Función cuadrática y función Racional.

Departamento de Matemáticas

Coneptualización previa.

Considerando los temas tratados en las lecturas previas, responda las siguientes interrogantes:

- 1 ¿Que es una función cuadrática?
- ¿Cuál es el dominio de la función cuadrática?
- 3 ¿Cómo se determina el vértice de una función cuadrática?
- ¿Que es una función racional?
- 6 ¿Cuál es el dominio de la función racional?

Función Cuadrática

Definición. Toda función polinomial $f : \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = ax^2 + bx + c$$

donde donde $a,b,c\in\mathbb{R}$ y $a\neq 0$, se denomina función cuadrática.

Ejemplo.

- $f(x) = 2x^2 + 3x + 4$ es una función cuadrática con coeficientes a = 2, b = 3 y c = 4.
- $f(x) = -3x^2 + x + 2$ es una función cuadrática con coeficientes a = -3, b = 1 y c = 2.

Observación. Existen diversos problemas de aplicación que se pueden modelar y resolver utilizando funciones cuadráticas, sin embargo antes de abordar este tipo de problemas es necesario conocer algunas propiedades de la función cuadrática.

3/1

Propiedades

Considere f una función cuadrática, entonces:

• La representación gráfica de f es una parábola. Ademas, si a>0 la parábola es cóncava hacia arriba. Mientras que si a<0 entonces la parábola es cóncava hacia abajo. Lo anterior se ilustra en la siguiente figura.

Miguel Ángel Muñoz Jara miguel.munoz,j@unab.cl

Propiedades

- f está definida para todo número real, es decir $\mathrm{Dom}(f)=\mathbb{R}.$
- La imagen de la función cuadrática depende de la naturaleza de sus coeficientes. De hecho:

$$\operatorname{Im}(f) = \left\{ \begin{array}{ll} \left[\frac{4ac - b^2}{4a}, \infty\right[& \text{ si } a > 0 \\\\ \left] -\infty, \frac{4ac - b^2}{4a} \right] & \text{ si } a < 0 \end{array} \right.$$

Si a > 0 entonces f admite un mínimo el cual se alcanza en el vértice
 (V) de la función cuadrática y que se denomina vértice y está dado por:

$$V = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

• Si a < 0 entonces f admite un máximo, éel cual se alcanza en el vértice (V) de la función cuadrática g que se denomina vértice g está dado por:

$$V = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl 5 / 1

Aplicaciones

Para comprender la utilidad de las funciones cuadráticas y como es posible utilizar este tipo de funciones para resolver problemas de optimización, considere los siguientes ejemplos.

Ejemplo. La utilidad diaria de la venta de árboles para el departamento de jardinería de un almacén está dada por:

$$U(x) = -x^2 + 18x + 144$$

Donde x es el número de árboles vendidos. Determine el número de árboles que se requieren vender para obtener la máxima utilidad.

Solución. Observe que la función utilidad es una función cuadrática, con coeficientes a=-1, b=18 y c=144. Por lo tanto, para determinar la utilidad máxima es necesario calcular el vértice de la función utilidad. El cual está dado por:

$$V = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) = \left(=\frac{-18}{2(-1)}, U\left(\frac{18}{2}\right)\right) = (9, U(9))$$

Por lo tanto la utilidad es máxima si se vende 9 árboles.

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Aplicaciones

Ejemplo. La función de oferta para el fabricante de cierto artículo es p = f(q) = 1200 - 3q, donde p es el precio en dólares por unidad cuando se demandan q unidades por semana. Determine el nivel de producción que maximiza el ingreso total del fabricante y determine el ingreso máximo.

