

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

February 2, 2012

Cubic Global Tracking Solutions 2560 Mission College Blvd, Suite 130 Santa Clara, CA 95054

Dear Bryan Shah,

Enclosed is the EMC Wireless test report for compliance testing of the Cubic Global Tracking Solutions, Fixed Mesh Gateway, FMG-3 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15, Subpart B for a Class A Digital Device and FCC Part 15 Subpart C for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Cubic Global Tracking Solutions\EMCS32890-FCC247 Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Test Report

for the

Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3

Tested under

the FCC Certification Rules
contained in
Title 47 of the CFR, Parts 15 Subpart B
for Class A Digital Devices
&
15.247 Subpart C
for Intentional Radiators

MET Report: EMCS32890-FCC247 Rev. 1

February 2, 2012

Prepared For:

Cubic Global Tracking Solutions 2560 Mission College Blvd, Suite 130 Santa Clara, CA 95054

> Prepared By: MET Laboratories, Inc. 3162 Belick St. Santa Clara, CA 95054

Electromagnetic Compatibility Criteria Test Report

for the

Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3

Tested under

the FCC Certification Rules
contained in
Title 47 of the CFR, Parts 15 Subpart B
for Class A Digital Devices
&
15.247 Subpart C
for Intentional Radiators

Anderson Soungpanya, Project Engineer Electromagnetic Compatibility Lab

Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Parts 15B, 15.247 under normal use and maintenance.

Shawn McMillen,

Wireless Manager, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø November 11, 2011		Initial Issue.
1	February 2, 2012	Revised to reflect engineer corrections

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	4
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	6
	E. Equipment Configuration	
	F. Support Equipment	8
	G. Ports and Cabling Information	9
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	10
	J. Modifications	10
	a) Modifications to EUT	10
	b) Modifications to Test Standard	10
	K. Disposition of EUT	10
III.	Electromagnetic Compatibility Criteria for Unintentional Radiators	11
	§ 15.107(a) Conducted Emissions Limits	
	§ 15.109(a) Radiated Emissions Limits	16
IV.	Electromagnetic Compatibility Criteria for Intentional Radiators	19
	§ 15.203 Antenna Requirement	20
	§ 15.207(a) Conducted Emissions Limits	21
	§ 15.247(a)(1) 20 dB Occupied Bandwidth	25
	§15.247(a)(1) Average Time of Occupancy (Dwell Time)	27
	§15.247(a)(1) Number of RF Channels	28
	§15.247(a)(1) RF Channel Separation	29
	§ 15.247(b) Peak Power Output	30
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	33
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(g)(h) Declaration Statements for FHSS	51
V.	Test Equipment	
VI.	Certification & User's Manual Information	55
	A. Certification Information	
	B. Label and User's Manual Information	60
VII	ICFS-003 Procedural & Labeling Requirements	62

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	2
Table 2. EUT Summary Table	
Table 3. References	
Table 4. Equipment Configuration	
Table 5. Support Equipment	
Table 6. Ports and Cabling Information	
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a)	
15.207(a)	
Table 8. Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)	
Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)	
Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	
Table 11. Radiated Emissions Limits, Test Results, 30 MHz – 1 GHz, FCC Limits	
Table 12. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 13. Conducted Emissions, 15.207(a), Phase Line, Test Results	
Table 14. Conducted Emissions, 15.207(a), Neutral Line, Test Results	
Table 15. Occupied Bandwidth, Test Results	
Table 16. Peak Power Output, Test Results	
Table 17. Restricted Bands of Operation	
Table 18. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
1aute 17. Test Equipment List	54
List of Plots	
Plot 1. Conducted Emission, Phase Line Plot	
Plot 2. Conducted Emission, Neutral Line Plot.	
Plot 3. Radiated Emissions, 30 MHz - 1 GHz, FCC Limits	
Plot 4. Conducted Emissions, 15.207(a), Phase Line	
Plot 5. Conducted Emissions, 15.207(a), Neutral Line	
Plot 6. 20 dB Occupied Bandwidth, Low Channel	
Plot 7. 20 dB Occupied Bandwidth, Mid Channel	
Plot 9. On Time, 6.4 Seconds	
Plot 10. On Time	
Plot 11. Number of Channels	
Plot 12. Channel Separation, Low Channel, Between Channels 1 & 2	
Plot 13. Channel Separation, Mid Channel, Between Channels 7 & 8	
Plot 14. Channel Separation, High Channel, Between Channels 15 & 16	
Plot 15. Peak Power Output, Low Channel	
Plot 16. Peak Power Output, Mid Channel	
Plot 17. Peak Power Output, High Channel	
Plot 18. Radiated Spurious Emissions, Transceiver Off, 30 MHz – 1 GHz	
Plot 19. Radiated Spurious Emissions, Transceiver On, Low Channel, 30 MHz – 1 GHz	
Plot 20. Radiated Spurious Emissions, Transceiver On, Mid Channel, 30 MHz – 1 GHz	
Plot 21. Radiated Spurious Emissions, Transceiver On, High Channel, 30 MHz – 1 GHz	
Plot 22. Radiated Spurious Emissions, Low Channel, Average, 1 GHz – 4.8 GHz	
Plot 23. Radiated Spurious Emissions, Low Channel, Peak, 1 GHz – 4.8 GHz	
Plot 24. Radiated Spurious Emissions, Low Channel, Average, 4.8 GHz – 18 GHz	37
Plot 25. Radiated Spurious Emissions, Low Channel, Peak, 4.8 GHz – 18 GHz	
Plot 26. Radiated Spurious Emissions, Mid Channel, Average, 1 GHz – 4.8 GHz	
Plot 27. Radiated Spurious Emissions, Mid Channel, Peak, 1 GHz – 4.8 GHz	38

Plot 28. Radiated Spurious Emissions, Mid Channel, Average, 4.8 GHz – 18 GHz	39
Plot 29. Radiated Spurious Emissions, Mid Channel, Peak, 4.8 GHz – 18 GHz	39
Plot 30. Radiated Spurious Emissions, High Channel, Average, 1 GHz - 4.8 GHz	39
Plot 31. Radiated Spurious Emissions, High Channel, Peak, 1 GHz – 4.8 GHz	40
Plot 32. Radiated Spurious Emissions, High Channel, Average, 4.8 GHz - 18 GHz	40
Plot 33. Radiated Spurious Emissions, High Channel, Peak, 4.8 GHz – 18 GHz	40
Plot 34. Radiated Restricted Band Edge, Low Channel, Average	42
Plot 35. Radiated Restricted Band Edge, Low Channel, Peak	42
Plot 36. In-Band Average Measurement, High Channel	43
Plot 37. In-Band Delta Measurement, High Channel	43
Plot 38. In-Band Peak Measurement, High Channel	
Plot 39. Conducted Spurious Emissions, Low Channel, 30 MHz – 1 GHz	
Plot 40. Conducted Spurious Emissions, Low Channel, 1 GHz – 26.5 GHz	
Plot 41. Conducted Spurious Emissions, Mid Channel, 30 MHz - 1 GHz	
Plot 42. Conducted Spurious Emissions, Mid Channel, 1 GHz – 26.5 GHz	
Plot 43. Conducted Spurious Emissions, High Channel, 30 MHz – 1 GHz	
Plot 44. Conducted Spurious Emissions, High Channel, 1 GHz – 26.5 GHz	
Plot 45. Conducted Band Edge, Low Channel	
Plot 46. Conducted Band Edge, High Channel	50
List of Figures	
Figure 1. Block Diagram of Test Configuration	7
Figure 2. Block Diagram, Occupied Bandwidth Test Setup	25
Figure 3. Peak Power Output Test Setup	30
Figure 4. Block Diagram, Conducted Spurious Emissions Test Setup	47
I ist of Dhoto awards	
List of Photographs	
Photograph 1. Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3	
Photograph 2. Conducted Emissions, Test Setup	
Photograph 3. Radiated Emission, Test Setup	
Photograph 4. Conducted Emissions, 15.207(a), Test Setup	
Photograph 5. Radiated Spurious Emissions, Test Setup	
Photograph 6. Radiated Spurious Emissions, Test Setup, 30 MHz – 1 GHz	
Photograph 7. Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz	46

