El teorema de Cayley

Kevin Gerardo Messina Rodríguez O'Bryan Cárdenas-Andaur

Pares Ordenados, edición primavera 2024

7 de junio de 2024

Algo de historia

Sobre los 7 puentes del río Pregel, en Königsberg, nacería una de las ramas de las matemáticas, cuando la gente comenzó a preguntarse "¿Se pueden cruzar los 7 puentes de forma que solo se pueda pasar una única vez por cada uno de ellos?",Euler al notar el interés y el reto que esto suponía intentó resolver la pregunta, su técnica ejemplificar las zonas de tierra con puntos y los puentes por lineas , este problema se redució a recorrer una gráfica. y se concluyó que era imposible hacer este recorrido

Definiciones preliminares

Gráfica

Una **gráfica** G = (V, E) finita es un par ordenado formado por un conjunto finito y no vacío V = V(G) y un conjunto $E = E(G) \subset V \times V$. A los elementos de V se les llama **vértices** y a los de E **aristas**.

Definiciones preliminares

Gráfica

- Un camino en una gráfica G = (V, E) es una secuencia de vértices (v_0, v_1, \ldots, v_k) tal que $\{v_i, v_{i+1}\} \in E$ para todo $i \in \{0, 1, \ldots, k-1\}$.
- Un camino se dice simple si todos sus vértices son distintos, es decir, v_i ≠ v_j para todo i ≠ j.
- Un ciclo en una gráfica es un camino simple que empieza y termina en el mismo vértice.

Definiciones preliminares

Gráfica

- Una gráfica G se dice conexa si existe un camino entre cualquier par de vértices.
- Una gráfica conexa sin ciclos, es llamada árbol. A sus vértices de grado 1 se le denominan hojas. En varias situaciones es importante distinguir una hoja a la que se le denomina raíz.

El teorema de Cayley

Teorema sobre árboles

El número de árboles con n vértices etiquetados es n^{n-2} .

Idea de la demostración constructiva

Para ilustrar la construcción, sea n = 9 y la función $f : (9) \rightarrow (9)$ definida por f(1) = 2, f(2) = 8, f(3) = 3, f(4) = 2, f(5) = 1, f(6) = 9, f(7) = 3, f(8) = 4, f = (9) = 6. La gráfica dirigida que representa f es:

Idea de la demostración contructiva

Los elementos en algún ciclo dirigido son 2 < 3 < 4 < 6 < 8 < 9, y sus imágenes son, en orden: 8,3,2,9,4,6. Entonces el árbol con vértices distinguidos (I, F) que se asigna a f es:

Los elementos en algún ciclo dirigido son 2 < 3 < 4 < 6 < 8 < 9, y sus imágenes son, en orden: 8,3,2,9,4,6.

MUCHAS GRACIAS!

