Round-off Errors and Floating Point Arithmetic

▶ **Binary Machine Numbers:** any double precision non-zero *floating point number* has form

$$x = (-1)^{s} 2^{c-1023} (1+f)$$
, with 64 bits.

- ightharpoonup s = SIGN BIT: 0 for x > 0 and 1 for x < 0.
- c = CHARACTERISTIC, with 11 bits:

$$c = c_1 \cdot 2^{10} + c_2 \cdot 2^9 + c_3 \cdot 2^8 + c_4 \cdot 2^7 + c_5 \cdot 2^6 + c_6 \cdot 2^5 + c_7 \cdot 2^4 + c_8 \cdot 2^3 + c_9 \cdot 2^2 + c_{10} \cdot 2^1 + c_{11} \cdot 2^0,$$

with each $c_j = 0$ or 1. • f = MANTISSA with 52 bits

$$f = f_1 \cdot \left(\frac{1}{2}\right) + \dots + f_{52} \cdot \left(\frac{1}{2}\right)^{52} = \sum_{i=1}^{52} f_i \cdot \left(\frac{1}{2}\right)^i$$
, each $f_i = 0$ or 1.

- ▶ **Floating Point**: Binary point always comes after 1, independent of *c*.
- Special cases for special numbers

Round-off Errors and Floating Point Arithmetic

- ▶ Binary Machine Numbers: Example binary string
- s = 0, $c = (1000000011)_2 = 1024 + 2 + 1 = 1027$, and

$$f = 1 \cdot \left(\frac{1}{2}\right)^1 + 1 \cdot \left(\frac{1}{2}\right)^3 + 1 \cdot \left(\frac{1}{2}\right)^4 + 1 \cdot \left(\frac{1}{2}\right)^5 + 1 \cdot \left(\frac{1}{2}\right)^8 + 1 \cdot \left(\frac{1}{2}\right)^{12}.$$

$$(-1)^{3}2^{c-1023}(1+f) = (-1)^{0} \cdot 2^{1027-1023} \left(1 + \left(\frac{1}{2} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{4096} \right) \right)$$

$$= 27.56640625.$$

binary representation: ineffective for humans, magical for machines

Street Numbers in Binary? (City of machines)

Round-off Errors and Floating Point Arithmetic

► *k*-digit Decimal Machine Numbers:

$$x = \pm 0.d_1d_2\cdots d_k \times 10^n$$
, where $1 \le d_1 \le 9$, $0 \le d_i \le 9$, $i \ge 2$.

► Any positive real number

$$\begin{array}{lcl} y & = & 0.d_1d_2\cdots d_kd_{k+1}d_{k+2}\cdots\times 10^n, \\ \\ & \approx & 0.d_1d_2\cdots d_k\times 10^n\stackrel{def}{=} \mathit{fl}(y) \quad \text{(chopping)} \\ \\ & \approx & 0.\delta_1\delta_2\cdots\delta_k\times 10^n\stackrel{def}{=} \mathit{fl}(y) \quad \text{(rounding)}, \end{array}$$

where

rounding = chopping on
$$y + 5 \times 10^{n-(k+1)}$$
.

- ▶ If $d_{k+1} < 5$: rounding = chopping.
- ▶ If $d_{k+1} \ge 5$: cut off d_{k+1} and below, then add 1 to d_k .

Round-off Errors and Floating Point Arithmetic

▶ 5-digit Decimal Machine Numbers for π :

```
\pi = 0.314159265 \cdots \times 10^{1}
\approx 0.31415 \times 10^{1} = 3.1415 (chopping)
\approx (0.31415 + 0.00001) \times 10^{1} = 3.1416 (rounding).
```

Absolute error vs. relative error

Suppose that p^* is an approximation to $p \neq 0$.

