$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta s^{x} & -\sin \theta s^{x} & dx \\ \sin \theta s^{y} & \cos \theta s^{y} & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ \sin \theta \sin \theta \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 affine

b) translation: 2

euclidean: 3

similarity: 4

affine : 6

projective: 8

por 2d

c) Because has serves as the scaling constant for x' and y'

$$det (A^{T}A - \lambda I) = \begin{cases} 74 - 3 & 5 & 7 & 0 \\ det & 5 & 1 - 3 & 0 & 0 \\ 7 & 0 & 145 - 3 & 12 \\ 0 & 0 & 12 & 1 - 3 \end{cases}$$

$$\lambda_1 = 0$$
 $\lambda_2 = 10.65994 = 0.812$
 $\lambda_3 = 173.676 = 8.8834$
 $\lambda_4 = 1146.66 = 12.11$

$$AA^{T} = \begin{bmatrix} 26 & 36 & 6 \\ 35 & 50 & 12 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$(2c-\sqrt{0.co})_{x_1}+35_{x_2}=0$$
 => $x_2=-0.719647_{x_1}$
 $35_{x_1}+(50-\sqrt{6})(-0.72_{x_2})+12_{x_3}=0$ => $x_8=0.033(44_{x_1})$

Too complex to calculate by hand

np.linalg.sud(A) =

-0.04	0.58	0.8	12.11	-0.09	-0.003	-0.9 ₉	-0.0		
-0.17	0.79	-0.58	8.58	0.99	90.0	-०.०७	-0.0F	١	
-0.98	-0.13	<i>9 0,0</i>	0.81	-0.06	0,99	-0,001	0.05		
		•	, -	0.01	-0.05	-0.08	0.99		