

FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor's thesis in Informatics

Algorithms for refinement of modal process rewrite systems

Philipp Meyer

Fakultät für Informatik

Technische Universität München

Bachelor's thesis in Informatics

Algorithms for refinement of modal process rewrite systems

Algorithmen zur Verfeinerung von modalen Prozessersetzungssystemen

Author: Philipp Meyer

Supervisor: Univ.-Prof. Dr. h.c. Javier Esparza

Advisor: M. Sc. Jan Křetínský

Submission Date: April 3, 2013

I assure the single handed composition of this bachelor's thesis only supported by declared resources.
Munich, April 3, 2013
Philipp Meyer

Contents

1	Introduction Theory			
2				
	2.1	Modal process rewrite system	2	
	2.2	Basic definitions	2	
	2.3	Modal transition system	3	
	2.4	Modal process rewrite system	3	
	2.5	Modal refinement	4	
	2.6	Attack tree	4	
	2.7	Visibly pushdown automaton	7	
3	Algorithms			
	3.1	Description	11	
	3.2	Soundness and completeness	13	
		3.2.1 Soundness	13	
		3.2.2 Completeness	13	
	3.3	Runtime	13	
	3.4	Optimizations	13	
	3.5	Performance evaluation	13	
	3.6	Example	13	
4	Con	clusion	15	
Bi	Bibliography			

1 Introduction

2 Theory

2.1 Modal process rewrite system

Modal process rewrite systems [BK12] are a modal extension of process rewrite systems [May00, Esp01]. They induce a modal transition systems [BKLS09].

2.2 Basic definitions

Definition 1 (Process term). The set of process terms over a set of constants Const is given by

$$\frac{1}{\varepsilon \in \mathcal{P}}(0) \qquad \frac{X \in Const}{X \in \mathcal{P}}(1)$$

$$\frac{p \in \mathcal{P} \quad q \in \mathcal{P}}{p \cdot q \in \mathcal{P}}(S) \qquad \frac{p \in \mathcal{P} \quad q \in \mathcal{P}}{p \| q \in \mathcal{P}}(P)$$

The processes expressions are considered modulo the usual structural congruence, i.e. the smallest congruence such that the operator \cdot is associative, $\|$ is associative and commutative and ε is a unit for both \cdot and $\|$.

Processes that can be produced just with rule 0, 1 and S, i.e. contain no \parallel , are called *sequential processes* and processes that can be produced just with rule 0, 1 and P, i.e. contain no \cdot , are called *parallel processes*

Definition 2 (Size of a process term). The size |p| of a process term p is inductively defined by

$$\begin{aligned} |\varepsilon| &= 0 \\ |X| &= 1 \\ |p \cdot q| &= |p| + |q| \\ |p||q| &= |p| + |q| \end{aligned}$$

Process terms will be denoted by lowercase letters p, q, ... while single constants are denoted by uppercase letters P, Q, ...

Definition 3 (Constants of a process term). The set of constants Const(p) appearing in a process term p is inductively defined by

$$\begin{split} Const(\varepsilon) &= \emptyset \\ Const(X) &= \{X\} \\ Const(p \cdot q) &= Const(p) \cup Const(q) \\ Const(p \| q) &= Const(p) \cup Const(q) \end{split}$$

2.3 Modal transition system

Modal transition system definition from [BK12]:

Definition 4 (Modal transition system). A *modal transition system* (MTS) over an action alphabet Act is a triple $(\mathcal{P}, -- \rightarrow, \longrightarrow)$ where \mathcal{P} is a set of processes and $\longrightarrow \subseteq -- \rightarrow \subseteq \mathcal{P} \times Act \times \mathcal{P}$. An element $(p, a, q) \in -- \rightarrow$ is a *may transition*, also written as $p \xrightarrow{a} q$, and an element $(p, a, q) \in \longrightarrow$ is a *must transition*, also written as $p \xrightarrow{a} q$.

2.4 Modal process rewrite system

Definition 5 (Modal process rewrite system). A process rewrite system (PRS) over a set of constants Const and action alphabet Act is a finite relation. $\Delta \subseteq \mathcal{P} \times Act \times \mathcal{P}$, elements of which are called rewrite rules. A modal process rewrite system (mPRS) is a tuple $(\Delta_{\text{may}}, \Delta_{\text{must}})$ where $\Delta_{\text{may}}, \Delta_{\text{must}}$ are process rewrite systems such that $\Delta_{\text{may}} \subseteq \Delta_{\text{must}}$.

An mPRS $(\Delta_{\max}, \Delta_{\max})$ induces an MTS $(\mathcal{P}, \dashrightarrow, \longrightarrow)$ as follows:

$$\frac{(p, a, p') \in \Delta_{\text{may}}}{p \xrightarrow{\frac{a}{-}} p'} (1) \quad \frac{(p, a, p') \in \Delta_{\text{must}}}{p \xrightarrow{\frac{a}{-}} p'} (2)$$

$$\frac{p \xrightarrow{\frac{a}{-}} p'}{p \cdot q \xrightarrow{\frac{a}{-}} p \cdot q} (3) \quad \frac{p \xrightarrow{\frac{a}{-}} p'}{p \cdot q \xrightarrow{\frac{a}{-}} p' \cdot q} (4) \quad \frac{p \xrightarrow{\frac{a}{-}} p'}{p \|q \xrightarrow{\frac{a}{-}} p\|q} (5) \quad \frac{p \xrightarrow{\frac{a}{-}} p'}{p \|q \xrightarrow{\frac{a}{-}} p'\|q} (6)$$

2.5 Modal refinement

Definition 6 (Refinement). Let $(\mathcal{P}, \dashrightarrow, \longrightarrow)$ be an MTS and $p, q \in \mathcal{P}$ be processes. We say that p refines q, written $p \leq_m q$, if there is a relation $\mathcal{R} \subseteq \mathcal{P} \times \mathcal{P}$ such that $(p,q) \in \mathcal{R}$ and for every $(p,q) \in \mathcal{R}$ and every $a \in Act$:

- 1. If $p \stackrel{a}{\dashrightarrow} p'$ then there is a transition $q \stackrel{a}{\dashrightarrow} q'$ s.t. $(p', q') \in \mathcal{R}$.
- 2. If $q \stackrel{\text{a}}{\longrightarrow} q'$ then there is a transition $p \stackrel{\text{a}}{\longrightarrow} p'$ s.t. $(p', q') \in \mathcal{R}$.

Modal refinement can also be seen as a refinement game from a pair of processes (p,q) where each side plays an attacking transition and the other a defending transition to reach a new state. The attacker wins if there is a strategy of attacking transitions where the defender always ends up in state where there are no defending transitions, otherwise the defender wins.

Definition 7 (Refinement game). Let $(\mathcal{P}, \dashrightarrow, \longrightarrow)$ be an MTS and $p, q \in \mathcal{P}$ be processes.

We define the set of attacking transitions $Att = \{(p,q,p \xrightarrow{a} p') \mid p \xrightarrow{a} p'\} \cup \{(p,q,q \xrightarrow{a} q') \mid q \xrightarrow{a} q'\}.$

For an attacking transition $r \in Att$, the defending transitions are

$$Def((p,q,r)) = \begin{cases} \{(q \xrightarrow{a} q', p', q') \mid q \xrightarrow{a} q'\} & \text{if } r = p \xrightarrow{a} p' \\ \{(p \xrightarrow{a} p', p', q') \mid p \xrightarrow{a} p'\} & \text{if } r = q \xrightarrow{a} q' \end{cases}$$

Then if $(p,q,r) \in Att$ and $(r',p',q') \in Def((p,q,r))$ we would get an attack transition $(p,q) \xrightarrow{\mathbf{r},\mathbf{r}'} (p',q')$.

With that we can say that $p \leq_m q$ if there is a relation $\mathcal{R} \subseteq \mathcal{P} \times \mathcal{P}$ such that $(p,q) \in \mathcal{R}$ and for every $(p,q,r) \in Att$ if $(p,q) \in \mathcal{R}$ then there is $(p',q',r') \in Def((p,q,r))$ such that $(p',q') \in \mathcal{R}$.

2.6 Attack tree

Definition 8 (Attack tree). Let $(\mathcal{P}, -\rightarrow, \longrightarrow)$ be an MTS.

An attack tree is a recursively defined rooted tree, where each node has the values (s,O,C) labeled with the attack transition $s\in Att$, and each edge labeled with a defending transition leads to a child tree or an element $\{(p',q')\}\ O\subseteq Def(s)$ is a set of open edges labeled and $C\subseteq Def(s)\times \mathcal{T}$ is the set of closed edges labeled with a defending transition and leading to a child tree in \mathcal{T} , the set of all trees. They are defined inductively by

$$\frac{s \in Att}{(s,\{(r,(p',q')) \mid (r',p',q') \in Def(s)\}) \text{ atree}} (1)$$

$$\frac{(s,C \uplus (r',(p',q'))) \text{ atree}}{(s,C \cup (r',T)) \text{ atree}} T = ((p',q',r''),C') \text{ atree}} (1)$$

$$\frac{(s,O \uplus (r',p',q'),C) \in \mathcal{T} \quad ((p',q',r''),O',C') \in \mathcal{T}}{(s,O,C \cup \{(r',(p',q',r''),O',C')\}) \in \mathcal{T}} (2)$$

The root of an attack tree is root((p, q, r), O, C) = (p, q)

A tree T=(((p,q,r),O,C) atree) is said to have an open edge (p',q',r') if $(p',q',r') \in O$ or a tree $T' \in C$ has $(p',q',r') \in O$ as an open edge. A tree is a closed tree if it has no open edges.

The set of open edges for an attack tree is given by $open(((p,q,r),O,C) \text{ atree}) = O \cup \bigcup_{T \in C} open(T)$. A tree T is a closed tree, written as closed(T), iff $open(T) = \emptyset$. The set of edges from the root node of a tree is given by $edges((p,q,r),O,C) = O \cup \{(p',q',r') \mid ((p',q',r'),O',C') \in C$.

For a closed attack tree, we can define a) a node c is a child of r if there is a non-empty path from r to c.

A partition P of a tree is given by a set of nodes $P = \{T_1, ..., T_n\}$. The part represented by $T_i \in P$ is the node T_i and all nodes that are successors of T_i but not of another $T_i \in P$.

 $(p,q)\longrightarrow_b S$ is said to represent a partition T if $(p,q)\approx T$ and with $C=\{T'\in P\mid T\longrightarrow T'\}\ P\approx C.$

b) a subtree as a tupel (r,C) where r is a node in the tree and C is a set of nodes such that each $c \in C$ is a child of r but no child of another $c \in C$. The subtree is then the tree given by r and the paths from r to each $c \in C$. The set C may be empty, in which case the subtree is just the node r.

Intuitively, an attack transition $(p,q)\longrightarrow_a O$ means that from the state (p,q), there is a sequence of *attack transitions*, that is a may transition from the left side or a must transition from the right side, such that O is the set of reachable states by applying appropriate *defending transition*, that is a transition of the same type and with the same action symbol from the other side.

Lemma 1. For any attack tree T=((p,q,r),O,C) atree, we have edges(T)=Def((p,q,r))

Proof. By looking at the induction rules for attack trees, we see for a fixed (p,q,r) the edges are always initialised with O = Def((p,q,r)) and $C = \emptyset$ in the base case. In the inductive rule, whenever an element (p',q',r') is removed from O, it is added to C with a child tree. Therefore the set of edges as the union of edges in O and in edge elements in C always stays the same.

