<u>Example 4.16.</u> Let A_O be the generator of a positive semigroup on an order complete Banach lattice E and M \in Z(E). The semigroup generated by A_O + M possesses a modulus semigroup. Its generator is A_O + ReM . (This can be proved as the assertion in Example 4.15.)

If a semigroup has a bounded regular generator , then it possesses a modulus semigroup. Its generator is bounded too (see C-I,Sec.6 for the notion of regular operators).

Theorem 4.17. Let B be a regular, bounded operator on an order complete complex Banach lattice E. The semigroup $(e^{tB})_{t\geq 0}$ possesses a modulus semigroup. Its generator is $A = |B_0| + ReM$, where $B = B_0 + M$ is the unique decomposition of B in $L^r(E)$ satisfying $M \in Z(E)$, $B_0 \in Z(E)^d$.

For the proof we need the following result which is of independent interest.

<u>Lemma</u> 4.18. Let A be the generator of a positive semigroup on a Banach lattice E . If $Af \ge 0$ for all $f \in D(A)_+$, then A is bounded.

$$\begin{split} &\left\|\left(\lambda R\left(\lambda,A\right) - \text{Id}\right)f\right\| = \left\|AR\left(\lambda,A\right)f\right\| \leq c\left\|R\left(\lambda,A\right)f\right\| \leq \left(Mc/\lambda\right)\left\|f\right\| \text{ for all } \\ &f \in E_{+} \text{ and all } \lambda \geq \omega(A) + 1 \text{ . Hence} \\ &\left\|\left(\lambda R\left(\lambda,A\right) - \text{Id}\right)g\right\| \leq Mc/\lambda\left(\left\|g^{+}\right\| + \left\|g^{-}\right\|\right) \leq \left(2Mc/\lambda\right)\left\|g\right\| \text{ for all } g \in E \text{ .} \\ &\text{Thus } \lambda R\left(\lambda,A\right) \text{ is invertible if } \lambda \text{ is large enough and} \\ &D(A) = \text{im}\left(\lambda R\left(\lambda,A\right)\right) = E \text{ .} \end{split}$$

<u>Proof of Thm.4.17</u>. Let $A = |B_O| + ReM$. It has been shown in Example 4.4b that $(e^{tA})_{t \ge 0}$ dominates $(e^{tB})_{t \ge 0}$. Let $(U(t))_{t \ge 0}$ be a positive semigroup dominating $(e^{tB})_{t \ge 0}$ and C its generator. We first show that C is bounded.

Let $f \in D(C)_+$. Then $Re(Bf) = \lim_{t \downarrow 0} 1/t(Re(e^{tB}f) - f) \le \lim_{t \downarrow 0} 1/t(U(t)f - f) = Cf$. Hence $(C + |B|)f \ge (C - ReB)f \ge 0$ for all $f \in D(C)_+$. By Lemma 4.18 this implies that C + |B| is bounded. Hence C is bounded as well.