Reproduction of the paper in Qeios (v2.0).

```
nwavesbit = 7;
     (∗ Cantidad de puestos disponibles para rellenar -- ∗)
     binaryT = Table[IntegerString[n, 2, nwavesbit], {n, 0, (2^nwavesbit - 1)}]
     Length[binaryT]
outs | {0000000, 0000001, 0000010, 0000011, 0000100, 0000101, 0000110, 0000111, 0001000,
     0001001, 0001010, 0001011, 0001100, 0001101, 0001110, 0001111, 0010000, 0010001,
     0010010, 0010011, 0010100, 0010101, 0010110, 0010111, 0011000, 0011001, 0011010,
     0011011, 0011100, 0011101, 0011110, 0011111, 0100000, 0100001, 0100010, 0100011,
     0100100, 0100101, 0100110, 0100111, 0101000, 0101001, 0101010, 0101011, 0101100,
     0101101, 0101110, 0101111, 0110000, 0110001, 0110010, 0110011, 0110100, 0110101,
     0110110, 0110111, 0111000, 0111001, 0111010, 0111011, 0111100, 0111101, 0111110,
     0111111, 1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111,
     1001000, 1001001, 1001010, 1001011, 1001100, 1001101, 1001110, 1001111, 1010000,
     1010001, 1010010, 1010011, 1010100, 1010101, 1010110, 1010111, 1011000, 1011001,
     1011010, 1011011, 1011100, 1011101, 1011110, 1011111, 1100000, 1100001, 1100010,
     1100011, 1100100, 1100101, 1100110, 1100111, 1101000, 1101001, 1101010, 1101011,
     1101100, 1101101, 1101110, 1101111, 1110000, 1110001, 1110010, 1110011, 1110100,
     1110101, 1110110, 1110111, 1111000, 1111001, 1111010, 1111011, 1111100, 1111101,
     11111110, 11111111}
out[0] = 128
     (* -- Esto es como si fuera 8 Hz --- 3 wavebits*)
     (*-- Duración --- *)
     stepTime = 0.0005;
     stepFreq = 1 / stepTime;
     (*Number of points*)
     nn = 10000;
     (*Sample rate*)
     sr = 550 * stepFreq;
     (*Time increment*)
     dt = 1 / sr;
     df = sr / nn;
     binary = Table[IntegerString[n, 2, nwavesbit], {n, 0, (2^nwavesbit - 1)}];
```

