ook of Abstrac	t Algeb	ra	(2nd Ed	lition)
Chapter AA, Problem 1E			46 Bookmarks	Show all steps: ON
	Pro	oblem		
Prove the following:				
If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$	= C.			
	Step-by-s	tep s	olution	
	Step ⁻	1 of 2		
Objective:-				
The objective is to prove $A \subseteq$	B and $B \subseteq C$,	then 2	$A \subseteq C$.	
Comment				
	Step 2	2 of 2		
Proof:-				
Let A and B are two sets. Let	$x \in A \subseteq B$			
If sets A and B are such that e	every elements of	A are	also elements of	B, then A is said to
be subset of B.				
$A \subseteq B \Leftrightarrow \big\{ x \in A \Rightarrow x \in B \big\}$				
So,				
$x \in A \implies x \in B$	(1)			
Let us suppose $x \in B \subseteq C$.				
So,				
$x \in B \Rightarrow x \in C$	(2)			

Let us consider the equation (1) and (2).

 $x \in B \Rightarrow x \in C$

$A \subseteq C$ Proved		
Proved		
Comment		