บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

แบบจำลองจักรกลเรียนรู้ (Machine Learning models) นั้นถูกใช้อย่างกว้างขวางในปัจจุบัน อย่างไรก็ตาม แบบ จำลองใดๆ นั้นอาจมีความผิดพลาดต่อการทำการโจมตีประสงค์ร้าย (Adversarial attacks) เพื่อจงใจให้ผลลัพธ์ที่แบบจำลอง นั้นคาดเดามีความผิดพลาดจากผลลัพธ์ที่ควรจะเป็น

ในการเรียนรู้เชิงตัวแปรเสริม (parameter-based learning) นั้น ตัวแปรเสริม (parameters) ค่าน้ำหนัก (weights) บนแบบจำลองการเรียนรู้เชิงลึก (deep Learning models) เป็นตัวกำหนดความฉลาดของแบบจำลอง อาจมีตัวแปรเสริม บางชุดที่ทำให้แบบจำลองมีช่องโหว่ต่อการโจมตีประสงค์ร้าย การโจมตีนั้นอาจเกิดจากการเพิ่มสัญญาณรบกวนซึ่งผ่านการ คำนวน (calculated artefacts) เข้าสู่ข้อมูลรับเข้า (inputs) ซึ่งทำให้ความผิดพลาดของแบบจำลองในการพยากรณ์คำ ตอบนั้นเปลี่ยนไปอย่างชัดเจน

โครงงานวิศวกรรมคอมพิวเตอร์นี้มุ่งหวังจะนำตัวแปรเสริมบนแบบจำลองมาสร้างภาพแสดง (visualise) ถึงจุดโหว่ ในการพยากรณ์ใดๆ ของแบบจำลอง เพื่อลดความเสียหายอันอาจเกิดขึ้นได้จากการโจมตีแบบจำลองขณะถูกใช้งานจริง

1.2 วัตถุประสงค์ของการศึกษา

โครงงานนี้มีวัตถุประสงค์และเป้าหมายดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. นำแบบจำลองในข้อ (1) มาสร้างเป็นรูปภาพแสดง (visualisation) เพื่อหาจุดโหว่ต่อการโจมตี รวมถึงคาดเดาแนว โน้มการโจมตีที่เป็นไปได้
- 3. ใช้ความรู้ในข้อ (2) สร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.3 ขอบเขตของการทำโครงงาน

โครงงานนี้มีขอบเขตการดำเนินงานดังนี้

- 1. สร้างแบบจำลองเชิงลึก (Deep Learning models) ซึ่งสามารถถูกโจมตีประสงค์ร้าย (Adversarial attacks) ได้
- 2. นำแบบจำลองในข้อ (1) มาสร้างเป็นรูปภาพแสดง (visualisation) เพื่อหาจุดโหว่ต่อการโจมตี รวมถึงคาดเดาแนว โน้มการโจมตีที่เป็นไปได้
- 3. ใช้ความรู้ในข้อ (2) สร้างแบบจำลองที่ทนทาน (prone) ต่อการโจมตีมากขึ้น

1.4 ระยะเวลาและแผนดำเนินงาน

การดำเนินงานของโครงการจะใช้วิธีจัดการงาน (workflow) แบบเอไจล์ (agile) เพื่อมุ่งเน้นประสิทธิภาพในการ ทำงานและสร้างระบบการทำงานที่เหมาะสมต่อการดำเนินการในระยะเวลาและปัจจัยการดำเนินงานที่ไม่อาจคาดเดาได้ การ ทำงานจะใช้วิธีการแบ่งรอบการวนทวน (iteration) โดยมุ่งเน้นให้แต่ละรอบการวนทวนมีความก้าวหน้าของงานในปริมาณ ที่เหมาะสมกับเวลาและข้อจำกัดต่างๆ หนึ่งรอบการวนทวนนั้นกินระยะเวลาสองสัปดาห์ดังแสดงในตารางที่ 1.1 และจะประกอบ ด้วยขั้นตอนต่อไปนี้

- 1. ประชุมสรุป (iteration meeting) หนึ่งถึงสองครั้งต่อสัปดาห์
- 2. เขียนรอบปูมย้อนหลัง (backlog) และหยิบมาทำตามจำนวนที่เหมาะสม
- 3. กิจกรรมมองย้อนรอบการวนทวนด้วยตนเอง (self-retrospective) เพื่อพิจารณาความเหมาะสมในการทำงาน และ ปรับปรุงการทำงานในรอบการวนทวนต่อไป

อย่างไรก็ดี เพื่อเป็นการตั้งเป้าหมายงานในระยะยาว โครงงานนี้จะมีวิสัยทัศน์ผลิตภัณฑ์ (product vision) โดยคร่าวตาม ขอบเขตการดำเนินงาน และในทุกประมาณ 4-6 รอบการวนทวน จะมีการวางแผนปล่อยผลิตภัณฑ์ (release planning) หนึ่งครั้งเพื่อสรุปงานออกมาเป็นความคืบหน้าที่จับต้องได้อันเกิดจากการทำงานในกลุ่มรอบการวนทวนนั้น

1.5 ประโยชน์ที่คาดว่าจะได้รับ

- 1. เข้าใจถึงพื้นฐาน หลักการทำงาน และระบบจักรกลเรียนรู้แบบต่างๆ
- 2. เข้าใจถึงจุดอ่อนของระบบจักรกลเรียนรู้ในแต่ละกรณี
- 3. สามารถโจมตีระบบจักรกลเรียนรู้ เพื่อสร้างระบบจักรกลเรียนรู้ที่ทนทานต่อการโจมตีได้

