Теоретическая информатика I Лекция 8: гамильтоновы циклы, теорема Брукса, раскраска рёбер, теорема Визинга*

Александр Охотин 31 октября 2016 г.

1 Гамильтоновы пути и циклы

Гамильтонов путь (цикл): простой путь (цикл), проходящий через все вершины графа. Головоломка: обойти вершины додекаэдра по его рёбрам (Гамильтон).

Теорема 1 (Дирак). Если в графе G = (V, E) с не менее чем тремя вершинами каждая вершина имеет степень не менее чем $\frac{|V|}{2}$, то в графе есть гамильтонов цикл.

Рис. 1: Вильям Гамильтон (1805–1865); Габриэль Дирак (1925–1984).

Доказательство. Пусть граф G=(V,E) удовлетворяет условию теоремы, но не имеет гамильтонова цикла. Граф насыщается рёбрами до тех пор, пока добавление любого недостающего ребра не станет приводить к образованию гамильтонова цикла. Пусть $\hat{G}=(V,\hat{E})$ — полученный граф.

В графе \widehat{G} есть гамильтонов путь, поскольку добавление любого ребра образует гамильтонов цикл, а после удаления добавленного ребра от цикла остаётся гамильтонов путь. Пусть этот путь $-v_1, v_2, \ldots, v_n$, где $V = \{v_1, v_2, \ldots, v_n\}$ и $(v_1, v_n) \notin E$.

Пусть этот путь $-v_1,v_2,\ldots,v_n$, где $V=\{v_1,v_2,\ldots,v_n\}$ и $(v_1,v_n)\notin E$. У вершины v_1 есть не менее $\frac{n}{2}$ соседей среди вершин $\{v_2,\ldots,v_{n-1}\}$, а у вершины v_n точно так же есть не менее $\frac{n}{2}$ своих. Пусть X — множество соседей v_1 , а Y — множество

^{*}Краткое содержание лекций, прочитанных в лаборатории им. Чебышёва СПбГУ в осеннем семестре 2016—2017 учебного года. Без посещения самих лекций в этом едва ли что-то возможно понять.

предшественников соседей v_n .

$$X = \{ v_i \mid (v_1, v_i) \in E \}$$

$$Y = \{ v_i \mid (v_{i-1}, v_n) \in E \}$$

Поскольку степень вершины v_1 не меньше чем $\frac{n}{2}$, множество X содержит не менее $\frac{n}{2}$ элементов; аналогично, из $\deg v_n \geqslant \frac{n}{2}$ следует $|Y| \geqslant \frac{n}{2}$. Поэтому у этих множеств непустое пересечение, то есть, существует пара соседних вершин v_i, v_{i+1} , с рёбрами (v_1, v_{i+1}) и (v_i, v_n) . Тогда гамильтонов цикл проводится с использованием этих рёбер, в обход ребра (v_i, v_{i+1}) .

2 Односвязные графы

Графы, которые односвязны, но не двусвязны.

 $\mathit{Toчкa\ coчленениs}\ (\mathrm{articulation\ point},\ \mathrm{cut\ vertex})$ — одноэлементное разделяющее множество.

 $Kомпоненты \ degcesshocmu$ (bi-connected components) или блоки (blocks) — максимальные двусвязные подграфы.

Пересечение двух блоков — или пустое, или одна точка сочленения.

Определение 1 (Дерево блоков и точек сочленения). Пусть G = (V, E) - cвязный граф, пусть $\{x_1, \ldots, x_m\} - e$ го точки сочленения. Двудольный граф G_{BC} : вершины — блоки и точки сочленения, ребра (x_i, B_j) , если $x_i \in B_j$.

Утверждается, что G_{BC} — всегда дерево. Если в G_{BC} есть цикл, то он проходит хотя бы через два блока; тогда соответствующий цикл проходит через эти же блоки в графе G, и, стало быть, эти два блока должны были бы быть одним блоком.

3 Снова раскраска графов: теорема Брукса

Граф G=(V,E) — граф, множество цветов C. Раскраска $c\colon V\to C$; правильная, если $c(v)\neq c(v')$ для всякого ребра (v,v').

Теорема 2 (Брукс [1941]). Пусть G = (V, E) - cвязный граф, не являющийся полным графом, в котором наибольшая степень вершины $-d \geqslant 3$. Тогда граф раскрашивается в d цветов.

Рис. 2: Леонард Брукс (Brooks) (1916–1993).

