Analisi Matematica III

Anno Accademico 2015/2016 Docente: Silvano Delladio

Note a cura di: Alex Pellegrini

email: alex.pellegrini@live.com
web: http://rexos.github.io

Indice

1	Teoria della Misura		2
	1.1	Misura di Peano-Jordan	2
	1.2	σ -algebra	8
	1.3	Misura Metrica	10
	1.4	Teoremi di Approssimazione	15
	1.5	Misura di Lebesgue	21

Capitolo 1

Teoria della Misura

Definizione 1.1. Una *misura esterna* sull' insieme \mathcal{X} é una mappa $\varphi: 2^{\mathcal{X}} \to [0, +\infty]$ tale che :

- 1. $\varphi(\emptyset) = 0$
- 2. $\varphi(E) \leq \varphi(F)$ se $E \subset F \subset \mathcal{X}$ (monotonia)
- 3. $\varphi(\bigcup_j E_j) \leq \sum_j \varphi(E_j)$ (σ -subadditivitá)

Esempio 1.2.

Esempio 1.3.

Esempio 1.4.

1.1 Misura di Peano-Jordan

Sia $A \subset \mathbb{R}^2$ limitato.

Sia \mathcal{R}_A la famiglia di ricoprimenti finiti di A, formati da rettangoli aperti in \mathbb{R}^2 della forma $(a,b)\times(c,d)$.

Sia $\mathcal{R} = \{R_1, R_2, ..., R_k\}$ un ricoprimento finito di A. Indichiamo con $m(R_i)$

l'area di R_i . Ovviamente $A \subset \bigcup_{j=1}^k R_j$.

Definizione 1.5. La misura superiore di Jordan di un insieme A é definita come:

$$J^{+}(A) := \inf_{\mathcal{R} \in \mathcal{R}_A} \sum_{R_j \in \mathcal{R}} m(R_j)$$

Ovvero prendiamo la minore delle aree dei ricoprimenti di A.

La misura superiore di Peano-Jordan é definita anche per ${\cal A}$ non limitato come:

$$J^{+}(A) := \lim_{\rho \to +\infty} J^{+}(A \cap B_{\rho}(0,0))$$

Proposizione 1.6. La misura superiore di Peano-Jordan **non** é una misura esterna.

Dimostrazione. Consideriamo $A = (\mathbb{Q} \cap [0,1]) \times (\mathbb{Q} \cap [0,1])$. A é formato dai punti razionali nel quadrato reale di lato 1 centrato nell' origine. Siccome \mathbb{Q} é denso in \mathbb{R} nessun punto razionale di A é punto interno (lo stesso vale per la parte puramente reale).

Scriviamo dunque $A = \{P_1, P_2, ...\}$, ovvero $A = \bigcup_{j=1}^{+\infty} P_j$ (infinito numerabile).

- Dimostriamo $J^+(P_j)=0$. Sia Q_ε il quadrato aperto che ricopre il punto P_j . Abbiamo che $J^+(P_j) \leq m(Q_\varepsilon) = \varepsilon^2 \Rightarrow J^+(P_j) = 0$ per l'arbitrarietá di ε .
- Dimostriamo che $J^+(A) \ge 1$. Sia \mathcal{R} un ricoprimento di A, allora

$$1 \le area(\mathcal{R}) \le \sum_{R_j \in \mathcal{R}} m(R_j)$$

Allora abbiamo che:

$$\inf_{\mathcal{R} \in \mathcal{R}_{\mathcal{A}}} \sum_{R_i \in \mathcal{R}} m(R_j) \ge 1$$

Concludiamo che $J^+(A) \ge 1 > \sum_{j=1}^{\infty} J^+(P_j) = 0$. Quindi la misura superiore di Jordan non é esterna in quanto non rispetta la σ -subadditivitá \square

Consideriamo l'insieme $\mathcal{T}_A = \{\{R_1, ..., R_k\} | k < +\infty, R_j \subset A, R_i \cap R_j = \emptyset \text{ se } i \neq j\}$, ovvero l'insieme dei ricomprimeti inscritti ad A (formati da rettangoli aperti) a due a due disgiunti.

Definizione 1.7. La misura inferiore di Jordan é definita come:

$$J^{-}(A) := \begin{cases} 0 & \text{se } \mathcal{T}_{A} = \emptyset \\ \sup_{\mathcal{T} \in \mathcal{T}_{A}} \sum_{R_{j} \in \mathcal{T}} m(R_{j}) & \text{se } \mathcal{T}_{A} \neq \emptyset \end{cases}$$

Il massimo delle aree dei ricoprimenti inscritti di A.

Definizione 1.8. A é misurabile secondo Jordan se $J^-(A) = J^+(A)$, in tal caso il valore si indica con J(A).

Ovviamente $J^-(A) \leq J^+(A)$, per A come sopra abbiamo $\mathcal{T}_A = \emptyset \Rightarrow J^-(A) = 0$ inoltre come visto prima $J^+(A) \geq 1$. Dunque A non é misurabile secondo Jordan. Detto questo la mappa $J: M_J \longrightarrow [0, +\infty]$, con M_J insieme dei misurabili secondo Jordan, ha dominio $M_J \neq 2^{\mathbb{R}^2}$, quindi non puó essere misura esterna.

Definizione 1.9. Sia $\varphi: 2^{\mathcal{X}} \longrightarrow [0, +\infty]$ una misura esterna su \mathcal{X} . $E \subset \mathcal{X}$ é misurabile se $\forall A \subset \mathcal{X}$:

$$\varphi(A) = \varphi(A \cap E) + \varphi(A \cap E^c);$$

Questa proprietá é detta buon spezzamento indotto da E. La famiglia degli insiemi misurabili secondo φ é indicata con \mathcal{M}_{φ} .

Osservazione 1.10. Notiamo subito che $\mathcal{X}, \emptyset \in \mathcal{M}_{\varphi}$.

Osservazione 1.11. Per $E \subset \mathcal{X}$ e $\forall A \subset \mathcal{X}$

$$A = (A \cap E) \cup (A \cap E^c)$$

allora per σ -subadditivitá

$$\varphi((A \cap E) \cup (A \cap E^c)) \le \varphi(A \cap E) + \varphi(A \cap E^c)$$

Quindi per dimostrare che un certo $E \in \mathcal{M}_{\varphi}$ basta dimostrare che vale la relazione \geq .

Il seguente teorema enuncia delle proprietá di chiusura della famiglia \mathcal{M}_{φ}

Teorema 1.12. Sia $\varphi: 2^{\mathcal{X}} \longrightarrow [0, +\infty]$ una misura esterna su \mathcal{X} . Allora valgono le seguenti proprietá:

- 1. \mathcal{M}_{φ} é c-chiusa (chiusura rispetto al complementare)
- 2. Se $E \subset \mathcal{X}$ con $\varphi(E) = 0 \Rightarrow E \in \mathcal{M}_{\varphi}$ (allora per 1 anche $\mathcal{X} \in \mathcal{M}_{\varphi}$)
- 3. Se $E_1, E_2, ..., E_n$ con $E_i \in \mathcal{M}_{\varphi} \Rightarrow \bigcap_{j=1}^n E_j \in \mathcal{M}_{\varphi}$ (quindi anche $\bigcup_j^n E_j \in \mathcal{M}_{\varphi}$)
- 4. Sia $\{E_j\}_j \subset \mathcal{M}_{\varphi}$ famiglia numerabile (2-2 disgiunta) $\Rightarrow S = \bigcup_j E_j \in \mathcal{M}_{\varphi}$ e vale

$$\varphi(A) \ge \sum_{j} \varphi(A \cap E_j) + \varphi(A \cap S^c) \quad \forall A \subset \mathcal{X}$$

5. Se
$$\{E_j\}_j$$
 come in $\{E_j\}_j = \sum_j \varphi(E_j)$

Dimostrazione. 1. Sia $E \in \mathcal{M}_{\varphi}$ e consideriamo E^c devo provare buon spezzamento $\forall A \subset \mathcal{X}$:

$$\varphi(A \cap E^c) + \varphi(A \cap (E^c)^c) = \varphi(A \cap E^c) + \varphi(A \cap E) = \varphi(A)$$

2. Per monotonia abbiamo che $\varphi(A \cap E) \leq \varphi(E)$ (poiché $(A \cap E) \subset E$). Siccome, per ipotesi, $\varphi(E) = 0$ allora anche $\varphi(A \cap E) = 0$ quindi posssiamo scivere:

$$\varphi(A \cap E) + \varphi(A \cap E^c) = 0 + \varphi(A \cap E^c) \le \varphi(A)$$

Abbiamo visto nell' osservazione 1.11 che basta dimostrare questa disuguaglianza per ottenere la tesi.

