Programare declarativă Functori, Monoid, Foldable

Ioana Leuștean Traian Șerbănuță

Departamentul de Informatică, FMI, UB

Cutii și computații

Cutii și computații

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemple

- Clasa de tipuri opțiune asociază unui tip a, tipul Maybe a
 - cutii goale: Nothing
 - cutii care țin un element x de tip a: **Just** x
- Clasa de tipuri listă asociază unui tip a, tipul [a]
 - cutii care țin 0, 1, sau mai multe elemente de tip a: [1, 2, 3], [], [5]

Tipuri parametrizate — "cutii"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "cutii", recipiente care pot conține elemente de tipul dat ca argument.

Exemplu: tip de date pentru arbori binari

 Un arbore este o "cutie" care poate ține 0, 1, sau mai multe elemente de tip a:

Nod 3 Nil (Nod 4 (Nod 2 Nil Nil), Nil), Nil, Nod 3 Nil Nil

Generalizare: Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Maybe a descrie rezultate de computații deterministe care pot eșua
 - computații care eșuează: Nothing
 - computații care produc un element de tipul dat: Just 4
- [Int] descrie liste de rezultate posibile ale unor computații nedeterministe
 - care pot produce oricare dintre rezultatele date: [1, 2, 3], [], [5]

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemple

- Either e a descrie rezultate de tip a ale unor computații deterministe care pot eșua cu o eroare de tip e
 - Right 5 :: Either e Int reprezintă rezultatul unei computații reușite
 - Left "OOM":: Either String a reprezintă o excepție de tip String

Tipuri parametrizate — "computații"

Idee

O clasă largă de tipuri parametrizate pot fi gândite ca "contexte computaționale": computații care, atunci când se execută, pot produce rezultate de tipul dat ca argument.

Exemplu: tipul funcțiilor de sursă dată

- t -> a descrie computații care atunci când primesc o intrare de tip t produc un rezultat de tip a
 - (++ "!") :: String -> String este o computație care dat fiind un șir, îi adaugă un semn de exclamare
 - length :: String -> Int este o computație care dat fiind un şir, îi prduce lungimea acestuia
 - id :: String -> String este o computație care produce șirul dat ca argument

Clase de tipuri pentru cutii și computații?

Întrebare

Care sunt trăsăturile comune ale acestor tipuri parametrizate care pot fi gândite intuitiv ca cutii care conțin elemente / computații care produc rezultate?

Problemă

Putem proiecta clase de tipuri care descriu funcționalități comune tuturor acestor tipuri?

Functori

Problemă

Formulare cu cutii

Dată fiind o funcție f :: a -> b și o cutie ca care conține elemente de tip a, vreau să să obțin o cutie cb care conține elemente de tip b obținute prin transformarea elementele din cutia ca folosind funcția f (și doar atât!)

Formulare cu computații

Dată fiind o funcție $f::a \to b$ și o computație ca care produce rezultate de tip a, vreau să să obțin o computație cb care produce rezultate de tip b obținute prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Exemplu — liste

Dată fiind o funcție f :: a -> b și o listă *la* de elemente de tip a, vreau să să obțin o lista de elemente de tip b transformând fiecare element din *la* folosind funcția f (și doar atât!)

Definiție

class Functor m where

```
fmap :: (a -> b) -> m a -> m b
```

Dată fiind o funcție f :: a -> b și ca :: m a, fmap produce cb :: m b obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)

Instantă pentru liste

```
instance Functor [] where
fmap = map
```

Instante

class Functor f where

 $fmap :: (a \rightarrow b) \rightarrow m a \rightarrow m b$

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instanță pentru tipul optiune fmap :: (a -> b) -> Maybe a -> Maybe b

instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Instanță pentru tipul arbore fmap :: (a -> b) -> Arbore a -> Arbore b

```
instance Functor Arbore where
fmap f Nil = Nil
fmap f (Nod x l r) = Nod (f x) (fmap f l) (fmap f r)
```

Instanțe

class Functor f where

fmap :: $(a \rightarrow b) \rightarrow m a \rightarrow m b$

Instanță pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

Instantă pentru tipul funcție fmap :: $(a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)$

Instanțe

```
class Functor f where
  fmap :: (a -> b) -> m a -> m b

Instantă pentru tipul eroare fmap :: (a -> b) -> Either e a -> Either e b

instance Functor (Either e) where
  fmap _ (Left x) = Left x
  fmap f (Right y) = Right (f y)
```

```
Instanță pentru tipul funcție fmap :: (a \rightarrow b) \rightarrow (t \rightarrow a) \rightarrow (t \rightarrow b)

instance Functor (->) a where
fmap f g = f . g --- sau, mai simplu, fmap = (.)
```

