第4章 控制系统的稳定性及稳态误差

- 4.1 基于传递函数的稳定性分析
 - 1. 连续系统稳定性定义及劳斯判据 (3.8~3.9)
 - 2. 离散系统稳定性定义及劳斯判据 (6.7)
- 4.2 控制系统的稳态误差分析
 - 1. 控制系统的稳态误差、动态误差系数 (3.10)
 - 2. 离散线性系统的稳态误差、动态误差系数 (6.8.3)
- 4.3 基于根轨迹的稳定性分析
 - 1. 根轨迹基本概念和基本规则
 - 2. 根轨迹法分析控制系统性能
 - 3. 特殊根轨迹
- 4.4 基于状态空间表达式的稳定性分析
 - 1. Lyapunov意义下的稳定性基本概念
 - 2. Lyapunov第一法 (间接法)
 - 3. Lyapunov第二法(直接法)
 - 4. 线性定常系统的Lyapunov稳定性分析

线性系统的稳态误差

稳态误差是系统的稳态性能指标, 是对系统控制精度的度量。

对稳定的系统研究稳态误差才有意义, 所以计算稳态误差以系统稳定为前提。

此处只讨论系统的原理性误差, 不考虑由于非线性因素引起的误差。

阶跃输入作用下

没有原理性误差的系统成为 "无差系统", 有原理性稳态误差的系统称为 "有差系统"

稳态误差(两种):

由给定输入引起的稳态误差称为给定稳态误差; 由扰动输入引起的稳态误差称为扰动稳态误差。

当线性系统既受到给定输入作用同时又受到扰动作用时,它的稳态误差是上述两项误差的代数和。

控制系统的稳态误差

1. 误差与稳态误差

- (1) 误差定义:按输入端定义误差;按输出端定义误差
- (2) 稳态误差:静态误差;动态误差

2. 计算稳态误差的一般方法

- (1) 判定系统的稳定性
- (2) 求误差传递函数
- (3) 用终值定理求稳态误差

3. 给定输入下的稳态误差(静态误差系数法)

- (1) 静态误差系数Kp, Kv, Ka
- (2) 计算误差方法
- (3) 适用条件 (2) 按输入端定义误差 3) r(t)作用,且r(t)无其他前馈通道

4. 干扰作用引起的稳态误差

误差及稳态误差

(1) 线性控制系统的稳态误差 (1) 误差和稳态误差定义

H(s)

按输入端定义的误差

$$E(s) = R(s) - H(s)C(s)$$

给定一反馈

$$E'(s) = \frac{R(s)}{H(s)} - C(s)$$

希望的输出一实际输出

$$E(s) = \frac{1}{1 + G(s)H(s)}R(s)$$

对于单位反馈系统:

$$E(s) = E'(s) = \frac{1}{1 + G(s)}R(s)$$

误差及稳态误差

(1) 线性控制系统的稳态误差 (1) 误差和稳态误差定义

期望输出信号 $y_r(t)$ 与实际输出信号 y(t) 之差定义为误差: $e(t) riangleq y_r(t) - y(t)$

对于负反馈系统, $Y_r(s) = \frac{1}{H(s)} B_r(s) = \frac{1}{H(s)} R(s)$

希望的输出一实际输出

$$E(s) = Y_r(s) - Y(s) = \frac{1}{H(s)} \left(R(s) - B(s) \right) = \frac{1}{H(s)} \varepsilon(s) = \frac{1}{H(s)} \Phi_{\varepsilon}(s) R(s) = \frac{1}{H(s)} \frac{1}{1 + G(s)H(s)} R(s)$$

对于单位反馈系统,
$$H(s)=1$$
, $\varepsilon(s)=E(s)=\frac{1}{1+G(s)}R(s)$ $e(t)=L^{-1}[E(s)]$

稳态误差:误差信号的稳态值,记为 $e_{ss} = \lim_{t o \infty} e(t)$

$$\Phi_{\varepsilon}(s) = \frac{\varepsilon(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$$

稳态误差的定义

$$e(t) = L^{-1}[E(s)]$$

当 $t \to \infty$ 时,系统误差称为稳态误差,用 e_{ss} 表示,即

对于稳定系统,有:

$$e_{ss} = \begin{cases} \lim_{s \to 0} sE(s) \\ \lim_{t \to \infty} e(t) \end{cases}$$

注意: 终值定理应用的条件是 $\lim_{t\to\infty} e(t)$ 存在,这相当于SE(s)的极点都在S平面的 左半平面(包括坐标原点)。

② 计算稳态误差的一般方法

- (1) 判定系统的稳定性
- (2) 求误差传递函数 $\Phi_e(s) = \frac{E(s)}{R(s)} \Phi_{ef}(s) = \frac{E(s)}{F(s)}$
- (3) 用终值定理求稳态误差

$$e_{ss} = \lim_{s \to 0} s[\Phi_e(s)R(s) + \Phi_{ef}(s)F(s)]$$

注意:终值定理应用的条件是 $\lim_{t\to\infty}e(t)$

存在,这相当于sE(s)的极点都在S平面的

(包括坐标原点)。

$$e_{ss} = \begin{cases} \lim_{s \to 0} sE(s) \\ \lim_{t \to \infty} e(t) \end{cases}$$

例 某单位反馈系统开环传递函数为G(s)=1/Ts, T>0

输入信号 $\mathbf{r}(t)=\mathbf{1}(t)$, \mathbf{t} , $\mathbf{t}^2/2$ 以及 $\mathbf{r}(t)=\sin \omega \mathbf{t}$ ($\mathbf{t}>0$),求系统稳态误差 \mathbf{e}_{ss}

解:
$$\Phi_e(s) = \frac{E(s)}{R(s)} = \frac{Ts}{Ts+1}$$

1)
$$R(s) = \frac{1}{s}$$
 $E(s) = \frac{Ts}{Ts+1} \cdot \frac{1}{s} = \frac{T}{Ts+1}$

满足终值定理的应用条件,
$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sT}{Ts+1} = 0$$

2)
$$R(s) = \frac{1}{s^2}$$
 $E(s) = \frac{Ts}{Ts+1} \cdot \frac{1}{s^2} = \frac{T}{s(Ts+1)}$

满足终值定理的应用条件,
$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{T}{Ts+1} = T$$

注意: 终值定理应用的条件是
$$\lim_{t \to \infty} e(t)$$
 存在,这相当于 $\underbrace{sE(s)}$ 的极点都在 S 平面的 左半平面(包括坐标原点)。
$$e_{ss} = \begin{cases} \lim_{s \to 0} sE(s) \\ \lim_{t \to \infty} e(t) \end{cases}$$

3)
$$R(s) = \frac{1}{s^3}$$
 $E(s) = \frac{T}{s^2(Ts+1)}$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{T}{s(Ts+1)} = \infty$$

$$e(t) = L^{-1}[E(s)] = L^{-1}\left[\frac{T}{s^2} - \frac{T^2}{s} + \frac{T^2}{s + \frac{1}{T}}\right] = T(t - T) + T^2 e^{-\frac{t}{T}}$$

$$e_{ss}(t) = T(t - T)$$

4)
$$R(s) = \frac{\omega}{s^2 + \omega^2}$$
 $E(s) = \frac{Ts}{Ts + 1} \cdot \frac{\omega}{s^2 + \omega^2}$

不满足终值定理的应用条件,不能求终值。

$$e(t) = -\frac{T\omega}{T^2\omega^2 + 1}e^{-\frac{t}{T}} + \frac{T\omega}{T^2\omega^2 + 1}(\cos\omega t + T\omega\sin\omega t)$$

$$e_{ss}(t) = \frac{T\omega}{T^2\omega^2 + 1}(\cos\omega t + T\omega\sin\omega t)$$

例 系统结构图如图所示,已知 r(t) = n(t) = t,求系统的稳态误差。T、K>0

解.

$$\Phi_{e}(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + \frac{K}{s(Ts+1)}} = \frac{s(Ts+1)}{s(Ts+1) + K}$$

$$P(s) = Ts^{2} + s + K = 0$$

$$e_{ssr} = \lim_{s \to 0} s \Phi_{e}(s) R(s) = \lim_{s \to 0} s \cdot \frac{s(Ts+1)}{s(Ts+1) + K} \cdot \frac{1}{s^{2}} = \frac{1}{K}$$

$$\Phi_{en}(s) = \frac{E(s)}{N(s)} = \frac{-\frac{K_{n}}{T_{n}s+1}}{1 + \frac{K}{s(Ts+1)}} = \frac{-K_{n}s(Ts+1)}{(T_{n}s+1)[s(Ts+1) + K]}$$

$$e_{ssn} = \lim_{s \to 0} s \Phi_{en}(s) N(s) = \lim_{s \to 0} s \cdot \frac{-K_{n}s(Ts+1)}{(T_{n}s+1)[s(Ts+1) + K]} \cdot \frac{1}{s^{2}} = \frac{-K_{n}}{K}$$

$$e_{ss} = e_{ssr} + e_{ssn} = \frac{1 - K_n}{K}$$
 e_{ss} \begin{cases} 与系统自身的结构参数有关 $\\$ 与外作用的类型有关(控制量,扰动量 $\\$ 及作用点)

误差及稳态误差

例 系统结构图如图所示,求 r(t)分别为 $A\cdot 1(t)$, At, $At^2/2$ 时系统的稳态误差。

解.
$$\Phi_{e}(s) = \frac{E(s)}{R(s)} = \frac{s(Ts+1)}{s(Ts+1)+K}$$

$$r(t) = A \cdot 1(t) \qquad e_{ss1} = \lim_{s \to 0} s \cdot \frac{s(Ts+1)}{s(Ts+1)+K} \cdot \frac{A}{s} = 0$$

$$r(t) = A \cdot t \qquad e_{ss2} = \lim_{s \to 0} s \cdot \frac{s(Ts+1)}{s(Ts+1)+K} \cdot \frac{A}{s^{2}} = \frac{A}{K}$$

$$r(t) = \frac{A}{2} \cdot t^2 \qquad e_{ss3} = \lim_{s \to 0} s \cdot \frac{s(Ts+1)}{s(Ts+1) + K} \cdot \frac{A}{s^3} = \infty$$

影响 e_{ss} 的因素: \begin{cases} 系统自身的结构参数 外作用的类型(控制量,扰动量及作用点) 外作用的形式(阶跃、斜坡或加速度等)

控制系统的型别

系统开环传递函数记为:

$$G(s)H(s) = \frac{K}{s^{\nu}} \cdot \frac{\prod_{i=1}^{m_1} (\tau_i s + 1) \prod_{k=1}^{m_2} (\tau_k^2 s^2 + 2\zeta_k \tau_k s + 1)}{\prod_{j=1}^{m_1} (T_j s + 1) \prod_{l=1}^{m_2} (T_l^2 s^2 + 2\zeta_l T_l s + 1)}$$

K—— 开环放大倍数; $K = \lim_{s \to 0} s^{\nu} G(s) H(s)$ v—— 开环传递函数中串联积分环节的个数。

定义: 开环传递函数包含积分环节的个数 v 称为系统的型别(类型)

$$v=0$$
 ——零型系统;

$$v=0$$
 ——零型系统; $v=1$ —— I 型系统; $v=2$ —— II 型系统

- ★影响稳态误差的因素有: ${}$ ② 开环放大倍数K
- 输入信号r(t)的形式

 - 开环传递函数中积分环节的个数v

给定输入下的稳态误差 (静态误差系数法)

1. 阶跃输入作用下的稳态误差

设 r(t) = A, 则 R(s) = A/s

定义 Kp 为静态位置误差系数

$$K_p = \begin{cases} K & v = 0 & 0 型系统 \\ \infty & v \ge 1 \end{cases}$$

$$e_{ss} = \begin{cases} \frac{A}{1 + K_p} & v = 0 \quad 0 \text{ } \underline{\mathbb{Z}}$$

$$v \ge 1$$

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)H(s)} R(s)$$

结论:

型系统能跟踪阶跃 输入但有位置误差;

I型及以上系统能 完全跟踪阶跃输入.

$$G(s)H(s) = \frac{K}{s^{\nu}} \cdot \frac{\prod_{i=1}^{m_1} (\tau_i s + 1) \prod_{k=1}^{m_2} (\tau_k^2 s^2 + 2\zeta_k \tau_k s + 1)}{\prod_{j=1}^{n_1} (T_j s + 1) \prod_{l=1}^{n_2} (T_l^2 s^2 + 2\zeta_l T_l s + 1)}$$

给定输入下的稳态误差

2. 斜坡信号输入下的稳态误差

设 r(t) = At, 则 $R(s) = A/s^2$

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{A}{s + sG(s)H(s)} = \frac{A}{\lim_{s \to 0} sG(s)H(s)} = \frac{A}{K_v}$$

定义 K, 为静态速度误差系数

$$K_{v} = \lim_{s \to 0} sG(s)H(s) = \lim_{s \to 0} \frac{K}{s^{v-1}} = \begin{cases} 0 & v = 0 \\ K & v = 1 \\ \infty & v = 2 \end{cases}$$

$$e_{ss} = \begin{cases} \infty & v = 0 \\ \frac{A}{K_v} & v = 1 \\ 0 & v = 2 \end{cases}$$

0型系统不能跟踪斜坡输入;

I 型系统能跟踪斜坡输入, 但有稳态误差;

Ⅱ型及以上系统,能准确跟踪斜坡输入信号,

无稳态误差

给定输入下的稳态误差

3. 加速度信号输入下的稳态误差

设 $r(t) = At^2/2$,则 $R(s) = A/s^3$

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{A}{s^2 + s^2G(s)H(s)} = \frac{A}{\lim_{s \to 0} s^2G(s)H(s)} = \frac{A}{K_a}$$

定义 Ka 为静态加速度误差系数

$$K_a = \lim_{s \to 0} s^2 G(s) H(s) = \lim_{s \to 0} \frac{K}{s^{v-2}} = \begin{cases} 0 & v = 0 \\ 0 & v = 1 \\ K & v = 2 \end{cases}$$

$$e_{ss} = \begin{cases} \infty & v = 0 \\ \infty & v = 1 \\ \frac{A}{K_a} & v = 2 \end{cases}$$

0, I 型系统不能跟踪加速度输入;

Ⅱ型系统能跟踪加速度输入,但有稳态误差;

III型及以上系统,能准确跟踪加速度输入,

无稳态误差;

一个表格四句话。

$$G(s)H(s) = \frac{K}{s^{\nu}} \cdot \frac{\prod_{i=1}^{m_1} (\tau_i s + 1) \prod_{k=1}^{m_2} (\tau_k^2 s^2 + 2\zeta_k \tau_k s + 1)}{\prod_{j=1}^{n_1} (T_j s + 1) \prod_{l=1}^{n_2} (T_l^2 s^2 + 2\zeta_l T_l s + 1)}$$

型别	静态误差系数			稳态误差计算		
(V)	$K_p = \lim_{s \to 0} GH$ $= \lim_{s \to 0} \frac{K}{s^{\nu}}$	$K_{\nu} = \lim_{s \to 0} sGH$ $= \lim_{s \to 0} \frac{K}{s^{\nu - 1}}$	$K_a = \lim_{s \to 0} s^2 G H$ $= \lim_{s \to 0} \frac{K}{s^{\nu - 2}}$	$r=A\cdot 1(t)$ $e_{SS}=\frac{A}{1+K_p}$	$r=A \cdot t$ $e_{SS} = \frac{A}{K_v}$	$r = A \cdot t^{2}/2$ $e_{SS} = \frac{A}{K_{a}}$
0	K	0	0	$\frac{A}{1+K}$	∞	∞
Ι	∞	K	0	0	$\frac{A}{K}$	∞
П	∞	∞	K	0	0	$\frac{A}{K}$

◈由表可知:

- 1. 0型系统对单位阶跃输入信号的稳态误差为常数。
- 2. I型系统单位阶跃输入信号的稳态误差为零。
- 3. II 型系统对阶跃输入信号和斜坡信号的稳态误差为零。
- 4. 系统的型别越高,跟踪输入信号的能力越强。但型别越高,稳定性越难以保证。

$$G(s)H(s) = \frac{K}{s^{\nu}} \cdot \frac{\prod_{i=1}^{m_1} (\tau_i s + 1) \prod_{k=1}^{m_2} (\tau_k^2 s^2 + 2\zeta_k \tau_k s + 1)}{\prod_{j=1}^{n_1} (T_j s + 1) \prod_{l=1}^{n_2} (T_l^2 s^2 + 2\zeta_l T_l s + 1)}$$

例 系统如图。计算r(t)=1(t), t, t²/2时系统稳态误差。

解. 系统稳定, 系统的开环传递函数为

$$G(s) = \frac{1}{s(s+1)}$$

本系统为 I 型系统, v=1, K=1

其静态误差系数和稳态误差为:

$$K_{p} = \lim_{s \to 0} G(s) = \infty$$

$$e_{ss} = \frac{1}{1 + K_{p}} = 0$$

$$K_{v} = \lim_{s \to 0} sG(s) = s \frac{1}{s(s+1)} = 1$$

$$e_{ss} = \frac{1}{1 + K_{p}} = 1$$

$$K_{a} = \lim_{s \to 0} s^{2}G(s) = s^{2} \frac{1}{s(s+1)} = 0$$

$$e_{ss} = \frac{1}{K_{v}} = 1$$

$$e_{ss} = \frac{1}{K_{v}} = \infty$$

型别	静态误差系数			稳态误差计算		
(V)	$K_p = \lim_{s \to 0} GH$ $= \lim_{s \to 0} \frac{K}{s^{\nu}}$	$K_{\nu} = \lim_{s \to 0} sGH$ $= \lim_{s \to 0} \frac{K}{s^{\nu - 1}}$	$K_a = \lim_{s \to 0} s^2 GH$ $= \lim_{s \to 0} \frac{K}{s^{\nu - 2}}$	$r=A\cdot1(t)$ $e_{SS}=\frac{A}{1+K_p}$	$r=A \cdot t$ $e_{SS} = \frac{A}{K_V}$	$r=A \cdot t^2/2$ $e_{SS} = \frac{A}{K_a}$
0	К	0	0	$\frac{A}{1+K}$	_∞	∞
I	∞	K	0	0	$\frac{A}{K}$	∞
п	∞	∞	K	0	0	$\frac{A}{K}$

