10/773536

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 59 168.0

Anmeldetag:

17. Dezember 2003

Anmelder/Inhaber:

ROBERT BOSCH GMBH,

70469 Stuttgart/DE

Bezeichnung:

Verfahren und Vorrichtung zum Starten einer

Brennkraftmaschine

Priorität:

10.02.2003 DE 103 05 324.7

IPC:

F 02 N 17/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 05. Februar 2004 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Stark

12.12.03 St/Kei

5

10

15

20

ROBERT BOSCH GMBH, 70442 Stuttgart

Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine

Stand der Technik

Die Erfindung geht von einem Verfahren und von einer Vorrichtung zum Starten einer Brennkraftmaschine nach der Gattung der unabhängigen Ansprüche aus.

Aus der DE 196 45 943 A1 ist bereits eine Startereinheit für eine Brennkraftmaschine bekannt. Diese erlaubt zwei verschiedene Startmethoden. Die eine Startmethode ist ein Impulsstart und die andere ein Direktstart. Beide Startmethoden sind anlasserfreie Startmethoden. Dabei wird der Impulsstart vorzugsweise bei kaltem Motor mit der Energie einer Schwungmasse durchgeführt und der Direktstart kommt bei warmem Motor, zum Beispiel bei Ampelhalts, zum Zuge. Dabei wird die jeweils günstigste Startmethode, abhängig von der Temperatur der Brennkraftmaschine, selbsttätig ausgewählt.

25^k

Aus der DE 197 43 492 A1 ist ein Verfahren zum Starten einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, bekannt. Die Brennkraftmaschine ist mit einem in einem Zylinder bewegbaren Kolben versehen, der eine Ansaugphase, eine Verdichtungsphase, eine Arbeitsphase und eine Ausstoßphase durchlaufen kann. Des weiteren ist ein Steuergerät vorgesehen, mit dem der Kraftstoff entweder in einer ersten Betriebsart während einer Verdichtungsphase oder in einer zweiten Betriebsart während einer Ansaugphase direkt in einem von dem Zylinder und dem Kolben begrenzten Brennraum eingespritzt werden kann. Das Steuergerät ist derart ausgebildet, dass zum Starten der Kraftstoff in einer ersten Einspritzung in denjenigen Brennraum direkt einspritzbar ist, dessen zugehöriger Kolben sich in der Arbeitsphase befindet.

35

Vorteile der Erfindung

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung mit den Merkmalen der unabhängigen Ansprüche haben demgegenüber den Vorteil, dass für einen Startwunsch geprüft wird, ob die anlasserfreie Startmethode zu einem erfolgreichen Start der Brennkraftmaschine führt, und dass für den Fall, in dem das Prüfergebnis negativ ist, die Brennkraftmaschine automatisch mittels eines Anlassers gestartet wird. Auf diese Weise wird sichergestellt, dass der Startwunsch auch dann umgesetzt werden kann, wenn die anlasserfreie Startmethode nicht erfolgreich ist, ohne dass dazu ein Benutzereingriff erforderlich ist. Somit lässt sich auch bei Nichtdurchführbarkeit oder Versagen der im Vergleich zum Anlasserstart vergleichsweise schnellen anlasserfreien Startmethode dennoch eine Umsetzung des Startwunsches ohne weitere Aktion des Benutzers unter Verwendung des Anlassers sicherstellen. Somit lässt sich ein schneller und komfortabler Start der Brennkraftmaschine unter allen Betriebsbedingungen der Brennkraftmaschine realisieren.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich.

Besonders vorteilhaft ist es, wenn die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Temperatur der Brennkraftmaschine, vorzugsweise einer Öltemperatur, durchgeführt wird. Auf diese Weise liegt mit der Temperatur der Brennkraftmaschine ein zuverlässiges Kriterium vor, anhand dessen bereits vor dem Start festgestellt werden kann, ob die anlasserfreie Startmethode zu einem erfolgreichen Start der Brennkraftmaschine führen wird, so dass bei negativem Prüfergebnis gleich der Anlasserstart verwendet und somit keine Zeit für einen erfolglosen anlasserfreien Start verloren wird.

Ein weiterer Vorteil ergibt sich, wenn die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Drehzahl der Brennkraftmaschine durchgeführt wird. Auf diese Weise kann bei Wahl des anlasserfreien Starts bereits in einer frühen Startphase erkannt werden, ob der anlasserfreie Start erfolgreich ist und somit bei negativem Prüfergebnis frühzeitig automatisch auf den Anlasserstart umgeschaltet werden, so dass der durch den begonnenen anlasserfreien Start bewirkte Zeitverlust minimal ist.

5

10

15

20

30

Ferner lässt sich auf diese Weise für den Fall, in dem nach dem Abschalten der Brennkraftmaschine aber noch während des Motorauslaufs der Brennkraftmaschine, ein erneuter Startwunsch detektiert wird, ein schneller und komfortabler Wiederstart der Brennkraftmaschine bei allen Betriebsbedingungen der Brennkraftmaschine, insbesondere bei allen möglichen Drehzahlen während des Motorauslaufs der Brennkraftmaschine, durchführen.

10

5

15

20

30

Ein weiterer Vorteil ergibt sich, wenn bei Versagen eines eingeleiteten Anlasserstarts die Brennkraftmaschine automatisch wieder mittels der anlasserfreien Startmethode gestartet wird. Auf diese Weise steht auch bei Versagen des Anlasserstarts mit der anlasserfreien Startmethode ein weiterer Startversuch zu Verfügung, der ohne Aktion des Benutzers eingeleitet werden kann und somit Zeitverlust verhindert und den Bedienkomfort erhöht.

Ein weiterer Vorteil ergibt sich, wenn die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Position einer Kurbelwelle der Brennkraftmaschine durchgeführt wird. Auf diese Weise ist, wie auch im Falle der Auswertung der Temperatur der Brennkraftmaschine, ein Kriterium gegeben, das bereits vor Beginn des anlasserfreien Starts eine Einschätzung der Erfolgsaussicht des anlasserfreien Starts ermöglicht und somit bei negativem Prüfergebnis ohne Zeitverlust unmittelbar der Anlasserstart gewählt werden kann.

Besonders vorteilhaft ist es, wenn als anlasserfreie Startmethode eine Direktstartmethode gewählt wird, bei der mittels einer Benzindirekteinspritzung direkt gestartet wird. Auf diese Weise wird bei der Direktstartmethode das Bordnetz nicht belastet.

Besonders vorteilhaft ist es, wenn im Falle eines Einleitens der anlasserfreien Startmethode geprüft wird, ob dieser anlasserfreie Start erfolgreich ist, und dass bei Versagen des anlasserfreien Starts die Brennkraftmaschine automatisch wieder mittels des Anlassers gestartet wird. Auf diese Weise lässt sich auch nach bereits eingeleitetem anlasserfreien Start bei dessen Versagen sicher stellen, dass die Brennkraftmaschine ohne weitere Aktion des Benutzers mit Hilfe des Anlassers gestartet wird. Dies erhöht den Komfort für den Benutzer und verhindert Zeitverlust, der sich auf Grund einer Startbetätigung des Benutzers ergeben würde.

