ECEN454 Ref Sheet © Josh Wright September 23, 2017

Motrie Drofines

Metric Prefixes				
peta	Р	10^{15}	1 000 000 000 000 000	
tera	Т	10^{12}	1 000 000 000 000	
giga	G	10^{9}	1 000 000 000	
mega	Μ	10^{6}	1 000 000	
kilo	k	10^{3}	1 000	
hecto	h	10^{2}	100	
deca	da	10^{1}	10	
one		10^{0}	1	
deci	d	10^{-1}	0.1	
centi	c	10^{-2}	0.01	
milli	m	10^{-3}	0.001	
micro	μ	10^{-6}	0.000 001	
nano	n	10^{-9}	0.000 000 001	
pico	p	10^{-12}	0.000 000 000 001	
femto	f	10^{-15}	0.000 000 000 000 001	

De Morgan's Laws

- $\bullet \ \overline{AB} = \overline{A} + \overline{B}$
- A + B = (A)(B)

Silicon

- Si
- P-type:
- * doped with material to remove electrons (add electron holes), usually Boron (B), Aluminum (Al), or Gallium (Ga)
- N-type:
- * doped with material to add electrons, usually Antimony (Sb), Arsenic (As), or Phosphorous (P)
- Silicon dioxide: SiO₂
- Polysilicon is just silicon without the crystal structure

Transistors

- nMOS
- * no bubble
- * on when input is on, off when input is off
- * base (of whole chip) is p-substrate
- * spot of n+ for source and drain, joined by a small layer of oxide (SiO_2) and polysilicon (gate). also has a spot of p+ (base) connected to ground
- pMOS:
- * has the bubble
- * on when input is 0, off when input is 1
- * whole thing sits in an n-well (inside the p-substrate
- * source and drain are spots of p+ connected by gate. Gate is polysilicon layer separated from rest of chip by thin layer of SiO₂ on bottom. Also has a n+ spot for base (connected to VDD)
- CMOS: when you combine a nMOS and pMOS network together to make a gate, where one is the compliment of the other
- V_t : Threshold voltage. Nominal voltage below which the transistor is off
- * below as in closer to 0, not less
- * $V_t > 0$ for nMOS, $V_t < 0$ for pMOS
- * this is compared to the gate to source voltage, V_{as}
- regions: (for nMOS)
 - * accumulation: gate is negatively charged, attracts positive voids in p-substrate, which block flow in the
 - * depletion: small positive charge on gate repels positive voids from channel, forming a depletion below the gate
 - * inversion: higher positive charge (> V_t) is applied to gate, attracting electrons to the channel and allowing

flow

D Flip Flop vs Latch

- latch is level triggered
- flip flop is edge triggered

Fabrication

- n-well: use diffusion or ion implantation
- positive lithography: expose to UV where you want to remove material
- negative lithography: expose to UV where you want to keep material

Stick Diagram vs Boolean Function

- there is more than one way of making a stick diagram for an expression
 - * stuff in series could be in different order, for instance
- if you do it manually, you need to check it with tools:
- * LVS: Layout Vs Schematic
- * DRC: Design Re-Check
- * These aren't really needed for designs automatically generated from verilog code, because of course that's correct

Lithography

- the process of printing onto a chip at nanometer scale
- generally uses UV light, wavelength around 150nm
- * must use fancy tricks to make 10nm features with 150nm light
- * would be nice to use even lower wavelength X-rays, but those are hard to focus
- negative lithography: use the lithography mask to cover what you want to keep.
- positive lithography: mask what you want to remove
- a lens is used to focus the light
 - * ideally, want a point source for the light, but that is not practical
 - * Optical Proximity Effect: what happens when your focus from the lens is not just right
 - * results in rounded corners, inaccurate critical dimensions, and shorter wire ends
 - * can use Optical Proximity Correction to fix: basically over-emphasize all the features, and/or add extra lines at outset

MOS transitive *I-V* Characteristics and **Parasitics**

- *I-V*: current-voltage relationship
- Transistors are not really ideal switches, they have 3 zones of operation: cutoff, linear, saturation
- definitions:

 V_{gs} : voltage gate to source V_{gd} : voltage gate to drain

 V_{ds} : voltage source to drain (across the channel) V_t : critical voltage at which transistor is saturated channel: space between the source and drain, where the electrons flow

