Семинар по теме: «Вариационные задачи»

2 мая 2019 г.

Общая теория

Вариационные задачи, возникающие чаще всего в приложениях, сводятся к минимизации функционала (в механике он называется "действием"):

$$S[x(t)] = \int_{t_1}^{t_2} L(x(t), \dot{x}(t), t) dt$$

с некой функцией $L(x,\dot{x},t)$, называемой в механике "функцией Лагранжа" или "лагранжианом". Этот функционал ставит в соответствие функции x(t) некое число. Вариационная задача заключается в нахождении такой функции x(t), чтобы действие на ней было минимальным (или максимальным). Для обычных функций f(x) условие экстремума можно записать следующим образом. Точка $x=x_{min}$ является экстремумом, если разложение до линейного порядка по $\delta x=x-x_{min}$ около этой точки зануляется:

$$f(x) - f(x_{min}) = f'(x_{min})\delta x + \underline{O}(\delta x^2) = 0 \Rightarrow f'(x_{min}) = 0$$

Это можно обобщить и на случай функционала. Пусть $x_{min}(t)$ - функция, на которой достигается экстремум функционала S[x(t)]. Тогда необходимо слабо возмутить эту функцию, рассмотрев значение функционала на функции $x(t) = x_{min}(t) + \delta x(t)$ и найти линейную по δx часть приращения функционала:

$$\delta S = S[x_{min}(t) + \delta x(t)] - S[x_{min}(t)] \equiv$$

$$\equiv \int_{t_1}^{t_2} \left(L(x_{min}(t) + \delta x(t), \dot{x}_{min}(t) + \dot{\delta x}(t), t) - L(x_{min}(t), \dot{x}_{min}(t), t) \right) dt =$$

$$= \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial x} \cdot \delta x(t) + \frac{\partial L}{\partial \dot{x}} \dot{\delta x}(t) \right) dt + \underline{O}(\delta x^2)$$

Второе слагаемое можно проинтегрировать по частям. Для того, чтобы не рассматривать внеинтегральный член, добавим к нашей вариационной задаче так называемое условие закреплённых концов, а именно: функционал минимизируется на таких функциях x(t), что $x(t_1) \equiv x_1$ и $x(t_2) \equiv x_2$ (значения на краях фиксированы). Это значит, что вариация удовлетворяет $\delta x(t_1) = \delta x(t_2) = 0$, поэтому внеинтегрального члена не будет:

$$\delta S = \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \right) \delta x(t) dt$$

Требование $f'(x_{min}) = 0$ в нашем случае заменяется на требование равенства нулю так называемой вариационной производной:

$$\frac{\delta S}{\delta x} \stackrel{\equiv}{=} \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0$$

Это - обыкновенное дифференциальное уравнение; и функция, на которой действие достигает экстремального значения, обязана ему удовлетворять. Это уравнение называется уравнением Эйлера-Лагранжа.

Примеры вариационных задач

Геометрическая оптика

Первый пример, в которых возникают вариационные задачи - это принцип Ферма в геометрической оптике, гласящий, что свет распространяется по такой траектории, на которой время его движения минимально. Запишем это на условие языке вариационной задачи. Пусть показатель преломления как-то меняется в пространстве $n(\mathbf{r})$; в этом случае, скорость света в среде записывается как $v(\mathbf{r}) = \frac{c}{n(\mathbf{r})}$. Пусть луч света описывает некую траекторию $\{\mathbf{r}(t), t \in (t_1, t_2)\}$ (при этом параметр t попросту параметризует эту траекторию; не стоит его путать со временем). Время распространения на этой траектории тогда записывается в виде криволинейного интеграла:

$$T[\mathbf{r}(t)] = \oint_{\mathbf{r}(t)} \frac{dr}{v(\mathbf{r})} \equiv \frac{1}{c} \int_{t_1}^{t_2} n(\mathbf{r}(t)) |\dot{\mathbf{r}}(t)| dt$$

