GEOMETRÍA BÁSICA Mayo 2018

Todas las respuestas deben estar justificadas razonadamente.

Se permite calculadora no programable e instrumentos de dibujo.

Ejercicio 1. (3 puntos)

Sea el triángulo $\Delta \{A, B, C\}$ y M = medio[B, C].

Sea L el punto medio de la mediana [A, M] y N el punto de corte del lado [A, B] con r_{CL} .

- a) Si s es la recta que pasa por M y es paralela a r_{CL} y $Q = s \cap r_{AB}$, probar que BQ = QN.
 - b) Demostrar que NB = 2NA.

Ejercicio 2. (4 puntos)

- a) Dado un triángulo, probar que su baricentro G, su circuncentro O y su ortocentro H están alineados.
 - b) ¿Qué relación se verifica entre GH y GO?
 - c) Si el triángulo es isósceles ¿quién es la recta que contiene a G, H y O?

Ejercicio 3. (3 puntos)

- a) Describir los tipos de isometrías pares que son simetrías de un tetraedro regular.
- b) Describir los tipos de isometrías impares que no son reflexiones sobre planos y son simetrías de un cubo.

Solución

Ejercicio 1.

a) Tales aplicado a $\triangle\{B,C,N\}$ y $\triangle\{B,M,Q\}$ nos dice que

$$2 = \frac{BC}{BM} = \frac{BN}{BQ}$$

luego 2BQ = BN. Como BN = BQ + QN, tenemos BQ = QN.

b) Tales aplicado a $\triangle\{A,M,Q\}$ y $\triangle\{A,L,N\}$ nos dice que

$$2 = \frac{AM}{AL} = \frac{AQ}{AN}$$

luego 2AN=AQ=AN+QN, de donde AN=QN. Ahora BN=2BQ=2QN=2NA.

Ejercicio 2.

- a) y b) Teorema 7.25 del texto base (Recta de Euler), GH = 2GO.
- c) En un triángulo isósceles la recta de Euler coincide con la mediana sobre el lado desigual (que es también la mediatriz de dicho lado y la recta altura correspondiente).

Ejercicio 3.

- a) Rotaciones de ángulo π cuyo eje pasa por los puntos medios de aristas opuestas y rotaciones r de ángulo $2\pi/3$ con eje pasando por un vértice y el centro de la cara opuesta (obsérvese que las rotaciones r^2 son del mismo tipo que r aunque son distintas, tienen la misma medida de ángulo de rotación no orientado)
- b) Roto-reflexiones de ángulos $\pi/3$ cuyo eje pasa por dos vértices opuestos y roto-reflexiones de ángulo $\pi/2$ cuyo eje pasa por los centros de dos caras opuestas y reflexión central (roto-reflexión de ángulo π). Obsérvese que las roto-reflexiones s de ángulo $\pi/3$ son del mismo tipo que $s^5 = s^{-1}$ (tienen el mismo ángulo no orientado) y lo mismo sucede con las roto-reflexiones t de ángulo $\pi/2$ y t^3 .