Macroeconomía Internacional

Francisco Roldán IMF

November 2024

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Importa la demanda agregada?

- · Rigideces de precio transmiten gasto a cantidades
- · Receta sencilla
 - Rigideces de salario nominal
 - + Tipo de cambio nominal fijo
 - = Rigidez real

Importa la demanda agregada?

- Rigideces de precio transmiten gasto a cantidades
- Receta sencilla

Rigideces de salario nominal

- + Tipo de cambio nominal fijo
- = Rigidez real

Schmitt-Grohé, S. and M. Uribe (2016): "Downward Nominal Wage Rigidity, Currency Pegs, and Involuntary Unemployment," *Journal of Political Economy*, 124, 1466–1514

Curvas de Phillips

Rigidez a la Calvo/Rotemberg

$$\pi_t = \kappa \mathbf{y}_t + \beta \mathbb{E} \left[\pi_{t+1} \right]$$

Versión SOE: Galí y Monacelli (2005, Rev Econ Studies)

- Otra rigidez
 - Dos sectores: transable y no transable
 - · Tipo de cambio fijo: p_T exógeno medido en 'pesos
 - · Salario fijo en 'pesos' = Salario fijo medido en transables

Curvas de Phillips

· Rigidez a la Calvo/Rotemberg

$$\pi_t = \kappa \mathbf{y}_t + \beta \mathbb{E} \left[\pi_{t+1} \right]$$

Versión SOE: Galí y Monacelli (2005, Rev Econ Studies)

- · Otra rigidez:
 - · Dos sectores: transable y no transable
 - · Tipo de cambio fijo: p_T exógeno medido en 'pesos'
 - · Salario fijo en 'pesos' = Salario fijo medido en transables

Un solo bien transable?

Un modelo con salarios fijos

- · Restricción agregada: $w_t \ge f(w_{t-1})$
 - · Schmitt-Grohé y Uribe: $f(x) = \gamma x$, con $\gamma \le 1$
 - · Todavía más fácil: $f(x) = \bar{w}$
- Agentes
 - · Consumen N y T, oferta de trabajo inelástica

$$\mathsf{u}(\mathsf{c}) = \left[\varpi_\mathsf{N} \mathsf{c}_\mathsf{N}^{-\eta} + \varpi_\mathsf{T} \mathsf{c}_\mathsf{T}^{-\eta}\right]^{-\frac{1}{2}}$$

Pueden ahorrar libre de riesgo en 'dólares'

$$p_N c_N + c_T + \frac{a'}{1+r} = p_N y_N + y_T + a'$$

Un modelo con salarios fijos

- · Restricción agregada: $w_t \ge f(w_{t-1})$
 - · Schmitt-Grohé y Uribe: $f(x) = \gamma x$, con $\gamma \le 1$
 - · Todavía más fácil: $f(x) = \bar{w}$
- Agentes
 - · Consumen N y T, oferta de trabajo inelástica

$$u(c) = \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}}$$

· Pueden ahorrar libre de riesgo en 'dólares'

$$p_N c_N + c_T + \frac{a'}{1+r} = p_N y_N + y_T + a$$

Agentes

$$\max \left[\varpi_{\mathsf{N}} c_{\mathsf{N}}^{-\eta} + \varpi_{\mathsf{T}} c_{\mathsf{T}}^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_{\mathsf{N}} c_{\mathsf{N}} + c_{\mathsf{T}} = \mathsf{y}$$
$$-\frac{1}{\eta} \left[\mathsf{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_{i} c_{i}^{-\eta - 1} = \lambda p_{i}$$

Agentes

$$\max \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta} \left[\text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N} \right)^{1 + \eta}$$

Agentes

$$\max \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta} \left[\text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N} \right)^{1 + \eta}$$

Equilibrio: $c_N = y_N$ para no transables;

Agentes

$$\max \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = y$$
$$-\frac{1}{\eta} \left[\text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N} \right)^{1 + \eta}$$

• Equilibrio: $c_N = y_N$ para no transables; y para transables?

Agentes

$$\max \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta} \left[\text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N} \right)^{1 + \eta}$$

• Equilibrio: $c_N = y_N$ para no transables; y para transables?

Agentes

$$\max\left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathsf{y}$$
$$-\frac{1}{\eta}\left[\mathsf{choclo}\right]^{-\frac{1}{\eta}-1}(-\eta)\varpi_i c_i^{-\eta-1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N}\right)^{1+\eta}$$

- Equilibrio: $c_N = y_N$ para no transables; y para transables?
 - Por lo tanto en equilibrio

$$p_N = rac{arpi_N}{arpi_T} \left(rac{c_T}{h_N^lpha}
ight)^{1+\epsilon}$$

· Agentes

$$\max\left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathsf{y}$$
$$-\frac{1}{\eta}\left[\mathsf{choclo}\right]^{-\frac{1}{\eta}-1}(-\eta)\varpi_i c_i^{-\eta-1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N}\right)^{1+\eta}$$

- Equilibrio: $c_N = y_N$ para no transables; y para transables?
 - · Por lo tanto en equilibrio

$$p_N = rac{arpi_N}{arpi_T} \left(rac{c_T}{h_N^{lpha}}
ight)^{1+\eta}$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N y_N - wh_N$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N y_N - w h_N$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N h_N^{\alpha} - wh_N \longrightarrow \alpha p_N h_N^{\alpha-1} = w$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N h_N^{\alpha} - w h_N \longrightarrow \alpha p_N h_N^{\alpha - 1} = w \longrightarrow h_N = \left(\frac{\alpha}{w}\right)^{\frac{1}{1 - \alpha}} p_N^{\frac{1}{1 - \alpha}}$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N h_N^{\alpha} - w h_N \longrightarrow \alpha p_N h_N^{\alpha - 1} = w \longrightarrow h_N = \left(\frac{\alpha}{w}\right)^{\frac{1}{1 - \alpha}} p_N^{\frac{1}{1 - \alpha}}$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\max_{h_N} p_N h_N^{\alpha} - w h_N \longrightarrow \alpha p_N h_N^{\alpha - 1} = w \longrightarrow h_N = \left(\frac{\alpha}{w} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1 + \alpha \eta}} c_T^{1 + \eta}$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$\mathbf{h_N} = \left(rac{lpha}{W}rac{arpi_N}{arpi_T}
ight)^{rac{1}{1+lpha\eta}}c_T^{1+lpha}$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$h_{\mathsf{N}} = \left(rac{lpha}{\mathsf{w}}rac{arpi_{\mathsf{N}}}{arpi_{\mathsf{T}}}
ight)^{rac{1}{1+lpha\eta}}c_{\mathsf{T}}^{1+\eta} = \mathcal{H}(ar{\mathsf{w}}, c_{\mathsf{T}})$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$h_{N} \leq \left(rac{lpha}{ar{w}}rac{arpi_{N}}{arpi_{T}}
ight)^{rac{1}{1+lpha\eta}}c_{\mathsf{T}}^{1+\eta} = \mathcal{H}(ar{w},c_{\mathsf{T}})$$

Firmas

$$y_N = h_N^{\alpha}$$

 $y_T = z \mathbf{1}^{\alpha}$

$$h_{\mathsf{N}} \leq \left(rac{lpha}{ar{ar{\mathsf{w}}}} rac{arpi_{\mathsf{N}}}{arpi_{\mathsf{T}}}
ight)^{rac{1}{1+lpha\eta}} c_{\mathsf{T}}^{1+\eta} = \mathcal{H}(ar{\mathsf{w}}, c_{\mathsf{T}})$$

· Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$
 sujeto a $p_t^{\mathsf{C}} c_t + \frac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$

... donde p_C es el índice de precios de la CES tal que $p_C c = p_N c_N + p_T c_T$

- \cdot Estado de la economía: productividad z_t , riqueza del agente representativo A
 - · Nivel de producto $y_t = y(A_t, z_t)$, precios $p_t^C = p_C(A_t, z_t)$
 - Ahorro del agente representativo??

Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$
 sujeto a $p_t^{\mathsf{C}} c_t + \frac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$

- ... donde p_C es el índice de precios de la CES tal que $p_C c = p_N c_N + p_T c_T$
- \cdot Estado de la economía: productividad z_t , riqueza del agente representativo A_t
 - Nivel de producto $y_t = y(A_t, z_t)$, precios $p_t^c = p_c(A_t, z_t)$
 - Ahorro del agente representativo??

Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$
 sujeto a $p_t^{\mathsf{C}} c_t + \frac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$

- ... donde p_C es el índice de precios de la CES tal que $p_C c = p_N c_N + p_T c_T$
- \cdot Estado de la economía: productividad z_t , riqueza del agente representativo A_t
 - · Nivel de producto $y_t = y(A_t, z_t)$, precios $p_t^{C} = p_{C}(A_t, z_t)$
 - Ahorro del agente representativo??

Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$
 sujeto a $p_t^{\mathsf{C}} c_t + \frac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$

... donde p_C es el índice de precios de la CES tal que $p_C c = p_N c_N + p_T c_T$

- \cdot Estado de la economía: productividad z_t , riqueza del agente representativo A_t
 - · Nivel de producto $y_t = y(A_t, z_t)$, precios $\overline{p_t^C} = p_C(A_t, z_t)$
 - Ahorro del agente representativo??

Agentes

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right]$$

sujeto a $p_C(A,z)c + \frac{a'}{1+r} = p_C(A,z)y(A,z) + a$
 $A' = \Phi(A,z)$

... Dados
$$p_C(A, z)$$
, $\Phi(A, z)$, $y(A, z)$

En equilibrio,
$$a=A$$
, $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{z+\eta}$, $p_C(A,z)y(A,z)=p_N(A,z)y_N+y_T$

$$\mathcal{P}_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{2\eta}{\eta}}$$

Agentes

$$\begin{aligned} v(a,A,z) &= \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right] \\ \text{sujeto a } p_C(A,z)c + \frac{a'}{1+r} &= p_C(A,z)y(A,z) + a \\ A' &= \Phi(A,z) \end{aligned}$$

... Dados
$$p_C(A, z)$$
, $\Phi(A, z)$, $y(A, z)$

En equilibrio,
$$a=A$$
, $p_N(A,z)=\frac{\varpi_N}{\varpi_T}\left(\frac{c_T}{c_N}\right)^{-1}$, $p_C(A,z)y(A,z)=p_N(A,z)y_N+y_T$

$$oldsymbol{\mathcal{D}}_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{2-1}{\eta}}$$

Agentes

$$\begin{aligned} v(a,A,z) &= \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right] \\ \text{sujeto a } p_C(A,z)c + \frac{a'}{1+r} &= p_C(A,z)y(A,z) + a \\ A' &= \Phi(A,z) \end{aligned}$$

... Dados
$$p_C(A, z)$$
, $\Phi(A, z)$, $y(A, z)$

En equilibrio,
$$a=A$$
, $p_N(A,z)=rac{arpi_N}{arpi_T}\Big(rac{c_T}{c_N}\Big)^{z+\gamma}$, $p_C(A,z)y(A,z)=p_N(A,z)y_N+y_T$,

$$oldsymbol{\mathcal{D}}_{\mathsf{C}}(\mathsf{A},\mathsf{z}) = \left[arpi_N^{rac{1}{1+\eta}} p_N^{rac{\eta}{1+\eta}} + arpi_T^{rac{1}{1+\eta}} p_T^{rac{\eta}{1+\eta}}
ight]^{rac{1+\eta}{\eta}}$$

Agentes

$$\begin{aligned} v(a,A,z) &= \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right] \\ \text{sujeto a } p_C(A,z)c + \frac{a'}{1+r} &= p_C(A,z)y(A,z) + a \\ A' &= \Phi(A,z) \end{aligned}$$

... Dados
$$p_C(A, z)$$
, $\Phi(A, z)$, $y(A, z)$

• En equilibrio,
$$a=A$$
, $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$, $p_C(A,z)y(A,z)=p_N(A,z)y_N+y_T$,

$$p_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{1+\eta}{\eta}}$$

Agentes

$$\begin{aligned} v(a,A,z) &= \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right] \\ \text{sujeto a } p_C(A,z)c + \frac{a'}{1+r} &= p_C(A,z)y(A,z) + a \\ A' &= \Phi(A,z) \end{aligned}$$

... Dados
$$p_C(A, z)$$
, $\Phi(A, z)$, $y(A, z)$

• En equilibrio,
$$a=A$$
, $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$, $p_C(A,z)y(A,z)=p_N(A,z)y_N+y_T$,

$$p_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{1+\eta}{\eta}}$$

Equilibrio -- Agregados

- El problema del agente nos da v(a, A, z), c(a, A, z), a'(a, A, z)
- · A partir de ahí, reconstruir
 - Ahorros de la economía

$$\Phi(A,z) = a'(A,A,z)$$

2. Consumo total de transables

$$c_T(A, z) = \varpi_T \left(\frac{1}{p_C(A, z)}\right)^{-\eta} c(A, A, z)$$

3. Demanda de trabajo H(A, z) y por lo tanto el producto $h_N^{\alpha}p_N + zh_N^{\alpha}$

$$egin{cases} h_N &= \left(rac{lpha}{\overline{w}}rac{arpi_N}{w_T}
ight)^{rac{1}{1+lpha\eta}} c_{\mathsf{T}}^{1+\eta} & & \ h_N &= \left(rac{lpha}{\overline{w}}rac{arpi_N}{w_T}
ight)^{rac{1}{1+lpha\eta}} c_{\mathsf{T}}^{1+\eta} \ h_N &< 1 \end{cases}$$

Equilibrio -- Agregados

- El problema del agente nos da v(a, A, z), c(a, A, z), a'(a, A, z)
- · A partir de ahí, reconstruir
 - 1. Ahorros de la economía

$$\Phi(A,z)=a'(A,A,z)$$

2. Consumo total de transables

$$c_T(A, z) = \omega_T \left(\frac{1}{p_C(A, z)}\right)^{-\eta} c(A, A, z)$$

3. Demanda de trabajo H(A,z) y por lo tanto el producto $h_N^{lpha} p_N + z h_T^{lpha}$

$$\begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} & \\ h_N &= 1, w \geq \bar{w} \end{cases} \quad \begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} \\ h_N &< 1 \end{cases}$$

Equilibrio -- Agregados

- El problema del agente nos da v(a, A, z), c(a, A, z), a'(a, A, z)
- · A partir de ahí, reconstruir
 - 1. Ahorros de la economía

$$\Phi(A,z)=a'(A,A,z)$$

2. Consumo total de transables

$$c_T(A,z) = \varpi_T \left(\frac{1}{p_C(A,z)}\right)^{-\eta} c(A,A,z)$$

3. Demanda de trabajo $H(\mathsf{A},\mathsf{z})$ y por lo tanto el producto $h_N^lpha p_N + \mathsf{z} h_N^c$

$$egin{cases} h_N &= \left(rac{lpha}{w}rac{arpi_N}{arpi_T}
ight)^{rac{1}{1+lpha\eta}} c_T^{1+\eta} & & \ h_N &= \left(rac{lpha}{w}rac{arpi_N}{arpi_T}
ight)^{rac{1}{1+lpha\eta}} c_T^{1+\eta} \ h_N &< 1 \end{cases}$$

Equilibrio -- Agregados

- El problema del agente nos da v(a, A, z), c(a, A, z), a'(a, A, z)
- · A partir de ahí, reconstruir
 - 1. Ahorros de la economía

$$\Phi(A,z)=a'(A,A,z)$$

2. Consumo total de transables

$$c_T(A,z) = \varpi_T \left(\frac{1}{p_C(A,z)}\right)^{-\eta} c(A,A,z)$$

3. Demanda de trabajo H(A,z) y por lo tanto el producto $h_N^{\alpha}p_N+zh_T^{\alpha}$

$$\begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} & o \\ h_N &= 1, w \geq \bar{w} \end{cases} \quad \begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} \\ h_N &< 1 \end{cases}$$

Estrategia de solución

Algoritmo

- 1. Inicializar v(a, A, z) y los agregados $p_C(A, z)$, y(A, z), $\Phi(A, z)$
- 2. Iterar la ecuación de Bellman del agente
- 3. Actualizar v(a, A, z) y los controles óptimos c(a, A, z) a'(a, A, z)
- 4. Actualizar $\Phi(A, z)$
- 5. Encontrar nuevos precios, salarios, demandas de trabajo en cada (A, z)
- 6. Actualizar $p_C(A, z), y(A, z)$
- 7. Medir el cambio en v, p_C, y, Φ
- 8. Si la diferencia es mayor que ϵ , volver a 2
- 9. Fin

Equilibrio

Definición

Un equilibrio es un conjunto de funciones de valor y controles $v(\cdot)$, $c(\cdot)$, $a'(\cdot)$, agregados $p_N(\cdot)$, $p_C(\cdot)$

- Dados los agregados y las leyes de movimiento, las funciones de valor y controles satisfacen la ecuación de Bellman del agente
- Los agregados y leyes de movimiento son consistentes con las funciones de control del agente