例 对于如下系统,试求当输入信号r(t)分别为 2,2t 和 t^2 时,系统的稳态误差。

解: 由劳斯判据判定系统是稳定的。

I型系统,K=2

在阶跃、斜坡、加速度信号作用下的稳态误差系数和稳态误差分别为

$$K_p = \infty \qquad e_{ss} = \frac{2}{1 + K_p} = 0$$

$$K_{v} = 2 \qquad e_{ss} = \frac{2}{K_{v}} = 1$$

$$K_a = 0 e_{ss} = \frac{2}{K_a} = \infty$$

型别	静态误差系数			稳态误差计算		
(V)	$K_p = \lim_{s \to 0} GH$ $= \lim_{s \to 0} \frac{K}{s^{\nu}}$	$K_{v} = \lim_{s \to 0} sGH$ $= \lim_{s \to 0} \frac{K}{s^{v-1}}$	$K_a = \lim_{s \to 0} s^2 GH$ $= \lim_{s \to 0} \frac{K}{s^{\nu - 2}}$	$r=A\cdot 1(t)$ $e_{SS}=\frac{A}{1+K_p}$	$r=A \cdot t$ $e_{SS} = \frac{A}{K_V}$	$r = A \cdot t^2/2$ $e_{SS} = \frac{A}{K_a}$
0	K	0	0	$\frac{A}{1+K}$	∞	∞
I	∞	K	0	0	$\frac{A}{K}$	∞
П	∞	∞	K	0	0	$\frac{A}{K}$

s(s+5)

例 3 系统结构图如图所示,已知输入 $r(t) = 2t + 4t^2$,求系统的稳态误差。

解.
$$G(s) = \frac{K_1(Ts+1)}{s^2(s+a)}$$

$$\begin{cases} K = K_1/a \\ v = 2 \end{cases}$$

$$\Phi(s) = \frac{K_1}{s^2(s+a) + K_1(Ts+1)}$$

$$D(s) = s^3 + as^2 + K_1 Ts + K_1 = 0$$

$$\begin{array}{c|c} R(s) & E(s) \\ \hline - & \\ \hline \end{array} \begin{array}{c|c} K_1 \\ \hline \hline \\ Ts+1 \end{array} \begin{array}{c|c} C(s) \\ \hline \end{array}$$

$$r_2(t) = 4t^2 = 8 \cdot \frac{1}{2}t^2$$
 $e_{ss2} = \frac{A}{K} = \frac{8a}{K_1}$

 $e_{ss1} = 0$

$$e_{ss} = e_{ss1} + e_{ss2} = \frac{8a}{K_1}$$

 $r_1(t) = 2t$

举例

例 系统结构图如图所示,当r(t)=t 时,要求ess<0.1,求K的范围。

$$D(s) = s(s+1)(2s+1) + K(0.6s+1) = 2s^3 + 3s^2 + (1+0.6K)s + K = 0$$

Routh
$$S^3$$
 2 1+0.6K
 S^2 3 K
 S^1 $3(1+0.6K)-2K \over 3$ 0 \rightarrow 3-0.2K>0 \rightarrow K<15 $10 < K < 15$
 S^0 K \rightarrow K>0

例 系统方块图如图所示,当输入为单位斜坡函数时,如何调整K值才

 $\frac{K(0.5s+1)}{s(s+1)(2s+1)} \frac{Y(s)}{s(s+1)(2s+1)}$

能使稳态误差小于0.1?

解: 先判断稳定性

$$2s^3 + 3s^2 + (1+0.5K)s + K = 0$$

由劳斯判据知稳定的条件为: 0 < K < 6

系统的误差传递函数为

$$\Phi_E(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_1(s)G_2(s)H(s)} = \frac{s(s+1)(2s+1)}{s(s+1)(2s+1) + K(0.5s+1)}$$

$$R(s) = \frac{1}{s^2} \qquad E(s) = \frac{s(s+1)(2s+1)}{s(s+1)(2s+1) + K(0.5s+1)} \cdot \frac{1}{s^2}$$

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{s(s+1)(2s+1)}{s(s+1)(2s+1) + K(0.5s+1)} \cdot \frac{1}{s^2} = \frac{1}{K}$$

为使稳态误差小于0.1,需满足 e_{ss} =1/K<0.1,即K>10。

由稳定的条件知,当K>10时,系统不稳定,故无法通过选择K来满足 $e_{ss}<0.1$ 的要求。

例 4 系统结构图如图所示,已知输入 r(t) = At, 求 $G_c(s)$, 使稳态误差为零。

例 4 系统结构图如图所示,已知输入 r(t) = At, 求 $G_c(s)$, 使稳态误差为零。

解.
$$G(s) = \frac{K}{s(Ts+1)}$$

$$\begin{cases} K = K \\ v = 1 \end{cases}$$

$$\begin{array}{c|c} \hline r(t) & G_c(s) \\ \hline & \otimes \\ \hline & & \\ \hline \end{array} \begin{array}{c|c} u(t) & K & c(t) \\ \hline & s(Ts+1) & \\ \hline \end{array}$$

$$D(s) = Ts^2 + s + K = 0$$

$$\Phi_{e}(s) = \frac{E(s)}{R(s)} = \frac{1 - \frac{KG_{c}(s)}{s(Ts+1)}}{1 + \frac{K}{s(Ts+1)}} = \frac{s(Ts+1) - KG_{c}(s)}{s(Ts+1) + K}$$

$$e_{ss} = \lim_{s \to 0} s \Phi_{e}(s) \frac{A}{s^{2}} = \lim_{s \to 0} \frac{A \left[sT + 1 - \frac{K}{s} G_{c}(s) \right]}{s(Ts + 1) + K} = \frac{A \left[1 - \frac{K}{s} G_{c}(s) \right]}{K} = 0$$

