tri.band=boot.image(Ya=Ya,Yb=Yb,Z=Z,d.est=d.est,d.band=d.band,r=r,V.est.a=V.est.a,Tr.est.a=Tr.est.a,V.est.l
V.band.a=tri.band$V.band.a; Tr.band.a=tri.band$Tr.band.a;
V.band.b=tri.band$V.band.b; Tr.band.b=tri.band$Tr.band.b;
```

4 cv.image

Description

Select triangulation for one sample SCC construction using bootstrap

Usage

```
boot1g.image(Y, Z, d.band, r, B.est, Q2.est, K.est, B.bands, Q2.bands,
  K.bands, ind.inside, lambda, nboot = 50, alpha0, adjust.sigma = TRUE)
```

boot2g.image

Select triangulation for two sample SCC construction

Description

Select triangulation for two sample SCC construction

Usage

```
boot2g.image(Ya, Yb, Z, d.band, r, B.est.a, Q2.est.a, K.est.a, B.est.b,
    Q2.est.b, K.est.b, tri.boot = NULL, B.bands, Q2.bands, K.bands,
    ind.inside, lambda, nboot = 50, alpha0 = 0.05, adjust.sigma = TRUE)
```

cv.image

Choose triangulation for estimating mean functions via leave-imageout cross-validation

Description

The function selects triangulation for estimating mean function based on leave-image-out cross-validation.

Usage

```
cv.image(Y, Z, d.est = 5, r = 1, V.ests, Tr.ests, lambda, nfold = 10)
```

Arguments

Υ	a matrix of imaging data, each row corresponding to one subject/image.
Z	a 2-column matrix specifying locations of each pixel/voxel.
d.est	degree of bivariate spline, default is 5.
r	smoothness parameter. Default is 1.
V.ests	lists of matrices containing vertices' information of triangulation candidates.
Tr.ests	list of 3-column matrices specifying triangles in the triangulation candidates.
lambda	the vector of the candidates of penalty parameter.
nfold	number of folds in k-fold cross-validation. Default is 10.

data1g.image 5

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

Examples

```
# Triangulation information;
data(Brain.V1); data(Brain.Tr1); # triangulation No. 1;
data(Brain.V2); data(Brain.Tr2); # triangulation No. 2;
data(Brain.V3); data(Brain.Tr3); # triangulation No. 3;
V.ests=list(V1=Brain.V1, V2=Brain.V2, V3=Brain.V3);
Tr.ests=list(Tr1=Brain.Tr1,Tr2=Brain.Tr2,Tr3=Brain.Tr3);
# Location information;
n1=40; n2=40;
npix=n1*n2
u1=seq(0,1,length.out=n1)
v1=seq(0,1,length.out=n2)
uu=rep(u1,each=n2)
vv=rep(v1,times=n1)
Z=as.matrix(cbind(uu,vv))
ind.inside=inVT(Brain.V1,Brain.Tr1,Z[,1],Z[,2])$ind.inside
# Parameters for bivariate spline over triangulation;
d.est=5; r=1;
# simulation parameters
n=50; lam1=0.5; lam2=0.2; mu.func=2; noise.type='Func';
lambda=10^{seq(-6,3,0.5)}
dat=data1g.image(n,Z,ind.inside,mu.func,noise.type,lam1,lam2)
Y=dat$Y
tri.est=cv.image(Y,Z,d.est,r,V.ests,Tr.ests,lambda)
tri.est$tri.select; V.est=tri.est$V.est; Tr.est=tri.est$Tr.est;
```

data1g.image

Generate simulation examples: one sample case

Description

The function generates one-sample simulation data using four different mean functions and scheme described in the paper.

Usage

