Algebraic geometry

Weronika Jakimowicz

Spis treści

1	Zariski		1
	04.10.2024	Topologia Z, noetherowskość	1
	1.	Konwencje	1
	2.	Topologia Zariskiego	1
	3.	Przestrzenie noetherowskie	4
	4.	Przestrzenie nierozkładalne	5
	11.10.2024	To be named	7
	1	Pierścienie współrzednych	8

1. Zariski

04.10.2024 Topologia Z, noetherowskość

1. Konwencje

pierścień := pierścień przemienny z 1

homomorfizmy z definicji zachowują 1

Dla A \subseteq R ideał przez niego generowany to (A) = AR \triangleleft R. Dla ideałów I, J \triangleleft R znamy operacje I + J, IJ, I \cap J i \sqrt{I} jako radykał.

R-algebra to homomorfizm pierścieni R ightarrow S, a homomorfizm R-algebr to strzałka f taka, że diagram

komutuje.

Jeśli K to ciało, to K \to R jest injekcją, czyli K-algebry można utożsamiać z rozszerzeniami ciała K \subseteq R. Dla rozszerzenia ciał K \subseteq L definiujemy stopień przestępny trdeg_K(L) = |B| dla B \subseteq L będącego największym zbiorem liniowo niezależnym nad K.

Niech K będzie ustalonym ciałem algebraicznie domkniętym, np. \mathbb{C} . Wtedy A^n lub $A^n(K)$ to K^n rozważane jako obiekt geometryczny. Będziemy to nazywać n-przestrzenią afiniczną, czyli $A^1=K$ to prosta afiniczna i $A^2=K^2$ - płaszczyzna afiniczna.

2. Topologia Zariskiego

Definicja 1.1: zbiory Zariskiego

Dla dowolnego A \subseteq K $[\overline{X}]$, gdzie $\overline{X}=(X_1,...,X_n)$ definiujemy zbiór zer A w K n

$$\mathsf{V}(\mathsf{A}) := \{\overline{\mathsf{a}} \in \mathsf{K}^\mathsf{n} \ : \ (\forall \ \mathsf{F} \in \mathsf{A}) \ \mathsf{F}(\overline{\mathsf{A}} = 0\}.$$

Zbiory tej postaci nazywamy afinicznymi zbiorami algebraicznymi lub zbiorami domkniętymi Zariskiego.

Przykłady

- 1. Gdy popatrzymy na A $= \{y x^2\}$ to zbiór zer jest parabolką, która jest spójna narysowac
- 2. dla $A = \{yx 1\}$ zbiór zer to hiperbola, która już spójna nie jest.
- 3. Jeśli $F \in K[\overline{X}]$ jest nierozkładalny, to dla n = 2 V(F) jest krzywa planarna, dla n = 3 jest powierzchnia planarna a dla n > 3 jest hiperpowierzchnia planarna.
- 4. $\{\overline{a}\}$ singleton jest domkniętym zbiorem Zariskiego jako $V(X a_1, ..., X_n a_n)$
- 5. $\emptyset = V(1)$
- 6. A = V(0)

Lemat 1.2: podwały topologii

Jeśli I, J \triangleleft $K[\overline{X}]$ oraz $A_i \subseteq K[\overline{X}],$ to wtedy

- 1. $A_0 \subseteq A_1 \implies V(A_1) \subseteq V(A_0)$
- 2. $V(\bigcup A_i) = \bigcap V(A_i)$
- 3. $V(A_0) = V((A_0))$, czyli zbiór rozwiązań zbioru jest taki sam jak zbiór rozwiązań jego ideału
- 4. $V(I \cap J) = V(IJ) = V(I) \cup V(J)$
- 5. $V(I + J) = V(I) \cap V(J)$

Dowód

1 i 2 są oczywiste.

Jedno zawieranie w punkcie 3 jest wnioskiem z 1, bo $A_0\subseteq (A_0)$, czyli $V(A_0)\subseteq V((A_0))$. Dla zawierania w drugą stronę bierzemy dowolne $\overline{a}\in V(A_0)$ oraz $F\in (A_0)$, chcemy pokazać $F(\overline{a})=0$. Ponieważ A_0 generuje ten ideał, to istnieją $F_1,...,F_k\in A_0$ oraz $H_1,...,H_k\in K[\overline{X}]$, że $F=\sum H_iF_i$.

