Scilab Textbook Companion for Electronics Communication by D. Roddy¹

Created by
Bhaiyya Dnyaneshwar Ghanmode
B.E.
Electronics Engineering
Sinhgad College Of Engg,Vadgaon(B/K),Pune
College Teacher
Pradip Selokar
Cross-Checked by

August 13, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronics Communication

Author: D. Roddy

Publisher: PHI Pvt. Ltd., New Delhi

Edition: 4

Year: 2008

ISBN: 9788120309845

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Passive Circuits	8
2	WAVEFORM SPECTRA	14
4	Noise	15
5	TUNED SMALL SIGNAL AMPLIFIERS MIXERS AND ACTIVE FILTERS	24
6	Oscillators	27
7	RECEIVERS	32
8	AMPLITUDE MODULATION	36
9	SINGLE SIDEBAND MODULATION	39
10	Angle Modulation	41
11	PULSE MODULATION	43
12	DIGITAL COMMUNICATIONS	45
13	TRANSMISSION LINES AND CABLES	50
14	WAVEGUIDES	55
15	RADIO WAVE PROPOGATION	57

16	ANTENNAS	61
17	Telephone Systems	63
18	FACSIMILE AND TELEVISION	64
19	SATELLITE COMMUNICATIONS	69
20	Fiber Optic Communication	72

List of Scilab Codes

Evo	1.2.2	example 2												8
														_
	1.2.3	example 3												8
Exa	1.2.4	example 4												9
Exa	1.2.5	example 5												10
Exa	1.5.1	example 6												10
Exa	1.8.1	example 7												11
Exa	1.10.1	example 8												12
Exa	2.13.1	example 1												14
Exa	4.2.1	example 1												15
Exa	4.2.2	example 2												15
Exa	4.2.3	example 3												16
Exa	4.3.1	example 4												17
Exa	4.11.1	example 5												18
		example 6												19
		example 7												19
		example 8												20
		example 9												20
		example 1												21
		example 1												21
		example 1												22
		example 1												22
	5.4.1	example 1												24
Exa	5.4.2	example 2												25
Exa	6.3.1	example 1												27
	6.3.2	example 2												28
	6.3.3	example 3												28
	6.4.1	example 4												29
		_												_
Exa	0.0.1	example 5												30

Exa	6.6.2	example 6													30
Exa	7.3.1	example 1													32
Exa	7.4.1	example 2	2 .												33
Exa	7.6.1	example 3													33
Exa	7.7.1	example 4													34
Exa	8.3.1	example 1													36
Exa	8.5.1	example 2													36
Exa	8.7.1	example 3	8.												37
Exa	8.11.1	exampple													37
Exa	9.2	example 1													39
Exa	9.6	example 2	2 .												39
Exa	10.12.1	lexample 1													41
Exa	10.13.1	lexample 2	2.												41
		example 1													43
Exa	11.3.2	example 2	2 .												43
Exa	12.4.1	example 1													45
		example 2													45
Exa	12.4.3	example 3													46
		exampple													46
		example 5													47
		lexample 7													47
Exa	12.13.3	Bexample 6													48
Exa	12.13.4	lexample 9													48
		example 1													50
Exa	13.10.1	lexample 2													50
		lexample 3													51
Exa	13.17.1	lexample 4													52
		2example 5													52
		Bexample 6													53
Exa	14.2.1	example 1													55
		example 1													57
Exa	15.2.2	example 2													58
Exa	15.3.1	example 3													58
		example 4													59
Exa	15.4.1	example 5													59
Exa	15.7.1	example 6	.												59
		example 1													61
Exa	16.9.1	example 2													61

Exa 16.19.1example 3	62
Exa 17.1.1 example 1	63
Exa 18.2.1 example 1	64
Exa 18.2.2 example 2	64
Exa 18.3.1 example 3	65
Exa 18.3.2 example 4	66
Exa 18.3.3 example 5	66
Exa 18.7.1 example 6	67
Exa 18.7.2 example 7	67
Exa 19.14.1example 2	69
Exa 19.14.2example 3	69
Exa 19.16.1example 4	70
Exa 19.17.1example 6	70
Exa 20.2.1 example 1	72
Exa 20.2.2 example 2	72
Exa 20.2.3 example 3	73
Exa 20.2.4 example 4	73
Exa 20.2.5 example 5	74
Exa 20.3.1 example 6	74
Exa 20.4.1 example 7	75
Exa 20.4.2 example 13	75
Exa 20.4.3 example 8	76
Exa 20.4.4 example 9	76
Exa 20.4.5 example 10	77
Exa 20.4.6 example 11	77
Exa 20.5.1 example 14	78
Exa 20.8.1 example 12	78

Passive Circuits

Scilab code Exa 1.2.2 example 2

```
1 clc;
2 // page no 5
3 // prob no 1_2_2
4 //T-type attenuator provide 6-dB insertion loss
5 // All resistance are in ohm
6 Ro=50
7 ILdB=6
8 IL=10^-(ILdB/20)
9 // Determination of R
10 R=Ro*(1-IL)/(1+IL)
11 disp('ohm',R,+'The value of resistance R is')
12 // Determination of R3
13 R3=(2*Ro*IL)/(1-(0.5)^2)
14 disp('ohm',R3,+'The value of resistance R3 is')
```

Scilab code Exa 1.2.3 example 3

```
1 clc;
```

```
// page no 7
// prob no 1_2_3
// pi-attenuator with 6 dB insertion loss
// output resistance is Ro=50 ohm
// All resistance are in ohm
Ro=50
ILdB=6
IL=10^-(ILdB/20)
// Determination of RA and RB
RA=Ro*(1+IL)/(1-IL);
disp('ohm',RA,+'The value of resistance RA and RB is ')
// Determination of RC
RC=Ro*(1-(IL)^2)/(2*IL);
disp('ohm',RC,+'The value of resistance RC is')
```

Scilab code Exa 1.2.4 example 4

```
1 clc;
2 // page no 9
3 // \text{ prob no } 1_2_4
4 //As given in fig. 1.2.4 L-attenuator with source
      resistance Rs=75 ohm and load resistance Rl=50
     ohm
5 \text{ Rs} = 75; \text{ Rl} = 50;
6 // Determination of R1
7 R1=(Rs*(Rs-R1))^(1/2);
8 disp('ohm', R1, +'The value of resistance R1 is');
9 // Determination of R3
10 R3 = ((Rs^2) - (R1^2))/R1;
11 disp('ohm', R3, +'The value of resistance R3 is');
12 // Determination of insertion loss
13 IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)^2)
14 ILdB=-20*log10(IL);//convertion of power in decibels
15 disp('dB', ILdB, +'The value of insertion loss is');
```

Scilab code Exa 1.2.5 example 5

```
1 clc;
2 // page no 10
3 // \text{ prob no } 1_2_5
4 //As given in fig. 1.2.4 L-attenuator with source
      resistance Rs=10 ohm and load resistance Rl=50
     ohm
5 Rs=10; R1=50;
6 // Determination of R2
7 R2=(R1*(R1-Rs))^(1/2);
8 disp('ohm', R2, +'The value of resistance R2 is');
9 // Determination of R3
10 R3=((R1^2)-(R2^2))/R2;
11 disp('ohm', R3, +'The value of resistance R3 is');
12 // Determination of insertion loss
13 IL=(R3*(Rs+R1))/((Rs+R3)*(R3+R2+R1)-(R3)^2)
14 ILdB=-20*log10(IL);//convertion of power in decibels
15 disp('dB', ILdB, +'The value of insertion loss is');
```

Scilab code Exa 1.5.1 example 6

```
1 clc;
2 // page no 21
3 // prob no 1_5_1
4 // Series tuned resonant ckt is given which is tuned at 25 MHz with
5 // series resistance 5 ohm self capacitance 7 pF and inductance 1 uH
6 C=7*10^-12;R=5;L=10^-6;f=25*10^6;
7 // Determination of self resonant freq of coil denoted as Fsr
```

```
8 Fsr=1/(2*3.14*(L*C)^0.5);
9 disp('MHz',Fsr/(10^6),+'The value of self resonant freq is');
10 //Determination of Q-factor of coil, excluding self-capacitive effects
11 Q=(2*3.14*f*L)/R;
12 disp(Q,'The value of Q-factor is');
13 //Determination of effective inductance
14 Leff=L/(1-(f/Fsr)^2);
15 disp('uH',Leff*(10^6),+'The value of effective inductance is');
16 //Determination of effective Q-factor
17 Qeff=Q*(1-(f/Fsr)^2);
18 disp(Qeff,'The value of effective Q-factor is');
```

Scilab code Exa 1.8.1 example 7

```
1 clc;
2 // page no 26
3 // \text{ prob no } 1_{-}8_{-}1
4 // High frequency transformer with identical primary
       and secondary circuits
5 Lp=150*10^-6;
6 Ls=150*10^-6;
7 Cp = 470 * 10^{-12};
8 Cs = 470 * 10^{-12};
9 / Lp = Ls = 150 \text{ uH}, Cp = Cs = 470 pF
10 Q=85//Q-factor for each ckt is 85
11 c=0.01//Coeff of coupling is 0.01
12 R1=5000//Load resistance R1=5000 ohm
13 r=75000//Constant current source with internal
       resistance r=75 kohm
14 // Determination of common resonant frequency
15 wo=1/((Lp*Cp)^{(1/2)});
16 // \operatorname{disp} ('\operatorname{Mrad/sec}', \operatorname{wo}/(10^{\circ}6), +'\operatorname{The} \text{ value of common})
```

```
resonant freq is');

17 p=3.77*10^6;

18 Z2=R1/(1+(p*%i*Cs*R1));

19 Z1=r/(1+(p*%i*Cp*r));

20 // At resonance Zs=Zp=Z

21 Z=wo*Ls*(1/Q +%i);

22 Zm=%i*p*c*Lp;

23 // Determination of denominator

24 Dr=((Z+Z1)*(Z+Z2))-(Zm^2)

25 // Hence transfer impedance is given as

26 Zr= (Z1*Z2*Zm)/Dr;

27 disp('ohm', Zr, 'The transfer impedance is');
```

Scilab code Exa 1.10.1 example 8

```
1 clc;
2 // page no 34
3 // prob no 1<sub>-</sub>10<sub>-</sub>1
4 //From the ckt of fig. 1.10.1(a)
5 C1 = 70 * 10^{-12}
6 \quad C2 = 150 * 10^{-12}
7 R1 = 200
8 Q = 150
9 f = 27 * 10^6
10 r = 40000
11 // Determination of common resonant freq
12 \text{ wo} = 2*3.14*f;
13 disp('Mrad/sec',wo/(10<sup>6</sup>),+'The value of common
      resonant freq is');
14 // Determination of Gl
15 Gl = 1/Rl;
16 disp('mSec',Gl*(10^3),+'The value of Gl is');
17 // Checking the approxiamtion in denominator
18 ap=((wo*(C1+C2))/(G1))^2
19 alpha=(C1+C2)/C1;
```

```
20 disp(alpha, 'The value of alpha is ')
21 // Determination of effective load
22 Reff=((alpha)^2)*R1;
23 disp('kohm', Reff/(10^3), +'The value of effective
      load is');
24 //If effective load is much less than internal
      resistance hence tuning capacitance then
25 \text{ Cs} = \text{C1} * \text{C2} / (\text{C1} + \text{C2});
26 \text{ disp}('pF',Cs*(10^12),+'The value of tuning})
      capacitance is');
27 // Determination of Rd
28 \text{ Rd}=Q/(wo*Cs);
29 disp('kohm', Rd/(10^3), +'The value of Rd is');
30 //If Rd is much greater than Reff then -3\mathrm{dB}
      bandwidth is given by
B=1/(2*3.14*C2*alpha*Rl);
32 disp('MHz',B/(10^6),+'The value of -3dB BW is');
```

WAVEFORM SPECTRA

Scilab code Exa 2.13.1 example 1

Noise

Scilab code Exa 4.2.1 example 1

```
1 clc;
2 // page no 120
\frac{3}{2} = \frac{1}{2}
4 // Resistor at room temp T=290 K with BW=1MHz and R
      =50 ohm
5 T=290
6 BW=1*10^6// Noise bandwidth in hertz
7 k=1.38*10^-23 //Boltzman constant in J/K
8 R = 50
9 // Determination of thermal noise power Pn
10 Pn=k*T*BW;
11 disp('W', Pn, +'The value of thernal noise power is');
12 // Determination of RMS noise voltage
13 En = (4*R*k*T*BW)^{(1/2)};
14 disp('uV', En*(10^6), +'The value of RMS noise voltage
       is');
```

Scilab code Exa 4.2.2 example 2

```
1 clc;
2 // page no 122
3 // \text{ prob no } 4_{-}2_{-}2
4 //Two resistor at room temp are given with BW=100KHz
5 R1=20000
6 R2 = 50000
7 k=1.38*10^-23 //Boltzman constant in J/K
8 T = 290
9 BW=100*10^3
10 //Determination of thermal noise voltage for 20Kohm
      resistor
11 \text{En1} = (4 * \text{R1} * \text{k} * \text{T} * \text{BW})^{(1/2)};
12 disp('uV', En1*(10^6), +'a)i) The value of RMS noise
      voltage is');
13 // Determination of thermal noise voltage for 50 kohm
       resistor
14 En2=En1*(R2/R1)^(1/2);
15 disp('uV', En2*(10^6), +'a) ii) The value of RMS noise
      voltage is');
16 // Determination of thermal noise voltage for 20K &
      50k resistor in series
17 Rser=R1+R2// Series combination of R1 & R2
18 En3=En1*(Rser/R1)^{(1/2)};
19 disp('uV', En3*(10^6), +'b) The value of RMS noise
      voltage is');
20 // Determination of thermal noise voltage for 20K &
      50k resistor in parellel
21 Rpar=(R1*R2)/(R1+R2)// parallel combination of R1 &
22 En4=En1*(Rpar/R1)^(1/2);
23 disp('uV',En4*(10^6),+'c)The value of RMS noise
      voltage is');
```

Scilab code Exa 4.2.3 example 3

```
1 clc;
2 // page no 128
3 // \text{ prob no } 4_2_3
4 // Parallel tuned ckt tuned at resonant freq f=120
     MHz
5 f = 120 * 10^6;
6 c=25*10^-12; //capacitance of 12 pF
7 Q=30; //Q-factor of the ckt is 30
8 BW=10*10^3; //cahnnel BW of the receiver is 10 KHz
9 k=1.38*10^-23 //Boltzman constant in J/K
10 T=290; //Room temp
11 //Determination of effective noise voltage Rd
      apearing at i/p at room temp
    Rd=Q/(2*\%pi*f*c);
12
    disp('kohm', Rd/1000, 'The value of Rd is ');
13
    Vn = (4*Rd*k*T*BW)^{(1/2)};
14
15 disp('uV', Vn*(10^6), 'The value of effective noise
      voltage is ');
```

Scilab code Exa 4.3.1 example 4

Scilab code Exa 4.11.1 example 5

```
1 clc;
2 // page no 135
3 // prob no 4_11_1
4 //An amplifier is given
5 Rn=300; // Equivalent noise resistance
6 Ieq=5*10^-6; // Equivalent noise current is 5 uA
7 Rs=150; // Amplifier fed from 150 ohm, 10 uV rms
      sinusoidal source
8 \text{ Vs} = 10 * 10^{-6};
9 Bn=10*10^6; // Noise BW is 10 MHz
10 //Assume the following
11 kT=4*10^-21; //k is Boltzman constant in J/K & T is
     room temp
12 q=1.6*10^-19; // Charge on electron in coulombs
13 // Determination of shot noise current
14 Ina=(2*q*Ieq*Bn)^(1/2);
15 disp('nA', Ina*(10^9)', 'The value of shot noise
      current Ina is ');
16 // Noise voltage developed by this across source
      resistance is
17 V=Ina*Rs;
18 disp('uV', Vs*(10^6)', 'The value of noise voltage
      across Rs is ');
19 // Noise voltage developed across Rn resistance is
20 Vna=(4*Rn*kT*Bn)^(1/2);
21 disp('uV', Vna*(10^6)', 'The value of noise voltage
      across Rn is ');
22 // Determination of thermal noise voltage from source
23 Vns = (4*Rs*kT*Bn)^(1/2);
24 disp('uV', Vns*(10^6)', 'The value of thermal noise
      voltage at Rs is');
25 // Determination of total noise voltage at input
```

```
26 Vn=(((V)^2)+((Vna)^2)+((Vns)^2))^(1/2)
27 disp('uV',Vn*(10^6)', 'The value of total noise
        voltage Vn is ');
28 //Determination of signal to noise ratio in dB
29 SNR=20*(log10(Vs/Vn));
30 disp('dB',SNR, 'The value of signal to noise ratio is
        ');
```

Scilab code Exa 4.12.1 example 6

```
1 clc;
2 // page no 136
3 // prob no 4_12_1
4 //As shown in fig 4.12.1
5 //Three identical links are given with for 1 link is SNR=60 dB
6 SNR1=60;
7 l=3;
8 // Determination of output signal to noise ratio
9 SNR=(SNR1)-10*log10(1);
10 disp('dB',SNR,'The value of output signal to noise ratio is ');
```

Scilab code Exa 4.12.2 example 7

```
8 // Determination of power in watt
9 for i=1:3
10 snr(i)=10^(-SNRdB(i)/10);
11 end;
12 // Determination of overall SNR
13 for i=1:3
14 SNR=snr(i);
15 end;
16 // Determination of total SNR in dB
17 SNRdB=10*(-log10(SNR));
18 disp('dB',SNRdB,'The value of output signal to noise ratio is ');
```

Scilab code Exa 4.13.1 example 8

Scilab code Exa 4.14.1 example 9

```
1 clc;
2 // page no 140
3 // prob no 4_14_1
4 // Noise fig. of an amplifier is 13 dB with BW=1MHz
```

```
5 f=13; // Noise figure of an amplifier
6 Bn=1*10^6;
7 kT=4*10^-21; //k is Boltzman constant in J/K & T is
    room temp
8 F=10^(f/10);
9 // Determination of equivalent amplifier input noise
10 Pna=(F-1)*kT*Bn;
11 disp('pW', Pna*10^12, 'The value of input noise is');
```

Scilab code Exa 4.15.1 example 10

```
1 clc;
2 // page no 141
3 // prob no 4_15_1
4 //mixer with noise fig. 20dB preceded by amplifier
      with noise fig. 9dB is given
5 f1=9; // Noise fig for amplifier
6 f2=20; // Noise fig for mixer
7 \text{ g=15; //power gain}
8 //Converting dB in power ratio
9 F1=10^{(f1/10)};
10 F2=10^{(f2/10)};
11 G=10^{(g/10)};
12 //Determination of overall noise fig. reffered at i/
13 F=F1+(F2-1)/G;
14 //converting in dB
15 FdB=10*log10(F);
16 disp('dB',FdB,'The overall noise fig is');
```

Scilab code Exa 4.17.1 example 11

```
1 clc;
```

```
// page no 143
// prob no 4_17_1
//An attenuator is given with insertion loss of 6 dB
// Noise fig is equivalent to insertion loss
F=6;//Noise fig.=6 dB
// Determination of noise factor
Fn=10^(6/10);
disp(Fn, 'The value of noise factor is ');
```

Scilab code Exa 4.18.1 example 12

```
1 clc;
2 // page no 144
3 // prob no 4_18_1
4 //A receiver with noise fig. 12dB fed by low noise
     amplr with gain 50 dB with noise temp of 90 k
5 f=12;
6 Tm=290;//Room temp value
7 T=90;
8 g=50;
9 //calculating power ratio
10 F=10^{(f/10)};
11 G=10^{(g/10)};
12 // Determination of equivalent noise at room temp
13 Tem = (F-1) * Tm;
14 disp('K', Tem, 'The value of equivalent noise at room
     temp is');
15 // Determination of equivalent noise at 90 k temp
16 Te=T+(Tem/G);
17 disp('K', Te, 'The value of equivalent noise at noise
     temp=90 is');
```

Scilab code Exa 4.19.1 example 13

```
1 clc;
2 // page no 146
3 // prob no 4_19_1
4 //An avalanche diode source is given with excess
      noise ratio is 14 dB
5 \text{ enr} = 14;
6 To=290; //Room temp in K
7 y=9; //Y-factor is 9 dB
8 //converting dB in power ratio
9 ENR=10^(enr/10);
10 Y=10^(y/10);
11 //From def of ENR the hot temp is
12 Th=To*(ENR+1);
13 disp('K', Th, 'The value of hot temp Th is ');
14 // Determination of equivalent noise temp
15 Te=(Th-(Y*To))/(Y-1);
16 disp('K', Te, 'The value of equivalent noise temp Te
     is ');
```

TUNED SMALL SIGNAL AMPLIFIERS MIXERS AND ACTIVE FILTERS

Scilab code Exa 5.4.1 example 1

```
1 //page no 162
2 // problem no 5.4.1
3 //Resonating freq of a tuned ckt of a CE amplifier
     is 5MHz
4 f = 5 * 10^6;
5 c=100*10^-12; //tuning capacitance in F
6 Q=150; // Q-factor of the ckt
7 Rl=5*10^3; //load resistance in ohm
8 Rc=40*10^3; //o/p reistance of transistor
9 Ic=500*10^-6; // transister collector current in A
10 C=0.6*10^-12; //collector to base capacitance in F
11 Vt=26*10^-3; //thermal voltage in V
12 //transe conductance is given as
13 gm=Ic/Vt;
14 RD2=Q/(2*\%pi*f*c);
15 // At resonance the output admittance is purely
     conductive and is given as
```

```
16 Yo=(1/Rc)+(1/RD2)+(1/R1);
17 //The voltage gain is given as
18 Av=-(gm/Yo);
19 disp(Av, 'The voltage gain is');
20 //The Millar capacitance is given as
21 Cm=(1-Av)*C;
22 disp('pF',Cm*10^12, 'The Millar capacitance is');
```

Scilab code Exa 5.4.2 example 2

```
1 clc;
2 //page no 163
3 // problem no 5.4.2
4 // Resonating freq of a tuned ckt of a CE amplifier
      is 5MHz
5 f = 5*10^6; //in Hz
6 \text{ w0=2*\%pi*f};
7 Q=100; //Q-factor of the ckt
8 L=2*10^-6; //inductance expressed in H
9 Rs=1000; //source resistance in ohm
10 Ic=500*10^-6; // transister collector current in A
11 Vt=26*10^-3; //thermal voltage in V
12 hfe=200;
13 C_be=10*10^-12; //in pF
14 // refer to problem 5.4.1
15 Av=78;
16 \text{ Cm} = 47;
17 gm = Ic/Vt;
18 r_be=hfe/gm;
19 // The dynamic resistance of the tuned ckt is
20 RD1=Q*w0*L;
21 //The effective dynamic conductance is
22 RD1eff_1=(1/Rs)+(1/RD1)+(1/r_be);
23 RD1_eff=1/RD1eff_1
24 // Tha effective Q-factor is
```

```
25 Qeff=RD1_eff/(w0*L);
26 disp(Qeff, 'The effective Q-factor is');
27 // The voltage gain refered to source is
28 Avs=RD1_eff*Av/Rs;
29 disp(Avs, 'The voltage gain is');
```

Oscillators

Scilab code Exa 6.3.1 example 1

```
1 clc;
2 //page no 199
3 // prob no 6.3.1
4 // RC phase shift scillator
5 // In the given problem small-signal o/p resistance
     Rc=40kohm
6 // collector bias resistor, rc=10kohm, f=400 Hz;
7 // all resistances are in Kohm and freq in Hz
8 f=400; rc=10; Rc=40;
9 // Minimum value of beta is given by Bomin= 23+(4*Ro
     /R) + (29*R/Ro)
10 // For minimum beta Ro/R=2.7, we represent Ro/R=b
11 b=2.7;
12 Bomin=23+(4*b)+(29*1/b);
13 disp(Bomin, '1. The minimum value of beta is');
14 // Determination of R and C components
15 //R0 is given by (rc*Rc)/(rc+Rc)
16 R0=(rc*Rc)/(rc+Rc);
17 R=2.7* R0;
18 disp('Kohm', R, +'2. The value of resistor R=');
19 c=1/(2*\%pi*f*R*sqrt(6+(4*b)))*10^9;
```

Scilab code Exa 6.3.2 example 2

```
1 clc;
2 // page no 200
3 // prob no 6.3.2
4 // RC phase shift oscillator
5 // all resistors are in Kohm
6 f=800; R0=18;
7 // R>>Ro should be chosen to minimize the effect of
Ro on frequency. A number of values for R can be
tried, and it will be found that R=100Kohm is
reasonable.
8 R=100;
9 c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF
10 disp('pF',c,+'The value of capacitor is ');
```

