ABALONE DATASET IBM ASSIGNMENT 4

IMPORTING LIBRARIES

import pandas as pd import numpy as
np from matplotlib import pyplot as
plt import seaborn as sns
from sklearn.linear_model import LinearRegression UPLOADING

DATASET

df=pd.read_csv("/content/abalone.csv")

df.head(5)

C→

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

ADDING AGE ATTRIBUTE USING RING ATTRTIBUTE

```
df['age'] = df['Rings']+1.5 df
= df.drop('Rings', axis = 1)
```

UNIVARIATE ANALYSIS

Length Diameter

Height Whole weight Shucked weight Viscera weight Shel

S	e	X

ı	0.427746 0.326494	0.107996	0.431363	0.191035	0.092010
M	0.561391 0.439287	0.151381	0.991459	0.432946	0.215545
F	0.579093 0.454732	0.158011	1.046532	0.446188	0.230689

Bi-Variate Analysis & Multi-Variate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

<seaborn.axisgrid.PairGrid at 0x7fe3fa53f5d0>

DESCRIPTIVE STATISTICS

df.describe()

	Length			Whole Diamete weight	Shucked r Height weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	41
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

CHECKING MISSING / NULL VALUES

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
age	0
dtype: int64	

FIND AND REPLACE OUTLIERS

df.drop(df[(df['Whole weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Whole weight']<0.5) & (df['age'] > 25)].index, inplace=True)

var = 'Shell weight' plt.scatter(x = df[var], y = df['age'],) plt.grid(True)
#Outliers removal df.drop(df[(df['Shell weight']> 0.6) & (df['age'] <
25)].index, inplace=True) df.drop(df[(df['Shell weight']<0.8) & (df['age'] >
25)].index, inplace=True)

var = 'Shucked weight' plt.scatter(x =
df[var], y = df['age'],) plt.grid(True)

#Outlier removal

df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)

outliers removal

df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)</pre> df.drop(df[(df['Viscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)


```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age']) plt.grid(True)
df.drop(df[(df['Diameter'] <0.1) &</pre>
          (df['age'] < 5)].index, inplace = True)</pre>
df.drop(df[(df['Diameter']<0.6) & ( df['age'] >
25)].index, inplace = True)
df.drop(df[(df['Diameter']>=0.6) & ( df['age'] <</pre>
25)].index, inplace = True) plt.grid(
```


True)

CHECKING FOR CATEGORICAL COLUMNS

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

numerical_features

Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'age', 'Sex_F', 'Sex_I', 'Sex_M'],
    dtype='object')

categorical_features

Index([], dtype='object')
```

ENCODING

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder() print(df.Length.value_counts())
     0.440
              49
     0.450
              49
     0.375
              39
     0.460
              39
     0.435
              39
               1 0.490
     0.150
     1 0.135
                 1
     0.505
               1
     0.530
               1
     Name: Length, Length: 77, dtype: int64
```

SPLITTING DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

	1	0.350		0.265	0.090	0.2255	0.0995
4	0.330	0.255	0.080	0.2050	0.0895		
5	0.425	0.300	0.095	0.3515	0.1410		
	11	0.430		0.350	0.110	0.4060	0.1675
	14	0.470		0.355	0.100	0.4755	0.1675
4162	0.38	5 0.255	0.100	0.3175	0.1370		
4163	0.390	0.310	0.085	0.3440	0.1810		
4164	0.390	0.290	0.100	0.2845	0.1255		
4165	0.40	5 0.300	0.085	0.3035	0.1500		
4166	0.47	5 0.365	0.115	0.4990	0.2320		
	y=df	·iloc[:	,1238	3 rows × 5	columns5:]		
У							

Viscera weight Shell weight age Sex_F Sex_I Sex_M

	1	0.04	85		0.070	8.5	0	0	1
4		0.03950.055	8.5	0	1	0			
5		0.07750.120	9.5	0	1	0			
	11	0.08	10		0.135	11.5	0	0	1
	14	0.08	05		0.185	11.5	1	0	0
4162		0.0680	0.092	9.5	0	0	1		
4163		0.0695	0.079	8.5	0	1	0		
4164		0.0635	0.081	8.5	0	1	0		
4165		0.0505	0.088	8.5	0	1	0		
4166		0.0885	0.156	11.5	0	1	0		

1238 rows x 6 columns

SPLITTING DATA INTO TRAINING AND TESTING SET

from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

BUILDING THE MODEL

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler() x_train=ss.fit_transform(x_train)
from sklearn.linear_model import LinearRegression
mlr=LinearRegression() mlr.fit(x_train,y_train)
    LinearRegression()
```

FEATURE SCALING

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
mlrpred=mlr.predict(x_test[0:9]) mlrpred
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:444: UserWarning: X has featur
     f"X has feature names, but {self.__class__.__name__} was fitted without"
     array([[0.07190038, 0.10338295, 9.55289859, 0.1289135, 0.66542744,
     0.20565906],
            [0.07112613, 0.10235605, 9.51189003, 0.1267115 , 0.67035623,
             0.20293228],
            [0.07029407, 0.10117733, 9.46862407, 0.12191234, 0.67942165,
     0.19866601],
            [0.06623994, 0.09546054, 9.32030542, 0.10796573, 0.7029605,
     0.18907377],
            [0.07475707, 0.10743069, 9.63305074, 0.14267247, 0.64249976,
     0.21482777],
            [0.06544668, 0.09447413, 9.30086558, 0.1049846, 0.70869955,
             0.18631585],
            [0.06521001, 0.09417477, 9.27584415, 0.1011369, 0.71577285,
     0.18309025],
            [0.07621426, 0.10865426, 9.63668674, 0.14780016, 0.63229706,
     0.21990277],
            [0.07512972, 0.10714957, 9.59365441, 0.14404076, 0.63875888,
             0.2172003611)
```

TRAINING AND TESTING THE MODEL

```
x_test[0:5]
```

Length Diameter Height Whole weight Shucked weight

645	0.445	0.330	0.120	0.347	0.1200
3603	0.420	0.325	0.110	0.325	0.1245
2731	0.410	0.315	0.100	0.300	0.1240
617	0.320	0.240	0.085	0.170	0.0655
2014	0.470	0.375	0.105	0.441	0.1670

y_test[0:5]

Viscera weight Shell weight age Sex_F Sex_I Sex_M

645	0.0840	0.1050	12.5	0	1	0
3603	0.0755	0.1025	8.5	0	1	0
2731	0.0575	0.1000	9.5	0	1	0
617	0.0470	0.0490	8.5	0	0	1
2014	0.0865	0.1450	11.5	0	1	0

MEASUREMENT OF PERFORMANCE USING METRICS

from sklearn.metrics import r2_score r2_score(mlr.predict(x_test),y_test)

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:444: UserWarning: X has feature f"X has feature names, but {self.__class__.__name__} was fitted without" - 307.8528438815492