MATH 365

Introduction to Inverse Methods, individual activity

Consider using the following quadratic polynomial to model a ballistic trajectory with linear regression as described in Example 1.1 of the textbook:

$$y(t) = m_1 + m_2 t - \frac{1}{2} m_3 t^2.$$

The inverse problem is to estimate m_1 , m_2 and m_3 given observed altitudes $y(t_j)$, $j = 1, \ldots, m$.

- 1. Write out the system of equations in matrix-vector form that define the inverse problem $\mathbf{Gm} = \mathbf{d}$ when
 - (a) the altitude is observed at times t_1 , t_2 and t_3 , i.e. when m=3.
 - (b) the altitude is observed at times t_1 and t_2 , i.e. when m=2.
- 2. Assume that

$$\mathbf{m}_{true} = \left[\begin{array}{c} 0.18\\16.21\\9.81 \end{array} \right],$$

and we have observations at 20 times with $t_j = 0, ..., 3$. Use MATLAB or other software to

- (a) form (i) \mathbf{G} , (ii) \mathbf{d}_{true} and (iii) noisy data \mathbf{d} where noise is normally distributed with mean $\mathbf{0}$ and standard deviation 2. The noise can be generated in MATLAB using the command 2*randn(m,1). Plot \mathbf{d}_{true} and the noisy data as points on the same graph with appropriate labels. Discuss the difference between the data.
- (b) solve $\mathbf{Gm} = \mathbf{d}$ for \mathbf{m} using the noisy data in 2a. Plot y(t) using \mathbf{m} and \mathbf{m}_{true} on the same graph with appropriate labels. Discuss the difference between the trajectories.