Final SURFv6C design

PSA

Checklist

- 1. Freewheel diode orientation fix
- 2. VCAP decoupling cap on ADM1278
- 3. TXU0202 pinout fix
- 4. Remove 1.8V_CLK supervisor, replace with pullup
- 5. Add 74AVC4T774 buffer between TE0385<->RACK JTAG powered by 3.3VSB
- 6. Add DT1446S diodes to TE0835 JTAG, remove RX/TX from connector
- 7. Add MGTCLK0/1 AC coupling caps
- 8. Switch Y2 626L10005I3T => SG2520VHN 156.2500M-ECHPZA6

https://github.com/barawn/pueo-daq-design/tree/main/SURFv6revC

Freewheel diode (high current draw, no fan)

RevB (diode points to ground)

(ECO was just to flip the diode around)

RevC (diode points to power)

VCAP decoupling cap (unstable swap operation)

RevB: No VCAP decoupling

RevC: VCAP decoupling

(ECO just added a cap between these vias)

TXU0202 pinout (debug UART broken, pins swapped)

RevB: signals connected "L/R"

RevC: signals connected "T/B"

ECO is to cut and jumper

Remove 1.8V supervisor and pull up (LMK reset held low, wrong part, correct part doesn't exist)

RevB: nonfunctional supervisor RevC: only pullup

ECO is to just remove U48 and stick resistor across pads

Add 4T774 buffer to RACK JTAG

(with 3.3VSB off, TE0835 is driving into unpowered CPLD, maybe vice versa too)

Schematic change (DIR L=B->A)

/OE transistor is needed due to inverted polarity If need to isolate for some reason just pull U47

Layout

ECO for revB is probably cut-and-jumper using a patch board or something

Add DT1446 diodes to JTAG (ESD), drop RX/TX
Also added use warning. Not a risk to TE0835, only to buffer
RX/TX unneeded and risky anyway (direct MIO connection to TE0835)

RevB: no ESD protection, RX/TX

RevC: ESD diode+warning, no RX/TX

ECO adds label (+ESD diodes on patch board)

AC coupling caps for MGTCLK (no apparent problems but bad practice)

RevB: direct connections

ECO is cut traces and insert either near vias or pads

RevC: AC coupling caps

MGT onboard clock switch

(only schematic/layout change is 3.3VCPLD->1.8V_CLK)
Reduce load on 3.3V_CPLD, phase noise only slightly increases
Option to switch back to 3.3VCPLD

626L10005I3T

Phase Noise [typical]

100MHz, LVDS, $V_{CC} = +2.5V$, $T_A = +25$ °C

n.b. this is 100M so significantly worse

SG2520

Typical Performance

Phase Noise (fo = 156.25 MHz, V_{CC} = 3.3 V)

Phase Jitter (12 kHz to 20 MHz): 38 fs Typ.

Symbol	Description •	Offset Frequency	Min	Тур	Max	Units
QPLL _{REFCLKMASK}	QPLL0/QPLL1 reference	10 kHz	-	-	-112	dBc/Hz
	clock select phase noise mask at REFCLK frequency = 156.25 MHz	100 kHz	-	-	-128	
		1 MHz	-	-	-145	

3.3V/1.8V power option

RevB: only 3.3V_CPLD

RevC: either 1.8V or 3.3V (1.8V nom)

