1. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{27x^2 - 72} - \sqrt{57x} = 0$$

- A. $x \in [2.8, 3.3]$
- B. $x_1 \in [-2.1, -0.5]$ and $x_2 \in [3, 4]$
- C. $x \in [-2.1, -0.5]$
- D. All solutions lead to invalid or complex values in the equation.
- E. $x_1 \in [0.2, 1.7]$ and $x_2 \in [3, 4]$
- 2. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{18x^2 - 18} - \sqrt{0x} = 0$$

- A. $x_1 \in [-0.2, 1.7]$ and $x_2 \in [0, 5]$
- B. $x \in [-0.2, 1.7]$
- C. All solutions lead to invalid or complex values in the equation.
- D. $x \in [-1.4, 0.8]$
- E. $x_1 \in [-1.4, 0.8]$ and $x_2 \in [0, 5]$
- 3. Choose the graph of the equation below.

В.

9187-5854

C.

D.

E. None of the above.

4. What is the domain of the function below?

$$f(x) = \sqrt[6]{7x + 8}$$

A. $[a, \infty)$, where $a \in [-1.45, -1.05]$

B. $(-\infty, a]$, where $a \in [-1.43, -0.96]$

C. $(-\infty, \infty)$

D. $[a, \infty)$, where $a \in [-1.06, -0.66]$

E. $(-\infty, a]$, where $a \in [-1.01, -0.69]$

5. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt{x - 14} - 6$$

B.
$$f(x) = -\sqrt{x - 14} - 6$$

C.
$$f(x) = \sqrt{x+14} - 6$$

D.
$$f(x) = -\sqrt{x+14} - 6$$

- E. None of the above
- 6. What is the domain of the function below?

$$f(x) = \sqrt[3]{-4x + 8}$$

- A. The domain is $[a, \infty)$, where $a \in [1.3, 3.4]$
- B. The domain is $(-\infty, a]$, where $a \in [-1.58, 1.15]$
- C. $(-\infty, \infty)$
- D. The domain is $(-\infty, a]$, where $a \in [1.77, 2.6]$
- E. The domain is $[a, \infty)$, where $a \in [-1.3, 0.7]$
- 7. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt{x - 12} + 4$$

B.
$$f(x) = -\sqrt{x+12} + 4$$

C.
$$f(x) = \sqrt{x+12} + 4$$

D.
$$f(x) = \sqrt{x - 12} + 4$$

E. None of the above

8. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x+6} + 3$$

A.

C.

В.

- E. None of the above.
- 9. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{9x - 3} - \sqrt{-4x + 3} = 0$$

- A. $x_1 \in [0.12, 0.44]$ and $x_2 \in [-0.12, 0.69]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [-0.18, 0.07]$
- D. $x_1 \in [0.12, 0.44]$ and $x_2 \in [0.68, 1.53]$
- E. $x \in [0.45, 0.5]$

10. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-4x - 7} - \sqrt{9x - 4} = 0$$

- A. $x \in [-0.73, 0.25]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [-2.7, -1.21]$ and $x_2 \in [-0.2, 1.6]$
- D. $x \in [-1.04, -0.4]$
- E. $x_1 \in [-2.7, -1.21]$ and $x_2 \in [-0.76, 0.27]$