# Algorithmic Contiguity from Low-degree Conjecture and Applications in Correlated Random Graphs

#### Zhangsong Li

School of Mathematical Sciences, Peking University

August 12, 2025

International Conference on Randomization and Computation

# Graph matching (graph alignment)





# Graph matching (graph alignment)





ullet Goal: find a bijection between two vertex sets that maximally align the edges (i.e. minimizes # of adjacency disagreements).

# Graph matching (graph alignment)





- ullet Goal: find a bijection between two vertex sets that maximally align the edges (i.e. minimizes # of adjacency disagreements).
- Since graph alignment is NP-hard to solve/approximate in worst case, we instead consider some average-case models.

2/10







Zhangsong Li Algorithmic Contiguity





Marginal edge density: q = ps; edge correlation:  $\rho = \frac{s(1-p)}{1-ps}$ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

3/10

**Three** inference tasks: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

4 / 10

**Three** inference tasks: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where  $q = n^{-1+o(1)}$ .

**Three** inference tasks: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where  $q = n^{-1+o(1)}$ .

[Wu-Xu-Yu'23][Ding-Du'22,23][Feng'25]: Detection/partial recovery (respectively, exact recovery) is information-theoretically possible if and only if  $\rho > \frac{1}{nq} \wedge \sqrt{\alpha}$  (respectively,  $\rho > \frac{\log n}{nq}$ ), where  $\alpha \approx 0.338$  is the Otter's constant.

**Three** inference tasks: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

We will focus on the sparse regime where  $q = n^{-1+o(1)}$ .

[Wu-Xu-Yu'23][Ding-Du'22,23][Feng'25]: Detection/partial recovery (respectively, exact recovery) is information-theoretically possible if and only if  $\rho > \frac{1}{nq} \wedge \sqrt{\alpha}$  (respectively,  $\rho > \frac{\log n}{nq}$ ), where  $\alpha \approx 0.338$  is the Otter's constant.

[Mao-Wu-Xu-Yu'21,23] [Ganassali-Massouli'e-Lelarge'23,24]:

Detection/partial recovery is possible by efficient algorithms if  $\rho > \sqrt{\alpha}$ ; exact recovery is possible if  $\rho > \sqrt{\alpha}$  and  $nq > \log n$ .



5/10

• **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2\times \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D=D_n$ 



5/10

- **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2 imes \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D=D_n$
- "Success":  $f = f_n$  strongly/weakly separates  $\mathbb P$  and  $\mathbb Q$  if

$$\sqrt{\mathsf{max}\{\mathsf{Var}_{\mathbb{P}}(f),\mathsf{Var}_{\mathbb{Q}}(f)\}} = o(1)/O(1)\cdot \left|\mathbb{E}_{\mathbb{P}}[f] - \mathbb{E}_{\mathbb{Q}}[f]\right|.$$

Zhangsong Li

- **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2\times \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D=D_n$
- "Success":  $f = f_n$  strongly/weakly separates  $\mathbb P$  and  $\mathbb Q$  if

$$\sqrt{\mathsf{max}\{\mathsf{Var}_{\mathbb{P}}(f),\mathsf{Var}_{\mathbb{Q}}(f)\}} = o(1)/O(1)\cdot \left|\mathbb{E}_{\mathbb{P}}[f] - \mathbb{E}_{\mathbb{Q}}[f]\right|.$$

• Heuristics: failure of degree-D polynomials  $\Longrightarrow$  failure of algorithms with running time  $n^{D/\operatorname{polylog}(n)}$ .

- **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2\times \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D = D_n$
- "Success":  $f = f_n$  strongly/weakly separates  $\mathbb{P}$  and  $\mathbb{Q}$  if

$$\sqrt{\mathsf{max}\{\mathsf{Var}_{\mathbb{Q}}(f),\mathsf{Var}_{\mathbb{Q}}(f)\}} = o(1)/O(1)\cdot \left|\mathbb{E}_{\mathbb{P}}[f] - \mathbb{E}_{\mathbb{Q}}[f]\right|.$$

- Heuristics: failure of degree-D polynomials  $\Longrightarrow$  failure of algorithms with running time  $n^{D/\operatorname{polylog}(n)}$ .
- Usually prove the "failure" of degree-D polynomials by showing the following bound on the low-degree advantage for some  $\mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = o(1)$ :

$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') := \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}'}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}'}[f^2]}} = O(1)/1 + o(1)$$



