Problem 1 Consider the two real functions $f, g : [1, \infty) \to \mathbb{R}$ given by

$$f(x) = \sqrt{1 + \frac{1}{x^2}} - \sqrt{1 - \frac{1}{x^2}} \tag{1}$$

and

$$g(x) = \frac{2}{x^2 \left(\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x^2}}\right)}$$
 (2)

The functions have been implemented and plotted using the MATLAB commands

- >> f=@(x)sqrt(1+1./x.^2)-sqrt(1-1./x.^2);
- >> g=@(x)(2./x.^2)./(sqrt(1+1./x.^2)+sqrt(1-1./x.^2));
- >> x=linspace(1,2,1025)*2^24;
- >> plot(log2(x),log2(f(x)),log2(x),log2(g(x)));

The result is given in Figure 1.

Figure 1: Illustration of the naive implementation of functions f and g.

- 1. (5 points) Prove that f is a differentiable and strictly decreasing for all $x \in [0, \infty)$.
- 2. (5 points) Explain why it is immediately clear that the implementation of f is useless.
- 3. (5 points) Prove that f(x) = g(x) for all $x \in [1, \infty)$.
- 4. (5 points) Prove that the rendering of g as a straight line is an acceptable representation of the mathematical reality.
- 5. (5 points) Find the largest value of b > 1 such that f can be safely evaluated as stated for all $x \in [1, b)$.

Problem 2 Let T denote the target value

$$T = \int_0^1 \phi(x)dx \tag{3}$$

where $\phi:[0,1]\to\mathbb{R}$ is an unknown function. An unknown method A_h has been applied to approximate T using a variety of stepsize $h=2^{-N}$. All available results are given in Figure 2. As usual Richardson's fraction F_h is given by

$$F_h = \frac{A_{2h} - A_{4h}}{A_h - A_{2h}} \tag{4}$$

and the error estimates are given by

$$E_h = \frac{A_h - A_{2h}}{2^p - 1}. (5)$$

The correct value of p has been used when computing E_h .

1. (5 points) What evidence do you find to suggest that A_h obeys an asymptotic error expansion of the form

$$T - A_h = \alpha h^p + \beta h^q + O(h^r) \tag{6}$$

- 2. (5 points) What evidence do you find to suggest p=2 and q=4?
- 3. (5 points) What evidence do you find to suggest that ϕ is several times differentiable?
- 4. (10 points) Compute the value of T with a relative error which is less than 10^{-8}

_ Z	Ah	Richardson's fraction	Error estimate
-	3.4157661036209865e+00	0.00000000000000e+00	0.000000000000000000000000000000000000
_ ~	3.4095318985182499e+00	0.00000000000000e+00	-2.0780683675788816e-03
4	3.4080250105398555e+00	4.1371390522202764e+00	-5.0229599279812598e-04
<u>−</u> ∞	3.4076521208305195e+00	4.0411090482426735e+00	-1.2429656977867390e-04
16	3.4075591515592141e+00	4.0108920302388045e+00	-3.0989757101806958e-05
32	3.4075359253067408e+00	4.0027667576706731e+00	-7.7420841577691135e-06
64	3.4075301197516557e+00	4.0006945301165375e+00	-1.9351850283714591e-06
128	3.4075286684259454e+00	4.0001738024770566e+00	-4.8377523675924294e-07
256	3.4075283055984640e+00	4.0000435047169365e+00	-1.2094249379757116e-07
512	3.4075282148918387e+00	4.0000108052182810e+00	-3.0235541773985610e-08
1024	3.4075281922151994e+00	4.0000030158674580e+00	-7.5588797443515432e-09
2048	3.4075281865460343e+00	3.999962399609896e+00	-1.8897217124447252e-09
4096	3.4075281851287462e+00	4.0000090867815841e+00	-4.7242935489559079e-10
8192	3.4075281847744137e+00	3.9998809353717197e+00	-1.1811085443014235e-10
16384	3.4075281846858325e+00	4.0000902404909082e+00	-2.9527047473720813e-11
32768	3.4075281846637044e+00	4.0031107008107893e+00	-7.3760257161363061e-12
65536	3.4075281846581515e+00	3.9849648112603968e+00	-1.8509638266550610e-12
31072	3.4075281846567593e+00	3.9885167464114835e+00	-4.6407322429331543e-13
262144	3.4075281846564440e+00	4.4154929577464790e+00	-1.0510111299784815e-13
524288	3.4075281846563468e+00	3.2420091324200913e+00	-3.2418512319054571e-14
1048576	3.4075281846563201e+00	3.649999999999999e+00	-8.8817841970012523e-15
2097152	3.4075281846563081e+00	2.2222222222223e+00	-3.9968028886505635e-15
4194304	3.4075281846560519e+00	4.6793760831889082e-02	-8.5413158027828714e-14
8388608	3.4075281846563774e+00	-7.8717598908594821e-01	1.0850579694003197e-13

