QC_analysis

2023-11-19

protoplast_gene_file="reference/proto_genes.txt"

default parameters

lubridate 1.9.3

1.0.2

✓ purrr

✓ tibble

✓ tidyr

3.2.1

1.3.0

min_genes=200; min.cells = 3 min_UMIs=500; MAX percent_mito = 5 MAX percent_chloro = 5 PCA_dimensions=20

```
clustering_resolution=.6 nof_integration_features=5000
 set.seed(12345)
 library(dplyr)
 ##
 ## Attaching package: 'dplyr'
 ## The following objects are masked from 'package:stats':
 ##
        filter, lag
 ##
    The following objects are masked from 'package:base':
 ##
 ##
        intersect, setdiff, setequal, union
 ##
 library(Seurat)
 ## Loading required package: SeuratObject
 ## Loading required package: sp
 ##
 ## Attaching package: 'SeuratObject'
 ## The following object is masked from 'package:base':
 ##
 ##
        intersect
 library(tidyverse)
 ## — Attaching core tidyverse packages
                                                                    - tidyverse 2.0.0 —
 ## ✓ forcats
               1.0.0
                                       2.1.4
                           ✓ readr
 ## ✓ ggplot2
                3.4.4
                                       1.5.1
                           ✓ stringr
```

```
## — Conflicts —
                                                          — tidyverse_conflicts() —
## * dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become
errors
library(ggplot2)
library(cowplot)
##
## Attaching package: 'cowplot'
##
## The following object is masked from 'package:lubridate':
##
##
       stamp
library(patchwork)
##
## Attaching package: 'patchwork'
##
## The following object is masked from 'package:cowplot':
##
##
       align_plots
library(Rcpp)
library(Matrix)
##
## Attaching package: 'Matrix'
##
## The following objects are masked from 'package:tidyr':
##
       expand, pack, unpack
##
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
       discard
##
##
## The following object is masked from 'package:readr':
##
##
       col_factor
```

```
library(harmony)
library(monocle3)
```

```
## Loading required package: Biobase
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
##
## The following objects are masked from 'package:lubridate':
##
##
       intersect, setdiff, union
##
## The following object is masked from 'package:SeuratObject':
##
##
       intersect
##
## The following objects are masked from 'package:dplyr':
##
       combine, intersect, setdiff, union
##
##
   The following objects are masked from 'package:stats':
##
##
##
       IQR, mad, sd, var, xtabs
##
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##
       colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
       get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##
##
       match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
       Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
##
       table, tapply, union, unique, unsplit, which.max, which.min
##
##
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Loading required package: SingleCellExperiment
```

```
## Warning: package 'SingleCellExperiment' was built under R version 4.3.2
```

```
## Loading required package: SummarizedExperiment
```

```
## Warning: package 'SummarizedExperiment' was built under R version 4.3.2
```

```
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'matrixStats'
##
  The following objects are masked from 'package:Biobase':
##
##
       anyMissing, rowMedians
##
##
  The following object is masked from 'package:dplyr':
##
##
##
       count
##
##
## Attaching package: 'MatrixGenerics'
##
##
  The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
##
## The following object is masked from 'package:Biobase':
##
##
       rowMedians
##
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
##
## The following objects are masked from 'package:Matrix':
##
##
       expand, unname
##
   The following objects are masked from 'package:lubridate':
##
##
##
       second, second<-
##
   The following object is masked from 'package:tidyr':
##
##
##
       expand
##
```

```
## The following objects are masked from 'package:dplyr':
##
##
       first, rename
   The following object is masked from 'package:utils':
##
##
##
       findMatches
##
   The following objects are masked from 'package:base':
##
##
##
       expand.grid, I, unname
##
   Loading required package: IRanges
##
##
## Attaching package: 'IRanges'
##
##
   The following object is masked from 'package:lubridate':
##
##
       %within%
##
   The following object is masked from 'package:purrr':
##
       reduce
##
##
##
   The following object is masked from 'package:sp':
##
##
       %over%
   The following objects are masked from 'package:dplyr':
##
##
       collapse, desc, slice
##
##
## Loading required package: GenomeInfoDb
```

```
## Warning: package 'GenomeInfoDb' was built under R version 4.3.2
```

```
##
  Attaching package: 'SummarizedExperiment'
##
   The following object is masked from 'package: Seurat':
##
##
##
       Assays
##
   The following object is masked from 'package:SeuratObject':
##
##
##
       Assays
##
##
  Attaching package: 'monocle3'
##
##
## The following objects are masked from 'package:Biobase':
##
##
       exprs, fData, fData<-, pData, pData<-
```

```
##only consider cells with at least 200 detected genes and genes need to be expressed in at least
3 cells.

alldata <- readRDS("alldata.rds")
selected_c <- WhichCells(alldata, expression = nFeature_RNA > 200)
selected_f <- rownames(alldata)[Matrix::rowSums(alldata) > 3]
data.filt <- subset(alldata, features = selected_f, cells = selected_c)
dim(data.filt)</pre>
```

[1] 33907 47066

```
## remove protoplast-response genes, mitochondrial and chloroplast genes from integration feature
s
alldata <- data.filt
proto_genes <- read.csv("./proto_genes.txt")
proto_genes %in% rownames(alldata)</pre>
```

[1] FALSE

```
alldata_proto_rm=alldata[!rownames(alldata) %in% proto_genes,]
alldata <- alldata_proto_rm

## Find out the Mitchondria & chloroplast high expression genes
alldata <- PercentageFeatureSet(alldata, "ATMG", col.name = "percent_mito")
alldata <- PercentageFeatureSet(alldata, "ATCG", col.name = "percent_chloro")

feats <- c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_chloro")
FeatureScatter(alldata, "nCount_RNA", "nFeature_RNA", group.by = "sample", pt.size = 0.5)</pre>
```


VlnPlot(alldata, features = c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_chloro"), nc ol = 2)

VlnPlot(aldata_MTCTRM, features = c("nFeature_RNA", "nCount_RNA", "percent_mito", "percent_chlor

aldata_MTCTRM <- subset(alldata, subset = percent_mito < 5 & percent_chloro < 5)</pre>

saveRDS(aldata_MTCTRM , "./aldata_MTCTRM.rds")

rm doublets from each sample separetly
rm(alldata_proto_rm)
rm(alldata)
rm(data.filt)
rm(sobj,alldata_MTCTRM)

o''), ncol = 2

Warning in rm(sobj, alldata_MTCTRM): object 'sobj' not found

Warning in rm(sobj, alldata_MTCTRM): object 'alldata_MTCTRM' not found

```
sub_object <- as.list(SplitObject(aldata_MTCTRM, split.by = "sample"))</pre>
suppressMessages(require(DoubletFinder))
all_data_doublets_filter <- list()</pre>
for(i in 1: length(sub object)){
  data.filt1 = FindVariableFeatures(sub_object[[i]], verbose = F)
  data.filt1 = NormalizeData(data.filt1)
  data.filt1 = ScaleData(data.filt1, vars.to.regress = c("nFeature_RNA", "percent_mito"),
    verbose = F)
  data.filt1 = RunPCA(data.filt1, verbose = F, npcs = 20)
  data.filt1 = RunUMAP(data.filt1, dims = 1:10, verbose = F)
  nExp <- round(ncol(data.filt1) * 0.08) # expect 8% doublets</pre>
  data.filt1 <- doubletFinder_v3(data.filt1, pN = 0.25, pK = 0.09, nExp = nExp, PCs = 1:10)
  all_data_doublets_filter[[i]] <- data.filt1</pre>
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to
the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Loading required package: fields
## Loading required package: spam
## Spam version 2.10-0 (2023-10-23) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
##
## Attaching package: 'spam'
## The following object is masked from 'package:stats4':
##
##
       mle
```

```
## The following object is masked from 'package:Matrix':
##
##
       det
## The following objects are masked from 'package:base':
##
##
       backsolve, forwardsolve
## Loading required package: viridisLite
##
## Try help(fields) to get started.
## Loading required package: KernSmooth
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## [1] "Creating 1684 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
```

```
## [1] "Creating 2266 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 1279 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
```

```
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 1394 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 1225 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
```

```
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 3023 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 555 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
```

```
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 402 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
```

```
## Also defined by 'BiocGenerics'
## [1] "Creating 447 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 544 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
```

```
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 450 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 1257 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
```

```
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## [1] "Creating 996 artificial doublets..."
## [1] "Creating Seurat object..."
## [1] "Normalizing Seurat object..."
## Normalizing layer: counts
## [1] "Finding variable genes..."
## Finding variable features for layer counts
## [1] "Scaling data..."
## Centering and scaling data matrix
## [1] "Running PCA..."
## [1] "Calculating PC distance matrix..."
## [1] "Computing pANN..."
## [1] "Classifying doublets.."
```

```
#### name of the DF prediction can change, so extract the correct column name.
for(i in 1:13){
  colnames(all_data_doublets_filter[[i]]@meta.data)[10:11] <- c("pANN", "DF.classifications")
}
saveRDS(all_data_doublets_filter, "all_data_doublets_filter.rds")
all_data_doublets <- readRDS("all_data_doublets_filter.rds")</pre>
###remove the doublets
all data doublets RM <- list()
for(i in 1: length(all_data_doublets)){
  data.filt <- all data doublets[[i]]</pre>
  DF.name = colnames(data.filt@meta.data)[grepl("DF.classification", colnames(data.filt@meta.dat
a))]
  data.filt = data.filt[, data.filt@meta.data[, DF.name] == "Singlet"]
  dim(data.filt)
  print(dim(data.filt))
  all_data_doublets_RM[i] <- data.filt</pre>
}
## [1] 33907 4648
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 6254
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 3531
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 3847
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 3380
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
```

