Credit Risk Prediction Using Machine Learning

Project Goal

Build a machine learning model to predict whether a loan applicant will default, using financial and personal data.

Dataset Overview

Source: Kaggle (credit_risk_dataset.csv)

• Rows: 32,581 | Columns: 12

• Target: loan_status (1 = default, 0 = no default)

Models Built

1. Logistic Regression

Accuracy: 86%

• Recall (Default): 56%

F1 Score (Default): 0.65

Good baseline, but weak recall for defaulters

2. Random Forest

Accuracy: 93%

Recall (Default): 72%

• F1 Score (Default): 0.83

Strong overall performance

3. XGBoost

Accuracy: 93%

Recall (Default): 75%

F1 Score (Default): 0.83

✓ Best overall balance of precision + recall

Feature Importance (XGBoost)

Top features influencing loan default:

person_income (most important)

- loan_int_rate
- loan_percent_income
- loan amnt

These features suggest income and credit history are key predictors of risk, aligning with real-world lending logic.

Business Value

This model can help:

- Banks assess credit risk before approving loans
- Reduce default rates with better screening
- Optimize interest rates and lending terms for risky profiles

Final Conclusion

XGBoost achieved the best performance, identifying 75% of true defaulters while maintaining high precision.

Feature analysis shows income level is the strongest predictor of loan risk. This project demonstrates how machine learning can support real-world financial decision-making.

```
# 1. Load libraries
In [4]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import classification report, confusion matrix
        from xgboost import XGBClassifier, plot_importance
        # 2. Load dataset
        df = pd.read_csv(r'C:\Users\13707\anaconda3\Brandon\credit_risk_dataset.csv')
        # 3. Handle missing values
        df['person emp length'] = df['person emp length'].fillna(df['person emp length']
        df['loan int rate missing'] = df['loan int rate'].isnull().astype(int)
        df['loan_int_rate'] = df['loan_int_rate'].fillna(df['loan_int_rate'].mean())
        # 4. Encode categorical variables
        df = pd.get_dummies(df, drop_first=True)
        # 5. Split features and target
        X = df.drop("loan status", axis=1)
        y = df["loan_status"]
```

```
# 6. Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
# 7. Standardize features for Logistic regression
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 8. Logistic Regression
logreg = LogisticRegression(max_iter=1000)
logreg.fit(X_train_scaled, y_train)
y_pred_lr = logreg.predict(X_test_scaled)
print("\n Logistic Regression Report")
print(confusion_matrix(y_test, y_pred_lr))
print(classification_report(y_test, y_pred_lr))
# 9. Random Forest
rf = RandomForestClassifier(random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
print("\n Random Forest Report")
print(confusion_matrix(y_test, y_pred_rf))
print(classification_report(y_test, y_pred_rf))
# 10. XGBoost
xgb_model = XGBClassifier(eval_metric='logloss', random_state=42)
xgb_model.fit(X_train, y_train)
y_pred_xgb = xgb_model.predict(X_test)
print("\n XGBoost Report")
print(confusion_matrix(y_test, y_pred_xgb))
print(classification_report(y_test, y_pred_xgb))
# 11. Feature importance plot
plt.figure(figsize=(10, 6))
plot_importance(xgb_model, max_num_features=10)
plt.title("Top 10 Feature Importances (XGBoost)")
plt.tight_layout()
plt.show()
# 12. Final Summary (Markdown-style comment)
# In this project, we built three models to predict loan default:
# Logistic Regression (baseline), Random Forest, and XGBoost.
# XGBoost delivered the best performance overall, with high recall and precision
# Top features included person income, loan percent income, and cb person defaul
```

Logistic Reg [[7248 365] [958 1204]]	ression Repo	rt		
	precision	recall	f1-score	support
0 1	0.88 0.77	0.95 0.56	0.92 0.65	7613 2162
1	0.77	0.50	0.05	2102
accuracy			0.86	9775
macro avg	0.83	0.75	0.78	9775
weighted avg	0.86	0.86	0.86	9775
Random Forest Report [[7549 64] [598 1564]]				
	precision	recall	f1-score	support
0	0.93	0.99	0.96	7613
1	0.96	0.72	0.83	2162
accuracy	0.04	0.06	0.93	9775
macro avg weighted avg	0.94 0.93	0.86 0.93	0.89 0.93	9775 9775
weighted avg	0.93	0.93	0.95	9//5
XGBoost Report				
[[7526 87]				
[551 1611]]				
	precision	recall	f1-score	support
0	0.93	0.99	0.96	7613
1	0.95	0.75	0.83	2162
accuracy	2 24	0.07	0.93	9775
macro avg	0.94	0.87	0.90	9775
weighted avg	0.94	0.93	0.93	9775

<Figure size 1000x600 with 0 Axes>

In []: