Package 'RJDProcessor'

May 22, 2025

Type Package
Title RJDProcessor
Version 1.1.1

Author Alessandro Piovani

Maintainer Alessandro Piovani <alessandro.piovani@istat.it>,

<alessandro.piovani13@gmail.com>

Description The rjdverse libraries are the officially recommended R software for seasonal adjustment in the European Central Bank and Statistical System. The RJDProcessor library integrates the rjdverse packages into a fully R-based production pipeline, ready to be used and easily extendable by methodologists. It offers the capability to manage the entire seasonal adjustment process: acquisition, processing, storage, automation, and not just seasonal adjustment of the data. Processing of multiple time series is possible by storing their specifications in JSON files, and interoperability with other JDemetra+ software is guaranteed because RJDProcessor can read workspaces and is able to produce them as an output.

RJDProcessor also provides functions to manage workspaces, such as splitting a workspace containing multiple time series into individual single-series workspaces, which are suitable for storing in databases with single time series records. Functions to merge workspaces are also available.

License EUPL
Encoding UTF-8
LazyData true
Imports RJDemetra (>= 0.2.5),
rjson (>= 0.2.21)
Suggests rjd3providers (>= 3.2.3),
readxl (>= 1.4.3),
roxygen2 (>= 7.2.3)
Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Collate import_and_interface_definition.R

Data_reader_csv.R
Data_reader_csv_istat_format.R
Data_reader_ext_reg_tsplus.R
Data_reader_ext_reg_xlsx.R
Data_reader_ext_reg_csv.R
Data_reader_xlsx.R
Data_reader_list.R
Data_reader_xml.R

2 R topics documented:

Data_reader_workspace.R Extended_tramoseats_spec.R JD_JSON.R JD_JSON_file_processor.R basic_spec.R utility_functions.R workspaces_manager.R report.R

R topics documented:

check_data
check_external_regressors
compare_sa_ts
compare_workspaces
convert_numeric_matrix_to_mts
create_diagnostic_report1
create_diagnostic_report2
Data_reader_csv
Data_reader_csv_istat_format
Data_reader_ext_reg_csv
Data_reader_ext_reg_tsplus
Data_reader_ext_reg_xlsx
Data_reader_list
Data_reader_workspace
Data_reader_xlsx
Data_reader_xml
from_full_to_reduced_JD_JSON_file
from_reduced_to_full_JD_JSON_file
get_r_model_from_j_model
get_single_ts_workspaces
JD_JSON_file_processor
JD_JSON_from_materialized_workspace
JD_JSON_from_virtual_workspace
JD_JSON_to_materialized_workspace
JD_JSON_to_virtual_workspace
merge_workspaces
produce_fully_R_workspace
read_data,Data_reader_csv-method
read_data,Data_reader_csv_istat_format-method
read_data,Data_reader_list-method
read_data,Data_reader_workspace-method
read_data,Data_reader_xlsx-method
read_data,Data_reader_xml-method
read_ext_reg_data,Data_reader_ext_reg_csv-method
read_ext_reg_data,Data_reader_ext_reg_tsplus-method
read_ext_reg_data,Data_reader_ext_reg_xlsx-method
read_ext_reg_info,Data_reader_ext_reg_csv-method
read_ext_reg_info,Data_reader_ext_reg_tsplus-method
read_ext_reg_info,Data_reader_ext_reg_xlsx-method
undate data

check_data 3

Index 34

check_data Compare the data in a workspace with only one time series with given data		are the data in a workspace with only one time series with given
---	--	--

Description

This function compares the data in a workspace with only one time series with given raw data in array form

Usage

```
check_data(raw_data, ws_single_ts, raw_data_start = NA, raw_data_freq = NA)
```

Arguments

raw_data	Raw data to be compared with the ones in the workspace
ws_single_ts	The xml path of the workspace containing the data to be compared
raw_data_start	-optional- Default=NA, the starting date of the raw data in form "YYYY-MM-DD". If NA, the starting date is assumed to be the same as the workspace data
raw_data_freq	-optional- Default=NA, the frequency of the raw data (e.g. 12=monthly, 4=quarterly). If NA, the frequency is assumed to be the same as the workspace data

Value

Boolean: TRUE if data are the same, FALSE otherwise

Examples

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
single_workspaces_path <- "splitted_workspaces_to_merge"
single_ws<-load_workspace(paste0(single_workspaces_path,"\\VATPIC\\VATPIC.xml"))
result<-check_data(c(1,2,3), single_ws)
setwd(original_directory)</pre>
```

```
check_external_regressors
```

Verify the external regressors used in a workspace

Description

This function check whether the external regressors used in a workspace are up to date (i.e. they cover from the beginning to the end of the time series and have the same frequency). The workspace must contain a single time series.

4 compare_sa_ts

Usage