- 3. Procediamo per induzione su n.
 - n = 1 La tesi é banale.
 - n=2 Dimostro questo poi l'induzione deriva facilmente. Siano $E_1, E_2 \in \mathcal{M}_{\varphi}$ quindi devo provare il buon spezzamento $\forall A \subset \mathcal{X}$. Siccome $E_1, E_2 \in \mathcal{M}_{\varphi}$:

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c) \tag{1.1}$$

Ora per il buon spezzamento indotto su $A \cap E_1$ da E_2 riscriviamo il secondo termine dell'equazione come:

$$\varphi(A \cap E_1) = \varphi(A \cap E_1 \cap E_2) + \varphi(A \cap E_1^c \cap E_2^c)$$

Ora sostituendo in 1.1 otteniamo:

$$\varphi(A) = \varphi(A \cap E_1 \cap E_2) + \varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c) \quad (1.2)$$

Per σ -subadditivitá della misura il terzo e quarto termine possono essere minorati come segue:

$$\varphi(A \cap E_1^c \cap E_2^c) + \varphi(A \cap E_1^c) \ge \varphi((A \cap E_1^c \cap E_2^c) \cup (A \cap E_1^c))$$

$$= \varphi(A \cap [(E_1^c \cap E_2^c) \cup E_1^c]) = \varphi(A \cap [(E_1^c \cup E_1^c) \cap (E_2^c \cup E_1^c)])$$

$$= \varphi(A \cap E_1^c \cup E_2^c).$$

Sostituendo in 1.2 otteniamo infine:

$$\varphi(A) \ge \varphi(A \cap E_1 \cap E_2) + \varphi(A \cap E_1^c \cup E_2^c) \tag{1.3}$$

Dove ovviamente $E_1^c \cup E_2^c = (E_1 \cap E_2)^c \Rightarrow E_1 \cap E_2 \in \mathcal{M}_{\varphi}$.

Mostriamo ora che $\bigcup_{j=1}^{n} E_{j} \in \mathcal{M}_{\varphi}$. Per ogni valore di n abbiamo:

$$\bigcup_{j}^{n} E_j = \left[\left(\bigcup_{j}^{n} E_j \right)^c \right]^c = \left[\left(\bigcap_{j}^{n} E_j^c \right) \right]^c$$

Analizziamo l'ultimo termine. $E_j^c \in \mathcal{M}_{\varphi}$ per 1). L'intersezione $\bigcap_{j}^{n} E_j^c \in \mathcal{M}_{\varphi}$ per il punto 3) mentre il tutto é misurabile nuovamente per il punto 1).

4. Dimostriamo prima la seconda parte dell' enunciato. Sia $A \subset \mathcal{X}$ qualsiasi allora, per il buon spezzamento indotto da E_1 :

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap E_1^c) \tag{1.4}$$

Dunque per il buon spezzamento indotto da E_2 riscriviamo 1.4 modificando l'ultimo termine:

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap (E_1^c \cap E_2)) + \varphi(A \cap (E_1^c \cap E_2^c)) \tag{1.5}$$

Ora, siccome gli E_j sono 2-2 disgiunti $E_i \cap E_j^c = E_i$ per $i \neq j$ in quanto $E_i \subset E_j^c$, sostituiamo in 1.5 che diventa come segue:

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap E_2) + \varphi(A \cap E_1^c \cap E_2^c) \tag{1.6}$$

La tesi segue facilmente ora, ma eseguiamo ancora un passo per chiarezza. Esattamente come abbiamo fatto per il buon spezzamento indotto da E_2 possiamo procedere con E_3 . Prendiamo l'ultimo termine di 1.6 e riscriviamolo come:

$$\varphi(A \cap E_1^c \cap E_2^c) = \varphi(A \cap E_1^c \cap E_2^c \cap E_3) + \varphi(A \cap E_1^c \cap E_2^c \cap E_3^c)$$

Per la stessa argomentazione che ci ha portato a 1.6 abbiamo $\varphi(A \cap E_1^c \cap E_2^c \cap E_3) = \varphi(A \cap E_3)$ in quanto $E_3 \subset E_i^c$ per i = 1, 2 (a dire la veritá vale $\forall i \neq 3$). Riscriviamo 1.6:

$$\varphi(A) = \varphi(A \cap E_1) + \varphi(A \cap E_2) + \varphi(A \cap E_3) + \varphi(A \cap E_1^c \cap E_2^c \cap E_3^c)$$

$$= \sum_{j=1}^{n} \varphi(E_j) + \varphi(\bigcap_{j=1}^{n} E_j^c)$$

Ora $\bigcap_{j=1}^n E_j^c = (\bigcup_{j=1}^n E_j)^c \supset (\bigcup_{j=1}^\infty E_j)^c = S$ quindi per monotonia della

misura $\varphi(A \cap (\bigcup_{j=1}^n E_j)^c) \ge \varphi(A \cap S^c)$, e otteniamo il limite:

$$\lim_{n \to +\infty} \varphi(A) \ge \sum_{j=1}^{\infty} \varphi(A \cap E_j) + \varphi(A \cap S^c)$$
 (1.7)

Dimostriamo ora la prima parte sfruttando quanto appena dimostrato. Sia dunque $S \in \mathcal{M}_{\varphi}$ allora

$$\varphi(A \cap S) = \varphi(A \cap (\bigcup_{j} E_{j})) = \varphi(\bigcup_{j} A \cap E_{j})) \le \sum_{j} \varphi(A \cap E_{j})$$

per σ -subadditivitá. Allora

$$\varphi(A \cap S) + \varphi(A \cap S^c) \le \sum_{j} \varphi(A \cap E_j) + \varphi(A \cap S^c) \le \varphi(A)$$

dove l'ultima disuguaglianza vale per quanto dimostrato sopra del punto 4).

5. Per la seconda parte del punto 4) con A = S otteniamo:

$$\varphi(\bigcup_{j} E_j) \ge \sum_{j} \varphi(E_j)$$

in quanto $E_j \in S$ e $S \cap S^c = \emptyset$. L'altro verso della disuguaglianza lo otteniamo per σ -subadditivitá.

Quello che facciamo ora é togliere un vincolo dal punto 4) del teorema precedente, ovvero il fatto che gli E_j nella famiglia $\{E_j\}_j \in \mathcal{M}_{\varphi}$ non siano per forza 2-2 disgiunti. Quindi rienunciamo il punto 4).

Osservazione 1.13. Sia $\{E_j\}_j \in \mathcal{M}_{\varphi}$ numerabile, allora $\bigcup_j E_j \in \mathcal{M}_{\varphi}$.

Dimostrazione. Introduciamo il seguente tipo di insieme:

- $E_1^* = E_1$
- $E_n^* = E_n \setminus \bigcup_{j=1}^n E_j = E_n \cap (\bigcup_{j=1}^n E_j)^c$ in quanto togliere un insieme equivale a intersecare con il complementare.

Ora notiamo subito che $E_n \cap (\bigcup_{j=1}^n E_j)^c \in \mathcal{M}_{\varphi}$ per i punti 1) e 3) del teorema precedente, quindi anche $E_n^* \in \mathcal{M}_{\varphi}$. Inoltre abbiamo che $\bigcup_{j=1}^n E_j^* = \bigcup_{j=1}^n E_j \ \forall n$ per il punto 4) del teorema precedente, poiché gli E_j^* sono 2-2 disgiunti. Allora $\bigcup_j E_j \in \mathcal{M}_{\varphi}$.

