

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

SEPTEMBER 2022

TECHNICAL MATHEMATICS P2/TEGNIESE WISKUNDE V2 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 18 pages./ *Hierdie nasienriglyn bestaan uit 18 bladsye*.

NOTE:

- Continuous accuracy (CA) applies only where indicated in this marking guideline.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- Volgehoue akkuraatheid (CA) is slegs van toepassing soos aangedui in hierdie nasienriglyn.
- Aanvaarding van waardes/antwoorde om 'n problem op te los, is onaanvaarbaar.

MARKING CODES / NASIENKODES		
M	Method / Metode	
A	Accuracy / Akkuraatheid	
AO	Answer only / Slegs antwoord	
CA	Consistent accuracy / Deurlopende akkuraatheid	
F	Formula / Formule	
I	Identity / Identiteit	
R	Rounding / Afronding	
S	Simplification / Vereenvoudiging	
ST	Statement / Bewering	
RE	Reason / Rede	
ST RE	Statement and correct reason / Bewering en korrekte rede	
SF	Substitution correctly in correct formula / Korrekte vervanging in die korrekte	
	formule	
NPU	No penalty for omitting units / Geen penalisering vir eenhede uitgelaat	

1.5	$m_{BC} = \frac{0 - (-4)}{7 - 6}$ $m_{BC} = 4$		$m_{BC} = 4$ (lines / lyne)	
	$\therefore m_{\perp} = -\frac{1}{4}$ $\therefore y = -\frac{1}{4}x + c$	OD.	$\therefore m_{\perp} = -\frac{1}{4}$ $\therefore y - y_1 = -\frac{1}{4}(x - x_1)$	$\checkmark m_{\perp} = -\frac{1}{4}CA$
	$\left \left(\frac{13}{2}; -2 \right) : -2 = -\frac{1}{4} \left(\frac{13}{2} \right) + c \right $	OR/ OF	$\left \left(\frac{13}{2}; -2 \right) : y - (-2) = -\frac{1}{4} (x - \frac{13}{2}) \right $	\checkmark sub $\left(\frac{13}{2}; -2\right)$ CA
	$\therefore -2 = -\frac{13}{8} + c$ $\therefore -\frac{3}{8} = c$ $\therefore y = -\frac{1}{4}x - \frac{3}{8}$			$\checkmark y = -\frac{1}{4}x - \frac{3}{8}A$ (3)
			·	[12]

2.1.3	$m_{tangent} = \frac{1}{\sqrt{3}}$	$m_{tangent} = \frac{1}{\sqrt{3}}$	$\checkmark \frac{1}{\sqrt{3}}$	A
	$\therefore y = \frac{1}{\sqrt{3}}x + c$	$\therefore y = \frac{1}{\sqrt{3}}x + c$		
	$(0;-5):-5=\frac{1}{\sqrt{3}}(0)+c$	(0; -5) implies $c = -5$		
	-5=c	$\therefore y = \frac{1}{\sqrt{3}}x - 5$		
	$\therefore y = \frac{1}{\sqrt{3}}x - 5$		$\checkmark y = \frac{1}{\sqrt{3}}x - 5$	CA
	OR/OF			(2)