- **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2\times \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D=D_n$
- "Success":  $f = f_n$  strongly/weakly separates  $\mathbb P$  and  $\mathbb Q$  if

$$\sqrt{\mathsf{max}\{\mathsf{Var}_{\mathbb{P}}(f),\mathsf{Var}_{\mathbb{Q}}(f)\}} = o(1)/O(1)\cdot \left|\mathbb{E}_{\mathbb{P}}[f] - \mathbb{E}_{\mathbb{Q}}[f]\right|.$$

- Heuristics: failure of degree-D polynomials  $\Longrightarrow$  failure of algorithms with running time  $n^{D/\operatorname{polylog}(n)}$ .
- Usually prove the "failure" of degree-D polynomials by showing the following bound on the low-degree advantage for some  $\mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = o(1)$ :

$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') := \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}'}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}'}[f^2]}} = O(1)/1 + o(1)$$

[Ding-Du-L.'23]:  $\operatorname{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') = O(1)$  when  $\rho < \sqrt{\alpha}$  and  $D = \exp\left(o(\frac{\log n}{\log nq})\right)$ .

- **Degree**-D **test**: multivariate polynomials  $f:\{0,1\}^{2 imes \binom{n}{2}}\longrightarrow \mathbb{R}$  of degree  $D=D_n$
- "Success":  $f = f_n$  strongly/weakly separates  $\mathbb P$  and  $\mathbb Q$  if

$$\sqrt{\mathsf{max}\{\mathsf{Var}_{\mathbb{P}}(f),\mathsf{Var}_{\mathbb{Q}}(f)\}} = o(1)/O(1)\cdot \left|\mathbb{E}_{\mathbb{P}}[f] - \mathbb{E}_{\mathbb{Q}}[f]\right|.$$

- Heuristics: failure of degree-D polynomials  $\Longrightarrow$  failure of algorithms with running time  $n^{D/\operatorname{polylog}(n)}$ .
- Usually prove the "failure" of degree-D polynomials by showing the following bound on the low-degree advantage for some  $\mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = o(1)$ :

$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') := \max_{\mathsf{deg}(f) \leq D} \frac{\mathbb{E}_{\mathbb{P}'}[f]}{\sqrt{\mathbb{E}_{\mathbb{Q}'}[f^2]}} = O(1)/1 + o(1)$$

[Ding-Du-L.'23]:  $\operatorname{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') = O(1)$  when  $\rho < \sqrt{\alpha}$  and  $D = \exp\left(o(\frac{\log n}{\log nq})\right)$ .

This suggests that detection is "hard". What about partial recovery?

#### Our results

We say a family of estimators  $\{h_{i,j}: 1 \leq i, j \leq n\}$   $(h_{i,j} \text{ estimates } \mathbf{1}_{\pi_*(i)=j})$  achieves partial recovery if

- $h_{i,j} \in \{0,1\}$  for all i,j w.h.p. under  $\mathbb{P}$ .
- $h_{i,1} + \ldots + h_{i,n} = 1$  for all i w.h.p. under  $\mathbb{P}$ .
- $\mathbb{P}(\sum_{1\leq i\leq n}h_{i,\pi_*(i)}\geq \Omega(n))\geq \Omega(1).$



6 / 10

#### Our results

We say a family of estimators  $\{h_{i,j}: 1 \leq i, j \leq n\}$   $\{h_{i,j} \in \mathbf{1}\}$ achieves partial recovery if

- $h_{i,j} \in \{0,1\}$  for all i,j w.h.p. under  $\mathbb{P}$ .
- $h_{i,1} + \ldots + h_{i,n} = 1$  for all i w.h.p. under  $\mathbb{P}$ .
- $\mathbb{P}(\sum_{1 \leq i \leq n} h_{i,\pi_*(i)} \geq \Omega(n)) \geq \Omega(1)$ .

#### Theorem (L.'2025+, informal)

Assuming low-degree conjecture, for the correlated Erdős-Rényi model  $\mathcal{G}(n,q,\rho)$ , when  $q=n^{-1+o(1)}$  and  $\rho<\sqrt{\alpha}$  all estimators  $\{h_{i,i}\}$  that achieves partial recovery requires running time  $n^{D/\operatorname{polylog}(n)}$ , where  $D = \exp\left(o\left(\frac{\log n}{\log na}\right)\right).$ 



Zhangsong Li

[Ding-Du-L.'23]: for any 
$$\rho < \sqrt{\alpha}$$
 and any  $D = D_n = \exp\left(o\left(\frac{\log n}{\log nq}\right)\right)$ ,

$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') = \mathit{O}(1) \text{ for some } \mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = \mathit{o}(1) \,.$$



7 / 10

[Ding-Du-L.'23]: for any 
$$\rho < \sqrt{\alpha}$$
 and any  $D = D_n = \exp\left(o\left(\frac{\log n}{\log nq}\right)\right)$ , 
$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') = O(1) \text{ for some } \mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = o(1).$$

• "Standard" low-degree conjecture: strong detection requires time  $\exp(D/\operatorname{polylog}(n))$ .

