1. T = {a,b} 일 때 T*와 T⁺를 구하시오.

$$T^* = \{ \epsilon, a, b, aa, ab, ba, bb, aaa, ... \}$$

 $T^+ = \{ a, b, aa, ab, ba, bb, aaa, ... \}$

- 2. $L_1 = \{a, b\}, L_2 = \{c, d\}$ 일 때, 다음을 구하시오.
 - 1. $L_1L_2 = \{ac, ad, bc, bd\}$
 - 2. $L_1^2 = \{aa, ab, ba, bb\}$

3.
$$L_1^* = L_1^0 \bigcup L_1^2 \bigcup L_1^3 \bigcup \cdots \bigcup L_1^n \bigcup \cdots = \bigcup_{i=0}^{\infty} L_1^i$$

- 3. 다음 정규 문법이 생성하는 언어는 무엇인가?
 - (1) $G_1 = (\{A, B\}, \{a, b\}, P, A\},$ (2) $G_2 = (\{S, A, B\}, \{0, 1\}, P, S),$ $P: S \rightarrow OA \mid B \mid O$ $P: A \rightarrow aB$ $B \rightarrow bB \mid b$ $A \rightarrow OA \mid OS \mid 1B$ $B \rightarrow 1B \mid 1 \mid 0$ (1) $A \Rightarrow aB \Rightarrow ab$ S = 0A + 1B + 0(2) $A \Rightarrow aB \Rightarrow abB \Rightarrow abb$ A = 0A + 0S + 1B $\textcircled{3} A \Rightarrow aB \Rightarrow abB \Rightarrow abbB \Rightarrow abbb$ B = 1B + (1 + 0) $B = 1*\cdot(1 + 0)$ $L(G_1) = \{ab^n \mid n \ge 1\}$ A = 0A + (0S + 11*(1+0))A = 0*(0S + 11*(1+0)) = 0*0S + 0*11*(1+0) $S = 0 \cdot (0^*0S + 0^*11^*(1+0)) + 11^*(1+0) + 0$ $= (00^*0)S + 00^*11^*(1+0) + 11^*(1+0) + 0$ $= (00^*0)S + 0^*11^*(1+0) + 0$ $L(G_2) = (00^*0)^* \cdot (0^*11^*(1+0) + 0) = (00^*0)^* \cdot 0^*11^*(1+0) + (00^*0)^* \cdot 0$

 $= 0^*11^*(1+0) + 0000^* + 0 \leftarrow (00^*0)^* \cdot 0^* = 0^*$

- 4. 다음 언어를 생성하는 정규 문법은 무엇인가?
 - (1) $\{0^{3n}|n\geq 0\}$

(2) {ω|ω∈{0,1}*, 그리고 ω는 연속된 두 개의 1을 포함하지 않는다.}

☞ ε, 0, 1, 00, 000, 01, 10, 010, 0101010, ····

∴ G = ({S, A}, {0, 1}, P, S),

P: S → 0S | 1A | 1 | ε

A → 0S

- 5. 다음 context-free 문법이 생성하는 언어는 무엇인가?
 - (1) $G_3 = (\{S\}, \{0,1\}, P, S),$ $P: S \to 0S11$ $S \to 011$

 - (2) $S \Rightarrow 0S11 \Rightarrow 001111$
 - (3) $S \Rightarrow 0S11 \Rightarrow 00S1111 \Rightarrow 0001111111$

$$L(G_3) = \{ O^n 1^{2n} / n \ge 1 \}$$

(2)
$$G_5 = (\{S, A, B\}, \{a, b\}, P, S)$$

 $P: S \rightarrow aB \mid bA$
 $A \rightarrow bAA \mid aS \mid a$
 $B \rightarrow aBB \mid bS \mid b$

aB ⇒ ab, abS, aaBB bA ⇒ ba, baS, bbAA

- aaBB, bbAA 가 없다면, (ab+ba)⁺ 형태의 스트링 집합
- aaBB가 생성하는 스트링 유형은 aabb, aab<u>S</u>b, aab<u>BB</u>b, aaa<u>BB</u>b, aaaBBaBB, ...
- 6. 다음 CFG가 나타내는 언어의 형태를 설명하시오.
 - (1) $S \rightarrow bSS / a$

※ string a와 접두사 b에 두개의 문장이 연속되어 있는 문장을 인식하는 언어.

