Analiza III

Twierdzenie 1. (Liouville)

Jeżeli f - holomorficzna i ograniczona na \mathbb{C} , to f - stała.

Dowód. Wiemy, że

$$\exists_{M>0} \quad \forall_{z\in\mathbb{C}} \quad |f(z)| < M.$$

Skoro f - holomorficzna, to znaczy, że dla $\xi \in \mathbb{C}$,

$$f(\xi) = \frac{1}{2\pi i} \int_{\partial K(\xi,r)} \frac{f(z)}{z - \xi} dz.$$

(Wzór Cauchy)

Zauważmy, że skoro f - jak wyżej, to

$$f'(\xi) = \frac{1}{2\pi i} \int_{\partial K(\xi,r)} \frac{f(z)}{(z-\xi)^2} dz.$$

(Absolutnie nieoczywiste lol. Uzasadnienie później) Wówczas możemy oszacować f'

$$|f'(\xi)| \leqslant \left| \frac{1}{2\pi i} \left| \max_{z \in \partial K(\xi, r)} \left| \frac{f(z)}{(z - \xi)^2} \right| \cdot |\text{długość okręgu } K(\xi, r)| = \frac{1}{2\pi} \cdot \frac{M}{\left| (\xi + re^{i\varphi} - \xi)^2 \right|} |2\pi r| = \frac{1}{2\pi} \cdot \frac{M}{r^2} 2\pi r = \frac{M}{r} \quad \forall r > 0.$$

Czyli

$$\bigvee_{r>0} |f'(\xi)| < \frac{M}{r} \underset{r \to \infty}{\longrightarrow} 0.$$

Zatem $|f'(\xi)| = 0$, czyli

$$f(z) = const.$$

Przykład 1. $f(z) = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ jest holomorficzna na \mathbb{C} , ale nie jest na \mathbb{C} ograniczona (tylko dla $z \in \mathbb{R}$).

Wniosek: (Zasadnicze Twierdzenie Algebry) Niech $w(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0$. Załóżmy, że

$$\bigvee_{z \in \mathbb{C}} w(z) \neq 0.$$

Oznacza to, że

$$f(z) = \frac{1}{w(z)}$$
 jest na $\mathbb C$ holomorficzna i ograniczona.

Jest więc stała. Co oznacza, że w(z) jest stała i sprzeczność. \square (PS oznacza to, że $\underset{z_0 \in \mathbb{C}}{\exists}$, że $w(z_0) = 0$, czyli $w(z) = (z - z_0)w_1(z)$. Biorąc funkcję $f_1(z) = w_1(z)\ldots$ pokażemy, że wielomian stopnia n nad \mathbb{C} ma n pierwiastków. \square)

Szeregi Laurenta

Przykład 2. Niech

$$f(z) = \frac{z+1}{z^2+1}.$$

Zauważmy, że

$$f(z) = \frac{z+1}{z^2+1} = \frac{1}{2} \frac{1-i}{z-i} + \frac{1}{2} \frac{1+i}{z+i}.$$

 $Je\dot{z}eli$

$$|z + 2i| < 3,$$

to

$$\begin{split} \frac{1}{z-i} &= \frac{1}{z+2i-3i} = \frac{1}{-3i} \cdot \frac{1}{1-\frac{z+2i}{3i}} = \\ &= -\frac{1}{3i} \sum_{n=0}^{\infty} \left(\frac{z+2i}{3i}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{(3i)^{n+1}} \left(z+2i\right)^n. \end{split}$$

Analiza III

$$Je\dot{z}eli |z+2i| > 1$$
, to

$$\frac{1}{z+1} = \frac{1}{z+2i-i} = \frac{1}{z+2i} \cdot \frac{1}{1-\frac{i}{z+2i}} =$$

$$= \frac{1}{z+2i} \cdot \sum_{n=0}^{\infty} \left(\frac{i}{z+2i}\right)^n = \sum_{n=0}^{\infty} \frac{(i)^n}{(z+2i)^{n+1}} =$$

$$= \sum_{n=1}^{\infty} \frac{(i)^{n-1}}{(z+2i)^n}.$$

Zatem

$$\frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=1}^{\infty} \frac{(i)^{n-1}}{(z+2i)^n} + \frac{i-1}{2} \sum_{n=0}^{\infty} \frac{1}{(3i)^n} (z+2i)^n = \sum_{n=-\infty}^{\infty} d_k (z+2i)^k,$$

qdzie

$$dk = \begin{cases} \frac{1+i}{2} \cdot (i)^{-k-1} & k < 0\\ \frac{i-1}{2} \cdot \frac{1}{(3i)^k} & k \geqslant 0 \end{cases}.$$

