Copy of Exam 1 for printing - Results

Exit Preview

Attempt 1 of 2

Written Feb 28, 2024 10:03 AM - Feb 28, 2024 10:03 AM

Your quiz has been submitted successfully.

Attempt Score 0 / 50 - 0 %

Question 1 0 / 1 point

The region of the postsynaptic neuron that integrates information from the presynaptic neurons is

- the axon terminals
- the dendrite
- the presynaptic membrane
- that initial segment of the axon
 - the cell body of the neuron

Question 2 0 / 1 point

The image above shows the structure of insulin, which is a hormone. Insulin is a

- protein, but some hormones are not protein
 - protein, because all hormones are protein
 - lipid, because all hormones are lipid
 - lipid, but some hormones are not lipid
 - lipoprotein, because all hormones are lipoproteins

Question 3 0 / 1 point

Which of the following concerning the Na+/K+ pump is FALSE?

- it transports Na+ and K+ up their concentration gradients
- it is a type of passive transport
 - it is an example of primary active transport
 - it is an enzyme

it is used in secondary active transport

Question 4 0 / 1 point

The image above shows the SERCA2a molecule, which is the sarco/endoplasmic reticulum Ca²⁺-ATPase (a Ca++ pump). We'll cover this in the muscle and heart chapters. But until then, know that the SERCA2a molecule is a

- protein
 - carbohydrate
 - amino acid
 - nucelic acid
 - () lipid

Question 5 0 / 1 point

"the synthesis of mRNA and its protein product" is a pretty good definition of

- translocation
- diffusion
- biogenesis
- gene expression
 - hydrolysis
 - exocytosis

Question 6 0 / 1 point

The image above is a map of the endocrine control of water balance. This kind of regulation is known as
→ homeostasis
histology
expression
apoptosis
pathology
uestion 7 0 / 1 point
In nervous signaling, a postsynaptic receptor that is an ion channel is called a
ionotropic receptor
excitatory receptor
G-protein coupled receptor
matabotropic receptor
inhibitory receptor
uestion 8 0 / 1 point

SSRIs are a class of drugs used to treat depression. The mechanism of action is

- bind to and inhibit the voltage-gated Ca++ channels, which dampens synaptic transmission
- bind to and inhibit the reuptake transporter of the neurotransmitter serotonin, which shortens synaptic transmission

Question 11

0 / 1 point

What is the correct order of organelles for the synthesis and modification of a protein and its trafficking to its site of function?

- ER, golgi, vessicle, ribsome
- ribosome, ER, golgi, vessicle
 - ibosome, golgi, vessicle, ER
 - vessicle, ER, golgi, ribosome

Question 12 0 / 1 point

The image above is space-filling model of Hemoglobin. You can see four subunits, two are colored red and two are colored blue. What is a "subunit" as used here?

a separate protein
an independently synthesized polypeptide
an amino acid
a part of the protein that has a different functio

Question 13 0 / 1 point

The steps of neurotransmitter secretion at a synapse are

key: "V-G" = voltage-gated

a binding site

- membrane of axon terminus depolarizes > neurotransmitter channels open > neurotransmitter diffuses into synaptic cleft
- membrane of axon terminus depolarizes > V-G Ca++ channels open
 neurotransmitter transporter is activated > neurotransmitter
 diffuses into synaptic cleft
- V-G Ca++ channels open > membrane of axon terminus depolarizes > neurotransmitter transporter is activated > neurotransmitter diffuses into synaptic cleft
- V-G Ca++ channels open > membrane of axon terminus depolarizes > activated motor proteins move vessicles to pre-synaptic membrane > vessicle fuses to membrane and neurotransmitter is excocytosed
- membrane of axon terminus depolarizes > V-G Ca++ channels openactivated motor proteins move vessicles to pre-synaptic

membrane > vessicle fuses to membrane and neurotransmitter is excocytosed

Question 14 0 / 1 point

The image above shows three mechanisms of the transport of a drug across a plasma membrane. The right mechanism is an example of

- simple diffusion
- facilitated diffusion
 - primary active transport
 - endocytosis
 - secondary active transport

Question 15 0 / 1 point

The tubes in our body are all organs and have an organization pretty much like that in this image. In this image, the lumen is located where?

