Author Index, 1 2001

The Telecommunications and Mission Operations Progress Report

42-145, January–March 2001 42-146, April–June 2001 42-147, July–September 2001 42-148, October–December 2001

Amaro, L. R.

42-147 Development of Ka-Band Inflatable Layered-Lens Technology, pp. 1–24.

S. Datthanasombat, A. Prata, Jr., and J. A. Harrell

Andrews, K.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

V. Stanton, S. Dolinar, V. Chen, J. Berner, and F. Pollara

Backes, P.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Baher, F.

42-145 Open- and Closed-Loop Analysis of the 70-Meter Antenna Subreflector Positioner, pp. 1–15.

¹ In the case of joint authorship, the reader is referred to the citation under the first author, where all the authors of the article are listed

Bathker, D.

42-148 Adjacent Band Interference from San Diego Area Transmitters to Goldstone Deep Space Network Receivers Near 2300 Megahertz, pp. 1–12.

See Ho, C.

Beebe, J.

42-146 Laboratory Characterization of Silicon Avalanche Photodiodes (APDs) for Pulse-Position Modulation (PPM) Detection, pp. 1–14.

See Srinivasan, M.

Berner, J.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

See Andrews, K.

Biswas, A.

42-146 Laboratory Characterization of Silicon Avalanche Photodiodes (APDs) for Pulse-Position Modulation (PPM) Detection, pp. 1–14.

See Srinivasan, M.

Design and Analysis of a First-Generation Optical Pulse-Position Modulation Receiver, pp. 1–20.

See Vilnrotter, V.

Bordi, J. J.

42-146 Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Observations, pp. 1–13.

J. K. Miller, B. G. Williams, and F. J. Pelletier

Brenner, M.

42-147 Gravity Deformation Measurements of NASA's Deep Space Network 70-Meter Reflector Antennas, pp. 1–15.

See Imbriale, W. A.

Britcliffe, M. J.

42-145 The Effects of Water on the Noise-Temperature Contribution of Deep Space Network Microwave Feed Components, pp. 1–5.

R. C. Clauss

42-145 Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station, pp. 1–10.

D. J. Hoppe

42-145 Noise-Temperature Measurements of Deep Space Network Dichroic Plates at 8.4 Gigahertz, pp. 1–5.

J. E. Fernandez

42-147 Gravity Deformation Measurements of NASA's Deep Space Network 70-Meter Reflector Antennas, pp. 1–15.

See Imbriale, W. A.

42-147 A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design, pp. 1–17.

D. Hoppe, W. Roberts, and N. Page

42-147 A 2.5-Kelvin Gifford-McMahon/Joule-Thomson Cooler for Cavity Maser Applications, pp. 1–9.

T. Hanson and J. Fernandez

Calhoun, M.

42-148 A Stabilized 100-Megahertz and 1-Gigahertz Reference Frequency Distribution for Cassini Radio Science, pp. 1–11.

R. Sydnor and W. Diener

Cheetham, C.

42-147 Developing Low-Power Transceiver Technologies for In Situ Communication Applications, pp. 1–22.

See Lay, N.

Chen, V.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

See Andrews, K.

Chien, S.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Clark, J. E.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

Clauss, R. C.

42-145 The Effects of Water on the Noise-Temperature Contribution of Deep Space Network Microwave Feed Components, pp. 1–5.

See Britcliffe, M. J.

Cooper, B.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Craparo, E. M.

42-147 Three Scanning Techniques for Deep Space Network Antennas to Estimate Spacecraft Position, pp. 1–17.

See Gawronski, W.

Darden, S.

Further Results on Bandwidth-Efficient Trellis-Coded Modulation with Prescribed Decoding Delay, pp. 1–30.

See Simon, M. K.

Datthanasombat, S.

42-147 Development of Ka-Band Inflatable Layered-Lens Technology, pp. 1–24.

See Amaro, L. R.

Diener, W.

42-148 A Stabilized 100-Megahertz and 1-Gigahertz Reference Frequency Distribution for Cassini Radio Science, pp. 1–11.

See Calhoun, M.

Divsalar, D.

42-145 A Reduced-Complexity, Highly Power-/Bandwidth-Efficient Coded Feher-Patented Quadrature-Phase-Shift-Keying System with Iterative Decoding, pp. 1–17.

See Simon, M. K.

Further Results on a Reduced-Complexity, Highly Power-/Bandwidth-Efficient Coded Feher-Patented Quadrature-Phase-Shift-Keying System with Iterative Decoding, pp. 1–7.

See Simon, M. K.

Dolinar, S.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

See Andrews, K.

Estlin, T.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Farr, W.

Design and Analysis of a First-Generation Optical Pulse-Position Modulation Receiver, pp. 1–20.

See Vilnrotter, V.

Fernandez, J. E.

42-145 Noise-Temperature Measurements of Deep Space Network Dichroic Plates at 8.4 Gigahertz, pp. 1–5.

See Britcliffe, M. J.

42-147 A 2.5-Kelvin Gifford-McMahon/Joule-Thomson Cooler for Cavity Maser Applications, pp. 1–9.

See Britcliffe, M.

Fong, M.

Further Results on Bandwidth-Efficient Trellis-Coded Modulation with Prescribed Decoding Delay, pp. 1–30.

See Simon, M. K.

Fort, D.

Design and Analysis of a First-Generation Optical Pulse-Position Modulation Receiver, pp. 1–20.

See Vilnrotter, V.

Gawronski, W.

Three Scanning Techniques for Deep Space Network Antennas to Estimate Spacecraft Position, pp. 1–17.

E. M. Craparo

42-148 70-Meter Antenna Tracking and Mode Switching Near the Master Equatorial Keyhole, pp. 1–18.

Hamkins, J.

42-146 Laboratory Characterization of Silicon Avalanche Photodiodes (APDs) for Pulse-Position Modulation (PPM) Detection, pp. 1–14.

See Srinivasan, M.

Han, D.

42-146 Orbit Determination Uncertainty Distributions and Mappings in an Unstable Halo Orbit, pp. 1–18.

See Scheeres, D. J.

Hanson, T.

42-147 A 2.5-Kelvin Gifford-McMahon/Joule-Thomson Cooler for Cavity Maser Applications, pp. 1–9.

See Britcliffe, M.

Harrell, J. A.

42-147 Development of Ka-Band Inflatable Layered-Lens Technology, pp. 1–24.

See Amaro, L. R.

Hastrup, R.

42-147 Communications with Mars During Periods of Solar Conjunction: Initial Study Results, pp. 1–16.

See Morabito, D.

Ho, C.

42-148 Adjacent Band Interference from San Diego Area Transmitters to Goldstone Deep Space Network Receivers Near 2300 Megahertz, pp. 1–12.

D. Bathker, M. Sue, and T. Peng

Hoppe, D. J.

42-145 Development of a 7.2-, 8.4-, and 32-Gigahertz (X-/X-/Ka-Band) Three-Frequency Feed for the Deep Space Network, pp. 1–20.

See Stanton, P. H.

42-145 Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station, pp. 1–10.

See Britcliffe, M. J.

- 42-145 The Sensitivity of Main-Reflector-Distortion Compensation to Deformable-Mirror Position, pp. 1–13.
- 42-147 A Study of Deformable-Mirror Performance Versus Actuator Distribution Using an Influence-Function Model, pp. 1–14.
- 42-147 A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design, pp. 1–17.

See Britcliffe, M.

Hou, Y.

42-146 Orbit Determination Uncertainty Distributions and Mappings in an Unstable Halo Orbit, pp. 1–18.

See Scheeres, D. J.

Imbriale, W. A.

- 42-146 Analysis of a Thick Dichroic Plate with Arbitrarily Shaped Holes, pp. 1–21.
- 42-147 Gravity Deformation Measurements of NASA's Deep Space Network 70-Meter Reflector Antennas, pp. 1–15.

M. J. Britcliffe and M. Brenner

Keihm, S. J.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Kiely, A. B.

42-146 Memory-Efficient Recursive Interleaved Entropy Coding, pp. 1–14.

M. Klimesh

42-146 A New Entropy Coding Technique for Data Compression, pp. 1–48.

M. Klimesh

Klimesh, M.

42-146 Memory-Efficient Recursive Interleaved Entropy Coding, pp. 1–14.

See Kiely, A. B.

42-146 A New Entropy Coding Technique for Data Compression, pp. 1–48.

See Kiely, A. B.

Lanyi, G. E.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Lau, C.-W.

42-146 Quantum Detection Theory for the Free-Space Channel, pp. 1–34.

See Vilnrotter, V. A.

42-148 Quantum Detection and Channel Capacity Using State-Space Optimization, pp. 1-16.

V. A. Vilnrotter

Lay, N.

42-147 Developing Low-Power Transceiver Technologies for In Situ Communication Applications, pp. 1–22.

C. Cheetham, H. Mojaradi, and J. Neal

Linfield, R.

- 42-145 Mounting a Water Vapor Radiometer on a DSN Antenna Subreflector: Benefits for Radio Science and Millimeter-Wavelength VLBI, pp. 1–13.
- 42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Madden-Woods, B.

42-146 Laboratory Characterization of Silicon Avalanche Photodiodes (APDs) for Pulse-Position Modulation (PPM) Detection, pp. 1–14.

See Srinivasan, M.

Maxwell, S.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Miller, J. K.

42-146 Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Observations, pp. 1–13.

See Bordi, J. J.

Mishkin, A.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Mojaradi, H.

42-147 Developing Low-Power Transceiver Technologies for In Situ Communication Applications, pp. 1–22.

See Lay, N.

Morabito, D.

42-147 Communications with Mars During Periods of Solar Conjunction: Initial Study Results, pp. 1–16.

R. Hastrup

Mutz, D.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Naudet, C. J.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Neal, J.

42-147 Developing Low-Power Transceiver Technologies for In Situ Communication Applications, pp. 1–22.

See Lay, N.

Norris, J.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Otoshi, T. Y.

- 42-145 Measured Sun Noise Temperatures at 32 Gigahertz, pp. 1–32.
- 42-148 Antenna System Noise-Temperature Calibration Mismatch Errors Revisited, pp. 1–31.

Page, N.

42-147 A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design, pp. 1–17.

See Britcliffe, M.

Pelletier, F. J.

42-146 Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Observations, pp. 1–13.

See Bordi, J. J.

Peng, T.

42-148 Adjacent Band Interference from San Diego Area Transmitters to Goldstone Deep Space Network Receivers Near 2300 Megahertz, pp. 1–12.

See Ho, C.

Pollara, F.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

See Andrews, K.

Prata, Jr., A.

42-147 Development of Ka-Band Inflatable Layered-Lens Technology, pp. 1–24.

See Amaro, L. R.

Rabideau, G.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Reilly, H.

Development of a 7.2-, 8.4-, and 32-Gigahertz (X-/X-/Ka-Band) Three-Frequency Feed for the Deep Space Network, pp. 1–20.

See Stanton, P. H.

Resch, G. M.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

J. E. Clark, S. J. Keihm, G. E. Lanyi, C. J. Naudet, A. L. Riley, H. W. Rosenberger, and A. B. Tanner

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

S. J. Keihm, G. E. Lanyi, R. P. Linfield, C. J. Naudet, A. L. Riley, H. W. Rosenberger, and A. B. Tanner

Riley, A. L.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Roberts, W.

42-147 A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design, pp. 1–17.

