Operator exponential

William Troiani

June 14, 2022

Contents

1 Introduction 1

2 Defining the exponential of an operator

1

1 Introduction

The (completely fulfilling) motivation of this note is to solve a differential equation using the exponential of an operator.

2 Defining the exponential of an operator

Throughout, \mathbb{F} denotes either \mathbb{R} or \mathbb{C} . All vector spaces will be over \mathbb{F} .

First we recall the definition of a norm.

Definition 2.0.1. A norm on V is a function $\|\cdot\|: V \longrightarrow \mathbb{F}$ satisfying the following axioms.

- $\bullet \|x\| = 0 \Longleftrightarrow x = 0.$
- $\forall x \in V, ||x|| \ge 0$.
- $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||.$
- $\forall x \in V, \forall \lambda \in \mathbb{F}, \|\lambda x\| = |\lambda| \|x\|$, where $|\lambda|$ denotes the magnitude (ie, the standard norm) on \mathbb{F} .

We now work towards Proposition 2.0.5 below which states that all norms on the same finite dimensional vector space are equivalent. This assists greatly with calculations.

Definition 2.0.2. Two norms $\|\cdot\|_1, \|\cdot\|_2$ are **Lipschitz equivalent** if there exists $c, C \in \mathbb{F}$ subject to the following.

$$\forall x \in V, c \|x\|_1 \le \|x\|_2 \le C \|x\|_1 \tag{1}$$

Lemma 2.0.3. Let $\|\cdot\|_1$ denote the L_1 norm on \mathbb{F}^n , that is,

$$\forall x = (x_1, \dots, x_n) \in \mathbb{F}^n, ||x|| = \sum_{i=1}^n |x_i|$$
 (2)

Let $\|\cdot\|$ denote the standard norm, given by the following equation.

$$\forall x = (x_1, \dots, x_n) \in \mathbb{F}^n, ||x|| = \sqrt{\sum_{i=1}^n |x_i|^2}$$
 (3)

Then \mathbb{F}^n endowed with the topology induced by $\|\cdot\|_1$ is homeomorphic to \mathbb{F}^n endowed with the topology induced by $\|\cdot\|_1$.

Proof. We let $(\mathbb{F}, \|\cdot\|_1)$ and $(\mathbb{F}, \|\cdot\|)$ respectively denote these two topological spaces. We claim the identity function id: $(\mathbb{F}, \|\cdot\|_1) \longrightarrow (\mathbb{F}, \|\cdot\|)$ is a homeomorphism. The only check to do is that both identity functions

$$(\mathbb{F}, \|\cdot\|_1) \longrightarrow (\mathbb{F}, \|\cdot\|) \tag{4}$$

$$(\mathbb{F}, \|\cdot\|) \longrightarrow (\mathbb{F}, \|\cdot\|_1) \tag{5}$$

are continuous.

First, consider (4). We use the simple fact that $\sqrt{x_1 + \ldots + x_n} \leq \sqrt{x_1} + \ldots + \sqrt{x_n}$ for all $x_1, \ldots, x_n \in \mathbb{F}$ to show that for all $x = (x_1, \ldots, x_n)$ and all $x' = (x'_1, \ldots, x'_n)$ we have

$$||x - x'|| = \sqrt{\sum_{i=1}^{n} |x_i = x_i'|^2} \le \sum_{i=1}^{n} \sqrt{|x_i - x_i'|^2} = \sum_{i=1}^{n} |x_i - x_i'| = ||x - x'||_1$$
(6)

This proves continuity of (4).

On the other hand, for all $x = (x_1, ..., x_n)$ and all $x' = (x'_1, ..., x'_n)$ the following holds.

$$||x - x'||_1 = \sum_{i=1}^n |x_i - x_i'| \le n \sup_{i=1,\dots,n} \{|x_i - x_i'|\} \le n \sqrt{\sum_{i=1}^n |x_i - x_i'|^2} \le ||x - x'|| n$$
(7)

It follows that (5) is continuous.

