Statistica - 4^a lezione (parte II)

9 marzo 2021

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right] \qquad \text{con } \mu \in \mathbb{R} \text{ e } \sigma > 0 \text{ fissati}$$

PROPRIETÀ:

- $\mu_X = q_{0.5}^X = \mu$ (per la simmetria)
- $\sigma_X^2 = \sigma^2$ (col calcolo)
- $aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Se $X \sim N(\mu, \sigma^2)$, allora $\frac{X \mu}{\sigma} \sim N(0, 1)$ (standardizzazione)
- La f.d.r. di N(0,1) si indica con Φ e si trova tabulata

	Tav	ola della	a funzio	ne di rip	artizior	e della	distribu	zione N	(0,1)		$\Phi(0.36) =$
z	0.00	0.01	0.02	0.03	0.04	0.05	(0.06)	0.07	0.08	0.09	* (0.0 + 0.00)
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$= \Phi(0.3+0.06)$
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	,
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.04050
(0.3)	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	= 0.64058
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793	
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.00
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	$q_{0.64058} = 0.36$
l n7	n 75804	0.76115	0.76424	0.76730	0 77035	n 77337	0 77637	n 77035	n 7823n	n 78594	70.04030

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}\left(0 < X < 5.1\right) = \mathbb{P}\left(\begin{array}{ccc} 0 & & & < X & & < 5.1 \end{array}\right)$$

ESEMPIO:

$$X \sim N(\underbrace{3.2}_{\mu}, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\begin{array}{cc} 0 - 3.2 \\ \end{array} < \begin{array}{c} X - \mu \\ \end{array} < \begin{array}{c} 5.1 - 3.2 \\ \end{array}\right)$$

ESEMPIO:

$$X \sim N(3.2, \underbrace{7.6}_{\sigma^2})$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \underbrace{\frac{X - \mu}{\sigma}}_{N(0,1)} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$

Г	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	(0.09)	$\Phi(0.689) =$
Г	0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	$\Psi(0.003) =$
	0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535	
L	U.4	U.65542	U.6591U	U.66276	U.6664U	0.67003	U.b/364	U.b//24	0.68082	U.68439	0.68793	$=\Phi(0.6+0.09)$
L	0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	,
-10	0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	
	0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524	= 0.75490
	nα	n 78814	n 70103	N 70380	0.70673	n 70055	U 8U534	0.80511	0.80785	0.81057	N 81397	30100

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490$$

$\Phi(-1.161) =$	0.09	0.08	0.07	(0.06)	0.05	0.04	0.03	0.02	0.01	0.00	z
+ (1.101) —	0.53586	0.53188	0.52790	0.52392	0.51994	0.51595	0.51197	0.50798	0.50399	0.50000	0.0
	0.57535	0.57142	0.56749	0.56356	0.55962	0.55567	0.55172	0.54776	0.54380	0.53983	0.1
$= 1 - \Phi(1.161)$	0.83891	U.83b4b	0.83398	U.83147	0.82894	0.82639	0.82381	0.82121	U.81859	U.81594	0.9
,	0.86214	0.85993	0.85769	0.85543	0.85314	0.85083	0.84849	0.84614	0.84375	0.84134	1.0
	0.88298	0.88100	0.87900	0.87698	0.87493	0.87286	0.87076	0.86864	0.86650	0.86433	1.1
= 1 - 0.87698	0.90147	0.89973	0.89796	0.89617	0.89435	0.89251	0.89065	0.88877	0.88686	0.88493	1.2
	0.91774	0.91621	0.91466	0.91308	0.91149	0.90988	0.90824	0.90658	0.90490	0.90320	1.3

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$
$$= \Phi(0.689) - \Phi(-1.161)$$
$$= 0.75490 - (1 - 0.87698)$$

$\Phi(-1.161) =$	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	z
Ψ(1.101) —	0.53586	0.53188	0.52790	0.52392	0.51994	0.51595	0.51197	0.50798	0.50399	0.50000	0.0
	0.57535	0.57142	0.56749	0.56356	0.55962	0.55567	0.55172	0.54776	0.54380	0.53983	0.1
$= 1 - \Phi(1.161)$	0.83891	U.83646	U.83398	U.83147	U.82894	0.82639	0.82381	0.82121	U.81859	U.81594	0.9
`	0.86214	0.85993	0.85769	0.85543	0.85314	0.85083	0.84849	0.84614	0.84375	0.84134	1.0
	0.88298	0.88100	0.87900	0.87698	0.87493	0.87286	0.87076	0.86864	0.86650	0.86433	1.1
= 1 - 0.87698	0.90147	0.89973	0.89796	0.89617	0.89435	0.89251	0.89065	0.88877	0.88686	0.88493	1.2
. 0.0.00	0.91774	0.91621	0.91466	0.91308	0.91149	0.90988	0.90824	0.90658	0.90490	0.90320	1.3

