Gaussian Processes for Regression

COMP9418 — Advanced Topics in Statistical Machine Learning

Edwin V. Bonilla

School of Computer Science and Engineering UNSW Sydney

September 20th, 2017

(Last Update: Tuesday 19th September, 2017 at 18:15)

Acknowledgements

Carl Edward Rasmussen and Christopher K. I. Williams

All chapters available online along with software and datasets: http://www.gaussianprocess.org/gpml

Aims

This lecture will allow you to understand Gaussian processes as priors over functions and apply them to regression problems. Following it you should be to:

- Understand and apply Bayesian approaches to linear regression.
- Understand and apply Bayesian linear-in-the-parameters models to non-linear regression problems.
- Understand the connection between Bayesian regression with non-linear feature spaces and Gaussian process regression.
- Derive and apply the function-space view of Gaussian process regression.
- Carry out model selection in Gaussian process regression models.

Some Applications of Gaussian Process (GP) Models (1)

Spatio-temporal modelling

Classification

Robot inverse dynamics

Data fusion / multi-task learning

Some Applications of GP Models (2)

Style-based inverse kinematics

Preference learning

Bayesian optimisation

Bayesian quadrature

How can We 'Solve' All these Problems with the Humble Gaussian Distribution?

Key components of GP models:

- Non-parametric prior
- Bayesian
- Kernels (covariance functions)

Bayesian non-linear regression

How can We 'Solve' All these Problems with the Humble Gaussian Distribution?

Key components of GP models:

- Non-parametric prior
- Bayesian
- Kernels (covariance functions)

Tasks

- Prediction (posterior inference)
- Hyperparameter learning

Bayesian non-linear regression

How can We 'Solve' All these Problems with the Humble Gaussian Distribution?

Key components of GP models:

- Non-parametric prior
- Bayesian
- Kernels (covariance functions)

Tasks

- Prediction (posterior inference)
- Hyperparameter learning

DATA AND POSTERIOR

Bayesian non-linear regression

Challenges

- Intractability for non-Gaussian likelihoods
 - ► E.g. a sigmoid likelihood for classification
- High computational cost (in time and memory) with # datapoints

Learn mapping $\mathbf{x} \to f(\mathbf{x})$ from observations $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$.

• What parameterization?

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} x_{j}$

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization
- What basis functions? How many?

Learn mapping $\mathbf{x} \to f(\mathbf{x})$ from observations $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$.

• What about Neural nets?

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization
- What basis functions? How many?

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization
- What basis functions? How many?

- What about Neural nets?
- How to avoid overfitting? (cf regularization)

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization
- What basis functions? How many?

- What about Neural nets?
- How to avoid overfitting? (cf regularization)
- Confidence on our predictions?

Learn mapping $\mathbf{x} \to f(\mathbf{x})$ from observations $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$.

- What parameterization?
- $f(\mathbf{x}) = \sum_{j} w_{j} \phi_{j}(\mathbf{x})$
- Flexibility v generalization
- What basis functions? How many?

- What about Neural nets?
- How to avoid overfitting? (cf regularization)
- Confidence on our predictions?

We can address these issues in a principled way with Gaussian process models

Demo

- Smooth functions
- ullet Closeness in input space o closeness in output space

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature
- Generalization (no overfitting)
- Bayesian, distribution over functions: prior, likelihood, posterior

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature
- Generalization (no overfitting)
- Bayesian, distribution over functions: prior, likelihood, posterior
- How can we do computations with infinite vectors?
 - ▶ "Efficient" Inference due to consistency (Gaussian distributions)

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature
- Generalization (no overfitting)
- Bayesian, distribution over functions: prior, likelihood, posterior
- How can we do computations with infinite vectors?
 - ▶ "Efficient" Inference due to consistency (Gaussian distributions)
- Characteristics of the functions can be learned from data
 - Covariance function: smoothness, stationarity, length-scale
 - Hyperparameter learning

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature
- Generalization (no overfitting)
- Bayesian, distribution over functions: prior, likelihood, posterior
- How can we do computations with infinite vectors?
 - ▶ "Efficient" Inference due to consistency (Gaussian distributions)
- Characteristics of the functions can be learned from data
 - Covariance function: smoothness, stationarity, length-scale
 - Hyperparameter learning
- Many standard regression models are special cases of GPs

- Parametric models constrain the class of functions we consider
- Flexibility (no underfitting) due to non-parametric nature
- Generalization (no overfitting)
- Bayesian, distribution over functions: prior, likelihood, posterior
- How can we do computations with infinite vectors?
 - ▶ "Efficient" Inference due to consistency (Gaussian distributions)
- Characteristics of the functions can be learned from data
 - Covariance function: smoothness, stationarity, length-scale
 - Hyperparameter learning
- Many standard regression models are special cases of GPs
- GP models also applicable to non-regression settings

Outline

- The Gaussian Distribution Revisited
- 2 Standard Bayesian Linear Regression
- Bayesian Regression with Non-linear Feature Spaces
- 4 Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

- The Gaussian Distribution Revisited
- 2 Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- 4 Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

$$F(x) = \int_{-\infty}^{x} \mathcal{N}(z|\mu, \sigma^2) dz$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

$$F(x) = \int_{-\infty}^{x} \mathcal{N}(z|\mu, \sigma^2) dz$$

In general:
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

The marginal and the conditional distributions are also Gaussians

Partitioned Gaussians

For general Gaussian random vectors \mathbf{x} , we can partition:

$$\mathbf{x} \stackrel{\mathsf{def}}{=} \left[egin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array}
ight] \sim \mathcal{N} \left(\left[egin{array}{c} oldsymbol{\mu}_1 \\ oldsymbol{\mu}_2 \end{array}
ight], \left[egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \\ oldsymbol{\Sigma}_{12}^T & oldsymbol{\Sigma}_{22} \end{array}
ight]
ight),$$

Partitioned Gaussians

For general Gaussian random vectors \mathbf{x} , we can partition:

$$\mathbf{x} \stackrel{\text{\tiny def}}{=} \left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right], \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}^T & \boldsymbol{\Sigma}_{22} \end{array} \right] \right),$$

hence, the marginal $\mathbf{x}_1 \sim \mathcal{N}(\mathbf{x}_1 | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$

