UNDERGRADUATE THESIS NOTES

JEFFREY JIANG

WEEK 1

Exercise 1.1. Prove a small lemma

Lemma. Let G be a group, and V a finite dimensional irreducible complex representation. Then elements of Z(G) act by scalars.

Proof. Let $z \in Z(G)$, then since z commutes with the action of G, it determines a G-module isomorphism $\varphi_z : V \to V$. Then φ_z admits some eigenvalue λ , and the λ eigenspace of φ_z is G-invariant, so φ_z must be the map $\lambda \operatorname{id}_V$.

Exercise 1.2. Consider the groups $\operatorname{Pin}_{p,q}$ and $\operatorname{Spin}_{p,q'}$ which lie in the Clifford algebra $\operatorname{Cliff}_{p,q}$. A *Pin representation* is a representation V of $\operatorname{Pin}_{p,q}$ that extends to an irreducible Clifford module. Likewise, a *Spin representation* is a representation V of $\operatorname{Spin}_{p,q}$ that extends to an irreducible $\operatorname{Cliff}_{p,q}^0$ module. Find some of these representations.

Since all Clifford algebras arise (as ungraded algebras) as direct sums of matrix algebras over \mathbb{R} , \mathbb{C} , or \mathbb{H} , it will be useful to characterize the irreducible modules of these matrix algebras. In the case of \mathbb{H} , we use the convention that scalar multiplication on a quaternionic vector space acts on the right, so quaternionic matrices can act on the left.

Proposition 1.3.

- (1) The only irreducible $M_n\mathbb{R}$ module is \mathbb{R}^n .
- (2) The only irredu

Proof. We see that there is an increasing chain of left ideals

$$0 = I_0 \subset I_1 \subset \ldots \subset I_n = M_n \mathbb{R}$$

where I_k is the ideal of matrices where all the entries past the k^{th} column are 0. In addition, we have that this chain of ideals has the property that the quotient space $I_{k+1}/I_k \cong \mathbb{R}^n$ as a left $M_n\mathbb{R}$ module. We note that \mathbb{R}^n is most certainly irreducible, since the orbit of any nonzero vector $v \in \mathbb{R}^n$ is all of \mathbb{R}^n .

Then let W denote an arbitrary nontrivial irreducible $M_n\mathbb{R}$ module. Fix $w \in W$. Then the orbit of w under the action of $M_n\mathbb{R}$, and since the module is nontrivial, it must be all of W. Therefore, the mapping

$$\varphi: M_n \mathbb{R} \to W$$
$$M \mapsto M \cdot w$$

is a surjective map of left $M_n\mathbb{R}$ modules. Since this map is surjective, there exists some k such that $\varphi(I_k) \neq 0$. Let k denote the smallest such k. Since $\varphi(I_{k-1})$, this map factors through the quotient I_k/I_{k-1} , which is isomorphic to R^n as a left module. Then since both \mathbb{R}^n and W are irreducible, this implies that the map $I_k/I_{k-1} \to W$ is an isomorphism, so $W \cong \mathbb{R}^n$.