[1] 33907 8343

```
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 1531
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 1110
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 1234
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 1501
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4</pre>
## objects is deprecated
## [1] 33907 1242
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
## [1] 33907 3470
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4</pre>
## objects is deprecated
## [1] 33907 2749
## Warning in `[<-`(`*tmp*`, i, value = data.filt): implicit list embedding of S4
## objects is deprecated
saveRDS(all_data_doublets_RM, "all_data_doublets_RM.rds")
```

```
###SCT Transformation for each sample
rm(all_data_doublets)
rm(all_data_doublets_RM)
rm(sub_object)
rm(all data doublets filter)
all_data_doublets_RM <- readRDS("all_data_doublets_RM.rds")</pre>
merged_seurat <- all_data_doublets_RM[[1]]</pre>
for(i in 2: length(all_data_doublets_RM)){
  colnames(all_data_doublets_RM[[1]]@meta.data)[10:11] <- c("pANN", "DF.classifications")</pre>
  merged_seurat <- merge(merged_seurat, all_data_doublets_RM[[i]])</pre>
}
rm(all data doublets RM)
merged seurat.1 <- merged seurat %>%
    FindVariableFeatures(selection.method = "vst", nfeatures = 1000) %>%
    SCTransform(vst.flavor = "v2", variable.features.n = 1000, conserve.memory=TRUE)
## Running SCTransform on assay: RNA
## vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.
## Calculating cell attributes from input UMI matrix: log_umi
## Variance stabilizing transformation of count matrix of size 31263 by 42840
## Model formula is y ~ log_umi
## Get Negative Binomial regression parameters per gene
## Using 2000 genes, 5000 cells
## Found 114 outliers - those will be ignored in fitting/regularization step
## Skip calculation of full residual matrix
## Will not return corrected UMI because residual type is not set to 'pearson'
## Calculating gene attributes
## Wall clock passed: Time difference of 6.879779 secs
```

