Ayudantía UART

Por: José Gutiérrez

jagutierrez3@uc.cl

Fernando Huanca

fjhuanca@uc.cl

Funcionamiento de Protocolo

Fuente: www. circuitbasics.com

Estructura de Protocolo

Packet:

- -Start bit: Es un 0 lógico. Cuando no hay comunicación la línea de transmisión se encuentra en 1 lógico.
- -Data frame: 5 a 8 bits.
- -Parity bit: para detectar errores.
- -Stop bit: puede ser 1 o 2 bits.

UART Transmission Example

Send the ASCII letter 'W' (1010111)

Selección modo puertos Rx y Tx:

12.4.14 PxSEL Register

Port x Port Select Register

Figure 12-14. PxSEL Register

7	6	5	4	3	2	1	0
	111		Pxs	SEL			10111
rw-0							

Table 12-16. PxSEL Register Description

Bit	Field	Туре	Reset	Description	
7-0	PxSEL	RW	0h	Port x function selection 0b = I/O function is selected 1b = Peripheral module function is selected	

P4.4/PM_UCA1TXD/ PM_UCA1SIMO	1 51 1 45 1 113 1 11/ 1 1/(1		I/O	General-purpose digital I/O with reconfigurable port mapping secondary function Default mapping: Transmit data – USCI_A1 UART mode		
						Default mapping: Slave in, master out - USCI_A1 SPI mode
P4.5/PM UCA1RXD/						General-purpose digital I/O with reconfigurable port mapping secondary function
PM_UCA1SOMI	52	46	G3	C9	1/0	Default mapping: Receive data – USCI_A1 UART mode
					,	Default mapping: Slave out, master in - USCI_A1 SPI mode

Selección de baud rate:

Description

USCI clock source select. These bits select the BRCLK's

00b = UCAxCLK (external USCI clock)

01b = ACLK

10b = SMCLK

11b = SMCLK

Frecuencia de clocks:

ACLK: 01b (UCSSEL_1): 32 768 Hz

SMCLK: 10b (UCSSEL_2): 1 048 576 Hz

Table 36-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK Frequency (Hz)	Baud Rate (baud)	UCBRx	UCBRSX	UCBRFx	Maximum (%	TX Error %)		RX Error
32 768	1200	27	2	0	-2.8	1.4	-5.9	2.0
32 768	2400	13	6	0	-4.8	6.0	-9.7	8.3
32 768	4800	6	7	0	-12.1	5.7	-13.4	19.0
32 768	9600	3	3	0	-21.1	15.2	-44.3	21.3
1 000 000	9600	104	1	0	-0.5	0.6	-0.9	1.2
1 000 000	19200	52	0	0	-1.8	0	-2.6	0.9
1 000 000	38400	26	0	0	-1.8	0	-3.6	1.8
1 000 000	57600	17	3	0	-2.1	4.8	-6.8	5.8
1 000 000	115200	8	6	0	-7.8	6.4	-9.7	16.1
1 048 576	9600	109	2	0	-0.2	0.7	-1.0	0.8
1 048 576	19200	54	5	0	-1.1	1.0	-1.5	2.5
1 048 576	38400	27	2	0	-2.8	1.4	-5.9	2.0
1 048 576	57600	18	1	0	-4.6	3.3	-6.8	6.6
1 048 576	115200	9	1	0	-1.1	10.7	-11.5	11.3
4 090 000	9600	416	6	0	-0.2	0.2	-0.2	0.4
4 000 000	19200	208	3	0	-0.2	0.5	-0.3	0.8
4 000 000	38400	104	1	0	-0.5	0.6	-0.9	1.2
4 000 000	57600	69	4	0	-0.6	0.8	-1.8	1.1
4 000 000	115200	34	6	0	-2.1	0.6	-2.5	3.1
4 000 000	230400	17	3	0	-2.1	4.8	-6.8	5.8
4 194 304	9600	436	7	0	-0.3	0	-0.3	0.2

