Московский физико-технический институт

Лабораторная работа

Изучение дифракции света

выполнила студент 653 группы ФФКЭ Давыдов Валентин

1 Цель работы

Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

2 В работе используются:

- оптическая скамья
- ртутная лампа
- монохроматор
- щели с регулируемой шириной
- рамка с вертикальной нитью
- двойная щель
- микроскоп на поперечных салазках с микрометрическим винтом
- зрительная труба

3 Дифракция Френеля на щели

1. Схема установки для наблюдения дифракции Френеля на щели представлена на рис. 1. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некую плоскость наблюдения Π .

Рис. 1: Схема лабораторной установки для наблюдения дифракции Френеля

- 2. Проведём настройку приборов, соберём установку. Наблюдаем дифракцию Френеля на щели на ярком фоне изображения щели появляются узкие тёмные полосы, количество которых уменьшается по мере удаления микроскопа (дифракция в ближней волновой зоне) фотографии представлены на рисунках 2 и 3.
- 3. Снимем зависимость координаты микроскопа от числа наблюдаемых полос, результаты занесём в таблицу 1.

Таблица 1: Количество минимумов в зависимости от расстояния до плоскости наблюдения

n тёмных полос	0	1	2	3	4	5	6	7
z, MM	52	50.8	51	51.2	51.3	51.4	51.5	51.6

4. Сравним размер зон Френеля с измеренной шириной b=300 мкм щели S_2 . Для этого рассчитаем величину $2x_n=2\sqrt{zn\lambda}(\lambda=546.1 \text{ нм})$ и построим график зависимости $2x_n=f(n)$ (рис. 5) Видим, что ширина френелевских зон - величина порядка толщины щели.

Рис. 2: 1 тёмная полоса на фоне (дифракция Френеля)

Рис. 3: 2 тёмных полосы на фоне (дифракция Френеля)

Рис. 4: Дифракция Френеля на препятствии

5. Пронаблюдаем за дифракцией Френеля на проволоке. При удалении микроскопа от нити на её фоне всегда наблюдается чётное число тёмных дифракционных полос (светлый центр) - фото дифракции на препятствии представлено на рисунке 4.

4 Дифракция Фраунгофера на щели

На значительном удалении от щели, когда ширина щели становится значительно меньше ширины первой зоны Френеля, изображение щели размывается и возникает дифракционная картина, называемая дифракцией Фраунгофера.

- 1. Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (поставив дополнительную линзу между щелью и плоскостью наблюдения). Дифракционная картина наблюдается в фокальной плоскости объектива O_2 (фокусное расстояние линзы $f_2=12.8$ см). Схема установки для наблюдения дифракции Фраунгофера на щели представлена на рис. 6. Фотография дифракционной картинцы представлена на рис. 8.
- 2. Настроим установку, с помощью винта поперечного перемещения микроскопа измерим координаты

Рис. 5: Зависимость ширины френелевских зон от номера n

Рис. 6: Схема лабораторной установки для наблюдения дифракции Фраунгофера на щели

 X_m нескольких дифракционных минимумов от -m до m. Занесём результаты в таблицу 2 (цена «большого» деления в 1/10 единицы верхней шкалы - 0.1 мм).

Таблица 2: Координаты минимумов дифракционной картины

m	-5	-4	-3	-2	-1	1	2	3	4	5
x_m , MM	0.065	0.08	0.1	0.12	0.14	0.165	0.19	0.21	0.23	0.25

3. По углу наклона прямой определим среднее расстояние между соседними минимумами, рассчитаем ширину щели по формуле $b=\frac{\lambda f_2}{\tan}=350$ мкм. Это значение практически совпадает с измеренным по микрометрическому винту ($b_0=300$ мкм)

5 Дифракция Фраунгофера на двух щелях

- 1. В установке для дифракции Фраунгофера для одной щели заменяем щель S_2 экраном Э с двумя щелями (рис. 10). В итоге получаем характерное распределение максимумов и минимумов (рис. 9 фотография дифракционной картины Фраунгофера на двух щелях)
- 2. С помощью микрометрического винта поперечных салазок микроскопа определим координаты самых удалённых друг от друга полос, вычислим расстояние между ними ($\delta x=0.18$ мм), между ними располагается 3 светлых промежутка. Расстояние между соседними минимумами в центральном максимуме равно 0.06 мм. Тогда $d=\frac{f_2\lambda}{\delta x}=1.17$ мм. При этом расстояние между щелями, измеренное с помощью микроскопа, оказалось равным 1мм, значения совпадают.

Рис. 7: Нахождение среднего расстояния между минимумами дифракционной картины Фраунгофера

Рис. 8: Дифракция Фраунгофера на одной щели

Рис. 9: Дифракция Фраунгофера на двух щелях

6 Вывод

В ходе работы было изучено явление дифракции света - дифракция Френеля на щели и на препятствии, дифракция Фраунгофера на одной и двух щелях.

- При исследовании явления дифракции Френеля на щели убедились, что ширина зон Френеля примерно равна ширине щели
- При исследовании явления дифракции Фраунгофера на щели получили значение ширины щели, примерно равно измеренному непосредственно с помощью регулятора ширины щели:

$$b_0 = 300 \text{MKM}$$
 $b_f = 350 \text{ MKM}$

• При исследовании явления дифракции Фраунгофера на двух щелях было получено значение расстояния между щелями, примерно равное измеренному с помощью микроскопа:

$$d_0=1.17~\mathrm{mm}$$
 $d_f=1~\mathrm{mm}$