МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Севастопольский государственный университет»

КОМПЛЕКСНЫЕ ЧИСЛА

Методические указания и контрольные задания для самостоятельной работы по дисциплинам «Высшая математика», «Математика» студентов технических и экономических специальностей

Севастополь СевГУ 2015 УДК 512 ББК 22.14

Комплексные числа. Методические указания и контрольные задания для самостоятельной работы по дисциплинам «Высшая математика», «Математика» студентов технических и экономических специальностей / Сост. Л.Н. Григорюк, Е.Г. Бойко. – Севастополь: СевГУ, 2015. – 44 с.

Целью методических указаний является усвоение студентами основных теоретических сведений о комплексных числах и привитие практических навыков при решении инженерных задач.

В помощь студентам приведено решение типовых задач, предлагаемых для изучения темы «Комплексные числа».

В каждом задании по 30 вариантов задач.

Методические указания предназначены для студентов всех специальностей и форм обучения.

Методические указания рассмотрены и утверждены к переизданию на заседании кафедры «Высшая математика», протокол № 3 от 25.05.2015 г.

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент: Ледяев С.Ф., канд. техн. наук, доцент кафедры «Высшая математика» СевГУ.

СОДЕРЖАНИЕ

1. Образец выполнения контрольного задания по	
теме «Комплексные числа»	4
2. Задания для самостоятельной работы	24
3. Библиографический список	44

ОБРАЗЕЦ ВЫПОЛНЕНИЯ КОНТРОЛЬНОГО ЗАДАНИЯ ПО ТЕМЕ «КОМПЛЕКСНЫЕ ЧИСЛА»

Комплексным числом называется упорядоченная пара (x; y) действительных чисел.

Алгебраическая форма комплексного числа (x; y) имеет вид

$$z = x + iy$$

где x, y- действительные числа, i- мнимая единица, для которой $i\cdot i=i^2=-1$. Число x называется действительной частью комплексного числа, обозначается $\operatorname{Re} z$, а y- мнимой частью и обозначается $\operatorname{Im} z$. На плоскости ось Ox называется действительной осью, а ось Oy- мнимой осью.

Геометрически комплексное число z = x + iy изображается точкой M(x,y) на координатной плоскости или радиусом-вектором этой точки (вектором, начало которого находится в точке (0;0), а конец в точке M(x,y)).

Сложение, вычитание и умножение комплексных чисел, заданных в алгебраической форме, выполняются по правилам сложения, вычитания и умножения двучленов вида x+iy с заменой каждый раз i^2 на (-1).

Тригонометрическая форма комплексного числа z = x + iy имеет вид:

$$z = r(\cos \varphi + i \sin \varphi), \tag{1}$$

где длину радиус-вектора числа z (модуль) находим по формуле

$$r = |z| = \sqrt{x^2 + y^2}$$
, r — модуль числа z . (2)

 φ – аргумент числа z (φ = Arg z) – это величина угла между радиусом-вектором точки z и положительным направлением оси Ox, причем величина угла считается положительной, если

отсчет ведется против часовой стрелки, и отрицательной, если отсчет ведется по часовой стрелке.

Arg
$$z = \arg z + 2\pi k$$
 $(k = 0, \pm 1, \pm 2,...)$.

 $\arg z$ есть главное значение $\operatorname{Arg} z$, определяемое условиями:

$$-\pi < \arg z \le \pi, \tag{3}$$

$$\arg z = \begin{cases} \arctan \frac{y}{x}, & \text{если } x > 0; \\ \arctan \frac{y}{x} + \pi, & \text{если } x < 0, y \ge 0; \\ \arctan \frac{y}{x} - \pi, & \text{если } x < 0, y < 0. \end{cases}$$
 (4)

Значения аргумента действительных и чисто мнимых чисел лучше находить из геометрической интерпретации чисел.

$$z = x, \quad \arg x = \begin{cases} 0, \text{ если } x > 0; \\ \pi, \text{ если } x < 0. \end{cases}$$

$$z = iy, \quad \arg iy = \begin{cases} \frac{\pi}{2}, & \text{если} \quad y > 0; \\ \frac{\pi}{-2}, & \text{если} \quad y < 0. \end{cases}$$

Показательная форма комплексного числа z=x+iy имеет вид $z=re^{i\varphi}$,

где r и ϕ вычисляются по формулам, приведенным выше.

Пример выполнения задания I.

Найти сумму, разность, произведение и частное комплексных чисел $z_1=3+i$ и $z_2=2i$, изобразить на плоскости данные числа и результаты операций, пользуясь векторным представлением.

 $z_1 + z_2 = (3+i) + 2i = 3+3i$. Изобразим все числа на координатной плоскости.

Геометрические операции сложения (вычитания) выполняются по правилу сложения (вычитания) векторов.

Вектор, соответствующий числу $z_1+z_2=3+3i$ — диагональ параллелограмма, построенного на векторах, соответствующих числам $z_1=3+i$ и $z_2=2i$.

Найдем разность $z_1-z_2=(3+i)-2i=3-i$ и изобразим число $z_1-z_2=3-i$ на плоскости. (Соответствующий вектор параллелен второй диагонали параллелограмма).

Найдем произведение $z_1 \cdot z_2 = (3+i)2i = 6i + 2i^2 = 6i - 2 = -2 + 6i$.

При умножении на $z_2=2i$ вектор, соответствующий числу $z_1=3+i$ повернули против часовой стрелки на угол $\frac{\pi}{2}$ и

растянули вектор в два раза, так как для числа 2i аргумент равен $\frac{\pi}{2}$, а модуль равен 2.

Найдем число $\frac{z_1}{z_2}$. Деление числа $z_1 = x_1 + iy_1$

выполняется по формуле $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z}_2}{z_2 \cdot \overline{z}_2}$ $(z_2 \neq 0)$, где $\overline{z}_2 = x_2 - iy_2$,

сопряженное числу $z_2 = x_2 + i y_2$. В нашем случае для числа $z_2 = 2i$ сопряженным будет $\bar{z}_2 = -2i$.

$$\frac{z_1}{z_2} = \frac{(3+i)(-2i)}{2i(-2i)} = \frac{1-3i}{2}.$$
 (Можно было домножить на $(-i)$).

 $\frac{z_1}{z_2} = \frac{1}{2} - \frac{3}{2}i$, изобразим это число на координатной плоскости.

При делении числа $z_1=3+i$ на число $z_2=2i$ повернули вектор, соответствующий z_1 на угол $\frac{\pi}{2}$ по часовой стрелке и разделили вектор на 2. Из чертежа видно, что модуль уменьшился в 2 раза и произошел поворот на $-\frac{\pi}{2}$.

Пример выполнения задания II.

Вычислить:

$$A = \frac{(i^7 + 1)^2}{(3 + i^9)} + \text{Re}((\overline{2 - 3i})(1 + i)) + \frac{5}{i^8}.$$

Решим пример по действиям. Вычислим $(i^7 + 1)^2$.

Учитывая, что
$$i^n = \begin{cases} 1, & \text{при } n = 4k, \\ i, & \text{при } n = 4k+1, \\ -1, & \text{при } n = 4k+2, \\ -i, & \text{при } n = 4k+3, & n, k \in \mathbb{Z}. \end{cases}$$

 $i^7 = i^{3+4} = i^3 \cdot i^4 = (i)^3 = -i$. выделили в показателе степени слагаемое, кратное четырем, 7=3+4, использовали 4 строку формулы и получили $i^7 = -i$, $i^7 + 1 = -i + 1$.

$$(i^{7}+1)^{2} = (-i+1)^{2} = 1 - 2i + i^{2} = -2i$$

$$3 + i^{9} = 3 + i^{2\cdot 4+1} = 3 + i$$

$$\frac{(i^{7}+1)^{2}}{3 + i^{9}} = \frac{-2i}{3 + i} = \frac{-2i(3-i)}{(3+i)(3-i)} = \frac{-6i + 2i^{2}}{9+1} = \frac{-2 - 6i}{10} = -\frac{1}{5} - \frac{3}{5}i.$$

Вычисляем:

$$Re((2-3i)(1+i)) = Re((2+3i)(1+i)) = Re(-1+5i) = -1.$$

Так как $i^8 = 1$, то $\frac{5}{i^8} = 5$.

$$A = -\frac{1}{5} - \frac{3}{5}i - 1 + 5 = \frac{19}{5} - \frac{3}{5}i.$$

Пример выполнения задания III.

Вычертить область, заданную неравенством:

$$\begin{cases} |z-3+i| \ge 2, & (a) \\ |\operatorname{Re} z| \le 2, & (\delta) \\ -\frac{\pi}{2} \le \arg z \le \frac{\pi}{4}. & (\epsilon) \end{cases}$$

а) Изобразим множество точек, определяемое условием $|z-3+i| \ge 2$.

Так как z = x + iy, то |z-3+i| = |x+iy-3+i| = |(x-3)+i| = |(x

$$\sqrt{(x-3)^2+(y+1)^2} \ge 2$$
.

Возводим обе части неравенства в квадрат (обе части неотрицательные):

$$(x-3)^2 + (y+1)^2 \ge 2^2$$
.

Строим границу области $(x-3)^2 + (y+1)^2 = 4$. Это окружность с центром в точке (3,-1), радиус равен 2.

Множество точек, удовлетворяющих неравенству $(x-3)^2$ +

 $+(y+1)^2 \ge 2^2$ лежат вне круга с границей $(x-3)^2 + (y+1)^2 = 2^2$. Точки, лежащие на окружности $(x-3)^2 + (y+1)^2 = 4$ также удовлетворяют неравенству а).

