Automated Plant Watering

Embedded Systems Development - Capstone 2018

The Team

Thishone Wjayakumar Project Manager

Jin Taek Lee Software Developer

Ajo Cherian Thomas Hardware Integration

The Project

 Explore the feasibility of using low priced, off the shelf sensors and an MCU to automatically detect when a plant needs water and provide it to the plant using a small water pump.

Has this ever happened to you?

Orchids

- Need ample water
- But soil needs to dry out before next watering
- Hgh Humidity required

African Videts

- Picky about water
- Can't let stand in water or completely dry
- Mediumintensity light required

Succulents

- Doesn't like "wet feet"
- Can be left dry for few days
- ½ to full day of light required

Existing Solutions - Aero Garden

- Hydroponics Method
- Automatically provides light and nutrients to plant
- No feed back data to user
- Can't be used for all plants

The Requirements

- Detect Soil Moisture of Plant
- Provide water to the plant based on soil moisture requirements
- Allowuser to set moisture requirements
- Monitor Ambient Light, Temperature, Humidity
- Monitor water level in water tank
- Monitor overflow of water from pot
- Feed back data to user
- Use low price / off the shelf parts

The Design

The Components - MCU

• Arduino UND

The Components - Soil Moisture Sensor

• Capacitive Soil Moisture Sensor

The Components - Temperature/Humidity Sensor

• DHI11 Temperature and Relative Humidity Sensor

The Components - Light Sensor

• 12mmPhotoresistor

The Components - Water Pump

- DCMotorWaterPump
- 5VRelay

The Components - Water Level Sensor

• HCSR04-Utrasonic Sensor

The Components - Over flow Sensor

• Resistive Sail Moisture Sensor

The Components-GU

- Python Script-Based GU
- EzScm

• Intelligent Pot Size Learning

Soil Moisture Level Input

Maintain Soil Moisture

Specify Moisture Range

Moisture Max Value: 50 Moisture Min Value: 50 Moisture Max Value: 80 Moisture Min Value: 20

- Supply Water Level Monitoring
- Water Overflow Detection

Overflow Pump Stop(%): 20%

Sonar Distance(Cm: Green): 0

• Ambient Light / Temperature / Humidity Monitoring

Soil Moisture(%): 35%

Humidity(%): 20%

Temperature(°C): 23

Low light: 330

The Conclusion

• Successfully Monitored Soil Moisture & Supply Water to Plant as needed

Future Developments

- Plant Database Eliminate need for the user to setup soil moisture levels
- Provide Recommendation feedback based on Ambient Readings
- Automate Light Exposure based on plant requirements
- IoTfor multiple plants setup

Acknowledgements

- Robert Elder Project Sponsor
- Ralph Stacey Project Mentor
- Darwin Padoocattevilla, Bhavyasree Cherukat, and Selbin Thelakkadan Xavier
 [Soil Moisture Monitoring Project (August 2018)]

THANKOU

Embedded Solutions