Basic Cryptography

None(n0n3x1573n7)

November 28, 2018

1 Preliminaries

1.1 Mathematical Structures

1.1.1 Sets

Definition 1 (Set). A set is a collection of distinct objects.

1.1.2 Group

Definition 2 (Group). A group is a set G with a binary operation \cdot , denoted (G,\cdot) , which satisfies the following conditions:

- Closure: $\forall a, b \in G, a \cdot b \in G$
- Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: $\exists e \in G, \forall a \in G, a \cdot e = e \cdot a = a$
- Inverse: $\forall a \in G, \exists a^{-1} \in G, a \cdot a^{-1} = a^{-1} \cdot a = e$

Definition 3 (Semigroup). A semigroup is (G,\cdot) , which satisfies Closure and Associativity.

Definition 4 (Monoid). A monoid is a semigroup (G,\cdot) which also has identity.

Definition 5 (Abelian Group). An Abelian Group or Commutative Group is a group (G,\cdot) with the following property:

• Commutativity: $\forall a, b \in G, a \cdot b = b \cdot a$

1.1.3 Ring

Definition 6 (Ring). A Ring is a set R with two binary operations + and \cdot , often called the addition and multiplication of the ring, denoted $(R,+,\cdot)$, which satisfies the following conditions:

- (R,+) is an abelian group
- (R,\cdot) is a semigroup
- Distribution \cdot is distributive with respect to +, that is, $\forall a,b,c \in R$:

-
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$-(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

The identity element of + is often noted 0.

Definition 7 (Ring with identity(1)). A Ring with identity is a ring $(R,+,\cdot)$ of which (R,\cdot) is a monoid. The identity element of \cdot is often noted 1.

Definition 8 (Commutative Ring). A commutative ring is a ring $(R,+,\cdot)$ of which \cdot is commutative.

Definition 9 (Zero Divisor). For a ring $(R,+,\cdot)$, let 0 be the identity of +. $a,b\in R$, $a\neq 0$ and $b\neq 0$, if $a\cdot b=0$, a,b are called the zero divisors of the ring.

Definition 10 (Integral Domain). An integral domain is a commutative ring $(R,+,\cdot)$ with 1 which does not have zero divisors.

1.1.4 Field

Definition 11. A Field is a set F with two binary operations + and \cdot , often called the addition and multiplication of the field, denoted $(R,+,\cdot)$, which satisfies the following conditions:

- $(F,+,\cdot)$ is a ring
- $(F \setminus \{0\}, \cdot)$ is a group