P-chem Thermo SDSU 2018-02-72 CHEM 343 SP19 SAV 0041 MF 2-2:50P, M. At Kins Thermo 10th ed (h. 3)

4 de Paula Remember "Big Picture" is Chapter "O'
Foundations, Start p. 2 Why do things happen? Mechanical analogy 1-D, I particle system physics, Newton, an mechanics V = potential E K = Kinetic energy

E = V + K conserved ; f forces E.g. I-D Hooke's law spring =1000000 E rest position Force is always towards a lower V DV < O

	Com de sixilar with state variables
	(v, T, P, H etc.) and a thermodynamic
	system?
	5787
Ма	y sportaneous reactions of processes are exothernic
Coast	(M<0 » DH<0)
(MI957	
Som	e are not! - Evaporation/boiling (To)
	- Evaporation boiling (To
141	- Ba(OH)2-8H2O(5) + NHY(2(5)
	- Dissolving NHyCl in H20
	- Mixing / Aithusion (Thange in U or H)
	- Mixing / diffusion (change in it or H)
Ś	so, we need something alse!
	To, we need something olse! Mer His not enough
	In cases above, always more his persal of energy ("randomness" or "disorder") in products
	("randomness" or disorder) in products
	not well defined!
	not well defined!

Heat engine 1816 Stirling ongine www.animakelengines.com/vstirling.html heat removed from In heat rejected at To work done PV diagram Abstraction - Cornet cycle Fig. 3A.7 Atlans gas ,sothermov = const

Clausius inequality two-dwger 7,0

(d5 > 0 isolated system

0 P DS - DS - DS - 70

Overall, system plus surroundings, entropy is NOT conserved. (not always - it is if rev.)

Example problem 3A.10(a) Nz 14 g 298 K 31.00 bar initially

(See also illustration 3A.7)

doubles volume Vz = 2V, (i) ; so thermal reversible process DS sur dS = dev isothermal DS = dev T Need grev isothermal, ideal gos DU = 0 for ideal gos, isothermal why? See Kinetic theory section 13, B

intermolec. forces = 0 between particles

E = V + K = K (Kinetic only)

e.g. E = 3RT monatomic ideal gos DU=0=9+W 9=-W Thes = - were we can calculate his! $dw = -PdV \qquad (\epsilon_{9}, 2A,8a)$ $deal P = \frac{nRT}{V} \qquad Ww = -\frac{nRT}{V}dV = -nRT \left(\frac{dV}{V}\right)$

 $W_{rev} = -nRT ln(\frac{V_2}{V_1})$ $q_{rev} = nRT ln(\frac{V_2}{V_1})$

3A.10(a) (i) ...
Nz 14g 0.50mol $\Delta S = \frac{q_{nv}}{T} = \frac{1}{\pi} \cdot nR\tau ln(\frac{V_2}{V_1}) = nRln(\frac{V_2}{V_1}) \frac{\epsilon_9}{3A.16}$ $DS_{145} = (0,50mol)(8.31 \frac{J}{K.mol}) l_n(V_1)$ $(0.500mol)(8.31 \frac{J}{mol.16}) l_n(2) = 28 \frac{J}{16} = \Delta S_{545}$ (note S has same units as R energy) Tompwhat about DS save?

Note the surroundings are a "special" case,

not like a normal system

For surv JS - Igo
Surv Tsur

Tsur - 7575

Tsothermal DS surv = Tsurv Tsurv Tsurv = Tsys (thermal) 1 5 5 = - DSys -2.8 = D5 DS = DS = 0 (reversible process)

3A.10(6)(11) Same expansion $V_2 = 2V$, but $P_{ex} = 0$ system: same initial of final state V2=2V, isothernal

Since S is a state function DS is some as (i) i.e. 15 = 2.8 = Surroundings? what is 9 your? 950rv = - 9595 What .s 7575 9575 = - W575 What is wsys? Constant Pex exponsion dw = - Pex dV w= - Pex DV $P_{ex}=0$, v=0, q=0 } system So, 9 =0 , So DS = 0 DSuria = DS 375 + DS = 2.8+0 = +2.8 K inveversible process

Atkins Pr. 3B,Z Find 5m of lead of 25°C -from (p data 15 = d9mx if constant is dg = CpdT heating dq = CdT Can do if -Cp 2 const. DS = Cpln (== NS = CodT = nCpm In (T2 We have functional form - for Cp(T) e.g. Table 28.1 T/K (p.m/(JK-1mold) C = a+ bT + == - we have data, (P,T) 2.8 10 numerically integrate 7.0 15 10.8 20 get Tus T 14.1 25 plot, integrate 16.5 30 50 21.4 0-72981C 70 23.3 100 24.5 What about OK? 150 25.3 200 25.8 26.2 250

298

26.6

Debro Einstein etz)
Data, theory (Debye Einstein etc) show Ip ~ 73 at very law T
show of
So CP 20 05 T -20
111 - deta part no T = OK
Add one data point on T = OK Co/T = O J/MDIK
what is 5 at OK
Third law Sm = 0
1 Nivel 1000
- crystal must be perfect -
- crystal must be perile
If not, Sm can be nonzero at DIC
It not on
Conetines can use statistical interp of 5
S= klnw, to estimate the "residual" molar
entropy

```
% MATLAB script for Problem 38.2, Atkins and de Paula P-Chem Thermo
clear
% Data given in problem. Cp in J/(mol K), T in K
Cpdata=[2.8,7.0,10.8,14.1,16.5,21.4,23.3,24.5,25.3,25.8,26.2,26.6];
Tdata=[10,15,20,25,30,50,70,100,150,200,250,298];
% Interesting to plot Cp by itself, then also Cp/T, the entropy integrand
% For the integrand, we manually add the data point for OK, Cp/T -> 0
§ In MATLAB, the , operator will make division do element by element
CpoverT=[0,Cpdata./Tdata];
% Also have to add to the xaxis (T)
T=[0, Tdata];
% To create the figure, we can do it first manually/interactive, then
% use the drop down menu to have it generate the code
% Auto-generated by MATLAB on 22-Feb-2019 11:06:35
% Create figure
 figure1 = figure;
 % Comment out the line below if you want the figure to pop up
 set(figure1, 'Visible', 'off');
 8 Create axes
 axes1 = axes('Farent',figure1);
 hold(axes1,'on');
 % Create plot
 plot(T,CpoverT,'Marker','o');
 % Create ylabel
 ylabel({'Cp/T/(J/K)'});
 % Create xlabel
 xlabel({'T/K'});
 box(axes1, 'on');
 print('CpoverTplot.png','-dpng')
 % Now, finally, after all that, we use the MATLAB trapezoidal integration
 % routine to generate the output value.
 Q=trapz(T,CpoverT);
 disp('Estimated molar entropy of lead at 298 K, in J/(mol K):')
  disp(Q)
```

