PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

H01L 31/00

(11) Internationale Veröffentlichungsnummer: WO 00/10205

A2

(43) Internationales Veröffentlichungsdatum:

24. Februar 2000 (24.02.00)

(21) Internationales Aktenzeichen:

PCT/DE99/02523

(22) Internationales Anmeldedatum: 12. August 1999 (12.08.99)

(30) Prioritätsdaten:

198 36 770.8

13. August 1998 (13.08.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): VON BASSE, Paul-Werner [DE/DE]; Heiglstrasse 60, D-82515 Wolfratshausen (DE). WILLER, Josef [DE/DE]; Friedrich-Fröbel-Strasse 62, D-85521 Riemerling (DE). SCHEITER, Thomas [DE/DE]; Flösserweg 13, D-82041 Oberhaching (DE). MARK-STEINER, Stephan [AT/DE]; Gustav-Heinemann-Ring 39, D-81739 München (DE).

AKTIENGE-(74) Gemeinsamer Vertreter: SIEMENS SELLSCHAFT; Postfach 22 16 34, D-80506 München (81) Bestimmungsstaaten: BR, CN, IN, JP, KR, MX, RU, UA, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: METHOD FOR CAPACITIVE IMAGE ACQUISITION

(54) Bezeichnung: VERFAHREN ZUR KAPAZITIVEN BILDERFASSUNG

(57) Abstract

According to the invention, a grid-like arrangement of conducting surfaces is utilized for capacitive image acquisition, whereby screening conductors (8) are respectively used between the conductors (2) which are provided for measuring. During various charging and discharging cycles, the potential is always carried along on the conductors belonging to each one pixel in order to prevent displacement currents between the screening capacitors. A compensating lead with a feedback operational amplifier can, for example, be used for simultaneously altering the electrical potentials on these conductors.

(57) Zusammenfassung

Eine rasterförmige Anordnung von Leiterflächen wird zur kapazitiven Bilderfassung verwendet, wobei jeweils zwischen den zur Messung vorgesehenen Leitem (2) Abschirmleiter (8) verwendet werden. Während mehrerer Lade- und Entladezyklen wird immer das Potential auf den zu je einem Bildpunkt gehörenden Leitern mitgeführt, um Verschiebeströme zwischen den Abschirmkondensatoren zu verhindern. Für die gleichartige Veränderung der elektrischen Potentiale auf diesen Leitern kann z.B. eine Kompensationsleitung mit einem rückgekoppelten Operationsverstärker (9, 10) verwendet werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	ıs	Lesotho	SI	Slowenien
AM	Armenien	FT	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	G۸	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	MI.	Mali	TT	Trinidad und Tobago
ВJ	Benin	1E	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	υG	Uganda
BY	Belanis	IS	Island	MW	Malawi	US	Vereinigte Staaten vor
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentrafafrikanische Republik	J٢	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Victnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugat		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

1

Beschreibung

Verfahren zur kapazitiven Bilderfassung

Die vorliegende Erfindung betrifft ein Verfahren zur kapazitiven Bilderfassung, das insbesondere zur Erfassung von Fingerabdrücken mittels kapazitiv messender Sensoren geeignet ist.

Bei kapazitiven Oberflächensensoren, z.B. bei Fingerabdrucksensoren, wird der Abstand zwischen dem zu messenden Objekt (z.B. die Oberfläche des Fingers) und dem Sensor durch eine rasterförmige Anordnung kleiner Leiterflächen (Pads) gemessen. Im Falle eines Fingerabdrucksensors sind diese Leiterflächen sehr klein und besitzen eine Abmessung von ca. 50 µm

bis 100 µm. Derartige kapazitiv messende Fingerabdrucksensoren sind z. B. angegeben in dem Übersichtsartikel von M. Tartagni und R. Guerrieri: "A 390dpi Live Fingerprint Imager Based on Feedback Capacitive Sensing Scheme" in ISSCC97, Seinstein 1554 1555 20 1000 Pierrieri in 1555 20 1