Selección de baud rate:

Configuración Packet:

- -bit 0: Synchronous mode enable. Por defecto en modo Asíncrono.
- -bit 3: Stop bit select
- -bit 4: Character length. 7 u 8 bits de largo
- -bit 6: Parity select
- -bit 7: Parity enable

Configuración Packet:

-bit 0: Software reset enable. Para configurar el módulo UART, este bit debe estar en 1 lógico

-bit 6 & 7: USCI clock source select. Para configurar el clock

	Description
	USCI clock source select. These bits select the BRCLK s 00b = UCAxCLK (external USCI clock)
	01b = ACLK 10b = SMCLK
ŀ	11b = SMCLK

Frecuencia de clocks:

ACLK: 32 768 Hz

SMCLK: 1 048 576 Hz

Registro de señalización y estado:

-bit 0: UCRXIFG: Receive interrupt flag. Cuando se recibe un carácter, el bit toma el valor de 1 lógico.

-bit 1: UCTXIFG: Transmit interrupt flag. Cuando el buffer está vacío, el bit toma el valor de 1 lógico.

Buffer de datos:

Para transmisión: entregamos el dato que queremos transmitir al registro UCAxTXBUF.

Para recepción: leemos el dato que se encuentra en el registro UCAxRXBUF.

A diferencia de la ATmega328P, la MSP430 posee dos registros buffer, uno para transmisión y otro para recepción de datos.

36.4.7 UCAxRXBUF Register

USCI Ax Receive Buffer Register

Figure 36-18. UCAxRXBUF Register

7	6	5	4	3	2	1	0
			UCR	(BUFx			
r	r	Г	Γ	r	r	Г	Γ.

Table 36-13. UCAxRXBUF Register Description

Bit	Field	Туре	Reset	Description
7-0	UCRXBUFx	R		The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCAKRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In 7-bit data mode, UCAKRXBUF is LSB justified and the MSB is always reset.

36.4.8 UCAxTXBUF Register

USCI_Ax Transmit Buffer Register

Figure 36-19, UCAxTXBUF Register

7	6	5	4	3	2	1	0
			UCTX	BUFx			
rw	rw	rw	rw	rw	rw	rw	rw

Table 36-14. UCAxTXBUF Register Description

Bit	Field	Type	Reset	Description
7-0	UCTXBUFx	RW	undefined	The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAXTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCAXTXBUF is not used for 7-bit data and is reset.

Para trabajar con interrupciones:

W W W. U.	com						USCI_A UART	Mode Registers
36.4.1	2 UCAXIE Re	egister						
	USCI Ax Interru	pt Enable Re	egister					
	11 1 1 To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 11				2008		
				igure 36-23	3. UCAxIE Reg	gister		
8	7 6	5	i .	4	3	2	1	0
			Reserve	d			UCTXIE	UCRXIE
r	0 -0	_	0					0
•	-0 r-0	[-	acceptant a	r-0 6-18. UCA	r-0 xIE Register [r-0 Description	rw-0	rw-0
	Field	Type	acceptant a		xIE Register [5 . 29 86	rw-U	rw-u
Bit	111 TO 12		Table 3	6-18. UCA	xIE Register [Description	rw-u	rw-u
Bit	Field	Туре	Table 3	6-18. UCA Descriptio	xIE Register [Description	IW-U	TW-U
Bit	Field Reserved	Type R	Table 3 Reset	Descriptio Reserved.	xIE Register [n Always reads as (Description	rw-U	TW-U
Bit	Field Reserved	Type R	Table 3 Reset	Descriptio Reserved. Transmit in 0b = Interru	xIE Register [n Always reads as 0 terrupt enable	Description	rw-U	rw-u
Bit 7-2 1	Field Reserved	Type R	Table 3 Reset	Descriptio Reserved. Transmit in 0b = Intern 1b = Intern	xIE Register [n Always reads as 0 iterrupt enable upt disabled	Description	rw-U	TW-U
Bit 7-2	Field Reserved UCTXIE	Type R RW	Table 3 Reset Oh Oh	Descriptio Reserved. Transmit in 0b = Intern 1b = Intern Receive int	xIE Register I n Always reads as 0 aterrupt enable upt disabled upt enabled	Description	rw-U	TW-U

