

TESTE DE MATEMÁTICA - MOCK TESTE

2021

12.º ano de Escolaridade

(cinco páginas)

Caderno 1: É permitido o uso de calculadora.

Este teste é constituído por dois cadernos:

- Caderno 1 com recurso à calculadora
- Caderno 2 sem recurso à calculadora

Indica de forma legível a versão da prova.

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Risca aquilo que pretendes que não seja classificado.

Para cada resposta, identifica o grupo e o item.

Apresenta as suas respostas de forma legível.

Apresenta apenas uma resposta para cada item.

A prova inclui um formulário. As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o **valor exato**.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{\text{Diagonal maior} \times \text{Diagonal menor}}{2}$$

Trapézio:
$$\frac{\text{Base maior} + \text{base menor}}{2} \times \text{Altura}$$

Setor circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos,

do ângulo ao centro;
$$r$$
 – raio)

Áreas de superfície

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g - geratriz)$$

Área de uma superfície esférica: $4 \pi r^2 (r - \text{raio})$

Volumes

Pirâmide:
$$\frac{1}{3}$$
 × Área da base × Altura

Cone:
$$\frac{1}{3}$$
 × Área da base × Altura

Esfera:
$$\frac{4}{3} \pi r^3 (r - \text{raio})$$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

$$\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{a}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n\theta)$$
 ou $(r e^{i\theta})^n = r^n e^{in\theta}$

$$\sqrt[n]{\rho \ cis \ \theta} = \sqrt[n]{\rho} \ cis \left(\frac{\theta + 2k\pi}{n}\right)$$
ou $\sqrt[n]{r \ e^{i\theta}} = \sqrt[n]{r} \ e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$

$$(k \in \{0, \dots, n-1\} \in n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se
$$X \in N(\mu, \sigma)$$
, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u'.\cos u$$

$$(\cos u)' = -u'. \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

1. Os cartões de um bingo são construídos distribuindo-se alguns dos inteiros de 1 a 75, sem repetição, numa tabela de cinco linhas por cinco colunas.

A primeira, segunda, terceira, quarta e quinta colunas são formadas por cinco inteiros, nos intervalos [1,15], [16,30], [31,45], [46,60] e [61,75], respetivamente. Não será considerada a ordem em cada coluna. Por exemplo, os cartões seguintes são considerados **iguais**.

1	16	35	55	64
3	17	45	59	70
4	20	31	46	61
8	21	40	49	72
10	23	44	57	75

1	16	35	55	64
10	20	45	46	61
4	23	44	59	75
8	21	40	49	72
3	17	31	57	70

O total de cartões que se podem construir desta forma é:

- (A) 5×3003
- **(B)** $5 \times 25!$
- **(C)** $5! \times 25$
- **(D)** 3003^5
- **2.** Num referencial o.n. Oxyz, consider aos pontos P(-3, -1, 1) e Q(7, 4, -4), e o ponto R tal que $3\overrightarrow{PR} = 2\overrightarrow{RO}$.

Uma equação do plano que passa por R e é perpendicular à reta *PQ* é:

- $(\mathbf{A}) \qquad 2x + y z = 6$
- **(B)** 2x + y z = 4
- (C) 10x + 5y 5z = 4 (D) 2x + y z = 10
- 3. Uma comissão de alunos finalistas, decidiu ir até à agência de viagens Estudan Tur, especializada em viagens para alunos finalistas do 12ºano.

A comissão sugeriu as Ilhas Canárias como um bom destino, e ficaram a saber que a agência de viagens recorre a três hotéis (Hotel A, Hotel B e o Hotel C), para alojar os seus clientes nessas mesmas ilhas. Habitualmente, 30% dos clientes selecionam o hotel A, 45% o hotel B e os restantes o hotel C. Sabe-se ainda que 52% dos quartos do hotel A, 64% do hotel B e 40% do hotel C, são virados para o mar.

Um cliente, presente na agência, ouviu a conversa da comissão com o dono da agência e disse que também já tinha feito essa viagem no ano anterior e que tinha ficado num quarto com vista para o mar.

Qual a probabilidade desse cliente ter estado alojado no hotel *A*?

Apresenta o resultado na forma de dízima, arredondado às milésimas.

4. Seja f a função real de variável real definida por:

$$f(x) = x \ln\left(3 - \frac{1}{x}\right)$$

Sem recorreres à calculadora, a não ser para eventuais cálculos numéricos, resolve os itens seguintes:

- **4.1.** Mostra que o domínio de $f \in]-\infty, 0[\cup]^{\frac{1}{3}}, +\infty[$.
- **4.2.** Estuda a função f quanto à existência de assintotas oblíquas ao seu gráfico.
- **4.3.** Mostra que existe pelo menos um ponto do gráfico de f cuja ordenada é o simétrico do quadrado da sua abcissa, no intervalo]-2,-1[.
- **5.** Considera, num referencial o.n. x0y, a representação gráfica da função g, de domínio [0,5], definida em por $g(x) = \ln(e^x + 2) 4x^3e^{x-x^2}$. Sabe-se que:
 - A é ponto de coordenadas (1,0)
 - B é ponto de coordenadas (4,0)
 - P é um ponto que se desloca ao longo do gráfico da função g

Para cada posição do ponto *P*, considera o triângulo [*ABP*].

Recorrendo às capacidades gráficas da tua calculadora determina as abcissas de, pelo menos, três pontos P para os quais a área do triangulo [ABP] é $\frac{7}{2}$.

Não se pede para justificar a validade dos resultados observados na calculadora.

Na tua resposta deves:

- equacionar o problema
- reproduzir o gráfico da função ou os gráficos das funções que tiveres necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial
- indicar as abcissas dos pontos *P* com arredondamento às centésimas

6. Considera uma sucessão de cubos cujas arestas têm medidas em progressão geométrica de razão k > 1, sendo 2 a medida da primeira.

Seja (v_n) a sucessão dos respetivos volumes.

Então $u_n = \log v_n$ define uma progressão aritmética cujos primeiro termo e razão são, respetivamente:

(A)
$$u_1 = 3 \log 2$$
 e $r = 3 \log k$

(B)
$$u_1 = 8$$
 e $r = 3(n-1)\log k$

(C)
$$u_1 = \log 8 \text{ e } r = 6 \log k$$

(C)
$$u_1 = \log 8$$
 e $r = 6 \log k$ (D) $u_1 = 2^3$ e $r = \log k^3$

7. Na figura ao lado está representado, num referencial o.n. Oxyz, um cubo [ABCDEFGH].

Os vértices A, C e H pertencem aos semieixos positivos Ox, Oy e Oz, respetivamente, e o vértice D coincide com a origem do referencial.

B

Considera que o vértice da F tem coordenadas (4,4,4).

7.1. Determina o ponto de interseção da reta r definida vetorialmente por $(x, y, z) = (1, -1, -5) + \lambda(2, 3, 1), \lambda \in \mathbb{R}$, com o plano AFG.

Sugestão: Começa por determinar uma equação cartesiana do plano AFG.

7.2. Seja P o ponto de ordenada 1 do segmento de reta [EF].

Seja α a amplitude do ângulo *DPC*.

Determina o valor de $\sin^2 \alpha$.

7.3. Escolhem-se, ao acaso, dois vértices do cubo.

Qual a probabilidade de ambos terem cota não nula, mas só um ter abcissa não nula?

Apresenta o resultado na forma de fração irredutível.

Fim do Caderno 1

TESTE DE MATEMÁTICA – MOCK TESTE

2021

12.º ano de Escolaridade

(quatro páginas)

Caderno 2: Não é permitido o uso de calculadora.

- 8. A elipse de centro na origem do referencial, cujo eixo maior mede 6 e que tem um foco no ponto $\left(-\sqrt{5},0\right)$ interseta a reta de equação x=1 em dois pontos, A e B. Então \overline{AB} é igual a:
 - (A) $\frac{2\sqrt{2}}{3}$
- **(B)** $3\sqrt{3}$ **(C)** $\frac{4\sqrt{2}}{3}$ **(D)** $\frac{8\sqrt{2}}{3}$
- 9. Na figura, está representada, num referencial o.n. x0y, parte do gráfico da função f', primeira derivada de f, contínua em todo o seu domínio.

Considera a função g, contínua em todo o seu domínio, definida por g(x) = -f(-x) + x.

Qual dos seguintes gráficos pode ser parte do gráfico de g', primeira derivada de g?

(A)

(B)

(C)

(D)

- **10.** Calcula o valor de $\tan\left(\arcsin\left(\frac{1}{3}\right)\right)$.
- 11. De uma função f, de domínio \mathbb{R} , sabe-se que a sua segunda derivada é dada por:

$$f''(x) = e^{2x}(5 - x^2)(2x^2 + 1)(x - 2)^2.$$

Quantos pontos de inflexão tem o gráfico de f?

(A) 1

- **(B)** 2
- **(C)** 3
- **(D)** 4

- 12. O valor de $5^{2+\log_5(w+1)}$ é:
 - **(A)** 25w + 25

- **(B)** $5^2 + w + 1$
- (C) $25 \log_5(w+1)$
- **(D)** $25 + \log_5(w + 1)$

- 13.
 - 13.1. Mostra, usando o princípio de indução matemática, que

$$\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1} \quad , \forall n \in \mathbb{N}$$

13.2. Utiliza o resultado da alínea anterior para determinar o limite da sucessão de termo geral

$$u_n = \left(\sum_{j=1}^n \frac{1}{j(j+1)}\right)^{2n}$$

- **14.** De uma função f, de domínio \mathbb{R} , sabe-se que:
 - a sua **derivada**, f', é dada por $f'(x) = 4e^{2x} (x 1)^2$
 - $f'(1) f\left(\frac{1}{2}\right) = 0$
 - **14.1.** Escreve a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa $\frac{1}{2}$.
 - **14.2.** Mostra que $f''(x) = 8e^{2x} (x^2 x)$ e estuda f quanto ao sentido das concavidades do seu gráfico.

- **15.** Para um certo valor de k, com $k \in \mathbb{N}$, tem-se que $^{2019}C_{132} = k + ^{2017}C_{131}$. Qual o valor de k?
 - (A) $^{2017}C_{132}$

- **(B)** $^{2017}C_{131} + ^{2019}C_{132}$
- (C) $^{2017}C_{130} + ^{2018}C_{132}$
- **(D)** $^{2018}C_{132}$
- 16. Resolve, em \mathbb{R} , a seguinte equação:

$$\ln(e^x + 2) = 2x$$

Fim do Caderno 2