Span programs and quantum time complexity

A. J. Cornelissen¹ S. Jeffery² M. Ozols¹ A. Piedrafita²

 1 QuSoft – University of Amsterdam 2 QuSoft – CWI

August 26th, 2020 arXiv:2005.01323

Question: Can we do the same with time complexity?

Question: Can we do the same with time complexity?

Question: Can we do the same with time complexity?

*if A allows for efficient uniform access

2/5

Model

Oracle	# calls
$\mathcal{O}_{ imes}:\ket{i}\mapsto (-1)^{ imes_i}\ket{i}$	$\mathcal{O}(Q)$
$\mathcal{O}_{\mathcal{A}}:\ket{t}\ket{\psi}\mapsto\ket{t}U_t\ket{\psi}$	$\mathcal{O}(T)$
$\mathcal{O}_{\mathcal{Q}}:\ket{t}\mapsto (-1)^{t\in\mathcal{Q}}\ket{t}$	$\mathcal{O}(T)$

No. extra gates: $\mathcal{O}(T \text{ polylog}(T))$

3/5

Oracle	# calls
$\mathcal{O}_{ imes}:\ket{i}\mapsto (-1)^{ imes_i}\ket{i}$	$\mathcal{O}(Q)$
$\mathcal{O}_{\mathcal{A}}:\ket{t}\ket{\psi}\mapsto\ket{t}U_t\ket{\psi}$	$\mathcal{O}(T)$
${\mathcal O}_{\mathcal Q}:\ket{t}\mapsto (-1)^{t\in{\mathcal Q}}\ket{t}$	$\mathcal{O}(T)$

No. extra gates: $\mathcal{O}(T \operatorname{polylog}(T))$

 $\mathcal A$ allows for efficient uniform access if $\mathcal O_{\mathcal A}$ and $\mathcal O_{\mathcal Q}$ can be implemented with $\mathcal O(\mathsf{polylog}(\mathcal T))$ gates.

Quantum algorithm \mathcal{A}_1

Quantum algorithm \mathcal{A}_2

:

Quantum algorithm A_n

Quantum algorithm \mathcal{A}_1

Quantum algorithm \mathcal{A}_2

:

Quantum algorithm \mathcal{A}_n

	No. queries to \mathcal{O}_x	No. queries to $\mathcal{O}_{\mathcal{A}}$ & $\mathcal{O}_{\mathcal{Q}}$	No. extra gates
Total	$\widetilde{\mathcal{O}}\left(\sqrt{\sum_{j=1}^{n}Q_{j}^{2}}\right)$	$\widetilde{\mathcal{O}}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right)$	$\widetilde{\mathcal{O}}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right)$

The end

Thanks for your attention! Contact: arjan@cwi.nl