串口通信协议设计文档

徐鹏博

2020/10/9

目录

Т	<u> </u>	2
2	通信拓扑	2
3	工作原理	2
	3.1 RS-232标准	2
	3.2 MAX232芯片	2
	3.3 CRC校验	3
4	通信格式	3
	4.1 字节发送格式	3
	4.2 通信速率	
	4.3 通信帧格式	3
5	命令帧	4
	5.1 中心计算机指令	4
	5.2 锂离子蓄电池放电开关控制指令	4
	5.3 加热带控制指令	
	5.4 温度采集指令	
	5.5 轮询指令	5
6	遥测参数帧	5
	6.1 轮询遥测参数帧	5
	6.2 担府深汕会粉帖	6

1 概述

本文档规定**下位机**和**中心计算机**之间的基于**RS232总线**的通信协议,包括通信拓扑、通信格式、指令类型、指令定义的详细定义。

2 通信拓扑

中心计算机与下位机的物体拓扑如下:

3 工作原理

3.1 RS-232标准

RS -232C 是美国电子工业协会 (EIA)正式公布的, 在异步串行通信中应用最广的标准总线。该标准适用于DCE和DTE间的串行二进制通信, 最高数据传送速率可达19.2kbps,最长传送电缆可达 15米。RS232C标准定义了25根引线, 对于一般的双向通信,只需使用串行输入RXD,串行输出 TXD 和地线 GND.RS -232C 标准的电平采用负逻辑,规定+3V~+15V之间的任意电平为逻辑"0"电平,-3V~-15V 之间的任意电平为逻辑"1"电平,与TTL和CMOS电平是不同的。在接口电路和计算机接口芯片中大都为TTL或CMOS电平,所以在通信时,必须进行电平转换,以便与RS232C标准的电平匹配。MAX232 芯片可以完成电平转换这一工作。

3.2 MAX232芯片

MAX232 芯片是 MAXIM 公司生产的低功耗、单电源双RS232发送/接收器。适用于各种EIA-232E和V.28/V.24的通信接口。MAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-232C 输出电平所需±10V 电压, 所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。MAX232外围需要 4 个电解电容 C1、C2、C3、C4, 是内部电源转换所需电容.其取值均为1 μ F/25V.宜选用钽电容并且应尽量靠近芯片。C5为0.1 μ F的去耦电容。MAX232 的引脚T1IN、T2IN、R1OUT、R2OUT 为接 TTL/CMOS 电平的引脚。引脚 T1OUT、T2OUT、R1IN、R2IN为接 RS232C 电平的引脚.因此TTL/CMOS电平的T1IN、T2IN引脚应接MCS-51的串行发送引脚TXD;R1OUT、R2OUT应接MCS51的串行接收引脚RXD。与之对应的 RS232C 电平的 T1OUT、T2OUT应接PC机的接收端RD:R1IN、R2IN应接PC机的发送端TD。

3.3 CRC校验

CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。

基本原理

在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2R,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2R除以生成多项式G(x)得到的余数就是校验码。

4 通信格式

在中心计算机与电源下位机通信过程中,每次都是由中心计算机发出命令帧,电源下位机收到命令帧后,立即执行命令。如果 命令帧为轮询指令帧和温度采集指令帧,则电源下位机返回相应的遥测参数帧。

4.1 字节发送格式

起始位	数据位	停止位
0(最先发送)	8bit(D0-D7)	1(最后发送)

4.2 通信速率

通信码速率最大为19200bps。

4.3 通信帧格式

中心机向电源下位机发出的控制指令格式,具体如表 1 所示的,它的指令参数为一个字节。电源下位机向中心机发出的遥测参数帧,为了保证串口通信质量,采取16位的CRC校验机制(占用两个字节)。

表1:命今帧通用格式

序号 字节定义(HEX) 描述 备注 1 EB 帧头 2 90 帧头 3 Cmd 指令类型 4 Parameter 指令参数 1字节	秋1. 中文恢延用用式										
2 90 帧头 3 Cmd 指令类型 4 Parameter 指令参数 1 字节											
3 Cmd 指令类型 4 Parameter 指令参数 1 字节											
4 Parameter 指令参数 1 字节											
[Cheal-Cale (比众来到,比众会教)的CDC技动和 比众来到知此众会教之和何(chi)											
5 CheckCode (指令类型+指令参数)的CRC校验码 指令类型和指令参数之和低8位的标	8位自	的校验码									

表2:遥测参数帧通用格式

序号	字节定义(HEX)	描述	备注
1	EB	帧头	
2	90	帧头	
2	Cmd	世上	
2			
3	Parameter		
4	CheckCode	(指令计数+接收到的中心机命令+应答参数)的CRC校验码	节点号及应答参数和低8位的校验码