Encoding: 1ro lo dividimos

```
myString = "Hello World!";
     binaryStringS = StringSplit[myString, ""]
     binaryStringMap = Table[RandomChoice[binary], {i, 1, Length[binaryStringS]}]
     binaryString = Table[ToExpression[StringSplit[binaryStringMap[i]], ""]],
        {i, 1, Length[binaryStringMap]}]
     (*---*)
     (* La frecuencias --*)
     SizeString = Length[binaryString];
     tinterval = N[sr / 2 / SizeString];
     FreqIn =
      Table [2\pi * RandomReal[\{i * stepFreq, (i + 100) * stepFreq\}], \{i, 1, nwavesbit\}]
out[*] = {H, e, l, l, o, , W, o, r, l, d, !}
outs | {0111001, 0100000, 1000011, 1000010, 0110110, 1100001, 1010110, 1101011, 0011100,
      0101010, 0101100, 0011110}
{\tiny \texttt{out}(\cdot)^{2}} \quad \{ \{0, 1, 1, 1, 0, 0, 1\}, \{0, 1, 0, 0, 0, 0, 0, 0\}, \{1, 0, 0, 0, 0, 1, 1\}, \{1, 0, 0, 0, 0, 1, 0\}, \\
      \{0, 1, 1, 0, 1, 1, 0\}, \{1, 1, 0, 0, 0, 0, 1\}, \{1, 0, 1, 0, 1, 1, 0\}, \{1, 1, 0, 1, 0, 1, 1\},
      \{0, 0, 1, 1, 1, 0, 0\}, \{0, 1, 0, 1, 0, 1, 0\}, \{0, 1, 0, 1, 1, 0, 0\}, \{0, 0, 1, 1, 1, 1, 0\}\}
out_{1} = \left\{337563., 301570., 1.23139 \times 10^{6}, 1.2026 \times 10^{6}, 68716.4, 738566., 1.06924 \times 10^{6}\right\}
myDir = NotebookDirectory[]; FreqIn = Import[myDir <> "Freqs_Test1_v3.tex", "List"];
In[*]:= (* Arreglos -- *)
     SizeElem = SizeString
     Array[Awaves8Avark, {SizeString, nwavesbit}];
     Array[fwaves8Avark, {SizeString, nwavesbit}];
     Array[waves8Avark, {SizeString, nwavesbit}];
     Array[Totalwaves8Avark, SizeString];
     Array[samples1sec8Avark, SizeString];
     Array[Twavesfft8Avark, SizeString];
     (* Para los elementos finales de la matriz *)
     Array[Totalwaves8Avark2, SizeElem];
     Array[samples1sec8Avark2, SizeElem];
     Array[Twavesfft8Avark2, SizeElem];
     (* Para los elementos finales finales de la matriz *)
     Array[Totalwaves8Avark3, 1];
     Array[samples1sec8Avark3, 1];
     Array[Twavesfft8Avark3, 1];
out[-]= 12
tinterval = N[sr / 2 / SizeString];
     Do[
      Do [
         Awaves8Avark[i, j] = binaryString[i][j];
         fwaves8Avark[i, j] = ToExpression[FreqIn[j]] * Awaves8Avark[i, j];
         (*Print[binaryString[i][j],": ",fwaves8Avark[i,j]];*)
         (* Asi todo el mundo va a ser diferente !! --*)
         waves8Avark[i, j] = If[Awaves8Avark[i, j] == 0, 0, Cos[fwaves8Avark[i, j] *t]];
         (*waves8Avark[i,j]=FourierSeries[t/2,t,2];*)
         , {j, 1, nwavesbit}];(*Print["----"];*), {i, 1, SizeString}]
```

```
In[0]:= Do[
     (*--- Total ---*)
     Totalwaves8Avark[i] = Sum[waves8Avark[i, n], {n, 1, nwavesbit}];
      samples1sec8Avark[i] =
       Table[N[{t, Totalwaves8Avark[i]}], {t, (i-1) * stepTime, i * stepTime, dt}];
      Twavesfft8Avark[i] = Fourier[samples1sec8Avark[i][All, 2]];
      , {i, 1, SizeString}]
```

Para ver cuando es más tiempo:

```
In[0]:= Do[
      (*--- Total ---*)
      samples1sec8Avark2[i] =
        Table[N[{t, Totalwaves8Avark[i]}], {t, (i-1), i, dt * 100}];
      , {i, 1, SizeString}]
```

La conformacion de Los 4 elementos:

```
In[-]:= Totalwaves8Avark[1](*0000000*)
     Totalwaves8Avark[2](*001*)
     Totalwaves8Avark[3]
     Totalwaves8Avark[4]
     Totalwaves8Avark[5]
     Totalwaves8Avark[6]
```

Finalmente Concatenamos:

```
in[*]:= (*-- Aqui se concatenan --*)
     Welem = 1
     Do [
      Print[" desde ", Welem * (i - 1) + 1, " : hasta ", Welem * (i - 1) + Welem];
      (*--- Total ---*)
      Totalwaves8Avark3[i] = Join[Table[Totalwaves8Avark[mm], {mm, 1, SizeString}]];
      samples1sec8Avark3[i] = Table[N[{t, Totalwaves8Avark3[i]}] // Flatten,
          {t, (i - 1) * stepTime, i * stepTime, dt}] // Flatten;
      Twavesfft8Avark3[i] =
       Join[Table[Twavesfft8Avark[mm] // Flatten, {mm, 1, SizeString}]] // Flatten
      (*Fourier[samples1sec8Avark3[i]];*)
      , {i, 1, 1}]
```

```
out[-]= 1
      desde 1 : hasta 1
```

