Continuous

Distributions

"Not everything that can be counted, counts; not everything that counts can be counted."

- Albert Einstein

Discrete to Continuous

Discrete distributions: Countable # values (finite or countably-infinite)

Continuous distributions: Uncountable # values, intervals

Why Continuous

```
Anything physics
                  delivery
           flight
    Time
                            disease
                                      life
             height
                      storm area
    Space
    Mass
             pet
                     cookie
    Temperature
                     air
                           body
Nearly continuous variables
          stock house pork bellies
     Cost
```

interest

exchange

unemployment

Rates

Probability Density Function

Replaces the discrete pmf

$$f(x) \ge 0$$
 relative likelihood of x

area under curve

(area)

Comparison to Discrete

	Discrete	Continuous
Probability function	mass (pmf)	density (pdf)
≥ 0	$p(x) \geq 0$	$f(x) \geq 0$
$\sum = 1$	$\sum_{x} p(x) = 1$	$\int_{-\infty}^{\infty} f(x) dx = 1$

Uniform

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Will it
$$\int$$
? Area = 1 · 1 = 1

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{1} 1dx = x \Big|_{0}^{1} = 1$$

Triangle

$$f(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathsf{Area} = 2 \cdot 1 \cdot \tfrac{1}{2} = 1$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{1} 2x dx = x^{2} \Big|_{0}^{1} = 1 - 0 = 1$$

Infinite Support

Power law

$$f(x) = \begin{cases} \frac{1}{x^2} & x \ge 1\\ 0 & x < 1 \end{cases}$$

Will it ∑?

$$\int_{-\infty}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{1}{u^2} du = \frac{-1}{u} \Big|_{1}^{\infty} = 1$$

Event Probability

	Discrete	Continuous
P(A)	$\sum_{x \in A} p(x)$	$\int_{x \in A} f(x) dx$

Typically interested in interval probability $P(a \le X \le b)$

Area between a and b

 $P(X \le b) - P(X \le a)$

Cumulative distribution function

Cumulative Distribution Function (CDF)

$$F(x) \triangleq P(X \leq x)$$

	Discrete	Continuous
PF → CDF	$\sum_{u \le x} p(u)$	$\int_{-\infty}^{x} f(u)du$
CDF → PF	$p(x) = F(x) - F(x^*)$	f(x) = F'(x)

 x^* - element preceding x

Uniform

$$F(x) = \int_{-\infty}^{x} f(u)du = \begin{cases} 0 & x \le 0 \\ \int_{0}^{x} 1 du = u \Big|_{0}^{x} = x & 0 \le x \le 1 \\ 1 & 1 \le x \end{cases}$$

$$F'(x) = \begin{cases} (0)' = 0 & x \le 0 \\ (x)' = 1 & 0 < x < 1 \\ (1)' = 0 & 1 < x \end{cases}$$

Triangle

$$F(x) = \int_{-\infty}^{x} f(u)du = \begin{cases} 0 & x \le 0 \\ \int_{0}^{x} 2u du = u^{2} \Big|_{0}^{x} = x^{2} & 0 \le x \le 1 \\ 1 & 1 \le x \end{cases}$$

$$F'(x) = \begin{cases} (0)' = 0 & x < 0 \\ (x^2)' = 2x & 0 < x < 1 \\ (1)' = 0 & 1 < x \end{cases}$$

Infinite Support

2.

$$F(x) = \begin{cases} 0 & x \le 1 \\ \int_1^x \frac{1}{u^2} du = \frac{-1}{u} \Big|_1^x = 1 - \frac{1}{x} & x \ge 1 \end{cases}$$

$$F'(x) = \begin{cases} (0)' = 0 & x < 1\\ (1 - \frac{1}{x})' = \frac{1}{x^2} & x > 1 \end{cases}$$

Properties of the CDF

$$F(x) = integral$$

Nondecreasing

$$F(-\infty)=0$$

Continuous

Examples

Uniform

$$0 \le a \le b \le 1$$

$$P(a \le X \le b) = \begin{cases} Area = (b - a) \cdot 1 = b - a \\ \int_a^b f(x) dx = \int_a^b 1 dx = x \Big|_a^b = b - a \end{cases}$$

$$F(b) - F(a) = b - a$$

$$P(0.6 \le X \le 1.3) = P(0.6 \le X \le 1) = 0.4$$

= $F(1.3) - F(0.6) = 1 - 0.6 = 0.4$

Power law

1 \le a \le b P(a \le X \le b) = F(b) - F(a) =
$$(1 - \frac{1}{b}) - (1 - \frac{1}{a}) = \frac{1}{a} - \frac{1}{b}$$

Differences

Discrete	Continuous
p(x)≤1	f(x) can be >1
Generally p(x) ≠ 0	p(x)=0
Generally $P(X \le a) \ne P(X < a)$	$P(X \le a) = P(X < a) = F(a)$
	$P(X \ge a) = P(X > a) = 1 - F(a)$
	$P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$

Expectation

	Discrete	Continuous
EX	$\sum x \cdot p(x)$	$\int_{-\infty}^{\infty} x f(x) dx$

As discrete: Average of many samples

Properties

Support set = [a,b]

$$a \le EX \le b$$

Symmetry

If for some α , $f(\alpha+x)=f(\alpha-x)$ for all x

then $EX = \alpha$

Examples

Uniform
$$EX = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x \, 1 \, dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

Triangle
$$EX = \int_0^1 x \ 2x \ dx = \frac{2x^3}{3} \Big|_0^1 = \frac{2}{3}$$

Power law
$$EX = \int_{1}^{\infty} x \, \frac{1}{x^2} \, dx = \int_{1}^{\infty} \frac{1}{x} \, dx = \ln x \Big|_{1}^{\infty} = \infty$$

Later: power laws with finite expectation

Variance

Discrete Continuous
$$V(X) \triangleq E(X - \mu)^2 \qquad \sum_x p(x)(x - \mu)^2 \qquad \int_{-\infty}^{\infty} f(x)(x - \mu)^2 dx$$

 $E(X^2) - \mu^2$

As for discrete

$$E(X - \mu)^{2} = \int (x - \mu)^{2} f(x) dx$$

$$= \int (x^{2} - 2x\mu + \mu^{2}) f(x) dx$$

$$= \int x^{2} f(x) dx - 2\mu \int x f(x) dx + \mu^{2}$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(X^{2}) - \mu^{2} \qquad \sigma = \sqrt{V(X)}$$

Examples

Uniform

$$EX = \frac{1}{2}$$

$$E(X^{2}) = \int_{0}^{1} x^{2} \, 1 \, dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$

$$V(X) = E(X^{2}) - (EX)^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

$$\sigma = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}}$$

Triangle

$$EX = \frac{2}{3}$$

$$EX^2 = \int_0^1 x^2 \ 2x \ dx = \frac{2}{4}x^4 \Big|_0^1 = \frac{1}{2}$$

$$V(X) = E(X^2) - (EX^2) = \frac{1}{2} - (\frac{2}{3})^2 = \frac{9-8}{18} = \frac{1}{18}$$

$$\sigma = \frac{1}{\sqrt{18}} = \frac{1}{3\sqrt{2}}$$

Discrete vs. Continuous

	Discrete	Continuous
Prob. Fun.	pmf - p	pdf - f
≥ 0	$p(x) \geq 0$	$f(x) \geq 0$
$\sum = 1$	$\sum p(x) = 1$	$\int f(x)dx = 1$
P(A)	$\sum_{x \in A} p(x)$	$\int_{x \in A} f(x) dx$
F(X)	$\sum_{u \le x} p(u)$	$\int_{-\infty}^{x} f(u)du$
$\mu = E(X)$	$\sum xp(x)$	$\int x f(x) dx$
V(X)	$\sum (x - \mu)^2 p(x)$	$\int (x - \mu)^2 f(x) dx$

$$p(x) \le 1$$
 f can be larger

$$f(x) = F'(x)$$

$$P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$$

Functions of Continuous Random Variables