Hw2

Konstantios Konstantinidis 2546 Nikolaos Stavrinos 2631

December 2020

1 .

In order to find the minimum of the function $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}$, $\mathbf{x} \in \mathbf{R}^n$. we need to find what value sets its derivative to zero, that's where we will use the Conjugate Gradient (Fletcher-Reeves)

$$\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} = 0.$$

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
For x1=1.5 and x2=-0.75=>
$$\mathbf{r}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1.5 \\ -0.75 \end{bmatrix} = \begin{bmatrix} -3.75 \\ 0 \end{bmatrix} = \mathbf{p}_0.$$

$$\alpha_0 = \frac{\mathbf{r}_0^\mathsf{T} \mathbf{r}_0}{\mathbf{p}_0^\mathsf{T} \mathbf{A} \mathbf{p}_0} = \frac{\begin{bmatrix} -3.75 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix}}{\begin{bmatrix} -3.75 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix}} = \frac{1}{3}.$$

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 \mathbf{p}_0 = \begin{bmatrix} 1.5 \\ -0.75 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.25 \\ -0.75 \end{bmatrix}.$$
Second iteration:
$$\mathbf{r}_1 = \mathbf{r}_0 - \alpha_0 \mathbf{A} \mathbf{p}_0 = \begin{bmatrix} -3.75 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}.$$

$$\beta_0 = \frac{\mathbf{r}_1^\mathsf{T} \mathbf{r}_1}{\mathbf{r}_0^\mathsf{T} \mathbf{r}_0} = \frac{\begin{bmatrix} 0 & 1.25 \end{bmatrix} \begin{bmatrix} 0 \\ 1.25 \end{bmatrix}}{\begin{bmatrix} -3.75 & 0 \end{bmatrix} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix}} = \frac{1}{9}.$$

$$\mathbf{p}_1 = \mathbf{r}_1 + \beta_0 \mathbf{p}_0 = \begin{bmatrix} 0 \\ 1.25 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} -3.75 \\ 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1.25 \\ 3.75 \end{bmatrix}.$$

$$\alpha_1 = \frac{\mathbf{r}_1^\mathsf{T} \mathbf{r}_1}{\mathbf{p}_1^\mathsf{T} \mathbf{A} \mathbf{p}_1} = 9 * \frac{\begin{bmatrix} 0 & 1.25 \end{bmatrix} \begin{bmatrix} 0 \\ 1.25 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1.25 \\ 3.75 \end{bmatrix}}{\begin{bmatrix} -1.25 \\ 3.75 \end{bmatrix}} = 0.6.$$

$$\mathbf{x}_2 = \mathbf{x}_1 + \alpha_1 \mathbf{p}_1 = \begin{bmatrix} 0.25 \\ -0.75 \end{bmatrix} + 0.2 \begin{bmatrix} -1.25 \\ 3.75 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

In order to find the minimum of the function $f(\mathbf{x}) = 3w_1^2 + 2w_2^2 + 2w_1w_2$ with gradient descent

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 6w_1 + 2w_2 \\ 2w_1 + 4w_2 \end{bmatrix} = 0.$$

$$(w_1(1), w_2(1)) = (w_1(0), w_2(0)) - t_0 \nabla f((w_1(0), w_2(0)))$$

To find to we need to find the minimum of the function $\theta(t) = f(w_1(0), w_2(0)) - f(w_1(0), w_2(0))$ $t_0 \nabla f((w_1(0), w_2(0)))$

$$\theta'(t) = -\nabla f((w_1(0), w_2(0)) - t\nabla f(w_1(0), w_2(0)))^T \nabla f(w_1(0), w_2(0)) = f(w_1(0), w_2(0)) - t_0 \nabla f(1.5 - 0.75t, -0.75 + 3t)^T * \nabla f(7.5, -3) = -38.25 + 283.5t$$

That has to equal to zero, so t=0.135

So
$$(w_1(1), w_2(1)) = (1.5, -0.75) - 0.135 * (7.5, -3) = (1.5 - 1.012, -0.75 + 0.405) = (0.488, -0.345)$$

Second iteration:

$$\theta'(t) == f(w_1(1), w_2(1)) - t_0 \nabla f(1.5 - 0.75t, -0.75 + 3t)^T * \nabla f(7.5, -3) = -3.762 + 13.98 * t$$

That has to equal to zero, so t=0.269

So $(w_1(2), w_2(2)) = (0.488, -0.345) - 0.269 * (1.608, -0.404) = (0.055, -0.236)$ which will also converge to (0,0) as well.

