(5)

Int. Cl.: C 07 f

C071

Document FP11 Appl. No. 10/573,066

BUNDESREPUBLIK DEUTSCHLAND

A 01 n

DEUTSCHES PATENTAMT

Deutsche Kl.:

12 q - 21 12 o - 19/01

451-9/36

Behördeneigentum

it 1493736

Offenlegungsschrift
Aktenzeichen:

P 14 93 736.1 (F 46992)

Anmeldetag:

26. August 1965

22

①

@

②

Offenlegungstag: 3. April 1969

Ausstellungspriorität:

30

Unionspriorität

®

Datum:

33

Land:
Aktenzeichen:

__ § Bezeichnung:

Verfahren zur Herstellung von Dithiolphosphorsäuretriestern

6

Zusatz zu:

@

Ausscheidung aus:

71)

Anmelder:

Farbenfabriken Bayer Aktiengesellschaft, 5090 Leverkusen

Vertreter:

12

Als Erfinder benannt:

Schrader, Dr. Dres. h. c. Gerhard, 5600 Wuppertal-Cronenberg;

Mannes, Dr. Karl, 5000 Köln-Stammheim;

Scheinpflug, Dr. Hans, 5090 Leverkusen

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

6. 5. 1968⁻

DT 1493736

@ 3.69 9098141163

12 130

FARBENFABRIKEN BAYER AG

1493736

PATENT ABTEILUNG HU/MA 25, AUG. 1965

Verfahren zur Herstellung von Dithiolphosphorsäuretriestern

Die vorliegende Erfindung betrifft Dithiolphosphorsäuretriester der allgemeinen Konstitution

$$\begin{array}{c} 0 \\ \text{RO-P/S-} \end{array}$$

welche fungizide Eigenschaften besitzen sowie ein Verfahren zu ihrer Herstellung.

In vorgenannter Formel steht R für einen Alkyl-, Alkenyl-, Alkinyl- oder Halogenalkylrest, während R' ein Halogenatom, eine Nitro-, niedere Alkyl- oder Alkoxygruppe bedeutet und n den Wert null, 1 oder 2 hat.

Aus der französischen Patentschrift Nr. 1,378,035 sind bereits (Thiono)Dithiolphosphorsäure-diester-monoamide der allgemeinen Struktur

bekannt, wobei R_a und R_b Wasserstoffatome, Alkyl- oder Arylreste bedeuten können und R_c bzw. R_d u.a. für Arylreste stehen,

während I ein Sauerstoff- oder Schwefelatom darstellt. Nach den Angaben der vorstehend genannten französischen Patentschrift sind diese Verbindungen zur Bekämpfung von Pflanzenschädlingen und Pflanzenkrankheiten geeignet.

Es wurde nun gefunden, daß S,S-Diphenyldithiolphosphorsäuretriester der allgemeinen Struktur (I) glatt, mit guten Ausbeuten und in hervorragender Reinheit erhalten werden, wenn man Phosphorsäuremonoesterdihalogenide der Formel

mit Thiophenolen der allgemeinen Formel

in Gegenwart von Säurebindemitteln umsetzt.

Wie weiterhin gefunden wurde, zeichnen sich die verfahrensgemäß erhältlichen S,S-Diphenyldithiolphosphorsäuretriester durch hervorragende fungitoxische Eigenschaften aus und sind in dieser Hinsicht überraschenderweise den aus der oben genannten französischen Etentschrift bekannten Verbindungen analoger Konstitution und gleicher Wirkungsrichtung eindeutig überlegen. Sie stellen somit eine echte Bereicherung der Technik dar.

Der Verlauf des erfindungsgemäßen Verfahrens sei anhand des nachfolgenden Reaktionsschemas verdeutlicht:

In den Formeln III bis V haben die Symbole R, R' und n die weiter oben angegebene Bedeutung, während Hal für ein Halogenatom steht.