```
data1g.image(n, Z, ind.inside, mu.func = c(1, 2, 3, 4), noise.type = c("Func", "Const"), lam1, lam2, iter = 2019)
```

Arguments

n number of images in the simulated data.

Z a 2-column matrix specifying locations of information.

ind.inside a vector of indices specifying which locations in matrix Z fall inside the irregular domain.

6 data2g.image

mu.func	a integer in c(1,2,3,4) that specifies what mean function is used for data generation. Value 1,2,3,4 correspond to quadratic, exponential, cubic and sine functions described in the paper respectively.
noise.type	'Func'/'Const' indicating heterogeneous or homogeneous variance for measurement error.
lam1, lam2	the eigenvalues used to adjust subject-level variation in simulation data.
iter	random seed.

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

data2g.image Generate simulation examples: two sample case	
--	--

Description

The function generates two-sample simulation data using four different mean functions and eigenfunctions described in the paper.

Usage

```
data2g.image(na, nb, Z, ind.inside, mu1.func, noise.type = c("Func",
   "Const"), lam1, lam2, delta, iter = 2019)
```

Arguments

na	number of images/subjects in the first sample.
nb	number of images/subjects in the second sample.
Z	a 2-column matrix specifying locations of information.
ind.inside	a vector of indices specifying which locations in matrix \boldsymbol{Z} fall inside the irregular domain.
mu1.func	a integer in c(1,2,3,4) that specifies what mean function is used for data generation of the first sample. Value 1,2,3,4 correspond to quadratic, exponential, cubic and sine functions described in the paper respectively.
noise.type	'Func'/'Const' indicating heterogeneous or homogeneous variance for measurement error.
lam1, lam2	the eigenvalues used to adjust subject-level variation in simulation data.
delta	a parameter indicating the scale of difference between two samples' mean functions.
iter	random seed.

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

fit.image 7

fit.image	Estimate the mean function via bivariate penalized spline over triangulation
-----------	--

Description

This function is used to fit the mean function of the imaging data via bivariate penalized spline over triangulation. The tuning parameter is selected by generalized cross validation.

Usage

```
fit.image(Y, Z, V.est, Tr.est, d.est = 5, r = 1, lambda = 10^(-6:3),
    proj.matrix = FALSE)
```

Arguments

Υ	a matrix of imaging data, each row corresponding to one subject/image.
Z	a 2-column matrix specifying locations of each pixel/voxel.
V.est	the 2-column matrix of vertices' coordinates in the triangulation for estimating mean function of the first set of imaging data.
Tr.est	the 3-column matrix of indices of the vertices of triangles in the triangulation.
d.est	degree of bivariate spline, default is 5.
r	smoothness parameter. Default is 1.
lambda	candidate of the penalty parameter. Default is 10^(-6:3).
proj.matrix	a logical value indicating whether the projection matrix will be returned for adjusting $\sigma(z)$ in the construction of SCC, default is FALSE.

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

Examples

```
# Triangulation information;
data(Brain.V2); data(Brain.Tr2); # triangulation No. 2;
V.est=Brain.V2; Tr.est=Brain.Tr2;
# Location information;
n1=40; n2=40;
npix=n1*n2
u1=seq(0,1,length.out=n1)
v1=seq(0,1,length.out=n2)
uu=rep(u1,each=n2)
vv=rep(v1,times=n1)
Z=as.matrix(cbind(uu,vv))
ind.inside=inVT(V.est,Tr.est,Z[,1],Z[,2])$ind.inside
# Parameters for bivariate spline over triangulation;
d.est=5; r=1;
# simulation parameters
```

8 hello

```
n=50; lam1=0.5; lam2=0.2; mu.func=2; noise.type='Func';
lambda=10^{seq(-6,3,0.5)}
dat=data1g.image(n,Z,ind.inside,mu.func,noise.type,lam1,lam2)
Y=dat$Y
Ym=matrix(apply(Y,2,mean),nrow=1)
mfit=fit.image(Ym,Z,V.est,Tr.est,d.est,r,lambda)
plot(mfit)
```

fit.mean

Penalized least square estimation with GCV

Description

The function selects penalty parameter via generalized cross validation and solves penalized least square problem in estimating mean functions with bivariate penalized splines.

Usage

