```
imds = imageDatastore('/Users/Harsh/Documents/GSU_Spring/ComputerVision/
Harsh_Assignment_3/Q6/images',['IncludeS' ...
'ubfolders'],true,'LabelSource','foldernames');
```

tbl = countEachLabel(imds)

 $tbl = 5 \times 2 table$

	Label	Count	
1	fork	10	
2	glass	10	
3	kettle	10	
4	knife	10	
5	spoon	10	

figure
montage(imds.Files(1:16:end))


```
% prepare data
[trainingSet, validationSet] = splitEachLabel(imds, 0.6, 'randomize');
```

bag = bagOfFeatures(trainingSet);

```
Creating Bag-Of-Features.
* Image category 1: fork
* Image category 2: glass
* Image category 3: kettle
* Image category 4: knife
* Image category 5: spoon
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].
* Extracting features from 30 images...done. Extracted 2304000 features.
* Keeping 80 percent of the strongest features from each category.
* Creating a 500 word visual vocabulary.
* Number of levels: 1
* Branching factor: 500
* Number of clustering steps: 1
* [Step 1/1] Clustering vocabulary level 1.
* Number of features : 1843200
* Number of clusters
                            : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 47/100 iterations (~18.30 seconds/iteration)...converged in 47 iterations.
* Finished creating Bag-Of-Features
img = readimage(imds, 1);
featureVector = encode(bag, img);
Encoding images using Bag-Of-Features.
* Encoding an image...done.
% Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')
```


% categoryClassifier = trainImageCategoryClassifier(trainingSet, bag); categoryClassifier = trainImageCategoryClassifier(trainingSet, bag);

Training an image category classifier for 5 categories.

```
* Category 1: fork
* Category 2: glass
```

- * Category 3: kettle
- * Category 4: knife
- * Category 5: spoon
- * Encoding features for 30 images...done.
- * Finished training the category classifier. Use evaluate to test the classifier on a test set.

confMatrix = evaluate(categoryClassifier, trainingSet);

Evaluating image category classifier for 5 categories.

```
------
```

- * Category 1: fork
- * Category 2: glass
- * Category 3: kettle
- * Category 4: knife
- * Category 5: spoon
- * Evaluating 30 images...done.
- * Finished evaluating all the test sets.

* The confusion matrix for this test set is:

			PREDICTED			
KNOWN	fork	glass	kettle	knife	spoon	
fork	1.00	0.00	0.00	0.00	0.00	
glass	0.00	1.00	0.00	0.00	0.00	
kettle	0.00	0.00	1.00	0.00	0.00	
knife	0.00	0.00	0.00	1.00	0.00	
spoon	0.33	0.00	0.00	0.00	0.67	

* Average Accuracy is 0.93.

confMatrix = evaluate(categoryClassifier, validationSet);

Evaluating image category classifier for 5 categories.

- * Category 1: fork
- * Category 2: glass
- * Category 3: kettle
- * Category 4: knife
- * Category 5: spoon
- * Evaluating 20 images...done.
- * Finished evaluating all the test sets.
- * The confusion matrix for this test set is:

KNOWN	fork	glass	kettle	knife	spoon
fork	1.00	0.00	0.00	0.00	0.00
glass	0.00	1.00	0.00	0.00	0.00
kettle	0.00	0.00	1.00	0.00	0.00
knife	0.00	0.00	0.00	1.00	0.00
spoon	0.50	0.00	0.00	0.00	0.50

* Average Accuracy is 0.90.

% Compute average accuracy
mean(diag(confMatrix))

ans = 0.9000

img = imread(fullfile('/Users/Harsh/Documents/GSU_Spring/ComputerVision/ Harsh_Assignment_3/Q6/images/','spoon','8.jpeg')); figure imshow(img)


```
[labelIdx, scores] = predict(categoryClassifier, img);
```

Encoding images using Bag-Of-Features.
* Encoding an image...done.

% Display the string label
categoryClassifier.Labels(labelIdx)

ans = 1×1 cell array
 {'spoon'}