# **Assignment 2**

April 2018

Long Thanh NGUYEN

long.nguyen2017@qcf.jvn.edu.vn

# **Question 1**

(European Put-Call parity revisited) We consider portfolio A: long a call and short a put on the same underlying S, strike-price K and maturity T. Portfolio B consists of a long prepaid forward contract on S for the same maturity T, as well as borrowing the present value of the strike-price K to be repaid at T.

**a.** What is the initial cost, intermediate cash-flow and final payoff of A? </P> **b.** What is the initial cost, intermediate cash-flow and final payoff of B? (Let's denote  $F_{0,T}(S)$ ) for the price of a prepaid forward contract on S for delivery at T, P(0,T) is the price of a zero-coupon bond paying \$1 at T.)

### Answer:

| Time        | t=0<br>Initial Cost      | t=k<br>Intermidiate Cost | t=T<br>Final Payoff                   | Total Profit |
|-------------|--------------------------|--------------------------|---------------------------------------|--------------|
| Portfolio A | -C(K,T) + P(K,T)         | Remained Unchanged       | $Max(S_T$ -K,0) - $Max(K$ - $S_T$ ,0) | $S_T$ -K     |
| Portfolio B | $-F_{0,T}(S) + Ke^{-rT}$ | Receive Interest Payment | $+S_T$ -K                             | $S_T$ -K     |

c. Using the no-arbitrage principale to get a generic form of the Put-Call parity.

Answer: Acording to no-arbitrage principale:

$$C(K, T) + P(K, T) = S_0 e^{-qT} - Ke^{-rT}$$

or

$$C(K,T) + Ke^{-rT} = P(K,T) + S_0e^{-qT}(*)$$

#### **Proof:**

If the (\*) is not equal, assume that:

$$C(K,T) + Ke^{-rT} > P(K,T) + S_0e^{-qT} \text{ then } C(K,T) + Ke^{-rT} - P(K,T) - S_0e^{-qT} > 0$$
 (\*\*)

We got:

C(K,T): short a call

 $Ke^{-rT}$ : borrow money

-P(K,T): long a put

 $-S_0 e^{-qT}$ : buy stocks

At the t=T, the final profit should be:  $-Max(S_T-K,0)-K+Max(K-S_T,0)+(S_Te^{-qT})e^{qT}$ 

if 
$$K > S_T$$
: final profit: 0 - K + K -  $S_T$  +  $S_T$  = 0

if 
$$K < S_T$$
: final profit:  $-S_T$  + K - K + 0 +  $S_T$  = 0 In short, (\*\*) is not true. Furthermore,  $C(K,T) + Ke^{-rT} - P(K,T) - S_0e^{-qT} < 0$  also not true (with similar proofing)

Then

$$C(K, T) + Ke^{-rT} = P(K, T) + S_0 e^{-qT}$$

- d. Suppose the risk-free interest rate is r, provide the Put-Call parity in three specific cases:
  - i. S pays no dividend;
  - ii. S pays n discrete dividends  $d_i$  at  $t_i$  for  $i \in [1, n]$ ;
  - iii. S pays a continuous dividends at the rate q.

# Answer:

| Time                                                          | Put-Call parity                                                     |
|---------------------------------------------------------------|---------------------------------------------------------------------|
| S pays no dividend                                            | $C(K,T) + Ke^{-rT} = P(K,T) + S_0$                                  |
| S pays n discrete dividends $d_i$ at $t_i$ for $i \in [1, n]$ | $C(K,T) + Ke^{-rT} = P(K,T) + S_0 + \sum_{i=1}^{n} (d_i e^{-rt_i})$ |
| S pays a continuous dividends at the rate q                   | $C(K,T) + Ke^{-rT} = P(K,T) + S_0 e^{-qT}$                          |

In [1]: import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# **Question 2**

Let's first recall that the Put-Call parity for a stock paying dividends

$$C(K,T) + Ke^{-rT} = P(K,T) + S_0e^{-qT}$$
, q : dividend yield over (0, T).

