Bases de Données-Conception

INTRODUCTION

N.Lammari

1

APPROCHE CONVENTIONNELLE

- Notion de fichiers
- Types d'organisation de fichiers
 - Séquentielle
 - Relative
 - Indexée
- Types de méthode d'accés
 - Séquentielle
 - Directe
 - Indexée
 - Par hachage N.Lammari

APPROCHE CONVENTIONNELLE

Fichiers en organisation séquentielle

Articles rangés les uns à la suite des autres Utilisation de la méthode d'accés seguentielle

Fichiers en organisation relative

- Utilisation d'une fonction de calcul (de hashage) pour determiner l'adresse physique d'un enregistrement à partir de sa clé
- Plusieurs types d'organisation (la + ancienne est le hashage statique)

Fichiers en organisation indexée

- Utilisation d'index (table permettant d'associer à une clé l'adresse relative de son article)
- Plusieurs types d'index (ex :index hierarchisé, B-arbre, B+arbre)
- Plusieurs types d'organisation indexée (ex : ISAM, VSAM)

N.Lammari

3

POURQUOI UNE APPROCHE BASE DE DONNEES ?

- Problèmes dans la gestion des données
 - Problème de cohérence entre données
 - Problème dans la gestion de gros volumes
- Problème de partage des données

N.Lammari

DEFINITION D'UNE BASE DE DONNEES

- Collection d'information modélisant une partie du système d'information d'une entreprise
- Collection de données utilisées par des systèmes d'application de certaines entreprises.
- Un ensemble structuré d'informations accessibles par une communauté d'utilisateur.
- Une base de données est un gros ensemble d'informations structurées mémorisées sur un support permanent_{N.Lammari}

5

OBJECTIFS D'UNE BASE DE DONNEES

- o Indépendance données-traitements assurée
- Centralisation de l'information : un ensemble de données liées
- Partage des données
- Sécurisation des données
- Automatisation de la gestion des contraintes d'intégrité

N.Lammari

AVANTAGES D'UNE BASE DE DONNEE

- o maintenance des programmes lors des modifications des données moins coûteuse
- Cohérence entre données assurée
- o Accès en ligne aux données possible
- Accès concurrent possible
- Stockage de données de type variés (image, audio, données, etc.)
- o Distribution des données et des traitements possible

N.Lammari

ARCHITECTURE

UTILISATEUR Personne accédant à la base de données via un terminal ou un ensemble de programmes.

Langage hôte et LMD (Langage de Manipulation de Données)

ADMINISTRATEUR

Personne responsable de la <u>création</u>, de la <u>maintenance</u> de la base de données et de l'organisation physique des données

LDD (Langage de Description des Données) LMD (Langage de Manipulation de Données)

N.Lammari

ARCHITECTURE

SYSTEME DE GESTION DE BASES DE DONNEES (SGBD)

- Ensemble d'outils logiciels permettant la création et l'utilisation d'une BD
- Il réalise les accès physiques à la BD à partir des descriptions des sousschémas et du schéma;

N.Lammari

11

MODELES ET SGBDs

- o Modèles hiérarchiques
- Modèles réseaux
- Modèles relationnels
- o Modèles orientés objet
- o Modèles multi-dimensionnels

N.Lammari

MODELE ET SGBD HIERARCHIQUE

- o Exemple: IMS de IBM
- Relations père-fils pour décrire les liens entre ensembles de données

Structure arborescente

Modèle hiérarchique

N.Lammari

13

EXEMPLE

Chaque fournisseur

- (CodeFournisseur, NomFournisseur, VilleFournisseur)
- vend des produits
 - (CodeProduit, NomProduit, PoidsProduit)
- sous certaines conditions
 - (PrixUnitaire, DélaiLivraison)

EXEMPLE

F1	Fournisseur1		Pa	aris	
	P1	produit1	10	5	5
	P2	Produit2	5	7	3
F2	Fournisseur2		Nice		
	P1	produit1	10	5	3
	Р3	Produit3	8	7	8

