ЛАБОРАТОРНАЯ РАБОТА №5 «ИССЛЕДОВАНИЕ ТЕХНОЛОГИИ МНОГОПОДХОДОВОГО МОДЕЛИРОВАНИЯ В СРЕДЕ ANYLOGIC»

Цели лабораторной работы. Исследование технологии имитационного моделирования сетей массового обслуживания в среде AnyLogic.

Трудоемкость лабораторной работы: 9 ч (6 ч – аудиторных, 3 ч – самостоятельная работа студента).

Компетенции студента, формируемые в результате выполнения лабораторной работы.

- способность проводить моделирование процессов и систем (ПК-5);
- способность обосновывать правильность выбранной модели, сопоставляя результаты экспериментальных данных и полученных решений (ПК-25).

Краткие теоретические сведения.

СеМО с однородным потоком заявок

Для описания линейных разомкнутых и замкнутых однородных экспоненциальных CeMO необходимо задать следующие **параметры**:

- число узлов в сети n;
- число обслуживающих приборов в узлах сети $K_1,...,K_n$;
- матрицу вероятностей передач $P = [p_{ij} \mid i, j = 0, 1, ..., n];$
- интенсивность λ_0 источника заявок, поступающих в РСеМО, или число заявок М, циркулирующих в ЗСеМО;
 - средние длительности обслуживания заявок в узлах сети $b_1,...,b_n$.

Условие отсутствия перегрузок в разомкнутой CeMO предполагает отсутствие перегрузок в каждом из узлов сети. В замкнутой CeMO перегрузки не возникают.

Характеристики СеМО делятся на узловые и сетевые.

Состав узловых характеристик СеМО, работающей в стационарном режиме, такой же, как и для СМО.

На основе узловых характеристик рассчитываются средние значения сетевых характеристик CeMO:

- суммарная нагрузка Y и загрузка R;
- среднее суммарное число заявок L во всех очередях сети;
- среднее суммарное число заявок M в разомкнутой сети (во всех узлах);
- $-\,$ среднее время ожидания W и пребывания заявок U в сети;
- $-\alpha_{j}=\lambda_{j}/\lambda_{0}$ коэффициент передачи для узла j, показывающий среднее число попаданий заявки в узел j за время ее нахождения в сети;
 - производительность λ_0 замкнутой CeMO .

Для неоднородной CeMO перечисленные характеристики определяются как для каждого класса в отдельности, так и для объединенного (суммарного) потока заявок.

<u>Линейные разомкнутые однородные экспоненциальные CeMO</u> Условие отсутствия перегрузок в PCeMO:

$$\lambda_0 < \min\left(\frac{K_1}{\alpha_1 b_1}, \frac{K_2}{\alpha_2 b_2}, \dots, \frac{K_n}{\alpha_n b_n}\right)$$

Расчет характеристик базируется на эквивалентном преобразовании сети, позволяющем представить разомкнутую экспоненциальную СеМО в виде совокупности независимых экспоненциальных СМО, и проводится в три этапа:

- 1) расчет интенсивностей потоков заявок в узлах РСеМО;
- 2) расчет узловых характеристик:
- загрузка узла ρ_i ;
- нагрузка узла y_i ;
- коэффициент простоя узла η_i ;
- время ожидания заявок в узле: w_i ;
- время пребывания заявок в узле u_i ;
- длина очереди заявок l_j ;
- число заявок в узле (в очереди и на обслуживании в приборе): m_j .

Линейные замкнутые однородные экспоненциальные СеМО

В замкнутых СеМО всегда существует установившийся режим.

Расчет характеристик функционирования замкнутых CeMO с одноканальными узлами проводится с использованием метода средних значений в три этапа:

- 1) расчет коэффициентов передач в узлах замкнутой;
- 2) расчет характеристик 3CeMO с использованием рекуррентных соотношений для значений M:
 - 3) расчет остальных узловых и сетевых характеристик.

Имитационная модель CeMO в Anylogic

Разместите источники агентов сети массового обслуживания Source (например, в случае моделирования гипермаркета с множеством магазинов вход один, значит, и источник в модели один) и требуемое количество результирующих выходов Sink.

Для моделирования узлов CeMO следует воспользоваться библиотекой моделирования процессов. Каждый узел CeMO представляет собой CMO, а значит, очередь (блок Queue) и задержку (блок Delay). Для упрощения схемы CeMO элементы целесообразно объединить в блок. Для этого в меню ПКМ на выбранных блоках (моделирующих отдельную СМО) надо выбрать «Создать блок диаграммы процесса».

Для моделирования переходов заявки из узла в узел (например, клиента гипермаркета — из магазина в магазин) созданные СМО соединяются через блок SelectOutput (если 2 варианта перехода) или SelectOutput5 (если 5 вариантов переходов). При ином количестве вариантов переходов применяются комбинации этих элементов. По умолчанию переход по какой-либо из ветвей блока SelectOutput вероятностный.

Следует также учесть, что из узла, моделирующего СМО, заявка может перейти как в другой узел, так и на выход из сети. Также надо помнить, что различные узлы сети могут содержать разное количество приборов, очередей, иметь разные параметры. Например, при моделировании гипермаркета, могут быть узлы без очередей (только с одним блоком Delay), имитирующие лестницы, эскалаторы и.т.п.). Важно отследить, чтобы все агенты «нашли выход».

Пример возможной схемы CeMO и ее структурных элементов в Anylogic приведены на рисунках 22, 23.