See Britcliffe, M.

Rosenberger, H. W.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Sanii, B.

42-145 Calibrating Surface Weather Observations to Atmospheric Attenuation Measurements, pp. 1–10.

Scheeres, D. J.

- 42-146 Design and Analysis of Landing Trajectories and Low-Altitude Asteroid Flyovers, pp. 1–21.
- 42-146 Orbit Determination Uncertainty Distributions and Mappings in an Unstable Halo Orbit, pp. 1–18.
 - D. Han and Y. Hou

Shambayati, S.

42-148 Maximization of Data Return at X-Band and Ka-Band on the DSN's 34-Meter Beam-Waveguide Antennas, pp. 1–20.

Shell, J.

42-146 Radio Frequency Fields in Multiple-Cavity Masers, pp. 1–14.

Sherwood, R.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

D. Mutz, T. Estlin, S. Chien, P. Backes, J. Norris, D. Tran, B. Cooper, G. Rabideau, A. Mishkin, and S. Maxwell

Sigman, E.

Design and Analysis of a First-Generation Optical Pulse-Position Modulation Receiver, pp. 1–20.

See Vilnrotter, V.

Simon, M. K.

- Further Results on Bandwidth-Efficient Trellis-Coded Modulation with Prescribed Decoding Delay, pp. 1–30.
 - S. Darden and M. Fong
- 42-145 A Reduced-Complexity, Highly Power-/Bandwidth-Efficient Coded Feher-Patented Quadrature-Phase-Shift-Keying System with Iterative Decoding, pp. 1–17.
 - D. Divsalar
- Further Results on a Reduced-Complexity, Highly Power-/Bandwidth-Efficient Coded Feher-Patented Quadrature-Phase-Shift-Keying System with Iterative Decoding, pp. 1–7.
 - D. Divsalar

Sommerville, J.

42-145 Determination of 70-Meter Antenna Elevation-Axis Inertia, pp. 1–17.

Srinivasan, M.

- 42-146 Laboratory Characterization of Silicon Avalanche Photodiodes (APDs) for Pulse-Position Modulation (PPM) Detection, pp. 1–14.
 - J. Hamkins, B. Madden-Woods, A. Biswas, and J. Beebe

Stanton, P. H.

- Development of a 7.2-, 8.4-, and 32-Gigahertz (X-/X-/Ka-Band) Three-Frequency Feed for the Deep Space Network, pp. 1–20.
 - D. J. Hoppe and H. Reilly

Stanton, V.

42-148 Turbo-Decoder Implementation for the Deep Space Network, pp. 1–20.

See Andrews, K.

Sue, M.

42-148 Adjacent Band Interference from San Diego Area Transmitters to Goldstone Deep Space Network Receivers Near 2300 Megahertz, pp. 1–12.

See Ho, C.

Sydnor, R.

42-148 A Stabilized 100-Megahertz and 1-Gigahertz Reference Frequency Distribution for Cassini Radio Science, pp. 1–11.

See Calhoun, M.

Tanner, A. B.

42-145 The Media Calibration System for Cassini Radio Science: Part II, pp. 1–20.

See Resch, G. M.

42-148 The Media Calibration System for Cassini Radio Science: Part III, pp. 1–12.

See Resch, G. M.

Tran, D.

42-147 Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning, pp. 1–16.

See Sherwood, R.

Vilnrotter, V. A.

42-146 Quantum Detection Theory for the Free-Space Channel, pp. 1–34.

C.-W. Lau

Design and Analysis of a First-Generation Optical Pulse-Position Modulation Receiver, pp. 1–20.

A. Biswas, W. Farr, D. Fort, and E. Sigman

42-148 Quantum Detection and Channel Capacity Using State–Space Optimization, pp. 1–16.

See Lau, C.-W.

Williams, B. G.

42-146 Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Observations, pp. 1–13.

See Bordi, J. J.