Notes on Drinfeld Modules and Explicit CFT for Function Fields

March 8, 2025

Pre-date: March 10! It is close!

- 1) Give a 30min (strict limit !!!) talk. Ideally more like 25min + 5 min for questions. The talks will be in March. I will try to reserve a room, and will give a more precise time/date when possible.
- 2) Write an "extended summary" (meaning around 5 pages NOT!!! >=10) of you article. It should summarise the article and its main ideas and be accessible to advanced Master students (i.e., the other students in this group).

1 Review on CFT

Let F be a global field, $C_F = \mathbb{A}_F^{\times}/F^{\times}$ be its idele class group, and F^{ab} be its maximal abelian extension inside a separable closure in a fixed algebraic closure \bar{F} . The class field theory asserts that the Artin map

$$\theta_F: C_F \to \operatorname{Gal}(F^{\mathrm{ab}}/F)$$

is a continuous group homomorphism with dense image, establishing a bijection

 $\{\text{finite abelian extensions of } F\} \longleftrightarrow \{\text{finite index open subgroups of } C_F\}.$

The direction " \rightarrow " is computable: for a finite abelian L/F, the composition $C_F \stackrel{\theta_F}{\to} \operatorname{Gal}(F^{\operatorname{ab}}/F) \to \operatorname{Gal}(L/F)$ is surjective, and its kernel $U = N_{L/F}(C_L)$ is the corresponding open subgroup of C_F , where $N_{L/F}: C_L \to C_F$ is the norm map¹. But the other direction " \leftarrow " is not known in general: given a finite index open subgroup of C_F , the Artin map θ_F doesn't produce the generators of the corresponding extension L/F.

The goal of explicit class field theory is to find this inverse.

2 Function Fields and Drinfeld Modules

Let F be a global function field with a fixed place ∞ , and with field of constants $k = \mathbb{F}_q$. If λ is a place of F, we denote by F_{λ} the completion at λ , by $\mathcal{O}_{\lambda} \subset F_{\lambda}$ the valuation ring, by $\mathbb{F}_{\lambda} := \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}$ the residue field at λ . Since we are working with function fields, the Teichmüller lifting $\mathbb{F}_{\lambda} \hookrightarrow \mathcal{O}_{\lambda}$ is a field homomorphism; we regard $\mathbb{F}_{\lambda} \subset \mathcal{O}_{\lambda} \subset F_{\lambda}$ as a subfield via this embedding.

For any extension L of k, we fixed an algebraic closure \bar{L} .

¹The norm for a idele is just the multiplication of the norm at every places.

2.1 Function fields

2.1.1 holomorphy ring

Let S be a non-empty set of (not all the) places of F. Define

$$\mathcal{O}^S := \bigcap_{\lambda \notin S} \mathcal{O}_{\lambda} = \{ x \in F \mid \operatorname{ord}_{\lambda}(x) \ge 0, \ \forall \lambda \notin S \}$$

to be the subring of F consisting of elements regular away from S. A holomorphy ring is a ring of this form. For example, our $A = \mathcal{O}^{\{\infty\}}$ is a holomorphy ring.

Proposition 2.1. Consider a holomorphy ring \mathcal{O}^S .

- (1) $\operatorname{Frac}(\mathcal{O}^S) = F$.
- (2) \mathcal{O}^S is a Dedekind domain.
- (3) There is a bijection

$$\{\text{place of } F \text{ not in } S\} \longleftrightarrow \operatorname{MaxSpec} \mathcal{O}^S$$

giving by $\lambda \mapsto \mathfrak{m}_{\lambda} \cap \mathcal{O}^{S}$, which induces isomorphisms

$$\mathbb{F}_{\lambda} = \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda} \simeq \mathcal{O}^{S}/(\mathfrak{m}_{\lambda} \cap \mathcal{O}^{S})$$

So we can regard λ as a maximal ideal of A.

2.1.2 The Weil group

Let L be an extension of k. The field k is perfect, so the algebraic closure \bar{k} of k in \bar{F} is contained in L^{sep} , and the absolute Galois group $\text{Gal}_L = \text{Gal}(F^{\text{sep}}/F)$ stablizes \bar{k} . Hence we have an exact sequence of topological groups

$$1 \longrightarrow \operatorname{Gal}(L^{\operatorname{sep}}/L\bar{k}) \longrightarrow \operatorname{Gal}_L \stackrel{\operatorname{deg}}{\longrightarrow} \hat{\mathbb{Z}} \to 0,$$

where deg : $\operatorname{Gal}_L \to \operatorname{Gal}_k \simeq \hat{\mathbb{Z}}$ is defined by

$$\sigma(x) = \operatorname{Frob}_q^{\operatorname{deg}(\sigma)}(x), \quad \sigma \in \operatorname{Gal}_L, \ x \in \bar{k}.$$

The **Weil group** is the subgroup W_L of Gal_L of elements that acts on \bar{k} by an integral power of the Frobenius-q, i.e.

$$\sigma(x) = x^{q^{\deg(\sigma)}}, \quad \sigma \in W_L, \ x \in \bar{k}.$$

The kernel of the map deg : $W_L \to \mathbb{Z}$ is still $\operatorname{Gal}(L^{\operatorname{sep}}/L\bar{k})$. We endow W_L with the weakest topology for which

$$1 \longrightarrow \operatorname{Gal}(L^{\operatorname{sep}}/L\bar{k}) \longrightarrow W_L \stackrel{\operatorname{deg}}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

is an exact sequence of topological groups, where

- $\operatorname{Gal}(L^{\operatorname{sep}}/L\bar{k})$ has its usual profinite topology,
- \mathbb{Z} has discrete topology².

With respect to this topology, the inclusion $W_L \hookrightarrow \operatorname{Gal}_L$ is continuous with dense image. (?)

²This is not the topology induced from $\mathbb{Z} \subset \hat{\mathbb{Z}}$.

2.2 Definition of Drinfeld modules

2.2.1 Endomorphisms of the additive group

Consider the additive group $\mathbb{G}_{a/L}$ over L, which is not only a group scheme, but also a k-vector space scheme, and we consider the ring $\operatorname{End}_k(\mathbb{G}_{a/L})$ of all k-linear endomorphism.

Proposition 2.2. End_k($\mathbb{G}_{a/L}$) = $L[\tau]$, where τ is the Frobenius-q endomorphism.

We explain the notation in the proof.

Proof. An endomorphism $\mathbb{G}_a \to \mathbb{G}_a$ of schemes over L is given by an L-algebra homomorphism $\Phi : L[X] \to L[X]$, hence it is determined by the image $\varphi(X) = \Phi(X)^3$ of X. It respects the group-scheme structure if it commutes with the co-multiplication map (also an L-algebra homomorphism)

$$\Delta: F[X] \to F[X] \otimes_L F[X], \quad X \mapsto X \otimes 1 + 1 \otimes X.$$

which amounts to

$$(\Phi \otimes \Phi)(\Delta(X)) = (\Phi \otimes \Phi)(X \otimes 1 + 1 \otimes X) = \Phi(X) \otimes 1 + 1 \otimes \Phi(X) = \varphi(X) \otimes 1 + 1 \otimes \varphi(X)$$

equals

$$\Delta(\Phi(X)) = \Delta(\varphi(X)) = \varphi(\Delta(X)) = \varphi(X \otimes 1 + 1 \otimes X).$$

This is to say that φ is additive, i.e. $\varphi(X+Y) = \varphi(X) + \varphi(Y)$.

We require furthur that Φ respects the "co-k-scalar multiplication", which I don't have the formula right now. So let's use the functor point of view. Take $c \in k$. Youeda tells us that

$$\operatorname{Hom}_{[k-\operatorname{Alg}^{\operatorname{op}},\operatorname{Grp}]}(\mathbb{G}_{\mathbf{a}},\mathbb{G}_{\mathbf{a}}) \simeq \mathbb{G}_{\mathbf{a}}(L[X]), \quad \phi \mapsto \phi(\operatorname{id}_{L[X]}),$$

so the co-c-multiplication is given by $X \mapsto cX$. Therefore Φ respects this map if $\varphi(cX) = c\varphi(X)$. In conclusion,

$$\begin{split} \operatorname{End}_k(\mathbb{G}_{\mathbf{a}/L}) &= \left\{ k\text{-linear polynomials in } L[X] \right\} \\ &= \left\{ \sum_i a_i X^{p^i} \middle| a_i \in L, \ \sum a_i c X^{p^i} &= \sum a_i c^{p^i} X^{p^i}, \forall c \in k = \mathbb{F}_q \right\} \\ &= \left\{ \sum_i a_i X^{q^i} \middle| a_i \in L \right\} &= \left\{ \left(\sum_i a_i \tau^i \right) (X) \middle| a_i \in L \right\}, \end{split}$$

where $\tau(X) := X^q$.

Note that $\tau: L[X] \to L[X]$ is additive, but doesn't commutes with elements in L:

$$\tau a = a^q \tau, \quad \forall a \in L.$$

$$\varphi(f(X)) = a_n f(X)^n + \dots + a_0$$

and

$$\Phi(f(X)) = f(\Phi(X)) = f(\varphi(X))$$

are different in general.

$$(b \otimes b') \cdot (c \otimes c') = bb' \otimes cc'.$$

³Note that if $\varphi(X) = a_n X^n + \dots + a_0$, then

⁴Recall that the multiplicative structure on $B \otimes_A C$ is given by

Therefore $L[\tau]$ is a non-commutative subring of $\operatorname{End}(L[X])$, where multiplication is composition; it is a ring of **twisted polynomials**. And we have $\operatorname{End}_k(\mathbb{G}_{a/L}) \simeq L[\tau]$.

Remark. τ corresponds to the Frobenius-q endomorphism of $\mathbb{G}_{a/L}$. (What is this? $\mathbb{G}_{a/L}$ is NOT over $\mathbb{F}_q = k$.)

2.2.2 Drinfeld modules and isogenies

Let A be a k-algebra. A **Drinfeld** A-module⁵ over L is a homomorphism

$$\phi: A \to L[\tau] \quad x \mapsto \phi(x) =: \phi_x$$

of k-algebras such that $\phi(A)$ is not contained in $L \subset L[\tau]$.

Let ϕ and ϕ' be two Drinfeld modules $A \to L[\tau]$. An **isogeny** over L from ϕ to ϕ' is an $f \in L[\tau] \setminus \{0\}$ such that

$$f\phi_a = \phi'_a f, \quad \forall a \in A.$$

An **isomorphism** over L from ϕ to ϕ' is an invertible isogeny, namely an isogeny $f \in L[\tau]^{\times}$. If M/L is an extension, then a Drinfeld module over L induces naturally a Drinfeld module over M, and we can talk about isogenies over M for Drinfeld modules over L.

Let

$$\partial: L[\tau] \to L \quad \sum_i a_i \tau^i \mapsto a_0$$

be the homomorphism of taking the constant term. We say that a Drinfeld module $\phi:A\to L[\tau]$ has generic characteristic, if

$$\partial \circ \phi : A \to L[\tau] \twoheadrightarrow L$$

is *injective*. This implies that ϕ is injective.

2.3 The Drinfeld modules we need

In what follows, we take $A := \mathcal{O}^{\{\infty\}} \subset F$ to be the subring of F consisting of functions that are regular away from ∞ , and we assume that every Drinfeld modules $\phi : A \to L[\tau]$ is of generic characteristic, so that $\partial \circ \phi : A \hookrightarrow L$ is injective and it extends to an embedding

$$F \hookrightarrow L$$
.

Through the latter, we view F as a subfield of L.

Let L^{perf} be the purely inseparable closure of L in \bar{L} , then $L^{\text{perf}}((\tau^{-1}))$ is a well-defined skew-field⁶, containing $L[\tau]$ as a subring.

Under our assumption, $\phi: A \hookrightarrow L[\tau]$ is injective, so it extends to a unique embedding

$$\phi: F \hookrightarrow L^{\mathrm{perf}}((\tau^{-1})).$$

The function

$$v_{\phi}: F \to \mathbb{Z} \cup \{\infty\} \quad x \mapsto \operatorname{ord}_{\tau^{-1}}(\phi_x)$$

⁵There is more general definition, but this one suffices.

