선형대수학팀

3팀

김수인 오정민 이수진 홍세정 강현주

INDEX

- 1. Linear Equation
 - 2. Space
- 3. Basic Subspace
- 4. Solving Ax = b
 - 5. Projection
 - 6. 회귀로의 적용

1

Linear Equation

』Linear Equation 』 Space Basic Subspace Solving Ax = b Projection 회귀로의 적용

■ Column Picture: Ax=b 문제는 이 관점으로 보자!

일반화된 식
$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

"행렬의 각 column의 어떤 선형결합이 b벡터를 만드는가?"

Space

Linear Equation Space Basic Subspace Solving Ax = b Projection 회귀로의 적용

■ Subspace : 벡터 공간의 부분집합

subspace

벡터 공간의 부분집합

+

벡터 공간의 조건을 만족

Space

Linear Equation |

Space

Basic Subspace

Solving Ax = b

Projection

회귀로의 적용

■ Subspace : 대표적인 subspace?

원점을 지나는 하나의 직선 위에 있는 벡터들

- 방향이 같은 벡터들
- 한 성분의 스칼라 곱으로 다른 성분을 만들 수 있다

$$\begin{bmatrix} a \\ 2a \end{bmatrix} + \begin{bmatrix} b \\ 2b \end{bmatrix} = \begin{bmatrix} a+b \\ 2(a+b) \end{bmatrix}$$
$$k \begin{bmatrix} a \\ 2a \end{bmatrix} = \begin{bmatrix} ka \\ k(2a) \end{bmatrix}$$

Linear Equation

Space

Basic Subspace |

Solving Ax = b

Projection

회귀로의 적용

■ 행렬의 subspace : column space, null space, row space, left null space

Column space

Ax=b

"모든 b에 대해 solution 있는가?"

column space = R^n 공간

column space = \mathbb{R}^n 내부의 n보다 작은 차원의 subspace

Linear Equation

Space

■Basic Subspace Solving Ax = b

Projection

회귀로의 적용

여러가지 개념: 선형독립

서형 독립

:(linearly independence)

x_{1.} x_{2. ...} x_n 벡터의 zero combination을 제외한 어떠한 Linear

combination도 영벡터를 반환하지 않을 때, $x_1, x_2, ..., x_n$ 벡터는

linearly independent하다고 한다.

Linear Equation

Space

Basic Subspace Solving Ax = b

Projection

회귀로의 적용

여러가지 개념 : 선형독립

선형 독립의 다른 표현

x1, x2, x_n을 column으로 가지는 행렬 A에 대해

- Ax = 0을 만족하는 x 벡터는 영벡터 뿐이다.
- A의 Null space가 영벡터만 포함한다.
- 행렬 A가 역행렬을 가지지 않는다.

Linear Equation

Space

Basic Subspace Solving Ax = b

Projection

회귀로의 적용

여러가지 개념 : Span

Span

 $x_{1.} x_{2.....} x_{n}$ 벡터가 어떤 공간을 Span 한다는 말은, $x_{1.} x_{2.....} x_{n}$

벡터의 모든 linear combination이 그 어떤 공간에 속한다는 뜻

x_{1,} x_{2, ...,} x_n 벡터의 모든 linear combination 벡터를 <mark>합쳐놓았을 때</mark> <mark>만들어지는 공간을 x_{1.} x_{2. ...} x_n 벡터가 span하는 공간</mark>이라 함

Linear Equation

Space

Basic Subspace \blacksquare Solving Ax = b

Projection

회귀로의 적용

여러가지 개념: Basis

Basis

어떤 V 공간을 Span하는 벡터들의 최소 집합

Basis vector 의 성질

- 1) linearly independent하다.
- 2) 해당 벡터들이 V 공간을 Span한다.

Linear Equation

Space

Basic Subspace \parallel Solving Ax = b

Projection

회귀로의 적용

여러가지 개념: Basis

- Ex. R3 공간

- 평면 공간의 basis는 빨간색 벡터와 파란색 벡터
- 따라서 basis의 개수는 2개

- R³ 공간의 basis는 빨간색, 파란색, 주황색 벡터
- 따라서 basis의 개수는 3개

공간의 <mark>차원보다 기저 벡터의 개수가 많을 수 없다!</mark>

Projection

Linear Equation

Space

Basic Subspace

Solving Ax = b

Projection

회귀로의 적용

Why projection? : y data를 최대한 표현하기 위해

예측하려는 종속변수

Ax=b problem은 사실 우리가 아는 회귀식을 푸는 것

Projection

Linear Equation

Space

Basic Subspace

Solving Ax = b

Projection

회귀로의 적용

■ 벡터-벡터 projection : 벡터와 벡터의 오차를 최소화

Vector 1를 Vector2에 projection

Vector 2의 방향으로 만드는 직선 공간에 Vector1을 매핑

Vector 2가 만드는 직선 공간으로 공간을 압축시키는

선형변환

회귀로의 적용

Linear Equation

Space

Basic Subspace

Solving Ax = b

Projection

회귀로의 적용

 \blacksquare 회귀식에서의 프로젝션 : $X\hat{\beta} = \hat{y}$

$$X (X^T X)^{-1} X^T y = X \hat{\beta} = \hat{y}$$

- =선형변환
- =projection matrix
- =hat matrix

회귀의 개념은 결국 X data의 변수들로 만들어지는 공간에 y벡터를 투영시켜 가장 가까운 해를 찾는 것이다.

=projection 개념이 적용된다