

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1964

Digital control of a second order hybrid system

McCullough, Lawrence E.; Nash, Gordon C. Jr.

Monterey, California: U.S. Naval Postgraduate School

<http://hdl.handle.net/10945/12016>

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

NPS ARCHIVE
1964
MCCULLOUGH, L.

DIGITAL CONTROL OF A
SECOND ORDER HYBRID SYSTEM

LAWRENCE E. McCULLOUGH
GORDON C. NASH, JR.

LIBRARY
U.S. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

DIGITAL CONTROL OF A
SECOND ORDER HYBRID SYSTEM

by

Lawrence E. McCullough
//
Lieutenant, United States Navy
and
Gordon C. Nash, Jr.
Lieutenant, United States Navy

Submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING

United States Naval Postgraduate School
Monterey, California

1 9 6 4

11PS ARCHIVE

Thesis

1964

MCCULLOUGH, L.

LIBRARY
U.S. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

DIGITAL CONTROL OF A
SECOND ORDER HYBRID SYSTEM

by

Lawrence E. McCullough

and

Gordon C. Nash, Jr.

This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING
from the
United States Naval Postgraduate School

ABSTRACT

This paper presents the results of efforts to implement a hybrid control system at the U. S. Naval Postgraduate School. The salient features of this effort are use of real time digital computer programming, digital determination of instantaneous state variables, and, using the foregoing features to demonstrate optimum control of a second order system. It was found that the techniques employed would control the second order system, and that the derivative of a variable could be determined with the digital equipment.

The computer programs for accomplishing this effort are included in Chapter IV and the appendices.

TABLE OF CONTENTS

<u>Chapter</u>	<u>Title</u>	<u>Page</u>
I	Introduction	1
II	Equipment	2
III	Digital Time Scaling	4
IV	Hybrid Control Policy	7
V	Procedure	13
VI	Results and Discussion	15
VII	Conclusions and Recommendations	19
VIII	Bibliography	21

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Page</u>
1. Hybrid Control System	3
2. State Generator Test System	14
3. Derivative Results	16-7
4. Phase Trajectories of the Hybrid System	18

APPENDICES

	<u>Page</u>
I Constant Time Floating Point Arithmetic Package	A-1
II State Generator (including test output routine)	A-23

CHAPTER I
INTRODUCTION

The purpose of this work was to implement a hybrid control system at the U. S. Naval Postgraduate School.

The control problem was approached assuming that a prospective control policy would require instantaneous knowledge of state variables which could not be obtained from the analog sub-system. States needed to implement the control policy would therefore be calculated by the digital computer.

In order to achieve control and obtain the states (i.e., derivatives) it was necessary to be able to determine with considerable accuracy the times required to sample and to compute. Also, appropriate constant time floating point arithmetic and converting procedures had to be developed.

In addition, it was desired to determine what effects on state determination and control any noise present in the system might have.

CHAPTER II
EQUIPMENT

The system under consideration is shown in Fig. 1. The digital computer was a Control Data Corporation 160. The memory capacity is 4096 twelve bit binary word with a storage cycle time of 6.4 microseconds. Operation is controlled by a program internally stored in sequential locations. More complete information including a listing of computer instructions is contained in Ref. 1.

The plant was simulated on a PACE TR 10 Electronic Associates Incorporated analog computer. It is a twenty amplifier computer with a saturation level of ± 10 volts. The power supply is regulated to ± 10 millivolts. Further information may be found in Ref. 2.

The A/D and D/A converters were designed and constructed at the U. S. Naval Postgraduate School using Digital Equipment Corporation modules. The principle of operation is successive approximation conversion. The analog capacity was 0 to -10 volts with a sensitivity of 2.4 millivolts per bit. The digital ranges 0000 to 3777 and 4000 to 7777 correspond to analog ranges of -5 to 0 and -10 to -5 volts respectively.

HYBRID CONTROL SYSTEM

FIGURE 1

CHAPTER III

DIGITAL TIME SCALING

Of the factors to be considered in the implementation of a hybrid control system one of the more important is the time scaling of the digital computer. Normally, time is not one of the criterion of digital computer programming, but when the computer is used as part of a control system, it must be time scaled to be compatible with the remainder of the system. Often this time scaling is referred to as computing in "real" time; that is, the time scale of the analog system. The following discussion presents some of the aspects of digital time scaling.

All digital programs must be written so that the time required for the program is independent of the magnitude of any input or computed variables. In many cases this involves padding the shorter paths to equalize all path times to that of the longest path in a particular operation. As a note of caution, care should be exercised to avoid a prohibitive delay which would negate the value of the program.

Any library routine used in a compensation program must meet this constant time requirement. In most cases this was not one of the original requirements, meaning the routine must be rewritten. This has been done for the floating point add, subtract, multiply and divide and the fixed-to-floating point and floating-to-fixed point conversion routines. These are presented in App. I as the Constant Time Floating Point Arithmetic Package.

In writing constant time programs for the CDC 160 the cycle time was used as a basis. Each of the CDC 160 instructions requires one to three cycle times for execution. By writing programs so that all possible paths contain the same number of cycles the constant time requirement was satisfied. Knowing the cycle time, the program time was calculated.

Although Ref. 1 states the cycle time for the CDC 160 is 6.4 microseconds, it was found that the actual time may vary slightly from that value. In the case of programs which contain several hundred cycles the difference may become significant. By timing the below program, which contains 20×10^6 cycles, with a stopwatch the cycle time may be determined.

1000	2600	lcc 00	1010	2200	ldc 00
1001	2341	2341	1011	4512	4512
1002	4213	stf 13	1012	0701	sbn 01
1003	2600	lcc 00	1013	6501	nzb 01
1004	7640	7640	1014	7700	hlt
1005	4211	stf 11	1015	0000	
1006	5610	aof 10	1016	0000	
1007	6501	nzb 01			

As another consequence of the constant time requirement, any satellite equipment used with the computer must be tested for operation time. To illustrate, consider the analog to digital converter. There is a time delay between the time an input is called and the time the input is inserted into the computer. During this delay the computer cannot be used for other purposes. This time delay must be found so that it can be taken into consideration in computing total program time. To determine the delay, run a program of the input routine repeated several times and with a stopwatch time the program. Knowing

the total number of analog to digital conversions and the time for these conversions, the time per conversion can be calculated. A similar procedure can be used to determine the digital to analog conversion time.

CHAPTER IV

HYBRID CONTROL POLICY

1. Theory

The process description is

$$\dot{\theta} = F \underline{\theta}(K) + \underline{D} \underline{U}(K) \quad IV-1$$

where $F = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $\underline{D} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

and in sampled form is

$$\underline{\theta}(K+1) = e^{FT} \underline{\theta}(K) + \Delta_n \underline{U}(n) \quad IV-2$$

Let $\underline{A} = e^{FT} = I + FT + \frac{(FT)^2}{2} + \dots$

$$\underline{A} = I + FT + (F) (F) \frac{T^2}{2} + \dots$$

gives $\underline{A} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \quad IV-3$

and $\Delta_n = \int_0^T e^{F(T-t)} \underline{D} dt$

$$= \int_0^T \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} dt = \int_0^T \begin{bmatrix} t \\ 1 \end{bmatrix} dt = \begin{bmatrix} T^2/2 \\ T \end{bmatrix} \quad IV-4$$

Substituting into the process equation, we obtain

$$\underline{\theta}(K+1) = \underline{A} \underline{\theta}(K) + \underline{U}(K) \quad IV-5$$

It is now desired to get the reference position in 2 samples

$$\underline{\theta}(1) = \underline{A} \underline{\theta}(0) + \underline{U}(0)$$

$$\underline{\theta}(2) = \underline{A} \underline{\theta}(1) + \underline{U}(1) = 0$$

$$\underline{\theta} = \underline{A} (\underline{A} \underline{\theta}(0) + \underline{U}(0)) + \underline{U}(1)$$

$$\underline{\theta} = \begin{bmatrix} 1 & 2T \\ 0 & 1 \end{bmatrix} \underline{\theta}(0) + \begin{bmatrix} 3T^2/2 \\ T \end{bmatrix} \underline{U}(0) + \begin{bmatrix} T^2/2 \\ T \end{bmatrix} \underline{U}(1) \quad IV-6$$

Letting $\underline{U}_n = -a_1 \underline{\theta}(n) - a_2 \dot{\underline{\theta}}(n)$, and $IV-7$

expanding IV-7

$$\underline{\theta}(0) + 2T \dot{\underline{\theta}}(0) = -\frac{3}{2} T^2 \underline{U}(0) - \frac{T^2}{2} \underline{U}(1) \quad IV-6a$$

$$\dot{\underline{\theta}}(0) = T \underline{U}(0) + T \underline{U}(1) (\times T/2) \quad IV-6b$$

Simultaneous solution of these equations gives

$$\underline{U}(0) = -\frac{\underline{\theta}(0)}{T^2} - \frac{3 \dot{\underline{\theta}}(0)}{2T}$$

$$\text{or generally, } U(K) = -\frac{\theta(K)}{T^2} - \frac{3\dot{\theta}(K)}{2T},$$

IV-8

the desired control policy. This policy will force the second order system to its reference position in two sampling periods (2T). (The sampling period (T) should not be confused with that alluded to in the state generator discussion in App. II)

2. Memory Required

All lower memory, except 70-77.

Upper memory - 164₈ cells.

3. Subroutines Required

Floating Point Arithmetic Package.

State Generator Program with the "Divide-by-Four" subroutine which it requires.

4. Special Features

The sampling period (T) is adjusted by manually entering the desired counting value in cell 2430 (as the program is herein listed). 1712 for T=1 second, and 730 for T=½ second.

When the sampling period T is changed, the equivalent floating point number must be entered into cells 50 and 51, and its square into cells 52 and 53. These entries give the proper gain value for the chosen sampling period.

5. CDC 160 Computer Control Program

The program to implement the control policy follows.

Summary of Cell Allocations

(including detail of lower memory)

0100 - 1703 floating point arithmetic package
1704 - 1730 Divide-by-4
1731 - 1760 2T/3 computation
1761 - 2303 State generator
2304 - 2414 Control Policy including output

Lower Memory

01-04	floating point arguments	
06	program loop-closing jump (to 1761)	
07	subroutine return jumps	
10-1	UU & L floating point forcing fct	
12-3	TE2U & L $3\theta/2T$	
14-5	TE1U & L θ/T^2	
16-7	2TD3U & L $3/2T$	
20	U forcing function	
21-2-3	θA, θB, θC	
24-5	θB-θA, θC-θB, resp.	
26	(θC-θB) - (θB-θA)	
30-1	(θB-θA) U & L	
32-3	θBDU & L	
34-5	(θC-θB) U & L	
36-7	θCDU & L	
40-1	(θC-θB) - (θB-θA) U & L	
42-3	θCDDU & L	
44-5	△ TU & L	
46-7	△ T2U & L	
50-1	TU & L	
52-3	T2U & L	
54-5	2U & L	
56-7	3U & L	
61	Divided by 4 (1704)	
62	FSB	0317
63	FAD	0335
64	FMU	1315
65	FDV	1533
66	FIX-FLO	0100
67	FLO-FIX	0162

Unused

00, 05, 27 & 60

FORM 2T/3

1731 2054 ldd 54
1732 4001 std 01
1733 2055 ldd 55
1734 4002 std 02
1735 2050 ldd 50
1736 4003 std 03
1737 2051 ldd 51
1740 4004 std 04

1741 0101 pta
1742 0604 adn 04
1743 4007 std 07
1744 7064 jpi 64
1745 2056 ldd 56
1746 4003 std 03
1747 2057 ldd 57
1750 4004 std 04

1751 0101 pta
1752 0604 adn 04
1753 4007 std 07
1754 7065 jpi 65
1755 2001 ldd 01
1756 4016 std 16
1757 2002 ldd 02
1760 4017 std 17

Continue into the main loop of the State Generator.

CONTROL POLICY

2304 0101 pta
 2305 0605 adn 05
 2306 4007 std 07
 2307 2023 ldd 23

2310 7066 jpi 66 EC to floating point
 2311 2052 ldd 52
 2312 4003 std 03
 2313 2053 ldd 53
 2314 4004 std 04
 2315 0101 pta
 2316 0604 adn 04
 2317 4007 std 07

2320 7065 jpi 65 $\theta(K)/T^2$
 2321 2001 ldd 01
 2322 4014 std 14
 2323 2002 ldd 02
 2324 4015 std 15
 2325 2036 ldd 36
 2326 4001 std 01
 2327 2037 ldd 37

2330 4002 std 02
 2331 2016 ldd 16
 2332 4003 std 03
 2333 2017 ldd 17
 2334 4004 std 04
 2335 0101 pta
 2336 0604 adn 04
 2337 4007 std 07

2340 7065 jpi 65 $\theta \text{ DOT}/(2T/3)$
 2341 2001 ldd 01
 2342 4012 std 12
 2343 2002 ldd 02
 2344 4013 std 13
 2345 2014 ldd 14
 2346 4003 std 03
 2347 2015 ldd 15

2350	4004	std 04	
2351	0101	pta	
2352	0604	adn 04	
2353	4007	std 07	
2354	7063	jpi 63	add to form -U
2355	2001	ldd 01	
2356	4010	std 10	
2357	2002	ldd 02	
2360	4011	std 11	
2361	0101	pta	
2362	0604	adn 04	
2363	4007	std 07	
2364	7067	jpi 67	-U to fixed point
2365	1600	scc	
2366	7777	7777	complement gives +U
2367	4020	std 20	
2370	7500	exf 00	
2371	2401	2401	
2372	7304	out 04	output U
2373	0021	0021	
2374	6103	nzf 03	
2375	6002	zjf 02	
2376	0020	0020	
2377	2200	ldc 00	
2400	1712	1712	
2401	4211	stf 11	
2402	2200	ldf 00	
2403	0117	0117	
2404	0701	sbn 01	
2405	6501	nzb 01	
2406	2204	ldf 04	
2407	0701	sbn 01	
2410	6507	nzb 07	
2411	6202	pjf 02	
2412	0000	0000	
2413	7006	jpi 06	jump to close main loop, (0006)=1761
2414	7717	hlt 17	

CHAPTER V

PROCEDURE

The programs for generating the state variable (App. II) and control function (Chap. IV) were tested using the circuits shown in Figs. 2 and 1, respectively.

The TR-10 biasing levels, Fig. 2, for closed loop control were very sensitive. A small error yielded completely erroneous results. This was not a problem in the state variable test. The limiter was provided to protect the A/D converter from inputs beyond its range (0 to -10 volts). The linearity of the A/D and D/A was determined to be satisfactory before operating the system. Initial conditions were chosen to avoid saturating the voltage limits (e.g. $U(0) = \theta_0/T^2$); also, saturation of the float-to-fixed point program will occur whenever the floating point number exceeds the largest possible positive and negative fixed point numbers, 3777 and 4000.

STATE GENERATOR TEST SYSTEM

FIGURE 2

CHAPTER VI
RESULTS AND DISCUSSION

The program for generating the first derivative is shown in App. II. Using this program and the system of Fig. 2, the average peak-to-peak noise level is about 2.0 volts. Except for the noise effects, the derivatives obtained were reliable. Any error in amplitude and/or phase being within the noise envelope as shown in Fig. 3.

The program for implementing the control policy is shown in Chap. IV. The results of testing this program with an imbedded step are shown in Fig. 4. If noise is relatively low at the instants of sampling, the control is nearly ideal, as in Fig. 4a. However, when noise is appreciable the result obtained is like that shown in Figs. 4b and 4c. Fig. 4b shows the effect of noise making the $\dot{\theta}$ term of the control policy too large, while Fig. 4c shows the effect when $\dot{\theta}$ is made too small.

DERIVATIVE RESULTS

FIGURE 3

DERIVATIVE RESULTS (con't)

FIGURE 3

2

0

Fig. 4a

IDEAL

2

0

Fig. 4b

 θ TOO LARGE

2

0

Fig. 4c

 θ TOO SMALL

PHASE TRAJECTORIES OF
THE HYBRID SYSTEM

Figure 4

CHAPTER VII

CONCLUSION AND RECOMMENDATIONS

The control policy has been demonstrated to be effective when noise is not a significant factor. This is seldom the situation. The policy as implemented here is very sensitive to noise of the level of several millivolts.

