ITU AI/ML in 5G Challenge: Applying Machine Learning in Communication Networks

A Real-time CQI Prediction Framework for Proactive Resource Scheduling in 5G Enabled Drones Using AI

Submitted by:

Wireless Communications and Navigation (WCN) Lab,

Dept. of Electrical Engineering, Indian Institute of Technology Jodhpur

Team Details (BLAZE-IITJ):

- 1. Ankush Chaudhary, M. Tech 1st Year, Intelligent Communication Systems, EE Dept.
- 2. Aswathy P., Project Associate, WCN Lab, Dept. of EE.

Faculty Mentors:

- 1. Dr. Sai Kiran M. P. R., Assistant Professor, WCN Lab, EE Dept.
- 2. Dr. Arun Kumar Singh, Associate Professor, WCN Lab, EE Dept.

Use-case Flow Diagram

A Real-time CQI Prediction Framework for Proactive Resource Scheduling in 5G Enabled Drones Using AI

CQI Vs. PRB Mapping (TDD)

- Guaranteed Rate (R) = 20 Mbps
- Band n78 (3.3 GHz)
- Total PRBs (nPRB) = 106
- Sub-carrier Spacing (SCS) = 30 kHz
- Bandwidth = $nPRB \times 12 \times SCS$ ($\approx 40 MHz$)
- Required Guaranteed PRBs (gPRB) = $\frac{R}{SE \times 12 \times SCS}$
- SE Spectral Efficiency

CQI mapping table [3GPP 38.214, Release 15]

o at the plant grant to the control of								
		Code Rate			gPRB (Round			
CQI Index	Modulation	x 1024	Efficiency	gPRB	Off)			
1	QPSK	78	0.1523	364.78	365			
2	QPSK	193	0.377	147.36	148			
3	QPSK	449	0.877	63.35	64			
4	16 QAM	378	1.4766	37.62	38			
5	16 QAM	490	1.9141	29.02	30			
6	16 QAM	616	2.4063	23.09	24			
7	64 QAM	466	2.7305	20.35	21			
8	64 QAM	567	3.3223	16.72	17			
9	64 QAM	666	3.9023	14.24	15			
10	64 QAM	772	4.5234	12.28	13			
11	64 QAM	873	5.1152	10.86	11			
12	256 QAM	711	5.5547	10.00	11			
13	256 QAM	797	6.2266	8.92	9			
14	256 QAM	885	6.9141	8.04	9			
15	256 QAM	948	7.4063	7.50	8			

CQI Vs. PRB Mapping (FDD)

- Guaranteed Rate (R) = 20 Mbps
- Total PRBs (nPRB) = 25
- Band n66 (2.1 GHz and 1.7 GHz with 400 MHz offset)
- Sub-carrier Spacing (SCS) = 15 kHz
- Bandwidth = $nPRB \times 12 \times SCS$ ($\approx 5 MHz$)
- Required Guaranteed PRBs (gPRB) = $\frac{R}{SE \times 12 \times SCS}$
- SE Spectral Efficiency

CQI mapping table [3GPP 38.214, Release 15]

	11 3	-		•	-
CQI Index	Modulation	Code Rate x 1024	Efficiency	gPRB	gPRB (Round Off)
1	QPSK	78	0.1523	364.78	365
2	QPSK	193	0.377	147.36	148
3	QPSK	449	0.877	63.35	64
4	16 QAM	378	1.4766	37.62	38
5	16 QAM	490	1.9141	29.02	30
6	16 QAM	616	2.4063	23.09	24
7	64 QAM	466	2.7305	20.35	21
8	64 QAM	567	3.3223	16.72	17
9	64 QAM	666	3.9023	14.24	15
10	64 QAM	772	4.5234	12.28	13
11	64 QAM	873	5.1152	10.86	11
12	256 QAM	711	5.5547	10.00	11
13	256 QAM	797	6.2266	8.92	9
14	256 QAM	885	6.9141	8.04	9
15	256 QAM	948	7.4063	7.50	8

Model Training

Demonstration Flow

Thank You!!!

Wireless Communications and Navigation Lab, Dept. of EE, IIT Jodhpur

RF Simulator for RU

(or)

(or)

RF Simulator

for UE

USRP N320/B210 for RU

USRP N320/B210 for UE

OAI 5G Core Network (Generic computing node)

OAI gNB