0.1 Å finne størrelser

Likninger, formler og funksjoner (og utttrykk) er begrep som dukker opp i forskjellige sammenhenger, men som i bunn og grunn handler om det samme; de uttrykker relasjoner mellom størrelser. Når alle størrelsene utenom den éne er kjent, kan vi finne denne enten direkte eller indirekte.

0.1.1 Å finne størrelser direkte

Mange av regelboksene i boka inneholder en formel. Når en størrelse står alene på én side av formelen, sier vi at det er en formel for den størrelsen. For eksempel inneholder regel?? en formel for 'målestokk'. Når de andre størrelsene er gitt, er det snakk om å sette verdiene inn i formelen og regne ut for å finne den ukjente, 'målestokk'.

Men ofte har vi bare en beskrivelse av en situasjon, og da må vi selv lage formlene. Da gjelder det å først identifisere hvilke størrelser som er til stede, og så finne relasjonen mellom dem.

Eksempel 1

For en taxi er det følgende kostnader:

- Du må betale 50 kr uansett hvor langt du blir kjørt.
- I tillegg betaler du $15\,\mathrm{kr}$ for hver kilometer du blir kjørt.
- a) Sett opp et uttrykk for hvor mye taxituren koster for hver kilometer du blir kjørt.
- b) Hva koster en taxitur på 17 km?

Svar

a) Her er det to ukjente størrelser; 'kostnaden for taxituren' og 'antall kilometer kjørt'. Relasjonen mellom dem er denne:

kostnaden for taxituren = 50 + 15 · antall kilometer kjørt

b) Vi har nå at

kostnaden for taxituren = $50 + 15 \cdot 17 = 305$

Taxituren koster altså 305 kr.

Tips

Ved å la enkeltbokstaver representere størrelser, får man kortere uttrykk. La k stå for 'kostnad for taxituren' og x for 'antall kilometer kjørt'. Da blir uttrykket fra $Eksempel\ 1$ over dette:

$$k = 50 + 15x$$

I tillegg kan man gjerne bruke skrivemåten for funksjoner:

$$k(x) = 50 + 15x$$

0.1.2 Å finne størrelser indirekte

Når formlene er kjente

Eksempel 1

Vi har sett at strekningen s vi har kjørt, farten f vi har holdt, og tiden t vi har brukt kan settes i sammenheng via formelen¹:

$$s = f \cdot t$$

Dette er altså en formel for s. Ønsker vi i stedet en formel for f, kan vi gjøre om formelen ved å følge prinsippene for likninger²:

$$s = f \cdot t$$

$$\frac{s}{t} = \frac{f \cdot t}{t}$$

$$\frac{s}{t} = f$$

 $^{^{1}}strekning=fart\cdot tid$

²Se MB, s. 121.

Eksempel 2

 $Ohms\ lov$ sier at strømmen I gjennom en metallisk leder (med konstant temeperatur) er gitt ved formelen

$$I = \frac{U}{R}$$

hvor U er spenningen og R er resistansen.

a) Skriv om formelen til en formel for R.

Strøm måles i Ampere (A), spenning i Volt (V) og motstand i Ohm (Ω).

b) Hvis strømmen er $2\,\mathrm{A}$ og spenningen $12\,\mathrm{V}$, hva er da resistansen?

Svar

a) Vi gjør om formelen slik at R står alene på én side av likhetstegnet:

$$I \cdot R = \frac{U \cdot \cancel{R}}{\cancel{R}}$$

$$I \cdot R = U$$

$$\frac{\cancel{I} \cdot R}{\cancel{I}} = \frac{U}{I}$$

$$R = \frac{U}{I}$$

b) Vi bruker formelen vi fant i a), og får at

$$R = \frac{U}{I}$$
$$= \frac{12}{2}$$
$$= 6$$

Resistansen er altså 6 Ω .

Eksempel 3

Gitt en temperatur T_C målt i antall grader Celsius (°C). Temperaturen T_F målt i antall grader Fahrenheit (°F) er da gitt ved formelen

$$T_F = \frac{9}{5} \cdot T_C + 32$$

- a) Skriv om formelen til en formel for T_C .
- b) Hvis en temperatur er målt til 59°F, hva er da temperaturen målt i °C?

Svar

a) Vi isolerer T_C på én side av likhetstegnet:

$$T_F = \frac{9}{5} \cdot T_C + 32$$

$$T_F - 32 = \frac{9}{5} \cdot T_C$$

$$5(T_F - 32) = \cancel{5} \cdot \frac{9}{\cancel{5}} \cdot F_C$$

$$5(T_F - 32) = 9T_C$$

$$\frac{5(T_F - 32)}{9} = \frac{\cancel{9}T_C}{\cancel{9}}$$

$$\frac{5(T_F - 32)}{9} = T_C$$

b) Vi bruker formelen fra a), og finner at

$$T_C = \frac{5(59 - 32)}{9}$$

$$= \frac{5(27)}{9}$$

$$= 5 \cdot 3$$

$$= 15$$

Når formlene er ukjente

Eksempel 1

Tenk at klassen ønsker å dra på en klassetur som til sammen koster $11\,000\,\mathrm{kr}$. For å dekke utgiftene har dere allerede skaffet $2\,000\,\mathrm{kr}$, resten skal skaffes gjennom loddsalg. For hvert lodd som selges, tjener dere $25\,\mathrm{kr}$.

