Embedded and Interactive 3D Graphics for Materials Science

Jonathan D. Emery

Lecturer Materials Science and Engineering Northwestern University

August 17th, 2018

Outline

- 1. Learning in 3D Space
- 1.1 Background
- 1.2 Interactive 3D Graphics as a Learning Tool
- 2. Asymptote + PDF
- 2.1 The Decision
- 2.2 Gallery
- 2.3 Successes
- 2.4 Challenges
- 3. Afterward HTML5-embeddable 3D Content

Outline

- 1. Learning in 3D Space
- 1.1 Background
- 1.2 Interactive 3D Graphics as a Learning Tool
- 2. Asymptote + PDF
- 2.1 The Decision
- 2.2 Gallery
- 2.3 Successes
- 2.4 Challenges
- Afterward HTML5-embeddable 3D Content

Acknowledgments and Resources

Funding from Northwestern University's Digital Learning Fellowship

GitHub repository: https://github.com/emeryjdk/NAMES-2018

- Asymptote Script (.asy)
- ▶ 3D PDFs (.pdf)
- Jupyter Notebooks (.ipynb)
- Interactive HTML Snippets (.html)

▶ Joined Northwestern as Lecturer in 2015

- ▶ Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science

- ▶ Joined Northwestern as Lecturer in 2015
- ► Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures
 - \rightarrow VESTA + \sim 20 models.

- Joined Northwestern as Lecturer in 2015
- ► Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA $+ \sim$ 20 models.

Did you use VESTA to assist with 3D visualization?

- Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA $+ \sim$ 20 models.

Did you use VESTA to assist with 3D visualization?

"Very helpful"

- Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA + \sim 20 models.

Did you use VESTA to assist with 3D visualization?

"Very helpful"

"Not explicitly required"/ "Make mandatory"

- Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA $+ \sim$ 20 models.

Did you use VESTA to assist with 3D visualization?

"Very helpful"

"Not explicitly required"/ "Make mandatory"

"What are you talking about?"

- Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA $+ \sim$ 20 models.

Did you use VESTA to assist with 3D visualization?

"Very helpful"

"Not explicitly required"/ "Make mandatory"

"What are you talking about?"

"Cumbersome"

- ▶ Joined Northwestern as Lecturer in 2015
- Assigned Introduction to Materials Science
- ▶ Utilize self-paced, dynamic 3D visualizations for learning crystal structures \rightarrow VFSTA + \sim 20 models.

Did you use VESTA to assist with 3D visualization?

"Very helpful" "Not explicitl

"Not explicitly required"/ "Make mandatory"

"What are you talking about?"

"Cumbersome"

"Didn't want to learn software" / "No time"

No Answer (42/110)

Topic	Example Software
Math (vector fields, energy surfaces)	Mathematica , MATLAB , Python
Crystallography/Polymers/Molecules Defects/Imperfections	CrystalMaker, VESTA, OVITO, JSMol, CrystalWalk CrystalMaker, OVITO
Phase Diagrams Microscopy/Microstructure Electronic Structure/Band Structure CAD/FEM/3D Printing Materials Selection	ThermoCalc, JMol Paraview, ImageJ Vesta, MATLAB, QuantumATK AutoCAD, SolidWorks, SketchUp, COMSOL CES Edupack (in 3D?)

<u>Underlined</u>: Software used at some point in our curriculum.

Topic	Example Software
Math (vector fields, energy surfaces)	Mathematica , MATLAB , Python
Crystallography/Polymers/Molecules Defects/Imperfections	CrystalMaker, VESTA, OVITO, JSMol, CrystalWalk CrystalMaker, OVITO
Phase Diagrams Microscopy/Microstructure	ThermoCalc, JMol Paraview, ImageJ
Electronic Structure/Band Structure CAD/FEM/3D Printing Materials Selection	Vesta, MATLAB, QuantumATK AutoCAD, SolidWorks, SketchUp, <u>COMSOL</u> CES Edupack (in 3D?)

<u>Underlined</u>: Software used at some point in our curriculum.

Example Software
Mathematica , MATLAB , Python
CrystalMaker, <u>VESTA</u> , OVITO, JSMol, CrystalWalk
CrystalMaker, OVITO
ThermoCalc, JMol
Paraview , ImageJ
Vesta, MATLAB, QuantumATK
AutoCAD, SolidWorks, SketchUp, COMSOL
CES Edupack (in 3D?)

<u>Underlined</u>: Software used at some point in our curriculum.

Example Software
Mathematica , MATLAB , Python
CrystalMaker, VESTA, OVITO, JSMol, CrystalWalk CrystalMaker, OVITO
ThermoCalc, JMol
Paraview , ImageJ
Vesta, MATLAB, QuantumATK
AutoCAD, SolidWorks, SketchUp, COMSOL
CES Edupack (in 3D?)

<u>Underlined</u>: Software used at some point in our curriculum.

Topic	Example Software
Math (vector fields, energy surfaces)	Mathematica , MATLAB , Python
Crystallography/Polymers/Molecules	CrystalMaker, VESTA, OVITO, JSMol, CrystalWalk
Defects/Imperfections	CrystalMaker, OVITO
Phase Diagrams	ThermoCalc, JMol
Microscopy/Microstructure	Paraview , ImageJ
Electronic Structure/Band Structure	Vesta, MATLAB, QuantumATK
CAD/FEM/3D Printing	AutoCAD, SolidWorks, SketchUp, COMSOL
Materials Selection	CES Edupack (in 3D?)

<u>Underlined</u>: Software used at some point in our curriculum.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

Should I even bother?

Höffler, University of Kiel, Olshausenstr — Spacial Ability: It's Influence on Learning with Visualizations — a Meta-Analytic Review Educ. Psychol. Rev. (2010) 22:245-269

	Low-level Spatial Ability Learners	High-Level Spatial Ability Learners
	Enhance (Compensate)	Enhance
Dynamics	High (Yes)	Medium
Dimensionality	High (Yes)	Medium
Realism	Medium (No)	Medium
Interactivity	Medium (No)	Medium
Multi-modal	Low (No)	Low

- ▶ Reduce student barriers to access 3D models.
- Streamline visualization features to provide resources for various learners.

One-stop-shop Visualization

Can I put sophisticated 3D visualizations directly into my students' course documents?

Considerations: Idealalities :

One-stop-shop Visualization

Can I put sophisticated 3D visualizations directly into my students' course documents?

Considerations:

- Free/cheap
- Flexible/powerful
- User-friendly
- Creator-friendly
- Web/PDF-compatible/Powerpoint (export options)

Idealalities:

One-stop-shop Visualization

Can I put sophisticated 3D visualizations directly into my students' course documents?

Considerations:

- Free/cheap
- Flexible/powerful
- User-friendly
- Creator-friendly
- Web/PDF-compatible/Powerpoint (export options)

Idealalities:

- Interactivity
- Active/responsive development community
- Virtual reality
- Data collection

- Increase participation in utilizing 3D graphics.
- Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- Better understand how students use and interact with these graphics
- Impress my students.

- Increase participation in utilizing 3D graphics.
- ▶ Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- Better understand how students use and interact with these graphics
- Impress my students.

- Increase participation in utilizing 3D graphics.
- Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- ▶ Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- Better understand how students use and interact with these graphics
- Impress my students.

- Increase participation in utilizing 3D graphics.
- ▶ Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- ▶ Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- Better understand how students use and interact with these graphics
- Impress my students.

- Increase participation in utilizing 3D graphics.
- ▶ Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- ▶ Better understand how students use and interact with these graphics.
- Impress my students.

- Increase participation in utilizing 3D graphics.
- Improve student outcomes in areas that hinge on visualization of complex 3D structures.
- Improve student satisfaction with course materials through well-integrated and easy-to-use content.
- Establish a platform to easily deployment complex 3D data for richer data communication.
- Better understand how students use and interact with these graphics.
- Impress my students.

