Colle 6 \sim 3 novembre 2015 \sim Colleur : Isenmann \sim MPSI \sim Trinôme :

Planche 1.

Question de cours. Énoncer les propriétés du cours sur la fonction arctan.

Exercice 1. Résoudre le système suivant

$$\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

Planche 2.

Question de cours. Montrer qu'une fonction strictement monotone est injective. La réciproque est-elle vraie? Est-ce que si la fonction est monotone alors elle est injective?

Exercice 1. Étudier la fonction $\arcsin(\sin(x)) + \arccos(\cos(x))$ et la représenter.

Planche 3.

Question de cours. Trouver une fonction ni paire ni impaire. Quelles sont les fonctions impaires et paires en même temps?

Exercice 1. Résoudre $\arctan(x) + \arctan(x\sqrt{3}) = \frac{7\pi}{12}$.

Planche 1 - Solutions.

Question de cours. La fonction arctan est la réciproque de la fonction (bijective continue croissante) tan sur l'intervalle $]-\pi/2,\pi/2[$. La fonction arctan est alors bijective, continue, croissante. Sa dérivée est $\arctan'(x) = \frac{1}{1+x^2}$. Le graphe est celui de tan mais en symétrique par rapport à la première bissectrice.

Exercice 1. Soit $(x,y) \in \mathbb{R}^2$ une solution. On suppose que y est non nulle. Alors on peut diviser les membres de chaque côtés. D'où

$$8^x 2^{-x} = 2$$

Donc $\exp(x \ln(8) - x \ln(2)) = 2$ et $x 2 \ln(2) = \ln(2)$. On en déduit que x = 1/2. Donc $y = \sqrt{8}/10 = \sqrt{2}/5$.

Si y = 0, alors $8^x = 0$ mais ce n'est pas possible. Donc $(1/2, \sqrt{2}/5)$ est la seule solution possible. On vérifie qu'il s'agit bien d'une solution en remontant les calculs.

Planche 2 - Solutions.

Question de cours. Soit f une fonction strictement monotone. Soient $x, y \in I$ tels que f(x) = f(y). Si $x \neq y$ alors quitte à permuter on peut supposer que x < y. D'où f(x) < f(y) par strict monotonie. C'est impossible. Donc f est injective.

La réciproque n'est pas vraie. Il suffit de considérer une fonction par morceaux qui décroit au début et qui croit à la fin (avec un saut au milieu). On obtient alors une fonction injective mais pas monotone.

Une fonction constante est une fonction monotone mais pas injective.

Exercice 1. On pose $f(x) = \arcsin(\sin(x)) + \arccos(\cos(x))$ sur \mathbb{R} . La fonction f est 2π -périodique, il suffit donc de l'étudier sur $[-\pi, \pi]$.

On sait que $\arcsin(\sin(x)) = x$ mais seulement sur $[-\pi/2, \pi/2]$ et que $\arccos(\cos(x)) = x$ sur $[0, \pi]$. Il faut donc s'y ramener.

- Sur $[0, \pi/2]$ c'est facile, ça vaut x pour les deux. Donc f(x) = 2x.
- Sur $[-\pi, 0]$ par contre il va fallloir commencer à bidouiller car x est négatif et $\arccos(\cos)$ c'est ok que quand x < 0. Du coup on pense à $\cos(x) = \cos(-x)$. Ainsi $\arccos(\cos(x)) = \arccos(\cos(-x)) = -x$ car $0 \le -x \le \pi$. De plus $\arcsin(\sin(x)) = x$. Du coup f(x) = 0 sur cet intervalle.
- Sur $[-\pi, -\pi/2]$. De même $\arccos(\cos(x)) = \arccos(\cos(-x)) = -x \text{ car } 0 \le -x \le \pi$. Par contre ce n'est plus vraie pour arcsin. Donc on décale. $\arcsin(\sin(x)) = \arcsin(\sin(\pi-x)) = \arcsin(\sin(-2\pi+\pi-x)) = \arcsin(\sin(-\pi-x)) = -\pi x \text{ car } -\pi/2 \le -\pi x \le 0$. Donc $f(x) = -\pi 2x$.
- Sur $[\pi/2, \pi]$. Ici $\arccos(\cos(x)) = x$ car $0 \le x \le \pi$. De plus $\arcsin(\sin(x)) = \arcsin(\sin(\pi x)) = \pi x$ car $0 \le \pi x \le \pi/2$. Donc $f(x) = \pi$.

Planche 3 - Solutions.

Question de cours. La fonction qui vaut 0 sur les négatifs et x sur les positifs n'est ni paire ni impaire.

Soit f une fonction paire et impaire. Soit $x \in \mathbb{R}$. Alors f(x) = f(-x) = -f(x). Donc 2f(x) = 0 et f(x) = 0. Donc f est nulle.

Exercice 1. On utilise la relation $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a) \tan(b)}$. En effet

$$\tan(\arctan(x) + \arctan(x\sqrt{3})) = \frac{\tan(\arctan(x)) + \tan(\arctan(x\sqrt{3}))}{1 - \tan(\arctan(x))\tan(\arctan(x\sqrt{3}))}$$
$$= \frac{x + x\sqrt{3}}{1 - \sqrt{3}x^2} = \tan(7\pi/12)$$

Il ne reste plus qu'à calculer $\tan(7\pi/12)$. Or

$$\tan(7\pi/12) = \tan(\pi/3 + \pi/4) = \frac{\tan(\pi/3) + \tan(\pi/4)}{1 - \tan(\pi/3)\tan(\pi/4)}$$
$$= \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$$

D'où cela donne une équation du second degré $\sqrt{3}x^2 + x(1-\sqrt{3}) - 1 = 0$. Son discrimant vaut $2(2+\sqrt{3})$. Les solutions sont

$$\begin{cases} x = \frac{3+\sqrt{3}}{2} \\ x = -\frac{5\sqrt{3}+3}{6} \end{cases}$$