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
$dB\mu V/m$	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
H	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	H ert z
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry microhenry
μ	microf arad
μs	microseconds en
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the Fixed Mesh Gateway, FMG-3. Cubic Global Tracking Solutions should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Fixed Mesh Gateway, FMG-3, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Cubic Global Tracking Solutions, purchase order number PO20110906.01. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference 47 CFR Part 15.247:2005	Description	Compliance	
47 CFR Part 15.107 (a)	Conducted Emission Limits for a Class A Digital Device	Compliant	
47 CFR Part 15.109 (a)	Radiated Emission Limits for a Class A Digital Device	Compliant	
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	Compliant	
Title 47 of the CFR, Part 15 §15.207(a)	Conducted Emission Limits	Compliant	
Title 47 of the CFR, Part 15 §15.247(a)(1)	20 dB Occupied Bandwidth	Compliant	
Title 47 of the CFR, Part 15 §15.247(a)(1)	Average Time of Occupancy (Dwell Time)	Compliant	
Title 47 of the CFR, Part 15 §15.247(a)(1)	Number of RF Channels	Compliant	
Title 47 of the CFR, Part 15 §15.247(a)(1)	RF Channel Separation	Compliant	
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant	
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions	Compliant	
Title 47 of the CFR, Part 15 §15.247(d)	Spurious Conducted Emissions	Compliant	
Title 47 of the CFR, Part 15 §15.247(i)	Maximum Permissible Exposure (MPE)	Compliant	

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Cubic Global Tracking Solutions to perform testing on the Fixed Mesh Gateway, FMG-3, under Cubic Global Tracking Solutions's purchase order number PO20110906.01.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Cubic Global Tracking Solutions, Fixed Mesh Gateway, FMG-3.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Fixed Mesh Gateway, FMG-3				
Model(s) Covered:	Fixed Mesh Gateway, FMG-3				
	Primary Power: 120 VAC, 60 Hz				
	FCC ID: YVDFMG3				
EUT	Type of Modulations:	DSSS			
Specifications:	Equipment Code:	DSS			
	Peak RF Output Power:	2.132 dBm			
	EUT Frequency Ranges: 2405 – 2480 MHz				
Analysis:	The results obtained relate only to the item(s) tested.				
	Temperature: 15-35° C No	ovember 3, 2011			
Environmental Test Conditions:	Relative Humidity: 30-60%				
	Barometric Pressure: 860-	1060 mbar			
Evaluated by:	Anderson Soungpanya				
Report Date(s):	February 2, 2012				

Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies	
CFR 47, Part 15, Subpart B	Electromagnetic Compatibility: Criteria for Radio Frequency Devices	
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI/NCSL Z540-1-1994	Calibration Laboratories and Measuring and Test Equipment - General Requirements	
ANSI/ISO/IEC 17025:2000	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick St., Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3, Equipment Under Test (EUT), is a wall-powered Single Board Computer with a hard-wired internet connection and a 2.4GHz radio. The SBC used in the FMG-3 is PC-Engine's ALIX3D2. This SBC has been authorized (under a Declaration of Conformity) with the FCC as a Class B digital device and complies with part 15 limits. It also has CE certification and has been tested to EN 61000-6-3 & 61000-6-2 standards. Per the datasheet, any CE testing must be done as a complete product, while the FCC testing on the CPU board can be leveraged for use in the complete product's certification as long as it is used with other FCC-certified modules. The mesh radio used in the FMG-3 is not FCC-certified.

Photograph 1. Cubic Global Tracking Solutions Fixed Mesh Gateway, FMG-3

Figure 1. Block Diagram of Test Configuration

E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Serial Number	
1	Fixed Mesh Gateway	03-1036-00	461100013	
2	Psuedo Power over Ethernet Injector	42-0099-00	N/A	
3	15V Wall-Wart	50-0013-00	N/A	
4 Weatherproof Ethernet Cable		05-5046-00	N/A	
5 Weatherproof Roll-over Cable		06-5045-00	N/A	
6	2.4GHz Antenna	61-0086-00	N/A	

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer Model Number		Serial Number
7	USB-to-Serial Converter	Keyspan	USA-19HS	N/A
8	USB Cable, A-B, 6'	Generic	N/A	N/A
9	Ethernet Cable, Straightthrough, 6'	Generic	N/A	N/A
10	RSU-3	CGTS	02-0083-05	801000271
11	Magnet	CGTS	02-0070-01	

