Timothy Mah 8750634 txamah001@mymail.sim.edu.sg CSIT375 Artificial Intelligence for Cybersecurity **quiz2 Q1**

FORMULA FOR LR

Predicted label = (the label when all features are 0)

+ [(charge in label when feature +1)
$$\times$$
 Feature 1]

+

if
$$Q_0 = 0$$
 and $Q_1 = 1$,

When feature = 1,

predicted label = $0 + 1 \times 1 = 1$

when feature = 2,

predicted label = $0 + 1 \times 2 = 2$

when feature = 3

predicted label = $0 + 1 \times 3 = 3$

when feature = 4

predicted label = $0 + 1 \times 4 = 4$

MSE = $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (2-1)^2 + (3-4)^2 + (4-3)^2}{2 \times 24}$

= $\frac{(1-2)^2 + (3-4)^2$

if
$$0 = 1$$
 and $0 = 3$
when feature = 1,
predicted label = $1 + 1 \times 3 = 8$
when feature = 2,
predicted label = $1 + 2 \times 3 = 11$
when feature = 3,
predicted label = $1 + 3 \times 3 = 14$
when feature = 4,
predicted label = $1 + 4 \times 3 = 17$

$$MSE = \left(\frac{8}{5} - 2\right)^{2} + \left(\frac{11}{5} - 1\right)^{2} + \left(\frac{14}{5} - 4\right)^{2} + \left(\frac{17}{5} - 3\right)^{2}$$

$$= \frac{4}{25} + \frac{36}{25} + \frac{36}{25} + \frac{4}{25}$$

$$= \frac{80}{25}$$

$$= 0.4$$

$$MSE = 0.4$$

FORMULA FOR GRADIENT DESCENT

1. Find Gradients
gradient of feature =
$$-\frac{2}{no. \text{ of points}}$$
 (label | + label 2 + ...)

gradient of lobel = $-\frac{2}{no. \text{ of points}}$ (label | * feature |) + (label 2 * feature 2) + ...)

2. Find new data points (descent based on gradient)

new feature = feature | - (learning rate * feature gradient)

new label = label | - (learning rate * label gradient)

3. Update LR equation

prodicted label | = new feature + (new label * old feature))

4. Repeat for each data point

5. Find new gradients again. Loop until gradient = 0

Round (1) of Gradient Descent

= -3.2

Gradient of feature =
$$-\frac{2}{4}\left(2*1*4*3\right)$$

= -2
Gradient of label = $-\frac{2}{4}\left[(2*1)*(1*2)*(4*3)*(3*4)\right]$
= -14
New feature = $0 - (0.2 \times -2)$
= 0.4
New label = $0 - (0.2 \times -14)$
= 2.8
Round (2) of Gradient Descent
New predicted label 1 = $0.4 + (2.8 \times 1)$
= 3.2
New predicted label 2 = $0.4 \times (2.8 \times 2)$
= 8.8
New predicted label 3 = $0.4 + (2.8 \times 3)$
= 8.8
New predicted label 4 = $0.4 + (2.8 \times 3)$
= 8.8
New predicted label 4 = $0.4 + (2.8 \times 3)$
= 11.6
New gradient of features = $-\frac{2}{4}\left[(3.2-2)*(6-1)*(8.8-4)*(11.6-3)\right]$
New gradient of labels = $-\frac{2}{4}\left[(3.2-2)*(1]*(6-1)*(2]*(8.8-4)*(3]*(11.6-3)*4\right]$
= $\frac{30}{10.6}$
New feature = $0.4 - (0.2 \times 9.8)$
= -1.56
New label = $2.8 - (0.2 \times 30)$

New predicted label
$$| = -1.56 - (3.2 \times 1) = -4.76$$

New predicted label $2 = -1.56 - (3.2 \times 2) = -7.96$

New predicted label $3 = -1.56 - (3.2 \times 3) = -11.16$

New predicted label $4 = -1.56 - (3.2 \times 3) = -11.16$

New predicted label $4 = -1.56 - (3.2 \times 3) = -14.36$

New gradient of features $= -\frac{2}{4} \left[(-4.76 - 2) \times (-7.96 - 1) \times (-11.6 - 4) \times (-14.36 - 3) \right]$
 $= -69.8$

New feature $= -1.56 - (0.2 \times -24.12) = -69.8$

New label $= -3.2 - (0.2 \times -69.8) = -3.264$

New label $= -3.2 - (0.2 \times -69.8) = -3.264$