Lemma 2. For attack trees T = ((p, q, r), O, C) atree and T' = ((p', q', r'), O', C') atree with $(p', q', r') \in open(T)$, there exists a tree S = ((p, q, r), O'', C'') with $open(S) = (open(T) \setminus \{(p', q', r')\}) \cup open(T')$.

Proof. By induction on the attack tree *T*:

- 1. $T = ((p,q,r), O, \emptyset)$: Then $(p',q',r') \in O$ and we can create $S = ((p,q,r), O \setminus \{p',q',r'\},T')$ atree with $open(S) = (open(T) \setminus \{p',q',r'\}) \cup open(T')$
- 2. $T=((p,q,r),O,C\cup T'')$: Then T was created from $T'''=((p,q,r),O'\uplus\{(p'',q'',r'')\},C)$ atree T''=((p'',q'',r''),O'',C'') atree. As $open(T)=(open(T'')\setminus\{(p'',q'',r'')\}\cup open(T''')$, we could have the cases
 - a) (p', q', r') = (p'', q'', r''):
 - b) $(p',q',r')\in open(T''')$: By induction hypothesis from T''' and T' we get a tree S'=((p,q,r),O''',C''') atree with $open(S')=(open(T''')\setminus\{(p',q',r')\})\cup open(T')=(O'\uplus\{(p'',q'',r'')\}\cup(\bigcup_{T'\in C}open(C)))\{(p',q',r')=(O'\cup(\bigcup_{T'\in C}open(C)))\{(p',q',r')\}$ We can then combine S' and T'' to $S=((p,q,r),O',C\cup S')$ atree with
 - c) $(p',q',r') \notin open(T''')$: Then $(p',q',r') \in open(T'')$. By induction hypothesis from T'' and T' we get a tree S' = ((p'',q'',r''),O''',C''') atree with $open(S') = (open(T'') \setminus \{(p',q',r')\}) \cup open(T')$. Then we can combine T''' and S' to $S = ((p,q,r),O',C \cup S')$ atree with $open(S) = O' \cup (\bigcup_{T' \in C} open(C)) \cup open(S') = O' \cup (\bigcup_{T' \in C} open(C)) \cup ((open(T'')) \setminus \{(p',q',r')\}) \cup open(T')) = (O' \cup (\bigcup_{T' \in C} open(C)) \cup (open(T'')) \setminus \{(p',q',r')\}) \cup open(T'))$

d)
$$(p', q', r') \in open(T''')$$

Theorem 1. For an MTS $(\mathcal{P}, \dashrightarrow, \longrightarrow)$ and processes $p, q \in \mathcal{P}$:

$$(p \leq_m q) \iff \neg \exists T : root(T) = (p,q) \land closed(T)$$

Proof. \Rightarrow : Assume $p \leq_m q$. Then there is a refinement relation \mathcal{R} with $(p,q) \in \mathcal{R}$. Assumme T = ((p,q,r),O,C) atree is a closed attack tree. As it has no open edges, we have $O = \emptyset$ and also all $T' \in C$ are closed. We show by induction on |C| that $(p,q) \notin R$, resulting in a contradiction:

- 1. |C|=0: Then there is an attacking rule r, but no defending rule, therefore $(p,q)\notin \mathcal{R}$.
- 2. $|C| \geq 0$: With lemma , we have edges(T) = Def((p,q,r)), but for every edge (p',q',r') to a child tree T' Then as also every child tree $T' = \in C$ is closed, by induction hypothesis we get $(p',q') \notin \mathcal{R}$. Therefore there is an attacking transition r but no defending transition (p',q',r') with $(p',q') \in \mathcal{R}$, hence $(p,q) \notin \mathcal{R}$.

So for (p,q) there is no attack tree. \Leftarrow : Assume $\neg \exists T : root(T) = (p,q) \land closed(T)$ We show that $\mathcal{R} := \{(p',q') \mid \neg \exists T : root(T) = (p',q') \land closed(T)\}$ is a valid refinement relation with $(p,q) \in \mathcal{R}$.

