Probability Notes 2024

Ruan Yuanlong

BUAA, BEIJING, CHINA Email address: ruanyl@buaa.edu.cn

Contents

1. 单调类定理	6
2. 集函数与测度	12
2.1. 集函数	12
2.2. 半环上非负集函数	16
2.3. 环上非负集函数	22
3. Carathéodory's 延拓	27
3.1. 外测度	27
3.2. 域上测度的延拓	34
3.3. 半环上测度的延拓	39
3.4. Approximating $\mu^* _{\mathscr{E}^*}$ by $\mu^* _{\sigma(\mathscr{L})}$	41

3.5. Approximating $\mu _{\sigma(\mathscr{A})}$ by $\mu _{\mathscr{A}}$	43
3.6. Completion of a measure space	43
4. 收敛	48
4.1. 可测函数的收敛	48
4.2. 随机变量的分布函数	56
4.3. 随机变量的收敛	58
5. 积分	63
5.1. 非负可测函数积分	63
5.2. 可测函数积分	67
5.3. Change of variables	71
$6.$ L_p 空间	72
6.1. Inequlities	72
6.2. Completeness	83
6.3. L_p and weak convergence	86
6.4. Uniform integrability	92
6.5. Summary of various convergences	99
7. 概率空间的积分	100
7.1. Expected value	100

7.2.	Properties of expectation	105
7.3.	Lebesgue-Stieltjes and Riemann-Stieltjes integrals	106
7.4.	L_p convergence and uniform integrability	110

1. 单调类定理

Review:

 \bullet \mathscr{A} is a field, \mathscr{M} is a monotone class. Then

$$\mathscr{A} \subset \mathscr{M} \Longrightarrow \sigma(\mathscr{A}) \subset \mathscr{M}.$$

• \mathscr{P} is a π -system, \mathscr{L} is a λ -system. Then

$$\mathscr{P} \subset \mathscr{L} \Longrightarrow \sigma(\mathscr{P}) \subset \mathscr{L}.$$

• measurable spaces (E, \mathscr{F}_E) , (F, \mathscr{F}_F) , $f: (E, \mathscr{F}_E) \mapsto (F, \mathscr{F}_F)$. f is $\mathscr{F}_E/\mathscr{F}_F$ -measurable if

$$\sigma(f) \triangleq f^{-1}(\mathscr{F}_F) \subset \mathscr{F}_E.$$

Call it \mathscr{F}_E -measurable if

$$(F,\mathscr{F}_F)=(\mathbb{R},\mathscr{B}(\mathbb{R})).$$

• $f: (E, \mathscr{F}_E) \mapsto (F, \sigma(\mathscr{E})), f \text{ is } \mathscr{F}_E/\sigma(\mathscr{E})$ -measurable if $f^{-1}(\mathscr{E}) \subset \mathscr{F}_E.$

Thm 1 $(\pi$ - λ theorem). \mathscr{P} is a π -system, \mathscr{L} is a λ -system. If $\mathscr{P} \subset \mathscr{L}$, then $\sigma(\mathscr{P}) \subset \mathscr{L}$.

Def 1 (Simple function). $i = 1, ..., n, A_i \in \mathscr{F}$ (pairwise) disjoint, $c_i \in \mathbb{R}$. f is (measurable) simple if $f = \sum_{i=1}^{n} c_i 1_{A_i}$.

Alt. $i = 1, ..., n, A_i \in \mathcal{F}, c_i \in \mathbb{R}$ non-zero distinct, f is simple if $f = \sum_{i=1}^{n} c_i 1_{A_i}$.

 $\triangleright 1. \ a,b \in \mathbb{R}, \ g \ simple, \ then \ af + bg \ simple$

Thm 2 (Simple approximation). (1) $f \ge 0$ measurable. There exist simple $\{f_n\}$, $0 \le f_n \uparrow f$, uniform if f is bounded.

(2) f measurable. There exist simple $\{f_n\}$, $f_n \to f$, uniform if f is bounded.

Proof. 1. Let

$$f_n = \frac{[2^n f]}{2^n} \wedge n = \sum_{i=0}^{n2^n - 1} \frac{i}{2^n} \mathbb{1}_{\{i/2^n \le f < (i+1)/2^n\}} + n\mathbb{1}_{\{f \ge n\}}.$$

Then

$$0 \leqslant f - f_n \leqslant \frac{1}{2^n}$$
 if $f < n$; $f_n = n \leqslant f$ otherwise.

2.
$$f = f^+ - f^-$$
.

Thm 3 (Doob). $f:(E,\mathscr{F}_E)\mapsto (\mathbb{R},\mathscr{B}(\mathbb{R})), g \ measurable \ (E,\mathscr{F}_E)\mapsto (F,\mathscr{F}_F).$ If f is $\sigma(g)$ -measurable, then $f=h\circ g$ for some measurable h.

PROOF. 1. $f = 1_A$, $A = g^{-1}(B) \in \sigma(g)$, $B \in \mathscr{F}_F$. Then $x \in A$ if and only if $g(x) \in B$, i.e.,

$$f = 1_A = 1_B \circ g.$$

2.
$$f$$
 simple, $f = \sum_{i=1}^{n} c_i 1_{A_i}, c_i \in \mathbb{R}, A_i \in \sigma(g)$ disjoint. Let

$$A_i = g^{-1}(B_i), B_i \in \mathscr{F}_F$$
, then

$$C_i = B_i \setminus \left(\bigcup_{j < i} B_j\right) \in \mathscr{F}_F$$
 disjoint

and

$$f^{-1}(C_i) = A_i \setminus \left(\bigcup_{j \le i} A_j\right) = A_i.$$

By step 1,

$$f = \sum_{i=1}^{n} c_i 1_{A_i} = \sum_{i=1}^{n} c_i 1_{C_i} \circ g = \left(\sum_{i=1}^{n} c_i 1_{C_i}\right) \circ g \triangleq h \circ g.$$

3. $f \ge 0$ is $\sigma(g)$ -measurable, there exist $\sigma(g)$ -measurable simple f_n with $0 \le f_n \uparrow f$. It follows $f_n = h_n \circ g$ for some h_n ,

$$h \triangleq \sup_{n} h_n$$

is $\sigma(g)$ -measurable,

$$f = \lim_{n} f_n = \sup_{n} (h_n \circ g) = \left(\sup_{n} h_n\right) \circ g = h \circ g.$$

4. f is $\sigma(g)$ -measurable. f^+ , f^- are $\sigma(g)$ -measurable. Use **3**.

Thm 4. \mathscr{A} is a π -system, $\Omega \in \mathscr{A}$, \mathcal{H} is a collection of real-valued functions. Suppose

- (1) If $A \in \mathcal{A}$, then $1_A \in \mathcal{H}$
- (2) If $f, g \in \mathcal{H}$, $c \in \mathbb{R}$, then f + g, $cg \in \mathcal{H}$
- (3) If $f_n \in \mathcal{H}$, $0 \leqslant f_n \uparrow f$ with f bounded, then $f \in \mathcal{H}$ Then

$$\{f: f \ bounded \ \sigma(\mathscr{A})\text{-}measurable\} \subset \mathcal{H}$$

PROOF. The system of sets

$$\mathscr{G} = \{A : 1_A \in \mathcal{H}\}$$

is a λ -system and $\mathscr{A} \subset \mathscr{G}$. Hence

$$\sigma(\mathscr{A}) \subset \mathscr{G}$$
.

(2) implies that \mathcal{H} contains all $\sigma(\mathscr{A})$ -measurable simple functions, (3) implies that \mathcal{H} contains all bounded $\sigma(\mathscr{A})$ -measurable functions. \square

Thm 5. \mathscr{A} is a π -system, $\Omega \in \mathscr{A}$, \mathcal{H} is a collection of real-valued functions. Suppose

- (1) If $A \in \mathcal{A}$, then $1_A \in \mathcal{H}$
- (2) If $f, g \in \mathcal{H}$, $a, b \geqslant 0$, then $af + bg \in \mathcal{H}$
- (3) If $f, g \in \mathcal{H}$ are bounded, $f \geqslant g$, then $f g \in \mathcal{H}$
- (4) If $f_n \in \mathcal{H}$, $0 \leqslant f_n \uparrow f$, then $f \in \mathcal{H}$ Then

 $\{f: f \ nonnegative \ \sigma(\mathscr{A})\text{-measurable}\} \subset \mathcal{H}$

2. 集函数与测度

2.1. 集函数. \mathcal{E} is a collection of subsets of E.

Def 2. Set function, $\mu : \mathscr{E} \mapsto \mathbb{R} \cup \{\pm \infty\}$.

Def 3. Nonnegative set function, $\mu : \mathcal{E} \mapsto \mathbb{R} \cup \{\infty\}$.

Def 4. μ is finite if, $\forall A \in \mathcal{E}$, $|\mu(A)| < \infty$.

Def 5. μ is σ -finite on \mathscr{E} if, $\forall A \in \mathscr{E}$, there exist $\{A_n\} \subset \mathscr{E}$, $A = \bigcup A_n \text{ with } |\mu(A_n)| < \infty$.

Def 6. μ is additive if, $\forall A, B \in \mathcal{E}$, $AB = \emptyset$,

$$\mu(A+B) = \mu(A) + \mu(B).$$

Def 7. μ is countably additive if, $\forall A_i \in \mathcal{E}, i = 1, 2, ..., disjoint,$

$$\mu\left(\sum_{i} A_{i}\right) = \sum_{i} \mu(A_{i}).$$

Def 8. $\emptyset \in \mathscr{E}$. μ is a measure on \mathscr{E} if it is nonnegative, countably additive, $\mu(\emptyset) = 0$.

E.g. 1. (X, \mathcal{F}) measurable space, $x \in X$,

$$\delta_x(A) = 1_A(x), \ \forall A \in \mathscr{F}.$$

 $x_1, ..., x_n \in X$

$$\mu(A) = \sum_{i} \delta_{x_i}(A), \ \forall A \in \mathscr{F}.$$

E.g. 2. F real-valued nonnegative, non-decreasing, right continuous. Semi-ring on \mathbb{R} ,

$$\mathscr{A} = \{(a, b] : a, b, \in \mathbb{R}\}.$$

Then

$$\mu((a,b]) = F(b) - F(a)$$

defines a measure \mathscr{A} . It is unique on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

PROOF. 1. Additivity. $(a_i, b_i], i = 1, ..., n, \text{ disjoint}, (a, b] =$

 $\bigcup (a_i, b_i]$, then

$$\mu((a,b]) = \sum_{i=1}^{n} \mu((a_i,b_i]).$$

2. $(a_i, b_i]$, i = 1, ..., disjoint, $\bigcup_i (a_i, b_i] \subset (a, b]$, then

$$\sum_{i=1}^{\infty} \mu((a_i, b_i]) \leqslant \mu((a, b]).$$

3. $(a_i, b_i], i = 1, ..., n, (a, b] \subset \bigcup_{i=1}^{n} (a_i, b_i],$ then

$$\mu((a,b]) \leqslant \sum_{i=1}^{n} \mu((a_i,b_i]).$$

4. $(a_i, b_i], i = 1, ..., \text{ disjoint}, \bigcup (a_i, b_i] = (a, b], \text{ then}$

$$\mu((a,b]) = \sum_{i=1}^{\infty} \mu((a_i,b_i]).$$

 $\forall \varepsilon > 0$, there is $\delta_i > 0$,

$$F(b_i + \delta_i) - F(b_i) < \frac{\varepsilon}{2^i}$$
.

 $\forall \theta > 0, \{(a_i, b_i + \delta_i) : i\}$ is an open cover of $[a + \theta, b]$, there exists n_0

$$(a+\theta,b]\subset\bigcup_{i}^{n_0}(a_i,b_i+\delta_i].$$

By **3**.,

$$\mu((a+\theta,b]) \leqslant \sum_{i=1}^{n_0} \mu((a_i,b_i+\delta_i])$$

$$= \sum_{i=1}^{n_0} (F(b_i+\delta_i) - F(b_i))$$

$$\leqslant \sum_{i=1}^{n_0} (F(b_i) - F(b_i)) + \sum_{i=1}^{n_0} \frac{\varepsilon}{2^i}$$

$$\leqslant \sum_{i=1}^{\infty} (F(b_i) - F(b_i)) + \varepsilon.$$

2.2. 半环上非负集函数. $\mathscr E$ is a collection of subsets of E, μ is a nonnegative set function on $\mathscr E$.

Def 9. Monotonicity: $\forall A \subset B \in \mathscr{E}$,

$$\mu(A) \leqslant \mu(B)$$
.

