

Pneumonia Detection Using Deep Learning

목차

- 1. 프로젝트 주제 소개
- 2. 데이터 준비 과정
- 3. 데이터 시각화
- 4. 모델 생성
- 5. 모델훈련 및 성능검증
- 6. 모델성능 올리기

프로젝트 주제 소개

프로젝트 주제 소개: X-Ray 이미지를 통한 폐렴 진단

데이터 세트는 3개의 폴더(train, test, val)로 구성

5,863개의 X-Ray 이미지(JPEG)와 2개의 카테고리(폐렴/정상)

광저우 여성 아동 의료 센터의 1~5세 소아 환자의 데이터

두 명의 전문 의사가 등급을 매김

채점 오류를 설명하기 위해 세 번째 전문가도 평가 세트를 확인

X-Ray 이미지를 통한 폐렴 정보 설명

정상 흉부 X-Ray(왼쪽 패널)는 영상에서 비정상적인 혼탁이 없는 깨끗한 폐를 보여줍니다.

세균성 폐렴(가운데)은 전형적으로 국소적 엽성 경화를 나타내며, 이 경우 오른쪽 상엽(흰색 화살표)에 있는 반면, 바이러스성 폐렴(오른쪽)은 양쪽 폐에서 보다 확산된 "간질"패턴으로 나타냅니다.

데이터 시각화

데이터 시각화 - 데이터 개수

```
train = get_training_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/train')
test = get_training_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/test)
val = get_training_data('../input/chest-xray-pneumonia/chest_xray/chest_xray/val)
```

```
pirint('train:', len(train), '/', 'test:', len(test), '/', 'val:', len(val), '/', 'sum:', len(train) + len(test) + len(val)
```

train: 5216 / test: 624 / val: 16 / sum: 5856

데이터 시각화 - count plot


```
print(I.count("Pneumonia"), I.count("Normal"))
```

390 234

print(III.count("Pneumonia"), III.count("Normal"))

데이터 시각화

plt.figure(figsize = (5, 5)) plt.imshow(train[500][0], cmap='gray') plt.title(labels[train[500][1]])

plt.figure(figsize = (5, 5)) plt.imshow(train[-2][0], cmap='gray') plt.title(labels[train[-2]]1]])

plt.figure(figsize = (5, 5)) plt.imshow(test[50][0], cmap='gray') plt.title(labels[test[50][1]])

plt.figure(figsize = (5, 5)) plt.imshow(test[-2][0], cmap='gray') plt.title(labels[test[-2]]1]])

plt.figure(figsize = (5, 5)) plt.imshow(val[0][0], cmap='gray') plt.title(labels[val[0][1]])

plt.figure(figsize = (5, 5)) plt.imshow(val[-2][0], cmap='gray') plt.title(labels[val[-2]]1]])

데이터 전처리

데이터 전처리 - 정규화, Augmentation

With data augmentation to prevent overfitting and handing the imbalance in dataset

```
# Normalize the data
x_train = np.array(x_train) / 255
x_val = np.array(x_val) / 255
x_test = np.array(x_test) / 255
```

```
datagen = ImageDataGenerator(rocation_range = 30, # randomly rotate images in the range(degrees, 0 to 180)

zoom_range = 0.2, # Randomly zoom image

width_shift_range = 0.1, # randomly shift images horizontally (fraction of total width)

height_shift_range = 0.1, # randomly shift images vertically (fraction of total height)

horizontal flip = True, # randomly flip images
```

vertical flip = True) # randomly flip images

datagen.fit(x train)

모델 생성

모델 생성 - VGGNet, GoogleNet, Resnet

VGGNet

GoogleNet

```
20/20 [============] - 1s 16ms/step - loss: 0.3029 - accuracy: 0.8798 Loss of the model is - 0.30293580889701843 20/20 [=========] - 0s 16ms/step - loss: 0.3029 - accuracy: 0.8798 Accuracy of the model is - 87.9807710647583 %
```

Resnet

```
20/20 [========] - 62s 35ms/step - loss: 0.3466 - accuracy: 0.9054 Loss of the model is - 0.346641480922699 20/20 [========] - 1s 36ms/step - loss: 0.3466 - accuracy: 0.9054 Accuracy of the model is - 90.54487347602844 %
```


Resnet50 전이학습

```
base_model = ResNet50(weights=None, include_top=False, input_shape = (150,150,1))
base model.summary()
model = Sequential()
model.add(base model)
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer = 'adam' , loss = 'binary_crossentropy' , metrics = ['accuracy'])
```

실행결과

캐글 성능 1위 모델

```
model = Sequential()
model.add(Conv2D(32, (3,3), strides = 1, padding = 'same', activation = 'relu', input shape = (150,150,1)))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(64, (3,3), strides = 1, padding = 'same', activation = 'relu'))
model.add(Dropout(0.1))
model.add (BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(64 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(128 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Conv2D(256 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
model.add(Flatten())
model.add(Dense(units = 128 , activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(units = 1 , activation = 'sigmoid'))
model.compile(optimizer = "rmsprop" , loss = 'binary crossentropy' , metrics = ['accuracy'])
model.summary()
```

모델 성능 개선

파라미터 조정 - 캐글 성능 1위 모델

rotation_range = 30 -> 60, vertical_flip = False -> True

vertical_flip = False -> True

zoom_range = 0.2 -> 0.1, width_shift_range = 0.1 -> 0.2, height_shift_range = 0.1 -> 0.2

vertical_flip = False -> True, model optimizer = rmsprop -> Adam

vertical_flip = False -> True, epochs = 12 -> 15

epochs = 25

epochs = 35

epochs = 30

랜덤 시드를 고정. Augmentation 과정은 어쩔 수 없음.

dropout (0.2, 0.2, 0.2 -> 0.1, 0.2, 0.3) 가중치의 개수에 따라 바꿈.

- 데이터 로그 변환 (clear)
- loss 함수 설정 -> Binary Cross Entropy, Categorical Cross Entropy, Sparse Categorical Cross

파라미터 조정 - epoch, learning rate 조절

learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience = 4, verbose=1, factor=0.2, min_lr=0.00000001)

history = model.fit(datagen.flow(x_train,y_train, batch_size = 32) ,epochs = 35 , validation_data = datagen.flow(x_val, y_val) ,callbacks = [learning_rate_reduction])

 $print("Loss of the model is - " , model.evaluate(x_test,y_test)[0]) \\ print("Accuracy of the model is - " , model.evaluate(x_test,y_test)[1]*100 , "%")$

624/624 [========] - 0s 458us/step Loss of the model is - 0.2585679814219475 624/624 [==========] - 0s 450us/step Accuracy of the model is - 92.78846383094788 %

모델 훈련 결과 시각화

모델 훈련 결과 시각화

	precision	recall	f1-score	support
Pneumonia (Class 0) Normal (Class 1)	0.93 0.92	0.95 0.89	0.94 0.90	390 234
accuracy macro avg weighted avg	0.93 0.93	0.92 0.93	0.93 0.92 0.93	624 624 624