Exemple

```
Main> fmap (*2) [1..3]

Main> fmap (*2) (Just 200)

Main> fmap (*2) Nothing

Main> fmap (*2) (+100) 4

Main> fmap (*2) (Right 6)

Main> fmap (*2) (Left 1)
```

Exemple

```
Main> fmap (*2) [1..3]
[2,4,6]
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing
Main> fmap (*2) (+100) 4
208
Main> fmap (*2) (Right 6)
Right 12
Main> fmap (*2) (Left 135)
Left 135
```

Proprietăți ale functorilor

- Argumentul m al lui Functor m definește o transformare de tipuri
 - m a este tipul a transformat prin functorul m
- fmap definește transformarea corespunzătoare a funcțiilor
 - fmap :: (a -> b) -> (m a -> m b)

Contractul lui fmap

- fmap f ca e obținută prin transformarea rezultatelor produse de computația ca folosind funcția f (și doar atât!)
- Abstractizat prin două legi:

```
identitate fmap id == id
compunere fmap (g . f) == fmap g . fmap f
```

Categorii și Functori

Categorii și Functori

Categorii

O categorie C este dată de:

- O clasă |ℂ| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski — Category: The Essence of Composition

Compunerea este asociativă și are element neutru id

Exemplu: Categoria Set

Obiecte: multimi

• Săgeți: funcții

Identități: Funcțiile identitate

• Compunere: Compunerea funcțiilor

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

- Obiecte: o clasă restânsă de tipuri din |Hask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esenta programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne fortează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Functori

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F:\mathbb{C}\to\mathbb{D}$ este dat de

- O functie $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

În general un functor $F: \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instantă Functor m este dată de

- Un tip m a pentru orice tip a (deci m trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a \rightarrow b) \rightarrow (m a \rightarrow m b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$

Monoid

din nou foldr

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow t \ a \rightarrow b
```

```
Prelude> foldr (+) 0 [1,2,3]
6
Prelude> foldr (*) 1 [1,2,3]
6
Prelude> foldr (++) [] ["1","2","3"]
"123"
Prelude> foldr (||) False [True, False, True]
True
Prelude> foldr (&&) True [True, False, True]
False
```

Ce au in comun aceste operatii?

Monoizi

 (M, \circ, e) este monoid dacă $\circ: M \times M \to M$ este asociativă $m \circ e = e \circ m = m$ oricare $m \in M$

Monoizi

 (M, \circ, e) este monoid dacă $\circ: M \times M \to M$ este asociativă $m \circ e = e \circ m = m$ oricare $m \in M$

Exemple de monoizi

(Int, +,0), (Int, *, 1), (String, ++, []), ({True,False}, &&, True), ({True,False}, $\|$, False)

Monoizi

```
(M, \circ, e) este monoid dacă

\circ: M \times M \to M este asociativă

m \circ e = e \circ m = m oricare m \in M
```

Exemple de monoizi

```
(Int, +,0), (Int, *, 1), (String, ++, []), ({True,False}, &&, True), ({True,False}, ++, False)
```

Operația de monoid poate fi generalizată pe liste:

```
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) []
and = foldr (\&\&) True
or = foldr (||) False
```

Monoizi și semigrupuri

Monoid

 (M, \circ, e) este monoid dacă $\circ: M \times M \to M$ este asociativă $m \circ e = e \circ m = m$ oricare $m \in M$

Un semigrup este un monoid fără element neutru

 (M,\circ) este monoid dacă $\circ: M \times M \to M$ este asociativă

Exemple

- Orice monoid este şi semigrup
- Semigrupul numerelor naturale pozitive, cu adunarea $(\mathbb{N}^*,+)$
- ullet Semigrupul numerelor intregi nenule, cu înmulțirea $(\mathbb{Z}^*,*)$
- Semigrupul listelor nevide, cu concatenarea

clasele Semigroup și Monoid

https://hackage.haskell.org/package/base/docs/Prelude.html#t:Semigroup

