math115A lecture notes

Alice Bob

Table of Contents

0.1.	January 7	1
0.2.	Properties of \mathbb{Z}	2
0.3.	Types of proofs:	3
0.4.	Back to number theory	5
0.5.	January 16	6
	January 21	
0.7.	January 23	12
0.8.	January 28	14
0.9.	Jan 30 (Sara Ramirez's notes)	17
0.10.	Feb 4	20
0.11.	Feb 11	24
0.12.	Feb 13	27
0.13.	Feb 18	31
0.14.	Feb 20	37
0.15.	Feb 25	41
0.16.	Feb 27	45

<u>0.1. January 7</u>

Basic Properties: What questions are studied in this subject?

0.1.1. Remark

Fermat (1636): Every positive integer can be represented as a sum of the squares of four integers

e.g.
$$1 = 1^2 + 0^2 + 0^2 + 0^2$$

e.g.
$$7 = 2^2 + 1^2 + 1^2 + 1^2$$

e.g.
$$10 = 2^2 + 2^2 + 1^2 + 1^2$$

Langrange published the first proof in 1770

0.1.2. Definition: prime number

A positive integer p is prime if its only positive divisors are 1 and p. (should be greater than 1)

0.1.3. Remark

Euclid proved that there are inifinitely many primes

0.1.4. Remark

Fermat: All numbers of the form $f_n:=2^{2^n}+1$ are prime. Therefore, for example, $641\mid 2^{2^5}+1$ (check this)

0.1.5. Remark

Gauss: A regular polygon with m sides can be constructed as using straight edge and compasses alone iff $m=2^k\cdot f_{n_1}\cdot f_{n_2}\cdot \ldots \cdot f_{n_r}$ (check this)

0.1.6. Remark

How are the primes distributed?

$$\pi(x) = |\{n \le x : n \text{ is prime}\}|$$

How does $\pi(x)$ grow with x?

Gauss used tables of primes to guess the answer e.g. look at values $\frac{\pi(x) - \pi(x - 1000)}{1000}$ for large x i.e. frequency of primes in [x - 1000, x]

He noticed that this frequency call it $\Delta(x)$ seems to be slowly decreasing. He then noticed that $\frac{1}{\Delta(x)}\cong\frac{1}{\log(x)}$ (for log base e) so that $\pi(x)\approx\int_2^x\frac{\mathrm{d}t}{\log t}$

Then, if we define $\mathrm{li}(x)=\int_2^x \frac{\mathrm{d}t}{\log t}$ then the following conjecture was made:

$$\lim_{x \to \infty} \frac{\pi(x)}{\mathrm{li}(x)} = 1$$

And later proved by Hadamard using complex variable theory

<u>0.2.</u> Properties of \mathbb{Z}

0.2.1. Proposition

properties of \mathbb{Z}

- 1. cancellation law: if ab = ac then b = c as long as $a \neq 0$ (\mathbb{Z} is said to be a domain or an integral domain)
- 2. \mathbb{Z} is ordered therefore \mathbb{Z}^+ is closed under addition and multiplication and for every $a \neq 0$ exactly one of
- a, -a belongs to \mathbb{Z}^+ . Define a>b to mean $a-b\in\mathbb{Z}^+$
- 3. \mathbb{Z}^+ is well ordered: Every non-empty set of positive integers has a smallest element. (note that \mathbb{Q} , \mathbb{R} are NOT well-ordered)

0.2.2. Remark

We can partiion the integers into three classes:

- 1. Units ± 1 (i.e. integers with reciprocals in \mathbb{Z})
- 2. Prime numbers (i.e. integers n for which we cannot have n=ab with $a,b\in\mathbb{Z}$ and a,b not units)
- 3. Composite numbers (the rest)

0.2.3. Definition: If m, n are integers, we say that m divides n (written $m \mid n$) if there exists an integer t such that n = mt. Otherwise write $m \mid !n$

<u>0.3.</u> Types of proofs:

0.3.1. Theorem

Every integer n > 1 is divisible by a positive prime.

Proof: Suppose that n > 1 has no positive prime divisor. Then n is not prime, and we may write n = ab, with a and b not units. Then $n = |a| \cdot |b|$ and |a| < n since |b| > 1.

Set $n_1=|a|.$ Then $n_1>1$ and n_1 has no prime divisor

Now repeat the above argument with n_1 in place of n to produce an integer n_2 with $1 < n_2 < n_1$ and such that n_2 has no prime divisor. Continuing in this way, we produce a non-empty set of positive integers n_1, n_2, \ldots having no smallest integer.

However, this contradicts the well-ordering principle.

0.3.2. Theorem

There are infinitely many positive primes

Proof:

Suppose that there are only finitely many positive primes.

Consider the integer $N=p_1...p_2...p_r+1$. Then p_i does not divide N for all i, but N>1 and our previous result shows that N is divisible by some prime. Henve there is a prime p distinct from $p_1,...,p_r$ such that p divides p. (this leads to a contradiction)

no class next tuesday yay

0.3.3. Theorem

There is no integer between 0 and 1

Proof:

Suppose that there exists $m \in \mathbb{Z}$ such that 0 < m < 1. Then we have

$$0 < m^2 < m < 1 \Rightarrow$$

 $0 < m^3 < m^2 < m < 1 \Rightarrow$
 $0 < m^4 < m^3 < \dots$

and so we obtain an infinite set of positive integers with no smallest element. This contradicts the well-ordering principle.

0.3.4. Theorem

The real number e is irrational

Proof:

We know that $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots$

So for each $n\in\mathbb{Z}^+$, we have $n!e=\frac{n!}{1}+\frac{n!}{2}+\ldots+\frac{n!}{n!}+\frac{n!}{(n+1)!}+\ldots$

Suppose that e were irrational then $e = \frac{a}{b}$, with $a, b \in \mathbb{Z}$. If this is true, then

$$n!\tfrac{a}{b} = q_n + \tfrac{n!}{(n+1)!} + \dots$$

$$\mathsf{set}\ r_n \coloneqq n! a - q_n b$$

$$r_n=n!a-q_nb=big(rac{n!}{(n+1)!}+rac{n!}{(n+2)!}ig)$$

Since $r_n \in \mathbb{Z}$ we have $r_n < \frac{b}{n+1} + b\Big(\frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \ldots\Big) = \frac{b}{n+1} + b\Big(\Big(\frac{1}{n+1} - \frac{1}{n+2}\Big) + \Big(\frac{1}{n+2} - \frac{1}{n+3}\Big) + \ldots\Big) = \frac{b}{n+1} + \frac{b}{n+1} = 2\frac{b}{n+1}$

Hence if $n \ge 2b$ we have $0 < r_n < 2\frac{b}{n+1} < 1$ which is a contradiction by the previous theorem (hence e is irrational)

0.3.5. Theorem: Principle of Induction

If a set S of integers contain n_0 , and if S contains n+1 whenever it contains n, then S contains all integers greater than or equal to n_0

Proof:

Suppose that m is an integer with $m > n_0$, and $m \notin S$. Then $m-1 \notin S$ for otherwise, since m = (m-1)+1 we would have $m \in S$

Hence $m-1 \neq n_0$ therefore $m-1 > n_0$. Now we can continue to repeat the argument and thereby obtain a contradiction to the well ordering principle

0.3.6. Theorem: Birrchlet's pigeonhole principle

suppose that a set of n elements is partitioned with m subsets with $1 \le m < n$. Then some subset must contain more than one of the elements.

0.4. Back to number theory

0.4.1. Proposition

Every natural number greater than 1 is either a prime or can be written as a product of primes.

Proof:

Proof via induction:

Let $n \in \mathbb{Z}^+$. If n is prime, then there is nothing to prove.

However if n is composite we can write n = ab with 0 < a, b < n. By induction a and b are either primes or expressible as a product of primes, and so substituting for n yields an expression for n as a product of primes.

Page 5 of 49

0.4.2. Theorem: Fundamental theorem of arithmetic

Any natural number greater than 1 can be represented in one and only one way as a product of primes

Proof:

Let P(n) denote the statement "n can be written uniquely as a product of primes"

observe that 2 is prime, so that P(2) is true.

Suppose for inductive hypothesis that k is an integer such that P(t) is true for all integers t satisfying $2 \le t \le k$

Consider k + 1. If this is prime, then we are trivially done.

Suppose k + 1 is composite (so that it has at least 2 prime factors) and (for contradiction) has 2 distinct representations as products of primes:

$$k+1=pqr...=p'q'r'...$$

(Note that the same prime cannot be in both representations (as P(t) is true for all $2 \le t \le k$))

Suppose WLOG that p and p' are the smallest primes occurring in each factorization

Since k+1 is composite, we have $k+1 \ge p^2$ and $k+1 \ge p'^2$ and since $p \ne p'$ then at least one of these ineuqualities is a strict inequality, therefore k+1 > pp'

Consider k+1-pp' which by induction hypothesis can be written uniquely as a product of primes. Since this quantity is divisible by both p and p', we have the prime factorization k+1-pp'=pp'QR... implies pp' divides k+1, this implies that ...

0.4.3. Remark

Consequences of Fundamental theorem of arithmetic.

suppose that the prime factorisation of $n\in\mathbb{Z}^+$ is given by $n=p_1^{q_1}p_2^{q_2}...p_r^{q_r}$ with $p_1,...,p_2$ distinct primes. The divisors of n consist of all products of the form $p_1^{\alpha_1}...p_r^{\alpha_r}$ where $0\leq\alpha_i\leq q_i$ and the total number of choices is $(\alpha_1+1)(\alpha_2+1)...(\alpha_r+1)=\prod_{i=1}^r(\alpha_i+1)$

let d(n) be the number of divisors of n

We may consider the sum $\sigma(n)$ of all divisors of n (including 1 and n). We have that $\sigma(n)=(1+p_1+p_1^2+\ldots+p_1^{q_1})(1+p_2+p_2^2\ldots p_2^{q_2})\ldots(1+p_r+p_3^r+\ldots+p_1^{q_r})$

when we multiply this expression it is the sum of all possible products of the sum $p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$

(this is probably in the book)

0.5. January 16

0.5.1. Definition

A positive number n is said to be perfect if the sum of the divisors of n including 1 and excluding n is equal to n

0.5.2. Theorem: (by Euclid)

Suppose that p is a prime such that $p+1=2^k$ for some k>0. Then $2^{k-1}\cdot p$ is perfect.

Proof:

Took a picture

0.5.3. Theorem: (Euler)

Every even perfect numbers is of the form $2^{k-1} \cdot p$, where $p+1=2^k$

Proof: Did not do in class

0.5.4. Remark

are there any odd perfect numbers (open question)

0.5.5. Proposition

If m, n have common prime factors, we may obtain the greatest common divisor or highest common factor (HCF) of m and n by multiplying together the various common prime factors of m and n, each of these being taken to the highest power to which it divides both m and n

Proof:

For example, $3132 = 2^2 \cdot 3^3 \cdot 29$ and $7200 = 2^5 \cdot 3^2 \cdot 5^2$ then the highest common factor is $2^2 \cdot 3^2 = 36$

0.5.6. Theorem: division theorem

If a is any integer and $b \in \mathbb{Z}^+$, then there exists exactly one pair of integers q and r such that the condition a = bq + r where $0 \le r < b$ hold. (the number q is called the quotient and r is the remainder when a is divided by b)

Proof: look it up

0.5.7. Algorithm: Euclid's algorithm

Finds the highest common factor of two positive integers a and b. Suppose that a > b. Then

$$a = qb + c, 0 \le c < b$$

Any common divisor of a and b is also a common divisor of b and c. So we've reduced the problem to finding the highest comon factor of b and c (which are respectively less than and b).

i.e. the problem we are solving is b = rc + d, $0 \le d < c$

The common divisors of b and c are the same as those of c and d. etc.

We can repeat this process until we arrive at a number which is a divisor of the preceding number.

0.5.8. Definition

Suppose that $a,b\in\mathbb{Z}^+$. Say that $n\in\mathbb{Z}$ is linearly dependent on a and b if it can be written in the form n=ax-by for some $x,y\in\mathbb{Z}^+$.

Remarks:

(i) Any number representable in the form ax-by can also be represented in the form by'-ax' with $x',y'\in\mathbb{Z}^+\cup\{0\}$

Observe that $ax - by = by' - ax' \Leftrightarrow a(x + x') = b(y + y')$. To ensure that this last equality holds, take any integer m such that mb > x and ma > y.

Then define x' and y' by x + x' = mb, y + y' = ma.

- (ii) If n is linearly dependent on a and b, then so is kn for any integer k
- (iii) If n_1, n_2 are (both)linearly dependent on a, b then so is $n_1 + n_2$

We come to an interesting property of the HCF:

0.5.9. Theorem

The HCF h of two positive integers a and b is representable in the form h=ax-by where $x,y\in\mathbb{N}$

Proof:

Consider the stpes involved in Euclid's algorithm. Observe that a, b are linearly dependent on a, b since a = a(b + 1) - ba, b = ab - b(a - 1).

Now we have a=qb+c. So, since b is linearly dep on a,b so is q^b . Hence c=a-qb is linearly dependent on a,b. Continue in this way to deduce that the last remainder is the application of the algorithm, i.e. h is linearly dependent on a,b.

Example: took a picture (this seems important)

0.5.10. Remark

Here is a problem: suppose that $a,b\in\mathbb{Z}_{\geq 0}$. Find $x,y\in\mathbb{Z}$ such that ax+by=n (†) This is an example of a Diophantine Euqation (it does not determine x,y uniquely.)

Remakrs:

- 1. Note that (†) cannot be solved unless n is a multiple of the HCF h of a, b since $h \mid (ax + by)$
- 2. Suppose that n=mh. Then \dagger can be solved. First solve $ax_1+by_1=h$. We've already seen: set $x=mx_1$ and $y=my_1$

0.6. January 21

Last time: diophantine equations

0.6.1. Remark

Solving Diophantine Equations:

Suppose that $a, b, n \in \mathbb{Z}_{>0}$. Find $x, y \in \mathbb{Z}$ such that ax + by = n (†)

Remarks:

- 1. (†) cannot be solved unless n is a multiple of h := gcf(a, b), since $h \mid (ax + by)$
- 2. Suppose that n = mh Then (†) can always be solved.

First, solve $ax_1 + by_1 = h$

Then set $x = mx_1, y = my_1$

In fact, (\dagger) is solvable with $x, y \in \mathbb{Z}$ if and only iff n is a multiple of h. So, if h = 1 then (\dagger) is solvable for all $n \in \mathbb{N}$ (and also for $n \in \mathbb{Z}$).

3. Suppose that h=1 and that (x,y),(x',y') are two distinct solutions of (\dagger) . Then a(x-x')+b(y-y')=n-n=0.

Therefore $\frac{a}{b} = \frac{-y(y-y')}{x-x'}$

Since a,b are coprime there exists $t\in\mathbb{Z}$ such that y-y'=-at and x-x'=bt

Additionally, any integers of the form y = y' - at and x = x' + bt satisfy (†)

So if h = 1 then a general solution of (†) is x = x' + bt, y = y' - at

4. Now suppose that h>1, and n=mh so (\dagger) has a solution. Then $ax+by=n=mh\Leftrightarrow \frac{a}{h}x+\frac{b}{h}y=m$. Since the HCF of $\frac{a}{h},\frac{b}{h}$ is 1, we've already dealt with this case: the general solution is $x=x_0+\frac{b}{h}t,\,y=y_0-\left(\frac{a}{h}\right)t$ $(t\in\mathbb{Z})$ where x_0,y_0 is a solution of (\dagger)

0.6.2. Example: : Solve two variable diophantine equation

Find the general solution of 69x + 39y = 15 (if it exists)

First determine if the equation is solvable: find the HCF of 69,39:

69 = 39 times 1 + 30

39 = 30 times 1 + 9

30 = 9 times 3 + 3

9 = 3 times 3

Therefore the equation is solvable, since $3 \mid 15$

Next:
$$\frac{69}{3}x + \frac{39}{3}y = 15 \Leftrightarrow 23x + 13y = 5$$

From the Euclidean algorithm, we obtain $3 = 30 - 9 \times 3 = 4(69 - 39 \times 1) - 3 \times 39 = 4 \times 69 - 7 \times 39$. Therefore x = 4, y = -7 is a solution of 69x + 39y = 3 and 23x + 13y = 1.

Then, $x_0=4\times 5, y_0=-7\times 5$ is a solution of 69x+39y=15

And a general solution of (†) is x = 20 + 13t, y = -35 - 23t

0.6.3. Chatper 2 Congruences

0.6.4. Definition: Congruent modulo m

Suppose that $a, b \in \mathbb{Z}$. We say that a is congruent to b modulo m and write $a \equiv b \pmod{m}$ or $a \equiv b \pmod{m}$ (Informally, "equality except for the addition of some multiple of m")

Examples: $63 \equiv 0 \mod 3, 7 \equiv -1 \mod 8, 5^2 \equiv -1 \mod 13$

Additionally, note that $x \equiv y \mod 2 \Leftrightarrow x$ and y are both even or x and y are both odd

0.6.5. Remark

If $a \equiv \alpha, b \equiv \beta \mod m$ then

$$a + b \equiv \alpha + \beta \mod m,$$

 $a - b \equiv \alpha - \beta \mod m,$
 $ab \equiv \alpha\beta \mod m$

Proof:

Since $a \equiv \alpha \mod m$ and $b \equiv \beta \mod m$ it follows that $a = \alpha + k_1 m, b = \beta + k_2 m$ for some integers k_1, k_2 hence $a + b = \alpha + k_1 m + \beta + k_2 m = \alpha + \beta + m(k_1 + k_2)$. Therefore $(a + b) - (\alpha - \beta)$ is divisible by m, and so $a + b \equiv \alpha + \beta \mod m$

0.6.6. Remark

If $a = \alpha m$, then $ka \equiv k\alpha m$ for any $k \in \mathbb{Z}$

0.6.7. Remark

It is true that $42 \equiv 12 \, \mathrm{mod} \, 10$ however $\frac{42}{6} \not \equiv \frac{12}{6} \, \mathrm{mod} \, 10$

However, we CAN cancel factors if they are coprime to the modulus.

i.e. suppose that $ax \equiv ay \mod m$ with a,m coprime then $m \mid a(x-y)$ and this implies $m \mid (x-y)$ i.e. $x \equiv y \mod m$

0.6.8. Remark

Suppose that $n = a_m \cdot 10^m + a_{m-1} \cdot 10^{m-1} + ... + a_1 \cdot 10 + a_0$.

Observe that $n \equiv a_0 \mod 2$. Therefore n is divisible by 2 if and only if a_0 (the last digit of n) is divisible by 2

Next, notice that $10 \equiv 1 \mod 3$. Therefore $n \equiv a_m + a_{m-1} + ... + a_1 + a_0 \mod 3$. In other words, the sum of the digits of n is divisible by 3 if and only if n is divisible by 3.

Observe that $10 \equiv 0 \mod 5$ and so $n \equiv a_0 \mod 5$. Therefore $n \equiv 0 \mod 5$ iff $a_0 \equiv 0 \mod 5$ (i.e. n is divisible by 5 if and only if the last digit of n is divisible by 5)

Observe that $10 \equiv 1 \mod 9$ (similar to 3, n is divisible by 9 iff the sum of its digits is divisible by 9)

Observe that $10 \equiv -1 \mod 11$. Hence $n \equiv a_m \cdot (-1)^m + a_{m-1} \cdot (-1)^{m-1} + \dots + a_1 \cdot (-1) + a_0$. (i.e. n is divisible by 11 if and only if the alternating sum of the digits of n is divisible by 11)

0.6.9. Remark

Notice that $7 \cdot 11 \cdot 13 = 10^3 + 1$

Any integer is congruent modulo m to exactly one of the numbers $\{0, 1, 2, ..., m-1\}$. This set of numbers is called a complete set of residues modulo m.

0.6.10. Remark

"Congruence modulo m" is an equivalence relation on $\mathbb Z$

0.7. January 23

Notation: If $a, b \in \mathbb{Z}$ then we write (a, b) for the HCF of a and b

0.7.1. Definition: Linear Congruences

A linear congruence is of the form $ax \equiv b \pmod{m}$ (†)

0.7.2. Theorem

The congruence (\dagger) can be solved if and only if $(a,m)\mid b$

Proof:

Since $(a,m) \mid a$ and $(a,m) \mid m$ it foolows that if (\dagger) is solvable, then we must have $(a,m) \mid b$

For the converse, set d=(a,m), and suppose that $d\mid b$. Let $a'=\frac{a}{d},b'=\frac{b}{d},m'=\frac{m}{d}$

Then to solve \dagger it suffices to solve $a'x \equiv b' \pmod{m'} (\dagger \dagger)$

Now (due to properties of gcf) we have (a', m') = 1, and as x runs through a complete set of residues mod m', so does a'x (since there are m' of these numbers, no two of which are congruent modulo m')

Hence $(\dagger\dagger)$ has precisely one solution modulo m'

If y is any solution of $a'x \equiv b' \pmod{m'}$, then the complete set of solutions modulo m of (\dagger) is given by x = y, x = y + m', x = y + 2m', ..., x = y + (d-1)m'

0.7.3. Example

Consider $3x \equiv 5 \pmod{11}$

A complete set of residues mod 11 is $\{0, 1, 2, ..., 10\}$

Another complete set of residuces is $\{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30\}$ mod 11

and these are congruent modulo 11 respectively to 0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8 respectively.

The value 5 occurs when x = 9

0.7.4. Example

Complete set of residues of 6 is $\{0, 1, 2, 3, 4, 5\}$

If we multiply this set with something coprime to 6 then $\{0, 5, 10, 15, 20, 25\}$ is still complete set of residues

However if we multiply by something that is not coprime to 6, such as 2, then the set $\{0, 2, 4, 6, 8, 10\}$ is not a complete set of residues as they are confruent to $\{0, 2, 4, 0, 2, 4\}$ (mod 6)

recall that $ax \equiv ay \pmod{m}$, a can be canceld iff (a, m) = 1 (from 1.6.7)

0.7.5. Corollary

The above implies that $ax \equiv b \pmod{p}$ is solvable where p is prime.

0.7.6. Remark

The congruence $ax \equiv b \pmod{m}$ is equivalent to the equation ax = b + my i.e. ax - my = b. We have seen that this diophantine equation can be solved if any only if b is a multiple of (a, m)

0.7.7. Theorem: Chinese Remainder

Suppose that $n_1,...,n_k\in\mathbb{Z}^+$ and that $\left(n_i,n_j\right)=1$ for $i\neq j$ (i.e. pairwise coprime) Then, for any $c_1,...,c_k\in\mathbb{Z}$ there is an integer x satisfying $x\equiv c_j \pmod{n_j}, 1\leq j\leq k$ (\dagger)

Proof:

Let $n=n_1\cdot n_2...n_k$ and set $m_j=\frac{n}{n_j}$ for $(1\leq j\leq k)$. Then $\left(m_j,n_j\right)=1$ and so there exists an integer x_j such that $m_jx_j\equiv c_j\big(\mathrm{mod}\,n_j\big)(\dagger)$

The integer $x=m_1x_1+\ldots+m_kx_k$ satisfies $x\equiv c_j \big(\mathrm{mod}\,n_i\big)$

0.7.8. Remark

Let $x = m_1 x_1 + ... + m_2 x_2 + ... + m_k x_k$

Consider $x \mod n_2$. We have $x \equiv 0 + m_2 x_2 + 0 + 0 + ... + 0 \pmod{n_2} \equiv c_2 \pmod{n_2}$

0.7.9. Remark

In fact, there is a unique solution to the congruence (†) modulo $n = n_1...n_k$.

