Álgebra 1 - Turma B $-2^{\circ}/2017$

1º Teste - Resolução

Prof. José Antônio O. Freitas

Exercício 1: Sejam A e B conjuntos. Suponha que $x \in A$ e $A \notin B$. Então $x \notin B$? **Solução:** Falso. Tome por exemplo $A = \{1, 2, 3\}, B = \{3, 4\}$ e x = 3. Temos $A \notin B$, $x \in A$ e no entanto $x \in B$.

Exercício 2: Mostre que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. **Solução:** Para mostrar a igualdade desses conjuntos precisamos mostrar que:

- $1^o) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$
 - Seja $x \in A \cup (B \cap C)$. Então $x \in A$ ou $x \in (B \cap C)$. Se $x \in A$, então $x \in A \cup B$ e $x \in (A \cup C)$. Assim $x \in (A \cup B) \cap (A \cup C)$. Com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora suponha que $x \in (B \cap C)$. Então $x \in B$ e $x \in C$. Neste caso $x \in A \cup B$ e $x \in (A \cup C)$. Logo $x \in (A \cup B) \cap (A \cup C)$ e novamente $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Portanto, independente do caso, sempre temos $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.
- $2^o) \ (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Seja $x \in (A \cup B) \cap (A \cup C)$. Assim $x \in A \cup B$ e $x \in A \cup C$. Daí $x \in A$ ou $x \in B$ e $x \in A$ ou $x \in C$. Se $x \in A$, então $x \in A \cup (B \cap C)$. Logo $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Agora, se $x \notin A$, então $x \in B$ e $x \in C$, isto é, $x \in B \cap C$. Com isso $x \in A \cup (B \cap C)$ e então $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Portanto, independente do caso, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Com isso provamos que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, como queríamos.