Partitioned Gaussians

For general Gaussian random vectors \mathbf{x} , we can partition:

$$\mathbf{x} \stackrel{\text{\tiny def}}{=} \left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right], \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}^T & \boldsymbol{\Sigma}_{22} \end{array} \right] \right),$$

hence, the marginal $\mathbf{x}_1 \sim \mathcal{N}(\mathbf{x}_1 | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$

and the conditional $\mathbf{x}_1|\mathbf{x}_2 \sim \mathcal{N}(\mathbf{x}_1|\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2})$

Partitioned Gaussians

For general Gaussian random vectors \mathbf{x} , we can partition:

$$\mathbf{x} \stackrel{\text{\tiny def}}{=} \left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right], \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}^T & \boldsymbol{\Sigma}_{22} \end{array} \right] \right),$$

hence, the marginal $\mathbf{x}_1 \sim \mathcal{N}(\mathbf{x}_1 | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$

and the conditional
$$\mathbf{x}_1|\mathbf{x}_2 \sim \mathcal{N}(\mathbf{x}_1|\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2})$$
 where $\boldsymbol{\mu}_{1|2} = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2 - \boldsymbol{\mu}_2)$, and $\boldsymbol{\Sigma}_{1|2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}^T$

Covariance and Precision Matrices

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Σ : is the covariance matrix

 Σ^{-1} : is the precision matrix

Covariance and Precision Matrices

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Σ : is the covariance matrix

 Σ^{-1} : is the precision matrix

• An entry $\Sigma_{ij}^{-1} = 0$ indicates that the variables i and j are conditionally independent given all the other variables.

Covariance and Precision Matrices

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Σ : is the covariance matrix

 Σ^{-1} : is the precision matrix

- An entry $\Sigma_{ij}^{-1} = 0$ indicates that the variables i and j are conditionally independent given all the other variables.
- An entry $\Sigma_{ij} = 0$ indicates that the variables i and j are marginally independent given all the other variables.

Covariance and Precision Matrices

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Σ : is the covariance matrix

 Σ^{-1} : is the precision matrix

- An entry $\Sigma_{ij}^{-1} = 0$ indicates that the variables i and j are conditionally independent given all the other variables.
- An entry $\Sigma_{ij} = 0$ indicates that the variables i and j are marginally independent given all the other variables.
- Marginalizing out a variable leaves Σ unchanged but changes Σ^{-1} .
 - ▶ This is crucial when parameterizing a Gaussian process.

Gaussian Quiz

- 1 The Gaussian Distribution Revisited
- Standard Bayesian Linear Regression
- Bayesian Regression with Non-linear Feature Spaces
- 4 Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

Notation and Settings

```
Data : \mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}
Input : (\mathbf{X})_{D \times N}, Targets: (\mathbf{y})_{N \times 1}
Goal : \mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}
```

Notation and Settings

```
Data : \mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}

Input : (\mathbf{X})_{D \times N}, Targets: (\mathbf{y})_{N \times 1}

Goal : \mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}

Model f(\mathbf{x}) = \sum_{j=1}^{D} w_{j}x_{j} = \mathbf{w}^{T}\mathbf{x}

Noise y = f(\mathbf{x}) + \eta with \eta \sim \mathcal{N}(\eta|0, \sigma^{2})

Likelihood \mathbf{y}|f(\mathbf{x}) \sim \mathcal{N}(y|f(\mathbf{x}), \sigma^{2}) = \mathcal{N}(y|\mathbf{w}^{T}\mathbf{x}, \sigma^{2})
```

Notation and Settings

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : $\mathbf{x} \stackrel{f(\mathbf{x})}{\to} \mathbf{y}$
Model $f(\mathbf{x}) = \sum_{j=1}^{D} w_{j}x_{j} = \mathbf{w}^{T}\mathbf{x}$
Noise $y = f(\mathbf{x}) + \eta$ with $\eta \sim \mathcal{N}(\eta|0, \sigma^{2})$
Likelihood $\mathbf{y}|f(\mathbf{x}) \sim \mathcal{N}(\mathbf{y}|f(\mathbf{x}), \sigma^{2}) = \mathcal{N}(\mathbf{y}|\mathbf{w}^{T}\mathbf{x}, \sigma^{2})$

Thus, the data-likelihood is given by:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)}|\mathbf{x}^{(n)}, \mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{w}^{T}\mathbf{x}^{(n)}, \sigma^{2})$$
$$= \mathcal{N}(\mathbf{y}|\mathbf{X}^{T}\mathbf{w}, \sigma^{2}\mathbf{I})$$

Notation and Settings

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : $\mathbf{x} \stackrel{f(\mathbf{x})}{\to} \mathbf{y}$
Model $f(\mathbf{x}) = \sum_{j=1}^{D} w_{j}x_{j} = \mathbf{w}^{T}\mathbf{x}$
Noise $y = f(\mathbf{x}) + \eta$ with $\eta \sim \mathcal{N}(\eta|0, \sigma^{2})$
Likelihood $\mathbf{y}|f(\mathbf{x}) \sim \mathcal{N}(y|f(\mathbf{x}), \sigma^{2}) = \mathcal{N}(y|\mathbf{w}^{T}\mathbf{x}, \sigma^{2})$

Thus, the data-likelihood is given by:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)}|\mathbf{x}^{(n)},\mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{w}^{T}\mathbf{x}^{(n)},\sigma^{2})$$
$$= \mathcal{N}(\mathbf{y}|\mathbf{X}^{T}\mathbf{w},\sigma^{2}\mathbf{I})$$

We need do to inference on w.

Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$$

Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$$

Then the posterior distribution over the weights is given by:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{w}) \ p(\mathbf{y}|\mathbf{X},\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \mathcal{N}(\mathbf{w}|\bar{\mathbf{w}},\mathbf{A}^{-1})$$

where
$$\bar{\mathbf{w}} = \frac{1}{\sigma^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y}$$
, and $\mathbf{A} = (\frac{1}{\sigma^2} \mathbf{X} \mathbf{X}^T + \mathbf{\Sigma}_w^{-1})$.

Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$$

Then the posterior distribution over the weights is given by:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{w}) \ p(\mathbf{y}|\mathbf{X},\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \mathcal{N}(\mathbf{w}|\bar{\mathbf{w}},\mathbf{A}^{-1})$$

where
$$\bar{\mathbf{w}} = \frac{1}{\sigma^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y}$$
, and $\mathbf{A} = (\frac{1}{\sigma^2} \mathbf{X} \mathbf{X}^T + \mathbf{\Sigma}_w^{-1})$.

