一、选择题:

- 1. 物理算式 3 (s) ×4 (V) ×2 (A) 计算的结果是 ()
- (A) 24 N (B) 24 W (C) 24 C (D) 24 J
- 2. 两同频波源Ⅰ、Ⅱ在水槽中形成的波形如图所示,其中实线表示 波峰,虚线表示波谷,a、b 两点是两列波相遇点,则两点的振动情 况()
- (A) a、b 两点都始终加强
- (B) a、b 两点都始终减弱
- (C) a 点始终减弱, b 点始终加强
- (D) a 点始终加强, b 点始终减弱
- 3. 如图, a、b 是正点电荷电场中的一条电场线上的二点,二点的 电势和电场强度分别为 φ_a 、 φ_b 和 E_a 、 E_b ,则它们的大小关系是()

- (C) $\varphi_a = \varphi_b$, $E_a = E_b$
- (D) $\varphi_a < \varphi_b$, $E_a > E_b$
- 4. 设 $a \times v$ 和 s 分别代表物体运动的加速度、速度和位移。现有初速度均为零的四个物体,他们 的运动图像分别如下图所示,则哪个物体在做单向直线运动?()

- 5. 如图为某一皮带传动装置. 主动轮的半径为 r_1 , 从动轮的半径为 r_2 。已知主动轮做逆时针转 动,转速为n,转动过程中皮带不打滑.则从动轮将做(
- (A) 顺时针转动, 转速为 ^{r1} n
- (B) 逆时针转动,转速为 $\frac{r_1}{n}$ n
- (C) 顺时针转动,转速为 $\frac{r_2}{n}$ n (D) 逆时针转动,转速为 $\frac{r_2}{n}$
- 6. 用单分子油膜法测出油酸分子(视为球形)的直径后,若已知阿伏伽德罗常数,则能算出(
- (A)油滴的体积
- (B)油酸的摩尔体积
- (C)油滴的质量
- (D)油酸的摩尔质量
- 7. 如图电路, 开关接通后三个灯消耗的电功率恰好相等。由此可以判 定此时三个灯的电阻值 R_1 、 R_2 、 R_3 的大小关系是(
- (A) $R_1 > R_2 > R_3$
- (B) $R_1 = R_2 = R_3$
- (C) $R_1 < R_2 < R_3$
- (D) $R_1 > R_3 > R_2$

波形分别变为图丙、丁所示,则 $A \times B$ 两列波的波速 $v_A \times v_B$ 之比可能是(

- $(A) 1:3 \qquad (B) 2:3 \qquad (C) 2:1$
- $(D) \ 3:1$

9. 如图所示为一定质量气体状态变化时的 p-T 图像,由图像可知,此气 体的体积()

丙

(B) 先不变后变小

(D) 先变小后不变

10. 如图,在薄金属圆筒表面上通以环绕圆筒、分布均匀的恒定电流时, 由于受磁场力的作用,该圆筒的形变趋势为(

- (B) 沿轴线上下拉伸,同时沿半径向内收缩
- (C) 沿轴线上下压缩,同时沿半径向外膨胀
- (D) 沿轴线上下拉伸,同时沿半径向外膨胀
- 11. 如图,质量均为m的环A与球B用一轻质细绳相连,环A套在光滑 水平细杆上。现用水平恒力F作用在球B上,使A与B一起以相同的加 速度 a 向右匀加速运动。此时细绳与竖直方向的夹角 θ =45°,若轻绳上拉 力为 T,A 受到杆的支持力为 N,当地重力加速度为 g。则下列关系正确 的是(

(A)
$$F=2mg$$

(B) T > N

(C)
$$T > F$$

(D) F > N

12. 如图所示, 半径为 R 的光滑圆轨道固定在竖直平面内, 水平光滑 轨道 AB 在圆轨道最低点与其平滑连接。一小球以初速度 v_0 沿 AB 向 左运动,要使球能沿圆轨道运动到 D点,则小球初速度 v_0 和在最高点 C 点的速度 v_c 的最小值分别为 ()

(C) $v_0 = 2\sqrt{Rg}$, $v_C = \sqrt{Rg}$ (D) $v_0 = \sqrt{5Rg}$, $v_C = \sqrt{Rg}$

二、填空题:

- 13. 牛顿第一定律揭示了物体不受力作用时将保持 状态或静止 状态,由这条定律可知,维持物体运动的原因是
- 14. 以初速度 45 m/s 竖直上抛的物体,如不计空气阻力,则它在上升过程中最后 2 s 内的位移是 米,第 5 s 内的位移为 m。(g 取 10 m/s^2)
- 15. 一绝缘细棒的两端固定两带等量异种电荷的小球,置于光 滑绝缘水平面上,在细棒的延长线上某处有一固定的点电荷O, 如图所示. 细棒由静止释放后, 向右做加速度增大的加速运动, 由此可知固定点电荷 Q 带 电(选填"正"或"负"),位于 细棒的____侧(选填"左"或"右")。
- 16. 电阻 R_1 、 R_2 的 I-U 图像如图所示,则 R_1 = Ω 。若把 R_1 、 R_2 串 联后接到一个内阻 r=2 Ω 的电源上时, R_1 消耗的电功率是 8 W,则电源 的电动势是 E=____V。

17. 用力传感器对单摆振动过程进行测量,力传感器测出的 F-t 图像如图所示,根据图中信息可得,摆球摆到最低点的时刻为____s,该单摆的摆长为____m(取 $\pi^2=10$,g=10 m/s²)。

三、综合题:

- 18. "用 DIS 研究在温度不变时,一定质量气体压强与体积关系"的实验装置如图所示。
- (1) 保持温度不变,封闭气体的压强 p 用_______ 传感器测量,体积 V 由______ 读出。实验前是否需要对传感器进行调零?______ (选填: "是"或"否")。
- (2)(单选)某次实验中,数据表格内第 2 次~第 8 次压强没有点击记录,但其它操作规范。根据表格中第 1 次和第 9 次数据,推测出第 7 次的压强 p_7 ,其最接近的值是(

次数	1	2	3	4	5	6	7	8	9
压强 p/kPa	100.1						p_7		179.9
体积 V/cm³	18	17	16	15	14	13	12	11	10

- (A) 128.5 kPa
- (B) 138.4 kPa
- (C) 149.9 kPa
- (D) 163.7 kPa
- (3)(单选)若考虑到连接注射器与传感器的软管内气体体积 V_0 不可忽略,则封闭气体的真实体积为 $V'=V+V_0$ 。从理论上讲 p-1/V 图像可能接近下列哪个图? ()

19. 如图,质量 m=2 kg 的物体静止于水平地面的 A 处,A、B 间距 L=20 m。用大小为 30 N,沿水平方向的外力拉此物体,经 $t_0=2$ s 拉至 B 处。(已知 $\cos 37^\circ=0.8$, $\sin 37^\circ=0.6$,g 取 10 m/s²)

- (1) 求物体与地面间的动摩擦因数µ;
- (2) 用大小为 30N,与水平方向成 37°的力斜向上拉此物体,使物体从 A 处由静止开始运动到达 B 处,在图上画出物体的受力图,并求到达 B 处时速度?
- (3) 上题中, 若到达 B 处后撤销外力, 则物体还能运动多长时间?
- 20. 如图所示,由 10 根长度都是 L 的金属杆连接成的一个"目字型的矩形金属框 abcdefgh,放在纸面所在的平面内。有一个宽度也为 L 的匀强磁场,磁场边界跟 de 杆平行,磁感应强度的大小是 B,方向垂直于纸面向里,金属杆 ah、bg、cf、de 的电阻都为 r,其他各杆的电阻不计,各杆端点间接触良好。现用水平向右的外力 F,以速度 v 匀速地把金属框从磁场的左边界水平向右拉,从 de 杆刚进入磁场瞬间开始计时,求:

- (1) de 刚进入磁场时 ah 中的电流强度大小和方向;
- (2) de 进入磁场时,作用在 de 上的外力 F 大小;
- (3) 从开始计时到 ah 离开磁场的过程中, 电流在 de 杆上做的功;
- (4) 从开始计时到 ah 刚进入磁场的过程中,通过 ah 某一横截面总的电荷量 q。