2 .

```
Problem 2

F(w) = 100 (w_2 - w_1^2)^2 + (1 - w_1)^2

x_0 = 1 - 0.5 0.51°

Newton's method and fixed step 2x = 1
  F(w)=100 w,4 + w,2 - 200 w2 w,2 - 2 w, + 100 w2 + 1
  \nabla F(w) = \left(\frac{400 w_1^3 + 2 w_1 - 400 w_2 w_1 - 2}{-200 w_1^2 + 200 w_2}\right)
  H = \begin{bmatrix} 1200 \, w_1^2 - 400 \, w_2 + 2 & -400 \, w_1 \\ -400 \, w_1 & +200 \end{bmatrix}
At x= 2-0,5,0,5], we get: VF(x)= [47,50] and
  H= 102 200
200 200
 H^{-1} = \begin{bmatrix} -0.01 & 0.01 \\ 0.01 & -0.005 \end{bmatrix}
 \mathbf{S}_0 = \begin{bmatrix} -0.01 & 0.01 & 47 \\ 0.01 & -0.009 & 50 \end{bmatrix}
So X1 = [-0,5] = 1 [0,03] = [-0,53] (0,28]
At x. [-0,53,0,28], we get . [(x)]=[-3,25,-0,18] and
 H= [227,08 212]
```

Figure 1:

```
H-1 = [0,423 -0,449]
  50 = [0,423 -0,449] [-3,25] = [-1,293]
[-0,18] [-3,372]
  So xe= [-0,53] -1 [-1,293] = [0,763]
 A+ x2=[0,763, -1,092], we get of(x)=[510,482, -334,833]
  H= [137,402 -305,2] - H-1= [9001
-305,2 200] - H-1= [9001
                                                           0,008
52 - - [0,001 0,002] [510,482] = - [-0,159]
-1,657]
 X_3 = \begin{bmatrix} 0,763 \\ -1,092 \end{bmatrix} - 1 \begin{bmatrix} -0,159 \\ -1,657 \end{bmatrix} = \begin{bmatrix} 0,922 \\ 0,565 \end{bmatrix}
At x3-[0,922, 9565], we get Pf(x3)=[104,982,-57,016]
H= [796,1 -368,8] - H- = [0,008 0,015]
53 = - [0,008 0,015] [104,982] = - [-0,015]
[0,015 0,034] [-57,016] [-0,363]
X4: [0,922] -1 [-0,015] = [0,937]

0,565] [-0,363] [0,928]

At X4=[0,937,0,928], we get 0f(x4)=[-18,877,10,006]
```

Figure 2:

Figure 3:

3. Feed-Forward Phase:

Compute Error: a1 =
$$(-2 * 1 + 1 * 1)3 = -1$$
 a2 = $(1 * 1 - (2 * 1))2 = 1$ (2) Backpropagation: Sensitivities: error = 0 - output = 0 - 1 = -1 (3) s2 = -2 Ft2'(n2)(t - a) = -4 (-1) (e) = -4 s1 = F'1(n1)(W 2)T s2 = 3 (n1)2* 1*(-4) = -12 (4) Update weights and biases: W 2(1) = W 2(0) - a * s2(a1)T = 1 - 1 * (-4) * 1 = -3 b2(1) = b2(0) - a * s2 = $-2 - 1$ * (-4) = 6 W 1(1) = W 1(0) - a * s1(a0)T = $-2 - 1$ * (-12) = 10 b1(1) = b1(0) - a * s1 = $1 - 1$ * (-12) = 13