out[=]= {400, 400}


```
In[-]:= fsz = 14;
     imgsz = \{250, 250\}
     ymin = -8.2;
     ymax = 5.2;
     letters = {"a)", "", "b)", "", "c)", "", "d)", "", "e)", "", "f)"};
     ptTotal1 = Row[Table[
         ListLinePlot[{samples1sec8Avark[m], samples1sec8Avark[m+1]},
           Frame → True,
           FrameStyle → Directive[FontFamily → "Times"],
           LabelStyle → Directive[Black, fsz],
           PlotStyle → {{Thickness@0.005, Blue@Darker}},
           PlotLabel → letters[m],
           PlotLegends → Placed[{
              binaryStringS[m] <> ": " <> binaryStringMap[m],
              binaryStringS[m + 1] <> ": " <> binaryStringMap[m + 1]
             },
             {0.5, 0.2}],
           FrameLabel → {"time/s", "Wb(t)"},
           PlotRange → {{0, SizeString * stepTime}, {ymin, ymax}},
           FrameTicks →
            {{{-4, 4, 1}, None}, {{0, stepTime * 3, stepTime * SizeString}, None}},
           ImageSize \rightarrow imgsz], {m, 1, 5, 2}]];
     ptTotal2 = Row[Table[
         ListLinePlot[{samples1sec8Avark[m], samples1sec8Avark[m+1]},
           Frame → True,
           FrameStyle → Directive[FontFamily → "Times"],
           LabelStyle → Directive[Black, fsz],
           PlotStyle → {{Thickness@0.005, Blue@Darker}},
           PlotLabel → letters[m],
           PlotLegends → Placed[{
              binaryStringS[m] <> ": " <> binaryStringMap[m],
              binaryStringS[m + 1] <> ": " <> binaryStringMap[m + 1]
             },
             {0.5, 0.2}],
           FrameLabel → {"time/s", "Wb(t)"},
           PlotRange → {{0, SizeString * stepTime}, {ymin, ymax}},
           FrameTicks →
            {{{-4, 4, 1}, None}, {{0, stepTime * 3, stepTime * SizeString}, None}},
           ImageSize → imgsz], {m, 7, 11, 2}]];
     ptTotal = Grid[{{ptTotal1}}, {ptTotal2}}]
```

out[*] = {250, 250}

 out_{6} = {{70, 9.19945}, {85, 8.38921}, {99, 10.3355}, {105, 7.91176}}

```
In[0]:= (*---*)
                           binaryStringS[itest]
                           Print["Mapa"];
                           binaryStringMap[itest]
                           decod1 =
                               Table[If[Abs[2\,\pi*\,N[peaks[\![k,\,1]\!]]*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]]<15*stepFreq-fwaves8Avark[itest,\,i]
                                              , 1, 0], {k, 1, Length[peaks]}, {i, 1, nwavesbit}]
                           Print["Decodificado"];
                           Sum[decod1[i], {i, 1, Length[decod1]}]
out[0] = H
                        Мара
Out[0] = 0111001
\textit{Out[n]} = \{\{0, 1, 0, 0, 0, 0, 0, 0\}, \{0, 0, 1, 0, 0, 0, 0\}, \{0, 0, 0, 1, 0, 0, 0\}, \{0, 0, 0, 0, 0, 0, 1\}\}
                        Decodificado
out[*] = {0, 1, 1, 1, 0, 0, 1}
```

Hacer un diagrama cool de esta metodologia.

```
itest = 9;
     Totalwaves8Avark[itest]
     npuntos = sr;
     rango = Range[(itest - 1) * sr * stepTime, itest * sr * stepTime];
        Table[{rango[j], Abs[(Twavesfft8Avark[itest])][j]}, {j, 1, sr * stepTime / 2}];
     binaryString [itest]
     binaryStringS[itest]
     binaryStringMap[itest]
     Totalwaves8Avark[itest];
     FregIn
     peaks = FindPeaks[data[All, 2], 1, 1, 5];
     Table[N[2\pi * peaks[k, 1]] * stepFreq, {k, 1, Length[peaks]}]
      (*---*)
     decod1 =
        Table[If[Abs[2\pi * N[peaks[k, 1]] * stepFreq - fwaves8Avark[itest, i]] < 15 * stepFreq,
          1, 0], {k, 1, Length[peaks]}, {i, 1, nwavesbit}];
     SumDecod = Sum[decod1[i], {i, 1, Length[decod1]}]
     SumDecod = Table[If[SumDecod[i]] > 1, 1, SumDecod[i]]], {i, 1, Length[SumDecod]}];
      (*---*)
     DecodFinal = If[SumDecod == binaryString[itest]], binaryStringS[itest]], "Unknown!"];
      (*---*)
     ListLinePlot[
      data,
      PlotStyle → {{Thickness@0.003, Blue@Darker}}, PlotLegends → Placed[{DecodFinal},
         {0.82, 0.95}],
       ImageSize → Small,
       (*PlotRange→
        {{(itest-1)*sr,(itest-1)*sr+0.05*Abs[(itest-1)*sr-itest*sr]},{-3,48}},*)
       PlotRange \rightarrow \{\{rango[1] * 0.98,
           (peaks[Length[peaks]][1] + (itest - 1) * sr * stepTime - 1) + 100}, {-3, 25}},
       Epilog → Table[{Text[Style["", 10],
            {peaks[[]][1] + (itest - 1) * sr * stepTime - 1,
             peaks[[]][2] * 1.18}],
          Red, PointSize[Medium],
          Point@{peaks[[]][1] + (itest - 1) * sr * stepTime - 1,
             peaks[[][2]]}}, {l, 1, Length[peaks]}]
     ]
out[*] = \cos[264985.t] + \cos[1.04821 \times 10^6 t] + \cos[1.23313 \times 10^6 t]
out[0] = {0, 0, 1, 1, 1, 0, 0}
0 u t [ - ] = r
Out[-] = 0011100
outs 1 {513 007., 870 613., 1.0482121082694172*^6, 1.2331338086689976*^6, 264 985., 869 858.,
      1.297988877870819 * ^6}
out[\circ] = \{276460., 1.06814 \times 10^6, 1.24407 \times 10^6\}
out[-] = \{0, 0, 1, 1, 1, 0, 0\}
```