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
1.1	Antenna Port	The antenna is intended to screw directly onto this port	0	N/A	N/A	N/A
1.2	Ethernet Port	An Ethernet cable provides power and internet connectivity to the FMG-3	1	7.62	N	N/A
1.3	Console Port	A roll-over cable allows a user access to the FMG-3's consol, thus allowing the user to change the FMG-3's configuration as necessary	1	1.8288	N	N/A
2.1	DC	Power input to be injected onto the POE port	1	1.524	N	N/A
2.2	POE	Ethernet output to the FMG-3, carries power and internet data	1	7.62	N	N/A
2.3	LAN	Internet data input to be connected to the POE port	1	1.8288	N	N/A

Table 6. Ports and Cabling Information

H. Mode of Operation

Normally, the FMG-3 only has one mode of operation: the mesh radio in the FMG-3 periodically sends beacon transmissions and any of its children mesh nodes that receive the beacon will send data to it. The mesh radio then forwards that data to the Single-Board Computer for processing. Finally, the SBC sends the data to a web server through a hard-wired Ethernet connection.

For this testing, a special load of test software has been loaded onto the mesh radio within the FMG-3, which is controlled by test software that has been loaded on this, and only this, FMG-3. The test software prevents the FMG-3 from automatically mating to mesh nodes in the vicinity and allows the user to change the transmission power levels of the mesh radio, the operating frequency of the mesh radio and to put the mesh radio's receiver and transmitter into special operating modes.

I. Method of Monitoring EUT Operation

For the entirety of this testing, the FMG-3's mesh radio will be controlled through the FMG-3's serial console. The user will know that the FMG-3 and mesh radio is at least functional for as long as they can communicate to the mesh radio.

The user can tell that the mesh radio is behaving as it should if its behavior matches the expected behavior as described in the test mode usage document. I.E. If the user masks a particular channel, then the FMG-3 should no longer transmit on that channel.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Cubic Global Tracking Solutions upon completion of testing.

III. Electromagnetic Compatibility Criteria for Unintentional Radiators

Electromagnetic Compatibility Criteria

§ 15.107 Conducted Emissions Limits

Test Requirement(s):

15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

15.107 (b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

15.207(a), Except as shown in paragraphs (b) and (c) of this section*, charging, AC adapters or battery eliminators the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the Table 7, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency range	Class A Cond (dB ₁		*Class B Conducted Limits (dBµV)	
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average
* 0.15- 0.45	79	66	66 - 56	56 - 46
0.45 - 0.5	79	66	56	46
0.5 - 30	73	60	60	50

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz.

* -- Limits per Subsection 15.207(a).

Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and 15.207(a)

Test Results: The EUT was compliant with the Class A requirement(s) of this section. Measured emissions

were below applicable limits.

Test Engineer(s): Joe Vang

Test Date(s): 09/15/11

Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
110VAC Line	0.155	48.69	79	-30.31	Pass	34.66	66	-31.34	Pass
110VAC Line	0.175	47.2	79	-31.8	Pass	32.91	66	-33.09	Pass
110VAC Line	.195	50.18	79	-28.82	Pass	38.39	66	-27.61	Pass
110VAC Line	0.23	41.43	79	-37.57	Pass	34.22	66	-31.78	Pass
110VAC Line	3.375	36.75	73	-36.25	Pass	28.29	60	-31.71	Pass
110VAC Line	16.325	44.02	73	-28.98	Pass	32.95	60	-27.05	Pass

Table 8. Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)

Plot 1. Conducted Emission, Phase Line Plot

Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
110VAC Neutral	0.15	49.48	79	-29.52	Pass	36.04	66	-29.96	Pass
110VAC Neutral	0.175	47.59	79	-31.41	Pass	33.37	66	-32.63	Pass
110VAC Neutral	0.185	46.07	79	-32.93	Pass	33.65	66	-32.35	Pass
110VAC Neutral	0.2	45.16	79	-33.84	Pass	33.11	66	-32.89	Pass
110VAC Neutral	0.59	41.24	73	-31.76	Pass	34.76	60	-25.24	Pass
110VAC Neutral	3.205	37.82	73	-35.18	Pass	30.21	60	-29.79	Pass

Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)

Plot 2. Conducted Emission, Neutral Line Plot

Conducted Emission Limits Test Setup

Photograph 2. Conducted Emissions, Test Setup

Radiated Emission Limits

§ 15.109 Radiated Emissions Limits

Test Requirement(s):

15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 10.