- remember that the gate is insulated from the area under it by a thin layer of Silicon Dioxide (SiO₂)
- by convention, the source is the terminal at lower voltage
- cutoff:
 - * when $V_{qs} < 0$
 - * electrons on the gate attract positive voids in the silicon below, and inhibit current flow. Therefore, the transistor is closed.
- $* I_{ds} = 0$
- linear:
- * $V_{gs} > V_t, V_{gd} = V_{gs}, V_{ds} = 0$ or $V_{gs} > V_t, V_{gs} > V_{gd} > V_t, 0 < V_{ds} < V_{gs} V_t$
- * I_{ds} linearly proportional to V_{ds}
- * channel of electrons forms, allowing current to flow

- * $V_{gs} > V_t, V_{gd} < V_t, V_{ds} > V_{gs} V_t$ * channel pinches off due to electrons attracting to
- * I_{ds} is independent of V_{ds}

capacitor effect

• gate and channel can have a parallel plate capacitor effect, with the thin layer of SiO₂ acting as the insulator

• $C = \frac{Q}{V} = \epsilon_{SiO_2} wl/t_{SiO_2}, V = V + gc - V_t =$ $(v_{qs} - Vds/2) - V_t$

* l, w: length, width of section of gate above channel

* ϵ_{SiO_2} : permittivity of SiO₂ layer

* t_{SiO_2} : thickness of SiO₂ layer

• general capacitance per unit area: $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$

* ϵ_{ox} : permittivity of oxidation layer

* t_{ox} : thickness of oxidation layer

• carrier velocity: velocity of the electrons?

* proportional to the electric field running horizontally between source and drain

 $v = \mu E, E = V_{ds}/L, t = L/v = L/(\mu E) = L/(\mu \frac{V_{ds}}{L})$ μ : mobility. electrons move about twice as fast as positive voids

L: length of channel

- actual velocity of electrons is the speed of light, but they don't travel in a straight line, they travel atom-to-atom
- * this slowdown is called the **scattering** effect

Shockley model of transistor

- $V_{dsat} = V_{qs} V_t$
- 1st order model: $\beta = \mu C_{SiO_2} \frac{w}{I}$

 $I_{ds} = 0$ $V_{qs} < V_t$ cutoff $V_{ds} < V_{dsat}$ $I_{ds} = \beta (V_{gs} - V_t - \frac{V_{ds}}{2})V_{ds}$ $V_{ds} > V_{dsat}$ $I_{ds} = \frac{\beta}{2}(V_{gs} - V_t)^2$ linear saturation

• Must be able to derive this model on exam!

Non-Ideal I-V Effects

- velocity saturation (due to scattering)
- * also called short channel effect
- * this is hard to make into a mathematical formula
- sub-threshold leakage, junction leakage, gate tunneling

• Body Effect

* affected by V_{sb} : voltage of the p-substrate (which should be ground)

* $V_t = V_{t0} + \lambda(\sqrt{|-2\phi_F + V_{sb}|} - \sqrt{|-2\phi_F|})$ - V_{t0} : threshold without body bias

- ϕ_F : Fermi potential

· negative for nMOS, positive for pMOS

- λ : body effect coefficient

· positive for nMOS, negative for pMOS (reversed)

* generally fixed/caused by biasing

* Forward Body Bias (FBB):

 $-V_{sb} < 0, V_t < V_{s0}$

- gates switch faster, but leak more current

* Reverse Body Bias (RBB):

- $V_{sb} > 0, V_t > V_{s0}$

- gates switch slower, but consume less power (because less leakage)

• Temperature

- * higher temperature means higher electron mobility, more leakage, and threshold decreases
- Diffusion Capacitance
- * capacitance on the source/drain: C_{sb} , C_{db}
- source/drain are diffusion nodes
- C is comparable to C_g (gate) for connected nodes, $\frac{1}{2}C_q$ for unconnected
- (depends on process)

- * this is the capacitance we care most about (because we must fill it every time the gate switches?)
- * if two capacitors share a source/drain, that reduces diffusion capacitance (reducing this is a good thing)
- * also, you can remove unconnected diffusion spots