Def 10. Countably subadditive: $\forall A_i \in \mathcal{E}, i = 1, 2, ..., \bigcup_{i=1}^{n} A_i \in \mathcal{E},$

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

Def 11. Continuity from below: $A_i \in \mathcal{E}$, $A_i \uparrow A \in \mathcal{E}$,

$$\lim_{n} \mu(A_i) = \mu(A).$$

Def 12. Continuity from above: $A_i \in \mathcal{E}$, $A_i \downarrow A \in \mathcal{E}$, $\mu(A_1) < \infty$,

$$\lim_{n} \mu(A_i) = \mu(A).$$

Remark 1. **Note** finiteness is part of the defintion of continuity from above.

 ${\mathscr S}$ is a semi-ring on $E,\,\mu$ is a nonnegative set function on ${\mathscr S}.$

Suppose μ is additive.

1. $\mu(\emptyset) = 0, +\infty$.

PROOF. $\emptyset \in \mathscr{S}$. By additivity

$$\mu(\varnothing) = \sum_{i=1}^{n} \mu(\varnothing).$$

 $\mu(\emptyset)$ equals 0, or ∞ .

2. Monotonicity.

PROOF. $A, B \in \mathcal{S}, A \subset B$. There exist disjoint $C_1, ..., C_k \in \mathcal{S}$,

$$B \backslash A = \bigcup_{i=1}^{k} C_i.$$

$$B = A \cup (B \setminus A) = A \cup \left(\bigcup_{i=1}^{k} C_i\right).$$

By additivity

$$\mu(B) = \mu(A) + \sum_{i=1}^{k} \mu(C_i) \geqslant \mu(A).$$

Suppose μ is **countably additive**.

3. Continuity from below.

PROOF. $A_i \in \mathcal{S}$, $A_i \uparrow A \in \mathcal{S}$. There exist disjoint $C_{n,1}, ..., C_{n,k_n} \in \mathcal{S}$,

$$B_n \triangleq A_n \backslash A_{n-1} = \bigcup_{i=1}^{k_n} C_{n,i}.$$

 $(A_0 = \varnothing)$

$$\mu(A) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu\left(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{k_n} C_{n,i}\right)$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \mu(C_{n,i}) = \lim_{N} \sum_{n=1}^{N} \sum_{i=1}^{k_n} \mu(C_{n,i})$$

$$= \lim_{N} \mu\left(\bigcup_{n=1}^{N} \bigcup_{i=1}^{k_n} C_{n,i}\right) = \lim_{n} \mu(A_n).$$

. Continuity from above.

PROOF. (WRONG PROOF) $A_i \in \mathcal{S}, A_i \downarrow A \in \mathcal{S}, \mu(A_1) < \infty$. Clearly

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) \leqslant \mu(A_i) \leqslant \mu(A_1) < \infty.$$

$$\lim_{n} \mu(A_n) = \mu\left(\bigcap_{n=1}^{\infty} A_n\right)$$

$$\iff$$

$$\mu(A_1) - \lim_{n} \mu(A_n) = \mu(A_1) - \mu\left(\bigcap_{n=1}^{\infty} A_n\right)$$

$$\iff$$

$$\lim_{n} \mu(A_1 \backslash A_n) = \mu\left(A_1 \backslash \bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (A_1 \backslash A_n)\right).$$

. Subadditivity.

PROOF. Analogous to continuity from below.

2.3. 环上非负集函数.

Thm 6. \mathscr{R} is a ring. μ is nonnegative additive.

(1) μ countably additive

$$\iff$$

(2) μ countably subadditive

(3) μ continuity from below

(4) μ continuity from above

(5) μ continuity from above at \varnothing .

If μ is finite, (5) implies (1).

PROOF. 1. Already have: $(1) \Longrightarrow (2)$, $(1) \Longrightarrow (3)$, $(1) \Longrightarrow (4)$, $(4) \Longrightarrow (5)$.

2. (2) \Longrightarrow (1). Suppose $A_i \in \mathcal{R}$, i = 1, 2, ..., disjoint, $\bigcup A_i \in \mathcal{R}$.

By countable subadditivity,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

By monotonicity and additivity,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \geqslant \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i), \ \forall n.$$

Sending $n \to \infty$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \geqslant \sum_{i=1}^{\infty} \mu(A_i).$$

3. (3) \Longrightarrow (1). Suppose $A_i \in \mathcal{R}$, i = 1, 2, ..., disjoint, $\bigcup A_i \in \mathcal{R}$.

Since

$$\bigcup_{i=1}^{n} A_i \uparrow \bigcup_{i=1}^{\infty} A_i,$$

by continuity from below,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n} \mu\left(\bigcup_{i=1}^{n} A_i\right) = \lim_{n} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

4. (5) \Longrightarrow (1). Suppose $A_i \in \mathcal{R}, i = 1, 2, ..., \text{ disjoint}, \bigcup_{i=1}^{n} A_i \in \mathcal{R}.$

Then, $\forall n$,

$$\bigcup_{i=1}^{n} A_i \in \mathcal{R} \text{ and } \bigcup_{i=n+1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i \setminus \bigcup_{i=1}^{n} A_i \in \mathcal{R}.$$

By additivity

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{n} A_i\right) + \mu\left(\bigcup_{i=n+1}^{\infty} A_i\right).$$

Since μ is finite

$$\mu\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) < \infty.$$

The continuity from above at \emptyset yields,

$$\lim_{n} \mu \left(\bigcup_{i=n+1}^{\infty} A_i \right) = 0.$$

Hence

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n} \mu\left(\bigcup_{i=1}^{n} A_i\right) + \lim_{n} \mu\left(\bigcup_{i=n+1}^{\infty} A_i\right)$$
$$= \lim_{n} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

3. Carathéodory's 延拓

3.1. 外测度.

Def 13. μ^* is an outer measure on E if

- (1) $\mu^*(\emptyset) = 0$
- (2) $\forall A, B \in 2^E$, if $A \subset B$, then

$$\mu^*(A) \leqslant \mu^*(B)$$

(3) If $A_i \in 2^E, i = 1, 2, ...,$

$$\mu^* \left(\bigcup_{i=1}^{\infty} A \right) \leqslant \sum_{i=1}^{\infty} \mu^* (A_i)$$

Thm 7. Let \mathscr{E} be a collection of sets on E, $\varnothing \in \mathscr{E}$. μ is a nonnegative set function on \mathscr{E} with $\mu(\varnothing) = 0$. Define, $\forall A \in 2^E$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathscr{E}, \ A \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Then $\mu^*(A)$ is an outer measure.

PROOF. 1. $\mu^*(\emptyset) = 0$ since $\emptyset \in \mathscr{E}, \emptyset \subset \bigcup \emptyset$.

- **2**. If $A \subset B$, $B \subset \bigcup_{i=1}^{\infty} B_i$, then $A \subset \bigcup_{i=1}^{\infty} B_i$, from the definition $\mu^*(A) \leq \mu^*(B)$.
 - **3**. Let $A_i \in 2^E, i = 1, 2, ..., \varepsilon > 0$. There are $A_{i,k} \in \mathscr{E}, A_i \subset \bigcup_{k=1}^{\infty} A_{i,k}$,

$$\sum_{i=0}^{\infty} \mu(A_{i,k}) \leqslant \mu^*(A_i) + \frac{\varepsilon}{2^i}, \ \forall i.$$

Since

$$\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{\infty} A_{i,k},$$
28

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leqslant \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu(A_{i,k})$$
$$\leqslant \sum_{i=1}^{\infty} \left[\mu^*(A_i) + \frac{\varepsilon}{2^i} \right] \leqslant \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon.$$

Def 14. μ^* is an outer measure on E. $A \in 2^E$ is μ^* -measurable if $\mu^*(D) = \mu^*(D \cap A) + \mu^*(D \cap A^c), \forall D \in 2^E$.

The class of μ^* -measurable sets is denoted by \mathscr{F}_{μ}^* .

Def 15. Let μ be a measure on a σ -field \mathscr{F} of E, the measure space (E, \mathscr{F}, μ) is complete if

$$A \in \mathscr{F}, \ \mu(A) = 0 \Longrightarrow B \in \mathscr{F}, \ \forall B \subset A.$$

Thm 8 (Carathéodory). Let \mathscr{E} be a collection of sets on E, $\varnothing \in \mathscr{E}$. μ is a nonnegative set function on \mathscr{E} with $\mu(\varnothing) = 0$.

- (1) \mathscr{F}_{μ}^{*} is a σ -field.
- (2) $(E, \mathscr{F}_{\mu}^*, \mu^*)$ is a complete measure space.

PROOF. 1. Obviously, $E \in \mathscr{F}_{\mu}^*$ and $A^c \in \mathscr{F}_{\mu}^*$ if $A \in \mathscr{F}_{\mu}^*$.

2. If $A_1, A_2 \in \mathscr{F}_{\mu}^*$, then $A_1 \cup A_2, A_1 \cap A_2 \in \mathscr{F}_{\mu}^*$.

 $\forall D \in 2^E$, we note

$$D \cap (A_1 \cup A_2) = (D \cap A_1) \cup (D \cap A_1^c \cap A_2).$$

Then

$$\mu^{*}(D \cap (A_{1} \cup A_{2})) + \mu^{*}(D \cap (A_{1} \cup A_{2})^{c})$$

$$\leq \mu^{*}(D \cap A_{1}) + \mu^{*}(D \cap A_{1}^{c} \cap A_{2}) + \mu^{*}(D \cap A_{1}^{c} \cap A_{2}^{c}) \text{ (subadditivity)}$$

$$\leq \mu^{*}(D \cap A_{1}) + \mu^{*}(D \cap A_{1}^{c}) (A_{2} \in \mathscr{F}_{\mu}^{*})$$

$$= \mu^{*}(D) (A_{1} \in \mathscr{F}_{\mu}^{*}).$$

Hence

$$A_1 \cup A_2 \in \mathscr{F}_{\mu}^*$$
.

It follows that

$$(A_1 \cap A_2)^c = A_1^c \cup A_2^c \in \mathscr{F}_u^*.$$

3. Finite additivity. If $A_1,...,A_n\in\mathscr{F}_{\mu}^*$ disjoint, then $\forall D\in 2^E,$

$$\mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \right) = \sum_{i=1}^n \mu^* (D \cap A_i).$$

31

Indeed, since $A_1 \in \mathscr{F}_{\mu}^*$,

$$\mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \right)$$

$$= \mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \cap A_1 \right) + \mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \cap A_1^c \right)$$

$$= \mu^* (D \cap A_1) + \mu^* \left(D \cap \left(\bigcup_{i=2}^n A_i \right) \right) = \dots = \sum_{i=1}^n \mu^* (D \cap A_i)$$

4. If
$$A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$$
, then $A \triangleq \bigcup_{i=1}^{n} A_i \in \mathscr{F}_{\mu}^*$.

We can assume that $A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$ are disjoint. Indeed, by **1** and

2,
$$B_i = A_i \setminus \left(\bigcup_{j \le i} A_j\right) \in \mathscr{F}_{\mu}^*$$
, are disjoint and $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$,

 $\forall n. \text{ Let }$

$$C_n = \bigcup_{i=1}^n A_i \in \mathscr{F}_{\mu}^*, \ \forall n.$$

Since $A_1, A_2, ...$ are disjoint, we can use **3** (the finite additivity). $\forall D \in 2^E$,

$$\mu^{*}(D) = \mu^{*}(D \cap C_{n}) + \mu^{*}(D \cap C_{n}^{c})$$

$$= \sum_{i=1}^{n} \mu^{*}(D \cap C_{i}) + \mu^{*}(D \cap C_{n}^{c})$$

$$\geqslant \sum_{i=1}^{n} \mu^{*}(D \cap C_{i}) + \mu^{*}(D \cap A^{c}), \ \forall n.$$

Let $n \to \infty$, note $A \subset \bigcup C_i$ and use subadditivity of outer measure

$$\mu^*(D) \geqslant \sum_{i=1}^{\infty} \mu^*(D \cap C_i) + \mu^*(D \cap A^c) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

5. Countable additivity.

If $A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$ are disjoint, use **3** and send $n \to \infty$,

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \geqslant \mu^* \left(\bigcup_{i=1}^n A_i \right) = \sum_{i=1}^n \mu^* (A_i), \ \forall n.$$

The opposite inequality is subadditivity of outer measure.

6. Completeness. If $A \in \mathscr{F}_{\mu}^*$, $\mu^*(A) = 0$ and $B \subset A$, then $\mu^*(B) = 0$. $\forall D \in 2^E$,

$$\mu^*(D)\geqslant \mu^*(D\cap B^c)=\mu^*(D\cap B)+\mu^*(D\cap B^c).$$

So $B \in \mathscr{F}_{\mu}^*$.

3.2. 域上测度的延拓.

Thm 9. If μ is a measure on a field $\mathscr A$ with the generated outer measure μ^* . Then

(1)
$$\mathscr{A} \subset \mathscr{F}_{\mu}^*$$
 thus $\sigma(\mathscr{A}) \subset \mathscr{F}_{\mu}^*$.

(2) μ^* is an extension of μ to $\sigma(\mathscr{A})$ in the sense that

$$\mu(A) = \mu^*(A), \ \forall A \in \mathscr{A}.$$

PROOF. 1. Let $A \subset \mathscr{A}$. If $A_i \in \mathscr{A}$, $A \subset \bigcup_i A_i$, then

(3.1)
$$\mu(A) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

Indeed,

$$\mu\left(A \cap \bigcup_{i=1}^{n} A_i\right) \leqslant \mu\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} \mu(A_i).$$

Let $n \to \infty$ and use that μ is a measure to get (3.1). So

$$\mu(A) \leqslant \mu^*(A)$$
.

Since $A \subset \mathcal{A}$, $A_1 = A$, $A_2 = A_3 \dots = \emptyset$ form a countable cover of A, so

$$\mu^*(A) \leqslant \mu(A).$$

2. Fix $A \subset \mathscr{A}$, will prove $A \in \mathscr{F}_{\mu}^*$. $\forall D \in 2^E$, it is enough to show that

$$\mu^*(D) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

There is nothing to prove if $\mu^*(D) = \infty$, so we assume that $\mu^*(D) < \infty$

 ∞ . Then, $\forall \varepsilon > 0$, there exist $A_i \in \mathscr{A}$, $D \subset \bigcup_{i=1}^{n} A_i$ so that

$$\sum_{i=1}^{\infty} \mu(A_i) \leqslant \mu^*(D) + \varepsilon.$$

Since \mathscr{A} is a field,

$$A_i \cap A, A_i \cap A^c \in \mathscr{A}.$$

By **1** and the additivity of μ ,

$$\mu(A_i) = \mu(A_i \cap A) + \mu(A_i \cap A^c)$$

= $\mu^*(A_i \cap A) + \mu^*(A_i \cap A^c)$.

Summing over i gives

$$\sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \mu^*(A_i \cap A) + \sum_{i=1}^{\infty} \mu^*(A_i \cap A^c)$$

 $\geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$

So

$$\mu^*(D) + \varepsilon \geqslant \sum_{i=1}^{\infty} \mu(A_i) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

Thm 10 (Uniqueness). Let \mathscr{P} be a π -system on E, μ and ν measures on $\sigma(\mathscr{P})$. Assume that

(1) μ and ν agree on \mathscr{P} .

(2) There are
$$B_i \in \mathscr{P}$$
, $i = 1, 2, ...,$ disjoint so that $\bigcup_{i=1}^{n} B_i = E$ and

 $\mu(B_i) < \infty$. Then μ and ν are equal on $\sigma(\mathscr{P})$.

PROOF. 1. Let $B \in \mathscr{P}$ have $\mu(B) < \infty$. Define

$$\mathscr{L} = \{A \in \sigma(\mathscr{P}) : \mu(A \cap B) = \nu(A \cap B)\}.$$

 $\mathcal L$ is a λ -system (finiteness is needed to justify sets subtraction!), $\mathscr P\subset \mathcal L$. So

$$\sigma(\mathscr{P})\subset\mathscr{L}$$

i.e.

$$\mu(A \cap B) = \nu(A \cap B), \ \forall A \in \sigma(\mathscr{P}).$$

2. $\forall A \in \sigma(\mathscr{P})$, use (2) to write it as disjoint union,

$$A = \bigcup_{i=1}^{\infty} (A \cap B_i), \ \mu(A \cap B_i) \leqslant \mu(B_i) < \infty.$$

Then, by $\mathbf{1}$,

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} (A \cap B_i)\right) = \sum_{i=1}^{\infty} \mu(A \cap B_i)$$
$$= \sum_{i=1}^{\infty} \nu(A \cap B_i) = \nu\left(\bigcup_{i=1}^{\infty} (A \cap B_i)\right) = \nu(A).$$

- \triangleright 2. The condition Therem 10 (2) can be replaced with either one of the following:
 - (2') \mathscr{P} is a semi-ring, $E \in \mathscr{P}$ and μ is σ -finite on \mathscr{P} .
 - (2") there are $B_1, B_2, ... \in \mathscr{P}$, so that $B_i \uparrow E$ and $\mu(B_i) < \infty$.

3.3. 半环上测度的延拓.

Thm 11. Let μ be a measure on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Then

(1)
$$\mathscr{S} \subset \mathscr{F}_{\mu}^*$$
 thus $\sigma(\mathscr{S}) \subset \mathscr{F}_{\mu}^*$.

(2) μ^* is an extension of μ to $\sigma(\mathscr{S})$ in the sense that

(3.2)
$$\mu(A) = \mu^*(A), \ \forall A \in \mathscr{S}.$$

(3) Assume that there are $B_i \in \mathcal{S}$, i = 1, 2, ..., disjoint so that $\bigcup_{i=1}^n B_i = E$ and $\mu(B_i) < \infty$, then the extension of μ to $\sigma(\mathcal{S})$ is unique.

PROOF. Let $\bar{\mu}$ be the outer measure generated by μ .

1. $\bar{\mu}$ agrees with μ on \mathscr{S} .

The proof is identical to Theorem 9(1).

2. Fix $A \subset \mathscr{S}$, will prove $A \in \mathscr{F}_{\mu}^*$.

The proof is identical to Theorem 9 (2). The difference is $A_i \cap A^c$ is replaced with disjoint union of sets in \mathscr{S} .

3. Uniqueness. Apply Theorem 10 to conclude.

3.4. Approximating $\mu^*|_{\mathscr{F}^*_{\mu}}$ by $\mu^*|_{\sigma(\mathscr{S})}$.

Thm 12. Let μ be a measure on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Suppose $E \in \mathscr S$.

(1) $\forall A \in \mathscr{F}_{\mu}^{*}$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(A) = \mu^*(B).$$

(2) If μ is σ -finite on \mathscr{S} , then $\forall A \in \mathscr{F}_{\mu}^*$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(B\backslash A) = 0.$$

Proof.

1. There is nothing to prove if $\mu^*(A) = \infty$, we assume that $\mu^*(A) < \infty$. There are $B_{n,i} \in \mathcal{S}$, $A \subset \bigcup_{i=1}^{\infty} B_{n,i}$,

$$\sum_{i=1}^{\infty} \mu(B_{n,i}) < \mu^*(A) + \frac{1}{n}.$$

Set

$$B = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{\infty} B_{n,i}.$$

Then $A \subset B \in \sigma(\mathscr{S})$,

$$\mu^*(A) \leqslant \mu^*(B).$$

Moreover

$$\mu^*(B) \leqslant \mu^* \left(\bigcup_{i=1}^{\infty} B_{n,i} \right) \leqslant \sum_{i=1}^{\infty} \mu(B_{n,i}) \leqslant \mu^*(A) + \frac{1}{n}.$$

It follows that

$$\mu^*(B) \leqslant \mu^*(A).$$

2. If μ is *finite* on \mathscr{S} , then by $\mathbf{1}$, $\forall A \in \mathscr{F}_{\mu}^*$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(A) = \mu^*(B).$$

Since μ^* is a measure on \mathscr{F}_{μ}^* , this gives

$$\mu^*(B\backslash A)=0.$$

The σ -finite case follows from similar argument as in step 3 of Theorem 11.

3.5. Approximating $\mu|_{\sigma(\mathscr{A})}$ by $\mu|_{\mathscr{A}}$.

Thm 13. Let μ be a measure on the field \mathscr{A} with the generated outer measure μ^* . For any $A \in \sigma(\mathscr{A})$ with $\mu^*(A) < \infty$, $\forall \varepsilon > 0$, there is $B \in \mathscr{A}$ such that $\mu^*(A\Delta B) < \varepsilon$.

If, in the last Theorem, the measure μ is defined on $\sigma(\mathscr{A})$ and σ -finite on \mathscr{A} , then μ must equal μ^* on $\sigma(\mathscr{A})$ by uniqueness, we can use μ in place of μ^* in the conclusion.

Thm 14. Let \mathscr{A} be a field, μ a measure on $\sigma(\mathscr{A})$ and σ -finite on \mathscr{A} . For any $A \in \sigma(\mathscr{A})$ with $\mu(A) < \infty$, $\forall \varepsilon > 0$, there is $B \in \mathscr{A}$ such that $\mu(A\Delta B) < \varepsilon$.

3.6. Completion of a measure space.

Thm 15. Let (X, \mathcal{F}, μ) be a measure space,

$$\bar{\mathscr{F}} \triangleq \{A \cup N : A \in \mathscr{F}, N \subset B \text{ for some } B \in \mathscr{F} \text{ with } \mu(B) = 0\}.$$

Define

$$\bar{\mu}(A \cup N) = \mu(A), \ \forall A \in \bar{\mathscr{F}}.$$

Then $(X, \bar{\mathscr{F}}, \bar{\mu})$ is a complete measure space.

Clearly the Theorem says

$$\bar{\mu}(A) = \mu(A), \ \forall A \in \mathscr{F}.$$

PROOF. 1. $\bar{\mathscr{F}}$ is a σ -field.

Suppose $A \cup N \in \bar{\mathscr{F}}$ where $A \in \mathscr{F}, N \subset B, B \in \mathscr{F}$ with $\mu(B) = 0$. Then

$$(A \cup N)^c = (A^c \cap B^c) \cup (B \cap A^c \cap N^c) \in \bar{\mathscr{F}}.$$

Suppose $A_i \cup N_i \in \bar{\mathscr{F}}$ where $A_i \in \mathscr{F}, N_i \subset B_i, B_i \in \mathscr{F}$ with $\mu(B_i) = 0$. Then

$$\bigcup_{i=1}^{\infty} (A_i \cup N_i) = \left(\bigcup_{i=1}^{\infty} A_i\right) \cup \left(\bigcup_{i=1}^{\infty} N_i\right) \in \bar{\mathscr{F}},$$

since

$$\bigcup_{i=1}^{\infty} N_i \subset \bigcup_{i=1}^{\infty} B_i \in \mathscr{F}$$

and

$$\mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = 0.$$

2. The definition of $\bar{\mu}$ nonambiguous, i.e.

$$A_1 \cup N_1 = A_2 \cup N_2 \in \bar{\mathscr{F}} \Longrightarrow \bar{\mu}(A_1 \cup N_1) = \bar{\mu}(A_2 \cup N_2).$$

Here $N_i \subset B_i$ for some $B_i \in \mathscr{F}$ with $\mu(B_i) = 0$, i = 1, 2.

$$\bar{\mu}(A_1 \cup N_1) = \mu(A_1) = \mu(A_1 \cup B_1 \cup B_2) \geqslant \mu(A_2) = \bar{\mu}(A_2 \cup N_2).$$

By symmetry,

$$\bar{\mu}(A_1 \cup N_1) \leqslant \bar{\mu}(A_2 \cup N_2).$$

(In fact

$$A_1 \cup B_1 \cup B_2 = A_1 \cup N_1 \cup B_1 \cup B_2 = A_2 \cup N_2 \cup B_1 \cup B_2 = A_2 \cup B_1 \cup B_2$$

SO

$$\mu(A_1 \cup B_1 \cup B_2) = \mu(A_2).$$

)

3. Countable additivity. Suppose $A_i \cup N_i \in \bar{\mathscr{F}}$ disjoint, where $A_i \in \mathscr{F}$, $N_i \subset B_i$, $B_i \in \mathscr{F}$ with $\mu(B_i) = 0$. Then

$$\bar{\mu}\left(\bigcup_{i=1}^{\infty}(A_i\cup N_i)\right)=\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)=\sum_{i=1}^{\infty}\bar{\mu}(A_i\cup N_i).$$

4. Completeness. Let $A \cup N \in \overline{\mathscr{F}}$, $N \subset B$, $B \in \mathscr{F}$ with $\mu(B) = 0$ and $\overline{\mu}(A \cup N)$, then

$$\mu(A \cup B) = \mu(A) = \bar{\mu}(A \cup N) = 0.$$

So for any $C \subset A \cup N$, $C \subset A \cup B$,

$$C = \varnothing \cup C \in \bar{\mathscr{F}}.$$

Thm 16. Suppose that μ is σ -finite on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Then $(X, \mathscr F_{\mu}^*, \mu^*)$ is the completion of $(X, \sigma(\mathscr S), \mu^*)$.

PROOF. Let

$$\bar{\mathscr{F}} \triangleq \{A \cup N : A \in \sigma(\mathscr{S}), N \subset B \text{ for some } B \in \sigma(\mathscr{S}) \text{ with } \mu(B) = 0\}.$$

It is enough to show that

$$\mathscr{F}_{\mu}^* = \bar{\mathscr{F}}.$$

Since $(X, \mathscr{F}_{\mu}^*, \mu^*)$ is a complete measure space,

$$\bar{\mathscr{F}}\subset {\mathscr{F}}_{\mu}^*$$
.

Let $A \in \mathscr{F}_{\mu}^*$, by Theorem 12 there exist $B, C \in \sigma(\mathscr{S})$ so that

$$A \subset B$$
, $\mu^*(B \backslash A) = 0$; $B \backslash A \subset C$, $\mu^*(C) = \mu^*(B \backslash A) = 0$.

Writing

$$A = (B \cap C^c) \cup (A \cap C),$$

we get that $B \cap C^c \in \sigma(\mathscr{S})$, $(A \cap C) \subset C$, $\mu^*(C) = 0$, so $A \in \bar{\mathscr{F}}$.

4. 收敛

4.1. 可测函数的收敛. (E, \mathcal{F}, μ) a measure space, $f_n \in \mathcal{F}, i = 1, 2, ..., f \in \mathcal{F}$

Def 16. Almost everywhere convergence, $f_n \stackrel{a.e.}{\longrightarrow} f$:

$$\mu\Big(\lim_n f_n \neq f\Big) = 0.$$

Def 17. Convergence in measure, $f_n \stackrel{\mu}{\longrightarrow} f: \forall \varepsilon > 0$,

$$\lim_{n} \mu(|f_n - f| > \varepsilon) = 0.$$

Evidently

$$f_n \xrightarrow{a.e.} f \iff \forall \varepsilon > 0, \ \mu \left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0$$

$$\iff \forall \varepsilon > 0, \ \mu(\{|f_n - f| > \varepsilon\} \text{ i.o.}) = 0.$$

Recall

$$x \in \limsup A_n \iff x \in A_n \text{ i.o.}$$

Thm 17. If μ is finite, then

$$f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f.$$

PROOF. Indeed,

$$\mu(|f_n - f| > \varepsilon) \le \mu\left(\bigcup_{m=n}^{\infty} \{|f_m - f| > \varepsilon\}\right), \ \forall n.$$

Let $n \to \infty$ and use continuity from above (requires finiteness of μ)

$$\limsup_{n} \mu(|f_{n} - f| > \varepsilon) \leqslant \lim_{n} \mu\left(\bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right)$$
$$= \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right) = 0.$$

(or use

$$\limsup_{n} \mu(A_n) \leqslant \mu\left(\limsup_{n} A_n\right).$$

Def 18. Almost uniform convergence, $f_n \xrightarrow{a.u.} f: \forall \varepsilon > 0$, there is $A_{\varepsilon} \in \mathscr{F}$ so that $\mu(A_{\varepsilon}) < \varepsilon$,

$$\lim_{n} \sup_{x \notin A_{\varepsilon}} |f_n - f| = 0.$$

Compare with Egoroff's Theorem on *finite* measure!

Thm 18. $f_n \stackrel{a.u.}{\longrightarrow} f$ if and only if $\forall \varepsilon > 0$,

$$\lim_{n} \mu \left(\bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0.$$

PROOF. 1. " \Longrightarrow ". $\forall \varepsilon > 0$, there is A_{ε} so that $\mu(A_{\varepsilon}) < \varepsilon$ and

$$\lim_{m} \sup_{x \notin A_{\varepsilon}} |f_m - f| = 0.$$

So, $\forall \varepsilon' > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\sup_{r \notin A_n} |f_m - f| \leqslant \varepsilon', \ \forall m \geqslant n_0.$$

This translates to

$$\bigcup_{m=n_0}^{\infty} \{ |f_m - f| > \varepsilon' \} \subset A_{\varepsilon}.$$

Therefore

$$\mu\left(\bigcup_{m=n_0}^{\infty} \{|f_m - f| > \varepsilon'\}\right) \leqslant \mu(A_{\varepsilon}) < \varepsilon.$$

2. " $\Leftarrow=$ ". $\forall \varepsilon > 0$ and $k \in \mathbb{N}$, there is $n_{\varepsilon,k} \in \mathbb{N}$ such that

$$\mu\left(\bigcup_{m=n_{\varepsilon,k}}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\} \right) < \frac{\varepsilon}{2^k}, \ \forall m \geqslant n_{\varepsilon,k}.$$

Denote (the set of all possible divergence points! measurable!)

$$A_{\varepsilon} = \bigcup_{k=1}^{\infty} \bigcup_{m=n-1}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\}.$$

Then $\mu(A_{\varepsilon}) < \varepsilon$ and for any $x \notin A_{\varepsilon}$, we have $\forall k$,

$$|f_m - f| \leqslant \frac{1}{k}, \ \forall m > n_{\varepsilon,k}.$$

We have proved:

Thm 19. (1)

$$f_n \xrightarrow{a.u.} f \implies f_n \xrightarrow{a.e.} f \text{ and } f_n \xrightarrow{\mu} f$$

(2) If μ is finite, then

$$f_n \xrightarrow{a.u.} f \iff f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f$$

E.g. 3.

$$f_n(x) = \begin{cases} 1, & x \in (0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

E.g. 4.

$$f_n(x) = x^n, x \in [0, 1]$$

 \triangleright 3. Let f = 0 and $f_n = 1_{A_n}$. Then $f_n \xrightarrow{\mu} f$ is equivalent to $\mu(A_n) \to 0$ and $\left(\lim_n f_n \neq f\right) = (A_n \ i.o.)$.

Any sequence $\{A_n\}$ so that $\mu(A_n) \to 0$ but $\mu(A_n \text{ i.o.}) > 0$ gives an exmple that $f_n \xrightarrow{\mu} f \not \Rightarrow f_n \xrightarrow{a.e.} f$. It is enough to have $\mu(A_n) \to 0$ and

$$\sum_{i=1}^{\infty} 1_{A_n}(x) = \infty, \ \sum_{i=1}^{\infty} 1_{A_n^c}(x) = \infty.$$

E.g. 5. For each n = 1, 2, ... there is a unique decomposition n = k(k-1)/2 + i with k = 1, 2, ..., i = 1, 2, ..., k.

$$f_n(x) = \begin{cases} 1, & x \in (((i-1)/k, i/k]), \\ 0, & otherwise. \end{cases}$$

E.g. 6. Consider

$$A_k^i = \left| \frac{i-1}{k}, \frac{i}{k} \right|, \ h_k^i(x) = 1_{A_k^i}(x), \ i = 1, ..., k.$$

Let f_n be the sequence

$$\left\{h_1^1;h_2^1,h_2^2;h_3^1,h_3^2;h_3^3;\ldots\right\}$$

Thm 20. $f_n \xrightarrow{\mu} f \iff for \ any \ subsequence \ there \ is \ a \ further subsequence \ f_{n_k} \xrightarrow{a.u.} f$.

PROOF. " \Longrightarrow ". Since any subsequence of f_n converges in measure to f, it is enough to show there is a subsequence $f_{n_k} \xrightarrow{a.u.} f$. To see this, for any k > 0, by definition of convergence in measure, we can choose $n_k > n_{k-1}$ so that

$$\mu\bigg(|f_{n_k} - f| > \frac{1}{k}\bigg) \leqslant \frac{1}{2^k}.$$

Then

$$\mu\left(\bigcup_{k=m}^{\infty}|f_{n_k}-f|>\frac{1}{k}\right)\leqslant \sum_{k=m}^{\infty}\frac{1}{2^k}=\frac{1}{2^{m-1}}.$$

 $\forall \varepsilon > 0$, for large m,

$$\bigcup_{k=m}^{\infty} \{ |f_{n_k} - f| > \varepsilon \} \subset \bigcup_{k=m}^{\infty} \left\{ |f_{n_k} - f| > \frac{1}{k} \right\}.$$

So

$$\lim_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \varepsilon \right) \leqslant \lim_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \frac{1}{k} \right) = 0.$$

" \Leftarrow " Suppose $f_n \xrightarrow{\mu} f$ does not hold, i.e. there are $n_k \to \infty$, $\varepsilon_0 > 0$, $\delta_0 > 0$ so that

$$\mu(|f_{n_k} - f| > \varepsilon_0) > \delta_0.$$

Then

$$\liminf_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \varepsilon_0 \right) \geqslant \delta_0,$$

Contradicting Theorem 18.

Theorem 19 and Theorem 20 indicate that if $f_n \xrightarrow{\mu} f$, then there is a subsequence $f_{n_k} \xrightarrow{a.e.} f$.

4.2. 随机变量的分布函数.

Def 19. (Ω, \mathscr{F}, P) is a probability space if P is a nonnegative measure on the σ -field \mathscr{F} with $P(\Omega) = 1$.

Def 20. A random variable (r.v.) X on (Ω, \mathscr{F}, P) is a real-valued mapping, $X : \omega \in \Omega \mapsto X(\omega) \in \mathbb{R}$.

Def 21. The distribution function of a r.v. X is

$$F(x) = P(X \leqslant x).$$

Denoted by $X \sim F$.

Thm 21. Any distribution function F has the following properties.

- (1) non-decreasing, $F(-\infty) = 0$ and $F(\infty) = 1$
- (2) right continuity: $\lim_{y \to x} F(y) = F(x)$.
- (3) left limit exists: $F(x-) = \lim_{y \uparrow x} F(y) = P(X < x)$.

(4)
$$P(X = x) = F(x) - F(x-)$$
.

The inverse of the distribution function F is defined as below. $\forall z \in (0,1)$,

(4.1)
$$F^{-1}(z) = \inf\{x \in \mathbb{R} : F(x) \ge z\}.$$

 \triangleright 4. Also equivalently defined as,

(4.2)
$$F^{-1}(z) = \sup\{x \in \mathbb{R} : F(x) < z\}.$$

LEMMA 22. F^{-1} has the properties,

- (1) F^{-1} is real-valued non-decreasing.
- (2) F^{-1} is left-continuous and has right limit.
- (3) $F^{-1}(F(x)) \leq x$, $F(F^{-1}(z)) \geqslant z$.
- $(4) F^{-1}(z) \leqslant x \text{ iff } F(x) \geqslant z.$

Proof. Exercise.

Thm 23. If F satisfies (1)(2)(3) of Theorem 21, there is a r.v. X with distribution F.

PROOF. Let $\Omega=(0,1),\ \mathscr{F}=\mathscr{B}_{(0,1)}$ (i.e. $(0,1)\cap\mathscr{B}_{\mathbb{R}}),\ P=$ Lebesgue measure. Define

$$X(\omega) = F^{-1}(\omega).$$

Then X is \mathscr{F} -measurable (check this!) and

$$P(\omega : X(\omega) \leq x) = P(\omega : F(x) \geq \omega)$$

= Lebesgue measure of $(0, F(x)) = F(x)$.

So X is a r.v. with distribution function F.

 \triangleright 5. Another construction of a r.v. X with distribution F is to take $\Omega = (\mathbb{R}, \mathcal{B}), P =$ the Lebesgue measure induced by F and consider the coordinate map $X(\omega) = \omega$.

4.3. 随机变量的收敛. Probability space (Ω, \mathcal{F}, P) , r.v. X_n, X ,

$$X_n \xrightarrow{a.s.} X \iff P(X_n = X) = 1.$$

$$X_n \xrightarrow{P} X \iff \forall \varepsilon > 0, \lim_n P(|X_n - X| > \varepsilon) = 0.$$

Def 22. $X_n \sim F_n$, $X \sim F$. Convergence in distribution (weak convergence): $F_n(x) \to F(x)$ for all x where F is continuous, written $X_n \stackrel{d}{\longrightarrow} X$.

Thm 24. $X_n \sim F_n$, $X \sim F$.

$$X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X.$$

PROOF. 1. The first implication is a special case of Theorem 17.

