Statistical Inference Topic 2: Fundamentals of Statistics

Fall 2019

Instructor: Dr. Jiangdian Wang

Outline

Sampling Distribution

Exponential Family

Sufficient Statistics and Complete Statistics

Section 1. Sampling Distribution

Definition 1. The random variables X_1, \dots, X_n are called a random sample of size n from the population f(x) if

- X_1, \dots, X_n are mutually independent random variables, and
- the marginal pdf or pmf of each X_i is the same function f(x).

Alternatively, X_1, \dots, X_n are called independent and identically distributed random variables with pdf or pmf f(x). Commonly abbreviated to i.i.d. random variables.

Definition 2. Let X_1, \dots, X_n be a random sample of size n from a population and let $T(x_1, \dots, x_n)$ be a real-valued function whose domain includes the sample space of (X_1, \dots, X_n) . Then the random variable or random vector $Y = T(X_1, \dots, X_n)$ is called a statistic. The probability distribution of a statistic Y is called the sampling distribution of Y.

Caution: The statistic CANNOT be a function of a parameter!

Definition 3. The sample mean is the arithmetic average of the values in a random sample. Denoted by

$$\bar{X} = \frac{X_1 + \cdots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Definition 4. The sample variance is the statistic defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

Theorem 1. Let x_1, \dots, x_n be any numbers and $\bar{x} = (x_1 + \dots + x_n)/n$. Then

a.
$$\min_a \sum_{i=1}^n (x_i - a)^2 = \sum_{i=1}^n (x_i - \bar{x})^2$$
,

b.
$$(n-1)s^2 = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$$
.

Theorem 2. Let X_1, \dots, X_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

- a. $\mathrm{E}(\overline{X}) = \mu$
- b. $Var(ar{X}) = \sigma^2/n$
- c. $E(S^2) = \sigma^2$

The a. and c. are examples of unbiased statistics.

Sum of Independent Normal Random Variables

Theorem 3. If X_1, \dots, X_n are mutually independent normal random variables with mean μ_1, \dots, μ_n and variances $\sigma_1^2, \dots, \sigma_n^2$, then the linear combination

$$Y = \sum\limits_{i=1}^n c_i X_i \;\; m{\sim} \;\; N\left(\sum\limits_{i=1}^n c_i \mu_i, \sum\limits_{i=1}^n c_i^2 \sigma_i^2
ight)$$

Example 1: 2017年我国18岁及以上成年男性平均身高167.1cm。History also suggests that adult male height are normally distributed with a variance of 15cm. Select two male adults at random. Let X denote the first man's height, and let Y denote the second man's height. What is P(X > Y)?

Solution:

Sample Mean and Variance from Normal Distribution

Theorem 4. If X_1, \dots, X_n are independent random sample from a $N(\mu, \sigma^2)$ population, then

- a. \overline{X} and S^2 are independent random variables
- b. $\overline{X} \sim N(\mu, \sigma^2/n)$

c.
$$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$

Important Distributions: t, χ^2 , F

Definition 5 (Chi-Square distribution).

Let X_1, X_2, \dots, X_r i.i.d. $\sim N(0,1)$, then the distribution of the r.v.,

$$\xi = \sum_{i=1}^r X_i^2,$$

is known as the Chi-Square distribution with r degrees of freedom, and it is denoted as $\xi \sim \chi_r^2$.

Density

$$f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{r/2}} x^{(r/2)-1} e^{-x/2}, \qquad x > 0, \qquad \Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} \, \mathrm{d}y, \qquad \alpha > 0.$$

Example: Sample variance of Normal distribution; likelihood ratio test statistics; Goodness-of-fit: Pearson χ^2 test (testing whether the sample is from a given distribution)

Chi-Square Distribution

FIGURE

Graph of the p.d.f. of the Chi-Square distribution for several values of r.

The support set (支撑集) of the p.d.f. of Chi-Square is $(0, +\infty)$ The larger n, the more symmetric the curve (asymptotic normal by CLT)

Properties of Chi-Square Distribution

Let $\xi \sim \chi_r^2$, then

- (1) The c.f. of ξ is $\varphi(t) = (1 2it)^{-n/2}$;
- (2) $E\xi = r$, and $Var(\xi) = 2r$;
- (3) Let $\xi_1 \sim \chi_{r_1}^2$, $\xi_2 \sim \chi_{r_2}^2$ and ξ_1 , ξ_2 are independent, then $\xi_1 + \xi_2 \sim \chi_{r_1 + r_2}^2$.
- (4) Let $\xi_i \sim \chi_{r_i}^2$, $i = 1, 2, \dots, k$ and $\xi_1, \xi_2, \dots, \xi_k$ are independent, then $\sum_{i=1}^k \xi_i \sim \chi_{r_1 + \dots + r_k}^2$.

Student t Distribution

• W. S. Gosset (Student), 1908, also called Student's distribution (学生氏分布)

Definition 6 Let X and Y be two independent r.v.'s distributed as follows:

 $X \sim N(0,1)$ and $Y \sim \chi_r^2$, and define the r.v. T by: $T = \frac{X}{\sqrt{Y/r}}$. The r.v. T is said to have the (Student's) t-distribution with r degrees of freedom. The notation used is: $T \sim t_r$.

The p.d.f. of T, f_T , is given by the formula:

$$f_T(t) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right)\sqrt{\pi r}} \left(1 + \frac{t^2}{r}\right)^{-(r+1)/2}, \quad t \in R$$

Curves of the t probability density function

Properties of t Distribution

(1) If r.v. $T \sim t_r$, then $E(T^k)$ exits only if $k < r \ (r > 1)$ and

$$E(T^k) = \begin{cases} r^{\frac{k}{2}} \frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{r-k}{2})}{\Gamma(\frac{r}{2})\Gamma(\frac{1}{2})}, & k \text{ is even,} \\ 0, & k \text{ is odd.} \end{cases}$$

In particular, when $r \ge 2$, E(T) = 0 and when $r \ge 3$, Var(T) = r/(r-2);

(2) When r = 1, t_1 is the Cauchy distribution and its p.d.f. is

$$f_1(t) = \frac{1}{\pi(1+t^2)}, \quad -\infty < t < \infty;$$

(3) As $r \to \infty$, t_r converges to N(0,1).

F Distribution

Definition 7 Let X and Y be two independent r.v.'s distributed as follows: $X \sim \chi_{r_1}^2$ and $Y \sim \chi_{r_2}^2$, and define the r.v. F by: $F = \frac{X/r_1}{Y/r_2}$. The r.v. F is said to have the F-distribution with r_1 and r_2 degrees of freedom. The notation often used is: $F \sim F_{r_1,r_2}$.

The p.d.f. of F, f_{r_1,r_2} , is given by the formula:

$$f_{r_1,r_2}(x) = \begin{cases} \frac{\Gamma\left(\frac{r_1+r_2}{2}\right)}{\Gamma\left(\frac{r_1}{2}\right)\Gamma\left(\frac{r_2}{2}\right)} \left(\frac{r_1}{r_2}\right)^{\frac{r_1}{2}} x^{\frac{r_1}{2}-1} \left(1 + \frac{r_1}{r_2}x\right)^{-\frac{r_1+r_2}{2}}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Curves of the F probability density function

Properties of F Distribution

- (1) If $F \sim F_{r_1,r_2}$, then $1/F \sim F_{r_2,r_1}$;
- (2) If $T \sim t_r$, then $T^2 \sim F_{1,r}$;
- (3) If $F \sim F_{r_1,r_2}$, then for k > 0 and $2k < r_2$,

$$E(F^k) = \left(\frac{r_2}{r_1}\right)^k \frac{\Gamma\left(\frac{r_1}{2} + k\right) \Gamma\left(\frac{r_2}{2} - k\right)}{\Gamma\left(\frac{r_1}{2}\right) \Gamma\left(\frac{r_2}{2}\right)}.$$

In particular,

$$E(F) = \frac{r_2}{r_2 - 2}, \ r_2 \ge 3, \quad \text{and} \quad Var(F) = \frac{2r_2^2(r_1 + r_2 - 2)}{r_1(r_2 - 2)^2(r_2 - 4)}, \ r_2 \ge 5;$$

(4) $F_{r_1,r_2}(1-\alpha) = 1/F_{r_2,r_1}(\alpha)$.

