NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong

MA2108 Mathematical Analysis I AY 2006/2007 Sem 1

Section A Question 1

(a) Since for all $n \in \mathbb{N}$, we have,

$$0 \le \cos^{2}(n^{3}) \le 1$$

$$0 \le \frac{3}{5}\cos^{2}(n^{3}) \le \frac{3}{5}$$

$$0 \le \left(\frac{3\cos^{2}(n^{3})}{5}\right)^{n} \le \left(\frac{3}{5}\right)^{n}$$

$$0 \le \lim_{n \to \infty} \left(\frac{3\cos^{2}(n^{3})}{5}\right)^{n} \le \lim_{n \to \infty} \left(\frac{3}{5}\right)^{n} = 0.$$

Hence we have $\lim_{n\to\infty} \left(\frac{3\cos^2(n^3)}{5}\right)^n = 0.$

(b) Claim: $1 \le x_n \le 3$ for all $n \in \mathbb{N}$.

Proof:

The case where n=1 is obvious.

Suppose for some $k \in \mathbb{N}$, we have $1 \le x_k \le 3$.

We have $1 \le 1 + \frac{5}{3+x_k} \le 1 + \frac{5}{4} < 3$. Hence we have $1 \le x_{k+1} \le 3$. By induction, we have $1 \le x_n \le 3$ for all $n \in \mathbb{N}$.

Claim: $x_{2n+2} \leq x_{2n}$ and $x_{2n+1} \geq x_{2n-1}$ for all $n \in \mathbb{N}$

Since
$$x_{n+2} = 1 + \frac{5}{3+x_{n+1}} = 1 + \frac{5}{3+1+\frac{5}{3+x_n}} = \frac{9}{4} - \frac{25}{68+16x_n}$$
 and $x_1 = 1$, $x_2 = \frac{9}{4}$, $x_3 = \frac{41}{21}$, $x_4 = \frac{209}{104}$.

We have $x_1 \leq x_3$ and $x_2 \geq x_4$. We have the case when n = 1.

Suppose for some
$$k \in \mathbb{N}$$
, we have $x_{2k+2} \leq x_{2k}$ and $x_{2k+1} \geq x_{2k-1}$.
Hence we have $\frac{9}{4} - \frac{25}{68 + 16x_{2k+2}} \leq \frac{9}{4} - \frac{25}{68 + 16x_{2k}}$ and $\frac{9}{4} - \frac{25}{68 + 16x_{2k+1}} \geq \frac{9}{4} - \frac{25}{68 + 16x_{2k-1}}$.
Giving us $x_{2k+4} \leq x_{2k+2}$ and $x_{2k+3} \geq x_{2k+1}$

Hence, by induction we have $x_{2n+2} \le x_{2n}$ and $x_{2n+1} \ge x_{2n-1}$ for all $n \in \mathbb{N}$.

By completeness of \mathbb{R} , $\lim_{n\to\infty} x_{2n}$ and $\lim_{n\to\infty} x_{2n+1}$, exist and both satisfy $x=\frac{9}{4}-\frac{25}{68+16x}$. Hence, we have $\lim_{n\to\infty} x_{2n}=\lim_{n\to\infty} x_{2n+1}=2$. Hence $\lim_{n\to\infty} x_n=2$.

Question 2

(a) (i) Since

$$\lim_{n \to \infty} \frac{\frac{(n+1)!}{1 \cdot 3 \cdot 5 \cdots \cdots 2n+1}}{\frac{n!}{1 \cdot 3 \cdot 5 \cdots \cdots 2n-1}} = \lim_{n \to \infty} \frac{n+1}{2n+1}$$

$$= \lim_{n \to \infty} \frac{1}{2} + \frac{1}{4n+2}$$

$$= \frac{1}{2}$$

Hence, by Ratio test, the sum $\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot 2n - 1}$ exists.

(ii) Since

$$\lim_{n \to \infty} \left(n \left(1 + \frac{1}{2n} \right)^{-n^2} \right)^{\frac{1}{n}} = \lim_{n \to \infty} n^{\frac{1}{n}} \left(\left(1 + \frac{1}{2n} \right)^{2n} \right)^{-\frac{1}{2}}$$

$$= \lim_{n \to \infty} n^{\frac{1}{n}} \left(\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{2n} \right)^{-\frac{1}{2}}$$

$$= 1 (e)^{-\frac{1}{2}} < 1$$

Hence the sum $\sum_{n=1}^{\infty} n \left(1 + \frac{1}{2n}\right)^{-n^2}$ exist.

