AUTHOR INDEX

VOLUMES 40-44

Adhya, S., 40:527 Agre, Nina S., 40:469 Apperson, April, 44:385 Aronson, Arthur I., 40:360 Atherly, Alan G., 43:27 Aufderheide, Karl J., 44:252

Bachmann, Barbara J., 40:116. 44:1 Balch, W. E., 43:260 Balish, Edward, 44:660 Banerjee, Amiya K., 44:175 Barksdale, Lane, 41:217 Becker, Andrew, 42:529 Becker, Yechiel, 42:274 Benzinger, Rolf, 42:194 Bia, F. J., 44:468 Bibel, David J., 40:633 Bizzini, Bernard, 43:224 Bohlool, B. B., 44:491 Bolin, Rex W., 40:313 Botstein, David, 42:385 Brill, Winston J., 44:449 Brody, Stuart, 40:1 Brown, A. D., 40:803

Campbell, Priscilla A., 40:284 Canale-Parola, E., 41:181 Carithers, Robert P., 43:384 Chater, K. F., 44:206 Chen, T. H., 40:633 Chopra, I., 42:707 Clowes, Royston C., 40:168 Cocito, C., 43:145 Cohen, Stanley N., 40:168 Collins, Mike, 42:725 Conrad, Robert S., 40:42 Coote, J. G., 40:908 Cosgrove, William B., 44:140 Crémisi, Chantal, 43:297 Cummings, Donald J., 40:313 Curtiss, Roy, III, 40:168

Dajani, Adnan S., 40:722
Daniel, Thomas M., 42:84
Datta, Naomi, 40:168
Decker, Karl, 41:100
De Felice, Maurilio, 43:42
Deinema, Maria H., 42:329
De Ley, J., 41:1
Demain, Arnold L., 41:449,
44:230
Dills, Steven S., 44:385
Doetsch, Raymond N., 40:259,
40:270, 42:521
Doi, Roy H., 41:568

Donaldson, David M., 41:501 Douglas, Steven D., 42:592 Dow, C. S., 41:754 Duckworth, Donna, 40:793 Dulbecco, R., 43:443 Dworkin, M., 40:276

Echols, Harrison, 42:577 El Hafeez, Anees, 40:774

Falkow, Stauley, 40:168
Farkaš, V., 43:117
Ferenci, Thomas, 42:251
Fitzgerald, John W., 40:698
Fitz-James, Philip, 40:360
Fong, C. K. Y., 44:468
Foster, John W., 44:83
Foster, Kenneth W., 44:572
Fox, G. E., 43:260
Frankel, Joseph, 44:252
Friedman, Robert M., 41:543
Fuson, Gayle B., 42:161

Garvie, Ellen I., 44:106 Goodnow, Robert A., 44:722 Guardiola, John, 43:42 Gupta, S. K., 41:822

Haddock, B. A., 41:47 Hall, J. E., 42:661 Hamada, Shigeyuki, 44:331 Hartman, Philip E., 42:471 Hastings, J. W., 43:496 Henner, Dennis J., 44:57 Heywood, Peter, 40:190 Hoare, Derek S., 41:419 Hoch, James A., 44:57 Hofstad, Tor, 43:103 Holloway, B. W., 43:73 Holt, Patrick G., 41:205 Holt, Stanley C., 42:114 Hopwood, D. A., 41:595 Howe, T. G. B., 42:707 Hsiung, G. D., 44:468 Huang, Alice S., 41:811

Iaccarino, Maurizio, 43:42 Imsande, John, 42:67

Janicki, Bernard W., 42:84 Jann, Barbara, 41:667 Jann, Klaus, 41:667 Jones, Colin W., 41:47 Jungermann, Kurt, 41:100 Kalakoutskii, L. V., 40:469 Kaneda, Toshi, 41:391 Karl, David M., 44:739 Katz, Edward, 41:449 Keast, David, 41:205 Kim, Kwang-Shin, 41:217 Knowles, C. J., 40:652 Koerner, James F., 43:199 Krieg, Noel R., 40:55 Krishnapillai, V., 43:73

Langworth, Barbara F., 41:373 Lanyi, Janos K., 42:682 Lechevalier, Hubert, 40:241 Leisinger, T., 43:422 Levinthal, Mark, 43:42 Liddell, F. D. K., 42:237 Lloyd, Kenneth O., 44:683 Lomovskaya, Natalie D., 44:206 Low, K. Brooks, 40:116, 44:1

Magee, Paul T., 40:190 Maggon, K. K., 41:822 Magrum, L. J., 43:260 Mäkelä, P. H., 40:591 Makoff, A. J., 42:307 Margraff, R., 43:422 Martin, Juan F., 44:230 Massey, Linda K., 40:42 Mayer, H., 40:591 McGhee, R. Barclay, 44:140 Merrick, M. J., 41:595 Metzenberg, Robert L., 43:361 Mkrtumian, Norah M., 44:206 Moat, Albert G., 44:83 Mogensen, Søren C., 43:1 Morgan, A. F., 43:73 Morgan, Exeen M., 41:636 Mortimer, Robert K., 44:519 Mulder, E. G., 42:329 Murialdo, Helios, 42:529, 42:577 Murray, R. G. E., 40:259

Nealson, K. H., 43:496 Nielsen, K. H., 42:661 Novick, Richard P., 40:168

Ömura, S., **40**:681 Ørskov, Frits, **41**:667 Ørskov, Ida, **41**:667

Pastan, Ira, 40:527 Patterson, M. Jevitz, 40:774 Penn, M., 40:276 Perry, Jerome J., 43:59 Phaff, H. J., **42**:161 Piggot, P. J., **40**:908 Porter, J. R., **40**:260 Price, C. W., **42**:161 Priest, Fergus G., **41**:711

Quayle, J. Rodney, 42:251

Radford, A., 42:307 Raetz, Christian R. H., 42:614 Rapp, Fred, 41:636 Razin, Shmuel, 42:414 Reanney, Darryl C., 40:552 Revel, H. R., 40:847 Richards, Karen L., 42:592 Roberts, Norbert J., Jr., 43:241 Rodkey, L. Scott, 44:631 Rogers, Thomas J., 44:660 Rogolsky, Marvin, 43:320

Saier, Milton H., Jr., 41:856, 44:385 Sanderson, Kenneth E., 42:471

Saunders, Venetia A., 42:357 Schild, David, 44:519 Schmidt, Mary R., 44:385 Schmit, Joseph, C., 40:1 Schwesinger, Marjorie D., 41:872 Seed, J. R., 42:661 Sherman, Irwin W., 43:453 Silverman, Robert H., 43:27 Slade, Hutton D., 44:331 Smith, Arnold, 41:419 Smith, H., 41:475, 44:303 Smyth, Robert D., 44:572 Snustad, D. Peter, 43:199 Sokatch, John R., 40:42 Stanier, Roger Y., 42:2 Sugiyama, H., 44:419 Susskind, Miriam M., 42:385 Sweet, C., 44:303 Swings, J., 41:1

Tagg, John R., **40:**Taylor, Austin L., **40:**Tew, John G., **41:**Thauer, Rudolf, **41:** Tizard, Ian, 42:661 Travassos, Luiz R., 44:683

van Berkum, P., 44:491 van der Drift, C., 40:403 van Veen, W. L., 42:329 Venkitasubramanian, T. A., 41:822 Vogels, G. D., 40:403

Wannamaker, Lewis W., 40:722 Waterbury, John B., 42:2 Weinberg, Eugene D., 42:45 Whittenbury, R., 41:754 Wickner, Reed B., 40:757 Williams, Norman E., 44:252 Witkin, Evelyn M., 40:869 Woese, C. R., 43:260 Wolfe, R. S., 43:260 Wood, W. B., 40:847

Yoch, Duane C., 43:384
Zeikus, J. G., 41:515

SUBJECT INDEX

VOLUMES 40-44

Acetohydroxy acid synthase isoenzymes E. coli K-12, 43:42

Acholeplasma membrane fluidity regulation, 42:414

Acholeplasma laidlawii sugar transport, 42:414 viruses, 42:414

Acid-fastness Mycobacterium, 41:217

Actinomycetales reproduction, 40:469 Actinomycetes

antibiotic production, 41:595 conjugation, 41:595 control of sporulation, 40:469 development, 40:469

development, 40:469 differentiation, 40:469 life cycles, 40:469 recombination, 41:595 spore formation, 40:469

Actinorhodin biosynthesis, 41:595 Additive recombination bacteria, 41:872 Adenine nucleotides

fungal metabolism, 41:822 microbial ecology, 44:739 Adenosine tetraphosphate

Adenosine tetraphosphate in eucaryotes, 43:27 Adenosine triphosphatase

mycoplasma membrane, 42:414 Adenosine triphosphatase complexes morphology and location, 41:47 proton-translating properties, 41:47 purification of F₁-ATPase, 41:47

Adenosine 5'-triphosphate biomass indicator, 44:739 Adenosine triphosphate synthesis

Adenosine triphosphate synthesis thermodynamic efficiency, 41:100 Adenylate cyclase