Ein weiterer Vorteil ergibt sich, wenn der Startwunsch bei Betätigung eines Bedienelementes, vorzugsweise eines Fahrpedals, bei ausgeschalteter Brennkraftmaschine detektiert wird. Auf diese Weise lässt sich ein Start-Stopp-Betrieb der Brennkraftmaschine realisieren, ohne dass für den Start der Brennkraftmaschine beispielsweise zusätzlich ein Zündschlüssel betätigt werden muss. Dies erhöht den Komfort der Bedienung und verringert den Zeitverlust beim Starten der Brennkraftmaschine.

Vorteilhaft ist weiterhin, dass im Falle eines Startwunsches nach einem Abschalten der Brennkraftmaschine geprüft wird, ob die Drehzahl der Brennkraftmaschine in einem ersten vorgegebenen Bereich liegt, und dass in diesem Fall die Brennkraftmaschine anlasserfrei gestartet wird. Auf diese Weise lässt sich die Brennkraftmaschine schnellstmöglich und komfortabel wieder starten, wenn nach dem Abschalten der Brennkraftmaschine aber noch während des Motorauslaufs der Brennkraftmaschine ein erneuter Startwunsch detektiert wird.

Ein weiterer Vorteil ergibt sich, wenn bei einer Drehzahl der Brennkraftmaschine in einem zweiten vorgegebenen Bereich, der unterhalb des ersten vorgegebenen Bereichs liegt, die Brennkraftmaschine durch sofortigen Anlassereingriff gestartet wird. Auf diese Weise lässt sich auch für den Fall, in dem nach dem Abschalten der Brennkraftmaschine aber noch während des Motorauslaufs der Brennkraftmaschine, jedoch bei geringerer Drehzahl ein erneuter Startwunsch detektiert wird, die Brennkraftmaschine schnellstmöglich wieder starten, wenn auch mit etwas größerem Aufwand auf Grund des Anlassereingriffs.

Ein weiterer Vorteil ergibt sich, wenn bei einer Drehzahl der Brennkraftmaschine in einem dritten Bereich, der unterhalb des zweiten vorgegebenen Bereichs liegt, die Brennkraftmaschine nach dem Auslaufen der Brennkraftmaschine durch Anlassereingriff gestartet wird. Auf diese Weise wird für den Fall, in dem nach dem Abschalten der Brennkraftmaschine aber noch während des Motorauslaufs der Brennkraftmaschine, jedoch bei für einen sofortigen Anlasserstart zu geringer Drehzahl ein erneuter Startwunsch detektiert wird, der herkömmliche Anlasserstart von der Drehzahl Null aus durchgeführt.

Zeichnung

10

5

20

25

30

Ausführungsbeispiele der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.

Es zeigen 5 Figur 1 eine schematische Ansicht einer Brennkraftmaschine gemäß einer ersten Ausführungsform, Figur 2 eine schematische Ansicht einer Brennkraftmaschine gemäß einer zweiten Ausführungsform, 10 Figur 3 ein Blockschaltbild einer erfindungsgemäßen Vorrichtung, Figur 4 einen Ablaufplan für einen ersten beispielhaften Ablauf des erfindungsgemäßen Verfahrens, Figur 5 ein Drehzahl-Zeit-Diagramm für einen ersten beispielhaften Startvorgang eines Verbrennungsmotors, Figur 6 15 ein Drehzahl-Zeit-Diagramm für einen zweiten beispielhaften Startvorgang eines Verbrennungsmotors und Figur 7 einen Ablaufplan für einen zweiten beispielhaften Ablauf des erfin-

dungsgemäßen Verfahrens.

Beschreibung der Ausführungsbeispiele

20

30

35

In Figur 1 kennzeichnet 1 eine Brennkraftmaschine, beispielsweise eines Kraftfahrzeugs. Die Brennkraftmaschine 1 umfasst einen Verbrennungsmotor 65, der beispielsweise als Otto-Motor oder als Diesel-Motor ausgebildet sein kann. Im Folgenden wird beispielhaft angenommen, dass der Verbrennungsmotor 65 als Otto-Motor ausgebildet ist. Dem Verbrennungsmotor 65 ist über eine Luftzufuhr 45 Frischluft zugeführt. Die Größe des Luftmassenstroms kann über eine Drosselklappe 50 in der Luftzufuhr 45 eingestellt werden. Der Bereich der Luftzufuhr 45, der zwischen der Drosselklappe 50 und dem Verbrennungsmotor 65 liegt, wird auch als Saugrohr 55 bezeichnet. Über ein Einspritzventil 25 wird Kraftstoff direkt in einen Brennraum eines Zylinders 95 des Verbrennungsmotors 65 eingespritzt. Der Verbrennungsmotor 65 kann dabei einen oder mehrere Zylinder umfassen. Mittels einer Zündkerze 60 wird das im Brennraum des Zylinders 95 befindliche Luft-/Kraftstoff-Gemisch gezündet. Dies führt zum Antrieb eines Kolbens des Zylinders 95, der wiederum eine Kurbelwelle 10 des Verbrennungsmotors 65 antreibt. Das verbrannte Abgas wird über einen Abgasstrang 70 vom Verbrennungsmotor 65 weg-

zur ersten Ausführungsform nach Figur 1 ist bei der zweiten Ausführungsform nach Figur 2 zusätzlich ein Startergenerator 30 vorgesehen, der alternativ zum Anlasser 5 die Kurbelwelle 10 beim Start der Brennkraftmaschine 1 antreiben und auf eine vorgegebene Drehzahl bringen kann.

5

Für den Fall, dass der Verbrennungsmotor 65 als Diesel-Motor ausgebildet ist, ist die Zündkerze 60 und die Drosselklappe 50 bei beiden Ausführungsformen nicht vorgesehen. Die Umsetzung des Bedienerwunschmomentes wird in diesem Fall allein durch Einstellung der Kraftstoffeinspritzmenge realisiert.

10

Im Folgenden soll jedoch beispielhaft angenommen werden, dass der Verbrennungsmotor 65 als Otto-Motor eines Kraftfahrzeugs ausgebildet ist. Das Bedienerwunschmoment ist somit ein Fahrerwunschmoment. Das erste Bedienelement 15 ist beispielsweise ein Fahrpedal und das zweite Bedienelement 85 ist beispielsweise ein Bremspedal.

15

Der Startergenerator 30 kann gemäß der DE 196 45 943 A1 für einen Startergenerator-Direktstart und/oder für einen Impulsstart ausgelegt sein. Der Startergenerator 30 kann dabei auch, wie in der DE 196 45 943 A1 beschrieben, zwischen Startergenerator-Direktstart und Impulsstart umschaltbar sein. Der Anlasser 5 und der Startergenerator 30 gemäß den Figuren 1 und 2 können beispielsweise wie in der DE 196 45 943 A1 beschrieben ausgeführt sein.

