Introduction to Time Series

Saarthak Mehra

Agenda

Intro to Time Series

Time-Series Behavior

Forecasting Time-Series

What is time-series?

A sequence of observations taken over equal intervals over time.

What do they look like?

Univariate

datetime	Α
2018-01-01 00:00:00	35
2018-01-01 01:00:00	2
2018-01-01 02:00:00	67
2018-01-01 03:00:00	7
2018-01-01 04:00:00	61
2018-01-01 05:00:00	94
2018-01-01 06:00:00	63
2018-01-01 07:00:00	90
2018-01-01 08:00:00	56
2018-01-01 09:00:00	27

Multivariate

datetime	Α		
2018-01-01 00:00:00	35	NgaN	104.0
2018-01-01 01:00:00	2	NaN	104.0
2018-01-01 02:00:00	67	104.0	104.0
2018-01-01 03:00:00	7	76.0	76.0
2018-01-01 04:00:00	61	135.0	135.0
2018-01-01 05:00:00	94	162.0	162.0
2018-01-01 06:00:00	63	218.0	218.0
2018-01-01 07:00:00	90	247.0	247.0
2018-01-01 08:00:00	56	209.0	209.0
2018-01-01 09:00:00	27	173.0	173.0

Why do we care?

Time series can be analyzed in **any** business that operates an online platform (website, blog, etc.)

Trivial Time Series Analysis

Around 10 AM, there are **100,000** online users

At 10AM, we need all of our servers on.

Around 8 PM, there are **15,000** online users

At 8PM, we only need some of our servers on.

From the above observations, we are able to **save money** by **turning off an X amount of servers** at 8 PM, thereby **increasing efficiency.**

Important libraries for time-series modeling you need to know

Statsmodels

Provides tools for statistical modeling

Scikit Learn

Anything machine learning (from regression to clustering to parameter tuning)

Types of Time-Series Data

Deterministic vs Non-Deterministic

> Additive vs Multiplicative

Stationary vs Non-Stationary

Deterministic vs Non-Deterministic

Deterministic time series can be expressed with a single equation.

More about it:

Future values can easily be predicted.

Variance remains constant Mean changes with time More about it:

Harder to predict future values.

Variance changes time Mean changes time

Non-Deterministic time series can **not** be expressed with a single equation

Additive vs Multiplicative

Additive:

<u>sum</u> of the components;
tends to show a linear trend;
data is measured in absolute
quantity

Multiplicative:

product of the components; tends to show an exponential trend; Data is measured in percent change Data can be modeled as either additive or multiplicative

Stationary vs Non-Stationary

Stationary

Statistical properties are constant

- Mean
- Variance
- Autocorrelation → correlation of the series with its previous values

Independent of time

Easier to predict future values

No seasonality

Non-Stationary

Trend → A general pattern for a long time period

- Example: A general increase in the number of UBER rides called in San Francisco.

Seasonality → Repeating pattern in the data during a fixed time period

- Example: An increase in the number of UBER rides on Friday nights in downtown San Francisco.

Irregularity → Non-repeating behavior within a short time period

- Example: A sudden decrease in the number of UBER rides due to a sudden snowstorm.

Cyclic → Repeating behavior occurring at irregular time intervals

Usually caused by the business itself or other socioeconomic factors

Time-Series Forecasting

- 1. Attempting to make the data stationary
- 2. Selecting the appropriate model
- 3. Evaluating model accuracy

Time-Series Models: ARIMA

Auto Regression

models the next step in the sequence as a linear function of the **observations** at prior time steps.

p == order of AR (number of lags to be used as predictors)

Moving Average

models the next step in the sequence as a linear function of the **residual errors** from a mean process at prior time steps

q == order of MA (number of lags to be used as predictors)

ARIMA → works well with time series with trend but without seasonality

The "I" in ARIMA represents the number of differences (d) made in order to make time-series stationary

ARIMA

Differencing?

Purpose of differencing?
To minimize autocorrelation while the time-series remains greater than 0

In the second order of differencing, autocorrelation went

"Weak stationarity"

negative too quick, which suggests...

← overdifferencing

Time-Series Models: SARIMA

If our data is measured in days, and the data shows a repeating pattern every seven days (**weekly seasonality**), then m = 7. So at every future time step...

AR(p), I(d), and AM(q) will be dependent on every time step in the past AR(P), I(D), and AM(Q) will be dependent on past time steps from every 7 days (week)

SARIMA(p, d, q)(P, D, Q)m

- p, d, q → remember from ARIMA
- m → number of time steps in each season
- P, D, Q → same as (p, d, q), but only active based on m

ARIMA based differencing

With seasonality represented as a parameter, you can repeat the ability to perform:

- i) autoregression
- ii) differencing
- iii) moving average

modeling like ARIMA did at the seasonal level.

More Time-Series Models

SARIMAX: Seasonal Autoregressive Integrated Moving-Average with

Exogenous Regressors

VAR: Vector Autoregression

VARMA: Vector Autoregression Moving-Average

VARMAX: Vector Autoregression Moving-Average with Exogenous Regressors

SES: Simple Exponential Smoothing

HWES: Holt Winter's Exponential Smoothing

FbProhet: Open source model made by Facebook; takes holidays into account

LSTM: Long Short Term Memories

NNETAR: Neural Network Autoregression

Evaluating Model Accuracy

Accuracy Metrics

MAPE → Mean Absolute Percentage Error

ME → Mean Error

MAE → Mean Absolute Error

MPE → Mean Percentage Error

RMSE → Root Mean Squared Error

ACF1 → Lag 1 Autocorrelation of Error

corr → Correlation between the Actual and the Forecast

Minmax → Min-Max Error

Interesting/Useful Information

Cross-Validation technique used to validify model before testing it on the entire training set

Blue → training set
Red → validation set

Visualizations

Avoid sticking to stock visualizations from matplotlib

Ensure that every visualization is practical, innovative, and creative

Thank you for attending!