1.2 σ -algebra

Cerchiamo di identificare la struttura della famiglia \mathcal{M}_{φ} . Introduciamo quindi la seguente nozione:

Definizione 1.14. Una famiglia non vuota $\Sigma \subset 2^{\mathcal{X}}$ é una σ -algebra se ha le seguenti proprietá:

- 1. $E \in \Sigma \Rightarrow E^c \in \Sigma$ (c-chiusura)
- 2. $\{E\}_j \subset \Sigma$ famiglia numerabile allora $\bigcup_j E_j \in \Sigma$

Proposizione 1.15. Se $\varphi: 2^{\mathcal{X}} \longrightarrow [0, +\infty]$ é misura esterna allora \mathcal{M}_{φ} é una σ -algebra.

Dimostrazione. Direttamente dal teorema precedente (punti 1 e 4 principalmente). \Box

Osservazione 1.16. Se Σ é una σ -algebra in \mathcal{X} allora:

- 1. $\emptyset, \mathcal{X} \in \Sigma$ poiché siccome Σ é non-vuota allora $\exists E \in \Sigma$ quindi $E^c \in \Sigma$ e $E \cup E^c = \mathcal{X} \in \Sigma$ inoltre $E \cap E^c = [(E \cap E^c)^c]^c = [E^c \cup E]^c = \mathcal{X}^c = \emptyset \in \Sigma$.
- 2. Σ é chiusa rispetto all'intersezione numerabile, infatti sia $\{E_j\}_j \subset \Sigma$ una famiglia numerabile di elementi di Σ allora $\bigcap_j E_j = [(\bigcap_j E_j)^c]^c = [(\bigcup_j E_j^c)]^c$. Ora $E_j^c \in \Sigma$ per definizione, $\bigcup_j E_j^c \in \Sigma$ ancora per definizione, poi Σ é c-chiusa. La tesi é dimostrata.

Enunciamo il teorema di continuitá sull' l'insieme di misurabili secondo una misura esterna.

Teorema 1.17. $Sia \varphi : 2^{\mathcal{X}} \to [0, +\infty]$ una misura esterna. Allora

1. (Continuitá dal basso) Sia $\{E_j\}_j \subset \mathcal{M}_{\varphi}$ una famiglia numerabkile e crescente (i.e. $E_j \subset E_{j+1}$), allora:

$$\varphi(\bigcup_{j} E_{j}) = \lim_{j} \varphi(E_{j})$$

2. (Continuitá dall'alto) Sia ora $\{E_j\}_j \subset \mathcal{M}_{\varphi}$ una famiglia numerabile e decrescente (i.e. $E_{j+1} \subset E_j$) con $\varphi(E_1) < +\infty$, allora:

$$\varphi(\bigcap_{j} E_{j}) = \lim_{j} \varphi(E_{j})$$

Dimostrazione. Notiamo innanzitutto che il limite nei due punti esiste in entrambi i casi in quanto stiamo trattando delle successioni monotone.

1. Definiamo $E_j^* = E_j \setminus E_{j-1}$ con $E_0^* = \emptyset$. Notiamo subito che $E_j^* \in \mathcal{M}_{\varphi}$ in quanto $E_j^* = E_j \cap E_{j-1}^c$ ed entrambi i termini sono misurabili per ipotesi. Inoltre $\bigcup_{j}^{n} E_j^* = E_n = \bigcup_{j}^{n} E_j$, quindi generalizzando all'unione numerabile $\bigcup_{j}^{n} E_j^* = \bigcup_{j}^{n} E_j$. Ora, é facile capire che gli E_j^* sono 2-2 disgiunti quindi vale la σ -additivitá (NB: non σ -SUBadditivitá), ovvero:

$$\varphi(\bigcup_{j} E_{j}) = \varphi(\bigcup_{j} E_{j}^{*}) = \sum_{j} \varphi(E_{j}^{*}) = \lim_{n \to +\infty} \sum_{j=1}^{n} \varphi(E_{j}) = \lim_{n \to +\infty} \varphi(\bigcup_{j=1}^{n} E_{j}) = \lim_{n \to +\infty} \varphi(E_{n})$$

Dove la seconda uguaglianza vale per il punto 5 del teorema 1.12.

2. Notiamo che E_1 puó essere illimitato avendo bensí area finita. Poniamo $F_j = E_1 \setminus E_j$ e notiamo che é misurabile per un argomentazione simile a quella sviluppata per gli E_j^* nel punto 1. Ora gli F_j formano una successione crescente al crescere di j quindi per il punto 1 abbiamo che $\varphi(\bigcup_j F_j) = \lim_j \varphi(F_j)$ con

$$\bigcup_{j} F_{j} = \bigcup_{j} E_{1} \cap E_{j}^{c} = E_{1} \cap \bigcup_{j} E_{j}^{c} = E_{1} \cap (\bigcup_{j} E_{j})^{c} = E_{1} \setminus \bigcap_{j} E_{j}$$

Quinidi passando alla misura otteniamo, usando il buon spezzamento indotto da $\bigcap_{i} E_{j}$:

$$\varphi(E_1) = \varphi(E_1 \cap \bigcap_j E_j) + \varphi(E_1 \cap (\bigcap_j E_j)^c).$$

L'ultimo termine é proprio $\varphi(\bigcup_i F_j)$ quindi ricaviamo:

$$\varphi(\bigcup_{j} F_{j}) = \varphi(E_{1}) - \varphi(E_{1} \cap \bigcap_{j} E_{j}) = \varphi(E_{1}) - \varphi(\bigcap_{j} E_{j})$$
 (1.8)

(L'ultima uguaglianza vale in quanto l'intersezione di tutti gli E_j é contenuta in E_1 .) D'altro canto $F_j = E_1 \cap E_j^c$ quindi possiamo usare il buon spezzamento indotto da un singolo E_j come segue:

$$\varphi(E_1) = \varphi(E_1 \cap E_j) + \varphi(E_1 \cap E_j^c)$$

Notiamo che il secondo termine é $\varphi(E_i)$ mentre il terzo é proprio $\varphi(F_i)$. Quindi scriviamo:

$$\varphi(F_j) = \varphi(E_1) - \varphi(E_j) \tag{1.9}$$

Quindi unendo le equazioni 1.8 e 1.9 otteniamo:

$$\varphi(\bigcup_{j} F_{j}) = \varphi(E_{1}) - \varphi(\bigcap_{j} E_{j}) = \lim_{j} [\varphi(E_{1}) - \varphi(E_{j})] = \varphi(E_{1}) - \lim_{j} \varphi(E_{j})$$

Abbiamo quindi ottenuto la tesi:

$$\varphi(\bigcap_{j} E_{j}) = \lim_{j} \varphi(E_{j})$$

Osservazione 1.18. Nel punto 2 del teorema precedente se non assumiamo che $\varphi(E_1) < +\infty$ il teorema fallisce.

Facciamo un esempio:

Esempio 1.19. Consideriamo l'insieme $\mathcal{X} = \mathbb{N}$ e la misura $\varphi = |\cdot|$, consideriamo anche le semirette $E_j = \{j, j+1, j+2, ...\}$. Vediamo subito che $E_{j+1}\subset E_j$ quindi abbiamo una famiglia numerabile e decrescente. Ora $\mathcal{M}_{\varphi} = 2^{\mathcal{X}}$ quindi ogni $E_j \in \mathcal{M}_{\varphi}$. Ora $\varphi(\bigcap_j E_j) = 0$ mentre $\varphi(E_j) = +\infty \ \forall j$. Questo smentisce il teorema.

1.3 Misura Metrica

Definizione 1.20. Una misura esterna φ su uno spazio metrico (\mathcal{X}, d) é detta di Caratheodory o metrica se $\forall A, B \in 2^{\mathcal{X}}$ tali che $d(A, B) = \inf\{d(a, b) | a \in A, b \in B\} > 0$ vale:

$$\varphi(A \cup B) = \varphi(A) + \varphi(B) \tag{1.10}$$

In altre parole una misura si dice metrica se é additiva su insiemi a distanza positiva (disgiunti). Il teorema seguente dimostra che in uno spazio metrico con una misura metrica tutti i chiusi sono misurabili (i.e. $\mathcal{F} \subset$ \mathcal{M}_{φ}) Anticipiamo inoltre che questo teorema comporta il fatto che una misura metrica é Boreliana in quanto un Boreliano, essendo dato da unione o intersezione numerabili di chiusi (o aperti), é misurabile.

