Chapter 7

ST 511 - Inferences About Variances

Readings: Chapter 7 (for 7.4 read if interested)

We saw in the 2-sample t-test we may have interest in testing if two population variances are equal (i.e. $\sigma_1^2 = \sigma_2^2$).

To investigate this, we first start by looking at inference for a single population variance.

Inference for σ^2

To make inference for σ^2 we need a corresponding statistic...

This is 'unbiased' for σ^2 ,

To create a CI or HT, we need to know the _____

Theorem: If $Y_i \sim^{iid} N(\mu, \sigma^2)$ (i.e. a RS from a normal parent population) then

Note: Large n will not relax this assumption! We must have the assumed normality here!

 $Mean=df,\,Variance=2(df)$

How can we make a $(1 - \alpha)100\%$ CI for σ^2 ?

To get the χ^2_L or χ^2_U values in SAS we can do the following:

```
PROBCHI(x,df)
                                 P(Chi^2_df <x) = returned value
*Syntax
The The PROBCHI function returns the probability that an observation from a chi-square distribution, with
degrees of freedom df is less than or equal to x. This function accepts a noninteger degrees of freedom
parameter df if needed);
            QUANTILE(dist, probability, parm-1,...,parm-k)
                                                                  P(dist<= value returned) = probability
The QUANTILE function computes the probability from various continuous and discrete distributions
'probability' is a numeric constant, variable, or expression that specifies the value of a random variable.
parm-1,...,parm-k are optional shape, location, or scale parameters appropriate for the specific distribution.;
*Find some probabilities and quantile values from a chi-square;
prob1 = probchi(2,2); *Probability chi-sq 2 is less than its mean --- P(Chi^2_2<2);</pre>
prob2 = probchi(12.8,4); *P(Chi^2_4<12.8);</pre>
quant1 = quantile('chisq',0.95,11); *0.95 quantile from a chi^2_11;
quant2 = quantile('chisq',0.99,15); *0.99 quantile from a chi^2_15;
proc print data=chisq;
title 'Chi-Square values';
run;
```

	Chi-	Square	values	
Obs	prob1	prob2	quant1	quant2
1	0.63212	0.98770	19.6751	30.5779

Example: A dairy processing company claims that the variance of the amount of fat in the whole milk processed by the company is 0.25 g^2 . You collect a sample of 41 milk containers and find a sample variance of 0.27 g^2 . Find a 90% CI for $\sigma^2 =$ true variance of the amount of fat in the company's whole milk. What do you think of the company's claim? Useful values: $P(\chi_{40}^2 > 55.758) = 0.05, P(\chi_{40}^2 > 26.509) = 0.95$

A hypothesis test for $\sigma^2 = \sigma_0^2$ could be done using the test statistic $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$. We won't cover this in class.

Both the CI and the HT rely heavily on the normality assumption. If normality does not hold then the interval and test will not be valid!!! In fact, they perform very poorly (they are not robust to this assumption being violated).

Inference for two variances, σ_1^2 and σ_2^2

Now we are ready to compare two variances (as is needed in the two-sample t-test).

Theorem: If $Y_i \sim^{iid} N(\mu_1, \sigma_1^2)$ $(i=1,...,n_1)$ and $X_i \sim^{iid} N(\mu_2, \sigma_2^2)$ $(i=1,...,n_2)$ where the Y's and X's are independent then

Notice, when comparing variances we are looking at the ratio $\frac{\sigma_1^2}{\sigma_2^2}$ rather than $\sigma_1^2 - \sigma_2^2$. This is because we know the distribution of the statistic above which involves ratios rather than differences. What value is of interest for this ratio?

How can we make a $(1 - \alpha)100\%$ CI for σ^2 ?

To get the F_L or F_U values in SAS we can do the following:

```
*Syntax PROBF(x,ndf,ddf) P(F_df1,df2<x) = returned value
The PROBF function returns the probability that an observation from an F distribution,
with numerator degrees of freedom ndf (our df1) and denominator degrees of freedom ddf (our df2)
is less than or equal to x.

*Find some probabilities and quantile values from an F distribution;
data f;
prob1 = probf(10,4,2); *Probability F_4,2 is less than 10 --- P(F_4,2<10);
prob2 = 1-probf(22,3,18); *P(F_3,18>22);

quant1 = quantile('f',0.95,4,2); *0.95 quantile from an F_4,2;
quant2 = quantile('f',0.99,3,18); *0.99 quantile from an F_3,18;
run;

proc print data=f;
title 'F values';
run;
```

F values									
Obs	prob1	prob2	quant1	quant2					
1	0.90703	.000003016	19.2468	5.09189					

