$$x_t = \phi x_{t-1} + w_t \tag{1}$$

where $\{w_t\}$ is a white noise random process with variance σ_w^2 . For this random process to be WSS, can the parameter ϕ take any value? Why or why not?

For (1) to be WSS:

i) Il las to be constant over line

ii) \(\((s_7 t) \) depends on s,t only two aug \(\s - t \) not individually, \(\s - t \) =

1) Applying linearity of I :

E[x+] = ØE[x+,]+E[W+]

E[W+]=O ly deponition

#[x,] = p#[x,]

For pe to remain constant.

M= PM => M(1-p) =0

m=0, p=/

It P=1 => x = x t-1 + wt walk which

If μ constant, μ_f is too: $\mu = Q \mu = Q Q \mu_{t-1} = Q Q \mu_{t-2} = \cdots$ over $\mu = Q \mu_{t-1} = Q Q \mu_{t-2} = \cdots$

 $=>\mu_t=\phi^*\mu_{t-k}$

1+10/21, pt grows without boundars A->0 wha p>1

or oscilletes when 9 = -1

However, if |0| < 1, 0 < 1 > 0 as $d > \infty$ Thus the part values of the series affect the current value to a lesser extent -> stationarily. $C > \mu = 0$ if |0| < 1

ii) car(xs, xx) = #[xsxx] - #[xs]#[xy]

F[x+] = \(\mu = 0 \) pram ()

con(15, 1/) = E[+5x+]

X2 = PX=, +W= P(PX+2+W+-1)+W+=...

 $=> x_{t} = \mathcal{D}^{t}x_{0} + \mathcal{E}^{t}\mathcal{D}^{k}w_{t-k}$

juit condition could be dropped assuming stationarily also it waild vanish is appropring the expectation

i'w the aext step.

cov(xs, xx) = #[== ptws-x== piwt-j]

White noise terms are independent.

 $= \underbrace{\sum_{k=0}^{(s-t)-1} \varphi^k \varphi^{1s-t}}_{N=0} \circ W = \varphi^{1s-t} \frac{\partial^2 w}{1-\varphi^2 u} \cdot Mus \quad anly$

depends on [5-+1

Ans: M=0 when 19/2/.

2. Write code to generate the figures in the lecture slide titled Analytical and estimated auto-covariance function for AR(1). Provide the code and the generated figures.

Hint: you may want to modify the code in the solution of the lecture slide titled Analytical and estimated autocovariance function for MA.

.....

```
Simulate an AR(1) time series with N=100 and N=100,000 samples,
 \phi =0.9 and \sigma w =1.0. For each N, plot the analytical and estimated
 autocovariance function.
______
#%%
# Import requirements
import os
import numpy as np
import plotly.graph_objects as go
#%%
# Define variables
# -----
srate = 1
T = 10000
sigma w = 1.0
phi=-0.9
lags = np.arange(20)
#%%
# Create white noise
# -----
time = np.arange(0, T, 1.0/srate)
N = len(time)
w = np.random.normal(loc=0, scale=sigma_w, size=N)
#%%
# Simulate the AR process
xi = np.zeros(T)
xi[0] = w[0]
for t in range(1, T):
   xi[t] = phi * xi[t-1] + w[t]
#%%
# Analytical autococovariance
# From 1. \gamma(xt) = phi^*h^*sigma_w^*2/(1 - phi^*2)
analytical_autocov = np.array([phi**h*(sigma_w**2/(1 - phi**2)) for h in lags])
#%%
# Estimated autocovariance
```

