SEMESTER VII

CS-701: ADVANCE COMPUTER ARCHITECTURE

Teaching and Examination Scheme:

Teaching Scheme			Credits		Marks	Duration of End	
L	T	P/D	С	Sessional	End Semester	Total	Semester
					Exams		Examination
3	1	0	4	40	60	100	3Hrs

COURSE OBJECTIVE:

With increase in availability of system resources, concept of parallel architecture has obtained immense popularity. This course provides a comprehensive study of scalable and parallel computer architectures for achieving a proportional increase in performance with increasing system resources.

COURSE CONTENT:

UNIT	CONTENT	No. of		
I	The State of Computing: System attributes to performance, multiprocessors and multicomputer, shared memory and distributed memory, taxonomy of MIMD computers, multivector and SIMD computers, PRAM and VLSI models.			
	Parallelism: Data and resource dependencies, hardware and software dependencies; program partitioning and scheduling: grain sizes and latency, grain packaging and scheduling; program flow mechanism: control flow versus data flow, demand driven mechanism, comparisons of flow mechanisms; system interconnect architectures: network properties and routing, static connection networks.			
II	Performance Metrics and Measures: Parallelism profile in programs, harmonic mean performance, efficiency, utilization and quality, standard performance measures, speedup performance law: Amdahl's law for a fixed workload, Gustafson's law for scaled problems, scalability analysis and approaches, scalability metrics and goals, evolution of scalable computers.	10		
	Advance Processor Technology: Design space of processors, instruction set architecture, CISC and RISC scalar processors; superscalar and vector processors: superscalar processors, the VLIW architecture, vector and symbolic processors; memory hierarchy technology: hierarchical memory technology, inclusion, coherence and locality, memory capacity planning.			
Ш	Multiprocessor System Interconnects: Hierarchical bus system, crossbar switch and, multiport memory, multistage and combining networks; cache coherence and synchronization mechanism, the cache coherence problem, snoopy bus protocol, directory	10		
	synchronization mechanism, the cache concrete problem, shoopy bus protocor, directory	93		

Dean
www.ululu.in - Download Anterimeen Multiwership ample Papers
Hamirpur - 177001

www.ululu.in							
	based protocols, hardware synchronization mechanisms.						
	Vector Processing principles: Vector instruction types, vector access memory schemes.						
	Multivector Multiprocessors: Performance directed design rules, Cray Y – MP, C-90 and MPP, SIMD computer organization: implementation models, the CM-2 architecture, introduction to multicore architecture						
IV	Parallel Programming Models: Shared variable model, message passing model, data parallel model, object oriented model, function and logic models.	9					
	Parallel Language and Compilers: Language feature for parallelism, parallel language constructs, optimizing compiler for parallelism.						
	Parallel Programming Environment: Software tools and environment, Y-MP, Pargon and CM-5 environment, visualization and performance testing.						
	Synchronization and Multiprocessing Modes: Principles of synchronization, multiprocessor execution models, shared-variable program structures, locks for protected access, semaphores and applications, monitors and application, message-passing program development, distributing the computation, synchronous message passing, asynchronous message passing.						
	Mapping Programs on to Multicomputer: Domain decomposition techniques, control decomposition techniques, heterogeneous processing.						

Text Books:

 Kai Hawang: "Advance Computer Architecture – Parallelism, Scalability and Programmability". McGraw Hill International Edition.