

FORMULARIO MDP

Alessandro Pioggia

7 novembre 2021

Indice

1	Combinatoria 1				
	1.1	Combi	inatoria di base	1	
		1.1.1	Disposizioni	1	
		1.1.2	Permutazioni	1	
		1.1.3	Combinazioni	1	
		1.1.4	Anagrammi	1	
		1.1.5	Formula di Stifel	1	
		1.1.6	Numeri di fibonacci	1	
		1.1.7	Principio di inclusione-esclusione	2	
	1.2	Combi	inatoria avanzata	2	
		1.2.1	Funzioni iniettive	2	
		1.2.2	Funzioni suriettive	2	
		1.2.3	Scombussolamenti	2	
		1.2.4	Numeri di Bell	2	
		1.2.5	Numeri di Stirling	2	
2	Stat	tistica		3	
_	2.1	Media		3	
		2.1.1	Campionaria	3	
		2.1.2	Ponderata	3	
	2.2			3	
		2.2.1	Definizione	3	
		2.2.2	Formula	3	
3	Dro	babilit	à	4	
J	3.1		di probabilità	4	
	3.1	3.1.1	Probabilità uniforme	4	
		3.1.1		4	
		_	Probabilità condizionale		
		3.1.3 3.1.4	Formula di bayes	4 5	
	9 A	_	Probabilità totali	о 6	
	3.2	variab	om aleatorie discrete	U	

3.2.1	Densità discreta astratta
3.2.2	Distribuzioni discrete
Variab	ili discrete multidimensionali
3.3.1	Funzione di ripartizione
3.3.2	Funzione di ripartizione del max
3.3.3	Funzione di ripartizione del min
Valore	atteso e varianza
3.4.1	Valore atteso
3.4.2	Varianza e covarianza
Variab	ili aleatorie continue
3.5.1	Densità continua
3.5.2	Densità e funzione di ripartizione astratta 10
3.5.3	Valore atteso
3.5.4	Varianza
3.5.5	Variabili uniformi continue
3.5.6	Variabili esponenziali
3.5.7	Variabili normali(gaussiane)
	3.2.2 Variab 3.3.1 3.3.2 3.3.3 Valore 3.4.1 3.4.2 Variab 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6

Sommario

Piacere so' Francesco.

Capitolo 1

Combinatoria

1.1 Combinatoria di base

1.1.1 Disposizioni

$$|Disposizioni| = n_{(k)} = n(n-1) \cdot \ldots \cdot (n-k-1)$$

1.1.2 Permutazioni

|Permutazioni| = n!

1.1.3 Combinazioni

$$|Combinazioni| = \binom{n}{k} = \frac{n!}{k!(n-k)}$$

1.1.4 Anagrammi

$$|Anagrammi| = \binom{n}{a \ b \ c} = \frac{n!}{a!b!c!}$$

1.1.5 Formula di Stifel

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

1.1.6 Numeri di fibonacci

$$\sum_{k=0}^{\frac{1}{2}} \binom{n-1-k}{k}$$

1.1.7 Principio di inclusione-esclusione

$$|A_1 \cup A_2 \cup ... \cup A_n| = \sum_{0 \neq I \notin \{1, 2, ..., n\}} (-1)^{|I|-1} \cdot \prod_{i \in I} A_i$$

Caso complementare

$$|(A_1 \cup A_2 \cup ... \cup A_n)^C| = \sum_{I \in \{1, 2, ..., n\}} (-1)^I | \cdot \prod_{i \in I} A_i$$

1.2 Combinatoria avanzata

1.2.1 Funzioni iniettive

Sia $f: \{1, ..., m\} \to \{1, ..., n\}$ una funzione iniettiva (m \le n) $|funzioni\ iniettive| = n_m$

1.2.2 Funzioni suriettive

Sia $f:\{1,...,m\} \rightarrow \{1,...,n\}$ una funzione suriettiva

$$|funzioni\ suriettive| = \sum_{k=0}^{n} (\binom{n}{k} \cdot (-1)^k \cdot (n-k)^m)$$

