Московский государственный технический университет им. Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника»

Кафедра «Радиоэлектронные системы и устройства»

Семинар №3

«Определение параметров модели диода по данным эксперимента» по дисциплине

«Электроника»

Вариант № 12

Выполнил ст. группы РЛ6-41

Мухин Г.А.

Филимонов С.В.

Сиятелев А.Ю.

Фамилия И.О.

Проверил доцент

Крайний В.И.

Оценка в баллах_____

Цель работы

используя полученные экспериментальные данные для диодов в лабораторной N1 с помощью программы MODEL получить параметры для диода (моделируя диод с использованием BAX из лабораторной работы), затем внести данные параметры в программу MICROCAP и сопоставить BAX — моделируемого диода с экспериментальными данными, полученными в ходе проведения лабораторной работы.

Ход работы

I, mA	U, B
0,05	0,05
0,1	0,10
0,5	0,16
1	0,19
2	0,22
5	0,27
7	0,29
10	0,32

Таблица 1 – Результаты снятия ВАХ для прямой ветви Д311А.

Используя экспериментальные данные из табл. 1 получим характеристики диода Д311A в программе MODEL.

Теперь соберем схему в программе Microcap и в используемом диоде используем параметры, полученные в программе MODEL.

Жирным шрифтом в параметрах диода обозначены те значения, которые были посчитаны в программе MODEL.

Получим график DC Analysis:

Из этого графика с помощью Numeric Output получим конкретные значения для силы тока и напряжения:

После чего данные из полученного файла табличных значений занесем в MATLAB для построения графика BAX и сравнения экспериментального BAX, полученного на лабораторной работе с BAX, который был построен программой Microcap с параметрами диода из программы MODEL.

BAX, полученный эксперементально почти не отличается от моделируемого, это может говорить только о высокой точности моделирования программы MODEL.

Теперь аналогично первому исследуем второй диод КД105В:

I, mA	U, B
0,05	0,4
0,1	0,43
0,5	0,49
1	0,52
2	0,56
5	0,6
7	0,62
10	0,64

Таблица 2 - Результаты снятия ВАХ для прямой ветви КД105В.

Используя экспериментальные данные из табл. 2 получим характеристики диода КД105В в программе MODEL.

Model Parameters ————————————————————————————————————		□	Model Parameters——————	
IS	4.54799e-010	CJO	5e-012	
N	1.36147	М	0.5	
RS 5.03586	VJ	0.75		
	FC	0.5		
	EG	1.11		
	XTI	3		

Теперь соберем схему в программе Microcap и в используемом диоде используем параметры, полученные в программе MODEL.

Жирным шрифтом в параметрах диода обозначены те значения, которые были посчитаны в программе MODEL.

Получим график DC Analysis:

Из этого графика с помощью Numeric Output получим конкретные значения для силы тока и напряжения:

После чего данные из полученного файла табличных значений занесем в MATLAB для построения графика BAX и сравнения экспериментального BAX, полученного на лабораторной работе с BAX, который был построен программой Microcap с параметрами диода из программы MODEL.

как мы можем наблюдать из двух моделируемых диодов, оба достаточно близки по BAX к экспериментальным BAX, полученных в лабораторной работе, что свидетельствует о высокой точности модели эквивалентной схемы диода в программе MODEL + Microcap с параметрами нреальных диодов.