For any $(p,q,r) \in Att$ with $(p,q) \in \mathcal{R}$, by inference rule 1 there exists T = ((p,q,r),O,C) atree. From all such T, choose the one where O is minimal with regard to the inclusion order. There exists $(p',q',r') \in O: (p',q') \in \mathcal{R}$, because otherwise there would be a closed attack tree T' = ((p',q',r'),O',C') atree and with this tree by inference rule 2 we would get $((p,q,r),O'',C\cup T')$ with $O'' = O \setminus \{(p',q',r')\} \subsetneq O$ in contradiction to the minimality of O. So for the attacking transition (p,q,r) there is a defending transition (p',q',r') with $(p',q') \in \mathcal{R}$.

With this refinement relation we have $p \leq_m q$.

2.7 Visibly pushdown automaton

Definition 9 (Visibly pushdown automaton). A PRS is a visibly pushdown automaton (vPDA) if all processes are sequential and there is a partition $Act = Act_r \uplus Act_i \uplus Act_c$

such that each rule $(p, a, p') \in \Delta$ has the form

$$p = P \cdot S \qquad \text{ and } \qquad p' = \begin{cases} Q & \text{ if } a \in Act_r & \text{ (return rule)} \\ Q \cdot T & \text{ if } a \in Act_i & \text{ (internal rule)} \\ Q \cdot T \cdot R & \text{ if } a \in Act_c & \text{ (call rule)} \end{cases}$$

The modal extension for a *modal visibly pushdown automaton (mvPDA)* is straightforward.

Definition 10 (Attack rules for mvPDA). Let $(\Delta_{\max}, \Delta_{\max})$ be an mvPDA. We define a *attack rules* $(p,q) \longrightarrow_b S$ obtainable from the rewrite rules. For every $p,q \in \mathcal{P}$, we have:

$$\frac{(p,a,p')\in\Delta_{\text{may}}}{(p,q)\longrightarrow_{b}\{(p',q')\mid(q,a,q')\in\Delta_{\text{may}}\}} \ (1)$$

$$\frac{(q,a,q')\in\Delta_{\text{must}}}{(p,q)\longrightarrow_{b}\{(p',q')\mid(p,a,p')\in\Delta_{\text{must}}\}} \ (2)$$

$$\frac{(p,q)\longrightarrow_{b}\{(p'\cdot P,q'\cdot Q)\}\uplus S\quad (p',q')\longrightarrow_{b}S'\quad \forall (p'',q'')\in S':|p''|=1}{(p,q)\longrightarrow_{b}S\cup\{(p''\cdot P,q''\cdot Q)\mid(p'',q'')\in S'\}} \ (3)$$

$$\frac{(p,q)\longrightarrow_{b}\{(p',q')\}\uplus S\quad (p',q')\longrightarrow_{b}S'\quad \forall (p'',q'')\in S':|p''|=1}{(p,q)\longrightarrow_{b}S\cup S'} \ (4)$$

Due to the conditions on the rewrite rules of an mvPDA and the construction of the attack rules, we can see that for any element $(p,q) \longrightarrow_b S$ it holds that |p| = |q| = 2 and for any $(p',q') \in S$ that $1 \le |p'| = |q'| \le 3$.

Then we see that rules 3 and 4 always combine a rule where on the left-hand side, there is (p',q') in S with |p'|=2 or |p'|=3, while on the right-hand side we require for all $(p'',q'')\in S'$ that |p''|=1. Therefore we will call an attack rule $(p,q)\longrightarrow_b S$ a right-hand side rule if $\forall (p',q')\in S: |p'|=1$ and otherwise a left-hand side rule.

