

<u>Course</u> > <u>Topic 1</u>... > <u>12.4 Li</u>... > Linear ...

Linear Regression Video

POLL

If your data set contains 10 colinear points, meaning they are all points on the same line, should you use a linear regression to find that line?

RESULTS

No 58%

19	Linear Regression 12.4 Linear Regression DSE210x Courseware edX	
Yes	42%	
Submit		
Results gathered from 127 respondents.		
FEEDBACK No, we do not the slope of th	need to use linear regression. Simply taking two points, we can calculate ne line.	
1		
0/1 point (grade When a syster	ed) m has more dimensions than points, it is called an "overdetermined system".	
True True		
○ False ✔		
Answer Incorrect: Vid	eo: Systems of Linear Equations	
Explanation It is an "under	determined system".	
Submit	You have used 1 of 1 attempt	
• Answers	are displayed within the problem	
2		
1/1 point (grade The purpose o with multiple	of linear regression is to find a line that most closely matches a set of data	
● True		
• False		

Answer

Correct: Video: Linear Regression

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

3

4.0/4.0 points (graded)

Given points $p_1=(2,3)$ and $p_2=(3,0)$, and the equation $Aec{w}=ec{b}$ answer the following:

a) Find the coefficient matrix, A.

$$egin{array}{c} O \ A = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$$

$$lack A = egin{bmatrix} 1 & 2 \ 1 & 3 \end{bmatrix}$$

$$egin{array}{c} A = egin{bmatrix} 1 \ 3 \ 1 \ 2 \end{bmatrix}$$

$$egin{array}{c} A = egin{bmatrix} 1 \ 3 \ 2 \ 1 \end{bmatrix}$$

Answer

Correct: Video: Systems of Linear Equations

Explanation

The definition in the video.

b) Find the dependent variable vector, \vec{b} .

$$\stackrel{\bigcirc}{b}=\left[egin{array}{c} 9 \ -3 \end{array}
ight]$$

$$\stackrel{ullet}{ullet} ec{b} = \left[egin{matrix} 3 \ 0 \end{smallmatrix}
ight] oldsymbol{\checkmark}$$

$$\stackrel{\bigcirc}{b}=\left[egin{array}{c} 9 \ -1 \end{array}
ight]$$

$$\stackrel{\bigcirc}{b}=\left[egin{matrix}6\2\end{matrix}
ight]$$

Answer

Correct: Video: Systems of Linear Equations

Explanation

The definition in the video.

c) Solve for the parameter vector, \vec{w} .

$$ec{w} = \left[egin{array}{c} 9 \ -3 \end{array}
ight]$$

$$ec{w} = egin{bmatrix} 1 \ 1 \end{bmatrix}$$

$$ec{w} = egin{bmatrix} 3 \ 0 \end{bmatrix}$$

$$\overset{\bigcirc}{w}= \begin{bmatrix} -3 \ 1 \end{bmatrix}$$

Correct: Video: Systems of Linear Equations

Explanation

With
$$A=\begin{bmatrix}1&2\\1&3\end{bmatrix}$$
 and $\vec{b}=\begin{bmatrix}3\\0\end{bmatrix}$, we get $\vec{w}=\begin{bmatrix}9\\-3\end{bmatrix}$ by solving the linear equation $A\vec{w}=\vec{b}$.

d) Give the equation for the line connecting p_1 and p_2 .

y = 3x + 9

y = x - 3

y = -3x + 3

• y = -3x + 9

Answer

Correct: Video: Systems of Linear Equations

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

The parameter vector, $ec{w} \in \mathbb{R}^2$, represents the slope and Y-intercept of a line in the 2-D plane.

True

False

Answer

Correct: Video: Systems of Linear Equations

Explanation

The definition in the video.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

5

0 points possible (ungraded)

Why do we want to minimize the square difference from a point to the line instead of the actual difference when using the least squares method?

- It's more accurate to minimize the larger value
- We could minimize the actual difference as well
- lacktriangle We want to ensure the value is positive because it is a distance \checkmark
- We want to ensure that far away points are weighted more heavily than nearby points 🗸

Answer

Incorrect:

Video: Linear Regression

Explanation

- False.
- False.
- True. If we use a value that can be negative, for example, the actual difference, it can arbitary small by makeing the line far away from the points.
- True. The square difference penalizes far away points heavily than the absolute difference does.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

Discussion

Show all posts

Hide Discussion

by recent activity ▼

Topic: Topic 12 / Linear Regression

Add a Post

General Comments

Questions and comments regarding this section.

3

<u> </u>	
 Problem 5 Questions and comments regarding problem 5. Staff 	3
 Problem 1 Questions and comments regarding problem 1. Staff 	1
 Problem 2 Questions and comments regarding problem 2. Staff 	1
 Problem 3 Questions and comments regarding problem 3. Staff 	1
 Problem 4 Questions and comments regarding problem 4. Staff 	1

© All Rights Reserved