

Aula – 3 Introdução a Linguagem C

Disciplina: CCO016 - Fundamentos de Programação

Prof: Phyllipe Lima phyllipe@unifei.edu.br

Universidade Federal de Itajubá – UNIFEI IMC – Instituto de Matemática e Computação

Agenda

- ☐ Computador
- ☐ Linguagem C
- ☐ Compilação
- ☐ Meu Primeiro Programa

O que é um computador?

 "Um conjunto de componentes eletrônicos capaz de executar variados tipos de algoritmos e tratamento de informações. Um computador pode possuir inúmeros atributos, dentre eles armazenamento e processamento de dados..."

Computador

CPU

Memória RAM

Disco Rígido (SSD) ☐ CPU

- ☐ Central Processing Unit
- ☐ Unidade de Processamento Central
- ☐ "Cérebro". Esse componente que executa as instruções

Computador

CPU

Memória RAM

Disco Rígido (SSD)

☐ CPU
Central Processing Unit
Unidade de Processamento
Central
"Cérebro". Esse componente que
executa as instruções
☐ Disco Rígido
Armazenamento de dados
estático.
Grande Capacidade
☐ Lento

Computador

CPU

Memória RAM

Disco Rígido (SSD)

CPL	J
	Central Processing Unit
	Unidade de Processamento
	Central
	"Cérebro". Esse componente que
	executa as instruções
Disc	co Rígido
	Armazenamento de dados
	estático.
	Grande Capacidade
	Lento
Me	mória Ram
	Armazenamento de dados de
	programas em execução
	Rápida

☐ Inicialmente o

programa está "parado"

no disco rígido

☐ Inicialmente o

programa está "parado"

no disco rígido

- Inicialmente o programa está "parado" no disco rígido.
- ☐ Ao "clicar" duas vezes, ele é carregado na memória RAM

- ☐ Com o programa na memória, a CPU busca as instruções nela.
- ☐ E assim inicia a execução

☐ Esse processo

permanece até o

programa ser

encerrado.

Como são escritas as instruções?

- ☐ O computador (CPU) entende apenas uma linguagem.
- ☐ A linguagem de máquina.

E-7-10 - 05

é g

.

10-00m

SPS-BORD SOHOAUS E-STAR OBLAR S

A .XNA SACRET P. SAND S. W. XNA P. B. DOX

Linguagem de Programação

□ É inviável escrevermos programas em linguagem de

máquina.

Erlang C# D Ø F# ML

Prolog

ColdFusion

Clarion

Prolog

ColdFusion

Forth

Assembly scratch

Scheme

CHT B PL/SQL

CHT

Linguagem de Programação - C

- Umas das primeiras linguagens de programação.
- ☐ Desenvolvida para produzir programas fonte mais

compacto e organizado.

☐ Primeira aparição 1972

Linguagem de Programação - C

Código C

```
1. #include <stdio.h>
2. int main()
3. {
4.    printf("Hello!");
5.    return 0;
6. }
```

Código Assembly 8086

```
    org 100h
    mov dx, offset texto
    mov ah, 9
    int 21h
    ret
    texto db "Hello!"
```

Linguagem de Programação - C

Código C

```
1. #include <stdio.h>
2. int main()
3. {
4.    int x;
5.    scanf("%d", &x);
6.    return 0;
7. }
```

Assembly

```
org 100h
1.
       mov cx, 0h
2.
3. entrada:
      mov ah, 1
4.
5.
      int 21h
6.
    cmp al, 13
7.
       jz fim
      and al, 0fh
8.
       mul cx, 0ah
9.
10. add cl, al
jmp entrada
12.fim:
13.
      ret
```

Unix

- ☐ A linguagem C foi utilizada para reescrever o sistema operacional Unix.
- ☐ Se tornou um dos sistemas mais populares.
- ☐ Popularizado por Dennis Ritchie e Ken Thompson.

Unix

☐ Sistema Operacional Desenvolvimento Originalmente no *Bell Labs* pela *at&t* da década de 1960.