$$\begin{array}{l} H1(1) = 0.1*1 + 0.3*4 + 0.5*5 + 0.5 = 4.3 \\ H2(1) = 0.2*1 + 0.4*4 + 0.6*5 + 0.5 = 5.3 \\ \\ Sigmoid(H1(1)) = 1/(1 + e^{-4.3}) = 0.986 \\ Sigmoid(H2(1)) = 1/(1 + e^{-5.3}) = 0.995 \\ \\ O1 = 0.7*0.986 + 0.9*0.995 + 0.5 = 2.085 \\ O2 = 0.8*0.986 + 0.1*0.995 + 0.5 = 1.338 \\ \\ Sigmoid(O1(1)) = 0.889 \\ Sigmoid(O2(1)) = 0.792 \\ \\ E1 = t1 - 0.889 = 0.1 - 0.889 = -0.789 \\ E2 = t2 - 0.889 = 0.05 - 0.792 = -0.749 \\ Sigmoid(x) = 1/(1 + e^{-x}) = Sigmoid'(x) = \frac{d}{dx}(1/(1 + e^{-x})) = e^{-x}/((1 + e^{-x}))^2 = (1 - 1/(1 + e^{-x}) * (1/(1 + e^{-x})) = (1 - a^1) * (a^1) \\ \\ s2 = -2F'^2(n2)(t - a) = -2* \begin{bmatrix} a_1*(1 - a_1) & 0 \\ 0 & a_2(1 - a_2) \end{bmatrix} \begin{bmatrix} -0.789 \\ -0.749 \end{bmatrix} = \\ -2* \begin{bmatrix} 0.889*(1 - 0.889) & 0 \\ 0 & 0.792(1 - 0.792) \end{bmatrix} \begin{bmatrix} -0.789 \\ -0.75 \end{bmatrix} = \begin{bmatrix} 0.155 \\ 0.24 \end{bmatrix} \\ \\ s1 = F'^1(n1)'(W^2)^T s2 = \begin{bmatrix} 0.013 & 0 \\ 0 & 0.05 \end{bmatrix} \begin{bmatrix} 0.7 & 0.9 \\ 0.8 & 0.1 \end{bmatrix} \begin{bmatrix} 0.155 \\ 0.24 \end{bmatrix} = \begin{bmatrix} 0.0042 \\ 0.0007 \end{bmatrix} \\ \\ W2(1) = W2(0) - a*s2(a1)T = \begin{bmatrix} 0.7 & 0.9 \\ 0.8 & 0.1 \end{bmatrix} - 0.01* \begin{bmatrix} 0.155 \\ 0.24 \end{bmatrix} \begin{bmatrix} 0.986 \\ 0.995 \end{bmatrix}^T \approx \\ \begin{bmatrix} 0.698 & 0.898 \\ 0.797 & 0.017 \end{bmatrix} \end{array}$$

$$\begin{array}{l} b2(1) = b2(0) - a * s2 = -2 - 1 * (-4) = 6 = \left[\begin{array}{c} 0.5 \\ 0.5 \end{array} \right] - 0.01 \left[\begin{array}{c} 0.155 \\ 0.24 \end{array} \right] = \left[\begin{array}{c} 0.4845 \\ 0.476 \end{array} \right] \\ W \ 1(1) = W \ 1(0) - a * s1(a0) T = \left[\begin{array}{ccc} 0.1 & 0.3 & 0.5 \\ 0.2 & 0.4 & 0.6 \end{array} \right] - 0.1 * \left[\begin{array}{c} 0.0042 \\ 0.0007 \end{array} \right] * \left[\begin{array}{ccc} 1 & 4 & 5 \end{array} \right] = \left[\begin{array}{c} 0.1 & 0.2998 & 0.499 \\ 0.2 & 0.4 & 0.6 \end{array} \right] \\ b1(1) = b1(0) - a * s1 = \left[\begin{array}{ccc} 0.5 \\ 0.5 \end{array} \right] - 0.01 * \left[\begin{array}{ccc} 0.0042 \\ 0.0007 \end{array} \right] \approx \left[\begin{array}{ccc} 0.5 \\ 0.5 \end{array} \right], \text{the difference} \\ \text{is too small to be taken into account.} \end{array}$$

```
Suppose that: x_0 = a * in + b
x_1 = sigmoid(x_0)
x_2 = a * x_1 + b
\vdots
x_n = a * x_{n-1} + b
```

Knowing that S'(x)=Sigmoid'(x)=S(S-1) the derivative of xn with regards to in can be written like this: $\frac{d}{din}(x_n) = a * x_{n-1} * (x_{n-1} - 1) * \frac{d}{dx}(x_{n-2})...$ which will eventually look something like this: $a^{n/2+1} \prod_{i=1}^n S_{2n-1} * (S_{2n-1} - 1)$

In terms of the vanishing gradient problem ,it's a common case with sigmoid activation functions. When the sigmoid function value is either too high or too low, the derivative becomes very small i.e. <<1. This causes vanishing gradients and poor learning for deep networks. This can occur when the weights of our networks are initialized poorly – with too-large negative and positive values. These too-large values saturate the input to the sigmoid and pushes the derivatives into the small valued regions.