1.6 คำนิยามศัพท์เฉพาะ

- จักรกลเรียนรู้ (machine learning) คือระบบ หรือโค้ด หรือโปรแกรมคอมพิวเตอร์ที่เรียนรู้โครงสร้างของชุดคำถาม และคำตอบโดยมิจำเป็นต้องทำการโปรแกรมลำดับการทำงานอย่างชัดแจ้ง (explicitly)
- การเรียนรู้เชิงโจมตี (adversarial learning) หมายถึงการศึกษาถึงการโจมตีแบบจำลอง (model) ของจักรกลเรียน รู้ (machine learning)

	2562				2563		
	ก.ย.	ต.ค.	พ.ย.	ธ.ค.	ม.ค.	ก.พ.	มี.ค.
รอบการวนทวนที่ 1	/						
รอบการวนทวนที่ 2	/						
รอบการวนทวนที่ 3		/					
รอบการวนทวนที่ 4		/					
รอบการวนทวนที่ 5			/				
รอบการวนทวนที่ 6			/				
แผนการปล่อยงานที่ 1			/				
รอบการวนทวนที่ 7				/			
รอบการวนทวนที่ 8				/			
รอบการวนทวนที่ 9					/		
รอบการวนทวนที่ 10					/		
แผนการปล่อยงานที่ 2					/		
รอบการวนทวนที่ 11						/	
รอบการวนทวนที่ 12						/	
รอบการวนทวนที่ 13							/
รอบการวนทวนที่ 14							/
แผนการปล่อยงานที่ 3							/

ตารางที่ 1.1: ตารางแสดงรอบการวนทวนและช่วงเวลา

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 จักรกลเรียนรู้

ระบบจักรกลเรียนรู้ (machine learning) อาจนิยามได้ว่าเป็นระบบที่ไม่ต้องมีการป้อนข้อมูล หรือวิธีทำงาน เข้าไป ยังโค้ดโปรแกรมอย่างชัดแจ้ง (explicitly) โดยระบบดังกล่าวจะถูกฝึกสอนด้วยชุดของข้อมูลหรือประสบการณ์ (experience) และปรับตัวเองให้ส่งออกคำตอบซึ่งอิงจากประสบการณ์ที่ตนเองเคยได้เรียนรู้มา

หากจะกล่าวให้ละเอียด เราสามารถนิยามโปรแกรมซึ่งสามารถทำการ*เรียน*ได้ดังนี้ [?]

บทนิยาม 2.1.1. โปรแกรมใดๆ เรียน (learn) จากประสบการณ์ (experience) E บนงาน (task) T และการวัดประสิทธิผล (performance measurement) P หากประสิทธิผลบน T ซึ่งถูกวัดโดย P เพิ่มขึ้นตามประสบการณ์ E

2.2 การเรียนรู้เชิงลึก

การเรียนรู้เชิงลึก (Deep Learning) คือความพยายามในการจำลองเซลล์ประสามของมนุษย์ให้อยู่ในรูปแบบจำลอง คณิตศาสตร์ ด้วยความเชื่อทางหลักประสาทวิทยา (neurosciences) ว่าความฉลาดของสมองมนุษย์เกิดขึ้นได้จากโครงข่าย ประสาทจำนวนมาก ที่เชื่อมเข้าถึงกัน [?]

2.2.1 เปอร์เซปตรอน (Perceptron)

เปอร์เซปตรอน (Perceptron) [?] เป็นแบบจำลองทางคณิตศาสตร์ของเซลล์สมองหนึ่งเซลล์ โดยมีคุณสมบัติดังนี้

- รับเข้าข้อมูลมาในเซลล์จากหลายแหล่ง และให้น้ำหนักกับข้อมูลนั้นต่างกันไป
- ส่งออกข้อมูลเพียงค่าเดียว

ดังนั้น แบบจำลองทางคณิตศาสตร์สามารถเขียนออกมาจากหลักการสองข้อดังกล่าวได้ด้วยสมการ

$$y = \sigma \left(W^T X + b \right) \tag{2.1}$$

เมื่อ W และ X เป็นเมทริกซ์ขนาด $1 \times n$ (โดย n เป็นจำนวนข้อมูลรับเข้า), b เป็นค่าสัมประสิทธิ์คงที่ (อคติ: bias) และ σ เป็นฟังก์ชันกระตุ้น (activation function) ซึ่งอาจเขียนรูปร่างของเปอร์เซปตรอนให้มีลักษณะรูปคล้ายเซลล์ สมองได้ในลักษณะรูปที่ 2.1

ยกตัวอย่างการใช้เปอร์เซปตรอนในการแก้ปัญหาอย่างง่ายได้ในที่นี้

รูปที่ 2.1: เปอร์เซปตรอน

การคาดเดาราคาอสังหาริมทรัพย์

หากสำรวจราคาอสังหาริมทรัพย์แล้วพบว่า

- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามที่ดิน โดยเพิ่มขึ้นทุก 10,000 บาทต่อตารางวา
- ราคาอสังหาริมทรัพย์จะเพิ่มขึ้นตามจำนวนห้องนอน โดยเพิ่มขึ้นทุก 200,000 บาทต่อห้องนอน
- ราคาอสังหาริมทรัพย์จะลดลงตามจำนวนอายุปี โดยลดลงทุก 7,000 บาทต่ออายุของอสังหาริมทัพย์
- ราคากำหนดตรึง (fixed cost) ของอสังหาริมทรัพย์ อยู่ที่ 100,000 บาท

