Vector operations assessment

5/5 points (100%)

Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

points

1.

In this assessment, you will be tested on all of the different topics you have in covered this module. Good luck!

A ship travels with velocity given by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, with current flowing in the direction given by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with respect to some co-ordinate axes.

What is the velocity of the ship in the direction of the current?

- $\begin{bmatrix} 3/2 \\ 2/3 \end{bmatrix}$

Correct

This is the vector projection of the velocity of the ship onto the velocity of the wind.

- $\begin{bmatrix} 2/3 \\ 3/2 \end{bmatrix}$
- $\begin{bmatrix}
 2/3 \\
 2/3
 \end{bmatrix}$

1/1 points

2.

Vector operations as with selecting eigen by $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, with wind blowing in the

5/5 points (100%)

Quiz, 5 questions

direction given by $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$ with respect to some co-ordinate axes.

What is the size of the velocity of the ball in the direction of the wind?

 $\frac{2}{5}$

Correct

This is the scalar projection of the velocity of the ship onto the velocity of the wind.

5	
$-\frac{1}{2}$	

$$\frac{5}{2}$$

$$-\frac{2}{5}$$

1/1 points

3.

Given vectors
$$\mathbf{v}=\begin{bmatrix}-4\\-3\\8\end{bmatrix}$$
 , $\mathbf{b_1}=\begin{bmatrix}1\\2\\3\end{bmatrix}$, $\mathbf{b_2}=\begin{bmatrix}-2\\1\\0\end{bmatrix}$ and $\mathbf{b_3}=\begin{bmatrix}-3\\-6\\5\end{bmatrix}$

all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.

 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

This is a change of basis in 3 dimensions.

$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

5/5 points (100%)

Quiz, 5 questions

1/1 points

4.

Are the following vectors linearly independent?

$$\mathbf{a}=egin{bmatrix}1\\2\\-1\end{bmatrix}$$
 , $\mathbf{b}=egin{bmatrix}3\\-4\\5\end{bmatrix}$ and $\mathbf{c}=egin{bmatrix}1\\-8\\7\end{bmatrix}$.

Yes

No

Correct

One can be written as a linear combination of the other two.

1/1 points

5.

At 12:00 pm, a spaceship is at position $egin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} km$ away from the origin

with respect to some 3 dimensional co ordinate system. The ship is Γ 17

travelling with velocity $egin{bmatrix} -1 \ 2 \ -3 \end{bmatrix} km/h$ What is the location of the

spaceship after 2 hours have passed?

$$\begin{bmatrix} -1 \\ -6 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 \\
6 \\
-2
\end{bmatrix}$$

Correct

Vector operations as the standard to the context of a moving body.

5/5 points (100%)

Quiz, 5 questions

ß

