### 2<sup>nd</sup> Machine Learning in Heliophysics Boulder, 21 – 25 March 2022

### Monday 21st March

| 8:30 | - 9:30 | Registration         |
|------|--------|----------------------|
| 9:30 | -10:00 | Introductory Remarks |



#### Session 1 – Chairs: Tom Berger (in-person), Naoto Nishizuka (virtual)

| 10:00 – 10:30  | (Invited) <b>Rafal Angryk</b> Making Stuff Up: Ameliorating Data Scarcity in Flare Forecasting through Synthetic Multivariate Time Series Generation with Deep Learning |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:00 – 11: 20 | Cedric Huwyler (FHNW, Switzerland) Using Multiple Instance Learning for Explainable Flare Prediction                                                                    |
| 11:20 – 11:40  | <b>Kiera van der Sande</b> (University of Colorado)  Comparing Solar Flare Irradiance in GOES X-ray and SDO/AIA EUV Data via Machine Learning Regression                |
| 11:40 – 12:00  | <b>Jonathan Donzallaz</b> (Haute Ecole d'Ingénierie et d'Architecture Fribourg, CH)<br><i>SolarNet: Solar Flares Prediction with Self-Supervised Learning</i>           |
| 12:00 – 12:20  | <b>Dattaraj B Dhuri</b> (NYU Abu Dhabi)  Deep learning reconstruction of sunspot vector magnetic fields for forecasting solar storms                                    |
| 12:20 – 14:00  | Lunch                                                                                                                                                                   |

### Session 2 – Chairs: Tom Berger (in-person), Enrico Camporeale (in-person)

| 14:00 – 14:30 | (Invited) <b>Eunsu Park</b> Application of image translation methods based on deep learning to solar data                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:30 – 14:50 | <b>Elena G Broock</b> (Instituto Astrofísico de Canarias)  Farnet-II: application of Convolutional LSTM and attention mechanisms to solar far-side activity detection |
| 14:50 – 15:10 | <b>Allison Liu</b> (University of Colorado)  Data Augmentation of Magnetograms for Solar Flare Prediction using GANs                                                  |
| 15:10 – 16:00 | Coffee Break                                                                                                                                                          |

| 16:00 – 16:30 | (Invited) <b>Andres Munoz-Jaramillo</b> Using Neural Network Ensembles to Estimate Uncertainty in Heliophysics Applications                         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 16:30 – 16:50 | <b>Robert Jarolim</b> (Graz University)  Probing the coronal magnetic field with physics informed neural networks                                   |
| 16:50 – 17:10 | Oleg Stepanyuk (Bulgarian Academy of Sciences) Advanced Image Preprocessing and Feature Tracking for Remote CME Characterization with Deep Learning |
| 17:10 – 17:30 | <b>Benoit Tremblay</b> (University of Colorado)  Emulation of MHD simulations to Infer Flows in Granulation, Sunspots, and Active Regions           |
| 18:30 – 20:00 | Reception                                                                                                                                           |

# Tuesday 22<sup>nd</sup> March

| 8:00 - 9:30                                                             | (Hands-on tutorial) <b>Hannah Marlowe</b> (Amazon AWS) <i>Introduction to computer vision object detection for solar flare identification.</i>                                                                  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9:30 – 10:00                                                            | Coffee break                                                                                                                                                                                                    |  |
| 10:00 – 11:30                                                           | <b>Wendy Carande</b> (LASP, University of Colorado) <i>Tutorial on ML, part 1</i>                                                                                                                               |  |
| 11:30 – 12:30                                                           | Poster Session A (mostly virtual)                                                                                                                                                                               |  |
| 12:30 – 14:00                                                           | Lunch                                                                                                                                                                                                           |  |
| Session 3 – Chairs: Pete Riley (virtual), Enrico Camporeale (in-person) |                                                                                                                                                                                                                 |  |
| 14:00 – 14:30                                                           | (Invited) <b>Katariina Nykyri</b> (Embry-Riddle Aeronautical University) Information Theory and Machine Learning Applications to Solar Wind Magnetosphere Interactions                                          |  |
| 14:30 – 14:50                                                           | Sahib Julka (University of Passau)  An active learning approach for automatic detection of bow shock and magnetopause crossing signatures in Mercury's magnetosphere using MESSENGER magnetometer observations. |  |
| 14:50 – 15:10                                                           | <b>Simon Wing</b> (Johns Hopkins Applied Physics Lab)  Modeling radiation belt electrons with information theory informed neural networks                                                                       |  |
| 15:10 – 15:30                                                           | <b>Georgios Balasis</b> (National Observatory of Athens)  Machine Learning Techniques for Automated ULF Wave Recognition in Swarm Time Series                                                                   |  |