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

7 / 10

[Ding-Du-L.'23]: for any 
$$\rho < \sqrt{\alpha}$$
 and any  $D = D_n = \exp\left(o\left(\frac{\log n}{\log nq}\right)\right)$ ,

$$\mathsf{Adv}_{\leq D}(\mathbb{P}',\mathbb{Q}') = \mathit{O}(1) \; \mathsf{for \; some \; } \mathsf{TV}(\mathbb{P},\mathbb{P}'), \mathsf{TV}(\mathbb{Q},\mathbb{Q}') = \mathit{o}(1) \, .$$

- "Standard" low-degree conjecture: strong detection requires time  $\exp(D/\operatorname{polylog}(n))$ .
- **Improvement** (algorithmic contiguity): any one-sided detection algorithm  $\mathcal{A} = \mathcal{A}_n$  such that

$$\mathbb{P}(\mathcal{A}=1)=\Omega(1)\,,\quad \mathbb{Q}(\mathcal{A}=0)=1-o(1)$$

requires running time  $\exp(D/\operatorname{polylog}(n))$ .

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

# Proof of algorithmic contiguity

• Assume on the contrary that an algorithm  $\mathcal{A}$  such that  $\mathbb{P}(\mathcal{A}=1)=\Omega(1)$  and  $\mathbb{Q}(\mathcal{A}=0)=1-\epsilon$  where  $\epsilon=\epsilon_n\to 0$ . WLOG  $\epsilon_n\geq 1/\operatorname{poly}(n)$ .

Zhangsong Li

# Proof of algorithmic contiguity

- Assume on the contrary that an algorithm  $\mathcal A$  such that  $\mathbb P(\mathcal A=1)=\Omega(1)$  and  $\mathbb Q(\mathcal A=0)=1-\epsilon$  where  $\epsilon=\epsilon_n\to 0$ . WLOG  $\epsilon_n\ge 1/\operatorname{poly}(n)$ .
- Let  $M=M_n=\epsilon_n^{-1/2}$  and consider the following detection problem:
  - $\widehat{\mathbb{Q}} = \mathbb{Q}^{\otimes M}$ ;
  - $\mathbb{P} = \text{law of } (Y_1, \dots, Y_M) \text{ s.t. } Y_{\kappa} \sim \mathbb{P} \text{ and } Y_j \sim \mathbb{Q} : j \neq \kappa \text{ for some } \kappa \in \text{unif}([M]);$

Then 
$$\widehat{\mathbb{Q}}((\mathcal{A}(Y_1),\ldots\mathcal{A}(Y_M))=(0,\ldots,0))=1-o(1)$$
 and  $\widehat{\mathbb{P}}((\mathcal{A}(Y_1),\ldots\mathcal{A}(Y_M))\neq(0,\ldots,0))=\Omega(1).$ 

# Proof of algorithmic contiguity

- Assume on the contrary that an algorithm  $\mathcal{A}$  such that  $\mathbb{P}(\mathcal{A}=1)=\Omega(1)$  and  $\mathbb{Q}(\mathcal{A}=0)=1-\epsilon$  where  $\epsilon=\epsilon_n\to 0$ . WLOG  $\epsilon_n\geq 1/\operatorname{poly}(n)$ .
- Let  $M=M_n=\epsilon_n^{-1/2}$  and consider the following detection problem:
  - $\widehat{\mathbb{Q}} = \mathbb{Q}^{\otimes M}$ ;
  - $\widehat{\mathbb{P}} = \text{law of } (Y_1, \dots, Y_M) \text{ s.t. } Y_{\kappa} \sim \mathbb{P} \text{ and } Y_j \sim \mathbb{Q} : j \neq \kappa \text{ for some } \kappa \in \text{unif}([M]);$

Then 
$$\widehat{\mathbb{Q}}((\mathcal{A}(Y_1),\ldots\mathcal{A}(Y_M))=(0,\ldots,0))=1-o(1)$$
 and  $\widehat{\mathbb{P}}((\mathcal{A}(Y_1),\ldots\mathcal{A}(Y_M))\neq(0,\ldots,0))=\Omega(1)$ .