2 1 1	G: (20 0°) + 2(152 2°)	/ CIE	A
3.1.1	$\sin(38.9^{\circ}) + \cos 2(153.2^{\circ})$	✓ SF	A
	= 1,22	✓ 1,22	A
2.1.2	/39 00	/ CE	(2)
3.1.2	$\sec\left(\frac{38.9^{\circ}}{3} + 153.2^{\circ}\right)$	✓ SF	A
		✓ reciprocal ratio	
	$=\frac{1}{\cos(\frac{38,9^{\circ}}{3}+153,2^{\circ})}$	resiprook verh.	A
	=-1,03	✓ - 1,03	A
2.2.1		(D)	(3)
3.2.1	↑	√Diagram	A
	$\sqrt{k^2 + 1}$ 52° 1 $\cos 52^{\circ} = \frac{1}{\sqrt{k^2 + 1}}$	$\sqrt[4]{k^2+1}$ $\sqrt[4]{\frac{1}{\sqrt{k^2+1}}}$	A CA
	V K +1	$\sqrt{k^2+1}$	(3)
3.2.2	$cosec38^{\circ} = \sqrt{k^2 + 1}$	√answer/antwoon	rd A
2.2.2	(2220	/C //II 1.11	(1)
3.2.3	$sin232^{\circ} = sin (180^{\circ} + 52^{\circ})$	✓ Conv./Herleidiı	ng A
	$sin232^{\circ} = -sin52^{\circ}$		
	$\sin 232^{\circ} = \frac{-k}{\sqrt{k^2 + 1}}$	✓✓ answer/antw.	
2.2	, · · · ·		(3)
3.3	$\frac{1}{2}cosec2\theta = 0.814$	✓ S	A
	$cosec2\theta = 1,628$		1.
	$\frac{1}{\sin 2\theta} = 1,628$	$\sqrt{\frac{1}{\sin 2\theta}}$	A
	$1 = 1,628 \times \sin 2\theta$		
	$\frac{1}{1,628} = \sin 2\theta$	✓ S	CA
		✓ 18,95° = θ	CA
	$37,897 \dots^{\circ} = 2\theta$	10,75 = 0	(4)
	$18,95^{\circ} = \theta$		` ,
			[16]

		1 2
4.1	$cosec^2\theta$	✓Answer/Antw.A
		(1)
4.2	$\frac{\cos(180^\circ + \theta).\tan(360^\circ - \theta).\cos^2(360^\circ - \theta)}{\cos(180^\circ + \theta).\tan(360^\circ - \theta).\cos^2(360^\circ - \theta)} + \cos^2\theta$	√ -cosθ A
	$\sin (180^{\circ} - \theta)$	\checkmark -tan θ A
	$-\cos\theta$. $-\tan\theta$. $\cos^2\theta$	$\checkmark \cos^2\theta$ A
	$= \frac{-\cos\theta - \tan\theta \cdot \cos^2\theta}{\sin\theta} + \cos^2\theta$	$\checkmark \sin\theta$ A
	$\sin \theta$	
	$= \frac{-\cos\theta \cdot -\frac{\sin\theta}{\cos\theta} \cdot \cos^2\theta}{\sin\theta} + \cos^2\theta$	$\sqrt{\frac{\sin\theta}{\cos\theta}}$ A
	Sillo	$\begin{array}{ccc} \checkmark \frac{\sin \theta}{\cos \theta} & \mathbf{A} \\ \checkmark & \mathbf{S} & \mathbf{A} \end{array}$
	$= cos^2\theta + cos^2\theta$	
	$=2\cos^2\theta$	$\checkmark 2\cos^2\theta$ CA
	$=2\cos^2\theta$	(7)
4.3	$sec\theta + cosec\theta$	(1)
4.5	$LHS = \frac{\sec\theta + \csc\theta}{\sin\theta + \cos\theta}$	1 .
		$\checkmark \frac{1}{\cos \theta}$ A
	$LHS = \frac{\frac{1}{\cos\theta} + \frac{1}{\sin\theta}}{\sin\theta + \cos\theta}$	
	$sin\theta + cos\theta$	$\checkmark \frac{1}{\sin \theta}$ A
	$sin\theta + cos\theta$	
	$LHS = \frac{\frac{\sin\theta + \cos\theta}{\cos\theta \sin\theta}}{\sin\theta + \cos\theta}$	$\checkmark \frac{\sin\theta + \cos\theta}{\cos\theta \sin\theta}$ CA
		cosθsinθ
	$LHS = \frac{\sin\theta + \cos\theta}{\cos\theta \sin\theta} \times \frac{1}{\sin\theta + \cos\theta}$	$\checkmark \frac{1}{\cos\theta \sin\theta}$ CA
	$cos\theta sin\theta = sin\theta + cos\theta$	cosθsinθ
	$LHS = \frac{1}{\cos\theta \sin\theta}$	$\checkmark sin^2\theta + cos^2\theta$
	$cos\theta sin\theta$	
		CA
		√ cosθsinθ CA
	$RHS = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	V COSOSINO CA
	$cos\theta sin\theta$	✓ identity /
	$RHS = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$	· ·
	$\frac{1113 - \cos\theta \sin\theta}{\cos\theta \sin\theta}$	identiteit A
	$p_{IIC} = \frac{1}{1} = I_{IIC}$	$\checkmark RHS = LHS$
	$RHS = \frac{1}{\cos\theta\sin\theta} = LHS$, VIIS — TIIS
		CA
		(0)
		(8)
		[16]
		[10]