Teorema 1.21. (Caratheodory) Sia (\mathcal{X}, d) uno spazio metrico $e \varphi : 2^{\mathcal{X}} \to \mathcal{X}$ $[0,+\infty]$ una misura metrica, allora ogni chiuso in \mathcal{X} é misurabile.

Dimostrazione. Dobbiamo verificare che i chiusi inducono il buon spezzamento della misura su qualsiasi insieme. Sia dunque $C \in \mathcal{C}$ e $A \subset \mathcal{X}$ un insieme qualsiasi. Come sappiamo ci basta dimostrare che $\varphi(A) \geq \varphi((A \cap C) \cup (A \cap C^c))$. La tesi é banale se $\varphi(A) = +\infty$ quindi supponiamo che A abbia misura finita. Introduciamo il seguente tipo di insieme: per h > 0 poniamo $C_h = \{x \in \mathcal{X} | d(x, C) \leq \frac{1}{h}\}$ (geometricamente $C_h \setminus C$ é un' intercapedine di larghezza $\frac{1}{h}$ attorno a C). Notiamo che anche C_h risulta chiuso in quanto nella sua definizione abbiamo l'uguaglianza. C_h é dunque composto cosí:

$$C_h = \{x \in \mathcal{X} | d(x, C) = 0\} \cup \left\{x \in \mathcal{X} | d(x, C) \in (0, \frac{1}{h}]\right\}$$
 (1.11)

La prima parte dell'unione in 1.11 é chiaramente $\overline{C} = C$. Mentre nella seconda parte possiamo scrivere l'intervallo $(0, \frac{1}{h}] = \bigcup_{j \geq h} (\frac{1}{j+1}, \frac{1}{j}]$. Suddividiamo adesso $C_h \setminus C$ in ulteriori intercapedini del tipo:

$$S_j = \left\{ x \in \mathcal{X} | d(x, C) \in \left(\frac{1}{j+1}, \frac{1}{j}\right] \right\}$$

Ovvero scriviamo:

$$C_h = C \cup (\bigcup_{j \ge h} S_j)$$

Quindi ricaviamo C e dunque C^c :

$$C = C_h \setminus \bigcup_{j \ge h} S_j = C_h \cap (\bigcup_{j \ge h} S_j)^c$$

$$C^c = C_h^c \cup (\bigcup_{j \ge h} S_j)$$

Abbiamo dunque tutti gli strumenti per provare il buon spezzamento indotto da C. Prediamo dunque un $A \subset \mathcal{X}$ e vediamo che $(A \cap C) \cap (A \cap C_h^c) = \emptyset$ quindi per monotonia e meticitá della misura:

$$\varphi(A) \ge \varphi((A \cap C) \cup (A \cap C_h^c)) = \varphi((A \cap C)) + \varphi((A \cap C_h^c)) \tag{1.12}$$

Vogliamo dimostrare che $\lim_{h\to +\infty} \varphi(A\cap C_h^c) = \varphi(A\cap C^c)$ così possiamo passare al limite nell'equazione 1.12. Quindi abbiamo per monotonia $(C_h^c \subset C^c)$ che:

$$\varphi(A \cap C_h^c) \le \varphi(A \cap C^c)$$

Come abbiamo visto sopra la parte destra della disequazione diventa:

$$\varphi(A \cap C^c) = \varphi((A \cap C_h^c) \cup (A \cap \bigcup_{j \ge h} S_j)) \le \varphi(A \cap C_h^c) + \sum_{j \ge h} \varphi(A \cap S_j)$$

Quello che vogliamo dimostrare che $\sum\limits_{j\geq h} \varphi(A\cap S_j)$ converge e quindi $\lim\limits_{h\to +\infty} \sum\limits_{j\geq h} \varphi(A\cap S_j)$ va a 0 quindi vale l'uguaglianza nella disequazione sopra. Dunque sia N>0 qualsiasi e:

$$\sum_{j=1}^{N} \varphi(A \cap S_j) = \sum_{j=1, j \ dispari}^{N} \varphi(A \cap S_j) + \sum_{j=2, j \ pari}^{N} \varphi(A \cap S_j)$$

Siccome la distanza tra due intercapedini indicizzate pari o tra due dispari la distanza é positiva, quindi per metricitá scrivo:

$$\sum_{j=1}^{N} \varphi(A \cap S_j) = \varphi(\bigcup_{j=1,j \text{ dispari}}^{N} A \cap S_j) + \varphi(\bigcup_{j=2,j \text{ pari}}^{N} A \cap S_j)$$

Ora entrambi i termini sulla destra sono sottoinsiemi di A quindi per monotonia:

$$\varphi(\bigcup_{j=1,j}^{N} A \cap S_j) + \varphi(\bigcup_{j=2,j}^{N} A \cap S_j) \le 2\varphi(A) < +\infty \quad \forall N$$

E allora:

$$\sum_{j=1}^{N} \varphi(A \cap S_j) \le 2\varphi(A) < +\infty$$

Abbiamo dunque dimostrato che tale sommatoria converge quindi l'intercapedine si assottiglia fino a sparire per $h \to +\infty$ dunque il buon spezzamento segue e si ha la tesi.

Osservazione 1.22. Vale il reciproco del teorema 1.21 (Caratheodory) ovvero:

Sia (\mathcal{X}, d) uno spazio metrico e $\varphi : 2^{\mathcal{X}} \to [0, +\infty]$ una misura esterna tale che tutti i chiusi sono misurabili. Allora φ é metrica.

Proposizione 1.23. Sia $I \subset 2^{\mathcal{X}}$ e indichiamo con A_I la famiglia delle σ -algebre Σ su \mathcal{X} tali che $I \subset \Sigma$. Allora $\Sigma_I = \bigcap_{\Sigma \in A_I} \Sigma$ é una σ -algebra su \mathcal{X} che contiene I, essa é detta la σ -algebra generata da I.

Dimostrazione. Dimostriamo che le due proprietá di σ -algebra sono soddisfatte.

1. Sia $E \in \Sigma_I$ allora $E \in \bigcap_{\Sigma \in A_I} \Sigma$ dunque $\exists \Sigma$ tale che $E \in \Sigma$, quindi siccome Σ é una σ -algebra $E^c \in \Sigma$. Quindi torniamo indietro $E^c \in \bigcap_{\Sigma \in A_I} \Sigma = \Sigma_I$

2. Sia $\{E_j\}_j \subset \Sigma_I$ una famiglia numerabile allora $\forall j \ E_j \in \Sigma_I$ allora $E_j \in \Sigma \ \forall \Sigma \in A_I$ quindi $\bigcup_j E_j \in \Sigma \ \forall \Sigma \in A_I$ perció $\bigcup_j E_j \in \bigcap_{\Sigma \in A_I} \Sigma = \Sigma_I$

Osservazione 1.24. Se I é una σ -algebra allora $\Sigma_I = I$

Dimostrazione. " \supset " banale per definizione anche se I non é una σ -algebra.

 $''\subset ''$ poiché Ié una $\sigma\text{-algebra allora }I\in A_I$ quindi é ovvio che $\bigcap_{\Sigma\in A_I}\Sigma\subset I$

Andremo ora ad analizzare le σ -algebre generate da aperti, chiusi e compatti in uno spazio topologico. Idichiamo con \mathcal{K} , \mathcal{F} , \mathcal{G} rispettivamente i compatti, i chiusi e gli aperti.

Proposizione 1.25. Sia ora \mathcal{X} uno spazio topologico. Allora:

- 1. $\Sigma_{\mathcal{F}} = \Sigma_{\mathcal{G}}$
- 2. Se \mathcal{X} é di Hausdorff allora $\Sigma_{\mathcal{K}} \subset \Sigma_{\mathcal{F}}$
- 3. Se (\mathcal{X}, d) é uno spazio metrico separabile (i.e. esiste un sottoinsieme denso e numerabile) allora $\Sigma_{\mathcal{K}} = \Sigma_{\mathcal{F}}$

Dimostrazione. 1. Osserviamo che $A_{\mathcal{F}} = A_{\mathcal{G}}$ in quanto, siccome le σ algebre sono c-chiuse e il complementare di un aperto é chiuso, una
sigma algebra che contiene l'insieme degli aperti contiene a sua volta
quello dei chiusi. Dunque:

$$\Sigma_{\mathcal{F}} = \bigcap_{\Sigma \in A_{\mathcal{F}}} \Sigma = \bigcap_{\Sigma \in A_{\mathcal{G}}} \Sigma = \Sigma_{\mathcal{G}}$$

2. Se \mathcal{X} é di Hausdorff allora i compatti sono chiusi (i.e. $\mathcal{K} \subset \mathcal{F}$), questo significa che $A_{\mathcal{F}} \subset A_{\mathcal{K}}$ dunque:

$$\Sigma_{\mathcal{K}} = \bigcap_{\Sigma \in A_{\mathcal{K}}} \Sigma \subset \bigcap_{\Sigma \in A_{\mathcal{F}}} \Sigma = \Sigma_{\mathcal{F}}$$

Abbiamo \subset sopra in quanto $A_{\mathcal{K}}$ é piú numerosa di $A_{\mathcal{F}}$ e la contiene. Quindi abbiamo piú termini nella famiglia delle σ -algebre che contengono i compatti su cui fare l'intersezione.

3. Per questo punto ci limitiamo al caso in cui $\mathcal{X} = \mathbb{R}^n$ che sappiamo essere la chiusura dei razionali (i.e. $\overline{\mathbb{Q}}^n = \mathbb{R}^n$) i quali formano un insieme denso e numerabile in \mathbb{R} . Quello che dobbiamo fare é dimostrare

che ogni aperto é unione numerabile di compatti, ovvero per il punto 1:

$$\Sigma_{\mathcal{F}} = \Sigma_{\mathcal{G}} \subset \Sigma_{\mathcal{K}}$$

infatti, se questo vale, $\mathcal{G} \in \Sigma_{\mathcal{K}} \Rightarrow \Sigma_{\mathcal{G}} = \Sigma_{K}$ per il punto 2. Dimostriamo che un aperto é unione di compatti. Sia $A \subset \mathbb{R}^{n}$ un aperto e $B_{A} = \left\{\overline{B_{q}(r)}|q \in \mathbb{Q}^{n}, r \in \mathbb{Q}, r > 0, \overline{B_{q}(r)} \subset A\right\}$ l'insieme, numerabile, delle bolle chiuse di centro q e raggio r contenuti in A. Notiamo che $\forall b \in B_{A}, b \in \mathcal{K}$. Diciamo che:

$$\bigcup_{k \in B_A} k = A$$

Se questo é vero la tesi segue, quindi dimostriamo entrambe le inclusioni:

 $''\subset''$ Ovvia in quanto $k\subset A\forall k\in B_A$

" \supset " Sia $a \in A \Rightarrow \exists r \in \mathbb{Q}, r > 0$ tale che $B_r(a) \subset A$. Poiché \mathbb{Q} é denso in \mathbb{R} allora $\exists q \in \mathbb{Q}$ tale che $q \in B_{\frac{r}{2}}(a)$ (notiamo che questa bolla é aperta). Quindi si ha che $a \in \overline{B_{\frac{r}{2}}(q)}$ (il quale é compatto) siccome $|a-q| < \frac{r}{2}$. Inoltre:

$$\overline{B_{\frac{r}{2}}(q)} \subset B_r(a) \subset A$$

e ovviamente $\overline{B_{\frac{r}{2}}(q)} \in B_A$ ed é compatto. Quindi abbiamo dimostrato che:

$$a \in \bigcup_{k \in B_A} k \ \forall a \in A.$$

Ovvero
$$A \subset \bigcup_{k \in B_A} k$$
.

Osservazione 1.26. Senza l'ipotesi di separabilitá nel punto 3 potrebbe capitare che $\Sigma_{\mathcal{K}} \subset \Sigma_{\mathcal{G}} = \Sigma_{\mathcal{F}}$ come per esempio in $\mathcal{X} = [0,1]$ munito della topologia discreta dove \mathcal{K} coincide con la famiglia degli insiemi finiti.

Definizione 1.27. Sia \mathcal{X} uno spazio topologico e $\varphi: 2^{\mathcal{X}} \to [0, +\infty]$ una misura esterna, allora:

- 1. la σ -algebra $\Sigma_{\mathcal{F}} = \Sigma_{\mathcal{G}}$ é indiata con $\mathscr{B}(\mathcal{X})$ e i suoi elementi sono detti insiemi Boreliani di \mathcal{X} .
- 2. φ é detta funzione Boreliana se i Boreliani sono misurabili (i.e. $\mathscr{B}(\mathcal{X}) \subset \mathcal{M}_{\varphi}$).

- 3. φ é Borel-regolare se é boreliana e se $\forall A \subset \mathcal{X}$ esiste $B \in \mathcal{B}(\mathcal{X})$ tale che $A \subset B$ e $\varphi(B) = \varphi(A)$. Dal punto di vista geometrico questo significa che una misura é Borel-regolare se ogni sottoinsieme di \mathcal{X} é approssimabile dall'esterno con un Boreliano che ha la stessa misura di tale sottoinsieme.
- 4. φ si dice di Radon se é Borel-regolare e se $\varphi(k) < +\infty \ \forall k \in \mathcal{K}$. Ovvero una misura si dice di Radon se é finita sui compatti. Anticipiamo che la misura di Lebesgue é di Radon, invece non lo é la misura di Hausdorff

Come promesso il risultato sulle misure metriche:

Corollario 1.28. Ogni misura esterna di Caratheodory (i.e. metrica) é Boreliana.

Dimostrazione. Abbiamo dimostrato nel teorema 1.21 che tutti i chiusi sono misurabili secondo una misura metrica i.e.:

$$F \in \mathcal{M}_{\varphi} \ \forall F \in \mathcal{F} \Rightarrow \mathcal{M}_{\varphi} \in A_{\mathcal{F}}$$

Quindi siccome $\mathscr{B}(\mathcal{X}) = \Sigma_{\mathcal{F}} = \bigcap_{\Sigma \in A_{\mathcal{F}}} \Sigma$ i boreliani sono contenuti in tutte le σ -algebre dei chiusi quindi anche $\mathscr{B}(\mathcal{X}) \subset \mathcal{M}_{\varphi}$.

1.4 Teoremi di Approssimazione

Lemma 1.29. Sia $\mathcal X$ uno spazio topologico e consideriamo $D\subset 2^{\mathcal X}$ tale che:

- 1. $\mathcal{F}, \mathcal{G} \subset D$
- 2. D é chiuso rispetto \bigcup_{numer} e \bigcap_{nume}

Allora $\mathscr{B}(\mathcal{X}) \subset D$.

Dimostrazione. Definiamo l' insieme $H = \{E \subset \mathcal{X} | E \subset D, E^c \subset D\}$ (quindi notiamo subito che $H \subset D$) e proviamo che H é una σ -algebra. Ovviamente H é c-chiuso per costruzione. Mostriamo la chiusura rispetto all'unione numerabile. Sia $\{E_j\}_j$ una famiglia numerabile in H mostriamo che $\bigcup_j E_j \in H$. Siccome $E_j \in H$ $\forall j$ abbiamo che $E_j \in D$ $\forall j$ quindi per la seconda ipotesi del lemma $\bigcup_j E_j \in D$. Sappiamo che possiamo scrivere $(\bigcup_j E_j)^c = \bigcap_j E_j^c$ il quale sta in D ancora per la seconda ipotesi e quindi in H per costruzione. Quindi H é una σ -algebra. Ora sfruttando la prima ipotesi otteniamo che $\mathcal{G} \subset H$. Allora $H \in \mathcal{A}_{\mathcal{G}}$ il che significa $\mathscr{B}(\mathcal{X}) = \Sigma_{\mathcal{G}} \subset H \subset D$

Proviamo un teorema di approssimazione dei Boreliani dall'esterno con un aperto e dall'interno con un chiuso. Quello che vogliamo dimostrare é che dato un Boreliano esiste un chiuso che lo approssima dall'interno e un aperto dall'esterno con scarto arbitrariamente piccolo.

