1.
$$\log_{3} x + \log_{9} x = 12$$

= $\log_{3} x + \frac{\log_{2} x}{\log_{3} 9} = 12$
= $\log_{3} x + \frac{\log_{3} x}{2} = 17$
= $2\log_{3} x = 24$
=> $\log_{3} x = 12$
=> $x = 4096$

$$2. IP(1) = 2 + a - 4 + b$$

= $a + b - 2 = 0$

3.
$$f(2) = f(-1)$$

= $58+12+2a+b=-1+3-a+b$
= $520+2a=2-a$
= $3a=-18$

$$= 5 a = -6$$
4. $f(-1) = -20$

$$= 7 - 20 = 6 - 11 - 22 - a + 6$$

$$= -21 - a$$

=>
$$2 \log x = 8$$

=> $\log x = 4$

$$=>4+logy=7$$

 $=>logy=3$

6.
$$x^{3} + mx^{4} + n$$

 $(x-k)^{2}$
 $(ax+b)(x-k)(x-k)$
 $=(ax^{2} + bx - axk - bk)(x-k)$
 $=(ax^{3} + bx^{2} - ax^{2}k - bkx - ax^{2}k - bxk + axk^{2} - bk^{2})$
 $=ax^{3} + bx^{2} - 2ax^{2}k - 2bkx + axk^{2} - bk^{2}$
 $=ax^{3} + (b-2ak)x^{2} + (ak^{2} - 2bk)x - bk^{2}$
 $= ax^{3} + (b-2ak)x^{2} + (ak^{2} - 2bk)x - bk^{2}$
 $= ax^{3} + (b-2ak)x^{2} + (ak^{2} - 2bk)x - bk^{2}$
 $= ax^{3} + (ax^{2} - 2b$

 $= -k^6 + k^6 = 0$

 $=7\left(\frac{m}{3}\right)^3+\left(\frac{h}{2}\right)^2=0$