9.1	Parallel	✓ A (1)
9.2	B E	
9.2.1	$\frac{AB}{AC} = \frac{AF}{AE} \qquad \text{(line } \parallel \text{ to 1 side of } \Delta / \text{ lyn } \parallel \text{ aan 1 sy van } \Delta\text{)}$ $\frac{3}{4} = \frac{AF}{36}$ $\frac{3}{4} \times 36 = AF$ $27 = AF$ $FE = AE - AF = 36 - 27 = 9$	✓ ST RE ✓ SF ✓ Answer / Antw. (3) ✓ ST
		✓ SF ✓ Answer / Antw. (3)
9.3	In proportion / is eweredig	✓ (1)

9.4		
9.4	$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} E$	
9.4.1	In $\triangle ABF$ and/en $\triangle AEC$: 1. $\hat{A} = \hat{A}$ (common $\angle /$ gemene \angle) 2. $\widehat{B_1} = \widehat{E_1}$ (ext. \angle of cq $/$ buite \angle van kvh) 3. $\widehat{F_1} = \widehat{C_1}$ (ext. \angle of cq $/$ buite \angle van kvh) $\therefore \triangle ABF \parallel \triangle AEC$ ($\angle \angle \angle$)	✓✓ ST RE ✓ ST RE ✓ RE (4)
9.4.2 (a)	$\frac{AB}{AE} = \frac{BF}{EC} = \frac{AF}{AC} \qquad (\Delta ABF \Delta AEC)$ $\frac{25}{60} = \frac{BF}{EC} = \frac{20}{AC}$ $\frac{25}{60} = \frac{20}{AC}$ $25AC = 1200$ $AC = 48$ $\therefore BC = 48 - 25 = 23$	✓ ST RE ✓ ST ✓ Answer / Antw. (3)
9.4.2 (b)	$\frac{AB}{BF} = \frac{25}{23+27} = \frac{25}{50} = \frac{1}{2}$ $\frac{AF}{FE} = \frac{20}{40} = \frac{1}{2}$ $\therefore \text{ sides in proportion / sye in verhouding}$ $\therefore BF \parallel DE$	✓ ST ✓ ST ✓ Concl. / Afleid. (3)
9.4.2 (c)	In $\triangle AEC$ and $\triangle ADE$: 1. $\widehat{A} = \widehat{A}$ (common $\angle / gemene \angle$) 2. $\widehat{B_1} = \widehat{C_1}$ (ext. \angle of cq $/$ buite \angle van kvh) 3. $\widehat{B_1} = \widehat{D}$ (Corresp. \angle 's = $/$ Ooreenkomst. \angle 'e = BF \parallel DE) $\widehat{C_1} = \widehat{D}$	✓ ST RE ✓ ST RE
	$\widehat{E_1} = A\widehat{E}D \qquad \text{(Int. } \angle \text{'s of } \triangle \ / \ Binne \angle \text{'e van } \triangle \text{)}$ $\therefore \triangle AEC \parallel \triangle ADE \qquad (\angle \angle \angle \text{)}$	✓ Answer / Antw. (3)

