

Experiment No: 2

UID: 23BCS11073

Student Name: Subhankar Kumar

Branch: B.E./C.S.E. Section/Group: KRG 3-A

Semester: 5th

Subject Name: ADBMS Subject Code: 23CSP-333

Question 1: Medium-Level Problem

Problem Title: Organizational Hierarchy Explorer

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships.

- The company maintains a centralized Employee relation that holds: Each employee's ID,
- · name,
- department,
- and manager ID (who is also an employee in the same table).

Your task is to generate a report that maps employees to their respective managers, showing:

- The employee's name and department
- Their manager's name and department (if applicable)

This will help the HR department visualize the internal reporting hierarchy.

Solution:

```
CREATE TABLE Employee (
EmpID INT PRIMARY KEY,
EmpName VARCHAR(50) NOT NULL,
Department VARCHAR(50) NOT NULL,
ManagerID INT NULL
);
```


ALTER TABLE Employee

ADD CONSTRAINT FK_Employee FOREIGN KEY (ManagerID) REFERENCES Employee(EmpID);

INSERT INTO Employee VALUES (1, 'Alice', 'Finance', NULL);

INSERT INTO Employee VALUES (2, 'Bob', 'HR', 1);

INSERT INTO Employee VALUES (3, 'Charlie', 'Finance', 1); INSERT

INTO Employee VALUES (4, 'David', 'Research', 2);

INSERT INTO Employee VALUES (5, 'Eva', 'HR', 2);

SELECT

E1.EmpName AS [EMPLOYEE NAME],

E2.EmpName AS [MANAGER NAME],

E1.Department AS [EMP_DEPARTMENT],

E2.Department AS [MANAGER_DEPT]

FROM Employee AS E1

LEFT OUTER JOIN Employee AS E2

ON E1.ManagerID = E2.EmpID;

Output:

Input for the program (Optional) Output:								
					EMPLOYEE NAME	MANAGER NAME	EMP_DEPARTMENT	MANAGER_DEPT
					Alice	NULL	Finance	NULL
Bob	Alice	HR	Finance					
Charlie	Alice	Finance	Finance					
David	Bob	Research	HR					
Eva	Bob	HR	HR					

Question 2: Hard - Level Problem

Problem Title: NPV Lookup with Missing Data Handling (Medium)

You are a Data Engineer at FinSight Corp, where Net Present Value (NPV) data is stored and queried regularly.

You maintain two tables:

- 1. Year tbl Actual recorded NPV values:
 - ID: Unique Financial instrument identifier
 - YEAR: Year of record
 - NPV: Net Present Value in that year
- 2. Queries tbl Stakeholder NPV queries:
 - ID: Financial instrument identifier
 - YEAR: Year of interest

Task:

- 1. Create the two tables described above: Year_tbl and Queries_tbl.
- 2. Insert at least 5–6 rows of data into each
- 3. Write an SQL query to:
 - Return each ID, YEAR, and the corresponding NPV (if it exists)
 - Replace missing NPV values with 0
 - Order the output by ID and YEAR in ascending order

Solution:

```
CREATE TABLE Y_TBL (
ID INT,
YEAR INT,
NPV INT
```

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

);

Q.ID,

```
CREATE TABLE Q TBL (
  ID INT,
  YEAR INT
);
INSERT INTO Y TBL (ID, YEAR, NPV) VALUES
(1, 2018, 100),
(7, 2020, 30),
(13, 2019, 40),
(1, 2019, 113),
(2, 2008, 121),
(3, 2009, 12),
(11, 2020, 99),
(7, 2019, 0);
INSERT INTO Q TBL (ID, YEAR) VALUES
(1, 2019),
(2, 2008),
(3, 2009),
(7, 2018),
(7, 2019),
(7, 2020),
(13, 2019);
SELECT
```


SCIENCE & ENGINEERING

Q.YEAR,

ISNULL(Y.NPV, 0) AS NPV

FROM

Q TBL Q LEFT

JOIN

Y_TBL Y

ON

Q.ID = Y.ID AND Q.YEAR = Y.YEAR

ORDER BY

Q.ID, Q.YEAR

Output:

Input for the program (Optional)

Output:

ID	YEAR	NPV
1	2019	113
2	2008	121
3	2009	12
7	2018	0
7	2019	0
7	2020	30
13	2019	40