# Práctica: Ejercicios básicos de Criptografía con CrypTool

#### 🔷 1. Cifrado César básico

Objetivo: aplicar el cifrado de sustitución más sencillo.

- 1. Abre CrypTool y escribe en el editor:
- 2. HOLA MUNDO
- 3. Menú: Encrypt / Decrypt → Symmetric (classic) → Caesar.
- 4. Selecciona desplazamiento = 3.
- 5. Anota el texto cifrado.
- 6. Usa la opción de descifrar para volver al texto original.





resultado esperado: comprobar cómo funciona el desplazamiento de letras.

#### ♦ 2. César con otra clave

Objetivo: ver cómo cambia con distinta clave.

- 1. Escribe:
- 2. SEGURIDAD
- 3. Cifra con **César** usando desplazamiento = **7**.
- 4. Anota el resultado.



#### 3. Sustitución monoalfabética

Objetivo: ver otro tipo de cifrado clásico.

- 1. Escribe:
- 2. CRYPTOOL
- 3. Menú: Encrypt / Decrypt → Symmetric (classic) → Substitution (Monoalphabetic).
- 4. Usa la clave automática que propone CrypTool.
- 5. Anota el texto cifrado.



## 4. Vigenère sencillo

Objetivo: usar un cifrado polialfabético.

- 1. Escribe:
- 2. INFORMATICA
- 3. Menú: Encrypt / Decrypt → Symmetric (classic) → Vigenère.
- 4. Escribe como clave:
- 5. KALI
- 6. Cifra y luego descifra.



**Resultado esperado:** comprobar que con la misma clave se puede recuperar el original.

## ♦ 5. Comparar César vs Vigenère

Objetivo: comparar dificultad.

- 1. Escribe:
- 2. HOLA CLASE
- 3. Cifra con César (clave = 3).
- 4. Cifra con Vigenère (clave = KALI).
- 5. Compara visualmente los dos textos cifrados.



## ♦ 6. Análisis de frecuencias

Objetivo: detectar patrones.

- 1. Cifra un texto largo (al menos 3 frases) con **César**.
- 2. Menú: Analysis → Tools for Analysis → Frequency Analysis.
- 3. Observa qué letras aparecen con más frecuencia.



## 🔷 7. Romper un César automáticamente

Objetivo: practicar criptoanálisis automático.

- 1. Cifra un mensaje corto con César (clave al azar).
- 2. Menú: Analysis → Symmetric Encryption (classic) → Caesar.
- 3. Usa el asistente de ataque: prueba todas las claves.
- 4. Encuentra cuál devuelve el mensaje original.



## ♦ 8. Romper un Vigenère

Objetivo: ver que también se puede atacar.

- 1. Cifra un texto corto con Vigenère (clave de 3 letras).
- 2. Menú: Analysis → Symmetric Encryption (classic) → Vigenère.
- 3. Usa la función de ataque con análisis de frecuencia.
- 4. Anota si logra encontrar la clave.





#### 9. Hash con MD5

**Objetivo:** ver el resumen de un mensaje.

- 1. Escribe:
- 2. contraseña
- 3. Menú: Analysis → Hash → Calculate MD5.
- 4. Copia el hash obtenido.
- 5. Cambia el texto a:
- 6. Contraseña

y calcula de nuevo.





resultado esperado: observar que cambia por completo.

#### ◆ 10. Hash con SHA-256

Objetivo: comparar con otro algoritmo.

- 1. Escribe:
- 2. Hola mundo
- 3. Menú: Analysis → Hash → Calculate SHA (SHA-256).
- 4. Copia el hash.
- 5. Compara longitud y formato con el de MD5.



### 11. Efecto avalancha

Objetivo: comprobar cómo un pequeño cambio altera todo.

- 1. Calcula el hash SHA-1 de ABC.
- 2. Calcula el hash SHA-1 de ABD.
- 3. Compara los dos resultados.





#### ◆ 12. AES 128 bits

Objetivo: probar un cifrado moderno.

- 1. Escribe:
- 2. Hola desde CrypTool
- 3. Menú: Encrypt / Decrypt → Symmetric (modern) → AES.
- 4. Clave = 1234567812345678 (16 caracteres).
- 5. Anota el texto cifrado.





#### ♦ 13. DES

Objetivo: comparar con AES.

