Работа 2.3.1 Современные методы измерения и получения вакуума

Мыздриков Иван Витальевич группа Б06-401

14 мая 2025 г.

Краткая теоритическая справка

Основные понятия

Основы процесса откачки и связанные с ним понятия рассмотрим на примере простейшей вакуумной системы (рис. 1).

- 1 откачиваемый объём, 2 вакуумный насос, 3 вакуумпровод (трубка),
- 4 впускной патрубок (вход) насоса, 5 выпускной патрубок (выход) насоса

Рис. 1: Простейшая вакуумная система

Здесь и далее L - единица измерения длины, M - единица измерения массы, T - единица измерения времени.

1. Предельное остаточное давление (предельный вакуум) $P_{\rm пр}[L^{-1}MT^{-2}]$ - наименьшее давление газа, которое формируется в процессе откачки в

рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы). Обычно выделяют предельное давление в камере или на входе в насос.

- 2. **Наибольшее выпускное давление** $[L^{-1}MT^{-2}]$ максимально допустимое давление газа на входе насоса.
- 3. **Быстрота откачивающего действия** (скорость откачки) вакуумной системы $S[L^3T^{-1}]$ объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

 $S = \frac{dV}{dT}$

Следовательно быстродействие насоса $S_{\rm H}$ определяется как:

$$S_{\text{H}} = \frac{dV_{\text{H}}}{dt}$$

А эффективная скорость откачки камеры S_0 :

$$S_0 = \frac{dV_0}{dt}$$

4. Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его пропускной способностью (проводимостью) $U[L^3T^{-1}]$:

$$U = \frac{Q}{P_1 - P_2}$$

где $Q[L^2MT^{-3}]$ - **поток газа** через вакуумпровод с соответствующими давлениями на концах.

5. Величина $Z[L^{-3}T]$, обратная проводимости, называется импедансом вакуумпровода:

$$Z = \frac{1}{U}$$

В общем случае указанные величины $S,\,U,\,Q,\,Z$ как и сами давления P_1 и P_2 зависят от времени. Но в конце процесса откачки устанавливается квазистационарный режим, при котором поток газа становится практически постоянным и равным количеству поступающего в систему газа в единицу времени вследствие наличия течей, т.е. нарушения герметичности (в основном в местах механического соединения отдельных узлов вакуумной системы). Для стационарного режима можно записать условие непрерывности потока откачиваемого газа:

$$P_1S_0 = PS = P_2S_{\scriptscriptstyle \mathrm{H}} = Q$$

6. Основное уравнение вакуумной техники

$$\frac{1}{S_0} = \frac{1}{S_{\rm H}} + \frac{1}{U}$$

Проводимость длинного трубопровода

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = P \frac{\pi R^4}{8\nu L} \sim \frac{R^4}{L} \frac{P}{\sqrt{Tm}}$$

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}$$

В случае последовательного соединения:

$$U_{\Sigma} = \frac{1}{Z_{\Sigma}} = \frac{1}{\Sigma Z_i}$$

$$S_0 = \frac{S_{\text{H}} U_{\Sigma}}{S_{\text{H}} + U_{\Sigma}} = \frac{S_{\text{H}}}{\frac{S_{\text{H}}}{U_{\Sigma}} + 1} \approx S_{\text{H}}$$

Время откачки

Положим, что за промежуток dt давление в откачиваемом объеме V_0 снижается на dP_1 . Тогда за промежуток времени dt количество газа, поступающего в трубу равно S_0P_1dt , а эта же убыль газа в объеме равна V_0dP_1 , следовательно

$$S_0P_1dt = -V_0dP_1$$

$$dt = -\frac{V_0}{S_0}\frac{dP_1}{P_1}$$

$$dt = -V_0\left(\frac{1}{S_{\scriptscriptstyle \rm H}} + \frac{1}{U}\right)\frac{dP_1}{P_1}$$

Итого получаем, что

$$P(t) = P_1 \exp\left(-\frac{S_0}{V_0}t\right)$$

Экспериментальная установка

Экспериментальный стенд выполнен на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Eco с диафрагменным и турбомолекулярным насосами, вакуумметров Pfeiffer Vacuum