Teorema 1.30. Sia φ una misura esterna Boreliana in uno spazio metrico (\mathcal{X}, d) e sia $B \in \mathcal{B}(\mathcal{X})$ Allora:

1.
$$Se \varphi(B) < +\infty \ allora \ \forall \varepsilon > 0 \ \exists F \in \mathcal{F} \ tale \ che \ F_{\varepsilon} \subset B \ e \ \varphi(B \setminus F_{\varepsilon}) < \varepsilon$$

2. Se
$$B \subset \bigcup_{j=0}^{+\infty} V_j, V_j \in \mathcal{G} \ \forall j \ e \ \varphi(V_j) < +\infty \ allora \ \forall \varepsilon > 0 \ \exists G_{\varepsilon} \in \mathcal{G} \ tale$$

$$che \ B \subset G_{\varepsilon} \ e \ \varphi(G_{\varepsilon} \setminus B) < \varepsilon$$

Dimostrazione. 1. Definiamo $\mu := \varphi_{|B} : 2^{\mathcal{X}} \to [0, +\infty]$ dove $\mu(A) = \varphi(B \cap A)$ ed é finita per monotonia, infatti $\mu(A) \leq \varphi(B) < +\infty$. Verifichiamo che μ é una misura esterna, ovvero che valgono i 3 punti della definizione 1.1:

(a)
$$\mu(\emptyset) = \varphi(B \cap \emptyset) = \varphi(\emptyset) = 0$$

- (b) Sia $E \subset F \subset \mathcal{X}$ allora per monotonia di φ otteniamo $\mu(E) = \varphi(E \cap B) \leq \varphi(F \cap B) = \mu(F)$
- (c) Sia $\{E_j\}_j$ una famiglia numerabile in $\mathcal X$ allora per σ -subadditivitá di φ abbiamo $\mu(\bigcup_j E_j) = \varphi(B \cap \bigcup_j E_j) = \varphi(\bigcup_j B \cap E_j) \leq \sum_j \varphi(B \cap E_j) = \sum_j \mu(E_j)$

Ora verifichiamo anche che $\mathcal{M}_{\varphi} \subset \mathcal{M}_{\mu}$. Sia $E \in \mathcal{M}_{\varphi}$ e proviamo il buon spezzamento indotto da E su ogni $A \subset \mathcal{X}$:

$$\mu(A \cap E) + \mu(A \cap E^c) = \varphi(B \cap (A \cap E)) + \varphi(B \cap (A \cap E^c)) =$$
$$= \varphi((B \cap A) \cap E) + \varphi((B \cap A) \cap E^c) = \varphi(B \cap A) = \mu(A)$$

Abbiamo quindi che $E \in \mathcal{M}_{\mu}$ e in particolare anche i Boreliani $\mathscr{B}(\mathcal{X}) \subset \mathcal{M}_{\varphi} \subset \mathcal{M}_{\mu}$.

Ora costruiremo una collezione di tutti gli insiemi approssimabili dall'interno con dei chiusi e poi dimostreremo che i Boreliani appartengono a tale insieme semplicemente applicando il lemma 1.29. Definiamo ora tale insieme:

$$D := \{ E \in \mathcal{M}_{\mu} | \forall \varepsilon > 0 \ \exists F_{\varepsilon} \in \mathcal{F}, F_{\varepsilon} \subset E, \mu(E \setminus F_{\varepsilon}) < \varepsilon \}$$

Ora dimostriamo che il lemma é applicabile a D verificando i due punti:

(a) Mostriamo che chiusi e aperti sono in D:

" $\mathcal{F} \subset D$ " Sia $F \in \mathcal{F}$ allora $F \in \mathcal{B}(\mathcal{X}) \subset \mathcal{M}_{\varphi} \subset \mathcal{M}_{\mu}$. Ora sia $\varepsilon > 0$ e in questo caso possiamo considerare $F_{\varepsilon} = F$ quindi valgono le due condizioni di appartenenza a D in quanto:

$$F_{\varepsilon} \subset F$$

e anche

$$\mu(F \setminus F_{\varepsilon}) = \mu(\emptyset) = 0 < \varepsilon$$

Quindi $F \in D$ per ogni $F \in \mathcal{F}$.

 $''\mathcal{G}\subset D''$ Consideriamo $G\in\mathcal{G}$ e definiamo il tipo di insieme:

$$F_h := \left\{ x \in \mathcal{X} | d(x, G^c) \ge \frac{1}{h} \right\}$$

Dal punto di vista geometrico abbiamo appena definito un insieme, che dato un h, contiene tutti i punti dentro G che distano $\frac{1}{h}$ dall' esterno di G. In altre parlole, F_h é un insieme interno a G che lascia un intercapedine di spessore $\frac{1}{h}$ tra esso e G^c . Grazie all'uguaglianza nella condizione di appartenenza, notiamo anche che gli $F_h \in \mathcal{F}$ per ogni h. Abbiamo poi che $F_h \subset F_{h+1}$. Dimostriamo che $\bigcup_h F_h = G$:

 $^{\prime\prime}\subset^{\prime\prime}$ inclusione banale

" \supset " Sia $x \in G$ allora $\exists r > 0$ tale che la bolla $B_r(x) \subset G$ allora $d(x, G^c) \geq r \geq \frac{1}{h}$ per un qualche h sufficientemente grande. Quindi $x \in F_h \Rightarrow x \in \bigcup_h F_h$ per ogni x. Dunque

$$G \subset \bigcup_h F_h$$
.

Abbiamo ottenuto é che:

$$\{F_h\}_h \subset \mathcal{F} \subset \mathscr{B}(\mathcal{X}) \subset \mathcal{M}_{\omega} \subset \mathscr{M}_{\mu}$$

Quindi per la continuitá dal basso (Teorema 1.17 punto 1) otteniamo che $\mu(G) = \lim_{h \to +\infty} \mu(F_h)$. Dunque prendendo $\varepsilon > 0$ $\exists h_{\varepsilon}$ tale che:

$$0 \le \mu(G) - \mu(F_{h_{\varepsilon}}) \le \varepsilon \tag{1.13}$$

Ora i chiusi sono misurabili quindi possiamo scrivere $\mu(g) = \mu(g \cap F_{h_{\varepsilon}}) + \mu(g \setminus F_{h_{\varepsilon}})$ (buon spezzamento), quindi l' equazione 1.13 diventa :

$$0 \le \mu(G \setminus F_{h_{\varepsilon}}) \le \varepsilon$$

Quindi $G \in D$.

(b) Verifichiamo ora la seconda condizione del lemma ovvero che D é \bigcup_{numer} -chiuso (la dimostrazione sará analoga anche per la \bigcap_{numer} -chiusura, quindi mostriamo solo questo). Quindi sia $\{E_j\}_j$ una famiglia numerabile in D dobbiamo controllare che le condizioni di appartenenza a D siano rispettate. Innanzitutto vediamo che per ogni $j, E_j \in \mathcal{M}_{\mu}$, siccome \mathcal{M}_{μ} é una σ -algebra, $\bigcup_j E_j \in \mathcal{M}_{\mu}$. Controlliamo quindi le proprietá di approssimazione interna. Sia $\varepsilon > 0$, poiché $E_j \in D \ \forall j$ abbiamo che $\exists F_j \in \mathcal{F}$ tale che $F_j \subset E_j$ e $\mu(E_j \setminus F_j) \leq \frac{\varepsilon}{2^j}$ per ogni j.

