実解析第2同演習・演習第9回

2022年12月23日

問 A-1

 $X = \{1, 2, 3\}$ とする. X 上の関数 f, g を

$$f(1) = g(1) = 1$$

$$f(2) = g(2) = 2$$

$$f(3) = 3, g(3) = 2$$

で定める.

(1) $(X, \mathcal{P}(X))$ 上の測度 μ を

$$\mu(\{1\}) := 1, \ \mu(\{2\}) = 1, \ \mu(\{3\}) := 0$$

で定義する. このとき, $1 \leq p < \infty$ について $L^p(X, \mathcal{P}(X), \mu)$ の元として f = g であることを示せ.

(2) $(X, \mathcal{P}(X))$ 上の測度 ν を

$$\nu(\{1\}) := 1, \ \nu(\{2\}) = 1, \ \nu(\{3\}) := 1$$

で定義する. このとき, $1 \leq p < \infty$ について $N^p := \{f \in \mathcal{L}^p(X) \mid \|f\|_{L^p} = 0\} = \{0\}$ であることを示せ.

問 A-2

関数 $f \in L^p([0,1])$ $(1 \le p < \infty)$ を

$$f(x) = x$$

と定義するとき、 $||f||_{L^p}$ を求めよ.

問 A-3

 (X, \mathcal{M}, μ) を測度空間とする. 可測関数 $f: X \to \mathbb{R}$ の本質的上限とは,

$$\operatorname{ess\,sup} f := \inf\{\alpha \mid \mu(\{f > \alpha\}) = 0\}$$

で定義される量である. $\mathcal{L}^{\infty}(X, \mathcal{M}, \mu) := \{f \mid \operatorname{ess\,sup} f < \infty\}$ とすると,

$$||f||_{L^{\infty}} := \operatorname{ess\,sup} f$$

と定めれば, $p<\infty$ のときの L^p 空間と同様の方法でノルム空間 $L^\infty(X,\mathcal{M},\mu)$ が得られることを確かめよ.

問B-1

 (X, \mathcal{M}, μ) を有限測度空間とする.

- 1. $\mathcal{B}\subset\mathcal{M}$ が σ -algebra のとき, $L^p(X,\mathcal{B},\mu)$ は $L^p(X,\mathcal{M},\mu)$ の線形部分空間であることを 示せ
- 2. $f \in L^2(X, \mathcal{M}, \mu)$ に対し、 $\phi : \mathbb{R} \to \mathbb{R}$ を

$$\phi(t) := \int_{Y} (f(x) - t)^{2} d\mu$$

で定めるとき, $\phi(t)$ を最小にする t を求めよ.

3. $f \in L^2(X, \mathcal{M}, \mu)$ に対し、 $g \in L^2(X, \mathcal{B}, \mu)$ で $\|f - g\|_{L^2}$ が最小となるものを求めよ. (ヒント:演習第 7 回問 B-2 と同様の方法で f から \mathcal{B} -可測関数を構成できる.)

問 B-2

 $X=\{1,2,\cdots,n\}$ とする. ν を X 上の counting measure, すなわち各 $E\in\mathcal{P}(X)$ に対して $\nu(E):=\#E$ で定義される測度とする. このとき,以下を示せ.

(1) 任意の $x_1, x_2, \dots, x_n \in \mathbb{R}$ と 1 について次の不等式が成り立つ.

$$\max_{1 \le i \le n} |x_i| \le \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \le n^{1/p} \max_{1 \le i \le n} |x_i|.$$

- (2) $f \in L^{\infty}(X, \mathcal{P}(X), \nu)$ ならば $||f||_{\infty} = \max_{1 \leq i \leq n} |f(i)|$ である.
- (3) $\phi: L^{\infty}(X, \mathcal{P}(X), \nu) \to \mathbb{R}^n$ を $\phi(f) := (f(1), f(2), \cdots, f(n))$ と定義すると ϕ は連続な全 単射線型写像であり、逆写像も連続である。ただし、 \mathbb{R}^n には通常の距離から定まる位相を入れる。
- (4) 集合として $L^p(X, \mathcal{P}(X), \nu) = L^\infty(X, \mathcal{P}(X), \nu)$ である.また恒等写像 $\mathrm{id}: L^p(X, \mathcal{P}(X), \nu) \to L^\infty(X, \mathcal{P}(X), \nu)$ は連続な全単射線型写像であり,逆写像も連続である.

以上により、 $1 \le p \le \infty$ について $L^p(X, \mathcal{P}(X), \nu)$ は \mathbb{R}^n と同一視できることが分かった.