TP Noté - Problèmes de flots 2022-2023

Ce TP est noté est doit être réalisé en binôme. Vous diposez d'une semaine à compter de la distribution du sujet pour l'envoyer à vos chargés de TP.

La procédure d'envoi sera détaillé lors du TP.

Le code que vous produirez devra être accompagné d'un court rapport expliquant le fonctionnement de votre code.

Algorithme de Edmonds-Karp

Cette première partie consitue un pré-requis pour pouvoir effectuer la seconde partie. Il est ici demandé d'implémenter l'algorithme de Edmonds-Karp pour calculer un flot de valeur maximum dans un réseau.

Exercice 1 (12 points)

- 1. Modifiez (et implémentez) l'algorithme du parcours en largeur pour que ce dernier fonctionne sur les graphes orientés.
- 2. À l'aide de label sur les arcs, implémentez une structure qui permet de gérer un graphe résiduel.
- 3. Implémentez l'algorithme de *Edmonds-Karp* qui calcule le flot maximum d'un réseau.
- 4. Donnez un flot maximum calculé par votre implémentation du réseau en Figure 1.

Problème : séquence de degré d'un graphe orienté

On dispose d'une séquence \mathcal{S} de n couples d'entiers positifs. On se pose la question suivante est-ce qu'il existe un graphe orienté G=(V,E) qui réalise cette séquence? Pour chaque couple, le premier élément représente le degré sortant du sommet et le second le degré entrant.

Exemple : Soit $S = \{(3,2), (3,2), (1,2), (1,2)\}$ le graphe représenté en Figure 2. réalise cette séquence de degrés. En effet, $d^+(a) = 3$ et $d^-(a) = 2$,

Figure 1 – Exemple de flot

c'est la même chose pour b. Et pour c et d le degré sortant est bien 1. Et le degré entrant est bien 2.

FIGURE 2 — Un graphe qui réalise la séquence de degrés $\{(3,2),(3,2),(1,2),(1,2)\}.$

Exercice 2 (8 points)

- 1. Modélisez le problème en un problème de flot maximum.
- 2. Implémentez votre modélisation.
- $3.\ \,$ Prouvez que votre modélisation est correcte.