Probability - Gaussian Distribution

31/10/2023

PREPARED BY KYLE CHUN

Probability

	Discrete Random Variable	Continuous Random Variable
Probability	$P(X = x_i) = P(x_i)$	$P(a \le x \le b) = \int_{a}^{b} f(x)dx$
Expectation	$E(X) = \sum_{i=1}^{m} x_i P(x_i)$	$E(X) = \int_{-\infty}^{\infty} x f(x) dx$
Variance	$Var(X) = \sum_{i=1}^{m} (x_i - \mu)^2 P(x_i)$	$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

where f(x) is the probability density function.

31/10/202

PREPARED BY KYLE CHUNG

2

Probability

$$Var(X) = \sum_{i=1}^{m} (x_i - \mu)^2 P(x_i)$$

$$= \sum_{i=1}^{m} (x_i^2 - 2\mu x_i + \mu^2) P(x_i)$$

$$= \sum_{i=1}^{m} x_i^2 P(x_i) - 2\mu \sum_{i=1}^{m} x_i P(x_i) + \mu^2 \sum_{i=1}^{m} P(x_i)$$

$$= \sum_{i=1}^{m} x_i^2 P(x_i) - 2\mu^2 + \mu^2$$

$$= \sum_{i=1}^{m} x_i^2 P(x_i) - \mu^2$$

$$= E(X^2) - [E(X)]^2$$

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

$$= \int_{-\infty}^{\infty} (x^2 - 2\mu x + \mu^2) f(x) dx$$

$$= \int_{-\infty}^{\infty} x^2 f(x) dx - 2\mu \int_{-\infty}^{\infty} x f(x) dx + \mu^2 \int_{-\infty}^{\infty} f(x) dx$$

$$= E(X^2) - 2\mu^2 + \mu^2$$

$$= E(X^2) - \mu^2$$

31/10/2023

PREPARED BY KYLE CHUN

Gaussian Integral

The Gaussian integral is

31/10/202

PREPARED BY KYLE CHUNG

Gaussian Distribution

Let $z = \frac{x - \mu}{\sigma}$ s.t. $\int_{-\infty}^{\infty} f(z)dx = 1$ where $f(z) = ae^{-bz^2}$ is known as Gaussian function.

$$\Rightarrow \int_{-\infty}^{\infty} a e^{-b \left(\frac{x-\mu}{\sigma}\right)^2} dx = 1 \Rightarrow a \int_{-\infty}^{\infty} e^{-\left(\sqrt{b} \frac{x-\mu}{\sigma}\right)^2} d\left(\sqrt{b} \frac{x-\mu}{\sigma}\right) = \frac{\sqrt{b}}{\sigma} \Rightarrow a = \frac{\sqrt{b}}{\sigma \sqrt{\pi}}$$

Take $b = \frac{1}{2}$, we have the probability density function, $f(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ as the *Gaussian distribution* (a.k.a. *normal distribution*.

1/10/2023 © PREPARED BY KYLE CHUNG

Standard Normal Distribution

(1) Normal Distribution: $X \sim N(\mu, \sigma^2)$

A random variable X follows a normal distribution with mean μ and variance σ^2 is represented by $X \sim N(\mu, \sigma^2)$

(2) Standard Normal Distribution: $Z \sim N(0, 1)$

$$Z = \frac{X - \mu}{\sigma}$$

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}E(X-\mu) = \frac{1}{\sigma}(\mu-\mu) = 0$$

$$Var(Z) = Var\left(\frac{X - \mu}{\sigma}\right) = \frac{1}{\sigma^2}Var(X) = \frac{\sigma^2}{\sigma^2} = 1$$

/2002 © DDEDADED BY VYLE CHLING

Sum of Normally Distributed Random Variables

If
$$X_1 \sim N(\mu_1, \sigma_1^2)$$
 and $X_2 \sim N(\mu_2, \sigma_2^2)$, then $(X_1 + X_2) \sim N(\mu_1 + \mu_1, \sigma_1^2 + \sigma_2^2)$

31/10/2023

PREPARED BY KYLE CHUNG

Normal Distribution

Example.

(1) $X \sim N(10, 4)$. Find $P(X \ge 12)$. (Ans. 0.1587)

(2) $X \sim N(10, 4)$. Find $P(11 \ge X \ge 9.5)$. (Ans. 0.2902)

(3) $X \sim N(50, 100)$. If P(X > a) = 0.04, find the values of a. (Ans. a = 67.5)

(4) $X \sim N(50, 100)$. If P(X < b) = 0.209, find the values of b. (Ans. b = 41.9)

31/10/202

D PREPARED BY KYLE CHUNG