Lezione

Ontology Learning e Open Information Extraction

Luigi Di Caro

Ontology Learning e Open Information Extraction

- Panoramica
 - Cosa significa Ontology Learning, varianti e definizioni
 - Livelli di profondità
 - Task e metodi
 - Lab

Riferimento: Libro "Ontology Learning and Population from Text" Phillipp Cimiano

Ontology Learning

Problemi principali

- Definizione ("reverse engineering")
- World knowledge is not usually encoded Domain knowledge is not used completely

- Differenze con (e tra)
 - Ontology Population
 - Ontology-based Annotation
 - Ontology Enrichment

Ontologie: livelli di profondità

http://www.sers.di.uniroma1.it/~navigli/pubs/Navigli_Oxford_chapter_2015.pdf

- Ontology Learning
 - Tasks

- Term Extraction
 - trovare nomi per concetti e relazioni
- Synonym Extraction
- Concept Extraction
 - intension (gloss learning)
 - extension
- Concept Hierarchies Induction
 - dati i concetti
- Relation Extraction
- Population (NER, IE)

- Ontology Learning
 - Tasks
- Term Extraction
 - trovare nomi per concetti e relazioni
- Synonym Extraction
- Concept Extraction
 - intension
 - extension
- Concept Hierarchies Induction
 - dati i concetti
- Relation Extraction
- Population (NER, IE)

Paradigmi
Patterns lessico-sintattici
Distributional Hypothesis
Nozione di Sussunzione

- Ontology Learning
 - Methods

- Natural Language Processing
- Formal Concept Analysis
- Machine Learning

- Ontology Learning
 - Methods

- Natural Language Processing
 - Ruolo delle part-of-speech
- Formal Concept Analysis
- Machine Learning

- Verbi
 - azioni, eventi, etc.
- Aggettivi
 - attributi
- Nomi propri
 - "individuals"
- Nomi
 - classi
- Avverbi
 - modi
- Preposizioni
 - vincoli spazio-temporali

- Ontology Learning
 - Methods

- Natural Language Processing
 - Ruolo delle part-of-speech
 - Preprocessing
- Formal Concept Analysis
- Machine Learning

- Tokenization
- Normalization (abbrev., etc.)
- Stemming / Lemmatizzazione
- POS tagging
- Named Entity Recognition
- Risoluzione dei pronomi

- Ontology Learning
 - Methods

- Natural Language Processing
 - Ruolo delle part-of-speech
 - Preprocessing
 - Analisi sintattica
- Formal Concept Analysis
- Machine Learning

• Regole su parse tree

- Ontology Learning
 - Methods

- Natural Language Processing
 - Ruolo delle part-of-speech
 - Preprocessing
 - Analisi sintattica
 - Similarità
- Formal Concept Analysis
- Machine Learning

- Vector Space Models (VSMs)
- Distribuzioni di probabilità
- Term relevance (tf, tfidf, etc)

- Ontology Learning
 - Methods

- Natural Language Processing
 - Ruolo delle part-of-speech
 - Preprocessing
 - Analisi sintattica
 - Similarità
 - Risorse linguistiche
- Formal Concept Analysis
- Machine Learning

- WordNet
- BabelNet
- ConceptNet
- VerbNet
- FrameNet
- PropBank

• • •

- Ontology Learning
 - Methods

- Natural Language Processing
- Formal Concept Analysis (FCA)
 - Formal Context
- Machine Learning

- Oggetti
- Attributi
- Incidenza

Nozioni di formal context e operatori

	c_1	c_2	c_3	<i>c</i> ₄	c_5	c_6	c_7
f_1	х			X		X	x
f_2		x		X	x		x
f_3			X		X	X	X
	(a)						

