

6. Multi-item inventory control

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

Overview

- Deterministic models
 - Warehouse scheduling problem
 - Economic lot-scheduling problem
 - Joint replenishment problem

- Stochastic models
 - Multi-product-newsvendor
 - Can-order-policies

(1) Warehouse scheduling problem

- Assumptions
 - i=1,2,...,N products
 - EOQ assumptions for each product i
 - Warehouse capacity W
 - Capacity requirements for each unit of product i: a_i
- Replenishment and storage strategies
 - Dedicated space
 - Average utilization
 - Common-cycle model

Optimization problems

- Dedicated capacity
 - Convex cost function
 - Linear constraints

$$\min \sum_{i=1}^{N} \left[\frac{d_i}{Q_i} \cdot A_i + \frac{h_i}{2} \cdot Q_i \right]$$
s. t.
$$\sum_{i=1}^{N} a_i Q_i \le W$$

s.t.
$$\sum_{i=1}^{n} a_i Q_i \le W$$
$$Q_i \ge 0 \quad i = 1, 2, \dots, N$$

Average utilization

$$\min \sum_{i=1}^{N} \left[\frac{d_i}{Q_i} \cdot A_i + \frac{h_i}{2} \cdot Q_i \right]$$

$$s. t. \sum_{i=1}^{N} 0.5 a_i Q_i \le W$$

$$Q_i \ge 0 \quad i = 1, 2, \dots, N$$

Solution

Lagrange function

$$L = \sum_{i=1}^{N} \left[\frac{d_i}{Q_i} A_i + \frac{h_i}{2} Q_i \right] + \lambda \left[\sum_{i=1}^{N} a_i Q_i - W \right]$$

Optimality conditions

$$\frac{\partial L}{\partial Q_i} = \frac{-d_i}{Q_i^2} A_i + \frac{h_i}{2} + \lambda a_i = 0$$

$$\Rightarrow Q_i^*(\lambda) = \sqrt{\frac{2d_i A_i}{h_i + 2\lambda a_i}} \quad i = 1, 2, ..., N$$

- Solution
 - Case 1: Unconstrained solution $\lambda = 0$
 - Case 2: Constrained solution, choose λ such that

$$\sum_{i=1}^{N} a_i Q_i^*(\lambda) = W$$

Rotation (common) cycle

Assumption

- Common replenishment cycle T for all products
- Each product is ordered once in a cycle

Question

- Optimal timing of replenishment of each product within a cycle
- Maximum capacity usage
- What is the optimal cycle length?

Inventory levels

- Lot-size $Q_i = d_i T$ at time t_i
- Optimality conditions
 - Equal capacity utilization after each replenishment
 - Capacity requirement of a lot = released capacity since last order (of the other products)
 - Sequence of replenishments irrelevant

Analysis

T = Q/d

Capacity balance

$$(t_i - t_{i-1}) \sum_{j=1}^{N} a_j d_j = a_i d_i T \Leftrightarrow t_i = \frac{\sum_{j=1}^{i} a_j d_j}{\sum_{j=1}^{N} a_j d_j} T$$

Capacity requirement at t=0

$$W \ge \sum_{i=1}^{N} a_i (Q_i - d_i (T - t_i)) = \sum_{i=1}^{N} a_i d_i t_i = \frac{\sum_{i=1}^{N} \sum_{j=1}^{i} a_i a_j d_i d_j}{\sum_{i=1}^{N} a_i d_i} T$$

• Cost function $C = \sum_{i=1}^{N} \left(\frac{A_i}{T} + \frac{h_i d_i}{2} T \right)$

• Solution
$$T^* = \min \left\{ \sqrt{\frac{2\sum_{i=1}^{N} A_i}{\sum_{i=1}^{N} \sum_{j=1}^{N} a_i d_i}}; W \frac{\sum_{i=1}^{N} a_i d_i}{\sum_{i=1}^{N} \sum_{j=1}^{i} a_i a_j d_i d_j} \right\}$$

