Design of a RF Transmitter for RFID Tags in a New Technology with Ultra Thin Silicon Substrates

M.S. Abdelfattah^{1,3}, D. Ferenci¹, M. Grözing¹, M. Berroth¹, C. Scherjon², J.N. Burghartz²

Introduction

Technology

- Flexible 20-μm substrates.
- 0.5-μm sea-of-gates structure.
- Approx. dimensions 3.2mm x 2.7mm.

Motivation

- RFID increasing in popularity and applications, it is therefore required to be inexpensive and easily embedded (thin, small and flexible).
- Aim: to implement RFID on the new technology.
- First step: modeling of passive and active components.
- Low inductor Q presents design bottleneck.

Design Approach

- Simple design for first prototype.
- Direct baseband modulation.
- Optional ASK modulation.
- Design for ISM band (433 MHz and 2.45 GHz) and SRD band (869 MHz).
- 4 transmitter circuits designed:
 - 1. 2.45 GHz cross-coupled VCO.
 - 2. 869 MHz cross-coupled VCO.
 - 3. Differential ring VCO.
 - 4. Single-ended ring VCO.

Layout

- Layout is optimized for testing.
- 2 metal layers (shown).
- Total chip area: 9.28 mm².

Cross-Coupled VCOs

Capacitor Bank For Tuning and Modulation

- Both NMOS and PMOS negative transconductance components.
- Large varactor for analog frequency tune.
- Small series varactor for direct FM/FSK modulation.
- 2-bit digital tune binary-weighted switched capacitor array.

Differential CML Output Stage

- CML buffer isolates LO signal and reduces frequency pulling.
- ASK modulation through current steering in a CML amplifier.
- Source follower driver for 50 Ω load (Measurement equipment termination).

2.45 GHz Frequency Tune

- 2-bit digital tune spans 2²=4 tune bands.
- Analog tune within bands using varactor.
- Better linearity for a smaller voltage range.

CMOS Inverters

CMOS topology maintains amplitude

well for a wide current tuning range.

5-stage differential ring oscillator.

7-stage single-ended ring oscillator.

Frequency tune by current steering.

 V_{DD}

 $V_{in}+$

2.45 GHz LO Waveform

- Amplitude decreases when more (lossy) switches are operating.
- Peak-to-peak voltage ≈ 5 V.

2.45 GHz LO Spectrum

- Nearest harmonic component is -35 dBm.
- Simulated phase noise: -65 dBc/Hz at 100 kHz offset frequency.

Ring VCOs

CMOS Output Stage

- CMOS inverter with small transistors to buffer oscillator.
- ${}^{\blacksquare}$ CMOS inverter with large transistor to provide enough current for 50 Ω load.
- Amplitude control using an appropriately sized pull-to-ground transistor for ASK ratio 3:1.

Tuning Characteristics

- Single-ended ring max. freq.: 840 MHz.
- Differential ring max. freq.: 1.25 GHz.
- Better tuning linearity for a smaller voltage range.
- K_{VCO} decreases as frequency increases.

Conclusion

- From simulation: both cross-coupled and ring oscillators can be implemented using the new technology.
- Ring oscillators were superior in power consumption, tuning range and area.
- Cross-coupled oscillators operated at higher frequencies and had better spectral purity and lower phase noise.
- Measurements will be conducted pending fabrication.

	Cross-coupled		Ring	
Features	2.45 GHz	869 MHz	Diff.	Single
Area/mm ²	0.57	0.89	0.07	0.04
VCO Power/mW	23	60	17	7
Tuning range/GHz	2.0 - 2.95	0.73 - 1.1	<1.2	< 0.9
Spectral purity	Good		Bad	

Mohamed S. Abdelfattah mohamed.abdelfattah@ieee.org

Pfaffenwaldring 47 70569 Stuttgart Germany

2. Institute for Microelectronics Stuttgart

Allmandring 30a
70569 Stuttgart
Germany

