Assignment3

Kyle Ligon

2/11/2020

			1
)) 		y = 15.04	ł
, , , , , , , , , , , , , , , , , , ,	2). Corra bleight Percept Observamons	- A .	
		y ₁ = 9.8 y ₂ = 15.4	
	25 14 19 19 18 18	y. = 17.6	
	30 19 25 22 19 23 g 35 7 10 11 15 11 g	9 = 21.6 4 . 10 8	
		Content affects the mean	
	tensile strength? Use x=0.05		
	Source SS of MS Fo SStr	$= \sum_{i=1}^{n} \left(\frac{1}{y_i} - y_i \right)^2$	
	Box 1,000 Tet 47576 4 118.94 1428692	1 , . ,	
	Error (Mithin Tit) 161.20 20 8.06 Total 636.96 24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		= 51497+, E7 "488 TOB 1 31) 25 1	
	P-Value = 9.13 x 10 6	$= \frac{1}{5} (30,654) - \frac{141376}{25}$ $= 6,130.8 - 5655.04$	
	to reject the null hypothesis that all singrap	5,130.8 - 3635.07 = . 475.76	
) meanore the same. There is enderce to suggest 5 Tor 7	ŽŽ y 2 - (y)	
		6292 - 141376 25 292 - 565504	
	6	36.96	
	b) Wel the Fisher LSD method to make comparisons Means. What conclusions can you draw?	a bothleen the pairs of	
	$LSD = t_{0.025, N-a} \sqrt{\frac{2MS_E}{D}} = t_{0.025, 20} \sqrt{\frac{2(8.06)}{5}} = c$	2.086 $\frac{2(8.06)}{5}$ = $2.086(1.79555)$	
	= 3.745517		
	$y_1 - y_2 = 9.8 + 6.4$ $y_1 - y_3 = 9.8 - 17.6$ $y_1 - y_4 = 9.8 - 21.6$ $y_1 - y_5 = -7.8$ $y_2 = -11.8$	\$ 9.8-10.8 = there is endence to	
°	4 - V = 154 - 171 9 - Q = 154-111 4-9- = 154-10). R = \\ \(\) \\ \\ \ \ \ \ \ \ \ \ \ \ \ \	
	$y = -2.2$ = -6.2 χ = 9.6 χ	21 (-10 8) 25 and 111 C	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.8 \$ 35 is different from	
		30.	

library(tidyverse)

1)

C) Analyze the residuals from this experiment and comment on model adequacy. Use R.

```
cotton_data <- tibble(
  cotton_factor = gl(n = 5, k = 5, label = c("15", "20", "25", "30", "35")),
  tensile_strength = c(7, 7, 15, 11, 9, 12, 17, 12, 18, 18, 14, 19, 19, 18, 18, 19, 25, 22, 19, 23, 7,

cotton_anova <- aov(tensile_strength ~ cotton_factor, data = cotton_data)

cotton_data_clean <- cotton_data %>%
  mutate(residuals = cotton_anova$residuals)

ggplot(data = cotton_data_clean, aes(x = tensile_strength, y = residuals)) +
  geom_point() +
  labs(title = "Residuals by Tensile Strength")
```

Residuals by Tensile Strength


```
ggplot(data = cotton_data_clean, aes(x = cotton_factor, y = residuals)) +
  geom_point() +
  labs(title = "Residuals by Cotton Factor")
```

Residuals by Cotton Factor


```
qplot(cotton_data_clean$residuals) +
   stat_bin(bins = 5)
```


Overall, the residuals for problem 1, look fine. There's a random spattering around each of the cotton factors and the histogram of the residuals looks fine.

y. = 13.8 Circuit Type Response Time a) a) 9 12 10 8 15 20 21 23 17 30 Jz. = 22.2 5 8 16 7 y = 8.4 Test the happorties that the three circuit types have the same response time. Use & = 0.01. $= \frac{1}{5} (54^{2} + 111^{2} + 12^{2})^{-2}$ $= \frac{1}{5} (17001) - 2856$ 0.0004 Error (within to) 202.80 12 16.9 $= 3,603 - \frac{267}{25}$ RS(16.083) 3,12) : 0.004 to suggest that one of the three means are different and we = 146.4. b) Use Tukeys test to compare pairs to treatment means. Note: With no stated of I will use 0.05, $T_{0.05} = 8_{0.05} (2, 12) \sqrt{\frac{16.9}{5}} = (3.08) (1.838478) = 5.662512$ y, -y, = 10.6-222 = y, -y, = 10.8-8.4 yz - y, = 22.2-8.4

= -11.4 \times = 2.4 = 13.8 \times little a p-value less than 0.05, there is enidere to suggest we refeat the pull hypothesis. There is enidence to suggest that circuit type 2 is different than 1 or 3.

2)

C) Analyze the residuals from this experiment and comment on model adequacy. Use R.

```
circuit_data <- tibble(
  circuit_type = gl(n = 3, k = 5, labels = c("1", "2", "3")),
  response_time = c(9, 12, 10, 8, 15, 20, 21, 23, 17, 30, 6, 5, 8, 16, 7)
)

circuit_anova <- aov(response_time ~ circuit_type, data = circuit_data)

circuit_data_clean <- circuit_data %>%
  mutate(residuals = circuit_anova$residuals)

ggplot(data = circuit_data_clean, aes(x = response_time, y = residuals)) +
  geom_point() +
  labs(title = "Residuals by Response Time")
```

Residuals by Response Time


```
ggplot(data = circuit_data_clean, aes(x = circuit_type, y = residuals)) +
  geom_point() +
  labs(title = "Residuals by Circuit Type")
```

Residuals by Circuit Type


```
qplot(circuit_data_clean$residuals) +
  stat_bin(bins = 3) +
  labs(title = "Histogram Residuals")
```

Histogram Residuals

Overall, the residuals for problem 1, look fine. There's a random spattering around each of the circuit type and the histogram of the residuals looks fine.

1								
3)	Botch 1	Batch 2	Batch 3	Batch Y	Batch 5			
	23.46	23.59	23.51	23.28	23.29			
	23.48	23, 46	23.64	23.40	23.46			
	23.56	23.42	23.46	23.37	23.37			
	23.39	23.49	23.52	23,46	23.32			
	23.40	23,50	23.49	23.39	23.38			
a	Ils this a randon	n ellecta mi	odel? Why?					
,	This is a random	ellecto mo	del There is	no determe	stic decision made			
l,	I the statistician	in Selection	in the bate	hes. Ill &	lley were to take			
a	bunch of batch	les lyon + l	e night Al	lift this u	would be a fixed			
off	ects model whose	all some	s con only	be transl	ated to the results			
700	nielt while Wis	H them by	elong ran Town	ly solected	ated to the results ! this is a random			
	ledo model	,						
ego	eve week							
b) there a significant variation in calcium content from batch to batch?								
	4.00 -1 m A1	- '			(y:i)			
	Source	\sim SS d	f MS F	1 P-Value 5.	Sta Tito N			
	Treatme	A 0.14		2.5779x10-6	$=\frac{1}{5}(68,701)-\frac{343501.5}{25}$			
	Error		0 0.002	And the second Commence Co.	= 13740.2 -13740.06			
			14		= 0.[4			
t	lich a prudue leg	v than 0.05	there is en	udence S.	$S_{Tot} = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{ij}^{2} - \frac{(y_{ij})}{N_{3435015}}$			
to	refect the null h	yporlesis that	fall the mea	is are	= 1374024 - 35			
th	e same. There is li	udence to s	uggest dut	at least	< 13,740,24-13740.06			
On	e mean is different	5.	• •					
				. 4				
C) Estimate the nariance components for this model.								
$\hat{\mathcal{T}}^{2} = MS_{\epsilon} = 0.002$ $\hat{\mathcal{T}}^{2} = MS_{\tau_{17}} - MS_{\epsilon} = 0.035 - 0.002 = 0.033 = 0.0066$								
The sale of the sa	A2	: MS - MS	0 035	-1) (Y)Zs	0.033 (0.0066)			
	τ	10 m	5 2.033	5	5			
*		7 1		_				

d) Lind a 95% Confidence cloternal for
$$\frac{O_{T}^{2}}{O_{T}^{2}+O^{2}}$$

$$\frac{L}{1+L} \leq \frac{O_{T}^{2}}{O_{T}^{2}+O^{2}} \leq \frac{U}{1+U}$$

$$L^{-\frac{1}{2}} \frac{1}{N} \left(\frac{MS_{Trt}}{MS_{\varepsilon}} \left(\frac{1}{F_{0.05}, y_{1,21}} \right) - 1 \right), \quad U = \frac{1}{N} \left(\frac{MS_{Trt}}{MS_{\varepsilon}} \left(\frac{1}{F_{0.975}, y_{1,21}} \right) - 1 \right)$$

$$L = \frac{1}{5} \left(\frac{17.5}{17.5} \left(\frac{1}{0.1170} \right) - 1 \right); \quad U = \frac{1}{5} \left(\frac{17.5}{3.48} \right) - 1 \right)$$

$$L = \frac{1}{5} \left(\frac{149.5726}{148.5726} \right); \quad \frac{1}{5} \left(\frac{1}{9.028736} \right)$$

$$= \frac{1}{5} \left(\frac{1}{9.028736} \right)$$

$$\frac{29.71452}{1+29.71452} \le \frac{\sigma_{\overline{L}}^{2}}{\sigma_{\overline{L}}^{2}+\sigma^{2}} \le \frac{0.80575}{1+0.80575}$$

$$0.9674421 \le \frac{\sigma_{\overline{L}}^{2}}{\sigma_{\overline{L}}^{2}+\sigma^{2}} \le 0.4462135$$

$$0.4462135 \le \frac{\sigma_{\overline{L}}^{2}}{\sigma_{\overline{L}}^{2}+\sigma^{2}} \le 0.9674421$$

3)

E) Analyze the residuals from this experiment and comment on model adequacy. Use R.

Residuals by Calcium Conten


```
ggplot(data = calcium_data_clean, aes(x = batch_number, y = residuals)) +
  geom_point() +
  labs(title = "Residuals by Batch Number")
```

Residuals by Batch Number


```
qplot(calcium_data_clean$residuals) +
   stat_bin(bins = 3) +
   labs(title = "Histogram Residuals")
```

Histogram Residuals

These residuals are the best out of the three problems. Their spattering by batch number and nice histogram make for an awesome model and we could proceed to post-hoc testing bearing a check on the p-value.