Transformacije podataka i inženjerstvo značajki

Dubinska analiza podataka 3. predavanje

Pripremio: izv. prof. dr. sc. Alan Jović Ak. god. 2023./2024.

Sadržaj

- Uvod u transformacije podataka
- Ručni pristup inženjerstvu značajki
 - Transformacija varijabli
 - Izlučivanje značajki
 - Uklanjanje nebitnih i redundantnih značajki
- Poluautomatizirani pristup inženjerstvu značajki
 - Izgradnja značajki
 - Redukcija dimenzionalnosti

Uvod u transformacije podataka

Promjena oblika skupa podataka

- Zašto nam je važno preoblikovati (transformirati) skup podataka?
- Podaci su predočeni u obliku koji se ne može jednostavno iskoristiti za modeliranje

VARIJABLE

- Nisu normirani/standardizirani što otežava usporedbu
- Zadani su u obliku vremenskih nizova / signala / teksta koje algoritam za modeliranje ne razumije
- Podataka nema dovoljno / ima previše

PRIMJERCI

Promjena oblika skupa podataka

- U kontekstu promjene oblika skupa podataka, izvorne kategorije koje su mjerene/prikupljene (senzorima, upitnicima, intervjuima) nazivamo varijablama
 - Npr. u tabličnom prikazu podataka: spol osobe (muško/žensko), visina osobe u cm (numerički tip)
 - Npr. u vremenskom nizu: konačna cijena dionice u danu, napon na elektrodi elektrokardiograma u nekom trenutku
 - Npr. u slici: razina boje (ili sivila) piksela

Promjena oblika skupa podataka

- Izvorne varijable moguće je transformirati (preoblikovati) jednom ili više transformacija
 - Npr. transformacija u tabličnom prikazu podataka: spol osobe (0/1), visina osobe (visoka/srednja/niska)
 - Npr. transformacija u vremenskom nizu: konačna cijena dionice u danu podijeljena ukupnim volumenom trgovanja, Fourierova transformacija napona na elektrodi elektrokardiograma
 - Npr. transformacija u slici: razina boje (ili sivila) piksela s dodanim šumom

Značajke

- Transformirane varijable koje se koriste na ulazu metoda strojnog učenja nazivaju se značajkama (engl. feature), a cijeli primjerak naziva se vektor značajki (engl. feature vector)
- Neki put, izvorne kategorije (varijable) su ujedno i značajke
- Češće, značajke su **rezultat posljednje matematičke operacije** prije nego što podatak uđe u metodu strojnog učenja
 - Npr. prosječna vrijednost unazad 5 dana cijene dionice pri zatvaranju trgovanja podijeljena ukupnim volumenom trgovanja; spektralna gustoća snage u niskofrekventnom pojasu 0.04 – 0.15 Hz vremenskog niza srčanih otkucaja

Značajke – svojstva

- Značajke su često vrlo specifične i domenski definirane
 - Predlažu ih stručnjaci za pojedinu domenu (područje)
 - Računaju ih specijalizirani programi na temelju izvornih varijabli
 - One su linearne i nelinearne transformacije jedne ili više izvornih varijabli
 - Često imaju razumljivu interpretaciju

https://www.investopedia.com/articles/trading/07/adx-trend-indicator.asp

Značajke – razlozi korištenja

- Zašto nam trebaju značajke?
 - Sažetost: Sirovih podataka (varijabli) ima previše za učinkovito korištenje algoritama strojnog / dubokog učenja
 - Informativnost: Sirovi podaci (varijable) nisu toliko informativni, jer se zanimljiva informacija krije u matematičkim odnosima / transformacijama između njih
 - Interpretabilnost: Ljudi bolje razumiju značajke od sirovih podataka (varijabli) kada se radi o interpretaciji modela strojnog učenja

