Un corpo di massa $m_1 = 3 kg$ si trova su un piano inclinato di $\theta = 30^{\circ}$ rispetto all'orizzontale, in assenza di attrito. A valle, il corpo è collegato ad una molla di costante elastica $k = 300 \, N/m$ e massa trascurabile, che è compressa da m_1 . A monte, è collegata tramite un filo inestensibile a un disco di massa $m_2 = 10 \, kg$ e raggio $R = 0.2 \, m$ intorno al quale il filo è avvolto. Inizialmente, m_1 è a riposo e la corda non è tesa. Al tempo t_0 , un motore pone il disco in rotazione tramite un momento costante \vec{M} . Il motore mette in tensione la corda e trascina m_1 verso l'alto. Al tempo $t_1 > t_0$, la molla è a riposo (non è più compressa). Tra il tempo t_0 ed il tempo t_1 , il motore compie il lavoro $W = 3 \, J$. Calcolare:

$$m_1 = 3kg$$
 $m_2 = 10kg$
 $K = 300 N_m$ $K = 0,2m$
 $W = 3 3 \Theta = 30^\circ$

1. Il modulo del momento \vec{M} applicato dal motore al disco;

$$\begin{cases} F_R = m_1 g \cos \theta \\ \overline{F}_{el} + \overline{F}_{p,ll} = 0 \iff K \Delta x - m_1 g \sin \theta = 0 \end{cases}$$

$$\Delta x = \frac{m_2 g \sin \theta}{K} = 0,069 \text{ m}$$

Tra tre to, un pezzo di corda di lunghezza Ax si avvolge intorno al disco

*
$$R \Delta \varphi = \Delta x$$
 e il lavoro svolto dal motore e angolo di rotazione $W = \int M d\varphi = M \Delta \varphi$ del disco $\Rightarrow M = \frac{W}{\Delta \varphi} = \frac{WR}{\Delta x} = 12,2 \text{ Nm}$

* $V = K\omega$ $\frac{dx}{dt} = R \frac{d\theta}{dt}$

2. L'accelerazione a_0 di m_1 nel momento in cui la corda si tende;

-magsin 0 + K (
$$\Delta x - x$$
) + $T = mad$

Per il disco abbiamo $M = I \lambda$

M - $TR = I \lambda$

monento della tousion

I motore della conda

Calcoliamo il momento di inerzia del disco

quindi

$$I = \int R^2 dm = \int R^2 l dV = \int R^2 l z T R dRo = 2 T lo \int R^3 dR = 2 T lo \frac{R^4}{6} = 2 T lo \frac{R^4}{6}$$

ora $m = lV$ con $V = T R^2$

quindi $I = 2 T o \frac{R^4}{6} \times \frac{m}{2 R^2 o} = \frac{mR^2}{2}$

$$\begin{cases} -m_1g\sin\theta + K(\Delta x - x) + T = m_1\theta \\ M - TR = \frac{m_1R^2}{2} \delta \end{cases}$$

Pero Rdq =
$$dx \Rightarrow R \frac{dq^2}{dt^2} = \frac{d^2x}{dt^2}$$
 cioè $R_{\lambda} = a$

$$\begin{cases} -m_1g\sin\theta + K(\Delta x - x) + T = m_1 a \\ M - TR = \frac{m_1R^2}{2} \frac{a}{R} \end{cases}$$

$$A t = t_0$$
 so he $x = 0$

$$\begin{cases} -m_1g\sin\theta + K\Delta_X + T = m_1\partial_0 \\ \frac{M}{R} - T = \frac{m_1\partial_0}{2} \end{cases}$$

3. La velocità
$$v_1$$
 di m_1 nell'istante t_1 .

• Al tempo to
$$E_{tot, to} = \frac{1}{2} k(\Delta x)^{2}$$

$$V_1 = 2 \sqrt{\frac{W + \frac{1}{2} K(\Delta x)^2 - m_1 g \Delta x \sin \theta}{m_2 + 2 m_1}} = 0.81 m/s$$