Setting min_variance based on median UMI: 0.04

```
## Calculating variance for residuals of type pearson for 31263 genes
## Determine variable features
## Setting min_variance based on median UMI: 0.16
## Calculating residuals of type pearson for 1000 genes
##
                                                                           0%
                                                                          25%
                                                                          50%
      _____
                                                                          75%
## Computing corrected UMI count matrix
## Centering data matrix
## Place corrected count matrix in counts slot
## Set default assay to SCT
saveRDS(merged_seurat.1, "merged_seurat.1_SCTtransform2.rds")
###Integerarion using Harmony
merged_seurat.1@meta.data$orig.type[is.na(merged_seurat.1@meta.data$orig.type)] = "Heat"
merged_seurat.1 <- RunPCA(merged_seurat.1, assay = "SCT", npcs = 20)</pre>
```

```
## PC 1
## Positive: AT1G54050, AT3G12580, AT5G12020, AT5G59720, AT1G07400, AT4G25200, AT1G16030, AT2G29
500, AT2G26150, AT1G59860
       AT5G12030, AT3G46230, AT1G62480, AT1G74310, AT1G12080, AT1G53540, AT5G56030, AT3G59370, AT
1G75750, AT4G26320
       AT2G47180, AT3G10020, AT2G02130, AT5G56540, AT5G51440, AT1G71000, AT5G52640, AT1G55330, AT
##
2G19310, AT4G11210
## Negative: AT5G60530, AT1G52070, AT1G47600, AT1G51470, AT3G16440, AT5G54370, AT1G06090, AT1G52
060, AT1G52050, AT3G48340
       AT3G06460, AT3G49190, AT3G19430, AT3G03500, AT1G26820, AT1G17180, AT2G43610, AT5G04200, AT
1G15385, AT5G55110
       AT2G23410, AT2G37540, AT5G16230, AT3G22740, AT5G35735, AT1G50060, AT4G04460, AT4G27400, AT
1G06080, AT4G22640
## PC 2
## Positive: AT1G54050, AT3G12580, AT5G12020, AT5G59720, AT1G07400, AT1G16030, AT4G25200, AT2G29
500, AT3G46230, AT2G26150
       AT1G59860, AT5G12030, AT1G74310, AT1G53540, AT5G56030, AT2G47180, AT3G10020, AT5G51440, AT
3G09440, AT1G71000
       AT5G52640, AT2G19310, AT2G32120, AT3G09350, AT2G36460, AT4G10250, AT5G48570, AT5G10695, AT
5G25450, AT3G24500
## Negative: AT3G22620, AT2G36100, AT2G28670, AT5G66390, AT3G22600, AT5G42180, AT2G32300, AT3G11
550, AT3G24020, AT3G55230
       AT2G27370, AT5G15290, AT4G13580, AT3G56240, AT1G30750, AT1G75750, AT2G39430, AT4G34050, AT
##
1G05260, AT4G26320
       AT5G06200, AT2G30210, AT1G71740, AT3G59370, AT2G40113, AT3G19450, AT5G40450, AT5G46890, AT
5G46900, AT4G11290
## PC 3
## Positive: AT2G36100, AT2G28670, AT5G66390, AT5G42180, AT3G22620, AT3G11550, AT3G24020, AT3G55
230, AT2G32300, AT2G27370
       AT4G13580, AT5G15290, AT1G30750, AT2G39430, AT3G22600, AT1G71740, AT2G30210, AT5G06200, AT
2G40113, AT4G02090
       AT3G56240, AT5G65530, AT1G44970, AT4G17215, AT1G61590, AT3G53260, AT1G75750, AT4G26140, AT
1G05260, AT2G38400
## Negative: NM-008302.3, NM-010480.5, NM-018853.3, NM-009093.2, NM-008972.2, NP-904328.1, NM-01
1295.6, NM-009098.2, NM-025974.2, NM-027015.4
      NM-010106.2, NM-013765.2, NM-016738.5, NM-025814.2, NM-170669.2, NM-011029.4, NM-018860.4,
NM-026055.2, NM-207523.2, NM-001033865.1
      NM-026030.2, NM-172086.2, NM-007393.5, NM-025274.3, NM-009084.4, NM-026147.6, NM-009092.3,
NM-026069.3, NM-020600.4, NM-024266.3
## PC 4
## Positive: AT3G59370, AT1G12080, AT2G02130, AT1G62480, AT4G12550, AT3G62680, AT1G10682, AT3G54
580, AT5G40730, AT3G28550
       AT5G17820, AT4G12545, AT4G40090, AT4G11210, AT3G54590, AT5G46900, AT4G22666, AT5G14330, AT
5G56540, AT3G09260
       AT5G46890, AT1G65310, AT1G30870, AT1G23720, AT5G05500, AT4G25820, AT3G09925, AT3G01190, AT
5G57625, AT1G01750
## Negative: AT2G36100, AT2G28670, AT5G66390, AT5G42180, AT3G22620, AT3G11550, AT3G24020, AT3G55
230, AT2G27370, AT4G13580
       AT2G32300, AT1G30750, AT5G15290, AT2G39430, AT3G22600, AT1G71740, AT2G30210, AT5G06200, AT
##
2G40113, NM-008302.3
      NM-010480.5, NM-018853.3, NM-009093.2, NM-008972.2, NP-904328.1, NM-011295.6, NM-009098.2,
NM-025974.2, NM-027015.4, NM-013765.2
## PC 5
## Positive: AT3G59370, AT1G12080, AT1G62480, AT2G02130, AT4G26320, AT1G10682, AT4G11210, AT5G56
540, AT2G31083, AT2G13820
```

