Amanda Friedenberg ECON 501B

ECON 501B: Problem Set 4

Due: Thursday, September 27, 2018

Instructions: Answers should be complete proofs of a claim. For True/False questions, either provide a proof that the statement is true or provide a counterexample showing that it is false. (You may reference results from class, should that be pertinent.)

Question 1: Fix a one-to-one environment $\mathcal{E} = (T, B; (\succeq_t : t \in T), (\succeq_b : b \in B))$. We said that a coalition C blocks $\mu : (T \cup B) \to (T \cup B)$ if there exists some matching $\mu' : (T \cup B) \to (T \cup B)$ so that, for each $i \in C$, (a) $\mu'(i) \in C$, and (b) $\mu'(i) \succ_i \mu(i)$. This presumes that coalition members can deviate, so long as they are deviating "to each other."

Suppose instead that non-coalition members impose constraints on the block. So, agents can deviate from their own match and join a coalition. But they cannot change the match for non-coalition members that they are not matched with. With this in mind, consider the following definition: a coalition C blocks* $\mu: (T \cup B) \to (T \cup B)$ if there exists some matching $\mu': (T \cup B) \to (T \cup B)$ so that (a) for each $i \in C$, $\mu'(i) \in C$, (b) for each $i \notin C$, $\mu'(i) = \mu(i)$, and (c) for each $i \in C$, $\mu'(i) \succ_i \mu(i)$. Provide an example that illustrates the "problem" with this definition. Then, provide a "fix" of the definition. Given the fixed definition of block*, is it the case that a coalition blocks* μ if and only if a coalition blocks μ ? Either provide a proof or a counterexample.

Question 2: Consider an environment where we are matching firms and workers. Let $F = \{f_1, f_2\}$ be the set of firms and $W = \{w_1, w_2, w_3\}$ be the set of workers. Each firm has a quota of 2. Workers w_1 and w_2 are a couple.

Preferences are assortative: All else equal, each firm strictly prefers w_1 to w_2 to w_3 to being unmatched. All else equal, each worker prefers f_1 to both f_2 and being unmatched. (They differ based on whether f_2 is better or worse than being unmatched.) However, the fact that w_1 and w_2 are a couple causes two issues. First, f_1 dislikes hiring couples: He would prefer a couple to being unmatched, but would prefer a singleton to hiring a couple. Otherwise, his preferences are responsive. Second, if $w_i \in \{w_1, w_2\}$ is matched with f_1 , then i's partner $w_j \in \{w_1, w_2\} \setminus \{w_i\}$ prefers to be unmatched versus being matched with f_2 . On the other hand, if $w_i \in \{w_1, w_2\}$ is matched with f_2 , then i's partner $w_j \in \{w_1, w_2\} \setminus \{w_i\}$ prefers to be matched with f_2 versus being unmatched. In addition: f_2 has responsive preferences and w_3 prefers being matched with f_2 to being unmatched.

- 1. Use the information above, to formally describe the preference relation of each of the firms.
- 2. Explain why the example does not fit the framework we studied in class.
- 3. What are the set of stable matches? (Note, your argument should also contain a proof that captures why other matches are not stable.)
- 4. Does there exist a worker optimal stable match?
- 5. Suppose f_1 no longer minds hiring couples. So, his preferences are responsive. However, he now prefers w_1 to w_3 and w_3 to w_2 .

- Use this information to formally describe the preference relation of f_1 .
- What are the set of stable matches? (Note, your argument should also contain a proof that captures why other matches are not stable.)
- Does there exist a worker optimal stable match?

Question 3: True or False. Fix a many to one environment with responsive preferences. Let $B_1, B_2 \subseteq \mathcal{B} \setminus \{\emptyset\}$ be such that

- 1. $B_1 \backslash B_2 \neq \emptyset$;
- 2. for each $\hat{B} \subseteq B_2$, $B_2 \succsim_t \hat{B}$; and
- 3. $B_1 \succ_t B_2$.

Then there exists $b_1 \in B_1 \backslash B_2$ and $b_2 \in B_2 \backslash B_1$ such that $\{b_1\} \succ_t \{b_2\}$.

Question 4: True or False. Fix a many to one environment with responsive preferences. Let $B_1, B_2 \subseteq \mathcal{B} \setminus \{\emptyset\}$ be such that

- 1. $|B_2| \ge |B_1|$;
- 2. for each $\hat{B} \subseteq B_2$, $B_2 \succeq_t \hat{B}$; and
- 3. $B_1 \succ_t B_2$.

Then there exists $b_1 \in B_1 \backslash B_2$ and $b_2 \in B_2 \backslash B_1$ such that $\{b_1\} \succ_t \{b_2\}$.

Question 5: True or False. Fix a many to one environment with responsive preferences. Let $B_1, B_2 \subseteq \mathcal{B} \setminus \{\emptyset\}$ be such that

- 1. $B_1 \backslash B_2 \neq \emptyset$;
- 2. for each $\hat{B} \subseteq B_2$, $B_2 \succsim \hat{B}$; and
- 3. $B_1 \succ_t t$.

Then there exists $b_1 \in B_1 \backslash B_2$ such that $\{b_1\} \succ_t t$.