Section 2. Exponential Family

Definition 7 (Exponential family). Let $\mathcal{F} = \{f(x,\theta) : \theta \in \Theta\}$ is a distribution family defined on a sample space \mathcal{X} , where Θ is the parameter space. If the p.d.f. or p.m.f. $f(x,\theta)$ has the following form:

$$f(x, \theta) = C(\theta) \exp \left\{ \sum_{i=1}^{k} Q_i(\theta) T_i(x) \right\} h(x),$$

where k is a positive integer, $C(\theta) > 0$ and $Q_i(\theta)$ are functions defined on the parameter space Θ , h(x) > 0 and $T_i(x)$ are functions defined on the sample space \mathcal{X} , then \mathcal{F} is said to be *exponential family*.

Normal Distribution

Example 2. Let $X = (X_1, \dots, X_n)$ a random sample from $N(\mu, \sigma^2)$, then the sample distribution family belongs to exponential family.

Remark. When n=1, the p.d.f. of X_1 belongs to exponential family. $\{N(\mu, \sigma^2) : -\infty < \mu < +\infty, \sigma^2 > 0\}$ is exponential family and this does not depends on the sample size n.

Binomial Distribution

Example 3. Binomial distribution family $\{B(n, \theta)\}$ belongs to exponential family.

Example Distributions Not In Exponential Family

Example 4. Uniform on $[0, \theta]$, $\theta > 0$ is not exponential family

$$f(x;\theta) = \frac{1}{\theta}, \quad x \in [0,\theta], \quad \theta > 0$$

Remark. The support set of exponential family does not depend on θ .

Example 5. The Cauchy distribution family is not exponential family

$$f(x;\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, \quad x \in R$$

Natural (Canonical) Form

$$f(x, \theta) = C(\theta) \exp \left\{ \sum_{i=1}^{k} Q_i(\theta) T_i(x) \right\} h(x)$$

Let $\varphi_i=Q_i(\theta)$, transform $\mathcal{C}(\theta)$ to $\mathcal{C}^*(\varphi)$, $\varphi=(\varphi_1,\varphi_2,\cdots,\varphi_k)$, then change φ_i to θ_i

Definition 8. If the exponential family has the following form:

$$f(x, \theta) = C^*(\theta) \exp \left\{ \sum_{i=1}^k \theta_i T_i(x) \right\} h(x),$$

then it is said to be the natural (canonical) form. The parameter space

$$\Theta^* = \left\{ (\theta_1, \theta_2, \cdots, \theta_k) : \int_{\mathcal{X}} \exp \left\{ \sum_{i=1}^k \theta_i T_i(x) \right\} h(x) dx < \infty \right\},\,$$

is said to be the natural parametric space.

Normal Distribution

Example 6. Normal distribution family

Binomial Distribution

Example 7. Binomial distribution family

- 1. All the distributions in the exponential family does not depend on θ .
- 2. The natural parametric space is a convex set.