9.4.2	$\Delta AEC \parallel \Delta ADE \parallel \Delta ABF \text{ (proved / } bewys\text{)}$		
(d)	$\frac{AD}{AD} = \frac{DE}{AD} = \frac{AE}{AD}$		
	AB BF AF 75 DE 60		
			
	$ \begin{array}{lll} 25 & BF & 20 \\ \therefore 75: 25 = DE: BF \end{array} $	✓ ST	
		✓ ST	
	$\therefore 3: 1 = DE: BF$	v 21	(2)
			(2)
			[23]

10.1	O A B		
10.1.1	180° 3	$\checkmark \frac{\pi}{3}$ $\checkmark F$ $\checkmark SF$ $\checkmark \frac{5}{3}\pi$	A
		✓ F ✓ SF	A CA
	$\therefore s = 5 \left(\frac{3}{3}\right)$	$\sqrt{\frac{5}{2}\pi}$	CA
	$\therefore S = \frac{5}{3}\pi$	3 7	A A CA CA (4) A
10.1.2	Area = $\frac{r^2\theta}{2}$	✓ F	A
	Area = $\frac{{(5)^2}(\frac{\pi}{3})}{{25}^2}$	✓ SF	CA
	$Area = \frac{2}{2}$. 51	
	Area = $\frac{25}{6}\pi$	✓ SF $ ✓ \frac{25}{6} \pi $	CA CA
		Ŭ	(3)

11.2	6 cm	
	Vol. of block of wood = $l \times b \times h$ Vol. of block of wood = $4 \times 6 \times 6$ Vol. of block of wood = 144 cm^2 Vol. of cylinder = $\pi r^2 h$	√144 cm ² CA
	Vol. of cylinder = $\pi(0.75)^2(6)$ Vol. of cylinder = 10.60 cm^2 \therefore Vol. of remaining block = $144 - 10.60$	✓10,60 cm ² CA ✓ Method / Metode
11.3	$\therefore Vol. of \ remaining \ block = 133,40 \ cm^2$	✓ 133,40 cm^2 CA (4)
	circumference of a circle = $2\pi r$ $\therefore 200 = 2\pi r$ $\therefore \frac{200}{2\pi} = r$ $\therefore 31,83 \ cm = r$ dist. from centre of circle to midpt of poster = $21,21 \ cm$ (Pyth) $\therefore total \ radius \ needed = 21,21 + 15 = 36,21 \ cm$ $\therefore 36,21 > 31,83$ \therefore The poster will not fit in the circular space on the wall / Die plakkaat sal nie in die sirkelvormige spasie op die muur pas nie.	✓ radius of wall space / radius van muur spasie ✓ Distance / afstand ✓ total radius / totale radius ✓ Answer / Antw. ✓ Concl. / Afleid.

OR/OF	OR/OF
circumference of a circle = $2\pi r$ $\therefore 200 = 2\pi r$ $\therefore \frac{200}{2\pi} = r$ $\therefore 31,83 \ cm = r$ Area of wall = πr^2 $\therefore Area \ of \ wall = 3183 \ cm^2$ Minimum required dimensions /minimum benodigde afmetings: 60 by 60 Area of poster = $l \times b$ $\therefore Area \ of \ poster = 60 \times 60$ $\therefore Area \ of \ poster = 3600 \ cm^2$ $\therefore The \ poster \ will \ not \ fit \ in \ the \ circular \ space \ on \ the \ wall \ / \ Die \ plakkaat \ sal \ nie \ in \ die \ sirkelvormige \ spasie \ op \ die \ muur \ pas \ nie.$	radius of wall space / radius van muur spasie ✓ Area of wall / Area van muur ✓ Dimension of poster / Afmetings van plakkaat ✓ Answer / Antw. ✓ Concl. / Afleid.
	[14]
	TOTAL /TOTAAL: 150