Portfolio Optimization Strategies

Davis, Liu, Rainey

University of California, Berkeley STAT222

May 2, 2017

Overview

- Project Background
- Mean-Variance
- Mean-Variance with Bonds
- 4 Fama and French 3 Factor Model
- 5 Cross-sectional Factor Models

Project Overview

Our goal is to explore various portfolio optimization strategies:

- Mean-Variance Optimization
- Sparse Portfolio Construction
- Bonds
- Factor Models

Mean-Variance Optimization^[1]

$$\min_{x} x^{T} \sum x + \tau ||x||_{1}$$

$$s.t. \quad \hat{r}^{T} x \ge \mu,$$

$$x \in \mathcal{X}$$

- r is the return vector, which is a random variable
- $\hat{r} = E(r)$
- x is the weights
- $\Sigma = E(r \hat{r})(r \hat{r})^T$
- $\bullet \ \mu$ is a pre-determined minimum return
- \mathcal{X} is a convex set of all feasible x
- \bullet au is a parameter to promote sparsity [2]

Analytical Approach

- Monthly returns for 556 stocks listed on NYSE and NASDAQ.
- Train model on five years, test on next year, move one year forward, repeat, etc...
- Evaluation period: January 1991 December 2015.
- Compare out of sample performance to equal-weight portfolio.
- Long only portfolios.
- Python package CVXPY^[4] for optimization.

Mean-Variance Results

Period	O	ptimiz	ed	Equal Weight			
	m	σ	S	m	σ	S	
01/91-12/15	.012	.027	.43	.014	.043	.324	
01/91-12/95	.012	.019	.645	.020	.028	.711	
01/96-12/00	.014	.031	.444	.015	.039	.388	
01/01-12/05	.018	.029	.627	.015	.041	.366	
01/06-12/10	.004	.034	.104	.010	.062	.165	
01/11-12/15	.013	.026	.461	.010	.038	.257	

Table: Mean-Variance Returns

m - average monthly returns σ - std deviation

 $\ensuremath{\mathsf{S}}$ - Sharpe Ratio, Ratio between returns and risk

Approach for Bonds and Mean Variance

- Increasing the number of the assets in the optimization does not give significant improvements, if any.
- Trying to maximize returns is far too unreliable to be used in practice.
- When using Bonds, we start with 20% invested in Bonds.
- We'll use a Bond Ladder, equally divided amongst Bonds with different Maturities, and repurchase new ones with 10 year Maturities when they mature.

Results for Mean-Variance with Bonds

Period	Bond Ladder			N	No Bonds			Equal Weight		
	m	σ	S	m	σ	S	m	σ	S	
01/91-12/15	.011	.025	.443	.012	.027	.43	.014	.043	.324	
01/91-12/95	.011	.016	.713	.012	.019	.645	.020	.028	.711	
01/96-12/00	.013	.027	.465	.014	.031	.444	.015	.039	.388	
01/01-12/05	.017	.027	.644	.018	.029	.627	.015	.041	.366	
01/06-12/10	.003	.032	.109	.004	.034	.104	.010	.062	.165	
01/11-12/15	.012	.025	.465	.013	.026	.461	.010	.038	.257	

Table: Mean-Variance Returns with Bonds

m - average monthly returns σ - std deviation

S - Sharpe Ratio, Ratio between returns and risk

Problems with Markowitz-type methods

- Main problem is lack of information (finite sample).
- Using sample mean to estimate mean return vector is notoriously bad, people actually dropped the sample mean constraint^[6].
- The covariance matrix of 500 equities has 125,000 unique elements, whereas the historic return data of 5 years/60 months have only 30,000 elements.
- Efforts to reduce the estimation error by methods like shrinkage method, doesn't improve the performance^[8].
- The out-of-sample performance of a certain robust method doesn't improve^[9].

Analytical Approach for Fama and French Model

Step 1: Fit a time series regression for each stock:

$$r_i \sim \alpha_i + \beta_i (r_m - r_f) + \beta_{SMB,i} SMB + \beta_{HML,i} HML$$

- SMB: Returns of Small market capitalization companies Minus Big.
- HML: Returns of High value companies Minus Growth.
- $r_m r_f$: Excess returns.

Data was downloaded from the Fama and French website.

Analytical Approach for Fama and French Model

Step 2: Minimize the variance across weighted combinations of the factors

$$\min_{x} f^{T} \tilde{\Sigma} f + x^{T} D x$$

$$s.t. \quad \hat{r}^{T} x \ge \mu,$$

$$x \in \mathcal{X}$$

- $\tilde{\Sigma} \in R^{4\times 4}$ is the factor covariance matrix.
- $f = F^T x \in R^4$ are the factor exposures.
- $F \in \mathbb{R}^{n \times 4}$ is factor loading matrix with the previously estimated β values.
- D is idiosyncratic risk which stores the SSE in diagonal matrix.