Proof: suppose that x, y are solutions to (†) Then we have $x \equiv y \pmod{n_i}$ i.e. $x - y \equiv 0 \pmod{n_i}$.

Since the integers n_i are pairwise coprime, this implies that $x-y\equiv 0 \pmod n$ i.e. $x\equiv y \mod (n)$

0.7.10. Example

Consider $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 4 \pmod{11}$.

Therefore $n_1 = 5, n_2, = 7, n_3 = 11$ and $n = 5 \cdot 7 \cdot 11$ so that $m_1 = 77, m_2 = 55, m_3 = 35$

Hence we must solve: $77x_1 \equiv 2 \pmod{5}, 55x_2 \equiv 3 \pmod{7}, 35x_3 \equiv 4 \pmod{11}$

Which can be simplified to $2x_1 \equiv 2 \pmod{5}$, $6x_2 \equiv 3 \pmod{7}$, $2x_3 \equiv 4 \pmod{11}$

A solution is given by $x = 77x_1 + 55x_2 + 35x_3$ and we can take $x_1 = 1, x_2 = 4, x_3 = 2$ which give x = 367

0.7.11. Definition: Order of x

Suppose that $m \in \mathbb{Z}^+$ and $x \in \mathbb{Z}$ with (m, x) = 1. The order of $x \pmod m$ is the smallest positive integer l satisfying $x^l \equiv 1 \pmod m$

0.7.12. Example

the powers of 3 mod 11 are 3, 9, 5, 4, 1, 3, 9, Then the order of 3 mod 11 is 5

0.7.13. Proposition

 $x^n \equiv 1 \mod(m) \Leftrightarrow n$ is a multiple of l. Where l is the order of $x \mod m$.

Proof: We have $n=ql+r, 0 \le r \le l-1$. Therefore $x^n=x^{ql}\cdot x^r=x^r$. We have that $x^r=1$ iff r=0

0.7.14. Theorem: Fremat's Little Theorem

Suppose that $m \in \mathbb{Z}^+$ and let $x \in \mathbb{Z}$ with (m, x) = 1. Consider the sequence x, x^2, x^3, \dots

Then there exist k, h with $x^k \equiv x^h \pmod{m}$.

Since (x, m) = 1 this implies that $x^{h-k} \equiv 1 \pmod{m}$

0.8. January 28

We finish Fermat's Little Theorem:

0.8.1. Definition: Fermat's Little Theorem

Suppose that $m \in \mathbb{Z}^+$ and $x \in \mathbb{Z}$ with (m, x) = 1. The order of $x \mod m$ is the smallest positive integer l satisfying $x^l \equiv 1 \pmod m$

0.8.2. Proposition

We have that $x^n \equiv 1 \pmod{m}$ if and only if n is a multiple of l

0.8.3. Remark

Suppose that p is a prime number. Let $1 \le r \le p-1$ be an integer. Recall that $\binom{p}{r} = \frac{p!}{(p-r)!r!}$

We therefore see that $p\mid \binom{p}{r}$ i.e. $\binom{p}{r}\equiv 0(\operatorname{mod} p)$

Now suppose that x, y are intleterninates. Then

$$(x+y)^p = \binom{p}{1}x^{p-1}y + \dots + \binom{p}{1}x^{p\cdot r}y^r + \dots + pxy^{p-1} + y^p$$
$$\equiv x^p + y^p \pmod{p}$$

Hence one can show by induction that $(x_1+x_2+\ldots+x_n\equiv x_1^p+x_2^p+\ldots+x_n^p \pmod p)$

0.8.4. Theorem: Fermat's Little Theorem

Suppose that p is a prime number and that $x \not\equiv 0 \pmod{p}$. Then $x^{p-1} \equiv 1 \pmod{p}$

Proof:

We have $x=1+1+\ldots+1$ (x times) therefore $x^p=(1+1+\ldots+1)^p\equiv 1^p+1^p+\ldots+1^p (\operatorname{mod} p)\equiv x (\operatorname{mod} p)$. Since (x,p)=1 this implies that $x^{p-1}\equiv 1 (\operatorname{mod} p)$

Second proof: Consider the numbers x, 2x, 3x, ..., (p-1)x. There are p-1 numbers in this set and no two fo them are congruent modulo p. Here this set forms a complete set of non-zero residues modulo p, and are congruent (in some order) to 1, 2, 3, ..., p-1

Therefore $x \cdot 2x \cdot 3x ... (p-1)x \equiv 1 \cdot 2 \cdot 3... (p-1) \pmod{p}$ i.e. $x^{p-1} \cdot (p-1)! \equiv (p-1)! \pmod{p}$

Since (p, (p-1)!) = 1, it foolows that $x^{p-1} \equiv 1 \pmod{p}$

0.8.5. Definition: Euler ϕ function

Suppose that $m \in \mathbb{Z}^+$. Then $\phi(m)$ is defined to be the number of elements in the set 1, 2, ..., m-1 that are coprime to m.

Example: suppose that p is a prime. then $\phi(p) = p - 1$

0.8.6. Theorem: Euler's

Suppose that $m \in \mathbb{Z}^+$ and that (x,m)=1. Then $x^{\phi(m)}\equiv 1$

Proof:

Let $\alpha_1,\alpha_2,...,\alpha_{\phi(m)}$ denote the elements of the set $\{1,2,...,m-1\}$ that are coprime to m.

Then the numbers $x \cdot \alpha_1, ..., x \cdot \alpha_{\phi(m)}$ are congruent (in some order) to the numbers $\alpha_1, ..., \alpha_{\phi(m)}$

In other words $x\alpha_1...x\alpha_{\phi(m)} \equiv \alpha_1...\alpha_{\phi(m)} \pmod{m}$

i.e. $x^{\phi(m)} \cdot \alpha_1 ... \alpha_{\phi(m)} \equiv \alpha_1 ... \alpha_{\phi(m)} \pmod{m}$. Hence $x^{\phi(m)} \equiv 1 \pmod{m}$.

0.8.7. Example

Take m=20, the positive integers less than 20 and corpime to 20 are 1,3,7,9,11,13,17,19 Therefore $\phi(m)=8$. Note that if we multiply this set of numbers of 3 then none of the new numbers will be congruent to 20. i.e. the residues would be $3,9,1,7,13,19,11,17 \pmod{20}$.

We have $3^8 \equiv 1 \pmod{20}$ and (note that $3^8 = 6561$)

0.8.8. Theorem: Wilson's Theofrem

If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$

Proof:

Suppose that p > 3. (the cases p = 2, 3 are clear.)

Consider the set of integers $S = \{1, 2, 3, ..., p-1\}$

For each $a \in S$ there exists a unique $a' \in S$ such that $aa' \equiv 1 \pmod{p}$

If a = a' then we have $a^2 \equiv 1 \pmod{p}$ if and only if $a^2 - 1 \equiv 0 \pmod{p}$ if and only if $(a - 1)(a + 1) \pmod{p} \equiv 0$ if and only if $a - 1 \equiv 0 \pmod{p} \Rightarrow a \equiv 1 \pmod{p}$ or $a + 1 \equiv 0 \pmod{p} \Rightarrow a \equiv -1 \pmod{p}$

So the set of integers $\{2,3,...,p-2\}$ may be grouped into pairs a,a' such that $a\not\equiv a'$ and $aa'\equiv 1 \pmod p$, Hence it follows that

$$2 \cdot 3 \cdot \ldots \cdot (p-2) \equiv 1 \pmod{p} \Rightarrow 2 \cdot 3 \cdot \ldots \cdot (p-2)(p-1) \equiv p-1 \pmod{p} \equiv -1 \pmod{p}$$

i.e. $(p-1)! \equiv -1 \pmod{p}$

0.8.9. Example

Let p = 13 and consider the integers 2, 3, ..., 11.

 $2 \cdot 7 \equiv 1 \pmod{13}$

 $3 \cdot 9 \equiv 1 \pmod{13}$

 $4 \cdot 10 \equiv 1 \pmod{13}$

 $5 \cdot 8 \equiv 1 \pmod{13}$

We have $6 \cdot 11 \equiv 1 \pmod{13}$

So $11! = (2 \cdot 7)(3 \cdot 9)(4 \cdot 10)(5 \cdot 8)(6 \cdot 11) \equiv 1 \pmod{13}$.

Therefore $12! \equiv 12 \equiv -1 \pmod{13}$

The converse of Wilson's theorem is also true:

0.8.10. Theorem: converse of Wilson's theorem

Suppose that $(n-1)! \equiv -1 \pmod{n}$. Then n is prime.

Proof:

Suppose that n is not prime and let d be a divisor of n with 1 < d < n. Then $d \mid (n-1)!$. Since $n \mid \{(n-1)! + 1\}$ by hopothesis, it follows that $d \mid \{(n-1)! + 1\}$ also. This in turn implies that $d \mid 1$, which is a contradiction.

Although, this is completely useless as a primarlity test

0.8.11. Theorem

Suppose that p is an odd prime. Then the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$

Proof:

Suppose that a is a solution of $x^2+1\equiv 0(\bmod{p})$, so $a^2\equiv -1(\bmod{p})$ Since $p\nmid a$ then Fermat's little theorem implies $1\equiv a^{p-1}(\bmod{p})\equiv \left(a^2\right)^{\frac{p-1}{2}}\equiv (-1)^{\frac{p-1}{2}}(\bmod{p})(\dagger)$

Now suppose that p=4k+3 for some k. Then $(-1)^{\frac{p-1}{2}}=(-1)^{2k+1}=-1$ and so (\dagger) implies that $-1\equiv 1 \pmod p$. This implies that $p\mid 2$, which is a contradiction. Hence it follows that p must be of the form 4k+1

Conversely, suppose that p = 4k + 1 for some k.

Then
$$(p-1)! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \dots \cdot (p-2) \cdot (p-1)(*)$$

As a side note, note that we have the congruences $p-1\equiv -1 \pmod p, p-2\equiv -2 \pmod p,..., \frac{p+1}{2}\equiv -\frac{p-1}{2} \pmod p$

Rearranging the factors of (*) gives $(p-1)! \equiv 1(-1) \cdot 2(-2) \cdot \ldots \cdot \frac{p-1}{2} \frac{-(p-1)}{2} \equiv (-1)^{\frac{p-1}{2}} \left(1 \cdot 2 \ldots \cdot \frac{p-1}{2}\right)^2 \equiv (-1)^{\frac{p-1}{2}} \left[\left(\frac{p-1}{2}\right)!\right]^2$ and by wilson's theorem we obtain $-1 \equiv (-1)^{\frac{p-1}{2}} \left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv (1) \left[\left(\frac{p-1}{2}\right)!\right]^2$ and therefore we know that $\left[\left(\frac{p-1}{2}\right)!\right]^2$ is a solution to the congruence.

0.9. Jan 30 (Sara Ramirez's notes)

Arithmetical functions

0.9.1. Proposition

Suppose p is prime. Then $\phi(p^q)=p^{q-1}(p-1)$

Proof:

Consider the set of numbers $\{0,1,2,...,p^q-1\}$ The only numbers in this set that are not coprime to p are those that are divisible by p i.e. those of the form pt for $t=0,1,2,...,p^{q-1}-1$. Therefore $\phi(p^q)=p^q-p^{q-1}=p^{q-1}(p-1)$

0.9.2. Definition: multiplicative function

Let $n=p_1^a...p_r^{q_r}$

Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is a function. f is multiplicative if f(mn) = f(m)f(n) whenever (m, n) = 1 Examples: f(n) = 1 and f(n) = n are multiplicative.

0.9.3. Proposition

If f is a multiplicative function and F is defined by $F(n) = \sum_{d|n} f(d)$ is also multiplicative.

Proof:

Suppose that $m, n \in \mathbb{Z}^+$ such that (m, n) = 1

Then

$$F(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m,d_2|n} f(d_1d_2) \text{ since } (m,n) = 1$$

Recall that f is multiplicative, therefore we have $F(mn) = \sum_{d_1|m,d_2|n} f(d_1)f(d_2) = (\sum_{d_1|m} f(d_1)\left(\sum_{d_2|n} f(d_2)\right) = F(m)F(n)$

0.9.4. Corollary: $d(n), \sigma(n)$ are multiplicative

Recall that $d(n) = \sum\limits_{d \mid n} 1$ and $\sigma(n) = \sum\limits_{d \mid n} d$

Proof:

Then use the earlier examples of multiplicative functions and the above proposition.

0.9.5. *Theorem:* ϕ is multiplicative (proof 1)

We can show that the euler function ϕ is multiplicative

Proof:

Suppose that $m, n \in \mathbb{Z}$ such that m, n > 1 and (m, n) = 1, then consider the following array of integers:

$$\begin{pmatrix} 0 & 1 & 2 & 3 & \dots & m-1 \\ m & m+1 & m+2 & m+3 & \dots & m+(m-1) \\ \vdots & & & & & \\ (n-1)m & (n-1)(m)+1 & \dots & \dots & \dots & (n-1)m+(m-1) \end{pmatrix}$$

The (cool thing) is that this array consists of mn consecutive integers, and so it is a complete set of residues mod mn. If follows that $\phi(mn)$ entries of this array are coprime to mn. The first row is a complete set of residues mod m and all the entries in any given column are congruent mod m. Therefore there are exactly $\phi(m)$ columns consisting of integers that are coprime to m.

Consider such a column, It's entries are of the form $\alpha, m+\alpha, 2m+\alpha+\ldots+(n-1)m\alpha$ for some α . There are n integers, no 2 of which are congruent mod n. Therefore there are $\phi(n)$ integers in each column that are coprime to n

Hence there are $\phi(m)\phi(n)$ learnests in the array that are coprime to both m and n, and hence mn. Which shows that ϕ is multiplicative since i.e. $\phi(mn) = \phi(m)\phi(n)$

0.9.6. Corollary

Proof:

Let n have prime factorization $n=p_1^{q_1}...p_k^{q_k}$

Then
$$\phi(n) = \phi\left(p_1^{q_1}...p_k^{q_k}\right) = \phi(p_1^{q_1})...\phi\left(p_k^{q_k}\right) = p_1^{q_1-1}(p_1-1)...p_k^{q_k-1}(p_k-1) = p_1^{q_1}\left(1-\frac{1}{p_1}\right)...p_k^{q_k}\left(1-\frac{1}{p_k}\right) = n\prod_{p|n}\left(1-\frac{1}{p}\right)$$

Note that in the third equality we use 0.9.1

<u>0.10.</u> Feb 4

0.10.1. Theorem: ϕ is multiplicative (proof 2)

Proof:

0.10.2. Corollary

If n is a positive integer then $\phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$

Proof:

See the earlier proof

2nd proof that ϕ is multiplicative.

Let $p_1..., p_k$ be distinct prime factors of n. Then

$$n \prod_{p \mid n} \left(1 - \frac{1}{p}\right) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right) = n - \sum \left(\frac{n}{p_1}\right) + \sum \left(\frac{n}{p_1 p_2}\right) - \sum \frac{n}{p_1 p_2 p_3} + \dots$$

motivation: suppose that $n=p_1p_2$ then $n\prod_{p|n}\left(1-\frac{1}{p}\right)=n\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^2}\right)=n-\frac{n}{p_1}-\frac{n}{p_2}+\frac{n}{p_1p_2}$ (take away integers that are divisible by p_1,p_2 and add back in integers 1...n that are divisible by $p_1\wedge p_2$)

Now: $n = \sum_{m=1}^{n} 1$ and note that $\frac{n}{p_r}$ denotes the number of integers in the set $\{1, 2, ..., n\}$ that are divisible by p_r therefore

$$\sum_{1 \le r \le k} \frac{n}{p_r} = \sum_{m=1}^n \sum_{1 \le r \le k, P_r \mid m} 1$$

For each integer m with $1 \le m \le n$ let $l(m) \coloneqq$ the no. of primes in $\{p_1,...p_k\}$ that divide m.

Then we have

$$n - \sum_{1 \leq r \leq k} \frac{n}{p_r} + \sum_{1 \leq s < r \leq k} \frac{n}{p_r p_s} - \sum_{1 \leq t < s < r \leq k} \frac{1}{p_r p_s p_t} + \dots = \\ \sum_{m=1}^n \left(1 - \sum_{r, P_s \mid m} 1 + \sum_{r > s, P_s, P_s \mid m} 1 - \dots \right) = \sum_{m=1}^n \left(1 - \binom{l(m)}{1} + \binom{l(m)}{1} - \binom{l(m)}{3} + \dots \right)$$

Let
$$\left(1-\binom{l(m)}{1}+\binom{l(m)}{1}-\binom{l(m)}{3}+\ldots\right)(\star)$$

Then if l(m) = 0 them (\star) is equal to 1, i.e. if (m, n) = 1 then (\star) is 1.

Also, if l(m) > 0 them (\star) is equal to $(1-1)^{l(m)} = 0$.

Then we have
$$\sum\limits_{m=1}^n \left[\left(1-\binom{l(m)}{1}+\binom{l(m)}{2}-\binom{l(m)}{3}+\ldots\right)\right]=\sum\limits_{m,(m,n)=1}1=\phi(n)$$

0.10.3. Theorem

Suppose that n > 0 then $\sum_{d|n} \phi(d) = n$

Proof:

Proof 1: Let $S=\{1,2,...,n\}$. For each $d\mid n$ le $C_d=\{a\in S:(a,n)=d\}$ Then $S=\cup_{d\mid n}C_d$ and $C_d\cap C_{d'}=\emptyset$ if $d\neq d'$,

Now suppose that $a \in C_d$. Then we may write a = bd where $1 \le b \le \frac{n}{d}$ and $(b, \frac{n}{d}) = 1$.

So,
$$|C_d|=|\{a\in S:(a,n)=d\}|=|\left\{1\leq b\leq \frac{n}{d}:\left(b,\frac{n}{d}\right)=1\right\}=\phi\left(\frac{n}{d}\right)$$

Hence
$$n = \sum\limits_{d|n} |C_d| = \sum\limits_{d|n} \phi \left(\frac{n}{d} \right) = \sum\limits_{d|n} \phi(d)$$

Proof 2: Define a function F by $F(n) = \sum_{d|n} \phi(d)$. Then, since ϕ is multiplicative, we have that F is multiplicative.

Now suppose that $n=p^j$ where p is prime. Then $F(p^j) = \sum_{d|p^j} \phi(d) = \sum_{i=0}^j \phi(p^i) = 1 + (p-1) + (p^2-p) + (p^3-p^2) + ... + (p^j-p^{j-1}) = p_j$

0.10.4. Definition: μ mobius function

The Mobius function $\mu: \mathbb{Z}^+ \to Z$ is defined by

1 if n = 1

0 if $p^2 \mid n$ for some prime p

 $(-1)^r$ if $n=p_1p_2...p_r$ where the p_i are distinct primes.

For example $\mu(2)=-1, \mu(6)=1, \mu(4)=0$

0.10.5. Theorem

The function μ is multiplicative

Proof:

Suppose that $m,n\in\mathbb{Z}^+$ with (m,n)=1. If either $p^2\mid m$ or $p^2\mid n$ for some p, them $p^2\mid mn$ and so we have $\mu(mn)=0=\mu(m)\cdot\mu(n)$

Suppose therefore that m,n are such that $m=p_1\cdot p_r, n=q_1...q_s$ where $\left(p_i,q_j\right)$ are distinct primes. Then $\mu(mn)=\mu(p_1...p_rq_1...q_s)=(-1)^{r+s}=(-1)^r\cdot (-1)^s=\mu(m)\cdot \mu(n)$

0.10.6. Theorem

For each positive integer $n \ge 1$, we have $\sum_{d|n} \mu(d) = 1$ if $n=1, \sum_{d|n} \mu(d) = 0$ if n > 1

Proof:

First observe that $\sum\limits_{d|1}\mu(d)=\mu(1)=1.$

Now consider the function F defined by $F(n)=\sum_{d\mid n}\mu(d)$. Since μ is multiplicative, we have that F is multiplicative also. Suupose that p is a prime and $k\geq 1$. Then

$$F\!\left(p^k\right) = \sum_{d \mid p^k} \mu\!\left(p^k\right) = \mu(1) + \mu(p) + \mu(p^2) + \ldots + \mu\!\left(p^k\right) = \mu(1) + \mu(p) = 1 - 1 = 0$$

So if n > 1 with $n = p_1^{k_1} ... p_r^{k_r}$ then $F(n) = F(p_1^{k_1}) ... F(P_r^{k_r})) = 0$

0.10.7. Theorem: Mobius Inversion Formula

Suppose that f and F are two (not necessarily multiplicative!) functions $f, F: \mathbb{Z}^+ \to \mathbb{Z}$ related by the function $F(n) = \sum_{d|n} f(d)$. Then $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d)$

Proof:

Proof: compute

$$\sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} (\mu(d) \sum_{c \mid \left(\frac{n}{d}\right)} f(c) = \sum_{d|n} \left(\sum_{c \mid \left(\frac{n}{d}\right)} \mu(d) f(c)\right) (\dagger)$$

Now observe that $d\mid n$ and $c\mid \frac{n}{d}$ if and only if $c\mid n$ and $d\mid \frac{n}{c}$. To see this: $d\mid n\Rightarrow n=ad, c\mid \frac{n}{d}\Rightarrow \alpha=cp$ and so we have $n=\alpha d=cpd\Rightarrow c\mid d$ and $d\mid \frac{n}{c}$

Now
$$\sum_{d|\frac{n}{c}} \mu(d) = 0$$
 if $n \neq c, 1$ if $n = c(\star)$

Hence

$$\sum_{d|m} \left(\sum_{c|\frac{n}{d}} \mu(d) f(c) \right) = \sum_{d|n} \left(\sum_{d|\frac{n}{c}} f(c) \mu(d) \right) = \sum_{c|n} \left(f(c) \sum_{d|\frac{n}{c}} \mu(d) \right) (\dagger)$$

Now apply \star to the RHS of (\dagger) to obtain: $\sum_{c|n} (f(c) \sum_{d|\frac{n}{c}} \mu(d) = \sum_{c|n} f(c) \sum_{d|\frac{n}{c}} \mu(d) = f(n)$ as required.

0.11. Feb 11

0.11.1. Theorem: Mobius Inversion Formula

Suppose that F and f are two arithmetic functions (not necessarily multiplicative!) such that $f, F : \mathbb{Z}^+ \to \mathbb{Z}^+$ \mathbb{Z} Assume that f and F are related by the formula $F(n) = \sum_{i} f(d)$.

Then

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d)$$

0.11.2. Example:

Recall that $d(n)=\sum\limits_{d|n}1$ and $\sigma(n)=\sum\limits_{d|n}d$. Then by Mobius inversion, we have that $1=\sum\limits_{c|n}\mu\Big(\frac{n}{c}\Big)d(c)$ and $n=\sum\limits_{d|n}\mu\Big(\frac{n}{d}\Big)\sigma(d)$ (?)

0.11.3. Theorem

Suppose that F is a multiplicative function, and that $F(n) = \sum_{d|n} f(d)$ for some f. Then, f is also multiplicative

Proof:

Suppose that $m, n \in \mathbb{Z}^+$ with (m, n) = 1. Then

$$f(mn) = \sum_{d|mn} \mu(d) F\left(\frac{mn}{d}\right) = \sum_{d_1|m,d_2|n} \mu(d_1d_2) F\left(\frac{mn}{d_1d_2}\right) = \sum_{d_1|m,d_2|n} \mu(d_1) \mu(d_2) F\left(\frac{m}{d_1}\right) F\left(\frac{n}{d_2}\right) = \sum_{d_1|m} \mu(d_1) F\left(\frac{m}{d_1}\right) \sum_{d_2|m} \mu(d_2) F\left(\frac{n}{d_2}\right) = f(m) f(n)$$

0.11.4. Corollary

The function ϕ is multiplicative

Proof:

Earlier we used a counting argument to show that $n = \sum_{d|n} \phi(d)$

This argument did not appeal to the fact that ϕ is multiplicative!

Since F(n) = n is clearly multiplicative, it follows that ϕ is multiplicative.

0.11.5. Theorem

For any positive integer n, we have $\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$

Proof:

Apply the Mobius inversion formula to $F(n) = n = \sum\limits_{d|n} \phi(d)$

The result if $\phi(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \frac{n}{d}$

0.11.6. Remark

We can determine the value of $\phi(n)$. Suppose that $n=p_1^{q_1}...p_k^{q_k}$. Then applying the last theorem gives us

$$\sum_{d|n} \frac{\mu(d)}{d} = \prod_{i=1}^k \left(\mu(1) + \frac{\mu(p_2)}{p_2} + \frac{\mu(p_i^2)}{p_i^2} + \ldots + \frac{\mu(p_i^{q_i})}{p_i^{q_i}} \right)$$

Hence $\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d} = n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$

0.11.7. Primitive Roots and Indices

0.11.8. Note

Recall: suppose that n > 1 and that (a, n) = 1. Then the order of $a \pmod n$ is the smallest positive integer k such that $a^k \equiv 1 \pmod n$

0.11.9. Theorem

Suppose that a has order $k \pmod{n}$. Then $a^h \equiv 1$ if and only if $k \mid h$. In particular $k \mid \phi(n)$

Proof:

For any $h \in \mathbb{Z}^+$ we may write h = qk + r where $0 \le r < k$

Then $a^h \equiv 1 \pmod{n}$ if and only if $a^{qk+r} \equiv 1 \pmod{n}$ if and only if $a^r \equiv 1 \pmod{n}$ if and only if r = 0

0.11.10. *Corollary*

Suppose that a has order $k \pmod n$. Then $a^i \equiv a^j \pmod n$ if and only if $i \equiv j \pmod k$

Proof:

Suppose that $i \geq j$ then $a^i \equiv a^j \pmod n$ if and only if $a^{i-j} \equiv 1 \pmod n$ if and only if $k \mid (i-j)$ if and only if $i \equiv j \pmod k$

0.11.11. Corollary

If a has order $k \pmod{n}$ then the integers $a, a^2, a^3, ...a^k$ are pairwise incongruent modulo n

Proof:

0.11.12. Theorem

Suppose that a has order $k \pmod{n}$, and that h > 0. Then we claim that a^h has order

$$\frac{k}{(h,k)} (\operatorname{mod} n)$$

Proof:

Set d = (h, k). Then we may write $h = h_1 d, k = k_1 d$ with $(h_1, k_1) = 1$

Note that $\left(a^h\right)^{k_1} = \left(a^{h_1d}\right)^{\frac{k}{d}} = \left(a^k\right)^{h_1} \equiv 1 \pmod{n}$. So if r is the order of $a^h \pmod{n}$, then $r \mid k_1(\star) \pmod{n}$

On the other hand, $a^{hr} = \left(a^h\right)^r \equiv 1 \pmod{n}$ and so $k \mid hr$ i.e. $k_1 d \mid h_1 dr$ i.e. $k_1 \mid h_1 r$. Since $(h_1, k_1) = 1$ this implies that $k_1 \mid r$, so $k = k_1 d = rd$. Then it follows from (\star) that $r = \frac{k}{d} = \frac{k}{(h,k)}$, as claimed.

0.11.13. Corollary

Suppose that a has order $k \mod(n)$. Then a^h has order $k \pmod{n}$ if any only if (h, k) = 1

0.11.14. Example: Of the above

We can first make a table that integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 have order 1, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2

By the previous theorem,

The order of $2 \pmod{13}$ is 12

The order of $2^2 \pmod{13}$ is $\frac{12}{(2.12)} = \frac{12}{2} = 6$

The order of $2^3 \pmod{13}$ is $\frac{12}{(3,12)} = \frac{12}{3} = 4$

The integers having order 12 (mod 13) are powers of 2^k for which (k, 12) = 1 i.e. $2^1 \equiv 2, 2^2 \equiv 6, 2^3 \equiv 11, 2^{11} \equiv 7 \pmod{13}$ (here the congruences denote a mapping to the order)

0.11.15. Definition

If (a, n) = 1 and a has order $\phi(n) \pmod{n}$ then we say that a is a primitive root \pmod{n}

i.e. a is a primitive root (mod n) if $a^{\phi(n)} \equiv 1 (\text{mod } n)$ but $a^k \not\equiv 1 (\text{mod } n) \ \forall 1 \leq k < \phi(n)$

For example 2 is a primitive root (mod 13)

0.11.16. Proposition

Suppose that n > 1 such that $p = 2^{2^n} + 1$ is prime. Then 2 is not a primitive root \pmod{p}

Proof:

Since
$$2^{2^{2n+1}} - 1 = (2^{2^n} + 1)(2^{2^n} - 1) = p(2^{2^n} - 1)$$

We have that $2^{2^{n+1}} \equiv 1 \pmod{p}$. So the order of $2 \pmod{p}$ is at most 2^{n+1}

On the other hand, since p is prime, we have $\phi(p) = p - 1 = 2^{2^n}$ Now since $2^{2^n} > 2^{n+1}$ (prove this!), it follows that 2 is not a primitive root (mod p)

0.11.17. Theorem

Suppose that (a,n)=1 and let $\alpha_1,\alpha_2,...,\alpha_{\phi(n)}$ be the set of positive integers less than n and coprime to n. If a is a primitive root $(\bmod\,n)$ then the set $a,a^2,...,a^{\phi(n)}$ is congruent $\bmod\,n$ to $\alpha_1,...,\alpha_{\phi(n)}$ in some order.

0.11.18. Corollary

Suppose that a primitive root (mod n) exists. Then there are exactly $\phi(\phi(n))$ primitive roots (mod n)

Proof: Suppose that a is a primitive root (mod n) Then any other primitive root lies in the set $\{a, a^2, ..., a^{\phi(n)}\}$ The number of powers $a^k (1 \le k \le \phi(n))$ that have order $\phi(n)$ =the number of integers $k (1 \le k \le \phi(n))$ for which $(k, \phi(n)) = 1 = \phi(\phi(n))$

0.12. Feb 13

Primitive roots moudlo primes

0.12.1. Theorem

We can show that there exists a primitive root modulo every prime p

0.12.2. Theorem: Lagrange

Suppose that p is a prime and that $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ where $a_i \in \mathbb{Z}, a_n \not\equiv 0 \pmod{p}$

Then the congruence $f(x) \equiv 0 \pmod{p}$ (†) has at most n distinct solutions modulo p

Proof:

This is related to the fact that a polynmial of degree n has at most n solutions. This theorem is a "modulo" version of that

The proof is by induction on the degree n of f(x)

Suppose that n=1 Then $f(x)=a_1x+a_0$. Since $(a_1,p)=1$ the congruence $f(x)\equiv 0 (\operatorname{mod} p)$ has a unique solution $\operatorname{mod} p$

Now suppose that degree of f(x) = k, and that the result holds for all polynomials of degree at most k-1

If (†) has no solutions, then we are done.

Next, suppose that $x \equiv a \pmod{p}$ is a solution of (\dagger)

Then f(x) = (x - a)q(x) + r, with the degree of q(x) = k - 1

We have $f(a) \equiv 0 \pmod{p}$ and this implies that $r \equiv 0 \pmod{p}$ Hence $f(x) \equiv (x - a)q(x) \pmod{p}$

Now if $x \equiv b \pmod{p}$ is a solution of (\dagger) , with $b \not\equiv a \pmod{p}$, then we have $f(b) \equiv 0 \pmod{p} \Rightarrow (b-a)q(b) \equiv 0 \pmod{p} \Rightarrow q(b) \equiv 0 \pmod{p}$

So any solution of (†)that is different from a must satisfy $q(x) \equiv 0 \pmod{p}(\star)$

Since, by our inductive hypothesis, (\dagger) has at most k-1 distinct solutions (mod p), then it follows that (\dagger) has at most k distinct solutions mod p

This completes the induction step, and so the theorem follows by induction

0.12.3. Corollary

Suppose that p is a prime and that $d \mid (p-1)$, then the congruence $x^d-1 \equiv 0 \pmod p$ has exactly d solutions.

Proof:

Since $d \mid (p-1)$, we have p-1=dk for some k

Therefore $x^{p-1}-1=\left(x^d-1\right)f(x)$ where $f(x)=x^{d(k-1)}+x^{d(k-2)}+\ldots+x^d+1$ and degree of f(x)=d(k-1)=p-1-d

Therefore Langrange's theorem implies that f(x) has at most p-1-d distinct solutions \pmod{p}

Euler's theorem implies that $x^{p-1}-1$ has exactly p-1 distinct roots $(\operatorname{mod} p)$

Hence x^d-1 has at least (p-1)-(p-1-d)=d distinct roots $(\operatorname{mod} p)$

0.12.4. Theorem: Alternative proof of wilson's theorem

Recall that Wilson's theorem says that $(p-1)! \equiv -1 \pmod{p}$ is p is prime.

Proof:

Define a polynomial $f(x) = (x-1)(x-2)...(x-(p-1)) - \left(x^{p-1}-1\right) = \alpha_{p-2}x^{p-2} + \alpha_{p-3}x^{p-3} + ... + \alpha_1x + \alpha_0$ with degree p-2

Fermat's little theorem implies that the congruence $f(x) \equiv 0 \pmod{p}$ has solutions $1,2,3,...,p-1 \pmod{p}$, these are all distinct solutions and therefore contradict Langrange's theorem (unless $\alpha_{p-2} = \alpha_{p-3} = ... = \alpha_0 \pmod{p}$ i.e. f(x) = 0)

Therefore for all integers x we have $f(x) \equiv 0 \pmod{p}$ and taking x = 0 gives $(-1)(-2)...(-(p-1)) + 1 \equiv 0 \pmod{p}$ i.e. $(-1)^{p-1}(p-1)! \equiv -1 \pmod{p}$ i.e. $(p-1)! \equiv -1 \pmod{p}$

0.12.5. Theorem

Suppose that p is a prime and that $d \mid (p-1)$

Then there exist exactly $\phi(d)$ distinct integers mod p that have order $d \mod p$

Proof:

We have shown that the congruence $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

For each $c \mid d$ let $\psi(c)$ = the number of integers in the set 1, 2, ..., p-1 that have order c

Then
$$d = \sum_{c|d} \psi(c)$$

Applying Mobius inversion gives $\psi(d) = \sum\limits_{c \mid d} \mu(c) \cdot \frac{d}{c} = \phi(d)$

0.12.6. Example

Let p = 13 then 1 has order 1, 12 has order 2, 3 and 9 have order 3, 5 and 8 have order 4, 4 and 10 have order 6, and 2,6,7,11 have order 12

Then we can easily check that (i) $\sum\limits_{d\mid 12}\psi(d)=12$ and that (ii) $\psi(d)=\phi(d) \, \forall d\mid 12$

0.12.7. Corollary

If p is a prime, then there are exactly $\phi(p-1)$ primitive roots mod p

0.12.8. Example

If p is a prime of the form 4k + 1 then $x^2 \equiv -1 \pmod{p}$ has a solution

Proof: We have that $4 \mid (p-1)$, so there exists an integer a such that a has order $4 \mod p$. Then $a^4 \equiv 1 \pmod p$ if and only if $(a^2-1)(a^2+1) \equiv 0 \pmod p$.

Now if $a^2-1\equiv 0(\bmod p)$ then a has order $2\bmod p$ which is a contradiction. So $a^2+1\equiv 0(\bmod p)$ i.e. $a^2\equiv -1(\bmod p)$

some additional remarks ...