```
check_external_regressors(ws_single_ts)
```

Arguments

ws_single_ts The xml path of the workspace containing the data to be checked

Value

Boolean: TRUE if ckeck is ok, FALSE if there are problems in the external regressors.

Examples

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
single_workspaces_path <- "splitted_workspaces_to_merge"
single_ws<-load_workspace(paste0(single_workspaces_path,"\\VATPIC\\VATPIC.xml"))
compute(single_ws)
result<- check_external_regressors(single_ws)
setwd(original_directory)</pre>
```

compare_sa_ts

Compare the same models contained in two workspaces

Description

This function compares the same models contained in two workspaces (old and new) plotting the respective sasonally adjusted series into a pdf file

Usage

```
compare_sa_ts(
  new_r_model = NA,
  new_model_workspace,
  old_model_workspace,
  materialized_ws_new = FALSE,
  materialized_ws_old = TRUE,
  java_processing_old_model = TRUE)
```

Arguments

```
new_r_model -optional- an R model obtained via RJDemetra::get_model(workspace). If !=
```

NA, this model is used as new model in the comparison. Default = NA, new_model_workspace is used as new model

```
new_model_workspace
```

the workspace (relative/absolute) path of the .xml file or object used as new model in the comparison

compare_workspaces 5

```
old_model_workspace
```

the workspace (relative/absolute) path of the .xml file or object used as old model in the comparison

materialized_ws_new

-optional- Default=FALSE, boolean field stating whether the new workspace in the comparison is passed as a matherialized or a virtual workspace (i.e. R object)

materialized_ws_old

-optional- Default=TRUE, boolean field stating whether the new workspace in the comparison is passed as a matherialized or a virtual workspace (i.e. R object)

java_processing_old_model

-optional- Default=TRUE, use Java models for the internal processing of the old workspace (faster than R)

Value

a "comparisons.pdf" file containing the plots of the seasonally adjusted time series of both the new and old workspaces. Series with the same series_name are reported in the same plot

Examples

compare_workspaces

Compare two RJDemetra workspaces

Description

This function compares two RJDemetra workspaces, either provided as objects or file paths, and generates a report of the differences in the final seasonally adjusted series and likelihood BIC values.

Usage

```
compare_workspaces(
  workspace1,
  workspace2,
  output_file = "differences_report.txt"
)
```

Arguments

workspace1 Either an RJDemetra workspace object or a file path to a workspace.

output_file Character string specifying the path of the output report file. Default is "differ-

ences_report.txt".

patworkspace2 Either an RJDemetra workspace object or a file path to a workspace.

Details

The function loads the workspaces if they are provided as file paths, computes the models, and extracts the seasonally adjusted series and likelihood BIC. It then compares these values and records any differences in the output file.

Differences are checked for the last 36 observations of the seasonally adjusted series and the likelihood BIC values.

Value

The function does not return a value but writes a report to the specified file.

convert_numeric_matrix_to_mts

Convert a numeric matrix to an mts object

Description

This function takes a numeric matrix with dates as row names and series names as column names, and converts it to an mts (multivariate time series) object. It is goot for converting data read by data_readers and ext_reg_data_readers into mts that could be useful as input as usrdef.var for RJDemetra functions tramoseats() and X13()

Usage

```
convert_numeric_matrix_to_mts(data_matrix, freq = NULL)
```

Arguments

data_matrix A numeric matrix where row names are dates in "YYYY-MM-DD" format, and

column names are the names of the time series.

freq -optional- The frequency of the time series. If not provided, the function will try

to infer the frequency based on the difference between the first two dates.

Value

An mts object with the given time series data.

Examples

```
create_diagnostic_report1
```

Create Diagnostic Report for Time Series Models

Description

This function generates a diagnostic report for time series models, including BIC, p-values from Ljung-Box tests, and normality test results. It organizes the output into categories: all series, series with Ljung-Box problems, series with normality issues, and a summary of problematic series.

Usage

```
create_diagnostic_report1(workspace, output_file = "report.txt")
```

Arguments

workspace A workspace object containing the time series models.

Output_file A string specifying the output file path where the report will be saved (default is "report.txt").

