A Review on Intersection Management Systems and recent IoT Integrated Approaches

1st Gustavo Velasco-Hernandez

School of Electrical and Electronics Engineering

Universidad del Valle

Cali, Colombia

velasco.gustavo@correounivalle.edu.co

2nd Eduardo Caicedo-Bravo

School of Electrical and Electronics Engineering

Universidad del Valle

Cali, Colombia

eduardo.caicedo@correounivalle.edu.co

Abstract—This document is a model and instructions for LaTeX. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

I. Introduction

This document is a model and instructions for LATEX. Please observe the conference page limits.

II. INTERSECTION MANAGEMENT SYSTEMS

Intelligent Transportation Systems includes a wide range of applications and services transversal to many knowledge areas. For classifying those services, some taxonomies have been proposed like the ones presented in [1, Ch.1] and [2]. From described categories and classes, Advanced Traffic Management Systems have to be considered when an intelligent handling of traffic needs to be deployed.

One of the most desirable scenarios to improve efficiency and safety is an intersection. This because intersections are places where vehicles arrive from different directions at different velocities, increasing the chances for incidents and crashes. Choi [3] states that 40% of reported traffic accidents in the US, were intersection related. Also, in [4], is reported that for Colombia in 2011, most of the accidents in the main cities were at intersections.

Different types of applications and systems are conceived to address these issues. Some tasks performed by those systems are intersection monitoring, vehicles detection, incident warning, collision avoidance, among others. A typical Intersection Management System is composed by three main components: Data source, that could be infrastructure sensors, like inductive loops, range sensors or cameras, and vehicle sensors and traveling data; decision system, which is the core of the whole system, is in charge of analyse and process information provided by infrastructure, vehicles and authorities in order to identify objects, recognise patterns, predict future incidents, control traffic and generate safe decisions and warnings alerts; and finally, is the presentation and displaying of the output of decision system, through infrastructure using dynamic signals, traffic light controlling, or using direct communication with drivers or vehicles through on-board visualisation/notification

system. A block diagram of a generic IMS is presented in figure 1

Fig. 1. Generic block diagram of an Intersection Management System.

A. Components in IMS application

Intersection monitoring is a required task to be done within intelligent transportation systems for high-level applications like traffic analysis, counting and classification of vehicles or pedestrians, event prediction, incident detection and security and surveillance systems. Those applications have to take into account some of the elements depicted in figure 1 and developments in IMS have a wide range of approaches and objectives. In order to study IMS applications, five components have been defined, which are present on these applications, and on most cases, more than one component could be involved in the same development. In figure 2 a graph is presented, showing aforementioned components and elements within them, and next, a description of each component is given.

Fig. 2. Components of an Intersection Management System application.

1) Application: Application component could be seen as the final objective of the system. Generally, this includes highlevel tasks like monitoring, analysis or control. Monitoring or surveillance systems execute actions like recognition, detection and/or tracking of objects in the scene. Other systems analyse the behaviour and interactions between detected objects to recognise path patterns, determine the context of the environment and predict some events of interest. At a higher level there are systems which make decisions based on detection of certain traffic conditions to handle traffic lights, control intersection access, generate warnings to drivers or issue traffic tickets when a rule violation exists.

- 2) Data Source: The origin of data is considered an independent component because of the variety of possible sources and posterior processing stages. From infrastructure side, data can be captured using a wide range of sensors like inductive loops, lasers, lidars and cameras. Also, monitoring connections to wireless networks. On the other side, data from vehicles is also useful for the system to enhance its representation of the scene and take decisions. This could be low-level data like vehicle state variables, for example, speed, orientation, acceleration, etc., or high-level data like travel information.
- 3) Target: In an intersection many objects of different kinds interact between them. Pedestrian and vehicles are found at intersections, and latter includes bicycles, motorcycles, cars, vans, buses, trucks and some other types of vehicles. For this reason some applications are designed for a specific element or group of elements. Pedestrian tracking, motorcycles recognition or car counting are examples of targeted applications.
- 4) Communication: One of the keypoints of ITS is how information technologies and communication advances are included in transportation. The main goal of this is to allow information sharing between vehicles and infrastructure entities. For this reason, 3 communication approaches appear: Vehicle-to-vehicle or Inter-vehicle communication (V2V), vehicle-to-infrastructure communication (V2I) and vehicle to both vehicle and infrastructure (V2X). Several protocols and standars have been proposed for these communication approaches, for example DSRC, WAVE and IEEE 802.11p, but research and development on this component is still active.
- 5) Implementation: Not all IMS applications are implementable on a real scenario, maybe because is not the scope of the application or because it is in a early stage and it could be validated in other ways. This types of developments are sometimes implemented and evaluated using simulators, making functional prototypes or deploying scale-models. Some other projects use datasets to evaluate new algorithms and data processing techniques, and then compare obtained results with previous works. Augmented reality is also used as a tool for evaluating and validate developments, taking advantage of the interaction of a real system with a simulated/artificial scenario.

B. Developments in Intersection Management Systems

In the table II-B is presented a compilation of several developments within IMS field. For each work a brief comment is given, and a remark of how certain components (Data source, communication and application) are related to it. Target and implementation components could be infered from the comment.

III. EASE OF USE

A. Maintaining the Integrity of the Specifications

The IEEEtran class file is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin measures proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the current designations.

They show an intersection monitoring system based on a fixed	Acc
camera. This system is divided in three stages: Background	
modeling, object tracking and accident detection. They propose	
an innovative feature for accident detection using HMM.	
Passive video-based system for monitoring an intersection.	Acc
They implemented Stauffer's Method for background modeling,	
PCA for oriented bounding box computation, and Graph-based	
tracking and motion estimation. Also a simple methods for	
classification and calibration are described.	
They present 4 stages for IMS: background modeling, motion	Acc
tracking, feature extraction, calibration. They propose a 2-level	pred
tracking: Blob tracking as low-level and position using Kalman	-
filter as high-level.	
A Full implementation of an IMS in a town in northern Italy.	Inte
The system claims to be independent of intersection geometry	
and it is based on a monocular camera. Processing stages of the	
system and classification approaches are described.	
	camera. This system is divided in three stages: Background modeling, object tracking and accident detection. They propose an innovative feature for accident detection using HMM. Passive video-based system for monitoring an intersection. They implemented Stauffer's Method for background modeling, PCA for oriented bounding box computation, and Graph-based tracking and motion estimation. Also a simple methods for classification and calibration are described. They present 4 stages for IMS: background modeling, motion tracking, feature extraction, calibration. They propose a 2-level tracking: Blob tracking as low-level and position using Kalman filter as high-level. A Full implementation of an IMS in a town in northern Italy. The system claims to be independent of intersection geometry and it is based on a monocular camera. Processing stages of the

IV. PREPARE YOUR PAPER BEFORE STYLING

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections IV-A–IV-E below for more information on proofreading, spelling and grammar.

Keep your text and graphic files separate until after the text has been formatted and styled. Do not number text heads—LATEX will do that for you.

M	TA	MO	P	N
method	0.79	0.59	-	-
ED []	5	7	-	-
CR	4	7	-	-
NB[]	2	75	-	-
	TA	ABLE I		

SET OF OBSERVATIONS

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.)
 English units may be used as secondary units (in parentheses). An
 exception would be the use of English units as identifiers in trade, such
 as "3.5-inch disk drive".
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m²" or "webers per square meter", not "webers/m²". Spell out units when they appear in text: "... a few henries", not "... a few H".
- appear in text: "...a few henries", not "...a few H".

 Use a zero before decimal points: "0.25", not ".25". Use "cm³", not "cc".)

C. Equations

Number equations consecutively. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in:

$$a + b = \gamma \tag{1}$$

Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(1)", not "Eq. (1)" or "equation (1)", except at the beginning of a sentence: "Equation (1) is . . ."

D. ETEX-Specific Advice

Please use "soft" (e.g., \eqref{Eq}) cross references instead of "hard" references (e.g., (1)). That will make it possible to combine sections, add equations, or change the order of figures or citations without having to go through the file line by line.

Please don't use the $\{eqnarray\}$ equation environment. Use $\{align\}$ or $\{IEEEeqnarray\}$ instead. The $\{eqnarray\}$ environment leaves unsightly spaces around relation symbols.

Please note that the {subequations} environment in LATEX will increment the main equation counter even when there are no equation numbers displayed. If you forget that, you might write an article in which the equation numbers skip from (17) to (20), causing the copy editors to wonder if you've discovered a new method of counting.

BIBT_EX does not work by magic. It doesn't get the bibliographic data from thin air but from .bib files. If you use BIBT_EX to produce a bibliography you must send the .bib files.

LATEX can't read your mind. If you assign the same label to a subsubsection and a table, you might find that Table I has been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a \label command before the command that updates the counter it's supposed to be using, the label will pick up the last counter to be cross referenced instead. In particular, a \label command should not go before the caption of a figure or a table.

Do not use \nonumber inside the {array} environment. It will not stop equation numbers inside {array} (there won't be any anyway) and it might stop a wanted equation number in the surrounding equation.

E. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum μ_0 , and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o"
- In American English, commas, semicolons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset", not an "insert". The word alternatively is preferred to the word "alternately" (unless you really mean something that alternates).
- Do not use the word "essentially" to mean "approximately" or "effectively".
- In your paper title, if the words "that uses" can accurately replace the word "using", capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect", "complement" and "compliment", "discreet" and "discrete", "principal" and "principle".
- Do not confuse "imply" and "infer".
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al.".
- The abbreviation "i.e." means "that is", and the abbreviation "e.g." means "for example".

An excellent style manual for science writers is [7].

F. Authors and Affiliations

The class file is designed for, but not limited to, six authors. A minimum of one author is required for all conference articles. Author names should be listed starting from left to right and then moving down to the next line. This is the author sequence that will be used in future citations and by indexing services. Names should not be listed in columns nor group by affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization).

G. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include Acknowledgments and References and, for these, the correct style to use is "Heading 5". Use

"figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract", will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced.

H. Figures and Tables

a) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation "Fig. 3", even at the beginning of a sentence.

TABLE II
TABLE TYPE STYLES

Table	Table Column Head				
Head	Table column subhead	Subhead	Subhead		
copy	More table copy ^a				

^aSample of a Table footnote.

Fig. 3. Example of a figure caption.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity "Magnetization", or "Magnetization, M", not just "M". If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization (A/m)" or "Magnetization $\{A[m(1)]\}$ ", not just "A/m". Do not label axes with a ratio of quantities and units. For example, write "Temperature (K)", not "Temperature/K".

ACKNOWLEDGMENT

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g". Avoid the stilted expression "one of us $(R.\ B.\ G.)$ thanks . . .". Instead, try "R. B. G. thanks . . .". Put sponsor acknowledgments in the unnumbered footnote on the first page.

REFERENCES

Please number citations consecutively within brackets [1]. The sentence punctuation follows the bracket [2]. Refer simply to the reference number, as in [3]—do not use "Ref. [3]" or "reference [3]" except at the beginning of a sentence: "Reference [3] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the abstract or reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [4]. Papers that have been accepted for publication should be cited as "in press" [5]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [6].

REFERENCES

- [1] J. M. Sussman, Perspectives on Intelligent Transportation Systems Boston, MA: Springer US, 2005. [Online]. Available: http://link.springer.com/10.1007/b101063
- [2] B. Williams, Intelligent Transport Systems Standards. Artech House, INC., 2008.
- [3] E.-H. Choi, "Crash Factors in Intersection-Related Crashes: An On-Scene Perspective," U.S. Departament of Transportation, Springfield, VA, Tech. Rep. September, 2010.
- [4] Corporación Fondo de Prevención Vial, "Anuario Estadístico de Accidentalidad Vial." Bogotá, Colombia, Tech. Rep., 2010.
- [5] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, "Traffic Monitoring and Accident Detection at Intersections," in IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, 1999.
- -, "Traffic monitoring and accident detection at intersections," IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 2, pp. 108–118, Jun. 2000. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=880968
- H. Veeraraghavan, O. Masoud, and N. Papanikolopoulos, "Vision-based Monitoring of Intersections," no. September, pp. 7-12, 2002.
- [8] H. Veeraraghavan, O. Masoud, and N. P. Papanikolopoulos, "Computer vision algorithms for intersection monitoring," IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 2, pp. 78-89, 2003.
- [9] S. Messelodi, C. M. Modena, and M. Zanin, "A computer vision system for the detection and classification of vehicles at urban road intersections," Tech. Rep., 2004.
- [10] A. Dogan, G. Korkmaz, Y. Liu, F. Ozguner, U. Ozguner, K. Redmill, O. Takeshita, and K. Tokuda, "Evaluation of intersection collision warning system using an inter-vehicle communication simulator," in 2004 IEEE Intelligent Transportation Systems Conference. Washington, D.C., USA: Ieee, 2004, pp. 1103-1108. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1399061
- [11] C.-y. Chan, D. Marco, and R. F. Station, "Traffic Monitoring at Signal-Controlled Intersections and Data Mining for Safety Applications," pp. 355-360, 2004.
- Arumugam, O. Masoud, R. Janardan, and [12] S. Atev, H. N. Papanikolopoulos, "A Vision-Based Approach to Collision Prediction at Traffic Intersections," IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 4, pp. 416-423, Dec. 2005. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1549845
- [13] C.-Y. Chan and B. Bougler, "Evaluation of cooperative roadside and vehicle-based data collection for assessing intersection conflicts," in *IEEE Proceedings. Intelligent Vehicles* Symposium, 2005. IEEE, 2005, pp. 165-170. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1505096
- A. Avila, G. Korkmaz, Y. Liu, H. Teh, E. Ekici, F. Ozguner, U. Ozguner, K. Redmill, O. Takeshita, K. Tokuda, M. Hamaguchi, S. Nakabayashi, and H. Tsutsui, "A complete simulator architecture for inter-vehicle communication intersection warning systems," in Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems. Vienna, Austria: Ieee, 2005, pp. 461–466. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1520092
- [15] H. Veeraraghavan, P. Schrater, and N. Papanikolopoulos, "Switching Kalman Filter-Based Approach for Tracking and Event Detection at Traffic Intersections," Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., pp. 1167-1172, 2005. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1467180

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.

- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.
- I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
- [4] K. Elissa, "Title of paper if known," unpublished.
 [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.

IEEE conference templates contain guidance text for composing and formatting conference papers. Please ensure that all template text is removed from your conference paper prior to submission to the conference. Failure to remove the template text from your paper may result in your paper not being published.