

MAY 2 8 2004

Technology Center 2100

New Wavelet Multi-Resolution Waveforms Urbain Alfred von der Embse 09/826,118 APPLICATION NO. INVENTION:

INVENTOR:

DRAWINGS AND PERFORMANCE DATA

FIG. 1 Wavelet Tiling of an N-Point Digital t-f Space

Wavelet Iterated Filter Bank for Tiling t-f Space in FIG. 0

FIG. 3 PSD Requirements for Communications

LS Metrics and Cost Function FIG.

FIG. 5A LS RECURSIVE DESIGN ALGORITHM IN MATLAB 5.0 CODE TO DESIGN:

- MOTHER WAVELET IN FIG. 6

; h . .

- NEW WAVELET FROM MOTHER WAVELET
- PERFORMANCE DATA AND PLOTS

```
nominal Wavelet length in units of
                                                                                                                                                                                                                                                                                                % maximum number of channels allowed
                                                                                                                                                                                                                                                                                                                                                                                                                                                              % number of iterations for LS design
                                                                                                                                                                                             FFT size for spectrum centered at
                                                                                                                                                                                                                                                                                                                                     % wp/2pi edge of passband
                                                                                                                                                                                                                                                                                                                                                   % ws/2pi edge of stopband
                                                                                                                                        = normalized Wavelet sample rate
                                                                                                                                                                                                                             % dB, channel-to-channel imbalance
                                                                                                                                                           normalized channel passband
                                                                                                                                                                                                                                                                                                                                                                      % edge of passband
                                                                                                                                                                                                                                                                                                                                                                                      floor(f_stop*n_fft) % edge of stopband
                                                                                                                                                                          number of design harmonics
                                                                                                                        normalized channel spacing
                                                                                                                                                                                                                                                                                                                 = (n_fft/M) % 0.5 * Wavelet sample rate
                                                                      % Wavelet sample interval
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for stopband
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 weighting for passband
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  weighting for deadband
                                                                                                      Wavelet length N =ML+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for ISI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for ACI
                                                                                                                                                                                                                                                                                % definition
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   weighting
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                weighting
                                                                                                                                                                                                             % dB, Eb/No
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   weighting
                                                                                                                                                                                                                                                                                                                                                                                                                            % STEP 1.3 OPTIMIZATION PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                       floor(f_pass*n_fft)
& STEP 1 DESIGN PARAMETERS
                                    & STEP 1.1 SCENARIO PARAMETERS
                                                                                                                                                                                                                                                                & STEP 1.2 DERIVED PARAMETERS
                                                                                                                                                                                                                                                                                                                                                      = (2-fp)/(M*fs)
                                                                                                                                                                                                                                                                                                                                       fp/(M*fs)
                                                                                                        = M*L+1;
                                                                                                                                                           = 0.8864;
                                                                                                                                                                                                                                                                                  = pi*2;
                                                                                                                                                                                             = 1024;
                                                                                                                                                                                                             : 0.9 =
                                                                                                                                                                                                                                = 6.0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = 1.e-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.e - 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.80
                                                                                                                                                                                                                                                                                                                                                                                                                                                               n iteration = 10;
                                                                                        = 16;
                                                                                                                                                                            = 16
                                                                                                                                                                                                                                 x_imbal_aci
                                                                                                                                                                                                                                                                                                                                                                                         nfft_stop
                                                                                                                                                                                                                                                                                                                                                                      nfft_pass
                                                                                                                                                                                                                                                                                                                    nfft wsr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 alpha_1
alpha_2
alpha_3
alpha_4
alpha_5
                                                                                                                                                                                                                                                                                                                                                        stop
                                                                                                                                                                                                                                                                                                                                       E_pass
                                                                                                                                                                                         _fft
                                                                                                                                                                                                                 epno
                                                                                                        z
```


-110*ones(size(v_3b))];

