CSCE 636: Neural Networks (Fall 2018) Assignment #3 Due 11/12/2018

- 1. Please read and follow submission instructions. No exception will be made to accommodate incorrectly submitted files/reports.
- 2. You need to submit a report in hard-copy before lecture. The hard-copy report should contain everything except for the code files. For example, all answers to problems and summary of experimental results must be included in the hard-copy report.
- 3. The code files need to be emailed to csce636hw@gmail.com. Before submission, compress all your code files into a zip file named 'firstname_lastname_HW#.zip'. Make sure the email title is 'firstname_lastname_HW#'. Note that your email submission should contain your code files ONLY.
- 4. Hard-copy is due in class before lecture and code part is due 11:30AM on the due date.
- 5. Only one submission is allowed.
- 6. Write your code between the following lines. Do not modify other parts. Only the code between the following lines will be graded. Don NOT include experimental results in your code submission. Do NOT change file names.

YOUR CODE HERE ### END YOUR CODE

1. (100 points)(Coding Task) **Deep Residual Networks for CIFAR-10 Image Classification**: In this assignment, you will implement advanced convolutional neural networks on CIFAR-10 using *Tensorflow*. In this classification task, models will take a 32 × 32 image with RGB channels as inputs and classify the image into one of ten pre-defined classes. The "code" folder provides the starting code. You must implement the model using the starting code. In this assignment, you must use a GPU.

Requirements: Python 3.6, Tensorflow 1.10, tqdm, numpy

Required Reading Materials:

- [1] Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385)
- [2] Identity Mappings in Deep Residual Networks (https://arxiv.org/abs/1603.05027)
- [3] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)
- (a) (10 points) Download the CIFAR-10 dataset (https://www.cs.toronto.edu/~kriz/cifar.html) and complete "DataReader.py". For the dataset, you can download any version. But make sure you write corresponding code in "DataReader.py" to read it.
- (b) (10 points) Implement data augmentation. To complete "ImageUtils.py", you will implement the augmentation process for a single image using *numpy*. Corresponding *Tensorflow* functions are given.

- (c) (40 points) Complete "Network.py". Read the required materials carefully before this step. You are asked to implement two versions of ResNet: version 1 uses original residual blocks (Figure4(a) in [2]) and version 2 uses full pre-activation residual blocks (Figure4(e) in [2]). In particular, for version 2, implement the bottleneck blocks instead of standard residual blocks. In this step, only basic Tensorflow APIs in tf.layers and tf.nn are allowed to use.
- (d) (20 points) Complete "Model.py". Note: For this step and last step, pay attention to how to use batch normalization.
- (e) (20 points) Tune all the hyperparameters in "main.py" and report your final testing accuracy.
- 2. (20 points) Consider the standard residual block and the bottleneck block in the case where inputs and outputs have the same dimension (e.g. Figure 5 in [1]). In another word, the residual connection is an identity connection. For the standard residual block, compute the number of training parameters when the dimension of inputs and outputs is $128 \times 16 \times 16 \times 32$. Here, 128 is the batch size, 16×16 is the spatial size of feature maps, and 32 is the number of channels. For the bottleneck block, compute the number of training parameters when the dimension of inputs and outputs is $128 \times 16 \times 16 \times 128$. Compare the two results and explain the advantages and disadvantages of the bottleneck block.
- 3. (20 points) Using batch normalization in training requires computing the mean and variance of a tensor.
 - (a) (8 points) Suppose the tensor x is the output of a fully-connected layer and we want to perform batch normalization on it. The training batch size is N and the fully-connected layer has C output nodes. Therefore, the shape of x is $N \times C$. What is the shape of the mean and variance computed in batch normalization, respectively?
 - (b) (12 points) Now suppose the tensor x is the output of a 2D convolution and has shape $N \times H \times W \times C$. What is the shape of the mean and variance computed in batch normalization, respectively?
- 4. (60 points) We investigate the back-propagation of the convolution using a simple example. In this problem, we focus on the convolution operation without any normalization and activation function. For simplicity, we consider the convolution in 1D cases. Given 1D inputs with a spatial size of 4 and 2 channels, *i.e.*,

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \end{bmatrix} \in \mathbb{R}^{2 \times 4},\tag{1}$$

we perform a 1D convolution with a kernel size of 3 to produce output Y with 2 channels. No padding is involved. It is easy to see

$$Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \in \mathbb{R}^{2 \times 2},\tag{2}$$

where each row corresponds to a channel. There are 12 training parameters involved in this convolution, forming 4 different kernels of size 3:

$$W^{ij} = [w_1^{ij}, w_2^{ij}, w_3^{ij}], i = 1, 2, j = 1, 2,$$
(3)

where W^{ij} scans the *i*-th channel of inputs and contributes to the *j*-th channel of outputs.

(a) (15 points) Now we flatten X and Y to vectors as

$$\tilde{X} = [x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24}]^T$$

$$\tilde{Y} = [y_{11}, y_{12}, y_{21}, y_{22}]^T$$

Please write the convolution in the form of fully connected layer as $\tilde{Y} = A\tilde{X}$ using the notations above. You can assume there is no bias term.

Hint: Note that we discussed how to view convolution layers as fully connected layers in the case of single input and output feature maps. This example asks you to extend that to the case of multiple input and output feature maps.

(b) (15 points) Next, for the back-propagation, assume we've already computed the gradients of loss L with respect to \tilde{Y} :

$$\frac{\partial L}{\partial \tilde{Y}} = \left[\frac{\partial L}{\partial y_{11}}, \frac{\partial L}{\partial y_{12}}, \frac{\partial L}{\partial y_{21}}, \frac{\partial L}{\partial y_{22}} \right]^T, \tag{4}$$

Please write the back-propagation step of the convolution in the form of $\frac{\partial L}{\partial \tilde{X}} = B \frac{\partial L}{\partial \tilde{Y}}$. Explain the relationship between A and B.

(c) (30 points) While the forward propagation of the convolution on X to Y could be written into $\tilde{Y} = A\tilde{X}$, could you figure out whether $\frac{\partial L}{\partial \tilde{X}} = B\frac{\partial L}{\partial \tilde{Y}}$ also corresponds to a convolution on $\frac{\partial L}{\partial Y}$ to $\frac{\partial L}{\partial X}$? If yes, write down the kernels for this convolution. If no, explain why.