V. cholerae and enterotoxigenic E. coli, 42:592 Adenylyl sulfate reductase

bacterial, 43:384
Adrenal cells

effects of V. cholerae and enterotoxigenic E. coli, 42:592

Aerobic bacteria ferredoxin-dependent reactions, 43:384 Aerobic degradation

enzymatic steps, 40:403 of purines, 40:403

Aerobic soils sulfur cycle, 40:698 Aeromonas salmonicida

carbamoyl phosphate biosynthesis and utilization, 42:307

Aerotaxis

in spirilla, 40:55 Aflatoxins biosynthesis, 41:822 African trypanosomes

biologically active products, 42:661

Agave sap Zymomonas, 41:1

Air pollution effects on leukocytes, 41:205

effects on leukocytes, 41:205
Algae
bleaching by virginiamycin family, 43:145
Algae, phototactic

light antennas, 44:572 Algal toxins, 42:725 Alpha-toxin S. aureus, 43:320

Amidase system
Pseudomonas, 43:73
Amino acid catabolism
branched chain, 40:42
enoyl-CoA hydratases, 40:4

enoyl-CoA hydratases, 40:42 enzymes common to, 40:42 inhibition of growth by, 40:42 Amino acids

antagonism and growth inhibition, 43:42 fluorescent pseudomonads, 43:422 Aminocyclitols

biosynthesis, 41:595 Aminoglycosides biosynthesis, 41:595 Amphidinium spp.

toxins, 42:725 α-Amylase Bacillus synthesis, 41:711

Anabaena flos-aquae toxin, 42:725 Anaerobes chemotrophic, 41:100

energy conservation, 41:100 Anaeroplasmas ecology, 42:414

Anesthetics
Africian trypanosomes, 42:661

Angiosperms
carbamoyl phosphate biosynthesis and utilization,
42:307

Animal cells chromatin replication, 43:297 Animal diseases

F. necrophorum, 41:373

Animals, domestic
use of virginiamycin family, 43:145

Antibiotic biosynthesis

control, 44:230
Antibiotic permeation
E. coli membrane, 42:614
Antibiotic production

genetics, 41:595 incidence, 41:595 physiology, 41:595 Antibiotic resistance

mutations that affect sporulation, 40:908

Pseudomonas, 43:73

Antibiotics, virginiamycin family action, 43:145

chemistry, 43:145 physics, 43:145

Antibiotic synthetases

repression and inhibition, 44:230

Antibody production

in absence of antigen stimulation, 44:631

Antigens E. coli, 41:667

mycobacteria, 42:84 Antigens, Bacteroidaceae

serological responses, 43:103 Anti-idiotypes

immune response autoregulation, 44:631

Antimicrobial agents temperature, 43:241 Aphanizomenon flos-aquae toxin, 42:725

Aquaspirillum, 40:55 aro anabolic enzyme aggregate

Neurospora, 43:361
Aromatics
microbial cooxidation, 43:59

Asexual life cycle in N. crassa, 40:1 Aspergillus flavus subgroup metabolites, 41:822

mutant strains, 41:822
Aspergillus nidulans

antibiotic synthesis, 41:595 carbamoyl phosphate biosynthesis and utilization, 42:307

Asporogenous mutants, 40:908

Atmosphere primitive, 42:251

Atrophic rhinitis, swine
B. bronchiseptica, 44:722

Autoimmune diseases

linkage to measles virus, 41:636 Autotrophy

evolutionary aspects, 42:251 relation with methylotrophy, 42:251

Avian systems
carbamoyl phosphate biosynthesis and utilization,

42:307 Azospirillum taxonomy, 44:491 Azospirillum brasilense

nitrogenase, 44:491 Azotobacter vinelandii

pyridine nucleotide cycle metabolism, 44:83 respiratory chain energy conservation, 41:47 respiratory protection of nitrogenase, 41:47

Bacillus bacteriocins, 40:722 Bacillus antibiotics biosynthesis, 41:449, 41:595 cell-free synthesis, 41:449 enzymatic formation, 41:449 functions, 41:449

Bacillus exoenzymes

genetic analysis, 41:711 physiological functions, 41:711 synthesis, 41:711

Bacillus fatty acids analysis, 41:391 biosynthesis, 41:391

branched-chain preference, 41:391

Bacillus subtilis

carbamoyl phosphate biosynthesis and utilization, 42:307

chromosome, 44:57

phage SP01 development, 41:568 sporulation, 41:568

Bacitracins

Bacillus antibiotic, 41:449

Bacteria

carbohydrate transport, 44:385

Bacterial bioluminescence control, 43:496 ecological significance, 43:496

Bacterial cell-free systems

action of virginiamycin family, 43:145 Bacterial endospore formation genetic aspects, 40:908

Bacterial infection exacerbation by influenza virus, 44:303

Bacterial infections B cells, 40:284

cell-mediated immune mechanisms, 40:284 humoral antibodies, 40:284

T cells, 40:284

Bacterial plasmids molecular rearrangements, 40:168 plasmid designations, 40:168 plasmid gene abbreviations, 40:168 uniform nomenclature for, 40:168

Bacterial respiration ATPase complexes, 41:47

A. vinelandii, 41:47 E. coli, 41:47

electron transport chains, 41:47

P. denitrificans, 41:47 Bacterial spore coat

coat polypeptides, 40:360 layers, 40:360 morphogenesis, 40:360

outer coat, 40:360

structure, 40:360 Bacterial transport mechanisms

phosphoenolpyruvate:sugar phosphotransferase, 41:856

Bacteriochlorophyll Rhodospirillaceae, 42:357

Bacteriocins

classification, 40:722 detection, 40:722

genetic determinants, 40:722 in gram-positive bacteria, 40:722

nomenclature, 40:722

RNA polymerase role in development, 41:568

properties, 40:722 Rhodospirillaceae, 42:357 S. mutans, 44:331 Bacteriophage d'Herelle's discovery, 40:793 E. coli, 42:614 Rhodospirillaceae, 42:357 spirilla, 40:55 S. typhimurium, 42:471 Twort's discovery, 40:793 Bacteriophage \(\lambda \) DNA-helped E. coli transfection, 42:194 DNA insertion, 41:872 genome, 42:577 head morphogenesis, 42:529 polylysogens, 41:872 RNA polymerase role in development, 41:568 genetics, 44:206 DNA, 44:206 Bacteriophage ϕ C62 DNA, 44:206 Bacteriophage head morphogenesis complex double-stranded DNA phages, 42:529 Bacteriophage infection, T-even host macromolecular synthesis shutoff, 43:199 Bacteriophage Mu molecular interactions, 41:872 Bacteriophage P22 head morphogenesis, 42:529 lysogeny, 42:385 molecular genetics, 42:385 S. typhimurium, 42:471 transduction, 42:385 virion, 42:385 Bacteriophage PBS1 transduction B. subtilis, 44:57 Bacteriophage Pg81 restriction, 44:206 Bacteriophage P22-like temperate phages modular construction, evolutionary rationale, 42: Bacteriophage R4 restriction and modification, 44:206 Bacteriophages attachment sites, 41:872 development in procaryotes, 41:568 DNA, 41:872 integration, 41:872 transducing, 41:872 Bacteriophages, Streptomyces genetics, 44:206

molecular biology, 44:206 Bacteriophages, temperate

Bacteriophage SP01

Bacteriophage T4

genome, 40:847

heteroimmune to phage φC31, 44:206

effect of canavanine on, 40:314

giant bacteriophage, 40:314

head length control, 40:314

morphogenesis, 40:314

RNA polymerase role in development, 41:568

size determination of heads, 40:314 Bacteriophage T7 RNA polymerase role in development, 41:568 Bacteriorhodopsin H. halobium, 42:682 Bacteroidaceae serological classification, 43:103 Bacteroidaceae, antigens serological responses, 43:103 B-cell mitogen receptor idiotypes immune response autoregulation, 44:631 B cells cell-mediated immunity, 40:284 in humoral antibody production, 40:284 Reer Zymomonas, 41:1 Beta-lysin biological characteristics, 41:501 physical characteristics, 41:501 platelet origin, 41:501 release from platelets, 41:501 Beta-toxin S. aureus, 43:320 Biochemical genetics in N. crassa, 40:1 Bioluminescence bacterial, 43:496 Bioluminescence assays microbial ecology, 44:739 Biomedical research guinea pig viruses, 44:468 Bordetella bronchiseptica classification, 44:722 description, 44:722 diseases, 44:722 economic effects, 44:722 immunity, 44:722 Bordetellosis canine, 44:722 feline, 44:722 Botulism pathogenic forms, 44:419 Branched-chain amino acids, 40:42 Branched-chain fatty acids Bacillus, 41:391 Brine shrimp spirochetes, 42:114 Bullfrog carbamoyl phosphate biosynthesis and utilization, 42:307 Butirosin biosynthesis, 41:595 effect on phage T4, 40:314 mechanisms, 40:314 Candida albicans immunity to, 44:660 Candidiasis, human mucocutaneous cell-mediated immunity, 44:660 Capsular antigens Bacteroidaceae, 43:103

