

Mathematical Models of Human Operators Using Artificial Risk Fields

Emily Jensen (4th year PhD), Sriram Sankaranarayanan

University of Colorado Boulder

Problem and Industrial Relevance

Can we use a simple, interpretable model to predict what a driver is going to do next?

Can we model different classes of driver behaviors?

Approach

Needed to define a risk field

Examples

Stay in the lane	Avoid obstacles
Keep speed at 45mph	Anything else relevant to the task
Distance from lane center	Distance from obstacle
Deviation from target speed	Amount of acceleration
Amount of steering correction	Anything else relevant to the task

Key concept: actions with higher risk are much less likely to be chosen by the driver

What Follows

Use predicted behaviors to estimate driver state, such as situational awareness.

Trigger feedback or takeover interventions based on predicted future behaviors.

Contributions

How is this approach novel?

- Risk fields can be applied to a variety of tasks, not just driving in a specific situation.
- Risk is a property of the environment, not just the driver.

Why is this interesting?

- We can predict future position up to 20 seconds in advance, which gives plenty of time for interventions.
- We can estimate the driver's relative importance of different risk factors based on their data.

Evaluation

Varying model parameters yields different driving behaviors.

Predicted trajectories are within 1 lane distance of actual position up to 20 seconds in the future.

Executive Summary

- **Problem**: model and predict driver behaviors based on their perception of different risk factors in the environment. It should be easy to compute and interpretable.
- **Approach**: define "artificial risk fields" based on safety factors like avoiding obstacles and keeping in the lane. Can be used in many complex navigation situations.
- Results: we can accurately predict future trajectories and generate different driving behaviors (more/less risk tolerant).
- What's next: use risk fields to predict upcoming collisions and create an intervention or shared controller to maintain safety.