(b) Since $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ exists, there exists a $M \in \mathbb{N}$ such that for all $p, q, r, s \in \mathbb{N}_{\geq M}$ one has,

$$\left|\sum_{i=p}^{q} a_i\right| < \frac{\epsilon}{2} \text{ and } \left|\sum_{i=r}^{s} b_i\right| < \frac{\epsilon}{2}$$

We will show that $\sum_{n=1}^{\infty} c_n$ is Cauchy.

Proof:

Given any $\epsilon \in \mathbb{R}_{>0}$, let N=2M. Hence for any $m,n \in \mathbb{N}_{\geq N}$,

$$\left| \sum_{i=m}^{n} c_{i} \right| = \left| \sum_{\lfloor \frac{m}{2} \rfloor}^{\lfloor \frac{n}{2} \rfloor} b_{n} + \sum_{\lfloor \frac{m+1}{2} \rfloor}^{\lfloor \frac{n+1}{2} \rfloor} a_{n} \right|$$

$$< \left| \sum_{\lfloor \frac{m}{2} \rfloor}^{\lfloor \frac{n}{2} \rfloor} b_{n} \right| + \left| \sum_{\lfloor \frac{m+1}{2} \rfloor}^{\lfloor \frac{n+1}{2} \rfloor} a_{n} \right|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence $\sum_{n=1}^{\infty} c_n$ is Cauchy and therefore converges.

Question 3

(a) For any given $\epsilon \in \mathbb{R}_{>0}$, choose $\delta = \min(\frac{15}{11}\epsilon, 1)$. for $x \in \mathbb{R}$ such that |x - 3| < 1, we have 2 < x < 4. Hence we have

$$3x - 1 < 12 - 1 = 11$$

Also

$$3x + 9 > 6 + 9 = 15$$

So

$$\left|\frac{3x-1}{3x+9}\right| < \frac{11}{15}$$

.

$$\left| \frac{(x-1)(x-2)}{(x+3)} - \frac{1}{3} \right| = \left| \frac{3x^2 - 10x + 3}{3x + 9} \right|$$

$$= |x-3| \left| \frac{3x - 1}{3x + 9} \right|$$

$$< \delta \left| \frac{3x - 1}{3x + 9} \right|$$

$$< \left(\frac{15}{11} \epsilon \right) \left(\frac{11}{15} \right) = \epsilon$$

for all $x \in \mathbb{R}$ such that $|x - 3| < \delta$.

- (b) (i) Suppose $\lim_{x\to 1}\cos^2\left(\frac{1}{x-1}\right)=a$ Let $\epsilon=\frac{1}{2}$. For any $\delta\in\mathbb{R}_{>0}$, there exist a $n_1,n_2\in\mathbb{N}$ such that $2n_1\pi,2n_2\pi+\frac{\pi}{2}>\frac{1}{\delta}$. Hence we have $x_1-1=\frac{1}{2n_1\pi}$ and $x_2-1=\frac{1}{2n_2\pi+\frac{\pi}{2}}$. Since $|x_1-1|<\delta$ and $|x_2-1|<\delta$. We have $\left|\cos^2\left(\frac{1}{x_1-1}\right)-a\right|<\frac{1}{2}$ and $\left|\cos^2\left(\frac{1}{x_2-1}\right)-a\right|<\frac{1}{2}$. Evaluating, we have $|1-a|<\frac{1}{2}$ and $|a|<\frac{1}{2}$. Hence $1=|1-a+a|<|1-a|+|a|<\frac{1}{2}+\frac{1}{2}=1$, which is a contradiction. Hence $\lim_{x\to 1}\cos^2\left(\frac{1}{x-1}\right)$ does not exist.
 - (ii) Since $\lim_{x\to 2^-} \lfloor 3x \rfloor + \lfloor 4-x \rfloor = 5+2=7$ and $\lim_{x\to 2^+} \lfloor 3x \rfloor + \lfloor 4-x \rfloor = 6+1=7$. One has $\lim_{x\to 2} \lfloor 3x \rfloor + \lfloor 4-x \rfloor = 7$.

