KOSIM: A Knowledge-oriented Derivative-free Subspace Method Based on Inexact Model for Inverse Lithography Problems

Presenter: Min-Feng Hsieh

Advisor: Ting-Chi Wang

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

- Optical lithography (光學微影技術)
 - 將曝光光源通過設計過的光罩,光罩上面即具有各種圖案可以阻擋或讓光穿透過去。
 - 若光打到正光阻上,該處會被蝕刻;若是負光阻的話相反。
 - 是製造集成電路 (IC) 和其他半導體設備的主要工藝之一
 - 將微細的電子元件、晶體管、電容器等結構準確地印刷在半導體材料上

- Due to the tiny scale of circuit device size, the influence of interference and diffraction will distort the image on the wafer very much.
- Lots of works are proposed to resolve this kind of distortion:
 - Optical proximity correction (OPC) 光學接近校正

- Optical proximity correction (OPC)
 - Adjust the mask layout such that the output pattern approximates the target.
 - Discrete the mask into the matrix, and use the **pixel-wise imaging function** to characterize the imaging procedure.
 - OPC process is model as an **inverse problem**, and is also called as inverse lithography techniques (ILT).
 - Inverse problem is formulated as the **non-convex optimization problem** with respect to the matrix elements.

- To solve ILT:
 - Unconstraint Derivative-free optimization (DFO)
 - To evaluate the efficiency of algorithm, another important index is the **total number of function** value evaluations (NF).
 - Many model-based approached require $O(n^2) \sim O(n^3)$ computational complexity in each iteration.
 - Also need O(n) to evaluate the initialization of the model.

- To solve ILT:
 - KOSIM
 - A general subspace method for solving DFO problems in ILT.
 - A novel way in constructing subspaces.
 - Develop a projection technique for computing an inexact gradient.
 - Construct good subspaces while it only evaluates O(1) function values in each iteration.
 - Only produces O(n) computational cost in each iteration.

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

- Most common objective function of the ILT problem is the misfit between the image on wafer and the target pattern:
 - Mask: $U \in \mathbb{R}^{N \times N}$, $U_{ij} \in (0, 1)$ (is discrete into matrix)
 - Image function: $I: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$
 - Target pattern: U_0
- Optimization problem:
 - $\min_{U \in \mathbb{R}^{N \times N}} ||\mathcal{I}(U) U_0||_F^2$, $s.t. U_{ij} \in \{0, 1\}$.

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

- Optimization problem:
 - $\min_{U \in \mathbb{R}^{N \times N}} ||\mathcal{I}(U) U_0||_F^2$, $s.t. U_{ij} \in \{0, 1\}$.
- Edge placement error (EPE)
 - $EPE := |\mathcal{I}(U) U_0|$.
- L2 square error
 - $\|\mathcal{U}^{-1}(EPE)\|_{2}^{2}$,

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

- However, we will not directly accept an arbitrary solution of the above optimization problem for industry production, because of the irregularity of the corrected mask
- Will do the convolution operation for $N_t \in \mathbb{N}$ times on arbitrary real matrix $U \in \mathbb{R}^{N \times N}$, which the convolution core \widehat{H} :

$$\hat{H} := \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}.$$

• Then *U* will be truncated with the following function:

$$\mathcal{T} := \begin{cases} 1, & x \ge 0.5 \\ 0, & x < 0.5 \end{cases}.$$

• We define the previous operation (convolution and truncation) as $M: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$:

$$\mathcal{M}(U) := \mathcal{T}\left(\left(\hat{H}*\right)^{(N_t)}U\right).$$

• Thus the **modified optimization problem** becomes:

$$\min_{x \in \mathbb{R}^{N^2}} || \mathcal{I} \left(\mathcal{M} \left(\mathcal{U}(x) \right) \right) - U_0 ||_F^2.$$

• Where the matrization operator:

$$\mathcal{U}: \mathbb{R}^{N^2} \to \mathbb{R}^{N \times N}, \ x \mapsto (x_{Ni+j})_{ij}.$$

$$U: \mathbb{R}^{N^2}
ightarrow \mathbb{R}^{N imes N}, \quad x \mapsto
ightarrow egin{bmatrix} x_1 & x_2 & \dots & x_N \ x_{N+1} & x_{N+2} & \dots & x_{2N} \ dots & dots & dots & \ddots & dots \ x_{(N-1)N+1} & x_{(N-1)N+2} & \dots & x_{N^2} \end{bmatrix}$$

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

Algorithm - knowledge-oriented inexact gradient

- To compute the inexact gradient $g^{(k)}$:
 - 1. To determine the *m* dimensional subspace $S_g^{(k)}$ (m << n, where m = O(1)).
 - 2. Approximately calculate the projection $\mathcal{P}_{S_q^{(k)}} \nabla f(x^{(k)})$.
 - Invokes a simple finite difference with step length $\rho(k)$, which is adaptively chosen.
- When prior information is available, i.e., a prior generator D is inputted, we set $D(x^{(k)}) \in S_g^{(k)}$.

Algorithm - Separable quadratic inexact model

• Lower computational complexity compare with quadratic-model-based approaches.

•
$$m^{(k)}(x) = \sum_{i=1}^{n} m_i^{(k)}(x_i) - (n-1)f(x^{(k)})$$

- $m_i^{(k)}(u)$ is a 1D quadratic model approximating $f(x^{(k)} + (u x_i^{(k)})e_i)$, i = 1, ..., n.
- Use sampling points off the line $x^{(k)} + span(e_i)$, so that historical sampling points can be utilized.
- Assume three sampling points for the *i*th model $m_i^{(k)}$ consist $\mathcal{Y}_i^{(k)} \coloneqq \{y^{(k,i)}, z^{(k,i)}, w^{(k,i)}\}$, then the interpolation follows:

$$m_{i}^{(k)}(u) := \sum_{cyc} f\left(y^{(k,i)}\right) \left(u - z_{i}^{(k,i)}\right) \left(u - w_{i}^{(k,i)}\right)$$
$$\left/ \left[\left(y_{i}^{(k,i)} - z_{i}^{(k,i)}\right) \left(y_{i}^{(k,i)} - w_{i}^{(k,i)}\right) \right].$$

A. Initializing and Updating the sampling points

•
$$y^{(0,i)} = z^{(0,i)} = w^{(0,i)} := x^{(0)} + (i-2)r\mathbf{1}, i = 1,2,3$$

- r is an arbitrary parameter where r > 0.
- $\mathbf{1} = [1, 1, 1, ..., 1]^T$.
- After an iteration, we will get $x^{(k+1)}$, and update one of the sampling points $u^{(k,i)}$ in $\mathcal{Y}_i^{(k)}$
 - $\mathcal{Y}_i^{(k)}$ will be updated to $\mathcal{Y}_i^{(k+1)}$

•
$$u^{(k,i)} := \min_{u \in \mathcal{Y}_i^{(k)}} \frac{\left| u_i - x_i^{(k+1)} \right|}{f(u) - f(x^{(k+1)})}, i = 1, ..., n,$$

B. Solving the model

• The direction of the model

•
$$d^{(k)} := \min_{d \in \Omega^{(k)}} m^{(k)} \left(x^{(k)} + d \right).$$

• Box region $\Omega^{(k)}$

•
$$\Omega^{(k)} := \prod_{i=1}^{n} \left[-r_i^{(k)}, r_i^{(k)} \right],$$

$$r_i^{(k)} := \max \left\{ \left| y_i^{(k,i)} - x_i^{(k)} \right|, \left| z_i^{(k,i)} - x_i^{(k)} \right|, \right.$$
$$\left| w_i^{(k,i)} - x_i^{(k)} \right| \right\}, i = 1, ..., n.$$

C. Solving the subproblem

- Construct a complete three-dimensional quadratic model q(s) approximating $f(x^{(k)} + B^{(k)}s)$ by interpolation using 10 sampling points $s^{(k,1)}$... $s^{(k,10)}$.
- $B(k) \in \mathbb{R}^{N \times 3}$ stands for the basis matrix of $S^{(k)}$ after a Gram-Schmidt procedure.
- Then we solve $\min_{s \in \mathbb{R}^3} [q(s) + \lambda \parallel s \parallel^2]$ and obtain $s_q^{(k)}$.
 - $\lambda \ge 0$ satisfies $\nabla^2 m(x^{(k)}) + \lambda I > 0$.
- $s^{(k)} := \arg\min \left\{ f\left(x^{(k)}\right), f\left(x^{(k)} + B^{(k)}s^{(k,1)}\right), ..., \right.$ $\left. f\left(x^{(k)} + B^{(k)}s^{(k,10)}\right), f\left(x^{(k)} + B^{(k)}s_q^{(k)}\right) \right\}.$

- D. Updating the finite-difference step length
 - For updating the finite difference step length $\rho^{(k)}$, we choose a scaling factor $\sigma^{(k)} > 0$ satisfying $0 < \sigma_l \le \sigma^{(k)} \le \sigma_u$.

