

Functional Analysis I

Homework Assignment 1

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 6 Points

Two metrics d_1 and d_2 on a set X are called *equivalent* if for each $x \in X$ and each $\varepsilon > 0$ there exists r > 0 such that

$$U_1(x,r) \subset U_2(x,\varepsilon)$$
 and $U_2(x,r) \subset U_1(x,\varepsilon)$,

where $U_j(x,r) := \{y \in X : d_j(y,x) < r\}, j = 1,2$. Show that (X,d_1) and (X,d_2) are equivalent if and only if the convergent sequences in (X,d_1) and those in (X,d_2) coincide.

Now let (X, d) be a metric space. Show that

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad x, y \in X,$$

provides another metric on X and that d and δ are equivalent metrics on X. Hint: Show and use that the function $t \mapsto t/(1+t)$ is monotonically increasing on $(0,\infty)$.

Exercise 2: 5 Points

Let X := (0,1] and define metrics d_1 and d_2 on X by

$$d_1(x,y) := \left| \frac{1}{x} - \frac{1}{y} \right|$$
 and $d_2(x,y) := |x - y|, \quad x, y \in X.$

Show that d_1 and d_2 are *equivalent* metrics, i.e., that d_1 -open sets are d_2 -open and vice versa (see Exercise 1). Furthermore, prove that (X, d_1) is complete, but (X, d_2) is not. Note that this shows that completeness cannot be characterized in terms of equivalence only.

Exercise 3: 5 Points

Let S be the space of all sequences $(x_i)_{i=1}^{\infty}$ of complex numbers. Verify that

$$d(x,y) := \sum_{i=1}^{\infty} \frac{2^{-i}|x_i - y_i|}{1 + |x_i - y_i|}, \quad x, y \in \mathcal{S},$$

provides a metric on the space \mathcal{S} . Show that a sequence $(x^{(n)})_{n\in\mathbb{N}}\subset\mathcal{S}$ converges to $x\in\mathcal{S}$ in (\mathcal{S},d) if and only if $x_i^{(n)}\to x_i$ for all $i\in\mathbb{N}$. Prove that \mathcal{S} is complete.

Exercise 4: 4 Points

Prove that $\ell_p \subset \ell_q$ for $1 \leq p < q \leq \infty$. Moreover, show that this is a proper inclusion.

Since April, 22 is a public holiday, please submit your homework in a tutorial of your choice between April, 23 and April, 26.