Discrete Mathematics INDUCTION & RECURSION

FPT University Department of Mathematics

Quynhon, 2023

Outline of Lecture

- Mathematical Induction
- 2 Strong Induction and Well-Ordering
- **3** Recursive Definitions and Structural Induction
- Recursive Algorithms

Textbook: Discrete Mathematics and Its Applications, Seventh edition, K.Rosen.

Vo Van Nam Induction & Recursion Discrete Mathematics 2 / 29

Upcoming . . .

- 1 Mathematical Induction
- Strong Induction and Well-Ordering
- **3** Recursive Definitions and Structural Induction
- 4 Recursive Algorithms

Principle of Mathematical Induction

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

Proof by Induction:

- **9** Basis step. Prove that P(1) is true.
- **② Inductive hypothesis.** Assume that P(k) is true for some positive integer k.
- **1 Inductive step.** Show that P(k+1) is true.
- **4** Conclusion. P(n) is true for all positive integers n.

Example

Show that if n is a positive integer, then

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Solution. Let P(n) be the proposition that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

- **1** P(1) is true since $1 = \frac{1(1+1)}{2}$.
- f 2 Assume that P(k) holds for an arbitrary positive integer k, namely

$$1 + 2 + \dots + k = \frac{k(k+1)}{2}$$
.

lacksquare We now prove that P(k+1) is true. Indeed,

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}.$$

• Hence, P(n) is true for all positive integers n.

FPTU-QN

Student's Work

1 Show that for all nonnegative integers n,

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1.$$

② Show that for n is a nonnegative integer and $r \neq 1$,

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r - 1}.$$

- **9** Prove that $n^3 n$ is divisible by 3 for all integers $n \ge 1$.
- Show that $2^n > n^2$ for all integers n > 4.
- **5** The harmonic numbers H_n , n = 1, 2, 3, ... are defined by

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Prove that for n is a nonnegative integer, $H_{2^n} \geq 1 + \frac{n}{2}$.

• Let n be a positive integer. Prove that every checkerboard of size $2^n \times 2^n$ with one square removed can be titled by triominoes.

Upcoming . . .

- Mathematical Induction
- 2 Strong Induction and Well-Ordering
- **3** Recursive Definitions and Structural Induction
- Recursive Algorithms

FPTU-QN

Strong Induction and Well-Ordering

Problem. Prove that P(n) is true for all n = 1, 2, ...

Proof by Strong Induction:

- Prove that P(1) is true.
- ② Assume that $P(1), P(2), \dots, P(k)$ are true for some $k \ge 1$.
- **3** Show that P(k+1) is also true.
- Conclusion: P(n) is true for all positive integers n.

Example: Strong Induction

Prove that every integer greater than 1 can be written as a product of primes.

Solution. Let P(n) be the proposition that n can be written as the product of primes.

- P(2) is true since 2=2.
- ② Assume that P(j) is true for all integer j with $2 \le j \le k$.
- ① We need to show that P(k+1) is true under this assumption. <u>Case 1</u>. k+1 is prime. Obviously, P(n) is true.

 <u>Case 2</u>. k+1 is composite and can be written as the product of two positive integers a and b with $2 \le a \le b < k+1$. Because both a and b are integers at least a and not exceeding a, we can use inductive hypothesis to write both of them as the product of primes. Thus, a a a0 is true.
- Hence, P(n) is true for all integer greater than 1.

Question. Prove that every postage of 12 cents or more can be formed using only 4-cent and 5-cent stamps.

Vo Van Nam Induction & Recursion Discrete Mathematics

Using Strong Induction in Computational Geometry

A **polygon** is a closed geometric figure consisting of a sequence of line segments s_1, s_2, \ldots, s_n is called **sides**.

A diagonal of a simple polygon is a line segment connecting two nonconsecutive vertices of the polygon, and a diagonal is called an **interior diagonal** if it lies inside the polygon, except for its endpoints.

Theorem

- A simple polygon with n sides, where n is an integer with $n \geq 3$, can triangulated into n-2 triangles.
- (Lemma) Every simple polygon with at least four sides has an interior diagonal.

