

3.5 A step down switching regulator

Datasheet - production data

Features

- Up to 3.5 A step down converter
- Operating input voltage from 8 V to 55 V
- 3.3 V and 5.1 V (±1 %) fixed output, and adjustable outputs from:
 - 0.5 V to 50 V (3.3 type)
 - 5.1 V to 50 V (5.1 type)
- Frequency adjustable up to 300 kHz
- Voltage feed forward
- Zero load current operation (min. 1 mA)
- Internal current limiting (pulse by pulse and HICCUP mode)
- Precise 5.1 V (1.5%) reference voltage externally available
- Input/output synchronization function
- Inhibit for zero current consumption (100 mA typ. at V_{CC} = 24 V)
- Protection against feedback disconnection

- Thermal shutdown
- · Output over voltage protection
- · Soft-start function

Description

The L4973 is a step down monolithic power switching regulator delivering 3.5 A at fixed voltages of 3.3 V or 5.1 V and using a simple external divider output adjustable voltage up to 50 V. Realized in BCD mixed technology, the device uses an internal power D-MOS transistor (with a typical $R_{DS(on)}$ of 0.15 $\Omega)$ to obtain very high efficiency and very fast switching times. Switching frequency up to 300 kHz are achievable (the maximum power dissipation of the packages must be observed). A wide input voltage range between 8 V to 55 V and output voltages regulated from 3.3 V to 40 V cover the majority of the today applications. Features of this new generation of DC-DC converter includes pulse by pulse current limit, hiccup mode for output short circuit protection, voltage feed forward regulation, soft-start, input/output synchronization, protection against feedback loop disconnection, inhibit for zero current consumption and thermal shutdown. Package available is SO-20 (12+4+4) for SMD assembly.

Figure 1. Application circuit

May 2024 DocID1546 Rev 19 1/25

Contents L4973

Contents

1	Block diagram 3							
2	Pin settings							
	2.1 Pin connection	4						
	2.2 Pin description	5						
3	Electrical data	6						
	3.1 Maximum ratings	6						
	3.2 Thermal data	6						
4	Electrical characteristics	7						
5	Application circuit	0						
6	Typical characteristics1	1						
7	Application ideas	9						
8	Package mechanical data 2	1						
9	Order code	3						
10	Revision history	4						

L4973 **Block diagram**

Block diagram 1

V5.1 18 8 9 11 CBOOT CHARGE ZERO CURRENT INHIBIT VREF GOOD INTERNAL SUPPLY INTERNAL REFERENCE 3.3V o HICCUP CURRENT LIMITING SOFT SS 12 COMP THERMAL SHUTDOWN CURRENT LIMITING воот ŧ_{E/A} 3.3V **o**-10 VFB s Q ШШ SYNC OSCILLATOR 20 DRIVER 4,5,6,7,14,15,16,17 GND D94IN161B OUT OUT osc

Figure 2. Block diagram

Pin settings L4973

2 Pin settings

2.1 Pin connection

Figure 3. Pin connection (top view)

L4973 Pin settings

2.2 Pin description

Table 1. Pin description

N° Pin	Name	Description		
12	COMP	E/A output to be used for frequency compensation		
11	INH	A logic signal (active high) disables the device (sleep mode operation). If not used it must be connected to GND; if floating the device is disabled.		
10	воот	A capacitor connected between this pin and the output allows to drive the internal D-MOS.		
20	SYNC	Input/Output synchronization.		
8,9	V _{CC}	Unregulated DC input voltage		
2,3	OUT	Stepdown regulator output.		
13	VFB	Stepdown feedback input. Connecting the output directly to this pin results in an output voltage of 3.3 V for the L4973V3.3 and 5.1 V for L4973V5.1. An external resistive divider is required for higher output voltages. For output voltage resistive divider is required for higher output voltages. For output voltage less than 3.3 V, see <i>Note:</i> and <i>Figure 30</i> .		
18	V5.1	Reference voltage externally available.		
4,5,6,7 14,15,16,17	GND	Signal ground		
1	OSC	An external resistor connected between the unregulated input voltage and Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching frequency. (Line feed forward is automatically obtained)		

Note: The maximum power dissipation of the package must be observed.

