(a,b) + (c,d) = (ac,bd) $\alpha \cdot (a, b) = (\alpha a, \alpha b)$

1. Consider o conjunto
$$\mathbb{R}^2$$
 com as explicit to percentage the some a produto por escalar (considere o renals Genomo conjunto de escalares):

(a,b) + (c,d) = (ac,d)

(a,c) + (c,d) = (ac,d)

(a,c

por escalar (considere os reais $\mathbb R$ como o conjunto de escalares):

$$(a,b) + (c,d) = (a+c,b+d)$$

 $\alpha(a,b) = (0,0)$

Mostre que \mathbb{R}^2 com essas operações forma um espaço vetorial ou indique quais axiomas de espaço vetorial não são satisfeitos

Suponha
$$W$$
, V : $U \in \mathbb{R}^2 \rightarrow V = (a,b)$, a : $b \in \mathbb{R}$

$$\rightarrow U = (c,d), c$$
: $d \in \mathbb{R}$

$$\rightarrow U = (f,0), f$$
: $o \in \mathbb{R}$

M6)
$$3.v=V$$

$$1.(0.1b) = (0.0) X$$
Não Jorma esp. vetorial.

3. O conjunto
$$V' = \{(x, x^2) | x \in \mathbb{R}\}$$
 é subespaço de \mathbb{R}^2 (com as operações de soma e multiplicação por escalar usuais)? Por quê?

$$S = \{(a, a^2) \mid a \in \mathbb{R}\}$$

$$U = \{b, b^2\} \mid b \in \mathbb{R}\}$$

$$U = \{b, b^2\} \mid b \in \mathbb{R}\}$$

$$U = \{a, a^2\} \mid a \in \mathbb{R}\}$$

$$U = \{a, a^2\} \mid b \in \mathbb{R}\}$$

$$U = \{a, a^2\} \mid a \in \mathbb{R}\}$$

$$U = \{b, b^2\} \mid b \in \mathbb{R}\}$$

$$U = \{a, a^2\} \mid a \in \mathbb{R}\}$$

$$U = \{a, a^2\}$$

2) x.S EV', YS EV' L YXER

$$d \cdot S = d(\alpha, \alpha^2) \rightarrow 2 \cdot (2,4) = 4 \cdot 8$$
 Den 16
Suponha $S = (2,4) \perp d = 2$ Suponha $S = (2,4) \perp d = 2$

4. O conjunto $V'=\{(x,y)|x\geq 0\}$ é subespaço de \mathbb{R}^2 (com as operações de soma e multiplicação por escalar usuais)? Por quê?

5=(1) S+u & V' Ys = u & v' (a,b)+(c,d) = (a+c,b+d) OK! 7,0 2) d. S & V' Ys & V', Ya & R & (a,b) = (aa,ab) Suponha d=-1 ~ (-a,-b)

Suponha S. U E V' S=(a,b), a70 U=(c,d), c70 OK! ER Subisparo!

5. O conjunto $V'=\{(x,y,z)|x=4y$ e $z=0\}$ é subespaço de \mathbb{R}^3 (com as operações de soma e multiplicação por escalar usuais)? Por quê?

$$S = (4b, b, 0), b \in \mathbb{R}$$

 $U = (4a, 0, 0), a \in \mathbb{R}$

Stu $\in V'$, $\forall snu \in V'$ $[4b,b,0] + (4a,a,0) = (4a+4b,a+b,0) \Rightarrow (4(a+b),a+b,0)$ $k \qquad k$

Esubespaço!

6. O conjunto $V'=\{(x,y,z)|x=z^2\}$ é subespaço de \mathbb{R}^3 (com as operações de soma e multiplicação por escalar usuais)? Por quê?

Suponha Se
$$U \in V'$$

 $S = (c^2, b, c), c \in \mathbb{R}$
 $U = (a^2, i, a), a \in \mathbb{R}$

$$S+U \in V'$$
 $\forall s \in U \in V'$

$$S+U = (c^2,b,c) + (o^2,i,a) = (o^2+c^2,b+i,a+c)$$

$$nao i$$

$$k$$

$$\alpha.5 \in V'$$
 HS $\in V'$ e Va $\in \mathbb{R}$
 $\alpha.5 = \alpha (c^2.b.c) = b (ac^2.ab.ac)$
Suponha $\alpha = b \Rightarrow (bc^2).b^2.bc$

Suponha
$$d=b \Rightarrow (b(2),b^2,bc)$$

não i
 k

A+B
$$\in$$
 S

A+B \Rightarrow
 $A+C+b+d$
 $A+C+b+d$

8. O conjunto das matrizes da forma
$$\left[\begin{array}{cc} a & a+b \\ a-b & b \end{array}\right]$$
 é um subespaço de $M(2,2)$? Por quê?

$$\beta = \begin{bmatrix} c & c+d \\ c-d & d \end{bmatrix}$$