FIG. 5B

```
% STEP 2.4 MATRIX "c_matrix" USED FOR ISI,ACI LS ERROR METRICS
% J(ISI)IN EQ. 25 AND J(ACI) IN EQ. 26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            $ STEP 2.3 FUNCTION "pmn" CALCULATES PASSBAND, STOPBAND LS
$ ERROR MATRICES FOR THE METRICS J(PASS), J(STOP) IN
$ EQ. 23 AND FUNCTION "pmn_d" CACULATES ERROR MATRIX
$ FOR J(DEAD) IN EQ. 24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8 STEP 2.5 PASSBAND, STOPBAND, WAVELET SAMPLE RATE TEMPLATES
                                                                                                                                                                                                                                                                                                                                     % STEP 2.2 MATRIX "bw matrix" MAPS WAVELET FREQUENCY DESIGN
%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     v_lb = 1:nfft_wsr;
v_2b = nfft_wsr+1:nfft_wsr+1;
v_3b = nfft_wsr+2:nfft_wsr+nfft_pass+nfft_stop;
hw_wsr= [-110*ones(size(v_lb)) zeros(size(v_2b)) ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for i_r=1:m
    ang = 2*pi* rem( (i_r)*(0:n_f-1)/(N-1),1); % time
bw_matrix(i_r + 1, :) = 2 * cos(ang);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       v_l = 1:nfft_pass+1;
v_2 = nfft_pass+2:nfft_stop;
v_3 = nfft_stop+1:nfft_stop+nfft_pass;
hw_ref= [zeros(size(v_l)) -110*ones(size(v_2)) ...
zeros(size(v_3))];
& STEP 2 INITIALIZATION CALCULATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              &===set up passband and stopband templet
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       %---set up wavelet sample rate templet
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              STEP 2.1 WAVELET LENGTH PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      bw_matrix(1,:) = ones(1,n_f);
                                                                                                                                                                                                                                               N is even
                                                                                                                                                                                                                                                                                                                                                                                                                commatrix = zeros(m, n_f);
                                                                                           m = N/2;
                                                                                                                                                                                               nrow = m+1;
                                                                                                                                                                                                                                                                          urow = m;
                                                                                                                                                                                                                          else
                                                                                                                                                                                                                                                                                               end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    end
```


FIG. 5C

. . . .

```
% STEP 3 PASSBAND, STOPBAND, DEADBAND LS ERROR MATRICES
```

```
STEP 3.4 WEIGHTED LS ERROR MATRIX "P_total" FOR THE WEIGHTED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p_total= alpha_1*passband+alpha_2*stopband+alpha_5*deadband;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STEP 3.5 CONVERT LS ERROR MATRIX IN TIME "p_total" TO LS ERROR MATRIX IN FREQUENCY "pw_t"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SUM OF J(PASSBAND), J(STOPBAND), J(DEADBAND)
% STEP 3.1 J(PASSBAND) LS ERROR MATRIX "passband"
                                                                                                                                                                                                          % STEP 3.2 J(STOPBAND) LS ERROR MATRIX "stopband"
                                                                                                                                                                                                                                                                                                                                                                                                                           % STEP 3.3 J(DEADBAND) LS ERROR MATRIX "deadband"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    %deadband = pmn_d( omega_l, omega_u, N, an)
deadband = zeros(nrow,nrow);
                                                                                                                                                                                                                                                                                                                                                                  stopband = pmn( omega_l, omega_u, N, an);
                                                                                                                                                 passband = pmn( omega_l, omega_u, N, an) ;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  pw_total = bw_matrix'*(p_total*bw_matrix);
pw_t = pw_total;
                                                                                        omega_u = f_pass * pi ; % 0.0554
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         omega_l = f_pass * pi;
omega_u = f_stop * pi;
                                                                                                                                                                                                                                                                          omega_l = f_stop * pi;
                                                           omega_1 = 0.0 * pi;
                                                                                                                                                                                                                                                                                                          omega_u = pi ;
an=zeros(1,nrow);
                                                                                                                           an=ones(1,nrow);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  an=ones (1, nrow);
```

