Trabajo de investigación

Kashi

Avís legal

Copyright © Nom. Es garanteix permís per copiar, distribuir i modificar aquest document segons els termes de la GNU Free Documentation License, versió 1.3 o qualsevol posterior publicada per la Free Software Foundation. Es disposa d'una còpia d'aquesta llicència a http://www.fsf.org i a l'annex ??.

Agraiments

Índex de continguts

Ag	graiments	i
1	Introducció	1
	1.1 1a seccio	1
	1.1.1 dfsdsfsd	1
2	Objectius	3
3	RecercaPrevia	5
4	Part Pràctica	7
5	Metodologia	11
6	Resultats	13
7	Conclusions	15
Bi	bliografia	17

1. Introducció

Finalment funciona!!! Cita bibliogràfica: [1]

Text centrat

1.1 1a seccio

1.1.1 dfsdsfsd

Text normal iii

- i) 1r
 - a) Text en cursiva i negreta
 - 1) Apartat en negreta
- ii) extra
- iii) 3rs
- iv) 2n

$$\sqrt{\frac{3x^2}{x^2+1}}$$

$$\sqrt{4x^3-5-\frac{3x^2}{x^2+1}}=2$$

1a columuna	2a collllllllllllumna			
1a columuna	2a collllllllllllumna	ptatat	cucucdrillllllll	5

1. INTRODUCCIÓ

2. Objectius

2. OBJECTIUS Institut Sants

3. RecercaPrevia

4. Part Pràctica

Primer experiment

Vaig començar a organitzar-me i a buscar el material que hauria d'utilitzar per poder fer la part pràctica. La meva idea era poder llegir una mica i completar un dels meus objectius de l'estiu. No llegia gaire; era per això que, si llegir per informar-me m'ajudava, ho feia encantat. Amb l'ajuda del meu tutor, Fernando, vaig trobar unes tires a Amazon que m'ajudarien a mesurar químicament l'aigua; amb l'ajuda d'aquestes podré mesurar 16 coses diferents en una sola tira. Aquestes tires costaven 19,99 euros. També disposava d'un mesurador de pH, que em va proporcionar l'institut; aquell era el material més fiable que tenia, ja que em donava una quantitat exacta, i no un valor aproximat.

Aquell dia no vaig fer gaire cosa perquè volia organitzar-me més i no pas començar a fer les coses sense gaire idea del que estava fent. Vaig decidir esperar que els d'Amazon em portessin les tires. Vaig trobar molta informació sobre un llibre que es deia Aigua: composició química i pràctica analítica. Vaig decidir començar-lo a llegir aviat.

A la mínima que em va arribar el material per poder fer els experiments, vaig començar a fer-los. La primera prova consistia a agafar aigua de l'aixeta de casa meva. Vaig agafar una ampolla buida i la vaig omplir d'aigua de la meva aixeta. El següent pas era saber com funcionaven les tires que em vaig comprar per Amazon. La meva gran avantatge era que no només tenia aquelles tires, sinó que també disposava d'unes tires que em van donar a l'institut. Gràcies a totes les tires, el total dels compostos que podré mesurar va augmentar de 16 a 21. Però el problema era que la mesura del pH es repetia en les dues tires. Per això, vaig decidir que calcularé el pH de les tres maneres: amb les tires d'Amazon, amb les tires de l'institut i amb el mesurador de pH.

Gràcies a les instruccions de l'Àlex Tuca, vaig saber com utilitzar el mesurador de pH.

Segons les seves instruccions, després de mesurar el pH d'una substància, hauria de ficar el mesurador de pH en aigua destil·lada. El problema era que no en tenia, així que ràpidament vaig sortir a comprar aigua destil·lada.

En tenir tots els materials, vaig començar a fer l'experiment.

Tot el meu experiment, incloent-hi els passos i resultats, els apuntaria en una llibreta que em vaig comprar per a l'ocasió.

Vaig haver d'investigar sobre com utilitzar les tires, perquè no sabia com utilitzarles correctament. Després d'alguns vídeos de YouTube i algunes webs, vaig aprendre la
forma correcta. La forma correcta és: afegir la tira durant 1 segon a l'aigua i retirar-la.
En el següent pas hi havia un inconvenient. La majoria de gent deixava assecar la
tira al sol i l'altra part de la gent no ho feia. No em vaig poder decidir quina era la
forma correcta, per tant vaig optar per fer les dues maneres per veure així quin grau
de diferència hi ha entre els dos mètodes.

La veritable raó per la qual vaig escollir els dos mètodes és perquè en el paquet de les tires que em vaig comprar posava que no haurien de tenir contacte amb la llum del sol. Això ho vaig haver de traduir al castellà, perquè l'idioma original del paquet era l'anglès, i no és un dels meus punts forts. Però, encara que en el paquet posava que no s'hauria de posar a la llum solar, dins del paquet, a les instruccions, posava que sí que s'hauria de deixar assecar amb llum solar. Aquesta gran contradicció i una ment plena de dubtes em van portar a fer l'experiment amb els dos mètodes. Però a les tires que em va proporcionar l'institut, posava clarament que s'havien de deixar assecar a la llum solar. Per tant, només vaig implementar els dos mètodes amb les tires d'Amazon.

Després de deixar assecar la tira 60 segons perquè obtingui els seus colors corresponents, podríem obtenir les dades de l'aigua. Depenent del color, podríem saber quin nivell té. El segon problema era que els colors no sempre eren tan clars: algunes vegades hi havia un mix de color, o simplement no es podia apreciar perfectament. Per tant, el valor de les tires és aproximat; no és un valor al 100

Ara si que si podia començar amb l'experiment, tenia tot preparat

5. Metodologia

Per aquest treball he utilitzat el sistema operatiu xubuntu[2].

El **ubuntu** és un sistema operatiu basat en *Linux*, una de les moltes avantatges d'aquest sistema operatiu es el fet de poder treballar a temps real amb més d'una persona.

Avantatges	Desaventatges
Multisistema	El rendiment l'ordinador es inferior
Portabilitat	No aprofita tot el hardware
Fer canvis sense por	Hauràs de aprendre desde 0

Table 5.1: Avantatges i Desavantatges

$$E = mc^2 (5.1)$$

Dada una función

$$f(x) = \sin(\sqrt{\frac{90}{x^3 - 1}})^4 \tag{5.2}$$

deriva-la i traba el màxim o minim relatiu

6. Resultats

6. RESULTATS Institut Sants

7. Conclusions

El treball ha quedat molt bè.

Bibliografia

- [1] TP: Tutorials Point. Java tutorial, simply easy learning. http://tutorialspoint.com/. [Online; consultada el 23/04/2013].
- [2] Xubuntu. Pàgina web del sistema operatiu Xubuntu. https://xubuntu.org/. [Online; consultada el 30/06/2025].