제6장 반복표본에서의 변동: 표본분포

6.1 서론

- (1) 통계적 추론(statistical inference)
- ① 모수(parameter): 모집단(population)의 수치적 특성치
- ② 통계량(statistic): 표본(sample) 관측값들의 실수값 함수 (예) 표본평균, 표본중앙값, 표본표준편차
- (2) 표본과 통계량에 관한 세 가지 중요점
- ① 표본은 모집단의 일부분이므로 통계량의 값은 모수의 참값과 정확히 일치할 것이라고 기대할 수 없다.
- ② 통계량의 관측값은 많은 가능한 표본들 중에서 (실제 추출된) 특정한 하나의 표본에 의해서만 결정된다.
- ③ 표본을 반복적으로 추출한다면 그로부터 계산된 통계량의 값들은 달라지 므로 그 값들은 변동을 가지게 된다.

6.2 통계량의 표본분포

- (1) 표본분포(sampling distribution): 통계량의 확률분포
- (2) 통계량의 표본분포는 모집단의 분포[f(x)]와 표본의 크기[n]에 의해 결정된다.

[예제 6.1]

세 명의 대학원생이 수강하는 어떤 과목의 담당교수는 매주 쪽지 시험을 치른다. 어떤 주 쪽지 시험 점수가 2점, 3점, 4점이었다고 하자. 두 명의 학생을 복원추출방법으로 선택하여 그 점수의 평균을 \overline{X} 라고 할 때, \overline{X} 의 표본분포를 구하라.

【풀이】

X: 임의로 추출한 한 학생의 점수

< 모집단의 분포 >

x	f(x)
2	1/3
3	1/3
4	1/3

< 크기가 2인 모든 가능한 표본과 그에 해당하는 \overline{X} 의 값 >

(x_1, x_2)	(2,2)	(2,3)	(2,4)	(3, 2)	(3,3)	(3,4)	(4, 2)	(4,3)	(4,4)
\overline{x}	2	2.5	3	2.5	3	3.5	3	3.5	4

< X의 분포 >

\overline{X}	확률
2	1/9
2.5	2/9
3	3/9
3.5	2/9
4	1/9

6.3 표본평균의 분포와 중심극한정리

- (1) 모평균 (μ) 에 대한 추론 절차는 표본평균 (\overline{X}) 과 그 표본분포를 이용
- \overline{X} 의 표본분포의 평균과 표준편차는 μ 와 σ 를 이용하여 다음과 같이 나타 낸 수 있다.

크기 n인 확률표본의 표본평균 X의 분포에 대해 다음이 성립한다.

$E(\overline{X}) = \mu$	$Var(\overline{X}) = \frac{\sigma^2}{n}$	$sd(\overline{X}) = \frac{\sigma}{\sqrt{n}}$
	,,,	V . 5

[예제 6.2]

① [표 6.1]의 모집단의 분포에 대한 모평균과 모표준편차를 계산하라.

【풀이】

x	f(x)	xf(x)	$x^2 f(x)$
2	$\frac{1}{3}$	$2 \times \frac{1}{3} = \frac{2}{3}$	$2^2 \times \frac{1}{3} = \frac{4}{3}$
3	$\frac{1}{3}$	$3 \times \frac{1}{3} = \frac{3}{3}$	$3^2 \times \frac{1}{3} = \frac{9}{3}$
4	$\frac{1}{3}$	$4 \times \frac{1}{3} = \frac{4}{3}$	$4^2 \times \frac{1}{3} = \frac{16}{3}$
total	1	3	$\frac{29}{3}$

$$\mu = \sum_{i=1}^{3} x_i f(x_i) = x_1 f(x_1) + x_2 f(x_2) + x_3 f(x_3) = \frac{2}{3} + \frac{3}{3} + \frac{4}{3} = \frac{9}{3} = 3$$

$$\sigma^2 = \sum_{i=1}^{3} x_i^2 f(x_i) - \mu^2 = \left[x_1^2 f(x_1) + x_2^2 f(x_2) + x_3^2 f(x_3) \right] - \mu^2$$

$$= \left[\frac{4}{3} + \frac{9}{3} + \frac{16}{3} \right] - 3^2 = \frac{29}{3} - 3^2 = \frac{2}{3}$$

$$\sigma = \sqrt{\frac{2}{3}}$$

② [표 6.2]에 주어진 \overline{X} 의 분포에 대하여 평균과 표준편차를 계산하라.

[풀이]

\overline{x}	$f(\overline{x})$	$\overline{x}f(\overline{x})$	$\overline{x^2}f(\overline{x})$
2	$\frac{1}{9}$	$2 \times \frac{1}{9} = \frac{2}{9}$	$2^2 \times \frac{1}{9} = \frac{4}{9}$
2.5	$\frac{2}{9}$	$2.5 \times \frac{2}{9} = \frac{5}{9}$	$2.5^2 \times \frac{2}{9} = \frac{12.5}{9}$
3	$\frac{3}{9}$	$3 \times \frac{3}{9} = \frac{9}{9}$	$3^2 \times \frac{3}{9} = \frac{27}{9}$
3.5	$\frac{2}{9}$	$3.5 \times \frac{2}{9} = \frac{7}{9}$	$3.5^2 \times \frac{2}{9} = \frac{24.5}{9}$
4	$\frac{1}{9}$	$4 \times \frac{1}{9} = \frac{4}{9}$	$4^2 \times \frac{1}{9} = \frac{16}{9}$
total	1	3	$\frac{84}{9}$

$$E(\overline{X}) = \sum_{i=1}^{5} \overline{x}_{i} f(\overline{x}_{i}) = \frac{2}{9} + \frac{5}{9} + \frac{9}{9} + \frac{7}{9} + \frac{4}{9} = \frac{27}{9} = 3$$

$$Var(\overline{X}) = \sum_{i=1}^{5} \overline{x}_{i}^{2} f(\overline{x}) - \left[E(\overline{X}) \right]^{2}$$

$$= \left(\frac{4}{9} + \frac{12.5}{9} + \frac{27}{9} + \frac{24.5}{9} + \frac{16}{9} \right) - 3^{2} = \frac{84}{9} - 3^{2} = \frac{1}{3}$$

$$sd(\overline{X}) = \frac{1}{\sqrt{3}}$$

③ 그 결과를 이용하여 식 $E(\overline{X})=\mu$ 와 $sd(\overline{X})=\frac{\sigma}{\sqrt{n}}$ 을 확인해 보라.

[풀이]

$$E(\overline{X})=3=\mu$$

$$sd(\overline{X}) = \frac{1}{\sqrt{3}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{2}{3}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{3}}$$

 \bar{X} 의 표본분포의 모양에 대한 두 가지 중요한 점]

및 모집단의 분포가 정규분포일 때는 \overline{X} 의 정확한 분포모양을 알 수 있다. 즉, 평균 μ , 표준편차 σ 인 정규 모집단으로부터의 표본평균 \overline{X} 는 평균 μ , 표준편차 σ/\sqrt{n} 인 정규분포를 따른다.

 \square 모집단이 정규분포를 따르지 않을 때, 표본평균 \overline{X} 의 분포는 모집단의 분포가 무엇이냐에 따라 달라진다. 그러나 중심극한정리에 의하면 표본의 크기가 크면 모집단의 분포에 상관없이 \overline{X} 의 분포는 근사적으로 정규분포를 따른다는 것이 알려져 있다.

(3) 중심극한정리(Central Limit Theorem)

모집단의 분포가 무엇이든 관계없이 n이 크면 표본평균 \overline{X} 의 분포는 근사적으로 정규분포가 된다. 즉, 평균 μ , 표준편차 σ 인 임의의 모집단으로부터 표본평균 \overline{X} 는 n이 크면 근사적으로 평균 μ , 표준편차 σ/\sqrt{n} 인 정규분포를 따른다. 따라서, $Z=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ 는 근사적으로 표준정규분포 M(0,1)를 따른다.

[예제 6.3] (중심극한정리의 우수성)

모집단이 정수 0, 1, 2, 3, 4, 5, 6, 7, 8, 9에 각각 0.1씩의 확률을 갖는 이산균일분포를 따른다고 하자. 이 확률모형은 전화번호의 끝자리 숫자의 분포에 적절한 모형일 것이다. 이 분포의 선 그래프는 아래 그림과 같다. 이때 모평균 $\mu=4.5$, 모표준편차 $\sigma=2.872$ 이다.

· 「 → I n=5인 100개이 표보

표본번호	5 71		n=5인 100 개의 표본				
1	ビー以	합	평균	표본번호	기구기		
2	8,3,7,3,5	26	5.2			합	평균
3	6,1,3,7,5	22	4.4	51	8,0,4,5,4	21	4.2
4	4,8,5,3,7	27	5.4	52	8,7,7,7,8	37	7.4
5	5,8,1,9,7	30		53	6,3,4,7,2	22	4.4
6	3,7,5,1,7	23	6.0	54	9,4,5,5,3	26	5.2
	6,6,4,3,6	25	4.6	55	7,1,3,1,9	21	4.2
7	7,2,6,1,6	22	5.0	56	2,2,7,0,3	14	2.8
8	8,6,6,4,2	26	4.4	57	3,2,4,3,6	18	3.6
9	2,6,7,0,7		5.2	58	0,2,7,2,3	14	2.8
10	3,7,2,1,8	22	4.4	59	4,1,7,4,7	23	
11	1,8,5,3,8	21	4.2	60	7,6,4,8,9	34	4.6
12	9,3,5,4,1	25	5.0	61	5,6,3,0,6	20	6.8
13	2,3,5,4,1	22	4.4	62	3,7,0,3,3		4.0
14	3,3,2,3,7	18	3.6	63		16	3.2
15	1,9,2,4,0	16	3.2	64	9,5,7,6,1	28	5.6
	2,3,1,6,7	19	3.8	65	1,7,6,7,1	22	4.4
16	0,2,3,3,2	10	2.0	66	2,7,5,8,8	30	6.0
17	8,8,7,8,4	35	7.0		4,2,7,7,8	28	5.6
18	2,3,5,7,8	25	5.0	67	5,6,0,6,7	24	4.8
19	4,2,3,6,7	22		68	3,8,4,6,6	27	5.4
20	5,3,7,8,2	25	4.4	69	1,6,7,4,8	26	5.2
21	3,8,7,6,4	28	5.0	70	6,4,6,3,6	25	5.0
22	4,2,5,8,9		5.6	71	5,6,3,5,2	21	4.2
23	0.5.4.4.9	28	5.6	72	5,6,8,9,5	33	6.6
24	0,5,4,4,8	21	4.2	73	1,5,4,5,4	19	3.8
25	2,5,8,1,7	23	4.6	74	4,6,7,3,7	27	5.4
	8,1,4,5,1	19	3.8	75	6,6,8,5,3	28	5.6
26	1,7,3,8,6	25	5.0	76	8,7,6,6,3	30	6.0
27	3,1,6,1,1	12	2.4	77	7,9,3,4,1	24	
28	5,3,6,2,3	19	3.8	78	8,5,5,1,4	23	4.8
29	8,5,5,2,4	24	4.8	79	3,3,4,2,4		4.6
30	9,6,2,2,4	23	4.6	80	3,7,4,3,0	16	3.2
31	3,1,6,5,4	19	3.8	81	3,7,4,3,0	17	3.4
32	3,7,6,8,2	26	5.2	82	2,8,3,8,6	27	5.4
33	2,9,1,1,0	13	2.6	83	5,4,0,4,9	22	4.4
34		29			3,0,4,6,8	21	4.2
	6,6,3,6,8		5.8	84	1,5,9,3,7	25	5.0
35	8,7,6,8,7	36	7.2	85	3,6,9,7,3	28	5.6
36	8,6,3,3,2	22	4.4	86	7,3,5,6,2	23	4.6
37	6,0,1,1,1	9	1.8	87	2,1,7,6,8	24	4.8
38	1,1,6,0,8	16	3.2	88	8,2,2,1,3	16	3.2
39	3,2,6,8,6	25	5.0	89	9,4,3,3,4	23	4.6
40	9,5,4,9,8	35	7.0	90	1,6,8,0,5	20	4.0
41	4,0,2,6,4	16	3.2	91	6,4,0,7,4	21	
		20	4.0	92	68655		4.2
42	6,6,7,1,0			93	6,8,6,5,5	30	6.0
43	1,9,8,7,9	34	6.8		4,8,0,2,1	15	3.0
44	9,1,8,3,1	22	4.4	94	7,1,3,7,3	21	4.2
45	6,9,1,8,5	29	5.8	95	9,7,4,3,8	31	6.2
46	5,5,5,5,6	26	5.2	96	8,7,4,8,5	32	6.4
	4,1,8,8,1	22	4.4	97	5,2,6,5,3	21	4.2
		10	2.0	98	0,9,4,5,7	25	5.0
	4,0,0,2,4		4.8	99	7,8,1.8,4	28	5.6
	6,8,3,4,3	24					
50	2,7,7,3,3	22	4.4	100	3,5,6,1,4	19	3.8

[예제 6.4]

주어진 정보: $\mu = 82$, $\sigma = 12$

(1) 표본의 크기가 n=64인 확률표본을 추출할 때, 표본평균이 80.8과 83.2 사이에 있을 확률은?

【풀이】 n=64(>30) \Rightarrow 중심극한정리 적용가능

$$P(80.8 < \overline{X} < 83.2) = P\left(\frac{80.8 - 82}{12/\sqrt{64}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{83.2 - 82}{12/\sqrt{64}}\right)$$
$$= P(-0.8 < Z < 0.8) = 0.7881 - 0.2119 = 0.5762$$

(2) 표본의 크기가 n=100인 확률표본을 추출할 때, 표본평균이 80.8과 83.2 사이에 있을 확률은?

【풀이】n=100(>30) ⇒ 중심극한정리 적용가능

$$P(80.8 < \overline{X} < 83.2) = P\left(\frac{80.8 - 82}{1.2/\sqrt{100}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{83.2 - 82}{1.2/\sqrt{100}}\right)$$
$$= P(-1.0 < Z < 1.0) = 0.8413 - 0.1587 = 0.6826$$

구간 (80.8, 83.2)의 중심은 모평균 $\mu = 82$

이 구간에 표본평균 X가 속할 확률은 n=64일 때보다 n=100일 때 더 크다.