Cálculo I - C 2025/2026

Ficha de Exercícios 1

Complementos de funções reais de variável real

1. Calcule:

- (a) $sen (arccos(\frac{1}{2}))$
- (b) $\arccos(\cos(\frac{3\pi}{2}))$
- (c) $\operatorname{sen}\left(\operatorname{arcsen}\left(-\frac{1}{2}\right)\right)$
- (d) $\operatorname{sen}\left(\operatorname{arccos}\left(-\frac{1}{2}\right)\right)$
- (e) $\cot (\arcsin(\frac{12}{13}))$
- (f) $\cos(2 \cdot \arctan(\frac{4}{3}))$
- (g) $\operatorname{arccotg}\left(\operatorname{cotg}\left(\frac{1}{2}\right)\right)$
- (h) $\operatorname{arccotg}\left(\operatorname{tg}\frac{\pi}{4}\right)$
- (i) $arctg(tg(\pi))$

Resolução (d): sen $\left(\arccos(-\frac{1}{2})\right) = \operatorname{sen}\left(\pi - \frac{\pi}{3}\right) = \operatorname{sen}\frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

- 2. Simplifique sen $(\operatorname{arctg} x)$.
- 3. Mostre que:
 - (a) $\cos^2(\operatorname{arcsen} x) = 1 x^2, \ \forall x \in [-1, 1].$
 - (b) $\sin^2(\arccos x) = 1 x^2, \ \forall x \in [-1, 1].$
- 4. Seja f a função definida por $f(x) = \arctan(\ln(2x+1))$.
 - (a) Determine o domínio e o contradomínio de f.
 - (b) Justifique que f é invertível e caracterize a sua inversa, f^{-1} , indicando o domínio, o contradomínio e a expresão analítica que a define.

Resolução:

- (a) $D_f = \{x \in \mathbb{R} : 2x + 1 > 0\} =] \frac{1}{2}, +\infty[$. Uma vez que $\ln(2x + 1)$, para $x \in D_f$, toma todos os valores de \mathbb{R} , então $CD_f =] - \frac{\pi}{2}, \frac{\pi}{2}[$.
- (b) f é invertível porque é injetiva (porque f é a composta de duas funções injetivas).

$$D_{f^{-1}} = CD_f =] - \frac{\pi}{2}, \frac{\pi}{2}[.$$

 $CD_{f^{-1}} = D_f =] - \frac{1}{2}, +\infty[.$

Expressão designatória: para $x \in D_f$ e $y \in CD_f$, tem-se que

$$y = f(x) \Leftrightarrow y = \operatorname{arctg}(\ln(2x+1)) \Leftrightarrow tg(y) = \ln(2x+1) \Leftrightarrow 2x+1 = e^{\operatorname{tg}(y)} \Leftrightarrow x = \frac{1}{2} \left(e^{\operatorname{tg}(y)} - 1 \right).$$

Logo
$$f^{-1}(x) = \frac{1}{2} \left(e^{\operatorname{tg}(x)} - 1 \right)$$
.

- 5. Caracterize a função inversa das seguintes funções indicando o domínio, o contradomínio e a expressão analítica que as definem. Considere as restrições principais das funções trigonométricas.
 - (a) $f(x) = \frac{1}{2} \text{sen } (x + \frac{\pi}{2});$
 - (b) $f(x) = \frac{\pi}{2} \frac{2\arcsin(1-x)}{3}$;
 - (c) $f(x) = \operatorname{tg}\left(\frac{\pi}{2-x}\right);$
 - (d) $f(x) = e^{\arcsin x}$;
 - (e) $f(x) = 2\arcsin(\sqrt{x}) \pi$;
 - (f) $f(x) = 3\arccos(\sqrt{x+4}) \frac{\pi}{2}$;
 - (g) $f(x) = \frac{1}{\pi + \arccos(x-2)};$
 - (h) $f(x) = \pi 3 \arctan \left(\frac{x-1}{2}\right);$
 - (i) $f(x) = \operatorname{arccotg} (\ln(x+1))$.
- 6. Determine o domínio, o contradomínio e os zeros das funções dadas por:
 - (a) $f(x) = \pi \arccos(2x + 1)$
 - (b) $g(x) = -\frac{\pi}{3} + \operatorname{arccotg}(-3x)$
 - (c) $h(x) = \arctan\left(\frac{1}{x+1}\right)$
 - (d) $m(x) = \arcsin\left(x \frac{x^2}{2}\right)$

Resolução (a):

$$D_f = \{x \in \mathbb{R} : -1 \le 2x + 1 \le 1\} = [-1, 0].$$

Uma vez que 2x + 1, para $x \in D_f$, toma todos os valores do intervalo [-1, 1], então

$$0 \le \arccos(2x+1) \le \pi$$
.

Logo, $0 \le \pi - \arccos(2x+1) \le \pi$, o que permite concluir que $CD_f = [0, \pi]$. Para $x \in D_f$ temos que

$$f(x) = 0 \Leftrightarrow \arccos(2x+1) = \pi \Leftrightarrow 2x+1 = \cos(\pi) \Leftrightarrow x = -1.$$

Logo x = -1 é o único zero de f.

- 7. Seja f a função dada por $f(x) = \arcsin(x^2 1)$.
 - (a) Determine o domínio e o contradomínio de f.
 - (b) Indique as coordenadas dos pontos de intersecção do gráfico de f com os eixos coordenados.

2

8. Considere a função g definida por

$$g(x) = \arccos\left(\frac{1}{x}\right).$$

Indique o domínio, o contradomínio e os zeros de q.

- 9. Seja $f(x) = \arctan(x^3 1)$.
 - (a) Caracterize a função inversa de f, indicando o domínio, o contradomínio e a expressão analítica.
 - (b) Resolva a inequação $f(x) > \frac{\pi}{4}$.
- 10. Calcule, se existir, $\lim_{x\to 0} g(x)$ onde

$$g(x) = \begin{cases} \sqrt{-x} \cdot \operatorname{sen}\left(\frac{1}{x^3}\right) & \text{se } x < 0 \\ \operatorname{arctg}(x^2) & \text{se } x \ge 0. \end{cases}$$

- 11. Calcule, caso existam, os seguintes limites:
 - (a) $\lim_{x\to a} \frac{x-a}{|x-a|}$
 - (b) $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{x}$
 - (c) $\lim_{x\to+\infty} \frac{1}{x} \cot \left(\frac{2}{x}\right)$
 - (d) $\lim_{x\to+\infty} \arctan(1-x)$
 - (e) $\lim_{x\to-\infty} \arccos\left(\frac{1}{x}\right)$
 - (f) $\lim_{x\to+\infty} \left(1+\frac{2}{x}\right)^x$
- 12. Determine k por forma a que a função f seja contínua no seu domínio.

(a)
$$f(x) = \begin{cases} x^5 \operatorname{sen} \frac{1}{x^2} + 1 & \text{se } x \neq 0 \\ k & \text{se } x = 0 \end{cases}$$

(b) $f(x) = \begin{cases} (x^2 - 1) \cosh(x^2) + 2 & \text{se } x \neq 0 \\ k & \text{se } x = 0 \end{cases}$
(c) $f(x) = \begin{cases} \operatorname{arccos} \left(\frac{2}{x}\right) & \text{se } x \geq 2 \\ 2ke^{x-2} & \text{se } x < 2 \end{cases}$

- 13. Mostre que a equação $x^5 3x = 1$ admite pelo menos uma solução no intervalo]1, 2[.
- 14. Mostre que a equação $x^3+4x^2+2x+5=0$ tem pelo menos uma solução em $\mathbb R.$
- 15. Seja $f(x) = 6x + \sin(1 x^2) + 3\cos(x^2 1)$. Mostre que existe pelo menos um zero de f no intervalo]-1,1[.
- 16. Prove que a equação $x^3 = 3x^2 1$ tem pelo menos uma raiz real.
- 17. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} 1 - x & se \quad x < 0 \\ x^2 + 3 & se \quad x \ge 0. \end{cases}$$

- (a) A função f tem mínimo global no intervalo [-1,1]?
- (b) A alínea anterior contradiz o Teorema de Weierstrass? Justifique.

18. Sejam k um parâmetro real e $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x^3}\right) + k & se \quad x < 0\\ \arctan\left(\cos(x)\right) - 2\operatorname{sen}\left(\frac{x}{2}\right) & se \quad x \ge 0. \end{cases}$$

- (a) Existe algum valor de k que torne a função f contínua em x=0? Justifique convenientemente.
- (b) Mostre que f tem pelo menos um zero no intervalo $]\pi, 2\pi[$.

Resolução:

(a) Observe-se que

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x^{2} \cos \left(\frac{1}{x^{3}} \right) + k \right) = 0 + k = k$$

$$\lim_{x \to 0^{-}} x^{2} \cos \left(\frac{1}{x^{3}} \right) = 0$$

porque

(uma vez que o produto de um infinitésimo por uma função limitada é um infinitésimo).

Por outro lado,

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left(\operatorname{arctg}\,\left(\cos(x)\right) - 2\mathrm{sen}\,\left(\frac{x}{2}\right)\right) = \operatorname{arctg}\,\left(1\right) - 2\mathrm{sen}\,\left(0\right) = \frac{\pi}{4}.$$

f é contínua em x=0 se e só se $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$. Logo, f é contínua em x=0 se $k=\frac{\pi}{4}$.

