

# Introduction to Regularisation: Ridge and LASSO Regression

Models should be as simple as possible, but not more so.

- Albert Einstein

#### Outline

- 1 Introduction to the Multicollinearity and Overfitting Problems
- 2 Solution: Regularisation
- 3 A Case Study
- 4 How Ridge and LASSO Regression Solve the Problems
- 5 Summary

## Learning Objectives

#### In this video, you will learn to:

- Understand Regularisation can solve the Multicollinearity problem.
- Understand Regularisation can solve the Overfitting problem.
- Understand LASSO Regression is good for interpretability.

# Introduction to the Multicollinearity and Overfitting Problems

# Multicollinearity Problem

- Multicollinearity: Some predictor variables are strongly correlated.
- Multicollinearity can cause the following problems:
  - 1 Create inaccurate estimates of the regression coefficients, e.g., it may produce a wrong sign.
  - 2 Give false, or non-significant p-values.
  - 3 Degrade the interpretability, and the predictability of the model.

# Overfitting Problem

- Overfitting may occur if the model is overly trained on the training dataset, and it becomes too complex.
- The overly trained model may learn the "noise" of the training dataset.
- As a result, it performs poorly against the test dataset, and it cannot generalise well to any unseen data.
- If the model has a low error rate on the training dataset, but a high error rate on the test dataset, it signals Overfitting.

# Solution: Regularisation

# Solution: Regularisation

- Regularisation helps to solve the Multicollinearity and the Overfitting problems.
- Regularisation reduces the model complexity by penalizing the large coefficients of the predictors.
  - Ridge Regression solves the Multicollinearity, by shrinking the coefficients of the correlated predictors to some small numbers.
  - ► LASSO Regression solves the Multicollinearity, by reducing the coefficients of some correlated predictors to exactly zero.
- Only LASSO Regression, but not Ridge Regression, performs the Variable Selection.
- Regularised models tend to have a slightly higher error rate on the training dataset, but in return, they have a lower error rate on the test dataset.

# A Case Study

## Case Study: Car Sales Dataset

#### Story

Mr. Yap is a chief manager of a car sales company that specialises in selling 2nd hand cars.

#### **Focus Question**

To identify the key factors that impact the car sale price.



Source: https://www.freepik.com/

### Inspect the Dataset

Load the dataset, and check the first few observations.

|   | Number_of_Doors | <pre>Highway_MPG</pre> | City_MPG | Popularity | Price |
|---|-----------------|------------------------|----------|------------|-------|
| 1 | 3               | 17                     | 12       | 5657       | 33196 |
| 2 | 4               | 24                     | 16       | 1385       | 29903 |
| 3 | 2               | 22                     | 15       | 640        | 33677 |
| 4 | 4               | 28                     | 18       | 1624       | 33582 |
| 5 | 4               | 24                     | 17       | 210        | 32006 |
| 6 | 4               | 23                     | 16       | 190        | 35663 |

- Predictor variables: Number of Doors, Highway MPG, City MPG, Popularity.
- Dependent variable: Price.

### Inspect the Dataset

Check the structure of the data frame.

#### str(df.carprice)

```
'data.frame': 600 obs. of 5 variables:

$ Number_of_Doors: num 3 4 2 4 4 4 4 4 4 4 ...

$ Highway_MPG : num 17 24 22 28 24 23 24 22 32 50 ...

$ City_MPG : num 12 16 15 18 17 16 16 16 23 54 ...

$ Popularity : num 5657 1385 640 1624 210 ...

$ Price : num 33196 29903 33677 33582 32006 ...
```

• There are 600 observations, and all the 5 variables are numerical.

#### Standardisation

- For Ridge and LASSO Regression, it is compulsory to standardise all the numerical variables, such that they have a constant standard deviation, which is 1.
- We will elaborate it more in another video.
- Suppose the standardisation is performed.



From the chart, all the numerical variables have been standardised properly.

#### Correlation Matrix

• Let us analyse the relationship between the 5 variables.



#### Correlation Matrix

From the chart, we notice the following facts:

- Highway MPG and City MPG are strongly and positively correlated, with r = 0.92.
- Both Highway MPG and City MPG are strongly and negatively correlated with Price, with r = -0.71 and -0.79, respectively.
- The correlations between other pairs of factors are generally weak.



