18.303 Problem Set 5

Due Friday, 16 October 2015.

Problem 1: Hermitian Green's functions

- (a) Show that if \hat{A} is Hermitian for some $\langle u, v \rangle$, then \hat{A}^{-1} is also Hermitian. Hint: consider $\langle u, \hat{A}\hat{A}^{-1}v \rangle$.
- (b) Suppose that $u = \hat{A}^{-1}f$ can be expressed in terms of a Green's function $G(\mathbf{x}, \mathbf{x}')$, i.e. $\hat{A}^{-1}u(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d^n \mathbf{x}'$. If \hat{A}^{-1} is Hermitian under the usual inner product $\langle u, v \rangle = \int \bar{u}v$, show that you can relate $G(\mathbf{x}, \mathbf{x}')$ to $G(\mathbf{x}', \mathbf{x})$. (This relationship is sometimes called *reciprocity*.)
- (c) Consider a diffusion process where u is concentration and $f(\mathbf{x})$ is a source/sink (concentration per time added/removed), related by the diffusion equation $\frac{\partial u}{\partial t} = \nabla \cdot D\nabla u + f$, where $D(\mathbf{x}) > 0$ is a diffusivity constant of different materials at different points in space. In steady state, u solves $-\nabla \cdot D\nabla u = f$, and we showed in class that $\hat{A} = -\nabla \cdot D\nabla$ is Hermitian and invertible (positive-definite) for Dirichlet boundary conditions. Using your reciprocity relationship from the previous part, explain why there is no possible arrangement of materials [no possible $D(\mathbf{x})$] that allows "one-way diffusion" diffusion from a source at \mathbf{x}' to a point \mathbf{x} but not vice-versa.

Problem 2: Distributions

This problem concerns distributions as defined in the notes: continuous linear functionals $f\{\phi\}$ from test functions $\phi \in \mathcal{D}$, where \mathcal{D} is the set of infinitely differentiable functions with compact support (i.e. $\phi = 0$ outside some region with finite diameter [differing for different ϕ], i.e. outside some finite interval [a, b] in 1d). Recall that the distributional or "weak" derivative is $f'\{\phi\} = f\{-\phi'\}$.

Consider the function $f(x) = \begin{cases} \ln|x| & x \neq 0 \\ 0 & x = 0 \end{cases}$ and its (weak) derivative, which is connected to something called the analysis of the property Principal Value. This defines a regular distribution, even though f blows up as $x \to 0$, because this singularity

Cauchy Principal Value. This defines a regular distribution, even though f blows up as $x \to 0$, because this singularity is "integrable:" $\int \ln x = x \ln x - x$ and $x \ln x$ is finite for $x \to 0$.

(a) Consider the 18.01 derivative of f(x), which gives $f'(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ \text{undefined} & x = 0 \end{cases}$. Suppose we just set "f'(0) = 0" at the origin to define $g(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Show that this g(x) is not locally integrable, and hence does not define a distribution.

But the weak derivative $f'\{\phi\}$ must exist, so this means that we have to do something different from the 18.01 derivative, and moreover $f'\{\phi\}$ is not a regular distribution. What is it?

- (b) Write $f\{\phi\} = \lim_{\epsilon \to 0^+} f_{\epsilon}\{\phi\}$ where $f_{\epsilon}\{\phi\} = \int_{-\infty}^{-\epsilon} \ln(-x)\phi(x)dx + \int_{\epsilon}^{\infty} \ln(x)\phi(x)dx$, since this limit exists and equals $f\{\phi\}$ for all ϕ from your proof in the previous part. Compute the distributional derivative $f'\{\phi\} = \lim_{\epsilon \to 0^+} f'_{\epsilon}\{\phi\}$, and show that $f'\{\phi\}$ is precisely the Cauchy Principal Value (google the definition, e.g. on Wikipedia) of the integral of $g(x)\phi(x)$.
- (c) Alternatively, show that $f'\{\phi(x)\} = g\{\phi(x) \phi(0)\} = \int_{-\infty}^{\infty} g(x)[\phi(x) \phi(0)]dx$ (which is a well-defined integral for all $\phi \in \mathcal{D}$).

¹More explicitly, $f\{\phi\} - f_{\epsilon}\{\phi\} = \int_{-\epsilon}^{\epsilon} \ln|x|\phi(x)dx \le (\max \phi) \int_{-\epsilon}^{\epsilon} \ln|x|dx \to 0$, since you should have done the something like the last integral explicitly in the previous part.