Check: write as recursion: $t_i = ... + t_{i-1} = ... + t_{i-2} = ...$

Example

See Excel file

Data

	1	2	3	
d	50	200	125	
Α	500	1000	700	
h	3	5	10	
а	1	2	1	

- − Case 1: W=900; Case 2: W=500
- Solution Dedicated Capacity
 - Case 1: Q_1 =129.1; Q_2 =282.84; Q_3 =132.29; C=3124.39
 - Case 2: λ =2.735; Q_1 =76.83; Q_2 =158.41; Q_3 =106.36; C=3453.72
- Solution Common Cycle
 - Case 1: Q_1 =67.7; Q_2 =270.8; Q_3 =169.3; C=3249.62
 - Case 2: Q_1 =56.5; Q_2 =226.0; Q_3 =141.3; C=3302.79

Economic production quantity (EPQ)

- Additional assumption: finite production rate p (units per unit of time), p>d
- Model
 - Lot-size: Q
 - Cycle length: T=Q/d
 - Manufacturing time: $T_p = Q/p$
- Inventory dynamics

Optimal EPQ

- Cost function
 - Setup cost per cycle: A
 - Inventory cost per cycle

$$\frac{h}{2}(p-d)T_p^2 + \frac{h}{2}(p-d)T_p(T-T_p) = \frac{h}{2}(p-d)T_pT$$

Total cost per unit of time

$$C(Q) = \frac{d}{Q} \cdot A + \frac{h}{2}(p - d) \cdot \frac{Q}{p}$$

Optimal lot-size

$$Q^* = \sqrt{\frac{2dA}{h \cdot \left(1 - \frac{d}{p}\right)}} = \sqrt{\frac{p}{p - d}} \cdot EOQ > EOQ$$

(2) Economic lot scheduling problem

- Assumptions
 - Products j=1,2,...,n; one resource/machine
 - Setup cost A_i , setup time r_i , production rate p_i
 - Inventory holding costs per unit and unit of time h_i
 - Demand rates d_i
- Planning problem
 - Determination of lot-sizes
 - Determination of manufacturing sequences
 - Demand satisfaction
- Common cycle model
 - Each product is produced once in a cycle
 - Optimal cycle length

Scheduling problem

Relationship T_p vs T

- $T = T_p + "depletion time"$
- Depletion time = time to deplete $(p-d)T_p$, at rate d
- So, $T = T_p + (p-d)T_p/d = pT_p/d$
- Or, $T_p = dT/p$

Optimization problem (Common cycle approach)

- Objective function
 - Minimize setup and inventory holding cost

$$\min C(T) = \sum_{j=1}^{n} \left(\frac{A_{j}}{T} + \frac{h_{j}}{2} (p_{j} - d_{j}) \frac{d_{j}}{p_{j}} T \right)$$

- Constraints
 - Sum of setup and manufacturing times cannot exceed cycle length

$$\sum_{j=1}^{n} \left(r_j + \frac{d_j T}{p_j} \right) \le T \Rightarrow T \ge \frac{\sum_{j=1}^{n} r_j}{1 - \sum_{j=1}^{n} \frac{d_j}{p_j}}$$

Solution

- Lagrange-Multiplier
- Unconstrained solution

$$T^* = \sqrt{\frac{2\sum_{j=1}^{n} A_j}{\sum_{j=1}^{n} h_j d_j \left(1 - \frac{d_j}{p_j}\right)}}$$

$$Q_j^* = d_j T^* \quad j = 1, 2, \dots, n$$

Lower bound

$$T^* = \frac{\sum_{j=1}^{n} r_j}{1 - \sum_{j=1}^{n} \frac{d_j}{p_j}}$$

Basic period – approach

- Assumptions
 - Basic period of length W
 - Individual cycle times T_i are an integer multiple of basic period, $T_i=n_iW$, and $\mathbf{n_i}=\mathbf{2}^{m_i}$
- Cost function

$$\min C(W, n_i) = \sum_{j=1}^{n} \left(\frac{A_j}{n_j W} + \frac{h_j}{2} (p_j - d_j) \frac{d_j}{p_j} n_j W \right)$$

Solution algorithm

- Determine W
 - E.g. choose minimum cycle length from independent optimization
- 2. Determine n_i, given W

$$C_i(n_i) = \frac{A_i}{n_i W} + h_i(p_i - d_i) \frac{d_i}{p_i} \frac{n_i W}{2}$$

3. Determine

$$W = \sqrt{\frac{2\sum_{i=1}^{N} \frac{A_{i}}{n_{i}}}{\sum_{i=1}^{N} h_{i}(p_{i} - d_{i}) \frac{d_{i}}{p_{i}} n_{i}}}$$

4. Back to Step 2 unless the procedure has converged (multipliers do not change anymore). If converged, check feasibility. If not feasible, adjust n_i and determine W from 3.

Feasibility:
$$\sum_{j=1}^{n} \left(\frac{r_j}{n_j} + \frac{Q_j}{n_j p_j} \right) \le W$$

Example

d	50	60	150	100	200	40
p	500	500	1000	1000	2000	500
r	0.5	1	2	1	2	0.5

$$A_j$$
=10, h_j =0.0002

See Excel file

Solutions

- Independent solution
 - Lot-sizes
 - Provides lower bound
- Common cycle
 - Provides upper bound
- Basic period
 - Heuristic solution

(3) Joint replenishment problem

Axsäter, 7.3.1.1

Different ordering cost structure

- Major setup cost A₀
 - For each order (regardless of product and quantity)

- Minor setup cost A_i
 - For each order of a product i (regardless of order quantity)

Solution approach

• Without major setup costs: classical EOQ formula:

$$T_i = \sqrt{\frac{2A_i}{h_i d_i}}$$

- Let T_1 the smallest cycle time and assume that all cycle times $\frac{T_i = n_i T_1}{T_1}$ for i=2,...,N are integer multiples of T_1 ($n_1 = 1$)
- Objective

$$C = \frac{A_0 + \sum_{i=1}^{N} \frac{A_i}{n_i}}{T_1} + \frac{T_1 \sum_{i=1}^{N} h_i d_i n_i}{2}$$

Optimal initial cycle time (note: NOT according to the classical EOQ formula above):

$$T_1^* = \sqrt{\frac{2(A_0 + \sum_{i=1}^N \frac{A_i}{n_i})}{\sum_{i=1}^N h_i d_i n_i}}$$

Bounding

Optimal cost

$$C^* = \sqrt{2\left(A_0 + \sum_{i=1}^{N} \frac{A_i}{n_i}\right) \sum_{i=1}^{N} h_i d_i n_i}$$

Optimal (non-integer) multipliers

$$n_{i} = \sqrt{\frac{A_{i}h_{1}d_{1}}{h_{i}d_{i}(A_{0} + A_{1})}}$$

Lower bound
$$\underline{C} = \sqrt{2(A_0 + A_1)h_1d_1} + \sum_{i=2}^{N} \sqrt{2A_ih_id_i}$$

Iterative solution approach

- 1. Determine initial multipliers by rounding non-integer values
- 2. Determine T₁
- 3. Determine new integers from cost function

- Minimum integer that satisfies $n_i(n_i+1) \ge \frac{2A_i}{h_i d_i T_1^2}$

4. Back to step 2 if any integer changed

Numerical example

- N=4 products
- Major setup cost $A_0=300$, minor setup costs $A_i=50$, holding cost $h_i=10$
- Demand rates $d_1=5000$, $d_2=1000$, $d_3=700$, $d_4=100$

Solution

- Lower bound cost: 8069
- Initial integers: $n_1=n_2=n_3=1, n_4=3$
- $T_1=0.1155$
- New integers: $n_1=n_2=n_3=1$, $n_4=3$
- Cost: 8082.90

See Excel file

Dynamic joint replenishment

Assumptions

- Discrete time periods t = 1, 2, ..., T
- Dynamic demands d_{kt} for product k
- Other assumptions as in Joint Replenishment Problem
- Decision variables
 - $-q_{kt}$ Lot-size (Order quantity) for product k in t
 - $-y_{kt}$ Inventory level for product k at the end of period t
 - $-\gamma_{kt}$ Setup indicator, $\gamma_{kt}=1$ if a lot is placed for product k in period t, $\gamma_{kt}=0$ otherwise

Dynamic joint replenishment

$$\min \sum_{t=1}^{T} (A_0 \gamma_{0t} + \sum_{k=1}^{K} (A_k \cdot \gamma_{kt} + h_k \cdot y_{kt}))$$

$$y_{kt} = y_{k,t-1} + q_{kt} - d_{kt}$$
 $t = 1,2,...,T; k = 1,2,...,K$
 $q_{kt} \le M\gamma_{kt}$ $t = 1,2,...,T; k = 1,2,...,K$
 $\gamma_{kt} \le \gamma_{0t}$ $t = 1,2,...,T; k = 1,2,...,K$
 $y_{k0} = y_{kT} = 0$ $k = 1,2,...,K$
 $q_{kt}, y_{kt} \ge 0, \gamma_{kt} \in \{0,1\}$ $t = 1,2,...,T; k = 1,2,...,K$

