2025年广州市普通高中毕业班综合测试(一)

数学

本试卷共5页,19小题,满分150分。考试用时120分钟。

注意事项: 1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。 用 2B 铅笔在答题卡的相应位置填涂考生号。

- 2. 作答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液。不按以上要求作答无效。
- 4. 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
- 一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
- 1. 若复数z满足1+iz=i,则z的虚部为
- A. -1 B. 1 C. -i D. i
- 2. 已知集合 $A = \{x | 0 \le x \le a\}$, $B = \{x | x^2 2x \le 0\}$, 若 $B \subseteq A$, 则实数 a 的取值范围是 A. (0,2) B. (0,2] C. $(2,+\infty)$ D. $[2,+\infty)$
- 3. 在平行四边形 ABCD中,点 E 是 BC 边上的点, $\overrightarrow{BC}=4\overrightarrow{EC}$,点 F 是线段 DE 的中点, $\overrightarrow{AF}=\lambda \overrightarrow{AB}+\mu \overrightarrow{AD}$,则 $\mu=$
 - A. $\frac{5}{4}$ B. 1 C. $\frac{7}{8}$ D. $\frac{3}{4}$
- 4. 已知球O的表面积为 4π ,一圆台的上、下底面圆周都在球O的球面上,且下底面过

球心O,母线与下底面所成角为 $\frac{\pi}{3}$,则该圆台的侧面积为

A.
$$\frac{3\sqrt{3}}{4}\pi$$
 B. $\frac{3}{2}\pi$ C. $\frac{3\sqrt{3}}{2}\pi$ D. 3π

- 5. 已知点P在双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 上,且点P到C的两条渐近线的距离之积等于 $\frac{a^2}{2}$,则C的离心率为
 - A. 3 B. 2 C. $\sqrt{3}$ D. $\sqrt{2}$

- 6. 已知实数a, b满足 $3^a = 4^b$, 则下列不等式可能成立的是

 - A. b < a < 0 B. 2b < a < 0
- C. 0 < a < b
- D. 0 < 2b < a
- 7. 已知 $\omega > 0$, 曲线 $y = \cos \omega x$ 与 $y = \cos \left(\omega x \frac{\pi}{3}\right)$ 相邻的三个交点构成一个直角三角形,

 - A. $\frac{\sqrt{3}}{2}\pi$ B. $\frac{\sqrt{2}}{2}\pi$
- C. $\sqrt{2}\pi$ D. $\sqrt{3}\pi$
- 8. 定义域为 R 的偶函数 f(x) 在 $(-\infty, 0]$ 上单调递减,且 f(3)=0,若关于 x 的不等式 $(mx-2)f(x-2) \ge (nx+3)f(2-x)$ 的解集为 $[-1,+\infty)$,则 $e^{m-2n} + e^{n+1}$ 的最小值为
 - A. $2e^3$
- $B. 2e^2$
- C. 2e
- D. $2\sqrt{e}$
- 二、选择题: 本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题 目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分,
- 9. 某位射击运动员的两组训练数据如下:

第一组: 10, 7, 7, 8, 8, 9, 7; 第二组: 10, 5, 5, 8, 9, 9, 10. 则

- A. 两组数据的平均数相等
- B. 第一组数据的方差大于第二组数据的方差

C. 两组数据的极差相等

- D. 第一组数据的中位数小于第二组数据的中位数
- 10. 已知函数 $f(x) = \ln \frac{4-x}{x} + ax$ 在 x = 3 处取得极大值, f(x) 的导函数为 f'(x), 则

A.
$$a = \frac{4}{3}$$

B. 当
$$0 < x < 1$$
时, $f(x) > f(x^2)$

C.
$$f'(2+x) = f'(2-x)$$

C.
$$f'(2+x) = f'(2-x)$$
 D. $\pm 1 \le x_1 \le x_2 \le 3 \pm x_1 + x_2 < 4 \text{ pt}, f(x_1) + f(x_2) < \frac{16}{3}$

- 11. 如图,半径为1的动圆 C 沿着圆 $O: x^2 + y^2 = 1$ 外侧无滑动地滚动一周,圆 C 上的点 P(a,b)形成的外旋轮线 Γ ,因其形状像心形又称心脏线. 已知运动开始时点P与点 A(1,0)重合. 以下说法正确的有
 - A. 曲线 Γ 上存在到原点的距离超过 $2\sqrt{3}$ 的点
 - B. 点(1, 2)在曲线 / 上
 - C. 曲线 Γ 与直线 $x+y-2\sqrt{2}=0$ 有两个交点
 - D. $|b| \le \frac{3\sqrt{3}}{2}$

- 三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.
- 12. 已知 $\cos \alpha \sin(\alpha \beta) \sin \alpha \cos(\beta \alpha) = \frac{3}{5}$,则 $\sin \beta =$ _____.
- 13. 将1, 2, 3, ···, 9这9个数字填在3×3的方格表中, 要求每一行从左到右、每一列从上到下的数字依次变小. 若将4填在如图所示的位置上, 则填写方格表的方法共有_____种.

- 14. 在正三棱锥 P-ABC 中, $PA=PB=PC=3\sqrt{2}$,AB=6 ,点 D 在 \triangle ABC 内部运动(包括边界),点 D 到棱 PA ,PB ,PC 的距离分别记为 d_1 , d_2 , d_3 ,且 $d_1^2+d_2^2+d_3^2=20$,则点 D 运动路径的长度为______.
- 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.
- 15. (13分)

在 $\triangle ABC$ 中,内角A,B,C的对边分别为a,b,c,已知 $c = a(1+2\cos B)$.

- (1) 求证: B = 2A;
- (2) 若a=3, $b=2\sqrt{6}$, 求 $\triangle ABC$ 的面积.

16. (15分)

如图,在四棱锥 P-ABCD 中,底面 ABCD 为矩形, AB=2BC=2 ,侧面 PCD 是等 边三角形,三棱锥 A-PBD 的体积为 $\frac{\sqrt{3}}{3}$,点 E 是棱 CP 的中点.

- (1) 求证: 平面 PBC _ 平面 PCD;
- (2) 求平面 BDE 与平面 ABCD 夹角的余弦值.

17. (15分)

*

 $n\ (n\in \mathbb{N}^{\bullet},\ n\geqslant 3)$ 个人相互传球,传球规则如下:若球由甲手中传出,则甲传给乙;否则,传球者等可能地将球传给另外的n-1个人中的任何一个.第一次传球由甲手中传出,第 $k(k\in \mathbb{N}^{\bullet})$ 次传球后,球在甲手中的概率记为 $A_n(k)$,球在乙手中的概率记为 $B_n(k)$.

- (1) $R_5(2)$, $B_5(2)$, $A_5(3)$, $B_5(3)$;
- (2) 求 $A_n(k)$;
- (3) 比较 $B_n(k+1)$ 与 $\frac{n-2}{n-1}A_n(k)$ 的大小,并说明理由.

18. (17分)

已知动点 P 到点 $F\left(\frac{1}{2},0\right)$ 的距离等于它到直线 $x=-\frac{1}{2}$ 的距离,记动点 P 的轨迹为曲线 C .

- (1) 求 C 的方程;
- (2)O为坐标原点,过点M (2,0)且斜率存在的直线l与C相交于A,B两点,直线AO与直线x=-2相交于点D,过点B且与C相切的直线交x轴于点E.
 - (i) 证明: 直线 DE //l;
 - (ii) 满足四边形 ABDE 的面积为12的直线 l 共有多少条?说明理由.

19. (17分)

已知 $n \in \mathbb{N}^*$ 且 $n \ge 3$,集合 $A_n = \{a_1, a_2, \dots, a_n\}$,其中 $0 < a_1 < a_2 < \dots < a_n$.若存在函数 $f(x)(f(x) \ne x)$,其图象在区间 $D = [a_1, a_n]$ 上是一段连续曲线,且 $\{f(a_i)|a_i \in A_n\} = A_n , \quad \text{则称} f(x) \in A_n \text{的} T$ 变换函数,集合 $A_n \in A_n \in A_n$ 是 $A_n \in A_n \in A_n$,则称 $A_n \in A_n$,则称 A_n

- (1) 判断集合 $\{1,2,8,9\}$ 是否是[1,9]的T子集?说明理由;
- (2) 判断 $f(x) = \ln\left(1 + \frac{2}{e^x}\right)$ 是否为集合 A_n 的 T 变换函数? 说明理由;
- (3) 若 $a_i < a_j$ $(i, j \in \mathbb{N}^*, 1 \le i < j \le n)$, 则 $\frac{a_j}{a_i} \in A_n$, 试问是否存在函数 f(x), 使得集合 A_n 是 $D = [a_1, a_n]$ 的T子集? 若存在,求f(x)的解析式;若不存在,说明理由.