It was further demonstrated that a good first derivative could be digitally determined, but is very sensitive to input noise.

It was not possible to determine the major source(s) of noise, but the test signal generator was highly suspect. The generator probably has a high frequency ripple of several millivolts in its output, thus giving the noisy results previously discussed.

Improvement of the results obtained here can be obtained either by eliminating noise or turning to more sophisticated programming, such as predictor-corrector schemes. Noise elimination is all but impractical except in the laboratory. More sophisticated programs will result in much higher "costs" than the programs presented here. These costs will be mainly in computer usage-time and memory space required. Also, while the program utilized here was almost instantaneous, some of the more sophisticated ones may involve significant time (phase) delays for which adjustment will be necessary.

Further investigations along the approach used here should initially determine the noise characteristics of all equipments considered for use in order that excessively noisy signals are not introduced.

BIBLIOGRAPHY

1. Control Data Corporation, CDC 160 Computer Programming Manual.
2. Electronic Associates, Inc., PACE TR-10 Transistorized Analog Computer Operator's Handbook.
3. Lecture Notes, Course EE-414A, H. A. Titus, U. S. Naval Postgraduate School, Monterey, California, September 1963.

APPENDIX I
CDC 160 CONSTANT TIME FLOATING POINT
ARITHMETIC PACKAGE

The Constant Time Floating Point Package contains routines for fixed point to floating point and floating point to fixed point conversions and floating point add, subtract, multiply and divide. These subroutines have been programmed so that the same amount of time is required for each operation regardless of the magnitude of the input quantity. The following paragraphs contain some general information and notes on the package and its use.

1. Floating Point Number Format

The floating point number consists of eight octal digits and requires two storage cells. One cell (lower) contains the significant figures of the number. To form a positive floating point number the fixed point octal number is written in binary form and the binary point shifted to the left of the first significant (one) bit. The octal number of shifts required added to 2000₈ becomes the upper portion of the floating point number. The lower portion is the significant bits in octal form, with the binary point understood to be at the left. To form a negative floating point number the same procedure is followed except the upper and lower portions of the number are "sevens complemented".

Example:

$$3721.8 = 011\ 111\ 010\ 001.2$$

$$\begin{aligned}3721.8 &= .111\ 110\ 100\ 010_2 \times 2^{13}8 \\&= .7642_8 \times 2^{13}8\end{aligned}$$

The positive floating point number is $\frac{2013}{7642}$ and the negative is $\frac{5764}{0135}$.

2. Significant Figures

This package recognizes the following configurations as zero:

Upper	0000	0000	XXXX
Lower	0000	XXXX	0000

In the interest of conserving time the last significant figure has not been rounded off in any of the routines in this package. In the floating-to-fixed point conversions, if the magnitude of the number exceeds capacity of the computer in fixed point, the output will be 3777_8 if the number is positive or 4000_8 if the number is negative.

3. Cells Required

The package requires the following cells:

01	X upper stowage
02	X lower stowage
03	Y upper stowage
04	Y lower stowage
07	XXXX return jump address
0100 to 1703	floating point package

4. Jump Routines

The following routines are recommended for jumping into the floating point package.

Fixed point to floating point conversion:

0101 pta	XX is the number of the cell in which the
0605 adn 05	fixed point number is stored.
4007 std 07	
20XX ldd XX	YY is the number of the cell in which the
70YY jpi YY	address of the fixed-to-floating point
	routine is stored.

All other operations:

0101 pta XX is the number of the cell in which the
0604 adn 04 jump address of the operation is stored.
4007 std 07
70XX jpi XX

In each case control is returned to the main program at the address following the jpi instruction.

5. Summary

OPERATION (CODE)	JUMP ADDRESS	DESCRIPTION	ANSWER IN	TIME CYCLES
Fixed to floating point conversion. (FX-FL)	0100	(A) \rightarrow X	01 02	167
Floating to fixed point conversion. (FL-FX)	0162	X \rightarrow A	A	216
Floating point subtraction. (FSB)	0317	X - Y	01 02	319
Floating point addition. (FAD)	0323	X + Y	01 02	303
Floating point multiplication (FMU)	1315	X * Y	01 02	674
Floating point division. (FDV)	1533	X / Y	01 02	380

CONSTANT TIME

FLOATING POINT ARITHMETIC PACKAGE

0100	4002	std 02	FX-FL. Store fixed point number in cell 02.
0101	0513	lcn 13	Set count 1 with 13.
0102	4255	stf 55	
0103	0400	ldn 00	Zeroize count 2 and cell 01.
0104	4254	stf 54	
0105	4001	std 01	
0106	2002	ldd 02	Store fixed point number for later sign check.
0107	4247	stf 47	
0110	6204	pjf 04	
0111	2402	lcd 02	Number is negative, complement and restore.
0112	4002	std 02	
0113	6204	pjf 04	
0114	0401	ldn 01	Add one to count 2 to equalize positive and negative paths.
0115	4243	stf 43	
0116	2002	ldd 02	
0117	6033	zjf 33	If number is zero jump forward.
0120	5401	aod 01	Shift cell 02 until first bit is a one bit.
0121	5636	aof 36	For each shift add one to cell 01 and count 1. Cell 02 now contains the lower part of the floating point number.
0122	4402	srd 02	
0123	6603	pjb 03	
0124	2200	ldc 00	Subtract cell 01 from 2014 to form the upper part of the floating point number and restore.
0125	2014	2014	
0126	3401	sbd 01	
0127	4001	std 01	
0130	2226	ldf 26	Check sign of original number.
0131	6205	pjf 05	
0132	2401	lcd 01	Number is negative, complement upper and lower parts and restore.
0133	4001	std 01	
0134	2402	lcd 02	
0135	4002	std 02	
0136	2222	ldf 22	Form count. Count = Number of delay loops
0137	3620	sbf 20	= Count 2 - Count 1
0140	4221	stf 21	
0141	6010	zjf 10	No delay loops are necessary.
0142	2217	ldf 17	Delay loops to equalize time.
0143	0701	sbn 01	
0144	4215	stf 15	
0145	0300	nop	
0146	0300	nop	
0147	0300	nop	

0150	6506	nzb 06	
0151	7007	jpi 07	Return jump to main program.
0152	0415	ldn 15	Form count for fixed point number
0153	0300	nop	equal to zero.
0154	0300	nop	
0155	6615	pjb 15	
0156	0000		Sign check stowage.
0157	0000		Count 1 stowage. Count 1 = 13 - No. of shifts.
0160	0000		Count 2 stowage.
0161	0000		Count stowage.
0162	2001	ldd 01	FL-FX. Load upper part of floating point
0163	4260	stf 60	number and store as sign check.
0164	6305	njf 05	
0165	0404	ldn 04	Number is positive. Time delay to equalize
0166	0701	sbn 01	positive and negative paths.
0167	6501	nzb 01	
0170	6005	zjf 05	
0171	2401	lcd 01	Number is negative. Complement upper and
0172	4001	std 01	lower parts and restore.
0173	2402	lcd 02	
0174	4002	std 02	
0175	2002	ldd 02	
0176	6051	zjf 51	If number is zero jump to 0247.
0177	2001	ldd 01	
0200	3600	sbc 00	Subtract 2000 to find exponent. If positive
0201	2000	2000	store on shift.
0202	6046	zjf 46	Exponent is zero. Jump to 0250.
0203	6346	njf 46	Exponent is negative. Jump to 0251.
0204	4240	stf 40	
0205	0714	sbn 14	Subtract 14 from shift and stow result
0206	4237	stf 37	in count. Count = No. delay loops.
0207	6202	pjf 02	If count is positive, number will exceed
0210	6302	njf 02	capacity. Jump to 0252.
0211	6141	nzf 41	
0212	0400	ldn 00	
0213	4233	stf 33	Zeroize mask and form complement of shift.
0214	2630	lcf 30	
0215	4227	stf 27	
0216	4402	srd 02	Shift cell 02 shift number of times. At
0217	4627	srf 27	same time form mask.
0220	5626	aof 26	
0221	5623	aof 23	
0222	6504	nzb 04	
0223	2222	ldf 22	Delay loops to equalize time.
0224	6006	zjf 06	
0225	0404	ldn 04	
0226	0701	sbn 01	
0227	6501	nzb 01	

