```
In [1]:
        import lazy pipeline as lpipe
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        import time
        # preprocessing of numeric features
        from sklearn.preprocessing import KBinsDiscretizer
        # used metrics
        from sklearn.metrics import accuracy score, f1 score
        Make the notebook wider
In [2]: from IPython.display import display, HTML
        display(HTML("<style>.container { width:100% !important; }</style>"))
        Check library versions
In [3]: from platform import python_version
        import sklearn
        print(python_version())
        print(lpipe.pd. version )
        print(sklearn.__version__)
        print(pd.__version__)
        print(np.__version__)
        3.7.6
        1.0.1
        0.22.1
        1.0.1
        1.18.1
```

Start of baseline

```
In [4]: def process_data(df):
            # dataset preprocessing, replacing empty numeric values with column averages, categorical valu
            # I keep no more than 10 of the most popular values of each categorical attribute
            for col in df.select_dtypes(['number']).columns:
                 df[col] = df[col].fillna(df[col].mean())
            for col in df.select_dtypes(['object']).columns:
                df[col] = df[col].fillna('unknown')
                 use values = df[col].value counts().index.values[0:10]
                df[col] = df[col].apply(lambda x: x if x in use_values else 'other')
            return df
        def discretize_data(df):
            # categorize the numerical features: divide into 5 intervals of equal length
            est = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='uniform')
            for col in df.select dtypes(['number']).columns:
                df[col] = est.fit_transform(df[[col]])
            return df
```

```
def get scores(y preds, y preds fixedtrain):
   # let's turn the calculation of metrics from the initial notebook into a function
   # I decided to measure Accuracy and F1 score because they are ones of the most popular scores
    score_vals = {}
    for score_f in [accuracy_score, f1_score]:
        score_name = score_f.__name__
        preds = y preds
        score_vals[score_name] = [score_f(y_test[:i], preds[:i]) for i in range(1, len(preds))]
        score_name = score_f.__name__ + '_fixedtrain'
        preds = y_preds_fixedtrain
        score vals[score name] = [score f(y test[:i], preds[:i]) for i in range(1, len(preds))]
    return score vals
def get_scores_info (score_vals, t_preds, t_preds_fixedtrain):
    return {'accuracy_score' : np.mean(score_vals['accuracy_score']),
            'accuracy_score_fixedtrain' : np.mean(score_vals['accuracy_score_fixedtrain']),
            'f1_score' : np.mean(score_vals['f1_score']),
            'f1_score_fixedtrain' : np.mean(score_vals['f1_score_fixedtrain']),
            't preds': np.mean(t preds),
            't_preds_fixedtrain' : np.mean(t_preds_fixedtrain)}
def plot_metrics(score_vals, t_preds, t_preds_fixedtrain):
   # plotting metrics and calculation time
   plt.rcParams['figure.facecolor'] = (1,1,1,1)
   fig, axs = plt.subplots(2, 2, figsize=(12, 8))
    for ax, t in zip(axs[0],['accuracy score', 'f1 score']):
        ax.set ylim(0-0.05, 1+0.05)
        ax.plot(range(n_train+1, len(X)), score_vals[t], label='baseline clf.')
        ax.plot(range(n_train+1, len(X)), score_vals[t+'_fixedtrain'], label='baseline clf. (fixed
    axs[1,0].plot(range(n_train, len(X)), t_preds, label='baseline clf.')
    axs[1,0].plot(range(n_train, len(X)), t_preds_fixedtrain, label='baseline clf. (fixed train)')
    for (ax, t_verb, dim) in zip(axs.flatten(), ['Accuracy score', 'F1 score', 'Prediction time']
        ax.set_title('\n'.join([f"{t_verb} progression", "w.r.t. the number of train examples"]),
        ax.set xlabel('# of train examples', size=14)
        ax.set_ylabel(f"{t_verb} {dim}".strip(), size=14)
        ax.legend()
    axs[1,1].set_axis_off()
    plt.tight_layout()
    plt.subplots_adjust()
    plt.show()
```