Vorzugsweise bedeutet R jedoch einen geraden oder verzweigten, gegebenenfalls ein- oder mehrfach halogensubstituierten Alkylrest mit 1 bis 6 Kohlenstoffatomen, wie den Methyl-, Äthyl-, n- und Isopropyl-, n-, iso- und sec.-Butyl-, n-Amyl-, 2-Chlor- und 2,2,2-Trichloräthylrest, ferner eine Alkenyl- oder Alkinylgruppe mit bis zu 4 C-Atomen, beispielsweise den Allyl-, Crotonyl- oder Propargyl-rest; R' steht bevorzugt für Chlor, Brom oder Fluor, die Nitro-, Methyl- oder Methoxygruppe, Hal für ein Chloratom und n hat vorzugsweise den Wert null oder 1.

Als Beispiele für erfindungsgemäß zu verwendende Phosphorsäuremonoesterdihalogenide der Struktur (III) seien genannt:

0-Äthyl-, -n-Propyl-, -Isopropyl-, -n-Butyl-, -Allyl-, -Crotonyl-,
-Propargyl-, -2-Chloräthyl- und -2,2,2-Trichloräthylphosphorsäuremonoesterdichlorid. Als verfahrensgemäß umzusetzende Thiophenole
der allgemeinen Konstitution (IV) seien beispielsweise erwähnt:

Thiophenol, 2-, 3- und 4-Chlor-, 4-Isopropyl-, 4-Methoxy-, und 4-Nitrothiophenol, 2-, 3- und 4-Thiokresol, 2-Bromthiokresol.

これのはないできることのないのはないのはないないというないできることのないできることのないのできることできることのないできることのないできることのないできることのないできることのできることのできること

いまでは、はかからははないとのなるとなるとなるないないないないとのできましたというと

Die gemäß vorliegender Erfindung als Ausgangsstoffe zu verwendenden Phosphorsäuremonoesterdihalogenide sind bereits in der Literatur beschrieben. Sie können nach bekannten Methoden aus den Phosphoroxyhalogeniden durch Umsetzung mit den entsprechenden Alkoholen, häufig ohne Mitverwendung von Säurenkzeptoren hergestellt werden. Die auf diese Weise erhältlichen Rohprodukte kann man meist ohne vorherige destillative Reinigung sofort im Sinne der vorliegenden Erfindung weiterumsetzen.

Das beanspruchte Verfahren wird bevorzugt in Gegenwart von Lösungsbzw. Verdünnungsmitteln durchgeführt. Als solche kommen praktisch alle inerten organischen Solventien in Betracht. Besonders bewährt haben sich jedoch gegebenenfalls chlorierte aliphatische und aromatische Kohlenwasserstoffe, wie Methylenchlorid, Di-, Tri- und Tetrachloräthylen, Chloroform, Tetrachlorkohlenstoff, Benzin, Benzol, Chlorbenzol, Toluol und Xylol; Äther, z.B. Diäthyl- und Di-n-butyläther, Dioxan, Tetrahydrofuran; niedermolekulare aliphatische Ketone und Nitrile, beispielsweise Aceton, Methyläthyl-, Methylisopropyl- und Methylisobutylketon; Aceb- und Proprionitril, ferner niedrig siedende aliphatische Alkohole, wie Methanol, Äthanol und Isopropanol.

Wie oben bereits erwähnt führt man die verfahrensgemäße Umsetzung in Anwesenheit von Säurehindemitteln durch. Es können für diesen Le A 9558

alle gebräuchlichen Säureakzeptoren, wie Alkalihydroxyde und
-carbonate und -alkoholate, aber auch tertiäre organische Basen,
z.B. Triäthylamin, Dimethylanilin und Pyridin verwendet werden.
Statt in Gegenwart von Säurebindemitteln zu arbeiten, ist es
ebenso gut möglich, zunächst die Salze, bevorzugt Alkali- oder
Ammoniumsalze der betreffenden Thiophenole in Substanz herzustellen und diese anschließend mit den entsprechenden Phosphorsäuremonoesterdihalogeniden umzusetzen.

Das erfindungsgemäße Verfahren kann innerhalb eines größeren Temperaturbereichs mit Erfolg durchgeführt werden. Im allgemeinen arbeitet man zwischen -20°C und dem Siedepunkt der Mischung, vorzugsweise bei O bis 100°C.

Die Umsetzung wird bevorzugt unter Normaldruck durchgeführt, jedoch kann auch bei Über- oder Unterdruck gearbeitet werden.

Bei Durchführung des erfindungsgemäßen Verfahrens setzt man im allgemeinen pro Mol des betreffenden Phosphorsäuremonoesterdihalogenids zwei Mol Thiophenol ein; jedoch kann letzteres auch im Überschuß angewendet werden.

Weiterhin wird das Phosphorsäurenonoesterdihalogenid zweckmäßig bei den oben angegebenen Temperaturen unter Rühren zu der Lösung

रवेद्दर राजेदन ।

oder Suspension des betreffenden Thiophenols (bzw. des entsprechenden Phenolats) getropft. Dabei ist - weil die Umsetzung meist mit mehr oder minder stark positiver Wärmetönung verläuft - oftmals eine äußere Kühlung der Mischung notwendig. Schließlich hat es sich als zweckmäßig erwiesen, das Reaktionsgemisch nach Vereinigung der Ausgangskomponenten zur Vervollständigung der Umsetzung noch längere Zeit (1 bis 5 Stunden oder über Nacht) gegebenenfalls unter Erwärmen zu rühren. Man erhält in diesem Falle die Verfahrensprodukte mit besonders guten Ausbeuten sowie in hervorragender Reinheit.

Die Aufarbeitung des Reaktionsgemisches erfügt nach prinzipiell bekannten Methoden durch Ausgießen des Ansatzes in Wasser, Waschen und Trocknen der organischen Phase, Abdestillieren des Lösungsmittels und - soweit möglich - fraktionierte Destillation des Rückstandes unter vermindertem Druck.

Die verfahrensgemäß erhältlichen Dithiolphosphorsäuretriester fallen entweder in Form kristalliner Verbindungen mit schärfem Schmelzpunkt an, die sich durch Umkristallisieren aus den gebräuchlichen Lösungsmitteln leicht weiterreinigen lassen oder sie stellen farblose bis gelbe Öle dar, welche zum Teil unter stark vermindertem Druck ohne Zersetzung destilliert werden können. Sofern dies nicht möglich ist, kann man die erfindungsgemäß erhältlichen Verbindungen zwecks Reinigung "andestillieren", d.h.

Le A 9558

909814/1163 966

BAD ORIGINAL

durch längeres Erhitzen unter vermindertem Druck auf schwach bis mäßig erhöhte Temperaturen von den letzten flüchtigen Verunreinigungen befreien.

Nach dem erfindungsgemäßen Verfahren können u.a. die folgenden Verbindungen erhalten werden:

O-Äthyl-, -n-Propyl- und -n-Butyl-S,S-diphenyl-, O-Äthyl-, n-Propyl- und -n-Butyl-S,S-di(2-bzw. 4-methyl-phenyl)-, O-Äthyl-, -Isopropyl-S,S-di(4-chlorphenyl-)-, O-Äthyl-S,S-di(4-methoxyphenyl)-, O-Äthyl-S,S-diphenyl-, O-Äthyl-S,S-di(2,4-dichlorphenyl)-, O-Äthyl-S,S-di(4-nitrophenyl)-, O-Isopropyl-S,S-diphenyl- und O-Isopropyl-S,S-di-(2-methylphenyl)dithiolphosphorsäureester.

