

STATS 02: Correlation and Linear Regression

Winter semester 2023/2024

Multivariate distributions

Multivariate distributions

- ► So far we have dealt exclusively with univariate distributions, i.e. distributions are concerned with only one variable.
- But we are often interested in several characteristics on the same examination object (individual), i.e. multivariate distributions
- Multivariate distributions describe the behavior of multiple random variables simultaneously capturing relationships, dependencies, and interactions between these variables.

Example: Joint distribution

In scRNA-seq, to which gene and which cell does the transcript belong?

		cell		
		C_1	C_2	
gene	Α	$f(A \cap C_1)$	$f(A \cap C_2)$	
	В	$f(B\cap C_1)$	$f(B \cap C_2)$	
	:		:	
	Χ	$f(X \cap C_1)$	$f(X \cap C_2)$	

This is called a **bivariate distribution**.

- methods for graphical representation of such distributions
- description of the relationship between two characteristics

Graphical representation of a bivariate distribution

scatter plot

Graphical representation of a bivariate distribution

bivariate histogram

Discrete case: joint distribution

Consider discrete random variables X and Y, where X takes on the values x_1, \ldots, x_n and Y takes on the values y_1, \ldots, y_m . Then X and Y have the **joint distribution**

$$p_{ij} = \mathbb{P}(\{X = x_i\} \cap \{Y = y_j\}).$$

The marginal probability distributions $p_{X,i}$ for the random variable X and $p_{Y,j}$ for the random variable Y are

$$p_{X,i} = \sum_{j=1}^{m} p_{ij}$$
 (row sum)
 $p_{Y,j} = \sum_{i=1}^{n} p_{ij}$ (column sum)

Sample joint distribution

The joint distribution table lists transcripts per cell (characteristic A) and per gene (characteristic B).

		characteristic A				
		1	2		r	Σ
characteristic B	1	n ₁₁	n ₁₂		n_{1r}	n_1 .
	2	n ₂₁	n_{22}		n_{2r}	n_2 .
	:	:	÷		:	:
	:	:	÷		:	:
당	С	n_{c1}	n_{c2}		n _{cr}	n _c .
	Σ	n. ₁	n.2		n. _r	N

- sample joint distribution: n_{ij}
- marginal distributions:

$$n_{.j} = \sum_{i=1}^{c} n_{ij}$$
(column sum)
$$n_{i.} = \sum_{j=1}^{r} n_{ij}$$
(row sum)

total sample size $N = \sum_{i,j} n_{ij}$

Independent random variables

Recall that two events A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Is there an equivalent concept for random variables?

Definition of independence of two discrete random variables

Consider two random variables X and Y, with probability mass functions $\mathbb{P}(X = x)$ and $\mathbb{P}(Y = y)$.

► If

$$\mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$$

for all x and y, then we say that X and Y are independent.

If two random variables are not independent, then we say they are dependent.

Sums of independent random variables

Rules of sums of independent random variables:

▶ If X and Y are independent random variables, and Z = X + Y, then

$$\mathbb{E}[Z] = \mathbb{E}[X] + \mathbb{E}[Y]$$
 and $Var(Z) = Var(X) + Var(Y)$.

Differences of independent random variables

This rule can be extended to the difference of independent random variables as following

▶ If X and Y are independent random variables, and Z = X - Y, then

$$\mathbb{E}[Z] = \mathbb{E}[X] - \mathbb{E}[Y]$$
 and $Var(Z) = Var(X) + Var(Y)$.

Linear combination of two independent random variables

The general rule for two independent random variables is as follows

▶ If X and Y are independent random variables, a and b are constants, and Z = aX + bY, then

$$\mathbb{E}[Z] = a \mathbb{E}[X] + b \mathbb{E}[Y]$$
 and $Var(Z) = a^2 Var(X) + b^2 Var(Y)$.

Correlation analysis

What about dependent random variables?

Similar rules apply for the cases where the random variables are dependent.

Consider the random variables X and Y and constants a and b.

▶ If Z = aX + bY, then

$$\mathbb{E}[Z] = a \mathbb{E}[X] + b \mathbb{E}[Y] \quad \text{and}$$

$$Var(Z) = a^2 Var(X) + b^2 Var(Y) + 2ab \operatorname{cov}(X, Y).$$

Notice that if X and Y are independent, then cov(X, Y) = 0 and we obtain the previous rules.

General rule

Finally consider n random variables, X_1, X_2, \ldots, X_n , and n constants a_1, a_2, \ldots, a_n and Z is the linear combination

$$Z = \sum_{i=1}^{n} a_i X_i$$

then

$$\mathbb{E}[Z] = \sum_{i=1}^n a_i \mathbb{E}[X_i]$$

and

$$\mathsf{Var}(Z) = \sum_{i=1}^n a_i^2 \, \mathsf{Var}(X_i) + \sum_{i=1}^n \sum_{\substack{j=1 \ i \neq j}}^n a_i a_j \, \mathsf{cov}(X_i, X_j).$$

Covariance

Let X and Y be two random variables.