S

% STEP 4 ITERATIVE EIGENVALUE SOLUTION

ß

FIG.

```
STEP 4.1 FOR EACH ITERATION "i iteration" FIND EIGENVECTOR IN FREQUENCY THAT MINIMIZES THE COST FUNCTION J IN EQ. 27 WHOSE LS ERROR MATRIOX IS "PW_t"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         xstop = max(hw_db(nfft_stop+1:nfft_stop+nfft_pass+1) );
                                                                                                                                                                                                                                     - WAVELET FREQUENCY DESIGN HARMONICS "hw_eig"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         scale ww = 1. / (hmax^2);
% normalized hn is the normalized Wavelet response
                                                                                                                                                                                                                                                              - WAVELET IMPULSE RESPONE IN TIME "hn"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       &Fourier transform of hn & hn in the next channel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               arg_rot = twopi* rem( (0:N-1)*ich /nc , 1 );
                                                                                                                                                                                                                                                                                                                     b_vector = bw_matrix * eig_vec(:,min_index);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          %===== peak_to_peak_ripple in passband
max_ripple = max( hw_db(1: nfft_pass+1));
min_ripple = min( hw_db(1: nfft_pass+1));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            & STEP 4.3 PASSBAND RIPPLE "xripple" AND
                                                                                                           eig_val = eig(pw_t);
[eig_vec eigval] = eig(pw_t);
[eigval_min,min_index] = min(eig_val);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STOPBAND ATTENUATION "xstop"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          hn(1:m) = 0.5*b_vector((m+1):-1:2);
hn(m+1) = b_vector(1);
hn(m+2:N) = hn(m:-1:1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                xripple = max_ripple - min_ripple;
8=== stopband_atttenuation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  hn(m:-1:1) = 0.5 * b_vector(1:m);
                                                                                                                                                                                                                                                                                                                                            hw eig = eig_vec(:,min_index);
hw eig(1)= 2*hw eig(1);
hw max = max(hw eig);
hw eig = hw eig/hw max;
                                                                                                                                                                                                              STEP 4.2 MAP EIGENVECTOR INTO:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hn(m+1:1:2*m) = hn(m:-1:1);
                                                                                                                                                                                                                                                                                                                                                                                                                            = hw_eig/hw_max;
d == 1) % N is odd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          _____
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hmax = max(abs(hn));
                                                                                                                                                                                                                                                                                                                                                                                                                                                   if nodd == \overline{1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hn = hn/ hmax;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          end % nodd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ich = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ====%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 else
```


FIG. SE

```
- MATRICES "w matrix" AND "w f matrix"
- METRICS J(ISI) = "errM isi" AND J(ACI) = "errM aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - SNR ERROR CONTRIBUTORS "errV_isi" AND "errV_aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for ii = 0:n_i
% ISI error residual vector w_vector
w_vector(k_wave+1)=w_vector(k_wave+1)+hn(ii+1)*hn(ii+1+ ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 scale_isi_aci = 1/w_vector(1);
w_vector = w_vector * scale_isi_aci;
e_rv_isi = sum(w_vector(2:M) .*w_vector(2:M)); %ISI IS error
%2-sided power summation of isi residual errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   % STEP 5 WEIGHTED LS ERROR METRICS FOR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           a_matrix(i_r+1, nic) = hn(nic - n_cc);
                                                                                                                                                            err_stop = __vector. * stopband * b_vector;
err_dead = b_vector. * deadband * b_vector;
beta_pass = alpha_1 * err_pass;
beta_stop = alpha_2 * err_stop;
beta_dead = alpha_5 * err_dead;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                - LS ERROR MATRIX "w matrix"

- J(ISI) = "errM isi"

- SNR LOSS ISI ERROR "errV_isi"
                                                                                                                         err_pass = b_vector' * passband * b_vector;
                                 - J(PASSBAND) = "beta_pass"
                                                           - J(STOPBAND) = "beta_stop"
- J(DEADBAND) = "beta_dead"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    nc*k_wave);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for i r = 0:m

n cc = i r * nc;

if (i r>=1 & i r<=M)

nic = (n_cc+1);
                                                                                                                                                                                                                                                                                                                                                                                   & STEP 6 ISI AND ACI LS:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             a_matrix= zeros(m+1,2*m+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    n_i = N - 1 - k_wave*nc;

w_vector(k_wave+1) = 0.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STEP 6.1 J(ISI):
                                                                                                                                                                                                                                                                                                                                                                                                                                         - METRICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   for k wave = 0:M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               end
```


FIG. SE

```
- MATRICES "w_matrix" AND "w_f_matrix"
- METRICS J(ISI)="errM_isi" AND J(ACI)="errM_aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - SNR ERROR CONTRIBUTORS "erry isi" AND "erry aci"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           w_vector(k_wave+1)=w_vector(k_wave+1)+hn(ii+1)*hn(ii+1+ ...
nc*k_wave);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           scale isi_aci = 1/w_vector(1);
w_vector = w_vector * scale_isi_aci;
w_vector = w_vector(2:M);
errv_isi = sum(w_vector(2:M) .*w_vector(2:M)); %ISI LS error
%2-sided power summation of isi residual errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for i_r = 0:m
    n_cc = i_r * nc;
    if ( i_r>=1 & i_r<=M)
    nic = (n_cc+1): (2*m+1);
    a_matrix(i_r+1, nic) = hn(nic - n_cc) ;</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       & STEP 5 WEIGHTED LS ERROR METRICS FOR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           - IS ERROR MATRIX "w_matrix"
- J(ISI) = "errM_isi"
- SNR LOSS ISI ERROR "errV_isi"
                                                                                                                                            err_pass = b_vector' * passband * b_vector;
err_stop = b_vector' * stopband * b_vector;
err_dead = b_vector' * deadband * b_vector;
                               - J(PASSBAND) = "beta_pass"
                                                          = "beta_stop"
                                                                                          - J(DEADBAND) = "beta_dead"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for ii = 0:n_i
% ISI error residual vector w_vector
                                                                                                                                                                                                                         beta pass = alpha 1 * err pass;
beta stop = alpha 2 * err stop;
beta dead = alpha 5 * err dead;
                                                                                                                                                                                                                                                                                                                                                                                                 & STEP 6 ISI AND ACI LS:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      a_matrix= zeros(m+1,2*m+1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     w_{\text{vector}}(k_{\text{wave+1}}) = 0.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            n_i = N - 1 - k_wave*nc;
                                                               - J(STOPBAND)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      STEP 6.1 J(ISI):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     for k wave = 0:M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   end
```


FIG. 5G

Orth Berger

```
beta_pass_1 = beta_pass * 1./errM_LS; % in fraction
beta_stop_1 = beta_stop * 1./errM_LS; % in fraction
beta_dead_1 = beta_dead * 1./errM_LS; % in fraction
beta_isi_1 = beta_isi * 1./errM_LS; % in fraction
beta_aci_1 = beta_aci * 1./errM_LS; % in fraction
%errM_LS = errM_LS / (alpha_1+alpha_2+alpha_3+alpha_5);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           뜅
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    罗 罗
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  - PASSBAND RIPPLE LOSS "xloss_ripple", dB
                                                                                                                    - WEIGHTED ISI LS ERROR METRIC "beta_isi"

- WEIGHTED ACI LS ERROR METRIC "beta_aci"

- TOTAL LS ERROR METRIC J = "errM_LS"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STEP 7.3 UPDATE J LS ERROR MATRIX "PW_t" FOR NEXT ITERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     % STEP 7.2 SAVE WEIGHTED LS ERROR METRICS FOR EACH ITERATION
                          UPDATE LS ERROR MATRIX "PW_t" FOR NEXT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                % STEP 8.1 SNR LOSSES DUE TO PASSBAND RIPPLE, ISI, ACI, AND
% THE TOTAL SNR LOSS
                                                                                                                                                                                                                                                 errM_LS = beta_pass+beta_stop+beta_dead+beta_isi+beta_aci;
                                                                                                 STEP 7.1 WEIGHTED LS ERROR METRICS FOR ISI, ACI, TOTAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                "xloss total"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             "xloss_isi",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    "xloss_aci".
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      %===== passband ripple loss
x_delta = 10.^( xripple/2. /20.) - 1.;
xloss_ripple = -10. * log10( 1.0 - x_delta^2 );
- WEIGHTED LS ERROR METRICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           & STEP 8 SIGNAL-TO-NOISE SNR LOSS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      errM LS = errM LS /scale_err;
                                                                                                                                                                                                           beta_isi = alpha_3*errM_isi;
beta_aci = alpha_4*errM_aci;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    - TOTAL LOSS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - ISI LOSS
- ACI LOSS
                                                       ITERATION
                                                                                                                                                                                                                                                                                                                                                                    scale_err = errM_LS;
                                                                                   if i iteration==1
   & STEP 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    36
```


