6 Расчет статических характеристик асинхронного электропривода с фазным ротором

6.1 Естественная характеристика

Исходные данные для построения естественной характеристики приведены в таблице 1. В таблицу 2 заносим значения s, M и ω .

Таблица 1 – Исходные данные

Тип	Рн,	n _H ,	n ₀ ,	$M_{\scriptscriptstyle M}/M_{\scriptscriptstyle H}$	r _p ,	Xp,	1,	r _c ,	Xc,
АДФР	кВт	об/мин	об/мин	1 V1 _M /1 V1 _H	Ом	Ом	k _e	Ом	Ом
MTB312 - 8	11	710	750	2,8	0,13	0,23	1,96	0,53	0,56

Найдем некоторые параметры:

1) Коэффициент трансформации сопротивлений:

$$k_r = k_e^2 = 1,96^2 = 3,84.$$

2) Приведенные к статору внутренние активное и реактивное сопротивления ротора:

$$\mathbf{r}_{p}^{'} = \mathbf{k}_{r} \cdot \mathbf{r}_{p} = 3,84 \cdot 0,13 = 0,499 \text{ (Om)},$$

$$\mathbf{x}_{p}^{'} = \mathbf{k}_{r} \cdot \mathbf{x}_{p} = 3,84 \cdot 0,23 = 0,883 \text{ (Om)}.$$

3) Критическое скольжение и q:

$$s_{\kappa} = \frac{r_{p}^{'}}{\sqrt{r_{c}^{2} + (x_{c} + x_{p}^{'})^{2}}} = \frac{0,499}{\sqrt{0,53^{2} + (0,56 + 0,883)^{2}}} = 0,324,$$

$$q = \frac{r_{c} \cdot 2s_{\kappa}}{r_{p}^{'}} = \frac{0,53 \cdot 2 \cdot 0,324}{0,499} = 0,69.$$

Теперь, изменяя s от нуля до единицы, найдем момент и скорость, на основании которых и получим естественную характеристику (рисунок 1). Формулы следующие:

$$\begin{split} \omega_{\text{H}} &= n_{\text{H}}/9,55 = 710/9,55 = 74,35 \text{ (рад/с)}, \\ M &= M_{_{\text{M}}} \cdot \frac{2+q}{\frac{s}{s_k} + \frac{s_k}{s} + q}, \\ M_{_{\text{H}}} &= \frac{1000P_{_{\text{H}}}}{\omega_{_{\text{H}}}} = \frac{1000 \cdot 11}{74,35} = 147,95 \text{ (H} \cdot \text{M}), \\ M_{_{\text{M}}} &= M_{_{\text{H}}} \cdot \frac{M_{_{\text{M}}}}{M_{_{\text{H}}}} = 147,95 \cdot 2,8 = 414,26 \text{ (H} \cdot \text{M}), \\ \omega_0 &= \frac{n_0}{9,55} = \frac{750}{9,55} = 78,53 \text{ (рад/с)}, \\ \omega &= \omega_0 (1-s). \end{split}$$

Таблица 2 – Значения для построения характеристики

S	1	0,8	0,7	0,6	0,5	0,3	0,2	0,1	0
М, Н·м	271,77	312,66	336,32	361,6	386,77	413,3	380,7	262,9	0
ω, рад/с	0	15,7	23,6	31,4	39,3	54,97	62,8	70,67	78,53

Рисунок 1 – Естественная характеристика АДФР