จะสามารถเขียนเปอร์เซปตรอนเพื่อคาดเดาราคาอสังหาริมทรัพย์ได้โดย

$$y = \sigma\left(W^T X\right)$$

เมื่อ W ซึ่งเป็นค่าสัมประสิทธิ์แสดงถึงความสัมพันธ์ข้อมูลรับเข้า ซึ่งเขียนได้จากความสัมพันธ์ดังแสดงด้านล่าง

$$W^T = \begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix}$$

หากต้องการคาดเดาราคาบ้านที่มี 3 ห้องนอน เนื้อที่ 100 ตารางวา และมีอายุ 7 ปี จะสามารถเขียนเมทริกซ์ X ได้เป็น

$$X = \begin{bmatrix} 1\\3\\100\\7 \end{bmatrix}$$

โปรดสังเกตว่า $x_0=1$ เนื่องจากผลคูณของเทอม w_0 และ x_0 เป็นค่าที่เรียกว่าค่าอคติ (bias) ของแบบจำลอง เนื่องจากเปอร์เซปตรอนตัวนี้ถูกใช้ในการทำนายราคา ซึ่งกล่าวว่ามีความสัมพันธ์กันกับตัวแปรที่กำหนดข้างต้นใน เชิงเส้น ดังนั้นจะกล่าวได้ว่าฟังก์ชันกระตุ้น (activation function) ที่เลือกใช้ จะเลือกใช้ฟังก์ชันเส้นตรง (linear function) $\sigma(x)=x$

ดังนั้น ผลการทำนายราคาบ้านคำนวนได้จาก

$$y = \sigma \left(W^T X + b \right)$$

$$= \sigma \left(\begin{bmatrix} 100000 & 10000 & 200000 & -7000 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \\ 100 \\ 7 \end{bmatrix} \right)$$

$$= \sigma (100000 + 30000 + 200000000 + (-49000)) = f(20981000)$$

$$= 20981000$$

การสร้างประตูสัญญาณตรรกะด้วยเปอร์เซปตรอน

เราสามารถสร้างประตูสัญญาณตรรกะ (logic gates) บางชนิดได้ด้วยเปอร์เซปตรอน เช่นการสร้าง AND และ OR gate

ยกตัวอย่างโครงสร้างของประตูสัญญาณและซึ่งสามารถสร้างได้ด้วยการกำหนดให้

ullet X เป็นเมทริกซ์ขนาด 1 imes 2 กล่าวคือเมื่อรับค่า x_1,x_2 เป็นค่า 0 หรือ 1 แทนสัญญาณจริงหรือเท็จแล้ว

$$X = \begin{bmatrix} 1 \\ a_1 \\ a_2 \end{bmatrix}$$

ullet กำหนดค่าของเมทริกซ์ W เป็น

$$W^T = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}$$

• กำหนดฟังก์ชัน $\sigma(x)$ เป็น step function กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

และการสร้างประตูสัญญาณหรือสามารถทำได้ในลักษณะเดียวกันโดยเปลี่ยนชุดน้ำหนัก เป็น

$$W^T = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$$

2.2.2 เปอร์เซปตรอนแบบหลายชั้น (Multi Layer Perceptron)

เราอาจสังเกตว่าเปอร์เซพตรอนหนึ่งตัวนั้นทำหน้าที่ได้เพียนแยก (classify) หรือถดถอย (regress) ปัญหาที่เป็น ปัญหาเชิงเส้น (linear problems) ได้เท่านั้น อย่างในก็ตามหากเรากำหนดให้ฟังก์ชัน f เป็นฟังก์ชันที่ไม่ใช่ฟังก์ชันเส้นตรง แล้ว เราอาจสร้าง**เปอร์เซปตรอนแบบหลายชั้น** (Multi Layer Perceptron) ขึ้นมาได้โดยมีลักษณะดังรูปที่ 2.2

รูปที่ 2.2: เปอร์เซปตรอนแบบหลายชั้น

รูปที่ 2.3: เปอร์เซปตรอนแบบหลายชั้นซึ่งทำหน้าที่เป็นประตูสัญญาณเฉพาะหรือ

เราอาจเขียนแทนน้ำหนักของโครงข่ายจากเปอร์เซปตรอนชั้นที่ i ไปยังชั้นที่ j (j=i+1) ได้เป็น

$$\boldsymbol{W}_{ij} = \begin{bmatrix} w_{10} & w_{20} & \dots & w_{n_i0} \\ w_{11} & w_{21} & \dots & w_{n_i1} \\ w_{12} & w_{22} & \dots & w_{n_i2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1n_j} & w_{2n_j} & \dots & w_{n_jn_i} \end{bmatrix}$$

เมื่อจำนวนเปอร์เซปตรอนในชั้นที่ k เขียนแทนด้วย n_k

ยกตัวอย่างเช่น เราจะสามารถสร้างประตูสัญญาณเฉพาะหรือ (XOR gate) ได้จากเปอร์เซปตรอนแบบหลายชั้น ดังแสดงในรูปที่ 2.3 โดยเลขในแต่ละเปอร์เซปตรอนแทนค่าอคติ (b) และเลขบนเส้นเชื่อมแทนค่าน้ำหนัก (w) และกำหนด ให้ฟังก์ชันกระตุ้น σ เป็นฟังก์ชันขั้นบันได (step function) กล่าวคือ

