

芯片特性

- 集成OVP, 输入耐压高达28V
- 电池仓充电管理:
 - 充电电流电阻可设
 - 5%充电电流精度
 - 0.5%浮充电压精度
 - 自动复充
- 耳机放电管理:
 - 93% 峰值升压效率
 - 高效率电压跟随放电
 - 电池过放保护
 - 单耳输出电流高达150mA
- 集成左右耳出入仓检测及耳机满电检测
- 支持单向通信
- 7-μA超低静态功耗
- 3mm X 3mm DFN-10 封装
- RoHS Compliant and 100% Lead (Pb) Free

典型应用

TWS充电仓

描述

LP7815是一款多合一的智能TWS充电仓管理IC,集成过压保护,电池充电,耳机放电,以及单向通信等功能。 LP7815集成一个支持28V耐压的过压保护(OVP)以保护后级电路的安全。LP7815集成一路最大电流达到0.8A的线性充电电路给电池仓充电。此外,LP7815集成两路独立的耳机控制电路给左右耳机放电。当搭配专用的耳机充电电路时,LP7815支持TWS耳机以电压跟随的方式充电以支持耳机高倍率大电流充电,同时显著提升充电仓续航时长。 LP7815在耳机入仓时发送信号给主控MCU并在充电放电时周期性上报电池仓的状态以便MCU控制。LP7815集成通信电路支持电池仓给耳机发送数据,如电池电量、输入状态以及耳机状态等等。LP7815集成芯片结温过温保护,确保芯片安全运行。LP7815典型的静态电流仅为7-μA。 LP7815使用3mm X 3mm DFN-10封装。

采购信息

典型应用电路

器件信息

Version: 4/5/2023

器件型号	丝印	CV 电压	Boost 电压	封装形式	包装数量	湿敏等级
LP7815QVF	LPS LP7815 YWX	4.2V	5.1V	10-pin 3 X 3 DFN	5K/包	LEVEL 3

丝印说明: Y: Year code. W: Week code. X: Batch numbers.

湿敏等级:根据 JEDEC 标准定义

引脚说明

LP7815 引脚

引脚描述

序号	引脚名	描述	
1	VIN	USB 输入引脚。建议就近焊接至少1-µF去耦电容。	
2	ISET	充电电流设置引脚。	
3	CTRL	控制引脚。当CTRL为高电平时,LP7815为耳机充电模式;CTRL为低电平时,	
		LP7815为通信模式; CTRL浮空时, LP7815为耳机入仓检测模式。	
4	DATA	LP7815数据输出引脚。该引脚需要外接上拉电阻。	
5	COMM	复用引脚:通信时,COMM引脚往VOL/VOR发送信号。	
		充电时,COMM引脚外置电阻设定耳机充电电流。	
6	VOR	右耳输出引脚。	
7	VOL	左耳输出引脚。	
8	PMID	boost变换器输出引脚。	
9	SW	boost变换器开关引脚。	
10	BAT	线性充电电池引脚。建议就近焊接至少1-µF去耦电容。	
Thermal	GND	功率地。	
PAD			

极限值(备注 1)

备注 1: 超过极限值使用, 芯片可靠性可能会受到影响。

ESD等级

HBM (Human Body Model) ------4kV CDM (Charged Device Model) ------ 500V

热阻信息

 θ_{JA} (Junction-to-Ambient Thermal Resistance) ------60°C/W

推荐工作条件

电容需要使用 X5R 规格及以上。

电气特性

符号	参数		典型	最大	单位
V_{IN}	输入电压	4		6	V
I _{IN}	输入电流			0.8	Α
T _A	环境温度范围	-40		85	°C
C _{IN}	输入滤波电容	1			μF
Сват	BAT引脚滤波电容	10			μF
C _{PMID}	PMID引脚滤波电容	10			μF

(除非有特殊说明,所有参数基于以下条件测试: $V_{IN} = 5V, T_A = 25$ °C。)