ten 154, 155 und 402. Die Kapazitäten zum Meßobjekt sind sehr klein, so daß sich parasitäre Kapazitäten z.B. zum benachbarten Leiter oder zum Träger des betreffenden Sensors störend auf das Meßergebnis auswirken. Um die kleinen Meßsignale von den relativ großen Störsignalen trennen zu können, sind

empfindliche Verstärker erforderlich. Die in den verstärkten Signalen enthaltenen Störsignale können entweder direkt meßtechnisch oder nach einer AD-Wandlung durch eine digitale Bearbeitung des erhaltenen Signales unterdrückt werden. Diese Maßnahmen sind aufwendig und erfordern eine hohe Genauigkeit.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur kapazitiven Bilderfassung anzugeben, das insbesondere zur Erfassung von Fingerabdrücken geeignet und mit geringem technischen Aufwand durchführbar ist.

35

מאורחסיות ואום מחיממרגם ו

30

2

Diese Aufgabe wird mit dem Verfahren mit den Merkmalen des Anspruches 1 gelöst. Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.

Es wird erfindungsgemäß eine Anordnung aus kapazitiv messenden Einzelsensoren verwendet, die jeweils Leiterflächen umfassen, die teils als Meßleiter vorgesehen sind, teils als Abschirmleiter verwendet werden, um die Kapazitäten der Einzelsensoren gegen Nachbarsensoren abzuschirmen. Mittels als Schalter verwendeten Transistoren wird zyklisch ein vorgege-10 benes elektrisches Potential an sämtliche Leiter angelegt und die Ladung, die sich infolge der durch das Bild verursachten unterschiedlichen Kapazitäten zu den Meßleitern darauf ansam-||melt, auf einen Sammelkondensator abgeführt. Bei diesem Vor-15 gang wird durch eine angeschlossene Kompensationsleitung, die bei der bevorzugten Ausführungsform einen rückgekoppelten Komparator aufweist, dafür gesorgt, daß das Potential auf den Leitern zumindest näherungsweise ausgeglichen bleibt, so daß keine elektrische Spannung an den Kondensatoren anliegt und 20 eine vorhandene Aufladung nur durch eine weitere externe Kapazität, aber nicht durch unerwünschte Verschiebungsströme zwischen den Leitern zustande gekommen sein kann.

Eine Oberfläche eines zu erfassendes Bildes, das eine örtlich 25 veränderliche Kapazität gegenüber den in dem Raster angeordneten Leitern hervorruft, wie das bei der Hautoberfläche eines Fingerabdruckes der Fall ist, wird während des Meßvorgangs parallel zu der Fläche der Leiter angeordnet. Es ergibt sich so eine unterschiedliche Aufladung der einzelnen Meßflä-30 chen entsprechend der Kapazität des vorhandenen Bildes. Mittels mehrmaligen Aufladens und Entladens der Kondensatoren der Einzelsensoren kann die sich jeweils darauf ansammelnde Ladung auf einem weiteren Kondensator soweit addiert werden, daß diese Ladungen mit geringem technischem Aufwand gemessen 35 werden können. Die Leiter, einschließlich den als Schutzring vorgesehenen Leitern, liegen durch die verwendete Schaltung bedingt stets auf demselben Potential, so daß zwischen sämt-

3

lichen vorhandenen Leiterflächen keine Verschiebungsströme auftreten. Auf diese Weise wird erreicht, daß mit einer im Prinzip bekannten Sensoranordnung zur Bilderfassung auch Bilder wie z. B. Fingerabdrücke erfaßt werden können, die nur sehr geringe kapazitive Unterschiede hervorrufen.

Es folgt eine genauere Beschreibung des erfindungsgemäßen Verfahrens anhand der Figuren 1 bis 3.

Figur 1 zeigt ein Schema eines Einzelsensors mit einer für das Verfahren geeigneten Schaltung.

