

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)
x	y
2104	460
1416	232
1534	315
852	178
•••	•••

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178
	•••	•••	•••		

What is $x_3^{(4)}$?

Notation:

$$n$$
 = number of features

ration:
$$n = \text{number of features} \qquad x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

$$x^{(i)} = \text{input (features) of } i^{th} \text{ training example.} \qquad x^{(2)} = \begin{bmatrix} 3 \\ 40 \\ 40 \end{bmatrix}$$

$$x^{(i)}_{j} = \text{value of feature } j \text{ in } i^{th} \text{ training example.} \qquad x^{(2)}_{2} = 3, x^{(2)}_{3} = 2$$

$$x_2^{(2)} = 3, x_3^{(2)} = 2$$

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

E.g.

$$h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_2 - 2x_4$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$\theta^T \begin{bmatrix} \theta_0, \theta_1, \dots, \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$H_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta^T X$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$

(simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial heta_0} J(heta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update
$$\, heta_0, \, heta_1)$$

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\, heta_j \,$ for $\, j = 0, \ldots, n \,$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²)

 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

$$x_0 = 1$$

$$0 < x_1 < 3$$

$$-2 < x_2 < 0.5$$

$$-100 < x_3 < 100$$

$$-0.0001 < x_4 < 0.0001$$

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{5}$$

$$-0.5 \leq x_1 \leq 0.5, -0.5 \leq x_2 \leq 0.5$$

Scaling Rule:
$$x_n \leftarrow \frac{x_n - \mu_n}{s_n}$$

 μ_n : Average value of x_i in training set

 s_n : Standard deviation

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Suppose a friend ran gradient descent three times, with $\alpha=0.01$, $\alpha=0.1$, and $\alpha=1$, and got the following three plots (labeled A, B, and C):

 $J(\theta)$ No. of iterations

Which plots corresponds to which values of α ?

A. A is
$$\alpha = 0.01$$
, B is $\alpha = 0.1$, C is $\alpha = 1$.

B. A is
$$\alpha = 0.1$$
, B is $\alpha = 0.01$, C is $\alpha = 1$.

C. A is
$$\alpha = 1$$
, B is $\alpha = 0.01$, C is $\alpha = 0.1$.

D. A is
$$\alpha = 1$$
, B is $\alpha = 0.1$, C is $\alpha = 0.01$.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$,0.1, \qquad ,1,\ldots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Area: X = frontage * depth

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Land Area

Polynomial regression

 $x_3 = (size)^3$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Suppose you want to predict a house's price as a function of its size. Your model is

$$h_{\theta}(x) = \theta_0 + \theta_1(\text{size}) + \theta_2 \sqrt{(\text{size})}.$$

Suppose size ranges from 1 to 1000 (feet²). You will $A = size, x_2 = 32\sqrt{(size)}$ implement this by fitting a model

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2.$$

Finally, suppose you want to use feature scaling (without mean normalization).

Which of the following choices for x_1 and x_2 should you use? (Note: $\sqrt{1000} \approx 32$.)

A.
$$x_1 = \text{size}, x_2 = 32\sqrt{(\text{size})}$$

B.
$$x_1 = 32(\text{size}), x_2 = \sqrt{(\text{size})}$$

C.
$$x_1 = \frac{\text{size}}{1000}, \ x_2 = \frac{\sqrt{\text{(size)}}}{32}$$

D.
$$x_1 = \frac{\text{size}}{32}, \ x_2 = \sqrt{\text{(size)}}.$$

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D
$$(\theta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$set: \frac{\partial}{\partial \theta_j} J(\theta_j) = 0$$

$$solve \ for \ \theta_j$$

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

Examples: m = 5.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
1	3000	4	1	38	540

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{bmatrix}$$

$$\Theta = (X^T X)^{-1} X^T y$$

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; n features.

$$x^{(i)} = egin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$X = egin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \cdots \\ -(x^{(m)})^T - \end{bmatrix}$$
 design matrix

E.g. If $x^{(i)} = \begin{bmatrix} 1 \\ r^{(i)} \end{bmatrix}$

Suppose you have the training in the table below:

age (x_1)	height in cm (x_2)	weight in kg (y)
4	89	16
9	124	28
5	103	20

You would like to predict a child's weight as a function of his age and height with the model

weight =
$$\theta_0 + \theta_1$$
age + θ_2 height.

What are X and y?

A.
$$X = \begin{bmatrix} 4 & 89 \\ 9 & 124 \\ 5 & 103 \end{bmatrix}, y = \begin{bmatrix} 16 \\ 28 \\ 20 \end{bmatrix}$$

B.
$$\bigcirc X = \begin{bmatrix} 1 & 4 & 89 \\ 1 & 9 & 124 \\ 1 & 5 & 103 \end{bmatrix}, y = \begin{bmatrix} 1 & 16 \\ 1 & 28 \\ 1 & 20 \end{bmatrix}$$

C.
$$X = \begin{bmatrix} 4 & 89 & 1 \\ 9 & 124 & 1 \\ 5 & 103 & 1 \end{bmatrix}, y = \begin{bmatrix} 16 \\ 28 \\ 20 \end{bmatrix}$$

D.
$$\bigcirc$$
 $X = \begin{bmatrix} 1 & 4 & 89 \\ 1 & 9 & 124 \\ 1 & 5 & 103 \end{bmatrix}, y = \begin{bmatrix} 16 \\ 28 \\ 20 \end{bmatrix}$

$$\theta = (X^TX)^{-1}X^Ty$$

$$(X^TX)^{-1} \text{ is inverse of matrix } X^TX.$$

$$Set A = X^T X$$

$$pinv (x'*x) *x'*y$$

$$(X^T X)^{-1} = A^{-1}$$

$$pinv (x'*x) *x'*y$$

$$(x^T X)^{-1} = A^{-1}$$

$$pinv (x'*x) *x'*y$$

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。

梯度下降与正规方程的比较:

梯度下降	正规方程
需要选择学习率α	不需要
需要多次迭代	一次运算得出
当特征数量n大时也能较好适用	需要计算 $\left(X^TX\right)^{-1}$ 如果特征数量 n 较大则运
	算代价大,因为矩阵逆的计算时间复杂度为
	$O(n^3)$,通常来说当 n 小于10000 时还是可以
	接受的
适用于各种类型的模型	只适用于线性模型,不适合逻辑回归模型等
	其他模型
	And

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.