Basic Linear Algebra Formulas

Vector Operations

- Addition: $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$
- Scalar Multiplication: $c \cdot \mathbf{v} = c\mathbf{v} = (c \cdot v_1, c \cdot v_2, \dots, c \cdot v_n) = (cv_1, cv_2, \dots, cv_n)$ Dot Product: $\mathbf{v} \cdot \mathbf{w} = v_1 \cdot w_1 + v_2 \cdot w_2 + \dots + v_n \cdot w_n = \sum_{i=1}^n v_i w_i$

Matrix Operations

- Addition: $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij}])_{i,j}$
- Scalar Multiplication: $c \cdot \mathbf{A} = (c \cdot a_{ij}) = (ca_{ij})$
- Transpose: $(\mathbf{A}^T)_{ij} = a_{ji}$ Matrix Multiplication: $\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \mathbf{A}\mathbf{B}$, where $c_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj} = \sum_{k=1}^n a_{ik} b_{kj}$
- $\bullet \ \mathbf{v} \cdot \mathbf{A} \mathbf{w} = \mathbf{A}^T \mathbf{v} \cdot \mathbf{w}$

Matrix results

• Matrix ensembles

$$S_n = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}), \ a_{i,j} = a_{j,i}\},$$

$$S_n^+ = \{A \in S_n, Av \cdot v \ge 0 \ \forall v \in \mathbb{R}^n\},$$

$$S_n^{++} = \{A \in S_n^+, Av \cdot v > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}\}$$

- Spectrum $Sp(A) = \{\lambda \in \mathbb{R}, \exists v \neq 0_{\mathbb{R}^n}, Av = \lambda v\}$, eigenvalues λ , eigenvectors v
- Matrix norm subordinate to a vector norm $||A|| = \max_{v \in \mathbb{R}^n} \frac{||Av||}{||v||} = \max_{||v||=1} ||Av||$
- Frobenius norm : $|\!|\!| A |\!|\!| = \operatorname{tr}(A^T A) = \sqrt{\sum_{i,j} a_{ij}^2}$
- Euclidian norm : If $||v||^2 = \sum_{i=1}^n v_i^2$ then $|||A||| = \sqrt{\rho(A)}$ with $\rho(A) = \max_{Sp(A^TA)} \lambda$
- If $A \in S_n$ then
 - $Sp(A) \subset \mathbb{R}$: $\lambda_{\min} = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n = \lambda_{\max}$ $\lambda_{\min} \|v\|^2 \le Av \cdot v \le \lambda_{\max} \|v\|^2$, $\forall v \in \mathbb{R}^n$

 - $||A|| = \max_{\lambda \in Sp(A)} |\lambda|$

Basic Differential Calculus

• E, F, Banach spaces,

$$\begin{split} &f: E \to F, \ f(h) = o(h^p) \ \text{if and only if} \ \lim_{h \to 0} \frac{f(h)}{h^p} = 0. \\ &f(h) = O(h^p) \ \text{if and only if} \ \exists C \geq 0, \ \exists \varepsilon > 0, \ \|h\| \leq \varepsilon \Rightarrow \|f(h)\| \leq C \|h\|^p. \end{split}$$

• $f: E \to F$ differentiable at $x \in E$ if and only if

$$\exists Df(x) \in \mathcal{L}(E, F), \quad \forall h \in E, \quad f(x+h) = f(x) + Df(x)(h) + o(\|h\|.$$