Scilab code Exa 6.3.3 example 3

```
1 clc;
2 // page no 201
3 // prob no 6_3_3
4 // RC pase shift oscillator
5 // All resistors are in Kohm
6 f=1000; Ro=5;
7 //Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm
8 R=100;
9 c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;
10 disp('pF',c,+'The value of capacitor is ');
11 // The required open -circuit voltage gain is
12 Ao= 29+23*(Ro/R)+4*(Ro/R)^2;
```

```
disp(Ao, '1.The required open -circuit voltage gain
    is');
disp('mS',gm,+'2.The value of gm is');
```

Scilab code Exa 6.4.1 example 4

```
1 clc;
2 // page no 205
\frac{3}{4} prob no \frac{6}{4}
4 // colpitt 's oscillator
5 L=400*10^-6; // in H
6 c1= 100; // in pF
7 c2= 300; // in pF
8 Q = 200;
9 Ro = 5*10^3;
10 Bo=100; // beta value
11 // The tuning capacitance is
12 Cs = (c1*c2/(c1+c2));
13 disp('pF',Cs,+'1. The value of capacitor is ');
14 // the frequency of oscillation is obtained as
15 f=1/(2*\%pi*sqrt(L*Cs*10^-12));
16 disp('Hz',f,'2. The frequency of oscillation is');
17 // The dynamic impedence of the tuned circuit
18 \text{ wo} = 2*\%\text{pi} *f;
19 Rd=Q/(wo*Cs*10^-12);
20 disp('ohm', Rd, +'3. The dynamic impedence of the tuned
       circuit');
21 // The coil series resistance is
22 r=wo*L/Q;
23 disp('ohm',r,+'4. The coil series resistance is ');
24 //The capacitor raio c = c1/c2 = 1/3, and therefore 1-
      c2/B0*c1 = 1.
25 // The starting value of gm is therefore given by
26 c = c1/c2;
```

```
gm=(1/Ro)*c +(c+3+2)*(1/Rd);
disp('sec',gm,+'5.The value of gm is');
// Assuming the input resistance is that of the transistor alone,
R1=Bo/gm;
disp('ohm',R1,+'6.The input resistance is');
//The actual starting frequency is obtained from wo ^2=(1/LCs)+(1/R1R2C1C2)
wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));
wo=sqrt(wo2);
// Hence the frequency is
f=wo/(2*%pi);
disp('Hz',f,'7.The frequency of oscillation is');
```

Scilab code Exa 6.6.1 example 5

```
1 clc;
2 // page no 211
3 // prob no 6.6.1
4 //In given problem zero bias capacitance co is 20pF
5 Co=20;// in pF
6 Vd=-7;// reverse bias voltage in volt
7 // constant pottential of junction is 0.5
8 a=0.5;// for abrupt junction
9 Cd=Co/(1-(Vd/0.5))^a;
10 disp('pF',Cd,+'The value of capacitor is ');
```

Scilab code Exa 6.6.2 example 6

```
1 clc;
2 // page no 212
3 // prob no 6.6.2
4 //Voltage controlled Clapp oscillator
```

```
5 // Capacitor is in pF and inductor in uH
6 C1=300; C2=300; Cc=20; L=100;
7 // A) With zero applied bias, the total tuning
      capacitor is
8 Vd1=0; a=0.5; Co=20;
9 Cd1=Co/(1-(Vd1/0.5))^a;
10 Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));
11 disp('pF',Cs1, +'1. The total tuning capacitor is');
12 // The frequency of oscillation is
13 f=1/(2*\%pi*sqrt(L*10^-6*Cs1*10^-12));
14 disp('Hz',f,'2. The frequency of oscillation is');
15 // B) With a reverse bias of -7 v, the tuning
      capacitance becomes
16 \text{ Vd2} = -7;
17 Cd2=Co/(1-(Vd2/0.5))^a;
18 Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));
19 disp('pF', Cs2, +'3. The total tuning capacitor is');
20 // The frequency of oscillation is
21 f=1/(2*\%pi*sqrt(L*10^-6*Cs2*10^-12));
22 disp('Hz',f,'4. The frequency of oscillation is');
```

RECEIVERS

Scilab code Exa 7.3.1 example 1

```
1 clc;
2 //page no 227
3 //prob no. 7.3.1
4 //An RF receiver tunes signal in 550-1600kHz with IF
     =455 \mathrm{kHz}
5 fs_min=550*10^3; fs_max=1600*10^3; IF=455*10^3;
6 // Determination of freq tuning ranges
7 fo_min=fs_min+IF;
8 fo_max=fs_max+IF;
9 disp('Hz',fo_max,'fo_max=','Hz',fo_min,'fo_min=','
     The freq tuning range is');
10 Rf = (fo_max)/(fo_min); //calculation of freq tuning
     range ratio
11 disp(Rf, 'Rf=', 'The tuning range ratio of oscillator
     is');
12 Rc=Rf^2; // calculation of capacitance tuning range
13 disp(Rc, 'Rc=', 'The capacitor tuning range ratio of
      oscillator is');
14 //For RF section
15 Rf1=fs_max/fs_min;
```

```
16 disp(Rf1, 'Rf=', 'The tuning range ratio of RF-ckt is'
    );
17 Rc1=Rf1^2;
18 disp(Rc1, 'Rc', 'The capacitor tuning range ratio of
    RF-ckt is');
```

Scilab code Exa 7.4.1 example 2

```
1 clc;
2 //page no 230
3 //prob no. 7.4.1
4 //Refer example 7.3.1
5 //2-tuning capacitor with max 350pF/section ^ capacitance ratio in eg. 7.3.1
6 Rco=8.463; Rfo=2.909; Rcs=4.182; Rfo=2.045; fo_max = 2055*10^3; fo_min=1005*10^3;
7 Cs_max=350*10^-12;
8 //For the RF section
9 Cs_min=Cs_max/Rcs;
10 disp('F',Cs_min,'The Cs_min is');
```

Scilab code Exa 7.6.1 example 3

```
1 clc;
2 //page no 234
3 //prob no. 7.6.1
4 // An AM broadcast receiver with following specifications is given
5 IF=465; //IF in KHz
6 fs=1000; //Tuning freq in KHz
7 Q=50; // Quality factor
8 // Oscillator freq fo is given as
9 fo=fs+IF;
```

```
10 // a) Image freq is given as
11 fi=fo+IF;
12 disp('KHz',fi,'Image freq is');
13 y=fi/fs - fs/fi;
14 // b) image rejection is given as
15 Ar=1/sqrt(1+(y*Q)^2);
16 Ar_dB=20*log10(Ar);
17 disp('dB',Ar_dB,'Image rejection is');
```

Scilab code Exa 7.7.1 example 4

```
1 clc;
2 //page no 236
3 //prob no. 7.7.1
4 // refer to example 7.3.1
5 // A broadcast receiver is tuned to a signal with
6 \text{ fs=950;} // \text{in KHz}
7 IF=455; //in KHz
8 m = [1, 2];
9 n = [1, 2];
10 f0=fs+IF;
11 disp('The sum of frequencies are');
12 for i=1:1:2
13
       for j=1:1:2
14 fu1=n(j)/m(i) *f0 + 1/m(i) *IF;
15 disp(fu1);
16 \text{ end}
17 end
18 disp('The difference of frequencies are');
19 for i=1:1:2
20
       for j=1:1:2
21 \text{ fu} = n(j)/m(i) *f0 - 1/m(i) *IF;
22 disp(fu2);
23 end
24 end
```

AMPLITUDE MODULATION

Scilab code Exa 8.3.1 example 1

Scilab code Exa 8.5.1 example 2

Scilab code Exa 8.7.1 example 3

Scilab code Exa 8.11.1 exampple 4

```
1 clc;
2 //page no 274
3 //prob no. 8.11.1
4 //RC load ckt for diode detector with c=1000pF in
        paralel with R=10Kohm
5 fm=10*10^3; // modulation freq
6 c=1000*10^-12; R=10*10^3;
```

```
7 Yp=(1/R)+((%i)*2*(%pi)*fm*c);//admittance of RC load
8 disp(Yp);
9 Zp=1/sqrt((real(Yp)^2)+(imag(Yp)^2));
10 disp(Zp);
11 // Determination of max modulation index
12 m=Zp/R;
13 disp(m, 'The max modulation index is ');
```