Learning rate = 0.001 and S=3

 $Final\ weight1:\ [0.030909503133541627, -3.1942548621059763, -3.1069772191111356]$

and bias1: [0.5112930381588776, -0.0038236442505651244, -0.03493906158817512] Final weight2: [0.7868737753116977, -0.6733869741641436, -0.6539490598958959] and bias2: 1.1681376688809941

P1 is -0.009524055853615154 and is supposed to be 0.41221474770752675

P2 is -0.8216509447115238 and is supposed to be 0.04894348370484636

P3 is -1.5610607586741283 and is supposed to be 0.04894348370484647

P4 is -2.1011380032554157 and is supposed to be 0.41221474770752686

P5 is -2.2665685056520224 and is supposed to be 1.0

P6 is -2.0612501510493635 and is supposed to be 1.5877852522924731

P7 is -1.6618523455024368 and is supposed to be 1.9510565162951536

P8 is -1.1922061417108392 and is supposed to be 1.9510565162951536

P9 is -0.6996341191567705 and is supposed to be 1.5877852522924734

P10 is -0.19883030363382093 and is supposed to be 1.00000000000000002

Learning rate = 0.001 and s=15

Final weight1: [0.44248942488399756, 2.192577697977375, -2.9334139200837996,

 $\begin{array}{c} 0.023921515983921348, \, 0.1655817134382285, \, 0.08042321033838204, \, -0.25129977565460937, \\ -1.7874009468671817, \, -0.9457353201443084, \, -0.05928499625125257, \, 1.2991168623567368, \\ -0.4632036069582728, \, 1.0495255718224887, \, 0.13163840730061563, \, 0.20572166694019547] \\ \text{and bias1: } \left[-0.11734813295953414, \, 0.11293384881877229, \, 0.04977567352124146, \\ 0.18966767919722374, \, -0.15091223854548963, \, 0.4146491855413997, \, 0.4510993079333351, \\ 0.01584086676386032, \, 0.15350363148328103, \, -0.208116011985671, \, -0.02202720588175104, \\ 0.28334630953654366, \, 0.19555675069896544, \, 0.3271045368598385, \, 0.3408128065616652 \right] \\ \text{Final weight2: } \left[-0.047223304497623776, \, 0.22556669924561606, \, -0.8016135689844859, \\ -0.02377623811570163, \, -0.2646619467263139, \, 0.003107406186166055, \, 0.5277092052373649, \\ -0.25001679839177476, \, 0.15481301876079062, \, 0.49869553562195834, \, 0.3767325473095455, \\ 0.5162848333788569, \, 0.17864500535177347, \, 0.08628723979248827, \, 0.46686824344210454 \right] \\ \text{and bias2: } 0.04223447251335259 \end{aligned}$

Learning rate = 0.005 and S=3 Final weight1: [-0.8419387318381734, -2.469628232488532, -0.6625817894012812]

and bias1: [0.05687613055865347, -0.12860465010128191, 0.29883535110650133] Final weight2: [0.21118944892587627, -1.6425329669736575, 0.5158409399669326] and bias2: 1.3970208646859419

