

Data Sheet

Description

The HSDL-4261 Infrared emitter was designed for applications that require high power, low forward voltage and high speed. It utilizes Aluminum Galium Arsenide (AlGaAs) LED technology and is optimized for speed and efficiency at emission wavelengths of 870nm. The material used produces high radiant efficiency over a wide range of currents. The emitter is packaged in clear T-1¾ (5mm) package.

Features

- · Very High Power AlGaAs LED Technology
- 870nm Wavelength
- T-1¾ Package
- Low Cost
- Low Forward Voltage: 1.4V at 20mA
- · High Speed: 15ns Rise Times

Applications

- · Industrial IR Equipments
- IR Portable Instruments
- Consumer Electronics (Optical mouse etc)
- High Speed IR Communications (IR LANs, IR Modems, IR Dongles etc)
- IR Audio
- IR Telephones

	Lead Form	Shipping Option		
HSDL-4261	Straight	Bulk		

Absolute Maximum Ratings at 25°C

Parameter	Symbol	Min.	Max	Unit	Reference	
DC Forward Current	I_{FDC}	-	100	mA	[1], Fig. 2	
Power Dissipation	P _{DISS}	-	190	mW		
Reverse Voltage	V _R	5	-	V		
Operating Temperature	T _O	-40	70	°C		
Storage Temperature	T _S	-40	100	°C		
LED Junction Temperature	TJ	-	110	°C		
Lead Soldering Temperature		-	260 for 5 sec	°C		

Notes

Electrical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Reference
Forward Voltage	V _F	-	1.4 1.7	1.5 1.9	V	I _{FDC} =20mA I _{FDC} =100mA	Fig. 2 Fig. 3
Forward VoltageTemperature Coefficient	DV/DT	-	-1.5 -1.3	-	mV/°C	I _{FDC} =20mA I _{FDC} =100mA	Fig. 4
Series Resistance	R _S	-	4.1	-	Ohms	I _{FDC} =100mA	
Diode Capacitance	CO	-	80	-	pF	0V, 1MHz	
Reverse Voltage	V _R	3	14	-	V	I _R =100uA	
Thermal Resistance, Junction to Ambient	Rq _{ja}	-	280	-	°C/W		

Optical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition Refere	ence
Radiant Optical Power	P _O	-	9 45	-	mW	I _{FDC} =20mA I _{FDC} =100mA	
Radiant On-Axis Intensity	ΙE	-	36 180	-	mW/Sr	I _{FDC} =20mA Fig. 5 I _{FDC} =100mA	
Radiant On-Axis Intensity Temperature Coefficient	DI _E /DT	-	-0.22	-	%/°C	I _{FDC} =100mA	
Viewing Angle	2q _{1/2}	-	26	-	deg	I _{FDC} =20mA Fig. 7	
Peak wavelength	I_{PK}	-	870	-	nm	I _{FDC} =20mA Fig. 1	
Peak wavelength Temperature Coefficient	DI/DT	-	0.18	-	nm/°C	I _{FDC} =20mA	
Spectral Width	DI	-	47 52	-	nm	I _{FDC} =20mA Fig. 1 I _{FDC} =100mA	
Optical Rise and Fall Time	t _r /t _f	-	15	-	ns	I _{FPK} =500mA Duty Factor=33% Pulse Width=125ns	
Bandwidth	f _c	-	23	-	MHz		

^{1.} Derate as shown in Figure 6.

Figure 1. Relative Radiant Intensity vs. Wavelength

Figure 3. Peak Forward Current vs. Forward Voltage

Figure 5. Relative Radiant Intensity vs. DC Forward Current

Figure 2. DC Forward Current vs. Forward Voltage

Figure 4. Forward Voltage vs. Ambient Temperature

Figure 6. DC Forward Current vs. Ambient Temperature
Derated Based on TJMAX=110°C

Figure 7. Radiant Intensity vs. Angular Displacement