5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in the household NK.

$$WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$$

This model was estimated using 1200 observations from London. An incomplete version of this output is provided in Table 5.6.

Output for Exercise 5.3 TABLE 5.6

Dependent Variable: WALC Included observations: 1200				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
\boldsymbol{C}	1.4515	2.2019	0,6592	0.5099
ln(TOTEXP)	2.7648	0,4842	5.7103	0.0000
NK	-1.4549	0.3695	-3.9376	0.0001
AGE	-0.1503	0.0235	-6.4019	0.0000
R-squared	0,0575	Mean dependent var		6.19434
S.E. of regression	6,2167	S.D. dependent var		6.39547
Sum squared resid	46221.62			

- a. Fill in the following blank spaces that appear in this table.
 - i. The *t*-statistic for b_1 .
 - ii. The standard error for b_2 .
 - iii. The estimate b_3 .
 - iv. R^2 .
 - **v.** σ̂.
- **b.** Interpret each of the estimates b_2 , b_3 , and b_4 .
- c. Compute a 95% interval estimate for β_4 . What does this interval tell you?
- **d.** Are each of the coefficient estimates significant at a 5% level? Why?
- Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points. Use a 5% significance level.

a. i.
$$t = \frac{b_1}{sE(b_1)} = \frac{1.4515}{2.2019} = 0.6592$$

ii. $SE(b_2) = \frac{b_2}{t} = \frac{2.7648}{5.7103} = 0.4842$

iii. $b_3 = t \times SE(b_3) = (-3.937b) \times 0.3695 = -1.4549$

iv. $R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{4(0.221.62)}{49.041.54} = 0.0575$
 $5ST = (N-1)S_y^2 = (1200-1) \times (6.39547)^2 = 49.041.5418$

v. $\delta^2 = \frac{SSR}{N-K} = \frac{40.221.62}{(200-4)} = 38.0408$
 $\delta = \sqrt{38.6468} = 6.2167$

b2 = 2.7648 (coefficient for In(TOTEXP)):

Interpretation: For a 1% increase in total expenditure (TOTEXP), since the variable is in log form (In(TOTEXP)), the percentage of the budget spent on alcohol increases by approximately 2.7648 ÷ 100 = 0.027648 percentage points, holding NK and AGE constant.

b3 = -1.4549 (coefficient for NK):

Interpretation: For each additional child in the household (NK), the percentage of the budget spent on alcohol decreases by 1.4549 percentage points, holding In(TOTEXP) and AGE constant.

b4 = -0.1503 (coefficient for AGE):

Interpretation: For each additional year in the age of the household head (AGE), the percentage of the budget spent on alcohol decreases by 0.1503 percentage points, holding In(TOTEXP) and NK constant.

A 95% confidence interval for β 4 is b4 ± t_critical*SE(b4)

For a 95% confidence interval, the critical t-value (t_critical) with 1196 degrees of freedom is approximately 1.96.

Lower bound: -0.1503 - 1.96*0.0235 = -0.19636

> qt(1-0.05/2,1196)[1] 1.961949

Upper bound: -0.1503 + 1.96*0.0235 = -0.10424

Thus, the 95% confidence interval for $\beta 4$ is approximately (-0.1964, -0.1042).

This means we are 95% confident that the true effect of a one-year increase in AGE on WALC lies between a decrease of 0.1964 percentage points and a decrease of 0.1042 percentage points, holding other variables constant.

d. A 5% significance level ($\alpha = 0.05$) means we reject H0 if the p-value is less than 0.05. For b1 (intercept), the p-value (0.5099) is greater than 0.05, so it's not significant different from zero at a 5% level.

For b2, b3, and b4, the p-value is less than 0.05, indicating that the coefficient estimates are significantly different from zero at a 5% level.

Null Hypothesis (H0): $\beta 3 = -2$ (an extra child decreases WALC by 2 percentage points).

Alternative Hypothesis (H1): $\beta 3 \neq -2$ (the decrease is not equal to 2 percentage points). Significance level: $\alpha = 0.05$.

The critical t-value for a two-tailed test at $\alpha = 0.05$ with 1196 degrees of freedom is > qt(1-0.05/2,1196)approximately 1.96.

The calculated t-value is $t = [-1.4549 - (-2)] \div 0.3695 = 1.4752$

[1] 1.961949 We fail to reject H0 because | 1.4752 | < 1.96.

Therefore, the data does not provide sufficient evidence to conclude that having an extra child leads to a decline in the alcohol budget share that is significantly different from 2 percentage points.