EdI - 2020/21

Due esempi di operazioni globali:

Decomposizione SVD (una applicazione alle immagini) Trasformata di Haar

Operatore globale: solitamente si applica per una «codifica» differente dell'immagine

Pensiamo una immagine **A**, a livelli di grigio, come una matrice (intesa come tabella) di valori (livelli di grigio) .

Teorema (Teorema di Esistenza della SVD). Una qualunque matrice $A \in \mathbb{R}^{m \times n}$ con $m \geq n$ può essere scritta come

$$A = U \left(\begin{array}{c} \Sigma \\ 0 \end{array} \right) V^T,$$

dove $U \in \mathbb{R}^{m \times m}$ e $V \in \mathbb{R}^{n \times n}$ sono ortogonali e $\Sigma \in \mathbb{R}^{n \times n}$ é diagonale:

$$\Sigma = \left(\begin{array}{ccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{array} \right),$$

con $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ detti valori singolari.

Decomposizione ai Valori Singolari $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

 $\{u_i\}_{i=1,\dots,n}$ Sono i vettori singolari sinistri (colonne di U)

 $\{v_i\}_{i=1,...,m}$ sono i vettori singolari destri (colonne di V)

 $\{\sigma_i\}_{i=1,...,r}$ sono i valori singolari di A

Fissato un intero $k \ge 1$, possiamo scrivere:

$$A = \sum_{i=1}^{n} u_i \sigma_i v_i^T = \sum_{i=1}^{k} u_i \sigma_i v_i^T + \sum_{i=k+1}^{n} u_i \sigma_i v_i^T = A_k + N$$

Naturalmente $u_i \sigma_i v_i^T = \sigma_i u_i v_i^T$

matrice A come somma di matrici di rango 1

I «pesi» σ_i sono non negativi e non crescenti per cui posso pensare di approssimare A $\$ con $\ A_k = \sum u_i \sigma_i v_i^T$ selezionando le prime k componenti.

Possiamo avere una idea qualitativa/quantitativa dell'approssimazione?

Norme di matrici (caso reale)

Definizione (Norma di matrice) Si dice norma di matrice una applicazione $\|\cdot\|$ da $\mathbb{R}^{n\times n}$ in \mathbb{R} tale che

- $||A|| \ge 0$, ||A|| = 0 se e solo se A = 0
- $\|\alpha A\| = |\alpha| \|A\| \text{ per } \alpha \in \mathbb{R}$
- $||A + B|| \le ||A|| + ||B||$
- $||AB|| \le ||A|| \, ||B||$

Esempio [norma indotta] sia $\|\cdot\|$ una norma vettoriale in \mathbb{R}^n ed A una matrice \mathbb{R}^{nxn} possiamo definire la quantità $\sup_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|}$

si può mostrare che è una quantità finita e può essere valutata, per le proprietà della funzione norma e degli insiemi compatti in \mathbb{R}^n , come

$$\max_{\|x\|=1} \|Ax\|$$

e definisce una norma di matrice che indicheremo con ||A||

In alcuni casi è possibile avere una rappresentazione della norma di matrice calcolando il massimo esplicitamente

Teorema Per le norme di matrice indotte dalla norma 1,2 e infinito vale

$$||A||_1 = \max_j \sum_{i=1}^n |a_{i,j}|$$

$$||A||_2 = (\rho(A^H A))^{1/2}$$

$$||A||_{\infty} = \max_i \sum_{j=1}^n |a_{i,j}|$$

dove $\rho(A)$ denota il raggio spettrale di una matrice A, cioè il massimo dei moduli dei suoi autovalori.

Esempio [norma di Frobenius] la norma di Frobenius è definita da

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|^2\right)^{1/2}.$$

Si osserva che la norma di Frobenius non e altro che la norma euclidea applicata al vettore

$$vec(A) = (a_{1,1}, a_{2,1}, \dots, a_{2,n}, a_{1,2}, \dots, a_{n,n})^T$$

Inoltre la norma di Frobenius è una norma che deriva dal prodotto scalare: $\langle A,B \rangle = traccia(A^TB)$ Infatti $||A||_F = (traccia(A^TA))^{1/2}$

Esercizio. Dimostrare che <A,B> definito sopra è un prodotto scalare.

Abbiamo dei risultati che caratterizzano l'approssimazione di A con Ak

Teorema Sia $A \in \mathbb{R}^{m \times n}$ una matrice di rango r > k. Allora il problema di minimo

$$\min_{rango(Z)=k} ||A - Z||_2$$

 $con ||.||_2 norma-2, ha come soluzione$

$$Z = A_k = U_k \Sigma_k V_k^T$$

dove A_k è la decomposizione ai valori singolari di rango k di A. Inoltre vale

$$||A - A_k||_2 = \sigma_{k+1}.$$

Teorema Sia $A \in \mathbb{R}^{m \times n}$ una matrice di rango r > k. Allora il problema di minimo

$$\min_{rango(Z)=k} ||A - Z||_F$$

 $con ||.||_F$ norma di Frobenius, ha come soluzione

$$Z = A_k = U_k \Sigma_k V_k^T$$

dove A_k è la decomposizione ai valori singolari di rango k di A. Inoltre vale

$$||A - A_k||_F = \left(\sum_{i=k+1}^r \sigma_i^2\right)^{1/2}.$$

Nota. Dal punto di vista delle immagine non è semplice fissare una buona norma perché dipende dal contesto e dal contenuto dell'immagine che vogliamo mantenere. In prima battuta la norma di Frobenius sembra più appropriata per una buona approssimazione, in senso generale, dell'immagine.

Esempio (Lena)

Per applicazione al riconoscimento facciale vedere le slide corrispondenti

Per Data Mining per grandi moli di dati vi è anche la decomposizione CUR:

Dimensionality Reduction: SVD & CUR

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Si veda, per esempio, https://www.youtube.com/watch?v=SO1KTzuKTSI

CUR Decomposition (Advanced) | Stanford University