

CLAIMS

What is claimed is:

1. A method of promoting a wild-type activity in a mutant form of a human protein of the p53 family, wherein one or more functional activities of said protein are at least partially impaired by the inability of said protein to maintain a functional conformation under physiological conditions, said method comprising the steps of:

(a) contacting said mutant protein with an organic non-peptide compound that is capable of binding to one or more domains in said mutant protein under physiological conditions and stabilizing a functional conformation therein, and

(b) permitting said stabilized protein to interact with one or more macromolecules that participate in said wild type activity.

2. The method of claim 1 wherein said protein is selected from the group consisting of p53, p63, and p73.

3. The method of claim 2 wherein said protein is p53.

4. The method of claim 1, wherein said organic non-peptide compound is selected from the group consisting of:

25

30

35

wherein, for group I,

R^5 is $-N-R^{18}R^{19}$, where

R^{18} is H, (C_1-C_6) alkyl, or phenyl, and

R^{19} is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl,

25 -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or
-(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or
(C₁-C₆)alkyl, and

R^{20} and R^{21} are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl, (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₂)aryl, wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl; or
(b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine;

35 R⁶ is

(a) (C_1 - C_6)alkyl or (C_2 - C_8)alkenyl, each optionally substituted by one or more phenyl groups, or
(b) phenyl substituted by halo, (C_1 - C_6)alkoxy; and
R⁷ and R⁸ are the same, or different, and are selected from H, nitro, (C_1 - C_6)alkoxy, or
5 halogen selected from fluoro, chloro, and bromo;

wherein, for group II,

10 R⁹ is (C_1 - C_6)alkyl, (C_3 - C_{10})cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C_3 - C_8)cycloheteroalkyl, -CON
15 R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or
-(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or
20 (C_1 - C_6)alkyl, and
R²⁰ and R²¹ are each independently selected from H, (C_1 - C_{12})alkyl, (C_3 -
C₁₂)cycloalkyl, (C_3 - C_{10})heterocycloalkyl, (C_6 - C_{10})aryl, (C_5 - C_9)heteroaryl, (C_1 - C_6)alkyl(C_6 -
C₁₂)aryl, wherein said groups are optionally substituted by one or more hydroxy, halo,
amino, trifluoromethyl, (C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, (C_1 - C_6)alkyl(C_3 - C_{10})heterocycloalkyl,
25 (C_1 - C_6)alkyl(C_5 - C_9)heteroaryl, or (C_1 - C_6)alkyl(C_6 - C_{10})aryl;

wherein, for group III,

30 R¹⁰ is -N-R¹⁸R¹⁹, where
R¹⁸ is H, (C_1 - C_6)alkyl, or phenyl, and
R¹⁹ is H, (C_1 - C_6)alkyl, (C_3 - C_{10})cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C_3 - C_8)cycloheteroalkyl,
35 -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or

$-(CH_2)_p-(CHR^{22})_m-(CH_2)_n-NR^{20}R^{21}$, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

R²⁰ and R²¹ are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl,
5 (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₂)aryl, wherein said groups are optionally substituted
by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-
C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or (C₁-C₆)alkyl(C₆-
C₁₀)aryl; or
10 (b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine;

A and B are the same or different, and each represents carbon or nitrogen; and

R¹¹ and R¹² are the same, or different, and are selected from H, nitro, (C₁-C₆)alkoxy,
or halogen selected from fluoro, chloro, and bromo;

wherein, for group IV,

20 R¹³ is -N-R¹⁸R¹⁹, where

R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or
phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl,

25 -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or

-(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or
(C₁-C₆)alkyl, and

R²⁰ and R²¹ are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₁-
C₆)alkyl(C₅-C₉)heteroaryl, (C₅-C₉)heteroaryl, (C₆-C₁₀)aryl, and (C₁-C₆)alkyl(C₆-C₁₀)aryl,
30 wherein said groups are optionally substituted by one or more hydroxy, halo, amino,
trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-
C₆)alkyl(C₅-C₉)heteroaryl and (C₁-C₆)alkyl(C₆-C₁₀)aryl; or
35 (b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine;

A and B are the same or different, and each represents carbon or nitrogen; and

R¹⁴ and R¹⁵ are the same, or different, and are selected from H, nitro, (C₁-C₆)alkoxy, or halogen selected from fluoro, chloro, and bromo; and wherein, for group V,

5

10

A is carbon or nitrogen;

R¹⁶ is -N-R¹⁸R¹⁹, where

R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl,

15

-CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or

-(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

R²⁰ and R²¹ are each, independently selected from:

20

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl, (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₀)aryl, and (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl; or

25

(b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine; and

R¹⁷ selected from H, nitro, (C₁-C₆)alkoxy, or halogen selected from fluoro, chloro, and bromo.

