Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Vector:

59.	C(4, 0, 3) and D(1	, 0, 0). Acute angle b	etween the plane face	BCD are A(3, – 2, 1); I es ADC and ABC is 2) (D) cot ⁻¹ (3/2)	B(3, 1, 5);
60.	The volume of the tetrahedron formed by the coterminus edges $\vec{a}, \vec{b}, \vec{c}$ is 3. Then the volume of the parallelopiped formed by the coterminus edges $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ is				
	(A) 6	(B) 18	(C) 36	(D) 9	
23.	Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of length 3, 4, 5 respectively. Let \vec{a} be perpendicular to $\vec{b} + \vec{c}, \vec{b}$ to $\vec{c} + \vec{a}$ and \vec{c} to $\vec{a} + \vec{b}$. Then $ \vec{a} + \vec{b} + \vec{c} $ is :				
	(A) 2√5	(B) $2\sqrt{2}$	(C) 10√5	(D) 5√2	
				-	
3.	In the isosceles triangle ABC, $ \overline{AB} = \overline{BC} = 8$, a point E divides AB internally in the ratio				
	1: 3, then the cosine of the angle between \overrightarrow{CE} and \overrightarrow{CA} is (where $ \overrightarrow{CA} = 12$)				
	$(A) - \frac{3\sqrt{7}}{8}$	(B) $\frac{3\sqrt{8}}{17}$	(C) $\frac{3\sqrt{7}}{8}$	(D) $\frac{-3\sqrt{8}}{17}$	
	_				

Given an equilateral triangle ABC with side length equal to 'a'. Let M and N be two points

respectively on the side AB and AC such that $\overline{AN} = \overline{KAC}$ and $\overline{AM} = \frac{\overline{AB}}{3}$. If \overline{BN} and \overline{CM}

(B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

are orthogonal then the value of K is equal to

39.

(A) $\frac{1}{5}$

Functions:

If $g(x) = x^2 + x - 1$ and $(gof)(x) = 4x_2 - 10x + 5$, then $f(\frac{5}{4})$ is equal to: [JEE - Main 2020] 22.

(A) $-\frac{1}{2}$

(B) $\frac{3}{2}$ (C) $\frac{-3}{2}$ (D) $\frac{1}{2}$

Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying 1. (fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x)), is-[JEE 2011]

(B) $\pm \sqrt{n\pi}$, $n \in \{1, 2, ...\}$

(C) $\frac{\pi}{2} + 2n\pi, n \in \{..., -2, -1, 0, 1, 2, ...\}$ (D) $2n\pi, n \in \{..., -2, -1, 0, 1, 2, ...\}$

(A) $\pm \sqrt{n\pi}$, $n \in \{0,1,2,...$

Find the sum of all the solutions of the equation $\cot \frac{\pi x}{2} = \log_2 \{x\}$ in $x \in (0,100)$. 9.

[Note: {k} denotes the fractional part function of k.]

INTEGERTYPE

If $f(x) = \sqrt[3]{\frac{7}{\log_2(3-2x)}} - 1$ then the value of 'a' which satisfies $f^{-1}(2a-4) = \frac{1}{2}$, is 3.

(A) 4

(B) 3

(C) 2

(D) 1

Let $f(x) = x^{135} + x^{125} - x^{115} + x^5 + 1$. If f(x) is divided by $x^3 - x$ then the remainder is some 5. function of x say g(x). Find the value of g(10).

Atomic Structure:

50. The plots of radial distribution functions for various orbitals of hydrogen atom against 'r' are given below: [JEE Main (April) 2021]

Ans. Α

53. An α -particle is accelerated through a potential difference of V volts from rest. The de-Broglie's wavelength associated with it is

(A)
$$\sqrt{\frac{150}{V}}$$
Å

(B)
$$\frac{0.286}{\sqrt{V}}$$
 Å (C) $\frac{0.101}{\sqrt{V}}$ Å (D) $\frac{0.983}{\sqrt{V}}$ Å

(C)
$$\frac{0.101}{\sqrt{V}}$$
 Å

(D)
$$\frac{0.983}{\sqrt{V}}$$
Å

- 19. For He⁺ ion, the only INCORRECT combination is
 - (A) (II) (ii) (Q)v
- (B) (I) (i) (S)
- (C) (I) (i) (R)
- (D) (I) (iii) (R)
- 46. The ratio of the shortest wavelength of two special series of hydrogen spectrum is found to be [JEE Main (April) 2019] about 9. The spectral series are:
 - (1) Paschen and Pfund

(2) Balmer and Brackett

(3) Lyman and Paschen

- (4) Brackett and Pfund
- 34. Which of the following combination of statements is true regarding the interpretation of the atomic orbitals? [JEE Main (Jan.) 2019]
 - (a) An electron in an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
 - (b) For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
 - (c) According to wave mechanics, the ground state angular momentum is equal to $\frac{h}{2\pi}$.
 - (d) The plot of ψ Vs r for various azimuthal quantum numbers, shows peak shifting towards higher r value.
 - (1) (a), (c)
- (2) (a), (d)
- (3) (b), (c)
- (4) (a), (b)

