Hamiltonian φορμαλισμός

- □ Πριν αρκετό καιρό, είδαμε τον φορμαλισμό Hamilton:
 - ightharpoonup Για ένα σύστημα με βαθμούς ελευθερίας q_i και Lagrangian $L(q,\dot q;t)$
 - \Rightarrow Ορίσαμε $p_i = \frac{\partial \dot{L}}{\partial \dot{q}_i}$
 - \Leftrightarrow και την hamiltonian: $H = \sum \dot{q}_i p_i L$
 - \diamond Λύσαμε την εξίσωση p_i ως προς \dot{q}_i συναρτήσει των q_i και p_i
 - \diamond και γράψαμε την hamiltonian με την μορφή: $H\left(q_{i},p_{i}\right)$
 - 💠 οι εξισώσεις κίνησης δίνονται από 2Ν διαφορικές εξισώσεις:

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 kal $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

- \Leftrightarrow Ορίσαμε το φασικό χώρο (q_i, p_i) και η χρονική εξέλιξη του συστήματος περιγράφεται από ροή στο φασικό χώρο
- \diamond Ο hamiltonian φορμαλισμός χρησιμοποιεί ισοδύναμα τα (q_i, p_i)
- Σύμφωνα με την αρχή του Hamilton, δεδομένων των q_i και $L\left(q_i,\dot{q}_i,t\right)$ τότε $S=\int Ldt$ μεγιστοποιείται σε μια λύση της εξίσωσης κίνησης $S=S[q_i(t)]$ συναρτησιακό των διαδρομών στο χώρο των θέσεων
- \square $S = S[q_i(t), p_i(t)]$ συναρτησιακό των διαδρομών στο χώρο των φάσεων

Αγκύλες Poisson

- Φορμαλισμός κλασικής που μοιάζει πάρα πολύ αυτόν που χρησιμοποιείται στην QM
- \square Θεωρείστε δυο συναρτήσεις, $f(q_i, p_i)$ και $g(q_i, p_i)$, που εξαρτώνται από την θέση ενός συστήματος στο φασικό χώρο
- Ορισμός: Αγκύλη Poisson είναι: $\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right)$
- □ Ποιες οι ιδιότητες των αγκυλών Poisson?

$$ightharpoonup$$
 $\{f,g\}=-\{g,f\}$ αντισυμμετρική

$$ho$$
 { $af+bg,h$ } = $a{f,h}+b{g,h}$ γραμμική

$$> \{fg,h\} = f\{g,h\} + \{f,h\}g$$
 κανόνας Leibnitz

$$> \{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0$$
 таито́тηта Jacobi

- lacktriangle Οι ταυτότητες αυτές ικανοποιούνται από τον μεταθέτη πινάκων: [F,G] = FG GF
 - > Στην QM: συνάρτηση της θέσης και της ορμής είναι ένας τελεστής
 - όταν πολ/ζετε τους τελεστές μεταξύ τους, χρησιμοποιείτε τους μεταθέτες τους
 - θεωρείτε τους τελεστές σαν πίνακες συγκεκριμένων ή άπειρων διαστάσεων ανάλογα με το σύστημα που εξετάζεται
 - τελεστές δεν αντιμετατίθενται στην QM όπως συναρτήσεις του φασικού χώρου δεν αντιμετατίθενται στην CM