0.12.9. Remark

Why does the decimal expansion of $\frac{1}{7} = 0.14285714...$ have period 6, while $\frac{1}{11} = 0.0909...$ have period 2?

Suppose that p is a prime, and that 10 has order $k \mod p$ i.e. $10^k \equiv 1 \pmod p$ and k is the smallest positive integer for which this holds. Then $10^k - 1 = Np$ for some $N \in \mathbb{Z}_{\geq 0}$

Therefore

$$\frac{1}{p} = \frac{N}{10^k - 1} = \frac{N}{10^k} \cdot \frac{1}{1 - \frac{1}{10^k}} = \frac{N}{10^k} \left(1 + \frac{1}{10^k} + \frac{1}{10^{2k}} + \dots \right)$$

Since $\frac{1}{p} < 1$ we must have $\frac{N}{10^k} < 1$ i.e. $\frac{N}{10^k} = 0.\alpha_1\alpha_2...\alpha_k$ say.

So
$$\frac{1}{p} = (0.\alpha_1\alpha_2...\alpha_k) \big(1 + \frac{1}{10^k} + \frac{1}{10^{2k}}... + ... \big)$$

We therefore see that the decimal expansion of $\frac{1}{n}$ has period k

Consequence: Since Euler's theorem implies that $10^{p-1} \equiv 1 \pmod{p}$ we have $1 \le k \le p-1$

The decimal expansion of $\frac{1}{p}$ has period p-1 if and only if 10 is a primitive root mod p

Conjecture: This happens for infinitely many primes.

0.12.10. Problem 1

Given any non-zero integer a other than 1, -1, or a perfect square, there exist infinitely many primes p such that a is a primitive root mod p

Solution

This is an open problem

0.12.11. Theorem

One of 2,3,5 is a primitive root mod p for inifintely many primes p

Proof: See Murty "Artin's conjecture for primitive roots" in mathematical intelligences vol 10 no 4 (Fall 1988)

0.13. Feb 18

0.13.1. Example

2 is a primitive root mod 9

For which composite numbers n do there exist primitive roots mod n?

0.13.2. Lemma

If a is an odd integer and $k \geq 3$, then

$$a^{2^{k-1}} \equiv 1 \pmod{2^k} (\dagger)$$

Proof:

The proof is by induction on k

If k = 3 the congruence is $a^2 \equiv 1 \pmod{8}$

Suppose that (†) holds for some $k \geq 3$ then

Then for some $b \in \mathbb{Z}_{>0}$ we have

$$a^{2^{k-2}} = 1 + b \cdot 2^k$$

Hence

$$\left(a^{2^{k-2}}\right)^2 = \left(1 + b \cdot 2^k\right)^2 \Rightarrow a^{2^{k-1}} = 1 + 2^{k+1} \left(b + b^2 \cdot 2^{k-1}\right) \equiv 1 \left(\text{mod } 2^{k+1}\right)$$

Hence if (†) holds for some $k \geq 3$, then it also holds for k + 1, and the result now follows by induction

0.13.3. Theorem

If $k \geq 3$ then there are no primitive roots mod 2^k

Proof:

The integers corpime to 2^k are precisely the odd integers. Furthermore $\phi(2^k)=2^{k-1}$

If a is odd, then the lemma implies that $a^{\phi(2^k)/2}=a^{(2^k-1)/2}=a^{2^{k-2}}\equiv 1 (\operatorname{mod} 2^k)$

Therefore there are no primitive roots mod $2^k\,$

0.13.4. Theorem

If m > 2 and n > 2 with (m, n) = 1, then there are no primitive roots mod mn

Proof:

Suppose that $a \in \mathbb{Z}_{>0}$ with (a, mn) = 1

Then (a, m) = 1 and (a, n) = 1 since (m, n) = 1

Also $\phi(m)$ and $\phi(n)$ are even.

$$\stackrel{.}{.} a^{\frac{1}{2}\phi(mn)} = \left(a^{\phi(m)}\right)^{\frac{1}{2}\phi(n)} \equiv 1 (\operatorname{mod} m)$$

Also

$$a^{\frac{1}{2}\phi(mn)} = \left(a^{\phi(m)}\right)^{\frac{1}{2}\phi(n)} \equiv 1 (\operatorname{mod} n)$$

Since (m,n)=1, this implies that $a^{\frac{1}{2}\phi(mn)}\equiv 1(\operatorname{mod} mn)$

So there are no primitive roots mod mn

0.13.5. Corollary

There are no primitive roots mod n if either

- (i) n is divisible by two odd primes, or
- (ii) n is of the form $2^m \cdot p^k$ where p is an odd prime, and $m \geq 2$

Proof:

Hence the only possibilities for which a primitive root mod n can exist are $n=2,4,p^k,2p^k$ where p is an odd prime.

0.13.6. Lemma

If p is an odd prime, then there exists a primitive root $r \pmod p$ such that

$$r^{p-1} \not\equiv 1 \pmod{p^2}$$

Proof:

Let r be any primitive root mod p (we have shown that such an r exists)

If $r^{p-1} \not\equiv 1(p^2)$ then we are done

Otherwise, consider $r_1 := r + p$. Then r_1 is a primitive root mod p, and

$$r_1^{p-1} = (r+p)^{p-1} \equiv r^{p-1} + (p-1)pr^{p-2}\operatorname{mod}(p^2) \not\equiv 1(\operatorname{mod} p^2)$$

since $p \nmid r^{p-2}$

0.13.7. Corollary

IF p is an odd prime, then p^2 has a primitive root.

Proof:

Let r be a primitive root mod p

Then the order of $r \operatorname{mod}(p^2)$ is either p-1 or $\phi(p^2)=p(p-1)$

(The order cannot be p because $r^p \equiv r (\operatorname{mod} p)$)

Then Lemma 0.13.6 implies that if r has order $p-1 \bmod p^2$, then r+p is a primitive root $\bmod r^2$

0.13.8. Lemma

Let p be an odd prime and let r be a primitive root mod p such that $r^{p-1} \not\equiv 1 \pmod{p^2}$ Then for each integer $k \geq 2$ we have

$$r^{(p-1)p^{k-2}} \not\equiv 1 \pmod{p^k}(\dagger)$$

Proof:

The proof is by induction on k

By hypothesis, (†) holds for k=2

Let $k \geq 2$ be an integer for which (†) holds.

Since (r, p) = 1 we have $(r, p^{k-1}) = 1$

So Euler's theorem implies that

$$r^{(p-1)p^{k-2}} = r^{\phi(p^k-1)} \equiv 1 \big(\operatorname{mod} p^{k-1} \big)$$

 $\therefore r^{(p-1)p^{k-2}} = 1 + ap^{k-1}$ (and p+a by our inductive hypothesis)

$$\div \left(r^{(p-1)p^{k-2}}\right)^2 = \left(1 + ap^{k-1}\right)^p \Rightarrow r^{(p-1)p^{k-2}} \equiv 1 + ap^k \left(\operatorname{mod} p^{k+1}\right) \Rightarrow r^{(p-1)p^{k-2}} \not\equiv 1 \left(\operatorname{mod} p^{k+1}\right) \operatorname{since} p \nmid a$$

Hence if (\dagger) holds for k, then it holds for k_1

This completes the induction step and proves the lemma.

0.13.9. Theorem

If p is an odd prime and $k \ge 1$, then there exists a primitive root $\operatorname{mod} p^k$

Proof:

Lemmas 0.13.6 and 0.13.8 imply that there exists a primitive root $r \pmod{p}$ such that

$$r^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}(\star)$$

Claim: r is a primitive root mod p^k

Let n be the order of $r \pmod{p^k}$

Then $n\mid\phiig(p^kig)$ i.e. $n\mid p^{k-1}(p-1)$

Now $r^n \equiv 1 \pmod{p^k}$ and so $r^n \equiv 1 \pmod{p}$

The order of r(mod p) is p-1 and so $(p-1)\mid n$

 \therefore we have $n = p^m(p-1)$, $0 \le m \le k-1$

If $n \neq p^{k-1}(p-1)$ then $n \mid p^{k-2}(p-1)$

This implies that $r^{p^{k-2}}(p-1) \equiv 1 \pmod{p^k}$ which contradicts (\dagger)

Hence $n=p^{k-1}(p-1)$ i.e. r is a primitive root $\operatorname{mod} p^k$

0.13.10. Corollary

If p is an odd prime and $k \ge 1$ then there exists a primitive root mod $2p^k$

Proof:

Let r be a primitive root mod p^k

We may assume that r is odd (or else $r + p^k$ is odd, and is a primitive root $\pmod{p^k}$)

Let n be the order of $r \mod 2p^k$

Then $n\mid\phiig(2p^kig)$ i.e. $n\mid\phi(2)\phiig(p^kig)$ i.e. $n\mid\phiig(p^kig)$

However, $r^n \equiv 1 \pmod{2p^k} \Rightarrow r^n \equiv 1 \pmod{p^k} \Rightarrow \phi(p^k) \mid n$, since $\phi(p^k)$ is the order of $r \mod p^k$

Hence $n = \phi(p^k) = \phi(2p^k)$ i.e. r is a primitive root $\operatorname{mod} 2p^k$

Hence there exists a primitive root mod n if and only $n = 2, 4, p^k$, or $2p^k$ where p is an odd prime.

0.13.11. Definition: indices

Suppose that n is an integer for which there exists a primitive root $r \mod n$

Then if (a,n)=1, then the smallest positive integer k such that $a\equiv r^k (\bmod\, n)$ is called the index of a relative to r and is written $\mathrm{indr}_r(a)$ or $\mathrm{ind}(a)$ if r is understood

So
$$1 \leq \operatorname{indr}(r)(a) \leq \phi(n)$$
 and $r^{\operatorname{ind}_r(n)} \equiv a (\operatorname{mod} n)$

0.13.12. Example

2 is a primitive root mod 5

$$2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 3, 2^4 \equiv 1 \pmod{5}$$

$$\therefore {\rm Ind}_2(1) = 4, {\rm Ind}_2(2) = 1, {\rm Ind}_2(3) = 3, {\rm Ind}_2(4) = 2$$

0.14. Feb 20

We Remind ourselves of the definition of indices

0.14.1. Definition: INdices

Suppose that n is a positive integer for which there exists a primitive root $r \mod n$

Definition: If (a, n) = 1 then the smallest positive integer k such that $a \equiv r^k \pmod{n}$ is called the index of a relative to r and is written $\operatorname{ind}_r(a)$

So

$$1 \leq \operatorname{ind}_r(a) \leq \phi(n)$$

and

$$r^{\operatorname{ind}_r(a)} \equiv a(\operatorname{mod} n)$$

0.14.2. Theorem

Suppose that there exists a primitive root $r(\bmod{\,n})$ then

(i)
$$\operatorname{ind}(ab) \equiv \operatorname{ind}(a) + \operatorname{ind}(b) (\operatorname{mod} \phi(n))$$

(ii)
$$\operatorname{ind}(a^k) \equiv k \cdot \operatorname{ind}(a) (\operatorname{mod} \phi(n))$$

(iii)
$$\operatorname{ind}(1) \equiv 0 (\operatorname{mod} \phi(n))$$
 and $\operatorname{ind}(r) \equiv 1 (\operatorname{mod} \phi(n))$

Proof:

(i)
$$r^{\operatorname{ind}(a)} \equiv a \pmod{n}$$
 and $r^{\operatorname{ind}(b)} \equiv b \pmod{n}$ therefore $r^{\operatorname{ind}(a) + \operatorname{ind}(b)} \equiv ab \equiv r^{\operatorname{ind}(ab)} \pmod{n}$

Now since the order of $r \pmod{n}$ is $\phi(n)$ it follows that $\operatorname{ind}(a) + \operatorname{ind}(b) \equiv \operatorname{ind}(ab) \pmod{\phi(n)}$

