

Agenda

Introduction to Heathrow Forecasting

Forecast Requirements

Why Use R?

Challenges Using R

Proposed Solutions

A View Forward

Heathrow Forecasting

	0 to 9 Months	1 to 36 Months	1 to 30+ Years
Forecast	Short Term	Medium Term	Long Term
Purpose	Used for the daily planning and operation of the airport	Used to set budgets and charges, and for initial resource planning	Used for regulation, business planning and long term capacity planning
Inputs	 Latest flight schedules Passenger data and trends Airline booking data Passenger flow data 	 Historic and future flight schedules Passenger data and trends Short term forecasts 	Economic indicators (GDP, oil price etc)Passenger dataMedium term forecasts
Outputs	 Arrivals and departures Total, direct and transfer passengers Movements Totals at flight level 15min flow profiles for security 	 Arrivals and departures Total, direct and transfer passengers Movements Monthly totals by airline and destination 	 2-way passengers Total, direct and transfer passengers Movements Annual totals by market

Where is forecast data used?

Airport Operations Centre (APOC)

- Surface access team
- Police
- Retail
- Heathrow CRS
- Heathrow Engineering

- Check-in desks
- Security planning
- ITO bussing
- Baggage
- PRM
- Retail
- Engineering
- Cleaning companies
- Capacity planning (up-gage)
- Border Control

Classification: Confidential

Why are accurate forecasts important?

Classification: Confidential

Forecasting Process

Tools & Technologies

- Provides state-of-the-art methods for data science
- Microsoft AzureML
 Provides the infrastructure to run scripts in the cloud
- MS SQL SQLite Database systems
- PowerBI Dashboards
 Interactive reports for data sharing

Why use R?

- R Is Data Science For Non-Computer Scientists
 R is a statistical programming language developed by scientists that has open source libraries for statistics, machine learning, and data science. R lends itself well to business because of its depth of topic-specific packages and its communication infrastructure
- State-of-the-art functions and lots of documentation R has now one of the richest ecosystems to perform data analysis. There are around 12000 packages available in CRAN. It is possible to find a library for whatever the analysis you want to perform..
- Easy to extend, Modify and improve with add-on packages

R programming language is open source, highly extensible and easy to learn so developments in R happen at a rapid scale and the community of developers is huge.

Why use R?

Visualization infrastructure

R is an amazing platform for data analysis, capable of creating almost any type of graph.

Shiny is a web application framework for R. In a nutshell this means that anyone who knows some R can start to build applications that sit in a web browser. It could be as simple as displaying some graphics and tables, to a fully interactive dashboard. The important part is that it is all done with R; there are no requirements for web developers to get involved.

Microsoft Support and infrastructure
R is integrated in many Microsoft apps such as
PowerBl and AzureML which are used throughout the
forecasting process to generate and share results.

Challenges Using R

- Memory Management
 R commands give little thought to
 memory management, and so R can
 consume all available memory.
- R does not impose strict rules.
 One needs a lot of discipline to maintain a proper coding standard. Lack of discipline can quickly lead to a hard-to-maintain R code. Especially, once the code grows bigger.
- Little consistency in the algorithms
 The algorithms developed and their documentation differ from one package to the other making it difficult to adopt an algorithm to your problem.
- Time Management
 Packages written in R language tend to be slower than those written in Python or Matlab.

Proposed Solutions...

Memory Management

Memory Usage Monitoring rm(var)

Garbage Collector

gc()

Modification In Place

data.table ·=

Time Management

Vectorization

Packages instead of base data.table, strinr Parallel code execution

parallel, foreach

R does not impose strict rules

Impose style guides! Consistent package usage

Little consistency in the algorithms

Consistent package usage

Classification: Confidential

A View Forward...

- Faster Cloud-Based Implementations
 More forecast updates
 Chances for optimization
- Forecast Scope Expansion
 Forecast updates for more areas / functions

Thank you for your attention!

Any questions?

