Demostración Econometría Tema 2.1

Ismael Sallami Moreno

December 2024

Explicación de la ecuación

La ecuación describe el cálculo de la varianza de un vector aleatorio \vec{u} , una cantidad fundamental en estadística y probabilidad. A continuación, se desglosan los pasos y propiedades utilizados para completar la expresión:

Ecuación inicial

$$var[\vec{u}] = E\left[(\vec{u} - E[\vec{u}])(\vec{u} - E[\vec{u}])^t \right]$$

Paso 1: Expansión del producto

Expandimos el producto en el argumento de la esperanza matemática:

$$(\vec{u} - E[\vec{u}])(\vec{u} - E[\vec{u}])^t = \vec{u}\vec{u}^t - \vec{u}(E[\vec{u}])^t - (E[\vec{u}])\vec{u}^t + (E[\vec{u}])(E[\vec{u}])^t$$

Paso 2: Linealidad de la esperanza matemática

La esperanza matemática es lineal, lo que permite distribuir $E[\cdot]$ sobre las sumas y restas:

$$E\left[(\vec{u} - E[\vec{u}])(\vec{u} - E[\vec{u}])^t\right] = E[\vec{u}\vec{u}^t] - E[\vec{u}](E[\vec{u}])^t - E[(E[\vec{u}])\vec{u}^t] + E[(E[\vec{u}])(E[\vec{u}])^t]$$

Propiedades utilizadas

 $1. \ \ \textbf{Propiedad de la constante en la esperanza matemática:}$

Si $E[\vec{u}]$ es una constante (un vector fijo), entonces:

$$E[(E[\vec{u}])\vec{u}^t] = (E[\vec{u}])E[\vec{u}^t]$$

En este caso, $E[(E[\vec{u}])(E[\vec{u}])^t]$ simplemente da $(E[\vec{u}])(E[\vec{u}])^t$.

2. Simetría de la resta:

La suma de términos cruzados $-E[\vec{u}](E[\vec{u}])^t - (E[\vec{u}])E[\vec{u}^t]$ se cancela porque ambos términos son idénticos.

Simplificación

Finalmente, los términos cruzados se anulan, y el resultado queda como:

$$E[(\vec{u} - E[\vec{u}])(\vec{u} - E[\vec{u}])^t] = E[\vec{u}\vec{u}^t] - (E[\vec{u}])(E[\vec{u}])^t$$

Caso especial: Si $E[\vec{u}] = 0$

Si el vector aleatorio \vec{u} tiene esperanza matemática nula $(E[\vec{u}] = 0)$, entonces:

$$var[\vec{u}] = E[\vec{u}\vec{u}^t]$$

Por lo tanto, el resultado se reduce a:

$$\operatorname{var}[\vec{u}] = E[\vec{u}\vec{u}^t]$$

Esta es una propiedad utilizada comúnmente en estadística para vectores aleatorios centrados en su media.