- **absolute error** = $|p p^*|$,
- relative error = $\frac{|p-p^*|}{|p|}$.

$$\pi \approx 0.31415 \times 10^1 = 3.1415 \text{(chopping)}, \quad \pi \approx 0.31416 \times 10^1 = 3.1416 \text{ (rounding)}$$

absolute errors:

$$|\pi - 3.1415| \approx 9 \times 10^{-5}, \quad |\pi - 3.1416| \approx 7 \times 10^{-6}.$$

relative errors:

$$\frac{|\pi - 3.1415|}{\pi} \approx 3 \times 10^{-5}, \quad \frac{|\pi - 3.1416|}{\pi} \approx 2 \times 10^{-6}.$$

Cool \$200,000 wager by LeSean McCoy, 2017

Cool \$200,000 wager by LeSean McCoy, 2017

Cool \$200,000 wager by LeSean McCoy, 2017

- ► Wager: Warriors to win NBA Finals
- McCoy made \$6*M* in 2017. $\frac{\text{wager}}{\text{salary}} \approx 3\%$
- ► If lost, wager would be a **huge** absolute error, but **small** relative error, to his salary. He won \$62,500

Relative error for k-digit chopping

Suppose that $y = 0.d_1d_2 \cdots d_kd_{k+1}d_{k+2} \cdots \times 10^n$, with $d_1 \ge 1$.

$$\left| \frac{y - fl(y)}{y} \right| = \left| \frac{0.d_1 d_2 \dots d_k d_{k+1} \dots \times 10^n - 0.d_1 d_2 \dots d_k \times 10^n}{0.d_1 d_2 \dots \times 10^n} \right|$$

$$= \left| \frac{0.d_{k+1} d_{k+2} \dots \times 10^{n-k}}{0.d_1 d_2 \dots \times 10^n} \right| = \left| \frac{0.d_{k+1} d_{k+2} \dots}{0.d_1 d_2 \dots} \right| \times 10^{-k}.$$

But
$$0.d_1d_2\cdots d_kd_{k+1}d_{k+2}\cdots \geq 0.1$$
,

$$\left| \frac{y - fl(y)}{y} \right| \le \frac{1}{0.1} \times 10^{-k} = 10^{-k+1}.$$

Relative error for k-digit rounding

Suppose that $y = 0.d_1d_2 \cdots d_kd_{k+1}d_{k+2} \cdots \times 10^n$, with $d_1 \ge 1$.

$$\left|\frac{y - fl(y)}{y}\right| \le 0.5 \times 10^{-k+1}.$$

Proof: Exercise in text.

Floating Point Arithmetic Magic:

RELATIVE ERROR $\approx 10^{-k+1}$ independent of n.

Machine addition, subtraction, multiplication, and division

$$x \oplus y = fl(fl(x) + fl(y)), \quad x \otimes y = fl(fl(x) \times fl(y)),$$

$$x \ominus y = fl(fl(x) - fl(y)), \quad x \ominus y = fl(fl(x) \div fl(y)).$$

Some computations involve millions of these operations, the result could be very different from expected.

Sometimes it takes numerical analysis to make it right

Cancellation of significant digits, k digit arithmetic, p < k

Cancellation of significant digits, k digit arithmetic, p < k

Suppose that x and y do not differ much:

$$x = 0.d_1 \cdots d_p \alpha_{p+1} \cdots \times 10^n$$

$$= 0.d_1 \cdots d_p \alpha_{p+1} \cdots \alpha_k \times 10^n + \epsilon_x = fl(x) + \epsilon_x,$$

$$y = 0.d_1 \cdots d_p \beta_{p+1} \cdots \times 10^n$$

$$= 0.d_1 \cdots d_p \beta_{p+1} \cdots \beta_k \times 10^n + \epsilon_y = fl(y) + \epsilon_y,$$

Cancellation of significant digits, k digit arithmetic, p < k

Suppose that x and y do not differ much:

$$x = 0.d_1 \cdots d_p \alpha_{p+1} \cdots \times 10^n$$

$$= 0.d_1 \cdots d_p \alpha_{p+1} \cdots \alpha_k \times 10^n + \epsilon_x = fl(x) + \epsilon_x,$$

$$y = 0.d_1 \cdots d_p \beta_{p+1} \cdots \times 10^n$$

$$= 0.d_1 \cdots d_p \beta_{p+1} \cdots \beta_k \times 10^n + \epsilon_y = fl(y) + \epsilon_y,$$

with $\epsilon_x, \epsilon_y \approx 10^{n-k}$, k > p. The floating-point form of x - y is