Electrical data L4973

3 Electrical data

3.1 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V ₉ ,V ₈	Input voltage	58	V
V ₂ ,V ₃	Output DC voltage Output peak voltage at t = 0.1 μs f = 200 kHz	-1 - 5	V V
l ₂ ,l ₃	Maximum output current	int.	limit.
V ₁₀ -V ₈		14	V
V ₁₀	Bootstrap voltage	70	V
V ₁₂	Analogs input voltage (V _{CC} = 24 V)	12	V
V ₁₉	Analogs input voltage (V _{CC} = 24 V)	13	V
V ₁₃	(V _{CC} = 20 V)	6 -0.3	V V
V ₂₀	(V _{CC} = 20 V)	5.5 0.3	V V
V ₁₁	Inhibit	V _{CC} -0.3	V V
P _{tot}	Power dissipation a T _{pins} = 90 °C	4	W
T_J , T_{STG}	Junction and storage temperature	-40 to 150	°C

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJP}	Maximum thermal resistance junction-pin	15	°C/W
R _{thJA} Maximum thermal resistance junction-ambient		80 ⁽¹⁾	°C/W

^{1.} Package mounted on board

4 Electrical characteristics

Table 4. Electrical characteristics (Refer to the test circuit,V $_{CC}$ = 24 V; T $_{J}$ = 25 °C, C $_{OSC}$ = 2.7 nF; R $_{OSC}$ = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition		Min	Тур	Max	Unit
Dynamic	characteristics	l .					
	Input voltage range (1)	$V_0 = V_{REF}$ to 40 V; $I_0 = 3.5A$	(2)	8		55	V
		I _O = 1 A		5.05	5.1	5.15	V
	Output voltage L4973V5.1	$I_O = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		5.00	5.1	5.20	V
		to 55 V	(2)	4.95	5.1	5.25	V
		I _O = 1 A		3.326	3.36	3.393	V
	Output voltage L4973V3.3	$I_O = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		3.292	3.36	3.427	V
		to 40 V	(2)	3.26	3.36	3.46	V
	R	V _{CC} = 10.5 V I _O = 3.5 A			0.15	0.22	Ω
	R _{DS(on)}	VCC = 10.5 V 10 = 5.5 A	(2)			0.35	Ω
	Maximum limiting current $V_{CC} = 8 \text{ V to } 55 \text{ V}$	(2)	3.8	4.5	5.5	Α	
		*CC = 0 * 10 00 *		4	4.5	5.5	Α
n	Efficiency	$V_O = 5.1 \text{ V}; I_O = 3.5 \text{ A}$			90		%
η	Lindency	$V_O = 3.3 \text{ V}; I_O = 3.5 \text{ A}$			85		%
	Switching frequency		(2)	90	100	110	kHz
	Supply voltage ripple rejection	$\begin{aligned} V_i &= V_{CC} + 2 \ V_{RMS} \ V_O = V_{ref}; \\ I_O &= 1 \ A; \ f_{ripple} = 100 \ Hz \end{aligned}$		60			dB
Δf _{sw}	Switching frequency stability vs., supply voltage	V _{CC} = 8 V to 55 V			2	5	%
Reference	ce section						
	Reference voltage		5.025	5.1	5.175	V	
		$V_{CC} = 8 \text{ to } 55 \text{ V}$	(2)	4.950	5.1	5.250	V
	Line regulation	$I_{ref} = 0 \text{ mA};$ $V_{CC} = 8 \text{ to } 55 \text{ V}$			5	10	mV
	Load regulation	$V_{ref} = 0 \text{ to } 5 \text{ mA};$			2	10	mV
		$V_{CC} = 0$ to 20 mA			6	25	mV
	Short circuit current			30	65	100	mA

Electrical characteristics L4973

Table 4. Electrical characteristics (continued) (Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition		Min	Тур	Max	Unit
Soft-star	t						I
	Soft-start charge current			30	45	60	μΑ
	Soft-start discharge current			15	22	30	μΑ
	,	Inhibit					l.
	High level voltage		(2)	3.0			V
	Low level voltage		(2)			8.0	V
	I _{source} high level	V _{INH} = 3 V	(2)	10	16	50	μΑ
	I _{source} low level	V _{INH} = 0.8 V	(2)	10	15	50	μΑ
DC chara	acteristics						
	Total operating quiescent current	Duty cycle = 50 %			4	6	mA
	Quiescent current	Duty cycle = 0			2.7	4	mA
	Total stand-by quiescent	V _{CC} = 24 V; V _{INH} = 5 V			100	200	μΑ
	current	V _{CC} = 55 V; V _{INH} = 5 V			150	300	μΑ
Error am	plifier						
	High level output voltage			11.0			V
	Low level output voltage					0.65	V
	Source bias current			1	2	3	μΑ
	Source output current			200	300	600	μΑ
	Sink output current			200	300		μΑ
	Supply voltage ripple rejection	$V_{COMP} = VFB$ $C_{REF} = 4.7 \mu F 1-5 mA load$ current		60	80		dB
	DC open loop gain	R _L = ∞		50	60		dB
	Transconductance	$I_{comp} = -0.1 \text{ to } 0.1 \text{ mA};$ $V_{comp} = 6 \text{ V}$			2.5		mS
Oscillato	or section	·		1	1	ı	ı
	Ramp valley			0.78	0.85	0.92	V
	Ramp peak	V _{CC} = 8 V V _{CC} = 55 V		1.9 9	2.1 9.6	2.3 10.2	V
	Maximum duty cycle			95	97		%

Table 4. Electrical characteristics (continued) (Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
	Maximum frequency	Duty cycle = 0%; R_{OSC} =13 k Ω ; C_{OSC} = 820 pF;			300	kHz
Sync fun	Sync function					
	High input voltage	V _{CC} = 8 V to 55 V	3.5			V
	Low input voltage	V _{CC} = 8 V to 55 V			0.9	V
	Slave sink current		0.15	0.25	0.45	mA
	Master output amplitude	I _{source} = 3 mA	4	4.5		٧
	Output pulse width	No load, V _{sync} = 4.5 V	0.20	0.35		μs

^{1.} Pulse testing with a low duty cycle

^{2.} Specifications referred to T_J from -40 $^{\circ}\text{C}$ to 125 $^{\circ}\text{C}.$

Application circuit L4973

5 Application circuit

Figure 4. Application circuit (D5.1)

Figure 5. Application circuit (D3.3)

6 Typical characteristics

Figure 6. Quiescent drain current vs. input voltage (0% duty cycle)

Figure 7. Quiescent drain current vs. junction temperature

Figure 8. Stand by drain current vs. input voltage

Figure 9. Reference voltage vs. junction temperature (pin 16)

Figure 10. Reference voltage vs. input voltage (pin 16)

Figure 11. Reference voltage vs. reference input current

Figure 12. Inhibit current vs. inhibit voltage (pin 10)

Figure 13. Line regulation (see *Figure 4*)

LY/

Figure 14. Load regulation (see *Figure 4*) Figure 15. Line regulation (see *Figure 5*)

Figure 16. Load regulation

Figure 17. Switching frequency vs. R2 and C7

Figure 18. Switching frequency vs. input voltage

Figure 19. Switching frequency vs. junction temperature

Figure 20. Dropout voltage between pin 7,8 and 2,3

Figure 21. Efficiency vs. output voltage

14/25 DocID1546 Rev 19

Figure 22. Dropout voltage between pin 7,8 and 2,3

Figure 23. Efficiency vs. output voltage

Figure 24. Efficiency vs. output voltage (Diode STPS745D)

Figure 25. Efficiency vs. output current (see *Figure 4*)

Figure 26. Efficiency vs. output current (see *Figure 4*)

Figure 27. Efficiency vs. output current (see *Figure 5*)

Figure 28. Efficiency vs. output current (see *Figure 5*)

Figure 29. Power dissipation vs. input voltage (device only) (see *Figure 4*)

16/25 DocID1546 Rev 19

Figure 30. Power dissipation vs. output Figure 31. Pulse by pulse limiting current voltage (device only) vs. junction temperature

Ilim
(A)
5.2
5
4.8
4.6
4.4
4.2
-40 -20 0 20 40 60 80 100 120 Tj(°C)

Figure 32. Load transient

10 D97/N649
(A) 3
2
1 VO (mV)
100
0
-100

Figure 33. Line transient

Figure 34. Source current rise and fall time, pin 2, 3

Figure 36. Soft-start capacitor selection vs. inductor and V_{CC} max (ref. AN938)

Figure 37. Open loop frequency and phase of error amplifier

18/25 DocID1546 Rev 19

L4973 Application ideas

7 Application ideas

Figure 38. 3.5 A at V_O < 3.3 V

Figure 39. 12 V to 3.3 V high performance buck converter (fsw = 200 kHz)

Figure 40. Synchronization example

Application ideas L4973

Figure 41. Multi output not isolated (pin out referred to DIP12+3+3)

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 5. SO-20 mechanical data

Dim.		mm.			inch	
Dim.	Min	Тур	Max	Min	Тур	Max
Α	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
В	0.33		0.51	0.013		0.200
С	0.23		0.32	0.009		0.013
D (1)	12.60		13.00	0.496		0.512
Е	7.40		7.60	0.291		0.299
е		1.27			0.050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k			0° (min.),	8° (max.)	,	
ddd			0.10			0.004

Figure 42. Package dimensions

L4973 Order code

9 Order code

Table 6. Order code

Part number	Package	Packaging
L4973D3.3-013TR, E-L4973D3.3-TR	SO-20	Tape and reel
L4973D5.1-013TR	SO-20	Tape and reel

Revision history L4973

10 Revision history

Table 7. Document revision history

Date	Revision	Changes
12-Sep-2001	13	First Issue
07-May-2005	14	Updated the Layout look & feel. Changed name of the D1 on the fig. 5.
14-Dec-2005	15	Added the ECOPACK part numbers in the Table 1. Order Codes.
06-Dec-2006	16	The document has been reformatted, and order codes updated
07-May-2007	17	New data on Table 4.
26-Feb-2009	18	Updated Section5: Evaluation board on page 10.
03-May-2024	19	Updated <i>Table 6</i> .

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics - All rights reserved