Remark 2.0.4. We remark that the proof of Lemma 2.0.3 shows that in fact the functions (4), (5) are uniformly continuous.

Proposition 2.0.5. Any two norms on a finite dimensional vector space V are Lipschitz equivalent.

Proof. First, we claim that Lipschitz equivalence is an equivalence relation on the set of norms on V. Reflexivity is immediate, one takes c = C = 1. For symmetric, say $\|\cdot\|_1$ and $\|\cdot\|_2$ are Lipschitz equivalent. Then there exists $c, C \in \mathbb{F}$ satisfying (1) and we notice that

$$\forall x \in V, \frac{1}{C} \|x\|_2 \le \|x\|_1 \le \frac{1}{c} \|x\| \tag{8}$$

establishing symmetry. Moreover, if there was a third norm $\|\cdot\|_3$ for which there exists $k, K \in \mathbb{F}$ subject to

$$\forall x \in V, k \|x\|_2 \le \|x\|_3 \le K \|x\|_2 \tag{9}$$

then we have the following chain of inequalities.

$$\forall x \in V, ck \|x\|_1 \le k \|x\|_2 \le \|x\|_3 \le K \|x\|_2 \le CK \|x\|_1 \tag{10}$$

which proves transitivity.

Thus, it suffices to show that any norm $\|\cdot\|$ is Lipschitz equivalent to the following norm. Pick a basis $\{v_1,\ldots,v_n\}$ for V and define

$$\|\cdot\|_1:V\longrightarrow\mathbb{F}\tag{11}$$

$$x = \sum_{i=1}^{n} \alpha_i v_i \longmapsto \sum_{i=1}^{n} |\alpha_i| \tag{12}$$

It is easy to check that this is a norm, indeed it is the norm induced by the normed space isomorphism $V \cong \mathbb{F}^n$ where \mathbb{F}^n is endowed with the L_1 norm.

Our next claim is that this norm $\|\cdot\|$ is uniformly continuous, when V is endowed with the $\|\cdot\|_1$ norm. We must show

$$\forall x, x' \in V, \forall \epsilon > 0, \exists \delta > 0, \|x - x'\|_1 < \delta \Longrightarrow |\|x\| - \|x'\|| < \epsilon \tag{13}$$

Towards this end, let $x, x' \in V, \epsilon > 0$ be arbitrary and define

$$M := \sup_{i=1,\dots,n} \{ \|v_i\| \} \tag{14}$$

Then we have the following calculation, where we write $x = \sum_{i=1}^{n} \alpha_i v_i$, $x' = \sum_{i=1}^{n} \alpha_i' v_i$.

$$||x - x'|| = ||\sum_{i=1}^{n} (\alpha_i - \alpha_i')v_i||$$

$$\leq |\sum_{i=1}^{n} (\alpha_i - \alpha_i')|||v||$$

$$\leq M|\sum_{i=1}^{n} (\alpha_i - \alpha_i')|$$

$$= M||x - x'||_1$$

So $\delta = \epsilon/M$ is an appropriate choice for δ . This establishes the claim.

Now we consider the unit ball $\{v \in V \mid ||v||\} \subseteq V$ which is compact by Lemma 2.0.3; the image of this set under the homeomorphism $V \cong \mathbb{F}^n$ is closed and bounded, thus compact by the Heine-Borel Theorem.

Thus, by the extreme value Theorem, we have that $\|\cdot\|$ admits its maximum and minimum on this set.

$$c := \inf\{\|v\| \mid \|v\|_1 = 1\}$$
$$C := \sup\{\|v\| \mid \|v\|_1 = 1\}$$

Thus, if $v \in V$ is such that $||v||_1 = 1$, we have

$$c\|v\|_{1} \le \|v\| \le C\|v\|_{1} \tag{15}$$

If $||v||_1 = 0$ then v = 0 and (15) clearly holds. If $||v||_1 \neq 1, 0$ then we divide by $||v||_1$ and reduce to the case of (15).