$$fl(fl(x) - fl(y)) \approx x - y - \epsilon_x + \epsilon_y.$$

if
$$|x-y| \approx 10^{n-p}$$
, then relative error is

$$\left| \frac{\text{error in computed } x - y}{x - y} \right| = \left| \frac{(x - y) - \text{fl(fl(x)} - \text{fl(y)})}{x - y} \right|$$

$$\approx \left| \frac{|\epsilon_x| + |\epsilon_y|}{x - y} \right| \approx \frac{10^{n-k}}{10^{n-p}} = 10^{-(k-p)}.$$

$$\frac{\kappa}{p-p}=10^{-(k-p)}.$$

Quadratic formula for $ax^2 + bx + c = 0$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

One of x_1 , x_2 faces cancellation of significant digits if

$$|4ac| \ll b^2$$

Quadratic formula for $ax^2 + bx + c = 0$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

One of x_1 , x_2 faces cancellation of significant digits if

$$|4ac| \ll b^2 \implies \sqrt{b^2 - 4ac} \approx |b|$$

- ▶ If b > 0, then x_1 is hard to calculate.
- ▶ If b < 0, then x_2 is hard to calculate.

Roots to Quadratic to Roots (I)

```
function xx = quadroot(x)
a = 1;
b =-(x(1)+x(2));
c = x(1)*x(2);
del = sqrt(b*b-4*a*c);
xx(1) = (-b+del)/(2*a);
xx(2) = (-b-del)/(2*a);
xx =xx(:);
```

b and c: Vieta's formulas

Roots to Quadratic to Roots (II)

```
>> format long e
format long e
>> x = randn(2,1)
x = randn(2.1)
× =
     1.630235289164729e+00
     4.888937703117894e-01
>> xx = guadroot(x)
xx = quadroot(x)
xx =
     1.630235289164729e+00
     4.888937703117894e-01
>> x = [randn*1e5; randn*1e-12]
x = [randn*1e5:randn*1e-12]
     1.034693009917860e+05
     7.268851333832379e-13
>> xx = quadroot(x)
xx = quadroot(x)
xx =
     1.034693009917860e+05
```

Numerical instability: complete loss of significant digits in smaller root

Solving $ax^2 + bx + c = 0$ the better way

- ▶ If b > 0 then

$$x_1 = \frac{-b - \delta}{2a} = -\frac{|b| + \delta}{2a};$$

if $b \le 0$ then

$$x_1 = \frac{-b+\delta}{2a} = \frac{|b|+\delta}{2a}.$$

Vieta's formula

$$x_2 = \frac{c}{a x_1}$$
.

Roots to Quadratic to Roots (III)

```
>> a = randn*le-5:b = 1: c = - randn*le-12:
a = randn*1e-5:b = 1: c = - randn*1e-12:
>> roots([a b c])
roots([a b cl)
ans =
     3.295534380226372e+05
     2.938714670966580e-13
>> del = sgrt(b*b-4*a*c)
del = sqrt(b*b-4*a*c)
del =
     1
>> x(1) = (-b+del)/(2*a):x(2) = (-b-del)/(2*a)
x(1) = (-b+del)/(2*a); x(2) = (-b-del)/(2*a)
x =
     3.295534380226372e+05
>> x(2) = (-b-del)/(2*a); x(1)=(c/a)/x(2)
x(2) = (-b-del)/(2*a):x(1)=(c/a)/x(2)
× =
     2.938714670966580e-13
     3.295534380226372e+05
```

Numerical stability: both roots accurately computed

Solve

$$f(x) = x^3 + 2x^2 + 10x - 20 = 0.$$

Fibonacci's Solution

$$x = 1 + 22\left(\frac{1}{60}\right) + 7\left(\frac{1}{60}\right)^2 + 42\left(\frac{1}{60}\right)^3 + 33\left(\frac{1}{60}\right)^4 + 4\left(\frac{1}{60}\right)^5 + 40\left(\frac{1}{60}\right)^6.$$

With Horner's nested sum method, let $\tau = \frac{1}{60}$:

$$x = 1 + \tau \cdot (22 + \tau \cdot (7 + \tau \cdot (42 + \tau \cdot (33 + \tau \cdot (4 + 40\tau)))))$$
.

