Homework: Eigenvectors, Eigenvalues, Diagonalization, Orthogonal Basis and Complements

DS5020

2020-06-14

Generalized Cosine

Find $\cos \theta$ where θ is the angle between:

(a)
$$u = (1, 3, -5, 4)$$
 and $v = (2, -3, 4, 1)$ in \mathbb{R}^4 ,

(b)
$$A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, where $\langle A, B \rangle = \operatorname{tr}(B^T A)$.
Use $\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}$

Orthogonality

Find *k* so that u = (1, 2, k, 3) and v = (3, k, 7, -5) in \mathbb{R}^4 are

orthogonal.

Orthogonal Complement: Basis

Let W be the subspace of \mathbb{R}^5 spanned by u = (1, 2, 3, -1, 2)

and v = (2, 4, 7, 2, -1). Find a basis of the orthogonal complement W^{\perp} of W.

Orthogonal Basis:

Let S consist of the following vectors in \mathbb{R}^4 :

$$u_1 = (1, 1, 0, -1), \ u_2 = (1, 2, 1, 3), \ u_3 = (1, 1, -9, 2), \ u_4 = (16, -13, 1, 3)$$

- (a) Show that S is orthogonal and a basis of \mathbb{R}^4 .
- (b) Find the coordinates of an arbitrary vector v = (a, b, c, b)d) in \mathbb{R}^4 relative to the basis S.

Projection

Suppose $w \neq 0$. Let v be any vector in V. Show that

$$c = \frac{\langle v, w \rangle}{\langle w, w \rangle} = \frac{\langle v, w \rangle}{\|w\|^2}$$

is the unique scalar such that v' = v - cw is orthogonal to w.

Eigendecomposition 2×2 Matrix

- Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$.
- (a) Find all eigenvalues and corresponding eigenvectors.
- (b) Find a nonsingular matrix P such that $D = P^{-1}AP$ is diagonal, and P^{-1} .
- (c) Find A^6 and f(A), where $t^4 3t^3 6t^2 + 7t + 3$.
- (d) Find a "real cube root" of B—that is, a matrix B such that $B^3 = A$ and B has real eigenvalues.

(a) First find the characteristic polynomial $\Delta(t)$ of A:

$$\Delta(t) = t^2 - \text{tr}(A) \ t + |A| = t^2 - 5t + 4 = (t - 1)(t - 4)$$

The roots $\lambda = 1$ and $\lambda = 4$ of $\Delta(t)$ are the eigenvalues of A. We find corresponding eigenvectors.

(i) Subtract $\lambda = 1$ down the diagonal of A to obtain the matrix $M = A - \lambda I$, where the corresponding homogeneous system MX = 0 yields the eigenvectors belonging to $\lambda = 1$. We have

$$M = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
, corresponding to $\begin{cases} x + 2y = 0 \\ x + 2y = 0 \end{cases}$ or $x + 2y = 0$

The system has only one independent solution; for example, x = 2, y = -1. Thus, $v_1 = (2, -1)$ is an eigen-

vector belonging to (and spanning the eigenspace of) λ = 1.

(ii) Subtract λ = 4 down the diagonal of A to obtain

$$M = \begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix}$$
, corresponding to $\begin{aligned} -2x + 2y &= 0 \\ x - y &= 0 \end{aligned}$ or $x - y = 0$

The system has only one independent solution; for example, x = 1, y = 1. Thus, $v_2 = (1, 1)$ is an eigenvector belonging to $\lambda = 4$.

(b) Let P be the matrix whose columns are v_1 and v_2 . Then

$$P = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad D = P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, \quad \text{where} \quad P^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

(c) Using the diagonal factorization $A = PDP^{-1}$, and $1^6 = 1$ and $4^6 = 4096$, we get

$$A^{6} = PD^{6}P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4096 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1366 & 2230 \\ 1365 & 2731 \end{bmatrix}$$

Also, f(1) = 2 and f(4) = 1. Hence,

$$f(A) = Pf(D)P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$

(d) Here $\begin{bmatrix} 1 & 0 \\ 0 & \sqrt[4]{4} \end{bmatrix}$ is the real cube root of D. Hence the real cube root of A is

$$B = P\sqrt[3]{D}P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt[3]{4} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 + \sqrt[3]{4} & -2 + 2\sqrt[3]{4} \\ -1 + \sqrt[3]{4} & 1 + 2\sqrt[3]{4} \end{bmatrix}$$

Diagonalization Symmetric Matrix

Let $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$. Find an orthogonal matrix P such that $D = P^{-1}AP$ is diagonal.