按前馈补偿的复合控制方案可以有效提高系统的稳态精度

- ◆系统在扰动作用下的稳态误差的大小,反映了系统的抗扰动能力。
- ◆由于给定输入与扰动信号作用在系统的不同位置上,即使系统对某一给 定输入的稳态误差为零,对同一形式的扰动作用的稳态误差未必是零。
- ◆同一系统面对同一形式的扰动作用,由于扰动的作用点不同,其稳态误 差也不一定相同。

令 R(s) = 0,由干扰引起的偏差信号 $E_f(s)$ 为

$$E_f(s) = \Phi_{ef}(s) \cdot F(s) = \frac{-G_2(s)}{1 + G_1(s)G_2(s)} \cdot F(s)$$

对于不同形式的干扰信号 f(t),如单位阶跃、单位斜坡等,可以用终值定理求出 $e_f(t)$ 的稳态值

$$e_{ssf} = \lim_{t \to \infty} e_f(t) = \lim_{s \to 0} sE_f(s) = \lim_{s \to 0} s\Phi_{ef}(s) \cdot F(s)$$

例 3.10.1 控制系统如图 3.10.5 所示,同时作用有 r(t) = t, f(t) = 1(t)。试计算该系统的稳态误差。

解 该系统是 I 型系统,由特征方程判断该系统是稳定的。首先,求输入信号 r(t) = 1(t) 作用下的稳态误差(令 f(t) = 0)

$$e_{ssr} = \frac{1}{K_v} = \frac{1}{10} = 0.1$$

$$e_{ssf} = \lim_{s \to 0} s \Phi_{ef}(s) \cdot F(s) = \lim_{s \to 0} \frac{-2(0.02s + 1)}{s(s + 1)(0.02s + 1) + 10} \cdot \frac{1}{s} = -0.2$$

在输入信号和干扰信号同时作用下的稳态误差

$$e_{ss} = e_{ssf} + e_{ssr} = -0.1$$

例 3.10.2 对于图 3.10.6 所示系统,试求

- (1) 当 r(t) = 0, f(t) = 1(t) 时,系统的稳态误差 e_{ss} 。
- (2) 当 r(t) = 1(t), f(t) = 1(t) 时,系统的稳态误差 e_{ss} 。

解 图 3.10.6 所示系统是 0 型系统。可以证明,只要 $K_1 > 0$, $K_2 > 0$, $T_1 > 0$, $T_2 > 0$, 闭环系统即是稳定的。

(1) 求干扰引起的稳态误差

$$\Phi_{ef}(s) = \frac{E(s)}{F(s)} = \frac{-K_2(T_1s+1)}{(T_1s+1)(T_2s+1)+K_1K_2}$$

按终值定理,有

$$e_{ssf} = \lim_{s \to 0} s \Phi_{ef}(s) \cdot F(s) = \lim_{s \to 0} \frac{-K_2(T_1 s + 1)}{(T_1 s + 1)(T_2 s + 1) + K_1 K_2} \cdot \frac{1}{s} = \frac{-K_2}{1 + K_1 K_2}$$

例 3.10.2 对于图 3.10.6 所示系统,试求

- (1) 当 r(t) = 0, f(t) = 1(t) 时,系统的稳态误差 e_{ss} 。
- (2) 当 r(t) = 1(t), f(t) = 1(t) 时, 系统的稳态误差 e_{ss} 。

$$e_{ssf} = \frac{-K_2}{1 + K_1 K_2}$$

(2) 求输入信号作用下的稳态误差

$$e_{ssr} = \frac{1}{1 + K_p} = \frac{1}{1 + K_1 K_2}$$

总的稳态误差为二者相加

$$e_{ss} = e_{ssf} + e_{ssr} = \frac{1 - K_2}{1 + K_1 K_2}$$

例 3.10.3 单位反馈系统的开环传递函数为

$$G(s) = \frac{K}{s(T_1s+1)(T_2s+1)}$$

若输入信号 $r(t) = a \times 1(t) + bt(a \setminus b)$ 为正的常数),欲使系统的稳态误差 $e_{ss} < \varepsilon_0$ (正的常数),求系统各参数应满足的条件。

解 首先应满足系统稳定的条件。系统的特征方程是

$$D(s) = T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K = 0$$

列出劳斯行列表

$$s^{3}$$
 $T_{1}T_{2}$ 1
 s^{2} $T_{1} + T_{2}$ K
 s^{1} $\frac{T_{1} + T_{2} - T_{1}T_{2}K}{T_{1} + T_{2}}$ 0
 s^{0} K

系统稳定的条件是

$$T_1 > 0$$
 $T_2 > 0$ $0 < K < \frac{T_1 + T_2}{T_1 T_2}$ $e_{ss} = \frac{b}{k_v} = \frac{b}{K}$

按题意 e_{ss} < ε_0 ,所以 $K > b/\varepsilon_0$ 。综合以上各项条件,系统参数应满足的条件是

$$T_1 > 0$$
 $T_2 > 0$ $\frac{b}{\varepsilon_0} < K < \frac{T_1 + T_2}{T_1 T_2}$

动态误差系数法

动态误差系数法

用静态误差系数法只能求出误差的稳态值 $e_{ss} = \lim_{t \to \infty} e(t)$; 而稳态误差随时间变化的规律无法获得。

用动态误差系数法可以研究误差中的 稳态分量 $e_s(t)$ 随时间的变换规律。

(1) 动态误差系数法解决问题的思路

$$\begin{split} \Phi_{e}(s) &= \frac{E(s)}{R(s)} = \Phi_{e}(0) + \frac{1}{1!} \Phi'_{e}(0)s + \frac{1}{2!} \Phi''_{e}(0)s^{2} + \dots + \frac{1}{i!} \Phi^{(i)}_{e}(0)s^{i} + \dots \\ & \qquad \qquad C_{i} = \frac{1}{i!} \Phi^{(i)}_{e}(0) \qquad i = 0, 1, 2, \dots \\ & = C_{0} + C_{1}s + C_{2}s^{2} + \dots = \sum_{i=0}^{\infty} C_{i}s^{i} \end{split}$$

