Глубокое обучение для обработки изображений

Лекция 1

Связь с биологией

Слева: изображений биологического нейрона. Справа: математическая модель

Связь с биологией

Слева: изображений биологического нейрона. Справа: математическая модель

Математическая модель нейрона является довольно грубым приближением **биологического нейрона**, поэтому проводить аналогии между ними нужно с большой осторожностью!

Перцептрон Розенблатта (1958 г.)

Перцептрон Розенблатта. По сути он стал первой моделью искусственной нейронной сети

Перцептрон Розенблатта (1958 г.)

Модель нейрона. Основной "кирпичик" в построение перцептрона

Искусственная нейронная сеть

В перцептроне Розенблатта предполагался один скрытый слой. В общем случае количество скрытых слоев может быть достаточно большим и зависит от выбранной архитектуры.

Нейронная сеть как вычислительный граф

На этом примере можно узнать граф, соответствующий *погистической регрессии*, если функцию активации выбрать в виде *сигмоиды*

Нейросеть можно представить в виде соединённых вычислительных блоков — в виде вычислительного графа (computational graph). Графы могут быть нелинейными, с обратной связью и т.д.

Универсальная теорема аппроксимации

Теорема Цыбенко (Hornik et al., 1989; Cybenko, 1989) утверждает, что нейронная сеть прямого распространения с одним скрытым слоем и с произвольной функцией активации может аппроксимировать любую непрерывную функцию многих переменных с любой точностью при условии правильного подбора количества нейронов скрытого слоя и весов.

Универсальная теорема аппроксимации

Теорема Цыбенко (Hornik et al., 1989; Cybenko, 1989) утверждает, что нейронная сеть прямого распространения с одним скрытым слоем и с произвольной функцией активации может аппроксимировать любую непрерывную функцию многих переменных с любой точностью при условии правильного подбора количества нейронов скрытого слоя и весов.

Проблемы:

- Не гарантируется, что алгоритм обучения сможет найти оптимальные параметры
- Количество необходимых нейронов может быть очень большим
- Из-за переобучения оптимизатор может выбрать не ту функцию, что приведет к росту количества ошибок на тестовом датасете

Функции активации

- Сигмоида
- Гиперболический тангенс
- Пороговая функция
- ReLU
- Leaky ReLU
- ELU
- И другие

Сигмоида (sigmoid function)

Плюсы:

- Позволяет интерпретировать выход как вероятность
- Область значений ограничена

Минусы:

- Смещена относительно нуля
- При больших или малых значениях входа значения производной близко к нулю, что может привести к затуханию градиента (важно для обучения)
- Требует вычисления экспоненты

На практике внутри сети почти не используется. Чаще всего её можно встретить на последнем слое с целью получить вероятности для двух классов (для бинарной классификации)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Гиперболический тангенс (tanh)

Плюсы:

- Симметричен относительно нуля
- Область значений ограничена

Минусы:

- При больших или малых значениях входа значения производной близко к нулю, что может привести к затуханию градиента (важно для обучения)
- Требует вычисления экспоненты

Пороговая функция (функция Хевисайда)

Минусы:

- Может возвращать лишь два значения
- Градиент равен нулю во всех областях

$$\theta(x) = \begin{cases} 0, x < 0; \\ 1, x \ge 0. \end{cases}$$

ReLU (усеченное линейное преобразование, Rectified Linear Unit)

Минусы:

- Для отрицательных значений аргумента равна нулю, что может привести к затуханию градиента

Плюсы:

- Простота вычисления

Одна из наиболее часто используемых функций активации.

$$ReLU(x) = \max(0, x)$$

Leaky ReLU

Очень похожа на ReLU; благодаря уклону в отрицательной области становится более симметричной.

Также обеспечивает ненулевой градиент в областях слева и справа от нуля

Leaky
$$ReLU(x) = \max(\alpha x, x)$$
, где $0 < \alpha \ll 1$

ELU (Exponential Linear Unit)

Попытка сделать более гладкую функцию в отрицательной области. Иногда может хорошо работать, но требует вычисления экспоненты

Зачем нужны активации?

Найдем выход данного вычислительного графа:

Зачем нужны активации?

Найдем выход данного вычислительного графа:

$$X_{out} = W_2X_1 + b_1 = = W_2(W_1X_0 + b_0) + b_1 = = W_2W_1X_0 + W_2b_0 + b_1 = = \tilde{W}X_0 + \tilde{b}$$

Зачем нужны активации?

Найдем выход данного вычислительного графа:

$$X_{\text{out}} = W_2 X_1 + b_1 =$$

$$= W_2 (W_1 X_0 + b_0) + b_1 =$$

$$= W_2 W_1 X_0 + W_2 b_0 + b_1 =$$

$$= \tilde{W} X_0 + \tilde{b}$$

В результате двух последовательных линейных преобразований мы, очевидно, также получили линейное отображение. Добавление функций активации позволяет нам получать нелинейные преобразование и как следствие восстанавливать более сложные зависимости в данных.

Бинарная классификация

В случае бинарной классификации мы хотим получить вероятности принадлежности объекта к одному из классов. Для этого можно в качестве последней активации выбрать сигмоиду, которая переведет вещественный выход нейронной сети в интервал от 0 до 1.

Многоклассовая классификация

Если мы решаем задачу в которой больше двух классов, то необходимо настроить архитектуру так, чтобы на выходе она выдавала К вещественных чисел, соответствующих числу классов, а затем превратить их в вероятности (с некоторыми оговорками) принадлежности к тому или иному классу. Сделать это можно с помощью функции softmax:

$$softmax(x_i) = \frac{e^{x_i}}{\sum_k e^{x_k}}$$

Регрессия

В задаче регрессии нам необходимо предсказывать вещественное число, поэтому функции активации на последнем слое обычно нет.

Если, например, предсказывается число от 0 до 100, то можно воспользоваться сигмоидой на последнем слое и умножить ответ на 100. Также можно превратить задачу регрессии в задачу классификации, если предсказываются целые числа из некоего диапазона. Естественно использование тех или иных приемов зависит от решаемой задачи.