⁶We need to have all p-th root, so that $\tau^{-1}a = a^{1/q}\tau$ is always valid.

is a nontrivial⁷ valuation, and $v_{\phi}(x) \leq 0$ for all $x \in A \setminus \{0\}$. Therefore v_{ϕ} is equivalent to the valuation ord_{\infty} attached to the place \infty. We define the **rank of** ϕ to be the rational number $r \in \mathbb{Q}$ such that

$$\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty}\operatorname{ord}_{\infty}(x),\tag{1}$$

for $x \in F$, where $d_{\infty} = [\mathbb{F}_{\infty} : k]$ is the inertia degree of F at ∞ . The tank r is always an integer (by a proposition we may encounter later). Since $L^{\text{perf}}((\tau^{-1}))$ is complete under $\text{ord}_{\tau^{-1}}$, the homomorphism $\phi : F \to L^{\text{perf}}((\tau^{-1}))$ gives rise to a unique homomorphism

$$\phi: F_{\infty} \to L^{\mathrm{perf}}((\tau^{-1}))$$

such that $\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty} \operatorname{ord}_{\infty}(x)$ for all $x \in F_{\infty}$.

Now the map ϕ restricts to a homomorphism

$$\phi: \mathbb{F}_{\infty} \subset \mathcal{O}_{\infty} \to L^{\mathrm{perf}} \llbracket \tau^{-1} \rrbracket.$$

Composing with $\partial: L^{\text{perf}}[\![\tau^{-1}]\!] \to L^{\text{perf}}$ of taking constant term, we obtain an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L^{\mathrm{perf}},$$

whose image lies in L (why?).

2.4 ε -normalized Drinfeld modules

Let $\phi: A \to L[\tau]$ be a Drinfeld module of rank r, extending to an embedding $\phi: F \to L^{\operatorname{perf}}((\tau^{-1}))$. For $x \in F_{\infty}^{\times}$, we define

 $\mu_{\phi}(x) := \text{first non-zero coefficient of } \phi_x \text{ as a Laurent series in } \tau^{-1},$

so that $\mu_{\phi}(x) \in (L^{\text{perf}})^{\times}$, and the first term, i.e. the term with highest τ -order, of ϕ_x is

$$\mu_{\phi}(x)\tau^{-rd_{\infty}\operatorname{ord}_{\infty}(x)}$$
.

In particular, if $x \in A$, $\mu_{\phi}(x)$ is the leading coefficient of $\phi_x \in L[\tau]$, which is what we used before to define reduction type.

By definition, for $x, y \in F_{\infty}^{\times}$,

$$\mu_{\phi}(xy) = \mu_{\phi}(x)\mu_{\phi}(y)^{1/q^{rd_{\infty} \operatorname{ord}_{\infty}(x)}}.$$

Recall that ϕ gives us an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L$$

With respect to this embedding, why?

$$\mu_{\phi}(x) = x, \quad \forall x \in \mathbb{F}_{\infty}$$

A sign function for F_{∞} is a group homomorphism $F_{\infty}^{\times} \to \mathbb{F}_{\infty}^{\times}$ such that $\varepsilon|_{\mathbb{F}_{\infty}^{\times}} = \mathrm{id}_{\mathbb{F}_{\infty}^{\times}}$. These functions can be described completely. A uniformizer π of F_{∞} , yields a decomposition

$$F_{\infty}^{\times} \simeq \mathbb{F}_{\infty} \times (1 + \mathfrak{m}_{\infty}) \times \pi^{\mathbb{Z}}.$$

If $p^r = \text{cardinality of } \mathbb{F}_{\infty}$, then $1 + \mathfrak{m}_{\infty}$ is a pro-p group, but $\mathbb{F}_{\infty}^{\times}$ has order $p^r - 1$, so ε must be trivial on \mathfrak{m}_{∞} . Therefore ε is determined by its value $\varepsilon(\pi)$.

Let $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ be a sign function for F_{∞} . We say that ϕ is

⁷Because $\phi(A) \not\subset L$.

• normalized, if

$$\mu_{\phi}(x) \in \mathbb{F}_{\infty}, \quad \forall x \in F_{\infty},$$

• ε -normalized, if

$$\exists \sigma \in \operatorname{Aut}_k(\mathbb{F}_{\infty}), \quad \phi = \sigma \circ \varepsilon.$$

Lemma 2.1. Let ε be a sign function for F_{∞} . Any Drinfeld module over L is isomorphic over \bar{L} to some ε -normalized Drinfeld module.

2.5 The action of an ideal on a Drinfeld module

Let $\phi:A\to L[\tau]$ be a Drinfeld module. For an ideal ${\mathfrak a}$ of A, Define

$$I_{\mathfrak{a},\phi} := \text{ ideal of } L[\tau] \text{ generated by } \{\phi_a \mid a \in \mathfrak{a}\}.$$

Every *left*-ideal of $L[\tau]$ is principal,⁸ so

$$I_{\mathfrak{a},\phi} = L[\tau]\phi_{\mathfrak{a}}$$

for a unique monic $\phi_{\mathfrak{a}} \in L[\tau]$. It is a plain to verify that for every $x \in A$, $I_{\mathfrak{a},\phi}$ absorb ϕ_x also from the right, i.e. $I_{\mathfrak{a},\phi}\phi_x \subset I_{\mathfrak{a},\phi}$, and therefore gives us a unique Drinfeld module

$$\mathfrak{a} * \phi : A \to L[\tau] \quad x \mapsto (\mathfrak{a} * \phi)_x,$$

which is characterized by

$$\phi_{\mathfrak{a}} \cdot \phi_x = (\mathfrak{a} * \phi)_x \cdot \phi_{\mathfrak{a}},$$

namely that $\phi_{\mathfrak{a}}$ is an isogeny from ϕ to $\mathfrak{a} * \phi$.

Lemma 2.2. Let \mathfrak{a} and \mathfrak{b} be non-zero ideals of A, then

$$\phi_{\mathfrak{a}\mathfrak{b}} = (\mathfrak{b} * \phi)_{\mathfrak{a}} \cdot \phi_{\mathfrak{b}},$$

$$\mathfrak{ab} * \phi = \mathfrak{a} * (\mathfrak{b} * \phi).$$

Lemma 2.3. Let $\mathfrak{a} = (w) \neq 0$ be a principal ideal of A, then

$$\phi_{(w)} = \mu_{\phi}(w)^{-1} \cdot \phi_w,$$

$$((w) * \phi)_x = \mu_{\phi}(w)^{-1} \cdot \phi_x \cdot \mu_{\phi}(w), \ \forall x \in A.$$

In particular, $\phi \simeq (w) * \phi$ (not given by $\phi_{(w)}$).

