Data Stream Model

Data stream: In data stream model, input data is presented to the algorithm as a stream of items in no particularly order. The data stream is read only once and cannot be stored (entirely) due to the large volume.

Examples of data streams:

- sensor data : temperature, pressure, ...
- website visits, click streams
- user queries (search)
- social network activities
- business transactions
- call center records

Data Stream Model

Streaming Algorithm is an algorithm that processes a data stream and has small memory compared with the amount of data it processes.

Sublinear space usage: Assuming n is the size of input typically a streaming algorithm has o(n) (for example $\log^2(n)$, \sqrt{n} , etc) space usage.

Data Stream Model: two motivating puzzles

Missing elements in a permutation: Suppose the stream is a permutation of $\{1,\ldots,n\}$ with one element missing. How much space is needed to find the missing element?

What if 2 elements are missing?

Can we generalize to k missing elements?

Majority element: Suppose the stream is a sequence of numbers a_1,\ldots,a_m . Suppose one element is repeated at least $\frac{m}{2}$ times. How can we find the majority element?

Frequency Moments

Let $A=a_1,a_2,\ldots,a_m$ be the input stream where each $a_i\in\{1,\ldots,n\}$. Let f_i denote the number of repetitions of i in A. We define the k-th frequency moment of A

$$F_k = \sum_{i=1}^n f_i^k$$

Example:
$$A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2$$
 $f_1=1,f_2=9,f_3=1,f_4=1,f_5=2,f_6=1,f_7=0,f_8=1,f_9=1$

 F_0 = number of distinct elements = 8

$$F_1 = \sum_{i=1}^n f_i = 17 = m$$

$$F_2 = \sum_{i=1}^n f_i^2 = 1^2 + 9^2 + 1^2 + 1^2 + 2^2 + 1^2 + 0^2 + 1^2 + 1^2 = 91$$

$$F_{\infty} = \max_{i=1}^n f_i$$

Computing F_k in small space

Trivial facts:

- We can compute F_1 exactly in O(1) words $(O(\log m)$ bits) of space.
- When k is a constant, we can compute F_k exactly in O(n) words of space.

Nontrivial facts:

- Assuming $k \neq 1$, any randomized streaming algorithm that computes F_k exactly requires $\Omega(n)$ space.
- Assuming $k \neq 1$, any deterministic streaming algorithm that computes a constant factor approximation of F_k requires $\Omega(n)$ space.
- ▶ Both randomization and approximation is needed to compute F_k in sublinear space.

Approximating F_2

The space complexity of approximating the frequency moments

Noga Alon † Yossi Matias ‡ Mario Szegedy February 22, 2002

Abstract

The frequency moments of a sequence containing m_i elements of type i, for $1 \le i \le n$, are the numbers $F_k = \sum_{i=1}^n m_i^k$. We consider the space complexity of randomized algorithms that approximate the numbers F_k , when the elements of the sequence are given one by one and cannot be stored. Surprisingly, it turns out that the numbers F_0 , F_1 and F_2 can be approximated in logarithmic space, whereas the approximation of F_k for $k \ge 6$ requires $n^{O(1)}$ space. Applications to data bases are mentioned as well.

Theorem [AMS99] There is a randomized streaming algorithm that approximates F_2 within $1 + \epsilon$ factor using $O(\frac{1}{\epsilon^2}(\log n + \log m))$ bits of space. The algorithm succeeds with probability 3/4.

AMS idea:

For each coordinate of f, we pick a random number r_i independently from $\{-1,+1\}$. For now, suppose we have stored the vector $\mathbf{r} = (r_1,\ldots,r_n)$.

Let $Z = \sum_{i=1}^{n} r_i f_i$. Note that Z is computed as the input stream arrives. We analyze $X = Z^2$.

$$E[X] = E[(\sum_{i=1}^{n} r_i f_i)^2] = \sum_{i=1}^{n} E[r_i^2] f_i^2 + \sum_{i \neq j} E[r_i r_j] f_i f_j$$

Because r_i and r_j are independent, we get

$$E[X] = \sum_{i=1}^{n} E[r_i^2] f_i^2 + \sum_{i \neq j} E[r_i] E[r_j] f_i f_j$$

Because $E[r_i] = 0$ and $E[r_i^2] = 1$, we get

$$E[X] = \sum_{i=1}^n f_i^2 = F_2$$

Using Chebyshev Inequality, we can say

$$Pr(|X - E[X]| > \epsilon E[X]) = \frac{Var[X]}{\epsilon^2 E^2[X]}$$

Because r_i 's are independent,

$$E[X^{2}] = E[Z^{4}] = E[(\sum_{i=1}^{n} r_{i} f_{i})^{4}] =$$

$$\sum_{i=1}^{n} E[r_{i}^{4}] f_{i}^{4} + 6 \sum_{i,j} E[r_{i}^{2} r_{j}^{2}] f_{i}^{2} f_{j}^{2} + 4 \sum_{i,j} E[r_{i} r_{j}^{3}] f_{i} f_{j}^{3}$$

$$= \sum_{i=1}^{n} f_{i}^{4} + 6 \sum_{i,j} f_{i}^{2} f_{j}^{2}$$

$$Var[X] = E[X^{2}] - E^{2}[X] \le 4 \sum_{i,j} f_{i}^{2} f_{j}^{2} \le 2F_{2}^{2}$$

Consequently,

$$Pr(|X - E[X]| > \epsilon E[X]) = \frac{Var[X]}{\epsilon^2 E^2[X]} \le \frac{2F_2^2}{\epsilon^2 F_2^2} = \frac{2}{\epsilon^2}$$