SINGLE SIDEBAND MODULATION

Scilab code Exa 9.2 example 1

```
1 clc;
2 // page no 349
3 // prob no 9.2
4 Nd=7; N_start=1; N_stop=1; N_parity=1;
5 Nt= Nd + N_start+ N_stop + N_parity;
6 efficiency=Nd/Nt *100;
7 disp('%',efficiency,'The efficiency is');
```

Scilab code Exa 9.6 example 2

```
1 clc;
2 // page no 358
3 // prob no 9.6
4 m=21;
5 // The correct number of check bits is the smallest number that satisfy the equation 2^n >= m+n+1;
```

```
6 for n=1:1:10 // we choose range of 1 to 10
7    a=m+n+1;
8    b=2^n;
9    if(b>=a)
10         disp(n, 'hammming bits are required')
11         break;
12    end
13 end
```

Angle Modulation

Scilab code Exa 10.12.1 example 1

```
1 clc;
2 //page no 343
3 //problem no 10.12.1
4 p=10;t=0.3*10^-6;gm=2*10^-3;
5 q=1/p;f_max=q/(2*%pi*t);
6 Z2=p/gm;
7 R2=Z2;//Z2 is resistance
8 //Determination of equivalent tuning capacitance
9 C1=t/R2;
10 Ceq=gm*t;
11 disp('f',Ceq,'The equivaent tuning capacitance is');
```

Scilab code Exa 10.13.1 example 2

```
1 clc;
2 //page no 349
3 //problem no 10.13.1
4 del_phi_d=12;f_min=100;del_f_max_allow=15000;
```

```
5 del_phi_rad=(12*%pi)/180;
6 del_f_max=del_phi_rad*f_min;
7 //Determination of freq deviation
8 N=del_f_max_allow/del_f_max;
9 l=del_f_max*729;//using six tripler
10 f=0.1*729;
11 //Determination of signal oscillator signal
12 fo=152-f;
13 disp('MHz',fo,'fo is best obtained by using two tripler');
```

PULSE MODULATION

Scilab code Exa 11.3.1 example 1

```
1 clc;
2 //page no 392
3 //prob no. 11.3.1
4 //PCM system with SNR=40dB & rms peak ratio=-10
5 SNR=40;
6 //a) Determination of no. of bits/code
7 n=(SNR-(10*log10(3))-(-10))/(20*log10(2));
8 disp(n, 'The no. of bits per code word is');
9 disp('Rounded off', '=8');
```

Scilab code Exa 11.3.2 example 2

```
1 clc;
2 //page no 393
3 //prob no. 11.3.2
4 //A telephone signal wih cut off freq=4kHz digitzed
    into 8-bit at nyquist sampling rate fs=2W
5 q=1; W=4*10^3; n=8;
```

```
6 //a) Determination of Tx Bandwidth
7 B=(1+q)*W*n;
8 disp('Hz',B,'a) The transmission BW is');
9 //b) Determination of quantization S/N ratio
10 SN_dB=6*n;
11 disp('dB',SN_dB,'b) The quantization S/N ration is');
```

DIGITAL COMMUNICATIONS

Scilab code Exa 12.4.1 example 1

Scilab code Exa 12.4.2 example 2

```
1 clc;
```

```
//page no 420
//problem no 12.4.2
//a binary unipolar waveform with following
specifications are given
A=4;//max value of received signal voltage
Vn=0.5;//rms noise voltage
Vth=2;//Threshold voltage for the comparator
Pbe=1/2 * b;// bit error probability
disp(Pbe, 'The bit error probability');
```

Scilab code Exa 12.4.3 example 3

```
1 clc;
2 //page no 421
3 //problem no 12.4.3
4 SNR=9; //SNR in dB
5 //conversion of dB to power ratio
6 p=10^(9/10);
7 // for Polar
8 Pbe1=1/2 * erfc(sqrt(7.94/2));
9 disp(Pbe1);
10 // for Unipolar
11 Pbe2=1/2 * erfc(sqrt(7.94)/2);
12 disp(Pbe2);
```

Scilab code Exa 12.5.1 exampple 4

```
1 clc;
2 //page no 423
3 //problem no 12.5.1
4 // binary unipolar signal is given
5 Pavg=6*10^-12; //in W
6 d=0.02*10^-6; //pulse duration in sec
```

```
7 T=550; // equivalent noise temp in K
8 Eb=Pavg*d; // avg energy per pulse
9 No=1.38*10^-23 *T;
10 r=Eb/No;
11 // Bit error probability is
12 Pbe=1/2 * erfc(sqrt(r/2));
13 disp(Pbe, 'The bit error probability');
```

Scilab code Exa 12.9.1 example 5

```
1 clc;
2 //page no 435
3 //problem no 12.9.1
4 ENR=10; // energy to noise density ratio
5 Pbe1=1/2 * erfc(sqrt(ENR/2));
6 disp(Pbe1, 'a)The bit error probability');
7 Pbe2=1/2 * %e^-(ENR/2);
8 disp(Pbe2, 'b)The bit error probability');
```

Scilab code Exa 12.13.1 example 7

```
1 clc;
2 //page no 451
3 //problem no 12.13.1
4 //A 8 bit codewords
5 Pbec=0.01;n=8;i=3;
6 Pi=(Pbec^i)*((1-(Pbec))^(n-i));
7 Cin=(factorial(n))/(factorial(i)*factorial(n-i));
8 Pin=Cin*Pi;
9 P_in=Cin*Pbec^i
10 disp(Pin, 'Pin=', 'The probability of a received codeword');
11 disp(P_in, 'P_in');
```

Scilab code Exa 12.13.3 example 6

```
1 clc;
2 //page no 454
3 //problem no 12.13.3
4 SN_dB=9;
5 SNR=10^(SN_dB/10);
6 PbeU=1/2 * (1-erf(sqrt(SNR)));
7 BERu=PbeU;
8 disp(BERu, 'a)The bit error probability');
9 n=10;k=n-1;
10 r=k/n;
11 SNR1=r*SNR;
12 PbeC=1/2 * (1-erf(sqrt(SNR1)));
13 BERc=(n-1)*PbeC^2;
14 disp(BERc, 'b)The bit error probability');
```

Scilab code Exa 12.13.4 example 9

```
1 clc;
2 //page no 457
3 //problem no 12.13.4
4 //Tx link
5 SN_dB=8;
6 SNR=10^(SN_dB/10);
7 //a) Determination of bit error rate
8 PbeU=0.5*(1-erf(sqrt(SNR)));
9 BER_U=PbeU;
10 disp(BER_U, 'a) The bit-error rate is ');
11 //b) new bit error rate
12 n=15; k=11; t=1; r=k/n;
```

```
13 SNR_n=r*SNR;
14 PbeC=0.5*(1-erf(sqrt(SNR_n)));
15 BER_C=((factorial(n-1))*PbeC^(t+1))/((factorial(t))
        *(factorial(n-t-1)));
16 disp(BER_C, 'The new bit error rate is');
```

TRANSMISSION LINES AND CABLES

Scilab code Exa 13.5.2 example 1

```
clc;
//page no 475
//prob no. 13.5.2
// The attenuation coeff is 0.0006 N/m
a=0.0006;//The attenuation coeff in N/m
//a) Determination of the attenuation coeff in dB/m
a_dB=8.686*a;
disp('dB/m',a_dB,'The attenuation coeff is');
//b) Determination of attenuation coeff in dB/mile
k=1609;//conversion coeff for meter to mile
a_dB_mile=k*a_dB;
disp('dB/mile',a_dB_mile,'The attenuation coeff is');
;
```

Scilab code Exa 13.10.1 example 2

```
1 clc;
2 //page no 485
3 //prob no. 13.10.1
4 // Measurements on a 50 ohm slotted line gave
5 Z0=50; //measured in ohm
6 VSWR=2.0;
7 d=0.2; //distance from load to first minimum
8 T = (VSWR - 1) / (VSWR + 1);
9 \text{ pi} = 180;
10 Ql=pi*(4*0.2-1);
11 // using Euler's identity
12 e = cosd(Q1) + \%i * sind(Q1); // expansion for <math>e^{(jQ1)};
13 a=T*e;
14 //Load impedance is given as
15 ZL=Z0*(1+a)/(1-a);
16 disp('ohm', real(ZL), 'a) The equivalent
      resistance is');
17 disp('ohm', imag(ZL), 'The equivalent
      reactance is');
  disp ('The minus sign indicate the capacitive
      reactance');
19 Yl=1/ZL;
20 disp('ohm',1/real(Y1),'b) The equivalent
                                                parallel
      resistance is');
21 disp('ohm',1/imag(Y1),'The equivalent parallel
      reactance is');
```

Scilab code Exa 13.11.1 example 3

```
1 clc;
2 //page no 488
3 //prob no. 13.11.1
4 d=0.1; //length of 50ohm short-circuited line
5 Z0=50; //in ohm
6 f=500*10^6; //freq in Hz
```

```
7 pi=180;
8 Bl=2*pi*d;
9 //a) Determination of equivalent inductive reactance
10 Z=%i*Z0*tand(Bl);
11 disp('ohm', 'i',Z,'The equivalent inductive reactance is');
12 //b) Determination of equivalent inductance
13 L_eq=Z/(2*%pi*f);
14 disp('nH',L_eq*10^9,'The equivalent inductance is');
```

Scilab code Exa 13.17.1 example 4

```
1 clc;
2 //page no 513
3 //prob no. 13.17.1
4 VSWR=2; 1_min=0.2; Z0=50;
5 Q1=((4*1_min) - 1)*\%pi;
6 \text{ tl} = (VSWR - 1) / (VSWR + 1);
7 T1=t1*%e^(%i*Q1);
8 Z1=Z0*(1+T1)/(1-T1);
9 disp('ohm', real(Z1), 'a) The equivalent
      resistance is');
10 disp('ohm', imag(Z1), 'The equivalent
      reactance is');
11 disp('The minus sign indicate the capacitive
      reactance');
12 Y1=1/Z1;
13 disp('ohm',1/real(Y1),'b) The equivalent
                                                parallel
      resistance is');
14 disp('ohm', 1/imag(Y1), 'The equivalent parallel
      reactance is');
```

Scilab code Exa 13.17.2 example 5

```
1 clc;
2 //page no 514
3 //prob no. 13.17.2
4 // A transmission line is terminated with
5 \text{ ZL}=30-(\%i*23);
6 l=0.5; //// length of line in m
7 Z0=50; //characteristic impedance in ohm
8 wl=0.45; //wavelength on the line in m
9 B=2*\%pi/wl;
10 T1 = (ZL - ZO) / (ZL + ZO)
11 VI=1; //reference voltage in volt
12 VR = VI * T1;
13 Vi=VI*%e^(%i*B*1);
14 Vr = VR * \%e^-(\%i*B*1);
15 V = Vi + Vr;
16 I = (Vi - Vr) / Z0;
17 Z=V/I;
18 disp('ohm',Z,'The input impedance is');
```

Scilab code Exa 13.17.3 example 6

```
1 clc;
2 //page no 515
3 //prob no. 13.17.3
4 Z0=600; Z1=73; //in ohm
5 F=0.9;
6 QF=(2*%pi*F)/4;
7 //For matching, the effective load impedance on the main line must equal the characteristic impedance of the mail line
8 Z11=Z1;
9 Z01=sqrt(Z11*Z1);
10 T1=(Z1-Z01)/(Z1+Z01);
11 VI=1; // reference voltage
12 Vi=VI*%e^(%i*QF);
```

```
13  Vr=Tl*VI*%e^-(%i*QF);
14  V_in=Vi+Vr;
15  I_in=(Vi-Vr)/Z01;
16  Z_in=V_in/I_in;
17  disp('ohm',Z_in,'The input impedance is');
18  //the voltage reflection coeff is
19  TL_F=(Z_in-Z0)/(Z_in+Z0);
20  //the VSWr is given as
21  VSWR_F=(1+TL_F)/(1-TL_F);
22  disp(VSWR_F,'The VSWR is');
```

WAVEGUIDES

Scilab code Exa 14.2.1 example 1

```
1 clc;
2 //page no 524
3 //prob no. 14.2.1
4 // A rectangular waveguide has a broad wall
      dimension as a=0.900 in. Therefore
5 a=2.286; //in cm
6 wl_c=2*a*10^-2; //in m
7 c=3*10^8;
8 \text{ wl=c/10^10;}//in \text{ m}
9 \text{ if}(wl_c > wl)
       disp('i)TE10 wave will propagate');
10
11 else
12
       disp('i)TE10 wave will not propagate');
13 end
14 //determination of gide wl
15 wl_g=wl/(sqrt(1-(wl/wl_c)^2));
16 disp('cm',wl_g*10^2,'Guide wavelength is');
17 //determination of phase velocity
18 vp=c*wl_g/wl;
19 disp('m/s', vp, 'Phase velocity is');
20 //determination of group velocity
```

```
21 vg=c*wl/wl_g;
22 disp('m/s',vg,'Group velocity is');
```

RADIO WAVE PROPOGATION

Scilab code Exa 15.2.1 example 1

```
1 clc;
2 //page no 538
3 //prob no. 15.2.1
4 // satellite communication system is given
5 ht=36000; //height of satellite in km
6 f=4000; //freq used in MHz
7 Gt=15; //transmitting antenna gain
8 Gr=45; //receiving antenna gain
9 // A) Determination of free-space transmission loss
10 L=32.5+20*\log 10 (ht)+20*\log 10 (f);
11 disp('dB',L,'The free-space transmission loss is');
12 // B) Determination of received power Pr
13 Pt=200; //transmitted power in watt
14 Pr_Pt=Gt+Gr-L; //power ration in dB
15 Pr_Pt_watt=10^(Pr_Pt/10);//power ratio in watts
16 //Therefore
17 Pr=Pt*Pr_Pt_watt;
18 disp('watts', Pr, 'The received power');
```

Scilab code Exa 15.2.2 example 2

Scilab code Exa 15.3.1 example 3

```
clc;
//page no 545
//prob no. 15.3.1
// VHF mobile radio system is given
Pt=100;//transmitted power
f=150;//freq used in MHz
d1=20;//height of transmitting antenna in m
Ct=1.64;//transmitting antenna gain
ht=2;//height of receiving antenna in m
d2=40;// distance in km
wl=c/(f*10^6);
E0=sqrt(30*Pt*Gt)
// Field strength at a receiving antenna is
ER=(E0*4*%pi*d1*ht)/(wl*(d2*10^3)^2);
```

```
15 disp('uV/m', ER*10^6, 'Field strength at a receiving antenna is');
```

Scilab code Exa 15.3.2 example 4

```
1 clc;
2 //page no 548
3 //prob no. 15.3.2
4 ht1=100; ht2=60; //antenna heights in ft
5 dmax_miles=sqrt(2*ht1)+sqrt(2*ht2);
6 disp('miles',dmax_miles,'The maximum range is');
```

Scilab code Exa 15.4.1 example 5

```
1 clc;
2 //page no 560
3 //prob no. 15.4.1
4 ht=200; // virtual height in km
5 a=6370; // in km
6 B_degree=20;
7 B_rad=20*%pi/180; // angle of elevation in degree
8 // The flat-earth approximation gives
9 d=2*ht/tand(B_degree);
10 disp('km',d,'d=');
11 // By using radian measures for all angles
12 d=2*a*(((%pi/2)-B_rad)-(asin(a*cosd(B_degree)/(a+ht)));
13 disp('km',d,'d=');
```

Scilab code Exa 15.7.1 example 6

```
1 clc;
2 //page no 574
3 //prob no. 15.7.1
4 // In this problem data regarding the sea water is
      given
5 conductivity = 4; // measured in S/m
6 rel_permittivity =80;
7 u=4*\%pi*10^-7;
8 f1=100; //measured in Hz
9 f2=10<sup>6</sup>; //measured in Hz
10 // A) first it is necessary to evaluate the ratio of
       conductivity/w*rel_permittivity
11 w1=2*\%pi*f1;
12 r=conductivity/w1*rel_permittivity;
13 //after the calculation this ratio is much greater
      than unity. Therefore we have to use following eq
       to calculate the attenuation coeff as
14 a=sqrt(w1*conductivity*u/2);
15 disp('N/m',a,'The attenuation coeff is');
16 // By using the conversion factor 1N=8.686 dB
17 a_dB=a*8.686;
18 disp('dB/m',a_dB,'The attenuation coeff in dB/m is')
19 // B)
20 \text{ w2=2*\%pi*f2};
21 r=conductivity/w2*rel_permittivity;
22 //after the calculation this ratio is much greater
      than unity. Therefore we have to use following eq
       to calculate the attenuation coeff as
23 a=sqrt(w2*conductivity*u/2);
24 disp('N/m',a,'The attenuation coeff is');
25 // By using the conversion factor 1N=8.686 dB
26 \text{ a_dB=a*8.686};
27 disp('dB/m',a_dB,'The attenuation coeff in dB/m is')
```

