در مرحله اول درست بودن dataset چک شد

```
[3] 1 data_iris = sb.load_dataset("iris")
2
3 print("5 first elements")
4 data_iris.head()

5 first elements
    sepal_length sepal_width petal_length petal_width species

0    5.1    3.5    1.4    0.2 setosa
```

setosa
setosa
setosa
setosa
setosa

```
[4] 1 print("5 last elements")
2 data_iris.tail()
```

5 last elements

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

در مرحله ی بعد اطلاعات آماری dataset مشاهده می شود

```
Iris Info
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 # Column
                     Non-Null Count Dtype
 0 sepal_length 150 non-null
                                        float64
    sepal_width 150 non-null petal_length 150 non-null petal_width 150 non-null
                                       float64
                                       float64
                                       float64
     species
                     150 non-null
                                       object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

Description

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Some statistical info:					
<< Set	osa >>				
	sepal_length	sepal_width	petal_length	petal_width	
count	50.00000	50.000000	50.000000	50.000000	
mean	5.00600	3.428000	1.462000	0.246000	
std	0.35249	0.379064	0.173664	0.105386	
min	4.30000	2.300000	1.000000	0.100000	
25%	4.80000	3.200000	1.400000	0.200000	
50%	5.00000	3.400000	1.500000	0.200000	
75%	5.20000	3.675000	1.575000	0.300000	
max	5.80000	4.400000	1.900000	0.600000	
<< Ver	sicolor >>				
	sepal_length	sepal_width	petal_length	petal_width	
count	50.000000	50.000000	50.000000	50.000000	
mean	5.936000	2.770000	4.260000	1.326000	
std	0.516171	0.313798	0.469911	0.197753	
min	4.900000	2.000000	3.000000	1.000000	
25%	5.600000	2.525000	4.000000	1.200000	
50%	5.900000	2.800000	4.350000	1.300000	
75%	6.300000	3.000000	4.600000	1.500000	
max	7.000000	3.400000	5.100000	1.800000	
<< Vir	<< Virginica >>				
	sepal_length	sepal_width	petal_length	petal_width	
count	50.00000	50.000000	50.000000	50.00000	
mean	6.58800	2.974000	5.552000	2.02600	
std	0.63588	0.322497	0.551895	0.27465	
min	4.90000	2.200000	4.500000	1.40000	
25%	6.22500	2.800000	5.100000	1.80000	
50%	6.50000	3.000000	5.550000	2.00000	
75%	6.90000	3.175000	5.875000	2.30000	
max	7.90000	3.800000	6.900000	2.50000	

نمودار تفکیک بر اساس Petal و Sepal:

تفکیک بر اساس Petal بهتر است چون همان طور که در شکل می بینیم رنگ های مختلف در یک دسته قرار دارند و دقت regression بر اساس این ویژگی بهتر و دسته بندی بر اساس Petal دقیق تر است

: logistic regression نتیجه ی

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	9
versicolor	0.83	1.00	0.91	10
virginica	1.00	0.82	0.90	11
accuracy			0.93	30
macro avg	0.94	0.94	0.94	30
weighted avg	0.94	0.93	0.93	30

نکته: تابع logistic regression کتابخانه ی scikit-learn پایتون بر اساس مدل One vs rest مدل سازی و دسته بندی می کند و برای میانگین گیری از دو روش macro و weighted استفاده شده است

در شکل زیر تمام حالت های ممکن دسته بندی با کمک کتابخانه ی seaborn رسم شده است:

