Внимание! Статья Ишкова В.Н. «Эпохи «пониженной» и «повышенной» солнечной активности: наблюдательные особенности и ключевые факты» размещена под таблицей 1.

Таблица 1. Циклы солнечной активности 1 – 24

Номер	Год начала		Максимум	Минимум		Длительность	Ветвь	Ветвь
цикла	цикла	$\mathbf{W*}_{\mathbf{min}}$	цикла,	цикла,	$\mathbf{W*}_{\mathbf{max}}$	цикла,	роста,	спада,
			год	год		годы	годы	годы
	1610.8		1615.5			8.2	4.7	3.5
	1619.0		1626.0			15.0	7.0	8.0
	1634.0		1639.5			11.0	5.5	5.5
	1645.0		1649.0			10.0	4.0	6.0
	1655.0		1660.0			11.0	5.0	6.0
	1666.0		1675.0			13.5	4.5	9.0
	1679.5		1685.0			10.0	5.5	4.5
	1689.5		1693.0			8.5	3.5	5.0
	1698.0		1705.5			14.0	7.5	6.5
	1712.0		1718.2			11.5	6.2	5.3
	1723.5		1727.5			10.5	4.0	6.5
	1734.0		1738.7			11.0	4.7	6.3
	1745.0		1738.7		92.6	10.2	5.3	4.9
1	1755 III	8.4	1761 VI	1766 V	86.5	11.25	6.25	5.0
2	1766 VI	11.2	1769 IX	1775 V	115.8	9.0	3.25	5.75
3	1755 VI	7.2	1778 V	1784 VIII	158.5	9.25	2.92	6.33
4	1784 IX	9.5	1788 II	1798 IV	141.2	13.67	3.42	10.25
5	1798 V	3.2	1805 II	1810 VII	49.2	12.25	6.75	5.5
6	1810 VIII	0.0	1816 IV	1823 IV	48.7	12.75	5.67	7.08
7	1823 V	0.1	1829 XI	1833 X	71.7	10.50	6.50	4.0
8	1833 IX	7.3	1837 III	1843 VI	146.9	9.67	3.33	6.33
9	1843 VII	10.5	1848 II	1855 XI	131.6	12.42	4.58	7.83
10	1855 XII	3.2	1860 II	1867 II	97.9	11.42	4.17	7.25
11	1867 III	5.2	1870 VIII	1878 XI	140.5	11.92	3.42	8.50
12	1878 XII	2.2	1883 XII	1890 II	74.6	11.33	5.0	6.33
13	1890 III	5.0	1894 1	1901 XII	87.9	12.08	3.83	8.25
14	1902 I	2.6	1906 II	1913 VII	64.2	11.67	4.08	7.59
15	1913 VIII	1.5	1917 VIII	1923 VII	105.4	10.08	4.0	6.08
16	1923 VIII	5.6	1928 IV	1933 VIII	78.1	10.25	4.67	5.58
17	1933 IX	3.4	1937 IV	1944 I	119.2	10.5	3.58	6.92
18	1944 II	7.7	1947 V	1954 III	151.8	10.25	3.25	7.00
19	1954 IV	3.4	1958 III	1964 IX	201.3	10.42	3.92	6.50
20	1964 X	9.6	1968 XI	1976 VI	110.6	11.83	4.08	7.75
21	1976 VI	12.2	1979 XII	1986 VIII	164.5	10.25	3.50	6.75
22				1996 V	158.11	9.58	2.92	6.66
	1986 IX	12.3	1989 VII	1990 V	130.11	7.50	4.74	0.00
23	1986 IX 1996 VI	8.0	1989 VII 2000 IV	1996 V 2008 XII	120.7	12.7	3.83	8.87

W* — сглаженное за 13 месяцев относительное число солнечных пятен. **Жирным** шрифтом выделены достоверные циклы СА, курсивом — прогнозируемые значения и гипотетические характеристики циклов до пронумерованного ряда (1610-1755 гг.). Синим цветом выделены солнечные циклы эпохи «пониженной» солнечной активности; фиолетовым — солнечные циклы эпохи «повышенной» солнечной активности; красным — солнечные циклы переходных периодов. Солнечные циклы 8 и 9 могут считаться «условно достоверными».

ЭПОХИ «ПОНИЖЕННОЙ» И «ПОВЫШЕННОЙ» СОЛНЕЧНОЙ АКТИВНОСТИ: НАБЛЮДАТЕЛЬНЫЕ ОСОБЕННОСТИ И КЛЮЧЕВЫЕ ФАКТЫ

В.Н. Ишков ИЗМИРАН, ГЦ РАН ishkov@izmiran.ru

Абстракт. Увеличившийся ряд достоверных (с 1849 г) наблюдений относительных чисел солнечных пятен (временная шкала в 164 г. – 14 солнечных циклов) даёт возможность начать обсуждение сценария солнечной цикличности без привлечения восстановленных (1 – 9) циклов. Этот сценарий предусматривает регулярный переход от эпохи «повышенной» солнечной активности (СА) к эпохе «пониженной» и, наоборот, от «пониженной» к «повышенной». Первая эпоха «пониженной» СА пришлась на 12 – 16 циклы, после которой последовала эпоха «повышенной» СА (18 – 22 циклы СА). В настоящее время, с текущего 24 цикла СА, Солнце вошло во вторую эпоху «пониженной» СА, которая, учитывая устойчивый характер достоверного ряда относительных чисел солнечных пятен, вероятно, продлится также 5 солнечных циклов. Перед каждой эпохой в течение 1±0.5 солнечных циклов происходит смена режима генерации магнитного поля в конвективной зоне Солнца. Такие перестройки, по-видимому, можно было наблюдать в солнечных циклах 11, 17 23, когда пятнообразовательная активность Солнца перестраивалась к соответствующей эпохе. Второй период перестройки режима генерации магнитных полей к «пониженной» СА пришёлся на время космических исследований, что дало возможность подробно его изучить.

Введение. В настоящее время статистика наблюдений позволяет исследовать сценарий солнечной цикличности, её свойства, характеристики и правила развития по достоверному (1849 – 2014) ряду относительных чисел солнечных пятен (Рис. 1) на временной шкале в 164 г. – 14 полных солнечных циклов (СЦ). Надо отметить, что для таких исследований характеристик СЦ мы в принципе не можем воспользоваться восстановленным рядом (1755-1848 г.), так как достоверный и восстановленный ряды чисел Вольфа имеют совершенно разные спектральные характеристики и значимо отличаются по статистическим параметрам [Ишков и Шибаев, 2005]. Из сравнения достоверного и восстановленного рядов вытекает: характер поведения "мгновенных" частот и огибающих на интервале 1749 – 1849 сильно отличается от достоверного ряда; - увеличение длины ряда ведет к ухудшению разрешения некоторых значимых спектральных характеристик (обычно наоборот); - отсутствие или существенное искажение "высокочастотной" части спектра. Как показано в работе [Shibaev and Ishkov, 2012], для достоверных циклов присутствует отрицательная корреляция (-0.658) между длительностью ветви роста и величиной максимума солнечного цикла (отсюда правило Вальдмайера) и отсутствие корреляции (0.055) между ветвью спада и величиной максимума. Иной характер эти связи носят для восстановленных циклов, где ещё более сильная отрицательная корреляция (-0.898) между первыми параметрами переходит в положительную (+0.466) корреляцию для вторых. Следствием плохого восстановления является и тот факт, что у всех достоверных СЦ отношение длительности цикла к длительности ветви больше 2, т.е. ветвь роста всегда меньше ветви спада, в то время как из 9 восстановленных СЦ, ветвь роста превышала ветвь спада у трёх. Из сравнения совокупных свойств отдельных 11-летних восстановленных и достоверных СЦ, в первых только три (3, 8 и 9) наиболее близко удовлетворяют характеристикам солнечных циклов достоверного ряда. Достоверный ряд относительных чисел солнечных пятен показывает удивительное постоянство в основных проявлениях развития отдельных 11- и 22-летних СЦ [Ишков и Шибаев, 2005] и структура его цикличности, на данной статистике, подразумевает периодическую смену эпох «пониженной» (циклы 12 – 16) и «повышенной» (18 – 22) солнечной активности. Между этими эпохами наблюдаются переходные периоды (11, 23 и 17), во время которых меняется характер пятнообразовательной активности, т.е. режимов генерации магнитных полей в пятнообразовательной зоне Солнца. Наблюдения показывают, что последние два СЦ (22 и 23) были достаточно необычными по своим характеристикам и в

какой-то степени нарушали сложившуюся картину развития СЦ [Ishkov, 2012]. Текущий 24 СЦ развивается как цикл низкой величины, вспышечная активность которого существенно ниже всех предыдущих СЦ космической эры.

Рис. 1 Достоверный ряд относительных чисел солнечных пятен с границами структурных эпох «пониженной» (1) и «повышенной» (2) солнечной активности с переходными периодами между ними. Вероятный период «повышенной» солнечной активности (2*), включающей солнечные циклы 9 — 6. Преобразованный рисунок из Википедии http://en.wikipedia.org/wiki/Sunspot

2. Эпоха «повышенной» солнечной активности. Единственная достоверная эпоха «повышенной» солнечной активности включает 5 СЦ (18 − 22), которые стали самыми высокими по числам Вольфа и вспышечной активности среди достоверных солнечных циклов. Эта эпоха включает в себя один суперцикл (19), три высоких (W*≥135 − циклы 18, 21, и 22) и один солнечный цикл средней величины (80<W*<135 − 20), в котором вспышечная активность была на высоком уровне, сравнимом с соседними высокими СЦ. Очень важным обстоятельством является то, что именно в данную эпоху начались космические исследования Солнца и межпланетной среды. Поэтому основной объём знаний приходится именно на эту эпоху.

Предыдущая эпоха «повышенной» солнечной активности приходится на СЦ 6 – 10, из которых четыре относятся к восстановленным, и не дают возможности привлечь их для расширения статистики (Рис. 2). Можно отметить, что включение в статистику СЦ 8 и 9, самых «правдоподобных» из восстановленных, не портит рассматриваемый сценарий, и они могут быть условно включены в рассмотрение в последующих работах. Для достоверной эпохи значимо вырастает число больших групп пятен со сложной магнитной конфигурацией и, как следствие, резко вырастает число больших и мощных солнечных событий. В таблице 1.1 приведены параметры СЦ эпохи «повышенной» солнечной активности.

Рис. 2. Диаграмма бабочек для положения и площади пятен с границами структурных эпох «пониженной» (1) и «повышенной» (2) солнечной активности. Преобразованный рисунок из Википедии – http://en.wikipedia.org/wiki/Sunspot

Таблица 1. Солнечные циклы достоверных «повышенной» и «пониженной» эпох и периодов перестройки солнечной активности.

N	T_0	W* _m	T_{M}	T _e	$W*_M$	$T_{Y}\uparrow$	$T_{Y} \downarrow$	T_{Y}	T1 _m	T2 _m	Spless
1.1. Солнечные циклы достоверной эпохи "повышенной» солнечной активности											
18	1944 II	7.7	1947 V	1954 III	151.8	3.2	7.0	10.2	33 ^m	33 ^m	444
19	1954 IV	3.4	1958 III	1964 IX	201.3	3.9	6.5	10.4	33 ^m	38 ^m	221
20	1964 X	9.6	1968 XI	1976 VI	110.6	4.1	7.8	11.8	38 ^m	69 ^m	269
21	1976 VI	12.2	1979 XII	1986 VIII	164.5	3.5	6.8	10.2	69 ^m	33 ^m	273
22	1986 IX	12.3	1989 VII	1996 V	158.1	2.9	6.7	9.6	33 ^m	40 ^m	308
Σ		9.2			157.26	3.52	6.96	10.44	41.2 ^m		302
1.2. Солнечные циклы достоверной эпохи «пониженной» солнечной активности											
12	1878 XII	2.2	1883 XII	1890 II	74.6	5.0	6.3	11.3	65 ^m	59 ^m	732
13	1890 III	5.0	1894 I	1901 II	87.9	4.5	8.2	12.1	59 ^m	77 ^m	937
14	1902 I	2.6	1906 II	1913 VII	64.2	4.1	7.6	11.7	77 ^m	59 ^m	1045
15	1913 VIII	1.5	1917 VIII	1923 VII	105.4	4.0	6.1	10.1	59 ^m	48 ^m	526
16	1923 VIII	5.6	1928 IV	1933 VIII	78.1	4.7	5.6	10.3	48 ^m	54 ^m	666
Σ		3.4			82.44	4.5	6.5	10.9	61 ^m		781
24	2009 I	1.7	2013 XI-14II	2020 V-IX	72	5±0.2	5.9	11.3	68m	59 ^m	
1.3. Солнечные циклы достоверных периодов перестройки солнечной активности											
10	1855XII	3.2	1860 II	1867 II	97.9	4.17	7.25	11.42	38 ^m	34 ^m	402
11	1867 III	5.2	1870 VIII	1878 XI	140.5	3.42	8.50	11.92	34 ^m	65 ^m	1025
16	1923 VIII	5.6	1928 IV	1933VIII	78.1	4.7	5.6	10.3	48 ^m	54 ^m	666
17	1933 IX	3.4	1937 IV	1944 I	119.2	3.6	6.9	10.5	54 ^m	33 ^m	262
22	1986 IX	12.3	1989 VII	1996 V	158.1	2.9	6.7	9.6	33 ^m	40 ^m	308
23	1996 VI	8.0	2000 IV	2008 XII	120.7	3.8	8.9	12.7	40 ^m	68 ^m	821

