TEMA 3: ORTOGONALIDAD Y MÍNIMOS CUADRADOS.

Producto escalar y norma de vectores

Producto escalar. Consideremos dos vectores $u = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, v = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} \in \mathbb{R}^n$,

se denomina producto escalar de los vectores $u\ y\ v,$ al número real

$$u \cdot v = u^T v = c_1 d_1 + c_2 d_2 + \dots + c_n d_n.$$

Norma de un vector. Se denomina norma del vector $v \in \mathbb{R}^n$ al número real no-negativo

$$||v|| = \sqrt{v \cdot v} \ge 0,$$

Distancia entre vectores.

Distancia entre dos vectores. Se denomina distancia entre $u, v \in \mathbb{R}^n$ al número real no-negativo

$$d(u,v) = ||u-v||.$$

Angulo entre dos entre dos vectores. El ángulo determinado por dos vectores no nulos $u, v \in \mathbb{R}^n$ puede caracterizarse mediante la igualdad

$$u \cdot v = ||u|| \, ||v|| \cos(\widehat{u, v})$$

Propiedades del producto escalar. Sean $u, v \in \mathbb{R}^n$ y $\alpha \in \mathbb{R}$, se verifican:

- (1) ||v|| = 0 si y sólo si v = 0. (3) Desigualdad triangular: $||u + v|| \le ||u|| + ||v||$.
- (2) $\|\alpha v\| = |\alpha| \|v\|$.

- Como consecuencia $||u-v|| \le ||u|| + ||v||$.
- (4) Designaldad de Cauchy-Schwartz: $|u \cdot v| \leq ||u|| \, ||v||$.

Ortogonalidad

Vectores ortogonales. Se dice que dos vectores $u, v \in \mathbb{R}^n$ son ortogonales, y se denota por $u \perp v$, si su producto escalar vale 0, esto es, si $u \cdot v = 0$.

En general, el conjunto de vectores $\{v_1, v_2, \ldots, v_p\}$ de \mathbb{R}^n es ortogonal si cada uno de los vectores v_k es ortogonal a todos los demás, esto es, $v_k \cdot v_j = 0$ para $j \neq k$. Si además, cada uno de los vectores v_k tiene norma igual a 1, esto es,

$$v_k \cdot v_j = 0 \text{ y } ||v_k|| = 1 \text{ para } j \neq k \text{ y } k, j \in \{1, 2, \dots, p\}.$$

se dice que el conjunto es ortonormal.

Ortogonalidad

Propiedades de la ortogonalidad.

- (1) Los vectores $u, v \in \mathbb{R}^n$ son ortogonales si y sólo si forman un ángulo de 90 grados.
 - (2) Teorema de Pitágoras. Los vectores $u, v \in \mathbb{R}^n$ son ortogonales si y sólo si

$$||u + v||^2 = ||u||^2 + ||v||^2$$
.

(3) Si $\{v_1, v_2, \dots, v_p\}$ es un conjunto de vectores no nulos ortogonales dos a dos, entonces son linealmente independientes.

Cuestión: Demostrar (2) (cuidado, se trata de una doble implicación).

5.2. El subespacio ortogonal a un subespacio dado.

Subespacio ortogonal (Complemento ortogonal)

Subespacio ortogonal a uno dado. Dado un subespacio vectorial S de \mathbb{R}^n se denomina subespacio ortogonal de S al conjunto S^{\perp} formado por todos los vectores de \mathbb{R}^n que son ortogonales a todos los de S,

$$S^{\perp} = \{ v \in \mathbb{R}^n : v \perp u \text{ para todo } u \in S \}.$$

El subespacio ortogonal al subespacio nulo $\{0\}$ es \mathbb{R}^n y viceversa.

5.2. El subespacio ortogonal a un subespacio dado.

Subespacio vectorial

Propiedades del subespacio ortogonal. Dado un subespacio S de \mathbb{R}^n se verifica:

- (1) S^{\perp} es un subespacio vectorial.
- $(2) \left(S^{\perp} \right)^{\perp} = S.$
- (3) El único vector que está en S y en S^{\perp} es el vector nulo.
- (4) Si $S = Gen\{v_1, v_2, \dots, v_p\}$ entonces

$$v \in S^{\perp}$$
 si y sólo si $v \perp v_1, v \perp v_2, \ldots, v \perp v_p$

esto es, para probar que un vector es ortogonal a todos los vectores de un subespacio vectorial S basta ver que es ortogonal a los vectores que generan a S.

(5) Si A es una matriz real $m \times n$. Se verifica:

$$(Col(A))^{\perp} = Nul(A^T), \qquad (Nul(A))^{\perp} = Col(A^T).$$

El espacio $Col(A^T)$ se suele denominar espacio fila de la matriz A.