| 15:30 – 15:50                                                    | Michael S. Kirk (ASTRA) The Center for HelioAnalytics                                                                                                      |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15:50 – 18:00                                                    | Poster Session A ( <i>mostly</i> in-person) – including coffee and refreshments                                                                            |  |
| Wednesday 23 <sup>rd</sup>                                       | March                                                                                                                                                      |  |
| 8:30 – 10:30                                                     | Enrico Camporeale Tutorial on ML, part 2:                                                                                                                  |  |
|                                                                  | Gaussian Process Regression                                                                                                                                |  |
| 10:30 – 11:00                                                    | Coffee Break                                                                                                                                               |  |
| Session 4 – Chairs                                               | : Jacob Bortnik (virtual), Amy Keesee (in-person)                                                                                                          |  |
| 11:00 – 11:20                                                    | Ramiz A. Qudsi (Boston University)  Algorithm Development for Magnetic Field topology Reconstruction in a 3-D  Simulation Box Using Machine Learning       |  |
| 11:20 – 11:40                                                    | <b>Brian Swiger</b> (University of Michigan)  Energetic Electron Flux Predictions in the near-Earth Plasma Sheet from Solar Driving                        |  |
| 11:40 – 12:00                                                    | Mikhail Sitnov (Johns Hopkins Applied Physics Lab) Resolving the geomagnetic tail current sheet structure with data mining                                 |  |
| 12:00 – 12:20                                                    | Sigiava Aminalragia-Giamini (SPARC) Radiation belt model including semi-annual variation and Solar driving (SENTINEL)                                      |  |
| 12:20 – 12:40                                                    | <b>Sergio Vidal-Luengo</b> (University of Colorado)  Whistler-mode Waves and Relativistic Precipitation Event Detection by  Employing Self-Organizing-Maps |  |
| 12:40 – 14:00                                                    | Lunch                                                                                                                                                      |  |
| Session 5 – Chairs: Simon Wing (in-person), Pete Riley (virtual) |                                                                                                                                                            |  |
| 14:00 – 14:30                                                    | (invited) <b>Jay Johnson</b> (Andrews University) Information Horizon of Flares and Magnetic Active Regions                                                |  |
| 14:30 – 14:50                                                    | Marius Giger (FHNW, Switzerland ) Unsupervised event detection in heliophysics                                                                             |  |
| 14:50 – 15:10                                                    | <b>Sophie Teichmann</b> (Georg-August-Universität Göttingen)  Influence of solar wind parameters on unsupervised solar wind classification                 |  |
| 15:10 – 15:30                                                    | <b>Talwinder Singh</b> (University of Alabama)  Improving the Arrival Time Prediction of Coronal Mass Ejections using                                      |  |

|               | Magnetohydrodynamic Ensemble Modeling, Heliospheric Imager data and<br>Machine Learning                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:30 – 16:00 | (invited) <b>Gary Doran</b> (JPL) Responsive Onboard Science for Europa Clipper                                                                                            |
| 16:00 – 16:30 | Coffee                                                                                                                                                                     |
| 16:30 – 17:00 | (invited) <b>Maria Elena Innocenti</b> (Ruhr University Bochum)<br>A versatile technique for unsupervised classification and preliminary analysis<br>of simulation results |
| 17:00 – 17:20 | <b>Hannah Marlowe</b> (Amazon)  An unsupervised learning approach to superstorm signature identification in precipitating particle data                                    |
| 17:20 – 17:40 | Andong Hu (University of Colorado) Innovative Dst predictions using neural networks                                                                                        |
| 17:40 – 18:00 | <b>Kiley Yeakel</b> (Johns Hopkins Applied Physics Lab) Automated algorithm for the detection of dispersionless electron injection events in Earth's magnetotail           |

