6) Int. Cl. 4: A 61 B 17/22

G 10 K 11/30 B 02 C 19/18 // A61B 8/00

PATENTAMT

Aktenzeichen:
 Anmeldetag:
 Offenlegungstag:

P 37 39 390.1 20. 11. 87 1. 6. 89

- 1

(7) Anmelder: Siemens AG, 1000 Berlin und 8000 München, DE @ Erfinder:

Hassler, Dietrich, Dipl.-Ing., 8525 Uttenreuth, DE

(6) Lithotripter mit veränderbarem Fokus

Es wird von einem Lithotzipter (1) mit einer Stoßwellenquelle (2), die inwessentlichen eben akustische Stoßwellen eussendet, und mit einer Fokussierungsvorrichtung ausgeangen. Nach der Erfindung umfaßt die Stoßwellenquelle (2) zwei konzentrische, bei Aktivierung Stoßwellen entlang einer gemeinsenne Zentralachse (6) aussendende Teile (8. 10). Diese Talle (8, 10) sind jeweils getrennt und/oder gemeinsen aktivierar. Die Fokusserungsvorrichtung ist hierbel so ausgestellet, das Jedem der aktivierung streiten bei Stoßweller (1) sind sie der der der der der der bei Stoßweller (1) sind sie der der der der der der (2, 44) mit algene Brannwells und gegebennefalls die Kombination der beiden Teile (8, 10) eine kombinierte Fokussierungsvorrichtung (32, 40) ung geordnei ist.

Beschreibung

Die Erfindung betrifft einen Lithotripter mit einer Stoßwellenquelle, die im wesentlichen ebene akustische Wellen aussendet, und mit einer Fokussierungsvorrich- 5

Ein Lithotripter der eingangs genannten Art ist in der DE-OS 33 28 051 in Fig. 1 angegeben. Er wird insbesondere für die Zerstörung von Nierensteinen im Menschen eingesetzt. Vor der eigentlichen, nach dem elektrodynamischen Prinzip arbeitenden Stoßwellenquelle befindet sich eine akustische Sammellinse, die über einen Feinantrieb in Richtung der Zentralachse der Stoßwellenquelle verschiebbar ist. Damit ist der Fokus des Lithotripters auf das Konkrement innerhalb des Patien- 15 ten ausrichtbar. Nachteilig ist jedoch, daß bei Konkrementlagen in der Nähe der Hautoberfläche des Patienten durch Stellungsänderung der Linse die Hautbelastung (Ultraschallenergie pro Flächeneinheit) durch die Stoßwellen vergrößert wird. Umgekehrt ist bei vorge- 20 gebener Stoßwellenleistung wegen der begrenzten Stoßwellenbelastbarkeit der menschlichen Hautoberfläche die Zerstörungswirkung der Stoßwellenquelle bei tieferliegenden Konkrementen relativ gering.

Aufgabe der Erfindung ist es, einen Lithotripter der 25 eingangs genannten Art mit veränderlicher Fokustiefe (Brennweite) so auszubilden, daß die Hautbelastung während der Behandlung des Patienten gering gehalten werden kann, und zwar weitgehend unabhängig von der Tiefe, in der sich das Konkrement befindet, daß aber in 30 größerer Tiefe eine dennoch relativ große Zerstörungs-

wirkung erzielt wird.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Stoßwellenquelle zwei konzentrische, bei Aktivierung Stoßwellen entlang einer gemeinsamen Zen- 35 tralachse aussendende Teile umfaßt, die jeweils getrennt und/oder gemeinsam aktivierbar sind. Die Fokussierungsvorrichtung ist hierbei so ausgestaltet, daß jedem der aktivierbaren Teile der Stoßwellenquelle eine Teilfokussierungseinrichtung mit eigener Brennweite 40 und gegebenenfalls der Kombination der beiden Teile eine kombinierte Fokussierungseinrichtung zugeordnet

Nach einer bevorzugten Ausführungsform ist vorgeschen, daß die Fokussierungsvorrichtung eine akusti- 45 sche Sammellinse und einen akustischen Parabol-Teilreflektor mit einer ersten größeren und einer zweiten kleineren endseitigen Offnung umfaßt, daß der Brennpunkt des Parabol-Teilreflektors außerhalb desselben liegt, und daß die Stoßwellenquelle an der größeren Öffnung 50 angeordnet ist, wobei die größere Öffnung so groß ist wie der äußere Rand des äußeren Teils und die kleinere Öffnung so groß ist wie der innere Rand des äußeren Teils der Stoßwellenquelle.

Dadurch können zwei unterschiedliche Fokuslagen 55 vom Lithotripter erzeugt werden, ohne daß sich die Hautbelastung an der Stoßwelleneintrittsfläche wesent-

Eine weitere vorteilhafte Ausgestaltung zeichnet sich dadurch aus, daß in der Stoßwellenquelle eine zentrale .60 Offnung vorhanden ist, in die der Ultraschallkopf einer Ultraschall-Ortungseinrichtung einbringbar ist. Dann kann die Konkrement-Ortung entlang der Zentralachse des Lithotripters vorgenommen werden.

Weitere Ausbildungen und Vorteile der Erfindung er- 65 geben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Fig. sowie aus den Unteransprüchen.

Die Fig. zeigt einen Längsschnitt durch einen Lithotripter mit zentraler Öffnung für den Schallkopf einer Ultraschall-Ortungsvorrichtung.

Nach der Fig. umfaßt der Lithotripter 1 eine Stoßwellenquelle 2, die im wesentlichen ebene akustische Wellen oder Stoßwellen aussendet. Die Symmetrieachse der Stoßwellenquelle 2 ist identisch mit der Zentralachse 4 der ausgesandten Stoßwellen. Bei der Stoßwellenquelle 2 handelt es sich um eine Stoßwellenquelle, die nach dem elektromagnetischen oder elektrodynamischen Prinzip arbeitet

Der aktive Teil 6 der Stoßwellenquelle 2 besteht aus zwei voneinander unabhängigen konzentrischen Teilen zueinander, und zwar einem äußeren Teil 8 sowie einem inneren Teil 10. Bei Aktivierung durch Stromimpulse sendet nach Wahl das eine oder andere Teil 8, 10 entlang der gemeinsamen Zentral- oder Symmetrieachse 4 akustische Impulse oder Stoßwellen aus. Jedes Teil 8 und 10 besteht in bekannter Weise aus einer Flachspule 12 bzw. 14 auf einem Spulenträger 13 bzw. 15, einer Isolierfolie 16 bzw. 18 und einer metallischen Membran 20 bzw. 22. Ein erstes oder äußeres ringförmiges Klemmstück 24 verbindet die Flachspule 12 und den Spulenträger 13 mit der Isolierfolie 16 und mit der Membran 20 an ihrem äußeren Rand. Am inneren Rand des kreisringförmigen außeren Teils 8 ist ein zweites oder inneres ringförmiges Klemmstück 26 angeordnet, das sowohl die Membran 20 mit der Flachspule 12 und dem Spulenträger 13 als auch die Membran 12 mit der Flachspule 14 und dem Spulenträger 15 verbindet. Im Schnitt hat es ein Doppel-T-förmiges Profil. Die Membranen 20, 22 liegen in derselben Ebene.

Zentral im inneren Teil 10 ist eine Öffnung 27 angebracht. In dieser Öffnung 27 befindet sich ein dünnwandiges Innenrohr 28, Das Innenrohr 28 ist entlang der Zentralachse 4 und symmetrisch zu ihr ausgerichtet. An dem Innenrohr 28 ist mittels eines Rings 29 der innere Rand der Membran 22 befestigt. Die Flachspulen 12 und 14 sind jeweils getrennt und unabhängig voneinander

durch Beaufschlagung von Stromimpulsen aktivierbar. Am ersten Klemmstück 24 ist außen die erste oder größere Öffnung 30 eines akustischen Parabol-Teilreflektors 32 befestigt. Er besteht aus einem Material, das die auftreffenden Stoßwellen möglichst verlustfrei reflektiert, z.B. aus Metall. Die Symmetrieachse des Parabol-Teilreflektors 32 deckt sich ebenfalls mit der Zentralachse 4. In der Nähe der zweiten oder kleineren endseitigen Öffnung 33 des Parabol-Teilreflektors 32 befindet sich eine Ankoppelmembran 34. Diese ist über einen randseitigen Faltenbalg 36 außen am Parabol-Teilreflektor 32 befestigt. Die kleinere Öffnung 33 des Parabol-Teilreflektors 32 ist in ihrem Durchmesser etwa so groß wie der innere Rand des äußeren Teils 8 der Stoßwellenquelle 2. D.h., der Durchmesser der Öffnung 33 entspricht ungefähr dem Durchmesser des zweiten oder inneren Klemmstücks 26.