$$\sigma(x) = \begin{cases} 1; & x \ge 0 \\ 0; & \text{ในกรณีอื่น} \end{cases}$$

เปอร์เซปตรอนดังกล่าว เมื่อรับค่า A และ B เป็น 0 หรือ 1 จะส่งออกค่า $A\oplus B$

2.3 ฟังก์ชันกระตุ้นและความฉลาดของโครงข่ายประสาทเทียม

2.3.1 ทฤษฎีบทตัวประมาณฟังก์ชันครอบจักรวาล

เหตุผลที่โครงข่ายประสาทเทียมสามารถทำงานได้ดี เนื่องจากมีการพิสูจน์ว่าโครงข่ายประสาทเทียมนั้นสามารถทำ หน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาล [?] (universal function approximator) กล่าวคือโครงข่ายประสาทเทียม $N:\mathbb{R}^k o \mathbb{R}^n$ ที่มีความซับซ้อนมากเพียงพอ (ซึ่งจะกล่าวถึงความซับซ้อนนี้ในภายหลัง) สามารถที่จะจำลองฟังก์ชัน $f:\mathbb{R}^k o \mathbb{R}^n$ (กล่าวคือฟังก์ชันที่มีโดเมน และเรนจ์ เป็นจำนวนจริงใดๆ ในมิติที่เหมือนกับมิติข้อมูลรับเข้าและข้อมูลส่ง ออกของโครงข่ายประสาทเทียม N) ได้ [?] [?]

บทพิสูจน์ของทฤษฎีนี้ทั้งในรูปแบบของกรณีไม่ตีกรอบความกว้าง (unbounded width case) และกรณีตีกรอบ ความกว้าง (bounded width case) สามารถศึกษาได้จากแหล่งอ้างอิง รวมถึงแหล่งอ้างอิงเพิ่มเติมที่ใช้การแสดงทัศนภาพ (visualisation) เพื่อการพิสูจน์ทฤษฎีบทดังกล่าว [?]

2.3.2 ข้อสังเกตต่อฟังก์ชันกระตุ้นและความฉลาด

บทพิสูจน์ที่ได้กล่าวถึงไปก่อนหน้านี้สำหรับกรณีไม่ตีกรอบความกว้าง และตีกรอบความกว้าง เป็นบทพิสูจน์ที่ใช้ ฟังก์ชันกระตุ้นเป็นฟังก์ชันชิกมอยด์ (sigmoid) และฟังก์ชันรีลู (ReLU) ตามลำดับ

อย่างไรก็ดี หากพิจารณาโครงข่ายประสาทเทียมใดๆ ที่ใช้ฟังก์ชันกระตุ้นเป็นฟังก์ชันเชิงเส้น f(x)=x เราจะ พบว่าโครงข่ายประสาทเทียมใดๆ จะสามารถยุบให้อยู่ในรูปของเปอร์เซปตรอนเพียงตัวเดียว และทำให้ไม่สามารถตัดสินใจ ปัญหาได้มากกว่าปัญหาที่แบ่งแยกเชิงเส้นได้ (linearly separable problems)

ดังนั้น อาจกล่าวด้วยการพิจารณา (intuition) ในลักษณะดังกล่าวได้ว่า ส่วนหนึ่งของความเป็นไปได้ของการที่ โครงข่ายประสาทเทียมใดๆ สามารถทำหน้าที่เป็นตัวประมาณฟังก์ชันครอบจักรวาลได้ ส่วนหนึ่งมาจากการที่ฟังก์ชันกระตุ้น ทำหน้าที่เป็นตัวบีบ (sqeezer) ช่วงของข้อมูลรับเข้าบนโดเมนจำนวนจริงใดๆ ($\mathbb R$) ให้กลายไปเป็นช่วงจำกัดช่วงอื่น (เช่น ช่วง (0,1) ของฟังก์ชันซิกมอยด์ หรือช่วง $[0,\infty)$ ของฟังก์ชันรีลู)

2.4 โครงข่ายประสาทเทียมแบบสังวัฒนาการ

โครงข่ายประสาทเที่ยมแบบสังวัฒนาการ (Convolutional Neural Networks: CNN) [?] เป็นโครงข่ายประสาท เทียมซึ่งมักถูกใช้กับข้อมูลภาพ [?] โดยคร่าวแล้วโครงข่ายประสาทเทียมในลักษณะดังกล่าวมักประกอบด้วยชั้นประสาทเทียมในลักษณะดังนี้

- ชั้นสังวัฒนาการ (convolution layer) เป็นชั้นที่กระทำตัวดำเนินการสังวัฒนาการ (convolve) ตัวกรอง (filter) F บนข้อมูลนำเข้า I ด้วยระยะเคลื่อน (stride) S ผลลัพธ์จากการสังวัฒนาการนี้จะเรียกว่าแผนที่ลักษณะ (feature map) ยกตัวอย่างการสังวัฒนาการเพื่อหาเส้นเฉียงในรูปที่ 2.4 สังเกตว่าการสังวัฒนาการด้วยตัวกรองเส้นเฉียงบน เส้นเฉียงบริเวณข้อมูลนำเข้า จะให้ค่าส่งออกที่มากกว่าการสังวัฒนาการตัวกรอกเส้นเฉียงบนจุดพื้นที่อื่นของข้อมูลนำ เข้า (ในที่นี้เขียนแทนด้วยสีแดงเข้ม และสีแดงอ่อน)
- ชั้นบ่อรวม (pooling layer) เป็นชั้นที่ทำการสุ่มตัวอย่างแบบลดขนาด (downsampling) เพื่อลดขนาดของข้อมูล ในขณะที่ยังคงไว้ซึ่งชุดคุณสมบัติที่ข้อมูลรับเข้ามี ชั้นบ่อรวมอาจแบ่งเป็นสองประเภทหลัก
 - ชั้นบ่อรวมแบบมากสุด (maximum pooling layer) เป็นชั้นบ่อรวมที่พบได้บ่อยที่สุด