Lemma 3. Given an MTS generated by a mvPDA, for an attack tree ((p,q,r),O,C) atree with open(T) = S and any $s,t \in \mathcal{P}$, there is also a tree $T' = ((p \cdot s,q \cdot t,r'),O',C')$ atree with $open(T') = \{(p' \cdot s,q' \cdot t,r'') \mid (p',q',r') \in open(T)\}.$

Proof. By the MTS induction rules, we have that for every $p \stackrel{\text{a}}{\dashrightarrow} p'$ is generated from a $(p,a,p') \in \Delta_{\text{may}}$ and for a mvPDA therefore |p|=2. Then there is only one transition from $p \cdot s$, nameley $p \cdot s \stackrel{\text{a}}{\dashrightarrow} p' \cdot s$ generated by the MTS induction rule 1. Also for every $q \stackrel{\text{a}}{\longrightarrow} q'$ there is just $q \cdot t \stackrel{\text{a}}{\dashrightarrow} q' \cdot t$ from $q \cdot t$.

Then it is a single transition created from $p \stackrel{\text{a}}{\dashrightarrow} p'$ with $S = \{(p',q') \mid q \stackrel{\text{a}}{\dashrightarrow} q'\}$ and we get $p \cdot s \stackrel{\text{a}}{\dashrightarrow} p' \cdot s$ and $\{(p' \cdot s, q' \cdot t) \mid q \cdot t \stackrel{\text{a}}{\dashrightarrow} q' \cdot t\} = S'$. If the transition was created from $q \stackrel{\text{a}}{\longrightarrow} q'$ with $S = \{(p',q') \mid p \stackrel{\text{a}}{\longrightarrow} p'\}$ and we get $\{(p' \cdot s, q' \cdot t) \mid p \cdot t \stackrel{\text{a}}{\longrightarrow} p' \cdot t\} = S'$. Both cases yield $(p \cdot s, q \cdot t) \stackrel{\text{a}}{\longrightarrow} s'$.

Theorem 2. For an mvPDA $(\Delta_{may}, \Delta_{must})$ with its induced MTS $(\mathcal{P}, \dashrightarrow, \longrightarrow)$, it holds that for any $P, S, Q, R \in Const$:

$$\exists T: root(T) = (P \cdot S, Q \cdot R) \land closed(T) \iff (P \cdot S, Q \cdot T) \longrightarrow_b \emptyset$$

Proof. \Rightarrow : Assume T to be closed tree with $root(T) = (P \cdot S, Q \cdot T)$.

We show that for any partition of the tree $P = \{T_1, ..., T_n\}$ where every T_i is represented by a rule b_i , there is an attack rule representing the whole tree. Proof by induction over the length of the partition n:

- 1. n = 1: Then $T_1 = T$ and b_1 represents T.
- 2. n > 1: WLOG let $T_1 = (P \cdot S, Q \cdot T, r)$ be the partition at the root of the tree T with succeding partitions C.

As n > 1, there is $(p', q', r') \in C$. Then for $b_1 = (P \cdot S, Q \cdot T) \longrightarrow_b S$ we have by representation $(p', q') \in S$ and we have $|p'| = |q'| \ge 2$, as otherwise the rule r' would not be applicable from the state (p', q'). So b_1 is a left-hand side rule.

For every partition T_i with no succeding partitions, we have $b_i=(p,q)\to\emptyset$, so that is a right-hand side rule.

Then by following the successors of the partitions from T_1 , we will eventually come to a partition T_i followed by a partition T_j such that b_i is a left-hand side rule and b_j is a right-hand side rule.

Then by rule 3 or 4 we can combine b_i and b_j into a new rule b_0 . This rule represents the partition T_i in $P' = P \setminus \{T_j\}$. Every other $T_k \in P'$ remains unchanged and is still represented by b_k . Then by induction hypothesis there is a b representing T.

 \Leftarrow : We show that for $(p,q)\longrightarrow_b S$, there is a tree T=((p,q,r),O,C) atree such that open(T)=S. by induction on the inference of $(p,q)\longrightarrow_b S$:

1. If it was created by rule 1 or 2. If it was created from $(p,a,p')\in \Delta_{\text{may}}$, then there is an attacking transition $r=p\stackrel{\text{a}}{\dashrightarrow} p'$ and for every $(q,a,q')\in \Delta_{\text{may}}$

there is one induced defending transition $r'=q\stackrel{\text{a}}{\dashrightarrow} q'$. If it was created from $(q,a,q')\in\Delta_{\text{must}}$, then there is an attacking transition $r=p\stackrel{\text{a}}{\dashrightarrow} p'$ and for every $(q,a,q')\in\Delta_{\text{may}}$ there is one induced defending transition $r'=q\stackrel{\text{a}}{\dashrightarrow} q'$.

