All Pictures

all

March 10, 2016

$1 \quad 1_DC$

Figure 1: L5-incremental-dc1.png

Figure 2: L5-incremental-dc2.png

Figure 3: L5-incremental.eps

Figure 4: L5-incremental.eps

Figure 5: Analysis of insertionsort algorithm.eps

Figure 6: L5-dc.eps

Figure 7: L5-merge-algo.eps

Figure 8: L5-mergesort-example-analysis0(p14).eps

Figure 9: p20.eps

Figure 10: L5-unrolling-tree1.eps

Figure 11: L5-unrolling-tree2.eps

Figure 12: L5-unrolling-tree3.eps

Figure 13: L5-unrolling-tree4.eps

:

InsertSort: 28 ops

Figure 14: L5-insertsort-left.png

MERGESORT step 1: 4 ops

MERGESORT step 2: 4 ops, save: 4 ops

MERGESORT step 3: 4 ops, save: 12 ops

Figure 15: L5-mergesort-right.png

Figure 16: L5-counting-inversion-example.eps

Figure 17: p36.eps

Figure 18: p37 .eps

Figure 19: L5-randomizedquicksort.eps

Figure 20: L5-randomizedquicksort.eps(p47) .eps

Figure 21: L5-quick-sort-pivot.eps

×	y_h	y_l
x_h	$x_h y_h$	$x_h y_l$
x_l	$x_l y_h$	$x_l y_l$

Table 1: P57.eps

#Iteration	x_i	ϵ_i
0	0.018700	-0.058223
1	0.032854	-0.044069
2	0.051676	-0.025247
3	0.068636	-0.008286
4	0.076030	-0.000892
5	0.076912	-1.03583e-05
6	0.076923	-1.39483e-09
7	0.076923	-2.77556e-17
8		

 ${\bf Figure~22:~L5-clustering\text{-}closest pair.eps}$

Figure 23: L5-closestpair-4subsets.eps

Figure 24: L5-closestpair.eps

Figure 25: L5-closestpair-1221.eps

Figure 26: L5-closestpair-12218

 ${\bf Figure~27:~L5-closest pair-1221 delta-strip.eps}$

Figure 28: L5-closestpair-1221delta-strip-7-reason.eps

 ${\bf Figure~29:~L5-closest pair-1221 delta-strip-7-reason 1.eps}$

Figure 30: L5-closestpair-1221delta-strip-7-reason4.eps

 $Figure \ 31: \ L5-closest pair-ABCDEFGH-points.eps$

Figure 32: P97.eps

Figure 33: p98 .eps

Figure 34: P99.eps

Figure 35: P101.eps

Figure 36: P102.eps

Figure 37: L5-closestpair-ABCDEFGH-solution.eps

$2\quad 2_DP_1$

$$A_{1} = \begin{bmatrix} 1 & 2 \end{bmatrix} A_{2} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} A_{3} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} A_{4} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$1 \times 2 \qquad 2 \times 3 \qquad 3 \times 4 \qquad 4 \times 5$$

Table 2: P4-1

Figure 38: P8-1

Figure 39: P10-1

Figure 40: P13-1

		PΤ			S		TTE	R	
1	2	3	4		1	2	3	4	_
0	6			1		1			1
	0	24		2			2		2
		0	60	3				3	3
			0	4					4

Figure 41: P14-1

Figure 42: P15-1

Figure 43: P16-1

Figure 44: P18-1

Figure 45: P18-2

Figure 46: P19-1

Figure 47: L5-Knapsackalgostep1.eps

Figure 48: L5-Knapsackalgostep2.eps

Figure 49: L5-Knapsackalgostep3.eps

Figure 50: L5-Knapsackalgostep4.eps

Backtracking

Decision: Select item 3

Figure 51: L5-Knapsackalgobacktrackstep1.eps

Figure 52: L6-ocurrance-occupation-align.eps

S':O _ C U R RAN C E ______ T':OCC U R REN C E

Figure 53: L6-ocurrance-occurrence-align1.eps

Figure 54: L6-ocurrance-occurrence-align2.eps

S:	,,	0	C	U	R	R	A	N	C	E
T:'	0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	0	0	-3	-6	-9	-12	13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	ı	-3	-6	-9
E	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
E	-30	-26	-22	-18	-14	-10	-8	-4	0	4