30

5. The method of Claim 1 wherein said organic non-peptide compound binds to the DNA binding domain, residues 94 to 312, of human p53 protein.

35

6. The method of claim 5 wherein the DNA binding domain of said p53 protein comprises a missense mutation at an amino acid position selected from the group consisting of residues 143, 173, 175, 241 and 249.

7. The method of claim 1 wherein steps (a) and (b) are performed simultaneously.

8. The method of claim 1 wherein steps (a) and (b) are performed sequentially.

5

9. A method of treating a human subject for a disease state associated with possession of a mutant protein of the p53 family having one or more diminished wild-type activities, comprising the steps of:

(a) administering to said subject an organic non-peptide compound that is capable of binding to one or more domains in said mutant protein under physiological conditions, and stabilizing a functional conformation therein, and

(b) permitting said stabilized protein in said patient to interact with one or more macromolecules that participate in said wild-type activity.

10

15 10. The method of claim 9 wherein said protein is selected from the group consisting of p53, p63 and p73.

11. The method of claim 10 wherein said protein is p53.

20 12. The method of Claim 10 wherein said organic non-peptide compound binds to the DNA binding domain, residues 94 to 312, of human p53 protein.

13. The method of claim 12 wherein the DNA binding domain of said p53 protein comprises a missense mutation at an amino acid position selected from the group consisting of residues 143, 173, 175, 241 and 249.

25

14. The method of claim 9 wherein steps (a) and (b) are performed simultaneously.

30 15. The method of claim 9 wherein steps (a) and (b) are performed sequentially.

16. The method of claim 10 wherein said disease state is cancer.

35 17. A method of treating a human subject for cancer comprising the steps of:

(a) administering to said subject an organic non-peptide compound that is capable of binding to one or more domains of a human protein of the p53 family under physiological conditions, and stabilizing a functional conformation therein, and
5 (b) permitting said stabilized protein to interact with one or more macromolecules that participate in a wild-type activity of said protein.

18. The method of claim 17 wherein said protein is selected from the group consisting of p53, p63, and p73.

10 19. The method of claim 17 wherein said protein is p53.

20. The method of claim 17, wherein said organic non-peptide compound is selected from the group consisting of:

25 wherein, for group I,

30 R⁵ is -N-R¹⁸R¹⁹, where

35 R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl, -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

5 R²⁰ and R²¹ are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl, (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₂)aryl, wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl; or
10 (b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆) alkylpiperazine; R⁶ is

15 (a) (C₁-C₆)alkyl or (C₂-C₈)alkenyl, each optionally substituted by one or more phenyl groups, or
(b) phenyl substituted by halo, (C₁-C₆)alkoxy; and

R⁷ and R⁸ are the same, or different, and are selected from H, nitro, (C₁-C₆)alkoxy, or halogen selected from fluoro, chloro, and bromo;

20 wherein, for group II,

25 R⁹ is (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl, -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

30 R²⁰ and R²¹ are each independently selected from H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl, (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₂)aryl, wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl;
35 wherein, for group III,

5

R¹⁰ is -N-R¹⁸R¹⁹, where

R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl,

10 -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or

-(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

R²⁰ and R²¹ are each independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl,

15 (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₂)aryl, wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl; or

20 (b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine;

A and B are the same or different, and each represents carbon or nitrogen; and

R¹¹ and R¹² are the same, or different, and are selected from H, nitro, (C₁-C₆)alkoxy, or halogen selected from fluoro, chloro, and bromo;

25 wherein, for group IV,

30

R¹³ is -N-R¹⁸R¹⁹, where

R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl,

35 -CON R¹⁸(CH₂)_pNR²⁰R²¹, -(CH₂)_p-(CHR²²)_m-(CH₂)_n-NR²⁰R²¹, or

$-(CH_2)_p-(CHR^{22})_m-(CH_2)_n-NR^{20}R^{21}$, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

R²⁰ and R²¹ are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, (C₅-C₉)heteroaryl, (C₆-C₁₀)aryl, and (C₁-C₆)alkyl(C₆-C₁₀)aryl,
wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl and (C₁-C₆)alkyl(C₆-C₁₀)aryl; or
(b) NR²⁰R²¹ taken together represent hydrogen, morpholine, or 4-(C₁-C₆)alkylpiperazine;

A and B are the same or different, and each represents carbon or nitrogen; and

R¹⁴ and R¹⁵ are the same, or different, and are selected from H, nitro, (C₁-C₆)alkoxy, or halogen selected from fluoro, chloro, and bromo; and
wherein, for group V,

A is carbon or nitrogen;

