Math 395: Homework 4

Due: 10/03/2024

Avinash Iyer

Collaborators: Carly Venenciano, Gianluca Crescenzo, Noah Smith, Ben Langer Weida, Clarissa Ly

Problem 15

Problem: Let $A \in Mat_n(\mathbb{F})$.

- (a) Assume A has eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that $\det(A) = \lambda_1 \cdots \lambda_n$ and $\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$.
- (b) Suppose A does not have n distinct eigenvalues, but $c_A(x)$ splits into linear factors over F. Can you characterize the determinant and trace of A in terms of the eigenvalues?

Solution.

(a) If $A \in Mat_n(\mathbb{F})$ has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then there exists $P \in GL_n(\mathbb{F})$ such that

$$A = P \left(diag (\lambda_1, \dots, \lambda_n) \right) P^{-1}$$

where diag $(\lambda_1, ..., \lambda_n)$ denote the diagonal matrix with entries $\lambda_1, ..., \lambda_n$ at entries $a_{11}, ..., a_{nn}$. In particular, this means

$$det(A) = det \left(P \left(diag \left(\lambda_1, \dots, \lambda_n \right) \right) P^{-1} \right)$$

$$= det \left(diag \left(\lambda_1, \dots, \lambda_n \right) \right)$$

$$= \prod_{i=1}^n \lambda_i,$$

and

$$tr(A) = tr\left(P\left(diag(\lambda_1, ..., \lambda_n)\right)P^{-1}\right)$$
$$= tr\left(diag(\lambda_1, ..., \lambda_n)\right)$$
$$= \sum_{j=1}^{n} \lambda_j.$$

(b) If $c_A(x)$ splits into linear factors over F, then the Jordan canonical form for A exists, with each of its Jordan blocks consisting of the roots of $c_A(x)$ with multiplicity.^I Thus, we can characterize tr(A) to be the sum of the roots of $c_A(X)$ with multiplicity, and det(A) to be the product of the roots with multiplicity.

Problem 17

Problem: Prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of a matrix $A \in Mat_n(\mathbb{F})$, the $\lambda_1^k, \ldots, \lambda_n^k$ are the eigenvalues for A^k for any $k \ge 0$.

Solution. Since A has eigenvalues $\lambda_1, \dots, \lambda_n$, it is the case that there exists some $P \in GL_n(\mathbb{F})$ such that

$$A = P \left(diag (\lambda_1, \dots, \lambda_k) \right) P^{-1}.$$

^IAssistance from Wikipedia

For k = 0, we have

$$\begin{split} A^0 &= \left(P\left(diag\left(\lambda_1, \dots, \lambda_n \right) \right) P^{-1} \right)^0 \\ &= P\left(diag\left(\lambda_1^0, \dots, \lambda_n^0 \right) \right) P^{-1}, \end{split}$$

meaning $\lambda_1^k,\dots,\lambda_n^k$ are eigenvalues for $A^k.$

For k > 0, we have

$$\begin{split} A^k &= \underbrace{\left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right) \left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right) \cdots \left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right)}_{k \text{ times}} \\ &= P\underbrace{\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) \left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) \cdots \left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right)}_{k \text{ times}} P^{-1} \\ &= P\left(diag\left(\lambda_1^k, \ldots, \lambda_n^k\right)\right) P^{-1}, \end{split}$$

meaning $\lambda_1^k,\dots,\lambda_n^k$ are eigenvalues for $A^k.$