Lemma 2.4. Let $\sigma: L \hookrightarrow M$ be a field extension, inducing a Drinfeld module

$$\sigma(\phi): A \to M[\tau], \ x \mapsto \sigma(\phi)_x = \sigma(\phi_x).$$

Then

$$\sigma(\mathfrak{a} * \phi) = \mathfrak{a} * \sigma(\phi).$$

$$\sigma(\phi_{\mathfrak{a}}) = \sigma(\phi)_{\mathfrak{a}}.$$

Now we can extend the action of ideals to

 $^{^8}$ By an argument similar to L[X], probably.

• \mathcal{I}_A , the group of fractional ideals of A

More precisely, for $w \in A \setminus \{0\}$, Lemma 2.3 suggests us to define

$$((w^{-1}) * \phi)_x := \mu_\phi(w) \cdot \phi_x \cdot \mu_\phi(w)^{-1}.$$

For a general fractional ideal $w^{-1}\mathfrak{a}$ where \mathfrak{a} is an integral ideal of A, we set

$$(w^{-1}\mathfrak{a}) * \phi := w^{-1} * (\mathfrak{a} * \phi) : x \mapsto \mu_{\phi}(w) \cdot (\mathfrak{a} * \phi)_x \cdot \mu_{\phi}(w)^{-1}.$$

Lemma 2.2 shows that these formulae define an action of \mathcal{I}_A on the set of Drinfeld modules $A \to L[\tau]$. Given a sign function $\varepsilon : F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} , we can consider

- \mathcal{P}_A^+ , a subgroup of the group \mathcal{P} of principal fractional ideals of A, which is generated by $x \in F^\times$ with $\varepsilon(x) = 1$, and
- the narrow class group $\operatorname{Pic}^+(A) := \mathcal{I}_A/\mathcal{P}_A^+$.

If, in addition, ϕ is ε -normalized, then \mathcal{P}^+ fixes ϕ by Lemma 2.3, giving an action of $\operatorname{Pic}^+(A)$.

2.6 Torsion submodule

A Drinfeld module $\phi: A \to L[\tau]$ defines an A-module structure on \bar{L} by

$$x \cdot b := \phi_x(b), \quad \forall x \in A, b \in \bar{L}^9$$

All ϕ_x has coefficient in L, so ϕ , in particular, gives an A-module structure on L^{sep} .

For an ideal \mathfrak{a} of A, we define

$$\phi[\mathfrak{a}] := \left\{ b \in \bar{L} \mid \phi_{\mathfrak{a}}(b) = 0 \right\} = \left\{ b \in \bar{L} \mid \phi_{x}(b) = 0, \forall x \in \mathfrak{a} \right\},$$

an A/\mathfrak{a} -module and an A-submodule of \bar{L} with A-module structure induced by ϕ .

Proposition 2.3. Let ϕ be a Drinfeld module of rank r, \mathfrak{a} an ideal of A. Then $\phi[\mathfrak{a}]$ is a free A/\mathfrak{a} -module of rank r, and it is contained in F^{sep} .

Proof. Every ϕ_x acts by a polynomial of the form

$$\phi_x(T) = a_0 T + a_1 T^q + \dots + a_n T^{q^n}.$$

This polynomial is separable, because $x \mapsto \phi_x \mapsto a_0$ is injective, which implies that $\phi'_x(T) = a_0 \neq 0$ if $\phi_x \neq 0$. For the other claim, we use the structure of modules over Dedekind domains.

2.7 Hayes modules

Let \mathbb{C}_{∞} be a completion of an algebraic closure of F_{∞} . It is ∞ -adically complete and algebraically closed. Fix a sign function $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} . A **Hayes module for** ε is a Drinfeld module $\phi: A \to \mathbb{C}_{\infty}[\tau]$ over \mathbb{C}_{∞} , such that

$$\phi_x(b) = \sum_i \tau^i(b) = \sum_i b^{q^i}.$$

At least I think so!

⁹Note that if $\phi_x = \sum_{a_i \tau^i}$, then

- it is of rank 1,
- it is ε -normalized,
- $\partial \circ \phi : A \hookrightarrow \mathbb{C}_{\infty}$ is the inclusion $A \subset F \subset F_{\infty} \subset \mathbb{C}_{\infty}$.

Let X_{ε} be the set of Hayes modules for ε .

If \mathfrak{a} is an ideal of A, and $\phi \in X_{\varepsilon}$ then $\mathfrak{a} * \phi \in X_{\varepsilon}$. By some discussion before, this defines an action of $\operatorname{Pic}^+(A) = \mathcal{I}_A/\mathcal{P}_A^+$ on X_{ε} .

Proposition 2.4. The set X_{ε} is a principal homogeneous space for $\operatorname{Pic}^+(A)$, i.e. $\operatorname{Pic}^+(A)$ acts freely and transitively on X_{ε} .

2.7.1 Galois action on X_{ε}

We define the narrow Hilbert class field of the normalizing field for (F, ∞, ε) to be the extension

$$H_A^+ := F \text{ (coefficient of } \phi_x \mid \phi \in X_{\varepsilon}, x \in A)$$

of F in \mathbb{C}_{∞} .

Theorem 1. (1) For any $\phi \in X_{\varepsilon}$ and $x \in A$,

$$H_A^+ = F$$
 (coefficient of ϕ_x)

- (2) Let B be the integral closure of A in H_A^+ . For any $\phi \in X_{\varepsilon}$ and $x \in A$, $\phi_x \in H_A^+[\tau]$ has integral coefficient, i.e. ϕ_x has coefficient in B.
- (3) The extension H_A^+/F is finite abelian, and it is unramified away from ∞ .

By Lemma 2.4, there is a natrual action of $Gal(H_A^+/F)$ on X_{ε} . For a fixed $\phi \in X_{\varepsilon}$, ϕ induces an injective group homomorphism

$$\Psi: \operatorname{Gal}(H_A^+/F) \hookrightarrow \operatorname{Pic}^+(A),$$

such that

$$\sigma(\phi) = \Psi(\sigma) * \phi, \quad \forall \sigma \in \operatorname{Gal}_F.$$

- (4) For each non-zero prime \mathfrak{p} of A, the class of $\Psi(\operatorname{Frob}_{\mathfrak{p}})$ in $\operatorname{Pic}^+(A)$ equals the class of \mathfrak{p} .
- (5) $\Psi: \operatorname{Gal}(H_A^+/F) \to \operatorname{Pic}^+(A)$ is an isomorphism.

