Topic 4: Indices and Logarithms

Lecture Notes:

section 3.1 Indices section 3.2 Logarithms

Jacques Text Book (edition 4):

section 2.3 & 2.4 Indices & Logarithms

INDICES

Any expression written as $\mathbf{a}^{\mathbf{n}}$ is defined as the variable \mathbf{a} raised to the power of the number \mathbf{n}

n is called a power, an index or an exponent of a

e.g. where n is a positive whole number,

Indices satisfy the following rules:

1) where n is *positive whole* number

$$a^n = a \times a \times a \times a \dots n$$
 times

e.g.
$$2^3 = 2 \times 2 \times 2 = 8$$

2) Negative powers.....

$$\mathbf{a}^{-\mathbf{n}} = \frac{1}{a^n}$$

e.g.
$$a^{-2} = \frac{1}{a^2}$$

e.g. where a = 2

$$2^{-1} = \frac{1}{2} \text{ or } 2^{-2} = \frac{1}{2 \times 2} = \frac{1}{4}$$

3) A <u>Zero</u> power

$$a^0 = 1$$

e.g.
$$8^0 = 1$$

4) A <u>Fractional</u> power

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

e.g.
$$9^{\frac{1}{2}} = \sqrt[2]{9} = \sqrt{9} = 3$$

 $8^{\frac{1}{3}} = \sqrt[3]{8} = 2$

$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

All indices satisfy the following rules in mathematical applications

Rule 1

$$a^{m}$$
. $a^{n} = a^{m+n}$

e.g.
$$2^2 \cdot 2^3 = 2^5 = 32$$

Rule 2

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

e.g.
$$\frac{2^3}{2^2} = 2^{3-2} = 2^1 = 2$$

note: if m = n,

then
$$\frac{a^{m}}{a^{n}} = \mathbf{a^{m-n}} = \mathbf{a^0} = \mathbf{1}$$

note:
$$\frac{a^{m}}{a-n} = \mathbf{a}^{\mathbf{m}-(-\mathbf{n})} = \mathbf{a}^{\mathbf{m}+\mathbf{n}}$$

note:
$$\frac{a^{-m}}{a^n} = \mathbf{a}^{-\mathbf{m} - \mathbf{n}} = \frac{1}{a^{m+n}}$$

Rule 3

$$(\mathbf{a}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{a}^{\mathbf{m}.\mathbf{n}}$$

e.g.
$$(2^3)^2 = 2^6 = 64$$

Rule 4

$$a^{n}$$
. $b^{n} = (ab)^{n}$

e.g.
$$3^2 \times 4^2 = (3 \times 4)^2 = 12^2 = 144$$

Likewise,

$$\frac{\mathbf{a^n}}{\mathbf{b^n}} = \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{n}}$$
 if $\mathbf{b} \neq 0$

e.g.

$$\frac{6^2}{3^2} = \left(\frac{6}{3}\right)^2 = 2^2 = 4$$

Simplify the following using the above Rules:

1)
$$b = x^{1/4} \times x^{3/4}$$

2)
$$b = x^2 \div x^{3/2}$$

3)
$$b = (x^{3/4})^8$$

4)
$$b = \frac{x^2 y^3}{x^4 y}$$

LOGARITHMS

A Logarithm is a mirror image of an index

If $m = b^n$ then $log_b m = n$ The log of m to base b is n

If $y = x^n$ then $n = \log_x y$ The log of y to the base x is n

e.g.

$$1000 = 10^3$$
 then $3 = \log_{10} 1000$

$$0.01 = 10^{-2}$$
 then $-2 = \log_{10} 0.01$

Evaluate the following:

1)
$$x = log_3 9$$

the log of m to base b = n then $m = b^n$ the log of 9 to base 3 = x then

$$\Rightarrow$$
 9 = 3^x

$$\Rightarrow$$
 9 = 3 × 3 = 3²

$$\Rightarrow x = 2$$

2)
$$x = log_4 2$$

the log of m to base b = n then $m = b^n$ the log of 2 to base 4 = x then

$$\Rightarrow$$
 2 = 4^x

$$\Rightarrow$$
 2 = $\sqrt{4}$ = $4^{1/2}$

$$\Rightarrow x = 1/2$$

Using Rules of Indices, the following rules of logs apply

1)
$$\log_b(x \times y) = \log_b x + \log_b y$$

eg. $\log_{10}(2 \times 3) = \log_{10} 2 + \log_{10} 3$

2)
$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

eg. $\log_{10} \left(\frac{3}{2}\right) = \log_{10} 3 - \log_{10} 2$

3)
$$\log_b x^m = m. \log_b x$$

e.g. $\log_{10} 3^2 = 2 \log_{10} 3$

From the aboverules, it follows that

(1)
$$\log_b 1 = 0$$

(since => 1 = b^x, hence x must=0)
e.g. $\log_{10} 1 = 0$

and therefore,

$$\log_b \left(\frac{1}{x}\right) = -\log_b x$$

e.g. $\log_{10} (\frac{1}{3}) = -\log_{10} 3$

(2)
$$\log_b b = 1$$

(since => $b = b^x$, hence x must = 1)
e.g. $\log_{10} 10 = 1$

(3)
$$\log_b \left(\sqrt[n]{x} \right) = \frac{1}{\mathbf{n}} \log_b \mathbf{x}$$

A Note of Caution:

- All logs must be to the same base in applying the rules and solving for values
- The most common base for logarithms are logs to the base 10, or logs to the base \mathbf{e} (e = 2.718281...)
- Logs to the base **e** are called Natural Logarithms

$$log_e x = ln x$$

If
$$y = exp(x) = e^x$$

Then $log_e y = x$ or $ln y = x$

Features of $y = e^x$

- non-linear
- always positive
- as \(\frac{1}{x}\) get \(\frac{1}{y}\) and \(\frac{1}{x}\) slope of graph (gets steeper)

Logs can be used to solve algebraic equations where the unknown variable appears as a power

An Example : Find the value of x

$$200(1.1)^{x} = 20000$$

Simplify

divide across by 200

$$\Rightarrow$$
 $(1.1)^x = 100$

- 1. to find x, rewrite equation so that it is no longer a power
- ⇒ Take logs of both sides
- $\Rightarrow \log(1.1)^{x} = \log(100)$
- \Rightarrow rule 3 => x.log(1.1) = log(100)

2. Solve for x

$$x = \frac{\log(100)}{\log(1.1)}$$

no matter what base we evaluate the logs, providing the same base is applied both to the top and bottom of the equation

3. Find the value of x by evaluating logs using (for example) base 10

$$x = \frac{\log(100)}{\log(1.1)} = \frac{2}{0.0414} = 48.32$$

4. Check the solution

$$200(1.1)^{x} = 20000$$

$$200(1.1)^{48.32} = 20004$$

Another Example: Find the value of x

$$5^{x}=2(3)^{x}$$

1. rewrite equation so x is not a power

- ⇒ Take logs of both sides
- $\Rightarrow \log(5^{x}) = \log(2 \times 3^{x})$
- \Rightarrow rule 1 => log 5^x = log 2 + log 3^x
- \Rightarrow rule 3 => x.log 5 = log 2 + x.log 3

2. Solve for x

$$x [log 5 - log 3] = log 2$$

rule 2 =>
$$x[log(\frac{5}{3})] = log 2$$

$$x = \frac{\log(2)}{\log(\frac{5}{3})}$$

3. Find the value of x by evaluating logs using (for example) base 10

$$x = \frac{\log(2)}{\log(\frac{5}{3})} = \frac{0.30103}{0.2219} = 1.36$$

4. Check the solution

$$5^{x} = 2(3)^{x} \Rightarrow 5^{1.36} = 2(3)^{1.36} \Rightarrow 8.92$$

An Economics Example 1

$$Y = f(K, L) = A K^{\alpha}L^{\beta}$$

$$Y^* = f(\lambda K, \lambda L) = A (\lambda K)^{\alpha} (\lambda L)^{\beta}$$

$$Y^* = A K^{\alpha} L^{\beta} \lambda^{\alpha} \lambda^{\beta} = Y \lambda^{\alpha+\beta}$$

 $\alpha+\beta=1$ Constant Returns to Scale

 $\alpha+\beta>1$ Increasing Returns to Scale

 $\alpha + \beta < 1$ Decreasing Returns to Scale

Homogeneous of Degree r if:

$$f(\lambda X, \lambda Z) = \lambda^r f(X, Z) = \lambda^r Y$$

Homogenous function if by scaling all variables by λ , can write Y in terms of λ^r

An Economics Example 2

National Income = £30,000 mill in 1964.

It grows at 4% p.a.

Y = income (units of £10,000 mill)

1964: Y = 3

1965: Y = 3(1.04)

1966: $Y = 3(1.04)^2$

1984: $Y = 3(1.04)^{20}$

Compute directly using calculator or

Express in terms of logs and solve

1984:
$$\log Y = \log \{3 \times (1.04)^{20}\}$$

 $\log Y = \log 3 + \log \{(1.04)^{20}\}$

$$logY = log3 + 20.log(1.04)$$

evaluate to the base 10

$$\log Y = 0.47712 + 20(0.01703)$$

$$log Y = 0.817788$$

Find the anti-log of the solution:

$$Y = 6.5733$$

In 1984, Y = £65733 mill

Topic 3: Rules of Indices and Logs Some Practice Questions:

- 1. Use the rules of indices to simplify each of the following and where possible evaluate:
 - (i) $\frac{3^5.3^2}{3^6}$
 - (ii) $\frac{5^4.6^{-2}}{5^2}$
 - (iii) $\frac{x^6.x^{-2}}{x}$

 - (iv) $(4x^3)^2$ (v) $\frac{xy^2}{x^2}$
 - (vi) $\frac{15x^6}{3x^45x^2}$

2. Solve the following equations:

(i)
$$\log_4 64 = x$$

$$(ii) \quad \log_3\left(\frac{1}{27}\right) = x$$

(iii)
$$x = 4 \ln 10$$

(iv)
$$5^x = 25$$

$$(\mathbf{v}) \quad 4e^x = 100$$

(vi)
$$e^{2x-1} = 100$$