Here is a table I have Created

<u>Type</u>	<u>Typical</u> <u>form</u> <u>factor</u>	<u>Real-world</u> <u>feel</u>	<u>Strengths</u>	<u>Weak spots</u>	<u>Best fit</u>
NVMe SSD (PCIe)	M.2 2280	Instant app launches, snappy boots; 3–7 GB/s sequential, superb random I/O	Fastest, silent, shock-resistant, great battery life	Cost per TB higher than HDD; large capacities can get pricey	Primary drive for laptops/desktops; active projects; gaming; coding
SATA SSD	2.5" or M.2 SATA	Much faster than HDD; ~550 MB/s sequential	Inexpensive vs NVMe, big upgrade for older systems	Slower than NVMe; still pricier per TB than HDD	Reviving older machines; secondary SSD where no NVMe slot
HDD	2.5"/3.5" (USB or internal)	Fine for big sequential files; 120–200 MB/s; slower random I/O	Cheapest per TB, huge capacities, good for archives/backups	Fragile when dropped (esp. portable), noisy, heavier, slower, more power	Backups, media hoards, cold storage
SSHD (Hybrid)	2.5" (mostly)	Feels like "a faster HDD," small SSD cache speeds repeats	Slight speed bump over HDD without SSD prices	Gains depend on access patterns; rare in 2025; still an HDD underneath	Older laptops with only one 2.5" bay and strict budgets

1) General student laptop (notes, web, Office/Google Docs, light photo edits)

- Primary: 1 TB NVMe SSD (internal).
- Why: Instant wake/app launches, silent, better battery life, enough headroom for school years.
- Nice-to-have: Cloud sync (Drive/iCloud/OneDrive) + a 1–2 TB external HDD for periodic backups.

2) Content-creator / media student (photo, audio, or 1080p-4K video projects)

- Primary (working drive): 2 TB NVMe SSD (TLC preferred) for OS, apps, and active projects.
- Secondary (bulk/backup): 8–12 TB external 3.5" HDD (desktop-class USB enclosure) or a small NAS for archives and backups.
- On the go: 1–2 TB portable USB-C SSD for scratch/caches and project shuttling.
- Why: SSD for speed while editing; HDD for economical, scalable storage and versioned backups.

3) Gamer / CS & engineering student (IDEs, VMs/containers, CAD, large games)

- **Primary: 2 TB NVMe SSD** (PCIe 4.0 or 5.0 if supported; TLC NAND).
- Secondary (optional): 4–8 TB external HDD for cold game libraries, datasets, and backups.
- Why: Fast level loads/builds/VMs on SSD; HDD holds rarely used or archival content cheaply.

My Choice-SSD, Here is why.

Workload type

Mostly large sequential files (video footage, raw photo archives, datasets): HDD is fine for storage, but use SSD while actively editing.

Capacity vs budget

If you can fit everything you touch daily within 1–2 TB, SSD all the way.

Device & slots

Older laptops/desktops: may support SATA SSD easily.

Portability & durability

Constantly on the move? Prefer **SSD** (internal NVMe or a **portable USB-C SSD**) over spinning disks.

Battery life, noise, heat

SSD wins on all three. HDDs spin, draw more power, and add noise/vibration.

Security

SSDs often support hardware encryption; OS-level BitLocker/FileVault works well on either. Always encrypt laptops.

Lifespan & endurance

Consumer SSDs are typically rated in **TBW** (terabytes written). For typical student workloads, a quality TLC SSD is more than enough for years.

Lewis Joseph Feik Computer Hardware & OP Systems Week 3 Portfilio

HERE IS THE BOTTOM LINE!

If you can afford it: run NVMe SSD only for everything under ~2 TB, with cloud + external HDD backups.

If you need many terabytes cheap: combine a smaller NVMe SSD for daily work with a big external HDD for archives.

Skip SSHD unless an older 2.5"-only laptop forces your hand and you can't get enough SSD capacity within budget.