Robot Training - Projeto Ararajuba

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

30 de Junho de 2022

Objetivos

- Utilizar e configurar dos sensores fisícos
 - Câmera
 - LiDAR
 - IMU
- Utilizar e configurar o Jetson Nano
- Construir uma plataforma física para testes

Intel RealSense D415

• Depth resolution: 1280 × 720

Depth frame rate: 90 fps

• Depth (FOV): $65^{\circ} \times 40^{\circ}$

 \bullet RGB resolution: 1920×1080

• RGB (FOV): 69° × 42°

RGB frame rate: 30 fps

Figura 1: Intel RealSense D415

Utilização da câmera com o ROS Noetic

- Pacote: realsense-ros
 - /camera/color/image_raw
 - /camera/depth/image_rect_raw
- Instalação feita na Jetson Nano
 Links: realsense-ros

Utilização da câmera com o ROS Noetic

Teste com openCV

Figura 2: Realsense Image 1

Figura 3: Realsense Image 2

Calibração da realsense - OpenCV

Figura 4: Resultado da calibração utilizando OpenCV

Figura 5: Resultado da calibração utilizando OpenCV

Intel RealSense Self-Calibration

Figura 6: Textura para calibração da realsense e caracterização de qualidade de profundidade

Figura 7: Imagem para Calibração da realsense

Neato XV LiDAR

- Motor DC
- Laser Distance Sensor(LDS)
 - Alcance: 10cm até 5m
 - Ângulo: 360°
 - Resolução: 1°

Figura 8: Neato XV LiDAR

Neato XV LiDAR

Motor DC

Pinout: VCC e GND

Velocidade: 240 a 300 rpm

Laser Distance Sensor(LDS)

Pinout: VCC, RX, TX e GND

Comunicação Serial 8N1 a 3.3V

Taxa de Transmissão: 115200 bps

Figura 9: Neato XV LiDAR

Motor do LiDAR

- Circuito de controle de velocidade
 - Controle PWM com Arduino
 - Controle em malha fechada
 - Controlador P ou PI

Figura 10: Circuito de controle de velocidade para o motor do LiDAR

Leitura do LiDAR

- Formato dos dados
 - Firmware: v2.4 ou V2.6
 - 90 pacotes por revolução
 - 22 Bytes por pacote
 - 4 leituras por pacote
- Comunicação com ROS
 - Driver Neato XV-11 Laser
 - Visualização no RVIZ

Link: xv-11-laser-driver

Figura 11: Visualização dos dados do Neator XV LiDAR no RVIZ

Pacote Rosserial

- Rosserial com Arduino
 - Nó Arduino
 - Limitação de buffer
 - Leituras do LiDAR
 - Teleop

Figura 12: Nó Arduino com teleop no rqt

Sensor Tag - CC2650

- Conexão: Bluetooth low energy (BLE)
- 10 sensores inclusos
- IMU unidades:
 - Accel: G
 - Gyor: °/s
 - Mag: μT

Figura 13: Sensor Tag - CC2650

Cálculo das orientações

 As orientações podem ser obtidas por meio de uma integração numérica da velocidade angular fornecida pelo o giroscópio em relação ao tempo de amostragem.

Cálculo usando o giroscópio

$$\begin{pmatrix} pitch_{n+1} \\ roll_{n+1} \\ yaw_{n+1} \end{pmatrix} = \begin{pmatrix} pitch_n^G + G_{cal}^X \Delta t \\ roll_n^G + G_{cal}^Y \Delta t \\ yaw_n^G + G_{cal}^X \Delta t \end{pmatrix}$$

Link: Orientação Estimada

Figura 14: Cálculo do Yaw usando o giroscópio

Cálculo das orientações

 Por meio das leituras do sensor que condiz ao vetor gravidade, pode ser calculado o ângulo que o mesmo possui em torno do eixo x e y do sensor.

Link: Orientação Estimada

Cálculo das orientações

Cálculo usando o acelerômetro

$$pitch^{A} = \arctan\left(-\frac{A_{cal}^{X}}{\sqrt{(A_{cal}^{Y})^{2} + (A_{cal}^{Z})^{2}}}\right) \frac{180}{\pi}$$
$$roll^{A} = \arctan\left(\frac{-A_{cal}^{Y}}{A_{cal}^{Z}}\right) \frac{180}{\pi}$$

Figura 15: Cálculo do Roll usando o Acelerômetro

Cálculo das orientações

• O magnetômetro pode ser para o cálculo do Yaw as linhas de campo circundam o globo de forma tangencial, desta forma com a rotação paralela ao plano da terra ocorre a variação da intensidade do campo

Cálculo usando o acelerômetro

$$yaw = \arctan\left(\frac{M_{cal}^Y}{M_{cal}^X}\right)$$

Link: Orientação Estimada

Cálculo das orientações

Figura 16: Como o ângulo *Yaw* é gerado por meio da intensidade do vetor campo na direção do pólo norte magnético

Cálculo das orientações

Figura 17: Cálculo do Yaw usando o magnetômetro

Calibração

- Acelerômetro e giroscópio
 - OffSet
- Magnetômetro
 - Hard-Iron: Devido a distribuição e inclinação magnética da região
 - Soft-Iron: Devido a materiais ferro magnéticos próximos ao sensor

Filtragem

Filtro de Kalman

Link: Calibração Hard Iron e Soft Iron

Conf. de Hardware

- Fonte de bancada
- Cartão SD 32 GB
- Adaptador Wifi

Conf. de Software

- Ubuntu 20.04 LTS
- ROS Noetic
- OpenSSH

Figura 18: Jetson Nano

Construção de uma plataforma de Testes

• Protótipo semelhante a plataforma Ararajuba em desenvolvimento

Figura 19: Protótipo

Figura 20: Plataforma Ararajuba

Próximos Passos

- Aplicação de um algoritmo de localização
- Observar o funcionamento interno do pacote robot_ekf_pose e realizar uma comparação dos resultados obtidos por ele e uma variação, o pacote robot_localizaton
- Observar o funcionamento interno da fusão de sensores feita pelo o pacote laser_scan_matcher

Cronograma

- Início da Semana 1: 12 de maio de 2022
- Final da Semana 9: 14 de julho de 2022

	Semanas								
Etapas	1	2	3	4	5	6	7	8	9
1	Х								
2		Х	Х						
3			X	Х	Х				
4					Х	Х			
5						Х	Х		
6							Х	Х	Х

Obrigado!

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

30 de Junho de 2022

breno.meneses@ee.ufcg.edu.br
gabriel.vasconcelos@ee.ufcg.edu.br
marina.batista@ee.ufcg.edu.br

