The Vernam Cipher

Carol Pignato & Hareem Bokhari

History

The Vernam Cipher is named after Gilbert Sandford Vernam (1890-1960) who, in 1917, invented the stream cipher and later co-invented the One Time Pad. His patent US 1,310,719 was filed in 1918 and is, according to the NSA, perhaps the most important one in the history of cryptography[1].

The Vernam Cipher uses the One-Time Pad, an encryption technique in which each character of the plaintext is combined with a character from a random key stream. When used correctly, the OTP provides a truly unbreakable cipher. It is named after the sheets of paper (pads) on which the key stream was usually printed, as it consists of a stack of small very thin pages, each with a series of random numbers on them. Each page was destroyed immediately after use. It was used by agents of the former Soviet Union (USSR) during the 1960s[2].

However, the Vernam Cipher uses ASCII binary values and the XOR logic gate, rather than the usual alphabet numbering.

- 1. https://www.cryptomuseum.com/crypto/vernam.htm
- 2. https://www.cryptomuseum.com/crypto/otp/index.htm

About

- The Vernam Cipher is known to have perfect security and is unbreakable.
- It depends on the fact that the key must be truly random.
- The Vernam Cipher is based on the idea that each plaintext character from a message is mixed with one character from a key stream.
- It is a symmetric cipher The key used to encrypt a plaintext message must be the same key used to decrypt that message.

XOR Logic Gate

The XOR operator outputs a 1 whenever the <u>inputs do not match</u>, which occurs when one of the two inputs is **exclusively true**. Here is the truth table:

Input	Output	
А	В	A XOR B
О	0	0
О	1	1
1	0	1
1	1	0

Procedure

Encrypting

- Get your plaintext and its ASCII values and convert it to binary
- Generate a key that is truly random and is as long as the plaintext. Convert that to binary too.
- 3. Produce the ciphertext by applying bitwise XOR on the plaintext and the key

Decrypting

- Take your cipher text (in binary).
- Use the secret shared key given to you by the other person (in binary).
- Reproduce the plaintext by applying the bitwise XOR on the ciphertext and key.

Example using the ASCII table plain text: math random key: DEAD

remember key must be same or greater length as plain text

Binary Plain Text m	Binary key D	Bitwise XOR
1	1	О
1	0	1
0	0	О
1	0	1
1	1	0
0	0	0
1	0	1

Dec	Hex	Oct	Binary	Char	Dec	Hex	Oct	Binary	Char
64	40	100	1000000	@	96	60	140	1100000	8
65	41	101	1000001	Α	97	61	141	1100001	а
66	42	102	1000010	В	98	62	142	1100010	b
67	43	103	1000011	C	99	63	143	1100011	C
68	44	104	1000100	D	100	64	144	1100100	d
69	45	105	1000101	E	101	65	145	1100101	e
70	46	106	1000110	F	102	66	146	1100110	f
71	47	107	1000111	G	103	67	147	1100111	g
72	48	110	1001000	Н	104	68	150	1101000	h
73	49	111	1001001	1	105	69	151	1101001	i
74	4A	112	1001010	J	106	6A	152	1101010	j
75	4B	113	1001011	K	107	6B	153	1101011	k
76	4C	114	1001100	L	108	6C	154	1101100	_
77	4D	115	1001101	М	109	6D	155	1101101	m

The bitwise XOR: 0101001 is the right parenthesis

Binary Plain Text a	Binary key E	Bitwise XOR
1	1	О
1	О	1
0	О	О
0	О	О
0	1	1
0	О	О
1	1	0

Dec	Hex	Oct	Binary	Char	Dec	Hex	Oct	Binary	Char
64	40	100	1000000	@	96	60	140	1100000	8
65	41	101	1000001	Α	97	61	141	1100001	a
66	42	102	1000010	В	98	62	142	1100010	b
67	43	103	1000011	С	99	63	143	1100011	С
68	44	104	1000100	D	100	64	144	1100100	d
69	45	105	1000101	E	101	65	145	1100101	е

The bitwise XOR: 0100101 is the dollar sign

Binary t	Binary A	Bitwise XOR
1	1	0
1	О	1
1	О	1
0	О	0
1	О	1
0	О	0
0	1	1

The bitwise XOR: 0110101 is the digit

Binary	Char	Dec	Hex	Oct	Binary	Char
1000000	@	96	60	140	1100000	
1000001	(A)	97	61	141	1100001	a
1000010	В	98	62	142	1100010	b
1000011	С	99	63	143	1100011	С
1000100	(D	100	64	144	1100100	d
1000101	Е	101	65	145	1100101	e
1000110	F	102	66	146	1100110	f
1000111	G	103	67	147	1100111	g
1001000	Н	104	68	150	1101000	h
1001001	1	105	69	151	1101001	i
1001010	J	106	6A	152	1101010	j
1001011	K	107	6B	153	1101011	k
1001100	L	108	6C	154	1101100	1
1001101	М	109	6D	155	1101101	m
1001110	N	110	6E	156	1101110	n
1001111	0	111	6F	157	1101111	0
1010000	P	112	70	160	1110000	р
1010001	Q	113	71	161	1110001	q
1010010	R	114	72	162	1110010	r
1010011	S	115	73	163	1110011	s
1010100	Т	116	74	164	1110100	t

Binary h	Binary D	Bitwise XOR
1	1	0
1	0	1
0	0	0
1	0	1
0	1	1
0	0	0
0	0	0

The bitwise XOR: 0101100 is a comma

THE ENCODED TEXT IS

)\$5,

plain text: math random key: DEAD Cipher text:)\$5,

Now we could decode the cipher using our same key

Binary Cipher Text	Binary key D	Bitwise XOR
0	1	1
1	0	1
0	0	О
1	0	1
0	1	1
0	0	0
1	0	1

0100100	\$	68	44	104	1000100	D
0100101	%	69	45	105	1000101	E
0100110	&	70	46	106	1000110	F
0100111	4	71	47	107	1000111	G
0101000	(72	48	110	1001000	Н
0101001	1	73	49	111	1001001	Î

The bitwise XOR: 1101101 is the lowercase letter

Binary \$	Binary E	Bitwise XOR
0	1	1
1	О	1
0	О	0
0	О	0
1	1	0
0	О	0
0	1	1

Binary 5	Binary A	Bitwise XOR
0	1	1
1	О	1
1	О	1
0	0	О
1	0	1
0	0	0
1	1	0

Binary ,	Binary D	Bitwise XOR
0	1	1
1	О	1
0	О	0
1	О	1
1	1	0
0	О	0
0	0	0

The bitwise XOR: 1100001 is the lowercase letter

The bitwise XOR: 1110100 is the lowercase letter

The bitwise XOR: 1101000 is the lowercase letter

)\$5, is now decrypted to math

Program

Let's go through the code together

https://repl.it/repls/WobblyMonstrousNetwork

Conclusion

<u>Pros</u>

 Because it is truly random, there is no way to break the cipher and frequency analysis cannot be used

<u>Cons</u>

- Key must be truly random, without any detection of a pattern
- Key length must be greater than or equal to the length of the message
- The key must be destroyed immediately after use, and you thus cannot reuse the same key.
- Difficulty with mass distribution as it could be easier to gain access to the key