6) $| \text{Re } z | \le 2$. z = x + iy, Re z = x, $| x | \le 2$, $-2 \le x \le 2$.

в) Неравенству $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{4}$ удовлетворяют точки z, лежащие внугри угла, равного $\frac{3\pi}{4}$ и с вершиной в начале координат $\frac{\pi}{4} - \left(-\frac{\pi}{2}\right) = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}$:

Поскольку искомая область определяется тремя неравенствами, то строим на одной комплексной плоскости множество точек, удовлетворяющее всем трем неравенствам.

Ответом будет область D.

Пример выполнения задания IV.

Изобразить числа z точками на комплексной плоскости, представить их в тригонометрической форме. Для задания а), б), в), г) модуль числа и главное значение аргумента z находим, используя геометрическую интерпретацию чисел.

д)
$$z_5 = -\sqrt{3} + i$$
, e) $z_6 = -i$.

Решение:

$$z = x + iy$$
,

Тригонометрическая форма комплексного числа

$$z = |z| (\cos \varphi + i \sin \varphi)$$
,

показательная форма $z = |z| e^{i\varphi}$.

$$z_1 = 8$$
, $|z_1| = 8$ $\varphi = \arg z$ φ — это угол, который образует радиус-вектор точки z с положительным направлением оси Ox .

Из рисунка видно, что радиус-вектор точки z_1 образует с положительным направлением оси Ox угол $\varphi=0$. Значит, arg $z_1=0$.

Тригонометрическая форма:

$$z_1 = 8 = 8(\cos 0 + i \sin 0)$$

и показательная форма $z_1 = 8e^{0i}$.

б) $z_2 = -7$, $|z_2| = 7$, радиус-вектор точки z_2 образует угол $\varphi = \pi$ с положительным направлением оси $O\!x$, $\arg z_2 = \pi$,

$$-7 = 7(\cos \pi + i \sin \pi), \quad -7 = 7e^{i\pi}.$$

B)
$$z_3 = 5i$$
 $|z_3| = 5$

(точка z_3 находится от начала координат на расстоянии 5 единиц)

$$\arg z_3 = \varphi_3 = \frac{\pi}{2}$$

 $5i = 5(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$ – тригонометрическая форма.

 $5i = 5e^{\frac{\pi}{2}i}$ — показательная форма.

$$\Gamma$$
) $z_4 = -3i$, $|z_4| = 3$

Радиус-вектор точки z_4 образует с положительным направлением

оси
$$Ox$$
 угол $\varphi = -\frac{\pi}{2}$.

$$\arg z_4 = -\frac{\pi}{2}$$

$$3i = 3(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})), \qquad -3i = 3e^{-\frac{\pi}{2}i}.$$

Для заданий д), е) используем формулы (2), (3), (4)

д)
$$z_5 = -\sqrt{3} + i$$

 $|z| = \sqrt{x^2 + y^2}$
 $|z_5| = \sqrt{(-\sqrt{3})^2 + 1^2} = 2$

Так как число расположено во II четверти, то для отыскания аргумента воспользуемся формулой

$$z = x + iy, \qquad x < 0, \quad y > 0,$$

$$\arg z = \varphi = \arctan \frac{y}{x} + \pi$$

Для нашего случая $x = -\sqrt{3}$, y = 1.

$$\varphi = \arctan(-\frac{1}{\sqrt{3}}) + \pi = \pi - \arctan(\frac{\sqrt{3}}{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$$

Представим z_5 в тригонометрической форме:

$$-\sqrt{3} + i = 2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

и в показательной форме $-\sqrt{3} + i = 2e^{\frac{5\pi}{6}i}$.

e)
$$z_6 = 1 - i$$

 $|z_6| = \sqrt{1^2 + (-1)^2}$

Число z расположено в IV четверти, поэтому:

$$\varphi = \arg z_6 = \arctan(-1) = -\arctan 1 = -\frac{\pi}{4}$$
.

Тогда
$$1 - i = \sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})),$$

$$1-i=\sqrt{2}e^{-\frac{\pi}{4}i}.$$

При записи чисел в тригонометрической форме не следует преобразовывать запись $\sqrt{2}(\cos(-\frac{\pi}{4})+i\sin(-\frac{\pi}{4}))$ таким образом $\sqrt{2}(\cos(-\frac{\pi}{4})+i\sin(-\frac{\pi}{4}))=\sqrt{2}(\cos\frac{\pi}{4}-i\sin\frac{\pi}{4})$, так как полученное выражение не будет тригонометрической формой числа 1-i, а просто комплексным числом, равным 1-i. А при различных вычислениях эти преобразования возможны.

Пример выполнения задания V.

Вычислить, пользуясь представлением комплексного числа в тригонометрической форме и формулой Муавра. Решение: При возведении в степень используем формулу Муавра

$$z = |z| (\cos \varphi + i \sin \varphi), \quad z^n = |z|^n (\cos n\varphi + i \sin n\varphi), \quad \forall n \in \mathbb{N}.$$
$$(-2 - 2\sqrt{3}i)^{60}, \quad z = -2 - 2\sqrt{3}i.$$

Представим число z в тригонометрической форме $|z| = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = 4$, так как x < 0, y < 0, то воспользуемся формулой

$$\varphi = \arctan \frac{y}{x} - \pi$$

$$\varphi = \arctan \frac{-2\sqrt{3}}{-2} - \pi = \arctan \sqrt{3} - \pi = \frac{\pi}{3} - \pi = -\frac{2\pi}{3}$$

$$-2 - 2\sqrt{3} = 4(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3})).$$

Тогда используем формулу Муавра $z^n = |z|^n (\cos \varphi + i \sin \varphi)$,

$$(-2 - 2\sqrt{3}i)^{60} = 4^{60}(\cos(-\frac{60 \cdot 2\pi}{3}) + i\sin(-\frac{60 \cdot 2\pi}{3})) =$$

$$= 4^{60}(\cos(-40\pi) + i\sin(-40\pi)) = 4^{60}(1 + i \cdot 0) = 4^{60}.$$

Пример выполнения задания VI.

Представить число $z_1 = \left(\frac{\sqrt{15} + i\sqrt{5}}{-2 - 2i}\right)^{24}$ в показательной форме.

Решение:

Представим комплексные числа $\sqrt{15}+\sqrt{5}i$ и -2-2i в показательной форме | $\sqrt{15}+\sqrt{5}i$ |= $\sqrt{15+5}=\sqrt{20}=2\sqrt{5}$.

Найдем аргумент этого числа, расположенного в І четверти

$$\varphi = \operatorname{arctg} \frac{\sqrt{5}}{\sqrt{15}} = \operatorname{arctg} \frac{1}{\sqrt{3}} = \frac{\pi}{6}; \qquad \sqrt{15} + \sqrt{5}i = 2\sqrt{5}e^{\frac{\pi}{6}i}.$$

$$|-2-2i| = \sqrt{4+4} = 2\sqrt{2}$$
.

Число -2-2i расположено в III четверти

$$\varphi = \operatorname{arctg} \frac{-2}{-2} - \pi = \operatorname{arctg} 1 - \pi = \frac{\pi}{4} - \pi = -\frac{3\pi}{4}; \quad -2 - 2i = 2\sqrt{2}e^{-\frac{3\pi}{4}i}.$$

$$\frac{\sqrt{15} + \sqrt{5}i}{-2 - 2i} = \frac{2\sqrt{5}e^{\frac{\pi}{6}i}}{2\sqrt{2}e^{-\frac{3\pi}{4}i}} = \sqrt{\frac{5}{2}}e^{\left(\frac{\pi}{6} + \frac{3\pi}{4}\right)i} = \sqrt{\frac{5}{2}}e^{\frac{11\pi}{12}i}$$

$$z_1 = \left(\frac{\sqrt{15} + \sqrt{5}i}{-2 - 2i}\right)^{24} = \left(\sqrt{\frac{5}{2}}e^{\frac{11\pi}{12}i}\right)^{24} = \left(\frac{5}{2}\right)^{12}e^{22\pi i}.$$

Не следует преобразовывать число $\frac{\sqrt{15} + i\sqrt{5}}{-2 - 2i}$, умножая

числитель и знаменатель на выражение, сопряженное знаменателю. Это может затруднить решение задачи.

Пример решения задачи VII.

Найти действительные решения уравнения

$$(2+3i)x + (4-i)y = 8+5i.$$

Решение: Выделим в левой части уравнения действительную и мнимую части

$$(2+3i)x + (4-i)y = (2x+4y) + i(3x - y).$$

Тогда
$$(2x+4y)+i(3x-y)=8+5i$$
.

Согласно определению равенства двух комплексных чисел получаем систему:

$$\begin{cases} 2x + 4y = 8, \\ 3x - y = 5. \end{cases}$$

Решая эту систему, находим x = 2, y = 1.

Пример решения задачи VIII.

Найти все решения уравнения $z^4 + 81i = 0$ и изобразить их точками на комплексной плоскости.

Решение:

Запишем уравнение $z^4 = -81i$.

Для отыскания корней уравнения нужно извлечь корень четвертой степени из числа -81i. Представим число в тригонометрической форме (можно и в показательной). Используем геометрическую интерпретацию этого числа.

Расстояние от начала координат до точки -81i составляет 81 единицу, т.е. |-81i|=81. $\varphi=\arg z=-\frac{\pi}{2}$ (Исходя из рисунка).