W 4 wiemy, że I \cap J \supseteq IJ, czyli V(IJ) \supseteq V(I \cap J) \supseteq V(I) \cup V(J). Wystarczy pokazać, że V(IJ) \subseteq V(I) \cup V(J) Weźmy więc $\overline{a} \in$ V(IJ) i załóżmy, że $\overline{a} \notin$ V(I), będziemy pokazywać $\overline{a} \in$ V(J). Niech H \in J i F \in I. Czyli FH \in IJ. Ale $\overline{a} \in$ V(IJ), czyli FH(\overline{a}), ale skoro $\overline{a} \notin$ V(I), to F(\overline{a}) \neq 0 czyli

pozostaje $H(\overline{a}) = 0$.

W ostatnim podpunkcie z 2 i 4 wiemy, że

$$V(I)\cap V(J)=V(I\cup J)=V((I\cup J))=V(I+J),$$

bo $I \cup J = I + J$.

Wniosek

Z przykładu 5 i 6 i lematu 1.2 wiemy, że zbiory domknięte Zariskiego są zbiorami domkniętymi pewnej topologii na A^n , nazywanej **topologią Zariskiego**. Singletony są domknięte, czyli topologia Zariskiego jest T_1 , ale nie jest Hausdorffa.

Przykład

Na $A^1=K$ niezerowe wielomiany mają zawsze skończenie wiele zer, czyli $V\subseteq A^1$ jest domknięty \iff jest skończony lub jest wszystkim. Zbiory otwarte Zariskiego są natomiast koskończone lub puste, czyli przekrój dowolnych dwóch niepustych zbiorów otwartych jest niepusty.

Uwaga 1.3

Dla K = \mathbb{C} jest $A^n = \mathbb{C}^n = \mathbb{R}^{2n}$ i na \mathbb{R} zwykłą topologię, którą na \mathbb{R}^{2n} nazywamy euklidesow, która jest znacznie bogatsza od topologii Zariskiego.

Uwaga 1.4

Topologia Zariskiego na $A^2=A^1\times A^1$ nie jest topologią produktową. Np. Parabola i prosta nie są domknięte w topologii produktowej.

3. Przestrzenie noetherowskie

Stwierdzenie 1.5

Dla wszystkich $A \subseteq K[\overline{X}]$ istnieje skończony $A_0 \subseteq A$ taki, że $V(A_0) = V(A)$.

Dowód

Z twierdzenia Hilberta o bazie pierścień K $[\overline{X}]$ jest Noetherowski. Ideał generowany przez A jest skończenie generowany. W takim razie istnieje A $_0$ wybrany z dowolnego skończonego zbioru generatorów i z 1.2 wiemy, że $V(A_0) = V(A) = V(A)$.

Definicja 1.6: przestrzeń noetherowska

Mówimy, że przestrzeń topologiczna X jest **noetherowska**, jeśli każdy zstępujący ciąg zbiorów domkniętych się stabilizuje. To znaczy, że dla każdego

$$... \subseteq X_n \subseteq X_{n-1} \subseteq ... \subseteq X_0 \subseteq X$$

istnieje N takie, że dla wszystkich n \geq N $X_n = X_N$.

Uwaga 1.7

- 1. Jeśli X jest noetherowska, to X jest quasi-zwarta, ale niekoniecznie Hausdorffa.
- 2. X jest noetherowska i Hausdorffa \iff X jest skończona i dyskretna (punkty są otwarte).
- 3. Z przykładu wyżej ${\sf A}^1$ z topologią Zariskiego jest Noetherowska.
- 4. Podprzestrzeń przestrzeni noetherowskiej jest nadal noetherowska.

Stwierdzenie 1.8

Aⁿ jest noetherowska

Dowód

Niech $A^n\supseteq V_0\supseteq V_1\supseteq ...$ będzie zstępującym ciągiem domkniętych zbiorów Zariskiego. Niech $A_i\subseteq K[\overline{X}]$ takie, że $V(A_i)=V_i$. Niech $I_i:=(A_0\cup ...\cup A_i)$. Wtedy z 1.2

$$V(A_0 \cup ... \cup A_i) = V(A_0) \cap ... \cap V(A_i) = V(A_i) = V_i$$

bo to zbiory zstępujące.

Teraz $I_0 \subseteq I_1 \subseteq ...$ jest wstępującym ciągiem w pierścieniu noetherowskim K $[\overline{X}]$, czyli stabilizuje się od pewnego momentu. W takim razie zbiory V_i przez nie generowane też się stabilizują.

4. Przestrzenie nierozkładalne

Definicja 1.9: nierozkładalność

Niepusta przestrzeń topologiczna X jest **nierozkładalna**, gdy dla każdych A, B \subsetneq X domkniętych X \neq A \cup B.

