RECEIVED

SEP 1 1 2003

TECH CENTER 1600/2900

- 1. Cancelled.
- 2. Cancelled.
- 3. Cancelled.
- 4. Cancelled.
- 5. Cancelled.
- 6. Cancelled.
- 7. Cancelled.
- 8. Cancelled.
- 9. Cancelled.
- 10. Cancelled.
- 11. Cancelled.
- 11. Cancelled.
- 12. Cancelled.
- 13. Cancelled.
- 14. Cancelled.
- 15. Cancelled.
- 16. A process for preparing a compound of Formula XI

FORMULA XI

 $(R_{16} = -CH_2F \text{ or } -CH_2F_2)$ by reacting a compound of Formula IX

FORMULA IX

with sodium borohydride to produce a compound of Formula X

FORMULA X

and further reacting this compound with diethylamino sulfurtrifluoride to produce compound of Formula XI.

17. A process for preparing a compound of Formula XII

FORMULA XII

wherein $R_{17} = \sum_{N=OH}$ which comprises reacting (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-formyl)methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula IX

FORMULA IX

with hydroxylamine.

18. A process for preparing a compound of Formula XII

FORMULA XII

wherein $R_{17} = -NH_2$ which comprises reacting (S)-N-[[3-[3-Fluoro-4[N-1-[4-{2-furyl-(5-hydrazone)-methyl}]-piperazinyl]-phenyl]-2-oxo-5-oxazolidinyl]-methyl]acetamide with hydrazine hydrate.

19. A process for preparing a compound of Formula XII

FORMULA XII

wherein $R_{17} = -C_{NH} - C_{NH} - C$

20. A process for preparing a compound of Formula XII

FORMULA XII

wherein R_{17} = CN which comprises reacting (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-cyano})methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide with trifilic anhydride and triethylamine.

21. A process for preparing a compound of Formula XII

FORMULA XII

wherein R17 = $-c_{0}$ which comprises reacting (S)-N-[[3-Fluoro-4-[N-1[5-(1,3-dioxane)-2-furylmethyl]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide with 1,3-propane diol and BF₃ etherate.

22. A process for the preparation of the compound of Formula XIV

$$R_{18} = 0$$

$$N = 0$$

FORMULA XIV

wherein $R_{18} = \frac{O}{C}_{NH_2}$ which comprises reacting (\$)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-formyl)methyl}]] piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula IX

FORMULA IX

with Ag₂O to produce (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-carboxy)methyl}]-piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII followed by reacting (S)-N-[[3-Fluoro-4-[N-1[4-(2-furyl- (5-carboxyethyl)methyl)piperazinyl] phenyl]- 2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII

FORMULA XIII

with aqueous ammonia to produce Formula XIV.

23. A process for the preparation of the compound of Formula XIV

FORMULA XIV

wherein
$$R_{18} = \frac{0}{C} N_{N}$$

which comprises reacting (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-formyl)methyl}] piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula IX

with Ag₂O to produce (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-carboxy)methyl}]-piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII followed by reacting (S)-N-[[3-Fluoro-4-[N-1[4-(2-furyl- (5-carboxyethyl)methyl)piperazinyl] phenyl]- 2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII

FORMULA XIII

with thionyl chloride to produce Formula XIV.

24. A process for the preparation of the compound of Formula XIV

FORMULA XIV

wherein
$$R_{18} = \begin{pmatrix} 0 \\ 11 \\ C \\ N \end{pmatrix}$$
 NHBOO

which comprises reacting (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-formyl)methyl}] piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula IX

$$H \longrightarrow O \longrightarrow N \longrightarrow D \longrightarrow N \longrightarrow M \longrightarrow NHCOCH^3$$

FORMULA IX

with Ag₂O to produce (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-carboxy)methyl}]-piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII followed by reacting (S)-N-[[3-Fluoro-4-[N-1[4-(2-furyl- (5-carboxyethyl)methyl)piperazinyl] phenyl]- 2-oxo-5-oxazolidinyl]methyl] acetamide of Formula XIII

FORMULA XIII

with morpholine in the presence of oxalyl chloride to produce Formula XIV.

