Course	210052567	Course	NATURAL LANGUAGE PROCESSING	Course	_	PROFESSIONAL ELECTIVE	L	T	Р	С
Code	21CSE3561	Name	NATURAL LANGUAGE PROCESSING	Category		PROFESSIONAL ELECTIVE	2	1	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department Sc		School of Computing	Data Book / Codes / Standards		Nil

Course L	Learning Rationale (CLR): The purpose of learning this course is to:					Progra	am Ou	utcome	es (PO))					rogran	
CLR-1:	1: Understand the fundamentals behind the Language processing and perform word level analysis.		2	3	4	5	6	7	8	9	10	11	12		pecific stcome	
CLR-2:	Understand the syntactic processing and probabilistic context-free grammars.				de Jo		£									
CLR-3:	Conceive the basics of the knowledge representation, inference, and discourse analysis.	adge		t of	Suo (4)	ociety			Nork		<u> </u>				
CLR-4:	Recognize the significance of transformer-based models.	Mor	Sis)mer	tigati	Usage	nd s			am /	_	Final	guir			
CLR-5:	Understand the natural language processing applications and to learn how to apply basic algorithms in th field.	eering Kr	em Analysis	n/develop	act invest ex proble	m Tool U	ngineer a	onment & inability		Jual & Te	nunication	ect Mgt. &	ong Learr	_	2	ω.
Course C	Outcomes (CO): At the end of this course, learners will be able to:	Engin	Proble	Desig	Condi	Mode	The e	Enviro	Ethics	hdivid	Comn	Projec	Life Lo	PSO-	PSO-;	PSO-:
CO-1:	Exhibit knowledge on text preprocessing techniques and perform word level analysis.	3	3	2	-	-	-	-	-	-	-	-	-	2	-	-
CO-2:	-2: Illustrate approaches to syntax analysis including probabilistic context-free grammars		3	2	-	-	-	-	-	-	-	-	-	2	-	-
CO-3:	D-3: Apply approaches to semantics and discourse analysis in NLP.		3	2	-	-	-	-	-	-	-	-	-	2	-	-
CO-4:	Develop models using tr <mark>ansfer lea</mark> rning approaches.	3	-	-	3	3	-	-	-	-	-	-	-	2	-	-
CO-5:	Implement applications that use Natural Language Processing approaches.			2	3	3	-	-	_	_	-	-	-	_	-	-

Unit-1 - Overview and Word Level Analysis

9 Hour

Introduction to Natural Language Processing, Applications of NLP, Levels of NLP, Regular Expressions, Morphological Analysis, Tokenization, Stemming, Lemmatization, Feature extraction: Term Frequency (TF), Inverse Document Frequency (IDF), Modeling using TF-IDF, Parts of Speech Tagging, Named Entity Recognition, N-grams, Smoothing.

Unit-2 - Syntax Analysis 9 Hour

Context Free Grammars, Grammar Rules for English, Top-Down Parsing, Bottom-Up Parsing, Ambiguity, CKY Parsing, Dependency Parsing, Earley Parsing - Probabilistic Context-Free Grammars

Unit-3 - Semantic and Discourse Analysis

9 Hour

Representing Meaning, Lexical Semantics, Word Senses, Relation between Senses, Word Sense Disambiguation, Word Embeddings, Word2Vec, CBOW, Skip-gram and GloVe, Discourse Segmentation, Text Coherence, Discourse Structure, Reference Resolution, Pronominal Anaphora Resolution, Coreference Resolution

Unit-4 - Language Models 9 Hour

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Attention mechanism, Transformer Based Models, Self-attention, multi-headed attention, BERT, RoBERTa, Fine Tuning for downstream tasks, Text classification and Text generation.

Unit-5 - NLP Applications 9 Hour

Introduction to Chatbot Applications, Retrieval based- Conversation based, Information Extraction and its approaches, Information Retrieval, Semantic Search and Evaluation, Question Answering, Summarization, Extractive Vs Abstractive Summarization, Machine Translation.

ı	
	Learning
	Resources

- Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, 2nd Edition, 2018.
- 2. C.Manning and H.Schutze, —Foundations of Statistical Natural Language Processingli, MIT Press. Cambridge, MA,1999
- 3. JamesAllen, Bejamin/cummings, NaturalLanguageUnderstandingll, 2ndedition, 1995
- Rothman, Denis. Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more. Packt Publishing Ltd, 2021.
- 5. http://mccormickml.com/2106/04/19/word2vec- tutorial-the-skip-gram-model/
- 6. https://nlp.stanford.edu/pubs/glove.pdf

		Ourse of the						
	Bloom's Level of Thin <mark>king</mark>	C.I.A-T. AVERAGE OF UNIT TEST			g Learning _A-2 0%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	15%	1 to 1 to 1 (24)	15%		15%	-	
Level 2	Understand	25%		25%		25%	-	
Level 3	Apply	30%		30%		30%	-	
Level 4	Analyze	30%		30%	78.	30%	-	
Level 5	Evaluate						-	
Level 6	Create		T = 6. PROCESS	21/		-	-	
	<u>Total</u>	10	0 %	10	0 %	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Dr. J.Balaji, Associate Manager, Allstate Solutions Pvt Ltd, jagank.balaji@gmail.com	Dr. Vani. V, Assistant Professor, National Institute of Technology Puducherry	1. Dr. R. Anita, SRMIST.
		2. Dr.Subalalitha C.N., SRMIST
		3. Ms.Viji D , SRMIST