$$E(s) &= \Phi_{e}(s).R(s)$$

$$= C_{0}R(s) + C_{1}sR(s) + C_{2}s^{2}R(s) + \dots + C_{i}s^{i}R(s) + \dots \\ e_{s}(t) &= C_{0}r(t) + C_{1}\dot{r}(t) + C_{2}\ddot{r}(t) + \dots + C_{i}r^{(i)}(t) + \dots = \sum_{i=0}^{\infty} C_{i}r^{(i)}(t) \end{split}$$

例 3.10.4 控制系统的闭环偏差传递函数为

$$\Phi_e(s) = \frac{0.02s^3 + 1.02s^2 + s}{0.02s^3 + 1.02s^2 + s + 10}$$

求动态误差系数。

解 首先将 $\Phi_e(s)$ 的分子与分母分别按 s 的升幂排列,然后做多项式除法

$$\frac{0.1s + 0.92s^{2} + \cdots}{10 + s + 1.02s^{2} + 0.02s^{3} / s + 1.02s^{2} + 0.02s^{3}}$$

$$\frac{s + 0.1s^{2} + 0.102s^{3} + 0.002s^{4}}{0.92s^{2} - 0.082s^{3} - 0.002s^{4}}$$

商式与式(3.10.20) 对比,可得到各动态误差系数

$$c_0 = 0$$
 $c_1 = 0.1$ $c_2 = 0.092$

$$\Phi_e(s) = c_0 + c_1 s + c_2 s^2 + \dots + c_l s^l + \dots$$

$$e(t) = c_0 r(t) + c_1 r^{(1)}(t) + c_2 r^{(2)}(t) + \dots + c_l r^{(l)}(t) + \dots$$

例 3.10.5 单位反馈系统如图 3.10.5 所示,用动态误差系数法求 r(t) = t, f(t) = 1(t)时的稳态误差。 |F(s)|

解 首先求输入信号作用的稳态误差,即

$$\Phi_e(s) = \frac{s + 1.02s^2 + 0.02s^3}{10 + s + 1.02s^2 + 0.02s^3}$$

在例 3.10.4 中已求出 $c_0 = 0$, $c_1 = 0.1$, $c_2 = 0.092$ 。根据题意 r(t) = t, $\dot{r}(t) = 1$, $\ddot{r}(t) = 0$, 由式(3.10.23) 得出 r(t) 作用下的稳态误差为

$$e_{ssr}(t) = 0.1$$

然后求干扰作用下的稳态误差,即

$$\Phi_{ef}(s) = \frac{E(s)}{F(s)} = \frac{-2(0.02s+1)}{s(0.02s+1)(s+1)+10} = \frac{-2-0.4s}{10+s+1.02s^2+0.02s^3}$$

用多项式除法求得 $c_{0f} = -0.2$, $c_{1f} = -0.02$, 根据题意, f(t) = 1(t), $\dot{f}(t) = 0$, 所以 f(t) 作用下的稳态误差

$$e_{ssf}(t) = -0.2$$

二者叠加,得

$$e_{ss}(t) = e_{ssr}(t) + e_{ssf}(t) = -0.1$$

$$e(t) = c_0 r(t) + c_1 r^{(1)}(t) + c_2 r^{(2)}(t) + \dots + c_l r^{(l)}(t) + \dots$$

例 3.10.6 设单位反馈控制系统的开环传递函数为

$$G(s) = \frac{100}{s(0.1s+1)}$$

求当输入信号 $r(t) = 1(t) + 2t + t^2$ 时的稳态误差 $e_{ss}(t)$

解

$$\Phi_e(s) = \frac{s(0.1+1)}{s(0.1s+1)+100} = \frac{s+0.1s^2}{100+s+0.1s^2}$$

用多项式除法可求得

$$c_0 = 0$$
 $c_1 = 0.1$ $c_2 = 0.0009$

r(t) 的各阶导数分别是

$$r(t) = 1 + 2t + t^{2}$$

$$\dot{r}(t) = 2 + 2t$$

$$\ddot{r}(t) = 2$$
...
$$r(t) = 0$$

最后求得

$$e_{ss}(t) = c_0 r(t) + c_1 \dot{r}(t) + c_2 \ddot{r}(t) = 0.01(2 + 2t) + 0.0009 \times 2 = 0.0218 + 0.02t$$

课程回顾

1. 误差与稳态误差

- (1) 误差定义:
- (2) 稳态误差: 静态误差; 动态误差

2. 计算稳态误差的一般方法

- (1) 判定系统的稳定性
- (2) 求误差传递函数
- (3) 用终值定理求稳态误差

3. 给定输入下的稳态误差(静态误差系数法)

- (1) 静态误差系数Kp, Kv, Ka
- (2) 计算误差方法
- (3) 适用条件 → 2) 按输入端定义误差
 - 3) r(t)作用,且r(t)无其他前馈通道

r(t)

4. 干扰作用引起的稳态误差

5. 动态误差系数法

$$\begin{split} & \Phi_e(s) = c_0 + c_1 s + c_2 s^2 + \dots + c_l s^l + \dots \\ & E(s) = \Phi_e(s) \cdot R(s) = C_0 R(s) + C_1 s R(s) + C_2 s^2 R(s) + \dots + C_i s^i R(s) + \dots \\ & e(t) = c_0 r(t) + c_1 r^{(1)}(t) + c_2 r^{(2)}(t) + \dots + c_l r^{(l)}(t) + \dots \end{split}$$

