$\mathbf{A1}$

 $\mathbf{A2}$

A3

The minimal polynomial of a matrix $A \in \mathbb{C}^{n \times n}$ is the polynomial

$$m(\lambda) = \prod_{i} (\lambda - \lambda_i)^{k_i^*},$$

where

$$f(J) = \operatorname{diag} \left\{ f\left(J_{k_{i_j}}(\lambda_{i_j})\right) \right\}, \quad k_i^* = \max_{1 \leq j \leq n_i} k_{i_j},$$

and n_i is the number of Jordan blocks with eigenvalue λ_i .

If λ_i is a simple eigenvalue, then the size of the largest Jordan block with eigenvalue λ_i is 1 (i.e. $k_i^* = 1$).

A4

 $\mathbf{A5}$

 $\mathbf{A6}$

A7

 $\mathbf{A8}$

Exercise B: Implementation

B1

B2