Схема с односторонними разностями $(ln\rho,u)$ (последовательная)

Гвоздев Михаил

26 февраля 2021 г.

Содержание

1	Постановка задачи						
2	Осн	Основные обозначения					
3	Опи	Описание схемы					
4	Koo 4.1 4.2	Перво	тная запись уравнений е уравнение	9			
	4.3	-	е уравнение	4			
	4.4	_	ртое уравнение	_			
	4.5	-	уравнение	4			
	4.6		вая система	٦			
5	Отл	адочні	ый тест	Ę			
	5.1	Постан	новка задачи	Ę			
	5.2	Числег	нные эксперименты	6			
		5.2.1	Таблицы невязок для V и G	(
		5.2.2	Вывод	10			
6	Tec	ты с не	егладкими начальными данными	10			
	6.1	Постан	новка задачи	10			
	6.2	Числег	нные эксперименты	10			
		6.2.1	Точность	10			
		6.2.2	Вывод	11			
		6.2.3	Консервативность	11			
		6.2.4	Вывод	16			
		6.2.5	Динамика	17			
		6.2.6	Цикличность	30			
		6.2.7	Вывод	38			
		6.2.8	Время стабилизации	39			
		6.2.9	Вывод	36			
7	Зад	ача о с	стабилизации осциллирующей функции	40			
	7.1	Постан	новка задачи	40			
	7.2	Числег	нные эксперименты	40			
		7.2.1	Время стабилизации	40			
		7.2.2	Вывод	41			

8	Зад	дача "протекания"	41
	8.1	Постановка задачи	41
	8.2	Разностная схема	41
	8.3	Численные эксперименты	42
		8.3.1 Вывод	42
		8.3.2 Динамика процесса	42

1 Постановка задачи

Рассмотрим систему уравнений, описывающую нестационарное одномерное движение вязкого баротропного газа

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = f_0; \\
\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f; \\
p = p(\rho).
\end{cases} \tag{1}$$

Через μ обозначен коэффициент вязкости газа, который считаем известной неотрицательной величиной. Известными также будем считать функцию давления газа p (уравнение состояния газа) и вектор внешних сил f, который является функцией переменных Эйлера $(t,x) \in Q = [0,T] \times [0,X]$. Зависимость $p = p(\rho)$ часто называют уравнением состояния газа. Мы будем рассматривать две возможные зависимости: $p(\rho) = C\rho$, где C — положительная константа, и $p(\rho) = \rho^{1.4}$. Неизвестными же будут функция плотности ρ и функция скорости u.

Сделав замену $q = \ln \rho$, систему (1) можно переписать в виде

$$\begin{cases}
\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial x} + \frac{\partial u}{\partial x} = f_0; \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \tilde{p}'(g) \frac{\partial g}{\partial x} = \mu e^{-g} \frac{\partial^2 u}{\partial x^2} + f; \\
\tilde{p}'(g) = \frac{\partial p}{\partial \rho}(e^g); \\
p = p(\rho).
\end{cases} (2)$$

Дополним систему (1) начальными и граничными условиями

$$(\rho, u)|_{t=0} = (\rho_0, u_0), \quad x \in [0, X]$$

$$u(t,0) = u(t,X) = 0, \quad t \in [0,T]$$

2 Основные обозначения

Введем на [0,X] и [0,T] сетки $\omega_x=\{mh:m=0,\ldots,M\}$ и $\omega_t=\{n\tau:n=0,\ldots,N\}$ соответственно, где $h=\frac{X}{M}$ и $\tau=\frac{T}{N}$. Обозначим через Ω сетку $\omega_{\tau}\times\omega_{h}$. . Для сокращения записи функцию g в узле (n,m) обозначим через g_m^n , а вместо g_m^n и g_m^{n+1} соответсвенно g и \widehat{g} , также $g_{m\pm 1}^n=g^{\pm 1}$. Введем также обозначения для разностных операторов:

$$g_t = \frac{g_m^{n+1} - g_m^n}{\tau}, \quad g_x = \frac{g_{m+1}^n - g_m^n}{h}, \quad g_{\hat{x}} = \frac{g_{m+1}^n - g_{m-1}^n}{2h}, \quad g_{\overline{x}} = \frac{g_m^n - g_{m-1}^n}{h},$$

$$g_{x\overline{x}} = (g_x)_{\overline{x}} = \frac{g_{m-1}^n - 2g_m^n + g_{m+1}^n}{h^2}.$$

Для приближения конвективных слагаемых в дифференциальных операторах введем обозначение

$$\delta\{W, V\} = \frac{V + |V|}{2} W_{\overline{x}} + \frac{V - |V|}{2} W_x. \tag{3}$$

Введем норму для произвольной сеточной функции v:

$$||v|| = \max_{x \in \omega_x} |v(x)| = \max_{0 \le m \le M} |v(mh)|.$$
 (4)

3 Описание схемы

Обозначим через G и V приближенные значения функций $\ln \rho$ и u соответственно. Положим $G=\ln H$.

Для поиска численного решения задачи (2) с начальными условиями (2) можно использовать разностную схему, в которой для приближения конвективных членов используются односторонние разности, а функции G и V на верхнем слое ищутся путем решения системы

$$\begin{cases}
G_{t} + \delta\{\widehat{G}, V\} + V_{\hat{x}} = f_{0}, & m = 1, \dots, M - 1; \\
G_{t} + V_{x} = f_{0}, & m = 0; \\
G_{t} + V_{\overline{x}} = f_{0}, & m = M; \\
V_{t} + \delta\{\widehat{V}, V\} + \widetilde{p}'(\widehat{G})\widehat{G}_{\hat{x}} = \widetilde{\mu}\widehat{V}_{x\overline{x}} - (\widetilde{\mu} - \mu e^{-\widehat{G}})V_{x\overline{x}} + f, & m = 1, \dots, M - 1; \\
\widehat{V} = 0, & m = 0, M;
\end{cases}$$
(5)

где

$$\widetilde{\mu} = \mu \| e^{-\widehat{G}} \|_{C} = \mu \max_{m \in \{0...M\}} |e^{-G_{m}^{n+1}}| = \mu \exp \left\{ -\min_{m \in \{0...M\}} G_{m}^{n+1} \right\}.$$
 (6)

В качестве значений разностного решения на нулевом слое берутся проекции на сетку ω_x функций $\ln \rho_0$ и u_0 :

$$G_m^0 = \ln \rho_0(hm), \quad V_m^0 = u_0(hm), \qquad m = 0, \dots, M,$$
 (7)

а граничные значения скорости полагаются равными нулю (пятое уравнение в (5)):

$$V_0^n = V_M^n = 0, \qquad n = 1, \dots, N.$$
 (8)

Для $p(\rho) = C\rho^{\gamma}$ имеем: $\tilde{p}'(e^g) = C\gamma e^{(\gamma-1)g}$.

