"I like being surrounded by good ideas. Every single time you walk past something you like, you get a **blast** of happy chemicals to the brain, and I like that."

-- Douglas Coupland

Are there other sequences like this one?

- 1) Huge public databases GenBank, Swissprot, etc.
- 2) Sequence comparison is the most powerful and reliable method to determine evolutionary relationships between genes
- 3) Similarity searching is based on alignment
- 4) So why not just do local alignment against the whole database???

Given a newly discovered gene,

- Does it occur in other species?
- How fast does it evolve?

Assume we try Smith-Waterman:

- Consider task of searching SWISS-PROT:
 - Say query sequence is 362 amino acids long
 - SWISS-PROT (v38) contains 29,085,255 amino acids
- Local alignment via Smith-Waterman:
 - O(10¹⁰) matrix operations!
 - If each operation is 1/1000 of a second, this search takes 115.7 *days!*
 - With modern processor and an optimized implementation, this search may take only ~10 minutes.
- What if need to do 1000 searches a day?!?
 - That requires a search to be < 1.4 minutes apiece.

Given a newly sequenced organism,

- Which subregions align with other organisms?
 - Potential genes
 - Other biological characteristics

Assume we try Smith-Waterman:

Bounded Dynamic Programming

Ways of reducing alignment algorithm demands:

- Can reduce space at cost of time, but this trades MORE compute for less memory.
- Methods for bounding the DP to reduce time AND space, but at the cost of perhaps *missing* the best alignment.

Heuristic algorithms for local search

BLAST and **FASTA*** provide rapid similarity searching rapid = approximate (heuristic)

Tradeoff: sensitivity vs speed
sensitivity = # significant matches detected
significant matches in the DB

*Note that FASTA here refers to a suite of alignment programs. It was the first of these approaches and established the now ubiquitously used FASTA file format! It is *unfortunate confusion* that they are named identically.

FASTA

- 1) Derived from logic of the dot plot
 - compute best diagonals from all frames of alignment
- 2) Word method looks for exact matches between words in query and test sequence
 - hash tables !!!
 - DNA words are usually 6 bases
 - protein words are 2 or 3 amino acids
 - only searches for diagonals in region of word matches = faster searching

Hash Tables: Basic Idea

- Use a key (arbitrary string or number) to index directly into an array – O(1) time to access records
 - A["kreplach"] = "tasty stuffed dough"
 - Need a hash function to convert the key to an integer

	Key	Data
0	kim chi	spicy cabbage
1	kreplach	tasty stuffed dough
2	kiwi	Australian fruit

10

Optimal Hash Function

- The best hash function would distribute keys as evenly as possible in the hash table
- A collision occurs when two different keys hash to the same value. (Cannot store both data records in the same slot in array!)
- Collision resolution is necessary, but time consuming.

11

Hash Table tradeoffs

- Smaller keys = faster for small data, but more collisions for big data, which slows down look up.
- Larger keys = fewer collisions, but very large table (lots of memory) for big data.

FASTA Algorithm

Find runs of identitical words

Re-score using PAM matrix Keep top scoring segments

Makes Longest Diagonal

- 3) after all diagonals found, tries to join diagonals by adding gaps
- 4) computes alignments in regions of best diagonals

FASTA Alignments

Join segments using gaps, eliminate other segments

Use dynamic programming to create an optimal alignment

BLAST Searches GenBank

[BLAST= Basic Local Alignment Search Tool]
(Altschul et. al. 1990)

The NCBI **BLAST** web server lets you compare your query sequence to various sections of GenBank:

- **nr** = non-redundant (main sections)
- month = new sequences from the past few weeks
- FST
- human, drososphila, yeast, or E.coli genomes
- proteins (by automatic translation)
- This is a VERY fast and powerful computer.

Extension

- Extend in both directions (without allowing gaps)
- Terminate extension in either direction when score falls below a certain distance of best score for shorter extension

Gapped BLAST algorithm

- The NCBI's BLAST website now uses "gapped BLAST"
- This algorithm is more complex than the original BLAST
- It requires two word matches close to each other on a pair of sequences (i.e. with a gap) before it creates an alignment

- •Use <u>two</u> word matches as anchors to build an alignment between the query and a database sequence.
- •Then score the alignment.

HSPs are Aligned Regions

 The results of the word matching and attempts to extend the alignment are segments

called HSPs (High-scoring Segment Pairs)

 BLAST often produces several short HSPs rather than a single aligned region

BLAST is Approximate

- BLAST makes similarity searches very quickly because it takes shortcuts.
 - looks for short, nearly identical "words"
- It also makes errors
 - misses some important similarities
 - makes many incorrect matches
 - easily fooled by repeats or skewed composition
 - · Or evenly spaced mismatches!

Filters

Default filters remove low complexity from protein searches and known repeats (ie. *Alu*) from DNA searches.

Reduces how often gets fooled by low complexity regions, but at cost of making these regions essentially "unalignable".

Word size

- Default word size
 - 11 bases for DNA
 - 3 for protein
- Short sequences will have few words
- Low quality sequence might have a sequencing error in every word
- · Impacts sensitivity!
 - Shorter words => more sensitive => more words to expand => more runtime!

Flavors of Blast

Program	Query	Database
BLASTP	Protein	Protein
BLASTN	DNA	DNA
BLASTX	Translated DNA	Protein
TBLASTN	Protein	Translated DNA
TBLASTX	Translated DNA	Translated DNA