```
class Semigroup a where
  (<>) :: a -> a -> a -- operatia asociativa
infixr 6 <>
class Semigroup a => Monoid a where
  mempty :: a -- elementul neutru

mconcat :: [a] -> a -- generalizarea la liste
mconcat = foldr (<>) mempty
```

Legi

- Asociativitate: x <> (y <> z) = (x <> y) <> z
- Identitate la dreapta: x <> mempty = x
- Identitate la stânga: mempty <> x = x
- Atenție! Acest lucru este responsabilitatea programatorului!

clasa Monoid

Exemple

Listele ca instanța

```
instance Semigroup [a] where
    (<>) = (++)
instance Monoid [a] where
    mempty = []

Prelude> mempty :: [a]
[]
Prelude> mconcat [[1,2,3],[4,5],[6]]
[1,2,3,4,5,6]
```

clasa Monoid

Exemple

Listele ca instanța

```
instance Semigroup [a] where
    (<>) = (++)
instance Monoid [a] where
    mempty = []

Prelude> mempty :: [a]
[]
Prelude> mconcat [[1,2,3],[4,5],[6]]
[1,2,3,4,5,6]
```

Mai multe instanțe pentru același tip?

(Int, +,0), (Int, *, 1) sunt monoizi ({True,False}, &&, True), ({True,False}, \parallel , False) sunt monoizi

Problemă: Cum definim instante diferite pentru acelasi tip?

clasa Monoid

```
(Int, +,0), (Int, *, 1) sunt monoizi ({True,False}, &&, True), ({True,False}, \parallel, False) sunt monoizi
```

Cum definim instante diferite pentru acelasi tip?

```
(Int, +,0), (Int, *, 1) sunt monoizi ({True,False}, &&, True), ({True,False}, \parallel, False) sunt monoizi
```

Cum definim instante diferite pentru acelasi tip?

- se crează o copie a tipului folosind newtype
- o copia este definită ca instanță a tipului

newtype

newtype Nat = MkNat Integer

- newtype se folosește cînd un singur constructor este aplicat unui singur tip de date
- declarația cu newtype este mai eficientă decât cea cu data
- type redenumește tipul; newtype face o copie și permite redefinirea operațiilor

All și Any

• Bool ca monoid față de conjuncție newtype AII = AII { getAII :: Bool } deriving (Eq, Read, Show)
instance Semigroup AII where
AII x <> AII y = AII (x && y)
instance Monoid AII where

Bool ca monoid față de disjuncție
 newtype Any = Any { getAny :: Bool }
 deriving (Eq, Read, Show)

mempty = AII True

instance Semigroup Any where
 Any x <> Any y = Any (x || y)
instance Monoid Any where
 mempty = Any False

Sum și Product

• Num a ca monoid fată de adunare

```
newtype Sum a = Sum { getSum :: a }
    deriving (Eq, Read, Show)

instance Num a => Semigroup (Sum a) where
    Sum x <> Sum y = Sum (x + y)
instance Num a => Monoid (Sum a) where
    mempty = Sum 0
```

• Num a ca monoid față de înmulțire

```
newtype Product a = Product { getProduct :: a }
    deriving (Eq, Read, Show)
```

instance Num a => Semigroup (Product a) where
 Product x <> Product y = Product (x * y)
instance Num a => Monoid (Product a) where
 mempty = Product 1

Min și Max

 Ord a ca semigrup față de operația de minim newtype Min a = Min { getMin :: a } deriving (Eq, Read, Show)

```
instance Ord a => Semigroup (Min a) where
   Min x <> Min y = Min (min x y)
instance (Ord a, Bounded a) => Monoid (Min a) where
   mempty = Min maxBound
```

Ord a ca semigrup față de operația de maxim
 newtype Max a = Max { getMax :: a }
 deriving (Eg. Read. Show)

```
instance Ord a => Semigroup (Max a) where
   Max x <> Max y = Max (max x y)
instance (Ord a, Bounded a) => Monoid (Max a) where
   mempty = Max minBound
```

Exemple

5

```
Prelude > Sum 3
<interactive>:15:1: error:
Prelude > :m + Data. Monoid
Prelude Data Monoid> Sum 3
Sum \{ aetSum = 3 \}
Prelude Data. Monoid> Sum 3 <> Sum 4
Sum \{ aetSum = 7 \}
Prelude Data. Monoid> Product 3 <> Product 4
Product \{ qetProduct = 12 \}
Prelude Data. Monoid> mconcat [Any False, Any True, Any False]
Any \{getAny = True\}
Prelude Data. Monoid> (getSum . mconcat) [Sum 3,Sum 4,Sum 5]
12
Prelude Data. Monoid> getMax . mconcat . map Product $
    [3,5,4]
```

Monoid Maybe

```
instance Semigroup a => Semigroup (Maybe a) where
   Nothing <> m
   m \ll Nothing = m
    Just m1 <> Just m2 = Just (m1 <> m2)
instance Semigroup a => Monoid (Maybe a) where
   mempty = Nothing
Prelude Data. Monoid > Nothing <> (Just 3) :: Maybe Integer
<interactive>:35:1: error:
Prelude Data. Monoid> Nothing <> (Just (Sum 3))
Just (Sum {getSum = 3})
```

Funcții ca instanțe

(a -> a) ca instanța a clasei Monoid

```
newtype Endo a = Endo { appEndo :: a -> a }
instance Monoid Endo where
    mempty = Endo id
    Endo g <> Endo f = Endo (g . f)
```

Funcții ca instanțe

(a -> a) ca instanța a clasei Monoid

Functii ca instante

(a -> a) ca instanta a clasei Monoid

```
newtype Endo a = Endo \{ appEndo :: a -> a \}
instance Monoid Endo where
    mempty = Endo id
    Endo g \iff Endo f = Endo (g . f)
Prelude > :m + Data. Monoid
>let f = mconcat [Endo (+1), Endo (+2), Endo (+3)]
>:t f
f :: Num a => Endo a
> (appEndo f) 0
6
> (appEndo . mconcat) [Endo (+1), Endo (+2), Endo (+3)] $ 0
6
```

Semigroup

NonEmpty

Tipul listelor nevide

```
data NonEmpty a = a :| [a]          deriving (Eq, Ord)
instance Semigroup (NonEmpty a) where
          (a :| as) <> (b :| bs) = a :| (as ++ b : bs)
```

Semigroup

NonEmpty

Tipul listelor nevide

```
data NonEmpty a = a : | [a] deriving (Eq, Ord)

instance Semigroup (NonEmpty a) where

(a : | as) <> (b : | bs) = a : | (as ++ b : bs)
```

Concatenare pentru semigrupuri

```
sconcat :: Semigroup a => NonEmpty a -> a
sconcat (a :| as) = go a as
where
   go a [] = a
   go a (b : bs) = a <> go b bs
```

Foldable

din nou foldr

foldr pe liste

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f i [] = i
foldr f i (x:xs) = f x (foldr f i xs)
```

Problema: să generalizăm foldr la alte structuri recursive.

Exemplu: arbori binari

din nou foldr

foldr pe liste

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f i [] = i
foldr f i (x:xs) = f x (foldr f i xs)
```

Problema: să generalizăm foldr la alte structuri recursive.

Exemplu: arbori binari

Cum definim "foldr" înlocuind listele cu date de tip BinaryTree ?

"foldr" folosind BinaryTree

foldTree

```
foldTree :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow BinaryTree a \rightarrow b

foldTree f i (Leaf x) = f x i

foldTree f i (Node \ l \ r) = foldTree f (foldTree f i r) \ l
```

foldTree

```
data BinaryTree a = Leaf a
                        | Node (BinaryTree a) (BinaryTree a)
                        deriving Show
foldTree :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow BinaryTree a \rightarrow b
foldTree f i (Leaf x) = f x i
foldTree f i (Node | r) = foldTree f (foldTree f i r) |
myTree = Node (Node (Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
*Main> foldTree (+) 0 myTree
10
```

clasa Foldable

```
https://en.wikibooks.org/wiki/Haskell/Foldable https://hackage.haskell.org/package/base/docs/Data-Foldable.html
```

Data.Foldable

Observatii:

- definiția minimală completă conține fie foldMap, fie foldr
- foldMap și foldr pot fi definite una prin cealaltă
- pentru a crea o instanță este suficient să definim una dintre foldMap și foldr. cealaltă va fi automat accesibilă

Foldable cu foldr

```
instance Foldable BinaryTree where
   foldr = foldTree
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
treeS = Node (Node(Leaf "1")(Leaf "2"))
             (Node (Leaf "3")(Leaf "4"))
*Main> foldr (+) 0 treel
10
*Main> foldr (++) [] treeS
"1234"
```

clasa Foldable

Data.Foldable

```
instance Foldable BinaryTree where
foldr = foldTree
```

Observație: în definiția clasei **Foldable**, variabila de tip t nu reprezintă un tip concret ([a], Sum a) ci un constructor de tip (BinaryTree)

Foldable cu foldr

```
instance Foldable BinaryTree where
   foldr = foldTree
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
treeS = Node (Node(Leaf "1")(Leaf "2"))
              (Node (Leaf "3")(Leaf "4"))
Avem definite automat foldMap și alte funcții precum: foldl, foldr',foldr1,...
*Main> fold! (++) [] treeS
"1234"
*Main> fold! (+) 0 tree!
10
*Main> maximum treel
4
```

Foldable cu foldr

"1234"

```
instance Foldable BinaryTree where
   foldr = foldTree
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
treeS = Node (Node(Leaf "1")(Leaf "2"))
              (Node (Leaf "3")(Leaf "4"))
Avem definite automat foldMap si alte functii precum: foldI, foldr'.foldr1....
*Main> fold! (++) [] treeS
"1234"
*Main> fold! (+) 0 tree!
10
*Main> maximum treel
4
*Main Data. Monoid> foldMap Sum treel
Sum {getSum = 10}
*Main Data. Monoid> foldMap id treeS
```

46/56

foldMap

```
foldMap :: Monoid m => (a -> m) -> t a -> m
newtype Sum a = Sum { getSum :: a }
                deriving (Eq. Read, Show)
instance Num a => Monoid (Sum a) where
    mempty = Sum 0
    Sum x <> Sum y = Sum (x + y)
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
*Main> foldMap Sum treel -- Sum :: a -> Sum a
Sum {getSum = 10}
```

sum cu foldMap

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow t a \rightarrow m
newtype Sum a = Sum { getSum :: a }
                  deriving (Eq. Read, Show)
instance Num a => Monoid (Sum a) where
    mempty = Sum 0
    Sum x <> Sum y = Sum (x + y)
sum as = getSum $ foldMap Sum as
sum = getSum . (foldMap Sum)
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
*Main> foldMap Sum treel -- Sum :: a -> Sum a
Sum \{getSum = 10\}
*Main> sum treel
 10
```

product cu foldMap

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow t a \rightarrow m
newtype Product a = Product { getProduct :: a }
    deriving (Eq. Read, Show)
instance Num a => Semigroup (Product a) where
    Product x \ll Product y = Product (x * y)
instance Num a => Monoid (Product a) where
    mempty = Product 1
product as = getProduct$ foldMap Product as
product = getProduct . (foldMap Product)
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
```

*Main> foldMap Product treel Product {getProduct = 24} *Main> product treel 24

elem cu foldMap

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow t a \rightarrow m
newtype Any = Any { getAny :: Bool }
    deriving (Eq. Read, Show)
instance Semigroup Any where
    Any x \ll Any y = Any (x || y)
instance Monoid Any where
    mempty = Any False
any as = getAny $ foldMap Any as
any = getAny . (foldMap Any)
elem e = getAny . (foldMap (Any . (== e)))
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
*Main> foldMap (Any . (== 1)) treel
Any {getAny = True}
*Main> elem 1 treel
 True
```

prod cu foldMap

```
foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow t a \rightarrow m
```

```
sum as = getsum $ foldMap Sum as
```

Sum x <> Sum y = Sum (x + y)

```
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
```

http://cmsc-16100.cs.uchicago.edu/2016/Lectures/13-monoid-foldable.php

Cum definim **foldMap** folosind **foldr**?

```
foldr :: (a -> b -> b) -> b -> t a -> b

foldMap :: Monoid m => (a -> m) -> t a -> m
```

```
foldMap f tr = foldr foo i tr -- f :: a \rightarrow m where foo = ??? -- foo :: (a \rightarrow m \rightarrow m) i = mempty
```

http://cmsc-16100.cs.uchicago.edu/2016/Lectures/13-monoid-foldable.php

Cum definim **foldMap** folosind **foldr**?

```
foldr :: (a -> b -> b) -> b -> t a -> b

foldMap :: Monoid m => (a -> m) -> t a -> m
```

```
foldMap f tr = foldr foo i tr -- f :: a \rightarrow m where foo = ??? -- foo :: (a \rightarrow m \rightarrow m) i = mempty
```

```
foo = \x acc -> f x <> acc
= \x acc -> (<>) (f x) acc
= \x -> (<>) $ f x
= \x -> ((<>) . f) x
= (<>) . f
```

http://cmsc-16100.cs.uchicago.edu/2016/Lectures/13-monoid-foldable.php

Cum definim foldMap folosind foldr?

