Computer Vision

Fall 2019 16720

Instructor: Matthew O'Toole (Guest Lecturer)

Structured Light + Range Imaging

3D Scanning

Stereo Triangulation

Structured Light Triangulation

Structured Light

- Any spatio-temporal pattern of light projected on a surface (or volume).
- Cleverly illuminate the scene to extract scene properties (eg., 3D).
- Avoids problems of 3D estimation in scenes with complex texture/BRDFs.
- Very popular in vision and successful in industrial applications (parts assembly, inspection, etc).

Light Stripe Scanning – Single Stripe

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning
- Good for high resolution 3D, but needs many images and takes time

Triangulation

Project laser stripe onto object

Triangulation

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

$$x = x'z/f$$
 $y = y'z/f$
 $z = \frac{-Df}{Ax'+By'+Cf}$

Example: Laser scanner

Cyberware® face and head scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Example: Laser scanner

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

3D Scanner

http://graphics.stanford.edu/projects/mich/

Great Buddha of Nara

http://www.cvl.iis.u-tokyo.ac.jp/gallery_e/nara-hp/nara.html

Scanning and Modeling the Cathedral of Saint Pierre, Beauvais, France

http://www1.cs.columbia.edu/~allen/BEAUVAIS/

Scanning and Modeling the Cathedral of Saint Pierre, Beauvais, France

http://www1.cs.columbia.edu/~allen/BEAUVAIS/

Portable 3D laser scanner (this one by Minolta)

Faster Acquisition?

- Project multiple stripes simultaneously
- Correspondence problem: which stripe is which?

- Common types of patterns:
 - Binary coded light striping
 - Gray/color coded light striping

Binary Coding

Faster:

 $2^n - 1$ stripes in n images.

Example:

3 binary-encoded patterns which allows the measuring surface to be divided in 8 subregions

Binary Coding

 Assign each stripe a unique illumination code over time [Posdamer 82]

Binary Coding

More complex patterns

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Real-Time 3D Model Acquisition

Real-Time 3D Model Acquisition

Szymon Rusinkiewicz Olaf Hall-Holt Marc Levoy

http://graphics.stanford.edu/papers/rt_model/

Continuum of Triangulation Methods

Slow, robust Fast, fragile

Microsoft Kinect

Microsoft Kinect

Depth map

Speckled IR Pattern

3D Acquisition from Shadows

The geometry

The geometry

The geometry

Angel experiment

Accuracy: 0.1mm over 10cm ~ 0.1% error

Scanning with the sun

Accuracy: 1cm over 2m

~ 0.5% error

Fluorescent Immersion Range Scanning

http://www.mpi-inf.mpg.de/resources/FIRS/

Fluorescent Immersion Range Scanning

http://www.mpi-inf.mpg.de/resources/FIRS/

Structured Light Reconstruction

- Avoid problems due to correspondence
- Avoid problems due to surface appearance
- Much more accurate
- Very popular in industrial settings

- Reading:
 - Marc Levoy's webpages (Stanford)
 - Katsu Ikeuchi's webpages (U Tokyo)
 - Peter Allen's webpages (Columbia)