2. Check the second implication. $\forall \varepsilon, x \in \mathbb{R}, n \in \mathbb{N}$,

$$P(X \leqslant x - \varepsilon) - P(|X_n - X| > \varepsilon)$$

$$\leqslant P(X_n \leqslant x)$$

$$\leqslant P(X_n \leqslant x, |X_n - X| \leqslant \varepsilon) + P(X_n \leqslant x, |X_n - X| > \varepsilon)$$

$$\leqslant P(X \leqslant x + \varepsilon) + P(|X_n - X| > \varepsilon).$$

So $n \to \infty$, $\varepsilon \to 0$ yield

$$F(x-) \leqslant \liminf_{n} P(X_n \leqslant x) \leqslant \limsup_{n} P(X_n \leqslant x) \leqslant F(x).$$

LEMMA 25. $F_n \xrightarrow{w} F \iff F_n^{-1} \xrightarrow{w} F^{-1}$.

PROOF OF " \Longrightarrow ". Construct r.v.s' $X_n \sim F_n$, $X \sim F$ as Theorem 23. Fix any ω .

1. Choose any $\varepsilon > 0$ so that F is continuous at $X(\omega) - \varepsilon$ (the discontinuities of F are at most countable, ε can be arbitrarily small). By the definition (the infimum!) of $X(\omega)$,

$$F(X(\omega) - \varepsilon) < \omega.$$

Then, for large n,

$$F_n(X(\omega) - \varepsilon) < \omega.$$

so (note the above inequality is strict)

$$X(\omega) - \varepsilon \leqslant X_n(\omega).$$

Hence

$$X(\omega) \leqslant \liminf_{n} X_n(\omega).$$

2. To see the opposite. Choose any $\varepsilon, \delta > 0$ so that X is continuous at ω and F is continuous at $X(\omega) + \varepsilon$, then by Lemma 22

$$F(X(\omega + \delta) + \varepsilon) \geqslant F(X(\omega + \delta)) \geqslant \omega + \delta > \omega.$$

For large $n \ (\delta > 0)$,

$$F_n(X(\omega+\delta)+\varepsilon)\geqslant\omega.$$

By Lemma 22 again,

$$X(\omega + \delta) + \varepsilon \geqslant X_n(F_n(X(\omega + \delta) + \varepsilon)) \geqslant X_n(\omega).$$

Let $n \to \infty$, $\varepsilon \to 0$, $\delta \to 0$ (continuity at ω),

$$X(\omega) \geqslant \limsup_{n} X_n(\omega).$$

Thm 26 (Skorohod). $X_n \sim F_n, X \sim F$. Suppose $X_n \stackrel{d}{\longrightarrow} X$. There exist r.v. \bar{X}_n, \bar{X} on a common probability space so that $\bar{X}_n \stackrel{d}{=} X_n, \bar{X}_n \stackrel{a.s.}{\longrightarrow} \bar{X}$.

PROOF. Let $\Omega=(0,1), \mathscr{F}=\mathscr{B}_{(0,1)}, P=$ Lebesgue measure. By Theorem 23 there exist r.v. on (Ω,\mathscr{F},P) so that $\bar{X}_n\sim F_n, \bar{X}\sim F$. Lemma 25 then says $F_n^{-1}\stackrel{w}{\longrightarrow} F^{-1}$. Since the discontinuity set of F^{-1} is countable, $F_n^{-1}(\omega)\to F^{-1}(\omega)$ for almost all $\omega\in\Omega$, i.e. $\bar{X}_n(\omega)\stackrel{a.s.}{\longrightarrow} \bar{X}(\omega)$.

5. 积分

5.1. 非负可测函数积分. (E, \mathscr{F}, μ) a measure space, $f \in \mathscr{F}$ with values in $[0, \infty]$,. A finite (measurable) partition of E is a finite collection of \mathscr{F} -measurable sets $\{A_i : i = 1, ..., m\}$ with $\bigcup_{i=1}^m A_i = E$.

(5.1)
$$\int f d\mu \triangleq \sup_{\text{finite partitions}} \sum_{i} \left[\inf_{x \in A_i} f(x) \right] \mu(A_i).$$

Convention: $0 \cdot \infty = 0$.

 \triangleright 6. Consider

(5.2)
$$\int f d\mu \triangleq \inf_{\text{finite partitions}} \sum_{i} \left[\sup_{x \in A_i} f(x) \right] \mu(A_i).$$

Is (5.2) a good definition of integration?

Properties: $f, g \in \mathcal{F}$ nonnegative.

(1) If
$$f = 0$$
, μ -a.e., then $\int f d\mu = 0$.

(2) If
$$\mu(f > 0) > 0$$
, then $\int f d\mu > 0$.

(3) If
$$\int f d\mu < \infty$$
, then $f < \infty, \mu$ -a.e.

(4) If
$$f \leqslant g$$
, μ -a.e., then $\int f d\mu \leqslant \int g d\mu$.

(5) If
$$f = g$$
, μ -a.e., then $\int f d\mu = \int g d\mu$.

Thm 27 (Monotone convergence Theorem). If $0 \le f_n \uparrow f$, μ -a.e., then $0 \le \int f_n d\mu \uparrow \int f d\mu$.

PROOF. 1. First prove it under the assumption that

$$0 \leqslant f_n(x) \uparrow f(x), \ \forall x.$$

Integration is monotonic, so $\int f_n d\mu \leqslant \int f d\mu$. It remains to show

(5.3)
$$\lim_{n} \int f_n d\mu \geqslant \int f d\mu$$

or

$$\lim_{n} \int f_n d\mu \geqslant S = \sum_{i=1}^{m} c_i \mu(A_i)$$

for any finite measurable partition $\{A_i: i=1,...,m\}$ and $c_i=\inf_A f$.

For such a partition, assume that the sum S, c_i and $\mu(A_i)$ are all finite. Fix $\alpha < 1$, define

$$A_{i,n} = \{ x \in A_i : f_n(x) > \alpha c_i \}.$$

Since $f_n \uparrow f$, $A_{i,n} \uparrow A_i$. Consider the measurable partition

$${A_{i,n}: i = 1, ..., m} \cup \left\{ \left(\bigcup_{i=1}^{m} A_{i,n}\right)^{c} \right\}.$$

Then

$$\int f_n d\mu \geqslant \sum_{i=1}^m \alpha c_i \mu(A_{i,n}).$$

Let $n \to \infty$ and use continuity from below,

$$\lim_{n} \int f_n d\mu \geqslant \sum_{i=1}^{m} \alpha c_i \mu(A_i).$$

Finally let $\alpha \to 1$, (5.3) is proved.

Now suppose S is finite but not all of c_i , $\mu(A_i)$. Then $c_i\mu(A_i)$, i=1,...,m are finite. c_i or $\mu(A_i)$ may be infinity, but then $c_i\mu(A_i)$ must be zero. Use the adjusted parition $\{A_i: c_i\mu(A_i) > 0\} \cup \{\text{complement}\}$.

Lastly suppose S is infinite. Then there is some i_0 , $c_{i_0}\mu(A_{i_0}) = \infty$, i.e., $c_{i_0} > 0$, $\mu(A_{i_0}) > 0$ and at least one of them is ∞ . In this case

$$\int f d\mu = \infty.$$

To prove (5.3), let a, b satisfy

$$0 < a < c_{i_0} \leq \infty, \ 0 < b < \mu(A_{i_0}) \leq \infty.$$

Define

$$A_{i_0,n} = \{ x \in A_{i_0} : f_n(x) > a \}.$$

Since $f_n \uparrow f$, $A_{i_0,n} \uparrow A_{i_0}$ and $\mu(A_{i_0,n}) > b$ for n larger than some $n_{a,b}$. For the partition $\{A_{i_0,n}, A_{i_0,n}^c\}$, we have

$$\int f_n d\mu \geqslant a\mu(A_{i_0,n}) > ab, \, \forall n > n_{a,b}.$$

Let $a \to \infty$ if $c_{i_0} = \infty$, $b \to \infty$ if $\mu(A_{i_0,n}) = \infty$, we get

$$\lim_{n} \int f_n d\mu = \infty.$$

- **2**. If $0 \le f_n \uparrow f$ on A with $\mu(A^c) = 0$, then $0 \le f_n 1_A \uparrow f 1_A$ holds everywhere. Then apply step **1**.
 - **5.2. 可测函数积分.** $f \in \mathcal{F}$ with values in $[-\infty, \infty]$,

$$\int f d\mu \triangleq \int f^+ d\mu - \int f^- d\mu.$$

f is said to be integrable if $\int f^+ d\mu$, $\int f^- d\mu$ are finite. So f integrable iff |f| integrable.

Properties: $f, g \in \mathcal{F}$ integrable.

(1) If
$$f \leqslant g$$
, μ -a.e., then $\int f d\mu \leqslant \int g d\mu$.

(2) If $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is integrable,

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu.$$

E.g. 7. Let $E = \{1, 2, 3, ...\}$, $\mathscr{F} = \{all \ subsets \ of \ E\}$, $\mu = counting \ measure$. A function on E is a sequence $x_1, x_2, ...$. Any function is

 \mathscr{F} -measurable. $\{x_k: k=1,2,\ldots\}$ is μ -integrable if and only if $\sum_{k=1} |x_k|$ converges. When μ -integrable,

$$\sum_{k=1}^{\infty} |x_k| = \sum_{k=1}^{\infty} x_k^+ - \sum_{k=1}^{\infty} x_k^-.$$

The function $x_k = (-1)^{k+1}/k$, k = 1, 2, ... is not μ -integrable, although

$$\lim_{m} \sum_{k=1}^{m} (-1)^{k+1} \frac{1}{k} = \ln 2.$$

Thm 28 (Fatou's lemma). Given f_n measurable.

(1) If g integrable, $f_n \geqslant g$, μ -a.e, then $\liminf_n f_n$ is integrable and

$$\int \liminf_{n} f_n d\mu \leqslant \liminf_{n} \int f_n d\mu.$$

(1) If g integrable, $f_n \leq g$, μ -a.e, then $\limsup_n f_n$ is integrable and

$$\limsup_{n} \int f_n d\mu \leqslant \int \limsup_{n} f_n d\mu.$$

Thm 29 (Lebesgue's dominated convergence theorem). Given g nonnegative integrable, $|f_n| \leq g$, μ -a.e.. If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$, then

$$\int f_n d\mu \longrightarrow \int f d\mu.$$

The following is a generalized dominated convergence theorem.

Thm 30. Given g_n nonnegative integrable, $|f_n| \leq g_n$, μ -a.e. with $g_n \xrightarrow{a.e.} g$ and $\int g_n d\mu \longrightarrow \int g d\mu$. If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$, then $\int f_n d\mu \longrightarrow \int f d\mu.$

E.g. 8 (Weierstrass M-test). If $|x_{n,m}| \leq M_m$, $\sum_{m=1} M_m < \infty$, $\lim_{n} x_{n,m} = x_m$ for each m. Then

$$\lim_{n} \sum_{m=1}^{\infty} x_{n,m} = \sum_{m=1}^{\infty} x_m.$$

E.g. 9 (Bounded convergence theorem). Suppose μ is finite, M > 0. $|f_n| \leq M$, μ -a.e.. If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$, then

$$\int f_n d\mu \longrightarrow \int f d\mu.$$

E.g. 10. If
$$f_n \ge 0$$
 or $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$, then

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

From this we get

E.g. 11. If
$$x_{n,m} \ge 0$$
 or $\sum_{n=1}^{\infty} |x_{n,m}| < \infty$, then

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{n,m} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{n,m}.$$

5.3. Change of variables. (E_1, \mathscr{F}_1) , (E_2, \mathscr{F}_2) are measurable spaces, μ is a measure on \mathscr{F}_1 . T is measurable mapping from (E_1, \mathscr{F}_1) to (E_2, \mathscr{F}_2) . Define

(5.4)
$$\nu(B) = \mu(T^{-1}(B)), \ \forall B \in \mathscr{F}_2.$$

Then $\nu(B)$ is a measure on \mathscr{F}_2 and for any $f \in \mathscr{F}_2$,

$$\int_{E_2} f d\nu = \int_{E_1} f \circ T d\mu.$$

Note if $f = 1_B$, then $f \circ T(x) = 1_B(T(x)) = 1_{T^{-1}(B)}(x)$, since $T(x) \in B$ iff $x \in T^{-1}(B)$. So in this case (5.5) reduces to (5.4).

6. L_p 空间

6.1. Inequlities.

LEMMA 31 (Jensen's inequality). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space with $\mu(\Omega) = 1$, X a μ -integrable function on Ω , φ convex on \mathbb{R} . Then

(6.1)
$$\varphi\left(\int_{\Omega} X d\mu\right) \leqslant \int_{\Omega} \varphi(X) d\mu.$$

Equality holds iff φ is linear on some convex set $A \subset \mathbb{R}$ with $\mu(X^{-1}A) = 1$.

