Homework 9

Madilyn Simons

- 1. (a) Let I be a nonempty ideal in F such that I does not equal F. Let $x \in F$ and $x \notin I$, let $a \in I$, and let a^{-1} be the multiplicative inverse of a. If $a \in I$, then $ax \in I$ and $a^{-1}ax \in I$. However, $a^{-1}ax = 1_Fx = x$ and $x \notin I$ so this is a contradiction.
 - (b) Since f is a homomorphism of rings, the kernel of f is an ideal of F. The only ideals of F are F and (0). If the kernel of f is (0), then f is injective. If the kernel of f is F, then f is the zero function.
- 2. TODO Rewrite this and replace $(q_1(x))$ with $(q_i(x))$

First, assume (p(x)) is maximal. Let $p(x) = q_1(x)q_2(x)...q_n(x)$ be the prime factorization of p(x). Therefore $(p(x)) \subset (q_1(x))$ since $q_1(x)$ divides p(x). Since (p(x)) is maximal, either $(p(x)) = (q_1(x))$ or $F[x] = (q_1(x))$.

Assume $(p(x)) = (q_1(x))$. Therefore p(x) must be some divisor of $q_1(x)$ such that $q_1(x) = p(x)q_2^{-1}(x)...q_n^{-1}(x)$. This implies that $q_2(x), q_3(x), ..., q_n(x)$ are units, which are nonzero constants. If p(x) is the product of an irreducible polynomial $q_1(x)$ and several nonzero constant polynomials, then p(x) is irreducible.

Now assume $F[x] = (q_1(x))$. If this is the case, then $q_1(x)$ must be a unit, which is a contradiction.

Next, assume p(x) is irreducible. Since p(x) is irreducible, the quotient ring F[x]/(p(x)) is a field and therefore (p(x)) is a maximal ideal.

- 3. (a) By the Division Algorithm, a(x) = b(x)q(x) + r(x) such that $0 \le degr(x) < degb(x)$. By Theorem 6.1, $b(x)q(x) \in I$ and $a(x) b(x)q(x) = r(x) \in I$.
 - (b) Let a(x) by any nonzero polynomial in I. By the Division Algorithm, a(x) = p(x)q(x) + r(x) such that $0 \le degr(x) < degp(x)$. However, p(x) is of minimal degree, so degr(x) = 0. Therefore, p(x) divides all $a(x) \in I$.
- 4. (a) Let $I = \{f(x) \in F[x] | f(\alpha) = 0\}$. We know that I is an ideal of F[x] because for all $f_1(x), f_2(x) \in I$,

$$f_1(\alpha) - f_2(\alpha) = 0 - 0 = 0$$

So $f_1(x) - f_2(x) \in I$. For all $g(x) \in F[x]$ and $f(x) \in I$,

$$f(\alpha)g(\alpha) = 0 * g(\alpha) = 0$$

$$g(\alpha)f(\alpha) = g(\alpha) * 0 = 0$$

So $f(x)g(x) \in I$ and $g(x)f(x) \in I$, and I is a proper ideal of F[x].

Since α is a root of p(x), $p(\alpha) = 0$ and $p(\alpha) \in I$. Because all ideals of F[x] are principal ideals and p(x) is irreducible, I = (p(x)) and all elements of I are divisible by p(x). If $g(\alpha) = 0$, then $g(x) \in I$ and p(x)|g(x).

Next, assume p(x)|g(x). Then g(x) = p(x)q(x) for some q(x), and so

$$g(\alpha) = p(\alpha)q(\alpha) = 0.$$

Thus, $g(\alpha) = 0$ if and only if p(x)|g(x).

- (b) Let $I = \{f(x) \in \mathbb{Q} | f(\sqrt[7]{2}) = 0\}$. Let $p(x) = x^2 2$. By Eisenstein's Criterion, $x^7 2$ is irreducible, and $p(\sqrt[7]{2}) = 0$ so $p(x) \in I$. By problem 4a, any nonzero $g(x) \in I$ must be divisible by p(x), meaning that $\deg g \geq 7$.
- (c) Let $g: F[x] \to F[\alpha]$ be a homomorphism of rings given by $g(f(x)) = f(\alpha)$ such that $f(x) \in F[x]$. Then the kernel of g is (p(x)). We know that g is surjective, because all $f(\alpha)$ map to some f(x) so that there is an f(x) for all $f(\alpha)$ such that $g(f(x)) = f(\alpha)$. Thus, by Theorem 6.13, F[x]/(p(x)) is isomorphic to $F[\alpha]$.