Figur 2 zeigt Diagramme elektrischer Potentiale an verschiedenen Punkten der Schaltung aus Figur 1.

Figur 3 zeigt eine Anordnung von für das Verfahren geeigneten elektrischen Leitern in Aufsicht.

15

10

In Figur 1 ist im Schema eine für das Verfahren geeignete Anordnung von Leitern in zwei zueinander koplanaren Ebenen im Querschnitt dargestellt. Ein Ausschnitt einer Bildoberfläche 1, z. B. ein Steg eines Fingerabdruckes, befindet sich über 20 einem Meßleiter 2 der oberen Leiterebene. Dieser Meßleiter 2 in jedem Einzelsensor ist zur Messung der Kapazität zwischen der Bildoberfläche 1 und dieser Leiterebene (Bild-Leiter-Kapazität 3) vorgesehen. In derselben Ebene befinden sich seitlich zu dem Meßleiter 2 weitere Leiter als obere Abschirmleiter 8. In einer zweiten Ebene ist dem Meßleiter 2 gegenüber-25 liegend je ein weiterer Leiter angeordnet, der einen unteren Abschirmleiter 7 bildet und mit dem oberen Abschirmleiter 8 elektrisch leitend verbunden ist. Die zwischen dem Meßleiter 2 und dem oberen Abschirmleiter 8 vorhandene Abschirmkapazi-30 tät 5 und die zwischen dem Meßleiter 2 und dem unteren Abschirmleiter 7 vorhandene Abschirmkapazität 6 sind wie die Bild-Leiter-Kapazität 3 gestrichelt eingezeichnet, um anzudeuten, daß an diesen Stellen keine Kondensatorplatten vorhanden sind, sondern das Schaltbild für einen Kondensator gemeint ist. Den oberen Abschirmleiter 8 kann man sich in die-35 sem Beispiel so vorstellen, daß er den Meßleiter 2 rings umgibt. Die beiden in Figur 1 dargestellten Anteile des oberen

4

Abschirmleiters 8 bilden dann den Querschnitt eines solchen rings um den Meßleiter 2 vorhandenen Abschirmleiters.

In Figur 1 ist außerdem die zugehörige Schaltung, mit der die Messung durchgeführt wird, als Beispiel eingezeichnet. Das erfindungsgemäße Verfahren wird in der Weise durchgeführt, daß zunächst in jedem Pixel des Bildfeldes die zugehörigen Leiter (Meßleiter und Abschirmleiter) auf ein bestimmtes Potential gelegt werden. Das geschieht mit der eingezeichneten 10 Schaltung, indem die oberen eingezeichneten Transistoren über eine Taktsteuerung Φ_1 leitend geschaltet werden, so daß das Anschlußpotential V_{DD} an den eingezeichneten Punkten S und P und damit an den Leitern 2, 7, 8 des Einzelsensors anliegt. Über die zweite Taktsteuerung Φ_2 und die beiden unteren eingezeichneten Transistoren wird anschließend die Ladung auf den Leitern so abgeführt, daß soweit schaltungstechnisch möglich keine Potentialdifferenz zwischen dem Meßleiter 2 und den beiden Abschirmleitern 7, 8 auftritt.

20 Vorzugsweise wird das erreicht durch einen Schaltungsteil 9, der dafür sorgt, daß an den Punkten Q und R immer dasselbe Potential anliegt. Dieser Schaltungsteil 9 ist vorzugsweise mit einem rückgekoppelten Operationsverstärker 10 aufgebaut. Wenn über die Taktsteuerung Φ_2 die unteren eingezeichneten Transistoren leitend geschaltet werden, wird bewirkt, daß an 25 den Punkten P und S der Schaltung ebenfalls dasselbe Potential anliegt. Das Potential wird bei einer bevorzugten Ausführung des Verfahrens für jedes Bildpixel, d. h. jeden Einzelsensor, gesondert in der beschriebenen Weise nachgeführt, 30 so daß das Entstehen einer Potentialdifferenz an den Leitern verhindert wird. Auf diese Weise wird eine höhere Empfindlichkeit der Einzelmessung erreicht, weil Stör- oder Streukapazitäten abgeschirmt werden und unerwünschte Verschiebungsströme unterbunden sind. Außerdem wird das elektrische Feld zwischen den beiden Leiterebenen am Rand des Meßleiters 2 ho-35 mogenisiert. Der untere Abschirmleiter 7 schirmt außerdem die Meßanordnung gegen eine parasitäre Kapazität ab, die z. B.

