Κινηματική και δυναμική κυκλικής κίνησης

 $\theta_2 - \theta_1 = \Delta \theta$

Κυκλική κίνηση

- ightharpoonup Γωνιακή μετατόπιση: $\Delta heta = heta_{_2} heta_{_1}$
 - Πόσο έχει περιστραφεί
- ightharpoonup Γωνιακή ταχύτητα: $\omega = \frac{d\theta}{dt}$
 - Πόσο γρήγορα περιστρέφεται
 - Μονάδες μέτρησης rad/sec 2π rad = 1 περιστροφή
- ightharpoonup Γωνιακή επιτάχυνση: $\alpha = \frac{d\omega}{dt}$
 - Ρυθμός μεταβολής της γωνιακής ταχύτητας
- \Rightarrow Περίοδος = 1/συχνότητα $T=1/f=\frac{2\pi}{\omega}$
 - Χρόνος για να συμπληρώσει μια περιστροφή

Από κυκλική κίνηση σε γραμμική

- ightharpoonup Μετατόπιση: $S = R\Delta\theta$ (η γωνία μετράται σε ακτίνια)
- ightharpoonup Γραμμική ταχύτητα: $v = \frac{dS}{dt} = \frac{dR\theta}{dt} \Rightarrow v = R \frac{d\theta}{dt} = \omega R$
- Διεύθυνση της ταχύτητας εφαπτόμενη στη τροχιά

Αναλογία γραμμικής και κυκλικής κίνησης

Κυκλική	Γραμμική
$a = \sigma \tau \alpha \theta$.	$a = \sigma \tau \alpha \theta$.
$\omega = \omega_0 + \alpha t$	$v = v_0 + at$
$\theta = \theta_0 + \omega t + \frac{1}{2}\alpha t^2$	$x = x_0 + v_0 t + \frac{1}{2}at^2$

Όλα τα σημεία σε ένα σώμα που περιστρέφεται έχουν την ίδια γωνιακή επιτάχυνση

Κυκλική κίνηση

Δύο τροχοί A και B συνδέονται μεταξύ τους με ένα ιμάντα C όπως στο σχήμα. τροχός A περιστρέφεται με συχνότητα 300 στροφές/min (rpm). Η ακτίνα του τροχού A είναι R_A = 50cm ενώ η ακτίνα του τροχού B είναι R_B =18cm. Ποιά η γωνιακή ταχύτητα του τροχού B; Ποιά η γραμμική ταχύτητα του ιμάντα;

Εφόσον οι τροχοί συνδέονται με τον ιμάντα όλα τα σημεία στην περιφέρεια των τροχών έχουν την ίδια ταχύτητα (γραμμική) με αυτή του ιμάντα.

Επομένως:
$$v_A = v_B = v_C \Rightarrow \omega_A R_A = \omega_B R_B \Rightarrow \omega_B = \omega_A \frac{R_A}{R_B}$$

Aλλά:
$$\omega_A = \frac{2\pi}{T} = 2\pi f = 300 rpm$$

Από τις δύο τελευταίες σχέσεις έχουμε:
$$ω_B = \frac{\omega_A R_A}{R_B} = \frac{\left(300rpm\right) \times \left(50cm\right)}{18cm} \Rightarrow \omega_B = 833.3rpm$$

Η ταχύτητα του ιμάντα θα είναι:
$$v_{c} = \omega_{A} R_{A} = 300 \frac{\sigma \tau \rho}{\min} 2\pi \frac{rad}{\sigma \tau \rho} \frac{1 \min}{60s} \times 0.5m \Rightarrow v_{c} = 15.7 \, m/s$$

Ομαλή κυκλική κίνηση

Στην περίπτωση της ομαλής κυκλικής κίνησης |v|=σταθ. αλλά το διάνυσμα ν αλλάζει διεύθυνση

Επιτάχυνση $\vec{a} = \frac{d\vec{v}}{dt}$

Ομοια τρίγωνα
$$\vec{v}_1 \qquad \vec{v}_2 \qquad \vec{v}_1 \qquad \vec{v}_2 \qquad \vec{v}_2 \qquad \vec{v}_3 \qquad \vec{v}_4 \qquad \vec{v}_5 \qquad \vec{v}_5 \qquad \vec{v}_6 \qquad \vec{v}$$

$$\frac{\left|\Delta\vec{r}\right|}{r} = \frac{\left|\Delta\vec{\mathbf{v}}\right|}{\mathbf{v}} \Rightarrow \left|\frac{\Delta\vec{r}}{\Delta t}\right| \frac{1}{r} = \left|\frac{\Delta\vec{\mathbf{v}}}{\Delta t}\right| \frac{1}{\mathbf{v}} \Rightarrow$$

$$\lim_{\Delta t \to 0} \left| \frac{\Delta \vec{r}}{\Delta t} \right| \frac{1}{r} = \lim_{\Delta t \to 0} \left| \frac{\Delta \vec{v}}{\Delta t} \right| \frac{1}{v} \Rightarrow \left| \frac{d\vec{v}}{dt} \right| \frac{1}{r} = \left| \frac{d\vec{v}}{dt} \right| \frac{1}{v}$$

$$\Rightarrow a = \frac{v^2}{r}$$

 $\Rightarrow a = \frac{\text{v}^2}{\text{r}}$ Κεντρομόλος επιτάχυνση

Τι συμβαίνει όταν
$$\Delta t o 0$$
 $\vec{v}_1 // \vec{v}_2 \Rightarrow \left\{ \begin{array}{l} \Delta \vec{v} \perp \vec{v}_1 \\ \Delta \vec{v} \perp \vec{v}_2 \end{array} \right\} \Rightarrow \vec{a} // \Delta \vec{v} \Rightarrow \vec{a} \perp \vec{v}$ Η α είναι ακτινική με

$$\begin{vmatrix} 1 \\ \Rightarrow \vec{a} //\Delta \vec{v} \Rightarrow \vec{a} \perp \vec{v} \end{vmatrix}$$

διεύθυνση προς το κέντρο

Ομαλή κυκλική κίνηση

Έστω ένας δορυφόρος που γυρνά γύρω από την γη σε ύψος 200km με σταθερή ταχύτητα |ν|.