Mean of posterior is equal to its mode

Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$$

Then the posterior distribution over the weights is given by:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{w}) \ p(\mathbf{y}|\mathbf{X},\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \mathcal{N}(\mathbf{w}|\bar{\mathbf{w}},\mathbf{A}^{-1})$$

where
$$\bar{\mathbf{w}} = \frac{1}{\sigma^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y}$$
, and $\mathbf{A} = (\frac{1}{\sigma^2} \mathbf{X} \mathbf{X}^T + \mathbf{\Sigma}_w^{-1})$.

- Mean of posterior is equal to its mode
- MAP solution (non-Bayesian): negative log prior as penalty term

Posterior Distribution

Consider a zero-mean Gaussian prior over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$$

Then the posterior distribution over the weights is given by:

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{w}) \ p(\mathbf{y}|\mathbf{X},\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \mathcal{N}(\mathbf{w}|\bar{\mathbf{w}},\mathbf{A}^{-1})$$

where
$$\bar{\mathbf{w}} = \frac{1}{\sigma^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y}$$
, and $\mathbf{A} = (\frac{1}{\sigma^2} \mathbf{X} \mathbf{X}^T + \mathbf{\Sigma}_w^{-1})$.

- Mean of posterior is equal to its mode
- MAP solution (non-Bayesian): negative log prior as penalty term
- This penalized maximum likelihood is known as ridge regression
 - Consider $\Sigma_w = \lambda I$ Then :

$$ar{\mathbf{w}} = (\mathbf{X}\mathbf{X}^T + rac{1}{\lambda}\sigma^2\mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$

Predictive Distribution

We are interested in making predictions at a new test point \mathbf{x}_*

 In fact we obtain the predictive distribution by averaging over all possible parameter values (weighted by their posterior probabilities):

$$p(f_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) = \int p(f_*|\mathbf{x}_*,\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{y}) \ d\mathbf{w} = \mathcal{N}(f_*|\mathbf{x}_*^T \bar{\mathbf{w}},\mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*)$$

- ▶ Predictive mean: linear combination of weights' posterior mean
- Predictive variance: grows with the magnitude of the test point

Predictive Distribution

We are interested in making predictions at a new test point \mathbf{x}_*

 In fact we obtain the predictive distribution by averaging over all possible parameter values (weighted by their posterior probabilities):

$$p(f_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) = \int p(f_*|\mathbf{x}_*,\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{y}) \ d\mathbf{w} = \mathcal{N}(f_*|\mathbf{x}_*^T \bar{\mathbf{w}},\mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*)$$

- ▶ Predictive mean: linear combination of weights' posterior mean
- Predictive variance: grows with the magnitude of the test point
- Point predictions: Need to consider the expected loss (or risk):

$$y_{ ext{opt}} = \underset{y_{ ext{pred}}}{\operatorname{argmin}} \int \mathcal{L}(f_*, y_{ ext{pred}}) p(f_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) df_*$$

- e.g. Square loss $\mathcal{L} = (y_{\text{pred}} f_*)^2$
- c.f. Empirical risk minimization (ERM)

- 1 The Gaussian Distribution Revisited
- 2 Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

- Consider the model $f(\mathbf{x}) = \sum_{i=1}^{D'} w_i \phi_i(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
 - ► Each $\phi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$
 - ▶ We have a non-linear mapping but a linear-in-the-parameters model
 - ▶ The number of these features can be very large, i.e. $D' \gg D$

- Consider the model $f(\mathbf{x}) = \sum_{i=1}^{D'} w_i \phi_i(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
 - ► Each $\phi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$
 - ▶ We have a non-linear mapping but a linear-in-the-parameters model
 - ▶ The number of these features can be very large, i.e. $D' \gg D$
- All the Bayesian analysis is similar to the standard linear model:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\sigma^{-2}\boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\phi}_*)$$

where:
$$\phi_* = \phi(\mathbf{x}_*)$$
, $\mathbf{\Phi} = \mathbf{\Phi}(\mathbf{X})$, and $\mathbf{A} = (\frac{1}{\sigma^2}\mathbf{\Phi}\mathbf{\Phi}^T + \mathbf{\Sigma}_w^{-1})$

- Consider the model $f(\mathbf{x}) = \sum_{i=1}^{D'} w_i \phi_i(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
 - ► Each $\phi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$
 - We have a non-linear mapping but a linear-in-the-parameters model
 - ▶ The number of these features can be very large, i.e. $D' \gg D$
- All the Bayesian analysis is similar to the standard linear model:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\sigma^{-2}\boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\phi}_*)$$

where:
$$\phi_* = \phi(\mathbf{x}_*)$$
, $\mathbf{\Phi} = \mathbf{\Phi}(\mathbf{X})$, and $\mathbf{A} = (\frac{1}{\sigma^2}\mathbf{\Phi}\mathbf{\Phi}^T + \mathbf{\Sigma}_w^{-1})$

▶ Note we need to invert **A** of ? dimensions.

- Consider the model $f(\mathbf{x}) = \sum_{i=1}^{D'} w_i \phi_i(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
 - ► Each $\phi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$
 - We have a non-linear mapping but a linear-in-the-parameters model
 - ▶ The number of these features can be very large, i.e. $D' \gg D$
- All the Bayesian analysis is similar to the standard linear model:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\sigma^{-2}\boldsymbol{\phi}_*^T\mathbf{A}^{-1}\mathbf{\Phi}\mathbf{y}, \boldsymbol{\phi}_*^T\mathbf{A}^{-1}\boldsymbol{\phi}_*)$$

where: $\phi_* = \phi(\mathbf{x}_*)$, $\mathbf{\Phi} = \mathbf{\Phi}(\mathbf{X})$, and $\mathbf{A} = (\frac{1}{\sigma^2}\mathbf{\Phi}\mathbf{\Phi}^T + \mathbf{\Sigma}_w^{-1})$

- Note we need to invert A of ? dimensions.
- We can rewrite the predictive distribution as:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y}, \mathbf{k}_{\star\star} - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*)$$

where $\mathbf{k}_* = \mathbf{\Phi}^T \mathbf{\Sigma}_w \phi_*$, $k_{\star\star} = \phi_*^T \mathbf{\Sigma}_w \phi_*$, and $\widetilde{\mathbf{K}} = \mathbf{\Phi}^T \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$

