Lecture 2

1 INTRODUCTION TO SEMICONDUCTOR

1.1 Electronic configuration of atoms

- Table 1.1 is the periodic table of the elements.
- The construction of electronic configuration in atoms is discussed in Appendix A (advanced topic, not required in exam).
- The electronic configurations of some common elements in semiconductors are given.

Table 1.1 Periodic table of elements

Periodic Table of the Elements ©										© www.elementsdatabase.com				He ²			
Li ³	Be ⁴		hydrogenalkali metalsalkali earth metals				poor metalsnonmetalsnoble gases				В 5	C	N ⁷	0 8	F ⁹	Ne	
Na Na	Mg	-	transi					_	th met	als		Al	Si	P 15	S ¹⁶	CI	Ar
K ¹⁹	Ca 20	SC ²¹	Ti ²²	V ²³	Cr ²⁴	Mn ²⁵	Fe 26	C0	Ni Ni	Cu ²⁹	Zn ³⁰	Ga ³¹	Ge ³²	As	Se ³⁴	Br	Kr 36
Rb	Sr	39 Y	Zr 40	Nb	Mo ⁴²	Tc 43	Ru	Rh	Pd 46	Ag	Cd ⁴⁸	In	Sn 50	Sb	Te ⁵²	53 	Xe
Cs ⁵⁵	Ba	La	Hf	Ta	W 74	Re	76 Os	Ir	Pt 78	Au	Hg ⁸⁰	81 TI	Pb	Bi Bi	84 Po	At	Rn 86
Fr	Ra Ra	Ac Ac	Unq	Unp	Unh	Uns	Uno	Une	Unn								
			Ce ⁵⁸	Pr 59	Nd	Pm	Sm ⁶²	Eu 63	Gd ⁶⁴	Tb ⁶⁵	Dy 66	67 Ho	Er	Tm	Yb ⁷⁰	71 Lu	
			90 Th	91 Pa	U ⁹²	93 N p	94 Pu	95 Am	NAME OF TAXABLE PARTY.	97 Bk	Cf 98	Es 99	100 Fm	101 Md	102 No	103 Lr	

- The understanding and knowledge of electronic configurations of atoms are required to understand, for example:
 - the atomic bonding in semiconductors (discussed in section 1.2);
 - the construction of energy band diagram (discussed in Chapter 3);
 - the behavior of impurity/dopant atoms in semiconductors (discussed in Chapter 4);
 - and many other things...

Electronic configuration of silicon

https://commons.wikimedia.org/wiki/File:Electron_shell_014_Silicon_no_label.svg

Available quantum states in atoms

n	Subshell	No. of states	Max. No. of electrons
1	S	2 (2x1)	2
	S	2 (2x1)	2
2	p	6 (2x3)	6
	S	2 (2x1)	2
	p	6 (2x3)	6
3	d	10 (2x5)	10

How about n = 4?

n	Subshell	No. of states	Max. No. of electrons
	S		
	p		
4			
	d		

EE2003 1-8

Table 1.2 Electronic configuration of some common elements in semiconductors

Element	Symbol	Atomic number	Electronic configuration
Boron	В	5	$1s^2 2s^2 2p^1$
Silicon	Si	14	$1s^2 2s^2 2p^6 3s^2 3p^2$
Phosphorus	Р	15	
Gallium	Ga	31	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$
Germanium	Ge	32	
Arsenic	As	33	

Table 1.2 Electronic configuration of some common elements in semiconductors

Element	Symbol	Atomic number	Electronic configuration
Boron	В	5	$1s^2 2s^2 2p^1$
Silicon	Si	14	$1s^2 2s^2 2p^6 3s^2 3p^2$
Phosphorus	Р	15	$1s^2 2s^2 2p^6 3s^2 3p^3$
Gallium	Ga	31	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$
Germanium	Ge	32	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$
Arsenic	As	33	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$

1.2 Atomic bonding in semiconductor

- A solid can be conductor or dielectric depends on the types of bonds, or interaction, between its atoms.
- Solids are mostly formed by ionic, covalent and metallic bonds.
- Semiconductor materials (e.g. Si, Ge, GaAs....etc.) have covalent bonds.
- Covalent bond:
 - formed by sharing the electrons between atoms so that the atoms achieve a stable electron configuration (i.e. complete subshells)

- Consider Si: 1s² 2s² 2p⁶ 3s² 3p²
 - To have complete subshells each Si atoms needs four more electrons.
 - This is achieved by making bonds with four nearest neighbors of Si atoms, with each Si atom contribute one electron.
 - This is conveniently illustrated in 2-dimensional representation in Fig.1.1.