รูปที่ 2.4: ชั้นสังวัฒนาการ ซึ่งแสดงข้อมูลนำเข้าด้วยสีฟ้า และตัวกรองด้วยสีแดง

รูปที่ 2.5: ชั้นบ่อรวม ทั้งแบบบ่อรวมมากสุดและแบบบ่อรวมเฉลี่ย โดยพิจารณาบ่อตามขอบเขตสีเขียว

- ชั้นบ่อรวมแบบเฉลี่ย (average pooling layer) เป็นชั้นบ่อรวมที่พบในโครงข่ายประสาทเทียมแบบสังวัฒนา การบางรูปแบบ เช่น LeNet
- ชั้นเชื่อมต่อถึงกันหมด (fully connected layer) ซึ่งมีลักษณะเหมือนเปอร์เซปตรอนแบบหลายชั้นทั่วไป

การสังวัฒนาการของชั้นสังวัฒนาการในโครงข่ายประสาทเทียม ทำหน้าที่เป็นตัวตรวจจับคุณสมบัติ (feature detector) เช่นการตรวจจับขอบ (edge detection) และชั้นบ่อรวมทำให้ขนาดของผลัพธ์จากชั้นสังวัฒนาการมีขนาดเล็กลง เพื่อให้ จำนวนค่าน้ำหนักของโครงข่ายประสาทเทียมที่ต้องคำนวนนั้นน้อยลง

การเรียนรู้ด้วยวิธีก้าวเคลื่อนถอยหลัง (backpropagation learning) เป็นวิธีการเรียนรู้ที่ได้รับความนิยมมากที่สุด ในปัจจุบัน ทั้งนี้ เราอาจพิจารณาการเรียนรู้ถอยหลังได้โดยทำความเข้าใจถึงฟังก์ชันสูญเสีย (loss function) และการปรับ ค่าตัวแปรเสริม (parameters) ดังนี้

2.5 ค่าสูญเสีย

ค่าสูญเสีย (loss) เป็นค่าที่ใช้ในการบอกว่าแบบจำลองใดๆ ตอบผิดมากหรือน้อยเพียงใด โดยค่าสูญเสียยิ่งมาก หมายถึงแบบจำลองตอบผิดมากเท่านั้น

รูปที่ 2.6: การคำนวนค่าสูญเสีย

ยกตัวอย่างเช่น หากเราสร้างแบบจำลองที่ต้องการส่งออกค่าเป็นค่าในลักษณะของการเข้ารหัสแบบหนึ่งจุดร้อน (one-hot encoding) ของค่าที่เป็นไปได้ 3 ชั้น (classes) จากข้อมูลตัวที่ i บนชุดฝึกหัด ดังแสดงในรูปที่ 2.6 ซึ่งต้องการคำตอบ t_i ที่ถูกต้องเป็น

$$t_i = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

ทว่า แบบจำลองกลับให้คำตอบ o_i จากแบบจำลองเป็น

$$o_i = \begin{bmatrix} 0.1 & 0.7 & 0.2 \end{bmatrix}$$

เราอาจนิยามฟังก์ชันสูญเสียอย่างง่าย เพื่อยกตัวอย่างการคำนวนดังกล่าว โดยกำหนดให้ฟังก์ชันสูญเสียเป็นผลรวมของผล ต่างกำลังสอง

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$

ดังนั้น ในกรณีนี้ จะได้ค่าสูญเสียของจุดฝึกหัดนี้เป็น

$$l_i(t_i, o_i) = \sum_{j=1}^{n} (t_i[j] - o_i[j])^2$$

= $((0 - 0.1)^2 + (1 - 0.7)^2 + (0 - 0.2)^2)$

จะเห็นว่า ยิ่งค่า t_i ใกล้เคียง o_i มากขึ้นเท่าใด ค่าสูญเสียก็จะน้อยลงเท่านั้น นอกจากนี้ เราจะนิยามค่าสูญเสียบนชุดฝึกหัดทั้งชุด เป็น

$$\mathcal{L}(T,O) = \sum_{i=1}^{N} l_i(t_i, o_i)$$
(2.2)

เมื่อ T และ O เป็นชุดคำตอบ และค่าส่งออกจากแบบจำลองของทั้งชุดฝึกหัด ซึ่งชุดฝึกหัดมีความยาวเป็น N

อย่างไรก็ตาม ฟังก์ชันสูญเสียในลักษณะดังกล่าว เป็นฟังก์ชันอย่างง่าย ในการฝึกสอนแบบจำลองทั่วไปมักนิยม ใช้ฟังก์ชันอื่น เช่นค่าสูญเสียแบบความวุ่นวายข้ามชั้น (cross entropy loss) สำหรับการฝึกสอนแบบจำลองเพื่อการทำการ จำแนกหมวดหมู่ (classification)

$$\ell_i = -\sum_{c=1}^M y_{o,c} \ln(p_{o,c})$$

เมื่อ M เป็นจำนวนชั้น (class) ที่เป็นไปได้ y เป็นค่าฐานสองที่บ่งบอกว่าชั้นข้อมูล (class) c เป็นคำตอบที่ถูกต้องสำหรับ การคาดเดา (observation) o และ p เป็นค่าความน่าจะเป็นที่การคาดเดา o ตอบว่าเป็นชั้นข้อมูล c

2.5.1 ค่าสูญเสียเมื่อมองจากมุมมองของตัวแปรเสริม

สมการที่นำเสนอไปข้างต้น มองค่าสูญเสียเปลี่ยนไป เมื่อใส่ชุดของข้อมูลส่งออกจากแบบจำลอง O และค่าคำตอบ จริง T ต่างกันออกไป ทว่า หากพิจารณาว่า