- Consider the model $f(\mathbf{x}) = \sum_{i=1}^{D'} w_i \phi_i(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$
 - ► Each $\phi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$
 - We have a non-linear mapping but a linear-in-the-parameters model
 - ▶ The number of these features can be very large, i.e. $D' \gg D$
- All the Bayesian analysis is similar to the standard linear model:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\sigma^{-2}\boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\Phi}\mathbf{y}, \boldsymbol{\phi}_*^{\mathsf{T}}\mathbf{A}^{-1}\boldsymbol{\phi}_*)$$

where: $\phi_* = \phi(\mathbf{x}_*)$, $\mathbf{\Phi} = \mathbf{\Phi}(\mathbf{X})$, and $\mathbf{A} = (\frac{1}{\sigma^2}\mathbf{\Phi}\mathbf{\Phi}^T + \mathbf{\Sigma}_w^{-1})$

- Note we need to invert A of ? dimensions.
- We can rewrite the predictive distribution as:

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y}, k_{\star\star} - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*)$$

where $\mathbf{k}_* = \mathbf{\Phi}^T \mathbf{\Sigma}_w \phi_*$, $k_{\star\star} = \phi_*^T \mathbf{\Sigma}_w \phi_*$, and $\widetilde{\mathbf{K}} = \mathbf{\Phi}^T \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$

Now we need to invert $\widetilde{\mathbf{K}}$ of ? dimensions \mathbf{OP} prediction

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_*, \ k_{\star\star} = \mathbf{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_* \text{ and } \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \boldsymbol{\phi}_*, \ k_{\star\star} = \boldsymbol{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \boldsymbol{\phi}_* \ \text{and} \ \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

ullet This is an inner product wrt $oldsymbol{\Sigma}_w$

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_*, \ k_{\star\star} = \mathbf{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_* \text{ and } \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

- This is an inner product wrt Σ_w
- As Σ_w is PD we can rewrite:

$$\phi(\mathbf{x})^{T} \mathbf{\Sigma}_{w} \phi(\mathbf{x}') = \phi(\mathbf{x})^{T} \mathbf{\Sigma}_{w}^{1/2} \mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')$$

$$= (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x})}_{\psi(\mathbf{x})})^{T} (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')}_{\psi(\mathbf{x}')})$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x}) \cdot \psi(\mathbf{x}')$$

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_*, \ k_{\star\star} = \mathbf{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_* \text{ and } \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

- This is an inner product wrt Σ_w
- As Σ_w is PD we can rewrite:

$$\phi(\mathbf{x})^{\mathsf{T}} \mathbf{\Sigma}_{w} \phi(\mathbf{x}') = \phi(\mathbf{x})^{\mathsf{T}} \mathbf{\Sigma}_{w}^{1/2} \mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')$$

$$= (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x})}_{\psi(\mathbf{x})})^{\mathsf{T}} (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')}_{\psi(\mathbf{x}')})$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x}) \cdot \psi(\mathbf{x}')$$

• $\kappa(\cdot,\cdot)$ is called a kernel or covariance function

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_*, \ k_{\star\star} = \mathbf{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_* \text{ and } \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

- This is an inner product wrt Σ_w
- As Σ_w is PD we can rewrite:

$$\phi(\mathbf{x})^{T} \mathbf{\Sigma}_{w} \phi(\mathbf{x}') = \phi(\mathbf{x})^{T} \mathbf{\Sigma}_{w}^{1/2} \mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')$$

$$= (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x})}_{\psi(\mathbf{x})})^{T} (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')}_{\psi(\mathbf{x}')})$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x}) \cdot \psi(\mathbf{x}')$$

- $\kappa(\cdot, \cdot)$ is called a kernel or covariance function
- We can replace all occurrences of inner products by $\kappa(\cdot,\cdot)$

Note that in:

$$\mathbf{k}_* = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_*, \ k_{\star\star} = \mathbf{\phi}_*^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\phi}_* \text{ and } \widetilde{\mathbf{K}} = \mathbf{\Phi}^\mathsf{T} \mathbf{\Sigma}_w \mathbf{\Phi} + \sigma^2 \mathbf{I}$$

the features always enter in the form $\phi(\mathbf{x})^T \mathbf{\Sigma}_w \phi(\mathbf{x}')$

- This is an inner product wrt Σ_w
- As Σ_w is PD we can rewrite:

$$\phi(\mathbf{x})^{\mathsf{T}} \mathbf{\Sigma}_{w} \phi(\mathbf{x}') = \phi(\mathbf{x})^{\mathsf{T}} \mathbf{\Sigma}_{w}^{1/2} \mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')$$

$$= (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x})}_{\psi(\mathbf{x})})^{\mathsf{T}} (\underbrace{\mathbf{\Sigma}_{w}^{1/2} \phi(\mathbf{x}')}_{\psi(\mathbf{x}')})$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x}) \cdot \psi(\mathbf{x}')$$

- $\kappa(\cdot,\cdot)$ is called a kernel or covariance function
- ullet We can replace all occurrences of inner products by $\kappa(\cdot,\cdot)$
- We do not need to compute the feature vectors explicitly

• Consider the kinds of functions that can be generated from a set of basis functions with random weights.

- Consider the kinds of functions that can be generated from a set of basis functions with random weights.
- Then f(x) at a particular point is a random variable:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$
 with $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$

defined as a linear combination of Gaussian random variables.

- Consider the kinds of functions that can be generated from a set of basis functions with random weights.
- Then f(x) at a particular point is a random variable:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$
 with $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$

defined as a linear combination of Gaussian random variables.

• A collection of these random variables indexed by \mathbf{x} : $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$, define a stochastic process in a consistent way.

- Consider the kinds of functions that can be generated from a set of basis functions with random weights.
- Then f(x) at a particular point is a random variable:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$
 with $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$

defined as a linear combination of Gaussian random variables.

- A collection of these random variables indexed by \mathbf{x} : $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$, define a stochastic process in a consistent way.
- The mean and the covariance function for this stochastic process is given by:

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})] = 0$$

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})f(\mathbf{x}')] = \phi^{T}(\mathbf{x})\mathbf{\Sigma}_{w}\phi(\mathbf{x}')$$

- Consider the kinds of functions that can be generated from a set of basis functions with random weights.
- Then f(x) at a particular point is a random variable:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$
 with $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$

defined as a linear combination of Gaussian random variables.

