

1 Publication number:

0 259 031 B1

(B)

EUROPEAN PATENT SPECIFICATION

- (3) Date of publication of patent specification: 09.11.94 (3) Int. Cl.5: C12Q 1/68, G01N 33/574, G01N 33/68, C07H 21/00
- (21) Application number: 87307095.7
- 2 Date of filing: 11.08.87

- (S) Human DNA in the diagnosis of retinoblastoma.
- Priority: 11.08.86 US 895163
- ② Date of publication of application: 09.03.88 Bulletin 88/10
- Publication of the grant of the patent: 09.11.94 Bulletin 94/45
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 69 References cited: EP-A- 0 293 266

RECESSIVE ONCOGENES AND TUMOUR SUPRESSION, Cold Spring Harbour Laboratory Press, 1989; pp. 117-123#

ONCOGENES, Jones & Bartlett Publishers Inc., 1990; pp. 121-139#

SCIENCE, vol. 241, 1988; pp. 293-294#

SCIENCE, vol. 241, 1988; pp. 218-221#

ONCOGENE, vol. 3, 1988; pp. 471-475#

73 Proprietor: MASSACHUSETTS EYE & EAR IN-FIRMARY 243 Charles Street Boston, MA 02114 (US)

Proprietor: WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH Nine Cambridge Center Cambridge, MA 02142 (US)

- Inventor: Dryja, Thaddeus P. 85 Forbes Road Milton, MA 02186 (US) Inventor: Friend, Stephen 14 Spencer Avenue Sommerville, MA 02143 (US)
- Representative: Sheard, Andrew Gregory et al Kilburn & Strode
 30, John Street
 London WC1N 2DD (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

SCIENCE, vol. 243, 1989; pp. 937-940#

PROCEEDINGS OF THE NATL ACADEMY OF SCIENCES USA, vol. 87, 1990; pp. 2775-2779#

PROCEEDINGS OF THE NATL ACADEMY OF SCIENCES USA, vol. 88, 1991; pp. 5257-5261#

SCIENCE, 13 March 1987; p. 1323#

CELL, vol. 54, 1988; pp. 275-283#

NATURE, vol. 329, 1987; pp. 642-645#

NATURE, vol. 334, 1988; pp. 124-129#

SCIENCE, vol. 243, 1989; pp. 934-937#

SYMPOSIA ON FUNDAMENTAL CANCER RE-SEARCH, vol. 39, 1986, New York, NY (US); T.P. DRYJA et al., pp. 115-119#

NATURE, vol. 323, 16 October 1986, London (GB); S.F. FRIEND et al., pp. 643-646#

SCIENCE, vol. 236, 26 July 1987, Lancaster, PA (US); Y.T. FUNG et al., pp. 1657-1661#

SCIENCE, vol. 235, no. 4794, 13 March 1987, Lancaster, PA (US); W.H. LEE et al., pp. 1394-1399#

Description

This invention relates to methods of detection and treatment of a defective human gene related to cancer, in particular, retinoblastoma.

1

Nature 305 (1983) 779-84 discloses that a mutation at the retinoblastoma locus (Rb-I), mapped to human chromosome 13 band ql4, results in a predisposition to retinoblastoma.

Retinoblastoma is a neoplastic condition of the retinal cells, observed almost exclusively in children between the ages of 0 and 4 years. If untreated, the malignant neoplastic retinal cells in the intraocular tumor travel to other parts of the body, forming foci of uncontrolled growth which are always fatal. The current treatment for a retinoblastoma is enucleation of the affected eye if the intraocular tumor is large; for small intraocular tumors, radiation therapy, laser therapy, or cryotherapy is preferred. There is no known successful treatment for metastatic retinoblastoma. Hence, early diagnosis of retinoblastoma to allow treatment before the tumor spreads outside the eye is crucial.

There is evidence that retinoblastoma is caused by the functional loss of both homologous copies of the retinoblastoma (Rb) gene. Thus, individuals carrying one defective allele of the Rb gene are genetically predisposed to the disease. Children who have had one eye affected by retinoblastoma or who are related to someone with retinoblastoma may be genetically predisposed and therefore at risk of developing the disease. These individuals routinely are tested for retinoblastoma every 2-3 months by an ocular examination procedure which requires placing the child under general anesthesia.

The invention relates to the use of genetic material corresponding to a normal human retinoblastoma gene or a unique subregion thereof in the preparation of material for use in a method of screening human patients comprising comparing the DNA of said patients with the said gene or subregion. Also encompassed are vectors comprising genetic material corresponding to a normal retinoblastoma gene, or a unique subregion thereof.

In general, the invention features a method of screening human patients by comparing the DNA of these patients with the isolated normal human retinoblastoma (Rb) gene or a unique subregion thereof (the term "unique subregion" means a DNA sequence found in the Rb gene and not elsewhere in the human genome). This comparison allows detection of defective Rb alleles in the patients, to determine whether these patients need continual monitoring by the conventional examination procedure. More importantly, this comparison will identify those patients who do not have a defective Rb

allele and thus are not at risk of developing retinoblastoma and do not have to be examined by the conventional procedure.

Preferably, the comparison between the patient's DNA and the normal Rb gene involves testing the patient's DNA with the isolated Rb gene to detect either large deletions or, alternatively, small deletions or point mutations in the Rb locus. To test for large deletions in a patient's Rb allele, the patient's DNA preferably is analyzed by DNA hybridization using probes made from the isolated normal Rb gene. According to the invention, small deletions or point mutations preferably are detected by either of two techniques. The nucleotide sequences of the patients' Rb alleles and the normal Rb gene can be determined and compared for differences. Alternatively, the patient's DNA is probed with the normal Rb gene and any mismatches in the resulting heteroduplexes are identified.

Also, the isolated normal human retinoblastoma gene can be used to produce the normal Rb gene product for protein therapy of individuals determined to have a defective Rb allele.

In another aspect, the invention features a method of detecting the presence, in a tumor sample, of a retinoblastoma protein the absence of which is associated with a distinct set of neoplasms. The method comprises producing an antibody to the Rb protein, contacting the antibody with the tumor sample, and detecting immune complexes as an indication of the presence of the protein in the tumor sample. If a tumor lacks the Rb gene product, no immune complexes will be found, and one may conclude that the tumor was the result of mutant Rb alleles. This limits the pathologic diagnosis to those tumors known to be caused by mutant Rb alleles, such as retinoblastoma, osteosarcoma, and some undifferentiated tumors of unknown cellular origin. A more exact categorization of pathologic diagnosis of human tumors will result.

Description of the Preferred Embodiments

The drawings first will be briefly described.

Drawings

Fig. 1 is a pictorial representation of the autoradiogram from a Northern blot probed with p7H30.7R;

Fig. 2 is a diagrammatic representation of the restriction map of the insert in the clone p4.7R;

Fig 3 is a pictorial representation of the autoradiogram from a Northern blot probed with p4.7R;

50

35

Fig. 4 is a diagrammatic representation of the vectors p2AR3.8 and p2AR0.9 of the invention; Fig. 5 is a diagrammatic representation of the mismatch detection technique;

Fig. 6 is a diagrammatic representation of an example denaturing gel used in mismatch detection.

Fig. 7 is the sequence of the normal Rb gene, with flanking regions.

Isolation of the Normal Rb Gene

The genetic locus involved in causing retinoblastoma has been assigned to the q14 band of human chromosome 13 (Sparkes et al., Science 208:1042 (1980). A cDNA clone, p4.7R, from this region of DNA has been shown to carry Rb gene sequences. This clone was obtained by the following general techniques.

Isolation of cDNA Clone p4.7R

The human DNA probe pH3-8, isolated from a human chromosome 13 lambda phage library (Lalande et al., 1984, Cancer Genet. Cytogenet. 13:283), was used in a chromosome walking technique to isolate and map 30 kb of genomic DNA surrounding the H3-8 sequence. One fragment generated by this technique, named p7H30.7R, was found to recognize a DNA sequence in the mouse genome as well as within human chromosome 13 (Dryja et al., 1986, Proc. Nat. Acad. Sci. USA in press). The homology of p7H30.7R to both human and mouse DNA suggested that p7H30.7R contained coding sequences of a structural gene.

To test this possibility, p7H30.7R was radiolabeled and used to probe a Northern blot of RNA isolated from three retinoblastoma tumors (#42, #30, and #31) and an adenovirus 12-transformed human embryonic retinal cell line (Ret) (Vaessen et al., 1986, EMBO Journal 5:335). The p7H30.7R probe hybridized to an RNA transcript of approximately 4.7 kb from the retinal cell line, but did not hybridize to any RNA transcripts from the three tumor samples (Fig. 1).

Subsequently, RNA isolated from the adenovirus-transformed retinal cell line was used to construct a cDNA library. This library was screened with the labeled p7H30.7R probe. Several cDNA clones were isolated which had similar restriction maps. The longest of these, p4.7R, contained 4.7 kb of genomic DNA. The physical map of p4.7R is shown in Fig. 2.

Characterization of p4.7R

The p4.7R clone was used to screen RNA transcripts isolated from retinoblastomas (#42, #30, #41, #31), an osteosarcoma (#16), and the adenovirus-transformed retinal cells (Ret). As shown in Fig. 3, the p4.7R probe detected, in a Northern blot analysis of isolated RNA's, a transcript in the transformed retinal cells which is not present in the four retinoblastoma and one osteosarcoma cell samples. The bands at ~ 2.0 kb were detected by reprobing the Northern blot, after washing, with a probe that detects rat tubulin (to demonstrate the presence of RNA in the blot).

The p4.7R clone also was used to screen genomic DNA. DNA was isolated from a set of tumors from 50 unrelated individuals, consisting of 40 retinoblastomas, 8 osteosarcomas, and 2 undifferentiated tumors of unknown cellular origin arising in patients with hereditary retinoblastoma. The isolated samples of DNA were digested with HindIII and analyzed by Southern blot hybridization using radiolabeled p4.7R as the probe. This analysis revealed three types of deviant patterns of the genomic DNA restriction fragments: totally absent fragments, representing apparent homozygous deletions; under-represented fragments, representing apparent heterozygous deletions; and fragments of altered size, reflecting either partial deletion or an alteration of a restriction site. At least 30% of the tumor DNA's exhibited one of these abnormalities. In comparison, Southern blot analysis of leukocyte DNA from 18 normal individuals showed a uniform pattern of restriction fragments.

The above results indicate that p4.7R detects the Rb gene. The deletion pattern in one osteosarcoma DNA sample provided particularly good evidence that p4.7R detects the Rb gene. This DNA sample is homozygous for a deletion that maps entirely within the p4.7R region. It is highly unlikely that the osteosarcoma phenotype arose due to a mutation independent of this deletion. Since the deletion is limited to the p4.7R region, this region must contain the Rb gene which, when mutated, produces non-functional Rb-encoded protein. The absence of functional Rb protein allows the neo-plastic phenotype to develop.

Use

The p4.7R sequences can be used, according to the invention, to screen individuals for the presence of a mutated

allele of the Rb gene. This screening procedure will allow individuals having a risk of developing retinoblastoma—because of family history or a previous incidence of retinoblastoma in one eye—to determine the need for routine testing by the cur-

rent ocular examination procedure. Only if the screening procedure determines that the individual possesses a mutant Rb allele will the examination procedure need to be conducted on a regular basis. Those with two normal Rb alleles can discontinue examination, as the risk of developing retinoblastoma in an individual with two normal copies of the Rb gene is approximately 1 in 20,000, or 0.005%, compared to a risk of 80%-90% if an individual has an Rb allele containing a mutation sufficient to inactivate the allele. Thus, a substantial percentage of individuals who are currently examined regularly are not actually at a greater risk than the general population: neither a family history of nor a previous incidence of retinoblastoma is conclusive evidence that an individual has the genetic predisposition to the disease. Therefore, such individuals, actually carrying two normal copies of the Rb gene, have been repeatedly undergoing the expensive and traumatic ocular examination procedure needlessly.

The screening procedure according to the invention preferably can be of two major types: (1) testing an individual's DNA for deletions in the Rb locus large enough to interfere with hybridization to an Rb probe, and (2) testing an individual's DNA for small deletions or point mutations in the Rb locus.

In addition to screening, the invention has the potential to provide protein therapy for those individuals determined to contain a mutant Rb allele and who therefore are at risk of developing retinoblastoma.

An additional use of the invention, as mentioned above, is in immunodiagnosis to determine, for example, whether a certain tumor is the result of an Rb gene abnormality. Since osteosarcomas and certain undifferentiated tumors can result from detectable lesions in the Rb gene, the immunodiagnosis can be used to aid in the diagnosis of such tumors.

Illustrative examples are given below.

Example 1: Southern Blot Analysis

To detect large deletions in the Rb locus, a Southern Blot analysis is carried out on DNA obtained from an individual to be tested. The DNA is obtained from peripheral leucocytes or, if the patient has had a tumor in one eye, from the tumor. To examine leucocyte DNA, a 10 ml blood sample is obtained from the individual, and the genomic DNA is isolated from the leucocytes in the sample, according to standard techniques. This DNA is digested with a restriction endonuclease, e.g., HindIII, run on an agarose electrophoresis gel, and transferred to a nitrocellulose filter by blotting. The DNA on the filter is then probed with radiolabeled

p2AR3.8 and, separately, p2AR0.9, containing subfragments from p4.7R obtained by EcoRl digestion (Fig. 4); it is preferred to use two or more subfragments separately rather the entire p4.7R insert, in order to better define the location of any abnormalities detected. Autoradiograms of the probed filter give a restriction map of the Rb locus in the somatic or tumor DNA of the tested individual.

This restriction map then is compared with a control restriction map, determined by using the same restriction enzyme digestion and probe. A suitable control can be DNA obtained from the adenovirus-transformed retinal cell line or leucocyte DNA from a set of normal individuals. If the tested individual has an Rb allele containing a significantly large deletion, the above restriction map of his DNA, compared with the control, will contain an additional band or bands, and/or a band or bands that have lost 50% of their intensity, caused by a change in the size, or total elimination, of one or more restriction fragments by the deletion in one allele at the Rb locus.

Thus, this screening procedure by Southern analysis will detect the existence of non-functional Rb alleles which have large deletions. If this analysis indicates that the tested DNA from an individual has a restriction map different from the control map, there is a great probability that the individual contains a non-functional, mutant Rb allele. The individual must be monitored closely thereafter for the development of retinoblastoma.

If the test restriction map appears identical to the control, a different screening procedure can be performed on the individual's DNA to determine if the individual contains an Rb allele having a small deletion or point mutation, which is sufficient to inactivate the allele but not to prevent hybridization with a probe. This screening procedure is described in the following example.

Example 2: Rb Locus Fine Structural Analysis

To examine an individual's DNA for small deletions or point mutations in the Rb locus, both homologs of the Rb gene from the individual preferably are cloned. The cloned alleles then can be tested for the presence of sequence differences from the normal allele, represented by p4.7R, by one of the following two methods: (1) the nucleotide sequence of both the cloned alleles and p4.7R are determined and then compared, or (2) RNA transcripts from p4.7R are hybridized to single stranded whole genomic DNA from an individual to be tested, and the resulting heteroduplex is treated with RNase A and run on a denaturing gel to detect the location of any mismatches. In more detail, these methods are carried out as follows:

55

35

(1) Cloning Rb alleles

The alleles of the Rb gene in an individual to be tested are cloned using conventional techniques. A common method, for example, employs the bacteriophage vector EMBL3 (Frischauf et al., 1983, J. Mol. Biol. 170:827). A 10 ml blood sample is obtained from the individual, and the genomic DNA is isolated from the cells in this sample. This DNA is partially digested with Mbol to an average fragment size of approximately 20 kb. Fragments in the range from 18-21 kb are isolated. The resulting Mbol-ended fragments are ligated into the EMBL3 vector DNA which has been completely digested with BamHI, treated with alkaline phosphatase, and heated to 68°C for 10 minutes to disrupt the cohesive ends. This ligation mix is used in an in vitro lambda packaging reaction, and the packaged phage are amplified by growing a plate stock. [This cloning technique is described generally in Maniatis et al., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Publications, pp 256-293 (1982).]

Approximately 5 x 10⁵ pfu from this plate stock are used to infect 3 ml of E. coli cells at ~ 1.5 x 10⁹ cells/ml in 0.01M MgSO₄, and the infection mix is incubated at 37 °C for 20 minutes. 65 ml melted top agar at 47 °C is added, and the mixture is plated onto ten 150 mm plates containing freshly poured and dry bottom agar. The agar plates are incubated until the plaques reach a diameter of ~ 1.5 mm and are just beginning to contact one another (approximately 10-12 hours).

Duplicate circular nitrocellulose filters (Millipore™ HAWP) are placed gently on the surface of each agar plate to bind the bacteriophage DNA. The filters are carefully removed after 1 minute, placed into a denaturing solution (1.5m NaCl, 0.5M NaOH) for 30 seconds, neutralized for 5 minutes (1.5M NaCl, 0.5M Tris-Cl pH 8.0), and dried under vacuum at 80 °C for 2 hours.

These nitrocellulose filters then are probed with radiolabeled p4.7R by hybridization and autoradiography. Plaques which show hybridization to the p4.7R probe are plaque-purified and rescreened according to the above procedure. Positive plaques from the rescreening are isolated and used to prepare DNA putatively containing Rb alleles from the individual.

The Mbol genomic inserts in these isolated EMBL3 vector DNA samples are tested for the location of the sequences homologous to p4.7R by Southern analysis. DNA samples containing the entire Rb gene region are selected, and the appropriate restriction fragments containing the Rb gene from these samples are subcloned into a suitable vector, such as pUC9. These subclones thus contain copies of one or both Rb alleles from the DNA

of the individual to be tested. To determine if both alleles are represented, the initial phage isolates are tested for the existence of restriction polymorphism. These subcloned alleles are then examined for differences from p4.7R by one of the following techniques.

(2) Sequence Comparison

First, the nucleotide sequence of the normal Rb gene in p4.7R is determined by subcloning restriction fragments of ~ 500 bp from p4.7R into an M13mp8 phage vector and sequencing these subclones by the dideoxy technique (Sanger et al., 1977, Proc. Nat. Acad. Sci USA 74:5463). A composite sequence of the Rb gene then can be assembled from these individual subclone sequences. This sequence is given in Fig. 7 which also shows flanking regions.

The isolated Rb gene alleles are sequenced according to the following procedure. Restriction fragments (~ 2kb) of the allele are subcloned into the M13mp8 vector, and short stretches (~500 bp) are sequenced individually using small restriction fragments isolated from p4.7R as the primers in the dideoxy sequencing reactions. The composite nucleotide sequence of the isolated allele then can be constructed from these individually-primed sequences. This sequence is compared directly with the sequence of the normal Rb gene, determined from p4.7R, to determine if any deletions or point mutations exist in the isolated allele.

(3) Ribonuclease Cleavage of Mismatches

An alternative method of comparing the allelic DNA with the normal Rb gene employs RNase A to detect the existence of differences between the p4.7R sequence and the allele sequence. This comparison is performed in steps with small (~ 500 bp) restriction fragments of p4.7R as the probe. First, p4.7R is digested with a restriction enzyme(s) that cuts the Rb gene sequence into fragments of approximately 500bp. These fragements are isolated on an electrophoresis gel and cloned individually, in both orientations, into an SP6 vector, such as pSP64 or pSP65 (Melton et al., 1984, Nucleic Acids Res. 12:7035). The SP6-based plasmids containing inserts of p4.7R fragments are transcribed in vitro using the SP6 transcription system, well known in the art, in the presence of $[\alpha^{-32}P]GTP$, generating radiolabeled RNA transcripts of both strands of the cDNA of the Rb gene.

Individually, these RNA transcripts are used to form heteroduplexes with the allelic DNA, as follows. 50 ng of the allele subclone is digested with a restriction enzyme that cuts outside of the region covered by the RNA transcript probe to be used.

This digested DNA is mixed with the radiolabeled RNA probe in 30 μ I of hybrization buffer (80% formamide, 40 mM Pipes pH6.4, 0.4M NaCl, and 1mM EDTA) and the mixture is treated at 90 °C for 10 minutes to denature the DNA. The mixture then is cooled slowly to 45 °C and the RNA is allowed to anneal to the single-stranded DNA at 45 °C for half an hour.

9

The RNA:DNA heteroduplexes next are treated with 350 µl of an RNase A solution (Sigma) (40 µg/ml in 10mM Tris-HCl pH7.5, 1mM EDTA, 0.2M NaCl, and 0.1M LiCl). The mixture is vortexed and incubated at 25 °C for 30 minutes. The RNase A reaction is stopped by adding 10µl of proteinase K (10mg/ml) (Boehringer Mannheim) followed by incubation at 37 °C for 20 minutes. Extraction with phenol-chloroform and ethanol precipitation of the aqueous layer yields a nucleic acid sample free from protein contamination. The precipitated sample is resuspended in 5µl and analyzed by denaturing polyacrylamide gel electrophoresis (4% polyacrylamide, 7M urea) (Fig. 5).

Mismatches that occur in the RNA:DNA heteroduplex, due to sequence differences between the p4.7R fragment and the Rb allele subclone from the individual, result in cleavage in the RNA strand by the RNase A treatment. Such mismatches can be the result of point mutations or small deletions in the individual's Rb allele. Cleavage of the RNA strand yields two or more small RNA fragments, which run faster on the denaturing gel than the RNA probe itself, as shown in Fig. 6.

In the above RNAse A technique, radiolabeled Rb gene RNA is hybridized to single strands of an individual's Rb allele which has been cloned into a vector. The RNase A technique is advantageous, however, because it also can be used without having to clone the Rb alleles. Preferably, genomic DNA is isolated from blood cells of the individual to be tested, and this genomic DNA is hybridized directly with the radiolabeled Rb RNA probes to determine sequence differences from the normal Rb gene, as follows. 5 µg of isolated, total genomic DNA is resuspended with the labeled RNA probe in 30 µl of hybridization buffer (80% formamide, 40mM Pipes pH6.4, 0.HM NaCl, and 1mM EDTA). and this hybridization mix is treated at 90 °C for 10 minutes to denature the DNA. The mixture then is cooled slowly to 45°C and incubated at this temperature for 10 hours to allow hybridization of the RNA probe to the single-stranded DNA copies of the Rb allele. After hybridization, the RNase A treatment and electophoresis are performed as above. Mismatches in the heteroduplexes between the RNA probe and the genomic copies of the individual's Rb alleles are readily detected.

Example 3: Production of Rb protein

Another use for the cloned cDNA of the normal Rb gene, as represented by p4.7R, is to produce the Rb protein. The Rb protein is produced by cloning the Rb cDNA from p4.7R into an appropriate mammalian expression vector, expressing the Rb protein from this vector in an in vivo expression system, and isolating the Rb protein from the medium or cells of the expression system.

General in vitro expression vectors and systems are well known in the art.

Example 4: Immunodiagnosis

The Rb protein, produced as described above, is injected into a rabbit to produce anti-Rb antibody, which then is labeled, e.g., radioactively, fluorescently, or with an enzyme such as alkaline phosphatase. The labeled antibody is used to determine whether human tumors are of defective Rb gene origin. This can be carried out using any conventional technique. For example, the tumor sample can be liquified and tested against the labeled antibody using a conventional ELISA format. Alternatively, a tumor section can be fixed and reacted with labeled antibody, and any immune complexes then can be detected by autoradiography or fluorescence microscopy, depending on the type of label on the antibody. Tumors lacking an antigen reactive with the antibody to the Rb gene product are due to mutations of the retinoblastoma gene. Since the tumors known to be caused by a mutant Rb gene are few (including retinoblastoma and osteosarcoma), the differential diagnosis of tumors deficient in the Rb gene product is greatly limited by such a test.

Deposits

35

The plasmids p2AR3.8 and p2AR0.9 were deposited on July 17, 1987 with the American Type Culture Collection, Rockville, Maryland, and assigned ATCC accession numbers 40,241 and 40,242, respectively.

Other embodiments are within the following claims.

Claims

Claims for the following Contracting States : BE, CH, DE, FR, GB, GR, IT, LI, LU, NL, SE

 The use of genetic material corresponding to a normal human retinoblastoma gene or a unique subregion thereof in the preparation of material for use in a method of screening human patients for defective retinoblastoma alleles which method comprises comparing the DNA of pa-

50

tients with the gene or subregion.

- The use claimed in claim 1 wherein the comparison is carried out by DNA hybridization.
- The use claimed in claim 1 wherein the comparison is carried out by sequence comparison or sequence analysis.
- 4. The use claimed in claim 1 wherein the comparision is carried out by detection of mismatches in a heteroduplex between the patient's DNA and the normal gene or RNA transcripts from the normal gene.
- 5. A vector comprising genetic material corresponding to a normal human retinoblastoma gene, or a unique subregion thereof.
- 6. A vector as claimed in claim 5, wherein the subregion is at least 20 bp in length.
- 7. A method of detecting the presence, in a tumour sample, of a retinoblastoma protein the absence of which is associated with a neoplasm, the method comprising producing an antibody to the retinoblastoma protein, contacting the antibody with the tumour sample, and detecting immune complexes as an indication of the presence in the tumour sample of the protein.
- 8. A method of screening a human patient for the presence of a defective retinoblastoma (Rb) gene, the method comprising comparing the DNA of a patient with a normal human retinoblastoma gene or a unique subregion thereof.
- A method according to claim 8 wherein the comparison is carried out by DNA hybridisation or by sequence comparison or analysis.
- 10. A method according to claim 8 wherein the comparison is carried out by detection of mismatches in a heteroduplex between the patient's DNA and the normal gene or RNA transcripts from the normal gene.

Claims for the following Contracting States: AT, ES

 The use of genetic material corresponding to a normal human retinoblastoma gene or a unique subregion thereof in the preparation of material for use in a method of screening human patients for defective retinoblastoma alleles which method comprises comparing the DNA of patients with the gene or subregion.

- 2. The use claimed in claim 1 wherein the comparison is carried out by DNA hybridization.
- The use claimed in claim 1 wherein the comparison is carried out by sequence comparison or sequence analysis.
- 4. The use claimed in claim 1 wherein the comparision is carried out by detection of mismatches in a heteroduplex between the patient's DNA and the normal gene or RNA transcripts from the normal gene.
 - 5. A process for the preparation of a vector comprising genetic material corresponding to a normal human retinoblastoma gene, or a unique subunit thereof, the process comprising either linking successive nucleotides together and/or ligating poly- and/or oligo- nucleotides.
 - A process as claimed in claim 6, wherein the subregion is at least 20 bp in length.
 - 7. A method of detecting the presence, in a turnour sample, of a retinoblastoma protein the absence of which is associated with a neoplasm, the method comprising producing an antibody to the retinoblastoma protein, contacting the antibody with the turnour sample, and detecting immune complexes as an indication of the presence in the turnour sample of the protein.
 - 8. A method of screening a human patient for the presence of a defective retinoblastoma (Rb) gene, the method comprising comparing the DNA of a patient with a normal human retinoblastoma gene or a unique subregion thereof.
 - A method according to claim 8 wherein the comparison is carried out by DNA hybridisation or by sequence comparison or analysis.
 - 10. A method according to claim 8 wherein the comparison is carried out by detection of mismatches in a heteroduplex between the patient's DNA and the normal gene or RNA transcripts from the normal gene.

Patentansprüche

Patentansprüche für folgende Vertragsstaaten : BE, CH, DE, FR, GB, GR, IT, LI, LU, NL, SE

Verwendung von genetischem Material, das einem normalen menschlichen Retinoblastom-

8

5

20

15

25

35

15

20

. 25

30

35

45

gen oder einem eindeutigen Teilbereich davon entspricht, zur Herstellung von Material zur Verwendung in einem Verfahren zum Überprüfen menschlicher Patienten auf defekte Retinoblastomallele, wobei das Verfahren den Vergleich der Patienten-DNA mit dem Gen oder Teilbereich umfaßt.

- Verwendung nach Anspruch 1, wobei der Vergleich durch DNA-Hybridisierung durchgeführt wird.
- Verwendung nach Anspruch 1, wobei der Vergleich durch Sequenzvergleich oder Sequenzanalyse durchgeführt wird.
- Verwendung nach Anspruch 1, wobei der Vergleich durch den Nachweis von Fehlpaarungen in einem Heteroduplex zwischen der Patienten-DNA und dem normalen Gen oder RNA-Transkripten von dem normalen Gen durchgeführt wird.
- Vektor umfassend genetisches Material, das einem normalen menschlichen Retinoblastomgen oder einem eindeutigen Teilbereich davon entspricht.
- Vektor nach Anspruch 5, wobei der Teilbereich mindestens 20 bp lang ist.
- 7. Verfahren zum Nachweis eines Retinoblastomproteins in einer Tumorprobe, wobei die Abwesenheit des Proteins mit einem Neoplasma einhergeht und das Verfahren die Herstellung eines Antikörpers gegen das Retinoblastomprotein, das Inkontaktbringen des Antikörpers mit der Tumorprobe und den Nachweis von Immunkomplexen als Anzeichen des Vorhandenseins des Proteins in der Tumorprobe umfaßt.
- Verfahren zum Überprüfen eines menschlichen Patienten auf das Vorhandensein eines defekten Retinoblastom (Rb)-gens, das den Vergleich der Patienten-DNA mit einem normalen menschlichen Retinoblastomgen oder einem eindeutigen Teilbereich davon umfaßt.
- Verfahren nach Anspruch 8, wobei der Vergleich durch DNA-Hybridisierung oder durch Sequenzvergleich oder -analyse durchgeführt wird.
- Verfahren nach Anspruch 8, wobei der Vergleich durch den Nachweis von Fehlpaarungen in einem Heteroduplex zwischen der Patienten-DNA und dem normalen Gen oder RNA-Trans-

kripten von dem normalen Gen durchgeführt wird.

Patentansprüche für folgende Vertragsstaaten : AT, ES

- Verwendung von genetischem Material, das einem normalen menschlichen Retinoblastomgen oder einem eindeutigen Teilbereich davon entspricht, zur Herstellung von Material zur Verwendung in einem Verfahren zum Überprüfen menschlicher Patienten auf defekte Retinoblastomallele, wobei das Verfahren den Vergleich der Patienten-DNA mit dem Gen oder Teilbereich umfaßt.
- Verwendung nach Anspruch 1, wobei der Vergleich durch DNA-Hybridisierung durchgeführt wird.
- Verwendung nach Anspruch 1, wobei der Vergleich durch Sequenzvergleich oder Sequenzanalyse durchgeführt wird.
- Verwendung nach Anspruch 1, wobei der Vergleich durch den Nachweis von Fehlpaarungen in einem Heteroduplex zwischen der Patienten-DNA und dem normalen Gen oder RNA-Transkripten von dem normalen Gen durchgeführt wird.
- 5. Verfahren zur Herstellung eines Vektors, der genetisches Material umfaßt, das einem normalen menschlichen Retinoblastomgen oder einem eindeutigen Teilbereich davon entspricht, das entweder die Verknüpfung von aufeinanderfolgenden Nucleotiden und/oder die Ligierung von Poly- und/oder Oligonucleotiden umfaßt.
- Verfahren nach Anspruch 5, wobei der Teilbereich mindestens 20 bp lang ist.
- 7. Verfahren zum Nachweis eines Retinoblastomproteins in einer Tumorprobe, wobei die Abwesenheit des Proteins mit einem Neoplasma einhergeht und das Verfahren die Herstellung eines Antikörpers gegen das Retinoblastomprotein, das Inkontaktbringen des Antikörpers mit der Tumorprobe und den Nachweis von Immunkomplexen als Anzeichen des Vorhandenseins des Proteins in der Tumorprobe umfaßt.
- Verfahren zum Überprüfen eines menschlichen Patienten auf das Vorhandensein eines defekten Retinoblastom (Rb)-gens, das den Vergleich der Patienten-DNA mit einem normalen

10

15

20

25

menschlichen Retinoblastomgen oder einem eindeutigen Teilbereich davon umfaßt.

- Verfahren nach Anspruch 8, wobei der Vergleich durch DNA-Hybridisierung oder durch Sequenzvergleich oder -analyse durchgeführt wird.
- Verfahren nach Anspruch 8, wobei der Vergleich durch den Nachweis von Fehlpaarungen in einem Heteroduplex zwischen der Patienten-DNA und dem normalen Gen oder RNA-Transkripten von dem normalen Gen durchgeführt wird.

Revendications

Revendications pour les Etats contractants suivants : BE, CH, DE, FR, GB, GR, IT, LI, LU, NL, SE

- 1. Utilisation du matériel génétique correspondant au gène du rétinoblastome humain normal, ou à une sous-région unique de celui-ci, dans la préparation d'un matériel destiné à être utilisé dans un procédé de dépistage, chez des patients humains, d'allèles déficients du rétinoblastome, lequel procédé comprend la comparaison de l'ADN des patients avec le gène ou la sous-région.
- Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par hybridation d'ADN.
- Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par comparaison des séquences ou analyse des séquences.
- 4. Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par détection d'erreurs d'appariement dans un hétéroduplex entre l'ADN du patient et le gène normal ou les produits de transcription d'ARN provenant du gène normal.
- Vecteur comprenant le matériel génétique correspondant au gène du rétinoblastome humain normal, ou à une sous-région unique de celuici.
- Vecteur selon la revendication 5, dans lequel la sous-région est d'une longueur d'au moins 20 paires de bases.
- Procédé de détection de la présence, dans un échantillon tumoral, d'une protéine du rétinoblastome dont l'absence est associée à un

néoplasme, le procédé comprenant la production d'un anticorps dirigé contre la protéine du rétinoblastome, la mise en contact de l'anticorps avec l'échantillon tumoral, et la détection des complexes immuns en tant qu'indication de la présence de la protéine dans l'échantillon tumoral.

- 8. Procédé de dépistage chez un patient humain de la présence d'un gène déficient du rétinoblastome (Rb), le procédé comprenant la comparaison de l'ADN d'un patient avec le gène du rétinoblastome humain normal ou une sousrégion unique de celui-ci.
- 9. Procédé selon la revendication 8, dans lequel la comparaison est effectuée par hybridation d'ADN ou par comparaison des séquences ou analyse des séquences.
- 10. Procédé selon la revendication 8, dans lequel la comparaison est effectuée par détection d'erreurs d'appariement dans un hétéroduplex entre l'ADN du patient et le gène normal ou les produits de transcription d'ARN provenant du gène normal.

Revendications pour les Etats contractants suivants : AT, ES

- 1. Utilisation du matériel génétique correspondant au gène du rétinoblastome humain normal, ou à une sous-région unique de celui-ci, dans la préparation d'un matériel destiné à être utilisé dans un procédé de dépistage, chez des patients humains, d'allèles déficients du rétinoblastome, lequel procédé comprend la comparaison de l'ADN des patients avec le gène ou la sous-région.
- Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par hybridation d'ADN.
- Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par comparaison des séquences ou analyse des séquences.
- 4. Utilisation selon la revendication 1, dans laquelle la comparaison est effectuée par détection d'erreurs d'appariement dans un hétéroduplex entre l'ADN du patient et le gène normal ou les produits de transcription d'ARN provenant du gène normal.
 - 5. Procédé de préparation d'un vecteur comprenant le matériel génétique correspondant au

gène du rétinoblastome humain normal, ou à une sous-unité unique de celui-ci, le procédé comprenant ou bien la liaison de nucléotides successifs ensemble et/ou la soudure de polyet/ou oligonucléotides.

6. Procédé selon la revendication 6, dans lequel la sous-région est d'une longueur d'au moins 20 paires de bases.

7. Procédé de détection de la présence, dans un échantillon tumoral, d'une protéine du rétino-blastome dont l'absence est associée à un néoplasme, le procédé comprenant la production d'un anticorps dirigé contre la protéine du rétinoblastome, la mise en contact de l'anticorps avec l'échantillon tumoral, et la détection des complexes immuns en tant qu'indication de la présence de la protéine dans l'échantillon tumoral.

8. Procédé de dépistage chez un patient humain de la présence d'un gène déficient du rétinoblastome (Rb), le procédé comprenant la comparaison de l'ADN d'un patient avec le gène du rétinoblastome humain normal ou une sousrégion unique de celui-ci.

 Procédé selon la revendication 8, dans lequel la comparaison est effectuée par hybridation d'ADN ou par comparaison des séquences ou analyse des séquences.

10. Procédé selon la revendication 8, dans lequel la comparaison est effectuée par détection d'erreurs d'apparlement dans un hétéroduplex entre l'ADN du patient et le gène normal ou les produits de transcription d'ARN provenant du gène normal. 10

5

15

20

25

35

30

40

45

50

FIG. 1

FIG. 2

FIG. 5

FIG. 3

FIG. 6

20 CCC CCG GCA CCG GCC GCC CCC TCC TGA GGA GGA CCC AGA GCA GGA CAG CGG CCC GGA 150 170 GAC CTG CCT CTC GTC AGG CTT GAG TTT GAA GAA ACA GAA GAA CCT GAT TTT ACT GCA TTA 200 210 220 230 TGT CAG AAA TTA AAG ATA CCA GAT CAT GTC AGA GAG AGA GCT TGG TTA ACT TGG GAG AAA 280 260 270 290 GTT TCA TCT GTG GAT GGA GTA TTG GGA GGT TAT ATT CAA' AAG AAA AAG GAA CTG' TGG GGA 320 330 340 350 ATC TGT ATC TTT ATT GCA GCA GTT GAC CTA GAT GAG ATG TCG TTC ACT TTT ACT GAG CTA MSFTFTEL 380 390 400 410 420 CAG AAA AAC ATA GAA ATC AGT GTC CAT AAA TTC TTT AAC TTA CTA AAA GAA ATT GAT ACC Q K N I E I S V H K F F N L L K E I D 450 470 480 AGT ACC AAA GIT GAT AAT GCT ATG TCA AGA CTG TTG AAG AAG TAT GAT GTA TTG ITT GCA K V D N A M S R L L K K Y D 490 500 510 520 530 CTC TTC AGC AAA-TTG GAA AGG ACA TGT GAA CTT ATA TAT TTG ACA CAA CCC AGC AGT TCG SKLE RTC ELIYLTO 550 560 570 580 590 600 ATA TOT ACT GAA ATA AAT TOT GCA TTG GTG CTA AAA STT TCT TGG ATC ACA TTT TTA TTA TEIN SAL V L K V S W I 640 650 660 GCT AAA BGG GAA GTA TTA CAA ATG GAA GAT GAT CTG GTG ATT TCA TTT CAG TTA ATG CTA A K G E V L Q M E D D L V I S F QLML 580 690 700 710 720 TGT GTC CTT GAC TAT TIT ATT AAA CTC TCA CCT CCC ATG TTG CTC AAA GAA CCA TAT AAA YFIKL SPPMLLK Ē 750 760 770 ACA GCT GTT ATA CCC ATT AAT GGT TCA CCT CGA ACA CCC AGG CGA GGT CAG AAC AGG AGT G S

