Механико-математический факультет МГУ имени М.В. Лононосова	
Конспект курса «Наглядная геометрия и топология»	
Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викторовн Автор конспекта: Цыбулин Егор, студент 108 группы	1a
Москва, 16 февраля 2025 г.	

Оглавление

1	Топология	3
	1.1 Топологические пространства	

Глава 1

Топология

1.1 Топологические пространства

Определение 1.1.1. *Метрика* — это функция $\rho(x,y) \to \mathbb{R}$, которая обладает следующими свойствами:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x, y) = \rho(y, x);$
- 3. $\rho(x,z) + \rho(z,y) \ge \rho(x,y)$.

Определение 1.1.2. Множество X называется метрическим пространством, если на нём задана метрика $\rho(x,y): X \times X \to \mathbb{R}$.

Определение 1.1.3. ε -окрестность точки x_0 — это множество всех точек $x \in X$: $\rho(x,x_0) < \varepsilon$

Из курса математического анализа. Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

Определение 1.1.4. Семейство τ подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется *топологией*.

Определение 1.1.5. Пусть X — произвольное множество и $\tau = \{U_{\alpha}\}$ — некоторое семейство подмножеств множества X. Семейство подмножеств τ называется *топологией*, если оно удовлетворяет следующим условиям:

- 1. Пустое множество и само множество X принадлежат τ ;
- 2. Объединение любого семейства множеств из τ принадлежит τ ;
- 3. Пересечение любого конечного семейства множеств из τ также принадлежит τ .

Определение 1.1.6. Множество X с фиксированной топологией τ называется *топологическим пространством* и обозначается через (X, τ) .

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым ε -шаром (некоторой окрестностью).

Примеры:

- 1. \emptyset, X , других нет тривиальная топология.
- 2. Семейство au состоит из всех подмножеств множества $X \partial u c \kappa p e m h a s$ тологовия.

Определение 1.1.7. Пусть X — топологическое множество, $x_0 \in X$. Окрестностью точки x_0 назовём любое открытое множество, содержащее эту точку.

Утверждение 1.1.1. Множеество A топологического пространства X открыто $\Leftrightarrow \forall x_0 \in A \; \exists U_{x_0} \in \tau : x_0 \; \in U_{x_0} \subset A$

 \mathcal{A} оказательство. \Longrightarrow Пусть A открыто, x_0 — точка A, тогда $U_{x_0} = A$. \Longleftrightarrow Возьмём $x \in U_x \subset A$, где U_x открыты $(\in \tau)$. Рассмотрим $\cup_{x \in A} U_x = U$, где U открыто, т.к. все U_x открыты. При этом $A \subset U$ и $U \subset A \Rightarrow U = A \Rightarrow A$ открыто. \square

Определение 1.1.8. Обратимся к курсу математического анализа. Пусть D_f — область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке x_0 .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

— в терминах окрестностей.

Определение 1.1.9. Отображение $f: X \to Y$ топологии пространств X и Y непрерывно, если $\forall x_0 \in X$ и для любой окрестности δ точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(B(x_0)) \subset B_\delta(f(x_0))$.

Утверждение 1.1.2. Отображение f двух топологических пространств непрерывно \Leftrightarrow прообраз любого открытого множества открыт.

Доказательство. $\Longrightarrow f: X \to Y$. Пусть $A \subset Y$ открыто. Рассмотрим $f^{-1}(A)$. Пусть $x_0 \in f^{-1}(A) \Rightarrow \exists U$ — открытое: $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$. \leftrightarrows Пусть прообраз любого множества открыт. Пусть $x_0 \in X \Rightarrow f(x_0) \in Y$ Возьмём $V \subset Y$, которое будет открыто. $f(x_0) \in V \Rightarrow f^{-1}(V)$ — открытое множество и $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$.

Другие способы задания топологии:

- 1. Топология на подмножестве: Пусть X топологическое пространство. $X_0 \subset X$. $U \in \tau(X) \Rightarrow U \cap X_0 \in \tau(X_0)$.
- 2. $f: X \to Y, Y$ топологическое пространство, f произвольное отображение. Тогда открытые множества на X прообразы открытых на Y.

Определение 1.1.10. Топологические пространства X и Y называются гомеоморфными, если между ними существует непрерывная биекция $f: X \to Y$, которая и называется гомеоморфизмом, такая, что отображение f^{-1} также непрерывно.

Определение 1.1.11. Множество A топологического пространства X называется $\mathit{замкну-}$ $\mathit{mым}$, если его дополнение $X \setminus A$ открыто.

Определение 1.1.12. Топологическое пространство X называется *связным*, если не существует двух открытых непересекающихся множеств A и B таких, что $X = A \cup B$.

Утверждение 1.1.3. Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен. $\exists A, B \subset \mathbb{R} : [a,b] = A \cup B, \ A \cap B = \emptyset$, где A, B — открытые множества. Пусть $\alpha \in A$, тогда $[a,\alpha) \subset A$ (т.к. A открыто). Рассмотрим $\alpha_0 = \sup \alpha : [a,\alpha) \subset A$. Пусть $\alpha_0 \in A$, тогда:

- 1. $\alpha_0 = b \Rightarrow B = \emptyset$ противоречие.
- 2. $\alpha_0 < b \Rightarrow \alpha_0$ входит в A с окрестностью \Rightarrow существует $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$ не супремум противоречие.