BERNSTEIN FILTER: A NEW SOLVER FOR MEAN CURVATURE REGULARIZED MODELS

Yuanhao Gong

National University of Singapore

Introduction:

Signal processing problems are usually ill-posed, where a prior or regularization is needed.

Mean Curvature is a good prior

Mean Curvature Regularization:

Convexity:

According to Bernstein Theorem, minimizing mean curvature is assuming that the signal is piece-wise linear. Based on this linearity, we can prove that mean curvature regularization term is convex.

Contribution:

We prove that:

mean curvature is a CONVEX term

We show that:

Bernstein Filter is a fast solver

Bernstein Filter:

Impulsing the linearity on the four half-windows (above) by Least Square Regression, we get

Algorithm 1 Bernstein Filter

Require: IterationNum, $I(x_i, y_i)$ $U^{0}(x_{i}, y_{j}) = I(x_{i}, y_{j}), t = 0$ while t < IterationNum dofor i=2:M-1, j=2:N-1 do $d_1 = \frac{1}{2} \left[U^t(x_{i-1}, y_j) + U^t(x_{i+1}, y_j) \right] - U^t(x_i, y_j)$ $d_2 = \frac{1}{2} \left[U^t(x_i, y_{j-1}) + U^t(x_i, y_{j+1}) \right] - U^t(x_i, y_j)$ find d_m such that $|d_m| = \min_{k=1,2} \{|d_k|\}$ $U^{t+1}(x_i, y_j) = U^t(x_i, y_j) + d_m$ end for t = t + 1end while

Contact and

Ensure: $U(x_i, y_j)$

gongyuanhao@gmail.com https://github.com/ YuanhaoGong/CurvatureFilter

Experiments:

Results from Multi Grid Solver(first row) and Bernstein Filter(second row) are similar because both solve the same variational model. However, our filter is much faster.

Two or three orders of magnitude FASTER!

solver	Multigrid	Our filter	Our filter
(language)	(Matlab)	(Matlab)	(C++)
Lena	183	1.1	0.025
Cameraman	648	1.1	0.025
Fingerprint	587	1.1	0.025

Table 1: time in seconds on 512×512 images. Our filter runs 30 iterations

More effective in the minimization · Cameraman Fingerprint **Multigrid Result** $^{H}3)$ 80 $^{-1.5}$ Iteration

Solid lines indicate Bernstein Filter. Dash lines indicate Mean Curvature Filter. For multi grid solver, only converged states are shown.

Yuanhao Gong et al. A natural scene gradient distribution prior and its application in light microscopy image processing, IEEE J-STSP, p99-114, Vol.10, Feb., 2016. Yuanhao Gong et al., Local Weighted Gaussian Curvature for Image Processing, ICIP2013, oral.

Yuanhao Gong et al., Coupled signed distance functions for implicit surface reconstruction, ISBI2012, Best Paper Award.