Mathematik

1. Grundlagen

- 1.1. Mengen
- 1.2. Intervalle
- 1.3. Ungleichungen
- 1.4. Potenzen, Wurzeln und Logarithmen
- 1.5. häufig verwendete Symbole

1.1. Mengen:

Definition Menge:

Eine *Menge* ist die Zusammenfassung von bestimmten Objekten zu einem Ganzen. Diese Elemente heißen dann *Elemente* der Menge.

Beispiel:

 M_1 - Menge der natürlichen Zahlen von 2 bis 7

Schreibweisen

Aufzählend:

$$M_1 = \{2; 3; 4; 5; 6; 7\} \text{ oder} M_1 = \{2; 3; ...; 7\}$$

Beschreibend:

$$M_1 = \{a \in N | a > 1; a < 8\}$$
 gehört zu natürlichen Zahlen, zwischen 1 und 9

oder

$$M_1 = \{ a \in N | 1 < a < 8 \}$$

Verhältnisse zweier Menge:

Teilmenge:

Eine Menge A heißt *Teilmenge* einer Menge B, wenn jedes Element von A auch Element von B ist.

$$A \subset B$$

Gleichheit von Mengen:

Zwei Mengen A und B heißen **gleich**, wenn gilt

$$A \subset B$$
 und $B \subset A$ wenn alle von A teil von B sind und alle von B auch teil von A sind

Man spricht von einer echten Teilmenge A von B,

wenn gilt: $A \subset B$ und $A \neq B$ a ist teil von b aber b nicht von A

Schnittmenge/Durchschnitt:

Die Schnittmenge zweier Mengen A und B ist die Menge aller Elemente, die sowohl zu A als auch zu B gehören.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Verhältnisse zweier Menge:

Vereinigung:

Die Vereinigungsmenge zweier Mengen A und B ist die Menge aller Elemente, die zu A oder zu B oder zu beiden Mengen gehören. -> alle Elemente

 $A \cup B = \{x \mid x \in A \quad \lor \quad x \in B\}$

Restmenge / Differenzmenge: "A ohne B" --> Elemente die zu a aber nicht zu b gehören

Die Differenzmenge zweier Mengen A und B ist die Menge aller Elemente, die zu A, nicht aber zu B gehören.

$$A \setminus B = \{x \mid x \in A, x \notin B\}$$

Verhältnisse zweier Menge:

Leere Menge:

Eine Menge heißt leere Menge Ø, wenn sie keine Elemente enthält.

Mächtigkeit:

Unter der Mächtigkeit einer Menge versteht man die Anzahl der Elemente dieser Menge.

Beispiel:
$$A = \{2, 3, 4, 5, 6, 7\}$$
 $|A| = 6$

Gleichheit von Mengen:

Zwei Mengen A und B heißen gleich, wenn jedes Element von A auch Element von B ist und umgekehrt.

Beispiel 1: Beispiel 2: p ist teil von N
$$A = \{1,2,4,6,8\}$$

$$A = \{1,3,5,\ldots\} = \{x | x = 2p-1, p \in N\} \text{ ungerade } B = \{1,3,6,9\}$$

$$B = \{2,4,6,\ldots\} = \{x | x = 2p, p \in N\} \text{ gerade Zahlen } A \cap B = \{1,6\}$$
 sowohl ... als auch ...
$$A \cap B = \emptyset \text{ keine Überschneidung, daher Schnittmenge leere Menge } A \cup B = \{1,2,3,4,6,8,9\} \text{ beide } A \cup B = N \text{ natürliche Zahlen } --> \text{ alle Natürlichen Zahlen } A \setminus B = \{2,4,8\} \text{ ohne B alles in A gelöscht was in B } A \setminus B = A \text{ es bleibt A } B \setminus A = \{3,9\} \text{ ohne A}$$

1.2. Intervalle: geht vor allem um schreibweise

offenes Intervall:

$$(a,b)$$
 bei - 5 bis 10 --> Intervall geht effektiv von -4,999 bis 9,9999

Intervall zwischen a und b wobei die Zahlen a und b selbst nicht Element des Intervalls sind

$$Bsp. (-5,10) = \{x \in R | -5 < x < 10\}$$

abgeschlossenes Intervall: grenzen gehören zum Intervall dazu

[*a*, *b*]

Intervall zwischen a und b einschließlich der Zahlen a und b

$$Bsp. [-5,10] = \{x \in R | -5 \le x \le 10\}$$

halboffenes Intervall: Grenzen sind gemischt --> eine gehört dazu und eine andere Grenze gehört nicht dazu

(a,b]

Intervall zwischen a und b – ohne a, aber mit b

$$Bsp.(-5,10] = \{x \in R | -5 < x \le 10\}$$
 von -4,999 bis 10

[a,b)

Intervall zwischen a und b – ohne b, aber mit a

Bsp.
$$[-5,10) = \{x \in R | -5 \le x < 10\}$$
 von -5 bis 9,999

1.3. Ungleichungen

Regeln:

	Wenn	Dann	
1.	a < b und b < c	a < c	
2.	a < b	a + c < b + c	für beliebiges c
3.	a < b und c < d	a + c < b + d	
4.	a < b und c > 0	ac < bc	
5.	a < b und c < 0	ac > bc	111
	bei Multiplikation oder Division mit einer negativen Zahl kehrt das Ungleichheitszeichen seine Richtung		
6.	a < b	-a > -b	
7.	a < b, b > 0 und 0 < c < d	ac < bd	
8.	0 < a < b	$a^2 < b^2$	
9.	0 < a < b oder a < b < 0	1/a > 1/b	
10.	a<0 <b< td=""><td>1/a < 1/b</td><td></td></b<>	1/a < 1/b	
4.4	b>a und b <c< td=""><td>a < b < c</td><td>mgl. Schreibweise</td></c<>	a < b < c	mgl. Schreibweise

1.3. Ungleichungen

Bei der Lösung von Ungleichungen ist bei der Multiplikation bzw. Division mit einer unbekannten Variablen eine **Fallunterscheidung** vorzunehmen und zwar an der Stelle, an welcher der Term das Vorzeichen wechselt.

Beispiel:

$$\frac{2-x}{4+x} - 5 < 0 \qquad |+5|$$

$$\frac{2-x}{4+x} < 5$$

Im nächsten Schritt würde man mit (4+x) multiplizieren. Es muss nun unterschieden werden, für welche x der Term positiv bzw. negativ ist.

Fall 1:
$$4 + x > 0 \mid -4$$
 Fall 2: $4 + x < 0 \mid -4$ $x > -4$

keine Richtungsänderung Richtungsänderung

des Ungleichheitszeichens

Fall 3:
$$4 + x = 0 \mid -4$$

 $x = -4$
!!! Division durch Null. In diesem Fall ist die Gleichung **nicht definiert!**
 $L_3 = \{x \mid x \neq -4\}$

Fall 1:
$$x > -4$$

$$\frac{2-x}{4+x} < 5 \qquad |*(4+x)|$$

$$2-x < 5(4+x)$$

$$2-x < 20 + 5x \quad |+x \quad |-20|$$

$$-18 < 6x \qquad |:6|$$

$$-3 < x$$

$$x > -3$$

!!! Vergleich der Ausgangsbedingung x > -4 und der Lösung x > -3. Für welche x treffen beide Bedingungen zu?

$$L_1 = \{x | x > -3\}$$
 alle X größer als -3

Fall 2:
$$x < -4$$

$$\frac{2-x}{4+x} < 5 \qquad |*(4+x)$$

$$2-x > 5(4+x) \qquad !!!$$

$$2-x > 20+5x \quad |+x \quad |-20$$

$$-18 > 6x \qquad |:6$$

$$-3 > x$$

$$x < -3$$

!!! Vergleich der Ausgangsbedingung x < -4 und der Lösung x < -3. Für welche x treffen beide Bedingungen zu?

$$L_2 = \{x | x < -4\}$$
 weil auch kleiner als -3 aber auch -4 und -4>-3

$$L_1 = \{x | x > -3\}$$

$$L_2 = \{x | x < -4\}$$

$$L_3 = \{x | x \neq -4\}$$
 weil man nicht durch 0 teilen darf und in dem falle in der ausgangsgleichung dann durch 0 teilen müsste; hier ist x=0 da in der ausgangsgleichung x unten im Bruch steht

Unter Beachtung der einzelnen Lösungsmengen kann nun die Gesamt-Lösungsmenge erfasst werden.

$$L = \{x \in R \mid x < -4 \lor x > -3\}$$

Eine Fallunterscheidung ist auch bei dem Vorkommen von Potenzen sowie Beträgen erforderlich!

