CHAPTER 2: ANALYTIC GEOMETRY OF SPACE, VECTOR FUNCTIONS

CONTENTS

- 1 Three-Dimensional Coordinate Systems
- 2 Vectors
- The dot product
- The cross product
- 5 Equations of Lines and Planes
- **6** Cylinders and Quadric Surfaces
- Vector Functions and Space Curves

- We will introduce vectors and coordinate systems for 3D space.
 This will be the setting for our study of the calculus of functions of two variables
- We will see that vectors provide particularly simple descriptions of lines and planes in space.
- Reference for Chapter 2: Chapters 12-13 of the textbook by J. Stewart.

- The Cartesian coordinates (a, b, c) of a point P(a, b, c) in space are the numbers at which the planes through P perpendicular to the axes cut the axes. The value a is the x-coordinate, b is the y-coordinate, and c is the z-coordinate.
- If we drop a perpendicular from P(a, b, c) to the xy-plane, we get a point Q(a, b, 0) called the **projection** of P on the xy-plane.

• The Cartesian product

$$\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$$

is denoted by \mathbb{R}^3 . It is called a **three-dimensional rectangular** coordinate system.

- In three-dimensional analytic geometry, an equation in x, y, and z represents a surface in \mathbb{R}^3 .
- The equation z = 3 represents the set of all points in \mathbb{R}^3 whose z-coordinate is 3. The right figure is the plane y = 5.

Distance between two points

The distance $|P_1P_2|$ between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Example The distance between $P_1(2, -1, 7)$ and $P_2(1, -3, 5)$ is $|P_1P_2| = \sqrt{(1-2)^2 + (-3+1)^2 + (5-7)^2} = 3.$

Example An equation of a sphere with center C(a, b, c) and radius r is $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$

In particular, if the center is the origin O, then an equation of the sphere is $x^2 + y^2 + z^2 = r^2$ Example Show that

$$x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$$

is the equation of a sphere, and find its center and radius.

Solution We have

$$x^{2} + y^{2} + z^{2} + 3x - 4z + 1 = 0$$
$$\left(x + \frac{3}{2}\right)^{2} + y^{2} + (z - 2)^{2} = \frac{21}{4}$$

It is the equation of a sphere with center (-3/2,0,2) and radius $\sqrt{21}/2$.

Example

Equations/inequalities

Description

- a) $x^2 + y^2 + z^2 \le 4$ The solid ball bounded by the sphere $x^2 + y^2 + z^2 = 4$.
- b) $x^2 + y^2 + z^2 = 4$ The lower hemisphere cut from the sphere $z \le 0$ $x^2 + y^2 + z^2 = 4$ by the xy-plane.

Example What region in \mathbb{R}^3 is represented by $1 \le x^2 + y^2 + z^2 \le 4$, z < 0?

Answer: Between (or on) the spheres and beneath (or on) the xy-plane.

- The term vector is used by scientists to indicate a quantity (such as displacement or velocity or force) that has both magnitude and direction.
- A vector is often represented by an arrow or a directed line segment.
- For example, a particle moves along a line segment from point A to point B. One can describe this moving by the **displacement** vector $\mathbf{v} = \overrightarrow{AB}$.

- Two vectors are **equivalent** or **equal** if they have the same length and direction.
- The zero vector, denoted by 0, has length 0. It is the only vector with no specific direction.
- Suppose a particle moves from A to B, and changes direction and moves from B to C. The resulting displacement vector $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.

Definition

If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

This definition is sometimes called the **Triangle Law**.

If we place $\bf u$ and $\bf v$ so they start at the same point, then $\bf u + \bf v$ lies along the diagonal of the parallelogram with $\bf u$ and $\bf v$ as sides. This is called the Parallelogram Law.

Definition

If c is a scalar (a real number) and \mathbf{v} is a vector, then scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c>0 and is opposite to \mathbf{v} if c<0. If c=0 or $\mathbf{v}=\mathbf{0}$, then $c\mathbf{v}=\mathbf{0}$.

Note: Two nonzero vectors are **parallel** if they are scalar multiples of one another. Also, we call $-\mathbf{v}$ the **negative** of \mathbf{v} .

By the **difference** $\mathbf{u} - \mathbf{v}$ of two vectors we mean

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}).$$

So we can construct $\mathbf{u} - \mathbf{v}$ by first drawing the negative of \mathbf{v} , $-\mathbf{v}$, and then adding it to \mathbf{u} by the Parallelogram Law (Fig. (a) below). Alternatively, since $\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$ the vector $\mathbf{u} - \mathbf{v}$, when added to \mathbf{v} , gives \mathbf{u} . So we could construct $\mathbf{u} - \mathbf{v}$ by means of the Triangle Law as in Fig. (b).