P3 is -2.4079381121750125 and is supposed to be 0.04894348370484647

P4 is -3.1069389266087093 and is supposed to be 0.41221474770752686

P5 is -3.4706978148065857 and is supposed to be 1.0

P6 is -3.52266845128195 and is supposed to be 1.5877852522924731

P7 is -3.3989140165481033 and is supposed to be 1.9510565162951536

P8 is -3.216297011566445 and is supposed to be 1.9510565162951536

P9 is -3.033802588854829 and is supposed to be 1.5877852522924734

P10 is -2.8733159094187606 and is supposed to be 1.0000000000000002

Learning rate = 0.005 and S=15

Final weight1: [1.0483386583475927, -0.027818322420441088, 0.20730636410898232,

-2.641580661484995, -0.32305620552702596, 0.03227842637125662, -0.6575980949914932,-0.1550287283973066, 1.4421031210482036, -0.09104542725601783, 0.20837479838020448, -0.09104542725601783, -0.09104542725601784, -0.091045444, -0.091045444, -0.091044444, -0.091044444, -0.0910444444, -0.091044444, -0.0910444444, -0.091044444, -0.091044444, -0.0910444444, -0.0910444444, -0.091-0.1008441735787519, -0.21982411464533727, -2.019067621503454, 0.001870705741622904]and bias1: [-0.3061649971615442, 0.30186652366327255, -0.12069880594199672, 0.4319525950320058, 0.2483794180191233, 0.4125995970135096, -0.23510101808461378, -0.235101808401808, -0.23510180808, -0.23510180808, -0.23510180808, -0.235101808, -0.2510180808, -0.25101808, -0.25101808, -0.25101808, -0.25101808, -0.2510180808, -0.2510180808, -0.2510180808, -0.2510180808, -0.2510180808, -0.2510180808, -0.2510180808, -0.2510180808, -0.25101808080.26996947956350886, -0.31118732117359915, -0.04376261069444169, -0.25878865930926376]Final weight2: [-0.28748440801038627, 0.45695770488490806, 0.34104022389889865, 0.01190148666249783, 0.3105063161071186, -0.13555167548617963, 0.04821312624796542,0.03129651439459619, 0.5224922001833565, -0.4965958108634263, 0.47139208311967684]and bias2: 0.7317846751523781

P0 is 1.220706150009886 and is supposed to be 0.999999999999999

P1 is 0.8234000579309669 and is supposed to be 0.41221474770752675

P2 is 0.4569809513973019 and is supposed to be 0.04894348370484636

P3 is 0.19149662825713823 and is supposed to be 0.04894348370484647

P4 is 0.14686202679453045 and is supposed to be 0.41221474770752686

P5 is 0.43592815152071773 and is supposed to be 1.0

P6 is 1.0405847184060888 and is supposed to be 1.5877852522924731

P7 is 1.8311735605021464 and is supposed to be 1.9510565162951536

P8 is 2.692391976954826 and is supposed to be 1.9510565162951536

P9 is 3.5625317272403487 and is supposed to be 1.5877852522924734

P10 is 4.4158928630509475 and is supposed to be 1.000000000000000002

Learning rate = 0.01 and S=3

 $Final\ weight1:\ [-3.2747628057401945, -0.6556448833569682, -0.6655380952383398]$

and bias1: [-0.04502160721259928, 0.22332333021315504, -0.4540506384021959] Final weight2: [-1.3340811051148649, 0.08634553188202508, -0.047309571489522126] and bias2: 1.6291113423259438

P1 is -0.9280289346499493 and is supposed to be 0.41221474770752675

P2 is -2.199637366917776 and is supposed to be 0.04894348370484636

P3 is -3.405271893522561 and is supposed to be 0.04894348370484647

P4 is -4.413662097507572 and is supposed to be 0.41221474770752686

P5 is -5.036090943009504 and is supposed to be 1.0

P6 is -5.282819361806901 and is supposed to be 1.5877852522924731

P7 is -5.345772146802508 and is supposed to be 1.9510565162951536

P8 is -5.349561788926244 and is supposed to be 1.9510565162951536

P9 is -5.3384909568011505 and is supposed to be 1.5877852522924734

P10 is -5.3253510574372855 and is supposed to be 1.000000000000000002

Learning rate = 0.01 and S=15

Final weight1: [-2.0237520231170962, -0.09893143399059656, -0.21210133740179446,

 $0.016536964024686667, -2.4601126708409984, -0.024688676945908556, 0.4158409485327284, \\1.6603391162739862, 1.1596126677694492, 0.7278911198560799, 2.615943128110069,$

P1 is 1.7957283265393613 and is supposed to be 0.41221474770752675

P2 is 1.872737787166379 and is supposed to be 0.04894348370484636

P3 is 2.034560178740187 and is supposed to be 0.04894348370484647

P4 is 2.4173562964327773 and is supposed to be 0.41221474770752686

P5 is 3.1486176744669923 and is supposed to be 1.0

P6 is 4.204385448102281 and is supposed to be 1.5877852522924731

P7 is 5.441429307396668 and is supposed to be 1.9510565162951536

P8 is 6.74042640905029 and is supposed to be 1.9510565162951536

P9 is 8.04340414023412 and is supposed to be 1.5877852522924734

P10 is 9.32952197475456 and is supposed to be 1.0000000000000002

By the results from the learning rates we used, the value of the learning rate seems to be more reliable between the values of 0.1 and 0.001 because the g(p) function changes periodically and its' results are between 0 and 2. Lower learning rates help the training by changing the direction of the graph with more ease.

