(a) $S = \{ y_1 a_1 + y_2 a_2 \mid -1 \leq y_1 \leq 1, -1 \leq y_2 \leq 1 \}$, $a_1, a_2 \in \mathbb{R}^n$ is a polyhedron.

First, let $S_1 = \{ y_1 a_1 + y_2 a_2 \mid y_1, y_2 \in \mathbb{R}, a_1, a_2 \in \mathbb{R}^n \}$ be the plane defined by a_1 , a_2 .

Second, let $S_2 = \{Z + Y_1 a_1 + Y_2 a_2 \mid -1 \le Y_1 \le 1, Z_1 a_1, a_2 \in \mathbb{R}^n, Z_1 = Z_2 = 0\}$ be the Slab parallel to a_2 and orthogonal to S_1 .

Third, let $S_3 = \{Z + Y_1 a_1 + Y_2 a_2 | -1 \le Y_2 \le 1, Z_1, a_1, a_2 \in \mathbb{R}^n, Z_{a_1} = Z_1 a_2 = 0\}$ be the slab parallel to a_1 and orthogonal to S_1

Then the 9 is the intersection of Si, Sz, Sz, as the below figure.

Then we can describe S1, S2, S3 with linear inequalities as follow:

 $S_i : u_i^T \chi = 0$ for i = 1, ..., n-2

Ui are n-2 vectors or the gonal to a and az.

 S_2 = let b_1 be a vector in S_1 and orthogonal to a_2 , and we can set b_1 as $b_1 = a_1 - \frac{a_1^T a_2}{\|a_2\|_2^2} a_2$. Then $x \in S_2$ if and only if $-\left|b_1^T a_1\right| \leq b_1^T x \leq \left|b_1^T a_1\right|$

 S_3 : let b_2 be a vector m S_1 and orthogonal to a_1 , and we can set b_2 as $b_2 = a_2 - \frac{a_2 a_1}{\|a_1\|_2^2} a_1$. Then $x \in S_3$ if and only if $-|b_2 a_2| \le b_2 x \le |b_2 a_2|$

Put them together, we can denote S as the following linear inequalities: $U_{i} \times = 0 \quad , \quad \bar{\imath} = 1 , \ldots, \, n-2$ $b_{i} \times \leq |b_{i} a_{i}|$ $-b_{i} \times \leq |b_{i} a_{i}|$ $b_{2} \times \leq |b_{3} a_{2}|$ $-b_{5} \times \leq |b_{3} a_{2}|$

(b) We can set $A_1 = \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix}$, $A_2 = \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix}$, then we can describe S as $S = \{x \in \mathbb{R}^n \mid x \geq 0, \ 1^T x = 1, \ A^T x = b_1, \ A^T x = b_2 \}$ where $a_1, \dots, a_n \in \mathbb{R}$ and $a_n \in \mathbb{R}$. By definition, polyhedron is intersection of

finite number of halfspaces and hyperplanes, so S is a polyhedron.

By Canchy - Schwarz inequality, we know that $xy \leq ||x||_2 \cdot ||y||_2$. And by definition of S, we know that $x^Ty \leq 1$ for all $||y||_2 = 1$. Hence, we have $||x||_2 \leq 1$. So S is the intersection of the unit ball $\{|x| \cdot ||x||_2 \leq 1\}$ and the nonnegative orthant \mathbb{R}^n_+ . By the definition of polyhedron, we have that S is not a polyhedron.

(d) First of all, we have to prove $x^Ty \le 1$ for all y with $\sum_{i=1}^{n} |y_i| = 1$ (a) $|x_i| \le 1$, $|x_i| \le 1$ for all i. Then $x^Ty = \sum_{i=1}^{n} |y_i| \le \sum_{i=1}^{n} |y_i| = 1$ if $\sum_{i=1}^{n} |y_i| = 1$. Conversely, suppose that x is a nonzero vector that satisfies $x^Ty \le 1$ for all y with $\sum_{i=1}^{n} |y_i| = 1$. We can make y = 1 let y = 1 be an index for which $|x_j| = 1$ and $|x_i|$ and take $|y_j| = 1$ if $|x_j| > 0$, $|y_j| = 1$ if $|x_j| > 0$, and $|y_j| = 0$ for $|x_j| = 1$.

With the choice of y, we have $x^Ty = \sum x_i y_i = y_j x_j = |x_j| = \max_i |x_i|$ Therefore, we must have $\max_i |x_i| \le 1$.

All this implies that we can describe S by a finite number of linear inequalities. The set S is the intersection of the nonnegative orthant with the set $\{x \mid -1 \le x \le 1\}$, which is the solution of the 2n linear inequalities:

 $-\lambda_i \leq 0, \quad i = 1, ..., n$ $\lambda_i \leq 1, \quad i = 1, ..., n$

Therefore, S is a polyhedron.

2.13 We have $XX^T \ge 0$ and rank $(XX^T) = k$. A positive combination of such matrices can have rank up to n, but never less than k. Let A, B, be positive semi-definite matrices of rank k. Suppose $V \in \mathcal{A}$ ull (A + B), then we have

 $(A + B) v = 0 \Leftrightarrow v^{\mathsf{T}} (A + B) v = 0 \Leftrightarrow v^{\mathsf{T}} A v + v^{\mathsf{T}} B v = 0$

Since A, B are positive semi-definite and $v^TAv + v^TBv = 0$, we have $v^TAv = 0 \iff Av = 0$, $v^TBv = 0 \iff Bv = 0$.

Hence, any vector in Null (A + B) must be in Null (A) and Null (B), which means that $\operatorname{Clim}(\operatorname{Null}(A+B))$ (annot be greater than $\operatorname{clim}(\operatorname{Null}(A))$ and $\operatorname{dim}(\operatorname{Null}(B))$). Therefore, we conclude that $\operatorname{rank}(A+B) \ge k$ for any A, B such that $\operatorname{rank}(A,B) = k$ and A, $B \ge 0$.

It follows that the conic hull of the set of rank-k outer products is the set of positive Semidefinite matrices of rank greater than or equal to k, along with the zero matrix.

2.22: Following the hint, we have to prove that $S = \{x-y \mid x \in C, y \in D\}$ is convex first. Assume that $e, f \in S$, $a, b \in C$, $c, d \in D$ such that e = a - c, f = b - d. Then we have $t \cdot e + (1-t)f = t(a-c) + (1-t)(b-d)$

 $= \left(ta + (1-t)b \right) - \left(tc + (1-t)d \right) \in C - D = S$

Therefore, we have confirmed that S is convex.

Next, assume $0 \in ceS$. Since $0 \notin S$, 0 has to be in the boundary of S. If S has empty interior, it is contained in a hyperplane $\{z \mid a^{\dagger}z = b\}$, which must include the origin, hence b = 0. That is $a^{\dagger}x = a^{\dagger}y$ for all $x \in C$ and $y \in D$ so we have a trivial seperating hyperplane.

If S has nonempty interior, we consider the set $S_{\epsilon} = \{2 \mid B(2,\epsilon) \subseteq S \}$ where $B(3,\epsilon) \}$ is the Euclidean balk with center 2 and radius $\epsilon > 0$. S_{ϵ} is S shrunk by ϵ , so all S_{ϵ} is closed and convex and does not contain 0. By partial separating hyperplane result, it is structly separated from $\{0\}$ by at least one hyperplane with normal vector $A(\epsilon)$: $A(\epsilon)^{T} > 0$ for all $E \in S_{\epsilon}$ and we can assume $\|A(\epsilon)\|_{2} = 1$.

Now let $\in K$, K=1,2,... be a sequence of positive values of $\in K$ with E in E = 0. Since $||A(E)||_2 = 1$ for all K, the sequence A(E) contains a convergent subsequence, and we can denote its limit by \overline{A} . We have $A(E)^{T} \ge 0$ for all $E \in S_{-E}$ for all K. Therefore, $\overline{A}^T \ge 0$ for all $\overline{E} \in S_{-E}$ and $\overline{A}^T \ge 0$ for all $\overline{E} \in S_{-E}$. i.e. $\overline{A}^T \times \mathbb{R}^T \times \mathbb{R}^T$

A1.5

- (a) Since C and D are convex, and the intersection operation preserve convexity. Therefore, $C \cap D$ is convex. To prove $C \cap D$ is a cone, suppose $x \in C \cap D$. It implies that $x \in C$ and $x \in D$, which also implies $\theta x \in C$ and $\theta x \in D$ for any $\theta \ge 0$ since G, D are cones. Thus, $\theta x \in C \cap D$ for any $\theta \ge 0$. Hence, $C \cap D$ is a convex cone. From the textbook, we know that a dual cone is always convex, so C^* and D^* are convex. And $C^* + D^*$ is the convex hull of $C^* \cup D^*$, which is a convex cone.
- Suppose $x \in C^* + D^*$, then we can denote x as x = u + v, where $u \in C^*$ and $v \in D^*$. By definition of dual cone, we know that $u^Ty \ge 0$ for all $y \in C$ and $v^Ty \ge 0$ for all $y \in C$ and $v^Ty \ge 0$ for all $y \in C$ and $v^Ty \ge 0$ for all $y \in C$ and $v^Ty \ge 0$ for all $v \in C$ and $v^Ty \ge 0$ for all $v \in C$ and $v^Ty \ge 0$ for all $v \in C$ and $v^Ty \ge 0$ for all $v \in C$ and $v^Ty \ge 0$ for all $v \in C$ and $v \in C$ an
- From (a), we know that CDD and $C^* + D^*$ are convex cones. Hence, we have $(CD)^{**} = CDD$ and $(C^* + D^*)^{**} = C^* + D^*$. Suppose $X \in (C^* + D^*)^{**}$. It implies that $X^TY \geq 0$ for all $Y \in C^* + D^*$ and we can write Y = 0 as Y = U + V = V = 0. We can be rewritten as $X^TY = X^T = V = 0$. For all $U \in C^*$ and $V \in D^*$. Strice $V \in C^* = 0$ and $V \in D^*$, we can set V = 0. Such that V = 0 for all $V \in C^* = 0$. And set V = 0 such that V = 0 for all $V \in C^* = 0$. This implies that $V \in C^* = 0$ and $V \in D^* = 0$, so $V \in C \cap D$. Hence, $V \in C^* = 0$ which implies $V \in C^* = 0$ and $V \in D^* = 0$. We have showed $V \in C^* = 0$ and

(COD)* C C+D*, which implies (COD)* = C+D*.

