3.012 Fund of Mat Sci: Structure – Lecture 14 POINT GROUPS AND BRAVAIS LATTICES

Photo courtesy of Eric Gjerde

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Homework for Wed Nov 2

• Study: Allen and Thomas from 3.1.1 to 3.1.4 and 3.2.1, 3.2.4, and 3.2.5

Last time:

- 1. The quantization of vibrations: $E = \hbar \omega \left(n + \frac{1}{2} \right)$
- 2. Specific heat and excitations of a Bose-Einstein ensemble

- 3. Symmetry operations (inversion, rotation, mirror...) and elements (points, axes, planes...)
- 4. Group theory

Possible symmetries in a molecule

Table of symmetry elements and their corresponding operations removed for copyright reasons.

See Engel, T., and P. Reid. Physical Chemistry. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 658, table 28.1.

The 4 symmetry operations of H_2O form a group (called C_{2v})

Multiplication Table for Operators of the C_{2V} Group removed for copyright reasons.

- 1. Closure: A B is also in G.
- 2. Associativity: (A☆B) ☆C=A☆ (B☆C)
- 3. Identity: I☆A=A☆I

4. Inverse: $A \Leftrightarrow inv(A) = inv(A) \Leftrightarrow A = I$

See Engel, T., and P. Reid. *Physical Chemistry*. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 666, table 28.3.

Image of the Symmetry elements of the D_{2h} group in ethene removed for copyright reasons.

See Engel, T., and P. Reid. *Physical Chemistry*. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 682, figure 28.10.

Representation of a proper rotation

Diagrams of various rotational axes removed for copyright reasons.

See Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999, pp. 100-101, figures 3.10 and 3.11.

Representation of D_{2h}

Image of the Symmetry elements of the D_{2h} group in ethene removed for copyright reasons.

See Engel, T., and P. Reid. *Physical Chemistry*. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, p. 682, figure 28.10.

Courtesy of Marc De Graef. Used with permission.

Symmetry in three dimensions

• Inversion is only meaningful in 3-dim

Symmetry in three dimensions

• Roto-inversion (improper rotation)

Diagrams of rotoinversion axes removed for copyright reasons.

See Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999, p. 128, figures 3.34 and 3.35.

Symmetry in three dimensions

• Roto-reflection (improper rotation)

Diagrams of the operation of a threefold rotoreflection axis removed for copyright reasons. See Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999, p. 129, figure 3.36.

Representation of D_{3h}

Image of the symmetry elements of a PCL5 molecule removed for copyright reasons.

See Engel, T., and P. Reid. *Physical Chemistry*. Single volume ed. San Francisco, CA: Benjamin Cummings, 2005, page 658, figure 28.1(b).

Courtesy of Marc De Graef. Used with permission.

Translational Symmetry

Diagrams of one-dimensional periodicity removed for copyright reasons.

See Allen, S. M., and E. L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999, p. 92, figure 3.1.

Primitive, multiple, and unit cells

Diagrams of primitive and nonprimitive cells removed for copyright reasons. See Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999, p. 94, figures 3.4 and 3.5.

			4 Lattice Types			
	Bravais Lattice	Parameters	Simple (P)	Volume Centered (I)	Base Centered (C)	Face Centered (F)
	Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$				
	Monoclinic	$a_{1} \neq a_{2} \neq a_{3}$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
asses	Orthorhombic	$a_{1} \neq a_{2} \neq a_{3}$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{0}$				
7 Crystal Classes	Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
1-	Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$				
-	Cubic	$a_1 = a_2 = a_3 \alpha_{12} = \alpha_{23} = \alpha_{31} = 90^0$				
	Hexagonal	$a_{1} = a_{2} \neq a_{3}$ $\alpha_{12} = 120^{0}$ $\alpha_{23} = \alpha_{31} = 90^{0}$	a a a a a a a a a a a a a a a a a a a			

Mirror and glide planes

Figures of reflectional symmetry and symmetrical pattern generation removed for copyright reasons. See Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999, pp. 98-99, figures 3.7 and 3.8.

Screw axes

Diagram of rotation axis and parallel translation removed for copyright reasons. See page 130, Figure 3.38 in Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999.

$$n\vec{\tau} = m\vec{T}$$

Diagram of object repetitions by operation of 4₁, 4₂, and 4₃ screw axes. Removed for copyright reasons. See page 133, Figure 3.39 in Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999.

Combining rotations and translations

$$mT = T - 2(T\cos\alpha)$$

32 Crystallographic Point Groups

Triclinic Monoclinic Orthorhombic	$C_1 \\ C_i \\ C_2 \\ C_s \\ C_{2h} \\ D_2 \\ C_{2v} \\ D_{2h}$	1 T 2 m 2/m 222 mm2	1 2 2 2 2 4 4 4	1 2/m mmm
	$C_{i} \\ C_{2} \\ C_{s} \\ C_{2h} \\ D_{2} \\ C_{2v} \\ D_{2h}$	2 m 2/m 222 mm2	2 2 4 4	
	C_s C_{2h} D_2 C_{2v} D_{2h}	m 2/m 222 mm2	2 4 4	
	C_s C_{2h} D_2 C_{2v} D_{2h}	2/m 222 mm2	4	
Orthorhombic	C_{2h} D_2 C_{2v} D_{2h}	222 mm2	4	mmm
Orthorhombic	D ₂ C _{2v} D _{2h}	mm2		mmm
	C _{2v}	mm2	4	
	D _{2h}			
		mmm	8	
Tetragonal	('	4	4	4/m
	C ₄ S ₄	$\frac{4}{4}$	4	4/ <i>m</i>
	C _{4h}	4/m	8	
	D_4	422	8	4/m mm
	C _{4v}	4 <i>mm</i>	8	
	D _{2d}	$\bar{4}2m$	8	
	$\mathrm{D_{4h}}$	$4/m \ mm$	16	
Trigonal	C ₃	3	3	3
	C _{3i}	3	6	
	D_3	32	6	$\overline{3}m$
	C_{3v}	3 <i>m</i>	6	
	D_{3d}	$\overline{3}m$	12	
Hexagonal	C ₆	6	6	6/ <i>m</i>
	C _{3h}	<u></u> 6	6	
	C _{6h}	6/ <i>m</i>	12	
	D ₆	622 6mm	12 12	6/m mm
	C _{6v} D _{3h}	6mm 5m2	12	
	D _{3h} D _{6h}	6/m mm	24	
Cubic	T T	23	12	m3
Cubic	T _h	$m\overline{3}$	24	
	o"	432	24	$m\overline{3}m$
	T _d O _b	$4\overline{3}m$ $m\overline{3}m$	24 48	

Figure by MIT OCW.