University of Northampton

Week 1

Introduction to NLP

Dr Oluseyi Oyedeji

Learning Goals for Week 1

By the end of week one, you should be able to:

- Understand the scope of NLP
- Recognise challenges in processing human language
- **Describe** the *NLP pipeline* and levels of analysis
- Summarise the history and evolution of NLP
- Get **hands-on experience** with some basic NLP tools
- Reflect on ethics in NLP (introductory)

Today's Session

- What is NLP?
- Relevance of NLP
- NLP in Al hierarchy
- History of NLP
- Challenges withHuman Languages

- Level of NLP Analysis
- NLP Pipeline
- Applications of NLP
- Recent Advancements
- NLP Tools
- Ethics in NLP

What is NLP?

- NLP is a Subfield of AI & computational linguistics
- Enables machines to process, understand, generate human language

Input = *unstructured text/speech* → Output = **structured meaning/action**

Relevance of NLP

Assistants & Translation

- ✓ Digital assistants: Siri, Alexa, Google Assistant
- ✓ Machine translation: Google Translate, DeepL

Search & Chatbots

- ✓ Information retrieval: Google Search
- ✓ Chatbots & customer support

Sentiment & Summarisation

- ✓ Sentiment analysis: reviews, tweets
- ✓ Automatic summarisation, news aggregation

Relevance of NLP contd.

- Q&A and Misinformation
 - ✓ Question answering: ChatGPT, WolframAlpha
 - ✓ Misinformation detection and prevention

NLP in the Al Hierarchy

- AI = broad goal of intelligent machines
- **ML** = learning from data
- DL = neural networks
- NLP = intersection of AI, ML, and linguistics

History of NLP

• 1950s-60s

✓ Rule-based MT (*Georgetown experiment, 1954*)

✓ ELIZA chatbot (1966)

1970s

- ✓ Al-inspired Q&A (BASEBALL system)
- ✓ Shift towards linguistics + Al approaches

1980s

- ✓ Grammar-based systems
- ✓ Formal parsing techniques, discourse analysis

History of NLP

• <mark>1990s</mark>

- ✓ Statistical revolution
- ✓ n-grams, HMMs, probabilistic models

2000s

- ✓ Rise of ML algorithms: SVMs, CRFs, TF-IDF
- ✓ Growth of large annotated corpora

2010s

- ✓ Word embeddings: Word2Vec, GloVe
- ✓ Deep learning: RNNs, LSTMs, GRUs

History of NLP

- 2017 **+**
 - ✓ Transformers: 'Attention is All You Need'
 - ✓ BERT, GPT, T5
 - ✓ Current era: Large Language Models (GPT-4, GPT-5, Claude, LLaMA)

Challenges with Human Language

Lexical Ambiguity

- One-word, multiple meanings
- Example: 'bank' → riverbank or financial institution

Syntactic Ambiguity

- Sentence: 'I saw the man with the telescope'
- Ambiguity: who has the telescope?

Challenges with Human Language

- Semantic Ambiguity
 - Contradictory meanings: 'Hot ice-cream'
 - Difficult for machines to resolve

- Pragmatic Ambiguity
 - Language depends on context
 - 'Can you pass the salt?' = request, not question

Other Language Challenges

- Context dependence
- Need for world knowledge
- Low-resource languages = lack of data/tools

Levels of NLP Analysis

Levels of NLP Analysis - Morphology

- Morphology is the study of word structure
- Tokens, morphemes, stemming, lemmatization
- Tokenisation
 - Splitting text into words/tokens
 - Example: 'NLP is amazing!' → ['NLP','is','amazing','!']
- Stemming and Lemmatization
 - Stemming: relational → relate (rule-based cut)
 - *Lemmatization*: running → **run** (dictionary-based)

Levels of NLP Analysis - Syntax

- Syntax is the grammatical structure of sentences
- Parsing methods
 - Constituency -> sub-phrases
 - Dependency direct relationship
- Sentence: 'The cat sat on the mat'
- Constituency parse: [S [NP] The cat] [VP] sat [PP] on [NP] the mat]]]]
- Dependency parse: subject=cat, verb=sat, object=mat

Levels of NLP Analysis – Semantic, Discourse, Pragmatics

- Semantics is the study of meaning
 - Word sense disambiguation, synonymy, polysemy
- Discourse refers to meaning across sentences
 - Coreference resolution, coherence
- Pragmatics refers to language in context
 - Speaker intention, world knowledge

NLP Pipeline

- Input text → Preprocessing → Feature extraction → Modelling → Evaluation → Deployment
- Roadmap: raw language → structured meaning → useful applications
- Helps connect theory to real-world systems

NLP Pipeline - Preprocessing

- Tokenisation
 - Split text into words/sentences
- Stop word removal
 - Remove frequent low-value words
- Stemming & Lemmatization
 - Reduce words to root forms
- Normalisation
 - lowercase, punctuation handling, cleaning

NLP Pipeline - Feature Extraction

- Bag-of-Words (BoW)
 - Count words
- TF-IDF
 - Adjust counts for importance
- Word embeddings: dense vectors (Word2Vec, GloVe)
- Contextual embeddings: BERT, GPT

NLP Pipeline - Deployment

- Integrating NLP into apps and services
- Chatbots, search engines, recommendation systems
- Challenges
 - Scalability, fairness, bias, ethics
- Tools
 - Flask, FastAPI, cloud APIs

Applications of NLP

- Machine translation
- Speech recognition & synthesis
- Sentiment analysis
- Information retrieval & search
- Summarisation
- Question answering
- Chatbots & virtual assistants
- Text generation (LLMs)

Recent Advancements

- Word embeddings (Word2Vec, GloVe)
 - Distributed representations
 - Semantic similarity capture
- Neural LMs: RNN, LSTM, GRU
 - Sequence modelling
- Transformers: Attention, BERT, GPT Self-attention mechanism
- LLMs: GPT-4, Claude, LLaMA → Large scale, zero/few-shot learning

NLP Toolkits

Classical tools

- NLTK (Natural language toolkit)
- Stanford CoreNLP (Java-based parser)

Modern Tools

- spaCy (efficient NLP pipelines)
- Gensim (topic modelling, embeddings)
- Hugging Face Transformers (pre-trained DL models)

NLP Toolkits contd.

- Programming Language
 - Python
 - R and Java exist, but Python dominates

- Deep Learning Frameworks (for building models)
 - PyTorch → dominant in research & LLMs.
 - TensorFlow / Keras → popular in industry & ML pipelines.
 - **JAX** \rightarrow rising for high-performance training (used by Google).

Ethics in NLP

- Bias in embeddings (gender/race stereotypes)
 - "doctor → male" and "nurse → female" associations.
 - fairness and discrimination.
- Data privacy issues (memorising sensitive data)
- Misinformation (deepfakes, fake news)
- Environmental cost (training large LLMs)

Discussion

 If a spam filter wrongly blocks scholarship emails for international students, what are the consequences? How could this be avoided?

Summary

- NLP = AI + ML + linguistics
- Human language is complex: ambiguity, context
- History: rules → statistics → ML → DL → transformers
- Applications: translation, chatbots, search
- Tools: NLTK, spaCy, HuggingFace
- Ethics: bias, privacy, environment

Thank you

