Matchmaking Encryption against Chosen-Ciphertext Attacks

Luigi Russo

September 27, 2020

Matchmaking Encryption 101

General Setting

- Key Generation, managed by the trusted party:
 - SKGen(msk, σ)
 - RKGen(msk, ρ)
 - PolGen(msk, S)
- Encryption. Enc(ek_{σ} , R, m)
- Decryption. Dec(dk_{ρ}, dk_{S}, c)
- Correctness. If $S(\sigma) = R(\rho) = 1$:

$$Pr[Dec(dk_{\rho}, dk_{S}, Enc(ek_{\sigma}, R, m)) = 1] \ge 1 - negl(\lambda)$$

Arranged Matchmaking

- Key Generation, managed by the trusted party:
 - SKGen(msk, σ)
 - RKGen(msk, ρ , S)
 - PolGen(msk, S)
- Encryption: $Enc(ek_{\sigma}, R, m)$
- Decryption: $Dec(dk_{\rho,s}, c)$
- Correctness. If $S(\sigma) = R(\rho) = 1$:

$$Pr[Dec(dk_{\rho,S}, Enc(ek_{\sigma}, R, m)) = 1] \ge 1 - negl(\lambda)$$

Signature Schemes

A signature scheme $\Pi = (KGen, Sign, Ver)$ satisfies:

1. **Correctness.** $\forall \lambda \in \mathbb{N}, \forall (sk, pk) \leftarrow \mathsf{KGen}(1^{\lambda}), \text{ and } \forall m \in \mathcal{M}$:

$$P[Ver(pk, m, Sign(sk, m)) = 1] = 1.$$

2. **EUF-CMA**. \forall PPT \mathcal{A} :

$$\Pr[G_{\Pi,\mathcal{A}}^{\text{euf}}(\lambda) = 1] \leqslant \text{negl}(\lambda)$$

where $G_{\Pi,A}^{euf}(\lambda)$ is the following game:

- (sk, pk) ← $KGen(1^{\lambda})$.
- $(m, s) \leftarrow \mathcal{A}^{Sign(sk, \cdot)}(1^{\lambda}, pk)$
- If $m \notin Q_{Sign}$, and Ver(pk, m, s) = 1, output 1, else 0.

Non-Interactive Zero-Knowledge

A NIZK proof system $\Pi = (Gen, P, V)$ for a relation R satisfies:

1. **Completeness**. $\forall y \in L$:

$$Pr[V(\omega, y, \pi) = 1 : \omega \leftarrow Gen(1^{\lambda}), \pi \leftarrow P(\omega, y, x)] = 1$$

2. **Soundness**. $\forall y \notin L, \forall P^*$:

$$\Pr[V(\omega, y, \pi) = 1 : \omega \leftarrow Gen(1^{\lambda}), \pi \leftarrow P^*(\omega, y)] \in negl(\lambda)$$

3. **Zero-Knowledge**. $\exists (Z_0, Z_1) \text{ s.t. } \forall y \in L :$

$$\{\omega, Z_1(\zeta, y) : (\omega, \zeta) \leftarrow Z_0(1^{\lambda})\}$$
 \approx_c

True-Simulation Extractability

A NIZK Π for a relation R satisfies true-simulation f-extractability for a function f if \exists PPT extractor $K = (K_0, K_1)$ s. t. $\forall A$:

$$\text{Pr} \begin{bmatrix} \text{Ver}(\omega, y, \pi) = 1 \; \wedge & (\omega, \zeta, \xi) \leftarrow K_0(1^{\lambda}) \; \wedge \\ (y, \pi) \notin \mathfrak{O}_O \; \wedge & : \; (y, \pi) \leftarrow \mathcal{A}^{O(\zeta, (\cdot, \cdot))}(\omega) \; \wedge \\ \forall x : f(x) = z, (y, x) \notin R & z \leftarrow K_1(\xi, y, \pi) \end{bmatrix}$$

* the oracle $O(\zeta, \cdot, \cdot)$ takes as input a pair (y, x) and returns $Z_1(\zeta, y)$ if $(y, x) \in R$ (and otherwise \bot).

Attribute-Based Encryption

Ciphertext-Policy ABE

Key-Policy ABE

CCA Privacy

Captures secrecy of sender's inputs.

$$\begin{split} &\frac{G_{\Pi,A}^{\text{priv}}(\lambda,b)}{(\text{mpk},\text{kpol},\text{msk})} \leftarrow \text{Setup}(1^{\lambda}) \\ &(\text{m}_{0},\text{m}_{1},\text{R}_{0},\text{R}_{1},\sigma_{0},\sigma_{1},\alpha) \leftarrow A_{1}^{O_{1},O_{2},O_{3},\textcolor{red}{O_{4}}}(1^{\lambda},\text{mpk}) \\ &ek_{\sigma_{b}} \leftarrow \text{SKGen}(\text{msk},\sigma_{b}) \\ &c \leftarrow \text{Enc}(ek_{\sigma_{b}},R_{b},\text{m}_{b}) \\ &b' \leftarrow A_{2}^{O_{1},O_{2},O_{3},\textcolor{blue}{O_{4}}}(1^{\lambda},c,\alpha) \end{split}$$

CCA Authenticity

Captures security against malicious senders.

$$\begin{split} &\frac{G_{\Pi,A}^{auth}(\lambda)}{(\mathsf{mpk},\mathsf{kpol},\mathsf{msk})} \leftarrow \mathsf{Setup}(1^{\lambda}) \\ &(c,\rho,S) \leftarrow A_1^{O_1,O_2,O_3,O_5}(1^{\lambda},\mathsf{mpk}) \\ &dk_{\rho} \leftarrow \mathsf{RKGen}(\mathsf{msk},\rho_b) \\ &dk_S \leftarrow \mathsf{PolGen}(\mathsf{kpol},S) \\ &m = \mathsf{Dec}(dk_{\rho},dk_S,c) \\ \\ &(c \not\in O_{O_5}) \land \forall \sigma \in \mathcal{Q}_{O_1} : (S(\sigma)=0) \land (m \neq \bot) \end{split}$$

CCA Transformation Lattice

Showcase: CCA Direct Transformation

To encrypt message m under sender attributes σ and policy R:

- 1. encrypt m using the underlying ME scheme
- 2. add a NIZK argument of the knowledge of \mathfrak{m} and a valid* signature \mathfrak{s} on \mathfrak{o} .

^{*} produced by a trusted party.

Sketch Proof

- CCA-authenticity reduced to EUF-CMA.
- CCA-privacy reduced to CPA-Privacy: the decryption oracle is simulated thanks to true-simulation f-extractability of the NIZK. We assume $f(\sigma, s, R, m, r) = (\sigma, s, R, m)$.

Open problems

- ME from standard assumptions
- Efficient IB-ME constructions
- Mitigating Key Escrow
- Blackbox Constructions from ABE