PROOF. Denote by μ_X the induced measure of X on \mathbb{R} (ref section 5.3), then (6.1) is equivalent to

(6.2)
$$\varphi\left(\int_{\mathbb{R}} x d\mu_X\right) \leqslant \int_{\mathbb{R}} \varphi(x) d\mu_X$$

(Apply (5.5) with f(x) = x, T = X). It is enough to prove (6.2).

1. Denote $\bar{x} = \int_{\mathbb{R}} x d\mu_X$. Since φ is convex, there is a supporting line L(x) = ax + b through \bar{x} , i.e. $L(\bar{x}) = \varphi(\bar{x})$ and

$$L(x) \leqslant \varphi(x), \ \forall x.$$

Then

(6.3)
$$\int_{\mathbb{R}} L(x)d\mu_X \leqslant \int_{\mathbb{R}} \varphi(x)d\mu_X.$$

The LHS equals $\varphi\left(\int_{\mathbb{R}} x d\mu_X\right)$, hence (6.2) follows.

2. Suppose the equality in (6.2) holds, then by the above computation

$$\int_{\mathbb{R}} [\varphi(x) - L(x)] d\mu_X = 0.$$

The integrand is nonnegative, so the measurable set

$$A = \{x \in \mathbb{R} : \varphi(x) - L(x) = 0\}$$

has full measure, i.e. $\mu_X(A) = 1$. Moreover the set A is convex (verify directly!). On the other hand, if φ is linear on some convex $A \subset \mathbb{R}$ with $\mu(X^{-1}A) = 1$, then $\mu_X(A) = 1$,

$$\int_{\mathbb{R}} L(x) d\mu_X = \int_A L(x) d\mu_X, \quad \int_{\mathbb{R}} \varphi(x) d\mu_X = \int_A \varphi(x) d\mu_X.$$

Hence by (6.3),

$$\int_{A} [\varphi(X) - L(X)] d\mu \geqslant 0.$$

But the integrand $\varphi - L$ is nonnegative and linear on A. Since $A \subset \mathbb{R}$ is convex, it must be an interval. So the above integral is zero, hence the equality of (6.2) holds.

Notice that Lemma 31 does not require $\varphi(X)$ to be μ -integrable. From (6.3) it is clear that either $\int_{\Omega} \varphi(X) d\mu$ exists or equals infinity, in the latter case (6.1) trivially holds.

Lemma 32.
$$a, b \in \mathbb{R}, 1 \leq p < \infty,$$

$$|a + b|^p \leq 2^{p-1} (|a|^p + |b|^p).$$

PROOF. Apply Jensen's inequality with $\varphi(x) = |x|^p$,

$$\left|\frac{a+b}{2}\right|^p \leqslant \frac{|a|^p + |b|^p}{2}.$$

LEMMA 33 (Young's inequality). $a, b \ge 0, 1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1,$

$$a^{1/p}b^{1/q} \leqslant \frac{a}{p} + \frac{b}{q}.$$

Equal iff a = b.

75

PROOF. The inequality holds if ab=0. In this case equality holds iff a=b=0. Now suppose ab>0. Apply Jensen's inequality with $\varphi(x)=-\ln x$,

$$-\ln\left(\frac{a}{p} + \frac{b}{q}\right) \leqslant -\frac{1}{p}\ln a - \frac{1}{q}\ln b.$$

Since φ is strictly convex (can touch a linear function at exactly one point), equality holds iff a = b.

 (E, \mathscr{F}, μ) is a measure space in the following definitions.

Def 23. p = 1, let

$$L_1 \triangleq \{ f \in \mathscr{F} : |f| \text{ is } \mu\text{-integrable} \}$$

and

$$||f||_1 = ||f||_{L_1} = \int |f| d\mu.$$

Def 24. 1 ,*let*

$$L_p \triangleq \{ f \in \mathscr{F} : |f|^p \in L_1 \}$$

and

$$||f||_p = ||f||_{L_p} = \left(\int |f|^p d\mu\right)^{1/p}.$$

Def 25. $p = \infty$, let

$$L_{\infty} \triangleq \{ f \in \mathscr{F} : there \ is \ C > 0 \ such \ that \ |f| \leqslant C, \ a.e. \}$$

and

$$||f||_{\infty} = ||f||_{L_{\infty}} = \inf\{C : |f| \le C, \ a.e.\}.$$

We could have written $L_p(\mu)$ to emphasize the dependence of the spaces L_p on the measure μ . But, when no ambiguity arises from the contexts, we will simply drop μ from the notation.

Thm 34 (Hölder inequality). $1 \leq p, \ q \leq \infty, \ \frac{1}{p} + \frac{1}{q} = 1, \ f \in L_p,$ $g \in L_q, \ then \ fg \in L_1 \ and$ (6.4) $\|fg\|_1 \leq \|f\|_p \|g\|_q.$

If
$$p = 1$$
, equality iff $|g| = ||g||_{\infty}$, a.e. on the set where $f \neq 0$.

If $p = \infty$, equality iff $|f| = ||f||_{\infty}$, a.e. on the set where $g \neq 0$. If $1 , equality iff there are nonnegative constants <math>\alpha, \beta$ such that $(\alpha, \beta) \neq (0, 0)$, $\alpha |f|^p = \beta |g|^q$, a.e.

PROOF. 1. The inequality easily follows if p=1 or $p=\infty$. To see the equality, suppose p=1, then $q=\infty$. (6.4) is equivalent to

$$\int |f|(\|g\|_{\infty} - |g|) \geqslant 0.$$

It is equality iff $|g| = ||g||_{\infty}$, a.e. on the set where $f \neq 0$.

2. Suppose $1 < p, q < \infty$. The conclusion is obvious if $||f||_p = 0$ or $||g||_q = 0$. Hence we assume that $0 < ||f||_p$, $||g||_q < \infty$. Using Young's inequality with

$$a = \left(\frac{|f|}{\|f\|_p}\right)^p, \ b = \left(\frac{|g|}{\|g\|_q}\right)^q,$$

we have

$$\frac{|fg|}{\|f\|_p \|g\|_q} \leqslant \frac{1}{p} \left(\frac{|f|}{\|f\|_p} \right)^p + \frac{1}{q} \left(\frac{|g|}{\|g\|_q} \right)^q, \ a.e.$$

Integrating on both sides gives

$$\int \frac{|fg|}{\|f\|_p \|g\|_q} d\mu \leqslant \frac{1}{p} + \frac{1}{q} = 1,$$

which is the desired inequality. The equality holds iff $a=b,\,a.e.$ i.e.,

$$||g||_q^q |f|^p = ||f||_p^p |g|^q$$
, a.e.

A familiar case of Hölder inequality is the following.

Thm 35 (Cauchy–Schwarz inequality). $f, g \in L_2$, then $fg \in L_1$ and

$$||fg||_1 \leqslant ||f||_2 ||g||_2.$$

Thm 36 (Minkowski inequality). $1 \leq p \leq \infty$, $f, g \in L_p$, then $f+g \in L_p$ and

(6.5)
$$||f+g||_p \le ||f||_p + ||g||_p.$$

If p = 1 or $p = \infty$, equality iff $fg \ge 0$, a.e..

If $1 , equality iff there are nonnegative constants <math>\alpha, \beta$ such that $(\alpha, \beta) \neq (0, 0)$, $\alpha f = \beta g$, a.e.

PROOF. 1. The case p = 1 or $p = \infty$ is immediate.

2. Suppose 1 . Let <math>q > 1, $\frac{1}{p} + \frac{1}{q} = 1$. By Hölder inequality

$$\begin{aligned} \|f+g\|_p^p &= \int |f+g||f+g|^{p-1} \leqslant_{(e1)} \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &\leqslant_{(e2)} \|f\|_p \||f+g|^{p-1} \|_q + \|g\|_p \||f+g|^{p-1} \|_q \\ &= \|f\|_p \|f+g\|_p^{p-1} + \|g\|_p \|f+g\|_p^{p-1} \end{aligned}$$

Here

$$|||f+g|^{p-1}||_q = \left(\int (|f+g|^{p-1})^q\right)^{1/q} = \left(\int |f+g|^p\right)^{1/q}$$
$$= ||f+g||_p^{p/q} = ||f+g||_p^{p-1}.$$

(e1) is equality iff $fg \ge 0$, a.e., (e2) is equality iff there are nonegative constants a, b, c, d such that $(a, b) \ne (0, 0), (c, d) \ne (0, 0)$,

$$a|f|^p = b(|f+g|^{p-1})^q$$
, $c|g|^p = d(|f+g|^{p-1})^q$, a.e.

Hence

$$a|f| = b|f + g|, \ c|g| = d|f + g|, \ a.e.$$

The conclusion follows by combining the equality conditions of (e1)(e2).

Def 26. 0 , let

$$L_p \triangleq \left\{ f \in \mathscr{F} : \int |f|^p d\mu < \infty \right\}$$

and

$$||f||_p = \int |f|^p d\mu.$$

LEMMA 37. Let $a, b \in \mathbb{R}, 0 .$

PROOF. Since $||a| + |b||^p \le |a|^p + |b|^p$ implies the desired inequality, we assume w.l.g. that a, b are of the same sign. Suppose $a \ne 0$, otherwise there is nothing to prove. Finally it suffices to show that

$$(1+s)^p \leqslant 1 + s^p, \ s \geqslant 0,$$

which is verified by elementary calculus.

Lemma 32 and Lemma 37 can be merged into the compact form,

(6.6)
$$|a+b|^p \leqslant C_p(|a|^p + |b|^p), \ 0$$

where $C_p = 2^{p-1} \vee 1$.

Thm 38.
$$0 , $||f + g||_p \le ||f||_p + ||g||_p$.$$

6.2. Completeness.

Thm 39. Let $0 , <math>L_p$ is complete.

PROOF FOR $p = \infty$. Let $f_n \in L_\infty$. Suppose that f_n is Cauchy. Given $k \ge 1$, there is n_k such that

$$||f_m - f_n||_{\infty} \leqslant \frac{1}{k}, \ \forall m, n > n_k.$$

Hence there is a null set A_k such that

$$|f_m - f_n| \leqslant \frac{1}{k}, \ \forall x \in A_k^c, \ m, n > n_k.$$

Then $A = \bigcup A_k$ is a null set and $f_n(x)$ is Cauchy for each $x \in A^c$.

Hence there exist $f, f_n \to f$ for $x \in A^c$. Let $m \to \infty$ in the above inequality we get

$$|f_n - f| \leqslant \frac{1}{k}, \ \forall x \in A^c, \ n > n_k.$$

¹A null set is a measurable set with measure zero.

So $f \in L_{\infty}$ and

$$||f_n - f||_{\infty} \leqslant \frac{1}{k}, \ \forall n > n_k.$$

Therefore f_n converges to f in L_{∞} .

PROOF FOR $0 . Let <math>f_n \in L_p$. Suppose that f_n is Cauchy in L_p ,

(6.7)
$$\lim_{m,n\to\infty} ||f_m - f_n||_p = 0.$$

We intend to show that $\lim_{n\to\infty} ||f_n - f||_p = 0$ for some $f \in L_p$. Owing to (6.7), we have a subsequence $n_k \to \infty$ so that

(6.8)
$$||f_{n_{k+1}} - f_{n_k}||_p < \frac{1}{2^k}.$$

We claim that

- (a) there is $h \in L_p$ such that $|f_{n_k}| \leq h$, a.e.
- (b) $\lim_{k} f_{n_k} \to f$, a.e. for some $f \in L_p$.

(c)
$$\lim_{k} ||f_{n_k} - f||_p = 0.$$

The conclusion of the Theorem clearly follows once (c) is proved, since a Cauchy sequence converges iff it has a convergent subsequence. Let

$$g_k = \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}|, \ g = \sum_{i=1}^\infty |f_{n_{i+1}} - f_{n_i}|.$$

Then $0 \le g_k \uparrow g$ and $||g_k||_p \le 1$ by (6.8) (Theorem 36 or Theorem 38). Using monontone convergence theorem,

$$\int g^p d\mu = \lim_k \int (g_k)^p d\mu \leqslant 1.$$

This shows $g \in L_p$ and that $g < \infty$, a.e. Therefore

$$f_{n_k} = f_{n_1} + \sum_{i=1}^{k} (f_{n_{i+1}} - f_{n_i})$$

converges almost everywhere to some measurable function f and

$$|f_{n_k}| \leqslant |f_{n_1}| + q.$$

Let $k \to \infty$, we have

$$|f| \leq |f_{n_1}| + g$$
, a.e.

hence $f \in L_p$. (a)(b) follows with $h = |f_{n_1}| + g$. By inequality (6.6),

$$|f_{n_k} - f|^p \le C_p(|f_{n_k}|^p + |f|^p) \le C_p(||f_{n_1}| + g|^p + |f|^p)$$

 $\le C_p(C_p(|f_{n_1}|^p + g^p) + |f|^p).$

Therefore (c) is a result of the dominated convergence theorem.

