Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Marcin Ból

Politechnika Krakowska ul. Warszawska 24, Kraków

12 maja 2022

Kilka definicji

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego Niech $V=V_{\mathbb{F}}$ będzie przestrzenią wektorową, $\dim(V)<\infty$.

Definicja

Operator liniowy $A \in \operatorname{End}(V)$ nazywamy triangularyzowalnym, jeśli istnieje taka baza $\mathcal B$ tej przestrzeni, że macierz operatora A w bazie $\mathcal B$ jest macierzą górnotrójkątną.

Kilka definicji

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego Niech $V=V_{\mathbb{F}}$ będzie przestrzenią wektorową, $\dim(V)<\infty$.

Definicja

Operator liniowy $A \in \operatorname{End}(V)$ nazywamy triangularyzowalnym, jeśli istnieje taka baza $\mathcal B$ tej przestrzeni, że macierz operatora A w bazie $\mathcal B$ jest macierzą górnotrójkątną.

Definicja

Zbiór operatorów liniowych $\mathcal{L} \subset \operatorname{End}(V)$ nazywamy (równocześnie) triangularyzowalnym, jeśli macierze w bazie \mathcal{B} wszystkich operatorów ze zbioru \mathcal{L} są górnotrójkątne.

Kilka definicji

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Niech $V=V_{\mathbb{F}}$ będzie przestrzenią wektorową, $\dim(V)<\infty.$

Definicja

Operator liniowy $A \in \operatorname{End}(V)$ nazywamy triangularyzowalnym, jeśli istnieje taka baza $\mathcal B$ tej przestrzeni, że macierz operatora A w bazie $\mathcal B$ jest macierzą górnotrójkątną.

Definicja

Zbiór operatorów liniowych $\mathcal{L} \subset \operatorname{End}(V)$ nazywamy (równocześnie) triangularyzowalnym, jeśli macierze w bazie \mathcal{B} wszystkich operatorów ze zbioru \mathcal{L} są górnotrójkątne.

Definicja

Operator $A \in \operatorname{End}(V)$ nazywamy nilpotentnym, jeśli istnieje $n \in \mathbb{N}$ takie, że $A^n = 0$.

Twierdzenie Engela-Jacobsona

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Twierdzenie Engela

Niech $\mathcal L$ będzie podalgebrą Liego w $\operatorname{End}(V)$ składającą się z operatorów nilpotentnych. Wtedy $\mathcal L$ jest triangularyzowalna.

Twierdzenie Engela-Jacobsona

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego

Twierdzenie Engela

Niech $\mathcal L$ będzie podalgebrą Liego w End(V) składającą się z operatorów nilpotentnych. Wtedy $\mathcal L$ jest triangularyzowalna.

Twierdzenie Jacobsona

Niech $\mathcal{N}\subset \operatorname{End}(V)$ będzie zbiorem operatorów nilpotentnych. Jeśli dla każdej pary $A,B\in\mathcal{N}$ istnieje takie $c\in\mathbb{F}$, że $AB-cBA\in\mathcal{N}$, to \mathcal{N} jest triangularyzowalny.

Twierdzenie Radjaviego

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego

Twierdzenie Jacobsona

Niech $\mathcal{N} \subset \operatorname{End}(V)$ będzie zbiorem operatorów nilpotentnych. Jeśli dla każdej pary $A, B \in \mathcal{N}$ istnieje takie $c \in \mathbb{F}$, że $AB - cBA \in \mathcal{N}$, to \mathcal{N} jest triangularyzowalny.

Twierdzenie Radjaviego

Niech $\mathcal{N} \subset \operatorname{End}(V)$ będzie zbiorem operatorów nilpotentnych. Jeśli dla każdej pary $A, B \in \mathcal{N}$ istnieje wielomian $p \in \mathbb{F}\langle x, y \rangle$, taki, że

$$AB - p(A, B)A \in \mathcal{N}$$
,

to \mathcal{N} jest triangularyzowalny.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego

Przeprowadzimy indukcję ze względu na wymiar przestrzeni V. Twierdzenie jest trywialnie prawdziwe dla n=1 ($\mathcal{N}=\{0\}$). Załóżmy, że twierdzenie zachodzi dla przestrzeni o wymiarze mniejszym lub równym n, a dim(V)=n+1.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Przeprowadzimy indukcję ze względu na wymiar przestrzeni V. Twierdzenie jest trywialnie prawdziwe dla n=1 ($\mathcal{N}=\{0\}$). Załóżmy, że twierdzenie zachodzi dla przestrzeni o wymiarze mniejszym lub równym n, a dim(V) = n+1.

