SURAJ MANIYAR

https://www.linkedin.com/in/suraj-maniyar | https://github.com/suraj-maniyar

EDUCATION

North Carolina State University, Raleigh, North Carolina

Aug 2017 - May 2019

Master of Science in Electrical Engineering (Specialization: Computational Intelligence)

GPA: 3.66/4.0

Courses :- Data Science | Digital Imaging Systems | Probabilistic Graphical Models for Signal Processing and Computer Vision | Spatial and Temporal Data Mining | Design of a Robotic Computer Vision System for Autonomous Navigation | Computer Vision

 Veermata Jijabai Technological Institute (VJTI), Mumbai, India Bachelor of Technology in Electronics Engineering Jun 2013 – Jul 2017

GPA: 7.72/10.0

Courses: - Signal Processing | Robotics | Image Processing | Computer Programming | Embedded Systems | Control Systems

TECHNICAL SKILLS

Programming Languages Python, C, C++, Java, Linux Shell scripting, SQL (Beginner), R (Beginner)

Frameworks & Libraries PyTorch, Tensorflow, Keras, OpenCV, Pandas, Numpy, Scipy, Scikit-learn, STL (C++)

Softwares & OS ROS, MATLAB, Linux (Ubuntu), Windows, LabVIEW

Hardware NVIDIA Jetson TX1, Raspberry Pi, Beaglebone Black, AVR series microcontrollers

PROJECTS

Stock Trading Using Machine Learning (Python, Keras, Pandas)

Sept 2016 - May 2017

- Implemented a recommendation system to provide real time trading advice to investor
- Optimized the investor's portfolio and implemented technical analysis using Neural Networks and Reinforcement Learning separately to suggest best actions (buy, sell or hold) to the investor

Respiratory Rate Estimation using Hidden Markov Model and Neural Network (Python, Keras)

Dec 2017

- Estimated respiratory rate of a human based on accelerometer data, heart rate and body temperature using Ridge Regression and Neural Networks separately with a Root Mean Squared Error (RMSE) of **4.58**
- Reduced RMSE to 3.68 by incorporating temporal dynamics using Hidden Markov Model (HMM)

Expectation-Maximization Algorithm: Comparative Study (Python)

Mar 2018

- Performed a comparative study of Gaussian, Mixture of Gaussian, t-distribution, mixture of t-distribution and Factor Analysis models for face image classification
- Fine-tuned the parameters (mean and variance) for each of the models using Expectation-Maximization algorithm

Activity Recognition from Video to Benchmark Hardware Accelerator (Python, Keras) Independent Study

May 2018 - Aug 2018

- Implemented activity recognition using Convolutional and Recurrent Neural Net to benchmark custom made hardware accelerator
- Obtained an accuracy of 70% by using Transfer Learning on VGG-16 network for 7 different activities on UCF-101 Dataset

Image Segmentation using Markov Random Field (MRF) (Python, OpenCV)

Dec 2017

- Segmented the chambers of a foraminifera (marine species) from its edge probability map using Graph-Cut (MRF based) approach
- Obtained an accuracy of **71.40%** using morphological refining and watershed transformation

Deep Visual Attention Prediction using Skip-Layer Network structure (Python, Keras, Tensorflow, OpenCV)

Apr 2018

- Replicated results of the paper: 'Deep Visual Attention Prediction' to predict human eye fixation on view-free scenes
- Obtained accuracy of 64% by incorporating multi-level saliency predictions from skip layers

Task Learning Robot (LabVIEW)

Aug 2015 - Nov 2015

National Instruments, India

- Implemented a Computer-Vision based approach for 'Robot Learning from Demonstration' using industrial robotic arm Scorbot ER-VII
- Shortlisted in the top 20 teams for the National Level Contest, NIYANTRA, organized by National Instruments, India

Design of a SLAM System for Autonomous Robot (ROS, C++, Python, OpenCV)

Jan 2018 - May 2018

- Localized aerial robot blimp using VINS-Mono and ORB SLAM2 algorithms separately
- Obtained 3D point cloud of the environment by incorporating Visual and Odometric data
- Technology used: NVIDIA Jetson TX1, Raspberry Pi, BNO055 IMU, Raspberry PiCam, Point Cloud Library (PCL), ROS

CO-CURRICULAR ACTIVITIES

- Senate member of Society of Robotics and Automation (S.R.A.), V.J.T.I. which deals with robotics, machine vision and automation
- Managed and conducted workshops with a team of 10, to teach students about line-following robots, embedded systems, Bluetooth technology and Internet of Things (IoT)