Conclusion: El cambio de amplitud en las ondas afecta el grosor de los picos de frecuencia.

Entonces la pregunta es: como es o queda

```
fsz = 16;
In[0]:=
     imgsz = \{450, 450\}
     ymin = -4;
     ymax = 4;
     xmin = -500;
     xmax = sr * SizeString * stepTime + 500; (*tambien hay información en 11000 *)
     yminHz = -5;
     ymaxHz = 20;
     k = 1; (*- a -*)
     m = 2; (*- 1, no tiene solucion -- b -*)
     ptHelloWHv1 = Show[{ListLinePlot[{
           Abs[(Twavesfft8Avark3[k])],
          Table[{Range[(m-1) * sr * stepTime, m * sr * stepTime][j]] + m,
             Abs[(Twavesfft8Avark[m])][j]]}, {j, 1, sr * stepTime / 2}]
          },
          Frame → True,
          FrameStyle → Directive[FontFamily → "Times"],
          LabelStyle → Directive[Black, fsz],
          PlotStyle → {
            {Thickness@0.004, Blue},
            {Thickness@0.002, Red, Dashed}},
          FrameLabel \rightarrow {"Frequency/Hz" <> "[x" <> ToString[stepFreq] <> "]", "|Wb (f) |"},
         PlotLegends → Placed[
            {binaryStringS, binaryStringS[m] <> ": " <> binaryStringMap[m]}, {0.5, 0.82}],
          PlotRange → {{0, xmax}, {yminHz, ymaxHz}},
          ImageSize → imgsz]}, Padding → 0]
```

out[*] = $\{450, 450\}$


```
myDir = NotebookDirectory[];
Export[myDir <> "/Waves_8bits_Hello_v7.pdf", ptHelloWHv1];
```

```
In[-]:= fsz = 16;
     imgsz = \{600, 600\}
     ymin = -4;
     ymax = 4;
     xmin = -500;
     xmax = sr * SizeString * stepTime + 500;
     (*tambien hay información en 11000 ∗)
     yminHz = -5;
     ymaxHz = 18;
     k = 1; (*- a -*)
     m = 7; (*- 1, no tiene solucion -- b -*)
     ptTotalIndi8k2 =
      Column[{ListLinePlot[{
           Abs[(Twavesfft8Avark3[k])],
           Table[{Range[(m-1) * sr * stepTime, m * sr * stepTime][j] + m,
             Abs[(Twavesfft8Avark[m])][j]]}, {j, 1, sr * stepTime}]
          },
          Frame → True,
          FrameStyle → Directive[FontFamily → "Times"],
          LabelStyle → Directive[Black, fsz],
          PlotStyle → {
            {Thickness@0.004, Blue},
            {Thickness@0.002, Red, Dashed}},
          FrameLabel → {"Frequency/Hz" <> "[x" <> ToString[stepFreq] <> "]", "|A|"},
          PlotLegends → Placed[
            {binaryStringS, binaryStringS[m] <> ": " <> binaryStringMap[m]]}, {0.5, 0.82}],
          PlotRange → {{ (m - 1) * sr * stepTime -
              6.3 * Abs[(m - 1) * sr * stepTime - m * sr * stepTime] / 2, (m - 1) * sr * stepTime +
              6.3 * Abs[(m-1) * sr * stepTime - m * sr * stepTime] / 2}, {yminHz, ymaxHz}},
         ImageSize → imgsz]}]
```

