

Universidade Federal do Paraná Campus Avançado de Jandaia do Sul 3ª Semana Integrada das Engenharias

Introdução ao Arduino

Ministrantes

Dr. Landir Saviniec

Dr. Marcelo Franco

Tópicos

- O que é o Arduino?
- Sensores, atuadores e controladores
- Componentes do arduino
- Como programar o arduino?
- Projeto 1: ligando e desligando leds
- Classes e objetos
- Projeto 2: criando uma classe para controlar leds
- Projeto 3: detectando obstáculos com sensores de distância
- Projeto 4: lendo sensores de umidade

O que é o arduino?

O arduino é um hardware contendo um microcontrolador programável para desenvolver projetos eletrônicos.

Sensores, atuadores e controladores

Sonsores

Distância Luminosidade Temperatura Umidade Outros

Ler o mundo físico

Executar ações

Ex: Sonsor de distância

Atuadores

Motores Lampadas Válvulas Outros

Ex: Motor de passo

Componentes do arduino

Como programar o arduíno?

O arduino é programado via uma interface de programação (Arduino IDE). A linguagem utilizada é o C++.

```
sketch nov06a | Arduino 1.8.19
File Edit Sketch Tools Help
  sketch nov06a§
void setup() {
  // Função de inicialização
  // Executa uma vez quando o arduino inicia
  // Utilizada para definir configurações iniciais
void loop() {
  // Função principal
  // É um laço infinito, fica executando eternamente
  // Aqui você programa a lógica do seu sistema eletrônico
                                                                         Arduino Uno on /dev/ttvACM0
```

Leitura e escrita de portas digitais

Configurando as portas:

```
Configura a porta 12 para leitura:
pinMode (12, INPUT);
```

Configura a porta 13 para escrita:

```
pinMode(13, OUTPUT);
```

Lendo e escrevendo nas portas:

```
Lendo a porta 12: digitalRead (12);
```

Escrevendo na porta 13:

```
digitalWrite(13, 1); #ligando
digitalWrite(13, 0); #desligando
```

Leitura e escrita de portas analógicas

Portas Analógicas: 0 até 5V

Configurando as portas:

```
Configura a porta A0 para leitura:
pinMode(A0, INPUT);
```

Configura a porta A1 para escrita:
pinMode (A1, OUTPUT);

Lendo e escrevendo nas portas:

Lendo a porta A0: analogRead (A0);

Escrevendo na porta A1: analogWrite(A1, valor); Projeto 1: ligando e desligando leds

Circuito do projeto 1

Código do projeto 1

```
projetol
int pinoLedVerde = 2;
int pinoLedVermelho = 4;
void setup() {
  pinMode(pinoLedVerde, OUTPUT);
  pinMode(pinoLedVermelho, OUTPUT);
void loop() {
  digitalWrite(pinoLedVerde, 1);
  delay(100);
  digitalWrite(pinoLedVerde, 0);
  delay(1000);
  digitalWrite(pinoLedVermelho, 1);
  delay(100);
  digitalWrite(pinoLedVermelho, 0);
  delay(1000);
```

Classes e objetos

Classes e objetos

Classe: é um código reusável (um template).

Objeto: é uma instância da classe em tempo de execução.

Exemplo: O projeto arquitetônico de uma casa (classe) pode ser usado para construir várias casas (objetos).

Assim, o código de leitura de um sensor pode ser escrito uma única vez e usado para ler aquele tipo de sensor em vários projetos diferentes.

Para que serve: para organizar e reusar código. Bibliotecas de arduino são implementadas usando classes.