3 Construction of the Inverse to the Artin Map

We fix the tuple (F, ∞, ε) and a Hayes module $\phi \in X_{\varepsilon}$.

3.1 λ -adic representation

Let λ be a place of F different from ∞ , and we denote the corresponding maximal ideal of A still by λ . Take $e \geq 1$ and consider $\phi[\lambda^e]$. By Proposition 2.3, $\phi[\lambda^e]$ is an A/λ^e -module of rank 1. Define the λ -adic Tate module to be

$$T_{\lambda}(\phi) := \operatorname{Hom}_{A}(F_{\lambda}/\mathcal{O}_{\lambda}, \ \phi[\lambda^{\infty}]).$$

Proposition 3.1. $T_{\lambda}(\phi)$ is a free \mathcal{O}_{λ} -module of rank 1.

Proof. The ring \mathcal{O}_{λ} is a DVR, so

$$\operatorname{Hom}_{A}(F_{\lambda}/\mathcal{O}_{\lambda}, \ \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(\mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}^{e}, \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(A/\lambda^{e}, \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(A/\lambda^{e}, \phi[\lambda^{e}]).$$

Hence

$$V_{\lambda}(\phi) := T_{\lambda}(\phi) \otimes_{\mathcal{O}_{\lambda}} F_{\lambda}$$

is a 1-dimensional F_{λ} -vector space.

Using the isomophism $\Psi : \operatorname{Gal}(H_A^+/F) \simeq \operatorname{Pic}^+(A)$ from Theorem 1, any ideal $\mathfrak{a} \in \Psi(\sigma)$ of A satisfies that $\sigma(\phi) = \mathfrak{a} * \phi$, and thus we have two isogenies between $\sigma(\phi)$ and ϕ , such that

- σ induces an isomorphism $V_{\lambda}(\sigma): V_{\lambda}(\phi) \simeq V_{\lambda}(\sigma(\phi)),$
- $\phi_{\mathfrak{a}}$ induces an isomorphism¹⁰ $V_{\lambda}(\phi_{\mathfrak{a}}): V_{\lambda}(\phi) \simeq V_{\lambda}(\mathfrak{a} * \phi).$

So we obtain an element

$$V_{\lambda}(\phi_{\mathfrak{a}})^{-1} \circ V_{\lambda}(\sigma) \in \mathrm{GL}_{F_{\lambda}}(V_{\lambda}(\sigma)) = F_{\lambda}^{\times} \cdot \mathrm{id},$$

corresponding to an element $\rho_{\lambda}^{\mathfrak{a}}(\sigma) \in F_{\lambda}^{\times}$.

Lemma 3.1. Let $\sigma, \gamma \in \operatorname{Gal}_F$ and $\mathfrak{a}, \mathfrak{b}$ be ideals of A.

- (i) If $\sigma(\phi) = \mathfrak{a} * \phi$ and $\gamma(\phi) = \mathfrak{b} * \phi$, then $(\sigma \gamma)(\phi) = (\mathfrak{a}\mathfrak{b}) * \phi$, and $\rho_{\lambda}^{\mathfrak{a}\mathfrak{b}}(\sigma \gamma) = \rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\gamma)$.
- (ii) If $\sigma(\phi) = \mathfrak{a} * \phi = \mathfrak{b} * \phi$, then $\mathfrak{b}^{-1}\mathfrak{a}$ is generated by a unique $w \in F_{\infty}^{+} \cap F^{\times}$, and $\rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\sigma)^{-1} = w$.
- (iii) If $\sigma(\phi) = \mathfrak{a} * \phi$, then $\operatorname{ord}_{\lambda}(\rho_{\lambda}^{\mathfrak{a}}(\sigma)) = -\operatorname{ord}_{\lambda}(\mathfrak{a})^{11}$.

If $\sigma \in \operatorname{Gal}_{H^+}$, then $\sigma(\phi) = \phi = A * \phi$. By Lemma 3.1 (i), we obtain a homomorphism

$$\rho_{\lambda}: \operatorname{Gal}_{H_{A}^{+}} \to \mathcal{O}_{\lambda}^{\times} \quad \sigma \mapsto \rho_{\lambda}^{A}(\sigma).$$

Lemma 3.2. $\rho_{\lambda}: \operatorname{Gal}_{H_{A}^{+}} \to \mathcal{O}_{\lambda}^{\times}$ is continuous and unramified at all places of H_{A}^{+} not over λ or ∞ .

3.2 ∞ -adic representation

(Merge this and the last section in pre.) Let $F_{\infty}^+ := \{x \in F_{\infty}^{\times} \mid \varepsilon(x) = 1\} = \ker(\varepsilon : F_{\infty} \to \mathbb{F}_{\infty}^{\times})$. Recall that the Hayes module $\phi : A \to H_A^+[\tau]$ extends to an injective homomorphism $\phi : F_{\infty} \to (H_A^+)^{\mathrm{perf}}((\tau^{-1}))$.

Lemma 3.3. Let $\sigma, \gamma \in W_F$ and $\mathfrak{a}, \mathfrak{b}$ be ideals of A.

There exists some series $u \in F^{\text{sep}}[\tau^{-1}]^{\times}$, such that

$$u^{-1}\phi(F_{\infty})u\subset \bar{k}((\tau^{-1})).$$

For such a series u, if $\sigma(\phi) = \mathfrak{a} * \phi$, then there is a unique element $\rho_{\infty}^{\mathfrak{a}}(\sigma) \in F_{\infty}^{+}$, such that

$$\phi_{\mathfrak{q}}^{-1} \cdot \sigma(u) \cdot \tau^{\deg(\sigma)} \cdot u^{-1} = \phi(\rho_{\infty}^{\mathfrak{q}}(\sigma)).$$

This element satisfies the following properties:

$$\operatorname{Hom}_{L}(\phi, \phi') \hookrightarrow \operatorname{Hom}_{\mathcal{O}_{\lambda}}(T_{\lambda}(\phi), T_{\lambda}(\phi'))$$

is injective.

¹⁰Since ϕ has rank 1, it is equivalent to that $V_{\lambda}(\phi_{\mathfrak{a}})$ is non-zero. This is true, because, parallel to elliptic curves, taking Tate module is a faithful functor, i.e. for any two Drinfeld modules ϕ and ϕ' over L, the map

¹¹Recall that we identify λ with a prime ideal of A. The number $\operatorname{ord}_{\lambda}(\mathfrak{a})$ is the largest power of λ dividing \mathfrak{a} .