								• •	U .	• (
			790 *			800			81	_			820			830			840
BCA A	CGG R	ATA I	BCA À	AAA K	CAA	CTA	GAA E	AAT N	GAT D	ACA T	AGA R	I	ATT I	GAA E	GTT V	CTC	TQT C	AA/	A GAA
	850				860 #			870 #			680			890				900	
CAT H	BAA E	TBT C	AAT N	ATA I	GAT D	GAG E	GTG V	AAA K	AAT N	GTT V	TAT Y	TTC	AAA K	AAT N	TTT F	ATA I	CCT P	TT1	ATG M
	910 **				920			930			940				950				960
AAT N	TCT S	CTT	ADD D	CTT	GTA V	ACA T	TCT S	AAT N		CTT	CCA P	GAG E	GTT V	GAA E	AAT N	CTT	TCT S	AAA K	CGA
	970					960		990				T000			1010			•	1020
TAC	GAA E	GAA E	ATT	TAT	CTT	AAA K	AAT N	AAA K	GAT O	CTA L	GAT	GCA A		TTA	TTT F	TTG L	GAT D	CAT	GAT D
	1030			•	1040			1050				1060			1070				1080
AAA K	ACT T	CTT	CAG	ACT T	GAT D	TCT	ATA I	GAC D	AGT S	TTT F	GAA E	AÇA T	CAG	AGA R	ACA T	CCA	CGA R	AAA K	AGT S
	1090				1100			1,110			1120			1130				1140	
AAC N	CTT	GAT D	GAA E	GAG E	ete V	AAT N	GTA V	ATT I		CCA	CAC H	ACT T	CCA P	GTT V	AGG	ACT T	GTT V	ATG M	AAC N
	1150					1160		1170				1180			1190				1200
ACT T	ATC I	CAA Q	CAA	TTA L	ATG M	ATG M	ATT I	TTA		TCA	GCA A	AGT S	GAT D	CAA	CCT	TCA S	GAA E	AAT N	CTG
	1210					1220		1230				1240			1250				1260
TTA	TCC S	TAT	TTT.	AAC N	AAC N	TGC C	AÇA T	ete V	AAT N	CCA P	AAA K	SAA E	AGT	ATA	CTG	AAA	AGA R	GTG V	AAG
1270 *					•	1280		1290				1300			1310				1320
GAT D	ATA	GGA G	TAC	ATC I	TTT F	AAA K	GAG E	AAA K	TTT F	GCT A	AAA K	GCT A	GTB V	GGA G	CAG	GGT G	TGT C	GTC V	BAA E
1330			30		1340				1350			1360			1370			,	1380
ATT	G GA	TCA S	Q	CGA R	TAC	AAA K	CTT	GGA G	GTT V	CGC R	TTG L	TAT	TAC	CGA R	ATD V	ATG M	GAA E	TCC	ETA
			1390			1400			1410			1420				1430			1440
CTT	AAA K	TCA S	GAA E	GAA E	gaa E	CGA R	TTA L	TCC S	ATT I	CAA	AAT N	TTT	AGC S	AAA K	CTT	CTG L	AAT N	GAC D	AAC N

ATT TTT CAT ATG TCT TTA TTG GCG TGC GCT CTT GAG GTT GTA ATG GCC ACA TAT AGC AGA LLACALEVVMAT AGT ACA TCT CAG AAT CTT GAT TCT GGA ACA GAT TTG TCT TTC CCA TGG ATT CTG AAT GTG SQNLDSGTDL CTT AAT TTA AAA GCC TTT GAT TTT TAC AAA GTG ATC GAA AGT TTT ATC AAA GCA GAA GGC AAC TTG ACA AGA GAA ATG ATA AAA CAT TTA GAA CGA TGT GAA CAT CGA ATC ATG GAA TCC CTT GCA TGG CTC TCA GAT TCA CCT TTA TTT GAT CTT ATT AAA CAA TCA AAG GAC CGA GAA GGA CCA ACT GAT CAC CTT GAA TCT GCT TGT CCT CTT AAT CTT CCT CTC CAG AAT AAT CAC ACT GCA GCA GAT ATG TAT CIT TCT CCT GTA AGA TCT CCA AAG AAA AAA GGT TCA ACT ACG CGT GTA AAT TCT ACT GCA AAT BCA GAG ACA CAA BCA ACC TCA GCC TTC CAG ACC CAG AAG CCA TTG AAA TCT ACC TCT CTT TCA CTG TTT TAT AAA AAA GTG TAT CGG CTA GCC TAT CTC CGG CTA AAT ACA CTT TGT GAA CGC CTT CTG TCT GAG CAC CCA GAA TTA GAA CAT ATC ATC LSEHP TGG ACC CTT TTC CAG CAC ACC CTG CAG AAT GAG TAT GAA CTC ATG AGA GAC AGG CAT TTG M T L F Q H T L Q N E Y E L M R D R H L BAC CAA ATT ATG ATG TGT TCC ATG TAT BBC ATA TGC AAA GTG AAG AAT ATA GAC CTT AAA TTC AAA ATC ATT GTA ACA. GCA TAC AAG GAT CTT CCT CAT GCT GTT CAG GAG ACA TTC AAA F K I I V T A Y K D L P H A V O F T F CGT GTT TTG ATC AAA GAA GAG BAG TAT GAT TCT ATT ATA GTA TTC TAT AAC TCG GTC TTC LIKEEEYDSIIV