Data preparation

Airline Passenger Satisfaction dataset

https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction

```
In [5]: # Let's read the dataset, convert the target variable to a boolean type, and remove service column

data = pd.read_csv('data/flight.csv')
y_name = 'satisfaction'
data[y_name] = (data[y_name]=='satisfied')
```

```
Distance
                                                                               time convenient
                                                                                                          location
                           Type
                                                                                                                        entertaiı
                                                                     service
                                                                                                 booking
                                       Business
                           Loyal
          0
              Female
                                                     Eco
                                                               160
                                                                           5
                                                                                             4
                                                                                                       3
                                                                                                                 4
                       Customer
                                          travel
                           Loyal
                                       Business
                                                                                                       3
                                   36
                                                              2863
          1
              Female
                                                 Business
                                                                          1
                                                                                              1
                                                                                                                 1
                       Customer
                                          travel
                        disloyal
                                       Business
                                   20
                                                                                                       2
          2
                                                                           2
                                                                                             0
                Male
                                                     Eco
                                                               192
                                                                                                                 4
                       Customer
                                          travel
                           Loyal
                                       Business
          3
                Male
                                                 Business
                                                              3377
                                                                          0
                                                                                             0
                                                                                                       0
                                                                                                                 2 ...
                       Customer
                                          travel
                                       Business
                           Loyal
                                                                          2
                                                                                             3
                                                                                                       4
                                                              1182
                                                                                                                 3 ...
              Female
                                                     Eco
                       Customer
                                          travel
         5 rows × 23 columns
          Let's limit the sample to 500 objects and process the data
          data = data.sample(500, random state = 1)
In [6]:
          data = process_data(data)
          data = discretize_data(data)
          Data binarization: one-hot encoding
          y = data[y name]
In [7]:
          X = lpipe.binarize_X(data.drop(y_name, axis=1))
          print(X.shape)
          X.head(2)
          (500, 99)
Out[7]:
                                     Customer Customer
                                                                                             Type of
                                                                                                         Departure
                                                                                                                     Departure
                  Gender: Gender:
                                         Type:
                                                    Type:
                                                           Age:
                                                                  Age:
                                                                        Age:
                                                                              Age:
                                                                                     Age:
                                                                                             Travel:
                                                                                                           Delay in
                                                                                                                       Delay in
                   Female
                              Male
                                         Loyal
                                                  disloyal
                                                             0.0
                                                                   1.0
                                                                          2.0
                                                                                3.0
                                                                                      4.0
                                                                                           Business
                                                                                                           Minutes:
                                                                                                                      Minutes:
                                     Customer
                                                Customer
                                                                                              travel
                                                                                                                0.0
                                                                                                                            1.0
          21362
                      True
                               False
                                          True
                                                     False
                                                           False
                                                                  False
                                                                        False
                                                                              False
                                                                                     True
                                                                                               False
                                                                                                               True
                                                                                                                          False
```

Inflight

wifi

Departure/Arrival

Flight

Class

Ease of

Online

Gate

True

False

data = data.iloc[:,2:]

Customer

Type of

Travel

print(data.shape) data.head(5) (25976, 23)

Gender

11437

X_bin[0]

In [8]:

False

2 rows × 99 columns

True

Representation of a feature matrix as a list of sets:

False

X_bin = [set(X.columns[x]) for idx, x in X.iterrows()]

True

False

True

False

False

False

True

Out[5]:

```
Out[8]: {'Age: 4.0',
           'Arrival Delay in Minutes: 0.0',
           'Baggage handling: 3.0',
           'Checkin service: 4.0',
           'Class: Eco',
           'Cleanliness: 3.0',
           'Customer Type: Loyal Customer',
           'Departure Delay in Minutes: 0.0',
           'Departure/Arrival time convenient: 4.0',
           'Ease of Online booking: 3.0',
           'Flight Distance: 1.0',
           'Food and drink: 2.0',
           'Gate location: 0.0',
           'Gender: Female',
           'Inflight entertainment: 3.0',
           'Inflight service: 3.0',
           'Inflight wifi service: 3.0',
           'Leg room service: 3.0',
           'On-board service: 3.0',
           'Online boarding: 3.0',
           'Seat comfort: 3.0',
           'Type of Travel: Personal Travel'}
          Converting a target variable to a list:
 In [9]: y = y.values.tolist()
         We assume that at the initial stage we have only 10% of the total sample:
In [10]: n_{train} = int(len(X)*0.1)
          n_{test} = len(X) - n_{train}
          y test = y[n train:]
          n_train, n_test
          (50, 450)
Out[10]:
         Application of the model
In [11]: %%time
          gen = lpipe.predict_array(X_bin, y, n_train, use_tqdm=True)
          y_preds, t_preds = lpipe.apply_stopwatch(gen)
          # updating the training sample
          Predicting step by step: 100%
                                                                                                 | 500/500 [0
          0:07<00:00, 71.22it/s]
          Wall time: 7.02 s
In [12]: %%time
          gen = list(lpipe.predict_array(X_bin, y, n_train, use_tqdm=True, update_train=False))
          y preds fixedtrain, t preds fixedtrain = lpipe.apply stopwatch(gen)
          # without updating the training sample
```

