Caracterização da Pesquisa sobre Otimização de Estruturas de Treliças

Christopher Renkavieski¹

¹Universidade do Estado de Santa Catarina – UDESC Joinville – SC – Brasil

chris.renka@gmail.com

Resumo. Este artigo apresenta a classificação do trabalho de mestrado do seu autor, sobre otimização de estruturas de treliças com o uso de algoritmos metaheurísticos. Esta classificação foi feita com base em sete categorias, sendo elas: objetivo de pesquisa, nível de maturidade, raciocínio lógico, procedimento de coleta de dados, influência e natureza das variáveis e tipo de ciência. Pôde ser encontrada uma classificação clara dentro de cada uma destas categorias, mostrando que o tema do trabalho é viável e bem enquadrado.

1. Introdução

Existe um conceito equivocado de que, para ser considerada ciência, uma pesquisa deve seguir o método científico tradicional. A realidade, porém, é mais complexa que isso, existindo múltiplas formas de se fazer ciência e de se classificar pesquisas científicas.

Combinando as classificações de [Gil 2002, Marconi and Lakatos 2003, Wazlawick 2008, Wazlawick 2010], este artigo trata das classificações de ciência de acordo com objetivos, nível de maturidade, raciocínio lógico, procedimento de coleta, influência e natureza das variáveis e tipo de ciência.

Essas diferentes categorias serão utilizadas para classificar o trabalho de mestrado que será desenvolvido pelo autor deste artigo. Cada uma das seções seguintes é dedicada a contextualizar o trabalho de mestrado em uma das classificações mencionadas, enquanto a última seção apresenta as considerações finais do autor.

2. Objetivo de Pesquisa

O trabalho de mestrado a ser realizado tem como objetivo propor um novo algoritmo de otimização meta-heurística e aplicá-lo ao problema de otimização de treliças. Este objetivo carrega consigo a hipótese de que este algoritmo será eficaz na solução deste problema, podendo atingir ou aprimorar o estado da arte. Desta forma, esta é uma pesquisa com hipótese.

A pesquisa será do tipo descritiva, pois deverá descrever o algoritmo proposto e os resultados obtidos por ele, relacionando diretamente estas duas variáveis. Segundo [Gil 2002], pesquisas descritivas são aquelas que "têm como objetivo primordial a descrição das características de determinada população ou fenômeno ou, então, o estabelecimento de relações entre variáveis".

Serão também apresentadas análises de convergência e do comportamento dos algoritmos estudados, porém este tipo de análise não é suficiente para classificar a pesquisa como explicativa.

3. Nível de Maturidade

A pesquisa que será realizada se encontra no estilo de maturidade 4, ou "Apresentação de Algo Reconhecidamente Melhor". Segundo [Wazlawick 2008], este estilo de pesquisa é "aquele no qual um trabalho é desenvolvido e seus resultados são apresentados em função de testes padronizados e internacionalmente aceitos".

Cada tipo de otimização de treliças têm métricas e estruturas de *benchmark* bem definidas [Koziel and Yang 2011]. Outros trabalhos de otimização publicados utilizam estas métricas e estruturas, o que permite a comparação dos resultados obtidos.

4. Raciocínio Lógico

Quanto ao raciocínio lógico utilizado, esta pesquisa se enquadra no tipo hipotéticodedutivo. De acordo com [Marconi and Lakatos 2003], este é o tipo de pesquisa que se aproxima do método científico tradicional. A partir de um problema, são propostas conjecturas, que têm suas consequências deduzidas. Estas conjecturas passam então por testes de falseamento com o objetivo de refutá-las. Caso sejam refutadas, as conjecturas deverão então ser retrabalhadas ou refeitas para que possam passar por novos testes.

No contexto desta pesquisa, o problema é a otimização de treliças. As conjecturas são os algoritmos propostos, e os testes de falseamento são os experimentos feitos aplicando os algoritmos às estruturas de *benchmark*. Se os resultados obtidos não apresentarem vantagens em relação ao estado da arte, os algoritmos deverão ser reanalisados, para que se possa entender os motivos da falha. A partir destas análises, o algoritmo pode ser aprimorado, ou até mesmo descartado em função de outro que melhor atenda aos pontos das análises.