Παραδείγματα αγκυλών Poisson

- lacksquare Ο ορισμός της αγκύλης Poisson: $\{f,g\} = \sum_i \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$
 - ightharpoonup Έστω: $f=q_i$ και $g=q_j$ τότε $\left\{f,g\right\}\!=\!\left\{q_i,q_j\right\}\!=\!0$
 - ightharpoonup Έστω: $f=p_i$ και $g=p_j$ τότε $\left\{f,g\right\}=\left\{p_i,p_j\right\}=0$
 - ightharpoonup Έστω: $f=q_i$ και $g=p_j$ τότε $\left\{f,g\right\}\!=\!\left\{q_i,p_j\right\}\!=\!0$ για $\mathbf{i}\neq\mathbf{j}$
 - ightharpoonup Έστω: $f=q_i$ και $g=p_j$ τότε $\left\{f,g\right\}\!=\!\left\{q_i,p_j\right\}\!=\!1$ για $\mathbf{i}=\mathbf{j}$
- □ Τα παραπάνω αποτελούν τις θεμελειώδεις αγκύλες Poisson
- □ Γιατί είναι χρήσιμες οι αγκύλες Poisson?
 - ightharpoonup Θεωρήστε μια συνάρτηση: $f(q_i, p_i, t)$
 - Η αλλαγή της συνάρτησης αυτής με τον χρόνο δίνεται από:

$$\frac{df}{dt} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \dot{q}_{i} + \frac{\partial f}{\partial p_{i}} \dot{p}_{i} \right) + \frac{\partial f}{\partial t}$$
 χρησιμοποιώντας τις εξισώσεις Hamilton

$$\frac{df}{dt} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} + \frac{\partial f}{\partial p_{i}} \left(-\frac{\partial H}{\partial q_{i}} \right) \right) + \frac{\partial f}{\partial t} \implies \frac{df}{dt} = \left\{ f, H \right\} + \frac{\partial f}{\partial t}$$

 Για να προσδιορίσουμε πως μια συνάρτηση εξελίσεται χρονικά, χρειάζεται να υπολογίσουμε τον μεταθέτη (αγκύλη Poisson) με την Hamiltonian

Χρησιμότητα αγκυλών Poisson

- \blacksquare Ξέρουμε επομένως πως χρονοεξελίσεται μια συναρτήση των q και p αρκεί να ξέρουμε την Hamiltonian του συστήματος H(q,p,t)
 - Έστω ότι έχετε ενα μόριο αποτελούμενο από πολλά άτομα και ενδιαφέρεστε πως μια συνάρτηση των βαθμών ελευθερίας εξελίσεται χρονικά
 - Αντί να γράψετε τις εξισώσεις κίνησης όλων των ατόμων για να βρείτε πως χρονοεξελίσεται το σύστημα αυτό
 - Τράφετε την αγκύλη Poisson του κέντρου μάζας με την Hamiltonian
- lacksquare Έστω ότι έχουμε βρεί μια συνάρτηση $I(q_i,p_i)$ τέτοια ώστε: $\{I,H\}=0 \Rightarrow \frac{dI}{dt}=0$
- \Box Σταθερά κίνησης είναι μια συνάρτηση των (q,p) που μετατίθεται με την Η
 - ightharpoonup Έστω Η συνάρτηση μόνο του p (ανεξάρτητη του q): $H(p) \Rightarrow \{p,H\} = 0$
 - $\Leftrightarrow p$: σταθερά κίνησης Θεώρημα Noether στον φορμαλισμό Hamilton
- \blacksquare Θεωρήστε ότι οι συναρτήσεις I και J αντιπροσωπεύουν διατηρήσιμες ποσότητες $\{I,H\,\}=0=\{J,H\,\}$
 - ightharpoonup Η ταυτότητα Jacobi θα είναι: $ig\{I,J\},Hig\}=ig\{I,\{J,H\}ig\}+ig\{J,\{I,H\}ig\}=0$ $ig\{I,J\}$ σταθερά κίνησης
 - Η αγκύλη Poisson δυο σταθερών κίνησης, είναι επίσης σταθερά κίνησης

