Chapter 8. System Identification

8.1 Introduction

Identify G(z) from experimental results:

$$u(k) \longrightarrow \frac{1 - e^{-sT}}{T}$$

COMPUTER

SAMPLED

Could be represented as:

$$n(k) \rightarrow noise$$
 sequence
$$u(k) \longrightarrow G(z) \longrightarrow (k)$$

Could identify G(z):

Simple test (could be generated easily from a step neaponse Many passurates needed 30-100 depends on To • A convolution model: G(z) = g. +g.z + ... +g.z Robust te miscabulation of the order

Oadea steurtuae is important

8.2 The Least Squares Algorithm

Consider that the SISO process can be represented by the pure time debuy transfer function:

$$\frac{Y(z)}{U(z)} = G(z) = \frac{\left(z^{-d} \left(b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}\right)\right)}{1 - a_1 z^{-1} - a_2 z^{-2} - \dots - a_n z^{-m}\right)} = \frac{\theta(z_p)}{\theta(z_p)}$$

Carry out the experiment - excite the process, collect N₁ data

$$\hat{y}(k+1) = \hat{a}_1 y(k) + \hat{a}_2 y(k-1) + \dots \hat{a}_n y(k-n+1) + \hat{b}_1 u(k-d) + \hat{b}_2 u(k-d-1) + \dots \hat{b}_n u(k-d-m+1)$$

The first valid "test" equation is then:

$$\hat{y}(m+d) = \hat{a}_1 y(m+d-1) + \hat{a}_2 y(m+d-2) + \cdots \hat{a}_n y(m+d-n)$$

$$+ \hat{b}_1 u(m-1) + \hat{b}_2 u(m-2) + \cdots \hat{b}_m u(0)$$

We can repeat this, to generate output estimates over the valid dataset: using our guess for a, ... b,

 $\hat{y}(m+d) = \hat{a}_1 y(m+d-1) + \hat{a}_2 y(m+d-2) + \cdots \hat{a}_n y(m+d-n) + \hat{b}_1 u(m-1) + \hat{b}_2 u(m-2) + \cdots \hat{b}_m u(0)$ $\hat{y}(m+d+1) = \hat{a}_1 y(m+d) + \hat{a}_2 y(m+d-1) + \cdots \hat{a}_n y(m+d-n+1) + \hat{b}_1 u(m) + \hat{b}_2 u(m-1) + \cdots \hat{b}_m u(1)$ $\hat{y}(m+d+2) = \hat{a}_1 y(m+d+1) + \hat{a}_2 y(m+d) + \cdots \hat{a}_n y(m+d-n+2) + \hat{b}_1 u(m+1) + \hat{b}_2 u(m) + \cdots \hat{b}_m u(2)$ $\hat{y}(m+d+3) = \hat{a}_1 y(m+d+2) + \hat{a}_2 y(m+d+1) + \cdots \hat{a}_n y(m+d-n+3) + \hat{b}_1 u(m+2) + \hat{b}_2 u(m+1) + \cdots \hat{b}_m u(3)$ \vdots \vdots

 $\hat{y}(N_1-1) = \hat{a}_1 y(N_1-2) + \hat{a}_2 y(N_1-3) + \cdots \hat{a}_n y(N_1-1-n) + \hat{b}_1 u(N_1-d-2) + \hat{b}_2 u(N_1-d-3) + \cdots \hat{b}_n u(N_1-d-1-n)$ We now have (N.- M - d.) valid equations

= 1 N equations

Could be written in matrix form as:

$$\hat{y}(m+d) = \begin{bmatrix} \hat{y}(m+d) \\ \hat{y}(m+d+1) \end{bmatrix} \begin{bmatrix} y(m+d-1) & \cdots & y(m+d-n) \\ y(m+d+1) \end{bmatrix} \begin{bmatrix} u(m) & \cdots & u(0) \\ \vdots & \ddots & \vdots \\ y(M+d+2) \end{bmatrix} \begin{bmatrix} \hat{a}_1 \\ \vdots & \ddots & \vdots \\ y(N_1-2) \end{bmatrix}$$

$$\hat{y}(N_1-2) = \begin{bmatrix} y(N_1-2) & \cdots & y(N_1-n-2) \\ \vdots & \vdots & \ddots & \vdots \\ y(N_1-1) & y(N_1-2) & \cdots & y(N_1-n-1) \\ \vdots & \vdots & \ddots & \vdots \\ y(N_1-1) & y(N_1-2) & \cdots & y(N_1-n-1) \\ \vdots & \vdots & \vdots & \ddots \\ y(N_1-n-1) & u(N_1-d-2) & \cdots & u(N_1-d-m-1) \\ \hat{b}_n \end{bmatrix}$$

