

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Докладчик Царева Наталья Викторовна

Постановка задачи

Тема выпускной квалификационной работы — прогнозирование конечных свойств новых материалов (композиционных материалов).

На входе имеются данные о начальных свойствах компонентов композиционных материалов (количество связующего, наполнителя, температурный режим отверждения и т.д.), представленные в виде 2х таблиц, которые нужно соединить.

ПЛАН РАБОТЫ:

- □ Необходимо провести разведочный анализ полученных на входе данных с помощью изученных в курсе методов.
- Данные необходимо предварительно обработать, продемонстрировать этапы обработки и выбранные методы.
- □ На выходе необходимо обучить модели машинного обучения и спрогнозировать значения Модуль упругости при растяжении и Прочность при растяжении, а также написать нейронную сеть, которая будет рекомендовать Соотношение матрицанаполнитель. Полученные модели необходимо оценить.
- □ Также нужно разработать приложение с графическим интерфейсом или интерфейсом командной строки, которое будет выдавать прогноз на основе обученных моделей.

Описание используемых методов

Выполнено на языке Python 3.8. Anaconda Jupiter Notebook (основной код) Visual Studio Code (разработка приложения)

Библиотеки

- Numpy для работы с многомерными массивами
- Pandas для обработки датафреймов
- Matplotlib для визуализации
- Seaborn для визуализации
- Xgboost для построения особой регрессионой модели деревья решений с градиентным усилением
- Sklearn для разработки моделей машинного обучения
- Pickle для сохранения полученных моделей
- Tensorflow.keras для разработки нейронной сети

Так как поставленная задача сводится к предсказанию некого значения, т.е. к задаче регрессии, будут проведен анализ следующих регрессионных моделей MO:

```
regressors = [
    KNeighborsRegressor(),
    GradientBoostingRegressor(),
    ExtraTreesRegressor(),
    RandomForestRegressor(),
    DecisionTreeRegressor(),
    LinearRegression(),
    Lasso(),
    Ridge(),
    XGBRegressor(),
    MLPRegressor()
```

Оценка моделей: коэффициент детерминации (R²) и средняя абсолютная ошибка (MAE)

Разведочный анализ данных

Цель разведочного анализа — получение первоначальных представлений о характерах распределений переменных исходного набора данных, формирование оценки качества исходных данных (наличие пропусков, выбросов), выявление характера взаимосвязи между переменными с целью последующего выдвижения гипотез о наиболее подходящих для решения задачи машинного обучения.

В данном разделе были использованы методы, реализованные в библиотеке pandas, которые позволяют провести разведочный анализ данных, а именно:

.info() общая информация по датасету;

.shape структура датасета;

.describe() описательная статистика датасета;

.isnull() выявление пропусков;

.dublicated() выявление дублей в строках;

.corr() проверка корреляции.

Библиотеки seaborn и matplotlib - для визуализации данных, построения различных графиков.

Так же с помощью метода SelectKBest из библиотеки Sklearn была проведена попытка ранжирования признаков по важности

для каждой целевой переменной.

Разведочный анализ данных Результаты

На входе имеется два файла с наборами данных X_bp.xlsx, X_nup.xlsx, число строк в них различное, 1023 и 1040 соответственно. По условию задачи объединим данные файлы в один датасет по индексу с типом объединения INNER, при этом остаются строки, присутствующие только в обоих датасетах.

Разведочный анализ данных Результаты

Оценка корреляции между параметрами на тепловой карте и попарными графиками

Температура вспышки, С_2 0.824993 модуль упругости, ГПа 0.553027 Угол нашивки, град 0.546559 Плотность, кг/м3 0.316430 Прочность при растяжении, МПа 0.82870 Соотношение матрица-наполнитель 0.072228 Плотность нашивки 0.042818

Предобработка данных

Обработка выбросов: первоначально была проведена методом 3х сигм, что даже при повторении не дало удовлетворительный результат. Финально удалены методом межквартильных интервалов.

Кодировка категориальной переменной Угол нашивки

```
encoder=LabelEncoder()
df_pred1['Угол нашивки, град'] =encoder.fit_transform(df_pred1['Угол нашивки, град'])
df_pred1['Угол нашивки, град']
```

Hормализация MimMaxScaler: датасет df_norm Стандартизация StandartScaler: датасет df_std

Обучение и тестирование модели для Модуль упругости при растяжении, гПа

Разбиение на тренировочную и тестовую выборки для подачи в модели машинного обучения методом train_test_split библиотеки sklearn.

В целях оптимизации работы был собрана функция и список регрессионных моделей regressors.

Модель	R2 score,	R2 score,	Оценка моделей с подобранными гиперпараметрами		ими с	
	df_norm	df_std	пом	ющью метода GridSea	rch	
KNeighborsRegress or	-0.247	-0.305				
GradientBoostingR egressor	-0.075	-0.076	Mode	Explained variance	MAE	R2 :
ExtraTreesRegress or	-0.058	-0.038	LinearRegression	0.007377	0.146740	
RandomForestRegr essor	-0.031	-0.021	RidgeRegression	0.005644	0.146948	(
DecisionTreeRegres sor	-1.084	-1.111	LassoRegression	0.000000	0.147274	-0
LinearRegression	0.006	0.006	RandomForestRegressor	-0.008845	0.147400	-(
Lasso	-0.001	-0.001				
Ridge	0.006	0.006	* * * * * * * * * * * * * * * * * * * *	2 " 2		
XGBRegressor	-0.331	-0.228		герессии для Модуля упругости п ении,гПа——"LinearRegression—		146740
MLPRegressor	-0.016	-0.171	<pre>with open("lr1_model.pk1", "\ pickle.dump(lr1, f)</pre>	ub") as f:		

Обучение и тестирование модели для Прочность при растяжении, мПа

Разбиение на тренировочную и тестовую выборки для подачи в модели машинного обучения методом train_test_split библиотеки sklearn.

В целях оптимизации работы был собрана функция и список регрессионных моделей regressors.

Модель	R2 score,	Оценка моделей с подобранными гиперпара помощью метода GridSearch			
ZN:11 D	df_norm				
KNeighborsRegressor()	-0.190 -0.087				
GradientBoostingRegressor ()	-0.087				
ExtraTreesRegressor()	-0.048	Mode	Explained variance	MAE	
RandomForestRegressor()	-0.007	RidgeRegression	0.007792	0.152404	
DecisionTreeRegressor()	-0.937	→ LinearRegression	0.007064	0.152871	
LinearRegression()	0.001	LillearRegression	0.007004	0.152071	
Lasso()	-0.006	MLPRegresso	0.000178	0.152418	
Ridge()	0.002	LDi	0.00000	0.453556	
XGBRegressor()	-0.208	LassoRegression	0.000000	0.152556	
MLPRegressor()	-0.193	RandomForestRegresso	-0.030630	0.154431	

Разработка нейронной сети для параметра Соотношение матрица-наполнитель

Разбиение на тренировочную и тестовую выборки для подачи в модели машинного обучения методом train_test_split библиотеки sklearn. Для оценки качества можеди та кже был выделен валидационный набор в размере 0.2 в процессе сборки моделей.

1ая модель Оценка 0.15512359142303467

Nodel: "sequential"			
Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 8)	104	
dense_1 (Dense)	(None, 8)	72	
dense_2 (Dense)	(None, 1)	9	
otal params: 185 Trainable params: 185 Hon-trainable params: 0)		
†собираем модель	mae", optimizer="adam")		

Разработка нейронной сети для параметра Соотношение матрица-наполнитель

2ая модель Оценка 0,1580493003129959

Model: "sequential_1"

dense_3 (Dense) (None, 8) 104 dense_4 (Dense) (None, 8) 72	#
dense_4 (Dense) (None, 8) 72	
dense_5 (Dense) (None, 1) 9	

Total params: 185 Trainable params: 185 Non-trainable params: 0

Зая модель Оценка 0.1562628448009491

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 12)	156
dropout (Dropout)	(None, 12)	0
dense_7 (Dense)	(None, 8)	104
dropout_1 (Dropout)	(None, 8)	0
dense_8 (Dense)	(None, 4)	36
dropout_2 (Dropout)	(None, 4)	0
dense_9 (Dense)	(None, 1)	5

Total params: 301 Trainable params: 301 Non-trainable params: 0

#сохраняем модель - выбрана нейронная сеть для Соотношения матрица-наполнительв первый вариант

model_X3.save('vkr_nn_model')

WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be d: tly callable after loading.

INFO:tensorflow:Assets written to: vkr_nn_model\assets

Разработка приложения

В ходе выполнения работы разработано приложение для предсказания параметра прочности при растяжении. Приложение разработано в среде Visual Studio Code с помощью библиотеки FLASK.

```
| State | Space | Spac
```


Все файлы с кодом, приложением, пояснительной запиской выложены в репозитарий по адресу https://github.com/TashaGit/Final_qualification_paper

do.bmstu.ru

