The Answer of Assignment 2

WEI SHUANG

31/8/2025

Problem 1 Solution

(1) 根据线性空间的同构理论,任何维数相同的线性空间都是同构的。因此可知 $\sum_{i,j=0}^{1} c_{ij} |i,j\rangle 与 \{(x_1,x_2,x_3,x_4)\}, x \in C 同构。即 <math>v_1 = (c_{00},c_{01},c_{02},c_{03})^*, v_2 = (d_{00},d_{01},d_{10},d_{11})^*$ (2) $\langle \psi_1 | \psi_2 \rangle = v_1^{\dagger} v_2$ 成立,这是因为 $\langle \psi_1 | \psi_2 \rangle = (\sum_{i,j=0}^{1} c_{i,j}^* \langle ij |) (\sum i,j=0^1 c_{i,j} | ij \rangle) = v_1^{\dagger} v_2$

(3) $O|pq\rangle = O_{ij,kl}|ij\rangle\langle kl||pq\rangle = O_{ij,kl}|ij\rangle\delta_{kp}\delta_{lq} = O_{ij,pq}|ij\rangle$ if we define $|00\rangle$ as e_1 , $|01\rangle$ as e_2 , $|10\rangle$ as e_3 , $|11\rangle$ as e_4 , then we can get the matrix representation of O: $Oe_i = \sum_{j=1}^4 O_{ji}e_j$ 因此 O 的矩阵表示为:

$$O = \begin{pmatrix} O_{11} & O_{12} & O_{13} & O_{14} \\ O_{21} & O_{22} & O_{23} & O_{24} \\ O_{31} & O_{32} & O_{33} & O_{34} \\ O_{41} & O_{42} & O_{43} & O_{44} \end{pmatrix}$$

(4)

Problem 2 Solution

- (1)
- (2)
- (3)
- **(4)**

Problem 3 Solution

- (1)
- (2)
- (3)

(4) how should the Pauli operators σ_i^+ and σ_i^z can be written in terms of the f operators? we have the definition that:

$$f_i^{\dagger} = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^+$$

so from $\langle \overline{n_{1'}n_{2'} \cdot n_{i'}} | f_i^{\dagger} | \overline{n_1n_2n_3 \cdot n_i} \rangle = \langle \overline{n_1n_2 \cdot n_i} | f_i | \overline{n_{1'}n_{2'} \cdot n_{i'}} \rangle^*$ we can get the relation between f_i and σ_i^+ , σ_i^z as follows:

$$f_i = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^-$$

then try to represent σ_i^z and σ_i^+ in terms of f_i : we use the matrix representation of the Pauli operators:

$$\sigma_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_i^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \sigma_i^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\sigma_i^z {\rm can}$ be expressed as: 2 $\sigma_i^+ \sigma_i^- - I = 2 f_i^\dagger f_i - I$

like wise:

$$\sigma_i^+ = f_i^\dagger \left(\prod_{j < i} \sigma_j^z \right)^{-1}$$

$$= f_i^\dagger \left(\prod_{i < i} (2f_j^\dagger f_j - I) \right)$$