

Avaliação de Desempenho de Sistemas de Vigilância: Métricas

IDASH

Acrónimos

ML Machine Learning

IA Inteligencia Artificial

EDA Análisis Exploratorio de Datos

EDA Análise exploratória de Dados

IDASH Informática y Ciencia de Datos para la Salud

SIS Sistemas de Información de Salud

Tabela de Conteúdo

1	Con	junto de dados								6
	1.1	Leitura de dado	os						 	 6
2	Aná	lise exploratória	de Dados	(EDA) e	Prepara	ção d	e dado	S		8
	2.1	Falecido							 	 8
	2.2	Hospitalizado .								
		2.2.1 Prepara								
	2.3	Positivo							 	 13
		2.3.1 Prepara	ção de dado	os e correç	ão de da	atas.			 	 14
3	Qua	lidade dos dado	s							15
	3.1	Completitude .							 	 15
		3.1.1 Falecido)						 	 15
			lizado							15
		=								16
	3.2	Validez								17
		3.2.1 Hospital	lizados						 	 17
		-								18
4	Con	clusões								19

Lista de Figuras

2.1	Categorias de variáveis de tipo fatorial			 								,
2.2	Categorias de variáveis de tipo fatorial			 								1.
2.3	Categorias de variáveis de tipo fatorial			 								1

Lista de Tabelas

3.1	Tabla de completitud del conjunto de datos fallecidos	15
3.2	Tabela de completude do conjunto de dados de hospitalizado	16
3.3	Tabela de completude do conjunto de dados positivo	17

1 Conjunto de dados

Os dados são armazenados em 3 arquivos compactados e estão disponíveis no repositório indicado:

- Fallecidos
- Hospitalizados
- Positivos

Para o processamento de dados, serão usados os seguintes pacotes: tidyverse, dlookr, inspectdf,skimr, lubridate,janitor,kableExtra

1.1 Leitura de dados

```
fallecidos <- read_csv("data/fallecidos.csv.gz",
    col_types = cols(
        fecha_fallecimiento = col_date(format = "%Y-%m-%d"),
        edad_declarada = col_integer(),
        sexo = col_character(),
        clasificacion_def = col_character(),
        departamento = col_factor(),
        provincia = col_factor(),
        distrito = col_factor(),
        uuid = col_character(),
        age_group = col_factor(),
    )
)</pre>
```

```
hospitalizados <- read_csv("data/hospitalizados.csv.gz",
  col_types = cols(
    eess_nombre = col_factor(),
    id_persona = col_character(),
    edad = col_integer(),</pre>
```

```
sexo = col_factor(),
fecha_ingreso_hosp = col_character(),
fecha_ingreso_uci = col_character(),
fecha_ingreso_ucin = col_character(),
con_oxigeno = col_logical(),
con_ventilacion = col_logical(),
fecha_segumiento_hosp_ultimo = col_character(),
evolucion_hosp_ultimo = col_factor(),
flag_vacuna = col_factor(),
fecha_dosis1 = col_character(),
fabricante_dosis1 = col_factor(),
fecha_dosis2 = col_character(),
fabricante_dosis2 = col_factor(),
fecha_dosis3 = col_character(),
fabricante_dosis3 = col_factor(),
cdc_positividad = col_logical(),
cdc_fecha_fallecido_covid = col_character(),
cdc_fallecido_covid = col_logical(),
dep_domicilio = col_factor(),
prov_domicilio = col_factor(),
dist_domicilio = col_factor(),
```

```
positivos <- read_csv(
   "data/positivos.csv.gz",
   col_types = cols(
     departamento = col_factor(),
     provincia = col_factor(),
     distrito = col_factor(),
     metododx = col_factor(),
     edad = col_integer(),
     sexo = col_factor(),
     fecha_resultado = col_character(),
     id_persona = col_character()
))</pre>
```

2 Análise exploratória de Dados (EDA) e Preparação de dados

A Análise exploratória de Dados (EDA) é um processo de investigação, visualização e resumo das principais características e padrões de um conjunto de dados, geralmente usando técnicas estatísticas gráficas e descritivas. Seu principal objetivo é entender os dados em profundidade, descobrir anomalias, identificar relações entre variáveis e extrair percepções iniciais que possam orientar análises mais formais subsequentes ou a criação de modelos.

2.1 Falecido

diagnose(fallecidos)

```
# A tibble: 9 x 6
 variables
                     types missing_count missing_percent unique_count unique_rate
  <chr>
                     <chr>
                                    <int>
                                                      <dbl>
                                                                    <int>
                                                                                 <dbl>
1 fecha_fallecimie~ Date
                                     9479
                                                  10.0
                                                                      298
                                                                            0.00314
2 edad_declarada
                                                   0
                                                                      110
                                                                            0.00116
                     inte~
                                         0
                                                   0
                                                                            0.0000211
3 sexo
                     char~
                                                                        2
                                                                            0.0000738
4 clasificacion_def char~
                                         0
                                                   0
                                                                        7
5 departamento
                     fact~
                                         0
                                                   0
                                                                       25
                                                                            0.000264
                                         5
                                                   0.00527
                                                                            0.00208
6 provincia
                                                                      197
                     fact~
7 distrito
                                         5
                                                   0.00527
                                                                     1390
                                                                            0.0147
                     fact~
8 uuid
                     char~
                                     1382
                                                   1.46
                                                                    93402
                                                                            0.985
9 age_group
                     fact~
                                         0
                                                                            0.0000527
```

diagnose_numeric(fallecidos)

```
# A tibble: 1 x 10
 variables
                   min
                           Q1 mean median
                                               QЗ
                                                    max zero minus outlier
  <chr>
                 <int> <dbl> <dbl>
                                     <dbl> <dbl> <int> <int> <int>
                                                                       <int>
1 edad_declarada
                     0
                           57 66.5
                                        68
                                               77
                                                    113
                                                           91
                                                                        1526
```


Seis variáveis categóricas foram identificadas no conjunto de dados e a distribuição das categorias de cada variável é mostrada abaixo.

```
var_cat <- inspect_cat(fallecidos[, c(3:7, 9)])
show_plot(var_cat)+
    labs(
    title = "Distribuição das categorias de variáveis",
    subtitle = "Conjunto de dados de falecido",
    x = "Categoria")</pre>
```

Distribuição das categorias de variáveis Conjunto de dados de falecido

Figura 2.1: Categorias de variáveis de tipo fatorial

2.2 Hospitalizado

```
diagnose(hospitalizados)
# A tibble: 24 x 6
  variables
                    types missing_count missing_percent unique_count unique_rate
                    <chr>
                                <int>
                                                                <int>
                                                                            <dbl>
   <chr>
                                                   <dbl>
                    fact~
                                   6546
                                               12.0
                                                                   98
                                                                        0.00180
1 eess_nombre
```



```
2 id_persona
                    char~
                                       0
                                                 0
                                                                 54242
                                                                         0.994
3 edad
                    inte~
                                    3580
                                                 6.56
                                                                   104
                                                                         0.00191
4 sexo
                                    2851
                                                 5.23
                                                                         0.0000550
                    fact~
                                                                     3
5 fecha_ingreso_h~ char~
                                       0
                                                 0
                                                                   295
                                                                         0.00541
6 fecha_ingreso_u~ char~
                                   50636
                                                92.8
                                                                   295
                                                                         0.00541
7 fecha_ingreso_u~ char~
                                   52394
                                                96.0
                                                                   272
                                                                         0.00499
8 con_oxigeno
                    logi~
                                                 0.0110
                                                                    3
                                                                         0.0000550
                                       6
                                      15
                                                 0.0275
                                                                     3
                                                                         0.0000550
9 con_ventilacion logi~
10 fecha_segumient~ char~
                                       1
                                                 0.00183
                                                                   375
                                                                         0.00687
# i 14 more rows
```

```
tbdhosp<- diagnose(hospitalizados)</pre>
```

```
diagnose_numeric(hospitalizados)
```

```
# A tibble: 1 x 10
 variables
             min
                   Q1 mean median
                                     QЗ
                                          max zero minus outlier
           <int> <dbl> <dbl> <dbl> <int> <int> <int>
                                                           <int>
1 edad
               1
                   35 51.9
                                54
                                     68
                                          103
                                                  0
                                                               0
```

O número de IDs exclusivos é $c(id_persona = 54242)$ e o número de registros é 54556, portanto, há pacientes que foram hospitalizados mais de uma vez.

As variáveis categóricas do conjunto de dados hospitalizados são mostradas no gráfico abaixo.

```
var_cat_h <- inspect_cat(hospitalizados[, -c(2,5,6,7,10,15,13,17,20)])
show_plot(var_cat_h)+
    labs(
    title = "Distribuição das categorias de variáveis",
    subtitle = "Conjunto de dados de hospitalizado",
    x = "Categoria")</pre>
```


Distribuição das categorias de variáveis Conjunto de dados de hospitalizado

Figura 2.2: Categorias de variáveis de tipo fatorial

2.2.1 Preparação e correção de datas

Agora, analisamos a variabilidade dos registros de variáveis de data que existem no conjunto de dados.

hospitalizados\$fecha_ingreso_ucin <- ymd(hospitalizados\$fecha_ingreso_ucin)


```
fecha_segumiento_hosp_ultimo_var <-
    tabyl(hospitalizados$fecha_segumiento_hosp_ultimo, show_missing_levels =
    TRUE)

hospitalizados$fecha_segumiento_hosp_ultimo <-
    ymd(hospitalizados$fecha_segumiento_hosp_ultimo)

fecha_dosis1_var <- tabyl(hospitalizados$fecha_dosis1, show_missing_levels =
    TRUE)

#hospitalizados$fecha_dosis1 <- ymd(hospitalizados$fecha_dosis1)</pre>
```

Quando atribuímos o formato ano-mês-dia (ymd), confirma-se que as observações não têm esse formato e a coluna está corrompida. Como podemos ver na revisão, as datas estão no formato dia-mês-ano.

```
hospitalizados$fecha_dosis1 <- dmy(hospitalizados$fecha_dosis1)

fecha_dosis2_var <- tabyl(hospitalizados$fecha_dosis2, show_missing_levels = TRUE)

hospitalizados$fecha_dosis2 <- ymd(hospitalizados$fecha_dosis2)
```

Quando atribuímos o formato ano-mês-dia (ymd), confirma-se que as observações não têm esse formato e a coluna está corrompida. Como podemos ver na revisão, as datas estão no formato dia-mês-ano.

hospitalizados\$fecha dosis3 <- dmy(hospitalizados\$fecha dosis3)

2.3 Positivo

```
diagnose(positivos)
```

```
# A tibble: 8 x 6
 variables
                          missing_count missing_percent unique_count unique_rate
                  types
  <chr>
                  <chr>
                                  <int>
                                                   <dbl>
                                                                <int>
                                                                            <dbl>
                                  52912
                                                                   27 0.0000264
1 departamento
                  factor
                                                 5.17
2 provincia
                  factor
                                  48942
                                                 4.79
                                                                   35 0.0000342
3 distrito
                  factor
                                  48942
                                                 4.79
                                                                   54 0.0000528
4 metododx
                  factor
                                      0
                                                 0
                                                                    3 0.00000293
5 edad
                  integer
                                     55
                                                 0.00538
                                                                  115 0.000112
                                                                    2 0.00000196
6 sexo
                  factor
                                      0
                                                 0
                                      0
                                                 0
                                                                  592 0.000579
7 fecha_resultado charac~
8 id_persona
                  charac~
                                  16980
                                                 1.66
                                                               989414 0.968
```

```
diagnose_numeric(positivos)
```

```
# A tibble: 1 x 10
  variables
             min
                     Q1 mean median
                                        QЗ
                                             max zero minus outlier
                               <dbl> <dbl> <int> <int> <int>
  <chr>
            <int> <dbl> <dbl>
                                                                <int>
1 edad
                        42.0
                                                  5920
                                                                 2389
                0
                     29
                                  41
                                        54
                                             120
```

O número de identificações exclusivas é 989414, portanto, há pacientes que foram diagnosticados como Covid positivo mais de uma vez.

As variáveis categóricas são mostradas no gráfico a seguir.

```
var_cat_p <- inspect_cat(positivos[,-c(5,7,8)])
show_plot(var_cat_p)+
    labs(
    title = "Distribuição de categorias de variáveis",
    subtitle = "Conjunto de dados de casos positivo de Covid-19",
    x = "Categoria")</pre>
```


Distribuição de categorias de variáveis Conjunto de dados de casos positivo de Covid-19

Figura 2.3: Categorias de variáveis de tipo fatorial

2.3.1 Preparação de dados e correção de datas

```
fecha_resultado_var <- tabyl(positivos$fecha_resultado, show_missing_levels =
    TRUE)

positivos$fecha_resultado_f<- ymd(positivos$fecha_resultado)

num_na_val_fec<-sum(is.na(positivos$fecha_resultado_f))</pre>
```

3 Qualidade dos dados

3.1 Completitude

3.1.1 Falecido

A integridade é uma característica de qualidade que se refere ao grau em que um conjunto de dados inclui todos os valores ou atributos esperados.

A tabela a seguir mostra a análise da integridade das variáveis no conjunto de dados.

Tabla 3.1: Tabla de completitud del conjunto de datos fallecidos.

Variável	Valores ausentes	Porcentagem(%)
fecha_fallecimiento	9479	10.00
uuid	1382	1.46
provincia	5	0.01
distrito	5	0.01

As maiores porcentagens de perda de dados são encontradas nas variáveis: fecha_fallecimiento a uuid.

3.1.2 Hospitalizado

Tabla 3.2: Tabela de completude do conjunto de dados de hospitalizado.

Variável	Valores ausentes	Porcentagem(%)
eess_nombre	6546	12.00
edad	3580	6.56
sexo	2851	5.23
evolucion_hosp_ultimo	1113	2.04
prov_domicilio	45	0.08

3.1.3 Positivo

```
tr_na_pos <- inspect_na(positivos)

tr_na_pos <- tr_na_pos |>
    mutate(pcnt = round(pcnt, 2)) |>
    filter(pcnt!=0)

kbl(tr_na_pos, col.names = c("Variável", "Valores ausentes",
    "Porcentagem(%)")) |>
    kable_styling()
```


Tabla 3.3:	Tabela de	completude	do con	junto de	dados	positivo.

Variável	Valores ausentes	Porcentagem(%)
fecha_resultado_f	122712	12.00
departamento	52912	5.17
provincia	48942	4.79
distrito	48942	4.79
id_persona	16980	1.66
edad	55	0.01

3.2 Validez

3.2.1 Hospitalizados

```
dosis1_valid <- hospitalizados |> group_by(flag_vacuna, fecha_dosis1) |>
        count()

dosis1_valid
```

- # A tibble: 1,026 x 3
- # Groups: flag_vacuna, fecha_dosis1 [1,026]

	-	O -	_
	<pre>flag_vacuna</pre>	${\tt fecha_dosis1}$	n
	<fct></fct>	<date></date>	<int></int>
1	3	2021-02-09	21
2	3	2021-02-10	96
3	3	2021-02-11	143
4	3	2021-02-12	69
5	3	2021-02-13	44
6	3	2021-02-14	5
7	3	2021-02-15	37
8	3	2021-02-16	21
9	3	2021-02-17	11
10	3	2021-02-18	28

i 1,016 more rows

Como pode ser visto, não há datas atribuídas à variável fecha_dosis1 incorretamente, considerando a variável flag_vacuna(valores = 0). Portanto, o cálculo da métrica de validade não se aplica.


```
dosis2_valid <- hospitalizados |> group_by(flag_vacuna, fecha_dosis2) |>
    count()

dosis2_NO_valid <- dosis2_valid |>
    filter(flag_vacuna == "0" & !is.na(fecha_dosis2))

dosis2_NO_valid$flag_vacuna <- as.character(dosis2_NO_valid$flag_vacuna)</pre>
```

Há casos 12 em que a variávelflag_vacuna registra um valor de 0, portanto, há um problema de validade na variável 0.

A métrica de validade para a variávelflag_vacuna seria 0.02

```
dosis3_valid <- hospitalizados |> group_by(flag_vacuna, fecha_dosis3) |>
    count()

dosis3_valid$flag_vacuna <- as.character(dosis3_valid$flag_vacuna)</pre>
```

Todos os registros da variável fecha_dosis3são considerados consistentes, considerando as informações da variável flag_vacuna. Portanto, o cálculo da métrica de validade não se aplica.

3.2.2 Positivo

```
validez_fecha_resultado <- (num_na_val_fec/nrow(positivos)*100)</pre>
```

A métrica de validade da variável de data do resultado no conjunto de dados positivos (casos positivos) corresponde à 12% de datas formatadas incorretamente a serem corrigidas.

4 Conclusões

Nesta seção, desenvolva as conclusões das métricas apresentadas. Se considerar que outras métricas poderiam ser incluídas, comente se os dados são suficientes ou se são necessárias outras fontes.