浙江大学实验报告

 专业 1:
 机械工程

 姓名 1:
 徐屹寒

 学号 1:

 专业 2:

 姓名 2:

 学号 2:

 日期:
 11.19

 地点:
 东 3-308

一、实验目的

- 1. 熟悉 555 集成定时器的组成结构和工作原理。
- 2. 掌握 555 集成定时器的典型应用和测试方法。

二、实验设备

模拟电子技术实验箱,双踪数字示波器,函数信号发生器,直流电源,数字式万用表

三、实验原理

1. 数字触发器

图为一个用 555 集成定时器构成的基本 RS 触发器。

输入 R、S 加入数字电平(可以加+5V,表示 1;接地,表示 0),根据 555 原理可得输出 Q 功能如表所示。

基本RS触发器功能表

用555构成的RS触发器

2. 多谐振荡器

图是一个用 555 构成的多谐振荡器。 输出为一定占空比的矩形波。矩形波的正、负脉宽为:

$$T_1 = R_1 + R_2$$
 $C \ln 2 = 0.693$ $R_1 + R_2$ C
 $T_2 = R_2 C \ln 2 = 0.693 R_2 C$

周期:
$$T = T_1 + T_2 = 0.693 R_1 + 2R_2 C$$

	输)	输出		
R _D	тн	TR	OUT	D
L	×	×	L	导通
н	>2/3U _{DD}	>1/3U _{DD}	L	导通
Н	<2/3U _{DD}	>1/3U _{DD}	不变	不变
Н	<2/3U _{DD}	<1/3U _{DD}	н	截止

图5.20-2 用555构成的多谐振荡器

3. 单稳态触发器

图是一个用 555 构成的单稳态触发器。2 脚输入加一触发脉冲的作用下,输出一定幅度和宽度的脉冲。

单稳脉宽: $t_w = 1.1R_TC_T$

若输入 u_i 加入周期性矩形波信号,输出为占空比不同于输入的周期性矩形波。

实验时应调节好信号源使矩形波的负脉宽小于 t_w ,同时要使幅度满足要求。特别提醒注意的是输入矩形波周期与脉宽 t_w 的数值关系

图5.20-3 用555构成的单稳态触发器

	输	输出		
$\overline{\mathbf{R}_{D}}$	тн	TR	OUT	D
L	×	×	L	导通
н	>2/3U _{DD}	>1/3U _{DD}	L	导通
н	<2/3U _{DD}	>1/3U _{DD}	不变	不变
н	<2/3U _{DD}	<1/3U _{DD}	Н	截止

4. 施密特触发器

图是一个用 555 构成的施密特触发器。当输入加一周期性三角波时,输出为同周期的方波。实验中信号源产生三角波时应加入一合理大小的直流偏置,使三角波整个周期内为正值。另外三角波幅度的变化要满足施密特触发器正向阈值电压

四、预习要求

预习课本、学在浙大和钉钉群上传的课件、学银在线(学习通)上的视频学习,学习了电工电子学中 线性电路中的叠加定理和等效电源定理

五、实验内容

1. 多谐振荡器

1、操作方法与实验步骤

接图电路接线,用示波器双踪观察并记录 u_c, u_o 波,记录正脉宽,负脉宽,周期,振荡幅度。

2、实验记录

2. 单稳态触发器

1、操作方法与实验步骤

按图电路接线

- (1) 按一下按钮 S,观察发光二极管发光情况 ,记录发光时长 。
- (2)将图电路中的电容 C_T 改为 $0.01\mu F$,输入端 u_i 加一周期为2 m s,占空比为80%的矩形波(幅度要求高电

单稳态触发器

平为+ 5 V , 低电平为 0 V),观察并记录 u_i, u_{TH}, u_o 的工作波形,标出它们的幅度,脉冲宽度和周期。

2、实验记录

(1) 按下按钮后发光二极管立即发光, 手机秒表计时 5.6 秒后熄灭。

(2)

 u_i u_o

 u_{TH}

3. 施密特触发器

(1) 输入端 u_i 加一频率为 500Hz, 直流偏置为

 $\frac{1.5}{3}U_{cc}=2.5V$,峰-峰值为 5V 的三角波,用示波器观察并记录 u_i,u_o 波形,标出输出电压的幅度。

施密特触发器

(2)将示波器显示设置为 XY 方式,观察并记录电压传输特性 $u_o = f(u_i)$ 曲线,测量并记录正向阈值电压,负向阈值电压和回差。

六、实验总结

1、 第一部分

3. 分析用 555 集成定时器实现基本 $ar{D}$ 触发器(或作非门)的原理。

当
$$_{D}$$
输入为高电平时, $U_{TH} > \frac{2}{3}U_{DD}, U_{\overline{TR}} > \frac{1}{3}U_{DD}, 3$ 口输出低电平

当
$$_D$$
输入为低电平时, $U_{TH} < \frac{2}{3}U_{DD}, U_{\overline{TR}} < \frac{1}{3}U_{DD}, 3$ 口输出高电平

4.(1) 分析电路,问该电路能输出方波吗?求输出波形的正脉宽,负脉宽和周期。

该电路为555定时器组成的多谐振荡器,可以输出方波。

正脉宽
$$T_1 = 0.693R_AC$$

负脉宽 $T_2 = 0.693R_AC$

$$T = T_1 + T_2 = 1.386R_AC$$

(2) 当按下按钮 S 时,发光二极管发光时间为多长?

$$t_w = 1.1RC = 5.17s$$

(3) 若电容 C_T 改为 $0.01\mu F$,输入端 u_i 加一周期为 2ms,占空比为 90%的矩形波,输出端 u_o 的波形周期为多少?

$$t_{w} = 1.1RC = 1.1ms < 2ms$$

从而
$$T_a = T_i = 2ms$$

(4) 若电阻 R_T 改为 $250k\Omega$, C_T 改为 $0.01\mu F$,输入端 u_i 加一周期为 $2 \mathrm{ms}$,占空比为 90% 的矩形 波,输出端 u_s 的波形周期为多少?

$$t_{w} = 1.1RC = 1.1ms > 2ms \times 10\% = 2.75ms > 2ms \perp t_{w} < 4ms$$

$$T_{o} = 2T_{i} = 4ms$$

2、实验结果分析

各电路的特点:

1. 多谐振荡器

输出为一定占空比的矩形波。 矩形波的正、负脉宽为:

$$T_1 = R_1 + R_2$$
 $C \ln 2 = 0.693$ $R_1 + R_2$ C
 $T_2 = R_2 C \ln 2 = 0.693 R_2 C$

周期:
$$T = T_1 + T_2 = 0.693 R_1 + 2R_2 C$$

2 脚输入加一触发脉冲的作用下,输出一定幅度和宽度的脉冲。

单稳脉宽:
$$t_w = 1.1R_T C_T$$

若输入 u_i 加入周期性矩形波信号,输出为占空比不同于输入的周期性矩形波。

当输入加一周期性三角波时,输出为同周期的方波。实验中信号源产生三角波时应加入一合理大小的直流偏置,使三角波整个周期内为正值。另外三角波幅度的变化要满足施密特触发器正向阈值电压

3、误差分析

1. 多谐振荡器电路中理论值

$$T_1 = 0.693(R_1 + R_2)C = 762.3\mu s$$

 $T_2 = 0.693R_2C = 693\mu s$

实测值 $T_1 = 926.2 \mu s$, $T_2 = 673.8 \mu s$

可能的原因: 电阻、电容真实值与标称值不符; 示波器测量误差;

2. 单稳态触发器电路中理论值如思考题所示

(1)

T=5.17s,实测值5.6s,主要误差在于人的反应较慢,其次是电阻、电容真实值与标称值不符 (2)

正频宽理论值为 $t_w = 1.1RC = 1.1ms$,实测值为1.176ms 非常接近,可能的原因:电阻、电容真实值与标称值不符;示波器测量误差

3. 施密特触发器电路

正向阈值电压理论值为 $\frac{2}{3}U_{CC}=3.33V$,负向阈值电压理论值为 $\frac{1}{3}U_{CC}=1.67V$,回差理论值为

$$\frac{1}{3}U_{CC} = 1.67V$$

正 向 阈 值 电 压 实 测 值 为 3.52V , 负 向 阈 值 电 压 理 论 值 为 1.72V , 回 差 实 测 值 为 3.52V-1.72V=1.80V

最主要的误差来源于 $U_{CC} > 5V$ 使得实测值均大于理论值,其他误差来自示波器测量误差;

4、心得体会

本次实验中我对555集成定时器有了更深一步的理解,也能够更熟练地运用各种仪器。