Proofs of "An Automated Quantitative Information Flow Analysis for Concurrent Programs" presented in QEST-2022

 $\label{eq:Khayyam_Salehi^1[0000-0002-3379-798X]} \mbox{Khayyam Salehi^1[0000-0002-3379-798X]}, \mbox{Ali A. Noroozi^2[0000-0003-1173-079X]}, \mbox{Sepehr Amir-Mohammadian}^3[0000-0002-2301-4283], \mbox{and Mohammadsadegh} \mbox{Mohagheghi^4[0000-0001-8059-3691]}$

- Department of Computer Science, Shahrekord University, Shahrekord, Iran kh.salehi@sku.ac.ir
 - ² Department of Computer Science, University of Tabriz, Tabriz, Iran noroozi@tabrizu.ac.ir
- ³ Department of Computer Science, University of the Pacific, Stockton, CA, USA samirmohammadian@pacific.edu
- ⁴ Department of Computer Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

mohagheghi@vru.ac.ir

A Proofs

Theorem 1. Back-bisimulation is an equivalence relation.

Proof. Let $\mathcal{M}^{\mathtt{P}}_{\delta}$ be an MC. We show reflexivity, symmetry, and transitivity of the relation \sim_b .

- Reflexivity: It is obvious that $s \sim_b s$ for all states $s \in S$.
- Symmetry: Assume that $s_1 \sim_b s_2$. We should show that $s_2 \sim_b s_1$. Clearly, condition (1) holds. By symmetry of conditions (2) and (3), we immediately conclude that $s_2 \sim_b s_1$.
- Transitivity: Let $s_1 \sim_b s_2$ and $s_2 \sim_b s_3$. We should show that $s_1 \sim_b s_3$.
 - (1) As $s_1 \sim_b s_2$ and $s_2 \sim_b s_3$, it follows that $V(s_1) = V(s_2) = V(s_3)$.
 - (2) Assume $s_1 \sim_b s_3$. Since $s_1 \sim_b s_2$, it follows that if $s'_1 \in Pre(s_1)$ then $s'_1 \sim_b s'_2$ for some $s'_2 \in Pre(s_2)$. Since $s_2 \sim_b s_3$, we have $s'_2 \sim_b s'_3$ for some $s'_3 \in Pre(s_3)$. Hence, $s'_1 \sim_b s'_3$.
 - (3) Similar to the proof for item (2).

Theorem 2. Let \mathcal{M}_{δ}^{p} be an $MC_{\mathfrak{n}}$. For all paths $\sigma_{1}, \sigma_{2} \in Paths(\mathcal{M}_{\delta}^{p})$ with $\sigma_{1} = s_{0,1}s_{1,1} \dots s_{n-1,1}(s_{n,1})^{\omega}, \ \sigma_{2} = s_{0,2}s_{1,2} \dots s_{n-1,2}(s_{n,2})^{\omega}, \ and \ n \geq 0$ it holds that $s_{n,1} \sim_{b} s_{n,2}$ iff $trace(\sigma_{1}) = trace(\sigma_{2})$.

Proof. The proof is carried out in two steps.

 \Rightarrow : Assume $s_{n,1} \sim_b s_{n,2}$. We show that $trace(\sigma_1) = trace(\sigma_2)$. From $s_{n,1} \sim_b s_{n,2}$, it immediately follows that $V(s_{n,1}) = V(s_{n,2})$ and $s_{n-1,1} \sim_b s_{n-1,2}$. The latter yields $V(s_{n-1,1}) = V(s_{n-1,2})$ and $s_{n-2,1} \sim_b s_{n-2,2}$. This inductive label-equality

can be continued until the initial states: $V(s_{0,1}) = V(s_{0,2})$. Therefore, for all $0 \le i \le n$, $V(s_{i,1}) = V(s_{i,2})$, which yields $trace(\sigma_1) = trace(\sigma_2)$.

 \Leftarrow : Assume $trace(\sigma_1) = trace(\sigma_2)$. We show that $s_{n,1} \sim_b s_{n,2}$. From $trace(\sigma_1) = trace(\sigma_2)$, it follows that $V(s_{i,1}) = V(s_{i,2})$ for $0 \le i \le n$. States $s_{n,1}$ and $s_{n,2}$ have intersecting pre-labels:

$$V(s_{n-1,1}) = V(s_{n-1,2}) \in PreLabels(s_{n,1}) \cap PreLabels(s_{n,2}).$$

Since $\mathcal{M}^{\mathtt{P}}_{\delta}$ is an $\mathrm{MC}_{\mathfrak{n}}$, the states $s_{n,1}$ and $s_{n,2}$ are not pseudoback-bisimilar. From the definition of pseudoback-bisimulation (Definition 9) and considering that $V(s_{n,1}) = V(s_{n,2})$, $level(s_{n,1}) = level(s_{n,2}) = n$, and $PreLabels(s_1) \cap PreLabels(s_2) \neq \emptyset$, it follows that $sig_{\sim_b}(s_1) = sig_{\sim_b}(s_2)$. This yields $s_{n,1} \sim_b s_{n,2}$.

