第一周 随机事件及其概率运算

1.4 两个著名的例子

布丰(Buffon, 1707-1788)投针问题

18世纪时, 法国学者布丰提出了一个"投针问题", 记载于布丰 1777 年出版的著作中。问题是这样的 "在平面上画有一组间距为 d 的平行线, 将一根长度为 L 的的针任意掷在这个平面上, 求此针与平行线中任一条相交的概率。

在平面上画有一组间距为d的平行线,将一根长度为 $I(I \le d)$ 的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。

利用布丰投针试验估计圆周率的一些历史资料

	Length of	Number of	Number of	Estimate
Experimenter	needle	casts	crossings	for π
Wolf, 1850	.8	5000	2532	3.1596
Smith, 1855	.6	3204	1218.5	3.1553
De Morgan, c.1860	1.0	600	382.5	3.137
Fox, 1864	.75	1030	489	3.1595
Lazzerini, 1901	.83	3408	1808	3.1415929
Reina, 1925	.5419	2520	869	3.1795

贝特朗奇论(Bertrand's paradox)

1

在半径为 1 的圆内随机地取一条弦,问其长度超过该圆内接等边三角形的边长 $\sqrt{3}$ 的概率等于多少?

分析一: 弦长被其中心唯一确定,当且仅当其中点属于半径为 $\frac{1}{2}$ 的同心圆内时,弦长大于 $\sqrt{3}$,此小于圆的面积为大圆面

积的 $\frac{1}{4}$,因此所求的概率为 $\frac{1}{4}$

分析二:任何弦交圆两点,不失一般性,先在圆周上固定其中一点,则弦的长度由另一个端点的位置所决定。以固定点为顶点,过该顶点的直径为对称轴做一等边三角形,显然只有落如此三角形内的弦才满足要求,这种弦的另一

端点对应弧长为整个圆周的 $\frac{1}{3}$,故所求概率为 $\frac{1}{3}$

分析三: 弦长只跟它与圆心的距离有关,而与方向无关,因此可以假定它与某一直径垂直,当且仅当它与圆心的距离小于 $\frac{1}{2}$ 时,其长度才大于 $\sqrt{3}$,因此所求概率为 $\frac{1}{2}$

同一问题有三种不同的答案,细究原因,发现是在取弦时采用了不同的等可能性假设。在第一种分析中,假定弦的中点在圆内均匀分布;第二种分析中则假定弦的端点在圆周上均匀的分布,而第三种解法中又假定弦的中心在直径上均匀分布。这三种答案针对的是三种不同的随机试验,从而有着不同的样本空间和样本点。三种方法出发点不同,所以得到不同的结果也就不足为奇了。再进一步讨论究竟哪一个更合理也没有太多意义。好比,我们问一位同学"从家里到学校需要多长时间?"若没有指明走着去,还是坐车去,还骑自行车去等,这个问题的提法就是有缺陷的,无需过多地讨论。因此,笼统地使用"随机"、"等可能"、"均匀分布"等术语,其含义可能是模糊的,可能会产生不同的理解。作为一门数学理论,受到自然语言所产生歧义的影响是不能令

人满意的。1899年贝特朗在巴黎出版《概率论》,书中对几何概率提出了批评,并以 生动的实例引起大家的注意。这种善意的批评,推动了概率论的发展。它促使人们思 考到底什么是随机,应该如何给出更严格的定义。

勒贝格、波雷尔等数学家在 19 世纪末、20 世纪初建立了测度的理论,为概率论的公理化做了坚实的准备。20 世纪 30 年代,苏联数学家科尔莫格罗夫完善了概率论的公理体系,使概率论的发展有了严格的数学基础。

概率的公理化定义:

 Ω 是一个样本空间,F为 Ω 的某些子集组成的集合,称为一个事件域。

如果对任一事件 $A \in F$,定义在F上的一个实值函数P(A)满足

- (2) 正则性公理 $P(\Omega)=1$;
- (3) 可列可加性公理 若 $A_1, A_2, \dots, A_n, \dots$ 互不相容,有 $P\left(\bigcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P\left(A_i\right)$,

则称P(A)为事件A的概率,称三元素 (Ω, F, P) 为概率空间。

只要满足这样几条简单的假设,就可以清晰地定义和研究各种随机试验的概率模型, 推演出千变万化的概率结果。公理化叙述中的每个细节都是必不可少的,有其丰富的 内涵,充分地理解这些内容需要测度论的知识,已经超出了本课程的范围,这里我们 只是稍稍了解一下就可以了。