5. Procedimento de Coleta de Dados

O procedimento de coleta de dados utilizado neste trabalho será a pesquisa em laboratório. Segundo [Marconi and Lakatos 2003], estes experimentos são realizados em situações controladas, e exigem instrumental e ambientes adequados. Ainda de acordo com [Marconi and Lakatos 2003], há quatro aspectos a se considerar na pesquisa em laboratório: objeto, objetivo, instrumental e técnicas.

Neste contexto, o laboratório de pesquisa será o computador onde os experimentos serão realizados. Os objetos de pesquisa serão as estruturas de treliças a ser otimizadas, o instrumental será computador e seus recursos, as técnicas serão os algoritmos propostos, e o objetivo dos experimentos será a avaliação dos algoritmos em relação às estruturas. Os dados coletados dos experimentos, que servirão para a avaliação dos algoritmos, serão as métricas referentes às estruturas, como o seu peso, e também métricas referentes ao próprio algoritmo, como aptidão das soluções e diversidade da população.

6. Influência das Variáveis

Segundo [Marconi and Lakatos 2003], uma variável independente X é aquela que afeta uma variável dependente Y. Neste sentido, X é a variável controlada pelo pesquisador, enquanto Y é o fenômeno observado. Já uma variável interveniente W, se existir, é aquela que se põe entre X e Y, ou seja, é uma variável dependente em relação a X, e independente em relação a Y.

Neste trabalho de mestrado, tem-se como variável independente X o algoritmo de otimização utilizado, enquanto as variáveis dependentes Y são as métricas que resultam da otimização das estruturas estudadas. Já como variável interveniente W, pode-se considerar o funcionamento interno do algoritmo, sendo este definido por seus parâmetros de controle e pelos procedimentos utilizados para combinar e modificar as soluções geradas durante o processo de otimização.

7. Natureza das Variáveis

As variáveis trabalhadas nesta pesquisa são quantitativas, pois são valores numéricos medidos experimentalmente. Variáveis quantitativas podem ser divididas em discretas ou contínuas. De acordo com [Wazlawick 2008], uma variável discreta é aquela que pode somente possuir valores pertencentes a um conjunto finito, enquanto uma variável contínua é aquela que pertence a um intervalo real, com um número infinito de valores possíveis.

Nesta pesquisa de mestrado, tanto variáveis discretas quanto contínuas poderão ser utilizadas. Existem tanto abordagens discretas quanto contínuas para a otimização estrutural [Stolpe 2015], e como o trabalho está em fases iniciais, ainda não foi definida qual ou quais abordagens serão utilizadas. Além disso, algoritmos meta-heurísticos podem apresentar tanto parâmetros de controle discretos quanto contínuos. Na evolução diferencial, por exemplo, o fator de mutação e taxa de *crossover* são contínuos, enquanto o tamanho da população é discreto [Storn and Price 1997].

8. Tipo de Ciência

No artigo de [Wazlawick 2010], são definidas cinco formas para classificar ciência. Estas são:

- Ciências formais e empíricas;
- Ciências puras e aplicadas;
- Ciências exatas e inexatas;
- Ciências duras e moles;
- Ciências nomotéticas e idiográficas.

Este trabalho será classificado de acordo com cada uma destas cinco formas.

8.1. Ciências Formais e Empíricas

Ciências formais são aquelas que estudam as ideias, independente se têm ou não aplicação, enquanto as ciências empíricas estudam fenômenos do mundo real, fazendo uso de observações [Wazlawick 2010].

O trabalho sendo desenvolvido se enquadra como ciência empírica, pois lida diretamente com um problema do mundo real – otimização estrutural – e busca soluções ótimas para este problema. Embora não serão feitas observações de estruturas físicas, estas serão simuladas em computador e serão realizados experimentos com estas simulações.

