Software Design for Data Science

Project

Melissa Winstanley University of Washington January 23, 2025

Course Project

- Collaborative software engineering experience
- Teams of 3 to 4 with 4 being optimal
- Develop project using version control

Course Project

Collaborative software engineering experience

- Design (use cases, component specification)
- Documentation (how to, docstrings)
- Style (PEP8, pylint)
- Coding, testing & milestones
- Standup & code reviews

Project Type 1: Answer "Research" Questions

Problem statement: Answer two to three questions of business or scientific relevance

Use a Jupyter notebook and supporting python files

Example

<u>Climate Police</u>: Analyze effects of pollution on the planet.

Project Type 2: Create a Tool

Problem statement: Solve a problem common to many users

Don't reinvent the wheel

Example

BioReactor Data Logging – Monitor and publish data from BioReactor experiments

Project Type 3: Teach Analysis

Problem statement: Create a system that teaches others the skills needed to do analysis

Example:

A system that teaches about logistics for businesses in the sharing economy

Project Type 4: Present Data

Problem statement: Create data repository with tools (e.g., search, visualization, analytics) and a user-friendly interface

Example

<u>Car2Know</u>: Provide car rental data to users of Car2Go (e.g., for planning trips)

More on the Data

- At least two non-trivial data sets
- Data need to be combined, joined, merged, etc. to answer the scientific questions
- Have access to the data NOW!

Project Timeline

Week 5: Project Proposals

Share what you're passionate about and convince others to work with you:

- 1 slide (PowerPoint, Keynote, or Google Slides)
- Title
- Project type (research, reusable data, tool)
- Short pitch what will you do, why it is cool
- Your 2+ data sources (could be tentative)
- Your name

Due by 12pm Thursday 2/6 via Canvas (I need time to compile the deck!)

In-class presentation of your proposal (2 minutes)

Participation points! If you are unable to attend, please let me know.

Week 5: Team Selection

During project proposals:

Take notes on what projects sound interesting to you

After project proposals:

- You'll have time in class to talk to each other and form teams around a project proposal
- 3-4 people per team 1 person submits names via Canvas
- If you'd prefer, I'm happy to help find a group for you, particularly if your team has just 1-2 people
- If you have to miss class
 - Let me know
 - I will help you find a project team

Week 5-6: Idea Validation

- Agree as a team on what the project is
 - Clarity about the project type
 - Consensus on the problem being solved
- Validate that the project is feasible and large enough
 - o Is there an unmet need (i.e. no code already exists)?
 - O Do you have data that can solve the problem?
 - Will this project take about 5-6 weeks of effort for 3-4 people to complete?
- Create a git repository for your team
 - README.md with result of the idea validation
 - One person submits the repository link via Canvas

Week 6-7: Software & Use Case Design (in class)

In-class exercise to design your project:

- Who are the users? What do they know?
- What information do users want from the system?
- Use cases how users interact with the system

After class: complete and submit the design in your GitHub repository by 2/15

Week 7-8: Technology Reviews

Writeup addressing a choice of library; in-class presentation to instructors as part of the first project demo in week 8.

Stay tuned!

Week 7-10: Project Work

- Weekly standups in class
- Collaboration outside of class code reviews & pull requests
- Deliver on the milestones you've defined
 - Functionality
 - Documentation
 - Style
 - Testing

Finals: Presentations

- 10 minute oral presentations
 - All group members should present a part
 - Background
 - Data
 - Use cases
 - Component design
 - Demo
 - Lessons learned
- Slides + demo

Grading

On the course webpage*: https://uwdata515.github.io/projects.html

- Organization: 10%
 - Can you follow directions?
- Code quality: 32%
 - o Test coverage, style, CI, package setup, PRs/code reviews
- Documentation: 24%
 - o README, design documents, examples & instructions
- Design: 20%
 - o What you built, test design, module design
- Presentations: 14%
 - o Technology review, final presentation

^{*}exact percentages may change slightly but will remain approximately as described

Some Public Data

http://drugbank.ca

http://toxnet.nlm.nih.gov

https://data.seattle.gov/Transportation/Traffic-Flow-Counts/7svg-ds5z

https://www.divvybikes.com/data

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

https://www.kaggle.com

Pronto bike data

American Fact Finder Data

European union data (World bank)

Russian federation data (World bank)

China data (World bank)

Project Proposal Examples

Just to get your mind working

Weather Wizard for Farmers

- Project output: reusable data (a simple web app)
 - Give it your location (zip code?)
 - Use a machine learning model to predict future temperature and precipitation for your zip code
 - It will predict your last frost and whether it will be a warmer/cooler or wetter/dryer year
 - It will predict which crops you (the farmer) should plant to make the most money
- Data
 - NOAA data
 - Historical weather (temperature/precipitation) by location
 - El Niño/Southern Oscillation history
 - Atlantic/Pacific Multidecadal Oscillation history
 - Solar Cycle history
 - USDA data
 - State agricultural output data by crop

Tide Me Over!

- Project output: research & a tool (to make map visualizations)
 - Research how tides affect water changes in Puget Sound via mooring buoy
 - Depth, oxygen, chlorophyll, and salinity
 - Build map visualizations with a time slider to show the changes
 - Include a search feature to narrow in on a particular location
- Data
 - NOAA historical tide data
 - King County mooring buoy data

Fantastical Basketball*

- Project output: reusable data (a simple web app)
 - Give today's best fantasy lineup for the NBA
 - Daily/weekly/whole season
 - Option to select best=points or best=money

- Data
 - NBA historical data from basketball-reference.com (or NBA site)
 - Day-by-day projection data from fantasydata.com (or other fantasy site)

^{*} This is a VERY HARD PROBLEM. The output of the project is not a predictor that does better than existing players, but one that at least is not terrible.