1.2.3 Scombussolamenti

$$|scombus solamenti| = \sum_{i=2}^{n} (-1)^i \cdot n_{n-i}$$

1.2.4 Numeri di Bell

$$B_n = \sum_{k=1}^{n} \binom{n-1}{k-1} \cdot B_{n-k}$$

1.2.5 Numeri di Stirling

 $S_{n,k}=$ numero di partizioni di { 1, 2, ..., n} in k blocchi $S_{n,k}=k\cdot S_{n-1,k}+S_{n-1,k-1}$

Capitolo 2

Statistica

2.1 Media

2.1.1 Campionaria

$$\bar{x} = \bar{x_n} = \frac{1}{n}(x_1 + \dots + x_n)$$

2.1.2 Ponderata

$$\bar{x_w} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$

2.2 Varianza

2.2.1 Definizione

$$\sigma_x^2 = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - \bar{x})^2$$

2.2.2 Formula

$$\sigma_x^2 = \bar{x^2} - \bar{x}^2$$

2.3 Covarianza

$$\sqrt{Varianza}$$

Capitolo 3

Probabilità

3.1 Spazi di probabilità

3.1.1 Probabilità uniforme

•
$$P(A) = \frac{|A|}{|\Omega|} = \frac{Casi\ possibili}{Casi\ totali}$$

3.1.2 Probabilità condizionale

- $P(A \cap B) = P(A) \cdot P(B)$ (indipendenza)

•
$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

•
$$P(A|B) = P(A) = \frac{P(A \cap B)}{P(B)}$$
 (valido se c'è indipendenza)

3.1.3 Formula di bayes

•
$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

3.1.4 Probabilità totali

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3)$$

= $P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_2) + P(A_3) \cdot P(B|A_3)$

3.2 Variabili aleatorie discrete

3.2.1 Densità discreta astratta

Una funzione $p: \mathbb{R} \to \mathbb{R}$

è una densità discreta astratta se e solo se:

- $p(h) \neq 0$;
- $p(h) \geqslant 0 \ \forall \ h \in \mathbb{R};$
- $\sum_{h \in \mathbb{R}} p(h) = 1;$

3.2.2 Distribuzioni discrete

Densità uniforme $(d_x(k))$

$$\begin{cases} \frac{1}{n} & k = 1\\ 0 & altrimenti \end{cases}$$

Densità di Bernoulli ($p_x(k)$)

$$\begin{cases} P(A) & k = 1 \\ 1 - P(A) & k = 0 \\ 0 & altrimenti \end{cases}$$

Densità binomiale $(p_x(k))$

$$\begin{cases} p^k \cdot (1-p)^{n-k} \cdot \binom{n}{k} & k = 0, ..., n \\ 0 & altrimenti \end{cases}$$

Densità ipergeometrica (si considera a = successo)

$$\begin{cases} \frac{\binom{a}{k} \cdot \binom{b}{n-k}}{\binom{a+b}{n}} & k = \max(n-b), ..., \min(n,b) \\ 0 & altrimenti \end{cases}$$

Densità geometrica modificata (cons. una sequenza con k - 1 insuccessi + 1 successo)

$$\begin{cases} (1-p)^{k-1} \cdot p & k = 1, 2, 3, \dots \\ 0 & altrimenti \end{cases}$$

Densità geometrica standard (cons. una sequenza con k insuccessi prima di arrivare al successo)

$$\begin{cases} (1-p)^k \cdot p & k = 1, 2, 3, \dots \\ 0 & altrimenti \end{cases}$$

Densità di Poisson

$$\begin{cases} e^{-\phi} \cdot \frac{\phi^k}{k!} & k = 1, 2, 3, \dots \\ 0 & altrimenti \end{cases}$$

3.3 Variabili discrete multidimensionali

3.3.1 Funzione di ripartizione

Sia $F_x:\mathbb{R}\to\mathbb{R},$ allora la sua funzione di ripartizione è la seguente :

