

Estructura de dades

Diapositives de suport P4 Heaps

MinHeap

Sigui *i* l'índex del node a la llista. Posició de fills:

- Índex fill esquerre =
- Índex fill dret =

Posició de pare:

- Si *i* senar: pare =
- Si i parell: pare =

Maig 2019

Estructura de Dades - Diapositives de suport Heap

Sigui *i* l'índex del node a la llista. Posició de fills:

- Índex fill esquerre = i * 2 + 1
- Índex fill dret = i * 2 + 2Posició de pare:
- Si *i* senar: pare = $\frac{i-1}{2}$
- Si *i* parell: pare = $\frac{i-2}{2}$

Maig 2019

Maig 2019

Estructura de Dades - Diapositives de suport Heap

Com que **sí** compleix la propietat, $2 \ge 1$, s'ha finalitzat la inserció del node.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
1	2	8	4	7	10	19	9

Exercici:

Construeix el MinHeap a partir de la següent sequència:

22, 15, 36, 44, 10, 3, 9, 13, 29, 25, 2, 11, 7, 1, 17

Comprovem la condició. $2 \ge 9$? $18 \ge 9$?

Com la condició **no** es compleix per cap dels dos nodes fill, fem l'intercanvi amb qui té la clau més petita.

Comprovem la condició. $4 \ge 9$? $17 \ge 9$?

Com la condició **no** es compleix per cap dels dos nodes fill, fem l'intercanvi amb qui té la clau més petita.

Si eliminem tots els elements, fins a tenir l'arbre buit, s'obtenen els elements ordenats de més petit a més gran.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
2	4	8	9	7	10	19		

Exercici:

Utilitzant el MinHeap de l'exercici anterior, extreu una llista ordenada utilitzant l'algorisme downHeap.

MaxHeap i MinHeap

MaxHeap	MinHeap
clau dels pares és >= que els seus fills	clau dels pares és <= que els seus fills
A l'arrel hi ha l'element més gran	A l'arrel hi ha l'element més petit
Les operacions s'anomenen: max i maxValues	Les operacions s'anomenen: min i minValues

- Les posicions dels fills es calculen igual als dos tipus de heap
- Les operacions de upheap i downheap es fan exactament igual, només canvia la condició d'ordre

MaxHeap