7.

Dropout probability = 0.10

 $Final\ weight1:\ [-2.59910509\ 0.11120802\ 0.04913053\ -0.01710935\ -0.40061256\ -0.01710935\ -0.0171093\ -$

and bias1: $[0.02125911\ 0.09966034\ -0.13790664\ 0.25835404\ -0.35902373\ -0.40731497\ 0.\ 0.08744258\ 0.06730358\ 0.39121647\ 0.35541087\ -0.21745325\ 0.\ 0.04988636\ 0.07497568]$

Final weight 2: $[-0.09375145\ -0.26012935\ -0.33176239\ 0.3031241\ -0.06749578\ -0.07396368\ -0.40910055\ 0.4595959\ 0.50765136\ 0.\ -0.06594695\ 0.\ -0.14486669\ 0.31212735\ 0.94427507]$

and bias2: 0.3888552378385044

P1 is 1.5465368957975516 and is supposed to be 0.41221474770752675

P2 is 1.5135645553075916 and is supposed to be 0.04894348370484636

P3 is 1.5597572126274655 and is supposed to be 0.04894348370484647

P4 is 1.8085356608153844 and is supposed to be 0.41221474770752686

P5 is 2.420116840610599 and is supposed to be 1.0

P6 is 3.381586799543923 and is supposed to be 1.5877852522924731

P7 is 4.5285037980884715 and is supposed to be 1.9510565162951536

P8 is 5.746222955758188 and is supposed to be 1.9510565162951536

P9 is 6.98740151229165 and is supposed to be 1.5877852522924734

P10 is 8.235041498629453 and is supposed to be 1.000000000000002

Dropout probability = 0.25

Final weight1: [8.58672372e-01 0.00000000e+00 3.39537126e-02 0.00000000e+00

 $\begin{array}{l} 3.25577600e\text{-}01\ 2.07978851e+00\ 0.000000000e+00\ -}1.64843112e\text{-}03\ -}2.23555589e+00\ 2.71709630e+00\ 1.31452509e+00\ -}1.19593827e+00\ 2.10880056e\text{-}01\ -}7.51945555e-02\ 0.00000000e+00 \end{array}$

and bias1: $[-0.1690654\ 0.\ 0.27909064\ 0.\ -0.18602904\ 0.03264184\ 0.\ 0.01307758\ -0.10866247\ 0.08776054\ -0.09998297\ -0.03050814\ -0.15209358\ 0.09353\ 0.\]$ Final weight2: $[-0.45340106\ 0.55331627\ 0.\ -0.1090509\ 0.34532304\ 0.08985712\ 0.\ 0.31457253\ -0.\ 1.41793166\ -0.08810215\ 0.\ 0.2317704\ 0.08018592\ -0.15165098]$ and bias2: -0.13774154918341364

P1 is 2.606043771664603 and is supposed to be 0.41221474770752675

P2 is 3.116716283593564 and is supposed to be 0.04894348370484636

P3 is 3.7118037127905557 and is supposed to be 0.04894348370484647

Dropout probability = 0.50

Final weight 1: [$1.89135572\ 0.\ 0.\ 0.\ 0.\ 2.37380589\ 0.\ -1.61275657\ 0.\ 0.25219742$

-0.35666342 -3.05603642 0. 2.71251341 0.

and bias1: $[-0.09784551\ 0.\ 0.\ 0.\ 0.\ 13734658\ 0.\ -0.10566741\ 0.\ 0.11077245\ 0.04867221\ 0.01692556\ 0.\ 0.05744437\ 0.\]$