0230	5615	aof 15	
0231	6504	nzb 04	
0232	2002	ldd 02	Mask cell 02 and restore. Cell 02 contains the fixed point number.
0233	1213	lpf 13	
0234	4002	std 02	
0235	2206	ldf 06	Check sign of original number. If negative complement and load in A register. If positive load in A register. Re-
0236	6303	njf 03	
0237	2002	ldd 02	turn jump to main program.
0240	7007	jpi 07	
0241	2402	lcd 02	
0242	7007	jpi 07	
0243	0000		Check stowage.
0244	0000		Shift stowage.
0245	0000		Count stowage.
0246	0000		Mask stowage.
0247	6004	zjf 04	JUMP to 0253.
0250	6012	zjf 12	Jump to 0262.
0251	6342	njf 24	Jump to 0275.
0252	6132	nzf 32	Jump to 0304.
0253	2200	ldc 00	Floating point number is zero. Load zero in A register, delay and return jump to main program.
0254	0137	0137	
0255	0701	sbn 01	
0256	6501	nzb 01	
0257	0300	nop	
0260	0400	ldn 00	
0261	7007	jpi 07	
0262	2200	ldc 00	Floating point number is larger than 0.5 and less than 1. Load 0001 in A register, delay, and return jump to main program.
0263	0133	0133	
0264	0701	sbn 01	
0265	6501	nzb 01	
0266	0300	nop	
0267	2324	ldb 24	
0270	6303	njf 03	
0271	0401	ldn 01	
0272	7007	jpi 07	
0273	0501	lcn 01	
0274	7007	jpi 07	
0275	2200	ldc 00	Floating point number is greater than zero but less than 0.5. Load zero in A register, delay and return jump to main
0276	0134	0134	
0277	0701	sbn 01	
0300	6501	nzb 01	program.
0301	0300	nop	
0302	0400	ldn 00	
0303	7007	jpi 07	
0304	2200	ldc 00	Floating point number exceeds capacity of computer. If number is positive load 3777 in A register, if negative load 4000, delay, and return jump to main
0305	0126	0126	
0306	0701	sbn 01	
0307	6501	nzb 01	

0310	2345	ldb 45	program.
0311	6304	njf 04	
0312	2200	lldc 00	
0313	3777	3777	
0314	7007	jpi 07	
0315	2702	lcb 02	
0316	7007	jpi 07	
0317	2003	lld 03	FSB. Zero check Y upper and lower. If
0320	6104	nzf 04	
0321	4003	std 03	
0322	0300	nop	
0323	6003	zjf 03	
0324	2403	lcd 03	
0325	4003	std 03	
0326	2004	lld 04	
0327	6104	nzf 04	
0330	4004	std 04	
0331	0300	nop	
0332	6003	zjf 03	
0333	2404	lcd 04	
0334	4004	std 04	
0335	2001	lld 01	FAD. Sign and zero check X.
0336	6017	zjf 17	
0337	6353	njf 53	
0340	2002	lld 02	
0341	6016	zjf 16	
0342	2003	lld 03	X is positive and non-zero. Sign and
0343	6042	zjf 42	zero check Y.
0344	6305	njf 05	
0345	2004	lld 04	
0346	6041	zjf 41	
0347	7101	jfi 01	X and Y are positive and non-zero. Jump
0350	1077	1077	to 1077.
0351	2004	lld 04	
0352	6035	zjf 35	
0353	7101	jfi 01	X is positive and Y is negative. Both
0354	0653	0653	are non-zero. Jump to 0653.
0355	2001	lld 01	Time delay. NOTE: X is zero for 0355
0356	2001	lld 01	to 0404.
0357	2003	lld 03	Zero check Y upper.
0360	6105	nzf 05	
0361	0402	ldn 02	Time delay.
0362	0701	sbn 01	
0363	6501	nzb 01	
0364	6010	zjf 10	
0365	4001	std 01	Y upper non-zero. Store in cell 01.
0366	2004	lld 04	Zero check Y lower.
0367	6006	zjf 06	

0370	4002	std 02	Y lower is non-zero. Store in cell 02.
0371	2200	ldc 00	Answer is now in cells 01 and 02. Delay
0372	0213	0213	and return jump to main program.
0373	0300	nop	
0374	6106	nzf 06	
0375	0400	ldn 00	Answer is zero. Load zero in cells 01 and
0376	4001	std 01	02, delay and return jump to main
0377	4002	std 02	program.
0400	2200	ldc 00	
0401	0212	0212	
0402	0701	sbn 01	
0403	6501	nzb 01	
0404	7007	jpi 07	
0405	2003	ldd 03	Y is zero. Delay and return jump to main
0406	2003	ldd 03	program.
0407	2200	ldc 00	
0410	0216	0210	
0411	6507	nzb 07	
0412	2002	ldd 02	Zero check X lower. NOTE: X is negative
0413	6434	zjb 34	for 0412 to 0424.
0414	2003	ldd 03	Zero and sign check Y upper.
0415	6410	zjb 10	
0416	6205	pjf 05	
0417	2004	ldd 04	Y is negative. Zero check Y lower.
0420	6411	zjb 11	
0421	7101	jpi 01	X and Y are negative. Jump to 1105.
0422	1105	1105	
0423	2004	ldd 04	Y is positive. Zero check Y lower.
0424	6415	zjb 15	
0425	2401	lcd 01	Subtract upper parts and store result
0426	3403	sbd 03	in count 1. NOTE: 0425, to 0652 is
0427	4275	stf 75	X negative and Y positive routine.
0430	6077	zjf 77	Exponents equal. Jump to 0527.
0431	6277	pjf 77	X exponent larger. Jump to 0530.
0432	0614	adn 14	Add 14 to count 1 to form shift.
0433	6056	zjf 56	Y is much larger than X. Jump to 0511.
0434	6356	njf 56	
0435	1600	scc 00	Complement and restore shift.
0436	7777	7777	
0437	4266	stf 66	
0440	0400	ldn 00	Zeroize mask.
0441	4265	stf 65	
0442	4402	srd 02	Shift X lower to equalize exponents.
0443	4663	srf 63	Form mask. No. of shifts = shift.
0444	5662	aof 62	
0445	5660	aof 60	
0446	6504	nzb 04	
0447	2402	lcd 02	Mask and restore X lower.

0450	1256	lpf 56	
0451	4002	std 02	
0452	0513	lcn 13	Load -13 in count 2.
0453	4253	stf 53	
0454	2004	ldd 04	Subtract X and Y lower and store result
0455	3402	sbd 02	on cell 02.
0456	4002	std 02	
0457	6206	pjf 06	
0460	2003	ldd 03	First bit is a one bit. No shift is
0461	4001	std 01	necessary. Store exponent in cell
0462	0401	ldn 01	01. Time delay.
0463	0701	sbn 01	
0464	6010	zjf 10	
0465	5641	aof 41	Shift cell 02 until first bit is a one
0466	4402	srd 02	bit. Modify count 2 for each shift.
0467	6602	pjb 02	
0470	2636	lcf 36	Form exponent and store in cell 01.
0471	0713	sbn 13	
0472	3003	add 03	
0473	4001	std 01	
0474	2230	ldf 30	Zero check count 1.
0475	6006	zjf 06	
0476	0404	ldn 04	Count 1 delay loops.
0477	0701	sbn 01	
0500	6501	nzb 01	
0501	5623	aof 23	
0502	6504	nzb 04	
0503	2223	ldf 23	Zero check count 2.
0504	6004	zjf 04	
0505	4220	stf 20	Count 2 delay loops.
0506	5620	aof 20	
0507	6502	nzb 02	
0510	7007	jpi 07	Return jump to main program.
0511	0300	nop	Y is much greater than X. Load Y in
0512	2003	ldd 03	cells 01 and 02, delay and re-
0513	4001	std 01	turn jump to main program.
0514	2004	ldd 04	
0515	4002	std 02	
0516	2200	ldc 00	
0517	0204	0204	
0520	0300	nop	
0521	0701	sbn 01	
0522	6501	nzb 01	
0523	7007	jpi 07	Count 1 stowage.
0524	0000		Shift stowage.
0525	0000		Mask and count 2 stowage.
0526	0000		
0527	6055	zjf 55	Exponents equal. Jump to 0604.

