Some Important Notations in Sampling

Notation Name	Population	Sample
Dataset	X_i	x_i
No. of Elements	N	n
Mean	μ	\bar{x}
Variance	σ^2	s ²
Standard Deviation	σ	S
Proportion	π	p
Difference between Means	$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$
	$\mu_2 - \mu_1$	$\bar{x}_2 - \bar{x}_1$
Difference between	$\pi_1 - \pi_2$	$p_1 - p_2$
Proportions	$\pi_2 - \pi_1$	$p_2 - p_1$

Formulas for Population

$$\mu = \frac{1}{N} \sum_{i=1}^{N} X_i$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} X_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} X_i\right)^2$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} X_i\right)^2}$$

$$\pi = \frac{X}{N}$$

In case of two populations

$$\mu_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} X_{1i}$$

$$\mu_2 = \frac{1}{N_2} \sum_{j=1}^{N_2} X_{2j}$$

$$\sigma_1^2 = \frac{1}{N_1} \sum_{i=1}^{N_1} X_{1i}^2 - \left(\frac{1}{N_1} \sum_{i=1}^{N} X_{1i}\right)^2$$

$$\sigma_2^2 = \frac{1}{N_2} \sum_{j=1}^{N_2} X_{2j}^2 - \left(\frac{1}{N_2} \sum_{j=1}^{N_2} X_{2j}\right)^2$$

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} X_{1i}^2 - \left(\frac{1}{N_1} \sum_{i=1}^{N} X_{1i}\right)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{j=1}^{N_2} X_{2j}^2 - \left(\frac{1}{N_2} \sum_{j=1}^{N_2} X_{2j}\right)^2}$$

$$\pi_1 = \frac{X_1}{N_1}$$

$$\pi_2 = \frac{X_2}{N_2}$$

Formulas for Different Sampling Distributions

1. Mean of the sampling distribution of sample mean (\bar{x})

$$E(\bar{x}) \text{ or } \mu_{\bar{x}} = \sum \bar{x} P(\bar{x})$$

2. Variance of the sampling distribution of sample mean (\bar{x})

$$Var(\bar{x})$$
 or $V(\bar{x})$ or $\sigma_{\bar{x}}^2 = E(\bar{x}^2) - [E(\bar{x})]^2$

$$\sigma_{\bar{x}}^2 = \sum \bar{x}^2 P(\bar{x}) - \left[\sum \bar{x} P(\bar{x})\right]^2$$

3. Standard Deviation / Standard Error of the sampling distribution of sample mean (\bar{x})

S. E
$$(\bar{x})$$
 or $\sigma_{\bar{x}} = \sqrt{E(\bar{x}^2) - [E(\bar{x})]^2}$

$$\sigma_{\bar{x}} = \sqrt{\sum \bar{x}^2 P(\bar{x}) - \left[\sum \bar{x} P(\bar{x})\right]^2}$$

4. Mean of the sampling distribution of difference between two sample means i.e., $\overline{x}_1 - \overline{x}_2$

$$E(\bar{x}_1 - \bar{x}_2) \text{ or } \mu_{\bar{x}_1 - \bar{x}_2} = \sum_i (\bar{x}_1 - \bar{x}_2) P(\bar{x}_1 - \bar{x}_2)$$

5. Variance of the sampling distribution of difference between two sample means i.e., $\overline{x}_1 - \overline{x}_2$

$$Var(\bar{x}_1 - \bar{x}_2)$$
 or $V(\bar{x}_1 - \bar{x}_2)$ or $\sigma^2_{\bar{x}_1 - \bar{x}_2} = E[(\bar{x}_1 - \bar{x}_2)^2] - [E(\bar{x}_1 - \bar{x}_2)]^2$

$$\sigma_{\bar{x}_1 - \bar{x}_2}^2 = \sum_{\bar{x}_1 - \bar{x}_2} (\bar{x}_1 - \bar{x}_2)^2 P(\bar{x}_1 - \bar{x}_2) - \left[\sum_{\bar{x}_1 - \bar{x}_2} (\bar{x}_1 - \bar{x}_2) P(\bar{x}_1 - \bar{x}_2) \right]^2$$

6. Standard Deviation / Standard Error of the sampling distribution of difference between two sample means i.e., $\overline{x}_1 - \overline{x}_2$

S. E
$$(\bar{x}_1 - \bar{x}_2)$$
 or $\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{E[(\bar{x}_1 - \bar{x}_2)^2] - [E(\bar{x}_1 - \bar{x}_2)]^2}$

$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\sum (\bar{x}_1 - \bar{x}_2)^2 P(\bar{x}_1 - \bar{x}_2) - \left[\sum (\bar{x}_1 - \bar{x}_2) P(\bar{x}_1 - \bar{x}_2)\right]^2}$$

7. Mean of the sampling distribution of sample proportion p.

$$E(p)$$
 or $\mu_p = \sum [p \times P(p)]$

8. Variance of the sampling distribution of sample proportion p

$$Var(p)$$
 or $V(p)$ or $\sigma_p^2 = E(p^2) - [E(p)]^2$

$$\sigma_p^2 = \sum [p^2 \times P(p)] - \left[\sum [p \times P(p)]\right]^2$$

9. Standard Deviation / Standard Error of the sampling distribution of sample proportion *p*

S. E (*p*) or
$$\sigma_p = \sqrt{E(p^2) - [E(p)]^2}$$

$$\sigma_p = \sqrt{\sum [p^2 \times P(p)] - \left[\sum [p \times P(p)]\right]^2}$$

10. Mean of the sampling distribution of difference between proportions

i.e.,
$$p_1 - p_2$$

$$E(p_1 - p_2) \text{ or } \mu_{p_1 - p_2} = \sum [(p_1 - p_2) \times P(p_1 - p_2)]$$

11. Variance of the sampling distribution of difference between two sample proportions i.e., p_1-p_2

$$Var(p_1 - p_2)$$
 or $V(p_1 - p_2)$ or $\sigma_{p_1 - p_2}^2 = E[(p_1 - p_2)^2] - [E(p_1 - p_2)]^2$

$$\sigma_{p_1-p_2}^2 = \sum [(p_1-p_2)^2 \times P(p_1-p_2)] - \left[\sum \{(p_1-p_2) \times P(p_1-p_2)\}\right]^2$$

12. Standard Deviation / Standard Error of the sampling distribution of difference between two sample proportions i.e., $p_1 - p_2$

S. E
$$(p_1 - p_2)$$
 or $\sigma_{p_1 - p_2} = \sqrt{E[(p_1 - p_2)^2] - [E(p_1 - p_2)]^2}$

$$\sigma_{p_1-p_2} = \sqrt{\sum [(p_1-p_2)^2 \times P(p_1-p_2)] - \left[\sum \{(p_1-p_2) \times P(p_1-p_2)\}\right]^2}$$

13. Mean of the sampling distribution of variance s^2

$$E(s^2) \text{ or } \mu_{s^2} = \sum [s^2 \times P(s^2)]$$