18/05/2023. Parcial de Análisis Matemático III. Curso 5

Para aprobar, se requiere resolver 3 ejercicios correctamente justificados.

- 1. Dada la función $f(z) = \frac{z}{z+1} + (z+1)e^{2/z^2}$. a)Hallar la parte principal de su serie de Laurent válida en un entorno de z=0, indicando la región de convergencia. A partir de ésta, b) determinar el tipo de singularidad en z=0 c) hallar el valor del residuo de f(z) en z=0.
- 2. a) Determinar para qué valores de $\omega \in \mathbb{R}$ la función $k(x,y) = e^x(y\cos(y) + (x-\omega)\sin(y))$ puede ser parte la parte real de una función analítica f(z) y hallarla. Elija un valor de ω posible y calcule $\int_{|z|=2} \frac{f(z)}{z+i} dz$ b) Hallar los ceros de la función $m(z) = e^{2z} + ei$. c) Hallar la relación que existe entre $\oint_{\mathcal{C}^+} \overline{z} dz$ y el área encerrada por la curva \mathcal{C} , cerrada y simple¹.
- 3. Dada $g(z) = \frac{z+1}{z(z+2)}$, hallar un desarrollo en serie de Laurent de la forma $\sum_{n=-\infty}^{\infty} a_n (z+2)^n$ de forma tal que la serie $S = \sum_{n=-\infty}^{\infty} (-1)^n a_n$ sea convergente. En ese caso, ¿la serie $\sum_{n=-\infty}^{\infty} |a_n|$ es convergente? Indicar el dominio de convergencia de la serie y hallar el valor de S.
- 4. Dada la función $f(z)=\frac{1}{z(ie+e^{2z})}+\frac{\overline{z}}{2i}$, calcular el valor de A(3)-A(2), sabiendo que: $A(\rho)=\oint_{|z|=\rho}f(z)dz.$ ¿En qué cambiaría (si cambiara) el cálculo si se pidiera A(3)-A(1)? ¿Y A(4)-A(2)?
- 5. Decidir cuáles son los valores de $\alpha, \beta \in \mathbb{R}$ tales que las siguientes integrales convergen: a) $I_1 = \int_0^\infty \frac{(x+1)dx}{x^\alpha(1+x^3)}$ b) $I_2 = \int_0^\infty \frac{dx}{(\sqrt{x}+1)^\beta}$. Justifique adecuadamente su respuesta.

¹Sugerencia: Recuerde el Teorema de Green