Figure 55: P36-1

Score:
$$d("OC", "O") = \max \left\{ \begin{array}{ll} d("OC", "") & -3 & (=-9) \\ d("O", "") & -1 & (=-4) \\ d("O", "O") & -3 & (=-2) \end{array} \right.$$
 Alignment:
$$S' = OC$$

$$T' = O-$$

Figure 56: P37-1


```
Score: d("0CU", "") = -9 | Score: d("", "0C") = -6 | Alignment: S' = 0CU | Alignment: S' = -- | T' = 0C
```

$3 \quad 3_DP_2$

3.1 Hischberg

3.1.1 First Observe

S:	, ,	0	C	U	R	R	A	N	C	E
T: '	0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	0	0	-3	-6	-9	-12	13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	ı	-3	-6	-9
E	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
Е	-30	-26	-22	-18	-14	-10	-8	-4	0	4

Figure 57:

S:	, ,	0	С	U	R	R	A	N	C	E
T: '	0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	0	0	-3	-6	-9	-12	13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	1	-3	-6	-9
E	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
E	-30	-26	-22	-18	-14	-10	-8	-4	0	4

Figure 58:

22

S:	, ,	0	C	U	R	R	A	N	C	Е
T: '	, 0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	0	0	-3	-6	-9	-12	13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	-	-3	-6	-9
Е	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
Е	-30	-26	-22	-18	-14	-10	-8	-4	0	4

Figure 59:

3.1.2 Second Observe

4	0	-4	-10	-12	-16	-18	-22	-26	-30	0
5	3	-1	-7	-9	-13	-15	-19	-23	-27	C
3	6	2	-4	-6	-10	-12	-16	-20	-24	C
-1	2	5	-1	-3	-7	-9	-13	-17	-21	U
-5	-2	1	4	0	-4	-6	-10	-14	-18	R
-9	-6	-3	0	3	-1	-3	-7	-11	-15	R
-13	-10	-7	-4	-1	2	0	-4	-8	-12	Е
-15	-12	-9	-6	-3	0	3	-1	-5	-9	N
-19	-16	-13	-10	-7	-4	-1	2	-2	-6	C
-23	-20	-17	-14	-11	-8	-5	-2	1	-3	Е
-27	-24	-21	-18	-15	-12	-9	-6	-3	0	, , T
0	C	U	R	R	Α	N	C	Е	, ,	$\mathbf{S}^{\mathbf{T}}$

Figure 60:

3.1.3 Third Observe

3.1.4 Algorithm

Figure 62: 13.png

,

Figure 63: 14.png :

3.2 Recursive on figure

3.2.1 TSP

Figure 64:

Figure 65:

Figure 66:

3.2.2 Single source shortest path

Figure 67: sp.png :

Figure 68: example.png :

Figure 69: tree.png;

$4 \quad 4_{\text{-}}Greedy_{\text{-}}1$

Figure 70: L5-incremental-dc1.png

Figure 71: L5-incremental-dc2.png

Figure 72: L7-intervalschedulingexample.eps

Figure 73: L7-intervalschedulingexamplek1.eps

Figure 74: L7-intervalschedulingexamplek2.eps

Figure 75: L7-intervalschedulingexampleall1am.eps

Figure 76: L7-intervalschedulingexamplegreedystep1.eps

Figure 77: L7-intervalschedulingexamplegreedystep2.eps

Figure 78: L7-intervalschedulingexamplegreedystep3.eps

Figure 79: L7-intervalschedulingexamplegreedystep4.eps

Figure 80: L7-intervalschedulingexample.eps

Figure 81: L7-intervalschedulingexample-error2.eps

Figure 82: L7-intervalschedulingexample-error1.eps

Figure 83: L7-intervalschedulingexample-error3.eps

Figure 84: L7-shortestpathexample.png

	k=0	1	2	3	4	5
S	0	0	0	0	0	0
U	-	1	1	1	1	1
٧	-	2	2	2	2	2
X	-	4	2	2	2	2
Y	ı	1	4	3	3	3
Z	-	-	5	4	4	4