(ii)
$$r^{\operatorname{ind}(a^k)} \equiv a^k \pmod{n}$$
 then also $\left(r^{\operatorname{ind}(a)}\right)^k \equiv a^k \pmod{n}$

Hence it follows that $\operatorname{ind}(a^k) = k \cdot \operatorname{ind}(a) (\operatorname{mod} \phi(n))$

(iii) follows by definition

0.14.3. Note

An expalation for (ii) above

If $(\alpha, n) = 1$ and $\alpha^m \equiv 1 \pmod{n}$ then m divides the order of k, of $\alpha \pmod{n}$ i.e. $m \equiv 0 \pmod{k}$

So if $\alpha^{m_1} \equiv \alpha^{m_2} (\operatorname{mod} n) \Rightarrow \alpha^{m_1 - m_2} \equiv 1 (\operatorname{mod} n)$ and so $m_1 - m_2 \equiv 0 (\operatorname{mod} k)$ i.e. $m_1 \equiv m_2 (\operatorname{mod} k)$

0.14.4. Example

Suppose that there exists a primitive root $r \mod n$ and that (a, n) = 1

Consider the congruence $x^k \equiv a \pmod{n} (\dagger)$

This may be rewritten $r^{k \cdot \operatorname{ind}(x)} \equiv r^{\operatorname{ind}(a)} \pmod{n}$

and so is equivalent to the congruence $k \cdot \operatorname{ind}(x) \equiv \operatorname{ind}(a) \pmod{\phi(n)}(\star)$

Let $d = (k, \phi(n))$

If $d \nmid \operatorname{ind}(a)$ then \star has no solutions

If $d \mid \operatorname{ind}(a)$ then \star has d solutions

0.14.5. Example

Suppose that k=2, and n=p is an odd prime. Then (\dagger) becomes $x^2\equiv a(\bmod p)$ $(\dagger\dagger)$

Then this is equivalent to $2 \cdot \operatorname{ind}(x) \equiv \operatorname{ind}(a) \pmod{p-1} (\star \star)$

Since (2, p-1) = 2 then $(\star \star)$ has a solution if and only $2 \mid (\operatorname{ind}(a))$ in which case there are two solutions.

0.14.6. Example

Consider the congruence $4x^9 \equiv 7 \pmod{13} (\dagger)$

Recakk tgat 2 is a primitive root mod 13

a=1,2,3,4,5,6,7,8,9,10,11,12 has corresponding idices $\operatorname{ind}_2(a)=12,1,4,2,9,5,11,3,8,10,7,6$

Then (†) has a solution if and only if

 $\operatorname{ind}_2(4) + 9\operatorname{ind}_2(x) \equiv \operatorname{ind}_2(7)(\operatorname{mod} 12) \Rightarrow 9\operatorname{ind}_2(x) \equiv 9(\operatorname{mod} 12) \Rightarrow 3 \cdot \operatorname{ind}_2(x) \equiv 3(\operatorname{mod} 4) \Rightarrow \operatorname{ind}_2(x) \equiv 1(\operatorname{mod} 4)$

Therefore $ind_2(x) = 1, 5, or 9$

Therefore $x \equiv 2, 5, \text{ or } 6 \pmod{13}$

0.14.7. Theorem

Let n be an integer such that there exists a primitive root r(mod n)

Suppose that (a, n = 1)

Then $x^k \equiv a \pmod{n}$ has a solution if and only if

$$a^{\frac{\phi(n)}{d}} \equiv 1 \pmod{n} (\star)$$

where $d = (\phi(n), k)$

If this has a solution, then there are exactly d solutions \pmod{n}

Proof:

Taking indices, we see that \star is equivalent to $\frac{\phi(n)}{d}\mathrm{ind}_r(a)\equiv 0(\bmod\,\phi(n))$

This holds if and only if $d \mid \operatorname{ind}_r(a)$ i.e. if and only if $x^k \equiv a \pmod{n}$ is solvable (from the discussion above)

0.14.8. Example

Consider the congruence $x^3 \equiv 4 (\text{mod } 13)$

 $\mathrm{let}\ d\coloneqq (3,\phi(13))=3$

Therefore $\frac{\phi(13)}{d} = 4$

We have $4^4=16\cdot 16\equiv 3\cdot 3\equiv 9\not\equiv 1(\operatorname{mod} 13)$

Therefore the original congruence is not solvable

0.14.9. Example

Consider another congruence $x^3 \equiv 5 \pmod{13} (\dagger)$

WE have $5^4 \equiv 625 \equiv 1 \pmod{13}$ and so (\dagger) has a solution

Note that (†) is equivalent to the congruence $3 \cdot \operatorname{ind}_2(x) \equiv \operatorname{ind}_2(5) \pmod{12}$ i.e. $3\operatorname{ind}_2(x) \equiv 9 \pmod{12} \Rightarrow \operatorname{ind}_2(x) \equiv 3 \pmod{4}$

This last congruence has 3 distinct solutions (mod 12) i.e. $\operatorname{ind}_2(x) \equiv 3, 7, 11 \pmod{12}$

And the corresponding integers are 8, 11, 7 respectively

So the solutions of (†) are $x \equiv 7, 8, 11 \pmod{12}$

New Topic: quadratic reciprocity law

0.14.10. Remark

Some motivation: suppose that p is an odd prime and consider the congruence $\alpha x^2 + \beta x + \gamma \equiv 0 \pmod{p}$ (†) where $(\alpha, p) = 1$

Since p is odd we have $(4\alpha, p) = 1$ and so (\dagger) holds and so (\dagger) yields $4\alpha(\alpha x^2 + \beta x + \gamma \equiv 0 \pmod{p}) \Rightarrow (2\alpha x + \beta)^2 - (\beta^2 - 4\alpha\gamma) \equiv 0 \pmod{p}$

Say $y=2\alpha x+\beta, \delta=\beta^2-4\alpha\gamma$ then we obtain $y^2\equiv\delta(\operatorname{mod} p)(\dagger\dagger)$

So

(i) If $x \equiv x_0 \pmod{p}$ is a solution of (\dagger) then $y_0 \equiv 2\alpha x_0 + \beta \pmod{p}$ is a solution of $(\dagger\dagger)$

(ii) If $y \equiv y_0 \pmod{p}$ is a solution of $(\dagger\dagger)$ then we can solve $2\alpha x \equiv y_0 - \beta \pmod{p}$ to obtain a solution of (\dagger)

So we consider congruence of the form $x^2 \equiv a \pmod{p}(\star)$

If (\star) has a solution x_0 , then $p-x_0$ is also a solution. These two solutions are distinct $(\operatorname{mod} p)$

0.14.11. Example

Recall Langrange's theorem: If p is a prime and $f(x) = a_n x^n + ... + a_0$ where $(a_n, p) = 1$ is a polynomial of degree n with integer coeffecients that $f(x) \equiv 0 \pmod{p}$ has at most n distinct solutions \pmod{p}

Consider the congruence $5x^2-6x+2\equiv 0 ({\rm mod}\ 13)$ then $\alpha=5,\beta=-6,\gamma=2$

Set $\delta = \beta^2 - 4\alpha\gamma = 36 - 40 = -4 \equiv 9 \pmod{13}$

So we consider the congruence $y^2 \equiv 9 \pmod{13}$

This has solutions $y\equiv 3,10 \pmod{13}$ Next, we solve the linear congruences $10x-6\equiv 3 \pmod{13}$ and $10x-6\equiv 10 \pmod{13}$ i.e $10x\equiv 9 \pmod{13}$ and $10x\equiv 16\equiv 3 \pmod{13}$

Check that $x \equiv 10, 12 \pmod{13}$ satisfy these equaitons.

Aim: provide a test for the existence of solutions of the congruence $x^2 \equiv a \pmod{p}$ where (a,p) = 1 i.e. identify those integers that are perfect squares \pmod{p}

0.14.12. Definition

Let p be a prime and let a be an integer with (a, p) = 1

If (\star) from 0.14.10 has a solution, then a is said to be a quadratic residue mod p

If (\star) from 0.14.10 does not have a solution, then a is said to be a quadratic non-residue mod p

0.15. Feb 25

Last time

0.15.1. Remark

Let p be an odd prime, and let a be an integer with (a, p) = 1

If the congruence $x^2 \equiv a (\operatorname{mod} p)$ has a solution, than a is said to be a quadratic residue $\operatorname{mod} p$

If the above congruence has no solution, then a is said to be a quadratic non-residue mod p

Example:

Consider the prime p = 13. The quadratic residues mod 13 are 1, 4, 9, 3, 10, 12 and the quadratic non-residues mod 13 are 2, 5, 6, 7, 8, 11 (check this!)

0.15.2. Remark

Recall Fermat's little theorem (which is a special case of Euler's theorem)

If p is an odd prime, and a is an integer such that (a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$

0.15.3. Theorem: Euler's criterion

Suppose that p is an odd prime, and let $a \in \mathbb{Z}$ satisfy (a, p) = 1

Then a is a quadratic residue mod p

if and only if
$$a^{(p-1)/2} \equiv 1 \pmod{p}$$

Proof:

Suppose that a is a quadratic residue mod p such that $x^2 \equiv a \pmod{p}$

Then (a,p)=1 and raising each side by $\frac{p-1}{2}$ gives us

$$a^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{p-1} \equiv 1 (\bmod \, p)$$

where the last equiv holds by euler's theorem

Conversly, suppose $a^{(p-1)/2} \equiv 1 \pmod{p}$ Let r be a primitive root mod p

Suppose that $a \equiv r^k \pmod{p}$ sich that $1 \le k \le p$

Then $r^{k(p-1)/2} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}$

Therefore the order of $r \bmod p$ divides k(p-1)/2 i.e. p-1 divides $\frac{k(p-1)}{2}$ Hence k is even, with k=2j then $\left(r^j\right)^2=r^{2j}=r^k\equiv a(\bmod\,p)$ which implies that a is a quadratic residue $\bmod\,p$

0.15.4. Remark

Suppose that a, p are as in 0.15.3 above

Then

$$\big(a^{(p-1)/2}-1\big)\big(a^{(p-1)/2}+1\big)=a^{p-1}-1\equiv 0(\operatorname{mod} p)$$

where the last equality holds by Eyler's theorem

Hence either $a^{p-1/2} \equiv 1 (\operatorname{mod} p)$ or $a^{(p-1)/2} \equiv -1 (\operatorname{mod} p)$ but not both

So if a is a quadratic non-residue $\operatorname{mod} p$ then we must have $a^{(p-1)/2} \equiv -1 (\operatorname{mod} p)$

0.15.5. Corollary

Let a, p be as above

Then $a^{(p-1)/2} \equiv \{1 \text{ if } a \text{ is a quadratic residue mod } p; -1 \text{ if } a \text{ is a quadratic non-residue mod } p\}$

0.15.6. Example

Let p=13 then $2^{(13-1)/2}=64\equiv 12\equiv -1 \pmod{13}$ therefore 2 is a quadratic non-residue mod 13

Similarly $3^{(13-1)/2}=3^6=(27)^2\equiv 1^2\equiv 1 ({\rm mod}\, 13)$ therefore 3 is a quadratic residue ${\rm mod}\, 13$

0.15.7. Theorem: Euler's criterion alternative proof

Suppose that a is a quadratic non-reside mod p, and $c \in \{1, 2, ..., p-1\} := S$

Then there exists a solution $c' \in S$ of the congruence $cx \equiv a \pmod{p}$

Since a is a quadratic non-residue mod p we have $c \neq c'$

Therefore the integers in S can be divided into $\frac{p-1}{2}$ pairs $\{c,c'\}$ with $cc'\equiv a(\operatorname{mod} p)$

Therefore we have the congruences (there are (p-1)/2) of these:

$$\begin{aligned} c_1c_{1'} &\equiv a (\operatorname{mod} p) \\ c_2c_{2'} &\equiv a (\operatorname{mod} p) \\ &\vdots \\ c_{\frac{p-1}{2}}c'_{\frac{p-1}{2}} &\equiv a (\operatorname{mod} p) \end{aligned}$$