# Thursday 24<sup>th</sup> March

| Session 6 – Chairs: | Session 6 – Chairs: Michael Kirk (virtual), Amy Keesee (in-person)                                                                                                           |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 8:30 – 9:00         | (invited) <b>Maziar Raissi</b> (University of Colorado)  Data-Efficient Deep Learning using Physics-Informed Neural Networks                                                 |  |  |
| 9:00 – 9:20         | Xiaoyue Li (Zhejiang University) Transfer-Solar-GAN: Generation of Input Sources for Solar Wind Models with Deep Learning                                                    |  |  |
| 9:20 – 9:40         | <b>Panagiotis Tigas</b> (Oxford University)  Global geomagnetic perturbation forecasting using deep learning                                                                 |  |  |
| 9:40 – 10:00        | <b>Mohamed Nedal</b> (Bulgarian Academy of Sciences) Forecasting the Solar Energetic Protons Integral Flux using the Bi-Directional Long Short-Term Memory Neural Network    |  |  |
| 10:00 – 10:20       | <b>Andrew Smith</b> (University College London)  Producing ML-driven Real-Time Forecasts of the Probability of Large Rates of Change of the Surface Magnetic Field in the UK |  |  |
| 10:20 - 11:00       | Coffee Break                                                                                                                                                                 |  |  |
| 11:00 – 11:30       | (invited) Alan Kaptanoglu (University of Washington)                                                                                                                         |  |  |

|                     | Machine Learning for discovering sparse models of fluids, plasmas, and much more                                                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:30 – 12:30       | Poster Session B (mostly virtual)                                                                                                                                                                       |
| 12:30 – 14:00       | Lunch                                                                                                                                                                                                   |
| Session 7: - Chairs | : Pete Riley (virtual), Delores Knipp (in-person)                                                                                                                                                       |
| 14:00 – 14:20       | <b>Sai Gowtam Valluri</b> (University of Alaska)<br>An Artificial Neural Network-based global three-dimensional ionospheric<br>electron density model: present state, challenges, and future directions |
| 14:20 – 14:40       | <b>Vivian Otugo</b> (Rivers State University)  Estimation of ionospheric critical plasma frequencies from GNSS-TEC measurements using artificial neural networks                                        |
| 14:40 – 15:00       | Jhassmin A Aricoché (Universidad Nacional del Callao) Modeling ionograms with deep neural networks: Contrasting models                                                                                  |
| 15:00 – 15:30       | <b>Brianna Maze</b> and <b>Alec Engell</b> (NextGen)  The Weather Machine Learning Platform and the Space Radiation Intelligence System                                                                 |
| 15:30 – 17:30       | Poster Session B ( <i>mostly</i> in-person) – including coffee and refreshments                                                                                                                         |
| 19:30               | Social Dinner<br>Champions Center – Rooftop Terrace Club, 2150 Stadium Dr, Boulder, 80302                                                                                                               |

# Friday 25<sup>th</sup> March

### Session 8 – Chairs: Enrico Camporeale (in-person), Tom Berger (in-person)

| 8:30 - 9:00   | Early career awards                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:00 – 9:30   | (invited) <b>Maria J. Molina</b> (NCAR, Boulder, Colorado) <i>Machine Learning for the Geosciences</i>                                                                          |
| 9:30 – 9:50   | <b>Simon Mackovjak</b> (Slovak Academy of Sciences)  Towards explanation of airglow variation by ML techniques                                                                  |
| 9:50 – 10:10  | <b>Shanshan Bao</b> (Rice University) A gray-box approach in modeling atmospheric precipitation in global geospace models                                                       |
| 10:10 – 10:30 | <b>Daniel I Okoh</b> (Centre for Atmospheric Research)  Results from a 3-D electron density model developed from COSMIC radio occultation data using artificial neural networks |

| 10:30 - 11:00 | Coffee                                                                                                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:00 – 11:20 | <b>Delores J Knipp</b> (University of Colorado)  Geophysical interpretations from machine learning superstorm signature identification in satellite precipitating particle data |
| 11:20 – 11:40 | Ekaterina Verner (NASA)                                                                                                                                                         |
|               | Heliophysics AI/ML focused program, AWS case study and crowdsourcing result                                                                                                     |
| 11:40 – 13:00 | Open discussion                                                                                                                                                                 |
| 13:00         | Farewell lunch (bag lunch available)                                                                                                                                            |