20

Zusätzlich kann bei den hier beschriebenen Ausführungsbeispielen nach Figur 1 und Figur 2 ein Direktstart auch mittels der Benzindirekteinspritzung durchgeführt werden, wie er beispielsweise in der DE 197 43 492 A1 beschrieben ist.

25

Der Start-Stopp-Betrieb eines Kraftfahrzeugs ist eine wirksame Maßnahme zur Kraftstoffverbrauchssenkung. Dabei wird der Verbrennungsmotor 65 im Stillstand zum Beispiel beim Stopp an einer Ampel automatisch ausgeschaltet. Betätigt der Fahrer bei ausgeschaltetem Verbrennungsmotor 65 wieder das Fahrpedal 15, dann startet der Verbrennungsmotor 65. Besonders vorteilhaft und komfortabel ist der Start-Stopp-Betrieb, wenn der Direktstart mittels der Benzindirekteinspritzung erfolgt. Dabei wird der Verbrennungsmotor 65 geräuscharm, äußerst schnell, ohne Äktivierung des Anlassers 5 und ohne Bordnetzbelastung gestartet.

35

Es ist davon auszugehen, dass der Direktstart mit Benzindirekteinspritzung nicht unter allen notwendigen Betriebsbedingungen des Verbrennungsmotors 65 funktioniert. Kritisch ist zum Beispiel eine hohe Motortemperatur oberhalb von 100°C, da dann nur eine geringe Luft- bzw. Sauerstoffmasse im Brennraum des Zylinders 95 vorhanden ist. Es ist dann nicht sichergestellt, dass die bei einer ersten Einspritzung erzeugbare Energie für den Start des Verbrennungsmotors 65 ausreicht. Auch der Betrieb des Startergenerators 30 für einen Direktstart oder einen Impulsstart, wie er in der DE 196 45 943 A1 beschrieben wird, ist je nach Temperatur, nicht sichergestellt. So ist gemäß der DE 196 45 943 der Betrieb des Startergenerators mit Direktstart eher bei hoher Temperatur geeignet, während der Betrieb mit Impulsstart eher bei niedrigeren Temperaturen geeignet ist.

Erfindungsgemäß ist es deshalb vorgesehen, dass im Falle eines Startwunsches geprüft wird, ob die anlasserfreie Startmethode zu einem erfolgreichen Start der Brennkraftmaschine 1 führt und dass für den Fall, in dem das Prüfergebnis negativ ist, die Brennkraftmaschine 1 automatisch mittels des Anlassers 5 gestartet wird. Die anlasserfreie Start-

methode ist in diesen Ausführungsbeispielen der Direktstart mit Benzindirekteinspritzung oder unter Verwendung des Startergenerators 30. Sollte der anlasserfreie Start der Brennkraftmaschine 1 nicht möglich sein oder versagt haben, so wird auf den Anlasserstart umgeschaltet. Auf diese Weise lässt sich ein schneller und komfortabler Motorstart unter al-

10

5

15

len Betriebsbedingungen erzielen.

20

25

30

Zur Durchführung des erfindungsgemäßen Verfahrens ist eine Vorrichtung 90 vorgesehen, die gemäß Figur 3 die Motorsteuerung 20 umfasst. Die Vorrichtung 90 umfasst weiterhin den Kurbelwinkelsensor 75 und/oder den Temperatursensor 80. Die Vorrichtung 90 umfasst weiterhin das Einspritzventil 25 und/oder den Startergenerator 30, der in Figur 3 gestrichelt dargestellt ist, sowie den Anlasser 5. Die Motorsteuerung 20 umfasst Prüfmittel 35, die im Folgenden auch als Prüfeinheit bezeichnet werden und der die Mess-Signale des Kurbelwinkelsensors 75 und/oder die Mess-Signale des Temperatursensors 80 zugeführt sind. Die Prüfeinheit 35 prüft im Falle eines Startwunsches, ob der anlasserfreie Start zu einem erfolgreichen Start der Brennkraftmaschine 1 führt. Das Prüfergebnis wird Umschaltmitteln 40 der Motorsteuerung 20 zugeführt, die im Folgenden auch als Umschalteinheit bezeichnet werden und die für den Fall, in dem das Prüfergebnis negativ ist, die Brennkraftmaschine 1 automatisch mittels des Anlassers 5 starten. Bei positivem Prüfergebnis startet die Umschalteinheit 40 die Brennkraftmaschine 1 ent-

weder über das Einspritzventil 25 durch Benzindirekteinspritzung oder über den Startergenerator 30 anlasserfrei.

Der Prüfeinheit 35 ist weiterhin der Betätigungsgrad des Fahrpedals 15 zugeführt.

Der Prüfeinheit 35 ist außerdem der Betätigungsgrad des Bremspedals 85 zugeführt.

Die Prüfeinheit 35 kann beispielsweise in zwei Stufen prüfen, ob der anlasserfreie Start zu einem erfolgreichen Start der Brennkraftmaschine 1 führt. Die Prüfeinheit 35 detektiert im Falle der ausgeschalteten Brennkraftmaschine 1, also bei ausgeschaltetem Verbrennungsmotor 65 bei Betätigung des Fahrpedals 15 einen Startwunsch zum Starten der Brennkraftmaschine 1. In einer ersten Stufe prüft die Prüfeinheit 35 dann vor dem eigentlichen Start, ob der anlasserfreie Start zu einem erfolgreichen Start der Brennkraftmaschine 1 führen wird. Ist dies nicht der Fall, so führt das negative Prüfergebnis automatisch zum Anlasserstart. Andernfalls wird der anlasserfreie Start aktiviert. Kommt es zum anlasserfreien Start, so prüft die Prüfeinheit 35 in einer zweiten Stufe, ob der eingeleitete anlasserfreie Start erfolgreich abgeschlossen werden kann oder versagt. Im ersteren Fall wird der anlasserfreie Start fortgesetzt, im zweiten Fall wird er abgebrochen und automatisch der Anlasserstart eingeleitet. Wird nach der ersten Stufe der Prüfung der Anlasserstart eingeleitet, so prüft die Prüfeinheit 35 in der zweiten Stufe, ob der eingeleitete Anlasserstart erfolgreich abgeschlossen werden kann, oder ob er versagt. Im ersten Fall wird der Anlasserstart fortgeführt und im zweiten Fall wird der Anlasserstart von der Umschalteeinheit 40 abgebrochen und die Umschalteeinheit 40 schaltet wieder automatisch auf den anlasserfreien Start um und leitet diesen ein.

