Predicting Flight Delays to Improve Airpert Operations

Team 4-1 April 16, 2025

Meet your flight crew — MEDS [team 4-1]

AI-powered precision for predictable departures.

Mohamed Bakr

Erica Landreth

Danielle Yoseloff

Shruti Gupta

"Let the MEDS clear your runway"

Itinerary

- 1. Bottom Line Up Front
- 2. Data Preparation and Exploration
- 3. Feature Engineering
- 4. Model Descriptions
- 5. Results
- 6. Next Steps

Bottom Line Up Front

Problem Statement:

Efficient airport operations require effective resource management

Balancing resources heavily depends on flight schedules

Unanticipated delays lead to inefficiencies:

An **\$8.3 billion** problem*

Objective:

Predict a flight's disruption status** two hours prior to its scheduled departure, using ML classification models

Evaluation:

Train (5 fold blocked time-series cross validation (CV) with 20% overlap) and test F2 score

Results:

Gradient-boosted tree model with engineered features achieves F2 of 0.50 (CV) / 0.52 (test) on 2015-2019 data

Heavy penalty for predicting a delayed flight to be on time: reflects cost of disruptions

$$F_2 = \frac{5}{\frac{4}{Precision} + \frac{1}{Recall}} = \frac{5}{\frac{4TP + 4FN}{TP} + \frac{TP + FP}{TP}}$$

^{*} Cost of delay estimates 2019 (FAA, 2020)

Data Preparation and Exploration

Data Lineage

STATES OF 2015-2021 US Flight Delay Data*

74,177,433 x 109

Deduplication, time zone conversion

> **Airport** Codes

57,421 x 12

Deduplication. time zone conversion

Weather **Stations**

5,004,169 x 12

Join flight records to relevant weather update

NOAA 2015-2021 **Global Weather** Data**

898.983.399 x 128

*DoT Bureau of Transportation Statistics On-time Performance Data

**NOAA Quality Controlled Local Climatological Data

Joined flights and weather data

Weather imputation. filter to 2015-2019 period

42,430,589 x 80 31.746.838 x 80 Team 4-1 Page 6

Cleaned, joined, filtered data

Outcome Variable: Flight Disruption*

*TRUE when flight delayed 15 or more minutes or canceled; FALSE when neither delayed nor canceled

Understanding Delay Drivers

Proportion of total delay minutes by DoT delay categories (2015-2019)

Understanding drivers of historical delays provides key insight to develop effective model features

Feature Engineering

Seasonality Features

- Motivation: Flight delays follow periodic trends over time
- Approach: Train
 airport-specific
 seasonality models on
 historical data
- Key Features: Seasonality components:
 - Daily
 - Weekly
 - Yearly
 - Holidays

Airport-Level Lag Features

- Motivation: Some circumstances cause widespread delays at an airport
- Approach: Track airport-level recent
 (2-4 hours prior) delay statistics
- Key Features:
 - Lagged average delay
 - Lagged disruption proportion

Flight-Level Lag Features

- Motivation: Current flight status depends on status of aircraft's prior flight
- Approach: Capture disruption status of prior flight as feature to classify current flight
- Key Features:
 - Estimated prior flight departure delay calculation
 - Estimated turnaround time calculation
 - Indicators: Departed, delayed, arrived, cancelled

Graph Features

- Motivation: Delays propagate through network of airports
- Approach: Model airport network as graph and extract features via graph algorithms
- Key Features:
 - Page Rank

Features

Feature Importance: Top 10

Model Descriptions

Logistic Regression

Baseline linear model

Multilayer Perceptron

Neural network architecture

Random Forest

Bagged ensemble method

Modeling Architectures Considered

Gradient Boosted Decision Tree

Boosted ensemble method

Results

Training and Evaluation Data Splits

Multilayer Perceptron

Gradient Boosted Decision Tree Random Forest

0.50

Average Train F2

0.52

Test F2

Max depth: 5 # Trees: 100 Run duration:* 93 min on 10 workers 0.49

Average Train F2

0.49

Test F2

Hidden layers: [4,2,2] Run duration:* 12 min on 8 workers 0.46

Average Train F2

0.46

Test F2

Max depth: 5 # Trees: 30 Run duration:* 46 min on 8 workers 0.47 , 0.47 Phase II

0.48

Average Train F2

0.48

Test F2

Run duration:* 63 min on 10 workers

Model Comparison

Baseline Logistic Regression [0.48, 0.51, 0.53, 0.47, 0.51] Train F2 per Fold

> 0.50 Average Train F2

> > 0.52 Test F2

Metrics

1 Hour 23 Minutes

Run Duration

10

Workers

128 GB Driver Size

Execution

10 Max Depth

100

Estimators

Hyperparameters

Our metric **prioritizes** the experience of delayed **flyers** at the cost of **over preparation**.

We can improve this metric by **hyperparameter tuning** and add **more features**.

Impact & Improvement

Best Model

Gradient Boosted Decision Tree

Next Steps

Continue Development

- Explore additional graph-based features
- Optimize downsampling approach
- In-depth feature importance analysis
- Tune hyperparameters and select final model

Launch in Production

- Monetary benefit analysis
- Inconvenience cost analysis of predicting delays that are not delayed
- Consider how to get the features used for the model at time of evaluation
- Training air traffic controllers on interpreting model quality and pitfalls

Thank you for listening

In more detail, your In-Class Presentation should have a logical and scientific flow to it with main sections for each of the following:

- a title slide (with the project name, Group Number, the team member names, and photos).
- an abstract slide
- Make sure it has an outline slide with good descriptive section headings
- ☐ Team names, photos
- Project description
- Some summary visual EDA based on Phase 2 findings
- ☐ Feature engineering and Top features
- Overview of Modeling Pipelines explored
- Results and discussion of results (Accuracy, ROC/AUC, etc.. from this phase and previous phases)
- ☐ Conclusions (best performing model, number of features, top 10 best features, hyper-parameters) and next steps

Rubric