- → () at the top
 - the layer labeled 6
 - at the bottom
 - at the junction of the layer labeled 9 and the layer labeled 2
 - inside the layer labeled 2

Question 16 0 / 1 point

The membrane potential at which the electrical and chemical gradients of Na+ are equal in magnitude but opposite in direction is the

- equilibrium potential of Na+
 - threshold potential
 - local potential
 - resting potential
 - excitatory post-synaptic potential

Question 17 0 / 1 point

The structure labeled A_2 in the image above is a	
carbohydrate	
protein	
→ fatty acid	
ONA molecule	
Question 18	0 / 1 point
Molecules in our cells vary in size over several orders of magni molecule has a diameter of about	itude. A small
1 cm	
⇒ 1 nm	
○ 1 m	
_ 1 μm	
1 mm	
Question 19	0 / 1 point
Signal amplification is	
the ability of a single, active second messenger to active instances of specific signal pathway	ate multiple
a series of intracellular reactions in response to binding messenger to a receptor that ultimately results in a cellular	
the transfer of the signal across the plasma membrane; the cellular response	this activates

- the binding of a signaling molecule to a receptor; this activates the cellular response
- the transmission of a signal into the nucleus for transcription regulation

Question 20 0 / 1 point

The molecule $C_6H_{12}O_6$

- is a lipid
- is carbonated water
- contains 6 carbons
 - ontains 12 more protons than electrons
 - contains 12 more electrons than protons

Question 21 0 / 1 point

The image above illustrates chemical nervous signaling, which is a special case of what kind of signaling?

- () autocrine
- exocrine
- endocrine
- paracrine
 - myocrine

Question 22 0 / 1 point

What is necessary for a local potential on a post-synaptic membrane?

- voltage-gated ion channels
- ligand-gated ion channels
 - thermally-gated ion channels
 - mechanically-gated ion channels
 - leak channels

Question 23 0 / 1 point

Diffusion

The MECHANISM OF TRANSPORT of the purple dye in	the beaker is
dispersion	
⇒ bulk flow	
oco-transport	
diffusion	
carrier-mediated transport	
Question 24	0 / 1 point
A sodium atom has 11 protons. Dissolved sodium	
has lost an electron AND gained a proton	
has gained a proton	
has gained an electron	
has lost a proton	
has lost an electron	
Question 25	0 / 1 point
The tissue lining the wall of an artery is	
adipose tissue	
onnective tissue	
muscle tissue	
epithelial tissue	
serous membrane tissue	

Question 26 0 / 1 poir		
Hydrophobic molecules		
tend to be very small		
tend to be insoluble (not dissolve) in water		
have a net charge		
have numerous polar covalent bonds		
tend to have a high oxygen atom content		
Question 27	0 / 1 point	
A water molecule		
has more protons than electrons		
is an ion because of the net separation of positive and neg charge, with one side more positive and one side more neg		
is electrically neutral, but has a net separation of positive and negative charge, with one side more positive and one side negative		
has more electrons than protons		
is always in the form H ⁺ + OH ⁻		
Question 28	0 / 1 point	

The structure labeled T is

- opost-synaptic membrane
- voltage-gated Na+ channel
- axon initial segment
- glial cell forming part of the myelin
 - soma

Question 29 0 / 1 point

The nucleus of a cell

- is the site of protein synthesis (translation)
- controls protein synthesis
 - is the major site of ATP synthesis
 - breaks down ("digests") proteins and other big organic molecules
 - trafficks proteins to their site of function

Question 30 0 / 1 point

In the image above, the event labeled by III is

- the secretion of neurotransmitter
 - the action potential
 - the diffusion of ions through the ligand-gated ion channel
 - the diffusion of Ca++ into the axon terminus
 - the binding of neurotransmitter to the receptor

Question 31 0 / 1 point

The fluid compartment that includes all fluids that are outside o known as	f our cells is
☐ lymph	
Chyme	
plasma	
cytosol	
extracellular fluid	
Question 32	0 / 1 point
A protein is a polymer composed of what subunit?	
○ H+	
amino acids	
carbohydrates	
nucleic acids	
Question 33	0 / 1 point

in the image above, the square bracket notation [glu] means

- the weight of glucose
- the concentration gradient of glucose
- the mass of glucose
- the concentration of glucose
 - the total number of glucose molecules

Question 34 0 / 1 point

The image above shows four different depictions of a collagen protein. Collagen is secreted in all connective tissues. We'll talk about collagen during the skeleton unit. From the image, it is easy to see that collagen is

- → filamentous
 - a DNA molecule
 - an amino acid
 - an enzyme
 - globular

Question 35 0 / 1 point

A bacterium is about 1 micron in diameter. A glucose molecule is about 1 nanometer in diameter. We could say that a bacterium is _____ orders of magnitude bigger than a glucose molecule

- 0.001
- 1,000,000
- \bigcirc 6
- **⇒** 3
 - **1000**

Question 36 0 / 1 point

In the image above, hexokinase is

⇒ an enzyme
a transporter
a product
a substrate
a pump
Question 37 0 / 1 point
Which of the following processes occurs by bulk flow?
transport of O2 from the nasal cavity to the microscopic air sacs in the lung (about 0.5 m)
transport of O2 from the plasma membrane to an interiror mitochondrion (about 5 μm)
transport of a neurotransmitter across a synaptic cleft (the space between a neuron and a target cell about 10 nm)
transport of glucose across an intestinal epithelial cell, from apical to basal side (about 50 $\mu\text{m})$
transort of O2 across the respiratory membrane from a lung air sac into the blood (about 0.5 μ m)
Question 38 0 / 1 point

