Полиимиды в качестве тонкопленочных диэлектриков для OLED структур

Полиимиды находят широкое применение в микроэлектронных устройствах, где необходимы материалы со сверхнизким значением диэлектрической проницаемости. В [1] сообщается о значении диэлектрической проницаемости в диапазоне от 2.78 до 3.48 (таблица 1) для полиимидов с различными радикалами (рисунок 1).

Исходя из этого, мы можем видеть стабильное поведение значения диэлектрической проницаемости при различных частотах.

PIa:
$$Ar = -O-C_6H_4-C(CH_3)_2-C_6H_4-O-; X = H;$$
PIb: $Ar = -O-C_6H_4-C(CH_3)_2-C_6H_4-O-; X = CH_3$
PIc: $Ar = CO;$
PId: $Ar = CC$
PId: $Ar = CC$
PIG: $Ar = CC$
PIG

Рисунок 1 – Структурная формула семейства полиимидов [1]

Таблица 1 — Диэлектрическая постоянная и диэлектрические потери для полиимидов [1]

Polymer	Dielectric constant, ε'		Dielectric loss, ε'' x10 ⁻²	
	1 Hz	$10^4 \mathrm{Hz}$	1 Hz	$10^4\mathrm{Hz}$
PIa	3.25	3.16	2.09	1.03
PIb	3.08	2.99	2.93	1.23
PIc	3.48	3.40	2.58	1.33
PId	3.32	3.22	2.56	2.24
PIe	2.89	2.84	2.02	0.943
PIf	2.78	2.73	1.36	0.763

Также полиимиды обладают хорошей температурной стабильностью в диапазоне температур от -100 до 200°C (рисунок 2).

Рисунок 2 – Зависимость диэлектрической постоянной от температуры [1]

Также полиимиды обладают необходимыми оптическими свойствами. Эти полимеры имеют высокое значение пропускания (более 80%) во всем видимом диапазоне и ИК, что важно при изготовлении светоизлучающих диодов (рисунок 3).

И что важно, данный материал поглощает УФ-излучение, так как он может оказывать негативное влияние на OLED-структуру, снижая срок службы готового устройства. Это связано с тем, что УФ-излучение может вызывать

фотоокисление органических материалов в OLED-структуре, особенно в эмиттерном слое. То есть, когда молекулы кислорода взаимодействуют с органическими материалами под воздействием УФ-излучения, образуются различные радикалы, разрываются химические связи, что приводит к деградации молекул. В результате снижается яркость, изменяется цвет излучения и ухудшается эффективность OLED.

Рисунок 3 — Зависимость пропускания полиимида с различным содержанием УНТ от длины волны [2]

Также преимуществом ПИ несомненно является тот факт, что его используют в качестве подложки для OLED-дисплеев из-за его гибкости. По прогнозам спроса данная технология будет набирать высокие обороты с 2024 года по 2031 год [3]. Уже сейчас ПИ используют в одних из самых высокопроизводительных и качественных гибких дисплеях, основанных на AMOLED.

Список источников

1. Chisca, Stefan; Sava, Ion; Musteata, Valentina-Elena; Bruma, Maria (2011). [IEEE 2011 International Semiconductor Conference (CAS 2011) - Sinaia, Romania

- (2011.10.17-2011.10.19)] CAS 2011 Proceedings (2011 International Semiconductor Conference) Dielectric and conduction properties of polyimide films, 253–256. doi:10.1109/SMICND.2011.6095784
- 2. Joseph G. Smith Jr., John W. Connell, Kent A. Watson, Paul M. Danehy. Optical and Thermo-optical Properties of Polyimide Single-Walled Carbon Nanotube Films: Experimental Results and Empirical Equations, 24 p.
- 3. Электронный pecypc: https://www.linkedin.com/pulse/flexible-polyimide-substrate-oled-display-market-size-ceb2c.