عمرميات حرل الروال العروية

أنشطة

<u>انشطة تذكيرية</u>

نشاط1

حدد مجموعة تعريف الدالة العددية f للمتغير الحقيقي في الحالات التالية:

$$f(x) = \sqrt{1-2x} / - f(x) = \frac{-2x+3}{x^2-x+2} /$$

$$f(x) = \frac{\sqrt{x^2-x}}{x^2-x+2} / = \frac{-2x+3}{x^2-x+2} / = \frac{-2x$$

نشاط2

 $\left(C\right)$ و $\left[\frac{-5}{2}; \frac{7}{2}\right]$ و لتكن f دالة عددية معرفة على f

منحناها كما في الشكل التالي:

حدد القيمة القصوى و القيمة الدنيا لدالة f على -1 المجال $\left[\frac{-5}{2}, \frac{7}{2} \right]$

$$\forall x \in \left[\frac{-5}{2}; \frac{7}{2}\right] \quad \frac{-17}{6} \le f(x) \le \frac{5}{3}$$
 استنتج أن -2

$$f(x) \ge 0$$
 -ب $f(x) = 0$ -5

$$f(x)=1$$
 حدد مبيانيا عدد حلو المعادلة -4

نشاط3

لتكن f دالة عددية لمتغير حقيقي معرفة بـ /I $f(x) = x^2 - 2x$

و C_f منحنى الدالة f في المعلم المتعامد الممنظم $\left(O; \vec{i}\; ; \vec{j}\; \right)$

$$orall x\in\mathbb{R}$$
 $f\left(x
ight)=\left(x-1
ight)^2-1$ تأكد أن المنحنى C_f صورة المنحنى $\vec{u}\left(1;-1
ight)$ الممثل للدالة المعرفة بـ $x o x^2$ بالإزاحة ذا المتجهة

ب/ حدد طبيعة $\,C_f\,$ و أنشئه II/ لتكن $\,g\,$ دالة عددية لمتغير حقيقي معرفتين بـ $\,g\,(x)=x|x|-2x\,$

, بين أن
$$f$$
 دالة فردية -1

$$f$$
 حدد جدول تغیرات الدالة f

$$\left(o_{;\vec{i}\,;\vec{j}}
ight)$$
 في المعلم المتعامد الممنظم C_{g}

نشاط4

لتكن f دالة عددية لمتغير حقيقي معرفتين بـ $f(x) = \frac{-2x-1}{x-1}$

و منحنى الدالة f في المعلم المتعامد الممنظم $\left(O; \vec{i}\;; \vec{j}\;\right)$

$$D_f$$
 أ- حدد -1

$$D_f$$
 ب تحقق أن $f(x) = -2 + \frac{-3}{x-1}$ لكل ب

الممثل للدالة (C) صورة المنحنى طورة الممثل للدالة -2

$$\vec{u}$$
 (1;–2) المعرفة ب $x \to \frac{-3}{x}$ بالإزاحة ذا المتجهة ر

$$g(x) = \frac{-2|x|-1}{|x|-1}$$
 -3 الدالة المعرفة ب g الدالة المعرفة -3

$$g$$
 أ- حدد D_g و أدرس زوجية $C_{oldsymbol{g}}$ ب- أنشئ

نش لط5

لتكن f و g دالتين عدديتين لمتغير حقيقي معرفتين بـ

$$g(x) = \frac{-2x+1}{x+1}$$
 g $f(x) = \frac{3x-2}{2x-1}$

$$g$$
 و f أعط جدول تغيرات كل من f

عناصرها و
$$C_g$$
 ع C_f عناصرها -2

لمميزة

<u>أنشطة التقديم</u>

نشاط $\mathbf{6}$ (دالة مكبورة- دالة مصغورة – دالة محدودة) لتكن f دالة عددية لمتغير حقيقي معرفة f

$$f\left(x\right) = \frac{2x^2 + 1}{x^2 + 1}$$

$$\forall x \in \mathbb{R}$$
 $f(x) < 2$ بين بين أن -1

$$\forall x \in \mathbb{R}$$
 1 $\leq f(x)$ اً/ بین أن -2

$$x \in \mathbb{R}$$
 $1 = f(x)$ ب/ حل المعادلة

$$\forall x \in \mathbb{R}$$
 $1 \le f(x) < 2$ استنتج أن -3

نشاط7 (مقارنة دالتين)