Capacitated lot-sizing problem (CLSP)

- Multi-products *k* = 1,2,...,*K*
- Discrete time periods t = 1, 2, ..., T
- One machine
- Finite production rate a_k
- Dynamic demand d_{kt}
- Objective: Cost minimization

CLSP cont'd

- Assumptions
 - Product specific setup cost A_k and holding cost h_k
 - M_t available production time in period t
- Decision variables
 - $-q_{kt}$ Lot-size (Production quantity) for product k in t
 - $-y_{kt}$ Inventory level for product k at the end of period t
 - $-\gamma_{kt}$ Setup indicator, $\gamma_{kt}=1$ if a lot is placed for product k in period t, $\gamma_{kt}=0$ otherwise

Model

$$\min \sum_{k=1}^{K} \sum_{t=1}^{T} h_k y_{kt} + \sum_{k=1}^{K} \sum_{t=1}^{T} A_k \gamma_{kt}$$

$$y_{kt} = y_{k,t-1} + q_{kt} - d_{kt}$$
 $k = 1,2,...,K; t = 1,2,...,T$

$$\sum_{k=1}^{K} a_k q_{kt} \le M_t \qquad t = 1, 2, \dots, T$$

$$q_{kt} \le \frac{M_t}{a_k} \gamma_{kt}$$
 $k = 1, 2, ..., K; t = 1, 2, ..., T$

$$q_{kt}, y_{kt} \ge 0, \gamma_{kt} \in \{0,1\}$$
 $t = 1,2,...,T$

Discrete lot-sizing and scheduling problem (DLSP)

Decision about the sequence

- Additional notations and variables to (DLSP)
 - s = 1,2,...,S : (Micro) Periods
 - $-\overline{\gamma}_{ks}$ Setup indicator, $\overline{\gamma}_{ks}$ =1 if a lot is placed for product k in period s = 0 otherwise $\overline{\gamma}_{ks}$
 - $-\gamma_{ks}$ Production indicator, γ_{ks} =1 if a lot is placed for product k in period s = 0 otherwise γ_{ks}

Model

$$\min \sum_{k=1}^{K} \sum_{s=1}^{S} h_k y_{ks} + \sum_{k=1}^{K} \sum_{s=1}^{S} A_k \gamma_{ks}$$

$$y_{ks} = y_{k,s-1} + \frac{M_s}{a_k} \bar{\gamma}_{ks} - d_{ks}$$
 $\forall k = 1,2,...,K; s = 1,2,...,S$

$$\sum_{k=1}^{K} \bar{\gamma}_{ks} \le 1 \qquad \forall s = 1, 2, \dots, S$$

$$\gamma_{ks} \ge \overline{\gamma}_{ks} - \overline{\gamma}_{k,s-1}$$
 $\forall k = 1,2,...,K; s = 1,2,...,S$

$$q_{ks}, y_{ks} \ge 0, \bar{\gamma}_{ks}, \gamma_{ks} \in \{0,1\}$$
 $\forall s = 1,2,...,S$

Example: Single-machine multi-item DLSP

- A single machine produces 6 different products. The planning horizon is devided into 60 periods. Demand takes place in 6 equidistant macro periods (every 10th period, first demand at T=10). At the beginning of the planning horizon a certain initial inventory for each product is available. The production speed is one unit per period. Demands, initial inventory (Ini.Inv.), production speed (a) and setup-cost (A) are given below (,dlsp.dat').
- What is the optimal production schedule?

Demand	Demand instances								
Product	10	20	30	40	50	60	Ini. Inv.	a	Α
1	3	3	2	1	2	5	3	1	60
2	3	1	0	1	0	3	1	1	60
3	0	2	0	0	2	3	3	1	60
4	2	0	0	1	3	1	1	1	60
5	0	1	0	0	2	4	1	1	60
6	0	0	0	1	0	1	1	1	60

See Xpress file -> IPYNB!

