Открытая олимпиада по программированию Осенний тур 2017 28 октября 2017

A. Appetizing problem

Автор: Баев А.Ж.

Ответ:

$$4T + D + \left[\frac{N_1}{100}\right] + \left[\frac{N_2}{100}\right] - 2.$$

Aсимптотика — O(1).

B. Bekarys' problem

Автор: Абдикалыков А.К.

Если n < 20, то найти n! явно и выделить его четвёртую цифру справа. Если $n \geqslant 20$, то ничего считать не надо — ответ будет заведомо 0. Асимптотика — O(1).

C. Car showroom problem

Aвтор: Абдикалыков A.K.

Найти количество строк из строчных латинских букв длины n, не содержащих подстроки «аа». Нетрудно вывести (рассматривая, например, отдельно строки, оканчивающиеся на 'a' и оканчивающиеся не на 'a') рекуррентную формулу

$$a_n = (p-1)(a_{n-1} + a_{n-2}).$$

Здесь a_n — ответ на задачу при заданном n. Чтобы его найти, надо использовать эту формулу, положив $a_0=1,\,a_1=26.$ Асимптотика — O(n).

D. Dice problem

Автор: Баев А.Ж.

Определить, через какое минимальное число перекатываний по доске можно изменить состояние кубика с (1, 1, RED_DOWN) на (1, 1, RED_UP). Используем обход в ширину для специального графа: его вершинами будут тройки (i, j, state), где (i,j) — позиция кубика, state — одно из шести его положений: RED_UP, RED_DOWN, RED_LEFT, RED_RIGHT, RED_FRONT, RED_BACK.

То есть необходимо для каждого из 6 положений красной грани определить положение после каждого из 4 видов перекативаний: итого 24 перехода. Например, при перекатывании вниз из положения (i, j, RED_UP), получаем положение (i + 1, j, RED_FRONT). Они будут соединены ребром. При этом надо учитывать, что некоторые клетки недостижимы.

Асимптотика — O(mn).

E. Easy problem

Автор: Баев А.Ж.

Найти количество таких пар (i,j), что $1 \leqslant i < j \leqslant n$ и $L \leqslant \frac{a_i + a_j}{2} \leqslant R$. Отсортируем числа a_1, \ldots, a_n , затем для каждого a_i с помощью бинарного поиска найдём минимальный индекс p_i такой, что $a_{p_i} \geqslant 2L - a_i$ и максимальный индекс q_i такой, что $a_{q_i} \leqslant 2R - a_i$. Просуммировав все $(q_i - p_i + 1)$, получим ответ.

Асимптотика — $O(n \cdot log n)$.

F. Flat problem

Автор: Баев А.Ж.

Определить, какое максимальное количество стен можно поставить в фигуре из клеток, чтобы она оставалась связной.

Сопоставим полученной клеточной области граф, вершины которого соответствуют клеткам, а две вершины соединены ребром только в том случае, если соответствующие клетки имеют общую сторону. Нетрудно видеть, что теперь задача сводится к следующему вопросу: какое максимальное количество рёбер можно удалить из графа, чтобы он оставался связным? Ясно, что останется дерево, то есть ответом будет число E-V+1. Ограничения позволяют посчитать количество всех свободных клеток и количество соседних пар наивно на булевой таблице размера 2001×2001 . Асимптотика — $O(L^2)$.

G. Golden problem

Автор: Баев А.Ж.

Для каждого запроса определить, сколько не палиндромов, дающих в квадрате палиндром, находится на сегменте [L, R]. Таких чисел до 10^9 всего 24:

1:26	2:264	3:307
4:836	5:2285	6:2636
7:22865	8:24846	9:30693
10:798644	11:1042151	12:1109111
13:1270869	14:2012748	15:2294675
16:3069307	17:11129361	18:12028229
19:12866669	20:30001253	21:64030648
22:110091011	23:111091111	24:306930693

Достаточно было их предпросчитать во вспомогательной программе, а затем перебирать для каждого запроса. Простейший наивный генератор вычисляет все 24 числа за 3 минуты. Асимптотика — O(M).

H. Honey cake problem

Автор: Баев А.Ж.

Определить, чередуются ли в данном многоугольнике выпуклые углы с невыпуклыми. Нужно было вычислить все ориентированные площади вида $S_i = S_{A_i A_{i+1} A_{i+2}}$. Многоугольник будет удовлетворять условию, только если S_i чередуются знаками и количество вершин чётное. Асимптотика — O(M).

I. Is that even a problem?

Автор: Абдикалыков А.К.

Подсказка: мама — первое слово у детей, абырвалг — первое слово Шарикова, Поехали! — первое слово Гагарина перед полетом в космос.

Поставив вместе все первые слова из текстов остальных задач, вы получите выражение

Дважды А да куб В плюс квадрат С,

то есть, ответ

$$ans = 2A + B^3 + C^2.$$

Асимптотика — O(1).