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
ws_path <- "WorkspaceTUR-container/workspace-TUR.xml"

workspace <- load_workspace(file=ws_path)
create_diagnostic_report1(workspace, output_file = "report.out")
setwd(original_directory)</pre>
```

8 Data_reader_csv

```
create_diagnostic_report2
```

Create another Diagnostic Report for Time Series Models

Description

This function generates a diagnostic report for time series models. It shows for every time series a complete view, including regression coefficients with their T-statistics as well as LB, LB2, Normality tests and BIC

Usage

```
create_diagnostic_report2(workspace, output_file = "series_info.txt")
```

Arguments

workspace A workspace object containing the time series models.

output_file A string specifying the output file path where the report will be saved (default is

"report.txt").

Examples

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
ws_path <- "WorkspaceTUR-container/workspace-TUR.xml"

workspace <- load_workspace(file=ws_path)
create_diagnostic_report2(workspace, output_file = "report.out")
setwd(original_directory)</pre>
```

Data_reader_csv

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader object capable of reading data from CSV files and returning it using the read_data() function.

Usage

```
Data_reader_csv(input_source = NA, ...)
```

Arguments

input_source A string with file name (also with path).

Value

The Data_reader_csv object

Examples

```
input_data_file_name <- system.file("extdata","CSV-FAS/grezzi_trim_FAS.csv", package = "RJDProcessor")
input_data_reader <- Data_reader_csv(input_source = input_data_file_name)
input_data_reader@read_data()</pre>
```

```
Data_reader_csv_istat_format
```

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader object capable of reading data from CSV files in ISTAT format and returning it using the read_data() function. The ISTAT format is a csv file with dates in format YYYYqMM as rownames and time_series names as colnames

Usage

```
Data_reader_csv_istat_format(input_source = NA, ...)
```

Arguments

input_source A string with file name (also with path).

Value

The Data_reader_csv_istat_format object

Examples

```
input_data_file_name <- system.file("extdata","SITIC-TUR/grezziTUR.csv", package = "RJDProcessor")
input_data_reader <- Data_reader_csv_istat_format(input_source = input_data_file_name)
#input_data_reader@read_data()</pre>
```

```
Data_reader_ext_reg_csv
```

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader_ext_reg object capable of reading data from CSV external regressors files and returning it using the read_ext_reg_data() function.

Usage

```
Data_reader_ext_reg_csv(input_source, ...)
```

Arguments

input_source A string with the input: e.g. a file name (also with path) if the input is a file.

Value

The Data_reader_ext_reg_csv object

Examples

```
require(RJDemetra)
                         <- system.file("extdata", "WorkspaceTUR-container/workspace-TUR.xml",</pre>
input_workspace_xml
                                            package = "RJDProcessor")
                         <- system.file("extdata", "CSV-TUR/grezzi_trim_TUR.csv", package = "RJDProcessor")</pre>
input_data_file_name
regr_directory
                        <- system.file("extdata", "CSV-TUR/regr", package = "RJDProcessor")</pre>
                           <- load_workspace(file = input_workspace_xml)</pre>
WS
compute(ws)
data_reader_ext_reg
                           <- Data_reader_ext_reg_csv(regr_directory)</pre>
all_model_ext_vars_info <- data_reader_ext_reg@read_ext_reg_info(ws)</pre>
vars_matrix
                    <- data_reader_ext_reg@read_ext_reg_data(all_model_ext_vars_info, "VATASC",</pre>
                                                                      frequency=12)
```

```
Data_reader_ext_reg_tsplus
```

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader_ext_reg object capable of reading data from TRAMO-SEATS+ external regressors files and returning it using the read_ext_reg_data() function.

Usage

```
Data_reader_ext_reg_tsplus(input_source, ...)
```

Arguments

input_source A string with the input: e.g. a file name (also with path) if the input is a file.

Value

The Data_reader_ext_reg_tsplus object

```
Data_reader_ext_reg_xlsx
```

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader_ext_reg object capable of reading data from XLSX external regressors files and returning it using the read_ext_reg_data() function.

Usage

```
Data_reader_ext_reg_xlsx(input_source, ...)
```

Arguments

input_source A string with the input: e.g. a file name (also with path) if the input is a file.

Value

The Data_reader_ext_reg_tsplus object

Examples

```
require(RJDemetra)
input_workspace_xlsx
                         <- system.file("extdata", "WorkspaceTUR-container/workspace-TUR.xml",</pre>
                                           package = "RJDProcessor")
input_data_file_name <- system.file("extdata", "SITIC-TUR/grezziTUR.csv", package = "RJDProcessor")</pre>
                       <- system.file("extdata", "SITIC-TUR/regr", package = "RJDProcessor")</pre>
regr_directory
                           <- load_workspace(file = input_workspace_xlsx)</pre>
WS
compute(ws)
                          <- Data_reader_ext_reg_tsplus(regr_directory)</pre>
data_reader_ext_reg
all_model_ext_vars_info <- data_reader_ext_reg@read_ext_reg_info(ws)</pre>
                    <- data_reader_ext_reg@read_ext_reg_data(all_model_ext_vars_info, "VATASC",</pre>
vars_matrix
                                                                     frequency=12)
```

Data_reader_list

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader object capable of reading data from a list and returning it using the read_data() function.

