A:
$$a_{ij} = P(X_{t+1} = j | X_t = i)$$

B: $b_{ik} = P(O_t = k X_t = i)$

X, X,+1	Α	В	Н	S
Α	0.6	0.1	0.1	0.2
В	0.0	0.3	0.2	0.5
Н	0.8	0.1	0.0	0.1
S	0.2	0.0	0.1	0.7

X _t O _t	р	е	b	I
Α	0.6	0.2	0.1	0.1
В	0.1	0.4	0.1	0.4
Н	0.0	0.0	0.7	0.3
S	0.0	0.0	0.1	0.9

 $P(X_t = i)$:

Find:

$$P(O_t | A, B, P(X_t)) = ?$$

Compute:

$$P(O_{t} = p) = 0.4 \times 0.6 + 0.2 \times 0.1 + 0.1 \times 0.0 + 0.3 \times 0.0 = 0.25$$

$$P(O_t = e) = 0.4 \times 0.2 + 0.1 \times 0.4 + 0.1 \times 0 + 0.3 \times 0 = 0.16$$

$$P(O_t = b) = 0.4 \times 0.1 + 0.2 \times 0.1 + 0.1 \times 0.7 + 0.3 \times 0.1 = 0.16$$

$$P(O_t = 1) = 0.4 \times 0.1 + 0.1 \times 0.4 + 0.1 \times 0.3 + 0.3 \times 0.9 = 0.42$$

 $P(O_t) =$

most likely O_t = _____

$$\pi = P(X_1 = i)$$
:

Α	В	Н	S
0.5	0.0	0.0	0.5

observations / emissions: $o_{1:4} = \{ I, p, p, b \}$

Find:

$$P(o_{1:4} | A, B, \pi) = ?$$

Element-wise product:

Compute:

$$\pi = P(x_1 = s_i)$$

0.5

 $\pi = P(x_1 = s_i)$ $P(1|S_i)$

 \odot

0.4

<u>0.9</u>

0

0

0.45

$$\frac{4}{1}$$
 $\frac{4}{1}$ $\frac{4}$

$$a_2(i) = 0.05 \times 0.1 + 0.0 \times 0.1 + 0.45 \times 0$$

$$0.05 \times 0.1 + 0.0 \times 0.1 + 0.0 \times 0.1 + 0.0 \times 0.1 + 0.0 \times 0.1 \times 0.1 + 0.0 \times 0.1 \times 0.1 + 0.0 \times 0.1 \times 0.1$$

$$0.05 \times 0.2 + \bigcirc \times 0.5 + 0.0 \times 0.1 + \bigcirc \times \times 0.7$$

$$\begin{vmatrix} P(\mathbf{r}|\mathbf{A}) \\ 0.6 \end{vmatrix} = \begin{vmatrix} \alpha_{\mathbf{L}}(\mathbf{A}) \\ 0.072 \end{vmatrix}$$

$$O_3 = D$$

$$a_{3}(i) = \begin{array}{c} 0.072 \times 2.6 + .0005 \times 0.0 + 0.0 \times 0.8 + 0.0 \times 0.2 \\ 0.072 \times 2.1 + .0005 \times 0.3 + 0.0 \times 2.1 + 0.0 \times 0.0 \\ 0.072 \times 2.1 + .0005 \times 0.2 + 0.0 \times 2.1 + 0.0 \times 0.1 \\ 0.072 \times 2.1 + .0005 \times 0.5 + 0.0 \times 0.1 + 2.1 \times 0.7 \end{array}$$

$$Q_{1} = \frac{0.01592}{0.02592} \times 0.6 + \frac{0.00735}{0.00735} \times 0.0 + 0.0 \times 0.8 + 0.0 \times 0.2$$

$$2.01592 \times 0.1 + \frac{0.00735}{0.00735} \times 0.3 + 0.0 \times 0.1 + 0.0 \times 0.1$$

$$0.0259 \times 0.2 + \frac{0.00735}{0.00755} \times 0.5 + 0.0 \times 0.1 + 0.0 \times 0.7$$

.0<u>0156</u> .0<u>002</u>81 <u>O</u>

$$\alpha_4(i) = \begin{bmatrix} 0.000281 \\ 0.000281 \end{bmatrix}$$

$$0.0019173$$

$$0.00055515$$

$$P(o_{1:4} \mid A, B, \pi) = \sum_{i} \alpha_{i}(i) = 0.00431$$

A:
$$a_{ij} = P(X_{t+1} = j | X_t = i)$$

X _t X _{t+1}	A	В	Н	S
Α	0.6	0.1	0.1	0.2
В	0.0	0.3	0.2	0.5
Н	0.8	0.1	0.0	0.1
S	0.2	0.0	0.1	0.7

B:
$$b_{ik} = P(O_t = k | X_t = i)$$

X _t O _t	р	е	b	I
Α	0.6	0.2	0.1	0.1
В	0.1	0.4	0.1	0.4
Н	0.0	0.0	0.7	0.3
S	0.0	0.0	0.1	0.9

Step 1: Initialize
$$\delta_1(i)$$

$$O_{1} = \underline{b}$$
 $O_{2} = \underline{b}$
 $O_{3} = \underline{b}$
 $O_{1} = \underline{b}$
 $O_{2} = \underline{b}$
 $O_{3} = \underline{b}$
 $O_{4} = \underline{b}$
 $O_{5} = \underline{b}$
 O_{5

$$\pi = P(X_1 = i)$$
:

Α	В	Н	S
0.5	0.0	0.0	0.5

Observations:

$$O_{1:4} = \{b,p,l,e\}$$

Find:

Most likely hidden state sequence:

```
O_{2} = P
\delta_{2}(i) = \frac{\text{Get value from }}{\text{A-matrix }}
\delta_{1}(A) P(A|A) P(P|A) S(B) P(A|B)
\max (0.05 \times 0.6 \times 0.6, O \times 0.6)
```

 $X_{\mathbf{B}}: \max (0.05 \times 0.1 \times 0.1), \quad 0 \times 0.3 \times 0.1, \quad 0 \times 0.1 \times 0.1, \quad 0.05 \times 0.1$

 $X_s: \max (\underbrace{o.os} \ x \underbrace{o.z} \ x \underbrace{o} \ , \underbrace{o} \ , \underbrace{o} \ x \underbrace{o.s} \ x \underbrace{o.z} \ x \underbrace{o} \ , \underbrace{o} \ , \underbrace{o} \ x \underbrace{o.s} \ x \underbrace{o.s} \ x \underbrace{o} \ , \underbrace{o} \$

V	
max probability O.O18	argmax state
0.0005	(<u>A</u>)
0	(<u>Ø</u>)
0	(<u>Ø</u>)

Most likely current state

Most likely.

Previous state

$$O_3 =$$

$$\delta_3(i) =$$

$$X_{A}$$
 max (0.018 x \bigcirc .6 x \bigcirc .1 , \bigcirc x \bigcirc .2 x 0.1 , \bigcirc x \bigcirc .8 x 0.1 , \bigcirc x \bigcirc .2 x 0.1)

$$\times_{B}$$
 max (0.18 x 0.1 x 0.4 , 0.0005 x 0.3 x 0.4 , 0 x 0.1 x 0.4 , 0 x 0 x 0.4)

 x_{H} : max (<u>.016</u> x <u>0.1</u> x <u>0.3</u> , .0005 x <u>0.1</u> x 0.3 , \bigcirc x \bigcirc x \bigcirc x \bigcirc . \bigcirc x \bigcirc 0.1 x 0.3)

 $\max\left(\frac{.018}{.018} \times \underline{0.1} \times \underline{0.9}\right), \underline{.0005} \times 0.5 \times \underline{0.4}\right), \underline{0} \times \underline{0.1} \times 0.9, \underline{0} \times \underline{0.7} \times \underline{0.9}\right)$

max. probability	argmax state
0.0072	(<u>A</u>)
0.00054	(A)
0.00324	(A)

$$O_4 = \underline{C}$$

$$\delta_4(i) =$$

```
      x<sub>i</sub>:
      max ( 0.00108 x <u>0.6</u> x <u>0.1</u> , <u>0.00072</u> x <u>0</u> x 0.2 , 0.00054 x <u>0.8</u> x <u>0.1</u> , <u>0.00324</u> x <u>0.1</u> x <u>0.2</u> x <u>0.2</u> )

      x<sub>i</sub>:
      max (<u>0.00108</u> x <u>0.1</u> x 0.4 , <u>0.00072</u> x <u>0.3</u> x <u>0.4</u> , <u>0.00054</u> x 0.1 x <u>0.4</u> , <u>0.00324</u> x <u>0.7</u> x <u>0.7</u> )

      =

      x<sub>i</sub>:
      max (<u>0.00108</u> x <u>0.1</u> x <u>0</u> , <u>0.00072</u> x <u>0.2</u> x <u>0</u> , <u>0.00054</u> x <u>0.1</u> x <u>0</u> , 0.00324 x <u>0.1</u> x <u>0</u> )

      x<sub>i</sub>:
      max (<u>0.00108</u> x <u>0.1</u> x <u>0</u> , <u>0.00072</u> x <u>0.5</u> x <u>0</u> , 0.00054 x <u>0.1</u> x <u>0</u> , 0.00324 x <u>0.7</u> x <u>0</u> )
```

max. probability	argmax state (A,S)
8.64×10 ⁻⁵	(<u>B</u>)
0	(<u>Ø</u>)
0	(<u>Ø</u>)

States and deltas over time:

*most likely Previous state

δ ₁ (i)	state*
0.05	_
0	
0.05	

state*
A
<u>A</u>
_

δ ₃ (i)	state
0.00108 0.00072	<u> </u>
0.00024	
0.00324	

δ ₄ (i)	state*
1.296×10	<u>A</u> , <u>S</u>
8.64×10 ⁻⁵	<u> </u>

Backtracking gives two answers: $X^*_{1:4} = \{ \underline{A}, \underline{A}, \underline{A}, \underline{A} \}$ and $X^*_{1:4} = \{ \underline{A}, \underline{A}, \underline{S}, \underline{A} \}$