Descriptive Statistics using R

Table of contents

1	The Dataset: Student Transcript	2
2	Objective	2
3	Dataset Overview	2
4	Loading the Dataset	3
5	Measures of Central Tendency - Mean & Median	3
6	Measures of Central Tendency - Mode	4
7	Descriptive Statistics using DescTools	4
8	Measures of Spread - Range	5
9	Measures of Spread - IQR	6
10	Measures of Spread - Standard Deviation & Variance	6
11	Measures of Spread - Mean Absolute Deviation (MAD)	7
12	Exericse - Major GPA vs. non-Major GPA	7
13	Solution - Major GPA vs. non-Major GPA	8

1 The Dataset: Student Transcript

Student Transcript

2 Objective

Analyzing a student's transcript dataset to understand performance metrics.

3 Dataset Overview

- Columns: year, semester, course_number, credits, letter_grade, numerical_value (GPA)
- Four academic years of data
- Grades for both major and non-major courses

4 Loading the Dataset

df = read.csv ("https://raw.githubusercontent.com/ahmedmoustafa/datasets/main/transcript/t head(df)

year	semester	course_number	credits	letter_grade	numerical_value
Freshman	Fall	COMP100	3	A-	3.7
Freshman	Fall	COMP110	3	A	4.0
Freshman	Fall	HUMA181	3	A-	3.7
Freshman	Fall	SOCI181	3	A-	3.7
Freshman	Fall	ELEC181	3	B+	3.3
Freshman	Spring	COMP120	3	A	4.0

5 Measures of Central Tendency - Mean & Median

• Mean: The average of a set of numbers, $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{2}$

```
mean(df$numerical_value)
```

[1] 3.78

• Weighted Mean: The mean where some values contribute more than others, $\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$

```
sum(df$numerical_value * df$credits)/sum(df$credits)
```

[1] 3.790244

```
weighted.mean(df$numerical_value, w = df$credits)
```

[1] 3.790244

• **Trimmed Mean**: The mean after removing a specified number of the highest and lowest values.

6 Measures of Central Tendency - Mode

- Mode: The value that appears most frequently in a set.
- As discussed before, mode is more appropriate for qualitative data values.
- So, let's compute mode for the letter_grade
- However, in R, there is no built-in function to compute the mode directly.
- Therefore, we need to install the DescTools package

```
if(!require(DescTools))
install.packages("DescTools",repos = "http://cran.us.r-project.org")
```

Loading required package: DescTools

• Now we can run the Mode() function from DescTools package

```
library(DescTools)
Mode(df$letter_grade)

[1] "A"
attr(,"freq")
[1] 20
```

7 Descriptive Statistics using DescTools

Measure	Function	Description			
Mode	Mode(data)	Computes the mode. Returns multiple modes if they exist.			
Mean	Mean(data)	Computes the arithmetic mean.			
Weighted	WtdMean(dat	WtdMean(dataComputes the weighted mean.			
Mean					
Median	Median(data) Computes the median.				
$\mathbf{Trimmed}$	Mean(data,	Computes trimmed mean. trim is fraction (0 to 0.5) of			
Mean	trim)	observations to be trimmed.			
Standard	Std(data)	Computes the sample standard deviation.			
Deviation					
Variance	Var(data)	Computes the variance.			
Range	Range(data)	Computes the range (difference between max and min).			
Interquartile	IQR(data)	Computes the interquartile range.			
Range					

8 Measures of Spread - Range

[1] 3.3 4.0

• Range: Difference between the largest and smallest values,

$${\rm Range}=x_{\rm max}-x_{\rm min}$$

$${\rm max(df\$numerical_value)}-{\rm min(df\$numerical_value)}$$

$${\rm [1]}~0.7$$

$${\rm range(df\$numerical_value)}~\#~{\rm The~base~R~(built-in)}$$

$${\rm [1]}~3.3~4.0$$

$${\rm Range(df\$numerical_value)}~\#~{\rm From~DescTools}$$

$${\rm [1]}~0.7~{\rm attr(,"bounds")}$$

9 Measures of Spread - IQR

• Interquartile Range (IQR): Difference between the first and third quartiles,

$$IQR = Q_3 - Q_1$$

- First Quartile:
 - * Also known as the lower quartile or the 25th percentile.
 - * It is the value below which 25% of the data falls. In other words, it cuts off the lowest 25% of the data.
- Third Quartile:

[1] 0.3

- * Also known as the upper quartile or the 75th percentile.
- * It is the value below which 75% of the data falls, meaning it cuts off the lowest 75% of data points.

```
1 quantile(df$numerical_value)

0% 25% 50% 75% 100%
3.30 3.70 3.85 4.00 4.00

1 quantiles = quantile(df$numerical_value)
2 quantiles[4] - quantiles[2]

75%
0.3

1 IQR(df$numerical_value)
```

10 Measures of Spread - Standard Deviation & Variance

• Standard Deviation: Measures the amount of variation or dispersion of a set of values,

$$s = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$$

```
sd(df$numerical_value)
```

[1] 0.2613574

• Variance:

$$var(x) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = s^2$$

```
1  s = sd(df$numerical_value)
2  s^2
[1] 0.06830769
1  Var(df$numerical_value) # From DescTools
[1] 0.06830769
```

11 Measures of Spread - Mean Absolute Deviation (MAD)

• Mean Absolute Deviation: (MAD) a measure of dispersion representing the average distance of each data point from the mean

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

```
mean(abs(df$numerical_value - mean(df$numerical_value)))
```

[1] 0.22

• MAD is sensitive to outliers.

12 Exericse - Major GPA vs. non-Major GPA

- Using the provided dataset, compare the GPA (the numerical_value column) of the student in their major courses versus the non-major courses. For this dataset, Computer Science courses are the major courses, and their course numbers start with "COMP".
- Hint: You might find the **startsWith()** function in R useful to filter rows based on the course number.

13 Solution - Major GPA vs. non-Major GPA

• Major Courses

We can search for the rows with major courses using startsWith()

```
flag = startsWith(df$course_number, "COMP")
flag
```

- [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
- [13] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
- [25] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
- [37] TRUE FALSE FALSE FALSE
 - TRUE : a major course
 - FALSE: a non-major course

```
major_courses = df[flag, ]
head(major_courses)
```

	year	semester	course_number	credits	letter_grade	numerical_value
1	Freshman	Fall	COMP100	3	A-	3.7
2	Freshman	Fall	COMP110	3	A	4.0
6	Freshman	Spring	COMP120	3	A	4.0
7	Freshman	Spring	COMP130	3	A-	3.7
11	Sophomore	Fall	COMP200	4	A	4.0
12	Sophomore	Fall	COMP210	4	A	4.0

```
major_gpa = median(major_courses$numerical_value)
major_gpa
```

[1] 4

• Non-Major Courses

To filter for non-major courses, we can just negate flag i.e.,

```
ı!flag
```

- [1] FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
- [13] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
- [25] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
- [37] FALSE TRUE TRUE TRUE

• TRUE : a non-major course • FALSE : a major course

nonmajor_courses = df[!flag,]

head(nonmajor_courses)

	year	semester	$course_number$	credits	$letter_grade$	numerical_value
3	Freshman	Fall	HUMA181	3	A-	3.7
4	Freshman	Fall	SOCI181	3	A-	3.7
5	Freshman	Fall	ELEC181	3	B+	3.3
8	Freshman	Spring	HUMA191	4	B+	3.3
9	Freshman	Spring	SOCI191	2	A-	3.7
10	Freshman	Spring	ELEC191	3	A-	3.7

```
nonmajor_gpa = median(nonmajor_courses$numerical_value)
nonmajor_gpa
```

[1] 3.7

• Using the summary() function

summary(major_courses\$numerical_value)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
3.3	3.7	4	3.8375	4	4

summary(nonmajor_courses\$numerical_value)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
3.3	3.7	3.7	3.741667	4	4