Корень n-й степени из комплексного числа z найдем по формуле

$$\sqrt[n]{z} = \sqrt[n]{|z|}(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}), \ k = 0,1,...,n-1$$

Для нашей задачи

$$\sqrt[4]{-81i} = \sqrt[4]{81}(\cos\frac{-\frac{\pi}{2} + 2\pi k}{4} + i\sin\frac{-\frac{\pi}{2} + 2\pi k}{4}) \qquad k = 0,1,2,3$$

$$k = 0$$
, $z_0 = 3(\cos(-\frac{\pi}{8}) + i\sin(-\frac{\pi}{8}))$

$$k = 1$$
, $z_1 = 3(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8})$

$$k = 2$$
, $z_2 = 3(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8})$

$$k = 3$$
, $z_3 = 3(\cos\frac{11\pi}{8} + i\sin\frac{11\pi}{8})$

Изобразим полученные значения z_0, z_1, z_2, z_3 на комплексной плоскости. Проведем такие преобразования:

$$z_0 = 3(\cos\left(-\frac{\pi}{8}\right) + i\sin\left(-\frac{\pi}{8}\right)) = 3(\cos\frac{\pi}{8} - i\sin\frac{\pi}{8}) = 3\cos\frac{\pi}{8} - i3\sin\frac{\pi}{8}.$$

Так как $3\cos\frac{\pi}{8} > 0$, то число z_0 расположено в IV четверти.

$$z_1 = 3(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}),$$
 $\cos\frac{3\pi}{8} > 0,$ $\sin\frac{3\pi}{8} > 0,$ число z_1

$$z_2 = 3(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8}), \qquad \cos\frac{7\pi}{8} < 0, \quad \sin\frac{7\pi}{8} > 0, \quad$$
число z_2

$$z_3=3(\cos\frac{11\pi}{8}+i\sin\frac{11\pi}{8}), \quad \cos\frac{11\pi}{8}<0, \quad \sin\frac{11\pi}{8}<0, \quad$$
 число z_3 расположено в III четверти.

Значения z_0, z_1, z_2, z_3 расположены в вершинах правильного четырехугольника, вписанного в окружность радиуса 3, с центром в начале координат.

Пример решения задачи IX.

Решить биквадратное уравнение $z^4 + 8z^2 + 1 = 0$. Решение.

Введем новую переменную $z^2 = t$. Получим

$$t^2 + 8t + 1 = 0$$
.

Решая это квадратное уравнение, найдем

$$t_1 = -1, \ t_2 = -7.$$

Возвратимся к прежней переменной

$$\begin{bmatrix} z^2 = -1 \\ z^2 = -7 \end{bmatrix}$$
 тогда $\begin{bmatrix} z_{1,2} = \pm \sqrt{-1} = \pm i, \\ z_{3,4} = \sqrt{-7} = \pm i\sqrt{7}. \end{bmatrix}$

Otbet: $\pm i$, $\pm i\sqrt{7}$

Пример решения задачи Х.

Найти все решения корня $\sqrt[3]{-2+2i}$.

Решение:

Представим число z = -2 + 2i в показательной форме

$$z = |z| e^{i\varphi}$$

$$|z| = \sqrt{(-2)^2 + 2^2} = \sqrt{8} = 2\sqrt{2} = 2^{\frac{3}{2}}.$$

Так как число z = -2 + 2i располо-

Так как число
$$z = -2 + 2i$$
 расположено во II четверти, то
$$\arg z = \pi + \arctan\left(\frac{2}{-2}\right) = \pi - \arctan 1.$$

$$\arg z = \pi - \frac{\pi}{4} = \frac{3\pi}{4}, \quad \varphi = \frac{3\pi}{4},$$

$$-2 + 2i = 2^{\frac{3}{2}} e^{i\frac{3\pi}{4}}.$$

Найдем все значения корня, используя формулу

$$w_k = \sqrt[n]{|z|} e^{i\frac{\varphi + 2\pi k}{n}}, \quad k = 0,1,2...n-1 \qquad \varphi = \arg z.$$

Для нашего случая k = 0,1,2.

$$\begin{split} w_k &= \sqrt[3]{2^{\frac{3}{2}}} e^{i\frac{3\pi}{4} + 2\pi k}, \\ k &= 0, \quad w_0 = \sqrt{2} e^{\frac{3\pi}{12}i} = \sqrt{2} e^{\frac{\pi}{4}i}, \end{split}$$

$$k = 1$$
, $w_1 = \sqrt{2}e^{i\frac{\left(\frac{3\pi}{4} + 2\pi\right)}{3}} = \sqrt{2}e^{i\frac{11\pi}{12}}$,

$$k=2, \quad w_2=\sqrt{2}e^{irac{\left(rac{3\pi}{4}+2\pi\cdot 2
ight)}{3}}=\sqrt{2}e^{irac{19\pi}{12}}.$$

Можно представить числа w_0, w_1, w_2 в тригонометрической форме:

$$w_0 = \sqrt{2}e^{i\frac{\pi}{4}} = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) = \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 1 + i,$$

$$w_1 = \sqrt{2}e^{i\frac{11\pi}{12}} = \sqrt{2}(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12})$$
. Так как $\frac{\pi}{2} < \frac{11\pi}{2} < \pi$, то

число w_1 расположено во II четверти.

$$w_2=\sqrt{2}e^{irac{19\pi}{12}}=\sqrt{2}(\cosrac{19\pi}{12}+i\sinrac{19\pi}{12})\,, \qquad rac{3\pi}{2}<rac{19\pi}{2}<2\pi,$$
 число

 w_2 расположено в IV четверти. Так как модули чисел w_0, w_1, w_2 равны между собой и равны $\sqrt{2}$, то эти числа располагаются на окружности радиуса $\sqrt{2}$ с центром в начале координат в вершинах правильного треугольника, вписанного в эту окружность.

Пример решения задачи XI.

При решении задачи №11 следует помнить, что z = x + iy, $\bar{z} = x - iy$, знать определение модуля z, Re z, Im z; затем, используя и навыки действий с комплексными числами и элементарные тождественные преобразования функций, получить уравнение кривой.

Пример. Определить, какая линия определяется уравнением

$$|z| - \text{Re } z = 12.$$

Так как |
$$z \models \sqrt{x^2 + y^2}$$
, Re $z = x$, получим $\sqrt{x^2 + y^2} - x = 12 \Rightarrow \sqrt{x^2 + y^2} = x + 12$.

Так как $\sqrt{x^2+y^2}$ – величина неотрицательная, то запишем ограничения $x+12 \ge 0$. После этого можно возвести обе части равенства в квадрат.

$$x^{2} + y^{2} = x^{2} + 24x + 144 \Rightarrow 24x = y^{2} - 144$$

 $y^{2} = 24x + 144$

$$y^2 = 24(x+6)$$

Это парабола, осью симметрии является ось Ox.

Пример решения задачи XII.

Дан вектор изображающий комплексное число z_1 . Его растянули в два раза и повернули на угол $\frac{\pi}{2}$. Найти комплексное число z , соответствующее новому вектору

$$z_1 = 1 + i$$
, $t = 2$, $\varphi = \frac{\pi}{2}$.

Решение.

Строим радиус-вектор числа $z_1 = 1 + i$. Растягиваем его в два раза и поворачиваем на угол $\frac{\pi}{2}$.

Получим вектор z. Ему соответствует число z = -2 + 2i.

 \boldsymbol{x}

Эту задачу можно решить иначе.

При умножении чисел в тригонометрической или показательной формах их модули перемножаются, аргументы складываются. Геометрически умножение одного комплексного числа на другое комплексное число, отличное от нуля, означает поворот радиуса-вектора числа z_1 против часовой стрелки на угол, равный аргументу числа z_2 и умножение этого вектора на модуль числа z_2 . Представим число $z_1 = 1 + i$ в тригонометрической и показательной формах.

$$|z_1| = \sqrt{2}, \quad \varphi_1 = \arg z_1 = \arg \frac{1}{1} = \arg 1 = \frac{\pi}{4}, \qquad \varphi_1 = \frac{\pi}{4}.$$

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right) = \sqrt{2}e^{i\frac{\pi}{4}}.$$

Найдем число z . Учитывая условие задачи $|z_2|=2$, нужно растянуть вектор в два раза; аргумент z_2 будет равен $\varphi_2=\frac{\pi}{2}$, а

$$z_2 = 2e^{i\frac{\pi}{2}}.$$

Тогда
$$z=z_1z_2=\sqrt{2}e^{i\frac{\pi}{4}}2e^{i\frac{\pi}{2}}=2\sqrt{2}e^{\left(\frac{\pi}{4}+\frac{\pi}{2}\right)i}=2\sqrt{2}e^{i\frac{3\pi}{4}}.$$

Запишем полученное число в алгебраической форме, используя формулу Эйлера

$$e^{i\varphi} = \cos\varphi + i\sin\varphi.$$

$$2\sqrt{2}e^{i\frac{3\pi}{4}} = 2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\sqrt{2}\left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = -2 + 2i,$$

так как
$$\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$.

При выполнении этого задания могут возникнуть трудности при отыскании аргумента числа z. В этом случае лучше воспользоваться первым способом решения задачи.

Например.

Дано число $z_1 = 2 - i$. Вектор, соответствующий этому числу растянули в $\sqrt{5}$ раз и повернули на угол π .

Отмечаем число z_1 на комплексной плоскости и строим радиус-вектор точки z_1 . Поворачиваем вектор на угол π . Расположение точки z находим, учитывая, что длина нового вектора должна быть равна 5.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задача I.. Найти сумму, разность, произведение и частное комплексных чисел z_1 и z_2 , изобразить на плоскости данные числа и результаты операций, пользуясь векторным представлением.