Pristupi inženjerstvu značajki

- Područje inženjerstva značajki bavi se svim transformacijama nad varijablama kojima se dobiva konačni vektor značajki
- To je zadatak izgradnje skupa podataka po CRISP-DM-u (dolazi nakon čišćenja podataka)
- Pristupi
 - Ručni pristup inženjerstvu značajki Tema današnjeg predavanja
 - Poluautomatizirani pristup inženjerstvu značajki Tema današnjeg i idućeg predavanja
 - Automatizirani pristup izlučivanju značajki Tema 10. predavanja (duboko učenje u DAP-u)

Ručni pristup inženjerstvu značajki

Koraci ručnog pristupa inženjerstvu značajki

- 1. Transformacije varijabli
- 2. Izlučivanje značajki
- 3. Uklanjanje nebitnih i redundantnih značajki

Napomena: prije prvog koraka transformacije varijabli nužno je provesti tehnike čišćenja podataka, vidjeti prošlo predavanje

Transformacije varijabli

- Velik broj transformacija varijabli, ovisno o tipu podatka s kojima radimo
- Tablične varijable
 - 1. Diskretizacija numeričkih varijabli
 - 2. Pretvorbe kategoričkih varijabli
 - 3. Normalizacija vrijednosti varijabli
- Vremenski nizovi podataka 9. predavanje
 - 1. Razlike n-tog reda
 - 2. Diskretizacija vremenskog niza
 - 3. Dodavanje šuma varijablama
 - 4. Fourierova transformacija
 - 5. Valićna transformacija

- Slike Ne bavimo se
 - 1. Tehnike kontrastiranja / korekcije svjetline
 - 2. Pretvorba u sivu skalu

- Tekst Ne bavimo se
 - 1. Bag of Words (BOW)
 - 2. Term Frequency i Inverse Document Frequency (TF/IDF)
 - 3. Word to Vectors (Word2Vec)
 - 4. Kontekstualizirane vektorske reprezentacije

Diskretizacija numeričkih varijabli

- Numeričke vrijednosti varijable --> kategoričke vrijednosti varijable (engl. binning)
- Pretpostavka: broj kategorija << broj numeričkih vrijednosti
- Ponekad se provodi u analizi podataka
 - Neki algoritmi funkcioniraju samo koristeći diskretne, kategoričke vrijednosti (induktivna pristranost)
 - Performance algoritama degradiraju ako varijable nemaju razdiobu gustoće vjerojatnosti blisku uniformnoj
- Primjeri algoritama koji zahtijevaju diskretizaciju:
 - Neki algoritmi stabala odluke (engl. decision trees)
 - Neki algoritmi temeljeni na induktivnim pravilima (engl. induction rules, rule-based system)
 - Sustavi asocijativnih pravila (engl. association rules)
- Diskretizacijom se uvijek gubi određena informacija!

Diskretizacija numeričkih varijabli

- Vjerojatno najbolju diskretizaciju neke numeričke varijable mogu predložiti **stručnjaci** iz nekog područja
- U izostanku tog prijedloga, neki češće korišteni postupci diskretizacije su:
 - Podjela u K intervala jednake širine (engl. equal width binning)
 - Podjela u intervale s jednakim brojem primjeraka (engl. equal frequency binning)
 - Diskretizacija algoritmom k-srednjih vrijednosti (engl. k-means discretization)
 - **Diskretizacija minimizacijom entropije** (engl. *entropy minimization discretization*)
- KBinsDiscretizer u scikit-learnu

https://machinelearningmastery.com/discretization-transforms-for-machine-learning/

Nenadzirani pristup

Nadzirani pristup

Diskretizacija minimizacijom entropije

Fayyad i Irani 1993. – točke koje dijele skup sortiranih vrijednosti numeričke varijable izabrane su tako da minimiziraju
zajedničku entropiju varijable i ciljne klase:

$$H(X,Y) = \sum_{x \in X, y \in Y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