- แบบจำลองใดๆ สามารถปรับค่าตัวแปรเสริม (parameters) ได้อย่างอิสระ
- ullet ค่าส่งออก O เป็นฟังก์ชันของค่ารับเข้า I โดย O=f(I) เมื่อ f เป็นฟังก์ชันของโครงข่ายประสาทเทียม
- ullet ความมุ่งหมายฝึกสอนแบบจำลองใดๆ ให้มีประสิทธิภาพ อยู่บนการฝึกสอนบนชุดของค่าคำตอบจริง T เดิม

เราจะสามารมองฟังก์ชันสูญเสีย เป็นฟังก์ชันที่รับค่าตัวแปรเสริม (กล่าวคือค่าน้ำหนักและอคติของแบบจำลอง) และส่งออก ค่าสูญเสียของชุดตัวแปรเสริมนั้น

กล่าวอีกนัย หากเรามีชุดของตัวแปรเสริม $ec{ heta}_1,ec{ heta}_2,\dots,ec{ heta}_i$ บนโครงสร้างของแบบจำลองการเรียนรู้เชิงลึก (deep learning models) ที่มีโครงสร้างเหมือนกัน เราอาจพิจารณาค่าฟังก์ชันสูญเสีย $\mathscr{L}(ec{ heta}_i)$ บนชุดตัวแปรเสริม $ec{ heta}_i$ และกล่าว ว่าแบบจำลองที่ใช้ชุดตัวแปรเสริม $ec{ heta}_i$ นั้นทำงานได้ดีกว่า $ec{ heta}_i$ หาก $\mathscr{L}(ec{ heta}_i) < \mathscr{L}(ec{ heta}_i)$

2.6 ขั้นตอนวิธีเกรเดียนต์ลดหลั่น และการก้าวเคลื่อนถอยหลัง

2.6.1 ตัวดำเนินการเกรเดียนต์

พิจารณาตัวดำเนินการเกรเดียนต์ ซึ่งดำเนินการบนเวกเตอร์ใดๆ

บทนิยาม 2.6.1. เกรเดียนต์ ของฟังก์ชัน $f(\vec{x})$ ซึ่งเป็นฟังก์ชันของชุดตัวแปร $\vec{x}=(x_1,x_2,\dots,x_n)$ ใดๆ จะถูกนิยาม เป็นตัวดำเนินการ $\vec{\nabla} f\left(\vec{x}\right)$

$$\vec{\nabla}f\left(\vec{x}\right) = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(f(\vec{x}) \cdot \hat{x}_{i} \right)$$

เมื่อ $\hat{x_i}$ เป็นเวกเตอร์หนึ่งหน่วย (unit vector) ตามแกนของ x_i

กรุณาสังเกตว่า ทิศทางของเกรเดียนต์นั้นจะชี้ไปในทิศทางที่เพิ่มขึ้นของฟังก์ชันเสมอ

เมื่อพิจารณาฟังก์ชันสูญเสีย ซึ่งเป็นฟังก์ชันที่เราต้องการลดค่า เราอาจพิจารณาหาค่าที่น้อยลงของฟังก์ชันได้ ด้วย การคำนวนเกรเดียนต์ของฟังก์ชันสูญเสียใดๆ แล้ว "เดิน" ไปในทิศทางตรงข้ามกับเกรเดียนต์ เปรียบประหนึ่งการเดินลง

ขั้นตอนวิธีเกรเดียนต์ลดหลั่นเพื่อการฝึกสอนแบบจำลอง

ข้อมูลรับเข้า: แบบจำลอง M, ฟังก์ชันสูญเสีย \mathcal{L} , จำนวนรอบการวน n, อัตราการเรียนรู้ l ข้อมูลส่งออก: ค่าตัวแปรเสริม $\vec{\theta}$

- ประกาศตัวแปร $\hat{ heta}$ เป็นค่าสุ่มของเวกเตอร์ความยาวเท่าตัวแปรเสริมที่แบบจำลอง M ต้องการ
- ullet วนซ้ำเป็นจำนวน n รอบ
 - คำนวนหาเกรเดียนต์ของ $ec{ heta}$ โดย

$$\vec{\nabla} \mathcal{L}(\vec{\theta})$$

- ปรับค่า $ec{ heta}$ โดย

$$\vec{\theta}' = \vec{\theta} - l\vec{\nabla}\mathcal{L}(\vec{\theta})$$

ullet ส่งคืนค่า $ec{ heta}$

รูปที่ 2.7: รหัสเทียมของขั้นตอนวิธีเกรเดียนต์ลดหลั่น

เขา ขั้นตอนวิธีดังกล่าวเรียกว่าขั้นตอนวิธีเกรเดียนต์ลดหลั่น (gradient descent algorithm) โดยพิจารณาการปรับแบบ จำลองอยู่บนเกรเดียนต์ของฟังก์ชันสูญเสีย

$$\vec{\theta}' = \vec{\theta} - l\vec{\nabla}\mathcal{L}(\vec{\theta}) \tag{2.3}$$

เมื่อ l เป็นค่าอัตราการเรียนรู้ (learning rate) โดยปกติมักมีค่าไม่มาก

รหัสเทียมของขั้นตอนวิธีดังกล่าวสามารถศึกษาได้จากรูปที่ 2.7 หากอธิบายโดยคร่าว ขั้นตอนวิธีเกรเดียนต์ลดหลั่น พยายามหาค่าตัวแปรเสริม θ_{OPT} โดยการเริ่มจากการสุ่มตัวแปรเสริม θ แล้วคำนวนเกรเดียนต์ของฟังก์ซันสูญเสีย และค่อยๆ ปรับค่า θ ตามทิศตรงข้ามกับเกรเดียนต์เรื่อยๆ จนกระทั่งถึงจุดที่ฟังก์ซันสูญเสียมีค่าน้อยที่สุด