Pseudocode for Horner's Method (nested arithmetic)

Evaluate function f(x) for given x:

$$f(x) = a_1 + a_2 x + \cdots + a_n x^{n-1}$$

Pseudocode for Horner's Method (nested arithmetic)

Evaluate function f(x) for given x:

$$f(x) = a_1 + a_2 x + \dots + a_n x^{n-1} = a_1 + x \cdot (a_2 + x \cdot (\dots + x \cdot (a_{n-1} + x \cdot a_n) \dots))$$

Pseudocode for Horner's Method (nested arithmetic)

Evaluate function f(x) for given x:

$$f(x) = a_1 + a_2 x + \dots + a_n x^{n-1}$$

$$= a_1 + x \cdot (a_2 + x \cdot (\dots + x \cdot (a_{n-1} + x \cdot a_n) \cdot \dots))$$
function SUM = horner(x,a)
%
% horner's method
%
n = length(a);
SUM = a(n) *ones(size(x));
for i=n-1:-1:1
SUM = a(i) + x .* SUM;
end
return

Numerical stability: a second order recursion

For any constants c_1 and c_2 ,

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n,$$

is a solution to the recursive equation

$$p_n = \frac{10}{3}p_{n-1} - p_{n-2}$$
, for $n = 2, 3, ...$

lim |

$$\lim_{n\to\infty}|p_n|=\left\{egin{array}{ll} \infty & & ext{if} \quad c_2
eq 0, \ 0 & & ext{otherwise}. \end{array}
ight.$$

$$\left(\begin{array}{c}c_1\\c_2\end{array}\right)=\frac{1}{8}\left(\begin{array}{c}9p_0-3p_1\\3p_1-p_0\end{array}\right),\quad \text{given }p_0,p_1.$$

▶ condition $c_2 = 3p_1 - p_0 = 0$ hard to satisfy exactly in finite precision computations.

Numerical values go crazy for $p_0 = 1$, $p_1 = 1/3$.

With five-digit rounding arithmetic,

n	Computed \hat{p}_n	Correct p_n	Relative Error
0	0.10000×10^{1}	0.10000×10^{1}	
1	0.33333×10^{0}	0.33333×10^{0}	
2	0.11110×10^{0}	0.111111×10^{0}	9×10^{-5}
3	0.37000×10^{-1}	0.37037×10^{-1}	1×10^{-3}
4	0.12230×10^{-1}	0.12346×10^{-1}	9×10^{-3}
5	0.37660×10^{-2}	0.41152×10^{-2}	8×10^{-2}
6	0.32300×10^{-3}	0.13717×10^{-2}	8×10^{-1}
7	-0.26893×10^{-2}	0.45725×10^{-3}	7×10^{0}
8	-0.92872×10^{-2}	0.15242×10^{-3}	6×10^{1}

Numerical instability: More details in Chapter 5

Rate of convergence: the Big O(I)

Suppose

- $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to 0,
- $\{\alpha_n\}_{n=1}^{\infty}$ is a sequence known to converge to α .

 $\lceil \mathsf{If} \rceil$ there exists a positive constant K such that

$$|\alpha_n - \alpha| \le K |\beta_n|$$
 for large n ,

then we say that

 $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with rate of convergence $O(|\beta_n|)$:

$$\alpha_n = \alpha + O(|\beta_n|)$$

Rate of convergence: the Big O (II)

Example: Suppose that for all $n \ge 1$,

$$\alpha_n = \cos\left(\frac{1+n\cos\left(n^2+1\right)}{\left(1+n\right)^2}\right), \quad \beta_n = \frac{1}{n^2}.$$

▶ Then $\alpha = 1$,

$$|\alpha_n - 1| \le \frac{1}{2} \cdot \frac{1}{n^2}.$$

- ► Therefore $\{\alpha_n\}_{n=1}^{\infty}$ converges to $\alpha=1$ with rate of convergence $O\left(\frac{1}{n^2}\right)$: $\alpha_n=1+O\left(\frac{1}{n^2}\right)$
- Not to be confused with *order of convergence* later on.

Rate of convergence: the Big O (III)

Definition: Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a positive number K so that

$$|F(h) - L| \le K |G(h)|$$
 for all sufficiently small h , then $F(h) = L + O(G(h))$.

