Un problème de calcul au Vietnam

Voici le casse-tête de mathématiques posé par le professeur Tran Phuong aux élèves de sa classe (niveau CE2), à Bao Loc au Vietnam, problème qui a fait le tour du monde en mai 2015.

		-		66
+	×		-	=
13	12		11	10
×	+		+	_
:	+		×	:

Il s'agit d'une addition dont le résultat est 66, avec 9 nombres manquants (indiqués par un carré noir ci-dessous) qu'il s'agit de trouver, sachant que ces 9 nombres ne sont autres que les chiffres 1, 2, 3, ..., 8, 9, à n'utiliser qu'une fois chacun.

$$\blacksquare + \frac{13 \times \blacksquare}{\blacksquare} + \blacksquare + 12 \times \blacksquare - \blacksquare - 11 + \frac{\blacksquare \times \blacksquare}{\blacksquare} - 10 = 66$$

$$\blacksquare + \frac{13 \times \blacksquare}{\blacksquare} + \blacksquare + 12 \times \blacksquare - \blacksquare + \frac{\blacksquare \times \blacksquare}{\blacksquare} = 87$$

En notant a_i (avec i de 1 à 9) les nombres manquants, cela s'écrit :

$$a_1 + \frac{13 \times a_2}{a_3} + a_4 + 12 \times a_5 - a_6 + \frac{a_7 \times a_8}{a_9} = 87$$

Il s'agit de trouver a_1 a_2 a_3 ... a_9 qui est une permutation de 1 2 3 ... 9. Pour cela reprenons le programme des permutations. Les permutations de 9 éléments sont au nombre de 362 880. Il suffit d'afficher celles qui obéissent à l'égalité précédente, et aussi telles que les deux divisions présentes tombent justes. On en déduit le programme :

¹ Voir sur mon site *audibertpierre.fr*, rubrique Enseignements, Cours d'algorithmique, chapitre 7 : énumérations dans l'ordre alphabétique.

² On a aussi supposé qu'aucun des diviseurs a_3 et a_9 ne soit égal à 1, car sinon une des divisions deviendrait ridicule. Toutefois en acceptant ce 1 en diviseur, on trouverait 20 solutions au lieu de 4.

```
  \{ compteur++; printf("\n \%d*", compteur); for (i=1; i<=9; i++) printf(" \%d ", a[i]); \} \\ i=9; while (i>1 &\& a[i]<a[i-1]) i--; \\ pospivot=i-1; if (pospivot==0) break; \\ i=9; while (a[i]<a[pospivot]) i--; posremplacant=i; \\ aux=a[pospivot]; a[pospivot]=a[posremplacant]; a[posremplacant]=aux; \\ gauche=pospivot+1; droite=9; \\ while (gauche<droite) \\ \{aux=a[gauche]; a[gauche]=a[droite]; a[droite]=aux; gauche++; droite--; \} \\ \} \\ getchar() ; return 0; \\ \}
```

L'exécution du programme, en quelques centièmes de seconde, donne quatre solutions pour les a_i :

```
1* 5 9 3 6 2 1 7 8 4 2* 5 9 3 6 2 1 8 7 4 4* 6 9 3 5 2 1 8 7 4
```