Die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode kann durch Auswertung der Temperatur der Brennkraftmaschine 1, beispielsweise der Öltemperatur, durchgeführt werden. Zusätzlich oder alternativ kann die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung der Motordrehzahl des Verbrennungsmotors 64 der Brennkraftmaschine 1 durchgeführt werden. Im Falle eines anlasserfreien Starts mittels Direktstart durch Benzindirekteinspritzung kann die Prüfeinheit 35 die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode auch durch Auswertung der Kurbelwellenposition der Brennkraftmaschine 1 durchführen. Für den Direktstart mittels Benzindirekteinspritzung ist es gemäß der DE 197 43 492 A1 erforderlich, dass einer der Zylinder des Verbrennungsmotors 65 sich in

10

5

15

20

30

der Arbeitsphase befindet. In den Brennraum dieses Zylinders wird dann für den Direktstart der Kraftstoff eingespritzt und das sich dort bildende Luft-/Kraftstoff-Gemisch gezündet. Die Auswertung, ob sich der entsprechende Zylinder in der Arbeitsphase befindet, erfolgt auf der Grundlage des Kurbelwinkels.

5

Über den Kurbelwinkelsensor 75 kann auch die Motordrehzahl ermittelt werden, nämlich aus dem zeitlichen Gradienten des gemessenen Kurbelwinkels.

10

Entsprechend kann für die Prüfung auf einen erfolgreichen Start mittels des Anlassers die Prüfeinheit 35 die Temperatur der Brennkraftmaschine 1 und/oder die Motordrehzahl der Brennkraftmaschine 1 und/oder im Falle eines möglichen anlasserfreien Direktstarts mit Benzindirekteinspritzung auch die Position der Kurbelwelle 10 auswerten.

Im Folgenden wird das erfindungsgemäße Verfahren anhand des in Figur 4 dargestellten Ablaufplans beispielhaft erläutert, wobei ebenfalls beispielhaft als anlasserfreie Startmethode der Direktstart mit Benzindirekteinspritzung auf der Grundlage der ersten Ausführungsform nach Figur 1 betrachtet werden soll.

20

15

Nach dem Start des Programms prüft die Prüfeinheit 35 bei einem Programmpunkt 100, ob ein Start-Stopp-Betrieb vorliegt. Zu diesem Zweck kann die Prüfeinheit 35 beispielsweise das Geschwindigkeitsmess-Signal eines in Figur 3 nicht dargestellten Fahrzeuggeschwindigkeitssensors auswerten. Liegt dabei die Fahrzeuggeschwindigkeit unter einem vorgegebenen Wert von beispielsweise 40 km/h, so wird der Start-Stopp-Betrieb erkannt und zu einem Programmpunkt 105 verzweigt, andernfalls wird das Programm verlassen.

Bei Programmpunkt 105 veranlasst die Prüfeinheit 35 ein Abschalten des Verbrennungs-

motors 65, beispielsweise nachdem die Prüfeinheit 35 eine Betätigung der Fahrzeugbremse durch Betätigung des Bremspedals 85 detektiert hat. Die Abschaltung des Verbrennungsmotors kann dabei von der Prüfeinheit 35 beispielsweise durch Ausblenden sämtlicher Zylinder des Verbrennungsmotors 65 durch Sperren der Kraftstoffzufuhr zu sämtlichen Zylindern des Verbrennungsmotors 65 erfolgen. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Luftzufuhr durch Schließen der Drosselklappe 50 beenden. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Zündung aussetzen. Die Beeinflussung der drei genannten Stellgrößen durch die Prüfeinheit 35 ist in Figur 3 symbolhaft

angedeutet. Nach Programmpunkt 105 wird zu einem Programmpunkt 110 verzweigt.

30

Bei Programmpunkt 110 prüft die Prüfeinheit 35, ob die Kurbelwelle 10 des Verbrennungsmotors 65 in einer für den Direktstart mit Benzindirekteinspritzung günstigen Position stehen bleibt, d.h., ob sich der Zylinder 95 bzw. einer der Zylinder des Verbrennungsmotors 65 bei Motorstillstand in der Arbeitsphase befindet. Ist dies der Fall, so wird zu einem Programmpunkt 115 verzweigt, andernfalls wird zu einem Programmpunkt 120 verzweigt. Zusätzlich kann bei Programmpunkt 110 von der Prüfeinheit 35 optional geprüft werden, ob die Temperatur der Brennkraftmaschine 1 einen vorgegebenen Wert, beispielsweise 100°C, unterschreitet. Zu Programmpunkt 115 wird bei dieser zusätzlichen Temperaturprüfung nur dann verzweigt, wenn die Temperatur den vorgegebenen Wert unterschreitet, andernfalls wird zu Programmpunkt 120 verzweigt.

Bei Programmpunkt 115 liegt ein positives Prüfergebnis vor. Im Falle eines Startwunsches des Fahrers detektiert die Prüfeinheit 35 eine Betätigung des Fahrpedals 15. In diesem Falle reicht die Prüfeinheit 35 das positive Prüfergebnis an die Umschalteinheit 40 weiter. Die Umschalteinheit 40 veranlasst daraufhin das Einspritzventil 25 zur Kraftstoffeinspritzung in den Zylinder 95, der sich gerade in der Arbeitsphase befindet und initiiert auf diese Weise den Direktstart mittels Benzindirekteinspritzung. Luftzufuhr und Zündung wird entsprechend von der Prüfeinheit 35 eingestellt. Anschließend wird zu einem Programmpunkt 125 verzweigt.

Bei Programmpunkt 125 prüft die Prüfeinheit 35, ob der eingeleitete Direktstart mit Benzindirekteinspritzung erfolgreich verläuft. Dies ist dann der Fall, wenn zu einem ersten vorgegebenen Zeitpunkt t_0 nach Beginn des Startvorgangs die dann vorliegende Motordrehzahl nmo t_0 einen vorgegebenen Schwellwert überschreitet. Dieser kann beispielsweise zu 120 U/min gewählt werden, wenn der erste Zeitpunkt t_0 etwa 0,075 Sekunden nach Beginn des Startvorgangs liegt. Der Direktstart ist auch dann erfolgreich, wenn der zeitliche Gradient der Motordrehzahl in einem vorgegebenen Zeitbereich nach Beginn des Startvorgangs einen zweiten vorgegebenen Schwellwert überschreitet. Dieser Gradient kann auf einfache Weise dadurch ermittelt werden, dass die Motordrehzahl nmo t_2 zu einem dritten vorgegebenen Zeitpunkt t_2 nach Beginn des Startvorgangs dividiert wird durch die Motordrehzahl nmo t_1 zu einem zweiten vorgegebenen Zeitpunkt t_1 nach Beginn des Startvorgangs, wobei dieser Quotient über dem zweiten vorgegebenen Schwellwert liegen muss, wenn der Direktstart erfolgreich sein soll. Dabei folgt der zweite vorgegebene Zeitpunkt t_1 dem ersten vorgegebenen Zeitpunkt t_0 und der dritte

5

10

15

20

30

35.

vorgegebene Zeitpunkt t_2 dem zweiten vorgegebenen Zeitpunkt t_1 nach. Der zweite vorgegebene Schwellwert kann etwa den Wert 4 einnehmen, wobei der zweite vorgegebene Zeitpunkt t_1 etwa zu 0,13 Sekunden und der dritte vorgegebene Zeitpunkt t_2 etwa zu 0,18 Sekunden gewählt wird. Wird eine der beiden beschriebenen Bedingungen bei Programmpunkt 125 von der Prüfeinheit 35 als erfüllt detektiert, so wird der anlasserfreie Direktstart fortgeführt und das Programm verlassen, andernfalls wird zu einem Programmpunkt 130 verzweigt.