Therefore states(def(p,q,r)) = S and get the tree $T = ((p,q,r), def(p,q,r), \emptyset)$ atree with open(T) = S.

2. It was created by rule 3 from $(p,q) \longrightarrow_b \{(p' \cdot P, q' \cdot Q)\} \uplus S''$ and $(p',q') \longrightarrow_b S'$ with $S = S'' \cup S'''$ and $S''' = \{(p'' \cdot P, q'' \cdot Q) \mid (p'',q'') \in S'\}.$

Then by induction hypothesis there is a tree T'=((p',q',r'),O',C') atree with open(T')=S' and a tree T''=((p,q,r),O,C) atree with open(T'')=S'' \uplus $\{(p'\cdot P,q'\cdot Q,r'')\}.$

By lemma 3 there is also a tree $T''' = ((p' \cdot P, q' \cdot Q, r''), O'', C'')$ atree with $open(T''') = O''' \uplus \{(p' \cdot P, q' \cdot Q, r'')\}$ and $O''' = \{(p'' \cdot P, q'' \cdot Q, r''') \mid (p'', q'', r'') \in S'\} = S'''$.

By lemma 2 we then get a tree T=((p,q,r),O'''',C'''') with $open(T)=S''\cup S'''=S$.

3. It was created by rule 4 from $(p,q) \longrightarrow_b \{(p',q')\} \uplus S''$ and $(p',q') \longrightarrow_b S'$ with $S = S'' \cup S'$. Then by induction hypothesis there is a tree T' = ((p',q',r'),O',C') atree with open(T') = S' and a tree T'' = ((p,q,r),O,C) atree with $open(T'') = S'' \uplus \{(p',q')\}$. By lemma 2 we then get a tree T = ((p,q,r),O'',C'') with $open(T) = S'' \cup S' = S$.

Then if $(P \cdot S, Q \cdot T) \longrightarrow_b \emptyset$ we have a tree $T = (P \cdot S, Q \cdot T, r), O, C)$ with $open(T) = \emptyset$.

3 Algorithms

3.1 Description

Figure 3.1: Algorithm for calculating the attack rules on mvPDAs

```
1: function AttackRules(mvPDA = (\Delta_{\max}, \Delta_{\max}))
        rules \leftarrow \emptyset
        for P, Q, S, T \in Const(mvPDA), a \in Act(mvPDA), type \in \{may, must\}
 3:
    do
 4:
             if type = may then
                  lhs \leftarrow (P \cdot S, Q \cdot T)
                                                     > Attack from left-hand side for may rules
 5:
             else
 6:
                 lhs \leftarrow (Q \cdot S, P \cdot Y)
                                                  > Attack from right-hand side for must rules
 7:
             end if
 8:
             for (P \cdot S, a, p') \in \Delta_{type} do
 9:
                 rhs \leftarrow \emptyset
10:
                 for (Q \cdot T, a, q') \in \Delta_{tupe} do
11:
                      if type = may then
12:
                           newRhs \leftarrow (p', q')
13:
                      else
14:
                           newRhs \leftarrow (q', p')
15:
                      end if
16:
                      rhs \leftarrow rhs \cup \{newRhs\}
17:
18:
                  rules \leftarrow rules \cup \{(lhs, rhs)\}
19:
             end for
20:
         end for
21:
        return rules
22:
23: end function
```