 $\begin{array}{l} Final\ weight2:\ [-0.000000000e+00\ -1.16140799e-03\ -0.000000000e+00\ -0.000000000e+00\\ -2.08932055e-02\ -0.00000000e+00\ 3.63927823e-01\ -1.80894902e-01\ -0.00000000e+00\\ -0.00000000e+00\ 6.00020116e-01\ -0.00000000e+00\ -0.00000000e+00\ 1.33952651e+00\\ -1.95809416e-01] \end{array}$

and bias2: 0.020152768895894554

P1 is 2.294898766470035 and is supposed to be 0.41221474770752675

P2 is 2.634825090047943 and is supposed to be 0.04894348370484636

P3 is 3.063495983069266 and is supposed to be 0.04894348370484647

P4 is 3.703926313288953 and is supposed to be 0.41221474770752686

P5 is 4.687589719848333 and is supposed to be 1.0

P6 is 6.0040720809547565 and is supposed to be 1.5877852522924731

P7 is 7.515050843947688 and is supposed to be 1.9510565162951536

P8 is 9.103515137911428 and is supposed to be 1.9510565162951536

P9 is 10.711685202576104 and is supposed to be 1.5877852522924734

P10 is 12.316275328055655 and is supposed to be 1.0000000000000002

In addition to the previous exercise, the dropout technique gives more stability to the system results by reducing the nuber of weights.

8.

This is the contour plot of the F(x) function, we used python's matplotlib library in the file ask8.py that we added in the code folder.

Adam with $\beta_1=0,\beta_2$ really close to 1 and a replacement of a by an annealed version $a_t=at^{-1/2}$,which is

$$\theta_t - \alpha \cdot t^{-1/2} \cdot \widehat{m}_t / \sqrt{\lim_{\beta_2 \to 1} \widehat{v}_t} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^2} = \theta_t - \alpha \cdot t^{-1/2} \cdot g_t / \sqrt{t^{-1} \cdot \sum_{i=1}^t g_t^$$

$$\theta_t - \alpha \cdot g_t / \sqrt{\sum_{i=1}^t g_t^2}.$$

corresponds to Adagrad with β_2 converging to 1 from from bellow, and so

$$\lim_{\beta_2 \to 1} \widehat{v}_t = t^{-1} \cdot \sum_{i=1}^t g_t^2$$

10 .

	D 11.		
2)	Problem 20:		
21	# name	Size	neurous
	0 input	1x28x28	0
	1 conv2d1	32 x24 x24	24x24x32 = 18.432
	2 maxpools	32×12×12	12×12×32=4.608
	3 convede	32×loxlo	lox10x32=3200
	4 maxpools	32×5×5	5×5×32 = 800
	5 dense	256	256
	6 output	10	16
	•		
	So in the net	work, we have	e a total of
	18.432 + 4.608	+3.200 +800 +	256+10=27.306
3)	# name	size	connections to henrows
	0 input	1×28×28	0
	0 input L conv2dL	1×28×28 32×24×24	
	1 convadi 2 maxpooli		24x24x32x(5x5+1)=344.448
	1 conved1	32 X24 × 24	24x24x32x(5x5+1)=344.448 12x12x32x(2x240)=2000 10x10x32x(3x3+1)=32.000
	2 maxpool L 3 convadz	32 X24 X24 3 2 X 12 X 12	24x24x32x(5x5+1)=344.448 12x12x32x(2x240)=2000 10x10x32x(3x3+1)=32.000
	2 maxpooll 3 convadz	32 x24 x 24 3 2 x 2 x 2 32 x 0 x 0	24x24x32x(5x5+1)=344.448 12x12x32x(2x240)=2000 10x10x32x(3x3+1)=32.000
	2 maxpool 2 maxpool 3 conv2dz 4 maxpool 5 dense	32 x24 x24 3 2 x 12 x 12 32 x 10 x 10 32 x 5 x 5	24x24x32x(5x5+1)=3444448 [2x12x32x(2x24)]=33444448 [2x12x32x(2x24)]=325000 [3x5x32x(3x3+1)]=325000 5x5x32(2x24)]=32500 801x266=205.056
	2 maxpool 2 3 convedz 4 maxpool 2 6 dense 6 output	32 x24 x24 32 x12 x12 32 x10 x10 32 x5 x5 256 10	24x24x32x(5x5+1)=344+448 $ 2x12x32x(2x24) =32432$ $ 3x12x32x(2x24) =322000$ $5x5x32(2x24) =32200$ $801x266=205.056$ $257x10=2.570$
	2 maxpool 2 3 convedz 4 maxpool 2 6 dense 6 output	32 x24 x24 32 x12 x12 32 x10 x10 32 x5 x5 256 10	24x24x32x(5x5+1)=344+448 $ 2x12x32x(2x24) =32432$ $ 3x12x32x(2x24) =322000$ $5x5x32(2x24) =32200$ $801x266=205.056$ $257x10=2.570$
	2 maxpool 2 3 convedz 4 maxpool 2 6 dense 6 output	32 x24 x24 32 x12 x12 32 x10 x10 32 x5 x5 256 10	24x24x32x(5x5+1)=344.448 $ 2x12x32x(2x240)=36432$ $ 3x12x32x(2x240)=32200$ $5x5x32(2x240)=3220$ $801x266=205.056$ $257x10=2570$
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=3344446 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=3344446 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444448 $ 2x12x32x(2x2)=3643$ $ 3x16x32x(3x3+1)=32.000$ $5x5x32(2x2)=32.00$ $801x266=205.056$ $257x10=2.570$
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=3344446 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=3344446 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=30663 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570
	convedle maxpoole convedz maxpoole dense contput	32 x24 x24 32 x12 x12 32 x 10 x 10 32 x 5 x 5 266 10 work we have	24x24x32x(5x5+1)=3444446 12x12x32x(2x24)=30663 16x18x32x(3x3+1)=320000 5x5x32(2x24)=32000 801x266=205.056 257x10=2570

