CSCI 420 Computer Graphics Lecture 5

Transformations

Vector Spaces

Euclidean Spaces

Frames

Homogeneous Coordinates

Transformation Matrices

[Angel, Ch. 3]

Oded Stein
University of Southern California

A Preview of an OpenGL Application

- Some parts will not make sense yet
 - In the future: shaders
- HW1 code is still being updated
- Might help you have something more concrete to look at!
- Will be uploaded to course website.

OpenGL Transformations

OpenGL Transformation Matrices

- Model-view matrix (4x4 matrix)
- Projection matrix (4x4 matrix)

linear maps

4x4 Model-view Matrix (this lecture)

- Translate, rotate, scale objects
- Position the camera

4x4 Projection Matrix (next lecture)

Project from 3D to 2D

4x4 Model-view Matrix (this lecture)

- Translate, rotate, scale objects in world space
- Position and orient the camera

4x4 Model Matrix

• Translate, rotate, scale objects in world space

4x4 Model Matrix

- Translate, rotate, scale objects in world space
- The user rotated the object, but we don't want to reload the object.

4x4 View Matrix

- Position and orient the camera
- From world space to camera space

4x4 Model-view Matrix

- These two do more or less the same thing.
- Rigid maps in 3D that position things.
- Difference between "model" (moving around objects) and "view" (moving around the camera) is purely a convention.
- In the OpenGL model, they are often not distinguished at all.

OpenGL Transformation Matrices

- Manipulated separately in OpenGL
- Core profile: set them directly
 - You will load the matrices into memory, and apply them yourself in a shader.
- Compatibility profile: must set matrix mode

```
glMatrixMode (GL_MODELVIEW); glMatrixMode (GL_PROJECTION);
```

Setting the Modelview Matrix: Core Profile

Set identity:

```
openGLMatrix.SetMatrixMode(OpenGLMatrix::ModelView);
openGLMatrix.LoadIdentity();
```

Use our openGLMatrix library functions:

```
openGLMatrix.Translate(dx, dy, dz);
openGLMatrix.Rotate(angle, vx, vy, vz);
openGLMatrix.Scale(sx, sy, sz);
```

Upload m to the GPU:

Setting the Modelview Matrix: Core Profile

Set identity:

```
openGLMatrix.SetMatrixMode(OpenGLMatrix::ModelView);
openGLMatrix.LoadIdentity();
```

Use our openGLMatrix library functions:

```
openGLMatrix.Translate(dx, dy, dz);
openGLMatrix.Rotate(angle, vx, vy, vz);
openGLMatrix.Scale(sx, sy, sz);
```

Upload m to the GPU:

Setting the Modelview Matrix: Core Profile

ALTERNATIVELY: do your own linear algebra!

- You can multiply with any matrix here.
 - Do more than just boring old rigid maps.

Setting the Modelview Matrix: Compatibility Profile

Load or post-multiply

```
glMatrixMode (GL_MODELVIEW);
glLoadIdentity(); // very common usage
float m[16] = { ... };
glLoadMatrixf(m); // rare, advanced
glMultMatrixf(m); // rare, advanced
```

Use library functions

```
glTranslatef(dx, dy, dz);
glRotatef(angle, vx, vy, vz);
glScalef(sx, sy, sz);
```

- More intuitive at first, but causes headaches later.
- No control over matrix.

Translated, rotated, scaled object

Initially (after LoadIdentity()):

rendering coordinate system = world coordinate system

Rotate(angle, ax, ay, az);

OpenGL pseudo-code

```
MatrixMode(ModelView);
LoadIdentity();
Translate(x, y, z);
Rotate(angle, ax, ay, az);
Scale(sx, sy, sz);
glUniformMatrix4fv(...);
renderBunny();
```


Rendering more objects

Rendering more objects

Solution 1:

How to obtain this frame? world

```
Find Translate (...), Rotate (...), Scale (...)
```


Rendering more objects

3D Math Review

3D Math Review

(linear algebra with 3x3 and 4x4 matrices)

Scalars

- Scalars α, β, γ from a scalar field
- Operations $\alpha+\beta$, $\alpha \cdot \beta$, 0, 1, $-\alpha$, ()⁻¹
- "Expected" laws apply
- Examples: rationals or reals with addition and multiplication

Scalars

Scalars are numbers

double, float, ...

