Essence of Machine Learning (and Deep Learning)

Hoa M. Le

Data Science Lab, HUST

hoamle.github.io

Examples

- https://www.youtube.com/watch?v=BmkA1ZsG2
 P4
- http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Machine Learning is about ...

... a computer program (machine) <u>learns</u> to do a task (problem) from experience (data)

• *learning* \triangleq improved *performance* with more experience

- Tom Mitchell

predictive modelling with sample data

"heurestics" & statistical modelling

note 1: "heurestic" as in "intuitive, but not (yet!) rigorously proven by mathematical tools at some extend"

BUILD A MACHINE LEARNING SOLUTION

the Pipeline

Đặt vấn đề

Question/

Hypothesis

Thiết kế thử nghiệm

Experimental Design

Giải thích/phân tích kết quả

Interpretation

Đánh giá mô hình

Assessment

Lấy mẫu

Data sampling

Xây dựng mô hình

What ML mostly about

Modelling

Tiền xử lý dữ liệu

Đặt vấn đề

Question/ Hypothesis

- Q.a. What are there in an abitrary photo?
- Q.b. What is there in an abitrary photo?
- Q.c. Is there any puppy an abitrary photo?

cat flower dog jet ground grass

Other questions:

- Where are the puppies in a photo?
- How confident can I assure that there is a cat a photo?
- For what reasons can I know that there is a cat in a photo?

Question/ Hypothesis

Thiết kế thử nghiệm

Experimental Design

(i.e. planning)

erpre

Machine Learning *i.e.*

Automatic data-driven predictive models

Data? Acquisition?

keywords: data sampling/survey

Model? Assessment?

keywords: training/testing sets, mean squared errors, precision, recall, ...

, re-proce

Question/ Hypothesis

Thiết kế thử nghiệm

erpr

Machine Learning *i.e.*

Automatic data-driven predictive models

Experimental Design

(i.e. planning)

Assessment

Data? Acquisition?

keywords: data sampling/survey

Model? Assessment?

keywords: training/testing sets, evaluation metrics (e.g. mean squared errors, precision, recall) Data sampling

Modelling

re-proces (ETL)

Avoid as many sampling biases as possible http://norvig.com/experiment-design.html

Question/ Hypothesis

erpr

Assessment

Experimenta Design

Data Sampling

Representative sample

- How many photos, categories, photos in each category, ...?
- (If time-series data: eg videos)Sample at which time points?

Imbalance class?

Selection bias?

Lấy mẫu

Data sampling

Modelling

re-pr ETL)

Which metrics to use depend on which problem

http://scikit-learn.org/stable/modules/model_evaluation.html

Question/ Hypothesis

erpre

Model Assessment

Experimental Design

Evaluation metrics

- Accuracy
- Precision, Recall
- Area Under Curve (AUC)
- Mean squared errors (MSE)
- ...

(If hypothesis testing problem)

• t-statistic, z-statistic, χ^2 statistic, ...

Assessmen

Đánh giá mô hình

cat flower dog jet ground grass

Modelling

Data sampling

If training/testing set split is well designed with sufficient examples, we might not need to repeat many experiments.

Question/ Hypothesis

Model Assessment

Evaluation setup

Evaluation (i.e.report results) on *unseen* data

 <u>Training/testing set split</u>: follows data sampling principles

 Repeat experiment: gives measurable confidence to the reported results Data sampling

Đánh giá mô hình

Assessment

cat
flower
dog
jet
ground
grass

Modelling

"All models are wrong, but some are useful."

- Box and Drape, 1987

Question/

Model Building

Experimental Design

Model = a simplification of **reality**

(e.g. map of Hanoi)

Keywords: Linear models, Graphical models, Neural networks, SVM, Gaussian Process, Random forest ...

(e.g. building from Linear models to Latent variable models /
Deep neural networks)

Xây dựng mô hình

What ML mostly about

Modelling

Graphics:

- http://www.asimovinstitute.org/neural-network-zoo/
- LDA (Blei's KDD 2011 tutorial)

Raw data ———— Post-processed data

- Data ETL: extract, transform, load
- Data standardisation / normalisation
- Data imputation (if missing values)

Feature extraction

<u>Foreshadowing</u>: the core idea of **Deep Learning** is to incorporate *feature extraction* stage into a model, for which how the features are extracted is also *learnt* from the data.

-0.34	-0.46	-0.87
1.47	-0.24	2.21
-1.05	0.02	-1.74
0.09	-0.58	1.02
1.63	-0.53	0.06
1.11	-0.63	-0.93
-0.34	-0.46	-0.87
1.47	-0.24	2.21
-1.05	0.02	-1.74
0.09	-0.58	1.02
1.63	-0.53	0.06
1.11	-0.63	-0.93
0.09	-0.58	1.02
1.63	-0.53	0.06
1.11	-0.63	-0.93

Tiền xử lý dữ liệu

Modelling

Đặt vấn đề

Question/ Hypothesis

Thiết kế thử nghiệm

Experimental Design

Interpretation

Đánh giá mô hình

Assessment

Lấy mẫu

Data sampling

Xây dựng mô hình

What ML mostly about

Modelling

Tiền xử lý dữ liệu

Vấn đề, câu hỏi mới

Giải thích/phân tích kết quả

Interpretation

NEW Question/ Hypothesis

Thiết kế thử nghiệm

Experimental Design

Đánh giá mô hình

Assessment

Lấy mẫu

Data sampling

Xây dựng mô hình

What ML mostly about

Modelling

Tiền xử lý dữ liệu

PRINCIPLES OF MODELLING

Statistical reasoning (*)

(*) A machine learning algorithm does not necessarily have a probabilistic interpretation, or developed from a statistical framework. Nevertheless, statistical reasoning provides a rigorous mathematical tool for estimation and inference to make optimal decision (e.g. prediction, action) under **uncertainty**, which is one of the ultimate objectives in ML.