FIG. 5H

```
* STEP 9.1 WAVELET FREQUENCY DESIGN HARMONICS "hn_eig
                                                                                                 loss_LS =[loss_LS ; i_iteration xloss_total ....
xloss_ripple xloss_lsi xloss_aci ];
                                                                        8 STEP 8.2 SAVE SNR LOSSES FOR EACH ITERATION
                                                                                                                                                                                       8 STEP 9 WAVELET DESIGN FOR FIG. 6
aci loss
    = 10.^( x_imbal_aci / 10. );
    = xebno * errV_aci * x_g_aci ;
                                                                                                                                                                                                                                                                                                                                                                                                                                        STEP 9.2 WAVELET TIME RESPONSE "hn"
                                                                                                                                                                                                                               'Harmonic number Harmonic value' [(0:n_f-1)' hw_eig]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                Wavelet response'
hn(m+1:2*m+1)']
                                                                                                                                  8==== end of iterations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.0000
0.9941
0.9765
0.9476
0.9080
                                                                                                                                                                                                                                                               0.9651
0.9499
0.94842
0.94849
0.9434
1.0000
0.2266
-0.0019
0.0009
0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                'Sample index
[(0:m)'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0000
2.0000
3.0000
4.0000
5.0000
                                                                                                                                                                                                                                                                          1.0000
2.0000
3.0000
5.0000
6.0000
7.0000
9.0000
111.0000
113.0000
115.0000
          x_g_aci
xx_aci
                                                                                                                                             end
```


FIG. 51

0.8004	662	586	506	424	343	202	114	.047	.013	990	111	148	196	207	210	206	195	.179	.158	133	.106	9 7	, 6	9 6	200	057	076	.092	.103	.110	.113	$\frac{112}{2}$.107	200	 .058	.041	.024	.007	.009	.025	.038	350	.060	90.	2.6	6.6
000	000	000.	000.	000	000.	2000	000.	5.000	000.	3.000	9.000	000	000		000.	5.000	5.000	7.000	3.000	9.000	000.	000.1	000.7	3.000	000		7.000	3.000	9.000	000.0	1.000	2.000	3.000	0000	000.7	8.000	9.000	0.00	1.000	2.000	3.000	4.000	5.000	0000	, 000	59.0000

	-0.0701 -0.0649	5749	.039	.028	.006	.014	.023	.030	.03/	.045	.046	.046	.044	.041	.037	.031	.025	.018	.011		600.	.015	.020	.025	.028	.031	.032	.032	.032
FIG. 5J	60.0000	3.000	4.000	5.000	7.000	000.6	0.000	1.000	3.000	4.000	5.000	6.000	7.000	8.000	9.000	000.0	1.000	2.000	3.000	4.000	6.000	7.000	8.000	9.000	000.0	1.000	2.000	3.000	4.000

hold on

FIG. 5K

0.0187	0.0179	0.0168	0.0154	0.0138	0.0121	0.0103	0.0085	0.0067	0.0051	0.0036	0.0024	0.0013	9000.0	0.0001	-0.000
113.0000	114.0000	115.0000	116.0000	117.0000	118.0000	119.0000	120.0000	121.0000	122.0000	123.0000	124.0000	125.0000	126.0000	127.0000	128.0000

38

STEP 10 ITERATION CONVERGENCE IS WEASURED BY THE
CONVERGENCE OF THE LS ERRORS IN
% figure(1), figure(2)
%
plot(err LS(:,1), err LS(:,7), 'k')
legend('Total LS error relative to iteration=1')
ylabel('Total LS error relative to iteration=1')
xlabel('Total LS ERROR J VS. ITERATION')
grid on
hold on
%====
figure(2)
plot(err LS(:,1), err LS(:,2), 'k')
hold on
plot(err LS(:,1), err LS(:,2), 'k')
plot(err LS(:,1), err LS(:,5), 'b')
plot(err LS(:,1), err LS(:,5), 'b')
plot(err LS(:,1), err LS(:,5), 'b')
plot(err LS(:,1), err LS(:,6), 'b--')
title('LS ERROR CONTRIBUTORS VS. ITERATION')
legend('passband', 'stopband', 'deadband', 'ISI', 'ACI')
xlabel('Iteration number')
grid on