- A collection of these random variables indexed by \mathbf{x} : $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$, define a stochastic process in a consistent way.
- The mean and the covariance function for this stochastic process is given by:

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})] = 0$$

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})f(\mathbf{x}')] = \phi^{T}(\mathbf{x})\mathbf{\Sigma}_{w}\phi(\mathbf{x}')$$

• The Bayesian linear model is a Gaussian process

- Consider the kinds of functions that can be generated from a set of basis functions with random weights.
- Then f(x) at a particular point is a random variable:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$
 with $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{\Sigma}_w)$

defined as a linear combination of Gaussian random variables.

- A collection of these random variables indexed by \mathbf{x} : $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$, define a stochastic process in a consistent way.
- The mean and the covariance function for this stochastic process is given by:

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})] = 0$$

$$\mathbb{E}_{\mathbf{w}}[f(\mathbf{x})f(\mathbf{x}')] = \phi^{T}(\mathbf{x})\mathbf{\Sigma}_{w}\phi(\mathbf{x}')$$

- The Bayesian linear model is a Gaussian process
 - ► The Function values corresponding to any number of inputs have a joint Gaussian distribution.

Sample Functions from the Linear Model

- **1** Define $\phi_i(x) = \exp(-\frac{1}{2}(x \mu_i)^2)$, for i = 1, 2, 3
- **2** Construct $\Phi(i,j) = \phi_i(x^{(j)})$, for i = 1,2,3
- **3** Draw $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{I})$
- **1** Draw $\mathbf{f} = \mathbf{\Phi}^T \mathbf{w}$

Sample Functions from the Linear Model

- **1** Define $\phi_i(x) = \exp(-\frac{1}{2}(x \mu_i)^2)$, for i = 1, 2, 3
- **②** Construct $\Phi(i,j) = \phi_i(x^{(j)})$, for i = 1,2,3
- **1** Draw $\mathbf{f} = \mathbf{\Phi}^T \mathbf{w}$

Sample Functions from the Linear Model

- **1** Define $\phi_i(x) = \exp(-\frac{1}{2}(x \mu_i)^2)$, for i = 1, 2, 3
- **②** Construct $\Phi(i,j) = \phi_i(x^{(j)})$, for i = 1,2,3
- **3** Draw $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{I})$
- **1** Draw $\mathbf{f} = \mathbf{\Phi}^T \mathbf{w}$

- 1 The Gaussian Distribution Revisited
- Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

Gaussian Process (GP)

 $f(\mathbf{x})$ is a Gaussian process if for any finite subset of points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$, the function values $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$ follow a Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})),$$

$$\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))(f(\mathbf{x}') - \mu(\mathbf{x}'))],$$

 $\mu(\mathbf{x})$: mean function, consider $\mu(\mathbf{x}) \equiv \mathbf{0}$

 $\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})$: parameterized covariance function, notion of similarity

Gaussian Process (GP)

 $f(\mathbf{x})$ is a Gaussian process if for any finite subset of points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$, the function values $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$ follow a Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})),$$

$$\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))(f(\mathbf{x}') - \mu(\mathbf{x}'))],$$

 $\mu(\mathbf{x})$: mean function, consider $\mu(\mathbf{x}) \equiv \mathbf{0}$

 $\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})$: parameterized covariance function, notion of similarity

• Stochastic process: collection of random variables

Gaussian Process (GP)

 $f(\mathbf{x})$ is a Gaussian process if for any finite subset of points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$, the function values $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$ follow a Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})),$$

$$\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))(f(\mathbf{x}') - \mu(\mathbf{x}'))],$$

 $\mu(\mathbf{x})$: mean function, consider $\mu(\mathbf{x}) \equiv \mathbf{0}$

 $\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})$: parameterized covariance function, notion of similarity

- Stochastic process: collection of random variables
- These variables are the values of the function f(x) indexed by the set of all possible input

Gaussian Process (GP)

 $f(\mathbf{x})$ is a Gaussian process if for any finite subset of points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$, the function values $f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(N)})$ follow a Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})),$$

$$\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))(f(\mathbf{x}') - \mu(\mathbf{x}'))],$$

 $\mu(\mathbf{x})$: mean function, consider $\mu(\mathbf{x}) \equiv \mathbf{0}$

 $\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})$: parameterized covariance function, notion of similarity

- Stochastic process: collection of random variables
- These variables are the values of the function f(x) indexed by the set of all possible input
- Consistency: marginalization property $(f_1, f_2) \sim \mathcal{N}(\mathbf{f}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \rightarrow f_1 \sim \mathcal{N}(f_1|\mu_1, \Sigma_{11})$

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}),f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)},\mathbf{x}^{(q)})$$

• It specifies the covariance between pairs of random variables:

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$$

Covariance between outputs as a function of the inputs

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$$

- Covariance between outputs as a function of the inputs
- A crucial component in GPs
- Intuitively, it describes the notion of similarity

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs
- ▶ Intuitively, it describes the notion of similarity
- ▶ It can be parametrized and we can learn its hyperparameters from data

$$\mathbb{C}$$
ov $(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs
- Intuitively, it describes the notion of similarity
- ▶ It can be parametrized and we can learn its hyperparameters from data
- The matrix **K** such that $K_{i,j} = \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ at all pairwise input points is known as the covariance matrix or Gram matrix.

$$\mathbb{C}\mathsf{ov}(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs
- Intuitively, it describes the notion of similarity
- ▶ It can be parametrized and we can learn its hyperparameters from data
- The matrix **K** such that $K_{i,j} = \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ at all pairwise input points is known as the covariance matrix or Gram matrix.
- it must generate a positive semidefinite (PSD) matrix at any subset of points, i.e. $\mathbf{b}^T \mathbf{K} \mathbf{b} \geq 0$, $\forall \mathbf{b} \in \mathbb{R}^N$

$$\mathbb{C}$$
ov $(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs
- Intuitively, it describes the notion of similarity
- ▶ It can be parametrized and we can learn its hyperparameters from data
- The matrix **K** such that $K_{i,j} = \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ at all pairwise input points is known as the covariance matrix or Gram matrix.
- it must generate a positive semidefinite (PSD) matrix at any subset of points, i.e. $\mathbf{b}^T \mathbf{K} \mathbf{b} \geq 0$, $\forall \mathbf{b} \in \mathbb{R}^N$
- ullet Stationary: $\varphi(\mathbf{x}-\mathbf{x}')$ translation invariant

$$\mathbb{C}$$
ov $(f(\mathbf{x}^{(p)}), f(\mathbf{x}^{(q)})) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)})$