DC Response

- example: inverter
- must settle to $I_{dsn} = |I_{dsp}|$
- V_{tn} , V_{tp} : threshold voltages for nMOS and pMOS (defined in Non-Ideal *I-V* Effects)
- $V_{in} = V_{DD} \rightarrow V_{out} = 0$, $V_{in} = 0 \rightarrow V_{out} = V_{DD}$

- $$\begin{split} * & V_{gsn} = V_{in}, V_{dsn} = V_{out} \\ * & \text{cutoff: } V_{in} < V_{tn} \\ * & \text{linear: } V_{in} > V_{tn}, V_{out} < V_{in} V_{tn} \\ * & \text{saturated: } V_{in} > V_{tn}, V_{out} > V_{in} V_{tn} \end{split}$$

* $V_{gsp} = V_{in} - V_{DD}, V_{dsp} = V_{out} - V_{DD}, T_{tp} < 0$ * cutoff: $V_{in} > V_{DD} + V_{tp}$ * linear: $V_{in} < V_{DD} + V_{tp}, V_{out} > V_{in} - V_{tp}$ * saturated: $V_{in} < V_{DD} + V_{tp}, V_{out} < V_{in} - V_{tp}$ • to calculate actual output voltage, balance $I_{dsn} = I_{dsp}$ (easiest to do graphically)

* end up with a graph of V_{out} as function of V_{in}

	0 1	0 000
Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

- * don't want to switch nMOS and pMOS because then nMOS would saturate at far end of graph (and vice versa for pMOS)
- * horizontal position of graph can be varied by tuning β_p/β_n
- called beta ratio, or skewed gate
- $-\beta_p/\beta_n > 1 \to \text{right}, \beta_p/\beta_n \to \text{left}$
- * unity gain slope: part of response graph where the
- want to tune β_p/β_n to put logic levels at these regions to maximize noise margins
- * Noise Margins:
- $NM_H = |V_{OH} V_{IH}|, NM_L = |V_{OL} V_{IL}|$
- that's just the higher/lower of the two axes

Transient Analysis

- for instance, find step response of gate to determine
- rise/fall delay: time from when V_{in} crosses $\frac{V_{DD}}{2}$ to when V_{out} crosses it
- rise/fall time: (of V_{in} or V_{out}): time for that signal to go from $0.1V_{DD}$ to $0.9V_{DD}$ (or reverse)
- TODO many equations and such for inverter step response (from slides)
- TODO pass transistors (form slides)

Pass Transistors

- for nMOS trying to pass V_{DD} or pMOS trying to pass 0
- nMOS can pull no higher than $V_{DD} V_{tn}$ if $V_q = V_{DD}$
- * more generally, $V_g V_{tn}$ * called degraded 1
- pMOS can pull no lower than $|V_{tp}|$

- generally estimated with RC models
- * for nMOS with width k:
- * resistance of R/k

- * caps of kC on all terminals
- * pMOS same except resistance is 2R/k
- \bullet depends on effective R and C of transistors
- * exactly what parasitic caps depends on exact layout (which stuff is shared between transistors)
- * C proportional to width (approx 2 fF/ μ m)
- * R inversely proportional to width (approx $6k\Omega^*\mu m$)
- * TODO unity transistors
- find widths necessary for rise and fall resistance to be same as standard inverter
- * pMOS is about half as conductive as nMOS, so the inverter has nMOS=1, pMOS=2
- * larger width \rightarrow smaller R
- * transistors in series: delay adds, so double the width
- * transistors in parallel: same as a single transistor (because we assume worst case of only one being
- use effective resistance in RC model: $I_{ds} = V_{ds}/R$ (just good enough for a RC model, not for current at arbitrary time)
- find delay of circuit
- * decompose to RC model (take into account widths of each transistor)
- replace transistors with resistors
- add parasitic caps on either side of every transistor (cap value = width of transistor)
 - · caps with both pins short to ground don't count, are never charged
- \cdot caps from V_{DD} to ground don't count, always
- * add together all R and C's to get delay
- don't count R of nMOS and pMOS at the same time, because they're never on at the same time
- Delay d = f + p• Effort Delay f = gh
- * g: logical effort: relative ability of gate to deliver current
- g = 1 for standard inverter
- *h: electrical effort: ratio of input to output capacitance
- also called fanout
- Parasitic Delay p
- * independent of load (represents delay of gate driving no load)
- * set by internal parasitic capacitance
- Elmore Delay:
- * ON transistors look like resistors, so pullup/pulldown network is modeled as RC ladder
- * $t = \sum_{i \in nodes} R_{i-to-source} C_i$
- $= R_1C_1 + (R_1 + R_2)C_2 + \ldots + (R_1 + \ldots + R_n)C_n$ Ideal number of stages for inverter driving large load
- * delay = $\left(\frac{C_{load}}{C_{inv}}\right)^{\frac{1}{k}} kR_{inv}C_{inv}$ * k: number of stages
- * stage size ratio: $\left(\frac{C_{load}}{C_{inv}}\right)^{\frac{1}{k}}$

