Hyperparameter Tuning & Reproducibility in Pytorch

Presented by Taehee Kim 21.01.14

- Model-free hyperparameters
 - Learning rate
 - Batch size per gpu
 - Training epoch
 - Learning rate scheduler(Warm up steps, lambda, step size ...)
 - Optimizer (beta1, beta2 in Adam)
 - Weight initialization
 - Early stop strategy
 - Regularization
 - Dropout
 - Perturbation or noise for an input
 - ..

- Model hyperparameters
 - Kernel size
 - number of layer
 - number of hidden units
 - number of embedding units
 - pooling
 - activation function

- Model-free & Model hyperparameters
 - Learning rate x Batch size per gpu x Training epoch x Learning rate scheduler(Warm up steps, lambda, step size ...) x Optimizer (beta1, beta2 in Adam) x Weight initialization x Early stop strategy x Regularization x Dropout x Kernel size x number of layer x number of hidden units x number of embedding units x pooling layer x activation function x ...

 - 552,960 x <u>training time for a model</u> = 921 hours

- ???
 - Accumulation steps
 - Random seed
 - Number of gpu
 - Number of evaluation

- Accumulation Steps
 - 16 batch with no accumulation vs 4 batch with 4 accumulation step, which can result in better performance ?

- Accumulation Steps
 - 16 batch with no accumulation vs 4 batch with 4 accumulation step, which can result in better performance?
 - Sampled gradient's standard deviation
 - Gradients based on 4 distributions with specific mean and variance (the number of sample is
 4)
 - Gradients based on 1 distribution with specific mean and variance (the number of sample is
 16)

- Number of evaluation
 - Expected validation performance as the number of evaluation increases

- Random Seed
 - There is a promising seeds
 - These seeds can be distinguished early in training

- How to control randomness?
 - random.seed()
 - np.random.seed()
 - torch.manual_seed()
 - torch.cuda.manual_seed() / torch.cuda.manual_seed_all()
 - torch.backends.cudnn.deterministic = True
 - torch.backends.cudnn.benchmark = False
 - torch.set deterministic()
 - if you use CUDA tensors, we need to set the environment variable CUBLAS_WORKSPACE_CONFIG
 according to <u>CUDA documentation</u>

Note: The non-deterministic behavior of multi-stream execution is due to library optimizations in selecting internal workspace for the routines running in parallel streams. To avoid this effect user can either:

- provide a separate workspace for each used stream using the cublasSetWorkspace() function, or
- have one cuBLAS handle per stream, or
- use cublasLtMatmul() instead of *gemm*() family of functions and provide user owned workspace, or
- set a debug environment variable CUBLAS_WORKSPACE_CONFIG to ":16:8" (may limit overall performance) or ":4096:8" (will increase library footprint in GPU memory by approximately 24MiB).

- Hyperparameters Optimization
 - Grid Search
 - Random Search
 - Bayesian

- Priority
 - For me, 1 tier = Learning rate / 1.5 tier: Batch size
 - <u>Hyperparameters importance are (as for Andrew Ng)</u>: Learning rate, momentum beta, mini-batch size, number of hidden units, number of layers, learning rate decay, regularization lambda, activation functions, beta1 & beta2 in Adam

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Learning rate, Learning rate
 - Step 1
 - Turn off learning rate scheduler and train a model
 - Find a learning rate that makes loss low at the early stage of training compared to other learning rates

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 2
 - Turn on learning rate scheduler and train a model
 - Find a learning rate that makes loss low at the early stage of training compared to other learning rates
 - Random search around the learning rate found in step 1
 - Make possible batch sizes larger

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

- (Maybe for researchers) Best practice for hyperparameters optimization
 - Step 3
 - Look at learning curves

Reproducibility

Reproducibility in machine learning

COMPUTER SCIENCE

Artificial intelligence faces reproducibility crisis

Unpublished code and sensitivity to training conditions make many claims hard to verify

Reproducibility

- Reproducibility over different machines
 - GPU card
 - CPU

Reproducibility over Different Machines

albanD 🜓

Dec '19

Hi,

The problem is that across different machines, the hardware (for example different GPU cards) or different library version (cudnn adding/deleting algorithms for example) can give different results. So there is little we can do to ensure the same results $\underline{\hspace{1cm}}$

Reproducibility

- Multi-GPU
 - 1 gpu, 16 batch vs 4 gpu, 4 batch per gpu, which can result in better performance?

Conclusion for Reproducibility

- Reproducibility over different machines (X)
- Multiple executions with controlled random seeds, given the same inputs, will produce the same result (O)
- Tips for Geeks who struggle for state-of-the-art performance or want to beat competitors
 - Train your model with the largest batch size that memory allows in single gpu
 - Evaluate as many checkpoints as possible
 - Before the test, combine train set and validation set and train the model with the combined dataset
 - Do ensemble
 - The hyperparameters configuration of competitors using similar models is a good starting point