1.
$$z_1 = -2 + i$$
, $z_2 = 3 - i$;

2.
$$z_1 = 2 + 3i$$
, $z_2 = -2 - 3i$;

3.
$$z_1 = 1 - 2i$$
, $z_2 = -3 - 2i$;

4.
$$z_1 = 1 + 2i$$
, $z_2 = -1 + 2i$;

5.
$$z_1 = 2 - 2i$$
, $z_2 = -1 + i$;

6.
$$z_1 = 1 - 4i$$
, $z_2 = -2 - 3i$;

7.
$$z_1 = -2 + 3i$$
, $z_2 = 1 + i$;

8.
$$z_1 = 2 + 3i$$
, $z_2 = -3 - i$;

9.
$$z_1 = -1 + 3i$$
, $z_2 = 1 - 2i$;

10.
$$z_1 = 3 + i$$
, $z_2 = -1 + 2i$;

11.
$$z_1 = 1 - i$$
, $z_2 = -1 - 2i$;

12.
$$z_1 = 5 + 3i$$
, $z_2 = 1 - i$;

13.
$$z_1 = -5 - 2i$$
, $z_2 = 3 + i$;

14.
$$z_1 = 6 + i$$
, $z_2 = -1 + i$;

15.
$$z_1 = 2 + i$$
, $z_2 = 3 - i$;

16.
$$z_1 = 1 + 4i$$
, $z_2 = -3 + i$;

17.
$$z_1 = 3 + 2i$$
, $z_2 = -2 - 4i$;

18.
$$z_1 = -2 + 4i$$
, $z_2 = 1 + 3i$;

19.
$$z_1 = -1 - 5i$$
, $z_2 = -1 + 3i$;

20.
$$z_1 = -2 + 4i$$
, $z_2 = -1 - 2i$;

21.
$$z_1 = -3 + i$$
, $z_2 = 2 + 3i$;

22.
$$z_1 = 3 - i$$
, $z_2 = -4 - i$;

23.
$$z_1 = -1 + 4i$$
, $z_2 = 2 - 3i$;

24.
$$z_1 = -2 - 3i$$
, $z_2 = 2 + i$;

25.
$$z_1 = 2 - 4i$$
, $z_2 = -3 + i$;

26.
$$z_1 = 1 - 5i$$
, $z_2 = -1 + 3i$;

27.
$$z_1 = 2 + 3i$$
, $z_2 = 4 - i$;

28.
$$z_1 = 5 - 2i$$
, $z_2 = -1 + 2i$;

29.
$$z_1 = 2 - 3i$$
, $z_2 = 3 - 2i$;

30.
$$z_1 = 1 + 5i$$
, $z_2 = -i + 2$.

Задача II. Выполнить действия и представить результат в алгебраической, тригонометрической и показательной формах.

1.
$$4\operatorname{Re}\left(\frac{1-i}{\sqrt{3}+i}\right)+(i^{\frac{6}{6}}-\sqrt{3}i);$$

2.
$$\operatorname{Im}\left(\frac{1+i}{\sqrt{3}-i}\right) + (\overline{i-1})^2 + (1+i)\cdot i^3$$
;

3.
$$5i^{5}\left(\frac{\overline{1-i}}{1+2i}\right) + \text{Re}(2-i)^{2};$$

4.
$$\frac{(1-2i)(2+i)^2}{5i}$$
 + Im $(2-i)^2$ + i^9 ;

5.
$$\frac{(1-i)^3}{1+i} + (\overline{2-i}) + \text{Im}(i^7);$$

6.
$$\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^2 \cdot \frac{(1-i)^2}{i^3} - \text{Re}(\sqrt{3}+i)^2;$$

7.
$$(-1+i\sqrt{3})^3 \cdot \left(\frac{i}{2}\right) \cdot \text{Im}(1-i)^2$$
;

8.
$$\left(\frac{2-i}{1+2i}\right)^2 \cdot (-2-i) \operatorname{Im}(1+2i)^2 + 10i^9;$$

9.
$$\frac{\text{Im}(\sqrt{3}-i)^2}{(\sqrt{3}+i)^2} + \frac{(-\sqrt{3}+i^3)}{2}i^5;$$

10.
$$\frac{\text{Re}(2-3i)^2+(\overline{5i})}{1-i}i^{12}$$
;

11.
$$\frac{\operatorname{Im}(\overline{1-i})^3 \operatorname{Re}(2+3i)^2}{2+i} + 2i^8;$$

12.
$$\frac{(2-i)^3 - (\overline{2+i}) - 10}{\text{Re}(2+i)^2 + 2};$$

13.
$$\left(\frac{1-i}{1+i}\right)^3 + \text{Im}(1+i)^2 - \text{Re}(i)^8;$$

14.
$$\left(\frac{i^5+2}{i^3+1}\right)^2 + \text{Re}(-2+i)^2 + \frac{1}{4}i^3$$
;

15.
$$\frac{(1-i)^3 - (1+i)^3}{i^4 \operatorname{Re}(2-i)} + (\overline{3-5i});$$

16.
$$\frac{(1+2i)^2(1-2i)}{(2+i)} - \frac{5}{3}\operatorname{Re}(2-i)^2$$
;

17.
$$7 \operatorname{Im} \frac{(1+i)(2+i)}{3-i} + (\overline{3-2i})^2$$
;

18.
$$\frac{(2i+i^2)^2}{\text{Re}(2+i)^3} + (\frac{1}{2}-i);$$

19.
$$\frac{\text{Im}(1-3i)}{1} + (\overline{1+i})^3$$
;

20. Re
$$\frac{(2-i^3)(\overline{3-i})}{1+i} + (2+3i)^3$$
;

21.
$$\frac{(1-i)^3 \operatorname{Re}(2-i)^2}{(1+i)^3 \operatorname{Im}(2+i)} i^7$$
;

22.
$$\frac{(2-i)(1-2i)}{\text{Im}(1-i)^2} - (i^2 + \frac{i^3}{2});$$

23.
$$\frac{(\sqrt{2}+i)^2}{(1-i\sqrt{2})^2} \cdot i^5 + \text{Re}(\sqrt{2}-i)^2;$$

24.
$$\left(\frac{1}{\sqrt{3}} - i\sqrt{3}\right)^2 - \frac{(3+i)i^9}{\text{Im}(2+i)^2 - 1};$$

25.
$$\frac{5(i^3-1)^2}{(2+i^3)} + \text{Re}(\sqrt{3}+i)^2$$
;

26.
$$\frac{[\text{Im}(3+i)^{2}](\sqrt{3}+i)}{1-i\sqrt{3}}+i^{13}\operatorname{Re}(5i-\sqrt{3});$$

27. Re
$$\left(\frac{(3-i)(\overline{2+i})}{1+i}\right) + i^{21} \operatorname{Im}(2-3i)^2$$
;

28.
$$\left(\frac{3+i}{1-i}\right)^2 (4-i) \operatorname{Im}(2+i)^2 + 5i^7;$$

29.
$$(2-i)^3 \operatorname{Re}(\sqrt{3}i-1) + i^{25} \operatorname{Im}(4-1)^2$$
;

30.
$$(i^9 + i\sqrt{3}) \operatorname{Im} \left(\frac{(2-i)(3+i)}{4+i} \right) + i^{17} \operatorname{Re}(5-3i)$$
.

Задача III. Вычертить область, заданную неравенствами.

1.
$$\begin{cases} z \cdot \overline{z} \le 2; \\ \text{Re } z < 1; \\ \text{Im } z > -1. \end{cases}$$

$$\begin{cases} z \cdot \overline{z} \le 2; \\ \text{Re } z < 1; \\ \text{Im } z > -1. \end{cases}$$

$$\begin{vmatrix} |z - 2i| \ge 1; \\ \text{Im } z > 2; \\ 0 < \arg z < \frac{3\pi}{4}. \end{aligned}$$

3.
$$\begin{cases} 1 < z \cdot \overline{z} < 3; \\ \text{Re } z > 0; \\ 0 \le \text{Im } z \le 1. \end{cases}$$

6.
$$\begin{cases} 1 \le |z+2+i| < 2; \\ \text{Im } z < 0; \\ -\frac{5\pi}{6} < \arg z < -\frac{\pi}{2}. \end{cases}$$

4. $\begin{cases} |z-2-i| \ge 1; \\ 1 \le \operatorname{Re} z < 3; \\ 0 < \operatorname{Im} z \le 3. \end{cases}$

5.
$$\begin{cases} |z-1| > 1; \\ -3 \le \text{Im } z < 0; \\ 0 < \text{Re } z < 3. \end{cases}$$

7.
$$\begin{cases}
|z - 2i| \le 2; \\
\operatorname{Im} z > 0; \\
0 < \operatorname{arg} z < \frac{2\pi}{3}.
\end{cases}$$

9.
$$\begin{cases} |z+i| > 1; \\ \text{Re } z > 0; \\ -\frac{\pi}{3} < \arg z < \frac{\pi}{4}. \end{cases}$$

11.
$$\begin{cases} |z - i| < 2; \\ \text{Im } z \le 0; \\ -\frac{\pi}{2} \le \arg z \le 0. \end{cases}$$

13.
$$\begin{cases} |z-1+i| \le 3; \\ \operatorname{Re} z > 1; \\ -\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}. \end{cases}$$

15.
$$\begin{cases} |z| \ge 2; \\ -1 \le \operatorname{Im} z < 2; \\ -\frac{\pi}{4} \le \arg z \le \frac{3\pi}{4}. \end{cases}$$

17.
$$\begin{cases} |z-i| \le 3; \\ \operatorname{Im} z \ge 1; \\ \frac{\pi}{4} < \arg z < \frac{\pi}{2}. \end{cases}$$

8.
$$\begin{cases} |z-2| \ge \frac{1}{2}; \\ |\operatorname{Im} z| \le 1; \\ -\frac{\pi}{2} < \operatorname{arg} z < \frac{\pi}{2}. \end{cases}$$

10.
$$\begin{cases} 1 < |z - 1| < 2; \\ \text{Re } z \ge 0; \\ -\frac{\pi}{4} < \arg z < \frac{3\pi}{4}. \end{cases}$$

12.
$$\begin{cases} |z-2-i| \le 2; \\ 1 < \text{Re } z < 2; \\ \text{Im } z \ge 1. \end{cases}$$

14.
$$\begin{cases} 1 \le |z - 2 + i| < 2; \\ \operatorname{Im} z \ge 0; \\ \frac{\pi}{6} \le \arg z < \frac{\pi}{3}. \end{cases}$$

16.
$$\begin{cases} |z+1-i| \le 2; \\ -2 \le \text{Re } z < 0; \\ 0 < \arg z \le \pi. \end{cases}$$

18.
$$\begin{cases} |z - i| \le 2; \\ 0 < \text{Re } z < 2; \\ -\frac{\pi}{2} < \arg z < \frac{\pi}{3}. \end{cases}$$

19.
$$\begin{cases} |z-1| < 2; \\ | \text{Re } z | \le 3; \\ -\pi < \arg z \le \frac{\pi}{2}. \end{cases}$$

20.
$$\begin{cases} |z + 2i| > 1; \\ \text{Im } z < 0; \\ -\frac{3\pi}{4} < \arg z < 0. \end{cases}$$

21.
$$\begin{cases} |z-3| \le 2; \\ 0 \le \arg z < \frac{1}{2}; \\ \text{Re } z > 2. \end{cases}$$

22.
$$\begin{cases} |z + 2i| > 1; \\ \text{Im } z > 2; \\ 0 < \arg z < \frac{3\pi}{4}. \end{cases}$$

23.
$$\begin{cases} |z - i| < 3; \\ \text{Re } z < 2; \\ 0 \le \arg z \le \frac{\pi}{3}. \end{cases}$$

24.
$$\begin{cases} 1 \le |z - 1| \le 3; \\ -1 \le \text{Re } z < 2; \\ -\frac{\pi}{2} < \arg z < -\pi. \end{cases}$$

25.
$$\begin{cases} |z-1| \le 3; \\ 0 \le \operatorname{Im} z \le 3; \\ 0 \le \operatorname{arg} z \le \frac{3\pi}{4}. \end{cases}$$

26.
$$\begin{cases} |z-2+i| < 2; \\ \text{Im } z < 0; \\ -\frac{\pi}{3} \le \arg z < 0. \end{cases}$$

27.
$$\begin{cases} 1 \le |z - i| < 3; \\ \text{Re } z > -1; \\ -\frac{\pi}{2} < \arg z < \pi. \end{cases}$$

28.
$$\begin{cases} |z - 2 + 2i| \ge 1; \\ 1 > \text{Re } z < 2; \\ -\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}. \end{cases}$$

29.
$$\begin{cases} |z-2+i| > 1; \\ |\operatorname{Im} z| \geq -3; \\ -\frac{\pi}{3} \leq \arg z \leq \pi. \end{cases}$$

30.
$$\begin{cases} |z+i| > 2; \\ |\text{Im } z| < 1; \\ -\frac{\pi}{2} < \arg z \le \pi. \end{cases}$$

Задача IV. Изобразить числа точками на комплексной плоскости, представить их в тригонометрической и показательной формах. Для заданий а), б), в), г) главное значение аргумента находим, используя геометрическую интерпретацию чисел.

1. a)
$$z_1 = -3$$
, б) $z_2 = 5$, в) $z_3 = 4i$, г) $z_4 = -7i$, д) $z_5 = 1 - i\sqrt{3}$, е) $z_6 = -2 - 2i$.

2. a)
$$z_1=2,$$
 6) $z_2=-8,$ B) $z_3=3i,$ г) $z_4=-5i,$ д) $z_5=-\sqrt{3}-i,$ e) $z_6=-6+6i.$

3. a)
$$z_1 = -4$$
, б) $z_2 = 3$, в) $z_3 = -2i$, г) $z_4 = 7i$, д) $z_5 = 2\sqrt{3} - 2i$, е) $z_6 = 4 - 4i$.

4. a)
$$z_1 = -2$$
, б) $z_2 = 4$, в) $z_3 = 6i$, г) $z_4 = -3i$, д) $z_5 = -3 + 3i$, е) $z_6 = -2 + i\sqrt{3}$.

5. a)
$$z_1 = -5$$
, б) $z_2 = 6$, в) $z_3 = 2i$, г) $z_4 = -8i$, д) $z_5 = -1 + i\sqrt{3}$, е) $z_6 = -3 - 3i$.

6. a)
$$z_1 = -7$$
, b) $z_2 = 6$, b) $z_3 = -5i$, г) $z_4 = 7i$, d) $z_5 = 2 - 2i$, e) $z_6 = -3\sqrt{3} + i3$.

7. a)
$$z_1 = -6$$
, б) $z_2 = 9$, в) $z_3 = -4i$, г) $z_4 = 8i$, д) $z_5 = \sqrt{3} - i$, е) $z_6 = -5 - 5i$.

8. a)
$$z_1 = 1,5$$
, б) $z_2 = -9$, в) $z_3 = -9i$, г) $z_4 = 7,5i$, д) $z_5 = -2 - 2i\sqrt{3}$, e) $z_6 = 6 - 6i$.

9. a)
$$z_1 = -0.5$$
, б) $z_2 = 10$, в) $z_3 = -6i$, г) $z_4 = 7i$, д) $z_5 = 3 - 3i$, е) $z_6 = -\sqrt{5} + i\sqrt{15}$.

10. a)
$$z_1 = 9$$
, б) $z_2 = -2.5$, в) $z_3 = -1.5i$, г) $z_4 = 7.5i$, д) $z_5 = -7 - 7i$, е) $z_6 = -\sqrt{6} + i\sqrt{2}$.

11. a)
$$z_1 = 3.5$$
, б) $z_2 = -5$, в) $z_3 = 8i$, г) $z_4 = 2.5i$, д) $z_5 = 4.5 - 4.5i$, е) $z_6 = -4\sqrt{3} + 4i$.

д)
$$z_5 = -4 - 4i$$
, e) $z_6 = -\sqrt{15} + i\sqrt{5}$.

13. a)
$$z_1 = -4.5$$
, 6) $z_2 = 4$, B) $z_3 = -8i$, Γ) $z_4 = 5.5i$,

д)
$$z_5 = 7 - 7i$$
, e) $z_6 = \sqrt{5} - i\sqrt{15}$.

14. a)
$$z_1 = 5.5$$
, б) $z_2 = -2$, в) $z_3 = 3i$, г) $z_4 = -2.5i$, д) $z_5 = -1 - i\sqrt{3}$, е) $z_6 = -4.5 - i4.5$.

15. a)
$$z_1 = -5.5$$
, б) $z_2 = 3$, в) $z_3 = 6i$, г) $z_4 = -2.5i$, д) $z_5 = -2\sqrt{3} - 2i$, е) $z_6 = \sqrt{5} + i\sqrt{15}$.

16. a)
$$z_1 = -7.5$$
, б) $z_2 = 4.5$, в) $z_3 = 10i$, г) $z_4 = -3.5i$, д) $z_5 = -1.5 + 1.5i$, е) $z_6 = -\sqrt{5} - i\sqrt{15}$.

17. a)
$$z_1 = -4$$
, б) $z_2 = 8.5$, в) $z_3 = -6i$, г) $z_4 = 1.5i$, д) $z_5 = -6 - 6i$, е) $z_6 = \sqrt{6} - i\sqrt{3}$.

18. a)
$$z_1 = 5$$
, б) $z_2 = -10$, в) $z_3 = -4i$, г) $z_4 = 6,5i$, д) $z_5 = -7 + 7i$, e) $z_6 = 3\sqrt{3} + i3$.

19. a)
$$z_1=2$$
, б) $z_2=-8,5$, в) $z_3=-9i$, г) $z_4=5,5i$, д) $z_5=-4+4i$, е) $z_6=-\sqrt{6}-i\sqrt{3}$.

20. a)
$$z_1 = 6.5$$
, б) $z_2 = -1.5$, в) $z_3 = 8i$, г) $z_4 = -5.5i$, д) $z_5 = -4.5 + i4.5$, е) $z_6 = 3 - i3\sqrt{3}$.

21. a)
$$z_1 = -9.5$$
, б) $z_2 = 2.5$, в) $z_3 = 10i$, г) $z_4 = -2.5i$, д) $z_5 = 1.5 - 1.5i$, е) $z_6 = -4\sqrt{3} - 4i$.

22. a)
$$z_1 = -8$$
, б) $z_2 = 3.5$, в) $z_3 = 9i$, г) $z_4 = -2.5i$, д) $z_5 = -3.5 + 3.5i$, е) $z_6 = 2 + i2\sqrt{3}$.

23. a)
$$z_1 = 7$$
, б) $z_2 = -5.5$, в) $z_3 = -8i$, г) $z_4 = 4.5i$, д) $z_5 = 2.5 + 2.5i$, е) $z_6 = -3 + i3\sqrt{3}$.

24. a)
$$z_1=-3$$
, б) $z_2=7.5$, в) $z_3=-2i$, г) $z_4=5i$, д) $z_5=-1.5-1.5i$, е) $z_6=3\sqrt{3}-3i$.

25) a)
$$z_1 = 4$$
; b) $z_2 = -6,5$; b) $z_3 = -9i$; r) $z_4 = 1,5i$; d) $z_5 = -2\sqrt{3} + 2i$; e) $z_6 = 5 - 5i$.