This could be rewritten as:

$$\hat{Y}_{_N} = \Phi \hat{ heta}$$

where

\$\overline{\Phi}\$: Regression material material samples of ilo \$\overline{\Omega} = \bar{\Omega} \alpha \cdot \bar{\Omega} \bar{\Omega} \bar{\Omega} \bar{\Omega} = \bar{\Omega} \alpha \cdot \bar{\Omega} \bar{\Omeg

We need a measure of how good our candidate model fits the data-set.

Define the Least-Squares cost function:

$$J = \sum_{i=m+d}^{N_{i-1}} e^2(i)$$
 The N valid data points

where: e(i)=y(i)-y(i)

Now we will define the error vector \underline{E} over the valid data-set:

$$\underline{E} = \begin{bmatrix} e(m+d) \\ e(m+d+1) \\ \vdots \\ e(N_1-1) \end{bmatrix} \begin{bmatrix} y(m+d) \\ y(m+d+1) \\ \vdots \\ y(N_1-1) \end{bmatrix} \begin{bmatrix} \hat{y}(m+d+1) \\ \vdots \\ \hat{y}(m+d+1) \\ \vdots \\ y(N_1-1) \end{bmatrix}$$

$$\underline{E} = Q$$

$$\underline{C} = Q$$

$$\underline{C} = Q$$

$$\underline{C} = Q$$

$$\underline{C} = Q$$

Then we can write the least-squares cost function as:

$$J = \sum_{i=m+d}^{M-1} e^{2}(i) = \underline{F} = \mathbb{E} = \mathbb{E} \text{ e(m+d)}... \text{ e(N_i-1)}$$

$$= \text{ e(m+d)}^{2} + \text{ e(m+d+l)}^{2} + ... + \text{ e(N_i-1)}^{2}$$

$$Could be rewritten as: \ J = \underbrace{E}_{F} = \underbrace{E}_{F}$$

$$J = (\underline{Y}_{N} - \underline{\hat{Y}})^{T} (\underline{Y}_{N} - \underline{\hat{Y}})$$

But we know:

$$\hat{\underline{Y}}_N = \Phi \hat{\underline{\theta}}$$

Revision:
$$(A+B)^T = A+B^T$$
 = $(1/L)^T - (4/B)^T = B^TA^T$ = $(1/L)^T - (4/B)^T = B^TA^T$ The cost can be expanded as follows: $(1/L)^T - (1/L)^T = (1/L)^T$

Scalar
$$\rightarrow J = \left(\underline{Y}_{N}^{T} - \hat{\theta}^{T} \Phi^{T}\right) \left(\underline{Y}_{N} - \Phi \hat{\theta}\right) = \left(\underline{Y}_{N}^{1} - \hat{\Theta} \Phi^{T}\right) \left(\underline{Y}_{N} - \Phi \hat{\Theta}\right)$$

$$= \underbrace{Y_{N}^{1}}_{SPN} \underbrace{Y_{N}^{1} - Y_{N}^{1} \Phi \hat{\Theta} - \hat{\Theta}^{T} \Phi^{T}_{N}}_{SPNE} + \hat{\Theta}^{T} \Phi^{T}_{N} + \hat{\Theta}^{T} \Phi^{T}_{N} \Phi^{T}_{N}$$
Which could be rearranged to yield:

$$J = \underline{\hat{\theta}}^T \Phi^T \Phi \underline{\hat{\theta}} - 2\underline{Y}_N^T \Phi \underline{\hat{\theta}} + \underline{Y}_N^T \underline{Y}_N$$

This is a quadratic function of the parameter vector:
We will choose @ te minimise I "beat hit" in a pense squanges

