DataFace

A Facial Recognition Joint

State of the art facial recognition has surpassed the accuracy of human beings:

- Google's FaceNet Accuracy Score = .9964
- Facebook's DeepFace Accuracy Score = .9735
- Baidu (Minwa) Accuracy Score = .9977
- Humans -- AUC Score = .995

Benchmarked using the LFW Dataset (labeled faces in the wild)

Deep learning convolutional neural networks were used and trained with:

- Facebook used ~4.4 million images
- Google used 260 million images of over 8 million unique individuals

Questions:

- What kind of results are achievable using publicly available resources?
- Are these results valuable?
- What's next?

Data:

- 4,324 images (only 3,218 made it out of neural net)
- 12 different people
- > 2.5 minutes of total video

Summary:

- --Colin Clemence 169 images/~5 sec, --John Marin 476 images/ ~11 sec, --Leslie Pham 129 images/~2 sec,
- --Lucy Smoot 311 images/~10 sec, --Michael Gat 38 images/~3 sec, --Mike Frantz 270 images/~6 sec,
- Mike Ludwig 244 images/~4 sec, --Paul Trichon 571 images/~17 sec, --Pauline Chow 567 images/~9 sec,
- Robbie Smoot 1,203 images/~22 sec, --Roshanak Omrani 178 images/~3 sec, --Ryan Gin 296 images/~5 sec

Video & Image Pre-processing:

Example of 1 frame

Affine transformation on 4 consecutive frames

OpenFace's Convolutional Neural Net:

Spatial convolutions

ReLUs

Pooling

Triplet loss function

FaceNets Inception model

Trained with 500K images

Implemented using Torch

Embeddings \rightarrow PCA & SVM:

Generated embeddings (3,218 X 128) of Low-dimensional face representations

12 different classes (people to predict)

Difficult to say what the embeddings mean

Embeddings are a value between -1 & 1

High dimensional visual representation of clusters of embeddings using t-SNE in 2D

Demonstration:

Not really able to demonstrate this in Google slides so here is a screenshot. It recognizes me and says hello (L). There is a confidence interval regarding the classification for each frame (R).

VALUE?

These results are pretty good, right? It's difficult to judge since we don't really have a test and the model was trained on particular data. Performance is highly dependent on training input. When using less than 3 seconds of video I was able to get good results (unable to really quantify at this point). A lot more testing and analysis needs to go into this to find out how to best maximize results.

What's next?

Imagine if you walked into your local coffee shop and the barista knew your name and knew your usual order--and this barista was able to that for EVERY customer. This is the direction I plan to take DataFace. There are a lot of obstacles to getting there but there is much joy in the journey.

Supervised vs. Unsupervised Learning:

- Facial recognition is still a supervised classification problem requiring labels
- How can we minimize the need for labels?
 - -pseudo labels
 - -temporary labels
 - -users input

Acknowledgments:

★ Dr. John Marin, Pauline Chow, Mike Ludwig and everyone @ GeneralAssembly

★ OpenFace @ https://github.com/cmusatyalab/openface

★ Dlib @ https://github.com/davisking/dlib