FINAL PROJECT 2024 DEEP LEARNING FOR DATA SCIENCE

Mining Misconceptions in Mathematics

deepstudy

21120035 Nguyễn Hoài An

21120103 Phan Thảo Nguyên

21120179 Nguyễn Đặng Đăng Khoa

21120275 Huỳnh Cao Khôi

21120308 Phạm Lê Tú Nhi

Content

Introduction What is the competition description?
 Data Discovery What insights can be gained from the data?
 Model Building What model do we use to solve the problem?
 Experimentation How did the proposed solution perform?
 Conclusion Project summary

deepstudy

01 Introduction

Eedi: Mining Misconceptions in Mathematics

Predict affinity between misconceptions and incorrect answers (distractors) in multiplechoice questions

Purpose: To develop an NLP model capable of identifying misconceptions reflected in incorrect choices within mathematical multiple-choice questions. Developing such model would assits human labelers in accurately selecting suitable misconceptions from existing and newly identified options.

Data generation process

How is the data collected?

The data is taken from Eedi - a learning platform where students answer Diagnostic Questions(DQ). DQ are multiple-choice questions featuring

- 1 correct
- 3 incorrect answers

Dataset overview

Misconception mapping overview

2 columns:

- MisconceptionId: Used for mapping for train dataset
- MisconceptionName: Corresponding meaning for each Misconception

Number of rows: 2587

Dataset overview

Train dataset overview

15 columns, in which:

- 7 Columns are ID columns for ConstructName, SubjectName, QuestionText, Misconception[A/B/C/D]
- 8 Columns are value columns for ConstructName, SubjectName, Question Text, Correct Answer, Answers[A/B/C/D]

Number of rows: 1869

Column	Unique values	
Construct Name	757	
Subject Name	163	
Question Text	1857	
Misconception [A/B/C/D]	1604	

Semantic columns in the dataset

Dataset overview

Train dataset overview

15 columns, in which:

- 7 Columns are ID columns for ConstructName, SubjectName, QuestionText, Misconception[A/B/C/D]
- 8 Columns are value columns for ConstructName, SubjectName, Question Text, Correct Answer, Answers[A/B/C/D]

Number of rows: 1869

Column	Unique values	
Construct Name	757	
Subject Name	163	
Question Text	1857 contains duplications	
Misconception [A/B/C/D]	1604 62% misconceptions	

Semantic columns in the dataset

Our approaches

We takes 2 approaches to doing **Data Discovery**

- 1. Standard statistical analysis for NLP 2. Further analysis with semantical clustering using LLM

Introduction **Data Discovery** Conclusion **Model Building** Experimentation

First approach: Statistical Analysis for NLP

First approach: Statistical Analysis for NLP

Misconception in train dataset

First approach: Statistical Analysis for NLP

Question 01: Why are there missing misconception in the data?

Misconception in train dataset

Missing Misconceptions are either because correct answer, or because they really are misisng.

First approach: Statistical Analysis for NLP

Question 02: What is the ratio of missing Misconception in a question?

Misconception in train dataset

There are no Questions with 0 Misconceptions

Tỷ lệ số lượng misconception trong các câu hỏi

Question 03: What is the distribution of Misconception appearance?

Misconception in train dataset

13

First approach: Statistical Analysis for NLP

Subject in train dataset

Question 04: What is the distribution of Subject appearance?

Subject in train dataset

Mean and medium both doesn't represent distribution centrality

Question 05: What is the distribution of length and word count of Subject?

Subject in train dataset

Both have long concentrated range and many outliners

First approach: Statistical Analysis for NLP

Construct in train dataset

Question 06: What is the distribution of Construct appearance?

Construct in train dataset

Most Construct appears **1-2 times**

Question 07: What is the distribution of length and word count of Construct?

Construct in train dataset

Both have long concentrated range and many outliners

First approach: Statistical Analysis for NLP

Questions in train dataset

Question 08: What is the distribution of Question's length and word counts?

Question in train dataset

Both are right-skewed

First approach: Statistical Analysis for NLP

Question 09: How complicated is the language used in Question?

Misconception in train dataset

We use **The Flesch Reading Ease** to calculate the readability of Questions.

90 - 100 Grade 5 Process the Question text:

- Transform/Remove Latex notations
- Remove white space, stop words
- Lemmatize

Question 09: How complicated is the language used in Question?

Question in train dataset

The longer the Question, the more complex it seems to be

First approach: Statistical Analysis for NLP

Answer in train dataset

Question 10: How complicated is the language used in Answers?

Answer in train dataset

The longer the Answer, the more complex it seems to be

First approach: Statistical Analysis for NLP

Misconception in Misconception mapping

Question 11: What is the distribution of Misconception's length and word counts?

Misconception in Misconception mapping

Both have long concentrated range and many outliners

First approach: Statistical Analysis for NLP

Second approach: Semantic Analysis with LLM clustering

Second approach: Semantic Analysis with LLM clustering

LLM Clustering Process

How do we use LLM for semantic clustering?

Data Preperation Prepare data that fit into

Input data

Data Discovery Introduction **Model Building** Conclusion Experimentation

Subject Name Analysis

What are the Mathematic topics that exist in the dataset?

2 + 3 = 5 Number Operations	2x + 5 = 0 Algebra	Gepmetry	Functions and Graphs
cm dm Measurement	Statistics and Data	2,4,8,16,32 Sequence and Pattern	sin(x), cos(x) Advanced Topics

Question 12: How is Subject Main Category distributed?

Subject Category Analysis

Introduction

Data Discovery

50% of questions are either in Number Operations or Algebra

Model Building Experimentation Conclusion

Question 13: How is Subject Sub Category distributed?

Subject Category Analysis

Almost no Subject Sub Categories are distributed evenly

Second approach: Semantic Analysis with LLM clustering

34

Question 15: How many misconceptions are there across any number of subject categories?

Subject Category Analysis

Số lượng Misconception xuất hiện trong 1/nhiều SubjectMainCategory

Most Misconceptions only appears in 1 Subject Category

Question 16: For Misconceptions in 1 Subject Category, how many Misconceptions are there across Subject Sub Categories?

Subject Category Analysis

Most Misconceptions only appears in 1 Subject Sub Category

Question 17: For Misconceptions in 2 Subject Categories, what are the most common combination of categories?

Subject Category Analysis

The most common combination is

Algebra - Number Operation.

Which are also the most common Subject Types.

Construct Name Analysis

What is the structure of a Construct?

Calculate the range from a list of data

Construct Name Analysis

What is the structure of a Construct?

Calculate the range from a list of data

First 3-grams

Construct Action Analysis

What are the Action Types in Constructs?

Do A + B Direct Actions	Prove A = B Complex Actions	Identify A Analytical Actions	Step a-> b-> c Process Actions
Make A -> B Transformative Actions	Describe A Interpretive Actions	Plot A Generative Actions	··· Other

Question 18: How are Construct Action Type distributed?

Construct Action Analysis

The most common Constuct Action is Direct Action

Experimentation Conclusion

Question 19: What is the correlation between Construct Action Type and Subject Main Category based on number of Questions?

Construct Action Analysis

There are 3 types of Actions: Popular, Focus and Unpopular

Misconception Analysis

What is the structure of a Construct?

Believes if you changed all values by the same proportion the range would not change

First 3-grams

Misconception Analysis

What are the Misconception Types in Misconception mapping?

Conceptual Misunderstanding	Procedual Error	12 / 3 = 5 Computation Error
a = 5 $b = 2$ A $= 5$ $b = 7$ Memory/Attention Error	octagon !=	Other Error

Question 20: How are Misconception Category distributed?

Misconception Analysis

The most common mistake is Conceptual Misunderstanding

Question 19: What is the correlation between Misconception Category and Subject Main Category, expressed as a percentage, grouped by Subject Category?

Construct Action Analysis

Conceptual Misunderstanding is the most popular mistake for all Subject Category

Question 20: What is the correlation between Misconception Category and Construct Action Type, expressed as a percentage, grouped by Construct Action?

Construct Action Analysis

Conceptual Misunderstanding is the most popular mistake for all Construct Action

Insights Summaries

What are the biggest insights we gained from our analysis?

Insights Summaries

What are the biggest insights we gained from our analysis?

Insights Summaries

What are the biggest insights we gained from our analysis?

62.71% Mistakes comes from Conceptual Misunderstanding

Problems with **learning process**.

03 Model Building

Information Retrieval

- Searching for and retrieving information (documents)
 relevant to a specific query from the user.
- In detailed:

Two-stages process for Information Retrieval:

Preprocessing

Test set

Preprocessing

Test set

Question	Correct Answer	Correct Answer text	Answer	Answer_text
ſ	A		A	•••••
I	A		В	••••
1	A		С	••••
1	A		D	••••
2	В		••••	

Preprocessing

Test set

Question	Correct Answer	Correct Answer text	Answer	Answer_text
1	A		В	••••
1	A		С	••••
I	Α		D	••••
2	В		••••	

Query creation for a sample

Construct Name

Subject Name

Question Text

Correct Answer Text

Wrong Answer Text

Template

Query

<instruct>Given a math multiple-choice problem with a student's
wrong answer, retrieve the math misconceptions

<query>Question: {question}

SubjectName: {subject}

ConstructName: {construct}

Correct answer: {correct}

Student wrong answer: {wrong}

<response>

Introduction Data Discovery

Model Building

Experimentation

Conclusion

Stage 2: Re-ranking

04 Experimentation

1.Approaches

Set up	Public score	Private Score
TF-IDF vectorizor + LGBM classifier	0.00713	0.00518
TF-IDF + Language model embeddings + Cosine Slmilarrity	0.18383	0.17065
Qwen 2.5 14B retreival	0.45712	0.43415
Qwen 2.5 14B retreival + Qwen 2.5 32B re-rank	0.48270	0.44615

2. Ensemble embeddings

62

2. Ensemble embeddings

	Public score	Private Score
Before enssemble	0.49952	0.44615
After ensemble	0.5298	0.48434

2. Ensemble re-rankers

Top 25 misconceptions

Data Discovery

Introduction

Model Building

Experimentation

64

Conclusion

2. Ensemble re-rankers

	Public score	Private Score
Before enssemble	0.49952	0.44615
After ensemble	0.48119	0.44669

3. Data Augmentation

Objectives Resolve data imbalance in training datasets
Improve recognition of rare misconceptions

Generate data to **fine-tune model**, enhancing accuracy and generalization

Approaches

The athor: "Using misconception augmentation significantly boosted retriever performance by about 2-4%."

However:

- Each step takes over 5 hours.
- The overall generation process takes approximately 50 hours.

Fail to generate the whole data using Kaggle environment

05 Conclusion

1. Leaderboard score:

Public: 0.49952

Private: 0.44615

2. Reflection:

Strength

- The embeddings of LLM represent the semantics of text more effectively.
- Two-stage retrieval create more accurate prediction.

Weakness

- The query speed is still limited and ineffective for large datasets.
- The correctness of the prediction is also limited

3. Future works

- Experiment with various data augmentation methods.
- Fine-tune the language model on both existing and synthetic datasets to improve inference accuracy.
- Find ways to optimize memory usage on Kaggle and experiment with models with more parameters.
- Test more effective prompting strategies, such as Chain-of-Thought.

Thank you for listening!