Fig. 1.1 Illustration of (a) silicon valence electrons (b) covalent bonding in the silicon crystal

- When atoms are brought together, the interaction of valence electrons lead to the formation of an electron energy band (discussed in Chapter 3).
- The electrical properties of a solid are the consequence of the energy band structure:
 - The electrical conduction can only take place when there is empty states in the energy band.
 - Typical energy band diagrams of metals, semiconductors and insulators are shown in Fig. 1.2

Fig. 1.2 Energy band structure of (a) metal, (b) semiconductor and (c) insulator

- In metals, the energy band is partially filled with electrons:
 - The energy of the highest occupied state at 0 K is referred to as the Fermi energy E_F .
 - Very little energy is required to promote electrons to the adjacent empty states.
 - Therefore metals are very good electrical conductors.
 - The minimum energy required for an electron to escape from a metal is called work function ϕ_m (energy from the Fermi level E_F to the vacuum level)

- For **semiconductors** & **insulators**, there are two bands separated by an energy gap or a bandgap E_g .
 - No quantum states in the energy gap ⇒ no electron is allowed there!
- For **insulators**, E_g is typically > 3eV.

$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J} = 3.83 \times 10^{-20} \text{ calories}$$

100 g of French fries → 300 Calories

- For **semiconductors**, E_g is typically tenths of fractions to 2 ~ 3eV.
 - At 0 K, all states in the lower band (valence band) are fully occupied by electrons & the upper band (conduction band) is empty. Hence, no electrical conduction.
 - For electrical conduction, electrons from the valence band have to be promoted to the empty conduction band.
 - Owing to their relatively small E_g , thermal energy at room temperature may excite some electrons from the valence band to the conduction band.

1.3 Main characteristics of a semiconductor

- Conductivity is neither very large nor very small
 - smaller than conductivity of good metals such as copper,
 - but much greater than insulators like glass.
- The conductivity can be varied over orders of magnitude by changes in temperature, optical excitation, electric field, and impurity content.

"Actors" in the conductivity process are:

Electrons

■ An electron is a particle carrying an elementary charge of negative 1.6 ×10⁻¹⁹ Coulomb

Holes

- A hole is a "particle" in semiconductors that are able to produce current. A hole carries an elementary charge of positive 1.6 ×10⁻¹⁹ Coulomb
- A hole is merely absence of an electron where it should be

Two general classifications of semiconductors

- Elemental semiconductors
 - Found in group IV of periodic table (see Table 1.1)
 - For examples, Silicon (most commonly used for ICs) and Germanium (used to make the first transistors and semiconductor diodes)
- Compound semiconductors
 - Special combinations of group III and group V elements
 - Two element, or binary, compounds. For example, gallium arsenide (GaAs) and indium phosphide (InP)
 - Three element, or ternary, compounds. For example aluminium gallium arsenide (AlGaAs)

Some questions to think about...

- (1) Would it be possible to mix Si and Ge to form another type of semiconductor?
- (2) Name one application for Si, Ge and GaAs.

Key takeaways (Lecture #2)

• Electronics configuration:

- Each quantum state is unique, the higher the quantum state, the higher the energy of the electron
- Incomplete subshell makes an atom chemically unstable

Silicon:

- Incomplete 3*p* subshell, need 4 more valence electrons
- Form covalent bond (i.e. sharing of electron pairs) with 4 other Si atoms
- Discrete quantum state → energy band

Conduction in Silicon:

- Valence band and conduction band are separated by a bandgap
- Need empty state and electron/hole in these bands for conduction