Κεφάλαιο 5

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Τεχνητή Νοημοσύνη - Β' Έκδοση

Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

P

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Εισαγωγικά (1/3)

- * Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται εναλλάξ αναφέρονται και ως ανταγωνιστικά παίγνια ή παίγνια δύο αντιπάλων (adversary ή two-person games)
- Ο όρος "παίγνιο" αφορά την περιγραφή του τρόπου με τον οποίο παίζεται το παιχνίδι και περιλαμβάνει:
 - 🗖 τα αντικείμενα που υπάρχουν (για παράδειγμα, τα πούλια, το ταμπλώ, κτλ.) καθώς και
 - υ το σύνολο των κανόνων που το διέπουν.
- * Αντίθετα, με τον όρο "παιχνίδι" χαρακτηρίζεται μία συγκεκριμένη παρτίδα του παιγνίου.

-

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Εισαγωγικά (2/3)

- Το πρόβλημα ορίζεται ως εξής:
 - Μια κατάσταση παριστάνει τη διάταξη των πιονιών σε κάποια χρονική στιγμή.
 - Ο χώρος καταστάσεων αποτελείται από όλες αυτές τις πιθανές επιτρεπτές καταστάσεις.
 - Οι τελεστές μετάβασης είναι οι επιτρεπτές κινήσεις (κανόνες του παιχνιδιού).
 - Οι τελικές καταστάσεις έχουν γνωστά χαρακτηριστικά (π.χ. ματ στο σκάκι).
- **Τ**Έστω ότι κάποιος είναι η σειρά του να κάνει μία κίνηση.
 - Αν θέλει να κερδίσει, θα επιδιώξει να κάνει την καλύτερη κίνηση για αυτόν, η οποία αντίστοιχα θα είναι και η χειρότερη για τον αντίπαλο.
 - Ο τρόπος που σκέφτεται είναι ο εξής: "Αν κάνω αυτή την κίνηση, τότε ο αντίπαλος θα κάνει εκείνη, αν όμως κάνω την άλλη κίνηση, τότε θα κάνει αυτήν, ..." κ.ο.κ.
 - Ο συλλογισμός αυτός αντιστοιχεί στη δημιουργία ενός δένδρου (δένδρο του παιχνιδιού game).

P

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Εισαγωγικά (3/3)

- * Το χαρακτηριστικό του είναι ότι οι κινήσεις δύο διαδοχικών επιπέδων ανήκουν σε διαφορετικό παίκτη, γιατί οι παίκτες παίζουν εναλλάξ.
- Έστω ότι ένας από τους δύο αντιπάλους είναι ο υπολογιστής.
 - □ Το πρόγραμμα αναζήτησης πρέπει να εξετάσει όλες τις πιθανές κινήσεις που παράγονται από μία (αρχική) κατάσταση.
 - □ Ένα τέτοιο πρόγραμμα μπορεί να προβλέψει την έκβαση του παιχνιδιού μετά από 10 κινήσεις (ο άνθρωπος σταματά συνήθως μετά την πρόβλεψη 2 ή 3 κινήσεων).
- Παραδόξως, οι διαφορές αυτές δεν κάνουν κάποιο πρόγραμμα κυρίαρχο οποιουδήποτε παιχνιδιού έναντι του ανθρώπου.
- **Φ** Η ανωτερότητα των ανθρώπων έγκειται στους εξής παράγοντες:
 - Οι άνθρωποι επιλέγουν με κάποιον ευριστικό τρόπο τις εναλλακτικές κινήσεις.
 - Οι άνθρωποι διαθέτουν κάποια διαίσθηση για την κατάληξη του παιχνιδιού.
 - Με την εμπειρία που αποκτούν, μπορούν να σκέφτονται πολλές φορές εντελώς μηχανικά, ιδίως στα πρώτα και τελευταία στάδια του παιχνιδιού.

Ο Αλγόριθμος Minimax (1/3)

- **Δ**εδομένης μίας κατάστασης του παιχνιδιού, ο αλγόριθμος αναζήτησης μεγίστουελαχίστου (Minimax) καλείται να αποφασίσει ποια θα είναι η επόμενη κίνησή του έναντι του αντιπάλου.
- ❖ Η εξαντλητική αναζήτηση των δένδρων αναζήτησης είναι ανέφικτη.
- ❖ Το ζητούμενο είναι:
 - Να χτιστεί το δένδρο μέχρι κάποιο βάθος
 - Να βρεθεί η καλύτερη κίνηση από την παρούσα κατάσταση.
- Το μέτρο της υπεροχής του ενός ή του άλλου αντιπάλου δίνεται από μία συνάρτηση αξιολόγησης (evaluation function) και η οποία εφαρμόζεται στα φύλλα του δένδρου του παιχνιδιού.
- Ο ένας παίκτης (πρόγραμμα) ονομάζεται max και ο άλλος (άλλο πρόγραμμα ή άνθρωπος) ονομάζεται min.

Αλγόριθμος Minimax

Ψευδογλώσσα

- 1. Εφάρμοσε τη συνάρτηση αξιολόγησης σε όλους τους κόμβους-φύλλα του δένδρου.
- 2. Έως ότου η ρίζα του δένδρου αποκτήσει τιμή, επανέλαβε:
- 3. Αρχίζοντας από τα φύλλα του δένδρου και προχωρώντας προς τη ρίζα, μετέφερε τις τιμές προς τους ενδιάμεσους κόμβους του δένδρου ως εξής:
 - i. Η τιμή κάθε κόμβου Μαχ είναι η μέγιστη (maximum) των τιμών των κόμβων-παιδιών του.
 - ii. Η τιμή κάθε κόμβου Min είναι η ελάχιστη (minimum) των τιμών των κόμβων-παιδιών του.
- 4. Καλύτερη κίνηση είναι η κίνηση που οδηγεί στον κόμβο που έδωσε την πιο συμφέρουσα στη ρίζα τιμή (μέγιστη για το Μακ, ελάχιστη για το Μin).
- Ο αλγόριθμος εγγυάται την πιο συμφέρουσα εξέλιξη μετά από κάποιες κινήσεις,
 έστω και αν ο αντίπαλος διαλέγει τις καλύτερες για αυτόν κινήσεις.

Ο Αλγόριθμος Minimax (2/3)

- * Κατά σύμβαση, ο παίκτης που βρίσκεται στη ρίζα θεωρείται πως είναι ο Max.
- Οι καταστάσεις-φύλλα ονομάζονται τερματικές καταστάσεις, όμως δεν είναι απαραίτητα τελικές καταστάσεις.
- Οι τιμές των τερματικών καταστάσεων υπολογίζονται από τη συνάρτηση αξιολόγησης ενώ οι άλλες προκύπτουν από τη διάδοση αυτών.

Ο Αλγόριθμος Minimax (3/3)

Ο Αλγόριθμος Minimax στην Τρίλιζα (1/2)

❖ Η τρίλιζα έχει μικρό χώρο αναζήτησης (9! καταστάσεις).

Ο Αλγόριθμος Minimax στην Τρίλιζα (2/2)

Μία συνάρτηση αξιολόγησης στην τρίλιζα θα μπορούσε να είναι η:

$$3 \cdot X_2 + X_1 - (3 \cdot O_2 + O_1)$$

- Χ2 ο αριθμός γραμμών, στηλών ή διαγωνίων με δύο Χ και χωρίς κανένα Ο.
- Χ1 ο αριθμός γραμμών, στηλών ή διαγωνίων με ένα Χ και χωρίς κανένα Ο.
- Ο Ο ο αριθμός γραμμών, στηλών ή διαγωνίων με δύο Ο και χωρίς κανένα Χ.
- Ο 1 ο αριθμός γραμμών, στηλών ή διαγωνίων με ένα Ο και χωρίς κανένα Χ.

Εφαρμογή αλγορίθμου Minimax στο σκάκι

Το κύριο μέλημα των προγραμμάτων σκάκι είναι να αναζητήσουν το δένδρο του παιχνιδιού σε όσο το δυνατόν μεγαλύτερο βάθος.

Μία συνάρτηση αξιολόγησης στο σκάκι

- □ Υπεροχή κομματιών: π.χ. Βασιλιάς=10, Άλογο=5, Πιόνι=1 κλπ. Η αξία όλων των κομματιών κάθε χρώματος προστίθεται.
- Υπεροχή θέσης: Κάθε κομμάτι που βρίσκεται στα 4 κεντρικά τετράγωνα παίρνει επιπλέον 2 πόντους.
- □ Απειλές: Για κάθε απειλή που προβάλει ένας παίκτης παίρνει 3 επιπλέον πόντους, εκτός αν απειλεί το βασιλιά του άλλου παίκτη, οπότε παίρνει 20 πόντους.

Πιόνι

Ο Αλγόριθμος Minimax στο Σκάκι

Ο Αλγόριθμος Alpha-Beta

- ❖ Ο Άλφα-Βήτα (Alpha-Beta AB) αποφεύγει την αξιολόγηση καταστάσεων.
- ❖ Ο ΑΒ είναι όμοιος με τον Minimax, αλλά με κλάδεμα υποδένδρων.

Σύγκριση του AB με τον Minimax (1/2)

Παράδειγμα Minimax

Παράδειγμα Alpha-Beta

Τεχνητή Νοημοσύνη, Β' Έκδοση

Σύγκριση του AB με τον Minimax (2/2)

- **Φ** Ο ΑΒ εξετάζει περίπου \sqrt{N} τερματικούς κόμβους, όπου N είναι οι τερματικοί κόμβοι που εξετάζει ο αλγόριθμος Minimax.
- **Φ** Η απόδοσή του βελτιώνεται με διάφορες μεθόδους, όπως:
 - Ευριστικό κλάδεμα του δένδρου παιχνιδιού.
 - Δυναμική αντί στατικής συνάρτησης αξιολόγησης.
 - □ Αποθήκευση τιμών των τερματικών καταστάσεων (transposition tables).
 - Προκαθορισμένες κινήσεις (χωρίς αναζήτηση) σε αρχικές και τελικές φάσεις του παιγνιδιού (Openings, End Game moves).

Το Πρόβλημα του Ορίζοντα

□ Το φαινόμενο του ορίζοντα (horizon effect) αντιμετωπίζεται με ανιχνευτές (scouts).