В трехмерном пространстве "лагранжиан" этого функционала зписывается как (опуская несущественный фактор 1/c):

$$L(x, y, z, \dot{x}, \dot{y}, \dot{z}) \equiv n(\mathbf{r})|\dot{\mathbf{r}}| = n(x, y, z)\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

В случае многих координат необходимо писать систему уравнений Эйлера-Лагранжа на каждую из координат, то есть:

$$\begin{cases} \frac{\partial L}{\partial x} &= \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \\ \frac{\partial L}{\partial y} &= \frac{d}{dt} \frac{\partial L}{\partial \dot{y}} \\ \frac{\partial L}{\partial z} &= \frac{d}{dt} \frac{\partial L}{\partial \dot{z}} \end{cases}$$

Классическая механика

Уравнения классической механики также можно переформулировать на вариационном языке. В общем случае оказывается, что лагранжиан записывается как $L=T-\Pi$, где T - кинетическая энергия, а Π - потенциальная. В частности, для классической частицы массы m, движущейся в одномерье в потенциале U(x), лагранжиан имеет вид

$$L(x, \dot{x}) = \frac{m\dot{x}^2}{2} - U(x)$$

и соответствующее уравнение Эйлера-Лагранжа имеет вид просто второго закона Ньютона:

 $m\ddot{x} = -\frac{\partial U}{\partial x}$

Задача 1

Пусть теперь свет распространяется в среде с переменным показателем преломления, с зависимостью:

$$n\left(x,y\right) = n_0 - \beta xy$$

причём параметр β мал. Исследуем траекторию, по которой луч будет двигаться из точки (0;0) в точку (L;0).

Решение

Пусть свет распространяется по траектории y(x). Обезразмерим задачу, перейдя к $\widetilde{x} = \frac{x}{L}$ и $\widetilde{y}(\widetilde{x}) = \frac{y(x)}{L}$. В таком случае, обезразмеренная задача записывается как:

$$S[y(x)] = \int_{0}^{L} n(x, y(x)) \sqrt{1 + y'(x)^{2}} dx = n_{0} L \int_{0}^{1} \left(1 - \frac{\beta L^{2}}{n_{0}} \tilde{x} \tilde{y} \right) \sqrt{1 + \tilde{y}'(\tilde{x})^{2}} d\tilde{x}, \quad \tilde{y}(0) = \tilde{y}(1) = 0$$

Таким образом, в задаче имеется единственный важный безразмерный параметр $\kappa = \frac{\beta L^2}{n_0}$; малость β на самом деле означает $\kappa \ll 1$. Из малости κ , в частности, следует малость y(x) и y'(x) (тут и далее знак "~" будет опускаться), что позволит нам разложить корень:

$$S[y(x)] = n_0 x_0 \int_0^1 (1 - \kappa xy) \sqrt{1 + y'^2} dx \approx n_0 x_0 \int_0^1 (1 - \kappa xy + \frac{1}{2}y'^2) dx$$

Тут мы также выбросили "перекрёстный" член $\kappa xy\cdot y'^2$, поскольку он имеет ту же малость, что и следующий порядок разложения корня y'^4 ; оставлять его было бы превышением точности.

Пробная функция Найдём приближённую траекторию, минимизируя "действие" в классе пробных функций $y_{\alpha}(x) = \alpha x(1-x)$. Такие решения представляют собой параболы; они, конечно, отличаются от настоящего решения этой задачи. Однако, вариационный принцип позволяет нам найти параболу, которая больше всего "похожа" на точное решение. В нашем случае, "действие", в которое мы подставим такое решение, становится функцией параметра α . По этому параметру можно его минимизировать, и найти оптимальное значение α . Получаем:

$$S[y_{\alpha}(x)] \approx n_0 x_0 \int_0^1 \left[1 - \kappa x y_{\alpha}(x) + \frac{1}{2} y_{\alpha}^{2} \right] dx = n_0 x_0 \left(1 - \frac{\alpha \kappa}{12} + \frac{\alpha^2}{6} \right)$$

Минимум по α достигается при $\alpha=\frac{1}{4}\kappa$; действие на нём равно $S=n_0x_0(1-\frac{1}{96}\kappa^2)$. Сама траектория записывается как $y(x)=\frac{\beta^2L^3}{4n_0^2}x(L-x)$. Наибольшее отклонение по оси y достигается в точке $x=\frac{1}{2}L$ и равно $y_{max}=\frac{1}{16}\kappa L=\frac{\beta L^3}{16n_0}$.

Аналитическое приближенное решение В последнем приближении для действия, уравнение Эйлера-Лагранжа и его решение с учётом граничных условий записываются просто как:

$$y'' + \kappa x = 0 \Rightarrow y(x) = \alpha x(1 - x)(1 + \beta x)$$

$$y'' = 2\alpha(\beta - 1) - 6\alpha\beta x \Rightarrow \begin{cases} \beta = 1\\ \alpha = \frac{\kappa}{6} \end{cases} \Rightarrow y(x) = \frac{1}{6}\kappa x(1 - x^2)$$

"Действие" на этом решении равно $S=n_0x_0\left(1-\frac{\kappa^2}{90}\right)$ (оно меньше найденного в прошлом пункте; это приближение лучше). Максимальное отклонение достигается при $x=\frac{L}{\sqrt{3}}$ и равно $y_{max}=\frac{1}{9\sqrt{3}}\kappa L\approx\frac{1}{15.6}\kappa L$ (можно сравнить с 1/16, полученной в прошлом пункте).

Численный анализ Наконец, можно решать численно уравнения Эйлера-Лагранжа, которые в данном случае записываются как:

$$y'' + \kappa x(y'^2 + 1) - \kappa y(xy'' + y'^3 + y') = 0, \quad y(0) = 0, \quad y(1) = 0$$

Для сравнения, приведём все три сделанных приближения на одном рисунке. Оказывается, что приближенное аналитическое решение даёт правильную ведущую асимптотику по κ , включая численный префактор.

Рис. 1: Точное решение и два приближённых для $\kappa = 0.5$

Задача 2 (статика и теория упругости)

Пусть имеется цепочка из N точечных масс \tilde{m} , соединённых пружинками жёсткостью \tilde{k} ; пружинки в нерастянутом состоянии имеют длину a. Первый шарик закрепляют в точке (0;0), а последний - в точке (L;0) (ось y направлена вертикально вверх). Под действием силы тяжести, цепочка провисает. Исследуем это провисание в пределе $N \to \infty$.

Чтобы задача имела конечный предел $N \to \infty$, параметры задачи тоже нужно менять в зависимости от N. Эта задача является моделью упругого тела (пружины) массы M и жёсткостью k, которая провисает под собственным весом. Если это так, то жёсткости каждой из маленьких пружинок выражаются как $\tilde{k} = k \frac{L}{a} = k N$, а массы равны $\tilde{m} = M \frac{a}{L} = \frac{M}{N}$.

Решение

Пусть координаты каждого из шариков $\{(x_n, y_n)\}_{n=1}^N$. Потенциальная энергия складывается из двух вкладов: во-первых, это потенциальная энергия в поле тяжести, а во-вторых, энергия растяжения пружинок:

$$U_1 = \sum_{n=1}^{N} \tilde{m}gy_n$$

$$U_2 = \sum_{n=1}^{N-1} \frac{1}{2}\tilde{k} \left[\sqrt{(x_{n+1} - x_n)^2 + (y_{n+1} - y_n)^2} - a \right]^2$$

