

신체 조건을 통한

신장예측하기

A반 김채현

CONTENTS

01 문제 정의

3р

 육군 신체측정 데이터를 통해 신장 길이를 예측할 수 있을까?

(02) 데이터 분석

4p

- 1. 수집
- 국방부_육군 신체측정정보
- 2. 데이터셋 생성하기

03 모델 구성 및 설정

- 1. 모델 구성 및 설정
- Tensorflow keras 활용한 다중분류

119 (04) 모델 학습 및 예측 검증

16p **05** 시사점 및 한계점

_{7p} (06) 느낀점

9 (07) 참조 링크

1. 문제 정의

국방의 의무를 위해 받는

신체검사 데이터를

활용할 수 있는 방법이 없을까?

신체 조건을 통해 사이즈 예측 모델 생성

2. 데이터분석 - 수집

공공데이터 포탈 -국방부_육군 신체측정정보

2. 데이터분석 - 수집

육군 신체 측정 데이터(수시 업데이터).csv

8개 columns만 사용

1	순번	측정 일자	가슴 둘레	소매길이 (신장 센티[허리 둘레	샅높이 센터	머리 둘레	발 길이 센	몸무게 킬로	⊒그램 ■
2	1	20140106	96.3	92.6	185.5	82.5	83.8	57.1	28.5	73.2	
3	2	2013	101.9	83.8	167.2	81.2	74.4	55	24.2	65.1	
4	3	20140106	99.5	89.6	179.9	99.2	84.2	56.3	28.1	93.2	
5	4	2013	98.6	85.5	171.4	85.9	76.4	54.5	27.4	71.6	
6	5	20140106	94.7	88.1	176.9	78.3	79.7	58.5	26.5	67.1	
7	6	2013	122.3	90.2	180.5	118.4	79.7	61.5	29	114.2	
8	7	20140106	98	89.7	180.4	93.6	83	59.9	27.1	76.5	
9	8	2013	89.6	87.3	173.9	71.1	76.5	53.9	26.8	53	
10	9	20140106	93.8	89.3	178.7	82.9	83.8	57.7	28.6	69.7	
11	10	2013	122.3	90.2	180.5	118.4	79.7	61.5	29	114.2	
12	11	20140106	115.4	86.5	173.1	112.6	80.6	59.1	27.7	95.3	
13	12	2013	98	89.6	178.5	95.4	78.4	57.1	27.2	78.7	
14	13	20140106	83.1	86	172.6	75.7	75.4	57.9	26.2	58.6	
15	14	2013	94.7	85.1	170.7	81.7	75.3	56.4	26.2	66.7	
16	15	20140106	97.1	87.7	175	87.3	78.9	56.4	27.4	77.8	
17	16	2013	98.8	87.7	175.8	89.6	77.6	58.5	26.2	77.8	
18	17	20140106	95.9	91.3	182.9	85.8	86	58.4	29.2	80.4	

2. 데이터분석 - 수집

2. 데이터분석 – 데이터셋 생성하기

단위 삭제하기

	측정 일자	가슴 둘레 센티미터	소매길이 센티미터	신장 센티미터	허리둘	레 센티미터	샅높이 센티미터	머리 둘레 센티미티	발 길이 센티미터	몸무게 킬로
167967	20170131	88.2 cm	89.3 cm	177.6 cm	76.4 cr	(30.1 in)	78.9 cm	57.6 cm	30.0 cm	59.4 kg
167968	20170131	84.8 cm	86.2 cm	173.0 cm	75.6 cr	(29.8 in)	78.5 cm	59.6 cm	29.3 cm	57.4 kg
167969	20170131	91.1 cm	89.3 cm	179.2 cm	83.1 cr	(32.7 in)	77.9 cm	58.2 cm	28.8 cm	67.3 kg
167970	20170131	95.9 cm	86.1 cm	172.3 cm	86.0 cr	(33.8 in)	76.1 cm	58.4 cm	27.6 cm	64.4 kg
167971	20170131	97.1 cm	85.1 cm	169.9 cm	91.7 cr	(36.1 in)	78.1 cm	59.0 cm	28.9 cm	73.7 kg
167972	20170131	114.1 cm	85.3 cm	171.6 cm	115.1 c	n (45.3 in)	80.2 cm	62.1 cm	28.0 cm	104.4 kg
167973	20170131	96.7 cm	85.0 cm	169.4 cm	86.5 cr	(34.1 in)	74.3 cm	60.7 cm	28.1 cm	60.7 kg
167974	20170131	84.6 cm	82.8 cm	166.5 cm	78.5 cr	(30.9 in)	78.2 cm	58.3 cm	27.2 cm	60.8 kg
167975	20170131	97.2 cm	84.2 cm	169.2 cm	90.4 cr	(35.6 in)	75.0 cm	61.7 cm	29.1 cm	72.4 kg
167976	20170131	109.6 cm	84.6 cm	169.5 cm	106.4 c	n (41.9 in)	78.6 cm	60.4 cm	25.7 cm	89.8 kg
167977	20170131	94.6 cm	89.2 cm	177.8 cm	76.0 cr	(29.9 in)	78.7 cm	59.6 cm	29.5 cm	65.7 kg
167978	20170131	95.9 cm	86.8 cm	173.3 cm	88.7 cr	(34.9 in)	80.7 cm	57.3 cm	26.7 cm	73.8 kg
167979	20170131	100.6 cm	86.4 cm	173.2 cm	86.7 cr	(34.1 in)	77.1 cm	56.9 cm	27.1 cm	73.7 kg
167980	20170131	97.9 cm	82.7 cm	166.3 cm	90.5 cr	(35.6 in)	73.4 cm	61.5 cm	28.8 cm	70.7 kg
167981	20170131	97.9 cm	87.2 cm	175.2 cm	94.3 cr	(37.1 in)	83.1 cm	57.1 cm	27.6 cm	78.7 kg
167982	20170131	85.3 cm	86.8 cm	173.6 cm	75.9 cr	(29.9 in)	76.6 cm	57.6 cm	24.3 cm	57.4 kg
167983	20170131	86.6 cm	88.3 cm	175.8 cm	73.0 cr	(28.7 in)	77.8 cm	56.3 cm	26.1 cm	51.7 kg