第4章 控制系统的稳定性及稳态误差

- 4.1 基于传递函数的稳定性分析
 - 1. 连续系统稳定性定义及劳斯判据 (3.8~3.9)
 - 2. 离散系统稳定性定义及劳斯判据 (6.7)
- 4.2 控制系统的稳态误差分析
 - 1. 控制系统的稳态误差、动态误差系数 (3.10)
 - 2. 离散线性系统的稳态误差、动态误差系数 (6.8.3)
- 4.3 基于根轨迹的稳定性分析
 - 1. 根轨迹基本概念和基本规则 (4.1~4.3)
 - 2. 根轨迹法分析控制系统性能 (4.4)
 - 3. 特殊根轨迹 (4.6)
- 4.4 基于状态空间表达式的稳定性分析
 - 1. Lyapunov意义下的稳定性基本概念
 - 2. Lyapunov第一法 (间接法)
 - 3. Lyapunov第二法(直接法)
 - 4. 线性定常系统的Lyapunov稳定性分析

线性离散系统稳态误差

只有稳定的系统,才有稳态误差。

对于稳定的线性离散系统,当过渡过程结束以后,系统误差信号的脉冲序列就是离散系统的稳态误差 $e_{ss}^*(t), t \geq t_s$ 。

当时间 $t \to \infty$ 时,可求得线性离散系统在采样点上的稳态误差终值 $e_{ss}^*(\infty)$ 。

线性离散系统稳态误差计算

一般方法(利用终值定理)

设
$$\begin{cases} GH(z) = Z[G(s)H(s)] = \frac{1}{(z-1)^{\nu}}GH_0(z) & \mathbf{v}: \, \, \underline{\mathbb{Q}}\,\mathbb{H}(\underline{\mathbb{Z}}, \underline{\mathbb{Q}}) \\ \lim_{z \to 1} GH_0(z) = K & \mathbf{v}: \, \underline{\mathbb{Q}}\,\mathbb{H}(\underline{\mathbb{Z}}, \underline{\mathbb{Q}}) \end{cases}$$

计算稳态误差的步骤

- (1) 判定稳定性
- (2) 求误差脉冲传递函数

$$\Phi_e(z) = \frac{E(z)}{R(z)} = \frac{1}{1 + GH(z)}$$

(3) 用终值定理求 $e_{ss}^*(\infty)$

$$e_{ss}^*(\infty) = \lim_{t \to \infty} e^*(t) = \lim_{z \to 1} (z - 1)E(z) = \lim_{z \to 1} \frac{(z - 1)}{1 + GH(z)}R(z)$$

静态误差系数法—— r(t) 作用时稳态误差的计算

(适用于系统稳定, r(t)作用, 对误差采样的线性定常离散系统)

$$e_{ss}^*(\infty) = \lim_{z \to 1} (z - 1) \Phi_e(z) R(z) = \lim_{z \to 1} (z - 1) \cdot R(z) \cdot \frac{1}{1 + GH(z)}$$

$$r(t) = A \cdot 1(t) \quad e_{ss}^{*}(\infty) = \lim_{z \to 1} (z - 1) \cdot \frac{Az}{z - 1} \cdot \frac{1}{1 + GH(z)} = \frac{A}{1 + \lim_{z \to 1} GH(z)} = \frac{A}{1 + K_{p}}$$

$$K_p = \lim_{z \to 1} GH(z)$$

静态位置误差系数
$$K_p = \lim_{z \to 1} GH(z)$$

$$r(t) = A \cdot t \quad e_{ss}^*(\infty) = \lim_{z \to 1} (z - 1) \cdot \frac{ATz}{(z - 1)^2} \cdot \frac{1}{1 + GH(z)} = \frac{AT}{\lim_{z \to 1} (z - 1)GH(z)} = \frac{AT}{K_v}$$

静态速度误差系数
$$K_v = \lim_{z \to 1} (z - 1)GH(z)$$

$$r(t) = \frac{A}{2}t^{2} \quad e_{ss}^{*}(\infty) = \lim_{z \to 1} (z - 1) \cdot \frac{AT^{2}z(z + 1)}{2(z - 1)^{3}} \cdot \frac{1}{1 + GH(z)} = \frac{AT^{2}}{\lim_{z \to 1} (z - 1)^{2} GH(z)} = \frac{AT^{2}}{K_{a}}$$

静态加速度误差系数
$$K_a = \lim_{z \to 1} (z - 1)^2 GH(z)$$

$$\begin{cases} GH(z) = \frac{1}{(z-1)^{\nu}} GH_0(z) \\ \lim_{z \to 1} GH_0(z) = K \end{cases}$$

型别	静态误差系数			稳态误差计算		
V	K _p = limGH(z)	K _v = lim(z-1)GH(z)	$K_a=$ $\lim (z-1)^2 GH(z)$	$r = A \cdot 1(t)$ $e_{ss}^*(\infty) = \frac{A}{1 + k_P}$	$r = A \cdot t$ $e_{ss}^*(\infty) = \frac{AT}{k_v}$	$r = A \cdot t^2/2$ $e_{ss}^*(\infty) = \frac{AT^2}{k_a}$
0	Kp	0	0	A 1+Kp	&	&
I	œ	K _v	0	0	AT Kv	œ
П	œ	œ	Ka	0	0	$\frac{AT^2}{K_a}$

静态误差系数 稳态误差计算 $\mathbf{K}_{\mathbf{p}}$ ∞ ∞ $\frac{AT^2}{K_a}$ K_a

稳定离散系统的结构图如图

所示,已知r(t)=2t,试讨论

解.

