

Olimpiada Naţională de Matematică Etapa finală, Braşov, 2 aprilie 2013 CLASA a VIII-a SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. Prisma regulată dreaptă ABCA'B'C', cu AB = a, are proprietatea că există un unic punct $M \in (BB')$ astfel încât $m (\triangleleft AMC') = 90^{\circ}$.

Determinați măsura unghiului format de dreapta AM cu planul (ACC').

Soluţie. Vom arăta mai întâi că M este mijlocul muchiei [BB']. Presupunând contrariul, fie $M' \in (BB')$ simetricul lui M față de mijlocul muchiei [BB']; atunci $M' \neq M$. Deoarece $\Delta MAB \equiv \Delta M'C'B'$ și $\Delta M'AB \equiv \Delta MC'B'$, rezultă că $[MA] \equiv [M'C']$ și $[M'A] \equiv [MC']$. Prin urmare, $\Delta MAC' \equiv \Delta M'C'A$, deci $m (\triangleleft AMC') = m (\triangleleft AM'C') = 90^\circ$, contradicție cu unicitatea alegerii lui M. ... 3 puncte Notând BB' = h, calculând AM, MC' și AC' și aplicând teorema lui Pitagora în triunghiul dreptunghic MAC', rezultă $h = a\sqrt{2}$... 2 puncte Dacă O este centrul feței (ACC'A'), rezultă $MO \perp (ACC')$, deci unghiul format de dreapta AM cu planul (ACC') este unghiul MAO.

Cum $MO = OA = \frac{a\sqrt{3}}{2}$, triunghiul MOA este dreptunghic isoscel, deci $m(\triangleleft MAO) = 45^{\circ}$. 2 puncte

Problema 2. Pe o tablă de şah de dimensiuni infinite se mută o tură, alternativ pe orizontală şi pe verticală. Tura se deplasează un pătrățel la prima mutare, două pătrățele la a doua mutare şi, în general, n pătrățele la a n-a mutare, pentru orice $n \in \mathbb{N}^*$.

Fie T mulțimea numerelor naturale n cu proprietatea că există un şir de n mutări după care tura revine la poziția inițială.

- a) Arătați că $2013 \notin T$.
- b) Determinați numărul elementelor mulțimii $T \cap \{1, 2, ..., 2012\}$.

Soluţie. Putem considera pătrăţelele tablei de şah ca o reţea de puncte cu coordonate numere întregi (puncte laticiale), în care poziţia iniţială o presupunem a fi (0,0). Atunci, după fiecare mutare, una dintre coordonate va fi de forma $\pm 1 \pm 3 \pm 5 \pm ...$, iar cealaltă de forma $\pm 2 \pm 4 \pm 6 \pm ...$.

a) Prespunând 2013 $\in T$, atunci există o alegere a semnelor + și - pentru care au loc simultan relațiile $\pm 1 \pm 3 \pm 5 \pm ... \pm 2013 = 0$ și $\pm 2 \pm 4 \pm 6 \pm ... \pm 2012 = 0$.

Pentru orice combinație de semne, $\pm 1 \pm 3 \pm ... \pm 2013$ are aceeași paritate cu $1+3+...+2013=1007^2$, deci, în ipoteza că $2013 \in T$, ar rezulta că 0 și 1007^2 au aceeași paritate, absurd **2 puncte**

Observație. Concluzia $2013 \notin T$ se obține și astfel: scriind $\pm 2 \pm 4 \pm ... \pm 2012 = 2 \cdot (\pm 1 \pm 2 \pm ... \pm 1006)$ și observând că numărul $\pm 1 \pm 2 \pm ... \pm 1006$ are aceeași paritate cu $1 + 2 + + 1006 = 503 \cdot 1007$, în ipoteza că $2013 \in T$, ar rezulta că 0 și $503 \cdot 1007^2$ au aceeași paritate, fals.

b) Condiția $n \in T$ implică existența unor alegeri a semnelor + și - pentru care să aibă loc simultan egalitățile:

$$\pm 1 \pm 3 \pm 5 \pm \dots \pm \left(2 \cdot \left[\frac{n+1}{2}\right] - 1\right) = 0$$
 (*)

$$\pm 2 \pm 4 \pm 6 \pm \dots \pm \left(2 \cdot \left[\frac{n}{2}\right]\right) = 0$$
 (**)

Din (*) rezultă că 0 are aceeași paritate cu $1+3+...+\left(2\cdot\left[\frac{n+1}{2}\right]-1\right)=\left[\frac{n+1}{2}\right]^2$, deci

