DID Control on Liquid Transportation System

Group 6 呂柏廷 白為霖 胡鈞傑 曾永旭

Abstract

- ➤ Problem Description
- ➤ Disturbance Input Decoupling (DID)
- ➤ Model Formulation
- ➤ Theoretical Solution
- ➤ Simulink Simulation
- > Effect of DID
- **➤** Conclusion
- > Reference

Problem Description

Problem Description

- The train is transferring a dangerous liquid (ex: Nitroglycerin)
- The liquid cannot resist severe wobble and should not spill over
- The train start driving in a constant acceleration of 9.81 m/s^2 and maintain at the velocity 41.667 m/s (150 km/hr)
- The mechanical property of the liquid is unknown
- Assume the road is flat

MCK System

 C_2 , k unknown

Disturbance Input Decoupling (DID)

Disturbance Input Decoupling (DID)

- Disturbance input decoupling is a cancellation technique where the disturbance is fed to the controller output in opposition to the effect of the disturbance.
- The disturbance must be measurable
- Improve, but not eliminate, response to disturbances.

Model Formulation

Decoupling Concept

Traditionnal PI Contorller design

$$K_p = \omega_{BW}(M_1 + M_2)$$

$$K_i = \omega_{BW} C_1$$

$$\frac{\dot{X}_2}{\dot{X}_2^*} = \frac{\omega_{BW}}{s + \omega_{BW}}$$

Traditionnal PI Contorller design

$$F_{m_1-m_2} = (\ddot{X}_2 - \ddot{X}_1)M_2$$

$$F_{Dis} = (\ddot{X}_2 - \ddot{X}_1)M_1$$

$$F_{DID} = K_{DID}F_{Dis}$$

$$F_{in} = F_{ctl} + F_{DID}$$

Block Diagram

Parameters & Variables

Parameters

$$M_1 = 38000 \, kg \, (EMU3000)$$
 $M_2 = \alpha_{mass} M_1 \, kg$
 $K_p = \omega_{BW} (M_1 + M_2)$
 $K_i = \omega_{BW} \, C_1$
 $C_1 = 0.4 \, M_1 \, N \times s/m$
 $C_2 = 0.01 \, M_2 \, N \times s/m$
 $k = 10 M_1 \frac{N}{m}$
 $K_{DID} = 0.9$

Variables

$$\alpha_{mass} = 0.01, 0.1, 1, 10$$
 $\omega_{RW} = 1, 10, 100 Hz$

Theoretical Solution

Theoretical Solution

$$M_{1}\ddot{x}_{1}(t) = -C_{1}\dot{x}_{1}(t) + k(x_{2}(t) - x_{1}(t)) + C_{2}(\dot{x}_{2}(t) - \dot{x}_{1}(t)) + f_{in}(t)$$

$$M_{2}\ddot{x}_{2}(t) = -k(x_{2}(t) - x_{1}(t)) - C_{2}(\dot{x}_{2}(t) - \dot{x}_{1}(t))$$

$$f_{in}(t) = K_{p}\left(\dot{x}_{1}^{*}(t) - \dot{x}_{1}(t)\right) + \int K_{I}\left(\dot{x}_{1}^{*}(t) - \dot{x}(t)\right) dt + 0.9 * M_{1}(\ddot{x}_{1}(t) - \ddot{x}_{2}(t))$$

$$K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{4} \qquad K_{5} \qquad K_{6} \qquad K_{7} \qquad K_{7} \qquad K_{7} \qquad K_{7} \qquad K_{7} \qquad K_{8} \qquad K_{9} \qquad K_{1} \qquad K_{1} \qquad K_{1} \qquad K_{2} \qquad K_{1} \qquad K_{2} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{4} \qquad K_{4} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{6} \qquad K_{7} \qquad K_{7} \qquad K_{8} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{6} \qquad K_{7} \qquad K_{8} \qquad K_{8} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{6} \qquad K_{6} \qquad K_{7} \qquad K_{7} \qquad K_{8} \qquad K_{8} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{5} \qquad K_{5} \qquad K_{6} \qquad K_{7} \qquad K_{8} \qquad K_{1} \qquad K_{2} \qquad K_{3} \qquad K_{4} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{5} \qquad K_{6} \qquad K_{7} \qquad K_{7}$$

Theoretical Solution

$$\begin{cases} M_1 X_1(S) s^2 = -C_1 X_1(s) s + k (X_2(s) - X_1(s)) + C_2 s (X_2(s) - X_1(s)) + F_{in}(s) \\ M_2 X_2(s) s^2 = -k (X_2(s) - X_1(s)) - C_2 s (X_2(s) - X_1(s)) \\ F_{in}(s) = (K_p s + K_I) (X_1^*(s) - X_1(s)) + 0.9 * M_1 s^2 (X_1(s) - X_2(s)) \end{cases}$$

$$\frac{\dot{X_1}(s)}{\dot{X_1^*}(s)} = \frac{M_2 K_p s^3 + (M_2 K_I + C_2 K_p) s^2 + (C_2 K_I + k K_p) s + k K_I}{a s^4 + b s^3 + c s^2 + d s + e}$$

$$\frac{\dot{X_2}(s)}{\dot{X_1^*}(s)} = \frac{K_p C_2 s^2 + (K_p k + K_l C_2) s + K_l k}{as^4 + bs^3 + cs^2 + ds + e}$$

$$a = 0.1M_1M_2$$

$$b = M_1C_2 + M_2C_1 + M_2C_2 + M_2K_p$$

$$c = M_1k + C_1C_2 + M_2k + C_2K_p + M_2K_I$$

$$d = C_1k + K_pk + K_IC_2$$

$$e = kK_i$$

Theoretical Result

 $pole = -56.4, -8.6413 \pm 6.9056i, -0.4545 \Rightarrow Stable$

Simulink Simulation

Time domain response with different α_{mass}

$$lpha_{mass}$$
 = 0.1 ω_{BW} = 1 Hz

$$\alpha_{mass} = 1$$
 $\omega_{BW} = 1 \text{ Hz}$

$$\alpha_{mass} = 10$$
 $\omega_{BW} = 1 \text{ Hz}$

Mass ratio higher => System resonance frequency gets lower (Since K is fixed)

Frequency response with different α_{mass}

$$\alpha_{mass} = 0.1$$
 $\omega_{BW} = 1 \text{ Hz}$

$$\alpha_{mass} = 1$$
 $\omega_{BW} = 1 \text{ Hz}$

$$\alpha_{mass} = 10$$
 $\omega_{BW} = 1 \text{ Hz}$

Mass ratio higher => System resonance frequency lower

Time domain response with different ω_{BW}

$$\omega_{BW}$$
 = 1 Hz α_{mass} = 0.1

$$\omega_{BW}$$
 = 10 Hz α_{mass} = 0.1

$$\omega_{BW}$$
 = 100 Hz α_{mass} = 0.1

Mass ratio higher => System resonance frequency gets lower (Since K is fixed)

Frequency response with different ω_{BW}

$$\omega_{BW}$$
 = 1 Hz α_{mass} = 0.1

$$\omega_{BW}$$
 = 10 Hz α_{mass} = 0.1

$$\omega_{BW}$$
 = 100 Hz α_{mass} = 0.1

Bandwidth higher => System resonance peak gain higher

Effect of ω_{BW} & α_{mass} on overshoot (w/o DID)

α_{mass} ω_{BW}	0.01	0.1	1	10
1 Hz	-2%	-1.7%	3.4%	31.3%
10 Hz	0.9%	2.4%	5.4%	38.4%
100 Hz	1.3%	3%	6.1%	39.3%

Mass Ratio larger, Bandwidth larger => Overshoot larger

Effect of DID

Attenuation of oscillation will be faster

Attenuation of oscillation will be faster

Comparison on Overshoot

α_{mass} ω_{BW}	0.01	0.1	1	10
1 Hz	-2%	-1.7%	3.4%	31.3%
10 Hz	0.9%	2.4%	5.4%	38.4%
100 Hz	1.3%	3%	6.1%	39.3%

α_{mass} ω_{BW}	0.01	0.1	1	10
1 Hz	-4%	-2%	2.7%	30.8%
10 Hz	0.2%	1.8%	2.8%	38.3%
100 Hz	0.7%	2.7%	6%	39.2%

w/o DID with DID

Conclusion

Conclusion

- > When mass ratio is high, the influence of bandwidth is small, but hard to control
- ➤ Mass Ratio higher, Bandwidth larger
 - => Overshoot larger, System resonance frequency lower
- ➤ With DID control, most of the cases can improve the percentages of overshooting and settling time.
- \triangleright K_{DID} is an important variable for system design.
 - When $K_{DID} = 1$, M_1 is uncontrollable
 - When K_{DID} < 1, larger K_{DID} gives a better performance.

Reference

Ryan, M. J., Brumsickle, W. E., & Lorenz, R. D. (n.d.). Control topology options for single-phase ups inverters. *Proceedings of International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth*. https://doi.org/10.1109/pedes.1996.539673