Example: A company is comparing methods for producing pipes and wants to choose the method with the least variability. It has taken a sample of the lengths of the pipes using both methods and found the following data and summaries. Find a 99% CI for the ratio of the variances. Values: $P(F_{11,14} > 4.508) = 0.005$, $P(F_{11,14} > 0.196) = 0.995$, $P(F_{14,11} > 5.103) = 0.005$, $P(F_{14,11} > 0.222) = 0.995$

The UNIVARIATE Procedure Variable: Width Method=A								The UNIVARIATE Procedure Variable: Width							
								Method=B							
			Mome	ents							Mon	nents			
N			12 St	um Weights		12	N	N		15		Sum Weights		15	
Mean 4.06666667		667 Si	um Observation	15	48.8	М	Mean		4	4.38	Sum Observations		65.7		
Std Deviation 0.88557463		463 Va	ariance	0.784	124242	St	Std Deviation		0.65159	146	Variance		0.42457143		
Skewness -0.0526034		034 Kı	urtosis	-1.65	31257	Skewness		0.15901	561	Kurtosis		-1.1801064			
Uncorrected SS 207.08		7.08 Co	orrected SS	8.626	666667	U	Uncorrected SS		S 29:	3.71	Corrected SS		5.944		
Coeff	Variation	21.7764	253 St	td Error Mean	0.255	64338	C	Coeff Variation		14.8765	173	Std Error Mean		0.16824019	
		Basic S	tatistica	al Measures						Basic S	tatist	ical Measures			
	Loca	tion		Variability					Loca	ation		Variability			
	Mean	4.066667	4.066667 Std Deviation		0.88557				Mean	4.380000	Std	Deviation	0.6515	9	
Median 4.050000 Varian Mode 3.100000 Range		nce	0.78424				Median	4.400000	Vari	ance	0.4245	7			
		3.100000	Range	ange 2					Mode	3.500000	Ran	ge	2.0000	0	
			Interq	nterquartile Range							Inte	rquartile Range	1.2000	0	

The hypothesis test for the ratio of the variances is summarized below:

N	ull	Alternative	Test Stat	RR
	$\sigma_1^2 \leq \sigma_2^2$			
$H_0 : \sigma_1^2$	$/\sigma_2^2 \le 1$	$H_A: \sigma_1^2/\sigma_2^2 > 1$	S_1^2/S_2^2	$\{F_{obs}: F_{obs} \ge F_{\alpha, df1, df2}\}$
		$H_A:\sigma_1^2\neq\sigma_2^2$		
$H_0:\sigma_1^2$	$/\sigma_2^2 = 1$	$H_A: \sigma_1^2/\sigma_2^2 \neq 1$	S_1^2/S_2^2	$\{F_{obs}: F_{obs} \ge F_{\alpha/2, df1, df2} \text{ or } F_{obs} \le F_{1-\alpha/2, df1, df2}\}$

Example: Recall heartrate example from chapter 6. Conduct an HT for equality of variance at the 0.05 level. $P(F_{14,10}>3.798)=0.025, P(F_{14,10}>0.316)0.975$

						T	he 1	TEST	Pı	госе	du	re						
		Variable: rate																
	gı	ou	up N Me		an	in Std Dev		S	Std Err		Minimum		Maximun		n			
	1			15	15	0.2	.2 12.6500		3	3.2662		132.1		171.9		9		
	2			10	14	1.1	10.	.0004	3	3.1624		129.2			156.	7		
	Di	ff (1-2)		9.1	190	11.	6849	4	.770	4	4						
group		Me	etho	d		Me	ean	959	6 C	L Me	eai	n	Std	De	95%	6 CL	Std D	eı
1				_		150.2						7.2 12.65					19.95	_
2						141.1		133	133.9		148	8.3 10.0		.000	04 6.8786		18.25	6
Diff (1-	2)	Po	oled	i		9.1190		-0.74	92	18.	8.9872		11.6849		9.0	817	16.39	12
Diff (1-	2)	Sa	ttert	hwa	ite	ite 9.1190		-0.304		45 18.5425		25						
									_									
			Met	thod		Varian		ance	ices		F	t Valu		e Pr> t				
			Poo	oled		Equa		al		23			1.91		0.0685			
Satt		terth	wai	ite Uneo		qual	ual 22.)2	2.01		1 0	1 0.0572					
							nua	lity of	F \/:	ariar	100	200						
Method					od	_	-			Variand n DF F		Value		Pr > F				
				olde				511	9				0.4833					
				Jiu	<i>,</i> a 1					-		- '	.50	5.40				