

UNIVERSIDAD ICESI

Facultad de Ingeniería Laboratorio de Física I Periodo de 2022

Colisiones

K. Chavarro ¹, B. Mendoza ², J. Sarmiento³, Y. Tamayo ⁴ A. Toro ⁵

Introducción:

En una colisión, dos objetos ejercen una fuerza entre sí. Cuando los objetos están muy cerca o en contacto entre sí, interactúan fuertemente por un corto período de tiempo. Este tipo de fuerza se llama fuerza de impulso y se caracteriza por un efecto fuerte y de corta duración. La característica fundamental de la colisión es que las fuerzas que determinan lo que sucede durante una colisión son solo fuerzas internas (interacciones entre diferentes cuerpos que chocan). Debido a este hecho, la velocidad del centro de masa del sistema será constante durante una colisión, ya que la aceleración del centro de masa solo es causada por fuerzas externas que actúan sobre el sistema (Serway & Jewett, 2005).

Se halló el movimiento lineal de dos objetos de diferentes masas. El propósito de este laboratorio fue identificar el cambio de energía que ocurre cuando dos objetos chocan y, además, cómo se ve afectada el momentum.

Soporte teórico:

En la práctica se utilizó un inflador eléctrico, en el cual encima de este se induce la colisión de dos objetos con diferentes masas. De esta forma, se determinará la cantidad de movimiento lineal de cada objeto bajo estudio, la variación y la energía cinética de los dos elementos.

Para realizar los cálculos hechos en este informe se utilizaron la *ecuación 1* para calcular la cantidad de movimiento lineal/momentum, la *ecuación 2* para calcular el cambio en la cantidad de movimiento, la *ecuación 3* para determinar la energía cinética, la *ecuación 4* para hallar la variación en la energía cinética y la *ecuación 5* para determinar la velocidad.

$$p = mv (1)$$

$$\Delta p = p_f - p_o (2)$$

$$Ec: \frac{1}{2}mv^2 (3)$$

$$\Delta Ec: Ec_f - Ec_o (4)$$

$$v = \frac{x_f - x_o}{t_f - t_i} (5)$$

Cálculos y resultados

En esta práctica se presentaron tres situaciones las cuales se van a exponer a través de este documento. Cada situación se desarrolla mediante un choque, pero cada uno con una cualidad peculiar, pudiendo ser colisiones inelásticas o elásticas. A continuación, se expone el peso de cada objeto los cuales se han llamado como Objeto A y Objeto B, ver *tabla 1*.

Objeto	Peso en gramos	Peso añadido en	Peso total (g)
		gramos	
A	115	100	215
В	136	200	336

Tabla 1. Pesos de cada objeto bajo estudio.

i) Choque elástico

A continuación, se mostrarán los datos obtenidos a través de la app Tracker ®. En la tabla 2 y tabla 3, se exponen los datos de una colisión elástica.

t(seg)	x(cm)	2.535	61.6073
1.568333333	19.9866084	2.568333333	61.5570
1.601666667	21.9253113	2.601666667	61.4836
1.635	23.4982906	2.635	61.3363
1.668333333	25.2193074	2.668333333	61.3578
1.701666667	26.8343954	2.701666667	61.2679
1.735	28.5543395	2.735	61.1262
1.768333333	30.4964176	2.768333333	61.1689
1.801666667	31.9615868	2.801666667	61.10
1.835	33.7394774	2.835	60.9424
1.868333333	35.538135	2.87	60.9245
1.901666667	37.1734292	2.903333333	60.8876
1.935	38.8146817	2.936666667	60.7035
1.968333333	40.5127591	2.97	60.63529
2.001666667	42.3690408	3.003333333	60.5675
2.035	44.073043	3.036666667	60.4698
2.068333333	45.7124984	3.07	60.4996
2.101666667	47.4424005	3.103333333	60.4855
2.135	49.1803166	3.136666667	60.2975
2.168333333	50.8330062	3.17	60.230
2.201666667	52.4128142	3.203333333	60.2834
2.235	54.0721706	3.236666667	60.2416
2.268333333	55.7913152	3.27	60.0962
2.301666667	57.4165433	3.303333333	60.00643
2.335	59.0786115	3.336666667	60.0266
2.368333333	60.7328184	3.37	59.9104
2.401666667	61.8860655	3.403333333	59.7773
2.435	61.887107	3.436666667	59.8598
2.468333333	61.8433986	3.47	59.8055
2.501666667	61.7175326	3.503333333	59.6919

3.536666667	59.6212388
3.57	59.6697894
3.603333333	59.6645005
3.636666667	59.6336606
3.67	59.583268
3.703333333	59.5741356
3.736666667	59.5563469
3.77	59.4379679
3.803333333	59.4009825

3.836666667	59.4534678
3.87	59.4561223
3.903333333	59.4325834
3.936666667	59.434649
3.97	59.3998623
4.003333333	59.3106017
4.036666667	59.2225801
4.07	59.2109294

Tabla 2. Objeto A con dos variables, posición (x) y tiempo (t).