N.Lammari

15

INCONVENIENTS DU MODELE HIERARCHIQUE

- Problèmes à l'insertion d'un nouveau produit sans fournisseur
- Problèmes à la suppression d'un fournisseur dans le cas où il est le seul à fournir certains produits.
- Problèmes de mise à jour du à la redondance des données.
- Forte dépendance entre la structure et la formulation de la requête

N.Lammari

MODELE ET SGBD RESEAU

- o Exemple: IDMS de IBM
- relations père-fils + un <u>fils peut avoir</u> +ieurs pères pour décrire les liens entre ensembles de données :

N.Lammari

INCONVENIENTS DU MODELE RESEAU

- Structure complexe
- Forte dépendance entre la structure et la formulation de la requête

N.Lammari

MODELE ET SGBD RELATIONNEL

- **▼Inventé par T. CODD en 1970**
- Basé sur la théorie mathématique des relations
- Système relationnel
 - Concepts pour la description
 - Opérateurs pour la manipulation
- o L'utilisateur :
 - perçoit les données comme des tables
 - accède aux données à travers des opérateurs qui eux génèrent des tables à partir de tables existantes
 N.Lammari

PLAN

- **INTRODUCTION**
- MODELE RELATIONNEL
 - Concepts
 - Interprétation sous un langage de description des données (SQL)
- O CONCEPTION D'UNE BASE DE DONNEES
 - Modèle E/A étendu
 - Passage du modèle E/A etendu vers le modèle relationnel
- **O MANIPULATION D'UNE BASE DE DONNEES**
 - Algèbre relationnelle
 - Langage de manipulation des données (SQL)
- CONCEPTS AVANCES POUR LA DESCRIPTION DE SCHEMAS RELATIONNELS
- NORMALISATION D'UN MODELE RELATIONNEL
- CONCLUSION

N.Lammari

CONCEPTS DU MODELE RELATIONNEL

- Domaine
- o Produit cartésien
- Relation
- Attribut
- o Clé
- Schéma
- Clé étrangère

N.Lammari

23

DOMAINE

- Domaine = Ensemble de valeurs
- Exemples
 - Ensemble des entiers
 - Ensemble des réels
 - Chaînes de caractères
 - {bleu, blanc, violet, marron}
 - {Paris, Nice, Nantes, Strasbourg, Grenoble,}
 - {1976,1977, 2003, 2002, 1995,}

N.Lammari

PRODUIT CARTESIEN

- Produit cartesien : D1 x D2 xx Dn
 - Ensemble de tuples (n-uplets) <V1, V2, Vn>

tel que Vi ∈ Di

Exemple

D1 = {écrou, boulon, vis}

D2 = {rouge, marron, noir}

écrou	rouge
écrou	marron
écrou	noir
boulon	rouge
boulon	marron
boulon	noir
vis	rouge
vis	marron
vis	noir

N.Lammari

ATTRIBUT

- Un attribut est un nom décrivant une donnée que l'on souhaite mémoriser.
 - Exemple : Désignation pour le nom d'un produit
 Couleur pour la couleur d'un produit
 Matricule pour le numéro d'inscription d'un élève
- Domaine d'un attribut : ensemble des valeurs prises par un attribut
 - Exemple : Désignation ∈ {écrou, boulon, vis}
 Couleur ∈ {rouge, marron, noir}
 Matricule est une chaîne de 10 caractères

N.Lammari

RELATION ET ATTRIBUT

- Une relation est un sous-ensemble du produit cartésien d'une liste de domaines
- o Sous-ensemble du produit cartésien d'un ensemble d'attributs
- Chaque attribut prend ses valeurs dans un domaine du produit cartésien
- o Elle a un nom
- Elle se représente sous la forme d'un tableau à 2 dimensions dans lequel
 - Une colonne i correspond au nom d'un attribut Ai
 - Une ligne (tuple ou encore n-uplet) est une liste de n valeurs (V1, ...Vn) où chaque valeur Vi est la valeur d'un attribut Ai