Wie bereits erwähnt, besitzen die Verfahrensprodukte eine starke fungitoxische Wirksamkeit gegen eine Reihe von pilzlichen Krankheitserregern. Aufgrund dieser Tatsache sowie im Hinblick darauf ihre geringe Warmblütertoxizität sind sie daher zur Bekämpfung unerwünschten Pilzwachstums besonders geeignet, wobei die gute Verträglichkeit für höhere Pflanzen ihren Einsatz gegen Pilzkrankheiten besonders begünstigt. Die erfindungsgemäß erhältlichen Verbindungen können als fungitoxische Mittel im Pflanzenschutz gegen Pilze der verschiedensten Klassen, z.B. Archimyceten, Phycomyceten, Ascomyceten, Basidiomyceten und Fungi imperfecti, angewendet werden.

Besonders bewährt haben sich die Verfahrensprodukte jedoch bei der Bekämpfung von Reiskrankheiten, da sie eine vorzügliche protektiva

und kurative Wirkung gegen Piricularia oryzae an Reis besitzen.

Bei der Anwendung als fungitoxisches Mittel kann man die erfindungsgemäß herstellbaren Wirkstoffe entweder einzeln oder in Kombination untereinander zum Einsatz bringen. Ferner ist eine Mischung mit anderen Pflanzenschutzmitteln, wie Fungiziden, Herbiziden, Insektiziden und Bakteriziden möglich.

Je nach ihrem Anwendungssweck können die neuen Wirkstoffe in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Pasten und Granulate. Diese werden in bekannter Weise hergestellt, z. B. durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z. B. im Falle der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können (vgl. Agricultural Chemicals, Märs 1960, Seite 35-38). Als Hilfsstoffe kommen im wesentlichen infrage: Lösungsmittel, wie Aromaten (s.B. Mylol , Bensol), chlorierte Aromaten (z.B. Chlorbensole), Paraffine (s.B. Erdölfraktionen), Alkohole (s.B. Methanol , Butanol), Amine und Aminderivate (s.B. Athanolamin , Dimethylformamid) und Wasser; Trägerstoffe, wie natürliche Gesteinsmehle (s.B. Kaoline , Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (s.B. hochdisperse Kieselsäure,

Le A 9558

4.5

Control of the same of the same

BAD ORIGINAL

Silikate); Emulgiscrattel, wie nichtionogene und anionische Emulgatoren (s. B. Polyexyäthylen-Pettsäure-Ester, Polyoxyäthylen-Pettalkohol-Äther, Alkylsulfonate und Arylsulfonate) und Dispergiermittel, wie Lignin, Sulfitablaugen und Methylcelluh se.

Die erfindungsgemäßen Wirkstoffe können in den Formulierungen in Mischung mit anderen bekannten Wirkstoffe vorliegen.

Die Formulierungen enthalten im allgemeinen swischen 0,1 und 95 Gewichtsprosent Wirkstoff, vorzugsweise zwischen 0,5 und 90. Die Anwendung der Verfahrensprodukte bzw. ihrer Aufarbeitungen als fungitoxische Mittel geschieht in üblicher Weise, z.B. durch Bespritzen, Verstreuen, Besprühen, Vernebeln. Der aktive Wirkstoff kommt dabei je nach Verwendungszweck in einer Konzentration von 0,2 bis 0,001 % zur Anwendung. Dieser Konzentrationsbereich kann jedoch in besonderen Fällen auch über- oder unterschritten werden.

Die hervorragende fungitoxische Wirkung der erfindungsgemäß herstellbaren S,S-diphenyldthiolphosphorsäuretriester sowie ihre eindeutige Überlegenheit im Vergleich zu analog gebauten Produkten des Standes der Technik geht aus den folgenden Versuchsergebnissen hervor:

Beispiel A

Piricularia-Test / flüssige Wirkstoffzubereitung

Lösungsmittel:

1 Gewichtsteiler Aceton

Dispergiermittel:

0.05 Gewichtsteile Natrium-Oleat

andere Zusätze:

0,2 ;ewichtsteile Gelatine

Wasser:

98,75 Gewichtsteile H₂O

Man vermischt die für die gewünschte Wirkstoffkonzentration in der Spritzflüssigkeit nötige Wirkstoffmenge mit der angegebenen Menge des Lösungsmittels und verdünnt das Konzentrat mit der angegebenen Menge Wasser, das die genannten Zusätze enthält.

