1. Solution to Exercise 10 in Assignment 4

Solution. By Theorem 5.4.1 of [1], we have

$$\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^T)$$

Therefore we have (by taking orthogonal complement)

$$\operatorname{Im}(A) = \operatorname{Ker}(A^T)^{\perp} \xrightarrow{\operatorname{Thm} 5.4.2 \text{ of } [1]} \operatorname{Ker}(AA^T)^{\perp} \xrightarrow{\operatorname{Thm} 5.4.1 \text{ of } [1]} \operatorname{Im}(AA^T).$$

Or we can argue by rank nullity theorem:

Solution. We see easily that $\operatorname{Ker} A^T \subset \operatorname{Ker} AA^T$. On the other hand, let $x \in \operatorname{Ker}(AA^T)$, we have

(1.1)
$$AA^{T}x = 0 \text{ (here 0 is a vector)} \Rightarrow x^{T}AA^{T}x = 0$$
$$\Rightarrow (A^{T}x)^{T}(A^{T}x) = 0 \Rightarrow ||A^{T}x||^{2} = 0 \Rightarrow A^{T}x = 0$$
$$\Rightarrow x \in \operatorname{Ker} A^{T} \Rightarrow \operatorname{Ker}(AA^{T}) \subset \operatorname{Ker} A^{T}$$

Therefore we have $\operatorname{Ker} AA^T = \operatorname{Ker} A^T$ (*) (or it follows from Thm 5.4.2 of [1]). Applying rank nullity theorem to A^T , we have

$$n = \dim \operatorname{Ker} A^T + \operatorname{rank} A^T$$
.

Applying rank nullity theorem to AA^T , we have

$$n = \dim \operatorname{Ker}(AA^T) + \operatorname{rank}(AA^T)$$

From (*), we know dim Ker $A^T = \dim \operatorname{Ker}(AA^T)$, and we have dim $\operatorname{Im}(A) = \operatorname{rank} A = \operatorname{rank} A^T = \operatorname{rank}(AA^T) = \dim \operatorname{Im}(AA^T)$. We can easily prove $\operatorname{Im}(AA^T) \subset \operatorname{Im}(A)$. Therefore we have $\operatorname{Im}(AA^T) = \operatorname{Im}(A)$.

Remark. The statement if false for complex coefficients matrix, for example, $\begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$ where $i^2 = -1$.

References

[1] Otto Bretscher, Linear Algebra with Application, 5th ed., Pearson, December 20, 2012.