26) a)
$$z_1 = -6$$
; б) $z_2 = 4.5$; в) $z_3 = -2i$; г) $z_4 = 3.5i$; д) $z_5 = -2 + 2i$; e) $z_6 = -3\sqrt{3} - 3i$.

27) a)
$$z_1 = 7.5$$
; б) $z_2 = -10$; в) $z_3 = -1.5i$; г) $z_4 = 2.5i$; д) $z_5 = -\sqrt{3} + i$; e) $z_6 = 2.5 - 2.5i$.

28) a)
$$z_1 = -9$$
; б) $z_2 = 9.5$; в) $z_3 = 4i$; г) $z_4 = -7i$; д) $z_5 = 2 - i \cdot 2\sqrt{3}$; e) $z_6 = -5 + 5i$.

29) a)
$$z_1 = -3.5$$
; б) $z_2 = 6.5$; в) $z_3 = -10i$; г) $z_4 = 5.5i$; д) $z_5 = -2.5 - i \cdot 2.5$; e) $z_6 = -3 - i \cdot 3\sqrt{3}$.

30) a)
$$z_1 = 9$$
; б) $z_2 = -4,5$; в) $z_3 = -7i$; г) $z_4 = 2,5i$; д) $z_5 = -3,5 - i \cdot 3,5$; e) $z_6 = \sqrt{6} + i\sqrt{2}$.

Задача V. Вычислить, пользуясь представлением комплексного числа в тригонометрической форме и формулой Муавра.

1)
$$(-2+2i)^{10}$$
; 2) $(-\sqrt{12}-2i)^{20}$; 3) $(\sqrt{2}-\sqrt{6}i)^8$;

4)
$$(3\sqrt{3} + 9i)^{15}$$
; 5) $(-\sqrt{6} + i\sqrt{2})^{18}$; 6) $(5-5i)^{20}$;

7)
$$(6\sqrt{3}-6i)^{35}$$
: 8) $(-3-3\sqrt{3}i)^{24}$: 9) $(-4-4i)^{22}$:

10)
$$(-\sqrt{2} + i\sqrt{2})^{10}$$
; 11) $(4+4i)^{44}$; 12) $(\sqrt{3}-i)^{48}$;

13)
$$(-6+2\sqrt{3}i)^{18}$$
; 14) $(\sqrt{3}+3i)^{27}$; 15) $(4-4\sqrt{3}i)^{33}$;

16)
$$(-7+7i)^{52}$$
; 17) $(-2\sqrt{3}-2i)^{42}$; 18) $(-3-i\sqrt{3})^{40}$;

19)
$$(8+8\sqrt{3}i)^{45}$$
; 20) $(-12-12i)^{28}$; 21) $(1-i\sqrt{3})^{51}$;

22)
$$(-9+9i)^{48}$$
; 23) $(11-11i)^{34}$; 24) $(-5-5\sqrt{3}i)^{45}$;

25)
$$(\sqrt{2} - i\sqrt{2})^{66}$$
; 26) $(-1 + i\sqrt{3})^{54}$; 27) $(\sqrt{2} - \sqrt{6}i)^{21}$;

28)
$$(\sqrt{3}-i\sqrt{3})^{60}$$
; 29) $(-\sqrt{3}+i)^{28}$; 30) $(-5\sqrt{3}-15)^{39}$;

Задача VI. Представить числа в показательной форме.

1.
$$z_1 = \frac{-2\sqrt{3} + 2i}{1+i}$$
, $z_2 = \left(\frac{-4+4i}{\sqrt{3}-i}\right)^{12}$;

2.
$$z_1 = \frac{-5+5i}{1+\sqrt{3}i}$$
, $z_2 = \left(\frac{6-i6\sqrt{3}}{-5-5i}\right)^{20}$;

3.
$$z_1 = \frac{2\sqrt{3} + 2i}{-3 + 3i}$$
, $z_2 = \left(\frac{-1 + i\sqrt{3}}{2 + 2i}\right)^{28}$;

4.
$$z_1 = \frac{\sqrt{3} - i}{-2 - 2i}$$
, $z_2 = \left(\frac{-\sqrt{6} + i\sqrt{3}}{-4 - 4i}\right)^{24}$;

5.
$$z_1 = \frac{-5\sqrt{3} - 15i}{3 - 3i}$$
, $z_2 = \left(\frac{3\sqrt{3} + 9i}{-2 + 2i}\right)^{20}$;

6.
$$z_1 = \frac{-3 + i\sqrt{3}}{2 - 2i}$$
, $z_2 = \left(\frac{-12 + 12i}{\sqrt{2} - i\sqrt{6}}\right)^{12}$;

7.
$$z_1 = \frac{5 - 5i}{2 + 2\sqrt{3}i}$$
, $z_2 = \left(\frac{\sqrt{3} - i\sqrt{3}}{4 + 4i}\right)^{20}$;

8.
$$z_1 = \frac{-\sqrt{3} + i3}{1 - i}$$
, $z_2 = \left(\frac{-8 + i8\sqrt{3}}{-7 - 7i}\right)^{10}$;

9.
$$z_1 = \frac{4 + 4\sqrt{3}i}{-1 - i}$$
, $z_2 = \left(\frac{-\sqrt{2} + i\sqrt{6}}{3 + 3i}\right)^{24}$;

10.
$$z_1 = \frac{-1+i}{3\sqrt{3}+3i}$$
, $z_2 = \left(\frac{-5\sqrt{3}+15i}{4-4i}\right)^{28}$;

11.
$$z_1 = \frac{2 - 2\sqrt{3}i}{-1 + i}$$
, $z_2 = \left(\frac{-9 + 9i}{\sqrt{3} + i}\right)^{24}$;

12.
$$z_1 = \frac{-8\sqrt{3} + 8i}{5 + 5i}$$
, $z_2 = \left(\frac{-\sqrt{2} - i\sqrt{6}}{-7 + 7i}\right)^{46}$;

13.
$$z_1 = \frac{-2 - 2\sqrt{3}i}{7 - 7i}$$
, $z_2 = \left(\frac{5\sqrt{3} - 15i}{-11 - 11i}\right)^{20}$;

14.
$$z_1 = \frac{-12 - 12i}{7 + 7\sqrt{3}i}$$
, $z_2 = \left(\frac{\sqrt{3} - i}{7 + 7i}\right)^{28}$;

15.
$$z_1 = \frac{8 + 8\sqrt{3}i}{-3 - 3i}$$
, $z_2 = \left(\frac{-5 + 5i}{\sqrt{2} + i\sqrt{6}}\right)^{30}$;

16.
$$z_1 = \frac{5 + i5\sqrt{3}}{-7 + 7i}$$
, $z_2 = \left(\frac{5\sqrt{3} + 15i}{4 - 4i}\right)^{24}$;

17.
$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{-5 + 5i}$$
, $z_2 = \left(\frac{7 - 7\sqrt{3}i}{-6 - 6i}\right)^{28}$;

18.
$$z_1 = \frac{-6+6i}{\sqrt{2}+i\sqrt{6}}, \quad z_2 = \left(\frac{8-8\sqrt{3}i}{11+11i}\right)^{24};$$

19.
$$z_1 = \frac{3\sqrt{3} - 3i}{-7 - 7i}$$
, $z_2 = \left(\frac{-12 - 12i}{\sqrt{3} + i}\right)^{40}$;

20.
$$z_1 = \frac{-11+11i}{\sqrt{2}-i\sqrt{6}}, \quad z_2 = \left(\frac{-5\sqrt{3}-15i}{2-2i}\right)^{28};$$

21.
$$z_1 = \frac{-8 - 8\sqrt{3}i}{3 + 3i}$$
, $z_2 = \left(\frac{-11 + 11i}{-3 - i\sqrt{3}}\right)^{20}$;

22.
$$z_1 = \frac{-9+9i}{1-i\sqrt{3}}, \quad z_2 = \left(\frac{5\sqrt{3}+15i}{8-8i}\right)^{60};$$

23.
$$z_1 = \frac{6 - 2\sqrt{3}i}{5 + 5i}$$
, $z_2 = \left(\frac{-5\sqrt{3} - 15i}{-\sqrt{2} - i\sqrt{2}}\right)^{48}$;

24.
$$z_1 = \frac{\sqrt{5} - \sqrt{5}i}{-1 - i\sqrt{3}}, \quad z_2 = \left(\frac{-2\sqrt{3} - 2i}{-1 - i}\right)^{42};$$

25.
$$z_1 = \frac{-2\sqrt{3} + 2i}{-5 + 5i}$$
, $z_2 = \left(\frac{-12 - i4\sqrt{3}}{3 - 3i}\right)^{10}$;

26.
$$z_1 = \frac{-4 + 4\sqrt{3}i}{-3 - 3i}$$
, $z_2 = \left(\frac{\sqrt{5} + i\sqrt{15}}{6 - 6i}\right)^{24}$;

27.
$$z_1 = \frac{-7 + 7i}{8 - 8\sqrt{3}i}$$
, $z_2 = \left(\frac{-5 + 5i}{2\sqrt{3} - 2i}\right)^{20}$;

28.
$$z_1 = \frac{-12 - 12i}{1 - \sqrt{3}i}$$
, $z_2 = \left(\frac{-5\sqrt{3} + 15i}{2 - 2i}\right)^{10}$;

29.
$$z_1 = \frac{5\sqrt{3} - 15i}{2 + 2i}$$
, $z_2 = \left(\frac{-\sqrt{15} + i\sqrt{5}}{4 - 4i}\right)^{28}$;

30.
$$z_1 = \frac{-\sqrt{3} + 3i}{-4 - 4i}$$
, $z_2 = \left(\frac{5 + 5i}{-6\sqrt{3} - 6i}\right)^{20}$.

Задача VII. Найти действительные решения уравнений.

1.
$$(1+i)x + (-2+5i)y = -4+17i$$
;

2.
$$12[(2x+i)(1+i)+(x+y)(3-2i)]=17+6i$$
;

3.
$$(4+2i)x+(5-3i)y=13+i$$
:

4.
$$(3x-i)(2+i)+(x-iy)(1+2i)=5+6i$$
;

5.
$$(2+i)x-(1-i)y=7+8i$$
:

6.
$$(-2+3i)x + (3-5i)y = -9+14i$$
;

7.
$$(x-2i)(3+i)+(7-i)(x-y)=2-i$$
;

8.
$$(1+i)x + (-2+5i)y = -4+17i$$
:

9.
$$(x-iy)i^2 + (2-3i)(x+y) = 3-i$$
;

10.
$$(x+i)(i-1) - y(x+1) = 5+3i$$
;

11.
$$(3x-i)(2-i) + (x-iy)(1+2i) = 3+6i$$
;

12.
$$2(x-yi)(1-3i) = 20i^5$$
;

13.
$$(4+2i)x + (5-3i)y = 17+i$$
;

14.
$$(2 - yi)x + (4 + i)xi = 6 + 2i$$
;

15.
$$3x(-1+i)-(x+y)(2-i)=7-2i$$
;

16.
$$(2x-i)(3+i)-(y-x)(5-2i)=-2+7i$$
;

17.
$$xi + (2x - i)(3 + i) - y(1 + i) = 10 - 6i$$
;

18.
$$(-3+i)(x-2y) + y(-1+2i) = i^3 + 8;$$

19.
$$(2+i)(i^3-1)x+(5-i)(y+2i)=12i^9$$
;

20.
$$(x-yi)(2+i)+i^2(-y+i)=5$$
;

21.
$$(3-2i)x+(i-1)(y+1)=3-5i$$
;

22.
$$(4-3i)(x+y)+(2+i)(x-y)=10i$$
;

23.
$$xy(1-i) + x(2-3i) + y(i-x) = 4-i$$
;

24.
$$(x+2i)(3-i) + y(i^3-3i^4) = -1+i$$
;

25.
$$(2+i)(x-yi)-(1+i)(y-xi)=-6+3i$$
;

26.
$$(2-3i)x + (2+3i)(x-yi) = -1-2i$$
;

27.
$$(1-i)(x-3i) + y(2-i) + xi = 2-i$$
;

28.
$$(1-i)(x+3)-(2+i)(y-2)=-2+2i$$
;

29.
$$(2x+i)(1-i) + yi^3(i-4) = 6+11i$$
;

30.
$$(y + xi)(5 - 2i) + (x - y)(2 - 3i) = 5 - i$$
.

Задача VIII. Найти все значения корней уравнения и изобразить их точками на комплексной плоскости.

1.
$$z^3 + 8i = 0$$
;

16.
$$z^3 - \frac{i}{216} = 0$$
;

2.
$$z^3 + \frac{1}{8} = 0$$
;

17.
$$z^3 + \frac{i}{64} = 0$$
;

3.
$$z^3 + 27 = 0$$
;

18.
$$z^3 + 216i = 0$$
;

4.
$$z^3 - 8i = 0$$
;

19.
$$z^4 + 16 = 0$$
:

5.
$$z^3 - \frac{i}{125} = 0$$
;

20.
$$z^3 + 64i = 0$$
;

6.
$$z^4 + 81 = 0$$
;

7.
$$z^3 + 125i = 0$$
;

8.
$$z^3 + \frac{i}{8} = 0$$
;

9.
$$z^3 + 27i = 0$$
;

10.
$$z^4 + 256 = 0$$
;

11.
$$z^3 - 216i = 0$$
;

12.
$$z^3 + 125 = 0$$
;

13.
$$z^3 - 27i = 0$$
;

14.
$$z^3 - 125i = 0$$
;

15.
$$z^4 + 64 = 0$$
;

21.
$$z^3 + \frac{i}{125} = 0;$$

22.
$$z^3 - \frac{i}{8} = 0$$
;

23.
$$z^3 - 64i = 0$$
;

24.
$$z^3 + \frac{i}{27} = 0$$
;

25.
$$z^3 - \frac{i}{64} = 0;$$

26.
$$z^4 + 16i = 0$$
;

27.
$$z^4 + \frac{1}{64} = 0$$
;
28. $z^3 - \frac{i}{27} = 0$;

29.
$$z^3 + \frac{i}{216} = 0$$
;

30.
$$z^3 + \frac{1}{125} = 0$$
.

Задача IX. Решить биквадратные уравнения.

1.
$$2z^4 + z^2 - 3 = 0$$
:

2.
$$z^4 + 7z^2 + 6 = 0$$
:

3.
$$z^4 - z^2 - 2 = 0$$
;

4.
$$3z^4 + 4z^2 + 1 = 0$$
;

5.
$$z^4 + 4z^2 + 3 = 0$$
;

6.
$$5z^4 - z^2 - 4 = 0$$
;

7.
$$z^4 + 18z^2 + 81 = 0$$
;

8.
$$z^4 - z^2 - 6 = 0$$
;

$$16. \ z^4 + 3z^2 - 4 = 0$$

17.
$$z^4 + 11z^2 + 24 = 0$$
;

18.
$$6z^4 + 5z^2 + 1 = 0$$
;

19.
$$z^4 - 4z^2 - 12 = 0$$
;

$$20. 4z^4 - 3z^2 - 1 = 0;$$

21.
$$4z^4 + z^2 - 5 = 0$$
;

22.
$$z^4 - 2z^2 - 8 = 0$$
;

23.
$$z^4 + 6z^2 - 7 = 0$$
;

9.
$$z^4 + 8z^2 - 20 = 0$$
;

10.
$$2z^4 - 3z^2 - 2 = 0$$
;

11.
$$z^4 + 3z^2 - 10 = 0$$
;

12.
$$3z^4 - 2z^2 - 8 = 0$$
;

13.
$$2z^4 - z^2 - 6 = 0$$
;

14.
$$6z^4 + z^2 - 2 = 0$$
;

15.
$$z^4 + 5z^2 - 6 = 0$$
;

24.
$$z^4 + 3z^2 - 18 = 0$$
;

25.
$$z^4 - 2z^2 - 15 = 0$$
;

26.
$$z^4 + 5z^2 + 4 = 0$$
;

27.
$$3z^4 - 7z^2 + 4 = 0$$
;

$$28. 97^4 - 87^2 - 1 = 0$$
:

$$29. \ 7^4 + 87^2 - 9 = 0$$

$$30. \ z^4 + 5z^2 - 36 = 0.$$

Задача Х. Найти все значения корня.

1.
$$\sqrt[4]{\frac{-1+i\sqrt{3}}{2}}$$
; 2. $\sqrt[4]{8-i8\sqrt{3}}$; 3. $\sqrt[4]{-8+i8\sqrt{3}}$;

2.
$$\sqrt[4]{8-i8\sqrt{3}}$$

3.
$$\sqrt[4]{-8 + i8\sqrt{3}}$$

4.
$$\sqrt[4]{\frac{1-i\sqrt{3}}{32}}$$
;

4.
$$\sqrt[4]{\frac{1-i\sqrt{3}}{32}};$$
 5. $\sqrt[4]{\frac{-1-i\sqrt{3}}{32}};$ 6. $\sqrt[4]{-4-i4\sqrt{3}};$

6.
$$\sqrt[4]{-4-i4\sqrt{3}}$$

7.
$$\sqrt[4]{-128 + i128\sqrt{3}}$$
; 8. $\sqrt[4]{\frac{-1 + i\sqrt{3}}{32}}$; 9. $\sqrt[4]{\frac{1 - i\sqrt{3}}{2}}$;

8.
$$\sqrt[4]{\frac{-1+i\sqrt{3}}{32}}$$

9.
$$\sqrt[4]{\frac{1-i\sqrt{3}}{2}}$$

10.
$$\sqrt[3]{-2-2i}$$
;

11.
$$\sqrt[4]{2\sqrt{3}-2i}$$

10.
$$\sqrt[3]{-2-2i}$$
; 11. $\sqrt[4]{2\sqrt{3}-2i}$; 12. $\sqrt[4]{-8-i8\sqrt{3}}$;

13.
$$\sqrt[4]{-3\sqrt{3}+3i}$$
; 14. $\sqrt[4]{8+i8\sqrt{3}}$; 15. $\sqrt[3]{-4+i4\sqrt{3}}$;

14.
$$\sqrt[4]{8+i8\sqrt{3}}$$

15.
$$\sqrt[3]{-4+i4\sqrt{3}}$$

16.
$$\sqrt[4]{-128 - i128\sqrt{3}}$$
; 17. $\sqrt[4]{-8 - i8\sqrt{3}}$; 18. $\sqrt[4]{\frac{1 + i\sqrt{3}}{2}}$;

17.
$$\sqrt[4]{-8-i8\sqrt{3}}$$

18.
$$\sqrt[4]{\frac{1+i\sqrt{3}}{2}}$$

19.
$$\sqrt[3]{-13,5\sqrt{5}-i\cdot13,5\cdot\sqrt{2}}$$
; 20. $\sqrt[4]{128-i\sqrt{3}\cdot128}$; 21. $\sqrt[4]{8-i8\sqrt{3}}$;

22.
$$\sqrt[4]{-2\sqrt{3}+2i}$$
;

23.
$$\sqrt[4]{-2\sqrt{3}-2i}$$
;

22.
$$\sqrt[4]{-2\sqrt{3}+2i}$$
; 23. $\sqrt[4]{-2\sqrt{3}-2i}$; 24. $\sqrt[4]{-15+i5\sqrt{3}}$;

25.
$$\sqrt[4]{\frac{1+i\sqrt{3}}{32}}$$
; 26. $\sqrt[4]{4-i4\sqrt{3}}$; 27. $\sqrt[3]{2+2i}$;

26.
$$\sqrt[4]{4-i4\sqrt{3}}$$

27.
$$\sqrt[3]{2+2i}$$

28.
$$\sqrt[4]{-6+i6\sqrt{3}}$$
;

28.
$$\sqrt[4]{-6+i6\sqrt{3}}$$
; 29. $\sqrt[4]{\frac{-1-i\sqrt{3}}{2}}$; 30. $\sqrt[4]{-6\sqrt{3}+6i}$.

30.
$$\sqrt[4]{-6\sqrt{3}+6i}$$
.

Задача XI. Указать какие линии определяются уравнением:

1)
$$|z|-3 \text{Im } z = 6;$$

2)
$$|z-i|+|z+i|=4$$
;

3)
$$|z|=1+\text{Re }z$$
;

4)
$$|z+2|=2|z-i|$$
;

5)
$$|z-i|=|z+2|$$
;

6) Re
$$(1+z)-|z|=0$$
;

7)
$$\left| \frac{z-i}{z+i} \right| = 1;$$

8) | Re
$$z = \text{Im } z$$
:

9)
$$|z-1|+|z+1|=4$$
;

10) Re
$$(z^2 - z) = 0$$
;

11)
$$\frac{1}{\text{Re } z^2} = 2;$$

12)
$$\text{Im } z^2 = 2$$
;

13)
$$|z+3|=2|z-2|$$
;

14)
$$|z-i|=|z+1|$$
;

15)
$$2 \text{ Re } z + \text{Im } \bar{z} = 1;$$

16)
$$\operatorname{Im} \frac{1}{z} = \frac{1}{2}$$
;

17)
$$2 \operatorname{Im} z + |z|^2 = 0$$
;

18)
$$z^2 + \bar{z}^2 = 1$$
;

$$19) \left| \frac{z+2i}{z-2i} \right| = \sqrt{2};$$

20) Re
$$z = |z| + 1$$
;

21) Re
$$\bar{z}^2 + 2 \text{Re } z = 3$$
:

22) Re
$$\frac{1}{z} = \frac{1}{4}$$
;

23)
$$|z+2|+|\bar{z}+2|=4$$
;

$$24) \left| \frac{z - i}{z + i} \right| = 2;$$

25) Re
$$\frac{1}{z} = \frac{1}{6}$$
;

26) Im
$$\frac{1}{\bar{z}} = \frac{1}{2}$$
;

27)
$$1-z^2=\bar{z}^2$$
;

28)
$$|\bar{z} - 2| + |\bar{z} + 2| = 4$$
;

29) Im
$$\bar{z}^2 + 2 = 0$$
;

30) Re
$$\frac{1}{z} = \frac{1}{8}$$
.

Задача XII. Дан вектор, изображающий комплексное число z_1 . Его растянули в t раз и повернули на угол φ . Найдите комплексное число z_2 , соответствующее новому вектору. Постройте полученные векторы.

1)
$$z_1 = 1 + i$$
, $t = \sqrt{2}$, $\varphi = \frac{\pi}{4}$;

2)
$$z_1 = 2 + 3i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

3)
$$z_1 = -2 + i$$
, $t = 3$, $\varphi = \pi$;

4)
$$z_1 = -1 + 2i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

5)
$$z_1 = -1 - i$$
, $t = \sqrt{2}$, $\varphi = \frac{\pi}{3}$;

6)
$$z_1 = -1 + i$$
, $t = \sqrt{2}$, $\varphi = -\frac{\pi}{3}$;

7)
$$z_1 = 2 + i$$
, $t = 2$, $\varphi = \frac{\pi}{2}$;

8)
$$z_1 = 3 + 2i$$
, $t = 3$, $\varphi = \pi$;

9)
$$z_1 = -2 - i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

10)
$$z_1 = 2 + i$$
, $t = 3$, $\varphi = \frac{\pi}{2}$;

11)
$$z_1 = 1 - i$$
, $t = 2\sqrt{2}$, $\varphi = \frac{\pi}{3}$;

12)
$$z_1 = 1 - 2i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

13)
$$z_1 = -3 + 2i$$
, $t = 1,5$, $\varphi = -\pi$;

14)
$$z_1 = 2 - i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

15)
$$z_1 = -3 - 2i$$
, $t = 2$, $\varphi = \pi$;

16)
$$z_1 = -2 - i$$
, $t = 3$, $\varphi = \frac{\pi}{2}$;

17)
$$z_1 = -2 + 3i$$
, $t = 1,5$, $\varphi = \pi$;

18)
$$z_1 = 2 + 2i$$
, $t = \sqrt{2}$, $\varphi = \frac{\pi}{4}$;

19)
$$z_1 = -2 + 3i$$
, $t = 2$, $\varphi = \frac{\pi}{2}$;

20)
$$z_1 = -3 + 3i$$
, $t = \sqrt{2}$, $\varphi = -\frac{\pi}{4}$;

21)
$$z_1 = -2 - 3i$$
, $t = 2$, $\varphi = \pi$;

22)
$$z_1 = -2 + 2i$$
, $t = 2\sqrt{2}$, $\varphi = -\frac{\pi}{4}$;

23)
$$z_1 = 4 + 3i$$
, $t = 2$, $\varphi = -\pi$;

24)
$$z_1 = 3 - 3i$$
, $t = 2\sqrt{2}$, $\varphi = \frac{\pi}{4}$;

25)
$$z_1 = -4 + 3i$$
, $t = 1,5$, $\varphi = \frac{\pi}{2}$;

26)
$$z_1 = -2 - 2i$$
, $t = \sqrt{2}$, $\varphi = \frac{\pi}{4}$;

27)
$$z_1 = -4 - 3i$$
, $t = 2$, $\varphi = -\frac{\pi}{2}$;

28)
$$z_1 = -3 - 3i$$
, $t = \sqrt{2}$, $\varphi = -\pi$;

29)
$$z_1 = 2 - 2i$$
, $t = 2\sqrt{2}$, $\varphi = -\frac{\pi}{4}$;

30)
$$z_1 = 4 - 3i$$
, $t = 2$, $\varphi = \frac{\pi}{2}$.

Задача XIII.

- 1) При каком условии сумма двух комплексных чисел есть действительное число?
- 2) Может ли сумма квадратов двух комплексных чисел быть отрицательной?
- 3) При каком условии разность двух комплексных чисел есть действительное число?
- 4) Могут ли быть сопряженными действительное и мнимое число?

- 5) При каком условии сумма двух комплексных чисел есть чисто мнимое число?
- 6) Какое число сопряжено с \bar{z} ?
- 7) Могут ли быть сопряженными два чисто мнимых числа?
- 8) При каком условии разность двух комплексных чисел есть чисто мнимое число?
- 9) Может ли сумма квадратов двух комплексных чисел быть отрицательной?
- 10) Что можно сказать о модулях двух сопряженных комплексных чисел?
- 11) Пусть arg $z = \varphi$. Чему равен arg \bar{z} ; arg(-z)?
- 12) Какое множество точек комплексной плоскости задается условием: arg z = 0?
- 13) В каких пределах заключено главное значение аргумента комплексного числа, расположенного в I четверти?
- 14) Чему равен аргумент любого отрицательного числа?
- 15) Чему равен аргумент нуля?
- 16) Чему равен аргумент чисто мнимого числа?
- 17) В каких пределах заключено главное значение аргумента комплексного числа, расположенного во второй четверти?

- 18) В каких пределах заключено главное значение аргумента комплексного числа, расположенного в III четверти?
- 19) Как располагаются векторы, изображающие два комплексных числа, если модуль суммы этих чисел равен сумме их модулей?
- 20) В каких пределах заключено главное значение аргумента комплексного числа, расположенного в IV четверти?
- 21) Приведите пример комплексных чисел, которым соответствуют два перпендикулярных вектора.
- 22) Напишите условие того, что точка z_1 находится на расстоянии 2 от точки z_2 .
- 23) Чему равен аргумент любого положительного числа?
- 24) Какое множество точек комплексной плоскости задается условием $\arg z = \pi$?
- 25) При каком условии квадрат комплексного числа x + iy является чисто мнимым числом?
- 26) Может ли квадратное уравнение с действительными коэффициентами иметь корни 1+i и 1+2i?
- 27) Что можно сказать о комплексных числах, для которых соответствующие точки расположены на прямой, параллельной оси *у* ?

- 28) Как располагаются векторы, изображающие два комплексных числа, если модуль суммы этих чисел равен разности модулей?
- 29) Что можно сказать о комплексных числах, для которых соответствующие точки расположены на прямой, параллельной оси x?
- 30) Как изменится модуль и аргумент комплексного числа z в результате умножения его на 2i?
- 31) При каких условиях модуль разности двух комплексных чисел равен сумме модулей уменьшаемого и вычитаемого?
- 32) Как изменится модуль и аргумент комплексного числа z в результате умножения его на (-3i)?
- 33) Как изменится модуль и аргумент комплексного числа z в результате деления его на 4i?

Библиографический список

- 1. Краснов М.Л. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. / М.Л. Краснов, А.И. Кисилев, Г.И. Макаренко. М.: Наука, 1981. 485 с.
- 2. Гурский Г.И. Руководство к решению задач по высшей математике. / Г.И. Гурский. Ч.1. Минск: Высшая школа, 1990.-400 с.

РИИЦМ ФГАОУВО «Севастопольский государственный университет»