Problem Set 1 Real Analysis I

Bennett Rennier barennier@gmail.com

January 11, 2018

Ex 1

- a) For sequences (x_n) and y_n of real numbers, prove that $\limsup\{x_n\} + \liminf\{y_n\} \le \limsup\{x_n + y_n\} \le \limsup\{x_n\} + \limsup\{y_n\}$.
- b) Give a specific example where both inequalities are strict.

Proof.

a) Let $\alpha = \limsup\{x_n\}$ and let $\varepsilon > 0$. We see then that there are an infinite number of j's such that $\alpha - \frac{\varepsilon}{2} < x_j \le \alpha$. Now let $\beta = \liminf\{y_n\}$. This means there is an N such that for all $n \ge N$,

$$\beta - \frac{\varepsilon}{2} \le \inf_{k > n} \{y_k\} \le y_n.$$

This means there are an infinite number of j's where $x_j > \alpha - \frac{\varepsilon}{2}$ and $y_n \ge \beta - \frac{\varepsilon}{2}$. Thus, for an N, there are an infinitely number of $n \ge N$ such that $x_n + y_n \ge \alpha + \beta - \varepsilon$. This proves that $\sup\{x_n + y_n\} \ge \alpha + \beta - \varepsilon$. Since ε was arbitrary, we have that

$$\limsup \{x_n\} + \liminf \{y_n\} \le \limsup \{x_n + y_n\}$$

which proves the first inequality.

Let $x_j \in \{x_k\}_{k \geq n}$ and $y_j \in \{y_k\}_{k \geq n}$. Then we have that $x_j \leq \sup_{k \geq n} \{x_k\}$ and $y_j \leq \sup_{k \geq n} \{y_k\}$, which means that

$$x_j + y_j \le \sup_{k > n} \{x_k\} + \sup_{k > n} \{y_k\}.$$

We then take the supremum of all possible j's. Since the RHS is a constant, it remains the same. Thus, we have that

$$\sup_{j \ge n} \{x_j + y_j\} \le \sup_{k \ge n} \{x_k\} + \sup_{k \ge n} \{y_k\}.$$

Taking the limit as $n \to \infty$, we arrive at the second inequality.

b) We define (x_n) and (y_n) as follows:

$$y_n = \begin{cases} n & \text{if } n \text{ is odd} \\ -n & \text{if } n \text{ is even} \end{cases}$$
 $x_n = \begin{cases} -n & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$

If we compute the limsups and liminfs, we obtain that

$$\limsup \{x_n\} + \liminf \{y_n\} = 1 - \infty = -\infty$$

$$\limsup \{x_n + y_n\} = 0 \text{ as } x_n + y_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 - n & \text{if } n \text{ is odd} \end{cases}$$

$$\lim \sup \{x_n\} + \lim \sup \{y_n\} = 1 + \infty = \infty.$$

As can be seen, the inequalities are strict for these x_n and y_n .

Ex 2 Let f be a mapping from a set X to the set of subsets of X. Showe that there is a subset of X which is not in the range of f.

Proof. First, we let $f: X \to \mathcal{P}(X)$ and let $E = \{x \in X : x \notin f(x)\}$. Suppose that f were surjective. Since $E \in \mathcal{P}(X)$, there exists a x' such that f(x') = E. Now, x' must either be in E or not in E. Suppose that $x' \in E = f(x')$. However, by the definition of E, we also have that $x' \notin f(x')$. This is a contradiction. Now suppose that $x' \notin E = f(x')$. Again, though, by the definition of E, this would mean that $x' \in E$ as well. Thus, either way we arrive at a contradiction. This proves that there is no $x \in X$ such that f(x') = E, which proves that f is not sujective.

Ex 3 If $S \subseteq X$ is uncountable and $A \subseteq X$ is countable, show that $S \cap A^c$ is uncountable.

Proof. Assume that $S \cap A^c$ is countable. Then $(S \cap A^c) \cup A$ is the union of two countable sets, and is thus countable. By distributivity we see that

$$(S\cap A^c)\cup A=(S\cup A)\cap (A\cup A^c)=S\cup A.$$

However, since S is uncountable, clearly $S \cup A$ must be uncountable. Thus, we have a contradiction, which proves that $S \cap A^c$ is uncountable.