RELATION ET ATTRIBUT

RELATION FILM

Colonne ou attribut

Titre	Année	Genre	
Alien Vertigo Volte-face Pulp Fiction	1979 1958 1997 1995	Science Fiction Suspense Thriller Policier	Un tuple de FILM

Sous-ensemble du domaine de valeurs de Titre

N.Lammari

29

CLE

- Groupe d'attributs minimum qui détermine un tuple unique dans la relation
- Plus petit sous-ensemble d'attributs qui permet d'identifier une ligne de manière unique
- o Exemples
 - CodeProduit d'une relation PRODUIT
 - MatriculeEtudiant dans une relation ETUDIANT
 - Titre de la relation FILM

N.Lammari

CLE PRIMAIRE ET CLE CANDIDATE

- o Toute relation doit posséder AU MOINS UNE CLE
- Une relation a au moins <u>UNE CLE CANDIDATE</u>
- o L'une d'entre elles est choisie comme CLE PRIMAIRE
- Notation
 - FILM (<u>Titre</u>, Année, Genre)
 - 1
 - FILM est décrite par les attributs Titre, Année et Genre
 - Titre est la clé primaire de la relation FILM

Les clé candidates sont mentionnée en langage naturel

CLE PRIMAIRE ET CLE CANDIDATE

PAYS (CodePays, NomPays, Continent)

- Deux pays ne peuvent pas avoir le même code
- Deux pays quelconques ne peuvent pas avoir le même nom

- CodePays et NomPays sont clés candidates
- On décide que CodePays est la clé primaire

PAYS (CodePays, NomPays, Continent)

NomPays est clé candidate

CLE PRIMAIRE ET CLE CANDIDATE

RESULTAT_COURSE (NumCourse, CodeCheval, CodeJockey, Classement)

- Un cheval ne peut pas être monté par deux jockeys dans une même course
- Un jockey ne peut pas monter deux chevaux dans une même course
- {NumCourse, CodeCheval} ainsi que {NumCourse, CodeJockey} sont clés candidates
- o On choisit l'une des deux comme clé primaire.

RESULTAT_COURSE (<u>NumCourse, CodeCheval</u>, CodeJockey,
Classement)
{NumCourse, CodeJockey} est une clé candidate

CLE PRIMAIRE ET CLE CANDIDATE

RESULTAT_COURSE(<u>NumCourse</u>, <u>CodeCheval</u>, CodeJockey, Classement)

{NumCourse, NumJockey} est une clé candidate

NumCourse	CodeCheval	CodeJockey	Classement
AT23	1237	Y257	1
AT23	1343	Y254	3
AT28	1237	Y254	4
	•••	•••	•••

N.Lammari

SCHEMAS

Schéma d'une relation

- Nom de la relation + Liste de ses attribut + Liste de ses contraintes dont les contraintes de clé
- Exemple
 - PRODUIT (CodeProduit, Désignation, Couleur)
- o Intention et extension
 - Schéma de la relation = intention de la relation
 - Une instance de table = extension de la relation= sous-ensemble fini du produit cartésien des domaines des attributs de R
- o Schéma d'une base de données
 - Ensemble des schémas des relations qui la composent.

N.Lammari

37

SCHEMAS

Schéma d'une relation ou intension

RESULTAT_COURSE(<u>NumCourse</u>, <u>CodeCheval</u>, CodeJockey, Classement)
{NumCourse, NumJockey} est une clé candidate

Extension ou instance

NumCourse	CodeCheval	CodeJockey	Classement
AT23	1237	Y257	1
AT23	1343	Y254	3
AT28	1237	Y254	4
•••	•••	•••	•••

N.Lammari

SCHEMAS

Schéma d'une base de données

RÉSULTAT_COURSE(<u>NumCourse, CodeCheval</u>, CodeJockey, Classement)
{NumCourse, CodeJockey} est une clé candidate

+

JOCKEY (<u>CodeJockey</u>, NomJockey, PoidsJockey)