$$\alpha = 3$$

Vectors

- Vectors u, v, w from a vector space
- Vector addition u + v , subtraction u v
- Zero vector 0
- Scalar multiplication α ν

Vector space over real numbers

mostly n=3 or n=4

- Vector space over real numbers
- On CPU:
 - float[3], double[3], ...
- On GPU:
 - vec3f, ...

$$\mathbf{v} = (1,5,3)$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

$$\mathbf{w} = (w_1, w_2, w_3)$$

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$$

- Vector space over real numbers
- Three-dimensional in computer graphics
- Dot product: $\alpha = u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3$
- $0 \cdot 0 = 0$
- u, v are orthogonal if $u \cdot v = 0$
- $|v|^2 = v \cdot v$ defines |v|, the *length* of v
- If |v| = 1, the vector is *normal*

Two interpretations of vectors

Just a point in space

An arrow pointing in a direction of a certain length

(some might say only the second is a vector, but in CG we represent both as vectors)

Lines and Line Segments

• Parametric form of line: $P(\alpha) = P_0 + \alpha d$

Line segment between Q and R:

$$P(\alpha) = (1-\alpha) Q + \alpha R$$
 for $0 \le \alpha \le 1$

Lines and Line Segments

• Parametric form of line: $P(\alpha) = P_0 + \alpha d$

Line segment between Q and R:

$$P(\alpha) = (1-\alpha) Q + \alpha R$$
 for $0 \le \alpha \le 1$

Convex Hull

Convex hull defined by

$$\begin{aligned} &P=\alpha_1\ P_1+\ldots+\alpha_n\ P_n\\ &\text{for }\alpha_1+\ldots+\alpha_n=1\\ &\text{and }0\leq\alpha_i\leq 1,\ i=1,\ ...,\ n \end{aligned}$$

Projection

Dot product projects one vector onto another vector

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

 $\mathbf{pr}_{\mathbf{v}} \mathbf{u} = (\mathbf{u} \cdot \mathbf{v}) \mathbf{v} / |\mathbf{v}|^2$

Orthogonal Projection

Dot product projects one vector onto another vector

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

 $\mathbf{pr}_{\mathbf{v}} \mathbf{u} = (\mathbf{u} \cdot \mathbf{v}) \mathbf{v} / |\mathbf{v}|^2$

Why is this called an orthogonal projection?

Orthogonal Projection

Dot product projects one vector onto another vector

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

 $\mathbf{pr}_{\mathbf{v}} \mathbf{u} = (\mathbf{u} \cdot \mathbf{v}) \mathbf{v} / |\mathbf{v}|^2$

- Why is this called an orthogonal projection?
 - Because $(u pr_v u) \cdot v = (u \cdot v) \cdot (u \cdot v) (v \cdot v) / |v|^2$ = $(u \cdot v) \cdot (u \cdot v) = 0$

Cross Product

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

- $|a \times b| = |a| |b| |\sin(\theta)|$
- Cross product is perpendicular to both a and b
- Right-hand rule

Source: Wikipedia

Plane

- Plane defined by point Po and vectors u and v
- u and v should not be parallel
- Parametric form:

$$T(\alpha, \beta) = P_0 + \alpha u + \beta v$$

(α and β are scalars)

- $n = u \times v / |u \times v|$ is the normal
- $n \cdot (P P_0) = 0$ if and only if P lies in plane

Coordinate Systems

- Let v₁, v₂, v₃ be three linearly independent vectors in a 3-dimensional vector space
- Can write any vector w as

 $w = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$ for some scalars α_1 , α_2 , α_3

Frames

- Frame = origin P₀ + coordinate system
- Any point $P = P_0 + \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$

In Practice, Frames are Usually Orthonormal

$$v_1 \cdot v_2 = 0$$

$$v_2 \cdot v_3 = 0$$

$$v_1 \cdot v_3 = 0$$

$$|| v_1 || = || v_2 || = || v_3 || = 1$$

Orthonormality makes life easier

Change of Coordinate System

- Bases {u₁, u₂, u₃} and {v₁, v₂, v₃}
- Express basis vectors u_i in terms of v_i

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$$

$$u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$$

$$u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$$

Represent in matrix form:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = M \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

matrices represent linear transformations
 a = Mb

$$M = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

 \mathbb{R}^{3x3}

- On CPU:
 - float[3][3], double[3][3], ...
- On GPU:
 - mat3f, ...

