TD1. Espérance conditionnelle.

Exercice 1. (Processus de branchement) Soit $\{X_{m,r}: m, r \in \mathbb{N}\}$ une double suite des v.a. iid. discrètes et à valeurs ≥ 0 . On pose $Z_0 = 1$ et $Z_n = X_{n,1} + \cdots + X_{n,Z_{n-1}}$ pour $n \geq 1$. Montrer que la fonction génératrice $f_n(\theta) = \mathbb{E}[\theta^{Z_n}]$ pour tout $\theta \in [0,1]$ satisfait

$$f_0(\theta) = 1$$
 $f_n = f_{n-1}(f(\theta))$ pour $n \ge 1$.

Exercice 2. Soient X_1 et X_2 des v.a. indépendantes et $\sim \text{Poisson}(\lambda)$ avec $\lambda > 0$. Soit $Y = X_1 + X_2$. Calculer $\mathbb{P}(X_1 = k | Y)$.

Exercice 3. Soient $\mathcal{G} \subseteq \mathcal{F}$, $X \in L^2(\mathcal{F})$, $Z \in L^2(\mathcal{G})$ et $Y = \mathbb{E}[X | \mathcal{G}]$, montrer que

$$\mathbb{E}[|X - Z|^2] = \mathbb{E}[|X - Y|^2] + \mathbb{E}[|Y - Z|^2]$$

et en déduire que

$$\mathbb{E}[|X-Y|^2] = \inf_{Z \in L^2(\mathcal{G})} \mathbb{E}[|X-Z|^2].$$

Exercice 4. Soit $(X_0, X_1, ..., X_n)$ un vecteur Gaussien de moyenne nulle et matrice de covariance $\Gamma = (\Gamma_{ij})_{i,j=1,...,n}$. Montrer que

$$\mathbb{E}[X_0|X_1,...,X_n] = \sum_{i=1}^n \lambda_i X_i \quad p.s.$$

et déterminer les poids λ_i en fonction de Γ .

Exercice 5. Soit $\mathbb{E}[Y|\mathcal{G}] = X$ et $\mathbb{E}[X^2] = \mathbb{E}[Y^2] < +\infty$ en déduire que X = Y a.s.

Exercice 6. Prouver une inégalité de Chebishev conditionnelle.

Exercice 7. Prouver l'inégalité de Cauchy-Schwartz conditionnelle

$$\mathbb{E}[|XY||\mathcal{G}]^2 \leqslant \mathbb{E}[|X|^2|\mathcal{G}] \,\mathbb{E}[|Y|^2|\mathcal{G}].$$

Exercice 8. Donner un exemple avec $\Omega = \{a, b, c\}$ pour montrer que, en général,

$$\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_2] \neq \mathbb{E}[\mathbb{E}[X|\mathcal{F}_2]|\mathcal{F}_1].$$

Exercice 9. Montrer les implications suivantes

$$X, Y \text{ independentes} \Rightarrow \mathbb{E}[X|Y] = \mathbb{E}[X] \Rightarrow \mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$$

et trouver des v.a. $X, Y \in \{-1, 0, 1\}$ pour montrer que les implications inverses sont fausses.