Matematika I

15. januára 09:00

Meno a priezvisko: Podpis: Podpis:
Ročník: študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $4x^2 - y^2 + 8x = 0$.
Doplňte:
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte, ak existujú
c_1) súradnice stredu kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy^2 \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[-1,-1],\,B=[1,-1],\,C=[4,3],\,D=[-4,3].$

Výsledok:

- **4.** (4b) Bod M má v sférickej súradnicovej sústave súradnice: $M = \left[2\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, -\sqrt{6}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b)	Dana je linearna obycajna diferencialna rovnica (LODR) $y^*(x) + 3y^*(x) - 4y(x) = 3e^{-x}$.
a) ((2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
(Charakteristická rovnica je:
,	(2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
]	Fundamentálny systém riešení je
c) ((2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
]	Partikulárne riešene je
d) ((2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
7	Všeobecné riešenie danej LODR je
6. (4b	o) Vypočítajte nasledujúcu limitu
	$\lim_{[x,y]\to[1,1]} \frac{2-\sqrt{4-xy}}{xy}.$
7	Výsledok:
7. (6b	o) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\sin\frac{x}{y}$ v bode $T=[\pi,1,z_0].$
((2b) Nájdite z_0 a uvedte súradnice dotykového bodu :
((4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b	b) Daná je funkcia $f(x,y) = \ln(2x+y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.
a) ((3b) Nájdite gradient funkcie $f(x, y)$ v bode A .
(Gradient funkcie $f(x,y)$ v bode A je
b) ((3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
]	Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

a)	Načrtnite oblasť M :
	Náčrt:
	Pomocou matematických vzťahov popíšte hranice oblasti $M\colon$
	(a) (2b) <i>AB</i>
	(b) (2b) BC
	(c) (2b) <i>CD</i>
	(d) (2b) <i>AD</i>
b)	(5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
	Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c)	Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
	(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
	(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
	(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
	(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d)	(2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
	Najväčšia hodnota funkcie $f(x,y)$ je:
	Najmenšia hodnota funkcie $f(x,y)$ je:

9. (27b) Daná je funkcia $f(x,y)=x^2+y^2-xy-x-y+2$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi $A=[0,0],\ B=[4,0],\ C=[3,3]$ a D=[0,3].