

Canadian Bioinformatics Workshops

www.bioinformatics.ca

bioinformaticsdotca.github.io

Basic Differential Expression Analysis

Shraddha Pai Analysis Using R June 14, 2024

Learning Objectives

- By the end of this lecture, you will:
 - Understand the key steps in identifying differentially expressed genes in RNAseq
 - Learn how to use p-value histograms and QQ-plots to gauge how much signal you have after multiple hypothesis testing
 - Learn to create volcano plots to visualize results of differential expression analysis

RNAseq data generation

Stark, Grzelak, Hadfield. (2019). Nat Rev Gen.

RNAseq data processing: High-level overview

Raw reads

Align reads to genome

Obtain transcript counts

Normalize

Statistical model for differential gene expression analysis

RNA-seq analysis

~ 20,000 measures (protein-coding genes)

20,000 individual statistical tests

20,000 p-values

Multiple testing burden

Reduce multiple testing burden

Variation in sequencing depth

$$log(xpr) = \beta_0 + \epsilon^*$$
 null model $log(xpr) = \beta_0 + \beta_1(disease) + \epsilon$ full model

Likelihood ratio test (LRT)

Negative Signal in binomial count data distribution (class of generalized linear models)

Correct for multiple tests

* $\epsilon \sim log(Normal)$

Let's look at a worked example for RNAseq analysis.

Exercise time.

Recap course

Module 1: Systematic exploratory data analysis

Module 3: **Generalized linear models** to fit binary response variables (and RNAseq data!)

Module 2: **Dimensionality reduction** to identify major sources of variation in your data

Module 4: **Differential expression analysis**, multiple hypothesis testing

Enjoy exploring your data!

Workshop Sponsors:

