3 Applications of Differentiation

3.9

Differentials

Objectives

- Understand the concept of a tangent line approximation.
- Compare the value of the differential, dy, with the actual change in y, Δy.
- Estimate a propagated error using a differential.
- Find the differential of a function using differentiation formulas.

Tangent Line Approximations

Tangent Line Approximations

Consider a function f that is differentiable at c. The equation for the tangent line at the point (c, f(c)) is

$$y - f(c) = f'(c)(x - c)$$
$$y = f(c) + f'(c)(x - c)$$

and is called the **tangent line approximation** (or **linear approximation**) of *f* at *c*.

Because c is a constant, y is a linear function of x.

Tangent Line Approximations

Moreover, by restricting the values of x to those sufficiently close to c, the values of y can be used as approximations (to any desired degree of accuracy) of the values of the function f.

In other words, as x approaches c, the limit of y is f(c).

Example 1 – Using a Tangent Line Approximation

Find the tangent line approximation of

$$f(x) = 1 + \sin x$$

at the point (0, 1). Then use a table to compare the *y*-values of the linear function with those of f(x) on an open interval containing x = 0.

Solution:

The derivative of *f* is

$$f'(x) = \cos x$$
.

First derivative

Example 1 – Solution

So, the equation of the tangent line to the graph of *f* at the point (0, 1) is

$$y = f(0) + f'(0)(x - 0)$$

 $y = 1 + (1)(x - 0)$
 $y = 1 + x$. Tangent line approximation

Example 1 – Solution

The table compares the values of y given by this linear approximation with the values of f(x) near x = 0.

Notice that the closer x is to 0, the better the approximation.

x	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
$f(x) = 1 + \sin x$	0.521	0.9002	0.9900002	1	1.0099998	1.0998	1.479
y = 1 + x	0.5	0.9	0.99	1	1.01	1.1	1.5

Example 1 – Solution

This conclusion is reinforced by the graph shown in Figure 3.65.

The tangent line approximation of f at the point (0, 1)

Figure 3.65 10

When the tangent line to the graph of f at the point (c, f(c))

$$y = f(c) + f'(c)(x - c)$$

is used as an approximation of the graph of f, the quantity x - c is called the change in x, and is denoted by Δx , as shown in Figure 3.66. Tangent line at (c, f(c))

When Δx is small, $\Delta y = f(c + \Delta x) - f(c)$ is approximated by $f'(c)\Delta x$.

When Δx is small, the change in y (denoted by Δy) can be approximated as shown.

$$\Delta y = f(c + \Delta x) - f(c)$$
 Actual change in y
$$\approx f'(c)\Delta x$$
 Approximate change in y

For such an approximation, the quantity Δx is traditionally denoted by dx and is called the **differential of** x.

The expression f'(x)dx is denoted by dy and is called the **differential of** y.

Definition of Differentials

Let y = f(x) represent a function that is differentiable on an open interval containing x. The **differential** of x (denoted by dx) is any nonzero real number. The **differential** of y (denoted by dy) is

$$dy = f'(x) dx$$
.

In many types of applications, the differential of *y* can be used as an approximation of the change in *y*. That is,

$$\Delta y \approx dy$$
 or $\Delta y \approx f'(x) dx$.

Example 2 – Comparing ∆y and dy

Let $y = x^2$. Find dy when x = 1 and dx = 0.01. Compare this value with Δy for x = 1 and $\Delta x = 0.01$.

Solution:

Because $y = f(x) = x^2$, you have f'(x) = 2x, and the differential dy is

$$dy = f'(x)dx = f'(1)(0.01) = 2(0.01) = 0.02$$
. Differential of y

Now, using $\Delta x = 0.01$, the change in y is

$$\Delta y = f(x + \Delta x) - f(x) = f(1.01) - f(1)$$
$$= (1.01)^2 - 1^2 = 0.0201.$$

Figure 3.67 shows the geometric comparison of dy and Δy .

The change in y, Δy , is approximated by the differential of y, dy.

Figure 3.67 16

Error Propagation

Error Propagation

If you let x represent the measured value of a variable and let $x + \Delta x$ represent the exact value, then Δx is the *error in measurement*.

Finally, if the measured value x is used to compute another value f(x), the difference between $f(x + \Delta x)$ and f(x) is the **propagated error**.