Доказательство Ловаса [1975]. Индукцией по числу вершин доказывается следующее утверждение: если в связном графе каждая вершина имеет степень не более чем d, и граф не совпадает с K_{d+1} , то он раскрашивается в d цветов.

В качестве базиса берётся случай двусвязного графа со всеми вершинами степени не менее 3, рассматриваемый ниже — это интересный случай. В остальных случаях граф легко разделяется на графы меньшего размера, раскрашиваемые по отдельности — и эти простые случаи составляют индукционный переход.

Индукционный переход. Первый случай: $spa\phi - deycessnuu u$ содержит вершину v степени 1 или 2. Тогда она удаляется, подграф $G\backslash\{v\}$ остаётся связным, и чтобы применить к нему предположение индукции, необходимо убедиться что этот подграф не совпадает с K_{d+1} . Для этого достаточно заметить, что у вершины v в графе G был хотя бы один сосед, степень которого не превосходила d. Теперь же, после удаления v, степень соседа не превышает d-1. Поэтому, граф $G\backslash\{v\}$ раскрашивается по предположению индукции, после чего вершина v возвращается и красится в один из свободных цветов.

Второй случай: $\mathit{гра}\phi - \mathit{не}$ $\mathit{двусвязный}$. Тогда в нём есть точка сочленения — вершина v, при удалении которой он распадается на компоненты связности $V_1, \ldots, V_k \subseteq V$, где $k \geqslant 2$. Для каждого подграфа на вершинах $V_i \cup \{v\}$ следует проверить, что он не совпадает с K_{d+1} . Для этого достаточно заметить, что степень вершины v в графе G не превосходит d, и при этом она соединена по меньшей мере k-1 ребром с другими компонентами связности. Стало быть, в подграфе на вершинах $V_i \cup \{v\}$ вершина v имеет степень не более чем d-1, и потому этот подграф — не K_{d+1} .

Тогда, по предположению индукции, этот и другие подграфы красятся отдельно, и потом цвета, в которые оказалась покрашена вершина v в каждой из этих раскрасок, переименоваются, чтобы соединить раскраски в одну.

Базис: $\mathit{гра}\phi - \partial \mathit{вусвязный}$. Если это полный граф K_ℓ , где $\ell \leqslant d$, то он красится в d цветов. Поэтому пусть это не полный граф.

Цель — показать, что в графе есть две несмежные вершины $u,v\in V$, соединённые рёбрами (u,w) и (v,w) с некоторой третьей вершиной w, причём после удаления u и v граф остаётся связным.

Если граф — даже **трёхсвязный**, то поскольку он не полный, в нём есть три вершины $u, w, v \in V$, соединённые рёбрами (u, w) и (w, v), но не имеющие ребра (u, v). После удаления u, v граф остаётся связным в силу трёхсвязности.

Пусть граф — двусвязный, но не трёхсвязный, и пусть v — вершина, которая смежна не со всеми остальными вершинами. Степень v не менее чем 3, поскольку случай вершины степени 2 был рассмотрен отдельно.

Если граф $G\setminus\{v\}$ остаётся двусвязным, то тогда существует вершина u на расстоянии 2 от v, а w — промежуточная вершина, как в случае трёхсвязного графа. Удаление вершины u, как и требуется, не нарушит связности.

Если же граф $G \setminus \{v\}$ — не двусвязный, то рассматривается дерево его блочной структуры. Удалённая вершина v имела соседей во всех крайних блоках: действительно, если бы в каком-то крайнем блоке B у неё не было соседей, то удалением точки сочленения B граф G разделялся бы — и, стало быть, не был бы двусвязным. Всего крайних блоков по меньшей мере два. Пусть B_1, B_2 — любые два крайних блока, пусть y_1, y_2 — их точки сочленения, и пусть $u_i \in B_i \setminus \{y_i\}$ — две вершины, смежные v в G. Тогда u_1 и u_2 несмежны. Их удаление не нарушает связности, поскольку это *крайние* блоки, а вершина v не окажется оторванной, поскольку $\deg v \geqslant 3$.

Тогда осталось доказать следующее утверждение.

Утверждение. Пусть в графе есть три вершини $u, w, v \in V$, соединённые рёбрами (u, w) u(w, v), но не имеющими ребра (u, v), и пусть после удаления u, v граф остаётся связным. Тогда граф можно раскрасить в d цветов.

Все вершины графа $G \setminus \{u,v\}$ перечисляются так: сперва $w_1 = w$, затем w_2 — один из соседей w, и далее, на каждом шаге, w_i — сосед одной из ранее перечисленных вершин. Наконец, вершины u,v помещаются в конец списка.