Carbamoyl phosphate biosynthesis and utilization in

pyrimidine biosynthetic pathway

genetics and biochemistry, 42:307

Carbohydrate metabolism

autotrophy evolution, 42:251

Carbohydrate transport bacteria, 44:385

Plasmodium, 43:453

Carbon catabolite regulation antibiotic biosynthesis, 44:230

Carbon dioxide fixation autotrophy evolution, 42:251

Carbon limitation

microbial ecology, 44:739

Carcinogen/mutagen detection S. typhimurium, 42:471

Cardiolipin

E. coli membrane, 42:614

Cardiolipin synthetase

E. coli membrane, 42:614 Caries

S. mutans, 44:331

Carotenoid biosynthesis genes R. capsulata, 42:357

Carotenoid pigments

spirochetes, 41:181 C₁ assimilation sequences autotrophy evolution, 42:251

Catabolic enzyme mutants

E. coli, 42:614

Cats

bordetellosis, 44:722

Caulerpa spp. toxins, 42:725

Cells, animal

chromatin replication, 43:297

Cell wall methanogens, 43:260

Cell wall biosynthesis fungi, 43:117

Cephalosporium acremonium antibiotic synthesis, 41:595

Ceratocystis

biochemistry, 44:683 ecology, 44:683 morphology, 44:683

Cerulenin

action mechanism, 40:681 fatty acid synthesis inhibitor, 40:681 physicochemical properties, 40:681

producing strain, 40:681 Challenge experiments

analysis, 42:237 design, 42:237

survival evaluation, 42:237

Cheatomorpha minima toxin, 42:725 Chemoheterotrophic spirilla, 40:55

Chemotaxis

in spirilla, 40:55

Chemotrophic anaerobic bacteria energy conservation, 41:100 energy-consuming process, 41:100 energy-providing processes, 41:100 hydrogenation reactions, 41:100

protonmotive force, 41:100

thermodynamic efficiency of ATP synthesis, 41:100

Chitin

fungal cell wall, 43:117

Chlamydiae

classification, 42:274

development, 42:274

molecular biology, 42:274 parasitized eucaryocytes, 42:274

Chlamydomonas

light antenna, 44:572

Chlorophyceae

light antennas, 44:572

Chlorophycophyta toxins, 42:725

Chlorophyll synthesis R. vannielii, 41:754

Chloroplasts, eucaryotes

presence of guanosine tetraphosphate, 43:27

Cholesterol

mycoplasma membrane, 42:414

Chromatin replication animal cells, 43:297 papovaviruses, 43:297

Chrooccidiopsis development and taxonomy, 42:2

Chrysophyceae

light antennas, 44:572

Chrysophycophyta toxins, 42:725

Ciders and perries

Zymomonas, 41:1 Citrobacter freundii

carbamoyl phosphate biosynthesis and utilization, 42:307

Clostridia

ferredoxin-dependent reactions, 43:384

Clostridium

bacteriocins, 40:722 Clostridium botulinum

toxin, 44:419

Clostridium butylicum

pyridine nucleotide cycle metabolism, 44:83

Coccoid bodies in spirilla, 40:55

Coenzyme F₄₂₀

methanogens, 43:260

Coenzyme M

methanogens, 43:260

Bacillus antibiotic, 41:449

Commensal luminous bacteria distribution, 43:496

habitats, 43:496

Complex double-stranded DNA phage head morphogenesis, 42:529

Concatemers

phage P22 DNA replication, 42:385

biochemical changes in germination of, 40:1 structure and composition in N. crassa, 40:1

Conidial germination in N. crassa, 40:1

Conjugation

antibiotic-producing microorganisms, 41:595

Rhodospirillaceae, 42:357 S. typhimurium, 42:471

Consumptions

Benjamin Marten's "new theory," 42:521

Convergent evolution hypothesis

spirochetes, 41:181 Cooxidation, microbial

hydrocarbons, 43:59

Coprinus radiatus

carbamoyl phosphate biosynthesis and utilization, 42:307

CO₂ reductase

bacterial, 43:384

Corvnebacterium

bacteriocins, 40:722

φC31 phage

genetics, 44:206 φC43 phage

DNA, 44:206

φC62 phage DNA, 44:206

Crithidia fasciculata

carbamoyl phosphate biosynthesis and utilization, 42:307

Cryptic plasmids

S. typhimurium, 42:471

Cryptomonas

light antenna, 44:572

Cryptophyceae

light antennas, 44:572

Cvanide

assimilation, 40:652

diseases, 40:652

production by bacteria, 40:652 production by fungi, 40:652

resistance and detoxication, 40:652

Cyanobacteria

pleurocapsalean, 42:2

toxins, 42:725

Cyanophage

Rhodospirillaceae, 42:357

Cyanophycophyta

toxins, 42:725

Cyclic adenosine 3',5'-monophosphate

effect on eucaryotic cells, 42:592

in E. coli, 40:527

microbial ecology, 44:739

operon activation, 40:527

regulation of gene expression, 40:527

synthesis, 40:527

Cyclic nucleotides

Bacillus exoenzyme synthesis, 41:711

Cycloparaffinics

microbial cooridation, 43:59

Cytidine 5'-diphosphate diglyceride

E. coli membrane phospholipid synthesis, 42:614

Cytidine 5'-diphosphate diglyceride hydrolase

E. coli membrane phospholipid breakdown, 42:614

Cytochromes

R. vannielii, 41:754

Cytomegalovirus, guinea pigs

infection in vivo, 44:468

Cytoplasmic membrane system

Mycobacterium, 41:217

Cytoplasmic polyhedrosis virus messenger ribonucleic acid

5'-terminal cap structure, 44:175

Debaryomyces genome comparison and taxonomy,

Defective interfering particles

interference, 41:811

structure, 41:811 Delta-toxin

S. aureus, 43:320

Dental caries

S. mutans, 44:331

Deoxyribonucleic acid

chromatin replication, 43:297

Streptomyces phages, 44:206

Deoxyribonucleic acid base composition methanogens, 43:260

Deoxyribonucleic acid degradation

T-even phage infection, 43:199

Deoxyribonucleic acid-dependent DNA polymerase chlamydial elementary bodies, 42:274

Deoxyribonucleic acid-dependent RNA polymerase

chlamydial elementary bodies, 42:274 Deoxyribonucleic acid phages, complex double-

stranded

head morphogenesis, 42:529

Dermocarpa development and taxonomy, 42:2

Dermocarpella development and taxonomy, 42:2

Desulfovibrio

ferredoxin-dependent reactions, 43:384 Detergent-resistant phospholipase A

E. coli membrane, 42:614

Detergent-sensitive phospholipase A

E. coli membrane phospholipid breakdown, 42:614

d'Herelle, Felix

discovery of bacteriophage, 40:793

Diadenosine tetraphosphate

in eucaryotes, 43:27

Diethylaminoethyl-dextran host cell treatment

effect on chlamydial growth, 42:274

Diglyceride cycle

E. coli membrane phospholipid synthesis, 42:614

Diglyceride kinase

E. coli membrane, 42:614

Diguanosine tetraphosphate

in eucaryotes, 43:27

Dihydroorotate dehydrogenase

bacterial, 43:384

Dihydroxyacetone phosphate-aspartate pathway nicotinamide adenine dinucleotide biosynthesis,

