Homework(2) 1600017857

1 Q1

 $C_1 = \phi$ is open, close, bounded and compact, its interior, closure, boundary and accumulation point set is ϕ .

 $C_2 = \mathbb{R}^n$ is open, close, not bounded and thus not compact, its interior, closure, boundary and accumulation points set is \mathbb{R}^n .

 $C_3 = [0,1) \cup [2,3] \cup (4,5]$ is not open, not close, is bounded, but not compact, its interior is $(0,1) \cup (2,3) \cup (4,5)$, its closure is $[0,1] \cup [2,3] \cup [4,5]$, its boundary is $\{0,1,2,3,4,5\}$, and its accumulation points are $[0,1] \cup [2,3] \cup [4,5]$.

 $C_4 = \{(x,y)^T | x \ge 0, y > 0\}$ is not open, not close, not bounded, not compact, and its interior is $\{(x,y) | x > 0, y > 0\}$, its closure is $\{(x,y) | x \ge 0, y \ge 0\}$, its boundary is $\{(0,y) | y \ge 0\} \cup \{(x,0) | x \ge 0\}$, and is accumulation points is $\{(x,y) | x \ge 0, y \ge 0\}$.

 $C_5 = \{k | k \in \mathcal{Z}\}$ is not open, but is closed, is not bounded, and not compact, its interior is ϕ , its closure and boundary is itself, $\{k | k \in \mathcal{Z}\}$, and its accumulation points are ϕ .

 $C_6 = \{k^{-1} | k \in \mathcal{Z}\}$ is not open, not closed, but is bounded, and is not compact, its interior is ϕ , its closure and boundary is $\{k^{-1} | k \in \mathcal{Z}\} \cup \{0\}$, its accumulation point is $\{0\}$.

 $C_7 = \{(1/k, \sin k^T | k \in \mathcal{Z})\}$ is not open, not closed, but is bounded, and is not compact, its interior is ϕ , its closure and boundary are $\{(1/k, \sin k^T | k \in \mathcal{Z})\} \cup \{(0, y) | -1 \le y \le 1\}$, and its accumulation points are $\{(0, y) | -1 \le y \le 1\}$.

2 Q2

1. suppose \mathcal{C} is closed, if there exists x^* which is the limit of one convergent sequence in \mathcal{C} , but $x^* \notin \mathcal{C}$, thus $x^* \in \mathcal{C}^c$, which is an open set, so we have

$$\exists \epsilon \ s.t. \ (\cup(x^*, \epsilon)) \cap \mathcal{C} = \phi \tag{1}$$

for we have $\cup (x^*, \epsilon) \subseteq \mathcal{C}^c$. but there exists $\{x_k\}_1^\infty \subseteq \mathcal{C}$ s.t. $\lim_{k \to \infty} x_k = x^*$, that is to say,

$$\forall \epsilon \ (\cup(x^*, \epsilon)) \cap \mathcal{C} \neq \phi \tag{2}$$

contradiction! so for all x^* which is the limit of one convergent sequence in \mathcal{C} , we have $x^* \in \mathcal{C}$

2. suppose \mathcal{C} is not closed, i.e. \mathcal{C}^c is not open, that is to say,

$$\exists x^* \in \mathcal{C}^c \ \forall \ \epsilon > 0 \ (\cup(x^*, \epsilon)) \cap \mathcal{C} \neq \phi$$
 (3)

for we have $(\mathcal{C}^c)^c = \mathcal{C}$. so we choose a sequence of $\epsilon_k \to 0$ and find $x_k \in (\cup(x^*, \epsilon)) \cap \mathcal{C}$, then $\lim_{k \to \infty} x_k = x^*$, so $x^* \in \mathcal{C}$, contradiction! so \mathcal{C} must be closed.

3. from 1 and 2, we have a set $\mathcal{C} \subseteq \mathcal{R}^n$ is closed iff it contains the limit point of every convergent sequence in it.

3 Q3

 $x \in \partial \mathcal{C} = \bar{\mathcal{C}} \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \cap (\mathcal{C}^o)^c$

lemma 1 by definition, $x \in \mathcal{C}^o \iff \exists \epsilon > 0 \cup (x, \epsilon) \subseteq \mathcal{C}$, thus we have $x \in (\mathcal{C}^o)^c \iff \epsilon > 0 \exists z \notin \mathcal{C}$ (4)