Using the general formula for autocovariance

```
n = len(xi)
mean = np.mean(xi)
est_autocov = np.zeros(len(lags))
for i in range(len(lags)):
   est_autocov[i] = np.mean((xi[i:] - mean) * (xi[:n-i] - mean))
#%%
# Plot true and estimated autocovaraince for the AR process.
# -----
#
fig = go.Figure()
trace = go.Scatter(x=time, y=xi, mode="lines+markers")
fig.add trace(trace)
fig.update_layout(xaxis=dict(title="Time (sec)"), yaxis=dict(title="x"))
if not os.path.exists("figures"):
   os.mkdir("figures")
fig.write html(f"figures/whiteNoiseSamplesN{T}.html")
# fig.write_image(f"figures/whiteNoiseSamplesN{T}.png")
fig = go.Figure()
trace = go.Scatter(x=lags, y=analytical_autocov, mode="lines+markers",
name="analytical")
fig.add trace(trace)
trace = go.Scatter(x=lags, y=est_autocov, mode="lines+markers", name="estimated")
fig.add trace(trace)
fig.update_layout(title=f"N={T}", xaxis=dict(title="Lag (samples)"),
                 yaxis=dict(title="Autocovariance"))
if not os.path.exists("figures"):
   os.mkdir("figures")
fig.write html(f"figures/ARAutoCovN{T}.html")
# fig.write_image(f"figures/whiteNoiseAutoCorN{T}.png")
fig
# %%
```

- 3. (optional) For the random walk with drift model:
 - (a) Calculate the covariance function $\gamma(s,t)$ and use it to derive the variance function var(t).
 - (b) To check that your variance function is correct, complete and execute this python script. It plots 100 samples of the random walk with drift model (coloured traces), with the mean (solid line) and 95% confidence bands (dashed lines). See Figure 1. At any time point (abscissa) you should observe that 95% of the traces (5 traces) are above the upper line or below the lower line.
 - (c) Is the random walk with drift process wide-sense stationary? Why or why not?

$$\begin{array}{lll}
\mathcal{C} & X_{t} = O + X_{t-1} + w_{t} \\
& = O + O + X_{t-2} + w_{t-1} + w_{t} \\
& = O + X_{0} + w_{1} + w_{2} + \dots + w_{t} \\
& = O + X_{0} + w_{1} + w_{2} + \dots + w_{t} \\
& = O + X_{0} + X_{0} + \sum_{i=0}^{t-1} w_{t-1}
\end{array}$$

Libraries $x_{5} = O_{5} + x_{0} + \sum_{i=0}^{5-l} w_{5-l}$ $y(s,t) = \mathbb{E}[X_{5}X_{7}] - \mathbb{E}[X_{5}]\mathbb{E}[X_{7}]$ $\mathbb{E}[X_{7}] = O_{7} + X_{0} = O_{8}$ $\mathbb{E}[X_{7}] = O_{7} + X_{0} = O_{8}$ $\mathbb{E}[X_{8}] = O_{7} + X_{0} = O_{8}$ $\mathbb{E}[X_{9}] = O_{8} + \mathbb{E}[X_{9}] = O_{8} + X_{0} + \mathbb{E}[X_{9}]$ $\mathbb{E}[X_{9}] = O_{8} + \mathbb{E}[X_{9}] + O_{8} = O_{8} + O_{8} = O_{8}$ $\mathbb{E}[X_{8}X_{7}] = O_{8} + \mathbb{E}[X_{9}] + O_{8} = O_{8} + O_{8} = O_{8}$ $\mathbb{E}[X_{8}X_{7}] = O_{8} + \mathbb{E}[X_{9}] + O_{8} = O_{8} = O_{8}$ $\mathbb{E}[X_{8}X_{7}] = O_{8} + \mathbb{E}[X_{9}] + O_{8} = O_{8} = O_{8}$

Ans.: $\frac{f(s,t) = 0}{f(s,t)} = 0 + E[x_0^2] + 0 = 0 = 0$ = 0

C) for WSS:

i) The mean is constant and does not depend on hime

(i) \ \ \((5,+)\) depends on sand & only knowsh

Meis discounce

() IF $[x_{+}] = O_{+} + x_{0} - dyndlint an line!$ (Linamly) Also μ is not constant account? (by visual inspect.)

ii) $\gamma(s, t) = O_{\nu}^{\lambda}(s, t) - dynds$ an [udesidual values]of s and t, not thuis abs. α_{ij} appends.

Ans.: No!