4 Координатная запись уравнений

Используя введенные обозначения, перепишем последнюю систему (5).

4.1 Первое уравнение

m = 1, ..., M - 1.

$$G_t + \delta\{\widehat{G}, V\} + V_{\hat{x}} = f_0; \tag{9}$$

$$\frac{G_m^{n+1} - G_m^n}{\tau} + \frac{V_m^n + |V_m^n|}{2} \frac{G_m^{n+1} - G_{m-1}^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{2} \frac{G_{m+1}^{n+1} - G_m^{n+1}}{h} + \frac{V_{m+1}^n - V_{m-1}^n}{2h} = f_{0m}^n; \quad (10)$$

$$\left(-\frac{V_m^n + |V_m^n|}{2h}\right)G_{m-1}^{n+1} + \left(\frac{1}{\tau} + \frac{|V_m^n|}{h}\right)G_m^{n+1} + \left(\frac{V_m^n + |V_m^n|}{2h}\right)G_{m+1}^{n+1} = \frac{G_m^n}{\tau} - \frac{V_{m+1}^n - V_{m-1}^n}{2h} + f_{0m}^n.$$
(11)

4.2 Второе уравнение

m=0.

$$G_t + V_x = f_0; (12)$$

$$\frac{G_m^{n+1} - G_m^n}{\tau} + \frac{V_{m+1}^n - V_m^n}{h} = f_{0m}^n; \tag{13}$$

$$G_m^{n+1} = G_m^n - \frac{\tau}{h} (V_{m+1}^n - V_m^n) + \tau f_{0m}^n;$$
(14)

$$G_0^{n+1} = G_0^n - \frac{\tau}{h} (V_1^n - V_0^n) + \tau f_{00}^n;$$
(15)

4.3 Третье уравнение

m = M.

$$G_t + V_{\overline{x}} = f_0; \tag{16}$$

$$\frac{G_m^{n+1} - G_m^n}{\tau} + \frac{V_m^n - V_{m-1}^n}{h} = f_0^n; \tag{17}$$

$$G_m^{n+1} = G_m^n - \frac{\tau}{h} (V_m^n - V_{m-1}^n) + \tau f_{0m}^n;$$
(18)

$$G_M^{n+1} = G_M^n - \frac{\tau}{h} (V_M^n - V_{M-1}^n) + \tau f_{0M}^n.$$
(19)

4.4 Четвертое уравнение

 $m = 1, \ldots, M - 1.$

$$V_t + \delta\{\widehat{V}, V\} + \widetilde{p}'(\widehat{G})\widehat{G}_{x}^{\hat{x}} = \widetilde{\mu}\widehat{V}_{x\overline{x}} - (\widetilde{\mu} - \mu e^{-\widehat{G}})V_{x\overline{x}} + f$$

$$\frac{V_m^{n+1} - V_m^n}{\tau} + \frac{V_m^n + |V_m^n|}{2} \frac{V_m^{n+1} - V_{m-1}^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{2} \frac{V_{m+1}^{n+1} - V_m^{n+1}}{h} + \tilde{p}'(G_m^{n+1}) \frac{G_{m+1}^{n+1} - G_{m-1}^{n+1}}{2h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^n}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} = \frac{1}{2} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m^n|}{h} \frac{V_m^{n+1} - V_m^{n+1}}{h} + \frac{V_m^n - |V_m$$

$$=\mu||e^{-G_m^{n+1}}||\frac{V_{m-1}^{n+1}-2V_m^{n+1}+V_{m+1}^{n+1}}{h^2}-(\mu||e^{-G_m^{n+1}}||-\mu e^{-G_m^{n+1}})\frac{V_{m-1}^n-2V_m^n+V_{m+1}^n}{h^2}+f_m^n$$

В итоге:

$$(-\frac{V_{m}^{n}+|V_{m}^{n}|}{2h}-\frac{\mu||e^{-G_{m}^{n+1}}||}{h^{2}})V_{m-1}^{n+1}+(\frac{1}{\tau}+\frac{|V_{m}^{n}|}{h}+\frac{2\mu||e^{-G_{m}^{n+1}}||}{h^{2}})V_{m}^{n+1}+(\frac{V_{m}^{n}-|V_{m}^{n}|}{2h}-\frac{\mu||e^{-G_{m}^{n+1}}||}{h^{2}})V_{m+1}^{n+1}=\\ =\frac{V_{m}^{n}}{\tau}-\tilde{p}'(G_{m}^{n+1})\frac{G_{m+1}^{n+1}-G_{m-1}^{n+1}}{2h}-(\mu||e^{-G_{m}^{n+1}}||-\mu e^{-G_{m}^{n+1}})\frac{V_{m-1}^{n}-2V_{m}^{n}+V_{m+1}^{n}}{h^{2}}+f_{m}^{n}.$$

4.5 Пятое уравнение

m = 0, M.

$$\widehat{V} = 0; (21)$$

$$V_m^{n+1} = 0; (22)$$

$$V_0^{n+1} = V_M^{n+1} = 0. (23)$$

4.6Итоговая система

Собрав воедино уравнения (11), (15), (19), (20) и (23), получим следующую систему (эквивалентную (5):