- Covariance between outputs as a function of the inputs
- ► A crucial component in GPs
- Intuitively, it describes the notion of similarity
- ▶ It can be parametrized and we can learn its hyperparameters from data
- The matrix **K** such that $K_{i,j} = \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ at all pairwise input points is known as the covariance matrix or Gram matrix.
- it must generate a positive semidefinite (PSD) matrix at any subset of points, i.e. $\mathbf{b}^T \mathbf{K} \mathbf{b} \geq 0$, $\forall \mathbf{b} \in \mathbb{R}^N$
- Stationary: $\varphi(\mathbf{x} \mathbf{x}')$ translation invariant
- Isotropic: $\varphi(\|\mathbf{x} \mathbf{x}'\|)$

Samples from a Gaussian Process

Computing with Infinite Vectors

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \mathbf{C}(\mathbf{x} - \mathbf{x}')\right)$$

• σ_s^2 is the signal variance

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \mathbf{C}(\mathbf{x} - \mathbf{x}')\right)$$

- σ_s^2 is the signal variance
- C is a symmetric matrix that can have different parameterizations

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \mathbf{C}(\mathbf{x} - \mathbf{x}')\right)$$

- σ_s^2 is the signal variance
- C is a symmetric matrix that can have different parameterizations
- $\mathbf{C} = \ell^{-2}\mathbf{I}$: isotropic SE

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \mathbf{C}(\mathbf{x} - \mathbf{x}')\right)$$

- σ_s^2 is the signal variance
- C is a symmetric matrix that can have different parameterizations
- $\mathbf{C} = \ell^{-2}\mathbf{I}$: isotropic SE
- $\mathbf{C} = \operatorname{diag}(\ell)^{-2}$ with $\ell = (\ell_1, \dots, \ell_D)$: Automatic Relevance Determination (ARD)

$$\kappa(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \mathbf{C}(\mathbf{x} - \mathbf{x}')\right)$$

- σ_s^2 is the signal variance
- C is a symmetric matrix that can have different parameterizations
- $\mathbf{C} = \ell^{-2}\mathbf{I}$: isotropic SE
- $\mathbf{C} = \operatorname{diag}(\ell)^{-2}$ with $\ell = (\ell_1, \dots, \ell_D)$: Automatic Relevance Determination (ARD)
- ullet Each ℓ_j is known as the characteristic length-scale: distance for which the function values are expected to vary significantly

- 1 The Gaussian Distribution Revisited
- Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

Standard GP Regression Model: Predictions (1)

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$$
, $\mathbf{x} \in \mathbb{R}^D$, $y \in \mathbb{R}$

Input : $(\mathbf{X})_{D\times N}$, Targets: $(\mathbf{y})_{N\times 1}$

Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \mathbf{x} \in \mathbb{R}^{D}, y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
Noise $y = f(\mathbf{x}) + \eta \quad \eta \sim \mathcal{N}(\mathbf{0}, \sigma_n^2)$

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \ \mathbf{x} \in \mathbb{R}^{D}, \ y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
Noise $y = f(\mathbf{x}) + \eta \quad \eta \sim \mathcal{N}(\mathbf{0}, \sigma_n^2)$

• The joint distribution of \mathbf{y} and f_* is a Gaussian

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \ \mathbf{x} \in \mathbb{R}^{D}, \ y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
Noise $y = f(\mathbf{x}) + \eta \quad \eta \sim \mathcal{N}(\mathbf{0}, \sigma_n^2)$

- The joint distribution of \mathbf{y} and f_* is a Gaussian
- We simply need to figure out the covariance structure: $\mathbb{C}\text{ov}(y^{(p)}, y^{(q)}) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)}) + \sigma_n^2 \delta_{pq} \rightarrow \mathbb{C}\text{ov}(\mathbf{y}) = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \ \mathbf{x} \in \mathbb{R}^{D}, \ y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
Noise $y = f(\mathbf{x}) + \eta \quad \eta \sim \mathcal{N}(\mathbf{0}, \sigma_n^2)$

- The joint distribution of \mathbf{y} and f_* is a Gaussian
- We simply need to figure out the covariance structure: $\mathbb{C}\text{ov}(y^{(p)}, y^{(q)}) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)}) + \sigma_n^2 \delta_{pq} \rightarrow \mathbb{C}\text{ov}(\mathbf{y}) = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$
- To get the posterior on f_* we need to constrain this distribution to agree with the observed data (\mathbf{X}, \mathbf{y})

Data :
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}, \ \mathbf{x} \in \mathbb{R}^{D}, \ y \in \mathbb{R}$$

Input : $(\mathbf{X})_{D \times N}$, Targets: $(\mathbf{y})_{N \times 1}$
Goal : Make predictions $f_* = f(\mathbf{x}_*)$ at \mathbf{x}_*
Prior $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \kappa(\mathbf{x}, \mathbf{x}'))$
Noise $y = f(\mathbf{x}) + \eta \quad \eta \sim \mathcal{N}(\mathbf{0}, \sigma_n^2)$

- The joint distribution of \mathbf{y} and f_* is a Gaussian
- We simply need to figure out the covariance structure: $\mathbb{C}\text{ov}(y^{(p)}, y^{(q)}) = \kappa(\mathbf{x}^{(p)}, \mathbf{x}^{(q)}) + \sigma_n^2 \delta_{pq} \rightarrow \mathbb{C}\text{ov}(\mathbf{y}) = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$
- To get the posterior on f_{*} we need to constrain this distribution to agree with the observed data (X, y)
- This is achieved simply by conditioning: $p(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*)$

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

Denoting $\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$ and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{c} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$
Denoting $\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$ and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then:
$$f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$$

$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$$

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{c} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$
 Denoting $\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$ and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then:
$$f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$$

$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

ullet $\mathbb{E}[f_*]$: Linear combination of N observations, i.e. linear predictor

