Compito di Geometria A del 10-12-2008 (Le risposte giuste sono in grassetto)

1) Per quali valori di h $\in \mathbb{R}$ la matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & h & 0 \\ 3 & 1 & 2 \end{pmatrix}$$

è diagonalizzabile per similitudine?

- 1) Per ogni h $\in \mathbb{R}$
- 2) Per h \in { -1, 4 }
- 3) Per nessun valore di h
- 4) Per ogni $h \in \mathbb{R} \{-1, 4\}$
- 2) L'inversa della matrice

$$A = \begin{pmatrix} 0 & 2 & 1 & 3 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 3 & 0 & 3 \end{pmatrix}$$

- 1) Ha la 1° colonna uguale a (1 1 -1 0)
- 2) Ha la 1° riga uguale a (-1 -2 -1 2)
- 3) Non esiste
- 4) Ha la prima colonna uguale a (-1 -2 -1 2)
- 3) Nello spazio vettoriale euclideo reale \mathbb{R}^3 con il prodotto scalare $< u,v> = 2x^1y^1 + x^2y^2 + 4x^3y^3$, dove $u=(x^1, x^2, x^3)$, $v=(y^1, y^2, y^3)$ quale base è ortonormale?
 - 1) $B=((\frac{1}{\sqrt{2}},0,0),(1,1,0),(0,0,\frac{1}{2}))$
 - 2) $B=((\frac{1}{\sqrt{2}},0,0),(0,1,0),(0,0,\frac{1}{2}))$
 - 3) B=((1,0,0),(0,1,0),(0,0,1))
 - 4) B=(($\frac{1}{2}$, 0, 0), (0, 1, 0), (0, 0, $\frac{1}{\sqrt{2}}$)
- 4) La T: $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ avente matrice associata

$$A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ -1 & 1 \end{pmatrix}$$

rispetto alla base B = ((0, 2), (-1, 0)) di \mathbb{R}^2 e alla base B' = ((1, -1, 0), (0, 0, 2), (0, 1, 0)) di \mathbb{R}^3 è:

- 1) $f((x,y)) = (y,-x-\frac{3}{2}y,2x)$
- 2) f((x,y)) = (2x, -3x + y, -2y)
- 3) f((x,y)) = (2x, -y, -x + y)
- 4) $f((x,y)) = (y,x,-x-\frac{1}{2}y)$
- 5) In uno spazio vettoriale euclideo reale V, quale delle seguenti proprietà è vera per qualunque u, $v \in V$?
 - 1) ||u+v||=||u||+||v||
 - 2) $||u+v|| \ge ||u|| + ||v||$
 - 3) $||u+v|| \le ||u|| + ||v||$
 - 4) $||u+v||^2 = ||u||^2 + ||v||^2$
- 6) La $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ avente nucleo

 $KerT = \{ (x, y, z) \in \mathbb{R}^3 / x = y \} e tale che$

T((-1, 1, 0)) = (2, -4) è definito da:

- 1) T((x, y, z)) = (y-x+z, 2x-2y+2z)
- 2) T((x, y, z)) = (y-x, 2x 2y)
- 3) T((x, y, z)) = (y-x, 2y 2x)

- 4) T((x, y, z)) = (2y 2x, 4x 4y)
- 7) Una ennupla (v₁, ..., v₂) di vettori dello spazio vettoriale V è linearmente indipendente se:
 - 1) Tutti i vettori v_i sono diversi dal vettore nullo
 - 2) I vettori v_i sono tutti distinti
 - 3) Nessuno dei vettori è combinazione lineare dei rimanenti
 - 4) Al più dei vettori v_i è combinazione lineare dei rimanenti
- 8) Se A, B, C \in GL_n(\mathbb{R}), quale delle seguenti proprietà è generalmente falsa?
 - 1) t(A+B) = tB + tA
 - 2) $(A*B)^{-1} = B^{-1}*A^{-1}$
 - 3) A(B+C)=(A*B)+(A*C)
 - 4) t(A*B)=(tA*tB)
- 9) Un sistema lineare con n-1 equazioni in n incognite:
 - 1) È sempre impossibile se non omogeneo
 - 2) Se è possibile ha ∞ soluzioni
 - 3) È sempre possibile ma ammette una ed una sola soluzione
 - 4) È sempre possibile ma ammette ∞ soluzioni
- 10) Lo spazio delle soluzioni del seguente sistema lineare

$$\begin{cases} 2y + z = 0\\ 3x + 2y + z + t = 0\\ 6x - 2y - z + 2t = 0\\ 3x + 2y + t = 0 \end{cases}$$

è:

- 1) L((1, 0, 0, -3))
- 2) $\{(1, 0, 0, -3)\}$
- 3) L((1,0,0,-3), (1,0,0,1))
- 4) $\{(0,0,0,0)\}$
- 11) Il rango della matrice

$$A = \begin{pmatrix} 2 & 2 & -3 & -1 \\ 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 2 & -3 & 2 \end{pmatrix}$$

è:

- 1) 4
- 2) 2
- 3) 3
- 4) 1

Altre domande

1) Sia B una base ordinata dello spazio vettoriale euclideo V_n con il prodotto scalare $(V_n, <, >)$ e sia $U = (u_1, u_2, ..., u_n)$ e $V = (v_1, v_2, ..., v_n)$, sia:

$$U, V = \sum_{i=1}^{n} (v_i \cdot u_i)$$
 sse la base B è ortonormale

2) Un sistema lineare omogeneo in n equazioni, ammette ∞^h soluzioni sse

Contiene n-h equazioni indipendenti

3) Per quali valori di $h \in R$ la matrice $\begin{pmatrix} 1 & h & 0 \\ h & 1 & 0 \\ h & 1 & 1 \end{pmatrix}$ è diagonalizzabile per similitudine

Per nessun valore di h