# PROJECT REPORT

# STATISTICAL MACHINE LEARNING APPROACHES TO LIVER DISEASE PREDICTION

# Done by:

- SNEGA S
- SURUTHI LAKSHMI E
- KEERTHANA L
- SHARUMATHI C V

1

| CHAPTER | TITLE                                | <b>PAGE</b> |
|---------|--------------------------------------|-------------|
| NO.     |                                      | NO.         |
|         | ABSTRACT                             | 4           |
| 1       | INTRODUCTION                         | 4           |
| 1.1.    | PROJECT OVERVIEW                     | 4           |
| 1.2.    | PURPOSE                              | 4           |
| 2       | LITERAURE REVIEW                     | 4           |
| 3       | IDEATION AND PROPOSED SOLUTION       | 9           |
| 3.1     | EMPATHY MAP CANVAS                   | 9           |
| 3.2     | IDEATION AND BRAINSTORMING           | 9           |
| 3.3     | PROPOSED SOLUTION                    | 10          |
| 3.4     | PROPOSED SOLUTION FIT                | 11          |
| 4       | REQUIREMENT ANALYSIS                 | 11          |
| 5       | PROJECT DESIGN                       | 13          |
| 5.1     | DATA FLOW DIAGRAM                    | 13          |
| 5.2     | SOLUTION AND TECHNOLOGY ARCHITECTURE | 13          |
| 6       | PROJECT PLANNING AND SCHEDULING      | 16          |
| 6.1     | SPRINT PLANNING AND SCHEDULING       | 16          |
| 6.2     | SPRINT DELIVERY PLAN                 | 18          |
| 7       | CODING AND SOLUTIONING               | 19          |
| 7.1     | MODEL BUILDING                       | 19          |
| 7.2     | APPLICATION BUILDING                 | 19          |
| 8       | TESTING                              | 21          |
| 9       | MODEL PERFORMANCE<br>TESTING         | 22          |
| 10      | ADVANTAGES AND                       | 22          |

**DISADVANTAGES** 

| 11 | CONCLUSION   | 24 |
|----|--------------|----|
| 12 | FUTURE SCOPE | 24 |
| 13 | REFERENCES   | 24 |

# **ABSTRACT**

The improvement of patient care, research, and policy is significantly impacted by medical diagnoses. Medical practitioners employ a variety of pathological techniques to make diagnoses based on medical records and the conditions of the patients. Disease identification has been significantly enhanced by the application of artificial intelligence and machine learning in conjunction with clinical data. Datadriven, machine learning (ML) techniques can be used to test current approaches and support researchers in potentially innovative judgments

### 1.INTRODUCTION

## 1.1.Project Overview

Liver diseases avert the normal function of the liver. Mainly due to the large amount of alcohol consumption liver disease arises. Early prediction of liver disease using classification algorithms is an efficacious task that can help the doctors to diagnose the disease within a short duration of time. Discovering the existence of liver

disease at an early stage is a complex task for the doctors. The main objective of this project is to analyze the parameters of various classification algorithms and compare their predictive accuracies so as to find out the best classifier for determining the liver disease.

#### 1.2.Purpose

This Project examines data from liver patients concentrating on relationships between a key list of liver enzymes, proteins, age and gender using them to try and predict the likeliness of liver disease. Here we are building a model by applying various machine learning algorithms find the best accurate model. And integrate to flask based web application. User can predict the disease by entering parameters in the web application.

#### 2.LITERATURE REVIEW

Bendi et al. [1] authors used two different input dataset and evaluate that the AP datasets has better than UCLA dataset for all the different selected algorithms. Based on performance on their classification KNN, Backward propagation and SVM are giving better results. The AP data set is better than UCLA for the entire selected algorithm. And found out Naïve Bayes, C4.5, KNN, Backward propagation and SVM has 95.07, 96.27, 96.93, 97.47, & 97.07% accuracy respectively.

