

Robotic Operating System

Version 1.0

Ruotolo Vincenzo January 19, 2022

Contents

List of Code Listings

Part I

Introduction

1 Motivation

2 Improvement with respect to ROS

- 1. Quality of Design and Implementation
- 2. System reliability
- 3. Real-time control
- 4. Validation, verification and certification
- 5. Flexibility in communication
- 6. Support for small embedded systems

3 ROS2 Tree

- Communication
 - topics
 - services
 - actions
- Testing
 - QA
 - performance
 - security
- Diagnostics

Part II ROS Levels

Part III ROS2 Graph

The ROS graph is a network of ROS2 elements processing data together at one time.

Nodes

Each node in ROS should be responsible for a single task (single, modular purpose). There are many ways by which nodes can exchange data each others: topics, services, actions, or parameters.

Topics

Topics allows to send continuous streams of data between two or more topics:

- publisher: if data is sent (publish to a topic)
- subscriber: if data is received (subscribe to a topic)

Services

Services are based on call-and-response model, providing data only under request by a client:

- service server: who provides the service (response)
- service client: who call the service (request)

Parameters

Parameters are configuration values of a node, corresponding to passing arguments to an executable.

Actions

Actions are an advance way to exchange data for long running tasks, using the client-server model of the topics and the call-and-response model of services, with the difference that can be deleted.

• goal service: service request

feedback topic: data about the state of the task

• result service: service result

Part IV Client Libraries

/	rclcpp	rclpy
/	rclcpp::ok()	/
/	rclcpp::WallRate	/