▶ The **covariance** of X and Y, denoted cov(X, Y), is defined as

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

= $\mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y],$

where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$.

This definition applies both to discrete and continuous variables.

Example: Joint Probability Table

Consider the joint probability distribution of two random variables X and Y given by the following table:

$X \backslash Y$	Y=1	Y = 2	P(X)
X=1	0.1	0.2	0.3
X = 2	0.3	0.4	0.7
P(Y)	0.4	0.6	1.0

Marginal probabilities:

$$\mathbb{E}[X] = 1 \cdot 0.3 + 2 \cdot 0.7 = 1.7,$$

 $\mathbb{E}[Y] = 1 \cdot 0.4 + 2 \cdot 0.6 = 1.6.$

Calculating $\mathbb{E}[XY]$ and Covariance

To calculate the expected value of the product $\mathbb{E}[XY]$:

Use the definition:

$$\mathbb{E}[XY] = \sum_{x} \sum_{y} x \cdot y \cdot P(X = x, Y = y).$$

Substitute the values from the joint probability table:

$$\mathbb{E}[XY] = (1 \cdot 1 \cdot 0.1) + (1 \cdot 2 \cdot 0.2) + (2 \cdot 1 \cdot 0.3) + (2 \cdot 2 \cdot 0.4)$$
$$= 2.7.$$

Covariance Calculation:

▶ The covariance formula is:

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

Substitute the values:

$$Cov(X, Y) = -0.02.$$

Covariance

Intuition:

$$\Rightarrow cov(X, Y) > 0$$

$$\Rightarrow cov(X, Y) < 0$$

$$\Rightarrow {\sf cov}(X,Y) \approx 0$$

Correlation

The **correlation coefficient** is denoted ρ and defined by

$$\rho = \frac{\mathsf{cov}(X, Y)}{\sigma_X \sigma_Y},$$

where

- $ightharpoonup \sigma_X$ is the standard deviation of X, and
- $ightharpoonup \sigma_Y$ is the standard deviation of Y.

Pearson's correlation

Consider data

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$$

Then the sample correlation is calulated as:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

where

 x_i the measurement of feature X at the ith individual y_i the measurement of feature Y at the ith individual \bar{x} (or \bar{y}) arithmetic mean of X (or Y) number of data points (sample size) index from 1 to n

Properties of the correlation coefficient

- 1. $-1 \le \rho \le 1$
- 2. $\rho = 1$ if and only if the random variables X and Y satisfy a linear relationship Y = aX + b for constants a and b with a > 0.
- 3. $\rho = -1$ if and only if the random variables X and Y satisfy a linear relationship Y = aX + b for constants a and b with a < 0.
- 4. If X and Y are independent $\Rightarrow \rho = 0$.
- 5. $\rho = 0$ but X and Y are dependent.
- 6. If X and Y have a non-linear relationship then it can happen that $\rho = 0$.

$$\rho(X,Y)=1$$

$$\rho(X,Y)=-1$$

$$\rho(X,Y)=0$$

University of Vienna

Counterexample with $\rho(X, Y) = 0$

Coefficient of determination

- ▶ The squared sample correlation coefficient r^2 is called the coefficient of determination.
- ▶ It can be interpreted as the proportion of the variation in the (response) variable *Y* that is explained by the linear relationship with the (explanatory) variable *X*,
- ▶ $r^2 \in [0,1]$
- see regression

Spearman's Rank Correlation Coefficient

- ▶ The **Spearman correlation coefficient** ρ measures the strength and direction of a monotonic relationship between X and Y.
- ▶ It is computed using the formula:

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

where $d_i = \text{rank}(X_i) - \text{rank}(Y_i)$ is the difference between the ranks of X_i and Y_i .

- ho ranges from -1 (perfect negative monotonic relationship) to 1 (perfect positive monotonic relationship).
- Less sensitive to outliers compared to Pearson's correlation.
- Useful for non-linear but monotonic relationships.

Spearman's Rank Correlation Coefficient

Regression

- ▶ The coefficients r and r^2 measures the strength of a relationship in bivariate distributions.
- We want to describe the relationship in a concise way.
- Let (x_i, y_i) be interval-scaled* pairs of measured values of the characteristics X and Y. We call X the independent (explanatory) and Y the dependent (response) variable.
- Regression determines a function to describe a relation between X and Y.
- * Interval-scaled data means that differences between values can be meaningfully compared, whereas ordinal data may lead to inconsistencies.

Example - FVC data

To study lung function, the forced vital capacity (FVC) in litres and height in cm were measured on 127 twelve-year-old boys.

FVC data - scatter plot

FVC data - scatter plot

Response variable (FVC) measures an outcome of a study.

