

Lecture 13

VE 311 Analog Circuits

Xuyang Lu 2023 Summer

Recap of Last Lecture

• MOSFET Circuits: Diode Connected Load

Topics to Be Covered

MOSFET Circuits

Schedule

	Apr	May					Jun				Jul				Aug					Sep	
Monday	24	1	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	4	
Tuesday	25	2	9	16	23	30	6	13	20	27	4	11	18	25	1	8	15	22	29	5	
Wednesday	26	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16	23	30	6	
Thursday	27	4	11	18	25*	1*	8*	15*	22	29*	6*	13*	20*	27*	3	10	17	24	31	7	
Friday	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25	1	8	
Saturday	29	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19	26	2	9	
Sunday	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	3	10	
JI Week			1	2	3	4	5	6	7	8	9	10	11	12	13						
JI Semester	Spr.	Brk.	Srk. Summer Term Su													Sur	Summer Break				
SJTU Week	11	12	13	14	15	16	17	18	1	2	3	4									
SJTU Semester	Spring Term								Summer Term				Summer Break								

- Midterm on 30^{th} . It will focus on the fundamentals, semiconductors, Diodes, Op-amps, BJT, MOSFET DC biasing.
- No MOSFET SS analysis, only BJT SS models.

Sign of η

Sign of η

Razavi Textbook, equation 2.50

$$g_{mb} = \frac{\partial I_D}{\partial V_{SB}} = \frac{\partial I_D}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{SB}} = -\eta g_m \quad (1)$$

$$g_{mb} = \frac{\partial I_D}{\partial V_{SB}} \tag{2}$$

$$=\mu_{n}C_{ox}\frac{W}{L}(V_{GS}-V_{TH})\left(-\frac{\partial V_{TH}}{\partial V_{BS}}\right) \hspace{0.5cm} \text{(3)}$$

$$\frac{\partial V_{TH}}{\partial V_{RS}} = -\frac{\partial V_{TH}}{\partial V_{SR}} \tag{4}$$

$$= -\frac{\gamma}{2}(2\Phi_F + V_{SB})^{-1/2} \qquad \mbox{(5)}$$

$$g_{mb} = g_m \frac{V}{2\sqrt{2\Phi_F + V_{SB}}} \qquad (6)$$

$$= \eta g_m \tag{7}$$

Different Load

Different Load

Example

Example

 M_1 in saturation and $I_S=0.75 \times I_1$. How do the disadvantages of CS stage with diode-connected load get improved?

Solution: Small-signal Analysis ($\lambda = 0$):

$$A_{v} = \frac{V_{out}}{V_{in}} = -\frac{g_{m1}}{g_{m2}} = -\frac{\sqrt{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}I_{D1}}}{\sqrt{2\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{2}I_{D2}}}$$
(8)

$$= -\frac{\sqrt{4\mu_n \left(\frac{W}{L}\right)_1}}{\sqrt{\mu_p \left(\frac{W}{L}\right)_2}} = \frac{4\left(V_{SG2} - V_{TH2}\right)}{\left(V_{GS1} - V_{TH1}\right)}$$
(9)

Example ($\lambda = \gamma = 0$)

$$\begin{split} W_{drawn}/L_{drawn} &= 10u/2u \\ V_{in} &= 0.8V + 0.001\sin(2\pi 100t) \end{split}$$

Example ($\lambda = \gamma = 0$)

$$\begin{split} W_{drawn}/L_{drawn} &= 10u/2u\\ V_{in} &= 0.8V + 0.001\sin(2\pi100t) \end{split}$$

CS with Current-Source Load ($\lambda \neq 0$, $\gamma \neq 0$)

$$v_{sb2} = v_{gs2} = 0$$

(10)

$$R_{in2} = \frac{V_x}{i_x} = r_{o2}$$

CS with Current-Source Load

- To achieve high A_v , the output swing is severely limited in the CS stages with resistive load and diode-connected load.
- Here $V_{out,max} = V_{DD} (V_{SG2} V_{TH2})$, which can be quite close to V_{DD}

CS with Current-Source Load

- ullet For high g_{m1} and small $(V_{GS1}-V_{TH1})$, W of M_1 needs to be large.
- For high r_{o1} and r_{o2} , L of M_1 and M_2 need to be large and L of M_1 and M_2 needs to be increased proportionally. The cost is the large parasitic drain junction capacitance at the output.

Amplifier Equivalent Circuit

- \bullet How to calculate $G_m?\ v_{out}$ shorted to ground. $G_m=i_{out}/v_{in}$
- How to calculate R_{out} ? v_{in} shorted to ground and v_{out} connected to v_{test} . $R_{out} = v_{test}/i_{test}$

$$i_O = \frac{-v_a}{R_S} \tag{19}$$

$$(v_{in} - v_a)g_{m1} + i_O = \frac{v_a}{r_{o1}} + v_a g_{mb1}$$
(20)

$$G_m = \frac{i_O}{v_{in}} = \frac{-g_{m1}r_{o1}}{R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S} \approx -\frac{1}{R_S}$$
 (21)

If
$$(g_{m1}+g_{mb1}r_{o1}R_S>>r_{o1}$$
 and R_S

- At low V_{in} (g_m small), turn-on behavior of $R_S \neq 0$ is similar to that of $R_S = 0$.
- $V_{in}=0V \to M_1$ off, no current flowing $\to V_a=0V$ and $V_{out}=V_{DD}.$

$$R_S = 0$$

CS with Source Degradation ($\lambda \neq 0, \gamma \neq 0$)

$$i_o = \frac{-v_a}{R_S} \tag{22}$$

$$v_a g_{m1} + v_a g_{mb1} + \frac{v_a - v_x}{r_o} + i_x = 0 {23}$$

$$R_{out} = R_{out1} \parallel R_D = [R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] \parallel R_D \approx R_D$$
 (24)

$$A_v = \frac{v_{out}}{v_{in}} = G_m R_{out} \tag{25}$$

$$= \frac{-g_{m1}r_{o1}}{R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S} \cdot \frac{[R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S]R_D}{[R_S + r_{o1} + (g_{m1} + g_{mb1})r_{o1}R_S] + R_D}$$
(26)

$$\approx -\frac{R_D}{R_S} \tag{27}$$

If $(g_{m1}+g_{mb1})r_{o1}$, the intrinsic gain is large.