 T_0 — начало СЦ; W^*_m — начальное значение сглаженных чисел Вольфа; T_M — время максимума СЦ; W^*_M — максимальное значение сглаженных чисел Вольфа; $T_Y \uparrow$ — длительность ветви роста в годах; $T_Y \downarrow$ — длительность ветви спада в годах; $T_Y -$ длительность СЦ в годах; T_m , T_m ,

Основные характеристики этих СЦ следующие:

- более высокие в среднем (9.24) начальные значения W^*_{min} ;
- более короткие (10.44 г.) в среднем длительности солнечных циклов;
- самые короткие в среднем (менее 3.7 г.) ветви роста;
- одно и двух вершинные фазы максимума, причём первый пик обычно является максимумом цикла в числах Вольфа (W^*_{max}), а второй совпадает с максимумом вспышечной активности;
- ветви спада в среднем (6.96 г.) достаточно продолжительные, но фазы минимума между высокими СЦ очень короткие (34.25^{мес.}). Однако фаза минимума между СЦ средней величины (20) и высоким (21) оказалась аномально (для данной эпохи) растянутой (69^{мес.});
- количество беспятенных дней вокруг фазы минимума (от максимума до максимума) в среднем 305^d;
 - более расширенная в среднем зона пятнообразования $\pm 45^{\circ}$ (Рис.2);
- относительная доля более крупных пятен значимо увеличена, число групп пятен с площадями ≥ 1000 м.д.п. во всех СЦ 487 и средняя суммарная сглаженная площадь групп пятен ~ 2100 м.д.п. [Janssen, 2004] (Рис. 3).
 - максимальное значение полярного магнитного поля (обычно через 5 лет после

переполюсовки, по 20 и 21 СЦ) ±250 mcT [Svalgaard, Kamide, 2012].

3. Эпохи «пониженной солнечной» активности. Первая эпоха «пониженной» солнечной активности включает в себя 5 СЦ (Таблица 1.2), три из которых были низкими (W*≤80 — циклы 12, 14, 16) и два средней величины (13, 15). Вторая эпоха «пониженной» солнечной активности начинается с текущего 24 СЦ В эти эпохи преобладают небольшие спокойные, короткоживущие группы пятен простой магнитной конфигурации, уровень вспышечной активности понижен (по 24 СЦ) — число мощных солнечных вспышечных событий значимо мало.

Основные характеристики солнечных циклов эпохи «пониженной» СА по сравнению с «повышенной»:

- более низкие начальные значения W^*_{min} (3.38); их большая длительность, в среднем, (10.9 г.);
 - более продолжительные, в среднем, (4,5 г.) ветви роста;
- многовершинность фазы максимума для низких СЦ, причём самый большой по величине пик и становится W^*_{max} ;
 - более короткие, в среднем, (6.5 г.) ветви спада;
- более узкая зона пятнообразования по широте $\pm 35^{\circ}$; количество беспятенных дней вокруг фазы минимума, в среднем, 763° ;
- как видно из рис. 3, средняя сглаженная площадь групп пятен \sim 1200 м.д.п.; число групп пятен с площадями \geq 1000 м.д.п. во всех циклах эпохи − 147 [Janssen, 2004];
- затянутые фазы минимума между циклами (56–60^{мес}) и, особенно, перед низкими СЦ, а в двух случаях из трёх (23–24 и 14–15) самые протяжённые фазы минимума; максимальное значение полярного магнитного поля ± 100 мкТл [Svalgaard, Kamide, 2012].

