Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

Negotiation of resource sharing

Bargain

- Assume two players need to split a given amount of resources (for simplicity, = 1)
 - □ Player 1 gets x, player 2 gets 1-x
 - This is like saying they split one (1) pie
- Two approaches
 - Nash bargaining (axiomatic, static)
 - Seen as a dynamic game (the one seen here):
 modeled as alternate stage where players 1 and 2
 exchange proposer/responder roles

- □ In stage 1, (P)roposer is 1, (R)esponder is 2
 - □ 1 offers shares (x, 1-x), 2 can accept (the game ends) or refuse (the game goes on, stage 2)
- □ In stage 2, (P)roposer is 2, (R)esponder is 1
 - □ roles swapped from stage 1; this time P (which is player 2) makes the offer; R refuses⇒stage 3
- □ In stage t, P=1 if t is odd, otherwise P=2
 - R accepts \Rightarrow game ends; R refuses \Rightarrow stage t+1
- Assume that, if disagreement persists after a deadline (*T* stages), both 1 and 2 get nothing

- When the game ends before the deadline, the players receive discounted payoffs
 - Because "time is money," so that the entire pie had value 1 at time 1, but every further round, a fraction $(1-\delta)$ is wasted
- □ If the game ends at stage 1, $u_1 = x$, $u_2 = 1-x$
- If the game ends at a later stage t > 1, compute discounted payoffs with discount $\delta < 1$: $u_1 = \delta^{t-1} x$, $u_2 = \delta^{t-1} (1-x)$

- □ If the deadline $T = 1 \rightarrow$ Ultimatum game
 - All solutions with P proposing x, 1-x and R accepting everything up to 1-x are NEs
 - However, only one SPE: x=1 (that is, the proposer keeps everything)
- \square Assume the deadline is at an odd T
 - \blacksquare Then player 1 is the last proposer; at round T, player 2 will accept everything,

- \square Assume the deadline is at an odd T
 - 1 is the last proposer; at round T, 2 will accept everything, so 1 proposes x=1: $u_1 = \delta^{t-1}$, $u_2 = 0$
 - at round T-1, 2 can avoid going at round T, where he/she gets nothing, by offering $x \ge \delta$ this way, 1 will accept and $u_1 \ge \delta \times \delta^{t-2}$, $u_2 \ge 0$ (actually, 2 will simply offer $x = \delta$ then)
 - by iterating the reasoning, we see that 1 can start the game by offering something, 2 accepts:

$$\mathbf{u}_1 = \frac{1 + \delta^T}{1 + \delta} \qquad \qquad \mathbf{u}_2 = \frac{\delta - \delta^T}{1 + \delta}$$

- Proposition. Any SPE must have the players reaching agreement in the first round.
 - Simply a consequence of backward induction
 - Iterating the game: (i) wastes reward, because of the discount (ii) sends the game to another (symmetric) round of proposer-responder, which rational players generally want to avoid
- Note that this is not a "repeated" game because of the termination option

- Interestingly, this reasoning applies even to infinite horizon (even though backward induction does not work, but reason (i) does)
- - \blacksquare that for $\delta \rightarrow 1$ tends to equal split
- For infinite horizon we can similarly prove that an agreement must be reached in the first stage in order to have an SPE

- However, we need to prove the SPE is unique
 without resorting to backward induction!
- □ Assume that there is more than one SPE: thus, 1 can get a best \mathbf{v}_1 and a worst \mathbf{w}_1 SPE payoff
- □ 2 gets what 1 gives up: thus, 2 can get a best $\mathbf{v_2} = 1 \mathbf{w_1}$ and a worst $\mathbf{w_2} = 1 \mathbf{v_1}$ SPE payoff
- □ Because the game is iterated, if stage 2 is reached, 2 can get either $\mathbf{v}_2 = \delta \mathbf{v}_1$ or $\mathbf{w}_2 = \delta \mathbf{w}_1$
- □ All of this implies $\mathbf{v}_1 = \mathbf{w}_1 = (1 + \delta)^{-1}$

Dynamic duopolies

Dynamic games in the duopoly theory

- □ A dominant (leader, 1) firm moves first and a subordinate (follower, 2) firm moves second
- Assume, for example, they decide quantities as per Cournot
 - **Recall.** The cost to produce q is C(q) = c q (with constant c)
 - The market price is P(Q) = a Q (with constant a > c)
- l knows that 2 will play a best response

□ The profit of 2 is $u_2(q_1,q_2) = q_2(a-q_1-q_2-c)$, so q_2 maximizing u_2 is a best response to q_1 , called $R_2(q_1)$

$$R_2(q_1) = (a - q_1 - c) / 2$$

- □ Note that $R_2(q_1) = (a q_1 c) / 2$ appeared also in Cournot's monopoly, when we figured out what is the best the duopolist can do
 - There this was a hypothesis, here it is real

 $oxedsymbol{\square}$ Knowing all of this, the leader can choose q_1 so as to

$$\max u_1(q_1, R_2(q_1)) = q_1(a-q_1-R_2(q_1)-c)$$
$$= q_1(a-q_1-c)/2$$

- □ We obtain $q_1^* = (a c)/2$, $q_2^* = (a c)/4$
- □ Recall Cournot: $q_1^* = q_2^* = (a c)/3$
- The leader exploits the advantage of moving first

- Remark 1. What if follower poses a threat?
- Like, "Choose the Cournot quantity or I'll choose a high quantity"
 - This is, as usual, just a virtual threat (something the leader can just imagine)
 - In any event, the leader is not scared, as this is a non-credible threat
 - Such a behavior is irrational, as the follower would be hurt too

- Remark 2. In multi-decision problems, more information can make one player worse off (it is not so in single-decision)
 - □ Player 1 knows 2 will have more information
 - So, 2 may have better awareness but fewer choices, as 1 does not let them available
 - This leads to "first-mover advantage"
 (not necessarily a disadvantage for the second player, but this time the game is competitive)

- Having more knowledge when moving (and the other player knows it) is indeed harmful
- □ Assume 2 plays after 1, without knowing q_1 (we should know what happens there)
 - 2 may assume a Stackelberg $q_1^* = (a c)/2$
 - \square So $q_2 = (a c)/4$
 - □ 1 knows q_2 and chooses a better $q_1 = 3(a c)/8$
 - Now, 2's best answer changes again
 - In the end, this is Cournot: $q_1^* = q_2^* = (a c)/3$

- □ As previously seen the Cournot duopoly the NE is, for both firms, $q_c = (a c)/3$
- □ The aggregate production is higher than the monopoly $q_m = (a c)/2$: lower profit
 - This is not happening due to lack of trust
- However, according to Friedman's
 Theorem, there should be a way to build trust if the game is repeated infinitely

- In repeated games, we built cooperation with a "Grim Trigger" strategy
- As per Repeated Prisoner's Dilemma, GrT is:
 - At t=1 produce $q_m/2$ (half of monopoly quantity)
 - At t > 1, produce $q_m/2$ if in every stage u < t production was $q_m/2$ for both firms; otherwise produce q_C forever after
- \square We expect this GrT work if the discount factor δ is close to 1

- GrT is a NE for subgames where one deviated
- Analogously to the Prisoner's Dilemma, we need to compute the best response of firm 2 at the first stage
- □ Assume player 1 chooses $q_1 = q_m/2 = (a c)/4$
 - Myopic strategy is $argmax_{q_2} q_2 (a q_2 q_m/2 c)$.
 - □ Solution is 3(a c)/8, profit $u_D = 9(a c)^2/64$.
 - Or, 2 keeps cooperating at $q_m/2$, $u_m/2 = (a-c)^2/8$

- □ Myopic strategy: u_D at first stage, then u_C Present value is $u_D + \delta u_C / (1 - \delta)$.
- □ Collaborative strategy: $u_m/2$ at every stage. Present value is $(u_m/2)/(1-\delta)$.
- □ Recall $u_{\text{m}}/2 = (a-c)^2/8$, $u_{\text{C}} = (a-c)^2/9$, $u_{\text{D}} = 9(a-c)^2/64$
- □ Collaboration can be triggered if $\delta \ge 9/17$

- □ What if δ < 9/17 ? GrT is no longer a SPE
- □ Still we can do better than always playing the Cournot value q_{C} !
- □ Take a less ambitious GrT' with objective q^* in $[q_C, q_m/2]$.
 - GrT' is: "Start at q^* ; after any deviation stay at q_{C} forever"
- □ When both firms play q^* , they have utility $u^* = q^*(a 2q^* c)$

- □ Also this GrT' has a myopic response which looks only at the immediate payoff, i.e., trying to $\max_{q_i} q_i (a q_i q^* c)$
- □ This "deviation" solution is $q_D = (a q^* c)/2$, yielding payoff $u_D = (a q^* c)^2/4$ which is better than u^* so one is tempted to betray

Again, TS' is better if

$$u^*/(1-\delta^*) \ge u_D^* + \delta^* u_C^*/(1-\delta^*)$$

$$q^*(a-2q^*-c^*)/(1-\delta^*) \ge (a-q^*-c^*)^2/4$$

$$+ \delta^* ((a-c^*)^2/9)/(1-\delta^*)$$

- □ Take equality for minimum q^* (i.e. max u^*) which can be achieved by a given δ
- Solving,

$$q^*=(a-c)(9-5\delta)/(3(9-\delta))$$

between $(a-c)/3=q_C$ and $(a-c)/4=q_m/2$
as the discount factor δ goes from 0 to 9/17

- Contrarily to the Prisoner's Dilemma, the Cournot duopoly can include worse punishments than simply play the NE
- □ A "Carrot-and-Stick" strategy successfully builds cooperation at $q_{\rm m}/2$ even for $\delta < 9/17$
- Such a strategy has two possible actions.
 - \blacksquare (R)eward: produce $q_{\rm m}/2$
 - □ (P)unishment: produce x, with properly chosen x (> q_C but not too high)

- The strategy is defined as follows
- At stage 1, start with R
- □ At stage *t*:
 - □ Choose R if both firms played R at stage *t*-1
 - □ Choose R if both firms played P at stage t-1
 - Else play P
- □ Verify this works for $\delta = \frac{1}{2}$, x = 2(a c)/5

Cournot collusion: implication

- Governments often punish firms for cartels:
 if a meeting is held where two duopolists
 agree on acting like that, they are fined
- Problem: no need for holding meetings!
- The agreement between firms 1 and 2 is just reached as a GrT (no communication or cheap talk, just in the CEO's head!)