- (b) Uma vez que
 - f é contínua em $[\pi, 2\pi]$
 - $f(\pi) = \arctan(\cos(\pi)) 2\sin(\frac{\pi}{2}) = -\frac{\pi}{4} 2 < 0$
 - $f(2\pi) = \arctan(\cos(2\pi)) 2\sin(\pi) = \frac{\pi}{4} > 0$

então, pelo Teorema de Bolzano-Cauchy, podemos concluir que

$$\exists c \in]\pi, 2\pi[: f(c) = 0,$$

o que prova que f tem pelo menos um zero em $]\pi, 2\pi[$.

- 19. Determine uma equação da reta tangente e da reta normal ao gráfico de f onde $f(x) = e^{\operatorname{Sen}(x-1)}$ no ponto de abcissa x = 1.
- 20. Considere a função f definida por $f(x) = x^2 \ln x + 11x \frac{x^2}{2}$. Determine, caso exista, $a \in \mathbb{R}^+$ por forma a que a reta tangente ao gráfico de f no ponto de abcissa x = a tenha declive m = 11.
- 21. Escreva uma equação da reta tangente ao gráfico da função f definida por $f(x) = \sqrt{x}$ no ponto de abcissa 4.
- 22. Em cada uma das alíneas que se seguem, determine a função derivada da função considerada.
 - (a) $f(x) = (x-1)(x^2+3x)$;
 - (b) $f(x) = \sqrt[3]{(2x-1)^2}$;
 - (c) $f(x) = \frac{\cos x}{1-\operatorname{Sen} x}$;
 - $(d) f(x) = x^2 e^{x^2};$

- (e) $f(x) = \arcsin \sqrt{x}$;
- (f) $f(x) = 3^{\text{tg}x}$;
- (g) $f(x) = \log_3(\operatorname{tg} x)$
- (h) $f(x) = e^{\frac{x^3}{\sqrt{x}-1}}$;
- (i) $f(x) = \cos(\log_2(x^2));$
- (j) $f(x) = (1 x^2) \ln x$;
- (k) $f(x) = (1 + x^2) \arctan x;$
- (1) $f(x) = x^2 \frac{\ln(x^2)}{x}$.
- 23. Determine a derivada de cada uma das funções seguintes:
 - (a) $f(x) = \operatorname{arccotg}(\operatorname{sen}(4x^3));$
 - (b) $f(x) = \arcsin \frac{1}{x^2}$;
 - (c) $f(x) = \arccos(1 e^x);$
 - (d) $f(x) = \arctan(1 + \ln x)$.
- 24. Considere a função f definida por $f(x) = 5x^7 + 6x^3 + x + 9$. Sabendo que f(-1) = -3 e que f é invertível, determine $(f^{-1})'(-3)$.
- 25. Considere a função f definida por $f(x) = 4x^3 + x + 2$. Sabendo que f é invertível, determine $(f^{-1})'(2)$.
- 26. Para cada uma das funções seguintes determine $(f^{-1})'$ utilizando o Teorema da derivada da função inversa.
 - (a) $f(x) = x^3 + 1$;
 - (b) $f(x) = \ln(\arcsin x)$, com $x \in]0,1[$;
 - (c) $f(x) = \frac{x^2}{1-x^2}$, com $x \in]-1,0[$;
 - (d) $f(x) = \begin{cases} -x^2 & \text{se } x \ge 0\\ 1 x^3 & \text{se } x < 0 \end{cases}$.
- 27. Mostre que se a>0 a equação $x^3+ax+b=0$ não pode ter mais que uma raiz real, qualquer que seja $b\in\mathbb{R}.$
- 28. Verifique que x=0 é raiz da equação $e^x=1+x$. Mostre que esta equação não pode ter outra raiz real.
- 29. Mostre que a função $f(x) = \arctan(x-2) + 2x 5$ tem um único zero no intervalo]2,3[.
- 30. Utilize o Teorema de Rolle para provar que:
 - (a) O polinómio $x^{102}+ax+b,$ com $a,b\in\mathbb{R},$ tem no máximo duas raízes reais.

Resolução: Seja $f(x) = x^{102} + ax + b$. Observe-se que $f'(x) = 102x^{101} + a$ e, portanto, $f'(x) = 0 \Leftrightarrow x = \sqrt[101]{-\frac{a}{102}}$.

Suponhamos, para redução ao absurdo, que f tem pelo menos 3 zeros, digamos x_1, x_2, x_3 , onde supomos que $x_1 < x_2 < x_3$. Pelo Teorema de Rolle, podemos concluir que existe pelo menos um zero de f' em $]x_1, x_2[$ e pelo menos um zero de f' em $]x_2, x_3[$. Mas isto é absurdo, porque f' tem um único zero em \mathbb{R} . Logo f tem no máximo dois zeros e, portanto, o polinómio dado tem no máximo duas raízes reais.

5

(b) O polinómio $x^{101}+ax+b,$ com $a,b\in\mathbb{R},$ tem no máximo três raízes reais.

