# PARTE 6 SOFTWARE DEFINED NETWORKS

# Modulo 1 Overview di un data center Cloud

#### Cosa c'è dietro?









#### Visione di un data center

#### Data center molto complessi

- Tanti host
- Ogni host ospita decine/centinaia di VM
- Uso do container

#### Workload complesso

- Continui aggiornamenti
- Nuove VM/Container
- Sistemi scalabili on-dmand

#### Non solo



#### Struttura di un data center

- Organizzazione gerarchica dell'HW
- Blade system
- Blade racchiusi in chassis
- Chassis organizzati in rack
- Rack contiene anche elementi di rete





#### Struttura di un data center

- Elementi di switching
- Top-of-Rack (ToR)
- End of Row (EoR)





#### Struttura di rete

- Organizzazione della rete
  - Struttura gerarchica
  - Tipicamente 3 o 4 livelli
- Topologia ad albero



#### Struttura di rete

#### Edge/Access layer

- Connette gli host
- Tipicamente composto da switch ToR

#### Aggregation layer

- Connette le zone del data center
- Funzioni avanzate (QoS, Trafic shaping, path ridonanti)

#### Core Layer

- Backbone del data center
- Connette con l'esterno
- Fondamentale per garantire la disponibilità dei servizi

#### Nuove linee di evoluzione delle reti

- I data center adottano tecniche di virtualizzazione delle risorse di calcolo
- Tale approccio si sta estendendo anche alle alle reti
- NFV: Network Function Virtualization
- SDN: Software Defined Networking

#### NFV

#### Origine:

Soluzione nata nelle reti di grossi ISP

#### Obiettivo:

 Riduzione di costi OPEX e CAPEX dei sistemi di rete

#### Metodologia:

 Uso di sistemi COTS per le funzioni di reti più sofisticate al posto di hardware dedicato

#### Area di interesse:

- Switch e router

#### SDN

#### Origine:

 Soluzione nata in reti limitate e maturata nell'ambito di data center

#### Obiettivo:

- Supporto per SDDC (Software Defined Data Center)
- Migliorare orchestrazione in sistemi Cloud

#### Metodologia:

- Separazione funzioni di rete di basso livello da funzioni più sofisticate
- Routing protocol vs. Packet forwarding

#### SDN

- Area di interesse:
  - Switch e router
- Standard:
  - ForCES
  - OpenFlow

→ Focus di questa lezione

#### Parte 6

### Modulo 2 Motivazioni

#### Necessità di condividere risorse

- Difficoltà nella gestione della rete a fronte di carichi di lavoro variabili
  - Riconfigurazione: processo complesso
  - Scambio di messaggi tra dispositivi autonomi (es. router)
- Infrastrutture di rete dimensionate su esigenze di picco
  - Costi elevati
  - Risorse sotto-utilizzate (Google B4)



 Serve un meccanismo flessibile per implementare policy complesse

#### Performance isolation

- Flussi di traffico non dovrebbero interferire tra di loro
- Scenario critico: data center multi-tenant
- Soluzioni oggi disponibili
  - VLAN + Switch managed
  - Traffic shaping
- Difficile interoperabilità tra sistemi diversi
  - Problema con policy complesse
  - Scenario critico: data center con migrazione di VM e riconfigurazione della rete
- Serve un meccanismo flessibile per implementare policy complesse

#### Supporto per la ridondanza

- Ridondanza necessaria per fault tolerance
- Algoritmi per spanning tree
- Scarso supporto per altri algoritmi (e.g. load balancing)
- Scarsa interoperabilità con sistemi volti a gestire altre esigenze
  - Resource sharing
  - Performance isolation
- Serve un meccanismo flessibile per implementare policy complesse

#### Supporto per funzioni aggiuntive

- Funzioni aggiuntive
  - Firewall
  - NIDS
  - NAT
  - Traffic shaping



- Implementate con middleboxes
- Necessità di integrare tali funzioni con funzioni base di rete
  - Routing
  - VLAN/Spaning tree
- Funzioni non integrate
- Serve un meccanismo flessibile per implementare policy complesse

#### Il problema del management

#### Necessità:

- Adattarsi a scenari fortemente dinamici
- Agire in modo rapido e automatico
- Problema: Mancanza di integrazione
  - Ogni dispositivo ha API/protocolli specifici di solito non interoperabili
- · Problema: Mancanza di stabilità
  - Algoritmi distribuiti possono convergere a soluzioni di routing differenti a seguito di crash [Google B4]
- Serve un meccanismo flessibile per implementare policy complesse

#### Introducing...



#### SDN: Funzioni

## Funzioni di basso livello

- Data plane
- Veloce
- Distribuito

#### Funzioni di alto livello

- Control plane
- Centralizzato
- Flessibile
- Supporta policy complesse



#### SDN: Definizione di interfacce

- Tra control plane e applicazioni
  - Northbound interface
  - REST API
  - OSPF/BGP/...
- Tra data plane e control plane
  - Southbound interface
  - OpenFlow (standard de facto)
  - ForCES



# Modulo 3 Data Plane



#### Il data plane in un router tradizionale

- Inoltro basato su tabelle di routing
- Match su NetID e selezione next hop



#### Applicazione al caso SDN

- Estendo e generalizzo la tabella di routing
- II caso OpenFlow
- In OpenFlow ogni riga della tabella ha
  - Predicato di match
  - Azione
  - Contatori
  - Priorità
  - Time-out

OpenFlow: Anatomy of a Flow Table Entry



#### Predicato di match

- Opera su numerosi campi
   (12 41 campi a seconda delle versioni)
  - Porta di ingresso del device
  - VLAN ID + priority (PCP)
  - MAC src + dst
  - Type Eth
  - IP src + dst
  - IP proto
  - IP ToS
  - TCP/UDP src + dst

\_\_\_\_\_

#### Predicato di match

#### Supporto per deep packet inspection

 Considera campi di livelli differenti dello stack

#### Grande flessibilità

- Match esatti ma anche di tipo range/prefix
- Il numero di campi supportati cresce ad ogni versione dello standard

#### Possibili problemi di prestazioni

- Dimensione delle tabelle
- Problemi in alcune operazioni di match
- Emulazione software danneggia le prestazioni

#### A cosa serve il matching

#### Flexibility in Matching

 The ability to match on Layer-1 through Layer-4 allows the switch to behave like a variety of network devices



#### Azioni

#### Azioni supportate

- Inoltro
- Drop
- Modifica di pacchetto
- Invio al controller
- Metering & shaping
- Altro...

#### Inoltro

Come azione di default di router

#### Drop

- Azione di default di un firewall

#### Azioni

#### Modifica di pacchetto

- Gestione VLAN
- Implementazione di NAT
- Redirezione verso altri nodi
- load balancing in cluster
- transparent proxy

#### Invio al controller

- Usato per sollevare situazioni non previste dalle tabelle locali
- Consente al controller di modificare le tabelle OpenFlow

#### Azioni

#### Metering & shaping

- Aggiornamento contatori
- Pacchetti riordinati per non eccedere traffic rate o per garantire QoS

#### Altre azioni

- Gestione gerarchica delle tabelle
- Azione: inoltro a tabella secondaria
- Azioni meno probabili sono inserite in tabelle secondarie
- Fatto per motivi prestazionali
- Alcune tabelle secondarie sono implementate in SW

#### Statistiche

- Per ogni regola sono considerati
  - Numero di attivazioni
  - → Numero di pacchetti con match
  - Volume di dati associati alla regola
- Le azioni possono essere usate per azzerare i contatori periodicamente
  - Calcolo di frequenza di attivazioni

#### Southbound interface

- Messaggi controller → switch
- Messaggi asincroni (switch → controller)
- Messaggi simmetrici
- Messaggi legati a operazioni di:
  - Richiesta descrizione switch
  - Lettura/scrittura stato switch
  - Lettura/scrittura configurazione switch
  - Invio di pacchetti
  - Controllo connettività (ping)

#### Messaggi Controller → Switch

| Message                        | Description                                                                                                                                                  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Features                       | Request the capabilities of a switch. Switch responds with a features reply that specifies its capabilities.                                                 |
| Configuration                  | Set and query configuration parameters. Switch responds with parameter settings.                                                                             |
| Modify-State                   | Add, delete, and modify flow/group entries and set switch port properties.                                                                                   |
| Read-State                     | Collect information from switch, such as current configuration, statistics, and capabilities.                                                                |
| Packet-out                     | Direct packet to a specified port on the switch.                                                                                                             |
| Barrier                        | Barrier request/reply messages are used by the controller to ensure message dependencies have been met or to receive notifications for completed operations. |
| Role-Request                   | Set or query role of the OpenFlow channel. Useful when switch connects to multiple controllers.                                                              |
| Asynchronous-<br>Configuration | Set filter on asynchronous messages or query that filter. Useful when switch connects to multiple controllers.                                               |

#### Messaggi Asincroni e Simmetrici

| Message      | Description                                                                |
|--------------|----------------------------------------------------------------------------|
| Packet-in    | Transfer packet to controller.                                             |
| Flow-Removed | Inform the controller about the removal of a flow entry from a flow table. |
| Port-Status  | Inform the controller of a change on a port.                               |
| Error        | Notify controller of error or problem condition.                           |

| Message      | Description                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------|
| Hello        | Exchanged between the switch and controller upon connection startup.                                                  |
| Echo         | Echo request/reply messages can be sent from either the switch or the controller, and they must return an echo reply. |
| Experimenter | For additional functions.                                                                                             |

#### Parte 6

# Modulo 4 Control Plane

#### Visione della rete



#### Controller

- Sono disponibili diversi controller SDN
  - Onos
  - Daylight
  - **–** ...
- Caratteristiche architetturali comuni
  - Livello comunicazione (southbound)
  - Interfaccia applicazioni (nothbound)
  - Gestione rete





#### Livello comunicazione

- Gestione dell'interfaccia southbound
- Supporto protocolli per data plane
  - Openflow
  - SNMP

- ...

#### Interfaccia con applicazioni

- Gestione dell'interfaccia Northbound
- Tipicamente si usano API REST (Representational State Transfer)
  - Basata su HTTP
  - Espone strutture dati che mostrano lo stato della rete e statistiche
  - Codifica dello spazio degli URL
  - Consente di manipolare tali strutture per inviare comandi all'infrastruttura

#### Interfaccia con applicazioni

- Consente di integrare la gestione della rete nelle altre logiche di gestione di un data center
  - Supporto per gestire la migrazione VM
  - Integrazione con OpenStack, vSphere
- Possibile supporto per interazione con altri controller
  - Federazione di enti diversi
  - Supporto per reti non-SDN
  - Gestione protocolli come OSPF, BGP, ...

#### Gestione dello stato globale della rete

- Repository dello stato della rete SDN
  - Informazioni di stato su Switch, Host, ...
  - Informazioni su flussi gestiti
- Visione globale della rete, non limitata ai singoli dispositivi
  - Supporto per approccio centralizzato
  - es, uso algoritmo di Dijkstra per routing
  - Tali decisioni possono essere esternalizzate mediante interfaccia northbound

#### Parte 6

### Modulo 5 Conclusioni e Sfide Aperte

#### Sfide aperte

## Problemi prestazionali nelle interazioni con il controller

- Ogni pacchetto inoltrato al controller è soggetto ad alta latenza
- Problema in presenza di numerosi flussi di piccole dimensioni

#### Problemi prestazionali nel data plane

- Emulazione software in caso di predicati di matching particolari
- Emulazione software in caso di overflow nelle tabelle
- Prestazioni: Switch 10 Gb/s → 20 Mb/s

#### Sfide aperte

#### Complessità del controller

- Grande capacità di implementare policy molto complesse
- Difficoltà nel garantire prestazioni elevate
- Controller potenziale Single Point of Failure

#### Controller ridondato/parallelizzato

- Fault tolerance
- Scalabilità

