Decision Boundaries, Modeling Considerations (Reading: <u>17.8</u>)

Learning goals:

- Understand decision boundaries, multiclass classification, and regularization for log reg.
- Learn a few new techniques for diagnosing and improving models.

UC Berkeley Data 100 Summer 2019 Sam Lau

(Slides adapted from John DeNero)

Announcements

- Project 2 out
 - Due next Tuesday, Aug 5.
- Small group tutoring: <u>tinyurl.com/d100-tutor-week6</u>
- Manana OH today cancelled (covering Leo's section)
- Sam will be covering Leo's section tomorrow

Decision Boundaries

The **decision boundary** of a classifier is the set of points where the classifier changes its prediction.

Plotting in two dimensions useful for understanding model.

A complex decision boundary can indicate overfitting.

(Demo)

Linearly Separable Data

- A logistic regression model will always output a linear decision boundary. Why?
 - Use feature eng to model complex boundaries.
- If logistic regression can find a decision boundary that perfectly splits the data, the data are linearly separable.
 - Doesn't imply that population data are linearly separable, though!
- Without regularization, GD will never converge on linearly separable data. Why not?
 (Demo)

Multiclass Classification

Multiclass Classification

- Often have >2 classes to predict. E.g.
 - Will it be rainy, sunny, or cloudy tomorrow?
 - Which book will a user buy next? (Many classes!)
- Idea: Convert to binary classification by treating each class as rainy vs not rainy, sunny vs not sunny, etc.
 - Called the One-vs-Rest strategy
- This estimates one probability for each class. Then, final prediction is the class with the highest probability.

Regularization for Logistic Regression

Regularization

L2 and L1 regularization work the same way for log reg:

$$f_{\theta}(\mathbf{x}) = \sigma(\theta \cdot \mathbf{x})$$
 where $\sigma(t) = \frac{1}{1 + \exp(-t)}$

Let $z_i = f_{\boldsymbol{\theta}}(\boldsymbol{X_i})$.

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log z_i + (1 - y_i) \log(1 - z_i)] + \lambda \sum_{j=1}^{p} \theta_j^2$$

You Try:

Derive the BGD update rule for logistic regression with L2 regularization.

$$f_{\theta}(\boldsymbol{x}) = \sigma(\boldsymbol{\theta} \cdot \boldsymbol{x})$$
 where $\sigma(t) = \frac{1}{1 + \exp(-t)}$
Let $z_i = f_{\theta}(\boldsymbol{X_i})$.

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log z_i + (1 - y_i) \log(1 - z_i)] + \lambda \sum_{j=1}^{p} \theta_j^2$$

You Try:

Once you compute average gradient, the update rule follows.

$$f_{\theta}(\mathbf{x}) = \sigma(\theta \cdot \mathbf{x})$$
 where $\sigma(t) = \frac{1}{1 + \exp(-t)}$

Let $z_i = f_{\boldsymbol{\theta}}(\boldsymbol{X_i})$.

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log z_i + (1 - y_i) \log(1 - z_i)] + \lambda \sum_{j=1}^{p} \theta_j^2$$

$$\nabla_{\boldsymbol{\theta}} L = -\frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\boldsymbol{X_i} \cdot \boldsymbol{\theta})) \boldsymbol{X_i} + 2\lambda \boldsymbol{\theta}$$

Discuss: How does changing λ influence gradient updates?

Break! Fill out Attendance: http://bit.ly/at-d100

Diagnosing Models

Validation Curves

• We've seen **validation curves**, which plot validation error across different models.

Validation Curves

Similar patterns for regularization parameter λ:

Note that accuracy is on the y-axis, not error.

Also note that in sklearn, higher values of C correspond to **lower** values of λ .

Learning Curves

- Learning curve: plot training and validation error as we train on more data.
- Ideally, training and validation errors are close. Why?

Learning Curves

 Learning curves help us decide whether model has too much variance for our sample size.

Improving Models

What can we tune?

- Feature engineering:
 - Adding polynomial features.
 - One-hot encoding.
 - Features using domain knowledge (these are usually the most helpful but also the hardest to come up with).
- Regularization
 - L2 or L1 regularization.
 - \circ Tuning the regularization parameter λ .
- Models
 - Picking model with higher / lower complexity.

We tune all of these with cross-validation.

Subset Selection

- Removing features can make a better model. Why?
- Idea: remove poorly predictive features from model.
- Assume we have p features. How many combinations of features are there?
- Trying every combination is very expensive but will give the best results.
 - This algorithm is called best subset selection and is mostly used as an "ideal" algorithm for comparison.

Subset Selection

 Idea: Start with simplest model, then add features until validation error starts increasing.

Forward stepwise selection:

- Start with null model (0 features, only bias)
- Use CV to decide next feature to add to model.
- Repeat until validation errors start increasing.
- Fits $O(p^2)$ times instead of $O(2^p)$
- Doesn't always find the best combo but usually gets close.
- Backwards stepwise selection works in reverse.

Summary

- Decision boundaries visualize classifier's predictions
- Multiclass problems can be reduced to binary problems
- You should understand how to derive the regularized gradient descent update rule.
- Understand what validation and learning curves are useful for.
- In this class, feature engineering is the primary method of improving a model.

