Speed =
$$\frac{50}{2}$$
 = 25 kmph
 1 kmph = $\frac{5 \text{ kmph}}{1 \text{ hv}}$ = $\frac{5}{18} \text{ m/s}$

Relative speed.

$$A \rightarrow \leftarrow B$$

$$A \rightarrow B \rightarrow$$

A train running at the speed of 60 km/hr crosses a pole in 9 seconds. What is the length of the train?

- A. 120 m
- B. 180 m
- C. 324 m
- (D.) 150 m

$$60 \times \frac{5}{18} = \frac{\text{length}}{9}$$

$$\text{length} = \frac{30}{50 \times 5} \times 9 = 150 \text{ m}$$

A train 125 m long passes a man, running at 5 km/hr in the same direction in which the train is going, in 10 seconds. The speed of the train is:

- A. 45 kmph
- B 50 kmph C. 54 kmph
- D. 55 kmph

$$(x-5) \times \frac{5}{18} = \frac{125}{10}$$

 $x-5 = \frac{125}{10} \times \frac{189}{5} = 45$
 $x = 45+5 = 50$ kmph

The length of the bridge, which a train 130 metres long and travelling at 45 km/hr can cross in 30 seconds, is:

- A. 200 m
- B. 225 m
- (C.) 245 m
- D. 250 m

$$\frac{x+130}{30} = \frac{45 \times \frac{5}{18}}{2}$$

$$x+130=\frac{25}{2}\times30=\frac{750}{2}=35$$

$$325 - 130 = 245m$$

Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:

Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:

A. 1:3	distances	orlength	ns are	P,9.	
B. 3:2 C. 3:4 D. 7:6		Spee	du=	P ,	9/17
		P+9/ 23	ーこ	P +	27
	Reg ratio	ş	P = 7 = 7 = 17	P V	17 27

Two trains of equal length are running on parallel lines in the same direction at 46 km/hr and 36 km/hr. The faster train passes the slower train in 36 seconds. The length of each train is:

(A)
$$50 \text{ m}$$

B. 72 m
C. 80 m
D. 82 m

$$2x = 10 \times 5 = 1$$

$$\frac{21}{36} = (10)\frac{5}{18} = \frac{1}{18} = \frac{10 \times \frac{5}{18}}{18}$$

$$1 = \frac{18 \times \frac{10 \times 5}{18}}{18} = \frac{50}{18}$$

$$n = 184 \frac{10\times3}{18} = 50$$