МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ

Ордена Трудового Красного Знамени

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский технический университет связи и информатики»

Кафедра «Информационных технологий»

Лабораторная работа №2 Компьютерная арифметика

Выполнил: Студент группы

БПИ2403

Колесников Алексей

Цель работы:

научиться строить и анализировать сумматоры, «вычитатор» и «умножатор» в программе Logisim. Исследовать восьмибитное число, используя сдвиги.

Задание:

1. Сумматор двух двухбитных чисел:

Составить таблицу истинности.

Минимизировать с помощью карты Карно.

Построить в Logisim.

2. Построение сумматоров:

Полусумматор: использовать элементы И и Исключающее ИЛИ, обозначить входы (A, B) и выходы (Sum, CarryOut)

Полный сумматор: использовать два полусумматора и элемент ИЛИ, указать CarryInput, Sum, CarryOut.

8-битный сумматор: соединить полные сумматоры, указать CarryInput, CarryOut.

3. Инвертор:

Использовать Исключающие ИЛИ для подачи на них входного значения и значения инвертирования.

4. «Вычитатор»:

Подать входные значения А и В.

Использовать инвертор, 8-битный сумматор, контакт для вычитания и Исключающее ИЛИ

5. «Умножатор» двух четырехбитных чисел:

Использовать частичные произведения и 4-битные сумматоры.

Реализовать схему умножения.

6. Исследование числа посредством сдвигов:

Изучить логический, арифметический и циклический сдвиги.

Исследовать число 10000001.

Представить результаты в беззнаковом и знаковом десятичном виде.

Ход работы:

1. Сумматор двух двухбитных чисел

Таблица истинности

A	В	СО	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Карта Карно для сумматора

A\B	0	1
0	00	01
1	01	10

Карта карно для sum (хог)

A\B	0	1
0	0	1
1	1	0

Карта карно для carry out (and)

A\B	0	1
0	0	0
1	0	1

2. Построение сумматоров

Полусумматор

Двухбитный сумматор

Восьмибитный сумматор

3. Инвертор

Однобитный инвертор

Восьмибитный инвертор

4. Вычитатор

5. «Умножатор» двух четырехбитных чисел

6. Исследование числа посредством сдвигов

Логический сдвиг - это сдвиг, при котором все числа сдвигаются в одну сторону и первое или последняя цифра пропадает и соответственно в конец или начало ставится 0

Логический сдвиг влево 10000001 > 00000010

129 > 2 беззнаковое представление

-127 > 2 знаковое представление

Логический сдвиг вправо 10000001 > 01000000

129 > 64 беззнаковое представление

-127 > 64 знаковое представление

Арифметический сдвиг - это сдвиг, при котором все цифры, кроме старшей, сдвигаются. При левом сдвиге вторая цифра после старшей исчезает и в конец ставится 0. При правом сдвиге последняя цифра исчезает и на место второй ставится значение старшей.

Арифметический сдвиг влево 10000001 > 10000010

129 > 130 беззнаковое представление

-127 > -126 знаковое представление

Арифметический сдвиг вправо 10000001 > 10000000

129 > 128 беззнаковое представление

-127 > -128 знаковое представление

Циклический сдвиг - это сдвиг, при котором все цифры переставляются влево или вправо и переставляются в конец или в начало соответственно.

Циклический сдвиг влево 10000001 > 00000011

129 > 3 беззнаковое представление

-127 > 3 знаковое представление

Циклический сдвиг вправо 10000001 > 11000000

129 > 192 беззнаковое представление

-127 > -64 знаковое представление

Вывод: Я изучил как сделать компьютерную арифметику с помощью логических операций.