A Reconfigurable Memristive Dynamic Adaptive Neural Network Array

Gangotree Chakma, Elvis Offor, Mark Dean & Garrett S. Rose

> garose@utk.edu June 30, 2016

TENNESSEE

BIG ORANGE. BIG IDEAS.°

NIDA:

Neuro-Inspired Dynamic Architecture

- Spiking neural network modeled in 3D space
- Simple neuron and synapse design: 2 parameters per element
- Evolutionary optimization (EO) used to *compile/synthesize* networks
- Discrete event simulation

Dynamic Adaptive Neural Network Array (DANNA)

- Array of programmable neural network elements
- Each element can be connected to up to 16 other elements
- Have implemented using FPGA
- Hardware-accurate simulator available – used for offline evolutionary optimization

Toward a Memristive DANNA (mrDANNA)

- Maintain salient features of NIDA/DANNA architecture:
 - Configurable hardware: structure & weights optimized offline
 - Dynamic adaptation via LTD/LTP mechanism
 - Simple neuron and synapse design
 - Neurons: programmable threshold & refractory period
 - Synapses: programmable delay & synaptic weights
- Leverage metal-oxide memristors for synapses
 - High density synaptic arrays
 - Potential for low-power operation

Goal: A memristor-based neuromorphic system with reconfigurable structure, parameter initialization and dynamic adaptability.

Hafnium-Oxide Memristors

- SUNY Polytechnic—CNSE fabricating HfO₂ memristors
- Complete hybrid CMOS/memristor process
 - Memristors in via layer between metal1 and metal2

mrDANNA Circuit Elements

- Memristor pairs implement synaptic weights
 - weight proportional to effective conductance of pair
- Synaptic buffers provide delay and complementary drive signals for memristor pairs
- Integrate & fire (IAF) neurons
- Feedback from IAF neurons to synaptic buffers used for onchip adaptation

LTP and LTD in mrDANNA System

- Implemented NIDA rule for LTP/LTD
- LTP: Increase weight for synapse causing a post-synaptic neuron firing event
- LTD: Decrease weight for synapse that fires simultaneous to postsynaptic neuron firing event
- Integrate & Fire neurons –
 integrates until threshold reached,
 charge resets upon firing event

Simulation Results

- Each column of weight matrix denotes the weights of each neuron
- Optimization of number of neurons reduces the structure complexity
- Threshold calculation consistent with maximum and minimum synaptic weights

Spike Encoding – Iris Dataset Example

- Simulated NIDA Iris network translated to mrDANNA
 - Length and width values rounded up for this example
- Example shown: Result identifying versicolor Iris

Concluding Thoughts

- Build better understanding of constraints for memristive circuits
 - Guide algorithmic refinement
- Hardware interfaces and software
 - Developing FPGA-based DANNA in parallel improved interfaces
 - Evolutionary optimization used to *compile* or *synthesize* networks
 - mrDANNA model and simulator used for verification & EO
 - Commander and other tools for interfacing with the system
- Strike a balance: offline network initialization vs. online training
- Will fabricate mrDANNA test chip in collaboration with AFRL & CNSE

Acknowledgements

- Collaborators:
 - Nathaniel Cady (CNSE)
 - Joseph Van Nostrand (AFRL)
 - Mark Dean (UTK)
 - James Plank (UTK)
 - Catherine Schuman (ORNL)
 - Thomas Potok (ORNL)
 - Robert Patton (ORNL)
 - Steven Young (ORNL)
- Sponsors:

