Parameters for selection of battery

- Cell voltage
- Specific energy
- Energy density
- Power density
- Useful capacity

Parameters for selection of battery

- Cell discharge
- Temperature range
- Cycle life
- Memory effect
- Coulombic efficiency

Parameters

Typical Discharge Curve Comparison

comparison for various batteries

Specifications	Lead Acid	NiCd	NiMH	Cobalt	Li-ion ¹ Manganese	Phosphate
Specific energy (Wh/kg)	30–50	45-80	60–120	150-250	100-150	90–120
Internal resistance	Very Low	Very low	Low	Moderate	Low	Very low
Cycle life ² (80% DoD)	200-300	1,0003	300-500 ³	500-1,000	500-1,000	1,000-2,000
Charge time ⁴	8–16h	1–2h	2–4h	2–4h	1–2h	1–2h
Overcharge tolerance	High	Moderate	Low	Low. No trickle charge		
Self-discharge/ month (roomtemp)	5%	20%5	30%5	<5% Protection circuit consumes 3%/month		
Cell voltage (nominal)	2V	1.2V ⁶	1.2V ⁶	3.6V ⁷	3.7V ⁷	3.2-3.3V
Charge cutoff voltage (V/cell)	2.40 Float 2.25	Full charge detection by voltage signature		4.20 typical 3.60 Some go to higher V		3.60
Discharge cutoff voltage (V/cell, 1C)	1.75V	1.00V		2.50-3.00V		2.50V

Parameters comparison for various batteries

Peak load current Best result	5C ⁸ 0.2C	20C 1C	5C 0.5C	2C <1C	>30C <10C	>30C <10C
Charge temperature	-20 to 50°C (-4 to 122°F)	0 to 45°C (32 to 113°F)		0 to 45°C ⁹ (32 to 113°F)		
Discharge temperature	-20 to 50°C (-4 to 122°F)	-20 to 65°C (-4 to 149°F)		-20 to 60°C (-4 to 140°F)		
Maintenance requirement	3–6 months ¹⁰ (toping chg.)	Full discharge every 90 days when in full use		Maintenance-free		
Safety requirements	Thermally stable	Thermally stable, fuse protection		Protection circuit mandatory ¹¹		
In use since	Late 1800s	1950	1990	1991	1996	1999
Toxicity	Very high	Very high	Low	Low		
Coulombic efficiency ¹²	~90%	~70% slow charge ~90% fast charge		99%		
Cost	Low	Moderate		High ¹³		

- State of Charge (SoC)
- ✓ Measure to show the energy capacity left in the battery
- ✓ Defines as the ratio of energy (or) charge presented to the nominal rated capacity in %
- √ 100% shows battery is full

- √0% SoC shows battery is completely discharged
- Depth of Discharge (DoD)
- ✓ Used to measure the amount of energy that can be used from the battery
- ✓ Battery cannot be drain out from 100% to 0%
- ✓ DoD is 80% for Li-ion cells

✓ Only 80% of the battery capacity is taken for designing of battery pack

- C- Rating:
- ✓ The charge and discharge rate of the battery is governed by C-rates
- ✓ 1C shows a battery is charged/discharged in an hour
- ✓ 10Ah battery with 1Crate shows that is getting charged in 1 hour with 10A current
- √ 10Ah with 2C rate=>charged in 30 minutes
 with 20A
- ✓ 10Ah with 0.5C rate=>charged in 2 hours with 5A

		-
Ť	_	<i>I ime</i>
L	_	IIIIIC

Cr = C Rate

t = 1 / Cr (to view in hours)

2C Rate Example

- · 2300mAh Battery
- 2300mAh / 1000 = 2.3A
- 2C x 2.3A = 4.6A available
- 1 / 2C = 0.5 hours
- 60 / 2C = 30 minutes

C Rating	Time
30C	2 mins
20C	3 mins
10C	6 mins
5C	12 mins
2C	30 mins
1C	1 hour
0.5C or C/2	2 hours
0.2C or C/5	5 hours
0.1C or C/10	10 hours
0.05C or C/20	20 hours

C-Rate Vs Time

Discharging and charging characteristics:

- Temperature range:
- ✓ Max. and Min. temperature range at which battery cab operate efficientlyunder natural convection cooling method

✓ Below and above the battery temperature range will decrease the life of the battery

- Calendar life:
- ✓ Typically 1% and 2% of capacity loss per year occurs in battery even if it is not used
- ✓ Depends on
- Number of cycles
- Operating conditions
- Types of load
- C- rate
- End of life:
- ✓ When the battery operates at lower peak capacity during its lifespan then the battery reaches to its end of life
- ✓ For Lead-acid battery is 80% ✓ For Li-ion battery is 70%
 - State of Health:
- ✓ Measure which shows the max. battery capacity to its rated capacity.
- ✓ Shows the difference between battery being studied and a fresh battery
 - ✓ Depends on
- DoD

- Calendar Aging
- End of Life