Soutenance de Projet

Problème de Gestion de Personnel en Soins à Domicile

LE PAPE Sandy

13 mars 2019

Introduction

Acteurs du projet

Introduction

Contexte et enjeux

Le problème : on dispose

- d'un personnel soignant, composé de plusieurs infirmières,
- d'un ensemble de patients à soigner à leur domicile respectif,
- d'un ensemble de contraintes de travail / horaires.

Objecitf: trouver un modèle affectant automatiquement les infirmières aux patients, en satisfaisant les contraintes des 2 partis.

Limitations et objectif

Problème : implémenter un problème de type *Workforce Scheduling* appliqué à ce contexte.

Limitations de la méthode actuelle :

- aucune méthode parfaite, le problème étant NP-Complet;
- beaucoup d'heuristiques implémentées à ce jour.

Etapes de travail

- travailler le TSP en y introduisant des contraintes de temps,
- l'adapter pour un problème de type VRP.

Sommaire

- Modélisations principales
 - Programmation Linéaire
 - Programmation Par Contraintes
- 2 Le TSP : le Problème du Voyageur de Commerce
 - Présentation du problème et modélisations possibles
 - Ajouts de temps caractéristiques et des prédécesseurs
 - Mise en place de stratégies
- 3 Le VRP : les Problèmes de Tournées de Véhicules
 - Présentation du problème et modélisation linéaire
 - Construction de la solution Programme Par Contraintes
- 4 Conclusion

rogrammation Linéaire rogrammation Par Contrainte

Modélisations principales

Programmation Linéaire

Principe

Optimiser un problème de nature linéaire sur un polyèdre convexe.

Composantes du problème :

- un ensemble de variables,
- un ensemble de contraintes linéaires,
- une fonction objectif linéaire.

Outils

Outils + logo	Gusek	CPLEX OPTIMIZER	
		CPLEX	
Liberté d'utilisation	libre de droits	privé	
Langage	basé sur AMPL	basé sur AMPL + OPL	
Solveur	GPLK	solveur IBM	

Programmation Par Contraintes

Principe

Optimiser un problème de nature combinatoire sur un espace de recherche.

Composantes:

- un ensemble de variables et leur domaine de valeurs respectif,
- un ensemble de contraintes,
- une fonction objectif,
- un ensemble de stratégies de recherche.

Outils et structure du code

- Librairie libre de droits,
- Française,
- Ecrite en Java,
- Dispose de son propre solveur,
- Dédiée à la PPC.

Figure - Pipeline Choco

Présentation du problème et modélisations possibles Ajouts de temps caractéristiques et des prédécesseurs Mise en place de stratégies

Le TSP : le Problème du Vovageur de Commerce

Présentation du problème et modélisations possibles

Modélisation par un graphe

Figure – Modélisation du TSP

Figure – Tournée possible

 $n-1 \ n-1$

Programme Linéaire final

min
$$d = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} x_{ij} \cdot T_{ij} + x_{x_N 1} \cdot T_{ij}$$

s.c. $\sum_{i=0}^{n-1} x_{ij} = 1$ $\forall i \in [|0, n-1|]$ (1) $\sum_{i=0}^{n-1} x_{ij} = 1$ $\forall j \in [|0, n-1|]$ (2) $x_{ij} = 0$ $\forall i \in [|0, n-1|]$ (3)

 $\forall \{v_1, ..., v_t\} \subset V$ (4)

 $x_{v_1v_2} + x_{v_2v_3} + ... + x_{v_tv_1} \le t - 1$

Principe

Figure - Tournée possible

Figure - Vecteur du modèle

Problème: Choco ne permet pas l'implémentation d'expressions du type $r_i r_{i+1}$.

Modélisation adaptée à Choco

 \rightarrow Introduction d'un vecteur successeur s.

Figure – Tournée possible

Figure – Vecteurs du modèle

Problème Par Contraintes pour Choco

$$min d = \sum_{i=0}^{n-1} tpsSuc_i$$

S.C.

Contraintes domaines de déf
 +
 (5)

$$r_i \neq r_j$$
 $\forall i, j \in [|0, n-1|]$
 (6)

 $s_i \neq s_j$
 $\forall i, j \in [|0, n-1|]$
 (7)

 $r_{i+1} = s_{r_i}$
 $\forall i \in [|0, n-2|]$
 (8)

 $tpsSuc_i = T_{is_i}$
 $\forall i \in [|0, n-1|]$
 (9)

 $s_i \neq i$
 $\forall i \in [|0, n-1|]$
 (10)

Ajouts de temps caractéristiques et des prédécesseurs

Introduction de notions de durées / dates

But nº 1 : indiquer pour chaque patient ses disponibilités.

 \rightarrow Associer à chaque sommet une *time windows* [TW_{inf} , TW_{sup}].

But n° 2 : indiquer pour chaque patient la durée de soins requise.

- → Associer à chaque sommet une durée de soins .
- ⇒ Associer à chaque infirmière un ensemble de dates pour la gestion des nouvelles notions introduites.