```
fit.mean(B, Q2, K, lambda = 10^{(-6:3)}, Y, proj.matrix = FALSE)
```

Arguments

B bivariate spline basis matrix.

Q2 qr decomposition of the smoothness matrix.

Hello, World!

K energy matrix.

lambda candidate of the penalty parameter.

Y a matrix of data with each row corresponding to one subject/image.

proj.matrix a logical value indicating whether the projection matrix will be returned for

adjusting $\sigma(z)$ in the construction of SCC.

hello

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

plot.image 9

plot.image

Plot image with triangulation

Description

The plot method for class 'image'. The function plots a series of images of triangulations used for mean estimation, estimated mean functions and simultaneous confidence corridors.

Usage

```
## S3 method for class 'image'
plot(mfit)
```

Arguments

mfit

an "image" object returned from either fit.image or scc.image.

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

scc.image

Simultaneous confidence corridors for mean function of imaging data

Description

The function is used to construct SCC for mean function of one group of images or difference between mean functions of two sets of images.

Usage

```
scc.image(Ya, Yb = NULL, Z, Z.band = NULL, d.est = 5, d.band = 2,
   r, V.est.a, Tr.est.a, V.band.a, Tr.band.a, V.est.b = NULL,
   Tr.est.b = NULL, V.band.b = NULL, Tr.band.b = NULL,
   penalty = TRUE, lambda, alpha.grid = c(0.1, 0.05, 0.01),
   adjust.sigma = TRUE)
```

Arguments

1/		1 . 1	1'	1 ' ' '
Ya	a matrix of imaging	data each row correc	nonding to one	cuhiact/imaga
ıa	a matrix of imaging	uata. Cacii iow concs	DOHAINS WOUL	Suinceu illiage.

Yb an optional matrix containing the second group of imaging data. Default is NULL. When Yb is NULL, a one-group SCC is constructed for the mean function of Ya, otherwise, a two-group SCC is constructed for the difference between the mean

functions of Yb and Ya.

Z a 2-column matrix specifying locations of each pixel/voxel.

10 scc.image

Z.band	an optional matrix specifying locations for constructing SCC. Default is NULL. When Z.band is NULL, the SCC is evaluated on sample locations provided by matrix Z.	
d.est	degree of bivariate spline for estimating mean function, default is 5.	
d.band	degree of bivariate spline for constructing SCC, default is 2.	
r	smoothness parameter, default is 1.	
V.est.a	the 2-column matrix of vertices' coordinates in the triangulation for estimating mean function of the first set of imaging data.	
Tr.est.a	the 3-column matrix of indices of the vertices of triangles in the triangulation.	
V.band.a, Tr.band.a		
	information of triangultaion for constructing SCC of first set of imaging data.	
V.est.b, Tr.est.b		
	optional information of triangulation used for estimating mean function of the second sample.	
V.band.b, Tr.band.b		
	optional information of triangulation for constructing SCC of second set of imaging data.	
penalty	logical value indicating whether bivariate penalize spline should be implemented. Default is TRUE.	
lambda	the vector of the candidates of penalty parameter.	
alpha.grid	vector of confidence levels. Default is c(0.1,0.05,0.01).	
adjust.sigma	a logical value indicating whether $\sigma(z)$ is adjusted when constructing SCC. Default is TRUE.	

Details

This R package is the implementation program for manuscript entitled "Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data" by Yueying Wang, Guannan Wang, Li Wang and R. Todd Ogden.

Examples

```
# Triangulation information;
data(Brain.V1); data(Brain.Tr1); # triangulation No. 1;
data(Brain.V2); data(Brain.Tr2); # triangulation No. 2;
V.est=Brain.V2; Tr.est=Brain.Tr2;
V.band=Brain.V1; Tr.band=Brain.Tr1;
# Location information;
n1=40; n2=40;
npix=n1*n2
u1=seq(0,1,length.out=n1)
v1=seq(0,1,length.out=n2)
uu=rep(u1,each=n2)
vv=rep(v1,times=n1)
Z=as.matrix(cbind(uu,vv))
ind.inside = inVT(V.est, Tr.est, Z[,1], Z[,2]) \\ \$ind.inside
# Parameters for bivariate spline over triangulation;
d.est=5; d.band=2; r=1;
# Example 1. One-group SCC;
# simulation parameters
```

scc1g.image 11