31. Prove que:

- (a) para todo o $x \in]0,1[$ se tem $\arcsin x > x;$
- (b) para todo o $x \ge 0$ se tem sen $x \le x$;

Resolução: Seja $f(x) = \operatorname{sen} x - x$, com $x \in \mathbb{R}$. Observe-se que $f'(x) = \cos x - 1 \le 0$, para todo o $x \in \mathbb{R}$. Logo f é decrescente em \mathbb{R} e, para todo o $x \ge 0$, tem-se que $f(x) \le f(0) \Leftrightarrow \operatorname{sen} x - x \le 0$, como se pretendia demonstrar.

- (c) para todo o x > 0 se tem $\ln x < x$.
- 32. Seja f uma função real de variável real. Mostre que se f admite terceira derivada no intervalo [a,b] e f(a) = f(b) = f'(a) = f'(b) = 0, então existe $c \in]a,b[$ tal que f'''(c) = 0.
- 33. Considere a função f definida pela expressão analítica $f(x) = \arcsin(1-x) + \sqrt{2x-x^2}$.
 - (a) Determine o domínio de f.
 - (b) Mostre que $f'(x) = -\frac{x}{\sqrt{2x-x^2}}$.
 - (c) Justifique que f atinge um máximo global y_M e um mínimo global y_m . Determine também esses valores
 - (d) Determine o contradomínio de f.
- 34. Seja h a função de domínio \mathbb{R} definida por $h(x) = \arctan(x^2 4x)$. Estude h quanto à existência de extremos e determine os seus intervalos de monotonia.
- 35. Considere a função g definida por $g(x) = \arcsin((x-1)^2)$.
 - (a) Determine o domínio de g.
 - (b) Mostre que a equação $g(x) = \frac{\pi}{6}$ tem pelo menos uma solução no intervalo [1,2].
 - (c) Estude g quanto à existência de extremos locais e determine os seus intervalos de monotonia.
 - (d) A função g é invertível? Justifique a sua resposta.
- 36. Calcule, caso exista, o limite considerado em cada uma das alíneas que se seguem:
 - (a) $\lim_{x \to +\infty} (\ln(3x^2 + 2) \ln(x^2));$
 - (b) $\lim_{x \to 0} \frac{\sin^2 \frac{x}{3}}{x^2}$;
 - (c) $\lim_{x \to 0} \frac{\sqrt{x+1} x}{x};$
 - (d) $\lim_{x\to 0} \frac{2 \operatorname{arcsen} x}{3x}$;
 - (e) $\lim_{x \to 0} \frac{\cos x 1}{x \operatorname{sen} x};$
 - (f) $\lim_{x \to -\pi/4} \frac{\cos(2x)}{1 + \cot x};$
 - (g) $\lim_{x \to +\infty} \frac{\ln x}{x^p}$ com $p \in \mathbb{R}^+$;
 - (h) $\lim_{x \to 1} \frac{1-x}{\ln(2-x)}$;
 - (i) $\lim_{x \to 0^+} x^x;$
 - $(j) \lim_{x \to +\infty} x^{\frac{1}{x}};$

- (k) $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^x$;
- (1) $\lim_{x \to 0^+} x^{\frac{1}{\ln x}}$;
- (m) $\lim_{x\to 0} (\cos(2x))^{\frac{1}{x^2}};$
- (n) $\lim_{x \to 0^{+}} x^{\frac{1}{x}}$;
- (o) $\lim_{x\to 0^+} (\operatorname{tg} x)^{\operatorname{tg}}(2x);$
- (p) $\lim_{x \to +\infty} \left(\frac{x+3}{x-1} \right)^{x+3}$;
- (q) $\lim_{x \to 1} \frac{e^{x-1} x}{(x-1)^2}$.
- 37. Mostre que existe $\lim_{x\to +\infty} \frac{x-\sin x}{x+\sin x}$, mas não pode aplicar-se para o seu cálculo a regra de Cauchy.
- 38. Considere a função g de domínio \mathbb{R} definida por

$$g(x) = \begin{cases} \arctan(x^2) & \text{se } x \le 0 \\ x^2 \text{sen } \left(\frac{1}{x}\right) & \text{se } x > 0 \end{cases}$$

- (a) Mostre que g é diferenciável em x = 0 e indique o valor de g'(0).
- (b) Mostre que existe pelo menos um $c \in \left]0, \frac{2}{\pi}\right[$ tal que $g'(c) = \frac{2}{\pi}$.