Static Timing Analysis

- worst case at each step
- in form arrival time / required arrival time / slack
- arrival time: input to output, take max
- required arrival time: output to input, take min
- * work backward
- * if a gate drives only one gate on it's output, this is
- slack: required arrival time arrival time
- Contamination delay: just best case delay (smallest delay)

- * in this case, you'll count parallel transistors as parallel resistors
- not sure about this stuff, Peter just said to not worry about this question on the homework

Power Estimation

- Dynamic Power
- * power required to charge the load capacitor
- * only counted when transistor switches
- therefore this power usage is data dependent
- therefore, you have to count the falling transitions in the output per time period
- * $P_{dynamic} = \frac{1}{T} \int_0^T i_{DD}(t) V_{DD} dt$ * for any gate: $P_{dynamic} = CV_{DD}^2 f_{sw}$ Activity Factor α

- * α : how often this gate switches in terms of the base clock frequency
- * $\alpha = 1$: clock; $\alpha = 0.5$: every other cycle, etc...
- * for system clock at frequency f, $P_{dynamic} = \alpha C V_{DD}^2 f$
- Short Circuit Current
 - * nMOS and pMOS may both be on for a short instant during switching, leading to a short instant of short circuit current (from V_{DD} to ground)
- * $P_s \propto (V_{DD} 2V_t)^3 t_r f_p$ assume $t_r = t_f$ for input
- f_p : frequency of input
- * this is less than 10% of dynamic power if the rise/fall times are comparable
- Static Power
- * leakage when gate is off

$$I_{ds} = I_{ds0}e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}}\right)$$
$$V_t = V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s}\right)$$

${f After~exam~1}$

- exam 1 was on March 8 (2017.03.08)
- nothing specifically from previous exam

Propagation vs Contamination delay

- contamination delay (t_{cd}) : time from input change to any output changing value
- * kind of a best-case delay or smallest possible delay
- * time counted when input crosses 50% of logical high voltage level
- propagation delay: time from when all inputs are stable to when all outputs are stable
- * kind of like a worst-case delay

Latch vs Flip Flop

- Latch is level-sensitive, flip-flop is edge-sensitive
- register is flip-flop

Latch/flip flop designs

- pass transistor latch
- * pros: tiny, low clock load
- * con: voltage drop across is V_t , it's non-restoring
- * con: not really a latch because doesn't hold signal
- transmission gate
- * pro: no V_t drop
- * con: requires inverted clock
- inverting buffer
- * TODO
- tristate feedback
- * first complete latch here
- * risk of backdriving: downstream could change state if it is very strong
- buffered output
- * no backdrifing problem
- * widely used

- * rather large and slow though, and large load on clock
- a flip-flop is just two latches back-to-back

Metastability

- stable works if it's not at a strong high or low but will settle somewhere
- metastable is where it might sit there, but if it must settle, you don't know which one it will settle to when perturbed

Sequential Circuits

- sequential means that the circuit holds state: the output depends on both current and past input
- to model a state machine, you can unroll it to [regieter]
 → [combinational] → ...
- * this way you can use regular timing stuff for it: arrival time, slack, etc...
- Mealy FSM: output of circuit is from combinational logic
- Moore FSM: output is from registers
- pipelined circuit: uses registers to hold state between clock cycles, because not all of the combinational logic can happen fast enough to work in a single clock cycle * pipelined circuits can use flip-flops or latches?
- the clock consumes 20-30% of the power on a chip
- the whole reason that registers are needed is because data (signals) moves through components at non-constant speed
- reset
- * can be sync or async
- * force low output when reset is high
- sequencing: it is (generally) equivalent to split the sequential logic in two, and then use two latches (one halfway through) instead of one large section of sequential logic with flip-flops at either end
- * this is called two phase clocking
- * you have to make sure the middle latch operates on clock-bar instead of clock
- timing:

 $\begin{array}{lll} t_{pd} & \text{logic propagation delay} \\ t_{cd} & \text{logic contamination delay} \\ t_{pcq} & \text{Clk} \rightarrow \text{Q propagation delay} \\ t_{ccq} & \text{Clk} \rightarrow \text{Q contamination delay} \\ t_{pdq} & \text{D} \rightarrow \text{Q propagation delay} \\ t_{setup} & \text{setup time of flip-flop/latch} \\ t_{hold} & \text{hold time of flip-flop/latch} \end{array}$

- * D→Q delay only makes sense for latches, since for flip-flops it is simply one clock cycle
- sequencing overhead and max delay:
- * T_c : cycle time
- * need for combinational logic to be fast enough
- * for single phase flip flop: $t_{pd} < T_c (T_{setup} + T_{pcq})$
- * for two-phase latch: $t_{pd} = t_{pd1} + t_{pd2} < T_c 2t_{pdq}$
- * max delay is dictated by cycle time and sequencing overhead; sequencing overhead does not effect minimum delay
- minimum delay:
- * for single phase flip flop: $t_{cd} > t_{hold} t_{ccq}$
- combinational stuff must be slow enough that it doesn't violate hold time of second flip flop
- * for two-phase latch:
- $t_{cd1}, t_{cd2} > t_{hold} t_{ccq} t_{non-overlap}$
- hold time applies twice each cycle, once per each combinational circuit
- $t_{non-overlap}$: phase between clock signals?
- time borrowing: for two-phase latch-based system, you can borrow time from one segment to the other while the latch is transparent
- * works (is possible) as long as the total circuit still completes within one clock cycle

- clock skew:
 - * when uncertain: causes tighter required CL propagation delay and minimum CL contamination delay, and reduces opportunity for time borrowing.
- * when know constant skew: can help with same effect as time borrowing, except can also have effect for flip-flop based systems
- skew tolerance:
- * flip-flop circuits are not very skew tolerant because the setup and hold times define a specific window of time in which the data must arrive
- * latch circuits are more hold-time-tolerant because the data can arrive any time that the latch is transparent
- if setup times are violated, you can reduce clock speed to fix it
- if hold times are violated, it won't work at any clock speed

Clocking

- H-Tree (clock distribution network)
- * laid out in such a way that the delay from the center to any leaf node is equal
- Grid clock distribution
- * grid on two or more levels
- * ensures low local skew, but there could still be larger chip-wide skew
- generally, the longer the delay between two point, the larger the worst-case clock skew
- Domino circuit: TODO
- * a kind of dynamic logic
- * when the clock pulse cascades through the circuit, activating the pMOS at each stage?

Memory

- random access or sequential access, or content addressable
- CAM: content-addressable memory
- * basically like an associative array, or database
- * designed to search all memory at once in a single operation (wikipedia)
- * used in caches
- SRAM: TODO
- * 12T and 6T cell designs
- * 12T design: just a latch connected to a bitline
- boring and impractical because it's too large
- * 6T design: cross-coupled inverters (3T each) +2T for bit and bit-bar lines
 - we focus on 6T design
- * read: pre-charge bit and bit-bar, raise wordline, read result
 - (need to pre-charge or else read is destructive?)
 - need sense amplifiers at the end of the bitlines because the signal will be weak, and the parasitic capacitance of the bitline depends on how many cells are 0 or 1
- * write: drive data onto bit and bit-bar and raise wordline to write
- * cross coupled inverters must be much larger than the bitline transistors so that it doesn't flip while reading
- * per each column, you need:
- piece of decoder
- bitline sense amplifier
- column multiplexer
- * multi-port: means you can read from and write to the same cell in the same clock cycle and it works
- implement by having multiple sequential read/write per cycle?
- decoders:
- * must be pitch-matched to SRAM cell width for layout efficiency/simplicity (requires very skinny gates)