Mit der Spritzflüssigkeit bespritzt man 30 etwa 14 Tage alte Reispflanzen bis zur Tropfnässe. Die Pflanzen verbleiben bis zum Abtrocknen in einem Gewächshaus bei Temperaturen von 22 bis 24°C und einer relativen Luftfeuchtigkeit von etwa 70 %. Danach werden sie mit einer wässrigen Suspension von 100 000 bis 200 000 Sporen/ml von Piricularia oryzae inokuliert und in einem Raum bei 24 - 26°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

5 Tage nach der Inokulation wird der Befall bei allen zur Zeit der Inokulation vorhandenen Blättern in Prozent der unbehandelten, aber ebenfalls inokulierten Kontrollpflanzen bestimmt. 0 % bedeutet keinen Befall, 100 % bedeutet, daß der Befall genau an hoch ist wie bei den Kontrollpflanzen.

Wirkstoffe, Wirkstoffkonzentrationen und Resultate gehen aus der nachfolgenden Taballe hervor:

Le A 9558

909814/1163

BAD ORIGINAL

Prüfung auf kurative Wirkung

Bei dem vorstehend beschriebenen Test mit flüssiger Wirkstoffzubereitung wird neben der protektiven auch die kurative Wirkung der Verfahrensprodukte ermittelt. Die Prüfung auf kurative Wirkung wecht in gewissen Punkten von dem oben beschriebenen Testverfahren, das nur eine Aussage über den protektiven Effekt liefert, insofern als die Wirkstoffe nicht vor, sondern erst 16 Stunden nach der Inokulation appliziert werden. Substanzen, die bei dieser Art der Versuchsdurchführung eine Wirkung zeigen, sind in der Lage, den Pilz nach der Infektion abzutöten und dadurch kurativ zu wirken.

Die folgenden Beispiele vermitteln einen Überblick über das beanspruchte Verfahren:

Le A 9558

582 SAN A

de: nacz

BAD ORIGINAL

909814/,1,163

Tabelle

(Piricularia-Test) (flüssige Wirkstoffzubereitung)

> Befall in % des Befalls der unbehandelten Kontrolle bei einer Wirkstoffkonzentration (in %) von

Wirkstoff (Konstitution)	• .:	(in 9 0,05	0.025	0,01	0,005	0,001
n-C ₃ H ₇ O-P(S-\(\sigma\)) ₂	pr. cur.	0	0	0 11	0	75
n-c ₄ H ₉ 0-P(s-(2)) ₂	pr. cur.	0	0	5	14	
C ₂ H ₅ O-P(S- CH ₃) ₂	pr.	0 .	2	83		
C ₂ H ₅ O-P(S-\(\sigma\)) ₂	pr. cur.	0 0	0	0	75	
n-c ₃ H ₇ 0-P(S-\(\sigma\))2	pr. cur	0 .25	· 0	15		
1C ₃ H ₇ 0-P(S-()-C1) ₂	pr.	0 1118	91.8.01.8. 0	76 - 10		
To bedendade and - most	avitive Wir	knıng	•	٠.	•	

Es bedeutet: pr.= cur.=

protektive Wirkung curative Wirkung

Le A 9558

and the second

Tabelle

(Piricularia-Test) (flüssige Wirkstoffzubereitung)

> Befall in % des Befalls der unbehandelten Kontrolle bei einer Wirkstoffkonzentration (in %) von 0,05 0,025 0,01 0.005 0.0

Wirkstoff (Konstitution).

$$(c_2H_5)_2N-P(-S-CH_3)_2$$

(bekanntes Vergleichspräparat)

