Zadanie: JAZ

Jazda w kółko – zadanie prostsze

Dostępna pamięć: 256 MB.

W pewnym mieście jest *n* skrzyżowań i *m* dróg, z których każda jest dwukierunkowa oraz zaczyna się i kończy przy jakimś skrzyżowaniu (przy czym początkowe i końcowe skrzyżowanie każdej drogi są różne). Żadne drogi nie przecinają się poza skrzyżowaniami (w razie potrzeby drogi mogą prowadzić tunelami bądź estakadami). Należy stwierdzić, czy da się w tym mieście wyruszyć z jakiegoś skrzyżowania i przejechawszy pewną niezerową liczbą dróg (żadną drogą nie można przy tym przejechać dwukrotnie), wrócić do tego samego skrzyżowania.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite n oraz m ($1 \le n \le 200\,000$, $0 \le m \le 500\,000$), oddzielone pojedynczym odstępem. Kolejne m wierszy zawiera opisy dróg, po jednym w wierszu. Każdy opis składa się z dwóch liczb całkowitych a_i oraz b_i ($1 \le a_i < b_i \le n$), oznaczających numery skrzyżowań połączonych drogą. Każde dwa skrzyżowania połączone są co najwyżej jedną drogą.

Wyjście

Pierwszy i jedyny wiersz standardowego wyjścia powinien zawierać jedno słowo TAK, jeżeli w mieście istnieje opisana powyżej trasa, zaś NIE w przeciwnym przypadku.

poprawnym wynikiem jest:

Przykład

Dla danych wejściowych:

6	7	TAK
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	
5	6	
Wyjaśnienie. Przykładem szukanej trasy jest $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.		
N	atomiast dla danych:	poprawnym wynikiem jest:
4		
	3	NIE
1		NIE
1	2	NIE