15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 10.

	Field Strength (dBμV/m)						
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (a),Class B Limit (dBμV) @ 3m					
30 - 88	39.00	40.00					
88 - 216	43.50	43.50					
216 - 960	46.40	46.00					
Above 960	49.50	54.00					

Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures:

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3 m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

Test Results:

The EUT was compliant with the Class A requirement(s) of this section. Measured emissions were below applicable limits.

Test Engineer(s):

Joe Vang

Test Date(s):

09/15/11

Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
143.972	V	210.7	100	57.6	10.606	36.123	0	0	32.083	43.5	-11.417
165.627	V	0	100	56.98	9.7	35.941	0	0	30.739	43.5	-12.761
232.853	V	0	100	55.91	10.928	35.369	0	0	31.469	46.4	-14.931
331.247	Н	294	261.3	61.35	13.65	35.014	0	0	39.986	46.4	-6.414
466.023	Н	215	201.4	51.7	16.4	34.416	0	0	33.684	46.4	-12.716
860.891	V	124.2	178.7	50.01	21.082	32.912	0	0	38.18	46.4	-8.22

Table 11. Radiated Emissions Limits, Test Results, 30 MHz - 1 GHz, FCC Limits

Plot 3. Radiated Emissions, 30 MHz - 1 GHz, FCC Limits

Radiated Emission Limits Test Setup

Photograph 3. Radiated Emission, Test Setup

IV. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15,203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. The antenna is a Reverse N Connector.

Test Engineer(s): Anderson Soungpanya

Test Date(s): 10/21/11

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBμV)				
(MHz)	Quasi-Peak	Average			
* 0.15- 0.45	66 - 56	56 - 46			
0.45 - 0.5	56	46			
0.5 - 30	60	50			

Table 12. Conducted Limits for Intentional Radiators from FCC Part 15 § 15,207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2003 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT was compliant with this requirement.

Test Engineer(s): Joe Vang

Test Date(s): 09/15/11

15.207(a) Conducted Emissions Test Results

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
AC Line	0.155	48.77	65.728	-16.958	Pass	34.83	55.728	-20.898	Pass
AC Line	0.235	47.82	62.281	-14.461	Pass	34.67	52.281	-17.611	Pass
AC Line	0.265	43.89	61.286	-17.396	Pass	29.62	51.286	-21.666	Pass
AC Line	0.595	44.58	56	-11.42	Pass	32.64	46	-13.36	Pass
AC Line	14.195	40.65	60	-19.35	Pass	27.77	50	-22.23	Pass
AC Line	16.095	45.38	60	-14.62	Pass	32.96	50	-17.04	Pass

Table 13. Conducted Emissions, 15.207(a), Phase Line, Test Results

Plot 4. Conducted Emissions, 15.207(a), Phase Line

15.207(a) Conducted Emissions Test Results

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
AC Neutral	0.16	54.11	65.465	-11.355	Pass	34.33	55.465	-21.135	Pass
AC Neutral	0.175	52.96	64.723	-11.763	Pass	33.93	54.723	-20.793	Pass
AC Neutral	0.185	53.64	64.263	-10.623	Pass	32.57	54.263	-21.693	Pass
AC Neutral	0.2	44.74	63.617	-18.877	Pass	33.53	53.617	-20.087	Pass
AC Neutral	0.595	40.42	56	-15.58	Pass	33.88	46	-12.12	Pass
AC Neutral	1.17	41.04	56	-14.96	Pass	37.39	46	-8.61	Pass

Table 14. Conducted Emissions, 15.207(a), Neutral Line, Test Results

Plot 5. Conducted Emissions, 15.207(a), Neutral Line

15.207(a) Conducted Emissions Test Setup Photo

Photograph 4. Conducted Emissions, 15.207(a), Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1) 20 dB Occupied Bandwidth

Test Requirements: § 15.247(a): Operation under the provisions of this section is limited to frequency hopping and

digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. For DTS, the minimum 6 dB bandwidth shall be at least 500 kHz. For frequency hopping systems, the EUT shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping

channel, whichever is greater.

