Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-40 (canceled)

41 (new): A method for measuring a physiological parameter, comprising: 1 measuring a plurality of signals, wherein each of said signals comprises a source 2 component corresponding to said physiological parameter and an interference component; 3 processing said plurality of signals to obtain a plurality of principal components; 4 processing said plurality of principal components to obtain a plurality of 5 independent components, wherein a matrix of said plurality of signals corresponds to a matrix 6 product of a matrix of said plurality of independent components and a matrix of mixing 7 8 coefficients; and extracting a first measure of said physiological parameter corresponding to said 9 source component from one of said plurality of independent components, wherein said plurality 10 of signals corresponds to sensed optical energies from a plurality of wavelengths, 11 and wherein said processing said plurality of principal components comprises 12 maximizing a function of the higher-order cumulants of a mixture of said plurality of signals, 13 thus separating said source component from said interference component, and 14 wherein said higher-order cumulant is a third-order cumulant of said plurality of 15 16 signals. 42 (new): The method of claim 41 wherein said physiological parameter is a 1 2 function of an oxygen saturation. 43 (new): The method of claim 41 wherein said processing said plurality of 1 2 signals further comprises

3	obtaining a time derivative of the sensed optical energies from a plurality of
1	wavelengths.
l	44 (new): The method of claim 41 wherein said interference component
2	comprises signal components caused by motion, respiratory artifact, ambient light, optical
3	scattering and other interference between a tissue location being sensed and a sensor.
	45 (new): The method of claim 41 wherein said processing said plurality of
2	signals further comprises decorrelating said plurality of signals by minimizing a cross-correlation
3	of said plurality of signals, to obtain a plurality of decorrelated signals; and
1	normalizing said plurality of decorrelated signals to obtain the plurality of
5	principal components.
l	46 (new): The method of claim 41 wherein said processing said plurality of
2	signals comprises decorrelating said plurality of signals by singular-value decomposition of said
3	plurality of signals, to obtain the plurality of principal components.
l	47 (new): The method of claim 41 wherein said processing said plurality of
2	signals comprises decorrelating said plurality of signals by multiplying said plurality of signals
3	by the inverse square root of the covariance matrix of said plurality of signals to obtain the
1	plurality of principal components.
l	48 (new): The method of claim 41 further comprising obtaining a ratio of mixing
2	coefficients from said matrix of mixing coefficients, wherein said ratio corresponds to a ratio of
3	modulation ratios of red to infrared signals, wherein said plurality of signals comprise modulated
1	optical signals in the red and infrared ranges.
Į	49 (new): The method of claim 48 further comprising extracting a second
2	measure of said physiological parameter from said ratio, wherein said second measure of said
3	physiological parameter corresponds to an oxygen saturation.

i	50 (new): A pulse oximeter, comprising:
2	a sensor configured for measuring a plurality of signals, wherein each of said
3	signals comprises a source component corresponding to said physiological parameter and an
4	interference component;
5	a computer useable medium having computer readable code embodied therein for
6	measuring a physiological parameter, said computer readable code configured to execute
7	functions comprising:
8	processing said plurality of signals to obtain a plurality of principal components;
9	processing said plurality of principle components to obtain a plurality of
10	independent components, wherein a matrix of said plurality of signals corresponds to a matrix
11	product of a matrix of said plurality of independent components and a matrix of mixing
12	coefficients;
13	extracting a first measure of said physiological parameter corresponding to said
14	source component from one of said plurality of independent components, wherein said plurality
15	of signals corresponds to sensed optical energies from a plurality of wavelengths;
16	and wherein said processing said plurality of principal components comprises
17	maximizing a function of the higher-order cumulants of a mixture of said plurality of signals,
18	thus separating said source component from said interference component; and
19	wherein said higher-order order cumulant is a third-order cumulant of said
20	plurality of signals.
1	51 (new): The pulse oximeter of claim 50 wherein said physiological parameter
2	is an oxygen saturation.
_	is an oxygon saturation.
1	52 (new): The pulse oximeter of claim 50 wherein said plurality of signals
2	corresponds to the time derivative of the sensed optical energies from a plurality of wavelengths

1	53 (new): The pulse oximeter of claim 50 wherein said interference component
2	comprises signal components caused by motion, respiratory artifact, ambient light, optical
3	scattering and other interference between a tissue location being sense and a sensor.
1	54 (new): The pulse oximeter of claim 50 wherein said processing said plurality
2	of signals comprises decorrelating said plurality of signals by minimizing a cross-correlation of
3	said plurality of signals, to obtain a plurality of decorrelated signals; and
4	normalizing said plurality of decorrelated signals to obtain the plurality of
5	principal components.
1	55 (new): The pulse oximeter of claim 50 wherein said processing said plurality
2	of signals comprises decorrelating said plurality of signals by singular-value decomposition of
3	said plurality of signals, to obtain the plurality of principal components.
1	56 (new): The pulse oximeter of claim 50 wherein said processing said plurality
2	of signals comprises decorrelating said plurality of signals by multiplying said plurality of
3	signals by the inverse square root of the covariance matrix of said plurality of signals to obtain
4	the plurality of principal components.
1	57 (new): The pulse oximeter of claim 50 wherein said processing said plurality
2	of principal components comprises successive transformations to simultaneously minimize
3	higher-order correlations among the outputs of the transformations.
1	58 (new): The pulse oximeter of claim 50 wherein said processing said plurality
2	of principal components comprises successive rotations to minimize estimated mutual
3	information among outputs of the rotations.
1	59 (new): The pulse oximeter of claim 50 further comprising obtaining a ratio of
2	mixing coefficients from said matrix of mixing coefficients, wherein said ratio corresponds to a
3	ratio of modulation ratios of red to infrared signals.

1 60 (new): The pulse oximeter of claim 59 further comprising extracting a second 2 measure of said physiological parameter from said ratio, wherein said second measure of said 3 physiological parameter corresponds to an oxygen saturation. 1 61 (new): The pulse oximeter of claim 50 wherein said first measure of a 2 physiological parameter corresponds to a pulse rate.