3agarue N1

Найти объем тела, заданного ограничивающими его поверхностями.

14.1.
$$z=2-12(x^2+y^2)$$
,
 $z=24x+2$.

1 / /

14.3.
$$z = 8(x^2 + y^2) + 3$$
,
 $z = 16x + 3$.

14.5.
$$z=4-14(x^2+y^2)$$
,
 $z=4-28x$.

14.7.
$$z = 32(x^2 + y^2) + 3$$
,
 $z = 3 - 64x$.

14.9.
$$z=2-4(x^2+y^2)$$
,
 $z=8x+2$.

14.11.
$$z = 24(x^2 + y^2) + 1$$
,
 $z = 48x + 1$.

14.13.
$$z = -16(x^2 + y^2) - 1$$
,
 $z = -32x - 1$.

126

14.15.
$$z = 26(x^2 + y^2) - 2$$
,
 $z = -52x - 2$.

14.17.
$$z = -2(x^2 + y^2) - 1$$
,
 $z = 4y - 1$.

14.19.
$$z = 30(x^2 + y^2) + 1$$
,
 $z = 60y + 1$.

14.21.
$$z=2-18(x^2+y^2)$$
,
 $z=2-36y$.

14.23.
$$z=22(x^2+y^2)+3$$
,
 $z=3-44y$.

14.25.
$$z=4-6(x^2+y^2)$$
,
 $z=12y+4$.

$$14.27. z = 28(x^2 + y^2) + 3,$$

$$z = 56y + 3.$$

14.29.
$$z=2-20(x^2+y^2)$$
,
 $z=2-40y$.

14.31.
$$z=10(x^2+y^2)+1$$
,
 $z=1-20y$.

14.2.
$$z=10[(x-1)^2+y^2]+1$$
,
 $z=21-20x$.

14.4.
$$z=2-20[(x+1)^2+y^2],$$

 $z=-40x-38.$

14.6.
$$z = 28[(x+1)^2 + y^2] + 3$$
,
 $z = 56x + 59$.

14.8.
$$z=4-6[(x-1)^2+y^2]$$
,
 $z=12x-8$.

14.10.
$$z = 22[(x-1)^2 + y^2] + 3$$
,
 $z = 47 - 44x$

14.12.
$$z=2-18[(x+1)^2+y^2],$$

 $z=-36x-34.$

14.14.
$$z = 30[(x+1)^2 + y^2] + 1$$
,
 $z = 60x + 61$.

14.16.
$$z = -2[(x-1)^2 + y^2] - 1$$
,
 $z = 4x - 5$

14.18.
$$z=26[(x-1)^2+y^2]-2$$
,
 $z=50-52x$

$$\frac{1420}{z=-16[(x+1)^2+y^2]-1},$$

$$z=-32x-33.$$

14.22.
$$x=24[(x+1)^2+y^2]+1$$
,
 $z=48x+49$.

14.24.
$$z=2-4[(x-1)^2+y^2]$$
,
 $z=8x-6$.

14.26.
$$z=32[(x-1)^2+y^2]+3$$
,
 $z=67-64x$.

14.28.
$$z=4-14[(x+1)^2+y^2],$$

 $z=-28x-24.$

14.30.
$$z=8[(x+1)^2+y^2]+3$$
,
 $z=16x+19$.

3 aganne N2

ностями, μ — плотность. Найти массу тела.

- 16.1. $64(x^2 + y^2) = x^2, x^2 + y^2 = 4,$ $y = 0, x = 0 \ (y \ge 0, x \ge 0),$ $\mu = 5(x^2 + y^2)/4.$
- 16.3. $x^2 + y^2 = 1$, $x^2 + y^2 = 2x$
 - x = 0, y = 0, x = 0 (x > 0, y > 0); $\mu = 10x.$
- $\mu = 10x.$ 16.5. $x^{2} + y^{2} + z^{2} = 1$, $x^{2} + y^{2} = 4z^{2}$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$, $z \ge 0$); y = 20z.
- 16.7. $x^{2} + y^{2} + x^{2} = 16$, $x^{2} + y^{2} = 4$, $(x^{2} + y^{2} \le 4)$; $\mu = 2|x| / 1 \ge 1$
- 16.9. $x^{2} + y^{2} = \frac{4}{25}z^{2}$, $x^{2} + y^{2} = \frac{2}{5}\widehat{z}$. $x = 0, y = 0 \ (x \ge 0, y \ge 0);$ $\mu = 28xz.$
- 16.11. $25(x^2 + y^2) = \widehat{z^2}, \ x^2 + y^2 = 4,$ x = 0, y = 0, z = 0, $(x \ge 0, y \ge 0, z \ge 0);$ $\mu = 2(x^2 + y^2).$
- 16.13. $x^2 + y^2 = 1$, $x^2 + y^2 = 6\overline{x}$, x = 0, y = 0, z = 0 ($x \ge 0$, $y \ge 0$); $\mu = 90y$.
- 16.15. $x^{2} + y^{2} + z^{2} = 4$, $x^{2} + y^{2} = 9z^{2}$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$, $z \ge 0$); $\mu = 10z$.
- 16.17. $x^{2} + y^{3} + x^{2} = 4$, $x^{2} + y^{2} = 1$, $(x^{2} + y^{2} \le 1)$; $\mu = 6|x|$. |x| = 2/2
- 16.19. $x^{3} + y^{2} = x^{3}/49$, $x^{3} + y^{2} = x/7$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$); y = 0; y = 0
- $\mu = 10xz.$ 16.21. $16(x^2 + y^2) = x^2 + x^2 + y^2 = 1$, $x = 0, y = 0, z = 0 \ (x \ge 0, y \ge 0, z \ge 0)$; $\mu = 5(x^2 + y^2)$.
- 16.23. $x^{2}+y^{3}=4$, $x^{2}+y^{3}=4z$, $4 \ge x=0$, y=0, z=0 (x>0, y>0); y=5y.
- 16.25. $x^{2}+y^{2}+z^{2}=1$, $x^{2}+y^{2}=z^{2}$, z=0, y=0 (x>0, y>0, z>0); y=32z. y=32z.
- 16.27. $x^{3} + y^{2} + z^{3} = 9$, $x^{3} + y^{3} = 4$, $(x^{3} + y^{3} \le 4)$, z = 0 (z > 0); $\mu = 2z$.
- 16.29. $x^{3} + y^{2} = 4x^{2}/49$, $x^{3} + y^{3} = 2x/7$, x = 0, y = 0 (x > 0, y > 0); $\mu = 20xx$.
- 16.31. $4(x^2+y^2) = x^2, x^2+y^2=1,$ $y=0, x=0 \ (y \ge 0, x \ge 0);$ $\mu=10(x^2+y^2).$

