Algorithm 1: Proposed DS-AMP Algorithm

Input: The received signals $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_J] \in \mathbb{C}^{N_r \times J}$, the channel matrix $\mathbf{H} = [\mathbf{H}_1, ..., \mathbf{H}_K] \in \mathbb{C}^{N_r \times (KN_t)}$, and the maximum iteration number T_0 .

Output: The set of active MTDs Ω and the reconstructed media modulation signal $\mathbf{X} \in \mathbb{C}^{KN_t \times J}$. 1: $\forall i, j, k, n$: We initialize the iterative index t=1, the activity indicator $a_k^1 = 0.5$, $Z_{n,j}^0 = [\mathbf{y}_j]_n$, $V_{n,j}^0 = 1$, the

- noise variance $(\sigma_w^2)^1 = 100$, the reconstructed signal $\mathbf{X} = \mathbf{0}_{KN_t \times J}$, $\left[\widehat{\mathbf{x}}_{k,j}^1\right]_i = a_k^1 \sum_{j \in S} s/MN_t$, and $\left[\widehat{\mathbf{v}}_{k,j}^1\right]_i = a_k^2 \sum_{j \in S} s/MN_t$ $a_k^1 \sum_{s \in \mathbb{S}} |s|^2 / M N_t - \left| \left[\widehat{\mathbf{x}}_{k,j}^1 \right]_i \right|^2;$
- 2: for t=1 to T_0 do
- %AMP operation: 3:
 - - $(k-1)N_t+i$; {Decoupling step}
 - - **%EM operation:**
 - $\forall k$: Compute $(\sigma_w^2)^{t+1}$ and a_k^{t+1} by using (24) and (25);
- 8: end for

- 9: %Min-max normalization:
- 10: Let $\tilde{\mathbf{a}} = \frac{\widehat{\mathbf{a}} \min(\widehat{\mathbf{a}})}{\max(\widehat{\mathbf{a}}) \min(\widehat{\mathbf{a}})}$, where $\widehat{\mathbf{a}} = [\widehat{a}_1, ..., \widehat{a}_K]^T = [a_1^{T_0}, ..., a_K^{T_0}]^T$, $\min(\cdot)$ and $\max(\cdot)$ are the minimum value
- and maximum value of the arguments, respectively;
- 11: %Extract the active MTDs and their MAPs:

- 12: $\forall k$: The set of active MTDs $\Omega = \{k | [\tilde{\mathbf{a}}]_k > 0.5\};$ 13: $\forall k, j : \eta^* = \arg \max_{\widehat{\eta} \in [N_t]} \left[\widehat{\mathbf{x}}_{k,j}^{T_0} \right]_{\widehat{\Xi}}$
- 14: $\forall k \in \Omega, \forall j$: The reconstructed signal is $\mathbf{X}_{[(k-1)N_t + \eta^*, j]} = \left| \widehat{\mathbf{x}}_{k,j}^{T_0} \right|_{x^*}$.

- $\forall i, j, k, n$: Compute $\left[\widehat{\mathbf{x}}_{k,j}^{t+1}\right]$ and $\left[\widehat{\mathbf{v}}_{k,j}^{t+1}\right]$ by using (16) and (17), respectively; {Denoising step}
- $\forall i, j, k, n$: Compute $V_{n,j}^t$, $Z_{n,j}^t$, $\phi_{l,j}^t$, and $r_{l,j}^t$ by using (20), (21), (18), and (19), respectively, where l=