- $L = \{\omega | \omega \in \{a,b\}^*, |\omega| = 2n+1, n \ge 0\}$ 이고 ω 는 또한 다음의 조건을 만족해야 한다. $\omega = x_1 x_2 \dots x_{2n+1} \ (n \ge 1)$ 인 모든 ω 에 대하여
 - ① (ω에 포함된 a의 개수) = (ω에 포함된 b의 개수) + 1이다.
 - ② $x_i = b$ 인 모든 i에 대하여

 $(x_i X_{i+1} ... X_{2n+1})$ 에 포함된 a의 개수) > $(x_i X_{i+1} ... X_{2n+1})$ 에 포함된 b의 개수)

- (2) S → (S)S / ε
 □ L = {ω | ω 는 균형을 이룬 괄호로 구성되어 있다.}
 균형 이룬 괄호들의 중첩이나, 반복이 허용되는 언어.
- (3) S → S, E | E E → E+T | T T → T*F | F F → a | (E) | a[S] E 문장 S는 수식 E가 comma로 연결되는 문장이다. 수식 E는 binary 덧셈 또는 곱셈이고, *>+ 이다. *과 +대상은 a또는 (수식) 또는 a[comma로 연결된 수식들]
- 7. 다음 언어를 생성하는 context-free 문법은 무엇인가?
 - (1) $\{ \omega c \omega^{\mathbb{R}} \mid \omega \in \{a,b\}^* \}$ $S \to aSa / bSb / c$
 - (2) $\{a^n c b^n \mid n \ge 1\}$ $S \to aAb$ $A \to aAb / c$
 - (3) $\{a^nb^nc^md^m \mid n,m \ge 1\}$ $S \to AB$ $A \to aAb \mid ab$ $B \to cBd \mid cd$
 - (4) {ω | ω ∈ {a,b}*, 그리고 ω는 a의 개수가 b의 개수보다 두배 많다.}
 ≺Hint> 가장 단순한 경우는 aab, aba, baa인 경우이고,
 이 때 a와 b사이 또는 양끝에 S가 삽입될 수 있다.

 $S \rightarrow SS / \epsilon$ $S \rightarrow aab / aSab / aaSb$

 $S \rightarrow aba \mid aSba \mid abSa$ $S \rightarrow baa \mid bSaa \mid baSa$

8. 다음 context-sensitive 문법이 생성하는 언어는 무엇인가?

이거 유심히 보셈 8번

(1) $G_6 = (\{S, A, B, C\}, \{a, b, c\}, P, S),$

P:
$$S \rightarrow A$$

 $A \rightarrow aABC \mid abC$
 $CB \rightarrow BC$
 $bB \rightarrow bb$
 $bC \rightarrow bc$
 $cC \rightarrow cc$

A를 n-1개 생성하면 됨 n=3일때 만들라면 A를 두개 만들면 a^nb^nC^n 됨

 $S \Rightarrow A \Rightarrow abC \Rightarrow abc$ $S \Rightarrow A \Rightarrow aABC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow aa$

 $\therefore L = \{a^n b^n c^n \mid n \ge 1\}$

(2) $G_7 = (\{S, A, C, D\}, \{c, 0, 1\}, P, S),$

P:
$$S \rightarrow ACA$$

 $AC \rightarrow AACA \mid ADc \mid AcD$
 $D \rightarrow AD \mid A$
 $A \rightarrow O \mid I$

⟨Hint⟩ ① 처음 2개의 규칙으로 생성되는 string을 일반화시키면
S → ACA → → A····ACA····A이다. (C를 중심으로 A의 개수가 동일함)

- ② 두번째 규칙 AC→ADc와 AC→AcD에 의하여 C는 Dc 또는 cD로 생성된다.
- ③ D = A*A 이므로 ①의 S는 c를 중심으로 A의 개수가 동일하지 않은 string이다.

$$S \Rightarrow ACA \Rightarrow ADcA \Rightarrow AAcA \Rightarrow 00c0$$

$$\Rightarrow 00c1$$

$$\Rightarrow 01c0$$

$$\vdots$$

$$\Rightarrow AADcA \Rightarrow AAAcA \Rightarrow \dots$$

$$\Rightarrow AAADcA \Rightarrow AAAAcA \Rightarrow \dots$$

$$\Rightarrow AcDA \Rightarrow AcAA \Rightarrow 0c00$$

$$\Rightarrow 0c01$$

$$\vdots$$

$$\Rightarrow AcADA \Rightarrow AcAAA \Rightarrow \dots$$

$$\Rightarrow AcADA \Rightarrow AcAAAA \Rightarrow \dots$$

$$\Rightarrow AcAADA \Rightarrow AcAAAA \Rightarrow \dots$$

 $L = \{ wc \ v \mid w, v \in \{0,1\}^+, |w| \neq |v| \}$

- 9. 다음 언어를 생성하는 context-sensitive 문법은 무엇인가?
 - (1) { $a^{n*n} \mid n \ge 1$ }

Hint> 1) 반복규칙에 의하여 B^{*}을 생성한다.

- 2) *n*개의 *B*에 대하여 각각 *n*개의 *a*를 생성한다. *n*개의 *B*를 scan하면서 *n*n*개의 *a*를 생성한다.
 - ① 첫번째 scan : *B를 C*로 치환하면서 *n*개의 *a*를 생성한다. *C*를 *B*로 치환하면서 *B*의 개수를 하나 줄이고,

B대신에 E를 하나 생성한다.