Niech

$$R(2i, 1, 3) \stackrel{def}{=} \{ z \in \mathbb{C}, |z + 2i| < 3 \land |z + 2i| > 1 \}$$

- pierścień otwarty o środku 2
ii promieniach 1 i 3. Dla
 |z+2i|<1,

$$\frac{1}{z+i} = \frac{1}{z+2i-i} = -\frac{1}{i} \cdot \frac{1}{1-\frac{z+2i}{i}} = -\frac{1}{i} \cdot \sum_{n=0}^{\infty} \left(\frac{z+2i}{i}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{(i)^{n+1}} \frac{(z+2i)^n}{1}.$$

Zatem dla $z \in R(-2i, 0, 1)$,

$$f(z) = \frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{(i)^{n+1}} (z+2i)^n - \frac{1-i}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{(3i)^{n+1}} \cdot (z+2i)^n = \sum_{k=0}^{\infty} d_k \left(z+2i\right)^k,$$

qdzie

$$d_k = -\frac{1+i}{2} \cdot \frac{1}{(i)^{n+1}} - \frac{1-i}{2} \cdot \frac{1}{(3i)^{n+1}}.$$

dla |z + 2i| > 3

$$\frac{1}{z-i} = \frac{1}{z+2i-3i} = \frac{1}{z+2i} \cdot \frac{1}{1-\frac{3i}{z+2i}} =$$

$$= \frac{1}{z+2i} \cdot \sum_{n=0}^{\infty} (3i)^n \cdot \frac{1}{(z+2i)^n} = \sum_{n=0}^{\infty} \frac{(3i)^n}{(z+2i)^{n+1}} = \sum_{n=1}^{\infty} \frac{(3i)^{n-1}}{(z+2i)^n}.$$

I wtedy dla $z \in R(-2i, 3, +\infty)$, jest

$$\frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=1}^{\infty} \frac{(i)^n}{(z+2i)^n} + \frac{1-i}{2} \cdot \sum_{n=1}^{\infty} \frac{(3i)^{n-1}}{(z+2i)^n} = \sum_{k=-1}^{-\infty} d_k (z+2i)^k.$$

Twierdzenie 2. (Laurent)

Niech f(z) - holomorficzna na pierścieniu $R(z_0, r_1, r_2)$,

$$R(z_0, r_1, r_2) := \{ z \in \mathbb{C}, |z - z_0| > r_1 \land |z - z_0| < r_2 \}.$$

 $W\'owczas \bigvee_{z \in R(z_0, r_1, r_2)}$

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n,$$

qdzie

$$a_n = \frac{1}{2\pi i} \oint_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}},$$

 $r_1 < r < r_2$

Dowód. Zauważmy, że $\bigvee\limits_{z\in R(z_0,r_1,r_2)}$ znajdziemy takie $r_1'>r_1$ i $r_2'< r_2,$ że $z\in R(z_0,r_1',r_2').$ Ze wzoru Cauchy wiemy, że

$$f(z) = \frac{1}{2\pi i} \int_{\partial R(z_0, r_1', r_2')} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \left[\int_{\partial K(z_0, r_2')} \frac{f(\xi)}{\xi - z} d\xi - \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi \right].$$

ale

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 + z_0 - z},$$

a dla $\xi \in \partial K(z_0, r'_1)$ i $z \in K(z_0, r'_1)$

$$\left| \frac{z - z_0}{\xi - z_0} \right| < 1.$$

Analiza III 5

więc

$$\frac{1}{\xi - z_0 + z_0 - z} = \frac{1}{\xi - z_0} \cdot \frac{1}{1 + \frac{z_0 - z}{\xi - z_0}} = \frac{1}{\xi - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} =$$

$$= \frac{1}{\xi - z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n = \sum_{n=0}^{\infty} \frac{1}{(\xi - z_0)^{n+1}} \cdot (z - z_0)^n.$$

więc

$$\frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi (z - z_0)^n.$$

A dla $\xi \in \partial K(z_0,r_2')$ i ztakich, że $|z-z_0| > r_2',$ wiemy, że

$$\left| \frac{\xi - z_0}{z - z_0} \right| < 1$$

itd. \Box