Test Procedure: The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a

RBW approximately equal to 1% of the total emission bandwidth. The 20 dB bandwidth was

measured and recorded.

Test Results The EUT was compliant with § 15.247 (a)(1).

Test Engineer(s): Anderson Soungpanya

Test Date(s): 09/16/11

Figure 2. Block Diagram, Occupied Bandwidth Test Setup

Occupied Bandwidth						
Channel	Frequency (MHz)	20dB Bandwidth (MHz)				
Low	2405	2.846				
Mid	2445	2.795				
High	2480	2.814				

Table 15. Occupied Bandwidth, Test Results

Occupied Bandwidth

Plot 6. 20 dB Occupied Bandwidth, Low Channel

Plot 7. 20 dB Occupied Bandwidth, Mid Channel

Plot 8. 20 dB Occupied Bandwidth, High Channel

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1) Average Time of Occupancy (Dwell Time)

Remarks:

The Average time of occupancy on any channel shall not be greater than 400ms within a period of 400ms multiplied by the number of hopping channelings.

The Average time of occupancy in the specified 6.4 seconds (16*0.4) is equal to number of pulses in 6.4 seconds * the pulse width.

# of Channels	Burst Duration (ms)	Number of Pulses in 6.4 sec.	Average Time of Occupancy (ms)	Limit (ms)	Margin (ms)
16	0.7035	5	3.5175	400	-396.483

Plot 9. On Time, 6.4 Seconds

Plot 10. On Time

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1) Number of RF Channels

Plot 11. Number of Channels

Remarks:

Total hopping channels = 16. The EUT meets the specifications of Section 15.247(a) (1) (iii) for Number of Hopping Channels.

§ 15.247(a)(1) RF Channel Separation

Plot 12. Channel Separation, Low Channel, Between Channels 1 & 2

Plot 13. Channel Separation, Mid Channel, Between Channels 7 & 8

Plot 14. Channel Separation, High Channel, Between Channels 15 & 16

§ 15.247(b) Peak Power Output

Test Requirements:

§15.247(b)(1): The maximum peak output power of the intentional radiator shall not exceed 0.125 Watts for frequency hopping systems operating in the 2400-2483.5 MHz band.

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band and using a point to point application may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

Test Procedure:

The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the low, mid and high channels of each band at the maximum power level.

Test Results:

The EUT was compliant with the Peak Power Output limits of §15.247(b).

Test Engineer(s):

Anderson Soungpanya

09/16/11

Test Date(s):

EUT Attenuator Spectrum Analyzer

Figure 3. Peak Power Output Test Setup

Peak Power Output Test Results

Peak Conducted Output Power				
Carrier	rrier Frequency Measured Peak Output Po			
Channel	(MHz)	dBm		
Low	2405	2.132		
Mid	2445	1.820		
High	2480	1.394		

Table 16. Peak Power Output, Test Results

Peak Power Output Test Results

Plot 15. Peak Power Output, Low Channel

Plot 16. Peak Power Output, Mid Channel

Plot 17. Peak Power Output, High Channel

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Table 17. Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 - 0.510 MHz.

² Above 38.6

Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 18.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits		
	(dBµV) @ 3m		
30 - 88	40.00		
88 - 216	43.50		
216 - 960	46.00		
Above 960	54.00		

Table 18. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedure:

The transmitter was set to the mid channel at the highest output power and placed on a 0.8 m high wooden table inside in a semi-anechoic chamber. Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast with 1 m to 4 m height to determine worst case orientation for maximum emissions. Measurement were repeated the measurement at the low and highest channels.

For frequencies from 30 MHz to 1 GHz, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

In accordance with §15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

EUT Field Strength Final Amplitude = Raw Amplitude - Preamp gain + Antenna Factor + Cable Loss - Distance Correction Factor

Test Results: The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d). No

Spurious Emissions were found above 18GHz.

Test Engineer(s): Anderson Soungpanya

Test Date(s): 09/16/11

Radiated Spurious Emissions Test Results

Remarks:

Plot 18 was measured with the transmitter of the radio powered off. Spurious at 331MHz is a spurious of the digital emissions of the EUT.

