Aula 01 - Conceitos fundamentais

Estatística Descritiva

Stefano Mozart 12/02/2025

Sumário

- Apresentação
- Conceitos fundamentais
- Prática

Apresentação

Stefano Mozart

Cientista de dados no Conselho Administrativo de Defesa Econômica, atuando no combate a cartéis e outras práticas anticompetitivas com o uso de modelos econométricos e estatísticos.

Disclaimer:

O conteúdo deste curso reflete apenas a visão pessoal do autor e, portanto, não representa a posição oficial do Cade ou de qualquer outra entidade do Governo Federal.

Método de ensino:

- Aulas expositivas (8 aulas, no total), seguidas de exemplos e exercícios práticos;
- Os exercícios serão realizados em aula, com auxílio do professor e de monitores;

□ Avaliação:

- Trabalho final consistindo de apresentação, composta por caderno de análise e vídeo expositivo, de um conjunto de dados à escolha do aluno;
- Os exercícios contribuirão para a realização do trabalho final, por isso recomenda-se a escolha do conjunto de dados o quanto antes.

Estrutura do Curso

Material

Programa da disciplina:

https://docs.google.com/document/d/17YDqld6qE9PeF57uk8CzDxlx FzTHYITmBXGPq5wddRQ/edit?usp=sharing

□ Ambiente de prática/exercícios:

- Serviço com Jupyter Notebook publicamente acessível (para permitir interação e correção dos exercícios, bem como avaliação do trabalho final);
- Grupo do WhatsApp, para facilitar a comunicação com o professor e os monitores durante a realização de exercícios;
- Cadernos Jupyter com exercícios e exemplos, no repositório git do curso: https://github.com/stefanomozart/estatistica_descritiva

Bibliografia básica:

ed.

- BUSSAB W. MORETTIN, P. Estatística Básica. São Paulo: ED Atual, 1986, 3ª ed.
- McKINNEY, W. Python Para Análise de Dados: Tratamento de Dados com Pandas, NumPy & Jupyter. São Paulo: Novatec Editora, 2023, 3ª
- YWATA, A. X; CAJUEIRO, D. O; CAMARGO, R. S. Introdução aos Métodos Estatísticos Para Economia e Finanças. Brasília: Editora UnB, 2015, 1ª ed.

Conceitos fundamentais

Estatística

É a disciplina que se ocupa da coleta, organização, análise, interpretação e apresentação de dados a fim de dar suporte ao entendimento de fenômenos complexos, à previsão de eventos futuros e à tomada de decisão.

Estatística descritiva:

- Ramo da estatística que foca na descrição e sumarização de conjuntos de dados.
- Envolve a coleta, tabulação e a apresentação de dados de modo que seja possível fornecer uma visão compreensível de informações através de tabelas, gráficos e medidas numéricas.

Estatística Inferencial:

- □ Foca em técnicas que produzem generalizações acerca de uma população a partir de uma amostra de dados.
- Utiliza modelos probabilísticos com o fim de produzir de estimativas, testar hipóteses e inferir comportamentos futuros, ou que extrapolem os limites amostrais, para as variáveis analisadas.

População

Totalidade de indivíduos ou elementos de interesse: que são objeto de estudo ou que possuem uma característica em comum.

- Finita (e.g. todos os habitantes de uma cidade);
- Infinita (todos os produtos com uma certa classificação CGCE/IBGE);
- Teórica (possíveis observações em 50 lançamentos simultâneos de três dados);
- Concreta (pacientes tratados com um determinado medicamento);
- \Box Alvo (estudantes com renda mensal per capita inferior a R\$ 300,00);
- Acessível (estudantes com renda mensal per capita inferior a R\$ 300,00 que informaram sua renda e forneceram dados para contato);

Amostra

□ Amostra:

- Subconjunto representativo da população, selecionado para viabilizar a análise sem a necessidade de arrolar a totalidade dos elementos de interesse.
- As medidas estatísticas observadas na amostra viabilizam a realização de estimativas confiáveis para as medidas populacionais;

□ Amostragem:

Técnica empregada na seleção/arrolamento dos elementos da amostra.

