Data wykonania sprawozdania: 24.03.2019

Sprawozdanie

Temat: Algorytm NEH

Grupa:

1. Fryderyk Fogel

2. Jakub Dabrowski

Algorytm NEH głównie zajmuje się problemem przepływowym, gdzie sumuje czasy wykonywania poszczególnych zadań na wszystkich maszyn, a następnie sortuje je malejąco. Działanie bez żadnych modyfikacji wykorzystuje dwa pierwsze zadania maszyn o najdłuższym czasie pracy i liczy wartość Makespan dla wszystkich permutacji. Najmniejsza wartość daje najlepszą kolejność wykonania zadań. Następnie dokładając na koniec kolejne zadania i sprawdzając każde możliwe ustawienie, sprawdza kolejne wartości Makespan. Wszystko jest wykonywane w pętli aż do sprowadzenia wszystkich zadań i obliczenia najlepszej konfiguracji.

W zestawieniu NEH'a do innych metod czyli przeglądu zupełnego oraz algorytmu Johnsona funkcjonuje on najlepiej i najskuteczniej. Przegląd zupełny jest najwolniejszy – przeszukuje wszystkie możliwe permutacje zadań, natomiast algorytm Johnsonsa jest wykorzystywany tylko i wyłączenie dla dwóch lub trzech maszyn. W instancji ta000 gdzie występowały trzy maszyny Johnson poradził sobie bardzo podobnie jak NEH uzyskując taki sam wynik.

Odnośnie testów algorytmu NEH czy działa poprawnie, został on podany porównaniu z programem NehDemo.exe. Wszystkie wyniki, czyli cmax dla najlepszej permutacji oraz najlepsze ustawienie zadań potwierdzają dobre działanie naszego programu.

Instancja	ta000	ta001	ta060	ta089	ta120
Czas wykonania funkcji	0.4s	0.3s	4.1s	31.5s	1285.4s
Cmax	32	1286	4079	6677	26 984

Można zauważyć, że dla początkowych instancji NEH bez modyfikacji radzi sobie dobrze, kłopot staje się, gdy mamy dużo większą liczbę zadań i maszyn. Algorytm ten nadaje się jedynie dla problemów, których ilość możliwych permutacji jest mała. Ulepszając NEH'a do zastosowania akceleracji zwiększamy złożoność obliczeniową – zmniejszamy czas wykonywania funkcji o około 10^3 s.