Plot 18. Radiated Spurious Emissions, Transceiver Off, 30 MHz – 1 GHz

Plot 19. Radiated Spurious Emissions, Transceiver On, Low Channel, 30 MHz - 1 GHz

Plot 20. Radiated Spurious Emissions, Transceiver On, Mid Channel, 30 MHz - 1 GHz

Plot 21. Radiated Spurious Emissions, Transceiver On, High Channel, 30 MHz - 1 GHz

Plot 22. Radiated Spurious Emissions, Low Channel, Average, 1 GHz – 4.8 GHz

Plot 23. Radiated Spurious Emissions, Low Channel, Peak, 1 GHz - 4.8 GHz

Plot 24. Radiated Spurious Emissions, Low Channel, Average, 4.8 GHz – 18 GHz

Plot 25. Radiated Spurious Emissions, Low Channel, Peak, 4.8 GHz – 18 GHz

Plot 26. Radiated Spurious Emissions, Mid Channel, Average, 1 GHz - 4.8 GHz

Plot 27. Radiated Spurious Emissions, Mid Channel, Peak, 1 GHz – 4.8 GHz

Plot 28. Radiated Spurious Emissions, Mid Channel, Average, 4.8 GHz – 18 GHz

Plot 29. Radiated Spurious Emissions, Mid Channel, Peak, 4.8 GHz - 18 GHz

Plot 30. Radiated Spurious Emissions, High Channel, Average, 1 GHz – 4.8 GHz

Plot 31. Radiated Spurious Emissions, High Channel, Peak, 1 GHz – 4.8 GHz

Plot 32. Radiated Spurious Emissions, High Channel, Average, 4.8 GHz – 18 GHz

Plot 33. Radiated Spurious Emissions, High Channel, Peak, 4.8 GHz – 18 GHz

Radiated Band Edge Measurements

Test Procedures: The transmitter was turned. Measurements were performed of the low and high Channels. The

EUT was rotated orthogonally through all three axes. Plots shown are corrected for both

antenna correction factor and distance.

Reduced Band Edge Procedures:

STEP 1 - The field strength of the fundamental emission was measured using a 1MHz RBW and a 3MHz VBW for the peak value and a 1MHz RBW and a 10Hz VBW for the average value.

STEP 2 – A spectrum analyzer span was incorporated to encompass both the peak of the fundamental emission and the band edge emission under investigation. The RBW was set to 30 kHz and the VBW to 3x the RBW. The delta between the peak levels of the fundamental emission at the relevant band edge emission was measured and recorded.

STEP 3 – The resulting delta value was used to determine compliance.

Plot 34. Radiated Restricted Band Edge, Low Channel, Average

Plot 35. Radiated Restricted Band Edge, Low Channel, Peak

Plot 36. In-Band Average Measurement, High Channel

Plot 37. In-Band Delta Measurement, High Channel

Plot 38. In-Band Peak Measurement, High Channel

Emission	Corrected Amplitude (dBuV/m)	Delta Method (dB)	Band Edge Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
Peak	98.80	47.14	51.66	74	22.34
Avg	80.40	47.14	33.26	54	20.74

Radiated Spurious Emissions Test Setup

Photograph 5. Radiated Spurious Emissions, Test Setup

Photograph 6. Radiated Spurious Emissions, Test Setup, 30 MHz - 1 GHz

Photograph 7. Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz

§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge

Test Requirement:

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure:

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

A conducted sample was provided fitted with reverse N connector. The EUT was connected to a spectrum analyzer using a 20 dB Attenuator. Testing was performed on Low, Mid and High Channels. A resolution bandwidth of 100kHz and video bandwidth of 300kHz were utilized. The plots are correct for cable loss and attenuator used.

For conducted band edge, a delta measurement was taken from the peak of the fundamental to the Band edge then compared to the limit.

See following pages for detailed test results with RF Conducted Spurious Emissions.

Test Results: The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).

Test Engineer(s): Anderson Soungpanya

Test Date(s): 09/16/11

Figure 4. Block Diagram, Conducted Spurious Emissions Test Setup

Conducted Spurious Emissions Test Results

Plot 39. Conducted Spurious Emissions, Low Channel, 30 MHz - 1 GHz

Plot 40. Conducted Spurious Emissions, Low Channel, 1 GHz - 26.5 GHz

Plot 41. Conducted Spurious Emissions, Mid Channel, 30 MHz - 1 GHz

Plot 42. Conducted Spurious Emissions, Mid Channel, 1 GHz - 26.5 GHz

Plot 43. Conducted Spurious Emissions, High Channel, 30 MHz - 1 GHz

Plot 44. Conducted Spurious Emissions, High Channel, 1 GHz - 26.5 GHz

Conducted Band Edge Test Results

Plot 45. Conducted Band Edge, Low Channel

Plot 46. Conducted Band Edge, High Channel

§ 15.247(g)(h) Declaration Statements for FHSS

The hopping sequence is pseudorandom.

Each channel is used equally, on average.

The receiver does not hop in sync with the transmitter. The transmitter hops pseudo randomly while the receiver scans all 16 channels in rapid sequence.

§ 15.247(i) Maximum Permissible Exposure

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this

section shall be operated in a manner that ensures that the public is not exposed to

radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE)

Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of

this chapter.

MPE Limit Calculation: $\overline{\text{EUT}}$'s operating frequencies @ $\underline{2400-2483.5 \text{ MHz}}$; highest conducted power = 2.132 dBm (peak) therefore, **Limit for Uncontrolled exposure:** $1 \text{ }m\text{W/cm}^2 \text{ }$ **or** $10 \text{ }W/\text{m}^2 \text{ }$

EUT maximum antenna gain = 5.5 dBi.

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \sqrt{PG / 4\pi S}$

where, $S = Power Density (1 mW/cm^2)$

P = Power Input to antenna (1.63mW)

G = Antenna Gain (3.55 numeric)

 $R = (1.63*3.55/4*3.14*1.0)^{1/2} = (5.80/12.56)^{1/2} = 0.68cm$ $S = 1.63*3.55/4*3.14*20^2 = 5.80/5024 = 0.0012mW/cm^2$

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2583	SPECTRUM ANALYZER	AGILENT	E4447A	3/18/2011	3/18/2012
1S2678	LISN, DUAL-LINE V-NETWORK	TESEQ	NNB 51	12/1/2010	12/1/2011
1S2399	TURNTABLE CONTROLLER	SUNOL SCIENCE	SC99V	NO CALIBRATION REQUIRED	
1S2481	10M CHAMBER	ETS-LINDGREN	DKE 8X8 DBL	11/6/2010	11/6/2011
1S2482	5 METER CHAMBER	PANASHIELD	641431	11/13/2010	11/13/2011
1S2485	BILOG ANTENNA	TESEQ	CBL6112D	5/12/2011	5/12/2012
1S2499	MULTI DEVICE CONTROLLER	ETS	2090	NO CALIBRATION REQUIRED	
1S2421	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESIB7	6/17/2011	6/17/2012
1S2460	SPECTRUM ANALYZER	AGILENT	E4407B	7/12/2011	7/12/2012
1S2603	HORN ANTENNA	EMCO	3117	4/15/2011	4/15/2013
1S2198	HORN ANTENNA	EMCO	3115	9/29/2011	9/29/2012
N/A	HIGH PASS FILTER	MICRO-TRONICS	HPM13147	SEE NOTE	N/A
1S2521	THERMO-HYGROMETER	FISHER SCIENTIFIC	11-661-7D	12/2/2009	12/2/2011
N/A	DC-18GHZ COMBINER	MINI CIRCUITS	ZFRSC- 183-S+	SEE NOTE	N/A
1S2523	PREAMP (1-26.5GHZ)	AGILENT	8449B	SEE NOTE	N/A

Table 19. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

MET Report: EMCS32890-FCC247 Rev. 1 © 2012, MET Laboratories, Inc. Page 56 of 63

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

MET Report: EMCS32890-FCC247 Rev. 1 © 2012, MET Laboratories, Inc. Page 59 of 63

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

MET Report: EMCS32890-FCC247 Rev. 1 © 2012, MET Laboratories, Inc.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

Section 6.1: A record of the measurements and results, showing the date that the measurements

were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination

on the request of the Minister.

Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus

to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's

manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

MET Report: EMCS32890-FCC247 Rev. 1

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report