U	A	X	Pr
-1	-1	0	0.32
0	-1	0	0.24
1	-1	0	0.24
-1	1	0	0.08
0	1	1	0.06
1	1	1	0.06

Table 1: Joint Distribution

Suppose an causal model consists of U, X, A. The prior distribution of U is

$$P(U = -1) = 0.4$$
 $P(U = 0) = 0.3$ $P(U = 1) = 0.3$

The distribution of A is

$$P(A = -1) = 0.8 \quad P(A = 1) = 0.2$$
 (1)

X is determined by U and A in this way:

$$X = \begin{cases} 1, & \text{if } U + A > 1\\ 0, & \text{otherwise} \end{cases}$$
 (2)

Then we can have the joint distribution of U, A, X as the table 1. So for the observed data, we only have A = -1, X = 0, A = 1, X = 0 and A = 1, X = 1.

From the definition of counterfactual fairness, we know that for every given x and a,

$$h = \mathbb{E}_{U \sim P(U|X=x, A=a)} \left[\frac{X + \check{X}}{2} \right]$$
(3)

is a counterfactual fair feature. Now for data A = -1, X = 0, the posterior distribution of U is

$$P(U = -1) = 0.4$$
 $P(U = 0) = 0.3$ $P(U = 1) = 0.3$

When $U=-1, \frac{X+\check{x}}{2}=0+0=0$. When $U=0, \frac{X+\check{x}}{2}=\frac{0+1}{=}0.5$. When $U=1, \frac{X+\check{x}}{2}=\frac{0+1}{=}0.5$. So h=0.3.

For A = 1, X = 0, we know that the posterior distribution of U is P(U = -1) = 1. So h = 0. And when A = 1, X = 1, the posterior distribution of U is P(U = 0) = P(U = 1) = 0.5. So h = 0.5.

That means when A = -1, P(H = 0.3) = 1. When A = 1, P(H = 0) = 0.4, P(H = 1) = 0.6. DP not hold.