25. (New) A compound having the structure of Formula I

$$R - T - W - X \xrightarrow{C} N - W \xrightarrow{(CH2)n} X \xrightarrow{C} N \xrightarrow{R} X \xrightarrow{C} X \xrightarrow{C}$$

FORMULA I

and its pharmaceutically acceptable salts, enantiomers, diastereomers, or N-oxides, wherein

T is five- to seven-membered heterocyclic ring, aryl, substituted aryl, bound to the ring C with a linker W and the heterocyclic and aryl rings are further substituted by a group represented by R,

alkoxy, C_{1-6} alkyl substituted with one or more F, Cl, Br, I or OH and R_6 and R_7 are the same as defined earlier, R_{10} is selected from the group consisting of H, optionally substituted from H, optionally substituted C_{1-12} alkyl, C_{3-512} cycloalkyl, C_{1-6} , alkoxy, C_{1-6} alkyl, aryl, heteroaryl;

n is 1;

X is N

Y and Z are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, and C_{3-12} cycloalkyl;

U and **V** are independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br, and C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;

W is selected from the group CH_2 , CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N$ (R_{11}) CH_2 -, -CO-CO-, CH_2 (R_{11}) N-, CH (R_{11}), S, CH_2 (CO), N (R_{11}) wherein R_{11} is hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, aryl or heteroaryl;

 R_1 is selected from the group consisting of - NHC(=O) R_2 wherein R_2 is hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH; N(R_3 , R_4); -NR₂C(=S) R_3 ; -NR₂C(=S)SR₃ wherein R_2 is the same as defined above and R_3 and R_4 are independently selected from the group consisting of H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH.

26. (New) A compound having structure of Formula II

FORMULA II

and its pharmaceutically acceptable salts, enantiomers, diastereomers, or N-oxides, wherein M= O, S, NH, N-CH₃;

X is N;

Y and Z are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, and C_{3-12} cycloalkyl;

U and V are independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br, and C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;

W is selected from the group consisting of CH₂, CO, CH₂NH, -NHCH₂, -CH₂NHCH₂, -CH₂-N (R₁₁) CH₂ - , CH₂ (R11) N -, CH (R₁₁), S, CH₂ (CO), NH wherein R₁₁ is optionally substituted with C $_{1-12}$ alkyl, C $_{3-12}$ cycloalkyl, C $_{1-6}$ alkoxy, C $_{1-6}$ alkyl, aryl, heteroaryl except when M=S, Q=P=H, W=(C=O);

n is 1; and,

Q and P are independently selected from the group consisting of -CN, COR₅, COOR₅, N (R_6 , R_7), CON (R_6 , R_7), CH₂NO₂, NO₂, CH₂R₈, CHR₉, -CH=N-OR₁₀, C=CH-R₅, wherein R_5 is selected from the group consisting of H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, aryl, heteroaryl; R_6 and R_7 are independently selected from the group consisting of H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9

are independently selected from the group consisting of H, C_{1-6} alkyl ,F, Cl, Br, C_{1-12} alkyl substituted with one or more of F, Cl, Br, I, OR₄, SR₄, wherein R₄ is selected from the group consisting of H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more F, Cl, Br, I or OH, N(R₆, R₇), R₁₀ is selected from the group consisting of H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, aryl, heteroaryl except W= (CO), Q and P =H and M=S, wherein M = Sulphur and Oxygen as shown by Formulae III and IV respectively,

FORMULA III

wherein P, Q, U, V, X, Y, Z, W and n in Formulae III and IV as defined earlier for Formula I.

- 27. (New) A compound selected from the group consisting of
 - 1. (S)-N-[[3-[3-Fluoro-4-[N-1-[4-(2-furoyl) piperazinyl]]phenyl]-2-oxo-5-oxazolidinyl] methyl]acetamide
 - 2. (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-formyl)methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide

- 3. (S)-N-[[3-Fluoro-4-[N-1[4-(2-furyl-(5-carboxyethyl)methyl)piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 4. (S)-N-[[3-Fluoro-4-[N-1[4-(5-bromo-2-furoyl)]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl] methyl]acetamide
- 5. (S)-N-[[3-Fluoro-4-[N-1[4-(5-chloromethyl-2-furoyl)piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 6. (S)-N-[[3-Fluoro-4-[N-1[4-(5-nitro-2-furoyl)piperazinyl]phenyl]-2-oxo-5-oxazolidinyl] methyl]acetamide
- 7. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-(2-thienyl)dicarbonyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 8. (S)-N[[3-[3-Fluoro-4-[N-1[4-(3-furoyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl] acetamide
- 9. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-bromo)methyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 10. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-thienyl(5-chloro)methyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 11. (S)-N[[3-[3-Fluoro-4-[N-1[4-(2-furylmethyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl] methyl]acetamide
- 12. (S)-N-[[3-[3-Fluoro-4-[N-1[4-(2-thienylmethyl)]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 13. (S)-N[[3-[3-Fluoro-4-[N-1[4-(2-thienylacetyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl] methyl]acetamide
- 14. (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-thienyl(4-bromo)methyl}]piperazinyl] phenyl]-2 oxo-5-oxazolidinyl]methyl]acetamide
- 15. (S)-N-[[3-[3-fluoro-4-[N-1-[4-{2-furyl-(5-nitro)methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide.
- 16. Hydrochloric salt of (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-nitro)methyl}]piperazinyl] phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 17. Citrate salt of (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-nitro)methyl}]piperazinyl] phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 18. (S)-N[[3-[3-Fluoro-4-[N-1[4-(2-pyrrolylmethyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide

- 19. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-thienyl(3-methyl)methyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 20. (S)-N[[3-[3-Fluoro-4-[N-1[4-(3-furylmethyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl] methyl]acetamide
- 21. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-thienyl(5-methyl)methyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 22. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-pyrrole(1-methyl)methyl}]piperazinyl] phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 23. (S)-N[[3-[3-Fluoro-4-[N-1[4-{2-thienyl(5-nitro)methyl}]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 24. (S)-N[[3-[3-Fluoro-4-[N-1[4-[2-furyl{5-(N-thiomorpholinyl)methyl]methyl]piperazinyl] phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 25. (S)-N[[3-[3-Fluoro-4-[N-1[4-[2-furyl{5-(N-morpholinyl)methyl}]piperazinyl] phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 26. (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-acetoxymethyl)methyl}]piperazinyl] phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 27. (S)-N-[[3-Fluoro-4-[N-1[4-{2-thienyl(5-bromo)methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 28. (S)-N-[[3-Fluoro-4-[N-1[4-(5-nitro-2-furylmethyl)piperazinyl] phenyl]- 2-oxo oxazolidinyl]methyl]dichloroacetamide
- 29. (S)-N[[3-[3-Fluoro-4-[N-1[4-(5-nitro-2-thienoyl)]piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide hydrochloride
- 30. (S)-N[[3-[3-Fluoro-4-[N-1[4-(2',2'-diphenyl-2' hydroxy acetyl)] piperazinyl]phenyl]2-oxo-5-oxazolidinyl]methyl]acetamide
- 59. (S)-N-[[3-[3-fluoro-4-[N-1 {2-furyl-[4-(5-difluoromethyl) methyl] piperazinyl]-2-oxo-5-oxazolidinyl]-methyl]acetamide.
- 60. (S)-N-[[3-[3-Fluoro-4-[N-1-[4-(2-furyl-(5-aldoxime)methyl]] piperazinyl] phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 61. (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-aldoxime(methyl-4-(N-carboxyaminophenyl acetate) methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide

- 62. (S)-N-[[3-[3-Fluoro-4[N-1-[4-{2-furyl-(5-hydrazone)-methyl}]-piperazinyl]-phenyl]-2-oxo-5-oxazolidinyl]-methyl]acetamide
- 63. (S)-N-[[3-[3-fluoro-4-[N-1 {2-furyl-[4-(5-difluoromethyl) methyl}]piperazinyl]-2-oxo-5-oxazolidinyl]-methyl]acetamide
- 64. (S)-N-[[3-[3-Fluoro-4-[N-1-[4-(2-furyl-(5-aldoxime)methyl]] piperazinyl] phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 65. (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-aldoxime(methyl-4-(N-carboxyaminophenyl acetate) methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 66. (S)-N-[[3-[3-Fluoro-4[N-1-[4-{2-furyl-(5-hydrazone)-methyl}]-piperazinyl]-phenyl]-2-oxo-5-oxazolidinyl]-methyl]acetamide
- 67. (S)-N-[[3-[3-Fluoro-4-[N-1 {2-furyl-[4-(5-hydroxymethyl)methyl}] piperazinyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 68. (S)-N-[[3-[3-Fluoro-4-[N-1[4-{2-furyl(5-cyano)methyl}] piperazinyl]phenyl] -2-oxo-5-oxazolidinyl]methyl]acetamide
- 69. (S)-N-[[3-Fluoro-4-[N-1[4-{2-furyl(5-carboxy)methyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide
- 70. (S)-N-[[3-Fluoro-4-[N-1[5-(1,3-dioxane)-2-furylmethyl]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide
- 71. (S)-N-[[3-Fluoro-4-[N-1[5-(formamido)-2-furylmethyl]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide
- 72. (S)-N-[[3-Fluoro-4-[N-1[5-(morpholine-1-carbonyl)-2-furylmethyl]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide
- 73. (S)-N-[[3-Fluoro-4-[N-1[5-(4-(tert butoxy carbonyl)amino piperidine)-2-furylmethyl]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide
- 74. (S)-N-[[3-Fluoro-4-[N-1[4-{(Z)-2-methoxyimino-2-(2-furyl)acetyl}]piperazinyl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide
- 28. (New) A pharmaceutical composition comprising the compound of claims 25, 26, or 27 and a pharmaceutically acceptable carrier.
- 29. (New) A pharmaceutical composition comprising a pharmaceutically effective amount of compound according to claims 25, 26 or 27, or a physiologically acceptable acid addition salt thereof with a pharmaceutically acceptable carrier for treating microbial infections.

