Interpretable Machine Learning

0000

Feature Effects PDP - Comments and Extensions

Learning goals

- Extrapolation and Interactions in PDPs
- Centered ICE and PDP

COMMENTS ON EXTRAPOLATION

Extrapolation occurs in regions with few obs. or if features are correlated

- **Example:** Features x_1 and x_2 are strongly correlated
- Black points: Observed points of the original data
- Red: Grid points to calculate ICE/PD (many unrealistic x₁, x₂ combinations)
 - \Rightarrow **PD at** $x_1 = 0$: Averages predictions over *full* marginal distribution of x_2
 - ⇒ **Issue:** Model may behave strangely outside training distribution
 - ⇒ Especially problematic for overfitted or interaction-heavy models

COMMENTS ON INTERACTIONS

PD plots average ICE curves

- → May obscure heterogeneous effects (interactions)
 - **Example:** Feature x_1 = treatment dosage; x_2 = gender
 - \Rightarrow Males (\nearrow) and females (\searrow) respond differently to dosage
 - \Rightarrow PD curve (yellow) hides this divergence
 - Plotting ICE and PD together helps detect interaction
 - Diverse ICE shapes suggest interaction (but not with which feature)

COMMENTS ON INTERACTIONS - 2D PD PLOT

- Humidity and temperature interact at high values (see shape difference)
 → ICE curve shape changes across different (higher) values of other feat.
 - ICE (temp): At high humidity, temp effect flattens (pink line)
 - ICE (hum): At high temp., humidity effect falls steeper (blue/pink)
- Most rentals occur at high temperature and low to medium humidity

CENTERED ICE PLOT (C-ICE) GOLDSTEIN_2015

Issue: Varying-intercept (stacked) ICE curves obscure shape heterogeneity **Solution:** Center ICE curves at fixed reference value, often $x' = \min(s)$

 \Rightarrow Easier to identify heterogeneous shapes with c-ICE curves

$$_{S,\textit{cICE}}^{(\textit{i})}(s) = (s,\xi_{-S}) - (x',\xi_{-S}) =_{S}^{(\textit{i})}(s) -_{S}^{(\textit{i})}(x')$$

CENTERED ICE PLOT (C-ICE) • GOLDSTEIN_2015

Issue: Varying-intercept (stacked) ICE curves obscure shape heterogeneity **Solution:** Center ICE curves at fixed reference value, often $x' = \min(s)$

 \Rightarrow Easier to identify heterogeneous shapes with c-ICE curves

$$_{S,\textit{cICE}}^{(\textit{i})}(s) = (s,\xi_{-S}) - (x',\xi_{-S}) = _{S}^{(\textit{i})}(s) - _{S}^{(\textit{i})}(x')$$

- Yellow: c-PDP (mean of c-ICE)
- c-PDP: At 97% humidity, predicted rentals are 1000 fewer than at 0% humidity (on average)
- Opening of c-ICE curves: suggests interaction or varying effect across instances

CENTERED ICE PLOT (C-ICE)

seasor

Categorical features: c-ICE plots can be interpreted as in LMs due to reference value

- The reference category is x' = SPRING
- ullet Yellow crosses: Average rentals if we jump from SPRING to any other season \Rightarrow Number of bike rentals drops by \sim 560 in WINTER and is slightly higher in SUMMER and FALL compared to SPRING

©