Theorem 3. Let \mathcal{M}_{δ}^{p} be an $MC_{\mathfrak{n}}$. For all paths $\sigma_{1}, \sigma_{2} \in Paths(\mathcal{M}_{\delta}^{p})$ with $\sigma_{1} = s_{0,1}s_{1,1}\dots s_{n-1,1}(s_{n,1})^{\omega}, \ \sigma_{2} = s_{0,2}s_{1,2}\dots s_{m-1,2}(s_{m,2})^{\omega}, \ n,m > 0, \ and \ 0 \leq i < min(n,m)$ it holds that $s_{i,1} \sim_{b} s_{i,2}$ iff $trace_{\ll i}(\sigma_{1}) = trace_{\ll i}(\sigma_{2})$.

Proof. Proof is similar to the proof of theorem 2, and is omitted to avoid repetition.

Theorem 4. Algorithm 1 always terminates and correctly computes the back-bisimulation quotient space S/\sim_b .

Proof. Termination of Algorithm 1 is proven by Lemma 1. The correctness of the refinement operator is proven by Lemma 2. It shows that successive refinements, starting with partition Π_0 , yield a series of partitions $\Pi_0, \Pi_1, \Pi_2, \ldots$ These partitions become increasingly finer and all are coarser than S/\sim_b . For partitions Π_1 and Π_2 of S, Π_1 is called finer than Π_2 , or Π_2 is called coarser than Π_1 , if:

$$\forall B_1 \in \Pi_1 \ \exists B_2 \in \Pi_2. \ B_1 \subseteq B_2.$$

Lemma 3 proves that S/\sim_b is the coarsest partition for S. Thus, successive refinements of Algorithm 1 yield S/\sim_b . This shows that Algorithm 1 correctly computes S/\sim_b .

Lemma 1. Algorithm 1 always terminates.

Proof. Due to the definition of Refine_b(Π , C), the partition Π is finer than Π_{old} , i.e. $\forall B_1 \in \Pi \ \exists B_2 \in \Pi_{old}, B_1 \subseteq B_2$. According to finiteness of S, a partition Π with $\Pi = \Pi_{old}$ (line 6 of the algorithm) is reached after at most |S| iterations. In other words, after |S| refinements, any block in Π is a singleton, and the algorithm always terminates.

Lemma 2. Let Π be a partition of S, which is finer than Π_0 and coarser than S/\sim_b and C be a superblock of Π . Then:

- (a) $Refine(\Pi, C)$ is finer than Π .
- (b) Refine(Π , C) is coarser than S/\sim_b .

Proof.

- (a) This follows directly from the definition of Refine (Definition 10), since every block $B \in \Pi$ is either contained in $Refine(\Pi, C)$ or is decomposed into $B \cap Post(C)$ and $B \setminus Post(C)$.
- (b) To prove that $Refine(\Pi, C)$ is coarser than S/\sim_b , we need to prove that each block B in S/\sim_b is contained in a block of $Refine(\Pi, C)$. Since Π is coarser than S/\sim_b (part (a)), there exists a block $B' \in \Pi$ with $B \subseteq B'$. B' is of the form $B' = B \cup D$ where D is a (possibly empty) superblock of S/\sim_b . If $B' \in Refine(\Pi, C)$, the $B \subseteq B' \subseteq Refine(\Pi, C)$. Otherwise, i.e., if $B' \notin Refine(\Pi, C)$, then due to the definition of $Refine(\Pi, C)$ (Definition 10), B' is decomposed into the subblocks $B' \cap Post(C)$ and $B' \setminus Post(C)$. It remains to show that B is included in one of these two new subblocks. Condition (ii) of the previous lemma implies that either $B \cap Post(C) = \emptyset$ ($B \setminus Post(C) = B$) or $B \setminus Post(C) = \emptyset$ ($B \cap Post(C) = B$). Since $B' = B \cup D$, B is either contained in block
 - $B' \setminus Post(C) = (B \setminus Post(C)) \cup (D \setminus Post(C))$
 - or in $B' \cap Post(C) = (B \cap Post(C)) \cup (D \cap Post(C))$.

Lemma 3. The back-bisimulation quotient space S/\sim_b is the coarsest partition Π for S such that:

- (i) Π is finer than Π_0 .
- (ii) for all $B, C \in \Pi : B \cap Post(C) = \emptyset$ or $B \subseteq Post(C)$.

Remember that $Post(C) = \{s \in S | Pre(s) \cap C \neq \emptyset\}$ describes the set of states in S, which have at least one predecessor in C.

Proof. Let Π be a partition of S and \mathcal{R}_{Π} the equivalence relation on S induced by Π . The proof is carried out in two steps. The first step is to prove that \mathcal{R}_{Π} is a back-bisimulation if and only if the conditions (i) and (ii) are satisfied. The last step is to show that S/\sim_h is the coarsest partition satisfying (i) and (ii).