- (i) If $\sigma(\phi) = \mathfrak{a} * \phi$ and $\gamma(\phi) = \mathfrak{b} * \phi$, then $(\sigma\gamma)(\phi) = (\mathfrak{ab}) * \phi$, and $\rho_{\lambda}^{\mathfrak{ab}}(\sigma\gamma) = \rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\gamma)$.
- (ii) If $\sigma(\phi) = \mathfrak{a} * \phi = \mathfrak{b} * \phi$, then $\mathfrak{b}^{-1}\mathfrak{a}$ is generated by a unique $w \in F_{\infty}^{+} \cap F^{\times}$, and $\rho_{\lambda}^{\mathfrak{a}}(\sigma)\rho_{\lambda}^{\mathfrak{b}}(\sigma)^{-1} = w$.

Similar to the λ -adic case, restricting to the Weil group over H_A^+ gives us a homomorphism

$$\rho_{\infty}: W_{H_A^+} \to F_{\infty}^+, \quad \sigma \mapsto \rho_{\infty}^A(\sigma).$$

Lemma 3.4. $\rho_{\infty}: W_{H_A^+} \to F_{\infty}^+$ is continuous and unramified at all places of H_A^+ not over ∞ .

3.3 The inverse of the Artin map

For each $\sigma \in W_F$, fix an ideal \mathfrak{a}_{σ} of A, such that

$$\sigma(\phi) = \mathfrak{a}_{\sigma} * \phi.$$

By Lemma 3.1 (iii), $\rho_{\lambda}^{\mathfrak{a}_{\sigma}}(\sigma) \in \mathcal{O}_{\lambda}^{\times}$ for almost all places λ . Hence $(\rho_{\lambda}^{\mathfrak{a}_{\sigma}}(\sigma))_{\lambda}$ is an idele of F; we define $\rho(\sigma)$ to be its class in C_F . By Lemma 3.1 (ii) and Lemma 3.3 (ii), for different choices of \mathfrak{a}_{σ} , $\rho_{\lambda}^{\mathfrak{a}_{\sigma}}(\sigma)$ will differ by an element in F^{\times} . Therefore $\rho(\sigma)$ is independent to the choice of \mathfrak{a}_{σ} , and the map

$$\rho: W_F \to C_F, \quad \sigma \mapsto \rho(\sigma)$$

is a group homomorphism by Lemma 3.1 (i) and Lemma 3.3 (i).

The restriction of $\rho: W_F \to C_F$ to $W_{H_A^+}$ is

$$W_{H_A^+} \xrightarrow{\prod_{\lambda} \rho_{\lambda}} F_{\infty}^+ \times \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times} \hookrightarrow \mathbb{A}_F^{\times} \twoheadrightarrow C_F.$$

This homomorphism is continuous since all ρ_{λ} are continuous. The group $W_{H_A^+}$ has finite index in W_F , so ρ is continuous on W_F . The group C_F is abelian, so ρ factors through the maximal abelian quotient $W_F^{\rm ab}$, and taking profinite completion yields a continuous homomorphism

$$\hat{\rho}: \operatorname{Gal}_F \to \hat{C}_F$$

that factors through the maximal abelian quotient $\operatorname{Gal}_F^{\operatorname{ab}} = \operatorname{Gal}(F^{\operatorname{ab}}/F)$.

Recall that the Artin map $\theta_F: C_F \to \operatorname{Gal}(F^{\mathrm{ab}}/F)$ extends to a topological isomorphism

$$\hat{\theta}_F: \hat{C}_F \to \operatorname{Gal}(F^{\mathrm{ab}}/F).$$

Theorem 2. The map $\hat{\rho}: \operatorname{Gal}(F^{\mathrm{ab}}/F) \to \hat{C}_F$ is a topological isomorphism independent to the choice of ∞ , ε and ϕ , and the map

$$\operatorname{Gal}(F^{\mathrm{ab}}/F) \to \hat{C}_F \quad \sigma \mapsto \hat{\rho}(\sigma)^{-1}$$

is the inverse of the Artin map $\hat{\theta}_F: \hat{C}_F \to \operatorname{Gal}(F^{\mathrm{ab}}/F)$.

Proof. First, we need an arithmetic input.

Lemma 3.5. Let λ be a place of F, \mathfrak{p} be another place of F that is not λ or ∞ . Then $\rho_{\mathfrak{p}}^{\mathfrak{p}}(\operatorname{Frob}_{\mathfrak{p}}) = 1$.

Remark (Explaination to the notation $\rho_{\lambda}^{\mathfrak{p}}(\operatorname{Frob}_{\mathfrak{p}})$). Let λ and \mathfrak{p} be places of F with $\mathfrak{p} \neq \infty$. By Theorem 1, the extension H_A^+/F is unramified at all places $\neq \infty$, and the unique $\operatorname{Frob}_{\mathfrak{p}} \in \operatorname{Gal}(H_A^+/F)$ satisfies $\operatorname{Frob}_{\mathfrak{p}}(\phi) = \mathfrak{p} * \phi$. Also by Theorem 1, that Gal_F -action on X_{ε} factors through $\operatorname{Gal}(H_A^+/F)$, hence any (non-unique) $\operatorname{Frob}_{\mathfrak{p}} \in \operatorname{Gal}_F$ satisfies $\operatorname{Frob}_{\mathfrak{p}}(\phi) = \mathfrak{p} * \phi$.

Now we begin the proof. We will denote the class of $\alpha \in \mathbb{A}_F^{\times}$ in C_F by $[\alpha]$.

Let $U < C_F$ be an open subgroup of finite index. The subgroup $\rho^{-1}(U) < W_F^{ab}$ is open. Consider the finite abelian extension $L_U := (F^{ab})^{\rho^{-1}(U)}$ of F fixed by this subgroup, so that $\operatorname{Gal}_{L_U}^{ab} = \operatorname{the closure of } \rho^{-1}(U)$ in $\operatorname{Gal}_F^{ab}$. Hence we have an injective continuous homomorphism 12

$$\rho_U : \operatorname{Gal}(L_U/F) \simeq \operatorname{Gal}_F^{\mathrm{ab}} / \operatorname{Gal}_{L_U}^{\mathrm{ab}} \simeq W_F^{\mathrm{ab}} / \rho^{-1}(U) \hookrightarrow C_F/U.$$

Let S_U be the set of places consists of

- ∞ , and
- \mathfrak{p} for which there exists some idele $\alpha \in \mathcal{O}_{\mathfrak{p}}^{\times} \hookrightarrow {}^{13}\mathbb{A}_F^{\times}$ whose class in C_F is not in U.

Since U is open in C_F , the set S_U is finite.

For a place $\mathfrak{p} \notin S_U$, choose a uniformizer $\pi_{\mathfrak{p}}$ of $F_{\mathfrak{p}}$ and consider the idele $\pi_{\mathfrak{p}} = (\cdots, 1, \pi_{\mathfrak{p}}, 1, \cdots) \in \mathbb{A}_F^{\times}$.

Lemma 3.6. C_F/U is generated by $\{\pi_{\mathfrak{p}}\}_{\mathfrak{p}\notin S_U}$.

Proof of Lemma 3.6. Let V be the preimage of U in \mathbb{A}_F^{\times} , W be the subgroup of \mathbb{A}_F^{\times} generated by V and $\{\pi_{\mathfrak{p}}\}_{\mathfrak{p}\notin S_U}$. We need to show that $W=\mathbb{A}_F^{\times}$.

Take an arbitary $\alpha \in \mathbb{A}_F^{\times}$. By definition of S_U , $\prod_{\mathfrak{p} \notin S_U} \mathcal{O}_{\mathfrak{p}}^{\times} \subset V$, so there is some integer $e \in \mathbb{Z}$ such that

$$\prod_{\mathfrak{p} \in S_U} (1 + \mathfrak{m}_p^e) \times \prod_{\mathfrak{p} \notin S_U} \mathcal{O}_{\mathfrak{p}}^{\times} \subset V.$$

By weak approximation theorem, there is some $x \in F^{\times}$, such that $\operatorname{ord}_{\mathfrak{p}}(\alpha_{\mathfrak{p}} - x) > \max\{e, \operatorname{ord}_{\mathfrak{p}}(\alpha_{p})\}$ for all $\mathfrak{p} \in S_{U}$. This implies that $x^{-1}\alpha_{\mathfrak{p}} \in 1 + \mathfrak{m}_{\mathfrak{p}}^{e}$, and thus

$$x^{-1}\alpha \in \prod_{\mathfrak{p} \notin S_U} F_{\mathfrak{p}}^{\times} \times \prod_{\mathfrak{p} \in S_U} (1 + \mathfrak{m}_p^e) = \prod_{\mathfrak{p} \notin S_U} \mathcal{O}_{\mathfrak{p}}^{\times} \pi_{\mathfrak{p}}^{\mathbb{Z}} \times \prod_{\mathfrak{p} \in S_U} (1 + \mathfrak{m}_{\mathfrak{p}}^e) \subset W.$$

As $x \in F^{\times} \subset V \subset W$, we have proved $\alpha \in W$.

Now consider the idele

$$\beta := \left(\rho_{\lambda}^{\mathfrak{p}}(\mathrm{Frob}_{\mathfrak{p}})\right)_{\lambda} \cdot \pi_{\mathfrak{p}} \in \mathbb{A}_{F}^{\times}$$

for some Frob_p $\in W_F$. By Lemma 3.5, $\beta_{\lambda} = 1$ for all $\lambda \neq \mathfrak{p}$. By Lemma 3.1 (iii),

$$\operatorname{ord}_{\mathfrak{n}}(\beta_{\mathfrak{n}}) = -\operatorname{ord}_{\mathfrak{n}}(\mathfrak{p}) \cdot 1 = 0.$$

Hence the image of β in C_F is in U, namely $\rho_U(\operatorname{Frob}_{\mathfrak{p}}) = [\rho(\operatorname{Frob}_{\mathfrak{p}})] \cdot U = [\pi_{\mathfrak{p}}^{-1}] \cdot U \in C_F/U$. Consequently,

- L_U/F is unramified at $\mathfrak{p} \notin S_U$, since there is a unique $\operatorname{Frob}_{\mathfrak{p}} \in \operatorname{Gal}(L_U/F)$ by the injectivity of ρ_U ;
- $\rho_U : \operatorname{Gal}(L_U/F) \to C_F/U$ is surjective and thus an isomorphism.

Next, we show that these L_U are all the finite abelian extensions of F. For each open $U < C_F$ of finite index, the continuous isomorphism

$$C_F/U \to \operatorname{Gal}(L_U/F) \quad \alpha \mapsto (\rho_U^{-1}(\alpha))^{-1}$$

¹²I hope these are true..? i.e. if H is a dense subgroup of G and U is open in H, then $H/U \simeq G/\bar{U}$.

 $^{^{13}\}alpha = (\cdots, 1, \alpha_{\mathfrak{p}}, 1, \cdots)$ for some $\alpha_{\mathfrak{p}} \in \mathcal{O}_{\mathfrak{p}}^{\times}$.

maps $\pi_{\mathfrak{p}}$ to Frob_{\mathfrak{p}}. This is Artin map¹⁴. So

$$\operatorname{Gal}(L_U/F) \to C_F/U \quad \sigma \mapsto \rho_U(\sigma)^{-1}$$

is the inverse to

$$\theta_U: C_F/U \to \operatorname{Gal}(L_U/F) \quad \alpha \mapsto \theta_F(\alpha)|_{L_U},$$

the Artin map at this finite level. If L is a finite abelian extension of F, then the corresponding open subgroup U_L of C_F according to class field theory is the kernel of

$$C_F \to \operatorname{Gal}(L/F) \quad \alpha \mapsto \theta_F(\alpha)|_L.$$

Therefore $L = L_{U_L}$, and $F^{ab} = \bigcup_{U} L_{U}$.

Now we can pass to the limit of the compatible isomophisms ρ_{UU} and go back to see that $\hat{\rho}: \operatorname{Gal}_F^{ab} \to C_F$ is an isomophism, whose inverse is the "multiplicative inverse" of the Artin map $\hat{\theta}_F$.

Corollary 3.1. The homomorphism $\rho: W_F^{ab} \to C_F$ is a topological isomorphism, and the map

$$W_F^{\mathrm{ab}} \to C_F \quad \sigma \mapsto \rho(\sigma)^{-1}$$

is the inverse of the Artin map $\theta_F: C_F \to W_F^{ab}$.

4 Example: the Rational Function Field

Let F = k(t). We consider the usual place ∞ and A = k[t], so that $F_{\infty} = k(t)$, $\mathbb{F}_{\infty} = k$, $\mathfrak{m}_{\infty} = t^{-1}k[t^{-1}]$, $\operatorname{ord}_{\infty}(t^{-1}) = 1$. Let $\varepsilon : F_{\infty}^{\times} \to k^{\times}$ be the unique sign function such that $\varepsilon(t^{-1}) = 1$, so that $F_{\infty}^{+} = t^{\mathbb{Z}} \cdot (1 + \mathfrak{m}_{\infty})$.

The Carlitz module ϕ is defined by

$$\phi: A = k[t] \to F[\tau] \quad t \mapsto \phi_t := t + \tau.$$

It is a Hayes module for ε , and the normalizing field for (F, ∞, ε) is $H_A^+ = F$, so ϕ is the only Hayes module for ε .

We have defined the representations

$$\rho_{\lambda}: W_F^{\mathrm{ab}} \to F_{\lambda}^{\times} \quad \sigma \mapsto \rho_{\lambda}^{A}(\sigma)$$

for every place λ of F. For $\lambda \neq \infty$, the representation ρ_{λ} comes from a continuous Galois representation $\rho_{\lambda} : \operatorname{Gal}_F \to \mathcal{O}_{\lambda}^{\times}$. For ∞ , ρ_{∞} takes value in F_{∞}^+ . So the isomorphism between the (abelianized) Weil group and the idele class group factors as

$$W_F^{\text{ab}} \xrightarrow{\prod_{\lambda \neq \infty} \rho_{\lambda}} F_{\infty}^+ \times \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times} \to C_F.$$
 (2)

Similar to \mathbb{Q} , we have an isomophism

$$\mathbb{A}_F^{\times} \simeq F^{\times} \times F_{\infty}^{+} \times \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times}$$

for F = k(t) as follows. Every place $\lambda \neq \infty$ has a "canonical" uniformizer $\mathfrak{p} \in k[t]$, namely the unique monic irreducible polynomial, and we write $x_{\mathfrak{p}} = u_{\mathfrak{p}}\mathfrak{p}^{n_{\mathfrak{p}}}$ with $u_{\mathfrak{p}} \in \mathcal{O}_{\mathfrak{p}}^{\times}$. Put

$$f := a_{\infty} \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}} \in k(t)^{\times}.$$

¹⁴See this post on MSE, for instance.

At the place ∞ , we write $f^{-1}x_{\infty} = a_{\infty}t^n + \text{terms}$ with lower degree in t, where $a_{\infty} \in k$. Then $(a_{\infty}f)^{-1}x \in F_{\infty}^+ \times \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times}$. This gives the decomposition above, which implies that the second arrow in (2) is an isomorphism, and thus so is the first arrow

$$W_F^{\mathrm{ab}} \xrightarrow{\prod_{\lambda \neq \infty}} \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times} \times t^{\mathbb{Z}} \times (1 + \mathfrak{m}_{\infty}).$$

Taking profinite completion, we got a decomposition

$$\operatorname{Gal}(F^{\operatorname{ab}}/F) \simeq \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda}^{\times} \times t^{\hat{\mathbb{Z}}} \times (1 + \mathfrak{m}_{\infty})$$

of $\operatorname{Gal}_F^{\operatorname{ab}}$, which gives three disjoint abelian extension of F whose compositum is F^{ab} .

Description of F^{ab}

Recall that if L/K is an extension of function fields with fields of constants k_L and k_K respectively, we say that:

- L/K is a constant field extension, if $L = Kk_L$;
- L/K is a geometric extension, if $k_L = k_K$.

The "cyclotomic" extension K_{∞}

For $\lambda \neq \infty$, the representation $\rho_{\lambda} : \operatorname{Gal}_{F} \to \mathcal{O}_{\lambda}^{\times}$ is precisely the Galois representation on $T_{\lambda}(\phi)$, where ϕ is the Carlitz module. The representation

$$\chi := \prod_{\lambda \neq \infty} \rho_{\lambda} : \operatorname{Gal}_{F} \to \prod_{\lambda \neq \infty} \mathcal{O}_{\lambda} = \hat{A}^{\times}$$

is the inverse limit of

$$\chi_m: \operatorname{Gal}_F \to (A/(m))^{\times}$$

from Gal_F -action on $\phi[m]$ for all monic irreducible $m \in A = k[t]$, ordered by divisibility. Hence the field fixed by $\ker(\chi)$ is

$$K_{\infty} = \bigcup_{m} F(\phi[m]).$$

The extension K_{∞}/F is a geometric extension, tamely ramified at ∞ .

The extension of constants $\bar{k}(t)$

For each $\sigma \in W_F$, the factor in $t^{\mathbb{Z}} \simeq \mathbb{Z}$ is $\operatorname{ord}_t(\rho_{\infty}(\sigma)) = -\operatorname{ord}_{\infty}(\rho_{\infty}(\sigma))$, which equals $-\operatorname{ord}_{\tau^{-1}}(\phi(\rho_{\infty}(\sigma)))$ by (1). By Lemma 3.3, $\phi(\rho_{\infty}(\sigma)) = \sigma(u)\tau^{\operatorname{deg}(\sigma)}u^{-1}$, so $-\operatorname{ord}_{\tau^{-1}}(\phi(\rho_{\infty}(\sigma))) = \operatorname{deg}(\sigma)$. This shows that the projection $W_F \to \mathbb{Z}$ is precisely the map deg. The field fixed by (the closure of) $\operatorname{ker}(\operatorname{deg})$ is $\bar{k}(t)$, and the extension $\bar{k}(t)/k(t)$ is the maximal constant field extension.

The wildly ramified extension L_{∞}

By discussion above, the projection onto $1 + \mathfrak{m}_{\infty}$ is

$$W_F \to 1 + \mathfrak{m}_{\infty} \quad \sigma \mapsto \rho_{\infty}(\sigma)/\operatorname{ord}_t(\rho_{\infty}(\sigma)) = \rho_{\infty}(\sigma)/\operatorname{deg}(\sigma).$$

Taking profinite completion, we get a Galois representation $\beta: \operatorname{Gal}_F \to 1 + \mathfrak{m}_{\infty}$. Denote by L_{∞} the fixed field of $\ker(\beta)$. The extension L_{∞}/F is unramified away from ∞ and wildly ramified at ∞ .

- 5 Comparision with Elliptic Curves
- 6 Proof of (some) lemmas