T	$\{f_1, f_2, f_3\}$, $\{c_7\}$
Concept 1	$\{f_1, f_2\}$, $\{c_4, c_7\}$
Concept 2	$\{f_1, f_3\}$, $\{c_6, c_7\}$
Concept 3	$\{f_2, f_3\}$, $\{c_5, c_7\}$
Concept 4	$\{f_1\}$, $\{c_1, c_4, c_6, c_7\}$
Concept 5	$\{f_2\}$, $\{c_2, c_4, c_5, c_7\}$
Concept 6	$\{f_3\}$, $\{c_3, c_5, c_6, c_7\}$
	$\{\emptyset\}$, $\{c_{1,} c_{2,} c_{3,} c_{4,} c_{5,} c_{6,} c_{7}\}$

(b)

- Ontology Learning
 - Methods

- Natural Language Processing
- Formal Concept Analysis
- Machine Learning
 - Supervised methods

- Bayesian classifiers
- Decision trees
- Support Vector Machines
- Neural Networks

- Ontology Learning
 - Methods

- Natural Language Processing
- Formal Concept Analysis
- Machine Learning
 - Supervised methods
 - Unsupervised methods

- Clustering
- Hierarchical clustering
 - divisivo
 - agglomerativo

- Nato dalla necessità di estrarre grandi quantità di informazioni da grandi corpora
- Legato all'OL, ma differente in natura
 - Estrazione di triplette (nella maggior parte dei casi) che costituiscono *relational phrases*
 - Solitamente arg1 verbal phrase arg2
 - · esempio:
 - "Faust made a deal with the devil" —> (Faust, made a deal with, the devil).

- OIE nasce e si sviluppa usando pattern semplici e tecniche NLP
 - Esempi di pattern (in stile OL-Hearst)

Authors	Patterns			
Yamada and Baldwin	N BE worthy of V[+nom]; V[+ing] Noun; N BE Adverb-			
	V[ed]; N (deserves merits) V[+nom]			
Cimiano and Wenderoth	NP comprises NP_C ; NP are made up of NP_C ; NP_F ,? such			
	as NP			
Caselli and Russo	used to (make put) V; made of N; of ADJ color; produced			
	by N; a kind of N			

- OIE nasce e si sviluppa usando pattern semplici e tecniche NLP
 - Si possono imporre vincoli sugli argomenti, o sulle frasi verbali (usando risorse semantiche, o domain needs)

- OIE nasce e si sviluppa usando pattern semplici e tecniche NLP
 - · Solitamente, la maggior parte dei sistemi usa due steps
 - POS tagging (e/o dependency parsing)
 - Extraction step
 - Può usare WSD, check dipendenze sintattiche subj/obj tra verbal phrase e argomenti, check su ontologie esistenti, etc.

- OIE nasce e si sviluppa usando pattern semplici e tecniche NLP
 - A volte, si usa un step di filtering
 - In base alle triple estratte, si cerca di rimuovere triplette rare, oppure effettuare clustering e revisione delle estrazioni

- · OIE
 - Problematiche
 - · Molti sistemi, difficili da valutare
 - Molte estrazioni, difficili da comparare
 - · Triplette non di facile utilizzo in applicazioni reali

- · OIE
 - Esempi di sistemi esistenti
 - ReVerb (uno dei primi, basato su vincoli sintattici)
 - KrankeN (uso di WSD)
 - ClausIE (estrae relazioni N-ary)
 - DeflE (combina Parsing e WSD, creando un grafo)
 - NELL (Never Ending Language Learning)

•

Lab - Esercizio "FCA"

- · Implementare un sistema di Ontology Learning facendo uso della FCA
 - Libreria Python per FCA
 - https://pypi.org/project/concepts/
 - Dati
 - A vostra scelta (sia i "concetti" che le features)
 - · Es. di features: proprietà semantiche, related words, synsets, occorrenza in documenti, ecc.
 - · Un esempio (usabile come no):
 - Date 2 lingue in input (es. ita e eng)
 - Concepts: termini (di entrambe le lingue)
 - Features: synset di appartenenza