

Social Graphs

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at

Networks

Erdös Number: "Collaborative Distance" among mathematical authors

Erdős Pál (1913-1996)

"Small-World" Networks

Erdős Pál (1913-1996)

Small-world network

- most nodes are not neighbors of one another
- but most nodes can be reached from every other by a small number of hops or steps.

distance L between two randomly chosen nodes **grows** proportionally to the **logarithm** of the **number of nodes** N in the network (=**society**)

human society is a small-world-type network characterized by short path-lengths.

Stanley Milgram

"Small-World" Networks

Stanley Milgram (1933-1984)

1960 "lost letter technique"

Took U.S. cities of Omaha, Nebraska, and Wichita, Kansas, to be the **starting points** and Boston, Massachusetts, to be the **end point** of a **chain of correspondence**.

The "six degrees of separation" model

Erdős Pál (1913-1996)

Alfréd Rényi (1921-1970)

How does **nature** choose to connect nodes and connections into a network?

Erdős Pál (1913-1996)

Alfréd Rényi (1921-1970)

Connect with probability p

$$p=1/6 N=10$$

Erdős Pál (1913-1996)

Alfréd Rényi (1921-1970)

Connect with probability p

Erdős Pál (1913-1996)

Alfréd Rényi (1921-1970)

Degree distribution (in very large networks)

Connect with probability p

0
p = 1/N large connected component
p > 1/N connected giant component

The emergence of a network is NOT a GRADUAL process!

World Wide Web

Nodes: WWW documents

Links: URL links

Over 1 Trillion documents

Expected

 $\langle k \rangle$

Found in data

Albert, Jeong & Barabási, Nature, 401 130 (1999).

them recursively

Scale-Free Networks (1999)

Albert-László Barabási (1967-)

Scale free networks (large hubs network)

$$P_{\rm deg}(k) \propto k^{-\gamma}$$

$$N = 10,000$$
 $\gamma = 2$

average degree is about 7 3/4 of the nodes have a degree of 3 or less

Albert, Jeong & Barabási, Nature, 401 130 (1999)

Erdős-Rényi (ER) Networks :: Barabasi-Albert (BA) Networks

Random Network

Degree distribution

Albert, Jeong & Barabási, Nature, 401 130 (1999).

Erdős-Rényi (ER) Networks :: Barabasi-Albert (BA) Networks

Random Network

Scale-free Network

Degree distribution

Networks held together by Hubs

Barabasi Networks :: Examples

The Network Behind an Organisation:: Shareholder-Network of the Japanese Automotive Industry

Barabasi Networks :: Examples

Metabolic Network

Protein Interactions

Barabasi Networks :: The Matter of Life

Social Network

Barabasi Networks :: Examples

Airline Network

Protein Interactions

Barabasi Networks :: Examples

Log-Log plot

Power law distribution becomes a straight line if plot is in a log-log scale

Scale-free Networks

Scale-free Distributions

Degree distribution in large-scale networks often follows a power law.

e.g., long tail distribution, scale-free distribution

#nodes

An example **power law graph**, being used to demonstrate ranking of popularity.

To the right is the long tail, and to the left is the "head", the few that dominate (also known as the 80–20 rule)

Scale-free Networks

Comparing network models

Fig. 1. The distribution function of connectivities for various large networks. **(A)** Actor collaboration graph with N=212,250 vertices and average connectivity $\langle k \rangle=28.78$. **(B)** WWW, N=325,729, $\langle k \rangle=5.46$ **(6)**. **(C)** Power grid data, N=4941, $\langle k \rangle=2.67$. The dashed lines have slopes (A) $\gamma_{\rm actor}=2.3$, (B) $\gamma_{\rm www}=2.1$ and (C) $\gamma_{\rm power}=4$.

observations over various real-word large-scale networks

A.-L. Barab asi and R. Albert. Emergence of Scaling in Random Networks. Science, 286(5439):509-512, Oct. 1999.

NETWORK	NODES	LINKS
Cellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction
lollywood	Actors	Appearance in the same movie
nternet	Routers	Optical and other physical connections
rotein regulatory etwork	Proteins that help to regulate a cell's activities	Interactions among proteins
Research collaborations	Scientists	Co-authorship of papers
Sexual relationships	People	Sexual contact
World Wide Web	Web pages	URLs

The power-law connectivity distribution as obtained from the model

outcome of a network model

SF Networks:: Growth and Preferential Attachment

 Networks continuously expand by the addition of new nodes

www: addition of new documents

(2) New nodes prefer to link to highly connected nodes.

www: linking to well known sites

Growth:

Add a new node with *m* links

Preferential Attachment:

The probability that a node connects to a node with k links is proportional to k.

Robustness of Scale-free Networks

Random Network, Accidental Node Failure

Scale-free Network, Accidental Node Failure

Scale-free Networks are

- Ultra-resilient against failures
- Suffer from direct attacks on hubs

Scale-free Network, Attack on Hubs

https://zaguan.unizar.es/record/15295/files/TAZ-TFG-2014-1036.pdf

Robustness of Scale-free Networks

Bild 12.2 Schädigung durch *zufälliges Entfernen* (oben) und *gezieltes Entfernen* (unten) von Knoten: Größte zusammenhängende Komponente im Verhältnis zur ursprünglichen Größe des Netzwerks, aufgetragen über den Anteil *f* der entfernten Knoten. Verlauf für einen ER-Zufallsgraphen (links) und für ein skalenfreies Netzwerk nach dem BA-Modell gleicher Größe (rechts) [5]. – Nachdruck mit Genehmigung

Krischke & Röpcke (2014) Graphen und Netzwerktheorie

Scale-free Networks are

Failures

(i) ultra-resilient against failures

Attacks

(ii) but suffer from direct attacks on hubs

Contagion :: Erdős-Rényi Networks

Biology:

If a virus is not too infectious > it dies out.

Economics:

If a product/idea is not too ,sticky' > it does not succeed.

Pastor-Satorras & Vespignani, Physical Review Letters (2001) DOI: 10.1103/PhysRevLett.86.3200

density of infected individuals

Contagion :: Erdős-Rényi Networks

Biology:

If a virus is not too infectious > it dies out.

Economics:

If a product/idea is not too ,sticky' > it does not succeed.

spreading rate of a virus

In the presence of **hubs**, weakly infectious viruses persist in the population.

Pastor-Satorras & Vespignani, Physical Review Letters (2001) DOI: 10.1103/PhysRevLett.86.3200

density of infected individuals

Social Graphs

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at