44:83

Dinoflagellates light antennas, 44:572

Dinophyceae

light antennas, 44:572

Disinfection

ATP measurements, 44:739

Dogs

bordetellosis, 44:722

Double-stranded DNA phages, complex

head morphogenesis, 42:529

Double-yolk" cells

R. vannielii, 41:754

Drosophila melanogaster carbamoyl phosphate biosynthesis and utilization,

Dysentery, swine spirochetes, 42:114

Bacillus antibiotic, 41:449

Electron transport

mycoplasma membrane, 42:414 Rhodospirillaceae, 42:357

Electron transport chains

bacteria, 41:47

Encephalitis in mice

defective interfering particle-mediated interference, 41:811

vesicular stomatitis virus-caused, 41:811

Endocarditis

S. mutans, 44:331

Endospore formation

genetic aspects, 40:908

initiation, 40:908

Energy conservation

chemotrophic anaerobic bacteria, 41:100

Energy conversion

H. halobium, 42:682

Enoyl-CoA hydratases

in branched-chain amino acid catabolism, 40:42

Enterobacteriaceae

nicotinamide adenine dinucleotide-independent lactate dehydrogenases, 44:106

Enterobacteriaceae, transfection

applications, 42:194

mechanisms, 42:194

techniques, 42:194

Enterobacterial common antigen

chemistry, 40:591

clinical implications, 40:591

genetic determination, 40:591

serological methods, 40:591

Enterotoxigenic E. coli effects on eucaryotic cells, 42:592

Enterotoxins, E. coli and V. cholerae

effects on eucaryotic cells, 42:592

Enzymes, iron-sulfur

bacterial, 43:384

Erythrocyte ghosts

effects of V. cholerae and enterotoxigenic E. coli, 42:592

Erythrocytes

Plasmodium infection, 43:453

Escherichia coli

antigens, 41:667

carbamoyl phosphate biosynthesis and utilization,

42:307

carbohydrate transport, 44:385

complex double-stranded DNA phage head

morphogenesis, 42:529

cyanide-resistant respiration, 40:652

cyclic AMP, 40:527

electron transport, 41:47

enterotoxigenic, effects on eucaryotic cells, 42:592

fimbriae, 41:667

map comparison with B. subtilis, 44:57

membrane phospholipid synthesis, 42:614

nicotinamide adenine dinucleotide-independent

lactate dehydrogenase, 44:106 phosphoenoltransferase system, 41:856

plasmid-determined tetracycline resistance, 42:707

transfection, 42:194 UV mutagenesis, 40:869

Escherichia coli K-12

clustering of gene loci, 40:116

linkage map, 44:1

recalibrated linkage map, 40:116

valine and growth inhibition, 43:42

Eubacteria

antibiotic production, 41:595

phosphoenoltransferase system, 41:856

Eucarvotes

occurrence of guanosine tetraphosphate and other unusual nucleotides, 43:27

Eucaryotic cell biology

contributions of microbiology, 43:443

Eucaryotic cells

chlamydial parasitism, 42:274

effects of V. cholerae and enterotoxigenic E. coli,

42:592

Eucaryotic messenger ribonucleic acids

5'-terminal cap structure, 44:175

Eucaryotic suborganellar systems action of virginiamycin family, 43:145

Euglena

light antenna, 44:572

Euglenophyceae

light antennas, 44:572

Eustigmatophyceae

light antennas, 44:572

Evolution

autotrophy, 42:251

P22-like temperate phages, 42:385 Rhodospirillaceae genetics, 42:357

Exfoliative toxin

S. aureus, 43:320

Exoenzyme synthesis

Bacillus, 41:711

procaryotes, 41:711 **Exospore** formation

R. vannielii, 41:754

Exotoxins, V. cholerae and enterotoxigenic E. coli

effects on eucaryotic cells, 42:592

Extrachromosomal elements as agents of evolution, 40:552

gene transfer, 40:552

in mutation, 40:552

natural genetic engineering, 40:552

phage conversion, 40:552

RNA tumor viruses, 40:552

Fat cells

effects of V. cholerae and enterotoxigenic E. coli, 42:592

Fatty acids

African trypanosomes, 42:661

E. coli membrane, 42:614

mycoplasma membrane, 42:414

Fatty acid synthesis

cerulenin as inhibitor, 40:681

Fatty acid systems
Bacillus, 41:391
Ferredoxins

bacterial, 43:384

Ferret tissue

influenza virus replication, 44:303

Ferric chelates microbial iron acquisition, 42:45

Fibroblasts
effects of V. cholerae and enterotoxigenic E. coli,
42:592

Fimbriae E. coli, 41:667

Flora, microbial immunity to C. albicans, 44:660

Fluorescent pigments

fluorescent pseudomonads, 43:422

Fluorescent pseudomonads secondary metabolites, 43:422 Food poisoning C. botulinum toxin, 44:419

Formaldehyde

autotrophy evolution, 42:251

Formate-aspartate pathway nicotinamide adenine dinucleotide biosynthesis, 44:83

Formate dehydrogenase bacterial, 43:384

F' plasmid

derivatives, 41:872

Fructose-specific phosphoenoltransferase system photosynthetic bacteria, 41:856

Fungi

aflatoxin-producing, 41:822 antibiotic-producing, 41:595

carbamoyl phosphate biosynthesis and utilization, 42:307

cell wall biosynthesis, 43:117 metabolism, 41:822

Fusobacterium necrophorum

animal diseases and chemotherapy, 41:373 description, 41:373

immunity, 41:373
Fusobacterium nucleatum

P2 antigen, 43:103

Gamma-toxin S. aureus, 43:320

Garden pea carbamoyl phosphate biosynthesis and utilization, 42:307

Gastrointestinal tract spirochetes, 42:114

Gene, transforming viral, 43:443

Gene expression role of cyclic AMP, 40:527

Genetic map S. cerevisiae, 44:519

Genetic transformation Enterobacteriaceae, 42:194 Rhodospirillaceae, 42:357

S. typhimurium, 42:471 "Gene transfer agent" R. capsulata, 42:357 Geotaxis

in spirilla, 40:55

α(1→6)Glucanase S. mutans, 44:331

Glucans

fungal cell wall, 43:117

Glucosyltransferase S. mutans, 44:331

Glutamate synthase bacterial, 43:384

Glutamine phosphoribosyl pyrophosphate amido transferase

bacterial, 43:384 Glycerol transport E. coli, 44:385

Glycogen chlamydial reticulate bodies, 42:274 Sphaerotilus-Leptothrix group, 42:329

Glycolipids mycoplasma membrane, 42:414

Glycolysis fungal metabolism, 41:822

Glycolytic substrate-linked phosphorylation primitive carbohydrate metabolism, 42:251

Glycoprotein hormones similarities to V. cholerae and enterotoxigenic E. coli toxins, 42:592

Glycoproteins

mycoplasma membrane, 42:414

Gonyaulax spp. toxins, 42:725 Gramicidin S

Bacillus antibiotic, 41:449 Gram-negative bacteria, envelope

structure and Enterobacteriaceae transfection, 42:194

structure and function, 42:614 tetracycline passage, 42:707

Gram-positive bacteria

cytoplasmic membrane, tetracycline passage, 42:707 envelope structure, Enterobacteriaceae

transfection, 42:194
penicillinase synthesis, genetic regulation, 42:67

Granuloma
Mycobacterium, 41:217

Grasses

nitrogen fixation with bacteria, 44:491 Group B streptococci

diagnosis, 40:774 diseases, 40:774 pathogenesis, 40:774 treatment, 40:774

virulence factors, 40:774 Guanosine 5'-monophosphate

effects of V. cholerae and enterotoxigenic E. coli on eucaryotic cells, 42:592

Guanosine tetraphosphate

E. coli membrane phospholipid synthesis, 42:614 in eucaryotes, 43:27

in procaryotes, 43:27 microbial ecology, 44:739

Guanosine 5'-triphosphate

microbial ecology, 44:739 Guanylyltransferas messenger RNA 5'-terminal cap structure, 44:175 Guinea pig viruses biomedical research, 44:468

Gymnodinum spp. toxins, 42:725

Haemonhilus pyridine nucleotide cycle metabolism, 44:83 Halobacterium cutirubrum carbamoyl phosphate biosynthesis and utilization, 42:307 Halobacterium halobium light energy conversion, 42:682 Halophilic organisms algae, 40:803 bacteria, 40:803 Haploid system application of biometrical methods, 41:595

Haptophyceae light antennas, 44:572 Head length control effect of canavanine, 40:314 phage T4, 40:314 size determination, 40:314

Hemagglutinin yeast DNA interaction, 42:161 Hemolysins African trypanosomes, 42:661

Hepatotoxins African trypanosomes, 42:661 Herpes-like virus, guinea pigs infection in vivo, 44:468

Herpesviruses, guinea pigs biomedical research, 44:468 Heterocaryon analysis in N. crassa, 40:1

Heteroclones Streptomyces, 41:595 Heterokaryons Streptomyces, 41:595

Hexose skeletons

autotrophy evolution, 42:251 Hfr plasmid

formation, 41:872 his operon of E. coli K antigens determined near, 41:667 Histones

chromatin replication, 43:297 Hormonal factors

immunity to C. albicans, 44:660 Host defense

temperature, 43:241 Humans

use of virginiamycin family, 43:145 Human tissue

influenza virus replication, 44:303 Humoral antibodies agglutinins, 40:284 bacteriolysins, 40:284 opsonins, 40:284 precipitins, 40:284

Hydrocarbons

microbial cooxidation, 43:59

Hydrogenase bacterial, 43:384

Hydrogenation reactions chemotrophic anaerobic bacteria, 41:100

Hydrogen evolution nitrogen fixation, 44:449 Hydrogen evolution and uptake

nitrogen fixation, 44:491 Hydrolytic enzymes

E. coli membrane phospholipid breakdown, 42:614

ω-Hydroxylase bacterial, 43:384 Hyperferremia

iron and infection, 42:45

Hyperthermia effects, 43:241 Hypothermia effects, 43:241

Idiotype network interactions immune response autoregulation, 44:631

Ileal loop assay effects of V. cholerae and enterotoxigenic E. coli on eucaryotic cells, 42:592

Immune function temperature, 43:241

Immune mechanisms blastogenic factor, 40:284 chemotactic factor, 40:284

macrophage chemotactic factor, 40:284 migration inhibition factor, 40:284 transfer factor, 40:284

Immune response

infection with Bacteroidaceae, 43:103

Immune response, effects iron, 42:45

V. cholerae and enterotoxigenic E. coli, 42:592 Immune responses

autoregulation via idiotype network interactions, 44:631

Immunity

to C. albicans, 44:660 Immunocompetent cells

cell-mediated mechanisms, 40:284 in resistance to infection, 40:284

Immunoglobulin epitopes

immune response autoregulation, 44:631 Immunological function

environmentally induced changes, 41:205

leukocytes, 41:205

serology, 41:205 tobacco smoke exposure, 41:205

Infection

effects of iron, 42:45 Infection, Bacteroidaceae detection, 43:103

immune response, 43:103 immunoprophylaxis, 43:103

Infection, T-even phage

host macromolecular synthesis shutoff, 43:199 Infection, virus

role of macrophages in resistance, 43:1

Influenza virus

pathogenicity, 44:303

Influenza virus messenger ribonucleic acid

5'-terminal cap structure, 44:175

Insects

mycoplasmas, 42:414

spirochetes, 42:114

Interferon host cell treatment

effect on chlamydial growth, 42:274

Interferons

antiviral activity, 41:543

measles virus induction, 41:636

Invertage

S. mutans, 44:331

Invertebrates

carbamoyl phosphate biosynthesis and utilization, 42:307

5-Iodo-2'-deoxyuridine host cell treatment effect on chlamydial growth, 42:274

Iron and infection

host iron-withholding activity, 42:45

immune response, 42:45

microbial iron acquisition, 42:45

phagocytosis, 42:45

Iron limitation

microbial ecology, 44:739

Iron oxidation

Sphaerotilus-Leptothrix group, 42:329

Iron-sulfur proteins

bacterial, 43:384

Isoenzymes, acetohydroxy acid synthase E. coli K-12, 43:42

Joblot, Louis microscopes, 40:190

monographs, 40:190

K antigens

E. coli, 41:667 Kinetochores

in protist meiosis, 40:190

Kitasato, Shibasaburo

controversy versus Yersin, 40:633 discovery of plague bacillus, 40:633

Klehsiella

cross-reactions with E. coli O antigens, 41:667

Klebsiella pneumoniae

nif gene, 44:449

Koch, Robert

scientific accomplishments, 40:276

theory of pleomorphism, 40:276

Lactate dehydrogenases

bacteria, 44:106

Lactate production bacteria, 44:106

Lactate racemases

bacteria, 44:106

Lactic acid bacteria

nicotinamide adenine dinucleotide-independent

lactate dehydrogenases, 44:106

Lactobacillus

pyridine nucleotide cycle metabolism, 44:83

Lactobacillus leichmannii

carbamoyl phosphate biosynthesis and utilization,

Lactose-proton symport

bacteria, 44:385

Lactose uptake bacteria, 44:385

Lectins

S. mutans reactivity, 44:331

Leptothrix spp.