FPTU-QN 10 / 29

Well-Ordering

The validity of the Principle of Mathematical Induction follows from the Well-Ordering property of the set of non-negative integers.

Well-Ordering

Any nonempty set of non-negative integers has a least element.

Upcoming . . .

- Mathematical Induction
- Strong Induction and Well-Ordering
- **3** Recursive Definitions and Structural Induction
- 4 Recursive Algorithms

Recursive Definitions and Structural Induction

Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers in its domain:

- **1** Basic step: Specify the value of the function at zero.
- Recursive step: Give a rule for finding its value at an integer from its values at smaller integers.

Example. Give a recursive definition of a^n where a is a nonzero real number and n is a nonnegative integer.

Solution.

- a^0 is specified, $a^0 = 1$.
- **2** The rule for finding a^{n+1} from a^n is given by

$$a^{n+1} = a \cdot a^n, \ n = 0, 1, 2, \cdots$$

These two equations uniquely define a^n for all nonnegative integers n.

Recursively Defined Sets and Structures

Determine the set S defined by:

- Basic step: $3 \in S$.
- Recursive step: If $x, y \in S$ then $x + y \in S$.

Solution. We have

- ullet the new elements found to be in S are 3 by the basic step,
- the first application of the recursive step 3+3=6,
- the second application the recursive step 3+6=6+3=9, and 6+6=12,
- . . .
- ullet We will show that S is the set of all positive multiples of 3.

Question.

- Give a recursive definition of the set of positive integers that are multiples of 5.
- $oldsymbol{2}$ Give a recursive definition for the set of positive integers that are not divisible by 3.
- Give a recursive definition of the set of positive integers congruent to 2 modulo 3.

Vo Van Nam Induction & Recursion Discrete Mathematics

The set Σ^* of **strings** over the alphabet Σ is defined recursively by

- Basic step: $\lambda \in \Sigma^*$ where λ is the empty string containing no symbols.
- Recursive step: If $w \in \Sigma^*$ and $x \in \Sigma$, then $wx \in \Sigma^*$.

Note.

- ullet The basic step says that the empty string belongs to Σ^* .
- The recursive step states that new strings are produced by adding a symbol from Σ to the end of strings in Σ^* .
- At each application of the recursive step, strings containing one additional symbol are generated.

Example. Assume $\Sigma = \{0, 1\}$. Then

- the strings found to be in Σ^* , the set of all bit strings are λ , specified to be in Σ^* in the basic step.
- ullet the first application of the recursive step, 0 and 1 are formed.
- ullet the second application of the recursive step, 00, 01, 10, 11 are formed.

Concatenation of two strings

Let Σ be a set of symbols and Σ^* be the set of strings formed from symbols in Σ . We define the **concatenation of two strings**, denoted as \cdot , recursively as follows:

- Basic step: If $w \in \Sigma^*$, then $w \cdot \lambda = w$ where λ is the empty string.
- Recursive step: If $w_1, w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x$.

Give a recursive definition of l(w), the length of the string w. The $\mbox{length of a string}$ can be recursively defined by

$$\begin{split} &l(\lambda)=0,\\ &l(wx)=l(w)+1 \text{ if } w\in \Sigma^* \text{ and } x\in \Sigma. \end{split}$$

Building Up Rooted Trees

The set of **rooted trees**, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by these steps:

- Basics step: A single vertex r is a rooted tree.
- Recursive step: Suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n , respectively. Then the graph formed by starting with a root r, which is not in any of the rooted trees T_1, T_2, \ldots, T_n and adding an edge from r to each of the vertices r_1, r_2, \ldots, r_n , is also rooted tree.

The set of **extended binary trees** can be defined recursively by these steps:

- Basic step: The empty set is an extended binary tree.
- Recursive step: If T_1 and T_2 are disjoint extended binary trees, there is an extended binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 when these trees are nonempty.

Building Up Full Binary Trees

Recursive definition for the set of **full binary trees**.

- Basic step: A single vertex is a full binary tree.
- Recursive step: If T_1 and T_2 are two full binary trees, then there is a full binary tree, denoted by $T_1.T_2$, consisting of a root r together with edges connecting this root to the root of the left subtree T_1 and the root of the right subtree T_2 .