Figure 2: All results available after numerical integration of the unknown function ϕ .

Problem 3 Consider the problem of solving the equation

$$h(x) = 0 (7)$$

where $h: \mathbb{R} \to \mathbb{R}$ continuous function.

- 1. (5 points) What are steps which must be completed before we even consider feeding the problem to a computer?
- 2. (5 points) What are the steps which must be completed before we can apply the bisection algorithm to our problem?
- 3. (5 points) Supppose that h is also differentiable. What are the steps which must be completed before Newton's method can be applied with any hope of success?
- 4. (10 points) Explain how to convert Newton's method to a reliable algorithm for solving problems of the type given by equation (7).

Problem 4 The trajectory of an artillery shell has been approximated using a variety of different time steps and the MATLAB function rode. All available information is given in Figure (3) and Figure (4).

- 1. (5 points) Estimate the elevation of the gun as accurately as possible.
- 2. (10 points) Prove that the shell is fired into a powerful headwind (Swedish: motvind)
- 3. (10 points) Let (r,0) denote the point of impact. Prove that the shell impacts behind the gun with r < -80 (meters).

Data related to component 1

Error estimate	0.000000000000000e+00	2.6877370037254877e-03	3.2986492458159469e-03	3.2225182726506318e-03	2.9017072577820122e-03	2.4994208512794103e-03	2.0808957552844731e-03	1.6705748998523025e-03	1.2636820135677833e-03	8.1605280284217463e-04	3.1676947414401485e-04
F_(1h)	NaN	4.061335	4.061934	4.064373	4.068450	4.074322	4.082514	4.094268	4.113496	4.158481	4.362439
F_(2h)	NaN	4.123263	4.125075	4.130490	4.139181	4.151499	4.168528	4.192784	4.232123	4.322391	4.707553
F_(4h)	NaN	4.248143	4.254514	4.267666	4.287303	4.314315	4.350983	4.402447	4.484464	4.665709	5.358414
F_(8h)	NaN	4.495426	4.521543	4.558467	4.607578	4.671525	4.755330	4.869451	5.044875	5.405980	6.553589
F_(16h)	NaN	4.913949	5.035988	5.160824	5.302231	5.469940	5.675454	5.938627	6.314118	6.995843	8.647269
approximation	0.000000000000000e+00	2.4462793833263643e+02	3.8745475761458499e+02	4.6247866536962556e+02	4.9088229134264833e+02	4.8666969375226660e+02	4.5966510877944012e+02	4.1712243008002292e+02	3.6450998655173413e+02	3.0539054853735337e+02	2.3996483691705049e+02
time	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00