5

10

15

20

30

Bei Programmpunkt 130 prüft die Prüfeinheit 35, ob die aktuelle Motordrehzahl nmot einen dritten vorgegebenen Schwellwert, beispielsweise 150 U/min unterschreitet. Ist dies der Fall, so wird zu einem Programmpunkt 135 verzweigt, andernfalls wird zu einem Programmpunkt 140 verzweigt.

Bei Programmpunkt 140 wird eine Warteschleife für ein vorgegebenes Zeitintervall, beispielsweise in der Größenordnung von einigen Millisekunden, durchlaufen. Anschließend wird zu Programmpunkt 130 zurückverzweigt.

Bei Programmpunkt 135 überträgt die Prüfeinheit 35 ein negatives Prüfergebnis an die Umschalteinheit 40 und veranlasst diese zum Abbruch des Direktstarts mit Benzindirekteinspritzung und zum Einleiten eines Anlasserstarts. Anschließend wird zu einem Programmpunkt 145 verzweigt.

Bei Programmpunkt 145 prüft die Prüfeinheit 35, ob der eingeleitete Anlasserstart erfolgreich verläuft. Diese Prüfung kann in gleicher Weise, wie bei Programmpunkt 125 erfolgen. Detektiert die Prüfeinheit 35 einen erfolgreichen Anlasserstart, so wird dieser fortgesetzt und das Programm verlassen. Andernfalls wird zu einem Programmpunkt 150 verzweigt.

Bei Programmpunkt 150 überträgt die Prüfeinheit 35 ein negatives Prüfergebnis an die Umschalteinheit 40 und veranlasst diese zum Abbruch des Anlasserstarts und zum Einleiten des anlasserfreien Direktstarts mit Benzindirekteinsspritzung und entsprechender Ansteuerung des Einspritzventils 25 des Zylinders 95, der sich gerade in der Arbeitsphase befindet. Außerdem stellt die Prüfeinheit 35 die Luftzufuhr über die Drosselklappe 50 sowie den Zündzeitpunkt über die Zündkerze 60 geeignet ein, um den anlasserfreien Di-

rektstart mittels Benzindirekteinspritzung zu realisieren. Anschließend wird zu Programmpunkt 125 zurückverzweigt.

Bei Programmpunkt 120 überträgt die Prüfeinheit 35 ein negatives Prüfergebnis an die Umschalteinheit 40, für den Fall, dass ein Startwunsch auf der Grundlage der Betätigung des Fahrpedals 15 in der Prüfeinheit 35 detektiert wird und veranlasst somit die Umschalteinheit 40 zur Einleitung des Anlasserstarts. Anschließend wird zu Programmpunkt 145 verzweigt.

Somit wird beim Versagen des anlasserfreien Startverfahrens auf das Anlasserstartverfahren umgeschaltet und umgekehrt. Dieses Umschalten kann je nach Starterfolg mehrmals passieren. Somit wird eine Startkoordination realisiert, bei der möglichst schnell auf den Anlasserstart umgeschaltet wird, sobald festgestellt wird, dass ein anlasserfreier Start nicht möglich ist oder versagt hat.

Falls der anlasserfreie Direktstart mit Benzindirekteinspritzung nicht erfolgreich ist, so muss möglichst schnell auf den Anlasserstart umgeschaltet werden, damit es nicht zu einer erheblichen Verlängerung der Startzeit kommt. Dass der eingeleitete Direktstart nicht erfolgreich war bzw. nicht erfolgreich sein wird, kann bei Programmpunkt 125 durch Auswertung der Motordrehzahl nmot frühzeitig erkannt werden. Die Motordrehzahl nmot wird im Folgenden auch mit n bezeichnet. Ein Scheitern des Direktstarts mit Benzindirekteinspritzung wird im einfachsten Fall dadurch erkannt, dass sich der Verbrennungsmotor 65 nach einer ersten Einspritzung nur wenig bewegt. Dies ist dann der Fall, wenn zum ersten vorgegebenen Zeitpunkt t_0 die Motordrehzahl $n = nmot_0$ den ersten vorgegebenen Schwellwert unterschreitet. Der erste vorgegebene Schwellwert ist dabei beispielsweise etwa zu 120 U/min gewählt. Der erste vorgegebene Zeitpunkt to beträgt beispielsweise etwa 0,075 Sekunden. In Figur 5 ist beispielhaft ein Verlauf der Motordrehzahl n in 1/min über der Zeit t in s aufgetragen, wobei der Startvorgang zum Zeitpunkt t = 0 beginnt. Zum ersten vorgegebenen Zeitpunkt to weist dabei der Drehzahlverlauf ein erstes lokales Maximum mit n = nmot₀ auf, das mit 200 U/min oberhalb des ersten vorgegebenen Schwellwerts liegt, so dass zum ersten vorgegebenen Zeitpunkt to der Direktstart mit Benzindirekteinspritzung noch als erfolgreich detektiert wird.

Wenn nun zum ersten Zeitpunkt t₀ der erste vorgegebene Schwellwert überschritten wird, kann es trotzdem sein, dass die Beschleunigung der Motordrehzahl nicht für einen

10

5

15

20

25

30

Motorhochlauf ausreicht. Je früher dieser Fehlstart erkannt wird, um so früher kann der Anlasserstart aktiviert werden. Kriterium dafür ist der beschriebene zeitliche Gradient, der oberhalb des zweiten vorgegebenen Schwellwerts liegen muss, damit der Direktstart mit Benzindirekteinspritzung erfolgreich sein kann. Der zweite vorgegebene Schwellwert kann dabei etwa gleich 4 gewählt werden. In Figur 5 beträgt dieser vereinfacht als Quotient berechnete Gradient $nmot_2/nmot_1$ etwa den Wert 5 und liegt damit oberhalb des zweiten vorgegebenen Schwellwertes. Dabei weist zum dritten vorgegebenen Zeitpunkt t_2 der Drehzahlverlauf ein zweites lokales Maximum mit dem Wert $n = nmot_2$ auf und zum zweiten vorgegebenen Zeitpunkt t_1 weist der Drehzahlverlauf mit $n = nmot_1$ ein erstes lokales Minimum auf.

5

Wie in Figur 5 dargestellt, entwickelt sich der Motorhochlauf zumindest bis zum Zeitpunkt t = 0,3s erfolgreich und nähert sich der zu erreichenden Startdrehzahl von 1000 U/min an.