•
$$\rho^{(k+1)} := \max \left\{ \frac{1}{2} \rho^{(k)}, \sqrt{\left[f(x^{(k)}) - f(x^{(k+1)}) \right] / \sigma^{(k)}} \right\}$$

•
$$\sigma^{(k)} := \max \left\{ 10^{-6}, \min \left\{ 10^{6}, \left\| \nabla^2 m^{(k)} \right\|_2 \right\} \right\}$$

Step	Complexity	NF
Initializing the model	O(n)	2
Updating the model	O(n)	0
Computing the inexact gradient	O(n)	m
Solving the subproblem	O(n)	10

Table 1: Computational complexity and NF of each step in Algorithm 1

Algorithm 1: Knowledge-Oriented Subspace Method based on Inexact Model (KOSIM)

Input: objective function $f : \mathbb{R}^n \to \mathbb{R}$, prior generator $\mathcal{D} : \mathbb{R}^n \to \mathbb{R}^n$.

Output: $x^{(k)}$, $f\left(x^{(k)}\right)$.

Choose an initial guess $x^{(0)} \in \mathbb{R}^n$, and set k := 0. Initialize $m^{(0)}$.

while certain termination criterion is not satisfied do

Determine random subspace $S_g^{(k)} \subset \mathbb{R}^n$ satisfying

$$\mathcal{D}\left(x^{(k)}\right) \in \mathcal{S}_g^{(k)} \text{ (if } \mathcal{D} \neq \text{None)}.$$

Approximately compute $g^{(k)} := \mathcal{P}_{\mathcal{S}_g^{(k)}} \nabla f\left(x^{(k)}\right)$.

Compute a solution $d^{(k)}$ of $m^{(k)}$.

Define subspace $S^{(k)} := \operatorname{span}\left(g^{(k)}, d^{(k)}, s^{(k-1)}\right)$.

Inexactly solve $\min_{s \in \mathcal{S}^{(k)}} f\left(x^{(k)} + s\right)$ and obtain $s^{(k)}$.

Update $x^{(k+1)} := x^{(k)} + s^{(k)}$.

Update $m^{(k)}$ to $m^{(k+1)}$.

Set k := k + 1.

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

Experimental Result - Gradient

- All codes are implemented in C, and packed as a Python interface.
- All the tests of KOSIM were performed on a Lenovo ST8810 cluster.

n	Ax - b / b	iteration number		walltime		speed-up ratio
		CG	KOSIM	CG	KOSIM	
100	9.67e-04	13307	464	2.11s	0.14s	14.45×
200	5.36e-02	40000	765	7.36s	0.43s	16.97×
400	7.50e-04	66537	1349	17.30s	1.64s	$10.51 \times$
800	1.38e-03	103658	2093	114.96s	7.38s	15.55×

Table 2: Comparison of KOSIM with gradient information and CG

Experimental Result - DFO

Figure 2: Comparing KOSIM and Nevergrad on problem constructed by CHROSEN (left) and SINQUAD (right) (n = 10000)

Experimental Result - DFO

Figure 3: Comparing KOSIM and Nevergrad on problem constructed by CHROSEN (left) and SINQUAD (right) (n = 50000)

• $N_t = 50$.

Figure 4: This figure shows the comparison of KOSIM with and without prior and Nevergrad on two ILT problems with mask size 200×200 and 400×400 . Best function values within 5000 function evaluations are reported.

• Mask size = 200×200

• Mask size = 400×400

• Mask size = 1000×1000

Outline

- Introduction
- Preliminaries
- Algorithm
- Experimental Result
- Conclusion

Conclusion

- Several techniques are developed for KOSIM:
 - Knowledge-oriented inexact gradients.
 - Maintaining inexact models.
 - Constructing subspaces.
 - Solving the subproblems.
- KOSIM evaluates only O(1) function values and has only O(n) computational complexity per iteration.

Thank you for listening!