•
$$F_x = P(x \le t)$$

3.3.2 Funzione di ripartizione del max

Siano S, T due variabili aleatorie indipendenti e $Z = \max(S,T)$, Allora:

•
$$F_Z(t) = F_S(t) \cdot F_T(t)$$

3.3.3 Funzione di ripartizione del min

Siano S, T due variabili aleatorie indipendenti e W = min(S, T), Allora:

•
$$(1 - F_x(k)) = (1 - F_S(t)) \cdot (1 - F_T(t))$$

3.4 Valore atteso e varianza

3.4.1 Valore atteso

Definizione

•
$$E[x] = \sum_{h \in \mathbb{R}} d_x(h) \cdot h;$$

Proprietà valore atteso

- E[x + y] = E[x] + E[y]
- $E[x \cdot y] = E[x] \cdot E[y]$ (valido \leftrightarrow x e y indipendenti)

3.4.2 Varianza e covarianza

Definizione varianza

•
$$Var(x) = E[(x - E[x])^2]$$

Definizione covarianza

•
$$Cov(x, y) = E[x] \cdot E[y]$$

Proprietà varianza

- $Var(x) = E[x^2] E[x]^2$
- Var(x+y) = var(x) + var(y)

Proprietà covarianza

• siano x, y indipendenti $\rightarrow Cov(x, y) = 0$

3.5 Variabili aleatorie continue

3.5.1 Densità continua

x v.a continua, la sua densità è una funzione:

 $f_x: \mathbb{R} \to \mathbb{R} \text{ t.c}:$

$$\int_{a}^{b} f_x(s) \, ds = P(a \le x \le b)$$

3.5.2 Densità e funzione di ripartizione astratta

Densità continua astratta

- $f(s) \ge 0$
- $\int_{-\infty}^{\infty} f(s)ds = 1$

Funzione di ripartizione astratta

 $F: \mathbb{R} \to \mathbb{R} \text{ t.c}:$

- $\lim_{-\infty} F(t) = 0 \text{ e } \lim_{+\infty} F(t) = 1$
- F debolmente crescente

3.5.3 Valore atteso

$$E[x] = \int_{-\infty}^{\infty} f_x(s) \, s \, ds$$

Proprietà

- E[ax + bx] = aE[x] + bE[y]
- $E[x \cdot y] = E[x] \cdot E[y]$
- $E[\phi(x)] = \int_{-\infty}^{\infty} \phi(s) f_x(s)$ (se $\phi: \mathbb{R} \to \mathbb{R}$)

3.5.4 Varianza

$$Var(x) = E[x^2] - E[x]^2$$

Proprietà

- $Var(aX) = a^2 \cdot Var(X)$
- Var(x + y) = Var(x) + Var(y)

3.5.5 Variabili uniformi continue

 $X \tilde{\ } U([a,b])$

- $F_x(s) = \frac{s-a}{b-a}$
- $f_x(s) = \frac{1}{b-a}$
- $E[x] = \frac{a+b}{2}$
- $Var(x) = \frac{(b-a)^2}{12}$

3.5.6 Variabili esponenziali

 $X^{\sim}Exp(a)$

- $F_x(s) = 1 e^{as}$
- $f_x(s) = a \cdot e^{-as}$
- $E[x] = \frac{1}{a}$
- $Var(x) = \frac{1}{a^2}$

3.5.7 Variabili normali(gaussiane)

Standard : $\zeta_0 \tilde{N}(0,1)$

Generiche : $\zeta \tilde{\ } N(\mu, \sigma^2)$

Proprietà

- $\zeta = \mu + \sigma \cdot \zeta_0$
- $F_{\zeta_0}(s) = \phi(s)$ (utilizziamo la tabella normale standard)
- $\phi(-s) = 1 \phi(s)$
- $E[\zeta] = \mu + \sigma \cdot E[\zeta_0]$
- $s \ge 4 \to \phi(s) = 0$
- $Var(\zeta) = Var(\mu + \sigma \cdot \zeta_0) = Var(\sigma\zeta_0) = \sigma Var(\zeta_0) = \sigma^2$