AT1G75750, AT5G59090, AT1G77690, AT1G47600, AT1G51470, AT1G55330, AT3G21770, AT2G45470, AT

##

```
AT3G16440, AT1G26450, AT1G06090, AT2G31085, AT4G18510, AT4G23690, AT2G46890, AT4G34050, AT
4G11190, AT1G26820
## Negative: AT3G62680, AT4G40090, AT3G54580, AT3G54590, AT4G25820, AT1G30870, AT5G57625, AT5G05
500, AT3G28550, AT5G14330
       AT5G17820, AT3G09925, AT4G26010, AT4G00680, AT4G12550, AT4G02270, AT5G67400, AT1G01750, AT
1G12560, AT1G62980
##
       AT1G23720, AT5G35190, AT4G12545, AT4G22666, AT3G49960, AT1G52070, AT5G04960, AT4G01480, AT
harmonized seurat <- RunHarmony(merged seurat.1,
                                group.by.vars = c("orig.type", "sample", "sample_index"),
                                lambda = c(1,1,1),
                                reduction = "pca", assay.use = "SCT", reduction.save = "harmony")
## Transposing data matrix
## Initializing state using k-means centroids initialization
## Harmony 1/10
## Harmony 2/10
## Harmony 3/10
## Harmony 4/10
## Harmony 5/10
## Harmony 6/10
## Harmony 7/10
## Harmony 8/10
## Harmony converged after 8 iterations
harmonized_seurat <- RunUMAP(harmonized_seurat, reduction = "harmony", assay = "SCT", dims = 1:1
0)
## 21:45:33 UMAP embedding parameters a = 0.9922 b = 1.112
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
```

4G14130, AT1G72230

```
## 21:45:33 Using Annoy for neighbor search, n_neighbors = 30
## Found more than one class "dist" in cache; using the first, from namespace 'spam'
## Also defined by 'BiocGenerics'
## 21:45:33 Building Annoy index with metric = cosine, n trees = 50
## 0%
            20
                                    70
       10
                 30
                      40
                           50
                                60
                                         80
                                              90
                                                   100%
## [----|----|----|
## ***************
## 21:45:36 Writing NN index file to temp file /var/folders/gt/w451x6dd2xs29hm6r8jx9bph0000gn/T//
RtmpUtc8me/file107b50033bc0
## 21:45:37 Searching Annoy index using 1 thread, search_k = 3000
## 21:45:46 Annoy recall = 100%
## 21:45:47 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 3
## 21:45:48 Initializing from normalized Laplacian + noise (using RSpectra)
## 21:45:50 Commencing optimization for 200 epochs, with 1711102 positive edges
## 21:46:02 Optimization finished
harmonized seurat <- FindNeighbors(object = harmonized seurat, reduction = "harmony")
## Computing nearest neighbor graph
## Computing SNN
harmonized\_seurat \leftarrow FindClusters(harmonized\_seurat, resolution = c(0.6))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 42840
## Number of edges: 1305065
##
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9324
## Number of communities: 25
## Elapsed time: 7 seconds
saveRDS(harmonized seurat, "harmonized seurat2.rds")
```

21:45:33 Read 42840 rows and found 10 numeric columns

```
rm(merged_seurat)
rm(merged_seurat.1)
p1 <- DimPlot(harmonized_seurat, reduction = "umap", split.by = "sample_index")
p2 <- DimPlot(harmonized_seurat, reduction = "umap", label = TRUE, repel = TRUE)
p3 <- DimPlot(harmonized_seurat, reduction = "umap", split.by = "orig.type")
p1</pre>
```


p2

рЗ


```
rm(aldata_MTCTRM)
rm(alldatea)

## Warning in rm(alldatea): object 'alldatea' not found

rm(all_seurats)

## Warning in rm(all_seurats): object 'all_seurats' not found

rm(harmonized_seurat)

### Run label transfer

options(Seurat.memsafe=TRUE)
mB=max(30000,ceiling(as.numeric(object.size(sobj))/1000000000)*100)
print(paste("----- increasing max mem to",mB))
```

