PREDICTING ALZHEIMER'S DISEASE

Project by

Mercy Amankwah Seyed Abdolhamid Banihashemi Nasheed Jafri

Mentor

Cemile Kurkoglu

Background

Prevalence (in 2024)

Not just memory loss, Alzheimer kills

Health and long-term care costs for people living with dementia was projected to reach \$360 billion in 2024 and nearly \$1 trillion in 2050.

GOAL: Predict A.D. using M.L. models

Dataset

2149
PATIENT RECORDS

AGE RANGE 60-90

TARGET VARIABLE

DIAGNOSIS

DATASET IS CLEAN

e.g. Confusion, Disorientation, Forgetfulness

Symptoms

Exploratory Data Analysis (Outlier Detection)

The dataset has no significant outliers.

Exploratory Data Analysis (Correlation Analysis)

- The target variable has the **highest correlation with** the cognitive features.
- No significant correlation within numerical predictors.

A Simple 2D PCA Model

Model Comparison

MODEL	Accuracy (Entire Dataset)	Accuracy (No Memory Complaints)
Logistic regression	0.8605	0.85348
Random Forest	0.936	0.90476
Gradient boosting	0.9506	0.94872
XGBoost	0.9506	0.95604
Adaboost	0.9651	0.94506
KNN	0.7297	0.76923
SVM (Poly Kernel)	0.7820	0.83883
Naĭve Bayes	0.8314	0.85714
LDA	0.843	0.85348
QDA	0.8052	0.64103

Confusion Matrix for AdaBoost on Entire Dataset

Confusion Matrix for XGBoost on Restricted Data

Model Tuning

Tuned Hyperparameters:

- AdaBoost:

n_estimators, learning_rate, algorithm, criterion, max_depth, min_sample_split

- XGBoost:

n_estimators, learning_rate, max_depth, min_child_weight, gamma, subsample, colsample_bytree, eval_metric, reg_alpha, reg_lambda, scale_pos_weight

Metrics Optimized:

Accuracy, Precision, Recall, F1

Performance of the Tuned Models:

- The tuned models slightly out-performed the initial ones.
- The best F1 score from Kaggle competition was 0.93288, for a tuned AdaBoost model without CV.
- For entire dataset, **AdaBoost** still outperformed XGBoost after tuning **without CV**.
- For dataset restricted to patients with no memory complaints, XGBoost outperformed AdaBoost after tuning over 5-fold CV.

Confusion Matrix for AdaBoost on Entire Dataset

Confusion Matrix for XGBoost on Restricted Data

Feature Importance

- Cognitive and assessment features like MMSE, Functional Assessment, ADL, Memory
 Complaints and Behavioral Problems rank highest in feature importance.
- Other clinical measurements like cholesterol and blood pressure also seem important.

Probabilistic Model for Risk Prediction

 Isotonic performed better at improving the number of correct classifications of the uncalibrated model.

Insights for important features

Conditional Alzheimer's Risk Given:											
Memory Complaints			Behavioral Problems								
Diagnosis	0	1	Diagnosis 0	1							
MemoryComplaints			BehavioralProblems								
0	71.5%	28.5%	0 70.2%	29.8%							
1	38.6%	61.4%	1 36.4%	63.6%							

- Presence of memory complaint and behavioral problems is associated with higher risk of Alzheimer's
- Higher MMSE, Functional Assessment and ADL scores are associated with lower risk of Alzheimer's
- Lower scores indicate greater impairment.

Empirical vs Calibrated Risks

- We group the important assessment scores as Low, Medium, High values and compare the empirical risk with the calibrated Alzheimer's risk for our model.

Emperica	al and N	/lodele	ed Probal	oilities 1	or Lo	w, Medium and I	High so
Mini-Mental State Exam Functional Assessment		Activities of Daily Living					
	Empirical	Model		Empirical	Model	Empirical	Model
MMSE			FA			ADL	
Low	41.7%	38.9%	Low	55.7%	56.5%	Low 59.1%	58.9%
Medium	44.7%	43.4%	Medium	36.8%	37.5%	Medium 28.9%	27.8%
High	19.1%	21.6%	High	13.0%	9.8%	High 17.4%	17.0%

- Patients with high MMSE scores are at lower risk.
- Alzheimer's risk is inversely related to functional assessment and ADL (activities of daily life).
- The risk probabilities from our model fairly aligns with the empirical ones.

Conclusion

- Predicted Alzheimer diagnosis under 2 scenarios
- ❖ Adaboost performed best with accuracy of 97% and F1 score 96% (all patients)
- ❖ XGBoost performed best with accuracy of 96% and F1 score 94% (no memory complaints)
- Cognitive features were the most important features in prediction
- ❖ Patients who report memory complaints had more than double the Alzheimer's risk (61.4%) compared to those who don't (28.5%)
- Presence of behavioral problems also approximately doubled the probability of Alzheimer's diagnosis (63.6% vs 29.8%)

Next Steps

- Analyzing and modeling risk predictions based on real-world databases
- Creating a user-friendly program for alzheimer's risk assessment

Thank you!

Mentor: Cemile Kurkoglu

Instructor: Steven Gubkin

All TA's

Entire Erdös Team