3. Exponential Family preserved under transformations. A smooth invertible transformation of a r.v. from the Exponential family is also within the Exponential family. If $X \to Y$, Y = Y(X), then

$$f_Y(y;\theta) = f_X(x(y);\theta)|\partial X/\partial Y|$$

= $C(\theta) \exp\left\{\sum_{i=1}^k Q_i(\theta)T_i(x(y))\right\} h(x(y))|\partial X/\partial Y|$

The Jacobian matrix $|\partial X/\partial Y|$ depends only on y, so $C(\theta)$, $Q_i(\theta)$ do not change, while

$$T_i \to T_i(x(y))$$

$$h \to h(x(y))|\partial X/\partial Y|$$

Suppose there exists an inner point in the natural parametric space and let Θ_0 be the set of inner points. Let g(x) be a real-valued function such that the following integration exits and is finite

$$G(\theta) = \int_{\mathcal{X}} g(x) \exp\left\{\sum_{i=1}^{k} \theta_i T_i(x)\right\} h(x) dx$$

Then $G(\theta)$ has any order partial derivatives in Θ_0 which are given by

$$\frac{\partial^m G(\theta)}{\partial \theta_1^{m_1} \cdots \partial \theta_k^{m_k}} = \int_{\mathcal{X}} \frac{\partial^m}{\partial \theta_1^{m_1} \cdots \partial \theta_k^{m_k}} \left[g(x) \exp \left\{ \sum_{i=1}^k \theta_i T_i(x) \right\} h(x) \right] dx$$

Reference: 陈希孺. 数理统计引论. 北京: 科学出版社, 1981, 1998. (Theorem 1.2.1 on Page 21)

Property 4 can be used to **compute the expectation and covariance** of $T_i(X)$

Solution.

Since

$$\int_{R} f(x;\theta) dx = 1$$

we have

$$\int_{R} C(\theta) \exp\left\{\sum_{i=1}^{k} \theta_{i} T_{i}(x)\right\} h(x) dx = 1$$

Let $D(\theta) = \log(C(\theta))$, then $C(\theta) = \exp\{D(\theta)\}$

$$\int_{R} \exp\left\{\sum_{i=1}^{k} \theta_{i} T_{i}(x)\right\} h(x) dx = 1/C(\theta) = \exp\{-D(\theta)\}$$

$$\int_{R} \exp\left\{\sum_{i=1}^{k} \theta_{i} T_{i}(x)\right\} h(x) dx = 1/C(\theta) = \exp\{-D(\theta)\}$$

Differentiate with respect to θ_i

$$\int_{R} T_{i}(x) \exp\left\{\sum_{i=1}^{k} \theta_{i} T_{i}(x)\right\} h(x) dx = -\frac{\partial}{\partial \theta_{i}} D(\theta) \exp\{-D(\theta)\}$$

$$\int_{R} T_{i}(x) \exp\{D(\theta)\} \exp\left\{\sum_{i=1}^{k} \theta_{i} T_{i}(x)\right\} h(x) dx = -\frac{\partial}{\partial \theta_{i}} D(\theta)$$

$$E[T_{i}(X)] = -\frac{\partial}{\partial \theta_{i}} D(\theta)$$

Exercise:

$$Var[T_i(X)] = -\frac{\partial^2}{\partial \theta_i^2} D(\theta); \quad Cov[T_i(X), T_j(X)] = -\frac{\partial^2}{\partial \theta_i \partial \theta_j} D(\theta)$$

Example 8 (Binomial Dist.) We already known that if $X \sim B(n, \theta)$, then $E(X) = n\theta$.

Solution.

$$f(x,\theta) = (1-\theta)^n \exp\left\{x \log \frac{\theta}{1-\theta}\right\} C_n^x$$

$$\varphi = \log[\theta/(1-\theta)]; \quad \theta = e^{\varphi}/(1+e^{\varphi})$$

$$f(x;\varphi) = (1 + e^{\varphi})^{-n} \exp\{\varphi x\} C_n^x; \quad \Theta^* = \{\varphi : -\infty < \varphi < +\infty\}$$

Thus,

$$T_1(x) = x$$
, $D(\varphi) = \log C(\varphi) = -n \log(1 + e^{\varphi})$

Therefore,

$$E(X) = E(T_1(X)) = -\frac{\partial}{\partial \varphi} D(\varphi) = n \frac{e^{\varphi}}{1 + e^{\varphi}} = n\theta$$