 $\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

Denoting
$$\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$$
 and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then: $f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$
$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$$

- $\mathbb{E}[f_*]$: Linear combination of N observations, i.e. linear predictor
- Say $\alpha = (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$ then: $\mathbb{E}[f_*] = \sum_{n=1}^N \alpha_i \kappa(\mathbf{x}^{(n)}, \mathbf{x}_*)$ is a linear combination of N kernel functions: Representer theorem

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

Denoting
$$\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$$
 and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then: $f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$
$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$$

- $\mathbb{E}[f_*]$: Linear combination of N observations, i.e. linear predictor
- Say $\alpha = (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$ then: $\mathbb{E}[f_*] = \sum_{n=1}^N \alpha_i \kappa(\mathbf{x}^{(n)}, \mathbf{x}_*)$ is a linear combination of N kernel functions: Representer theorem
- We encountered this predictive distribution before Go to Linear Model

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{c} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

Denoting
$$\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$$
 and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then: $f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$
$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$$

- $\mathbb{E}[f_*]$: Linear combination of N observations, i.e. linear predictor
- Say $\alpha = (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$ then: $\mathbb{E}[f_*] = \sum_{n=1}^N \alpha_i \kappa(\mathbf{x}^{(n)}, \mathbf{x}_*)$ is a linear combination of N kernel functions: Representer theorem
- We encountered this predictive distribution before Go to Linear Model
- $\mathbb{V}[f_*]$ does not depend on **y**

$$\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{array}{cc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{k}(\mathbf{X}, \mathbf{x}_*) \\ \mathbf{k}(\mathbf{x}_*, \mathbf{X}) & \kappa(\mathbf{x}_* \mathbf{x}_*) \end{array} \right)$$

Denoting
$$\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$$
 and $\widetilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$ then: $f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\mathbb{E}[f_*], \mathbb{V}[f_*]),$
$$\mathbb{E}[f_*] = \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T \widetilde{\mathbf{K}}^{-1} \mathbf{k}_*.$$

- $\mathbb{E}[f_*]$: Linear combination of N observations, i.e. linear predictor
- Say $\alpha = (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$ then: $\mathbb{E}[f_*] = \sum_{n=1}^N \alpha_i \kappa(\mathbf{x}^{(n)}, \mathbf{x}_*)$ is a linear combination of N kernel functions: Representer theorem
- We encountered this predictive distribution before Go to Linear Model
- $\mathbb{V}[f_*]$ does not depend on **y**
- In fact we have a Gaussian posterior process

Figure from Carl Rasmussen's slides

Figure from Carl Rasmussen's slides

• Observations y depend on their corresponding latent function f

Figure from Carl Rasmussen's slides

- Observations y depend on their corresponding latent function f
- The marginalization property implies that adding a new \mathbf{x}_{i}^{*} , f_{i}^{*} , y_{i}^{*} does not affect the distribution

- The Gaussian Distribution Revisited
- Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

• It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}
- However, we will refer to the set of hyper-parameters θ as the parameters of the covariance and the noise variance σ_n^2

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}
- However, we will refer to the set of hyper-parameters θ as the parameters of the covariance and the noise variance σ_n^2
- We can do cross-validation (potential problems?)

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}
- However, we will refer to the set of hyper-parameters θ as the parameters of the covariance and the noise variance σ_n^2
- We can do cross-validation (potential problems?)
- We focus here on the so-called type II maximum likelihood, i.e. we want to maximize the marginal likelihood.

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}
- However, we will refer to the set of hyper-parameters θ as the parameters of the covariance and the noise variance σ_n^2
- We can do cross-validation (potential problems?)
- We focus here on the so-called type II maximum likelihood, i.e. we want to maximize the marginal likelihood.
- Integrate out the "parameters" of the GP: (which parameters?)

- It includes the discrete choice of the functional form for the covariance function and the values for the hyper-parameters.
- E.g. for the SE: $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_s^2 \exp\left(-\frac{1}{2}(\mathbf{x} \mathbf{x}')^T \mathbf{C}(\mathbf{x} \mathbf{x}')^T\right)$ the parameters are σ_s^2 and the parameters of \mathbf{C}
- However, we will refer to the set of hyper-parameters θ as the parameters of the covariance and the noise variance σ_n^2
- We can do cross-validation (potential problems?)
- We focus here on the so-called type II maximum likelihood, i.e. we want to maximize the marginal likelihood.
- Integrate out the "parameters" of the GP: (which parameters?)

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \boldsymbol{\theta}) p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta}) d\mathbf{f}$$
$$= \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I})$$

Log Marginal Likelihood

$$\mathcal{L} = \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

$$= \underbrace{-\frac{1}{2}\mathbf{y}^{T}(\mathbf{K} + \sigma_{n}^{2}\mathbf{I})^{-1}\mathbf{y}}_{\text{data-fit}} - \underbrace{\frac{1}{2}\log|\mathbf{K} + \sigma_{n}^{2}\mathbf{I}|}_{\text{complexity}} - \underbrace{\frac{N}{2}\log 2\pi}_{\text{normaliz.}}$$

Log Marginal Likelihood

$$\mathcal{L} = \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

$$= \underbrace{-\frac{1}{2}\mathbf{y}^{T}(\mathbf{K} + \sigma_{n}^{2}\mathbf{I})^{-1}\mathbf{y}}_{\text{data-fit}} - \underbrace{\frac{1}{2}\log|\mathbf{K} + \sigma_{n}^{2}\mathbf{I}|}_{\text{complexity}} - \underbrace{\frac{N}{2}\log 2\pi}_{\text{normaliz.}}$$

- Isotropic SE
- $\sigma_s^2 = 1$, $\sigma_n^2 = 0.01$
- $\ell=1$
- N = 20

Log Marginal Likelihood

$$\begin{split} \mathcal{L} &= \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) \\ &= \underbrace{-\frac{1}{2}\mathbf{y}^T(\mathbf{K} + \sigma_n^2\mathbf{I})^{-1}\mathbf{y}}_{\text{data-fit}} - \underbrace{\frac{1}{2}\log|\mathbf{K} + \sigma_n^2\mathbf{I}|}_{\text{complexity}} - \underbrace{\frac{N}{2}\log 2\pi}_{\text{normaliz}}. \end{split}$$

- Isotropic SE
- $\sigma_s^2 = 1$, $\sigma_n^2 = 0.01$
- ℓ = 1
- N = 20

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

where $oldsymbol{lpha} = \widetilde{\mathbf{K}}^{-1}\mathbf{y}$.

