

Consider walks on an $n \times m$ grid, where the walk can only self-intersect at a perpendicular step.

Figure 1: An example of a walk on a 5×5 grid.

Figure 2: Six (all?) "as-long-as-possible" paths starting in the lower left corner, up to dihedral action on the 3×3 grid.

Question. How many $n \times n$ boards exist with a unique solution?

Related.

- 1. What if paths must be "as long as possible", in the sense that they can't be extended at either end?
- 2. What if this is done on a torus, triangular grid, cube, etc?
- 3. What if paths much touch every square at least once?
- 4. How many up to dihedral action? How many with dihedral symmetry?
- 5. What if paths must start at, say, the upper right corner?
- 6. What if the path must have at least one self-intersection?
- 7. What if paths are allowed to be loops (i.e., end on same square as they began on?) What if they must be loops?
- 8. What is the greatest number of king steps? Fewest on an "as-long-as-possible" path? Rook steps?
- 9. What if diagonal moves are allowed? Only diagonal moves?