out[=]= {600, 600}


```
In[0]:= fsz = 16;
     imgsz = \{600, 600\}
     ymin = -4;
     ymax = 4;
     xmin = -500;
     xmax = sr * SizeString * stepTime + 500; (*tambien hay información en 11000 *)
     yminHz = -5;
     ymaxHz = 18;
     k = 1; (*- a -*)
     m = 7; (*-1, no tiene solucion <math>--b -*)
     ptOneletterandHellov1 =
      Column[{ListLinePlot[{
           Abs[(Twavesfft8Avark3[k])],
           Table[{Range[(m-1) * sr * stepTime, m * sr * stepTime][j] + m,
             Abs[(Twavesfft8Avark[m])][j]]}, {j, 1, sr * stepTime}]
          },
          Frame → True,
          FrameStyle → Directive[FontFamily → "Times"],
          LabelStyle → Directive[Black, fsz],
          PlotStyle → {
            {Thickness@0.004, Blue},
            {Thickness@0.002, Red, Dashed}},
          FrameLabel \rightarrow {"Frequency/Hz" <> "[x" <> ToString[stepFreq] <> "]", "|Wb(f)|"},
          PlotLegends → Placed[
            {binaryStringS, binaryStringS[m] <> ": " <> binaryStringMap[m]]}, {0.7, 0.82}],
          PlotRange \rightarrow {{ (m - 1) * sr * stepTime - 50, (m - 1) * sr * stepTime +
               0.5 * Abs[(m - 1) * sr * stepTime - m * sr * stepTime]}, {yminHz, ymaxHz}},
          ImageSize → imgsz]}]
```

out[*]= {600, 600}

out[=]= {200, 200}

```
myDir = NotebookDirectory[];
     Export[myDir <> "/Waves_OneLetter_Hello_v7.pdf", ptOneletterandHellov1];
In[*]:* ListLinePlot[samples1sec8Avark[m]]
In[0]:= fsz = 14;
     imgsz = \{200, 200\}
     ymin = -5;
     ymax = 5;
     ptTotal = Style[Row[{{Column[Table[ListLinePlot[samples1sec8Avark[m],
              Frame → True,
              FrameStyle → Directive[FontFamily → "Times"],
              LabelStyle → Directive[Black, fsz],
              PlotStyle → {{Thickness@0.005, Blue@Darker}},
              FrameLabel → {"time/s", "A"},
              (*PlotLegends→{"from binary = "<>binary[m]]},*)
              PlotLegends \rightarrow Placed[{"" <> binary[m]}, {0.69, 0.2}],
              (*PlotRange→
               {{(m-1)*sr*dt*stepTime,(m-1)*sr*dt*stepTime+0.5},{ymin,ymax}},*)
              ImageSize \rightarrow imgsz], {m, 1, 4}]]},
         (*-- Otra mitad --*)
         Column[Table[ListLinePlot[samples1sec8Avark[m],
             Frame → True,
             FrameStyle → Directive[FontFamily → "Times"],
             LabelStyle → Directive[Black, fsz],
             PlotStyle → {{Thickness@0.005, Blue@Darker}},
             FrameLabel → {"tiempo/s", "A"},
             PlotLegends → Placed[{"" <> binaryStringMap[m]]}, {0.69, 0.2}],
             (*PlotRange→
              {{ (m-1) *sr*dt*stepTime, (m-1) *sr*dt*stepTime+0.5}, {ymin,ymax}},*)
             ImageSize \rightarrow imgsz], {m, 5, 8}]]
        }]]
```