Contents

Đặt vấn đề

Question/ Hypothesis

Interpretation

Experimental Design

Đánh giá mô hình

Assessment

Data acquisition

Xây dựng mô hình

Tiền xử lý dữ liệu

Modelling

ML problem: Classification

Question

Is there any cat in an abitrary photo?

Experience: dataset of {image, label} pairs $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$

Modelling

predict \hat{y}_n – cat existence – given arbitrary x_n

Cat?
Not cat?

supervised learning

Image

$$\chi_n$$
N400×600×3

Prediction

 \hat{y}_n (single-class) {True, False} binary

classification problem

Assessment

Accuracy =
$$\frac{1}{N}\sum_{n}\mathbb{I}(\hat{y}_{n}=y_{n})$$

Precision, Recall, F1-score

Area Under Curve (AUC)

Example models:

Logistic regression (linear model)
Neural Net with sigmoid output (nonlinear model)

• • •

ML problem: Classification

Question

What is there in an abitrary photo?

Experience: dataset of {image, label} pairs $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$

Modelling

predict \hat{y}_n – object identity – given arbitrary x_n

supervised learning

Image

$$\chi_n$$
N400×600×3

Prediction

$$\hat{y}_n$$
 (multi-class)
 {1,2,3,4,5,6} categorical classification problem

Assessment

Accuracy =
$$\frac{1}{N}\sum_{n}\mathbb{I}(\hat{y}_{n}=y_{n})$$

Precision, Recall, F1-score

Area Under Curve (AUC)

• • •

Example models:

Softmax classification (linear model)
Neural Net with softmax output (nonlinear model)

ML problem: Regression

Question

How much is the price of a house given ...

Experience: dataset of {(area, location, #rooms), price} pairs $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$

Modelling

predict \hat{y}_n – house price – given arbitrary x_n

Area	100m ²
Location	24.7 ^o N 183.0 ^o E
#Rooms	3

Features/Predictors

$$\mathbb{R} \times \mathbb{R}^2 \times \mathbb{N}$$

Prediction

Assessment

squared_errors =
$$\frac{1}{N}\sum_{n}(\hat{y}_{n}-y_{n})^{2}$$

Example models/algorithms:
Linear regression (linear model)
Neural Net with linear output (nonlinear model)
Curve fitting algorithm

ML problem: Clustering

Question

What is the "topic" that a news article is talking about?

Experience: dataset of article content only $\mathcal{D} = \{x_n\}_{n=1}^N$

Modelling

predict $\overline{|z_n|}$ – "topic" (cluster) identity – given arbitrary x_n

Graphics:

- David Blei, KDD 2011
- https://lvdmaaten.github.io/tsne/exam ples/mnist_tsne.jpg

Assessment

mean_distance_to_clusters =
$$\frac{1}{N}\sum_n (x_n - \mu_{z_n})^2$$
 x_n $z_n =$ green

Note: "topic" = group/cluster in this context, and is <u>not</u> pre-defined We will meet the term "topic" again when visiting Topic models

Example models/algorithms:

k-means algorithm

Generative models: Mixture models, Topic models

A ML problem can also be:

- both supervised and unsupervised (semi-supervised)
- combination of regression and classification subproblems e.g. image localisation

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

Classification + Localization

CAT

PRINCIPLES OF MODELLING

1. Model structure - constructs relationships (*stochastic and/or deterministic*) between model elements: data, parameters, and hyperparameters.

Keywords: graphical model

2. Learning principle - defines a framework to estimate unknown parameters (and unobserved i.e. hidden/latent variables)

Keywords: Maximum Likelihood criterion, Bayesian inference, ++ others

3. Regularisation

Keywords: over-fitting, Bayesian inference, ++ others Relevant keywords: L2-regularisation (Ridge), L1-regularisation (LASSO)

 \Rightarrow ALGORITHM - implements 1 + 2 + 3 to train the model

Keywords: (stochastic) gradient descent, Expectation-Maximisation (EM), Variational Inference (VI), sampling-based inference methods

4. Model selection

Keywords: cross-validation

Before we get going...

"Mathematics is the art of giving the same name to different things."

-Henri Poincaré.

"The purpose of computation is insight, not numbers."

-Richard Hamming

$$p(\mathbf{w} | \alpha, \beta) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \int \left(\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1} \right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}} \right) d\theta,$$

$$p(D | \alpha, \beta) = \prod_{d=1}^{M} \int p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} \sum_{z_{dn}} p(z_{dn} | \theta_{d}) p(w_{dn} | z_{dn}, \beta) \right) d\theta_{d}.$$