附錄一、利率選擇權

(一)利率上限

- ◆ Interest Rate Caps(利率上限)是由一連串的 Interest Rate Caplets(利率買入選擇權)所組成。
 - ▶ 利率買入選擇權允許買方以事先預定的協議利率 K,向賣方借入一定的金額一段期間。
 - ▶ 此協議利率為一上限利率(Caps),此金額為名目本金(Nominal Amount),此期間即為契約有效期間 (Effective Period),有效期間即為契約起始日至到期日的期間。
- ◆ 一利率買入選擇權名目本金 L,利率上限為 K,有效期間為δ,若比價之利率為 R,則在到期日時賣方必須支付買方如下利息金額

$$\delta \times L \times Max[R-K,0]$$

◆ Caplet 之 Risk Profile

◆ 一利率上限名目本金 L,期限為 T,上限利率為 K。若利息金額之支付時點為由契約啟始日後之 t_1 , t_2 , t_3 , ..., t_n , 且定義 t_{n+1} =T。令 R_k 為 t_k 與 t_{k+1} 時點間的比價利率, δ_k = t_{k+1} - t_k ,則在 t_{k+1} 時點賣方必須支付買方如下利息金額,

$$\delta_k \times L \times Max[R_k - K, 0]$$

◆ 契約涉及之相關時點

▶ 第一次比價日為起始日前兩個營業日。

(二)利率下限

- ◆ Interest Rate Floors(利率下限)是由一連串的 Interest Rate Floorlets(利率賣出選擇權) 所組成。
 - 利率賣出選擇權允許買方以事先預定的利率協議,向賣方借出一定的金額一段期間。
 - ▶ 此利率協議為一下限利率(Floors),此金額為名目本金(Nominal Amount),此期間即為契約有效期間 (Effective Period),有效期間即為契約起始日至到期日的期間。
- ◆ 一利率賣出選擇權名目本金 L,利率下限為 K,有效期間為δ,若比價之利率為 R,則在到期日時賣方必須支付買方如下利息金額

 $\delta \times L \times Max[K-R,0]$

◆ 一利率下限名目本金 L,期限為 T,下限利率為 K。若利息金額之支付時點為由契約啟始日後之 t_1 , t_2 , t_3 , ..., t_n ,且定義 t_{n+1} =T。令 R_k 為 t_k 與 t_{k+1} 時點間的比價利率, δ_k = t_{k+1} - t_k ,則在 t_{k+1} 時點賣方必須支付買方如下利息金額,

$$\delta_k \times L \times Max[K - R_k, 0]$$

(三)Black 76 定價模型

◆ 遠期資產價格為對數常態分配,

$$\frac{dF}{F} = \sigma dZ$$

- ▶ 由於遠期價格為即期價格之不偏估計值,因此沒有漂移項。
- ◆ 遠期價格與即期價格間的關係,可由 Cost-of-carry Model 描述,

$$F = Se^{(r-y)T}$$

◆ Black 76 的遠期價格歐式選擇權公式如下,

$$C = e^{-rT} \left[FN(d_1) - KN(d_2) \right],$$

$$P = e^{-rT} \left[KN(-d_2) - FN(-d_1) \right]$$

$$d_1 = \frac{\ln(F/K) + \sigma^2 T/2}{\sigma \sqrt{T}},$$

$$d_2 = \frac{\ln(F/K) - \sigma^2 T/2}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T}$$

- 遠期價格的到期日與選擇權到期日相同。
- ▶ 避險參數 Delta 為,

$$\Delta_C = N(d_1)$$
 , $\Delta_P = N(d_1) - 1$.

(四)利率上限訂價理論

- ◆ 由前述, t_k 時點開始,在 t_{k+1} 到期之利率買入選擇權,到期時支付買方如下利息金額, $\delta_k \times L \times \max[R_k K, 0]$
- ◆ 根據 Black(1976)選擇權訂價理論,如果 F_k 服從對數常態分配,且其波動性為σ_k,則此利率 買入選擇權之價格 c_k為

$$c_k = \delta_k \bullet L \bullet e^{-r^* t_{k+1}} \left[F_k N(d_1) - KN(d_2) \right]$$

$$d_1 = \frac{\ln(\frac{F_k}{K}) + \frac{\sigma_k^2 t_k}{2}}{\sigma_k \sqrt{t_k}}$$

$$d_2 = \frac{\ln(\frac{F_k}{K}) - \frac{\sigma_k^2 t_k}{2}}{\sigma_k \sqrt{t_k}} = d_1 - \sigma_k \sqrt{t_k}$$

ightarrow 其中 F_k 為 t_k 時點開始 † t_{k+1} 到期之遠期利率 † r^* 為 t_{k+1} 時點到期之即期利率 † K 與 F_k 都以 δ_k 頻率複利。

◆ 根據前式利率上限的價格 c 為利率買入選擇權價格 c_k , $k \in [1...n]$,之和

$$c = \sum_{n=1}^{n} c_k$$

▶ 此權利金一般在期初訂約之後支付。通常利率上限契約會設計的使得第一次的 Payoff 為 0。

(五)利率下限訂價理論

- ◆ 由前述, t_k 時點開始,在 t_{k+1} 到期之利率賣出選擇權,到期時支付買方如下利息金額, $\delta_k \times L \times \max[K R_k, 0]$
- ◆ 根據 Black(1976)選擇權訂價理論,如果 F_k 服從對數常態分配,且其波動性為σ_k,則此利率 買入選擇權之價格 p_k為

$$p_{k} = \delta_{k} \bullet L \bullet e^{-r^{*}t_{k+1}} \left[KN(-d_{2}) - F_{k}N(-d_{1}) \right]$$

ightharpoonup 其中 F_k 為 t_k 時點開始, t_{k+1} 到期之遠期利率, r^* 為 t_{k+1} 時點到期之即期利率,K 與 F_k 都以 δ_k 頻率複利。

◆ 根據前式利率下限的價格 p 為利率賣出選擇權價格 p_k,k∈[1...n],之和

$$p = \sum_{n=1}^{n} p_k$$

▶ 此權利金一般在期初訂約之後支付。通常利率下限契約會設計的使得第一次的 Payoff 為 0。

附錄二、Implied Caplet Volatility Curve

- ◆ 市場上報價的波動性為 Cap & Floor 的 Vol,不是訂價公式中需要的 Caplet & Floorlet Vol。
 - 》 訂價公式中的 Vol 為遠期利率的波動性,如 0M~3M 遠期利率的 0 個月的波動性 σ_1 、3M~6M 遠期利率的 3 個月的波動性 σ_2 、6M~9M 遠期利率的 6 個月的波動性 σ_3 、9M~12M 遠期利率的 9 個月的波動性 σ_4 等等。
 - ightharpoonup 以一年期的 Cap 為例,市場報價的波動性 σ_{IY} ,為滿足下面關係的波動性。

$$c_2(\sigma_2) + c_3(\sigma_3) + c_4(\sigma_4) = c_2(\sigma_{1Y}) + c_3(\sigma_{1Y}) + c_4(\sigma_{1Y})$$

- ✓ σ_i稱之為 Spot Vol, σ₁γ稱之為 Flat Vol。
- 使用下面關係,求得σ₅、σ₆、σ₇、σ₈。

$$\sigma_6 = \frac{\sigma_4 + \sigma_8}{2}$$
 , $\sigma_5 = \frac{\sigma_4 + \sigma_6}{2}$, $\sigma_7 = \frac{\sigma_6 + \sigma_8}{2}$

$$\sum_{i=2}^{8} c_i(\sigma_i) = \sum_{i=2}^{8} c_i(\sigma_{2Y})$$

▶ 如此,求得七年的 Spot Vol。

◆ 我們使用 Bootstrap 方法, 由短期的 Futures Option 的 Spot Vol, 與長期的 Cap 的 Flat Vol, 求得各天期的 Spot Vol。

<< EXCEL Case 13>>

31	檔案(F) 編輯(E)	檢視(V) 插入(I)	格式(0) 工具(T)	資料(D) 高	見窗(W) 説明	(H)				輸入需要解	答的問題
_			Σ - 2↓ 120%	- 0	Arial		- 12 - B	ıυ ≣≣≣	\$ % , *°°		
	J2	▼ f _x									
	А	В	С	D	Е	F	G	Н	I	J	K
1	Today	2006/7/31	3392	Freq	Q		Caps Value	Caps Value	Caps Value	Vaplet Vol	Caplet Value
2	DayCount	365				1				0.09	0
3				Boots	strapVol	2				0.09	4.7140E-14
4	TWD		ATM	Doors	маруы	3				0.09	1.2487E-09
5		Tenor	Caps_Vol			4		0.00054351	0.00054351	0.09	1.7206E-07
6		1Yr	9.00%	c c	3	5				0.10282	1.1103E-05
7		2Yr	11.40%			6				0.11565	4.7053E-05
8		3Yr	13.40%			7				0.12847	1.2305E-04
9		4Yr	14.00%			8	0.00210918	0.00210918	0.00210918	0.14129	2.0214E-04
0		5Yr	14.70%			9				0.14437	2.8523E-04
1		6Yr	14.90%			10				0.14745	3.8576E-04
2		7Yr	15.10%			11				0.15053	4.7767E-04
3						12	0.00464267	0.00464267	0.00464267	0.15361	6.0771E-04
4						13				0.15030	5.8801E-04
5						14				0.14698	6.6218E-04
б						15				0.14367	7.1214E-04
7						16		0.00758664	0.00758664	0.14036	8.1045E-04
8						17				0.14809	9.3437E-04
9						18				0.15583	1.0604E-03
20						19				0.16356	1.1481E-03
21						20		0.01138212	0.01138212	0.17129	1.3142E-03
22						21				0.16393	1.2768E-03
23						22				0.15658	1.1020E-03
24						23				0.14922	1.1012E-03
25						24		0.01501805	0.01501805	0.14186	9.0981E-04
26						25				0.14765	1.2253E-03
27						26				0.15345	1.3123E-03
28						27				0.15924	1.3530E-03
29						28	0.01913526	0.01913526	0.01913526	0.16504	1.4850E-03
30											
31	▶ ▶ \ Data / FRA /							<			

- ◆ 圖為典型的 Volatility Term Structure 的關係圖。
 - ▶ Flat Vol 可由市場報價取得。Spot Vol 可以使用 Bootstrap 方式求得。

Figure 26.3 The volatility hump.

- ◆ 特定的函數關係可以用來描繪 Spot Volatility Curve。
 - $p(s) = (a+bs)e^{-cs} + d$ 為常用的函數關係, s 為遠期利率的起始時間間距。

Fig. 14.1. The term structure of implied volatilities of caplets implied by the functional form (14.21), with a = -0.02, b = 0.3, c = 2, and d = 0.14.