- * large (n > 4) decoders are inefficient, thus it is often helpful to use predecoding: factor out common gates into a second stage of decoders.
- smaller area as alternative, but same logical effort (since same number of gates traversed)
- twisted bitlines: bitlines are long and right next to each other, so there will be significant crosstalk and parasitic cap
- * solution: swap adjacent bit and bit-bar lines occasionally
- * reduces Miller factor (MCF)
- DRAM: TODO
- * one transistor and one capacitor
- transistor gates capacitor
- * no charge is 0, charge is 1
- * open transistor to read/write
- * read is destructive
- * must be refreshed periodically due to leakage
- thus, it's always consuming power
- shift register:
- * can be implemented with cascade of flip-flops
 - can lead to hold time violations because no delay from clock to next data line? (TODO what? how?)
 - not very dense
- * store data in SRAM and store begin/end pointers more dense than individual flip-flops
- Tapped Delay Line
- * shift register with programmable number of stages
- * implement using sequence of flip-flops, each with a bypass MUX from data in to out
- Queues: are a thing (TODO)
- ROM: Read Only Memory:
- * mask-programmed ROMs are one transistor per bit
- PROMs, EPROMS, etc
- * generally burn out specific fuses to program ROM
- * E for erasable

Wire Delay

• n-segment π model:

to model, find total R and C of wire; then split up according to n segment model, then combine adjacent caps

Miller Effect

- AKA crosstalk; it's when one wire affects another
- it's dynamic; depends on what signal the wires are carrying
- MCF: Miller factor (or something)
- for two wires A and B, model as

 $C_{eff} = C_{gnd} + MCF \cdot C_{adj}$ behavior of B | MCF |
constant | 1 |
with A | 0 |
opposite A | 2

Timing

- setup time: minimum time that signal must remain stead **before** clock edge
- hold time: minimum time that signal must remain stead after clock edge
- propagation delay: when driving another gate? largest (worst case) delay?
- contamination delay: best case delay (smallest delay)?
- parasitic delay: independent of load
- effort delay: proportional to load capacitance (nothing to do with the thing that is doing the driving of the load capacitance)
- maximum possible logic propagation delay for combinational circuit buffered on either side by flip-flops: clockCycle Clk \rightarrow Q FlipFlopSetup WorstSkew

* minimum circuit delay: HoldTime - Clk \rightarrow Q **Memory**

- serial access memory (SAM): accessed in a sequence, not randomly
- * ex. shift register, queue, stack, etc...
- * often implemented using random access memory
- Shift Register
- * serial in, parallel out
- * large number of transistors per cell when implemented using flip flop
- * tapped delay line: shift register with variable number of stages
- useful for allowing chips at different clock frequencies to communicate (apparently)
- queue or stack can be built using SRAM block with pointers to first/last and stuff
- SRAM
- * static ram
- * can be dual ported: means you can write to a cell while reading the old value from it
- * designed in a cell grid, MUXes for input and then decoders for output connected to bit lines that run across the cells
- * TODO note about pre charging bit line
- DRAM
 - * stores bits using capacitors
- decoders
- * needed to switch to the right bit-line
- * need to be pitch-matched to RAM cell width for efficiency
- * TODO note about twisted bit lines
- ROM: read only memory
- * used to be custom masked chips for data
- PROM

Packaging

- flip chip: put connection pads on the surface of the die instead of the edges
 - * then flip the chip over and affix it directly to the package
- * means the die must be positioned in the package more precisely
- Heat
- * Thermal Resistance: $\Delta T = \theta_{iaa} P$
- ΔT : temperature rise in chip
- θ_{ja} : thermal resistance of chip junction to ambient; units: C/W
- P: power dissipation on chip
- IO
- * ESD Protection: TODO
- * output pads:
 - must drive large off-chip loads (2-50pF) do that using successively larger buffers
- surround with guard ring to protect against lockup
- * input pads:
- may need level converters
- Schmitt trigger: allow signal to cross high/low edge only after it goes a little over the tipping point
- * bidirectional pads:
- combine input and output
- use tristate driver to set pin direction
- * analog:
- no buffering
- any protection circuitry must be careful to not distort the signal at all
- RF pads?