

## Lecture 4 Linear Regression II

STAT 441/505: Applied Statistical Methods in Data Mining

### Linglong Kong

Department of Mathematical and Statistical Sciences University of Alberta

Winter, 2016



#### Outline

Multiple Linear Regression

**Estimation and Inference** 

**Indicator Variables** 

Summary and Remark

# Multiple Linear Regression

► Multiple Linear Regression has more than one covariates,

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon,$$

where usually  $\varepsilon \sim N(0, \sigma^2)$ .

- ▶ We interpret  $\beta_j$  as the average effect on Y of a one unit increase in  $X_j$ , while holding all the other covariates fixed.
- ► In the advertising example, the model becomes

Sales = 
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper + \varepsilon$$
.



## Coefficient Interpretation

Multiple Linear Regression

- ► The ideal scenario is when the predictors are uncorrelated a balanced design.
  - Each coefficient can be estimated and tested separately.
  - ▶ Interpretations such as a unit change in  $X_i$  is associated with a  $\beta_i$ change in Y, while all the other variables stay fixed, are possible.
- Correlations amongst predictors cause problems.
  - ▶ The variance of all coefficient tends to increase, sometimes dramatically.
  - ▶ Interpretations become hazardous when  $X_i$  changes, everything else changes.
- ► Claims of causality should be avoided for observational data.



4/13

# The woes of regression coefficients

#### Data Analysis and Regression, Mosteller and Tukey 1977

- $\triangleright$  A regression coefficient  $\beta_i$  estimates the expected change in Y per unit change in  $X_i$ , with all other predictors held fixed. But predictors usually change together!
- Example: Y total amount of change in your pocket;  $X_1 = \#$  of coins;  $X_2 = \#$  of pennies, nickels and dimes. By itself, regression coefficient of Y on  $X_2$  will be > 0. But how about with  $X_1$  in model?
- ightharpoonup Y = number of tackles by a football player in a season; W and H are his weight and height. Fitted regression model is  $Y = \beta_0 + 0.50W - 0.10H$ . How do we interpret  $\hat{\beta}_2 < 0$ ?

Multiple Linear Regression



## Two quotes by famous Statisticians

Estimation and Inference



1919 - 2013 (aged 93)

- Essentially, all models are wrong, but some are useful. George Box
- ► The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively.

Fred Mosteller and John Tukey, paraphrasing George Box

6/13

## Coefficient estimation

► Given the estimates  $\hat{\beta}_0$ ,  $\hat{\beta}_1$ , ..., and  $\hat{\beta}_p$ , the estimated regression line is

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

• We estimate all the coefficients  $\beta_i$ ,  $i = 0, 1, \dots, p$  as the values that minimize the sum of squared residuals

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2,$$

where  $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$  is the predicted values.

▶ This is done using standard statistical software. The values  $\hat{\beta}_0$ ,  $\hat{\beta}_1, \dots$ , and  $\hat{\beta}_p$  that minimize RSS are the multiple least squares regression coefficient estimates.



# **Estimation Example**

Multiple Linear Regression



### Inference

Multiple Linear Regression

► Is at least one predictor useful?

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}.$$

▶ What about an individual coefficient, say if  $\beta_i$  useful?

$$t = \frac{\hat{\beta}_i - 0}{\operatorname{SE}\left(\hat{\beta}_i\right)} \sim t_{n-p-1}.$$

- For given  $x_1, \dots, x_p$ , what is the prediction interval (PI) of the corresponding y?
- ▶ What about the estimation interval (CI) of *y*?
- ► What is the difference PI, individual and CI, average, PI wider than CI.



# Advertising example

```
Coefficients:
```

Multiple Linear Regression

```
Estimate Std. Error t value Pr(>|t|)
           2.938889 0.311908 9.422 <2e-16 ***
(Intercept)
TV
          0.045765 0.001395 32.809 <2e-16 ***
Radio 0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
```

```
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
```

Residual standard error: 1.686 on 196 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956 F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

```
> predict(TVadlm, newdata, interval="c", level=0.95)
                lwr
                         upr
```

1 20.52397 19.99627 21.05168

> predict(TVadlm, newdata, interval="p", level=0.95) lwr upr 1 20.52397 17.15828 23.88967

### **Indicator Variables**

Multiple Linear Regression

- ► Some predictors are not quantitative but are qualitative, taking a discrete set of values.
- ► These are also called categorical predictors or factor variables.
- ► Example: investigate difference in credit card balance between males and females, ignoring the other variables. We create a new variable,

$$x_i = \begin{cases} 1 & \text{if } i\text{-th person is female,} \\ 0 & \text{if } i\text{-th person is male} \end{cases}.$$

Resulting model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{-th person is female,} \\ \beta_0 + \varepsilon_i & \text{if } i\text{-th person is male} \end{cases}$$

Interpretation and more than two levels (categories)?

4日ト4周ト4日ト4日ト ヨーの90

11/13

## **Indicator Variables**

Multiple Linear Regression

- ▶ In general, if we have k levels, we need (k-1) indicator variables.
- $\triangleright$  For example, we have 3 levels A, B, and C for a covariate x,

$$x_A = \begin{cases} 1 & \text{if } x \text{ is A,} \\ 0 & \text{if } x \text{ is not A} \end{cases}; \quad x_B = \begin{cases} 1 & \text{if } x \text{ is B,} \\ 0 & \text{if } x \text{ is not B} \end{cases}.$$

- If x is C, then  $x_A = x_B = 0$ . We call C as baseline.
- $\triangleright$   $\beta_A$  is the contrast between A and C and  $\beta_B$  is the contrast between B and C.



# Summary and Remark

- ► Multiple linear regression
- ► Estimation and inference
- Indicator variables
- Read textbook Chapter 3
- ▶ Do R lab