ESEMPIO:

$$X \sim N(3.2, 7.6)$$

$$\mathbb{P}(0 < X < 5.1) = \mathbb{P}\left(\frac{0 - 3.2}{\sqrt{7.6}} < \frac{X - \mu}{\sigma} < \frac{5.1 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi\left(\frac{5.1 - 3.2}{\sqrt{7.6}}\right) - \Phi\left(\frac{0 - 3.2}{\sqrt{7.6}}\right)$$

$$= \Phi(0.689) - \Phi(-1.161)$$

$$= 0.75490 - (1 - 0.87698)$$

$$= 0.63188 = 63.188\%$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

S è un insieme discreto quando tutti i suoi punti sono isolati

 \Rightarrow S è finito o al più numerabile

ESEMPIO:
$$S = \{-4, -2.\overline{6}, -0.9, \sqrt{3}, \pi, 4.5\}$$
 $I = (-2.1, 3.8)$

Si richiede
$$\mathbb{P}(X \in (-2.1, 3.8)) = \mathbb{P}(X \in \{-0.9, \sqrt{3}, \pi\})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}\left(X\in\mathcal{S}\right)=\mathbb{P}\left(X\in\mathbb{R}\cap\mathcal{S}\right)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in \mathcal{S}) = \mathbb{P}(X \in \mathbb{R} \cap \mathcal{S}) = \mathbb{P}(X \in \mathbb{R})$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

• S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$:

$$\mathbb{P}(X \in S) = \mathbb{P}(X \in \mathbb{R} \cap S) = \mathbb{P}(X \in \mathbb{R}) = 1$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$\rho_X: S \to [0,1]$$
 $\rho_X(k) := \mathbb{P}(X = k)$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X=k)$

•
$$\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$$
 per ogni $I \subseteq \mathbb{R}$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \lor \dots \lor "X = k_n")$$

$$con I \cap S = \{k_1, \dots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \vee \ldots \vee "X = k_n")$$

$$\stackrel{(3)}{=} \mathbb{P}(X = k_1) + \ldots + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, \ldots, k_n\}$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S) = \mathbb{P}("X = k_1" \vee ... \vee "X = k_n")$$

$$= \mathbb{P}(X = k_1) + ... + \mathbb{P}(X = k_n) \quad \text{con } I \cap S = \{k_1, ..., k_n\}$$

$$= \sum_{k \in I \cap S} p_X(k)$$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S
ightarrow [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) perché $p_X(k) = \mathbb{P}(X=k)$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il *supporto* di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$p_X: S \to [0,1]$$
 $p_X(k) := \mathbb{P}(X = k)$

- $\mathbb{P}(X \in I) = \sum_{k \in I \cap S} p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività)
- $\sum_{k \in S} p_X(k) = 1$ (normalizzazione) perché $\mathbb{P}(X \in S) = 1$

Definizione

Una v.a. X si dice *discreta* se esiste un insieme discreto $S \subset \mathbb{R}$ t.c.

$$\mathbb{P}(X \in I) = \mathbb{P}(X \in I \cap S)$$
 per ogni $I \subseteq \mathbb{R}$

- S è il supporto di X, e soddisfa $\mathbb{P}(X \in S) = 1$
- la densità discreta (o funzione di massa di probabilità) di X è

$$ho_X: S
ightarrow [0,1] \qquad \qquad
ho_X(k) := \mathbb{P}\left(X=k\right)$$

- $\mathbb{P}(X \in I) = \sum p_X(k)$ per ogni $I \subseteq \mathbb{R}$
- $p_X(k) \in [0,1]$ per ogni $k \in S$ (positività) $\sum p_X(k) = 1$ (normalizzazione)

proprietà fondamentali

ESEMPIO:

ESEMPIO:

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

ESEMPIO:

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà }k\text{"})$$
tutti i $k \in S$ sono equiprobabili

ESEMPIO:

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(\text{"uscirà } k")$$
tutti i $k \in S$ sono equiprobabili
$$\sum_{k \in S} p_X(k) = 1$$

$$p_X(k) = p_X(k')$$
 $\forall k, k' \in S$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

$$\mathbb{P}(2.3 \le X < 5) = ???$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \Rightarrow p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1,2,3,4,5,6\})$$

$$\mathbb{P}(2.3 \le X < 5) = \sum_{k \in \{3,4\}} p_X(k)$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

$$X \sim \mathcal{U}(\{1, 2, 3, 4, 5, 6\})$$

$$\mathbb{P}\left(2.3 \le X < 5\right) = \sum_{k \in \{3,4\}} p_X(k) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

ESEMPIO:

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

ESEMPIO:

X = numero che uscirà nel lancio di un dado

$$S = \{1, 2, 3, 4, 5, 6\} \quad \Rightarrow \quad p_X : \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

$$p_X(k) = \frac{1}{6} \quad \forall k \in S$$

X assolutamente continua		X discreta
$\int_I \dots f_X(z) \mathrm{d}z$	\longrightarrow	$\sum_{k \in I \cap S} \dots p_X(k)$

$$X$$
 assolutamente continua X discreta
$$\int_{I} \dots f_{X}(z) dz \longrightarrow \sum_{k \in I \cap S} \dots p_{X}(k)$$

Definizioni

Il *valore atteso* e la *varianza* di una v.a. discreta *X* sono i numeri reali

$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) \qquad \text{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, p_X(k)$$

$$X$$
 assolutamente continua X discreta
$$\int_{I} \dots f_{X}(z) dz \longrightarrow \sum_{k \in I \cap S} \dots p_{X}(k)$$

Definizioni

Il *valore atteso* e la *varianza* di una v.a. discreta *X* sono i numeri reali

$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) \qquad \text{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, p_X(k)$$

Teorema (non dimostrato)

$$\mathbb{E}\left[g(X)\right] = \sum_{k \in S} g(k) \, \rho_X(k)$$

Valgono le stesse proprietà e gli stessi risultati del caso continuo

X = c qualunque sia il risultato dell'esperimento

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$\mathcal{S} = \{c\} \quad \Rightarrow \quad p_X : \{c\} \to [0,1]$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

X = c qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

$$\bullet \mathbb{E}[X] = \sum_{k \in S} k \, p_X(k)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) = c \cdot p_X(c)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = \sum_{k \in S} k p_X(k) = c \cdot p_X(c)$$

= $c \cdot 1 = c$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

- $\mathbb{E}[X] = c$
- $\operatorname{var}[X] = \sum_{k \in S} (k \mathbb{E}[X])^2 p_X(k)$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = c$$

•
$$\operatorname{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 \, \rho_X(k) = (c - c)^2 \cdot \rho_X(c)$$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

•
$$\mathbb{E}[X] = c$$

•
$$\operatorname{var}[X] = \sum_{k \in S} (k - \mathbb{E}[X])^2 p_X(k) = (c - c)^2 \cdot p_X(c)$$

= $(c - c)^2 \cdot 1 = 0$

$$X = c$$
 qualunque sia il risultato dell'esperimento

$$S = \{c\}$$
 \Rightarrow $p_X : \{c\} \rightarrow [0, 1]$
 $p_X(c) = 1$

- $\mathbb{E}[X] = c$
- var[X] = 0

$$var[X] = 0 \Leftrightarrow X \text{ è una costante}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0, 1\} \quad \Rightarrow \quad p_X : \{0, 1\} \rightarrow [0, 1]$$

$$X=egin{cases} 1 & ext{se succederà l'evento } E \ 0 & ext{se succederà l'evento } \overline{E} \ S=\{0,1\} & \Rightarrow & p_X:\{0,1\}
ightarrow [0,1] \ & p_X(0)=\mathbb{P}\left(X=0
ight) \end{cases}$$

$$X=egin{cases} 1 & ext{se succederà l'evento } E \ 0 & ext{se succederà l'evento } \overline{E} \ S=\{0,1\} & \Rightarrow & p_X:\{0,1\}
ightarrow [0,1] \end{cases}$$

