

Control + R 로봇 제어를 위한 실행 플랫폼

5조 - 이거끝나면군대갈팀 전자정보공학부 20150452 심규원 전자정보공학부 20160428 김동현

1. 로봇마다 사용하는 프로토콜이 다름

2. 로봇을 제어하는 방법이 한정적임

로봇제어를 편리하게 제공하는 플랫폼

로봇제어를 편리하게 제공하는 플랫폼

TOBE 시스템 기능 구상도

유저 클라이언트 – 서버 간 통신 구조

TOBE 시스템 기능 구상도

로봇 클라이언트 – 서버 간 구조

TOBE 시스템 기능 구상도

멀티프로세스 기반 서버

통신에 사용할 프로토콜 제작

```
0000950: 0000 ffff 0200 fdff f8ff 0800
                                                                   0000950: 0000 ffff 0200 fdff f8ff 0800 d5ff 2700
                                                                   0000960: 8cff 2f00 61ff b5ff eaff ccfd ce04 7902
0000970: fffc 7f00 a103 b506 b209 f807 24ff d5f9
                                                                   0000970: fffc 7f00 a103 b506 b209 f807 24ff d5f9
1000980: baf7 baf8 a2ff 0107 c30b 4b0d 1902 6d00
                                                                   0000980: baf7 baf8 a2ff 0107 c30b 4b0d 1902 6d00
0000990: 67fa 49f0 84f5 11f6 f1fc 9904 4b0d 6e12
                                                                   0000990: 67fa 49f0 84f5 11f6 f1fc 9904 4b0d 6e12
00009a0: 410c 0508 c805 e1f4 0bea dae3 09e5 c8f2
                                                                   00009a0: 410c 0508 c805 e1f4 0bea dae3 09e5 c8f2
00009b0: 31f4 6602 910a 9913 d619 e01c 5f20
                                                                   00009b0: 31f4 6602 910a 9913 d619 e01c 5f20 5a0a
00009c0: 890b 3400 dee6 15e3 38dd a0e4 f5ec 3bf1
                                                                   00009c0: 890b 3400 dee6 15e3 38dd a0e4 f5ec 3bf1
00009d0: adfc 560a 0417 a124 2124 911a 801a c616
                                                                   00009d0: adfc 560a 0417 a124 2124 911a 801a c616
                                                                   00009e0: 6e0f bb00 b6fb 8af8 58ef 83fd aff6 3dfe
00009f0: 0606 0bf2 e500 31f2 0be7 99e7 02dc 78e9
                                                                   00009f0: 0606 0bf2 e500 31f2 0be7 99e7 02dc 78e9
000a00: 1ced 03f4 b702 4310 ec0c fe14 5623 2b1c
                                                                   0000a00: 1ced 03f4 b702 4310 ec0c fe14 5623 2b1c
0000a10: 4a18 cf05 8504 24f8 ddf2 3903 0bf4 130d
                                                                   0000a10: 4a18 cf05 8504 24f8 ddf2 3903 0bf4 130d
0000a20: a209 5306 821f e901 930f df09 f9fb 230d
                                                                   0000a20: a209 5306 821f e901 930f df09 f9fb 230d
0000a30: 9dfa e100 7eff 71fb e6ff 9cfb 86fc a402
                                                                   0000a30: 9dfa e100 7eff 71fb e6ff 9cfb 86fc a402
0000a40: 7411 e908 8511 3611 ff04 ac07 60f1 03e9
                                                                   0000a40: 7411 e908 8511 3611 ff04 ac07 60f1 03e9
0000a50: a7e5 52e8 c0e8 03e9 bef8 baf9 2411 950f
                                                                   0000a50: a7e5 52e8 c0e8 03e9 bef8 baf9 2411 950f
                                                                   0000a60: a401 e812 2f04 9800 f509 00fa aaf4 04f2
0000a70: 38d6 cec6 34d0 15c9 3ad4 dae9 57f2 6407
                                                                   0000a70: 38d6 cec6 34d0 15c9 3ad4 dae9 57f2 6407 8...4...:...W.d.
0000a80: 3c12 5f1e db24 d220 fd16 4709 7900 24ec
                                                                  0000a80: 3c12 5f1e db24 d220 fd16 4709 7900 24ec
0000a90: eff0 7bed 04e1 91f9 27f8 b4f2 6afc 0ded
                                                                   0000a90: eff0 7bed 04e1 91f9 27f8 b4f2 6afc 0ded
0000aa0: 23f7 c1fd f6e4 afee dce8 02d5 47e8 6eec
                                                                   0000aa0: 23f7 c1fd f6e4 afee dce8 02d5 47e8 6eec
0000ab0: 54f2 c10b b004 a208 0b0b 63fb cfff 52f5
                                                                   0000ab0: 54f2 c10b b004 a208 0b0b 63fb cfff 52f5
0000ac0: 8d02 6c05 26fc 7c11 a310 6519 b424 6f1f
                                                                   0000ac0: 8d02 6c05 26fc 7c11 a310 6519 b424 6f1f
                                                                   0000ad0: 5f29 892e 7027 8327 bd1a 4112 c317 6f10
                                                                   0000ae0: aa08 8306 b200 96f9 e4fa 75ff 8806 350d
000af0: 0c12 011b cb19 d510 0611 4e0a 6204 1204
                                                                   0000af0: 0c12 011b cb19 d510 0611 4e0a 6204 1204
```

해당 프로토콜로 파일 전송 및 파싱

Microsoft Azure Cognitive를 이용한 Speech to Text

```
y_text_list = list(map(lambda j : j[1],train.nouns()))

vectorizer.fit_transform(x_text_list)
gsvc.fit(vectorizer.transform(x_text_list), y_text_list)
pred_list = gsvc.predict(vectorizer.transform(test_list))

for now,now2 in zip(pred_list,testW):
    print("예측 : ",motionDict[now],"\t 명령어 : ",now2)

예측 : 뒤걸기 명령어 : 앞으로 가자
예측 : 뒤걸기 명령어 : 위로 가봐
예측 : 좌걸기 명령어 : 왼쪽으로 걸어
예측 : 좌최전 명령어 : 왼쪽으로 걸어
예측 : 좌회전 명령어 : 왼쪽으로 걸어
예측 : 주회전 명령어 : 오른쪽으로 걸어
예측 : 우회전 명령어 : 오른쪽으로 걸어
예측 : 공격 명령어 : 오른쪽으로 최전
```

```
def NounVerb(rawText):
   kkma=Kkma().pos(rawText)
   tw=Twitter().pos(rawText)
   returnText = ''
   for Kpos, Tpos in zip(kkma, tw):
       if Tpos[1] == 'Noun' or Tpos[1] == 'Verb':
           returnText+=Tpos[0] + ' '
                            C:#WINDOWS#system32#cmd.exe
                                                                  - -
   return returnText
                            C:\Users\DH_Kim\azureCognitive_STTapi>python nlp.py
                            뿌리 나무 바람 흔들려 꽃 열매
                            울타리 옆 맑은 물이 흐른
if __name__ == "__main__":
   print(NounVerb('뿌리 깊은 나무는 바람에 아니 흔들려서 꽃 좋고 열매 많으니'))
   print(NounVerb('울타리 옆으로 맑은 물이 흐른다'))
   print(NounVerb('왼쪽으로 돌아'))
```

KoNLPy를 이용한 명사, 동사 추출

SVM을 이용한 지도학습으로 명령어 예측

서버에서 받은 데이터를 제어기(로봇)에 전송(Serial)

Risk 및 일정 관리

한 로봇이 여러 명령을 동시에 처리할 수 없다
 ✓ 명령어 큐를 만들어 순차적으로 처리할 수 있도록 설계한다.

• 음성인식 API 서비스가 불안정 할 수 있다 ✓ 대체로 사용할 수 있는 음성인식 API를 추가한다

음성인식 및 발음평가 API 서비스 일시중단 안내

서버 재정비 작업으로 음성인식 및 발음평가 API 서비스를 일시적으로 중단하오니 이용에 참고부탁드리겠습니다.

- * 서비스 중단 일시 : 2018년 4월 6일(금) 오후 6시부터
- * 서비스 중단 API: 음성인식 및 발음평가 API (언어분석 API는 계속 이용 가능)
- * 서비스 재개 : 2018년 6월(예정)

Risk 및 일정 관리

• 로봇이 배터리로 동작하므로 클라이언트 서버가 <mark>강제 종료</mark>되는 일이 잦을 수 있다 ✓ 시그널과 timeout을 통해 클라이언트 종료를 감지하여 처리한다.

• 이미 사용 중인 로봇에 대해 교착상태가 일어날 수 있다 ✓ Blocking을 이용해 사용 중인 로봇에 대한 접근을 막는다.

Risk 및 일정 관리

	항목		4월				5월				6월			
	ö i	1	2	3	4	1	2	3	4	1	2	3	4	
서버	PC클라이언트-서버간 소켓 통신 구현													
	라즈베리파이-서버간 소켓 통신 구현													
	클라이언트에서 받은 데이터 가공													
	DB구현 및 서버 연동													
	STT API 연동				중간고사					최종				
	자연어 처리 알고리즘 구현									점검				
	머신러닝 알고리즘 구현									및				
클라이언트	라즈베리파이 환경 세팅									발표				
	데이터 입력 및 전송 구조 구현										준비			
	로봇 모션 제작													
	로봇 클라이언트 제작													
DB	로봇 리스트 작성													
	모션 종류 및 프로토콜 작성													

Thank you

Contact

- Github : inerplat/Wedge-Robot.git
- 심규원 : tlarbvkf@naver.com
- 김동현 : inerplat@gmail.com