1.4. Potenzen, Wurzeln, Logarithmen

Potenzen und Wurzeln

 a^x

a Basis x Exponent

	Erlaubte Umformungen	Bedingungen
1.	$a^x * a^y = a^{x+y}$	$x, y \in Z$
2.	$\frac{a^x}{a^y} = a^{x-y}$	$a \neq 0, \qquad x, y \in Z$
3.	$a^x * b^x = (a * b)^x$	$x \in N$
4.	$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$	$b \neq 0$, $x \in N$
5.	$\frac{1}{a^x} = a^{-x}$	$a \neq 0, x \in N$
6.	$(a^x)^y = a^{x*y}$	$x, y \in Z$
7.	$a^0 = 1$	a ≠ 0
8.	$\sqrt[y]{a^x} = a^{\frac{x}{y}} \qquad \text{wurzel a^x = a^x/2}$	$y \in N, x \in Z$

Logarithmen

Gilt $a^x = b$, a > 0, $a \ne 1$ so heißt x auch Logarithmus von b zur Basis a.

 $x = log_a b$ man zieht den exponenten heraus --> das ist ein logarithmus

dekadischer Logarithmus: Logarithmus zur Basis 10: $\log(b) = \log_{10} b$

natürlicher Logarithmus: Logarithmus zur Basis e (Eulersche Zahl) $\ln(b) = \log_e b$

	Erlaubte Umformungen	
1.	$\log(ab) = \log(a) + \log(b)$	logarithmus "auseinanderziehen"
2.	$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$	logantimus ausemanuerzienen
3.	$log(a^n) = n * log(a)$	
4.	$\log(\sqrt[n]{a}) = \frac{1}{n} * \log(a)$	

Beispiel:

Wie lange braucht ein beliebiger Kapitaleinsatz K_0 um sich bei einem Zinssatz von i zu verdoppeln? $(K_t = 2 * K_0)$ endkapital das doppelte vom anfangskapital

$$K_t = K_0 * (1+i)^t \qquad Ges: t$$

$$\frac{K_t}{K_0} = (1+i)^t \qquad |\log()| \text{ es müssen beide Seiten logarithmiert werden,}$$

es kann auch ln() genutzt werden.

Logarithmen

Beispiel aus der Finanzmathematik:

Wie lange braucht ein beliebiger Kapitaleinsatz K_0 um sich bei einem Zinssatz von i zu verdoppeln?

Anfangsbetrachtung: $K_t = 2 * K_0$

$$K_t = 2 * K_0$$

Exponentielle Verzinsung (Zinseszinsrechnung):

$$K_t = K_0 * (1+i)^t$$
 Ges: t
 $2 * K_0 = K_0 * (1+i)^t$ |: K_0

$$2 = (1+i)^t \qquad |\log()$$

 $2 = (1+i)^t$ | log() Es müssen beide Seiten logarithmiert werden!

Die Verwendung von log oder In ist gleichgültig.

 $\log(2) = \log(1+i)^t$ Anwendung der Logarithmengesetze $\log(2) = t * \log(1+i)$

$$t = \frac{\log(2)}{\log(1+i)}$$

1.5. häufig verwendete Symbole

(x,y)	of fenes Intervall	
[x, y]	geschlossenses Interval	
(x,y]	halboffenes Intervall	
[x,y)	halboffenes Intervall	
$\{x,y\}$	Menge	
\subset	Teilmenge	
\cap	Schnittmenge	
U	Vereinigungsmenge	
\	Differenz von Mengen	
Ø	leere Menge	
€	Element von	
٨	<i>logisches</i> 2nd	
V	<i>logisches</i> oder	
∀	für alle	