Figure 3.2: Algorithm for combining attack rules

```
1: function Combine(lhsRule = (lhs, lhsRhsSet), rhsRule = (rhsLhs, rhsSet))
       rules \leftarrow \emptyset
2:
       if \forall rhs \in rhsSet : size(rhs) \leq 1 then
3:
            for lhsRhs \in lhsRhsSet : lhsRhs = rhsLhs \cdot p do
4:
                newRhs \leftarrow (lhsRhsSet \setminus lhsRhs) \cup \{rhs \cdot p \mid rhs \in rhsSet\}
5:
                rules \leftarrow rules \cup \{(lhs, newRhs)\}
6:
            end for
7:
       end if
8:
9:
       return \ rules
10: end function
```

Figure 3.3: Refinement algorithm for mvPDAs

```
1: function VPDAREFINEMENT(P \cdot S, Q \cdot T, mvPDA) \triangleright P \cdot S \leq_m Q \cdot T given mvPDA

2: initial \leftarrow [P \cdot S, Q \cdot T]

3: rules \leftarrow \text{AttackRules}(mvPDA)

4: \textbf{while} \ \exists lhsRule, rhsRule \in rules : \text{Combine}(lhsRule, rhsRule) \not\subset rules \textbf{do}

5: rules \leftarrow rules \cup \text{Combine}(lhsRule, rhsRule)

6: \textbf{end while}

7: \textbf{return} \ (initial, \emptyset) \in rules

8: \textbf{end function}
```

3.2 Soundness and completeness

3.2.1 Soundness

3.2.2 Completeness

3.3 Runtime

3.4 Optimizations

3.5 Performance evaluation

3.6 Example

Figure 3.4 and 3.5 define two mvPDA. The corresponding may transitions for the must transitions are implied. The problem is to decide whether $p \cdot S \leq_m q \cdot S$.

Figure 3.4: mvPDA for process $P \cdot S$

Figure 3.5: mvPDA for process $Q \cdot S$

Figure 3.6: Tree for winning strategy

$$\begin{array}{c} (p \cdot M, q \cdot C) \longrightarrow \{(p \cdot M \cdot M, q \cdot C \cdot C)\} \end{array} \xrightarrow{\mathbf{call}} \begin{array}{c} (p \cdot M, q \cdot C) \longrightarrow \{(T, q)\} \end{array} \xrightarrow{\mathbf{return}} \begin{array}{c} (T \cdot M, q \cdot C) \longrightarrow \emptyset \end{array} \\ \\ (p \cdot S, q \cdot S) \longrightarrow \{(p \cdot M \cdot S, q \cdot C \cdot S), (p \cdot M \cdot S, q \cdot T \cdot S)\} \end{array} \xrightarrow{\mathbf{call}} \begin{array}{c} (p \cdot M, q \cdot T) \longrightarrow \{(c, q)\} \end{array} \xrightarrow{\mathbf{return}} \begin{array}{c} (c \cdot M, q \cdot T) \longrightarrow \emptyset \end{array}$$

Figure 3.7: Tree for winning strategy with attack rules

Figure 3.8: Merged tree for winning strategy with attack rules after one step

Figure 3.9: Merged tree for winning strategy with attack rules after two steps

$$(p\cdot S,q\cdot S)\longrightarrow\emptyset$$

Figure 3.10: Final merged tree for winning strategy

4 Conclusion

Bibliography

- [BK12] Nikola Benes and Jan Kretínský, *Modal process rewrite systems*, ICTAC (Abhik Roychoudhury and Meenakshi D'Souza, eds.), Lecture Notes in Computer Science, vol. 7521, Springer, 2012, pp. 120--135.
- [BKLS09] Nikola Benes, Jan Kretínský, Kim Guldstrand Larsen, and Jirí Srba, *On determinism in modal transition systems*, Theor. Comput. Sci **410** (2009), no. 41, 4026--4043.
- [Esp01] Javier Esparza, *Grammars as processes*, Lecture Notes in Computer Science **2300** (2001), 277--298.
- [May00] Richard Mayr, *Process rewrite systems*, Inf. Comput **156** (2000), no. 1-2, 264--286.