

Comparing Graph Architectures for Deep Metric Learning

ADL4CV Final Presentation

09.02.2022

Moritz Schüler moritz.schueler@tum.de

Luca Eyring

<u>luca.eyring@tum.de</u>

1.1 Deep Metric Learning

A

B

Learn a **similarity** function:

$$d(A, B) > \tau$$

Goal:

- similar objects are close together
- dissimilar far apart

Why not classification?

Doesn't scale for new classes

1.2 Research Objective

- Investigate attention mechanisms in metric learning
- Compare:
 - Jenny's architecture based on traditional attention
 - Graph Attention Network (GAT) v1 & v2
- Ablation Study
 - Does Attention benefit metric learning?
 - How important are the linear layers following attention?

1.3 Datasets

Stanford **CARS** Dataset

- 16.185 images
- 196 classes

Caltech **CUB** Dataset

- 11.788 images
- 200 classes

1.4 Traditional Deep Metric Learning

Triplet Loss

- shrink distance of similar samples
- increase distance of dissimilar samples

Problem: Which triplets to sample?

2.1 Sampling

Stratified sampling

- Each class is a Strata
- Randomly choose X classes
- Randomly sample same amount from those classes

2.2 Jenny's Architecture

- takes whole (mini-) batch into account
- learns connection between samples

2.3 Message Passing

- Initial embeddings from Backbone
- Calculate temporal embeddings with NN (K times)
- Update node embeddings

2.4 Full Architecture in Detail

3.1 Conducted Experiments

Train only Encoder

ResNet-Encoder

Remove whole GNN

GNN

Remove Attention

Attention Block

Remove MLP

MLP Block

Change Attention Mechanism

Attention Layer (MultiHead or GAT)

3.2 Attention Mechanisms

Attention between two nodes **h_i** and **h_j**: softmax **Traditional** softmax, **Additive** Attention Multiplicative used in GAT: Attention: Χ $\mathbf{W}h_i$

3.3 GAT vs GATv2

Motivation:

- GAT tends to compute a global ranking of "influential" nodes
- GATv2 computes different rankings of neighbors

$$LeakyReLU(\mathbf{a}^T \cdot [\mathbf{W}\mathbf{h}_i||\mathbf{W}\mathbf{h}_j)]$$

 $\mathbf{a}^T \cdot LeakyReLU(\mathbf{W}[\mathbf{h}_i||\mathbf{h}_j)]$

3.3 Reproducibility

Results varied a lot across runs

=> Goal: Make everything deterministic

- Rewrote Attention Mechanism
- Rewrote GAT & GATv2 Implementation

=> Now: *Deterministic* Training

4.1 Experiment Results on CARS

$\sqrt{1}$	_
- ⊘=	= ⊙

Method	Paper
Baseline	87.1
Method	88.1
Difference	+1.0

s

4.2 Experiment Results on CUB

Method	Paper	ResNet50 only	No MLP + No Att	No Attention	No MLP	GAT	GATv2
Baseline	69.4	69.4	69.4	69.4	69.4	69.4	69.4
Method	70.3	67.7	69.1	69.3	67.9	68.9	69.8
Difference	+0.9	-1.7	-0.3	-0.1	-1.5	-0.5	+0.4

4.3 Experiments over 5 Seeds

Method	CARS	CUB	CARS mAP	CUB mAP	CARS NMI	CUB NMI
Original	87.48	69.05	25.87	27.15	71.56	72.51
	+- 0.37	+- 1.04	+- 0.98	+- 0.74	+- 0.83	+- 0.92
GATv2	87.23	69.24	26.86	27.22	72.39	72.52
	+- 0.38	+- 0.30	+- 0.50	+- 0.39	+- 0.40	+- 0.74

5. Conclusion

- Attention beneficial to Metric Learning in general
- Linear Layers not necessarily needed for Attention
- GATv2 outperforms GAT
- GATv2 outperform traditional attention by a small margin

4. Future Work

- mAP@R für Gatv2
- tSNE of the embeddings

References

- [1] Seidenschwarz et al. "Learning intra-batch connections for deep metric learning".
 2021.
 - https://arxiv.org/pdf/2102.07753.pdf
- [2] Velikovi et al. "Graph attention networks". 2018. https://arxiv.org/pdf/1710.10903.pdf
- [3] Brody et al. "How attentive are graph attention networks?". 2021. https://arxiv.org/pdf/2105.14491.pdf
- [4] Dong et al. "Attention is not all you need: Pure attention loses rank doubly exponentially with depth". 2021.
 - https://arxiv.org/pdf/2103.03404.pdf

Backup

2 Multi Head Attention

2 GAT

GAT Layer

ELU

GAT Layer

Dropout

Transformation

Heads are concatenated

Attention over all heads simult.

3.2 Metrics

Recall@K: 1. k-means clustering

2. Get k nearest neighbors

3. If match: score=1, if not score=0

NMI:

- 1. Split into clusters (1) and class labels (2)
- 2. How do (1) and (2) agree?

High:1, Low: 0

nce

4.1 Message Passing formally

MP & Attention Weights:

$$m{h}_i^{l+1} = \sum_{j \in N_i} lpha_{ij}^l m{W}^l m{h}_j^l$$

Attention computation:

$$e_{ij}^l = \frac{W_q^l h_i^l (W_k^l h_j^l)^T}{\sqrt{d}}$$

$$\alpha_{ij}^l = softmax_j(e_{ij}^l)$$

Residual Block:

$$f(\boldsymbol{h}_i^{l+1}) = LayerNorm(\boldsymbol{h}_i^{l+1} + \boldsymbol{h}_i^l)$$

Added *Linear* Block:

$$g(\boldsymbol{h}_i^{l+1}) = LayerNorm(FF(f(\boldsymbol{h}_i^{l+1})) + f(\boldsymbol{h}_i^{l+1}))$$

4.2 Graph Attention Network

Most popular framework for attentional GNNs!

Difference lies in the *attention* computation:

$$e_{ij}^l = \frac{W_q^l h_i^l (W_k^l h_j^l)^T}{\sqrt{d}}$$

$$e\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right) = \text{LeakyReLU}\left(\boldsymbol{a}^{\top} \cdot \left[\boldsymbol{W}\boldsymbol{h}_{i} \| \boldsymbol{W}\boldsymbol{h}_{j}\right]\right)$$

5.1 First Experiments

- Reproducing Paper
- GAT
- GATv2

Measure the impact of attention & linear block:

• Remove *linear* Block:

$$g(h_i^{l+1}) = f(h_i^{l+1})$$

• Remove attention:

$$f(h_i^{l+1}) = f(h_i^l)$$

6. Challenges and Next Steps

- Challenges
 - Setting up Google Colab
 - Getting Google Cloud credits
 - Running experiments (takes a lot of time)
 - Reproducibility (Training still non-deterministic)
- Next Steps
 - Run hyperparameter tuning to improve results
 - Graph construction