

Open Digital Power

OwnTech O² Non-Isolated Dual Channel Reprogrammable Converter

OwnTech's O² reprogrammable power converter is a bi-directional 300W power converter. It features a dual 12V to 72V low side and a single 40V to 100V high side. Its maximum current value is 8A per power channel.

The power channels can be used independently, yielding two output voltages or combined to double the current.

The **O**² **converter** is fully open-source, with a strong compatibility with the Zephyr RTOS and modular programming approach.

A MATLAB® suit for code generation is also available for auto-generating the code.

AT A GLANCE

Rated Power

300W per module

Number of channels

Dual low side Single high side

Current ratings

8A per channel 16A in parallel

Voltage ratings

12V to 72V low side 40V to 100V high side

SPECIAL FEATURES

- 2 phase design
- DUAL or SINGLE power channel configuration
- Up to 97% Efficiency
- Standard size: 100mmx100mmx35mm
- Wide voltage operating range
- DC or AC operation
- Can be connected in parallel for higher power

- CAN bus communication compatible
- Zephyr OS compatible
- MATLAB[®] compatible
- ThingSet compatible
- Fully open-source
- Visual Studio Code and PlatformIO[®] compatible
- Voltage and current mode libraries available
- Gitlab source here

ELECTRICAL SPECIFICATIONS

Absolute Max ratings	
Low-Side max voltage	90V _{DC}
HIgh-Side max voltage	120V _{DC}
Low-Side max peak current	16A (8A per power channel)
Maximum Power Output	300W continuous
Low-Side ratings	
Number of power channels	2
Voltage range	12V _{DC} to 72V _{DC}
Max low-side peak current	16A (8A per channel)
Voltage ripple	Typical 0.3V
High-Side ratings	
Voltage range	$40V_{DC}$ to $100V_{DC}$
Voltage ripple	Typical 0.3V
Temperature and dimmensions	
Operating temperature	-20°C to +60°C
Cooling principle	Natural convection
Dimensions	L100mm W100mm H35mm
Control and Communication	
Main controller	STM32G474RE
External communication buses	CAN-FD, SPI, USART
	OAN-I D, OI I, OOANI
CAN communication connector	RJ45
CAN communication connector Switching frequency	
	RJ45
Switching frequency	RJ45 200kHz
Switching frequency USART/SPI connector	RJ45 200kHz 6 inline headers
Switching frequency USART/SPI connector SD Card module compatibility	RJ45 200kHz 6 inline headers Yes
Switching frequency USART/SPI connector SD Card module compatibility Embedded EEPROM memory	RJ45 200kHz 6 inline headers Yes 258KB Zephyr RTOS MATLAB Simulink Code Generator
Switching frequency USART/SPI connector SD Card module compatibility Embedded EEPROM memory External software compatibility	RJ45 200kHz 6 inline headers Yes 258KB Zephyr RTOS MATLAB Simulink Code Generator STM32Cube IDE
Switching frequency USART/SPI connector SD Card module compatibility Embedded EEPROM memory External software compatibility Programming connector	RJ45 200kHz 6 inline headers Yes 258KB Zephyr RTOS MATLAB Simulink Code Generator STM32Cube IDE
Switching frequency USART/SPI connector SD Card module compatibility Embedded EEPROM memory External software compatibility Programming connector Operation modes	RJ45 200kHz 6 inline headers Yes 258KB Zephyr RTOS MATLAB Simulink Code Generator STM32Cube IDE STDC14 (STLINK V3) - JTAG

CONTROL BOARD OVERVIEW

OwnTech's O² Reprogrammable power converter has a dedicated control board composed of a STM32G474RE microcontroller connected to power drivers and a series of peripherals. This board is electrically isolated from the power board.

Figure 1 - A photo of the control board

Figure 1 shows a photo of the **O**² **control board** where the different connectors are identified along with the micro-controller.

The STM32G474RE microcontroller has been chosen for its peripherals that are dedicated to power electronics and motor drive.

The board is capable of a daisy chain CAN communication via its two RJ45 connectors and its on board CAN device.

Sensor data arrives from the power board in the bottom. PWM signals are sent to the power board via isolated gate drivers on the top.

EXPANSION POSSIBILITIES

OwnTech's O² has two expansion connectors compatible with USART and SPI. They can be used to interface typical add on modules such as SD card readers without the use of adapters.

Expansions	Connector	Туре	Typical Application
Module 1	Inline 6	USART	USB to USART module
Module 2	Inline 6	SPI	SD card

POWERING THE CONTROL BOARD

The onboard feeder is shown on the bottom left of Figure 7. A jumper must be connected to (5V_JP) to allow the control board to the fed from its onboard power feeder. It requires a minimum of 40V on the high side to operate.

A 5V external power supply can be provided through the 3-pin header (5V_EXT).

Power input	Vmin	Connection	Included with the board
V_{High}	40V	5V Jumper	Yes
External	5V	5V Ext Jumper	No

MEASUREMENT CHAIN

EMBEDDED SENSORS FEATURES

OwnTech's O^2 implements full observability on all low-side and high-side power channels though isolated measurements.

Variable	Sensor technology	Sensibility	Signal bandwidth
V_{Low1}	250mV Voltage divider and ±250mV 60kHz isolation amplifier	±80V	~kHz
i _{Low1}	1MHz ±20A Isolated Hall effect sensor	±10A	200kHz
V_{Low2}	250mV Voltage divider and ±250mV 60kHz isolation amplifier	±80V	~kHz
i _{Low2}	1MHz ±20A Isolated Hall effect sensor	±10A	200kHz
V_{High}	Voltage divider and +2V 100kHz isolated amplifier	120V	~kHz
İ _{High}	120kHz ±20A Isolated Hall effect sensor	±20A	~kHz
Heatsink temperature	Thermistor-based temperature sensor	-40 to 110°C	Hz

EMBEDDED ADC FEATURES

Isolated measurements are fed to the micro-controller ADC which has the following characteristics.

ADC Ratings	
ADC Type	Successive Approximation (SAR)
Number of ADC peripherals	2
Number of channels per ADC	3
ADC Typical sampling time	530ns
ADC Trigger	Programmable trigger instant on PWM period
Trigger event typical frequency	200kHz

POWER BOARD OVERVIEW

OwnTech's O² Reprogrammable power converter has two low-side power channels $(V_{Low1} \text{ and } V_{Low2})$ and one high-side power channel (V_{High}) . It is built from the association of two inverter legs in parallel.

Figure 2 - A photo of the power board

Figure 2 shows a photo of the **O**² **power board** where the low side voltage and high side voltage connectors are identified.

The Neutral and the Ground connectors are also identified with the T_{NGND} MOSFET that can connect them together.

Figure 3 - The power circuit of the O²

Figure 3 shows the circuit of the **O**² **power board** where the low side voltage and high side voltage sides are identified.

The Neutral to Ground connection through the T_{NGND} MOSFET allows the converter to work on either DC-DC or DC-AC.

PROTECTION FEATURES

OwnTech's O² is protected by a series of fuses connected on the power board. Each power channel has its own dedicated fuse.

Fuse	Rating
Low side	8A
High side	16A

TYPICAL APPLICATIONS

TYPICAL MODES OF OPERATION

OwnTech's O² has a series of modes of operation shown in the table below.

Mode Name	High Side	Low Side	GND-N	Typical Application	Figure
DC-DC Buck	Input	Output	ON	Battery charger	4
DC-DC Boost	Output	Input	ON	Fuel-cell converter	5
1phase DC-AC Buck inverter	Input	Output	OFF	AC micro-grids	6
3phase DC-AC Buck inverter	Input	Output	OFF	Permanent magnet low-voltage motor	7

INTERLEAVED DC-DC MODES

Variable	State
T_{NGND}	ON
Function	Boost
V_{IN}	24V _{DC}
V_{OUT}	$48V_{DC}$ to $54V_{DC}$
Typical Application	Fuel cell Battery charger

Figure 4 - O² converter on Boost Mode

Variable	State
T_{NGND}	ON
Function	Buck
V_{IN}	$36V_{\text{DC}}$ to $48V_{\text{DC}}$
V _{OUT}	$10V_{DC}$ to $14V_{DC}$
Typical Application	Solar MPPT battery charger

Figure 5 - O² converter on Buck Mode

TYPICAL APPLICATIONS

INDEPENDENT DC-DC MODES

Variable	State
T _{NGND}	ON
Function	Leg 1 Battery Leg 2 Buck
V_{Source}	48V _{DC}
V _{Battery}	24V _{DC}
V_2	12V _{DC}
Typical Application	Solar Home system

Figure 4 - O² converter on Independent Mode

Variable	State
T _{NGND}	ON
Function	Leg 1 Battery Leg 2 Battery
V_{High}	Floating V_{DC}
V ₁	24V _{DC}
V ₂	12V _{DC}
Typical Application	Peer-to-peer micro-grid transfer

Figure 5 - O² converter on Independent Mode

Figure 6 - O- convei	rter on independ	ent wode
----------------------	------------------	----------

Variable	State	
T_{NGND}	ON	
Function	Leg 1 Battery Leg 2 Battery	
V_{High}	Fixed V _{DC}	
V_1	24V _{DC}	
V_2	24V _{DC}	
Typical Application	Battery management UPS supply	

TYPICAL APPLICATIONS

Figure 6 - O² converter on 1-phase inverter Mode

Figure 7 - O² converter on 3-phase inverter Mode

CONTROL LIBRARIES

OwnTech's O² has implemented and validated two different control mode libraries. The simple voltage mode control average current and voltage values through a PID. The advanced current mode controls cycle by cycle peak current on the inductors and is a more reactive control system.

More implementations are currently under development.

Libraries	Mode	Algorithm	Features
DC/DC Buck Voltage or Boost applications Current	Voltage	Digital control of average voltage PID Digital control of average current PID	Simplicity of development of multi-loop control
	Analog control of peak current	Fine and fast control of current levels	

MECHANICAL FEATURES

CONVERTER PINOUT

OwnTech's O² control board pinout is shown in figure 8.

Three 6-pin headers are available on the left-side of the board. The upper header is dedicated to USART. The Middle header is SPI compatible and the bottom header is JTAG compatible.

A series of pins are available throughout the upper part of the board. Through them a user can observe the PWM signals sent to both converter legs or the CAN signals sent to the CAN peripheral.

Figure 8 - O² converter pinout

MECHANICAL FEATURES

CONVERTER ASSEMBLY

OwnTech's O^2 is assembled on a back-to-back format between the control and the power boards.

A series of pogo pins grant the electrical connection between both boards. The mechanical connection is provided by screws that also hold in place its heatsink. Figure 9 provides a multi-side view of the final converter assembly.

Rear view

Left side view

Right side view

Front view

Figure 9 - O² converter assembly view