Consider a simple example where we are trying to identify the parameters of the following first order model:

$$G(z) = \frac{b_1 z^{-1}}{1 - a_1 z^{-1}}$$

The least-squares cost function could be plotted for various choices of parameters:

minimum cost \$0 due to "noise

INSTERD OF SOLVING USING 35 = 0 WE WILL USE COMPLETING THE SQUARE

Solution by completing the square:

First consider

$$J = x^2 + 3x + 1$$

could early solve for runnum point of 3x=1x+3 min occuss when re= - 3/2

Completing the square yields,

The minimum occurs at:

Now consider:

$$J = 5x^2 + 3x + 1$$

Try the following candidate for completing the square:

Multiplying out yields,

N.B. MIN COST JHIN = P MIN WHEN X =- K = 30

104=3

Now consider the following cost based on vector <u>x</u>

Scalar
$$\rightarrow J = \underline{x}^T M \underline{x} - G \underline{x} + J_0$$
 (1)

Consider the candidate for completing the square:

$$J = (\underline{x} - \underline{\alpha})^T M (\underline{x} - \underline{\alpha}) + \beta \tag{2}$$

The minimum of this cost function then occurs when:

Multiplying out equation (2) yields:

SCALAR
$$\rightarrow J = \underline{x}^T M \underline{x} (-\underline{\alpha}^T M \underline{x} - \underline{x}^T M \underline{\alpha} + \underline{\alpha}^T M \underline{\alpha} + \beta$$
 (3)

Comparing equation (3) with the cost equation (1):

$$J = \underline{x}^{T} M \underline{x} - (\partial \underline{x} + J_{0} = \underline{x}^{T} M \underline{x} - (2\underline{\alpha}^{T} M) \underline{x} + (\underline{\alpha}^{T} M \underline{\alpha} + \beta)$$

$$J = \underline{x}^{T} M \underline{x} - J \underline{x}^{T} M \underline{x} + (\underline{x}^{T} M \underline{x} + \beta)$$

$$G\underline{x} = J\underline{x}^{T} M = J G = J\underline{x}^{T} M$$

$$J G = \underline{x}^{T} M = J G M^{-1} = \underline{x}^{T} M^{-1}$$

Hence the cost of equation (1) is a minimum when: $x = \frac{1}{2} =$

Now we will return to the least squares cost for system identification: , POS 1718 DEFINITE RND 54MMETRIC

$$J = \underline{\hat{\theta}}^T \overline{\Phi}^T \overline{\Phi} \overline{\hat{\theta}} - \left(2\underline{Y}_N \overline{\Phi} \overline{\hat{\theta}} + \left(\underline{Y}_N^T \underline{Y}_N\right)\right)$$

$$= \underline{\hat{\theta}}^T \overline{M} \underline{\hat{\theta}} - \underline{G} \underline{\hat{\theta}} + \overline{J}_0$$

This will then be minimised when:

$$\frac{\partial_{LS}^{T}}{\partial_{LS}} = \frac{1}{2}GM^{-1} = \frac{1}{2}\left(\frac{1}{2}\frac{\Delta}{M}\right)\left(\frac{1}{4}^{-\frac{1}{4}}\right)^{-\frac{1}{4}}$$

$$\frac{\partial_{LS}}{\partial_{LS}} = \frac{1}{2}\frac{1}{M}\frac{1}{4}\left(\frac{1}{4}\frac{T}{4}\right)^{-\frac{1}{4}}$$

$$\frac{\partial_{LS}}{\partial_{LS}} = \left(\frac{1}{4}\frac{T}{4}\right)^{-\frac{1}{4}}\frac{1}{4}\frac{T}{2}$$

EXAMPLE: Sample time = 0.5 seconds .. ws = == 12.6 Rad/s

The antialisaing filter is chosen as:

The transfer function G(z) is then determined as:

$$G(z) = Z \left\{ \frac{1 - e^{-sT}}{s} \right\} \left\{ \frac{4}{s^2 + 2s + 4} \left\{ \frac{6}{s + 6} \right\} \right\}$$
on the baseband

$$= \frac{0.3975z^{-1} + 0.652z^{-2} + 0.0565z^{-3}}{1 - 0.835z^{-1} + 0.407z^{-2} - 0.0183z^{-3}} \rightarrow \text{NOTE 3rd Order}$$

Hence:

RUE
$$\theta_{ine} = \begin{bmatrix} a_1 & a_2 & a_3 & b_1 & b_2 & b_3 \end{bmatrix}^T = \\ = \begin{bmatrix} 0.835 & -0.407 & 0.0183 & 0.3975 & 0.652 & 0.0565 \end{bmatrix}^T$$

The first valid equation is: (3ad oadea)

$$\hat{y}k(3) = \hat{a}_1yk(2) + \hat{a}_2yk(1) + \hat{a}_3yk(0) + \hat{b}_1u(2) + \hat{b}_2u(1) + \hat{b}_3u(0)$$

Reinsign. (ABC) = CBA (\$ \$ \$)" is symmeter

The regressor matrix Φ is:

$$\Phi = \begin{bmatrix} yk(2) & yk(1) & yk(0) & u(2) & u(1) & u(0) \\ yk(3) & yk(2) & yk(1) & u(3) & u(2) & u(1) \\ yk(4) & yk(3) & yk(2) & u(4) & u(3) & u(2) \\ yk(5) & yk(4) & yk(3) & u(5) & u(4) & u(3) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

The least squares solution could be implemented as an M file:

```
n=length(yk);
y=yk-1;
u=uk-0.5;
y3=y(1:n-3);
y2=y(2:n-2);
y1=y(3:n-1);
u3=u(1:n-3);
u2=u(2:n-2);
u1=u(3:n-1);
phi=[y1,y2,y3,u1,u2,u3];
hEAS theta=inv(phi'*phi)*phi'*yn
```

Expt 1: Low standard deviation noise

- 50 different data sets collected each consisting of 200 points
- Parameter vector estimated for each data-set:

EACH DATASET IS DIFFERENT AND YIELDS A DIFFERENT PARAMETER VECTOR

Expt 2: Large standard deviation noise

- 50 different data sets collected each consisting of 200 points
- Parameter vector estimated for each data-set:

8.2.1 A Note on Bjas

Consider the simple line fitting problem:

The true system is y=mx, but the data is corrupted by noise, hence the measurements x and y are related by:

$$y = mx + \varepsilon$$

If the measurement noise is random with zero mean:

Now consider the system identification problem of obtaining unbiased estimates of the A(z) and B(z) polynomials.

If the measurements are related via the ARX equation:

$$A(q^{-1})y(k) = B(q^{-1})u(k) + \varepsilon(k)$$

and the residual obeys:

occupacy & and uncestainty 1

then the parameter estimates will be unbiased.

Note: Consider the effect of sensor measurement noise:

Then:

$$y(k) = \frac{B(q^{-1})}{A(q^{-1})}u(k) + n(k)$$

Hence the estimates will be biased:

8.3 Recursive Least Squares

The least squares method is a batch algorithm:

Recursive least Squares (RLS) is an on-line recursive algorithm – which will use each new sample pair $\{u(k+1), y(k+1)\}$ to generate an updated estimate for the parameter vector.

Consider that data has been collected up to the k^{th} sample:

Define the measurement vector at time k:

$$\underline{Y}(k) = \begin{bmatrix} y(m+d) & y(m+d+1) & \cdots & y(k-1) & y(k) \end{bmatrix}^T$$

Now define the regressor matrix $\Phi(k)$ as being formed from all the valid input and output data up to time k.

Hence the estimator equation becomes:

$$\frac{\hat{Y}(k)}{\hat{Y}(k)} = \begin{bmatrix} \hat{y}(m+d) \\ \vdots \\ \hat{y}(m+d+1) \\ \vdots \\ \hat{y}(k) \end{bmatrix} = \Phi(k)\hat{\underline{\theta}}$$

And the least squares solution to the parameters at time k is:

as time unfolds Int

$$\underline{\hat{\theta}}_{IS}(k) = \left(\Phi(k)^T \Phi(k)\right)^{-1} \Phi(k)^T \underline{Y}(k)$$

I (h) and of (h) Now consider that we have available the input/output pair become loaged sampled at the (k+1)th sample.

