

THETEAM

Paul Cazilhac

Prineet Kaur Bhurji

Venkat Jayanarasimhan

Kiran TL Rao

PROJECT DEFINITION

DSC

Your Partner in Fundraising 1985

Foundation Year Country: Belgium

22

Humanitarian Organizations 20

Enthusiastic People 1.8%

Average Campaign Response Rate

TO PREDICT BEST POSSIBLE DONORS

METHODOLOGY

- **⊘** Data Preparation
- **⊘** Model Building
- **✓ Model Validation**

⊘ Model Usage

DATASET OVERVIEW

CAMPAIGN

367 X 4	Rows X Columns
0 NaN	Missing Values
I Outlier	LetterSent & CostUnit
High SD	LetterSent
Different	Formats (Int & Object)

367 X 7	Rows X Columns (Date → DD,MM & YYYY)
0 NaN	Missing Values
I Outlier	LetterSent & CostUnit
High SD	LetterSent
Standard	Formats (Date, Int & Float)

DONORS

GIFT

Different

*4K NaN NaN b/w 2 consecutive ID (Replace it with that ID)

O NaN Dropping the NaN Cam. ID

Outlier Dropping Outliers

Standard Formats (Date to New Var.)

Formats (Date)

VARIABLES

Predictors

7	1 redictors
01	Gender_M
02	Gender_F
03	EN
04	FR
05	age
06	Zipcode

Campaign Responders

###

I – Donor Responded

0 - Donor Not Responded

MODEL APPLICATION

Decision Tree

SVM

Logistic Regression

Neural Network

Random Forest

Nearest Neighbors

Gradient Boosting

Train

Test

AUC METRIC

Boosted Tree ML & Neural Network Model provides the Best Performance

All other remaining ML models doesn't perform well for the given datasets

But we can achieve only 61% Model Performance with the current predictors!

Is it possible to increase the Model Performance?

FEATURE ENGINEERING

Donor

01	Age @ Train Campaign Year
02	Age @ Test Campaign Year

Gift

01	Number	Of Donations

Donations Per Year

VARIABLES

Predictors

01	Gender_M
02	Gender_F
03	EN
04	FR
05	age_6169 / age_7244
06	Number_Of_Donation
07	Donation_Per_Year
08	Flemish Brabant
09	Antwerp
10	Brussels
Ш	Walloon Brabant
12	West Flanders
13	East Flanders
14	Liege
15	Luxembourg
16	Namur
17	Hainaut
18	Limburg

Campaign Responders

###

I – Donor Responded

0 - Donor Not Responded

Test

Train

Test

INCREASED AUC METRIC

Neural Network ML Model provides the Best

Performance both in Train & Test Datasets

Boosted Tree ML Model also provides the Best Performance, but there's a drop in performance between Train & Test Datasets

All other remaining ML models doesn't perform well for the given datasets

CONFUSION MATRIX

IDEAL DONOR PROFILE

Female

Dutch

Flemish Brabant

49 Years Old

Avg. € 110

