Fundamentals of Statistical Learning Project Phase - 1

Upinderjit Singh

ASU ID: 1217042463 Master's in Computer Science Arizona State University

1 Introduction

The phase-1 of the project is focused on multivariate density estimation using dimensionality reduction algorithm Principal Component Analysis (PCA) on a subset of images from the MNIST data. The density estimation is then used to doing minimum-error classification. The subset will only have images for digit "0" and digit "1". Below are the parts of this phase:

- Feature normalization.
- PCA using the training samples.
- Dimension reduction using PCA.
- Density estimation.
- Bayesian Decision Theory for optimal classification.

2 Summarization of the tasks

2.1 Feature normalization

The data is required to normalized using below formula:

$$y_i = (x_i - m_i)/s_i$$

```
where, y_i - i^{th} normalized feature x_i - i^{th} feature m_i - i^{th} mean m_i - i^{th} standard deviation
```

```
1.686317
0.554279
0.118035 -1.296516
                     1.841664 -0.967297
                                         0.281496
                    -1.232155 -0.357323
0.275565 -0.111632
-0.036853 -0.188358 -1.166385
0.848663 -0.663974 -1.153143
                                        -0.945557
                              -0.497127
                                                   0.098894
-0.872139 -0.557974
                    0.315410 -0.554405
                                         3.266557
1.335613 -0.155619 -0.703976 -1.297396
                                         1.248499
-0.094783 0.375925
                    -1.174927
0.045803 -0.285341 -0.690080
                                        -0.784177
                               0.617221
                                                    1.121882
-0.678281 -0.795789
                    0.478442
                               0.428442
                                         0.549620
-0.075256 -0.884003
                    -0.580480
                                 824137
                    0.633936
-0.672231 -1.069213
                               0.413441 -0.447727
2.062093
          1.985198 -0.900322
                               1.031916
                                         2.166195
```

Figure 1: Normalised Training Data

```
Normalised testing data samples:
     0.154873 -0.773552
                          1.357609 -1.036275 -0.551014 -1.125258
    -1.170483 -1.041824 -0.558667 -0.486641 -1.198400 -1.000783
     -1.069378 -0.039907 -0.743704 -0.492287
                                             -1.112618 -0.713358
     -0.724609 -1.104978 -0.889706 -0.578002 -1.282929 -0.642399
     -0.794437 -1.302783 -0.965014
                                   -0.511059
                                             -0.719124
                                                        0.021637
    -1.089591 -0.703642 -0.212308
                                   -0.931365
                                             -0.413721
     -0.961127 -0.682722
                         -0.093308
                                    0.296927
                                              0.061140 -1.053467
    -0.163968 -0.626619 -0.833654
                                   -1.020115
                                             -0.645142 -0.475718
                                             -1.278259 -1.060793
    -1.169619 -0.542147 -1.265722 -0.505110
     -0.199478 -0.519648 -0.291977
                                   -0.427385
                                              0.215175 -0.981369
     -0.127342 -0.078070
                         -0.735466
                                   -0.073250
                                              -0.152556
                                                       -0.694538
    -0.497972 -1.097920 -0.646006 -0.788406 -0.791152 -0.278181
11
     -0.166423 -0.525642 -1.068605 -1.168987
                                              0.193864 -0.483833
```

Figure 2: Normalised Testing Data

2.2 PCA using the training samples

The task included steps to compute co-variance matrix and doing eigen analysis and identifying the PCA components

• Co-variance matrix:

```
1.000000
          -0.001839
                     0.000205
                               -0.015194
                                          0.009932
                                                    0.008065
-0.001839
           1.000000
                    -0.007675
                               0.018140
                                         -0.005898
                                                    -0.007214
0.000205
          -0.007675
                     1.000000
                               -0.006408
                                          0.000671
                                                    -0.000299
-0.015194
           0.018140
                    -0.006408
                                1.000000
                                          0.007503
                                                     0.009535
          -0.005898
                     0.000671
0.009932
                                0.007503
                                          1.000000
                                                    0.013734
          -0.007214
                     -0.000299
                                          0.013734
0.008065
                                0.009535
                                                     1.000000
0.004016
          0.012288 -0.005989
                                0.001164
                                          0.000206
                                                     0.004005
-0.006810
          -0.003378
                    -0.013321
                                0.006490
                                          0.002462
                                                    -0.004332
0.000543 -0.017595
                     0.008657
                                0.001230
                                         -0.008750
                                                    0.004307
-0.002160
          0.009828
                     0.004717
                                0.018549
                                         -0.004297
                                                    -0.008647
0.004385
          0.007985
                     0.011935
                                0.016190
                                          0.007203
                                                    -0.006523
-0.005945 -0.000032
                     0.002835
                               -0.004479
                                         -0.010221 -0.009122
-0.007706
                               0.005432
          0.002038
                     0.010427
                                          0.014125
                                                    0.013031
```

Figure 3: Covariance Matrix

• Eigen Values:

```
Variance on PCA 1: 99.46082192723023
Variance on PCA 2: 39.80304184115658
Variance on PCA 3: 26.210644896417836
Variance on PCA 4: 23.364092984184893
```

Figure 4: Eigen Values

• Eigen Vectors:

```
Eigen Vectors:

0 1
0 0.000672 0.002183
1 0.000548 -0.001501
2 0.000655 0.000936
3 -0.000016 0.000695
4 0.000461 -0.000009
```

Figure 5: Eigen Vectors

2.3 Dimension reduction using PCA

Below are the representation of class distribution for training and testing data with the help of two principal components.

Figure 6: Class distribution for training data

Figure 7: Class distribution for training data

2.4 Density estimation

For density estimation we needed to find mean and co-variance matrix for training data. These are then used to estimate the true probability density functions. Shown in figure 8,9.

2.5 Bayesian Decision Theory for optimal classification

Calculated the accuracy for training and testing data.

```
Means for both classes:
0 1
-9.923454 8.717979
0.851423 -0.747995
```

Figure 8: Mean for both classes

Figure 9: Co-variance matrix

```
(base) upsingh@DESKTOP-PMDRNGP:/mnt/u/
$ python project.py -train0 training0.
Accuracy on Training Data: 98.8788%
Accuracy on Testing Data: 99.1962%
```

Figure 10: Accuracy

3 Code

Code is available on below mentioned links and all the above result can be replicated using the instructions in README.md

https://github.com/Upinder3/CSE_569_FSL