0530	0714	sbn 14	X exponent larger. Form shift.
0531	4304	stb 04	
0532	6244	pjf 44	X is much larger than Y. Jump to 0576.
0533	0400	ldn 00	Zeroize mask.
0534	4306	stb 06	
0535	4404	srd 04	
0536	4710	srh 10	Shift Y lower to equalize exponents.
0537	5711	aob 11	Form mask. No. of shifts ≠ shift.
0540	5713	aob 13	
0541	6504	nzb 04	
0542	2004	ldd 04	Mask and restore Y lower.
0543	1315	lpb 15	
0544	4004	std 04	
0545	0513	lcn 13	Load -13 in count 2.
0546	4320	stb 20	
0547	2402	lcd 02	Subtract X and Y lower and store re-
0550	3404	sbd 04	sult in cell 02.
0551	4002	std 02	
0552	6205	pjf 05	
0553	0402	ldn 02	Time delay.
0554	0701	sbn 01	
0555	6501	nzb 01	
0556	6007	zjf 07	
0557	5731	aob 31	Shift cell 02 until first bit is a
0560	4402	srd 02	one bit. Modify count 2 for each
0561	6602	pjb 02	shift.
0562	2334	ldb 34	Form exponent and store in cell 01.
0563	0613	adn 13	
0564	5001	rad 01	
0565	2402	lcd 02	Answer is negative. Complement and
0566	4002	std 02	restore cell 02.
0567	2743	lcb 43	Modify count 1 to equalize delay.
0570	0601	adn 01	
0571	4345	stb 45	
0572	2200	ldc 00	Modify program for proper jump.
0573	6531	6531	
0574	4347	stb 47	Jump back to counts 1 and 2 dealy loops.
0575	6550	nzb 50	
0576	2200	ldc 00	X much larger than Y delay.
0577	0207	0207	
0600	0300	nop	
0601	0701	sbn 01	
0602	6501	nzb 01	
0603	7007	jpi 07	
0604	0515	lcn 15	X and Y exponents equal. Form count 3.
0605	4245	stf 45	
0606	2402	lcd 02	Subtract X and Y lower and store in
0607	3404	sbd 04	cell 02.

0610	4002	std 02	
0611	6105	nzf 05	
0612	4001	std 01	X and Y are equal. Answer is zero. Jump to delay routine.
0613	2200	ldc 00	
0614	0201	0201	
0615	6134	nzf 34	
0616	6314	njf 14	
0617	5633	aof 33	X is greater than Y. Left shift cell 02 until first bit is a one bit. Modify count 3 for each shift.
0620	4402	srd 02	
0621	6602	pjb 02	
0622	2402	lcd 02	
0623	4002	std 02	Form exponent and store in cell 01.
0624	2226	ldf 26	
0625	0615	adn 15	
0626	5001	rad 01	
0627	0300	nop	Time delay.
0630	0400	ldn 00	
0631	6013	zjf 13	
0632	2402	lcd 02	X is less than Y. Left shift cell 02 until first bit is a one bit.
0633	4002	std 02	Modify count 3 for each shift.
0634	5616	aof 16	
0635	4402	srd 02	
0636	6602	pjb 02	
0637	2613	lcf 13	Form exponent and store in cell 01.
0640	0715	sbn 15	
0641	3003	add 03	
0642	4001	std 01	
0643	0300	nop	Count 3 delay loops.
0644	5606	aof 06	
0645	4205	stf 05	
0646	6502	nzb 02	
0647	2200	ldc 00	Time delay.
0650	0117	0117	
0651	6551	nzb 51	
0652	0000		Count 3 stowage.
0653	2403	lcd 03	Subtract upper parts and store result in count 1. NOTE: X is positive and Y is for 0653 to 1076.
0654	3401	sbd 01	
0655	4267	stf 67	
0656	6071	zjf 71	Exponents equal. Jump to 0747.
0657	6271	pjf 71	Y larger than X. Jump to 0750.
0660	0614	adn 14	Add 14 to count 1 to form shift.
0661	6054	zjf 54	X is much larger than Y. Jump to 0735.
0662	6354	njf 54	
0663	1600	scc 00	Complement and restore shift.
0664	7777	7777	
0665	4260	stf 60	
0666	0400	ldn 00	Zeroize mask.
0667	4257	stf 57	

0670	4404	srd 04	Shift Y lower to equalize exponents.
0671	4655	srf 55	Form mask. No. shifts = Shift.
0672	5654	aof 54	
0673	5652	aof 52	
0674	6504	nzb 04	
0675	2404	lcd 04	Mask and restore Y lower.
0676	1250	lpf 50	
0677	4004	std 04	
0700	0513	len 13	Load -13 in count 2.
0701	4245	stf 45	
0702	2002	ldd 02	Subtract lower parts and store in
0703	3404	sbd 04	cell 02.
0704	4002	std 02	
0705	6205	pjf 05	
0706	0402	ldn 02	First bit is a one bit! No shift is
0707	0701	sbn 01	needed. Time delay.
0710	6501	nzb 01	
0711	6007	zjf 07	
0712	5634	aof 34	Left shift cell 02 until first bit is
0713	4402	srd 02	a one bit. Modify count 2 for each
0714	6602	pjb 02	shift.
0715	2631	lcf 31	Form exponent and store in cell 01.
0716	0713	sbn 13	
0717	5001	rad 01	
0720	2224	ldf 24	Zero check count 1.
0721	6006	zjf 06	
0722	0404	ldn 04	Count 1 delay loops.
0723	0701	sbn 01	
0724	6501	nzb 01	
0725	5617	aof 17	
0726	6504	nzb 04	
0727	2217	ldf 17	Zero check count 2.
0730	6004	zjf 04	
0731	4214	stf 14	Count 2 delay loops.
0732	5614	aof 14	
0733	6502	nzb 02	
0734	7007	jpi 07	Return jump to main program.
0735	0300	nop	X is much larger than Y. Delay and
0736	2200	ldc 00	return jump to main program.
0737	0207	0207	
0740	0300	nop	
0741	0701	sbn 01	
0742	6501	nzb 01	
0743	7007	jpi 07	Count 1 storage.
0744	0000		Shift storage.
0745	0000		Mask and count 2 storage.
0746	0000		
0747	6062	zjf 62	Exponents equal. Jump to 1017.

0750	0714	sbn 14	
0751	4304	stb 04	
0752	6245	pjf 45	Y much larger than X. Jump to 1017.
0753	0400	ldn 00	Zeroize mask.
0754	4306	stb 06	
0755	4402	srd 02	Shift X lower to equalize exponents.
0756	4710	srp 10	Form mask. No. shifts = Shift.
0757	5711	aob 11	
0760	5713	aob 13	
0761	6504	nzb 04	
0762	2002	ldd 02	Mask and restore X lower.
0763	1315	lpb 15	
0764	4002	std 02	
0765	0513	lcn 13	Load -13 in count 2.
0766	4320	stb 20	
0767	2404	lcd 04	Subtract lower parts and store result
0770	3402	sbd 02	in cell 02.
0771	4002	std 02	
0772	6205	pjf 05	First bit is a one bit. No shift is
0773	2003	ldd 03	necessary. Store exponent in cell
0774	4001	std 01	01.
0775	2003	ldd 03	Time delay.
0776	6110	nzf 10	
0777	5731	aob 31	Left shift cell 02 until first bit is
1000	4402	srd 02	a one bit. Modify count 2 for each
1001	6602	pjb 02	shift.
1002	2334	ldb 34	Form exponent and store in cell 01.
1003	0613	adn 13	
1004	3003	add 03	
1005	4001	std 01	
1006	2402	lcd 02	Complement and restore cell 02.
1007	4002	std 02	
1010	2744	lcb 44	Modify count 1 to equalize time delay.
1011	0601	adn 01	
1012	4346	stb 46	
1013	0300	nop	Jump to count 1 and 2 delay loops.
1014	6002	zjf 02	
1015	6575	nzb 75	
1016	6476	zjb 76	
1017	2003	ldd 03	Y is much larger than X. Store Y in
1020	4001	std 01	cells 01 and 02, delay and return
1021	2004	ldd 04	jump to main program.
1022	4002	std 02	
1023	2200	ldc 00	
1024	0201	0201	
1025	0300	nop	
1026	0701	sbn 01	
1027	6501	nzb 01	