Question 4

Since f and h are continuous at x=c with f(c)=h(c) and $f(x)\leq g(x)\leq h(x)$ for all $x\in\mathbb{R}$, we have g(c)=f(c)=h(c). Also by Squeeze Theorem, we have $\lim_{x\to c} f(x)\leq \lim_{x\to c} g(x)\leq \lim_{x\to c} f(x)$. Since f and h is continuous, we have $f(c)\leq \lim_{x\to c} g(x)\leq h(c)$. Hence $\lim_{x\to c} g(x)=f(c)=g(c)$. Hence g is continuous at g0.

Question 5

(i) We may construct (x_n) such that $x_n \in (1 - \frac{1}{2^n}, 1) \cap (\mathbb{R} \setminus \mathbb{Q})$. Hence $\lim_{n \to \infty} x_n = 1$ and since f is continuous at x = 1, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} ax_n + 4 = f(1) = 7$ Hence a = 3. (ii) No.

We will first show that if f is continuous at x = b then $b^2 + b + 5 = 3b + 4$.

Case 1) Suppose b is rational.

We may construct (x_n) such that $x_n \in (b - \frac{1}{2^n}, b) \cap (\mathbb{R} \setminus \mathbb{Q})$. Hence $\lim_{n \to \infty} x_n = b$ and since f is continuous at x = b, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 3x_n + 4 = f(b)$ Hence we have $3b + 4 = b^2 + b + 5$

Case 2) Suppose b is irrational.

We may construct (x_n) such that $x_n \in (b - \frac{1}{2^n}, b) \cap (\mathbb{Q})$. Hence $\lim_{n \to \infty} x_n = b$ and since f is continuous at x = b, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n^2 + x_n + b = f(b)$ Hence we have $b^2 + b + b = 3b + 4$

Therefore if f is continuous at x = b then $b^2 + b + 5 = 3b + 4$.

Since b=1 is the only solution to the equation $b^2+b+5=3b+4$ and f is continuous at x = 1. f is only continuous at x = 1.

Section B Question 6

(i) Since $\lim_{n\to\infty} y_n = L$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|y_n - L| < \frac{L}{2}$$

So $y_n > \frac{L}{2}$ for all $n \ge N$.

Let $\alpha \in \mathbb{R}$

On the other hand, since $\lim_{n\to\infty}\frac{x_n}{y_n}=\infty$, there exists $K\in\mathbb{N}$ such that for all $n\geq K$ we have

$$\frac{x_n}{y_n} > \frac{2\alpha}{L}$$

Set $M = \max(N, K)$.

Hence we have for all $N \geq M$,

$$x_n > \frac{2\alpha}{L} y_n$$
$$> \frac{2\alpha}{L} \frac{L}{2} = \alpha$$

. Since α is arbitrary, $\lim_{n\to\infty} x_n = \infty$.

- Let $x_n = \frac{1}{n}$, $y_n = \frac{1}{n^2}$. Hence $\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} n = \infty$ and $\lim_{n \to \infty} y_n = 0$. However $\lim_{n \to \infty} x_n = 0$ $0 \neq \infty$.
- (b) Since $ca_{n+1} \le a_{n+1}b_{n+1} a_nb_n$ and $\sum_{n=1}^{M} ca_{n+1} \le a_1b_1 a_{M+1}b_{M+1} \le a_1b_1$.

$$\sum_{n=1}^{M} a_n \leq \frac{ca_1 + a_1b_1}{c} \text{ for all } M \in \mathbb{N}. \text{ Since } a_n > 0 \text{ for all } n \in \mathbb{N}, x_M = \sum_{n=1}^{M} a_n \text{ is a increas-}$$

ing sequence. By the Completeness property of real numbers $\lim_{M\to\infty} x_M$ exists. Hence $\sum_{m=0}^{\infty} a_m$ converges.

Question 7

(a) We will first show that f is continuous.

For any $p \in \mathbb{R}$ Given any $\epsilon \in \mathbb{R}$, choose $\delta = \frac{\epsilon}{c}$, Hence we have for any $x \in \mathbb{R}$ such that $|x - p| < \delta$, we have $|f(x) - f(p)| \le C|x - p| < C\left(\frac{\epsilon}{C}\right) = \epsilon$. Hence f is continuous. Existence:

If f(0) = 0, then we are done.

Suppose f(0) = k > 0, for any $x \in \mathbb{R}_{>0}$ we have $k - Cx \le f(x) \le k + Cx$. Consider the function h(x) = f(x) - x.

h(0) = k > 0 and $h(\frac{k}{1-C} + 1) = f(\frac{k}{1-C} + 1) - \frac{k}{1-C} - 1 \le k + c\left(\frac{k}{1-C} + 1\right) - \frac{k}{1-C} - 1 = C - 1 < 0$. By Intermediate Value Theorem, there exist a $a \in [0, \frac{k}{1-C} + 1]$ such that h(a) = 0 and f(a) = a.