Repeat to Decrease the Variance

To decrease the variance of X, we compute $s = \frac{8}{\epsilon^2}$ independent copies Y_1, \ldots, Y_s of X and output their average $Y = \frac{1}{s}(Y_1 + \ldots + Y_s)$

Note that
$$E[Y] = E[X] = F_2$$
 and $Var[Y] = \frac{1}{s}Var[X]$
$$Pr(|Y - E[Y]| \ge \epsilon E[Y]) \le \frac{Var[Y]}{\epsilon^2 E^2[Y]} \le \frac{1}{4}$$

$$Pr(|Y - F_2| \ge \epsilon F_2) \le \frac{Var[Y]}{\epsilon^2 E^2[Y]} \le \frac{1}{4}$$

Do we need to store the vector r?

We do not need to store the random vector $\mathbf{r} = (r_1, \dots, r_n)$.

It is enough the random coefficients r_i 's to be 4-wise independent. We do not need them to be mutually independent! Check the analysis of E[X] and $E[X^2]$.

Fact: We can generate a set of n k-wise independent random numbers using $O(k \log n)$ random bits.

How? See next slides.

Independence

Mutually independence: Let X_1, \ldots, X_n be discrete random variables. We say X_1, \ldots, X_n are (mutually) independent if for all values $\alpha_1, \ldots, \alpha_n$ we have

$$Pr(X_1 = \alpha_1, \dots, X_n = \alpha_n) = \prod_{i=1}^n Pr(X_i = \alpha_i)$$

k-wise independence: Let X_1,\ldots,X_n be discrete random variables. We say X_1,\ldots,X_n are k-wise independent if for every subset $S=\{s_1,\ldots,s_\ell\}\subseteq\{1,\ldots,n\}$ of cardinality at most k and all values $\alpha_1,\ldots,\alpha_\ell$, we have

$$Pr(X_{s_1} = \alpha_1, \dots, X_{s_\ell} = \alpha_\ell) = \prod_{i=1}^\ell Pr(X_{s_i} = \alpha_i)$$

k-wise Independence: Special case

Let X_1, \ldots, X_n be $\{0,1\}$ -valued random variables where for each i we have $Pr(X_i = 0) = Pr(X_i = 1)$. We say X_1, \ldots, X_n are k-wise independent if for every subset $S = \{s_1, \ldots, s_\ell\} \subseteq \{1, \ldots, n\}$ of cardinality at most k and all values $\alpha_1, \ldots, \alpha_\ell$ we have

$$Pr(X_{s_1} = \alpha_1, \dots, X_{s_{\ell}} = \alpha_{\ell}) = (\frac{1}{2})^{\ell}$$

Constructing k-wise independent random bits

First Idea: Assume n is even. We let X_1, \ldots, X_n be random (cyclic) shift of $1, 0, 1, 0, 1, 0, \ldots, 1, 0$. We have

$$Pr(X_i = 0) = Pr(X_i = 1) = \frac{1}{2}$$

Question: How much randomness is used in this construction?

Answer: $\log n$ bits

But X_i and X_j are not independent. \odot

$$Pr(X_1 = 0, X_2 = 0) = 0 \neq \frac{1}{4}$$

Second Idea: [Pair-wise Independent Random Bits] Let Y_1,\ldots,Y_m be mutually independent random bits. We construct $n=2^m-1$ random bits from Y_1,\ldots,Y_m . For each non-empty subset $S\subseteq [m]=\{1,\ldots,m\}$ we let

$$X_S = \sum_{r \in S} Y_r \mod 2$$

Claim: The random bits $\{X_S\}_{S\subseteq [m]}$ are pair-wise independent.

Proof: Exercise.

Conclusion: We can generate n pairwise random bits from $\log n + 1$ mutually independent random bits.

Third Idea: [Pair-wise Independent Random Numbers] Let p be a prime where $p \ge n$. We choose the random numbers a and b from \mathbb{Z}_p independently. We let

$$X_i = (\mathbf{a}i + \mathbf{b}) \mod p$$

- $\forall i \in [n], \alpha \in \mathbb{Z}_p, Pr(X_i = \alpha) = \frac{1}{p}$
- $\forall i, j \in [n], \alpha_1, \alpha_2 \in \mathbb{Z}_p, \ Pr(X_i = \alpha_1, X_j = \alpha_2) = (\frac{1}{p})^2$

Fourth Idea: [Third Idea Generalized] Consider the finite field \mathbb{F}_p where p is large enough. Let $Y_0, Y_1, \ldots, Y_{\ell-1}$ be independent samples from \mathbb{F}_p . For $a \in \mathbb{F}_p$, we define

$$X_a = \sum_{i=0}^{\ell-1} Y_i a^i = Y_0 + Y_1 a + Y_2 a^2 + \dots + Y_{\ell} a^{\ell}$$

Note that all computations are done in the field \mathbb{F}_p

Lemma: The random variables $\{X_a\}_{a\in\mathbb{F}_p}$ are (ℓ) -wise independent.

Therefore we can generate k-wise independent (0,1)-valued random variables X_1, \ldots, X_n from O(k) random numbers from \mathbb{F}_p where $p \ge n$. To generate any X_i , we keep at most $O(k \log n)$ bits.

In particular, we can generate 4-wise independent (-1,+1)-valued random variables r_1,\ldots,r_n by keeping $O(\log n)$ random bits.