Uwaga 1.10

- nierozkładalna ⇒ spójna
- 2. nierozkładalna i $T_2 \implies singleton$
- 3. A¹ z topologią Zariskiego jest nierozkładalna
- 4. Y \subseteq X (X potencjalnie noetherowska), to Y jest nierozkładalny \iff \overline{Y} jest nierozkładalny

Stwierdzenie 1.11

Niech X będzie noetherowską przestrzenią topologiczną. Wtedy

- 1. istnieją $X_1,...,X_k\subseteq X$ domknięte, nierozkładalne, to wówczas $X=X_1\cup...\cup X_k$
- 2. jeśli dla wszystkich i \neq j $X_i \not\subseteq X_j$, to rozkład z punktu 1 jest jednoznaczny z dokładnością do permutacji.

Dowód

1. Prawie taki sam jak dowód faktu, że dla $r \in R - R^*$ w pierścieniu noetherowskim istnieją nierozkładalne p_i takie, że $r = p_1...p_k$.

Załóżmy nie wprost, że X nie ma takiego rozkładu, wtedy X nie może być nierozkładalny. W takim razie istnieją domknięte A, B \subsetneq X takie, że X = A \cup B. Wtedy A lub B nie mają rozkładu, BSO A nie ma. Powtarzamy ten tok rozumowania dla A. W ten sposób moglibyśmy dostać nieskończony, niestabilizujący się ciąg zstępujących zbiorów domkniętych, co jest sprzeczne z noetherowskością X.

Definicja 1.12: składowe nierozkładalne

Składniki X_i w rozkładzie jak w stwierdzeniu 1.11 nazywamy składowymi nierozkładalnymi X.

11.10.2024 To be named

Definicja 1.13

Niech V będzie afinicznym zbiorem algebraicznym. Wtedy V jest afiniczną rozmaitością algebraiczną, gdy V jest nierozkładalny w topologii Zariskiego.

Stwierdzenie 1.14

Każdy afiniczny zbiór algebraiczny jednoznacznie rozkłada się na sumę afinicznych rozmaitości algebraicznych.

Definicja 1.15

Niech X będzie (noetherowską) przestrzenią topologiczną.

$$dim(X) := sup\{k \in \mathbb{N} \ : \ \exists \ X \supseteq \underbrace{X_0 \supsetneq X_1 \supsetneq ... \supsetneq X_k}_{\text{domkniete, nierozkładalne}} \neq \emptyset\}$$

Fakt 1.16

Jeśli X jest noetherowska i T $_1$, to dim(X) $= 0 \iff$ X jest skończona.

Istnieje natomiast przestrzeń noetherowska o nieskończonym wymiarze.

Definicja 1.17

Jeśli V jest afinicznym zbiorem algebraicznym, to dim(V) jest wymiarem tego zbioru jako przestrzeni z topologią Zariskiego.

Przykład

 $\dim(\mathbb{A}^1)=1$, bo właściwe domknięte podzbiory Zariskiego są skończone.

Definicja 1.18: afiniczna krzywa algebraiczna

Mówimy, że afiniczna rozmaitość algebraiczna C jest afiniczną krzywą algebraiczną, jeśli $\dim(\mathsf{C})=1$

1. Pierścienie współrzędnych

Do tej pory zakładalniśmy, że ciało nad którym pracujemy jest algebraicznie domknięte, mimo że tego nie używaliśmy. Teraz zaczniemy z tego korzystać.

Niech K będzie ciałem algebraicznie domkniętym, a Y niech będzie zbiorem.

$$Fun(Y, K) = \{f : Y \to K\}$$

Zbiór wszystkich funkcji w ciało jest pierścieniem przemiennym z 1.

hom. pierścieni \implies Fun(Y, K) jest K-algebrą

Dla $F \in K[\overline{X}]$ przez chwilę oznaczymy

$$\overline{F}:\mathbb{A}^n\to K$$

jako funkcję wielomianową. Wtedy odwzorowanie

$$K[\overline{X}] \ni F \mapsto \overline{F} \in Fun(\mathbb{A}^n, K)$$

jest homomorfizmem K-algebr.

Jeśli dwa wielomiany $F,G\in K[\overline{X}]$ są różne, to ich funkcje wielomianowe również są różne ($F\neq G\implies \overline{F}\neq \overline{G}$). Dlatego utożsamiamy $K[\overline{X}]$ z K-podalgebrą Fun(\mathbb{A}^n , K) funkcji wielomianowych i piszemy "F" zamiast " \overline{F} ".