Resolução:

- (a) $g'_{-}(0) = \lim_{x \to 0^{-}} \frac{g(x) g(0)}{x 0} = \lim_{x \to 0^{-}} \frac{\arctan(x^{2})}{x} = \lim_{x \to 0^{-}} \frac{2x}{1 + x^{4}} = 0$ (pela Regra de Cauchy). $g'_{+}(0) = \lim_{x \to 0^{+}} \frac{g(x) g(0)}{x 0} = \lim_{x \to 0^{+}} \frac{x^{2} \sin(1/x)}{x} = \lim_{x \to 0^{+}} x^{2} \sin(1/x) = 0$ (porque o produto de um infinitésimo por uma função limitada é um infinitésimo). Como $g'_{-}(0) = g'_{+}(0) = 0$, então g é diferenciável em x = 0 e g'(0) = 0.
- (b) Uma vez que:

 - g é contínua em $\left[0, \frac{2}{\pi}\right]$ g é diferenciável em $\left]0, \frac{2}{\pi}\right[$

então, pelo Teorema de Lagrange, podemos concluir que existe pelo menos um $c \in [0, \frac{2}{\pi}]$ tal que

$$g'(c) = \frac{g(\frac{2}{\pi}) - g(0)}{\frac{2}{\pi} - 0} = \frac{(\frac{2}{\pi})^2 \operatorname{sen}(\frac{2}{\pi})}{\frac{2}{\pi}} = \frac{2}{\pi}$$

como se pretendia demonstrar.

39. Considere a função f definida em $]-\infty,1]$ por

$$f(x) = \begin{cases} \frac{\arctan x}{e^x - 1} & se \quad x < 0\\ 1 + \arcsin x & se \quad 0 \le x \le 1. \end{cases}$$

- (a) Verifique se f é contínua em x = 0.
- (b) Mostre que o gráfico de f tem a concavidade voltada para cima no intervalo]0,1[.
- (c) Calcule $\lim_{x\to 0^+} (f(x))^{\frac{1}{x}}$.

40. Considere a função h, de domínio $\mathbb{R} \setminus \{0\}$, definida por $h(x) = \arctan\left(\frac{x}{e^x - 1}\right)$.

Mostre que as retas y=0 e $y=\frac{\pi}{2}$ são assíntotas horizontais ao gráfico de h.

- 41. Para cada uma das funções seguintes, determine a aproximação linear da função f no ponto x=a.
 - (a) $f(x) = x^3$, a = 2;
 - (b) $f(x) = e^x$, a = 2;
 - (c) $f(x) = 1 + 2x x^3$, a = 1.
- 42. Determine os polinómios de Taylor seguintes:
 - (a) $T_0^3(x^3+2x+1)$;
 - (b) $T_{\pi}^{3}(\cos x);$
 - (c) $T_1^3(xe^x)$;
 - (d) $T_0^5(\sin x)$;
 - (e) $T_0^6(\sin x)$.
- 43. Seja $f(x)=(1+x^2)\operatorname{arctg}(1+x),\ x\in\mathbb{R}$. Determine a aproximação linear de f numa vizinhança de x=-1.
- 44. Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo]-1,0[, com erro absoluto inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro absoluto cometido nessa aproximação.
- 45. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1, 1], com erro absoluto inferior a $\frac{1}{2} \times 10^{-4}$.
- 46. Usando o resto de Lagrange, determine um majorante para o erro absoluto cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 em torno do ponto $a = \pi$.

Exercícios de revisão

47. Determine os zeros da função dada por

$$g(x) = \begin{cases} \arccos(x^2) & \text{se } -1 \le x < 0 \\ e^{-x+1} & \text{se } x \ge 0. \end{cases}$$

48. Considere a função h definida por $h(x) = \arccos(e^{x-1}) + \pi$. Justifique que h é invertível e caracterize a função inversa de h, indicando o domínio, o contradomínio e a expressão analítica que a define.

8

49. Considere a função f definida em \mathbb{R} por

$$f(x) = \begin{cases} x^2 \cdot \cos\left(\frac{\pi}{x}\right) & \text{se } x < 0 \\ \alpha & \text{se } x = 0 \end{cases}$$
$$\arctan\left(\ln(x+1)\right) + \frac{e^{x-x^2}}{x} & \text{se } x > 0 \end{cases}$$

onde α é um parâmetro real.

- (a) Determine os limites laterais de f na origem.
- (b) Pode indicar um valor para $\alpha \in \mathbb{R}$ de modo que f seja contínua em x=0? Justifique a sua resposta.
- (c) O gráfico de f admite assíntotas verticais? Justifique a sua resposta.
- 50. Prove que a equação $4x^3-6x^2+1=0$ tem 3 raízes distintas e localize-as em intervalos de $\mathbb R$ cujos extremos sejam números inteiros consecutivos.
- 51. Seja $\alpha \in \mathbb{R}$ e h a função definida por $h(x) = \alpha \arcsin(x^2 1) + x^2 \frac{\pi}{2}x$.
 - (a) Determine o domínio de h.
 - (b) Mostre que a função h tem pelo menos um zero no intervalo]-1,1[, qualquer que seja o valor do parâmetro α .
- 52. Sejam α um parâmetro real e $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} \frac{4}{\pi} \operatorname{arccotg}(e^x) - \operatorname{sen}\left(\frac{\pi}{2} + x\right) & \text{se } x \le 0\\ \sqrt{x} \cdot \cos\left(\frac{\alpha}{x}\right) & \text{se } x > 0 \end{cases}$$

