Notes for Discrete Math (MATH-245)

Author: Nils Olsson

Spring 2018

1 Symbol reference

Symbol	Description	IAT _E X
\in	In	\in
\neg	Negation	\neg
\wedge	And	\wedge
V	Or	\vee

(Febuary 7th)

2 Basic Logic

2.1 Operations

If...then (\rightarrow) A logical statement about correlation and causation. Formally expressed as "if p, then q" $(p \rightarrow q)$ where p is the hypothesis and q is the conclusion. If the hypothesis p is true, then the conclusion q must then be true. Note that causation in the opposite direction is not implied: it is not stated that if not p then not q, so q can be true even if p is not true.

Negation (\neg) Changes true to false and false to true. Unary operator whose argument follows on the right. Also has basically highest precidence for order of evaluate.

And (\land) (Binary operation) Says if left and right, then true, else false. Or (\lor) (Binary operation) Says if left or right, then true, else false.

Truth Tables

Used to evaluate all the potential outcomes of a logical statement given all posible combinations of inputs. Given two inputs p and q then would be four potential input combinations:

$$(p,q) \in \{T,F\} \times \{T,F\} = \{(T,T),(T,F),(F,T),(F,F)\}$$

Table 1: Are $\neg(p \land q)$ and $\neg p \land \neg q$ equivalent?

\overline{p}	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	T	T	F	F	F	F
T	F	F	T	F	T	F
F	T	F	T	T	F	F
F	F	F	T	T	T	T

De Morgan's Laws

Method for negating a statement invovling an and or an or operation.

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{2}$$