Climate Change Modeling Project Report

M Introduction

This project focuses on predicting climate change trends using machine learning. The model analyzes historical data and predicts the impact of different CO_2 emission scenarios.

■ Data Exploration

The dataset includes climate-related discussion metrics such as engagement levels, social media trends, and CO_2 emissions. Features include likes count, comments count, and text-based analysis.

Data Preprocessing

- 1. Flattening multi-dimensional data
- 2. Handling missing values
- 3. Scaling features for consistency
- 4. Splitting data into training and testing sets

A Feature Engineering

We engineered features such as interaction rates, sentiment scores, and normalized CO₂ levels.

Model Training

We used a Random Forest model to predict climate discussion trends. The model was trained on engagement metrics and emission data.

Model Evaluation

The model's accuracy was assessed using RMSE and R^2 scores. Different emission scenarios were analyzed to compare outcomes.

Scenario-Based Predictions

The model predicts engagement trends based on three scenarios:

- **Baseline: ** Current trend
- **High Emission:** Increased CO₂ impact
- **Low Emission: ** Mitigation strategies applied

Wisualization

Figure: Scenario-based impact on engagement trends.

Solution Conclusion

The project successfully models climate discussion trends using machine learning. Scenario-based projections provide insights into how different levels of CO_2 emissions affect engagement. Future improvements include expanding datasets and refining sentiment analysis models.