CHEVAL (<u>CodeCheval</u>, NomCheval, PropriétaireCheval)

COURSE (<u>NumCourse</u>, NomCourse, DateCourse)

N.Lammari

39

CLE ETRANGERE

- Groupe d'attributs devant apparaître comme <u>clé candidate</u>
 dans une <u>autre relation</u>
- o Exemple

ENSEIGNANT (<u>Matricule</u>, Nom,, **CodeEquipe**)

EQUIPE (CodeEquipe, Désignation, Responsable, CodeLabo)

LABORATOIRE (CodeLabo, Libellé, Directeur)

- CodeEquipe de ENSEIGNANT fait référence à CodeEquipe de EQUIPE
- CodeLabo de EQUIPE fait référence à CodeLabo de LABORATOIRE

N.Lammari

CLE ETRANGERE

Des clés étrangères peuvent composer une clé primaire d'une relation

RESULTAT_COURSE(<u>NumCourse, CodeCheval</u>, CodeJockey, Classement)

JOCKEY (<u>CodeJockey</u>, NomJockey, PoidsJockey)

CHEVAL (CodeCheval, NomCheval, PropriétaireCheval)

COURSE (NumCourse, NomCourse, DateCourse)

{NumCourse, CodeCheval} forme la clé primaire de RESULTAT_COURSE NumCourse de RESULTAT_COURSE est clé étrangère. Elle fait référence à COURSE CodeCheval de RESULTAT_COURSE est clé étrangère. Elle fait référence à CHEVAL CodeJockey de RESULTAT_COURSE est clé étrangère. Elle fait référence à JOCKEY

CLE ETRANGERE

Le nom d'une clé étrangère n'est pas forcement celui de sa référence (la clé primaire auquel elle fait référence)

ENSEIGNANT (Matricule, Nom,, SonEquipe)

EQUIPE (<u>CodeEquipe</u>, Désignation, **Responsable**, **CodeLabo**)

LABORATOIRE (CodeLabo, Libellé, Directeur)

SonEquipe de ENSEIGNANT fait référence à EQUIPE Responsable de EQUIPE fait référence à ENSEIGNANT

CodeLabo de EQUIPE fait référence à LABORATOIRE

N.Lammari

CLE ETRANGERE (suite)

Une relation peut contenir +ieurs clés étrangères faisant référence à une même relation

VOL (NumVol, CodeAéroportDépart, CodeAéroportArrivée)

AEROPORT (CodeAéroport, NomAéroport, Pays)

CodeAéroportDépart de Vol fait référence à AEROPORT

CodeAéroportArrivée de Vol fait référence à AEROPORT

N.Lammari

43

CLE ETRANGERE

Une clé étrangère peut avoir comme référence une clé candidate

ETUDIANT (NumSS, Nom, Prénom, Matricule)

Notation (Matricule, Matière, Note)

Matricule de ETUDIANT est clé candidate

Matricule de NOTATION fait référence à ETUDIANT

N.Lammari

NOTION DE VALEUR NULL

- Valeur décrivant
 - l'absence temporaire
 - et/ ou **l'absence pour inapplicabilité** d'une valeur pour un attribut dans un tuple d'une relation
- o Valeur prenant quelque soit sa sémantique la valeur «null»

N.Lammari 45

NOTION DE VALEUR NULL Exemple EMPLOYE (Matricule, ..., NomJeuneFille,) absence pour inapplicabilité Absence temporaire LIEU _TOURISTIQUE (CodeLieu, NomLieu, siècle, Thème, Url) N.Lammari 46

NOTION DE VALEUR NULLE

CodeLieu	NomLieu	Siècle	Thème	Url
12	Observatoire de Paris	null	science	www.bibli.obspm.fr
40	Musée du chapeau	null	chapeau	null
28	Cathedrale Saint Etienne	12	null	null

N.Lammari

CLE ET VALEUR NULLE

 Tout attribut participant à une clé ne peut être nul.

N.Lammari