Auf dem Innenrohr 28 ist eine akustische Sammellinse 40 angeordnet. D.h., die akustische Sammellinse 40 weist eine zentrale Öffnung 41 auf. Die Sammellinse 40 ist über eine Verschiebeeinrichtung (hier nicht gezeigt) in Richtung der Zentralachse 4 auf dem Innenrohr 28 gleitend verschiebbar, was durch einen Doppelpfeil 42 angedeutet ist. Die Sammellinse 40 selbst ist hier ein Zweilinsensystem. Dieses System besteht aus einer fokussierenden plankonkaven Teillinse 44, z.B. aus Polystyrol, einer mit Flüssigkeit, z.B. mit Flutec PP3, gefüllten plankonvexen Kammer 46 und einem Deckel oder Verschlußteil 48.

Innerhalb des Innenohres 28 befindet sich der Schallkopf 50 einer Ultraschall-Ortungseinrichung. Es handelt sich um ein Phased Array. Die Ultraschall-Austrittsfläche 52 des Schallkopfes 50 berührt die Ankoppelmembran 34. Die elektrischen Leitungen zum Betrieb 946 Schallkopfes 50 sind durch einen Diehtring 54 aus der Stoßwellenquelle geführt. Der Ring 54 befindet sich im Innernohr 28 in der Nähe des Teils 10.

Der Innenraum 56 des Lithotripters 1 ist mit einer Koppelflüssigkeit 58 gefüllt, deren akustische Eigen 10 schaften denen des menschlichen Gewebes entsprechen. Vorzugsweise ist die Koppelflüssigkeit 58 entgastes Wasser Der Innenraum 56 ist begrenzt von dem aktiven Teil 6, dem Parabol-Teilreflektor 32, der Ankoppelmentan 34 mit Fättenbalg 36 und dem Dichtring 54.

Der Parabol-Teilreflektor 32 ist so ausgebildet, daß bei Aktivierung nur des äußeren Teils 8 die ausgesendeten, im wesentlichen parallelen Impulse sich in einem Brenn- oder Fokuspunkt F2 außerhalb des Teilreflektors 32 treffen. Der Rand des Impulsweges ist durch 20 gestrichelte Linien 62a-62d gezeigt. Es ist so ein praktisch stoßwellenfreier zentraler Raum 64 geschaffen, dessen äußerer Rand von dem ersten Teil der Linien 62a und dem zweiten Teil der Linien 62d gegeben ist. In diesem stoßwellenfreien Raum 64 befindet sich bei der 25 Aktivierung des äußeren Teils 8 die Sammellinse 40. Dann befindet sie sich etwa in der axialen Mitte des Parabol-Teilreflektors 32.

Vor Aktivierung nur des inneren Teils 10 der Stoßwellenquelle 2 wird die Linse 40 dagegen an die kleinere 30 Öffnung 33 des Parabol-Teilreflektors 32 gebracht, also nach vorwärts bewegt Die nun allein wirksame Linse 40 füllt jetzt die Öffnung 33 (nicht gezeigt). Sie ist so bemessen, daß der Fokus F1 jetzt weiter von der Ankoppelmembran 34 entfernt ist als bei Aktivierung des äu-34.

Beren Teils 8.

Zur Feineinstellung der zwei Foki F1, F2 auf die Lage des Konkrements im Patienten ist der Lithottripter 1 – jedoch mit Ausnahme der Ankoppelmembran 34 und des Schallkooffes 50 – über einen Verstellmecha-en insmus, der hier nicht gezeigt ist, in Richtung eines Dopeplefiels 66 bewegbar. Der Schallkooff 50 berührt also in jeder Stellung des Lithotripiters 1 mit seiner Ultraschall-Austrittsfähete 52 die Membran 34. Dadurch werden Mehrfachechos, die sich auf dem B-Bild mit der Lage 45 des Konkrements decken können, vermieden 4

Die Teillinse 44 der Flüssigkeitslinse 40 besteht aus einem Material, in dem die Schalligeschwindigkeit größer ist als die Schallgeschwindigkeit in der Koppelflüssigkeit 58 Bevorzugt besteht die Teillinse 44 aus Polystyrol. Dagegen muß die Schallgeschwindigkeit der Flüssigkeit in der Kammer 48 geringer sein als die Schallgeschwindigkeit in der Koppelflüssigkeit in Schallesigenschaften denen der Koppelflüssigkeit S8 weitgehend angepaßt. Hier kommt als Material Teflon in Beracht.

Der Lüthotripter 1, dessen Fokus F1, F2 einstellbar ist, eignet sich, neben der Behandlung von Nierenstei60 nen, besonders zur Behandlung von Gallensteinen.
Durch den einstellbaren Fokus und dem damit variablen
Öffnungsvinket wird die Hautbelastung, selbst bei unterschiedlich tief liegenden Konkrementen, gering gehalten. Durch gleichzeitige Aktivierung beider Teile der 65
Stoßwellenquelle 2 läßt sich ein Strichfokus in Richtung

der Zentralachse erzielen.

Patentansprüche

1. Lithotripter mit einer Stoßwellenquelle, die im wesentlichen ebene akustische Wellen aussendet, und mit einer Fokussierungsvorrichtung, dadurch gekennzeichnet, daß die Stoßwellenquelle (2) zwei konzentrische, bei Aktivierung Stoßwellen entlang einer gemeinsame Zentralachse (4) aussendende Teile (8, 10) umfaßt, die jeweils getrennt und/oder gemeinsam aktivierbar sind.

genieinsam aktivieroar sind.

2. Lithortiper nach Anspruch 1, dadurch gekennzelehnet, daß die Fokussierungsvorrichtung eine akustische Sammellinse (49) und einen akustische nach einer ersten größenen und einer zweiten kleineren endseinigen Off-nung (30, 33) umfaßt, daß der Brennpunkt (F2) des Parabol-Teilreflektors (32) außerhalb desselben liegt, und daß die Stoßwellenquelle (2) an der größeren Offnung (30) angeordnet ist, wobei die größeren Offnung (30) angeordnet ist, wobei die größeren Offnung (30) groß ist wie der äußerer Rand des äußeren Teils (8) und die kleinere Offnung (33) so groß ist wie der innere Rand des äußeren Teils (8) der Stoßwellenquelle (2).

3. Lithotripter nach Anspruch 2, dadurch gekennzeichnet, daß sich die Sammellinse (40) bei Aktivierung des äußeren Teils (8) in einem stoßwellenfreien Raum (64) befindet, der dann vorhanden ist.

4. Lithotripter nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß sich die Sammellinse (40) bei Aktivierung des inneren Teils (10) an der kleineren Öffnung (33) des Parabol-Teilreflektors (32) befin-

 Lithotripter nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Sammellinse (40) in Richtung der Zentralachse (4) verschiebbar ist.
 Lithotripter nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Parabol-Teilreflektro (43) aus Metall besteht.

7. Lithotripter nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß die Sammellinse (40)

eine Flüssigkeitslinse ist.

 Lithotripter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in der Stoßwellenquelle (2) eine zentrale Öffnung (27) vorhanden ist, in die der Ultraschallkopf (50) einer Ultraschall-Ortungseinrichtung einbringbar ist.

9. Lithotripter nach Anspruch 8, dadurch gekennzeichnet, daß auch in der Sammellinse (40) eine zentrale Öffnung (41) vorhanden ist, in die der Ultraschallkopf (50) der Ultraschall-Ortungsein-

richtung einbringbar ist.

 Lithotripter nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß sich die Sammellinse (40) etwa in der Mitte des Parabol-Teilreflektors (32) befindet.

Nummer: Int. Cl.⁴: Anmeldetag: Offenlegungstag: 37 39 390 A 61 B 17/22 20. November 1987 1. Juni 1989

/1

3739390

Derwent WPI (c) 2006 The Thomson Corp. All rights reserved.

007901287 **Image available**
WPI Acc No: 1989-166399/198923

XRPX Acc No: N89-127073

Kidney-stone disintegration instrument - has shock-wave source with concentric parts transmitting separately or together

Patent Assignee: SIEMENS AG (SIEI)

Inventor: HASSLER D

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

DE 3739390 A 19890601 DE 3739390 A 19871120 198923 B

Priority Applications (No Type Date): DE 3739390 A 19871120

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes DE 3739390 A 4

DE 3

Abstract (Basic): DE 3739390 A

The disintegration instrument for kidney stones has a shock-wave source transmitting constant acoustic waves, together with a focussing unit. The source (2) has two concentric parts (8,10) transmitting along a common central axis (4), and which can be brought into use separately or together.

The focusing unit can have an acoustic collector lens (40) and parabolic partial reflector (32) with a large and a small opening (30,33) at opposite ends, the focal point (F2) being outside it. The source is at the large opening, which is the size of the outer edge of the outer part, while the smaller opening is of the size of the inner edge of this part.

USE/ADVANTAGE - Variable focal length which relieves load on patient's skin, largely irrespective of the depth at which the stone is situated.

1/1

Title Terms: KIDNEY; STONE; DISINTEGRATE; INSTRUMENT; SHOCK; WAVE; SOURCE; CONCENTRIC; PART; TRANSMIT; SEPARATE

Derwent Class: P31; P41; P86

International Patent Class (Additional): A61B-017/22; B02C-019/18; G10K-011/30

File Segment: EngPI