Московский Авиационный Институт (Национальный Исследовательский Университет) Кафедра 806

Лабораторная работа №4 по курсу "Численные методы"

Студент: М.А. Трофимов
Группа: М8О-408Б-18
Преподаватель: Д.Е. Пивоваров
Оценка:
Дата:
Подпись:

Постановка задачи

Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением U(x,y,t). Исследовать зависимость погрешности от сеточных параметров h_x , h_y , tau.

1.
$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + a \frac{\partial^2 u}{\partial y^2}, \quad a > 0,$$

$$u(0, y, t) = \cos(\mu_2 y) \exp(-(\mu_1^2 + \mu_2^2)at),$$

$$u(\pi, y, t) = (-1)^{\mu_1} \cos(\mu_2 y) \exp(-(\mu_1^2 + \mu_2^2)at),$$

$$u(x, 0, t) = \cos(\mu_1 x) \exp(-(\mu_1^2 + \mu_2^2)at),$$

$$u(x, \pi, t) = (-1)^{\mu_2} \cos(\mu_1 x) \exp(-(\mu_1^2 + \mu_2^2)at),$$

$$u(x, y, 0) = \cos(\mu_1 x) \cos(\mu_2 y).$$
 Аналитическое решение:
$$U(x, y, t) = \cos(\mu_1 x) \cos(\mu_2 y) \exp(-(\mu_1^2 + \mu_2^2)at).$$

1).
$$\mu_1 = 1$$
, $\mu_2 = 1$.
2). $\mu_1 = 2$, $\mu_2 = 1$.
3) $\mu_1 = 1$, $\mu_2 = 2$.

3). $\mu_1 = 1$, $\mu_2 = 2$

Решение

Данное уравнение решалось с помощью метода различных направлений и метода дробных шагов. Программа писалась в несколько файлов: Progonka.* заголовочник(.hpp) и исходный файл(.cpp) с методом прогонки, P2D.* - аналогично заголовочный и исходный файлы для класса решателя. main.cpp - основной файл, в котором описывается уравнение, оно решается и выводит необходимую информацию.

Программа поддерживает ключи:

- time для вывода времени работы программы,
- error выводит MSE по полученному решению, hx <x step> - позволяет задавать шаг сетки по оси ОХ,
- hy <y step> позволяет задавать шаг сетки по оси ОҮ.
- ht <t step> позволяет задавать шаг сетки по оси ОҮ.
- ADM или FSM метод, с помощью которого будет решаться уравнение, если указаны оба ключа, будет использоваться последний.

В случае подачи неправильного ключа выдаётся ошибка и подсказка по использованию.

Все файлы лежат на гитхабе в папке 4lab: https://github.com/student31415/Chislaki2/

Демонстрация работы:

```
schizophrenia@home:~/labs/4kurs/Chislaki2/4lab$ make clean rm *.o P2D schizophrenia@home:~/labs/4kurs/Chislaki2/4lab$ make -j g++ -c main.cpp -o main.o g++ -c P2D.cpp -o P2D.o g++ -c Progonka.cpp -o Progonka.o g++ P2D.o main.o Progonka.o -o P2D schizophrenia@home:~/labs/4kurs/Chislaki2/4lab$ make plot_ans ./P2D > ans.txt gnuplot plot_ans.gpi Hit enter to continue #rm ans.txt
```


Сравнение результатов работы

hx	hy	ht	MSE	time, [ms]
pi/16	pi/16	0.01	0.00203	6.065
pi/16	pi/16	0.001	0.00195	51.74
0.5	0.5	0.01	0.00087	1.559
0.5	0.5	0.001	0.00084	6.874
0.5	0.05	0.001	0.00146	71.022
0.05	0.5	0.001	0.00146	70.939
0.05	0.05	0.001	0.00254	661.683

Вывод

Как видно, итоговая точность решения достаточно небольшая, но и время работы достаточно маленькое. Очевидно, что сложность обоих методов это (N*M*K), где N - количество точек по оси X, M - количество точек по оси Y, K - количество точек по оси Y.