

Challenge Activity $4 - \varepsilon$ -NFAs

In order to diminish the size and to speedup the processing of ϵ -NFAs, Calvin had an idea to remove the ϵ transitions of the ϵ -NFAs and thus to translate them to NFAs. His idea groups states based on their ϵ -closure as follows:

- (a) All states belonging to the ε -closure of a state are transformed into a new state (grouping them) and are removed from the resultant FA;
- (b) Transitions to a state that now belongs to a group state are now transitions to that group state;
- (c) Transitions from a state that now belongs to a group state are now transitions from that group state;
- (d) Group states including one or more final states in the ϵ -NFAs are now final states.
- 1. Apply the approach of Calvin¹ to the following ε -NFA and draw the resultant NFA. Is the new NFA equivalent to the ε -NFA below?

2. Do you think that the Calvin's approach works? Justify your answer and if you think it does not work give an example of an ϵ -NFA that using the Calvin's approach results in a non-equivalent NFA.

¹ In case of possible doubts about the Calvin's approach try to make assumptions based on what you think could work.