Inhalt

- 12
- Heaps und Prioriäts-Warteschlangen
- Min- und Max-Heaps
- Prioritäts-Warteschlangen
- HeapSort (*)

Heap: Vorbemerkung

- Wir betrachten einen Heap als eine spezielle Datenstruktur
- ▶ in zwei Varianten: MinHeap oder MaxHeap.
- Der Begriff "Heap" wird (in einem anderen Zusammenhang!) auch als Bezeichnung für eine speziellen Speicherbereich verwendet. Das hat nichts (bzw. nur wenig) mit dem hier verwendeten Begriff zu tun. → nicht verwechseln!

Partiell geordneter Baum

Ein partiell geordneter Baum

- ▶ ist ein binärere Baum (mit Einträgen aus einem "vergleichbaren" Typ)
- ▶ mit der zusätzlichen "Heap-Eigenschaft", dass für jeden Teilbaum gilt:
 - MinHeap: Der Wurzelknotenwert ist das Minimum der Werte aller Knotenwerte.

 oder
 - MaxHeap:
 - Der Wurzelknotenwert ist das Maximum der Werte aller Knotenwerte.

DS Heap

Ein (Min- oder Max-) Heap ist eine Datenstruktur zur Darstellung

- von partiell geordneten Bäumen,
- die zudem links-vollständig sind. Das bedeutet, dass alle Ebenen bis auf die letzte voll besetzt sind und in der letzten Ebene alle Knoten so weit links wie möglich sitzen.
- ▶ Die Höhe eines links-vollständigen Baums mit n Knoten ist in $\mathcal{O}(\log n)$

Array-Implementierung

Links-vollständige Bäume lassen sich leicht in einem Array implementieren, denn die Array-Indices der Söhne bzw des Vaters eines Knoten lassen sich leicht aus dem Index des Knotens selber berechnen:

- Wenn die Knoten eines links-vollständigen Baums in "bfs-Reihenfolge" in ein Array a eingefügt werden, dann gilt:
- ightharpoonup a[0] = root
- für einen Knoten k = a[p] an der Position p gilt:
 - die Position des Vaters von k ist (p-1)/2
 - die Position des linken Sohns von k ist $2 \cdot p + 1$
 - die Position des rechten Sohns von k ist $2 \cdot (p+1)$

Array-Implementierung

Bemerkung und Warnung

Heaps sind keine Suchbäume!

▶ Die Suche nach einem beliebigen Element (zB contains(T e)) wird nicht besonders gut unterstützt.

Aber:

▶ Der Zugriff auf das kleinste (bzw das größte) Element ist in $\mathcal{O}(1)$ möglich! Kosten für getMin(), getMax() : $\mathcal{O}(1)$

Frage:

- Lassen sich insert (T e) und remove() effizient implementieren, sodass
 - die Heap-Eigenschaft erfüllt bleibt: In jedem Teilbaum ist der Wert des Wurzelknotens das Minimum (bzw Maximum) der Werte aller Knoten des Teilbaums.
 - 2 der Baum linksvollständig bleibt?

Einfügen in einen Heap: upheap

Methode void insert (T e):

- Füge den neuen Wert k.val in einem neuen Knoten k an der nächsten freien Position des Baums ein. (\rightsquigarrow Links-Vollständigkeit)
- Stelle durch "upheap-Operation" die Heap-Eigenschaft wieder her:
 - sei f der Vaterknoten von k (sofern $k \neq root$)
 - solange (k! = root und k.val < f.val) (bei MinHeap)
 bzw solange (k! = root und k.val > f.val) (bei MaxHeap)
 vertausche k mit seinem Vaterknoten f

Beispiel MinHeap: insert mit upheap

Entfernen aus einem Heap: downheap

Methode T remove():

Speichere den Wurzelwert für die spätere Rückgabe des Wertes.

Heaps und Prioriäts-Warteschlangen

- ► Entferne den "letzen" Knoten des Baums (in der untersten Ebene der am weitesten rechts stehende Knoten) und setze ihn an die Stelle der Wurzel. (~> Links-Vollständigkeit)
- ► Stelle durch "downheap-Operation" die Heap-Eigenschaft wieder her:
 - dh bei MinHeap:
 solange (k.val > k.lbt.val oder k.val > k.rtb.val)
 vertausche k mit dem kleineren seiner Söhne
 - dh bei MaxHeap:
 solange (k.val < k.lbt.val oder k.val < k.rtb.val)
 vertausche k mit dem größeren seiner Söhne

Beispiel MinHeap: remove() mit downheap

Kosten von insert() und remove()

- Garantie der Links-Vollständigkeit:
 - Das Einsetzen des neuen Wertes an die "letzte" Posititon bzw
 - das Ersetzen des Wurzelknotens durch den "letzten" Knoten und dessen Entfernen

verursacht konstante Kosten: $\mathcal{O}(1)$.

- upheap:
 - Der neu eingefügte Knoten k steigt im Heap nach oben auf, bis die Heap-Eigenschaft wieder hergestellt ist.
 - upheap verfolgt einen Pfad im Baum vom neuen Blatt bis maximal zur Wurzel:
 - insert (T e) arbeitet in $\mathcal{O}(\log n)$
- downheap:
 - Der neue Wurzelwert sinkt im Heap nach unten, bis die Heap-Eigenschaft wieder hergestellt ist.
 - downheap verfolgt einen Pfad im Baum von der Wurzel bis maximal zur letzten Ebene:
 - remove() arbeitet in $\mathcal{O}(\log n)$

Inhalt

- 12
- Heaps und Prioriäts-Warteschlangen
- Min- und Max-Heaps
- Prioritäts-Warteschlangen
- HeapSort (*)

Priorität von Objekten

Wir betrachten Sammlungen von Objekten, denen als Priorität ein "Schlüssel" ("key") zugeordnet ist.