Проведём теперь переход к пределу $N \to \infty$. Для этого введём вместо x_n и y_n непрерывные функции $x(l=na) \equiv x_n$ и $y(l=na) \equiv y_n$ и $l \in [0,L]$. Во-вторых, заменим суммы на интегралы по правилу $\sum_{n=1}^N \mapsto \int_0^L \frac{dl}{a}$. Наконец, конечные разности, стоящие под корнем, выразим через производные. Получим следующий функционал энергии:

$$U[x(l), y(l)] = \int_0^L dl \left[\frac{1}{2} kL \left(\sqrt{x'^2 + y'^2} - 1 \right)^2 + \frac{1}{L} Mgy \right]$$

Во-первых, мы избавились от всех бесконечно малых и бесконечно больших величин, оставшиеся величины имеют конечный предел при $N\to\infty$. Это явный признак того, что мы правильно выбрали зависимость параметров исходной задачи от N для воспроизведения непрерывного предела. Во-вторых, физический смысл x(l) и y(l) можно понять следующим образом. Пусть в какой-то момент гравитацию "выключили"; при этом пружинка будет располагаться в горизонтальном положении; и x(l)=l и y(l)=0. После "включения" гравитации, пружина провиснет, при этом точка, которая изначально имела координаты (l,0) переместится в точку (x(l),y(l)). Наконец, обезразмерим задачу, введя следующие параметры: $\tilde{x}=\frac{x}{L},\ \tilde{y}=\frac{y}{L},\ \tilde{l}=\frac{l}{L},\varkappa=\frac{Mg}{kL},\ \tilde{U}=\frac{U}{kL^2}$. Получим:

$$U\left[x(l),y(l)\right] = \int_0^1 dl \left[\frac{1}{2} \left(\sqrt{x'(l)^2 + y'(l)^2} - 1\right)^2 + \varkappa y(l)\right], \quad x(0) = y(0) = y(1) = 0, x(1) = 1$$

Тут и далее, как всегда, все знаки "~" будут опускаться. Поскольку мы предполагаем провис маленьким (иначе теория упругости, вообще говоря, не работает) - это значит, что параметр $\kappa \ll 1$.

Размерный анализ Получим из соображений размерности характерную высоту провисания пружинки. Пусть пружинка провисла на величину h. Тогда в интеграле можно сделать следующие оценки: $x' \sim 1, \ y \sim -h, \ y' \sim -h$ (напомним, что в обезразмеренной задаче L=1; иначе оцена выглядела бы как $y' \sim -\frac{h}{L}$). Таким образом, потенциальная энергия имеет вид:

$$U \sim h^4 - \kappa h$$

Имеется противоборство двух вкладов: член $\sim \kappa h$, связанный с силой тяжести, стремится к наибольшему провисанию, в то время как член $\sim h^4$, связанный с упругой энергией, стремится "выровнять" пружинку и минимизировать провисание. Равновесие наступает, когда эти вклады примерно одинаковы, что дает нам размерную оценку на масштаб величины провисания:

$$h^4 \sim \kappa h \Rightarrow h \sim \kappa^{1/3}$$

Потенциальная энергия при этом имеет масштаб:

$$U \sim h^4 \sim \kappa^{4/3}$$

(напомним, что мы работаем в обезразмеренных единицах; в исходной задаче $h \sim L \kappa^{1/3}$).

Пробная функция В качестве пробной функции мы будем рассматривать параболы. Однако заметим, что параметризация x(l) и y(l) уже фиксирована; поэтому сделаем дополнительное приближение, а именно, мы пренебрежем смещением элементов пружины по горизонтали. Это приближение соответствует подстановке следующих пробных функций:

$$\begin{cases} x(l) &= l \\ y(l) &= -\alpha l (1 - l) \end{cases}$$

(знак перед $\alpha > 0$ выбран так, чтобы явно отразить тот факт, что пружинка будет провисать вниз). Подставляя её в приближенный функционал:

$$U[x(l), y(l)] = \int_0^1 dl \left[\frac{1}{2} \left(\sqrt{1 + y'(l)^2} - 1 \right)^2 + \varkappa y(l) \right] \approx \int_0^1 dl \left[\frac{1}{8} y'^4 + \varkappa y \right] = \frac{\alpha^4}{40} - \frac{\alpha \kappa}{6}$$

