Let V be a vector space and $W \subseteq V$ be a subsepace. Recall: $W^{\perp} = \{ v \in V : v \cdot w = 0 \text{ for every } w \in W \}$,

The outprogram complement of W.

FACTI: WI is a subspace of V too!

Proof: * 0 E W, since 0.W=0 por every WEW.

* 9f V_1 , $V_2 \in W^{\perp}$, by definition this means $V_1 \cdot W = 0$ } for each $w \in W$. $V_2 \cdot W = 0$

Therefore (V1+V2). W= V1.W+V2.W = 0 for each WEW showing that V1+V2 EW!

* If $\alpha \in \mathbb{R}$, $v_i \in \mathbb{W}^1$ then for each well, $dv_i \cdot w = \alpha (v_i \cdot w) = \alpha \cdot 0 = 0$, since $v_i \cdot w = 0$ for every well.

FACT 2: (W1) = W.

Now we are ready to use the properties of inner products and orthogonality to find the materix that will identify a grid pattern of 2 colours! We will use the following:

- (i) If $W \subseteq V$ is a subspace, then W^{\perp} is also a subspace of V, so it will have some basis.
- $(ii) (M_7)_7 = M$
- Matrix multiplication uses the standard inner product on IR":

det \bar{a}_1 , \bar{a}_2 , ..., \bar{a}_k be k nectors in \mathbb{R}^n , so each \bar{a}_i is an n-tuple.

Let To be another vector in R",

$$\begin{bmatrix} -a_1 - \overline{a}_1 - \overline{a}_2 - \overline{a}_1 \cdot \overline{b} \\ -\overline{a}_2 - \overline{a}_k - \overline{a}_k - \overline{a}_k \cdot \overline{b} \end{bmatrix} = \begin{bmatrix} \overline{a}_1 \cdot \overline{b} \\ \overline{a}_2 \cdot \overline{b} \\ \overline{a}_k \cdot \overline{b} \end{bmatrix}$$

det w be the vector generated from a pattern of blue and white squares. Let W= span & co3. Choose a basis & V1, ..., Vn-3 for W. Create the materix B = [V,T]. Revenue are received the materix B = [V,T].

Viniting of column vectors column vectors with the part of the

Notice that if it is any nx1 rector,

$$B \overline{u} = \overline{0} \sim \begin{bmatrix} -v_1^T - v_2^T - v$$

From (ii) above, Bū: [v,T·ū]
v_1.ū

Therefore Bu= = = v, v, u=0, v, u=0, ..., v, u=0

In other words, Bu=0 iff u is orthogonal to Vi,..., Vn-1, i.e., iff u is orthogonal to every vector in $w^{\perp} \Leftrightarrow u \in (w^{\dagger})^{\perp}$, so ue W.

Now, W = spansw3 = Exwlater. We are assuming only 2 volours are used, repense. ted by 1 and 0. So there are only 2 vectors in W that will be of relevance to us:

- W = WI (~~ 1= X) (1)
- 1) x = 0 ~ 0 w = 0.

For any other vector u, Bu \$ 0. This key fact distinguishes the pattern from any other pattern.

Let us work out the previous example $\omega = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \leftarrow \omega$ again:

Let
$$W = \text{Spann} \{W\} = \text{Spann} \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$
.
 $W^{\perp} = \{ (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{R}^4 : \alpha_1 + \alpha_4 = 0 \}$
 $= \text{Spann} \{ (1, 0, 0, -1), (0, 1, 0, 0), (0, 0, 1, 0) \}$.
 v_1^{\top} v_2^{\top} v_3^{\top}

Form the materix B by meeting the basis vectors of W1 as nows:

$$B = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Check:
$$B\overline{w} = \overline{0}$$
?
$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Choose a random $\bar{x} \neq \bar{w}$, consisting of 1's \bar{r} o's:

say $\bar{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then $B\bar{x} = \begin{bmatrix} 100 - 1 \\ 0100 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. $+ \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Some final remarks:

- D It doesn't matter what basis you choose for W⁺, as long as it is a valid basis, it will work. B will look different depending on your basis, but that's ok!
- D If your pattern is a nxn geried, W will have n-1 vectors in its basis, each of length n, so B is an n-1 xn matrix.

Example 2: Find a matrix B that can be used to identify the pattern:

Solution: First we convert this into a 9×1 vector:

Next, set $W = \text{span } \{\omega\}$. We need to find a basis for W^L . Jo do Kris, we solve $\chi \cdot \omega = 0$:

 $[\chi_{1} \chi_{2} ... \chi_{q}] \cdot (001111001) = 0$ $\Rightarrow \chi_{3} + \chi_{4} + \chi_{5} + \chi_{6} + \chi_{q} = 0.$

i.e.,
$$W = \left\{ (x_1, ..., x_q) \in \mathbb{R}^q \mid x_3 + x_4 + x_5 = 0 \right\}$$

: a basis is:

{ (1,0,0,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0), (0,0,-1,0,1,0,0,0,0), (0,0,-1,0,1,0,0,0,0,0), (0,0,-1,0,0,0,0,0,0), (0,0,-1,0,0,0,0,0,0)}

(OR) using the notation for standard basis of IR described earlier, the above set is of IR described earlier, the above set is eq.e3.

Now,
$$B = \begin{bmatrix} -\sqrt{1-1} \\ -\sqrt{1-1} \end{bmatrix}$$

is a matrix