- If we place the initial point of a vector **a** at the origin, then the terminal point of **a** has coordinates of the form $(a_1, a_2) \in \mathbb{R}^2$ or $(a_1, a_2, a_3) \in \mathbb{R}^3$.
- These coordinates are called the **components** of **a** and we write

$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$.

• The vector $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are the basic vectors.

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then the sum is $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$, at least for the case where the components are positive. So

Similarly, to subtract vectors we subtract components.

From the similar triangles, we see that the components of ca are ca_1 and ca_2 . So to multiply a vector by a scalar we multiply each component by that scalar.

If
$$\mathbf{a}=\langle a_1,a_2\rangle$$
 and $\mathbf{b}=\langle b_1,b_2\rangle$, then
$$\mathbf{a}\pm\mathbf{b}=\langle a_1\pm b_1,a_2\pm b_2\rangle$$

$$c\mathbf{a}=\langle ca_1,ca_2\rangle.$$
 Since $\mathbf{a}=a_1\mathbf{i}+a_2\mathbf{j}$, we have $\boxed{\langle a_1,a_2\rangle=a_1\mathbf{i}+a_2\mathbf{j}}$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle \pm \langle b_1, b_2, b_3 \rangle = \langle a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \rangle$$

$$c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$$

Since $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, we have $\langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$

(a)
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$$

• Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ in \mathbb{R}^3 , then

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

• Similarly, in two dimensions, the vector from $A(x_1, y_1)$ to $B(x_2, y_2)$ is

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

• The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$
.

• The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$
.

Example The length of $\mathbf{v} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ is $\sqrt{14}$.

- Any vector whose length is 1 is a unit vector.
- ullet For instance, the vector $oldsymbol{i}$, $oldsymbol{j}$, and $oldsymbol{k}$ are unit vectors.
- If $\mathbf{v} \neq \mathbf{0}$, $\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector, called the **direction** of \mathbf{v} or the unit vector in the direction of \mathbf{v} .
- Any nonzero vector can be expressed as a product of its length and direction:

$$\mathbf{v} = |\mathbf{v}| \cdot \frac{\mathbf{v}}{|\mathbf{v}|} = (\text{length of } \mathbf{v}) \cdot (\text{direction of } \mathbf{v})$$

 A force is represented by a vector because it has both a magnitude and a direction. If several forces are acting on an object, the resultant force experienced by the object is the vector sum of these forces.

Example A 100-lb weight hangs from two wires as shown in the figure below. Find the tensions (forces) T_1 and T_2 in both wires and their magnitudes.

Solution We see that

$$T_1 = -|T_1|\cos 50^{\circ} \mathbf{i} + |T_1|\sin 50^{\circ} \mathbf{j}$$

 $T_2 = |T_2|\cos 32^{\circ} \mathbf{i} + |T_2|\sin 32^{\circ} \mathbf{j}$

The resultant $T_1 + T_2$ of the tensions counterbalances the weight \mathbf{w} and so we must have $T_1 + T_2 = -\mathbf{w} = 100\mathbf{j}$:

$$(-|T_1|\cos 50^\circ + |T_2|\cos 32^\circ)$$
i
 $+(|T_1|\sin 50^\circ + |T_2|\sin 32^\circ)$ **j** = 100**j**.

Equating components, we get

$$-|T_1|\cos 50^\circ + |T_2|\cos 32^\circ = 0$$

$$|T_1|\sin 50^\circ + |T_2|\sin 32^\circ = 100.$$

Solving gives

$$|T_1|\sin 50^\circ + \frac{|T_1|\cos 50^\circ}{\cos 32^\circ}\sin 32^\circ = 100.$$

So

$$|T_1| = rac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ} pprox 85.64 ext{ lb} \ |T_2| = rac{|T_1|\cos 50^\circ}{\cos 32^\circ} pprox 64.91 ext{ lb}$$

Hence the tension vectors are

$$T_1 \approx -55.05\mathbf{i} + 65.60\mathbf{j}$$
 and $T_2 \approx 55.05\mathbf{i} + 34.40\mathbf{j}$.

Definition

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of **a** and **b** is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Similarly, if $\mathbf{a}=\langle a_1,a_2\rangle$ and $\mathbf{b}=\langle b_1,b_2\rangle$, then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

The dot product is sometimes called the **scalar product** (or **inner product**).

