Runs Up Runs Down

Step-1: Define the hypothesis for uniformity.

 $H_0 = R_i \sim independently$

 $H_1 = R_i$ independently

Step-2: Write down the sequence of runs up & runs down.

Step-3: Count the total no of runs(a) present in the sequence.

Step-4: Count the mean & variance of a

$$\mu_a = \frac{2N-1}{3}$$

$$\sigma_a^2 = \frac{16N - 29}{90}$$

Step-5: Standard normal statistics,

$$z_0=rac{a-\mu_a}{\sigma_a}$$
 , z_0 ~ N[0,1]

Step-6: Determine critical value $+Z_{\alpha/2}$, $-Z_{\alpha/2}$

Step-7: If $-Z_{\alpha/2} \le Z_0 \le Z_{\alpha/2} \rightarrow H_0$ isn't rejected.