The Implied Dividend yield is the value of q such that the Put-Call parity holds true.

$$\mathsf{IDIV}(\mathsf{K},\mathsf{T}) = -\tfrac{1}{T}log\tfrac{C(K,T) - P(K,T) + Ke^{-rT}}{S}$$

a. Get prices of AAPL option on 01/06/2017 from the data file.

Out[24]:

|   | Symbol | ExpirationDate | AskPrice | AskSize | BidPrice | BidSize | LastPrice | PutCall | Strik |
|---|--------|----------------|----------|---------|----------|---------|-----------|---------|-------|
| 0 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.04      | put     | 122.  |
| 1 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.09      | put     | 109.  |
| 2 | AAPL   | 06/02/17       | 0.23     | NaN     | 0.19     | NaN     | 0.23      | put     | 152.  |
| 3 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.06      | put     | 118.  |
| 4 | AAPL   | 06/02/17       | 4.55     | NaN     | 4.10     | NaN     | 4.50      | put     | 157.  |

| In [25]: | data.dtypes       |         |
|----------|-------------------|---------|
| Out[25]: | Symbol            | object  |
|          | ExpirationDate    | object  |
|          | AskPrice          | float64 |
|          | AskSize           | float64 |
|          | BidPrice          | float64 |
|          | BidSize           | float64 |
|          | LastPrice         | float64 |
|          | PutCall           | object  |
|          | StrikePrice       | float64 |
|          | Volume            | int64   |
|          | ImpliedVolatility | float64 |
|          | Delta             | float64 |
|          | Gamma             | float64 |
|          | Vega              | float64 |
|          | Rho               | float64 |
|          | OpenInterest      | int64   |
|          | UnderlyingPrice   | float64 |
|          | DataDate          | object  |
|          | dtype: object     |         |

In [26]: ## the whole dataset is about APPL data.AskPrice

| Out[26]: | 0    | 0.02  |
|----------|------|-------|
|          | 1    | 0.02  |
|          | 2    | 0.23  |
|          | 3    | 0.02  |
|          | 4    | 4.55  |
|          | 5    | 0.02  |
|          | 6    | 2.03  |
|          | 7    | 12.25 |
|          | 8    | 22.20 |
|          | 9    | 7.10  |
|          | 10   | 27.25 |
|          | 11   | 9.75  |
|          | 12   | 14.75 |
|          | 13   | 37.10 |
|          | 14   | 42.10 |
|          |      |       |
|          | 15   | 47.20 |
|          | 16   | 0.02  |
|          | 17   | 0.02  |
|          | 18   | 0.14  |
|          | 19   | 0.31  |
|          | 20   | 0.05  |
|          | 21   | 19.75 |
|          | 22   | 0.22  |
|          | 23   | 2.57  |
|          | 24   | 7.25  |
|          | 25   | 12.25 |
|          | 26   | 0.12  |
|          | 27   | 0.02  |
|          | 28   | 0.04  |
|          | 29   | 0.07  |
|          |      | • • • |
|          | 1830 | 0.01  |
|          | 1831 | 0.01  |
|          | 1832 | 0.02  |
|          | 1833 | 0.04  |
|          | 1834 | 0.02  |
|          | 1835 | 0.04  |
|          | 1836 | 0.03  |
|          | 1837 | 0.01  |
|          | 1838 | 0.01  |
|          | 1839 | 0.03  |
|          | 1840 | 0.04  |
|          | 1841 | 0.06  |
|          | 1842 | 0.04  |
|          | 1843 | 0.04  |
|          | 1844 | 0.05  |
|          | 1845 | 0.06  |
|          | 1846 | 0.07  |
|          | 1847 | 0.04  |
|          | 1848 | 0.03  |
|          | 1849 | 0.04  |
|          | 1850 | 0.06  |
|          | 1851 | 0.05  |
|          | 1852 | 0.06  |
|          | 1853 | 0.10  |
|          | 1854 | 0.07  |
|          | 1855 | 0.04  |
|          |      |       |

```
1856 0.16
1857 0.14
1858 0.16
1859 0.15
```