Theorem

If **a**, **b**, and **c** are vectors and λ is a scalar, then

- 1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$;
- 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$:
- 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$;
- 4. $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b});$
- $5. \ \mathbf{0} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{0} = 0.$

Theorem

If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cdot \cos \theta$$

Corollary

If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Example Find the angle between the vectors $\mathbf{a} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$. Solution

$$\begin{split} \mathbf{a} \cdot \mathbf{b} &= 1 \times 6 + (-2) \times 3 + (-2) \times 2 = -4 \\ |\mathbf{a}| &= \sqrt{1^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3 \\ |\mathbf{b}| &= \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = 7 \\ \theta &= \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \right) = \cos^{-1} \left(\frac{-4}{3 \times 7} \right) \approx 1.76 \text{ rad }. \end{split}$$

Two nonzero vectors \mathbf{a} and \mathbf{b} are called **perpendicular** or **orthogonal** if the angle between them is $\theta = \pi/2$. Thus,

Two vectors **a** and **b** are orthogonal \iff **a** \cdot **b** = 0

Example

 $\boldsymbol{a}=\langle 3,-2,1\rangle$ and $\boldsymbol{b}=\langle 0,2,4\rangle$ are orthogonal because

$$\mathbf{a} \cdot \mathbf{b} = (3)(0) + (-2)(2) + (1)(4) = 0.$$

Projection Suppose that $\mathbf{a} = \overrightarrow{PQ}$ and $\mathbf{b} = \overrightarrow{PR}$. If S is the foot of the perpendicular from R to the line containing \overrightarrow{PQ} , then the vector with representation \overrightarrow{PS} is called the **vector projection** of \mathbf{b} onto \mathbf{a} and is denoted by $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$.

The vector projection of **b** onto **a**

The scalar projection of **b** onto **a** (also called the component of **b** along **a**) is defined to be the number $|\mathbf{b}| \cos \theta$, where θ is the angle between **a** and **b**. This is denoted by comp_a **b**.

$$\mathsf{comp}_{\mathbf{a}} \, \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$
 $\mathsf{proj}_{\mathbf{a}} \, \mathbf{b} = \Big(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\Big) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$

Example

Find the scalar projection and vector projection of $\mathbf{b}=\langle 1,1,2\rangle$ onto $\mathbf{a}=\langle -2,3,1\rangle.$

Solution Since
$$\mathbf{a} = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14}$$
,

$$\mathsf{comp_a}\,\mathbf{b} = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|} = \frac{(-2)\times 1 + 3\times 1 + 1\times 2}{\sqrt{14}} = \frac{3}{\sqrt{14}}.$$

Thus

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{3}{\sqrt{14}}\frac{\mathbf{a}}{|\mathbf{a}|} = \frac{3}{14}\mathbf{a} = \Big\langle -\frac{3}{7}, \frac{9}{14}, \frac{3}{14} \Big\rangle.$$

One use of projections occurs in physics in calculating work. If the force moves the object from P to Q, then the **displacement vector** is \overrightarrow{PQ} .

Definition

The **work** done by a constant force F acting through a displacement \overrightarrow{PQ} is

Work =
$$\mathbf{F} \cdot \overrightarrow{PQ} = |\mathbf{F}| |\overrightarrow{PQ}| \cos \theta$$
.

Example A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.

Solution If **F** and **D** are the force and displacement vectors, then the work done is

$$W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}||\mathbf{D}|\cos 35^{\circ}$$

= (70)(100) cos 35° \approx 5734 N \cdot m = 5734 J.

Definition

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** $\mathbf{a} \times \mathbf{b}$ of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

Cross product is also called the **vector product**.

 $\mathbf{a} \times \mathbf{b}$ is defined only when \mathbf{a} and \mathbf{b} are three-dimensional vectors.

A **determinant of order** 2 is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

A determinant of order 3 can be defined in terms of second-order determinants as follows:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$$

Then the cross product of the vectors $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ is

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Example

Show that $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ for any vector \mathbf{a} in \mathbb{R}^3 .