(6)
$$\dim(S^{\perp}) = n - \dim(S).$$

5.3. Bases ortonormales de un subespacio.

Base ortonormal

Base ortonormal de un subespacio. Sea S un subespacio vectorial de \mathbb{R}^n y sea $\{v_1, v_2, \ldots, v_p\}$ un conjunto de vectores de S. Decimos que $\{v_1, v_2, \ldots, v_p\}$ constituyen una base ortogonal de S si son base de S y, además, conjunto ortogonal. Decimos que $\{v_1, v_2, \ldots, v_p\}$ constituyen una base ortonormal de S si es una base y conjunto ortonormal.

Desarrollo de Fourier de un vector. Sea $\{v_1, v_2, \dots, v_p\}$ una base ortogonal de un subespacio S de \mathbb{R}^n . Entonces, las coordenadas de un vector $v \in S$ respecto de dicha base vienen dadas por $\frac{v \cdot v_k}{\|v_k\|^2}$, es decir, se verifica que

$$v = \frac{v \cdot v_1}{\|v_1\|^2} v_1 + \frac{v \cdot v_2}{\|v_2\|^2} v_2 + \dots + \frac{v \cdot v_p}{\|v_p\|^2} v_p.$$

Como caso particular tenemos que si $\{v_1, v_2, \dots, v_p\}$ es una base ortonormal de S, entonces $v = (v \cdot v_1) v_1 + (v \cdot v_2) v_2 + \dots + (v \cdot v_p) v_p$.

5.3. Bases ortonormales de un subespacio.

Base ortonormal

Matriz ortogonal. Se denomina matriz ortogonal a toda matriz Q real cuadrada cuyas columnas son ortonormales.

Propiedades de las matrices ortogonales. Sea Q una matriz ortogonal. Se verifica:

- (1) Q es no singular y $Q^{-1} = Q^T$.
- (2) $\det(Q) = \pm 1$.
- (3) Q^T es ortogonal. Por tanto, las filas de Q son ortonormales.
- (4) Si Q' es otra matriz ortogonal entonces QQ' es ortogonal.
- (5) Si T es la transformación lineal asociada a la matriz Q entonces T conserva ángulos y distancias, es decir:
 - a) ||Qx|| = ||x||.
 - b) $(Qx) \cdot (Qy) = x \cdot y$.
 - c) $Qx \perp Qy$ si y sólo si $x \perp y$.

Proyección ortogonal

Proyección ortogonal. Sea S un subespacio vectorial de \mathbb{R}^n . Dado cualquier vector $v \in \mathbb{R}^n$ existe un único vector $u \in S$ llamado proyección ortogonal de v sobre S tal que $v - u \in S^{\perp}$.

De hecho, si $\{u_1, u_2, \dots, u_p\}$ es una base ortogonal de S, entonces la proyección ortogonal de v sobre S es

$$u := proy_S(v) = \frac{v \cdot u_1}{\|u_1\|^2} u_1 + \frac{v \cdot u_2}{\|u_2\|^2} u_2 + \dots + \frac{v \cdot u_p}{\|u_p\|^2} u_p$$

y la proyección ortogonal de v sobre S^{\perp} es $proy_{S^{\perp}}(v) = v - u$.

Proyección ortogonal

Propiedades de la proyección ortogonal. Sea S un subespacio vectorial de \mathbb{R}^n .

- (1) Si $v \in S$, entonces $proy_S(v) = v$ y $proy_{S^{\perp}}(v) = 0$.
- (2) Se verifica que

$$proy_S(v) + proy_{S^{\perp}}(v) = v.$$

Por tanto, todo vector $v \in \mathbb{R}^n$ se puede expresar de forma única como suma de un vector de S y otro de S^{\perp} .

(3) Si $\{u_1, u_2, \dots, u_p\}$ es una base ortonormal de S, entonces la proyección ortogonal de un vector $v \in \mathbb{R}^n$ sobre S es

$$u := proy_S(v) = (v \cdot u_1) u_1 + (v \cdot u_2) u_2 + \dots + (v \cdot u_p) u_p.$$

(4) La transformación que a cada $v \in \mathbb{R}^n$ le hace corresponder $proy_S(v) \in S$ es una transformación lineal.

Proyección ortogonal

Matriz de la proyección ortogonal. Sea S un subespacio vectorial de \mathbb{R}^n . Si U es una matriz cuyas columnas forman una base ortonormal de S, entonces la matriz de la transformación proyección ortogonal sobre S es $P_S = UU^T$, esto es,

$$proy_S(v) = UU^T v$$
 para cualquier $v \in \mathbb{R}^n$.