Los datos anteriores se graficaron, ver gráfico 1.

Gráfico 1. Objeto Masa A en términos de posición y tiempo.

Se determinó la velocidad inicial, mediante la ecuación 5, del siguiente modo:

$$v_0 = \frac{60.73 - 19.97}{2.335 - 1.568} = 53.14 \frac{cm}{s}$$

Se halló la velocidad final mediante

$$v_f = \frac{59.21 - 61.89}{4.070 - 2.435} = -1.639 \frac{cm}{s}$$

t(seg)	x(cm)	2.87	80.9056202
1.56833333	69.9708558	2.90333333	81.296454
1.60166667	70.4096166	2.93666667	82.1085135
1.635	69.996774	2.97	82.7238415
1.66833333	70.003439	3.00333333	83.2971029
1.70166667	70.0753583	3.03666667	83.7487887
1.735	70.0695411	3.07	84.503328
1.76833333	70.0543599	3.10333333	85.0855286
1.80166667	70.0613938	3.13666667	85.5514004
1.835	70.0741468	3.17	86.0084215
1.86833333	70.107665	3.20333333	86.6560408
1.90166667	70.3314792	3.23666667	87.0787315
1.935	70.2433067	3.27	87.8078265
1.96833333	70.2234388	3.30333333	88.3750182
2.00166667	70.2619536	3.33666667	88.6994082
2.035	70.2617113	3.37	89.4738548
2.06833333	70.3949841	3.40333333	89.6138809
2.10166667	70.2765681	3.43666667	90.1621632
2.135	70.2561571	3.47	90.6033983
2.16833333	70.2538631	3.50333333	91.2537796
2.20166667	70.3667053	3.53666667	91.7979225
2.235	70.2707349	3.57	91.9822914
2.26833333	70.3368283	3.60333333	92.4174503
2.30166667	70.2423504	3.63666667	92.8911868
2.335	70.2435833	3.67	93.3222891
2.36833333	70.3653116	3.70333333	93.8809879
2.40166667	70.4894607	3.73666667	94.0942233
2.435	71.3170149	3.77	94.815607
2.46833333	72.340272	3.80333333	94.9584782
2.50166667	73.1904892	3.83666667	95.5875896
2.535	73.8885962	3.87	95.8631893
2.56833333	74.51918	3.90333333	96.0818446
2.60166667	75.3958337	3.93666667	96.6712616
2.635	76.1722499	3.97	96.7785969
2.66833333	76.8627529	4.00333333	97.2808646
2.70166667	77.6290236	4.03666667	97.3503276
2.735	78.0621603	4.07	97.5778337
2.76833333	78.7165616	4.10333333	97.949077
2.80166667	79.4715806	4.13666667	98.2654713
2.835	80.0526689	4.17	98.5507919

4.20333333	98.6575414	4.47
.23666667	98.8820418	4.50333333
4.27	99.2153447	4.53666667
.30333333	99.2824722	4.57
.33666667	99.6927722	4.60333333
4.37	99.9059913	4.63666667
1.40333333	100.088446	4.67
1.43666667	100.008297	

Tabla 3. Objeto B con dos variables, posición (x) y tiempo (t).

De la misma forma, se graficaron los datos expuestos, ver gráfico 2.

Gráfico 2. Objeto Masa B en términos de posición y tiempo.

Se determinó la velocidad inicial, mediante la *ecuación 5*, del siguiente modo:
$$v_0 = \frac{70.49-69.97}{2.402-1.568} = 0.6235 \, \frac{cm}{s}$$

Se halló la velocidad final mediante

$$v_f = \frac{100.6 - 71.32}{4.670 - 2.435} = 13.10 \frac{cm}{s}$$

Con estos datos se halló la cantidad de movimiento antes y después de la colisión, usando la ecuación 1.

$$p_o = (0.215 * 0.5314) + (0.336 * 0.006235)$$

$$p_o = 0.116 \frac{kgm}{s}$$

$$p_f = (0.215 * (-0.01639)) + (0.336 * (0.1310))$$

$$p_f = 0.0405 \frac{kgm}{s}$$

Con esto se determinó el cambio en la cantidad de movimiento, usando la ecuación 2.

