

#### PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

# P1-M5. Pomiar gęstości ciał stałych i cieczy metodą piknometryczną\*

### Zagadnienia

Gęstość masy. Pomiar masy wagą analityczą. Metoda piknometryczna wyznaczania gęstości masy.

## 1 Układ pomiarowy

Na stanowisku pomiarowym znajduje się waga analityczna z kompletem odważników, piknometr wraz z korkiem, butelki z roztworami NaCl oraz śrut ołowiany i plastikowy. Zadaniem eksperymentatora jest wyznaczenie gęstości dwóch roztworów soli i jednego ze śrutów metodą piknometryczną i odniesienie wyników do danych tabelarycznych.

# korek szlif pojemnik

### Fig. 1: Piknometr

### 2 Pomiary

- 1. Zważyć osuszony piknometr wraz z korkiem.
- 2. Napełnić piknometr wodą destylowaną. Nadmiar wody usunąć za pomocą papieru. Zważyć.
- 3. Napełnić piknometr badaną cieczą. Nadmiar cieczy usunąć za pomocą papieru. Zważyć.
- 4. Napełnić piknometr badanym śrutem do 2/3 pojemności. Zważyć.
- 5. Dopełnić wodą piknometr ze śrutem. Zważyć.

### 3 Opracowanie wyników pomiarów

- 1. Korzystając z tabeli gestości określić gestość wody odpowiadającą danej temperaturze.
- 2. Obliczyć gestości badanych cieczy

$$\rho_3 = \rho_w \frac{m_3 - m_1}{m_2 - m_1}, \quad \rho_4 = \rho_w \frac{m_4 - m_1}{m_2 - m_1}.$$

3. Obliczyć gęstość śrutu

$$\rho_s = \rho_w \frac{m_5 - m_1}{m_2 + m_5 - m_1 - m_6}.$$

4. Określić niepewność pomiaru masy  $u_b(m_x)$ .

<sup>\*</sup>Opracowanie: dr inż. Alina Domanowska

| temperatura             |               | gęstość wody w temperaturze            |              |               |
|-------------------------|---------------|----------------------------------------|--------------|---------------|
| otoczenia, °C           |               | otoczenia $\rho_w$ , kg/m <sup>3</sup> |              |               |
|                         | masa          | wskazanie                              | położenie    | masa          |
|                         | odważników, g | śruby, mg                              | na skali, mg | sumaryczna, g |
| $m_1$ - masa pustego    |               |                                        |              |               |
| piknometru              |               |                                        |              |               |
| $m_2$ - masa piknometru |               |                                        |              |               |
| z wodą destylowaną      |               |                                        |              |               |
| $m_3$ - masa piknometru |               |                                        |              |               |
| z cieczą A              |               |                                        |              |               |
| $m_4$ - masa piknometru |               |                                        |              |               |
| z cieczą B              |               |                                        |              |               |
| $m_5$ - masa piknometru |               |                                        |              |               |
| ze śrutem               |               |                                        |              |               |
| $m_6$ - masa piknometru |               |                                        |              |               |
| z wodą i śrutem         |               |                                        |              |               |

- 5. Korzystając z prawa przenoszenia niepewności obliczyć niepewności pomiarowe wyznaczonych gęstości.
- 6. Zapisać wyniki i ich niepewności w stosownym formacie.
- 7. Obliczyć niepewności rozszerzone dla wszystkich wyników i zapisać w odpowiednim formacie.
- 8. Porównać otrzymane gęstości z danymi tablicowymi<sup>1</sup>.

 $<sup>^{\</sup>rm 1}$  Źródło: Poradnik fizykochemiczny, WNT Warszawa 1974

| Temperatura,<br>°C | Gęstość<br>wody, kg/m³ |  |  |
|--------------------|------------------------|--|--|
| 0                  | 999.84                 |  |  |
| 1                  | 999.90                 |  |  |
| 2                  | 999.94                 |  |  |
| 3                  | 999.96                 |  |  |
| 4                  | 999.97                 |  |  |
| 5                  | 999.96                 |  |  |
| 6                  | 999.94                 |  |  |
| 7                  | 999.90                 |  |  |
| 8                  | 999.85                 |  |  |
| 9                  | 999.78                 |  |  |
| 10                 | 999.70                 |  |  |
| 11                 | 999.60                 |  |  |
| 12                 | 999.49                 |  |  |
| 13                 | 999.37                 |  |  |
| 14                 | 999.24                 |  |  |
| 15                 | 999.10                 |  |  |
| 16                 | 998.94                 |  |  |
| 17                 | 998.77                 |  |  |
| 18                 | 998.59                 |  |  |
| 19                 | 998.40                 |  |  |
| 20                 | 998.20                 |  |  |
| 25                 | 997.04                 |  |  |
| 30                 | 995.64                 |  |  |
| 40                 | 992.21                 |  |  |
| 50                 | 988.04                 |  |  |
| 60                 | 983.21                 |  |  |
| 70                 | 977.78                 |  |  |
| 80                 | 971.80                 |  |  |
| 90                 | 965.31                 |  |  |
| 100                | 958.35                 |  |  |

Tabela przedstawia zależność gęstości wodnego roztworu chlorku sodu od stężenia i temperatury. Współczynnik  $A_{20^{\circ}\text{C}}$  jest poprawką temperaturową o następującym znaczeniu: jeśli gęstość roztworu jest określona w temperaturze 20°C, to należy do niej dodać wartość A×(20°C - T), żeby otrzymać gęstość w temperaturze T.

| Stężenie NaCl ( <i>T</i> = 20°C) |         |        | Gestość                          |                   |
|----------------------------------|---------|--------|----------------------------------|-------------------|
| %                                | kg/m3   | mol/L  | (kg/m <sup>3</sup> )<br>t = 20°C | A <sub>20°C</sub> |
| 1                                | 10,053  | 0,1720 | 1005,3                           | 0,22              |
| 2                                | 20,250  | 0,3464 | 1012,2                           | 0,24              |
| 4                                | 41,072  | 0,7026 | 1026,8                           | 0,28              |
| 6                                | 62,478  | 1,0688 | 1041,3                           | 0,31              |
| 8                                | 84,472  | 1,4451 | 1055,9                           | 0,34              |
| 10                               | 107,070 | 1,8317 | 1070,7                           | 0,37              |
| 12                               | 130,284 | 2,2288 | 1085,7                           | 0,39              |
| 14                               | 154,128 | 2,6367 | 1100,9                           | 0,42              |
| 16                               | 178,592 | 3,0553 | 1116,2                           | 0,44              |
| 18                               | 203,742 | 3,4855 | 1131,9                           | 0,47              |
| 20                               | 229,560 | 3,9272 | 1147,8                           | 0,49              |
| 22                               | 256,080 | 4,3808 | 1164,0                           | 0,51              |
| 24                               | 283,296 | 4,8465 | 1180,4                           | 0,53              |
| 26                               | 311,272 | 5,3251 | 1197,2                           | 0,55              |

Fig. 2: Tabele gęstości wody i roztworów NaCl