Es bedeuten: pr. = protektive Wirkung cur.= curative Wirkung

Beispiel 1

der Lösung fügt man unter Rühren eine Natriummethylatlösung, die 1 Mol Natrium gelöst enthält. Anschließend werden unter weiterem Rühren bei 5 bis 10°C 82 g (0,5 Mol) 0-Äthylphosphorsäureesterdichlorid zum Reaktionsgemisch getropft. Man hält letzteres noch drei Stunden bei der angegebenen Temperatur, gießt die Mischung dann in 400 ccm Kiswasser und wäscht sie noch zweimal mit je 300 ccm Wasser. Danach wird die Benzollösung über Natriumsulfat getrocknet. Bei der anschließenden fraktionierten Destillation erhält man nach Verdampfen des Lösungsmittels 108 g (70 % der Theorie) 0-Äthyl-S,S-diphenyl-dithiolphosphorsäureester vom Kp. 0,01 154°C.

Beispiel 2

*

a) Eine Lösung von 44 g (0,4 Mol) Thiophenol in 100 ccm Benzol wird mit einer 0,4 Mol Matrium enthaltenden Natrium-Methylat-lösung neutralisiert. Mach Abdestillieren des Lösungsmittels suspendiert man das hinterbleibende Natriumthiophenolat in 200 ccm Benzol und tropft zu dieser Suspension bei 0 bis 5°C 35,4 g (0,2 Mol) 0-n-Propylphosphorsäureesterdichlorid.

909814/1163

BAD ORIGINAL

Anschließend wird das Reaktionsgemisch noch 3 Stunden bei 50° gerührt, nach dem Abkühlen auf Raumtemperatur mit wasser gewaschen und über Natriumsulfat getrocknet. Man verdampft das Lösungsmittel unter vermindertem Druck und erhält als Rückstand 28 g (43,3 % der Theorie) des 0-n-Propyl-S,S-diphenyl-dithiol phosphorsaureesters.

Analyse: ber. P: 9,58 %; S: 19,76; gef. P: 9,35 %; S: 19,70;

b) 220 (2,0 Mol) Thiophenol werden, wie unter Beispiel 2a) beachrieben, in das entsprechende Natriumthiophenolat überführt. Das trockene Salz suspendiert man in 500 ccm Acetonitril, versetzt diese Suspension bei 0 bls 1005 tropfenweise mit 177 g (1,0 Mol) 0-n-Bropylphosphorsaureesterdichlorid. Die Umsetzung verläuft mit positiver värmetönung. Das Reaktionsgemisch wird noch einige Zeit bei Raumtemperatur nachgerührt und anschließend in Wasser gegossen. Das ausgeschiedene Oel nimmt man in Bengel auf wäscht die benzolische Lösung mit Wasser und trocknet sie über Natriumsulfat. Danach wird das Lösungsmittel unter vermindertem Druck abdestilliert. Die letzten Elüchtigen Anteile entfernt man bei 100°C Badtemperatur und 1,5 Torr und erhalt den 0-n-Propyl S,S-diphenyl-dithiolphoephorsaureester in Form cines gelben bles. Die Ausbeute beträgt 221 g (68 % der Theorie).

P: 9.58 %; S: 19.76 %; sign i set nun roechstagens 200 com Benaul unt moget su Alener Suspendent bel

35.4 E (0.2 201) 0-n-Propylyhosephenemunesufichile

ORIGINAL INSPECT

Beispiel 3

Man überführt 110 g (1,0 Mol) Thiophenol wie üblich in das entsprechende Natriumsalz. Das trockene Thiophenolat wird in 500 ccm Acetonitril suspendiert und die Suspension wie in Beispiel 2b) beschrieben mit 95,5 g O-n-Butylphosphorsäureesterdichlorid umgesetzt. Anschließend rührt man das Reaktionsgemisch über Nacht bei Raumtemperatur, löst nach dem Eingießen der Mischung in Wasser das abgeschiedene Öl in Benzol, wäscht die Benzollösung mit Wasser bis zur neutralen Reaktion und trocknet sie. Nach dem Abdampfen des Lösungsmittels und Entfernen aller flüchtigen Anteile bei einer Badtemperatur von 150°C und einem Druck von 1 Torr werden 120,5 g (71,3 % der Theorie) des O-n-Butyl-S,S-diphenyl-dithiolphosphorsäureesters als hellgelbes Öl mit dem Brechungsindex n²61,5965 erhalten.