Рис. 2: Схема экпериментальной установки

серии DigiLine, и вакуумных быстроразъёмных компонентов. Управление основными функциями откачного поста, контроль и запись параметров установки осуществляется блоком управления (БУ) через цифровой интерфейс RS-485 с помощью специального программного обеспечения PV TurboViewer8. Вакуумный пост Pfeiffer Vacuum HiCube 80 Eco (РМ S03 555 A) выполнен на базе диафрагменного форвакуумного насоса MVP 015 (ДН) и турбомолекулярного насоса НіРасе 80 (ТМН). Откачка вакуумной камеры (К) может происходить как двумя насосами (ТМН и ДН) через шиберный затвор (ШЗ) и мембранный кран 1 (МК1), так и только форвакуумным насосом (ДН) по схеме «байпас» (англ. bypass — обходной путь), выполненной на основе вакуумных компонентов: сильфона (С), мембранного крана 2 (МК2), тройников (Т), переходников, шланга (Ш). Для контроля и измерения давления в вакуумной камере используются цифровой вакууметр РРТ 100 (В1) типа Пирани (терморезисторный) и комбинированный вакуумметр МРТ 100 (В2) типов Пирани (терморезисторный) и холодный катод (инвертированный магнетрон). Контролированный напуск воздушной атмосферы в камеру осуществляется через кран-натекатель EVN 116 (KH) с регулируемым потоком.

Дополнительный выход с краном 3 (МК3) закрыт заглушкой (3) и служит для присоединения дополнительного объёма в случае необходимости.

Ход работы

Подготовка оборудования

- 1. В первую очередь нужно выровнять давление во всех частях установки.
- 2. Затем впускаем атмосферный воздух в установку через кран-натекатель с верхней и нижней ручкой регулировки.
- 3. Далее нужно отгорадить систему от внешней атмосферы, чтобы создать вакуум.
- 4. Готовим компьютер и блок управления установкой к работе и записи данных.

Определение откачиваемого объёма и измерение скорости откачки форвакуумным насосом

- 1. Выключаем турбомолекулярный насос.
- 2. Откачиваем установку форвакуумным насосом.
- 3. Присоединяем к установке сильфон с воздухом при атмосферном давлении. $(V_{\text{сильфона}}=V_0=265ml).$
- 4. Выравниваем давление в сильфоне и вакуумной камере экспериментального стенда.
- 5. Выравниваем давление в вакуумной камере К и форвакуумной магистрали установки.
- 6. Напустим воздух в установку до атмосферного давления.
- 7. Готовим установку к повтору предыдущих пунктов. Повторяем их еще 1-2 раза.
- 8. По данным, полученным с установки считаем все объемы. $P_{\text{для камеры}} = 220 mbar$, $P_{\text{для всей установки}} = 170 mbar \Rightarrow V_{\text{камеры}} = \frac{P_{\text{атм}}V_0}{P_1} V_0 \approx (0, 84 \pm 0, 05)$ л, Vвсей установки $= \frac{P_{\text{атм}}V_0}{P_2} \approx (1, 26 \pm 0, 05)$ л, \Rightarrow Vфорвакуумной магистрали $= (0, 5 \pm 0, 05)$ л