genetic relationships, 42:329

growth, 42:329

iron oxidation, 42:329

Mn2+ oxidation, 42:329

nomenclature, 42:329

taxonomy, 42:329

Leucocidin

S. aureus, 43:320

Leuconostoc

pyridine nucleotide cycle metabolism, 44:83

Leukocytes

effects of atmospheric contaminants, 41:205

Levansucrase

Bacillus synthesis, 41:711

Light antennas

phototactic algae, 44:572

Light energy conversion

H. halobium, 42:682

Light organ symbionts

luminous bacteria, 43:496 Lipid biosynthesis

fungi, 41:822

Mycobacterium, 41:217

Plasmodium, 43:453

Lipid composition

methanogens, 43:260

Lipid metabolism enzymes

mycoplasma membrane, 42:414 Lipids

chlamydiae, 42:274

chlamydia-infected cells, 42:274

E. coli membrane, 42:614

fluorescent pseudomonads, 43:422

mycoplasma membrane, 42:414

Lipopolysaccharides

Bacteroidaceae, 43:103

mycoplasma membrane, 42:414

spirochete outer sheath, 42:114

trypanosomes, 42:661

Lipoteichoic acid

S. mutans, 44:331

Listeria

bacteriocins, 40:722 Lithotrophs

metabolism, 41:419

specialists, 41:419

Luminescent system, bacterial

control, 43:496

Luminous bacteria

distribution, 43:496 habitats, 43:496

taxonomic relationships, 43:496

Lupus erythematosus, systemic

linkage to measles virus, 41:636 Lymphocyte immune response

effects of V. cholerae and enterotoxigenic E. coli, 42:592

Lýmphoid cell line immune response

effects of V. cholerae and enterotoxigenic E. coli, 42:592

Lysogeny

mycoplasma viruses, 42:414

phage P22, 42:385

Lysophospholipases

E. coli membrane phospholipid breakdown, 42:614 Lysozyme-ethylenediaminetetraacetate spheroplast technique

Enterobacteriaceae transfection, 42:194

Macrolides

biosynthesis, 41:595

Macrophages

role in virus infection resistance, 43:1

Malarial parasites (see Plasmodium)

Maltose transport

E. coli, 44:385

Mammalian systems

carbamoyl phosphate biosynthesis and utilization,

Manganese dioxide reduction

Leptothrix spp., 42:329

Manganous ion oxidation

Sphaerotilus-Leptothrix group, 42:329

Mannitol-specific phosphoenoltransferase system

S. auranatia, 41:856

M antigen

E. coli, 41:667

Map

B. subtilis, 44:57

E. coli K-12, 44:1 Marten, Benjamin

"new theory of consumptions," 42:521

Measles virus

associated diseases, 41:636

interferon synthesis induction, 41:636

replication, 41:636

structure, 41:636

temperature-sensitive mutants, 41:636

virus-cell interactions, 41:636

Medical microbiology

microbial genetics, Pseudomonas, 43:73

Meiosis

protist, 40:190

Melibiose-sodium cotransport

E. coli, 44:385

S. typhimurium, 44:385

Membrane-bound enzymes

E. coli, 42:614

mycoplasmas, 42:414

2-Mercaptoethanesulfonic acid

methanogens, 43:260

Messenger ribonucleic acid

Bacillus exoenzyme synthesis, 41:711

Messenger ribonucleic acid (guanine-7-)methyl-

transferase

messenger RNA 5'-terminal cap structure, 44:175 Messenger ribonucleic acid guanylyltransferase

messenger RNA 5'-terminal cap structure, 44:175

Messenger ribonucleic acids, eucaryotic

5'-terminal cap structure, 44:175

Metazoa

carbamoyl phosphate biosynthesis and utilization, 42:307

Methanobacteriaceae

description, 43:260

Methanobacteriales

description, 43:260 Methanobacterium

description, 43:260

Methanobacterium bryantii

description, 43:260

Methanobacterium thermoautotrophicum

autotrophic growth, 41:514

Methanobrevibacter

description, 43:260

Methanobrevibacter smithii

description, 43:260

Methanococcaceae description, 43:260

Methanococcales

description, 43:260

Methanococcus description, 43:260

Methanococcus voltae

description, 43:260

Methanogenic bacteria

ecological aspects, 41:514

methods for study, 41:514

physiological aspects, 41:514

properties, 41:514

Methanogenium

description, 43:260

Methanogens

description, 43:260

reevaluation, 43:260 taxonomy, 43:260

Methanomicrobiaceae

description, 43:260

Methanomicrobiales

description, 43:260 Methanomicrobium

description, 43:260

Methanosarcina

description, 43:260

Methanosarcinaceae

description, 43:260

Methanospirillum

description, 43:260

4-Methoxybenzoate-O-demethylase

bacterial, 43:384

Methylotrophs

metabolism, 41:419 specialists, 41:419

Methylotrophy

relation with autotrophy, 42:251

2'-O-Methyltransferase

messenger RNA 5'-terminal cap structure, 44:175

Methyltransferases

messenger RNA 5'-terminal cap structure, 44:175

Microbial flora

immunity to C. albicans, 44:660 Microbial surfaces

bacteria, 41:475

relation to pathogenicity, 41:475 virus, 41:475

Microbial water stress compatible solutes, 40:803 ecological aspects, 40:803

halophilic algae, 40:803 halophilic bacteria, 40:803

physicochemical parameters, 40:803 xerotolerant yeasts, 40:803

Microcystis aeruginosa toxin, 42:725

Micromonospora

recombination, 41:595

Microscopes historical, 40:241

van Leeuwenhoek's, 40:260

Microthamnium light antenna, 44:572 Mineral requirements

Sphaerotilus-Leptothrix group, 42:329

Minimum lethal dose

inverse prediction, 42:237 Mitochondria, eucaryotes

presence of guanosine tetraphosphate, 43:27 Mitogens

African trypanosomes, 42:661

Molybdenum

nitrogen fixation, 44:449

Mononuclear phagocyte system macrophages and virus infections, 43:1

Mouse tissue influenza virus replication, 44:303

Mucocutaneous candidiasis, human cell-mediated immunity, 44:660

Multiple sclerosis

linkage to measles virus, 41:636

Mung bean

carbamoyl phosphate biosynthesis and utilization, 42:307

Murine leukemia virus

interferon inhibition of replication, 41:543

Mutacins

S. mutans, 44:331

Mutagen/carcinogen detection S. typhimurium, 42:471

Mycelia

structure and composition in N. crassa, 40:1

Mycobacillin

Bacillus antibiotic, 41:449

Mycobacterial antigens chemistry, 42:84

immunological properties, 42:84

isolation, 42:84

nomenclature, 42:84

Mycobacteriophages

host cell-destroying enzyme induction, 41:217 lysogeny and pseudolysogeny, 41:217

serology, 41:217

Mycobacterium

acid-fastness, 41:217

antigen, 41:217

cell wall, 41:217

cytoplasmic membrane synthesis, 41:217

granulomas, 41:217

immune response, 41:217

lipid biosynthesis, 41:217 morphology, 41:217

mycobacteriophages, 41:217

pyridine nucleotide cycle metabolism, 44:83

Mycoplasmas ecology, 42:414

genome, 42:414

growth and morphology, 42:414

membrane, 42:414 pathogenicity, 42:414

viruses, 42:414

Myxosarcina development and taxonomy, 42:2

Neurological disease

linkage to measles virus, 41:636

Neurospora

genetic control mechanisms, 43:361

life cycle, 43:361

natural history, 43:361

Neurospora crassa

asexual life cycle, 40:1

biochemical genetics, 40:1

breaking of dormancy, 40:1

carbamoyl phosphate biosynthesis and utilization, 42:307

conidial germination, 40:1

structure of conidia and mycelia, 40:1

Neurotoxin

C. botulinum, 44:419

Nicotinamide adenine dinucleotide biosynthesis

microbial systems, 44:83

Nicotinamide adenine dinucleotide-independent lactate dehydrogenases

bacteria, 44:106

Nicotinamide adenine dinucleotide-linked lactate dehydrogenases

bacteria, 44:106

Nicotinamide nucleotide coenzymes role in fungal metabolism, 41:822

Nisin

biosynthesis, 41:595

Nitrate reductase (dissimilatory)

bacterial, 43:384

Nitrification

aflatoxigenic fungi, 41:822

Nitrogenase

A. brasilense, 44:491 A. vinelandii, 41:47

bacterial, 43:384

biochemistry, 44:449

photosynthesis, 44:491

Nitrogen fixation

bacteria with tropical grass roots, 44:491

biochemical genetics, 44:449

in spirilla, 40:55

Nitrogen limitation

microbial ecology, 44:739 Nitrogen metabolite regulation

antibiotic biosynthesis, 44:230

Nitrogen sources

Sphaerotilus-Leptothrix group, 42:329

Nocardia mediterranei

recombination, 41:595

Noctiluca miliaris toxin, 42:725

Nodulation

Rhizobium, 44:449

Nonmeiotic systems

application of biometrical methods, 41:595

Nuclear disruption

T-even phage infection, 43:199

Nucleases

E. coli transfection, 42:194

Nucleic acid biosynthetic enzymes

chlamydial reticulate bodies, 42:274

Nucleic acid metabolism

fungi, 41:822

Nucleic acids

Plasmodium, 43:453

Nucleoid unfolding, host

T-even phage infection, 43:199

Nucleosomes

chromatin replication, 43:297

Nucleotide fingerprints

microbial ecology, 44:739

Nucleotide precursors

Bacillus exoenzyme synthesis, 41:711

Nucleotides, adenine

fungal metabolism, 41:822

Nucleotides, cyclic

Bacillus exoenzyme synthesis, 41:711

Nucleotides, highly phosphorylated

Bacillus exoenzyme synthesis, 41:711

Nucleotides, unusual

in eucaryotes, 43:27

in procaryotes, 43:27

O antigens

E. coli. 41:667

Oceanospirillum, 40:55

Ochromonas spp.

