Lab 2

1. Описание модели

Характеристики системы

- Поступление заявок происходит по пуассоновскому процессу с интенсивностью.
- **Обслуживание заявок** осуществляется экспоненциально распределенным временем с интенсивностью.
- Количество каналов обслуживания: n.
- Очередь неограниченная (∞).

Основные показатели системы

Для многоканальной системы M/M/n/∞ основные характеристики рассчитываются по следующим формулам:

- 1. Вероятность простоя системы (все каналы свободны):
- 2. Вероятность того, что заявка будет ждать в очереди:.
- 3. Среднее число заявок в очереди:
- 4. Среднее время ожидания заявки в очереди:
- 5. Среднее время пребывания заявки в системе:
- 6. Коэффициент загрузки системы:

2. Результаты экспериментов

Таблица с результатами

n	Вероятность простоя	Вероятность ожидания	Ср.длина очереди	Ср.время ожидания	Ср. время пребывания	Кф. загрузки	Ср.длина(моделирование)	Ср.время(моделирован
2	0.642857	-8.928571	8.035714	0.803571	1.136905	1.666667	2006.897663	197.714
3	-0.025320	1.562988	-12.660206	-1.266021	-0.932687	1.111111	562.525044	56.286
4	0.019205	0.493954	3.556469	0.355647	0.688980	0.833333	3.922854	0.326
5	0.028634	0.196394	0.883774	0.088377	0.421711	0.666667	0.800397	0.051
6	0.032439	0.077254	0.312877	0.031288	0.364621	0.555556	0.450046	0.027
7	0.034271	0.028265	0.113317	0.011332	0.344665	0.476190	0.118455	0.005
8	0.035120	0.009483	0.039015	0.003902	0.337235	0.416667	0.024447	0.000
9	0.035476	0.002922	0.012529	0.001253	0.334586	0.370370	0.005579	0.000

Графики

3. Анализ результатов

- 1. **Чем больше количество каналов , тем меньше вероятность ожидания** , что делает систему более эффективной.
- 2. Среднее число заявок в очереди и среднее время ожидания существенно уменьшаются при увеличении количества каналов, особенно при переходе от 2 к 4 каналам.
- 3. При n = 5 вероятность ожидания снижается до 20%, а среднее время ожидания практически отсутствует, что делает систему более удобной для клиентов.

- 4. **Коэффициент загрузки системы** показывает, что при малом количестве каналов система работает на пределе.
- 5. Для обеспечения качественного обслуживания важно выбрать достаточное число каналов, при этом не создавая избыточных мощностей.

Выводы

- 1. Оптимальное число каналов определяется балансом между загруженностью системы и временем ожидания заявок.
- 2. Рекомендуется выбирать количество каналов, исходя из нагрузки и допустимого времени ожидания.

На основе данных полученных при моделировании я бы установил 5 каналов в эту систему, тк дальнейшее увеличение не приведёт к значительному улучшению для пользователя, но повысит затраты и содержание системы