8.2. Ciências Puras e Aplicadas

Ciências puras estudam conceitos básicos do conhecimento e, assim como as ciências formais, não se preocupam diretamente com a sua aplicabilidade. Já as ciências aplicadas visam diretamente a aplicação das suas descobertas e métodos [Wazlawick 2010].

A pesquisa para este trabalho de mestrado está claramente enquadrada dentro das ciências aplicadas, pois busca soluções para um problema de engenharia do mundo real.

8.3. Ciências Exatas e Inexatas

A próxima classificação é relacionada à exatidão da ciência. Ciências exatas apresentam resultados precisos e seus experimentos são reproduzíveis. Já nas ciências inexatas, somente comportamentos gerais podem ser modelados, porém os resultados exatos obtidos não são precisos [Wazlawick 2010].

Embora algoritmos meta-heurísticos sejam estocásticos por natureza, e em consequência inexatos, os seus operadores podem ser controlados e ajustados de modo a minimizar a variância estatística dos seus resultados, tornando-os assim mais consistentes e exatos. Sendo assim, embora este trabalho se enquadre como ciência inexata, cuidados serão tomados na elaboração dos algoritmos para minimizar a incerteza dos seus resultados experimentais.

8.4. Ciências Duras e Moles

As ciências duras são aquelas que requerem rigor científico, exigindo consistência lógica e matemática, para as ciências formais, ou comprovação estatística, para ciências empíricas. Já ciências moles são aquelas que aceitam evidências de estudos de caso [Wazlawick 2010].

Este trabalho se enquadra nas ciências duras pois será feito o uso de análises estatísticas, tanto para comprovar a consistência dos resultados, quanto para confirmar a superioridade, equivalência ou inferioridade desses resultados com os da literatura.

8.5. Ciências Nomotéticas e Idiográficas

A última classificação de ciência apresentada por [Wazlawick 2010] é a separação entre ciências nomotéticas e idiográficas. Uma ciência nomotética estuda fenômenos que se repetem, permitindo a elaboração de regras gerais, enquanto uma ciência idiográfica estuda fenômenos que ocorrem somente uma vez, como acontecimentos históricos, por exemplo [Wazlawick 2010].

Como as mesmas leis físicas governam o comportamento de todas as estruturas de treliças, uma mesma solução de otimização levará sempre a um mesmo comportamento estrutural. Portanto a ciência realizada neste trabalho é classificada como nomotética.

9. Conclusões

Este artigo apresentou as diferentes formas pelas quais o trabalho de mestrado que será desenvolvido pelo autor pode ser classificado. Segundo as análises realizadas, esta é uma pesquisa descritiva, com nível de maturidade 4, que se utiliza do raciocínio lógico hipotético-dedutivo. A coleta de dados será feita em laboratório, e as variáveis medidas serão quantitativas, sendo elas tanto discretas quanto contínuas. Será realizado um trabalho de ciência empírica, aplicada, inexata, dura e nomotética.

A clara definição destas categorias mostra que o tema escolhido para a realização do trabalho de mestrado é viável e está bem enquadrado, o que é o primeiro passo para a execução de um trabalho de qualidade.

Referências

- Gil, A. C. (2002). Como Elaborar Projetos de Pesquisa. Editora Atlas S.A., São Paulo.
- Koziel, S. and Yang, X.-S. (2011). *Computational Optimization, Methods and Algorithms*. Springer-Verlag Berlin Heidelberg.
- Marconi, M. A. and Lakatos, E. M. (2003). Fundamentos de Metodologia Científica. Editora Atlas S.A., São Paulo.
- Stolpe, M. (2015). Truss optimization with discrete design variables: a critical review. *Structural and Multidisciplinary Optimization*, 53:349–374.
- Storn, R. and Price, K. (1997). Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization*, 11(4):341–359.
- Wazlawick, R. (2010). Uma reflexão sobre a pesquisa em ciência da computação à luz da classificação das ciências e do método científico. *Revista de Sistemas de Informação da FSMA*, pages 3–10.
- Wazlawick, R. S. (2008). Metodologia da pesquisa para ciência da computação. Elsevier.