CSC236 Assignment 5

1.)

a)

(1+01)*1

b)

((0+1)(0+1)(0+1))*

2.)

a)

 $L = \{x \in \{0, 1\}^* : x \text{ contains an odd number or } 1\text{'s}\}.$

b)

 $L = \{x \in \{0, 1\}^* : x \text{ contains no occurrence of the substring "0011"}\}.$

3.)

a)

b)

4.)

 $\delta^*(q_0, x) = q_0$ if and only if x is empty or the bottom row of x is equal to the top row of x.

= q_I if and only if the bottom row of x is smaller than the top row of x.

The initial state is q_0 . The only accepting state is q_1 .

5)

Suppose $L \subseteq \Sigma^*$ is regular. Then there is a DFA $A = \langle Q_A, \Sigma_A, \delta_A, q_0, F_A \rangle$ such that L = L(A). Let $B = \langle Q_B, \Sigma_B, \delta_B, q_0, F_B \rangle$ be a DFA where,

- Q_B = Q_A ∪ { q_B }.
- $-\Sigma_{\rm B}=\Sigma_{\rm A}$
- $F_B = \{q_B\}$.
- for all $q \in Q_A$, and $c \in \Sigma_A$, $\delta_B(q, c) = \delta_A(q, c)$.
- for all $w \in \Sigma_A^*$, if $a \in \Sigma_A$ and $\delta_B^*(q_0, wa) \in F_A$, $\delta_B^*(\delta_B^*(q_0, wa), w) = q_B$.

First we need to show that for all $w \in \Sigma_A^*$, P(w) holds, where P(w) denotes the assertion that

$$\delta_B^*(q_0, w) = \delta_A^*(q_0, w).$$

Base Case: Let $w = \varepsilon$.

Since $\delta_B^*(q_0, \varepsilon) = q_0$ and $\delta_B^*(q_0, \varepsilon) = q_0$, so P(w) holds.

Induction Step: Let w = yc, where $y \in \Sigma_A^*$ and $c \in \Sigma_A$. Suppose P(y) holds. [IH]

Then
$$\delta_B^*(q_0, w) = \delta_B^*(q_0, y_0)$$
 # w = y_0

$$\delta_B*(q_0, w) = \delta_B(\delta_B*(q_0, y), c)$$
 # by definition of δ_B*

$$\delta_B*(q_0, w) = \delta_B(\delta_A*(q_0, y), c)$$
 # by IH

 $\delta_B * (q_0,\,w) = \delta_A(\delta_A * (q_0,\,y),\,c) \quad \text{$\#$ by definition of δ_B since $\delta_A * (q_0,\,y) \in Q_A$ and $c \in \Sigma_A$}$

$$\delta_B*(q_0, w) = \delta_A*(q_0, y_0)$$
 # by definition of δ_A*

$$\delta_B^*(q_0, w) = \delta_A^*(q_0, w)$$
 # since w = yc

Therefore P(w) holds.

Now suppose x = wa where $a \in \Sigma_A, w \in \Sigma_A^*$ and $x \in L(A)$.

Then
$$\delta_B*(q_0, x) = \delta_B*(q_0, wa)$$

$$\delta_B*(q_0, x) = q_A \qquad (A) \qquad \text{# where } q_A \in F_A, \text{ since } wa \in L(A)$$

Then
$$\delta_B*(\delta_B*(q_0, x), w) = \delta_B*(\delta_B*(q_0, wa), w) \# x = wa$$

$$\delta_B*(\delta_B*(q_0, x), w) = \delta_B*(q_A, w) \# by \textbf{(A)} \ \delta_B*(q_0, wa) = q_A$$

$$\delta_B*(\delta_B*(q_0, x), w) = q_B \# by \text{ definition of } \delta_B* \text{ and since } q_A \in F_A$$

Therefore, we have $w \in Quot(L, a) \Rightarrow exists a \in \Sigma_A \text{ such that } wa \in L(A)$.

$$\Rightarrow \delta_B * (q_0, w) = q_B$$

$$\Rightarrow$$
 w $\in L(B)$

Therefore, Quot(L, a) $\subseteq L(B)$. (1)

We also need to show that $L(B) \subseteq Quot(L, a)$.

For a contradiction, suppose L(B) is not a subset of Quot(L, a).

Then there exists $w \in L(B)$ such that $w \notin Quot(L, a)$.

That is $w \in \Sigma_B^*$, $a \in \Sigma_B$ such that x = wa and $\delta_B^*(q_0, w) = q_B$, but $x \notin L(A)$.

If $x \notin L(A)$, then $\delta_B * (q_0, x) \notin F_A$, and by definition of δ_B , $\delta_B * (q_0, x)$ is a dead state which means $\delta_B * (q_0, w) = \delta_B * (\delta_B * (q_0, x), w)$ is also a dead state, which contradicts the assumption that

 $\delta_B^*(q_0, w) = q_B$. Therefore, $L(B) \subseteq Quot(L, a)$. (2)

By (1) and (2) we can conclude L(B) = Quot(L, a).

6.)

Let $L' = \{0^i 1^j : i, j \ge 0, i \ne j\}$. Assume L' is regular. Regular languages are closed under complementation so the complementation of L' is regular. The complementation of L' is the set $\{0^i 1^j : i, j \ge 0, i = j\}$. Regular languages are closed under intersection so the intersection of $\{0^i 1^j : i, j \ge 0, i = j\}$ and the regular expression 0*1* is the set $L = \{0^n 1^n : n \ge 0\}$ which we know is not regular. Therefore, L' is not regular.