Outline

- 1. Learning in 3D Space
- 1.1 Background
- 1.2 Interactive 3D Graphics as a Learning Tool
- 2. Asymptote + PDF
- 2.1 The Decision
- 2.2 Gallery
- 2.3 Successes
- 2.4 Challenges
- Afterward HTML5-embeddable 3D Content

Asymptote + PDF (Adobe)

Asymptote — Vector Graphics Software (John Bowman, U. of Alberta)

- ▶ PDF formatting are a ubiquitous medium for course documentation and journal publications
- ► Asymptote compiles through T_EXnicCenter
- ▶ Asymptote → PRC (Product Representation Compact)
 - Powerful vector graphics language
 - ► High-level graphics commands (flexibility)
 - ► T_EX-formatted labeling
 - ► PRC files are ISO-standardized
 - ► Viewable with Adobe Reader*
 - JavaScript-enabled views, animations, and interactivity

^{*}We'll talk about this in a bit

Asymptote + PDF (Adobe)

Asymptote — Vector Graphics Software (John Bowman, U. of Alberta)

- ▶ PDF formatting are a ubiquitous medium for course documentation and journal publications
- ► *Asymptote* compiles through T_EXnicCenter
- ▶ Asymptote → PRC (Product Representation Compact)
 - Powerful vector graphics language
 - ► High-level graphics commands (flexibility)
 - ► T_EX-formatted labeling
 - ► PRC files are ISO-standardized
 - ► Viewable with Adobe Reader*
 - JavaScript-enabled views, animations, and interactivity

^{*}We'll talk about this in a bit

Asymptote + PDF (Adobe)

Asymptote — Vector Graphics Software (John Bowman, U. of Alberta)

- ▶ PDF formatting are a ubiquitous medium for course documentation and journal publications
- ► *Asymptote* compiles through T_EXnicCenter
- ► *Asymptote* → PRC (Product Representation Compact)
 - Powerful vector graphics language
 - High-level graphics commands (flexibility)
 - TEX-formatted labeling
 - PRC files are ISO-standardized
 - Viewable with Adobe Reader*
 - JavaScript-enabled views, animations, and interactivity

^{*}We'll talk about this in a bit...

The FCC Crystal Structure

How many octahedral sites are there in this unit cell?

Rotate the crystal to view along the [111] direction.

Polymer Random Walk

Ternary Phase Diagram (extra fresh)

Brillouin Zone[†]

[†]From StackExchange users dasausTeR and cfr

► It works (most of the time)

- ► It works (most of the time)
- ► It's very pretty

- ► It works (most of the time)
- ► It's very pretty
- ► Students say that they like it, use it, and learn from it.

- ► It works (most of the time)
- ► It's very pretty
- ▶ Students say that they like it, use it, and learn from it.
- ► Collaborative join on GitHub!

- ► It works (most of the time)
- ► It's very pretty
- ► Students say that they like it, use it, and learn from it.
- ► Collaborative join on GitHub!
- ▶ Paste into your PDF from my PDF

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex..
- User-end settings and hardware:
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex..
- User-end settings and hardware
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex...
- User-end settings and hardware
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex...
- User-end settings and hardware:
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex...
- User-end settings and hardware:
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

- $ightharpoonup \sim 10\%$ of students can't follow a one-step direction to download Adobe.
- Adobe is no longer the de facto PDF-viewer
- Creation is complex...
- User-end settings and hardware:
 - No tablets
 - No phone
 - Loading time
 - Securities
 - ► Adobe!
- ▶ It does not work *directly* with PowerPoint (but nothing does, really...)
- Is our children learning?

Outline

- 1. Learning in 3D Space
- 1.1 Background
- 1.2 Interactive 3D Graphics as a Learning Tool
- 2. Asymptote + PDF
- 2.1 The Decision
- 2.2 Gallery
- 2.3 Successes
- 2.4 Challenges
- 3. Afterward HTML5-embeddable 3D Content

Need a better option — something for the web —

- Our students live on the Web.
- Something *simpler*.
- ► Platform-independent
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- Something that provides us with data about student interactivity...

Need a better option — something for the web —

- Our students live on the Web.
- Something simpler.
- Platform-independent
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- Something that provides us with data about student interactivity...

Need a better option — something for the web —

- Our students live on the Web.
- Something simpler.
- Platform-independent.
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- ▶ Something that provides us with data about student interactivity...

Need a better option — something for the web —

- Our students live on the Web.
- Something simpler.
- Platform-independent.
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- Something that provides us with data about student interactivity...

Need a better option — something for the web —

- Our students live on the Web.
- Something simpler.
- Platform-independent.
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- Something that provides us with data about student interactivity...

Need a better option — something for the web —

- Our students live on the Web.
- Something simpler.
- Platform-independent.
- ▶ Not beholden to the whims of Adobe (e.g. this this *lovely* exchange)
- Something that provides us with data about student interactivity...