Usage

```
Data_reader_list(input_source = NA, ...)
```

Arguments

input_source A string with file name (also with path).

Value

The Data_reader_csv object

Examples

Data_reader_workspace Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader object capable of reading data from workspaces and returning them using the read_data() function.

Usage

```
Data_reader_workspace(input_source = NA, ...)
```

Arguments

input_source A string with workspace xml file name (also with path).

Value

The Data_reader_workspace object

Data_reader_xlsx 13

Data_reader_xlsx

Constructor (R-like) of the Data reader object

Description

This function creates a Data_reader object capable of reading data from XLSX files and returning it using the read_data() function.

Usage

```
Data_reader_xlsx(input_source = NA, ...)
```

Arguments

input_source A string with file name (also with path).

Value

The Data_reader_xlsx object

Examples

```
input_data_file_name <- system.file("extdata","XLSX-TUR/grezzi_trim_TUR.xlsx", package = "RJDProcessor")
input_data_reader     <- Data_reader_xlsx(input_source = input_data_file_name)
input_data_reader@read_data()</pre>
```

Data_reader_xml

Constructor (R-like) of the Data_reader object

Description

This function creates a Data_reader object capable of reading data from XLSX files and returning it using the read_data() function.

Usage

```
Data_reader_xml(input_source = NA, ...)
```

Arguments

input_source A string with file name (also with path).

Value

The Data_reader_xml object

```
input_data_file_name <- system.file("extdata","Prod.xml", package = "RJDProcessor")
# NOTE: absolute paths are better for this Data_reader
input_data_reader <- Data_reader_xml(input_source = input_data_file_name)
#input_data_reader@read_data() # for reading the data</pre>
```

This function prints a JSON string that contains only the fields of the JD_JSON object that differ from the ones of the basic specification (i.e. "RSA0, "RSA1", ...)

Usage

```
from_full_to_reduced_JD_JSON_file(
   JD_JSON_file,
   output_file_name = NA,
   indent = TRUE,
   basic_spec = NA
)
```

Arguments

Value

Void. A JSON file is saved on the filesystem

This function prints a JSON string that contains all the fields of the JD_JSON object explicitly defined.

Usage

```
from_reduced_to_full_JD_JSON_file(
  JD_JSON_file,
  output_file_name = NA,
  indent = TRUE
)
```

Arguments

```
JD_JSON_file The name of the file in which the JD_JSON will be saved output_file_name

-optional- The name of the file (optionally with path) in which the JD_JSON will be saved. If NA, the name of the file will be paste0(JD_DSON_file,"_full")

indent -optional- Default TRUE. Print each field of the JSON in a different row
```

Value

Void. A JSON file is saved on the filesystem with all the JD_JSON fields

Examples

```
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
JSON_file_name <- system.file("extdata", "specifications_example2.txt", package = "RJDProcessor")
setwd(extdata_directory)
from_reduced_to_full_JD_JSON_file(JSON_file_name)
setwd(original_directory)</pre>
```

```
get_r_model_from_j_model
```

Get an R list with model information from java model

Description

This function gets an R list with model information from java model

Usage

```
get_r_model_from_j_model(j_model)
```

Arguments

j_model

a Java model obtained from RJDemetra

Value

a list containing all the models specifications

Examples

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
input_workspace <- "workspace_test/workspace.xml"
virtual_workspace <- load_workspace(input_workspace)
compute(virtual_workspace)
m <- get_jmodel(virtual_workspace)
r_model_list <- get_r_model_from_j_model(m)
setwd(original_directory)</pre>
```

get_single_ts_workspaces

Get a single workspace for each series in a workspace

Description

This function gets a single time series workspace for each time series SA model present in a given workspace

Usage

```
get_single_ts_workspaces(
  full_workspace,
  single_workspaces_path,
  compressed_ws = TRUE,
  clean_single_ws_directory = TRUE,
  from_TS_PLUS_plugin = TRUE
)
```

Arguments

 $\label{lem:condition} full_workspace \ A \ workspace \ with \ multiple \ time \ series \ SA \ models \\ \ single_workspaces_path$

The path in which the single workspeaes will be stored

compressed_ws -optional- Default=TRUE, compress the single workspaces that will be created clean_single_ws_directory

-optional- Default=TRUE, delete the original workspace after creating the single series ones

from_TS_PLUS_plugin

-optional- Default=TRUE, the original workspace is created by the SA_ext_plugin. In that case some internal adjustments are needed and they could make the computation slower. There are no problems if this field is TRUE but the ws is created without SA_ext_plugin

Value

A set of materialized workspaces in single_workspaces_path, one workspace for each time series SA model contained in full_workspace

Examples

