Growth of Functions

Heejin Park

Division of Computer Science and Engineering
Hanyang University

Contents

- Asymptotic notation
 - *O*-notation
 - Ω -notation
 - Θ-notation
 - Other types of notation

Analogy

Analogy

- $f(n) = O(g(n)) \approx f(n) \leq g(n)$ in degree.
- $f(n) = \Omega(g(n)) \approx f(n) \ge g(n)$ in degree.
- $f(n) = \Theta(g(n)) \approx f(n) = g(n)$ in degree.
- Examples

• O-notation

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

• For all values n to the right of n_0 , the value of the function f(n) is on or below cg(n).

• O-notation

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

- g(n) is called an *asymptotic* upper bound of f(n).
- f(n) = O(g(n)) denotes $f(n) \subseteq O(g(n))$.

Example

$$3n+1 = O(n^2)$$

- Show there are c and n_o such that $3n+1 \le cn^2$ for all $n \ge n_0$.
- Dividing by n^2 yields $\frac{3}{n} + \frac{1}{n^2} \le c$.
- The inequality holds for any $n \ge 1$ and $c \ge 4$.

Ω -notation

ο Ω-notation

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \}$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0 \}$.

- For all values n to the right of n_0 , the value of f(n) is on or above cg(n).
- g(n) is called an *asymptotic* lower bound of f(n).

Ω -notation

Example

$$3n^2 - 4n + 1 = \Omega(n)$$

Show there are c and n_o such that $3n^2 - 4n + 1 \ge cn$ for all $n \ge n_0$.

- Dividing by *n* yields $3n-4+\frac{1}{n} \ge c$.
- The inequality holds for any $n \ge 2$ and c = 2.

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

- For all values of n to the right of n_0 , the value of f(n) lies on or above $c_1g(n)$ and on or below $c_2g(n)$.
- g(n) is called an asymptotically tight bound for f(n).

Example

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

To show there exist positive constants c_1 , c_2 and n_o such that

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \text{ for all } n \ge n_0.$$

Dividing by
$$n^2$$
 yields $c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$.

Example

$$|c_1| \le \frac{1}{2} - \frac{3}{n} \le c_2.$$

- The right-hand inequality holds for $n \ge 1$ by choosing $c_2 \ge 1/2$.
- The left-hand inequality holds for $n \ge 7$ by choosing $c_1 \le 1/14$.
- Thus, by choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$,

we can verify that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Example

- Consider any quadratic function $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0.
- Throwing away the lower-order terms and ignoring the constant yields $f(n) = \Theta(n^2)$.
- The reader may verify that $0 \le c_1 n^2 \le an^2 + bn + c \le c_2 n^2$ for all $n \ge n_0$. (Self-study)
- In general, for any polynomial $p(n) = \sum_{i=0}^{d} a_i n^i$ where the a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$.

• Theorem 3.1

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Notation

- Notation in equations and inequalities
 - $n = O(n^2)$ (set)
 - $T(n) = 2T(n/2) + \Theta(n)$ (element)
 - $2n^2+\Theta(n)=\Theta(n^2)$

Analogy

Analogy

- $f(n) = \Theta(g(n)) \approx f(n) = g(n)$ in degree.
- $f(n) = O(g(n)) \approx f(n) \leq g(n)$ in degree.
- $f(n) = \Omega(g(n)) \approx f(n) \ge g(n)$ in degree.
- $f(n) = o(g(n)) \approx f(n) < g(n)$ in degree.
- $f(n) = \omega(g(n)) \approx f(n) > g(n)$ in degree.

o-notation

- The asymptotic upper bound provided by *O*-notation may or may not be asymptotically tight.
- The bound $2n^2 = O(n^2)$ is asymptotically tight, but the bound $2n = O(n^2)$ is not.
- We use *o*-notation to denote an upper bound that is not asymptotically tight.

o-notation

• o-notation

 $o(g(n))=\{f(n): \text{ for any positive constant } c>0, \text{ there exists a constant } n_0>0 \text{ such that } 0\leq f(n)\leq cg(n) \text{ for all } n\geq n_0\}.$

- f(n) is called an *asymptotically smaller* than g(n).
- For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

o-notation

- The main difference between O and o.
 - f(n) = O(g(n)), the bound $0 \le f(n) \le cg(n)$ holds for some constant c > 0
 - f(n) = o(g(n)), the bound $0 \le f(n) < cg(n)$ holds for all constants c > 0.
- Intuitively, in the o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

ω-notation

• ω-notation is used to denote a lower bound that is not asymptotically tight.

ω-notation

 $\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}$

- f(n) is called an *asymptotically larger* than g(n).
- So, $f(n) \subseteq \omega(g(n))$ if and only if $g(n) \subseteq o(f(n))$.

ω-notation

Example

- $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.
- The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

if the limit exists.

• That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

Comparison of functions

- Comparison of functions
 - Transitivity
 - Reflexivity
 - Symmetry
 - Transpose symmetry

Comparison of functions

Comparison of functions

- Transitivity $(=, \leq, \geq, <, >)$
- Reflexivity $(=, \leq, \geq)$
- Symmetry (=)
- Transpose symmetry $(\le \leftrightarrow \ge, < \leftrightarrow >)$

Transitivity

- Transitivity $(=, \leq, \geq, <, >)$
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$,
 - f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$,
 - f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity

- Reflexivity $(=, \leq, \geq)$
 - $f(n) = \Theta(f(n))$
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$

Symmetry and transpose symmetry

- \circ Symmetry (=)
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- Transpose symmetry $(\leq \leftrightarrow \geq, < \leftrightarrow >)$
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$,
 - f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.

Comparison of functions

Trichotomy

- For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, a > b.
- That is, any two numbers are comparable.
- Are any two functions asymptotically comparable?
 - Is it possible $f(n) \neq O(g(n))$ and $f(n) \neq \Omega(g(n))$?
 - n and $n^{1+\sin n}$

Self-study

• Exercise 3.1-1

• Show $\max(f(n), g(n)) = \Theta(f(n) + g(n))$

• Exercise 3.1-4

- Is $2^{n+1} = O(2^n)$?
- Is $2^{2n} = O(2^n)$?
- Problem 3-2 for O, Θ , and Ω .
 - Use $\lg(n!) = \Theta(n \lg n)$