نعتبر f و g الدالتين العدديتين للمتغير الحقيقي

$$g(x) = \frac{-x+3}{x+2}$$
 ; $f(x) = x^2 - 3x$ المعرفتين بـ

و g و f المنحنيين الممثلين لـ C_{g} و C_{f}

التوالي في مستوى منسوب إلى معلم م.م. C_g و C_f حدد تقاطع -1

- $.C_g$ و C_f انشى -2
- $f(x) \ge g(x)$ حل ميانيا المتراجحة -3

 $f(x) \ge g(x)$ تحقق جبريا من حلول المتراجحة نشاط8 (الدالة الدورية)

لتكن f دالة عددية لمتغير حقيقي معرفة بـ $f(x) = \cos(\pi x)$

- $\forall x \in \mathbb{R}$ f(x+2) = f(x) بين أن -1
- انشئ جزء المنحنى الدالة f على المجال-2f علما أن جزء جزء المنحنى الدالة [-6;6]على المجال [-1;1] كما يلي

نشاط9 (صورة مجال) الشكل التالي يمثل دالة عددية معرفة على المجال [-3;4]

 $\forall x \in [-3,2]$ 1 $\leq f(x) \leq 4$ أ/ بين أن -1 $y \in [1;4]$ ب/ ليكن

[-3;2]بين أن المعادلة f(x) = y تقبل حلا في f([-3;2]) = [1;4] ج/ استنتج أن

2- حدد مبيانيا صورة المجال [-3;1] ثم [2;4]

نشاط10(مرکب دالتین)

نعتبر f و g الدالتين العدديتين للمتغير الحقيقي g(x) = -x + 2 ; $f(x) = \sqrt{x}$ المعرفتين بـ

ا- أحسب g(3) و g(6) و g(3) ثمر أحسب -1

$$f\left(g\left(\frac{7}{4}\right)\right)$$
 o $f\left(g\left(6\right)\right)$ o $f\left(g\left(3\right)\right)$

من I من x میکن عمد I من I میکن -2 Iحساب f(g(x)) حدد حدد f(g(x)) حدد

 $(x \to \sqrt{x+a})$ نشاط11(التمثيل المبياني لدالة نعتبر f و g الدالتين العدديتين للمتغير الحقيقي

$$g(x) = \sqrt{x+1}$$
 ; $f(x) = \sqrt{x}$ المعرفتين بـ

g و f حدد مجموعة تعريف كل من الدالتين f

g و f أدرس تغيرات كل من f و g

			تالي	جدول الـ	ر اتممر ال	/1 -3
x	0	$\frac{1}{4}$	1	2	$\frac{9}{4}$	4
f(x)					-	

 $\left(C_{f}
ight)$ ب/ مستعينا بالجدول أنشئ

 $(C_{_f})$ صورة المنحنى $(C_{_g})$ صورة المنحنى -4 $\vec{u}(-2;0)$ بالإزاحة ذات المتجهة $(C_{_{\sigma}})$ ب/ أنشئ

 $(x \rightarrow ax^3)$ نشاط (التمثيل المبياني لدالة لتكن f دالة عددية لمتغير حقيقي معرفة بـ $f(x) = 2x^3$

f- بين أن f فردية f- ادرس تغيرات f و أعط جدول تغيرات f- أدرس الجدول التالوب

	د- ۱۱ انهم انجدون انتاني					
x	0	1	1	5	3	2
		2		4	2	
f(x)						

