Econ 521: Econometric Methods I Assignment 1

Name(s): Your name(s) go(es) here.

1. Consider the following regression model

$$y = g(\mathbf{x}, \mathbf{z}_1) + \varepsilon;$$
 $\mathbf{z} = [\mathbf{z}'_1, \mathbf{z}'_2]',$ $\mathbf{x} = \mathbf{h}(\mathbf{z}) + \mathbf{u};$ $\mathbf{E}[\mathbf{u}|\mathbf{z}] = 0, \mathbf{E}[\varepsilon|\mathbf{z}, \mathbf{u}] = \mathbf{E}[\varepsilon|\mathbf{u}],$

where y is an observable scalar random variable, g denotes a known scalar function, \mathbf{x} is a $d_{\mathbf{x}} \times 1$ vector of explanatory variables, \mathbf{z}_1 and \mathbf{z}_2 are $d_1 \times 1$ and $d_2 \times 1$ vectors of instrumental variables, $\mathbf{h} := [h_1, \dots, h_{d_{\mathbf{x}}}]'$ is a $d_{\mathbf{x}} \times 1$ vector of functions of instruments \mathbf{z} , and \mathbf{u} and ε are disturbances. What does $\mathbb{E}[y|\mathbf{x},\mathbf{z},\mathbf{u}]$ equal to?

Answer: Your answer goes here.

2. Let x be an absolutely continuous random variable with strictly increasing cdf F_x . Let \widehat{q} be the value that minimizes $\mathbb{E}[\rho_{\tau}(x-q)]$ with respect to q, where $\rho_{\tau}(u)=u[\tau-\mathbb{I}(u<0)]$ and $\mathbb{I}(A)$ is called the indicator function that equals one if A is true and 0 otherwise. Show that $\widehat{q} \equiv F_x^{-1}(\tau)$. Hint: Use the Leibniz integral rule.

Answer: Your answer goes here.

- 3. Let y be the response variable variable, \mathbf{x} a set of $d_{\mathbf{x}} \times 1$ conditioning variables, and s a scalar binary group indicator (such as gender, college graduate versus non-college graduate, and so on). Define $\mu_0(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}, s=0]$ and $\mu_1(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}, s=1]$ to be the regression functions for the two groups.
 - (a) Show that

$$\begin{split} \mathbb{E}[y|s=1] - \mathbb{E}[y|s=0] = & \{ \mathbb{E}[\mu_1(\mathbf{x})|s=1] - \mathbb{E}[\mu_0(\mathbf{x})|s=1] \} \\ & + \{ \mathbb{E}[\mu_0(\mathbf{x})|s=1] - \mathbb{E}[\mu_0(\mathbf{x})|s=0] \}, \end{split}$$

Hint: Use a suitable representation of $\mathbb{E}[y|\mathbf{x},s]$ as a function of $\mu_0(\mathbf{x})$ and $\mu_1(\mathbf{x})$, and then apply the *Law of Iterated Expectations*.

Answer: Your answer goes here.

(b) Suppose both expectations are linear: $\mu_s(\mathbf{x}) = \mathbf{x}' \beta_s$, $s \in \{0,1\}$. Show that

$$\mathbb{E}[y|s=1] - \mathbb{E}[y|s=0] = \mathbb{E}[\mathbf{x}'|s=1] \times \{\beta_1 - \beta_0\} + \{\mathbb{E}[\mathbf{x}'|s=1] - \mathbb{E}[\mathbf{x}'|s=0]\} \times \beta_0.$$

Can you interpret this decomposition?

Answer: Your answer goes here.