4. Se consideră lanțul Markov cu stările $S = \{1, 2, 3\}$ având matricea de tranziție:

$$Q = \left(\begin{array}{ccc} 0.25 & 0 & 0.75 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.25 & 0.25 \end{array}\right).$$

Se presupune că $P(X_1 = 1) = 1/3$ și $P(X_1 = 2) = 1/3$.

- a) Să se deseneze graful asociat acestui lanţ Markov;
- b) Să se determine $P(X_1 = 3, X_2 = 1, X_3 = 2, X_4 = 1)$.
- c) Să se determine $P(X_1 = 3, X_3 = 2)$.

$$\pi_0(3) = P(\times_{\lambda} - 3) - \frac{1}{3}$$

c)
$$P(x_1 = 3, x_3 = 2) = P(x_1 = 3) \cdot P(x_3 = 2) \times 1 = 3) =$$

$$= \frac{1}{3} \cdot 0^{2} (3,2) \cdot 0(3,2)$$

= 3.0,5.0.0,5-0

c) Folosind formula $P(X_{n+k} = j/X_k = i) = Q^n(i, j)$, unde Q(i, j) este elementul de pe linia i și coloana j din matricea Q^2 , avem: $P(X_4 = 0/X_2 = 1) = Q^2(1, 0) = \frac{7}{18}$.

5. Se consideră lanțul Markov cu stările $S = \{1, 2, 3, 4\}$ având matricea de tranziție:

$$Q = \left(\begin{array}{cccc} 1/8 & 0 & 1/2 & 3/8 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- a) Să se studieze dacă acest lanţ este ireductibil şi aperiodic;
- b) Să se determine $P(X_6 = 2|X_4 = 1)$.
- c) Dacă distribuția inițială de probabilitatea este cea uniformă pe spațiul stărilor, să se determine probabilitatea ca lanțul să evolueze pe traiectoria 2,1,4,1,3.

(1,4) · Q (4,1) · Q (1,3)=0

6. Se consideră lanțul Markov cu stările $S = \{1, 2, 3, 4\}$ având matricea de tranziție:

$$Q = \left(\begin{array}{cccc} 0.1 & 0.2 & 0.4 & 0.3 \\ 0 & 0.7 & 0.2 & 0.1 \\ 0 & 0.3 & 0.3 & 0.4 \\ 0.4 & 0 & 0.3 & 0.3 \end{array}\right).$$

- a) Să se studieze dacă acest lanţ este ireductibil şi aperiodic;
- b) Să se determine $P(X_4 = 2|X_1 = 1, X_2 = 2, X_3 = 1)$ şi $P(X_4 = 2, X_3 = 2, X_2 = 1|X_1 = 1)$.
- c) Dacă distribuția inițială de probabilitatea este cea uniformă pe spațiul stărilor, să se determine probabilitatea ca lanțul să evolueze pe traiectoria 1,3,4,1,2.

c)
$$T_{\lambda} = \frac{1}{4}$$

=> $T_{\lambda} \cdot Q(1,3) \cdot Q(3,4) \cdot Q(4,1) \cdot Q(1,2) =$
= $\frac{1}{4} \cdot Q(4,0) \cdot Q(4,1) \cdot Q(1,2) =$

7. Se consideră un lanț Markov corespunzător parcurgerii automate a unui document ce conține sibolurile L,C, S, unde L-literă, C-cifră și S-caractere. Matricea de tranziție este:

$$Q = \begin{pmatrix} L & C & S \\ 0.7 & 0.1 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.5 & 0.1 & 0.4 \end{pmatrix} \begin{matrix} L \\ C \\ S \end{matrix}$$

Să se determine $P(X_2 = L | X_1 = C)$. Dacă se presupune că simbolul curent este o cifră, adică $X_0 = C$, să se calculeze probabilitatea ca următoarele două simboluri să fie toate de tip S.

P(
$$\times_2$$
 - U(\times_A - C) = Q(C, L) = 0.5
P(\times_1 - S, \times_2 - S(\times_2 - S) \times_2 - C) = P(\times_1 - S, \times_2 - S, \times_2 - C) = P(\times_3 - C) - P(\times_4 - C) - P(\times_5 - C) - P(\times_5 - C) - P(\times_6 - C)

$$= \frac{\pi_{o}(c) \cdot Q(c,s) \cdot Q(s,s)}{\pi_{o}(c)} = 0,2 \cdot 0,4 = 0,08$$