## Áreas y Volúmenes

Áreas y Volúmenes
Departamento de Matemáticas

http://selectividad.intergranada.com

**01.-** Completa la siguiente tabla convirtiendo unidades:

| Hm <sup>3</sup> | m <sup>3</sup> | ml   | dal  | dm <sup>3</sup> |
|-----------------|----------------|------|------|-----------------|
| 12,8            |                |      |      |                 |
|                 | 0,14           |      |      |                 |
|                 |                |      | 1,16 |                 |
|                 |                | 0,03 |      |                 |
|                 |                |      |      | 1,004           |
|                 |                |      | 2500 |                 |
|                 |                | 475  |      |                 |

**02.-** Calcula el valor de la diagonal de un ortoedro de dimensiones  $8 \times 6 \times 4$  cm. Halla también el valor de la diagonal de un cubo de arista 4 cm.

Sol: d=10,77 cm y d=6,93 cm.

**03.-** Calcula el área total de un prisma hexagonal regular cuya arista básica y altura miden ambas 8 cm.

Sol: A=716,55 cm<sup>2</sup>

**04.**- Calcula el área lateral y el área total de una pirámide hexagonal regular de arista básica 6 cm y 4 cm de altura.

Sol: A<sub>L</sub>=118,03 cm²; A<sub>T</sub>=211,56 cm²

**05.-** Calcula el área total de los siguientes cuerpos geométricos.



Sol: a) 122cm<sup>2</sup>; b) 120cm<sup>2</sup>; c) 121,5dm<sup>2</sup>; d) 131,88cm<sup>2</sup>; e) 45dm<sup>2</sup>; f) 75,36cm<sup>2</sup>

**06.-** Calcula el área lateral y el área total de un cilindro de 6 cm de diámetro y 8 cm de altura.

Sol:  $A_L = 48\pi = 150,80 \text{ cm}^2$ ;  $A_T = 66\pi = 207,35 \text{ cm}^2$ 

**07.-** Calcula el área lateral y el área total de un cono de radio 7 cm y 24 cm de altura.

Sol:  $A_L = 175\pi = 549,78 \text{ cm}^2$ ;  $A_T = 224 \pi = 703,72 \text{ cm}^2$ 

**08.-** Una pirámide regular tiene por base un pentágono regular de 2,5 m de lado. La apotema de la pirámide mide 4,2 m. ¿Cuál es su superficie lateral?

Sol: 26,25 m<sup>2</sup>

**09.-** Calcula el área total y el volumen de un cubo cuya diagonal mide 20 cm.

Sol:  $A_T$ =800 cm<sup>2</sup>; V=1539,6 cm<sup>3</sup>

**10.-** Calcula el volumen de un prisma triangular regular de 8 cm de altura y arista básica 5 cm.

Sol: V=86,6 cm<sup>3</sup>

**11.-** Inscribimos un cilindro en un cubo cuya diagonal mide 9 cm. Halla el volumen que queda entre el cubo y el cilindro inscrito en el mismo.

Sol: V=30,11 cm<sup>3</sup>

**12.-** Dados dos cilindros de igual altura h, y radios r y 2r, comprueba que el volumen del segundo cilindro es cuatro veces mayor que el volumen del primero.

Sol:  $V_2=4\cdot V_1$ 

**13.-** Calcula el área total de un cilindro de 20 cm de altura y 10 cm de diámetro.

Sol:  $250 \, \pi \, \mathrm{cm}^2$ 

**14.-** Halla la altura de un bote cilíndrico de 1 litro de capacidad y 5 cm de radio.

Sol:12,73 cm.

**15.-** Calcula el área lateral de una pirámide de base cuadrada de 32 cm de perímetro y 10 cm de altura.

Sol: 236,33 cm<sup>2</sup>

**16.-** Un florero con forma cilíndrica tiene un diámetro interior de 12 cm y su altura es de 25 cm. Queremos llenarlo hasta los 2/3 de su capacidad. ¿Cuántos litros de agua necesitamos?

Sol: 1.884 litros de agua.

17.- Calcula el volumen de estos cuerpos:



Sol: a) 960 cm<sup>3</sup>; b) 1780,24 cm<sup>3</sup>; c) 2.484 cm<sup>3</sup>

**18.-** Calcula el volumen de una pirámide de 15 m de altura y cuya base es un cuadrado inscrito en una circunferencia de 5 m de radio.

Sol:  $V = 250 \text{ m}^3$ 

**19.-** Halla el volumen de un cono sabiendo que la longitud de la circunferencia de su base es 31,416 cm y su generatriz mide 10 cm.

Sol:  $V = 226,72 \text{ cm}^3$ 

**20.-** Calcula el área y el volumen de las figuras:





Sol: a) A=176,71 cm<sup>2</sup>; V=124,34 cm<sup>3</sup>; b) A=?; V=288 cm<sup>3</sup>

**21.-** Las paredes de un pozo de 12 m de profundidad y 1,6 m de diámetro han sido cementadas. El precio es de 40 € el metro cuadrado. ¿Cuál ha sido el coste?

Sol: 2.422,50 €

**22.-** Un pintor ha cobrado 1.000 € por pintar el lateral de un depósito cilíndrico de 4 m de altura y 4 m de diámetro. ¿Cuánto deberá cobrar por pintar un depósito esférico de 2 m de radio?

