PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 07

MAT1106 — Introducción al Cálculo Fecha: 2020-09-08

Problema 1:

Demuestre por inducción que $n^2 \ge n$ para todo $n \in \mathbb{N}$.

Solución problema 1: $(n+1)^2 = n^2 + 2n + 1 \ge n + 2n + 1 = 3n + 1 \ge n$

Problema 2:

Usando la notación $\{(x+y)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(x+y)_n = x_n + y_n$, y $\{(xy)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(xy)_n = x_ny_n$. Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadero demuestre, en caso contrario de contraejemplo.

- 1) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es creciente.
- 2) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es creciente.
- 3) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es monótona.
- 4) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es monótona.
- 5) Si $\{x_n\}_{n\in\mathbb{N}}$ es monótona, entonces $\{(x^2)_n\}_{n\in\mathbb{N}}$ es creciente.

Solución problema 2:

- 1) V
- 2) F $x_n = n, y_n = -1$

- 3) F $x_n = n^2$, $y_n = -n!$
- 4) F $x_n = n^2$, $y_n = (n!)^{-1}$
- 5) F $x_n = n 2$

Problema 3:

Sean $n \in \mathbb{N}$, $\alpha > 1$. Demuestre que existe una constante C > 0 tal que $\alpha^n > Cn$ para todo n.

Solución problema 3: Usar Bernoulli

Problema 4:

Demuestre que la siguiente sucesión es creciente

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

Solución problema 4: Tomar a_n/a_{n+1} y usar Bernoulli.