Solution If
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
, then

$$\mathbf{a} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{vmatrix}$$

= $(a_2 a_3 - a_3 a_2) \mathbf{i} + (a_3 a_1 - a_1 a_3) \mathbf{j} + (a_1 a_2 - a_2 a_1) \mathbf{k} = \mathbf{0}.$

Example Show that

$$\begin{aligned} \mathbf{i} \times \mathbf{j} &= \mathbf{k} & \mathbf{j} \times \mathbf{k} &= \mathbf{i} & \mathbf{k} \times \mathbf{i} &= \mathbf{j} \\ \mathbf{j} \times \mathbf{i} &= -\mathbf{k} & \mathbf{k} \times \mathbf{j} &= -\mathbf{i} & \mathbf{i} \times \mathbf{k} &= -\mathbf{j}. \end{aligned}$$

Theorem

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Proof Let
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$. Then

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} a_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} a_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} a_3$$

$$= (a_2b_3 - a_3b_2)a_1 + (a_3b_1 - a_1b_3)a_2$$

$$+ (a_1b_2 - a_2b_1)a_3$$

$$= 0$$

A similar computation shows that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$.

The direction of $\mathbf{a} \times \mathbf{b}$ is given by the right-hand rule: If the curled fingers of the right hand are rotated from the direction of \mathbf{a} to the direction of \mathbf{b} , the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

The right-hand rule give the direction of $\mathbf{a} \times \mathbf{b}$.

Example Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

Solution The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane because it is perpendicular to both vectors. In terms of components,

$$\overrightarrow{PQ} = (2-1)\mathbf{i} + (1+1)\mathbf{j} + (-1-0)\mathbf{k}$$
 = $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$
 $\overrightarrow{PR} = (-1-1)\mathbf{i} + (1+1)\mathbf{j} + (2-0)\mathbf{k}$ = $-2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

Thus,

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$
$$= 6\mathbf{i} + 6\mathbf{k}.$$

Theorem

If θ is the angle between **a** and **b** (so $0 \le \theta \le \pi$), then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

Thus,

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

 $|\mathbf{a} \times \mathbf{b}|$ =area of parallelogram

Corollary

Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

Example Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

Solution The area of the parallelogram determined by P, Q, and R is

$$|\overrightarrow{PQ} \times \overrightarrow{PR}| = |6\mathbf{i} + 6\mathbf{k}| = 6\sqrt{2}.$$

The triangle's area is half of this, $3\sqrt{2}$.

The cross product. Properties

Theorem

If \mathbf{a} , \mathbf{b} , and \mathbf{b} are vectors and λ is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\lambda \mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{b}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b}$$

4.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{b}$$

5.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{b}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

6.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

The product $\mathbf{a} \times (\mathbf{b} \times \mathbf{b})$ that occurs in Property 6 is called the **vector triple product** of \mathbf{a} , \mathbf{b} , and \mathbf{b} .

The cross product. Triple Products

• The product that occurs in Property 5 is called the **scalar triple product** of the vectors **a**, **b**, and **c**. It can be shown that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \left| egin{array}{ccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{array}
ight|.$$

• The volume of the parallelepiped determined by the vectors **a**, **b**, and **c** is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|.$$

Example

Find the volume of the box (parallelepiped) determined by $\mathbf{a} = \langle 1, 2, -1 \rangle$, $\mathbf{b} = \langle -2, 0, 3 \rangle$, and $\mathbf{c} = \langle 0, 7, -4 \rangle$.

Solution

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 0 & 3 \\ 0 & 7 & -4 \end{vmatrix} = \begin{vmatrix} 0 & 3 \\ 7 & -4 \end{vmatrix} - 2 \begin{vmatrix} -2 & 3 \\ 0 & -4 \end{vmatrix} - \begin{vmatrix} -2 & 0 \\ 0 & 7 \end{vmatrix}$$
$$= -21 - 16 + 14 = -23.$$

The volume is $V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = 23$.

Note that if $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$, then the vectors must lie in the same plane; that is, they are **coplanar**.

Equations of Lines and Planes

Equations for Lines Suppose L is a line in three-dimensional space that passes a point $P_0(x_0, y_0, z_0)$. Let \mathbf{v} be a vector parallel to L, P(x, y, z) be an arbitrary point on L and let \mathbf{r}_0 and \mathbf{r} be the position vectors of $P_0(x_0, y_0, z_0)$ and P(x, y, z), respectively. Then

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

which is a **vector equation** of L.

Suppose $\mathbf{v} = \langle a, b, c \rangle$, then we have the three scalar equations:

$$x=x_0+ta, \quad y=y_0+tb \quad z=z_0+tc, \quad t\in\mathbb{R}$$
 (1)

These equations are called **parametric equations** of the line through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$.

Note The vector equation and parametric equations of a line are not unique.

