Definition

A vector **A** has a magnitude $A = |\mathbf{A}|$ and a direction given by the unit vector $\hat{\mathbf{a}} = \mathbf{A} / |\mathbf{A}|$.

In Cartesian coordinates (x, y, z), we find

$$\mathbf{A} = \hat{\mathbf{a}} A = \hat{\mathbf{x}} A_x + \hat{\mathbf{y}} A_y + \hat{\mathbf{z}} A_z$$
$$= (A_x, A_y, A_z)$$

Ulaby Figure 3-1

(b) Components of A

Ulaby Figure 3-2

6.1

6.2

Vector Algebra

Definition

We also have

$$A = \left(A_x^2 + A_y^2 + A_z^2\right)^{1/2}$$

$$\hat{\mathbf{a}} = \frac{\hat{\mathbf{x}} A_x + \hat{\mathbf{y}} A_y + \hat{\mathbf{z}} A_z}{\left(A_x^2 + A_y^2 + A_z^2\right)^{1/2}}$$

(a) Base vectors

Ulaby Figure 3-1

(b) Components of A

Ulaby Figure 3-2

1

Equality

Two vectors A and B are equal if

$$A_x = B_x$$
, $A_y = B_y$, and $A_z = B_z$

Addition and Subtraction

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \text{ (addition is commutative)}$$
$$= \hat{\mathbf{x}}(A_x + B_x) + \hat{\mathbf{y}}(A_y + B_y) + \hat{\mathbf{z}}(A_z + B_z)$$

$$\mathbf{D} = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

= $\hat{\mathbf{x}}(A_x - B_x) + \hat{\mathbf{y}}(A_y - B_y) + \hat{\mathbf{z}}(A_z - B_z)$

(a) Parallelogram rule

(b) Head-to-tail rule

Ulaby Figure 3-3

6.3

Vector Algebra

Position and Distance vectors

For a point P(x, y, z), the position vector **R** goes from the origin to the point

$$\mathbf{R} = \hat{\mathbf{x}} x + \hat{\mathbf{y}} y + \hat{\mathbf{z}} z$$

The distance vector between two points

$$P_1(x_1, y_1, z_1)$$
 and $P_2(x_2, y_2, z_2)$ is defined as

$$\mathbf{R}_{12} = \mathbf{R}_2 - \mathbf{R}_1$$

= $\hat{\mathbf{x}}(x_2 - x_1) + \hat{\mathbf{y}}(y_2 - y_1) + \hat{\mathbf{z}}(z_2 - z_1)$

where
$$\mathbf{R}_{i} = \hat{\mathbf{x}} x_{i} + \hat{\mathbf{y}} y_{i} + \hat{\mathbf{z}} z_{i}, i = 1, 2$$

The distance *d* between two points equals $|\mathbf{R}_{12}|$

 $= \left[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \right]^{1/2}$

Multiplication — Simple Product

When a vector \mathbf{A} is multiplied by a scalar k, the magnitude is multiplied by k and the direction is unchanged

$$\mathbf{B} = k\mathbf{A} = \hat{\mathbf{a}}(kA)$$
$$= \hat{\mathbf{x}}(kA_x) + \hat{\mathbf{y}}(kA_y) + \hat{\mathbf{z}}(kA_z)$$

Multiplication — Scalar or Dot Product

The scalar or dot product of two vectors

A and **B** is defined by

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta_{AB}$$

where θ_{AB} is the angle between ${\bf A}$ and ${\bf B}$

Ulaby Figure 3-5

UMBC

When $\theta_{AB} < 90^{\circ}$, $\mathbf{A} \cdot \mathbf{B} > 0$

When $\theta_{AB} > 90^{\circ}$, $\mathbf{A} \cdot \mathbf{B} < 0$

When $\theta_{AB}^{o} = 90^{\circ}$, $\mathbf{A} \cdot \mathbf{B} = 0$, and the vectors are called *orthogonal*

6.5

Vector Algebra

Multiplication — Scalar or Dot Product

We have

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$$

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = 0$$

so that

$$\begin{split} \mathbf{A} \cdot \mathbf{B} &= \left(\hat{\mathbf{x}} A_x + \hat{\mathbf{y}} A_y + \hat{\mathbf{z}} A_z \right) \cdot \left(\hat{\mathbf{x}} B_x + \hat{\mathbf{y}} B_y + \hat{\mathbf{z}} B_z \right) \\ &= A_x B_x + A_y B_y + A_z B_z \end{split}$$

A B B

(b)

Other properties:

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$ (commutative)

 $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$ (distributive)

Ulaby Figure 3-5

UMBC AN HONORS

Multiplication — Vector or Cross Product

The vector or cross product of two vectors

A and B is defined by

$$\mathbf{A} \times \mathbf{B} = \hat{\mathbf{n}} AB \sin \theta_{AB}$$

where θ_{AB} is the angle from ${\bf A}$ to ${\bf B}$ and $\hat{\mathbf{n}}$ is a unit vector determined by the right-hand rule