2.6.2 ขั้นตอนวิธีก้าวเคลื่อนถอยหลัง

หนึ่งในประเด็นสำคัญที่จำเป็นต้องกล่าวถึงต่อมา คือวิธีการในการคำนวนเกรเดียนต์ $\vec{\nabla}(\vec{x})$ ซึ่งจำเป็นต้องคำนว นอนุพันธ์ (derivation) ของตัวแปรเสริมใดๆ เทียบกับฟังก์ชันสูญเสีย พึงพิจารณาว่าตัวแปรเสริมของแบบจำลองการเรียน รู้เชิงลึก คือชุดน้ำหนักและค่าอติต่างๆ

อย่างไรก็ตาม การคำนวนเกรเดียนต์และอนุพันธ์ดังกล่าวสามารถทำได้โดยง่าย ผ่านการใช้กฎลูกโซ่ (chain rule) ซึ่งนิยามได้ว่า

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \tag{2.4}$$

ในเล่มรายงานนี้จะไม่ลงรายละเอียดถึงขั้นตอนวิธีก้าวเคลื่อนถอยหลัง อย่างไรก็ดี สามารถพิจารณาได้ว่า (1) อนุพันธ์ของ ฟังก์ชันสูญเสียกับน้ำหนักของชั้นส่งออกสามารถพิจารณาได้โดยตรง และ (2) อนุพันธ์ของฟังก์ชันสูญเสียกับน้ำหนักของชั้น ซ่อนใดๆ สามารถพิจารณาได้จากกฎลูกโซ่ดังสมการที่ 2.4 เป็นผลคูณของอนุพันธ์ของฟังก์ชันสูญเสียเทียบกับน้ำหนักของ ชั้นส่งออก และอนุพันธ์ของน้ำหนักขั้นส่งออกเทียบกับชั้นซ่อน

รูปที่ 2.8: (จากซ้ายไปขวา) รูปเลข 5 ที่ถูกเจือด้วยความเข้มข้นของสัญญาณรบกวนที่ต่างกันที่ระดับ 0.0, 0.01 และ 0.03 ตามลำดับ

2.7 การหาสัญญาณรบกวน

การโจมตีแบจำลองการเรียนรู้เชิงลึกด้วยการหาสัญญาณรบกวน η ที่โจมตีแบบจำลองการเรียนรู้ M นั้นมีจุดประสงค์ หลักคือหาค่า η ซึ่งอยู่บนโดเมนเดียวกับข้อมูลรับเข้าโครงข่ายประสาทเทียม ที่ทำการเพิ่มค่าของฟังก์ชั่นสูญเสียจนถึงขีด สด

เราจะเรียก $x'=x+\eta$ ว่าเป็น**ตัวอย่างประสงค์ร้าย (adversarial example)** เนื่องจากเป็นตัวอย่างที่ทำให้ ค่าสูญเสียของโครงข่ายประสาทเทียมเพิ่มสูงขึ้นที่สุด

การหาสัญญาณรบกวนอาจมองเป็นปัญหาการเพิ่มประสิทธิภาพสูงสุด (optimisation problem) โดยพิจารณา การหา

$$\eta = \operatorname{argmax} \mathscr{L} (x + \eta, y) \tag{2.5}$$

เมื่อคู่อันดับ (x,y) แทนที่ตำแหน่งของชุดข้อมูลฝึกหัด (training point) หนึ่งจุด

ทั้งนี้ทั้งนั้น ขนาด (norm) ของ η จะต้องมีค่าน้อยเพียงพอเมื่อเทียบกับ x เพื่อทำให้ความเข้มของสัญญาณรบกวน ไม่เข้มจนเกินไปจนสามารถแยกแยะด้วยตาของมนุษย์ได้ว่าเป็นภาพที่ถูกเจือด้วยสัญญาณรบกวน ดังเช่นแสดงในรูปที่ 2.8

ขั้นตอนวิธีการหาสัญญาณรบกวนนั้นมีรายละเอียดต่างกันออกไปตามวิธีการคำนวน และแนวคิดของการคำนวน ดังแสดงตัวอย่างวิธีต่อไปนี้

2.7.1 การหาสัญญาณรบกวนด้วยวิธีการก้าวเคลื่อนถอยหลัง

เมื่อฝึกสอนแบบจำลองการเรียนรู้เชิงลึกโดยได้ชุดตัวแปรเสริม $\, heta\,$ สำหรับแบบจำลอง $\,M\,$ ซึ่งต่อไปนี้จะเรียกชุด แบบจำลองและตัวแปรเสริมรวมกันว่า $\,M_{ heta}\,$ แล้ว เมื่อให้คู่จุดข้อมูลรับเข้าและส่งออก (x,y) ใดๆ เราอาจหาสัญญาณรบกวน ได้ว่า

$$\eta' = \eta + l \frac{\partial}{\partial n} \mathcal{L}(x) \tag{2.6}$$

เมื่อ l เป็นค่าอัตราการเรียนรู้ (learning rate) โดยปกติมักมีค่าไม่มาก

จะสังเกตได้ว่าสมการที่ 2.6 มีลักษณะคล้ายกับสมการที่ 2.3 เป็นอย่างมาก แตกต่างกันเพียงแต่เครื่องหมายบวก หรือลบ และตัวแปรเทียบสำหรับการทำอนุพันธ์หลายตัวแปร (multivariable derivation) ขอให้สังเกตว่าในขณะที่สมการ 2.3 พยายามหาค่า θ ที่ทำให้ฟังก์ซันสูญเสีย $\mathscr L$ มีค่าต่ำที่สุด สมการที่ 2.6 กลับพยายามหาสัญญาณรบกวน η ที่ทำให้ ฟังก์ซันสูญเสีย $\mathscr L$ มีค่ามากที่สุด กล่าวคือตอบผิดมากที่สุด