• Bendi et al. [2] proposed a paper based on Modified Rotation Forest, used two dataset as an input UCI liver dataset and Indian liver dataset. And results show that MLP algorithm with random subset gives better accuracy of 94.78% for UCI dataset than CFS achieved accuracy of 73.07% for Indian liver dataset. • Yugal Kuma & G. Sahoo [3] proposed a paper based on different classification technique and used north east area of Andhra Pradesh (India) liver

dataset. And the results shows that Decision tree(DT) algorithm has better than other algorithm and provide accuracy of 98.46%.

- S.Dhamodharan [4] proposed a paper based on two classification technique naïve Bayes and FT tree and used WEKA (Waikato Environment for Knowledge and Analysis) dataset. Naïve Bayes is 75.54% accuracy and FT Tree is 72.6624% accuracy and concluded Naïve Bayes gas better algorithm compare to other algorithms.
- Han Ma et al. [9] in this paper 11 different classification are evaluated and Demonstrated in China Zhejiang University, College of medicine and concluded Bayesian network accuracy of 83%, specificity 83%, sensitivity of 0.878 and F-measure of 0.655.
- Heba Ayeldeen et al. [5] propose a paper for prediction of liver fibrosis stages using decision tree technique and used Cario university data set and result shows that decision tree classifier accuracy is 93.7%.
- D.Sindhuja& R. JeminaPriyadarsini [6] survey a paper for classification of liver disease. In this survey different classification techniques of data mining are study and used dataset of dataset of AP liver has better than Dataset of UCLA, and concluded C4.5 achieved better results than other algorithms.

Somaya Hashem et al. [8] presented a paper for diagnosis of liver disease. In this paper they used two algorithms, SVM & Backpropagation and used UCI machine repository dataset. And concluded SVM has accuracy 71% better result than Backpropagation accuracy 73.2%.

- Joel Jacob et al. [10] proposed a paper to diagnosis of liver disease by using three different algorithms, Logistic regression, K-NN, SVM, and ANN and used Indian Liver Patient Dataset comprised of 10 different attributes of 583 patients. And concluded Logistic regression, KNN, SVM,& ANN has 73.23, 72.05, 75.04 & 92.8% accuracy respectively.
- Sivakumar D et al. [11] proposed a paper for prediction of chronic liver disease by using two different techniques K-means and C4.5. UCI repository.
- Mehtaj Banu H [12] in this paper authors study different machine learning technique, Supervised, unsupervised & reinforcement and also analysis UCI dataset database and concluded that KNN and SVM improved better performance and exactness of liver disease prediction.
- VasanDurai et al. [13] proposed a paper based on liver disease prediction by using three different techniques, SVM, NB & J48 using UCI repository dataset and concluded that J48 algorithm has better performance in terms of Feature selection and has accuracy of 95.04%.

| Sl | Authors | Year | Disease | Machine                   | Datase | Remarks | Conclusion |
|----|---------|------|---------|---------------------------|--------|---------|------------|
| no |         |      |         | learning<br>algorith<br>m | tinput |         |            |

| 1 | BendiVe  | 201      | Liverdise | Naïve       | AP liver dataset and | Naïve Bayes,             | KNN,                        |
|---|----------|----------|-----------|-------------|----------------------|--------------------------|-----------------------------|
|   | nkataRa  | 1        | ase       | Bayes,C4.5, | UCLAliverdat         | C4.5KNN,                 | Backwardpropa               |
|   | mana et  |          |           | Backwardpro | aset                 | Backwardpropa            | gation and                  |
|   | al.[1]   |          |           | pagation,   |                      | gation and               | SVMare giving               |
|   |          |          |           | KNNand      |                      | SVMhas95.07,             | more                        |
|   |          |          |           | SVM         |                      | 96.27,                   | betterresults. AP           |
|   |          |          |           |             |                      | 96.93,97.47, &           | data set                    |
|   |          |          |           |             |                      | 97.07%                   | arebetterthanUC             |
|   |          |          |           |             |                      | accuracyrespecti<br>vely | LAfor                       |
|   |          |          |           |             |                      |                          | alltheselectedalg<br>orithm |
| 2 | BendiVe  | 201<br>2 | Liverdise | Modified    | UCI liver            | MLP algorithm            | MLP algorithm               |
|   | nkataRa  | 2        | ase       | Rotation    | dataset              | withrandom               | withUCIliver                |
|   | mana     |          |           | Forest      | andIndianda          | subset                   | dataset                     |
|   | andM.Su  |          |           |             | taset                | givesbetter              | hasbetter                   |
|   | rendraPr |          |           |             |                      | accuracy                 | accuracy                    |
|   | asad     |          |           |             |                      | 74.78%than NN            | thanNN with                 |
|   | Babu[2]  |          |           |             |                      | with CFS                 | Indian                      |
|   |          |          |           |             |                      | ofaccuracy73.07          | liverdataset                |
|   |          |          |           |             |                      | %                        |                             |

| 3 | YugalK<br>UMA&G<br>Sahoo[3]<br>S.Dhamo<br>dharan<br>[4] | 201 3    | Liver cancer,Ci rrhosis          | DT, SVM, NB andANN  Naïve- Bayes, FTTree                          | north east area of<br>AndhraPradesh<br>(India) liverdataset  WEKA (WaikatoEnviron<br>ment    | Decision tree(DT) hasbetter accuracy of98.46%  Naïve Bayes is 75.54% accuracy and FT Treeis72.6624% | Rule basedclassificat ion with DTalgorithm has betteraccuracy Naïve Bayes algorithmhas better compare |
|---|---------------------------------------------------------|----------|----------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|   |                                                         |          | andHepat<br>itis                 |                                                                   | forKnowledgeand<br>Analysis)<br>datase<br>t                                                  | accuracy                                                                                            | tootheralgorithm<br>s                                                                                 |
| 5 | HebaAy<br>eldeenet<br>al. [5]                           | 201<br>5 | Live<br>rfibr<br>osis            | Decisiontree                                                      | department of MedicalBiochemist ry andMolecular Biology, FacultyofMedicine, CairoUniversity. |                                                                                                     | decision tree<br>classifieraccur<br>acyis 93.7%                                                       |
| 6 | D<br>Sindhuja<br>&Rjemin<br>aPriyadar<br>sini[6]        | 201<br>6 | Liver<br>disease<br>disorde<br>r | C4.5,NaïveB<br>ayes,SVM,B<br>PNN<br>,Regressio<br>n andDT<br>Data | APhas better<br>datasetresulttha<br>nUCLA                                                    | Survey paper<br>suggestC4.5has<br>better<br>resultsthanothers                                       | C4.5 has<br>betteraccurac<br>y result<br>thanotheralgo<br>rithms                                      |
| 7 | Somaya<br>Hasheme<br>tal<br>[8]                         | 201<br>6 | Live<br>rfibr<br>osis            | PSO, GA,<br>MReg&<br>ADT                                          | Egyptian nationalcommitte eforcontrolof viralhepatitisdataba se                              | PSO, GA,<br>MReg&AD<br>Tare66.4,<br>69.6.69.1,&84.4                                                 | ADT has<br>moreaccuracy<br>resultthan<br>otheralgorithms                                              |