Γιατί ο δορυφόρος δεν πέφτει στην γη;

Στην πραγματικότητα πέφτει!!

Εξαιτίας της ορίζοντιας ταχύτητας συνεχώς όμως δεν βρίσκει την γη

Αν ο δορυφόρος δεν είχε επιτάχυνση τότε μετά από χρόνο t, θα βρίσκονταν στην θέση P_2 έχοντας μετατόπιση P_1P_2 =vt.

Ωστόσο εξαιτίας της κυκλικής κίνησης βρίσκεται στη θέση P_2'

Πέφτει λοιπόν κατά το διάστημα $h = P_2'P_2$

Για μικρό χρονικό διάστημα t, τα P_2' και P_2 έχουν την ίδια ακτινική διεύθυνση Από το ορθογώνιο τρίγωνο με πλευρές r, ut και r+h έχουμε:

$$(h+r)^2 = r^2 + (vt)^2 \Rightarrow h^2 + r^2 + 2hr = r^2 + (vt)^2 \Rightarrow h(h+2r) = v^2t^2$$

Για πολύ μικρό χρονικό διάστημα, h < r και επομένως $(h + 2r) \approx 2r$

$$\Rightarrow 2hr \approx v^2t^2 \Rightarrow h \approx \frac{1}{2} \left(\frac{v^2}{r}\right)t^2$$
 Από κινηματική έχουμε: $h = \frac{1}{2}at^2$ Άρα: $a = \frac{v^2}{r}$

Δυναμική Κυκλικής κίνησης - νόμοι του Newton

Δυναμική κυκλικής κίνησης

Σώμα που κινείται με σταθερή ταχύτητα ν σε κυκλική τροχιά έχει επιτάχυνση με κατεύθυνση προς το κέντρο της κυκλικής τροχιάς και εφαπτόμενη της ταχύτητας του

$$a = \frac{v^2}{r}$$

Ύπαρξη επιτάχυνσης ισοδυναμεί με ύπαρξη δύναμης.

$$F = ma = \frac{mv^2}{r}$$
 Κεντρομόλος δύναμη

Η δύναμη τραβά το σώμα προς το κέντρο της τροχιάς. (π.χ. κάποια τάση, ή η βαρύτητα ή άλλη δύναμη).

Ομαλή κυκλική κίνηση

Τα διανύσματα της κίνησης θα είναι όπως στο σχήμα.

Αν είχαμε μια μπάλα στην άκρη ενός νήματος και κόβαμε το νήμα στην θέση του σχήματος τότε η μπάλα θα συνέχιζε να κινείται με ταχύτητα ν στην διεύθυνση της ν

Μη ομαλή κυκλική κίνηση

Τι συμβαίνει αν το σώμα αυξάνει ταχύτητα?

Αναλύουμε τη Δν σε 2 συνιστώσες:

Μια ακτινική και μια εφαπτομενική

Μή ομαλή κυκλική κίνηση

Η ακτινική συνιστώσα είναι $a_{\kappa} = \frac{v^2}{r}$

Η εφαπτομενική συνιστώσα είναι $a_{\varepsilon\varphi} = \frac{v_2 - v_1}{\Delta t} \rightarrow \frac{d|v|}{dt}$

Συνοψίζοντας:

Παράδειγμα

Θεωρήστε την ακόλουθη περίπτωση: Οδηγήτε το αυτοκίνητό σας με σταθερή ταχύτητα σε μια οριζόντια κυκλική πίστα. Πόσες και ποιες δυνάμεις ασκούνται στο αυτοκίνητό σας

(A) 1 (B) 2 (Γ) 3 (Λ) 4

 $\sum F = ma = m \frac{v^2}{R}$

Βάρος Κάθετη αντίδραση Τριβή

Η δύναμη της τριβής είναι η μόνη δύναμη στην ακτινική διεύθυνση και παίζει το ρόλο της κεντρομόλου δύναμης

Η κεντρομόλος δύναμη είναι η συνισταμένη των δυνάμεων στην ακτινική διεύθυνση και όχι κάποια ιδιαίτερη δύναμη.

Αφού είναι η συνισταμένη δύναμη δεν τη σχεδιάζουμε ποτέ σε διάγραμμα απελευθερωμένου σώματος

Παράδειγμα

Υποθέστε ότι οδηγείται σε ένα δρόμο που έχει κάποιο κοίλωμα κυκλικής μορφής. Αν η μάζα σας είναι m ποιο είναι το μέγεθος της κάθετης δύναμης που ασκεί το κάθισμα του αυτοκινήτου πάνω σας καθώς περνάτε από το κοίλωμα του δρόμου;

(A)
$$F_N < mg$$
 (B) $F_N = mg$ (Γ) $F_N > mg$

$$\sum F = ma = m\frac{v^2}{R} \Rightarrow F_N - mg = m\frac{v^2}{R}$$
$$\Rightarrow F_N = m\left(g + \frac{v^2}{R}\right)$$

