Reading Group: Episodic Exploration for Deep Deterministic Policies

Florian Richoux

Nantes Machine Learning Meetup 12 juin 2017

Outline

- Contexte, intro et motivation
- 2 Scénarii de micro-gestion
- Algos d'apprentissage par renforcement
- Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Sommaire

- Contexte, intro et motivation
- 2 Scénarii de micro-gestion
- Algos d'apprentissage par renforcement
- Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Ce qu'est ce papier

▶ Le premier papier sur du deep learning avec StarCraft.

Ce qu'est ce papier

- ▶ Le premier papier sur du deep learning avec StarCraft.
- Une proposition de scénarii de micro-gestion.

Ce qu'est ce papier

- Le premier papier sur du deep learning avec StarCraft.
- ▶ Une proposition de scénarii de micro-gestion.
- ▶ Un nouvel algo gradient-free d'apprentissage par renforcement.

Ce qu'est ce papier

- Le premier papier sur du deep learning avec StarCraft.
- Une proposition de scénarii de micro-gestion.
- ▶ Un nouvel algo gradient-free d'apprentissage par renforcement.
- ▶ Beaucoup de sueur (TorchCraft arxiv.org/abs/1611.00625).

Ce qu'est ce papier

- ▶ Le premier papier sur du deep learning avec StarCraft.
- ▶ Une proposition de scénarii de micro-gestion.
- ▶ Un nouvel algo gradient-free d'apprentissage par renforcement.
- ▶ Beaucoup de sueur (TorchCraft arxiv.org/abs/1611.00625).

Ce que n'est pas ce papier

► Un début d'IA jouant à StarCraft basé sur du deep learning (holistique).

Challenges de la micro-gestion dans StarCraft

Challenges de la micro-gestion dans StarCraft

Contrôle de plusieurs agents en même temps

- ► Actions duratives et interdépendantes.
- Évaluation plus chaotique des stratégies.

Challenges de la micro-gestion dans StarCraft

Explorer en tirant au hasard une action casse tout équilibre

- Désorganisation des agents.
- ▶ Défaite assuré dont aucune leçon ne peut être tirée.

Sommaire

- Contexte, intro et motivation
- 2 Scénarii de micro-gestion
- Algos d'apprentissage par renforcement
- 4 Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Scénarii de micro-gestion

5 marines vs 5 (m5v5)

15 wraith vs 17 (w15v17)

15 marines vs 16 (m15v16)

mix 3 zealots + 2 dragoons

Sommaire

- Contexte, intro et motivation
- 2 Scénarii de micro-gestion
- Algos d'apprentissage par renforcement
- 4 Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Le modèle MDP de base

À chaque instant t

- ightharpoonup À l'état s^t , "choisir" l'action a^t .
- lacktriangle Aller à l'état s^{t+1} avec la récompense r^t

Le modèle MDP greedy

$\dot{\mathsf{A}}$ chaque instant t

- Créer autant d'états intermédiaires que d'unités.
- ► Chaque unité tour à tour "choisit" une action.
- ▶ Quand la dernière joue, aller à l'état suivant et recevoir la récompense.

Algorithmes d'apprentissage par renforcement

Q-learning (DQN)

- Off-policy
- ightharpoonup Mise à jour des paramètres θ par descente de gradient :

$$\theta_{t+1} = \theta_t + \eta \left(r^t + \gamma \max_{a \in \mathcal{A}} Q_{\theta_t}(s^{t+1}, a) - Q_{\theta_t}(s^t, a^t) \right) \nabla_{\theta_t} Q_{\theta_t}(s^t, a^t)$$

- ▶ Phase d'entraînement stochastique via ϵ -greedy.
- Phase de test déterministe.

Algorithmes d'apprentissage par renforcement

REINFORCE (PG)

- On-policy
- lacktriangle Apprentissage sur les traces $(s^t, a^t, s^{t+1}, r^{t+1})_{t=1,\dots,T-1}$ générées
- \blacktriangleright Mise à jour des paramètres θ par descente de gradient :

$$\theta_{k+1} = \theta_k + \eta \sum_{t=1}^{T} R^t \nabla_{\theta_k} [log \ \pi_{\theta_k}(a^t \mid s^t)]$$

Gibbs policy :

$$\pi_{\theta}(a \mid s) = \frac{exp(\phi_{\theta}(a, s) / \tau)}{\sum_{b \in \mathcal{A}(s)} exp(\phi_{\theta}(b, s) / \tau)}$$

• ϕ_{θ} est le réseau de neurones de paramètres θ .

De l'apprentissage par renforcement sans gradient?

Gradient-free en mode brutasse

- ► Soit une politique déterministe.
- ▶ Soit $R(\theta)$ sa récompense cumulative.
- ▶ Optimisation stochastique gradient-free :

$$\theta_{k+1} = \theta_k + \eta_k R(\theta_k + \delta u_k) u_k$$

avec u_k un vecteur random sur la sphère unité.

L'intuition derrière une optimisation gradient-free

L'idée

- ► Sans aléatoire, pas d'exploration avec une politique déterministe.
- ▶ On ajoute donc du bruit δu_k dans les paramètres θ .

L'intuition derrière une optimisation gradient-free

L'idée

- ► Sans aléatoire, pas d'exploration avec une politique déterministe.
- ▶ On ajoute donc du bruit δu_k dans les paramètres θ .

Passage d'un problème d'exploration à un autre

Espace d'action ⇒ Espace de politique

L'intuition derrière une optimisation gradient-free

L'idée

- ▶ Sans aléatoire, pas d'exploration avec une politique déterministe.
- ▶ On ajoute donc du bruit δu_k dans les paramètres θ .

Passage d'un problème d'exploration à un autre

Espace d'action \Rightarrow Espace de politique

Problème

- ▶ Dans un deep NN, il y a trop de paramètres θ : ce n'est pas gérable!
- ▶ Donc on ne fait ça que pour la dernière couche du NN.

Sommaire

- Contexte, intro et motivation
- Scénarii de micro-gestion
- 3 Algos d'apprentissage par renforcement
- Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Le modèle

Les inputs

- Matrice où chaque ligne représente une unité.
- ▶ 17 features par unité : camp, type, HP, ... + 9 distances

Le modèle

Sommaire

- Contexte, intro et motivation
- Scénarii de micro-gestion
- Algos d'apprentissage par renforcement
- 4 Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Backprop et zero-order gradient

Paramètres (θ, w)

Deux types de paramètres :

- \triangleright θ pour le NN (50k),
- w pour la dernière couche (100).

Zero-order backprop (ZO)

- $\blacktriangleright \ \, \mathsf{Zero\text{-}order} : w_{k+1} = w_k + \frac{R}{t} u_k$
- $\blacktriangleright \ \, \mathsf{Backprop} : \theta_{k+1} = \theta_k + backprop_{\phi_{\theta_k}}\left(\frac{R}{t} u_k \odot sign \ \frac{w}{\phi_{\theta_k}(s^t, a^t)} \right)$

Intuitivement

Sommaire

- Contexte, intro et motivation
- 2 Scénarii de micro-gestion
- 3 Algos d'apprentissage par renforcement
- 4 Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Figure 1: Example of the training uncertainty (one standard deviation) on 5 different initialization for DQN (left) and zero-order (right) on the m5v5 scenario.

Table 1: Test win rates over 1000 battles for the training scenarios, for all methods and for heuristics baselines. The best result for a given map is in bold.

	heuristics				RL			
map	rand_nc	noop	с	wc	nok_nc	DQN	PG	ZO
dragoons_zealots	.14	.49	.67	.83	.50	.61	.69	.90
m5v5	.49	.84	.94	.96	.83	.99	.92	1.
m15v16	.00	.81	.81	.10	.68	.13	.19	.79
w15v17	.19	.10	.20	.02	.12	.16	.14	.49

train map	test map	best heuristic	DQN	PG	ZO
m15v16	m5v5	.96 (wc/c)	.96	.79	.80
	m15v15	.97 (c)	.27	.16	.80
	m18v18	.98 (c/noop)	.18	.25	.82
	m18v20	.63 (noop)	.00	.01	.17
w15v17	w5v5	.78 (c)	.70	.70	.74
	w15v13	1. $(rand_nc/c)$	1.	.99	1.
	w15v15	.95 (c)	.87	.61	.99
	w18v18	.99 (c)	.92	.56	1.
	w18v20	.71 (c)	.31	.24	. 76

Table 4: Win rates over 2000 games against each other.

trained on	dragoons_zealots	m15v16		m5v5	v5 w15v15		w15v17	
tested on	dragoons_zealots	m15v15	m18v18	m5v5	w15v15	w18v18	w15v15	w18v18
PG > DQN	.74	.46	.47	.49	.61	.69	.09	.04
ZO > PG	.76	.82	.79	.44	.82	.77	.98	.99
ZO > DQN	.93	.85	.86	.39	.88	.90	.79	.80

Sommaire

- Contexte, intro et motivation
- Scénarii de micro-gestion
- 3 Algos d'apprentissage par renforcement
- 4 Features et modèle
- 5 Backprop et zero-order gradient
- 6 Résultats expérimentaux
- Perspectives

Perspectives

- ► ConvNet 2D pour apprendre les formes.
- ► Fusion de RL et d'exemples humains.
- ▶ Hierarchical RL pour apprendre des concepts (fuites, ...)