$$\Delta p = 0.0405 - 0.116$$

$$\Delta p = -0.0755 \frac{kgm}{s}$$

También se calculó la energía cinética en ambos cuerpos antes y después de la colisión, utilizando la *ecuación 3*.

$$E_A = \frac{1}{2}(0.215)(0.5314)^2$$

$$E_A = 0.0304 J$$

$$E_B = \frac{1}{2}(0.336)(0.006235)^2$$

$$E_B = 6.53 * 10^{-6} J$$

Con los datos anteriores, se calculó la energía cinética inicial.

$$E_i = 0.0304$$

Después, se determinó la energía cinética final.

$$E_A = \frac{1}{2}(0.215)(-0.01639)^2$$

$$E_A = 2.89 * 10^{-5}J$$

$$E_B = \frac{1}{2}(0.336)(0.1310)^2$$

$$E_B = 2.88 * 10^{-3}J$$

Teniendo en cuenta los datos obtenidos se halló la energía cinética final.

$$E_f = 2.91 * 10^{-3} J$$

Haciendo uso de la ecuación 4, el delta de la energía cinética es:

$$\Delta E_c = 0.0304 - 2.91 * 10^{-3}$$
$$\Delta E_c = 0.0275$$

ii) Choque inelástico

En seguida, se utilizó como en el inciso i la aplicación Tracker ®. En la tabla 4 y 5, se exponen los datos obtenidos en la colisión inelástica.

		3.93666667	39.
t(seg)	x(cm)	3.97	4
3.83666667	33.2053176	4.00333333	4
3.87	35.4610692	4.03666667	
3.90333333	37.2886826	4.07	

4.10333333	49.0734144
4.13666667	50.5944456
4.17	52.5870992
4.20333333	54.5749779
4.23666667	55.8263627
4.27	54.3902728
4.30333333	53.1087734
4.33666667	51.9647417
4.37	50.8712351
4.40333333	49.8074902
4.43666667	48.8428481
4.47	47.7373874
4.50333333	46.8503768
4.53666667	45.8706955
4.57	44.8559824
4.60333333	43.7651332
4.63666667	42.7390055
4.67	41.8000959
4.705	40.6401738
4.73833333	39.7564614
4.77166667	38.7189156

4.805	37.5447774
4.83833333	36.7030444
4.87166667	35.6969714
4.905	34.7306759
4.93833333	33.529319
4.97166667	32.6659063
5.005	31.7262348
5.03833333	30.8236356
5.07166667	29.8567996
5.105	28.8274775
5.13833333	27.716719
5.17166667	26.555631
5.205	25.8245811
5.23833333	24.8650094
5.27166667	23.8949152
5.305	22.894022
5.33833333	21.6837543
5.37166667	20.7568036
5.405	19.9049499
5.43833333	18.9712647
5.47166667	18.1054203

Tabla 4. Objeto A con dos variables, posición (x) y tiempo (t).

Gráfico 3. Objeto A en términos de posición y tiempo.

Se determinó la velocidad inicial, mediante la ecuación 5, del siguiente modo:

$$v_0 = \frac{55.83 - 33.21}{4.237 - 3.837} = 56.55 \frac{cm}{s}$$

Se halló la velocidad final mediante

$$v_f = \frac{18.11 - 54.39}{5.471 - 4.27} = -30.21 \frac{cm}{s}$$

t(seg)	x(cm)	4.83833333	66.27
3.63666667	97.7252585	4.87166667	66.05
3.67	95.4971787	4.905	66.28
3.70333333	93.6225058	4.93833333	66.05
3.73666667	91.60687	4.97166667	66.08
3.77	89.8694364	5.005	66.11
3.80333333	87.9208052	5.03833333	66.26
3.83666667	86.0095739	5.07166667	66.1
3.87	84.035189	5.105	66.25
3.90333333	82.0899561	5.13833333	66.34
3.93666667	80.2336453	5.17166667	66.42
3.97	78.3820863	5.205	66.4
4.00333333	76.5128679	5.23833333	66.31
4.03666667	74.6281176	5.27166667	66.3
4.07	72.8030679	5.305	66.33
4.10333333	70.9353995	5.33833333	66.5
4.13666667	69.1477604	5.37166667	66.38
4.17	67.3129932	5.405	66.39
4.20333333	65.4045455	5.43833333	66.36
4.30333333	65.0574061	5.47166667	66.34
4.33666667	65.4086078	5.505	66.34
4.37	65.6528293	5.53833333	66.3
4.40333333	65.7865069	5.57166667	66.37
4.43666667	65.8810417	5.605	66.36
4.47	65.9128074	5.63833333	66.35
4.50333333	66.0173258	5.67166667	66.37
4.53666667	66.2505276	5.705	66.40
4.57	66.1206127	5.73833333	66.51
4.60333333	66.1295095	5.77166667	66.35
4.63666667	66.1099178	5.805	66.51
4.67	66.2892294	5.83833333	66.3
4.705	66.1080409	5.87166667	66.43
4.73833333	66.2804871	5.905	66.
4.77166667	66.25917	5.93833333	66.50
4.805	66.0657165	5.97166667	66.49

Tabla 5. Objeto B con dos variables, posición (x) y tiempo (t).

Gráfico 4. Objeto B en términos de posición y tiempo.

Se determinó la velocidad inicial, mediante la ecuación 5, del siguiente modo:

$$v_0 = \frac{66.02 - 97.73}{4.503 - 3.637} = -36.62 \frac{cm}{s}$$

Se halló la velocidad final mediante

$$v_f = \frac{66.36 - 66.25}{6.072 - 4.537} = 0.07166 \frac{cm}{s}$$

Con estos datos se halló la cantidad de movimiento antes y después de la colisión, usando la ecuación 1.

$$\begin{split} p_o &= (0.215*0.5655) + (0.336*(-0.3662)) \\ p_o &= -1.46*10^{-3} \frac{kgm}{s} \\ p_f &= (0.215*(-0.3021)) + (0.336*(0.0007166)) \\ p_f &= -0.0645 \frac{kgm}{s} \end{split}$$

Con esto se determinó el cambio en la cantidad de movimiento, usando la ecuación 2.

$$\Delta p = -0.0645 - (-1.46 * 10^{-3})$$
$$\Delta p = -0.0630 \frac{kgm}{s}$$

También se calculó la energía cinética en ambos cuerpos antes y después de la colisión, utilizando la *ecuación 3*.

$$E_A = \frac{1}{2}(0.215)(0.5655)^2$$
$$E_A = 0.0344 I$$

$$E_B = \frac{1}{2}(0.336)(-0.3662)^2$$
$$E_B = 0.0225 J$$

Con los datos anteriores, se calculó la energía cinética inicial.

$$E_i = 0.569 J$$

Después, se determinó la energía cinética final.

$$E_A = \frac{1}{2}(0.215)(-0.3021)^2$$

$$E_A = 9.81 * 10^{-3}J$$

$$E_B = \frac{1}{2}(0.336)(0.0007166)^2$$

$$E_B = 8.63 * 10^{-8}J$$

Teniendo en cuenta los datos obtenidos se halló la energía cinética final.

$$E_f = 9.81 * 10^{-3} J$$

Haciendo uso de la ecuación 4, el delta de la energía cinética es:

$$\Delta E_c = 0.0304 - 2.91 * 10^{-3}$$

 $\Delta Ec = 9.81 * 10^{-3} - (0.569) = -0.559 J$

4. ANÁLISIS DE RESULTADOS

Se observa que el choque tiene un efecto en ambos cuerpos porque tanto la energía cinética como el momento se modifican, y también se puede ver que cuando los cuerpos están en reposo, tanto la energía cinética como el momento son muy cercanas a cero. Por otro lado, se pierde tanto la energía cinética como el momento, ya que ambos incrementos son negativos, de lo que se deduce que no se conserva ni el momento lineal ni la energía cinética hallada.

Esta falta de conservación se debió, probablemente, al poco aire en la última parte de la superficie del instrumento utilizado. Del mismo modo, el sitio donde el objeto B choca con el otro objeto A no generó la fuerza o el apoyo suficiente para moverse por todo el espacio. Eso es seguro, porque después de la colisión, el objeto B mostró un pequeño movimiento en la superficie, probablemente como resultado de que la energía no se transfirió por completo.

CONCLUSIONES

➤ En las colisiones elásticas siempre se va a conservar la energía cinética, además el momento lineal también se conserva.

- ➤ En las colisiones inelásticas no se presenta conservación de energía cinética, pues siempre existe una pérdida en ella al momento del choque.
- ➤ Al momento de una colisión elástica no se dan deformaciones permanentes durante el impacto.
- ➤ Al momento de una colisión inelástica se producen deformaciones permanentes durante el impacto.
- ➤ En las colisiones elásticas, los cuerpos después de chocar parten a direcciones contrarias al momento del choque.
- ➤En las colisiones inelásticas, los cuerpos quedan unidos y se dirigen hacia una misma dirección al momento del choque.

Referencias

Serway, & Jewett. (2005). Física para ciencias e ingeniería. CENGAGE LEARNING.