Unix-Like

□ Dada sua popularidade, passou a ser o sistema operacional favorito e foi adotado como parte de outros sistemas, dando origem ao *Unix-like*

Unix-Like

☐ E o Windows? ⑤

Unix-Like

☐ WSL (Windows Subsystem Linux) para **nos salvar!**

Linguagem Amplamente Utilizada até os dias atuais

Aug 2022	Aug 2021	Change	Program	ming Language	Ratings	Change
1	2	^	•	Python	15.42%	+3.56%
2	1	~	9	С	14.59%	+2.03%
3	3		()	Java	12.40%	+1.96%
4	4		@	C++	10.17%	+2.81%
5	5		0	C#	5.59%	+0.45%

Desenvolvendo e Executando Programas em C

Edição

Compilação Carregamento Execução

Compilação Carregamento Execução

- **□**Edição:
- ☐ Consiste na edição do código do programa (humanos entendem)
- ☐É realizada em software de edição de código fonte:
 - ☐ Eclipse, CodeBlocks, CLion
- ☐Ou em editores de texto:
 - □ VSCode,Notepad++, Vim, emacs, Kate, etc.
- ☐ Arquivos tem a extensão . c.

Edição Compiler Carregamento Execução cução

- **□**Compilação:
- ☐ Fase em que ocorre a tradução do programa para linguagem de máquina.
- ■O compilador verifica o código em busca de erros de sintaxe.
- ☐ Se houverem erros, o programa não é traduzido:
 - ☐ Erros de compilação.
- ☐ Caso contrário, é gerado um executável (a CPU entende)

Edição Compilação Carregamento Execução

□Carregamento:

- ☐ Esta fase é realizada por um software do sistema operacional conhecido como loader (carregador).
- ☐ Este software busca o arquivo executável no disco e o transfere para a memória principal (RAM).
- ☐ Adicionalmente, também são carregadas bibliotecas utilizadas no programa.

Edição Compilação Carregamento Execução

- **□**Execução:
- □Após estar carregado na memória, o programa é executado.
- ☐ Esta fase ocorre sob o controle da CPU.

VSCode – Visual Studio Code

☐ Nas aulas, utilizaremos o VSCode para nossos experimentos.

VSCode – Visual Studio Code

- ☐ Próximos slides mostram o VSCode em uma máquina Windows 10 com WSL instalado.
- ☐ Será comentado também alternativa de ambientes *online*

VSCode – Visual Studio Code

- ☐ Próximos slides mostram o VSCode em uma máquina Windows 10 com WSL instalado.
- ☐ Será comentado também alternativa de ambientes *online*

Após abrir o VSCode

Criando uma pasta para seus arquivos

Escolha um local e clique "Selecionar Pasta"

Marque que "sim" você confia nos autores

Crie seu primeiro arquivo "ola.c"

Abra o terminal (requer WSL instalado)

Ambiente pronto ©

Online C Compiler.

- ☐ Entre no link:
 - https://www.onlinegdb.com/online c compiler
- ☐ Seja feliz.
- Suficiente para nosso curso. Mas não reflete ambiente real para programas corporativos.

Clique em "Run"

Aqui iremos compilar e executar

- ☐ Este código está escrito em Linguagem C. Como podemos *traduzir* para que a CPU consiga executar?
- ☐ Através da compilação!

- ☐ Este código está escrito em Linguagem C. Como podemos *traduzir* para que a CPU consiga executar?
- ☐ Através da compilação!

■ #partiu #terminal

```
phillima@DESKTOP-CM6Q9KD: /mnt/c/WINDOWS/system32
 lcome to Ubuntu 20.04.4 LTS (GNU/Linux 5.10.16.3-microsoft-standard-WSL2 x86_64)
 Documentation: https://help.ubuntu.com
 Management:
                 https://landscape.canonical.com
                 https://ubuntu.com/advantage
 Support:
 System information as of Thu Aug 25 10:08:03 -03 2022
 System load: 0.0
                                Processes:
 Usage of /: 1.3% of 250.98GB Users logged in:
                                                       0
                   IPv4 address for eth0: 192.168.28.234
 Memory usage: 0%
 Swap usage: 0%
updates can be applied immediately.
is message is shown once a day. To disable it please create the
 ome/phillima/.hushlogin file.
 llima@DESKTOP-CM6Q9KD:/mnt/c/WINDOWS/system32$ LINUX DENTRU DU UINDOUS UHUUUUUUUUU
```


Comentários

- □ Podemos escrever informações para documentar o código através de comentários.
- O compilador irá ignorar os comentários. Tendo valor apenas para humanos.
- □ Podemos comentar linhas individuais usando // (duas barras)
- ☐ Podemos comentar grupos de linhas usando /* (na primeira linha) e */ na última linha.

Aula – 3 Introdução a Linguagem C

Disciplina: CCO016 - Fundamentos de Programação

Prof: Phyllipe Lima phyllipe@unifei.edu.br

Universidade Federal de Itajubá – UNIFEI IMC – Instituto de Matemática e Computação