Figure 85: L7-Dijkstraexample.png

Figure 86: Dijkstra_demo.png

Operation	Linked List
INSERT	O(1)
EXTRACTMIN	O(n)
DECREASEKEY	O(1)
UNION	O(1)

Table 3: L7-heaptablelinkedlist.png

Figure 87: Dijkstra_demo_1.png

Figure 88: Dijkstra_demo_2.png

Figure 89: P16-1

Operation	Linked List	Binary Heap	Binomial Heap
INSERT	O(1)	O(log n)	O(log n)
EXTRACTMIN	O(n)	O(log n)	O(log n)
DECREASEKEY	O(1)	O(log n)	O(log n)
UNION	O(1)	O(n)	O(log n)

Table 4: L7-heaptablebinomialheap.png

Figure 90: P16-2

Figure 91: P16-3

Figure 92: P16-4

Figure 93: P17-1

Figure 94: P18-1

Figure 95: P18-2

Figure 96: P18-3

Figure 97: P19-1

Figure 98: P19-2

$5 \quad 5_Greedy_2$

Figure 99: P2-1

Figure 100: P3-1

Figure 101: P3-2

Figure 102: P3-3

Figure 103: P3-4

Figure 104: P4-1

Figure 105: P4-2

Operation	Linked List	Binary Heap	Binomial Heap
INSERT	O(1)	O(log n)	O(log n)
EXTRACTMIN	O(n)	O(log n)	O(log n)
DECREASEKEY	O(1)	O(log n)	O(log n)
UNION	O(1)	O(n)	O(log n)

Table 5: P7-1

Operation	Linked	Binary	Binomial	Binomial
	List	Heap	Heap	Heap*
INSERT	O(1)	O(log n)	O(log n)	O(1)
EXTRACTMIN	O(n)	O(log n)	O(log n)	O(log n)
DECREASEKEY	O(1)	O(log n)	O(log n)	O(log n)
UNION	O(1)	O(n)	O(log n)	O(1)

Table 6: P7-2

Figure 106: P5-1

Figure 107: P5-2

Operation	Linked	Binary	Binomia	Binomia	Fibonacc
	List	Heap	Heap	Heap*	Heap*
INSERT	O(1)	O(log n)	O(log n)	O(1)	O(1)
EXTRACTMIN	O(n)	O(log n)	O(log n)	O(log n)	O(log n)
DECREASEKE	O(1)	O(log n)	O(log n)	O(log n)	O(1)
UNION	O(1)	O(n)	O(log n)	O(1)	O(1)

