Advanced Logic Design: Lab 4

Question 4:

A: Micro Architecture Diagram:

B: FSM Diagram:

Every "Q" a quarter sinus wave is outputted. In the end of Q4 – a full cycle of sinus wave is outputted

C: Full Design Diagram:

D,E: sin_gen.sv , sin_gen_tb.sv files are attached

F:

Here's scrrenshot to see the module correctness implementation:

Additional screenshot so the movement from different period_sel for en=1 happens smoothly

Bonus sections:

We have declared integrator_top.sv module and did instantiations to sin_gen.sv and integrator.sv (attached)

A: the max frequency is declared for period_sel = 8'b0000_0000

We have made a run and got the 0 function as an output, which means the integrator behaves like "low pass filter"

B: now we run the simulation with frequency of $8'hf8 = 8'b1111_1000$ for 800000 ns , we got that the integrator "passes" the data with phase of -90 degrees

Anlyzing the amplification: We can see that we have negative amplification. For the sinus input:

We got in the maximum point 8'b1111_1110 (as an unsigned value), which means 254 in decimal

For the integrator output

We got in the maximum point $8'b1001_1100$ (as an unsigned value), which means 156 in decimal

So as we can see we got decreasing of the signal at 40% . this stands with the graph we saw in the Lab question:

