Sequence Labeling

CS4742 Natural Language Processing Lecture 08

Jiho Noh

Department of Computer Science Kennesaw State University

CS4742 Summer 2025 ¹

1/46

¹This lecture is based on the slides from Dr. Hafiz Khan at KSU.

- **1** Problem Formalization
- 2 Part-of-Speech (POS) Tagging
- **3** Hidden Markov Model (HMM)
- Mamed Entity Recognition (NER)

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 2/46

Sequence Labeling

- Sequence labeling assigns a label $y \in Y$ to each element in a given sequence x.
- If the input is a text sequence, elements are words or characters: $x = \{w_1, w_2, \dots, w_n\}$, where n denotes the length of the text input.
- The objective is to find the best label sequence $y = \{y_1, y_2, \dots, y_n\}$ for the input sequence x.
- Algorithms: Hidden Markov Model (HMM), Conditional Random Field (CRF), Recurrent Neural Network (RNN).

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025

Sequence Labeling Tasks

- *Y* can be any set of labels. The most common tasks are:
 - Parts of Speech (POS) noun, verb, pronoun, preposition, adverb, conjunction, participle, and article.
 - ► Name Entity Recognition person, organization, location, date, time, money, etc.
- Parts of Speech and Name entities are useful clues for understanding sentence structure and meaning.
- Both are crucial for extracting meaningful information and improving the accuracy of NLP applications.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 4.

- Problem Formalization
- 2 Part-of-Speech (POS) Tagging
- **3** Hidden Markov Model (HMM)
- Mamed Entity Recognition (NER)

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 5/4

Part-of-Speech Tagging (POS Tagging)

POS tagging is the process of assigning a <u>part of speech</u> to each word in a sentence. The part of speech can be *noun*, *verb*, *adjective*, *adverb*, etc. A set of all POS tags is called the **tagset**, and various tagsets exist.

POS Tagging example:

- (8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS there/ADV/RB ./PUNC/.
- (8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN in/ADP/IN today/NOUN/NN 's/PART/POS New/PROPN/NNP England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 6/46

Universal Dependencies (UD) Tag Set

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
こ	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's spacial, temporal, or other relation	in, on, by, under
Closed Class Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
×	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
ass	DET	Determiner: marks noun phrase properties	a, an, the, this
C	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a subordinate clause such as a sentential complement	that, which
Ħ	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Penn Treebank Tag Set

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

8/46

POS Tagging

- **Tagging** is a *disambiguation* task; words are ambiguous.
- A word can have more than one *ambiguous* possible part-of-speech.
- The goal is to find the **correct** tag for the context.

9/46

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025

Ambiguity Resolution

6 different parts of speech for the word back

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP debt
- I was twenty-one back/RB then

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 10/46

Parts of Speech Tagging Performance

- The *accuracy* of part-of-speech tagging algorithms (the percentage of test set tags that match human gold labels) is extremely high.
- POS Tagging is known to be a **solved problem** in NLP.
- However, POS tagging can be found in various tasks:
 - ► Information retrieval, parsing, Text to Speech (TTS) applications, information extraction, linguistic research for corpora
 - ▶ POS can be used as an <u>intermediate step for higher level NLP tasks</u> parsing, semantics analysis, translation etc.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 11/46

Methods — First Take

Baseline: Maximum Likelihood

- Given an *ambiguous word*, choose the <u>tag</u> which is most frequent in the training corpus.
- $\arg\max_{\tan} P(\tan|\mathbf{w}) = \arg\max_{\tan} \frac{P(\tan,\mathbf{w})}{P(\mathbf{w})} = \arg\max_{\tan} P(\tan,\mathbf{w})$

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 12/46

Better Methods

Rule-based POS tagging:

- A set of handwritten rules and use *contextual information* to assign POS tags to words.
- **Example Rule:** if an ambiguous/unknown word ends with the suffix <u>"ing"</u> and is preceded by a word likely to be verb, tag it as a verb.
 - ▶ He is playing football.
 - ► "Play" tag as **"Verb"**

Transformation based tagging:

- A pre-defined handcrafted rules combined with automatically rules.
- Automatic rules are generated from training data.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 13/46

Even Better Methods

- Deep learning models: various deep models to tag *POS*
- Probabilistic (stochastic) tagging:
 - A stochastic approach computes frequency, probability from training set. During testing select highest probable tag.
 - Example algorithm: Hidden Markov Model

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 14/46

- Problem Formalization
- Part-of-Speech (POS) Tagging
- 3 Hidden Markov Model (HMM)
- Mamed Entity Recognition (NER)

2

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 15/46

²Following slides are modified from Prof. Claire Cardie's slides and Prof. Raymond Mooney's slides. Some of the graphs are taken from the textbook.

POS Tagging using a Markov Model (Markov Chain)

- Random variables are used to represent the sequence of <u>part-of-speech tags</u> assigned to words in a sentence.
- With this model, each random variable corresponds to a word and takes on a value from the set of possible *POS tags*.
- A sequence of random variables $X_1, X_2, ..., X_n$ is said to be a **Markov chain** if the conditional probability of the next state depends only on the *current* state and not on the previous states (**Markov Assumption**).

$$P(X_{n+1} = x | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = P(X_{n+1} = x | X_n = x_n)$$

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 16/46

Sample Markov Model for POS

Sample Markov Model for POS

Hidden Markov Model for POS Tagging

What do we know?

- States = POS tags
- Transitions Probabilities = probabilities of moving from one state to another

What do we not see in the previous figure?

- **Observation** = a sequence of words
- Emission Probabilities = probabilities of observing a word given a state (POS tag). Also called *observation likelihoods*.

"Hidden" means the exact state sequence that generated the observations is not known.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 19/46

HMM Probabilities

- HMM is a **generative model** that defines a joint probability distribution over the *observations* and *states*.
- Emmission probabilities (i.e., Observation likelihoods) generate the *observations* given the *states*.

Hidden Markov Model for POS Tagging

- Hidden Markov Model (HMM) represented as finite state machine.
- Note that in this representation, the number of nodes (states) = the size of the set of POS tags.

Estimation of Emission Probabilities

Example sentences:

- Mary Jane can see Will
- Spot will see Mary
- Will Jane spot Mary?
- Mary will pat Spot

How to get Emission Probability?

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 22/46

Estimating of Emission Probabilities

Step 1: Frequency count

Word	N	M	V
Mary	4	0	0
Jane	2	0	0
Will	1	3	0
Spot	2	0	1
Can	0	1	0
See	0	0	2
pat	0	0	1
	9	4	$\overline{4}$

23 / 46

Estimating of Emission Probabilities

Step 2: Normalization (column wise) \rightarrow emission probability

Word	N	M	V
Mary	4	0	0
Jane	2	0	0
Will	1	3	0
Spot	2	0	1
Can	0	1	0
See	0	0	2
pat	0	0	1

Table: Raw Counts

Word	N	M	V
Mary	4/9	0.00	0.00
Jane	2/9	0.00	0.00
Will	1/9	3/4	0.00
Spot	2/9	0.00	1/4
Can	0.00	1/4	0.00
See	0.00	0.00	2/4
pat	0.00	0.00	1/4

Table: Normalized

24 / 46

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025

Estimating Transition Probabilities

Step 1: introduce beginning and end tags

- Probability of next POS tag given previous POS tag is called transition probability.
- To indicate start and end of tag, we introduce two symbols <S>, <E> respectively.

25/46

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025

Estimating Transition Probabilities

Step 2: Count co-occurrence of tags

7 0				
	N	M	V	<e></e>
<s></s>	3	1	0	0
N	1	3	1	4
M	1	0	3	0
V	4	0	0	0

26/46

Estimating Transition Probabilities

Step 3: Normalize (row wise) \rightarrow Transition Probability

	N	M	V	<e></e>
<s></s>	3	1	0	0
\mathbf{N}	1	3	1	4
\mathbf{M}	1	0	3	0
\mathbf{V}	4	0	0	0

Table: Raw Counts

	N	M	V	<e></e>
<s></s>	3/4	1/4	0	0
N	1/9	3/9	1/9	4/9
${f M}$	1/4	0	3/4	0
\mathbf{V}	4/4	0	0	0

Table: Normalized

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 27/46

Forward Algorithm

Determine the Likelihood of an Observation Sequence

Likelihood for this tag sequence:

$$3/4 \cdot 1/9 \cdot 3/9 \cdot 1/4 \cdot 3/4 \cdot 1/4 \cdot 1 \cdot 4/9 \cdot 4/9 = 0.0002572016$$

◆□ ▶ ◆圖 ▶ ◆ ≣ ▶ ◆ ≣ ・ 釣魚@

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 28/46

Viterbi Algorithm

HMM Decoding: Finds the *most likely sequence of states* (POS tags) that produced the observed sequence (words).