- ▶ Die Priorität ist ein numerischer Wert,
- so dass eine totale Ordnungsrelation definiert ist und
- sich Elemente mit höchster Priorität bestimmen lassen.

Anmerkung:

- Prioritäten müssen nicht eindeutig sein, es kann verschiedene Elemente mit gleicher Priorität geben.
- Wir vergeben natürliche Zahlen als Priorität.
- Wir verstehen einen "kleineren Wert" als "höhere Priorität". Ein Element mit höchster Priorität ist ein Element mit minimalem key.

ADT PrioSchlange

Neben den "Standard"-Operationen **int** size () und **boolean** isEmpty() definiert man für den ADT PrioSchlange folgende Operationen:

- ➤ T getMin(): liefert das Element mit höchster Priorität - also den Eintrag mit minimalem Schlüsselwert (ohne es zu entfernen)
- void insert (T v, int k): fügt ein Element v mit Schlüssel k in die PrioSchlange ein
- void removeMin(): liefert das Element mit höchster Priorität - also den Eintrag mit minimalem Schlüsselwert - und entfernt es aus der Schlange.

Bemerkung:

Manchmal werden T getMin() und **void** removeMin() auch in einer Methode T removeMin() zusammengefasst, die das Element liefert und entfernt.

Implementierungen und ihre Kosten

Zur Implementierung bieten sich alle Datenstrukturen an, die eine Sortierung der Elemente beim Einfügen erlauben, zB

Kosten für	getMin()	insert ()	removeMin()
(Sortiertes) Array	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$
(Sortierte) verkettete Liste	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$
(balancierter) Suchbaum	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MinHeap	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Inhalt

- 12
- Heaps und Prioriäts-Warteschlangen
- Min- und Max-Heaps
- Prioritäts-Warteschlangen
- HeapSort (*)

Prinzip: Sortieren durch Auswählen

HeapSort ist eine Spezialform des SelectionSort

- gegeben: unsortierte Folge a
- Ziel: sortierte Folge b
- Prinzip:
 - solange a nicht leer, wiederhole
 - wähle aus a das Minimum aus
 - füge das Minimum in b ein (hinten)
- speziell: nutze einen Heap, um schnell das Minimum in a zu finden

"Naiver" HeapSort mit MinHeap

- ▶ (insert-Phase): solange a nicht leer, wiederhole
 - entnimm das nächste Element aus a
 - füge es in einen (anfangs leeren) Heap h ein (mit ggf. notwendigen upheap-Operationen)
- ► (removeMin-Phase): solange h nicht leer, wiederhole
 - entnimm das Minimum aus h
 - füge es in die Folge b ein

Kosten:

- ▶ insert-Phase: $n \cdot \mathcal{O}(\log(n)) = \mathcal{O}(n \log n)$
- ▶ removeMin-Phase: $n \cdot \mathcal{O}(\log(n)) = \mathcal{O}(n \log n)$

Idee: Verfeinerung des HeapSort: mit MaxHeap

Falls der Heap ausschließlich zum Sortieren einer fest gegeben Folge (bzw eines Arrays) benutzt wird, kann man etwas geschickter vorgehen, denn ...

- ▶ die Größe des Heaps ist durch die Länge des Arrays bereits gegeben,
- daher kann das (unsortierte) Array bereits als Darstellung eines links-vollständigen Baums betrachtet werden.
- Betrachte das Array als Darstellung eines Max-Heaps:
- ➤ Stelle die Heap-Eigenschaft in den inneren Knoten durch downheap-Operationen her.

In-Situ-HeapSort

"In Situ" bzw. "in-place": Sortieren eines Arrays <mark>ohne</mark> zusätzichen Platzbedarf!

Verfahren in zwei Phasen:

- Aufbau des Max-Heaps aus dem Ursprungs-Array a:
 - Interpretiere das (unsortierte) Array a als linksvollständigen Baum
 - Führe von hinten nach vorne für jeden inneren Knoten die Operation downheap durch dh für die Elemente a[(a.length - 1)/2],...,a[0]
- "Auslesen" des Max-Heaps:
 - Wiederhole (a.length -1)-mal:
 - Führe removeMax() mit anschließendem downheap aus ...
 - ... wobei in jedem Schritt das maximale Element an das Ende des Arrays getauscht wird.
 - und im folgenden Schritt der betrachtete Array-Ausschnitt um 1 verkürzt wird.

Beispiel HeapSort (1): Aufbau des MaxHeaps

Beispiel HeapSort (2): Auslesen des MaxHeaps

Inhalt

Zusammenfassung

Sigrid Weil (H-BRS)

UML - final

Fazit

- Die Abstrakten Datentypen
 Folge, Menge, Stapel, Schlange, Prioritäts-Warteschlange
 verfügen in verschiedenen Varianten alle über Operationen zum
 - Zugriff auf ein Element: get(), contains(), getMin(), front(), top()
 - Einfügen von Elementen: insert (), push(), enqueue()
 - Löschen von Elementen: delete (), remove(), pop(), dequeue(), removeMin()
- Zur Implementierung bieten sich unterschiedliche Datenstrukturen an: Dynamisches Array, Verkettete Liste, Suchbaum, Ringpuffer, Heap
- ▶ Je nach gewählter Datenstruktur haben die Implementierungen der Methoden unterschiedliche (worst-case-) Laufzeit.

Ihre Zukunft?

Aufgabe für Software-Entwickler:innen:

- Je nach Anforderungen des speziellen Anwendungsfalls
- wollen wir einen geeigneten Datentyp,
- dh. die "beste" Kombination aus ADT und Datenstruktur finden.

Viel Glück dabei ;)