Predicting step by step: 100%

In [13]: scores = get_scores(y_preds, y_preds_fixedtrain)

plot_metrics(scores, t_preds, t_preds_fixedtrain)

00<00:00, 2110.59it/s] Wall time: 241 ms | 500/500 [00:

In conclusion, as we can see from the plots, orange curves are situated lower than blue ones, so we can make an assumption that when we update training sample, the accuracy score is raising.

Modification of the algorithm

```
import lightgbm as lgb
from lazy_pipeline import predict_with_generators
from sklearn.tree import DecisionTreeClassifier
```

Instead of crossing sets, we use the matrix multiplication function in numpy. Let's add the ability to use algorithms (decision tree and gradient boosting) in lazy pipeline.

```
res = model.predict([x])
             return res[0]
          # I used decision tree for testing, and gradient boosting (without any adjustment of model paramet
         def predict_with_tree(x, X_train, Y_train):
             return predict_with_model(x, X_train, Y_train, DecisionTreeClassifier(max_depth = 6))
         def predict with boosting(x, X train, Y train):
             return predict_with_model(x, X_train, Y_train, lgb.LGBMClassifier(max_depth =4, n_estimators
         def train lpipe(X, y, n train, predict function, update train):
             gen = lpipe.predict_array(X = X, Y = y, n_train = n_train, use_tqdm = False, predict_func = pr
             y_preds, t_preds = lpipe.apply_stopwatch(gen)
             return y_preds, t_preds
         #It's a high order function, which calls all the algorithms above and counts score
         def get results(predict function, X, y, n train):
             results = {}
             results['model_name'] = predict_function.__name__
             t start = time.time()
             y_preds, t_preds = train_lpipe(X = X, y = y, n_train = n_train, predict_function = predict_function
             t_stop = time.time()
             results['upd_time'] = t_stop - t_start
             t start = time.time()
             y_preds_fixedtrain, t_preds_fixedtrain = train_lpipe(X = X, y = y, n_train = n_train, predict_
             t stop = time.time()
             results['fixed_time'] = t_stop - t_start
             scores = get_scores(y_preds, y_preds_fixedtrain)
             scores_info = get_scores_info(scores, t_preds, t_preds_fixedtrain)
             for key in scores_info:
                  results[key] = scores info[key]
             return results
In [18]: # convert all data to numeric format
         X int = X.astype(int).values
In [19]: | df_results = pd.DataFrame([get_results(predict_function, X_int, y, n_train) for predict_function in
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1515: UndefinedMetr
         icWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use
          `zero division` parameter to control this behavior.
           average, "true nor predicted", 'F-score is', len(true_sum)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1515: UndefinedMetr
         icWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use
         `zero_division` parameter to control this behavior.
           average, "true nor predicted", 'F-score is', len(true sum)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1515: UndefinedMetr
         icWarning: F-score is ill-defined and being set to 0.0 due to no true nor predicted samples. Use
         `zero_division` parameter to control this behavior.
           average, "true nor predicted", 'F-score is', len(true_sum)
```

model.fit(X_train,Y_train)

In [20]: # final table for comparison

df_results

Out[20]:		model_name	upd_time	fixed_time	accuracy_score	accuracy_score_fixedtrain	f1_score	f1_score_fixedtrair
	0	predict_with_dot	0.148907	0.037977	0.747410	0.817870	0.581582	0.741756
	1	predict_with_tree	0.727553	0.263840	0.836064	0.785045	0.803344	0.728630
	2	predict_with_boosting	10.372624	4.307353	0.862641	0.807403	0.823205	0.762033
4								•