Astronomy & Astrophysics manuscript no. GRB111117A Wednesday 24th May, 2017

The host galaxy of the short GRB111117A at z = 2.211. *

J. Selsing¹, T. Krühler², D. Malesani^{1,3}, P. D'Avanzo⁴, J. Palmerio⁵, S. D. Vergani⁶, J. Japelj⁶, B. Milang-Jensen¹, D. Watson¹, P. Jakobsson⁷, Z. Cano⁸, J. P. U. Fynbo¹, A. Gomboc⁹, K. E. Heintz^{7,1}, M. Spare^{1,10}, and XSGRB collaboration

- ¹ Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen Januare Maries Vej 30, 2100 København Ø. Denmark
- ² Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrage, 85748 Garching, Germany
- ³ DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Danmark
- ⁴ INAF Osservatorio Astronomico di Brera, via E. Pianchi 46, I-23807, Merate (LC), Italy
- 5 Sorbonne Universités, UPMC Univ. Paris 6 NRS, UMR 7095, Institut d'Astrophysique de Paris 8 bis bd Arago, 75014 Paris,
- 6 GEPI, Observatoire de Paris PSL Research University, CNRS, Univ. Paris Diderot, Sorbaine Paris Cité, 5 Place Jules Janssen. 92195 Meudon, France
- ⁷ Centre for Astrophysics and Cosmology, Science Institute, University of Iceland Junhagi 5, 107 Reykjavík, Iceland
- 8 Institut de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía n. E-18008, Granada, Spain.
- University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia.
- Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrung ausg 35, 69118 Heidelberg, Germany

Received/ accepted

ABSTRACT

Short y-ray bursts (sGRBs) and their hosts are notoriously difficult to localize. We here present soldence of the, to die, highest redshift Short y-ray bursts (SGRBs) and their hosts are notoriously difficult to localize. We here present y dence of the, to die, highes/edshift high-confidence short GRB, located ay: = 2.211. This value supersedes a previously esticated, lower redship value. Spectroscopic observations along with a wealth imaging data allow us to place tight constraints on the nature of the host spray at an unprecedented distance. The rest frame X-ray derived hydrogen column density is high compared to complete sample of SGRBs and seems to follow the evolution with redshift as traced by the hosts of long GRBs (IGRBs). This could indicate that the part of the sGVB population hosted in late-type adaxies, live in similar environments to that of IGRB bits. The host is in the brighter end of the expected host brightness dispitution at z = 2.211, but only 30 per cent of the distribution should be missed duy for fainness affinis redshift. This indicates that two are not missing redshifts for a dominant fraction of the sGRB hosts at this redshift. The redshift of GRB111117A in the could be a second as the second seco is evidence against a lognormal delay-time model for sGRBs through the predicted reschift distribution of sGRBs, which is very sensitive to high-z sGRBs. From the age of the universe at explosion time, an initial progenitor separation of $\frac{1}{10}$ < 3.2R $_{\odot}$ is required for the case of a binary neutron star (NS) system. This put constraints on the progenitor system evolution up to the time of explosion.

Kev words. Gamma-ray burst: individual: GRB 11/117A —

1. Introduction

There is now mounting evidence that most short-duration gamma-ray bursts (GRBs) come from the merger of neutron stars (NSs), either with another NS, or a black hole, due to their apparent association with kilonovae (Barnes & Kasen 29/13, Tanvir et al. 2013, Yang et al. 2015, Jin et al. 2016, Rosswog et al. 2016). The absence of associated supernovae in deep searches (e.g. Hjorth et al. 2005b, Fox et al. 2005, Jorth et al. 2005a) supports this idea and distinguishes the physical origin of sGRBs from their long-duration counterparts, he range of host galaxy type, in some cases apparently about, and typically more masive and on average less actively star-forming than long GRB losts (Fong et al. 2013), as well as their positions within hosts (Fong & Berger 2013), suggest an origin for the progenitors that can be very long-lived, and associated with stellar mass rather than purely star-formation rate (Berger 2014).

This progress on the progenitors of sGRBs has been enabled by localization by the Swift satellite (Gehrels et al. 2009). The bulk of these localizations have associated galaxies at relatively

ow redshifts with a median edshift $z \sim 0.5$ (Berger 2014). Because the regishifts are measured from the hosts, measurements of the red nift distribution of sGRBs is biased towards low redshift due to cosmological dimming. So far, the electromagnetic signal from sGRBs are the only means to accurately localize NS mergers and holds the promise for detection of an associated gravitational wave signal (Ghirlanda et al. 2016). From the burst and following afterglow, modeling the properties and mapping the environments additionally allows insights into the phe-

The total lifetimes of NS binaries is dependent on their initial separations and subsequent inspiral times, and impacts the timing and distribution of the enrichment of the ISM and subsequent stars and planets with heavy r-process elements (van de Voort et al. 2014, Wallner et al. 2015, Ji et al. 2016). Some limits can be calculated based on models of star-formation histories of, and the spatial distribution of sGRBs in, their host galaxies (Berger 2014). The most distant cosmological bursts, however, offer direct, hard limits.

In this Letter we present the spectrum of the host galaxy of the short GRB 111117A, showing it to be at higher redshift than previously estimated. We present the rest frame burst proper-

Article number, page 1 of 6

Summary of Comments on GRB111117A.pdf

©ESO 2017

	Page: 1				
_	Author: andrejagomboc	Subject: Inserted Text	Date: 27/05/17 17:27:16		
	Centre for Astrophysics and Cosmology,				
,	Author: andrejagomboc	Subject: Comment on Text	Date: 27/05/17 17:31:19		
	What exactly does this me	ean? I think it is not clear.			
,	Author: andrejagomboc	Subject: Inserted Text	Date: 27/05/17 17:36:05		
′	5				
,	Author: andrejagomboc	Subject: Cross-Out Date: 27/0	05/17 17:36:21		
/					
	Author: andrejagomboc	Subject: Sticky Note Date: 27/0			
	Suggestion: consider citing	g here a paper by Kopač et	al 2012: http://adsabs.harvard.edu/abs/2012MNRAS.424.2392K		
	Author: andraigeamhag	Cubicate Incorted Tout	Data: 27/05/47 47:25:44		

^{*} Based on observations collected at the European Southern Observatory, Paranal, Chile, Program ID: 088.A-0051 and 091.D-0904.

A&A proofs: manuscript no. GRB111117A

Fig. 1. Imaging of the field with the X-shooter slit overlaid. Only one slit is shown, despite 4 epochs of spectroscopic observations because of the similarity in position angle. The image is \(\frac{1}{2} \) FORS2 R-band image, for which the photometry is shown in Fig. ?? The blue asterisk indicates the GRB position as derived from the Chandra observations in Sakamoto et al. (2013)

ties based on this new distance compared to previous analyse (Margutti et al. 2012, Sakamoto et al. 2013) and revisit the hosproperties derived from the new solution to the SED fit.

Throughout this *Letter* we use the Λ CDM cosmology provided by Planck Collaboration et al. (2016) in which the universe is flat with $H_0=67.7$ km s⁻¹ and $\Omega_m=0.307$ and report all magnitudes in the AB system.

2. Observations and results

2.1. Spectroscopic observations and analysis

Spectroscopic observations were carried out using the crossdispersed echelle spectrograph, VLT/X-shooter (Vernet et al. 2011), in four seperate epochs. The burst was followed up 38 hours after the Burst Alert Telescope (BAT) trigger under ESO programme 088.A-0051 (PI: Fynbo) and again later using a different ESO program 091.D-0904 (PI: Hjorth). X-shooter can cover the wavelength range from 3000 Å to 24800 Å across three spectroscopic arms, simultaneously illuminated through the use of dichroics. The bias-correction, flat-fielding, order tracing, wavelength calibration, rectification, and flux calibration is then carried out using the VLT/X-shooter pipeline version 2.8.4 (Goldoni et al. 2006, Modigliani et al. 2010) and managed by Reflex (Freudling et al. 2013). Because the spectra are curved across each detector, a rectification algorithm is employed which introduces correlations between neighboring pixels. We select a pixel-scale of 0.2/0.2/0.6 Å/pix for the UVB/VIS/NIR arm to minimize the degree of correlation while conserving the maximal resolution. The observations are combined and extracted using scripts described in Selsing et al. 2017 (in prep.) and available online1. The signal-to-noise of the continuum is the nearinfrared arm is too low to use the optimal extraction algorithm (Horne 1986), why an aperture containing the entire object has been chosen for which the flux is summed and the corresponding error is summed in quadrature. An overview of the spectroscopic observations is given in Tab. 1, and the position of the slit on the target is shown in Fig. 1.

