EECS16A Touchscreen 2

Resistive Touchscreen

- Investigate a resistive touchscreen
 - Something that actually was used for a long time!
- Use voltage as a signal to determine position of touch
 - O How?

Resistive Touchscreen

- Physical touch results
 in physical contact
 between top and
 bottom layers
- Voltage dividers allow us to compute touch location

EX: Nokia N900, Nokia N97 Mini, LG Optimus, LG GW620, Nintendo DS

Tools for today:

- Launchpad measuring device & providing power
- Voltage dividers
 - How we will detect location
- Falstad
 - Circuit simulation, has virtual Power
 Supplies and Multimeters

Touchscreen Theory (Note 13/14)

What's the voltage at the top?

What's the voltage at the bottom?

Voltage at u2?

Touchscreen Theory (Note 13/14)

What's the voltage at the top?

Vs

What's the voltage at the bottom?

0

Voltage at u2?

Voltage Divider!

Touchscreen Theory (Note 13/14)

$$u_2 = V_S * \frac{kR_1}{kR_1 + R_1}$$

$$u_2 = V_S * \frac{R_1(k)}{R_1(k+1)}$$

 $u_2 = V_S * \frac{\kappa}{k+1}$

 What are the voltages at u2 and u3?

$$u_2 = V_S * \frac{k}{k+1}$$

$$u_3 = V_S * \frac{k}{k+1}$$

What's the voltage difference?

The Rs cancel out! All the matters is the proportion between the top and bottom resistors.

In fact, u3 and u2 are at the SAME VOLTAGE

- We know that u2-u3=0
- How much current goes through R3?

$$u_2 = V_S * \frac{k}{k+1}$$

$$u_3 = V_S * \frac{k}{k+1}$$

- Add one more resistor divider...
- We get our touchscreen!

Poll time!

What is the voltage at u4?

- 0V
- Same as u2
- None of the above

How much current is flowing through Rh2?

- 0A
- Non-zero current

Poll time!

What is the voltage at u4?

- 0V
- Same as u2
- None of the above

How much current is flowing through Rh2?

- 0A
- Non-zero current

- But how do we measure the voltage?
- Our finger can
 press down on a
 point, but we
 need the voltage
 measurement!

- We can add another (ungrounded) mesh!
- If we connect the mesh at the point we touch, we get the voltage!
- Why specifically a mesh? We'll see in a bit.

Resistive Touchscreen - 2 Layers

Bottom Layer: Resistive Layer

Resistive Touchscreen - 2 Layers

Top Layer:

Flexible Resistive Layer

What's the difference?

- Nothing
 - The ink is a bunch of resistors
 - The resistor values don't matter because we showed only the proportions matter for this circuit
 - Their circuit diagrams are the same
- One is flexible so we can actually move it to make contact
- We use two so that we can measure with one and apply voltage to the other without changing our circuit

- Measure some voltages, compute location based on value
- Can you find any two horizontal locations that would output the same voltage?
- What about vertical?

- We can only determine vertical position
- What about the other orientation?

What if we turned it sideways?

- Let's turn it sideways
 - Apply voltage so we power the horizontal direction
 - Find "vertical"
 location in horizontal
 orientation
- This gives horizontal location

- If we take two readings, one in each dimension can uniquely determine our location in 2D
- More on this in the lab notebook

Taking the Limit

- 9 touch points is kinda... meh
- How do we get more?

Taking the Limit

Add more resistors!

Taking the Limit

- But what if I don't want to increase the size of the circuit?
 - Add more, but make the resistors smaller!
- What happens as the resistors approach infinitely small sizes?
 - Isn't that just a resistive sheet?
 - This is how all resistive touchscreens work
 - Review lecture <u>note 12</u>, <u>note 13</u>, <u>note 14</u>

Simulating Touchscreens

- Falstad simulator (http://tinyurl.com/y8pms37)
 - Will be used in this lab to simulate resistive dividers in upper and bottom plates

Pointers

- If you do NOT have pre-stripped breadboarding wires:
 - Strip wires using wire cutter (if you have one)
 - Use male-male jumper wires (recommended option, if you do not have a wire cutter)
 - Strip wires using scissors/kitchen knife (at your own risk)
- Watch instructional videos in the notebook if you are doing option 2 or 3
- If none of these options work, you can still get checked off!

Stripped breadboarding wire

Option 2: use male-male jumper wire