- Postupak se provodi iterativno, tako da se u svakom koraku nad sortiranim vrijednostima varijable traži sljedeća podjela (engl. split) koja ima najmanju entropiju u odnosu na sve ostale podjele
- S postupkom se staje kada je **informacijski dobitak** (engl. *information gain, Gain*) od podjele manji (ili jednak) **najmanjoj** duljini opisa (engl. *minimum description length*, MDL)
 - MDL ovisi o broju primjeraka N, broju klasa ciljne varijable k, entropiji primjeraka E, entropiji primjeraka u svakom podintervalu podjele E₁ i E₂ i broju klasa predstavljenih u svakom podintervalu k₁ i k₂:

• Ako vrijedi
$$Gain > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2) - kE + k_1E_1 + k_2E_2}{N}$$
 onda dolazi do podjele

• Gain = info(stanje prije podjele) – info(stanje nakon podjele)

Izvor: Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. Morgan Kaufmann, 2016.

Diskretizacija minimizacijom entropije

$$info[x,y] = entropy\left(\frac{x}{x+y},\frac{y}{x+y}\right),$$
 Za procjenu količine informacije koristi se entropija $entropy(p_1,p_2) = -p_1log_2(p_1) - p_2log_2(p_2)$

• Primjer:

64	65	68	69	70	71	72	75	80	81	83	85
Yes	No	Yes	Yes	Yes	No		Yes Yes	No	Yes	Yes	No

- Stanje prije podjele: info([9,5]) = 0,940 bitova
- Stanje nakon podjele na vrijednosti 71,5: $\inf o([4,2],[5,3]) = \frac{6}{14} \inf o([4,2] + \frac{8}{14} \inf o([5,3]) = 0,939$ bitova

Diskusija: Je li ovakva podjela dobra?

Diskretizacija minimizacijom entropije

- Iterativni postupak:

- 1. iteracija: lom A ima najmanju entropiju (0,827)
- 2. Iteracija: lom B ima najmanju entropiju (0,8)

...

Može se pokazati da je potrebno razmotriti samo **korisne** lomove – lom je koristan ako je vrijednost varijable Y **različita** s obje strane loma

Konačna diskretizacija:

Pretvorbe kategoričkih varijabli

- Mnogi algoritmi strojnog učenja ne mogu raditi direktno s kategoričkim vrijednostima, nego zahtijevaju da sve ulazne i ciljne varijable bude numeričke
 - Ograničenje koje je uvela učinkovita implementacija algoritama strojnog učenja

Dvije vrste pretvorbe:

- Izravna pretvorba kategoričke varijable u numeričku (engl. Iabel encoding, integer encoding)
 - kategorija1 -> 1; kategorija2 -> 2 kategorijan -> n samo u slučaju kada poredak kategorija ima smisla
- Pretvorba gdje svaka kategorija neke kategoričke varijable postaje nova binarna varijabla (engl. one-hot encoding)
 - Od n kategorija dobivamo n binarnih značajki, koje imaju vrijednost 1 za one primjere za koje bi dotična kategorija vrijedila, a 0 inače

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

Normalizacija vrijednosti varijabli

- Potrebno kada su različite značajke u skupu podataka mjerene na različitim skalama
 - Značajke mjerene na nižim skalama (npr. između 1 i 10) bile bi manje relevantne modelu od onih na višim skalama (npr. između 1000 i 10000)
 - Modeli strojnog učenja u pravilu lošije rade s nenormiranim varijablama
 - Normalizacija omogućuje uključivanje **stršećih vrijednosti** koje nisu pogreške u modeliranje bez značajnog remećenja rezultata modeliranja
- Najčešća normalizacija je na raspon vrijednosti između 0 i 1

Normalizacija vrijednosti varijabli

- Postupci normalizacije vrijednosti varijabli
 - Decimalno skaliranje dijeljenje vrijednosti s maksimalnom vrijednosti decimalnog mjesta
 - Npr. sa 100, ako su sve vrijednosti do 100, a veće od 10
 - Varijanta: logaritamsko skaliranje korisno kada su vrijednosti varijable značajno razvučene (visoka varijanca, npr. kod eksponencijalne razdiobe)
 - Normalizacija Min-Max: x' = (x min) / (max min) (ako želimo vrijednosti između 0 i 1)
 - Normalizacija **z-skorom** (statistička normalizacija putem srednje vrijednosti i varijance), poznato i kao **standardizacija:** x' = (x mean) / stdev
 - Ponekad se u slučaju malog broja stršećih vrijednosti koje želimo izostaviti može koristiti i podrezivanje (engl. clipping)
 - if x > max, then x' = max; if x < min, then x' = min