- matrices can be added and multiplied by a scalar like a vector
- matrices can be multiplied with each other
 - composition of functions
- Determinant

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

Inverse

$$A\mathbf{x} = y$$

$$\mathbf{x} = A^{-1}y$$

- Not all matrices can be inverted
 - Only if $\det A \neq 0$
- Don't compute them explicitly our helper libraries and your GPU can computer them.

- Orthogonal matrices:
 - $A = (a_1 \ a_2 \ a_3)$ is orthogonal if...

$$A^{T}A = AA^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

•
$$a_1 \cdot a_2 = a_2 \cdot a_3 = a_1 \cdot a_3 = 0$$
 and $\det A = 1$

- Can represent rotation, scaling, and reflection
 - Rotation: SO(3) = {3x3 orthogonal matrices with determinant 1}
 - Scaling: Diag(3) = {3x3 matrices with positive entry on diagonal only}
 - Reflection: Identity matrices where one diagonal element is -1
 - Rotation + Reflection: {3x3 matrices with | determinant 1 or -1}
- Cannot represent translation
 - Utrans = u + t
 - There is no M such that u_{trans} = M u

In order to represent rotations, scales AND translations: Homogeneous Coordinates

• Augment $[\alpha_1 \ \alpha_2 \ \alpha_3]^T$ by adding a fourth component (1):

$$\mathbf{p} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T$$

• Homogeneous property:

$$\mathbf{p} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^{\mathsf{T}} = [\beta \alpha_1 \ \beta \alpha_2 \ \beta \alpha_3 \ \beta]^{\mathsf{T}},$$
 for any scalar $\beta \neq 0$

Homogeneous coordinates are transformed by 4x4 matrices

Affine Transformations (4x4 matrices)

- Translation
- Rotation
- Scaling
- Any composition of the above
- Later: projective (perspective) transformations
 - Also expressible as 4 x 4 matrices!

Translation

- $\mathbf{q} = \mathbf{p} + \mathbf{d}$ where $\mathbf{d} = [\alpha_x \ \alpha_y \ \alpha_z \ 0]^T$
- $p = [x \ y \ z \ 1]^T$
- $\mathbf{q} = [x' \ y' \ z' \ 1]^T$
- Express in matrix form q = T p and solve for T

$$T = \begin{bmatrix} 1 & 0 & 0 & \alpha_x \\ 0 & 1 & 0 & \alpha_y \\ 0 & 0 & 1 & \alpha_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

- $\mathbf{x}' = \beta \mathbf{x} \mathbf{x}$
- $y' = \beta_y y$
- $z' = \beta z z$
- Express as q = S p and solve for S

$$S = \begin{bmatrix} \beta_{x} & 0 & 0 & 0 \\ 0 & \beta_{y} & 0 & 0 \\ 0 & 0 & \beta_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation in 2 Dimensions

- Rotation by θ about the origin
- $x' = x \cos \theta y \sin \theta$
- $y' = x \sin \theta + y \cos \theta$
- Express in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Note that the determinant is 1

Rotation in 3 Dimensions

Orthogonal matrices:

$$RR^{T} = R^{T}R = I$$

 $det(R) = 1$

As a 4x4 homogeneous matrix:

$$A = \begin{bmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation in 3 Dimensions

 How do we rotate between two orthonormal coordinate systems?

Rotation in 3 Dimensions

 How do we rotate between two orthonormal coordinate systems?

- $U = \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix}$ transforms system 1 to canonical system
- $V = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ transforms system 2 to canonical system
- To transform \mathbf{x} from system 1 to system 2, $\mathbf{x} \mapsto V^{-1}U\mathbf{x}$

Affine Matrices are Composed by Matrix Multiplication

- $\bullet \quad \mathbf{A} = \mathbf{A}_1 \, \mathbf{A}_2 \, \mathbf{A}_3$
- Applied from right to left
- $A p = (A_1 A_2 A_3) p = A_1 (A_2 (A_3 p))$
- Compatibility mode:
 When calling glTranslate3f, glRotatef, or glScalef,
 OpenGL forms the corresponding 4x4 matrix,
 and multiplies the current modelview matrix with it.

Summary

- OpenGL Transformation Matrices
- Vector Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices