MAT02034 - Métodos bayesianos para análise de dados

Introdução ao OpenBUGS

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

OpenBUGS: introdução

OpenBUGS: introdução

OpenBUGS

- ▶ BUGS é um software para realizar inferência Bayesiana usando amostragem Gibbs (Bayesian inference Using Gibbs Sampling).
- O usuário fornece ao software o modelo (somente a(s) distribuição(ões) a priori e a verossimilhança), os dados e valores iniciais (da cadeia de Markov); o software gera uma sequência de realizações da distribuição a posteriori do respectivo modelo.
- Procedimento básico para executar a simulação:
 - Comece em um conjunto arbitrário de valores iniciais;
 - Descarte as realizações da cadeia do período de burn-in;
 - Salve e analise a amostra (resumo numérico, gráficos, avaliação da convergência) de realizações do período estacionário.

OpenBUGS: primeiros passos

- https://openbugs.net/ (não parece muito estável)
- ► (Sugestão:) https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
- Veja o artigo sobre o projeto BUGS¹ e o Manual do software (no Moodle da disciplina).

 $^{^1\}text{Lunn}$ D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions. Stat Med. 2009 Nov 10;28(25):3049-67. doi: 10.1002/sim.3680. PMID: 19630097.

OpenBUGS: primeiros passos

- Na página https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/, na seção Downloads escolha a opção de acordo com o seu sistema operacional (para esta aula: Windows!).
- Um arquivo .zip será baixado, com o arquivo "OpenBUGS323setup.exe". Clique neste arquivo para executá-lo. A seguinte janela de instalação aparecerá na tela

3. Aceite os termos do **contrato de licença** e siga com a instalação padrão (botão "Next" até o fim do processo).

OpenBUGS: primeiros passos

O OpenBUGS possui uma interface gráfica:

Por meio dela o usuário especifica o **modelo**, os **dados** e **valores iniciais** (através de arquivos de scripts). Além disso, a interface gráfica possui funcionalidades para analisar as saídas das cadeias geradas.

OpenBUGS: exemplo

OpenBUGS: exemplo

Considere os dados de falhas de 10 bombas de usinas de energia. Supõe-se que o número de falhas x_i siga uma distribuição de Poisson

$$x_i \sim Poisson(\theta_i t_i), i = 1, \dots, 10,$$

em que θ_i é a taxa de falha da bomba i e t_i é o tempo de operação da bomba (expresso em unidade de 1000 horas).

▶ Os dados são apresentados a seguir.

Bomba	t _i	Xi
1	94.5	5
2	15.7	1
3	62.9	5
4	126	14
5	5.24	3
6	31.4	19
7	1.05	1
8	1.05	1
9	2.1	4
10	10.5	22

Uma distribuição a priori gama conjugada é adotada para as taxas de falha:

$$\theta_i \sim \mathsf{Gama}(\alpha, \beta), \ i = 1, \dots, 10.$$

 \blacktriangleright Suponha a seguinte especificação *a priori* para os hiperparâmetros α e β

$$\alpha \sim Exponencial(1.0)$$

 $\beta \sim Gama(0,1,1,0)$

- ightharpoonup É possível mostrar que (para casa) a distribuição *a posteriori* para β é uma distribuição Gama, mas leva a uma distribuição *a posteriori* não padrão para α .
- O amostrador Gibbs pode ser utilizado para simular as densidades a posteriori necessárias.
- ► (Demonstração; arquivos no Moodle da disciplina)

OpenBUGS e R

- Na prática, o usuário deseja armazenar dados e analisar os resultados em R (ou Stata, SAS, etc.)
- Depois de saber como usar o OpenBUGS, você pode ler a documentação desses pacotes do R:
 - R20penBUGS, BRugs: estes pacotes permitem o usuário interagir com OpenBUGS dentro de R
 - CODA: conjunto de ferramentas para avaliar a convergência e descrever resultados
- ▶ É possível "chamar" o OpenBUGS do R para automatizar a análise bayesiana.

Para casa

- Revisar a aula de hoje (passos de instalação do OpenBUGS, rodar o exemplo).
- Implemente no R modelo do exemplo da aula de hoje. Compare com os resultados encontrados no OpenBUGS.
- Utilize o OpenBUGS para rodar o modelo do exemplo dos dados de taxas de scram em usinas nucleares (aulas 08 e 09). Compare com os resultados encontrados pela a implementação em R feita em aula.
- Trazer as dúvidas para o Fórum Geral do Moodle e para a próxima aula.

Próxima aula

► Modelos lineares.

Por hoje é só!

Bons estudos!