 $\left(C_{f}
ight)$ ب/ أنشئ

بالإتباع نفس الخطوات مثل مبيانيا $g(x) = -x^3$

عمرميات حول الروال العروية

I – تذكير

-1/ A ما- الدالة الزوجية- الدالة الفردية

أ- تعريف

لتكن f دالة عددية لمتغير حقيقي و D_f حيز تعريفها

 $-x\in D_f$ من x من x نقول ان f دالة زوجية اذا تحقق الشرطان التاليان *

f(-x) = f(x) ککل *

 $-x\in D_f$ من x من x نقول إن x دالة فردية إذا تحقق الشرطان التاليان *

f(-x) = -f(x) لکل *

ب- <u>التأويل الهندسي</u>

خا<u>صية</u>

 $\left(O;\vec{i}\;;\vec{j}\;
ight)$ منحناها في مستوى منسوب إلى معلم متعامد ممنظم لتكن f دالة عددية و

 C_f دالة زوجية إذا وفقط إذا كان محور الأراتيب محور تماثل للمنحنى -*

المعلم المعلم المنحنى المنحنى أf دالة فردية إذا وفقط إذا كان المنحنى المنحنى f - تكون المنحبة لأصل المعلم f

2- تغيرات دالة

ه- تعریف

 $\overline{D_f}$ لتكن f دالة عددية لمتغير حقيقي و I مجال ضمن

- - $x_1 \prec x_2$ تكون f تزايدية قطعا على I إذا و فقط إذا كان لكل x_1 و x_2 من x_1 اذا كان x_2 خان x_2 فان x_2
- $f\left(x_{1}\right)\geq f\left(x_{2}\right)$ تناقصیة علی I إذا و فقط إذا کان لکل x_{1} و x_{2} من I اذا کان f تناقصیة علی I
 - $x_1 \prec x_2$ تكون f تناقصية قطعا على I إذا و فقط إذا كان لكل x_1 و ي x_2 من x_3 على x_4 خان x_4 فان x_5

b**- معدل التغير**

أ- تعريف

 D_f عنصرين مختلفين مختلفين و x_2 عنصرين مختلفين الككن الله عددية لمتغير حقيقي و

 x_2 العدد $\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$ يسمى معدل تغير الدالة $\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$

ب-<u> معدل التغير و الرتاية</u>

<u>خاصىة</u>

f الدالة $T=rac{f\left(x_{2}
ight)-f\left(x_{1}
ight)}{x_{2}-x_{1}}$ و D_{f} معدل تغير الدالة D_{f} معدل تغير الدالة

x_2 بین x_1 و

- $T \ge 0$ I تزایدیة علی ایزا و فقط اذا کان لکل x_1 و ختلفین من f تزایدیة علی ایزا و فقط اذا کان لکل f
- $T\succ 0$ I تکون f تزایدیة قطعا علی ا إذا و فقط إذا کان لکل این مختلفین من f
 - $T \le 0$ Iتكون f تناقصية على الإذا و فقط إذا كان لكل x_1 و x_2 مختلفين من -
- $T\prec 0$ Iتكون x_2 مختلفين من إذا و فقط إذا كان لكل x_2 و يناقصية قطعا على الخاو الخاصة على الخاصة تكون الخاصة قطعا على الخاصة الحاصة الخاصة الخاصة الخاصة الخاصة الخاصة الخاصة الخاصة الخاصة الخا

c- الرتابة وزوجية دالة

<u>خاصية</u>

 $\left(J=\left\{ -x\ /x\in I
ight\}
ight)$ لتكن f دالة زوجية و I مجال ضمن $D_f\cap\mathbb{R}^+$ و D لتكن التحت f

- .] يناقصية على f تناقصية على I يات f تناقصية على -
- . أذا كانت f تناقصية على I فان f تزايدية على J

 $ig(J = ig\{ -x \ /x \in I ig\} ig)$ لتكن f دالة فردية و I مجال ضمن $D_f \cap \mathbb{R}^+$ لتكن النسبة لـ 0