(b) For any $n \in \mathbb{N}$ Consider the function $h_n(x) = g(x) - \frac{1}{n} \sum_{k=1}^n x^k$. Since g(x) and $\frac{1}{n} \sum_{k=1}^n x^k$ are continuous, h(x) is continuous. Since $h_n(1) = g(1) - 1 \le 0$ and $h_n(0) = g(0) - 0 \ge 0$. If $h_n(1) = 0$ then let $x_n = 1$ and we are done. Similarly, if $h_n(0) = 0$ let $x_n = 0$. If both $h_n(1)$ and $h_n(0)$ are not equals 0, we have $h_n(1) < 0$ and $h_n(0) > 0$. By Intermediate Value Theorem, there exist a $c \in (0,1)$ such that $h_n(c) = 0$. Hence by letting $x_n = c$ and we are done.

Question 8

- (a) False. Let $A = B = \{x \in \mathbb{R} | -1 \le x \le 0\}$. Hence $\sup A = \sup B = 0$. But $\sup C = 1 \ne (\sup A)(\sup B)$
- (b) True. Since $\lim_{n\to\infty}\frac{(a_n)^n}{n}=1$, there exist a $M\in\mathbb{N}$ such that $\frac{1}{2}<\frac{(a_n)^n}{n}<\frac{3}{2}$ for all $n\in\mathbb{N}_{n\geq M}$. Hence we have $\left(\frac{n}{2}\right)^{\frac{1}{n}}< a_n<\left(\frac{3n}{2}\right)^{\frac{1}{n}}$. Therefore $\lim_{n\to\infty}(n)^{\frac{1}{n}}\left(\frac{1}{2}\right)^{\frac{1}{n}}\leq \lim_{n\to\infty}a_n\leq \lim_{n\to\infty}(n)^{\frac{1}{n}}\left(\frac{3}{2}\right)^{\frac{1}{n}}$. Hence $1\leq \lim_{n\to\infty}a_n\leq 1$. Hence $\lim_{n\to\infty}a_n=1$.
- (c) False. Let $c \neq 0$. Let

$$f(x) = b \text{ for all } x \in \mathbb{R}$$

 $g(x) = \begin{cases} x & \text{for all } x \neq b \\ 2c & x = b \end{cases}$

Then g(f(x)) = g(b) = 2c for all $x \in \mathbb{R}$.

So $\lim_{x \to a} g[f(x)] = 2c \neq c$.

But $\lim_{x \to a} f(x) = b$. and $\lim_{x \to b} g(x) = \lim_{x \to b^-} g(x) = \lim_{x \to b^+} g(x) = c$

(d) Rewriting h(2x) = h(3x), we have $h(y) = h(\frac{2}{3}y)$. Claim: $h(p) = h\left(\left(\frac{2}{3}\right)^n p\right)$ for all $n \in \mathbb{N}$ and $p \in \mathbb{R}$. Proof:

For any $p \in \mathbb{R}$. Since $h(p) = h\left(\frac{2}{3}p\right)$, we have case when n = 1.

Suppose for some $k \in \mathbb{N}$ we have $h(p) = h\left(\left(\frac{2}{3}\right)^k\right)$. Since we have $h\left(\left(\frac{2}{3}\right)^k\right) = h\left(\frac{2}{3}\left(\frac{2}{3}\right)^k\right) = h\left(\frac{2}{3}\left(\frac{2}{3}\right)^k\right)$ $h\left(\left(\frac{2}{3}\right)^{k+1}\right)$. We have $h(p) = h\left(\left(\frac{2}{3}\right)^{k+1}p\right)$.

By induction, for all $n \in \mathbb{N}$ such that $h(p) = h\left(\left(\frac{2}{3}\right)^n p\right)$.

Since h is continuous, for any $p \in \mathbb{R}$, $h(p) = \lim_{n \to \infty} h(p) = \lim_{n \to \infty} h\left(\left(\frac{2}{3}\right)^n p\right) = h\left(\lim_{n \to \infty} \left(\frac{2}{3}\right)^n p\right) = h(0)$. Hence for all $p \in \mathbb{R}$, h(p) = h(0). Therefore h is a constant function.

Page: 6 of 6