Dla
$$S \subseteq \mathcal{N}$$
 połóżmy $\operatorname{Ker}(S) = \bigcap_{A \in S} \operatorname{Ker}(A)$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Przeprowadzimy indukcję ze względu na wymiar przestrzeni V. Twierdzenie jest trywialnie prawdziwe dla n=1 ($\mathcal{N}=\{0\}$). Załóżmy, że twierdzenie zachodzi dla przestrzeni o wymiarze mniejszym lub równym n, a dim(V) = n+1.

Dla $S \subseteq \mathcal{N}$ połóżmy $\operatorname{Ker}(S) = \bigcap_{A \in S} \operatorname{Ker}(A)$.

Rozważmy następnie zbiór $\{\operatorname{Ker}(S) \mid S \subseteq \mathcal{N}\}$. Wybieramy element \mathcal{K} tego zbioru taki, że $0 < \dim(\mathcal{K}) \leqslant \dim(\operatorname{Ker}(S))$ dla każdego $S \subseteq \mathcal{N}$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Przeprowadzimy indukcję ze względu na wymiar przestrzeni V. Twierdzenie jest trywialnie prawdziwe dla n=1 ($\mathcal{N}=\{0\}$). Załóżmy, że twierdzenie zachodzi dla przestrzeni o wymiarze mniejszym lub równym n, a dim(V) = n+1.

Dla $S \subseteq \mathcal{N}$ połóżmy $\operatorname{Ker}(S) = \bigcap_{A \in S} \operatorname{Ker}(A)$.

Rozważmy następnie zbiór $\{\operatorname{Ker}(S) \mid S \subseteq \mathcal{N}\}$. Wybieramy element \mathcal{K} tego zbioru taki, że $0 < \dim(\mathcal{K}) \leqslant \dim(\operatorname{Ker}(S))$ dla każdego $S \subseteq \mathcal{N}$.

Kolejno rozważmy zbiór $\{S\subseteq\mathcal{N}\,|\, \mathrm{Ker}(S)=\mathcal{K}\,\}$. Wybieramy następnie element maksymalny tego zbioru - oznaczmy go \mathcal{N}_0 . (Można pokazać, że taki element istnieje)

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Dla $A \in \mathcal{N}_0$ definiujemy odwzorowanie

$$\overline{A}: V/\mathcal{K} \ni v + \mathcal{K} \longmapsto A(v) + \mathcal{K} \in V/\mathcal{K}.$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Dla $A \in \mathcal{N}_0$ definiujemy odwzorowanie

$$\overline{A}: V/\mathcal{K} \ni v + \mathcal{K} \longmapsto A(v) + \mathcal{K} \in V/\mathcal{K}.$$

Zauważmy, że nilpotentność odwzorowania A pociąga za sobą nilpotentność odwzorowania \overline{A} , gdyż jeśli $A^n=0$, to

$$\overline{A}^n(v+K)=A^n(v)+K=0+K.$$

Dla $A \in \mathcal{N}_0$ definiujemy odwzorowanie

$$\overline{A}: V/\mathcal{K} \ni v + \mathcal{K} \longmapsto A(v) + \mathcal{K} \in V/\mathcal{K}.$$

Zauważmy, że nilpotentność odwzorowania A pociąga za sobą nilpotentność odwzorowania \overline{A} , gdyż jeśli $A^n=0$, to

$$\overline{A}^n(v+\mathcal{K})=A^n(v)+\mathcal{K}=0+\mathcal{K}.$$

Pokażemy, że zbiór $\overline{\mathcal{N}_0}=\{\,\overline{A}\,|\,A\in\mathcal{N}_0\,\}$ jest triagularyzowalny.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech $A, B \in \mathcal{N}_0$. Pokażemy, że $AB - p(A, B)A \in \overline{\mathcal{N}}_0$. Weźmy dowolne $v \in \mathcal{K}$. Wtedy

$$(AB - p(A, B)A)v = ABv - p(A, B)Av = 0.$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech $A, B \in \mathcal{N}_0$. Pokażemy, że $AB - p(A, B)A \in \mathcal{N}_0$. Weźmy dowolne $v \in \mathcal{K}$. Wtedy

$$(AB - p(A, B)A)v = ABv - p(A, B)Av = 0.$$

Stąd otrzymujemy następującą implikację

$$\mathcal{K} \subseteq \operatorname{Ker}(A) \cap \operatorname{Ker}(B) \implies \mathcal{K} \subseteq \operatorname{Ker}(AB - p(A, B)A).$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech $A, B \in \mathcal{N}_0$. Pokażemy, że $AB - p(A, B)A \in \mathcal{N}_0$. Weźmy dowolne $v \in \mathcal{K}$. Wtedy

$$(AB - p(A, B)A)v = ABv - p(A, B)Av = 0.$$

Stąd otrzymujemy następującą implikację

$$\mathcal{K} \subseteq \operatorname{Ker}(A) \cap \operatorname{Ker}(B) \implies \mathcal{K} \subseteq \operatorname{Ker}(AB - p(A, B)A).$$

Stąd zaś wynika, że

$$\operatorname{\mathsf{Ker}}(\mathcal{N}_0 \cup \{AB - p(A, B)A\}) = \mathcal{K} \cap \operatorname{\mathsf{Ker}}(AB - p(A, B)A) = \mathcal{K},$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech $A,B\in\mathcal{N}_0$. Pokażemy, że $AB-p(A,B)A\in\mathcal{N}_0$. Weźmy dowolne $v\in\mathcal{K}$. Wtedy

$$(AB - p(A, B)A)v = ABv - p(A, B)Av = 0.$$

Stąd otrzymujemy następującą implikację

$$\mathcal{K} \subseteq \operatorname{Ker}(A) \cap \operatorname{Ker}(B) \implies \mathcal{K} \subseteq \operatorname{Ker}(AB - p(A, B)A).$$

Stąd zaś wynika, że

$$\operatorname{\mathsf{Ker}}(\mathcal{N}_0 \cup \{AB - p(A, B)A\}) = \mathcal{K} \cap \operatorname{\mathsf{Ker}}(AB - p(A, B)A) = \mathcal{K},$$

co jest sprzeczne z maksymalnością \mathcal{N}_0 .

Otrzymaliśmy zatem, że $AB - p(A, B)A \in \mathcal{N}_0$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Możemy zatem dla $A,B\in\mathcal{N}_0$ rozważać operator indukowany operatora $AB-p(A,B)A\in\mathcal{N}_0.$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego Możemy zatem dla $A, B \in \mathcal{N}_0$ rozważać operator indukowany operatora $AB - p(A, B)A \in \mathcal{N}_0$.

Ponieważ operatory indukowane spełniają równości $\overline{cA} = c\overline{A}$, $\overline{A+B} = \overline{A} + \overline{B}$, $\overline{AB} = \overline{A} \overline{B}$ otrzymujemy, że

$$\overline{AB - p(A, B)A} = \overline{A}\,\overline{B} - p(\overline{A}, \overline{B})\overline{A} \in \overline{\mathcal{N}_0}.$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego Możemy zatem dla $A, B \in \mathcal{N}_0$ rozważać operator indukowany operatora $AB - p(A, B)A \in \mathcal{N}_0$.

Ponieważ operatory indukowane spełniają równości $\overline{cA} = c\overline{A}$, $\overline{A+B} = \overline{A} + \overline{B}$, $\overline{AB} = \overline{A} \overline{B}$ otrzymujemy, że

$$\overline{AB-p(A,B)A}=\overline{A}\,\overline{B}-p(\overline{A},\overline{B})\overline{A}\in\overline{\mathcal{N}_0}.$$

To z kolei oznacza, że założenie twierdzenia Radjaviego jest spełnione na zbiorze $\overline{\mathcal{N}_0}$ operatorów określonych na przestrzeni V/\mathcal{K} wymiaru niższego niż wymiar przestrzeni V, co z założenia indukcyjnego daje triangularyzowalność zbioru $\overline{\mathcal{N}_0}$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Możemy zatem dla $A, B \in \mathcal{N}_0$ rozważać operator indukowany operatora $AB - p(A, B)A \in \mathcal{N}_0$.

