Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление»

КАФЕДРА ИУК4 «Программное обеспечение ЭВМ,

информационные технологии»

ДОМАШНЯЯ РАБОТА

«Плоские графы»

ДИСЦИПЛИНА: «Дискретная математика»

Выполнил: студент гр. ИУК4-31Б	(ходпись)	_ (Суриков Н. С. (Ф.И.О.))
Проверил:	(подпись)	_ (Никитенко У. В.	-
Дата сдачи (защиты):				
Результаты сдачи (защиты): - Балль	ная оценка:			
- Оцені	ka:			

Цель: приобретение практических навыков в определение планарности графов на основе критериев Понтрягина-Куратовского и Вагнера.

Задачи:

1. Построение плоской укладки и определение числовых характеристик непланарных графов.

Задание на домашнюю работу

Исходные данные граф G: GV(13, $\{5, 6\}$)

Алгоритм генерации варианта

р - количество вершин в графе;

Х - параметр генерации (множество целых чисел);

А - матрица смежности неориентированного графа.

S = <фамилия>< имя>< отчество>// должно полностью совпадать с записью в ЭОС

n(c) - функция - номер буквы в алфавите

A-1	Д-5	3-9	Л-13	П-17	У-21	Ч-25	Ы-29
Б-2	E-6	И-10	M-14	P-18	Φ-22	Ш-26	Э-30
B-3	Ë-7	Й-11	H-15	C-19	X-23	Щ-27	Ю-31
Γ-4	Ж-8	K-12	O-16	T-20	Ц-24	Ь-28	Я-32

^{1.} Вычеркнуть из S все повторные вхождения букв.

2. Построить $Y = ||y_{ij}||$, i,j = 1...p, yij = |n(Si) - n(Sj)|.

3. Построить A =
$$\parallel a_{ij} \parallel$$
, i,j =1..p, $\parallel a_{ij} \parallel$ =
$$\begin{cases} 1, \text{если } \exists x \in X \colon y_{ij} \bmod x = 0 \\ 0, i = j \\ 0, \text{иначе} \end{cases}$$

- 4. Для каждой изолированной вершины добавить (удалить) одно ребро. Добавляемое (удаляемое) ребро связывает текущую вершину со следующей (по номеру). Для последней вершины следующая первая.
- 1. Определить, является ли исходный граф G планарным или непланарным, используя критерий Понтрягина-Куратовского или Вагнера. Найти подграф G, гомеоморфный K5 или K3,3 по критерию Понтрягина-Куратовского или подграф, стягиваемый к K5 или к K3,3 по критерию Вагнера.
- 2. Если исходный граф планарен, обозначить его G1.
- 3. Если исходный граф непланарен, обозначить его G2.
- 4. Если исходный граф был планарен, добавить минимальное число ребер до непланарности и обозначить полученный непланарный граф G2.
- 5. Если исходный граф был непланарен, удалить минимальное число ребер и обозначить полученный планарный граф G1.
- 6. Количество добавляемых (удаляемых) при преобразованиях графа ребер должно быть обосновано.

- 7. Построить плоскую укладку графа G1, используя алгоритм γ . Продемонстрировать пошаговое выполнение алгоритма γ .
- 8. Для непланарного графа G2 найти род, толщину, искаженность и число пересечений.

Решение

Сгенерирую граф G_1 по алгоритму GV(p, X) : A[l:p, l:p]

- 1. Составлю строку S из ФИО:
 - S = СУРИКОВНИКИТАСЕРГЕЕВИЧ
- 2. Избавлюсь от повторных вхождений символов:
 - S = СУРИКОВНТАЕГЧ
- 3. Составлю таблицу вершин графа:

S	C	У	P	И	K	О	В	Н	T	A	E	Γ	Ч
n	19	21	18	10	12	16	3	15	20	1	6	4	25

4. Построю таблицу Y:

Y	19	21	18	10	12	16	3	15	20	1	6	4	25
19	0	2	1	9	7	3	16	4	1	18	13	15	6
21	2	0	3	11	9	5	18	6	1	20	15	17	4
18	1	3	0	8	6	2	15	3	2	17	12	14	7
10	9	11	8	0	2	6	7	5	10	9	4	6	15
12	7	9	6	2	0	4	9	3	8	11	6	8	13
16	3	5	2	6	4	0	13	1	4	15	10	12	9
3	16	18	15	7	9	13	0	12	17	2	3	1	22
15	4	6	3	5	3	1	12	0	5	14	9	11	10
20	1	1	2	10	8	4	17	5	0	19	14	16	5
1	18	20	17	9	11	15	2	14	19	0	5	3	24
6	13	15	12	4	6	10	3	9	14	5	0	2	19
4	15	17	14	6	8	12	1	11	16	3	2	0	21
25	6	4	7	15	13	9	22	10	5	24	19	21	0

5. Построю таблицу А:

Α	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	0	0	0	0	0	0	0	0	1	0	1	1
2	0	0	0	0	0	1	1	1	0	1	1	0	0
3	0	0	0	0	1	0	1	0	0	0	1	0	0
4	0	0	0	0	0	1	0	1	1	0	0	1	1
5	0	0	1	0	0	0	0	0	0	0	1	0	0
6	0	1	0	1	0	0	0	0	0	1	1	1	0
7	0	1	1	0	0	0	0	1	0	0	0	0	0
8	0	1	0	1	0	0	1	0	1	0	0	0	1
9	0	0	0	1	0	0	0	1	0	0	0	0	1
10	1	1	0	0	0	1	0	0	0	0	1	0	1
11	0	1	1	0	1	1	0	0	0	1	0	0	0
12	1	0	0	1	0	1	0	0	0	0	0	0	0
13	1	0	0	1	0	0	0	1	1	1	0	0	0

6. Построю граф G по матрице смежности A:

7. Используя критерий Понтрягина-Куратовского было установлено, что граф G непланарен, так как содержит подграф, гомеоморфный $K_{3.3}$.

- 8. Исходный граф оказался непланарен, обозначу его $G_{\scriptscriptstyle 2.}$
- 9. Удалю одно ребро (6, 11) и получу планарный граф G_1 Удаление одного ребра из подграфа, гомеоморфного $K_{3.3}$ делает невозможным выполнение критерия Понтрягина-Куратовского и делает граф планарным.

10. Построю плоскую укладку графа G1, используя алгоритм γ .

- 11.Для непланарного графа G2 найду род, толщину, искаженность и число пересечений.
 - 1. Число пересечений: 1
 - 2. Толщина графа: >2
 - 3. Искажённость: 1
 - 4. Род графа: >1

Вывод: В ходе работы были приобретены умения в определение планарности графов на основе критериев Понтрягина-Куратовского и Вагнера.