Can use gradient-based optimization

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance
- Such principled "kernel" learning does not exist in standard SVM

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance
- Such principled "kernel" learning does not exist in standard SVM
- Non-convex optimization

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)
= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance
- Such principled "kernel" learning does not exist in standard SVM
- Non-convex optimization
- Multiple local optima correspond to different explanations of the data

Let
$$\widetilde{\mathbf{K}} = \mathbf{K} + \sigma_n^2 \mathbf{I}$$
:

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \frac{1}{2} \mathbf{y}^{T} \widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \widetilde{\mathbf{K}}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\widetilde{\mathbf{K}}^{-1} \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left((\alpha \alpha^{T} - \widetilde{\mathbf{K}}^{-1}) \frac{\partial \widetilde{\mathbf{K}}}{\partial \theta_{i}} \right)$$

- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance
- Such principled "kernel" learning does not exist in standard SVM
- Non-convex optimization
- Multiple local optima correspond to different explanations of the data
- Computational Requirements?

• Inverse of the length-scale determines the relevance of the dimension.

- Inverse of the length-scale determines the relevance of the dimension.
- The larger the length-scale the more irrelevant the corresponding input is.

- Inverse of the length-scale determines the relevance of the dimension.
- The larger the length-scale the more irrelevant the corresponding input is.

- Inverse of the length-scale determines the relevance of the dimension.
- The larger the length-scale the more irrelevant the corresponding input is.

Learned lengh-scale for irrelevant dimension: 1.0557×10^5

- 1 The Gaussian Distribution Revisited
- Standard Bayesian Linear Regression
- 3 Bayesian Regression with Non-linear Feature Spaces
- Gaussian Processes for Regression
 - Function-space View
 - Predictions
 - Model Selection
 - Other Covariance Functions

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)$$

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)$$

where \mathcal{K}_{ν} is a modified Bessel function and $\nu > 0$, $\ell > 0$.

Stationary, Isotropic

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)$$

- Stationary, Isotropic
- $\nu = 1/2$:

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp(-\frac{|\mathbf{x} - \mathbf{x}'|}{\ell})$$

- Very rough process
- Brownian motion
- ▶ Ornstein-Uhlenbeck (D=1)

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|}{\ell} \right)$$

- Stationary, Isotropic
- $\nu = 1/2$:

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp(-\frac{|\mathbf{x} - \mathbf{x}'|}{\ell})$$

- Very rough process
- Brownian motion
- Ornstein-Uhlenbeck (D=1)
- $\nu \to \infty$: SE covariance

Other Covariance Functions: Rational Quadratic

$$\kappa(\mathbf{x}, \mathbf{x}') = \left(1 + \frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\alpha\ell^2}\right)^{-\alpha}$$

with $\alpha > 0$, $\ell > 0$.

can be seen as an infinite sum of squared exponential (SE) covariance functions with different characteristic length-scales.

Other Covariance Functions: Rational Quadratic

$$\kappa(\mathbf{x}, \mathbf{x}') = \left(1 + \frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\alpha\ell^2}\right)^{-\alpha}$$

with $\alpha > 0$, $\ell > 0$.

can be seen as an infinite sum of squared exponential (SE) covariance functions with different characteristic length-scales.

Other Covariance Functions: Rational Quadratic

$$\kappa(\mathbf{x}, \mathbf{x}') = \left(1 + \frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\alpha\ell^2}\right)^{-\alpha}$$

with $\alpha > 0$, $\ell > 0$.

can be seen as an infinite sum of squared exponential (SE) covariance functions with different characteristic length-scales.

with $\alpha \to \infty$ is the SE covariance with length-scale ℓ .

Other Covariance Functions: Neural Network Covariance

- Consider a neural network with one hidden layer and N_H hidden units.
- Under certain assumptions the corresponding stochastic process will converge to a Gaussian Process as $N_H \to \infty$.
- For a specific settings of the transfer function of the neural net:

$$\kappa(\mathbf{x}, \mathbf{x}') = \frac{2}{\pi} \sin^{-1} \left(\frac{2\tilde{\mathbf{x}}^T \mathbf{\Sigma} \tilde{\mathbf{x}}'}{\sqrt{(1 + 2\tilde{\mathbf{x}}^T \mathbf{\Sigma} \tilde{\mathbf{x}})(1 + 2\tilde{\mathbf{x}}'^T \mathbf{\Sigma} \tilde{\mathbf{x}}')}} \right)$$

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the mapping $\mathbf{u}(x) = (\cos(x), \sin(x))$ and then use the SE covariance on \mathbf{u} space. This gives rise to:

$$\kappa(x, x') = \exp\left(-\frac{2\sin^2(\frac{x-x'}{2})}{\ell^2}\right)$$

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the mapping $\mathbf{u}(x) = (\cos(x), \sin(x))$ and then use the SE covariance on \mathbf{u} space. This gives rise to:

Other Covariance Functions: Periodic, Smooth Functions

We can create a distribution over periodic functions of x by using the mapping $\mathbf{u}(x) = (\cos(x), \sin(x))$ and then use the SE covariance on \mathbf{u} space. This gives rise to:

$$\kappa(x, x') = \exp\left(-\frac{2\sin^2(\frac{x-x'}{2})}{\ell^2}\right)$$

This is called warping and can also be used to introduce non-stationarity.

Conclusions

- Models based on Gaussian process (GP) priors are flexible non-parametric Bayesian approaches to non-linear regression.
- GP regression can be seen as a generalisation of Bayesian regression with non-linear feature spaces and infinite-dimensional feature maps.
- Inference in GP regression models is analytically tractable and is computable thanks to the marginalisation property underlying GPs.
- Hyper-parameter learning carried out via non-covex optimisation of the marginal likelihood.
- ullet High computational cost in time and memory, $\mathcal{O}(\mathit{N}^3)$ and $\mathcal{O}(\mathit{N}^2)$
- Reading: Rasmussen & Williams (GPML, 2006): Ch. 1, 2, 4 (except Sec. 4.3, 4.4), Sec. 5.1, 5.2, 5.4.