1. cm, kg 삭제

찾기 및 바꾸기	?	×
Ctrl + F (찾기) ^{찾기(D)} 바꾸기(P)		
찾을 내용(<u>N)</u> cm		~
바꿀 내용(E):		\sim
	옵션(T)	>>
모두 바꾸기(<u>A</u>) 바꾸기(<u>R</u>) 모두 찾기(<u>I</u>) 다음 찾기(<u>F</u>)	닫	기

2. Inch 변환 삭제

2. 데이터분석 - 데이터셋 생성하기

이상치 삭제하기

데이터 수: 167,980개

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 167983 entries, 0 to 167982
Data columns (total 10 columns):
    Column
               Non-Null Count
                              Dtype
                167983 non-null int64
    측정 일자
                  167983 non-null int64
    가슴 둘레 센티미터 167982 non-null float64
    소매길이 센티미터
                    167983 non-null float64
    신장 센티미터
                   167983 non-null float64
    허리 둘레 센티미터 167983 non-null float64
    샅높이 센티미터
                    167983 non-null float64
    머리 둘레 센티미터 167981 non-null float64
    발 길이 센티미터
                    167983 non-null float64
    몸무게 킬로그램
                    167983 non-null float64
dtypes: float64(8), int64(2)
memory usage: 12.8 MB
```

```
1 rdf = df.dropna(subset=['머리 둘레 센티미터', '가슴 둘레 센티미터'] how='any', axis=0)
 2 rdf.info()
 3# 머리 둘레, 가슴 둘레 null값 삭제
 4 # null값 지우고 167980개 통일
<class 'pandas.core.frame.DataFrame'>
Int64Index: 167980 entries, 0 to 167982
Data columns (total 10 columns):
# Column
             Non-Null Count
   순번
              167980 non-null int64
   측정 일자
               167980 non-rull int64
   가슴 둘레 센티미터 167980 ndn-null float64
   소매길이 센티미터
                 167980 non-null float64
   신장 센티미터
                 167980 non null float64
   허리 둘레 센티미터 167980 ndn-null float64
                 167980 no -null float64
   머리 둘레 센티미터 167980 nch-null float64
   발 길이 센티미터
                 167980 nod-null float64
   몸무게 킬로그림
                 167980 no -null float64
dtypes: float64(8), into4(2)
memory usage: 14.1 MB
```

2. 데이터분석 - 데이터셋 생성하기

정규화 후 검증 데이터셋 만들기

```
1 # 분석에 활용할 속성을 선택 (가슴 둘레, 소매길이, 허리 둘레, 샅높이, 머리둘레, 발길이, 몸무게)
2 X = rdf.iloc[:, [2,3,5,6,7,8,9]] # 독립 변수
3 y = rdf['신장 센티미터'] # 종속 변수
```

```
1# 숫자의 수와 차이가 크기 때문에 정규화 작업
                                        정규화
2 from sklearn import preprocessing
4 X = preprocessing.StandardScaler().fit(X).transform(X)
1 # 검증 데이터셋을 만듭니다 |
                                                 검증 데이터셋 형성
2 from sklearn.model selection import train test split
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=777) # 랜덤 추출 값
1 # 검증 데이터셋을 만듭니다
                                                               Train: Test=7:3
2 from sklearn.model selection import train test split
                                                             # 독립 변수
4 X_train, X_val, y_train, y_val = train_test_split(X_train,
                                                                       Validation 추가
                                            y train,
                                            test size=0.33,
                                            random_state=777)
```

np.array

