

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*

Saining Xie* Kaiming He

CVPR 2021

Yueyi Zhang 2024-11-28 report

Background

An Empirical Study of Training Self-Supervised Vision Transformers

Unsupervised learning

Kaiming He

- Large amounts of unlabeled data
- Pretext task
- Flexibility

Application

CLIP CVPR 2021

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

Application

CARL CVPR 2022 View 1 Frame-wise Representations for View 1 Random Sampling • • • • Sequence Spatial Common **FVE** Contrastive Temporal Aug Frames Random Loss **Random Sampling** Crop Projection Long Video Sequence Frame-wise Representations for View 2 View 2 **Data Preprocessing** Representation Learning

Figure 2. Overview of our framework (CARL). Two augmented views are constructed from a training video through a series of spatio-temporal data augmentations. The frame-level video encoder (FVE) and the projection head are optimized by minimizing the proposed sequence contrastive loss (SCL) between two views.

Chen, Minghao, et al. "Frame-wise action representations for long videos via sequence contrastive learning." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

InstDisc CVPR 2018

- Data augmentation
- Memory bank
- NCE loss details
- Proximal Regularization

As learning converges, the difference between iterations, i.e. $\mathbf{v}_i^{(t)} - \mathbf{v}_i^{(t-1)}$, gradually vanishes, and the augmented loss is reduced to the original one. With proximal regularization, our final objective becomes:

$$J_{NCE}(\boldsymbol{\theta}) = -E_{P_d} \left[\log h(i, \mathbf{v}_i^{(t-1)}) - \lambda \| \mathbf{v}_i^{(t)} - \mathbf{v}_i^{(t-1)} \|_2^2 \right]$$
$$-m \cdot E_{P_n} \left[\log (1 - h(i, \mathbf{v}'^{(t-1)})) \right]. \tag{10}$$

Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

MoCo-v1 CVPR 2020

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
  x_q = aug(x) # a randomly augmented version
  x_k = aug(x) # another randomly augmented version
  q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
  l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
  logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
  labels = zeros(N) # positives are the 0-th
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
  loss.backward()
  update(f_q.params)
   # momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
   # update dictionary
  enqueue(queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
```

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020.

BYOL NeurIPS 2020

train the online network to predict the target network representation of the same image under a different augmented view

Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." *Advances in neural information processing systems* 33 (2020): 21271-21284.

SimSam

NeurIPS 2020

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp

for x in loader: # load a minibatch x with n samples
    x1, x2 = aug(x), aug(x) # random augmentation
    z1, z2 = f(x1), f(x2) # projections, n-by-d
    p1, p2 = h(z1), h(z2) # predictions, n-by-d

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

L.backward() # back-propagate
    update(f, h) # SGD update

def D(p, z): # negative cosine similarity
    z = z.detach() # stop gradient

p = normalize(p, dim=1) # 12-normalize
    z = normalize(z, dim=1) # 12-normalize
    return - (p*z).sum(dim=1).mean()
```

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	✓		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	\checkmark	\checkmark	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		\checkmark	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

$$\mathcal{D}(p_1,z_2) = -\frac{p_1}{\|p_1\|_2} \cdot \frac{z_2}{\|z_2\|_2} \qquad \mathcal{L} = \frac{1}{2} \mathcal{D}(p_1,\operatorname{stopgrad}(z_2)) + \frac{1}{2} \mathcal{D}(p_2,\operatorname{stopgrad}(z_1)).$$

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation learning." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2021.

Method

technique 1: Network Architecture

Algorithm 1 MoCo v3: PyTorch-like Pseudocode

```
# f_q: encoder: backbone + proj mlp + pred mlp
# f_k: momentum encoder: backbone + proj mlp
# m: momentum coefficient
# tau: temperature
for x in loader: # load a minibatch x with N samples
  x1, x2 = aug(x), aug(x) # augmentation
  q1, q2 = f_q(x1), f_q(x2) # queries: [N, C] each
  k1, k2 = f_k(x1), f_k(x2) \# keys: [N, C] each
  loss = ctr(q1, k2) + ctr(q2, k1) # symmetrized
   loss.backward()
  update(f q) # optimizer update: f q
  f k = m * f k + (1-m) * f q \# momentum update: f k
# contrastive loss
def ctr(q, k):
  logits = mm(q, k.t()) # [N, N] pairs
  labels = range(N) # positives are in diagonal
  loss = CrossEntropyLoss(logits/tau, labels)
   return 2 * tau * loss
```

Notes: mm is matrix multiplication. k.t() is k's transpose. The prediction head is excluded from f_k (and thus the momentum update).