Individuales:

```
In[0]:= fsz = 14;
     imgsz = {300, 300};
     imgsz2 = \{800, 300\}
     ymin = -6;
     ymax = 6;
     mm = 7;
     ptIndi2Rowa = Grid[{{ListLinePlot[samples1sec8Avark[mm],
           Frame → True,
           FrameStyle → Directive[FontFamily → "Times"],
           LabelStyle → Directive[Black, fsz],
           PlotStyle → {{Thickness@0.005, Blue@Darker}},
           FrameLabel → {"time/s", "Wb(t)"},
           PlotLegends → Placed[
             {"a) "<> "" <> binaryStringS[mm] <> ": " <> binaryStringMap[mm]], {0.6, 0.9}],
           PlotRange → {{ (mm - 1) * stepTime,
               (mm - 1) * stepTime + (mm - 1) * stepTime * 0.07}, {ymin, ymax}},
           (*FrameTicks→
            {{{-4,4,1},None},{{0,stepTime*4,stepTime*SizeString*0.8},None}},*)
           ImageSize → imgsz],
          ListLinePlot[samples1sec8Avark2[mm],
           Frame → True,
           FrameStyle → Directive[FontFamily → "Times"],
           LabelStyle → Directive[Black, fsz],
           PlotStyle → {{Thickness@0.005, Blue@Darker}},
           FrameLabel → {"time/s", "Wb(t)"},
           PlotLegends → Placed[
             {"b) "<> "" <> binaryStringS[mm] <> ": " <> binaryStringMap[mm]]}, {0.6, 0.9}],
           PlotRange \rightarrow \{\{6, 7\}, \{ymin, ymax\}\},\
           FrameTicks \rightarrow \{\{\{-4, 4, 1\}, None\}, \{\{6, 6.5, 7\}, None\}\},\
           ImageSize → imgsz]}}]
```



```
In[0]:= fsz = 16;
     imgsz = {300, 300};
     imgsz2 = \{640, 250\}
     mm = 7;
     ymin = -2;
     ymax = 4;
     xmin = 10300;
     xmax = 10700; (*tambien hay información en 11000 *)
     yminHz = -2;
     ymaxHz = 15;
     ptIndi2Rowb =
      ListLinePlot[Table[{Range[(mm - 1) * sr * stepTime, mm * sr * stepTime][j]] + mm,
          Abs[(Twavesfft8Avark[mm])][j]]}, {j, 1, sr*stepTime}],
       Frame → True,
        FrameStyle → Directive[FontFamily → "Times"],
       LabelStyle → Directive[Black, fsz],
       PlotStyle → {{Thickness@0.003, Blue@Darker}},
       FrameLabel \rightarrow {"Frequency/Hz" <> "[x" <> ToString[stepFreq] <> "]", "|Wb (f) |"},
        (* -- *)
       PlotLegends → Placed[
          {"c) " <> "" <> binaryStringS[mm] <> ": " <> binaryStringMap[mm]]}, {0.75, 0.9}],
       PlotRange \rightarrow {{ (mm - 1) * sr * stepTime * 0.99, (mm - 1) * sr * stepTime * 0.99 +
            0.6 * Abs[(mm - 1) * sr * stepTime - mm * sr * stepTime]}, {yminHz, ymaxHz}},
       AspectRatio → 0.3,
       ImageSize → imgsz2]
```


rn[-]:= ptIndiTotaln7 = Grid[{{ptIndi2Rowa}}, {ptIndi2Rowb}}]

Out[-]=

myDir = NotebookDirectory[]; Export[myDir <> "/Waves_128bits_Indi_variable_v7.png", ptIndiTotaln7];

```
In[0]:= fsz = 14;
     imgsz = {300, 300};
     imgsz2 = \{800, 300\}
     ymin = -6;
     ymax = 6;
     mm = 4;
     strings = {"a) ", "b) ", "c) ", "d) "}
     pt4wavesRows = Row[Table[ListLinePlot[
          samples1sec8Avark[mm],
          Frame → True,
          FrameStyle → Directive[FontFamily → "Times"],
          LabelStyle → Directive[Black, fsz],
          PlotStyle → {{Thickness@0.005, Blue@Darker}},
          FrameLabel \rightarrow {"time/s", "Wb(t)"},
          (*PlotLegends→{"from binary = "<>binary[m]]},*)
          PlotLegends \rightarrow Placed[{strings[mm - 1]] \leftarrow binary[mm]]}, {0.75, 0.9}],
           \{\{(mm-1)*sr*dt*stepTime, (mm-1)*sr*dt*stepTime+0.001\}, \{ymin, ymax\}\},\
         ImageSize → imgsz], {mm, 2, 5}]]
```

out[*] = $\{800, 300\}$ out[-]= $\{a)$, b) , c) , d)


```
myDir = NotebookDirectory[];
Export[myDir <> "/Waves_8bits_4waves_variable_v4.png", pt4wavesRows];
```

