Integrales dobles Coordenadas cartesianas.

Guía de clase. Com 02

Cambio en el orden de integración

Ejemplo

Calcular el volumen comprendido por la superficie de ecuación $f(x,y) = 4 - x^2 - y^2$ (paraboloide circular) y el plano z = 0, para los puntos (x,y) del recinto triangular de vértices (0,0), (1,0) y (0,-1).

Resolución:

Gráfico del paraboloide circular

Algunas curvas de nivel son

$$z = 4$$
, $(x, y) = (0,0)$

$$z = 3$$
, $x^2 + y^2 = 1$

$$z = 0$$
, $x^2 + y^2 = 4$

Las trabajaremos como curvas de la superficie $f(x,y)=4-x^2-y^2$ en el sistema coordenado tridimensional

Curvas auxiliares para x = 0, $z = 4 - y^2$,

Para y = 0, $z = 4 - x^2$.

La superficie en cuestión es

Gráfico del recinto de integración, triángulo de vértices (0,0), (1,0) y (0,-1).

Descripciones algebraicas del recinto

Integrales para el cálculo del volumen

$$Vol = \int_{x=0}^{1} \int_{y=x-1}^{0} (4 - x^2 - y^2) \, dy \, dx =$$

$$= \int_{x=0}^{1} \left(\int_{y=x-1}^{0} (4 - x^2 - y^2) \, dy \right) \, dx =$$

$$= \int_{x=0}^{1} \left(-\frac{1}{3} y^3 - x^2 y + 4y \right)_{y=x-1}^{0} \, dx =$$

$$= \int_{x=0}^{1} \left(\frac{4}{3} x^3 - 2x^2 - 3x + \frac{11}{3}\right) dx = \frac{11}{6}$$

$$Vol = \int_{y=-1}^{0} \int_{x=0}^{1+y} (4 - x^2 - y^2) dx dy =$$

$$= \int_{y=-1}^{0} \left(\int_{x=0}^{1+y} (4 - x^2 - y^2) \, dx \right) \, dy =$$

$$= \int_{y=-1}^{0} \left(-\frac{1}{3}x^3 - xy^2 + 4x \right)_{x=0}^{1+y} dy =$$

$$= \int_{y=-1}^{0} \left(-\frac{4}{3} y^3 - 2y^2 + 3y + \frac{11}{3} \right) dy = \frac{11}{6}$$