符号	参数	测试条件		典型	最大	单位		
输入供电	输入供电							
V_{IN_UVLO}	欠压保护电压	VIN 下降沿阈值	3.6	3.8	4.0	V		
$V_{\text{IN_UVLOH}}$	欠压保护迟滞电压	VIN 上升沿阈值		150		mV		
$V_{IN_{OVP}}$	过压保护电压	VIN上升沿阈值	6.0	6.2	6.55	V		
V_{IN_OVPH}	过压保护迟滞电压	VIN下降沿阈值		150		mV		
I_{q_IN}	输入静态电流	V _{IN} =5.0V, VB _{AT} =4.3V		150		uA		
V_{IN_DPM}	输入动态电压调整阈值			4.4		V		
电池供电								
V_{BAT_POR}	电池上电复位电压	V _{IN} =0V, BAT 上升沿阈值			2.6	V		
$V_{POR_{_}H}$	上电复位迟滞电压	BAT 下降沿阈值		0.18		٧		

email: marketing@lowpowersemi.com

符号	参数	测试条件	最小	典型	最大	单位
I _{BAT}	电池静态电流	待机模式, V _{BAT} =3.8V,V _{IN} =0V		7		uA
充电管理						•
V_{TRK}	涓流充电阈值	BAT 上升沿阈值	2.75	2.8	2.85	٧
V_{TRK_H}	涓流充电迟滞电压			100		mV
I _{TRK}	涓流充电电流	ICC=420mA, R _{ISET} =1.15k, 10% ICC	28	42	57	mA
ICC	与法方中中法	-10 °C to 85 °C	378	420	462	mA
ICC	恒流充电电流	25 °C	400	420	440	mA
\ /	浮充电压	0 °C to 60 °C	-0.5		0.5	%
V_{CV}	复充电压	BAT 下降沿阈值, CV=4.2V		4.05		V
I _{TERM}	充电截止电流	ICC=420mA, 10%ICC	28	42	57	mA
$T_{Thermal}$	充电温度保护阈值 ^{[备注} 2]	Tj	100	120	140	۰C
升压变换器						
R_{ds,on_HS}	上管导通阻抗	上管导通阻抗 V _{PMID} =5.1V		350		mΩ
R_{ds,on_LS}	下管导通阻抗	V _{PMID} =5.1V		250		mΩ
f_{sw}	开关频率 ^[备注 2]	V _{PMID} =5.1V		1.2		MHz
l _{lim}	峰值限流电流	V _{BAT} =3.6V		1.3		Α
V_{PMID}	输出电压精度	25 °C	5.04	5.1	5.16	V
V_{PMID_SCP}	PMID 短路保护阈值	V _{BAT} =3.6V		2		V
耳机充电管						
EICC	耳机放电限流	R _{COMM} =500kΩ, 25 °C	90	100	110	mA
R_{ds,on_EAR}	耳机放电功率管导通阻 抗	V _{PMID} =5.1V		800		mΩ
EEOC	耳机满电电流阈值 (EEOC)	V _{PMID} =5.1V	3	4	5	mA
t _{dEEOC}	EEOC消抖时间 ^[备注 2]			400		ms
V_{BATUV}	耳机充电欠压保护电压	BAT下降阈值		3.3		V
V_{BATUV_H}		BAT上升阈值		3.5		V
I _{PUP}	耳机待机上拉电流	V _{BAT} =3.6V, 25 °C	1	2	3	uA
V _{INSERT}	耳机入仓检测阈值	V _{BAT=} 3.6V, 相对于V _{PMID}		-0.7		V
t _{dINSERT}	入仓消抖时间 ^[备注 2]			30		ms
V_{EAR_SCP}	耳机短路保护阈值	V _{BAT} =3.6V		0.7		V
DATA驱动	 能力			ı		•

email: marketing@lowpowersemi.com

Version: 4/5/2023

符号	参数	测试条件	最小	典型	最大	单位	
I _{sink}	下拉驱动能力	$V_{BAT} = 3.6V, V_{DS} = 0.4V$	5			mA	
I _{leak}	引脚漏电				0.1	uA	
CTRL/CON	CTRL/COMM						
V _H	输入高电平		2.0			V	
VL	输入低电平				0.4	V	

备注 2: 非量产测试数据,由设计提供保证。

典型特性曲线

图1. CV 电压 VS. 环境温度

图3. ITRI VS. VBAT

图2. ICC VS. VBAT

图4. V_{PMID} VS. Load Current

图 6. VIN Power Down

图 7. Battery Insert

图 8. Battery Removal

图 9. VIN OVP and recover

图 10. VIN OVP Release

图 11. VIN Based PPM

图 13. V_BATM[4:0] VS. Battery Voltage

图 12. Boost转换效率

功能框图

Version: 4/5/2023

功能描述

简介

LP7815是一款多合一的智能TWS充电仓管理IC,集成过压保护,电池充电,耳机放电,以及单向通信等功能。LP7815集成一个支持28V耐压的过压保护(OVP)以保护后级电路的安全。LP7815集成一路最大电流达到0.8A的线性充电电路给电池仓充电。此外,LP7815集成两路独立的耳机控制电路给左右耳机放电。当搭配专用的耳机充电电路时,LP7815支持TWS耳机以电压跟随的方式充电以支持耳机高倍率大电流充电,同时显著提升充电仓续航时长。LP7815在耳机入仓时发送信号给主控MCU并在充电放电时周期性上报电池仓的状态以便MCU控制。LP7815集成通信电路支持电池仓给耳机发送数据,如电池电量、输入状态以及耳机状态等等。LP7815集成芯片结温过温保护,确保芯片安全运行。LP7815典型的静态电流仅为7-μA。

输入欠压和过压检测

LP7815实时检测VIN电压,当VIN低于V_{IN_UVLO}或高于过压保护阈值(V_{IN_OVP})时,充电功能将关闭。当输入电压低于 V_{IN_OVP}阈值但高于V_{IN_UVLO}阈值时,充电功能恢复正常。V_{IN_UVLO}和V_{IN_OVP}的典型迟滞电压均为100 mV。

电池仓充电管理

LP7815集成一个线性充电电路给电池仓电池充电,LP7815具有三种充电模式,即涓流、恒流 (CC) 和恒压 (CV) 模式。一个典型的充电循环如图14所示。

图14. 典型充电波形

当插入的输入电源(VIN电压高于VIN UVLO但是低于VIN OVP)时,线性充电器开始充电:

涓流充电

涓流充电电压阈值固定为2.8V。当电池电压低于涓流阈值时,LP7815开始涓流充电。涓流充电电流的典型值固定为CC电流的10%。

CC充电

Version: 4/5/2023

当电池电压高于涓流阈值但低于CV阈值时,LP7815开始CC充电。CC电流可通过ISET引脚的Riser的外部电阻设定。充

电电流的计算公式如下:

 $ICC=480/R_{ISET}$ (A)

建议的充电电流范围为100mA~800mA。

CV充电

当电池电压升至CV阈值时,LP7815开始CV充电。在CV阶段,充电电流逐渐减少,直到电池充满。LP7815默认的CV电压为4.2V。如需其他CV电压,请与微源市场工程师联系。

充电终止

当充电电流降至CC电流的10%且电池电压高于4.05V时,电池已充满,LP7815关闭充电功能。

充电复充

电池充满之后,如果USB一直未拔出,当电池电压降至4.05V时,充电功能将自动重新启动,直到再次充满电池为止。

充电热管理:

当芯片结温达到120℃时,LP7815将降低充电电流以防止芯片过热,直到达到新的温度平衡。

VIN动态电源管理控制 (DPM)

当输入电源的供电能力不足时, LP7815可以自动调节充电电流以避免输入电源VIN被拉低。当VIN电压降至V_{IN_DPM} (4.4V 典型值)时, LP7815会开始降低充电电流,直到VIN电压保持在4.4-V。当VIN高于V_{IN_DPM}时,充电电流自动恢复到设定值。

升压变换器

LP7815集成一个2-uA超低静态功耗升压变换器。升压变换器处于常开模式直到电池低于3.0V。

升压转换器工作原理

LP7815的升压变换器采用峰值电流控制方式,工作频率在1.2MHz, 支持PCB电感和普通绕线电感。

LP7815支持直通工作模式和升压工作模式,并根据耳机电池电压自动切换。随着耳机充电电流的降低,LP7815的升压变换器可以自动从PWM模式转换到PFM模式以提升轻载效率。

升压变换器支持最大500mA负载电流输出。

短路保护

LP7815检测PMID引脚的电压实现短路和过载保护, 当PMID电压低于BAT引脚电压0.5V, LP7815识别为PMID引脚短路。当PMID发生短路以后,LP7815将关闭升压转换器进入打嗝模式。当20ms打嗝时间结束时,升压变换器将重新启动。

升压电路欠压保护

Version: 4/5/2023

当电池电压降低到2.9V时, 升压变换器将强制关闭。当BAT电压恢复到3.0V时,升压变换器重新工作。

放电控制

LP7815集成独立的左右耳机控制电路, 包括耳机入仓检测,耳机充电,耳机满电检测以及耳机短路检测等。并由MCU 通过CTRL引脚进行控制。

耳机入仓检测:

LP7815通过检测PMID与VOL/VOR引脚电压的压差实现耳机插入检测。在耳机不在仓时,CTRL引脚需要配置成浮空状 态,此时PMID输出2-μA固定电流到VOL/VOR引脚,如果没有耳机插入,VOL/VOR的电压被该电流拉高到和PMID基 本一样的电位。当耳机插入时,由于耳机自带下拉阻抗,VOL/VOR电压逐渐降低,当VOL/VOR的电压低于PMID 1V且 持续30-ms以上时,LP7815识别到耳机入仓并通过DATA引脚发送入仓信号给MCU。MCU收到耳机入仓之后可以与耳 机进行通信或者启动耳机充电电路。

耳机充电

当CTRL引脚被配置成高电平时,LP7815将开启控制电路给耳机充电。充电过程中,LP7815将输出一个高精度电流源给 耳机充电。其中耳机的充电电流由COMM引脚的外置电阻R_{COMM}来设置,对应的充电电流计算公式为:

$$EICC = \frac{1}{R_{COMM}} * 5 * 10^4$$
 A

推荐的耳机充电电流在20~150mA。

耳机充电过程中,LP7815持续将耳机状态通过DATA引脚发送给MCU。

耳机满电检测

如果左耳机或者右耳机充电电流小于4mA且持续400-ms时, LP7815识别为左耳机或者右耳机满电。耳机满电时,寄存 器中的相应耳机的EOC状态将置为1。MCU识别到耳机充满后可以发送电池仓电量数据等给耳机。当MCU识别到两只耳 机都满电后,可以关闭耳机充电电路以节省静态功耗。

电池欠压保护

LP7815集成电池欠压保护功能。当电池电压低于3.3V,LP7815关闭耳机充电功能直到电池电压恢复到3.5V以上。

耳机短路检测

Version: 4/5/2023

当左右任一耳机发生短路时,且持续时间超过200-ms时,LP7815中的ESCP状态将置为1。MCU收到耳机短路信号后 可以关闭耳机充电电路并周期性唤醒MCU以确认耳机短路异常是否已经解除。

通信

LP7815 支持单向通信功能,通过 DATA 引脚给 MCU 发送电池仓状态。MCU 接收到信号以后,通过控制 CTRL 引脚来 控制耳机充电或者与耳机通信。

当 CTRL 引脚为高电平,低电平或者 USB 插入时,LP7815 通过 DATA 周期性给 MCU 发送电池仓状态数据,每隔 300ms 发送一次数据。数据发送完成以后 DATA 引脚处于 HiZ (高阻) 态。

MCU接收到DATA 数据以后,通过控制CTRL引脚选择不同模式。当CTRL引脚被置为高电平时, LP7815给耳机充电。 当CTRL引脚被置为低电平时,耳机充电电路被关闭,LP7815进入通信模式,来自COMM引脚的数据经过电平转换电路 以后同时在VOL和VOR引脚输出, 默认的通信电平为2.5-V, 如需要其他通信电平, 请联系微源销售工程师。当CTRL

被设置为浮空时,LP7815进入耳机入仓检测模式。当CTRL浮空时,以下任一事件可以让LP7815强制发送数据并唤醒 MCU.

- 1. 左耳插入。
- 2. 右耳插入。

图 15. 通信时硬件连接示意图

DATA引脚单线协议

Version: 4/5/2023

LP7815集成私有单线协议,基于此协议,LP7815通过DATA引脚输出电池仓状态信号。每个单线通信会话都以一个 PRE_START位开始,然后是一个启动位、一个19位数据帧,最后是一个停止位。19位数据帧包括14位状态码(Code) 和5位CRC。每隔300ms, LP7815 往MCU发送一次数据信号。数据信号的周期1ms。

当电池电压低于2.95V时,LP7815不再发送DATA数据给MCU,强制进入休眠。电池电压恢复到3.0V以后,MCU可以 重新通过控制CTRL引脚来获取电池仓状态数据。

图16. 单线协议格式

图 17. 单线协议时序

Version: 4/5/2023

表一. 单线协议时序要求

单线私有协议时序						
Pre_start 时间 ^{俻注 2]}	tpre_start	预启动时间	1	2	3	ms
Start bit 时间 ^{备注 2]}	t start	启动时间	8	10	12	ms
Code bit 时间 ^[备注 2]	t _{bit}	1个bit传输时间	0.8	1	1.2	ms
Code '1' high 时间 ^{俻注 2]}	t _{1h}	Code 1 高电平时间	704	880	1056	us
Code '1' low 时间 ^{备注 2]}	t ₁₁	Code 1 低电平时间	96	120	144	us
Code '0' high 时间 ^{备注 2]}	toh	Code 0 高电平时间	96	120	144	us
Code '0' low 时间 ^{备注 2]}	toı	Code 0 低电平时间	704	880	1056	us
Stop 时间 ^{备注 2]}	t _{stop}	Stop 时间 after a rising edge sensed at VIN pin.	0.8	1	1.2	ms

表二. 状态寄存器列表

位	符号	描述	默认值
19	CRC	5bit CRC 校验位, 请联系微源市场工程师获取 CRC 算法。	
18			
17			
16			
15			
14	ESCP	至少一个耳机短路(仅 CTRL 高电平且 COMM 引脚未被强制拉高	0
		电平时有效)	
13	V_BATM[4]	V_BATM[4][3][2][1][0]所代表的电池电压(V):	0
12	V_BATM[3]	00000:2.9, 00001:2.95, 00010:3.0, 00011:3.05, 00100:3.1,	0
11	V_BATM[2]	00101:3.15, 00110:3.2, 00111:3.25, 01000:3.3, 01001:3.35,	0
10	V_BATM[1]	01010:3.4, 01011:3.45, 01100:3.5, 01101:3.55, 01110:3.6, 01111:3.65, 10000:3.7, 10001:3.75, 10010:3.8, 10011:3.85,	0
9	V_BATM[0]	10100:3.9, 10101:3.95, 10110:4.0, 10111:4.05, 11000:4.1,	0
		11001:4.15, 11010:4.2, 11011:4.25, 11100:4.3, 11101:4.35,	
		11110:4.4, 11111:4.45,	
8	Reserve	预留寄存器	0
7	Reserve	预留寄存器	1
6	Reserve	预留寄存器	1
5	R_EOC	1:右耳满电 0: 右耳没有满电 (仅 CTRL 高电平且 COMM	0
		引脚未被强制拉高电平时有效)	
4	R_INSERT	1:右耳插入。0:没插入 (仅 CTRL 浮空时有效)	0
3	L_EOC	1:左耳满电 0: 左耳没有满电 (仅 CTRL 高电平且 COMM	0
		引脚未被强制拉高电平时有效)	
2	L_INSERT	1: 左耳插入。0: 没插入 (仅 CTRL 浮空时有效)	0
1	PGD	1:有 USB 插入,0:无 USB	0
0	CHG	0:未充电,1: 正在充电	0

待机模式

当没有USB插入时,且CTRL为浮空状态时时,LP7815将自动进入待机模式, 待机模式下,LP7815仅消耗7-μA静态电流。当发生以下事件时,LP7815马上退出待机模式: 1) 插入USB; 2) CTRL被设置为高电平或低电平。

过温保护

Version: 4/5/2023

当LP7815的内部结温度超过150°C时,LP7815关闭所有功率路径。线性充电器、升压转换器和VOL/VOR都将禁用。 当温度降低到130°C,功能恢复正常。

应用信息

图 18. 典型应用原理图

一个典型的TWS电池仓系统应用包含一颗LP7815电源管理芯片,一颗MCU,一颗霍尔检测芯片,机械按键KEY以及外围的RLC无源器件。其中MCU 可以由电池直接供电也可以通过增加一颗LDO供电。

电感电容的配置:

LP7815的VIN端,BAT端,以及PMID端都需要外置稳压滤波电容。其中VIN端至少需要1uF,BAT以及PMID端至少需要10uF。针对VIN 端热插拔导致的输入尖峰电压,建议增加输入吸收电路,即在 C_2 上串联一个1 Ω 以降低VIN引脚尖峰。所有电容的选择以小封装的陶瓷电容为优先选择,选择时需要注意电容的耐压能力,尤其是VIN输入电容 C_1 和 C_2 需要至少有25V的耐压能力。所有电容布局时,都需要尽量靠近芯片的引脚,以降低寄生对芯片噪声的干扰。LP7815兼容0.24uH-2.2uH电感。优先选择感量为2.2uH,DCR为30m Ω 的电感,以降低电感纹波,提升系统效率。

充电电流设计:

LP7815可以通过外部电阻R2来调整充电电流,具体计算方式如下面表达式所示:

$$ICC = \frac{480A * \Omega}{R_2}$$

对于典型的420mA充电电流设计,可以选择 $\pm 1\%$,1.15k Ω 的电阻。

耳机充电电流设计:

Version: 4/5/2023

LP7815可以通过外部电阻R3来限制耳机充电电流,具体计算方式如下面表达式所示:

$$EICC = \frac{50000A * \Omega}{R_3}$$

对于典型的100mA充电电流设计,可以选择 ±1%,510kΩ的电阻。

MCU设计:

Version: 4/5/2023

LP7815支持单向通信。LP7815的CTRL/COMM/DATA引脚分别与MCU的GPIO相连,其中CTRL 引脚在电池仓待机模式时下需要将MCU 的GPIO 配置成模拟输入模式以防止MCU漏电。COMM引脚在待机模式下可以配置输出模式。DATA引脚用于接收电池仓状态。DATA引脚为开漏输出,与之相连的GPIO 需要配置成输入模式,同时需要配置上拉电阻。

图 19. MCU 连接电路

PCB 布板指南

Version: 4/5/2023

- 1. C₁ C₃ C₄必须尽量靠近芯片引脚和 GND 引脚。**尤其是 PMID 电容 C₄**,需要靠近 PMID 和 GND 引脚放置,以约束高频噪声,该电容的放置位置具有最高优先级。C₄和 GND 引脚,PMID 引脚三者形成的环路周长需要保证在 0.5cm 以下。以上所有电容请直接在顶层走线,不要通过通孔走线。
- 2. 功率路径走线需要尽量宽,以降低线路损耗提升系统效率,如 BAT/PMID/VOL/VOR。作为一个常规设计标准, 40mil 宽度和 1oz 铺铜厚度的 PCB 可以持续走 1.5A 电流。
- 3. 对于 115200bps 通信速率应用,左右耳引脚建议不加电容,以免影响通信速率。
- 4. 芯片的 thermal PAD 必须良好接地。

封装信息

Version: 4/5/2023

3x3 DFN package

0) A IDOI	N	IILLIMETE	₹		
SYMBOL	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
* A1	0.00	0.02	0.05		
* b	0.25	0.25	0.30		
A2	(0.203REF			
* D	2.90	3.00	3.10		
* E	2.90	3.00	3.10		
*D1	2.40	2.50	2.60		
*E1	1.45	1.55	1.65		
* e	- 1	0.50 BSC	;		
h	0.20	0.25	0.30		
Nd	- :	2.00 BSC	;		
b1	0.16	0.18	0.20		
* k	0.20	0.30	0.35		
* L	0.30	0.40	0.50		

Revision History

Revision	Date	Change Description
Rev 1p0	4/5/2023	Official Release Version 1.0

Version: 4/5/2023 www.lowpowersemi.com email: marketing@lowpowersemi.com 21 / 21