1030	7007	jpi 07	
1031	0515	lcn 15	Load -15 in count 3.
1032	4244	stf 44	
1033	2404	lcd 04	Subtract lower parts and store result
1034	3402	sbd 02	in cell 02.
1035	4002	std 02	
1036	6105	nzf 05	
1037	4001	std 01	X and Y are equal. Answer is zero. Jump
1040	2200	ldc 00	to delay routine.
1041	0201	0201	
1042	6514	nzb 14	
1043	6213	pjf 13	X is larger than Y. Shift complement
1044	2402	lcd 02	02 until first bit is a one bit.
1045	4002	std 02	Modify count 3 for each shift.
1046	5630	aof 30	
1047	4402	srd 02	
1050	6602	pjb 02	
1051	2625	lcf 25	Form exponent and store in cell 01.
1052	0715	sbn 15	
1053	5001	rad 01	
1054	0300	nop	
1055	6212	pjf 12	
1056	5620	aof 20	Y is larger than X. Shift cell 02
1057	4402	srd 02	until first bit is a one bit.
1060	6602	pjb 02	Modify count 3 for each shift.
1061	2402	lcd 02	Complement and restore cell 02.
1062	4002	std 02	
1063	2213	ldf 13	Form exponent and store in cell 01.
1064	0615	adn 15	
1065	3003	add 03	
1066	4001	std 01	
1067	2207	ldf 07	Count 3 delay loops.
1070	0601	adn 01	
1071	4205	stf 05	
1072	6503	nzb 03	
1073	2200	ldc 00	Time delay.
1074	0116	0116	
1075	6547	nzb 47	
1076	0000		Count 3 stowage.
1077	0411	ldn 11	X and Y are positive. Delay and store
1100	0701	sbn 01	sign check.
1101	6501	nzb 01	
1102	0400	ldn 00	
1103	4275	stf 75	
1104	6013	zjf 13	
1105	2401	lcd 01	X and Y are negative. Complement and
1106	4001	std 01	restore. Store sign check.
1107	2402	lcd 02	

1110	4002	std 02	
1111	2403	lcd 03	
1112	4003	std 03	
1113	2404	lcd 04	
1114	4004	std 04	
1115	0401	ldn 01	
1116	4262	stf 62	
1117	2003	ldd 03	Subtract exponents and store result in
1120	3401	sbd 01	count.
1121	4260	stf 60	
1122	6064	zjf 64	Exponents are equal. Jump to 1206.
1123	6264	pjf 64	Y is larger than X. Jump to 1207.
1124	0614	adn 14	Add 14 to count to form shift.
1125	6057	zjf 57	X is much larger than Y. Jump to 1204.
1126	6357	njf 57	
1127	1600	scc 00	Complement and restore shift.
1130	7777	7777	
1131	4251	stf 51	
1132	0400	ldn 00	Zeroize mask.
1133	4250	stf 50	
1134	4404	srd 04	Shift Y lower to equalize exponents.
1135	4646	srf 46	Form mask. No. of shifts = Shift.
1136	5645	aof 45	
1137	5643	aof 43	
1140	6504	nzb 04	
1141	2004	ldd 04	Mask Y lower and restore.
1142	1241	lpf 41	
1143	4004	std 04	
1144	2002	ldd 02	Mask first bit of X lower and add Y
1145	1200	lpc 00	lower
1146	3777	3777	
1147	3004	add 04	
1150	6310	njf 10	No overflow. Replace first one bit.
1151	1600	scc 00	
1152	40000	4000	
1153	4002	std 02	
1154	0403	ldn 03	Time delay.
1155	0701	sbn 01	
1156	6501	nzb 01	
1157	6011	zjf 11	
1160	0111	ls 6	There is overflow. Right shift one
1161	0110	ls 3	place and replace first one bit.
1162	0103	ls 2	Store in cell 02.
1163	1315	lpb 15	
1164	3200	adc 00	
1165	2000	2000	
1166	4002	std 02	
1167	5401	aod 01	Modify exponent.

1170	2211	ldf 11	Zero check count.
1171	6006	zjf 06	
1172	0404	ldn 04	Count delay loops.
1173	0701	sbn 01	
1174	6501	nzb 01	
1175	5604	aof 04	
1176	6504	nzb 04	
1177	6044	zjf 44	Jump to delay routine.
1200	0000		Check stowage.
1201	0000		Count stowage.
1202	0000		Shift stowage.
1203	0000		Mask stowage.
1204	0501	lcn 01	X is much larger than Y. Jump to 1262.
1205	6355	njf 55	
1206	6066	zjf 66	Exponents equal. Jump to 1274.
1207	0714	sbn 14	Y is larger than X. Form shift.
1210	4306	stb 06	
1211	6254	pjf 54	Y is much larger than X. Jump to 1265.
1212	0400	ldn 00	Zeroize mask.
1213	4310	stb 10	
1214	4402	srd 02	Shift X lower to equalize exponents.
1215	4712	srh 12	Form mask. No. of shifts = Shift.
1216	5713	aob 13	
1217	5715	aob 15	
1220	6504	nzb 04	
1221	2002	ldd 02	Mask and restore X lower.
1222	1317	lpb 17	
1223	4002	std 02	
1224	2003	ldd 03	Store exponent in cell 01.
1225	4001	std 01	
1226	2325	ldb 25	Modify count to equalize delay.
1227	0701	sbn 01	
1230	6103	nzf 03	Zero check count.
1231	0300	nop	Time delay.
1232	6003	zjf 03	
1233	1600	scc 00	Complement and restore count.
1234	7777	7777	
1235	4334	stb 34	
1236	0300	nop	Mask first bit of Y lower and add
1237	2004	ldd 04	X lower.
1240	1241	lpf 41	
1241	3002	add 02	Jump back to over flow check routine.
1242	6572	nzb 72	
1243	0423	ldn 23	Time delay.
1244	0300	nop	
1245	0701	sbn 01	
1246	6501	nzb 01	
1247	2347	ldb 47	Check sign of answer.

1250	6105	nzf 05			
1251	0404	ldn 04	Answer is positive. Time delay and return jump to main program.		
1252	0701	sbn 01			
1253	6501	nzb 01			
1254	6005	zjf 05			
1255	2401	lcd 01			
1256	4001	std 01			
1257	2402	lcd 02	Answer is negative. Complement and restore cells 02 and 01. Return jump to main program.		
1260	4002	std 02			
1261	7007	jpi 07			
1262	2200	ldc 00	X is much larger than Y. Jump to d delay routine.		
1263	0164	0164			
1264	6517	nzb 17			
1265	2003	ldd 03			
1266	4001	std 01			
1267	2004	ldd 04	Y is much larger than X. Load Y in cells 01 and 02 and jump to delay routine.		
1270	4002	std 02			
1271	2200	ldc 00			
1272	0157	0157			
1273	6527	nzb 27			
1274	2002	ldd 02			
1275	0111	ls 6			
1276	0110	ls 3			
1277	0103	ls 2	Exponents are equal. Right shift X and Y lower one place and add. Store result in cell 02.		
1300	1200	lpc 00			
1301	3777	3777			
1302	4002	std 02			
1303	2004	ldd 04			
1304	0111	ls 6			
1305	0110	ls 3			
1306	0103	ls 2			
1307	1306	lpb 06			
1310	5002	rad 02			
1311	5401	aod 01	Modify exponent.		
1312	2200	ldc 00	Jump to delay routine.		
1313	0152	0152			
1314	6550	nzb 50			
1315	0400	ldn 00	zeroize temp. storage	BEGIN	FMU
1316	4261	stf 61			
1317	4261	stf 61			
1320	4261	stf 61			
1321	4261	stf 61			
1322	2401	lcd 01	load first argument (upper)		
1323	6307	njf 07	test for neg or positive		
1324	4001	std 01	store positive arg		
1325	2402	lcd 02	compl and store lower		
1326	4002	std 02			
1327	0401	ldn 01	remember first number neg		

