Den 32a Nordiska matematiktävlingen

Måndagen den 9 april 2018

Svensk version

Skrivtid: 4 timmar. Varje problem är värt 7 poäng. Enda tillåtna hjälpmedel är skriv- och ritdon.

Problem 1 Låt k vara ett positivt heltal, och låt P vara en punkt i planet. Vi vill dra räta linjer, sådana att ingen av dem innehåller P, och så att varje stråle med startpunkt i P skär minst k av linjerna. Bestäm det minsta antalet linjer som behövs för ändamålet.

Problem 2 En följd som består av primtal p_1, p_2, \ldots , anges av två begynnelseprimtal p_1 och p_2 , och av att p_{n+2} är den största primtalsdelaren till $p_n + p_{n+1} + 2018$, för alla $n \ge 1$. Visa att följden endast innehåller ändligt många primtal, oavsett hur man väljer primtalen p_1 och p_2 .

Problem 3 Låt ABC vara en triangel sådan att AB < AC. Låt D och E vara punkter på linjerna CA och BA, sådana att CD = AB, BE = AC, och A, D och E ligger på samma sida om BC. Låt I vara den inskrivna cirkelns medelpunkt för $\triangle ABC$, och låt H vara ortocentrum för $\triangle BCI$. Visa att punkterna D, E och H är kollineära.

Problem 4 Låt f = f(x, y, z) vara ett polynom i tre variabler x, y, z, sådant att

$$f(w, w, w) = 0,$$

för alla $w \in \mathbb{R}$. Visa att det finns tre polynom A, B, C, i samma tre variabler, sådana att A + B + C = 0, och

$$f(x, y, z) = A(x, y, z) \cdot (x - y) + B(x, y, z) \cdot (y - z) + C(x, y, z) \cdot (z - x).$$

Finns det något polynom f, för vilket dessa A, B, C är entydigt bestämda?