The measurement vector then becomes:

$$\frac{Y(k+1)}{Y(k+1)} = \begin{bmatrix} y(m+d+1) \\ \vdots \\ \frac{y(k)}{y(k+1)} \end{bmatrix} = \begin{bmatrix} \frac{y(k)}{y(k+1)} \end{bmatrix} \leftarrow \text{ne. appended determine}$$
(Eagust)

The estimated output vector is:

$$\frac{\hat{Y}(k+1)}{\hat{Y}(k+1)} = \begin{bmatrix} \hat{y}(m+d+1) \\ \vdots \\ \vdots \\ \frac{\hat{y}(k)}{\hat{y}(k+1)} \end{bmatrix} = \begin{bmatrix} \frac{\hat{Y}(k)}{\hat{Y}(k+1)} \end{bmatrix}$$
Now paralic times

$$\hat{y}(k+1) = \hat{a}_1 y(k) + \dots \hat{a}_n y(k-n+1) + \hat{b}_1 u(k-d) + \dots \hat{b}_m u(k-d-m+1)$$

Or:
$$\hat{y}(k+1) = \underline{\psi}^{T}(k+1)\hat{\theta} \qquad \psi(k+1) = \begin{bmatrix} y(k) \\ y(k-1) \end{bmatrix} = \begin{bmatrix} \hat{\theta} \\ \vdots \\ y(k-1) \end{bmatrix}$$

The estimator equation can then be written as: $\vec{\Phi}(\mathbf{k})$

$$\frac{\hat{y}(\mathbf{k})}{\hat{y}(m+d+1)} = \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} = \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} = \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} = \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} = \frac{\hat{\varphi}(\mathbf{k})}{y(m+d+1)} + \frac{\hat{\varphi}(\mathbf{k})$$

Which could be written as:

$$\underline{\hat{Y}}(k+1) = \left[\frac{\underline{\hat{Y}}(k)}{\hat{\hat{Y}}(k+1)}\right] = \left[\frac{\underline{\Phi}(k)}{\underline{\psi}^T(k+1)}\right]\underline{\hat{\theta}}$$

The updated parameter vector could be calculated as:

$$\underline{\widehat{\theta}}_{LS}(k+1) = \left(\Phi(k+1)^T \Phi(k+1)\right)^{-1} \Phi(k+1)^T \underline{Y}(k+1)$$

as time passpares this becomes eidiculous !!! =) memory and cake, time

$$\Phi(k+1)^{T}\Phi(k+1) = \begin{bmatrix} \frac{\Phi(k)}{\sqrt{T}(k+1)} \end{bmatrix}^{T} \begin{bmatrix} \frac{\Phi(k)}{\sqrt{T}(k+1)} \end{bmatrix} = \begin{bmatrix} \Phi(k) \end{bmatrix} \begin{bmatrix} \Psi(k+1) \end{bmatrix} \begin{bmatrix} \Psi(k+1) \end{bmatrix} \begin{bmatrix} \Phi(k) \end{bmatrix}$$

= \$ (1+4) 4 (4) \$ (4) \$ = Now we will define:

$$P(k) = (\Phi(k)^T \Phi(k))^{-1}$$
$$P(k+1) = (\Phi(k+1)^T \Phi(k+1))^{-1}$$

Hence we can now write:

$$P(k+1) = \left[\Phi(k)^T \Phi(k) + \underline{\psi}(k+1)\underline{\psi}^T(k+1) \right]^{-1}$$

$$= \left[P(k)^{-1} + \Psi(k+1) \Psi^T(k+1) \right]^{-1}$$

Householder's Matrix Inversion lemma states:

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

Choose: $\beta = P(k)^{-1}$

sets dimension

0=47(B+1)

B= 4 (1+1)

Then: be imake

$$P(k+1) = \left[P(k)^{-1} + \underline{\psi}(k+1)\underline{\psi}^{T}(k+1)\right]^{-1}$$

Could be written as:

NO INVERSION OF A LARGE MATRIX IS REGUIRED TIF WE know P(b) The get P(b+1)

This can be simplified to:

$$P(k+1) = P(k) - \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^{T}(k+1)P(k)}{1 + \underline{\psi}^{T}(k+1)P(k)\underline{\psi}(k+1)}$$