- $f: \mathbb{R}^n \to \mathbb{R}$ differentiable at $x \in \mathbb{R}^n$. We denote $\nabla f(x)$ the column vector gradient $\left(\frac{\partial f}{\partial x_i}\right)_{i=1,\dots,n}$
 - $\forall h \in \mathbb{R}^n$

$$f(x+h) = f(x) + Df(x)(h) + o(||h||),$$

= $f(x) + \nabla f(x) \cdot h + o(||h||)$

¹Laboratoire de Mathématiques Appliquées de Compiègne

²Laboratoire Jacques-Louis Lions, Sorbonne Université

• $\forall h \in \mathbb{R}^n, \exists \eta \in]0,1[$

$$f(x+h) = f(x) + \nabla f(x+\eta h) \cdot h.$$

- $f: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at $x \in \mathbb{R}^n$, $f(x) = (f_i(x))_{i=1,\dots,m}$, $f_i: \mathbb{R}^n \to \mathbb{R}$. We denote $Jf(x) \in \mathcal{M}_{m \times n}(\mathbb{R})$ the Jacobian matrix $Jf(x)_{i,j} = \frac{\partial f_{i,j}(x)}{\partial x_i}$ for $i = 1, \dots, m, j = 1, \dots, m$ $1, \ldots, n$
- $f: \mathbb{R}^n \to \mathbb{R}$ twice differentiable at $x \in \mathbb{R}^n$. We denote Hf(x) -sometimes $\nabla^2 f(x)$)- the Hessian matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,n}$

$$f(x+h) \quad = \quad f(x) + \nabla f(x) \cdot h + \frac{1}{2} H f(x) h \cdot h + o(\|h\|^2)$$

• $\forall h \in \mathbb{R}^n, \exists \eta \in]0,1[$

$$f(x+h) = f(x) + \nabla f(x) \cdot h + \frac{1}{2} H f(x+\eta h) h \cdot h$$

Convexity

• Sets: a set C is convex if it contains all the line segments $\{x = \theta x_1 + (1-\theta)x_2, 0 \le \theta \le 1\}$ connecting any two points of C.

Examples

- Ball (Euclidean) with center x_c and radius r $B(x_c, r) = \{x, \|x - x_c\|_2 \le r\} = \{x_c + ru, \|u\|_2 \le 1\}$
- Ellipsoid $E = \{x, (x - x_c)^t P^{-1}(x - x_c) \le 1\} \text{ with } P \in S_{++}^n$
- Polyhedron: set of the form $P := \{x \in \mathbb{R}^n, Ax \leq b\}$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ fixed.
- Functions
 - A function $f: C \longrightarrow \mathbb{R}$ is
 - * convex iff for all $x, y \in C$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in [0, 1].$$

* strictly convex iff for all $x, y \in C$, $x \neq y$

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in]0, 1[.$$

- Examples on \mathbb{R}^n
 - * Affine $f(x) = a^t x + b$, for $a, x \in \mathbb{R}^n$, $b \in \mathbb{R}$
- * Norms $||x||_p = (\sum_{i=1}^n x_i^p)^{1/p}$ for $p \ge 1$, $||x||_{\infty} = \max_k |x_k|$, Examples on $\mathcal{M}_{m \times n}(\mathbb{R})$
- - * $f(X) = tr(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$
 - * Spectral Norm: Maximum Singular Value $f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$
- $f: \mathbb{R}^n \to \mathbb{R}$. We denote $g_{x,v}(t) = f(x+tv)$ with $x,v \in \mathbb{R}^n$, $t \in \mathbb{R}$ f is convex iff $g_{x,v}(t)$ convex for all $x, v \in \mathbb{R}^n$
- Let f be a function defined on a real-valued differentiable convex $C \subset \mathbb{R}^n$. The function f is
 - convex if and only if $\forall (x,y) \in C^2, \langle \nabla f(x), y x \rangle \leq f(y) f(x)$. convex if and only if $\forall (x,y) \in C^2, \langle \nabla f(x), y x \rangle \leq f(y) f(x)$.

 - strictly convex if and only if $\forall (x,y) \in C^2, x \neq y, \langle \nabla f(x), y x \rangle < f(y) f(x)$.

 $f:\mathbb{R}^n\to\mathbb{R}$ twice differentiable on dom f convex, Hessian matrix $Hf(x)\in S^n$

- -f is convex iff $Hf(x) \in S^n_+$ $\forall x \in \text{dom} f$ (positive semi-definite)
- if $Hf(x) \in S_{++}^n \quad \forall x \in \text{dom} f$ (positive definite) then f is strictly convex