Rate of convergence: the Big O (III)

Definition: Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a positive number K so that

$$|F(h) - L| \le K |G(h)|$$
 for all sufficiently small h , then
$$F(h) = L + O(G(h)).$$

Example I: Show that

$$\sin (h) = h + O(h^3).$$

PROOF: By Taylor expansion,

$$\sin (h) = h - \frac{1}{6} h^3 \cos (\overline{\xi}(h)),$$

for some number $\overline{\xi}(h)$ between 0 and h. Hence

$$|\sin(h) - h| \leq \frac{1}{6} |h|^3$$
.

Therefore

$$\sin (h) = h + O(h^3).$$

Rate of convergence: the Big O (IV)

Definition: Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a positive number K so that

$$|F(h)-L| \le K |G(h)|$$
 for all sufficiently small h , then
$$F(h) = L + O(G(h)).$$

Rate of convergence: the Big O (IV)

Definition: Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a positive number K so that

$$|F(h) - L| \le K |G(h)|$$
 for all sufficiently small h , then
$$F(h) = L + O(G(h)).$$

Example II: Taylor expand a function f(x) at $x = x_0$:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(\xi)(x - x_0)^2$$

with ξ somewhere between x_0 and x.

▶ If $|f''(\xi)| \le K$ for some constant K, then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O((x - x_0)^2).$$

Class algorithms vs. Commercial software

For any vector $\mathbf{x} \in \mathbf{R}^n$, compute its norm

$$\|\mathbf{x}\|_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}} = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}.$$

- ► INPUT: n, x_1, \dots, x_n .
- **▶** OUTPUT: Norm.
- **► Step 1**: Set **SUM** = 0.
- ▶ **Step 2**: For $k = 1, \dots, n$ set **SUM** = **SUM** + $x_k * x_k$.
- ► Step 3: Set Norm = $\sqrt{\text{SUM}}$.
- Step 4: Output Norm. STOP.

Class algorithms vs. Commercial software (I)

```
>> n = 10;
>> x = (1:n)';
>> sum = 0;
>>
>> for k = 1:n
     sum = sum + x(k) * x(k);
   end
>>
>> x_norm = sqrt(sum);
>> disp([x_norm,abs(x_norm-norm(x)), abs(x_norm-sqrt(n*(n+1)*(2*n+1)/6))]);
   19.62142 0.00000
                         0.00000
```

Class algorithms vs. Commercial software (II)

```
>> x = 1e200 * (1:n)';
>> >> sum = 0;
>> for k = 1:n
     sum = sum + x(k) * x(k);
end
>> x_norm = sqrt(sum);
>> disp([norm(x),abs(x_norm-norm(x))])
1.9621e+201 Inf
```

Class algorithms vs. Commercial software (III)

```
>>
>> xmax = max(abs(x));
>> if (xmax == 0)
       x norm = 0;
   else
       y = x/xmax;
       sum = 0;
       for k = 1:n
           sum = sum + y(k) * y(k);
       end
       x norm = xmax * sqrt(sum);
   end
>> disp([norm(x),abs(x_norm-norm(x))])
   1.9621e+201
                0.0000e+00
```

Material to skip in Chapter 2

► False position in Section 2.3

Extreme Value Theorem

- Maximum f(c) and minimum f(d) attainable in [a, b] if f(x) continuous.
- Basis of much of data analysis, artificial intelligence.
- ▶ IF $c \in (a, b)$ AND f(x) differentiable, then

$$f'(c)=0.$$

Intermediate Value Theorem

- ▶ If f(x) continuous, then c exists in [a, b] so f(c) = k for any k between f(a) and f(b).
- ▶ Basis of methods for solving f(x) = 0.

We will actually find c in equation f(c) = 0 to some TOLERANCE.

§2.1 Bisection Method

theorem: Given continuous function f(x) on an interval [a, b] with $f(a) \cdot f(b) < 0$, there must be a root p in (a, b) so that f(p) = 0.

§2.1 Bisection Method

theorem: Given continuous function f(x) on an interval [a,b] with $f(a) \cdot f(b) < 0$, there must be a root p in (a,b) so that f(p) = 0. PROOF: By Intermediate Value Thm, 0 is between f(a), f(b).

