Diskule Mathematik 7.3.17 Deweiß methoden Logisches Schließen durch Syllogismen motionert - Kurl Gödel : "beweisen" - richtig denken - Studie: Teilautoromie bei Terla Deduktuer Beweis Wenn depositions of, down Konklusian K Bep. Für alle natürlichen Zahlen n: "niet durch 9 leiban" => fürdle - treN n%9=0 -> n%3=0 9/n "Definition">3/n (deduktiven) 9/n => 3R 9h=n Mathematisches Wissen A Beweis => 3h 3.3h=n =0 3l 3.l=n =0 3/n Con Es gild ein demma n ist govade golve n+1 ist ungerade Fall 1 n ist genade => n+1 ist ungerade Fall 2 n+1 ungerade = n gerade Beweis An gerade IKEN 2k=n = 2k+1=n+1 => n+1= angerade tengen inklusion $A = \{n \mid n \% 9 = 0\} \subseteq B = \{n \mid n \% 3 = 0\}$ Wern n e A, dann n e B (unter Annahme trn) Indurable Revouse nanations 12 & gibt new endlich well IN 2=0 kgalian achtig 1,2,3,4,5,6,..., NE große Zahl Widerspruch weil Summ immer eine neue in gibl Zi ENG, N+1

Bep. Alle Vogel fliegen	
A es exister nicht fliegenden logel	
Sei Pous ein Punquin & Widowpundrsle	Halhemalde
Widerlegung durch Gentleispiel	
$h^{2aln} \forall n n^2 \geq 2n$	
Seogn beispiel $n=1$ $1^2=1 \neq 2=2.1$	2
Bedingung n≥2	
Fall $n = 2$ $2^2 = 4 \ge 4 - 2.2$	
Fall $n = 3$ $3^2 = 9 \ge 6 = 2 - 3$	
Win brauchen das -> Frinzip den vollständigen Induktion	
Basisfull n = 2	Ausage A
2 ² = 4 ≥ 4 = 2 2	A(2)
Induktions solville na > 2. n = Snowlionshypothese	$\forall n \land (n) \rightarrow \land (n+1)$
zuweigen $(n+1)^2 \ge 2 \cdot (n+1)$	$A(2), A(2) \rightarrow A(3),$ $A(3) \rightarrow A(4),$
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grundwisen
$=1+2n+1$ $n^2 \ge 2$	7
= 2n + 2 = 2(n + 1)	
$2u \approx (n+1)^2 \ge 2(n+1)$	
$(n+1)^2 = n^2 + 2n + 1$ Granduse	ssen
≥2n+2n+1 IH	
≥2n+1+1 2n>	1 (when Arrahme $n \ge 2$)
= 2n + 2 = 2(n+1)	