AGILE ASSIGNMENT

• WHAT IS GIT?

Git is a version control system used by developers to manage and track changes in source code during software development. Here's a simple explanation:

What Git Does:

Tracks Changes: Git records every change made to your files so you can go back to previous versions.

Collaborates: Multiple people can work on the same project at the same time without interfering with each other.

Branches and Merges: You can create separate branches to work on new features or fixes, then merge them back into the main code.

What is git repository?

A Git repository (often just called a repo) is a directory that stores your project's files along with all the version history tracked by Git.

There are two types of Git repositories:

1.Local Repository:

This is on your computer. It includes:

Your working files (source code, etc.)

A hidden .git folder that contains all the version history and configuration for Git.

2. Remote Repository:

This is typically hosted online (e.g., on GitHub, GitLab, or Bitbucket).

Step:1-Create a local git repository-

- 1. Open terminal and command prompt.
- 2. Navigate to your project folder.
- 3.Example:

• Initialize the Git repository

Step 2: Add and Commit Your Files

1.Add all files to the staging area

2.Commit the files

Step 3: Create a Remote Repository on GitHub

Go to https://gitHub.com

Click "New repository "

Give your repo a name, choose public or private., click Create repository

GitHub will then show you a URL like:

Step 4:Connect local Repo to Git

Back in your terminal:

Step 5: Push your code to GitHub

• 3. Git command for Clone:

This command:

Downloads a full copy of the remote repository (including all files and history)

Creates a folder named after the repository

Automatically sets the remote URL as origin

Optional: Clone into a specific folder name

Optional: Clone into a specific folder name bash git clone https://github.com/username/repository-name.git my-folder-name

4. Git command for uploading a file

- Git installed
- GitHub account
- GitHub repository created
- Your system is created to remote GitHub Repo(git remote repo origin...)

STEP BY STEP -upload file to GitHub

>Step 1:Open terminal git /bash Navigate to your project folder:

>Step 2: Initialize Git(if not already done)

>Step 3:Add remote Repository (once)

```
Bash Copy code

git remote add origin

https://github.com/yourusername/your

-repo.git
```

>Step 4: Add your file

>Step 5:Commit your changes

```
Bash Copy code

git commit -m "Add new file:
your-new-file.ext"
```


>Step 6:Push to GitHub

What is docker?

Docker is an open-source platform that allows you to build, run, and

manage applications in lightweight, portable containers.

- >Portability: Write code once and run it anywhere on your PC, on a server, or in the cloud.
- >Consistency: Avoid the "it works on my machine" problem.

>Isolation: Apps in different containers don't interfere with each other.

>Efficiency: Uses less memory and starts faster than virtual machines.

• Commands:

Command	Description
docker build .	Builds an image from the current directory
docker images	Lists available images
docker run image-name	Runs a container from the image
docker ps	Lists running containers
docker stop container-id	Stops a running container

What is container?

A container is a lightweight, standalone, and executable package of software that includes:

Application code
Runtime (e.g., Python, Node.js, Java)
Libraries and dependencies
System tools/configuration
Everything the application needs to run consistently
across different environments is

Bundled inside the container.

Key features of container:

- •Isolation: Each container runs in its own environment, separate from other containers or the host System.
- •Portability: Since all dependencies are included, a container can run anywhere on your laptop, a Server, or in folder cloud and it will behave the same.

- •Efficiency: Containers share the host system's operating system kernel, so they are more efficient and Faster than virtual machines.
- •Lightweight: Containers are smaller in size and start quickly.

Step-by-Step: Create Docker Image & Container

Step 1: Set up your project folder

Create a folder and move into it:

Step 2: Create a Python app file

Create a file named app.py:

Step 3: Create a Dockerfile

Create a file named Dockerfile (no extension) in the same folder:

Step 4: Build the Docker Image

Run this command in the terminal from the project folder:

Step 5: Run a Container from the Image

Now run a container:

•How to Create a Docker Image & Container Using GUI (Docker Desktop)

Step-by-Step (with GUI):

Step 1: Prepare Your App

Let's assume you have a folder named my-python-app with two files:

app.py (a simple Python script)

Dockerfile (contains instructions to build the image)

Step 2:Open Docker desktop with GUI

- 1.Launch Docker Desktop
- 2.Go to the "Containers" tab (you'll manage running containers here)
- 3. Switch to the "Images" tab to manage and build images

Step 3: Build the Docker Image via GUI

- 1.0pen the "Images" tab
- 2.Click "Build from Dockerfile"
- 3. Select the folder that contains your Dockerfile (my-pythonapp)

4. Name your image (e.g., my-python-app)

5.Click Build

Step 4: Run the Image as a Container

1.Go to the "Images" tab

2.Find your image (my-python-app)

3.Click "Run"

4. Optionally:

5.Set a container name

6.Configure ports, volumes