§2.1 Bisection Method

theorem: Given continuous function f(x) on an interval [a, b] with $f(a) \cdot f(b) < 0$, there must be a root p in (a, b) so that f(p) = 0. PROOF: By Intermediate Value Thm, 0 is between f(a), f(b).

- ▶ To find a root p: set $[a_1, b_1] = [a, b]$.
- ightharpoonup set $p_1=rac{a_1+b_1}{2}$ and compute $f(p_1)$.
 - if $f(p_1) = 0$, then quit with root p_1 (NEED BE VERY LUCKY, BUT COULD HAPPEN.)
 - if $f(a_1) \cdot f(p_1) < 0$, then set $[a_2, b_2] = [a_1, p_1]$,
 - otherwise $(f(p_1) \cdot f(b_1) < 0)$ set $[a_2, b_2] = [p_1, b_1],$

In both cases, new interval half as long as old one.

repeat with $p_2 = \frac{a_2 + b_2}{2}$.

Bisection Method in Cartoon

Naive Bisection Method

```
% Bisection Method
%Input: f(x) continuous on [a, b]
       f(a) * f(b) < 0
%Output: p in (a, b) so f(p) = 0.
fa = f(a);
fb = f(b);
repeat
   c = (a+b)/2;
   fc = f(c);
   if (fc ==0)
      p = c;
      return;
   end
   if (fc * fa < 0)
      b = c;
   else
      a = c;
   end
end
```

function [x, out] = bisect(Fcn, Intv. params) To find a solution to f(x) = 0 given the continuous function f on the interval [a.b], where f(a) and f(b) have opposite signs: 96 INPUT: function f(x) defined by function handle Fcn, interval [a,b]= [Intv.a, Intv.b] 26 tolerence params.tol. max # of iterations = params.MaxIt 96 OUTPUT: root x, and data structure out. The success flag out.flg, is 0 for successful 26 execution and non-zero otherwise, out.it is the number of iterations to reach within tolerance. % Written by Ming Gu for Math128A. Spring 2021 TOL = params.tol: NO = params.MaxIt; а = Intv.a: b = Intv.b: if (a > b) a = Intv.b: b = Intv.a: end fa = sign(Fcn(a)): = sign(Fcn(b)); fb if (fa*fb >0) error('Initial Interval may not contain root'.msg): if a==b error('Initial values for a and b must not equal'.msq): end It = 0; out.x = [a:b]:out.f = [Fcn(a):Fcn(b)]:while (It <= NO) = (a+b)/2: out.x = [out.x:cl: out.f =[out.f:Fcn(c)]; fc = sign(Fcn(c)): if (fc ==0) × = c: out.fla = 0: out.it = It; return: if (fc * fa < 0) b = c: else a = c: end if (abs(b-a)<=T0L) = (a+b)/2: out.flg = 0; out.it = It: return: It = It + 1: end out.flg =1: out.it = NO: = (a+b)/2;

Theorem 2.1 Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^\infty$ approximating a zero p of f with

$$|p_n - p| \le \frac{b - a}{2^n}$$
, when $n \ge 1$.

Theorem 2.1 Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_a\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n - p| \le \frac{b - a}{2^n}$$
, when $n \ge 1$.

Most versatile root-finder

Bisection Method

▶ Always works as long as f(a) f(b) > 0.

Theorem 2.1 Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence

$$\{p_n\}_{n=1}^{\infty}$$
 approximating a zero p of f with

$$|p_n-p| \le \frac{b-a}{2^n}$$
, when $n \ge 1$.

Theorem 2.1 Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n - p| \le \frac{b-a}{2^n}$$
, when $n \ge 1$.

Potential problems with Thm. 2.1 in optimization applications

- ▶ Both maximum f'(c) = 0 and minimum f'(d) = 0. Thm. 2.1 can't tell which one.
- ▶ Thm. 2.1 condition does not work: f'(a) f'(b) > 0.

Proof of Thm 2.1, Assume that $f(p_n) \neq 0$ for all n

▶ By construction

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots \leq \cdots \leq b_n \leq \cdots \leq b_2 \leq b_1$$

Thus sequences $\{a_n\}$ and $\{b_n\}$ monotonically converge to limits $a_{\infty} \leq b_{\infty}$, respectively.