Presentación Código

Selección de baud rate:

Table 19-1. Equations for Calculating Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRRn Value
Asynchronous normal mode (U2Xn = 0)	$BAUD = \frac{f_{OSC}}{16(UBRRn + 1)}$	$UBRRn = \frac{f_{OSC}}{16BAUD} - 1$
Asynchronous double speed mode (U2Xn = 1)	$BAUD = \frac{f_{OSC}}{8(UBRRn + 1)}$	$UBRRn = \frac{f_{OSC}}{8BAUD} - 1$
Synchronous master mode	$BAUD = \frac{f_{OSC}}{8(UBRRn + 1)}$	$UBRRn = \frac{f_{OSC}}{2BAUD} - 1$

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fosc System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095)

Selección de baud rate:

19.10.5 UBRRnL and UBRRnH - USART Baud Rate Registers

· Bit 15:12 - Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when UBRRnH is written.

Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four most significant bits, and the UBRRnL contains the eight least significant bits of the USART baud rate. Ongoing transmissions by the transmitter and receiver will be corrupted if the baud rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

Configuración Packet:

- -bits 1 & 2: Character Size (Data frame)
- -bit 3: Stop Bit Select
- -bits 4 & 5: Parity Mode
- -bits 6 & 7: USART Mode Select. Por defecto configuración en modo asíncrono

Inicio comunicación:

19.10.3 UCSRnB -	USART C	ontrol ar	nd Status	Registe	r n B				
Bit	7	6	5	4	3	2	1	0	
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	UCSRnB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	III III III III III III III III III II
Initial Value	0	0	0	0	0	0	0	0	

-bit 3: TXENn: Transmitter Enable n Configurando este bit en 1 lógico habilitamos la transmisión de datos del periférico UART.

-bit 4: RXENn: Receiver Enable n Configurando este bit en 1 lógico habitamos la recepción de datos del periférico UART.

Registro de señalización y estado:

19.10.2 UCSRnA – U	SART C	ontrol ar	nd Status	Registe	r n A				
Bit	7	6	5	4	3	2	1	0	
	RXCn	TXCn	UDREn	FEn	DORn	UPEn	U2Xn	MPCMn	UCSRnA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	
Initial Value	0	0	1	0	0	0	0	0	

- -bit 7: Flag que indica que la la recepción ha terminado.
- -bit 6: Flag que indica que la la transmisión ha terminado.
- -bit 5: Flag que indica que el registro UDRn está desocupado y disponible.

Buffer de datos:

The USART transmit data buffer register and USART receive data buffer registers **share the same I/O address referred to as USART data register or UDRn.** The transmit data buffer register (TXB) will be the destination for data written to the UDRn register location. Reading the UDRn register location will return the contents of the receive data buffer register (RXB).

Para transmisión: entregamos el dato que queremos transmitir a este registro. Para recepción: leemos el dato que se encuentra en este registro.

Para trabajar con interrupciones:

19.10.3 UCSRnB -	USART C	ontrol ar	nd Status	Registe	r n B				
Bit	7	6	5	4	3	2	1	0	
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n	UCSRnB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	• Million Contilli
Initial Value	0	0	0	0	0	0	0	0	

En el mismo registro B mostrado anteriormente para habilitar transmisión y recepción encontramos los bits que habilitan las interrupciones de UART. Estos son:

- -bit 5: UDRIEn. Writing this bit to one enables interrupt on the UDREn flag.
- -bit 6: TXCIEn. Writing this bit to one enables interrupt on the TXCn flag.
- -bit 7: RXCIEn. Writing this bit to one enables interrupt on the RXCn flag.

Presentación Código