

FUNDAMENTOS EN COMPUNTACION. FÍSICA Y ASTRONOMÍA. PARCIAL III

Nota	ι:

Lea bien las instrucciones, con calma y sin saltarse nada, tómese su tiempo. Cree una carpeta con nombre apellido_cedula en el PC en el que está trabajando y resuelva el parcial allí. Cuando termine, subir la carpeta comprimida en tar.gz en la carpeta de Parciales/Parcial III en la carpeta compartida Fundamentos 1-2016 y una copia en su propia carpeta de parciales.

(2.5 ptos) Un experimento de mecánica clásica consiste en colocar un lanzador a una altura h, el cual puede lanzar balines a una velocidad inicial V_0 y un ángulo con la horizontal de θ . Al estar sometido a la gravedad (comúnmente 9.8 m/s²) crea un movimiento parabólico. El experimento consiste en colocar una tabla a unas distancias X, y medir el tiempo y la altura a la golpea el balin siguiendo la trayectoria de tal forma:

El experimento arroja una tabla de valores (x,y,t) talque se pueda por regresión linear y cuadrática saber cuáles son los valores para (V_0 , θ , g, h) quienes son medidas importantes en el experimento.

		T
y[m]	x[m]	t[s]
0,100	0,553	0,029
0,250	0,605	0,064
0,400	0,657	0,091
0,550	0,693	0,130
0,700	0,711	0,158
0,850	0,733	0,193
1,000	0,734	0,225
1,150	0,724	0,262
1,300	0,710	0,288
1,450	0,676	0,326
1,600	0,639	0,353
1,750	0,594	0,392
1,900	0,525	0,421
2,050	0,462	0,458
2,200	0,380	0,494

- 1. Determine los valores (V_0 , θ , g, h) usando un script de python que reciba los valores de (x,y,t) por consola y haga la regresión lineal y cuadrática para determinar sus relaciones.
- 2. Determine los valores para el X_{max} y el Y_{max} usando los valores encontrados.

(2.5 ptos) Un conductor de un camión tiene que hacer la entrega de ciertos productos entre los puntos A y B, que están separados por 3000 [Km]. Sin embargo debe hacerlo en una carretera cuya velocidad máxima es de 80 [Km/h], pero que debido a algunos accidentes y obras en unos tramos tiene restricciones muy severas que siguen la siguiente distribución, siendo AB la distancia entre los puntos A y B:

Punto inicial de tramo peligroso	Punto final de tramo peligroso	Velocidad en tramo peligroso
Xi=AB*0.1*i+ 5 [Km]	Xf=Xi+15*i [Km]	V=Vmax*0.5 (i impar)
		V=Vmax*0.2 (i par)

Debido a las fuertes multas y el peligro el conductor no quiere sobrepasar las velocidades permitidas pero tampoco quiere perder tiempo acelerando y desacelerando. Si el camión cuenta con una aceleración y desaceleración de 2[Km/h^2], cree un script en python que determine

- 1. Una lista que diga cuál es el punto inicial y final del tramo peligroso y la velocidad límite permitida.
- 2. Determine en qué puntos debe el conductor empezar a acelerar y desacelerar.