```
JD_JSON_file_processor
```

Process a JD_JSON file

Description

This function processes a JSON file with JD_JSON fields and returns a virtual workspace

Usage

```
JD_JSON_file_processor(
   input_data_reader,
   ext_reg_data_reader,
   spec_file_name,
   output_workspace_dir = NA,
   series_to_proc_names = NA,
   java_processing = TRUE
)
```

Arguments

```
input_data_reader

A specific Data_reader object (CSV, XLSX, ...) to read the input

ext_reg_data_reader

A specific Data_reader_ext_reg object (CSV, XLSX, ...) to read the external regrssors

spec_file_name Name of the file (with path, if desired) containing the JD_JSON to be processed (e.g. "specification_new.txt")

output_workspace_dir

-optional- Name of the directory that will contain the output workspace. Default=NA stores the workspace in a directory called "output_workspace_container"

series_to_proc_names

-optional- vector of names of time series to be processed (e.g. c('VATASA','VATPIA'))

. Default=NA: all the series are processed
```

```
java_processing
-optional- Default=TRUE. Use only Java API (faster) for the internal computa-
tion
```

Value

a virtual workspace, already processed

Examples

```
require(RJDemetra)
original_directory <- getwd()</pre>
extdata_directory <- system.file("extdata", package = "RJDProcessor")</pre>
setwd(extdata_directory)
spec_file_name <- "specifications_to_proc.txt"</pre>
input_workspace_directory <- "WorkspaceTUR-container/workspace-TUR.xml"</pre>
                         <- "CSV-TUR/grezzi_trim_TUR.csv"
input_data_file_name
                         <- "CSV-TUR/regr"
regr_directory
diff <- TRUE # Reduced JSON if diff=TRUE, Full JSON format otherwise
############################### Operational flow ################################
input_data_reader <- Data_reader_csv(input_source = input_data_file_name)</pre>
ext_reg_input_data_reader <- Data_reader_ext_reg_csv(regr_directory)</pre>
JD_JSON_from_materialized_workspace(input_workspace_directory,
         ext_reg_input_data_reader, JSON_file_name = spec_file_name,
         diff=TRUE, java_processing=FALSE)
virtual_workspace <- JD_JSON_file_processor(input_data_reader = input_data_reader,</pre>
         ext_reg_data_reader = ext_reg_input_data_reader,
         spec_file_name = spec_file_name,
         output_workspace_dir = "output_workspace_container",
         series_to_proc_names = series_to_proc_names,
         java_processing = FALSE)
# set java_processor=TRUE to speed-up the operations, but it does not work with
# workspaces readed by sa-ext plugin
m <- get_model(virtual_workspace) #get directly the R model (slower)</pre>
from_reduced_to_full_JD_JSON_file(spec_file_name)
compare_sa_ts(new_model_workspace = virtual_workspace,
              old_model_workspace = input_workspace_directory
             materialized_ws_new=FALSE, materialized_ws_old=TRUE,
              java_processing_old_model=FALSE)
setwd(original_directory)
```

```
JD_JSON_from_materialized_workspace
```

Turn model spec of a materialized workspace in JD_JSON

Description

This function represent model specifications contained into a materialized workspace in JD_JSON

Usage

```
JD_JSON_from_materialized_workspace(
  workspace,
  ext_reg_input_data_reader,
  regr_directory = NA,
  JSON_file_name = "JD_JSON_specification.txt",
  diff = TRUE,
  java_processing = FALSE
)
```

Arguments

```
Name of the workspace xml file (also with path).
workspace
ext_reg_input_data_reader
                  A Data reader ext reg object, to read the external regressors in the desired for-
                  mat (csv, xlsx, tramoseats+, ...)
regr_directory -optional- Name of the directory containing the sources (e.g. files) of the exter-
                  nal regressors
JSON_file_name -optional- Name of the JSON file to be created. If NA the file will be called
                  "JD_JSON_specification.txt"
diff
                  -optional- if TRUE a reduced version of the JSON specification is produced; In
                  the reduced version, fields with default values equals to the ones of the default
                  specification (i.e. "RSA0", "RSA1", ...) are not reported Default=TRUE
java_processing
                  -optional- If TRUE, the function works internally with Java API (faster), other-
                  wise it uses R API. Default=FALSE
input_data_reader
                  A Data_Reader object
```

Value

A JSON file saved on the filesystem

```
JD_JSON_from_virtual_workspace
```

Turn model spec of a virtual (R) workspace in JD_JSON

Description

This function represent model specifications contained into an R workspace in JD_JSON

Usage

```
JD_JSON_from_virtual_workspace(
   ws,
   ext_reg_input_data_reader,
   JSON_file_name = "JD_JSON_specification.txt",
   diff = TRUE,
   java_processing = TRUE
)
```

Arguments