Ponieważ operatory indukowane spełniają równości $\overline{cA} = c\overline{A}$, $\overline{A+B} = \overline{A} + \overline{B}$, $\overline{AB} = \overline{A}\overline{B}$ otrzymujemy, że

$$\overline{AB-p(A,B)A}=\overline{A}\,\overline{B}-p(\overline{A},\overline{B})\overline{A}\in\overline{\mathcal{N}_0}.$$

To z kolei oznacza, że założenie twierdzenia Radjaviego jest spełnione na zbiorze $\overline{\mathcal{N}_0}$ operatorów określonych na przestrzeni V/\mathcal{K} wymiaru niższego niż wymiar przestrzeni V, co z założenia indukcyjnego daje triangularyzowalność zbioru $\overline{\mathcal{N}_0}$.

Bazę triangularyzującą zbioru \mathcal{N}_0 otrzymujemy z elementów bazowych przestrzeni \mathcal{K} oraz z wyciągnięcia bazy triangularyzującej $\overline{\mathcal{N}_0}$ z przestrzeni ilorazowej przez rzutowanie kanoniczne.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Pokażemy teraz, że $\mathcal{N}_0=\mathcal{N}.$ Załóżmy, że tak nie jest, czyli istnieje operator $B\in\mathcal{N}$ taki, że $B\mathcal{K}\neq 0.$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Pokażemy teraz, że $\mathcal{N}_0 = \mathcal{N}$. Załóżmy, że tak nie jest, czyli istnieje operator $B \in \mathcal{N}$ taki, że $B\mathcal{K} \neq 0$.

Zauważmy, że $B\mathcal{K} \nsubseteq \mathcal{K}$, bo gdyby $B\mathcal{K} \subseteq \mathcal{K}$, to operator $B|_{\mathcal{K}}$ byłoby operatorem nilpotentnym określonym na \mathcal{K} , co implikowałoby że

$$\operatorname{\mathsf{Ker}}(\mathcal{N}_0 \cup \{B\}) = \mathcal{K} \cap \operatorname{\mathsf{Ker}}(B) = \operatorname{\mathsf{Ker}}(B|_{\mathcal{K}}) \subset \mathcal{K},$$

co byłoby w sprzeczności z minimalnością wymiaru $\mathcal{K}.$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Pokażemy teraz, że $\mathcal{N}_0 = \mathcal{N}$. Załóżmy, że tak nie jest, czyli istnieje operator $B \in \mathcal{N}$ taki, że $B\mathcal{K} \neq 0$.

Zauważmy, że $B\mathcal{K} \nsubseteq \mathcal{K}$, bo gdyby $B\mathcal{K} \subseteq \mathcal{K}$, to operator $B|_{\mathcal{K}}$ byłoby operatorem nilpotentnym określonym na \mathcal{K} , co implikowałoby że

$$\mathsf{Ker}(\mathcal{N}_0 \cup \{B\}) = \mathcal{K} \cap \mathsf{Ker}(B) = \mathsf{Ker}(B|_{\mathcal{K}}) \subset \mathcal{K},$$

co byłoby w sprzeczności z minimalnością wymiaru $\mathcal{K}.$

Skoro $B\mathcal{K} \nsubseteq \mathcal{K}$, to istnieje przynamniej jeden operator $A_1 \in \mathcal{N}_0$ taki, że $A_1B\mathcal{K} \neq 0$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech wielomian $p_1 \in \mathbb{F}\langle x,y \rangle$ będzie taki, że $B_1 = A_1B - p_1(A_1,B)A_1 \in \mathcal{N}$. Wtedy $B_1\mathcal{K} \neq 0$, zatem \mathcal{K} nie jest niezmienniczy względem B_1 , tak jak we wcześniejszym przypadku operatora B.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Niech wielomian $p_1 \in \mathbb{F}\langle x,y \rangle$ będzie taki, że $B_1 = A_1B - p_1(A_1,B)A_1 \in \mathcal{N}$. Wtedy $B_1\mathcal{K} \neq 0$, zatem \mathcal{K} nie jest niezmienniczy względem B_1 , tak jak we wcześniejszym przypadku operatora B.