Example

- (a) Find a vector equation and parametric equations for the line that passes through the point (5,1,3) and is parallel to the vector $\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$.
- (b) Find two other points on the line.

Solution (a) The vector equation is

$$\mathbf{r} = (5\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + t(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$

= $(5 + t)\mathbf{i} + (1 + 4t)\mathbf{j} + (3 - 2t)\mathbf{k}$.

Parametric equations are

$$x = 5 + t$$
, $y = 1 + 4t$, $z = 3 - 2t$, $t \in \mathbb{R}$.

(b) Choosing the parameter value t=1 gives x=6, y=5, and z=1, so (6,5,1) is a point on the line. Similarly, t=-1 gives the point (4,-3,5).

If none of a, b, or c is 0, we can solve each of Equations (1) for t, equate the results, and obtain

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

These equations are called **symmetric equations** of L. If a=0, we can write the equations of L as

$$x=x_0, \qquad \frac{y-y_0}{b}=\frac{z-z_0}{c}.$$

Equations for Linesegments The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the vector equation

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1, \quad 0 \le t \le 1$$

Example Show that the lines L_1 and L_2 with parametric equations

$$x = 1 + t$$
 $y = -2 + 3t$ $z = 4 - t$
 $x = 2s$ $y = 3 + s$ $z = -3 + 4s$

are **skew lines**; that is, they do not intersect and are not parallel (and therefore do not lie in the same plane).

Solution The lines are not parallel because the corresponding vectors $\langle 1, 3, -1 \rangle$ and $\langle 2, 1, 4 \rangle$ are not parallel. If L_1 and L_2 had a point of intersection, there would be values of t and s such that

$$1 + t = 2s$$

$$-2 + 3t = 3 + s$$

$$4 - t = -3 + 4s$$

These equations have no solution, so L_1 and L_2 do not intersect. Thus L_1 and L_2 are skew lines.

Example

Show that the midpoint of the line segment joining two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$M = \Big(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\Big).$$

Solution

$$\overrightarrow{OM} = \overrightarrow{OP_1} + \overrightarrow{P_1M} = \overrightarrow{OP_1} + \frac{1}{2}\overrightarrow{P_1P_2}$$

$$= \overrightarrow{OP_1} + \frac{1}{2}(\overrightarrow{OP_2} - \overrightarrow{OP_1}) = \frac{1}{2}(\overrightarrow{OP_1} + \overrightarrow{OP_2})$$

$$= \frac{x_1 + x_2}{2}\mathbf{i} + \frac{y_1 + y_2}{2}\mathbf{j} + \frac{z_1 + z_2}{2}\mathbf{k}.$$

A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector \mathbf{n} that is orthogonal to the plane. This orthogonal vector \mathbf{n} is called a **normal vector**. The plane consists of all points P(x, y, z) for which $\overrightarrow{P_0P} = \langle x - x_0, x - y_0, x - z_0 \rangle$ is orthogonal to \mathbf{n} .

We have **vector equation** of the plane:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \tag{2}$$

which can be rewritten as

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0 \tag{3}$$

• Suppose $\mathbf{n} = \langle a, b, c \rangle$, $\mathbf{r} = \langle x, y, z \rangle$, and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$. Then the vector equation (2) becomes

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$
 (4)

Equation (4) is the scalar equation of the plane through $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$.

• We can rewrite the equation of a plane as

$$ax + by + cz + d = 0 (5)$$

where $d = -(ax_0 + by_0 + cz_0)$. Equation (5) is called a **linear** equation in x, y, and z.

Example Find an equation of the plane that passes through the points P(1,3,2), Q(3,-1,6), and R(5,2,0).

Solution Since both $\overrightarrow{PQ} = \langle 2, -4, 4 \rangle$ and $\overrightarrow{PR} = \langle 4, -1, -2 \rangle$ lie in the plane, $\mathbf{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$ is a normal vector of the plane. Thus

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & 4 \\ 4 & -1 & -2 \end{vmatrix} = 12\mathbf{i} + 20\mathbf{j} + 14\mathbf{k}.$$

An equation of the plane is

$$12(x-1) + 20(y-3) + 14(z-2) = 0$$

or

$$6x + 10y + 7z = 50.$$

Angles Between Planes Two planes are parallel if their normal vectors are parallel.

If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors.

The angle between planes

Example Find the angle between the planes x + y + z = 1 and x - 2y + 3z = 1.

Solution The normal vectors of these planes are $\mathbf{n}_1=\langle 1,1,1\rangle$ and $\mathbf{n}_2=\langle 1,-2,3\rangle$ and so, if θ is the angle between the planes, then

$$\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|} = \frac{1 \cdot 1 + 1(-2) + 1 \cdot 3}{\sqrt{1 + 1 + 1}\sqrt{1 + 4 + 9}} = \frac{2}{\sqrt{42}}$$
$$\theta = \cos^{-1}\left(\frac{2}{\sqrt{42}}\right) \approx 72^{\circ}.$$

Distance from a Point to a Plane

Example Find a formula for the distance from a point $P_1(x_1, y_1, z_1)$ to the plane

$$ax + by + cz + d = 0$$
.

Solution Let $P_0(x_0, y_0, z_0)$ be any point in the given plane and let $\mathbf{b} = \overrightarrow{P_0P_1}$. Then $\mathbf{b} = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$. The distance from P_1 to the plane is equal to the absolute value of the scalar projection of \mathbf{b} onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$.

$$D = |\operatorname{comp}_{\mathbf{n}} \mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$
$$= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$D = \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

Since P_0 lies in the plane, $ax_0 + by_0 + cz_0 + d = 0$. Thus

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Equations of Cylinders

When you are dealing with surfaces, it is important to recognize that an equation like $x^2+y^2=1$ (left) or $y^2+z^2=1$ (right) represents a cylinder and not a circle.

Equations of Quadric Surfaces

Quadric Surfaces

A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$ where A, B, C, ..., J are constants.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.

Equations of Quadric Surfaces

Elliptic Paraboloid

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the first power indicates the axis of the paraboloid.

Hyperboloid of One Sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Horizontal traces are ellipses.

Vertical traces are hyperbolas. The axis of symmetry corre-

The axis of symmetry corresponds to the variable whose coefficient is negative.

Hyperbolic Paraboloid

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Horizontal traces are hyperbolas.

Vertical traces are parabolas.

The case where c < 0 is illustrated.

Hyperboloid of Two Sheets

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Horizontal traces in z = k are ellipses if k > c or k < -c.

Vertical traces are hyperbolas.

The two minus signs indicate two sheets.

Definitions

When a particle moves through space during a time interval *I*, we think of the particle's coordinates as functions defined on *I*:

$$x = f(t),$$
 $y = g(t),$ $z = h(t),$ $t \in I.$ (6)

The points $(x, y, z) = (f(t), g(t), h(t)), t \in I$, make up the **curve** in space that we call the particle's **path**. The equation and interval in (6) **parametrize** the curve.

The vector $\mathbf{r}(t) = \overrightarrow{OP} = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ from the origin to the particle's **position** P = (f(t), g(t), h(t)) at time t is the particle's **position vector**. The functions f, g, and h are the **components** or **coordinate functions** of the position vector.

Definitions (cont'd)

More generally, a **vector-valued function** or **vector function** is a function whose range is a set of vectors. The vector function's domain to be the intersection of the domains of its component functions.

When we need to distinguish real-valued functions from vector functions, we refer to real-valued functions as **scalar functions**.

Example: Space Curves Sketch the curve whose vector equation is $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$. Solution We have

 $x^2 + y^2 = \cos^2 t + \sin^2 t = 1$. Thus, the curve must lies on the circular cylinder $x^2 + y^2 = 1$. The curve spirals upward around the cylinder as z = t increases. Each time t increases by 2π , the curve completes one turn around the cylinder. The curve is called a helix.

Example

Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane y + z = 2

Answer: $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (2 - \sin t)\mathbf{k}, \ 0 \le t \le 2\pi.$

Vector Functions. Limits and Continuity

Definition

If
$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$
, then
$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component functions exist.

Example If
$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$$
, then

$$\lim_{t \to \pi/4} \mathbf{r}(t) = \left(\lim_{t \to \pi/4} \cos t \right) \mathbf{i} + \left(\lim_{t \to \pi/4} \sin t \right) \mathbf{j} + \left(\lim_{t \to \pi/4} t \right) \mathbf{k}$$

$$= \frac{\sqrt{2}}{2} \mathbf{i} + \frac{\sqrt{2}}{2} \mathbf{j} + \frac{\pi}{4} \mathbf{k}.$$

Vector Functions. Continuity

Definition

A vector function $\mathbf{r}(t)$ is **continuous** at a if

$$\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a).$$

The function is **continuous** if it is continuous at every point in its domain.

A vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at a if and only if its component functions f(t), g(t), and h(t) are continuous at a.

Example The function $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$ is continuous.

Definition

The derivative of $\mathbf{r}(t)$ is the limit of the difference quotient

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

if this limit exists.

The vector $\mathbf{r}'(t)$ is called the **tangent vector** to the curve defined by $\mathbf{r}(t)$ at the point P, provided that $\mathbf{r}'(t)$ exists and $\mathbf{r}'(t) \neq \mathbf{0}$.

The **tangent line** to C at P is defined to be the line through P parallel to the tangent vector $\mathbf{r}'(t)$. The **unit tangent vector** is

$$\mathbf{T}(t) = rac{\mathbf{r}'(t)}{|\mathbf{r}(t)|}.$$

Theorem

If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}.$$

Example For the curve $\mathbf{r}(t) = \sqrt{t}\mathbf{i} + (2-t)\mathbf{j}$, find $\mathbf{r}'(t)$ and sketch the position vector $\mathbf{r}(1)$ and the tangent vector $\mathbf{r}'(1)$. Find the corresponding unit tangent vector.

Solution

$$\mathbf{r}'(t) = rac{1}{2\sqrt{t}}\mathbf{i} - \mathbf{j}$$
 and $\mathbf{r}'(1) = rac{1}{2}\mathbf{i} - \mathbf{j}$.

 $\mathbf{r}'(t)=rac{1}{2\sqrt{t}}\mathbf{i}-\mathbf{j}$ and $\mathbf{r}'(1)=rac{1}{2}\mathbf{i}-\mathbf{j}$. The unit tangent vector at the point where t=1 is

$$\mathbf{T}(1) = \frac{\mathbf{r}'(1)}{|\mathbf{r}'(1)|} = \frac{\frac{1}{2}\mathbf{i} - \mathbf{j}}{\sqrt{5}/2} = \frac{1}{\sqrt{5}}\mathbf{i} - \frac{2}{\sqrt{5}}\mathbf{j}.$$

Definition

The vector function $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is **differentiable** at t = a if f, g, and h are differentiable at a. Also, \mathbf{r} is said to be **differentiable** if it is differentiable at every point of its domain. The curve traced by \mathbf{r} is **smooth** if $d\mathbf{r}/dt$ is continuous and never equal to $\mathbf{0}$, i.e., if f, g, and h have first derivatives that are not simultaneously 0.

- A curve that is made up of a finite number of smooth curves pieced together in a continuous fashion so that the initial point of one curve is the terminal point of the immediately preceding one is called piecewise smooth.
- The second derivative of a vector function \mathbf{r} is the derivative of \mathbf{r}' , that is, $\mathbf{r}'' = (\mathbf{r}')'$.

Definition

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space, then

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$

is the particle's **velocity vector**. At any time t, the direction of \mathbf{v} is the **direction of motion**, the magnitude of \mathbf{v} is the particle's **speed**, and the derivative

$$\mathbf{a} = d\mathbf{v}/dt$$

when it exists, is the particle's acceleration vector.

Note

$$Velocity = |\mathbf{v}| \cdot \frac{\mathbf{v}}{|\mathbf{v}|} = (Speed) \cdot (Direction)$$

Example The vector $\mathbf{r} = (3\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + t^2\mathbf{k}$ gives the position of a moving body at time t. Find the body's speed and direction when t=2. At what times, if any, are the body's velocity and acceleration orthogonal?

Solution

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = -(3\sin t)\mathbf{i} + (3\cos t)\mathbf{j} + 2t\mathbf{k},$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = -(3\cos t)\mathbf{i} - (3\sin t)\mathbf{j} + 2\mathbf{k}.$$

At t = 2, the body's speed and direction are $|\mathbf{v}(2)| = 5$ and

$$\frac{\textbf{v}(2)}{|\textbf{v}(2)|} = \Big(-\frac{3}{5}\sin2\Big)\textbf{i} + \Big(\frac{3}{5}\cos2\Big)\textbf{j} + \frac{4}{5}\textbf{k},$$

The body's velocity and acceleration are orthogonal when

$${\bf v} \cdot {\bf a} = 9 \sin t \cos t - 9 \cos t \sin t + 4t = 4t = 0.$$

Therefore, t = 0.

Theorem

Suppose $\bf u$ and $\bf v$ are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1.
$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$2. \frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

3.
$$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t).$$

4.
$$\frac{d}{dt}[\mathbf{u}(t)\cdot\mathbf{v}(t)] = \mathbf{u}'(t)\cdot\mathbf{v}(t) + \mathbf{u}(t)\cdot\mathbf{v}'(t)$$

5.
$$\frac{d}{dt}[\mathbf{u}(t)\times\mathbf{v}(t)]=\mathbf{u}'(t)\times\mathbf{v}(t)+\mathbf{u}(t)\times\mathbf{v}'(t)$$

6.
$$\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t)).$$

Example If $\mathbf{r}(t)$ is a differentiable vector function of constant length, then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$:

$$\mathbf{r} \cdot \frac{d\mathbf{r}}{dt} = 0.$$

Solution Since $\mathbf{r} \cdot \mathbf{r} = |\mathbf{r}|^2$ is constant,

$$0 = \frac{d}{dt}(\mathbf{r} \cdot \mathbf{r}) = \mathbf{r}' \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r}' = 2\mathbf{r} \cdot \mathbf{r}'.$$

Thus, $\mathbf{r} \cdot \mathbf{r}' = 0$.

Integrals of vector functions

Definition

If the components of $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ are integrable over the interval $a \le t \le b$, then \mathbf{r} is **integrable** over [a, b] and the **definite integral** of \mathbf{r} from a to b is

$$\int_a^b \mathbf{r}(t)dt = \left(\int_a^b f(t)dt\right)\mathbf{i} + \left(\int_a^b g(t)dt\right)\mathbf{j} + \left(\int_a^b k(t)dt\right)\mathbf{k}.$$

For example,

$$\int_0^\pi \langle 1, t, \sin t \rangle dt = \Big\langle \int_0^\pi 1 dt, \int_0^\pi t dt, \int_0^\pi \sin t dt \Big\rangle = \Big\langle \pi, \frac{1}{2} \pi^2, 2 \Big\rangle.$$

Integrals of vector functions

- An antiderivative of $\mathbf{r}(t)$ on an interval I is a vector function $\mathbf{R}(t)$ such that $\mathbf{R}'(t) = \mathbf{r}(t)$ at each point of I.
- If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$ on I, it can be shown that every antiderivative of $\mathbf{r}(t)$ on I has the form $\mathbf{R}(t) + \mathbf{C}$ for some constant \mathbf{C} .
- The set of all antiderivatives of \mathbf{r} on I is the **indefinite integral** of \mathbf{r} on I and denoted by $\int \mathbf{r}(t)dt$.
- Thus, if $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$, then

$$\int \mathbf{r}(t)dt = \mathbf{R}(t) + \mathbf{C}$$

Integrals of vector functions

Example The velocity of a particle moving in the space is

$$\frac{d\mathbf{r}}{dt} = (\cos t)\mathbf{i} - (\sin t)\mathbf{j} + \mathbf{k}.$$

Find the particle's position as a function of t if $\mathbf{r} = 2\mathbf{i} + \mathbf{k}$ when t = 0. **Solution**

$$\mathbf{r}(t) = \int \mathbf{r}'(t)dt = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} + t\mathbf{k} + \mathbf{C}.$$

To determine **C**, we use the initial condition $\mathbf{r}(0) = 2\mathbf{i} + \mathbf{k}$:

$$(\sin 0)\mathbf{i} + (\cos 0)\mathbf{j} + 0\mathbf{k} + \mathbf{C} = 2\mathbf{i} + \mathbf{k}$$

 $\mathbf{C} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}.$

The particle's position as a function of t is

$$\mathbf{r}(t) = (\sin t + 2)\mathbf{i} + (\cos t - 1)\mathbf{j} + (t+1)\mathbf{k}.$$

Length of space curves

Arc Length Suppose $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, $a \le t \le b$, or, equivalently, the parametric equations x = f(t), y = g(t), z = h(t), where f', g', and h' are continuous.

If the curve is traversed exactly once as increases from t = a to t = b, then it can be shown that its **length** is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$
$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

That is,

$$L = \int_a^b |\mathbf{r}'(\mathbf{t})| dt$$

Length of space curves

Example

Find the length of the arc of the helix with vector equation $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$ from the point (1,0,0) to the point $(1,0,2\pi)$.

Solution We have $\mathbf{r}'(\mathbf{t}) = -\sin t\mathbf{i} + \cos t\mathbf{j} + 1\mathbf{k}$, so $|\mathbf{r}'(\mathbf{t})| = \sqrt{2}$. The arc length is

$$L = \int_0^{2\pi} |\mathbf{r}'(\mathbf{t})| dt = \int_0^{2\pi} \sqrt{2} dt = 2\sqrt{2}\pi.$$

-END OF CHAPTER 2-

78 / 78