Homework 7

Thomas Kim tsk389 51835

David Munoz dam2989 51840

 $\ensuremath{\mathsf{CS331}}$ Algorithms and Complexity

Problem Q1(a). Prove or disprove

Claim: Consider an implementation of Ford-Fulkerson algorithm which does not create any backward edges in the residual graph. It is claimed that, there exists a constant $\alpha > 0$, such that for any flow network G, this modified implementation is guaranteed to find a flow of value at least α times the maximum-flow value in G

Problem Q1(b). Consider a network G = (V, E) with a source s, a sink t, and a capacity c_e on every edge $e \in E$.

Claim: if f is a maximum s-t flow in G, then f either saturates every edge out of s or saturates every edge into t.

False

The min cut is $A = \{s, a\}, B = \{b, t\}$. The value of this cut is 1, which implies the max flow f = 1. This does not saturate the edge leaving s or the edge entering t.

Problem Q1(c). Consider a network G = (V, E) with a source s, a sink t, and a capacity c_e on every edge $e \in E$. Let A, B be a minimum s - t cut with respect to the capacities c_e .

Claim: If we add 1 to every capacity, namely $\forall e \in E, c'_e = c_e + 1 \implies A, B$ is still a minimum s - t cut with respect to c'_e

False

Proof. Let G be the graph as pictured below:

Note that a min cut in G is $A = \{s, a, b\}, B = \{c, t\}$ with a value of 2 Now consider G'

Note that the cut $A = \{s, a, b\}$, $B = \{c, t\}$ now has a value of 4, whereas the cut $A' = \{s, a, b, c\}$, $B' = \{t\}$ has a value of 3

Problem Q2(a).

Problem Q2(b).