Prova del 30-08-2019 1

## Problema N.1



Il sistema articolato rappresentato in figura è posto nel piano verticale. L'asta AB, avente massa M, momento d'inerzia J e lunghezza L, è incernierata a terra in A e all'altra estremità ad una seconda asta BC di lunghezza L e priva di massa. Tale asta, pone in rotazione un disco avente raggio RD e momento d'inerzia  $J_D$  che a sua volta è connesso, tramite fune inestensibile, ad un corpo che striscia su un piano inclinato avente pendenza di 45° rispetto all'asse orizzontale e coefficiente di attrito dinamico  $f_d$ . Nota la velocità angolare  $\omega$  dell'asta AB, considerata costante, per la posizione in figura si chiede di calcolare:

- 1. i vettori velocità e accelerazione della massa  $\mathbf{m}$  ( $\mathbf{v}_{\mathbf{m}}$ ,  $\mathbf{a}_{\mathbf{m}}$ );
- 2. la coppia **Cm**, da applicare all'asta **AB**, necessaria per garantire la condizione di moto assegnata.

## Problema N.2

 $f_d = 0.2$ 



Il sistema rappresentato in figura è soggetto alla sola forza F. Si chiede di calcolare:

- Le reazioni vincolari a terra e le reazioni vincolari interne.
- Le azioni interne relative all'asta AD.

## Problema N.3



Il veicolo di massa M rappresentato in figura è posto nel piano verticale ed avanza in discesa lungo un piano inclinato avente pendenza  $\alpha$  rispetto al piano orizzontale. Il veicolo è movimentato tramite un motore avente un momento d'inerzia  $J_m$  e in grado di garantire una coppia  $C_m$ . Tale motore è connesso ad una coppia di ruote di raggio R e momento d'inerzia J tramite una trasmissione, di cui sono noti il rapporto di trasmissione  $\tau$  e i rendimenti di moto diretto  $\eta_D$  e retrogrado  $\eta_R$ . Si consideri una forza aerodinamica costante F agente sul baricentro del veicolo ed un coefficiente di attrito volvente  $\mathbf{f}_{v}$  dovuto al contatto ruota-piano inclinato.

Si chiede di calcolare:

- 1. la coppia  $C_m$  del motore considerando il veicolo a regime;
- 2. la coppia C<sub>m</sub> necessaria affinché il veicolo abbia un'accelerazione pari a 3 m/s<sup>2</sup>;