Planificador vs. Equilibrio

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
 - Puede mejorar la asignación respetando las restricciones reales de la economía?
 o sea respetando la restricción de salarios

$$egin{aligned} \mathsf{v}(A,z) &= \max_{c_{\mathsf{T}},h_N,h_{\mathsf{T}}} \mathsf{u}(\mathsf{F}(h_N),c_{\mathsf{T}}) + eta \mathbb{E}\left[\mathsf{v}(A',z') \mid z
ight] \ & \mathsf{sujeto} \ \mathsf{a} \ c_{\mathsf{T}} + rac{A'}{1+r} &= \mathsf{y}_{\mathsf{T}}(h_{\mathsf{T}}) + A \ & h_N &\leq \mathcal{H}(ar{w},c_{\mathsf{T}}) \end{aligned}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
 - · Puede mejorar la asignación respetando las restricciones reales de la economía?
 - ... o sea respetando la restricción de salarios

$$egin{align} \mathsf{v}(A,z) &= \max\limits_{c_T,h_N,h_T} u(\mathsf{F}(h_N),c_T) + eta \mathbb{E}\left[\mathsf{v}(A',z') \mid z
ight] \ & ext{sujeto a } c_T + rac{A'}{1+r} = \mathsf{y}_T(h_T) + A \ &h_N \leq \mathcal{H}(ar{w},c_T) \end{aligned}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
 - · Puede mejorar la asignación respetando las restricciones reales de la economía?
 - ... o sea respetando la restricción de salarios

$$\begin{aligned} v(A,z) &= \max_{c_T,h_N,h_T} u(F(h_N),c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= y_T(h_T) + A \\ h_N &\leq \mathcal{H}(\bar{w},c_T) \end{aligned}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
 - · Puede mejorar la asignación respetando las restricciones reales de la economía?
 - ... o sea respetando la restricción de salarios

$$\begin{split} v(A,z) &= \max_{c_T,h_N,h_T} u(h_N^\alpha,c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= z h_T^\alpha + A \\ h_N &\leq \mathcal{H}(\bar{w},c_T) \end{split}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
 - · Puede mejorar la asignación respetando las restricciones reales de la economía?
 - ... o sea respetando la restricción de salarios

$$\begin{split} v(A,z) &= \max_{c_T,h_N,h_T} u(h_N^\alpha,c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= z h_T^\alpha + A \\ h_N &\leq \mathcal{H}(\bar{w},c_T) \end{split}$$

Sobre la interpretación de la cuenta corriente

Un twist

· El proceso de z_t es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

Supongamos ahora que

$$\mathbf{Z}_t = \xi_{t-1}$$
 $\log \xi_t = \rho \log \mathbf{Z}_t + \epsilon_t$

- ... con lo que la productividad de mañana ya es sabida hoy
- Qué cambia?

Un twist

· El proceso de z_t es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

· Supongamos ahora que

$$\mathbf{Z}_t = \xi_{t-1}$$
$$\log \xi_t = \rho \log \mathbf{Z}_t + \epsilon_t$$

... con lo que la productividad de mañana ya es sabida hoy

Qué cambia?

Un twist

• El proceso de z_t es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

· Supongamos ahora que

$$\mathbf{Z}_t = \xi_{t-1}$$
$$\log \xi_t = \rho \log \mathbf{Z}_t + \epsilon_t$$

... con lo que la productividad de mañana ya es sabida hoy

· Qué cambia?

Agentes

$$v(a,A,z,\xi) = \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',\xi,\xi') \right]$$

sujeto a $p_C(A,z,\xi)c + \frac{a'}{1+r} = p_C(A,z,\xi)y(A,z,\xi) + a$
 $A' = \Phi(A,z,\xi)$

- · Agregados: todo igual que antes (pero dependiendo de ξ además de z)
- · Estrategia: idéntica con una variable de estado más

Agentes

$$egin{aligned} v(a,A,\mathsf{z},\xi) &= \max_{a'} u(c) + \beta \mathbb{E}\left[v(a',A',\xi,\xi')
ight] \ & ext{sujeto a } p_{\mathcal{C}}(A,\mathsf{z},\xi)c + rac{a'}{1+r} = p_{\mathcal{C}}(A,\mathsf{z},\xi) \mathsf{y}(A,\mathsf{z},\xi) + a \ &A' &= \Phi(A,\mathsf{z},\xi) \end{aligned}$$

- · Agregados: todo igual que antes (pero dependiendo de ξ además de z)
- · Estrategia: idéntica con una variable de estado más