COROLLARY 1. (1) $0 , <math>L_p$ is a complete metric space. (2) $1 \le p \le \infty$, L_p is a Banach space.

6.3. L_p and weak convergence.

Thm 40. Let $0 , <math>f_n \in L_p$, $f \in L_p$.

$$(1) f_n \xrightarrow{L_p} f \implies f_n \xrightarrow{\mu} f \text{ and } ||f_n||_p \to ||f||_p.$$

(2)
$$f_n \xrightarrow{a.e.} f$$
 or $f_n \xrightarrow{\mu} f$, then

$$||f_n||_p \to ||f||_p \iff f_n \xrightarrow{L_p} f.$$

PROOF. 1. To prove (1), use Markov inequality

$$\mu(|f_n - f| > \varepsilon) \leqslant \frac{1}{\varepsilon^p} ||f_n - f||_p^p.$$

and the triangle inequality

$$\left| \|f_n\|_p - \|f\|_p \right| \le \|f_n - f\|_p.$$

- 2. " \Leftarrow " of (2) is included in step 1.
- **3**. " \Longrightarrow " of (2). In view of Theorem 20, it is enough to prove the case where $f_n \xrightarrow{a.e.} f$. Define

$$g_n = C_p(|f_n|^p + |f|^p) - |f_n - f|^p,$$

where $C_p = 2^{p-1} \vee 1$. Then $g_n \ge 0$ by inequality (6.6) and $\lim_n g_n = 2C_p|f|^p$, a.e. Using Fatou's lemma

$$\int 2C_p |f|^p d\mu = \int \lim_n g_n d\mu \leqslant \liminf_n \int g_n d\mu$$
$$= \int 2C_p |f|^p d\mu - \limsup_n \int |f_n - f|^p.$$

Canceling $\int 2C_p|f|^pd\mu$ from both side gives

$$\lim_{n} \int |f_n - f|^p = 0.$$

Def 27. (E, \mathcal{F}, μ) is a measure space. $1 \leq p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, f_n converges weakly to f in L_p , denoted by $f_n \xrightarrow{w-L_p} f$, if $\lim_n \int f_n g d\mu = \int f g d\mu, \ \forall g \in L_q.$

 μ is additionally assumed to be σ -finite if p=1.

Thm 41. $1 \leq p < \infty$. $f_n \xrightarrow{L_p} f$ implies $f_n \xrightarrow{w-L_p} f$.

PROOF. By Hölder inequality (Theorem 34), $\forall g \in L_q, q$ conjugate to p,

$$\int |f_n - f||g| d\mu \leqslant ||f_n - f||_p ||g||_q.$$

Thm 42. (E, \mathscr{F}, μ) is a measure space. Let $1 , <math>\{f_n\}$ bounded in L_p . If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$ for some measurable f, then $f \in L_p$ and $f_n \xrightarrow{w-L_p} f$.

PROOF. Let $g \in L_q$, q conjugate to p. As before, it is enough to prove it for $f_n \xrightarrow{a.e.} f$.

1. $f \in L_p$ is a consequence of Fatou's lemma,

$$\int |f|^p d\mu = \int \lim_n |f_n|^p d\mu \leqslant \liminf_n \int |f_n|^p d\mu \leqslant \sup_n ||f_n||_{L_p} < \infty.$$

It follows that $\{f_n - f\}$ is bounded in L_p .

2. Fix $\varepsilon > 0$, let $\delta > 0$, define $A_{\delta} = \{x \in E : \delta \leqslant |g|^q \leqslant 1/\delta\}$ and write

$$\int |f_n - f||g|d\mu = \int_{A_\delta \cap B} + \int_{A_\delta \cap B^c} + \int_{A_\delta^c}.$$

Choose δ small so that

$$\int_{A_{\delta}^{c}} \leqslant \|f_{n} - f\|_{p} \|g1_{A_{\delta}^{c}}\|_{q} < \frac{\varepsilon}{3}.$$

With δ fixed, we have

$$\int_{A_{\delta} \cap B^{c}} \leqslant \|f_{n} - f\|_{p} \|g1_{A_{\delta} \cap B^{c}}\|_{q} < \frac{\varepsilon}{3},$$

as soon as $B \subset A_{\delta}$ is such that $\mu(A_{\delta} \cap B^c)$ is smaller than some ε' .

Note $|g| \leq 1/\delta^{1/q}$ on A_{δ} . Since $\mu(A_{\delta})$ is finite by Markov inequality, so a subset $B \subset A_{\delta}$ can be chosen so that $\mu(A_{\delta} \cap B^c) < \varepsilon'$ and $|f_n - f|$

converges uniformly to 0 on $A_{\delta} \cap B$ (Theorem 19). Hence for large n,

$$\int_{A_{\delta} \cap B} \leqslant \frac{1}{\delta^{1/q}} \int_{A_{\delta} \cap B} |f_n - f| d\mu < \frac{\varepsilon}{3}.$$

Note the above proof does not get through if p=1 (so that $q=\infty$). The example below demonstates, in general, Theorem 42 does not for p=1.

E.g. 12. E = (0,1) with the usual Lebesgue measure, $f_n = n1_{(0,1/n)}$. Clearly $||f_n||_1 = 1$, $f_n \xrightarrow{\mu} f = 0$. But with $g = 1 \in L_{\infty}$, $\lim_n \int f_n g d\mu = 1 \neq 0 = \int f g d\mu$, hence $f_n \xrightarrow{w-L_1} f$ does not hold.

However we have

Thm 43. (E, \mathscr{F}, μ) is a measure space. Let $\{f_n\} \in L_1$. Suppose $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$. Then

$$f \in L_1, \|f_n\|_1 \to \|f\|_1 \iff f_n \xrightarrow{L_1} f.$$

Either of them gives
$$\int_A f_n d\mu \to \int_A f d\mu$$
, $\forall A \in \mathscr{F}$.

PROOF. The first conclusion is contained in Theorem 40. So $f_n \xrightarrow{w-L_2} f$ by Theorem 41. To complete the proof, take $1_A \in L_{\infty}$ as test function.

6.4. Uniform integrability. Let (E, \mathcal{F}, μ) be a measure space.

Def 28. $\mathcal{H} = \{f_t : t \in T\}$ is uniformly integrable if

(6.9)
$$\lim_{a \to \infty} \sup_{f \in \mathcal{H}} \int_{\{|f| \geqslant a\}} |f| d\mu = 0.$$

Def 29. $\mathcal{H} = \{f_t : t \in T\}$ is absolutely continuous if, $\forall \varepsilon > 0$, there is $\delta > 0$ so that

$$\sup_{f \in \mathcal{H}} \int 1_A |f| d\mu < \varepsilon \text{ for any } A \text{ with } \mu(A) < \delta.$$

Thm 44. Suppose (E, \mathscr{F}, μ) is a measure space with μ finite. $\mathcal{H} = \{f_t : t \in T\}$ is uniformly integrable if and only if \mathcal{H} is absolutely continuous and bounded in L_1 .

PROOF. 1. If \mathcal{H} is uniformly integrable, $\forall \varepsilon > 0$, there is $a_0 > 0$ so that

$$\sup_{f \in \mathcal{H}} \int_{\{|f| \geqslant a\}} |f| d\mu \leqslant \frac{\varepsilon}{2}, \ \forall a \geqslant a_0.$$

For any measurable A, $a \ge a_0$,

$$\sup_{f \in \mathcal{H}} \int 1_A |f| d\mu \leqslant \sup_{f \in \mathcal{H}} \int_{\{|f| < a\}} 1_A |f| d\mu + \sup_{f \in \mathcal{H}} \int_{\{|f| \geqslant a\}} 1_A |f| d\mu$$
$$\leqslant a\mu(A) + \sup_{f \in \mathcal{H}} \int_{\{|f| \geqslant a\}} |f| d\mu \leqslant a\mu(A) + \frac{\varepsilon}{2}.$$

That \mathcal{H} is bounded in L_1 follows by setting A = E and using the fact that μ is finite. Fix $a \geq a_0$. For any A with $\mu(A) \leq \varepsilon/(2a)$, we get that $\sup_{f \in \mathcal{H}} \int 1_A |f| d\mu$ is bounded from above by ε , hence the absolute continuity.

2. Suppose that \mathcal{H} is absolutely continuous and bounded in L_1 . Denote the uniform L_1 bound of \mathcal{H} by M. By Markov inequality, $\forall a > 0$,

$$\mu(|f| > a) \leqslant \frac{1}{a} \int |f| d\mu \leqslant \frac{1}{a} M, \ \forall f \in \mathcal{H}.$$

 $\forall \varepsilon > 0$, by absolute continuity, $\sup_{f \in \mathcal{H}} \int 1_A |f| d\mu < \varepsilon$ as soon as $\mu(A)$ is less than some $\delta > 0$. Fix a with $M/a < \delta$. Then setting $A = \mu(|f| > a)$ gives the uniform integrability. \square

Thm 45 (Vitali convergence theorem). Suppose that μ is finite, $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$.

(1) If $\{f_n\}$ is uniformly integrable, then $f \in L_1$ and

(6.10)
$$\int f_n d\mu \to \int f d\mu.$$

(2) f_n , f are nonnegative integrable, then (6.10) implies that $\{f_n\}$ is uniformly integrable.

PROOF. The proof is given for $f_n \stackrel{a.e.}{\longrightarrow} f$.

1. If f_n is uniformly integrable, then f is integrable by Theorem 44 and Fatou's lemma. Define

$$f_{n,a} = 1_{\{|f_n| < a\}} f_n, \ f_a = 1_{\{|f| < a\}} f.$$

It follows that $f_{n,a} \to f_a$, a.e. provided $\mu(|f| = a) = 0$. By bounded dominated convergence,

$$\int f_{n,a} d\mu \to \int f_a d\mu.$$

Writing

(6.11)
$$\int_{\{|f_n| \geqslant a\}} f_n d\mu = \int f_n d\mu - \int f_{n,a} d\mu$$

and

(6.12)
$$\int_{\{|f|\geqslant a\}} f d\mu = \int f d\mu - \int f_a d\mu,$$

we see that

$$\begin{aligned} &\limsup_{n} \left| \int f_{n} d\mu - \int f d\mu \right| \\ &\leqslant \limsup_{n} \left| \int f_{n,a} d\mu - \int f_{a} d\mu \right| + \sup_{n} \int_{\{|f_{n}| \geqslant a\}} |f_{n}| d\mu + \int_{\{|f| \geqslant a\}} |f| d\mu \\ &= \sup_{n} \int_{\{|f_{n}| \geqslant a\}} |f_{n}| d\mu + \int_{\{|f| \geqslant a\}} |f| d\mu. \end{aligned}$$

Note $\mu(|f|=a)=0$ for all but countably many a. Sending $a\to\infty$ proves (6.10).

2. Suppose f_n , f are nonnegative integrable and (6.10) holds. Write

$$\int_{\{|f_n|\geqslant a\}} f_n d\mu = \int_{\{|f|\geqslant a\}} f d\mu + \left(\int_{\{|f_n|\geqslant a\}} f_n d\mu - \int_{\{|f|\geqslant a\}} f d\mu\right).$$

Since f is integrable, the first term is less than $\varepsilon/2$ when a is larger than some a_0 . If $\mu(|f|=a)=0$, (6.11) and (6.12) indicate the term in the bracket is also less than $\varepsilon/2$ when n is larger than some n_0 .

Therefore,

$$\sup_{n>n_0} \int_{\{|f_n|\geqslant a\}} f_n d\mu \leqslant \varepsilon, \ \forall a>a_0 \text{ with } \mu(|f|=a)=0.$$

Since the finite family $\{f_1, ..., f_{n_0}\}$ is uniformly integrable, the uniform integrability of $\{f_n, n \ge 1\}$ follows.

