Лабораторная работа №6 ИССЛЕДОВАНИЕ РАБОТЫ МУЛЬТИВИБРАТОРА

ЦЕЛЬ РАБОТЫ

Моделирование и исследование работы мультивибратора в LTspice.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Мультивибратор представляет собой релаксационный генератор колебаний почти прямоугольной формы. Он является двухкаскадным усилителем на резисторах с положительной обратной связью (ПОС), в котором выход каждого каскада соединен со входом другого через конденсатор. Само название "мультивибратор" происходит от двух слов: "мульти" - много и "вибратор" - источник колебаний, поскольку колебания мультивибратора содержат большое число гармоник. Мультивибратор может работать в автоколебательном режиме, режиме синхронизации и ждущем режиме. В автоколебательном режиме мультивибратор работает как генератор с самовозбуждением, в режиме синхронизации на мультивибратор действует извне синхронизирующее напряжение, частота которого определяет частоту импульсов, ну а в ждущем режиме мультивибратор работает как генератор с внешним возбуждением.

Рисунок 1 — Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Рисунок 2 – Графики, поясняющие работу симметричного мультивибратора

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 – графики, поясняющие принцип его работы.

Мультивибратор состоит из двух усилительных каскадов. Выход каждого каскада соединен со входом другого каскада через конденсаторы С1 и С2.

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Скважность — это отношение периода повторения к длительности импульса $Q = T_{\rm u}/t_{\rm u}$. Величина, обратная скважности называется коэффициентом заполнения.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия: когда один из транзисторов находится в режиме насыщения, другой - в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за ПОС.

При включении питания транзистор VT1 открыт и насыщен током, проходящим через резистор R3. Напряжение на его коллекторе минимально. Конденсатор C1 разряжается. Транзистор VT2 закрыт и конденсатор C2 заряжается. Напряжение на конденсатор C1 стремится к нулю, а потенциал на

базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и конденсатор C2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

$$t_{u1} = 0.7R3C2 \tag{1}$$

$$t_{u2} = 0.7R2C1$$
 (2)

Период импульсов определяется:

$$T = t_{u1} + t_{u2} = 0.7R3C2 + 0.7R2C1 = 0.7(R3C2 + R2C1)$$
 (3)

Выходные импульсы снимаются с коллектора одного из транзисторов. Таким образом, в схеме два выхода, причем сигналы на них одинаковы.

РАБОЧЕЕ ЗАДАНИЕ

1 Соберите в LTspice схему, изображенную на рисунке 1. Используйте следующие параметры:

- Модель транзистора 2N3904;
- Значения сопротивления резисторов, а также напряжение питания см. таблица 1 в соответствии с вариантом;
- Значение емкости конденсатора рассчитайте по формуле (3) так, чтобы период генерируемого сигнала соответствовал указанному в таблице 1 для вашего варианта. Расчёт внесите в отчёт.
- 2 Снимите осциллограммы, аналогичные осциллограммам, приведенным на рисунке 2. Занесите в отчёт полученные графики, сделайте выводы.
- 3 Определите период сгенерированного сигнала, сравните его с периодом, заданным в исходных данных. Рассчитайте скважность полученного сигнала. Занесите результат и выводы в отчёт.

Таблица 1 – Исходные данные

Вариант	<i>E</i> , B	R1=R4, кОм	R2=R3, кОм	Т, с
1	10	1	100	1
2	8	3	80	0.5
3	5	1	50	2
4	12	10	120	0.2
5	4	0.5	50	1.5
6	6	2	60	1
7	8	5	70	3
8	15	3	100	0.2
9	10	1	40	2
10	2	8	150	3