Measurement Propagated
error
$$f(x + \Delta x) - f(x) = \Delta y$$
Exact Measured
value value

Example 3 – Estimation of Error

The measured radius of a ball bearing is 0.7 inch, as shown in the figure below. The measurement is correct to within 0.01 inch. Estimate the propagated error in the volume *V* of the ball bearing.

Ball bearing with measured radius that is correct to within 0.01 inch.

Example 3 – Solution

The formula for the volume of a sphere is

$$V = \frac{4}{3}\pi r^3$$

where *r* is the radius of the sphere.

So, you can write

$$r = 0.7$$

Measured radius

and

$$-0.01 \le \Delta r \le 0.01$$
.

Possible error

To approximate the propagated error in the volume, differentiate V to obtain $dV/dr = 4\pi r^2$ and write

$$\Delta V \approx dV$$

Approximate ΔV by dV.

$$=4\pi r^2 dr$$

Example 3 – Solution

$$=4\pi(0.7)^2(\pm 0.01)$$

Substitute for r and dr.

 $\approx \pm 0.06158$ cubic inch.

So, the volume has a propagated error of about 0.06 cubic inch.

Error Propagation

The ratio

$$\frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^3}$$
Ratio of dV to V

$$= \frac{3 dr}{r}$$
Simplify.
$$\approx \frac{3(\pm 0.01)}{0.7}$$
Substitute for dr and r .
$$\approx \pm 0.0429$$

is called the **relative error**. The corresponding **percent error** is approximately 4.29%.

Calculating Differentials

Calculating Differentials

Each of the differentiation rules can be written in differential form.

Differential Formulas

Let u and v be differentiable functions of x.

Constant multiple: d[cu] = c du

Sum or difference: $d[u \pm v] = du \pm dv$

Product: d[uv] = u dv + v du

Quotient: $d\left[\frac{u}{v}\right] = \frac{v \, du - u \, dv}{v^2}$

Example 4 – Finding Differentials

Function

Derivative

Differential

a.
$$y = x^2$$

$$\frac{dy}{dx} = 2x$$

$$dy = 2x dx$$

b.
$$y = \sqrt{x}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

$$dy = \frac{dx}{2\sqrt{x}}$$

$$\mathbf{c.} \ \ y = 2 \sin x$$

$$\frac{dy}{dx} = 2\cos x$$

$$dy = 2\cos x \, dx$$

$$\mathbf{d.} \ \ y = x \cos x$$

$$\frac{dy}{dx} = -x\sin x + \cos x \qquad dy = (-x\sin x + \cos x) dx$$

$$dy = (-x\sin x + \cos x) dx$$

e.
$$y = \frac{1}{x}$$

$$e. \ y = \frac{1}{x} \qquad \qquad \frac{dy}{dx} = -\frac{1}{x^2}$$

$$dy = -\frac{dx}{x^2}$$

Calculating Differentials

The notation in Example 4 is called the **Leibniz notation** for derivatives and differentials, named after the German mathematician Gottfried Wilhelm Leibniz.

Differentials can be used to approximate function values. To do this for the function given by y = f(x), use the formula

$$f(x + \Delta x) \approx f(x) + dy = f(x) + f'(x) dx$$

which is derived from the approximation

$$\Delta y = f(x + \Delta x) - f(x) \approx dy.$$

The key to using this formula is to choose a value for *x* that makes the calculations easier.

Example 7 – Approximating Function Values

Use differentials to approximate $\sqrt{16.5}$.

Solution:

Using $f(x) = \sqrt{x}$, you can write

$$f(x + \Delta x) \approx f(x) + f'(x) dx = \sqrt{x} + \frac{1}{2\sqrt{x}} dx.$$

Now, choosing x = 16 and dx = 0.5, you obtain the following approximation.

$$f(x + \Delta x) = \sqrt{16.5} \approx \sqrt{16} + \frac{1}{2\sqrt{16}}(0.5) = 4 + \left(\frac{1}{8}\right)\left(\frac{1}{2}\right) = 4.0625$$

So,
$$\sqrt{16.5} \approx 4.0625$$
.

Calculating Differentials

The tangent line approximation to $f(x) = \sqrt{x}$ at x = 16 is the line $g(x) = \frac{1}{8}x + 2$.

For *x*-values near 16, the graphs of *f* and *g* are close together, as shown in Figure 3.68.

Figure 3.68