Рис. 3. Сглаженные средние площади пятен для эпохи «повышенной» солнечной активности (штриховая кривая) и для эпохи «пониженной» солнечной активности (сплошная кривая) с границами разброса значений. Первая кривая кроме СЦ 18 – 22 включает цикл 17 и частично 23, что возможно несколько снижает значения площадей. Серым тоном с чёрной штриховкой выделен текущий 24 СЦ. Видоизменённый рисунок из http://www.harryrobertsastronomy.com/2013_09_01_archive.html

4. Периоды перехода между эпохами «повышенной» и «пониженной» солнечной активности. Перед каждой такой эпохой происходит смена режима генерации магнитного поля в пятнообразовательной зоне Солнца и ведёт к принципиально разной картине образования групп солнечных пятен (Рис. 2). Периоды перестройки, которые длится 1±0.5 СЦ, опираются на один опорный солнечный цикл, но включает в себя, как показали 22 – 23

СЦ, и прилегающие части соседних, когда процессы смены режима начинаются или продолжаются. В таблице 1.3 приведены основные параметры СЦ переходных периодов. В достоверных СЦ первый такой период, по-видимому, можно было наблюдать в цикле 11 (мало данных), когда произошла перестройка к режиму первой достоверной эпохе «пониженной» солнечной активности. В цикле 17 осуществлялся период перестройки магнитных полей к эпохе «повышенной» СА и, как возможное следствие, на фазе роста 18 цикла впервые и единственный раз за всё время наблюдений солнечной активности, появились группы пятен гигантских площадей (~4–6·10³ м.д.п.). Второй переходной период к эпохе «пониженной» солнечной активности начался с максимума 22 и по конец 23 цикла. Наиболее вероятными признаками этой перестройки в 22 и 23 СЦ стали:

- появление на фазе роста и в максимуме 22 СЦ больших вспышечно-активных групп пятен на высоких широтах (\geq 35°);
 - реализация наиболее мощных солнечных вспышек в фазе максимума;
 - полное отсутствие вспышек рентгеновского бала Х после октября 1992 г. на фазе спада;
 - единственный в достоверном ряду случай нарушения правила Гневышева-Оля;
- падение напряжённости магнитного поля в тенях пятен в 2000 2012 г. (Рис.4) из-за значимо возросшего количества малых солнечных групп пятен [Nagovitsyn, Pevtsov et al., 2012];
- максимальное значение полярного магнитного поля ± 200 мкТл с постепенным снижением до 150 мкТл к началу фазы роста 23 СЦ [Svalgaard, Kamide, 2012]

В обоих переходных периодах к «пониженной» солнечной активности наблюдались сильно затянутые ветви спада (8.5 и 8.9 г.) и, как возможное следствие, количество беспятенных дней вокруг фазы минимума резко увеличилось и составило 1025^d (циклы 11-12) и 821^d (23-24). Перед эпохой «повышенной» солнечной активности этот параметр резко уменьшился -262^d (циклы 17-18).

Рис. 4. Падение напряжённости магнитного поля (левый рисунок) и, соответственно, рост интенсивности в тенях солнечных пятен (правый рисунок) по наблюдениям на обсерватории Кит-Пик. Данные на ноябрь 2014 г.

5. Обсуждение. Достоверный ряд относительных чисел солнечных пятен даёт возможность по новому взглянуть на сценарий солнечной активности. 11-летние солнечные циклы группируются в семейства, поочерёдно составляющие эпохи «пониженной» и «повышенной» солнечной активности (~ по 5 циклов), которые значимо отличаются друг от друга по параметрам, эволюционным характеристикам и проявлениям пятнообразовательной активности. В эпохи «пониженной» солнечной активности средние сглаженные площади групп пятен принципиально ниже, значимо уменьшается количество больших и сложных по магнитной конфигурации групп пятен. Следствием этого, как показывает текущий 24 цикл, является заметное снижение вспышечной активности и, в частности, наблюдаемого значительного уменьшения количества больших солнечных вспышек [Ишков, 2012]. В рамках эпох, на данной статистике, безусловно, выполняются наблюдательные правила развития СЦ, в том числе такие, как правило Гневышева — Оля, правило концентрации самых мощных

вспышечных событий на фазе спада. В то же время, последние два солнечных цикла (22, 23) принесли много наблюдательных сюрпризов в их развитии, которые обозначили, как можно сейчас понять, очередной период перестройки режима пятнообразования. Возвращаясь к другим двум переходным периодам, можно отметить, что все они сопровождались необычными явлениями, среди которых и сильно затянутые минимумы, и значимое уменьшение параметра q= SU/S (отношение площади тени к площади всего пятна), который достиг наблюдательного минимума в начале 30-х годов XX века, т.е. к началу цикла 17 [Bludova et al., 2014], и появление групп пятен гигантских площадей в первой половине цикла 18, и уменьшение полярного магнитного поля на протяжении 22 – 23 СЦ. Кроме того, все известные экстремальные солнечные вспышечные суперсобытия (VIII–IX 1859 г. – в 10; VI 1991 г. – в 22; X – XI 2003 г. – в 23) осуществились именно в переходные периоды. Выделение таких переходных периодов может помочь понять физическую картину развития солнечной цикличности. Если за неё ответственно солнечное динамо, то появляется довольно жёсткое условие его реализации – циклическая смена режима генерации магнитного поля в зоне образования солнечных пятен каждые пять солнечных циклов. Периоды перестройки пятнообразовательной активности Солнца на данной статистике, занимают промежуток времени ~ 1.5 цикла, захватывая соседние с опорным СЦ, и обеспечивают «спокойную» деятельность Солнца внутри каждой эпохи на своём уровне активности. Во время эпохи последней «повышенной» солнечной активности началась эра космических исследований с широкими возможностями наблюдений разнообразных проявлений солнечной активности во всех диапазонах электромагнитного и корпускулярного излучений. Практически всё, что мы знаем о Солнце, межпланетной среде и солнечно-земных связях, все фоновые величины и статистические выводы относятся именно к этой эпохе (циклы 19 – 22) и периоду перехода из режима «повышенной» солнечной активности к режиму «пониженной» (циклы 22-23). Полученные данные в этот период сильно расширили понимание возможных изменений физических характеристик, как всего Солнца, так и характера вспышечной активности. В настоящее время согласно этому сценарию Солнце вступило во вторую эпоху «пониженной» солнечной активности, исследование которой, практически, только начинается. В последней фазе минимума (циклы 23 – 24) мы впервые получили фоновые характеристики по настоящему спокойного Солнца, перестроившегося к эпохе незнакомой пока нам «пониженной» солнечной активности.

6. Заключение. Итак, солнечная цикличность состоит из эпох «пониженной» и «повышенной» СА примерно по 5 циклов, разделённых периодами перестройки условий зарождения магнитных полей (~1.5 цикла). Внутри эпох соблюдаются все наблюдаемые правила развития солнечных циклов, а все их нарушения связны с периодами перестройки. Исходя из устойчивой картины развития солнечной цикличности достоверного ряда чисел Вольфа, можно предположить, что вторая эпоха «пониженной» СА продлится следующие 5 циклов, как и первая. Текущий 24 цикл является первым циклом следующей эпохи «пониженной» солнечной активности и по правилу Гневышева-Оля следующий 25 цикл должен быть выше текущего и средним по величине (~100). Соответственно до цикла 28 будут поочерёдно осуществляться низкие и средние солнечные циклы.

Литература

Ишков В.Н., Шибаев И.Г. Циклы солнечной активности: общие характеристики и современные границы прогнозирования // Изв. РАН, серия физ. 2006, Т. 70. № 10. С.1439–1442.

Shibaev, I., Ishkov V. Investigation of the Statistical Characteristics of Wolf Numbers Reliable Series: Signs of Solar Cycles Likelihood // 7th Scientific Conf. "Space, Ecology, Safety" – SES 2011. Conf. Proceedings 2012, Sofia, Bulgaria, SRTI - BAS. p. 297-301, ISSN 1313-3888.

Janssens, J., Big, Super en Giant Sunspotgroups // VVS/Belgian Solar Section 2004. http://users.telnet.be/j.janssens/.

Svalgaard, L., Kamide, Y., Asymmetric Solar Polar Field Reversals // AGU Fall Meeting, SH12A-

07, 3 Dec. 2012, http://www.leif.org/research/AGU%20Fall%202012%20SH12A-07.pdf

Nagovitsyn, Y.A, Pevtsov, A.A, Livingston, W.C. On a Possible Explanation of the Long-term Decrease in Sunspot Field Strength // Astroph. J. Let. 2012. 758:L20.

Ishkov V.N., Properties and Surprises of Solar Activity XXIII Cycle // Sun and Geosphere, 2010; 5(2): 43-46.

Bludova, N. G.; Obridko, V. N.; Badalyan, O. G.The Relative Umbral Area in Spot Groups as an Index of Cyclic Variation of Solar Activity, Solar Physics, Volume 289, Issue 3, pp.1013-1028, 2014

Статья опубликована:

Ишков В.Н. Периоды «пониженной» и «повышенной» солнечной активности: наблюдательные особенности и ключевые факты // Сб. «Солнечная и солнечно-земная физика – 2013», под ред. Ю.А. Наговицина, Изд. ВВМ, Санкт- Петербург, 2013, с. 111 – 114, http://www.gao.spb.ru/russian/publ-s/conf_2013/conf_2013.pdf