жавалентную (5)):
$$\begin{cases}
A_{G}G_{m-1}^{n+1} + B_{G}G_{m}^{n+1} + C_{G}G_{m+1}^{n+1} = D_{G}, & \text{где} \\
A_{G} = -\frac{V_{m}^{n} + |V_{m}^{n}|}{2h}, & m = 1, \dots, M - 1, \\
B_{G} = \frac{1}{\tau} + \frac{|V_{m}^{n}|}{h}, & \\
C_{G} = \frac{V_{m}^{n} + |V_{m}^{n}|}{2h}, & \\
D_{G} = \frac{G_{m}^{n}}{\tau} - \frac{V_{m+1}^{n} - V_{m-1}^{n}}{2h} + f_{0m}^{n} \\
G_{0}^{n+1} = G_{0}^{n} - \frac{\tau}{h}(V_{1}^{n} - V_{0}^{n}) + \tau f_{0m}^{n}, \\
G_{M}^{n+1} = G_{M}^{n} - \frac{\tau}{h}(V_{M}^{n} - V_{M-1}^{n}) + \tau f_{0M}^{n}. & (24) \\
A_{V}V_{m-1}^{n+1} + B_{V}V_{m}^{n+1} + C_{V}V_{m+1}^{n+1} = D_{V}, & \text{где} \\
A_{V} = -\frac{V_{m}^{n} + |V_{m}^{n}|}{2h} - \frac{\tilde{\mu}^{n+1}}{h^{2}}, & m = 1, \dots, M - 1 \\
B_{V} = \frac{1}{\tau} + \frac{|V_{m}^{n}|}{h} + \frac{2\tilde{\mu}^{n+1}}{h^{2}}, & \\
C_{V} = \frac{V_{m}^{n} - |V_{m}^{n}|}{2h} - \frac{\tilde{\mu}^{n+1}}{h^{2}}, & \\
D_{V} = \frac{V_{m}^{n}}{\tau} - \tilde{p}'(G_{m}^{n+1}) \frac{G_{m+1}^{n+1} - G_{m+1}^{n+1}}{2h} - (\tilde{\mu}^{n+1} - \mu e^{-G_{m}^{n+1}}) \frac{V_{m-1}^{n} - 2V_{m}^{n} + V_{m+1}^{n}}{h^{2}} + f_{m}^{n}; \\
V_{0}^{n+1} : - \mu ||e^{-G_{m}^{n+1}}||$$

$$\widetilde{\mu}^{n+1} := \mu ||e^{-G_m^{n+1}}||$$

Далее из 1–3 уравнений системы (24) ищутся значения $G_m^{n+1}, m=0,\ldots,M,$ а после из уравнений 3–5 ищутся значения $V_m^{n+1}, m=0,\ldots,M$. В обоих случаях получается система из M+1 линейного алгебраического уравнения Ax=b с трехдиагональной матрицей A.

Отладочный тест 5

5.1Постановка задачи

Рассмотрим $Q = [0; 1] \times [0; 10]$. Зададим функции

$$\widetilde{\rho}(t,x) = e^t \left(\cos\left(\frac{\pi x}{10}\right) + \frac{3}{2}\right),\tag{25}$$

$$\widetilde{u}(t,x) = \cos(2\pi t)\sin\left(\frac{\pi x^2}{100}\right). \tag{26}$$

Определим функции f_0 (отличную от нуля правую часть уравнения неразрывности) и fтак, чтобы фукции ρ и u удовлетворяли системе (2) с правой частью, составленной из этих функций

$$\frac{\partial \widetilde{g}}{\partial t} + \widetilde{u} \frac{\partial \widetilde{g}}{\partial x} + \frac{\partial \widetilde{u}}{\partial x} = f_0; \tag{27}$$

$$\frac{\partial \widetilde{u}}{\partial t} + \widetilde{u}\frac{\partial \widetilde{u}}{\partial x} + \widetilde{p}'(\widetilde{g})\frac{\partial \widetilde{g}}{\partial x} = \mu e^{-\widetilde{g}}\frac{\partial^2 \widetilde{u}}{\partial x^2} + f,$$
(28)

где, согласно (25),

$$\frac{\partial \tilde{\rho}}{\partial t} = e^t \left(\cos\left(\frac{\pi x}{10}\right) + \frac{3}{2}\right) = \tilde{\rho},\tag{29}$$

$$\frac{\partial \tilde{\rho}}{\partial x} = -\frac{1}{10} \pi e^t \sin\left(\frac{\pi x}{10}\right),\tag{30}$$

$$\frac{\partial \tilde{g}}{\partial t} = \frac{\partial \ln \tilde{\rho}}{\partial t} = \frac{1}{\tilde{\rho}} \frac{\partial \tilde{\rho}}{\partial t} = \frac{1}{\tilde{\rho}} \tilde{\rho} = 1, \tag{31}$$

$$\frac{\partial \tilde{g}}{\partial x} = \frac{\partial \ln \tilde{\rho}}{\partial x} = \frac{1}{\tilde{\rho}} \frac{\partial \tilde{\rho}}{\partial x},\tag{32}$$

$$\frac{\partial \tilde{u}}{\partial t} = -2\pi \sin(2\pi t) \sin\left(\frac{\pi x^2}{100}\right),\tag{33}$$

$$\frac{\partial \tilde{u}}{\partial x} = \frac{1}{50} \pi x \cos(2\pi t) \cos\left(\frac{\pi x^2}{100}\right),\tag{34}$$

$$\frac{\partial^2 \tilde{u}}{\partial x^2} = -\frac{\pi \cos(2\pi t)(\pi x^2 \sin\left(\frac{\pi x^2}{100}\right) - 50\cos\left(\frac{\pi x^2}{100}\right))}{2500}.$$
 (35)

Таким образом, дифференциальная задача для системы (2) с начальными и граничными условиями

$$\widetilde{g}(0,x) = \ln \widetilde{\rho}(0,x) = \ln \left(\cos \left(\frac{\pi x}{10} \right) + \frac{3}{2} \right) \tag{36}$$

$$\widetilde{u}(0, x) = \sin\left(\frac{\pi x^2}{100}\right),\tag{37}$$

$$\widetilde{u}(t,0) = \widetilde{u}(t,10) = 0 \tag{38}$$

имеет гладкое точное решение в области Q, задаваемое функциями (25).

