I-ITWK Hochschule für Technik, Wirtschaft und Kultur Leipzig

Wirtschaft und Kultur Leipz Prof. Dr. habil. H.-J. Dobner

Mathematik für Informatiker (MfI) II

Prof. Dr. H.-J. Dobner HTWK Leipzig SS 2020

INB&MIB:

Methoden der Analysis und Linearen Algebra (Dobner)

Informationen, Literatur, Aktuelles

 \Rightarrow OPAL

Belegaufgaben, Folien zur Vorlesung auf OPAL abgelegt

INB:

Wahrscheinlichkeitsrechnung (Lasarow)

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MNZ

Prüfungszulassung

Methoden der Analysis und Linearen Algebra

20 Aufgaben verteilt auf 4 Aufgabenblätter

Pro Aufgabe 4 Punkte

Prüfungszulassung

50 Punkte aus den Aufgaben Abgabe bis auf weiteres in OPAL (Hinweise auf Aufgabenblatt)

Prüfungsklausur (INB&MIB) **Methoden der Analysis und Linearen Algebra (Prüfungsstoff ab §18 Umkehrfunktionen)**

Dauer: 90 Minuten

Hilfsmittel:

Spickzettel im Format DIN A4, kein Taschenrechner

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MNZ

Prüfung MfI I am 18.02.2020 Prüfungsergebnisse

	INB	MIB
Teilnehmer:	77	46
Bestanden	46	13
DQ	40,2%	69,9%
DQ gesamt (INB+MIB)	52%	

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MN

§ 21. Die Taylorsche Formel

=>> INFORMATIK

Häufig ist es erforderlich, eine Funktion f durch einfache Funktionen möglichst gut anzunähern. Mit Hilfe der Taylorschen Formel können Funktionen als Summe eines Polynoms und eines Fehlerterms (Restglied) dargestellt werden. Somit können auch kompliziertere Funktionen wie Logarithmus oder die Arkusfunktionen durch Polynome approximiert werden.

Polynome können einfach addiert, multipliziert, differenziert und integriert werden.

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MNZ

Problem: Funktionen f(x) z. B. Sinus, Kosinus, Exponentialfunktion,.... auf Rechner darstellen.

Idee:

f(x) durch Polynom $P_n(x)$ approximieren

$$P_n\left(X
ight)=a_0+a_1X+a_2X^2+\ldots\ldots+a_nX^n$$
 , $a_k\in\mathbb{R}$, $X\in I\subseteq\mathbb{R}$, $n\in\mathbb{N}$

Ansatz:
$$\underbrace{f(x)}_{\text{exakt}} = \underbrace{P_n(x)}_{\text{N\"{a}herung}} + \underbrace{R_n(x)}_{\text{Rest (Fehler)}}$$
, $x \in I \ 0 \in I$

Forderung:
$$\underline{f^{(k)}(0)} = P_n^{(k)}(0)$$
, $k = 0, 1, 2, ...n$

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MNZ

k-te Ableitung eines Polynoms (Beweis durch Induktion!)

$$P_{n}(x) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} \dots + a_{n}x^{n}$$

$$k = 1 \Rightarrow (P_{n}(x))' = 1 \cdot a_{1} + 2 \cdot a_{2}x + 3 \cdot a_{3}x^{2} \dots + n \cdot a_{n}x^{n-1}$$

$$k = 2 \Rightarrow (P_{n}(x))'' = 2 \cdot a_{2} + 2 \cdot 3 \cdot a_{3}x \dots + n \cdot (n-1)a_{n}x^{n-2}$$

k-te Ableitung eines Polynoms

$$P_{n}^{(k)}(x) = k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot 2 \cdot 1 \cdot a_{k}$$

$$+ (k+1) \cdot k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot 2 \cdot a_{k+1} \cdot x$$

$$+ (k+2) \cdot (k+1) \cdot k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot 3 \cdot a_{k+2} \cdot x^{2}$$

$$\dots \dots$$

$$+ n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) \cdot a_{n} \cdot x^{n-k}$$

$$f^{(k)}(0) = P_{n}^{(k)}(0) = k! \ a_{k} \qquad \Rightarrow a_{k} = \frac{1}{k!} f^{(k)}(0)$$

$$\Rightarrow a_{k} = \frac{1}{k!} f^{(k)}(0)$$

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MN

Näherungspolynom

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(0) x^k = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(0) (x - 0)^k$$

Problem $0 \notin I$???

Lösung $x_0 \in I$, beliebig aber fest gewählt

Forderung:
$$\underline{f^{(k)}(x_0)} = P_n^{(k)}(x_0)$$
, $k = 0, 1, 2, ...n$

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

Prof. Dr. H.-J. Dobner, HTWK Leipzig, MNZ