ミクロ経済学I演習 第4回 解答

作成日 | 2017年5月10日

問題 1

(1) 支出最小化問題:

$$\min_{\mathbf{x} \in \mathbb{R}_+^2} \mathbf{p} \mathbf{x}$$
s.t. $\sqrt{x_1} + \sqrt{x_2} \geqslant u$

u = 0 なら $\mathbf{x} = 0$ が解である. 以下では u > 0 のときを考える.

解が内点になることの証明. 解が $\mathbf{x}^* = 0$ であるとする. このとき $u(\mathbf{x}^*) = 0 < u$ となり、制約を満たさないので矛盾.

ある i=1,2 について $x_i^*=0$ であるとする. $\mathbf{x}=0$ は解ではないので $x_j^*>0$ でなければならない. また, \mathbf{x}^* は解なので $u(\mathbf{x}^*) \geqslant \overline{u}$ を満たしている. ここで, \mathbf{x}' を以下のように定義する.

$$x_i' = \varepsilon$$
$$x_j' = x_j^* - \frac{2p_i}{p_i}\varepsilon$$

$$f(\varepsilon) = \sqrt{\varepsilon} + \sqrt{x_2^* - \frac{2p_i}{p_j}\varepsilon}$$

と書ける. f を ϵ で微分すると,

$$f'(\varepsilon) = \frac{1}{2\sqrt{\varepsilon}} - \frac{2p_i}{p_j\sqrt{x_2^* - \frac{2p_i}{p_j}\varepsilon}}$$

 $\varepsilon \to 0$ とすると, $f'(\varepsilon) \to +\infty > 0$ となるので平均値の定理よりある $\varepsilon' \in (0,\varepsilon)$ が存在して, $f(\varepsilon) = f(0) + f'(\varepsilon)\varepsilon > 0$ を満たす. よってこのような ε' に対して $u(x') > u(x^*)$ が成り立つ. さらに,

$$\mathbf{p}\mathbf{x}' = p_i \varepsilon + p_j \left(x_j^* - \frac{2p_i}{p_j} \varepsilon \right) = p_j x_j^* - p_i \varepsilon < p_j x^* = \mathbf{p}\mathbf{x}^*$$

となるので \mathbf{x}^* が支出最小化の解であることに矛盾する.

クーンタッカーの十分条件より,クーンタッカー条件を満たす x^* が解である. ラグランジュ関数は,

$$L = -\mathbf{p}\mathbf{x} - \lambda(u - u(\mathbf{x}))$$

である. クーンタッカー条件は,

$$-p_i + \lambda^* \frac{1}{2\sqrt{x_i^*}} = 0, \text{ for all } i = 1, 2$$
 (1)

$$\lambda(u - u(\mathbf{x}^*)) = 0 \tag{2}$$

となる. (1) より,

◄ $x_i^* > 0$ に注意.

$$\lambda^* = 2p_i \sqrt{x_i^*} > 0$$

である. すると (2) より $u - u(\mathbf{x}^*) = 0$ が従う. さらに,

$$2p_1\sqrt{x_1^*} = \lambda^* = 2p_2\sqrt{x_2^*} \Rightarrow \sqrt{x_2^*} = \frac{p_1}{p_2}\sqrt{x_1^*}$$

$$\Rightarrow x_2^* = \left(\frac{p_1}{p_2}\right)^2 x_1^*$$
(3)

となるのでこれを $u(\mathbf{x}^*) = u$ に代入して,

$$\sqrt{x_1^*} + \sqrt{x_2^*} = \sqrt{x_1^*} + \frac{p_1}{p_2} \sqrt{x_1^*} = u$$

$$\iff \frac{p_2 + p_1}{p_2} \sqrt{x_1^*} = u$$

$$\iff x_1^* = \left(\frac{p_2 u}{p_2 + p_1}\right)^2$$

(3) より,

$$x_2^* = \left(\frac{p_1}{p_2}\right)^2 \left(\frac{p_2 u}{p_2 + p_1}\right)^2 = \left(\frac{p_1 u}{p_2 + p_1}\right)^2$$

となる.

