Jueves, 4 de julio de 2024

Taller 2 Cálculo Vectorial

Profesor: Jacinto Eloy Puig Portal, jpuig@uniandes.edu.co. Monitor: Federico Melo Barrero, f.melo@uniandes.edu.co.

Preámbulo

Las instrucciones referentes a la entrega del taller están escritas en Bloque Neón.

Bonos

- Se sumarán 0.25 puntos de bonificación a la nota del taller si su contenido está ordenado y puede leerse con facilidad.
- Se sumarán 0.25 puntos de bonificación a la nota del taller si no contiene errores léxicos, gramaticales ni faltas de ortografía.

La nota del taller puede exceder el 5.0.

Recomendaciones

No necesita hacer uso de herramientas que le ayuden a hacer matemáticas, ya sean calculadoras, aplicaciones, grandes modelos de lenguaje u otras. Le recomiendo que no lo haga

Recuerde incluir las unidades siempre que trate con magnitudes físicas.

1. Taller 1

(1 punto) Corrija todos los errores que tuvo su grupo en el taller 1. Si no tuvo errores, omita este punto.

2. Integrales dobles

(1 punto) Calcule analíticamente la integral

$$\int_{1}^{2} \int_{0}^{\log y} (y-1)\sqrt{1+e^{2x}} dx dy.$$

No utilice aproximaciones numéricas ni herramientas computacionales. No omita ningún paso en su solución.

3. Integrales triples

(1 punto) Considere los paraboloides $z = 10 - x^2 - y^2$ y $z = 6 + x^2 + y^2$. Suponga que R es el sólido cuya forma está dada por la región encerrada por esos paraboloides. Si R presenta una densidad uniforme de 8 kg m⁻³, indique cuál es la masa de R y cuál es la coordenada z de su centro de masa.

4. Integrales de línea

(1 punto) Considere una varilla metálica de 5 metros. Suponga que la varilla no tiene densidad uniforme y que su densidad lineal está modelada por la función $\rho(x,y)=x^2+2y^2$, medida en kg m⁻¹. Si la varilla está ubicada en el plano xy, de forma que toca los dos ejes y su centro geométrico es el punto $(2,\frac{3}{2})$, indique cuál es la masa de la varilla.

5. Integrales de superficie

 $(1~{\rm punto})$ Considere la región R definida en coordenadas polares como

$$R = \{(\theta, r) \colon 0 \le \theta \le 2\pi \ \land \ 0 \le r \le 1\}.$$

Halle el área de $\mathbf{F} \colon R \to \mathbb{R}^3,$ que es la helicoide dada por

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \\ z = \theta. \end{cases}$$