Algèbre II Contrôle du 8 février 2017 durée : 60 minutes

Les documents, calculatrices et téléphones portables sont interdits durant l'épreuve. Les réponses doivent être justifiées.

Exercice 1

(1) Montrer que le nombre réel

$$\alpha = \frac{\sqrt[4]{111}}{\sqrt[3]{5} + \sqrt{468 - \sqrt{7}}}$$

est algébrique sur $\mathbb{Q}(i)$.

(2) Déterminer le polynôme minimal sur \mathbb{Q} de

$$\beta = \sqrt[5]{7}e^{\frac{6\pi i}{5}}.$$

- (3) Posons $\gamma = i\sqrt{2} + \sqrt{3}$.
 - (a) Donner un polynôme annulateur de γ dans $\mathbb{Q}[X] \setminus \{0\}$.
 - (b) Montrer que $\sqrt{3} \in \mathbb{Q}(\gamma)$.
 - (c) Montrer que $[\mathbb{Q}(\gamma):\mathbb{Q}] = 4$.
 - (d) Déterminer le polynôme minimal de γ sur \mathbb{Q} .
 - (1) L'ensemble des nombres complexes algébriques est un corps, donc α est algébrique sur \mathbb{Q} comme quotient de sommes de nombres algébriques. A fortiori, α est algébrique sur $\mathbb{Q}(i)$.
 - (2) $\beta = \sqrt[5]{7}e^{\frac{6\pi i}{5}}$, donc $\beta^5 = 7$. D'après le critère d'Eisenstein avec p = 7, $X^5 7$ est irréductible sur \mathbb{Q} . Comme il est de plus unitaire, c'est le polynôme minimal de β .
 - (3) (a) $\gamma = i\sqrt{2} + \sqrt{3}$, donc $(\gamma \sqrt{3})^2 = -2$, d'où $\gamma^2 + 5 = 2\gamma\sqrt{3}$. En prenant le carré, $\gamma^4 2\gamma^2 + 25 = 0$. Le polynôme $X^4 2X^2 + 25$ est un polynôme annulateur de γ .
 - (b) Comme $(\gamma \sqrt{3})^2 = -2, \sqrt{3} = (2\gamma)^{-1}(\gamma^2 + 5) \in \mathbb{Q}(\gamma).$
 - (c) Montrons que γ est de degré 4. On sait déjà qu'il est de degré inférieur ou égal à 4 d'après 3a. Le corps $\mathbb{Q}(\gamma)$ est une extension de $\mathbb{Q}(\sqrt{3})$ d'après la question 3b, donc grâce au théorème de la base télescopique,

$$[\mathbb{Q}(\gamma):\mathbb{Q}] = [\mathbb{Q}(\gamma):\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\gamma):\mathbb{Q}(\sqrt{3})] \times 2.$$

Comme $i\sqrt{2} = \gamma - \sqrt{3}$ appartient à $\mathbb{Q}(\gamma)$ mais pas à $\mathbb{Q}(\sqrt{3})$ (qui est inclus dans \mathbb{R}), on a $[\mathbb{Q}(\gamma):\mathbb{Q}(\sqrt{3})] \geqslant 2$, d'où $[\mathbb{Q}(\gamma):\mathbb{Q}] \geqslant 4$.

Finalement, $[\mathbb{Q}(\gamma):\mathbb{Q}] = 4$

(d) Le polynôme minimal de γ sur $\mathbb Q$ est de degré 4 d'après la question 3c et c'est un diviseur de X^4-2X^2+25 d'après la question 3a. Comme il de plus unitaire, il est égal à X^4-2X^2+25 .

Exercice 2

Le but de cet exercice est de démontrer le résultat suivant :

Pour tout corps E tel que $\mathbb{Q} \subset E \subset \mathbb{C}$ et $[E : \mathbb{Q}] = d$ est fini, il existe un nombre algébrique γ tel que $E = \mathbb{Q}(\gamma)$.

On va procéder par récurrence sur d.

(1) Cas d = 1: montrer que si E est un corps tel que $\mathbb{Q} \subset E \subset \mathbb{C}$ et $[E : \mathbb{Q}] = 1$, le résultat est vrai.

Soit d un nombre entier, $d \ge 2$. Supposons le résultat vrai pour tous les corps contenant \mathbb{Q} et de degré inférieur ou égal à (d-1).

Soit E un corps tel que $\mathbb{Q} \subset E \subset \mathbb{C}$ et $[E : \mathbb{Q}] = d$.

