SW 14

And Colony Optimization in Traveling Sales Person Problem:

In TSP: $n_{ji} = \frac{1}{d_{ij}}$, where d_{ij} is the distance between cities i and j. $\alpha = 0$, $\beta = 1$ -> random greedy algorithm $\alpha = 1$, $\beta = 0$ => with naive pheromone replacement we obtain a purely random algorithm.

If it is lower, you do a better exploration of the solution space, if it is higher, you do a better exploit.

The new phromone level from i to j is computed according to $T_{ji}^{new} = (1-p) T_{ij}^{old} + \Delta T_{ij}$,

where $p \in (0,1)$ is the evaporation factor and A Tij the increase in pheremon level according to the choosen update rule.

Tijnen = (1-p). Tijoid , else edge xij has been weed (1-p). Tijoid , else