- Since $f(a_n) \cdot f(b_n) < 0$ for all n, it follows that $f(a_{\infty}) \cdot f(b_{\infty}) \leq 0$, thus a root $p \in [a_{\infty}, b_{\infty}] \subset [a_n, b_n]$ exists.
- Since $p_n = \frac{a_n + b_n}{2}$, it follows that $|p_n p| \le \frac{b_n a_n}{2}$.

Proof of Thm 2.1, Assume that $f(p_n) \neq 0$ for all n

▶ By construction

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots \leq \cdots \leq b_n \leq \cdots \leq b_2 \leq b_1.$$

Thus sequences $\{a_n\}$ and $\{b_n\}$ monotonically converge to limits $a_{\infty} \leq b_{\infty}$, respectively.

- Since $f(a_n) \cdot f(b_n) < 0$ for all n, it follows that $f(a_{\infty}) \cdot f(b_{\infty}) \le 0$, thus a root $p \in [a_{\infty}, b_{\infty}] \subset [a_n, b_n]$ exists.
- Since $p_n = \frac{a_n + b_n}{2}$, it follows that $|p_n p| < \frac{b_n a_n}{2}$.

By construction
$$b_n - a_n = \frac{b_{n-1} - a_{n-1}}{2} = \frac{b_{n-2} - a_{n-2}}{2^2} = \cdots = \frac{b_1 - a_1}{2^{n-1}} = \frac{b - a_1}{2^{n-1}}$$
.

Put together, $|p_n - p| \le \frac{b-a}{2n}$. In fact, $a_{\infty} = b_{\infty} = p$.

Example Function with Root

§2.2 Fixed Point Iteration

The number p is a **fixed point** for a given function g if g(p) = p.

Given a root-finding problem f(p) = 0, we can define functions g(x) with a fixed point at p in multiple ways:

$$g(x) = x - f(x), \quad g(x) = x + 3 f(x), \quad \text{etc.}$$

► Conversely, given function g with fixed point at p, then the function

$$f(x) = x - g(x)$$

has a root at p.

§2.2 Fixed Point Iteration

The number p is a **fixed point** for a given function g if g(p) = p.

Given a root-finding problem f(p) = 0, we can define functions g(x) with a fixed point at p in multiple ways:

$$g(x) = x - f(x), \quad g(x) = x + 3 f(x), \quad \text{etc.}$$

► Conversely, given function g with fixed point at p, then the function

$$f(x) = x - g(x)$$

has a root at p.

Fixed Point Example

Fixed Point Iteration

Given initial approximation p_0 , define Fixed Point Iteration

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

If iteration converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(p).$$

Fixed Point Iteration

Given initial approximation p_0 , define Fixed Point Iteration

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

If iteration converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(p).$$

Easy to define. How does it work?

Fixed Point Example $x - \sin(x) = 0$: slow convergence

```
g(x) = \sin(x) \in [-1, 1] for x \in [-1, 1],
|g'(x)| \leq 1 \in [0,1].
       >> n = 1000000;
       >> x = zeros(n,1);
       \gg x(1) = 1;
        >> for k=2:n
       x(k) = \sin(x(k-1));
        >> semilogy(abs(x), 'b.-')
        >> title('Fixed Point Iteration, x {k+1} = sin(x k)', 'FontSize', 14)
```

Fixed Point Example $x - \sin(x) = 0$: VERY slow convergence

$$g(x) = \sin(x) \in [-1, 1]$$
 for $x \in [-1, 1]$.

Fixed Point Example $x - \sin(x) = 0$: VERY slow convergence

$$g(x) = \sin(x) \in [-1, 1]$$
 for $x \in [-1, 1]$.