The updated parameter vector is then generated from:

$$\frac{\partial_{LS}(k+1)}{\partial_{LS}(k+1)} = \left(\Phi(k+1)^T \Phi(k+1)\right)^{-1} \Phi(k+1)^T \underline{Y}(k+1)$$

$$\frac{\partial_{LS}(k+1)}{\partial_{LS}(k+1)} = P(k+1) \frac{\Phi^T(k+1)}{\Phi^T(k+1)} \frac{1}{\Lambda} \frac{$$

$$\Phi(k+1)^{T}\underline{Y}(k+1) = \begin{bmatrix} -\frac{\Phi(k)}{2} - \end{bmatrix}^{T} \begin{bmatrix} \underline{Y}(k) \\ \underline{Y}(k+1) \end{bmatrix} = \begin{bmatrix} \Phi(k) \\ \underline{Y}(k+1) \end{bmatrix} \begin{bmatrix} \frac{Y}{2}(k) \\ \underline{Y}(k+1) \end{bmatrix}$$

(1十月)か(1十日)か十(円)を一

The parameter estimate can then be written as: P(k+1)

$$\hat{\theta}_{LS}(k+1) = \left[P(k) - \frac{P(k)\underline{w}(k+1)\underline{w}^{T}(k+1)P(k)}{1+\underline{w}^{T}(k+1)P(k)\underline{w}(k+1)} \right] \left[\Phi(k)^{T} \underline{Y}(k) + \underline{w}(k+1)y(k+1) \right]$$

Multiplying this out: $\begin{bmatrix} \phi(k)^T \phi(k) \end{bmatrix} \dot{\phi}(k) \dot{\gamma}(k)$

$$\frac{\hat{\theta}_{JS}(k+1) = \left(P(k)\Phi(k)^T \underline{Y}(k)\right)}{P(k)\underline{\psi}(k+1)P(k)} + P(k)\underline{\psi}(k+1)\underline{y}(k+1)\underline{\psi}(k+1)\underline{\psi}^T(k+1)P(k) - \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^T(k+1)P(k)}{1+\underline{\psi}^T(k+1)P(k)\underline{\psi}(k+1)} + \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^T(k+1)P(k)\underline{\psi}(k+1)}{1+\underline{\psi}^T(k+1)P(k)\underline{\psi}(k+1)} + \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^T(k+1)P(k)\underline{\psi}(k+1)\underline{\psi}^T(k+1$$

TUTORIAL:

Show that the parameter update algorithm can be expressed as: **NEW DRTA BECOMES RVAILABLE CLUCK+1**, $y(k+1) = \frac{P(k)\underline{w}(k+1)}{1+\underline{w}^T(k+1)P(k)\underline{w}(k+1)}$ $\psi \qquad \qquad \psi$

$$\hat{\boldsymbol{y}}(k+1) = \underline{\boldsymbol{\psi}}^T(k+1) \boldsymbol{\hat{\boldsymbol{\theta}}}_{LS}(k) \quad \text{prediction frack}$$

$$\underline{\boldsymbol{\hat{\boldsymbol{\theta}}}}_{LS}(k+1) = \underline{\boldsymbol{\hat{\boldsymbol{\theta}}}}_{LS}(k) + L(k+1) \big(\boldsymbol{y}(k+1) - \hat{\boldsymbol{y}}(k+1) \big)$$

$$P(k+1) = \left[P(k) - \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^{T}(k+1)P(k)}{1 + \underline{\psi}^{T}(k+1)P(k)\underline{\psi}(k+1)} \right]$$

8.3.1 A Note on the Choice of Excitation Signal

The need to excite the dynamics of the process over the frequency range of interest – consider the solution to batch least squares:

$$\underline{\hat{\theta}}_{LS} = (\Phi^T \Phi)^{-1} \Phi^T \underline{Y}$$

If the data collected is not rich enough in information then: $\phi^{T}\phi$ will become early definitely and we will not get inverse.

Choices of excitation include:

teinwoods - mixture of freed pange

* chiap Mounne

+ square wowe - contains odd harmonies copeful about foeguency * Preudo Random Binacy Sequence PRBS - it looks like white noise

8.3.2 Adaptive Pole Placement Control

Use RLS algorithm to provide on-line updates of the parameters – hopefully this will allow controller to track slow changes in the process.

Each new update of the parameter vector is then used, to design the controller polynomials, based on the polynomial poleplacement technique.

* note non linearity

* need for "packetting software" to partect the
RLS estimator