## City MPG vs. Highway MPG



- From the scatterplot, Highway MPG and City MPG are strongly correlated.
- As Highway MPG increases, City MPG will also increase. Vice versa.

# Highway MPG, City MPG and Price



- These plots tally with the correlation values above (-0.71; -0.79), indicating the strong negative correlation between both MPG and price,
- The higher the Highway MPG (or the City MPG), the less the sales price.

# Build the 1st Multiple Linear Regression Model

Let us fit the MLR model to the car price data.

```
model1 <- lm(Price ~., data = df.carprice)
summary(model1)</pre>
```

From the summary table, we notice two issues here:

- The coefficients of Highway MPG is positive, which is not consistent with our earlier observation that Highway MPG is negatively correlated with price (r = -0.71).
- P-value for Highway MPG is not significant. This is a bit unexpected and not consistent with the fact that the Highway MPG is strongly correlated with price (r = -0.71).

```
call:
lm(formula = Price ~ .. data = df.carprice)
Residuals:
            10 Median
-0.7753 -0.2162 -0.0916 0.0589 5.1232
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.14128 47.009
(Intercept)
               6.64162
Number_of_Doors -0.11065
                          0.02440 -4.535 6.98e-06 ***
Highway MPG 0.11398
                          0.06266 1.819
                                           0.0694
City_MPG -0.88575
                          0.06272 - 14.121 < 2e - 16
Popularity
             -0.10803
                          0.02420 -4.463 9.65e-06 ***
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sianif. codes:
Residual standard error: 0.5897 on 595 degrees of freedom
Multiple R-squared: 0.6546.
                             Adjusted R-squared: 0.6523
```

F-statistic: 281.9 on 4 and 595 DF. p-value: < 2.2e-16

# How Ridge and LASSO Regression Solve the Problems

# Case 1: Multicollinearity

- The above issues are due to Multicollinearity, as Highway MPG and City MPG are strongly correlated.
- Multicollinearity is one of the common problems in data science.
  - Multicollinearity makes it hard to interpret the coefficients of the regression models.
  - ▶ It also reduces the power of the linear regression models to identify the key predictors that are statistically significant.

# Case 1: Multicollinearity

We can use VIF scores to detect the Multicollinearity.

#### vif(model1)

- Multicollinearity exists, as the VIF scores of Highway MPG and City MPG are above 5.
- There is one key difference between correlation matrix and VIF scores.
- Correlation matrix shows the bivariate relationship between any two variables.
- VIF score of any predictor variable represents how well the variable is explained by all other predictor variables.

# Build the 2nd Multiple Linear Regression Model

Let us build the 2nd MLR Model, by removing City MPG.

```
model2 <- lm(Price ~.-City_MPG, data = df.carprice)
summary(model2)</pre>
```

It is interesting to note that:

- Highway MPG becomes statistically significant, as its p-value is below 0.05.
- All the coefficients, in Model 2, are consistent with the correlation matrix and scatter plots.
- The coefficients of "Number of Doors" and "Popularity" in Model 2 have minimal changes, compared with that of Model 1.

```
call:
lm(formula = Price ~ . - City_MPG, data = df.carprice)
Residuals:
           10 Median
-1.8872 -0.3212 -0.0775 0.2276 5.2348
coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             7.06795 0.15935 44.356 < 2e-16
Highway MPG
            -0.70104 0.02816 -24.898 < 2e-16
            -0.12774
                        0.02790 -4.579 5.68e-06 ***
Popularity
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6808 on 596 degrees of freedom
Multiple R-squared: 0.5389. Adjusted R-squared: 0.5365
```

F-statistic: 232.2 on 3 and 596 DF. p-value: < 2.2e-16

# Solving Case 1: Multicollinearity

#### Ridge Regression

Recall the 2nd MLR model, denoted as "MLR adjusted", is as follows:

$$Price = 7.068 - 0.137 * Number of Doors - 0.701 * Highway MPG - 0.128 * Popularity.$$

The following table summarises the coefficients of the Ridge Regression model.

 $\label{eq:price} {\sf Price} = 6.691 - 0.111 * {\sf Number\ of\ Doors} - 0.124 * {\sf Highway\ MPG} - 0.617 * {\sf City\ MPG} - 0.105 * {\sf Popularity}.$ 

- ► The coefficients of the predictors, Highway MPG and City MPG, are all negative, as expected.
- ► The Ridge Regression model has solved the Multicollinearity problem.

# Solving Case 1: Multicollinearity

LASSO Regression

The following table summarises the coefficients of the LASSO Regression model.

 $\label{eq:price} Price = 6.630 - 0.097* \\ Number of Doors + 0* \\ Highway \ MPG - 0.766* \\ City \ MPG - 0.095* \\ Popularity.$ 

- ► In the LASSO Regression model, the coefficient of Highway MPG is 0.
- ► LASSO Regression has performed variable selection by setting some coefficient to be zero.
- ► LASSO Regression has successfully solved the Multicollinearity problem.

# Compare the Performance of MLR, Ridge and LASSO Regression Models

|              | MSE   | MAE   | RMSE  | MAPE  | $R^2$ |
|--------------|-------|-------|-------|-------|-------|
| MLR adjusted | 0.460 | 0.431 | 0.679 | 0.137 | 0.539 |
| Ridge model  | 0.356 | 0.333 | 0.596 | 0.095 | 0.644 |
| LASSO model  | 0.347 | 0.318 | 0.589 | 0.088 | 0.652 |

- The adjusted MLR model performs the worst.
  - ▶ The MSE of the adjusted MLR model is 0.460, which is the highest MSE among the three models.
  - ▶ The  $R^2$  of the adjusted MLR model is 0.539, which is the lowest  $R^2$  among the three models.
- The Ridge and LASSO Regression models have a better performance than the adjusted MLR model.
- In a nutshell, both Ridge and LASSO Regression can effectively solve the multicollinearity problem without compromising the accuracy.

# Case 2: Small Training Dataset

- By mentioning small, we actually mean that the ratio of the training dataset size to the number of predictors is small.
- Suppose the training dataset has 32 observations, and the number of predictors is 4.
- In such case, the ratio of the training dataset size to the number of predictors is 8.
- The common rule of thumb is that for every one predictor variable, it is recommended to have at least 100 observations.

# Train a MLR Model using a Small Training Dataset

• Let us split the entire dataset (600) into the training dataset and the test dataset of size 32 and 568, respectively.

```
set.seed(6674)
sample <- sample(nrow(df.carprice), 32)
training <- df.carprice[sample, ]
test <- df.carprice[-sample, ]</pre>
```

 Next, we use the small training dataset to train the 3rd MLR model, which will be denoted as "MLR baseline".

```
model3 <- lm(Price ~.-Highway_MPG, data = training)
summary(model3)</pre>
```

#### Build the Baseline MLR Model

```
Call:
lm(formula = Price ~ . - Highway_MPG, data = training)
Residuals:
   Min
            10 Median
                                 Max
-0 7480 -0 2743 -0 0849 0 1436 1 8213
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.65850
                         0.57416 13.339 1.18e-13 ***
Number of Doors -0.19706 0.09685 -2.035 0.0514 .
City_MPG -0.90431 0.10776 -8.392 3.96e-09 ***
Popularity -0.18903 0.09016 -2.097 0.0452 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5232 on 28 degrees of freedom
Multiple R-squared: 0.7319. Adjusted R-squared: 0.7031
F-statistic: 25.48 on 3 and 28 DF, p-value: 3.725e-08
```

- Note that we do not include the predictor, "Highway MPG", in order to solve the multicollinearity problem.
- From the coefficients and p values, we can conclude that the Multicollinearity problem has been resolved

#### Performance of the Baseline MLR Model

|                    | MSE   | MAE   | RMSE  | MAPE  |
|--------------------|-------|-------|-------|-------|
| Baseline MLR Train | 0.240 | 0.321 | 0.489 | 0.083 |
| Baseline MLR Test  | 0.387 | 0.379 | 0.622 | 0.116 |

- All the error rates of the baseline MLR model on the test dataset are consistently higher than those on the training dataset.
- For example, the MSE of the model on the training dataset is 0.240, while the MSE on the test dataset is 0.387.
- The above problem is commonly referred to as Overfitting.

# Case 2: Overfitting

- In our case, Overfitting is due to the small size of the training dataset.
- The small training dataset may not well represent the test dataset, or any other unseen data.
- The model may have been overfitted to the small training dataset, such that it may lose the ability to generalise well to any unseen data.
- One solution is to train the model with more data.
- Another solution is Ridge and LASSO Regression.

