Lecture 21: Gilbert Miners

Conversion gain ( VRF to iout)

\* ac = 2. gm

-> assume LO devices are perfect switches

-> If signal is divided between WLO ± WRF freq.

Mixer load

\* Filtering for LO, harmonis

\* Tx -> LC load

Rx -> RC load for Homodyne

RC/LC load for heterodyne







Double-balanced mixes:



$$To_{1} = I_{1} + I_{3}$$

$$Io_{2} = I_{2} + I_{4}$$

$$To_{M} = Io_{1} - Io_{2} \left\{ \text{ differential moven} \right\}$$

$$= (I_{1} + I_{3}) - (I_{2} + I_{4})$$

$$= (I_{1} - I_{2}) - (I_{4} - I_{3})$$

$$= (2 I_{RF} \omega_{1} \omega_{RF} t) \cdot s(t)$$

$$= \frac{4}{1} I_{RF} \left[ sin(\omega_{Lo} - \omega_{RF})t + sin(\omega_{Lo} + \omega_{RF})t + \frac{1}{3} sin(3\omega_{Lo} + \omega_{RF})t + \cdots \right]$$

$$\Rightarrow \text{ excellent } LO-IF \text{ isolation (but depends on }$$

matching between differential paths)

Gilbert-cell mines (Rx) CL ZRL  $V_{L_0}^{+}$   $M_3$   $M_4$   $N_{L_0}^{-}$   $M_5$   $N_6$   $N_{L_0}^{+}$   $N_{L_0}^{-}$   $N_{R_F}^{-}$   $N_{R_F}^{-}$   $N_{R_F}^{-}$   $N_{R_F}^{-}$ 

\* Conversion gain  $C_{c} = \frac{\text{amplitude of IF output}}{\text{amplitude of RF input}}$   $= \frac{\frac{L_{t}}{tt} I_{RF} \cdot R_{L}}{2V_{RF}} = \frac{2}{tt} g_{m} R_{L}$   $= \frac{2V_{RF}}{2V_{RF}}$ \* Good LO-IF isolation = matching (M\_1-M\_2 L M\_3-M\_4-M\_5-M\_6)

(% matching => 400B isolation

possible with careful analog layout techniques

Sources of mismatch:  $\Delta W_{c} \Delta L_{c}$ ,  $\Delta V_{T}$ , Coxphotolitugraphy = Na, tox, Cox











# harmonic filtering: (widely used in PAS also)

Differential

RS/2

Frans wordness | RS/2

The property of th