Results for Fama and French 3 Factor Model

Period	Optimal			Equal Weight			
	m	σ	S	m	σ	S	
01/91-12/15	0.012	0.037	0.32	0.014	0.043	0.324	
01/91-12/95	0.015	0.024	0.643	0.020	0.028	0.711	
01/96-12/00	0.014	0.038	0.383	0.015	0.039	0.388	
01/01-12/05	0.012	0.033	0.370	0.015	0.041	0.366	
01/06-12/10	0.008	0.053	0.148	0.010	0.062	0.165	
01/11-12/15	0.010	0.033	0.311	0.010	0.038	0.257	

Table: Mean-Variance Returns with Factors

Analytical Approach for Cross-sectional 3-Factor Models^[5]

• Models the weights of a portfolio directly using 3 cross-sectional factors: the market equity (me), the book-to-market ratio (btm), and the compounded monthly return (r_{comp})

$$x_{i,T+1} = y_{i,T} + \frac{1}{N_T} (\theta_1^{T+1} m e_{i,T} + \theta_2^{T+1} b t m_{i,T} + \theta_3^{T+1} r_{comp,i,T})$$
 (1)

- $y_{i,T}$ is the weight of the *ith* equity of a value equally distributed portfolio
- Calculate 3 numbers for each test year! (θ^{T+1} are the same for training and test periods)

Analytical Approach for Cross-sectional 3-Factor Models^[5]

How to solve for $\theta_1^{T+1}, \theta_2^{T+1}, \theta_3^{T+1}$?

Maximizes the CRRA utility using 5 years' training data:

$$\max_{\theta} \sum_{t=0}^{T-1} u(r_{p,t+1}) = \sum_{t=0}^{T-1} u(\sum_{i=1}^{N_t} x_{i,t+1} r_{i,t+1}) = \sum_{t=0}^{T-1} u(\sum_{i=1}^{N_t} (y_{i,t} + \frac{1}{N_t} (\theta_1^{T+1} m e_{i,t} + \theta_2^{T+1} b t m_{i,t} + \theta_3^{T+1} r_{comp,i,t})) r_{i,t+1}))$$
(2)

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Results for Cross-sectional 3-Factor Models

Period	(Optima	ıl	Equal Weight			
	m	σ	S	m	σ	S	
01/91-12/15	.017	.047	.369	.014	.043	.324	
01/91-12/95	.029	.040	.721	.020	.028	.711	
01/96-12/00	.017	.045	.372	.015	.039	.388	
01/01-12/05	.019	.045	.418	.015	.041	.366	
01/06-12/10	.012	.061	.193	.010	.062	.165	
01/11-12/15	.010	.036	.275	.010	.038	.257	

- Superiority decayed vs. time
- People became aware of certain "anomalies", and then they were not any more "anomalies" once market reached equilibrium
- People are looking for new "anomalies" crazily

Conclusions and Next Steps

Figure: Cumulative value of different portfolios from 1991 - 2015

Conclusions and Next Steps

- Mean-variance is good at controlling risk, but it is difficult to achieve superior returns out-of-sample.
- While Fama and French factors explain results in-sample, it is still difficult to achieve superior returns out-of-sample.
- Cross-sectional factor models appear to provide good results in the short term, however their effectiveness decreases over time.

References

- G. Calafiore and L. El Ghaoui, Optimization Models. Control systems and optimization series, Cambridge University Press, October 2014.
- J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris, "Sparse and stable Markowitz portfolios," Proceedings of the National Academy of Science, vol. 106, pp. 12267-12272, July 2009.
- 3 S. D. S. Boyd and J. Park, "Convex optimization short course."
- S. Diamond and S. Boyd, "CVXPY: A Python-embedded modeling language for convex optimization," Journal of Machine Learning Research, vol. 17, no. 83, pp. 1-5, 2016.
- Michael W. Brandt, Pedro Santa-Clara, and Rossen Valkanov. Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns. The Review of Financial Studies, 22(9):3411, 2009.

References

- Tze Leung Lai, Haipeng Xing, and Zehao Chen. Meanvariance portfolio optimization when means and covariances are unknown. The Annals of Applied Statistics, 5(2A):798823, 2011.
- ▼ Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Reviewof Financial Studies, 22(5):19151953, 2009.
- Michael W. Brandt. Portfolio choice problems. In Handbook of Financial Econometrics, forthcoming. North-Holland, 2004.
- Andre Santos. The out-of-sample performance of robust portfolio optimization. Brazilian Review of Finance, 8(2):141166, 2010.