We determine a redshift of z=2.211 from from the simultaneous detection of emission lines interpreted as Ly α , [O II],

Article number, page 2 of 6

Fig. 2. 2D-image of the [O III]\lambda5007 emission line. The location of a bright skyline is marked by the blue box The location of the shission line is indicated with the red ellipse. Because the host indicated in nodding-mode, negative images and emission line appear on both sides in the spatial direction.

HB, 10 m 15007, and H α , with H β detected at low sign/ficance 3σ). H α is only visible in the first epoch, due to the K-band blocking filter used for the remainder observations/The nebalar lines exhibit a spatial extent of ~ 1.75 and shows significant velocity structure along the slit. A drop in the continued to the blue of the Ly α line further supports the inferred result.

Using the integrated flux of $H\alpha$, we can inter the SFR (Keynicutt 1998, Moustakas et al. 2006). From the SED-fit, see Sect. 2.2, and the detection of $Ly\alpha$, the host is constrained to ontain very little or no dust which is also configured by the shape of the spectral continuum, which is why see do not apply a dust-correction. Because of the edshift, $l\alpha$ falls on the far end of the NIR-arm where the right sky is very bright and additionally, several bright sky-lines intersect the line, making an accurate estimate of the Horlux difficult. A limit of the SFR is obtained by integrating the part of $l\alpha$ free of contamination and conservative) correcting for the missing fraction by assessing the fraction integrated. Converting to Chabrier (2003) initial mass function using Mada & Dickiyson (2014) we get a limit of SFR $7 M_{\odot} \, yr^{-1}$.

2.2. Imaging observations and SED analysis

We additionally imaged the field of GRB 111117A in multiple bradal-band filters using the VLT equipped with FORS2 (gRlz Alters) and HAWK-I (JHK_s filters), long after the burst has faded. Jiese new data are complemented by a re-analysis of some if the imagery used in Margutti et al. (2012) and Sakamoto et yl. (2013) that are available to us here (GTC gri-band, TNG band, and Gemini z-band). A log of the photometric observations and measured brightnesses is given in Tab. 2.

All data were reduced, analyzed and fitted in a similar manner as we have done previously and described in detail in Krüher et al. (2011) and, more recently, in Schulze et al. (2016). Very briefly, we use our own python and IRAF routines to perform a consistent standard reduction of the available imaging which includes bias/flat-field correction, de-fringing (if necessary), skysubtraction, and stacking of individual images for a given instrument in a given filter. The photometry of the host was tied against magnitudes of field stars from the SDSS and 2MASS catalogs in the case of grizJHK, filters. For our R and I-band photometry

Page: 2

_	TAU	uthor: andrejagomboc	Subject: Highlight Date: 27	05/17 17:39:20		
_		uthor: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 07:52:54		
/		pace)				
,	T Au	uthor: andrejagomboc	Subject: Inserted Text	Date: 27/05/17 17:48:26		
/	of					
,	<u>∓</u> Aι	uthor: andrejagomboc	Subject: Cross-Out Date: 27	05/17 17:48:37		
/						
_		uthor: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 07:57:15		
		pectral energy distribution	1 (
_	T. Au	uthor: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 07:57:19		
)					
/	₹ Au	uthor: andrejagomboc	Subject: Inserted Text	Date: 27/05/17 17:44:53		
/	—in					
	₹ Au	uthor: andrejagomboc	Subject: Inserted Text	Date: 27/05/17 17:46:16		
		erefore				
	Author: andrejagomboc Subject: Cross-Out Date: 27/05/17 17:47:55					

https://github.com/jselsing/XSGRB_reduction_scripts

Selsing et al.: GRB111117A

we used the color transformations of Lupton². We subsequently convert all magnitudes into the AB system if necessary, and correct for the Galactic foreground of $F_0 = 0.027$ mag.

The multi-color spectral-energy distribution (SED) is then fit by Bruzual & Charlot (2003) stellar population synthesis models based on a Chabrier (2003) initial mass function in LePhare (Ilbert et al. 2006), where the redshift if fixed to the spectroscopic value of z=2.211. The best model is obtained with an unreddened galaxy template, and returns physical parameters of luminosity $(M_B=-22.0\pm0.1$ mag), stellar mass $(\log(M_*/M_\odot)=9.9\pm0.2)$, single stellar population age $(\tau=0.5^{+0.5}_{-0.25}$ Gyr) and star-formation rate $(5FR_{\rm SED}=11^{+2}_{-2}M_\odot {\rm yr}^{-1})$.

Noteworthy is the discrepancy of both our new VLT/FORS2 photometry and the re-analysis of Gemini data to the z-band data of Margutti et al. (2012) and Sakamoto et al. (2013). Both report z-band photometry brighter by 0.8-1.0 mag than what we derive here, whereas bluer data are in excellent agreement with providency by biblished values.

In fact, the large i-z color is mistakenly interpreted as a 4000 Å break driving the solary photometric redshift of both of these earlier works. It is this exactly this overestimate in z-band brightness that led the authors to erronously low estimates in their photo-z for GRB 111117A. Using the revised photometry from Table 2, the photo-z of the galaxy is $z_{\rm phot} = 2.04^{+0.19}_{-0.21}$, consistent with the spectroscopic value at the 1 σ confidence level.

2.3. XRT temporal and spectral analysis

We retrieved the automated data products provided by the *Swift*-XRT GRB repository³ (Evans et al. 2009). The X-ray afterglow light curve can be fit with a single power-law decay with index $\alpha=1.27^{+0.12}_{-0.10}$. We performed a time-integrated spectral analysis using data in photon counting (PC) mode in the widest time epoch where the 0.3-1.5 keV to 1.5-10 keV hardness ratio is constant (namely, from $t-T_0=205$ s to $t-T_0=203.5$ ks, for a total of 29.1 ks of data), in order to prevent spectral changes that can affect the X-ray column density determination. The obtained spectrum is well described by an absorbed power-law model. The best-fit spectral parameters are a photon index of 2.1 ± 0.4 and an intrinsic N_H of $2.4^{+2.4}_{-1.2}\times10^{22}$ cm $^{-2}$ (z = 2.211), assuming the Galactic N_H in the burst direction of 4.1×10^{20} cm $^{-2}$.

3. Reinterpretation of restframe properties

3.1. Classification

As already pointed out (Margutti et al. 2012, Sak moto et al. 2013), GRB111117A very securely belongs the fine short class of GRBs. Because the observed classification indicators, T₉₀ and hardness ratio, do not depend strongly on redshift (Littlejohns et al. 2013), the updated redshift does not change this designation significantly. The intrinsic luminosity goes up, as visible in the light curve in Fig. 3, but it still is sub-luminous compared to majority of long GRBs. Bromberg et al. (2013) investigated the degree to which the long and short population distributions overlap and quantified the certainty in the class membership. GRB111117A has 96^{4,3}₅ percent probability of being short. This is compared to the other two highest-z short candidates,

rig. 3. Kestframe ARI Ignitures of GRB11111/A, compared typic general population of XRT lightcurves of GRBs. The grey shapedgion is a compilation of long GRB lightcurves where the choryesresents density and the light blue is other short GRB lightcurve for which redshifts has been determined. Despite the remarkably ligh redshift, the burst's luminosity is comparable to the bulk it by foot burst population and still subluminous compared to the [GRP population.

GRB060121 (de Ugarte Postigo et al. 2006, Levan et al. 2006) at $1.7 \le z \le 4.5$ (17^{+15}_{-15} per cent) ad GRB090426 (Antonelli et al. 2009, Levesque et al. 2019, Phöne et al. 2011) at z = 2.609 (10^{+15}_{-15} per cent).

3.2. Restframe N

We plot the ecalculated N_H in Fig. 4 where we compare with the distributions of complete sayhples of both long and short GRBs. The long sample is from Arcodia et al. (2016) and the short sample is from D'Avan/o et al. (2014). I7 of the 99 long oursts do not have redshifts and likewise for 5 out of 16 for the short sayhple. Bursts without redshifts have been eycluded for both 200ps. GRB 111117A occupies a unique position in Jig. 4 with a-the highest N_H of all short burst. The short sample, excluding GRB111117A, is located at low redshifts(z < 1) and are found to populate a similar column density environment to long GRBs at similar redshifts (D'Avanzo et al. 2014). The inferred hydrogen column for GRB111117A seems to follow the trend with increasing N_H as a function of redshift as found for the long GRB hosts (Arcodia et al. 2016).

3.3. Host galaxy

From the clear host association, GRB111117A floes not belong to the hostless class of GRBs (Berger 2010) and/because the host exhibits clear emission lines indicative of a population of relatively young stars, as the majority of short GRBs, the host is a late-type galaxy (Fong et al. 2013). The host of GRB111117A is entirely consistent in terms of stellar mass/and stellar age with the general population of short GRB hosts/ (M_*) = $10^{10.1}M_{\odot}$ and

Article number, page 3 of 6

Page: 3

	Author: andrejagomboc	Subject: Cross-Out Date: 29/05/17 07:57:39
	Author: andrejagomboc	Subject: Cross-Out Date: 29/05/17 07:57:43
	Author: andrejagomboc	Subject: Inserted Text Date: 29/05/17 07:58:00
	Author: andrejagomboc	Subject: Cross-Out Date: 29/05/17 08:00:03
	Author: andrejagomboc	Subject: Inserted Text Date: 29/05/17 08:14:10
	T Author: andrejagomboc	Subject: Inserted Text Date: 29/05/17 08:14:33
V.	determined Author: andrejagomboc	Subject: Cross-Out Date: 29/05/17 08:15:02
/	TAuthor: andrejagomboc	Subject: Inserted Text Date: 29/05/17 08:16:07
/	(space) Author: andrejagomboc	Subject: Inserted Text Date: 29/05/17 08:09:39
	to	Subject: Inserted Text Date: 29/05/17 08:19:06
/	(space)	Subject. Inscried Text

https://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php

³ http://www.swift.ac.uk/xrt_products/00507901. (Broken link, Paolo?)

A&A proofs: manuscript no. GRB111117A

Fig. 4. Rest frame, X-ray derived hydrogen column densities for GRB111117A compared to complete samples of both long and short populations. In red is shown the long sample of Arcodia et al. (2016). The detections are replaced with contours for clarity and the limits are shown with arrows. In blue is the sample from D'Avanzo et al. (2014). GRB111117A is an outlier from the short sample, but seems to follow the distribution of long GRBs.

 $\langle \tau_* \rangle = 0.3$ Gyr) Leibler & Berger (2010). The SFR, on the other hand, is ~1 order of magnitude higher than the typical SFR for short GRB hosts galaxies (Berger 2014) and more similar to the SFRs found in the hosts of long GRBs at a corresponding redshift (Krühler et al. 2015). Only two hosts in the sample of short GRBs compiled in Berger (2014) have a more vigorous star for mation, meaning that it is in the very upper end of the star formation distribution, while not a complete outlier. This is likely a places a limit of the initial separation of the two neutronstars of selection effect, because a less star-forming galaxy would exhibit weaker emission lines, thus making the redshift harder to detaimine. Being a late-type host, both the stellar mass and sSFR are entirely consistent with the expected host of sGRBs(Behroozi et al. 2014). That we detect $\Sigma v\alpha$ is consistent with the SEDinferred absence of dust, despite the moderate stellar age and the high X-ray derived hydrogen column density which would suggest the opposite. The centroid of the Ly α emission is found to be redshifted by ~ 220 km s⁻¹ with respect to systemic, which is similar to what is found for long GRB hosts (Milyang-Jensen et al. 2012) where the outflow is attributed to star formation.

4. Implications for redshift distribution of short GRBs

A single sGRB at high redshift does little in terms of constraints on the redshift distribution and therethrough the progenitor channels, but other short hosts could be missed because they are intrinsically fainter and thus this high-z event is only detected due (Margutti et al. 2012, Sakamoto et al. 2013). Part of the reato the brightness of the host. Berger (2014) compiled a sample of sGRB host luminosities, normalized by the characteristic galaxy luminosity at their respective redshift, L_B/L^* . 26 out of 39 hosts (66 per cent) in the sample has redshifts. To convert the SED-inferred M_B of GRB111117A to L_B/L_B^* , we use the characteris-

Article number, page 4 of 6

tic absolute B-pand magnitude of the Schechter function for the blue galaxies (U-V < 0.25) in the redshift window 2.0 \leq from Marchesini et al. (2007) and find $L_B/L_R^* = 1.2$, which is brighter than 70 per cent of the hosts in Berger (2014) with measured L_R/L_R^* . If we assume that we are able to get emission-line redshifts from hosts with R < 25 mags (Kruhler et al. 2012), then we would have missed around 30% (8 out of 26 from the sample of Berger 2014 with measured L_B/L_B^*), if they were at the redshift of GRB111117A. If we assume that the hosts missing redshift in Berger (2014) follow the redshift distribution of the hosts with redshift, this implies that we are not missing a dominant fraction of sGRB redshift at $z \approx 2$, due to host faintness.

The theoretical redshift distributions of sGRBs depends on the type of delay-time function used to model the progenitor system. The redshift of GRB111117A puts constraints on the type of delay-time models suitable for modeling. The likelihood preferred lognormal time delay models investigated in Wanderman & Piran (2015) predicts a rate of sGRBs at z = 2.211. ~ 2 orders of magnitude lower compared to peak rate (z = 0.9). It is stated in Wanderman & Piran (2015) that this preference de pends critically on the absence of non-collapsar sGRB at $z \ge 1$. The redshift of the burst, on the other hand, is close to the pected peak in sGRB rate calculated for the power law model. (Behroozi et al. 2014, Wanderman & Piran 2015).

5. Constraints on the progenitor ser/aratis/s.

At z = 2.211, the age of the universe is 2.97r. If the progenitor systems of sGRBs are the merger wo neutron stars, this sets a hard upper limit to the coal sence timescale for such system. In the absence of other mechanisms, the timescale of the orbital decay of the system is fet by the energy loss due to gray itational waves, which in turn is set by the mass of constituent compact objects and the separation of the two (Post lov & Yun gelson 2014). If we assume that the formation timescale of the first galaxies is short compared to the time since the big hang (Richard et al. 20/1) and if we assume a mass of 1.4 M, for $a_0 < 3.2R_0$, where a_0 is the initial reparation. Because we have the age of the stellar population, by using this as a limit to the orbital ecay time we can put tighter constraints, $a_0 < 2.1R_{\odot 1}$ underlying stellar population of older stars from a previous starformation epoch, which is why we consider a₀ < 3.2R_o as a hard upper limit. The delay time between formation and explosion is well accomodated by the models of Belczynski et al. (2006), although the longest formation channels are excluded. This is especially true given the late type nature of the host (O'Shaughnessy et al. 2008).

Conclusions

We have in this letter provided a revised, spectroscopic redshift for GRB111117A based on emission lines discovered using an improved reduction scheme, setting it at z = 2.211. This value supersedes the previous photometric redshift of $z \sim 1.3$ son for the erroneous redshift estimate of previous authors is attributed to a discrepancy in the measured z-band magnitude.

The rest-frame parameters of the burst and the conditions of the burst environment have been recalculated using the new distance. The X-ray derived hydrogen column density towards

Page: 4

	_			
_		Author: andrejagomboc	Subject: Comment on Text	Date: 29/05/17 08:27:13
		Consider splitting this in 2-	3 sentences.	
_	T	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:27:35
		(space)		
	T	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:32:42
/		a_0		
Ι.	T	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:31:53
/		(space)		
Ι.	Ŧ	Author: andrejagomboc	Subject: Cross-Out Date: 29/0	05/17 08:32:48
V				
,	퓫	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:33:27
-/				
L	Ŧ	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:33:43
1		However,		
١,	T,	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:20:12
/		(space)		
_	Ŧ	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:20:37
		Detection of		
,	T,	Author: andrejagomboc	Subject: Inserted Text	Date: 29/05/17 08:23:33
/		measured		
		Author: andrejagomboc	Subject: Sticky Note Da	ate: 29/05/17 08:25:54
		_		

Selsing et al.: GRB111117A

hosts, but seems to trace the evolution with redshift as found for the hosts of long GRBs.

The SFR of the host is in the upper end of the sGRB host SFR distribution and this plays a role in allowing a redshift to be measured for this host. Despite the moderate age and high N_H , almost no dust is present.

Although a single burst carries little leverage in terms of constraining the redshift distribution of sGRB, the high redshift of GRB111117A needs to be accommodated. A lognormal delay time model predicts a very low volumetric density of bursts at z = 2.211, whereas a power law delay time model peaks near GRB111117A. If more sGRBs are at this redshift, but missed due to faintness of their hosts, a lognormal delay time model will be disfavored. Compared to a sample of short hosts, GRB111117A is more luminous than 70 per cent of the sample with measured luminosities. Of the host sample, for 30 per cent, we would be unable to determine a redshift, should they be at the redshift of GRB111117A. This implies that we are *not* missing a dominant fraction of the sGRBs at $z \sim 2$.

Using the age of the universe at the time of explosion allows us to set constraints on the maximal separation between the engine constituents at the time of formation. We find that the maximal separation for two neutron stars at formation time is $a_0 < 3.2R_{\odot}$, which excludes some of the formation channels with the longest timescales.

We make all the data, code and calculation related to the paper along with the paper itself available at https://github. com/jselsing/GRB111117A.

Acknowledgements. TK acknowledges support through the Sofja Kovalevskaja Award to P. Schady

References

```
Antonelli L. A., et al., 2009, A&A, 507, L45
Arcodia R., Campana S., Salvaterra R., 2016, A&A, 590, A82
Barnes J., Kasen D., 2013, ApJ, 775, 18
Behroozi P. S., Ramirez-Ruiz E., Fryer C. L., 2014, ApJ, 792, 123
Belczynski K., Perna R., Bulik T., Kalogera V., Ivanova N., Lamb D. Q., 2006,
   ApJ, 648, 1110
Berger E., 2010, ApJ, 722, 1946
Berger E., 2014, ARA&A, 52, 43
Bromberg O., Nakar E., Piran T., Sari R., 2013, ApJ, 764, 179
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Cenko S. B., Cucchiara A., 2011, GRB Coord. Network, Circ. Serv. No. 12577,
Chabrier G., 2003, PASP, 115, 763
Cucchiara A., Cenko S. B., 2011, GRB Coord. Network, Circ. Serv. No. 12567,
   #1, 12567
D'Avanzo P., et al., 2014, MNRAS, 442, 2342
Evans P. A., et al., 2009, MNRAS, 397, 1177
Fong W., Berger E., 2013, ApJ, 776, 18
Fong W., et al., 2013, ApJ, 769, 56
Fox D. B., et al., 2005, Nature, 437, 845
Freudling W., Romaniello M., Bramich D. M., Ballester P., Forchi V., García-
   Dabló C. E., Moehler S., Neeser M. J., 2013, A&A, 559, A96
Gehrels N., Ramirez-Ruiz E., Fox D., 2009, ARA&A, 47, 567
Ghirlanda G., et al., 2016, A&A, 594, A84
Goldoni P., Royer F., François P., Horrobin M., Blanc G., Vernet J., Modigliani A., Larsen J., 2006, Ground-based Airborne Instrum. Astron. Ed. by McLean,
Hjorth J., et al., 2005a, Nature, 437, 859
Hjorth J., et al., 2005b, ApJ, 630, L117
Horne K., 1986, PASP, 98, 609
Ilbert O., et al., 2006, A&A, 457, 841
Jakobsson P., Hjorth J., Fynbo J. P. U., Watson D., Pedersen K., Björnsson G.,
   Gorosabel J., 2004, ApJ, 617, L21
Ji A. P., Frebel A., Chiti A., Simon J. D., 2016, Nature, 531, 610
Jin Z.-P., et al., 2016, Nat. Commun., 7, 12898
```

```
GRB111117A is the highest within a complete sample of short Jones A., Noll S., Kausch W., Szyszka C., Kimeswenger S., 2013, A&A, 560,
                                                                                Kennicutt R C 1998 ARA&A 36 189
                                                                                Krijhler T., et al., 2011, A&A, 526, A153
                                                                                Krühler T., et al., 2012, ApJ, 758, 46
                                                                                Krühler T., et al., 2015, A&A, 581, A125
                                                                                Leibler C. N., Berger E., 2010, ApJ, 725, 1202
                                                                                Levan A. J., et al., 2006, ApJ, 648, L9
Levesque E. M., et al., 2010, MNRAS, 401, 963
                                                                                Littlejohns O. M., Tanvir N. R., Willingale R., Evans P. A., O'Brien P. T., Levan
                                                                                   A. J., 2013, MNRAS, 436, 3640
                                                                                Madau P., Dickinson M., 2014, ARA&A, 52, 415
                                                                                Marchesini D., et al., 2007, ApJ, 656, 42
                                                                                Margutti R., et al., 2012, ApJ, 756, 63
                                                                                Milvang-Jensen B., Fynbo J. P. U., Malesani D., Hjorth J., Jakobsson P., Møller
                                                                                   P., 2012, ApJ, 756, 25
                                                                                Modigliani A., et al., 2010, SPIE Astron, Telesc. + Instrum., 7737, 773728
                                                                                Moustakas J., Kennicutt, Jr. R. C., Tremonti C. A., 2006, ApJ, 642, 775
                                                                                Noll S., Kausch W., Barden M., Jones A. M., Szyszka C., Kimeswenger S.,
                                                                                   Vinther L. 2012, A&A, 543, A92
                                                                               O'Shaughnessy R., Belczynski K., Kalogera V., 2008, ApJ, 675, 566
                                                                                Planck Collaboration et al., 2016, A&A, 594, A13
                                                                                Postnov K. A., Yungelson L. R., 2014, LRR, 17
                                                                                Richard J., Kneib J.-P., Ebeling H., Stark D. P., Egami E., Fiedler A. K., 2011,
                                                                                  Mon. Not. R. Astron. Soc. Lett., 414, L31
                                                                                Rosswog S., Feindt U., Korobkin O., Wu M. R., Sollerman J., Goobar A.,
                                                                                   Martinez-Pinedo G., 2016, eprint arXiv:1611.09822
                                                                                Sakamoto T., et al., 2013, ApJ, 766, 41
                                                                                Schulze S., et al., 2016
                                                                                Tanvir N. R., Levan A. J., Fruchter A. S., Hjorth J., Hounsell R. A., Wiersema
                                                                                  K., Tunnicliffe R. L., 2013, Nature, 500, 547
                                                                                Thöne C. C., et al., 2011, MNRAS, 414, 479
                                                                                Vernet J., et al., 2011, A&A, 536, A105
```