- (a) Para que valores de α a função f contínua em x=0? Justifique convenientemente.
- (b) Considere $\alpha = 1$. Mostre que f tem pelo menos um zero no intervalo $\frac{1}{\pi}, \frac{4}{\pi}$
- 53. Calcule o limite $\lim_{x\to 0^+} (1 + \arcsin(x^2))^{\frac{1}{x}}$.
- 54. Seja $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ a função real de variável real definida por

$$f(x) = e^{\frac{1}{x}} + \operatorname{arctg}\left(\frac{1}{x}\right).$$

Estude f quanto à monotonia e existência de extremos locais.

55. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{e^{\sin(x^2)} - 1}{x} & \text{se } x < 0 \\ 0 & \text{se } x = 0 \\ \frac{\ln(1 + x^2)}{x} & \text{se } x > 0. \end{cases}$$

Usando a definição de derivada, verifique se f é diferenciável em x = 0 e, em caso afirmativo, indique o valor de f'(0).

9

- 56. Mostre que x=2 é o único zero da função h definida por $h(x)=\frac{\pi}{4}-\arcsin\left(\frac{\sqrt{x}}{2}\right)-x+2$.
- 57. Seja $f(x) = \ln(1+x)$, com $x \in]-1, +\infty[$.
 - (a) Determine o polinómio de MacLaurin de ordem 2 da função $f,\,T_0^2f(x).$
 - (b) Usando o polinómio $T_0^2 f(x)$, determine um valor aproximado de ln(1.1) e mostre que o erro absoluto cometido nessa aproximação é inferior a $\frac{1}{3} \times 10^{-3}$.

Soluções:

1. (a)
$$\frac{\sqrt{3}}{2}$$
; (b) $\frac{\pi}{2}$ (c) $-\frac{1}{2}$; (d) $\frac{\sqrt{3}}{2}$; (e) $\frac{5}{12}$; (f) $-\frac{7}{25}$; (g) $\frac{1}{2}$; (h) $\frac{\pi}{4}$; (i) 0.

- $2. \ \frac{x}{\sqrt{1+x^2}}$
- 3. ——
- 4. Resolvido

5. (a)
$$D_{f^{-1}} = \left[-\frac{1}{2}, \frac{1}{2} \right]$$
; $CD_{f^{-1}} = \left[-\pi, 0 \right]$; $f^{-1}(y) = \arcsin(2y) - \frac{\pi}{2}$;

(b)
$$D_{f^{-1}} = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$
; $CD_{f^{-1}} = [0, 2]$; $f^{-1}(y) = 1 - \operatorname{sen}\left(\frac{3\pi}{4} - \frac{3y}{2}\right)$;

(c)
$$D_{f^{-1}} = \mathbb{R} \setminus \{0\}$$
; $CD_{f^{-1}} =]-\infty, 0[\cup]4, +\infty[$; $f^{-1}(y) = 2 - \frac{\pi}{\arctan y}$;

(d)
$$D_{f^{-1}} = \left[e^{-\frac{\pi}{2}}, e^{\frac{\pi}{2}} \right] \; ; \; CD_{f^{-1}} = [-1, 1] \; ; \; f^{-1}(y) = \operatorname{sen}(\ln y);$$

(e)
$$D_{f^{-1}} = [-\pi, 0]$$
; $\mathcal{CD}_{f^{-1}} = [0, 1]$; $f^{-1}(y) = \operatorname{sen}^{2}\left(\frac{y+\pi}{2}\right)$;

(f)
$$D_{f^{-1}} = \left[-\frac{\pi}{2}, \pi \right]$$
; $CD_{f^{-1}} = \left[-4, -3 \right]$; $f^{-1}(y) = \cos^2\left(\frac{y + \frac{\pi}{2}}{3}\right) - 4$;

(g)
$$D_{f^{-1}} = \left[\frac{1}{2\pi}, \frac{1}{\pi}\right]$$
; $CD_{f^{-1}} = [1, 3]$; $f^{-1}(y) = 2 + \cos\left(\frac{1}{y} - \pi\right)$;

(h)
$$D_{f^{-1}} = \left] -\frac{\pi}{2}, \frac{5\pi}{2} \left[CD_{f^{-1}} = \mathbb{R} ; f^{-1}(y) = 2\operatorname{tg}\left(\frac{\pi - y}{3}\right) + 1; \right]$$

(i)
$$D_{f^{-1}} =]0, \pi[CD_{f^{-1}} =]-1, +\infty[; f^{-1}(y) = e^{\cot y} - 1.$$