 $\left[\frac{n+1}{2}\right]$ trebuie să fie număr par. Acest lucru se întâmplă dacă $4\mid n$ sau $4\mid n+1$ (1)

Din (**) rezultă că 0 are aceeași paritate cu $1+2+...+\left[\frac{n}{2}\right]=\frac{\left[\frac{n}{2}\right]\cdot\left(\left[\frac{n}{2}\right]+1\right)}{2}$, adică $4\mid\left[\frac{n}{2}\right]$ sau $4\mid\left[\frac{n}{2}\right]+1$. Se obține că 8 divide unul dintre numerele $n-1,\,n,\,n+1$ sau n+2 (2)

Din (1) și (2) rezultă că este necesar ca n să aibă forma 8k sau 8k-1, unde $k \in \mathbb{N}^*$ 2 puncte Pentru orice $k \in \mathbb{N}^*$ avem $n = 8k \in T$, deoarece

$$(1-3-5+7) + (9-11-13+15) + \dots + [(8k-7) - (8k-5) - (8k-3) + (8k-1)] = 0$$
$$(2-4-6+8) + (10-12-14+16) + \dots + [(8k-6) - (8k-4) - (8k-2) + (8k)] = 0$$

.....

De asemenea, pentru orice $k \in \mathbb{N}^*$ avem $n = 8k - 1 \in T$, deoarece

$$(1-3-5+7) + (9-11-13+15) + \dots + [(8k-7) - (8k-5) - (8k-3) + (8k-1)] = 0$$
$$(2+4-6) + (8-10-12+14) + \dots + [(8k-8) - (8k-6) - (8k-4) + (8k-2)] = 0$$

Problema 3. Determinați numărul real x > 0 și numărul natural nenul n pentru care

$$[x] + \left\{\frac{1}{x}\right\} = 1,005 \cdot n.$$

Soluție. Ecuația se scrie $[x] + \left\{\frac{1}{x}\right\} = \frac{201}{200}n = n + \frac{n}{200}$. Notând cu q, respectiv r, câtul și restul împărțirii lui n la 200, rezultă că

$$[x] + \left\{\frac{1}{x}\right\} = n + q + \frac{r}{200}.$$

Partea întreagă a expresiei din membrul stâng este egală cu [x], iar partea întreagă a expresiei din membrul drept este n+q, deci [x]=201q+r și $\left\{\frac{1}{x}\right\}=\frac{r}{200}$ 2 puncte

Dacă x < 1, atunci $[x] + \left\{\frac{1}{x}\right\} = \left\{\frac{1}{x}\right\} < 1 < 1,005 \cdot n$, pentru orice $n \in \mathbb{N}^*$. Dacă x = 1, se obține $1 = 1,005 \cdot n$, imposibil. Ca urmare, x > 1, deci $0 < \frac{1}{x} < 1$, adică $\left\{\frac{1}{x}\right\} = \frac{1}{x}$. Rezultă $\frac{1}{x} = \frac{r}{200}$, deci

Problema 4. Numim specială o mulțime M de numere reale cu proprietățile:

- (i) pentru orice $x, y \in M$, $x \neq y$, numerele x + y şi xy sunt nenule, exact unul dintre ele fiind rațional;
 - (ii) pentru orice $x \in M$, numărul x^2 este irațional.

Aflați numărul maxim de elemente ale unei mulțimi speciale.

O1. Dacă x, y, z sunt trei elemente distincte ale lui M, atunci x + y, x + z și y + z nu pot fi toate raționale.

Presupunând contrariul, rezultă $2(x+y+z) \in \mathbb{Q}$, de unde $x+y+z \in \mathbb{Q}$ şi $x \in \mathbb{Q}$, absurd. ..1 punct

- **O2.** Dacă x, y, z sunt trei elemente distincte ale lui M, atunci xy, xz şi yz nu pot fi toate raționale. Presupunând contrariul, rezultă $x^2yz = (xy) \cdot (xz) \in \mathbb{Q}$ şi, cum $yz \in \mathbb{Q}$, rezultă $x^2 \in \mathbb{Q}$, absurd. **1 punct**
 - **O3.** Dacă $x, y \in M$ şi $xy \in \mathbb{Q}$, atunci, pentru orice $z \in M$, avem $x + z \in \mathbb{Q}$ şi $y + z \in \mathbb{Q}$.