Fixed Point: $x - (1 - \cos(x)) = 0$: VERY fast convergence

```
g(x) = 1 - \cos(x) \in [-1, 1] for x \in [-1, 1], |g'(x)| = |\sin x| \le \sin 1.
```

```
>> n=20;

>> x = zeros(n,1);

>> x(1) = 1;

>> for k=2:n

x(k) = 1- cos(x(k-1));

end

>> semilogy(abs(x),'b.-')

warning: axis: omitting non-positive data in log plot
```

Fixed Point: $x - (1 - \cos(x)) = 0$: VERY fast convergence

$$g(x) = 1 - \cos(x) \in [-1, 1]$$
 for $x \in [-1, 1]$, $|g'(x)| = |\sin x| \le \sin 1$.

```
>> n=20;

>> x = zeros(n,1);

>> x(1) = 1;

>> for k=2:n

x(k) = 1- cos(x(k-1));

end

>> semilogy(abs(x),'b.-')

warning: axis: omitting non-positive data in log plot
```


Fixed Point Theorem (I)

Theorem 2.3

- (i) If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$, then g has at least one fixed point in [a,b].
- (ii) If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \leq k, \quad \text{for all } x \in (a,b),$$

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)

Proof of Thm 2.3

- If g(a) = a or g(b) = b, then g has a fixed point at an endpoint.
- Otherwise, g(a) > a and g(b) < b. The function h(x) = g(x) x is continuous on [a, b], with

$$h(a) = g(a) - a > 0$$
 and $h(b) = g(b) - b < 0$.

- ▶ This implies that there exists $p \in (a, b)$, h(p) = 0.
- ightharpoonup g(p) p = 0, or p = g(p).

If $|g'(x)| \le k < 1$ for all x in (a, b), and p and q are two distinct fixed points in [a, b]. Then a number ξ exists (Mean Value Theorem)

$$\frac{g(p)-g(q)}{p-q}=g'(\xi)<1.$$

So

$$1 = \frac{p-q}{p-q} = \frac{g(p)-g(q)}{p-q} = g'(\xi) < 1.$$

Proof of Thm 2.3

- ▶ If g(a) = a or g(b) = b, then g has a fixed point at an endpoint.
- Otherwise, g(a) > a and g(b) < b. The function h(x) = g(x) x is continuous on [a, b], with

$$h(a) = g(a) - a > 0$$
 and $h(b) = g(b) - b < 0$.

- ▶ This implies that there exists $p \in (a, b)$, h(p) = 0.
- ightharpoonup g(p) p = 0, or p = g(p).

If $|g'(x)| \le k < 1$ for all x in (a, b), and p and q are two distinct fixed points in [a, b]. Then a number ξ exists (Mean Value Theorem)

$$\frac{g(p)-g(q)}{p-q}=g'(\xi)<1.$$

So

$$1 = \frac{p-q}{p-q} = \frac{g(p)-g(q)}{p-q} = g'(\xi) < 1. \implies \boxed{\text{distinct}} \iff$$

This contradiction implies uniqueness of fixed point.

Fixed Point Iteration

Given initial approximation p_0 , define Fixed Point Iteration

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

If iteration converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(p).$$

Fixed Point Example $x - \log(2 + 2x^2) = 0$: normal convergence

$$g(x) = \log(2 + 2x^2) \in [2, 3]$$
 for $x \in [2, 3]$, $|g'(x)| \le \frac{4}{5} < 1$.

Fixed Point Theorem (II)

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1}), \quad n \ge 1,$$

converges to the unique fixed point p in [a, b].

Fixed Point Theorem (II)

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converges to the unique fixed point p in [a, b].

PRO: simple iteration

CON: conditions hard to verify

No algorithm for finding [a, b]

Proof of Thm 2.4

- ▶ A unique fixed point $p \in [a, b]$ exists.

$$|p_n-p|=|g(p_{n-1})-g(p)|=|g'(\xi_n)(p_{n-1}-p)|\leq k|p_{n-1}-p|$$

$$|p_n - p| \le k|p_{n-1} - p| \le k^2|p_{n-2} - p| \le \cdots \le k^n|p_0 - p|.$$

Since

$$\lim_{n\to\infty} k^n = 0,$$

 $\{p_n\}_{n=0}^{\infty}$ converges to p.

No Harm Principle in numerical algorithm design

What we do not know never harms us

No Harm Principle in numerical algorithm design

What we do not know never harms us

(NOT REALLY!!!)

No Harm Principle in numerical algorithm design

What we do not know never harms us

(NOT REALLY!!!)

Trust but Verify