ANTENNAS

Scilab code Exa 16.7.2 example 1

```
clc;
//page no 590
//prob no. 16.7.2
//For the Hertzian dipole, the radiation pattern is
described by g(x)=sin^2(x) and g(y)=1
// Determination of -3dB beamwidth
// from the polar diagram shown we have

g_x=0.5;
x=asind(sqrt(g_x));
g_y=0.5;
y1=asind(sqrt(g_y));
y=y1+90;
// Therefore
z=y-x;
disp('degree',z,'The -3dB beamwidth is');
```

Scilab code Exa 16.9.1 example 2

```
clc;
//prob no. 16.9.1
//Half dipole antenna is given with I=Io*cos(Bl)
where l=0
//The physical length of the antenna is wl/2
//consider wl=unity and current Io=unity
Io=1;
wl=1;
phy_length=wl/2;
I_av=2*Io/%pi;
//Thus area is given as
Area=I_av*phy_length;
// From the above eq l_effective is given as
disp('l_eff= wl/pi');
```

Scilab code Exa 16.19.1 example 3

```
1 clc;
2 //prob no. 16.19.1
3 // Paraboloida reflector antenna is given with
4 D=6; // reflector diameter in m
5 n=0.65; //illumination effeciency
6 f=10^10; //frequency of operation in Hz
7 c=3*10^8; //velo of light in m/s
8 \text{ wl=c/f};
9 A = (\%pi*D^2)/4;
10 A_eff=n*A;
11 disp('m^2',A_eff,'Effective area is');
12 D0=4*%pi*A_eff/wl^2;
13 disp(DO, 'The directivity is');
14 BW_dB=70*w1/D;
15 disp('degree', BW_dB, 'The -3dB beamwidth is');
16 \quad BW_null = 2*BW_dB;
17 disp('degree', BW_null, 'The null beamwidth is');
```

Telephone Systems

Scilab code Exa 17.1.1 example 1

```
1 clc;
2 //page no 641
3 //problem no 17.1.1
4 //a) Determination of max gain1
5 FTL=50; M=12;
6 NFL=2*FTL; NFLG=(NFL-M);
7 G_max1=NFLG/2;
8 disp('dB',G_max1,'a)The max gain is');
9 //b) Determination of max gain 2
10 IL=3; RLW=20; RLE=40;
11 NL = (4*IL) + RLW + RLE;
12 NLG = (NL - M);
13 G_max2=NLG/2;
14 disp('dB',G_max2,'The max gain is');
15 //c) Determination of amplr gain
16 LT=15; OM=6;
17 OLW = (RLW - LT)/2;
18 OLE=(RLE-LT)/2;
19 A = OM + OLW + OLE + (2 * IL);
20 disp('dB', A, 'The ample gain is');
```

FACSIMILE AND TELEVISION

Scilab code Exa 18.2.1 example 1

```
1 clc;
2 // page no 671
3 // prob no 18_2_1
4 //A drum of facsimile machine with diameter=70.4mm & scanning pitch=0.2mm/scan
5 D=70.4;P=0.2;
6 // Determination of index of co-operation
7 IOC_CCITT=D/P;
8 IOC_IEEE=IOC_CCITT*(%pi);
9 disp(IOC_IEEE, 'The index of co-operation is');
```

Scilab code Exa 18.2.2 example 2

```
1 clc;
2 // page no 676
3 // prob no 18_2_2
```

```
4 //A drum scanner in eg. 18.2.1 with pitch = 0.26mm/line
      & diameter=68.4mm & drum rotate at 120rpm &
      scans lines = 1075
5 D=68.4; P=0.26; rpm=120; n=1075;
6 // Determination of no. of pixels scan
7 Npx = (\%pi) * (D/P);
8 disp('pixels/line', Npx, 'The no. of pixels in scan
      line is');
9 // Determination of scan rate
10 Rs=rpm/60;
11 disp('lines/sec', Rs, 'The scan rate is');
12 // Determination of pixel rate is
13 Rpx = Npx * Rs;
14 disp('pixels/sec',Rpx,'The pixel rate is');
15 f_{max}=Rpx/2;
16 // Determination of document Tx time
17 td=n/(60*Rs);
18 disp('min',td,'The document Transmission time is');
```

Scilab code Exa 18.3.1 example 3

```
1 clc;
2 //page no 693
3 //prob no. 18.3.1
4 a=(4/3); //aspect ratio
5 N=525; //no. of line periods per frame
6 Ns=40; //no. of suppressed lines
7 //Determination of no. of pixel periods in line period
8 Nv=N-Ns;
9 disp('lines',Nv,'The no. of pixel periods in line period is ');
10 //Determination of picture height and width
11 Nh=a*Nv;
12 disp('pixels',Nh,'The picture height is');
```

```
13 Nl=(Nh/0.835);
14 disp('pixels',Nl,'The picture length is');
```

Scilab code Exa 18.3.2 example 4

```
clc;
//page no 694
//prob no. 18.3.2
//A TV system with
N=525;P=30;
//Determination of horizontal and vertical
    synchhronization freq.
fh=N*P;
disp('Hz',fh,'the horizontal freq. is ');
fv=2*P;
disp('Hz',fv,'the vertical freq. is ');
//Determination of time reqd to scan one line
Th=(1/fh);
disp('sec',Th,'the time reqd to scan one line is ');
```

Scilab code Exa 18.3.3 example 5

```
1 clc;
2 //page no 695
3 //prob no. 18.3.3
4 //U.S. NTSC is given
5 //refer example 18.3.2
6 fh=15750; N1=775;
7 // Determination of video bandwidth
8 Bv=0.35*fh*N1;
9 disp('Hz',Bv,'the band width is');
```

Scilab code Exa 18.7.1 example 6

```
1 clc;
2 //page no 706
3 //prob no. 18.7.1
4 //refer example 18.3.1
5 a=4/3;//aspect ratio
6 D=48.26*10^-2;//CRT tube diagonal
7 Nh=647;
8 H=sqrt((a^2)*(D^2)/(1+a^2));
9 //Determination of viewing angle & minimum dist.
10 w=H/Nh;
11 theta=Nh*(1/60);//As each pixel subtend 1 minute of arc
12 disp('degree',theta,'The viewing angle is');
13 X=H/(2*tand(theta/2));
14 disp('m',X,'The min. viewing dist is');
```

Scilab code Exa 18.7.2 example 7

```
1 clc;
2 //page no 707
3 //prob no. 18.7.2
4 //HDTV system is given
5 //Refer example 18.7.1
6 a=16/9;D=1.40;Nh=1840;//Assuming square pixel
7 H=sqrt((a^2)*(D^2)/(1+a^2));
8 //Determination of viewing angle
9 theta=Nh*(1/60);
10 disp('degree',theta,'The viewing angle is');
11 //Determination of viewing dist
12 X=H/(2*tand(theta/2));
```

 $\operatorname{disp}(\mathrm{'m'}, X, \mathrm{'The\ viewing\ dist\ is'});$

SATELLITE COMMUNICATIONS

Scilab code Exa 19.14.1 example 2

```
clc;
//page no 737
//problem no 19.14.1
//A high power amplr
P_HPA=600; TFL_dB=1.5; G_dB_ES=50; RFL_dB=1; GTR_dB_SAT
=-8; FSL_dB=200; AML_dB=0.5; PL_dB=0.5; AA_dB=1;
//Determination of carrier to noise ratio
P_dB_HPA=10*log10(P_HPA/1);
EIRP_dB=P_dB_HPA-TFL_dB+G_dB_ES;
TPL_dB=FSL_dB+AML_dB+PL_dB+AA_dB;
CNoR_dB=EIRP_dB-TPL_dB-RFL_dB+GTR_dB_SAT+228.6;
disp(CNoR_dB, 'The carrier to noise ratio in dB is ');
```