Continuous setup lot-sizing problem (CSLP)

Waiver of a strict DLSP assumption

- Additional notations and variables to (CLSP)
 - $-q_{ks}$ Lot-size (Production quantity) for product k in s
 - θ_{ks} Setup indicator, θ_{ks} =1 if a lot is placed for product k in period s, θ_{ks} =0 otherwise

Model

$$\min \sum_{k=1}^{K} \sum_{s=1}^{S} h_k y_{ks} + \sum_{k=1}^{K} \sum_{s=1}^{S} A_k \gamma_{ks}$$

$$y_{ks} = y_{k,s-1} + q_{ks} - d_{ks}$$

$$\sum_{k=1}^{K} \beta_{ks} \leq 1$$

$$q_{ks} \leq \frac{M_s}{a_k} \beta_{ks}$$

$$\gamma_{ks} \geq \beta_{ks} - \beta_{k,s-1}$$

$$q_{ks}, y_{ks} \ge 0, \beta_{ks}, \gamma_{ks} \in \{0,1\} \quad \forall s = 1,2,..., S$$

$$\forall k = 1, 2, ..., K; s = 1, 2, ..., S$$

$$\forall s = 1, 2, ..., S$$

$$\forall k = 1, 2, ..., K; s = 1, 2, ..., S$$

$$\forall k = 1,2,...,K; s = 1,2,...,S$$

$$\forall s = 1, 2, ..., S$$

Comparison DLSP, CSLP

No unnecessary Inventory, free scheduling of machine idle time

Proportional lot-sizing and scheduling problem (PLSP)

- Maximum two different products can be manufactured per period
- Setup condition changes maximum once a period
- Production quantities are proportional to the moment of setup
- Setup condition remains in periods with no production

Model

$$\min \sum_{k=1}^{K} \sum_{s=1}^{S} h_k y_{ks} + \sum_{k=1}^{K} \sum_{s=1}^{S} A_k \gamma_{ks}$$

$$y_{ks} = y_{k,s-1} + q_{ks} - d_{ks}$$
 $\forall k = 1,2,...,K; s = 1,2,...,S$

$$\sum_{k=1}^{K} a_k q_{ks} \le M_s \qquad \forall s = 1, 2, \dots, S$$

$$\sum_{k=1}^{K} \beta_{ks} \le 1 \qquad \forall s = 1, 2, \dots, S$$

$$q_{ks} \le \frac{M_s}{a_k} (\beta_{k,s-1} + \beta_{ks})$$
 $\forall k = 1,2,...,K; s = 1,2,...,S$

$$\gamma_{ks} \ge \beta_{ks} - \beta_{ks-1}$$
 $\forall k = 1, 2, ..., K; s = 1, 2, ..., S$

$$q_{ks}, y_{ks} \ge 0, \beta_{ks}, \gamma_{ks} \in \{0,1\}$$
 $\forall k = 1,2,..., S$

Multi-product newsvendor

- Aggregate inventory constraint
 - Warehouse space
 - Budget constraint
 - Shelf-space allocation

- Aggregate service level constraint
 - Substitution in case of a stockout
 - Group service level

Aggregate inventory constraint

Optimization problem

$$\max \Pi = \sum_{i=1}^{N} \left((p_i - c_i) S_i - p_i \int_{0}^{S_i} F(x) dx \right)$$

$$s.t. \quad \sum_{i=1}^{N} a_i S_i \le W$$

Solution (Lagrange approach)

$$F_i(S_i) = \frac{p_i - c_i - \lambda}{p} \quad i = 1, ..., N$$

$$\sum_{i=1}^{N} a_i S_i(\lambda) \leq W$$

Service level constraint

- Application: Group service level
- Example
 - Not every type of salad has to be available at the end of the day, but there should be at least some salad available

- Products i=1,2,...,N
 - Newsvendor assumptions for each product
 - Aggregate non-stockout probability α_G

Optimization and solution

Optimization problem

$$\max \Pi = \sum_{i=1}^{N} \left((p_i - c_i) S_i - p_i \int_{0}^{S_i} F(x) dx \right)$$
s.t.
$$P\left(\sum_{i=1}^{N} D_i \le \sum_{i=1}^{N} S_i \right) \ge \alpha$$

Solution (Lagrange approach)

$$F_{i}(S_{i}) = \frac{p_{i} - c_{i} + \lambda}{p} \quad i = 1,..., N$$

$$F_{G}\left(\sum_{i=1}^{N} S_{i}(\lambda)\right) \geq \alpha$$