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k^+ / \tau)}{\exp(q \cdot k^+ / \tau) + \sum_{k^-} \exp(q \cdot k^- / \tau)}.$$

0.99	0.06	0.28	0.55	0.50	0.36	0.22	0.22	0.70	0.10
0.55	0.96	0.73	0.41	0.37		0.02	0.43	0.24	0.65
0.56	0.46	1.00	0.13	0.28	0.68	0.72	0.64	0.49	0.66
0.31	0.42	0.27	0.91	0.19	0.49	0.02	0.30	0.02	0.18
0.37	0.32	0.12	0.06	0.97	0.26	0.62	0.33	0.14	0.55
0.29	0.01	0.44	0.05	0.19	0.99	0.78	0.12	0.25	0.54
0.40	0.12	0.61	0.20	0.63	0.74	0.98	0.61	0.23	0.17
0.01	0.44	0.26	0.65	0.79	0.05	0.18	0.90	0.11	0.09
0.33	0.75	0.67	0.12	0.02	0.40	0.46	0.03	0.98	0.05
0.48	0.77	0.23	0.61	0.46	0.73	0.60	0.29	0.13	0.96

R50, 800-ep	MoCo v2 [12]	MoCo v2+ [13]	MoCo v3
linear acc.	71.1	72.2	73.8

The improvement here is mainly due to the extra prediction head and large-batch (4096) training.

Method

technique 2: Fixed Random Patch Projection

For the standard ViT patch size, the patch projection matrix is complete (768-d output for a 3-channel 16×16 patch) or overcomplete.

Method

technique 3: BatchNorm in ViT

framework	model	params	acc. (%)
linear probing:			
iGPT [9]	iGPT-L	1362M	69.0
iGPT [9]	iGPT-XL	6801M	72.0
MoCo v3	ViT-B	86M	76.7
MoCo v3	ViT-L	304M	77.6
MoCo v3	ViT-H	632M	78.1
MoCo v3	ViT-BN-H	632M	79.1
MoCo v3	ViT-BN-L/7	304M	81.0
end-to-end fine-tuning:			
masked patch pred. [16]	ViT-B	86M	79.9^{\dagger}
MoCo v3	ViT-B	86M	83.2
MoCo v3	ViT-L	304M	84.1

We notice that this comparison concerns a composition of many choices. As one example, the default ViT backbone in [16] uses LayerNorm (LN), while the default ResNet [21] uses BatchNorm (BN). These design choices can lead to a systematic gap. In our preliminary experiments, we explore replacing LN with BN in the ViT backbone's MLP blocks (*i.e.*, excluding self-attention blocks). We simply refer to this as a "ViT-BN" backbone. It leads to ~1% improvement consistently (see Fig. 8).

We have to set the batch size as 2048 when removing BN, otherwise it does not converge. Removing BN reduces accuracy by 2.1%. Despite the decrease, this is a completely *BN-free* system. This data point suggests that BN is not necessary for contrastive learning to work, yet appropriate usage of BN can improve accuracy.

Experiment

Learning Rate:

lr×BatchSize/256

Figure 2. **Training curves of different learning rates** (MoCo v3, ViT-B/16, 100-epoch ImageNet, AdamW, batch 4096).

Optimizer:

AdamW, LARS, LAMB (sensitive)

Figure 3. **Training curves of LAMB optimizer** (MoCo v3, ViT-B/16, 100-epoch ImageNet, wd=1e-3, batch 4096).

Batch Size:

Figure 1. Training curves of different batch sizes (MoCo v3, ViT-B/16, 100-epoch ImageNet, AdamW, lr=1.0e-4).

Training Time:

model	FLOPs	vs. R50	TPUs	hours
ViT-S/16	4.6 G	1.1×	256	1.2
ViT-B/16	17.5 G	$4.3 \times$	256	2.1
ViT-L/16	61.3 G	15.0×	256	6.1
ViT-H/14	166.7 G	$40.7 \times$	512	9.8

Table 3. **Training time of ViT + MoCo v3**, per 100 ImageNetepochs, in our TensorFlow implementation. The FLOPs number (in multiply-adds) is per 224×224 crop, and "vs. R50" is the relative FLOPs vs. ResNet-50 (4.1G).

	300-ер	600-ep
ViT-S/16	72.5	73.4
ViT-B/16	76.5	76.7

Result

case	pre-train	ViT-S	ViT-B	ViT-L
masked patch pred. [16]	JFT-300M	-	79.9	-
DeiT [41]	-	79.9	81.8	n/a
MoCo v3	ImageNet-1k	81.4	83.2	84.1

Table 5. **End-to-end fine-tuning** accuracy (%) in ImageNet-1k.

Figure 8. Comparisons with state-of-the-art big ResNets, presented as parameters-vs.-accuracy trade-off. All entries are pretrained with two 224×224 crops, and are evaluated by linear probing. SimCLR v2 results are from Table 1 in [11], and BYOL results are from Table 1 in [18].

Finally, we note that with supervised pre-training in bigger datasets (ImageNet-21k or JFT-300M), the ViT results in [16] can be better than ours when transferring to these small datasets. A potential future work is to perform

· '	CI	EAD 10 (24	31	СП	ZAD 100 F2	<i>5</i> 1	Ovford	Elaviana 10	1001 C	Ovefore	d IIIT Data	[24]
	CI	FAR-10 [25	ני	CIF	FAR-100 [2	3]	Oxidia	Flowers-10	2 [32]	Oxion	d-IIIT-Pets	[34]
pre-train	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H
random init.	77.8	77.1	75.9	48.5	48.3	48.0	54.4	54.3	52.8	40.1	42.8	40.4
ImNet supervised [16]	98.1	97.9	n/a	87.1	86.4	n/a	89.5	89.7	n/a	93.8	93.6	n/a
ImNet self-sup., MoCo v3	98.9 \(\psi_0.8\)	99.1 \(\pm\)1.2	99.1	90.5 \(\pm\)3.4	91.1 ↑4.7	91.2	97.7 ↑8.2	98.6 \(\pm\)8.9	98.8	93.2 \ \ 0.6	93.7 \(\daggered{0.1}\)	94.2

Table 6. **Transfer learning** accuracy (%) in four datasets. All entries are end-to-end fine-tuned [16]. Pre-training are performed in the ImageNet-1k training set. The models are ViT-B/16, ViT-L/16, and ViT-H/14. Results of ImageNet-supervised pre-training are from Table 3 in [16]. The arrows indicate the changes w.r.t. the ImageNet-supervised counterparts.

Progress Report

Understanding Diffusion Models: A Unified Perspective

Calvin Luo

Google Research, Brain Team calvinluo@google.com

August 26, 2022

Contents

Introduction: Generative Models	1
Background: ELBO, VAE, and Hierarchical VAE	2
Evidence Lower Bound	2
Variational Autoencoders	4
Hierarchical Variational Autoencoders	ţ
Variational Diffusion Models	6
Learning Diffusion Noise Parameters	14
Three Equivalent Interpretations	15
Score-based Generative Models	17
Guidance	2(
Classifier Guidance	21
Classifier-Free Guidance	21
Closing	22

Luo, Calvin. "Understanding diffusion models: A unified perspective." arXiv preprint arXiv:2208.11970 (2022).

Progress Report

variational-autoencoder

Luo, Calvin. "Understanding diffusion models: A unified perspective." arXiv preprint arXiv:2208.11970 (2022).

Thanks!