Funciones Económicas

1. Función de Demanda y Oferta

1.1. Función de Demanda

La función de demanda es la función que relaciona el precio unitario p de un producto con la cantidad q que un consumidor decide comprar de ese producto. Notar que esta función sólo tiene sentido para cantidades no negativas $q \ge 0$ y para precios no negativos $p \ge 0$. Luego,

$$D: A \subseteq [0, +\infty) \to [0, +\infty)$$

y su gráfico estará dentro el primer cuadrante.

Desde el lugar del consumidor, la cantidad q que decide comprar de un producto depende de su precio p unitario de venta, y obedecerá una regla

$$q = D(p)$$
.

Para bienes típicos la función de demanda es **decreciente**, dado que a mayor precio la decisión de cuántas unidades comprar es menor.

Por convención, se prefiere expresar el precio unitario p del producto en función de la cantidad q demandada. Y entonces la función de demanda inversa será de la forma

$$p = \bar{D}(q).$$

Se puede pasar de una forma a otra con un cálculo de inversa.

Ejemplo 1.1. Si $q = D(p) = -\frac{1}{2}p + 12$, entonces podemos hallar la función de demanda en función de la cantidad del siguiente modo:

$$D(p) = q = -\frac{1}{2}p + 12 \iff q - 12 = -\frac{1}{2}p \iff -2q + 24 = p = \bar{D}(q).$$

1.2. Función de Oferta

Desde el punto de vista del productor, diremos que las cantidades~q del producto que ofrece dependen de su precio~unitario~p de venta, y estarán regidas por la **función de oferta**

$$O: A \subseteq [0, +\infty) \to [0, +\infty)$$

Su gráfico también estará dentro el primer cuadrante.

Desde el lugar del productor, la cantidad q que decide ofrecer de un producto depende de su precio p de venta, y obedecerá una regla

$$q = O(p)$$
.

Para bienes típicos la función de oferta es **creciente**, dado que a mayor precio de venta la decisión de cuántas unidades vender es mayor.

Similarmente, por convención, se prefiere expresar el precio p del producto en función de la cantidad q ofrecida. Y entonces la función de oferta inversa será de la forma

$$p = \bar{O}(q)$$
.

Nuevamente, se puede pasar de una forma a otra con un cálculo de inversa.

Observación 1.2. Para poder pensar que nuestros consumidores y productores sólo deciden qué cantidades comprarán y ofertarán, respectivamente, tomando al precio como un dato, es necesario suponer que hay tantas personas comprando y vendiendo que su decisión sobre las cantidades no afecta el precio del producto. A esta situación, junto con otros supuestos, se la denomina **competencia perfecta**.

1.3. Equilibrio de mercado

Se dice que se alcanza un **equilibrio de mercado** cuando la demanda y oferta son iguales. Es decir, a un determinado precio unitario todos compran y ofrecen cuanto quieren a ese precio. El **precio de equilibrio** es aquel donde las cantidades demandadas son iguales a las cantidades ofrecidas. El punto de equilibrio se puede hallar como el punto de intersección entre la curva de oferta inversa $p = \bar{O}(q)$ y demanda inversa $p = \bar{D}(q)$ en función de q. Es decir, cuando

$$\bar{D}(q) = \bar{O}(q).$$

Ejemplo 1.3. Si la función de oferta inversa está dada por $\bar{O}(q) = p = \frac{1}{4}q^2 + 2$ y la función de demanda inversa está dada por $\bar{D}(q) = p = -q + 10$, en el equilibrio

$$\bar{O}(q) = \bar{D}(q).$$

Igualamos,

$$\frac{1}{4}q^2 + 2 = -q + 10 \iff \frac{1}{4}q^2 + q - 8 = 0.$$

Por la fórmula resolvente,

$$q_{1,2} = \frac{-1 \pm \sqrt{1+8}}{\frac{1}{2}}$$
$$q_1 = 4, q_2 = -8.$$

Dado que $q_2 < 0$, lo descartamos. Reemplazamos el valor de q hallado en alguna de las dos funciones para hallar el precio de equilibrio:

$$p(q_1) = -4 + 10 = 6.$$

Luego, el equilibrio de mercado es

$$E = (q_E; p_E) = (4; 6).$$

Gráficamente, la situación es la siguiente:

2. Funciones de Costo, Ingreso y Beneficio

Nos enfocaremos en la teoría del productor, cuyas funciones más comunes son las de costo, ingreso y beneficio. Estas tres funciones se vinculan entre sí ya que la diferencia entre ingresos y costos resultará en el beneficio, y la toma de decisiones del empresario dependerá de cómo sea su función de costos y cómo sean sus ingresos.

2.1. Función de Costo

La función de costo es aquella que representa las erogaciones que realiza la firma para producir. Esta función tiene una parte fija y otra variable. Está dada por

$$C(q) = C_v(q) + C_f$$

con C_f una constante positiva y $C_v(q)$ una función creciente no negativa que vale 0 cuando q=0. Si q es la cantidad producida, entonces C(q) será el costo total de producir q unidades. Si no hubiese cantidades producidas del producto, es decir cuando q=0, la firma igual sufrirá un costo, que será igual a C_f . Este costo es el llamado **costo fijo**. A $C_v(q)$ se lo denomina **costo variable** y depende de la cantidad producida q.

Ejemplo 2.1. Un ejemplo de función de costo es una función lineal $C(q) = a \cdot q + b$, con a, b > 0. En este caso, $b = C_f$ y $a \cdot q = C_v(q)$. Notar que la pendiente a representa el costo de producir una unidad más.

2.2. Función de Ingreso

La función de ingreso representa la retribución total que genera la venta de las unidades producidas al precio vigente. Se define como

$$I(q) = p \cdot q,$$

donde p es el precio unitario y q la cantidad de unidades vendidas del bien.

Es importante notar que en este caso si no se vende ninguna unidad el ingreso será nulo.

2.3. Función de Beneficio o Utilidad

Podemos definir a la **función de beneficio** como la diferencia entre los ingresos y los costos que surgen de producir y vender q unidades, es decir,

$$B(q) = I(q) - C(q).$$

Notar que el beneficio puede llegar a ser negativo. Si los ingresos son mayores a los costos la firma tiene ganancias, es decir, los beneficios son positivos. En el caso contrario, cuando los costos superan a los ingresos, diremos que las firmas generan pérdidas o beneficios negativos.

Referencias

[1] Mochón, F.; Becker, V. *Economía: Elementos de micro y macroeconomía.* 3a ed. Buenos Aires. McGraw Hill, 2007.