Perbandingan MLP dan LVQ

Terdiri dari 50 data

Memiliki 5 fitur

Gender, Income, Age, Rentals, Average Visit,
dan Incidentals

Memiliki 3 kelas target

Target Action, Drama, dan Comedy

	Gender	Income	Age	Rentals	Avg Visit	Incidentals	Genre
0	М	45000	25	27	2.5	Yes	Action
1	F	54000	33	12	3.4	No	Drama
2	F	32000	20	42	1.6	No	Comedy
3	F	59000	70	16	4.2	Yes	Drama
4	M	37000	35	25	3.2	Yes	Action

MULTI LAYER PERCEPTRON: SCORE

```
mlpmodel = MLPClassifier(hidden_layer_sizes=(20),max_iter=10000)
score = cross_val_score(mlpmodel, features, labels, cv=5)
print("CROSS VALIDATION SCORE : ", statistics.mean(score))
mlpmodel.fit(X_train,y_train)
print("TRAIN SCORE: ",mlpmodel.score(X_train,y_train))
print("TEST SCORE: ",mlpmodel.score(X_test,y_test))
```

CROSS VALIDATION SCORE: 0.4903030303030303

TRAIN SCORE: 0.95

TEST SCORE: 0.7

MULTI LAYER PERCEPTRON: CLASSIFICATION REPORT

		precision	recall	f1-score	support	
	0	0.33	1.00	0.50	1	
	1	0.50	0.50	0.50	2	
	2	1.00	0.71	0.83	7	
micro	avg	0.70	0.70	0.70	10	
macro	avg	0.61	0.74	0.61	10	
weighted	avg	0.83	0.70	0.73	10	

Learning Vector Quantization

LEARNING VECTOR QUANTIZATION: SCORE

```
lvqmodel = LVQ(n_components=3,epochs=10000)
score = cross_val_score(lvqmodel, features, labels, cv=5)
print("CROSS VALIDATION SCORE : ",statistics.mean(score))
lvqmodel.fit(X_train,y_train)
print("TRAIN SCORE: ",lvqmodel.score(X_train,y_train))
print("TEST SCORE: ",lvqmodel.score(X_test,y_test))

CROSS VALIDATION SCORE : 0.48181818181818
TRAIN SCORE: 0.525
TEST SCORE: 0.3
```


LEARNING VECTOR QUANTIZATION: CLASSIFICATION REPORT

		precision	recall	f1-score	support	
	0	0.00	0.00	0.00	1	
	1	0.20	0.50	0.29	2	
	2	1.00	0.29	0.44	7	
micro	avg	0.30	0.30	0.30	10	
macro	avg	0.40	0.26	0.24	10	
weighted	avg	0.74	0.30	0.37	10	

Pada dataset Video-Store arsitektur

MLP menghasilkan performa yang lebih
baik daripada LVQ

MLP Train: 0.95 Test: 0.7 LVQ Train: 0.525 Test: 0.3

2 5-Fold Cross Validation pada kedua model menghasilkan hasil yang tidak jauh berbeda

MLP: 0.4903030303030303 LVQ: 0.4818181818181818

Repository:

https://github.com/vincentmichael089/ML-ANN/tree/master/2.MLP-LVQ%20Comparison