Decodificando:

in[*]:* Clear[ptDecod]

```
In[a]:= Array[ptDecod, 2]
out[*] = {ptDecod[1], ptDecod[2]}
in[*]:* binaryStringS
out[=]= {H, e, l, l, o, , W, o, r, l, d, !}
In[0]:= fsz = 10;
     imgsz = \{250, 250\}
     yminHz = -2;
     ymaxHz = 23;
     letters = {"a)", "", "b)", "", "c)", "", "d)", "", "e)", "", "f)"};
     m = 5;
     data = Table[{Range[(m-1) * sr * stepTime, m * sr * stepTime][j] + (m),
          Abs[(Twavesfft8Avark[m])][[j]]}, {j, 1, sr * stepTime / 2}];
     peaks = FindPeaks[data[All, 2], 1, 1, 5];
     p5 = ListLinePlot[{Table[{Range[((m) - 1) * sr * stepTime, (m) * sr * stepTime][j] + (m),
           Abs[(Twavesfft8Avark[(m)])][j]]}, {j, 1, sr * stepTime}]},
        (*--*)
        Epilog → Table[{Text[Style["", 10],
             [[] [] [] + ((m) - 1) * sr * stepTime + 1, peaks[[] [] [2] * 1.18]], Red,
           PointSize[Large], Point@{peaks[[l][1]] + ((m) - 1) * sr * stepTime + m - 1,
              peaks[[][[2]]}}, {l, 1, Length[peaks]}],
        (*--*)
        Frame → True,
        FrameStyle → Directive[FontFamily → "Times"],
        LabelStyle → Directive[Black, fsz],
        PlotStyle → {{Thickness@0.005, Blue@Darker}},
        (*PlotLabel→letters[m],*)
        PlotLegends → Placed[{
           binaryStringS[m],
           binaryStringS[m + 1]
          },
          {0.8, 0.85}],
        FrameLabel \rightarrow {"Frequency/Hz" <> "[x2000]", "|Wb (v) |"},
        PlotRange → {{ (m - 1) * sr * stepTime,
            (m-1) * sr * stepTime + 0.5 * Abs[(m-1) * sr * stepTime - m * sr * stepTime] / 2,
          {yminHz, ymaxHz}},
        ImageSize → imgsz]
```

out[=]= {250, 250}

in[e]:= ptDecodHellov4 = Grid[{{p1, p2}, {p3, p4}, {p5}}]

myDir = NotebookDirectory[]; Export[myDir <> "/Decodifying_8bits_HelloW_v6_Paper.png", ptDecodHellov4];

La onda completa:

```
In[-]:= fsz = 16;
     imgsz = {300, 300};
     imgsz2 = \{640, 250\}
     mm = 7;
     ymin = -6;
     ymax = 6;
     xmin = 10300;
     xmax = 10700; (*tambien hay información en 11000 *)
     yminHz = -2;
     ymaxHz = 32;
     ptTotalWave2 =
      ListLinePlot[
       Table[{i*dt, samples1sec8Avark3[1][i]]}, {i, 1, Length[samples1sec8Avark3[1]]}],
        Frame → True,
        FrameStyle → Directive[FontFamily → "Times"],
        LabelStyle → Directive[Black, fsz],
        PlotStyle → {{Thickness@0.001, Blue@Darker}},
        FrameLabel → {"time/s", "Wb (t)"},
        (* -- *)
        PlotLegends → Placed[{"Hello World!"}, {0.75, 0.9}],
        AspectRatio → 0.3,
        PlotRange → {{0, SizeString * stepTime}, {ymin, ymax}},
        ImageSize → imgsz2]
out[*] = \{640, 250\}
                                              Hello World!
                0.001
                         0.002
                                  0.003
                                          0.004
                                                   0.005
                                                            0.006
                                 time/s
```

```
myDir = NotebookDirectory[];
    Export[myDir <> "/Decodifying_Total_HelloW_v5.png", ptTotalWave2];
```