

High-Performance T-13/4 (5 mm) TS AlGaAs Infrared (875 nm) Lamp

Technical Data

HSDL-4200 Series HSDL-4220 30° HSDL-4230 17°

Features

- Very High Power TS AlGaAs **Technology**
- 875 nm Wavelength
- T-13/4 Package
- Low Cost
- Very High Intensity: HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr
- Choice of Viewing Angle: HSDL-4220 - 30° HSDL-4230 - 17°
- Low Forward Voltage for **Series Operation**
- High Speed: 40 ns Rise Times

• Copper Leadframe for Improved Thermal and **Optical Characteristics**

Applications

- Compatible with IrDA SIR Standard
- IR Audio
- IR Telephones
- High Speed IR Communications IR LANs **IR Modems** IR Dongles
- Industrial IR Equipment

- IR Portable Instruments
- Interfaces with Crystal Semiconductor CS8130 Infrared Transceiver

Description

The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the Transparent Substrate, double heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875 nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200 series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17° and the HSDL-4220 at 30°. Both lamps are packaged in clear T-13/4 (5 mm) packages.

Package Dimensions

5964-9642E 4-48

The package design of these emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes.

The wide angle emitter, HSDL-4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Reference
Peak Forward Current	I_{FPK}		500	mA	[2], Fig. 2b
					Duty Factor = 20% Pulse Width = 100 µs
Average Forward Current	I_{FAVG}		100	mA	[2]
DC Forward Current	I_{FDC}		100	mA	[1], Fig. 2a
Power Dissipation	$P_{ m DISS}$		260	mW	
Reverse Voltage ($I_R = 100 \mu A$)	$V_{ m R}$	5		V	
Transient Forward Current (10 µs Pulse)	I_{FTR}		1.0	A	[3]
Operating Temperature	T_{O}	0	70	$^{\circ}\mathrm{C}$	
Storage Temperature	T_{S}	-20	85	$^{\circ}\mathrm{C}$	
LED Junction Temperature	T_{J}		110	$^{\circ}\mathrm{C}$	
Lead Soldering Temperature			260 for	$^{\circ}\mathrm{C}$	
[1.6 mm (0.063 in.) from body]			5 seconds		

Notes:

- $1. \ Derate \ linearly \ as \ shown \ in \ Figure \ 4.$
- $2. \ Any \ pulsed \ operation \ cannot \ exceed \ the \ Absolute \ Max \ Peak \ Forward \ Current \ as \ specified \ in \ Figure \ 5.$
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds.

Electrical Characteristics at 25°C

Parameter	Symbol	Min	Тур	Max	Unit	Condition	Reference
Forward Voltage	$V_{ m F}$	1.30	1.50	1.70	V	$I_{FDC} = 50 \text{ mA}$	Fig. 2a
		1.40	1.67	1.85		$I_{FDC} = 100 \text{ mA}$	
			2.15			$I_{FPK} = 250 \text{ mA}$	Fig. 2b
Forward Voltage	ΔV/ΔΤ		-2.1		mV/°C	$I_{FDC} = 50 \text{ mA}$	Fig. 2c
Temperature Coefficient			-2.1			$I_{FDC} = 100 \text{ mA}$	
Series Resistance	R_{S}		2.8		ohms	$I_{FDC} = 100 \text{ mA}$	
Diode Capacitance	C_{O}		40		pF	0 V, 1 MHz	
Reverse Voltage	$V_{ m R}$	5	20		V	$I_R = 100 \mu\text{A}$	
Thermal Resistance, Junction to Pin	$R\theta_{jp}$		110		°C/W		

Optical Characteristics at $25^{\circ}\!\mathrm{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Condition	Reference
Radiant Optical Power							
HSDL-4220	P_{O}		19		mW	$I_{FDC} = 50 \text{ mA}$	
			38			$I_{FDC} = 100 \text{ mA}$	
HSDL-4230	Po		16		mW	$I_{FDC} = 50 \text{ mA}$	
			32			$I_{FDC} = 100 \text{ mA}$	
Radiant On-Axis Intensity							
HSDL-4220	$I_{\rm E}$	22	38	60	mW/sr	$I_{FDC} = 50 \text{ mA}$	Fig. 3a
			76			$I_{FDC} = 100 \text{ mA}$	
			190			$I_{FPK} = 250 \text{ mA}$	Fig. 3b
HSDL-4230	$I_{\rm E}$	39	75	131	mW/sr	$I_{FDC} = 50 \text{ mA}$	Fig. 3a
			150			$I_{FDC} = 100 \text{ mA}$	
			375			$I_{FPK} = 250 \text{ mA}$	Fig. 3b
Radiant On-Axis Intensity	$\Delta I_{E}/\Delta T$		-0.35		%/°C	$I_{FDC} = 50 \text{ mA}$	
Temperature Coefficient			-0.35			$I_{FDC} = 100 \text{ mA}$	
Viewing Angle							
HSDL-4220	$2\theta_{1/2}$		30		deg	$I_{FDC} = 50 \text{ mA}$	Fig. 6
HSDL-4230	$2\theta_{1/2}$		17		deg	$I_{FDC} = 50 \text{ mA}$	Fig. 7
Peak Wavelength	$\lambda_{ m PK}$	860	875	895	nm	$I_{FDC} = 50 \text{ mA}$	Fig. 1
Peak Wavelength	Δλ/ΔΤ		0.25		nm/°C	$I_{FDC} = 50 \text{ mA}$	
Temperature Coefficient						120	
Spectral Width-at FWHM	Δλ		37		nm	$I_{FDC} = 50 \text{ mA}$	Fig. 1
Optical Rise and Fall	$t_{\rm r}/t_{\rm f}$		40		ns	$I_{FDC} = 50 \text{ mA}$	
Times, 10%-90%							
Bandwidth	f_c		9		MHz	$I_F = 50 \text{ mA}$	Fig. 8
						± 10 mA	

Ordering Information

Part Number	Lead Form	Shipping Option
HSDL-4220	Straight	Bulk
HSDL-4230	Straight	Bulk

Figure 1. Relative Radiant Intensity vs. Wavelength.

Figure 2a. DC Forward Current vs. Forward Voltage.

Figure 2b. Peak Forward Current vs. Forward Voltage.

Figure 2c. Forward Voltage vs Ambient Temperature.

Figure 3a. Relative Radiant Intensity vs. DC Forward Current.

Figure 3b. Normalized Radiant Intensity vs. Peak Forward Current.

Figure 4. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on $T_{JMAX} = 110^{\circ}C$.

Figure 5. Maximum Peak Forward Current vs. Duty Factor.

Figure 6. Relative Radiant Intensity vs. Angular Displacement HSDL-4220.

Figure 7. Relative Radiant Intensity vs. Angular Displacement HSDL-4230.

Figure 8. Relative Radiant Intensity vs. Frequency.

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.