15

20

10

Bevor der Anlasser betätigt werden kann, muss allerdings die Motordrehzahl n wieder unter den dritten vorgegebenen Schwellwert gefallen sein, was bei Programmpunkt 130 abgeprüft wird. Das bedeutet, dass im Falle eines vorausgehenden Direktstartversuchs mit Benzindirekteinspritzung, die zu einer Erhöhung der Motordrehzahl n geführt hat, zunächst gewartet werden muss, bis die Motordrehzahl n wieder unter den dritten vorgegebenen Schwellwert abgefallen ist. Dabei kann der Verbrennungsmotor 65 optional zusätzlich gebremst werden, beispielsweise durch Ansteuerung der Drosselklappe 50 zur Verringerung der Luftzufuhr oder durch geeignete Ansteuerung des Startergenerators 30, falls vorhanden. Auf diese Weise kann der Anlasserstart möglichst schnell eingeleitet werden, nachdem das Versagen des anlasserfreien Starts detektiert wurde.

Falls der Anlasserstart nicht mehr möglich ist, zum Beispiel wegen entladener Batterie oder mangelnder Bordnetzspannung, so kann auch noch ein oder mehrere weitere Startversuche mittels anlasserfreiem Start erfolgen.

30

35

Das erfindungsgemäße Verfahren wurde anhand des Ablaufplans nach Figur 4 für den Fall eines anlasserfreien Direktstarts mit Benzindirekteinspritzung beispielhaft beschrieben. Ganz entsprechend ist der Ablauf, wenn der anlasserfreie Start unter Verwendung des Startergenerators 30 auf der Grundlage der Ausführungsform nach Figur 2 verwendet wird. Der anlasserfreie Start wird in diesem Fall dann nicht durch entsprechende Ansteu-

erung des Einspritzventils 25, der Drosselklappe 50 und der Zündkerze 60 eingeleitet, sondern durch entsprechende Ansteuerung des Startergenerators 30 von der Umschalteinheit 40. Bei Verwendung des Startergenerators 30 für den anlasserfreien Start ist auch eine Benzindirekteinspritzung nicht mehr erforderlich, so dass das Einspritzventil 25 in diesem Fall auch im Saugrohr 55 angeordnet sein könnte, um eine Saugrohreinspritzung zu bewirken.

Anhand der Figuren 6 und 7 wird ein weiteres Ausführungsbeispiel der Erfindung beschrieben.

10

5

Bei diesem weiteren Ausführungsbeispiel geht es darum, eine Startkoordination bei einem erneuten Startwunsch des Fahrers nach dem Abstellen der Brennkraftmaschine aber noch während des Motorauslaufs der Brennkraftmaschine mit dem Ziel eines möglichst schnellen Wiederstarts des Verbrennungsmotors 65 sicherzustellen. Dabei wird abhängig von der aktuellen Motordrehzahl, also einem Istwert der Motordrehzahl, für den Wiederstart während einer solchen Betriebsphase des Motorauslaufs entweder die Befeuerung des Verbrennungsmotors 65 durch Aktivieren der Kraftstoffzufuhr, der Luftzufuhr und der Zündung wieder aufgenommen oder der Anlasser 5 aktiviert.

Dabei ist in Figur 6 ein weiteres Drehzahl-Zeit-Diagramm dargestellt. Mit 500 ist der zeitliche Verlauf des Istwertes der Motordrehzahl gekennzeichnet. Zu einem ersten Zeitpunkt t10 wird der Verbrennungsmotor 65 abgeschaltet, beispielsweise nachdem die

Prüfeinheit 35 eine Betätigung der Fahrzeugbremse durch Betätigung des Bremspedals 85 detektiert hat. Die Abschaltung des Verbrennungsmotors kann dabei von der Prüfeinheit

20

15

30

35

35 beispielsweise durch Ausblenden sämtlicher Zylinder des Verbrennungsmotors 65 durch Sperren der Kraftstoffzufuhr zu sämtlichen Zylindern des Verbrennungsmotors 65 erfolgen. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Luftzufuhr durch Schließen der Drosselklappe 50 beenden. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Zündung aussetzen. Die Beeinflussung der drei genannten Stellgrößen durch die Prüfeinheit 35 ist in Figur 3 symbolhaft angedeutet. Durch das Abschalten des Verbrennungsmotors 65 kommt es zu einem Abfall des Istwertes 500 der Motordrehzahl vom ersten Zeitpunkt t10 an auf Grund des eingeleiteten Motorauslaufs. Bis zu einem dem ersten Zeitpunkt t10 nachfolgenden zweiten Zeitpunkt t20 verläuft der Istwert 500 der Motordrehzahl jedoch noch oberhalb einer ersten Drehzahlschwelle n1. Der Drehzahlbereich der Motordrehzahlen oberhalb der ersten Drehzahlschwelle n1 ist in Figur 6 mit N1 be-

zeichnet und stellt einen ersten Drehzahlbereich dar. Zwischen dem ersten Zeitpunkt t10 und dem zweiten Zeitpunkt t20 ergibt sich ein erster Zeitbereich T1. Wenn nun während des ersten Zeitbereichs T1 nach dem Abschalten des Verbrennungsmotors 65 aber noch während des Motorauslaufs des Verbrennungsmotors 65 ein Startwunsch des Fahrers von der Prüfeinheit 35 durch Detektion einer Betätigung des Fahrpedals 15 erkannt wird, so liegt die Motordrehzahl noch im ersten Drehzahlbereich N1. Der erste Drehzahlbereich N1 ist dabei derart vorgegeben und in der Prüfeinheit 35 abgelegt, dass bei einer Motordrehzahl im ersten Drehzahlbereich N1 ein Wiederstart des Verbrennungsmotors 65 ohne Anlasser 5 möglich ist. Dazu wird der erste Drehzahlbereich N1 bzw. die erste Drehzahlschwelle n1, die diesen ersten Drehzahlbereich N1 definiert, beispielsweise geeignet auf einem Prüfstand appliziert und vorgegeben. Ein Startwunsch des Fahrers im ersten Zeitbereich T1 führt dann zu einem Wiederstart des Verbrennungsmotors 65, indem sofort mit Erkennung des Startwunsches wieder mit der Einspritzung von Kraftstoff, der Luftzufuhr und der Zündung begonnen wird. Ohne diese Maßnahme müsste gewartet werden, bis der Verbrennungsmotor 65 ausgelaufen ist und die Motordrehzahl Null erreicht hat. Dies würde zu einer erheblichen Zeitverzögerung führen. Der erste Drehzahlbereich N1 kann bspw. derart vorgegeben sein, dass er Motordrehzahlen größer oder gleich 200 Umdrehungen pro Minute umfasst. Die erste Drehzahlschwelle n1 würde in diesem Fall 200 U/min betragen. Durch den in der beschriebenen Weise durchgeführten Wiederstart während des ersten Zeitbereichs T1 wird jedoch der Istwert der Motordrehzahl frühzeitig noch während des ersten Zeitbereichs T1 wieder angehoben, wie der gestrichelte Verlauf in Figur 6 andeutet, der mit dem Bezugszeichen 300 gekennzeichnet ist.

25

30

35

5

10

15

20

Kommt es während des ersten Zeitbereichs T1 nicht zu einem Startwunsch des Fahrers, so sinkt der Istwert 500 der Motordrehzahl unter die erste Drehzahlschwelle n1 ab. Zu einem dem zweiten Zeitpunkt t20 nachfolgenden dritten Zeitpunkt t30 erreicht er eine zweite Drehzahlschwelle n2, die kleiner als die erste Drehzahlschwelle n1 ist. Die erste Drehzahlschwelle n1 und die zweite Drehzahlschwelle n2 begrenzen einen zweiten Drehzahlbereich N2. Der zweite Zeitpunkt t20 und der dritte Zeitpunkt t30 begrenzen einen zweiten Zeitbereich T2. Wenn nun während des zweiten Zeitbereichs T2 nach dem Abschalten des Verbrennungsmotors 65 aber noch während des Motorauslaufs des Verbrennungsmotors 65 ein Startwunsch des Fahrers von der Prüfeinheit 35 durch Detektion einer Betätigung des Fahrpedals 15 erkannt wird, so liegt die Motordrehzahl im zweiten Drehzahlbereich N2. Der zweite Drehzahlbereich N2 ist dabei derart vorgegeben und in der Prüfeinheit 35 abgelegt, dass bei einer Motordrehzahl im zweiten Drehzahlbereich N2

ein sofortiger Wiederstart des Verbrennungsmotors 65 mit dem Anlasser 5 möglich ist. Dazu wird der zweite Drehzahlbereich N2 bzw. die zweite Drehzahlschwelle n2, die diesen zweiten Drehzahlbereich N2 nach unten zu niedrigeren Drehzahlen hin begrenzt, beispielsweise geeignet auf einem Prüfstand appliziert und vorgegeben. Ein Startwunsch des Fahrers im zweiten Zeitbereich T2 führt dann zu einem Wiederstart des Verbrennungsmotors 65, indem mit Erkennung des Startwunsches sofort der Anlasser 5 aktiviert wird. Ohne diese Maßnahme müsste gewartet werden, bis der Verbrennungsmotor 65 ausgelaufen ist und die Motordrehzahl Null erreicht hat. Dies würde zu einer erheblichen Zeitverzögerung führen. Der zweite Drehzahlbereich N2 kann bspw. derart vorgegeben sein, dass er Motordrehzahlen kleiner als 200 Umdrehungen pro Minute und größer oder gleich 50 U/min umfasst. Die zweite Drehzahlschwelle n2 würde in diesem Fall 50 U/min betragen. Durch den in der beschriebenen Weise durchgeführten Wiederstart während des zweiten Zeitbereichs T2 wird jedoch der Istwert der Motordrehzahl frühzeitig noch während des zweiten Zeitbereichs T2 wieder angehoben.

Kommt es auch während des zweiten Zeitbereichs T2 nicht zu einem Startwunsch des Fahrers, so sinkt der Istwert 500 der Motordrehzahl unter die zweite Drehzahlschwelle n2 ab. Die Drehzahlen unterhalb der zweiten Drehzahlschwelle n2 bilden einen dritten Drehzahlbereich N3. Dieser umfasst somit in dem hier beschriebenen Zahlenbeispiel die Motordrehzahlen kleiner als 50 U/min und größer oder gleich Null. Vom dritten Zeitpunkt t30 bis zu einem in Figur 6 nicht gekennzeichneten Zeitpunkt, zu dem der Verbrennungsmotor 65 die Motordrehzahl Null erreichen würde, wird ein dritter Zeitbereich T3 gebildet. Wenn nun während des dritten Zeitbereichs T3 nach dem Abschalten des Verbrennungsmotors 65 aber noch während des Motorauslaufs des Verbrennungsmotors 65 ein Startwunsch des Fahrers von der Prüfeinheit 35 durch Detektion einer Betätigung des Fahrpedals 15 erkannt wird, so liegt die Motordrehzahl im dritten Drehzahlbereich N3. Ein Startwunsch des Fahrers im dritten Zeitbereich T3 führt dann zu einem Wiederstart des Verbrennungsmotors 65, indem der Motorauslauf des Verbrennungsmotors 65 und damit das Erreichen der Motordrehzahl Null abgewartet wird und mit Erreichen der Motordrehzahl Null der Anlasserstart durch Aktivieren des Anlassers 5 initijert wird. Durch den in der beschriebenen Weise durchgeführten Wiederstart während des dritten Zeitbereichs T3 wird der Istwert der Motordrehzahl somit erst nach Erreichen der Motordrehzahl Null wieder angehoben, wie dies durch den gestrichelten Verlauf des Istwertes der Motordrehzahl in Figur 6 mit dem Bezugszeichen 400 gekennzeichnet ist.

5

10

15

20

Anhand des Ablaufplans in Figur 7 wird der Ablauf des erfindungsgemäßen Verfahrens gemäß der beschriebenen weiteren Ausführungsform nochmals beispielhaft dargestellt und erläutert.

Nach dem Start des Programms prüft die Prüfeinheit 35 bei einem Programmpunkt 200, ob ein Start-Stopp-Betrieb vorliegt. Zu diesem Zweck kann die Prüfeinheit 35 beispielsweise das Geschwindigkeitsmess-Signal eines in Figur 3 nicht dargestellten Fahrzeuggeschwindigkeitssensors auswerten. Liegt dabei die Fahrzeuggeschwindigkeit unter einem vorgegebenen Wert von beispielsweise 40 km/h, so wird der Start-Stopp-Betrieb erkannt und zu einem Programmpunkt 205 verzweigt, andernfalls wird das Programm verlassen.

1

Bei Programmpunkt 205 veranlasst die Prüfeinheit 35 ein Abschalten des Verbrennungsmotors 65, beispielsweise nachdem die Prüfeinheit 35 eine Betätigung der Fahrzeugbremse durch Betätigung des Bremspedals 85 detektiert hat. Die Abschaltung des Verbrennungsmotors kann dabei von der Prüfeinheit 35 beispielsweise durch Ausblenden sämtlicher Zylinder des Verbrennungsmotors 65 durch Sperren der Kraftstoffzufuhr zu sämtlichen Zylindern des Verbrennungsmotors 65 erfolgen. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Luftzufuhr durch Schließen der Drosselklappe 50 beenden. Zusätzlich oder alternativ kann die Prüfeinheit 35 die Zündung aussetzen. Die Beeinflussung der drei genannten Stellgrößen durch die Prüfeinheit 35 ist in Figur 3 symbolhaft angedeutet. Nach Programmpunkt 205 wird zu einem Programmpunkt 210 verzweigt.

20

15

25,

Bei Programmpunkt 210 prüft die Prüfeinheit 35, ob ein Startwunsch des Fahrers vorliegt. Ein solcher Startwunsch wird von der Prüfeinheit 35 detektiert, wenn die Prüfeinheit 35 die Betätigung des Fahrpedals 15 detektiert. Ist dies der Fall, also liegt ein solcher Startwunsch vor, so wird zu einem Programmpunkt 215 verzweigt, andernfalls wird zu einem Programmpunkt 200 zurückverzweigt.

30

Bei Programmpunkt 215 ermittelt die Prüfeinheit 35 durch Auswertung des vom Kurbelwinkelsensor 75 empfangenen Messsignals den Istwert der Motordrehzahl. Anschließend wird zu einem Programmpunkt 220 verzweigt.

ersten 35 verzwe

Bei Programmpunkt 220 prüft die Prüfeinheit 35, ob der Istwert der Motordrehzahl im ersten Drehzahlbereich N1 liegt. Ist dies der Fall, so wird zu einem Programmpunkt 235 verzweigt, andernfalls wird zu einem Programmpunkt 225 verzweigt.

Bei Programmpunkt 235 veranlasst die Prüfeinheit 35 eine sofortige Wiederaufnahme der Einspritzung von Kraftstoff, der Luftzufuhr und der Zündung. Anschließend wird das Programm verlassen.

5

Bei Programmpunkt 225 prüft die Prüfeinheit 35, ob der Istwert der Motordrehzahl im zweiten Drehzahlbereich N2 liegt. Ist dies der Fall, so wird zu einem Programmpunkt 240 verzweigt, andernfalls wird zu einem Programmpunkt 230 verzweigt.

10

Bei Programmpunkt 240 veranlasst die Prüfeinheit 35 eine sofortige Aktivierung des Anlassers 5 zur sofortigen Durchführung eines Anlasserstarts. Anschließend wird das Programm verlassen.

l.

Bei Programmpunkt 230 veranlasst die Prüfeinheit 35 eine Aktivierung des Anlassers 5 zur Durchführung eines Anlasserstarts, sobald der Istwert der Motordrehzahl den Wert Null erreicht hat. Anschließend wird das Programm verlassen.

20

15

Wenn vorstehend von einem Startwunsch des Fahrers die Rede ist, so handelt es sich dabei beispielsweise um eine durch Betätigung des Fahrpedals 15 seitens des Fahrers hervorgerufene Drehmomentanforderung an die Brennkraftmaschine nach dem Abstellen des Verbrennungsmotors 65. Dabei kann es vorgesehen sein, dass der Startwunsch erst dann detektiert wird, wenn der Gradient der Betätigung des Fahrpedals 15 bzw. der damit verbundene Gradient der Drehmomentanforderung über einem vorgegebenen Schwellwert liegt, der beispielsweise auf einem Prüfstand appliziert werden kann.

12.12.03 St/Kei

5

ROBERT BOSCH GMBH, 70442 Stuttgart

Ansprüche

10

15

20

- Verfahren zum Starten einer Brennkraftmaschine (1), insbesondere eines Fahrzeugs, mittels einer anlasserfreien Startmethode, dadurch gekennzeichnet, dass für einen Startwunsch geprüft wird, ob die anlasserfreie Startmethode zu einem erfolgreichen Start der Brennkraftmaschine (1) führt, und dass für den Fall, in dem das Prüfergebnis negativ ist, die Brennkraftmaschine (1) automatisch mittels eines Anlassers (5) gestartet wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Temperatur der Brennkraftmaschine (1), vorzugsweise einer Öltemperatur, durchgeführt wird.
- 3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Drehzahl der Brennkraftmaschine (1) durchgeführt wird.
- 4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Prüfung auf einen erfolgreichen Start mittels der anlasserfreien Startmethode durch Auswertung einer Position einer Kurbelwelle (10) der Brennkraftmaschine (1) durchgeführt wird.
- 5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als anlasserfreie Startmethode eine Impulsstartmethode gewählt wird.

- 6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als anlasserfreie Startmethode eine Direktstartmethode gewählt wird.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Brennkraftmaschine
 bei der Direktstartmethode mittels einer Benzindirekteinspritzung direkt gestartet wird.

5

10

15

20

30

- 8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass im Falle eines Einleiten der anlasserfreien Startmethode geprüft wird, ob dieser anlasserfreie Start erfolgreich ist, und dass bei Versagen des anlasserfreien Starts die Brennkraftmaschine (1) automatisch wieder mittels des Anlassers (5) gestartet wird.
- 9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass bei Versagen eines eingeleiteten Anlasserstarts die Brennkraftmaschine (1) automatisch wieder mittels der anlasserfreien Startmethode gestartet wird.
- 10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Startwunsch bei Betätigung eines Bedienelementes (15), vorzugsweise eines Fahrpedals, bei ausgeschalteter Brennkraftmaschine (1) detektiert wird.
- 11. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass im Falle eines Startwunsches nach einem Abschalten der Brennkraftmaschine geprüft wird, ob die Drehzahl der Brennkraftmaschine in einem ersten vorgegebenen Bereich liegt, und dass in diesem Fall die Brennkraftmaschine anlasserfrei gestartet wird.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass bei einer Drehzahl der Brennkraftmaschine in einem zweiten vorgegebenen Bereich, der unterhalb des ersten vorgegebenen Bereichs liegt, die Brennkraftmaschine durch sofortigen Anlassereingriff gestartet wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass bei einer Drehzahl der Brennkraftmaschine in einem dritten Bereich, der unterhalb des zweiten vorgegebenen Bereichs liegt, die Brennkraftmaschine nach dem Auslaufen der Brennkraftmaschine durch Anlassereingriff gestartet wird.

14. Vorrichtung (90) zum Starten einer Brennkraftmaschine (1), insbesondere eines Fahrzeugs, mit Mitteln (25; 30) zum anlasserfreien Start, dadurch gekennzeichnet, dass Prüfmittel (35) vorgesehen sind, die für einen Startwunsch prüfen, ob der anlasserfreie Start zu einem erfolgreichen Start der Brennkraftmaschine (1) führt, und dass Umschaltmittel (40) vorgesehen sind, die für den Fall, in dem das Prüfergebnis negativ ist, die Brennkraftmaschine (1) automatisch mittels eines Anlassers (5) starten.

12.12.03 St/Kei

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10 <u>Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine</u>

Zusammenfassung

15

Es werden ein Verfahren und eine Vorrichtung zum Starten einer Brennkraftmaschine (1), insbesondere eines Fahrzeugs, vorgeschlagen, die einen möglichst schnellen und komfortablen Start der Brennkraftmaschine (1) ermöglichen. Dabei wird für einen Startwunsch geprüft, ob eine anlasserfreie Startmethode zu einem erfolgreichen Start der Brennkraftmaschine (1) führt. Für den Fall, in dem das Prüfergebnis negativ ist, wird die Brennkraftmaschine automatisch mittels eines Anlassers (5) gestartet.

FIG. 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
-	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.