FIG. 5L

```
- WAVELET FILTER PERFORMANCE IN figure (3)
- WAVELET RIPPLE, ISI, ACI SNR LOSSES IN figure (4)
                                                                                                                                                                                                                                                                                   x2=length(hw_ref);
x3=length(hw_wsr);
plot(freq(1:x2)*M,hw_ref, 'b--')
plot(freq(1:x3)*M,hw_wsr, 'b--')
legend('Wavelet response', 'pass & stop templates', 'Wavelet sample rate')
title('WAVELET FREQUENCY RESPONSE')
8 STEP 11 PARAMETERS ARE SELECTED TO OPTIMIZE:
                                                                            - WAVELET TIME RESPONSE IN figure (5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    plot(loss_LS(:,1),loss_LS(:,3),'k--')
plot(loss_LS(:,1),loss_LS(:,4),'b')
plot(loss_LS(:,1),loss_LS(:,5),'b--')
title('sNR_LOSS' VS. ITERATION')
legend''total','ripple','ISI','ACI')
ylabel('SNR_LOSS,'dB')
xlabel('Iteration number')
                                                                                                                                                                                                    grid on
xlabel('Frequency/Wavelet sample rate')
ylabel('Power Spectrum, dB')
hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          plot (loss_LS(:,1),loss_LS(:,2),'k')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             xlabel('Time/Wavelet sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 title('WAVELET TIME RESPONSE')
                                                                                                              figure(3)
plot(freg*M, hw_db,'k')
axis([0 200 -100 10])
                                                                                                                                                                                                                                                                                                                                                                                                                                                               axis([0 1.4 -100 0])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       axis([-8 8 -0.4 1])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       plot(xx, hn','k')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ', (m:m-)=xx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         figure (4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   figure(5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 xx=xx/M;
                                                                                                                                                                                                                                                                                                                                                                                                                                                 grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      no bloc
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ====
```


FIG. 5M

```
& STEP 12 CALCULATION OF NEW WAVELET WAVEFORM "hn_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     % STEP 12.2 MATRIX "bw matrix new" FOR MAPPING WAVELET
%
FREQUENCY DESIGN HARMONICS INTO NEWWAVELET IMPULSE
%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 STEP 12.3 MAP WAVELET FREQUENCY DESIGN HARMONICS "hw eig" INTO NEW WAVELET IMPULSE RESPONSE IN TIME "hn_new"
                                                                                                                                                                                                                              % STEP 12.1 WAVELET SAMPLE INTERVAL "M_new" AND LENGTH "N_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    %==== hn_0 = hn_new without translations in time & frequency
hw_eig2 = hw_eig;
hw_eig2(1) = 0.5*hw_eig(1);
%=====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Case 2: Fix sampling and dilate M_new = 2^p M
hn = hn(n - q M_new)
M_new = M*(2^p P);
                                                                                                                                                                                                                                                                                                                               Case 1: Fix M new = M and dilate sampling hn = hn(n 2^{-}-p - q M)

n_new = n 2^{-}-p

= n_p for n = n_0 + n_p 2^{-}-p
                                          - "p" SCALE (DILATION)
- "q" TRANSLATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         * N is odd
                                                                                                                                                                                                                                                                                        8== Wavelet sample interval M_new for:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N is even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                N_new = M_new*L+1; % Wavelet length
                          FOR THE PARAMETERS:
                                                                                                                               bw_matrix_new(1,:) = ones(1,n_f);
                                                                                                                                                                p=2 % scale change or dilation q=2 % time translation k=3 % frequency translation
                                                                                             - "k" FREQUENCY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                m_n = N_n = N_s = 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     m_{\text{new = (N_new - 1)}}/2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        nodd= fix( N_new/2 );
nodd = N_new - 2 * nodd ;
if ( nodd == 1)
                                                                                                                                                 % Wavelet parameters
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     end
```


FIG. 5N

1 . . .

```
title ('TIME RESPONSE FOR MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                                                                                                                                                                                                                                 legend('MOTHER WAVELET','NEW WAVELET')
                                                                                                                                                                                                                                                                                                                                                                                                                                         xlabel('Time/hn\_new sample rate')
ylabel('Wavelet time response')
                                                                                                                                                       hn_1(n) = hn_0(n-q^*M_new);
                                                                                                                                                                                                                                                                                  xx1 = (L/2)*(1-1/2^p)*M_new;

xx2 = (L/2)*(1+1/2^p)*M_new;

for n=1:N_new+q*M_new

if n<xx1 | n>xx2

hn1(n) = 0;
                                                                                                                                                                                                                                                                                                                                                                   x_n = (1:N_new+q^*M_new)/M_new;

x_n = x_n-L/2;
                                                                                                                                                                                                                                                                                                                                        hnl(n) = hn(n-xxl+1);
                                                                                                                                                                                                                                                                                                                                                                                                     plot(x_n,hn_1,'k--')
                                                                                                                                                                                                                                                                                                                                                                                    plot(x_n, hn1, 'k')
                                                                                                                                                                                                                                                                           figure(6)
                                                                                                                                                                                                                                                                                                                                                                                                                grid on
                                                                                                                                                                                                                                                                                                                                 else
                                                                                                                                                                                                                                                                                                                                                                                              hold on
                                                                                                                                                                                                                                                                                                                                                  end
                                                                                                                                                                                                                                                                                                                                                                                                                        hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                            hold on
                                                                                                                                                                  end
```


FIG. 50

```
arg\_rot = twopi* rem( (0:N\_new-1)*ich /M\_new , 1 );
                                                                                                                                                                                                                                                                                                                                                                                          [freq, hw2_db] = freq_rsp(hn_0, arg_rot, n_fft);
plot(freq*M,hw2_db,'k--')
axis([0 8 -100 10])
% STEP 12.5 PLOT WAVELET FREQUENCY RESPONSE FOR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 title ('POWER SPECTRUM OF MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          title ('POWER SPECTRUM OF MOTHER, NEW WAVELETS')
                                                                                                                                                                                                                       arg_rot = twopi* rem( (0:N-1)*ich /nc , 1 );
[freq, hw_db] = freq_rsp(hn, arg_rot, n_fft);
plot(freq*M, hw_db,'k')
                                                                                     sample rate
                                                                                                           vs. frequency/hn_new sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   %==== plot frequency response of hn, hn_new
                                                                                                                                                                   figure(7) % vs. frequency/hn sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        xlabel('Frequency/hn\_new sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               vs. frequency/hn_new sample rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          legend('MOTHER WAVELET','NEW WAVELET')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            legend ('MOTHER WAVELET', 'NEW WAVELET')
                                                   - NEW WAVELET "hn_new"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   xlabel('Frequency/hn sample rate')
                       - MOTHER WAVELET "hn"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ylabel('Wavelet time response')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          xlabel('Time/hn sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        plot(freg*M_new,hw2_db,'k--')
axis([0 8 -100 10])
                                                                                 vs. frequency/hn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    xlabel('Time/hn sample rate')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ylabel ('Power Spectrum, dB')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ylabel ('Power Spectrum, dB')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     plot(freg*M_new, hw_db,'k')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           figure(8)
                                                                                                                                                                                                   ich = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   hold on
                                                                                                                                                                                                                                                                                                          hold on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  grid on
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 hold on
                                                                                                                                                                                                                                                                                                                                          ich=k;
```


FIG. 5P

.:

```
p_matrix(n+1,ml+1)=1./pi*(an(n+1)*an(ml+1)*(omega_u-omega_l)...
-{ an(ml+1) *ml*( sin( n*omega_u ) - sin( n*omega_l ) ) + ...
an(n+1) * *n * ( sin(ml*omega_u) - sin(ml*omega_l ) ) / ( ml*n ) + ( ...
(n+ml)* ( sin( (n-ml)*omega_u ) - sin((n-ml)*omega_l ) )...
+(n-ml)*(sin( (n+ml)*omega_u ) -sin((n+ml)*omega_l)) ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \label{eq:pmatrix} $\inf \{ m1 == 0 \}$ $p_*(m1+1)=1./pi^*(an(m+1)^*(an(m+1)^*(amega_u-omega_1)^-....(sin(n^*omega_u)^-sin(n^*omega_1)^-) n $$$$$$$$$$$$
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if (n == 0)
p matrix(n+1,m+1)=1./pix(an(n+1)-1.)*(an(m1+1)*(omega_u-omega_1)-....
{ sin(m1*omega_u )-sin( m1*omega_1) } /m1 );
                                                                                                                                                                                                                                                                                                                                                    p\_matrix(n,m): a nXm real, symmetry and positive-definite matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          p_matrix(n+1,ml+1)=1./p1*((an(n+1)*an(n+1)+0.5)*(omega_u-omega_l)-...
2.* an(n+1) * ( sin( n*omega_u ) - sin( n*omega_l ) } ...
/n + (sin(2.* n*omega_u) - sin(2.*n*omega_l))/{ 4.* n } );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               p_matrix(n+1,m1+1)=1./pi*(an(n+1)-1.)*(an(n+1)-1.)*(omega_u-omega_l);
                                                                                                                                                                                                               compute the real, symmetric, and positive definite matrix
                                                             STEP 13.1 FUNCTION "pmn" COMPUTES MATRIX FOR J(BAND) IN
                                                                                                                                                                                                                                                                                                    an(.): 1xm column vector
% STEP 13 FUNCTIONS USED IN MATLAB PROGRAM
                                       filter length 'N' is odd
                                                                                                                                                                                                                                            omega_1: lower edge (radians)
omega_u: upper edge (radians)
                                                                                                                                                       function p_matrix= pmn(omega_l,omega_u, N,an)
                                                                                                                                                                                                                                                                                                                                                                                                                 twopi = 2. * pi;
check filter lenght is odd or even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                N is even
                                                                                                                                                                                                                                                                                                    N: filter length,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             end % end of ml loop
end % end of n loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nodd = fix(N/2);
nodd = N - 2 * nodd;
if ( nodd == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        m = (N-1)/2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for ml= 0:m
if ( ml ==n )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     if ( nodd == 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                m = N/2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for n= 0:m
                                                                                                                                                                                                                                                 input:
                                                                                                                                                                                                                                                                                                                                 output
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             end
```


FIG. 52

The state of the s

```
p_matrix(n+1,m1+1) = 1./pi * ( ...
an(n+1) * an(m1+1) * ( omega_u - omega_l ) - ...
an(m1+1) * (sin((n+.5)*omega_u)-sin((n+.5)*omega_l))/( n + 0.5) - ...
an(n+1) * (sin((m1+.5)*omega_u)-sin((m1+.5)*omega_l))/(m1+0.5) + ...
(sin((n-m1)*omega_u) - sin((n-m1)*omega_l))/(2.* (n-m1)) + ...
(sin((n+m1+1)*omega_u)-sin((n+m1+1)*omega_l))/(2.* (n+m1+1));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STEP 13.2 FUNCTION "freq_rsp" COMPUTES FOURIER TRANSFORM OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             INPUT "hn" VS. FREQUENCY/WAVELET SAMPLE RATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           function [freq, hw_db] = freq_rsp(hn, arg_rot, n_freq )
% Fourier transform of input hn
                                                                                                                                                                                                                                     (sin((2*n+1) * omega_u) -sin((2*n+1) * omega_l)) ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for nf = 1: n_freq
arg=twopi * rem( freq(nf) * ((1:n_filter) -1-m),1);
                                                                                                                             p_matrix(n+1,m1+1) = 1./pi * ( ... (an(n+1)*an(n+1) + 0.5) * (omega_u - omega_l) - ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ______
                                                                                                                                                                                2. * an(n+1) * ( sin( (n+.5) * omega_u) - ...

sin( (n+.5) * omega_l) )/( n + 0.5 ) + ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      hw = sum(hn .*exp( (-arg+arg_rot)*i));
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         in normalized freq interval (0., 0.5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   hw_mag = hw_mag /hw_max;
hw_db = 20. * log10( hw_mag+ 1.e-20);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       hw_max = max( abs(hw_mag) );
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       % end of if nodd =1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  end % end of m1 loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hw_mag(nf) = abs(hw);
when N is even
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     % n_freq # of frequency
twopi = 2. * pi;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   df = 0.5/ (n freq -1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             n_filter = length(hn);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 end % end of n loop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        % frequency response
                                                                                 if ( m1 == n )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              m=(n_filter-1)/2;
freq = (0:df:0.5);
                                                     for m1 = 0:m-1
                          for n = 0:m-1
8 =====
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              end
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            end
```


FIG. 7 PSD for New Waveform BEM and GMSK

Normalized frequency, bit rate 48

Power spectral density PSD, dB 47

ŧ

Radar Ambiguity Functions of Wavelet ω FIG.

