

Ayudantía 1

Profesora: Viviana Guzmán

Ayudantes: Camila Aravena González (cfaravena1@uc.cl) - Francisco Carrasco Varela (ffcarrasco@uc.cl)

Problema 1. Tamaño angular

- a) Si una pelota tiene un diámetro de 70 cm y se encuentra a 35 metros de distancia. ¿Qué tamaño angular tiene?
- b) ¿A qué distancia debe estar si la quiero ver como un punto, digamos, 10 veces más pequeño?
- c) Pregunta para los curiosos: Por mera casualidad, el Sol y la Luna tienen una relación asociada a su tamaño y distancia. ¿Qué nos permite ver esto (que ocurrirá, por cierto, el 14 de Diciembre de este año)?

Problema 2. Paralaje

- a) ¿Qué es el paralaje y para qué se utiliza en astronomía? Diga, además, sus ventajas y desventajas.
- b) ¿Se le ocurre alguna manera "casera" de realizar paralaje en su casa?
- c) El ángulo de paralaje para la estrella Sirio es de $p = 1.05 \times 10^{-4}$ ° (grados). ¿Qué tan lejos se encuentra esta estrella de nosotros? (Recuerde siempre tener cuidado con la conversión de unidades¹)
- d) Dos personas con mucho tiempo de sobra se ponen de acuerdo para medir la distancia que hay entre la Tierra y Marte aprovechando que estos dos planetas se encontrarán en oposición. Para ello, de aburridos, uno de ellos decide viajar a exactamente el otro lado del mundo (todo esto antes de la cuarentena, por supuesto; ociosos, pero responsables); de manera que la distancia entre los dos es igual al diámetro de la Tierra². El día en que ambos planetas se encuentran en oposición, realizan sus mediciones, comparan sus datos de Marte y encuentran que el máximo cambio de posición angular entre sus mediciones es de 33.6", ¿cuál es la distancia, aproximada, entre la Tierra y Marte cuando éstos están en oposición? Diga sus respuestas en unidades de metros y AU³.

Problema 3. Escalas de distancia

- a) Si una nave recorre la distancia que hay entre el Sol y la Tierra en dos años (obviamente, asumiendo que ésta es prácticamente indestructible porque no se derrite, ni deja de funcionar al acercarse al Sol). ¿Cuánto demorará esa misma nave en llegar a Marte, suponiendo que ésta despega desde la Tierra? Para simplificar el problema, ya que la distancia entre la Tierra y Marte es variable (¿por qué?), asuma que los ingenieros hicieron los cálculos de tal manera que la distancia que recorrerá la nave es igual a la distancia a cuando la Tierra y Marte estén en oposición; es decir, asuma que la distancia que recorrerá la nave es igual a la respuesta que halló en el ejercicio 2.d).
- b) ¿Cuánto demorarían los tramos anteriores (Sol-Tierra y Tierra-Marte) si la nave pudiese viajar a la velocidad de la luz⁴, es decir, a 3×10^8 m·s⁻¹?

 $^{^{1}1 \}text{ arcsec} = 1'' = \left(\frac{1}{3600}\right)^{\circ}$

²Radio de la Tierrà $\equiv \acute{R}_{\oplus} = 6.37 \times 10^6 \text{ m} \approx 6400 \text{ km}$

 $^{^3}$ AU \equiv Unidad Astronómica (de sus siglas en inglés) $= 1.49 \times 10^{11} \text{ m} \approx 150 \times 10^6 \text{ km}$

 $^{^4}$ Dato ñoño: Más adelante en la carrera verá que es imposible que un objeto con masa viaje a esa velocidad