2290 2300 2320 2330 2340 ATG CAG AGA CTG AAA ACA AAT ATT TTG CAG TAT GCT TCC ACC AGG CCC CCT ACC TTG TCA M Q R L K T N I L Q Y A S T R P P T L S 2350 2360 2380 2390 CCA ATA CCT CAC ATT CCT CGA AGC CCT TAC AAG TTT CCT AGT TCA CCC TTA CGG ATT CCT 2420 2430 GGA GGG AAC ATC TAT ATT TCA CCC CTG AAG AGT CCA TAT AAA ATT TCA GAA GGT CTG CCA G G N I Y I S P L K S P Y K I S E G L P 2500 2510 ACA CCA ACA AAA ATG ACT CCA AGA TCA AGA ATC TTA GTA TCA ATT GGT GAA TCA TTC GGG T P T K M T P R S R I L V S I G ϵ S F G ACT TCT GAG AAG TTC CAG AAA ATA AAT CAG ATG GTA TGT AAC AGC GAC CGT GTG CTC AAA T S E K F Q K I N Q M V C N S D R V L K AGA AGT GCT GAA GGA AGC AAC CCT CCT AAA CCA CTG AAA AAA CTA CGC TTT GAT ATT GAA R S A E G S N P P K P L K K L R F D I E 267.0 GGA TCA GAT GAA GCA GAT GGA AGT AAA CAT CTC CCA GGA GAG TCC AAA TTT CAG CAG AAA G S D E A D G S K H L P G E S K F Q Q K CTG GCA GAA ATG ACT TCT ACT CGA ACA CGA ATG CAA AAG CAG AAA ATG AAT GAT AGC ATG L A E M T S T R T R M Q K Q K M N D S M GAT ACC TCA AAC AAG BAA GAB AAA TGA GGA TCT CAG GAC CTT GGT GGA CAC TGT GTA CAC CTC TGG ATT CAT TOT CTC TCA CAG ATG TGA CTG TAT AAC TTT CCC AGG TTC TGT TTA TGG CCA CAT TTA ATA TCT TCA GCT CTT TTT GTG GAT ATA AAA TGT GCA GAT GCA ATT GTT TGG GTG ATT CCT AAG CCA CTT GAA ATG TTA GTC ATT GTT ATT TAT ACA AGA TTG AAA ATC TTG

TGT AAA TCC TGC CAT- TTA AAA AGT TGT AGC AGA TTG TTT CCT CTT CCA AAG TAA AAT TGC 3080 3090 3100 3070 3110 TGT GCT TTA TGG ATA GTA AGA ATG GCC CTA GAG TGG GAG TCC TGA TAA CCC AGG CCT GTC 3140 3150 3160 3170 3130 TGA CTA CTT TGC CTT CTT TTG TAG CAT ATA GGT GAT GTT TGC TCT TGT TTT TAT TAA TTT 3190 3200 3210 3220 3230 ATA TGT ATA TTT TTT TAA TTT AAC ATG AAC ACC CTT AGA AAA TGT GTC CTA TCT ATC TTC 3250 3260 3270 3280 3290 CAA ATG CAA TIT GAT TGA CTG CCC ATT CAC CAA AAT TAT CCT GAA CTC TTC TGC AAA AAT 3310 3320 3330 3340 3350 3360 GGA TAT TAT TAG AAA TTA GAA AAA AAT TAC TAA TTT TAC ACA TTA GAT TTT ATT TTA CTA 3370 3380 3390 3400 3410 TTG GAA TCT GAT ATA CTG TGT GCT TGT TTT ATA AAA TTT TGC TTT TAA TTA AAT AAA AGC 3430 3440 3450 3460 3470 TGG AAG CAA AGT ATA ACC ATA TGA TAC TAT CAT ACT ACT GAA ACA GAT TTC ATA CCT CAB 3490 3500 3510 3520 3530 AAT GTA AAA GAA CTT ACT GAT TAT TTT CTT CAT CCA ACT TAT GTT TTT AAA TGA GGA TTA 3560 3570 3580 TTG ATA GTA CTC TTG GTT TTT ATA CCA TTC AGA TCA CTG AAT TTA TAA AGT ACC CAT CTA 3630 3640 3620 3650 GTA CTT GAA AAA STA AAG TGT TCT GCC AGA TCT TAG GTA TAG AGG ACC CTA ACA CAG TAT 3680 3690 3700 3710 3720 ATC CCA AGT GCA CTT TCT AAT GTT TCT GGG TCC TGA AGA ATT AAG ATA CAA ATT AAT TTT 3750 3760 3770 ACT CCA TAA ACA GAC TGT TAA TTA TAG GAG CCT TAA TTT TTT TTT CAT AGA GAT TTG TCT 3800 3810 3820 3830 AAT THE ATE TEA AAA TTA TTE TEE CET CET TAA TTT GGG AAG GTT THE GTT TTE TET GGA

3850 3860 3870 3880 3890 3900 ATG GTA CAT GTC TTC CAT GTA TCT TTT GAA CTG GCA ATT GTC TAT TTA TCT TTT ATT TTT 3910 3920 3930 3940 3950 TTA AGT CAG TAT GGT CTA ACA CTG GCA TGT TCA AAG CCA CAT TAT TTC TAG TCC AAA ATT 3980 3990 4000 ACA AGT AAT CAA GGG TCA TTA TRG GTT AGG CAT TAA TGT TTC TAT CTG ATT TTG TGC AAA 4030 4040 4050 4060 AGC TTC AAA TTA AAA CAG CTG CAT TAG AAA AAG AGG CGC TTC TCC CCT CCC CTA CAC CTA 4100 4110 4120 4130 AAG GTG TAT TTA AAC TAT CTT GTG TGA TTA ACT TAT TTA GAG ATG CTG TAA CTT AAA ATA 4170 4160 4190 GGG GAT ATT TAA GGT AGC TTC AGC TAG CTT TTA GGA AAA TCA CTT TGT CTA ACT CAG AAT 4220 4230 4240 4250 4260 TAT TTT TAA AAA GAA ATC TGG TCT TGT TAG AAA ACA AAA TTT TAT TTT GTG CTC ATT TAA 4300 4310 4320 BTT TCA AAC TTA CTA TTT TGA CAG TTA TTT TGA TAA CAA TGA CAC TAG AAA ACT TGA CTC 4340 4350 4360 4370 4380 CAT TTC ATC ATT GTT TCT GCA TGA ATA TCA TAC AAA TCA GTT AGT TTT TAG GTC AAG GGC 4400 TTA CTA TTT CTG GGT CTT TTG CTA CTA AGT TCA CAT TAG AAT TAG TGC CAG AAT TTT AGG 4460 4470 AAC TTC AGA GAT COT GTA TTG AGA TTT CTT AAA TAA TGC TTC AGA TAT TAT. TGC TTT ATT 4510 4520 4530 GCT TTT TTG TAT TGG TTA AAA CTG TAC ATT TAA AAT TGC TAT GTT ACT ATT TTC TAC AAT 4580 4590 TAA TAG TIT GIC TAT TIT AAA ATA AAT TAG TIG ITA G