```
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. «
                       >>
15.
16.
17.
18.
19.
                           G(V,\Gamma).
                                                               S \subset V
S,
                                                     \Gamma^+(S) \cap S = \emptyset.
                                          Φ
1. \varnothing \in \Phi, S \in \Phi.
2. A \subset S A \in \Phi.
                                                                                              G
                                                           a = \max_{S \in \Phi} |S|.
```


$$S = \{v_4, v_5, v_6\} \ ($$

$$a = 3.$$

$$G$$

$$G(V,\Gamma)$$
. $,$ $T \subset V$ $v \notin T$ $\Gamma^+(v) \cap T \neq \emptyset$,

$$V \setminus T \subset \Gamma^{-1}(T)$$
.

$$\Psi \ - \\ \vdots$$

1. $T \in \Psi$.

2.
$$T \subset A$$
 $A \in \Psi$.

G = (V, E) —

 $f:V\to N_k$,

k -

 $N_k = \{1, 2, ..., k\},\ k$ G.

 $(u,v) \in E$

 $f(u)\neq f(v)$.

k -

|V| = kf

k

$$V \qquad G \qquad V_1 \cup V_2 \cup \ldots \cup V_l = V \,, \qquad l \leq k \,, \quad V_i \neq \varnothing \,,$$

$$i = 1, 2, \ldots, l \,. \qquad \qquad V_i \, - \qquad \qquad ,$$

1.
$$K_n$$
, n , $X_p(K_n) = n$

2.

 K_n-e ,

$$n \\ X_p(K_n - e) = n - 1$$

3.

$$|A| = m$$

$$|B|=n$$
,

1-2-

2-

3-3-

m.

,

$$r = \max_{v \in V} (\deg(v))$$

$$G = (V, E).$$

: ,

2 2 4 4 2 2 1 2 9 3 4 12 10 5 6 11 8 7

n

4

 G_1 G_2 .

12 ,

 $, x(G_1) = 4,$

 K_4 .

 $x(G_2) = 2,$

 G_1

 $x(G_2)=2.$

•

 $X(G) \ge c$, c—

G.

 $-- X(G) \leq c$,

c

G ,

G $\check{\mathsf{S}}(G).$

 $X(G) \ge \check{S}(G)$. G

G

GS(G).

G, a

, $s(G) = \tilde{S}(\overline{G})$. \bar{G} —

 $G \\ X(G) \ge \frac{n(G)}{\mathsf{S}(G)}$

G - n = n(G) -G,

m = m(G)

 $1,2,...,l;\ l \leq i$, 1. l v_1, v_2, \dots, v_i

 v_{i+1}

1. .

2. 1.

3. 1.

4. , .4.1.–4.2.:

4.1.

4.2.

5.

·

•

•

```
1.
2.
3.
procedure visit(i: integer);
begin
if i = n + 1 then Print else
begin
 for c := \operatorname{color}[i] + 1 to k \operatorname{do} / / k -
                                        ) then
 begin color[i] := c; visit(i + 1); end else
 visit(i);
end;
end;
                             G(V,E).
1.
                           monochrom := \emptyset,
2.
                                                                      «
Procedure Greedy
For (
                                                   v \in V ) do
If v
                                      monochrom then
begin
 color(v):=
monochrom := monochrom \cup \{v\}
end
                                                                        (2
                                                                                    ),
```


.

,

$$r \ge 3$$
, $X_p(G) \le r$.

, , , K_{1n} , . . .

Wolfgang Haken. Every Planar Map is Four Colorable. Contemporary Mathematics 98, American Mathematical Society, 1980).

8
$$v_1, v_2, ..., v_8$$
. $a_1, a_2, ..., a_6$.

:

-								
	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

?

. G, $v_1,v_2,...,v_8, \qquad , \qquad , \qquad , \qquad ,$).

 v_1, v_2, v_4, v_5 G, K_4 . $X_{G} \ge 4$. $X_{G} \ge 4$. $X_{G} \ge 6$, X_{G}

1- v_1 v_6 ,
2- v_2 v_3 ,
3- v_4 v_8 ,
4- v_5 v_7 .

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

1. 2. 3. «). : 1 2. 1. 2. . Y, . Z. **«** 1, 2, 1, 2, M1, 2, 1 -). 2 (

,

 $1, \quad 2, \quad 1 \qquad 2 \\ K_4. \qquad ,$

4. 4 .

4, . .

.

	1	2
1	•	
2	•	
3	•	•
4		