6. (a)
$$D_f = [-1, 0], CD_f = [0, \pi], \text{ zeros de } f: x = -1.$$

(b)
$$D_g = \mathbb{R}, CD_g = \left[-\frac{\pi}{3}, \frac{2\pi}{3} \right], \text{ zeros de } g: x = -\frac{\sqrt{3}}{9}.$$

(c)
$$D_h = \mathbb{R} \setminus \{-1\}, CD_h =] - \frac{\pi}{2}, \frac{\pi}{2} [\setminus \{0\}, h \text{ não tem zeros.}]$$

(d)
$$D_m = [1 - \sqrt{3}, 1 + \sqrt{3}], CD_m = [-\frac{\pi}{2}, \frac{\pi}{6}], \text{ zeros de } m: x = 0 \lor x = 2.$$

7. (a)
$$D_f = [-\sqrt{2}, \sqrt{2}]; CD_f = [-\frac{\pi}{2}, \frac{\pi}{2}].$$

(b) Interseção com o eixo dos xx: (-1,0) e (1,0); Interseção com o eixo dos yy: $(0,-\frac{\pi}{2})$.

8.
$$D_q =]-\infty, -1] \cup [1, +\infty[, CD_q = [0, \pi] \setminus \{\frac{\pi}{2}\}, \text{ zeros de } g: x = 1.$$

9. (a)
$$D_{f^{-1}} =]-\frac{\pi}{2}, \frac{\pi}{2}[, CD_{f^{-1}} = \mathbb{R}, f^{-1}(x) = \sqrt[3]{1 + \lg x}.$$

(b) $|\sqrt[3]{2}, +\infty[.$

10. 0

- 11. (a) Não existe; (b) $\frac{1}{2}$; (c) $\frac{1}{2}$; (d) $-\frac{\pi}{2}$; (e) $\frac{\pi}{2}$; (f) e^2 .
- 12. (a) k = 1; (b) k = 1; (c) k = 0.
- 13. —
- 14. —
- 15. —
- 16. —
- 17. (a) Não.
 - (b) Não, porque f não é contínua no intervalo [-1, 1].
- 18. Resolvido
- 19. Equação da reta tangente ao gráfico de f no ponto (1, f(1)): y = x. Equação da reta normal ao gráfico de f no ponto (1, f(1)): y = 2 - x.
- 20. a = 1
- 21. $y = \frac{1}{4}x + 1$
- 22. (a) $f'(x) = 3x^2 + 4x 3$, $D_{f'} = \mathbb{R}$; (b) $f'(x) = \frac{4}{3\sqrt[3]{2x-1}}$, $D_{f'} = \mathbb{R} \setminus \{\frac{1}{2}\}$;
 - (c) $f'(x) = \frac{1}{1-\operatorname{sen} x}$, $D_{f'} = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}$; (d) $f'(x) = 2x e^{x^2} (1+x^2)$, $D_{f'} = \mathbb{R}$; (e) $f'(x) = \frac{1}{2\sqrt{x-x^2}}$, $D_{f'} =]0,1[$;

 - (f) $f'(x) = 3^{\lg x} \ln 3 \sec^2 x$, $D_{f'} = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\};$

 - (1) $f'(x) = 5^{\circ\circ} \text{ in 5 sec } x, Df' = \{x \in \mathbb{R}: x \neq \frac{1}{2} + k\pi, k \in \mathbb{Z}\};$ (g) $f'(x) = \frac{1}{\ln 3} \sec x \csc x, Df' = \{x \in \mathbb{R}: k\pi < x < \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\};$ (h) $f'(x) = \frac{6x^2(\sqrt{x}-1)-\sqrt{x^5}}{2(\sqrt{x}-1)^2} e^{\frac{x^3}{\sqrt{x}-1}}, Df' = \mathbb{R}^+ \setminus \{1\}; \text{ (i) } f'(x) = \frac{-2\sin(\log_2(x^2))}{x \ln 2}, Df' = \mathbb{R} \setminus \{0\};$ (j) $f'(x) = \frac{1-x^2(2\ln x+1)}{x}, Df' = \mathbb{R}^+; \text{ (k) } f'(x) = 2x \arctan x + 1, Df' = \mathbb{R};$ (l) $f'(x) = \frac{2x^3-2+\ln(x^2)}{x^2}, Df' = \mathbb{R} \setminus \{0\}.$
- 23. (a) $\frac{-12x^2\cos(4x^3)}{1+\sec^2(4x^3)}$;
 - (b) $\frac{-2}{x\sqrt{x^4-1}} = \frac{-2\sqrt{x^4-1}}{x^5-x}$;
 - (c) $\frac{e^x}{\sqrt{2e^x-e^{2x}}}$;
 - (d) $\frac{1}{x(2+\ln^2 x + \ln(x^2))}$.
- 24. $(f^{-1})'(-3) = \frac{1}{54}$.
- 25. $(f^{-1})'(2) = 1$.
- 26. (a) $(f^{-1})'(y) = \frac{1}{3\sqrt[3]{(y-1)^2}}$;
 - (b) $(f^{-1})'(y) = e^y \cos(e^y);$
 - (c) $(f^{-1})'(y) = \frac{-\sqrt{y+1}}{2\sqrt{y}(1+y)^2};$
 - (d) $(f^{-1})'(y) = \begin{cases} \frac{-1}{3\sqrt[3]{(1-y)^2}} & \text{se } y > 1\\ \frac{-1}{2\sqrt{-y}} & \text{se } y < 0 \end{cases}$.
- 27. —
- 28. —