$\mathbf{Ex} \ \mathbf{4}$

- a) Is the set of rationals open or closed in the set of real numbers?
- b) Which sets of real numbers are both open and closed?

Proof.

a) Every open interval on the real line contains both rationals and irrationals. Therefore, we let $q \in \mathbb{Q}$, then any open neighborhood containing \mathbb{Q} contains an irrational numbers. This proves that \mathbb{Q} is not open. Similarly, if \mathbb{Q} were closed, then that would mean $\mathbb{R} \setminus \mathbb{Q}$ would be open. However, if we let $i \in \mathbb{R} \setminus \mathbb{Q}$, then any open neighborhood of i contains a rational number. Thus, $\mathbb{R} \setminus \mathbb{Q}$ is not open, which means that \mathbb{Q} is neither closed nor open.

b) We note that \varnothing is trivally open and closed, which means that its complement, \mathbb{R} , is also open and closed. Let assume there is an additional open and closed set A. Again, this would mean that A^c also open and closed. Now fix $a \in A$ and $b \in A^c$. Without loss of generality, suppose a < b. Let $C = \{x \in \mathbb{R} : [a, x] \subseteq A\}$. We note that C is non-empty as $a \in C$. Additionally, C is bounded above by b as $b \notin A$, which proves that C must have a least upper bound. Let's call this least upper bound α .

Suppose $\alpha \in A$. Then, since A is open, there is a ball of radius r > 0 such that $(\alpha - r, \alpha + r) \subseteq B$. Since $[\alpha, \alpha + \frac{r}{2}] \subseteq (\alpha - r, \alpha + r)$, we have that $[a, \alpha] \cup [\alpha, \alpha + \frac{r}{2}] = [a, \alpha + \frac{r}{2}] \subseteq S$. This proves that $\alpha + \frac{r}{2} \in C$, which is a contradiction as α was the least upper bound of C. Thus, $\alpha \notin A$, a contradiction.

Suppose $\alpha \in A^c$. Then, since A^c is open, there is a ball of radius r > 0 such that $(\alpha - r, \alpha + r) \subseteq A^c$. Since $[\alpha - \frac{r}{2}, \alpha] \subseteq (\alpha - r, \alpha + r) \subseteq A^c$, we have that $\alpha - \frac{r}{2} \notin A$. This would mean that $\alpha - \frac{r}{2} \notin C$, which is a contradiction as $\alpha - \frac{r}{2} < \alpha$ and α is the least upper bound of C. Thus, $\alpha \notin A^c$, a contradiction.

This means that either way we arrive at a contradiction, which proves that there can be no such set A. Hence, \varnothing and \mathbb{R} are the only two open and closed sets of \mathbb{R} .

Ex 5 Prove that a set X is infinite if and only if there is a proper subset of X of the same cardinality as X.

Proof. Suppose X is infinite. This means there exists an injective function φ from N to X. Using this injective function, we can define $\psi: X \to X$ where

$$\psi = \begin{cases} \varphi(n+1) & x = \varphi(n) \text{ for some } n \in \mathbb{N} \\ x & x \notin \text{Im}(\varphi). \end{cases}$$

We see that ψ is injective as φ is injective; however, since $\varphi(0) \notin \operatorname{Im}(\psi)$, ψ is not surjective. Thus, ψ is a bijection between X and $\operatorname{Im}(\psi) \subsetneq X$ as desired.

Conversely, let A be a proper subset of X with the same cardinality and let $\varphi: X \to A$ be bijection. We construct a function $\psi: \mathbb{N} \to X$ as follows: we let $\psi(0) = a$ and let $\psi(i+1) = \varphi(\psi(i))$ for all $0 \neq n \in \mathbb{N}$. Since φ is injective and $a \notin \operatorname{Im}(\varphi)$, we see that ψ is also injective. If the cardinality of X were finite, then there'd be a bijection $f: X \to \{1, \ldots, n\}$ for some $n \in \mathbb{N}$. Thus, the composition, $f \circ \psi: \mathbb{N} \to \{1, \ldots, n\}$ would be injective. We note that the inclusion map from $\{1, \ldots, n\}$ to \mathbb{N} is also injective. Thus, by the Schroder-Bernstein theorem, there would be a bijection between \mathbb{N} and $\{1, \ldots, n\}$, which is a contradiction. Thus, X must be infinite.