计算机控制系统

- 1、数据通讯与网络技术
- 2、集散控制系统
- 3、现场总线控制系统

■通信系统的构成

■数据通信过程

- (1) 数据打包。数据打包就是对需要传送的数据进行包装,形成数据包或报文。报文内除了数据本身外,还有报头、报尾等一些附加信息,如报文说明、长度、校验等。
- (2) 数据转换与编码。数据转换与编码就是对报文作适当变换,以适应传输要求。如串行通信中的并-串转换,0、1的传输编码(归零编码、不归零编码等)、信号电平的选择,以及信号的调制形式等。
- (3) 数据传输。经过转换与编码后,将代表报文的信号(数字信号或模拟信号)放到传输介质上,发往接收设备。
- **(4) 数据转换与译码。**接收设备将接收到的信号经转换与译码后,形成报文。
- (5) **数据解包**。接收设备根据数据打包时的协议从报文中去除附加信息,得到最终需要的数据。

■数据通信方式

■数据通信制式

■数据编码

■数据编码

调制与解调示意图

■通讯网络技术

■通讯网络技术

■现场总线的概念

- 按照国际电工委员会IEC (International Electrotechnical Commission)标准和现场总线基金会FF (Fieldbus Foundation) 的定义,现场总线是连接智能现场设备和自动化系统的数字式、双向 传输、多分支结构的通信网络。
- 也有将现场总线定义为应用在生产现场,在智能测控设备之间实现双向、串行、多节点数字通信的系统,也称为开放式、数字化、多点通信的底层控制网络。
- 现场总线的实质是以串行数字通信替代了传统的4~20mA模拟信号的传输。它把通用或专用的微处理器置入传统的测控仪表,使之具有数字计算和数字通信能力,采用一定的介质(如双绞线、同轴电缆、光缆等)作为通信总线,按照公开、规范的通信协议,在位于现场的多个设备之间以及现场设备和远程监控计算机之间,实现数据传输和信息交换。

■现场总线的概念

- 目前较为流行的现场总线主要有以下几种:
 - (1) FF (Foundation Fieldbus) 基金会现场总线
 - (2) LONWORKS (Local Operating Networks) 局部操作网
 - (3) PROFIBUS (Process Fieldbus) 过程现场总线
 - (4) HART (Highway Addressable Remote Transducer) 可寻址远程传感器数据通路
 - (5) CAN (Control Area Network) 控制器局域网

■OPC技术与工业以太网

以多台微型计算机为基础,采用数据通信和CRT显示技术,应用控制理论,对生产过程进行分散控制、集中操作、分级管理、分而自治和综合协调的系统。

■特点

- **硬件积木化**: 硬件采用积木化组装结构,系统配置灵活,可以方便的构成多级控制体统。
- 软件模块化:为用户提供了丰富的功能软件,主要包括控制软件包、 操作显示软件包、报表显示软件包等,用户只需按要求选用即可。
- 控制组态化:具有常用的运算和控制模块,控制工程师只需按照系统的控制方案,选择模块,并以填表方式来定义这些软功能模块,进行控制系统的组态。
- 通信网络化:通信网络是分散控制系统的神经中枢,它将物理上分散的多台计算机装置有机地联系起来,实现了相互协调、资源共享的集中管理。
- **高可靠性:** DCS的可靠性高体现在系统结构、冗余技术、自诊断功能、抗干扰措施,高性能的元件等方面。

■典型产品

- Honeywell 公司的TDC 3000/PM
- YOKAGAWA 公司的Centum-XL
- Foxboro 公司的I/A Series
- TAILOR Instruments 公司的Mod 300
- Bailey Control公司的INFI-90等

■体系结构

■体系结构

现场控制站结构框图

■体系结构

操作员站结构框图

■功能结构

集散控制系统的功能层次

• 过程控制级

过程控制级由若干个现场站(采集站、控制站)组成,其主要功能是:

- (1) 数据采集与处理;
- (2) 过程控制;
- (3) 与过程管理级的数据交换;
- (4) 过程或系统故障监测与诊断;
- (5) 备用装置的自动切换(冗余)。

■功能结构

集散控制系统的功能层次

• 过程管理级

过程管理级主要由操作员站、工程师站及监控计算机等组成, 其主要功能是:

- (1) 数据显示与控制操作;
- (2) 报警显示与处理;
- (3) 数据存储与压缩归档;
- (4) 性能计算与优化控制;
- (5) 制表打印;
- (6) 系统组态。

■功能结构

集散控制系统的功能层次

• 生产管理级

生产管理级由服务器及工作站组成,主要实现实时控制之外的管理功能。

从系统观点出发,根据用户定货、库存、能源等情况,规划各单元级的 产品结构和规模,达到整体优化。

如发电厂中对各机组发电量的分配就要综合考虑机组的健康状况、机组的效率等因素, 使全厂在完成发电量并保证机组安全的情况下, 能耗最小。

■功能结构

集散控制系统的功能层次

• 经营管理级

经营管理级与办公自动化连接起来,担负起全厂的总体协调管理,包括各类经营活动、人事管理、财务管理等等。它位于企业自动化系统的最高级。

目前国内使用的DCS重点放在过程控制级和过程管理级两个功能层次上。

■组态

(1) 硬件组态

- 即系统配置,是根据系统的规模及控制要求而进行的硬件选择。
- 工程师站的选择、操作员站的选择、现场控制站的选择

(2) 软件组态

- 画面组态
- 数据组态
- 报表组态
- 控制回路组态

■典型集散控制系统

产品名称	生产厂家			
I/A Series	Foxboro(美国)			
Symphony	ABB (瑞士)			
Ovation	Westinghouse(美国)			
MAX 1000	Leeds & Northrup (美国)			
HIACS 5000/7000	Hitachi(日本)			
Teleperm XP	Siemens(德国)			
XDPS-400	新华 (中国)			
HOLLIAS-MACS	和利时 (中国)			

■Symphony 系统总体结构(ABB)

■Ovation系统结构(Westinghouse)

■集散控制系统在火电厂的应用

- (1)测量变送装置
- (2)信号电缆
- (3)接线端子板
- (4)专用电缆
- (5)模拟量输入模件AI
- (6)开关量输入模件DI
- (7)开关量输出模件DO
- (8)模拟量输出模件AO
- (9)I/O总线
- (10)DCS控制器
- (11) DCS控制网络
- (12)DCS操作员站
- (13)现场执行设备

■DCS调试

- (1) 静态调试。静态调试是指系统还没有与生产现场相连时的调试,主要包括:
- ① 通电试验;
- ② I/O卡件性能测试;
- ③ 组态软件编译下装;
- ④ 外加仿真信号对系统进行测试。

■DCS调试

- (2) 动态调试。动态调试是指系统与生产现场相连时的调试。由于生产过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设备故障。
- ① 观察过程参数显示是否正常、执行机构操作是否正常;
- ② 检查控制系统逻辑是否正确,并在适当时候投入自动运行;
- ③ 对控制回路进行在线整定;
- ④当系统存在较大问题时,如需进行控制结构修改、增加测点等,应尽量在停机状态下重新组态下装。若条件不允许,也可进行在线组态,但要熟悉在线组态的各个环节并做好应急措施。

■DCS调试

信号类型	DAS	MCS	SCS	FSSS	ETS	ECS	合计
AI (4~20mA)	300	280	10	85	10	188	873
AI (RTD)	190	45	165	120	30		550
AI (TC)	114	56	10	18	20		218
DI	287	10	1430	1169	120	750	3766
PI	10				3	55	68
AO (4~20mA)	4	170					174
DO	40	24	790	551	60	230	1695
SOE	155		60			185	400
合计	110 0	585	2465	1943	243	1408	7744

■DCS调试

两台600MW机组Symphony系统结构图

现场总线控制回路

传统控制系统

现场总线控制系统

现场总线控制系统与传统控制系统结构的比较

具有两层结构的FCS

具有三层结构的FCS

■FCS与DCS的集成技术

现场总线与DCS输入/输出总线的集成

- (1)只需要安装现场总线接口板或现场总线接口单元,不需对DCS再做其它变更。
- (2)可以充分利用DCS控制站的运算和控制功能块,由于初期开发的现场总线仪表中的功能块的数量和种类有限,这样就可以利用比较完善的DCS的功能块资源。
- (3)可以利用现有DCS的技术和资源,投资少,见效快,这对推广现场总线的应用也是有利的。

34

■FCS与DCS的集成技术

现场总线与DCS网络的集成

- (1) 只需安装现场总线服务器,不必对DCS做任何其它变更;
- (2) 在现场总线上可以独立构成控制回路,实现彻底分散控制;
- (3) FS中有一些功能强的高级功能块,它们可以和现场仪表中的基本功能块能块统一组态,构成控制功能强大的复杂控制回路。
- (4)可以利用现有DCS的技术和资源,投资少,见效快,这对推广现场总线的应用也是有利的。

■FCS与DCS的集成技术

FCS通过网关与DCS的集成

- (1) FCS与DCS分别独立安装,对两种系统不需做任何改动,只需要在两种系统之间安装一台网关。
- (2) FCS是一个独立、 完整的系统,不必再借用 DCS的资源
- (3) 既有利于FCS的发展和推广,又有利于充分利用现有DCS的资源。
- (**4**)系统投资较大,适用于新建系统。