 $\rho_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E})$

$$X = egin{cases} 1 & ext{se succederà l'evento } \overline{E} \ 0 & ext{se succederà l'evento } \overline{E} \ S = \{0,1\} & \Rightarrow & p_X : \{0,1\}
ightarrow [0,1] \ & p_X(0) = \mathbb{P}\left(X=0\right) = \mathbb{P}\left(\overline{E}\right) \ & p_X(1) = \mathbb{P}\left(X=1\right) \end{cases}$$

$$X = egin{cases} 1 & ext{se succederà l'evento } \overline{E} \ 0 & ext{se succederà l'evento } \overline{E} \ S = \{0,1\} & \Rightarrow &
ho_X : \{0,1\}
ightarrow [0,1] \ &
ho_X(0) = \mathbb{P}\left(X=0\right) = \mathbb{P}\left(\overline{E}\right) \ &
ho_X(1) = \mathbb{P}\left(X=1\right) = \mathbb{P}\left(E\right) \ \end{cases}$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$
 $p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E}) = 1 - q$ $p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$ $p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$

 p_X si chiama densità bernoulliana di parametro q e si scrive

$$X \sim B(1,q)$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0, 1\} \quad \Rightarrow \quad p_X : \{0, 1\} \rightarrow [0, 1]$$

$$egin{aligned} &p_X:\{0,1\}
ightarrow [0,1]\ &p_X(0)=\mathbb{P}\left(X=0
ight)=\mathbb{P}\left(\overline{E}
ight)=1-q\ &p_X(1)=\mathbb{P}\left(X=1
ight)=\mathbb{P}\left(E
ight)=q \end{aligned}
ight. } ext{con } q:=\mathbb{P}\left(E
ight) \end{aligned}$$

 $\bullet \mathbb{E}[X] = \sum k \, \rho_X(k)$

$$X = egin{cases} 1 & ext{se succederà l'evento } \overline{E} \ 0 & ext{se succederà l'evento } \overline{E} \ \end{cases}$$
 $S = \{0,1\} \Rightarrow p_X : \{0,1\}
ightarrow [0,1]$ $p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \ p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q \ \end{cases}$ $con \ q := \mathbb{P}(E)$

•
$$\mathbb{E}[X] = \sum_{k=0}^{\infty} k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } \overline{E} \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\} o [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

•
$$\mathbb{E}[X] = \sum_{k \in S} k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

= $0 \cdot (1 - q) + 1 \cdot q$

 $= 0 \cdot (1-q) + 1 \cdot q$

= a

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1 - q \\ p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q \end{cases} \right\} \text{ con } q := \mathbb{P}(E)$$

$$\bullet \ \mathbb{E}[X] = \sum k \, p_X(k) = 0 \cdot p_X(0) + 1 \cdot p_X(1)$$

•
$$\mathbb{E}[X] = a$$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1 - q \\ p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$$
 $\} \text{ con } q := \mathbb{P}(E)$

- $\mathbb{E}[X] = q$
- $\operatorname{var}\left[X\right] = \mathbb{E}\left[X^2\right] \mathbb{E}\left[X\right]^2$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\} \quad \Rightarrow \quad p_X : \{0,1\} \rightarrow [0,1]$$

$$p_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1 - q \\ p_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$$
 $\} \text{ con } q := \mathbb{P}(E)$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}\left[\frac{X^2}{}\right] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$
 perché $X^2 = X$ $\begin{pmatrix} 1^2 = 1 \\ 0^2 = 0 \end{pmatrix}$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $p_X : \{0,1\} \rightarrow [0,1]$
$$p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E}) = 1 - q$$
$$p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$$
 $\} \text{ con } q := \mathbb{P}(E)$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$

= $q - q^2$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $p_X : \{0,1\} \rightarrow [0,1]$ $p_X(0) = \mathbb{P}(X = 0) = \mathbb{P}(\overline{E}) = 1 - q$ $p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$ $p_X(1) = \mathbb{P}(X = 1) = \mathbb{P}(E) = q$

•
$$\mathbb{E}[X] = q$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X] - \mathbb{E}[X]^2$$

= $q - q^2$
= $q(1 - q)$

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

- $\mathbb{E}[X] = q$
- var[X] = q(1 q)

$$X = \begin{cases} 1 & \text{se succederà l'evento } E \\ 0 & \text{se succederà l'evento } \overline{E} \end{cases}$$

$$S = \{0,1\}$$
 \Rightarrow $ho_X : \{0,1\}
ightarrow [0,1]$ $ho_X(0) = \mathbb{P}(X=0) = \mathbb{P}(\overline{E}) = 1-q \
ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$ $ho_X(1) = \mathbb{P}(X=1) = \mathbb{P}(E) = q$

- $\mathbb{E}[X] = q$
- var[X] = q(1 q)

Vettori aleatori

ESEMPI:

Nel lancio di due dadi:

X= risultato del primo lancio Y= risultato del secondo lancio X+Y= somma dei due risultati

ESEMPI:

Nel lancio di due dadi:

X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati

Nel sondaggio fra 100 studenti:

 $X_4 =$ altezza del 4º studente $X_{17} =$ altezza del 17º studente

 Y_4 = peso del 4° studente Y_{17} = peso del 17° studente

ESEMPI:

- Nel lancio di due dadi:
- X = risultato del primo lancio Y = risultato del secondo lancio X + Y = somma dei due risultati
- Nel sondaggio fra 100 studenti:

 $X_4 =$ altezza del 4º studente $X_{17} =$ altezza del 17º studente

 $Y_4 = \text{peso del } 4^{\circ} \text{ studente}$ $Y_{17} = \text{peso del } 17^{\circ} \text{ studente}$

Tra loro le variabili alatorie si possono sommare, moltiplicare ecc. :

X + Y XY ...

Teorema

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di $X \in Y \in \mathbb{R}$ cov $[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

$$var[X + Y] = \mathbb{E}\left[\left\{(X + Y) - \mathbb{E}\left[X + Y\right]\right\}^{2}\right]$$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

$$\operatorname{var}\left[X + Y\right] = \mathbb{E}\left[\left\{\left(X + Y\right) - \mathbb{E}\left[X + Y\right]\right\}^{2}\right]$$

$$\stackrel{(1)}{=} \mathbb{E}\left[\left\{\left(X + Y\right) - \left(\mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right]\right)\right\}^{2}\right]$$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

$$\operatorname{var}\left[X + Y\right] = \mathbb{E}\left[\left\{\left(X + Y\right) - \mathbb{E}\left[X + Y\right]\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{\left(X - \mathbb{E}\left[X\right]\right) + \left(Y - \mathbb{E}\left[Y\right]\right)\right\}^{2}\right]$$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di $X \in Y$ è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

$$\operatorname{var}\left[X + Y\right] = \mathbb{E}\left[\left\{\left(X + Y\right) - \mathbb{E}\left[X + Y\right]\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left(X - \mathbb{E}\left[X\right]\right) + \left(Y - \mathbb{E}\left[Y\right]\right)\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2} + \left(Y - \mathbb{E}\left[Y\right]\right)^{2} + 2\left(X - \mathbb{E}\left[X\right]\right)\left(Y - \mathbb{E}\left[Y\right]\right)\right]$$

Teorema

- var [X + Y] = var [X] + var [Y] + 2 cov [X, Y]dove la *covarianza* di X e Y è

 $\operatorname{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

$$var[X + Y] = \mathbb{E}\left[\left\{\left(X + Y\right) - \mathbb{E}\left[X + Y\right]\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left(X - \mathbb{E}\left[X\right]\right) + \left(Y - \mathbb{E}\left[Y\right]\right)\right\}^{2}\right]$$

$$= \mathbb{E}\left[(X - \mathbb{E}[X])^2 + (Y - \mathbb{E}[Y])^2 + 2(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

$$= \mathbb{E}\left[(X - \mathbb{E}[X])^2 + (Y - \mathbb{E}[Y])^2 + 2(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

$$\stackrel{(1)}{=} \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] + \mathbb{E}\left[(Y - \mathbb{E}[Y])^2 \right] + 2\mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]$$

Teorema

- var[X + Y] = var[X] + var[Y] + 2 cov[X, Y] dove la covarianza di X e Y è $cov[X, Y] := \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$

$$\operatorname{var}\left[X + Y\right] = \underbrace{\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right]}_{\operatorname{var}\left[X\right]} + \underbrace{\mathbb{E}\left[\left(Y - \mathbb{E}\left[Y\right]\right)^{2}\right]}_{\operatorname{var}\left[Y\right]} + \underbrace{2\,\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)\left(Y - \mathbb{E}\left[Y\right]\right)\right]}_{\operatorname{cov}\left[X,Y\right]}$$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Per *n* v.a. $X_1, X_2, ..., X_n$:

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right] + 2 \sum_{\substack{i,j=1\\i < i}}^{n} \operatorname{cov}\left[X_{i}, X_{j}\right]$$

Teorema

- var [X + Y] = var[X] + var[Y] + 2 cov[X, Y]dove la *covarianza* di X e Y è $\text{cov}[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Per *n* v.a. $X_1, X_2, ..., X_n$:

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right] + 2 \sum_{\substack{i,j=1\\i < j}}^{n} \operatorname{cov}\left[X_{i}, X_{j}\right]$$

Come mi sbarazzo di cov $[X_i, X_j]$?