Exerzitien IV

Submit your concise solutions in the correct order and no later than 4:10 pm on Oct. 13., in your tutorial.

Reading suggestion: Finish reading Axler, Chapter 2.

Exercise 1. Let

$$v_1 = (2, 3, 0, 0)$$
 $v_2 = (0, 0, 1, -1)$
 $v_3 = (1, 0, 0, 4)$ $v_4 = (0, 0, 0, 2)$

and show that (v_1, v_2, v_3, v_4) form a basis for \mathbb{R}^4 . Find the coordinates of each of the standard basis vectors of \mathbb{R}^4 , in the basis (v_1, v_2, v_3, v_4) . Recall that the coordinates of a vector v in the basis (v_1, \ldots, v_n) are the unique coefficients $x_1, \ldots, x_n \in \mathbb{F}$ such that

$$V = X_1 V_1 + \cdots + X_n V_n$$
.

Exercise 2.

1. Let V be a vector space over the field \mathbb{F} , and let $f:V\to\mathbb{F}$ be a linear function, meaning that $f(v_1+v_2)=f(v_1)+f(v_2)$ and $f(\lambda v_1)=\lambda f(v_1)$ for all $\lambda\in\mathbb{F}$ and $v_1,v_2\in V$. Show that

$$H_f = \{ v \in V : f(v) = 0 \}$$

is a linear subspace of V.

2. Show how the above implies the following fact: for any fixed $(a_1, \ldots, a_n) \in \mathbb{F}^n$,

$$H_{(a_1,\ldots,a_n)} = \{(x_1,\ldots,x_n) \in \mathbb{F}^n : a_1x_1 + \cdots + a_nx_n = 0\}$$

is a linear subspace of \mathbb{F}^n .

3. Consider the special case of $H_{(1,2,3)} \subset \mathbb{R}^3$ defined as above for $(a_1, a_2, a_3) = (1,2,3) \in \mathbb{R}^3$. Find a basis for $H_{(1,2,3)}$ and state the dimension of $H_{(1,2,3)}$.

Exercise 3. In the previous exercise we defined the concept of a linear function $f: V \to \mathbb{F}$. Let V^* be the set of all linear functions on the vector space V. This is called the "dual vector space" to V.

- 1. Prove that V^* is a linear subspace of the vector space \mathbb{F}^V of all functions from V to \mathbb{F} .
- 2. Suppose that (e_1, \ldots, e_n) is a basis for V, so that any vector $v \in V$ can be written in a unique way as

$$v = x_1 e_1 + \cdots + x_n e_n, \quad x_i \in \mathbb{F}.$$

For each $i=1,\ldots,n$, define the function $f_i:V\to\mathbb{F}$ by $f_i(v)=x_i$. Prove that f_i is a linear function.

3. Use the above to prove that if V is finite dimensional, then so is V^* , and dim $V = \dim V^*$.

Exercise 4. Fix a field \mathbb{F} . Define $\mathbb{F}^{\infty} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{F}\}$, the vector space of infinite sequences of numbers in \mathbb{F} . This is a vector space, with operations similar to \mathbb{F}^n . Prove that \mathbb{F}^{∞} is infinite dimensional.