(2) (3) の結果を px^* に代入して,支出関数e(p,u) は

$$e(\mathbf{p}, u) = p_1 \left(\frac{p_2 u}{p_2 + p_1}\right)^2 + p_2 \left(\frac{p_1 u}{p_2 + p_1}\right)^2$$
$$= \left(\frac{(\sqrt{p_2} + \sqrt{p_1})\sqrt{p_1 p_2} u}{p_2 + p_1}\right)^2$$

問題 2

(a) (5) 証明. (\mathbf{p},u) の下での支出最小化問題の解を $\mathbf{x}^h(\mathbf{p},u)$ とする.支出最小化問題の制約は $u(\mathbf{x}) \geqslant u$ なので \mathbf{p} について不変である.よって価格が $t\mathbf{p}$ になっても制約は変わらない.するとこの下で $t(\mathbf{p}\cdot\mathbf{x})$ を最小にする \mathbf{x} は $\mathbf{x}^h(\mathbf{p},u)$ に等しくなる.したがって支出関数は

$$e(t\mathbf{p}, u) = t\mathbf{p}\mathbf{x}^h(t\mathbf{p}, u) = t\mathbf{p}x^h(\mathbf{p}, u) = te(\mathbf{p}, u)$$

を満たすので \mathbf{p} について1次同次である.

(6) 証明. 任意に \mathbf{p}^0 , $\mathbf{p}^1 \in \mathbb{R}^n_{++}$ を選び, (\mathbf{p}^0,u) , (\mathbf{p}^1,u) の下での支出最小化の解をそれぞれ \mathbf{x}^0 , \mathbf{x}^1 と表記すると,任意の $t \in [0,1]$ と $u(\mathbf{x}) \geqslant u$ を満たす任意の $\mathbf{x} \in \mathbb{R}^n_+$ に対し,

 $u(\mathbf{x}^*) \ge u$ のチェックは 重要. $u(\mathbf{x}) \ge u$ を満た

さない x については上記

の関係は成り立つとは限

$$e(\mathbf{p}^0, u) = \mathbf{p}^0 \mathbf{x}^0 \leqslant \mathbf{p}^0 \mathbf{x}$$

 $e(\mathbf{p}^1, u) = \mathbf{p}^1 \mathbf{x}^1 \leqslant \mathbf{p}^1 \mathbf{x}$

が成り立つ. \mathbf{x}^* を $(t\mathbf{p}^0+(1-t)\mathbf{p}^1,u)$ に対する支出最小化の解とすると, $u(\mathbf{x}^*) \geqslant u$ を満たす. よって上の 2 式から,

$$e(\mathbf{p}^0, u) = \mathbf{p}^0 \mathbf{x}^0 \leqslant \mathbf{p}^0 \mathbf{x}^* \tag{4}$$

$$e(\mathbf{p}^1, u) = \mathbf{p}^1 \mathbf{x}^1 \leqslant \mathbf{p}^1 \mathbf{x}^* \tag{5}$$

が成り立つ. (4) の両辺を t 倍, (5) の両辺を (1-t) 倍したものを足し合わせると,

$$te(\mathbf{p}^0, u) + (1 - t)e(\mathbf{p}^1, u) \leq t\mathbf{p}^0\mathbf{x}^* + (1 - t)\mathbf{p}^1\mathbf{x}^* = \left(t\mathbf{p}^0 + (1 - t)\mathbf{p}^1\right)x^*$$
$$= e\left(t\mathbf{p}^0 + (1 - t)\mathbf{p}^1, u\right)$$

となる. したがって支出関数は凹関数である.

(b) 支出関数

$$e(\mathbf{p}, u) = \left(\frac{(\sqrt{p_2} + \sqrt{p_1})\sqrt{p_1p_2}u}{p_2 + p_1}\right)^2$$

について考える. 任意の t>0 について,支出関数に含まれる各財の価格を t 倍すると,全ての財の価格を t>0 倍すると,

$$e(t\mathbf{p}, u) = \left(\frac{(\sqrt{tp_2} + \sqrt{tp_1})\sqrt{tp_1\dot{t}p_2}u}{tp_2 + tp_1}\right)^2 = \left(\frac{t^{3/2}(\sqrt{p_2} + \sqrt{p_1})\sqrt{p_1p_2}u}{t(p_2 + p_1)}\right)^2$$
$$= t\left(\frac{(\sqrt{p_2} + \sqrt{p_1})\sqrt{p_1\dot{p}_2}u}{p_2 + p_1}\right)^2 = te(\mathbf{p}, u)$$

となるので $e(\mathbf{p}, u)$ は \mathbf{p} について 1 次同次.