HADWIGER'S CONJECTURE FOR HYPERGRAPHS

DOMINIC VAN DER ZYPEN, 2023-08-18

1. Basic notions

1.1. **Hypergraphs.** A hypergraph H = (V, E) consists of a set V and $E \subseteq \mathcal{P}(V)$, that is, E consists of subsets of V of arbitrary size.

If H = (V, E) is a hypergraph and $S \subseteq V$, we define

$$E|_S = \{e \cap S : (e \in E) \land (e \cap S \neq \emptyset)\}$$

and call $(S, E|_S)$ the induced sub-hypergraph of H.

1.2. Connectedness. A hypergraph H = (V, E) is connected if for all $X \subseteq V$ with $\emptyset \neq X \neq V$ there is $e \in E$ such that

$$e \cap X \neq \emptyset \neq e \cap (V \setminus X),$$

so that we can imagine e to "connect" X and its complement $V \setminus X$.

- 1.3. Colouring. Let H = (V, E) be a hypergraph and $\kappa \neq \emptyset$ be a cardinal. Then a map $c: V \to \kappa$ is said to be a *colouring* if for every $e \in E$ with $|e| \geq 2$ we have that the restriction $c \upharpoonright_e$ is non-constant. The *chromatic number* $\chi(H)$ of H is the smallest cardinal κ such there is a colouring $c: V \to \kappa$.
- 1.4. Connected to each other. If H = (V, E) is a hypergraph and $S_1, S_2 \subseteq V$ are disjoint, we say they are connected to each other if there is $e \in E$ such that

$$e \cap S_1 \neq \emptyset \neq e \cap S_2$$
.

2. A form of Hadwiger's conjecture for hypergraphs

Assume that H = (V, E) is a hypergraph and let's assume $V \neq \emptyset \neq E$ to avoid pathologies. Let κ be a cardinal such that there is no colouring $c: V \to \kappa$. Then there is a collection \mathcal{S} of mutually disjoint subsets with $|\mathcal{S}| = \kappa$ such that

- (1) $(S, E|_S)$ is a connected hypergraph for each $S \in \mathcal{S}$, and
- (2) whenever $S \neq T \in \mathcal{S}$ then S, T are connected to each other.