5 命令帧

为了实现中心计算机对电源及配电的控制,中心计算机一共可发出4条指令,具体如下所示。

5.1 中心计算机指令

序号	字节定义(HEX)	指令功能描述	参数
1	11	锂离子蓄电池放电开关控制	通、断
2	В3	加热带控制指令	加热带序号
3	E1	温度采集指令	-
4	F0	轮询指令	_

5.2 锂离子蓄电池放电开关控制指令

序号	描述	字节定义(HEX)	备注
1	帧头	EB	1.指令计数加1;
2	帧头	90	1.15 マリ
3	指令	11	2.1处多数安水1水17岁11年
1	通断参数	AAH:通;	
4	週間多数	55H:断	
5	CheckCode	$(DATA_3 + DATA_4)$ 的CRC校验码	

5.3 加热带控制指令

序号	描述	字节定义	备注
1	帧头	EB(HEX)	1.指令计数加1
2	帧头	90(HEX)	2.按参数要求执行动作
3	指令	B3(HEX)	3.如果加热总开关未打开,
		D7,D6,D5,D4,D3,D2,D1,D0(BIN)	开启加热带操作不被执行.
4	通断参数	D0 ~ D4表示加热带 1~ 加热带 5;	4.如果蓄电池余量低于预设30%,
		工作状态,0表示未通电,1表示通电。D5~D7保留	则禁止开启加热
5	CheckCode	$(DATA_3 + DATA_4)$ 的CRC校验码	

5.4 温度采集指令

序号	描述	字节定义(HEX)	备注
1	帧头	EB	
2	帧头	90	 1.指令计数加1
3	指令	E1	2.按参数要求执行动作
4	保留参数	00	2.1处多数安水扒门切开
5	CheckCode	$(DATA_3 + DATA_4)$ 的CRC校验码	

5.5 轮询指令

序号	描述	字节定义(HEX)	备注
1	帧头	EB	
2	帧头	90	 1.指令计数加1
3	指令	F0	
4	保留参数	00	2.1处多数安水1八月3月1日
5	CheckCode	(DATA ₃ + DATA ₄)的CRC校验码	

6 遥测参数帧

相机下位机收到命令帧的温度采集指令和轮询指令后,需要向中心机发送遥测参数帧,收到轮询指令后下位机发送的遥测 参数帧,收到温度采集指令后下位机发送的遥测参数帧。

6.1 轮询遥测参数帧

序号	描述	字节定义(HEX)	备注
1	帧头	EB 90	
2	节点号	E1	
3	母线电压	XX	
4	蓄电池组电压	XX	
5	太阳阵输入电压	XX	
6	升压占空比	XX	
7	蓄电池单体 1 电压	XX	
8	蓄电池单体 2 电压	XX	取A/D转换数值的高8位
9	蓄电池单体 3 电压	XX	
10	蓄电池单体 4 电压	XX	
11	蓄电池单体 5 电压	XX	
12	蓄电池单体 6 电压	XX	
13	蓄电池单体 7 电压	XX	
14	电池容量	XX	电池相对容量

										SCD=0,无短路;
										SCD=1,短路;
		7	6	5	4	3	2	1	0	OCD=0,无过流;
										OCD=1,过流;
15	工作状态									UV=0,过压保护;
										UV=1,过压保护;
										OVT=0,无欠压保护;
										OVT=1,欠压保护;
										VGOD=0,EEPROM
										电源无过压;
										VGOD=1,EEPROM
		CHG	DSG	VGOD	OVT	UV	OV	OCD	SCD	电源过压;
										DSG=0; 放电开关关;
										DSG=1; 放电开关开;
										CHG=0; 充电开关关;
										CHG=1; 充电开关开;
										OV=0;无过压保护;
										OV=1;过压保护中;
16	指令计数				XX					
17	最后一条指令				XX					
										00H正确执行
										0XA0:总加热带开关未开
										而开启某加热带,返回错误,
18	18 最后一条指令执行状态 XX									加热操作不被执行.
										0XB0:蓄电池容量低于阈
						值30%,禁止加热带开启,				
										加热操作不被执行
19	累加校验码	(D.	ATA_3 +	- DATA ₄	+ + 1	DATA	18)的(CRC校验	码	

6.2 温度遥测参数帧

序号	描述				字	节定	义(HI	EX)		备注
1	帧头					EI	B 90			
2	节点号]	F0			
3	加热带状态					8位二	进制	数		D0~D4表示1~5个加热带, 数值为0时加热带断电,数值为1时,加热带通电;
		D7	X	X	D4	D3	D2	D1	D0	D7表示加热带总开关,总开关为1表示可以加热, 总开关为0表示不能加热
4	采温点 1					Σ	XX			
5	采温点 2					2	XX			
6	采温点 3					7	XX			取 A/D 转换数值的高 8 位
7	采温点 4					7	XX			
8	采温点 5					7	XX			
9	累加校验码	(DA	TA_3	3 + I	OATA	4 +	+D	ATA_8)的CRC校验码	