Trusted Federated Learning with Blockchain Technology

DS 2022 Project - Final Presentation

Introduction

Challenges in Centralized Machine Learning

Availability of commodity devices

Privacy concerns

Legal concerns

Challenges in Centralized Machine Learning

Federated Learning emerges as a new paradigm

Federated Learning: Two Schools

Blockchain for Decentralised FL

- Use Blockchain to coordinate the FL learning process.
 - Blockchain-based Federated Learning: A Comprehensive Survey Zhiling Wang, Qin Hu - <u>arxiv.org/abs/2110.02182</u>
 - BAFFLE: Blockchain Based Aggregator Free Federated Learning Paritosh Ramanan, Kiyoshi Nakayama - <u>arxiv.org/abs/1909.07452</u>
 - BlockFLow: An Accountable and Privacy-Preserving Solution for FL
 Vaikkunth Mugunthan, Ravi Rahman, Lalana Kagal <u>arxiv.org/abs/2007.03856</u>
 - Mechanism Design for An Incentive-aware Blockchain-enabled Federated Learning Platform
 - Kentaroh Toyoda, Allan N. Zhang ieeexplore.ieee.org/document/9006344

- Ensure trust
 - What is trust?

- Ensure trust
 - What is trust?
- Limitations of blockchain
 - Algorithmic and in storage size

- Ensure trust
 - What is trust?
- Limitations of blockchain
 - Algorithmic and in storage size
- Incentivization system
 - Why should people participate (fairly!)

- Ensure trust
 - What is trust?
- Limitations of blockchain
 - Algorithmic and in storage size
- Incentivization system
 - Why should people participate (fairly!)
- Creation of a final global model
 - To be used by anybody

DISCOFL

Distributed Incentive System for Cooperatively Orchestrated FL

Architecture

Initialization

Smart Contract

Model Storage

Model Storage

Model Storage

Model Storage

Model Storage

Closing

Closing

getTopK

Requester

Smart Contract

Model Storage Worker

Closing getTopK Smart Contract Requester getMode/ Worker Model Storage

Trust

Trust

Trustworthy system

Fair behaviour of workers and rewards based on contribution

Trust

Trustworthy system

Fair behaviour of workers and rewards based on contribution

- Poisoning the model is not leading to worthy rewards
- The workers are anonymized
 - Not possible to trigger rewards for "friend workers"

Rewarding system

- Based on currency deposit on Smart Contract and mutual evaluation
- Workers are "paid" by the requester
- The requester is rewarded with the training of the model

Evaluation system

- Each worker evaluates other workers' model on his validation set
 - ▶ Better model performance ⇒ Better reward
- BlockFLow-like contribution scoring procedure
 - Penalize low-quality models and inaccurate evaluations

Implementation

ML Implementation

- Assumption: workers data is disjoint
- 20% of worker's datasets are used for validation
- In principle, the architecture is model agnostic
 - Requester distributes the initial model
 - More sophisticated aggregation schemes could be implemented (see future work)

ML Implementation

- Lack of infrastructure enforces simulation of distributedness
 - Simplifies playing with different parameters
 - Simplifies timing and synchronization issues
 - Simplifies storage access

Smart Contract Implementation

- Incentive mechanism implemented through smart contract
- Deployed by the requester, interacts with workers and requester
- Main functionalities:
 - Round coordination
 - Score aggregation
 - Reward distribution

Smart Contract Implementation

Future work & Conclusions

Future work

- Decentralize File System
 - Use IPFS (c.f. BlockFLow)
 - Store model on Blockchain (c.f. BAFFLE)
- Extend prototype to work with distributed network
- Implement cryptography and anonymity
- Improve the aggregation algorithm

Conclusions

- We designed DiscoFL: an architecture for decentralized FL powered by a Blockchain-based incentive mechanism.
- We defined our notion of trust and how our system can be trustworthy.
- We implemented a simplified prototype providing a demo of the main functionalities of DiscoFL.

Thanks for the attention!

Any questions?