Χρησιμότητα αγκυλών Poisson

- Η ομάδα των σταθερών κίνησης είναι ένας διανυσματικός χώρος
- Οι σταθερές κίνησης δημιουργούν, σε μαθηματική γλώσσα, «μια άλγεβρα»
 - ightarrow Έστω σωματίδιο που κινείται κάτω από την επίδραση ενός δυναμικού V(ec r)
 - ightarrow Η στροφορμή του σωματιδίου είναι μια διατηρήσιμη ποσότητα: $\vec{l}=\vec{r} imes\vec{p}$

$$l_1 = r_2 p_3 - r_3 p_2$$

$$l_2 = -r_1 p_3 + r_3 p_1$$

$$l_3 = r_1 p_2 - r_2 p_1$$

$$l_1 = r_2 p_3 - r_3 p_2$$
 μ $l_2 = -r_1 p_3 + r_3 p_1$ Μπορούμε να υπολογίσουμε τις αγκύλες Poisson:
$$\{l_i, l_j\} = \sum_k \varepsilon_{ijk} l_k$$
 SU(2) ή SO(3) ἀλγεβρα η άλγεβρα περιστροφών

ightharpoonup Ας υπολογίσουμε την Poisson αγκύλη: $\{l_1, l_2\}$

$$\begin{aligned} \left\{ l_{1}, l_{2} \right\} &= \left\{ r_{2}p_{3} - r_{3}p_{2}, r_{3}p_{1} - r_{1}p_{3} \right\} = \left\{ r_{2}p_{3} - r_{3}p_{2}, r_{3}p_{1} \right\} - \left\{ r_{2}p_{3} - r_{3}p_{2}, r_{1}p_{3} \right\} \\ &= \left\{ r_{2}p_{3}, r_{3}p_{1} \right\} - \left\{ r_{3}p_{2}, r_{3}p_{1} \right\} - \left\{ r_{2}p_{3}, r_{1}p_{3} \right\} + \left\{ r_{3}p_{2}, r_{1}p_{3} \right\} \\ &= \left\{ r_{2}p_{3}, r_{3}p_{1} \right\} + \left\{ r_{3}p_{2}, r_{1}p_{3} \right\} = -r_{2}p_{1} + p_{2}r_{1} \implies \left\{ l_{1}, l_{2} \right\} = l_{3} \end{aligned}$$

Αν δουλεύοντας σε κάτι ανακαλύψουμε ότι δυο συνιστώσες της στροφορμής διατηρούνται, τότε αυτόματα η τρίτη συνιστώσα διατηρείται:

Αγκύλες Poisson – Πρόβλημα Kepler

- □ Το Keplerian δυναμικό είναι συνάρτηση του 1/r
 - Διατηρείται η στροφορμή σύμφωνα με τα προηγούμενα
 - ightharpoonup Υπάρχουν 3 επιπλέον διατηρήσιμες ποσότητες: $\vec{A} = \frac{1}{m} \vec{p} \times \vec{l} \hat{r}$
 - Τι είναι οι τρεις αυτές συμμετρίες?

$$\left\{A_{i}, l_{j}\right\} = -\sum_{k} \varepsilon_{ijk} A_{k}$$

$$\left\{A_{i}, A_{j}\right\} = \sum_{k} \varepsilon_{ijk} l_{k}$$

- Οι ποσότητες Α και *l* δημιουργούν μια μεγαλύτερη άλγεβρα 6 γεννητόρων
 SO(4) άλγεβρα: συμμετρία/άλγεβρα περιστροφών σε χώρο 4-διαστάσεων
 - ♦ Η 4^η διάσταση είναι μαθηματική έννοια και όχι πραγματική διάσταση
- Ίδιες ιδιότητες θα εμφανιστούν όταν μελετήσετε στην QM το άτομο του υδρογόνου που είναι το πρόβλημα Kepler όπου αντί για μάζα υπάρχει το φορτίο

Κανονικοί μετασχηματισμοί

- Το θεώρημα Noether μας λέει ότι αν έχουμε μια συμμετρία τότε μπορούμε να κατασκευάσουμε μια σταθερά της κίνησης
- □ Όταν όμως έχουμε μια σταθερά κίνησης αυτή αντιστοιχεί σε κάποια συμμετρία
 - Πως βρίσκουμε την συμμετρία που προκαλεί την σταθερά της κίνησης
- Θεωρία κανονικών μετασχηματισμών:
 - > Στον φορμαλισμό Lagrange μπορούμε να χρησιμοποιήσουμε οποιαδήποτε μεταβλητή για να περιγράψουμε ένα σύστημα

