Key integrals and identities:

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\frac{a^{2}}{4} = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x dx$$

$$\left(\frac{a}{2\pi n}\right)^{3} \left(\frac{4\pi^{3}n^{3}}{3} - 2\pi n\right) = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x^{2} dx$$

$$\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} = \int_{0}^{\infty} e^{-\alpha x^{2}} dx$$

$$\left(\frac{1}{2}\sqrt{\frac{\pi}{\alpha}}\right) \left(\frac{(2n-1)(2n-3)\cdots(3)(1)}{(2\alpha)^{n}}\right) = \int_{0}^{\infty} x^{2n} e^{-\alpha x^{2}} dx$$

$$n = 1, 2, 3, \dots$$

$$\left(\frac{1}{2}\right) \left(\frac{n!}{\alpha^{n+1}}\right) = \int_{0}^{\infty} x^{2n+1} e^{-\alpha x^{2}} dx$$

$$n = 0, 1, 2, \dots$$

$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y) \rightarrow 2\sin^{2}x = 1 - \cos(2x)$$

$$2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y) \rightarrow 2\cos^{2}x = 1 + \cos(2x)$$

$$2\sin(x)\cos(y) = \sin(\alpha+\beta) + \sin(\alpha-\beta) \rightarrow 2\sin x \cos x = \sin(2x)$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \rightarrow \sin(2x) = 2\sin x \cos x$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \rightarrow \cos(2x) = \cos^{2}x - \sin^{2}x$$

VALUES OF SOI	VALUES OF SOME PHYSICAL CONSTANTS	ANTS
Constant	Symbol	Value
Avogadro's number	F N ₀	$6.02205 \times 10^{23} \mathrm{mol^{-1}}$
Proton charge	e	$1.60219 \times 10^{-19} \mathrm{C}$
Planck's constant	<i>ה</i>	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$ $1.05459 \times 10^{-34} \text{ J} \cdot \text{s}$
Speed of light in vacuum	acuum c	$2.997925 \times 10^8 \mathrm{m \cdot s^{-1}}$
Atomic mass unit	amu	$1.66056 \times 10^{-27} \text{ kg}$
Electron rest mass	m _e	$9.10953 \times 10^{-31} \text{ kg}$
Proton rest mass	m_p	$1.67265 \times 10^{-27} \text{ kg}$
Boltzmann constant		$1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ 0.69509 cm^{-1}
Molar gas constant	t R	8.31441 J·K ⁻¹ ·mol ⁻¹
Permittivity of a vacuum	acuum $rac{arepsilon_0}{4\piarepsilon_0}$	$\begin{array}{l} 8.854188 \times 10^{-12} \text{C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3} \\ 1.112650 \times 10^{-10} \text{C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3} \end{array}$
Rydberg constant (infinite nuclear mass)	mass) R_{∞}	$2.179914 \times 10^{-23} \text{ J}$ 1.097373 cm^{-1}
First Bohr radius	, a ₀	$5.29177 \times 10^{-11} \text{ m}$
Bohr magneton	μ_B	$9.27409 \times 10^{-24} \text{ J} \cdot \text{T}^{-1}$
Stefan-Boltzmann constant	constant σ	$5.67032 \times 10^{-8} \text{J} \cdot \text{m}^{-2} \cdot \text{K}^{-4} \cdot \text{s}^{-1}$
CONVERSION F	CONVERSION FACTORS FOR ENERGY UNITS	CUNITS
joule	kJ·mol⁻¹ eV	au cm ⁻¹ Hz
1 joule =1	6.022×10^{20} 6.242×10^{18}	$2.2939 \times 10^{17} 5.035 \times 10^{22} 1.509 \times 10^{33}$
1 kJ·mol ⁻¹ =1.661×10 ⁻²¹	1 1.036×10^{-2}	3.089×10^{-4} 83.60 2.506×10^{12}
1 eV =1.602 × 10 ⁻¹⁹	96.48 1	3.675×10^{-2} 8065 2.418×10^{14}
= 4.359 × 10 ⁻¹⁸	2625 27.21	2.195×10 ⁵
	1.196 × 10 ⁻² 1.240 × 10 ⁻⁴	4.556×10^{-6}
1 Hz		

 $J(\text{oule}) = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 1 \text{ C(oulomb)} \cdot \text{V(olt)}$