Poniamo $A=\bigcup_j F_j$ e osserviamo che $C_N:=\bigcup_j^N F_j\in \mathcal{F}$ inoltre $C_N\subset C_{N+1}$ e $\bigcup_j^N C_N=\bigcup_j F_j=A$. Quindi C_N tende ad A con il crescere di N verso ∞ mentre simmetricamente $C_N^c\to A^c$. D'altra parte abbiamo anche che $A=\bigcup_j F_j\subset \bigcup_j E_j$ quindi:

$$(\bigcup_{j} E_{j}) \setminus A = (\bigcup_{j} E_{j}) \cap A^{c} = \bigcup_{j} (E_{j} \cap A^{c}) \subset \bigcup_{j} (E_{j} \cap F_{j}^{c})$$

L'ultima inclusione deriva dal fatto che $\forall jA = \bigcup_j F_j \supset F_j$ e quindi $A^c \subset F_j^c$. Quindi ne deriviamo che:

$$\mu((\bigcup_{j} E_{j}) \setminus A) \le \mu(\bigcup_{j} (E_{j} \setminus F_{j})) \le \sum_{j} \mu(E_{j} \setminus F_{j}) < \sum_{j=1}^{+\infty} \frac{\varepsilon}{2^{j}} = \varepsilon$$
(1.14)

Dove la prima disuguaglianza dell'equazione 1.14 é data per monotonia mentre la seconda per σ -subadditivitá di μ . Ora dal fatto che C_N^c decresce verso A^c al crescere di N otteniamo che $(\bigcup_j E_j) \cap C_N^c$ decresce a $(\bigcup_j E_j) \cap A^c = (\bigcup_j E_j) \setminus A$. Per la continuitá dall' alto (Teorema 1.17 punto 2):

$$\varepsilon > \mu((\bigcup_{j} E_j) \setminus A) = \lim_{N \to +\infty} \mu((\bigcup_{j} E_j) \setminus C_N)$$

Quindi esiste N_{ε} tale che $\mu((\bigcup_{j} E_{j}) \setminus C_{N_{\varepsilon}}) < \varepsilon$ allora pongo $F_{\varepsilon} = C_{N_{\varepsilon}} \subset \mathcal{F}$ e abbiamo l'approssimazione:

$$F_{\varepsilon} = C_{N_{\varepsilon}} \subset A \subset \bigcup_{j} E_{j}$$

e

$$\mu((\bigcup_j E_j) \setminus F_{\varepsilon}) < \varepsilon$$

Quindi
$$\bigcup_{j} E_j \in D$$
 come volevamo.

Applichiamo finalmente il Lemma 1.29 a D e otteniamo che $\mathscr{B}(\mathcal{X}) \subset D$ e in particolare $B \in D$ quindi $\forall \varepsilon > 0 \ \exists F_{\varepsilon} \in \mathcal{F}$ tale che:

$$F_{\varepsilon} \subset B$$

e

$$\mu(B \setminus F_{\varepsilon}) < \varepsilon$$

quest'ultima disequazione messa in termini di φ diventa

$$\varphi(B \cap (B \setminus F_{\varepsilon})) = \varphi(B \setminus F_{\varepsilon}).$$

2. Notiamo prima di tutto che ∀j V_j \ B = V_j ∩ B^c ∈ ℬ(ℋ), in quanto V_j é aperto quindi ci risulta ancora un intersezione numerabile di aperti, e che per monotonia di φ abbiamo φ(V_j \ B) ≤ φ(V_j) < +∞. Ora sia ε > 0 per il punto 1 abbiamo che ∀j ∃F_j ∈ ℱ tale che F_j ⊂ V_j ∩ B^c e φ((V_j \ B) \ F_j) < ½. Quindi per la prima proprietá di F_j otteniamo, passando al complementare, F^c_j ⊃ (V_j \ B)^c = V^c_j ∪ B. Definiamo l'insieme G = ⋃(V_j \ F_j) = ⋃(V_j ∩ F^c_j) ∈ ℱ dove ogni argomento V_j ∩ F^c_j é un aperto (poiché F^c_j é aperto in quanto F_j é chiuso). Facciamo una breve descrizione geometrica di ció che abbiamo costruito: abbiamo preso un Boreliano B e un aperto V_j appartenente a un ricoprimento di B. Abbiamo sottratto B da V_j e abbiamo visto che il pezzo che avanza é ancora un Boreliano quindi puó essere approssimato dall' interno da un chiuso grazie al punto 1. Abbiamo poi costruito G unendo gli insiemi ottenuti togliendo a tutti gli aperti costruiti come appena detto i chiusi approssimanti, i.e. F_j da V_j per ogni j.

Vogliamo dimostrare che $G \supset B$ perció

$$G \supset G \cap B = B \cap \left[\bigcup_{j} (V_j \cap F_j^c) \right] \supset B \cap \left[\bigcup_{j} \left(V_j \cap (V_j^c \cap B) \right) \right]$$
 (1.15)

Vediamo che

$$V_j \cap (V_j^c \cap B) = (V_j \cap V_j^c) \cup (V_j \cap B) = \emptyset \cup (V_j \cap B) = V_j \cap B$$

quindi sostituendo in 1.15 quanto osservato:

$$B \cap \left[\bigcup_{j} (V_j \cap B)\right] = \bigcup_{j} (V_j \cap B) = (\bigcup_{j} V_j) \cap B = B.$$

L'ultima uguaglianza é data dal fatto che l'unione dei V_j é un ricoprimento aperto di B. Come volevasi dimostrare G é un soprainsieme di B.

Passiamo ora alla misura ovvero controlliamo che valga $\varphi(G \setminus B) \ \forall \varepsilon$:

$$\varphi(G \setminus B) = \varphi(G \cap B^c) = \varphi([\bigcup_j (V_j \cap F_j^c)] \cap B) =$$

$$= \varphi(\bigcup_j (V_j \cap F_j^c \cap B^c)) \le \sum_j \varphi((V_j \setminus F_j) \setminus B) <$$

$$< \sum_j \frac{\varepsilon}{2^j} = \varepsilon$$

$$(1.16)$$

Dove la disuguaglianza nell' equazione 1.16 vale per σ -subadditivit.

Il seguente corollario estende il teorema ai misurabili.

Corollario 1.31. Sia (\mathcal{X}, d) uno spazio metrico, $\varphi : 2^{\mathcal{X}} \to [0, +\infty]$ una misura esterna Borel-Regolare ed $E \in \mathcal{M}_{\varphi}$. Allora:

- 1. Se $\varphi(E) < +\infty$ allora $\forall \varepsilon > 0$ esiste $F \in \mathcal{F}$ tale che $F \subset E$ e inoltre $\varphi(E \setminus F) < \varepsilon$
- 2. Se $E \subset \bigcup_{j} V_{j}$, unione numerabile di aperti tali che $\varphi(V_{j}) < +\infty$ allora $\forall \varepsilon > 0 \ \exists G \in \mathcal{G}$ tale che $G \supset E$ inoltre $\varphi(G \setminus E) < \varepsilon$.

Dimostrazione. 1. Sia $B_1 \in \mathcal{B}(\mathcal{X})$ tale che

$$\begin{cases} B_1 \supset E \\ \varphi(B_1) = \varphi(E) \end{cases}$$

tale Boreliano esiste in quanto lavoriamo con una misura Borel-regolare. Siccome E misurabile possiamo applicare il buon spezzamento che induce:

$$\varphi(B_1) = \varphi(B_1 \cap E) + \varphi(B_1 \setminus E) = \varphi(E) + \varphi(B_1 \setminus E)$$

Da qui ricaviamo che $\varphi(B_1 \setminus E) = \varphi(B_1)\varphi(E) = 0$. Abbiamo che l'intercapedine di misura 0 ancora un misurabile in quanto $E, B_1 \in \mathcal{M}_{\varphi}$ la quale una σ -algebra. Quindi, come prima, esiste $B_2 \in \mathscr{B}(\mathcal{X})$ che un involucro di $B_1 \setminus E$ tale che:

$$\begin{cases} B_2 \supset (B_1 \setminus E) \\ \varphi(B_2) = \varphi(B_1 \setminus E) = 0 \end{cases}$$

Quello che faremo ora trovare un nuovo Boreliano che approssima E dall'interno per poi applicare il punto 1 del teorema 1.30 e dimostrare che esiste un chiuso interno ad E con le propriet volute. Definiamo quindi $B_3 := B_1 \setminus B_2 = B_1 \cap B_2^c \in \mathcal{B}(\mathcal{X})$ e verifichiamo che $B_3 \subset E$:

$$B_3 = (B_1 \cap B_2^c) \subset (B_1 \cap (B_1 \cap E^c)^c) =$$

$$= B_1 \cap (B_1^c \cup E) = (B_1 \cap B_1^c) \cup (B_1 \cap E) =$$

$$= B_1 \cap E \subset E$$

Applichiamo ora il punto 1 del teorema 1.30 come preannunciato a B_3 trovando che esiste $F \in \mathcal{F}$ tale che $\forall \varepsilon$:

$$\begin{cases} F \subset B_3 \\ \varphi(B_3 \setminus F) < \varepsilon \end{cases}$$