Amostragem

Aleatória Simples (AAS):

Cada membro da população tem igual probabilidade de ser escolhido. A seleção é completamente ou *quasi*-aleatória, o que pode ser feito com suporte de tabelas de números aleatórios ou software gerador de números aleatórios ou pseudo-aleatórios.

Estratificada:

A população é dividida em estratos, ou grupos, que são homogêneos em relação a alguma característica. Uma amostra aleatória simples é então retirada de cada estrato. Este método assegura que cada categoria da população seja adequadamente representada na amostra final.

A partir de um ponto de partida aleatório, são selecionados elementos em intervalos regulares. Por exemplo, em uma lista de 1.000 pessoas, pode-se escolher uma pessoa a cada 10 para formar uma amostra de 100 pessoas.

Amostragem

Por Conglomerados:

A população é dividida em conglomerados que são representativos da população inteira. Alguns desses conglomerados são selecionados aleatoriamente e todos os elementos dentro dos conglomerados escolhidos são incluídos na amostra. Este método é muitas vezes usado quando a população é geograficamente dispersa.

Multi-estágio:

Método que pode combinar diferentes técnicas de amostragem probabilística, especialmente estratificação e clusterização, em sequência:

- Geralmente associada censos e outros grandes estudos;
- Introduz bastante complexidade nos cálculos de erros amostrais e intervalos de confiança;

Amostragem

Não Probabilística:

Método ou heurística sem suporte de processos aleatórios:

- Amostragem por Conveniência: seleção de elementos mais fáceis de acessar.
- Amostragem por Julgamento ou Intencional: critérios de utilidade ou representatividade para a análise.
- Amostragem por Quotas: busca garantir que certas características sejam representadas na amostra em proporções semelhantes à população.
- Amostragem Bola de Neve: indivíduos indicam novos participantes;

Variável

Uma característica, ou atributo, associada a cada elemento de uma população ou amostra. Também pode ser entendida como qualquer dimensão do conjunto de dados em análise que permite medir e expressar características de interesse de forma quantificável.

- Essas características podem se apresentar de diversas formas, manifestando uma natureza qualitativa ou quantitativa;
- Identificar e classificar corretamente as variáveis é crucial para o sucesso de qualquer análise estatística, pois isso influencia desde o design da coleta de dados até as técnicas de análise e a interpretação dos resultados;
 - □ Na coleta, a definição das variáveis garante a precisão e relevância dos dados, tendo em vista as perguntas de pesquisa;
 - Na análise, a correta interpretação e comunicação das variáveis ajuda tanto a moldar quanto a comunicar resultados;

Variável qualitativa

Informação de natureza categórica, não quantificável. Tem forte relação com a análise de frequência e de distribuição de frequência.

- Nominal: Representam categorias sem qualquer ordem natural entre elas. A definição da variável é complicada pelo fato de que elementos podem ser associados a um ou mais valores. Exemplos incluem cor dos cabelos, gênero, ocupação, nacionalidade.
- Ordinal: Semelhantes às variáveis nominais, mas com uma ordem ou hierarquia definida. Elementos podem estar associados a apenas um valor. Exemplos incluem níveis de educação (fundamental, médio, superior); e classificações de percepção de qualidade (uma, duas, três estrelas) ou intensidade (discordo totalmente, discordo, etc);

Variável quantitativa

Informação de natureza numérica que quantifica uma característica do elemento. São fundamentais numa análise estatística descritiva, uma vez que permitem a aferição direta de medidas estatísticas.