PRICESON AND ACCOUNTED I

5

durch ein Substrat, auf dem die Anordnung aufgebracht ist, hervorgerufen wird (Sensor-Untergrund-Kapazität 4 in Figur 1). Als untere Abschirmleiter 7 konnen prinzipiell beliebige Gegenelektroden einer mehrlagigen Metallisierung verwendet werden.

Die nach jedem Ladezyklus durchgeführte Entladung der Meßanordnung erfolgt über einen Sammelkondensator C_s , auf dem die Ladungen gesammelt werden, bis die Ladung auf diesem Kondensator bzw. die an diesem Kondensator anliegende Spannung so groß ist, daß sie mit relativ geringem technischem Aufwand gemessen werden kann. Aufgrund der unterschiedlichen Bild-Leiter-Kapazitäten 3 ergeben sich von Bildpunkt zu Bildpunkt unterschiedliche Ladungen auf den Leitern. Entsprechend sind die auf den Sammelkondensatoren C_s gesammelten Ladungen für die einzelnen Bildpunkte verschieden, so daß sich aus der Bestimmung dieser Ladungen das Bild rekonstruieren läßt.

Vorzugsweise werden die einzelnen Bildpunkte über Leseleitungen LL nach Art des Zellenfeldes eines Matrixspeichers angesteuert. Eine derartige Anordnung ist aufwendig. Sie erfordert insbesondere einen Operationsverstärker 10 und eine Kompensationsleitung LLN pro Zeile der rasterförmigen Anordnung der Einzelsensoren.

25

30

35

DEICHOOLD SHIP DOINDREAD . .

20

5

10

15

Das erfindungsgemäße Verfahren läßt sich auch mit einer einfacheren Leiterstruktur durchführen, wenn man auf eine vollständige Kompensation der Potentialdifferenz zwischen den Meßleitern 2 und den Abschirmleitern 7, 8 verzichtet. Dann genügt ein Schaltungsteil 9 zur Kompensation, und man kommt mit einem Operationsverstärker 10 für alle Leseleitungen LL aus. Dieser Operationsverstärker wird dann von dieser einen Leseleitung LL z. B. in der Mitte des Zellenfeldes (rasterförmige Anordnung der Einzelsensoren) angesteuert. Da der Potentialverlauf während der Lade- und Entladevorgänge dem mittleren Verlauf dieser Vorgänge auf den Einzelsensoren ent-

6

spricht, wird in jedem Einzelsensor mit recht guter Genauigkeit kompensiert.

Eine weitere Möglichkeit, das Verfahren mit einer relativ einfachen Anordnung auszuführen, besteht darin, auf die Ansteuerung durch eine Leseleitung ganz zu verzichten. Alle Leseleitungen werden durch die zu messende Kapazität des Sensors simuliert, deren Ladung einfach auf den Sammelkondensator Cs abgeführt wird. Diese Ladungen werden meßtechnisch erfaßt, wenn sich genügend Ladungen nach mehreren Lade- und Entladezyklen darauf angesammelt haben. Die einfachste Form einer Kompensation ist die Festlegung auf eine feste Spannung. Man legt dazu den Punkt Q der Schaltung auf ein festes ||FPotential und kommt dann ohne den Schaltungsteil 9 aus. Die-15 - ses Potential ist für alle Einzelsensoren gleich. Obwohl die Kompensationsleitung zu Anfang einen zu kleinen und am Schluß einen zu großen Spannungshub hat, ist im Mittel die Kompensation ausgeglichen. In den beiden beschriebenen Fällen mit gleichartiger Kompensation für alle Einzelsensoren kann die Ansteuerung vom Rand des Sensorfeldes her vorgenommen werden, 20 was den Schaltungsaufwand stark vereinfacht.