Multiplying these congruences together we have

$$a^{\frac{p-1}{2}} \equiv (p-1)! \equiv -1 (\operatorname{mod} p)$$

where the last equivalence holds by wilson's theorem

Now suppose that a is a quadratic residue mod p

Then the congruence $x^2 \equiv a \pmod{p}$ has two solutions: $x = x_1, x = p - x_1$ for $x_1 \in S$

Remove x_1 , and $p-x_1$ from S, then the remaining p-3 integers can be grouped into pairs c,c' such that $cc'\equiv a(\bmod\,p)$ which gives $\frac{p-3}{2}$ congruences

We also have the congruence $x_1(p-x_1)=x_1p-x_1^2\equiv -x_1^2\equiv -a (\operatorname{mod} p)$

Taking the product of al of these congruences gives:

$$-a^{(p-1)/2} \equiv (p-1)! \equiv -1 (\operatorname{mod} p)$$

i.e. $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

0.15.8. Definition: Legendre symbol

Let p be an odd prime, with (a, p) = 1

The Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 1 \text{ if } a \text{ is a quadratic residue } \mod p \\ -1 \text{ if a is a quadratic non-residue} \end{cases}$$

if $p \mid a$ we can set $\left(\frac{a}{p}\right) = 0$

For example $(\frac{3}{13}) = 1, (\frac{6}{13}) = -1$

0.15.9. Theorem: properties of the Legendre symbol

Let p be an odd prime and let $a,b\in\mathbb{Z}$ with (a,p)=(b,p)=1

(i) If
$$a \equiv b \pmod{p}$$
 then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

(ii)
$$\left(\frac{a^2}{p}\right) = 1$$

(iii)
$$\left(\frac{a}{p}\right) \equiv a^{p-1/2} \pmod{p}$$

(iv)
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

(v)
$$\left(\frac{1}{p}\right) = 1$$
 and $\left(-\frac{1}{p}\right) = (-1)^{p-1/2}$

Proof:

i and ii are clear

(iii): follows from the colollary to Euler's criterion 0.15.5

(iv): use (iii) above i.e.
$$\left(\frac{ab}{p}\right) \equiv (ab)^{p-1/2} \equiv a^{p-1/2} \left(b^{p-1/2}\right) \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}$$

(v) follows from euler's criterion

0.15.10. Remark

Observe that $\frac{p-1}{2}$ is even if p=4k+1 and odd if p=4k+3

So

$$-\left(\frac{1}{p}\right) = (-1)^{p-1/2} = \begin{cases} 1 \text{ if } p \equiv 1 \pmod{4} \\ -1 \text{ if } p \equiv -1 \pmod{4} \end{cases}$$

0.15.11. Example

Determine whether the congruence $x^2 \equiv -46 \pmod{17}$ is solvable.

We can evaluate

$$\left(\frac{-46}{17}\right) = \left(-\frac{1}{17}\right)\left(\frac{46}{17}\right) = \left(\frac{46}{17}\right) = \left(\frac{12}{17}\right) = \left(\frac{3 \cdot 2^2}{17}\right) = \left(\frac{3}{17}\right) \equiv 3^{(17-1)/2} \equiv 3^8 \equiv (81)^2 \equiv (-4)^2 \equiv -1 \pmod{17}$$

So the congruence has no solution (i think by 0.15.8)

0.15.12. Theorem: Dirchlet's theorem on primes in an arithmetic progression

Suppose that (a, m) = 1 where $a, m \in \mathbb{Z}_{>0}$, then the arithmetic progression a, a + m, a + 2m, ... contains infinitely many primes

Proof: outside scope of this course

0.15.13. Theorem: infinitely many primes of the form 4k + 1

There are inifintely many primes of the form 4_1^k

Proof:

Suppose there are only finitely many such primes $p_1,...,p_n$

Consider the integer $N = (2p_1...p_n)^2 + 1$

Since N is odd, there exists some off prime p where $p \mid N$

i.e.
$$(2p_1...p_n)^2 \equiv -1 \pmod{p}(\dagger)$$

So $\left(-\frac{1}{p}\right)=1$ and therefore p=4k+1 for some k

Hence $p=p_i$ say and now (\dagger) gives $0\equiv -1 (\operatorname{mod} p_i)$

0.16. Feb 27

Law of Quadratic Reciprocity continued

We repeated the definition of the Legendre symbol

0.16.1. Theorem

Suppose that p is an odd prime, then

$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$$

So there are exactly (p-1)/2 quadratic residues and (p-1)/2 quadratic non residues mod p

Proof:

Let r be a primitive root mod p

For any a with $1 \le a \le p-1$ there exists a unique k with $1 \le k \le p-1$ such that $a \equiv r^k \pmod{p}$ Then

$$\left(\frac{a}{p}\right) = \left(\frac{r^k}{p}\right) \equiv \left(r^k\right)^{(p-1)/2} \equiv \left(r^{(p-1)/2}\right)^k \equiv (-1)^k (\operatorname{mod} p) \text{ (euler's crieterion check this TODO)}$$

Note that $r^{(p-1)/2} \equiv -1 \pmod{p}$ since r is a primitive root $\operatorname{mod} p$

Hence $\left(\frac{a}{p}\right)=(-1)^k$ since $\left(\frac{a}{p}\right)$ and $(-1)^k$ are both equal to ± 1 We therefore have

$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = \sum_{k=1}^{p-1} (-1)^k = 0$$

0.16.2. Corollary

The quadratic residues $\bmod p$ (p is odd) are congruent to the even powers of a primitive root $\bmod p$ while the non-residues are congruent to the odd powers

0.16.3. Example

2 is a primitive root mod 13

Taking the even powers of 2, we have they $2^2 ext{...} 2^{12}$ are congruent to 4, 3, 12, 9, 10, 1 which are the quadratic residues, while if we take odd power of 2 then the quadratic non-residues are 2, 8, 6, 11, 5, 7

0.16.4. Lemma: Gauss's Lemma

Let p be an odd prime, and suppose $a \in \mathbb{Z}$ with (a, p) = 1

Let n denote the number of integers in the set $S = \left\{a, 2a, 3a, ..., \frac{p-1}{2}a\right\}$ whose smallest positive residue mod p exceeds $\frac{p}{2}$

Then
$$\left(\frac{a}{p}\right) = (-1)^n$$

Proof:

Consider the set S

Let $\{r_1,...,r_n\}$ be the set of residues in S that exceed $\frac{p}{2}$

Let $\{s_1, ..., s_n\}$ be the remaining residues in S

Then the r_i and s_j are all distinct, and non-zero, and we have $n+m=\frac{p-1}{2}$

Observe that 0 for <math>(i-1,...,n) and the numbers $p - r_i$ are distinct

Claim: no $p - r_i$ is equal to an s_i

First, suppose that $p - r_i = s_i(\star)$

Then $r_i \equiv \rho a (\mathrm{mod}\, p)$ and $s_j \equiv \sigma a (\mathrm{mod}\, p)$ for some $1 \leq \rho, \sigma \leq \frac{p-1}{2}$ and $\rho \neq \sigma$

Thereofre \star implies that $\rho - \rho a \equiv \sigma a \Rightarrow a(\sigma + \rho) \equiv 0 \Rightarrow \sigma + \rho \equiv 0 \pmod{p}$ which is impossible and proves the claim

So the integers $p-r_1,p-r_2,...,p-r_n,s_1,s_2,...,s_m$ are all distinct. They all lie between 1 and $\frac{p-1}{2}$ and there are $\frac{p-1}{2}$ of them. Hence they are just the numbers $1,2,...,\frac{p-1}{2}$ in some order.

So

$$\begin{split} (p-r_1)(p-r_2)...(p-r_n)s_1,...s_m &= 1\cdot 2\cdot 3...\frac{p-1}{2}\\ (-r_1)(-r_2)...(-r_n)s_1,...,s_m &\equiv 1\cdot 2\cdot 3...\frac{p-1}{2}\\ (-1)^nr_1r_2...r_ns_1...s_m &\equiv 1\cdot 2\cdot 3...\frac{p-1}{2}\\ (-1)^na\cdot 2a...\frac{p-1}{2}a &\equiv 1\cdot 2\cdot 3...\frac{p-1}{2}\\ (-1)^n\cdot a^{(p-1)/2} &\equiv 1\\ (-1)^n &\equiv a^{(p-1)/2} &\equiv \left(\frac{a}{p}\right) \end{split}$$

all modulo p where the very last equivalence holds by Euler's criterion

Note that in the above, it is implied that $\left(\frac{a}{n}\right) = (-1)^n$

0.16.5. Example: Gauss's Lemma

let p = 13 and a = 5 then (p - 1)/2 = 6 and $S = \{5, 10, 15, 20, 25, 30\}$

modulo 13 S is equivalent to the set 5, 10, 2, 7, 12, 4 and 3 of these integers exceed $\frac{13}{2}$ (i.e. 10,7,12) therefore $\left(\frac{5}{13}\right) = (-1)^3 = -1$

Note that "residue" has equivalent meaning to "remainder"

We can use Gauss's Lemma to prove serveral interesting results

0.16.6. Theorem

Let p be an odd prime, then

Proof:

Let
$$S = \left\{1 \cdot 2, 2 \cdot 2, 2 \cdot 3, ..., 2 \cdot \frac{p-1}{2}\right\}$$

Let n be the number of integers in S that have remainder $> \frac{p}{2}$ when divided by p

Then Gauss's lemma implies that $\left(\frac{2}{p}\right) = (-1)^n$

Since all elements of S are less (mod p) than p, in order to determine n we have to count the number of elements of S which are $> \frac{p}{2}$

If k is such that $1 \leq k \leq \frac{p-1}{2}$ then $2k < \frac{p}{2} \Leftrightarrow k < \frac{p}{4}$

Let [] denote the integer part of some value

Therefore there are [p/4] integers in S less than $\frac{p}{2}$

$$\therefore n = \frac{p-1}{2} - \left[\frac{p}{4}\right]$$

Now

$$p=8k+1 \Rightarrow n=4k-\left\lceil 2k+\frac{1}{4}\right\rceil =4k-2k=2k$$

$$p = 8k + 3 \Rightarrow n = 4k + 1 - \left[2k + \frac{3}{4}\right] = 4k + 1 - 2k = 2k + 1$$

similarly, $p = 8k + 5 \Rightarrow n = 2k + 1$ and $p = 8k + 7 \Rightarrow 2k + 2$

So *n* is even iff p = 8k + 1 or p = 8k + 7

and n is odd iff p = 8k + 3 or p = 8k + 5

Therefore

$$\left(\frac{2}{p}\right) = (-1)^n = \begin{cases} 1 \text{ if } p \equiv 1 \pmod{8} \lor p \equiv 7 \bmod{8} \\ -1 \text{ if } p \equiv 3 \pmod{8} \lor p \equiv 5 \pmod{8} \end{cases}$$

0.16.7. Remark

If p=8k+1 i.e. if $p\equiv 1 \pmod 8$ or $p\equiv 7 \pmod 8$ then $\frac{p^2-1}{8}=\frac{(8k\pm)^2-1}{8}=\frac{64k^2\pm 16k}{8}=8k^2\pm 2k$ an even integer Therefore $(-1)^{(p^2-1)/8}=1-\left(\frac{2}{p}\right)$

0.16.8. Remark

If p = 8k + 3 i.e. if $p \equiv 3 \pmod{8}$ or $p \equiv 5 \pmod{p}$ then $\frac{p^2-1}{8} = \frac{(8k\pm 3)^2-1}{8} = 8k^2 \pm 6k + 1$ an odd integer Therefore $(-1)^{\frac{p^2-1}{8}} = -1 = \left(\frac{2}{p}\right)$

0.16.9. Corollary

If p is an odd prime, then $\left(\frac{2}{p}\right)=(-1)^{(p^2-1)/8}$

Took a picture of the last 3 boxes, check