學號:R05943110 系級:電子碩二 姓名:蕭 堯

抽全部 9 小時內的污染源 feature 的一次項 :  $9 \times 18$  抽全部 9 小時內 pm2.5 的一次項當作 feature :  $9 \times 1$ 

## 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

|        | Public | Private |
|--------|--------|---------|
| 9 × 18 | 6.82   | 6.43    |
| 9 × 1  | 6.57   | 6.28    |

我將所有 feature normalize 後,使用 SGD 發現  $9 \times 1$  的表現不論在 Public 或 Private 都比  $9 \times 18$  的還要好,這可能是因為  $9 \times 18$  有許多不相干的參數如風向或 RH...等等影響訓練的結果,這可以再 training data 本身的 loss 大小看就的出 差別。

另外,我還發現 **Private 的分數普遍都比 Public 高**,這個問題我有仔細想過,也有在社團上討論這個問題,我認為可能跟取哪 120 筆資料當 Public 有很大的關係。

#### 2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

|           | Public | Private |
|-----------|--------|---------|
| 9 hr × 18 | 6.82   | 6.43    |
| 5 hr × 18 | 6.95   | 6.64    |

N×18的例子中,9hr的表現不論在 Public 或 Private 都比 5hr 的好,可能是 因為 5hr 的參數過少造成 Underfitting。

|          | Public | Private |
|----------|--------|---------|
| 9 hr × 1 | 6.57   | 6.28    |
| 5 hr × 1 | 7.03   | 6.63    |

 $N \times 1$  的例子中,9hr 的表現不論在 Public 或 Private 也都比 5hr 的好,而且 5hr Underfitting 的趨勢好像比在 5 hr  $\times 18$  的更嚴重,可**能代表 9 \times 1 裡 9hr 的每個參數可能都是非常必要的。** 

# 3. (1%)Regularization on all the weight with $\lambda$ =0.1、0.01、0.001、0.0001, 並作圖

### $\mathbf{9}\times\mathbf{18}$

| λ      | Train | Test |
|--------|-------|------|
| 0.1    | 6.59  | 6.72 |
| 0.01   | 6.45  | 6.53 |
| 0.001  | 6.30  | 6.38 |
| 0.0001 | 6.24  | 6.47 |



#### $9 \times 1$

| λ      | Train | Test |
|--------|-------|------|
| 0.1    | 6.42  | 6.52 |
| 0.01   | 6.33  | 6.43 |
| 0.001  | 6.32  | 6.38 |
| 0.0001 | 6.28  | 6.32 |



不論是  $9\times1$  或  $9\times18$ ,train error 都比 test error 小,而且 train error 都會隨 lambda 增加而增加。然而,在  $9\times18$  的例子裡 lambda = 0.001 似乎可以有效地降低 test error。不過在  $9\times1$  的例子裡就比較沒有這樣的現象。

**4.** (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量  $\mathbf{x}^n$ ,其標註(label)為一存量  $\mathbf{y}^n$ ,模型參數為一向量  $\mathbf{w}$  (此處忽略偏權值  $\mathbf{b}$ ),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}$  ( $\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w}$ )<sup>2</sup> 。若將所有訓練資料的特徵值以矩陣  $\mathbf{X} = [\mathbf{x}^1 \mathbf{x}^2 \dots \mathbf{x}^N]^T$  表示,所有訓練資料的標註以向量  $\mathbf{y} = [\mathbf{y}^1 \mathbf{y}^2 \dots \mathbf{y}^N]^T$ 表示,請問如何以  $\mathbf{X}$  和  $\mathbf{y}$  表示可以最小化損失函數的向量  $\mathbf{w}$  ?請寫下算式並選出正確答案。

#### 答案應該為 (C)

對於一組輸入 X 得到一組輸出 y ,其最小平方法得出的損失函數的向量 w 可以表示成以下問題 :  $\min_{w} |Xw-y|$ 

根據正交原則,最小平方解 X 滿足正規方程 (normal equation)

符合以下關係:  $X^TXw = X^Ty$ 

若  $X^TX$  可逆,則  $\mathbf{w} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ ,故答案為 (C)

#### Note:

我在 kaggle best (public = 5.467/private = 5.50)用了以下方法:

- > Feature normalize
- > SGD
- 》 選用  $O_3 \times SO_2 \times PM2.5$  的一次和二次項
- ▶ 1 Layer FC NN (手寫的 back propagation)
- ReLu activation function / 5 hidden layers
- ➤ Training test data for weights adjustment (1~8hr:input / 9hr:target)

以上方法都有在 kaggle 上驗證後都是必要的步驟,另外我也有寫 2 Layer FC NN,不過發現 performance 沒有更好所以就沒有繼續寫下去了。