- a) Lag en likning for hvor mange lodd klassen må selge for å få råd til klasseturen.
- b) Løs likningen.

Svar

a) Vi starter med å tenke oss regnestykket i ord:

penger allerede skaffet+antall lodd-penger per lodd = prisen på turen

Den eneste størrelsen vi ikke vet om er 'antall lodd'. Vi erstatter 1 antall lodd med x, og setter verdiene til de andre størrelsene inn i likningen:

$$2\,000 + x \cdot 25 = 11\,000$$

b)
$$25x = 11\,000 - 2\,000$$
$$25x = 9\,000$$
$$\frac{25x}{25} = \frac{9\,000}{25}$$
$$x = 360$$

 $^{^{1}\}mathrm{Dette}$ gjør vi bare fordi det da blir mindre for oss å skrive.

Eksempel 2

En vennegjeng ønsker å spleise på en bil som koster 50 000 kr, men det er usikkert hvor mange personer som skal være med på å spleise.

- a) Kall 'antall personer som blir med på å spleise' for P og 'utgift per person' for U, og lag en formel for U.
- b) Finn utgiften per person hvis 20 personer blir med.

Svar

a) Siden prisen på bilen skal deles på antall personer som er med i spleiselaget, må formelen bli

$$U = \frac{50\,000}{P}$$

b) Vi erstatter $P \mod 20$, og får

$$U = \frac{50000}{20}$$
$$= 2500$$

Utgiften per person er altså 2500 kr.

Eksempel 2

En klasse planlegger en tur som krever bussreise. De får tilbud fra to busselskap:

• Busselskap 1

Klassen betaler 10000 kr uansett, og 10 kr per km.

• Busselskap 2

Klassen betaler 4000 kr uansett, og 30 kr per km.

For hvilken lengde kjørt tilbyr busselskapene samme pris?

Svar

Vi innfører følgende variabler:

- $x = \text{antall kilometer kj} \sigma \text{rt}$
- f(x) = pris for Busselskap 1

• g(x) = pris for Busselskap 2

Da er

$$f(x) = 10x + 10000$$

$$g(x) = 30x + 4000$$

Videre løser vi nå oppgaven både med en grafisk og en algebraisk metode.

Grafisk metode

Vi tegner grafene til funksjonene inn i samme koordinatsystem:

Vi leser av at funksjonene har samme verdi når x=200. Dette betyr at busselskapene tilbyr samme pris hvis klassen skal kjøre $200\,\mathrm{km}$.

Algebraisk metode

Busselskapene har samme pris når

$$f(x) = g(x)$$

$$10x + 10000 = 30x + 6000$$

$$4000 = 20x$$

$$x = 200$$

Busselskapene tilbyr altså samme pris hvis klassen skal kjøre $200\,\mathrm{km}.$

Eksempel 4

"Broren min er dobbelt så gammel som meg. Til sammen er vi 9 år gamle. Hvor gammel er jeg?".

Svar

"Broren min er dobbelt så gammel som meg." betyr at

brors alder = $2 \cdot \min$ alder

"Til sammen er vi 9 år gamle." betyr at

brors alder + min alder = 9

Erstatter vi 'brors alder' med "2 · min alder", får vi

 $2 \cdot \min \text{ alder} + \min \text{ alder} = 9$

Altså er

$$3 \cdot \min \text{ alder} = 9$$

$$\frac{3 \cdot \min \text{ alder}}{3} = \frac{9}{3}$$

$$\min \text{ alder} = 3$$

"Jeg" er altså 3 år gammel.

0.1.3 Grafisk metode

Regel 0.1 Grafisk løsning av likningssett

Et lineært likningssett bestående av to ukjente, x og y, kan løses ved å

- 1. omskrive de to likningene til uttrykk for to linjer.
- 2. finne skjæringspunktet til linjene.

0.2 Regresjon

Å forsøke å beskrive hvordan noe vil *utvikle* seg er en av de viktigste anvendelsene for funksjoner. Hvis vi har et datasett som beskriver tidligere hendelser, kan vi prøve å finne den funksjonen som passer best til datasettet. Dette kalles å utføre **regresjon**.

Grafen under viser¹ antall elbiler i Norge etter år 2010.

Vi ønsker nå å finne en funksjon som

- (i) så godt som mulig skjærer hvert punkt.
- (ii) har en graf som passer til situasjonen vi modellerer.

Hvis vi utfører regresjon med en lineær funksjon i GeoGebra (se side ??), får vi denne grafen:

¹Tall hentet fra elbil.no

Utfører vi regresjon også med en andregradsfunksjon, får vi følgende resultat:

I figuren over kan vi merke oss at

• begge modellene (funksjonene) "oppfører" seg feilaktig i starten. Den lineære funksjonen starter med et negativt antall biler, mens den kvadratiske funksjonen starter med at antallet synker fra år 0 til år 1. • Grafen til den kvadratiske passer punktene mye bedre enn grafen til den lineære funksjonen.

Hvis vi hadde antatt at den lineære funksjonen ga en god beskrivelse av antallet elbiler fremover i tid, kunne vi lest av fra grafen at antall elbiler i 2021 var ca. 350 000. Hadde vi i stedet antatt det samme om den kvadratiske funksjonen, kunne vi lest av fra grafen at antall elbiler i 2021 var litt over 425 000. Fasit er at antall elbiler i 2021 var 455 271.