	1		2			
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$	
2	700,0	0,1	2	1000,0	0,1	
4	560,0	0,1	4	480,0	0,1	
6	400,0	0,1	6	340,0	0,1	
8	320,0	0,1	8	220,0	0,1	
10	300,0	0,1	10	160,0	0,1	
12	300,0	0,1	12	120,0	0,1	
14	300,0	0,1	14	90,0	0,1	
16	300,0	0,1	16	68,0	0,1	
18	300,0	0,1	18	58,0	0,1	
20	230,0	0,1	20	44,0	0,1	
22	180,0	0,1	22	37,0	0,1	
24	150,0	0,1	24	31,0	0,1	
26	120,0	0,1	26	26,0	0,1	
28	98,0	0,1	28	20,0	0,1	
30	83,0	0,1	30	18,0	0,1	
32	69,0	0,1	32	15,0	0,1	
34	62,0	0,1	34	13,0	0,1	
36	55,0	0,1	36	11,0	0,1	
38	46,0	0,1	38	9,5	0,1	
40	38,0	0,1	40	8,5	0,1	
42	35,0	0,1	42	7,5	0,1	
44	32,0	0,1	44	6,8	0,1	
46	29,0	0,1	46	6,4	0,1	
48	25,0	0,1	48	6,1	0,1	
50	21,0	0,1	50	5,7	0,1	
52	18,0	0,1	52	5,4	0,1	
54	17,0	0,1	54	5,1	0,1	
56	16,0	0,1	56	4,9	0,1	
58	14,0	0,1	58	4,6	0,1	
60	13,0	0,1	60	4,4	0,1	
62	11,0	0,1	62	4,1	0,1	
64	10,0	0,1	64	3,9	0,1	
66	9,3	0,1	66	3,9	0,1	
68	8,7	0,1	68	3,8	0,1	
70	8,1	0,1	70	3,7	0,1	
72	7,7	0,1	72	3,6	0,1	
74	7,1	0,1	74	3,6	0,1	

1			2			
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$	
76	6,8	0,1	76	3,5	0,1	
78	6,5	0,1	78	3,5	0,1	
80	6,3	0,1	80	3,4	0,1	
82	6,1	0,1	82	3,4	0,1	
84	5,9	0,1	84	3,3	0,1	
86	5,7	0,1	86	3,3	0,1	
88	5,5	0,1	88	3,3	0,1	
90	5,4	0,1	90	3,2	0,1	
92	5,2	0,1	92	3,2	0,1	
94	5,0	0,1	94	3,2	0,1	
96	4,9	0,1	96	3,1	0,1	
98	4,8	0,1	98	3,1	0,1	
100	4,6	0,1	100	3,1	0,1	
102	4,5	0,1	102	3,1	0,1	
104	4,4	0,1	104	3,1	0,1	
106	4,2	0,1	106	3,0	0,1	
108	4,1	0,1	108	3,0	0,1	
110	4,1	0,1	110	3,0	0,1	
112	3,9	0,1	112	3,0	0,1	
114	3,9	0,1	114	3,0	0,1	
116	3,9	0,1	116	2,9	0,1	
118	3,8	0,1				
120	3,8	0,1				
122	3,8	0,1				
124	3,7	0,1				
126	3,7	0,1	-			
128	3,7	0,1				
130	3,7	0,1	-			
132	3,6	0,1	-			
134	3,6	0,1	-			
136	3,6	0,1	_			
138	3,6	0,1	_			
140	3,6	0,1	-			
142	3,5	0,1	-			
144	3,5 3,5	$0,1 \\ 0,1$	_			
148	3,5 $3,5$	0,1 $0,1$	_			
150	$\frac{3,5}{3,5}$	0,1	-			
150	3,5 $3,5$	0,1	-			
192	<u> </u>	0,1	J			

- 9. считаем эффективную скорость форвакуумной откачки, для этого мы в на графике $ln(P/P_1)$ от t ищем наклон графика на интервале 10-100 мбар. Потом считаем $\tau=-\frac{t}{ln(P/P_1)}=(15.63\pm0,02)$ с. А далее, зная объем камеры расчитываем эффективную скорость откачки $S_0=V$ всей установки $/ au\approx(80.6\pm3.1)m^3/c$
- 10. Зная S_0 и $S_{\scriptscriptstyle \rm H}$ мы находим U по формуле

$$U = \frac{S_{\rm H} - S_0}{S_{\rm H} \cdot S_0} \approx 190 ml/c$$

.

Рис. 3: График зависимости $ln(P/P_1)$ от t для форвакуумного насоса

Измерение скорости откачки турбомолекулярным насосом и определение предельного вакуума

1. Откачиваем установку форвакуумным насосом.