5.2 Численные эксперименты

Далее приведены таблицы значений норм разности между разностным решением и точным решением дифференциальной задачи на последнем временном слое, то есть величины

$$\max_{0 \le m \le M} |V_m^N - \widetilde{u}(T, mh)|$$

И

$$\max_{0 \le m \le M} |G_m^N - \ln \widetilde{\rho}(T, mh)|.$$

Для

$$(\mu,C) \in \{10^{-1},10^{-2},10^{-3}\} \times \{10^0,10^1,10^2\}$$

приведены таблицы ошибок для

$$(\tau,h) \in \{10^{-1},10^{-2},10^{-3},10^{-4}\} \times \{10^{-1},10^{-2},10^{-3},10^{-4}\}.$$

5.2.1 Таблицы невязок для V и G

τ	10-1	10^{-2}	10^{-3}	10^{-4}
10^{-1}	2.577949e-02	2.586175e-02	2.590140e-02	2.590563e-02
10^{-2}	2.414998e-03	9.279415e-04	8.829961e-04	8.787823e-04
10^{-3}	8.472780e-04	1.427309e-04	9.096075e-05	8.769499e-05
10^{-4}	7.920533e-04	7.907431e-05	1.417017e-05	9.100802e-06

Таблица 1: Ошибка решения для V при $\mu=10^{-1}$ и $C=10^0$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	1.333846e-01	4.380997e-01	4.432379e-01	3.058714e-01
10^{-2}	5.373812e-03	1.033365e-03	9.905004e-04	9.864567e-04
10^{-3}	9.617566e-04	1.541012e-04	1.027238e-04	9.939711e-05
10^{-4}	8.164829e-04	8.214506e-05	1.532748e-05	1.028433e-05

Таблица 2: Ошибка решения для V при $\mu=10^{-2}$ и $C=10^0$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	2.035821e-01	6.478664e+00	2.465580e+00	1.547171e+00
10^{-2}	6.002964e-03	1.184242e-02	6.865338e-01	6.904639e-01
10^{-3}	1.117078e-03	1.553268e-04	1.039397e-04	1.006035e-04
10^{-4}	8.192363e-04	8.248864e-05	1.545191e-05	1.040655e-05

Таблица 3: Ошибка решения для V при $\mu=10^{-3}$ и $C=10^{0}$

au	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	5.262096e-01	9.883792e-01	5.358459e-01	1.967240e-01
10^{-2}	1.264491e-02	7.345274e-03	6.864072e-03	6.816399e-03
10^{-3}	5.272801e-03	1.075186e-03	7.011785e-04	6.642375e-04
10^{-4}	4.564996e-03	4.693511e-04	1.056973e-04	6.978926e-05

Таблица 4: Ошибка решения для V при $\mu=10^{-1}$ и $C=10^1$

au	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	4.363608e+00	6.850004e+00	6.905770e+00	1.556477e+00
10^{-2}	1.281125e-02	1.963452e+00	1.971997e+00	1.252005e+00
10^{-3}	5.348952e-03	1.060942e-03	6.800624e-04	6.424599e-04
10^{-4}	4.651389e-03	4.738596e-04	1.041666e-04	6.766549e-05

Таблица 5: Ошибка решения для V при $\mu=10^{-2}$ и $C=10^1$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	1.468259e+01	nan	nan	nan
10^{-2}	1.290475e-02	3.041972e+01	1.787922e+00	1.633099e+01
10^{-3}	5.358679e-03	1.059580e-03	3.320627e+00	3.575262e+00
10^{-4}	4.664115e-03	4.744311e-04	1.040229e-04	6.745121e-05

Таблица 6: Ошибка решения для V при $\mu=10^{-3}$ и $C=10^1$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}			9.101019e+00	
10^{-2}	1.176306e-01	6.895906e+00	5.075279e+00	6.123607e+00
10^{-3}	2.168065e-03	3.275625e-03	3.697521e-03	3.742561e-03
10^{-4}	4.977892e-03	2.248432e-04	3.264923e-04	3.702792e-04

Таблица 7: Ошибка решения для V при $\mu=10^{-1}$ и $C=10^2$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	4.681810e+01	nan	nan	nan
10^{-2}	3.141496e+00	2.584578e+01	nan	2.313226e+01
10^{-3}	2.331215e-03	1.191842e+00	5.996876e+01	3.364273e+01
10^{-4}	4.986877e-03	2.253180e-04	3.294441e-04	3.729729e-04

Таблица 8: Ошибка решения для V при $\mu=10^{-2}$ и $C=10^2$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	4.624397e+01	nan	nan	nan
10^{-2}	3.503119e+00	6.127547e+01	nan	nan
10^{-3}	2.539817e-03	3.112217e+00	nan	1.607948e+02
10^{-4}	4.989636e-03	2.253679e-04	1.819889e+00	3.677191e+01

Таблица 9: Ошибка решения для V при $\mu=10^{-3}$ и $C=10^2$

au	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	7.432376e-02	8.634592e-02	8.335608e-02	8.300559e-02
10^{-2}	5.527488e-03	4.144944e-03	4.101515e-03	4.098021e-03
10^{-3}	2.046981e-03	3.098676e-04	3.853028e-04	3.931512e-04
10^{-4}	2.035699e-03	2.091203e-04	2.952251e-05	3.827968e-05

Таблица 10: Ошибка решения для G при $\mu=10^{-1}$ и $C=10^0$

au	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	1.915069e-01	1.681237e+00	1.677827e+00	4.451064e+00
10^{-2}	3.513441e-03	1.108249e-03	1.208339e-03	1.218153e-03
10^{-3}	1.944326e-03	2.031958e-04	1.140469e-04	1.249254e-04
10^{-4}	1.963091e-03	1.997184e-04	2.040278e-05	1.143923e-05

Таблица 11: Ошибка решения для G при $\mu=10^{-2}$ и $C=10^0$

au	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	2.345600e-01	1.221152e+02	8.400620e+01	1.209790e+02
10^{-2}	5.537675e-03	1.375263e-02	1.183717e+01	1.651247e+01
10^{-3}	1.936159e-03	2.070773e-04	3.496344e-05	4.658347e-05
10^{-4}	1.957270e-03	1.990654e-04	1.967356e-05	3.564331e-06

Таблица 12: Ошибка решения для G при $\mu=10^{-3}$ и $C=10^0$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	1.802324e-01	1.488887e+00	2.645395e+00	5.541645e+00
10^{-2}	1.834360e-03	2.559507e-03	2.672476e-03	2.684146e-03
10^{-3}	9.577341e-04	1.451214e-04	2.641596e-04	2.764911e-04
10^{-4}	1.041501e-03	1.371666e-04	1.412843e-05	2.650051e-05

Таблица 13: Ошибка решения для G при $\mu=10^{-1}$ и $C=10^1$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
1	3.339573e+00	3.269511e+01	7.630100e+01	7.985746e+01
10^{-2}	2.185632e-03	4.924146e+00	1.124325e+01	1.435170e+01
10^{-3}	8.826762e-04	1.265606e-04	1.919999e-04	2.049214e-04
10^{-4}	1.029862e-03	1.288072e-04	1.296340e-05	1.930505e-05