toxins, 42:725

Oligosaccharides, membrane-derived

E. coli, 42:614

Oral streptococci

identification, 44:331 isolation, 44:331

Oudemansiella mucida

antibiotic synthesis, 41:595

Oxygenases

hydrocarbon cooxidation, 43:59

Oxytetracycline hydrochloride

bacterial resistance, 42:707

Palm sap

Zymomonas, 41:1

Panencephalitis, subacute sclerosing

linkage to measles virus, 41:636

P2 antigen

F. nucleatum, 43:103

Papovaviruses

chromatin replication, 43:297

Paracoccus denitrificans

electron transport, 41:47

Paraffinic hydrocarbons

microbial cooxidation, 43:59

Paramecium tetraurelia

trichocysts, 44:252

Paramyxoviruses, guinea pigs

biomedical research, 44:468

Parasites

luminous bacteria, 43:496

Pathogenesis

African trypanosomes, 42:661

enterotoxigenic E. coli, 42:592

mycoplasmas, 42:414

salmonellae, 42:471 V. cholerae, 42:592

PBS1 phage transduction

B. subtilis, 44:57

Pea

carbamoyl phosphate biosynthesis and utilization, 42:307

Penicillin analogs

penicillinase induction, gram-positive bacteria,

42:67

Penicillinase

Bacillus synthesis, 41:711

Penicillinase, gram-positive bacteria

function, 42:67

synthesis, 42:67

Penicillin chrysogenum

antibiotic synthesis, 41:595

Penicillium griseofulvum

antibiotic synthesis, 41:595

Pentose

autotrophy evolution, 42:251

Peptide antibiotics

Bacillus synthesis, 41:449, 41:595

Peptides

fluorescent pseudomonads, 43:422

mycobacterial antigens, 42:84

Peptidoglycan

pleurocapsalean cyanobacterial cell wall, 42:2

spirochete protoplasmic cylinder, 42:114

Peridinium polonicum toxin, 42:725

Permease

bacteria, 44:385

Pg81 phage

restriction, 44:206

Phagocytosis

effect of iron, 42:45

immunity to C. albicans, 44:660

Phaseolus aureus

carbamoyl phosphate biosynthesis and utilization, 42:307

Phenazines

fluorescent pseudomonads, 43:422

Phosphate

effect on Leptothrix Mn2+ oxidation, 42:329

Phosphate regulation

antibiotic biosynthesis, 44:230

Phosphatidic acid

E. coli membrane phospholipid synthesis, 42:614

Phosphatidic acid phosphatase

E. coli membrane phospholipid breakdown, 42:614

Phosphatidylethanolamine

E. coli membrane phospholipid synthesis, 42:614

Phosphatidylglycerol

E. coli membrane phospholipid synthesis, 42:614

Phosphatidylglycerophosphate phosphatase

E. coli membrane, 42:614

Phosphatidylglycerophosphate synthetase

4

E. coli membrane, 42:614

Phosphatidylserine

E. coli membrane phospholipid synthesis, 42:614

Phosphatidylserine decarboxylase

E. coli membrane, 42:614

Phosphatidylserine synthetase E. coli membrane, 42:614

Phosphoenolpyruvate-dependent sugar

phosphotransferase system

mycoplasmas, 42:414

Phosphoenolpyruvate:sugar phosphotransferase

system

bacteria, 41:856, 44:385

Phospholipases

African trypanosomes, 42:661

E. coli membrane phospholipid breakdown, 42:614

Phospholipid enzymes

E. coli membrane, 42:614 Phospholipids, membrane

E. coli, 42:614

mycoplasmas, 42:414

Phospholipid synthesis, E. coli membrane

enzymology, 42:614 genetics, 42:614

regulation, 42:614

Phospholipid turnover

E. coli membrane, 42:614

Phosphorus acquisition system Neurospora, 43:361

Phosphorus limitation

microbial ecology, 44:739

Phosphorylated nucleotides

Bacillus exoenzyme synthesis, 41:711

Phosphorylation

primitive carbohydrate metabolism, 42:682

Phosphotransferase systems

bacteria, 44:385

Photophosphorylation

H. halobium, 42:682 Photopigments

R. vannielii, 41:754

Photosynthesis

nitrogenase, 44:491

Photosynthetic bacteria

ferredoxin-dependent reactions, 43:384

fructose-specific phosphoenoltransferase system, 41:856

Photosynthetic membranes, procaryotic

bound iron-sulfur proteins, 43:384

Phototactic algae light antennas, 44:572

Phototrophs

metabolism, 41:419

specialists, 41:419

Pichia taxonomy, 42:161

Pigments, fluorescent

fluorescent pseudomonads, 43:422

Pisum sativum

carbamoyl phosphate biosynthesis and utilization,

42:307

Plant mycoplasmas, 42:414

Plasmid-chromosome interaction

Pseudomonas, 43:73

Plasmid-determined tetracycline resistance

E. coli. 42:707

S. aureus,, 42:707 Plasmids

bacterial, 40:168

cointegration, 41:872

determination of E. coli K antigens, 41:667

F' derivatives, 41:872

Hfr formation, 41:872

SOS repair, 40:869 Streptomyces, 41:595

Plasmodium

biochemistry, 43:453

growth, 43:453

host cell specificity, 43:453

infected-cell morphology, 43:453

life cycle, 43:453

membrane, 43:453

metabolic pathways, 43:453 morphology, 43:453

Platelets

beta-lysin, 41:501

site of action of beta-lysin, 41:501

Platymonas

light antenna, 44:572

Pleurocapsa group development and taxonomy, 42:2

Pleurocapsalean cyanobacteria

development and structure, 42:2

isolation, 42:2

strain histories, 42:2

taxonomy, 42:2

Pleurocapsales taxonomy, 42:2 Pneumonia, swine

B. bronchiseptica, 44:722

Pollution assessment ATP measurements, 44:739

Polyglycerophosphatide

E. coli membrane, 42:614

Poly-β-hydroxybutyrate, Sphaerotilus-Leptothrix group

synthesis and degradation, 42:329

Polymer synthesis

S. mutans, 44:331

Polymixin

Bacillus antibiotic, 41:449

Polynucleotide sequence relatedness

yeast systematics, 42:161

Polyoma virus

chromatin replication, 43:297 Polysaccharide K antigens

E. coli, 41:667

Polysaccharide-protein complexes

fungal cell wall, 43:117

Polysaccharides

Ceratocystis, 44:683

mycobacterial antigens, 42:84

S. mutans, 44:331

S. schenckii, 44:683

Primeval soup autotrophy evolution, 42:251

Procarvotes

bacteriophage development, 41:568

exoenzyme synthesis, 41:711

gene selection, 41:568

occurrence of guanosine tetraphosphate and other unusual nucleotides, 43:27

phosphoenoltransferase system, 41:856

RNA polymerase, 41:568 specialist prototrophs, lithotrophs, methylotrophs,

unity among diversity, 41:419

Procaryotes, virus-infected

action of virginiamycin family, 43:145

Procaryotic photosynthetic membranes bound iron-sulfur proteins, 43:384

Prodigiosin

biosynthesis, 41:595

Pronase

effect on Leptothrix Mn2+ oxidation, 42:329

Prosthecate bacteria

morphogenesis and differentiation, 41:754

Protease, extracellular Neurospora, 43:361

African trypanosomes, 42:661

Bacillus synthesis, 41:711

Protein K antigens

E. coli, 41:667

Protein metabolism fungi, 41:822

Protein-polysaccharide complexes

fungal cell wall, 43:117

Proteins, iron-sulfur

bacterial, 43:384 Protein synthesis

interferon inhibition in viruses, 41:543

Plasmodium, 43:453

R. vannielii, 41:754

Protist meiosis

cytological events during, 40:190

induction of, 40:190

meiotic mutants, 40:190

physiological events during, 40:190 Protons, transmembrane movement

H. halobium, 42:682

Proton translation

ATPase complexes, 41:47

Protoplast fusion

recombination, 41:595

Protozoa, surface-related structures

formation, 44:252

positioning, 44:252

Prymnesiophyceae

light antennas, 44:572

Prymnesium parvum toxin, 42:725

Pseudomonads, fluorescent

secondary metabolites, 43:422

Pseudomonas

chromosomal genetics, 43:73

formate dehydrogenase, 43:384

Pseudomonas aeruginosa

carbamoyl phosphate biosynthesis and utilization, 42:307

Pseudomonas aeruginosa PAO

chromosomal mapping, 43:73

Pseudomonas aeruginosa PAT

chromosomal mapping, 43:73

Pseudomonas cell structure

genetic analysis, 43:73

Pseudomonas fluorescens

carbamoyl phosphate biosynthesis and utilization, 42:307

Pseudomonas putida

carbamoyl phosphate biosynthesis and utilization, 42:307

Pseudomonic acid

fluorescent pseudomonads, 43:422

Purified protein derivative

tuberculin, 42:84

Purines

aerobic degradation, 40:403

anaerobic degradation, 40:403

in Enterobacteriaceae, 40:403

in fungi, 40:403

in streptococci, 40:403

Pyridine nucleotide cycle metabolism

microbial systems, 44:83

Pyrimidine biosynthetic pathway, carbamoyl

phosphate utilization

biochemistry, 42:307 genetics, 42:307

Pyrimidines

biosynthetic pathway, 40:403

degradation, 40:403

Pyrrhophycophyta

toxins, 42:725

Pyrrolnitrin

fluorescent pseudomonads, 43:422

Pyruvate dehydrogenase

bacterial, 43:384

Quinic acid catabolic system Neurospora, 43:361

Rana catesbeiana

carbamoyl phosphate biosynthesis and utilization, 42:307

R antigens

E. coli, 41:667

Recombination

actinomycetes, 41:595

additive, 41:872

bacteriophage integration, 41:872

genetic markers and symbols, 41:872

Micromonospora, 41:595

N. mediterranei, 41:595 protoplast fusion, 41:595

Reduced nicotinamide adenine dinucleotide

dehydrogenase

bacterial, 43:384

Reovirus messenger ribonucleic acid

5'-terminal cap structure, 44:175

Respiration

bacteria, 41:47 fungi, 41:822

Respiratory infections

B. bronchiseptica, 44:722

Retroviruses, guinea pigs

biomedical research, 44:468

Rhamnomannans

Ceratocystis, 44:683

S. schenckii, 44:683

Rhizobium

nodulation, 44:449

Rhodomicrobium vannielii

morphogenesis and differentiation, 41:754

Rhodophycophyta toxins, 42:725

Rhodopseudomonas capsulata

gene transfer agent," 42:357

Rhodospirillaceae

bacteriocins, 42:357

evolution, 42:357 genetics, 42:357

phage, 42:357

physiology, 42:357

Ribonucleic acid, ribosomal methanogens, 43:260

Ribonucleic acid, transfer

methanogens, 43:260

Ribonucleic acid plasmid

double-stranded killer of S. cerevisiae, 40:757

Ribonucleic acid polymerase

Bacillus exoenzyme synthesis, 41:711

procaryotes, 41:568

role in phage development, 41:568

Ribonucleic acid polymerase, DNA-dependent chlamydial elementary bodies, 42:274

Ribonucleic acid polymerase modification

T-even phage infection, 43:199

Ribonucleic acid replication

defective interfering genome generation, 41:811

Ribonucleic acids, messenger

5'-terminal cap structure, 44:175

Ribonucleic acid synthesis

R. vannielii, 41:754

Ribonucleic acid tumor viruses

in interspecific gene transfer, 40:552

role in embryogenesis, 40:552 Ribosomal antigens

mycobacteria, 42:84

Ribosomal ribonucleic acid

methanogens, 43:260

Ribosome modification

T-even phage infection, 43:199

Ribulose diphosphate cycle

autotrophy evolution, 42:251

Ribulose monophosphate cycle autotrophy evolution, 42:251

Rifamycins

biosynthesis, 41:595

R4 phage

restriction and modification, 44:206

Saccharomyces cerevisiae

carbamoyl phosphate biosynthesis and utilization,

42:307

genetic map, 44:519

RNA plasmid killer, 40:757

yeast genetics, 40:757

Saccharomyces taxonomy, 42:161

cross-reactions with E. coli O antigens, 41:667

Salmonellae

pathogenicity, 42:471

Salmonella typhimurium

carbamoyl phosphate biosynthesis and utilization, 42:307

coding for phosphoenoltransferase system, 41:856

genetics, 42:471

linkage map, edition V, 42:471

pathogenicity, 42:471

sodium-melibiose cotransport, 44:385

Saprophytic luminous bacteria

distribution, 43:496

habitats, 43:496

Scalded skin syndrome

staphylococcal, 43:320

Schwanniomyces taxonomy, 42:161

Sclerosing panencephalitis, subacute

linkage to measles virus, 41:636

serA of E. coli

K antigens determined near, 41:667

Serological classification

Bacteroidaceae, 43:103

Serological responses

antigens of Bacteroidaceae, 43:103

Serratia marcescens

carbamoyl phosphate biosynthesis and utilization,

42:307

Serum components

mycoplasma nutrients, 42:414 Serum factors, innate

immunity to C. albicans, 44:660

Sewage systems

disposal of cyanide wastes, 40:652

Shigella

cross-reactions with E. coli O antigens, 41:667

spirochetes, 42:114

Siderophore synthesis iron inhibition, 42:45

Simian virus 40

chromatin replication, 43:297

Simian virus 40 genome

interferon ineffectiveness, 41:543

Skin lesions

spirochetes, 42:114

Skin permeability assay

effects of V. cholerae and enterotoxigenic E. coli

on eucaryotic cells, 42:592

sn-Glycero-3-phosphate

E. coli membrane phospholipid synthesis, 42:614

Sodium-melibiose cotransport E. coli, 44:385

S. typhimurium, 44:385

Soil ester sulfate

hydrolysis, 40:698

mammalian sources, 40:698

microbial sources, 40:698 mineralization, 40:698

SOS hypothesis

UV mutagenesis, 40:869

Spallanzani, L.

experiments with infusions, 40:274

Opusciuli, 40:270

preformationism, 40:270

Sphaerotilus-Leptothrix group

genetics, 42:329

growth, 42:329

isolation, 42:329 taxonomy, 42:329

Sphaerotilus natans taxonomy, 42:329

Spheroplast technique

Enterobacteriaceae transfection, 42:194

Spindle pole bodies

in protist meiosis, 40:190

Spirilla

Aquaspirillum, 40:55

bacteriophages for, 40:55

cell wall, 40:55

chemoheterotrophic, 40:55

cultivation and nutrition of, 40:55

DNA of. 40:55

ecology of, 40:55

isolation of, 40:55

motility and flagella, 40:55

Oceanospirillum, 40:55

respiration, 40:55

sugar catabolism, 40:55 tactic responses, 40:55

Spirochaeta aurantia

mannitol-specific phosphoenoltransferase system,

41:856

Spirochetes

anatomy, 42:114

chemistry, 42:114

evolution, 41:181

host associations, 42:114

metabolism, 41:181

physiology, 41:181

Spiroplasma viruses, 42:414

Spore formation

in actinomycetes, 40:469

Spores

coat layers, 40:360

germination, 40:360

morphology, 40:360

Sporothrix schenckii

biochemistry, 44:683

ecology, 44:683

immunology, 44:683

morphology, 44:683

Sporotrichosis

epidemiology, 44:683

Sporulation events, 40:908

Sporulation of B. subtilis

RNA polymerase role, 41:568

Staphylococcus

bacteriocins, 40:722

scalded skin syndrome, 43:320

Staphylococcus aureus

nonenteric toxins, 43:320

plasmid-determined tetracycline resistance, 42:707

Sterol synthesis

inhibition by cerulenin, 40:681

Streptococci

diagnosis, 40:774

epidemiology, 40:774

group B, 40:774 pathogenesis, 40:774

virulence factors, 40:774

Streptococci, oral

identification, 44:331

isolation, 44:331

Streptococcus faecalis

carbamoyl phosphate biosynthesis and utilization,

42:307

Streptococcus milleri

properties, 44:331

Streptococcus mitior

properties, 44:331

Streptococcus mutans

biology, 44:331 cariogenicity, 44:331

immunology, 44:331 Streptococcus salivarius

properties, 44:331

Streptococcus sanguis

properties, 44:331

Streptomyces

bacteriocins, 40:722

conjugation, 41:595

heterc lones, 41:595

heterokaryons, 41:595

interspecific recombination, 41:595

plasmids, 41:595

Streptomyces albus G

phage resistance, 44:206

Streptomyces bacteriophages genetics, 44:206

molecular biology, 44:206

Succinate dehydrogenase

bacterial, 43:384

Sugarcane sap

Zymomonas, 41:1 Sugar catabolism

by spirilla, 40:55

Sugar metabolism S. mutans, 44:331

Sugar phosphotransferase system,

phosphoenolpyruvate-dependent

mycoplasmas, 42:414

Sugars

autotrophy evolution, 42:251

Sugar translocation

catalyzed by phosphoenoltransferase system, 41: 856

Sugar transport

A. laidlawii, 42:414

Sugar uptake

bacteria, 44:385

Sulfite reductase (assimilatory)

bacterial, 43:384

Sulfite reductase (dissimilatory)

bacterial, 43:384

Sulfur cycle

in aerobic soils, 40:698

inorganic sulfate sources, 40:698

Sulfur-iron proteins

bacterial, 43:384 Sulfur limitation

microbial ecology, 44:739

Surface layer antigens

Bacteroidaceae, 43:103

Survival evaluation

challenge experiments, 42:237

Swarm cells

R. vannielii, 41:754
Swine atrophic rhinitis
B. bronchiseptica, 44:722
Swine dysentery
spirochetes, 42:114
Swine pneumonia
B. bronchiseptica, 44:722
Synaptonemal complexes
in protist and meiosis, 40:190
Syphilis
spirochetes, 42:114

T-cell idiotypes immune response autoregulation, 44:631
T Cells stimulation by antigens, 40:284 stimulation by mitogens, 40:284
Temperate phages heteroimmune to phage \$\phi\$C31, 44:206
Temperate P22-like phages modular construction, evolutionary rationale, 42:385
Temperature host defense, 43:241
Ter reaction

er reaction
DNA packaging and phage λ head completion,
42:529

Tetanus toxin
action, 43:224
chemistry, 43:224
production, 43:224
release, 43:224
similarities to C. botulinum toxin, 44:419
spread, 43:224
structure, 43:224

Tetracyclines biosynthesis, 41:595 Tetracyclines, bacterial resistance associated proteins, 42:707 genes, 42:707 membrane passage and binding, 42:707

plasmids, 42:707
Tetrahymena thermophila
cortical mitochondria, 44:252
stomatogenesis, 44:252

Tetrose skeletons autotrophy evolution, 42:251 T-even phage infection

host macromolecular synthesis shutoff, 43:199
Theory of pleomorphism

Koch, R., 40:276 Winogradsky, S., 40:276 Thermoactinomyces

transformation, 41:595 Thermoplasmas ecology and nutrition, 42:414

Thermotaxis

in spirilla, 40:55 Thymidine kinase, host cell chlamydial inhibition, 42:274

Tobacco
effects of smoking on leukocytes, 41:205
Toxic agents, resistance

Pseudomonas, 43:73

Toxin
C. botulinum, 44:419
tetanus, 44:419
Toxin, tetanus (see Tetanus toxin)
Toxins
African trypanosomes, 42:661
algae, 42:725

algae, 42:725
B. bronchiseptica, 44:722
enterotoxigenic E. coli, 42:592
mycoplasmas, 42:414
V. cholerae, 42:592

Toxins, S. aureus nonenteric, 43:320 Trace metals

role in aflatoxin production, 41:822
Transduction

phage P22, 42:385 S. typhimurium, 42:471 Transfection

Enterobacteriaceae, 42:194 S. typhimurium, 42:471 Transfer ribonucleic acid

methanogens, 43:260
Transfer ribonucleic acid modification
T-even phage infection, 43:199

Transformation, genetic Enterobacteriaceae, 42:194 Rhodospirillaceae, 42:357 S. typhimurium, 42:471

Transforming gene viral, 43:443 Treponema pallidum physiology, 41:181 Tricarboxylic acid cycle fungal metabolism, 41:822

Trimethylamine dehydrogenase bacterial, 43:384

Triticum aestivum
carbamoyl phosphate biosynthesis and utilization,
42:307

Trypanosomatidae, lower biology, 44:140 physiology, 44:140 Trypanosomes, African

biologically active products, 42:661

Trypanosomiasis, African pathogenesis, 42:661 Tryptophan catabolic pathway

nicotinamide adenine dinucleotide biosynthesis,
44:83

Tuberculin purified protein derivative, 42:84
Tuberculosis
Benjamin Marten's "new theory of consumn

Benjamin Marten's "new theory of consumptions," 42:521 Twort, F. W.

discovery of bacteriophage, 40:793
Tyrocidine
Bacillus antibiotic, 41:449

Ultraviolet mutagenesis
E. coli, 40:869
enzymatic repair, 40:869
error-prone repair, 40:869
Ulva spp.

toxins, 42:725 Ureaplasmas nutrition, 42:414

Vaccines

effects of *V. cholerae* and enterotoxigenic *E. coli* on eucaryotic cells, **42**:592 measles, **41**:636

Vaccinia virus messenger ribonucleic acid 5'-terminal cap structure, 44:175

Valine

E. coli K-12 growth inhibition, 43:42

van Leeuwenhoek, Anthony discovery of bacteria, 40:260 microscopes, 40:260 Vegetative cell cycle

R. vannielii, 41:754

Vesicular stomatitis virus

defective interfering genome origin, 41:811 Vesicular stomatitis virus-caused mouse encephalitis

defective interfering particle-mediated interference, 41:811

Vesicular stomatitis virus messenger ribonucleic acid 5'-terminal cap structure, 44:175

Vibrio cholerae

pathophysiological effects on eucaryotic cells, 42: 592

Viral cell transformation

gene, 43:443 mechanism, 43:443

Viral genomes

complementary termini, 41:811 Viral messenger ribonucleic acids

5'-terminal cap structure, 44:175 Viral pathogenesis

cell cultures, 41:811 molecular biology, 41:811

Virginiamycin family of antibiotics action, 43:145

chemistry, 43:145 physics, 43:145

Viruses

mycoplasmas, 42:414 Viruses, guinea pigs

biomedical research, 44:468

Virus-infected procaryotes

action of virginiamycin family, 43:145 Virus infections role of macrophages in resistance, 43:1

Vitamins
Plasmodium, 43:453

Plasmodium, 43:453

Volvox light antenna, 44:572

Wastewater treatment

ATP measurements, 44:739

Water stress algae, 40:803

bacteria, 40:803

yeasts, 40:803

Wheat germ

carbamoyl phosphate biosynthesis and utilization, 42:307

Xanthine dehydrogenase

bacterial, 43:384

Xenococcus

development and taxonomy, 42:2

Xylophagous insects

spirochetes, 42:114

Yaws

spirochetes, 42:114

Yeast

carbamoyl phosphate biosynthesis and utilization, 42:307

Yeast genetics, 40:757

Yeast systematics, genome comparison

Debaryomyces, 42:161 Pichia, 42:161 Saccharomyces, 42:161

Schwanniomyces, 42:161

Yersin, Alexandré controversy versus Kitasato, 40:633

discovery of plague bacillus, 40:633

Zinc

role in aflatoxin production, 41:822

Zorbamycin

biosynthesis, 41:595

Zymomonas detection, 41:1

isolation, 41:1 occurrence, 41:1

phenotypical description, 41:1

taxonomy, 41:1

MICROBIOLOGICAL REVIEWS

VOLUME 44

BALTIMORE, MD.

MICROBIOLOGICAL REVIEWS

COPYRIGHT © 1980, AMERICAN SOCIETY FOR MICROBIOLOGY

CONTENTS Linkage Map of Escherichia coli K-12, Edition 6. BARBARA J. BACHMANN* AND K. BROOKS LOW 1-56 The Bacillus subtilis Chromosome. Dennis J. Henner* and James A. Hoch 57-82 Nicotinamide Adenine Dinucleotide Biosynthesis and Pyridine Nucleotide Cycle Metabolism in Microbial Systems. JOHN Bacterial Lactate Dehydrogenases. ELLEN I. GARVIE 106-139 Biology and Physiology of the Lower Trypanosomatidae. R. BARCLAY McGHEE* AND WILLIAM B. COSGROVE 140-173 Erratum Nonenteric Toxins of Staphylococcus aureus. MARVIN ROGOL-SKY 174 VOLUME 44 • JUNE 1980 • NUMBER 2 CONTENTS 5'-Terminal Cap Structure in Eucaryotic Messenger Ribonucleic Control of Antibiotic Biosynthesis. JUAN F. MARTIN* AND

VOLUME 44 ● SEPTEMBER 1980 ● NUMBER 3

tans. Shigeyuki Hamada and Hutton D. Slade* 331-384

Formation and Positioning of Surface-Related Structures in

Biology, Immunology, and Cariogenicity of Streptococcus mu-

CONTENTS

Carbohydrate T				
APRIL APPE				
SAIER, JR.				 385-418
Clostridium botu	linum Neuro	toxin. H.	SUGIYAMA	 419-448

CONTENTS

Biochemical Genetics of Nitrogen Fixation. WINSTON J. BRILL
Viruses of Guinea Pigs: Considerations for Biomedical Research. G. D. HSIUNG,* F. J. BIA, AND C. K. Y. FONG 468-490
Evaluation of Nitrogen Fixation by Bacteria in Association with Roots of Tropical Grasses. P. van Berkum* and B. B. Bohlool. 491-517
VOLUME 44 • DECEMBER 1980 • NUMBER
NU Present Line 11 month Maxe
horizidai Lactate Debydrogenses. Ritzes I. Lineytt. 105-120
CONTENTS
Genetic Map of Saccharomyces cerevisiae. ROBERT K. MORTIMER* AND DAVID SCHILD
Light Antennas in Phototactic Algae. KENNETH W. FOSTER* AND ROBERT D. SMYTH
Autoregulation of Immune Responses via Idiotype Network Interactions. L. Scott Rodkey
Immunity to Candida albicans. Thomas J. Rogers* and Edward Balish
Sporothrix schenckii and Related Species of Ceratocystis. Luiz R. Travassos and Kenneth O. Lloyd*
Biology of Bordetella bronchiseptica. ROBERT A. GOODNOW 722-738
Cellular Nucelotide Measurements and Applications in Microbial Ecology. David M. Karl
Erratum
Evaluation of Nitrogen Fixation by Bacteria in Association with Roots of Tropical Grasses. P. van Berkum and B. B.

* Asterisk refers to person to whom inquiries regarding the paper should be addressed.

Воньооь 797

INDEX TO DATE OF ISSUE

Month	Date of Issue	Pages
March 1980	25 April 1980	1-174
June 1980	27 June 1980	175-384
September 1980	22 September 1980	385-517
December 1980	5 January 1981	519-797