- (2) Soit (e_1, \ldots, e_d) une base de E vu comme un \mathbb{Q} -espace vectoriel.
 - (a) Montrer que pour tout $i \in \{1, ..., d\}$, e_i est algébrique sur \mathbb{Q} .
 - (b) Montrer que $E = \mathbb{Q}(e_1, \dots, e_d)$.
- (3) Soient $\alpha, \beta \in \mathbb{C}$ deux nombres algébriques sur \mathbb{Q} .
 - (a) Considérons les sous-corps de $\mathbb{Q}(\alpha, \beta)$

$$K_1 = \mathbb{Q}(\alpha + n_1\beta)$$
 et $K_2 = \mathbb{Q}(\alpha + n_2\beta)$

où $n_1, n_2 \in \mathbb{Z}$. Supposons qu'ils sont contenus *strictement* dans $\mathbb{Q}(\alpha, \beta)$. Montrer que $K_1 = K_2$ si et seulement si $n_1 = n_2$.

- (b) On admet que le corps $\mathbb{Q}(\alpha, \beta)$ n'admet qu'un nombre fini de sous-corps. Montrer qu'il existe $m \in \mathbb{Z}$ tel que $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha + m\beta)$.
- (4) Conclure.
 - (1) Le corps E alors une extension de degré 1 de \mathbb{Q} , donc est égal à $\mathbb{Q} = \mathbb{Q}(1)$.
 - (2) (a) Soit $i \in \{1, ..., d\}$, e_i . Alors $\mathbb{Q}(e_i) \subset E$, donc le degré de $\mathbb{Q}(e_i)$ est au plus d, donc e_i est algébrique sur \mathbb{Q} (de degré inférieur ou égal à d).
 - (b) E est un corps qui contient \mathbb{Q} et e_1, \ldots, e_d , donc il contient $\mathbb{Q}(e_1, \ldots, e_d)$ qui est le plus petit corps satisfaisant cette propriété. Réciproquement, si $x \in E$ alors comme (e_1, \ldots, e_d) est une \mathbb{Q} -base de E, x peut s'écrire $x = \sum_{k=1}^d \lambda_k e_k$ avec $\lambda \in \mathbb{Q}$, donc $x \in \mathbb{Q}(e_1, \ldots, e_d)$.
 - (3) (a) Si n₁ = n₂, on a clairement K₁ = K₂.
 Supposons maintenant K₁ = K₂ = K et supposons par l'absurde n₁ ≠ n₂.
 Alors α + n₁β et α + n₁β sont dans K, donc leur différence (n₁ n₂)β ∈ K.
 Comme K contient ℚ c'est un corps de caractéristique nulle, donc (n₁ n₂) est non nul donc inversible dans K, d'où β ∈ K. Par conséquent, a ∈ K car α = (α + n₁β) n₁β est la somme de deux éléments de K. Donc K contient ℚ(α, β), ce qui contredit l'hypothèse. D'où n₁ = n₂.
 - (b) Considérons tous les corps $\mathbb{Q}(\alpha + m\beta)$, où m décrit \mathbb{Z} . S'ils sont tous distincts de $\mathbb{Q}(\alpha, \beta)$, on peut leur appliquer la question précédente : ils sont donc tous deux à deux distincts. Or c'est impossible puisqu'il n'existe qu'un nombre fini de sous-corps de $\mathbb{Q}(\alpha, \beta)$. Donc il existe $m \in \mathbb{Z}$ tel que $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha + m\beta)$ (c'est même vrai pour tout m sauf un nombre fini!).
 - (4) Notons, comme dans la question précédente, (e_1, \ldots, e_d) une base de E comme \mathbb{Q} -espace vectoriel. Alors d'après la question 2b,

$$E = \mathbb{Q}(e_1,\ldots,e_d).$$

Posons $k = \min\{j \in \{1, ..., d\} \mid E = \mathbb{Q}(e_1, ..., e_j)\}$. Si k = 1, alors $E = \mathbb{Q}(e_1)$ et on peut poser $\gamma = e_1$. Sinon,

$$E = (\mathbb{Q}(e_1, \dots, e_{k-1}))(e_k) = E'(e_k),$$

en notant $E' = \mathbb{Q}(e_1, \dots, e_{k-1}).$

Vérifions que nous pouvons appliquer l'hypothèse de récurrence à E'. D'après le théorème de la base télescopique, $d = [E : \mathbb{Q}] = [E : E'][E' : \mathbb{Q}]$. Or [E : E'] > 1 parce que $e_k \notin E'$ (par minimalité de k). Par hypothèse de récurrence, il existe donc δ algébrique tel que $E' = \mathbb{Q}(\delta)$, donc

$$E = \mathbb{Q}(\delta)(e_k) = \mathbb{Q}(\delta, e_k).$$

D'après la question (1)(b), il existe $m \in \mathbb{Z}$ tel que $\mathbb{Q}(\delta, e_k) = \mathbb{Q}(\delta + me_k)$. En posant $\gamma = \delta + me_k$, on a bien montré

$$E = \mathbb{Q}(\gamma)$$
.

On a bien démontré le résultat voulu, par récurrence sur le degré d de l'extension finie de $\mathbb Q$