```
n=50; lam1=0.5; lam2=0.2; mu.func=2; noise.type='Func';
lambda=10^{seq(-6,3,0.5)}; alpha.grid=c(0.1,0.05,0.01);
dat=data1g.image(n,Z,ind.inside,mu.func,noise.type,lam1,lam2)
Y=dat$Y; beta.true=dat$beta.true;
out 1 = scc.image(Ya=Y,Z=Z,V.est.a=V.est,Tr.est.a=Tr.est,V.band.a=V.band,Tr.band.a=Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,Tr.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.band,d.est=d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est,d.est
scc=out1$scc
sum((scc[,1,2] < beta.true[ind.inside])) \& (scc[,2,2] > beta.true[ind.inside]))/length(ind.inside)
plot(out1)
# Example 2. Two-group SCC;
# simulation parameters
na=50; nb=60; lam1=0.5; lam2=0.2; mu1.func=1; delta=0.3;
noise.type='Func'; lambda=10^{seq(-6,3,0.5)}; alpha.grid=c(0.10,0.05,0.01);
dat=data2g.image(na,nb,Z,ind.inside,mu1.func,noise.type,lam1,lam2,delta)
Ya=dat$Ya; Yb=dat$Yb; beta.true=dat$beta.true;
beta.diff=beta.true[,2]-beta.true[,1]
V.est.a=V.est.b=V.est;
Tr.est.a=Tr.est.b=Tr.est;
V.band.a=V.band.b=V.band;
Tr.band.a=Tr.band.b=Tr.band;
out2=scc.image(Ya=Ya,Yb=Yb,Z=Z,V.est.a=V.est.a,Tr.est.a=Tr.est.a,V.band.a=V.band.a,Tr.band.a=Tr.band.a,V.e.
scc=out2$scc
sum((scc[,1,2]<beta.diff[ind.inside]) & (scc[,2,2]>beta.diff[ind.inside]))/length(ind.inside)
plot(out2)
```

scc1g.image

Simultaneous confidence corridors for mean function of imaging data: one sample case

Description

Simultaneous confidence corridors for mean function of imaging data: one sample case

Usage

```
scc1g.image(Y, Z, Z.band, d.est, d.band, r, B.est, Q2.est, K.est, B.band,
    Q2.band, K.band, ind.inside, B.cover1, B.cover2, ind.inside.cover,
    penalty = FALSE, lambda, alpha.grid = c(0.1, 0.05, 0.01),
    adjust.sigma = TRUE)
```

scc2g.image

Simultaneous confidence corridors for mean function of imaging data: two sample case

Description

Simultaneous confidence corridors for mean function of imaging data: two sample case

12 scc2g.image

Usage

scc2g.image(Ya, Yb, Z, Z.band, d.est, d.band, r, B.est.a, Q2.est.a,
 K.est.a, B.est.b, Q2.est.b, K.est.b, B.band.a, Q2.band.a, K.band.a,
 B.band.b, Q2.band.b, K.band.b, ind.inside, B.cover1.a, B.cover2.a,
 B.cover1.b, B.cover2.b, ind.inside.cover, penalty = TRUE, lambda,
 alpha.grid = c(0.1, 0.05, 0.01), adjust.sigma = TRUE)

Index

```
basis.image, 2
boot.image, 2
boot1g.image, 3
boot2g.image, 4

cv.image, 4

data1g.image, 5
data2g.image, 6

fit.image, 7
fit.mean, 8

hello, 8

plot.image, 9
scc.image, 9
scc1g.image, 11
scc2g.image, 11
```