Homework Assignment: 3 Name: Jonathan Gaines

Date: 4/19/2017

1. Job Optimization

	Solution	Time Slot 1	Time Slot 2	profit
	1	Job 1	Job 3	55
(a)	2	Job 3	Job 1	55
	3	Job 2	Job 1	65
	4	Job 2	Job 3	60
	5	Job 4	Job 1	70
	6	Job 4	Job 3	65
	7	Job 1	N/A	30
	8	Job 2	N/A	35
	9	Job 3	N/A	25
	10	Job 4	N/A	40

- (b) The optimal schedule has Job 4 in timeslot 1 and Job 1 in timeslot 2 for a profit of \$70.
- (c) A high level greedy algorithm would choose the largest profit with a deadline of 1 or 2, then choose the largest profit with a deadline of 1. In this case, it would choose Job 4, then Job 1.
- 2. Dynamic Programming: Change Making
 - (a) The minimum number of coins needed to meet the amount is 3.
 - (b) Minimum coin combinations include $\{1, 2, 5\}$ and $\{3, 3, 3\}$

$$\begin{array}{lll} \text{Change-making}(D[\,j\,]\,,\,\,n\,)\colon & \\ & f\,[\,0\,]\,=\,0 & \\ & \text{for } i\,=\,1\,\,\,\text{to } n\,\,\text{do} & \\ & \text{temp}\,=\,-1 & \\ & j\,=\,1 & \\ & \text{while } j\,<=\,m\,\,\text{and } i\,>=\,D[\,j\,]\,\,\text{do} & \\ & \text{temp}\,=\,\min(\,f\,(\,i\,-\!D[\,j\,]\,)\,, \\ & j\,=\,j\,+\,1 & \\ & f\,[\,1\,]\,=\,\text{temp}\,+\,1 & \\ & \text{return } f\,(n) & \end{array}$$

- 3. Dyanmic Programming: Knapsack Problem
 - (a)
 - (b)
 - (c)

- 4. Greedy Algorithm
 - (a)
 - (b)
 - (c)