Let's talk about angels angles in space!

Given three non-collinear points, \$A\$, \$B\$, and \$C\$, let \$\operatorname{angle}(A,B,C)\$ be the *measure* of the angle formed by the rays \$\overrightarrow{BA}\$ and \$\overrightarrow{BC}\$\$.

Note that $0 < \operatorname{angle}(A,B,C) < \pi \$ always holds.

Given \$N\$ points, P_0 , \ldots, P_1 , three points, P_j , with i < j < k, are randomly and uniformly selected. Compute the expected value of $\alpha_{0,j}$ and $\alpha_{0,j}$ and $\alpha_{0,j}$ are randomly and uniformly selected. Compute the expected value of $\alpha_{0,j}$ are randomly and uniformly selected. Compute the expected value of $\alpha_{0,j}$ are randomly and uniformly selected.

Note: The points are 3D!

Resources

Dot Product Cross Product

Input Format

The first line contains a single integer, \$N\$, denoting the number of points. The next \$N\$ lines describe the points.

The \$i\$th subsequent line describes a point in the form of three space-separated integers: \$x_i\$, \$y_i\$, and \$z_i\$, respectively.

Constraints

- \$3 \le N \le 100\$
- \$-10^4 \le x_i, y_i, z_i \le 10^4\$
- No three points are collinear.

Output Format

Print a single real number: the expected value of \$\operatorname{angle}(P_i,P_j,P_k)\$ in radians. Your answer is considered to be correct if the absolute error from the correct answer is at most \$10^{-8}\$.

Sample Input

```
4
0 0 0
2 0 0
2 2 1
0 2 1
```

Sample Output

1.20593249868

Explanation

The sample input contains N = 4 points which are vertices of a rectangle in space.

There are four choices for \$(P_i,P_j,P_k)\$, each equally likely:

- $(P_1,P_2,P_3): \operatorname{angle} = \pi/2$
- \$(P_1,P_2,P_4): \operatorname{angle} \approx 0.841068670568\$
- \$(P_1,P_3,P_4): \operatorname{angle} \approx 0.841068670568\$
- $(P_2,P_3,P_4): \operatorname{angle} = \pi/2$

Thus, the expected value is:

 $\alpha (1){4}\left(\pi/2 + 0.841068670568 + 0.841068670568 + \pi/2 \right) $ \approx 1.20593249868$$