- 1. Escribe:
- 2. KALI LINUX
- 3. Menú: Encrypt / Decrypt → Symmetric (modern) → DES.
- 4. Usa clave por defecto.
- 5. Compara el tamaño y formato del cifrado con el de AES.



## 14. RSA (asimétrico)

Objetivo: probar cifrado con claves pública/privada.

- 1. Menú: Encrypt / Decrypt → Asymmetric → RSA Demonstration.
- 2. Genera un par de claves.

- 3. Escribe un mensaje y **cifra con la clave pública**.
- 4. Descifra con la clave privada.

| emonstration                                                                                                                                                                               |                                                                                                                   |                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                            |                                                                                                                   |                                                                                                                   |
| RSA using the private                                                                                                                                                                      | and public key or using only the pub                                                                              | olic key                                                                                                          |
| (p-1)(q-1) is the E                                                                                                                                                                        |                                                                                                                   | nber N = pq is the public RSA modulus, and phi(N) :<br>hosen but must be coprime to the totient. The priva<br>)). |
| <ul> <li>For data encrypti<br/>and the public ke</li> </ul>                                                                                                                                |                                                                                                                   | ly need the public RSA parameters: the modulus N                                                                  |
| rime number entry—                                                                                                                                                                         |                                                                                                                   |                                                                                                                   |
| Prime number p                                                                                                                                                                             | 211                                                                                                               | Generate prime numbers                                                                                            |
| Prime number q                                                                                                                                                                             | 233                                                                                                               |                                                                                                                   |
| RSA parameters                                                                                                                                                                             |                                                                                                                   |                                                                                                                   |
| RSA modulus N                                                                                                                                                                              | 49163                                                                                                             | (public)                                                                                                          |
| phi(N) = (p-1)(q-1)                                                                                                                                                                        | 48720                                                                                                             | (secret)                                                                                                          |
| Public key e                                                                                                                                                                               | 2^16+1                                                                                                            |                                                                                                                   |
| Private key d                                                                                                                                                                              | 44273                                                                                                             | Update parameters                                                                                                 |
| . IIvato koy a                                                                                                                                                                             | ,                                                                                                                 |                                                                                                                   |
|                                                                                                                                                                                            | e / decryption using d [alphabet size:                                                                            | 256]                                                                                                              |
| RSA encryption using                                                                                                                                                                       | e / decryption using d [alphabet size:                                                                            | 256] Alphabet and number system options                                                                           |
| RSA encryption using                                                                                                                                                                       |                                                                                                                   |                                                                                                                   |
| RSA encryption using                                                                                                                                                                       |                                                                                                                   |                                                                                                                   |
| RSA encryption using<br>Input as  • text<br>Input text<br>holamundo                                                                                                                        |                                                                                                                   | Alphabet and number system options                                                                                |
| RSA encryption using<br>Input as  • text<br>Input text<br>holamundo                                                                                                                        | C numbers separated into segments of Size 1 (the                                                                  | Alphabet and number system options                                                                                |
| RSA encryption using Input as  • text Input text holamundo The Input text will be h # o #   # a # m # i                                                                                    | C numbers separated into segments of Size 1 (the                                                                  | Alphabet and number system options                                                                                |
| RSA encryption using Input as  • text Input text holamundo The Input text will be h # o #   # a # m # i                                                                                    | C numbers separated into segments of Size 1 (the                                                                  | Alphabet and number system options                                                                                |
| RSA encryption using Input as  • text Input text holamundo The Input text will be h # o # I # a # m # i                                                                                    | C numbers separated into segments of Size 1 (the u # n # d # o                                                    | Alphabet and number system options                                                                                |
| RSA encryption using Input as text Input text Input text Input text will be The Input text will be In # o # I # a # m # i  Numbers input in bas 104 # 111 # 108 # i  Encryption into ciphe | C numbers  separated into segments of Size 1 (the u # n # d # o see 10 format.  097 # 109 # 117 # 110 # 100 # 111 | Alphabet and number system options e symbol '#' is used as separator).                                            |



## 15. Firma digital simulada

Objetivo: entender autenticidad.

- 1. Menú: Digital Signatures → Create/Verify Signature.
- 2. Escribe un mensaje corto.
- 3. Firma con una clave privada.
- 4. Verifica con la clave pública.



