## POLYNOMIAL BICOMODULES ARE PARAMETRIC RIGHT ADJOINTS

Recall that the substitution product of polynomials p and q, denoted  $p \triangleleft q$ , is characterized as follows.

- A position a in  $p \triangleleft q$  consists of a position  $a_{\text{base}}$  in p and positions  $a_f$  in q for each direction f from  $a_{\text{base}}$ .
- A direction from position a in  $p \triangleleft q$  consists of a direction f from  $a_{\text{base}}$  and a direction g from  $a_f$ .



We denote such a direction from such a position in a substitution product by  $f \triangleleft g$ . Accordingly, id $_{\triangleleft}$  will denote the unique direction from the unique position in the unit for substitution id $_{\triangleleft}$  (a.k.a. the polynomial y).<sup>1</sup>

**Proposition 1.** Polynomial comonoids are categories.

*Proof.* Let c be a polynomial comonoid. Denote counit by  $\varepsilon$  and comultiplication by  $\delta$ .



Observe first that the right unit law forces  $(\delta_1(a))_{\text{base}} = a$  for all  $a \in c(1)$ .

$$= \bigcup_{(\varepsilon \triangleleft \mathrm{id}_c) \circ \delta} = \bigcup_{\mathrm{id}_c} (\mathrm{id}_c \triangleleft \varepsilon) \circ \delta$$

<sup>&</sup>lt;sup>1</sup>Given directions f, g, and h respectively belonging to polynomials p, q, and r, the directions of the form  $(f \triangleleft g) \triangleleft h$  belonging to  $(p \triangleleft q) \triangleleft r$  and the directions of the form  $f \triangleleft (g \triangleleft h)$  belonging to  $p \triangleleft (q \triangleleft r)$  are identified under the relevant monoidal coherence isomorphism. Hence brackets can be omitted.

Similarly, for any direction f belonging to a polynomial p, we have that  $\mathrm{id}_{\blacktriangleleft} \blacktriangleleft f$  and  $f \blacktriangleleft \mathrm{id}_{\blacktriangleleft}$  (respectively belonging to  $\mathrm{id}_{\dashv} \triangleleft p$  and  $p \triangleleft \mathrm{id}_{\dashv}$ ) are both canonically identified with f.

Therefore the expression  $(\delta_1(a))_f$  for  $f \in c[a]$  has a well-defined meaning. We gather the data of a category C.

- The set of objects  $Ob(\mathcal{C})$  is c(1), i.e., the set of positions in c.
- The set of arrows  $Arr(\mathcal{C})$  is  $\sum_{a \in c(1)} c[a]$ , i.e., the set of all directions in c.
- The source map s sends each  $f \in c[a]$  to a. (Hence the polynomial c is described by the bundle  $Arr(\mathcal{C}) \stackrel{s}{\to} Ob(\mathcal{C})$ .)
- The target map t sends each  $f \in c[a]$  to  $(\delta_1(a))_f$ .
- The identity map e sends each  $a \in c(1)$  to  $\varepsilon^{\sharp}(a, id_{\bullet})$ .
- The composition map m sends each pair of compatible arrows  $f \in c[a], g \in c[t(f)]$  to  $\delta^{\sharp}(a, f \triangleleft g)$ .

Now we verify these data satisfy the laws of a category.

- The law s(e(a)) = a is true by construction; e(a) is a direction from the position a.
- The law t(e(a)) = a is forced to hold by the comonoid left unit law, which identifies  $\delta^{\sharp}(a, f \triangleleft g)$  with f.
- The law s(m(f,g)) = s(f) is true by construction; m(f,g) is a direction from the position s(f).
- The law t(m(f,g)) = t(g).
- The left unit law m(e(s(f)), f) = f is directly expressed by the comonoid left unit law.
- The right unit law m(f, e(t(f))) = f is directly expressed by the comonoid right unit law.
- The associativity law m(m(f,g)h) = m(f,m(g,h)) is directly expressed by the comonoid associativity law.



Conversely, let  $\mathcal{C}$  be a category. We immediately obtain the bundle  $\operatorname{Arr}(\mathcal{C}) \xrightarrow{s} \operatorname{Ob}(\mathcal{C})$ . Let c denote the polynomial described by this bundle (the "outfacing polynomial" of  $\mathcal{C}$ ); we exhibit a comonoid struture on c.c

Lastly, these translation processes between polynomial comonoids and categories are inverse by construction.  $\Box$ 

**Proposition 2.** A polynomial left comodule amounts to a copresheaf and a presheaf on that copresheaf's category of elements.

*Proof.* Let c be a polynomial comonoid and let m be a left comodule on c. Denote left comodule comultiplication by  $\lambda$ .



**Proposition 3.** A polynomial right comodule amounts to a set of copresheaves.

*Proof.* Let d be a polynomial comonoid and let m be a right comodule on d. Denote right comodule comultiplication by  $\rho$ .



Proposition 4. Polynomial bicomodules are prafunctors.

Proof.

Proposition 5. Maps between bicomodules are natural transformations between prafunctors.

Proof.

**Proposition 6.** Composition of bicomodules is composition of prafunctors.

*Proof.* Recall bicomodules from d to 0 are copresheaves on d (and maps between such bicomodules are copresheaf maps). Hence each bicomodule m from c to d induces a functor  $F_m$  from d-copresheaves to c-copresheaves by precomposition. Accordingly, we have  $F_{m \triangleleft_d n} \cong F_m \circ F_n$  (for bicomodules m from c to d and n from d to e).

We show that the prafunctor corresponding to the bimodule m is  $F_m$ .