eGaN® FET DATASHEET EPC2102

EPC2102 – Enhancement-Mode GaN Power **Transistor Half-Bridge**

 V_{DS} , 60 V $R_{DS(on)}$, $4.9~m\Omega$ I_D, 30 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings								
DEVICE		PARAMETER VALUE UNI						
	W	Drain-to-Source Voltage (Continuous)	60	V				
	V_{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	72	V				
		Continuous ($T_A = 25^{\circ}C$, $R_{\theta JA} = 15^{\circ}C/W$)	30	Α				
Q1	I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	220	A				
& Q2	.,	Gate-to-Source Voltage	6	V				
	V_{GS}	Gate-to-Source Voltage	-4	v				
	T _J	Operating Temperature	-40 to 150	°C				
	T_{STG}	Storage Temperature	-40 to 150					

Thermal Characteristics						
		PARAMETER	ТҮР	UNIT		
Q1 & Q2	$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.3			
	$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	2.2	°C/W		
	$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	42			

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. $\textbf{See} \ https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf \ \textbf{for details} \ and the product of the product$

EPC2102 eGaN® ICs are supplied only in passivated die form with solder bumps Die Size: 6.05 mm x 2.3 mm

Applications

• High Frequency DC-DC

Benefits

- High Frequency Operation
- · Ultra High Efficiency
- High Density Footprint

Static Characteristics (T _J = 25°C unless otherwise stated)								
DEVICE	PARAMETER		PARAMETER TEST CONDITIONS		TYP	MAX	UNIT	
	BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_{D} = 0.6 \text{ mA}$	60			V	
	I _{DSS}	Drain-Source Leakage	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$		0.008	0.4	mA	
Q1	I _{GSS}	Gate-to-Source Forward Leakage	V _{GS} = 5 V		0.015	7	mA	
&		Gate-to-Source Reverse Leakage	V _{GS} = -4 V		0.008	0.4	mA	
Q2	V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	0.8	1.3	2.5	V	
	R _{DS(on)} Drain-Source On Resistance	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 20 \text{ A}$		3.6	4.9	mΩ	
	V _{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.7		V	

eGaN® FET DATASHEET EPC2102

Dynamic Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)							
DEVICE		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	C _{ISS}	Input Capacitance			850	1020	
	C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		11		pF
	C _{oss}	Output Capacitance			500	750	
	C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)			695		
	C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 30 \text{ V}, V_{GS} = 0 \text{ V}$		863		
Q1	Q_{G}	Total Gate Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 20 \text{ A}$		8	11	
	Q_{GS}	Gate-to-Source Charge			2.5		nC
	Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 30 \text{ V, I}_{D} = 20 \text{ A}$		1.5		
	$Q_{G(TH)}$	Gate Charge at Threshold			1.7		
	Q _{OSS}	Output Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		26	39	
	Q_{RR}	Source-Drain Recovery Charge			0		
	C _{ISS}	Input Capacitance			850	1020	pF
	C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		11		
	C _{oss}	Output Capacitance			610	915	
	C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V = 0 to 20 V V = 0 V		830		
	C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 30 \text{ V}, V_{GS} = 0 \text{ V}$		1030		
Q2	Q_{G}	Total Gate Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 20 \text{ A}$		8	11	
_	Q_{GS}	Gate-to-Source Charge			2.5		-
	Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 30 \text{ V, } I_{D} = 20 \text{ A}$		1.5		
	$Q_{G(TH)}$	Gate Charge at Threshold			1.7		nC
	Q _{oss}	Output Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		31	47	
	Q_{RR}	Source-Drain Recovery Charge			0		

©2020

Note 2: C_{OSSIPR} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 2 (Q1 & Q2): Transfer Characteristics

eGan® FET DATASHEET EPC2102

Figure 3 (Q1 & Q2): $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 4 (Q1 & Q2): R_{DS(on)} vs. V_{GS} for Various Temperatures

Figure 5a (Q1): Capacitance (Linear Scale)

Figure 5b (Q1): Capacitance (Log Scale)

Figure 5c (Q2): Capacitance (Linear Scale)

Figure 5d (Q2): Capacitance (Log Scale)

eGaN® FET DATASHEET EPC2102

Figure 6a (Q1): Output Charge and Coss Stored Energy

Figure 6b (Q2): Output Charge and Coss Stored Energy

Figure 7 (Q1 & Q2): Gate Charge

Figure 8 (Q1 & Q2): Reverse Drain-Source Characteristics

Figure 9 (Q1 & Q2): Normalized On-State Resistance vs. Temperature

Figure 10 (Q1 & Q2): Normalized Threshold Voltage vs. Temperature

eGan® FET DATASHEET EPC2102

Figure 11a Transient Thermal Response Curves

Transient Thermal Response Curves (Junction-to-Board) Duty Cycle: 0.5 0.2 0.1 0.05 0.02 P_{DM} t_1 t_2 Notes: Duty Factor: $D = t_1/t_2$ Peak $T_J = P_{DM} \times Z_{\theta JB} \times R_{\theta JB} + T_B$

t_p, Rectangular Pulse Duration, seconds

Figure 11b Transient Thermal Response Curves

t_p, Rectangular Pulse Duration, seconds

Figure 12 (Q1 & Q2): Safe Operating Area

10-5

10-4

Figure 13: Typical Application Circuit

10¹

eGaN® FET DATASHEET EPC2102

TAPE AND REEL CONFIGURATION

	Dimension (mm)		
EPC2102 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
(Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	1.50	1.50	1.75

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Part	Laser Markings				
Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3		
EPC2102	2102	YYYY	7777		

eGaN® FET DATASHEET EPC2102

DIE OUTLINE

Solder Bump View

		1	<u> </u>
		(625)	(785)
ı			\downarrow
c		<u>و</u>	
Side V	ieW Seating plane ′	Ī	
		160+	

DIM	MIN	Nominal	MAX
Α	6020	6050	6080
В	2270	2300	2330
C	400	400	400
d	450	450	450
e	210	225	240
f	187	208	229

Pad 2 is G1; Pad 3 is Q1 Gate Return; Pad 4 is G2;

Pads 1, 11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 51, 52, 61, 62, 71, 72 are V_{IN};

Pads 5, 14, 15, 24, 25, 34, 35, 43, 44, 45, 53, 54, 55, 63, 64, 65, 73, 74, 75 Ground;

Pads 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 56, 57, 58, 59, 60, 66, 67, 68, 69, 70 are Switch Node

RECOMMENDED LAND PATTERN

(measurements in μ m)

The land pattern is solder mask defined. Suggest SMD Pads at $200 + 20/-10 \, \mu m$. $190 \, \mu m$ minimum.

RECOMMENDED STENCIL DRAWING

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at: https://epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised June, 2020