```
workspace R object.
ext_reg_input_data_reader
                  A Data_reader_ext_reg object, to read the external regressors in the desired for-
                  mat (csv, xlsx, tramoseats+, ...)
JSON_file_name -optional- Name of the JSON file to be created. If NA the file will be called
                   "JD_JSON_specification.txt"
                  -optional- if TRUE a reduced version of the JSON specification is produced; In
diff
                  the reduced version, fields with default values equals to the ones of the default
                  specification (i.e. "RSA0", "RSA1", ...) are not reported Default=TRUE
java_processing
                   -optional- If TRUE, the function works internally with Java API (faster), other-
                  wise it uses R API. Default=TRUE
input_data_reader
                  A Data_Reader object
regr_directory -optional- Name of the directory containing the sources (e.g. files) of the exter-
                  nal regressors
```

Value

A JSON file saved on the filesystem

JD_JSON_to_materialized_workspace

Turn a JD_JSON in a materialized workspace

Description

This function obtain a JD_JSON file from a workspace stored in the filesystem (in a directory). See test foder for examples

Usage

```
JD_JSON_to_materialized_workspace(
  workspace_dir = NA,
  JSON_file,
  input_data_reader,
  ext_reg_data_reader = NA,
  series_to_proc_names = NA
)
```

Arguments

series_to_proc_names

-optional- an array containing the name of the series to be included in the workspace among the ones present in the JD_JSON file e.g. c("VATASA","VATAIA")

Value

void in R environment, a workspace materialized in the filesystem

Examples

```
JD_JSON_to_virtual_workspace
```

Turn a JD_JSON in a virtual workspace

Description

This function obtain a virtual workspace from a JD_JSON file. See test foder for examples

Usage

```
JD_JSON_to_virtual_workspace(
   JSON_file,
   input_data_reader,
   ext_reg_data_reader = NA,
   series_to_proc_names = NA
)
```

Arguments

Value

A virtual workspace

merge_workspaces 23

```
ext_reg_input_data_reader <- Data_reader_ext_reg_csv(regr_directory)
ws <- JD_JSON_to_virtual_workspace(input_JD_JSON, input_data_reader, ext_reg_input_data_reader, series_to_pr</pre>
```

merge_workspaces

Merge many workspaces in one

Description

This function gets merges many workspaces contained in a given folder into one workspace

Usage

```
merge_workspaces(
  source_workspaces_path,
  merged_ws_name = "merged_ws",
  merged_ws_dir = NA,
  compressed = TRUE,
  delete_originals = TRUE,
  silent = TRUE
)
```

Arguments

Value

A virtual (R) and a marerialized workspace containing all the multiprocessings and time series SA models of the original workspaces

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
single_workspaces_path <- "splitted_workspaces_to_merge"
full_workspace_path <- "merged_ws_test"
compressed_ws <- FALSE
ws_merged <- merge_workspaces(source_workspaces_path=single_workspaces_path,</pre>
```

```
produce_fully_R_workspace
```

Process a JD_JSON file

Description

This function processes a JSON file with JD_JSON fields and returns a virtual workspace

Usage

```
produce_fully_R_workspace(
   ext_reg_input_data_reader = NA,
   original_ws_xml,
   new_r_ws_folder
)
```

Arguments

```
ext_reg_input_data_reader

A specific Data_reader_ext_reg object (CSV, XLSX, ...) to read the external regressors. Default=NA.

original_ws_xml

xml file (also with path) of the workspace to be transformed into a fully R workspace

new_r_ws_folder

Name of the directory that will contain the output, fully R, workspace.
```

Value

a virtual workspace, already processed

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
original_ws_xml <- "WorkspaceTUR-container/workspace-TUR.xml"
new_r_ws_folder <- "output_fully_R_ws"
regr_directory <- "SITIC-TUR/regr"
ext_reg_input_data_reader <- Data_reader_ext_reg_tsplus(regr_directory)
produce_fully_R_workspace(ext_reg_input_data_reader, original_ws_xml, new_r_ws_folder)

extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
original_ws_xml <- "WorkspaceFAS-standard-container//FAS.xml"
new_r_ws_folder <- "output_fully_R_ws"</pre>
```

```
regr_directory <- "CSV-FAS//regr"
ext_reg_input_data_reader <- Data_reader_ext_reg_csv(regr_directory)
produce_fully_R_workspace(ext_reg_input_data_reader, original_ws_xml, new_r_ws_folder)
setwd(original_directory)</pre>
```

```
read_data,Data_reader_csv-method
```

Get the data from a Data_reader_csv

Description

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_csv'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYY-MM-DD) and colnames = time series names (string)

Examples

