

Sistemas Operacionais

Prof. Me. Pietro M. de Oliveira

Unidade V

Sistemas Operacionais Multimídia

Escalonamento.

Sistemas de Arquivos.

Alocação de Arquivos.

Máquinas Virtuais

Hipervisores.

Linux.

Scripts.

Arquivo TXT:

Não possui a dimensão "tempo".

Arquivo MP3:

Acessado em ritmo próprio.

Sistemas multimídia

Novos tipos de sistemas de arquivos.

Novas exigências para o

escalonador e outras partes do SO.

Arquivos com subarquivos.

Exemplo: DVD.

Sistemas Operacionais Multimídia

SOs com suporte a vários dispositivos de mídia Áudio, vídeo, texto.

Arquivos Multimídia

Vários arquivos em um só.

Ex.: vídeo, áudio e legenda.

Ritmo de acesso específico:

Carregamento fracionado.

Escalonador tem função vital.

Escalonamento em SOs Multimídia

Geralmente um arquivo TXT é carregado por completo em memória.

Um arquivo multimídia tende a ser carregado à medida que é executado.

Escalonador de um SO multimídia:

Garantir a reprodução das mídias.

Não abandonar outros processos.

Escalonamento em SOs Multimídia

Vários processos devem ser executados Um processo não pode monopolizar a CPU.

Round-Robin:

Processo executado de tempos em tempos.

Dados são salvos em buffers.

Temporizador – sincronização.

Arquivos Multimídia

Armazenamento com garantia de performance

Vazão: taxa de dados maximizada.

Demora: tempo entre solicitação do usuário e reprodução minimizado.

Tremulação: demora na reprodução do fluxo de dados minimizada.

Confiabilidade: tolerância a erros maximizada.

Sistemas de Arquivos Multimídia

Arquivos convencionais são carregados por completo. Arquivos multimídia:

Carregar blocos mediante a solicitações

Ex.: ler blocos de conforme a necessidade.

Maior controle no ponto de acesso.

Gasta mais recursos.

Carregar blocos sem depender de requisições.

Dados são utilizados continuamente.

Controle no ponto de acesso é reduzido.

Gasta menos recursos computacionais.

Sistemas de Arquivos Multimídia

Servidores multimídia

Único ou múltiplos discos.

Alguns arquivos são mais acessados que outros.

Disco único

Agrupar arquivos mais acessados.

Algoritmos de tubo de órgãos & caching.

Diminuir o trabalho do HD.

Múltiplos discos

Armazenar blocos em vários discos.

Algoritmos que garantam balanceamento.

Sistemas de Arquivos Multimídia

Fonte: sxc / freepik.com

Máquinas Virtuais

"Transformar" um computador em vários

Múltiplas máquinas com múltiplos Sos.

SOs com diferentes tipos de processamento.

Máquina Virtual (virtualização)

Duplicata da máquina real.

Economia de hardware, espaço físico e energia.

Criar ambientes específicos.

Tipos de Máquinas Virtuais

Tipos de Máquinas Virtuais

De processo: estende os tipos de processos que podem ser executados na máquina física.

Java Virtual Machine (JVM)

De SO: executa um SO no mesmo hardware, como se fosse um novo PC fosse ligado.

VMWare

De sistema: emula um hardware completo, incluindo também um novo SO.

VMWare

Tipos de Máquinas Virtuais

De processo: estende os tipos de processos que podem ser executados na máquina física.

Java Virtual Machine (JVM), Dalvik (Android).

De SO: executa um SO no mesmo hardware, como se fosse um novo PC fosse ligado.

VMWare, ESXi, FreeBSD Jails.

De sistema: emula um hardware completo, incluindo um novo SO.

VMWare, VirtualBox.

Monitor de Máquina Virtual

Aplica técnicas de controle de virtualização.

Tipo 1

Ligado diretamente ao hardware (Servidor).

SOs prontos para uso.

Tipo 2

Software sobre o SO

original (Cliente)

Processos do SO original executando simultaneamente.

Hipervisores

15

Sistema Operacional Linux

```
Criado na Finlândia, por Linus Torvalds (1991)
Baseado no MINIX (Tanenbaum).
```

UNIX.

Fins acadêmicos.

Código disponível ao público.

Licença:

Software Livre – OpenSource.

GNU General Public License (GPL).

Sistema Operacional Linux

Público contribui com implementações.

Correção de falhas.

Novas funcionalidades.

Novas distribuições.

Aumento de segurança e confiabilidade.

Kernel (corpo principal do SO)

Não comercializável.

Atualmente, diversas distribuições:

Ubuntu, Slackware, Red Hat

Interface gráfica (GUI)

Como Instalar?

Primeiro Contato

Interface Gráfica.

Shell (comandos de texto).

Estrutura de Pastas.

Desenvolvimento.

Scripts.

GCC - programação em C.

Shell: interpretador de comandos do usuário.

Não faz parte do kernel (programa à parte).

Funciona como o próprio SO

Executar programas.

Manipular arquivos.

Monitorar processos.

Automatizar tarefas.

Roda no modo usuário (a princípio)

Vários tipos:

SH, CSH, KSH, TCSH, BASH.

Comandos básicos:

Manipulação de arquivos e diretórios.

Controle de processos.

Compilar código em C.

Executar scripts.

Comandos de cursor.

Diversos tutoriais online.


```
Ajuda sobre como executar o terminal help
```

Manual de candos man [comando]

Comandos:

Is – lista o conteúdo do diretório corrente cd – muda de diretório pwd – imprime o diretório corrente clear – limpa a tela

Comandos (continuação):

ps – lista os programas em execução

top – monitor de processos

kill – finaliza um processo

mkdir – cria um diretório

rmdir – remove um diretório

rm – remove um arquivo

cp – copia arquivos/diretórios

mv – move ou renomeia arquivos/dir.

Comandos (continuação):

tail – mostra o final do conteúdo do arq. chmod – muda as permissões de um arq. echo – imprime uma mensagem na tela

Caminho:

Relativo - leva em consideração o diretório corrente. Ex.: ./caminho
Absoluto - desde o diretório raiz. Ex.: /home/caminho

Shell - Comandos

Fonte: http://www.codepuppet.com/wp-content/uploads/2012/06/linux_directory_structure.png

Shell scritps:

"Programas" com comandos unix

Pode-se utilizar:

Comandos unix.

Variáveis.

Estruturas de controle/repetição.

Funções

"Subscripts"

Executáveis

Semelhantes aos batch (.bat)

Exemplo de declaração de variáveis:

```
variavel="teste"
echo $variavel
resultado: teste
```

Comandos de controle de fluxo

```
if [ condição ]
then comando1
else comando2
fi
```


Controle de fluxo (continuação)

Controle de fluxo (continuação)

Controle de fluxo: outras opções

```
until:
      "inverso" do while
for:
      desde – até (de – para)
      útil para percorrer uma lista ou arquivo
funções:
      blocos de comandos repetitivos
```

Janelas Gráficas:

Xdialog

Sistemas multimídias

Escalonador multimídia.

Sistemas de arquivos multimídia.

Máquinas virtuais

Hipervisores

Linux

Shell, comandos, scripts (tutorial).

Sistemas Operacionais

Prof. Me. Pietro M. de Oliveira