1330	4251	stf 51	
1331	6206	pjf 06	orig number pos - delay
1332	2200	ldc 00	
1333	0005	0005	
1334	0701	sbn 01	
1335	6501	nzb 01	
1336	0300	nop	
1337	2002	ldd 02	zero test first arg
1340	6106	nzf 06	
1341	2200	ldc 00	
1342	0477	0477	
1343	0701	sbn 01	
1344	6501	nzb 01	
1345	7007	jpi 07	
1346	2403	lcd 03	repeat tests on second arg
1347	6307	njf 07	
1350	4003	std 03	
1351	2404	lcd 04	
1352	4004	std 04	
1353	0501	lcn 01	
1354	5225	raf 25	
1355	6206	pjf 06	
1356	2200	ldc 00	
1357	0005	0005	
1360	0701	sbn 01	
1361	6501	nzb 01	
1362	0300	nop	
1363	2004	ldd 04	
1364	6111	nzf 11	
1365	4001	std 01	
1366	4002	std 02	
1367	2200	ldc 00	
1370	0462	0462	
1371	0701	sbn 01	
1372	6501	nzb 01	
1373	0300	nop	
1374	7007	jpi 07	
1375	0514	lcn 14	
1376	6305	njf 05	jump over temp storage
1377	0000		
1400	0000		
1401	0000		
1402	0000		
1403	4301	stb 01	store bit count (-14)
1404	4705	srb 05	shift lower ans left one
1405	2305	ldb 05	load upper ans
1406	6207	pjf 07	check need for carry to upper
1407	1200	lpc 00	remove left bit from lower

1410	3777	3777	
1411	4311	stb 11	place into lower
1412	5713	aob 13	execute carry
1413	0401	ldn 01	set up and jump back
1414	6205	pjf 05	
1415	2200	ldc 00	delay
1416	0004	0004	
1417	0701	sbn 01	
1420	6501	nzb 01	
1421	4721	srb 21	
1422	2004	ldd 04	begin next bit multiplication
1423	6220	pjf 20	if next bit zero, no multiplication this loop
1424	2002	ldd 02	
1425	5325	rab 25	add to lower ans
1426	1402	lsd 02	check for occurrence of end around carry
1427	0201	lpn 01	
1430	6006	zjf 06	jump if no corr for carry
1431	5732	aob 32	corr for carry
1432	0501	lcn 01	
1433	5333	rab 33	
1434	0401	ldn 01	
1435	6212	pjf 12	
1436	2200	ldc 00	delay
1437	0003	0003	
1440	0701	sbn 01	
1441	6501	nzb 01	
1442	6205	pjf 05	
1443	2200	ldc 00	delay
1444	0010	0010	
1445	0701	sbn 01	
1446	6501	nzb 01	
1447	4404	srd 04	
1450	5746	aob 46	
1451	6745	njb 45	return for next bit mult; if no jump, coef mult comp
1452	2351	ldb 51	restore sign record for later ref
1453	4203	stf 03	
1454	6203	pjf 03	
1455	6302	njf 02	
1456	0000		
1457	2003	ldd 03	add exponents
1460	3600	sbc 00	
1461	2000	2000	
1462	5001	rad 01	
1463	6346	njf 46	
1464	2365	ldb 65	adjusts for zero coef
1465	6107	nzf 07	
1466	0501	lcn 01	reduce exp by one
1467	5001	rad 01	

1470	6341	njf 41	
1471	0500	lcn 00	zeroize coef
1472	4002	std 02	
1473	6307	njf 07	
1474	4002	std 02	
1475	2200	ldc 00	delay
1476	0002	0002	
1477	0701	sbn 01	
1500	6501	nzb 01	
1501	0300	nop	
1502	2002	ldd 02	
1503	6305	njf 05	
1504	4402	srd 02	left justify coef and adj exp
1505	0501	lcn 01	
1506	5001	rad 01	
1507	6205	pjf 05	
1510	2200	ldc 00	
1511	0003	0003	
1512	0701	sbn 01	
1513	6501	nzb 01	
1514	2336	ldb 36	examine sign of ans
1515	6006	zjf 06	
1516	2401	lcd 01	complement ans upper and lower if sign is neg
1517	4001	std 01	
1520	2402	lcd 02	
1521	4002	std 02	
1522	6206	pjf 06	
1523	2200	ldc 00	
1524	0004	0004	
1525	0701	sbn 01	
1526	6501	nzb 01	
1527	0300	nop	
1530	7007	jpi 07	return to M.P.
1531	0501	lcn 01	
1532	7777	hlt 77	
1533	0400	ldn 00	zeroize temp storage
1534	4261	stf 61	BEGIN FDV
1535	4261	stf 61	
1536	2403	lcd 03	test arguments as for FMU EXCEPT DIVISOR =0
1537	6307	njf 07	gives error halt
1540	4003	std 03	
1541	2404	lcd 04	
1542	4004	std 04	
1543	0401	ldn 01	
1544	4252	stf 52	
1545	6206	pjf 06	
1546	2200	ldc 00	
1547	0005	0005	

1550	0701	sbn 01	
1551	6501	nzb 01	
1552	0300	nop	
1553	2004	ldd 04	
1554	6036	zjf 36	
1555	2401	lcd 01	
1556	6307	njf 07	
1557	4001	std 01	
1560	2402	lcd 02	
1561	4002	std 02	
1562	0501	lcn 01	
1563	5233	raf 33	
1564	6206	pjf 06	
1565	2200	ldc 00	
1566	0005	0005	
1567	0701	sbn 01	
1570	6501	nzb 01	
1571	0300	nop	
1572	2002	ldd 02	
1573	6110	nzf 10	
1574	4001	std 01	
1575	2200	ldc 00	
1576	0242	0242	
1577	0701	sbn 01	
1600	6501	nzb 01	
1601	0300	nop	
1602	7007	jpi 07	
1603	0514	lcn 14	set counter
1604	4210	stf 10	
1605	2002	ldd 02	coef check for start
1606	3404	sbd 04	
1607	6210	pjf 10	coef 04 greater than 02 jump to 1617
1610	5403	aod 03	
1611	6142	nzf 42	jump to 1653
1612	0500	lcn 00	
1613	7772	hlt 72	
1614	0000		
1615	0000		
1616	0000		
1617	2200	ldc 00	delay
1620	0002	0002	
1621	0701	sbn 01	
1622	6501	nzb 01	
1623	2002	ldd 02	
1624	3404	sbd 04	
1625	6305	njf 05	jump to 1632
1626	4002	std 02	
1627	5712	aob 12	in 1615

1630	0401	ldn 01	
1631	6206	pjf 06	
1632	2200	ldc 00	delay
1633	0002	0002	
1634	0701	sbn 01	
1635	6501	nzb 01	
1636	0300	nop	
1637	5723	aob 23	increase counter by one
1640	6220	pjf 20	
1641	4724	sr ^b 24	coef div compl; jump to 1660 on 1615
1642	2002	ldd 02	
1643	6310	njf 10	jump to 1653
1644	4402	srd 02	
1645	6721	njb 21	jump to 1624
1646	2200	ldc 00	
1647	0004	0004	
1650	0701	sbn 01	
1651	6501	nzb 01	
1652	6613	pjb 13	jump to 1637
1653	4402	srd 02	
1654	3404	sbd 04	
1655	4002	std 02	
1656	0401	ldn 01	
1657	6630	pjb 30	
1660	2200	ldf 00	form exponent
1661	2001	ldd 01	
1662	3403	sbd 03	
1663	5001	rad 01	
1664	6752	njb 52	
1665	2350	ldb 50	place coef of ans in 0002
1666	4002	std 02	
1667	2351	ldb 51	check for sign of ans
1670	6107	nzf 07	
1671	2200	ldc 00	
1672	0003	0003	
1673	0701	sbn 01	
1674	6501	nzb 01	
1675	0300	nop	
1676	6005	zjf 05	
1677	2401	lcd 01	compl for neg ans
1700	4001	std 01	
1701	2402	lcd 02	
1702	4002	std 02	
1703	7007	jpi 07	return jump to M.P.

APPENDIX II
STATE GENERATOR AND TEST

1. Theory.

Linear approximation between samples, as follows:

$$\theta = \frac{\theta_B - \theta_A}{\Delta t} \quad A\ II-1$$

Both θ_B and θ_A are the average of four samples taken as quickly as possible (141.3 μ sec/sample). The time, Δt , between θ_B and θ_A is 840 cycle times, or at 6.4 second/cycle time, 5,376 μ sec.

2. Memory requirements.

Lower memory: 01-04, 07, 10, 20-47, and 61-67.

Load State Generator: 2000-2322.

Load Output Section: 2323-2357.

3. Subroutines required.

Constant Time Floating Point Arithmetic Package. (APP. I)

A quick "Divide-by-4" routine, included with this appendix.

4. The programs for the state generator and the "Divide-by-4" subroutine follow. Comments are included with the programs.

STATE GENERATOR

1761 7500 exf 00
 1762 1401 1401
 1763 7600 ina 00
 1764 4262 stf 62
 1765 7500 exf 00
 1766 1401 1401
 1767 7600 ina 00
 1770 4257 stf 57

1771 7500 exf 00
 1772 1401 1401
 1773 7600 ina 00
 1774 4254 stf 54
 1775 7500 exf 00
 1776 1401 1401
 1777 7600 ina 00
 2000 4251 stf 51

2001 4001 std 01
 2002 0101 pta
 2003 0604 adn 04
 2004 4007 std 07
 2005 7061 jpi 61
 2006 2001 ldd 01
 2007 4021 std 21
 2010 2240 ldf 40

2011 4001 std 01
 2012 0101 pta
 2013 0604 adn 04
 2014 4007 std 07
 2015 7061 jpi 61
 2016 2001 ldd 01
 2017 5021 rad 21
 2020 2227 ldf 27

2021 4001 std 01
 2022 0101 pta
 2023 0604 adn 04
 2024 4007 std 07
 2025 7061 jpi 61
 2026 2001 ldd 01
 2027 5021 rad 21
 2030 2216 ldf 16

2031 4001 std 01
2032 0101 pta
2033 0604 adn 04
2034 4007 std 07
2035 7061 jpi 61
2036 2001 ldd 01
2037 5021 rad 21
2040 2600 lcf 00

0A avg in 0021

2041 0464 ldn 64
2042 0601 adn 01
2043 6501 nzb 01
2044 0300 nop
2045 6205 pjf 05
2046 0A1 0000
2047 0A2 0000
2050 0A3 0000

2051 0A4 0000
2052 7500 exf 00
2053 1401 1401
2054 7600 ina 00
2055 4256 stf 56
2056 7500 exf 00
2057 1401 1401
2060 7600 ina 00

2061 4253 stf 53
2062 7500 exf 00
2063 1401 1401
2064 7600 ina 00
2065 4250 stf 50
2066 7500 exf 00
2067 1401 1401
2070 7600 ina 00

2071 4245 stf 45
2072 4001 std 01
2073 0101 pta
2074 0604 adn 04
2075 4007 std 07
2076 7061 jpi 61
2077 2001 ldd 01
2100 4022 std 22

2101 2234 ldf 34
2102 4001 std 01
2103 0101 pta
2104 0604 adn 04
2105 4007 std 07
2106 7061 jpi 61
2107 2001 ldd 01
2110 5022 rad 22

2111	2223	ldf	23	
2112	4001	std	01	
2113	0101	pta		
2114	0604	adn	04	
2115	4007	std	07	
2116	7061	jpi	61	
2117	2001	ldd	01	
2120	5022	rad	22	
2121	2212	ldf	12	
2122	4001	std	01	
2123	0101	pta		
2124	0604	adn	04	
2125	4007	std	07	
2126	7061	jpi	61	
2127	2001	ldd	01	
2130	5022	rad	22	θB avg in 0022
2131	6206	pjf	06	
2132	6306	njf	06	
2133	OB1	0000		
2134	OB2	0000		
2135	OB3	0000		
2136	OB4	0000		
2137	0300	nop		
2140	3421	sbd	21	
2141	4024	std	24	θB - θA
2142	0101	pta		
2143	0605	adn	05	
2144	4007	std	07	
2145	2024	ldd	24	
2146	7066	jpi	66	θB - θA to floating point
2147	2001	ldd	01	
2150	4030	std	30	
2151	2002	ldd	02	
2152	4031	std	31	
2153	2044	ldd	44	
2154	4003	std	03	
2155	2045	ldd	45	
2156	4004	std	04	
2157	0101	pta		
2160	0604	adn	04	
2161	4007	std	07	
2162	7065	jpi	65	θB DOT formed
2163	2001	ldd	01	
2164	4032	std	32	
2165	2002	ldd	02	
2166	4033	std	33	
2167	7500	exf	00	
2170	1401	1401		

2171	7600	ina 00
2172	4256	stf 56
2173	7500	exf 00
2174	1401	1401
2175	7600	ina 00
2176	4253	stf 53
2177	7500	exf 00
2200	1401	1401
2201	7600	ina 00
2202	4250	stf 50
2203	7500	exf 00
2204	1401	1401
2205	7600	ina 00
2206	4245	stf 45
2207	4001	std 01
2210	0101	pta
2211	0604	adn 04
2212	4007	std 07
2213	7061	jpi 61
2214	2001	1dd 01
2215	4023	std 23
2216	2234	1df 34
2217	4001	std 01
2220	0101	pta
2221	0604	adn 04
2222	4007	std 07
2223	7061	jpi 61
2224	2001	1dd 01
2225	5023	rad 23
2226	2223	1df 23
2227	4001	std 01
2230	0101	pta
2231	0604	adn 04
2232	4007	std 07
2233	7061	jpi 61
2234	2001	1dd 01
2235	5023	rad 23
2236	2212	1df 12
2237	4001	std 01
2240	0101	pta
2241	0604	adn 04
2242	4007	std 07
2243	7061	jpi 61
2244	2001	1dd 01
2245	5023	rad 23
2246	6206	pjf 06
2247	6306	njf 06
2250	001	0000

00 avg in 0023

2251	0C2	0000	
2252	0C3	0000	
2253	0C4	0000	
2254	0300	nop	
2255	3422	sbd 22	EC - EB formed
2256	4025	std 25	
2257	0101	pta	
2260	0605	adn 05	
2261	4007	std 07	
2262	2025	ldd 25	
2263	7066	jpi 66	EC - EB to floating point
2264	2001	ldd 01	
2265	4034	std 34	
2266	2002	ldd 02	
2267	4035	std 35	
2270	2044	ldd 44	
2271	4003	std 03	
2272	2045	ldd 45	
2273	4004	std 04	
2274	0101	pta	
2275	0604	adn 04	
2276	4007	std 07	
2277	7065	jpi 65	EC DOT formed
2300	2001	ldd 01	
2301	4036	std 36	
2302	2002	ldd 02	
2303	4037	std 37	

continue to OUTPUT ROUTINE or CONTROL PROGRAM.

SUBROUTINE DIVIDE BY FOUR

1704	2001	ldd 01	pick-up argument
1705	6212	pjf 12	sign check
1706	0111	ls 6	
1707	0110	ls 3	}
1710	0102	ls 1	divide by 4
1711	1200	lpc 00	
1712	1777	1777	}
1713	3200	adc 00	extend negative sign bit
1714	6000	6000	
1715	4001	std 01	store answer
1716	6312	njf 12	jump by positive path
1717	0111	ls 6	
1720	0110	ls 3	}
1721	0102	ls 1	divide by 4
1722	1200	lpc 00	
1723	1777	1777	}
1724	4001	std 01	store answer
1725	0300	nop	
1726	0300	nop	}
1727	0300	nop	time delay
1730	7007	jpi 07	return jump to M.P.

Jump into and return jump out of this subroutine in the same manner as for the floating point routines.

OUTPUT ROUTINE FOR Θ DOT

2353	2036	ldd 36	
2354	4001	std 01	
2355	2037	ldd 37	
2356	4002	std 02	
2357	2200	ldc 00	
2360	2002	2002	
2361	4003	std 03	
2362	2200	ldc 00	
2363	6221	6221	
2364	4004	std 04	
2365	0101	pta	
2366	0604	adn 04	
2367	4007	std 07	
2370	7065	jpi 65	divide out w; normalizes output
2371	0101	pta	
2372	0604	adn 04	
2373	4007	std 07	
2374	7067	jpi 67	Θ DOT to fixed point
2375	0300	nop	
2376	4020	std 20	
2377	7500	exf 00	
2400	2401	2401	
2401	7304	out 04	
2402	0021	0021	
2403	6103	nzf 03	
2404	6002	zjf 02	
2405	0020	0020	
2406	7010	jpi 10	
2407	7757	hlt 57	