- 30. (New) A method of treating or preventing microbial infections in a mammal comprising administering to the said mammal, the pharmaceutical composition according to claim 29.
- 31. (New) A process for preparing a compound of Formula I

$$R - T - W - X C N - B - N A O$$

$$Z$$

$$C N - B - N A O$$

$$R1$$

FORMULA I

and its pharmaceutically acceptable salts, enantiomers, diastereomers, or N-oxides, wherein

T is five to seven membered heterocyclic ring, aryl, substituted aryl, bound to the ring C with a linker w and the heterocyclic and aryl rings are further substituted by a group represented by R,

wherein R is selected from the group consisting of -CN, COR_5 , $COOR_5$, $N(R_6,R_7)$, $CON(R_6,R_7)$, CH_2NO_2 , NO_2 , CH_2R_8 , CHR_9 , $-CH = N-OR_{10}$, $-C=CH-R_5$, wherein R_5 is selected from the group consisting of H, optionally substituted C_1-C_{12} , alkyl, $C_{3^{-1}2}$, cycloalkyl, aryl, heteroaryl, R_6 and R_7 , are independently selected from the group consisting of H, optionally substituted $C_{1^{-1}2}$ alkyl, $C_{3^{-1}2}$ cycloalkyl, $C_{1^{-6}}$ alkoxy; R_8 and R_9 are independently selected from the group consisting of H, C_{1-6} alkyl, F, Cl, Br, $C_{1^{-1}2}$ alkyl substituted with one or more of F, Cl, Br, I, OR_4 , SR_4 , $N(R_6,R_7)$ wherein R_4 is selected from the group consisting of H, $C_{1^{-1}2}$ alkyl, $C_{3^{-1}2}$ cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more F, Cl, Br, I or OH and R_6 and R_7 are the same as defined earlier, R_{10} is selected from the group consisting of H, optionally substituted from H, optionally substituted $C_{1^{-1}2}$ alkyl, $C_{3^{-5}12}$ cycloalkyl, C_{1-6} , alkoxy, C_{1-6} alkyl, aryl, heteroaryl;

n is 1;

X is N;

Y and Z are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, and C_{3-12} cycloalkyl;

U and V are independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br, and C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;

W is selected from the group consisting of CH_2 , CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N$ (R_{11}) CH_2- , CH_2 (R_{11}) N-, CH (R_{11}), S, CH_2 (CO), NH wherein R_{11} is optionally substituted with C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, aryl, heteroaryl; and

 R_1 is selected from the group consisting of - NHC(=O) R_2 wherein R_2 is hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH; $N(R_3, R_4)$; -NR₂C(=S) R_3 : -NR₂C(=S)SR3 wherein R_2 is the same as defined above and R_3 and R_4 are independently selected from the group consisting of H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH,

which comprises reacting an amine compound of Formula V

FORMULA V

with a heterocyclic compound of Formula R-T-W- R₁₂ wherein G in amines of

Formula V is defined as NH and Y, Z, U, V, R₁, n, R, T and W are the same as defined earlier and R₁₂ is a leaving group selected from the group consisting of fluoro, chloro, bromo, SCH₃, -SO₂CH₃, -SO₂CF₃ or OC₆H₅.

- 32. (New) A process for preparing a compound of Formula I as claimed in claim 31, wherein W=CH₂ and R-T-W-R₁₂ is a five membered heterocyclic ring with aldehyde group and the compound of Formula I is produced by reductive amination.
- 33. (New) A process for preparing a compound of Formula I as claimed in claim 31, wherein W = CO and R-T-W- R_{12} is a five membered heterocyclic ring with carboxylic acid, and amino compound of Formula V is acylated with activated esters in presence of condensing agents comprising 1,3-dicyclohexylcarbodiimide (DCC) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC).
- 34. (New) A process for the preparation of compound of Formula II

FORMULA II

wherein

n is 1;

X is N;

Y and Z are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, and C_{3-12} cycloalkyl;

U and V are independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br, and C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;