Solución. Observe que el ingreso total est'a dado por:

$$I(q) = pq$$

= $(1200 - 3q) q$
= $1200q - 3q^2$

De lo anterior se deduce que la función ingreso es una función cuadrática que admite un máxima absoluto en

$$q = \frac{-b}{2a} \frac{-1200}{2(-3)} = \frac{1200}{6} = 200$$

que corresponde a la coordenada x del vértice. Por lo tanto, se tiene que el ingreso es máximo si se producen 200 unidades. Además el ingreso máximo es I(200)=120.000. dólares

Taller colaborativo

Resuelva los siguientes problemas de aplicación

- Un investigador en fisiología establece que $r(s) = -s^2 + 12s 20$ es un modelo matemático que describe el número de impulsos emitidos por una persona, después que se ha estimulado un nervio. La variable s es el número de segundos transcurridos desde que es estimulado el nervio. Determine cuando la estimulación es máxima.
- Una compañía inmobiliaria posee 180 departamentos. Cuando todos están ocupados, se les cobra a sus residentes una renta mensual de 300 dólares por mes. La compañía estima que por cada incremento de 10 dólares en la renta mensual, 5 departamentos quedarán desocupados (debido a residentes que no pueden pagar la renta). ¿Cuál renta debe cobrar la compañía para maximizar el ingreso mensual que recibe?
- **3** Una librería puede obtener un atlas de la editorial a un costo de US\$10 por ejemplar y supone que si expende el atlas a x dólares el ejemplar, venderán aproximadamente 20(26-2x) ejemplares cada mes. Exprese la utilidad mensual que obtiene la librería por la venta del atlas como una función del precio y determine cuál debe ser el precio para obtener la utilidad máxima.

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl 8/1

Función Racional

Definición. Toda función f definida por $f(x) = \frac{p(x)}{q(x)}$, donde p y q son polinomios, se denomina función racional. En otras palabras una función f se denomina Racional si es de la forma:

$$f(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

Donde $a_i, b_k \in \mathbb{R}$, para todo $i = 0, ..., n \ y \ k = 0, ..., m$.

Ejemplo. Considere la función racional f definida por $f(x) = \frac{1}{ax + b}$, donde $a.b \in \mathbb{R}$ y $a \neq 0$. Observe:

$$Dom(f) = \{x \in \mathbb{R} | \exists y \in \mathbb{R} : f(x) = y\}$$

$$= \left\{ x \in \mathbb{R} \middle| \exists y \in \mathbb{R} : \frac{1}{ax + b} = y \right\}$$

$$= \{x \in \mathbb{R} | ax + b \neq 0\}$$

$$= \left\{ x \in \mathbb{R} \middle| x \neq -\frac{b}{a} \right\} = \mathbb{R} - \left\{ -\frac{b}{a} \right\}$$

9/1

Función Racional

Por otro lado observe que:

$$\operatorname{Im}(f) = \{ y \in \mathbb{R} | \exists x \in \mathbb{R} : f(x) = y \}$$

$$= \left\{ y \in \mathbb{R} | \exists x \in \mathbb{R} : \frac{1}{ax + b} = y \right\}$$

$$= \{ y \in \mathbb{R} | \exists x \in \mathbb{R} : (ax + b) y = 1 \}$$

$$= \{ y \in \mathbb{R} | y \neq 0 \} = \mathbb{R} - \{ 0 \}$$

Observación. En general dada una función racional $f(x) = \frac{p(x)}{q(x)}$ es posible establecer que:

$$Dom(f) = \{x \in \mathbb{R} | q(x) \neq 0\}$$

Sin embargo para determinar la imagen de f es necesario realizar u trabajo más detallado según el tipo de función racional.

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl 10 / 1

Taller colaborativo

Resuelva los siguientes problemas de aplicación

- ① Suponga que el número de horas-trabajador requerido para distribuir nuevas guías telefónicas al x% de las familias de una comunidad rural está dado por la función $f(x) = \frac{600x}{300-x}$.
 - a ¿Cuál es el dominio de la función?

 - ¿Cuántas horas-trabajador se necesitaron para distribuir las nuevas guías telefónicas al primer 50% de las familias?
 - ¿Cuántas horas-trabajador se necesitaron para distribuir las nuevas guías telefónicas en la comunidad?
 - ¿Qué porcentajes de las familias han recibido las nuevas guías telefónicas cuando se han completado 150 horas-trabajador?
- **2** La función que determina la cantidad de habitantes de una población rural después de t meses de realizado el censo del año 2011, está dada por $p(t) = 500 \left(1 + \frac{50t}{(t+50)^2}\right)$.
 - a Determine la población inicial de la comunidad rural.
 - 6 Después de 3 meses, cual es la población de la comunidad

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Conclusiones