- 2. Откачиваем объем турбомолекулярным насосом.
- 3. считаем скорость откачки воздуха $\tau \approx 18.26c, \, S_0 \approx 49ml/c, \,$ тогда при S=6000 будет $U\approx 49.6ml/c.$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$t, c \mid P, mbar$,		
4 1,800000 6 0,630000 8 0,015000 10 0,003800 12 0,002400 14 0,001500 16 0,001100 18 0,001000 20 0,001000 24 0,000870 26 0,000500 30 0,000500 32 0,000350 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000170 42 0,000180 46 0,000150 48 0,000150 50 0,000140			t, c	P, mbar	
4 1,800000 6 0,630000 8 0,015000 10 0,003800 12 0,002400 14 0,001500 16 0,001100 18 0,001000 20 0,001000 24 0,000870 26 0,000580 30 0,000580 30 0,000580 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000170 42 0,000180 40 0,000240 44 0,000180 46 0,000150 50 0,000140			54	0,000120	
8 0,030000 8 0,015000 10 0,003800 12 0,002400 14 0,001500 16 0,001100 20 0,001000 22 0,001000 24 0,000870 26 0,000500 32 0,000310 34 0,000350 36 0,000310 38 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140			56		
8 0,015000 10 0,003800 12 0,002400 14 0,001500 16 0,001100 18 0,001000 20 0,001000 24 0,000870 26 0,000580 30 0,000580 32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140		,	58	-	
10 0,003800 12 0,002400 14 0,001500 16 0,001100 18 0,001000 20 0,001000 24 0,000870 26 0,000660 28 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000150 48 0,000150 50 0,000140	8	0,015000		,	
12 0,002400 14 0,001500 16 0,001100 18 0,001000 20 0,001000 22 0,001000 24 0,000870 26 0,000660 28 0,000580 30 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140	10	0,003800		,	
14 0,001500 16 0,001100 18 0,001000 20 0,001000 22 0,001000 24 0,000870 26 0,000660 28 0,000580 30 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000150 48 0,000150 50 0,000140	12	0,002400			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	0,001500		,	
18 0,001000 20 0,001000 22 0,001000 24 0,000870 26 0,000660 28 0,000580 30 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000240 42 0,000190 44 0,000180 46 0,000150 48 0,000150 50 0,000140	16	0,001100		,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	0,001000			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· ·		0,000073	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			74	0,000069	
28 0,000580 30 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000150 50 0,000140 78 0,000065 80 0,000062 82 0,000061 86 0,000059 88 0,000058 90 0,000057 92 0,000054 96 0,000053 98 0,000052 100 0,000050	-		76	0,000067	
30 0,000500 32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000190 44 0,000180 46 0,000150 48 0,000150 50 0,000140			78	0,000065	
32 0,000390 34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140		,	80	0,000064	
34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000150 48 0,000051 86 0,000058 90 0,000057 92 0,000054 96 0,000053 98 0,000052 100 0,000050 102 0,000050			82	0,000062	
34 0,000350 36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140			84	0,000061	
36 0,000310 38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140 88 0,000057 92 0,000055 94 0,000054 96 0,000053 100 0,000051 102 0,000050			86	0.000059	
38 0,000280 40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140 90 0,000057 92 0,000055 94 0,000054 96 0,000053 98 0,000052 100 0,000050 102 0,000050		,	88		
40 0,000240 42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140 92 0,000054 94 0,000054 96 0,000053 100 0,000051 102 0,000050		,			
42 0,000190 44 0,000180 46 0,000170 48 0,000150 50 0,000140 94 0,000054 96 0,000053 98 0,000051 100 0,000050	40				
44 0,000180 46 0,000170 48 0,000150 50 0,000140 96 0,000053 98 0,000051 100 0,000050 102 0,000050	42			/	
46 0,000170 48 0,000150 50 0,000140 98 0,000051 102 0,000050	44	0,000180			
48 0,000150 50 0,000140 102 0,000050	46	0,000170		,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	0,000150	-		
	50	0,000140		,	
	52	0,000130	102	0,000050	

Рис. 4: График зависимости $ln(P/P_1)$ от t для турбомолекулярного насоса