- Use <u>transition</u> and <u>emission probability</u> to predict next sequence.
- We don't want to search by enumerating all possible sequences of states. (Time complexity $O(N^T)$), where N is the number of states, T is the length of the sequence.
- Dynamic Programming!
- Viterbi algorithm has $O(N^2T)$ time complexity.

<ロ >
◆ロ >
◆ 日 >
◆ 日 >
◆ 日 >
◆ 日 >
◆ 日 >
◆ 日 >
◆ 日 >
◆ 日
◆ つ < </p>
◆
●
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

HMM Decoding: Viterbi Algorithm

Intuitions:

- The <u>best path</u> to a state at time t is the path that maximizes the probability to all the states at time t-1 times the transition probability to the state at time t.
- So, it is possible that the best path to a state at time t-1 is not the best path to the state at time t.
- We need a mechanism to find the best path to the final time step: backtracing.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 30/46

HMM Tagging — Optimization

At each state, keep the **backpointer** to the <u>previous state</u> with the *highest probability*

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 31/46

HMM Tagging — Optimization

After the **forward computation**, a state will have only <u>one incoming edge</u>. Consequently, the **backtracing** will return the **best path of states** given the observation sequence.

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*

create a path probability matrix
$$viterbi[N+2,T]$$

for each state s from 1 to N do ; initialization step $viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)$ $backpointer[s,1] \leftarrow 0$

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s}$ $viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $ackpointer[q_F,T] \leftarrow argmax_{s'=1}^{N} viterbi[s,T] * a_{s'=1}^{N} vi$

Viterbi Algorithm

- **1** Problem Formalization
- Part-of-Speech (POS) Tagging
- **3** Hidden Markov Model (HMM)
- Mamed Entity Recognition (NER)

3

³Slides adpated from CS447 UIUC https://courses.grainger.illinois.edu/cs447/fa2020/Slides/Lecture24.pdf

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025

34 / 46

Name Entity Recognition (NER)

The task: find and classify names in text, for example:

The European Commission [ORG] said on Thursday it disagreed with German [MISC] advice. Only France [LOC] and Britain [LOC] backed Fischler [PER] 's proposal.

"What we have to be extremely careful of is how other countries are going to take Germany's lead", Welsh National Farmers' Union [ORG] (NFU [ORG]) chairman John Lloyd Jones [PER] said on BBC [ORG] radio.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 35/46

Named Entity Types

Type	Tag	Sample Categories	Example sentences
People Organization Location Geo-Political Entity	PER ORG LOC GPE	people, characters companies, sports teams regions, mountains, seas countries, states, provinces	Turing is a giant of computer science. The IPCC warned about the cyclone. The Mt. Sanitas loop is in Sunshine Canyon. Palo Alto is raising the fees for parking.
Facility Vehicles	FAC VEH	bridges, buildings, airports planes, trains, automobiles	Consider the Golden Gate Bridge. It was a classic Ford Falcon.

These types were developed for the news domain as part of **NIST's Automatic Content Extraction (ACE) program**.

Other domains (e.g. *biomedical text*) require different types (proteins, genes, diseases, etc.)

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 36/46

NER on Word Sequences

NER on word sequences

We predict <u>entities</u> by *classifying words in context* and then extracting entities as **word sequences**.

```
Foreign
          ORG
Ministry
          ORG
spokesman O
Shen
          PER
Guofang
          PER
told
          ORG
Reuters
that
```

B-ORG I-ORG B-PER I-PER **B-ORG BIO** encoding

Why NER is Hard?