The vector product is anti-commutative $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$

and distributive
$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

$$\hat{\mathbf{x}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}} \times \hat{\mathbf{z}} = 0$$

$$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}, \quad \hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}, \quad \hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$$

(a) Cross product

6.7

Vector Algebra

Multiplication — Vector or Cross Product

We have

$$\begin{split} \hat{\mathbf{x}} \times \hat{\mathbf{x}} &= \hat{\mathbf{y}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}} \times \hat{\mathbf{z}} = 0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}} &= \hat{\mathbf{z}}, \quad \hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}, \quad \hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}} \end{split}$$

so that
$$\mathbf{A} \times \mathbf{B} = (\hat{\mathbf{x}} A_x + \hat{\mathbf{y}} A_y + \hat{\mathbf{z}} A_z) \times (\hat{\mathbf{x}} B_x + \hat{\mathbf{y}} B_y + \hat{\mathbf{z}} B_z)$$

$$= \hat{\mathbf{x}} (A_y B_z - A_z B_y) + \hat{\mathbf{y}} (A_z B_x - A_x B_z)$$

$$+ \hat{\mathbf{z}} (A_x B_y - A_y B_x)$$

We may also write

 $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$

(a) Cross product

(b) Right-hand rule $\mathbf{A} \times \mathbf{B}$

 $\mathbf{A} \times \mathbf{B} = \hat{\mathbf{n}} AB \sin \theta_{AB}$

This determinant form is very useful!

Summary of vector products

Product type	Product elements	Representation
Simple product	(Scalar) x (Vector) → Vector	C = kA
Scalar product or Dot product	(Vector) x (Vector) → Scalar	C = A • B
Vector product or Cross product	(Vector) x (Vector) → Vector	$C = A \times B$

6.9

6.10

Vector Algebra

Vectors and Angles: Ulaby and Ravaioli Example 3-1

Question: In Cartesian coordinates, vector A is directed from the origin to the point $P_1(2, 3, 3)$, and vector **B** is directed from P_1 to $P_2(1, -2, 2)$. Find (a) the vector **A**, its magnitude A, and its unit vector **â**, (b) the angle that **A** makes with the y-axis, (c) vector \mathbf{B} , (d) the angle between \mathbf{A} and \mathbf{B} , and (e) the perpendicular distance from the origin to **B**.

Answer: (a)

$$\mathbf{A} = \hat{\mathbf{x}} \ 2 + \hat{\mathbf{y}} \ 3 + \hat{\mathbf{z}} \ 3$$
$$A = \sqrt{4 + 9 + 9} = \sqrt{22}$$
$$\hat{\mathbf{a}} = \mathbf{A} / A = (\hat{\mathbf{x}} \ 2 + \hat{\mathbf{y}} \ 3 + \hat{\mathbf{z}} \ 3) / \sqrt{22}$$

Ulaby Figure 3-7

Vectors and Angles: Ulaby and Ravaioli Example 3-1

Answer (continued): (b) The angle β between **A** and the *y*-axis may be found from the expression $\mathbf{A} \cdot \hat{\mathbf{y}} = A \cos \beta$, which implies

$$\beta = \cos^{-1}\left(\frac{\mathbf{A} \cdot \hat{\mathbf{y}}}{A}\right) = \cos^{-1}\left(\frac{3}{\sqrt{22}}\right) = 0.879 \text{ rads} = 50.2^{\circ}$$

(c)
$$\mathbf{B} = \hat{\mathbf{x}} (1-2) + \hat{\mathbf{y}} (-2-3) + \hat{\mathbf{z}} (2-3) = -\hat{\mathbf{x}} - \hat{\mathbf{y}} 5 - \hat{\mathbf{z}}$$

(d)
$$\theta = \cos^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{AB}\right) = \cos^{-1}\left(\frac{-20}{\sqrt{22}\sqrt{27}}\right)$$

= 2.533 rads = 145.1°

(e) The points OP_1P_3 form a right triangle.

UMBC

The magnitude of the line segment OP_3 is given by

$$A\sin(\pi - \theta) = \sqrt{22}\sin(0.609) = 2.68$$

Ulaby Figure 3-7

Vector Algebra

Triple Scalar Product

This product can be written in the equivalent forms

$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$$

The equivalence can be demonstrated from the determinant representation

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

The absolute value of this scalar product is the volume of the parallelepiped whose sides are the vectors **A**, **B**, and **C**.

Triple Scalar Product

This product can be written in the equivalent forms

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

It corresponds to the volume of a parallelepiped

Surface area = $|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta$

Volume =
$$|\mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})| = |\mathbf{A}| |\mathbf{B}| |\mathbf{C}| \sin \theta \cos \phi' = |\mathbf{A}| |\mathbf{B}| |\mathbf{C}| \sin \theta \sin \phi$$

6.13

Vector Algebra

Triple Vector Product

This product is defined as

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$$
 and we note $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) \neq (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$

This relationship can also be written in the form

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Orthogonal Coordinate Systems

Three coordinate systems

Coordinate systems (with three coordinates) specify points in space Orthogonal systems have coordinates that are mutually perpendicular — at least locally

There are three coordinate systems that are often used

- Cartesian coordinates (x, y, z): Simplest and orthogonal everywhere
- Cylindrical coordinates (r, θ, z)
 - used with optical fibers, coaxial cables, cylindrical waveguides
- Spherical coordinates (R, θ, ϕ)
 - used with antenna radiation, radar, earth-ionosphere waveguide

6.15

Three Coordinate Systems

Summary of vector and differential relations

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, θ, z	R, θ, ϕ
Vector, A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\varphi}}A_{\phi} + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$
Magnitude, A =	$\left(A_x^2 + A_y^2 + A_z^2\right)^{1/2}$	$\left(A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}\right)^{1/2}$	$\left(A_R^2 + A_\theta^2 + A_\phi^2\right)^{1/2}$
Position vector	$\hat{\mathbf{x}} x_1 + \hat{\mathbf{y}} y_1 + \hat{\mathbf{z}} z_1$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}} r_1 + \hat{\mathbf{z}} z_1$ for $P(r_1, \phi_1, z_1)$	$ \hat{\mathbf{R}} R_1 for P(R_1, \theta_1, \phi_1)$
Dot product, A·B	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, A × B	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\theta} & A_{\phi} \\ B_R & B_{\theta} & B_{\phi} \end{vmatrix}$
Differential length, dl	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\mathbf{\varphi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta dz$
Differential surface areas	$d\mathbf{s}_{x} = \hat{\mathbf{x}} dydz$ $d\mathbf{s}_{y} = \hat{\mathbf{y}} dzdx$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dxdy$	$d\mathbf{s}_{r} = \hat{\mathbf{r}} r d\phi dz$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} dz dr$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} r dr d\phi$	$d\mathbf{s}_{R} = \hat{\mathbf{R}} R^{2} \sin \theta d\theta d\phi$ $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}} R \sin \theta d\phi dR$ $d\mathbf{s}_{z} = \hat{\mathbf{\phi}} R dR d\theta$
Differential volume	dv = dx dy dz	$dv = rdr d\phi dz$	$dv = R^2 \sin\theta dR d\theta d\phi$

Cartesian Coordinates

Differential Relations

Length:
$$d\mathbf{l} = \hat{\mathbf{x}} dl_x + \hat{\mathbf{y}} dl_y + \hat{\mathbf{z}} dl_z = \hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$$

Surface area: $d\mathbf{s}_x = \hat{\mathbf{x}} dl_y dl_z = \hat{\mathbf{x}} dy dz$ (y-z plane)
 $d\mathbf{s}_y = \hat{\mathbf{y}} dz dx = \hat{\mathbf{y}} dx dz$ (x-z plane)
 $d\mathbf{s}_z = \hat{\mathbf{z}} dx dy$ (x-y plane)

Volume: dv = dx dy dz

For each coordinate system there are three differential lengths that also determine the differential areas and volumes

UMBC
AN HONORS
UNIVERSITY
IN MARYLAND

Cylindrical Coordinates

Cylindrical Coordinates

Base vectors

$$\begin{split} \hat{\mathbf{r}} \times \hat{\mathbf{\phi}} &= \hat{\mathbf{z}}, \quad \hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}, \quad \hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}} \\ \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} &= \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1, \quad \hat{\mathbf{r}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}} \times \hat{\mathbf{z}} = 0 \\ \hat{\mathbf{r}} \cdot \hat{\mathbf{\phi}} &= \hat{\mathbf{r}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{z}} = 0 \end{split}$$

Vector relations

$$\mathbf{A} = \hat{\mathbf{a}}A = \hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_{\phi} + \hat{\mathbf{z}}A_z$$

$$A = \left| \mathbf{A} \right| = \sqrt{\mathbf{A} \cdot \mathbf{A}} = \left(A_r^2 + A_\phi^2 + A_z^2 \right)^{1/2}$$

Letting $P = P(r_1, \phi_1, z_1)$, the position vector $\mathbf{R}_1 = OP = \hat{\mathbf{r}} r_1 + \hat{\mathbf{z}} z_1$ We note that the direction of $\hat{\mathbf{r}}$ depends on ϕ

6.21

Cylindrical Coordinates

Differential relations

Length: $d\mathbf{l} = \hat{\mathbf{r}} dl_r + \hat{\mathbf{\phi}} dl_{\phi} + \hat{\mathbf{z}} dl_z = \hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$

Surface area: $d\mathbf{s}_r = \hat{\mathbf{r}} r d\phi dz$ (ϕ -z plane)

 $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} dr dz$ (r-z plane)

 $d\mathbf{s}_z = \hat{\mathbf{z}} r dr d\phi$ (r- ϕ plane)

Volume: $dv = rdr d\phi dz$

UMBC

Divergence

Ulaby Figure 3

Spherical Coordinates

R =distance from the origin $(0 \le R \le \infty)$

 θ = angle measured from the +z-axis (0 < θ < π) = zenith angle

 ϕ = angle measured from the +x-axis on the x-y plane (0 < ϕ < 2 π)

= azimuthal angle

Ulaby Figure 3-13 6.23

Spherical Coordinates

Base vectors

$$\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}, \quad \hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}, \quad \hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}$$

$$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = 1, \quad \hat{\mathbf{R}} \times \hat{\mathbf{R}} = \hat{\mathbf{\phi}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{\theta}} \times \hat{\mathbf{\theta}} = 0$$

$$\hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{R}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\phi}} = 0$$

Vector relations

$$\mathbf{A} = \hat{\mathbf{a}} A = \hat{\mathbf{R}} A_R + \hat{\mathbf{\theta}} A_\theta + \hat{\mathbf{\phi}} A_\phi$$

$$A = \left| \mathbf{A} \right| = \sqrt{\mathbf{A} \cdot \mathbf{A}} = \left(A_R^2 + A_\theta^2 + A_\phi^2 \right)^{1/2}$$

Letting $P = P(R_1, \theta_1, \phi_1)$, the position vector $\mathbf{R}_1 = OP = \hat{\mathbf{R}} R_1$

Spherical Coordinates

Differential relations

Length:
$$d\mathbf{l} = \hat{\mathbf{R}} dl_R + \hat{\mathbf{\theta}} dl_\theta + \hat{\mathbf{\phi}} dl_\phi = \hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin\theta d\phi$$

Surface area: $d\mathbf{s}_R = \hat{\mathbf{R}} R^2 \sin\theta \, d\theta \, d\phi \quad (\theta - \phi \text{ plane})$

 $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}} R \sin \theta \, dR \, d\phi \quad (R - \phi \text{ plane})$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} R \, dR \, d\theta \quad (R - \theta \text{ plane})$

Volume: $dv = R^2 \sin \theta dR d\theta d\phi$

UMBC

UNIVERSITY IN MARYLAND

Spherical Coordinates

Charge in a Sphere: Ulaby and Ravaioli Example 3-6

Question: A sphere of radius 2 cm contains a charge of density $\rho_{\rm V}$ given by

$$\rho_{\rm V} = 4\cos^2\theta$$

What is the total charge?

Answer: After converting from cm to m,

$$Q = \int_{V} \rho_{V} dV$$

$$= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{R=0}^{2\times10^{-2}} (4\cos^{2}\theta) R^{2} \sin\theta dR d\theta d\phi$$

$$= 4 \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{R^{3}}{3}\right) \Big|_{0}^{2\times10^{-2}} \sin\theta \cos^{2}\theta d\theta d\phi$$

$$= \frac{64}{9} \times 10^{-6} \int_{0}^{2\pi} d\phi = \frac{128\pi}{9} \times 10^{-6} = 44.68 \ \mu\text{C}$$

Tech Brief 5: GPS

- Originally developed by DOD
- •Originally 24 satellites, now 31
- Operation principles
 - ·Satellites constantly broadcast a message containing
 - Their location
 - •Message time
 - •System health and rough orbit details
 - •GPS receivers use triangulation to determine location relative to satellites
 - •Determine distances to each satellite by solving an equation including the sat. position and time, multiplying by the speed of light.

 $\begin{aligned} d_1^2 &= (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 = c \left[(t_1 + t_0) \right]^2, \\ d_2^2 &= (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 = c \left[(t_2 + t_0) \right]^2, \\ d_3^2 &= (x_3 - x_0)^2 + (y_3 - y_0)^2 + (z_3 - z_0)^2 = c \left[(t_3 + t_0) \right]^2, \\ d_4^2 &= (x_4 - x_0)^2 + (y_4 - y_0)^2 + (z_4 - z_0)^2 = c \left[(t_4 + t_0) \right]^2. \end{aligned}$

Four satellites are needed to correct for the imprecise receiver clock (quartz).

6.27

Tech Brief 5: Differential GPS

- •GPS accuracy: 20-30m
- •Differential GPS (DGPS) uses a static reference of known location in the receiver's area to correct for inaccuracy factors
 - •Time-delay errors (speed of light differences
 - Multipath interference
 - •Satellite location errors
- •Reference receiver calculates correction factors and transmits to DGPS receivers in the area