Analyse: ber. P: 9,18 %; S: 18,94 % gef. P: 9,30 %; S: 19,30 %

Nach dem oben beschriebenen Verfahren können folgende Verbindungen hergestellt werden:

Kenstitution	(% der Theorie)	Physikalische Eigensch. (Brechungsindex bezw. Schmelzpunkt)
$c_2H_50-P(s-CH_3)_2$	67	n ²⁶ 1,6067
c ₂ H ₅ 0-P(s-)) ₂	- 58	n ²⁶ 1,6078
сн ₃	. •	

Konstitution

Ausbeute (% der Theorie) Physikalische Eigensch.
(Brechungsindex
bezw. Schmelzpunkt)

$$n-C_3H_70-P(S-\sqrt{)})_2$$

67

n²⁶ 1,5993

71

n²⁶ 1,5860

$$c_2H_50-P(s-\sqrt{2})$$
 -00H₃)₂

68,2

n²⁶ 1,6152

73,0

n²⁶ 1,6088

Le A 9558

909814/1163

ORIGINAL INSPECTED

	AO	Physikalische Eigensch.			
Konstitution	Ausbeute (% der Theorie)	(Brechungsindex bzw. Schmelzpunkt			
Konstitution	N .				
$i-c_3H_70-P(S-CH_3)_2$	79,6	n _D ²⁶ 1,5946			
0 CH ₃ i-c ₃ H ₇ 0-P(S-(S) ₂)	69,2	n _D ²⁶ 1,6178			
C1-CH ₂ -CH ₂ -O-P(S-)2 71,9	n ²⁶ 1,6281			
	•				
C1-CH ₂ -CH ₂ -O-P(S-) ₂ 42,9	n _D ²⁶ 1,6160			
CH ₃					
C13C-CH2-O-P(S-) ₂ 56,2	Fp.: 90 bis 92°C			
C	H ₃				

Beispiel 4

$$c_{2}H_{5}O_{-P}^{O_{-}}(s_{-})_{2}$$

145 g (1 Mol) 4-Chlorthiophenol werden in 400 ccm Benzol gelöst. Zu dieser Lösung fügt man unter Rühren eine Natriumäthylatlösung, die 1 Mol Natrium enthält, tropft anschließend unter weiterem

Rühren bei 10 bis 15°C 82 g (0,5 Mol) 0-Äthylphosphorsäureester-di-chlorid zum Reaktionsgemisch, rührt letzteres noch 2 Stunden bei der angegebenen Temperatur und gießt es dann in 300 ccm Eis-wasser. Die benzolische Lösung wird noch einmal mit Wasserge-waschen und über Natriumsulfat getrocknet. Nach dem Abdestillieren des Lösungsmittels erhält man als Rückstand eiń öliges Rohprodukt, das sehr schnell kristallin erstarrt. Man isoliert 105 g (55 % der Theorie) 0-Äthyl-S,S-bis(4-chlor-phenyl)-di-thiolphosphorsäureester vom Fp. 71°C.

Beispiel 5

$$1-c_3H_70-P(S-C)-c1)_2$$

Zu der Lösung von 145 g (1 Mol) 4-Chlorthiophenol in 600 cc
Benzol fügt man 1 Mol Natriummethylat, versetzt sie anschließend
unter Rühren tropfenweise bei 15 bis 20° mit 89 g 0-Isopropylphosphorsäureesterdichlorid, rührt das Reaktionsgemisch danach noch
2 Stunden bei der angegebenen Temperatur und gießt es dann in
400 ccm Eiswasser. Nach mehrmaligem Waschen der Benzollösung mit
Wasser wird diese über Natriumsulfat getrocknet und schließlich
das Lösungsmittel abdestilliert. Man erhält 123 g (63 % der Theorie)
0-Isopropyl-S,S-bis(4-chlorphenyl)dithiolphosphorsäureester vom
Fp. 52°C.

Man löst 180 g (1 Mol) 4-Nitrothiophenol-natrium in 400 ccm Acetonitril, fügt zu dieser Lösung unter Rühren bei 20°C 82 g (0,5 Mol) 0-Äthylphosphorsäureesterdichlorid, rührt das Reaktionsgemisch anschließend noch 2 Stunden bei Zimmertemperatur und arbeitet es dann in der schon mehrfach beschriebenen Weise auf. Es werden so 155 g (77 % der Theorie) 0-Äthyl-S,S-bis(4-nitrophenyl)dithiol-phosphorsäureester vom Fp. 106°C erhalten.

Beispiel 7

Eine Lösung von 55 g (0,5 Mol) Thiophenol in 400 ccm 0,5 Mol Natrium enthaltendem Äthanol wird tropfenweise bei 0 bis 10°C mit 40,75 g (0,25 Mol) 0-Äthylphosphorsäureesterdichlorid versetzt und anschließend über Nacht bei Raumtemperatur gerührt. Danach gießt man das Reaktionsgemisch in Wasser, nimmt das abgeschiedene öl in Benzol auf, wäscht die Benzollösung mit Wasser bis zur neutralen Reaktion und trocknet die organische Phase über Natriumsulfat. Nach dem Abdampfen des Lösungsmittels hinterbleiben 51,5 g (60,9 % der Theorie) des 0-Äthyl-S,S-diphenyl-dithiolphosphorsäureesters, der identisch mit der gemäß Beispiel 1 erhältlichen Verbindung gleicher Konstitution ist.

Beispiel 8

55 g (0,5 g Mol) Thiophenol werden zusammen mit 56 g (0,55 Mol) wasserfreiem Triäthylamin in 400 ccm Benzol gelöst. Bei 0 bis 10°C tropft man zu dieser Lösung 44 g (0,25 Mol) 0-n-Propylphosphorsäureesterdichlorid. Die anschließende Reaktion verläuft exotherm. Nach kurzem Rühren der Mischung bei Raumtemperatur wird das ausgeschiedene Triäthylammoniumhydrochlorid abfiltriert, das Filtrat mit Wasser gewaschen, die organische Phase getrocknet und eingedampft. Als Rückstand hinterbleiben 58 g (65,9 % der Theorie) des 0-n-Propyl-S,S-diphenyl-dithiolphosphorsäureesters. Die Verbindung ist identisch mit der gemäß Beispiel 2 erhältlichen.

Patentansprüche:

1) Verfahren zur Herstellung von Dithiolphosphorsäuretriestern, dadurch gekennzeichnet, daß man Phosphorsäuremonoesterdihalogenide der Formel

in der R für einen Alkyl-, Elkenyl-, Alkinyl- oder Halogenalkylrest steht und Hal ein Halogenatom bedeutet mit Thiophenolen der allgemeinen Formel

worin R' ein Halogenatom, eine Nitro-, niedere Alkyl- oder Alkoxygruppe bedeutet und n den Wert null, 1 oder 2 hat, in Gegenwart von Säurebindemitteln umsetzt.

2) S,S-Diphenyl-dithiolphosphorsäuretriester der allgemeinen Formel

in der R, R' und n die in Anspruch 1 angegebene Bedeutung besitzen.

3) Fungitoxische Mittel bestehend aus oder enthaltend S,S-Diphenyldithiolphosphorsäuretriester gemäß Anspruch 2.

- 4) Verfahren zur Bekämpfung von Pilzen, dadurch gekennzeichnet, daß man S,S-Diphenyldithiolphosphorsäuretriester gemäß Anspruch 2 verwendet.
- 5) Verfahren zur Herstellung von fungitoxischen Mitteln, dadurch gekennzeichnet, daß man S,S-Diphenyldithiolphosphorsäuretriester gemäß Anspruch 2 als Wirkstoffe verwendet.

T.e. 4 9558

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.