SINGLE CHOICE QUESTION

1. Two blocks *A* and *B* of equal masses m are suspended with ideal pulley and string arrangement as shown. The acceleration of mass *B* is

- (A) $\frac{g}{3}$
- (B) $\frac{5g}{3}$
- (C) $\frac{2g}{3}$
- (D) $\frac{2g}{5}$

Ans. (

- **Sol.** 2T mg = ma ...(i) mg T = 2ma ...(ii)
 - (i) and (ii) $\Rightarrow a = \frac{g}{5}$
 - $\therefore a_B = \frac{2g}{5}$

In the arrangement shown, end A of light inextensible string is pulled up with constant velocity v. The velocity of block B is

- (A) v/2
- (B) v

(D) 3*v*

Ans. (C)

- **Sol.** From constraint relation $v_B = \frac{v}{3}$
- 3. In the arrangement shown in figure, thread is inextensible and massless. All the pulleys are also massless. If friction in all pulleys are negligible, then:

- (A) Tension in thread is equal to $\frac{mg}{2}$.
- (B) Acceleration of pulley C is equal to $\frac{g}{2}$ (downward).
- (C) Acceleration of pulley A is equal to $\frac{g}{2}$ (upward).
- (D) Acceleration of block of mass m is equal to g (downward).

Ans. (D)

Sol. T = 0, a = g

4. Block *A* moves upward with acceleration $\frac{1}{2}$ m/s². The acceleration of block *B* in downward direction will be

- (A) 2 m/s^2
- (B) 3 m/s^2

(D) 6 m/s^2

Ans. (C)

- **Sol.** From constraint relation, $a_B = 8a_A$
- 5. In the figure, pulleys are smooth and strings are massless, $m_1 = 1$ kg and $m_2 = \frac{1}{3}$ kg. To keep m_3 at rest, mass m_3 should be

- (A) 1 kg
- (B) $\frac{2}{3}$ kg
- (C) $\frac{1}{4}$ kg
- (D) 2 kg

Ans. (A)

- **Sol.** $m_3g = 2T$ \Rightarrow $m_3 = 1 \text{ kg}$
- 6. In the system shown in figure $m_B = 4$ kg and $m_A = 2$ kg. The pulleys are massless and friction is absent everywhere. The acceleration of block A is $(g = 10 \text{ m/s}^2)$

(A) $\frac{10}{3}$ m/s²

(B) $\frac{20}{3}$ m/s²

(C) $\frac{35}{9}$ m/s²

(D) 4 m/s^2

Ans. (C

Sol. If acceleration of block A is a upward along the incline, then acceleration of block B is 2a downward.

$$4g - T = 8a \qquad \dots (i)$$

For block A,

$$2T - 2g\sin 30^\circ = 2a$$

$$\Rightarrow T - \frac{g}{2} = a$$
 ...(ii)

From (i) and (ii)

$$9a = \frac{7g}{2}$$

$$a = \frac{70}{18} \text{ m/s}^2 = \frac{35}{9} \text{ m/s}^2$$

In the arrangement shown, the ends P and Q of an inextensible string move downwards with 7. uniform speed v. The pulleys A and B are fixed. The mass M moves upward with a speed

(A)
$$2 v \cos \theta$$

(B)
$$v \cos \theta$$

(C)
$$\frac{2v}{\cos\theta}$$

(D)
$$\frac{v}{\cos\theta}$$

Ans. **(D)**

> Sol. As P and Q move down, the length ldecreases at the rate of v m/s.

From the figure, $l^2 = b^2 + y^2$ Differentiating with respect to time

$$2l\frac{dl}{dt} = 2y \frac{dy}{dt}$$
; $\frac{dy}{dt} = \frac{l}{y}\frac{dl}{dt} = \frac{1}{\cos\theta}\frac{dl}{dt}$

Velocity of mass $M = \frac{v}{\cos\theta}$

8. Two blocks m_1 and m_2 of equal masses as shown in figure. Assume ideal pulleys and strings and neglect friction at all the surfaces. The acceleration of the two blocks will be

(A)
$$\frac{4g}{13}$$
, $\frac{g}{13}$

(A)
$$\frac{4g}{13}$$
, $\frac{g}{13}$ (B) $\frac{2g}{7}$, $\frac{g}{7}$

(C)
$$\frac{3g}{10}$$
, $\frac{g}{10}$

(D)
$$\frac{g}{4}, \frac{g}{4}$$

(C) Ans.

Sol.
$$a_1 = 3a_2$$

$$T = m_1 a_1$$

$$m_2g - 3T = m_2a_2$$

$$m_1 = m_2 = m$$

Solving above equation we get,

$$a_1 = \frac{3g}{10}$$
, $a_2 = \frac{g}{10}$

The relation between velocity of two block V_1 and V_2 as shown in the figure is given by 9.

(A)
$$7 V_1 - V_2 = 0$$
 (B) $V_1 + V_2 = 0$

(B)
$$V_1 + V_2 = 0$$

(C)
$$7V_1 + V_2 = 0$$
 (D) $V_1 + 3V_2 = 0$

(D)
$$V_1 + 3 V_2 = 0$$

Ans.

10. Using constraint equations relation between a_1 and a_2 will be

(A)
$$a_1 = 3a_2$$

(B)
$$a_2 = 3a_1$$

(C)
$$a_2 = 6a_1$$

(D)
$$a_2 = 7a_1$$

Ans.

Total length of string is constant. Sol.

$$x_2 = 7x_1$$

$$a_2 = 7a_1$$