Fakultät Mathematik Institut für Analysis Prof. Dr. S. Siegmund PD Dr. A. Kalauch

Übung 02.05. bis 05.05.

Analysis II

20. Übungsblatt: Riemann-Integral

Aufgabe 20.1

Sei $f: [a, b] \to \mathbb{R}$, (φ_n) in $\mathcal{T}[a, b]$ und es gelte $\sup\{|f(x) - \varphi_n(x)|; x \in [a, b]\} \to 0$ für $n \to \infty$. Zeigen Sie, dass f integrierbar auf [a, b] ist und dass

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} \varphi_n(x) dx$$

gilt.

Aufgabe 20.2

Sei $a>0,\;f\colon [-a,a]\to\mathbb{R}$ und f integrierbar auf [0,a]. Zeigen Sie:

- (a) Ist f gerade, dann ist f integrierbar auf [-a,a] und $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- (b) Ist f ungerade, dann ist f integrierbar auf [-a, a] und $\int_{-a}^{a} f(x) dx = 0$.

Aufgabe 20.3

Sei a > 1. Berechnen Sie mit Hilfe Riemannscher Summen das Integral

$$\int_{1}^{a} \frac{1}{x} \mathrm{d}x$$

Hinweis: Verwenden Sie die Unterteilung $1 = x_0^{(n)} < x_1^{(n)} < x_2^{(n)} < \ldots < x_n^{(n)} = a$ mit $x_k^{(n)} := a^{k/n} \ (k \in \{0, 1, 2, \ldots, n\})$ und die Stützstellen $\xi_k^{(n)} := x_{k-1}^{(n)}$.

Aufgabe 20.4

Ermitteln Sie eine Stammfunktion F zu folgenden Funktionen f.

(a)
$$f(x) = \frac{x^2}{x^2 + 1}$$
,

(d)
$$f(x) = \frac{1}{\sqrt{x} + \sqrt{x+1}}$$
 $(x > 0),$

(b)
$$f(x) = \frac{1}{x\sqrt{x}}$$
 $(x > 0),$

(e)
$$f(x) = \frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1-x^4}}$$
 ($|x| < 1$).

(c) $f(x) = e^x \cdot \cosh x$,

Aufgabe 20.5 (H) [5]

Sei 0 < a < b. Berechnen Sie das Riemann-Integral

$$\int_{a}^{b} e^{x} \, \mathrm{d}x$$

mit Hilfe der Riemannschen Summe und äquidistanter Unterteilung des Intervalls [a, b].

Aufgabe 20.6 (H) [5]

Seien $a, b \in \mathbb{R}$ mit a > 0, b > 0. Berechnen Sie den Flächeninhalt der Ellipse

$$E := \left\{ (x, y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

Hinweis: Zeigen Sie, dass für

$$F(x) = \frac{1}{2}(x\sqrt{a^2 - x^2} + a^2\arcsin(\frac{x}{a}))$$

gilt
$$F'(x) = \sqrt{a^2 - x^2}$$
.