Grid Saliency for Context Explanations of Semantic Segmentation

Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, Volker Fischer Bosch Center for Artificial Intelligence

Classification

Motivation

image classifications [1,2,3,4]

Prior work: Saliency maps are used for

visual explanations of neural network

Synthetic Data for Benchmarking Saliencies Generation of dataset with induced bias MNIST digits are combined with random Context bias is induced into dataset by choosing fore- and background textures the same background texture for a specific digit Unbiased Digit 5 **MNIST** Digit Segmentation **Texture Pool** Has the network picked up the bias? Test a potentially biased network on an unbiased dataset **Predictions** Network IoU on unbiased test set for digit Strongly Drop in segmentation IoU for biased digit Network trained on: Unbiased Biased Biased → Network has picked up the bias towards digit 2 on noisy texture Can the saliency detect biased samples and localize the bias? Measure $CBD = \frac{salient\ context}{}$ biased salient context Measure CBL =salient context averaged over 5 bias textures and 5 datasets averaged over 10 bias digits, 5 bias textures, and 5 datasets Gradients [1] Gradients [4] Gradients [3] Grid Saliency Weak bias Strong bias Mean CBD for digit High grid saliency on biased context High grid saliency on biased digits → Biased samples can be detected → Bias can be localized

Grid Saliency on Cityscapes Statistics on context explanations Analysis of salient context over the Cityscapes validation set Relative amount of salient context pixels for different Salient Context request classes Baseline: inflated object instances **Exemplary Findings:** Road for car Bicycle for rider Vegetation for pole Sidewalk for bicycle ■ Rider for motorcycle **Examples of context explanations Error case analysis** pedestrian \rightarrow bicycle not salient as rider \rightarrow arm pose salient

[3] Mukund Sundararajan et al. Axiomatic attribution for deep networks. In

[4] Daniel Smilkov et al. Smoothgrad: removing noise by adding noise.

International Conference on Machine Learning, 2017.

arXiv:1706.03825, 2017.

References

Representations, 2013.

[1] Karen Simonyan et al. Deep inside convolutional networks: Visualising image

classification models and saliency maps. In International Conference on Learning

In Proceedings of the IEEE International Conference on Computer Vision, 2017.

[2] Ruth Fong et al. Interpretable explanations of black boxes by meaningful perturbation.