CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Testing for Primes:

- A pseduo-primality-test
 - Pseudo-primes: Carmichael Numbers
 - Error Bounds

PRIMALITY TESTING — APPROACH I

- Randomized Algorithms
 - Need a basic test:
 - Fermat's Theorem: If n is a prime, then $a^{n-1} = 1$ (mod n) for any a in Z_n^* .
 - o Call $a^{n-1} = 1 \pmod{n}$ as the Fermat congruence
 - Is the converse of Fermat's Theorem true?
 - oi.e. If n is not prime is it guaranteed that
 - there exists a in Z_n^* such that a does not satisfy Fermat congruence ?

PRIMALITY TESTING — APPROACH I

- Suppose the converse of Fermat's theorem were true.
 - Is this a randomized algorithm for primality testing?
 - prime(n) {
 - 1. choose a in $Z_n \setminus \{0\}$ at random;
 - if (gcd(a,n)!=1) return "composite";
 - if (aⁿ⁻¹ mod n == 1) return "prime"
 else return "composite";
 - It would be necessary to prove that oif a is in Z_n^* , then with reasonably high probability a
 - fails to satisfy Fermat congruence

PRIMALITY TESTING — CARMICHAEL NUMBERS

- The converse of Fermat's theorem is not true:
 - there exist pseudo-primes i.e. composite numbers n for which all in Z^{*}_n satisfy the Fermat congruence
 These are referred to as Carmichael numbers
- Definition: *Carmichael numbers*:
 - A Carmichael number is a composite n such that for all a in Z_n^* , $a^{n-1} = 1 \pmod{n}$
 - oe.g. 561 (= 3 x 11 x 17), 1729 (= 7 x 13 x 19)
- Consequent questions:
 - 1. Can we eliminate Carmichael numbers?
 - 2. For non-Carmichael numbers n:
 - •how dense (or sparse) is the set Z*_n in elements a that satisfy Fermat congruence?

PRIMALITY TESTING - APPROACH I

- The proposed algorithm (see previous slide) fails for Carmichael numbers:
 - There are an infinite number of Carmichael numbers
 - A finite elimination set e.g. a list of Carmichael numbers computed offline - cannot be used.
 - The density of Carmichael numbers is very low
 - So, it may be within acceptable limits of error even if all of them are not eliminated

FERMAT CONGRUENCE

• Definition F_n:

 For any number n, define the set F_n of elements that satisfy Fermat Congruence

oi.e.
$$F_n = \{ a \text{ in } Z_n^* \mid a^{n-1} = 1 \pmod{n} \}$$

Special cases

- $F_n = Z_n$ for prime n.
- $F_n = Z_n^*$ for Carmichael numbers n.
- $F_n := Z_n^*$ for other n (by elimination)

FERMAT CONGRUENCE

Lemma F_n:

For a composite non-Carmichael number n,

$$|F_n| <= (1/2) * |Z_n^*|$$

Proof:

- Since n is not prime nor a Carmichael number $F_n := Z_n^*$
- Claim: (F_n, *_n) is a group [Exercise: Prove this!]
- Corollary: $(F_n, *_n)$ is a proper sub-group of $(Z_n^*, *_n)$
 - [Exercise: Prove this!]
- Sub-Group Size Theorem:
 - If (H,..) is a sub-group of the group (G,..) then |H| | |G|
- Since $| F_n | != | Z_n^* |$
 - | F_n | / | Z*_n | <= 1/2

A PSEUDO-PRIMALITY TEST

 This randomized algorithm prime(n) { choose a in $Z_n \setminus \{0\}$ at random; if $(\gcd(a,n)==1)$ { if (aⁿ⁻¹ mod n == 1) return "prime" else return "composite"; } } else return "composite"; will err with probability <= ½ for non-Carmichael composite numbers n (by Lemma F_n)