Stochastic Simulation Generation of random variables Continuous sample space

Institute of Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby – Denmark

Email: bfn@imm.dtu.dk

Plan W1.1-2

Random variables

Aim

- The scope is the generation of **independent** random variables $X_1, X_2, ... X_n$ with a **given distribution**, $F_x(x)$, (or probability density function [pdf]).
- We assume we have access to a supply (U_i) of random numbers, independent samples from the uniform distribution on]0, 1[.
- Our task is to transform U_i into X_i .

Generation of (pseudo)random variates

- Inverse transformation techniques
- Composition methods
- Acceptance/rejection methods
- Mathematical methods

DTU —

Uniform distribution I

Our norm distribution or building brick, $U_i \sim U(0,1)$

$$f(x) = 1$$
 $F(x) = x$ for $0 \le x \le 1$

$$\mathbb{E}(U_i) = \frac{1}{2} \quad \mathbb{V}(U_i) = \frac{1}{12}$$

Inverse transformation

The cumulative distribution function (CDF)

$$F(x) = P(X \le x)$$

DTU

The random variable F(X)

DTU —___

From U to X

DTU —

Inversion method

The random variable U = F(X)

$$U = F(X)$$
 $F(x) = P(X \le x)$

$$P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u$$

I.e. F(X) is uniformly distributed.

Inversion method

Assuming C^1 functions (also for g and g^{-1}) and let:

$$X = g(Y)$$
 $Y F_Y(y) = P(Y \le y)$

then

$$F_x(x) = P(X \le x) = P(g(Y) \le x) = P(Y \le g^{-1}(x)) = F_y(g^{-1}(x))$$

If Y = U then $F_u(u) = u$, and $F_x(x) = g^{-1}(x)$.

lf

$$X = F^{-1}(U)$$

then X will have the cdf F(x).

Uniform distribution II

Now, focus on U(a,b).

$$f(x) = \frac{1}{b-a} \quad a \le x \le b$$

$$F(x) = \frac{x-a}{b-a} \quad F^{-1}(u) = a + (b-a)u$$

$$X = a + (b-a)U \quad \sim \quad U(a,b)$$

Exponential distribution

The time between events in a Poisson process is exponentially distributed. (Arrival time)

$$F(x) = 1 - e^{(-\lambda x)}$$
 $\mathbb{E}(X) = \frac{1}{\lambda}$ $F^{-1}(u) = -\frac{1}{\lambda}\log(1 - u)$

So (both 1-U and U is uniform distributed)

$$X = -\frac{\log(U)}{\lambda} \sim \exp(\lambda)$$

Pareto

Is often used in connection to description of income (over a certain level).

$$X \sim Pa(k,\beta)$$
 $F(x) = 1 - \left(\frac{\beta}{x}\right)^k$ $x \ge \beta$ $X = \beta \left(U^{-\frac{1}{k}}\right)$

$$\mathbb{E}(X) = \frac{k}{k-1}\beta \quad \mathbb{V}(X) = \frac{k}{(k-1)^2(k-2)}\beta^2 \quad k > 1, \ 2$$

Pareto with X > 0

$$F(x) = 1 - \left(1 + \frac{x}{\beta}\right)^{-k} \quad X = \beta \left(U^{-\frac{1}{k}} - 1\right)$$

Gaussian

X a result of many (∞) independent sources (Central limit theorem)

$$X \sim \mathbb{N}(\mu, \sigma^2)$$

$$Z \sim \mathbb{N}(0, 1) \qquad X = \mu + \sigma Z \qquad Z = \Phi^{-1}(U)$$

Mathematical Method

 By means of transformation and other techniques we can obtain stochastic variable with a certain distribution.

The Box-Muller method A transformation from polar

$$(\theta = 2\pi U_2, r = \sqrt{-2\log(U_1)})$$
 into Cartesian coordinates $(X = Z_1 \text{ and } Y = Z_2)$.

$$\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} = \sqrt{-2\log(U_1)} \begin{bmatrix} \cos(2\pi U_2) \\ \sin(2\pi U_2) \end{bmatrix} \qquad Z_1, \ Z_2 \sim \mathbb{N}(0, 1)$$

Central limit theorem

$$X = \sum_{i=1}^{n} U_i - \frac{n}{2} \qquad \text{eg. } n = 6$$

DTU —

Generation of cos and sin

Sine and cosine can be calculated by the following acceptance/rejection algorith m:

- 1. Generate $V_1, V_2 \sim U(0, 1)$
- 2. Generate $R^2 = V_1^2 + V_2^2$
- 3. If $R^2 > 1$ goto 1.
- 4. $\cos(2\pi U_2) = \frac{V_1}{R}, \sin(2\pi U_2) = \frac{V_2}{R}$

$LN(\alpha, \beta^2)$

Logarithmic Gaussian, $LN(\alpha, \beta^2)$

$$Y \sim LN(\alpha, \beta^2) \quad \log(Y) \sim \mathbb{N}(\alpha, \beta^2)$$

$$Y = e^X$$
 $X = \alpha + \beta Z$ $Z \sim N(0, 1)$

General and mulitvariate normal distribution

- Generate n independent values from an N(0,1) distribution, $Z_i \sim N(0,1)$.
- $X_i = \mu_i + \sum_{j=1}^i c_{ij} Z_j$
- Where c_{ij} are the elements in the Cholesky factorisation of $\Sigma, \Sigma = CC'$

 $DTU - \frac{1}{10}$

Composition methods - hyperexponential

distribution

$$F(x) = 1 - \sum_{i=1}^{m} p_i e^{-\lambda_i x} = \sum_{i=1}^{m} p_i \left(1 - e^{-\lambda_i x} \right)$$

Formally we can express

$$Z = X_I$$
 where $I \sim \{1, 2, \dots, m\}$ with $P(I = i) = p_i$ and $X_I \sim \exp(\lambda_I)$

- 1. Choose $I \sim \{1, 2, \dots, m\}$ with probabilities p_i 's
- 2. $Z = -\frac{1}{\lambda_I} \log (U)$

Composition methods - Erlang distribution

- The Erlang distribution is a special case of the Gamma distribution with integer valued shape parameter
- An Erlang distributed random variable can be interpreted as a sum of independent exponential variables
- We can generate an Erlang-n distributed random variate by adding n exponential random variates.

$$Y \sim \operatorname{Erl}_n(\lambda)$$
 $\mathbb{E}(Y) = \frac{n}{\lambda}$ $\mathbb{V}(Y) = \frac{n}{\lambda^2}$

with $\lambda_i = \lambda$

02443 - lecture 4

Composition methods II

Generalization:

$$f(x) = \int f(x|y)f(y)dy$$

$$X \text{ given } Y: f(x|y) \quad Y: f(y)$$

Y is typically a parameter (eg. the conditional distribution of X given $Y=\mu$ is $\mathbb{N}(\mu,\sigma^2)$)

Generate:

- Generate Y from f(y).
- Generate X from f(x|y) where Y is used.

Acceptance/rejection

Problem: we would like to generate X from pdf f, but it is much faster to generate Y

with pdf g. NB. X and Y have the same sample space. If

$$\frac{f(y)}{g(y)} \le c \qquad \text{for all } y \text{ and some } c$$

- Step 1. Generate Y having density g.
- ullet Step 2. Generate a random number U
- If $U \leq \frac{f(Y)}{cg(Y)}$ set X = Y. Otherwise return to step 1.

Statistics Toolbox

Version 4.0 (R13) 20-Jun-2002

DTU

•

•

•

Random Number Generators.

betarnd - Beta random numbers.

binornd - Binomial random numbers.

chi2rnd - Chi square random numbers.

exprnd - Exponential random numbers.

frnd - F random numbers.

gamrnd - Gamma random numbers.

geornd - Geometric random numbers.

hygernd - Hypergeometric random numbers.

iwishrnd - Inverse Wishart random matrix.

<u>lognrnd - Lognormal random numbers DTU ----</u>

Exercise 3

- Generate simulated values from the following distributions

- Exponential distribution
- Normal distribution (at least with Box-Mueller)
- \diamond Pareto distribution, with $\beta=1$ and experiment with different values of k values: k = 2.05, k = 2.5, k = 3 og k = 4.
- Verify the results by comparing histograms with analytical results and erform tests for distribution type.
- For the Pareto distribution with support on $|\beta, \infty|$ compare mean value and variance, with analytical results, which can be calculated as $E\{X\} = \beta \frac{k}{k-1}$ (for k > 1) and $Var\{X\} = \beta^2 \frac{k}{(k-1)^2(k-2)}$ (for k > 2)

Exercise 3 continued

 For the normal distribution generate 100 95% confidence intervals for the mean and variance based on 10 observations.
 Discuss the results.