- J يزايدية على الازادية على f الازاكانت f تزايدية على ال
- J نناقصیة علی الاین الاین الاین الاین الاین الf الاین الf

ملاحظة: لدراسة تغيرات دالة فردية أو زوجية يكفي دراسة تغيراتها على $D_f \cap \mathbb{R}^+$ ثم استنتاج تغيراتها على $D_f \cap \mathbb{R}^+$ $D_f \cap \mathbb{R}^-$

3- مطاريف دالة

ا- تعریف

I دالة عددية لمتغير حقيقي معرفة على مجال f و f

- f(a) = Max f(x)نکتب $\forall x \in I$ $f(x) \le f(a)$ نقول إنf(a) هو القيمة القصوى لـ f(a) على مجال f(a) إذا كان -
- $f(a)=Min\;f(x)$ نکتب $orall x\in I$ نقول ان $f(a)=Min\;f(x)$ نکتب خلی مجال I إذا کان $f(a)=Min\;f(x)$ هو القيمة الدنيا لـ f على مجال I

ليكن a و b و a أعداد حقيقية حيث $a \prec b \prec c$ و $a \prec b \prec c$ المتغير حقيقي b عند وتناقصية على [a;b] فان f تقبل قيمة قصوى عند وتناقصية على إذا كانت fb عند وتزايدية على [a;b] فان f تناقصية على إذا كانت f تناقصية على إذا كانت f

B / - دراسة بعض الدوال الاعتبادية

<u>1- الدالة الحدودية من الدرجة الثانية</u>

 $a \neq 0$ و $(a;b;c) \in \mathbb{R}^3$ حيث $f(x) = ax^2 + bx + c$ و $f(x) = ax^2 + bx + c$ و $f(x) = ax^2 + bx + c$ لکل x من \mathbb{R} هذه الکتابة تسمی $f(x) = a(x-\alpha)^2 + \beta$ یوجد عددان حقیقیان $\,lpha\,$ و $\,eta\,$ حیث * f الشكل القانوني للدالة

 $ec{u}(lpha;eta)$ الممثل للدالة $x o ax^2$ بالإزاحة ذا المتجهة (C) الممثل للدالة *

x=lpha ان معلم متعامد هو شلجم رأسه $\Omega(lpha;eta)$ و محور تماثله المستقيم خا C_f

$$\beta = f(\alpha)$$
و $\alpha = -\frac{b}{2a}$ ملاحظة:

		$a \prec 0$ فان:	<u>י וְנוֹ טוֹטׁ יַ</u>
x	+∞	$\frac{-b}{2a}$	8
f		$f\left(-\frac{b}{2a}\right)$	

2- <u>الدالة المتخاطة</u>

$$ad-bc
eq 0$$
 و $c
eq 0$ حيث $f(x) = \frac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{ \frac{-d}{c} \right\}$ و $c
eq 0$ و $c
eq 0$

$$\mathbb{R} - \left\{ \frac{-d}{c} \right\}$$
 توجد أعداد حقيقية α و β و λ حيث α عداد حقيقية α توجد أعداد حقيقية α

$$\vec{u}\left(lpha;eta
ight)$$
 هو صورة المنحنى C الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة ذا المتجهة *

منحنى f في معلم متعامد هو هدلول مركزه $\Omega(lpha;eta)$ و مقارباه هما المستقيمان المعرفان بـ C_f

$$y = \beta$$
 و $x = \alpha$

$$\beta = \frac{a}{c}$$
 و $\alpha = \frac{-d}{c}$

Ω

2/ تعاریف

I دالة معرفة على مجال f

Iنقول إن f مكبورة على I اذا وجد عدد حقيقي Mحيث: $f(x) \leq M$ لكل x من $f(x) \leq M$

Iنقول إن f مصغورة على I اذا وجد عدد حقيقي mحيث: $f(x) \geq m$ لكل x من $f(x) \geq m$

I من x لکل $m \le f(x) \le M$ و m حيث: $m \le f(x) \le M$ لکل $m \le f(x)$ من $m \le f(x)$

I خاصیة لتکن f دالة معرفة على مجال

Iنقول إن f(x) على $|f(x)| \leq s$ عدد حقيقي موجب s حيث: |f(x)| لكل |f(x)|

تمرين

 $f(x) = \frac{x + \sqrt{x^2 - 4}}{x^2}$ نعتبر f الدالة العددية للمتغير الحقيقي المعرفة ب

 D_f حدد -1

2- بين أن الدالة مكبورة على $\left[2,+\infty\right[$ بالعدد 2 و مصغورة على $\left[2,+\infty\right[$ بالعدد 1

<u> III – مقارنة دالتين- التأويل الهندسي</u>

1/نشاط7

2/ أ/ تساوي دالتين

<u>- تعریف</u>

نعتبر g و g دالتین عددیتین و D_f و D_f مجموعتي تعریفهما علی التوالي

 D_f نقول إن f تساوي g و نكتب g اذا و فقط اذا كان: f = g و $D_g = D_f$ و اذا و فقط اذا كان:

ب/ مقارنة دالتين

 \overline{I} نعتبر f و g دالتين معرفتين مجال

نقول إن f أصغر أو تساوي g على I اذا كان: I مهما کانت x من X نکتب $f \leq g$ علی $f(x) \leq g(x)$

ج/ التأويل الهندسي

I على g على عني هندسيا أن منحنى الدالة f تحت منحنى g على $f \leq g$

د/ الدالة الموجبة- الدالة السالبة

I دالة معرفة على مجال f

 $(\forall x \in I ; f(x) \ge 0) \Leftrightarrow I$ دالة موجبة على f *

 $(\forall x \in I ; f(x) \le 0) \Leftrightarrow I$ دالة سالبة على f *

IV<u>– الدالة الدورية</u>

1- نشاط8

نقول أن f دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث

 $\forall x \in D_f$ $x + T \in D_f$; $x - T \in D_f$ f(x+T)=f(x)

العدد T يسمى دور لدالة f .اصغر دور موجب قطعا يسمى دور الدالةf

أمثلة

 2π الدالتان $x \to \sin x$ و $x \to \cos x$ دوريتان و دورهما * π الدالة $x \to \tan x$ دورية دورها *

 $\frac{2\pi}{|a|}$ الدالتان $x o \cos ax$ و $x o \sin ax$ و $x o \cos ax$ الدالتان *

 $\frac{\pi}{|a|}$ الدالة $x \to \tan ax$ (حيث $a \ne 0$ دورية دورها *

3- <u>خاصىة</u> إذا كانت للدالة f دور T فان ____ f(x+nT) = f(x) $\forall x \in D_f, \forall n \in \mathbb{Z}$

-- سحوت إذا كانت f دالة دورية و T دورا لها فانه:

 $D_f \cap \left\lceil rac{-T}{2}, rac{T}{2}
ight
ceil$ أو $D_f \cap \left[0, T
ight[$ على $D_f \cap \left[0, T
ight]$

یستنج جزء منحنی الـدالة f علی $n \in \mathbb{Z}$ حیث $D_f \cap \left| \frac{-T}{2} + nT; \frac{-T}{2} + (n+1)T \right|$ من جزئ منحنی •

عدد صحيح نسـبي. على u(nT;0) عدد صحيح الإزاحة ذات المتجهة $D_f \cap \left| \frac{-T}{2}, \frac{T}{2} \right|$

٧– صورة مجال بدالة

1- نشاط9

2- تعریف

 $\overline{D_f}$ لتكن f دالة عددية للمتغير حقيقي و I مجال ضمن من

 $f\left(I
ight)$ صورة المجال I بالدالة f هي مجموعة جميع صور عناصر I بالدالة f نرمز له بـ

 $f(I) = \{ f(x) / x \in I \}$

ملحوظة:

$$y \in f(I) \Leftrightarrow \exists x \in I / f(x) = y *$$

 $\mathbb R$ دالة عددية و I مجال ضمن من f *

$$f(I) \subset J \Leftrightarrow \forall x \in I \quad \exists y \in J \quad /f(x) = y$$

$$J \subset f(I) \Leftrightarrow \forall y \in J \quad \exists x \in I \quad /f(x) = y$$

<u>VI – مركب دالتين</u> 1- نشاط10

2- تعریف

$$f(D_f)$$
ر و g دالتين حيث f و g

 $x \in D_f$ مركبة الدالتين $g \circ f$ في هذا الترتيب هي الدالة التي نرمز لها بالرمز $g \circ f$ حيث لكل

 $g \circ f(x) = g(f(x))$

$g \circ f$ مجموعة تعريف

$$D_{g \circ f} = \left\{ x \in D_f / f(x) \in D_g \right\}$$

<u>تمرين</u>

$$g(x) = 2x - 1$$
 و $f(x) = x^2 + x$

حدد
$$g \circ f$$
 و $g \circ f$ ثم قارنهما

 $g \circ f \neq f \circ g$ على العموم على على

$$h(x) = \frac{4x^2 - 4x - 1}{8x^2 - 8x + 1}$$

$$g(x) = 2x - 1$$
 ; $f(x) = 2x^2 + 3x + 1$ تمرین

$$h \circ g$$
 ; $g \circ f$; $f \circ g$ حدد -1

$$h = t \circ g$$
 حدد دالة t حيث -2

$$f = l \circ g$$
 حدد دالة l حيد - 3

<u>3 - مركيب دالتين و الرتابة</u>

$$fig(Iig)$$
 حيث I و g دالتين و I و مجالين ضمن D_g و D_f على التوالي حيث

$$I$$
 ازا کان f تزایدیهٔ علی I و g تزایدیهٔ علی f فان f تزایدیهٔ علی f

$$I$$
 ازا کان f تناقصیة علی I و g تناقصیة علی J فان f ازا کان و f

$$I$$
 دا کان $g\circ f$ تناقصیة علی I و g تناقصیة علی f فان f تناقصیة علی - إذا کان

$$I$$
 دا کان $g\circ f$ تناقصیة علی I و g تزایدیة علی J فان ان f تناقصیة علی - إذا کان

نعتبر f و g الدالتين العدديتين للمتغير الحقيقي المعرفتين بـ

$$g(x) = x^2 + 1$$
 ; $f(x) = 3x - 1$

 $g\circ f$ و $f\circ g$ حدد تغیرات $g\circ f$ باستعمال تغیرات $g\circ f$

$$x \to \sqrt{x+a}$$
 و $x \to ax^3$ تمثيل الدالتين –VI

$$x \to \sqrt{x+a}$$
 الدالة -1

نشاط11

 (C_f)

 $[-a;+\infty[$ معرفة و تزايدية قطعا على $f:x o \sqrt{x+a}$ الدالة

a=-1 أمثلة : في نفس المعلم أنشئ C_f من أجل a=0 و

تمرين

$$g(x) = \sqrt{-x^2 + 1}$$
 و $f(x) = \sqrt{x + 1}$ و $f(x) = \sqrt{x + 1}$ لتكن $f(x) = \sqrt{x + 1}$

 $\left(C_f
ight)$ و أنشئ f عط جدول تغيرات أعط

عدد تغيرات الدالة g باستعمال مركب دالتين -2

 $x \rightarrow ax^3$ الدالة -2

نشاط12

خاصىة

 $a \in \mathbb{R}^*$ و $f(x) = ax^3$ و تكن f(x) دالة عددية لمتغير حقيقي حيث

 \mathbb{R} فان f تناقصية قطعا على $a \prec 0$

 $\mathbb R$ فان f تزایدیة قطعا علی $a\succ 0$ اذا کان

a < 0 -*