• Let us compare the error metrics of the baseline MLR, Ridge and LASSO Regression models, on both the training and the test datasets.

|                    | MSE   | MAE   | RMSE  | MAPE  |
|--------------------|-------|-------|-------|-------|
| Baseline MLR Train | 0.240 | 0.321 | 0.489 | 0.083 |
| Ridge Model Train  | 0.251 | 0.321 | 0.501 | 0.082 |
| LASSO Model Train  | 0.241 | 0.310 | 0.491 | 0.078 |

|                   | MSE   | MAE   | RMSE  | MAPE  |
|-------------------|-------|-------|-------|-------|
| Baseline MLR Test | 0.387 | 0.379 | 0.622 | 0.116 |
| Ridge Model Test  | 0.369 | 0.366 | 0.608 | 0.107 |
| LASSO Model Test  | 0.370 | 0.360 | 0.609 | 0.107 |

|                    | MSE   | MAE   | RMSE  | MAPE  |
|--------------------|-------|-------|-------|-------|
| Baseline MLR Train | 0.240 | 0.321 | 0.489 | 0.083 |
| Ridge Model Train  | 0.251 | 0.321 | 0.501 | 0.082 |
| LASSO Model Train  | 0.241 | 0.310 | 0.491 | 0.078 |

• The accuracy levels of the three models, on the training dataset, are similar.

|                   | MSE   | MAE   | RMSE  | MAPE  |
|-------------------|-------|-------|-------|-------|
| Baseline MLR Test | 0.387 | 0.379 | 0.622 | 0.116 |
| Ridge Model Test  | 0.369 | 0.366 | 0.608 | 0.107 |
| LASSO Model Test  | 0.370 | 0.360 | 0.609 | 0.107 |

• The accuracy levels of the Ridge and LASSO Regression models, on the test dataset, are higher than that of the Multiple Linear Regression model.

- Both the Ridge and LASSO Regression models can reduce the error for the test dataset, without compromising the accuracy on the training dataset.
- The Overfitting problem exists, as the errors are consistently higher on the test dataset, compared with that on the training dataset.
- Nevertheless, both the Ridge and LASSO Regression models have minimised the differences of error metrics between the training and test datasets, to some extent.

|                    | MSE   | MAE   | RMSE  | MAPE  |
|--------------------|-------|-------|-------|-------|
| Baseline MLR Train | 0.240 | 0.321 | 0.489 | 0.083 |
| Baseline MLR Test  | 0.387 | 0.379 | 0.622 | 0.116 |

|                   | MSE   | MAE   | RMSE  | MAPE  |
|-------------------|-------|-------|-------|-------|
| Ridge Model Train | 0.251 | 0.321 | 0.501 | 0.082 |
| Ridge Model Test  | 0.369 | 0.366 | 0.608 | 0.107 |

• In summary, both Ridge and LASSO Regression can minimise the Overfitting problem to a certain extent.

# Case 3: A Large Number of Predictors

- It is difficult to interpret the MLR model with too many coefficients.
- It is helpful to simplify the model by retaining a smaller set of important predictors.
- LASSO Regression can achieve this goal, by shrinking some predictors' coefficients to 0.
- This is also called "Variable Selection", which can
  - ► Prevent Overfitting;
  - ► Improve the model interpretability;
  - ► Make it easier to execute the business solution in practice.

# Solving Case 3: A Large Number of Predictors

Recall the coefficients of the LASSO Regression model, when we solve the case 1: Multicollinearity.

- Note that the coefficient of the predictor, Highway MPG, has been reduced to zero.
- In general, when the number of predictors is large, LASSO Regression can shrink the coefficients of some predictors to exactly zero.
- By performing Variable Selection, LASSO Regression can reduce the model complexity, and improve the model interpretability.
- Ridge Regression cannot perform variable selection directly.
- If you value the business interpretability, and want a simple model with fewer parameters, LASSO Regression is a better choice.

# Summary

## Summary

#### We have learnt to:

- Understand the impact of the Multicollinearity and the Overfitting problems.
- ▶ Understand how Regularisation: Ridge and LASSO Regression, have successfully solved, or minimised the Multicollinearity and the Overfitting problems.

#### In the next video.

We will learn more about Bias, Variance and their Trade-off.

#### References



Wessel N. van Wieringen (2021) Lecture notes on ridge regression



Dataset: Car Features and MSRP https://www.kaggle.com/CooperUnion/cardataset