The multivesicular body in the image above contains RANK membrane receptors attached to small bits of membrane. These multivesicular bodies are used to transport RANK into the interstitial fluid via

- phagocytosis
- endocytosis
- exocytosis
 - secondary active transport
 - primary active transport

Question 39 0 / 1 point

A major factor creating the resting membrane potential is a high density of **what** in the plasma membrane?

Na+/K+ pumps	
Na+ leak channels	
ligand-gated Na+ channels	
voltage-gated Na+ channels	
Ca++ leak channels	
Question 40	0 / 1 point
What class of organic molecule is glucose transporter 4 (GLU used to transport glucose across the plasma membrane of m adipose cells?	• •
nucleic acid	

 $\bigcirc \ \mathsf{lipid}$

carbohydrate

proteinamino acid

0 / 1 point

In the image above, s labels

- on channel
- () Ca++
- receptor
- neurotransmitter
 - Na+

Question 42 0 / 1 point

The structure labelled "U" is

- cytoskeleton
- mitochondrion
- vessicle
- ribosome
- ⇒ golgi

Question 43 0 / 1 point

The reaction

$CO_2 + H_2O < ---> H^+ + HCO_3^-$

is super important and we'll come back to it in the respiratory and urinar	ry
systems. If this reaction is moving to the right, CO2 is	

- a product
- the enzyme
- a pharmacological agonist
- → a substrate
 - a competitive inhibitor

Question 44 0 / 1 point

A membrane that can generate an action potential is

- excitable
 - synaptic
 - stimulatable
 - electrical
 - transmissable

Question 45 0 / 1 point

proteins are made

- in the interstitial fluid
- in the plasma membrane
- in the nucleus

- on a ribosome
 - in the cytosol

Question 46 0 / 1 point

Given the system above, which statement is TRUE?

- more glucose moves into the cell than out of the cell because of simple statistics each glucose has 50% probability of moving across the membrane and 50% of the glucose outside the cell (that fraction moving in) is greater than 50% of the glucose inside the cell (that fraction moving out).
 - more glucose moves into the cell than out of the cell because there

- are too many molecules crowded into the area outside the cell, therefore they move to the side of the cell with more room
- more glucose moves into the cell than out of the cell because glucose is attracted to the area of low glucose concentration
- more glucose moves into the cell than out of the cell because the system needs to achieve equilibrium
- more glucose moves into the cell than out of the cell because there is an external force moving glucose into the cell

Question 47 0 / 1 point

Let's say this is an image of norepinephrine (NE) signaling. NE binds to a beta-adrenergic receptor on cardiac muscle. The class of drugs call beta-blockers bind to the NE receptor and inhibit NE binding. This is an example of

pharmacological (or receptor) antagonism

pharmacological (or receptor) agonism	
physiological antagonism	
physiological agonism	
Question 48 0 / 1 p	oint
In a typical neuron, what part of the cell secrete neurotransmitter?	
axon hillock	
dendrite	
soma	
⇒ ○ axon terminals	
dendrite and soma, but not the axon	
Question 49 0 / 1 p	oint
Question 49 The equilibrium potential of K+ is -90 mV.	oint
	oint
The equilibrium potential of K+ is -90 mV.	oint
The equilibrium potential of K+ is -90 mV. The membrane potential is -70 mV.	
The equilibrium potential of K+ is -90 mV. The membrane potential is -70 mV. If the membrane is suddenly permeable to K+ then Initial K+ diffusion will be rapid, because the membrane is far from	m
The equilibrium potential of K+ is -90 mV. The membrane potential is -70 mV. If the membrane is suddenly permeable to K+ then Initial K+ diffusion will be rapid, because the membrane is far from the K+ equilibrium potential Initial K+ diffusion will be slow, because the membrane is close to	m O
The equilibrium potential of K+ is -90 mV. The membrane potential is -70 mV. If the membrane is suddenly permeable to K+ then Initial K+ diffusion will be rapid, because the membrane is far from the K+ equilibrium potential Initial K+ diffusion will be slow, because the membrane is close to the K+ equilibrium potential Initial K+ diffusion will be rapid, because the membrane potential	m O

/	- \	L.
()	negative
/		negative

Question 50 0 / 1 point

What do we call "the material located between the plasma membrane and the membrane surrounding the nucleus."

- cytoskeleton
- o intracellular matrix
- ribosome
- organelles
- ⇒ cytoplasm

Done