In Figur 2 sind die typischen Potentialverläufe an den einzelnen Punkten der in Figur 1 dargestellten Schaltung wiedergegeben. Die Entladetakte Φ_2 sind jeweils gegenüber den Ladetakten Φ_1 zeitlich versetzt. Die Spannungsverläufe an den Punkten P und S sind aufgrund der vorgenommenen Kompensation gleich oder im Fall der vereinfachten Ausführung des Verfahrens mit vereinfachter Schaltung zumindest näherungsweise gleich. Die Spannung an den Punkten P bzw. S fällt bei den Entladungen auf einen immer geringeren Wert ab, da der Sammelkondensator C_S zunehmend geladen wird, und damit die minimale Spannung an den Punkten P bzw. S im Laufe der Zeit zunimmt. Die Potentiale an dem Punkt R und an dem Punkt Q, der über die Kompensation mit dem Potential am Punkt R mitgeführt wird, sind ebenfalls in Figur 2 dargestellt.

25

30

ו מבספפונים בשני מוספפונים

7

Figur 3 zeigt die rasterförmige Anordnung der jeweils für die Messung vorgesehenen Meßleiter 2 der oberen Leiterebene mit den oberen Abschirmleitern 8 dazwischen. Diese Abschirmleiter 8 sind hier als weiteres Beispiel als Streifen zwischen einzelnen Spalten 11 der matrixförmigen Anordnung eingezeichnet. Statt dieser Abschirmung zwischen einzelnen Spalten der Anordnung kann auch rings um die Meßleiter 2 je ein Abschirmleiter 8 entsprechend den gestrichelt eingezeichneten Berandungen vorhanden sein.

10

15

20

Das erfindungsgemäße Verfahren läßt sich unabhängig von der genauen Strukturierung der Leiter ausführen. Wesentlich ist dabei nur, daß zu jedem Bildpunkt eine Gruppe von Leitern vorhanden ist, von denen ein bestimmter Leiter der Bildoberfläche zugewandt ist und für die Messung vorgesehen ist, während die übrigen Leiter der Abschirmung dienen. Es muß eine Schaltung vorhanden sein, mit der das elektrische Potential auf den Abschirmleitern beim Laden und beim Entladen des Meßleiters dem Potential des Meßleiters nachgeführt werden kann. Die geometrische Anordnung der Abschirmleiter kann den jeweiligen Erfordernissen leicht angepaßt werden.

חשוכחריים ואום חויים ביים

Patentansprüche

- 1. Verfahren zur kapazitiven Bilderfassung, bei dem
- a) eine als Bild zu erfassende Fläche (1) rasterartig in
- Bildpunkte zerlegt wird, denen eine Anordnung elektrischer Leiter zugeordnet wird, die mindestens zu jedem Bildpunkt einen Meßleiter (2) und einen Abschirmleiter (7, 8) umfassen,
 - b) die als Bild zu erfassende Flache (1) den Meßleitern (2) gegenüber angeordnet wird, so daß zwischen den Bildpunkten
- 10 und den Meßleitern (2) jeweils eine von dem betreffenden Bildpunkt abhängige Kapazität vorhanden ist,
 - c) an jedem Bildpunkt jeweils der Meßleiter (2) und der Abschirmleiter (7, 8) mit demselben elektrischen Potential verbunden und wieder getrennt werden,
- d) an jedem Bildpunkt eine auf dem Meßleiter (2) und/oder auf dem Abschirmleiter (7, 8) vorhandene Ladung auf einen jeweiligen Sammelkondensator (C_s) entladen wird, wobei gleichzeitig eine zwischen dem Meßleiter (2) und dem Abschirmleiter (7, 8) auftretende Potentialdifferenz ausgeglichen wird, und
- e) die Schritte c und d wiederholt werden, bis die auf den Sammelkondensatoren (C_s) angesammelten Ladungen mindestens einen für eine gesonderte Messung jedes Sammelkondensators als ausreichend vorgegebenen Wert aufweisen.
- 25 2. Verfahren nach Anspruch 1, bei dem die Potentialdifferenz zwischen dem jeweiligen Meßleiter (2) und dem jeweiligen Abschirmleiter (7, 8) für alle Bildpunkte gleichartig ausgeglichen wird, indem die Abschirmleiter (7, 8) auf dasselbe vorgegebene Potential gelegt wer-30 den.
- 3. Verfahren nach Anspruch 1,
 bei dem die Potentialdifferenz zwischen dem jeweiligen Meßleiter (2) und dem jeweiligen Abschirmleiter (7, 8) für alle
 Bildpunkte gesondert ausgeglichen wird, indem an den jeweiligen Abschirmleiter (2) stets dasselbe Potential angelegt
 wird, das gerade an dem Meßleiter (2) anliegt.