 \Leftarrow : Assume that Π satisfies (i) and (ii). We prove that \mathcal{R}_{Π} is a back-bisimulation. Let $(s_1, s_2) \in \mathcal{R}_{\Pi}$ and $B = [s_1]_{\Pi} = [s_2]_{\Pi}$.

- 1. Since Π is finer than Π_0 (condition (i)), there exists a block B' of Π_0 containing B. Thus, $s_1, s_2 \in B \subseteq B' \in \Pi_0$. Since the public variables in each block of Π_0 is the same (line 3 of the algorithm), we have $L(s_1) = L(s_2)$.
- 2. Let s'_1 be one of the predecessors of s_1 , i.e. $s'_1 \in Pre(s_1)$ and C be an equivalence class of s'_1 , i.e. $C = [s'_1]_H$. Then, $s_1 \in B \cap Post(C)$. By condition (ii), we obtain $B \subseteq Post(C)$. Hence, $s_2 \in Post(C)$. So, there exists a state $s'_2 \in Pre(s_2) \cap C$. Because $s'_2 \in C = [s'_1]_H$, it results that $(s'_1, s'_2) \in R_H$.
- \Rightarrow : Assume \mathcal{R}_{Π} is a back-bisimulation. It remains to show that the conditions (i) and (ii) are satisfied.
- (i) By contradiction. Assume that Π is not finer than Π_0 . Then, there exist a block $B \in \Pi$ and states $s_1, s_2 \in B$ with $[s_1]_{\Pi_0} \neq [s_2]_{\Pi_0}$. Then, according to

the definition of Π_0 , $L(s_1) \neq L(s_2)$. Hence, \mathcal{R}_{Π} is not a back-bisimulation relation. Contradiction.

(ii) This is proved in two steps. First, we have to prove that condition (ii) is satisfied when B, C are blocks of Π . We assume that $B \cap Post(C) \neq \emptyset$ and show that $B \subseteq Post(C)$. Since $B \cap Post(C) \neq \emptyset$, there exist a state $s_1 \in B$ with $Pre(s_1) \cap C \neq \emptyset$, that is there exist a predecessor of s_1 in C. Let $s'_1 \in Pre(s_1) \cap C$ and s_2 be an arbitrary state of B. We deduce that $s_2 \in Post(C)$. Since $s_1, s_2 \in B$, we get that $(s_1, s_2) \in \mathcal{R}_{\Pi}$. According to $s'_1 \longrightarrow s_1$, there exists a transition $s'_2 \longrightarrow s_2$ with $(s'_1, s'_2) \in \mathcal{R}_{\Pi}$. Since $s'_1 \in C$ we have $s'_2 \in C$. Thus, $s'_2 \in Pre(s_2) \cap C$ and $s_2 \in Post(C)$. In the last step, we prove that (ii) is satisfied for block B and superblock C of $B \cap B$ and $C \cap B$ as superblock, i.e., $C \cap B \cap B$ and $C \cap B \cap B$ are $C \cap C \cap B$ and $C \cap C \cap B$ are $C \cap C \cap B$ and $C \cap C \cap B$ are that $C \cap C$

It remains to show that the back-bisimulation partition $\Pi = S/\sim_b$ is the coarsest partition of S; This immediately follows from the definition of \sim_b .

Theorem 5. The time complexity of Algorithm 1 is O(|S|.|E|), where E denotes the set of transitions of \mathcal{M}^p_{δ} .

Proof. In order to compute the initial partition, a hash map could be used. Hash map is a data structure for mapping keys to values. Here, keys are possible values of 1 and values are blocks of states. The time complexity of inserting a key-value pair to the hash map is O(1) in average and $O(min(|Val_l|, |S|))$ in worst case. This yields the overall time complexity of $O(|S|.min(|Val_l|, |S|))$ for computing the initial partition.

In refining each partition, $Refine_b(\Pi, \mathcal{C})$ causes the cost O(|Post(s)|+1) for each state $s \in S$. The summand 1 reflects the case $Post(s) = \emptyset$. The outermost iteration is traversed maximally |S| times. Thus, the overall cost of successive partition refinements is

$$O\bigg(|S|.\sum_{s \in S}(|Post(s)|+1)\bigg) = \\ O\bigg(|S|.\bigg(\sum_{s \in S}|Post(s)|+|S|\bigg)\bigg).$$

Let $E = \sum_{s \in S} |Post(s)|$ denote the number of transitions of $\mathcal{M}^{\mathtt{p}}_{\delta}$. Assuming $E \geq |S|$, the latter complexity can be simplified to O(|S|.E).

Finally, the overall time complexity of Algorithm 1 is computed as

$$O(|S|.min(|Val_l|,|S|) + |S|.E) = O(|S|.E).$$