Lab 5

Terrence Jackson

SDEV 300: Building Secure Python Applications

Professor Howard

Apr 16, 2024

Matrix Application

Test Cases

	Input	Expected	Actual	Pass?
Test Case 1	1: Population Data 0: Pop Apr 1	Count = 556 Mean = 49957.31 Standard Deviation = 27226.19 Min = 13519 Max = 218478 Print histogram	Count = 556 Mean = 49957.31 Standard Deviation = 27226.19 Min = 13519 Max = 218478 Print histogram	Yes
Test Case 2	1: Population Data 0: Pop Apr 1	Count = 556 Mean = 50112.09 Standard Deviation = 27593.60 Min = 12619 Max = 217215 Print histogram	Count = 556 Mean = 50112.09 Standard Deviation = 27593.60 Min = 12619 Max = 217215 Print histogram	Yes
Test Case 3	1: Population Data 2: Change Pop	Count = 556 Mean = 154.78 Standard Deviation = 3047.81 Min = -13775 Max = 22363 Print histogram	Count = 556 Mean = 154.78 Standard Deviation = 3047.81 Min = -13775 Max = 22363 Print histogram	Yes
Test Case 4	1: Population Data 5: Invalid	Invalid, prompt again	Invalid, prompt again	Yes

Test Case 5	1: Population Data 3: Exit	Prompt for file	Prompt for file	Yes
Test Case 6	2: Housing Data 0: Age	Count = 10042 Mean = 47.22 Standard Deviation = 23.15 Min = -9 Max = 93 Print histogram	Count = 10042 Mean = 47.22 Standard Deviation = 23.15 Min = -9 Max = 93 Print histogram	Yes
Test Case 7	2: Housing Data 1: Bedrooms	Count = 10042 Mean = 2.71 Standard Deviation = 1.07 Min = 0 Max = 7 Print histogram	Count = 10042 Mean = 2.71 Standard Deviation = 1.07 Min = 0 Max = 7 Print histogram	Yes
Test Case 8	2: Housing Data 2: Built	Count = 10042 Mean = 1966.95 Standard Deviation = 26.30 Min = 1919 Max = 2012 Print histogram	Count = 10042 Mean = 1966.95 Standard Deviation = 26.30 Min = 1919 Max = 2012 Print histogram	Yes

	1	1	1	
Test Case 9	2: Housing	Count = 10042	Count = 10042	Yes
	Data	Mean = 5.72	Mean = 5.72	
	3: Rooms	Standard Deviation =	Standard Deviation =	
		1.88	1.88	
		Min = 1	Min = 1	
		Max = 14	Max = 14	
		Print histogram	Print histogram	
Test Case 10	2: Housing	Count = 10042	Count = 10042	Y
	Data	Mean = 189.59	Mean = 189.59	
	4: Utility	Standard Deviation =	Standard Deviation =	
		128.92	128.92	
		Min = 0.0	Min = 0.0	
		Max = 1107.583333	Max = 1107.583333	
		Print histogram	Print histogram	
Test Case 11	2: Housing	Leave column menu,	Leave column menu,	Y
	Data	prompt for file	prompt for file	
	5: Quit			
Test Case 12	apple	Invalid, prompt for file	Invalid, prompt for file	Y
		again	again	
Test Case 13	3: Quit	Display goodbye	Display goodbye	Y
		message	message	
	-	<u> </u>		

Test Case 1:

Test Case 2:

Test Case 3:

Test Case 4:

```
Select the Column you want to analyze:
0: Pop Apr 1
1: Pop Jul 1
2: Change Pop
3: Exit Column
Enter your choice: 5
Invalid, please input a number in the presented options.
Enter your choice: [
```

Test Case 5:

```
Select the Column you want to analyze:
0: Pop Apr 1
1: Pop Jul 1
2: Change Pop
3: Exit Column
Enter your choice: 3

Select the file you want to analyze:
1. Population Data
2. Housing Data
3. Exit the Program
Enter your choice: [
```

Test Case 6:

Test Case 7:

Test Case 8:

Test Case 9:

Test Case 10:

Test Case 11:

```
Select the Column you want to analyze:
0: AGE
1: BEDRMS
2: BUILT
3: ROOMS
4: UTILITY
5: Exit Column
Enter your choice: 5

Select the file you want to analyze:
1. Population Data
2. Housing Data
3. Exit the Program
Enter your choice: []
```

Test Case 12:

```
Select the file you want to analyze:

1. Population Data
2. Housing Data
3. Exit the Program
Enter your choice: apple
Invalid, please input a number in the presented options.
Enter your choice: []
```

Test Case 13:

Pylint

```
sdev_300 > lab_5 > ≡ pylint_results.txt

1
2 ------
3 Your code has been rated at 10.00/10 (previous run: 10.00/10, +0.00)
4
5
```

Most of my code was borrowed from previous labs that had already achieved a 10/10, so there weren't any major issues for Pylance to point out. I made a few edits to my functions to make them fit in better with this particular assignment. Luckily, I found that numpy has a standard deviation function, so I didn't have to re-learn how statistics work. The rest was easy after that. I also ran bandit on my code after I finished, and found no vulnerabilities.