ASSEMBLER

ZEITBERECHNUNG EINES PROGRAMMS

AGENDA

- Assembler
- Bsp. Programm Blinklicht
 - Berechnung der Dauer
- Alternatives Vorgehen

ASSEMBLER

- Maschinennahe Sprache
- Genaue Bestimmung des Speicherortes
- Exakte Zeitmessung
- ⇒ Detailliertes Programmieren
- ⇒ Reduzieren des Speicherplatzes
- ⇒ Effizientere Befehle möglich

ASSEMBLER

- Viele verwandte Sprachen
 - X86-Prozessoren:

Microsoft Macro Assembler MASM

- Linux: GNU Assembler
- Mikrocontroller:

Freier Macroassembler ASEM-51

- Inline-Assembler
- •

BSP. PROGRAMM BLINKLICHT

- LED soll mit Frequenz von 1 sek Blinken
- Lösung Pausenprogramm zählt bis 1.000.000

```
mov P2, #0
haupt:
       cpl P2.0
       Icall Pause 1s
       simp haupt
Pause 1 s:
                                         1 Mz
       mov R2, #200
                                                                        1 Mz
                                         1 Mz
                                                                     200 Mz
       S2: mov R1, #100
                                         1 Mz
                                                                  20.000 Mz
       S1: mov R0, #50
                                                               2.000.000 Mz
                                         2 Mz
       S0: djnz R0, S0
                                         2 Mz
                                                                  40.000 Mz
           djnz R1, S1
                                         2 Mz
           djnz R2, S2
                                                                      400 Mz
                                         2 Mz
                                                                        2 Mz
       ret
                                                               2.060.603 Mz
End
```

```
mov P2, #0
haupt:
       cpl P2.0
       Icall Pause 1s
       simp haupt
Pause 1 s:
       mov R2, #100
                                         1 Mz
                                                                        1 Mz
       S2: mov R1, #100
                                         1 Mz
                                                                      100 Mz
                                         1 Mz
       S1: mov R0, #50
                                                                   10.000 Mz
       S0: djnz R0, S0
                                         2 Mz
                                                                1.000.000 Mz
                                         2 Mz
                                                                   20.000 Mz
           djnz R1, S1
                                         2 Mz
           djnz R2, S2
                                                                      200 Mz
                                         2 Mz
                                                                        2 Mz
       ret
End
                                                                1.030.303 Mz
```

```
mov P2, #0
haupt:
       cpl P2.0
       Icall Pause 1s
       simp haupt
Pause 1 s:
       mov R2, #100
                                         1 Mz
                                                                        1 Mz
       S2: mov R1, #100
                                         1 Mz
                                                                      100 Mz
       S1: mov R0, #48
                                         1 Mz
                                                                   10.000 Mz
       S0: djnz R0, S0
                                         2 Mz
                                                                 960.000 Mz
                                         2 Mz
          djnz R1, S1
                                                                  20.000 Mz
                                         2 Mz
           djnz R2, S2
                                                                      200 Mz
                                         2 Mz
                                                                        2 Mz
       ret
End
                                                                 990.303 Mz
```

- Dauer eines Programms lässt sich auf Mz genau berechnen
 - Im Bsp. fehlen 9.697 Mz => neue Schleife...
- Im Allgemeinen reicht Multiplizieren der Startwerte * 2
 - 2 * 100 * 100 * 50 = 1.000.000

ALTERNATIVE - TIMERINTERRUPT

TMOD (89h): Timermodus-Kontrollregister für Timer1 & Timer0									
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Kontrolle	Timer 1		Kontrolle Timer 0					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Gate	C/T	M1	MO	Gate	C/T	M1	MO		

Gate	C/T	M1	MO				
		0	0	Modus 0			
		0	1	Modus 1: 16 Bit-Timer ohne Nachladen			
		1	0	Modus 2: 8-Bit-Timer mit Auto-Reload			
		1	1	Modus 3: 2 Stück 8-Bit-Timer			
	0	Timer-B	etrieb				
	1	Zähler-Betrieb					
0	Timer nur durch TR-Bit ein- und ausschalten						
1	Timer mit TR-Bit und Portpin ein- und ausschalten						