5/18/2019 NaiveBayes

Naive-Bayes dengan data Visit-Nominal.csv

1. Inisialisasikan library yang diperlukan untuk dataset ini.

```
In [12]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statistics

from sklearn.naive_bayes import BernoulliNB

from sklearn.model_selection import train_test_split
   from sklearn.model_selection import cross_val_score
```

2. Masukan dataset Visit-Nominal.csv kedalam dataframe

Out[13]:

	Home	Browsed	Searched	Prod_A	Prod_B	Prod_C	Visit_Again
0	yes	no	no	no	no	no	no
1	yes	yes	yes	no	no	no	no
2	yes	no	no	no	no	no	no
3	yes	yes	yes	yes	no	no	yes
4	yes	no	yes	yes	yes	no	yes

```
In [14]: print(dfnew.describe())
```

	Home	Browsed	Spanched	Prod A	Prod B	Prod C	Visit Again
	Home	DI OWSCU	Jean Cheu	1100	i i ou_b	1100_C	VI3IC_ABOIN
count	100	100	100	100	100	100	100
unique	2	2	2	2	2	2	2
top	yes	yes	no	yes	yes	no	no
frea	60	72	57	53	55	55	61

3. Representasikan data 'yes' dan 'no' kedalam bentuk biner '1' dan '0'

```
In [15]: toBinary = lambda x: 1 if x=="yes" else 0
dfnew = dfnew.applymap(toBinary)
```

4. Cek apakah terdapat value fitur yang kosong

5/18/2019 NaiveBayes

```
In [16]: missing_values = dfnew.isnull()
    missing_values

sns.heatmap(data = missing_values)
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x2184911fb70>

5. Lihat perbandingan jumlah class 0 dan 1

```
In [17]: sns.countplot(x='Visit_Again', data=dfnew) dfnew.Visit_Again.value_counts()

Out[17]: 0 61 1 39 Name: Visit_Again, dtype: int64
```

6. Siapkan data untuk training secara biasa dan training dengan cross validation

Visit_Again

```
In [18]: feature = attrs
    feature.pop()
    feature

Out[18]: ['Home', 'Browsed', 'Searched', 'Prod_A', 'Prod_B', 'Prod_C']

In [19]: features = dfnew[feature]
    label = dfnew['Visit_Again']

    X_train, X_test, y_train, y_test = train_test_split(features, label, test_size=0.25, random_state=
    l01)
    feature

Out[19]: ['Home', 'Browsed', 'Searched', 'Prod_A', 'Prod_B', 'Prod_C']
```

5/18/2019 NaiveBayes

7. Train data secara biasa, didapatkan skor sebesar 0.64

8. Train data dengan cross-validation, didapatkan skor sebesar 0.58

9. Melihat log probabilitas setiap fitur dari class 0 dan 1

```
In [22]: class0_attrprob = naivebayesmodel.feature_log_prob_[0]
         class1_attrprob = naivebayesmodel.feature_log_prob_[1]
         print("probability of class 0 ")
         for i in (range(len(naivebayesmodel.feature_log_prob_[0]))):
             print("feature ",i+1,": ",pow(2,class0_attrprob[i]))
         print("\nprobability of class 1 ")
         for i in (range(len(naivebayesmodel.feature_log_prob_[1]))):
             print("feature ",i+1,": ",pow(2,class1_attrprob[i]))
         probability of class 0
         feature 1: 0.732575714272584
         feature 2: 0.7826070218144325
         feature 3: 0.5337704624000148
         feature 4: 0.6275952022872798
         feature 5: 0.7155617759223357
         feature 6: 0.6093515137984894
         probability of class 1
         feature 1 : 0.6711168360853097
         feature 2: 0.7954032230077729
         feature 3: 0.4465362457883447
         feature 4: 0.7712692781806878
         feature 5: 0.6711168360853097
         feature 6: 0.591444335183008
 In [ ]:
```