On souhaite réaliser une solution de 100,0 mL d'ions nitrate de concentration $[NO_3^-] = 3.0 \times 10^{-2} \text{ mol} \cdot L^{-1}.$

Pour cela, on dispose d'un sel : le nitrate de cuivre II trihydraté.

Informations:

Le nitrate de cuivre II trihydraté

Туре	Formule	Solubilité dans l'eau	Température de fusion	Température d'ébullition	Pictogrammes
Solide ionique trihydraté bleu	Cu(NO ₃) ₂ ,3H ₂ O (s)	2670 g.L ⁻¹	114,5 °C	170 °C	

Masses molaires de différents éléments (en g.mol-1) :

Cu	N	0	Н
63,546	14,007	15,999	1,008

- Un solide ionique (ou sel) est composé de cations et d'anions. La formule du sel vise à maintenir l'électroneutralité du solide. Dans le cas du nitrate de cuivre, le cation est l'ion cuivre II Cu²⁺ et l'anion est le nitrate NO₃⁻.
- Réaction de dissolution d'un solide ionique $A_{\alpha}B_{\beta}$:

$$A_{\alpha}B_{\beta}(s) \rightarrow \alpha A^{i+}(aq) + \beta B^{j-}(aq)$$

En considérant la dissolution comme totale, on obtient donc les relations suivantes entre les concentrations de sel apportée $C_{\mathsf{A}_{\alpha}\mathsf{B}_{\beta}}$ et les concentrations des ions en solution $[\mathsf{A}^{i+}]$ et $[\mathsf{B}^{j-}]$:

$$[\mathsf{A}^{i+}] = \alpha \times C_{\mathsf{A}_\alpha \mathsf{B}_\beta} \operatorname{et} [\mathsf{B}^{j-}] = \beta \times C_{\mathsf{A}_\alpha \mathsf{B}_\beta}$$

Un solide X est dit « hydraté » s'il contient des molécules d'eau liées à sa structure cristalline (1 molécule d'eau par formule X s'il est monohydraté, 2 s'il est dihydraté, 3 s'il est trihydraté...).

🔔 Lorsqu'on pèse un échantillon d'un solide hydraté, on pèse aussi les molécules d'eau.

Questions préliminaires :

- 1. Écrire l'équation de la réaction de dissolution du nitrate de cuivre II trihydraté.
- 2. En considérant la dissolution comme totale, quelle sera la relation entre la concentration apportée en sel $C_{\text{Cu(NO}_3)_2,3\text{H}_2\text{O}}$ et la concentration en ions nitrate en solution $[\text{NO}_3^-]$?
- 3. Quelle quantité de matière n de nitrate de cuivre II trihydraté faudra-t-il dissoudre pour obtenir la solution souhaitée?
- 4. Que vaut la masse molaire M du nitrate de cuivre II trihydraté?
- 5. Quelle masse m de nitrate de cuivre II trihydraté doit-on dissoudre pour obtenir la solution souhaitée?

- 6. Comment pallier cette difficulté ? De quel matériel aura-t-on besoin ?
- 7. Rédiger un protocole complet (avec les données chiffrées précises) permettant d'obtenir la solution de 100,0 mL d'ions nitrate de concentration $[NO_3^-] = 3,0 \times 10^{-2} \text{ molL}^{-1}$.

FAIRE VALIDER SON PROTOCOLE PAR LE PROFESSEUR

Réaliser l'expérience.

Schémas du protocole d'une dilution :