Table 7: P18-1

Figure 108: P6-1

Figure 109: P6-2

Figure 110: P8-1

Figure 111: P10-1

Figure 112: P11-1

Figure 113: P11-2

Figure 114: P11-3

Figure 115: P12-1

Figure 116: P12-2

Figure 117: P12-3

Figure 118: P13-1

Figure 119: P13-2

Figure 120: P14-1

Figure 121: P15-1

Figure 122: P15-2

Figure 123: P15-3

Figure 124: P16-1

Figure 125: P16-2

Figure 126: P16-3

Figure 127: P17-1

Figure 128: P17-2

Figure 129: P17-3

Figure 130: P19-1

Figure~131:~L7-interval scheduling example all 1.eps

Figure 132: P19-3

Figure 133: P20-1

Figure 134: P22-1

Figure 135: P22-2

Figure 136: P23-1

Figure 137: P23-2

Figure 138: P23-3

Figure 139: P24-1

Figure 140: P25-1

$6 \quad LP_{-}1-3$

Figure 141: L8-networkflowexample.png

Figure 142: L8-networkflowexampleLP.eps

Figure~143:~Pic3.eps:L8-LPminimumcostflow1.eps~+~L8-LPminimumcostflow2.eps

Figure~144:~L8-multicommodity flow example. eps

Figure 145: Branch-and-bound1.png

Figure 146: L8-LEexample.png

Figure 147: L8-LP-GE.png

Figure 148: L8-LP-GE1.png

Figure 149: L8-LP-GE2.png

Figure 150: L8-LP-GE3.png

Figure 151: L8-x1x2x3.eps

Figure 152: L8-LPexample3D.eps

Figure 153: L8-LPexample3Dvertex.eps

Figure 154: L8-LPexample3Dstep2.eps

Figure 155: L8-LPexample3Dstep2theta3.eps

Figure 156: L8-LPexample3Dstep2theta1.eps

Figure 157: L8-LPexample3Dstep2twoedges.eps

Figure 158: L8-LPexample3Dstep1.eps

Figure 159: L8-LPexample3Dstep3.eps

Figure 160: L8-LPexample3Dstep4.eps

Figure 161: L8-LPexample3Dstep5.eps

Figure 162: L8-LPexample3Dstep6.eps

Figure 163: L8-unboundedlp.png

Figure 164: L8-unboundedlpstep1.png

Figure 165: L8-unboundedlpstep2.png

Figure 166: L8-LPinitialsolutionexample2.png

 ${\bf Figure~167:~L8-LPinitial solution example 1.png}$

Figure 168: L8-kleemintycube1.png

Figure 169: mingfuexample.eps

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 & 2 & 2 & 3 & 0 \end{bmatrix}^{T}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure 170: L8-LPexample3Dvertexmatrix.png

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 2 & 0 & 3 & 6 \end{bmatrix}^{T}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure 171: L8-LPexample3Dedgematrix.png

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 2 & 0 & 3 & 6 \end{bmatrix}^{T}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure 172: L8-LPexample3Dstep2twoedgesmatrix.png

$$\mathbf{c_{B}}^{min}$$
 $\mathbf{c_{B}}^{T}\mathbf{x_{B}} + \mathbf{c_{N}}^{T}\mathbf{x_{N}}$
 \mathbf{B}
 \mathbf{N}
 $\mathbf{x_{B}}$
 $\mathbf{x_{N}}$
 \mathbf{b}

Figure 173: L8-simplextable.png

$$\begin{pmatrix}
0 & \cdots & 0 & \cdots & c_e & \cdots \\
b_1 & \cdots & 0 & \cdots & a_{1e} & \cdots \\
b_2 & \cdots & 0 & \cdots & a_{2e} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_1 & \cdots & 1 & \cdots & a_{le} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_m & \cdots & 0 & \cdots & a_{me} & \cdots
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
-\frac{a_{me}}{a_{le}}b_l & \cdots & -\frac{c_e}{a_{le}} & \cdots & 0 & \cdots \\
b_1 & -\frac{a_{1e}}{a_{le}}b_l & \cdots & -\frac{a_{1e}}{a_{le}} & \cdots & 0 & \cdots \\
\vdots & \vdots \\
b_1 & -\frac{a_{1e}}{a_{le}}b_l & \cdots & -\frac{a_{2e}}{a_{le}} & \cdots & 0 & \cdots \\
\vdots & \vdots \\
b_m & -\frac{a_{me}}{a_{le}}b_l & \cdots & -\frac{a_{me}}{a_{le}} & \cdots & 0 & \cdots
\end{pmatrix}$$

Figure 174: L8-LPpivoting.png

$$\begin{pmatrix} 0 & c_1 & c_2 & \cdots & c_m & \cdots & c_n \\ \hline b_1 & a_{11} & a_{12} & \cdots & a_{1m} \\ b_2 & a_{21} & a_{22} & \cdots & a_{2m} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_m & a_{m1} & a_{m2} & \cdots & a_{mn} \\ b & B & N \end{pmatrix} \xrightarrow{B^{-1}x} \begin{pmatrix} \hline -c_B{}^TB^{-1}b & 0 & 0 & \cdots & 0 & c_N{}^T-c_B{}^TB^{-1}N \\ \hline -c_B{}^TB^{-1}b & 0 & 0 & \cdots & 0 & c_N{}^T-c_B{}^TB^{-1}N \\ \hline B^{-1}b & 0 & 1 & \cdots & 0 & B^{-1}N \\ \hline B^{-1}b & 0 & 0 & \cdots & 1 & D^{-1}N \\ \hline B^{-1}B & 0 & 0 & \cdots & 1 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 1 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 1 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 1 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 1 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & 0 & \cdots & 0 \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B^{-1}B & 0 & 0 & \cdots & 0 & D^{-1}B \\ \hline B$$

Figure 175: L8-LPABC1-ABC2.png

7 LP₋1-3

Figure 176: L9-primaldual-case1.png

Figure 177: L9-primaldual-case2.png

Primal	Bounded Optimal Objective Value	Unbounded Optimal Objective Value	Infeasible
Bounded Optimal	Possible	Impossible	Impossible
Objective Value			
Unbounded Optimal	Impossible	Impossible	Possible
Objective Value			
Infeasible	Impossible	Possible	Possible

Table 8: L9-primaldual-table.png

8 9_LP_4

Figure 178: L9-primaldualflowchart.eps(Lec9_P66_Pic1)

Figure 179: Lec
9_P80:
the shortest path from city s to t

Figure 180: Lec9_P81:DUAL PROBLEM:set variables for cities

Figure 181: Lec9_P82:DUAL PROBLEM: simplify by setting $y_t=0$

Figure 182: Lec9_P85:After Iteration 1

Figure 183: Lec9_P88:After Iteration 2

Figure 184: Lec9_P91:After Iteration 3

Figure 185: Lec9_P95:After Iteration 4

9 9_NF_1

Figure 186: transport as many as commodity from s to t

Figure 187: Pic2.eps

Figure 188: C(A,B)=3

Figure 189: Pic4.eps

Figure 190: Pic5.eps

Figure 191: Pic6.eps

Figure 192: Pic7.eps

Figure 193: Pic8.eps

Figure 194: Pic9.eps

Figure 195: Pic10.eps

$10 \quad 11_NF_3$

Figure 196: Flow f: V(f) = 0

Figure 197: No $s \to t$ path in G_f

Figure 198: Flow f: V(f) = 0

Figure 199: Have $s \to t$ path in G_f

Figure 200: Flow f: V(f) = 64

Figure 201: No $s \to t$ path in G_f

Figure 202: Flow f: V(f) = 64

Figure 203: An $s \to t$ path in G_f

Figure 204: Flow f: V(f) = 96

Figure 205: No $s \to t$ path in G_f

11 12_NP_1-2

Figure 206: Pic1 .eps

Figure 207: Pic2.eps

Problem Instance

Figure 208: Pic3.eps

Figure 209: reduction.eps

Figure 210: Pic5.eps

Figure 211: Pic6.eps

Figure~212:~independent setgraph 24-8.eps

 ${\bf Figure~213:~independent setgraph 24-9.eps}$

Figure 214: Pic9.eps

 ${\bf Figure~215:~L3-independent set to vertex cover.eps}$

Figure 216: Pic11.eps

Figure 217: setcover1.png

Figure 218: L3-vertexcoversetcover.eps

Figure 219: L3-clique.eps

A SAT Instance Indepedent Set Instance (X1 OR X2 OR X3) AND (NOT X1 OR X5 OR X6)

Figure 220: L3-satindependentset.eps

Figure 221: Pic17.eps

Figure 222: L3-2coloring.png

Figure 223: L3-coloringgadgettriangle.eps

Figure 224: L3-coloringgadgetfork.eps

Figure 225: L3-coloringgadgetcrown.eps

Input1 Input2 base point Input3

Figure 226: L3-coloringclausecrownBBB.eps

Figure 227: L3-coloringclausecrownBBR.eps

 ${\bf Figure~228:~L3-coloring clause crown BRB.eps}$

Figure 229: L3-coloringvariables.eps

Figure 230: L3-coloringclause.eps

Figure 231: L3-coloringclause-satcase1.eps

Figure 233: L11-makespanexample.eps :

12 14_AA_7_1

Figure 232: L11-makespanexample.eps :

Figure 234: L11-makespanalgo1example.eps :

2*opt

Figure 235: L11-makespanalgo1analysis2OPT.eps :

 $\begin{array}{ll} {\it Figure~236:~L11-makespanalgo1analysisLB.eps} \\ \ \ \, ; \end{array}$

2*opt

Figure 237: L11-makespanalgo1analysis2OPT.eps :

Figure 238: L11-makespanalgo1analysis.eps $\dot{}$

Figure 239: L11-makespanalgo1tightexample.eps :

Figure 240: L11-makespanalgo2example.eps $\dot{}$

 $\begin{array}{ll} {\bf Figure~241:~L11\hbox{-}makespanalgo2analysis.eps} \\ \ \ \, ; \end{array}$

Figure 242: L11-set coveralgorithm4.eps :

Figure 243: L11-set coverexamplelognstep1.eps :

Figure 244: L11-set coverexamplelognstep2.eps :

Figure 245: L11-set coverexamplelognstep3.eps \vdots

Figure 246: L11-set coverexamplelognstep4.eps $\dot{}$

Figure 247: L11-set coveralgo4example.eps $\dot{}$

Figure 248: L11-set coverexamplelognstep4.eps :

can be used as a lower bound

 ${\bf Figure~249:~L11\text{-}LPlower bounding.eps}$

;

 ${\bf Figure~250:~L11-set cover example lognstep 1.eps}$

_ _

can be used as a lower bound

Figure 251: L11-LPlower bounding.eps :

Figure 252: L11-set coverexampledualstep1.eps :

Figure 253: L11-set coverexampledualstep2.eps ;

Figure 254: L11-set coverexampledualstep3.eps :

Figure 258: L11-makespan L
Palgosolution.eps \vdots

Figure 255: L11-set coverexampledualstep4.eps :

 $\begin{array}{ll} {\bf Figure~256:~L11\text{-}makespanLPalgoinput.eps} \\ & \vdots \\ \end{array}$

Figure 257: L11-makespan L
Palgoinput.eps \vdots

Figure 259: L11-makespan L
Palgosolution.eps $\dot{}$

 $\begin{tabular}{ll} Figure~260:~L11-makespan LP algo solution fractional jobs.eps\\ \cdot\\ \end{tabular}$

 ${\bf Figure~261:~L11-makespanLPalgosolution fractional jobstree.eps}$

 $\begin{array}{ll} {\bf Figure~262:~L11\text{-}makespanLPalgosolutioncase1.eps} \\ {\bf :} \end{array}$

Figure 263: L11-makespan LPalgosolution
case2tree.eps $\dot{}$

v1	3278	$\overline{v1}$	4000		$\widehat{v1}$	4
v2	1956	$\overline{v2}$	2000		$\widehat{v2}$	2
v3	$ \begin{array}{c} Rounding b=1000 \\ 4123 \end{array} $	$\overline{v3}$	5000	Aquivalent	$\widehat{v3}$	5
v4	2233	$\overline{v4}$	3000		$\widehat{v4}$	3

Figure 264: L11-Knapsack DP2
rounding.eps $\dot{}$

b	\overline{v}	ϵ	W	#OP	Time (ms)
1	2223975	0.001	1768	889590000	18352.128
3	741325	0.010	1768	98843333	5990.893
5	444800	0.028	1768	35584000	3649.624
10	222400	0.112	1768	8896000	1836.567
30	74125	1.011	1768	988333	620.822
50	44475	2.810	1768	355800	381.982
100	22250	11.236	1768	89000	183.707
300	7425	101.010	1768	9900	60.422
500	4450	280.899	1768	3560	38.340
1000	2225	1123.6	1768	890	17.943
3000	750	10000	1809	100	6.872
5000	450	27777.8	1809	36	4.059
10000	225	111111	1809	9	3.134

$13 \quad 15_AA_7_2$

Figure 265: