nunne 71au

מירב שקרון

פרויקט - הגדרה

- מאמץ זמני שיש לו התחלה וסוף מוגדרים ועשוי למען מטרה
 - מייצר מוצר ייחודי (במקרה שלנו- מוצר תוכנה) -
 - מורכב ממשימות התלויות ביניהן -
 - ארגון ניהול הפרויקטים משנת 1969 PMI

פרויקטי תוכנה

למה פרויקטי תוכנה נכשלים לעיתים כ"כ קרובות?

- יעדי הפרויקט לא מציאותיים ולא ברורים •
- אומדנים לא מדויקים של המשאבים הנדרשים -
 - דרישות מערכת אינן מוגדרות היטב
 - דיווח לקוי לגבי מצב הפרויקט -
 - סיכונים לא מנוהלים •
- תקשורת לקויה בין הלקוח, המפתחים והמשתמשים
 - שימוש בטכנולוגיה לא בשלה •
 - אי יכולת לנהל את מורכבות הפרויקט 🔹
 - פרקטיקות פיתוח מרושלות
 - ניהול לקוי של הפרויקט •
 - פוליטיקה של בעלי עניין
 - לחצים מסחריים -

משולש האילוצים

תכונות חשובות למנהל פרויקטים

- תקשורת טובה עם אנשים •
- יודע לנהל משא ומתן בצורה טובה ובהרגשה נעימה ל-2 הצדדים
 - מנהיגות •
 - יכולת ניהול צוות
 - יודע לנהל זמן •
 - יכולת ניהול סיכונים
 - בן אדם מאורגן •
 - ידע רחב- גם בנושא הפרויקט וגם בנושאים כלליים
 - חשיבה ביקורתית- יכולת ניתוח והבחנה בין יתרונות לחסרונות
 - מיומנויות תכנון וידע בשימוש בכלי תכנון -

שלבי ניהול פרויקט

ביצוע ייזום תכנון סגירה בקרה

Traditional Project Management Lifecycle

Figure 1 – Traditional Planning Focus
(Adapted the from PMBOK Guide)

Agile Project Management Lifecycle

Figure 2 - Agile Planning Focus

מחזור חיים של התוכנה + שלבי ניהול הפרויקט

Monitoring

שלב היידום

- הכרה בצורך לבצע מה הרעיון שלנו/ איזה בעיה אמורה להיפתר
 - הגדרת מטרות העל של הפרויקט -
 - הגדרת ציפיות הלקוחות, ההנהלה ויתר בעלי העניין בפרויקט
 - הגדרת היקף הפרויקט •
 - בחירת הצוות הראשוני לביצוע הפרויקט -

שלב התכנו

- חלוקת המטרות העל ליעדים ניתנים למדידה -
 - חלוקת הפרויקט לתתי משימות -
 - גיוס וגיבוש צוות העבודה •
 - קביעת לו"ז לביצוע המשימות
 - הערכת עלויות הפרויקט •

כלים (שונים) בשלב תכנון פרויקט

WBS

1.2.1

- Work Breakdown Structure •
- חלוקת הפרויקט לתת משימות הנותנות ביחד את התמונה המלאה
- מאפשר לקבל תמונה מלאה של דרישות הפרויקט -ברמת המשימות

project schedule network diagram

- כלי להצגת וניהול שרשרת המשימות בפרויקט
 - מראה תלויות בין המטלות •
- יכול לסייע לתכנון יעיל, ארגון ובקרת הפרויקט •

מ-WBS לתרשים רשת

תלות בין משימות

- Finish to Start (FS) •
- מסתיים A יכול להתחיל רק כאשר
 - זו בדרך כלל ברירת המחדל
 - התלות הנפוצה ביותר
 - Finish to Finish (FF) •
- יכול להסתיים יחד עם A או אחריו (A חייב לסיים קודם) B
 - או- B לא יכול להסתיים לפני ש-A מסתיים
 - Start to Start (SS) •
 - או אחריו A יכול להתחיל בו זמנית עם B
 - A לא יכול להתחיל לפני B
 - Start to Finish (SF) •
 - a מסתיים כאשר B ■
 - יוכל להסתיים B-או- חייבים להתחיל את A בשביל ש-
 - זהו סוג יחסים נדיר •

