ΓΡΑΦΗΜΑ G1: ΧΡΟΝΟΣ ΑΠΟΚΡΙΣΗΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΚΑΘΕ ΠΑΚΕΤΟ, ΣΕ ΔΙΑΣΤΗΜΑ ΤΕΣΣΑΡΩΝ ΛΕΠΤΩΝ

Εικόνα Ε1: Εικόνα χωρίς σφάλματα

Εικόνα 1. Requesting error free image: 2021-03-31 at 19:54:38 EEST Image received: 2021-03-31 at 19:54:43 EEST (Request Code: M9556)

Εικόνα Ε2: Εικόνα με σφάλματα

Eικόνα 2. Requesting image with errors: 2021-03-31 at 19:54:43 EEST Image received: 2021-03-31 at 19:54:47 EEST (Request Code: G7481)

Εικόνα M1: Εικόνα με ίχνη GPS από τη διαδρομή X = 1 (Δείγματα με απόσταση τουλάχιστον 10 δευτερόλεπτα το ένα από το άλλο και δείγματα από το 150σιοστό και μετά.)

Eικόνα 3. Requesting GPS route image: 2021-03-31 at 19:54:47 EEST Image received: 2021-03-31 at 19:55:07 EEST (Request Code: P5712)

ΓΡΑΦΗΜΑ G2: ΧΡΟΝΟΣ ΑΠΟΚΡΙΣΉΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΚΑΘΕ ΠΑΚΕΤΌ ΠΟΥ ΛΑΜΒΑΝΕΤΑΙ ΕΠΙΤΎΧΩΣ ΜΕ ARQ, ΣΕ ΔΙΑΣΤΗΜΑ ΤΕΣΣΑΡΩΝ ΛΕΠΤΩΝ

Εκτίμηση της κατανομής της πιθανότητας του αριθμού των επανεκπομπών

Υπολογισμός του BER

Ο υπολογισμός τους BER, όπως και όλων των διαγραμμάτων, έγινε με τη βοήθεια του matlab. Από τις σημειώσεις γνωρίζουμε ότι: $P=(1-BER)^L$, όπου P η πιθανότητα επιτυχούς λήψεις πακέτου. Η αλλιώς $l=\frac{1}{P}$, η μέση τιμή των επανεκπομπών.

$$L = 16 (χαρακτήρες) * 8 (bit ανα χαρακτήρα) = 128 bit$$

$$P = \frac{\sigma \acute{v}voλο \, των \, επανεκπομπών}{1*times(1)+2*times(2)+\cdots+n*times(n)} = \frac{112}{166} = 0.6747, \, \acute{o}που \, times(1), times(2) \dots times(n) \, είναι πόσες φορές \, ζητήθηκε μία φορά επανεκπομπή, δύο φορές, ... n φορές.$$

$$BER = 1 - P^{\frac{1}{L}} = 1 - (0.6747)^{\frac{1}{128}} = 0.0031$$