DEPARTMENT_ID	LAST_NAME	JOB_ID
75	Goldblum	ST_CLERK
75	Stan	#ss022
25	Austin	#ka028
75	Bautista	#db017
25	Diesel	#vd016
5 rows returned in 0.02 seconds Download		

7) MODIFY THE QUERY 3 TO DISPLAY THE EMPLOYEE NUMBER, LAST NAME, AND SALARY OF ALL EMPLOYEES WHO EARN MORE THAN THE AVERAGE SALARY AND WHO WORK IN A DEPARTMENT WITHANY EMPLOYEE WHOSE LAST NAME CONTAINS A U.

```
SELECT E.EMPLOYEE_ID, E.LAST_NAME,
E.SALARYFROM EMPLOYEES E

WHERE E.SALARY > (
    SELECT
    AVG(SALARY)FROM
    EMPLOYEES
)
AND E.DEPARTMENT_ID
    IN ( SELECT
    X.DEPARTMENT_ID
    FROM EMPLOYEES X
    WHERE X.LAST_NAME LIKE '%A%' AND X.LAST_NAME LIKE '%U%'
);
```

EMPLOYEE_ID	LAST_NAME	SALARY
3	Downey	9000
22	Stan	9000
25	Abu	13500
23	andru	8200
4 rows returned in 0.01 seconds Download		

EX.NO.: 10	ACCRECATING DATA HOING ORGUR FUNCTIONS
DATE 20/09/2024	AGGREGATING DATA USING GROUP FUNCTIONS

FIND THE SOLUTION FOR THE FOLLOWING:

DETERMINE THE VALIDITY OF THE FOLLOWING THREE STATEMENTS. CIRCLE EITHER TRUE OR FALSE.

- 1. GROUP FUNCTIONS WORK ACROSS MANY ROWS TO PRODUCE ONE RESULTPER GROUP. TRUE/FALSE TRUE
- 2. GROUP FUNCTIONS INCLUDE NULLS IN CALCULATIONS.TRUE/FALSE FALSE
- 3. THE WHERE CLAUSE RESTRICTS ROWS PRIOR TO INCLUSION IN A GROUPCALCULATION. TRUE/FALSE FALSE
- 4) FIND THE HIGHEST, LOWEST, SUM, AND AVERAGE SALARY OF ALL EMPLOYEES. LABEL THE COLUMNS MAXIMUM, MINIMUM, SUM, AND AVERAGE, RESPECTIVELY. ROUND YOUR RESULTS TOTHE NEAREST WHOLE NUMBER

SELECT ROUND(MAX(SALARY)) AS MAXIMUM, ROUND(MIN(SALARY)) AS MINIMUM, ROUND(SUM(SALARY)) AS SUM, ROUND(AVG(SALARY)) AS AVERAGE FROM EMPLOYEES;

5) MODIFY THE ABOVE QUERY TO DISPLAY THE MINIMUM, MAXIMUM, SUM, AND AVERAGE SALARYFOR EACH JOB TYPE.

SELECT ROUND(MAX(SALARY)) AS MAXIMUM, ROUND(MIN(SALARY)) AS MINIMUM, ROUND(SUM(SALARY)) AS SUM, ROUND(AVG(SALARY)) AS AVERAGE FROM EMPLOYEES
JOIN

DEPARTMENT ON DEPARTMENT.DEPT_ID = EMPLOYEES.DEPARTMENT_IDGROUP BY DEPT_NAME;

6) WRITE A QUERY TO DISPLAY THE NUMBER OF PEOPLE WITH THE SAME JOB. GENERALIZE THEQUERY SO THAT THE USER IN THE HR DEPARTMENT IS PROMPTED FOR A JOB TITLE.

