Computability Exam Solutions

March 23, 2011

Exercise 1

Statement of the s-m-n theorem

For every m, $n \ge 1$, there exists a total computable function $s_{m,n} : \mathbb{N}^{m+1} \to \mathbb{N}$ such that for all $e \in \mathbb{N}$, $\vec{x} \in \mathbb{N}^{m}$, $\vec{y} \in \mathbb{N}^{n}$:

$$\phi_e^{(m+n)}(\vec{x}, \vec{y}) = \phi_{s_m,n}(e,\vec{x})^{(n)}(\vec{y})$$

Informal proof using encoding/decoding

The key idea is that we can "pre-load" some arguments into a program.

Given a program P_e that computes $\phi_e^{(m+n)}$, we want to construct a program P_{s(e, \vec{x})} that computes the function $\lambda \vec{y}.\phi_e^{(m+n)}(\vec{x},\vec{y})$.

Construction:

- 1. **Encoding step:** Given e and fixed values $\vec{x} = (x_1, ..., x_m)$, we construct a new program $P_{s(e, \vec{x})}$ that:
 - First stores the values x₁,...,x_m in designated registers
 - Then takes input $\vec{y} = (y_1, ..., y_n)$ in the standard input registers
 - Calls the original program P_e with the combined input (\vec{x}, \vec{y})
- 2. **Effective construction:** The function $s_{m,n}(e,x)$ can be computed by:
 - Taking the program code for P_e
 - Prepending instructions that load x₁,...,x_m into registers
 - Adjusting register numbering and jump addresses appropriately
 - Encoding the resulting program to get index s_{m,n}(e,x)
- 3. **Computability:** Since we can effectively manipulate program codes (using encoding/decoding of URM programs), and the transformation is algorithmic, s_{m,n} is computable.

The theorem holds because the constructed program $P_{s(e,\vec{x})}$ computes exactly $\phi_e^{(m+n)}(\vec{x},\vec{y})$ when given input \vec{y} .

Exercise 2

Question: Does there exist a non-computable increasing function?

A function $f: \mathbb{N} \to \mathbb{N}$ is increasing if it's total and $\forall x,y \in \mathbb{N}: x \le y \Longrightarrow f(x) \le f(y)$.

Answer: Yes, such functions exist.

Construction:

Define $f: \mathbb{N} \to \mathbb{N}$ by:

$$f(x) = x + |\{y \le x : y \in K\}|$$

where K is the halting set.

Verification:

- 1. **f is total:** For each x, the set $\{y \le x : y \in K\}$ is finite, so its cardinality is well-defined.
- 2. **f is increasing:** If $x \le x'$, then $\{y \le x : y \in K\} \subseteq \{y \le x' : y \in K\}$, so:

```
f(x) = x + |\{y \le x : y \in K\}| \le x' + |\{y \le x' : y \in K\}| = f(x')
```

3. **f is not computable:** If f were computable, we could decide K as follows:

```
To decide if x \in K:

- Compute f(x) and f(x-1) (if x > 0)

- If f(x) > f(x-1) + 1, then x \in K

- Otherwise x \notin K
```

This would contradict the undecidability of K.

Therefore, non-computable increasing functions exist.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : W_x \cap E_x = \emptyset\}$

The set A contains indices of functions whose domain and codomain are disjoint.

A is r.e.:

```
sc_a(x) = 1(\mu(y,z,t). H(x,y,t) \wedge S(x,z,y,t))
```

This searches for evidence of a contradiction: $y \in W_x$ and $y \in E_x$. If such evidence is never found, $x \in A$.

Actually, this is backwards. Let me reconsider. We want:

$$x \in A \iff W_x \cap E_x = \emptyset \iff \neg \exists y. (y \in W_x \land y \in E_x)$$

Since we need to show the absence of intersection elements, A is actually **not r.e.**

A is not r.e.: We show $K \leq_m \bar{A}$. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x,y)$.

- If $x \in K$: $W_{s(x)} = E_{s(x)} = \mathbb{N}$, so $W_{s(x)} \cap E_{s(x)} = \mathbb{N} \neq \emptyset$, hence $s(x) \notin A$
- If $x \notin K$: $W_{s(x)} = E_{s(x)} = \emptyset$, so $W_{s(x)} \cap E_{s(x)} = \emptyset$, hence $s(x) \in A$

This gives $K \leq_m \bar{A}$, so \bar{A} is not r.e., hence A is not recursive.

Ā is r.e.:

```
sc\bar{A}(x) = 1(\mu(y,z,t). H(x,y,t) \wedge S(x,z,y,t))
```

This searches for y such that $y \in W_x \cap E_x$.

Final classification: A is not r.e.; Ā is r.e. but not recursive.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : \exists y > x. y \in E_x\}$

B is r.e.:

```
scB(x) = 1(\mu(y,z,t). y > x \wedge S(x,z,y,t))
```

This searches for y > x and z,t such that $\phi_x(z) = y$ in t steps.

B is not recursive: We show $K \leq_m B$. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x,y)$.

- If $x \in K$: $E_{s(x)} = \{x + 1\}$, and since x + 1 > x, we have $s(x) \in B$
- If $x \notin K$: $E_{s(x)} = \emptyset$, so no y > x exists in $E_{s(x)}$, hence $s(x) \notin B$

This gives $K \leq_m B$, so B is not recursive.

B is not r.e.: Since B is r.e. but not recursive, B is not r.e.

Final classification: B is r.e. but not recursive; B is not r.e.

Exercise 5

Second Recursion Theorem

For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that:

$$\phi_{e0} = \phi f(e_0)$$

Proof that $\exists n \in \mathbb{N}$ such that φ_n is total and $|E_n| = n$

We use the Second Recursion Theorem with a carefully constructed function.

Define $h: \mathbb{N}^2 \to \mathbb{N}$ by:

For fixed x > 0, this function has:

- Domain: {0, 1, 2, ..., x^2 1}
- Codomain: {0, 1, 2, ..., x 1}
- $|Domain| = x^2$, |Codomain| = x

By s-m-n theorem, $\exists s : \mathbb{N} \to \mathbb{N}$ total computable such that $\phi_{s(x)}(y) = h(x,y)$.

Define f(x) = s(x). By the Second Recursion Theorem, $\exists n \text{ such that } \phi_n = \phi f(n) = \phi_{s(n)}$.

For this n:

- $\varphi_n(y) = h(n,y)$ which is total on $\{0, 1, ..., n^2 1\}$ and undefined elsewhere
- $E_n = \{0, 1, 2, ..., n 1\}$
- $|E_n| = n$

If we want φ_n to be total, we need to modify the construction. Define instead:

```
h(x,y) = y \mod x \quad (for x > 0)
```

Then φ_n is total, $W_n = \mathbb{N}$, $E_n = \{0, 1, ..., n-1\}$, and $|E_n| = n$.