אומדנים למשך הפעילות

JINIUR MT7M

?מקדמי בטיחות- כדאי או לא? ואיפה

PERT nium

- Program Evaluation Review Technique •
- נוצר בשנות החמישים כדי לסייע בניהול ייצור כלי נשק בצי האמריקני
 - מסייע בקביעת אומדנים של עלות וזמן של משימות בפרויקט
 - 'activities on arrows' (AOA) method נקרא גם •

PERT nnon

תרשים PERT מטפל בנושא אומדן הזמן והעלויות:

עבור כל פעילות ניתן לתת 3 אומדנים:

- (shortest time) אופטימי
 - (longest time) פסימי
 - (likely time) סביר

נוסחת PERT:

 $shortest\ time + 4*likely\ time + longest\ time$

JIIIII

- מאפשר לנתח ולהעריך את הזמן, העלות והמשאבים שדרושים לפרויקט כולו.
 - נותן תמונה מלאה על הפרויקט למנהל הפרויקט ולשאר בעלי העניין
 - מאפשר מעקב אחרי ביצוע הפרויקט -

מציאת הנתיב הקריטי

- CPM- Critical Path Method •
- הגדרה- שרשרת פעילויות הקשורות זו בזו, אשר כל שינוי בזמנים שלהם ישפיע על מועד סיום -הפרויקט.
- בפרויקט בו כל המשימות תלויות זו בזו ולא מתבצעות פעולות במקביל, הפרויקט כולו נמצא בנתיב הקריטי.
- בפרויקט בו מתבצעות פעולות במקביל, ישנם מספר נתיבים, נוצרים מרווחים (slacks) המאפשרים לדחות פעילויות מסוימות בלי לדחות את סיום הפרויקט.
 - משך הזמן של הנתיב הקריטי הוא גם המשך המינימלי של הפרויקט •

התחלה וסיום של פעילות

- Early start התאריך המוקדם ביותר בו משימה יכולה להתחיל ביחס לתלויות.
- Early finish התאריך המוקדם ביותר בו משימה יכולה להסתיים בהתייחס לתלויות
 חישוב- Early start + Duration
- ביום את מועד סיום Late start התאריך המאוחר ביותר בו משימה יכולה להתחיל בלי לדחות את מועד סיום Late start הפרויקט.
 - Late finish duration חישוב
 - התאריך המאוחר ביותר בו משימה יכולה להסתיים בלי לדחות את מועד Late finish סיום הפרויקט.
 - שווה ל-EF אווה LF המינימלי מבין המשימות העוקבות (במשימה האחרונה LF שווה ל-LS − חישוב ה-LS שווה ל-

Slack

- זמן שבו המטלה יכולה להמתין ללא עיכוב בפרויקט
 - י חישוב ה- slack למשימה: ■

Late start — Early start

??יש למשימות על הנתיב הקריטי?!

דוגמא

נתונה טבלת המטלות בפרויקט מסוים:

	אומדן זמן	תיאור	מטלה		
פסימי	סביר	אופטימי			
6	4	2		ביצוע סקר שוק	Α
9	5	3	Α	עיצוב אייקונים	В
7	5	4	Α	תכנון המערכת	С
10	6	4	B, C	עיצוב מסכים	D
7	5	4	С	קידוד מודול 1	Е
8	4	3	С	קידוד מודול 2	F
8	5	3	Е	קידוד מודול 3	G
10	7	5	E, F	4 קידוד מודול	Н
12	9	4	D, G, H	אינטגרציה ובדיקות	I

המשך דוגמא

נרצה לעזור למנהל הפרויקט בתיכנון הפרויקט ונבצע את הפעולות הבאות:

- pert אומדן זמנים לפי נוסחת
 - לשרטט תרשים רשת -
- early start, early finish, late start, late finish-לחשב את 4 סוגי הזמנים
 - slack-רחשב את ה
 - למצוא את הנתיב הקריטי, מה המשכו?

Pert nnon aiu n

עיגול	זמן צפוי		אומדן זמן		תלויות	תיאור	מטלה
		פסימי	סביר	אופטימי			
4	4.00	6	4	2		ביצוע סקר שוק	Α
6	5.33	9	5	3	Α	עיצוב אייקונים	В
6	5.17	7	5	4	Α	תכנון המערכת	С
7	6.33	10	6	4	В, С	עיצוב מסכים	D
6	5.17	7	5	4	C	קידוד מודול 1	Ε
5	4.50	8	4	3	С	קידוד מודול 2	F
6	5.17	8	5	3	Е	קידוד מודול 3	G
8	7.17	10	7	5	E, F	קידוד מודול 4	Н
9	8.67	12	9	4	D, G, H	אינטגרציה ובדיקות	I

PERT niunn

תרשים PERT כולל משך הפעילויות

תרשים PERT כולל משך הפעילויות

מציאת הנתיב הקריטי

מרשים PERT משך הפרויקט

התחלה וסיום של הפעילויות

Slack	Late Finish	Late Start	Early Finish	Early Start	משך	תלויות	מטלה
0	4	0	4	0	4		Α
5.85	17	11	10	4	6	Α	В
0	10	4	10	4	6	Α	С
5.85	24	17	17	10	7	В, С	D
0	16	10	16	10	6	С	Е
0.67	16	11	15	10	5	С	F
7.17	24	18	22	16	6	Е	G
0	24	16	24	16	8	E, F	Н
0	33	24	33	24	9	D, G, H	1

תרשים כולל הנתיב הקריטי

Gantt n'unn

- הומצא בתחילת המאה ה-20
- השיטה הנפוצה ביותר להצגת לו"ז הפרויקט
 - הציר האופקי מייצג את הזמן -
 - הציר האנכי מייצג את חבילות העבודה
- זה התרשים השימושי ביותר ע"י מנהלי פרויקטים •

חבילות עבודה

אבן דרך

תרשים גאנט

l D	Task Name	Predecessors	Duration																		_																			
"	Task Ivalile	ricuccessuis	Duration	Jul	Jul 23, '06				, '06 Jul 30,								'06						Aug 6, '06							Aug 13, '06										
				S	M	T	V	٧	Т	F	S	5	ş	М	Т	W	T	•	F	S		3	М	T	V	٧	Т	F	S	S	M	T	ГΝ	W	T	F	S			
1	Start		0 days		7																																			
2	a	1	4 days							Н																														
3	b	1	5.33 days																1																					
4	С	2	5.17 days																Н																					
5	d	2	6.33 days																				۹,																	
6	е	3,4	5.17 days																																					
7	f	5	4.5 days																																	-				
8	g	6	5.17 days																									Ď									<u> </u>			
9	Finish	7,8	0 days																																	4	ř			

שלב הביצוע

- השלב הכי מקושר למנהל הפרויקט
 - בשלב זה המנהל אחראי על:
 - סיפוק תוצרים ללקוח •
 - מיקוד חברי הצוות במשימות •
 - שמירה על המשאבים המוקצים •
- עמידה על הוצאה לפועל של התיכנון •
- התאמה לכל חבר צוות את המשימה שמתאימה לו
- הסבר על המשימות לדאוג שהכל מובן ואם לא לדאוג להדרכה
 - יצירת קשר עם הלקוחות, חברי הצוות וההנהלה
 - הביצוע תלוי במידה רבה בשלב התיכנון •

שלב הבקרה

תהליך מתמיד של השוואה בין הביצוע לבין התכנון תוך נקיטת פעולות מתקנות על מנת להקטין פערים בלתי רצויים

סוגי בקרות בפרויקט:

- בקרת תכולה
 - בקרת לו"ז •
- בקרת תקציב •
- בקרת סיכונים
 - בקרת איכות •
- בקרת שינויים •

דרכים לצמצום הלו"ד

- Re-estimation •
- בדיקה מחודשת של ההנחות, דברים שלא היו ידועים בזמנו וכו' -
 - Crashing •
- הוספת יותר משאבים לנתיב הקריטי, תוך שמירה על התכולה
 - דורש הגדלה של התקציב
 - Fast Tracking •
 - ביצוע מטלות בנתיב הקריטי במקביל
 - מגביר סיכונים וסיבוכיות •
 - לא אידיאלי, אבל אפשרי ושימושי לעיתים -
 - משולש האילוצים- להוריד באיכות או לצמצם תכולה •