Additional details on the proof of Theorem 45. Suppose $|f_n(x)| \to |f(x)| < a$. Then for large n, $|f_n(x)| < a$. So $1_{\{|f_n| < a\}}$ and $1_{\{|f| < a\}}$ are both equal to 1, it follows $f_{n,a} \to f_a$ at x. The same is true for x with |f(x)| > a. If $|f(x)| = a \neq 0$, then $f_{n,a}(x) \to f_a(x)$ may not happen, since in this case $f_a(x) = 0$ while there could be a subsequence n_k with $f_{n_k}(x) < a$ so that

$$f_{n_k,a}(x) = f_{n_k}(x) \to f(x) \neq 0.$$

But if the set $\{x : |f(x)| = a\}$ has zero μ -measure, then $f_{n,a} \to f_a$, a.e. Fortunately the set of a for which $\mu(|f| = a)$ is not zero is at most countable. Indeed, let

$$F(x) = \mu(|f| \leqslant x).$$

Then F(x) is non-decreasing, hence has at most countably many discontinuities. F is discontinuous at x = a if and only if

$$\mu(|f| = a) = F(a) - F(a-) \neq 0.$$

This verifies that $\mu(|f| = a) = 0$ for all but countably many a.

COROLLARY 2. Suppose that μ is finite, f_n , f are integrable. If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$, then these are equivalent:
(1) $\{f_n\}$ is uniformly integrable;

$$(2) \int |f_n - f| d\mu \to 0;$$

(3)
$$\int |f_n| d\mu \to \int |f| d\mu.$$

6.5. Summary of various convergences.

7. 概率空间的积分

7.1. Expected value. (Ω, \mathcal{F}, P) is a probability space, X a r.v.

Def 30. Expectation, written EX,

$$EX = \int XdP.$$

Suppose X is discrete, i.e., X takes values in a finite or infinitely countable distinct sequence $\{x_1, x_2, ...\}$. Then its expectation $(\int XdP$ computed according to (5.1)) equals

$$EX = \sum_{i} x_i P(X = x_i).$$

The mapping $i \mapsto P(X = x_i)$ is called the probability mass function of X. If Y = g(X) for some measurable function g, then Y is discrete with values in, say, $\{y_1, y_2, ...\}$. The expectation of Y, computed in the

same way as EX, is

$$EY = \sum_{i} y_i P(Y = y_i).$$

To calculate EY, we first need to find its probability mass function $i \mapsto P(Y = y_i)$. This can be complicated, and it is avoided by using the "law of the unconscious statistician",

$$EY = \sum_{i} g(x_i)P(X = x_i).$$

This turns out to be a change of variables formula (see also Theorem 48).

Thm 46 (Change of variables formula). Let (Ω, \mathscr{F}, P) be a probability space, X a r.v, and $g \in \mathscr{B}_{\mathbb{R}}$. If $g \geqslant 0$ or $\int_{\Omega} |g(X)| dP < \infty$, then

(7.1)
$$Eg(X) = \int_{\Omega} g(X)dP = \int_{\mathbb{R}} g(x)d\mu_X.$$

Here $\mu_X(A) = PX^{-1}(A) = P(X \in A)$, $\forall A \in \mathscr{B}_{\mathbb{R}}$ is the probability induced by X (section 5.3).

- PROOF. 1. The nonnegative case $g \ge 0$. If $g = 1_A$, then $g(X(\omega)) = 1_A(X(\omega)) = 1_{X^{-1}(A)}(\omega)$, so (7.1) reduces to the definition of μ_X . By linearity, (7.1) holds for simple functions. If g_n are simple functions such that $0 \le g_n(x) \uparrow g(x)$, then $0 \le g_n(X(\omega)) \uparrow g(X(\omega))$, then (7.1) follows by monontone convergence theorem.
- 2. The case $\int_{\Omega} |g(X)| dP < \infty$. Applying step 1 to |g(X)| shows that g is integrable with respect to μ_X , hence the integrability of g^+ , g^- , and (7.1) follows from subtracting $Eg^-(X) = \int_{\mathbb{R}} g^-(x) d\mu_X$ from $Eg^+(X) = \int_{\mathbb{R}} g^+(x) d\mu_X$.

The probability μ_X equals (as a result of the uniqueness Theorem 11) the measure μ constructed from the distribution function F of $X: \mu((a,b]) = F(b) - F(a)$, $\forall a,b$. The measure μ is called a

Lebesgue-Stieltjes measure and its integral is the Lebesgue-Stieltjes integral (section 7.3). The above formula thus relates integral on a probability space to Lebesgue-Stieltjes integral over \mathbb{R} . The rightmost term of (7.1) is also written as $\int gdF$, i.e.

$$Eg(X) = \int_{\mathbb{R}} g(x)dF.$$

REMARK 2. An implication of Theorem 46 is that the integration (e.g. the expection and variance) of a random variable is a distributional property, i.e., it depends on the random variable only through its distribution. This lays the basis for applying probability theory tools such as Skorohod Theorem (Theorem 26).

Def 31. Variance, written Var(X),

$$Var(X) = \int (X - EX)^2 dP = E[(X - EX)^2].$$

It is easy to see that

$$Var(X) = EX^2 - (EX)^2.$$

Def 32. k-th moment, k = 1, 2, ...,

$$E(X^k) = \int X^k dP.$$

E.g. 13 (Bernoulli distribution). Let $0 . <math>X \sim Bernoulli(p)$ if P(X = 1) = p, P(X = 0) = 1 - p. Then

$$EX = 1 \cdot p + 0 \cdot (1 - p) = p.$$

$$Var(X) = EX^{2} - (EX)^{2} = p - p^{2} = p(1 - p).$$

E.g. 14 (Poisson distribution). Let $\lambda > 0$. $X \sim Poisson(\lambda)$ if

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, 2,$$

Then

$$EX = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda.$$

$$E(X(X-1)) = \sum_{k=0}^{\infty} k(k-1) \cdot e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^k}{(k-2)!} = \lambda^2.$$

Hence $EX^2 = \lambda^2 + \lambda$, and

$$Var(X) = (\lambda^2 + \lambda) - \lambda^2 = \lambda.$$

7.2. Properties of expectation. X, Y are random variables. The following are immediate from section 6.1.

Jensen inequality: if X integrable, φ convex, then

$$\varphi(EX) \leqslant E\varphi(X).$$

Hölder inequality: if $p, q \ge 1, 1/p + 1/q = 1$, then

$$E|XY| \leqslant ||X||_p ||Y||_q.$$

Minkowski inequality: if $p \ge 1$, then

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

Thm 47. $0 < s < t < \infty, X \text{ is a r.v. Then } ||X||_s \le ||X||_t.$

PROOF. By Hölder inequality with $p = \frac{t}{s}$, $q = \frac{t}{t-s}$,

$$||X||_s^s = E|X|^s \le (E|X|^{sp})^{1/p} (E1^q)^{1/q} = (E|X|^t)^{s/t} = ||X||_t^s.$$

E.g. 15. If X has $EX^2 < \infty$, then its expectation and variance exist, since $E|X| \leq ||X||_2 < \infty$, and

$$0 \leqslant Var(X) \leqslant EX^2$$
.

7.3. Lebesgue-Stieltjes and Riemann-Stieltjes integrals. Let G be a **generalized distribution function**, i.e., nondecreasing, right-continuous on \mathbb{R} . There is a unique measure μ such that

(7.2)
$$\mu((a,b]) = G(b) - G(a), \ \forall a, b.$$

The measure μ constructed this way is called a **Lebesgue-Stieltjes** measure. Integration with respect to Lebesgue-Stieltjes measure is called **Lebesgue-Stieltjes integral**, denoted by $\int f d\mu$ or $\int f dG$.

REMARK 3. Under suitable conditions (see below), $\int fdG$ may be interpreted as Riemann-Stieltjes integral. Since this does not provide anything new in the context of general measure theory, $\int fdG$ is best understood as a notional variant of $\int fd\mu$.

Here we recall a few facts about Riemann-Stieltjes integration. Let G be the function as in (7.2), f a bounded function on [a, b]. Corresponding to each partition $\mathcal{P}: a = x_0 < x_1 < \cdots < x_n = b$, we consider

$$L(\mathcal{P}, f) = \sum_{i=1}^{n} \inf_{x \in [x_{i-1}, x_i]} f(x) \Delta G_i, \ U(\mathcal{P}, f) = \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} f(x) \Delta G_i.$$

Here $\Delta G_i = G(x_i) - G(x_{i-1})$. Define

$$R_*f = \sup_{\mathcal{P}} L(\mathcal{P}, f), \ R^*f = \inf_{\mathcal{P}} U(\mathcal{P}, f).$$

If $R_*f = R^*f$, then f is Riemann-Stieltjes integrable with respect to G, the common value, written $(R-S)\int f$, is called the Riemann-Stieltjes integral. For simplicity we have omitted the dependence of the integral on G in the notations.

A sufficient condition for Riemann-Stieltjes integrability is this: Suppose f is bounded on [a,b], has at most finitely many discontinuities, G is continuous at every point where f is discontinuous. Then f is Riemann-Stieltjes integrable with respect to G.

E.g. 16. If a < s < b, f is bounded on [a,b], continuous at s and $G(x) = 1_{[s,\infty)}(x)$. Then

$$(R-S)\int_{a}^{b} f dG = f(s).$$

Indeed, consider paritions $\mathcal{P} = \{x_0, x_1, x_2, x_3\}$, $a = x_0$ and $x_1 < x_2 = s < x_3 = b$. Then $\Delta G_2 = 1$, $\Delta G_i = 0$ if $i \neq 2$,

$$L(\mathcal{P}, f) = \inf_{x \in [x_1, x_2]} f(x), \ U(\mathcal{P}, f) = \sup_{x \in [x_1, x_2]} f(x).$$

Since f is continuous at s, we see that $L(\mathcal{P}, f)$ and $U(\mathcal{P}, f)$ converge to f(s) as $x_1 \to s$.

Thm 48. Suppose $c_n \ge 0$, $\sum c_n < \infty$, $\{s_n\}$ is a sequence of distinct points in (a,b), and

$$G(x) = \sum_{n=1}^{\infty} c_n 1_{[s_n,\infty)}(x).$$

If f is continuous on [a,b], then

$$(R-S)\int_{a}^{b} f dG = \sum_{n=1}^{\infty} c_n f(s_n).$$

Proof. Exercise.

If we denote by L_*f the integral in (5.1) with the G-induced Lebesgue-Stieltjes measure in the role of μ , and by L^*f the integral in (5.2). Then

$$R_*f \leqslant L_*f \leqslant L^*f \leqslant R^*f.$$

Therefore if, for instance, f is continuous on [a, b], then it is Riemann-Stieltjes integrable, hence Lebesgue-Stieltjes integrable.

7.4. L_p convergence and uniform integrability.

Thm 49. (Ω, \mathcal{F}, P) is a probability space, $0 , <math>X_n \in L_p$, $X \in \mathcal{F}$. If $X_n \xrightarrow{P} X$, then these are equivalent:

- (1) $\{|X_n|^p\}$ is uniformly integrable;
 - (2) $X \in L_p$, $E(|X_n X|^p) \to 0$;
 - (3) $X \in L_p$, $E(|X_n|^p) \to E(|X|^p)$.

PROOF. 1. Observe that $X \in L_p$ by Theorem 45, hence $\{|X_n - X|^p\}$ is uniformly integrable since $|X_n - X|^p \leqslant C_p(|X_n|^p + |X|^p)$ where $C_p = 2^{p-1} \vee 1$. Note also that $|X_n - X|^p \xrightarrow{P} 0$. Therefore (1) implies (2) is a consequence of Theorem 45 with $f_n = |X_n - X|^p$.

- **2**. (2) implies (3) because $|||X_n||_p ||X||_p| \le ||X_n X||_p$, 0 (Theorem 36, Theorem 38).
- 3. (3) implies (2) follows from an application of Theorem 45 with $f_n = |X_n|^p$.

We notice another criterion for uniform integrability, in addition to Theorem 44.

Lemma 50. Let (Ω, \mathcal{F}, P) be a probability space,

$$\mathcal{H} = \{X_t : t \in T, \ E|X_t| < \infty\}.$$

Suppose that $g \geqslant 0$ is an increasing function on $[0, \infty)$ such that

$$\lim_{s \to \infty} \frac{g(s)}{s} = \infty$$

and

$$\sup_{X \in \mathcal{U}} \int g(|X|) dP < \infty.$$

Then \mathcal{H} is uniformly integrable.

PROOF. $\forall \varepsilon > 0$. Fix a > 0 so that

$$\frac{1}{a} \sup_{X \in \mathcal{H}} \int g(|X|) dP < \varepsilon.$$

There is $s_0 > 0$ such that $g(s) \ge as$ for all $s \ge s_0$. Hence, $\forall X \in \mathcal{H}$, $s \ge s_0$,

$$\int_{\{|X|\geqslant s\}} |X| dP \leqslant \frac{1}{a} \int_{\{|X|\geqslant s\}} g(|X|) dP \leqslant \frac{1}{a} \sup_{X\in \mathcal{H}} \int g(|X|) dP < \varepsilon.$$