WHAT TO DO WHEN SOME VALUES ARE MISSING

Statistics 407 ISU

OUTLINE

- Terminology
- Issues of missingness for multivariate data
- Plotting missings, and describing the distributions of missing vs not missing
- Imputation methods

BACKGROUND TERMS

- MCAR: probability that a value is missing does _____ on any other observed or unobserved value.
- MAR: probability that a value is missing
 _____ only on the _____ variables.

EXAMPLE

Case	X_1 X_2 X_3 X_4 X_5	
Case 1 2 3 4 5 6 7 8	X1 X2 X3 X4 X5 NA 20 1.8 6.4 -0.8 0.3 NA 1.6 5.3 -0.5 0.2 23 1.4 6.0 NA 0.5 21 1.5 NA -0.3 0.1 21 NA 6.4 -0.5 0.4 22 1.6 5.6 -0.8 0.3 19 1.3 5.9 -0.4 0.5 20 1.5 6.1 -0.3	Missing: of the numbers of variables of samples
9 10	$ \begin{vmatrix} 0.3 & 22 & 1.6 & 6.3 & -0.5 \\ 0.4 & 21 & 1.4 & 5.9 & -0.2 \end{vmatrix} $	

SUMMARY STATISTICS

Case	X_1	X_2	X_3	X_4	X_5
1	NA	20	1.8	6.4	-0.8
2	0.3	NA	1.6	5.3	-0.5
3	0.2	23	1.4	6.0	NA
4	0.5	21	1.5	NA	-0.3
5	0.1	21	NA	6.4	-0.5
6	0.4	22	1.6	5.6	-0.8
7	0.3	19	1.3	5.9	-0.4
8	0.5	20	1.5	6.1	-0.3
9	0.3	22	1.6	6.3	-0.5
10	0.4	21	1.4	5.9	-0.2

Means can be calculated

Correlations can be calculated _____.

5

SHADOW MATRIX

Case	X_1	X_2	X_3	X_4	X_5
1					-0.8
2	0.3	NA	1.6	5.3	-0.5
3	0.2	23	1.4	6.0	NA
4	0.5	21	1.5	NA	-0.3
5	0.1	21	NA	6.4	-0.5
6	0.4	22	1.6	5.6	-0.8
7	0.3	19	1.3	5.9	-0.4
8	0.5	20	1.5	6.1	-0.3
9	0.3	22	1.6	6.3	-0.5
10	0.4	21	1.4	5.9	-0.2

Case	X_1	X_2	X_3	X_4	X_5
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	0	0	1
4	0	0	0	1	0
5	0	0	1	0	0
6	0	0	0	0	0
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0

EXAMPLE

Tropical Atmosphere-Ocean Array

Number of cases: 736

Number of variables: 8

Sea Surface Temp, Air Temp,

Humidity, UWind, VWind + Year,

Lat Long

OVERVIEW 1997 Normal 1993 El Nino

Variable	Number of		
	missing	g values	
	1993	1997	
sea surface temp	3	0	
air temp	4	77	
humidity	93	0	
uwind	0	0	
vwind	0	0	

R package: norm

No. of missings	1993	1997	1997		
on a case	No. of cases	%	No. of cases	%	
3	2	0.5	0	0	
2	2	0.5	0	0	
1	90	24.5	77 2	20.9	
0	274	74.5	291	79.1	

USING THE MARGINS

1993 El Nino

1997 Normal

Association between temperatures. Years separated. More missings on _____ than ____.

Missings on ____ only occur in 1997.

LIMITATION

lissings look

ke ____ in
gh-d plots,

nd in parallel
ordinates

ey look like
___ at the
ery bottom.

TRACKING MISSINGS USING THE SHADOW MATRIX

Missings on air temp have _____ values on uwind than non-missings.

MISSING STRUCTURE

Missing values are

Imputation will need to use _____ of missing and not missing.

USING THE SHADOW MATRIX

Imputed values which disappeared can be revealed by _____ on the shadow matrix.

MULTIPLE IMPUTATION

Missing values are imputed by simulating from a ______, having mean vector and variance-covariance matrix equal to the sample quantities.

Sampling _____ times allows for estimating statistics for the missing values.

10

SUMMARY

- missings: by variable, by case
- plots of missings, in the margins
- _____ summary statistics using as much data as possible.
- Determine _____ of missings: MAR, MCAR, MNAR
- Decide on a good way to _____ missings, as simple as possible with out affecting results.

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.