Recall:

- ullet A basis of a vector space V is a set of vectors $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ such that
 - 1) Span($\mathbf{b}_1, \ldots, \mathbf{b}_n$) = V
 - 2) The set $\{b_1, \ldots, b_n\}$ is linearly independent.

• For $v \in V$ let c_1, \ldots, c_n be the unique numbers such that

$$c_1\mathbf{b}_1 + \ldots + c_n\mathbf{b}_n = \mathbf{v}$$

The vector

$$\left[\mathbf{v}\right]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

is called the coordinate vector of v relative to the basis \mathcal{B} .

Let \mathcal{B} be a basis of a vector space V. If $v_1, \ldots v_p, w \in V$ then:

- 1) Solutions of the equation $x_1v_1 + \ldots + x_pv_p = w$ are the same as solutions of the equation $x_1[v_1]_{\mathcal{B}} + \ldots + x_p[v_p]_{\mathcal{B}} = [w]_{\mathcal{B}}$.
- 2) The set of vectors $\{v_1, \dots v_p\}$ is linearly independent if and only if the set $\{[v_1]_{\mathcal{B}}, \dots, [v_p]_{\mathcal{B}}\}$ is linearly independent.
- 3) Span $(v_1, \ldots, v_p) = V$ if any only if Span $([v_1]_{\mathcal{B}}, \ldots, [v_p]_{\mathcal{B}}) = \mathbb{R}^n$.
- 4) $\{v_1, \ldots, v_p\}$ is a basis of V if and only if $\{[v_1]_{\mathcal{B}}, \ldots, [v_p]_{\mathcal{B}}\}$ is a basis of \mathbb{R}^n .

Example. Recall that \mathbb{P}_2 is the vector space of polynomials of degree ≤ 2 . Consider the following polynomials in \mathbb{P}_2 :

$$p_1(t) = 1 + 2t + t^2$$

$$p_2(t) = 3 + t + 2t^2$$

$$p_3(t) = 1 - 8t - t^2$$

Check if the set $\{p_1, p_2, p_3\}$ is linearly independent.

Recall:

In P2 we have the standard basis &= {1,t,t2}.

$$[p_i]_{\varepsilon} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, [p_2]_{\varepsilon} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, [p_3]_{\varepsilon} = \begin{bmatrix} 1 \\ -8 \\ -1 \end{bmatrix}$$

It will suffice to check if the set {[p,]e,[pz]e,[p3]e} is linearly independent,

We need to solve: x, [p,] = + x2[p2] = + x3[p3] = 0

Augmented matrix

$$\begin{bmatrix}
1 & 3 & 1 & 0 \\
2 & 1 - 8 & 0 \\
1 & 2 - 1 & 0
\end{bmatrix}
\xrightarrow{\text{row}}
\begin{bmatrix}
1 & 0 - 5 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{cases}
x_1 = 5x_3 \\
x_2 = -2x_3 \\
x_3 = \text{free}
\end{cases}$$

Infinitely many solutions, so {[p.]e, [pz]e, [p]e is not lin. indep., and so {p., pz, p3 is also not lin. indep.

Let $\{v_1, \ldots, v_p\}$ be vectors in \mathbb{R}^n . The set $\{v_1, \ldots, v_p\}$ is a basis of \mathbb{R}^n if and only if the matrix

 $A = [v_1 \ldots v_p]$

has a pivot position in every row and in every column (i.e. if A is an invertible matrix).

Proof:

By definition {viryvp} is a basis of IRn if and only if

- i) {v,,.,vp} is lin. independent ([v, ...vp] has a pivot position in each column)
- 2) Span (V1,77 Vp)= IR" (> [V1 ... Vp] has a pivot position in each row)

Example:
$$V_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mid V_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \mid V_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} V_1 & V_2 & V_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{\text{red}}, \quad \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \leftarrow \begin{array}{c} \text{Span}(v_1, v_{21}v_3) = \mathbb{R}^2 \\ \text{but } \{v_1, v_{21}v_3\} \text{ is } \\ \text{not lin. indep.} \\ \text{so } \{v_1, v_{21}, v_{31}\} \text{ is } \\ \text{not a basis of } \mathbb{R}^2 \end{array}$$

Corollary

Every basis of \mathbb{R}^n consists of n vectors.

