UFES - NINFA

Introdução aos Conceitos de Classificação Baseada em Padrões

Francisco de Assis Boldt

- Professor do IFES Coordenadoria de Informática
- Mestre em Informática pela UFES (2008)
- Candidato a aluno de Doutorado pela UFES.

Aprendizagem de máquina

- Aprendizado Supervisionado
 - Reconhecimento de Padrões
 - Classificação
 - Redes Neurais
- Aprendizado Não Supervissionado
- Aprendizado por Reforço
- Transdução
- Aprendizado Multitarefa

Histórico

- 1943 Warren McCulloch, Walter Pitts
 - Primeiro modelo artificial de um neurônio biológico.
- 1949 Donald Hebb
 - Primeiro trabalho com ligação direta com aprendizado. (regra de Hebb)
- 1958 Frank Rosenblat
 - Perceptron (retina, peso, resposta)
- 1960 Widrow e Hoff
 - Regra Delta

Histórico (cont...)

- 1969 Minsky e Papert
 - Limitações do Perceptron.
- 1982 John Hopfield
 - Retomada das pesquisas na área.
- **1**986 -
 - Back-propagation

Neurônio de McCulloch e Pitts

•
$$y_k = f(x^t * w)$$
 , ex.: $f(x) = x > \Theta$

Aprendizado Supervionado

•
$$w_i(t + 1) = w_i(t) + \eta ex_i$$

Exemplo: AND

$$w_i(t + 1) = w_i(t) + \eta e(t)x_i$$

padrão	x1	x2	y (d)
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

$$\Theta = 0.1$$

 $\eta = 0.05$

$$f(x) = 1 para x > \Theta, 0 c.c.$$

padrão	Σxi*wi	f(Σxi*wi)=y(o)	Erro (d-o)
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	1
1	0	0	0
2	0.05	0	0
3	0.05	0	0
4	0.1	0	1
1	0	0	0
2	0.1	0	0
3	0.1	0	0
4	0.2	1	0

Exemplo: OR

$$w_{i}(t + 1) = w_{i}(t) + \eta e(t)x_{i}$$

padrão	x1	x2	y (d)
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1

$$\Theta = 0.1$$
 $n = 0.05$

t	w1	w2
0	0	0
1	0	0
2	0	0.05
3	0.05	0.05
4	0.1	0.1
5	0.1	0.1
6	0.1	0.15
7	0.15	0.15
8	0.15	0.15
9	0.15	0.15
10	0.15	0.15
11	0.15	0.15

$$f(x) = 1 para x > \Theta, 0 c.c.$$

padrão	Σxi*wi	f(Σxi*wi)=y(o)	Erro (d-o)
1	0	0	0
2	0	0	1
3	0	0	1
4	0.1	0	1
1	0	0	0
2	0.1	0	1
3	0.1	0	1
4	0.3	1	0
1	0	0	0
2	0.15	1	0
3	0.15	1	0
4	0.3	1	0

Exemplo: XOR

$$w_i(t + 1) = w_i(t) + \eta e(t)x_i$$

padrão	x1	x2	y (d)
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

$$\Theta = 0.1$$

 $\eta = 0.05$

t	w1	w2
0	0	0
1	0	0
2	0	0.05
3	0.05	0.05
4	0.05	0.05
5	0.05	0.05
6	0.05	0.1
7	0.1	L 0.1
8	0.05	0.05
9	0.05	0.05
10	0.05	0.1
11	0.1	L 0.1
12	0.05	0.05

$$f(x) = 1 para x > \Theta, 0 c.c.$$

padrão	Σxi*wi	f(Σxi*wi)=y(o)	Erro (d-o)
1	0	0	0
2	0	0	1
3	0	0	1
4	0.1	0	0
1	0	0	0
2	0.05	0	1
3	0.05	0	1
4	0.2	1	-1
1	0	0	0
2	0.05	0	1
3	0.05	0	1
4	0.2	1	-1
1	0	0	0

Não Linearidade do XOR

Adaline

Exemplo Adaline: AND

w (t + 1)	= wˌ(t) +	ηe(t)x
-----------	-----------	--------

padrão	x1	x2	y (d)
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1

$$\Theta = 0.1$$
 $\eta = 0.05$

	-	_	
t	w1	V	٧2
0		0	0
1		0	0
2		0	0.05
3	0.0)5	0.05
4	0.	.1	0.1
5	0.	.1	0.1
6	0.	.1	0.14
7	0.1	4	0.14
8	0.1	.8	0.18
9	0.1	.8	0.18
10	0.1	.8	0.22
11	0.2	22	0.22
	ı		

$$f(x) = 1 para x > \Theta, 0 c.c.$$

max sme = 0.

max	sme =	0.1	
padrão	Σxi*wi E	rro (d-o)	
1	0	0	
2	0	1	
3	0	1	
4	0.1	0.9	0.7
1	0	0	
2	0.1	0.91	
3	0.1	0.91	
4	0.28	0.72	0.54
1	0	0	
2	0.18	0.82	
3	0.18	0.82	
4	0.43	0.57	0.42

	1	0.59	0.59	60
0.5	2	0.59	0.59	61
0.5	3	0.61	0.59	62
1.2	4	0.61	0.61	63
	1	0.6	0.6	64
0	2	0.6	0.6	65
0	3	0.62	0.6	66
1.2	4	0.62	0.62	67
				,

1	0	0	
2	0.59	0.41	
3	0.59	0.41	
4	1.23	-0.23	0.1
1	0	0	
2	0.6	0.4	
3	0.6	0.4	
4	1.24	-0.24	0.09

Descidade de Gradiente

Mais de Dois Padrões

Exemplo Iris

Back-Propagation

Vários padrões

Percepetron Multicamadas XOR

Perceptron Multicamadas XOR

SVM

KNN

Validações e Testes

- Resubstituição
- Holdout
- K-fold cross-validation
- Leave-one-out cross-validation

K-Fold Cross Validation

Possível Trabalho

- As técnicas atuais de descida de gradiente utilizam a soma do erros quadráticos ou os erros quadráticos médios.
- Esta abordagem é muito "democrática" porque todos os padrões influenciam igualmente no cálculo do erro e, consequentemente, na posição e inclinação do hiperplano separador.
- Se o erro for calculado em relação ao centro de massa das classes, ao invés de cada padrão, é possível que o hiperplano separador busque uma posição mais adequada.

Obrigado

Dúvidas?