$\mathbf{Q1}$. For each of the following pairs of integers, write a in the form

$$a = bq + r$$

where q is the quotient and r is the remainder, with $0 \le r < |b|$.

- i. a = 417, b = 34
- ii. a = 1052, b = 29
- iii. a = -121, b = 29
- iv. a = 2396, b = -11
- v. a = -121, b = -29

Q2. Using "brute force", i.e., by listing factors, find the gcd of

- i. 60 and 84
- ii. 98 and 56

Q3. Using Euclid's algorithm, find the gcd of

- i. 60 and 84
- ii. 98 and 56
- iii. 816 and 612
- iv. 2064499 and 238067

Q4. Calculate the lcm of

- i. 60 and 84
- ii. 98 and 56
- iii. 816 and 612
- iv. 2064499 and 238067

5.

The notation Z_n stands for the set of residues. What does that mean?

If I say that a number b in Z_n is the additive inverse of a number a in the same set, what does that say about $(a + b) \mod n$?

If I say that a number b in Z_n is the multiplicative inverse of a number a in the same set, what does that say about $(a \times b) \mod n$?

6.

Find the multiplicative inverse of each nonzero element in Z_{11} .

- 7. Use the Extended Euclidean Algorithm to find the inverse of 19 mod 81.
- 8. Use the Extended Euclidean Algorithm to find the inverse of 23 mod 121.