Departamento de Matemática Aplicada

IMECC - UNICAMP

Exame de Admissão 2010

Programa de Pós-Graduação em Matemática Aplicada

017.	7	T 7 .		~
$C\'odigo$	de	Identi	πca	cao:

Questõe	Pontos	
Questão	1	
Questão	2	
Questão	3	
Questão	4	
Questão	5	
Questão	6	
Questão	7	
Questão	8	
Questão	9	
Questão	10	
T o t a	l	

Inicialmente, faça uma leitura com muita atenção do enunciado de todas as questões. Apresente a resolução de somente oito questões, dentre as cinco questões de Álgebra Linear e as cinco questões de Cálculo Avançado. Todas as questões têm a mesma pontuação. A prova tem duração de quatro horas.

Boa Prova!

Álgebra Linear

Questão 1. Considere o subespaço U do espaço vetorial real $\mathcal{P}_3(\mathbb{R})$, dos polinômios com coeficientes reais de grau ≤ 3 , definido da forma:

$$U = \{ p(x) \in \mathcal{P}_3(\mathbb{R}) / p(-1) + p'(-1) = 0 \ e \ p(1) = 0 \},$$

e o subespaço $S\,$ do espaço vetorial real $I\!\!R^3\,$ definido da forma:

$$S = \{ (x, y, z) \in \mathbb{R}^3 / x - y + z = 0 \}.$$

- (a) Determine uma base para o subespaço U.
- (b) Se possível, exiba um isomorfismo de U em S. Justifique sua resposta.

 $\mathbf{Quest\~ao}$ 2. Diga se é \mathbf{F} alsa ou \mathbf{V} erdadeira cada uma das afirmações abaixo, justificando sua resposta.

- (a) Existe uma transformação linear $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ que é injetora.
- (b) Existe uma transformação linear $T: \mathbb{R}^4 \longrightarrow \mathcal{P}_2(\mathbb{R})$ que é sobrejetora.
- (c) Subconjuntos de um conjunto linearmente dependente são linearmente dependentes.
- (d) Sejam V um espaço vetorial de dimensão finita, com $dim(V)=n,\ U$ e W subespaços de V com $dim(U)>\frac{n}{2}$ e $dim(W)>\frac{n}{2}$. Então, $U\cap W=\{\ 0_V\ \}$.

Definição 1 Seja $A\in M_n(I\!\! R)$ uma matriz simétrica. Dizemos que A é positiva-definida se $x^tAx\,>\,0$

para todo elemento $x \in \mathbb{R}^n$ não nulo.

Questão 3. Sejam $A \in M_n(\mathbb{R})$ uma matriz positiva—definida e uma matriz $B \in M_{n \times p}(\mathbb{R})$, com $n \geq p$ e posto(B) = p.

- (a) Mostre que $C = B^t A B$ é uma matriz positiva-definida.
- (b) Mostre que os autovalores da matriz A são todos positivos.
- (c) Mostre que a equação $x^tAx=1$ representa um hiper-elipsóide em \mathbb{R}^n com centro na origem e semi-eixos nas direções dos autovetores q_1,\cdots,q_n associados aos autovalores $\lambda_1,\cdots,\lambda_n$ da matriz A.

Questão 4. Considere o espaço vetorial real \mathbb{R}^4 munido do produto interno usual, que denotamos por $\langle \cdot, \cdot \rangle$. Sejam o subespaço S do espaço vetorial real \mathbb{R}^4 definido da forma:

$$S = \{ (x, y, z, t) \in \mathbb{R}^4 / 2x - z + t = 0 \text{ e } z + t = 0 \},$$

o subespaço S^{\perp} , que é o complemento ortogonal de S em \mathbb{R}^4 com relação ao produto interno usual, e $P: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ o operador de projeção ortogonal sobre o subespaço S.

- (a) Determine uma base ortogonal para o subespaço S.
- (b) Determine uma base ortogonal para o subespaço S^{\perp} .
- (c) Determine os autovalores e os autovetores do operador de projeção ortogonal P.
- (d) O operador linear P é diagonalizável? Justifique sua resposta.

Questão 5. Sejam $A, B \in M_n(\mathbb{R})$ matrizes similares, isto é, existe uma matriz invertível $P \in M_n(\mathbb{R})$ de maneira que $A = PBP^{-1}$.

- (a) Mostre que as matrizes A e B possuem os mesmos autovalores.
- (b) Determine a relação entre os autovetores das matrizes $A \in B$.
- (c) Mostre que se a matriz $\,A\,$ é diagonalizável, então a matriz $\,B\,$ é diagonalizável.

Cálculo Avançado

 $\mathbf{Quest\tilde{a}o}$ 6. Considere uma função $\,f: I\!\!R \longrightarrow I\!\!R\,$ definida da seguinte forma:

$$f(x) = \begin{cases} x^2 & \text{se} & x \le c \\ ax + b & \text{se} & x > c \end{cases}$$

para $\,a,\,b,\,c\,$ constantes. Por simplicidade, considere $\,c\,$ uma constante positiva.

- (a) Determine as constantes a e b em termos da constante c de modo que f'(c) exista.
- (b) Faça um esboço do gráfico da função f.

Questão 7. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função duas vezes continuamente diferenciável, isto é, f, f' e f'' contínuas em \mathbb{R} . Determine o valor de f(0), sabendo que $f(\pi)=2$ e que

$$\int_0^{\pi} (f(x) + f''(x)) \sin(x) dx = 5.$$

Questão 8. Determine todos os pontos de máximo e de mínimo locais e os pontos de sela da função $F(x,y)=xy(1-x^2-y^2)$ no domínio $\Omega\subset I\!\!R^2$ definido por:

$$\Omega \ = \ \left\{ \ (x,y) \ \in \ I\!\!R^2 \ / \ x \ > \ 0 \quad {\rm e} \quad |\, y \,| \ < \ 2x \, \right\} \, .$$

Questão 9. Determine a solução do sistema de equações diferenciais ordinárias

$$\begin{cases} x'(t) &= -5x(t) \\ y'(t) &= -4y(t) + 3z(t) \\ z'(t) &= + 3y(t) - 4z(t) \end{cases}$$

com a condição inicial

$$\begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

Faça a classificação quanto a estabilidade da solução estacionária. Justifique sua resposta.

Questão 10. A equação diferencial

$$x^2y''(x) + xy'(x) + (x^2 - n^2)y(x) = 0$$

é denominada equação de Bessel de ordem $\,n$. Mostre que a função de Bessel de primeira espécie de ordem zero definida por:

$$J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{4^k (k!)^2}$$

é a solução da equação de Bessel para n=0, para todo $x\in \mathbb{R}$.