

CROISEMENT DE DEUX VARIABLES

1ère STMG Cours

OBJECTIFS 3

- Savoir réaliser et interpréter des tableaux croisés de données sur deux critères à partir de données brutes : tableaux croisés d'effectifs et de fréquences.
- Déterminer une fréquence conditionnelle, une fréquence marginale.

Tableaux croisés d'effectifs

1. Vocabulaire

À RETENIR 99

Définitions

Une série statistique étudiant deux caractères X et Y est une série statistique à deux variables. On la note (X;Y).

- Les valeurs prises par X sont généralement notées x_1, \ldots, x_k et celles prises par Y sont généralement notées y_1, \ldots, y_m .
- L'**effectif** correspondant au couple $(x_i; y_i)$ est noté $n_{i,j}$, et N désigne l'**effectif total**.
- Les **effectifs marginaux** correspondent aux effectifs de chaque caractère (à lire dans une case «Total»).

EXEMPLE •

Une agence de voyage propose à ses 400 clients trois destinations : Madrid, Berlin et Milan. Tous les clients choisissent une destination et une seule. La moitié d'entre eux choisit Madrid, et 30 % des personnes partent pour Berlin. Une enquête est réalisée à leur retour de voyage. 8 clients partis pour Milan se disent décus, alors que 80 % des clients ayant fait le voyage pour Berlin sont satisfaits. Par ailleurs, l'enquête a montré que 72 % des personnes étaient satisfaites de leur voyage.

Dans cette situation:

- X désigne le résultat de l'enquête (x_1 sont les clients satisfaits et x_2 les clients déçus) et Y la destination du voyage (y_1 est la destination Madrid, y_2 est Berlin et y_3 est Milan).
- $n_{1,1}$ est le nombre de client satisfaits de leur voyage à Madrid.
- N vaut 400.
- L'effectif marginal de y_1 est le nombre de personnes parties à Madrid, soit 200 clients.

2. Construction et lecture

À RETENIR 99

Méthode

Un **tableau croisé d'effectifs** permet d'étudier une série à deux variables (X;Y). Pour le construire :

- 1. À l'intersection de la ligne i et de la colonne j, le tableau indique le nombre $n_{i;j}$ d'individus présentant simultanément la valeur x_i du caractère X et la valeur y_i du caractère Y.
- **2.** On ajoute ensuite une ligne et une colonne « Total » indiquant le nombre d'individus présentant chacune des valeurs du caractère.
- **3.** À l'intersection de la ligne et de la colonne « Total », on indique l'effectif total, c'est-à-dire le nombre d'individus de la population de référence.

EXERCICE 1

1. À partir de l'exemple précédent, compléter le tableau suivant.

(X;Y)	$y_1 = Madrid$	$y_2 = Berlin$	$y_3 = Milan$	Total
x_1 = Clients satisfaits				
x_2 = Clients déçus				
Total				

2.	a.	Que vaut $n_{1;3}$?	• • • • •		• • •				• • •	· • •		• •		• • •	• • •	• • •	• • •	· • •	· • • •	• •	• • •			• • •		• •	
----	----	----------------------	-----------	--	-------	--	--	--	-------	-------	--	-----	--	-------	-------	-------	-------	-------	---------	-----	-------	--	--	-------	--	-----	--

b.	Donner une interprétation de $n_{1;3}$ dans le contexte de l'exercice.	

3	Quel est l'effectif des clients a	vant fait le voyage à Rerl	in et étant décus?	
J.	Quei est i checul des chelles d	yanii lan ic voyage a ben	m et etam acçus	

4.	a.	Ouel est l'effectif marginal de la valeur x_2 ?	

	•	O	L
b.	Donner une interpré	étation de cet effect	tif marginal dans le contexte de l'exercice

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/croisement-deux-variables/#correction-1.

Ш

Fréquences marginales et conditionnelles

1. Fréquences

À RETENIR 99

Définition

Soit (X;Y) une série à deux variables. On considère l'effectif $n_{i;j}$ d'individus présentant simultanément la valeur x_i du caractère X et y_j du caractère Y. On note N l'effectif total de la série. Alors, la **fréquence** $f_{i;j}$ d'individus présentant simultanément la valeur x_i du caractère X et y_i du caractère Y est

$$f_{i;j} = \frac{n_{i;j}}{N}$$

À RETENIR 99

Méthode

On peut utiliser un **tableau croisé de fréquences** pour étudier les fréquences d'une série à deux variables (X;Y). Il se construit comme un tableau croisé d'effectifs. Mais, à l'intersection de la ligne i et la colonne j, on indique la fréquence $f_{i;j}$ d'individus présentant simultanément la valeur x_i du caractère X et la valeur y_i du caractère Y.

EXEMPLE •

On s'intéresse à la couleur de certains vins des régions Bordeaux et Bourgogne. On a un échantillon de 19 vins avec 10 Bordeaux, dont 7 sont rouges, et 5 Bourgognes blancs. On peut construire le tableau croisé d'effectifs.

(X;Y)	y_1 = Bordeaux	y_2 = Bourgogne	Total
$x_1 = Blanc$	4	5	9
$x_2 = \text{Rouge}$	7	3	10
Total	8	11	19

Et on peut en déduire un tableau croisé de fréquences.

(X;Y)	$y_1 = Bordeaux$	y_2 = Bourgogne	Total
$x_1 = Blanc$	$\frac{4}{19} \approx 0.21$	$\frac{5}{19} \approx 0.26$	$\frac{9}{19} \approx 0.47$
$x_2 = \text{Rouge}$	$\frac{7}{19} \approx 0.37$	$\frac{3}{19} \approx 0.16$	$\frac{10}{19} \approx 0,53$
Total	$\frac{8}{19} = 0,42$	$\frac{11}{19} = 0,58$	1

Par exemple, $f_{2;1}$ correspond à la fréquence de Bordeaux rouges : il y en a 42 %.

2. Fréquences marginales

À RETENIR 99

Définition

Les **fréquences marginales** correspondent aux fréquences de chaque caractère. Dans un tableau croisé de fréquences, ce sont les fréquences indiquées dans les cases « Total ».

EXERCICE 2

1. Construire le tableau croisé de fréquences de l'exercice précédent.

2. Quel est le pourcentage de clients satisfaits?

3. Fréquences conditionnelles

À RETENIR 99

Définition

La **fréquence conditionnelle** de la valeur x_i d'un caractère X par rapport à la valeur y_j du second caractère Y est la proportion des individus présentant également la valeur x_i parmi tous ceux présentant la valeur y_j .

À RETENIR 99

Méthode

On peut utiliser un **tableau de fréquences conditionnelles** pour étudier des fréquences conditionnelles. Pour le construire, on part du tableau croisé d'effectifs, on sélectionne la ligne ou colonne voulue, et on divise chaque case par la case « Total ».

EXEMPLE 🔋

On reprend l'exemple précédent d'étude de vins. Voici le tableau de fréquences conditionnelles de Y par rapport à x_2 = Rouge.

Y = Vin	y_1 = Bordeaux	y_2 = Bourgogne	Total
$x_2 = \text{Rouge}$	$\frac{7}{10}$	$\frac{3}{10}$	1

EXERCICE 3

Lors d'une compétition de tennis, on a relevé que sur 126 compétiteurs, 46 sont des femmes. Parmi ces femmes, 21 sont classées. Parmi les compétiteurs hommes, 53 sont classés.

1. Construire un tableau croisé d'effectifs représentant la situation.

- 2. Donner le tableau des fréquences conditionnelles du classement par rapport aux hommes (arrondir à 0,01 près).

