Etapa Finală, Oradea 18 aprilie 2011

CLASA a XI-a – Soluții și baremuri

Problema 1. Spunem că o linie a unei matrice din $\mathcal{M}_n(\mathbb{C})$ este permutabilă dacă, oricum am permuta între ele elementele acelei linii, valoarea determinantului nu se schimbă. Arătaţi că dacă o matrice are două linii permutabile atunci determinantul său este nul.

Soluție. Presupunem că linia 1 a matricei A este permutabilă şi fie a_{1i}, a_{1j} două elemente ale sale. Pentru $k \neq 1$ fie B_k matricea obținută din A, ce are a_{1i} pe poziția (1,1) şi $(a_{1j}$ pe poziția (1,k) şi fie C_k matricea ce are a_{1j} pe poziția (1,1) şi $(a_{1i}$ pe poziția (1,k), în restul pozițiilor liniei 1 cele două matrici coincid. Dezvoltănd după linia 1 avem

$$0 = \det B_k - \det C_k = a_{1i}\Gamma_{11} + a_{1j}\Gamma_{1k} - a_{1j}\Gamma_{11} - a_{1i}\Gamma_{1k} = (a_{1i} - a_{1j})(\Gamma_{11} - \Gamma_{1k}).$$

De aici rezultă că o linie este pemutabilă atunci sau toate elementele sunt egale sau toți complemenții algebrici sunt egali.

Prin urmare, dacă două linii sunt permutabile, fie acestea primele două, atunci avem cazurile:

- 1) Liniile sunt ambele constante; evident atunci $\det A = 0$;
- 2) Ambele linii au fiecare complemenți algebrici constanți. Rezultă că A^* are două coloane constante, deci det $A^* = 0$. Evident atunci det A = 0 (formula inversei altfel).
- 3) Prima linie are toate elementele egale cu a și a doua linie are complemenții algebrici egati cu b. Din dezvoltarea determinantului deducem ab = 0 deci a sau b sunt nule, ceea ce atrage $\det(A) = 0$.

Problema 2. Fie $u:[a,b] \to \mathbb{R}$ o funție continuă, care admite în orice punct $x \in (a,b]$ derivată laterală la stânga $u'_s(x)$ finită. Arătați că u este monoton crescătoare dacă și numai dacă $u'_s(x) \ge 0$, pentru orice $x \in (a,b]$.

Soluție. Vom folosi următoarele rezultate de tip *Rolle* și *Lagrange*.

Lema 1. Dacă funcția $u: [\alpha, \beta] \to \mathbb{R}$ are derivate laterale finite în orice punct din $[\alpha, \beta]$ și $u(\alpha) = u(\beta)$, atunci există $c \in [\alpha, \beta]$ astfel încât $u'_s(c) \le 0$.

Demonstrație. Din ipoteză reiese că funcția este continuă pe $[\alpha, \beta]$, deci are un punct de minim global, care este în interiorul sau la capătul din dreapta al intervalului; acest punct poate fi luat pe post de c.

Lema 2. Dacă funcția $u: [\alpha, \beta] \to \mathbb{R}$ are derivate laterale finite în orice punct din $[\alpha, \beta]$, atunci există $c \in [\alpha, \beta]$ astfel încât $u(\beta) - u(\alpha) \ge (\beta - \alpha)u'_{s}(c)$.

Demonstrație. Fie funcția $v: [\alpha, \beta] \to \mathbb{R}, \ v(x) = u(x) - \frac{u(\beta) - u(\alpha)}{\beta - \alpha} x$. Funcția v îndeplinește condițiile lemei 1, deci există $c \in [\alpha, \beta]$ astfel încât $v'_{\mathbf{s}}(c) \leq 0$, de unde concluzia.

Fie $a \le x < y \le b$. Aplicând lema 2, există $c \in [x,y]$ astfel încât $u(y)-u(x) \ge (y-x)u_{\rm s}'(c)$, de unde implicația ,, \Leftarrow ".

Implicația ,,⇒" rezultă imediat din definiția derivatei la stânga.

Problema 3. Fie $g: \mathbb{R} \to \mathbb{R}$ o funcție continuă, strict descrescătoare, cu $g(\mathbb{R}) = (-\infty, 0)$. Arătați că nu există funcții continue $f: \mathbb{R} \to \mathbb{R}$ cu proprietatea că există un număr natural $k \geq 2$ astfel încât $\underbrace{f \circ f \circ \dots \circ f}_{de \ k \ ari} = g$.

Soluție. Să presupunem, prin reducere la absurd, că ar exista o funcție f cu proprietățile din enunț. Injectivitatea lui g atrage injectivitatea funcției continue f, deci stricta sa monotonie. Cum g este strict descrescătoare, f este strict descrescătoare, iar k un număr impar.

Mai mult, f este nesurjectivă (altfel, g ar fi surjectivă). Deoarece $f(\mathbb{R})$ este un interval, cu $(-\infty,0)=g(\mathbb{R})=f(f^{k-1}(\mathbb{R}))\subset f(\mathbb{R})$, deducem că f este mărginită superior. Fie $m\in\mathbb{R}$ astfel ca $f(x)< m, \ \forall \ x\in\mathbb{R}$. Notăm $f^k=\underbrace{f\circ f\circ ...\circ f}_{de\ k\ ori}$. Atunci $f^{k-1}(x)< m, \ \forall \ x\in\mathbb{R}$, de unde g(x)=1

 $f(f^{k-1}(x)) > f(m), \ \forall \ x \in \mathbb{R}$, în contradicție cu ipoteza $g(\mathbb{R}) = (-\infty, 0)$.

Problema 4. Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ cu proprietatea $A^2 + B^2 = 2AB$.

- a) Arătați că AB = BA
- b) Arătaţi că trA = trB;

Soluție. a) Vom arăta mai întâi că $(AB - BA)^2 = 0$. Considerăm pentru aceasta funcția de gradul al doilea dată de $f(x) = \det(A^2 + B^2 + x(AB - BA)) = \det(A^2 + B^2) + mx + x^2 \det(AB - BA)$.

Avem $f(-i) = \det((A+iB)(A-iB)), f(i) = \det((A-iB)(A+iB))$ decif(-i) - f(i), prin urmare m = 0.

Mai mult, $f(0) = \det(A^2 + B^2) = \det(2AB)$ iar $f(-2) = \det 2BA = \det 2AB = f(0)$, prin urmare f este polinom constant iar $\det(AB - BA) = 0$.

Ecuația caracteristică pentru AB - BA (tr(AB) = tr(BA)) ne dă $(AB - BA)^2 = 0$. Din ipoteză mai avem $AB - BA = (A - B)^2$ ceea ce atrage $0 = (AB - BA)^2 = (A - B)^4$, prin urmare, cum matricile sunt de ordinul doi, avem $(A - B)^2 = 0$ deci AB = BA.

b) Cum $(A-B)^2 = 0$, și $2 \det(A-B) = \det(A-B)$ ecuația caracteristică pentru A-B ne dă $(\operatorname{tr}(A) - \operatorname{tr}(B))(A-B) = 0_2$ de unde concluzia.