

61009219

Figure 1. The Cycle of Fatty Acid Elongation in Bacteria

8/10/92 19

WO 00/70017

PCT/US00/12104

Figure 2. Synthesis of Deuterated Pyridine Nucleotides

Synthesis of R-NADD

Synthesis of S-NADD

10/10/9219

Figure 3. Predicted (Observed) Product Structures and $(M+H)^+$'s(Based on *E. coli* Fab I)

Reaction

10/009319

Figure 4. Mass Spectra of Components from Reaction 3

61029219

Figure 4 B

101029219

Figure 4 C

101079219

Figure 5. Stereochemical Course of *S. aureus* Fab I

K1039219

Figure 6. *S. aureus* Fab I Uses Both NADPH and NADH as Substrates

	NADH	NADPH
V_m (app) ($\mu\text{mol}/\text{min}/\text{mg}$)	3.75 \pm 0.23	1.21 \pm 0.06
K_m (app) (mM)	0.41 \pm 0.06	0.013 \pm 0.002
K_m (app) CCA (mM)	3.5 \pm 0.2	1.4 \pm 0.4

10/029-219

Figure 7. *S. aureus* Fab I Exhibits a Sequential Mechanism

$$V_m = 0.18 \pm 0.02$$

$$K_a = 0.52 \pm 0.12 \text{ mM}$$

$$K_b = 3.3 \pm 0.6 \text{ mM}$$

$$K_{ia} = 0.22 \pm 0.06 \text{ mM}$$

61009219

Figure 8. pH Profile of *S. aureus* Fab I

10/08/92 19

WO 00/70017

PCT/US00/12104

Figure 8 A Table 1. Inhibition by Saturated Fatty Acyl CoA's

<i>CoA Derivative</i>	<i>Mean IC₅₀ (μM) (n=2)</i>
<i>Acetyl</i>	>>1000
<i>n-Butyryl</i>	>>1000
<i>n-Hexanoyl</i>	576
<i>n-Octanoyl</i>	248
<i>n-Decanoyl</i>	226
<i>Lauroyl</i>	48.4
<i>Myristoyl</i>	23.1
<i>Palmitoyl</i>	10.7

101029214

Figure 9. Inhibition by Palmitoyl CoA

10/10/97/19

Figure 10. Inhibition by β -NADP $+$

$$K_i = 0.58 \pm 0.03 \text{ mM}$$

Figure 11. Kinetic Model for Inhibition by β -NAPD⁺

Figure 12. Inhibition by apo-ACP vs. NADH

101009219

Figure 13. Inhibition by apo-ACP vs. CCA

Figure 14. Minimal Kinetic Mechanism for Inhibition by apo-ACP

$$v = \frac{V_m[A][B]}{K_{ia}K_b + K_b[A] \left(1 + \frac{[I]}{K_i} \right) + K_a[B] + [A][B]}$$

101009219

Figure 15. Induced Cooperative Inhibition by apo-ACP

- Apo-ACP is uncompetitive versus NADH ($K_i(\text{app})$) and is proportional to the square of [CCA]).
- Apo-ACP is competitive versus crotonoyl CoA and induces negative cooperativity with respect to Cca binding.

$$v = \frac{V_m \left[\frac{[S]}{K_S} + \frac{[S]^2}{K_S^2} + \frac{[S][I]}{\alpha K_S K_I} \right]}{\left[1 + \frac{2[S]}{K_S} + \frac{[S]^2}{K_S^2} + \frac{2[I]}{K_I} + \frac{[I]^2}{K_I^2} + \frac{2[S][I]}{\alpha K_S K_I} \right]}$$

$$K_i = 3 \mu M$$

$$\alpha = 15$$

01009219

FIGURE 16

(SEQ ID NO:2)

1 MNLENKTTIV IMGIANKRSI AFGWAKVLDQ LGAKLWFTYR KERSRKELEK
51 LLEQLNQPEA HLYQIDVQSD EEWINGFEDI GKDVGNIIDGV YHSIAFANME
101 DLRGRFSETS REGFLLAQDI GSYSLTIVAH EAKKLMPEGG SIVATTYLGG
151 EFAVQNYNRM GVAKASLEAN VKYLALDLGP DNIRVNAISA GPIRTLSAKG
201 VGGFNTILKE IEERAPLKRN VDQVEVGKTA AVLLSDLSSG VTGENIHVDS
251 GFHAIK

101009219

FIGURE 17

(SEQ ID NO:1)

1 ATGTTAAATC TTGAAAACAA AACATATGTC ATCATGGAA TCCCTAATAA
51 GCGTAGTATT CCTTTGGTG TCGCTAAAGT TTTAGATCAA TTAGGTGCTA
101 AATTAGTATT TACTTACCGT AAAGAACGTA GCCGTAAAGA GCTTGAAAAA
151 TTATTAGAAC AATTAAATCA ACCAGAACGCC CACTTATATC AAATTGATGT
201 TCAAAGCGAT GAAGAGGTTA TTAATGGTTT TGAGCAAATT GGTAAAGATG
251 TTGGCAATAT TGATGGTGT A TATCATTCAA TCGCATTGCTA TAATATGGAA
301 GACTTACGCG GACCGTTTTC TGAAACTTCA CGTGAAGCCT TCTTGTAGC
351 TCAAGACATT AGTTCTTACT CATTAAACAAT TGTGGCTCAT GAAGCTAAAAA
401 AATTAAATGCC AGAAGGTGGT AGCATGGTG CAACAAACATA TTTAGGTGGC
451 GAATT CGCAG TTCAAAATTA TAATGTGATG GGTGTTGCTA AAGCGAGCTT
501 AGAAGCAAAT GTAAATATT TAGCATTAGA CTTAGGTCT GATAATATTC
551 GCGTTAATGC AATTCAGCT GGTCCAATCC GTACATTAAG TGCAAAAGGT
601 GTGGGTGGTT TCAATACAAT TCTTAAAGAA ATCGAAGAGC GTGCACCTTT
651 AAAACGTAAC GTTGATCAAG TAGAAGTAGG TAAAACAGCG GCTTACTTRT
701 TAAGTGACTT ATCAAGTGGC GTTACAGGTG AAAATATTCA TGTAGATAGC
751 GGATTCCACG CAATTAAATA A