Scilab code Exa 19.14.2 example 3

```
1 clc;
```

Scilab code Exa 19.16.1 example 4

```
1 clc;
2 //page no
3 //problem no 19.16.1
4 //Determination of overall C/N
5 CNo_dB_U=88; CNo_dB_D=78;
6 NoC_U=10^(-CNo_dB_U/10);
7 NoC_D=10^(-CNo_dB_D/10);
8 NoC=NoC_U+NoC_D;
9 CNo_dB=10*log10(1/NoC);
10 disp(CNo_dB, 'The overall carrier to noise ratio is');
```

Scilab code Exa 19.17.1 example 6

```
1 clc;
2 // page no 742
3 // prob no 19.17.1
4 // A digital satellite link is given with following specification
5 Eb_N0=9.6; // ratio expessed in dB
6 Rb=1.544*10^6; // bit rate expessed in bps
```

```
7 // The bit rate in dB relative to 1bps is
8 R_dB_b=10*log10(Rb);
9 //The required CNO ratio is
10 CNo_db=Eb_NO+R_dB_b;
11 disp(CNo_db, 'The ratio C/No is');
```

Fiber Optic Communication

Scilab code Exa 20.2.1 example 1

```
1 clc;
2 // page no 753
3 // prob no 20.2.1
4 // An optic fiber is made of glass with following details
5 n1=1.55; //RI of glass
6 n2=1.51; //RI of clad
7 // NA of the fibe is given as
8 NA=n1*sqrt(2*(n1-n2)/n1);
9 disp(NA, 'The numerical aperture is');
10 // Acceptance angle is given as
11 acc_angle=asind(NA);
12 disp(acc_angle, 'The acceptance angle is');
```

Scilab code Exa 20.2.2 example 2

```
1 clc;
2 //page no 761
```

```
//prob no. 20.2.2
//refer example 20.2.1
d=50*10^-6; wav=0.8*10^-6; NA=0.352;
//Determination of V number
V=(%pi)*d*NA/wav
disp(V, 'the V no. is ');
//Determination of approximate number of modes
N=(V^2)/2;
disp(N, 'the approximate no. of modes are ');
```

Scilab code Exa 20.2.3 example 3

```
1 clc;
2 //page no 763
3 //prob no. 20.2.3
4 d=5*10^-6; wave=1.3*10^-6; NA=0.35;
5 // Determination of V no.
6 V=(%pi)*d*NA/wave;
7 disp(V, 'the v no. is');
8 disp('from the table it is seen that 6 modes have cut off v less than 4.23 ');
```

Scilab code Exa 20.2.4 example 4

```
1 clc;
2 //page no 762
3 //prob no. 20.2.4
4 //refer example 20.2.3
5 a=2;//gradding profile index
6 V=69.1;//normalized cutoff freq.
7 N=2390;//number of modes supported as a step index fiber
```

```
8 // Determination of no. of modes supported by graded
    index fiber
9 N_a=(N*a)/(a+2);
10 disp(N_a, 'no. of modes supported by graded index
    fiber');
```

Scilab code Exa 20.2.5 example 5

```
1 clc;
2 //page no 763
3 //prob no. 20.2.5
4 d=10*10^-6; wav=1.3*10^-6; n1=1.55; V_max=2.405clc;
5 //page no 762
6 //prob no. 20.2.4
7 NA_max = (V_max*wave)/(%pi*d);
8 //a) Dtermination of maximum normailized index
      difference
9 del=(1/2)*(NA/n1)^2;
10 disp(del, 'a) the normilized index difference is');
11 //b) Determination of reffactive index of claddin
      glass
12 n2=n1*(1-del);
13 disp(n2, 'b) cladding index required is');
14 //Determination of the fiber acceptance angle
15 theta_max=asind(NA);
16 disp(theta_max, 'the max acceptance angle is');
```

Scilab code Exa 20.3.1 example 6

```
1 clc;
2 //page no
3 //prob no. 20.3.1
4 //A silica fiber with
```

Scilab code Exa 20.4.1 example 7

```
clc;
//page no 772
//prob no. 20.4.1
//Refer example 20.4.1
n1=1.55; del=0.0258; l=12.5; z=1000; c=3*10^8;
//a) Determination of intermodal dispersion
del_per_km=(n1*z*del)/((1-del)*c);
disp('s/km',del_per_km,'the intermodal dispersion is ');
//b) Determination of intermodal dispersion for l=12.5
del_l=del_per_km*1/1000;
disp('s',del_l,'the intermodal dispertion for l=12.5 is');
```

Scilab code Exa 20.4.2 example 13

```
1 clc;
2 //page no 773
```

```
//prob no. 20.4.2
//Refer example 20.4.1

n1=1.55; del=0.0258; z=1000; c=3*10^8; z_disp=12.5;
del_graded=(n1*z*del^2)/(8*c);
//Determination of intermodal dispersion
del_total=del_graded*z_disp;
disp('sec',del_total,'the intermodal dispersion is');
;
```

Scilab code Exa 20.4.3 example 8

```
1 clc;
2 //page no 774
3 //prob no. 20.4.3
4 //Refer example 20.4.1
5 wav_0=0.8*10^-6; Dm=-0.15; wav_3=1.5; z=12.5;
6 del_t=Dm*wav_3;
7 //Determination of total material dispersion
8 del_md=del_t*z;
9 disp('ns',del_md,'The total material dispersion is')
;
```

Scilab code Exa 20.4.4 example 9

```
1 clc;
2 //page no 775
3 //prob no. 20.4.4
4 Dm=6.6;z=12.5;del_3=6;
5 del_wg=Dm*z*del_3;
6 disp('ps',del_wg,'Expected waveguide dispersion is');
;
```

Scilab code Exa 20.4.5 example 10

```
1 clc;
2 //page no 776
3 //prob no. 20.4.5
4 del_imd=0; del_md=2.81; del_wgd=0.495; t_w=2.5;
5 del_tot=((del_imd^2)+(del_md^2)+(del_wgd^2))^(1/2);
6 disp('ns',del_tot,'The total dispersion is');
7 t_r=((t_w^2)+(del_tot^2))^(1/2)
8 // Determination of max allowed bit rate
9 B=(1000/(2*t_r));
10 disp('Mbps',B,'The max allowed bit rate is');
```

Scilab code Exa 20.4.6 example 11

```
1 clc;
2 //page no 778
3 //prob no. 20.4.6
4 //A multimode step index fiber
5 del_t=4; B=10;
6 //a) Determination of BW distance product
7 BDP=1/(2*del_t);
8 disp('Mbps-km', BDP, 'a) The BW distance product for fiber is');
9 //b) Determination of dispersion limited length
10 z_max_disp=BDP/(B*10^-3);
11 disp('km', z_max_disp, 'b) The disp limited length for a fiber is');
```

Scilab code Exa 20.5.1 example 14

```
1 clc;
2 //page no 780
3 //prob no. 20.5.1
4 //3 semiconductor diodes are given
5 E1=1.9; E2=1.46; E3=0.954; eV=1.9; // All in eV
6 c=3*10^8;//speed of light
7 //a) Determination of wavelength and freq for E1=1.9
8 wav1=1.241/E1; f1=c/(wav1*10^-6);
9 disp('um', wav1, 'a)i) the wavelength is');
10 disp('Hz',f1,'a) ii) the freq is');
11 //b) Determination of wavelength and freq for E2=1.46
12 wav2=1.241/E2; f2=c/(wav2*10^-6);
13 disp('um', wav2, 'b)i) the wavelength is');
14 disp('Hz',f2,'b) ii) the freq is');
15 //c) Determination of wavelength and freq for E3
      =0.945
16 \text{ wav3}=1.241/E3; f3=c/(wav3*10^-6);
17 disp('um', wav3, 'c)i)the wavelength is');
18 disp('Hz',f3,'c)ii)the freq is');
```

Scilab code Exa 20.8.1 example 12

```
10 B_max=1/(5*del_t*z);
11 disp('Gbps',B_max,'b)the max BW for loss-limited
        length is');
12 //c)Determination of dispersion-limited length
13 z_disp=1000/(5*del_t*B);
14 disp('km',z_disp,'the dispertion limited length is')
    ;
```