[1] "---- increasing max mem to 30000"

sobj <- readRDS("harmonized_seurat2.rds")</pre>

maxSize=mB*1024^2

```
##### functions
chop=function(myStr,mySep,myField){
  choppedString=sapply(strsplit(myStr,mySep),"[",myField)
  if(length(myField)>1){
    choppedString=apply(choppedString,2,function(x){paste0(x[!is.na(x)],collapse=mySep)})
  return(choppedString)
}
chop=function(myStr,mySep,myField){
  choppedString=sapply(strsplit(myStr,mySep),"[",myField)
  if(length(myField)>1){
    choppedString=apply(choppedString,2,function(x){paste0(x[!is.na(x)],collapse=mySep)})
  }
  return(choppedString)
}
parse_predictions <- function(predictions){</pre>
  predictions %>%
    tibble::rownames_to_column("cell")%>%
    mutate(numIDs=round(1/prediction.score.max))%>%
    rowwise()%>%
    mutate(prediction.score.second=sort(c across(3:(ncol(.)-2)),decreasing=T)[numIDs],
           second.id=gsub("\\.","-",gsub(",NA","",gsub("prediction.score.","",paste0(colnames(pre
dictions) [-1] [c across(3:(ncol(.)-2))>=prediction.score.second] [1:numIDs], collapse=","))))
    )%>%
    ungroup()%>%
    dplyr::select(predicted.id,prediction.score.max,prediction.score.second,second.id,numIDs,cel
1)%>%
    tibble::column_to_rownames("cell")
}
gc()
##
               used
                      (Mb) gc trigger
                                         (Mb) limit (Mb)
                                                           max used
                                                                       (Mb)
## Ncells
            9544537
                     509.8
                              15897987
                                                           15897987
                                                                      849.1
                                        849.1
## Vcells 604736036 4613.8 1167598896 8908.1
                                                  102400 1167598896 8908.1
sobj.lt <- readRDS("./sobj.lt.rds")</pre>
p1 <- DimPlot(sobj.lt, reduction = "umap", group.by = "orig.type")</pre>
p2 <- DimPlot(sobj.lt, reduction = "umap", group.by = "predicted.anno", label = TRUE, repel = TRU
```

E) +

p1

NoLegend()


```
###Label each cluster based on the top cluster labels

library(dplyr)
library(tidyverse)

cell_type <- read.csv("Top_label.csv")

sobj.lt$cell_type <- cell_type$cell_type[match(sobj.lt@meta.data$seurat_clusters, cell_type$seurat_clusters)]

###Remove the cluster with the cell number less than 10

sobj.lt.filter <- subset(sobj.lt, !(subset=seurat_clusters %in% c('19', '20', '21')))

p1 <- DimPlot(sobj.lt.filter, reduction = "umap", group.by = "cell_type", split.by = "orig.type", label = TRUE, repel = TRUE, pt.size = 1, label.size = 2)

p2 <- DimPlot(sobj.lt.filter, reduction = "umap", group.by = "cell_type", split.by = "sample_inde x", label = TRUE, repel = TRUE, pt.size = 1, label.size = 2)</pre>
```



```
library(data.table)
##
## Attaching package: 'data.table'
  The following object is masked from 'package:SummarizedExperiment':
##
##
       shift
   The following object is masked from 'package:GenomicRanges':
##
##
##
       shift
   The following object is masked from 'package: IRanges':
##
##
       shift
##
  The following objects are masked from 'package:S4Vectors':
##
##
       first, second
##
## The following objects are masked from 'package:lubridate':
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
##
       yday, year
   The following object is masked from 'package:purrr':
##
##
##
       transpose
   The following objects are masked from 'package:dplyr':
##
##
##
       between, first, last
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:GenomicRanges':
##
##
       subtract
## The following object is masked from 'package:purrr':
##
##
       set_names
```

```
## The following object is masked from 'package:tidyr':
##
##
       extract
library(dplyr)
md <- sobj.lt.filter@meta.data %>% as.data.table
count_cell <- md[, .N, by = c("sample_index", "cell_type")]</pre>
as.numeric(count cell$N)
##
    [1] 3889 1105 814 890 1302 1233 198 1161
                                                  22 1156 245 686 183 471 147
                                                                 38 2985 1275 1427
## [16]
         399
               98
                    74 6399 2284 1273 1066 1420 1317 180 1352
          82 2550 2030 807 1062 233
## [31]
count cell <- count cell %>%
  group_by(sample_index) %>%
  mutate(total cell = sum(N)) %>%
  ungroup() %>%
  mutate(percent cell = count cell$N/total cell*100)
p1 <- ggplot(count_cell, aes(cell_type, percent_cell, col=
sample index))+
  geom_point() +
  theme(text=element_text(size=6))
```