Рисунок 22 – Структурная схема CeMO в Anylogic

Рисунок 23 – Структурная схема узла CeMO в Anylogic

Программа и методика выполнения работы.

- 1. Нарисовать граф сетевой модели вычислительной системы, заданной по варианту (Таблицы 6, 7) известны следующие параметры:
 - 1) матрица Р вероятностей передач (Таблица 7);
 - 2) интенсивность поступления заявок в сеть (Таблица 6);
 - 3) число обслуживающих приборов в узлах 1, 2, 3 (Таблица 6);
 - 4) средние длительности обслуживания заявок в узлах 1, 2, 3 (Таблица 6).

- 2. Для заданной модели проверить аналитически, существует ли перегрузка сети. Если сеть перегружена, определить максимально допустимое значение интенсивности потока заявок в сеть, при котором в сети будут отсутствовать перегрузки. Определить, в каком из узлов происходит перегрузка и выдать рекомендации об изменении количества приборов в этом узле при условии заданной по варианту интенсивности потока заявок в сеть.
- 3. Построить имитационную модель сети. В модели организовать сбор статистики для подтверждения аналитических расчетов из п.2. Организовать эксперимент с подбором параметров (количества приборов в СМО, интенсивности входящего потока заявок).

Таблица 6 – Варианты заданий

Вариант	P	λ_0 , c^{-1}	K_1	K_2	K_3	<i>b</i> ₁ , c	<i>b</i> ₂ , c	<i>b</i> ₃ , c
1	P_1	0,1	1	2	3	2	6	4
2	P_2	0,2	2	4	5	4	5	3
3	P_3	0,4	3	1	2	3	1	2
4	\mathbf{P}_{1}	0,2	4	3	4	1	9	2 5
5	P_2	0,3	5	5	1	3	2	4
6	P_3	0,1	1	4	3	2	4	6
7	P_1	0,4	2	2	4	1	2,5	3
8	P_2	0,2	3	5	2	3	6	4
9	P_3	0,1	4	3	1	4	3	5
10	\mathbf{P}_{1}	0,5	5	1	5	0,5	6	4
11	P_2	0,3	1	5	3	1	5	3
12	P_3	0,2	2	3	1	5	2	0,6
13	\mathbf{P}_{1}	0,1	3	1	5	3	2	5
14	P_2	0,3	4	4	2	2	7	4
15	P_3	0,5	5	2	4	5	0,6	2

Таблица 7 – Матрицы вероятностей передач

	P_1					F	2		P_3			
Узел	0	1	2	3	0	1	2	3	0	1	2	3
0	0	0,5	0,5	0	0	0,8	0,2	0	0	0,5	0,5	0
1	0	0,95	0	0,05	0	0,8	0	0,2	0	0,5	0	0,5
2	0	0	0	1	0	0	0	1	0	0	0	1
3	1	0	0	0	0,5	0	0,5	0	0,2	0	0,8	0

Описание лабораторной установки.

При выполнении лабораторной работы используется компьютер с установленным программным пакетом AnyLogic. Структура программного пакета и реализуемые им функции приведены на официальном сайте программного продукта http://www.anylogic.ru/anylogic/help/.

Результаты экспериментальных исследований.

Привести аналитические расчеты и статистические данные из имитационной модели.

Содержание отчета.

Отчет по выполняемой лабораторной работе выполняется каждым студентом индивидуально на листах формата A4 в рукописном или машинном варианте исполнения и должен содержать:

- название работы;
- цель и задачи исследований;
- аналитические расчеты в соответствии с программой выполнения работы;
- результаты экспериментальных исследований на имитационной модели;
 - выводы по работе.

Контрольные вопросы

- 1. Что такое сеть массового обслуживания, из каких компонентов она состоит?
- 2. Для чего применяются динамические значения параметров в окне презентации?
 - 3. В чем смысл эксперимента в программе AnyLogic?
 - 4. Какие типы экспериментов поддерживаются программой AnyLogic?
- 5. Как изменить текущие значения переменных и параметров модели при ее выполнении?
 - 6. Как показать график изменения переменной модели?
 - 7. Как запустить компиляцию модели в программный код на языке Java?
 - 8. Как создать параметр и присвоить ему значение?
 - 9. Из каких элементов состоит агентная модель?
 - 10. Что является агентом в выполненной работе?
 - 11. Каким образом задается индивидуальное поведение агента?
 - 12. Как установить синхронизацию действий агентов?
 - 13. Опишите классы, входящие в построенную модель.
 - 14. Какие события определены в модели, какие функции с ними связаны?
 - 15. Какие типы сбора статистики поддерживаются программой?

Библиографический список рекомендуемой литературы

- 1. Шелухин О.И. Моделирование информационных систем [Электронный ресурс]: учебное пособие/ Шелухин О.И.— Электрон. текстовые данные.— М.: Горячая линия Телеком, 2012.— 536 с.— Режим доступа: http://www.iprbookshop.ru/12002.— ЭБС «IPRbooks», по паролю.
- 2. Справочное руководство пакета AnyLogic http://www.anylogic.ru/anylogic/help/
- 3. Куприяшкин, А.Г. Основы моделирования систем [Текст]: учеб. пособие / А.Г. Куприяшкин; Норильский индустр. ин-т. Норильск: НИИ, 2015. 135 c. http://www.anylogic.ru/upload/pdf/osnovi_modelirovania_sistem.pdf