Data related to component 2

6h) F_(8h) F_(4h) F_(2h) F_(1h) Error estimate NaN NaN 0.0000000000000000000000000000000000	000 4.461550 4.232272 4.115587 4.057560 1.7105721701379178e-02	954 4.482216 4.236026 4.116112 4.057521 2.1756461818768003e-02	970 4.512172 4.245818 4.119878 4.059142 2.2248593458243704e-02	551 4.551267 4.260630 4.126207 4.062052 2.1181086139525480e-02	789 4.600300 4.280446 4.135009 4.066187 1.9491143250585690e-02	333 4.661564 4.306174 4.146681 4.071732 1.7538275847376401e-02	142 4.739676 4.339956 4.162247 4.079186 1.5454313487983503e-02	753 4.842837 4.385855 4.183709 4.089542 1.3279337616647050e-02	240 4.981462 4.449447 4.213915 4.104234 1.1076520471154557e-02	068 F 163405 4 535558 4 255454 4 124503 9 0014031332310270a-03
	_	_	_	_	_	_	_	_	_	_
(16h) F(NaN	4.838000 4.461	4.947954 4.482	5.057970 4.512	78551	5.315789 4.600	5.476333 4.661	5.670142 4.739	5.912753 4.842	6.220240 4.981	6 601068 F 163
approximation F	_	5.6781778855718458e+03 4.	7.5663812566492243e+03 5.	9.0165565515187864e+03 5.1	1.0107486140041645e+04 5.	1.0889489228245240e+04 5.	1.1394489679007136e+04 5.	1.1641573608270419e+04 5.	1.1640483068549285e+04 6.	1 1396607468404847e+04 6
time	2.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20 00

Figure 3: Data related to the position of the shell

Data related to component 3

Error estimate 0.00000000000000000000000000000000000	-1.9170730239418768e-04	-2.1123581422581120e-04	-1.9499333841643818e-04	-1.7310401510606255e-04	-1.5270248358278948e-04	-1.3494169292845490e-04	-1.1879691435545681e-04	-1.0060245743481744e-04	-8.1454525197699468e-05	-7.5690384310433956e-05
F_(1h) NaN	4.032788	4.030179	4.028585	4.027620	4.027085	4.026913	4.027272	4.029270	4.033757	4.034949
F_(2h) NaN	4.063679	4.059002	4.056139	4.054440	4.053561	4.053391	4.054285	4.058451	4.067130	4.069189
F_(4h) NaN	4.118534	4.111638	4.107374	4.105007	4.104086	4.104501	4.107035	4.116045	4.132139	4.134849
F_(8h) NaN	4.190924	4.189418	4.188098	4.188374	4.190531	4.194898	4.203282	4.223962	4.250349	4.249318
F_(16h) NaN	4.102738	4.166372	4.203307	4.231212	4.257033	4.284209	4.316791	4.367368	4.387418	4.354240
approximation 6.7981479343173348e+01	3.9786385635632236e+01	2.2198514308314380e+01	1.0533006994800211e+01	2.5159176479339926e+00	-3.0692793365027917e+00	-6.9257410120747442e+00	-9.5003468286793282e+00	-1.1167332717504847e+01	-1.2455355314060149e+01	-1.3993521646811633e+01
time 0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00

Data related to component 4

F_(16h) F_(8h) F_(4h) F_(2h) F_(1h) Error estimate NaN NaN NaN NaN 0.0000000000000000000000000000000000	3.872026 4.113521 4.087056 4.049491 4.026052 -1.0174424587603426e-03	3.882022 4.094587 4.073145 4.041665 4.021950 -1.0753204657589777e-03	3.862219 4.076060 4.062292 4.035927 4.019015 -9.5477161888387252e-04	3.830598 4.059598 4.053900 4.031703 4.016897 -8.1865538306639485e-04	3.794151 4.045645 4.047628 4.028711 4.015433 -7.0188428229774524e-04	3.756066 4.034426 4.043348 4.026840 4.014559 -6.0919778797578295e-04	3.718411 4.026144 4.041042 4.026065 4.014256 -5.3892101691133121e-04	3.683342 4.020141 4.040229 4.026129 4.014398 -4.9237146634576823e-04	3.673342 4.017247 4.039423 4.025889 4.014318 -4.8342737078262604e-04	-
— —)	_	_	_	_	_	_	_	_	_	
	05e+02 3.872026	_	_	_	_	_	_	_	26e+01 3.673342	700000
time approximation 0.00 7.7703186451156148e+02	5.00 5.7364661162707205e+02	10.00 4.3622702105381001e+02	15.00 3.3475473034462766e+02	20.00 2.5452370005094750e+02	25.00 1.8748184462896086e+02	30.00 1.2878175853367665e+02	35.00 7.5237930991049083e+01	40.00 2.4606493123828557e+01	45.00 -2.4493181244058526e+01	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Figure 4: Data related to the velocity of the shell