Math 215 Practice Final Exam

December 15, 2017

Name (in block capital letters):				
Instructor (tic	k one box):	□ Section 1: L. Stanhope (12:50)		
		□ Section 2: E. Sullivan (12:50)		

Instructions:

- 1. To answer these questions, use only the knowledge in your head, and on your 3×5 card.
- 2. You have 3 hours in which to take the exam.
- 3. Be sure to carefully read the directions for each problem. Please show your work correct answers to problems with no justification of where they come from will earn little credit.
- 4. Finally, do your best to think logically and clearly, and then trust your judgment. There are no "trick" questions here. You can do this!

Problem	Score
1	
2	
3	
4	
Total	

- 1. Assume the standard deck of cards: 52 cards, 4 different suits and 13 different ranks.
 - (a) How many 5-card hands have exactly two aces and exactly two distinct suits? Show your work.
 - (b) How many hands have exactly two aces and at least one queen?
 - (c) The number 5-card hands which have exactly two distinct ranks.
- 2. For the statement below please do the following.
 - (a) Translate the statement into words.
 - (b) Write the negation of the statement such that it contains no implications and a negation sign does not appear before an extensional quantifier.
 - (c) If the statement is true, provide a proof.
 - (d) If the statement is false, negate the statement and then provide a proof.

$$\exists x \in \mathbb{N}, \exists y \in \mathbb{N}, \forall z \in \mathbb{N}, \ (((x \mid z) \land (y \mid z)) \rightarrow ((x - y) \mid z))$$

- 3. Use induction to prove $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \binom{n+1}{2}^2$.
- 4. Suppose $a, b, c \in \mathbb{Z}$. Without using the Fundamental Theorem of Arithmetic, please show that if GCD(a, c) = 1 and a|bc then a|b.
- 5. Show that a natural number and its cube have the same remainder after division by 6.
- 6. Consider the following two sets

$$A \times (B \setminus C)$$
 $(A \times B) \setminus (A \times C)$.

Choose one of the four symbols below to put in the box above to make the statement true.

$$=$$
 \neq \subseteq \supseteq .

For each direction prove either that the given set is a subset of the other by using an element casing argument, or prove that is is not necessarily a subset of the other by providing an explicit example.

- 7. Let \mathbb{P} denote the set of all prime numbers. So $\mathbb{P} = \{2, 3, 5, 7, 11, ...\}$. Define a function $f: \mathbb{N} \to \mathcal{P}(\mathbb{P})$ by f(n) equals the set of prime factors of n. So for example, $f(12) = \{2, 3\}$.
 - a. Please determine whether or not f is injective. Then prove injectivity or give a specific counterexample that it does not hold.
 - b. Please determine whether or not f is surjective. Then prove surjectivity or give a specific counterexample that it does not hold.

- 8. Consider a sphere of radius 1 inch. Prove that for any 9 points on the surface of the sphere that there is at least one pair of points for which the distance along the sphere between them is no more than $\pi/2$ inches.
- 9. Suppose $f:A\to B$ is a function. Please prove the following statement. "Function f is surjective if and only if for all subsets S of A, $B\setminus f(S)\subseteq f(A\setminus S)$."
- 10. Consider the set of real numbers $\mathbb{R} = \mathbb{Q} \cup \overline{\mathbb{Q}}$. (Here \mathbb{Q} is the set of all rational numbers. Its complement is the set of irrational numbers such as π and e.) Define the relation R on \mathbb{R} by

$$xRy \iff \{x,y\} \subseteq \mathbb{Q} \text{ or } \{x,y\} \subseteq \overline{\mathbb{Q}}$$

Is R an equivalence relation? If so, how many distinct equivalence classes does R have? If not, which of the three criteria for equivalence relations does R fail?