Example 2.4

J. Frye

Example 2.4:

The force **F** of magnitude 2000 N in the Figure below is to be resolved into two components along line a-a and b-b. Knowing that the component of **F** along line b-b is to be 3407N determine the angle α and the magnitude of the component along line a-a. Use:

- a) A graphical method (parallelogram law or triangle rule), and
- b)Trigonometry (sine and/or cosine laws).

Graphical Solution: Step 1

Draw a line b-b on your grid paper. Select a suitable scale and scale off $\mathbf{F} = 2000 \text{ N}$ at 20° to line b – b and $\mathbf{F}_{bb} = 3407 \text{ N}$ along the line b-b.

Note: At this point we only know Line a-a is at an angle, α , to Line b-b.

Graphical Solution – Step 2

At the <u>"Tip" of F_{bb}</u> draw a line to the <u>"Tip" of F</u>.

Since $F_{aa} + F_{bb} = F$, where F_{aa} and F_{bb} are the <u>components</u> of F, the Line a-a must be parallel to this line. The segment of this line from the "Tip" of F_{bb} to the "Tip" of F is component F_{aa} and can use our scale to determine its magnitude.

Graphical Solution – Step 3

From our completed component drawing we can now scale off \mathbf{F}_{aa} and measure angle α (the internal angle of the component triangle) with a protractor.

Trig Solution:

Cosine Rule:

$$F_{aa}^{\ 2} = 3407^2 + 2000^2 - 2(3407(2000)\cos 20^\circ$$

$$F_{aa}^{2} = 2801517.96$$

$$F_{aa} = 1673.77N$$

Sine Rule:

$$\frac{1673.77}{\sin 20^{\circ}} = \frac{2000}{\sin \alpha}$$

$$\sin \alpha = 0.40868$$

$$\alpha = 24.12^{\circ}$$

Graphical Solution:

$$F_{aa} \approx 1650N$$

$$\alpha \approx 24^{\circ}$$