Таблица 14: Ошибка решения для G при $\mu=10^{-2}$ и $C=10^1$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
_	3.713829e+00	nan	nan	nan
10^{-2}	3.023267e-03	5.235131e+01	2.128713e+01	3.958393e+02
10^{-3}	8.668917e-04	1.277717e-04	1.740556e+00	2.373824e+01
10^{-4}	1.027743e-03	1.252600e-04	1.306837e-05	1.923753e-05

Таблица 15: Ошибка решения для G при $\mu=10^{-3}$ и $C=10^1$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	4.228364e+01	1.529507e+02	1.218243e+02	8.826958e+01
10^{-2}	2.104658e-02	1.391198e+01	1.649577e+01	7.151080e+01
10^{-3}	1.635896e-03	7.304479e-04	6.901342e-04	6.865977e-04
10^{-4}	1.015371e-03	1.124458e-04	7.225997e-05	6.873598e-05

Таблица 16: Ошибка решения для G при $\mu=10^{-1}$ и $C=10^2$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	6.026463e+01	nan	nan	nan
10^{-2}	4.993772e-01	3.137353e+01	nan	1.187584e+02
10^{-3}	1.605111e-03	1.698761e-01	1.087686e+02	9.239004e+01
10^{-4}	9.932373e-04	1.074555e-04	6.922615e-05	6.588550e-05

Таблица 17: Ошибка решения для G при $\mu=10^{-2}$ и $C=10^2$

τ	10^{-1}	10^{-2}	10^{-3}	10^{-4}
10^{-1}	7.928406e+01	nan	nan	nan
10^{-2}	5.432468e-01	1.127722e+03	nan	nan
$ 10^{-3} 1.63$	1.639323e-03	3.397399e-01	nan	6.880815e+04
10^{-4}	9.888332e-04	1.064398e-04	2.106819e-01	2.933330e+01

Таблица 18: Ошибка решения для G при $\mu=10^{-3}$ и $C=10^2$

5.2.2 Вывод

Из вида таблиц можем заметить что сходимость имеет порядок $\tau+h$ и при уменьшении μ и увеличении C получаем условие на сходимость $\tau < h$, то есть программа работает правильно.

6 Тесты с негладкими начальными данными

6.1 Постановка задачи

Пусть $\Omega_x = [0; 10]$. Для системы (1) зададим две задачи: Первая

$$\rho(0, x) = \begin{cases} 2, & \text{если } x \in [4.5; 5.5] \\ 1, & \text{иначе,} \end{cases}$$

$$u(0, x) \equiv 0, \quad x \in [0; 10],$$

$$u(t, 0) = u(t, 10) = 0, \quad t \in [0, T],$$
 (39)

Вторая

$$u(0, x) = \begin{cases} 1, & \text{если } x \in [4.5; 5.5] \\ 0, & \text{иначе,} \end{cases}$$

$$\rho(0, x) \equiv 1, \quad x \in [0; 10],$$

$$u(t, 0) = u(t, 10) = 0, \quad t \in [0, T].$$

$$(40)$$

Положим также $f \equiv 0$ и $f_0 \equiv 0$.

Суть эксперимента состоит в решении задач (39) и (40), причем вычисления следует проводить до момента времени $T=N_0\tau$, для которого

$$||V^{N_0}|| = \max_{0 \le m \le M} |V_m^{N_0}| \le \varepsilon,$$
 (41)

где величина ε является достаточно малой и определяется опытным путем.

6.2 Численные эксперименты

Возьмем $\varepsilon = 10^{-3}$, $\tau = 10^{-4}$, $h = 10^{-2}$.

6.2.1 Точность

Проведем рассчет для $(\mu, C) = \{0.1, 0.01\} \times \{1, 10\}.$

Далее приведены таблицы значений $\|V^n\|$ для $n=N_0/4,\,N_0/2,\,3N_0/4,\,N_0$ (в каждой ячейке таблицы приведены значения сверху вниз для сеток $\Omega_{\tau,h},\,\Omega_{\tau,h/2},\,\Omega_{\tau/2,h}$ и, соответственно, $\Omega_{\tau/2,h/2}$).

Для первого уравнения:

μ	$T = N_0 \tau$	$n = N_0/4$	$n = N_0/2$	$n = 3N_0/4$	$n = N_0$
	129.2153	9.434600e-02	1.754036e-02	2.665654e-02	9.995354e-04
$ _{10^{-1}}$	129.2078	9.449296e-02	1.781733e-02	2.673925e-02	9.996555e-04
10	129.2151	9.435469e-02	1.754504e-02	2.665869e-02	9.996931e-04
	129.2076	9.450192e-02	1.782200e-02	2.674147e-02	9.998503e-04
	863.274	3.614518e-02	1.276000e-02	4.850238e-03	9.999873e-04
10^{-2}	868.2175	2.601603e-02	9.098932e-03	7.917108e-03	9.997983e-04
10	863.2725	3.614758e-02	1.253112e-02	4.693990e-03	9.999779e-04
	868.2158	2.554536e-02	9.106865e-03	8.004545e-03	9.999561e-04

Таблица 19: Точности решения для при $p(\rho) = 10^0 \rho$

μ	$T = N_0 \tau$	$n = N_0/4$	$n = N_0/2$	$n = 3N_0/4$	$n = N_0$
	148.1726	1.336348e-01	3.295892e-02	2.943771e-02	9.992338e-04
10^{-1}	148.1645	1.331856e-01	3.382768e-02	2.951277e-02	9.988508e-04
10	148.172	1.255002e-01	3.300902e-02	2.874029e-02	9.994906e-04
	148.16385	1.250180e-01	3.387983e-02	2.875919e-02	9.998980e-04
	856.4445	2.704625e-02	8.865315e-03	8.314911e-03	9.998447e-04
10^{-2}	864.3152	1.681961e-02	1.195260e-02	7.744877e-03	9.996560e-04
10	856.4409	2.695325e-02	8.915846e-03	8.301453e-03	9.999198e-04
	864.3107	1.549090e-02	1.260999e-02	7.408520e-03	9.997919e-04

Таблица 20: Точности решения для при $p(\rho) = 10^1 \rho$

Для второго уравнения:

μ	$T = N_0 \tau$	$n = N_0/4$	$n = N_0/2$	$n = 3N_0/4$	$n = N_0$
	414.3975	3.414293e-02	2.533627e-02	1.675282e-02	9.998705e-04
10^{-1}	414.3701	3.391942e-02	2.553798e-02	1.670436e-02	9.998679e-04
10	414.3966	3.413592e-02	2.534242e-02	1.675141e-02	9.998863e-04
	414.36915	3.391211e-02	2.554434e-02	1.670286e-02	9.999368e-04
	1913.6808	1.659627e-02	6.656796e-03	3.139787e-03	9.999873e-04
10^{-2}	2062.5864	1.307032e-02	4.587600e-03	5.561677e-03	9.999723e-04
10	1913.63775	1.667093e-02	6.723436e-03	3.192918e-03	9.999799e-04
	2072.5457	1.673173e-02	7.676624e-03	3.590439e-03	9.999861e-04

Таблица 21: Точности решения для при $p(\rho) = 10^0 \rho$

μ	$T = N_0 \tau$	$n = N_0/4$	$n = N_0/2$	$n = 3N_0/4$	$n = N_0$
	409.4507	4.001341e-02	2.437112e-02	1.736041e-02	9.998048e-04
10^{-1}	409.448	3.998251e-02	2.443228e-02	1.734478e-02	9.993184e-04
10	409.44985	3.851357e-02	2.438688e-02	1.773916e-02	9.999593e-04
	409.4471	3.848470e-02	2.444858e-02	1.772593e-02	9.996800e-04
	1936.8497	1.565960e-02	6.046867e-03	2.884671e-03	9.998461e-04
10^{-2}	1936.7269	1.509513e-02	5.596851e-03	2.532314e-03	9.998536e-04
10	1936.801	1.543854e-02	5.872685e-03	2.745491e-03	9.999253e-04
	1939.83095	9.132298e-03	6.390909e-03	5.004498e-03	9.999564e-04

Таблица 22: Точности решения для при $p(\rho) = 10^1 \rho$

6.2.2 Вывод

Из приведенных выше таблиц видно, что время стабилизации T не зависит от размеров сетки. А зависит от параметра μ (при уменьшении параметра T возрастает и наоборот) и C (при уменьшении параметра T убывает и наоборот).

6.2.3 Консервативность

Для проверки консервативности системы определим массу газа на шаге n

$$m(n) = h \sum_{m=0}^{M} H_m^n = h \sum_{m=0}^{M} \exp(G_m^n)$$
(42)

и введем функцию

$$\Delta_m(n) = \frac{m(n) - m(0)}{m(0)}. (43)$$

Зафиксируем $\epsilon=10^{-3},~\tau=10^{-4}$ и $h=10^{-2}$. Далее приведены таблицы значений $\Delta_m(n)$ для $n=N_0/5,~2N_0/5,~3N_0/5,~4N_0/5,~N_0$ (в каждой ячейке таблицы приведены значения для сеток $\Omega_{\tau,h},~\Omega_{\tau,h/2},~\Omega_{\tau/2,h}$ и, соответственно, $\Omega_{\tau/2,h/2}$).

Для первого уравнения:

μ	$n = N_0/5$	$n = 2N_0/5$	$n = 3N_0/5$	$n = 4N_0/5$	$n = N_0$
10^{-1}	-1.075894e-03	-1.146532e-03	-1.153598e-03	-1.117868e-03	-1.154849e-03
10	-6.009777e-04	-6.366723e-04	-6.407191e-04	-6.227387e-04	-6.413739e-04
	-1.069289e-03	-1.136156e-03	-1.143875e-03	-1.107253e-03	-1.144217e-03
	-5.926120e-04	-6.260937e-04	-6.303730e-04	-6.119146e-04	-6.305297e-04
10^{-2}	-9.419992e-03	-9.460160e-03	-9.471136e-03	-9.464985e-03	-9.458717e-03
10	-5.257012e-03	-5.277447e-03	-5.272185e-03	-5.272020e-03	-5.275993e-03
	-9.344198e-03	-9.382931e-03	-9.393925e-03	-9.387533e-03	-9.381258e-03
	-5.167492e-03	-5.186698e-03	-5.180884e-03	-5.181066e-03	-5.185018e-03

Таблица 23: Разность масс при $p(\rho)=10^0 \rho$

μ	$n = N_0/5$	$n = 2N_0/5$	$n = 3N_0/5$	$n = 4N_0/5$	$n = N_0$
10^{-1}	-3.390392e-03	-3.462676e-03	-3.451834e-03	-3.447374e-03	-3.457346e-03
10	-1.883848e-03	-1.92222e-03	-1.916833e-03	-1.914916e-03	-1.919925e-03
	-3.295556e-03	-3.367169e-03	-3.354457e-03	-3.350491e-03	-3.359873e-03
	-1.783489e-03	-1.820418e-03	-1.813906e-03	-1.812192e-03	-1.816886e-03
10^{-2}	-2.348579e-02	-2.349894e-02	-2.350285e-02	-2.350469e-02	-2.350536e-02
10	-1.498895e-02	-1.498742e-02	-1.499152e-02	-1.499056e-02	-1.498940e-02
	-2.308888e-02	-2.310112e-02	-2.310497e-02	-2.310681e-02	-2.310759e-02
	-1.436953e-02	-1.436677e-02	-1.437069e-02	-1.436964e-02	-1.436852e-02

Таблица 24: Разность масс при $p(\rho) = 10^1 \rho$

Рис. 1: Графики функций Δ_m для $C=10^0$ и $\mu=10^{-1}$

Рис. 2: Графики функций Δ_m для $C=10^0$ и $\mu=10^{-2}$

Рис. 3: Графики функций Δ_m для $C=10^1$ и $\mu=10^{-1}$

Рис. 4: Графики функций Δ_m для $C=10^1$ и $\mu=10^{-2}$

Для второго уравнения:

μ	$n = N_0/5$	$n = 2N_0/5$	$n = 3N_0/5$	$n = 4N_0/5$	$n = N_0$
10^{-1}	-9.116838e-04	-9.525263e-04	-9.499064e-04	-9.450550e-04	-9.470121e-04
10	-4.879172e-04	-5.087674e-04	-5.074312e-04	-5.050476e-04	-5.060470e-04
	-8.983879e-04	-9.385711e-04	-9.355987e-04	-9.307239e-04	-9.326722e-04
	-4.738134e-04	-4.941740e-04	-4.926266e-04	-4.902190e-04	-4.912092e-04
10^{-2}	-6.419702e-03	-6.431478e-03	-6.432198e-03	-6.429035e-03	-6.430512e-03
10	-4.167015e-03	-4.173728e-03	-4.173770e-03	-4.172541e-03	-4.173296e-03
	-6.341155e-03	-6.352973e-03	-6.353585e-03	-6.350383e-03	-6.351864e-03
	-4.063349e-03	-4.064627e-03	-4.066601e-03	-4.066405e-03	-4.066479e-03

