Ferienkurs Experimentalphysik 2

Übungsblatt 3

Tutoren: Elena Kaiser und Matthias Golibrzuch

4 Zeitlich veränderliche Felder

4.1 Wechselstromgenerator

Ein gewöhnlicher Wechselstromgenerator besteht aus einer rotierenden Spule in einem Magnetfeld. Im einfachsten Fall rotiert eine kreisförmige Leiterschleife in einem homogenen Magnetfeld. Dessen Stärke sei $|\vec{B}| = 1,25$ T und es zeige in die z-Richtung. Die Schleife rotiere mit der Frequenz f = 50, 0 Hz um die x-Achse und erzeuge eine maximale Spannung von $U_0 = 250$ V.

- a) Welchen Radius R hat die Schleife?
- b) Bei welchen Winkeln 'zwischen dem Flächenvektor \vec{A} der Schleife und der z-Achse liegen die maximalen Werte von |U(t)| vor? (Vernachlässigen Sie die Anschlussdrähte und betrachten Sie die Fläche der Schleife so, als sei sie geschlossen.)

4.2 Induktion durch Zug

a) Welche Spannung U wird zwischen den Schienen eines Eisenbahngleises mit der Spurweite l=1435 mm induziert, wenn ein Zug (m=100 Tonnen) mit der Geschwindigkeitv=100 km/h darüber hinwegfährt und die Vertikalkomponente des Erdmagnetfeldes $B_v=45$ μT beträgt? Nehmen Sie an, dass die Schienen voneinander elektrisch isoliert sind und durch die Achsen der Wagen kurzgeschlossen werden. Der elektrische Widerstand des Zuges sei 0, 1 Ω .

- b) Berechnen Sie die Kraft, die durch die Induzierte Spannung auf den Zug ausgeübt wird. In welche Richtung zeigt diese?
- c) Welche Arbeit muss der Zug insgesamt aufbringen um seine Geschwindigkeit zu halten, wenn er eine Strecke von $x=300~\mathrm{km}$ zurücklegt.
- d) Wie weit würde der Zug Rollen, wenn er die Maschinen stoppt und nur durch die elektrische Kraft gebremst wird?

4.3 Induktivität einer Spule

Eine Spule habe 1000 Windungen auf einem Kern der relativen Permeabilität $\mu=1000$. Länge und Durchmesser der Spule seien l=30 cm bzw. d=6 mm. Berechnen Sie die Induktivität L der Spule!

5 Wechselstromkreise

5.1 Differentialgleichungen von Schaltungen

Eine Wechselspannungsquelle liefert die Effektivspannung U=6 V mit der Frequenz $\nu=50$ Hz ($\omega=2\pi\nu$). Zunächst wird ein Kondensator der Kapazität C angeschlossen und es fließt ein Effektivstrom $I_1=96$ mA. Dann wird statt des Kondensators eine Spule mit Induktivität L und Ohmschen Widerstand R angeschlossen, der Effektivstrom beträgt dann $I_2=34$ mA. Schließlich werden Kondensator und Spule hintereinandergeschaltet und es fließen $I_3=46$ mA.

- 1. Setzen Sie die Spannung der Stromquelle in komplexer Form als $U(t) = \hat{U}e^{i\omega t}$ an und leiten Sie aus den Differentialgleichungen allgemein den Scheinwiderstand (d.h. den Absolutbetrag des komplexen Widerstandes) her von:
 - (a) einer Kapazität C,
 - (b) einer reinen Induktivität L,
 - (c) einer Spule mit L und R,
 - (d) einer Reihenschaltung aus einer Kapazität C und einer Spule mit L und R.
- 2. Berechnen Sie die Kapazität des Kondensators sowie die Induktivität und den Ohmschen Widerstand der Spule aus den oben angegebenen experimentellen Werten.

5.2 Hoch- oder Tiefpass

Betrachten Sie das obige Schaltbild! Es ist am Eingang eine Wechselspannung $U_{\rm in}(t) = U_0 \cos(\omega t)$ angelegt. Berechnen Sie das Verhältnis der Beträge von Ein- und Ausgangsspannung $\frac{|U_{\rm out}|}{|U_{\rm in}|}$. Handelt es sich bei der Schaltung um einen Hoch- oder um einen Tiefpass?

5.3 Schwingkreis

Betrachten Sie den elektrischen Schwingkreis in der obigen Abbildung! Angegeben sind die angelegte Wechselspannung $U_{\sim} = U_0 \cos(\omega t)$ mit Grundspannung U_0 und Frequenz ω , die Induktivität der Spule L, die Kapazität des Kondensators C sowie der ohmsche Widerstand R. An der eingezeichneten Stelle wird der Gesamtstrom I_{ges} gemessen. Geben Sie diesen in Abhängigkeit der gegebenen Größen an! Führen Sie zusätzlich, wo sinnvoll, den "Grundstrom" $I_0 := \frac{U_0}{R}$ ein.