รูปที่ 2.9: ตัวอย่างชุดคุณสมบัติแบบอ่อน และแบบเข้มที่เป็นไปได้ จากเลข 5

2.8 คำอธิบายต่อการเกิดขึ้นของสัญญาณรบกวน

้ มีหลายทฤษฎีพยายามอธิบายการเกิดขึ้นของการโจมตีแบบจำลอง ซึ่งอาจยกตัวอย่างทฤษฎีและคำอธิบายได้ดังนี้

2.8.1 การประพฤติตัวเป็นเส้นตรง

LeCun และคณะ [?] ศึกษาผลของการโจมตีที่เกิดจาก \tilde{x} โดยอาจพิจารณาได้จากการคูณสมการเพื่อหาค่าส่งออก จากชุดน้ำหนัก (weights) ของชั้นแบบจำลองการเรียนรู้เชิงลึก (deep learning layers)

$$w^{\top} \tilde{x} = w^{\top} x + w^{\top} \eta \tag{2.7}$$

คณะวิจัยสังเกตพฤติกรรมว่าสัญญาณรบกวน η กระตุ้นส่วนของชุดน้ำหนักและฟังก์ชันกระตุ้น (activation function) ใน แบบจำลองให้ประพฤติตัวเยี่ยงฟังก์ชันเส้นตรง (linear functions) ซึ่งการแสดงพฤติกรรมดังเส้นตรง (linearity) ในกรณี ชายขอบ (edge case) ของข้อมูลรับเข้านั้นก่อให้เกิดความเป็นไปได้ที่แบบจำลองจะถูกโจมตี

เพื่อพิสูจน์ทฤษฎีดังกล่าว LeCun และคณะ พิจารณาผลความน่าจะเป็นของคำตอบที่ออกจากแบบจำลองเมื่อปรับ ค่า ϵ ดังแสดงในสมการที่ ?? และพบว่าความน่าจะเป็นของข้อมูลส่งออก (output) ของแต่ละชั้นข้อมูล (class) มีความ สัมพันธ์เชิงเส้นตรงกับค่า ϵ ที่เพิ่มขึ้นเรื่อยๆ

2.8.2 ทฤษฎีชุดคุณสมบัติแบบอ่อนและแบบเข้ม

llyas และคณะ [?] ศึกษาโครงสร้างของแบบจำลองเชิงลึก จนนำมาสู่ข้อสรุปว่า "ช่องโหวในการโจมตีแบบจำลอง เป็นผลโดยตรงจากความอ่อนไหวของแบบจำลองในการวางหลักการบนชุดคุณสมบัติของข้อมูล" ("Adversarial vulnerability is a direct result of our models' sensitivity to well-generalizing features in the data")

หากกล่าวให้ละเอียด พิจารณาว่าโครงสร้างของแบบจำลองเชิงลึกสามารถเรียนรู้ชุดคุณสมบัติ (features) ของข้อมูล รับเข้าได้สองแบบ ซึ่งในงานวิจัยเรียกว่าชุดคุณสมบัติแบบอ่อน (weak features) และชุดคุณสมบัติแบบเข้ม (strong features)

• ชุดคุณสมบัติแบบเข้ม คือชุดคุณสมบัติที่มนุษย์มองเห็นโดยทั่วไป กล่าวคือเป็นชุดคุณสมบัติที่มนุษย์สามารถสังเกต ทำความเข้าใจ และวางหลักการในการจำแนกได้ • ชุดคุณสมบัติแบบอ่อน คือชุดคุณสมบัติที่มนุษย์ไม่สามารถมองเห็น หรือมองเห็นแต่ไม่ได้หยิบมาเป็นตัวปัจจัยหลักใน การตัดสินใจ และวางหลักการในการจำแนก

จะยกตัวอย่างกรณีการจำแนกเลข 5 เราอาจพิจารณาว่าเลข 5 ดังแสดงในรูปที่ 2.9 ประกอบขึ้นจากขีดหนึ่งขีด แนวขวาง ขีดหนึ่งขีดแนวตั้ง และส่วนโค้งคล้ายวงกลม เป็นชุดคุณสมบัติที่มนุษย์สังเกตและเข้าใจโดยทั่วไป รวมถึงเป็นคุณสมบัติ ที่มนุษย์ใช้ในการสังเกตเห็นเส้นที่เชื่อมต่อกันจนประกอบเป็นเลข 5 อย่างไรก็ตาม แบบจำลองการเรียนรู้ใดๆ อาจเห็นมุม รอยต่อระหว่างขอบ (ซึ่งอาจสังเกตได้ว่าไม่มีเลขตัวใดเลยนอกจาก 1 ถึง 9 ยกเว้น 5 ที่มีมุมและขอบดังแสดง) เป็นตัวตัดสิน ใจในการเรียนรู้เลข 5 อย่างไรก็ตาม พึงสังเกตว่าแบบจำลองอาจจะแม้กระทั่งเลือกสังเกตเห็นพื้นที่ว่างบริเวณที่แตกต่างกัน ไป และใช้พื้นที่ว่างเหล่านั้นเพื่อสร้างข้อสรุปหรือตัดสินใจว่าเลขที่มองเห็นเป็นเลขใด (ซึ่งการนำมาซึ่ง "ข้อสรุป" จากที่ว่าง นั้น ขัดกับวิสัยปกติของมนุษย์ในการสังเกตและมองเห็นอย่างชัดเจน)