Izlučivanje značajki

- Engl. feature extraction, feature elicitation, feature calculation
- Matematičko definiranje, implementacija u kodu i računanje značajki
- Značajke često ovisne o domeni primjene, predlaže ih stručnjak (ekspert) u području primjene
- Potencijalno beskonačni prostor značajki
- Ne računaju se iz tabličnih varijabli, nego se računaju iz ostalih tipova varijabli (vremenski nizovi, slika, tekst...)

Izlučivanje značajki

- Značajke se obično računaju nakon prethodne pripreme sirovih podataka, tj. nakon transformacija izvornih varijabli
- U analizi vremenskih nizova razlikujemo:
 - Značajke vremenske domene (često razne statističke značajke)
 - Značajke frekvencijske domene (značajke dobivene iz spektra signala)
 - Nelinearne značajke (značajke faznog prostora, entropije, ...)
- Različite značajke slike (npr. histogrami boja, karakteristične točke lica)

Uklanjanje nebitnih i redundantnih značajki

- Značajke su nebitne (engl. irrelevant) ako ne poboljšavaju uspješnost modela strojnog učenja (mogu, ali i ne moraju ga pogoršati)
- Vrste nebitnih značajki
 - Monotone značajke
 - Konstantne značajke
 - Duplikati značajki
 - Nekorelirane značajke
 - Korelacijski koeficijent između njih i ciljne značajke je jednak (ili vrlo blizak) nuli

Uklanjanje nebitnih i redundantnih značajki

- Značajke su redundantne (engl. redundant) ili statistički redundantne (engl. statistically redundant) ako uz prisutnost drugih značajki u modelu strojnog učenja one same ne poboljšavaju uspješnost modela
- Statistički redundantne značajke određuju se:
 - Korelacijskom analizom
 - Markovljevim pokrivačem (engl. Markov blanket) tema idućeg predavanja

Uklanjanje redundantnih značajki korelacijskom analizom

HIGHLY CORRELATED ATTRIBUTES

One attribute can be removed without any information loss. As one attribue can easily determine the other.

Source: https://www.geeksforgeeks.org/redundancy-and-correlation-in-data-mining/

Uklanjanje redundantnih značajki korelacijskom analizom

- Korelacijska matrica prikazuje korelaciju između svakih dviju značajki u skupu
- Ako je vrijednost korelacije vrlo visoka, idealno 1, odabire se jedna od značajki za uklanjanje
- Prag vrijednosti korelacijskog koeficijenta za odbacivanje neke značajke ovisi o domeni i cilju analize, ali obično je viši od 0.9

Izvor: https://www.displayr.com/what-is-a-correlation-matrix/

Poluautomatizirani pristup inženjerstvu značajki

Poluautomatizirani pristup inženjerstvu značajki

- Izgradnja značajki (engl. feature construction)
- Redukcija dimenzionalnosti (engl. dimensionality reduction)
- Odabir značajki (engl. feature selection) tema idućeg predavanja

Izgradnja značajki

- Fokus na poboljšanju performanci
- Nema prokušane formule, treba razumjeti domenu primjene i isprobati različite pristupe
- Iterativna primjena različitih operatora za izgradnju novih značajki
 - Binarne varijable: Konjunkcija, disjunkcija, negacija
 - Numeričke varijable: Ekvivalencija, nejednakost, zbrajanje, oduzimanje, množenje, dijeljenje
 - Kombiniranje varijabli: M od N varijabla poprima vrijednost 1 ako je barem M od N uvjeta (ostale varijable) istinito
 - Složenije transformacije podataka -> vidjeti metode za redukciju dimenzionalnosti

