(SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

Time:3 Hours NotesTotal Marks:100

Attempt all sections and assume any missing data.

Appropriate marks are allotted to each question, answer accordingly.

SECTION -A		Attempt all of following question in brief	Marks (10×2=20)	CO
Q.1(a)	Lit because the family of straight lines passing through		lines passing through the	1
Q.1(b)	origins? State the criterion for linearly independent solutions of the homogeneous linear nth order			
	differential	equation.		2
Q.1(c)	Evaluate: \int_0^1	$\sqrt{-\log x}$. Solution lume of the solid obtained by rotating the ellipse $x^2 + 9$.	$y^2 = 9$ about the x-axis.	2
Q.1(d)				3
Q.1(e)		ies $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$.	in the interval (-3 3)	3
Q.1(f)		instant term when $f(x) = 1 + x $ is expanded in Fourier		0
Q.1(g)	Show that j	$F(z) = z + 2\bar{z}$ is not analytic anywhere in the complex p	lane.	
Q.1(h)	Find the im	age of $ z-2i =2$ under the matter $w=\frac{1}{z}$.	30.	4
Q.1(i)	Expand f($z = e^{z/(z-2)}$ in a Laurent series about the point $z = 2$.	26.1	5
Q.1(j)	Discuss the	nature of singularity of $\frac{\cot \pi z}{(z-a)^2}$ at $z=a$ and $z=\infty$.	1/3	5

SECTION -B		Attempt any three of the following questions	Marks (3×10=30)	CO
Q.2(a)	Solve: d2x	$+\frac{dy}{dt} + 3x = e^{-t}$, $\frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$		1
Q.2(b)	Assuming I	$\ln \Gamma(1-n) = \pi \operatorname{cosec} n\pi, \ 0 < n < 1 \text{ show that } \int_0^\infty \frac{x^{p-1}}{1+x} dx$	$2x = \frac{\pi}{\sin n\pi}$; $0 .$	2
Q.2(c)	Test the ser	ies $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \dots$		3
Q.2(d)	If $f(z) = u$ $f\left(\frac{\pi}{2}\right) = \frac{3}{2}$	u + iv is an analytic function, $f(z) = f(z)$ in term of z if $u - 1$	$y = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x} \text{ when}$	4
Q.2(e)	Evaluate by	contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta$; $n \in I$.	W	5

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

7	(a+b) (a+b)	
2	a2 -ab + ab - b2	

one	WY CONT. ON			1 0-00
SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.3(a)	Use the vari	iation of parameter method to solve the differential equation $(D^2 - 1)y = 2(1 - e^{-2x})^{-1/2}$	1	-1
Q.3(b)	Solve: (1 +	$(D^2 - 1)y = 2(1 - e^{-2x})^{-1/2}$ $x)^2 \frac{d^2y}{dx^2} + (1 + x)\frac{dy}{dx} + y = 4\cos\log(1 + x).$		1
SEC	TION-C	Attempt any one of the following questions	Marks (1×10=10)	СО
Q.4(a)	The second second	the cardioid $r = a(1 + \cos \theta)$ included between $-\frac{\pi}{2} \le \theta \le$ ind the area of surface generated.	$\frac{\pi}{2}$ is rotated about the	2
Q.4(b)	Evaluate III	$\int xyz \sin(x+y+z)dx dy dz$, the integral being extended as subject to the condition $+y+z \le \frac{\pi}{2}$.	I to all positive values of	2
SEC	TION -C	Attempt any one of the following questions	Marks (1×10=10)	СО
Q.5(a)	Test for con	vergence of the series $\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \cdots$	1	03
Q.5(b)	Obtain Four	ier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2\pi}{\pi}, & 0 < x < \pi \end{cases}$	23°	3
	Hence deduc	ce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \cdots = \frac{\pi^2}{8}$.	130.	
SECT	TION -C	Attempt any one of the following questions	Marks (1×10=10)	СО
Q.6(a)	the image of	$z = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper half of the circle $ z = 1$ under this transformation?		4
Q.6(b)	Find a biline	ear transformation which maps the points i , $-i$ of the z - respectively.	plane into 0, 1, ∞ of the	4)
		al.		
SEC	TION-C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.7(a)	Evaluate ∮ _c	$\frac{e^{z}}{z(1-z)^{3}}$ dz, where c is (i) $ z = \frac{1}{2}$ (ii) $ z-1 = \frac{1}{2}$ (iii)	z =2.	5

Find the Taylor's and Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ when (i) |z| < 2

Q.7(b)

(ii) 2 < |z| < 3 (iii) |z| > 3.