| 8   | Sumedh   | 2017 | Liverdisea<br>se | SVM &         | (UCI)Machine       | SVM (                         | More accuracy           |
|-----|----------|------|------------------|---------------|--------------------|-------------------------------|-------------------------|
|     | Sontakke |      | SC               | Backpropaga   | LearningRep        | accuracy71%))&                | result                  |
|     | etal     |      |                  | tion          | ository            | Backpropagatio n(accuracy73.2 | inBackpropaga           |
|     |          |      |                  |               |                    | (accuracy / 5.2<br>%)         | tion                    |
| 9   | Hanma    | 2018 | Nonalcoh         | Using         | First Affiliated   | Bayesian                      | Concluded               |
|     | etal     |      | olicfatty        | 11classifi    | Hospital, Zhejiang | networkacc                    | Bayesiannetwor          |
|     |          |      | liverdisea       | cationalg     | University         | uracy83%                      | k has                   |
|     |          |      | se               | orithms       | China, Collegeofme |                               | bestperformance         |
|     |          |      |                  |               | dicine             |                               | than                    |
|     |          |      |                  |               | FirstAffiliated    |                               | otheralgorithms         |
| 10  | Joel     | 2018 | Liverdisea<br>se | Logisticregre | IndianLiverPatien  | Logistic                      | ANN has                 |
|     | Jacob    |      | SC               | ssion, K-     | tDataset           | regression, K-                | higheraccuracy          |
|     | etal[10  |      |                  | NN,SVM,&      | comprised of       | NN, SVM,&                     | than others             |
|     | ]        |      |                  | ANN           | 10different        | ANN                           |                         |
|     |          |      |                  |               | attributes of      | has73.23,72.05,               |                         |
|     |          |      |                  |               | 583patients.       | 75.04&                        |                         |
|     |          |      |                  |               |                    | 92.8%                         |                         |
|     |          |      |                  |               |                    | accuracyr<br>espectivel       |                         |
| -11 |          | 2010 | 1.               |               | HOID               | y                             |                         |
| 11  | Sivakum  | 2019 | Liverdisea<br>se | K-means &     | UCIRepository      | C4.5                          | C4.5 has                |
|     | ar Det   |      |                  | C4.5algor     |                    | algorithm                     | betteraccuracyth        |
|     | al[11]   |      |                  | ithms         |                    | has94.36%pr                   | anK-means<br>algorithms |
| 12  | MohtoiD  | 2019 | Liverdisea       | Supervised    | UCIrepositorydata  | ecision.                      | KNN and                 |
| 12  | MehtajB  | 2017 | se               | ,unsupervise  | bases.             | Note: Only                    | AVM                     |
|     | anuH[12  |      |                  | d&reinforce   |                    | explainingnot                 |                         |
|     | J        |      |                  | ment          |                    | implementingpr                | hasimprovedp            |
|     |          |      |                  | 1110110       |                    | actically                     | rediction<br>performa   |
|     |          |      |                  |               |                    |                               | nceaccur                |

|    |         |      |       |           |               |                   | acy             |
|----|---------|------|-------|-----------|---------------|-------------------|-----------------|
|    |         |      |       |           |               |                   |                 |
|    |         |      |       |           |               |                   |                 |
| 13 | VasanDu | 2019 | Liv   | ŞVM,NB&J4 | UCIrepository | J48 algorithm     | J48 algorithm   |
|    | raiet   |      | erdis | 0         |               | hasbetter feature | isaccuracy rate |
|    | al[13]  |      | ease  |           |               | selectionwith95.  | of95.04%.       |
|    |         |      |       |           |               | 04% accuracy      |                 |

### 3. IDEATION AND PROPOSED SOLUTION

## 3.1 Empathy Map Canvas



# 3.2 Ideation and Brainstorming



# 3.3 Proposed Solution

- 1) Problem Statement (Problem to be solved): Discovering the existence of liver disease at an early stage is a complex task for the doctors. The main objective of the project is to examine data from liver patients concentrating on relationships between a key list of liver enzymes, proteins, age and gender using them to try and predict the likeliness of liver disease
- 2) Idea / Solution description: Our solution is to build a model by applying various machine learning algorithms and find the best accurate model to predict whether as a liver disease or not. We plan to perform data preprocessing and data visualization methods to increase the accuracy of the model. And integrate the chosen model into Flask based web application where the User can predict the disease by entering parameters in the web application.
- 3) Novelty / Uniqueness: Data pre-processing which includes Data Cleaning, Data transformation, and Data Reduction is performed to increase the accuracy of the model.

Various Machine model is implemented and the highest accurate model is chosen.

Model output is evaluated using MSE, confusion matrix and other various metrics.

ROC-AUC considers the rank of the output probabilities and intuitively measures the likelihood that model can distinguish between a positive point and a negative point. We will use AUC to select the best model among the various machine learning models.

