Determining
$$\Delta H_{rxn}$$
 of $NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O$

Tarik Onalan

24 October 2014

1 Abstract

1.1 Purpose

Using the reactants listed in the materials, determine the ΔH_{rxn} for the reaction that occurs when these reactants are mixed:

$$\mathrm{NH_4Cl}_{(aq)} + \mathrm{NaOH}_{(aq)} \rightarrow \mathrm{NH}_{3(aq)} + \mathrm{NaCl}_{(aq)} + \mathrm{H_2O}_{(l)}$$

1.2 Materials

- 50 ml 2.0 M NH_{3(aq)}
- 100 ml 2.0 M HCl_(aq)
- 50 ml 2.0 M NaOH_(aq)
- $\bullet~50\,\mathrm{ml}$ Graduated Cylinder
- Calorimeter and Lid
- Deionized/Distilled $H_2O_{(l)}$
- Thermometer

2 Model

$$NH_4Cl_{(aq)} + NaOH_{(aq)}$$

$$\begin{split} \operatorname{HCl}_{(aq)} + \operatorname{NaOH}_{(aq)} &\to \operatorname{NaCl}_{(aq)} + \operatorname{H_2O}_{(l)} \\ & \dots \\ \operatorname{NH}_{3(aq)} + \operatorname{HCl}_{(aq)} &\to \operatorname{NH_4Cl}_{(aq)} \end{split}$$

$$\mathrm{NH_4Cl}_{(aq)} \to \mathrm{NH_3}_{(aq)} + \mathrm{HCl}_{(aq)}$$

$$\begin{split} \mathrm{NH_4Cl}_{(aq)} + \mathrm{NaOH}_{(aq)} + \mathrm{HCl}_{(aq)} &\to \mathrm{NH}_{3(aq)} + \mathrm{NaCl}_{(aq)} + \mathrm{H_2O}_{(l)} + \mathrm{HCl}_{(aq)} \\ \mathrm{NH_4Cl}_{(aq)} + \mathrm{NaOH}_{(aq)} &\to \mathrm{NH}_{3(aq)} + \mathrm{NaCl}_{(aq)} + \mathrm{H_2O}_{(l)} \end{split}$$

3 Data

- $\mathrm{HCl}_{(aq)} + \mathrm{NaOH}_{(aq)} \to \mathrm{NaCl}_{(aq)} + \mathrm{H_2O}_{(l)}$ has a ΔH_f of $-94.98\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- ${\rm NH_4Cl}_{(aq)} \to {\rm NH}_{3(aq)} + {\rm HCl}_{(aq)}$ has a ΔH_f of $52.80\,{\rm kJ\,mol^{-1}}$

Adding $-94.98\,\rm kJ\,mol^{-1}$ and $52.80\,\rm kJ\,mol^{-1}$ gives a total enthalpy of reaction of $-42.18\,\rm kJ\,mol^{-1}$

$$\Delta H_{rxn} = \Delta H_{f_1} + \Delta H_{f_2}$$

4 Conclusion

Adding the two reactions above yields the proper equation for the reaction. Thus, adding the respective ΔH_f of the two reactions is equivalent to the ΔH_{rxn} of $\mathrm{NH_4Cl_{(aq)}+NaOH_{(aq)}\rightarrow NH_{3(aq)}+NaCl_{(aq)}+H_2O_{(l)}}$