		n ?			am i	c 9	Cont	rol				2r	d edil	ion	Pd	e canv	sien e es	'		
									^+' <i>ひ</i> 〉	1			V		\ \Z					
															2.1)				
									tv			7. 2	.2)							
I.	A	lapt	ive	I)C	(s	HV	9.3	.4/-	7. 3.	2)									
I.	Ιν	n v er	Se	Dy.	nam	c S	Con	tro l												
	Α.	To	int	S p	ace	I	DC	(ca	ht'd)										
									llavin		tra	من ود	tory	8	(t)					
				u=	М	(હૃ) લ	26 +	C (g,g) g	+ (-(8)									
						ټ ^م -	K _P ã	- K												
				⇒ >	8 (t) -	-> q	, (t))											
							→ «													
		<u>En</u>	ergy	Sh	ap in	<u>a</u> ; (Suter	- 10	ap (contr	oller	ca	ud	inse	rt	des	ired	dy	nami	2:
						i	nsted	ıd	of	trac	king	re	fen	ence	tr	aje:	tor	у.		
				a _i :	= <i>j</i>	٦(8)	'[<i>,</i> -	Ξ (q,	ġ) ġ	- G	(g)]								
					whe	re	Ā	€ [Z _{n×n}	=> 1	Cei	Znxn	an	٨	<u></u>	e R ⁿ	کن	e		
																			put	
									vape											
				Aug i	nto 1 dyno	wies														
				9 = 0	a _g =	⇒	Ā ā	j +	c ż	+	G =	· •								
		7	his	is a	حمااه	d "	ever	3 γ	shap	أمع"	who	en c	hoosi	ng	M.	and V 1	E	+b	corres	adre
			_		~~ ~															

	. <u>Sp</u>	ecia	١ ر	<u>ase</u>	: 7	oter	tia	.1 e	ner	97	sha	up iv	g	(Ħ	- M ,	<u></u> =	c)
		Resi	alts	·'n	Sì	mplo	er o	contr	olle	ں ۲	he	n p	lugg	ped	int	o il	nner Icc
		L	wer	1001	ca	Atrol	ler:										
			U	_=	K	K	ĺv	- <u>Ē</u>	ģ - i	5 1	+ (Va .	+ G				
								1,	V			V					
				=	V	+ (ر اح	ट									
								nvic S									
		⇛	M	ÿ 1	- C	ġ +	Ø		u	= V	+/	6-	Ē				
		⇒	M:	i +	С	ġ +	G	=	V								
				V		U											
	-1	lota	. (, 	û t v		D 0 1/	cati	αΛ	اد.		2000	105	0.0	0.2	of	PE
	,	0016					5= (Spec	ια,	رمد		0 ,	, ,
	_	Way		•						7 5 6 5		×0		.ch	ام در	rder	
			_										1			et c	
					shap						, , . ·						,
		•						~che	u val	ale	dv	ami	C2				
										,	7						
B. T	ask	<u>- S</u>	pac	e	IT	C											
			•				cont	rolle	er	(;	= 0	(,)	b	ut	Ca	rsid	er
		w				Γ				- 0		• /					
G	al:	Tv	acl	<	de	Siv	col	ev	W	ef-1	Fec	fer	po	Se	tra	jec	lory
																	cé,
			g.,						•								

Recall
$$\dot{X} = J(\xi)\dot{\xi}$$
 for manipulator Jacobian $J(\xi)$

If $\dot{X} = V_{st}^{i}$, then $J_{st}^{i}(\xi) \in \mathbb{R}^{6m}$

If $\dot{X} = V_{st}^{i}$, then $J_{st}^{i}(\xi) \in \mathbb{R}^{6m}$

Let $n = 6$ so that we have a square J .

 $\dot{X} = J(\xi)\dot{\xi} \implies \ddot{X} = J(\xi)\dot{\xi} + J(\xi)\dot{\xi}$

Given $\dot{y} = a_{\xi}$, choose $a_{\xi} := J^{-1}(a_{\chi} - J(\xi))$

(first outer-loop)

 $\dot{y} = J^{-1}(a_{\chi} - J(\xi)) \implies J(\xi) + J(\xi) = a_{\chi}$
 $\ddot{x} = a_{\chi} \leftarrow \text{new input}$
 $\ddot{x} = \ddot{x}\dot{x} - K_{\xi}(\ddot{x} - \ddot{x}\dot{x}) - K_{\chi}(\ddot{x} - \ddot{x}\dot{x}\dot{x})$
 $\ddot{x} = \ddot{x}\dot{x} - K_{\xi}(\ddot{x} - \ddot{x}\dot{x}\dot{x}) - K_{\chi}(\ddot{x} - \ddot{x}\dot{x}\dot{x}\dot{x})$
 $\ddot{x} = \ddot{x}\dot{x} + K_{\chi}\ddot{x} + K_{\chi}\ddot{x} = 0$ (closed-loop task $\dot{x} = \dot{x}\dot{x} + \dot{x}\dot{x} + \dot{x}\dot{x} = 0$)

Choose K_{ξ} , $K_{\xi} > 0$ then $(\ddot{x}, \ddot{x}) = \dot{x}\dot{x}$

exponentially stable $\Rightarrow x \rightarrow x\dot{x}$

	Benefi	<u>+:</u>	No	n eed	l ter	rin	vers	se 1	t in	emo	Hic?	'n	^	real	(- +	ine	•
	Limitafi	ons:															
	- N	Nust	- 0	lyou.	, sin	مام	ntie	s to	o v	rain'	tain	ní i	ver!	⊢i bil	ity	of	-
	1 1	1			trol	•									/		
	1 1				red			-	<u>ر</u> ۾	nxn							
							_										
		1			rok						_						
			3-1	DF	· ·		,	W		25	(2)						
		- '	3- r	∞F	· ·			W	اد	Sol	3)						
	· F	cr	no	n-s	quar	e 7	T, c	an	us	e	pseu	ido-	·inu	2475 Q	. i	^	
		Som	و ر	ase\$													
\mathbb{I}	Adapti	ve	C	ntr	0												
	Proble					cert	iain	+~	(0		Dev		etri	C 1.	nc O	daiv	ı‡.
	10010		11.0.	d	alad	1.	.0) (C.S.)	(00	٠٠ر	ماه	. 1	a	\ \		Ju	~
			W		eled	<i>(</i>)	NICCIPI	(C)	re.g	•, (LCTI	LOCI	0)			
	6							٨				N		_	A	, \	
	Reca	11	TIDC	- iv	put	•	Ц =	. , ,	(9)	a	- (ب (و	,ĝ)	ğ t	G	(9)	
				<i>)</i>				0	-1		11.0	. 1	_		0		
		whe	re	ſ,	.)	ìS c	x n	100	લ	es	11 YV	VIT	e	an	.0\		
				<i>^</i>													
				(.) =	(.) -	· (·)	is	~~	ocke	<u> </u>	en	~~	•	
	Two	cla	ss'c														-
	1 1				<u>rol</u> :				_								
	7				certo										J		
													_	_	C	,,	
					man	par	ame	ter	2 t	ט פ	e io	len	riti	eor ·	4 1	the?	;Q
			ind														
		- C	ov evr	ed	in	SH	ľ	9.3.	.3 /	7.3	1.						

Adaptive Inverse Dynamics Control: Deals with parametric uncertainty Recall "linearity in the parameters" M(g) \(\beta + C(g, \beta) \beta + G(g) = \textbf{Y}(g, \beta, \beta) \) We will vary parameters in \(\hat{A}, \hat{C}, \hat{C} \) aver time (all we want to find \(\hat{C} \) st. \(\textbf{Y}(g, \beta, \beta) \) \[\text{Parameter estimate} \] M\(\beta + C\beta + G = \mu := \hat{M} \alpha, \frac{1}{2} \hat{C} \hat{G} + \hat{G} \) \[\text{Parameter estimate} \] M\(\beta + C\beta + G = \mu := \hat{M} \alpha, \frac{1}{2} \hat{C} \hat{G} + \hat{G} \) \[\text{Pug in } \alpha_s + \text{M}'(\hat{M} \alpha_s + \hat{C} \hat{g} + \hat{G} \hat{G} \) \[\text{Pug in } \alpha_s = \frac{1}{3}(t) - K_A \hat{g} - K_B \hat{g} \) \[\text{Suplify} \((ex. 9-11 in SHV) \) \[\text{Purameter} \) \[\text{Parameter} \) \[\text{Parameter} \) \[\text{Pure of } \text{Pure of } \text{Parameter} \) \[\text{Pure of } \text{Pure of } \text{Pure of } \) \[\text{Pure of } Pur		Do	al s	ر ا	th	Do	rav	nef	ric	un	cor	tain	۸ + ٠	,			
M(g) \ddot{g} + C(g, \dot{g}) \dot{g} + G(g) = $\Upsilon(g, \dot{g}, \ddot{g})$ Ξ We will vary parameters in \hat{M} , \hat{C} , \hat{G} over time (all we want to find $\hat{\Xi}$ st. $\Upsilon(g, \dot{g}, \ddot{g})$ Ξ = $\Upsilon(g, \dot{g}, \ddot{g})$ M \ddot{q} + C \dot{g} + G = u := \hat{M} a_s + \hat{C} \dot{g} + \dot{G} $\Rightarrow \ddot{q}$ = M^{-1} (\hat{M} a_s + \hat{C} \dot{g} + \dot{G}) Plug in a_s = \ddot{q}^3 (t) - K_a \ddot{g} - K_p \ddot{g} , where \ddot{g} = q - g simplify (ex. 9-11 in SHV) \Rightarrow closed-loop \ddot{q} + K_a \ddot{g} + K_p \ddot{g} = \hat{M}^{-1} $\Upsilon(g, \dot{g}; \dot{g})$ Ξ where Ξ = $\bar{\Xi}$ - Ξ is parametric error					•	123						,,,,,	`				
M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = $\Upsilon(q, \dot{q}, \ddot{q})$ Ξ We will vary parameters in \hat{M} , \hat{C} , \hat{G} over time (all we want to find $\hat{\Xi}$ st. $\Upsilon(q, \dot{q}, \ddot{q})$ Ξ = $\Upsilon(q, \dot{q}, \ddot{q})$ M \ddot{q} + C \ddot{q} + G = u := \hat{M} $a_{\dot{q}}$ + \hat{C} \dot{q} + \hat{G} $\Rightarrow \ddot{q}$ = M^{-1} (\hat{M} $a_{\dot{q}}$ + \hat{C} \dot{q} + \hat{G}) Plug in $a_{\dot{q}}$ = \ddot{q} (t) - $K_{\dot{q}}$ \ddot{q} - $K_{\dot{p}}$ \ddot{q} , where \ddot{q} = q - χ Simplify (ex. 9-11 in SHV) \Rightarrow closed-loop \ddot{q} + $K_{\dot{q}}$ \ddot{q} + $K_{\dot{p}}$ \ddot{q} = \hat{M}^{-1} $\Upsilon(q, \dot{q}, \dot{q})$ Ξ	Re	دماا	" 1	ineo	ritz	, in	11	ne	para	me-	fers	17	vess	eV .			
We will vary parameters in \hat{A} , \hat{C} , \hat{G} over time (a) We want to find $\hat{\Theta}$ st. $Y(q, \dot{q}, \ddot{q}) = Y(q, \dot{q}, \ddot{q})$ Mig + $C\dot{q}$ + G = u := \hat{M} a_s + \hat{C} \dot{q} + \hat{G} $\Rightarrow \ddot{q} = M^{-1}(\hat{M}a_s + \hat{C}\dot{q} + \hat{G})$ recall $\hat{M} = \hat{M} + \hat{G}$ = a_s + $M^{-1}(\hat{M}a_s + \hat{C}\dot{q} + \hat{G})$ recall $\hat{M} = \hat{M} + \hat{G}$ Plug in a_s = $\ddot{q}^a(t)$ - $K_a \ddot{q}$ - $K_p \ddot{q}$, where \ddot{q} = q - $Simplify$ (ex. 9-11 in SHV) \Rightarrow closed -loop \ddot{q} + $K_A \ddot{q}$ + $K_p \ddot{q}$ = $\hat{M}^{-1} Y(q, \dot{q}\dot{q}) \tilde{\Phi}$ where $\tilde{\Phi} = \hat{\Phi} - \bar{\Phi}$ is parametric error	1 1														pare	neter	
We want to find $\widehat{\mathfrak{S}}$ st. $Y(q, \dot{q}, \ddot{q}) \underbrace{\mathfrak{F}} = Y(q, \dot{q}, \ddot{q})$ M\vec{q} + C\vec{q} + G = \omega := \hat{M} a_s + \hat{C} \vec{q} + \hat{G}) \Rightarrow \vec{q} = \hat{M}^{-1} \left(\hat{M} a_s + \hat{C} \vec{q} + \hat{G} \right) \Rightarrow \vec{q} = \hat{q} + \hat{M}^{-1} \left(\hat{M} a_s + \hat{C} \vec{q} + \hat{G} \right) \Rightarrow \text{Plug} in \alpha_s = \vec{q}^d(t) - \kappa_s \vec{q} - \kappa_s \rightarrow \kappa_s \vec{q} - \kappa_s \rightarrow \hat{q} + \kappa_s \vec{q} - \left(\hat{q} \vec{q} + \kappa_s \vec{q} \right) \Rightarrow \text{Cosed} - \loop \vec{q} + \kappa_s \vec{q} + \kappa_s \vec{q} = \hat{M}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} \Rightarrow \hat{k_s} \vec{\vec{q}} + \kappa_s \vec{q} = \vec{\mathfrak{M}}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} \Rightarrow \hat{k_s} \vec{\vec{q}} + \kappa_s \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{M}}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} \Rightarrow \hat{k_s} \vec{\vec{q}} + \kappa_s \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{M}}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} \Rightarrow \hat{k_s} \vec{\vec{q}} + \kappa_s \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{M}}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} \Rightarrow \hat{k_s} \vec{\vec{q}} + \kappa_s \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{G}}^{-1} Y(q, \vec{q} \vec{q} \vec{q} \right) \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{G}}^{-1} \vec{\mathfrak{G}}{\mathfrak{G}} \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{G}}^{-1} \vec{\mathfrak{G}}{\mathfrak{G}} \vec{\mathfrak{G}}{\mathfrak{G}} = \vec{\mathfrak{G}}^{-1} \vec{\mathfrak{G}}{\mathfrak{G}} \vec{\mathfrak{G}}{\mathfrak{G}} \vec{\mathfrak{G}}{\mathfrak{G}}} \vec{\mathfrak{G}}{\mathfrak{G}} \vec{\mathfrak{G}}{\ma		Mι	5) g	+ (CL _g ,	8) 8	+	GG) =	Y	(q, q	;, ÿ)	0				
We want to find $\widehat{\mathfrak{G}}$ st. $Y(q, \dot{q}, \ddot{q}) \underline{\mathfrak{G}} = Y(q, \dot{q}, \ddot{q})$ M\vec{q} + C\vec{q} + G = \omega := \hat{M} a_s + \hat{C} \vec{q} + \hat{G}) \Rightarrow \vec{q} = \hat{M}^{-1} \left(\hat{M} a_s + \hat{C} \vec{q} + \hat{G} \right) \Rightarrow \vec{q} = \vec{q}^{-1} \left(\hat{M} a_s + \hat{C} \vec{q} + \hat{G} \right) \Rightarrow \text{recall} \hat{M} = \hat{M} + \text{C} \vec{q} + \hat{G} \right) \Rightarrow \text{Rug} in \alpha_s = \vec{q}^{\dagger}(t) - \kat{K}_s \vec{q} - \kat{K}_p \vec{q} - \kat{K}_p \vec{q} + \kat{K}_p \vec{q} = \hat{M}^{-1} \text{Y}(q, \vec{q} \vec{q}) \vec{\text{G}} \Rightarrow \text{Cosed} - \text{loop} \Rightarrow \text{cosed} - \text{Loop} \Rightarrow \text{Loop} \vec{q} = \hat{M}^{-1} \text{Y}(q, \vec{q} \vec{q}) \vec{\text{G}} \Rightarrow \text{Degree} \Rightarrow \text{Loop} \vec{q} = \hat{M}^{-1} \text{Y}(q, \vec{q} \vec{q}) \vec{\text{G}} \Rightarrow \text{Loop} \Rightarrow \text{Loop} \vec{q} = \hat{M}^{-1} \text{Y}(q, \vec{q} \vec{q}) \vec{\text{G}}	We	, w	:11	vary	, b	ara	met	ters	iv	j	۹, á	Ĉ, ĉ	· - c	n es	tin	e (.	ada
(parameter estimate) $M_{3}^{2} + C_{3}^{2} + G = u := \hat{M} a_{3}^{2} + \hat{C}_{3}^{2} + \hat{G}$ $\Rightarrow \ddot{q} = M^{-1} \left(\hat{M} a_{3}^{2} + \tilde{C}_{3}^{2} + \tilde{G} \right)$ $= a_{3}^{2} + M^{-1} \left(\hat{M} a_{3}^{2} + \tilde{C}_{3}^{2} + \tilde{G} \right)$ Plug in $a_{4}^{2} = \ddot{q}^{4}(t) - K_{4} \ddot{q}^{2} - K_{5} \ddot{q}^{2}$, where $\ddot{q} = q^{-1}$ $\Rightarrow \text{closed-loop}$ $\ddot{q} + K_{4} \ddot{q}^{2} + K_{5} \ddot{q}^{2} = \hat{M}^{-1} \Upsilon(q, \dot{q}, \dot{q}) \tilde{\Theta}$ where $\tilde{\Xi} = \hat{\Theta} - \Theta$ is parametric error	الما	142	a. 10 ±	ر حد	<u>۲</u> ,	, d	څ	7	c <i>t</i> :	7	7(,	٠١	Æ	_	V /		۱.
$M\ddot{q} + C\dot{q} + G = u := \hat{M} a_{s} + \hat{C} \dot{q} + \hat{G} \qquad (\#)$ $\Rightarrow \ddot{q} = M^{-1} \left(\hat{M} a_{s} + \tilde{C} \dot{q} + \tilde{G} \right) \qquad \text{recall } \hat{M} = \tilde{M} + \tilde{M} + \tilde{G} \dot{q} + \tilde{G} $ $= a_{s} + M^{-1} \left(\hat{M} a_{s} + \tilde{C} \dot{q} + \tilde{G} \right)$ $\text{Plug in } a_{s} = \ddot{q}^{s} (+) - K_{s} \dot{\tilde{q}} - K_{p} \dot{\tilde{q}} \qquad \text{where } \tilde{q} = q - \tilde{G} \text{ is parametric error}$ $\Rightarrow \text{closed-loop}$ $\ddot{q} + K_{s} \dot{\tilde{q}} + K_{p} \ddot{\tilde{q}} = \hat{M}^{-1} \Upsilon(q, \dot{q}, \dot{q}) \tilde{G}$ $\text{where } \tilde{G} = \hat{G} - \tilde{G} \text{ is parametric error}$				10						4	- (8,	8,8	2		<u> </u>	6, 4 , 9	5) '
$\Rightarrow \ddot{q} = M^{-1} \left(\hat{M} a_1 + \tilde{C} \dot{q} + \tilde{G} \right) \qquad \text{recall } \hat{M} = \hat{M} + \tilde{M} + $						(Par	esti	not	e)								
$\Rightarrow \ddot{q} = M^{-1} \left(\hat{M} a_1 + \tilde{C} \dot{q} + \tilde{G} \right) \qquad \text{recall } \hat{M} = \hat{M} + \tilde{M} + $								•									
$= a_{s} + M^{-1}(\widetilde{M}a_{s} + \widetilde{c}\dot{q} + \widetilde{G})$ Plug in $a_{s} = \ddot{q}^{d}(+) - K_{s}\dot{\tilde{q}} - K_{p}\tilde{q}$, where $\tilde{q} = q^{-1}$ $\begin{cases} Simplify & (ex. 9-11 \text{ in SHV}) \end{cases}$ $\Rightarrow closed - loop$ $\ddot{q} + K_{s}\dot{\tilde{q}} + K_{p}\tilde{q} = \widetilde{M}^{-1}\underline{Y}(q,\dot{q})\widetilde{p}$ $\text{where } \widetilde{\Xi} = \widehat{\Xi} - \underline{\Xi} \text{ is parametric error}$	M	}	Сġ	+ G	, =	u:	=	Â,	ع _ه ۱	· ĉ	ġ 1	- ĉ	•			(#)	
$= a_{g} + M^{-1}(\widetilde{M}a_{g} + \widetilde{c}_{g} + \widetilde{G})$ Plug in $a_{g} = \widetilde{q}(t) - K_{g}\widetilde{q} - K_{p}\widetilde{q}$, where $\widetilde{q} = q^{-1}$ $\begin{cases} \text{Simplify (ex. 9-11 in SHV)} \end{cases}$ $\Rightarrow \text{closed-loop}$ $\widetilde{q} + K_{g}\widetilde{q} + K_{p}\widetilde{q} = \widetilde{M}^{-1} \underline{Y}(q, \widetilde{q}, \widetilde{p}) \widetilde{\Theta}$ where $\widetilde{\Xi} = \widehat{\Theta} - \overline{\Theta}$ is parametric error	=>			ا- ا	1 3		+	~	. +	~`)					\ _ A	
Plug in $\alpha_{g} = \ddot{q}^{3}(t) - K_{A}\ddot{q} - K_{P}\tilde{q}$, where $\ddot{q} = q^{-1}$								'					Y	reca	AI /	4 = <i>j</i> u	\ + <i>/</i> -
Plug in $\alpha_g = \ddot{q}^d(t) - K_d \ddot{q} - K_p \ddot{q}$, where $\ddot{q} = q - \frac{1}{2}$			= (a,	- ^	۷-, (Mo	٦ ₉ +	č) - ĉ)						
Simplify (ex. 9-11 in SHV) $\Rightarrow \text{closed-loop}$ $\tilde{q} + K_{A} \tilde{q} + K_{P} \tilde{q} = \tilde{\mathcal{M}}^{-1} Y(q, \tilde{q}, \tilde{g}) \tilde{\Theta}$ where $\tilde{\Theta} = \hat{\Theta} - \bar{\Theta}$ is parametric error	PI											,	L	we	ve	~ ~ = 0	? -
$\Rightarrow closed - loop$ $\ddot{q} + K_{A} \dot{\ddot{q}} + K_{P} \ddot{q} = \hat{\mathcal{M}}^{-1} \underline{Y}(q, \dot{q}, \ddot{g}) \underline{\tilde{\Theta}}$ where $\underline{\tilde{\Theta}} = \hat{\overline{\Theta}} - \underline{\overline{\Theta}}$ is parametric error				5												y)
$\ddot{q} + K_{\lambda} \dot{\dot{q}} + K_{\rho} \ddot{q} = \hat{\mathcal{M}}^{-1} \underline{Y}(q, \dot{q}, \dot{q}) \underline{\widetilde{\Theta}}$ where $\underline{\widetilde{\Theta}} = \hat{\underline{\Theta}} - \underline{\overline{\Theta}}$ is parametric error				}	Sim	plify	(e	x.	9-11	in s	SHV)						
\ddot{q} + $K_{A}\ddot{q}$ + $K_{P}\ddot{q}$ = $\hat{\mathcal{A}}^{-1}$ $Y(q,\dot{q}\dot{g})$ $\tilde{\Theta}$ where $\tilde{\Xi}$ = $\hat{\Theta}$ - Θ is parametric error				V													
where $\widetilde{\Phi} = \widehat{\Phi} - \overline{\Phi}$ is parametric error	=	ck	sed	-10	°P												
where $\widetilde{\Xi} = \widehat{\Phi} - \overline{\Phi}$ is parametric error			; q +	K	i i	K	P 9	-	Â-'	Y (3, ĝ 8) <u>ছ</u>					
vect														me	fric	۲۷۱	≫
					-											Ve	cfe

Let	$e = \begin{bmatrix} \hat{9} \\ \hat{9} \end{bmatrix}$ be tracting error state vector
	$\begin{bmatrix} O & I \\ -\kappa_{P} & -\kappa_{A} \end{bmatrix} \qquad B = \begin{bmatrix} O \\ I \end{bmatrix}$
	designal Huruitz by choice of Kp, K& >0 (all e-values are in LHS of complex plane, i.e. all e-values have negative real part)
⇒ė	= Ae + B A Y(q, q, q) &
	= Ae + B \$\vec{\P}{\P} \vec{\P}{\pi} \cdots \text{where} \overline{\P}:= \hat{\P}' \gamma(\beta; \vec{\pi}; \vec{\pi})
	To be continued!