두번재 scan : *B*를 *C*로 치환하면서 *(n-1)*개의 *a*를 생성한다. *C*를 *B*로 치환하면서 *B*의 개수를 하나 줄인다.

이와 같은 방법으로 n+(n-1)+(n-2)+...+1개의 a를 생성한다.

- ② B대신 생성된 n개의 E에 대하여 ①과 비슷한 방법으로 (n-1)+(n-2)+...+1개의 a를 생성한다.
- 1) $S \rightarrow BS / A$

 $S \Rightarrow BA \Rightarrow BBA \Rightarrow BBBA \Rightarrow BBBBA \Rightarrow \dots$

2) $BA \rightarrow ACa$ $aC \rightarrow Ca$

> $BBBBA \Rightarrow BBBACa \Rightarrow BBACaCa \Rightarrow BACaCaCa \Rightarrow ACaCaCaCa$ $\Rightarrow \dots \Rightarrow ACCCCaaaa$

3) $ACC \rightarrow BDC$ $DCC \rightarrow BDC$ $DCa \rightarrow AEa$ $aE \rightarrow Ea$

4) $ACE \rightarrow XCE$ $CE \rightarrow EC$

ACEEEaaaaaaaaaa ⇒ XCEEEaaaaaaaaaaa ⇒ XEEECaaaaaaaaaaa

- ※ 규칙 2)~4) : n+(n-1)+(n-2)+...+1개의 a를 생성
- 5) EEEC는 BBBA와 동일한 유형이고 2)~4)는 EEECBBBA는 ACEEaaaaaa로 생성되므로 EEEC를 CPQQaaaaaa로 생성하는 규칙을 만든다.
- ※ 규칙 5) : (n-1)+(n-2)+...+1개의 a를 생성
- 6) $XC \rightarrow XX$ $XP \rightarrow XX$ $XQ \rightarrow XX$ $X \rightarrow \varepsilon$
- ※ 규칙 6): nonterminal X, C, P, Q를 모두 ε으로 치환한다.

- (2) $\{\omega\omega \mid \omega \in \{a,b\}^+\}$, 즉 처음과 반과 나중의 반이 같은 스트링의 집합이다.
 - <Hint> 1) a 또는 b를 생성할 때마다 각각 A 또는 B를 생성한다.
 - 2) a, b는 왼쪽끝으로 A, B는 오른쪽끝으로 보낸다.
 - 3) A는 a로, B는 b로 치환한다.

$$S \rightarrow CD$$

 $C \rightarrow aAC \mid bBC \mid aA \mid bB$
 $Aa \rightarrow aA$
 $Ab \rightarrow bA$
 $Ba \rightarrow aB$
 $Bb \rightarrow bB$
 $AD \rightarrow Da$
 $BD \rightarrow Db$
 $D \rightarrow \epsilon$

(3) $\{a^n b^m c^n d^m \mid n, m \ge 1\}$

<Hint> 2.8 (1)의 문법을 참조하여 aⁿb^md^mcⁿ을 인식하는 문법을 만든 후에 d^m과 cⁿ의 위치를 바꾼다.

$$S \rightarrow aBDC \qquad aB \rightarrow ab$$

$$BC \rightarrow aBDC \qquad bB \rightarrow bb$$

$$BD \rightarrow XY \qquad bC \rightarrow bc$$

$$XY \rightarrow BD \qquad cC \rightarrow cc$$

$$XY \rightarrow BXYD \qquad cD \rightarrow cd$$

$$DC \rightarrow CD \qquad dD \rightarrow dd$$

- 10. 다음 언어를 생성하는 문법을 구하시오.
 - (1) $L_1 = \{a^m b^n c^p | m, n, p \ge 0\}$ $P : S \rightarrow ABC$ $A \rightarrow aA \mid \varepsilon$ $B \rightarrow bB \mid \varepsilon$ $C \rightarrow cC \mid \varepsilon$
 - (2) $L_2 = \{a^m b^m c^n | m, n \ge 0\}$ $G = (\{S, A, C\}, \{a, b, c\}, P, S),$ $P : S \to AC$ $A \to aAb / \epsilon$ $C \to cC / \epsilon$
 - (3) $L_3 = \{x^n a \ y^n | n \ge 0\} \cup \{x^n b \ y^n | n \ge 0\}$ $E = \{x^n a \ y^n | n \ge 0\} \cup \{x^n b \ y^n | n \ge 0\}$ $E = \{x^n a \ y^n | n \ge 0\} \cup \{x^n b \ y^n | n \ge 0\}$ $E = \{x^n a \ y^n | n \ge 0\} \cup \{x^n b \ y^n | n \ge 0\}$ $E = \{x^n a \ y^n | n \ge 0\} \cup \{x^n b \ y^n | n \ge 0\}$