SICO7A SISTEMAS INTELIGENTES 1

Aula 04 B

Aprendizado baseado em Instâncias

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

- Aprendizado Baseado em Instâncias
 - Instance-Base Learning (IBL)

- Aprendizado Baseado em Instâncias
 - Instance-Base Learning (IBL)
- Dois únicos itens necessários:
 - Alguma noção de distância (Ex: euclidiana)
 - Hipótese sobre a semelhança entre pontos próximos

Classificador:

- armazena exemplos de treinamento
- exemplos: também são denominados instâncias
- não existe um modelo

- IBL: generaliza informações com base nos exemplos de treinamento:
 - Para inferir a classe de novas instâncias
 - Cada vez que uma instância é recebida, computa-se uma função objetivo, com base no conhecimento oferecido pela base de exemplos de treinamento
 - Estima-se a classe da nova instância com base em comportamentos locais

- IBL: generaliza informações com base nos exemplos de treinamento:
 - Para inferir a classe de novas instâncias
 - Cada vez que uma instância é recebida, computa-se uma função objetivo, com base no conhecimento oferecido pela base de exemplos de treinamento
 - Estima-se a classe da nova instância com base em comportamentos locais

É uma técnica incremental!

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

- k-Vizinhos Mais Próximos
 - k-Nearest Neighbors (k-NN)
 - técnica mais comum de IBL

k-NN

1. Calcula-se a distância euclidiana da nova instância em função de cada instância da base de conhecimento

k-NN

- Calcula-se a distância euclidiana da nova instância em função de cada instância da base de conhecimento
- 2. Seleciona-se as K instâncias de treinamento mais próximas

k-NN

- Calcula-se a distância euclidiana da nova instância em função de cada instância da base de conhecimento
- 2. Seleciona-se as K instâncias de treinamento mais próximas
- 3. Define-se o atributo de saída:
 - Discreta: maior número de votos
 - Contínua: ponderação das saídas das K instâncias mais próximas

k-NN

- Calcula-se a distância euclidiana da nova instância em função de cada instância da base de conhecimento
- 2. Seleciona-se as K instâncias de treinamento mais próximas
- 3. Define-se o atributo de saída:
 - Discreta: maior número de votos (moda)
 - Contínua: ponderação das saídas das K instâncias mais próximas (média)

* Forma Contínua (Regressão)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k f(x_i)}{k}$$

* Forma Contínua (Regressão)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k f(x_i)}{k}$$

* Considera-se uma média do atributo de saída de seus K vizinhos

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

- Vizinhos Mais Próximos com Distância Ponderada
 - Distance-Weighted Nearest Neighbors (DWNN)
 - Refinamento ou variação do k-NN
 - Considera uma ponderação da influência de cada vizinho em função de sua distância à nova instância

$$\hat{f}(x_q) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k w_i \, \delta(v, f(x_i))$$

$$w_i = \frac{1}{d(x_1, x_i)^2}$$

* Forma Discreta (Classificação)

$$\hat{f}(x_q) = \underset{v \in V}{\operatorname{argmax}} \sum_{i=1}^k w_i \, \delta(v, f(x_i))$$

$$w_i = \frac{1}{d(x_1, x_i)^2}$$

OBS: Se a nova instância é exatamente igual a uma instância de treinamento, então d(.) = 0, logo deve-se prever essa situação e o algoritmo deve retornar $f(x_i)$

* Forma Contínua (Regressão)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

$$w_i = \frac{1}{d(x_1, x_i)^2}$$

* Forma Contínua (Regressão)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i} \longrightarrow \text{M\'edia ponderada}$$

$$w_i = \frac{1}{d(x_1, x_i)^2}$$

* Forma Contínua (Regressão)

$$\hat{f}(x_q) = \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i} \longrightarrow \frac{\text{M\'edia}}{\text{ponderada}}$$

$$w_i = \frac{1}{d(x_1, x_i)^2}$$

* Se a nova instância é exatamente a uma instância de treinamento, então d(.) = 0, logo deve-se prever essa situação e o algoritmo deve retornar $f(x_i)$

- Essas duas variantes de k-NN consideram os k vizinhos mais próximos
 - No entanto, para DWNN, podemos considerar todas as instâncias de treinamento, pois as mais distantes terão pouca ou nenhum influência na instância de consulta
 - A desvantagem é que o classificador fica mais lento
 - Se somente os k mais próximos forem considerados:
 - Algoritmo é denominado local
 - Se todas as instâncias forem consideradas:
 - Algoritmo é denominado global

Questões

- As duas versões sempre:
 - computam a saída de função de todos atributos de entrada
 - Logo, se os atributos de entrada não forem bem definidos, o resultado pode ser ruim
 - Uma abordagem para resolver esse problema é dar um peso para cada atributo
 - Outra é remover os atributos menos significativos

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

Exercício

 Implemente os algoritmos k-NN e DWNN para problemas de classificação. Use o dataset Iris para testes.

Roteiro

- 1 Introdução
- 2 k-NN
- 3 DWNN
- 4 Exercício
- 5 Referências

Referências

[Aggarwal, 2015]

[Marsland, 2014]

Referências

[Russel & Norvig, 2021]

[Luger, 2013]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br