"First National Bank Donates 2 Vans To Future School of Fort Smith"

- Hard to work out boundaries of entity
 - ▶ Is the first entity First National Bank or National Bank?
- Hard to know if something is an entity
 - ▶ Is there a school Future School or is it a future school?
- Hard to know class of unknown/novel entity:
 - ► To find out more about <u>Zig Ziglar</u> and read features by other Creators Syndicate writers
 - What class is Zig Ziglar? (A Person)
- Entity class is ambiguous and depends on context
 - Where <u>Larry Ellison</u> and <u>Charles Schwab</u> can live discreetly amongst wooded estates.
 - ▶ Charles Schwab is *PER* not *ORG* here!

Sequence Labeling Algorithms for NER

Statistical models:

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)

Neural models:

• *Recurrent networks* (or *transformers*) that predict a label at each time step, possibly with a **CRF output layer**.

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 39/46

Maximum Entropy Markov Models

MEMMs use a *logistic regression* (Maximum Entropy) classifier for each $P(t^{(i)} \mid w^{(i)}, t^{(i-1)})$.

$$P\left(t^{(i)} = t_k \mid t^{(i-1)}, w^{(i)}\right) = \frac{\exp\left(\sum_j \lambda_{jk} f_j\left(t^{(i-1)}, w^{(i)}\right)\right)}{\sum_l \exp\left(\sum_j \lambda_{jl} f_j\left(t^{(i-1)}, w^{(i)}\right)\right)}$$

Here, $t^{(i)}$: label of the *i-th* word vs. t_i : *i-th* label in the inventory. This requires the definition of a **feature function** $f(t^{(i-1)}, w^{(i)})$ that returns an *n-dimensional feature vector* for predicting label $t^{(i)} = t_j$ given inputs $t^{(i-1)}$ and $w^{(i)}$. Training returns weights λ_{jk} for each feature j used to predict label t_k .

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 40/46

Conditional Random Fields (CRFs)

Conditional Random Fields have the same mathematical definition as **MEMMs**, but:

- CRFs are trained *globally* to maximize the probability of the <u>overall sequence</u>,
- **MEMMs** are trained *locally* to maximize the probability of each <u>individual</u> label

This requires dynamic programming:

- **Training**: akin to the *Forward-Backward algorithm* used to train **HMMs** from unlabeled sequences
- Decoding: Viterbi

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 41/46

Feature-based NER (traditional approach)

identity of w_i , identity of neighboring words embeddings for w_i , embeddings for neighboring words part of speech of w_i , part of speech of neighboring words base-phrase syntactic chunk label of w_i and neighboring words presence of w_i in a gazetteer w_i contains a particular prefix (from all prefixes of length < 4) w_i contains a particular suffix (from all suffixes of length < 4) w_i is all upper case word shape of w_i , word shape of neighboring words short word shape of w_i , short word shape of neighboring words presence of hyphen

• Train a sequence labeling model (MEMM or CRF), using features such as the ones listed above for English.

Summer 2025

42 / 46

Feature-based NER (Cont.)

- Word Shape: replace all upper-case letters with one symbol (e.g. "X"), all lower-case letters with another symbol ("x"), all digits with another symbol ("d"), and leave punctuation marks as is ("L'Occitane → "X'Xxxxxxxx").
- Short Word Shape: remove adjacent letters that are identical in word shape ("L'Occitane → "X'Xxxxxxxx" → "X'Xx").

Jiho Noh (CS/KSU) Sequence Labeling Summer 2025 43/46

Neural NER

Sequence RNN (e.g. *biLSTM* or *Transformer*) with a **CRF output layer**.

Input: word embeddings, possibly concatenated with character embeddings and other features, e.g.:

Rule-based NER

The textbook gives an example of an *iterative approach* that makes multiple passes over the text:

- **Pass 1**: Use **high-precision rules** to label (a small number of) unambiguous mentions
- Pass 2: Propagate the labels of the previously detected named entities to any mentions that are substrings (or acronyms?) of these entities
- **Pass 3**: Use *application-specific name lists* to identify further likely names (as *features*?)
- **Pass 4**: Now use a *sequence labeling approach* for NER, keeping the already labeled entities as **high-precision anchors**.

The basic ideas behind this approach (*label propagation*, using **high-precision items** as <u>anchors</u>) can be useful for other tasks as well.

Summary

Summary

46/46