W is selected from the group consisting of CH_2 , CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N$ (R_{11}) CH_2- , CH_2 (R_{11}) N-, CH (R_{11}), S, CH_2 (CO), NH wherein R_{11} is optionally substituted with C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, aryl, heteroaryl; and

Q and P are independently selected from the group consisting of -CN, COR₅, COOR₅, N (R_6 , R_7), CON (R_6 , R_7), CH₂NO₂, NO₂, CH₂R₈, CHR₉, -CH=N-OR₁₀, C=CH-R₅, wherein R₅ is selected from the group consisting of H, optionally substituted C₁₋₁₂alkyl, C₃₋₁₂ cycloalkyl, aryl, heteroaryl; R₆ and R₇ are independently selected from the group consisting of H, optionally substituted C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy; R₈ and R₉ are independently selected from the group consisting of H, C₁₋₆ alkyl,F, Cl, Br, C₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I, OR₄, SR₄,wherein R₄ is the same as defined before, N(R₆, R₇), R₁₀ is selected from the group consisting of H, optionally substituted C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl, aryl, heteroaryl except W= (CO), Q and P =H.

wherein M = Sulphur is shown by compounds of Formula III,

FORMULA III

wherein P, Q, U, V, X, Y, Z, W and n in Formula III are the same as previously defined, wherein the process comprising reacting a compound of Formula V

FORMULA V

with a compound of Formula VI

wherein P, Q, R₁₂, Y, Z, G, n, U and V are the same as defined earlier.

- 35. (New) A process for preparing a compound of Formula II as claimed in claim 34, in a solvent selected from the group consisting of dimethylformamide, dimethylacetamide, ethanol or ethylene glycol at a temperature in the range of -70°C to 180°C in the presence of a base selected from the group consisting of triethyl amine, diisopropyl amine, potassium carbonate and sodium bicarbonate.
- 36. (New) A process of preparing a compound of Formula II as claimed in claim 34, wherein Formula VI is furaldehyde and reductive alkylation of the amine of Formula V is performed with a reducing agent.
- 37. (New) A process for preparing a compound of Formula II as claimed in claim 34, wherein Formula VI is furoic acid.

- 38. (New) A process for preparing a compound of Formula II as claimed in claim 34, wherein the compounds of Formula II having carbonyl link are prepared by reacting a heteroaromatic compound of the Formula VI including N- methyl pyrrole with the intermediate amine of Formula V in the presence of triphosgene or phosgene and carbonyl linkers are introduced between heteroaromatic compound comprising reacting 3- bromothiophene and amine of Formula V with carbon monoxide and the catalyst is selected from the group consisting of Pd (PPh₃)₂Cl₂ and extended chain pyrroles having dicarbonyl linkers are obtained by treatment of oxalyl chloride and amine of the Formula V.
- 39. (New) A process for preparing a compound of Formula VIII

FORMULA VIII

wherein

n is 1;

X is N;

Y and Z are independently selected from the group consisting of hydrogen, C_{1-6} alkyl, and C_{3-12} cycloalkyl;

U and V are independently selected from the group consisting of hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br, and C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;

W is selected from the group consisting of CH_2 , CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N$ (R₁₁) CH_2 -, CH_2 (R11) N-, CH (R₁₁), S, CH_2 (CO), NH wherein R₁₁ is

optionally substituted with C $_{1-12}$ alkyl, C $_{3-12}$ cycloalkyl, C $_{1-6}$ alkoxy, C $_{1-6}$ alkyl, aryl, heteroaryl;

Q and P are independently selected from the group consisting of -CN, COR₅, COOR₅, N (R_6 , R_7), CON (R_6 , R_7), CH₂NO₂, NO₂, CH₂R₈, CHR₉, -CH=N-OR₁₀, C=CH-R₅, wherein R₅ is selected from the group consisting of H, optionally substituted C₁₋₁₂alkyl, C₃₋₁₂ cycloalkyl, aryl, heteroaryl; R₆ and R₇ are independently selected from the group consisting of H, optionally substituted C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy; R₈ and R₉ are independently selected from the group consisting of H, C₁₋₆ alkyl,F, Cl, Br, C₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I, OR₄, SR₄,wherein R₄ is the same as defined before, N(R₆, R₇), R₁₀ is selected from the group consisting of H, optionally substituted C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl, aryl, heteroaryl except W= (CO), Q and P=H;

M = Sulphur is shown by compounds of Formula III

FORMULA III

and R_{15} is the same as Q defined earlier, comprising converting a compound of Formula VII

FORMULA VII

wherein in U, V, Y, Z, X, W, P, n and M are the same as defined earlier and are R_{14} is any group which can be converted to group R_{15} in one to five steps.