Stąd istnieje takie $A_2 \in \mathcal{N}_0$, że $A_2B_1\mathcal{K} \neq 0$ oraz wybieramy wielomian p_2 taki, że $B_2 = A_2B_1 - p_2(A_2, B_1)A_2 \in \mathcal{N}$.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Niech wielomian $p_1 \in \mathbb{F}\langle x,y \rangle$ będzie taki, że $B_1 = A_1B - p_1(A_1,B)A_1 \in \mathcal{N}$. Wtedy $B_1\mathcal{K} \neq 0$, zatem \mathcal{K} nie jest niezmienniczy względem B_1 , tak jak we wcześniejszym przypadku operatora B.

Stąd istnieje takie $A_2 \in \mathcal{N}_0$, że $A_2B_1\mathcal{K} \neq 0$ oraz wybieramy wielomian p_2 taki, że $B_2 = A_2B_1 - p_2(A_2, B_1)A_2 \in \mathcal{N}$.

Kontynuując ten proces otrzymujemy ciąg operatorów $A_i \in \mathcal{N}_0$ taki, że

$$A_{n+1}A_n\cdot\ldots\cdot A_2A_1B\mathcal{K}\neq 0,$$

jednak triagularyzowalność \mathcal{N}_0 implikuje, że $A_{n+1}A_n\cdot\ldots\cdot A_2A_1=0$, co daje nam sprzeczność.

Ostatecznie $\mathcal{N}=\mathcal{N}_0$ i tym samym zbiór \mathcal{N} jest triangularyzowalny. \square

Wniosek

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Twierdzenie 2

Niech V będzie przestrzenią liniową skończonego wymiaru nad ciałem algebraicznie domkniętym \mathbb{F} . Niech ponadto $\mathcal{L} \subseteq \operatorname{End}(V)$ będzie zbiorem dowolnych operatorów liniowych zamkniętym względem brania komutatorów.

Wtedy \mathcal{L} jest triangularyzowalny wtedy i tylko wtedy, gdy operator AB - BA jest nilpotentny dla dowolnych $A, B \in \mathcal{L}$.

Wniosek

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radiaviego

Twierdzenie 2

Niech V będzie przestrzenią liniową skończonego wymiaru nad ciałem algebraicznie domkniętym \mathbb{F} . Niech ponadto $\mathcal{L} \subseteq \operatorname{End}(V)$ będzie zbiorem dowolnych operatorów liniowych zamkniętym względem brania komutatorów.

Wtedy \mathcal{L} jest triangularyzowalny wtedy i tylko wtedy, gdy operator AB - BA jest nilpotentny dla dowolnych $A, B \in \mathcal{L}$.

Dowód.

Jeśli $\mathcal L$ jest triangularyzowalny, to każdy komutator jest rzeczywiście nilpotentny. W drugą stronę dowodzimy przez indukcję – zauważmy, że zbiór $\mathcal N$ komutatorów operatorów z $\mathcal L$ spełnia założenia Twierdzenia Jacobsona z c=1.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Możemy założyć, że $\mathcal{N} \neq 0$, bo gdyby $\mathcal{N} = 0$, to \mathcal{L} byłby zbiorem operatorów przemiennych. Jeśli natomiast ciało jest algebraicznie domnięte, to przemienny zbiór operatorów jest triangularyzowalny.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Możemy założyć, że $\mathcal{N} \neq 0$, bo gdyby $\mathcal{N} = 0$, to \mathcal{L} byłby zbiorem operatorów przemiennych. Jeśli natomiast ciało jest algebraicznie domnięte, to przemienny zbiór operatorów jest triangularyzowalny.

Niech $\mathcal{K} = \text{Ker}(\mathcal{N})$. Dla dowolnych $A \in \mathcal{N}$ oraz $B \in \mathcal{L}$ mamy

$$\underbrace{(AB - BA)}_{\in \mathcal{N}} \mathcal{K} = AB\mathcal{K} = 0,$$

a zatem $B\mathcal{K}\subseteq\mathcal{K}$ dla każdego operatora $B\in\mathcal{L}.$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego Możemy założyć, że $\mathcal{N} \neq 0$, bo gdyby $\mathcal{N} = 0$, to \mathcal{L} byłby zbiorem operatorów przemiennych. Jeśli natomiast ciało jest algebraicznie domnięte, to przemienny zbiór operatorów jest triangularyzowalny.