- **4) Social Impact / Customer Satisfaction:** Since the likeliness of the liver disease
  - is predicted with high accuracy, user can able to take remedial measures.
- **5) Business Model (Revenue Model):** Revenue can be made by collaborating with Hospitals and other health related companies and Integrating subscription services to the application
- 6) Scalability of the Solution: Accuracy of the model can be increased by training with large data. The model can be made to learn from the user

input. Model is deployed in the web where the public from across the world can use to predict the likeliness of liver disease.

# 3.4 Proposed Solution Fit



# 4. REQUIREMENT ANALYSIS

Followingarethefunctionalrequirementsoftheproposed solution.

|      | EMENT(EPIC)      | SUBREQUIREMENT(ST<br>ORY<br>/SUB-TASK)                                          |
|------|------------------|---------------------------------------------------------------------------------|
| FR.1 | UserRegistration | Registration through FormRegistration through GmailRegistrationthroughLinkedI N |
| FR.2 | UserConfirmation | Confirmation via<br>EmailConfirmationviaOT<br>P                                 |

| FR.3 | UserInput      | Getnecessarydetailsforprediction                   |
|------|----------------|----------------------------------------------------|
| FR.4 | DataProcessing | Data cleaning,Data<br>scaling,Featureselec<br>tion |
| FR.5 | Prediction     | Predictingwhethertheuserhaslive rdiseaseornot      |

# Non-functional Requirements:

Followingarethenon-functional requirements of the proposed solution.

| FR.NO | Non-<br>FunctionalRequi<br>rement | Description                                                  |
|-------|-----------------------------------|--------------------------------------------------------------|
| NFR-1 | Usability                         | Tocheckwhetherthepatienthasliver diseaseornot                |
| NFR-2 | Security                          | Implement necessarytechniquestoprovidesecu ritytotheuserdata |
| NFR-3 | Reliability                       | Makeensurethatthemodelisreliabl<br>e                         |
| NFR-4 | Performance                       | UseefficientMLtechniquesforbett eraccuracy                   |
| NFR-5 | Scalability                       | Predictsvarioustypesofliverdisease                           |

# 5. PROJECT DESIGN

# 5.1 Data Flow Diagram

Data Flow Diagram



# **5.2 Solution and Technology Architecture**



### **Technical Architecture:**

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2



# **Components & Technologies:**

| S.No | Component           | Description                | Technology           |
|------|---------------------|----------------------------|----------------------|
| 1.   | User Interface      | How user interacts with    | HTML, CSS,           |
|      |                     | application e.g.           | JavaScript / Angular |
|      |                     | Web UI, Mobile App,        | Js / React Js etc.   |
|      |                     | Chatbot etc.               |                      |
| 2.   | Application Logic-1 | Logic for a process in the | Java / Python        |
|      |                     | application                |                      |
| 3.   | Application Logic-2 | Logic for a process in the | IBM Watson STT       |
|      |                     | application                | service              |
| 4.   | Application Logic-3 | Logic for a process in the | IBM Watson           |
|      |                     | application                | Assistant            |
| 5.   | Database            | Data Type,                 | MySQL, NoSQL,        |
|      |                     | Configurations etc.        | etc.                 |
| 6.   | Cloud Database      | Database Service on        | IBM DB2, IBM         |
|      |                     | Cloud                      | Cloudant etc.        |

| 7.  | File Storage     | File storage requirements | IBM Block Storage  |
|-----|------------------|---------------------------|--------------------|
|     |                  |                           | or Other Storage   |
|     |                  |                           | Service or Local   |
|     |                  |                           | Filesystem         |
| 8.  | External API-1   | Purpose of External API   | IBM Weather API,   |
|     |                  | used in the application   | etc.               |
| 9.  | External API-2   | Purpose of External API   | Aadhar API, etc.   |
|     |                  | used in the application   |                    |
| 10. | Machine Learning | Purpose of Machine        | Object Recognition |
|     | Model            | Learning Model            | Model, etc.        |
| 11. | Infrastructure   | Application Deployment    | Local, Cloud       |
|     | (Server / Cloud) | on Local System / Cloud   | Foundry,           |
|     |                  | Local Server              | Kubernetes, etc.   |
|     |                  | Configuration:            |                    |
|     |                  | Cloud Server              |                    |
|     |                  | Configuration:            |                    |

# **Application Characteristics:**

| S.No | Characteristics       | Description                | Technology       |  |
|------|-----------------------|----------------------------|------------------|--|
|      |                       |                            |                  |  |
|      |                       |                            |                  |  |
| 1.   | Open-Source           | List the open-source       | Technology of    |  |
|      | Frameworks            | frameworks used            | Opensource       |  |
|      |                       |                            | framework        |  |
| 2.   | Security              | List all the security /    | e.g. SHA-256,    |  |
|      | Implementations       | access controls            | Encryptions, IAM |  |
|      |                       | implemented, use of        | Controls, OWASP  |  |
|      |                       | firewalls etc.             | etc.             |  |
| 3.   | Scalable Architecture | Justify the scalability of | Technology used  |  |
|      |                       | architecture (3 – tier,    |                  |  |
|      |                       | Micro-services)            |                  |  |
| 4.   | Availability          | Justify the availability   | Technology used  |  |
|      |                       | of application (e.g. use   |                  |  |
|      |                       | of load balancers,         |                  |  |
|      |                       | distributed servers etc.)  |                  |  |
| 5.   | Performance           | Design consideration       | Technology used  |  |
|      |                       | for the performance of     |                  |  |
|      |                       | the application (number    |                  |  |
|      |                       | of requests per sec, use   |                  |  |
|      |                       | of Cache, use of           |                  |  |
|      |                       | CDN's) etc.                |                  |  |

# 6.PROJECT PLANNING AND SCHEDULING

# **6.1 Sprint Planning and Estimation**

#### Project Planning Phase Milestone and Activity List

| TITLE                                     | DESCRIPTION                                                                                                                                           | DATE              |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Literature Survey & Information Gathering | Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.                      | 28 SEPTEMBER 2022 |
| Prepare Empathy Map                       | Prepare Empathy Map<br>Canvas to capture the user<br>Pains & Gains, Prepare list<br>of problem statements                                             | 24 SEPTEMBER 2022 |
| Ideation                                  | List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.                                | 25 SEPTEMBER 2022 |
| Proposed Solution                         | Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc. | 23 SEPTEMBER 2022 |
| Problem Solution Fit                      | Prepare problem - solution fit document.                                                                                                              | 30 SEPTEMBER 2022 |
| Solution Architecture                     | Prepare solution architecture document.                                                                                                               | 28 SEPTEMBER 2022 |

| Customer Journey                                        | Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit). | 20 OCTOBER 2022 |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|
| Functional Requirement                                  | Prepare the functional requirement document.                                                                              | 8 OCTOBER 2022  |
| Data Flow Diagrams                                      | Draw the data flow diagrams and submit for review.                                                                        | 9 OCTOBER 2022  |
| Technology Architecture                                 | Prepare the technology architecture diagram.                                                                              | 3 NOVEMBER 2022 |
| Prepare Milestone &<br>Activity List                    | Prepare the milestones & activity list of the project.                                                                    | 4 NOVEMBER 2022 |
| Project Development -<br>Delivery of Sprint-1, 2, 3 & 4 | Develop & submit the developed code by testing it.                                                                        | IN PROGRESS     |