R¹⁶ is $-N-R^{18}R^{19}$, where

R¹⁸ is H, (C₁-C₆)alkyl, or phenyl, and

R¹⁹ is H, (C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, or phenyl, wherein said alkyl, cycloalkyl or phenyl group is optionally substituted with hydroxy, (C₃-C₈)cycloheteroalkyl, $-CONR^{18}(CH_2)_pNR^{20}R^{21}$, $-(CH_2)_p-(CHR^{22})_m-(CH_2)_n-NR^{20}R^{21}$, or $-(CH_2)_p-(CHR^{22})_m-(CH_2)_n-NR^{20}R^{21}$, wherein p is 0-5, m is 0-5, n is 0-5, R²² is hydroxy or (C₁-C₆)alkyl, and

R²⁰ and R²¹ are each, independently selected from:

(a) H, (C₁-C₁₂)alkyl, (C₃-C₁₂)cycloalkyl, (C₃-C₁₀)heterocycloalkyl, (C₆-C₁₀)aryl, (C₅-C₉)heteroaryl, (C₁-C₆)alkyl(C₆-C₁₀)aryl, and (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or wherein said groups are optionally substituted by one or more hydroxy, halo, amino, trifluoromethyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkyl(C₃-C₁₀)heterocycloalkyl, (C₁-C₆)alkyl(C₅-C₉)heteroaryl, or (C₁-C₆)alkyl(C₆-C₁₀)aryl; or

(b) $NR^{20}R^{21}$ taken together represent hydrogen, morpholine, or 4-(C_1 - C_6) alkylpiperazine; and

R^{17} selected from H, nitro, (C_1 - C_6)alkoxy, or halogen selected from fluoro, chloro, and bromo.

5

21. The method of Claim 17 wherein said organic non-peptide compound binds to the DNA binding domain, residues 94 to 312, of human p53 protein.

10

22. The method of claim 17 wherein the protein of the p53 family targeted by said organic non-peptide compound is wild type.

15 23. The method of claim 17 wherein the protein of the p53 family targeted by said organic non-peptide compound is a mutant encoded by an allelic variant.

20 24. The method of claim 1 wherein said organic non-peptide compound is selected from the group consisting of:

25

(1-Benzyl-piperidin-4-yl)-(3-phenothiazin-10-yl-propyl)-amine

30

[2-(4-Chloro-phenyl)-ethyl]-[3-phenothiazin-10-yl-propyl]-amine

35

5

10

(3-Phenothiazin-10-yl-propyl)-thiochroman-4-yl-amine

15

20

[1-Methyl-3-(2,6,6-trimethyl-cyclohex-2-enyl)-allyl]-[3-phenothiazin-10-yl-propyl]-amine

25

30

35

N'-(9-Fluoro-benzo[c]acridin-7-yl)-N,N-dimethyl-propane-1,3-diamine

5

N'-Acridin-9-yl-N,N-dimethyl-propane-1,3-diamine

10

2-{4-[4-(Benzo[g]quinolin-4-ylamino)-phenyl]-piperazin-1-yl}-ethanol

15

N⁴-{2-[2-(4-Bromo-phenyl)-vinyl]-7-chloro-quinazolin-4-yl}-N¹,N¹-diethyl-pentane-1,4-diamine

20

25

N-Benzogquinolin-5-yl-N'-cyclohexyl-propane-1,3-diamine

30

35

5

10 2-[(2-Hydroxy-ethyl)-(3-{2-[2-(4-methoxy-phenyl)-vinyl]-quinazolin-4-ylamino}-propyl)-
amino]-ethanol.

15 25. The method of claim 17 wherein said organic non-peptide compound is
selected from the group consisting of:

20

(1-Benzyl-piperidin-4-yl)-(3-phenothiazin-10-yl-propyl)-amine

25

[2-(4-Chloro-phenyl)-ethyl]-[3-phenothiazin-10-yl-propyl]-amine

30

35

(3-Phenothiazin-10-yl-propyl)-thiochroman-4-yl-amine

5

[1-Methyl-3-(2,6,6-trimethyl-cyclohex-2-enyl)-allyl]-[3-phenothiazin-10-yl-propyl]-amine

10

15

(7-Ethoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-(3-phenothiazin-10-yl-propyl)-amine

20

25

N'-(9-Fluoro-benzo[c]acridin-7-yl)-N,N-dimethyl-propane-1,3-diamine

30

35

N'-Acridin-9-yl-N,N-dimethyl-propane-1,3-diamine

2-{4-[4-(Benzo[g]quinolin-4-ylamino)-phenyl]-piperazin-1-yl}-ethanol

15 N^4-{2-[2-(4-Bromo-phenyl)-vinyl]-7-chloro-quinazolin-4-yl}-N^1,N^1-diethyl-pentane-1,4-diamine

25 N-Benzo[g]quinolin-5-yl-N'-cyclohexyl-propane-1,3-diamine

35 2-[(2-Hydroxy-ethyl)-(3-{2-[2-(4-methoxy-phenyl)-vinyl]-quinazolin-4-ylamino}-propyl)-amino]-ethanol.

add
RJ