Ovviamente $F \subset B_3 \subset E \Rightarrow F \subset E$ inoltre $E \setminus F \subset B_1 \setminus F = (B_1 \setminus B_3) \cup (B_3 \setminus F)$. Controlliamo il termine $B_1 \setminus B_3$:

$$B_1 \setminus B_3 = B_1 \cap B_3^c = B_1 \cap (B_1 \cap B_2^c)^c =$$

$$= B_1 \cap (B_1^c \cup B_2) = (B_1 \cap B_1^c) \cup (B_1 \cap B_2) \subset B_2$$

Quindi $\varphi(B_1 \setminus B_3) \leq \varphi(B_2) = 0$ per monotonia ovvero $\varphi(B_1 \setminus B_3) = 0$. Passando ora alla misura di $E \setminus F$ otteniamo che:

$$\varphi(E \setminus F) = \varphi(B_1 \setminus B_3) + \varphi(B_3 \setminus F) \tag{1.17}$$

Siccome $\varphi(B_3 \setminus F) < \varepsilon$ abbiamo che la 1.17 diventa:

$$\varphi(E \setminus F) < \varepsilon$$

2. La dimostrazione di questo punto analoga a quella del secondo punto del teorema 1.30.

1.5 Misura di Lebesgue

Prima di tutto dobbiamo definire delle nozioni che saranno utilizzate nella definizione di misura di Lebesgue. Consideriamo $E \subset \mathbb{R}^n$ e l'intervallo aperto in \mathbb{R}^n $I := \bigotimes_{a_i,b_i \in \mathbb{R}} (a_i,b_i)$

- \mathcal{R}_E la famiglia dei ricoprimenti numerabili do E composti da intervalli aperti di \mathbb{R}^n
- $v(I) := \prod_{a_i, b_i \in \mathbb{R}} (b_i a_i)$ la misura elementare di un intervallo aperto (lunghezze, aree, volumi, ...)

• $diam(E) = \sup_{x,y \in E} \{d(x,y)\}$ il diametro di E.

Teorema 1.32. Si consideri $E \subset \mathbb{R}^n$ e $\mathcal{L}^n : 2^{\mathbb{R}^n} \to [0, +\infty]$ così definita:

$$\mathcal{L}^{n}(E) = \inf_{\{I_{j}\} \in \mathcal{R}_{E}} \{ \sum_{j} v(I_{j}) \}$$

Allora \mathcal{L}^n una misura esterna ed di Radon.

Dimostrazione. Verifichiamo i punti della definizione 1.1

 $\varphi(\emptyset)=0$ Vediamo subito che $\forall \varepsilon>0$ abbiamo $\emptyset\subset (0,\varepsilon)^n$ inoltre $\{(0,\varepsilon)^n\}\in\mathcal{R}_E$. Ora

$$\mathcal{L}^{n}(\emptyset) = \inf\{\sum_{j} v(I_{j}) | \{I_{j}\} \in \mathcal{R}_{E}\} \le v((0, \varepsilon)^{n}) = \varepsilon^{n} \ \forall \varepsilon$$

Quindi per arbitrariet di ε otteniamo $\mathcal{L}^n(\emptyset) = 0$.

- monot. Sia $E \subset F \subset \mathbb{R}^n$. Abbiamo che ovviamente i ricoprimenti di F sono anche ricoprimenti di E quindi $\mathcal{R}_F \subset \mathcal{R}_E$. Quindi $\mathcal{L}^n(E)$ ha un numero maggiore di elementi su cui cercare l' inf. Quindi $\mathcal{L}^n(E) \leq \mathcal{L}^n(F)$.
- $\sigma-sub~\mathrm{Sia}~\{E_j\}_j$ una famiglia numerabile in $2^{\mathbb{R}^n}$. Mostriamo che $\mathcal{L}^n(\bigcup_j E_j) \leq \sum_j \mathcal{L}^n(E_j)$
 - Se $\sum_{i} \mathcal{L}^{n}(E_{j}) = +\infty$ abbiamo finito.
 - Se inveve $\sum_{j} \mathcal{L}^{n}(E_{j}) < +\infty$ allora $\mathcal{L}^{n}(E_{j}) < +\infty \ \forall j$. Consideriamo un ε arbitrario. Adesso $\forall j$ esiste un ricoprimento di E_{j} $\{I_{i}^{(j)}\}_{i} \in \mathcal{R}_{E_{j}}$ tale che:

$$\sum_{i} v(I_i^{(j)}) < \mathcal{L}^n(E_j) + \frac{\varepsilon}{2^j}$$

Ovvero troviamo un ricoprimento del singolo E_j tale che sia di poco pi grande di quello misurato con Lebesgue. Ora facile osservare che $\{I_i^{(j)}\}_{i,j} \in \mathcal{R}_{\bigcup_j E_j}$. Ovvero l'unione di questi ricoprimenti di poco pi grandi dei minimi sono un ricoprimento dell'unione di tutti gli E_j . Allora:

$$\mathcal{L}^{n}(\bigcup_{j} E_{j}) \leq \sum_{i,i} v(I_{i}^{(j)}) = \sum_{j} \sum_{i} v(I_{i}^{(j)}) <$$

$$<\sum_{j}\mathcal{L}^{n}(E_{j})+\sum_{j}\frac{\varepsilon}{2^{j}}=\sum_{j}\mathcal{L}^{n}(E_{j})+\varepsilon$$
 Concludioamo quindi che $\mathcal{L}^{n}(\bigcup_{j}E_{j})\leq\sum_{j}\mathcal{L}^{n}(E_{j})$

Dimostriamo ora la metricit della misura di Lebesgue. Quindi siano $A, B \in 2^{\mathbb{R}^n}$ tali che $d = d(A, B) = \inf\{||a - b|| | |a \in A, b \in B\} > 0$, ovvero che abbiano distanza positiva (infatti dobbiamo controllare l'additivitá della misura proprio su questi insiemi). Vogliamo controllare appunto:

$$\mathcal{L}^n(A \cup B) = \mathcal{L}^n(A) + \mathcal{L}^n(B)$$

verificando i due versi della disuguaglianza:

" \leq " Questa deriva direttamente dalla σ -subadd. dimostrata per \mathcal{L}^n .

" \geq " Qui supponiamo che la misura sia finita, altrimenti la tesi sarebbe banale. Quindi prendiamo un $\varepsilon > 0$ allora esiste $\{I_j\} \in \mathcal{R}_{A \cup B}$ tale che:

$$\sum_{j} v(I_j) < \mathcal{L}^n(A \cup B) + \varepsilon \tag{1.18}$$

Quello che facciamo ora prende un ricoprimento di ogni I_j nel ricoprimento di $A \cup B$ e farne una griglia di tessere di diametro minore di d. In questo modo ogni tesera interseca A o B ma non entrambi. Dopodich espando di poco le tessere in modo che si sovrappongano ma mantenendo il loro diametro minore di d, questo rimarr un ricoprimento di $A \cup B$ ma allo stesso tempo ci permetter di ottenere due ricoprimenti disgiunti per i singoli A e B. Formalmente: $\forall j \exists \{I_i^{(j)}\}_{i=1}^{m_j} \in \mathcal{R}_{I_j}$ tale che:

$$\begin{cases} diam(I_i^{(j)}) < d \\ \sum_{i=1}^{m_j} v(I_i^{(j)}) < v(I_i) + \frac{\varepsilon}{2^j} \end{cases}$$

Sia H = (i, j) l'insieme delle coppie che identificano la i-esima tesserina dell j-esimo insieme del ricoprimento $\{I_j\}_j$. Usiamo per comodit la notazione $\{J_h\}_{h\in H}$ per identificare tutte le tesserine. Dunque:

$$H_A := \{ h \in H | J_h \cap A \neq \emptyset \}, \quad H_B := \{ h \in H | J_h \cap B \neq \emptyset \}$$

Ovviamente $H_A \cup H_B \subset H$ e $H_A \cap H_B = \emptyset$ in quanto se una tesserina intersecasse sia A che B avrebbe diamentro maggiore di d ma questo non possibile per costruzione. Inoltre come abbiamo detto:

$$\{J_h\}_{h\in H_A}\in\mathcal{R}_A,\ \{J_h\}_{h\in H_B}\in\mathcal{R}_B$$

Passando ora alla misura:

$$\mathcal{L}^n(A) + \mathcal{L}^n(B) =$$