7	+ (-	hame	size	weights + bias
	0	Input	1×28×28	O CONTRACTOR O
	1	conveds	32 x24 x24	5*5*1+1=26
	2	Maxpool	32×12×12	0
	3	convede	32×10×10	3*3*32 + 1 = 289
	4	maxpools	32×5×5	0
	5	dense	256	32*5*5+1=801
	G	output	10	256+1=257
	ī	``	, , ,	1000
	10	ssume that	each pooling	layer hasn't parameters
4)	#	hame	size	independent parameters
		input	1x28 x28	0
		Conv2d1	32×24×24	(s*s*1 +1)*32=832
		maxpools	32 × 12 × 12	0
		conv2d2	32×10×10	(3*3*32+1)*32=9.248
		maxpools		0
	5	dense	256	(32×5×5+1)×256=205.056
		output	10	(256+1)*10 = 2.570
		Maria Maria		
	Sa	in the ME	work me	have a total of
	83	2 + 904 9.248	+205.056+2.	S70 = 217.706 independe
	Lea	ruchole pour	meters.	1275/2376
		, vicini		

Input1:

outi.											
0	0	0	0	1	1	1	1	0	0	0	0
Convo	lution	with:			•		•				
-1	0	1									
1	0		1								

Equals:

	quais.									
()	0	1	1	0	0	-1	-1	0	0
()	0	-1	-1	0	0	1	1	0	0

Max pooling with stride=2 and filter size=2:

U	1	U	-1	U
0	-1	0	1	0

Convolution with:

-1	0	1
1	0	-1

Equals:

1		
0	-4	0

Fully connected layer:

-	uny	connected	r ray
Г	4	-4	\neg

Sigmoid activation
$$(1/(1+e^{-x})) = 0.99 \quad 0.1$$

Input2:

1	1	1	1	0	0	0	0	1	1	1	1	
Convo	Convolution with:											
-1	0	1										
1	0	-1	1									
Equals	:											
0	0	-1	1	-1	0	0		1	1	0	0	
0	0	1		1	0	0		-1	-1	0	0	

Max pooling with stride=2 and filter size=2:

0	-1	0	1	0
0	1	0	-1	0

Convolution with:

-1	0	1
1	0	-1

Equals:

Equals.							
0	4	0					

Fully connected layer:

-4	 4]	
1	1	1	

Sigmoid activation $(1/(1+e^{-x}))=$

0.1 0.99

12 .

When the gradient includes overlapping regions with the same parameters, the gradients values from the source can be summed together, because the operations in the forward phase are also additions which means that $\frac{d}{dx}(y+z)=\frac{dy}{dx}+\frac{dz}{dx}$. This is exactly the case with max pooling as well.