# **6.2 Sprint Delivery Plan**

#### SPRINT DELIVERY PLAN

#### Product Backlog, Sprint Schedule, and Estimation

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                                                         | Story Points                                                                                                                                                                                                                | Priority        | Team Members    |
|----------|----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| Sprint-1 | Registration                     | USN-1                | As a user, I can register for the application by entering my email, password, and confirming my password. | 5                                                                                                                                                                                                                           | High            | Suruthi Lakshmi |
| Sprint-1 |                                  | USN-2                | As a user, I will receive confirmation email once I have registered for the application                   | ord.  I will receive confirmation email once istered for the application I can log into the application by mail & password I can give Input Details to Predict of Liver Disease. I raw data into suitable format for 5 High |                 | Snega           |
| Sprint-1 | Login                            | USN-3                | As a user, I can log into the application by entering email & password                                    | 10                                                                                                                                                                                                                          | High            | Keerthana       |
| Sprint-2 | Input Necessary<br>Details       | USN-4                | As a user, I can give Input Details to Predict Likeliness of Liver Disease.                               | 15                                                                                                                                                                                                                          | High            | Sharumathi      |
| Sprint-2 | Data Pre-Processing              | USN-5                | Transform raw data into suitable format for prediction.                                                   | 5                                                                                                                                                                                                                           | High            | Keerthana       |
| Sprint-3 | Prediction of Liver<br>Disease   | USN-6                | As a user, I can predict Liver Disease using machine learning model.                                      | 15                                                                                                                                                                                                                          | High            | Sharumathi      |
| Sprint-3 |                                  | USN-7                | As a user, I can get accurate prediction of liver disease.                                                | •                                                                                                                                                                                                                           |                 | Snega           |
| Sprint-4 | Deployment                       | USN-8                | Deploy ML model into flask 5 High                                                                         |                                                                                                                                                                                                                             | Keerthana       |                 |
| Sprint-4 | Deployment                       | USN-9                | eploy Website into real world 10 High                                                                     |                                                                                                                                                                                                                             | Suruthi Lakshmi |                 |
| Sprint-4 | Deployment                       | USN-8                | As a user, I can give feedback of the application.                                                        | 5                                                                                                                                                                                                                           | High            | Snega           |

#### Project Tracker and Velocity:

|          |    |        |             | Sprint End Date<br>(Planned) |
|----------|----|--------|-------------|------------------------------|
| Sprint-1 | 20 | 6 Days | 24 Oct 2022 | 9 Nov 2022                   |
| Sprint-2 | 20 | 6 Days | 9 Nov 2022  | 11 Nov 2022                  |
| Sprint-3 | 20 | 6 Days | 11 Nov 2022 | 16 Nov 2022                  |
| Sprint-4 | 20 | 6 Days | 16 Nov 2022 | 19 Nov 2022                  |
|          |    |        |             |                              |
|          |    |        |             |                              |
|          |    |        |             |                              |
|          |    |        |             |                              |

#### Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

### 7.CODING AND SOLUTIONING

#### 7.1 Model Building

Model\_Building.ipynb

#### 7.2 Application Building

```
app.py
from flask import Flask, render_template, request
import numpy as np
import pickle
app = Flask(__name__)
model = pickle.load(open('Liver2.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
  return render_template('index.html')
@app.route("/predict", methods=['POST'])
def predict():
  if request.method == 'POST':
    Age = int(request.form['Age'])
    Gender = int(request.form['Gender'])
Total_Bilirubin = float(request.form['Total_Bilirubin'])
Alkaline_Phosphotase = int(request.form['Alkaline_Phosphotase'])
Alamine_Aminotransferase = int(request.form['Alamine_Aminotransferase'])
Aspartate_Aminotransferase = int(request.form['Aspartate_Aminotransferase'])
Total_Protiens = float(request.form['Total_Protiens'])
    Albumin = float(request.form['Albumin'])
Albumin_and_Globulin_Ratio =
float(request.form['Albumin_and_Globulin_Ratio'])
```

```
values =
np.array([[Age,Gender,Total_Bilirubin,Alkaline_Phosphotase,Alamine_Aminot
ransferase,Aspartate_Aminotransferase,Total_Protiens,Albumin,Albumin_and_
Globulin_Ratio]])
```

```
prediction = model.predict(values)
```

```
return render_template('result.html', prediction=prediction)
if __name__ == "__main__":
```

app.run(debug=True)





#### 8.TESTING

- 1. **Unit Testing:** A level of the software testing process where individual units/components of a software/system are tested. The purpose is to validate that each unit of the software performs as designed.
- 2. **Integration Testing:** A level of the software testing process where individual units are combined and tested as a group. The purpose of this level of testing is to expose faults in the interaction between integrated units.
- 3. **System Testing:** A level of the software testing process where a complete, integrated system/software is tested. The purpose of this test is to evaluate the system's compliance with the specified requirements.
- 4. **Black Box Testing:** The technique of testing in which the tester doesn't have access to the source code of the software and is conducted at the software interface without any concern with the internal logical structure of the software is known as black-box testing.
- 5. **White-Box Testing:** The technique of testing in which the tester is aware of the internal workings of the product, has access to its source code, and is conducted by making sure that all internal operations are performed according to the specifications is known as white box testing.