Izgradnja značajki

- Podjela pristupa za izgradnju značajki:
 - Zasnovani na podacima na temelju opaženih podataka (najčešće)
 - Zasnovani na hipotezi na temelju prethodno generirane hipoteze (znanstvena istraživanja)
 - Zasnovani na znanju na temelju domenskog znanja (pomoć eksperta je često nužna)
 - Hibridni pristupi kombiniraju gornja tri pristupa

Izvor: http://www.ar.sanken.osaka-u.ac.jp/~motoda/papers/fdws02.pdf

Izgradnja značajki

- Vrlo značajno za postizanje boljih prediktivnih modela
- Može poslužiti i za redukciju dimenzionalnosti
- Dobivene značajke po potrebi se dijelom kasnije uklanjaju korištenjem algoritama za odabir značajki – ponekad postupak ide iterativno
- Neki od najboljih automatskih postupaka za izgradnju značajki zasnivaju se na genetskom programiranju s višestrukim stablima za predstavljanje značajki
 - Veze između čvorova stabala označavaju operatore
 - https://www.sciencedirect.com/science/article/abs/pii/S0031320319301815?via%3Dihub

Redukcija dimenzionalnosti

- Problem: velika dimenzionalnost (broj varijabli) u skupu podataka
- Prokletstvo dimenzionalnosti: podaci u velikom broju dimenzija postaju rijetki
 - Algoritmi za učenje teško se prilagođavaju rijetkim podacima što dovodi po slabe generalizacije
 - Potrebno je eksponencijalan broj primjeraka u odnosu na broj varijabli da se prostor napuči
- Cilj: smanjiti (reducirati) dimenzionalnost problema uz zadržavanje inicijalne informacije u podacima
- Dva moguća pristupa
 - Transformacije značajki linearne i nelinearne
 - Odabir značajki

Redukcija dimenzionalnosti

- Ovdje razmatramo samo **neke** često korištene postupke
 - Linearni postupci smanjenja dimenzionalnosti (donekle moguće tumačenje):
 - Analiza glavnih komponenti (engl. *Principal Component Analysis*, PCA)
 - Nelinearni postupci smanjenja dimenzionalnosti (slabo moguće tumačenje):
 - Višedimenzijsko skaliranje (engl. Multidimensional Scaling, MDS)
 - Ugradnja pomoću t-distribuiranog stohastičkog susjeda (engl. t-distributed Stochastic Neighbor Embedding)
 - Uniformna aproksimacija i projekcija mnogostrukosti (engl. *Uniform Manifold Approximation and Projection*, UMAP)
 - Autoenkoderi (engl. *autoencoders*) 10. predavanje

Tehnike učenja mnogostrukosti (engl. manifold learning)

Analiza glavnih komponenti

- 1901., Karl Pearson
- Sinonim: Karhunen-Loèveova transformacija (u obradi signala)
- Tradicionalna najčešća metoda transformacije varijabli
- Tehnika nenadziranog učenja, ne razmatra ciljnu varijablu
- Korisno za:
 - Vizualizaciju visokodimenzionalnih numeričkih podataka u niskodimenzionalnom (2D ili 3D) prostoru
 - Otkrivanje grupa podataka
 - Smanjenje šuma u podacima prvih nekoliko komponenti je otporno na šum

Analiza glavnih komponenti

- Analitički iskaz transformacije: T = X W
- X je matrica izvornih podataka dimenzija n x m, gdje je n broj primjeraka, a m broj varijabli u skupu
- W je matrica vlastitih vektora težina dimenzije m x m koja se koristi za preslikavanje izvornih podataka u
 novi prostor značajki
- Matrica W dobiva se tako da se:
 - izvorni podaci najprije standardiziraju;
 - formira se matrica kovarijance ulaznih podataka;
 - računaju se vlastiti vektori (eigenvectors) matrice kovarijanci;
 - ortogonalni vlastiti vektori se normiraju u jedinične vektore

Analiza glavnih komponenti

- Glavne komponente su vlastiti vektori sortirani po apsolutnoj vrijednosti vlastitih vrijednosti
- Glavne komponente su izražene kao linearna kombinacija standardiziranih izvornih varijabli i to takvi da redom pokrivaju **najveću varijabilnost** u podacima, definiraju smjer novog prostora značajki

- Primjer glavnih komponenti za skup podataka Iris:
- PC1: -0.581petallength-0.566petalwidth-0.522sepallength+0.263sepalwidth
- PC2: 0.926sepalwidth+0.372sepallength+0.065petalwidth+0.021petallength
- PC3: -0.721sepallength+0.634petalwidth+0.242sepalwidth+0.141petallength
- PC4: -0.801petallength+0.524petalwidth+0.262sepallength-0.124sepalwidth

Pokrivaju 95% varijance u podacima

Više o izračunu: https://askdatascience.com/652/how-calculate-covariance-matrix-and-principal-components

Višedimenzijsko skaliranje

- MDS je skup metoda koje predstavljaju različite mjere sličnosti između parova objekata u
 visokodimenzionalnom prostoru kao metričku udaljenost između točaka u niskodimenzionalnom prostoru
- Metrički MDS (engl. metric multidimensional scaling), definira mjeru stresa:

$$Stress_D(x_1, x_2, ..., x_N) = \sum_{i \neq j=1..N} (d_{i,j} - ||x_i - x_j||)^2$$

D je matrica udaljenosti (nesličnosti) (engl. $dissimilarity\ matrix$) čiji su elementi $d_{i,j}$ udaljenosti objekata u M dimenzija $visokodimenzionalnog\ prostora$, a N je $ciljna\ dimenzija\ problema$

- Cilj je pronaći M vektora $x_1, x_2, ..., x_M \in \mathbb{R}^N$ takvih da je **stres minimalan**, tj. da $d_{i,j} \approx \|x_i x_j\|$
- Obično se formulira kao optimizacijski problem čije se rješenje nalazi korištenjem numeričkih metoda
- Ako je N malen (2 ili 3), tada možemo vizualizirati ovo preslikavanje

Višedimenzijsko skaliranje

Grad	Zagreb	Split	Rijeka	Osijek	Zadar	
Zagreb	0	259	132	213	198	
Split	259	0	257	289	118	
Rijeka	132	257	0	333	148	
Osijek	213	289	333	0	316	
Zadar	198	118	148	316	0	

- Primjer: Udaljenost između gradova u RH zadana u matrici D, dimenzije M = 5, ciljna dimenzija potrebna za vizualizaciju: N = 2
- Pronalazimo M = 5 vektora u 2D prostoru takvih da je $d_{i,j}pprox \left\|x_i-x_j\right\|$

t-SNE

- Maaten i Hinton 2008.
- Traži niskodimenzionalnu strukturu takvu da svojstva grupiranja u višoj dimenziji ostanu sačuvana
- Sličnost u visokodimenzionalnom prostoru predstavljena je **Gaussovim zajedničkim vjerojatnostima** euklidskih udaljenosti dvaju objekata p_{ii}
 - Sličnost točke x_j prema točki x_i je uvjetna vjerojatnost $p_{j|i}$ da bi x_i izabrao kao svojeg susjeda x_j ako se susjedi biraju proporcionalno (lokalnoj) gustoći vjerojatnosti Gaussove funkcije centrirane u x_i ; gdje je $p_{ij} = (p_{j|i} + p_{i|j})/2N$, N je broj primjeraka, $\sum p_{i,j} = 1$
- U ugrađenom prostoru (najčešće 2D ili 3D) sličnost između točaka mjeri se **zajedničkim vjerojatnostima Studentovim t-razdiobama** euklidskih udaljenosti q_{ii} (koje su plosnatije pa su točke razvučenije)
- Kullback-Leiblerova divergencija između zajedničkih vjerojatnosti u izvornom prostoru i ugrađenom prostoru:

$$KL(P||Q) = \sum_{i \neq j} p_{i,j} \log \frac{p_{i,j}}{q_{i,j}}$$

minimizira se gradijentnim spustom kako bi se dobilo najbolje preslikavanje

t-SNE

- Metoda je računski vrlo zahtjevna ali daje izvrsne rezultate
- Metoda nije primijenjiva na testni skup, može se koristiti samo za vizualizaciju bliskosti na čitavom skupu podataka bez pamćenja modela
- Prednost metode je da **čuva lokalnu bliskost točaka** pri preslikavanju iz više dimenzije u nižu i može modelirati nelinearne odnose između varijabli (za razliku od npr. PCA)

Izvor: Eugen Vušak, "Tehnike učenja višestrukosti za povećanje učinkovitosti analize koja koristi sporedna svojstva kriptografskih uređaja" diplomski rad, FER, 2020.

UMAP

- McInnes i Healy, 2018.
- Matematički bolje formulirana varijanta t-SNE-a
- Mnogo brža metoda od t-SNE-a i bolje čuva globalnu povezanost podataka, korisna za visokodimenzionalne podatke i može se primijeniti na testni skup podataka
- Pretpostavke:
 - primjerci su uniformno distribuirani po mnogostrukosti (aproksimativno)
 - mnogostrukost je lokalno povezana (ne postoji npr. točka koja je sama udaljena od svih)
- UMAP gradi **graf susjedstva** pomoću brzog algoritma **spusta najbližih susjeda** (engl. *Nearest Neighbor Descent*, NN-descent)
 - omogućuje se brz pronalazak najbližih susjeda i izgradnju grafa susjedstva, pri čemu parametar broja susjeda *k* određuje koliko se globalne strukture mnogostrukosti uzima u obzir pri izgradnji grafa

UMAP

Umjesto Studentove t-distribucije za modeliranje udaljenosti u niskodimenzionalnom prostoru,
 UMAP koristi sličnu obitelj krivulja definiranu s:

$$q_{ij} = (1 + a(y_i - y_j)^{2b})^{-1}$$

- Parametre a i b pronalazi pomoću nelinearne regresije metodom najmanjih kvadrata na dijelovima funkcije, teži se smanjenju gustog lokalnog grupiranja (postoji parametar minimalne udaljenosti točaka)
- Koristi binarnu unakrsnu entropiju (*CE*) kao funkciju gubitka umjesto KL divergencije te je minimizira stohastičkim gradijentnim spustom (umjesto običnog, radi brzine):

$$CE(X,Y) = \sum_{i} \sum_{j} \left[p_{ij}(X) \log \left(\frac{p_{ij}(X)}{q_i j(Y)} \right) + (1 - p_{ij}(X)) \log \left(\frac{1 - p_{ij}(X)}{1 - q_{ij}(Y)} \right) \right]$$

• Prvi član unutar sume omogućuje preslikavanje grupa ispravno, dok drugi član omogućuje preslikavanje razmaka ispravno

Vizualizacija

t-SNE i UMAP, još vizualizacija:

https://www.nature.com/articles/nbt.4314

UMAP vs PaCMAP (2021.), vizualizacije:

https://jlmelville.github.io/smallvis/pacmap-umap.html

Zaključak

- Značajke omogućuju lakše razumijevanje izvornih podataka
- Značajke se mogu izračunati (izlučiti) na jednostavne ili složene načine, ovisno o domeni primjene
- Za potrebe analize podataka često je nužno transformirati podatke, što se radi ovisno o vrsti podatka
- Odabir značajki i smanjenje dimenzionalnosti načini su kako se inicijalni skup podataka može pojednostaviti za postupak modeliranja
- Tehnike smanjenja dimenzionalnosti teže što boljoj reprezentaciji visokodimenzionalnog skupa podataka u niskodimenzionalnom prostoru, a mogu pridonijeti i smanjenju šuma u podacima