### List of posters (v=virtual; p=in person)

#### Session A (Tuesday 22)

|                                                                                                                                   | Session A (Tuesday 22)                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1) Amy Keesee (p)                                                                                                                 | Methods to improve magnitude accuracy for machine learning predictions of ground magnetic field perturbations                                 |  |
| 2) Jasmine R Kobayashi (v)                                                                                                        | Machine Learning Models as an Alternative to Standard Interpolation<br>Techniques for Estimating Gaps in OMNI Data                            |  |
| 3) Dattaraj B Dhuri (v)                                                                                                           | A deep learning model of proton auroras on Mars                                                                                               |  |
| 4) Charles Topliff (p)                                                                                                            | A domain transfer approach to forecasting the Solar Wind at L1                                                                                |  |
| 5) Talha Siddique (v)                                                                                                             | A Bayesian Ensemble Machine Learning Approach For Prediction of<br>Geomagnetically Induced Currents (GICs) With Uncertainty<br>Quantification |  |
| 6) Adam T Michael (v)                                                                                                             | Radiation Belt Variability due to Wave-Particle Interactions: A<br>Multiscale Modeling Approach                                               |  |
| 7) Spiridon Kasapis (p)                                                                                                           | Machine Learning-Based Forecasting of SEP Events Using the Recently Published MDI Data                                                        |  |
| 8) Pete Riley (v)                                                                                                                 | What Machine Learning Algorithms Teach us about Which<br>Explanatory Variables Matter Most in Predicting Bz within Coronal<br>Mass Ejections  |  |
| 9) Rainer Arlt (v)                                                                                                                | Machine learning for digitization of historical records of solar activity                                                                     |  |
| 10) Gonzalo A Cucho-Padin                                                                                                         | (p) A machine learning framework for the reconstruction of the 3-D ion density distributions and energetic fluxes in the Earth's cusp         |  |
| 11) Shan Jiahui (v)                                                                                                               | Transfer learning for the three-dimensional reconstruction of CMEs                                                                            |  |
| 12) Xiukuan Zhao (v)                                                                                                              | Ionospheric scintillation prediction using gradient boosting algorithm                                                                        |  |
| 13) Kimberly D Moreland (p) A machine-learning oriented remote and in-situ database for forecasting SEP occurrence and properties |                                                                                                                                               |  |

| 14) Anna L Morozova (v)                                                                                                         | Comparison of the performance of PCA-NN models for daily mean TEC over the Iberian Peninsula: performance of different neural networks configuration |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 15) Daniel T S Wrench (v)                                                                                                       | Exploring the potential of neural networks to predict statistics of solar wind turbulence                                                            |  |  |  |
| 16) Raman Mukundan (p)                                                                                                          | Optimizing a Neural Network for Regional Forecasting of Ground<br>Magnetic Perturbations Using Spherical Elementary Current Systems                  |  |  |  |
| 17) Rukundo Wellen (v)                                                                                                          | Forecasting of ionospheric electron content (TEC) using a time series neural network                                                                 |  |  |  |
| 18) Xiangning Chu (v)                                                                                                           | Relativistic Electron Model in the Outer Radiation Belt Using a<br>Neural Network Approach                                                           |  |  |  |
| 19) Luiz F Guedes dos Santos(p) Exploring the ability of Convolutional Neural Networks to predict Solar wind quantities at 1 AU |                                                                                                                                                      |  |  |  |
| 20) Hannah T Rüdisser (v)                                                                                                       | Automatic Detection of Interplanetary Coronal Mass Ejections                                                                                         |  |  |  |
| 21) Luisa Capannolo (v)                                                                                                         | Investigating the Relativistic Electron Precipitation using Deep<br>Learning Techniques                                                              |  |  |  |
| 22) Alexander Boyd (v)                                                                                                          | SHELLS Model: Specifying High-altitude Electrons using Low-altitude LEO Systems                                                                      |  |  |  |
| 23) Kamen Kozarev (p)                                                                                                           | Towards Lucky Imaging for Quiet-Time Low-Frequency Radio Solar<br>Observations                                                                       |  |  |  |
| 24) Michael K Coughlan (v)                                                                                                      | Using a Convolutional Neural Network with Uncertainty to Forecast GIC Risk of Occurrence at Mid-Latitudes.                                           |  |  |  |
| 25) Victor A Pinto (v)                                                                                                          | Developing near real-time ground magnetic field perturbations predictions with machine learning models                                               |  |  |  |
| 26) Xudong Sun (v)                                                                                                              | SpIn4D: Spectropolarimetric Inversion in Four Dimensions with Deep Learning                                                                          |  |  |  |
| 27) Kendra Bergstedt (p)                                                                                                        | Machine Learning Algorithms for the Detection of Plasmoids in Multiple-X-Line Collisionless Reconnection Regions                                     |  |  |  |
| 28) Rong Lin (v)                                                                                                                | Predicting Ambient Solar Wind Speed at L1-point based on<br>Convolutional Neural Network and PFSS Magnetogram                                        |  |  |  |
| 29) Mario Cobos Maestre (v                                                                                                      | ) Stability of loss functions for solar wind forecasting using Deep<br>Learning                                                                      |  |  |  |
| 30) Armando Collado-Villav                                                                                                      | verde(v) Deep Neural Networks With Convolutional and LSTM Layers for SYM-H and ASY-H Forecasting.                                                    |  |  |  |
| 31) Andong Hu (p)                                                                                                               | A Multi-Hour-Ahead global geospace model using Gated Recurrent<br>Unit (GRU) networks and SuperMAG data                                              |  |  |  |
| 32) Suvadip Sinha (v)                                                                                                           | A comparative study of supervised machine learning algorithms to forecast solar flares                                                               |  |  |  |
| 33) Tommaso Alberti (v)                                                                                                         | Chaos and spontaneous stochasticity: two sides of (un)predictability                                                                                 |  |  |  |

| 34) Peter Wintoft (v)       | Solar wind to ground magnetic field proxies studied with GRU networks: predictability with respect to physical phenomena                                      |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 35) Juliana Vievering (p)   | Real-Time Solar Flare Predictions using Machine Learning                                                                                                      |  |
| 36) Verena Heidrich-Meisner | (v) Neural network reconstruction of in-situ solar wind parameters                                                                                            |  |
| 37) Ute V Amerstorfer (v)   | Machine Learning Solutions for Data Analysis and Exploitation in<br>Planetary Science - A Work Package in Europlanet 2024 Research<br>Infrastructure          |  |
| 38) Ajay Kumar Tiwari (v)   | CME-learn: An interactive playground to benchmark CME databases for the time of arrival (ToA) prediction for using machine learning methods                   |  |
| 39) Subhamoy Chatterjee (p) | Forecasting the Occurrence Probability and Properties of Solar<br>Energetic Particle Events using a Multivariate Ensemble of<br>Convolutional Neural Networks |  |
| 40) Donglai Ma (v)          | Machine learning based reconstruction and prediction of radiation belt flux                                                                                   |  |
| 41) Enrico Camporeale (p)   | Space Weather with Quantified Uncertainty: Optimizing Ensembles for Probabilistic Predictions                                                                 |  |
| 42) Liam Smith (v)          | Machine Learning for Ionospheric Extrapolation and Forecasting in a<br>Data-Model Fusion Approach                                                             |  |
| 43) Kyle Domico (v)         | A Machine Learning and Computer Vision Approach to Geomagnetic<br>Storm Forecasting                                                                           |  |
| 44) Dominique L Stumbaugh   | n (p) Predicting Equatorial Electron Flux Measurements from Low<br>Earth Orbit                                                                                |  |
| 45) Yong Ji (v)             | Composite model for predicting sym-H index                                                                                                                    |  |
| 46) Matthew G Lennard (v)   | Machine Learning in Heliophysics                                                                                                                              |  |
| 47) Simon Bouriat (p)       | Forecasting low-energy particle flux in LEO using DMSP satellites: data analysis and first results                                                            |  |
|                             |                                                                                                                                                               |  |

## Session B (Thursday 24)

| 48) Luiz F Guedes dos Santos(p) Forecasting flux rope's orientation using CNNs |                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 49) Henrik Eklund (v)                                                          | Image refinement and estimation of intensity contrast degradation at small scales events of Solar observations.                                                                             |  |  |  |
| 50) Adeline T M Paiement (v) Cloud removal from ground-based images of the Sun |                                                                                                                                                                                             |  |  |  |
| 51) Elizabeth P O'Dwyer (v)                                                    | Machine Learning for the Classification of Low Frequency Extensions of Saturn Kilometric Radiation                                                                                          |  |  |  |
| 52) Carlos J Diaz Baso (p)                                                     | Bayesian Stokes inversion with Normalizing flows                                                                                                                                            |  |  |  |
| 53) Harry Arnold (v)                                                           | Using Effective Resistivity Maps Derived From Data Mining for Global MHD Simulations of the Magnetosphere                                                                                   |  |  |  |
| 54) Ajay Kumar Tiwari (v)                                                      | Predicting Arrival Time and Arrival Speed for CMEs: Machine<br>Learning and Ensemble Methods                                                                                                |  |  |  |
| 55) Laura Simms (v)                                                            | A comparison of ARMAX (autoregressive moving average transfer function) and RNN (recurrent neural network) models to predict geostationary keV electrons                                    |  |  |  |
| 56) Yigit Aytac (p)                                                            | A Computer Vision Approach for Real-time Solar Event Detection                                                                                                                              |  |  |  |
| 57) Dogacan S Ozturk (v)                                                       | A predictive model for the high-latitude ionospheric convection                                                                                                                             |  |  |  |
| 58) Aliaa A. M. Afify (v)                                                      | Development of a forecasting technique for ionospheric plasma irregularities by applying a supervised machine learning regression technique to spaceborne GPS measurements                  |  |  |  |
| 59) Matthew Blandin (v)                                                        | Predicting Geomagnetically Induced Currents across Alaska utilizing<br>Multi-Variate LSTM models                                                                                            |  |  |  |
| 60) Robert Jarolim (p)                                                         | ITI for the Sun: Improved intercalibration of multi-instrument heliophysics data series with Instrument-To-Instrument translation                                                           |  |  |  |
| 61) Reynaldo O Rojas Zelay                                                     | ra (v)Forecasting Spread F at Jicamarca                                                                                                                                                     |  |  |  |
| 62) Laura Simms (v)                                                            | The use of differencing to remove spurious correlations in models of geostationary 2 MeV electron flux                                                                                      |  |  |  |
| 63) Naoto Nishizuka (v)                                                        | Reliable Probability Forecast of Solar Flares using Deep Neural<br>Networks                                                                                                                 |  |  |  |
| 64) Paul J Wright (p)                                                          | SDOVIS: A Vision Transformer Model for Solar Dynamics<br>Observatory (SDO) Data                                                                                                             |  |  |  |
| 65) Constantinos Papadimitr                                                    | riou (v) Application of information theoretical measures for improved machine learning modelling of the electron radiation belt                                                             |  |  |  |
| 66) Hemapriya Raju (v)                                                         | Deep learning analysis on CMEs assosciated with flares and filaments                                                                                                                        |  |  |  |
| 67) Ryan McGranaghan (v)                                                       | A Next Generation Space Weather Particle Precipitation Model:<br>Mature machine learning approaches, multiscale mesoscale<br>prediction, and an open science framework for machine learning |  |  |  |
| 68) Andrea Diercke (p)                                                         | Automatic Extraction of Solar Filaments Using Machine Learning<br>Techniques                                                                                                                |  |  |  |

|                                                                                                                                        | 69) Sumanth A.T. Rotti (v)  | Machine Learning Dataset of SEP Events from Solar Cycles 22, 23 and 24.                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                        | 70) Yana Shtyk (v)          | Solar flare prediction using a multi-channel model                                                                          |  |  |
|                                                                                                                                        | 71) Pavithra G Srinivas (v) | Development Of An Onboard Space Weather Module For Satellite<br>Operations                                                  |  |  |
|                                                                                                                                        | 72) Denny Oliveira (p)      | Perspectives on the use of data assimilation for improving thermospheric empirical models: Focus on extreme magnetic storms |  |  |
|                                                                                                                                        | 73) Grant K Stephens (v)    | Global structure of magnetotail reconnection unveiled by mining spaceborne magnetometer data                                |  |  |
|                                                                                                                                        | 74) Vanessa M Mercea (v)    | Detection of sunquakes in Egression Power Maps using Deep<br>Autoencoders                                                   |  |  |
|                                                                                                                                        | 75) Anthony Sciola (v)      | Ring current plasma pressure reconstructed from empirical magnetic field distributions embedded within a global MHD model   |  |  |
| 76) Ravindra T Desai (p)                                                                                                               |                             | Using a neural network to model ultra-relativistic charged particles and exploit sparse datasets                            |  |  |
|                                                                                                                                        | 77) Sachin A Reddy (v)      | Predicting Equatorial Plasma Bubbles with Machine Learning and CubeSats                                                     |  |  |
|                                                                                                                                        | 78) Edward J E Brown (v)    | Attention-based machine vision models and techniques for solar wind speed forecasting using solar EUV images                |  |  |
| 79) Stefano Bianco (v)                                                                                                                 |                             | A modification of the PINE model for real-time plasmaspheric forecasts                                                      |  |  |
|                                                                                                                                        | 80) Thomas Berger (p)       | Decreasing False Alarm Rates in ML-based Solar Flare Prediction using SDO/HMI Data                                          |  |  |
| 81) Shah Mohammad Bahauddin(v) <i>Unboxing the Black Box: Learning to identify acoustic wave sources on the Sun from Deep Learning</i> |                             |                                                                                                                             |  |  |
|                                                                                                                                        | 82) Donglai Ma (v)          | Automatic discovery of the equations governing radiation belt dynamics                                                      |  |  |
| 83) Saida Milena Diaz Castillo (v)Dense segmentation of solar granulation structures using deep learning                               |                             |                                                                                                                             |  |  |
|                                                                                                                                        | 84) Harim Lee (p)           | Generation of Modern Satellite Data from Galileo Sunspot Drawings<br>by Deep Learning                                       |  |  |
|                                                                                                                                        | 85) James Lende (v)         | Statistical Investigation of the Erosion and Refilling of the<br>Plasmasphere - Neural Network Model Approach               |  |  |
|                                                                                                                                        | 86) John C Dorelli (v)      | Vlasov Informed Super Resolution (VISR): A Deep Learning<br>Approach for De-Aliasing Particle Data                          |  |  |
|                                                                                                                                        |                             |                                                                                                                             |  |  |

| 87) Xin Cao (v)             | Investigation of the response of equivalent ionospheric current to upstream solar wind and magnetospheric activity: a neural network approach |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 88) Subhamoy Chatterjee (p) | Utilizing a Convolutional Neural Network to Efficiently Label a Solar<br>Flux Emergence Video Dataset                                         |
| 89) Zeyu Sun(v)             | Predicting Solar Flares Using CNN and LSTM on Two Solar Cycles of Active Region Data                                                          |
| 90) Linnea Wolniewicz (v)   | SEARCH: SEgmentation of Active Regions and Coronal Holes                                                                                      |

91) Enrico Camporeale (p) The PRAISE Initiative: Promoting Research in Artificial Intelligence for the Space Economy

92) Daniel E da Silva (p) Semi-Empirical Data Compression for Heliophysics Space Mission Data

## **Sponsors**







#### Time difference calculator

(Note: on this week USA is on Daylight Saving time, while Europe and Australia are still on winter time)

| Boulder      | Rome         | New Delhi       | Tokyo        | Sydney         |
|--------------|--------------|-----------------|--------------|----------------|
| MDT (UTC -6) | CE T (UTC+1) | IST (UTC +5:30) | JST (UTC +9) | AEDT (UTC +11) |
| 8:00 am      | 3:00 pm      | 7:30 pm         | 11:00 pm     | 1:00 am        |
| 12:00 pm     | 7:00 pm      | 11:30 pm        | 3:00 am      | 5:00 am        |
| 3:00 pm      | 10:00 pm     | 2:30 am         | 6:00 am      | 8:00 am        |
| 5:00 pm      | 12:00 am     | 4:30 am         | 8:00 am      | 10:00 am       |