ערך מזוכה

- הביצועים הנוכחיים הם האינדיקטור הטוב ביותר לבדיקת הביצועיים העתידיים, ולכן , באמצעות
 ניתוח המגמה, ניתן לחזות את עלות הפרויקט ואיחור בלו"ז בשלב מוקדם של הפרויקט.
 - Earned Value Method -השיטה הנפוצה ביותר היא שיטת ערך מזוכה
 - בשיטה זו מתרגמים את תכולת העבודה למונחים כספיים

ביצוע מעקב אחרי התקדמות הפרויקט ובדיקה האם אנחנו מקדימים או מאחרים בלו"ז של הפרויקט והאם אנחנו במסגרת התקציב או חורגים ממנו.

?TYI

- בחינת הערך המזוכה תמיד נעשית סביב נקודת בקרה ספציפית, נקבעת נקודת חיתוך בזמן (למשל: היום), אשר מהווה נקודת ייחוס אחידה לכל הפרמטרים השונים.
 - השיטה למעשה תקפה רק לאחר שהפרויקט החל.
 - כל החישובים נעשים ברמת הפעילות ונסכמים באופן אגרגטיבי לרמת הפרויקט כולו.

נתונים ומשתנים

נתונים שמנהל הפרויקט מגדיר ומעדכן לכל פעילות:

- סך הכל העלות המתוכננת לפעילות BAC Budget At Completion ■
- סך הכל ההוצאות שהצטברו בפועל (עד לנק' הבקדה) AC Actual Cost ■

נתונים ומשתנים

פרמטרים המחושבים בהתאם לדיווחי ההתקדמות בפועל של כל פעילות:

איך מחושב	משמעות	סימון
BAC * זמן הביצוע בתכנון %	Planned Value	PV
BAC * זמן הביצוע בפועל %	Earned Value	EV
EV - AC	Cost Variance	CV
EV - PV	Schedule Variance	SV
$\frac{EV}{AC}$	Cost Performance Index	СРІ
$rac{EV}{PV}$	Schedule Performance Index	SPI
$\frac{BAC}{CPI}$	Estimated At Completion	EAC
EAC - AC	Estimated To Complete	ETC
BAC - EAC	Variance At Completion	VAC

דוגמא

הפרויקט- פיתוח פרויקט בעלת 4 משימות. בכל יום מבוצעת משימה אחת וההוצאות המתוכננות לכל משימה הן \$1000. התכנון הוא לפתח משימה אחרי משימה

היום הוא סוף היום **השלישי**.

:סטטוס

יום 1: המשימה הושלמה. ההוצאות היו \$1000

יום 2: הייתה מעט גלישה לבוקר היום השלישי. ההוצאות למשימה היו \$1200

יום 3: התחילו בפיתוח בשעות הבוקר המאוחרות. הושלמה רק מחצית המשימה. ההוצאות היו \$600.

```
CPI = \frac{EV}{AC}

RV = BAVC * זמן הביצוע בתכנון % סה"כ עלות מתוכנת % סה"כ עלות מתוכנת % זמן הביצוע בפועל <math>C = BAVC = BAVC = EVAC  סה"כ ההוצאות בפועל עד לנק ההצאות בפועל עד C = EVAC = EVAC = EVAC
```

דוגמא

VAC = BAC - EAC

- BAC = 1000 + 1000 + 1000 + 1000 = 4000\$
- AC = 1000 + 1200 + 600 = 2800

שלב הסגירה

- שלב זה קורה אחרי שמספקים ללקוח מוצר (או תוסף וכו')
 - בשלב זה עושים ניתוח על התהליך שעברו חברי הצוות:
 - ?מה עבד
 - ?מה לא עבד
 - **?** למה
 - ?איך המנהל יכל להשתפר
 - 'וכו •
 - כדי ליצור צוות ותהליך יותר טוב להבא