...........

DUCCOCCO

חווכחסכים שים חווכחסרבים .

			,		
					•
**					
A.		*			
	ii.				
			to		

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

G06K 9/00

A3

(11) Internationale Veröffentlichungsnummer: WO 00/10205

(43) Internationales

Veröffentlichungsdatum:

24. Februar 2000 (24.02.00)

(21) Internationales Aktenzeichen:

PCT/DE99/02523

(22) Internationales Anmeldedatum: 12. August 1999 (12.08.99)

(81) Bestimmungsstaaten: BR, CN, IN, JP, KR, MX, RU, UA, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

198 36 770.8

13. August 1998 (13.08.98)

Veröffentlicht DE

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2,

D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): VON BASSE, Paul-Werner [DE/DE]; Heiglstrasse 60, D-82515 Wolfratshausen (DE). WILLER, Josef [DE/DE]; Friedrich-Fröbel-Strasse 62, D-85521 Riemerling (DE). SCHEITER, Thomas [DE/DE]; Flosserweg 13, D-82041 Oberhaching (DE). MARK-STEINER, Stephan [AT/DE]; Gustav-Heinemann-Ring 39, D-81739 München (DE).

AKTIENGE-(74) Gemeinsamer Vertreter: SIEMENS SELLSCHAFT; Postfach 22 16 34, D-80506 München (88) Veröffentlichungsdatum des internationalen Recherchenbe-18. Mai 2000 (18.05.00)

(54) Title: METHOD FOR CAPACITIVE IMAGE ACQUISITION

(54) Bezeichnung: VERFAHREN ZUR KAPAZITIVEN BILDERFASSUNG

(57) Abstract

According to the invention, a grid-like arrangement of conducting surfaces is utilized for capacitive image acquisition, whereby screening conductors (8) are respectively used between the conductors (2) which are provided for measuring. During various charging and discharging cycles, the potential is always carried along on the conductors belonging to each one pixel in order to prevent displacement currents between the screening capacitors. A compensating lead with a feedback operational amplifier can, for example, be used for simultaneously altering the electrical potentials on these conductors.

(57) Zusammenfassung

Eine rasterförmige Anordnung von Leiterflächen wird zur kapazitiven Bilderfassung verwendet, wobei jeweils zwischen den zur Messung vorgesehenen Leitem (2) Abschirmleiter (8) verwendet werden. Während mehrerer Lade- und Entladezyklen wird immer das Potential auf den zu je einem Bildpunkt gehörenden Leitern mitgeführt, um Verschiebeströme zwischen den Abschirmkondensatoren zu verhindern. Für die gleichartige Veränderung der elektrischen Potentiale auf diesen Leitern kann z.B. eine Kompensationsleitung mit einem rückgekoppelten Operationsverstärker (9, 10) verwendet werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL.	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JР	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Victnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ.	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	ŁK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		