Contraintes de temps

$$dateArr_{s_{i}} = dateFin_{i} + tpsSuc_{i} \qquad \forall i \in [|0, n-1|] - r_{n-1}$$

$$dateArr_{s_{i}} = 0 \qquad \qquad si \ i = r_{n-1}$$

$$dateDeb_{s_{i}} = \max(dateArr_{s_{i}}, TWInf_{s_{i}}) \qquad \forall i \in [|0, n-1|]$$

$$dateFin_{i} = dateDeb_{i} + dureeSoin_{i} \qquad \forall i \in [|0, n-1|]$$

$$(13)$$

Résultats obtenus

Figure – Modélisation du TSP avec durées + dates

Prédécesseurs

Finalité : aider le solveur dans ses choix de branchements en lui donnant des informations supplémentaires.

Figure – Tournée possible

Figure - Vecteurs du modèle

Résultats obtenus

Cas	AVEC/SANS PREC	Nodes	Backtracks	FAILS
1	sans	32	59	27
	avec	8	13	5
2	sans	21	39	18
	avec	12	19	7
3	sans	7570	15135	7565
	avec	60	111	51

Conclusion: économie de nombreux noeuds, surtout pour les graphes > 10 sommets.

Mise en place de stratégies

Stratégies en PPC

Principe: guider le solveur dans ses choix de branchements en lui indiquant ceux à affectuer en priorité.

Composantes:

- un sélecteur de variable,
- un sélecteur de valeur.
- la variable de branchement.

Stratégies proposées

Sélecteurs de variables Choco :

- FirstFail,
- MaxRegret,
- DomWOverReg.

```
S1 : brancher sur tpsSuc;
```

S2: brancher sur r;

S3: brancher sur des discriminateurs.

Résultats obtenus

Cas	Strat testée	Nodes	Backtracks	FAILS
1	aucune	8	13	15
	avec tpsSuc	5	9	4
	avec r	7	11	14
2	aucune	12	19	7
	avec tpsSuc	4	7	3
	avec r	5	7	2
3	aucune	60	111	51
	avec tpsSuc	18	35	17
	avec r	122	217	95

Conclusion : meilleurs résultats avec branchement sur tpsSuc.

Le VRP : les Problèmes de Tournées de Véhicules

Présentation du problème et modélisation linéaire

Modélisation par un graphe

Différence majeure avec le TSP : plusieurs infirmières $\Rightarrow 1^{ers}$ pas vers les problèmes de type Workforce Scheduling.

Figure - Modélisation du VRP

+2 autres

Programme Linéaire final

min
$$d = \sum_{i=0}^{np-1} \sum_{j=0}^{np-1} \sum_{k=0}^{nv-1} x_{ij}^{k} \cdot T_{ij}$$

s.c. $\sum_{j=1}^{np-1} x_{1j}^{k} \le 1$ $\forall k \in [|0, nv - 1|]$ (15)
$$\sum_{j=0}^{np-1} \sum_{k=0}^{nv-1} x_{ij}^{k} = 1$$
 $\forall i \in [|1, np - 1|]$ (16)
$$\sum_{i=0}^{np-1} \sum_{k=0}^{nv-1} x_{ij}^{k} = 1$$
 $\forall j \in [|1, np - 1|]$ (17)

Construction de la solution Programme Par Contraintes

Principe

Figure - Modélisation du VRP

Astuces:

- hôpital =
 dépôt d'entrée +
 dépôt de sortie;
- les dupliquer autant de fois qu'il y a d'infirmières.

Construction des vecteurs

 \rightarrow Introduction des vecteurs a, s, pos et de l'ensemble b^{v} .

Figure – Modélisation

Figure – Vecteurs du modèle

⇒ Construction de partitions de clients en fonction des tournées.

Partition tournée 0: $b^0 = \{11, 10, 5, 7, 14\}$

Programme Par Contraintes final

$$\min d = \sum_{i=0}^{|V|-1} T_{i,s_i}$$

S.C.

c. Contraintes domaines de déf
$$+$$
 (19)
$$s_{i} \neq s_{j} \qquad \forall i, j \in \{Np \cup H^{d} \cup H^{f}\}^{2}$$
(20)
$$a_{i} = a_{s_{i}} \qquad \forall i \in Np \cup H^{d} \qquad (21)$$

$$s_{i} \neq i \qquad \forall i \in Np \cup H^{d} \qquad (22)$$

$$pos_{s_{i}} = p_{i} + 1 \qquad \forall i \in Np \cup H^{d} \qquad (23)$$

$$b^{v} = \{u \in N \mid a_{u} = v\} \qquad \forall v \in Nv \qquad (24)$$

Modélisations principales Le TSP : le Problème du Voyageur de Commerce Le VRP : les Problèmes de Tournées de Véhicules **Conclusion**

Conclusion

Problème de Gestion de Personnel en Soins à Domicile

✔ Bilan des apports :

- Maîtrise de modèles importants de l'I.A.,
- Compréhension de stratégies algorithmiques liées à la PPC,
- Rapidité à corriger les erreurs de compilation.

✔ Perspectives :

- Implémenter d'autres contraintes de plus en plus réalistes,
- Faire des phases de tests plus solides avec CPlex,
- Appliquer l'algorithme à petite échelle dans le monde réel.

Modélisations principales Le TSP : le Problème du Voyageur de Commerce Le VRP : les Problèmes de Tournées de Véhicules Conclusion

Merci de votre attention