van de Voort F., Quataert E., Hopkins P. F., Kere D., Faucher-Giguere C.-A.,

Wallner A., et al., 2015, Nat. Commun., 6, 5956

Yang B., et al., 2015, Nat. Commun., 6, 7323

2014. MNRAS, 447, 140

de Ugarte Postigo A., et al., 2006, ApJ, 648, L83

Wanderman D., Piran T., 2015, MNRAS, 448, 3026

Article number, page 5 of 6

This page contains no comments

A&A proofs: manuscript no. GRB111117A

Table 1. Overview of the spectroscopic observations. JH in the slit width refers to observations where a K-band blocking filter has been used. The seeing is determined from the width of the spectral trace of a telluric standard star, taken close in time to the host observation. The spectral resolution, R, is measured from unresolved telluric absorption lines in the spectrum of the telluric standard star.

Obs. Date	Exp	Exposure time (s)		Slit width	Airmass	Seeing	R
	UVB	VIS	NIR	(arcsec)		(arcsec)	VIS/NIR
2011-11-19T01:33	2 × 2400	2 × 2400	8 × 600	1.0/1.0/0.9	1.49	0.75	11600/6700
2013-07-15T09:02	2×1200	2×1200	8×300	1.0/1.0/0.9JH	1.53	0.98	9600/8900
2013-08-03T07:37	2×1200	2×1200	8×300	1.0/1.0/0.9JH	1.55	0.85	11400/11300
2013-08-03T08:34	2×1200	2×1200	8×300	1.0/1.0/0.9JH	1.49	0.85	11400/11300

Table 2. Overview of the photometric observations.

Obs. Date	Obs. Date Exptime		Filter	Airmass	Image Quality	Host Brightness ^a
	ks				(arcsec)	(mag _{AB})
2013-08-30T07:43	1.45	VLT/FORS2	g	1.55	0.99	24.08 ± 0.09
2011-11-17T20:07	0.80	GTC/OSIRIS	g	1.15	1.67	24.13 ± 0.09
2011-11-17T20:07	1.20	GTC/OSIRIS	r	1.11	1.50	23.93 ± 0.08
2013-07-17T08:37	1.45	VLT/FORS2	R	1.56	0.74	23.95 ± 0.06
2011-11-28T21:10	3.60	TNG/LRS	R	1.01	1.08	23.96 ± 0.13
2011-11-17T20:07	0.36	GTC/OSIRIS	i	1.08	1.50	23.89 ± 0.23
2013-08-03T09:23	1.35	VLT/FORS2	I	1.54	0.93	24.22 ± 0.15
2011-11-28T06:14	1.80	Gemini/GMOS-N	z	1.01	0.84	24.24 ± 0.47
2013-07-13T09:33	1.08	VLT/FORS2	z	1.49	0.63	23.76 ± 0.21
2013-06-24T09:14	1.98	VLT/HAWK-I	J	1.70	0.63	23.13 ± 0.18
2013-06-27T09:21	1.68	VLT/HAWK-I	H	1.63	0.91	22.94 ± 0.29
2013-06-28T09:14	1.92	VLT/HAWK-I	$K_{\rm s}$	1.65	0.76	23.07 ± 0.32

Notes. (a) All magnitudes are given in the AB system and are not corrected for the expected Galactic foreground extinction corresponding to a reddening of $E_{B-V} = 0.027$ mag. (Thomas, Can you help with the reference for the data which are not ours?)

Article number, page 6 of 6

This page contains no comments