SELECT D.DEPT_NAME, COUNT(*) AS NUMBEROFEMPLOYEESFROM EMPLOYEES E JOIN DEPARTMENT D ON E.DEPARTMENT_ID = D.DEPT IDGROUP BY D.DEPT NAME;

7) DETERMINE THE NUMBER OF MANAGERS WITHOUT LISTING THEM. LABEL THE COLUMN NUMBEROF MANAGERS

SELECT COUNT(DISTINCT MANAGER_ID) AS "NUMBER OF MANAGERS" FROM EMPLOYEES WHERE MANAGER ID IS NOT NULL;

8) FIND THE DIFFERENCE BETWEEN THE HIGHEST AND LOWEST SALARIES. LABEL THE COLUMNDIFFERENCE.

SELECT MAX(SALARY) - MIN(SALARY) AS "DIFFERENCE"FROM EMPLOYEES;

9) CREATE A REPORT TO DISPLAY THE MANAGER NUMBER AND THE SALARY OF THE LOWEST-PAID EMPLOYEE FOR THAT MANAGER. EXCLUDE ANYONE WHOSE MANAGER IS NOT KNOWN. EXCLUDE ANYGROUPS WHERE THE MINIMUM SALARY IS \$6,000 OR LESS. SORT THE OUTPUT IN DESCENDING ORDEROF SALARY.

SELECT MANAGER_ID, MIN(SALARY) AS "LOWEST SALARY" FROM EMPLOYEES
WHERE MANAGER_ID IS NOT NULL
GROUP BY MANAGER_ID
HAVING MIN(SALARY) > 6000
ORDER BY "LOWEST SALARY" DESC;

10) CREATE A QUERY TO DISPLAY THE TOTAL NUMBER OF EMPLOYEES AND, OF THAT TOTAL, THENUMBER OF EMPLOYEES HIRED IN 1995, 1996, 1997, AND 1998. CREATE APPROPRIATE

COLUMN HEADINGS.		
0010		

SELECT EXTRACT(YEAR FROM HIRE_DATE) AS "YEARLY WISE EMPLOYMENT", COUNT(*)FROM EMPLOYEES GROUP BY EXTRACT(YEAR FROM HIRE_DATE) HAVING EXTRACT(YEAR FROM HIRE_DATE) IN (1995, 1996, 1997, 1998);

11) CREATE A MATRIX QUERY TO DISPLAY THE JOB, THE SALARY FOR THAT JOB BASED ON DEPARTMENTNUMBER, AND THE TOTAL SALARY FOR THAT JOB, FOR DEPARTMENTS 20, 50, 80, AND 90, GIVING EACH COLUMN AN APPROPRIATE HEADING.

SELECT D.DEPT_NAME ,
SUM(E.SALARY)FROM
EMPLOYEES E
JOIN DEPARTMENT D ON E.DEPARTMENT_ID =
D.DEPT_IDWHERE DEPARTMENT_ID IN
(20,50,80,90)
GROUP BY D.DEPT_NAME;

12) WRITE A QUERY TO DISPLAY EACH DEPARTMENT'S NAME, LOCATION, NUMBER OF EMPLOYEES, AND THE

AVERAGE SALARY FOR ALL THE EMPLOYEES IN THAT DEPARTMENT. LABEL THE COLUMN NAME-LOCATION,

NUMBER OF PEOPLE, AND SALARY RESPECTIVELY. ROUND THE AVERAGE SALARY TO TWO DECIMALPLACES.

SELECT D.DEPT_NAME AS "NAME", D.LOCATION_ID AS "LOCATION", COUNT(E.DEPARTMENT_ID) AS "NUMBER OF PEOPLE",

GROUP BY D.DEPT_NAME, D.LOCATION_ID;

Name	Location	Number of People	Salary		
sales manager			6000		
data analyst	1700		9733.33		
stock clerk			4050		
HR			8900		
admin manager			6150		
manager			9750		
accounts manager			3250		
executive			6333.33		
developer			13500		
executive			10750		
More than 10 rows available. Increase rows selector to view more rows.					
10 rows returned in 0.03 seconds Download					