Definicja 1.19: coordinate ring

Niech V $\subseteq \mathbb{A}^n$ będzie dowolnym podzbiorem. Jego **pierścień współrzędnych** (lub wielomianowych) definiujemy jako

$$K[V]:=\{f\in Fun(V,K)\ :\ (\exists\ F\in K[\overline{X}])F|_V=f\}$$

Łatwo jest pokazać, że K[V] to K-podalgebra Fun(V,K).

Fakt 1.20

Jeśli V jest skończony, to $K[V] = \operatorname{Fun}(V,K)$. Stąd możemy pisać $K[V] \cong K^{|V|}$. Z tego wynika również, że $K[\mathbb{A}^n] \cong_K K[\overline{X}]$.

Mamy epimorfizm K-algebr

$$K[\overline{X}]\ni F\mapsto F|_V\in K[V]$$

którego jądro oznaczamy

$$I(V) := \{ F \in K[\overline{X}] : F(V) = 0 \}$$

i nazywamy ideałem V. Stąd

$$K[V] \cong K[\overline{X}]/I(V).$$

Lemat 1.21

I(V) jest radykalny, czyli $I(V) = \sqrt{I(V)}$.

Dowód

Weźmy $F \in \sqrt{I(V)}$, wtedy istnieje n takie, że $F^n \in I(V)$, ale skoro dla każdego $v \in V$ $F(v)^n = 0$ i ciało K, to musimy mieć F(v) = 0, czyli $F \in I(V)$.

Lemat 1.22

Niech $V_i\subseteq \mathbb{A}^n$ oraz $J\triangleleft K[\overline{X}]$, to wówczas

- 1. $V_0 \subseteq V_1 \implies I(V_1) \subseteq I(V_0)$
- 2. $I(V_i) = \bigcap I(V_i)$
- 3. $J \subseteq I(V(J))^i$
- 4. $V(I(V_0)) = \overline{V_0}$ domknięcie V_0 w toplogii Zariskiego

Dowód

Podpunkty 1-3 są łatwe i je pomijamy.

Podpunkt 4 zaczyna od łatwiejszej inkluzji $V_0 \subseteq V(I(V_0))$, ale skoro $V(I(V_0))$ jest domknięty, to $\overline{V_0}$ też do niego należy.

Dla drugiej inkluzji potrzebujemy pokazać, że każdy domknięty $W\subseteq \mathbb{A}^n$ jeśli zawiera $V_0\subseteq W \implies V(I(V_0))$. Z definicji topologii istnieje $J \unlhd K[\overline{X}]$ takie, że $V_0\subseteq W=V(J)$. Z podpunktu 3 wynika, że $J\subseteq I(V(J))$, a podpunkt 1 mówi, że $I(V(J))\subseteq I(V_0)$.

Skoro $J \subseteq I(V_0)$ to z poprzedniego wykładu wiemy, że $V(I(V_0)) \subseteq V(J) = W$.

Mamy operacje:

Podzbiory domknięte Zariskiego
$$\mathbb{A}^n \xrightarrow[V]{l} \mathsf{Podzbiory}$$
 (ideały) $\mathsf{K}[\overline{\mathsf{X}}]$

Pozostaje nam pokazać, że $I(V(J))=? \le K[\overline{X}]$. Do tego skorzystamy z algebraicznej domkniętości ciała.

Twierdzenie 1.23: słabe Nullstellensatz

Słabe twierdzenie Hilberta o zerach mówi, że dla algebraicznie domkniętego ciała K, jeśli I \triangleleft K $[\overline{X}]$ i I \neq K $[\overline{X}]$ to V(I) \neq \emptyset .

Dowód

Raczej idea dowodu a nie sam dowód.

Niech $I=(F_1,...,F_k)$ dla $F_i\in K[\overline{X}]$. Ponieważ I jest właściwym podzbiorem, to rozszerza się do ideału maksymalnego $I\subseteq \mathfrak{m} \triangleleft K[\overline{X}]$. Oznaczmy pierścień ilorazowy $L:=K[\overline{X}]/\mathfrak{m}$, który jest ciałem (dzielenie przez ideał maksymalny).

$$\mathsf{K} \xrightarrow{\subseteq} \mathsf{K}[\overline{\mathsf{X}}] \xrightarrow{\mathsf{ilor}} \mathsf{K}[\overline{\mathsf{X}}]/\mathfrak{m} = \mathsf{L}$$

 Φ jest homomorfizmem ciał, czyli jest injekcją. Czyli możemy utożsamić K z podciałem L.

Niech $\overline{v}:=(X_1+\mathfrak{m},...,X_n+\mathfrak{m}).$ Wtedy dla każdego i $F_i(\overline{v})=0$, a więc $\overline{v}\in V_L(I)$, tzn. jest rozwiązaniem ale w kontekście innego ciała.

Chcemy zrzucić to rozwiązanie \overline{v} do K. Są na to dwa sposoby.

1. W algebraicznym domknięciu L, L^{alg}, $\overline{v} \in (L^{alg})^n$ jest nadal rozwiązaniem. Czyli zdanie

$$(\exists \overline{\mathsf{v}})\mathsf{F}_1(\overline{\mathsf{V}}) = 0 \ \land \ ... \ \land \ \mathsf{F}_{\mathsf{k}}(\overline{\mathsf{v}}) = 0$$

jest prawdziwe.

Tworia modeli mówi, że każde rozszerzenie ciał algebraicznie domkniętych jest elementarne, czyli zachowuje prawdziwość ciał. K \subseteq L^{alg} jest rozszerzeniem ciał algebraicznie domkniętych, czyli $\mathsf{F}_1(\overline{\mathsf{v}}) = 0 \ \land \ \dots \ \land \ \mathsf{F}_k(\overline{\mathsf{v}}) = 0$ ma rozwiązanie w K

2. **Lemat Zariskiego**: niech K \subseteq L będzie rozszerzeniem ciał takie, że L jest skończenie

generowane jako K-algebra. Wtedy to tak naprawdę skończone rozszerzenie ($\dim_K L < \infty$), a więc algebraiczne.

U nas K jest algebraicznie domknięte, czyli $K = L i \overline{v} \in K^n$.

Wniosek: Nullstellensatz Hilberta

$$I(V(I)) = \sqrt{I}$$

Dowód

Z lematu wcześniej wiemy, że I \subseteq I(V(I)), czyli $\sqrt{I}\subseteq$ I(V(I)), co również pojawiło się wcześniej.

Pozostaje nam pokazać $I(V(I))\supseteq \sqrt{I}$. Bierzemy $0\neq G\in I(V(I))$ i niech $I=(F_1,...,F_r)$. Rozważmy $J:=(F_1,...,F_r,X_{n+1}G-1)\unlhd K[\overline{X}]$. Pokażemy, że $V(J)=\emptyset$.

Weźmy $(\overline{v},v)\in \mathbb{A}^{n+1}$. Możemy przyjąć, że dla wszystkich i $\leq r$ $F(\overline{v})=0$, tzn. $\overline{v}\in V(I)$, a ponieważ $G\in I(V(I))$, to $G(\overline{v})=0$. To znaczy, że $(X_{n+1}G-1)(\overline{v},v)=0-1\neq 0$. Stąd $(\overline{v},v)\notin V(J)$, czyli $V(J)=\emptyset$.

Ze słabego Nullstellensatz wiemy, że $J=K[\overline{X},X]$, czyli isteniją $H_1,...,H_{r+1}\in K[\overline{X},X]$ takie, że

$$\sum \mathsf{H}_i\mathsf{F}_i + \mathsf{H}_{r+1}(\mathsf{X}_{n+1}\mathsf{G} - 1) = 1 \quad (\star)$$

Niech $\Psi: \mathsf{K}[\overline{\mathsf{X}},\mathsf{X}_{\mathsf{n}+1}] \to \mathsf{K}(\overline{\mathsf{X}})$ będzie homomorfizmem K-algebr takie, że $\overline{\mathsf{X}} \mapsto \overline{\mathsf{X}}$ i $\mathsf{X}_{\mathsf{n}+1} \mapsto \mathsf{G}^{-1}$ (które istnieje, bo $\mathsf{G} \neq 0$). Nakładamy Ψ na równanie (\star) i dostajemy:

$$1 = \sum \mathsf{H}_{\mathsf{i}}(\overline{\mathsf{X}},\mathsf{G}^{-1})\mathsf{F}_{\mathsf{i}} \quad (\star\star)$$

 $\mathsf{Niech}\ \mathsf{N} := \mathsf{max}(\mathsf{deg}_{\mathsf{X}_{n+1}}\mathsf{H}_i).\ \mathsf{Mno\dot{z}ymy}\ \mathsf{obie}\ \mathsf{strony}\ (\star\star)\ \mathsf{przez}\ \mathsf{G}^N\ \mathsf{i}\ \mathsf{dostajemy}$

$$\mathsf{G}^N = \sum \mathsf{H}_i(\overline{\mathsf{X}},\mathsf{G}^{-1})\mathsf{G}^N\mathsf{F}_i$$

w którym nie mamy już mianowników (czyli z funkcji wymiernej zrobiliśmy wielomian). Z tego wynika, że $G^N \in (F_1,...,F_r) = I$ i $G \in \sqrt{I}$.

