Notes perso : Corps locaux

Table des matières

1	Valuations discrètes	5
	1.1 Caractéristion des anneaux de valuations discrètes	. 5
2	Des exercices	7
	2.1 Lemme de Krasner	. 7

TABLE DES MATIÈRES

Chapitre 1

Valuations discrètes

1.1 Caractéristion des anneaux de valuations discrètes

J'ai enfin compris la preuve du fait que A noethérien local et d'idéal maximal principal engenré par un non nilpotent. Donc c'est page 19 du corps locaux. Dire que $\cap \mathfrak{m}^n = 0$ c'est dire qu'il existe un n tel que $x \in A$ s'écrit $\pi^n u$ avec u inversible et $\mathfrak{m} = (\pi)$.

Le fait qu'on ait pas deux écritures $\pi^n u = \pi^{n+m} v$ c'est parce qu'alors $1-u^{-1}v\pi^m \in I$ ou I est le noyau de la localisation en π . Mais alors $1-u^{-1}v\pi^m$ est inversible dans I d'où la puissance de π qui l'annule est nulle!

En fait c'est aussi équivalent au fait d'être noétherien, intégralement clos et d'avoir un seul idéal premier non nul.

1.1 Caractéristion des anneaux de valuations discrètes

Chapitre 2

Des exercices

2.1 Lemme de Krasner

Lemme 2.1.1. Si E/K est galoisienne et K est complet pour |.|. Si $(x_i)_i$ sont des conjugués dans E/K et $y \in E$ vérifie $|y - x_1|_E < |y - x_i|$ pour tout $i \neq 1$. Alors $x_1 \in K(y)$.

L'idée c'est que les x_i conjugués à x_1 au dessus de K(y) vérifient $|y - x_1|_E = |y - x_i|_E$ en appliquant un automorphisme et vu que K(y) est complet. Si c'est pas le cas $\sigma(y) \neq y$ et donc on peut juste comparer $|y - x_1| = |\sigma(y) - \sigma(x_1)$. En fait, si $K(y) \nsubseteq K(x_i, i)$ par Galois il y a toujours un automorphisme non trivial qui fixe K(y). Donc si pour tous on a $|y - x_1| < |y - \sigma(x_1)$ c'est que $x_1 \in K(y)$.

Application : Si f est séparable irréductible de degré n et x_i sont ses racines. Et si |f - h| est petite, alors h est irréductible et l'extension qu'il engendre est la même que celle de f. On peut poser $E = K(y, x_1, \ldots, x_n)$ pour y une racine de h. On peut maintenant remarquer que

$$min_i|y - x_i|^n \le |f(y)| \le O(n|f - h|)$$

comme f est séparable, ses racines sont distinctes donc celles de h doivent s'écarter. En particulier si |f - h| est petit $|y - x_{i_0}| < |y - x_i|$ pour tout i. D'où $x_{i_0} \in K(y)$ et on réitère.