- 16.2. $x^2 + y^2 + z^2 = 4$, $x^2 + y^2 = 1$, $(x^2 + y^2 \le 1)$, x = 0 $(x \ge 0)$; $\mu = 4 |x|$.
- 16.4. $x^{2} + y^{2} = \frac{16}{49}x^{2}$, $x^{3} + y^{2} = \frac{4}{7}x$, $x = 0, y = 0 \ (x > 0, y > 0);$ $\mu = 80yx$. 16.6. $36(x^{2} + y^{2}) = x^{2}$, $x^{2} + y^{2} = 1$,
- 16.6. $36(x^2 + y^2) = x^2, x^2 + y^2 = 1,$ $x = 0, z = 0 \ (x \ge 0, z \ge 0);$ $\mu = \frac{5}{6} \ (x^2 + y^2).$
- 16.8. $x^2 + y^2 = 4$, $x^2 + y^2 = 8\overline{z}$, x = 0, y = 0, z = 0 ($x \ge 0$, $y \ge 0$); y = 0; y = 0;
- 16.10. $x^2 + y^2 + z^2 = 4$, $x^2 + y^2 = z^2$ ≥ 2 x = 0, y = 0 $(x \ge 0, y \ge 0, z \ge 0)$; $\mu = 6z$.
- 16.12. $x^{2} + y^{2} + z^{2} = 9$, $x^{3} + y^{3} = 4$, $(x^{3} + y^{2} \le 4)$, y = 0 $(y \ge 0)$; $\mu = |z|$. 16.14. $x^{2} + y^{2} = z^{2}/25$, $x^{3} + y^{2} = z/5$,
- 16.14. $x^2 + y^2 = x^2/25$, $x^3 + y^2 = x/5$, x = 0, y = 0 (x > 0, y > 0); y = 14yz.
- 16.16. $9(x^{2} + y^{2}) = x^{2}$, $x^{3} + y^{3} = 4$, x = 0, y = 0, z = 0, $(x \ge 0, y \ge 0, z \ge 0)$; $y = 5(x^{2} + y^{2})/3$.
- 16.18. $x^{2} + y^{2} = 1$, $x^{2} + y^{2} = \overline{x}$, x = 0, y = 0, z = 0, $(x \ge 0, y \ge 0)$; y = 10y.
- 16.20. $x^2 + y^2 + z^2 = 4$, $x^2 + y^2 = 4\overline{z^2}$, x = 0, y = 0 ($x \ge 0$, $y \ge 0$, $z \ge 0$); y = 10x.
- 16.22. $x^{2} + y^{2} + z^{3} = 16$, $x^{3} + y^{3} = 4(x^{3} + y^{3} \le 4)$; $\mu = |z|$.
- 16.24. $x^{2} + y^{2} = \overline{x^{2}}, x^{2} + y^{2} = \overline{x},$ $x = 0, y = 0 \ (\overline{x} > 0, y > 0);$ $\mu = 35y\overline{z}) = 2^{-2}$
- 16.26. $x^{3} + y^{2} = x^{3}$, $x^{3} + y^{3} = 4$, x = 0, y = 0, z = 0 $(x \ge 0, y \ge 0, z \ge 0)$; $\mu = 5(x^{3} + y^{3})/2$.
- 16.28. $x^{3} + y^{3} = 1$, $x^{3} + y^{2} = 3\overline{z}$, x = 0, y = 0, z = 0, $(x \ge 0, y \ge 0)$, y = 15x.
- 16.30. $x^{2} + y^{2} + z^{3} = 16$, $x^{3} + y^{2} = 9z^{3}$, 2 $x = 0, y = 0, \ge$ $(x \ge 0, y \ge 0, z \ge 0)$; $\mu = 5z$.