# 9. MODEL PERFORMANCE TESTING

|                      |          | F1    |           |        |
|----------------------|----------|-------|-----------|--------|
| ALGORITHM            | ACCURACY | SCORE | PRECISION | RECALL |
| RANDOM<br>FOREST     | 0.80%    | 0.80  | 0.82      | 0.80   |
| ADA BOOST            | 0.78     | 0.78  | 0.80      | 0.79   |
| GRADIENT<br>BOOSTING | 0.76     | 0.76  | 0.76      | 0.76   |

# 10. ADVANTAGES AND DISADVANTAGES

#### **ADVANTAGES**

- Accurate Results
- Faster Prediction
- User Friendly Website

#### **DISADVANTAGES**

- Requires continuous support of Internet since this is a website
- Can be trained with more images to improve accuracy

### 11.CONCLUSION

Clinicians who are skilled at identifying noteworthy observations and categorising them as normal or abnormal using background knowledge and other context clues can detect chronic liver disease. Similar to how ML algorithms may help medical professionals, these algorithms can be trained to recognise the potential for liver illness. ML approaches were able to distinguish between blood donors with and without liver disease with high accuracy by using the correlation of each variable with the risk of liver disease to train the model. By increasing awareness of risk factors and diagnostic variables, the application of ML approaches can aid in lowering the overall burden of liver disease on public health globally. More importantly, for chronic liver illness, ML could reduce liver-related mortality, transplants, and/or hospitalizations by identifying liver disease in its early stages or in concealed cases.

#### 12. FUTURE SCOPE

In future work, the use of fast datasets technique like Apache Hadoop or Spark can be incorporated with this technique. In addition to this, we can use distributed refined algorithms like Forest Tree implemented in Apache Hadoop to increase scalability and efficiency.

## 13. REFERENCES

- [1] Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. "Burden of liver diseases in the world". J. Hepatol. 2019.
- [2] Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. "The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases". Hepatology 2018.
- [3] Wang, Y.; Li, Y.; Wang, X.; Gacesa, R.; Zhang, J.; Zhou, L.; Wang, B. "Predicting Liver Disease Risk Using a Combination of Common Clinical Markers: A Screening Model from Routine Health Check-Up". Dis. Markers 2020

- [4] . Hughes, R.A.; Heron, J.; Sterne, J.A.; Tilling, K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 2019, 48, 1294–1304. [CrossRef] 20.
- [5] Hoffmann, G.; Bietenbeck, A.; Lichtinghagen, R.; Klawonn, F. Using machine learning techniques to generate laboratory diagnostic pathways—A case study. J. Lab. Precis. Med. 2018, 3, 58. [CrossRef] 28.
- [6] Rizwan, A.; Iqbal, N.; Ahmad, R.; Kim, D.H. WR-SVM Model Based on the Margin Radius Approach for Solving the Minimum Enclosing Ball Problem in Support Vector Machine Classification. Appl. Sci. 2021, 11, 4657. [CrossRef]
- [7] Pianykh, O.S.; Guitron, S.; Parke, D.; Zhang, C.; Pandharipande, P.; Brink, J.; Rosenthal, D. Improving healthcare operations management with machine learning. Nat. Mach. Intell. 2020, 2, 266–273. [CrossRef]
- [8] Jaganathan, K.; Tayara, H.; Chong, K.T. Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets. Int. J. Mol. Sci. 2021, 22, 8073. [CrossRef]
- [9] Munish, G.; Kaplan, H.C. Measurement for quality improvement: Using data to drive change. J. Perinatol. 2020, 40, 962–971
- [10] Couronné, R.; Philipp, P.; Anne-Laure, B. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 1–14. [CrossRef]