```
1 import numpy as np
2 np.set_printoptions(suppress=True)
4 X_train=np.array(X_train)
5 X_test=np.array(X_test)
6 y_train=np.array(y_train)
|7y_test=np.array(y_test)
8 X_val=np.array(X_val)
|9 y_val=np.array(y_val)
1 import numpy as np
```

2 np.set_printoptions(suppress=True)

3. 모델 구성 및 설정

모델 구성하기

```
1 from tensorflow.keras.models import Sequential
2 from tensorflow.keras.layers import Dense
3
4 model = Sequential()
5 #model.add(Dense(activation='relu', input_shape=(7,)))
6
7 model.add(Dense(32, activation='relu', input_shape=(7,)))
8 model.add(Dense(1)) # 하나의 값을 출력 -> 신장 길이
9
10 # 활성화 함수를 안 적은 이유는 리니어가 디폴트이기 때문에 안 적어도 작동 됨
```

모델 설정하기

1 model.compile(optimizer = 'adam', loss='mse', metrics=['mae', 'mse'])


```
1 history = model.fit(X train, y train,
            # 15번 공부시키기
    epochs=15,
    validation data = (X val, y val))
Epoch 1/15
Epoch 2/15
Epoch 3/15
Epoch 4/15
Epoch 5/15
Epoch 6/15
        oss 0.4423 - mae: 0.5301 - mse: 0.4423 - val loss: 309.2267 - val mae: 0.5893 - val mse: 309.2267
2462/2462 [===========]
Epoch 7/15
Epoch 8/15
Epoch 9/15
Epoch 11/15
Epoch 12/15
Epoch 13/15
Epoch 14/15
```


mae: 0.4703

훈련 및 검증 손실

훈련 및 검증 정확도

검증하기

- 머리 둘레 57.1cm

가슴 둘레 93.2cm

`소매 길이 92.6cm

► 허리 둘레 82.5cm

<u>►샅높이 83.8cm</u>

---발 길이 28.5cm

1 man_a = np.array([0.07696313, 1.93356124, -0.35272211, 1.17775554, -0.1031317 ,1.19240925, 0.07602794]).reshape(1,7) 2 #가슴 둘레 96.3cm , 소매길이 92.6cm, 허리 둘레 82.5cm, 샅높이 83.8cm, 머리 둘레 57.1cm, 발 길이 28.5cm, 몸무게 73.2kg 3 model.predict(man_a)
4 array([[185.05519]], dtype=float32)

[array([[185.05519]], dtype=float32)

이런 신체조건을 가지고 있는

사람의 실제 키는?

185.5cm

일제 185.5cm vs 185.1cm

몸무게 73.2kg

검증하기

머리 둘레 55cm

가슴 둘레 101.9cm

소매 길이 83.8cm 허리 둘레 81.2m

샅높이 74.4cm

_발 길이 24.2cm

이 사람의 실제 키는? 167.2cm

모델은 어떻게 예측했을까?

1 man_b = np.array([0.68653539, -1.2816482 , -0.46795998, -1.30406627, -0.31699406, -1.88407218, -0.51341162]).reshape(1,7)
2 #가슴 둘레 101.9cm , 소매길이 83.8cm, 허리 둘레 81.2cm, 살높이 74.4cm, 머리 둘레 55cm, 발 길이 24.2cm, 몸무게 65.1kg
3 model.predict(man_b) array([[167.77908]], dtype=float32)

실제 모델 예측값 167.2cm vs 167.8cm

몸무게 65.1kg

mae: 0.4703

낮은 오차 범위 => 높은 예측률

5. 시사점 및 한계점

생활관 리뉴얼시, 가구 제작에 활용

군복의 사이즈 수요를 미리 파악하여 공급 원활에 도움

신체 사이즈 예측 프로그램을 통해 신체 검사 시간 및 측정 비용 절약 가능

일반 의류산업의 맞춤형 사이즈 추천 프로그램으로 활용 가능

한계점

- 성별이 명시되어 있지 않음
- 성장기인 청소년층에 적용하기 어려움

한계에 많이 부딪히며 배움 => 오류 극복을 통한 짜릿한 성취감

포기하는 법도 배워야 한다

=> 포기하는 법을 아는 자는 커다란 한계에 부딪혀
앞이 캄캄해 졌을 때, 평정을 되찾고 좌표를 새로이
세울 수 있다

책 '답백한 인생이 행복하다'-작가 무무

7. 참조 링크

[데이터 수집] - 국방부_육군 신체측정정보

https://www.data.go.kr/data/15083227/fileData.do

[픽토그램]

https://thenounproject.com/

[사진 자료] 옥택연 사진 @Twitter 'Baque1227'

임시완 사진

https://entertain.naver.com/read?oid=421&aid=0003903570

Thank you!