Analyse

Intégration

Question 1/6

Théorème de convergeance dominée à paramètre continu

Réponse 1/6

Si
$$f_{\lambda}(t) \xrightarrow{\lambda \to \ell} f(t)$$
, et il existe φ intégrable tel que $\forall \lambda \in J, t \in I, |f_{\lambda}(t)| \leqslant \varphi(t)$
Les f_{λ} sont intégrables et
$$\int_{I} (f_{\lambda}(t)) dt \xrightarrow{\lambda \to \ell} \int_{I} (f(t)) dt$$

Question 2/6

Minoration divergeante

Réponse 2/6

Si
$$f \in CM([a, b[, \mathbb{K}) \text{ et } g \in CM([a, b[, \mathbb{R}_+) \text{ telles que } f(t) = \underset{t \to b^-}{O}(g(t))$$

Si f n'est pas intégrable en b, alors g non plus

Question 3/6

Sommation des relations de comparaison dans le cas divergeant g est non intégrable

Réponse 3/6

$$f = \underset{b}{O}(g) \Rightarrow \int_{a}^{x} (f(t)) dt = \underset{t \to b}{O} \left(\int_{a}^{x} (g(t)) dt \right)$$

$$f = \underset{b}{O}(g) \Rightarrow \int_{a}^{x} (f(t)) dt = \underset{t \to b}{O} \left(\int_{a}^{x} (g(t)) dt \right)$$

$$f \sim g \Rightarrow \int_{a}^{x} (f(t)) dt \sim \int_{a}^{x} (g(t)) dt$$
Dans ce dernier cas, f n'est pas intégrable

Question 4/6

Majoration convergeante

Réponse 4/6

Si
$$f \in CM([a, b[, \mathbb{K}) \text{ et } g \in CM([a, b[, \mathbb{R}_+) \text{ telles que } f(t) = \underset{t \to b^-}{O}(g(t))$$

Si g est intégrable en b , alors f aussi

Question 5/6

Théorème de convergeance dominée

Réponse 5/6

Si
$$f_n \xrightarrow[n \to +\infty]{\text{CVS}} f$$
, et il existe φ intégrable tel que $\forall n \in \mathbb{N}, t \in I, |f_n(t)| \leqslant \varphi(t)$
Alors, f_n est intégrable et
$$\int_I (f_n(t)) dt \xrightarrow[n \to +\infty]{} \int_I (f(t)) dt$$

Question 6/6

Intégration des relations de comparaison dans le cas convergeant g est intégrable

Réponse 6/6

Réponse 6/6
$$f = \mathop{O}_b(g) \Rightarrow \int_x^b (f(t)) \, \mathrm{d}t = \mathop{O}_{t \to b} \left(\int_x^b (g(t)) \, \mathrm{d}t \right)$$

$$f = O(a) =$$

 $f = o(g) \Rightarrow \int_x^b (f(t)) dt = o\left(\int_x^b (g(t)) dt\right)$

 $f \sim_{b} g \Rightarrow \int_{x}^{b} (f(t)) dt \sim_{t \to b} \int_{x}^{b} (g(t)) dt$ Dans ces trois cas, f est intégrable