Sol: 1.000 €

**23.- a)** ¿Qué volumen de aire cabe en una pelota de 30 cm de diámetro? **b)** ¿Qué superficie tendrá la pelota del problema anterior?

Sol: a)  $V = 36\pi$  litros; b) 1,13 m<sup>2</sup>

**24.-** Halla el volumen, en cm<sup>3</sup>, de un cono de 5 m de radio y 13 m de generatriz.

Sol:  $10^8 \, \pi \, \mathrm{cm}^3$ 

**25.-** En el suelo de unos jardines hay un estanque de base hexagonal de 3 m de lado y 1,20 m de altura. Halla el volumen del estanque.

Sol: 28 m<sup>3</sup>

**26.**- Halla la altura de un prisma de base rectangular de 5 cm de ancho y 8 cm de largo, sabiendo que su volumen es de 14 cm<sup>3</sup>.

Sol: 0,25 cm

**27.-** Teniendo en cuenta las medidas señaladas, calcula el volumen de esta figura:

Sol: 6.098 cm<sup>3</sup>

**28.-** Calcula el volumen de una pirámide regular cuya base es un hexágono de 20 cm de lado y su arista lateral es de 29 cm.

Sol: 7.266 cm<sup>3</sup>





**29.-** Teniendo en cuenta las medidas señaladas, calcula el volumen de esta figura:

Sol:  $V=576 \text{ cm}^3$ 

**30.-** Una piscina tiene forma de

prisma rectangular de dimensiones 25m x 15m x 3m. ¿Cuántos litros de agua son necesarios para llenar los 4/5 de su volumen?

Sol: 9·10<sup>5</sup> litros



## Áreas y Volúmenes

Áreas y Volúmenes Departamento de Matemáticas

31.- Calcula la superficie de la esfera y la superficie lateral del cilindro que la envuelve.

Sol: ambas superficies son  $400\pi$ 

**32.-** Calcula el volumen de la figura:





Sol: 6 m<sup>3</sup>

**33.-** Calcula el volumen de la siguiente construcción:



Sol: 5,202 m<sup>3</sup>

**34.-** Calcula el volumen de la figura:



Sol: 20 m<sup>3</sup>

35.- Calcula el volumen de los sólidos que aparece a continuación (las medidas están en centímetros):





Sol:  $V=90,316 \text{ cm}^3$ **36.-** La figura representa una pieza de madera que hay que recubrir con una capa de pintura. ¿Qué superficie hay que pintar?, ¿cuál es su volumen?



Sol:  $A = 281.33 \text{ cm}^2$ :  $V = 237.2 \text{ cm}^3$ 

**37.-** Un centímetro cúbico del material con el que está construido el recipiente de la figura de la derecha pesa 7,8 kg Calcula el peso del recipiente.



**38.-** Las dimensiones de un depósito cilíndrico son las especificadas en la figura. Calcula la capacidad del recipiente en litros.



2,6 dm 1 m

**39.-** Calcula el tiempo que tardará en llenarse el depósito de la figura, si se le echan 85 litros por minuto.

**40.-** La cuenca fluvial cuyas aguas llegan a un pantano es de 62 km<sup>2</sup>. En las últimas lluvias han caído 27 litros por metro cuadrado. Del agua caída,

se recoge en el pantano un 43%. ¿Cuántos hectómetros cúbicos se han recogido en el pantano como consecuencia <mark>de las l</mark>luvias?

Sol: Han recogido 0,71982 hm<sup>3</sup>.

**41.-** Un sótano cuya superficie es de 208 m<sup>2</sup> se ha inundado. El agua llega a 1,65 m de altura. Se extrae el agua con una bomba que saca 6 hl por minuto. ¿Cuánto tiempo tardará en vaciarlo?

Sol: 9 horas y 32 minutos.

**42.-** Calcula el volumen de hormigón necesario para construir el túnel de la derecha.

Sol: 282,6 m<sup>3</sup>



43.- Efectúa las operaciones siguientes y expresa el resultado en hectolitros. Para ello, pasa a forma incompleja, expresa todas las cantidades en las mismas unidades y realiza los cálculos.

- **a)** 0,34 dam<sup>3</sup> + 84 m<sup>3</sup> + 1 284 m<sup>3</sup> **b)** 0,00035 km<sup>3</sup> + 0,45 hm<sup>3</sup> + 65 dam<sup>3</sup>
- 0,541 dam<sup>3</sup> 421 m<sup>3</sup> 300 dm<sup>3</sup> c)

**d)** 4.500 m<sup>3</sup>: 25

- 24 hm<sup>3</sup> 123 dam<sup>3</sup> 128 m<sup>3</sup>: 40 e)
- $568 \text{ kl} 0.508 \text{ dam}^3$

Sol: a)17.080 hl; b)8.650.000 hl; c)1.197 hl; d)1.800 hl; e)6.030.782 hl; f)600 hl

**44.-** Queremos hacer un tubo cilíndrico soldando por los lados un rectángulo de 28 cm de largo y 20 cm de ancho. ¿Cómo se consigue mayor volumen, soldando por los lados de 28 cm o por los de 20 cm?

Sol: Por el lado de 20.

**45.-** Calcula el volumen de las figuras:

