Pearson Lightbook Physics

Chapter 4 Fission and fusion

Teacher Notes

Module 4.2 Chain reactions and nuclear reactors

Evaluation and Analysis 4.2.1 **Data analysis:** Critical mass Total marks 20

Imagine that a particular sample of fissile material is manufactured only in 1 cm cubes. Each cubic centimetre of this material generates 6 × 106 neutrons each second; all of which are capable of going on to cause further fission should they meet another fissile atom. It is a property of this material that each square centimetre of surface area allows up to 3 × 106 of these neutrons to exit the cube every second, therefore these neutrons will not cause further fission. Hence, the quantity of material (in cm³), and the surface area together determine whether a sample of this material is subcritical, critical or supercritical.

- A critical mass is defined as one in which a chain reaction can be sustained.
- A subcritical mass is defined as one in which a chain reaction cannot be sustained.
- A supercritical mass is defined as one in which a chain reaction will increase in rate.

Questions

What is the net number of neutrons escaping from a single (1 cm³) cube? Total surface area = 6×1 cm² = 6 cm² No. of neutrons able to escape = $6 \times 3 \times 10^6 = 18 \times 10^6$ (1 mark)

A chain reaction is sustained if there are fewer atoms escaping than there are atoms being produced. Is a single cube able to sustain a chain reaction? The number of neutrons able to escape = 18×10^6 , which is more than the number produced = 6×10^6 , so a chain reaction is not sustainable. (2 marks)

When two or more cubes are joined together to make a cuboid, the following data were obtained. Complete the following table, using your calculations of surface area and the information given above. (5 marks)

Number of cubes used	Total volume (cm³)	Total surface area (cm²)	No. of neutrons produced (× 10 ⁶)	No. of neutrons escaping (× 10 ⁶)	Critical?
2	2	10	12	30	No
3	3	14	18	42	No
4	4	16	24	48	No
6	6	22	36	66	No
8	8	24	48	72	No

Number of cubes used	Total volume (cm³)	Total surface area (cm²)	No. of neutrons produced (× 10 ⁶)	No. of neutrons escaping (× 10 ⁶)	Critical?
12	12	32	72	96	No
16	16	40	96	120	No
24	24	56	14432e	168	No
27	27	54	162	162	Yes
30 (3 × 1 × 10)	30	86	180	258	No
36 (3 × 2 × 6)	36	72	216	216	Yes

4 Which of the combinations shown in the table would be 'critical'?

The 27 cm³ cube, and the 36 cm³ arrangement (since the rate of fission is sustained). (2 marks)

5 Are any of the combinations shown in the table adequate as the final configuration of a nuclear fission bomb?

No, there is no arrangement that has an excess of neutrons to increase the rate of fission. (1 mark)

Look just at the arrangements that have a surface area of 4 cm³ at one end. What difference always occurs between the number of neutrons produced and the number escaping?

A pattern emerges in the table showing there is always a deficit of 24 × 106 neutrons between those produced and those escaped for every arrangement that has one side with an area of 4 cm². (1 mark)

With the help of calculations, explain why it is impossible for a rectangular prism of cross-sectional area 4 cm^2 and length n cm to sustain a chain reaction?

The number of neutrons produced = volume \times 6 \times 10⁶

$$= (4 \times n) \times 6 \times 10^6$$
$$= 24 \times 10^6 \times n$$

The number of neutrons able to escape = surface area \times 3 \times 10⁶

$$= (8n + 8) \times 3 \times 10^{6}$$

$$= (n \times 24 \times 10^{6}) + (24 \times 10^{6})$$

$$= 24 \times 10^{6} \times (n + 1)$$

The number of neutrons produced is always less than the number that can escape.

(2 marks)

8 Write a formula for the number of neutrons produced in an $n \text{ cm} \times n$ cm cube every second.

Neutrons produced = volume
$$\times$$
 6 \times 10⁶
= $n \times n \times n \times 6 \times 10^6$
= $6 \times 10^6 \times n^3$ (2 marks)

9 Write a formula for the number of neutrons escaping from an $n \text{ cm} \times n$ cm cube every second.

Neutrons escaping = surface area \times 3 \times 10⁶ = $6 \times n^2 \times 3 \times 10^6$ = $18 \times 10^6 \times n^2$ (1 mark)

10 Show that the smallest cube that will form a supercritical mass is 3 cm × 3 cm × 3 cm. Use calculations incorporating your answers to questions 8 and 9 to support your answer.

To be critical: No. neutrons produced = No. neutrons escaping (1 mark)

 $6 \times 10^6 \times n^3 = 18 \times 10^6 \times n^2$ (for a cube as calculated above)

Therefore: $6n^3 = 18n^2$

 $6n^3 - 18n^2 = 0$

 $6n^2(n-3)=0$

n = 0 or n = 3 (1 mark)

n = 0 means no neutrons produced or escaped, so n = 3 is the minimum size for a chain reaction to be sustained (controlled). Thus n > 3 will result in a supercritical mass. (1 mark)