 $V = \{x \mid Ax \geq 0\}$ where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$. V can be written as:

 $V = \{x \mid Ax \ge 0\} = \{x \mid a_1x \ge 0\} \cap \{x \mid a_2x \ge 0\} \cap \dots \cap \{x \mid a_mx \ge 0\},$

a,, , am e R.

Vising the previous results, we can write V* as:

$$V^* = \left\{ x \mid a_1 x \geq 0 \right\}^* + \dots + \left\{ x \mid a_m x \geq 0 \right\}^*$$

The dual of $\{x \mid a_i x \geq 0\}$ is=

$$V_{i} = \left\{ x \mid a_{i} \pi \geq 0 \right\}^{*} = \left\{ y \mid y^{T}_{x} \geq 0 \text{ for all } x \in V_{i} \right\} = \left\{ v \mid a_{i} \mid (v \mid a_{i}) \mid \pi \geq 0 \text{ for all } x \in V_{i} \right\}$$

Therefore,

$$V^* = \{ va_i^T | v \ge 0 \} + \dots + \{ va_m^T | v \ge 0 \} = \{ v_i a_i^T + \dots + v_m a_m^T | v_i \ge 0 \text{ for } i = 1, \dots, m \}$$

$$= \{ A^T v | v \ge 0 \}$$

```
A. 1.9
```

- Suppose $C_1 \in \mathbb{C}^n$, $C_2 \in \mathbb{C}^n$ and $0 \le \theta \le 1$. Then let $C = \theta C_1 + (1-\theta)C_2$. $\chi^T C_1 \chi = \chi^T \left(\theta C_1 + (1-\theta)C_2\right) \chi = \theta \cdot \chi^T C_1 \chi + (1-\theta)\chi^T C_2 \chi$. Since $C_1 \in \mathbb{C}^n$, $C_2 \in \mathbb{C}^n$, we have $\chi^T C_1 \chi \ge 0$, $\chi^T C_2 \chi \ge 0$. And since $0 \le \theta \le 1$, we have $\theta \chi^T C_1 \chi \ge 0$ and $(1-\theta)\chi^T C_2 \chi \ge 0$, which implies $\chi^T C_1 \chi \ge 0$ means that $C_1 \in \mathbb{C}^n$. And since $C_1 \in \mathbb{C}^n$ and $C_2 \in \mathbb{C}^n$, we have $C_1 : i = 1$ for i = 1, ..., n and $C_2 : i = 1$ for i = 1, ..., n. Then $C_{ii} = \theta C_{i,i} + (1-\theta)C_2$, $i = 0 \times 1 + (1-\theta)\chi = 1$ for i = 1, ..., n. Hence, $C_1 \in \mathbb{C}^n$ which means that $C_1 \in \mathbb{C}^n$ is a convex set.
- Suppose C₁ and C₂ are nonnegative correlation matrices and $0 \le \theta \le 1$. Then let $C = \theta C_1 + (1-\theta)C_2$. Since $C_1 \in C^n$, $C_2 \in C^n$ where C^n is a convex set, $C = \theta C_1 + (1-\theta)C_2 \in C^n$ for any $0 \le \theta \le 1$. And C_1 , $C_2 \in C^n$ more gative correlation matrices, we have C_1 , $\delta_1 \ne 0$ and C_2 , $\delta_2 \ne 0$ for $\delta_1 \ne 0$. Then we have $C_1 \in C_2 \in C^n$ for $\delta_2 \ne 0$ for $\delta_3 \ne 0$. Hence, $C_4 \in C_4$ also a nonnegative correlation matrix, which implies that $\{C \in C^n \mid C_1 \ne 0, \delta_2 \ne 0\}$ is a convex set.
- Suppose C1 and C2 are highly correlated currelation matrices and $0 \le \theta \le 1$. Then Set $C = \theta G + (1-\theta)C_2$. Since C^n is a convex set and $C_1 \in C^n$, $C_2 \in C^n$, $C_3 = \theta G + (1-\theta)C_4 \in C^n$ for any $0 \le \theta \le 1$. And $C_1, ij \ge 0$, if for i,j = 1,...,n, $C_2, ij \ge 0$, if for i,j = 1,...,n. This implies that $C_3 = \theta C_1, ij + (1-\theta)C_2, ij \ge 0$. Or $f + (1-\theta) \times 0$ if f = 0, if for f = 0, if f = 0,