DATA SCIENCE LECTURE 4: K-NEAREST NEIGHBORS CLASSIFICATION

YUCHEN ZHAO / DAT-14

LAST TIME:

I. DATA RETRIEVAL (API, JSON)

II. ETL INTRO (DATABASE)

III. VISUALIZATION (D3.JS)

EXERCISES: IV. PANDAS

V. MINING TWITTER VIA API

QUESTIONS?

I. CLASSIFICATION PROBLEMS II. BUILDING EFFECTIVE CLASSIFIERS

EXERCISES: III. THE KNN CLASSIFICATION MODEL

I. CLASSIFICATION PROBLEMS

	continuous	categorical
supervised	???	???
unsupervised	???	???
•		

supervised
unsupervisedregression
dimension reductionclassification
clustering

CLASSIFICATION PROBLEMS

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +	
5.1	3.5	1.4	0.2	I. setosa	
4.9	3.0	1.4	0.2	I. setosa	
4.7	3.2	1.3	0.2	I. setosa	
4.6	3.1	1.5	0.2	I. setosa	
5.0	3.6	1.4	0.2	I. setosa	
5.4	3.9	1.7	0.4	I. setosa	
4.6	3.4	1.4	0.3	I. setosa	
5.0	3.4	1.5	0.2	I. setosa	
	İ		1		

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

9

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (qualitative)

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

```
Welcome to R! Thu Feb 28 13:07:25 2013
> summary(iris)
 Sepal.Length
               Sepal.Width
                               Petal.Length
                                                Petal.Width
Min. :4.300
                Min. :2.000
                                Min.
                                      :1.000
                                               Min.
                                                      :0.100
                1st Qu.:2.800
                                1st Qu.:1.600
                                               1st Qu.:0.300
 1st Qu.:5.100
                Median :3.000
Median :5.800
                                Median :4.350
                                               Median :1.300
      :5.843
                       :3.057
                                       :3.758
                                                      :1.199
 Mean
                Mean
                                Mean
                                               Mean
 3rd Qu.:6.400
                3rd Qu.:3.300
                                3rd Qu.:5.100
                                               3rd Qu.:1.800
       :7.900 max
                       :4.400
                                       :6.900
                                                      :2.500
                                Max.
                                               Max.
      Species
          :50
 setosa
versicolor:50
 virginica:50
```

CLASSIFICATION PROBLEMS

Q: How does a classification problem work?

Q: How does a classification problem work? A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

1) split dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

NOTE

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

II. BUILDING EFFECTIVE CLASSIFIERS

1) training error

- 1) training error
- 2) generalization error

NOTE

measures how
well a learning
machine
generalizes to
unseen(test) data

- 1) training error
- 2) generalization error
- *3) 00S error*

NOTE

Q: What types of prediction error will we run into?

- 1) training error
- 2) generalization error
- *3) 00S error*

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

Thought experiment:

Suppose instead, we train our model using the entire dataset.

- Q: How low can we push the training error?
- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

source: Data Analysis with Open Source Tools, by Philipp K. Janert. O'Reilly Media, 2011.

OVERFITTING - EXAMPLE

Underfitting and Overfitting

source: http://www.dtreg.com

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

A: Training error is not a good estimate of OOS accuracy.

Suppose we do the train/test split.

Q: How well does generalization error predict OOS accuracy?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

NOTE

The generalization error gives a high-variance estimate of OOS accuracy.

Q: How can we do better?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

CROSS-VALIDATION

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

overall accuracy: $(k_1 + k_2 + k_3 + k_4 + k_5)/5$

1) More accurate estimate of 00S prediction error.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

III. KNN CLASSIFICATION

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

OPTIONAL NOTE

Our definition of "nearest" implicitly uses the Euclidean distance function.

Another example with k = 3Will our new example be blue or orange? Vote by the 3 nearest neigbors

In theory, if infinite number of samples available, the larger is k, the better is classification

The caveat is that all k neighbors have to be close

- Possible when infinite # samples available
- Impossible in practice since # samples is finite

Rule of thumb is k < sqrt(n), n is number of examples

interesting theoretical properties

• In practice, k = 1 is often used for efficiency, but can be sensitive to

"noise"

larger k may improve performance, but too large k destroys locality, i.e. end up looking at samples that are not neighbors

<u>cross-validation</u> may be used to choose k

Advantages

- Can be applied to the data from any distribution
- Very simple and intuitive
- Good classification if the number of samples is large enough

Disadvantages

- Choosing k may be tricky
- Test stage is computationally expensive (no training stage)
- Need large number of samples for accuracy

INTRO TO DATA SCIENCE