Estrutura de uma classe

```
class NomeDaClasse{
  // Declaração de variáveis para guardar propriedades dos objetos
  public:
    NomeDaClasse(){
      // Método construtor. Tem o mesmo nome da classe
      // Executa uma vez quando o objeto é criado
    void metodoA(){
      //Função para executar alguma ação
    int metodoB(){
      // Uma classe pode ter várias funções
      // Funções podem retornar valores ou não
}:
```

Projeto 2: criando uma classe para controlar leds

Classe "Led"

```
projeto2
class Led{
  int pinoDoLed;
  public:
   Led(int pino){
      pinMode(pino, OUTPUT);
      pinoDoLed = pino;
    void ligar(){
      digitalWrite(pinoDoLed, 1);
    void desligar(){
      digitalWrite(pinoDoLed, 0);
};
Led ledVerde(2);
Led ledVermelho(4);
void setup() {
void loop() {
  ledVerde.ligar();
  delay(100);
 ledVermelho.ligar();
  delay(1000);
 ledVerde.desligar();
 ledVermelho.desligar();
  delay(1000);
```

Circuito do projeto 2

Projeto 3: detectando obstáculos com sensores de distância

Descrição do projeto

Usar um sensor de distância para detectar obstáculos. Enquanto nenhum obstáculo estiver próximo, um led verde permanecerá ligado. Quando um obstáculo estiver muito próximo (distância < 50 cm), o led verde desligará e um led vermelho será ligado, para indicar alerta.

Bibliotecas necessárias:

Utilizaremos a biblioteca Ultrasonic para ler o sensor.

Descompacte o arquivo Ultrasonic.zip e coloque a pasta Ultrasonic dentro da pasta LIBRARIES da IDE do Arduino.

Circuito do projeto 3

Código do projeto 3 (Parte 1)

```
projeto3
#include <Ultrasonic.h>
#define ECHO 8
#define TRIGGER 10
class Led{
  int pinoDoLed;
  public:
    Led(int pino){
      pinMode(pino, OUTPUT);
      pinoDoLed = pino;
    void ligar(){
      digitalWrite(pinoDoLed, 1);
    void desligar(){
      digitalWrite(pinoDoLed, 0);
};
Led ledVerde(2);
Led ledVermelho(4);
Ultrasonic sensor(TRIGGER, ECHO);
void setup() {
    //Habilita Comunicação Serial a uma taxa de 9600 bauds.
    Serial.begin(9600);
    ledVerde.ligar();
}
```

Código do projeto 3 (Parte 2)

```
void loop()
{

    double distancia = sensor.Ranging(CM); //retorna a distancia em centímetros
    Serial.print(distancia);
    Serial.println(" cm");

    if(distancia < 50) {
        ledVermelho.ligar();
        ledVerde.desligar();
    }else {
        ledVerde.ligar();
        ledVermelho.desligar();
    }
    delay(100);
}</pre>
```

Projeto 4: lendo sensores de umidade

Descrição do projeto

Usar um sensor de umidade para detectar quando o solo está seco ou molhado. Quando a umidade for maior ou igual a 40%, um led verde permanecerá ligado. Quando a umidade estiver abaixo de 40%, o led verde desligará e um led vermelho será ligado, indicando que o solo está seco.

Circuito do projeto 4

Código do projeto 4 (Parte 1)

```
projeto4
class SensorUmidade{
  int pinoDoSinal;
  public:
    SensorUmidade(int pino){
      pinMode(pino, INPUT);
      pinoDoSinal = pino;
    int getUmidade(){
      int umidade = analogRead(pinoDoSinal);
      return map(umidade, 0, 1023, 100, 0);
};
class Led{
  int pinoDoLed;
  public:
    Led(int pino){
      pinMode(pino, OUTPUT);
      pinoDoLed = pino;
    void ligar(){
      digitalWrite(pinoDoLed, 1);
    void desligar(){
      digitalWrite(pinoDoLed, 0);
};
```

Código do projeto 4 (Parte 2)

```
SensorUmidade sensor(AO);
Led ledVerde(2);
Led ledVermelho(4);
void setup() {
  Serial.begin(9600);
 ledVerde.ligar();
void loop() {
  int umidade = sensor.getUmidade();
  Serial.print("Umidade: ");
  Serial.print(umidade);
  Serial.println("%");
  if(umidade < 40){</pre>
    ledVermelho.ligar();
    ledVerde.desligar();
  }else{
    ledVerde.ligar();
    ledVermelho.desligar();
  delay (5000);
```