Dicha matriz verifica las siguientes propiedades:

- $(1) \left(P_S \right)^2 = P_S$
- (2) P_S es simétrica.
- (3) $P_S + P_{S^{\perp}} = I$.

Teorema de la mejor aproximación. Sea S un subespacio vectorial de \mathbb{R}^n y consideremos un vector $v \in \mathbb{R}^n$ y un vector $u \in S$. Son equivalentes:

- (1) u es la proyección ortogonal de v sobre S, esto es, $u \in S$ y $v u \in S^{\perp}$.
- (2) u es el vector de S más próximo a v, esto es, $u \in S$ y para todo $w \in S$ se tiene que $||v-u|| \le ||v-w||$.

El Método de ortogonalización de Gram-Schmidt

El método de ortogonalización de Gram-Schmidt. El método de ortogonalización de Gram-Schmidt permite construir de manera progresiva una base ortogonal de un subespacio vectorial a partir de una base de dicho subespacio e incluso a partir de un conjunto de vectores que genere dicho subespacio. Consideremos una base $\{v_1, v_2, \ldots, v_p\}$ de un subespacio vectorial S de \mathbb{R}^n . Entonces los siguientes vectores $u_1 = v_1$

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \frac{v_{2} \cdot u_{1}}{\|u_{1}\|^{2}} u_{1}$$

$$u_{3} = v_{3} - \frac{v_{3} \cdot u_{1}}{\|u_{1}\|^{2}} u_{1} - \frac{v_{3} \cdot u_{2}}{\|u_{2}\|^{2}} u_{2}$$

$$\vdots$$

$$u_{p} = v_{p} - \frac{v_{p} \cdot u_{1}}{\|u_{1}\|^{2}} u_{1} - \frac{v_{p} \cdot u_{2}}{\|u_{2}\|^{2}} u_{2} - \dots - \frac{v_{p} \cdot u_{p-1}}{\|u_{p-1}\|^{2}} u_{p-1}$$

El Método de ortogonalización de Gram-Schmidt

están bien definidos, son no nulos y ortogonales dos a dos. Además:

- (1) $\{u_1, u_2, \dots, u_p\}$ es una base ortogonal de $S = Gen\{v_1, v_2, \dots, v_p\}$.
- (2) Para cada $k = 1, 2, ..., p, \{u_1, u_2, ..., u_k\}$ es una base ortogonal del subespacio $Gen\{v_1, v_2, ..., v_k\}$.

Notas:

- (1) Si el objetivo es conseguir una base ortonormal de S, una vez que se ha obtenido una base ortogonal basta normalizar los vectores obtenidos.
- (2) En cada paso del método de Gram-Schmidt que acabamos de describir podríamos multiplicar o dividir el vector obtenido por un coeficiente no nulo y seguir los cálculos con dicho vector.
- (3) Si no se parte de una base sino que, por ejemplo, el vector v_k es combinación lineal de los anteriores $v_1, v_2, \ldots, v_{k-1}$, al aplicar el método de Gram-Schmidt obtenemos $u_k = 0$. Es decir, el método de Gram-Schmidt devuelve el vector nulo cuando se aplica a un conjunto de vectores linealmente dependientes.

5.5. Problemas de mínimos cuadrados.

Mínimos cuadrados

Solución en el sentido de los mínimos cuadrados. Sea Ax = b un sistema de ecuaciones lineales, con A matriz $m \times n$. Encontrar una solución en el sentido de mínimos cuadrados consiste en encontrar un vector $x_0 \in \mathbb{R}^n$ para el cual $||Ax_0 - b||$ sea mínima, es decir,

$$||Ax_0 - b|| \le ||Ax - b||$$
 para todo $x \in \mathbb{R}^n$.

Ecuaciones normales de Gauss. Consideremos un sistema Ax = b con A una matriz real $m \times n$ y $b \in \mathbb{R}^m$ y sea $x_0 \in \mathbb{R}^n$. Son equivalentes:

- (1) x_0 es solución en el sentido de mínimos cuadrados del sistema Ax = b.
- (2) x_0 verifica $Ax_0 = proy_{Col(A)}(b)$.
- (3) x_0 verifica $A^T A x_0 = A^T b$, es decir, es solución del sistema lineal

$$A^T A x = A^T b$$

llamado ecuaciones normales de Gauss.

5.5. Problemas de mínimos cuadrados.

Mínimos cuadrados

Notas:

- (1) Las ecuaciones normales de Gauss constituyen un sistema compatible.
- (2) El sistema de ecuaciones $Ax = proy_{Col(A)}(b)$ es equivalente a las ecuaciones normales de Gauss.
- (3) La ecuaciones normales de Gauss forman un sistema compatible determinado si y sólo si el sistema homogéneo Ax = 0 tiene solución única.