Далее, все вершины в списке красятся с конца. Сперва u и v получают цвет 1, затем каждая следующая вершина w_i получает такой цвет, которого нет у её уже покрашенных соседей. Поскольку у каждой вершины w_i в списке, где $i \geq 2$, один из её соседей находится в списке panbue, и поэтому число уже покрашенных соседей не превосходит k-1. Тогда w_i может быть покрашена в свободный цвет. В случае с вершиной w, стоящей первой в списке, два из её соседей, u и v, покрашены в один и тот же цвет, поэтому число различных цветов среди соседей w опять не превосходит k+1.

4 Раскраска рёбер

Граф G=(V,E) — граф, множество цветов C. Раскраска $c\colon E\to C$; правильная, если $c(e)\neq c(e')$ для всяких смежных рёбер e,e'. Иными словами, для каждого цвета, множество рёбер, раскрашенных в данный цвет — это napocouemanue.

Теорема 3 (Теорема Кёнига о раскраске рёбер). В двудольном графе $G = (V_1, V_2, E)$ существует правильная раскраска рёбер в Δ цветов, где Δ — наибольшая степень вершины.

Базис: такая же, как наибольшая, $\delta = \Delta$. Тогда это Δ -регулярный граф, и он удовлетворяет условию теоремы Холла. Действительно, всякое множество $U_1 \subseteq V_1$ соединено со своими соседками из V_2 ровно $\Delta \cdot |U_1|$ рёбрами, а так как у каждой соседки степень тоже Δ , этих соседок всего не менее чем $\frac{\Delta \cdot |U_1|}{\Delta} = |U_1|$.

По теореме Холла, в графе есть совершенное паросочетание. Рёбра паросочетания удаляются, остаётся $(\Delta-1)$ -регулярный двудольный граф, в нём опять есть совершенное паросочетание, и т.д. Полученные Δ непересекающихся паросочетаний образуют искомую раскраску рёбер графа \hat{G} .

Шаг индукции: $\delta < \Delta$. Пусть $G = (V_1, V_2, E)$ — граф. Сперва строится второй экземпляр этого же графа, с переменой мест долей: $G' = (V_2', V_1', E')$, где $V_i' = \{v' \mid v \in V_i\}$ и $E' = \{(v_1', v_2') \mid (v_1, v_2) \in E\}$. Эти два графа объединяются в граф $\widehat{G} = (V_1 \cup V_2', V_2 \cup V_1', E \cup E' \cup \widehat{E})$ где \widehat{E} содержит по ребру (v, v') для каждой вершины $v \in V_1 \cup V_2$ степени δ . В этом графе наибольшая степень вершины такая же, как и в G, а наименьшая — на единицу больше. Следовательно, его рёбра красятся, по предположению индукции. Из его раскраски извлекается раскраска рёбер G.

Теорема 4 (Визинг [1964]). Во всяком графе существует правильная раскраска рёбер в $\Delta + 1$ цвет, где Δ — наибольшая степень вершины.

Стало быть, рёбра всякого графа красятся или в Δ , или в $\Delta+1$ цветов. Название: графы класса 1, графы класса 2.

Основная часть доказательства теоремы Визинга заключена в следующей лемме.

Рис. 3: Вадим Визинг (род. 1937).

Лемма 1. Пусть G = (V, E) — граф, пусть v — вершина степени не более чем k, и пусть степень каждого из соседей v также не превосходит k, причём степень k достигается не более чем для одного из соседей v. Тогда, если рёбра графа $G \setminus \{v\}$ можно покрасить k цветов, то k цветов можно покрасить u рёбра графа G.

Доказательство. Базис, k=1: тогда v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1. Раскраска графа $G\setminus\{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индукционный переход. Пусть u_1, \ldots, u_m , где $m = \deg v$ — соседи вершины v в графе G, из которых u_1 имеет степень не более чем k, а u_1, \ldots, u_m — не более чем k-1. В графе $G' = G \setminus \{v\}$ они имеют степени не более чем k-1 и не более чем k-2, соответственно.

Пусть c — раскраска рёбер графа $G' = G \setminus \{v\}$ в цвета $\{1, \ldots, k\}$. Для доказательства удобно предположить, что степень u_1 в графе G' — ровно k-1, а степени всех вершин u_2, \ldots, u_m — ровно k-2. Если какие-то степени меньше, то можно добавить в граф G' дополнительные вершины, соединить их рёбрами с соседями c и произвольно раскрасить эти рёбра в свободные цвета 1 .

Рис. 4: Доказательство теоремы Визинга: (слева) вершина v и её соседи; (справа) образец компонентов связности графа $G'_{i,j}$, где $u_1 \notin X_i \cup X_j$ и $u_2, u_m \in X_i \setminus X_j$.

Для каждого цвета i, пусть $X_i \subseteq \{u_1, \ldots, u_m\}$ — подмножество всех соседей убранной вершины v, в которые ne nonadaem цвет i, то есть, никакие инцидентные им рёбра не раскрашены в этот цвет. Тогда вершина u_1 , имеющая степень k-1, попадает ровно в одно из множеств X_1, \ldots, X_k ; а вершины u_2, \ldots, u_m , степени k-2 каждая, стало быть, попадают

¹На лекции 24 октября указанные вершины и инцидентные им рёбра в совокупности именовались термином «безобразие». Этот термин не является общепринятым в теории графов.

ровно в два из этих множеств. Отсюда суммарное число элементов в этих множествах равно $\sum_{i=1}^k |X_i| = 2 \deg v - 1 < 2k$.

Пусть число вхождений каких-то двух цветов различается более чем на два, то есть, $|X_i| > |X_j| + 2$ (цвет i встречается реже). Тогда рассматривается подграф $G'_{i,j}$ графа G', образованный рёбрами, раскрашенными в цвета i и j. Каждый компонент связности в этом подграфе — это или простой путь, или простой цикл; в них чередуются i-рёбра и j-рёбра. Каждая вершина, не принадлежащая $X_i \cap X_j$, попадёт в один из этих компонентов связности

Тогда непременно найдётся компонент, в который попадёт больше вершин из X_i , чем вершин из X_j . Чтобы это произошло, этот компонент должен быть простым путём, начинающимся с j-ребра в одной из вершин из X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$. Тогда этот путь можно перекрасить, поменяв местами цвета i и j. При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Повторяя такое перекрашивание необходимое число раз, всякий раз применяя его к наиболее редкому цвету i и наиболее частому цвету j, можно добиться выполнения неравенства $||X_i|-|X_j||\leqslant 2$ для любых двух цветов. Далее, поскольку сумма $\sum_{i=1}^k |X_i|$ нечётна, хотя бы одно из её слагаемых должно быть нечётным. Отсюда, хотя бы одно слагаемое должно быть равно 1, поскольку в противном случае все слагаемые меньше или равны двум, и их сумма будет не менее чем 2k. Стало быть, $|X_i|=1$ для некоторого цвета i.

Пусть $X_i = \{u_\ell\}$, то есть, ни одно из рёбер G', инцидентных вершине u_ℓ , не покрашено в цвет i. Далее, строится граф $\widetilde{G} = (V, \widetilde{E})$, полученный из G удалением ребра (u_ℓ, v) , а также всех рёбер, покрашенных в G' в цвет i. Степень вершины v уменьшилась на единицу, и степени всех соседей v также уменьшились на единицу каждая — поэтому применимо предположение индукции, согласно которому, рёбра графа \widetilde{G} раскрашиваются в k-1 цветов. Остаётся вернуть все удалённые из G рёбра и покрасить их в цвет i.

Доказательство теоремы Визинга. Пусть G = (V, E) — граф, где $V = \{v_1, \ldots, v_n\}$, и пусть $\Delta = \max_i \deg v_i$. Пусть G_i — подграф G на вершинах v_1, \ldots, v_i . Утверждается, что рёбра каждого G_i можно раскрасить в $\Delta + 1$ цветов. Индукция по i.

Базис: G_1 — это одинокая вершина, раскрасить можно.

Шаг индукции: если G_{i-1} можно раскрасить, то, по лемме для графа G_i , вершины $v=v_i$ и числа $k=\Delta+1$, граф G_i тоже можно раскрасить в $\Delta+1$ цветов.

Список литературы

- [1941] R. L. Brooks, "On colouring the nodes of a network", Mathematical Proceedings of the Cambridge Philosophical Society, 37:2 (1941), 194–197.
- [1975] L. Lovász, "Three short proofs in graph theory", Journal of Combinatorial Theory, Series B, 19:3 (1975), 269–271.
- [1964] В. Г. Визинг, "Об оценке хроматического класса р-графа", сб. Дискретный анализ, Новосибирск, ИМ СО АН СССР, 1964, т. 3. стр. 25–30.