Efficacy of Naps as a Fatigue Countermeasure: A Meta-Analytic Integration

James E. Driscoll & Brian Mullen, 2005

Human Factors, Vol. 47 No. 2

Presented by: Kevin Riley

Advanced Human Factors

"The effect is too much, sleep is winning, my whole body argues dully that nothing, nothing life can attain is quite so desirable as sleep. **My mind is losing resolution and control**." – Charles Lindbergh

Key Concepts & 3 Stated Goals of the Study

- Countermeasures can help sustain "safety" and performance over time (extended maritime transit, aircraft flight time/operator duty day)
- Minimizing risk or costs (lives, property) in high demand, high consequence environments that have low error tolerance
- Previous research had largely focused on environmental lighting, caffeine, rest breaks and napping

3 Goals:

- Summarize existing (at the time) fatigue research in a meta-analysis
- ID strength and significance of naps on <u>performance</u> and the <u>perception of fatigue</u>
- ID factors that moderate the effect of napping on fatigue

Seminal Research & Findings:

Effects of planned cockpit rest on crew performance and alertness in long-haul operations. Rosekind, Graeber, et al. (1994)

- N=21, control & rest group
- Found significance in improved alertness and task performance w/ rest group
- NSD of <u>perceptions</u> of fatigue
- Sleep Inertia concept

Follow on study focus areas from Rosekind 1994 Study

Nap effectiveness depended on implementation. Often thought of as **duration**, and **timing**.

Napping effects on separate but related ideas of **performance**, and **perception of fatigue**.

Postnap interval (deteriorating effects vs long term benefits)

Circadian rhythm effects on napping

Sleep inertia (15-30 minutes, or not observable)

Meta-analysis Example (Driscoll & Mullen 2005)

- 12 studies 1985-2001
- Avg N = 26
- Avg participant age=20
- 10 min to 8-hour naps
- Postnap interval= 0 hrs. to 4 days