```
input_data_file_name <- system.file("extdata","CSV-FAS/grezzi_trim_FAS.csv", package = "RJDProcessor")
input_data_reader <- Data_reader_csv(input_source = input_data_file_name)
input_data_reader@read_data()</pre>
```

```
read_data,Data_reader_csv_istat_format-method

Get the data from a Data_reader_csv_istat_format
```

Description

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_csv_istat_format'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYYqMM) and colnames = time series names (string)

```
input_data_file_name <- system.file("extdata","SITIC-TUR/grezziTUR.csv", package = "RJDProcessor")
input_data_reader     <- Data_reader_csv_istat_format(input_source = input_data_file_name)
input_data_reader@read_data()</pre>
```

```
read_data,Data_reader_list-method

Get the data from a Data_reader_list
```

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_list'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYY-MM-DD) and colnames = time series names (string)

Examples

```
read_data,Data_reader_workspace-method

Get the data from a Data_reader_workspace
```

Description

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_workspace'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYY-MM-DD) and colnames = time series names (string)

```
read_data,Data_reader_xlsx-method

Get the data from a Data_reader_csv
```

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_xlsx'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYY-MM-DD) and colnames = time series names (string)

Examples

```
input_data_file_name <- system.file("extdata","XLSX-TUR/grezzi_trim_TUR.xlsx", package = "RJDProcessor")
input_data_reader     <- Data_reader_xlsx(input_source = input_data_file_name)
input_data_reader@read_data()</pre>
```

```
read_data,Data_reader_xml-method

Get the data from a Data_reader_xml
```

Description

This function returns the data from the input_source of the object.

Usage

```
## S4 method for signature 'Data_reader_xml'
read_data(object, ...)
```

Value

data in form of numeric matrix, with rownames = dates (in string format, YYYY-MM-DD) and colnames = time series names (string)

```
input_data_file_name <- system.file("extdata","Prod.xml", package = "RJDProcessor")
# NOTE: absolute paths are better for this Data_reader
input_data_reader <- Data_reader_xml(input_source = input_data_file_name)
#input_data_reader@read_data() # for reading the data</pre>
```

This function reads data from external regressors and returns it as a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

Usage

```
## S4 method for signature 'Data_reader_ext_reg_csv'
read_ext_reg_data(
  object,
  var_info = NULL,
  time_series_info = NULL,
  frequency = NA_integer_,
  ...
)
```

Arguments

Value

a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

```
require(RJDemetra)
input_workspace_xml
                         <- system.file("extdata", "WorkspaceTUR-container/workspace-TUR.xml",</pre>
                                           package = "RJDProcessor")
                        <- system.file("extdata", "CSV-TUR/grezzi_trim_TUR.csv", package = "RJDProcessor")</pre>
input_data_file_name
                        <- system.file("extdata", "CSV-TUR/regr", package = "RJDProcessor")</pre>
regr_directory
                           <- load_workspace(file = input_workspace_xml)</pre>
WS
compute(ws)
data_reader_ext_reg
                           <- Data_reader_ext_reg_csv(regr_directory)</pre>
all_model_ext_vars_info <- data_reader_ext_reg@read_ext_reg_info(ws)</pre>
                    <- data_reader_ext_reg@read_ext_reg_data(all_model_ext_vars_info, "VATASC",</pre>
vars_matrix
                                                                     frequency=12)
```

```
read_ext_reg_data,Data_reader_ext_reg_tsplus-method

*Read external regressors data*
```

This function reads data from external regressors and returns it as a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

Usage

```
## S4 method for signature 'Data_reader_ext_reg_tsplus'
read_ext_reg_data(
   object,
   var_info = NULL,
   time_series_info = NULL,
   frequency = NA_integer_,
   ...
)
```

Arguments

Value

a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

```
require(RJDemetra)
input_workspace_xml
                         <- system.file("extdata", "WorkspaceTUR-container/workspace-TUR.xml",</pre>
                                           package = "RJDProcessor")
                        <- system.file("extdata", "SITIC-TUR/grezziTUR.csv", package = "RJDProcessor")</pre>
input_data_file_name
                       <- system.file("extdata", "SITIC-TUR/regr", package = "RJDProcessor")</pre>
regr_directory
                           <- load_workspace(file = input_workspace_xml)</pre>
WS
compute(ws)
data_reader_ext_reg
                           <- Data_reader_ext_reg_tsplus(regr_directory)</pre>
all_model_ext_vars_info <- data_reader_ext_reg@read_ext_reg_info(ws)</pre>
                    <- data_reader_ext_reg@read_ext_reg_data(all_model_ext_vars_info, "VATASC",</pre>
vars_matrix
                                                                     frequency=12)
```

This function reads data from external regressors and returns it as a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

Usage

