Test Flight Question 8

Marcel Goh

30 June 2018

Theorem. Prove that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof. We say that the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L if for any real number $\epsilon > 0$, there exists a natural number N such that for all $n \geq N$, $|a_n - L| < \epsilon$. Now we want to prove that for a fixed number M > 0, $\{Ma_n\}_{n=1}^{\infty}$ tends to limit ML, so for any real number $\epsilon > 0$, there must exist a natural number N such that for all $n \geq N$, $|Ma_n - ML| < \epsilon$.

Let $\epsilon > 0$ be given. Now pick any N such that $|a_N - L| < \frac{\epsilon}{M}$. Then for any $n \geq N$, $|a_n - L| < \frac{\epsilon}{M}$ Manipulating the inequality as follows:

$$|a_n - L| < \frac{\epsilon}{M}$$

$$M |a_n - L| < \epsilon$$

$$|Ma_n - ML| < \epsilon$$

So for any arbitrary value of ϵ greater than 0, the existence of an N to satisfy the inequality is shown and the theorem is proved.