Rank Deficiency

When deriving $\hat{\boldsymbol{\beta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$, we assume the rank of \mathbf{X} is (p+1), so $(\mathbf{X}^t \mathbf{X})^{-1}$ exists. What if $\operatorname{rank}(\mathbf{X}) < p+1$?

 $rank(\mathbf{X}) < p+1$: at least one column of \mathbf{X} is redundant, i.e., it can be reproduced by linear combinations of the other columns

- \blacktriangleright X_1 : size in sq. ft.; X_2 : size in sq. meters;
- ▶ X₁: % of population above age 75;
 - X_2 : % of population below age 18;
 - X_3 : % of population below between 18 and 75.

Rank Deficiency

- ► Rank deficiency is not a serious issue: the linear subspace C(X), spanned by the columns of X, is well-defined and therefore ŷ is well-defined and can be computed.
- ▶ Due to rank deficiency, $\hat{\beta}$ is not unique.

$$\mathbf{X}_{n\times 2} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ & \cdot & \cdot \\ 1 & 2 \end{pmatrix}$$

Rank Deficiency

- Rank deficiency is not a serious issue: the linear subspace $C(\mathbf{X})$, spanned by the columns of \mathbf{X} , is well-defined and therefore $\hat{\mathbf{y}}$ is well-defined and can be computed.
- ▶ Due to rank deficiency, $\hat{\beta}$ is not unique.
- ► In R, LS coefficients = NA means rank deficiency. You can still use the returned model to do prediction.

$$\mathbf{X}_{n\times 2} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ & \cdot & \cdot \\ 1 & 2 \end{pmatrix}$$