Quiz 2 Practice Problems

10-606

September 17, 2025

1 Matrix Inverses

- 1. True/False: If AB = I, then BA = I. Solution: True. If AB = I, then A and B are inverses of each other, so BA = I as well.
- 2. Prove or disprove: Every square diagonal matrix is invertible. **Solution:** False. A diagonal matrix is invertible iff all diagonal entries are nonzero.
- 3. Compute the inverse of $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$. Solution: det = $2 \cdot 3 5 \cdot 1 = 1$. Inverse = $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$.
- 4. Suppose A is invertible. Show that $(A^T)^{-1} = (A^{-1})^T$. Solution: $(A^T)(A^{-1})^T = (A^{-1}A)^T = I^T = I$. Thus $(A^{-1})^T$ is the inverse of A^T .
- 5. Explain, without resorting to calculation, why a matrix with two identical rows cannot be invertible. **Solution:** Identical rows \Longrightarrow linearly dependent \Longrightarrow determinant = 0, so not invertible.
- 6. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$. Is A invertible? **Solution:** No. Last row is zero \implies rank $< 3 \implies$ singular.
- 7. If A is invertible, does Ax = b has a unique solution for all b? Solution: Yes. Solution is $x = A^{-1}b$. Existence and uniqueness follow from invertibility.
- 8. If Ax = b has no solution, show that ABx = b has no solution for any matrix B. Solution: Suppose it did, then z = Bx satisfies Az = b. But such a z cannot exist by assumption.

9. A set of vectors $\{v_1,\ldots,v_n\}$ in \mathbb{R}^n are orthonormal if $v_i^\intercal v_j=1$ if i=j and 0 otherwise. A matrix $Q\in\mathbb{R}^{n\times n}$ is orthonormal if its column and row vectors are orthonormal. If Q is orthonormal, show that $Q^\intercal=Q^{-1}$. Solution: Let $Q=[v_1,\ldots,v_n]$ where $\{v_1,\ldots,v_n\}$ are orthonormal. Then $(Q^\intercal Q)_{ij}=v_i^\intercal v_j=\delta_{ij}$. That is, $Q^\intercal Q=I$, implying that Q^\intercal is the inverse of Q.

Linear Systems

- 1. Can the following system be solved? $\{x + y = 2, 2x + 2y = 5\}$. Solution: Inconsistent: first eq $\implies 2x + 2y = 4$, but second requires 5. No solution.
- 2. How many solutions are there to $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$. **Solution:** Row 2 is multiple of row 1. Solutions: $x_1 + 2x_2 = 3 \implies x_1 = 3 2x_2$. Infinitely many.
- 3. Row-reduce $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}$. **Solution:** Final echelon form: $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.
- 4. For which a is $\begin{bmatrix} 1 & a \\ 2 & 4 \end{bmatrix}$ invertible? **Solution:** det = 4 2a. Invertible iff $a \neq 2$.
- 5. Solve the system: $\{x+y+z=6, x-y+z=2, 2x+z=5\}$. Solution: x=1, y=2, z=3.
- 6. True/False: If the equation Ax = 0 has only the trivial solution x = 0, then the columns of A form a basis for \mathbb{R}^n . Solution: True. Trivial solution means full column rank = n. Columns are independent and span \mathbb{R}^n .
- 7. Solve Ax = b where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $b = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$. Solution: You could row-reduce, or notice that $\det A = -2$. Hence $A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$. Multiplying by b gives $x = (1, 2)^{\mathsf{T}}$.
- 8. Construct 3 equations in 3 unknowns with no solutions. Solution: Example: x + y + z = 1, 2x + 2y + 2z = 2, x + y + z = 3. First and third inconsistent.

Eigenvalues and Eigenvectors

- 1. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ for any $a \in \Re$ (i.e., compute $\det(A \lambda I) = 0$). **Solution:** $(1 \lambda)^2$. Only eigenvalue=1, algebraic multiplicity 2.
- 2. What sort of geometric action does the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ correspond to? **Solution:** 90 degree rotation CCW.
- 3. What sort of geometric action does the matrix $\begin{bmatrix} -3 & 0 \\ 0 & 3 \end{bmatrix}$ correspond to? **Solution:** Flips the vector along the x-axis; scales it by 3.
- 4. Prove that an orthogonal matrix (see Section 1) always has eigenvalues of magnitude 1. **Solution:** We showed above that $Q^{\mathsf{T}}Q = I$. Let x be eigenvector of Q with eigenvalue λ , so $Qx = \lambda x$. Multipying both sides by, $(Qx)^{\mathsf{T}}$:

$$x^{\mathsf{T}}Q^{\mathsf{T}}Qx = (x^{\mathsf{T}}Q^{\mathsf{T}})\lambda x = \lambda x^{\mathsf{T}}Qx = \lambda^2 x^{\mathsf{T}}x.$$

The left hand side is equal to $x^{\mathsf{T}}x$. Hence $x^{\mathsf{T}}x = \lambda^2 x^{\mathsf{T}}x$, implying that $\lambda^2 = 1$.

- 5. If 0 is an eigenvalue of A, what does this tell you about the rank of A? **Solution:** A is not full rank (its kernel has dimension at least 1).
- 6. Let A have eigenvectors v_1, v_2 with eigenvalues λ_1, λ_2 . Suppose $x = 3v_1 2v_2$. What is Ax in terms of v_1, v_2 ? Explain geometrically what happened to x.

Solution: Since $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$, $Ax = 3\lambda_1 v_1 - 2\lambda_2 v_2$. Geometrically, x is decomposed into eigen-directions. Each component is scaled by its eigenvalue: stretched/compressed (if $|\lambda_i| \neq 1$), flipped (if $\lambda_i < 0$), or left unchanged (if $\lambda_i = 1$).