• However,  $\operatorname{Adv}_{\leq D}(\mathbb{P},\mathbb{Q}) = O(1) \Longrightarrow \operatorname{Adv}_{\leq D}(\widehat{\mathbb{P}},\widehat{\mathbb{Q}}) = 1 + o(1)$ , which leads to contradiction.

• Assume on the contrary that  $\{h_{i,j}\}$  achieves partial recovery. WLOG  $h_{i,j} \in \{0,1\}$  and  $\sum_{1 < j < n} h_{i,j} \in \{0,1\}$  hold for all realizations.

9 / 10

- Assume on the contrary that  $\{h_{i,j}\}$  achieves partial recovery. WLOG  $h_{i,j} \in \{0,1\}$  and  $\sum_{1 \le j \le n} h_{i,j} \in \{0,1\}$  hold for all realizations.
- We expect that

$$\{h_{i,j}\}$$
 achieves partial recovery 
$$\Longrightarrow \mathbb{P}(h_{i,\pi_*(i)}=1)=\Omega(1) \text{ for some } i$$
  $\Longrightarrow \mathbb{P}(h_{i,j}=1\mid \pi_*(i)=j)=\Omega(1) \text{ for } \Omega(n) \text{ number of } j$ .

- Assume on the contrary that  $\{h_{i,j}\}$  achieves partial recovery. WLOG  $h_{i,j} \in \{0,1\}$  and  $\sum_{1 \le j \le n} h_{i,j} \in \{0,1\}$  hold for all realizations.
- We expect that

$$\{h_{i,j}\}$$
 achieves partial recovery 
$$\Longrightarrow \mathbb{P}(h_{i,\pi_*(i)}=1)=\Omega(1) \text{ for some } i$$
  $\Longrightarrow \mathbb{P}(h_{i,j}=1\mid \pi_*(i)=j)=\Omega(1) \text{ for } \Omega(n) \text{ number of } j$ .

• We can show that  $\operatorname{Adv}_{\leq D}(\mathbb{P}(\cdot \mid \pi_*(i) = j), \mathbb{Q}) = O(1)$  (similar to the detection lower bound). Thus algorithmic contiguity implies that  $\mathbb{Q}(h_{i,j} = 1) \geq \Omega(1)$ .

- Assume on the contrary that  $\{h_{i,j}\}$  achieves partial recovery. WLOG  $h_{i,j} \in \{0,1\}$  and  $\sum_{1 \le j \le n} h_{i,j} \in \{0,1\}$  hold for all realizations.
- We expect that

$$\{h_{i,j}\}$$
 achieves partial recovery 
$$\Longrightarrow \mathbb{P}(h_{i,\pi_*(i)}=1)=\Omega(1) \text{ for some } i$$
  $\Longrightarrow \mathbb{P}(h_{i,j}=1\mid \pi_*(i)=j)=\Omega(1) \text{ for } \Omega(n) \text{ number of } j$ .

- We can show that  $\operatorname{Adv}_{\leq D}(\mathbb{P}(\cdot \mid \pi_*(i) = j), \mathbb{Q}) = O(1)$  (similar to the detection lower bound). Thus algorithmic contiguity implies that  $\mathbb{Q}(h_{i,j} = 1) \geq \Omega(1)$ .
- Yields  $\mathbb{E}_{\mathbb{Q}}[\sum_{1 < j < n} h_{i,j}] = \Omega(n)$ , contradiction to (\*)!



# Summary and future perspectives

- We know that in sparse correlated Erdős-Rényi graphs, detection is easy when the correlation  $\rho>\sqrt{\alpha}$  and hard when  $\rho<\sqrt{\alpha}$ . But what about partial recovery?
- Assuming low-degree conjecture, we found a reduction from partial recovery to detection. Thus partial recovery is also hard when  $\rho < \sqrt{\alpha}$ .
- Key ingredient: developing "algorithmic contiguity" between two probability measures from bounded low-degree advantage.
- Open: more "direct" analysis for low-degree hardness for partial recovery?

#### Reference:

Zhangsong Li. Algorithmic Contiguity and Applications in Correlated Random Graphs. arXiv:2502.09832v3.



10 / 10