17 TELE 1 (00111111111111111111111111111111111							
Study/Measure	Statistic (df)	N	DOE	Effect Size	Nap Duration	Postnap Interval	Time of Day
Aud Vigil (P)	t(54) = 0.125	10	+	+0.017	0.33	4.33	17:00
Sleepiness (F)	t(54) = 2.534	10	+	+0.338	0.33	0.33	13:00
Sleepiness (F)	t(54) = 1.164	10	+	+0.158	0.33	1.33	14:00
Sleepiness (F)	t(54) = 0.137	10	-	-0.019	0.33	2.33	15:00
Sleepiness (F)	t(54) = 0.323	10	+	+0.044	0.33	3.33	16:00
	t(54) = 0.323 t(54) = 0.128	10	+	+0.017	0.33	4.33	17:00
Sleepiness (F)	t(54) = 0.125 t(54) = 1.252	10	+	+0.170	0.33	0.33	13:00
Fatigue (F) Fatigue (F)	t(54) = 1.232 t(54) = 1.548	10	_	-0.209	0.33	1.33	14:00
•	t(54) = 1.548 t(54) = 3.958	10	_	-0.515	0.33	2.33	15:00
Fatigue (F)	t(54) = 5.474	10	_	-0.689	0.33	3.33	16:00
Fatigue (F)		10	_	-0.660	0.33	4.33	17:00
Fatigue (F)	t(54) = 5.209	10	-	-0.000	0.33	4.33	17.00
Hayashi, Watanabe et a	l. (1999)	_			0.00	0.47	45.00
Logical (P)	t(36) = 1.440	7	+	+0.238	0.33	0.67	15:00
Logical (P)	t(36) = 0.507	7	+	+0.084	0.33	1.67	16:00
Logical (P)	t(36) = 0.621	7	+	+0.103	0.33	2.67	17:00
Calc (P)	t(36) = 1.131	7	+	+0.187	0.33	0.67	15:00
Calc (P)	t(36) = 2.008	7	+	+0.329	0.33	1.67	16:00
Calc (P)	t(36) = 1.864	7	+	+0.306	0.33	2.67	17:00
Visual Det (P)	t(36) = 1.070	7	+	+0.177	0.33	0.67	15:00
Visual Det (P)	t(36) = 0.876	7	+	+0.145	0.33	1.67	16:00
Visual Det (P)	t(36) = 0.564	7	+	+0.094	0.33	2.67	17:00
Aud Vigil (P)	t(36) = 1.266	7	+	+0.209	0.33	0.67	15:00
Aud Vigil (P)	t(36) = 1.331	7	+	+0.220	0.33	1.67	16:00
Aud Vigil (P)	t(36) = 0.839	7	+	+0.139	0.33	2.67	17:00
Sleepiness (F)	t(36) = 2.726	7	+	+0.440	0.33	0.67	15:00
Sleepiness (F)	t(36) = 2.025	7	+	+0.331	0.33	1.67	16:00
Sleepiness (F)	t(36) = 1.469	7	+	+0.242	0.33	2.67	17:00
Fatigue (F)	t(36) = 0.206	7	_	-0.034	0.33	0.67	15:00
Fatigue (F)	t(36) = 2.311	7	-	-0.376	0.33	1.67	16:00
Fatigue (F)	t(36) = 2.689	7	-	-0.434	0.33	2.67	17:00
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Horne & Reyner (1996)	t(18) = 3.920	10		+0.827	0.25	0.50	15:45
KSS (F)	, ,	10	+	+0.627	0.23	0.50	13.43
Takahashi & Arito (2000)							
Logical (P)	t(55) = 1.094	12	+	+0.147	0.25	0.50	13:15
Logical (P)	t(55) = 1.824	12	+	+0.244	0.25	2.00	14:45
Logical (P)	t(55) = 0.608	12	+	+0.082	0.25	3.50	16:15
Logical (P)	t(55) = 2.797	12	+	+0.369	0.25	5.00	17:45
RT (P)	t(55) = 1.882	12	+	+0.251	0.25	0.50	13:15
RT (P)	t(55) = 2.425	12	+	+0.321	0.25	2.00	14:45
RT (P)	t(55) = 1.951	12	+	+0.260	0.25	3.50	16:15
RT (P)	t(55) = 2.563	12	+	+0.339	0.25	5.00	17:45
Digit Span (P)	t(55) = 1.319	12	+	+0.177	0.25	0.50	13:15

Surprising General Results?

- Overall naps resulted in significant differences between groups with extremely small **negative** effect sizes for experimental (nap) vs control groups (baseline).
- A deeper dive is required to see that this is not true in all instances

Example:

Test Type	DF	Ν	Corr.	Effect Size	Nap Dur	Interval	TOD
Sleepiness (F)	t(55) = 4.534	12	+	+0.579	0.25	0.50	13:15
Sleepiness (F)	t(55) = 5.069	12	+	+0.639	0.25	2.00	14:45
Sleepiness (F)	t(55) = 3.480	12	+	+0.454	0.25	3.50	16:15
Sleepiness (F)	t(55) = 5.258	12	+	+0.660	0.25	5.00	17:45

Surprising General Results? (cont.)

- Naps & Performance: significant but negligible positive correlation with improved performance (Z fisher = 0.00007)
- Naps & Fatigue: significant but negligible negative correlation (Z fisher= -0.048) compared to baseline
- Nap duration: Longer naps led to significantly reduced benefits of naps (r= -0.286)
- Post nap intervals: Longer PNI significantly correlated with reduced beneficial effects (r= -0.404)

Further Reading

- Caldwell, J. A., & Caldwell, J. L. (2005). Fatigue in military aviation: an overview of US military-approved pharmacological countermeasures. *Aviation, space, and environmental medicine, 76*(7 Suppl), C39–C51.
- Wingelaar-Jagt, Y. Q., Wingelaar, T. T., Riedel, W. J., & Ramaekers, J. G. (2021). Fatigue in Aviation: Safety Risks, Preventive Strategies and Pharmacological Interventions. Frontiers in physiology, 12, 712628.
- Zhang, P., Zhao, W., Shi, L., Wang, Y., Sun, H., & Sun, Z. (2022). Study on Fatigue Coefficient of Airline Pilots. *Frontiers in psychology*, *13*, 865342.