Минимум достигается при $\alpha = \left(\frac{5}{3}\kappa\right)^{1/3}$; при этом энергия равна $U = -\frac{1}{8}\left(\frac{5}{3}\right)^{1/3}\kappa^{4/3} \approx -0.148 \cdot kL^2 \left(\frac{Mg}{kL}\right)^{4/3}$; максимальное провисание равно $h = -y(\frac{1}{2}) = \frac{1}{4}\left(\frac{5}{3}\kappa\right)^{1/3} \approx 0.296\kappa^{1/3}$.

Аналитическое приближенное решение Сделаем то же приближение x(l) = l; но при этом не будем ничего предполагать про y(l), кроме её малости. В таком случае энергия запишется как:

$$U[x(l), y(l)] \approx \int_0^1 dl \left[\frac{1}{8} y'^4 + \varkappa y \right]$$

Уравнение Эйлера-Лагранжа для этой задачи и его решение записывается следующим образом:

$$\frac{d}{dl}\left(\frac{1}{2}y'^3\right) = \kappa \Rightarrow y'(l) = \sqrt[3]{2\kappa(l-l_0)} \Rightarrow y(l) = (2\kappa)^{1/3} \cdot \frac{3}{4}(l-l_0)^{4/3} + y_0 = \frac{3}{8}\kappa^{1/3}\left((2l-1)^{4/3} - 1\right)$$

Можно сравнить это решение с предыдущим. Энергия равна $U=-\frac{9}{56}\kappa^{4/3}\approx -0.161\kappa^{4/3}$ (то есть это приближение лучше предыдущего); максимальное провисание равно $h=-y(\frac{1}{2})=\frac{3}{8}\kappa^{1/3}=0.375\kappa^{1/3}$.

Численное решение Точные уравнения Эйлера-Лагранжа записываются как:

$$x'y'y'' + x'^2x''\sqrt{x'^2 + y'^2} + x''y'^2\left(\sqrt{x'^2 + y'^2} - 1\right) = 0$$
$$x'^2\left(\kappa\sqrt{x'^2 + y'^2} - 2y''\left(\sqrt{x'^2 + y'^2} - 1\right)\right) + y'^2\sqrt{x'^2 + y'^2}(\kappa - 2y'') - 2x'x''y' = 0$$

Это уравнение можно решать численно, сравнивая с аналитическими приближениями.

-0.05 -0.10 -0.15 -0.20 -0.25

Рис. 2: Приближение к решению и точное решение при $\kappa = 0.5$

Задачи для домашнего решения

Упражнение 1

Используя кубическую пробную функцию, получить наилучшее приближенное решение для движения луча в среде с $n(x,y)=n_0-\beta xy$ между двумя точками $x=0,\ y=0$ и $x=L,\ y=0.$ Считать, что $\beta L^2\ll n_0.$

Упражнение 2

Рассмотрите задачу про провисание пружины в случае, когда в нерастянутом состоянии длина пружины L_0 много меньше расстояния между точками закрепления L. Параметр $\kappa = Mg/kL$ считать малым: $\kappa \ll 1$.

Упражнение 3

Показатель преломления в атмосфере меняется с высотой как $n(z)=n_0(1-\alpha z)$. Исследуйте, под каким углом будет видно точечный источник находящийся на расстоянии d от наблюдателя, таком что $\alpha d\ll 1$

Задача 1

Между двумя кольцами радиуса R, разведенными на расстояние d, натянута мыльная пленка. Энергия пленки пропорциональна ее площади. Определите точно профиль пленки и найдите ее прогиб при $d \ll R$.