```
In [4]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        df = pd.read_csv("train.csv")
        df.head()
```

ut[4]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4										
[n [5]:	df	s.set(style= .info() .describe()	"whitegrio	d")							

df.isnull().sum()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 891 entries, 0 to 890
       Data columns (total 12 columns):
           Column
                        Non-Null Count Dtype
           -----
                         -----
       0
           PassengerId 891 non-null
                                        int64
        1
            Survived
                        891 non-null
                                        int64
        2
           Pclass
                        891 non-null
                                        int64
        3
           Name
                        891 non-null
                                        object
        4
           Sex
                        891 non-null
                                        object
        5
           Age
                        714 non-null
                                        float64
                                        int64
        6
           SibSp
                        891 non-null
        7
           Parch
                        891 non-null
                                        int64
           Ticket
                        891 non-null
                                        object
        9
                        891 non-null
                                        float64
            Fare
                                        object
        10 Cabin
                        204 non-null
        11 Embarked
                        889 non-null
                                        object
       dtypes: float64(2), int64(5), object(5)
       memory usage: 83.7+ KB
Out[5]: PassengerId
        Survived
                         0
        Pclass
                         0
        Name
                         0
        Sex
                         0
                       177
        Age
        SibSp
                         0
        Parch
                         0
        Ticket
                         0
        Fare
                         0
        Cabin
                       687
        Embarked
                         2
        dtype: int64
In [7]: sns.countplot(x="Survived", data=df)
        plt.show()
```


The majority of passengers did not survive. Survivors are significantly fewer compared to non-survivors, indicating that the Titanic disaster had a high fatality rate.

```
In [8]: sns.histplot(df["Age"], kde=True)
plt.show()
```


Most passengers were between 20–40 years old. There are fewer passengers in the older age groups, and some missing values in the Age column.

```
In [9]: sns.histplot(df["Fare"], kde=True)
  plt.show()
```


Most fares are concentrated between 0 and 100, with a few very high outliers. Higher fares often indicate first-class tickets.

```
In [10]: sns.countplot(x="Sex", hue="Survived", data=df)
plt.show()
```


Females had a much higher survival rate compared to males. This supports the "women and children first" rescue policy.

```
In [11]: sns.countplot(x="Pclass", hue="Survived", data=df)
   plt.show()
```


First-class passengers had the highest survival rate, followed by second class. Third-class passengers had the lowest survival rate.

```
In [12]: sns.scatterplot(x="Age", y="Fare", hue="Survived", data=df)
    plt.show()
```


Passengers who paid higher fares (often first-class) had a better chance of survival. Younger passengers also show slightly better survival rates.

```
In [13]: sns.heatmap(df.select_dtypes(include=["number"]).corr(), annot=True, cmap="coolwarm
plt.show()
```


Survival is positively correlated with Fare and negatively correlated with Passenger Class (lower class number means higher class). Age shows a weaker correlation with survival.

Summary

- The majority of passengers did not survive the Titanic disaster.
- Females had a much higher survival rate than males.
- First-class passengers survived more often than those in lower classes.
- Younger passengers had slightly higher chances of survival.
- Higher fares were generally associated with better survival odds.
- The Age column has missing values that might require imputation in further analysis.
- Fare distribution shows a few extreme outliers.
- Correlation analysis confirms the importance of class and fare in survival chances.