Sažetak predavanja: Ugradbeni sustavi

Definicija i svojstva ugradbenih sustava

- Ugradbeni sustavi (Embedded Systems) su specijalizirana "mala" računala integrirana u veće sustave ili kao samostalni uređaji.
- Karakteristike:
 - o Predefinirana funkcionalnost (obavljaju točno određene zadatke).
 - Real-time performanse (pravovremeni odziv, strogi vremenski zahtjevi).
 - Mala potrošnja energije, niska cijena, kompaktne dimenzije.
 - o Pouzdanost minimalna tolerancija na greške.

Usporedba s računalnim sustavima opće namjene

Ugradbeni sustavi	Računalni sustavi opće namjene
Specijalizirani za jedan zadatak	Široka primjena
Krajnji korisnik ih ne može reprogramirati	Korisnik može dodavati softver
Fiksni hardver i softver	Mogućnost nadogradnje komponenti
Fokus na pouzdanost i pravovremenost	Fokus na prosječnu brzinu i fleksibilnost

Primjene ugradbenih sustava

- Kućanski aparati: mikrovalne pećnice, pametni uređaji.
- Poslovno okruženje: IP telefoni, mrežni uređaji.
- Automobilska industrija: ABS, autopilot, navigacija.
- Industrija: roboti, automatizirana proizvodnja.
- Sigurnosni sustavi: kamere, alarmi.

Vrste ugradbenih sustava

- Prema funkciji:
 - Samostalni sustavi (kalkulatori, MP3 uređaji).
 Mobilni sustavi (digitalne kamere).

 - Mrežni sustavi (IoT uređaji).
 - o Real-time sustavi (ABS, semafori).
- Prema veličini:
 - Mali sustavi (8-bitni mikrokontroleri).
 - o Srednje kompleksni sustavi (16/32-bitni mikrokontroleri).
 - Sofisticirani sustavi (kompleksni softver i hardver).

Arhitektura ugradbenih sustava

- Ključne komponente:
 - Mikroprocesor/mikrokontroler.
 - Memorija (RAM, ROM, Flash).
 - o Ulazno/izlazni uređaji (senzori, priključci).
 - Napajanje i komunikacijski portovi (SPI, I2C, UART).
- Mikrokontroleri vs. mikroprocesori:
 - Mikrokontroler: Integrira CPU, memoriju i I/O u jednom čipu (manja potrošnja energije).
 - Mikroprocesor: Koristi vanjske memorijske i I/O komponente (veća fleksibilnost, ali viša cijena i potrošnja).

Razlike u arhitekturama

Von Neumann arhitektura	Harvard arhitektura
Instrukcije i podaci dijele istu memoriju	Instrukcije i podaci su u odvojenim memorijama
Spora obrada zbog dijeljenja sabirnice	Brža obrada zbog paralelnog pristupa podacima
Koristi se u računalima opće namjene	Koristi se u mikrokontrolerima i signalnim procesorima

Razlike između RISC i CISC arhitektura

Misciji(Redujed Instruction Seukcija Computing) Instrukcije iste duljine, brža obrada	Veći broj kompleksnih instrukcija CISC (Complex Instruction Set Computing) Instrukcije promjenjive duljine, sporija obrada
Load/Store arhitektura	Mikroprogramirana arhitektura
Veći broj registara	Manji broj registara
Fokus na performanse	Fokus na fleksibilnost i manju potrebu za memorijom

Izazovi u dizajniranju ugradbenih sustava

- Odabir optimalnog hardvera (balans između performansi i troškova).

- Minimizacija potrošnje energije.
 Osiguranje nadogradivosti softvera.
 Testiranje i pouzdanost, posebno kod sigurnosno kritičnih sustava.

Ključni koncepti za učenje

- ☑ Definicija i karakteristike ugradbenih sustava
 ☑ Razlike između ugradbenih i općih računalnih sustava
- N Primjene u različitim industrijama
- Nrste ugradbenih sustava (prema funkciji i veličini)
- ▼ Note agradacinii sastava (prema tankeni recienni)
 Komponente ugradbenih sustava i njihova arhitektura
 Razlike između mikrokontrolera i mikroprocesora
- ${\tt N}$ Von Neumann vs. Harvard arhitektura
- NRISC vs. CISC arhitektura
- 🛚 Ključni izazovi u dizajnu ugradbenih sustava