foldr :: (a -> b -> b) -> b -> t a -> b**foldMap** :: Monoid m => (a -> m) -> t a -> m

foldMap f = foldr ((<>) . f) mempty

= (<>) . f

Foldable cu foldMap

```
instance Foldable BinaryTree where
   foldMap f (Leaf x) = f x
   foldMap f (Node | r) = foldMap f | <> foldMap f r
treel = Node(Node(Leaf 1)(Leaf 2))(Node (Leaf 3)(Leaf 4))
treeS = Node (Node(Leaf "1")(Leaf "2"))
              (Node (Leaf "3")(Leaf "4"))
Avem definite automat foldr si alte functii precum: foldl, foldr',foldr1,...
*Main> foldr (++) [] treeS
"1234"
*Main> fold! (+) 0 tree!
10
```

https://en.wikibooks.org/wiki/Haskell/Foldable

Cum definim **foldr** folosind **foldMap**?

```
foldr :: (a -> b -> b) -> b -> t a -> b

foldMap :: Monoid m => (a -> m) -> t a -> m
```

Cum definim **foldr** folosind **foldMap**?

```
foldr :: (a -> b -> b) -> b -> t a -> b

foldMap :: Monoid m => (a -> m) -> t a -> m
```

Idee

```
foldr :: (a -> (b -> b)) -> b -> t a -> b
```

- pentru fiecare element de tip a din t a se crează o funcție de tip (b->b)
 obținem, de exemplu, o lista de funcții sau
 un arbore care are ca frunze functii
- folosim faptul ca (b->b) este instanță a lui Monoid și aplicăm foldMap

```
foldr :: (a -> (b-> b)) -> b -> t a -> b

(b->b) instanță a lui Monoid

newtype Endo b = Endo { appEndo :: b -> b }
instance Monoid Endo where
    mempty = Endo id
    Endo g <> Endo f = Endo (g . f)
```

https://en.wikibooks.org/wiki/Haskell/Foldable

foldr :: $(a \rightarrow (b \rightarrow b)) \rightarrow b \rightarrow t \ a \rightarrow b$

```
(b->b) instanță a lui Monoid

newtype Endo b = Endo { appEndo :: b -> b }
instance Monoid Endo where
mempty = Endo id
Endo g <> Endo f = Endo (g . f)
```

Definim funcția ajutătoare

```
foldComposing :: (a \rightarrow (b \rightarrow b)) \rightarrow t a \rightarrow Endo b
astfel încât
```

```
foldr f i tr = appEndo (foldComposing f tr) $ i
```

```
foldr :: (a \rightarrow (b \rightarrow b)) \rightarrow b \rightarrow t \ a \rightarrow b
foldComposing :: (a \rightarrow (b \rightarrow b)) \rightarrow t \ a \rightarrow Endo \ b
```

```
foldr :: (a \rightarrow (b \rightarrow b)) \rightarrow b \rightarrow t \ a \rightarrow b
foldComposing :: (a \rightarrow (b \rightarrow b)) \rightarrow t \ a \rightarrow Endo b
foldComposing f = foldMap (Endo . f)
```

```
foldr :: (a \rightarrow (b \rightarrow b)) \rightarrow b \rightarrow t \ a \rightarrow b
foldComposing :: (a \rightarrow (b \rightarrow b)) \rightarrow t a \rightarrow Endo b
foldComposing f = foldMap (Endo . f)
Exemplu:
foldComposing (+) [1, 2, 3]
foldMap (Endo . (+)) [1, 2, 3]
(Endo . (+)) 1 <> (Endo . (+)) 2 <> (Endo . (+)) 3
Endo (+1) <> Endo (+2) <> Endo (+3)
Endo ((+1) \cdot (+2) \cdot (+3))
Endo (+6)
```

```
foldr :: (a \rightarrow (b \rightarrow b)) \rightarrow b \rightarrow t \ a \rightarrow b
foldComposing :: (a \rightarrow (b \rightarrow b)) \rightarrow t a \rightarrow Endo b
foldComposing f = foldMap (Endo . f)
Exemplu:
foldComposing (+) [1, 2, 3]
foldMap (Endo . (+)) [1, 2, 3]
(Endo . (+)) 1 <> (Endo . (+)) 2 <> (Endo . (+)) 3
Endo (+1) <> Endo (+2) <> Endo (+3)
Endo ((+1) \cdot (+2) \cdot (+3))
Endo (+6)
```

```
foldr f i tr = appEndo (foldComposing f tr) $ i
```