Perception and localization

Matteo Baiguera

November 21, 2020

November 21, 2020

1 Introduction

Perception: detect the object, classify the object, estimate the object's trajectory.

The assumed sensor-suite is the following

	Sensor(s)	computing platform
Perception	LiDAR, Camera	
	Ultrasonic	
	Event camera	
Navigation	IMU,GPS	

2 Extended Kalman Filter

The purpose of extended kalman filter in AD problem is to track objects.

The assumed dynamic for all object is the following:

$$\vec{x}_{k+1} = A_k \vec{x}_k + B_k \vec{u}_k$$
$$\vec{x}_k = C_k \vec{z}_k$$

For each tracked object is assumed a state (\vec{x}) and an observation (\vec{z}) .

$$\vec{x}_{k+1} = A_k \vec{x}_k + B_k \vec{u}_k$$
$$\vec{x}_k = C_k \vec{z}_k$$

The object state is defined as:

$$\vec{x} = \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix} \tag{1}$$

and

The object's motions is assumed to be a "random walker" process, such that:

$$A_k = \begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2)

Algorithm 1 Put your caption here

1: for $o_j \in o1, o2,oN$ do	⊳ track all objects
2: Initialization:	
3: Update Step:	
4: Predict Step:	
5: while $something \neq 0$ do	> put some comments here
6: $var1 \leftarrow var2$	\triangleright another comment
7: $var3 \leftarrow var4$	

3 Particle Filter

Vehicle ego-localization via particle filter