У Лекция 5 Линейные модели классификации. Часть 2.

Кантонистова Е.О.

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Логистическая регрессия — линейный классификатор, корректно предсказывающий вероятности классов.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

Цель: построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность классов:

$$b_* = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По 3БЧ при $n o \infty$ получаем

$$b_* = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b) | x] = p(y = +1 | x)$$

ФУНКЦИИ ПОТЕРЬ

Подходят:

У Квадратичная

$$L(y,z) = (y-z)^2$$

• Логистическая

$$L(y,z) = [y = +1] \cdot \log(b(x,w)) + [y = -1] \cdot \log(1 - b(x,w))$$

Не подходят:

• Модуль

$$L(y, z) = |y - z|$$

ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

Правдоподобие выборки:

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]}$$

ФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

• Можно максимизировать правдоподобие

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Или, что эквивалентно (логарифмическая, log-loss):

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

»ФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

• Можно максимизировать правдоподобие

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Или, что эквивалентно (логарифмическая, log-loss):

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

Увтерждение. Логарифмическая функция потерь корректно предсказывает вероятности.

ъ ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].

о логистическая регрессия

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].

> ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].
- Возьмем *сигмоиду*: $\sigma(z) = \frac{1}{1 + e^{-z}}$

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

$$b \cdot p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$$
, следовательно,

•
$$(w,x) = w^T x = \log \frac{p(y=+1|x)}{p(y=-1|x)}$$
 - логарифм отношения вероятностей классов.

Утверждение. Логарифмическая функция потерь может быть записана в виде

$$L(b, X) = \sum_{i=1}^{l} \log(1 + e^{-y_i(w, x)})$$

> ЛИНЕЙНЫЙ КЛАССИФИКАТОР

•
$$a(x) = sign((w, x) + w_0)$$

Ошибка линейного классификатора:

•
$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] =$$

$$=\frac{1}{l}\sum_{i=1}^{l}\left[sign((w,x_i)+w_0)\neq y_i\right]=$$

$$= \frac{1}{l} \sum_{i=1}^{l} [y_i \cdot ((w, x_i) + w_0) < 0] \to \min_{w, w_0}$$

$$M_i = y_i((w, x_i) + w_0)$$
 – отступ на объекте

> ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров w^* , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

Цель метода опорных векторов (Support Vector Machine) –
 максимизировать ширину разделяющей полосы.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

- $a(x) = sign((w, x) + w_0)$
- ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта $x \in X$:

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

разделяющая полоса

ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

Утверждение. Данная оптимизационная задача имеет единственное решение.

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

ullet Существует хотя бы один объект $x \in X$, что $y_i ig((w, x_i) + w_0 ig) < 1$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

ullet Существует хотя бы один объект $x \in X$, что $y_i ig((w, x_i) + w_0 ig) < 1$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что $y_i \big((w, x_i) + w_0 \big) < 1$

Смягчим ограничения, введя штрафы $\xi_i \ge 0$:

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

О Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ $\frac{1}{||w||}$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ $\frac{1}{||w||}$

Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Задача метода опорных векторов (задача условной оптимизации) эквивалентна следующей задаче безусловной оптимизации:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^{t} \max\left(0, 1 - y_i((w, x_i) + w_0)\right) \to \min_{w, w_0}$$

» МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь $L(M) = max(0,1-M) = (1-M)_+$ с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.

ь ТИПЫ ОБЪЕКТОВ В SVM

» ЯДРОВОЙ МЕТОД ГЛАВНЫХ КОМПОНЕНТЫ

Пусть исходная выборка (с признаками x_1, x_2, \dots, x_n) линейно bне разделима.

Может существовать такое преобразование координат $(y_1, y_2, ..., y_N) = f(x_1, x_2, ..., x_n).$

что в пространстве новых координат выборка становится линейно разделимой.

• Применение преобразования координат и метода главных компонент называется ядровым методом главных компонент (kernel SVM).

РАДИАЛЬНОЕ ЯДРО

Data in R^3 (separable)

ПОЛИНОМИАЛЬНОЕ ЯДРО

1-Dimensional Linearly Inseparable Classes 1-Dimensional Linearly
Inseparable Classes transformed with
Polynomial Kernel of Degree 2

РАЗДЕЛЯЮЩИЕ ПОВЕРХНОСТИ SVM ДЛЯ РАЗЛИЧНЫХ ЯДЕР

SVC with linear kernel

SVC with RBF kernel

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

Калибровка вероятностей - приведение ответов алгоритма к значениям, близким к вероятностям объектов принадлежать конкретному классу.

Зачем это нужно?

- Вероятности гораздо проще интерпретировать
- Вероятности могут дать дополнительную информацию о результатах работы алгоритма

КАЛИБРОВКА ПЛАТТА

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

КАЛИБРОВКА ПЛАТТА

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

ПРИМЕР ИЗ SKLEARN

КАЛИБРОВКА ПЛАТТА

 \bullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

•
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot a(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

ullet Находим lpha и eta, минимизируя логистическую функцию потерь:

$$-\sum_{v_i=-1}\log(1-\pi(x;\alpha;\beta))-\sum_{v_i=+1}\log(\pi(x;\alpha;\beta))\to\min_{\alpha,\beta}$$