Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: He Wang Email: he.wang@northeastern.edu

$\S 13$ Singular Value Decomposition

1. Singular Value Decomposition

Recall the spectral decomposition for symmetric matrices:

Theorem 1 (Spectral Decomposition for Symmetric Matrices). A is an $m \times m$ symmetric matrix if an only if $A = VDV^{-1}$ such that D is diagonal and V is an orthogonal matrix.

Let $\lambda_1, \ldots, \lambda_m$ be the diagonal entries of D, and let $\vec{v}_1, \ldots, \vec{v}_m$ be the column vectors of V. Then $A = VDV^T$ can be written as

$$A = \lambda_1 \left(ec{v}_1 \cdot (ec{v}_1)^T \right) + \dots + \lambda_m \left(ec{v}_m \cdot (ec{v}_m)^T \right)$$

Dosttile

We want to find a similar decomposition for any $(n \times m)$ matrix M

$$A=VDV^{T}=VDV^{T}$$

$$D=[y]$$

$$\lambda_1 > \lambda_2 > -- > \lambda_r > \lambda_{r+1} - - = \lambda_{r+1} = 0$$

$$\bigvee = \boxed{\overrightarrow{V}_1 \cdots \overrightarrow{V}_m}$$

$$\mathcal{N} = \mathcal{N} = \mathcal{N} = \mathcal{N}$$

$$G_1 \overrightarrow{\mathcal{U}}_1 \overrightarrow{\mathcal{V}}_1^T + \dots + G_r \overrightarrow{\mathcal{U}}_r \overrightarrow{\mathcal{V}}_r^T$$

· Def: The singular values of M are

$$6_i = \sqrt{\lambda_i}$$

Theorem 2 (Singular Value Decomposition(SVD)). And $n \times m$ matrix M can be decomposed as

$$M = \underbrace{U\Sigma V^{T}}_{\bullet}$$

or as

$$M = \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$$

Example 3. Find an SVD decomposition for the matrix

$$M = \begin{bmatrix} 1 & 4 \\ 2 & 2 \\ 2 & -4 \end{bmatrix}_{3X1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3X1 & 3X1 & 3X1 \end{bmatrix}$$

Example 4. Find an SVD decomposition for the matrix

$$M = \bigcup_{3x_1} \sum_{3x_1} \bigvee_{2x_1} \bigvee_{2x_1} \bigvee_{3x_2} \bigvee_{2x_3} \bigvee_{3x_4} \bigvee_{3x_5} \bigvee_{3x_$$

Example 5.

$$M = \begin{bmatrix} 1 & -1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$$

- (1). Calculate M^TM and MM^T .
- (2). Find all eigenvalues and an eigenbasis of M^TM .
- (3). Find all eigenvalues and an eigenbasis of MM^T .
- (4). Find an SVD decomposition for the matrix M.

Applications.

1. Geometric meaning in \mathbb{R}^2 .

Theorem 6. Let M be an 2×2 invertible matrix. The image of M of the unit circle is an ellipse. The lengths of the semimajor and the semiminor axes of the ellipse are the singular values of M.

2. Solving least-squares problems.

- 3. Principal component analysis.
- 4. Digital image compressing.

$$A \longrightarrow A^{-1} \qquad \text{S.t.} \qquad A^{-1}A = J_{n} = AA^{-1}$$

$$n \times n$$

Def: The pseudo-hiere of
$$A \in \mathbb{R}^{m \times n}$$
 is

$$\bigcirc (\underline{A}\underline{A}^{+})\underline{A} = \underline{A}^{-}$$

$$\bigcirc A^{+}(\underline{A}\underline{A}^{+}) = \underline{A}^{+}$$

In senete)!
$$A \in \mathbb{R}^{m_{X'}}$$

where
$$\sum_{i=1}^{n} \frac{1}{e_{i}}$$

\(\sum_{\text{c}} \sum_{\text{mxn}} \)

· Applicative: Estimale especialis > PCA

· App. Norm of a morn'x M man matrix

mognifying power

 $\mathbb{D}_{\overline{x}}: \| M \|_{p} := \sup_{\overline{x} \neq \overline{s}} \left\{ \frac{\| M \overline{x} \|_{p}}{\| \overline{x} \|_{p}} \right\} + \overline{x} \neq \overline{s}$

PI
$$\|M\|_{1} = \max \left\{ \sum_{j} M_{j} \right\}$$

PRO $\|M\|_{2} = 6_{1}$

Prod: $M = U \sum_{j} V^{T} y^{j} \|$
 $\|My\|_{2} = \|X\|_{2} = \|X\|_{2} \|$
 $\|My\|_{2} = \|X\|_{2} \|$

Pante $\|Vy\|_{2} = \|X\|_{2} \|$
 $\|X|_{2} = \|X|_{2} \|$
 $\|X|_{2} \|$
 $\|X|_{2}$

$$\mathcal{M} \in \mathbb{R}^{m \times n}$$

$$\mathcal{A} \neq \mathcal{M}^{\mathsf{T}} \mathcal{M}$$

D (), (), ()

$$\frac{1}{|\lambda|} \left(\frac{1}{\lambda_i} A \right)^k = \frac{\vec{\mathcal{U}} \vec{\mathcal{V}}^T}{\vec{\mathcal{U}} \cdot \vec{\mathcal{V}}}$$

here
$$\triangle \vec{v} = \lambda_1 \vec{v}$$

 $\vec{u}^T A = \lambda_1 \vec{u}^T$

$$\lim_{k \to \infty} \left(\frac{1}{\lambda_i} A \right)^k \vec{x} = \frac{\vec{u} \cdot \vec{v} \cdot \vec{x}}{\vec{u} \cdot \vec{v}} = c \cdot \vec{u}$$

$$\left(\frac{1}{\lambda_{i}}A\right)^{k}\overrightarrow{\gamma}\approx c.\overrightarrow{u}$$

$$\left(\frac{1}{\lambda_{i}}A\right)^{k}\overrightarrow{\gamma}\approx c.\overrightarrow{u}$$

Dower method)

Rayleigh gustione;

$$\frac{\vec{x}^T A \vec{x}}{\vec{x}^T \vec{x}} =: \lambda,$$