Name: AskPrice, Length: 1860, dtype: float64

b. Get risk-free interst rate for the same date from [this link]( https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=billrates).

```
In [27]: rly = 0.0116
```

c. Compute the implied dividend for different maturity T, use the Actual/360 day convention - [see this page]( https://wiki.treasurers.org/wiki/Day\_count\_conventions).

```
In [28]: data['Timetomaturitydays'] = pd.to_datetime(data['ExpirationDate']) - pd
    .to_datetime(data['DataDate'])
    data['Timetomaturitydays'] = [d.days for d in data['Timetomaturitydays'
    ]]
    data['TMMActual360'] = data['Timetomaturitydays']/360
    data['AVGPrice']=(data['AskPrice']+data['BidPrice'])/2
    data.head()
```

Out[28]:

|   | Symbol | ExpirationDate | AskPrice | AskSize | BidPrice | BidSize | LastPrice | PutCall | Strik |
|---|--------|----------------|----------|---------|----------|---------|-----------|---------|-------|
| 0 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.04      | put     | 122.  |
| 1 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.09      | put     | 109.  |
| 2 | AAPL   | 06/02/17       | 0.23     | NaN     | 0.19     | NaN     | 0.23      | put     | 152.  |
| 3 | AAPL   | 06/02/17       | 0.02     | NaN     | 0.00     | NaN     | 0.06      | put     | 118.  |
| 4 | AAPL   | 06/02/17       | 4.55     | NaN     | 4.10     | NaN     | 4.50      | put     | 157.  |

5 rows × 21 columns

In [29]: ## Merge dataset based on Put Call IDIVdf=pd.merge(data[data.PutCall=='call'],data[data.PutCall=='put'], ho w='inner',on=["StrikePrice","TMMActual360","UnderlyingPrice"]) IDIVdf.head(10)

Out[29]:

|   | Symbol_x | ExpirationDate_x | AskPrice_x | AskSize_x | BidPrice_x | BidSize_x | LastPrice_: |
|---|----------|------------------|------------|-----------|------------|-----------|-------------|
| 0 | AAPL     | 06/02/17         | 32.45      | NaN       | 31.80      | NaN       | 32.50       |
| 1 | AAPL     | 06/02/17         | 38.45      | NaN       | 37.80      | NaN       | 37.31       |
| 2 | AAPL     | 06/02/17         | 12.45      | NaN       | 11.75      | NaN       | 13.04       |
| 3 | AAPL     | 06/02/17         | 33.45      | NaN       | 32.80      | NaN       | 33.39       |
| 4 | AAPL     | 06/02/17         | 13.40      | NaN       | 12.90      | NaN       | 12.91       |
| 5 | AAPL     | 06/02/17         | 17.45      | NaN       | 16.80      | NaN       | 19.83       |
| 6 | AAPL     | 06/02/17         | 42.45      | NaN       | 41.80      | NaN       | 35.93       |
| 7 | AAPL     | 06/02/17         | 23.40      | NaN       | 22.90      | NaN       | 22.52       |
| 8 | AAPL     | 06/02/17         | 4.40       | NaN       | 3.95       | NaN       | 3.95        |
| 9 | AAPL     | 06/02/17         | 31.45      | NaN       | 30.80      | NaN       | 33.51       |

10 rows × 39 columns

| In [30]: | IDIVdf.dtypes                  |         |  |
|----------|--------------------------------|---------|--|
| Out[301: | Symbol_x                       | object  |  |
|          | ExpirationDate x               | object  |  |
|          | AskPrice x                     | float64 |  |
|          | AskSize x                      | float64 |  |
|          | BidPrice_x                     | float64 |  |
|          | BidSize_x                      | float64 |  |
|          | LastPrice_x                    | float64 |  |
|          | PutCall_x                      | object  |  |
|          | StrikePrice                    | float64 |  |
|          | Volume_x                       | int64   |  |
|          | <pre>ImpliedVolatility_x</pre> | float64 |  |
|          | Delta_x                        | float64 |  |
|          | Gamma_x                        | float64 |  |
|          | Vega_x                         | float64 |  |
|          | Rho_x                          | float64 |  |
|          | OpenInterest_x                 | int64   |  |
|          | UnderlyingPrice                | float64 |  |
|          | DataDate_x                     | object  |  |
|          | ${	t Timetomaturity days\_x}$  | int64   |  |
|          | TMMActual360                   | float64 |  |
|          | AVGPrice_x                     | float64 |  |
|          | Symbol_y                       | object  |  |
|          | ExpirationDate_y               | object  |  |
|          | AskPrice_y                     | float64 |  |
|          | AskSize_y                      | float64 |  |
|          | BidPrice_y                     | float64 |  |
|          | BidSize_y                      | float64 |  |
|          | LastPrice_y                    | float64 |  |
|          | PutCall_y                      | object  |  |
|          | Volume_y                       | int64   |  |
|          | <pre>ImpliedVolatility_y</pre> | float64 |  |
|          | Delta_y                        | float64 |  |
|          | Gamma_y                        | float64 |  |
|          | Vega_y                         | float64 |  |
|          | Rho_y                          | float64 |  |
|          | OpenInterest_y                 | int64   |  |
|          | DataDate_y                     | object  |  |
|          | Timetomaturitydays_y           | int64   |  |
|          | AVGPrice_y                     | float64 |  |
|          | dtype: object                  |         |  |

## Out[31]:

|   | Symbol_x | ExpirationDate_x | AskPrice_x | AskSize_x | BidPrice_x | BidSize_x | LastPrice_: |
|---|----------|------------------|------------|-----------|------------|-----------|-------------|
| 0 | AAPL     | 06/02/17         | 32.45      | NaN       | 31.80      | NaN       | 32.50       |
| 1 | AAPL     | 06/02/17         | 38.45      | NaN       | 37.80      | NaN       | 37.31       |
| 2 | AAPL     | 06/02/17         | 12.45      | NaN       | 11.75      | NaN       | 13.04       |
| 3 | AAPL     | 06/02/17         | 33.45      | NaN       | 32.80      | NaN       | 33.39       |
| 4 | AAPL     | 06/02/17         | 13.40      | NaN       | 12.90      | NaN       | 12.91       |

5 rows × 42 columns

In [37]: ## IDIV computation

IDIVdf["ID"]=-(1/IDIVdf["TMMActual360"])\*np.log((IDIVdf.CallPrice-IDIVdf
.PutPrice+IDIVdf.StrikePrice\*IDIVdf.ert)/IDIVdf.UnderlyingPrice)
IDIVdf.head(10)

## Out[37]:

|   | Symbol_x | ExpirationDate_x | AskPrice_x | AskSize_x | BidPrice_x | BidSize_x | LastPrice_ |
|---|----------|------------------|------------|-----------|------------|-----------|------------|
| 0 | AAPL     | 06/02/17         | 32.45      | NaN       | 31.80      | NaN       | 32.50      |
| 1 | AAPL     | 06/02/17         | 38.45      | NaN       | 37.80      | NaN       | 37.31      |
| 2 | AAPL     | 06/02/17         | 12.45      | NaN       | 11.75      | NaN       | 13.04      |
| 3 | AAPL     | 06/02/17         | 33.45      | NaN       | 32.80      | NaN       | 33.39      |
| 4 | AAPL     | 06/02/17         | 13.40      | NaN       | 12.90      | NaN       | 12.91      |
| 5 | AAPL     | 06/02/17         | 17.45      | NaN       | 16.80      | NaN       | 19.83      |
| 6 | AAPL     | 06/02/17         | 42.45      | NaN       | 41.80      | NaN       | 35.93      |
| 7 | AAPL     | 06/02/17         | 23.40      | NaN       | 22.90      | NaN       | 22.52      |
| 8 | AAPL     | 06/02/17         | 4.40       | NaN       | 3.95       | NaN       | 3.95       |
| 9 | AAPL     | 06/02/17         | 31.45      | NaN       | 30.80      | NaN       | 33.51      |

10 rows × 43 columns

In [40]: IDIVdf['ID']

| Out[40]: | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 0.161961<br>0.161506<br>0.210504<br>0.161885<br>0.092870<br>0.151341<br>0.161203<br>0.092112<br>0.058292<br>0.162037<br>0.210049<br>0.034257 |
|----------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|          | 12<br>13                                             | 0.210656<br>0.105571                                                                                                                         |
|          | 14                                                   | 0.161809                                                                                                                                     |
|          | 15                                                   | 0.151493                                                                                                                                     |
|          | 16<br>17                                             | 0.102049<br>0.162112                                                                                                                         |
|          | 18                                                   | 0.034484                                                                                                                                     |
|          | 19                                                   | 0.151568                                                                                                                                     |
|          | 20                                                   | 0.209746                                                                                                                                     |
|          | 21<br>22                                             | 0.209898<br>0.210201                                                                                                                         |
|          | 23                                                   | 0.151190                                                                                                                                     |
|          | 24                                                   | 0.209822                                                                                                                                     |
|          | 25                                                   | 0.211186                                                                                                                                     |
|          | 26<br>27                                             | 0.210731<br>0.102352                                                                                                                         |
|          | 28                                                   | 0.454772                                                                                                                                     |
|          | 29                                                   | 0.034560                                                                                                                                     |
|          | 900                                                  | 0.029124                                                                                                                                     |
|          | 901                                                  | 0.025013                                                                                                                                     |
|          | 902<br>903                                           | 0.030424<br>0.024634                                                                                                                         |
|          | 904                                                  | 0.031940                                                                                                                                     |
|          | 905                                                  | 0.152781                                                                                                                                     |
|          | 906                                                  | 0.028660                                                                                                                                     |
|          | 907<br>908                                           | 0.043595<br>0.029503                                                                                                                         |
|          | 909                                                  | 0.023505                                                                                                                                     |
|          | 910                                                  | 0.021395                                                                                                                                     |
|          | 911                                                  | 0.017091                                                                                                                                     |
|          | 912<br>913                                           | 0.018558<br>0.020006                                                                                                                         |
|          | 914                                                  | 0.018172                                                                                                                                     |
|          | 915                                                  | 0.015202                                                                                                                                     |
|          | 916                                                  | 0.018755                                                                                                                                     |
|          | 917<br>918                                           | 0.020530<br>0.021694                                                                                                                         |
|          | 919                                                  | 0.018724                                                                                                                                     |
|          | 920                                                  | 0.017896                                                                                                                                     |
|          | 921                                                  | 0.018444                                                                                                                                     |
|          | 922<br>923                                           | 0.019355<br>0.019737                                                                                                                         |
|          | 924                                                  | 0.019737                                                                                                                                     |
|          | 925                                                  | 0.022533                                                                                                                                     |
|          |                                                      |                                                                                                                                              |

```
926 0.017245
927 0.017204
928 0.017371
929 0.018433
```

Name: ID, Length: 930, dtype: float64

```
In [42]: IDIVdf['ID'].describe()
```

```
Out[42]: count
                   930.000000
                     0.022303
         mean
          std
                     0.044704
         min
                    -0.012896
          25%
                     0.004804
          50%
                     0.010768
          75%
                     0.018361
                     0.454772
         Name: ID, dtype: float64
```

d. Compare the IDIV with the historical dividends from [this page] (https://finance.yahoo.com/quote/AAPL).

```
In [65]: fig, ax = plt.subplots(1,1,figsize=(20,12))
    plt.plot(IDIVdf['ID'])
    plt.show()
```



In [46]: historicaldiv=0.63

```
In [64]: fig, ax = plt.subplots(1,1,figsize=(20,12))

plt.scatter(IDIVdf['TMMActual360'],IDIVdf['ID'],marker='o',s=100,color=
'r',label='Implied Dividend')

plt.plot([0,2],[historicaldiv,historicaldiv],color='b',label='Historical
    Dividend')

plt.legend()
plt.grid(True)
plt.show()
```



# **Question 3**

(Model risk in binomial tree framework) We re-consider the binomial tree model, in which the price at t = 1 has the following dynamics:

$$\begin{cases} S_u = uS_0 \text{ with probability p} \\ S_d = dS_0 \text{ with probability 1-p} \end{cases}$$

Let's suppose the risk-free rate is constant, thus from  $B\ 0 = 1$  we have  $B\ 1 = 1 + r$  for an investment in the bank account.

\*\*a.\*\* Verify that in order to exclude the opportunity arbitrage, one must have

$$d<1+r< u.$$

At t = 0 we sell a derivative with payoff  $g(S_1)$  at the price  $g_0$ . We would like to hedge our position in setting a self-financing strategy. The strategy consists in holding  $\Delta$  units of S and investing the rest in the bank account B.

#### **Answer:**

To solve this problem, we assume there would be two cases:

$$+ d > 1 + r$$
  
 $+ 1 + r > u$ 

| Time t     | d > 1 + r                                                                             | 1 + r > u                                                                             |
|------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| + 0        | - Borrow $S_0$ @ r                                                                    | - Short stocks for $S_0$                                                              |
| t = 0      | - Long stock stocks @ $S_0$                                                           | - Deposit amout $S_0 \ @ \ { m r}$                                                    |
|            | - Sell Stock get $dS_0$                                                               | - Widraw deposit as $S_0(1+r)$                                                        |
| t = 1      | - Pay back $S_0(1+r)$                                                                 | - Buy stock stocks @ $uS_0$                                                           |
|            | $dS_0 > S_0(1+r)$                                                                     | $S_0(1+r) > uS_0$                                                                     |
| Conclusion | → It agaist the arbitrage rule as we<br>can make profit without initial<br>investment | → It agaist the arbitrage rule as we<br>can make profit without initial<br>investment |

In short, in order to exclude the opportunity arbitrage, one must have d < 1 + r < u

\*\*b.\*\* Show that  $\Delta$  and the price of this derivative are given by:

$$\Delta = \frac{g(S_u) - g(S_d)}{S_u - S_d}$$
 
$$g_0 = \frac{qg_u + (1-q)g_d}{1+r} \text{ where } q = \frac{(1+r)-d}{u-d}$$

Now instead of supposing S 1 takes only two values, we relax this assumption: without knowing the exact dynamics of S 1, we only know with probability 1:

$$S_1 \in [Sd, Su]$$
.

We suppose further that the payoff function is convex, i.e., for 
$$y_d \le y \le y_u$$
, 
$$g(y_d) + \frac{g(y_u) - g(y_d)}{y_u - y_d}(y - y_d) \ge g(y_d)$$

## Answer:

We got:

| Time t | Stocks go up                     | Stocks go down                   |
|--------|----------------------------------|----------------------------------|
| t = 0  | $\Delta S_0 - g_0 + B_0$         | $\Delta S_0 - g_0 + B_0$         |
| t = 1  | $\Delta S_0 u - g_u + B_0 (1+r)$ | $\Delta S_0 d - g_d + B_0 (1+r)$ |

In order to hedge our position, we got:

$$\Delta S_0 u - g_u + (1 + r) = \Delta S_0 d - g_d + (1 + r)$$
 (as  $B_0 = 1$ )

$$\begin{split} &\Leftrightarrow \Delta S_0 \, (\text{u-d}) = g_u + g_d \\ &\Leftrightarrow \Delta = \frac{g_u + g_d}{S_0(u - d)} = \frac{g(S_u) - g(S_d)}{S_u - S_d} \end{split}$$

Next, as the portfolio is riskless, we can discounted back the asset at time t=1 back to t=0 and both need to be equal as below:

$$\frac{\Delta S_0 u - g_u + B_0(1+r)}{1+r} = \Delta S_0 - g_0 + B_0$$

$$\Leftrightarrow g_0 = \Delta S_0 + 1 - \frac{\Delta S_0 u - g_u + (1+r)}{1+r} \text{ (as } B_0 = 1\text{)}$$

$$\Leftrightarrow g_0 = \Delta S_0 - \frac{\Delta S_0 u - g_u}{1 + r}$$

$$\Leftrightarrow g_0 = \frac{(1+r)\Delta S_0 - \Delta S_0 u + g_u}{r+1}$$

$$\Leftrightarrow g_0 = \frac{(1+r-u)\Delta S_0 + g_u}{r+1}$$

$$\Leftrightarrow g_0 = \frac{1}{r+1}((1+r-u)\Delta S_0 + g_u)$$

we got: 
$$\Delta = \frac{g_u + g_d}{S_0(u - d)} = \frac{g(S_u) - g(S_d)}{S_u - S_d}$$

then:

$$\Leftrightarrow g_0 = \frac{1}{r+1}((1+r-u)\frac{g_u+g_d}{S_0(u-d)}S_0+g_u)$$

$$\Leftrightarrow g_0 = \frac{1}{r+1}((1+r-u)\frac{g_u+g_d}{(u-d)}+g_u)$$

$$\Leftrightarrow g_0 = \frac{1}{r+1} \left( \frac{(1+r-u)(g_u+g_d)+g_u(u-d)}{(u-d)} \right)$$

$$\Leftrightarrow g_0 = \frac{1}{r+1} \left( \frac{g_u + g_u r - g_u u + g_d + g_d r - g_d u + g_u u - g_u d}{(u-d)} \right)$$

$$\Leftrightarrow g_0 = \frac{1}{r+1} \left( \frac{g_u(1+r-d) + g_d(1+r-u)}{(u-d)} \right)$$

$$\Leftrightarrow g_0 = \frac{1}{r+1} (\frac{g_u(1+r-d)}{(u-d)} + \frac{g_d(1+r-u)}{(u-d)})$$

Let 
$$q = \frac{(1+r-d)}{(u-d)}$$
 then  $1-q = \frac{(1+r-u)}{(u-d)}$  Finally we got:  $g_0 = \frac{qg_u + (1-q)g_d}{1+r}$  where  $q = \frac{(1+r)-d}{u-d}$ 

c. We keep using the same hedging strategy as in b., what is the PnL of the hedging strategy in the new model?

#### Answer:

We got PnL as follow:

| Time t    | Portfolio                                                                                                      |  |
|-----------|----------------------------------------------------------------------------------------------------------------|--|
| t = 0     | $\Delta S_0 - g_0 + B_0$                                                                                       |  |
|           | $= \frac{g(S_u) - g(S_d)}{S_u - S_d} S_0 - \frac{qg_u + (1 - q)g_d}{1 + r} + B_0$                              |  |
| t = 1     | $\Delta S_1 - g_y + B_0(1+r)$                                                                                  |  |
| PnL @ t=1 | $= \frac{g(S_u) - g(S_d)}{S_u - S_d} S_1 - g(y_d) - \frac{g(y_u) - g(y_d)}{y_u - y_d} (y - y_d) + B_0 (1 + r)$ |  |

d. Show that with the same price  $g_0$  as in b., we have a positive PnL with probability 1.

#### Answer:

e. (Optional) Generalize this problem in multi-period setting: give 0 = 
$$t_0 < t_1 < \cdots < t_N = T, t_n = nT/N = nh$$
, with probability 1

$$S_{(n+1)h} \in [dS_{nh}, uS_{nh}], d < 1 + r = e^{\rho h} < u.$$

(Hint:  $\Delta$  should be the first derivative of the price with respect to the underlying.)