 $q_i \longrightarrow Q_i(q_i)$ Ο μετασχηματισμός δεν αλλάζει την φυσική

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0 \Leftrightarrow \frac{\partial L}{\partial Q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{Q}_i} \right) = 0$$

- □ Στον φορμαλισμό Hamilton η θέση και η ορμή χρησιμοποιούνται ισοδύναμα
- □ Μόνο μερικοί τέτοιοι μετασχηματισμοί αφήνουν τις εξισώσεις Hamilton αμετάβλητες
 - □ Τέτοιος μετασχηματισμός ονομάζεται κανονικός μετασχηματισμός

Κανονικοί μετασχηματισμοί

Έστω ότι έχουμε ένα μετασχηματισμό του φασικού χώρου:

$$(q,p) \longrightarrow (Q(q,p),P(q,p))$$

- ightharpoonup Οι εξισώσεις Hamilton: $\dot{q}_i = \frac{\partial H}{\partial p_i} = H_p$ $\dot{p}_i = -\frac{\partial H}{\partial q_i} = -H_q$
- □ Υπολογίζουμε την χρονική μεταβολή των μετασχηματισμένων μεταβλητών:

$$\dot{Q} = \frac{\partial Q}{\partial a} \frac{\partial q}{\partial t} + \frac{\partial Q}{\partial p} \frac{\partial p}{\partial t} = Q_q \dot{q} + Q_p \dot{p} = Q_q H_p - Q_p H_q \stackrel{?}{=} H_p = \frac{\partial H}{\partial P}$$

$$\dot{P} = \frac{\partial P}{\partial q} \frac{\partial q}{\partial t} + \frac{\partial P}{\partial p} \frac{\partial p}{\partial t} = P_q \dot{q} + P_p \dot{p} = P_q H_p - P_p H_q \stackrel{?}{=} H_Q = \frac{\partial H}{\partial Q}$$

- \square Alli: $H_q = \frac{\partial H}{\partial Q} \frac{\partial Q}{\partial a} + \frac{\partial H}{\partial P} \frac{\partial P}{\partial a} \Rightarrow H_q = H_Q Q_q + H_P P_q$
- \square óµoia: $H_p = \frac{\partial H}{\partial Q} \frac{\partial Q}{\partial p} + \frac{\partial H}{\partial P} \frac{\partial P}{\partial p} \Rightarrow H_p = H_Q Q_p + H_P P_p$
- \Box Επομένως: $\dot{Q} = Q_q H_p Q_p H_q \Rightarrow \dot{Q} = Q_q \left(H_Q Q_p + H_P P_p \right) Q_p \left(H_Q Q_q + H_P P_q \right)$ $\Rightarrow \dot{Q} = H_Q \left(Q_q Q_p Q_p Q_q \right) + H_P \left(Q_q P_p Q_p P_q \right) \Rightarrow \dot{Q} = H_P \left\{ Q_p P_q \right\}$

Κανονικοί μετασχηματισμοί

- lacksquare Ο μετασχηματισμός (q,p) \longrightarrow (Q(q,p),P(q,p))
 - \triangleright diver: $\dot{Q} = H_P \{Q, P\}$
 - ightharpoonup Avάλογα: $\dot{P} = -H_O\left\{Q,P\right\}$
- Η μορφή των εξισώσεων Hamilton διατηρείται κάνοντας ένα μετασχηματισμό συντεταγμένων του φασικού χώρου (q,p) \longrightarrow (Q(q,p),P(q,p)) μόνο αν $\{Q,P\}$ = 1
 - Δηλαδή οι βασικές Poisson αγκύλες έχουν την μορφή:
- lacksquare Για N βαθμούς ελευθερίας: $\left\{Q_{i},P_{j}\right\}=\delta_{ij}$
- Κανονικός μετασχηματισμός είναι ο μετασχηματισμός των συντεταγμένων του φασικού χώρου που διατηρεί τις αγκύλες Poisson μεταξύ p και q