Niech $\mathcal{K} = \mathsf{Ker}(\mathcal{N})$. Dla dowolnych $A \in \mathcal{N}$ oraz $B \in \mathcal{L}$ mamy

$$\underbrace{\left(AB - BA \right)}_{\in \mathcal{N}} \mathcal{K} = AB\mathcal{K} = 0,$$

a zatem $\mathcal{BK} \subseteq \mathcal{K}$ dla każdego operatora $\mathcal{B} \in \mathcal{L}$. Zatem jeśli weźmiemy dowolne $\mathcal{A}, \mathcal{B} \in \mathcal{L}$, możemy otrzymać z nich odwzorowania

$$A|_{\mathcal{K}}, B|_{\mathcal{K}}: \mathcal{K} \longrightarrow \mathcal{K},$$

a z założenia $[A|_{\mathcal{K}}, B|_{\mathcal{K}}]$ jest operatorem nilpotentnym. Stąd przez indukcję triangularyzowalność zachodzi dla operatorów indukowanych ze zbioru $\overline{\mathcal{L}}$, a w konsekwencji dla całego \mathcal{L} .

Lemat 1

Niech char $(\mathbb{F})=0$. Jeśli macierz $N\in\mathrm{M}_n(\mathbb{F})$ spełnia warunek

$$\operatorname{tr}(N) = \operatorname{tr}(N^2) = \ldots = \operatorname{tr}(N^n) = 0,$$

to N jest macierzą nilpotentną.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Lemat 1

Niech char $(\mathbb{F})=0.$ Jeśli macierz $N\in\mathrm{M}_n(\mathbb{F})$ spełnia warunek

$$\operatorname{tr}(N) = \operatorname{tr}(N^2) = \ldots = \operatorname{tr}(N^n) = 0,$$

to N jest macierzą nilpotentną.

Szkic dowodu.

Powyższy warunek równoważny jest układowi równań

$$\sum_{i=1}^n \lambda_i = 0, \quad \sum_{i=1}^n \lambda_i^2 = 0, \quad \dots \quad \sum_{i=1}^n \lambda_i^n = 0.$$

Z tożsamości Newtona elementarne wielomiany symetryczne można wyrazić za pomocą powyższych sum potęgowych, z czego wynika, że wielomian charakterystyczny macierzy N jest postaci $P_N(\lambda)=\lambda^n$, a stąd już wynika teża.

 $m_1 \ge 0, ..., m_n \ge 0$

```
\begin{array}{ll} p_k(x_1,\ldots,x_n) = \sum_{i=1}^n x_i^k = x_1^k + \cdots + x_n^k, & e_0(x_1,\ldots,x_n) = 1, \\ e_1 = p_1, & e_1(x_1,\ldots,x_n) = x_1 + x_2 + \cdots + x_n, \\ e_2 = \frac{1}{2}p_1^2 - \frac{1}{2}p_2 & \vdots \\ e_3 = \frac{1}{6}p_1^3 - \frac{1}{2}p_1p_2 + \frac{1}{3}p_3 & \vdots \\ e_4 = \frac{1}{24}p_1^4 - \frac{1}{4}p_1^2p_2 + \frac{1}{8}p_2^2 + \frac{1}{3}p_1p_3 - \frac{1}{4}p_4 & e_n(x_1,\ldots,x_n) = x_1x_2 \cdots x_n, \\ \vdots & \vdots & \vdots \\ e_n = (-1)^n \sum_{m_1+2m_2+\cdots+nm_n=n} \prod_{i=1}^n \frac{(-p_i)^{m_i}}{m_i!_i!_im_i} \end{array}
```

Kryterium śladowe Radjaviego

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Definicja

Mówimy, że zbiór operatorów liniowych $\mathcal L$ ma permutowalny ślad, jeśli dla każdego skończonego ciągu operatorów A_1,\ldots,A_k i dla każdej permutacji $\sigma\in\mathcal S_k$ zachodzi warunek

$$\operatorname{\mathsf{tr}}(A_1A_2\cdot\ldots\cdot A_k)=\operatorname{\mathsf{tr}}(A_{\sigma(1)}A_{\sigma(2)}\cdot\ldots\cdot A_{\sigma(k)}).$$

Kryterium śladowe Radjaviego

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

Definicja

Mówimy, że zbiór operatorów liniowych $\mathcal L$ ma permutowalny ślad, jeśli dla każdego skończonego ciągu operatorów A_1,\ldots,A_k i dla każdej permutacji $\sigma\in\mathcal S_k$ zachodzi warunek

$$\operatorname{tr}(A_1A_2\cdot\ldots\cdot A_k)=\operatorname{tr}(A_{\sigma(1)}A_{\sigma(2)}\cdot\ldots\cdot A_{\sigma(k)}).$$

Twierdzenie (Kryterium śladowe Radjaviego)

Niech \mathbb{F} będzie ciałem algebraicznie domkniętym oraz char(\mathbb{F}) = 0. Wtedy dowolny zbiór operatorów liniowych $\mathcal{L} \subseteq \operatorname{End}(V_{\mathbb{F}})$ jest triangularyzowalny wtedy i tylko wtedy gdy jego ślad jest permutowalny.

z przemienności ciała F.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

(=>) Załóżmy, że zbiór $\mathcal L$ jest triangularyzowalny. $\operatorname{tr}(A_1A_2\cdot\ldots\cdot A_k)=a_{11}^1\ldots a_{11}^k+\ldots+a_{nn}^1\ldots a_{nn}^k=$ $a_{11}^{\sigma(1)}\ldots a_{11}^{\sigma(k)}+\ldots+a_{nn}^{\sigma(1)}\ldots a_{nn}^{\sigma(k)}=\operatorname{tr}(A_{\sigma(1)}A_{\sigma(2)}\cdot\ldots\cdot A_{\sigma(k)})$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego (<=) Załóżmy, że ślad na zbiorze $\mathcal L$ jest permutowalny. Zauważmy, że algebra łączna $\mathcal U$ generowana przez zbiór $\mathcal L$ również ma permutowalny ślad.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego (<=) Załóżmy, że ślad na zbiorze $\mathcal L$ jest permutowalny. Zauważmy, że algebra łączna $\mathcal U$ generowana przez zbiór $\mathcal L$ również ma permutowalny ślad. Jeśli teraz pokażemy, że zbiór $\mathcal N=\{AB-BA\,|\,A,B\in\mathcal U\}$ składa się z operatorów nilpotentnych, to dowód zostanie zakończony na mocy Twierdzenia 2.

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

(<=) Załóżmy, że ślad na zbiorze $\mathcal L$ jest permutowalny. Zauważmy, że algebra łączna $\mathcal U$ generowana przez zbiór $\mathcal L$ również ma permutowalny ślad. Jeśli teraz pokażemy, że zbiór $\mathcal N=\{AB-BA\,|\,A,B\in\mathcal U\}$ składa się z operatorów nilpotentnych, to dowód zostanie zakończony na mocy Twierdzenia 2.

Jednak jeśli przyjmiemy oznaczenie $X_i \in \{AB, BA\}$, to

$$\operatorname{tr}(AB - BA)^m = \sum_{k=0}^m (-1)^k \binom{m}{k} \operatorname{tr}(X_1 X_2 \dots X_m) =$$

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego (<=) Załóżmy, że ślad na zbiorze $\mathcal L$ jest permutowalny. Zauważmy, że algebra łączna $\mathcal U$ generowana przez zbiór $\mathcal L$ również ma permutowalny ślad. Jeśli teraz pokażemy, że zbiór $\mathcal N=\{AB-BA\,|\,A,B\in\mathcal U\}$ składa się z operatorów nilpotentnych, to dowód zostanie zakończony na mocy Twierdzenia 2.

Jednak jeśli przyjmiemy oznaczenie $X_i \in \{AB, BA\}$, to

$$\operatorname{tr}(AB - BA)^m = \sum_{k=0}^m (-1)^k \binom{m}{k} \operatorname{tr}(X_1 X_2 \dots X_m) =$$

$$= \sum_{k=0}^m (-1)^k \binom{m}{k} \operatorname{tr}(A^m B^m) = 0,$$

co kończy dowód na mocy Lematu 1. \square

Literatura

Uogólnione twierdzenie Engela-Jacobsona i kryterium śladowe Radjaviego

H. Radjavi, *The Engel-Jacobson Theorem Revisited*, Journal of Algebra 111, 427-430 (1987).

H. Radjavi, P. Rosenthal, *Simultaneous Triangularization* (2000).