Discrete Math HW #8

Dor Rondel March 31, 2017

Dor Rondel

11. Let a, b, and c be integers such that $a \neq 0$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid (sb + tc)$ for any integers s and t.

Proof: Let $a,b,c\in\mathbb{Z}$ such that $a\neq 0$ and $s,t\in\mathbb{Z}$ be chosen arbitrarily. Assume a|b and a|c then by definition, b=ak and c=aj for some specific $k,j\in\mathbb{Z}$. If we multiply b by s we get sb=sak. Similarly, if we multiply c by t we get tc=taj. We want to prove that a|(sb+tc); therefore,

$$sb + tc = sak + taj$$

= $a(sk + tj)$

Which is clearly divisible by a. Thus, a|(sb+tc) is true.

Dor Rondel

12. Let *m* and *n* be positive integers. Prove that gcd(m, m + n)|n.

By definition of GCD, the $\gcd(m,m+n)=d\iff d|m$ and d|(m+n) and $\forall e$ if e|m and e|(m+n) then e< d. Therefore, let $d\in \mathbb{Z}$ represent the $\gcd(m,m+n)$. We know d|m and d|(m+n) so by definition m=dk and m+n=dj for some specific $j,k\in \mathbb{Z}$. Subtracting m from m+n means that n=dj-m. Note: m will be substituted for dk later on.

$$n = dj - m$$
$$= dj - dk$$
$$= d(j - k)$$

Recall that d, which clearly divides n represents the gcd(m, m + n). Therefore, gcd(m, m + n)|n.

Dor Rondel

13. Prove the generalized DeMorgan Law, or in other words that for any nonempty index set I

$$\overline{\bigcap_{i\in I} A_i} = \bigcup_{i\in I} \overline{A_i}$$

Proof: We want to prove set equality, so we'll prove that $\overline{\bigcap_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$ and $\bigcup_{i \in I} \overline{A_i} \subseteq \overline{\bigcap_{i \in I} A_i}$, starting with the former.

Assume some element $x \in \overline{\bigcap_{i \in I} A_i}$, since $\overline{\bigcap_{i \in I} A_i}$ represents the complement of the intersection of $A_i \forall i \in I$, that means $x \notin A_i \forall i \in I$. x not being part of $A_i \forall i \in I$ means that $x \in \overline{A_i} \forall i \in I$ by definition of a set complement. Saying $x \in \overline{A_i} \forall i \in I$, which was proven, is essentially the same as saying $x \in \bigcup_{i \in I} \overline{A_i}$ because if $x \in A_i \forall i \in I$, then x will also be part of the union: $\bigcup_{i \in I} \overline{A_i}$ by definition of applying the union operation on sets. Since $x \in \overline{\bigcap_{i \in I} A_i}$ and $\bigcup_{i \in I} \overline{A_i}$, $\overline{\bigcap_{i \in I} A_i} \subseteq \bigcup_{i \in I} \overline{A_i}$

To prove that $\bigcup_{i\in I}\overline{A_i}\subseteq \overline{\bigcap_{i\in I}A_i}$, assume $x\in\bigcup_{i\in I}\overline{A_i}$. That implies that $x\in \overline{A_i}\forall i\in I$. x being part of $x\in \overline{A_i}\forall i\in I$ means that $x\notin A_i\forall i\in I$, which is equivalent to saying that $x\notin\bigcap_{i\in I}A_i$ since if $x\notin A_i\forall i\in I$ it won't be in the intersection of $A_i\forall i\in I$. $x\notin\bigcap_{i\in I}A_i\forall i\in I$ which was proven means that $x\in\overline{\bigcap_{i\in I}A_i}\forall i\in I$ by definition of complementing a set. Since $x\in\bigcup_{i\in I}\overline{A_i}$ and $x\in\overline{\bigcap_{i\in I}A_i}\forall i\in I$, $\bigcup_{i\in I}\overline{A_i}\subseteq\overline{\bigcap_{i\in I}A_i}$.

In conclusion, since $\overline{\bigcap_{i\in I} A_i} \subseteq \bigcup_{i\in I} \overline{A_i}$ and $\bigcup_{i\in I} \overline{A_i} \subseteq \overline{\bigcap_{i\in I} A_i}$, $\overline{\bigcap_{i\in I} A_i} = \bigcup_{i\in I} \overline{A_i}$ by definition of set equality.