- 29. —
- 30. —
- 31. —
- 32. —
- 33. (a) $D_f = [0, 2]$.
 - (b) —
 - (c) Para justificar a existência de máximo e mínimo globais usar o Teorema de Weierstrass. Observar que f'(x) < 0, para todo $x \in]0,2[$, $f(0) = \frac{\pi}{2}$ e $f(2) = \frac{-\pi}{2}$. Então o mínimo global é $\frac{-\pi}{2}$ e o máximo global é $\frac{\pi}{2}$.
 - (d) $CD_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$
- 34. h é estritamente decrescente em $]-\infty, 2[$ e estritamente crescente em $]2, +\infty[$. A função h tem um mínimo em x=2 cujo valor é arctg(-4).
- 35. (a) $\mathcal{D}_g = [0, 2]$
 - (b) —
 - (c) g é estr. decrescente em]0,1[e estr. crescente e]1,2[g tem um mínimo em x=1 cujo valor é 0
 - (d) Não, pois não é injetiva
- 36. (a) $\ln 3$; (b) 1/9; (c) $\text{n}\tilde{\text{a}}\text{o}$ existe; (d) 2/3; (e) -1/2; (f) -1; (g) 0; (h) 1; (i) 1; (j) 1; (k) 1; (l) e; (m) e^{-2} ; (n) 0; (o) 1; (p) e^4 ; (q)1/2.
- 37. $\lim_{x \to +\infty} \frac{x \sin x}{x + \sin x} = 1.$
- 38. Resolvido.
- 39. (a) f é contínua em x = 0
 - (b) —
 - (c) e
- 40. —
- 41. (a) y = 12x 16
 - (b) $y = e^2(x-1)$
 - (c) y = 3 x
- 42. (a) $T_0^3(x^3 + 2x + 1) = x^3 + 2x + 1$
 - (b) $T_{\pi}^{3}(\cos x) = -1 + \frac{(x-\pi)^{2}}{2}$
 - (c) $T_1^3(xe^x) = e + 2e(x-1) + \frac{3}{2}e(x-1)^2 + \frac{2}{3}e(x-1)^3$
 - (d) $T_0^5(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (e) $T_0^6(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
- 43. $g(x) = 2(x+1), x \in \mathbb{R}$.
- 44. (a) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$, para algum θ entre $0 \in x$.
 - (b) —

- (c) Por exemplo, $\frac{1}{\sqrt{e}} \simeq T_0^2 f(-\frac{1}{2}) = 1 \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$, com erro inferior a $\frac{1}{6}$.
- 45. —
- 46. $\frac{(3-\pi)^6}{6!}$ (uma vez que $|R_5(3)| \leq \frac{(3-\pi)^6}{6!}$).
- 47. Zero de g: -1.
- 48. $D_{h^{-1}} = [\pi, \frac{3\pi}{2}[, CD_{h^{-1}} =] \infty, 1] e h^{-1}(x) = 1 + \ln(\cos(x \pi)).$
- 49. (a) $\lim_{x\to 0^-} f(x) = 0$ e $\lim_{x\to 0^+} f(x) = +\infty$
 - (b) Não, porque não existe $\lim_{x\to 0} f(x)$.
 - (c) x = 0 é a única assíntota vertical do gráfico de f.
- 50. f tem um zero em]0,1[, um em]1,2[e outro em]-1,0[.
- 51. (a) $[-\sqrt{2}, \sqrt{2}]$
 - (b) —
- 52. (a) A função f é contínua em x=0 qualquer que seja o valor de α .
 - (b) (Sugestão: usar o Teorema de Bolzano-Cauchy)
- 53. 1
- 54. f é estritamente decrescente em $]-\infty,0[$ e em $]0,+\infty[$. A função f não tem extremos locais.
- 55. f é diferenciável em x = 0 e f'(0) = 1.
- 56. —
- 57. (a) $T_0^2 f(x) = x \frac{x^2}{2}$.
 - (b) $\ln(1.1) = f(0.1) \approx T_0^2 f(0.1) = \frac{19}{200}$.