- ☐ **Discreta:** Assumem valores inteiros ou contáveis. Geralmente resultam de processos de contagem e têm um número finito ou enumerável de valores possíveis. Exemplos incluem o número de filhos, número de carros em um estacionamento.
- □ **Contínua:** Podem assumir qualquer valor dentro de um intervalo contínuo. Geralmente resultam de medições e podem incluir valores fracionários. Exemplos incluem altura, peso, temperatura;
- Obs.: Toda variável quantitativa pode ser expressa na forma de uma variável qualitativa por meio da especificação de intervalos;

Frequência

Quantidade de observações de um valor específico para uma variável. Obtida a partir da simples contagem das observações na amostra, permite a identificação de padrões, bem como da existência de eventos anômalos, a partir da esporadicidade ou raridade de certas observações.

□ Absoluta:

Número exato de vezes que um valor específico aparece em um conjunto de dados.

☐ Relativa:

Proporção ou porcentagem de ocorrências de um valor específico frente ao total de observações. É calculada dividindo a frequência absoluta pelo total de elementos.

□ Frequência Acumulada:

Soma das frequências de todas as classes anteriores até a classe atual. Ajuda a entender quantas observações recaem em intervalos ou categorias.

Distribuição de Frequência

Uma sumarização ou tabulação dos dados brutos que tem por objetivo demonstrar como as observações são distribuídas ao longo de diferentes categorias ou intervalos numéricos.

- Para variáveis quantitativas, os valores são agrupados em intervalos (também conhecidos como bins).
- Para variáveis qualitativas, as categorias são geralmente definidas pelas próprias características dos dados (os distintos valores admitidos ou efetivamente observados para cada variável).
- □ É crucial para determinar a forma da distribuição dos dados, como simetria, assimetria e a presença de modas.

Medidas estatísticas

Valores numéricos calculados a partir de um conjunto de dados com o objetivo de resumir ou descrever características relevantes desses dados. Em última instância, essas medidas visam dar suporte à compreensão de características da população representada.

- Medidas de Tendência Central:
 - Média;
 - Mediana;
 - Moda;
- Medidas de Dispersão:
 - Variância;
 - Desvio Padrão;
 - Amplitude;
 - Intervalo Interquartílico (IIQ);

- Medidas de Posição:
 - Quartis;
 - Decis
 - Percentis;
 - Quantis;
- Medidas de Forma:
 - Curtose;
 - Assimetria;
- Medidas de Relação:
 - Covariância;
 - Correlação.

Viés

Distorção sistemática que ocorre durante a coleta, organização ou análise dos dados, levando a uma representação imprecisa ou não representativa da realidade ou da população estudada. Esse erro não é fruto do acaso, mas sim de falhas nos métodos de amostragem, registro ou apresentação.

- Viés de Seleção: Quando a amostra escolhida não representa adequadamente a população, fazendo com que os resultados figuem sistematicamente distorcidos.
- Viés
 Quando os instrumentos ou métodos de coleta de dados possuem falhas ou imprecisões que afetam consistentemente as medições.
- Quando a forma de organizar ou exibir os dados enfatiza ou minimiza certas características, podendo levar a interpretações equivocadas.

Prática

Tópicos para discussão:

- Qual é a utilidade da estatística descritiva na análise de políticas públicas?
- Qual a importância de uma amostra representativa?
- Quais os desafios mais relevantes no levantamento de uma amostra representativa?
- Em que situações, no contexto da análise de políticas públicas, cada técnica de amostragem pode ser mais apropriada?
- Quais seriam os maiores desafios para definição, coleta e análise de dados em políticas públicas?

Fontes de dados:

- https://dados.gov.br/dados/conjuntos-dados (exige autenticação com Gov.br)
- https://sidra.ibge.gov.br/
- https://basedosdados.org
- https://github.com/stefanomozart/estatistica_descritiva/tree/main/dados/originais
- □ Sugestões?

"Statistics is the grammar of Science"

Karl Pearson

Obrigado

Stefano Mozart

linkedin.com/in/stefano-mozart/ github.com/stefanomozart