无ZOH时
$$\begin{cases} G(z) = Z \left[\frac{K}{s(s+1)} \right] = \frac{K(1-e^{-T})z}{(z-1)(z-e^{-T})} & v = 1 \\ K_v = \lim_{z \to 1} (z-1)G(z) = \lim_{z \to 1} \frac{K(1-e^{-T})z}{(z-e^{-T})} = K \end{cases}$$
$$e_{ss}^*(\infty) = \frac{AT}{k_v} = \frac{2T}{K}$$
$$- 与 T 右关$$

$$e_{ss}^*(\infty) = \frac{AT}{k_v} = \frac{2T}{K}$$

$$G(z) = Z \left[\frac{1 - e^{-Ts}}{s} \cdot \frac{K}{s(s+1)} \right] = K \frac{z-1}{z} \cdot Z \left[\frac{1}{s^2(s+1)} \right]$$

有ZOH时
$$= K \frac{(T-1+e^{-T})z + (1-e^{-T}-Te^{-T})}{(z-1)(z-e^{-T})} \quad v = 1$$

$$e_{ss}^*(\infty) = \frac{AT}{k_v} = \frac{2}{K}$$

$$K_v = \lim_{z \to 1} (z-1)G(z) = \lim_{z \to 1} \frac{K(T-Te^{-T})}{z-e^{-T}} = KT$$
 —与T无关

$$e_{ss}^*(\infty) = \frac{AT}{k_v} = \frac{2}{K}$$

动态误差系数法

$$\begin{split} \Phi_{e}(z) &= \frac{E(z)}{R(z)} = \frac{1}{1 + GH(z)} \\ \Phi_{e}^{*}(s) &= \Phi_{e}^{*}(z) \Big|_{z=e^{Ts}} \\ &= \Phi_{e}(0) + \frac{1}{1!} \Phi_{e}'(0)s + \frac{1}{2!} \Phi_{e}''(0)s^{2} + \dots + \frac{1}{m!} \Phi_{e}^{(m)}(0)s^{m} + \dots \\ & \Big| c_{m} &= \frac{1}{m!} \frac{d^{m} \Phi_{e}^{*}(s)}{ds^{m}} \Big|_{s=0} \\ \Phi_{e}^{*}(s) &= c_{0} + c_{1}s + c_{2}s^{2} + \dots + c_{m}s^{m} + \dots = \sum_{i=0}^{\infty} c_{i}s^{i} \\ E^{*}(s) &= \Phi_{e}^{*}(s)R(s) = c_{0}R(s) + c_{1}sR(s) + \dots + c_{m}s^{m}R(s) + \dots \\ e_{ss}^{*}(kT) &= c_{0}r(kT) + c_{1}\dot{r}(kT) + c_{2}\ddot{r}(kT) + \dots + c_{m}r^{(m)}(kT) + \dots \end{split}$$

例 6.8.2 单位负反馈离散系统的开环脉冲传递函数为

$$G(z) = \frac{e^{-T}z + (1 - 2e^{-T})}{(z - 1)(z - e^{-T})}$$

采样周期 T = 1 s,闭环系统输入信号为 $r(t) = \frac{1}{2}t^2$ 。

- (1) 用稳态误差系数求终值稳态误差 $e_{ss}^*(\infty)$;
- (2) 用动态误差系数求 t = 20 s 时的稳态误差。

$e_{\rm ss}^*(\infty) =$	$\frac{1}{K_a}$	=	%
--------------------------	-----------------	---	----------

型别	静态误差系数			稳态误差计算		
v	K _p = limGH(z)	K _v = lim(z-1)GH(z)	K _a = lim(z-1) ² GH(z)	$r = A \cdot 1(t)$ $e_{ss}^*(\infty) = \frac{A}{1 + k_P}$	$r = A \cdot t$ $e_{ss}^*(\infty) = \frac{AT}{k_v}$	$r = A \cdot t^2/2$ $e_{ss}^*(\infty) = \frac{AT^2}{k_a}$
0	Kp	0	0	A 1+Kp	8	8
I	8	Kv	0	0	AT Kv	8
п	∞	∞	Ka	0	0	AT ² K _a

$$c_m = \frac{1}{m!} \frac{d^m \Phi_e^*(s)}{ds^m} \bigg|_{s=0}$$
 $(m = 0, 1, 2, \dots)$

$$c_{m} = \frac{1}{m!} \frac{d^{m} \Phi_{e}^{*}(s)}{ds^{m}} \Big|_{s=0} (m=0,1,2,\cdots)$$

$$E^{*}(s) = c_{0} + c_{1} s + c_{2} s^{2} + \cdots + c_{m} s^{m} + \cdots = \sum_{i=0}^{\infty} c_{i} s^{i}$$

$$E^{*}(s) = \Phi_{e}^{*}(s) R(s) = c_{0} R(s) + c_{1} s R(s) + \cdots + c_{m} s^{m} R(s) + \cdots$$

$$e^{*}_{ss}(kT) = c_{0} r(kT) + c_{1} \dot{r}(kT) + c_{2} \ddot{r}(kT) + \cdots + c_{m} r^{(m)}(kT) + \cdots$$

(2) 系统闭环误差脉冲传递函数

$$\Phi_e(z) = \frac{1}{1 + G(z)} = \frac{z^2 - 1.368z + 0.368}{z^2 - z + 0.632}$$

因为 t > 0 时, $\dot{r}(t) = t$, $\ddot{r}(t) = 1$, $\dot{r}(t) = 0$, 所以动态误差系数只需求出 c_0 , c_1 和 c_2 。

$$\Phi_{e}^{*}(s) = \Phi_{e}(z) \Big|_{z=e^{Ts}} = \frac{e^{2s} - 1.368e^{s} + 0.368}{e^{2s} - e^{s} + 0.632}$$

$$c_{0} = \Phi_{e}^{*}(0) = 0$$

$$c_{1} = \frac{d}{ds}\Phi_{e}^{*}(s) \Big|_{s=0} = 1$$

$$c_{2} = \frac{1}{2} \frac{d^{2}}{ds^{2}}\Phi_{e}^{*}(s) \Big|_{s=0} = \frac{1}{2}$$

系统稳态误差在采样时刻的值为

$$e_{ss}(kT) = c_0 r(kT) + c_1 \dot{r}(kT) + c_2 \ddot{r}(kT) = kT + 0.5$$

由此可见,系统的稳态误差是随时间线性增长的,当 $t \rightarrow \infty$ 时,稳态误差终值为无穷大;当 t = 20 s 时,系统的稳态误差为 $e_{ss}^* = 20.5$ 。

离散系统的稳态误差

(3) 动态误差系数法