CAS PY 106

Lecture Note 35

1. Stopping potential

a.

b. Direction of the current due to the ejected electrons?

c.

- d. Direction of the current due to the battery?
- e. Direction of the electric field in between the plates? \rightarrow accelerate more

f.

- g. Direction of the current due to the battery?
- h. Direction of the electric field in between the plates? \rightarrow stop!

2. Isotopes

- a. Not all atoms of a given element are the same
- b. For example, hydrogen H has three different isotopes

c.

Isotope notation ${}^A_Z X$

- d.
- e. X = symbol of element (H, He, Li, etc)
- f. Z = atomic number (number of protons)
- g. A = atomic mass number (number of protons + number of neutrons)
- 3. Mass of the particles making up atoms

Particle	Charge	Mass (kg)	Mass (u)	Mass (MeV/c²)
Neutron	0	$1.674929 \times 10^{-27} \text{ kg}$	1.008664	939.57
Proton	+e	$1.672623{ imes}10^{-27}~{ ext{kg}}$	1.007276	938.28
Electron	-e	$9.109390 \times 10^{-31} \text{ kg}$	0.00054858	0.511

- a.
- b. Mass of atoms, protons, neutrons, etc. are typically given not in kg but in "atomic mass units" (symbol u)
- c. $1 \text{ u} = 1/12 \text{ (mass of neutral 12C6 atom)} = 1.66 * 10^-27 \text{ kg}$
- 4. Total mass of one carbon-12 atom (12C6)
 - a. Mass of one carbon-12 atom = 6 neutrons + 6 protons + 6 electrons bound together into one 12C6 atom: 12.0 u
 - b. Total mass of 6 neutrons, 6 protons, and 6 electrons, unbound: 12.0989u

- c. When combining protons + neutrons + electrons, some of the mass is converted into the binding energy: $E = mc^2$
- d. Difference = mass defect = the binding energy
- e. For this example, (12.0989u 12u) * 931.5 MeV = 91.58 MeV
- 5. What holds the nucleus together?
 - a. Electrostatic force pushes the protons away from each other (Coulomb's Law)
 - b. $F = k*q1*q2/r^2 = k*e^2/r^2 = 231 \text{ N}$ where $e = 1.602*10^-19 \text{ C}$ and $r = 10^-15$ m
 - c. Gravitational forces between protons are too small (can be neglected)
 - d. $F = G*mass of proton*mass of proton/r^2 = 1.9*10^-34N$ where $G = 6.67*10^11 N m^2/kg^2$ and mass of proton = 1.67*10^-27 kg
 - e. There is a 3rd force (called nuclear force) that causes an attraction between protons/protons, neutrons/neutrons, as well as protons/neutrons which must balance out the electrostatic force of proton-proton repulsions

6. Ionizing radiation

- a. Visible light is also a form of radiation... but nothing much happens when these photons hit an atom
- b. However: alpha radiation, beta radiation, and gamma radiation can ionize an atom
- c. These types are therefore called ionizing radiation

7. Unstable nuclei

- a. Sometimes there are too many or too few neutrons, and the nucleus can fall apart
- b. This is called radioactive decay

There are 3 main types:

- emission of ${}_{2}^{4}$ He (α -radiation)
- emission of electron (β -radiation)
- emission of photon (γ-radiation)

d.

a.

8. Strength of ionizing radiation

9. Summary of radioactive decay

Туре	Nuclear equation	Representation	Change in mass/atomic numbers
alpha decay	${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y^{-2} + {}^{4}_{2}He^{+2}$		A: decrease by 4 Z: decrease by 2
beta-minus decay	$n \rightarrow p^{+} + e^{-} + \bar{v}_{e}$ $\stackrel{A}{Z}X \rightarrow {}_{Z+1}^{A}Y^{+} + e^{-} + \bar{v}_{e}$	V V	A: unchanged Z: increase by 1
beta-plus decay	$p^+ \rightarrow n + e^+ + \nu_e$ $A X \rightarrow A Y^- + e^+ + \nu_e$	V V	A: unchanged Z: decrease by 1
gamma decay	$\begin{bmatrix} {}^{A}_{Z}X^{*} \rightarrow {}^{A}_{Z}X + \gamma \end{bmatrix}$	V γ Excited nuclear state	A: unchanged Z: unchanged

ล

10. Example

- a. Consider the B+ decay: $23Mg12 \rightarrow 23Na11 + e + v_e$
 - Step 1: find the difference in the mass before and after the decay, called delta m (this mass is the energy released via $E = mc^2$)
 - Step 2: convert the delta mass to energy (E = mc^2) by using the fact that $1u = 931.5 \text{ MeV/}c^2$