

Shri Shankaracharya Technical Campus

Shri Shankaracharya Group of Institutions (Managed by Shri Gangajali Education Scociety, Bhilai) Junwani, Bhilai-490020 (Chhattisgarh), India Phone: 0788-2291605, 4088888 Fax: 0788-2291606 E-mail: ssgi@ssgi.edu.in

*NIRF ranking 2020 (250-300) band

Class Test-II Session 2020-21

B.Tech 1st Year Semester – I

Subject Name: Engineering Mechanics Subject Code: ME100205

Duration: 03 Hrs Max. Marks: 100 Min. Marks: 35

Course Outcomes (CO):

On successful completion of the course, the student will be able to:

CO 1: Calculate and analyze the forces and their effects on the body.

CO 2: Calculate and analyze the effect of frictional forces on the objects in contact.

CO 3: Design and analyze Trusses.

CO 4: Locate the centroid of any shape & will be capable of finding Moment of Inertia about

Note: All 5 units are compulsory. Part 'a' of each problem is compulsory while any two from part 'b', 'c' and 'd' to be attempted.

Unit/ Prob. No.	Statement of the Problem	Diagram	Marks	со	BL	PI
1 a)	State and explain Polygon Law of Forces.	NA	4	CO1	L2	1.2.1
1 b)	Two smooth spheres each of radius 100 mm and weight 100 N, rest in a horizontal channel having vertical walls, the distance between which is 360 mm. Find the reactions at the points of contacts A, B, C and D	360 mm	8	CO1	L5	1.2.1
1 c)	A rigid prismatic weightless bar AB of length l is supported in a vertical wall with a hinge as shown in (fig.1.c) If a load W is applied at the free end, find the tension in the string and direction of reaction at the hinge in terms of W and Θ	C D V2 W	8	CO1	L5	1.2.2

Shri Shankaracharya Technical Campus

Shri Shankaracharya Group of Institutions (Managed by Shri Gangajali Education Scociety, Bhilai)

Junwani, Bhilai-490020 (Chhattisgarh), India Phone: 0788-2291605, 4088888 Fax: 0788-2291606 E-mail: ssgi@ssgi.edu.in

*NIRF ranking 2020 (250-300) band

Unit/ Prob.	Statement of the Problem	Diagram	Marks	СО	BL	PI
No. 1 d)	A uniform wheel of 60 cm diameter and 1000 N weight rests against a rectangular block 15 cm high lying on a horizontal plane as shown in (fig.1.d.) Find the force P required to be applied along the circumference so that the wheel is just about to roll over the block.	r=30cm C A h = 15cm	8	CO1	L5	1.2.2
2 a)	State Laws of Static Friction	NA	4	CO2	L2	1.2.2
2 b)	Find the minimum force P that could move the block 'B'. Assume coefficient of friction between block A & block B as 0.25 and between Block B and Floor as 1/3. Weight of Block A is 1000 and of Block B is 2000 N.	A B P	8	CO1 CO2	L4	1.2.2
2 c)	A ladder 6 m long has a mass of 18 kg and its center of gravity is 2.4 m from the bottom. The ladder is placed against a vertical wall so that it makes an angle of 60° with the ground. How far up the ladder can a 72-kg man climb before the ladder is on the verge of slipping? The angle of friction at all contact surfaces is 15°.		8	CO1 CO2	L4	1.2.2
2 d)	Determine the minimum weight of block B that will keep it at rest while a force P starts blocks A up the incline surface of B. The weight of A is 100 kN and the angle of friction for all surfaces in contact is 15°.	A 30° B	8	CO1 CO2	L4	1.2.2
3 a)	Write basic assumptions of a perfect truss?		4	СОЗ	L2	1.2.2

				1		
3 b)	Solve the truss by method of joint. (fig. 3.b)	3 m 0 m C 60 kN	8	CO1 CO3	L4	1.2.2
3 c)	Solve the truss by method of joint. (fig. 3.c) (Horizontal force 300 kN, Vertical force 400kN)	300 kN C 3 m A 400 kN	8	CO1 CO3	L4	1.2.2
3 d)	Find the Forces in members BC, CD & AD of the truss.(fig 3.d)	8 kN C L D 600 600 L D	8	CO1 CO3	L4	1.2.2
4 a)	State Parallel Axes theorem of Mon	nent of Inertia.	4	CO4	L2	1.2.1
4 b)	Use the method of composite areas to calculate the centroidal coordinates of the shape shown in fig 4 b	y 5 in. 3 in. 3 in. 4 in. →	8	CO4	L5	1.2.2
4 c)	By integration, calculate the moment of inertia about the <i>y</i> -axis of the area shown in Fig 4 c. (Equation of curve: $y = h(x/b)^2$	y = h(x/b) ² h	8	CO4	L5	1.2.2
4 d)	Find the moment of inertia about centroidal x-axis. Fig 4 d	y	8	CO4	L5	1.2.2

Page 3 of 4

5 a)	State Impulse - Momentum Principle and conservation of Momentum Principle		4	CO5	L2	1.2.1
5 b)	Find the acceleration of the masses and tension of the string. Consider M_1 = 10 kg and M_2 = 5 kg, coefficient of friction between all contact surface is 0.25	y R M ₁	8 M ₂	CO2 CO5	L5	1.2.2
5 c)	A gun of mass 3000 kg fires horizontally a shell of mass 50 kg with a velocity of 300 m/s. What is the velocity with which the gun will recoil? Also determine the uniform force required to stop the gun if its acceleration is 20.8 m/s ² . In how much time will it stop?	NA	8	CO5	L5	1.2.2
5 d)	A ball of mass m is dropped on to a spring of stiffness k from a height h find the maximum deflection δ of the spring. Assume m=5 kg, k=500 N/m, h = 10 cm	**************************************	8	CO5	L5	1.2.2

*BL: Blooms Taxonomy Level (1: Remembering, 2: Understanding, 3: Applying, 4: Analyzing, 5: Evaluating, 6: Creating)

CO: Course outcome, PO: Program outcomes, PI: Performance Indicator code