Give a recursive definition for:

- Leaves of full binary trees.
- 4 Height of full binary trees.

Structural Induction

Let S be a set defined recursively. To prove that a property P is true for all elements of S, we can use **structural induction**.

- ullet Basic step: Prove that P is true for elements of S defined in the basic step.
- Recursive step: Show that if the property P is true for the elements used to construct new elements in the recursive step of the definition of S, then the property P is also true for these new elements.

Question.

- 1. Show that the set S where $3 \in S$ and if $x, y \in S$ implies $x + y \in S$, is the set of all positive integers that are multiples of 3.
- 2. Let T be a full binary tree with the number of vertices n(T) and the number of leaves $\ell(T)$. Prove that $n(T)=2\ell(T)-1$.

We define the height h(T) of a full binary tree T recursively.

- Basic step: The height of the full binary tree T consisting of only a root r is h(T)=0.
- Recursive step: If T_1 and T_2 are full binary trees, then the full binary tree $T=T_1\cdot T_2$ has height $h(T)=1+\max(h(T_1),h(T_2))$.

Theorem

Let T be a full binary tree with the number of vertices n(T) and the height h(T). Then, $n(T) \leq 2^{h(T)+1}-1$.

Generalized Induction

Example. Given the sequence $\{a_{m,n}\}$ defined recursively as follows:

$$a_{0,0}=0, \text{ and}$$

$$a_{m,n}=\begin{cases} a_{m-1,n}+1 & \text{if } n=0 \text{ and } m>0\\ a_{m,n-1}+n & \text{if } n>0. \end{cases}$$

Prove that $a_{m,n}=m+\frac{n(n+1)}{2}$ for all $m,n\geq 0$.

Upcoming . . .

- Mathematical Induction
- Strong Induction and Well-Ordering
- Recursive Definitions and Structural Induction
- **4** Recursive Algorithms

FF I U-QIV

Recursive Algorithms

An algorithm is called **recursive** if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example. A recursive algorithm that computes 5^n for $n \ge 0$. *Solution*.

 $\begin{array}{l} \textbf{Procedure} \ \mathsf{power} \ (n \colon \mathsf{nonnegative}) \\ \textbf{if} \ n = 0 \ \mathsf{then} \ \mathsf{power}(0) := 1 \\ \textbf{else} \ \mathsf{power}(n) := \! \mathsf{power}(n-1) * 5 \\ \end{array}$

Student's Work

- Write a recursive algorithm to compute n!.
- Write a recursive algorithm to compute the greatest common divisor of two nonnegative integers.
- Express the linear search algorithm by a recursive procedure.
- Express the binary search algorithm by a recursive procedure.

Recursion and Iteration

Problem. Write a recursive algorithm and an iteration algorithm to compute the nth Fibonacci number, and compare their complexity via the number of additions used.

```
Procedure Iterative Fib (n) if n=0 then y:=0 else x:=0 y:=1 for i:=1 to n-1 do z:=x+y x:=y y:=z Print(y)
```

```
Procedure Fib (n) if n=0 then \mathrm{Fib}(0):=0 else if n=1 then \mathrm{Fib}(1):=1 else \mathrm{Fib}(n):=\mathrm{Fib}(n-1)+\mathrm{Fib}(n-2)
```

Merge Sort Algorithm

```
\begin{array}{l} \textbf{Procedure} \ \mathsf{mergesort} \ (L=a_1,a_2,\ldots,a_n) \\ \textbf{if} \ n>1 \ \textbf{then} \\ m:=\lfloor n/2\rfloor \\ L_1=a_1,a_2,\ldots,a_m \\ L_2:=a_{m+1},a_{m+2},\ldots,a_n \\ L:= \mathsf{merge} \big(\mathsf{mergesort}(L_1), \ \mathsf{mergesort}(L_2)\big) \\ \textbf{Print}(L) \end{array}
```

Theorem

The number of comparisons needed to merge sort a list with n elements is $O(n \log n)$.

Thank you!

Call it a day

"Mathematics is like love; a simple idea, but it can get complicated."