

Simple and Deterministic Matrix Sketching

Presented by:

Hristo Georgiev and Huibin Shen

Department of Information and Computer Science Aalto University, School of Science

March 24, 2014

¹Authored by Edo Liberty and and won the KDD-2013 best paper award[3].

Content

- Background
- Related work
- Frequent directions
- ► Experiments and Results
- Conclusion

Matrices in the age of 'Big data'

What is a sketch?

- ► A sketch of a matrix A is another matrix B which is significantly smaller than A, but still approximates it well.
- A good sketch matrix is one on which some computations can be performed, without *much* loss of precision.
- Formally, consider a large matrix $A \in \mathbb{R}^{n \times d}$ with n rows and d columns
 - ▶ a sketch matrix B is one s.t. $B \in \mathbb{R}^{\ell \times d}$,
 - ► containing only $\ell \ll n$ rows and $A^T A \approx B^T B$.

Content

- Background
- Related work
- Frequent directions
- ► Experiments and Results
- Conclusion

How do we get a sketch?

Three existing main classes:

- Random-projection:
 - use a projection matrix for dimensionality reduction (approximately preserving the lengths of, the dot products between two original vectors on average, as well as the distances in the transformed space), or
 - (ii) randomly combine matrix rows.
- Hashing: use a subspace embedding S that embeds the column space of the original matrix into a lower-dimensional subspace
 - approximately preserving the norms of all vectors in that subspace
 - ▶ where $A \in \mathbb{R}^{n \times d}$, $S : \mathbb{R}^n \to \mathbb{R}^t$, for all $x \in \mathbb{R}^d$, and
 - ► $||SAx||_2 = (1 \pm \varepsilon) ||Ax||_2$

How do we get a sketch? (cont.)

- Sampling: Column Subset Selection Problem
 - ▶ simple solution obtained by sampling rows with probability proportional to their squared ℓ_2 norms
 - aim is to recover a low rank matrix whose column space contains most of the space spanned by the top k singular vectors of the matrix.

Proposed fourth approach, Frequent-directions

Proposed approach: Frequent-directions

- Based on a well known existing algorithm for item frequency estimation.
- A pass-efficient algorithm, given the constraint:
 - data can be read only a constant number of times;
 - the streaming model: only one pass is permitted!

Item frequency estimation

- Used to uncover frequent items in an item stream
- ► (Re-)Invented (at least!) four times [5, 1, 2, 4]²

Goal. Use $O(\ell)$ space as opposed to O(d), where $l \ll d$

- ▶ to produce estimates *g_i*, s.t.
- ▶ $|f_i g_i| \le n/\ell$, for all item types *i* simultaneously.

Matrix setting. Use Frequent-directions to uncover any direction in space *x*

- for which $||Ax||^2 \ge \varepsilon ||A||_2^2$,
- ▶ by taking $\ell > 2r/\varepsilon$, where r is the numerical rank of A.

²[Misra and Gries, 1982; Demaine et al., 2002; Karp et al., 2003; Metwally, 2005]

Item frequency estimation

The algorithm:

Input:

- ▶ d items a₁, a₂, ..., a_d
 ▶ n item appearances A₁, A₂, ..., A_n
- Repeat until there are less than ℓ unique items left {
 - ▶ Get item A_i from stream, for $j = 1 \dots n$
 - If there are free slots among ℓ
 - Create new bucket for item type k and store the item there
 - ► Else
 - ▶ Find median count $\delta_t = f_{\ell/2}$ of items, and
 - ▶ Remove exactly min (δ_t, f_i) appearances from each bucket $i = 1 \dots \ell$

```
Aalto University
School of Science
and Technology
```


Claim. For each item type i,

- ▶ g_i is a good approximation for its true frequency f_i (even in the case of $g_i = 0$),
- ▶ 'Good': $|f_i g_i| \le n/\ell$.

Proof.

- ► Each item-type is deleted at most once per iteration:
 - $ightharpoonup q_i < f_i$
- ▶ Each counter is decreased by at most δ_t at time t:

•
$$g_i \ge f_i - \sum_t \delta_t \Leftrightarrow f_i - g_i \le \sum_t \delta_t$$

- Putting this together:
 - ▶ $0 \le \sum_i g_i \le \sum_t 1 (\ell/2) \cdot \delta_t = n (\ell/2) \cdot \sum_t \delta_t$
 - $\blacktriangleright \sum_t \delta_t \leq 2n/\ell$
- ▶ Set $\ell = 2/\varepsilon$:
 - ▶ $|f_i g_i| \le \varepsilon n$.

- ... What is the intuition of the following? ...
 - ▶ If one sets $\ell > 1/\varepsilon$,
 - Then any item that appears more than εn times in the stream must appear in the final sketch.

Content

- Background
- Related work
- Frequent directions
- Experiments and Results
- ► Conclusion

The *Frequent-directions* algorithm

Represent the frequency of a direction (unit vector):

Assume the directions of A are indicator vectors of the items:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

- ► Frequency of second item $e_2 = (0, 1, 0, 0)^T$: $||Ae_2||^2 = ||(0, 1, 0, 1)^T||^2 = 0^2 + 1^2 + 0^2 + 1^2 = 2.$
- ► Generalize the directions to unit vector $\{x : ||x|| = 1\}$ and the frequency of a direction is $||Ax||^2$.

Connection to SVD of A:

- $A = U\Sigma V^T \Leftrightarrow U^T A = \Sigma V^T \Leftrightarrow Au = \sigma v.$
- ► $||Au||^2 = ||\sigma v||^2 = \sigma^2$.

Change u to x:

The frequency of a direction is indicated by the square of corresponding singular value σ^2 .

```
The algorithm:
   Input: \ell, A \in \mathbb{R}^{n \times d}
    B \leftarrow \text{all zeros matrix} \in \mathbb{R}^{\ell \times d}
   for i = 1, \ldots, n do
          Insert ith row of A into zero valued row of B
          if B has no zero valued rows then
                [U, \Sigma, V] \leftarrow SVD(B)
                C \leftarrow \Sigma V^T // for proof
               \delta \leftarrow \sigma_{\ell/2}^2
                \breve{\Sigma} \leftarrow \sqrt{\text{max}(\Sigma^2 - \textit{I}_{\ell}\delta, 0)}
                B \leftarrow \Sigma V^T
         end if
   end for
```


 $[U, \Sigma, V] \leftarrow SVD(B)$.

$$\delta \leftarrow \sigma_{\ell/2}^2$$
.

The *Frequent-directions* algorithm (cont.) $\overset{\Sigma}{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)} \\ \mathcal{B} \leftarrow \overset{\Sigma}{\Sigma} \mathcal{V}^T$

$$\overset{\mathsf{\Sigma}}{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_{\ell}\delta, 0)} \\
B \leftarrow \overset{\mathsf{\Sigma}}{\Sigma} V^{\mathsf{T}}$$

Properties of the sketch matrix B

In summary:

- ► $A^TA \succeq B^TB \succeq 0$.
- $||A^TA B^TB|| \le 2||A||_f^2/\ell.$
- ▶ Let $A = [A_1; A_2]$ and B_1 , B_2 is the sketches of A_1 and A_2 . A sketch C of $B = [B_1; B_2]$ can be shown that:

$$||A^T A - C^T C|| \le 2||A||_f^2/\ell.$$

Content

- Background
- Related work
- Frequent directions
- Experiments and Results
- Conclusion

Experiments

For a synthetic matrix n = 10000, m = 1000. Error $||A^TA - B^TB||$ against sketch size ℓ with.

Experiments (cont.)

Running time.

Experiments (cont.)

Linear in n and m (ℓ fix to 100).

Clustering experiment

Clustering experiment (cont.)

K-means on Sketch

Clustering experiment (cont.)

$$B = \begin{pmatrix} 43.0030 & 56.8110 \\ -55.9340 & 32.3390 \\ 0.5011 & 0.8654 \\ -0.9427 & -0.3336 \\ 0 & 0 \\ \vdots & \vdots \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 4979.0 & 75.7 \\ 75.7 & 5021.0 \end{pmatrix}, B^{T}B = \begin{pmatrix} 4979.0 & 75.6 \\ 75.6 & 5020.9 \end{pmatrix}$$

Conclusion

- ▶ In terms of $||A^TA B^TB||$, the proposed sketching algorithm is more accurate than sampling, hashing and random projections.
- The proposed algorithm runs reasonably fast
 - ▶ in fact, faster than random projection, slower than sampling.
- The proposed algorithm is linear in the scale of the input size.
- Choose your sketching algorithm according to your task!

Thank you!

Questions?

References

Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro.

Frequency estimation of internet packet streams with limited space.

In Algorithms-ESA 2002, pages 348–360. Springer, 2002.

Richard M Karp, Scott Shenker, and Christos H Papadimitriou.

A simple algorithm for finding frequent elements in streams and bags.

ACM Transactions on Database Systems (TODS), 28(1):51–55, 2003.

Edo Liberty.

Simple and deterministic matrix sketching.

In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 581–588. ACM, 2013.

References (cont.)

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.

Efficient computation of frequent and top-k elements in data streams.

In Database Theory-ICDT 2005, pages 398-412. Springer, 2005.

Jayadev Misra and David Gries.

Finding repeated elements.

Science of computer programming, 2(2):143–152, 1982.