Explanatory variable (height) explains or causes changes in the response variable. Sometimes referred to as the predictor variable.

Regression

Consider n observations of the explanatory variable x_i and the response variable y_i ,

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$$

The simple linear regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma)$ is the individual deviation (error-) value assumed to distributed normally.

Estimation of the regression parameters

Consider the function

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2.$$

- ▶ Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the values of β_0 and β_1 that minimise $Q(\beta_0, \beta_1)$.
- \triangleright $\hat{\beta}_0$ and $\hat{\beta}_1$ are called the least squares estimates of β_0 and β_1
- ► The line

$$y = \hat{\beta}_0 + \hat{\beta}_1 x$$

is called the line of best fit.

Example

The simple linear regression model is fitted to the fvc data and the resultant fit is

$$FVC = -4.2 + 0.05 \times \text{Height}.$$

- ▶ What does the value −4.2 mean?
- ▶ What does the value 0.05 mean?
- ▶ What FVC does this line predict for a twelve-year-old boy of height 150cm?

FVC data

```
import numpy as np

# Perform linear fit using numpy polyfit with covariance matrix
coefficients, covariance_matrix = np.polyfit(x, y, 1, cov=True)
slope, intercept = coefficients

# Extract standard errors from the covariance matrix
slope_error = np.sqrt(covariance_matrix[0, 0])
intercept_error = np.sqrt(covariance_matrix[1, 1])
print(f"Slope: {slope} ± {slope_error}")
print(f"Intercept: {intercept} ± {intercept_error}")
```

FVC data

Slope: 0.046 ± 0.002 Intercept: -4.19 ± 0.24

FVC data

For the FVC data r = 0.95.

- ► Thus $r^2 = 0.90$.
- ▶ i.e., 90% of the variation in FVC is explained by the linear relationship with Height.

Definition of residuals

Recall that the simple linear regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma)$ independently. We can obtain ε_i by

$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 x_i).$$

As we do not know β_0 and β_1 , we can estimate ε_i by

$$\hat{\varepsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i).$$

The values $\hat{\epsilon}_i$ which are calculated by observed - fitted are called the residuals.

Properties of residuals

The main use of the residuals is for model checking.

▶ If the regression model is true then

$$\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$$

must be independent $\mathcal{N}(0,\sigma)$ variables.

▶ In this case, the residuals

$$\hat{\varepsilon}_1, \hat{\varepsilon}_2, \dots, \hat{\varepsilon}_n$$

should look roughly like a sample of independent $\mathcal{N}(0,\sigma)$ variables.

Model checking

For the linear regression model, the assumptions can formulated as:

Modelling assumptions

- 1. Linearity: $\mathbb{E}[Y_i] = \beta_0 + \beta_1 x_i \Leftrightarrow \mathbb{E}[\varepsilon_i] = 0$.
- 2. Homoscedasticity (constant variance): $Var(\varepsilon_i) = \sigma^2$ for all i.
- 3. Normality: $\varepsilon_i \sim \mathcal{N}(0, \sigma)$.

Design assumptions

4. Independence: $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are independent.

Linearity

- ► Check by looking at residual versus fitted plot
- If reasonable, expect to see points distributed symmetrically above and below the zero line.

Linearity valid

Linearity not valid

Regression

Homoscedasticity (constant spread)

- Check by looking at residual versus fitted plot
- ▶ If reasonable, expect to see roughly equal spread around zero line as we go from left to right.

Homoscedasticity not valid (Heteroscedasticity)

Q-Q Plot: Checking Normality

► A Q-Q (Quantile-Quantile) plot compares the observed residuals (errors) to the expected values from a normal distribution. It checks if residuals follow a normal distribution.

How is it made?

- (1) Sort the observed residuals from smallest to largest.
- (2) Compute the theoretical quantiles.
- (3) Plot the sorted residuals (y-axis) against the theoretical quantiles (x-axis).

Theoretical quantiles

► The theoretical quantiles can be computed from the normal distribution directly. They correspond to the value of the cumulative probability given by

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

where the mean $\mu = 0$ and the variance $\sigma = 1$.

▶ To get the location z on the curve where the theoretical quantile q is reached we have to solve $\Phi(z) = q$ or $\Phi^{-1}(q) = z$.

Theoretical quantiles

This Python function does the trick: stats.norm.ppf([0.25])

Normality valid

Normality not valid

Polynomial terms

We can also consider adding polynomial terms to the model.

▶ e.g.,

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,1}^2 + \varepsilon_i,$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma)$ independently.

Note: Regarding the relationship between X and Y, this is no longer a linear model. But the model is still linear in the parameters (i.e. the betas), so our estimation formulas still work!

Polynomial example

Here: $\beta_0 = 1.87$, $\beta_1 = -1.66$, and $\beta_2 = 0.61$,