Write a program to learn how to select features for machine learning

```
In [4]: import numpy as np
    import pandas as pd
    from sklearn.datasets import load_iris
    from sklearn.feature_selection import SelectKBest, f_classif, RFE
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier

In [5]: # Load dataset
    iris = load_iris()

In [6]: X = pd.DataFrame(iris.data, columns=iris.feature_names)
    y = iris.target

In [7]: # Split data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

1. Univariate Feature Selection

What is it?

Univariate Feature Selection means selecting the best features based on individual statistical tests between each feature and the target variable.

```
"Univariate" = each feature is evaluated independently.
```

This is useful for removing irrelevant or less important features.

What is SelectKBest?

SelectKBest is a feature selection method in Scikit-learn that selects the top k features based on a scoring function.

Key Components:

Parameter Description

Parameter	Description		
score_func	The scoring function to evaluate each feature (e.g., f_classif , chi2)		
k	Number of top features to keep		

Common Scoring Functions:

	Function	Use Case	Description
	f_classif	Classification	ANOVA F-value between label/feature
	chi2	Classification (non-negative features)	Chi-squared stats between each feature and target
	mutual_info_classif	Classification	Information gain between each feature and target
	f_regression	Regression	F-value for regression tasks
	mutual_info_regression	Regression	Mutual information for regression tasks
In [8]:	<pre># 1. Univariate Feature Selection print("Univariate Feature Select: # Apply SelectKBest selector = SelectKBest(score_funct X_new = selector.fit_transform(X_X_new)</pre>	ion:") c=f_classif, k=2)	

Univariate Feature Selection:

2 of 6 23-06-2025, 20:06

```
Out[8]: array([[3.7, 1.],
               [5.1, 1.5],
               [5.5, 1.8],
               [4.4, 1.4],
               [6.1, 2.5],
               [4.2, 1.3],
               [6.6, 2.1],
               [4.5, 1.5],
               [1.4, 0.2],
               [6.7, 2.],
               [4.1, 1.],
               [1.4, 0.2],
               [1.3, 0.3],
               [1.9, 0.4],
               [3.5, 1.],
               [4.9, 1.8],
               [1.9, 0.2],
               [1.6, 0.2],
               [1.7, 0.5],
               [4.2, 1.3],
               [1.5, 0.2],
               [4.2, 1.2],
               [6.7, 2.2],
               [1.4, 0.2],
               [4.3, 1.3],
               [5., 2.],
               [1.4, 0.2],
               [4.8, 1.8],
               [5.1, 1.9],
               [4., 1.],
               [4.5, 1.5],
               [5.4, 2.3],
               [4., 1.3],
               [1.7, 0.4],
               [3.3, 1.],
               [5.3, 1.9],
               [1.4, 0.2],
               [1.2, 0.2],
               [3.8, 1.1],
               [5., 1.7],
               [1.5, 0.2],
               [5.1, 2.4],
```

[1.5,	0.2],
[1.6, [4.8,	0.6],
	1.8],
[3., [5.7,	1.1], 2.3],
[5.1,	1.6],
[5.6,	1.4], 2.3],
[6.1,	2.3],
[4.,	1.3],
[1.4,	0.2],
[1.1,	0.1],
[5.,	1.5],
[6.,	1.8],
[1.5,	0.2],
[1.4,	0.3],
[1.3,	0.2],
[4.9,	0.2], 1.5], 2.4],
[5.6,	2.4],
[1.4,	0.3],
[5.5,	2.1],
[6.,	2.5],
[1.3,	0.2],
[4.7,	1.4],
[4.6,	1.5], 1.8], 1.4],
[4.8,	1.8],
[4.7,	1.4],
[5.3,	2.3],
[1.6,	0.2],
[5.4,	2.1],
[4.2,	1.5],
[5.2,	2.],
[3.5,	1]
[3.9,	1.4], 1.4], 0.3],
[4.6,	1.4],
[1.3,	0.3],
[4.6,	1.3],
[4.4,	1.2],
[1.5,	0.2],
[4.1,	1.3],
[6.3,	1.8],
[5.7,	2.1],
[1.5,	0.4],
L = • ~)	٠٠.١,

```
[3.3, 1.],
                [5.7, 2.5],
                [5.8, 1.6],
                [1.4, 0.1],
                [5.6, 2.4],
                [1.4, 0.2],
                [4.9, 1.5],
                [6.1, 1.9],
                [5.6, 1.8],
                [4.1, 1.3],
                [5.5, 1.8],
                [4.4, 1.3],
                [4.3, 1.3],
                [4.9, 2.],
                [5.1, 1.8],
                [1.7, 0.2],
                [4., 1.3],
                [4.5, 1.7],
                [1.2, 0.2],
                [4., 1.2],
                [5.9, 2.1]])
In [9]: # Display scores and selected features
        print("Feature scores:", selector.scores )
        print("Selected features:", X train.columns[selector.get support()])
       Feature scores: [ 74.7572012 33.41979913 713.45534904 526.54162416]
       Selected features: Index(['petal length (cm)', 'petal width (cm)'], dtype='object')
```

2. Recursive Feature Elimination (RFE)

To select the best subset of features for your model by recursively removing the least important ones.

How it works (Step-by-Step):

```
Train a model (e.g., logistic regression, decision tree) on all features.

Rank features based on importance (e.g., model coefficients or feature_importances).

Remove the least important feature(s).
```

Repeat the process on the remaining features until:

```
You reach the desired number of features (n_features_to_select).
```

```
In [10]: from sklearn.ensemble import RandomForestClassifier
         model = RandomForestClassifier()
         model.fit(X_train, y_train)
Out[10]:
         ▼ RandomForestClassifier
         RandomForestClassifier()
In [11]: # 2. Recursive Feature Elimination (RFE)
         print("\nRecursive Feature Elimination (RFE):")
         rfe = RFE(estimator=model, n_features_to_select=2)
         rfe.fit(X_train, y_train)
         # Display selected features
         print("Selected features:", X_train.columns[rfe.support_])
        Recursive Feature Elimination (RFE):
        Selected features: Index(['petal length (cm)', 'petal width (cm)'], dtype='object')
         3. Feature Importance from Random Forest
In [12]: print("\nFeature Importance from Random Forest:")
         # Display feature importance
         importances = model.feature_importances_
         indices = np.argsort(importances)[::-1]
         print("Feature ranking:")
         for f in range(X_train.shape[1]):
             print(f"{X_train.columns[indices[f]]}: {importances[indices[f]]}")
        Feature Importance from Random Forest:
        Feature ranking:
        petal width (cm): 0.4330064240493466
        petal length (cm): 0.3955833154085587
        sepal length (cm): 0.12929497833439274
        sepal width (cm): 0.04211528220770196
```