

Examples for linear programming
21th February, 2006

1. Use simplex method.

$$\begin{aligned} \text{maximise: } & z = x_1 + 9x_2 + x_3 \\ \text{subject to: } & x_1 + 2x_2 + 3x_3 \leq 9 \\ & 3x_1 + 2x_2 + 2x_3 \leq 15 \\ \text{with: } & \text{all variables non-negative} \end{aligned}$$

Solution.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 1 \\ 9 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 3 & 2 & 2 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 9 \\ 15 \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} x_4 \\ x_5 \end{bmatrix}$$

cf.

$$\begin{aligned} \text{optimise: } & z = \mathbf{c}^T \mathbf{x} \\ \text{subject to: } & A\mathbf{x} = \mathbf{b} \\ \text{with: } & \mathbf{x} \geq 0 \end{aligned}$$

		\mathbf{x}^T	\mathbf{c}^T	
\mathbf{x}_0	\mathbf{c}_0	A	\mathbf{b}	
		$\pm (\mathbf{c}^T - \mathbf{c}_0^T A)$		$\mp \mathbf{c}_0^T \mathbf{b}$

Note: $(\mathbf{c}^T - \mathbf{c}_0^T A)$ and $-\mathbf{c}_0^T \mathbf{b}$ in case of a minimisation problem, whereas $-(\mathbf{c}^T - \mathbf{c}_0^T A)$ and $\mathbf{c}_0^T \mathbf{b}$ in case of a maximisation problem.

Tableau 1;

	x_1	x_2	x_3	x_4	x_5	
x_4	1	2	3	1	0	9
x_5	3	2	2	0	1	15
	-1	-9	-1	0	0	0

The most negative number in the last row is -9 . Therefore x_2 -column becomes the work column. And then,

$$\begin{aligned} x_4 & \xrightarrow{2} \text{positive} \rightarrow \frac{9}{2} = 4.5 \\ x_5 & \xrightarrow{2} \text{positive} \rightarrow \frac{15}{2} = 7.5 \end{aligned}$$

Since $\min(4.5, 7.5) = 4.5$, the value of x_2 on the row corresponding to x_4 becomes our pivot element. Then carry out a series of elementary row operations, namely in order $(I)_2 \leftarrow (I)_1/2$; $(II)_2 \leftarrow (II)_1 - 2(I)_2$; $(III)_2 \leftarrow (III)_1 + 9(I)_2$;

	x_1	x_2	x_3	x_4	x_5	
x_2	$\frac{1}{2}$	1	$\frac{3}{2}$	$\frac{1}{2}$	0	$\frac{9}{2}$
x_5	2	0	-1	-1	1	6
	$\frac{7}{2}$	0	$\frac{25}{2}$	$\frac{9}{2}$	0	$\frac{81}{2}$

Now the last row is all non-negative. Therefore $x_2^* = \frac{9}{2}$, $x_5^* = 6$, $x_1^* = x_3^* = x_4^* = 0$ and $z^* = \frac{81}{2}$