<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>9-Formas Canônicas e Transformações de Similaridade</u>

/ Questionário sobre Formas Canônicas e Transformações de Similaridade

Iniciado em	sábado, 24 jul 2021, 15:58
Estado	Finalizada
Concluída em	sábado, 24 jul 2021, 16:04
Tempo	5 minutos 5 segundos
empregado	
Notas	4,7/8,0
Avaliar	5.8 de um máximo de 10.0(58%)

Parcialmente correto

Atingiu 0,4 de 1,0

Identifique as seguintes representações em espaço de estados:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

Forma canônica controlável

/

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Forma canônica controlável

×

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Forma não canônica

~

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Forma canônica diagonal

×

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Forma canônica diagonal

×

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Forma canônica diagonal

×

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$

 $\begin{bmatrix} x_1 \end{bmatrix}$

 $y = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Forma canônica diagonal

Parcialmente correto

Atingiu 0,6 de 1,0

Considere o sistema $G(s) = \frac{2}{s^2 + 3s + 2}$. Obtenha as representações nas formas canônicas controlável, observável e diagonal ou de Jordan desse sistema. As representações tem a forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

onde
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, $B = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$ e $C = \begin{bmatrix} c_{11} & c_{12} \end{bmatrix}$.

1) FORMA CANÔNICA CONTROLÁVEL

Os elementos a_{ij} da matriz A são:

$$a_{11} = 0$$
, $a_{12} = 1$

×

Os elementos b_{ij} da matrix B são:

$$b_{12} = 0$$

~

Os elementos c_{ij} da matriz C são:

$$c_{11} = 1$$

$$\mathbf{x}$$
 e $c_{12} = 0$

~

O valor de
$$D = 0$$

~ .

2) FORMA CANÔNICA OBSERVÁVEL

Os elementos a_{ij} da matriz A são:

$$a_{11} = 0$$
, $a_{12} = 1$

$$\mathbf{x}$$
, $a_{21} = 1$

×

Os elementos b_{ij} da matrix B são:

$$b_{12} = 1$$

\mathbf{x} e $b_{12} = \begin{bmatrix} 0 \end{bmatrix}$				
~ .				
Os elementos c_{ij} da matriz C são:				
$c_{11} = \boxed{ 0 }$				
\checkmark e $c_{12} =$				
* .				
O valor de $D=$				
0				
✓ .				
3) FORMA CANÔNICA DIAGONAL OU DE JORDAN				
Como o sistema tem polos distintos	🗸 , é possível a representação na forma canônica	diagonal		
. Os elementos a_{ij} da matriz A são (considere os polos em ordem decrescente na diagonal principal):				
$a_{11}=$				
1				
x , a ₁₂ =				
0				
\checkmark , $a_{21} = \boxed{0}$				
✓ e a ₂₂ =				
1				
x .				
Os elementos b_{ij} da matrix B são:				
$b_{12} = $				
✓ e <i>b</i> ₁₂ =				
✓ .				
Os elementos c_{ij} da matriz C são:				
$c_{11} = \boxed{1}$				
x e c ₁₂ =				
1				
$m{ imes}$. O valor de $D=$				
$\begin{array}{c} \text{O valor de } D = \\ \hline 0 \end{array}$				
✓ .				

Parcialmente correto

Atingiu 0,5 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: *Num(s)* =

- 0
- $\checkmark s^3 +$
- $\checkmark s^2 +$ 1
- **✓** s+
- igstar . Os coeficientes do polinômio do denominador são: Den(s) =
- $\checkmark s^3 +$
- \times s^2+
- **x** s+

Parcialmente correto

Atingiu 0,6 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -12 \\ 0 & 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são:

Num(s) =

0

✓ s³+

 $\checkmark s^2 +$

✓ s+

×

Os coeficientes do polinômio do denominador são:

Den(s) =

1

✓ s³+

x s²+ 1

x s+

Parcialmente correto

Atingiu 0,7 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador $G(s) = \frac{Num(s)}{Den(s)}$.

são: Num(s) =

0

 $\checkmark s^2 +$

0

✓ s+

1

✓ s²+

x s+

×

Questão **6**

Parcialmente correto

Atingiu 0,7 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: Num(s) =

0

 s^2+

✓ s+

 \checkmark . Os coeficientes do polinômio do denominador são: Den(s) =

1

✓ s²+

x s+

Parcialmente correto

Atingiu 0,7 de 1,0

Considere o sistema $G(s) = \frac{s+1}{s^2+6s+9}$. Obtenha a representação em espaço de estados na forma canônica diagonal ou de Jordan.

O sistema tem uma representação na forma:

```
\dot{x} = Ax + Bu
```

$$y = Cx + Du$$

O sistema por ter polos com multiplicidade diferente de 1 v possui representação na forma canônica de Jordan

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são (considere os elementos da diagonal principal em ordem decrescente):

 $a_{11} =$

 \times , $a_{12} =$

✓ , a₂₁ =

✓ e **a**₂₂ =

Os elementos b_{ij} da matriz $B = \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$ são:

✓ e **b**₂₁ =

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

1

 \times e $c_{12} =$

O valor de D =

Parcialmente correto

Atingiu 0,4 de 1,0

Dada a representação abaixo, ache a matriz de transformação P que diagonaliza o sistema. Também ache sua representação na forma canônica diagonal.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -20 \\ 1 & 0 & -32 \\ 0 & 1 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = egin{bmatrix} 0 & 0 & 1\end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

Os autovalores desse sistema, em ordem decrescente, são: $\lambda_1 =$

1

 \mathbf{x} , $\lambda_2 =$

1

 \times e $\lambda_3 =$

×

Para a determinação dos autovetores associados, considere $x_3=1$. Os autovetores tem a forma $V_i=\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T$.

O autovetor associado à λ_1 é: $V_1=[$

1

×

1

1

✓]^T.

O autovetor associado à λ_2 é: $V_2=[$

1

X

1

✓]^T.

O autovetor associado à λ_3 é: $V_3=[$

1

1

x

✓]^T.

A matriz de transformação tem a forma $P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$. Logo, os elementos desta matriz são:

 $p_{11} = 1$

x $p_{12} =$

x p₁₃ =

×

$$p_{21} = 1$$

$$p_{22} = 1$$

$$p_{23} = 1$$

×

$$p_{31} = 1$$

$$p_{32} = 1$$

~

Logo, o sistema diagonalizado tem a forma:

$$\dot{z} = Az + Bu$$

$$y = Cz + Du$$

Os elementos
$$a_{ij}$$
 da matriz $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ são:

$$a_{11} = 1$$

$$\mathbf{x} \quad \mathbf{a}_{12} = \mathbf{0}$$

$$\checkmark a_{13} = 0$$

~

$$a_{21} = 0$$

$$\checkmark a_{22} =$$

$$a_{23} = 0$$

~

$$a_{31} = 0$$

$$\checkmark a_{32} = 0$$

•

Os elementos
$$b_{ij}$$
 da matriz $B = egin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix}$ são

$$b_{11} =$$

1 **x** , b_{21} =

1 **x** e b_{31} =

1 **x**Os elementos c_{ij} da matriz $C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \end{bmatrix}$ são: $c_{11} = \begin{bmatrix} 1 \\ 1 \\ \checkmark & , c_{12} = \\ 1 \\ \end{bmatrix}$ \checkmark e c_{13} =

1 \checkmark .

O valor de $D = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix}$ \checkmark Script Python

Seguir para...

Prova 1 CP ►