Let V be a vector space. If V has a basis consisting of n vectors then every basis of V consists of n vectors.

Proof

Let B= {b,,,bn} and D= {d,,,dm} be two bases of V. We have:

- i) For each veV the coordinate vector [v] is a vector in TR".
- 2) Since {d,,,dmf is a basis of V, the set {[d,]B,-, [dm]B} is a basis of Rn.

Since every basis of \mathbb{R}^n consists of n vectors we obtain m = n.

Definition

A vector space has dimension n if V has a basis consisting of n vectors. Then we write dim V = n.

Example.

1) In R" take

$$\alpha_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \alpha_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \dots, \quad \alpha_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

This gives the standard basis of TR":

Since ε consists of n vectors we obtain that $\dim \mathbb{R}^n = n$.

2) Recult: In = {the vector space of polynomials of degree {n}.
= {a,+a,t+...+ant" | a; e R}

The standard basis of Pn: E= {1, t, t2, ..., tn}
Since E consists of n+1 vectors me get: dim Pn = n+1

3) Recall: Mmin (TR) = { the vector space of mxn metrices }

= { [a_ii ... a_in] | a_ij \in TR}

Let Bke | | bij ... bin] - mætrix st. bij = | 1 if i=kij=l
bmi ... bmn

Check: $B = \{B_{11}, B_{12}, \dots, B_{mn}\}$ is a basis of $M_{m,n}(\mathbb{R})$. Since B consists of $m \cdot n$ elements we get that $171 \qquad \text{dim } M_{m,n}(\mathbb{R}) = m \cdot n$

Let V be a vector space such that dim V = n, and let $v_1, \dots v_p \in V$.

- 1) If $\{v_1, \ldots, v_p\}$ is a spanning set of V then $p \ge n$.
- 2) If $\{v_1, \ldots, v_p\}$ is a linearly independent set then $p \leq n$.

Proof: It is enough to check it if V=R".

- i) If $v_{1,1...}v_p$ are vectors in \mathbb{R}^n and p < n then the matrix $[v_1 ... v_p]$ cannot have a pivot position in each row, so Span $(v_{1,1...}v_p) \neq \mathbb{R}^n$ e.i. $\{v_{1,1...}v_p\}$ is not a spanning set of \mathbb{R}^n
- 2) If $V_1,...,V_p$ are vectors in \mathbb{R}^n and p>n then the matrix $[V_1...V_p]$ cannot have a pivot position in each column, so the set $\{V_1,...,V_p\}$ is not linearly independent.

Corollary

Let V be a vector space such that $\dim V = n$. If W be a subspace of V then $\dim W \leq n$. Moreover, if $\dim W = n$ then W = V.

Proof: If dim W= m then W has a basis consisting of m vectors { Wish wmt. Since this set is knearly independent and wish wm & V by pext 2) of the Theorem above we obtain that dim W= m & n = dim V

Note.

- 1) One can show that every vector space has a basis.
- 2) Some vector spaces have bases consisting of infinitely many vectors. If V is such vector space then we write dim $V=\infty$.

Example.

The set
$$\mathcal{E} = \{1, t, t^2, t^3, ...\}$$
 is a basis of \mathbb{R} . Since \mathcal{E} consists of infinitely many elements we get that dim $\mathbb{R} = \infty$

Since \mathbb{R} is a subspace of $C^{\infty}(\mathbb{R})$ and $\dim \mathbb{R}^{2}$ on the get that $\dim C^{\infty}(\mathbb{R}) = \infty$.

It is not possible to write explicitly a basis of $C^{\infty}(\mathbb{R})$.