```
## S4 method for signature 'Data_reader_ext_reg_xlsx'
read_ext_reg_data(
  object,
  var_info = NULL,
  time_series_info = NULL,
  frequency = NA_integer_,
  ...
)
```

Arguments

Value

a numeric matrix with variable names as colnames and YYYY-MM-DD dates as rownames

Examples

frequency=12)

```
read_ext_reg_info,Data_reader_ext_reg_csv-method

*Read information about external regressors from a workspace*
```

This function returns a list of information about external regressors used in the models contained in a workspaces

Usage

```
## S4 method for signature 'Data_reader_ext_reg_csv'
read_ext_reg_info(object, var_info_container, adjust_path = TRUE, ...)
```

Arguments

```
var_info_container
workspace xml file path
```

Value

list() of information about external regressors

Examples

```
read_ext_reg_info,Data_reader_ext_reg_tsplus-method

*Read information about external regressors from a workspace*
```

Description

This function returns a list of information about external regressors used in the models contained in a workspaces

Usage

```
## S4 method for signature 'Data_reader_ext_reg_tsplus'
read_ext_reg_info(object, var_info_container, adjust_path = TRUE, ...)
```

Arguments

```
var_info_container
workspace xml file path
```

Value

list() of information about external regressors

Examples

```
read_ext_reg_info,Data_reader_ext_reg_xlsx-method

*Read information about external regressors from a workspace*
```

Description

This function returns a list of information about external regressors used in the models contained in a workspaces

Usage

```
## S4 method for signature 'Data_reader_ext_reg_xlsx'
read_ext_reg_info(object, var_info_container, adjust_path = TRUE, ...)
```

Arguments

Value

list() of information about external regressors

update_data 33

```
data_reader_ext_reg <- Data_reader_ext_reg_xlsx(regr_directory)
all_model_ext_vars_info <- data_reader_ext_reg@read_ext_reg_info(ws)</pre>
```

update_data

Update the data of a workspace

Description

This function update the data of a workspace's time series basing on the data read by a Data_reader object already initialized. The time series read by the Data_reader must have the same colnames as the time series names of the workspace to produce an update

Usage

```
update_data(workspace_xml_path, data_reader)
```

Arguments

workspace_xml_path

Path of the xml file of the workspace whose data have to be updated

data_reader

A Data_reader object already initialized with its input source

```
require(RJDemetra)
original_directory <- getwd()
extdata_directory <- system.file("extdata", package = "RJDProcessor")
setwd(extdata_directory)
ws_xml_path <- "TUR_ws_test_container/merged_ws.xml"
dr <- RJDProcessor::Data_reader_csv(input_source = "rawdata_TUR.csv")
# num_mat<-dr@read_data() # to check if the data are available
update_data(ws_xml_path, dr)
setwd(original_directory)</pre>
```

Index

```
check_data, 3
                                              read_ext_reg_data,Data_reader_ext_reg_tsplus-method,
check_external_regressors, 3
compare_sa_ts, 4
                                              read_ext_reg_data,Data_reader_ext_reg_xlsx-method,
compare_workspaces, 5
convert_numeric_matrix_to_mts, 6
                                              read_ext_reg_info,Data_reader_ext_reg_csv-method,
create_diagnostic_report1, 7
create_diagnostic_report2, 8
                                              read_ext_reg_info,Data_reader_ext_reg_tsplus-method,
Data_reader_csv, 8
                                              read_ext_reg_info,Data_reader_ext_reg_xlsx-method,
Data_reader_csv_istat_format, 9
Data_reader_ext_reg_csv, 9
Data_reader_ext_reg_tsplus, 10
                                              update_data, 33
Data_reader_ext_reg_xlsx, 11
Data_reader_list, 11
Data_reader_workspace, 12
Data_reader_xlsx, 13
Data_reader_xml, 13
from_full_to_reduced_JD_JSON_file, 14
from_reduced_to_full_JD_JSON_file, 15
get_r_model_from_j_model, 15
get_single_ts_workspaces, 16
JD_JSON_file_processor, 17
JD_JSON_from_materialized_workspace,
JD_JSON_from_virtual_workspace, 20
JD_JSON_to_materialized_workspace, 21
JD_JSON_to_virtual_workspace, 22
merge_workspaces, 23
produce_fully_R_workspace, 24
read_data,Data_reader_csv-method, 25
read_data,Data_reader_csv_istat_format-method,
read_data,Data_reader_list-method, 26
read_data,Data_reader_workspace-method,
read_data,Data_reader_xlsx-method, 27
read_data,Data_reader_xml-method, 27
read_ext_reg_data, Data_reader_ext_reg_csv-method,
```