count_cell <- md[, .N, by = c("orig.type", "cell_type")]</pre>

mutate(percent_cell = count_cell\$N/total_cell2*100)
p2 <- ggplot(count_cell, aes(cell_type, percent_cell, col=</pre>

count_cell <- count_cell %>%
 group_by(orig.type) %>%

ungroup() %>%

geom_point() +

orig.type))+

p1

mutate(total_cell2 = sum(N)) %>%

theme(text=element_text(size=6))


```
#### To identify the known marker from previous literatures
####stele_specific markers

features = c("AT5G12870","AT1G79430","AT1G22710", "AT5G49270", "AT3G54220", "AT2G01830")

Idents(sobj.lt.filter) = "cell_type"

DotPlot(sobj.lt.filter, features = features) + RotatedAxis()
```


###ROOT HAIR specific
VlnPlot(sobj.lt.filter, features ="AT5G49270")

###SCR, endodermis
VlnPlot(sobj.lt.filter, features ="AT3G54220")

###The nonspecific expression of WOODENLEG (WOL)
VlnPlot(sobj.lt.filter, features =c("AT2G01830"))

##find marker for each cluster
sobj.lt.filter

```
## An object of class Seurat
## 65168 features across 41853 samples within 4 assays
## Active assay: RNA (33907 features, 1000 variable features)
## 2 layers present: counts, data
## 3 other assays present: SCT, prediction.score.anno, prediction.score.cluster
## 5 dimensional reductions calculated: pca, harmony, umap, ref., ref.umap
```

```
Idents(sobj.lt.filter)="cell_type"

markers_cluster=FindAllMarkers(object = sobj.lt.filter,min.pct = .25,logfc.threshold = log2(1.5),
    verbose=FALSE) %>% filter(p_val_adj<.05)</pre>
```

```
## For a (much!) faster implementation of the Wilcoxon Rank Sum Test,
## (default method for FindMarkers) please install the presto package
## ------
## install.packages('devtools')
## devtools::install_github('immunogenomics/presto')
## ------
## After installation of presto, Seurat will automatically use the more
## efficient implementation (no further action necessary).
## This message will be shown once per session
```

```
Top_maker_cluster <- markers_cluster %>%
    group_by(cluster) %>%
    slice_max(n = 3, order_by = avg_log2FC)

Top_maker_cluster <- filter(Top_maker_cluster, cluster == "Heat_shock")

p1 <- VlnPlot(sobj.lt.filter, features = Top_maker_cluster$gene, ncol =3)

p2 <- FeaturePlot(sobj.lt.filter, features = Top_maker_cluster$gene)

p1</pre>
```


write.csv(markers_cluster, "markers_cell_type")

####Finding differentially expressed features (cluster biomarkers)
library(clusterProfiler)

Warning: package 'clusterProfiler' was built under R version 4.3.2

##

clusterProfiler v4.10.0 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
##
If you use clusterProfiler in published research, please cite:
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and
G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovatio
n. 2021, 2(3):100141

```
##
## Attaching package: 'clusterProfiler'
```

```
## The following object is masked from 'package:IRanges':
##
## slice
```

```
## The following object is masked from 'package:S4Vectors':
##
##
       rename
## The following object is masked from 'package:purrr':
##
##
       simplify
## The following object is masked from 'package:stats':
##
##
       filter
library(enrichplot)
## Warning: package 'enrichplot' was built under R version 4.3.2
library(ggplot2)
df <- markers_cluster</pre>
# SET THE DESIRED ORGANISM HERE
organism = "org.At.tair.db"
# Continue detaching other packages
library(organism, character.only = TRUE)
## Loading required package: AnnotationDbi
##
## Attaching package: 'AnnotationDbi'
## The following object is masked from 'package:clusterProfiler':
##
##
       select
## The following object is masked from 'package:dplyr':
##
       select
##
##
```

```
library(organism, character.only = TRUE)
df <- filter(df, cluster == "Heat shock")</pre>
# we want the log2 fold change
original_gene_list <- df$avg_log2FC
# name the vector
unique(df$cluster)
## [1] Heat shock
## 9 Levels: Stele LRC Columella Trichoblast Cortex Endodermis ... Heat_shock
names(original_gene_list) <- df$gene</pre>
# omit any NA values
gene_list <- na.omit(original_gene_list)</pre>
# sort the list in decreasing order (required for clusterProfiler)
gene_list = sort(gene_list, decreasing = TRUE)
keytypes(org.At.tair.db)
##
   [1] "ARACYC"
                       "ARACYCENZYME" "ENTREZID"
                                                       "ENZYME"
                                                                      "EVIDENCE"
   [6] "EVIDENCEALL" "GENENAME"
                                       "G0"
                                                       "GOALL"
                                                                      "ONTOLOGY"
##
                                       "PMID"
## [11] "ONTOLOGYALL" "PATH"
                                                       "REFSE0"
                                                                      "SYMBOL"
## [16] "TAIR"
gse <- gseGO(geneList=gene_list,</pre>
             ont ="ALL",
             keyType = "TAIR",
             nPerm = 10000,
             minGSSize = 3,
             maxGSSize = 800,
             pvalueCutoff = 0.05,
             verbose = TRUE,
             OrgDb = organism,
             pAdjustMethod = "none")
## preparing geneSet collections...
## GSEA analysis...
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
```

Continue for other packages

```
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
## = minGSSize, : You are trying to run fgseaSimple. It is recommended to use
## fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
## in the fgsea function call.
```

```
## leading edge analysis...
```

###Dotplot
require(DOSE)

done...

Loading required package: DOSE

Warning: package 'DOSE' was built under R version 4.3.2

```
## DOSE v3.28.1 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
##
```

If you use DOSE in published research, please cite:

Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an R/Bioconductor package for D isease Ontology Semantic and Enrichment analysis. Bioinformatics 2015, 31(4):608-609

Goenrichment <- dotplot(gse, showCategory=8, split=".sign", font.size = 6) + facet_grid(.~.sign)
Goenrichment


```
gse.1 <- pairwise_termsim(gse)
p1 <- emapplot(gse.1, showCategory = 10, font.size = 2)
p1</pre>
```


'select()' returned 1:1 mapping between keys and columns

"ENTREZID", : 1.95% of input gene IDs are fail to map...

Warning in bitr(names(original_gene_list), fromType = "TAIR", toType =

```
# remove duplicate IDS (here I use "ENSEMBL", but it should be whatever was selected as keyType)
dedup_ids = ids[!duplicated(ids[c("TAIR")]),]
# Create a new dataframe df2 which has only the genes which were successfully mapped using the bi
tr function above
df2 = df[df$gene %in% dedup_ids$TAIR,]
# Create a new column in df2 with the corresponding ENTREZ IDs
df2$Y = dedup ids$ENTREZID
# Create a vector of the gene unuiverse
kegg_gene_list <- df2$avg_log2FC</pre>
# Name vector with ENTREZ ids
names(kegg_gene_list) <- df2$Y</pre>
# omit any NA values
kegg_gene_list<-na.omit(kegg_gene_list)</pre>
# sort the list in decreasing order (required for clusterProfiler)
kegg_gene_list = sort(kegg_gene_list, decreasing = TRUE)
kegg_organism = "ath"
kk2 <- gseKEGG(geneList
                            = kegg_gene_list,
                           = kegg_organism,
               organism
               nPerm
                            = 10000,
               minGSSize
                           = 3,
               maxGSSize
                            = 800,
               pvalueCutoff = 0.05,
               pAdjustMethod = "none",
               keyType
                             = "ncbi-geneid")
## Reading KEGG annotation online: "https://rest.kegg.jp/link/ath/pathway"...
## Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/ath"...
## Reading KEGG annotation online: "https://rest.kegg.jp/conv/ncbi-geneid/ath"...
## preparing geneSet collections...
## GSEA analysis...
## Warning in .GSEA(geneList = geneList, exponent = exponent, minGSSize =
## minGSSize, : We do not recommend using nPerm parameter incurrent and future
## releases
```

Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize
= minGSSize, : You are trying to run fgseaSimple. It is recommended to use
fgseaMultilevel. To run fgseaMultilevel, you need to remove the nperm argument
in the fgsea function call.

leading edge analysis...

done...

p1 <- dotplot(kk2, showCategory = 8, title = "Enriched Pathways" , split=".sign", font.size = 6)
+ facet_grid(.~.sign)</pre>

p1

Enriched Pathways

kk2.1 <- pairwise_termsim(kk2)

p2 <- emapplot(kk2.1)</pre>