Таблица 25: Разность масс при $p(\rho)=10^0\rho$

μ	$n = N_0/5$	$n = 2N_0/5$	$n = 3N_0/5$	$n = 4N_0/5$	$n = N_0$
10^{-1}	-1.252736e-04	-1.205400e-04	-1.183545e-04	-1.173125e-04	-1.168883e-04
10	-7.637085e-05	-7.433042e-05	-7.331030e-05	-7.281368e-05	-7.260989e-05
	-1.145084e-04	-1.085886e-04	-1.062163e-04	-1.051503e-04	-1.047698e-04
	-6.475016e-05	-6.194834e-05	-6.079765e-05	-6.027603e-05	-6.008884e-05
10^{-2}	-7.964701e-04	-7.973383e-04	-7.972517e-04	-7.972691e-04	-7.972977e-04
10	-5.857043e-04	-5.861930e-04	-5.863718e-04	-5.864133e-04	-5.864297e-04
	-7.229375e-04	-7.234099e-04	-7.234872e-04	-7.234790e-04	-7.234847e-04
	-4.924389e-04	-4.914842e-04	-4.915250e-04	-4.921230e-04	-4.918783e-04

Таблица 26: Разность масс при $p(\rho) = 10^1 \rho$

Рис. 5: Графики функций Δ_m для $C=10^0$ и $\mu=10^{-1}$

16

Рис. 7: Графики функций Δ_m для $C=10^1$ и $\mu=10^{-1}$

6.2.4 Вывод

Потери массы не превышают 2%. При этом есть линейная зависимость $\Delta_m(n)$ от h.

6.2.5 Динамика

Рассмотрим случай $\mu=0.1,\ p(\rho)=10^0\rho,\ \tau=h=10^{-2},\ \varepsilon=10^{-3}$ и приведем срезы графиков V и G (динамика процесса) в разные моменты времени. Для первой задачи:

Для второй задачи:

6.2.6 Цикличность

Для изучения зависимости периода от параметра μ рассмотрим графики V и G для $T=10000\tau$ при различных его значениях.

Графики G первого уравнения:

Графики V второго уравнения:

Графики G второго уравнения:

6.2.7 Вывод

Увеличение параметра C уменьшает период колебаний. Уменьшение параметра μ ведет к уменьшению скорости затухания. Это выражается в более четких рисунках.

6.2.8 Время стабилизации

Зафиксируем $\varepsilon=10^{-3},~\tau=10^{-4}$ и $h=10^{-2}$. Далее приведены таблицы зависимости времени стабилизации от параметров дифференциальной задачи и от выбора сетки (в каждой ячейке таблицы приведены значения $N_0\tau$ для сеток $\Omega_{\tau,h},~\Omega_{\tau,h/2},~\Omega_{\tau/2,h}$ и, соответственно, $\Omega_{\tau/2,h/2}$).

Первая задача:

p	$10^{0}\rho$	$10^{1}\rho$	$10^{2}\rho$	
μ	- ° F	° <i>F</i>	- ° <i>F</i>	
10^{-1}	129.2153	148.1726	149.8314	
10^{-1}	129.2078	148.1645	150.3258	
10^{-1}	129.2151	148.172	149.8298	
10^{-1}	129.2076	148.1638	150.3241	
10^{-2}	863.274	856.4445	845.8669	
10^{-2}	868.2175	864.3152	856.3486	
10^{-2}	863.2725	856.4409	846.8614	
10^{-2}	868.2158	864.3107	855.8407	
10^{-3}	2883.516	2894.754	2936.479	
10^{-3}	2898.324	4 2883.601 2909.4		
10^{-3}	2883.51	2894.746	2918.469	
10^{-3}	2898.315	2883.587	2890.942	

Вторая задача:

$p \over \mu$	$10^{0}\rho$	$10^1 \rho$	$10^2 \rho$	
10^{-1}	414.3975	409.4507	408.495	
10^{-1}	414.3701	409.448	408.4947	
10^{-1}	414.3966	409.4499	408.4941	
10^{-1}	414.3692	409.4486	408.4943	
10^{-2}	2769.627	2365.4045	2313.869	
10^{-2}	2771.175	2395.352	2373.3486	
10^{-2}	2769.224	2365.4519	2316.864	
10^{-2}	2771.238	2395.307	2373.8407	
10^{-3}	9252.56	9320.398	8039.79	
10^{-3}	9342.374	9252.851	7993.47	
10^{-3}	9252.517	9320.946	8001.549	
10^{-3}	9342.35	9252.671	7890.782	

6.2.9 Вывод

Уменьшение параметра μ или увеличение C влияют на увеличение врямени стабилизации. C влияет незначительно.

7 Задача о стабилизации осциллирующей функции

7.1 Постановка задачи

Пусть $\Omega = [0; T] \times [0; 1]$. Для системы (1) зададим две задачи, начальные и граничные условия которых определяются следующим образом:

$$\begin{cases} \tilde{g}(0,x) &= \ln(2 + \sin(N\pi x)); \\ \tilde{u}(0,x) &= 0; \\ \tilde{u}(t,0) &= \tilde{u}(t,1) = 0; \end{cases}$$
(44)

И

$$\begin{cases} \tilde{g}(0,x) &= 0; \\ \tilde{u}(0,x) &= \sin(N\pi x); \\ \tilde{u}(t,0) &= \tilde{u}(t,1) = 0; \end{cases}$$
(45)

где N натуральное число. Для численных экспериментов желательно брать из диапозона от 1 до $\frac{1}{10h}$. Положим также $f\equiv 0$ и $f_0\equiv 0$.

Суть эксперимента состоит в решении задач (44) и (45), причем вычисления следует проводить до момента времени $N_0\tau$, для которого

$$||V^{N_0}|| = \max_{0 \le m \le M} |V_m^{N_0}| \le \varepsilon,$$
 (46)

где величина ε является достаточно малой и определяется опытным путем.

7.2 Численные эксперименты

Для анализа зависимости времени стабилизации от параметров дифференциальной задачи достаточно рассмотреть

$$(\mu,C) \in \{10^{-1},10^{-2}\} \times \{10^0,10^1\}.$$

7.2.1 Время стабилизации

Зафиксируем $\varepsilon=10^{-3},~\tau=10^{-4}$ и $h=10^{-2}$. Далее приведены таблицы зависимости времени стабилизации $T=N_0\tau$ от параметров $\mu,\,C$ и N. Для первой задачи:

N	$\mu = 0.1$ и $p(\rho) = 10^0 \rho$	$\mu = 0.1$ и $p(\rho) = 10^1 \rho$	$\mu = 0.01$ и $p(\rho) = 10^0 \rho$	$\mu = 0.01$ и $p(ho) = 10^1 ho$
1	2.5192	3.6438	27.0308	28.0103
2	11.0383	12.6573	83.0179	81.6222
3	2.5465	3.4969	25.5682	25.1784
4	8.0246	10.7596	70.0295	69.6028
5	1.5116	2.687	22.971	24.3494
6	6.0184	9.8106	67.0402	68.3466
7	1.0046	2.2122	19.4579	23.545
8	5.0125	8.8608	65.0429	68.3455
9	1.0022	1.8965	16.4645	22.4353
10	4.0096	8.2266	63.0396	68.346

Для второй задачи:

N	$\mu = 0.1$ и $p(\rho) = 10^0 \rho$	$\mu = 0.1$ и $p(\rho) = 10^1 \rho$	$\mu = 0.01$ и $p(\rho) = 10^0 \rho$	$\mu = 0.01$ и $p(\rho) = 10^1 \rho$
1	6.462	6.4791	47.3837	47.5902
2	1.7679	1.5036	13.703	13.3638
3	0.501	0.6877	6.4772	6.1717
4	0.7091	0.3583	3.6144	3.6036
5	0.3895	0.2239	2.4959	2.3157
6	0.436	0.1886	1.7507	1.6153
7	0.4673	0.1158	1.3616	1.1601
8	0.4675	0.103	0.9427	0.8979
9	0.4604	0.1317	0.9545	0.6937
10	0.4486	0.1203	0.6589	0.53

7.2.2 Вывод

При четных N скорость сходимости в несколько раз больше, чем при нечетных. Уменьшение μ многократно увеличивает скорость сходимости. Увеличение C незначительно повышает скорость сходимости.

8 Задача "протекания"

8.1 Постановка задачи

Пусть $\Omega_x = [0; X]$, где X = 10. Для системы (1) заменим уравнение

$$u(t, X) = 0 (47)$$

на

$$\left. \frac{\partial u}{\partial x} \right|_{x=X} = 0,\tag{48}$$

и зададим начальные и граничные условия следующим образом:

$$\begin{cases}
g(0,x) = 0; \\
u(0,x) = 0; \\
g(t,0) = \ln(\tilde{\rho}); \\
u(t,0) = \tilde{v},
\end{cases} (49)$$

где $\widetilde{\rho} \geq 1$ и $\widetilde{v} > 0$. Положим также $f \equiv 0$ и $f_0 \equiv 0$.

Зафиксируем положительную контанту T_0 такую, что $k = T_0/\tau$ натуральное. Суть эксперимента состоит в решении задачи (49), причем вычисления следует проводить до момента времени $N_0k\tau$, для которого

$$||V^{N_0k} - V^n|| = \max_{0 \le m \le M} |V_m^{N_0k} - V_m^n| \le \varepsilon$$
 (50)

для всех $n \in \{N_0(k-1), N_0(k-1)+1, \ldots, N_0k-1\}$, где величина ε является достаточно малой и определяется опытным путем.

8.2 Разностная схема

Для решения данной задачи необходимо модифицировать схему. Первое уравнение системы (2)

$$\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial x} + \frac{\partial u}{\partial x} = f_0 \tag{51}$$

в силу условия (48) при x = X первое уравнение системы (2) принимает вид

$$\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial x} = f_0. {(52)}$$

Для численных экспериментов этому равенству в разностной схеме сопоставим уравнение

$$G_t + V\widehat{G}_{\overline{x}} = f_0. (53)$$

Распишем данное уравнение:

$$\frac{G_M^{n+1} - G_M^n}{\tau} + V_M^n \frac{G_M^{n+1} - G_{M-1}^{n+1}}{h} = (f_0)_M^n$$
 (54)

$$\left(-\frac{V_M^n}{h}\right)G_{M-1}^{n+1} + \left(\frac{1}{\tau} + \frac{V_M^n}{h}\right)G_M^{n+1} = (f_0)_M^n + \frac{G_M^n}{\tau}.$$
 (55)

Аналогично уравнение

$$V_M^{n+1} = 0 (56)$$

заменяется на

$$\widehat{V}_{\overline{x}} = 0, \tag{57}$$

то есть

$$V_M^{n+1} - V_{M-1}^{n+1} = 0. (58)$$

8.3 Численные эксперименты

Для анализа зависимости времени стабилизации от параметров $\widetilde{g}=\ln\widetilde{\rho}$ и \widetilde{v} зафиксируем $\varepsilon=10^{-3},~\tau=10^{-4},~h=10^{-2},~T_0=0.1$ и $\mu=10^{-1}$. Далее приведены таблицы зависимости времени стабилизации от параметров \widetilde{g} и \widetilde{v} .

$egin{array}{c} ilde{v} \ ilde{g} \end{array}$	1	2	3	4
1	517.5	14.5	7.3	4.9
2	711.6	12.0	6.1	4.2
3	709.3	11.8	5.9	3.9
4	708.7	11.7	5.9	3.9

Таблица 27: Время сходимости для $p(\rho) = 10^{0} \rho$

8.3.1 Вывод

Увеличение параметра \tilde{g} увеличивает время стабилизации. Увеличение параметра \tilde{v} уменьшает время стабилизации.

8.3.2 Динамика процесса

Рассмотрим случай $\mu=0.1,\ p(\rho)=C\rho,\ \tau=10^{-3},\ h=10^{-2},\ \epsilon=10^{-3},\ \widetilde{v}=1,\ \widetilde{g}=1.$ Далее приведены срезы графиков V и G (динамика процесса) в разные моменты времени.

Графики V и G.

