Задание на вторую неделю.

Математическая логики: множества, фундаментальные понятия и методы рассуждений

- **Ех. 1.** Опишите формально множества ($U = \mathbb{Z}$): а) Множества, состоящее из чисел 1, 10 и 100; б) Множества, состоящие из чисел, больших 5; в) Множества, состоящее из натуральных чисел, меньших 5; г) Множество, которое не содержит элементов.
- **Ex. 2.** Докажите, что для любых множеств A, B, C выполняются равенства

a)
$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$
; 6) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

- **Ех. 3.** Пусть $A_1\subseteq A_2\subseteq A_3\subseteq\ldots\subseteq A_n\subseteq\ldots$ невозрастающая последовательность множеств. Известно, что $A_1\backslash A_4=A_6\backslash A_9$. Докажите, что $A_2\backslash A_7=A_3\backslash A_8$.
- **Ех. 4.** Докажите, что число $\sqrt{3} + \sqrt{2}$ иррационально.
- **Ex. 5.** Докажите, что для любого целого положительного п выполняется

$$1 \cdot 2^{1} + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \ldots + n \cdot 2^{n} = (n-1) \cdot 2^{n+1} + 2.$$

Ex. 6. В прямоугольнике $3 \times n$ стоят фишки трех цветов, по n штук каждого цвета. Докажите, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.

Бонусная задача. Докажите, что для любых положительных чисел $x_1, \ldots, x_k (k > 3)$ выполняется неравенство:

$$\frac{x_1}{x_k + x_2} + \frac{x_2}{x_1 + x_3} + \ldots + \frac{x_k}{x_{k-1} + x_1} \geqslant 2.$$

Задание на вторую неделю.

Математическая логики: множества, фундаментальные понятия и методы рассуждений

- **Ех. 1.** Опишите формально множества ($U = \mathbb{Z}$): а) Множества, состоящее из чисел 1, 10 и 100; б) Множества, состоящие из чисел, больших 5; в) Множества, состоящее из натуральных чисел, меньших 5; г) Множество, которое не содержит элементов.
- **Ex. 2.** Докажите, что для любых множеств A, B, C выполняются равенства

a)
$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$
; 6) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

- **Ех. 3.** Пусть $A_1\subseteq A_2\subseteq A_3\subseteq\ldots\subseteq A_n\subseteq\ldots$ невозрастающая последовательность множеств. Известно, что $A_1\backslash A_4=A_6\backslash A_9$. Докажите, что $A_2\backslash A_7=A_3\backslash A_8$.
- **Ех. 4.** Докажите, что число $\sqrt{3} + \sqrt{2}$ иррационально.
- **Ex. 5.** Докажите, что для любого целого положительного п выполняется

$$1 \cdot 2^{1} + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \ldots + n \cdot 2^{n} = (n-1) \cdot 2^{n+1} + 2.$$

Ex. 6. В прямоугольнике $3 \times n$ стоят фишки трех цветов, по n штук каждого цвета. Докажите, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.

Бонусная задача. Докажите, что для любых положительных чисел $x_1, \ldots, x_k (k > 3)$ выполняется неравенство:

$$\frac{x_1}{x_k + x_2} + \frac{x_2}{x_1 + x_3} + \ldots + \frac{x_k}{x_{k-1} + x_1} \geqslant 2.$$