第一章 振动

简谐振动 1.1

胡克定律
$$a = \frac{F}{m} = -\frac{k}{\underline{m}}x = -\underline{\omega^2}x$$

可由胡克定律求弹簧劲度系数 k

周期
$$T = \frac{2\pi}{\omega \text{ (角频率)}}$$

頻率
$$\nu = \frac{1}{T}$$

简谐振动方程
$$x = Acos(\omega t + \varphi)$$
 周期 $T = \frac{2\pi}{\omega \text{ (} 角频率)}$ 频率 $\nu = \frac{1}{T}$ 相位 $\varphi = \omega t + \varphi_0 \text{ (} 初相位)$ 总能量 $E = \frac{1}{2}m\omega^2A^2$

同方向同频率简谐振动的合成 1.1.1

旋转矢量图

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2cos(\varphi_2 - \varphi_1)}$$
$$tan\varphi = \frac{A_1sin\varphi_1 + A_2sin\varphi_2}{A_1cos\varphi_1 + A_2cos\varphi_2}$$

第二章 波动

平面简谐波波动方程 $y = Acos \ \omega (t - \frac{x}{u})$ 角波速 $k = \frac{2\pi}{\lambda}$ 相干波 频率相同, 振动方向相同, 相位差恒定的两列波

2.1 多普勒效应

观察者面向波源以 v_0 运动 $\nu'=\dfrac{u+v_2}{\dfrac{u}{u}} \nu$ 波源面向观察者以 v_s 运动 $\nu'=\dfrac{\dfrac{u}{u}}{u-v_s} \nu$

不要在波动方程图上看相位

第三章 光学

制造相干波: 振幅分割法, 波阵面分隔法

折射率 n 光从真空中射入其他介质降速程度 $\nu = \frac{c}{n}$

光程 nL, $L = k\lambda$

光程差 $\Delta = \frac{\Delta \varphi}{2\pi} \times \lambda$

半波损失 光从**光速大**射向**光速小**时产生的**折射光**损失半个波长, **劳埃德镜** 发现

第三章 光学

3.1 干涉

3.1.1 杨氏双缝干涉

d' 双缝到屏幕的距离, d 双缝距离, d' >> d

明条纹位置 $x = \pm k \frac{d'}{d} \lambda$ 暗条纹位置 $x = \pm (2k+1) \frac{d'}{d} \lambda$

3.1 干涉 7

3.1.3 薄膜干涉

$$AB$$
 距离 $d\sqrt{n_2^2-n_1^2sin^2~i}$ 折射率与角度关系 $\frac{sin~i}{sin~r}=\frac{n_2}{n_1}$

利用降低反射光增加透射光 (能量守恒)

注意双倍举例!

3.1.4 劈尖

两条明纹厚度差 $\frac{\lambda}{2}$

计算条纹数时别忘了第 0 个 (P115 例 1 后一页)

3.1.5 牛顿环

(带半波损失)

明环
$$r=\sqrt{(k-\frac{1}{2})R\lambda}, r\in 1,2,...$$
 暗环 $r=\sqrt{kR\lambda}, r\in 0,1,2,...$

3.2 衍射

波在遇到比尺寸波长大的不多的障碍物时就不遵循直线传播

3.2.1 菲涅耳衍射

3.2 衍射 9

3.2.2 夫琅禾费衍射

Theta 偏折角度

b 缝宽

暗纹 $bsin\ \Theta = \pm 2k\frac{\lambda}{2}, k\in 1,2,...$

明纹 $bsin\ \Theta = \pm (2k+1)\frac{\lambda}{2}, k \in {0,1,2,...}$

暗纹间距 $\Delta x = \frac{\lambda f}{b}$

中央明纹 $\frac{2\lambda f}{b}$

3.2.3 衍射光栅

b 缝距

第三章 光学 10

b' 缝宽

明纹 $sin \theta = \frac{k\lambda}{b+b'}$ 缺级 $\frac{b+b'}{b}$ 级

第四章 气体动理论

理想气体 温度不太低, 压强不太大 平衡态 气体的物态产量不随时间变化 理想气体物态方程 $pV = \nu RT$, $R = N_A k$, 玻耳兹曼常数 $k = 1.38 \times 10^{-23} J \cdot K^{-1}$ 分子自由度 i

第五章 热力学基础

热力学第一定律 $Q = \Delta E + W$, Q: 系统从外界吸收的能量, E: 系统内能,

W: 系统对外界做功

 $V_1 o V_2$ 系统对外界做功 $W = \int_{V_1}^{V_2} p dV$

$$\Delta E = \nu C_V \Delta T$$

5.1 等容过程

摩尔定容热容 $C_{V,m} = \frac{i}{2}R$

$$\Delta Q = \Delta E = \nu C_V \Delta T$$

5.2 等压过程

摩尔定压热容 $C_{p,m} = (\frac{i}{2} + 1)R$

$$\Delta Q = \nu C_p \Delta T$$

5.3 等温过程

$$pV = \nu RT \Rightarrow Q_T = W_T = \nu RT \ln \frac{V_2}{V_1} = \nu RT \ln \frac{p_1}{p_2}$$

5.4 绝热过程

- pV^{γ} 为常量
- TV^{γ-1} 为常量
- $p^{\gamma-1}T^{-\gamma}$ 为常量 泊松比: $\gamma = \frac{i+2}{i}$

5.5 热机和制冷剂

热机 p-V 正循环, 热效率 $\eta=\dfrac{W}{Q_1}=\dfrac{Q_1-Q_2}{Q_1},\,Q_1$ 为吸热量, Q_2 为放热量 制冷机 p-V 逆循环, 制冷系数 $e=\dfrac{Q_2}{W}=\dfrac{Q_2}{Q_1-Q_2},\,Q_2$ 为吸热量, Q_1 为放 热量

5.6 卡诺循环

两个等温过程,两个绝缘过程

卡诺热机效率 $\eta = 1 - \frac{T_2}{T_1}$ 卡诺制冷机制冷效率 $e^{\frac{T_1}{T_1-T_2}}$

索引

波面, 3

波前, <mark>3</mark>

波线, <mark>3</mark>

多普勒效应, 4

胡克定律, 1

简谐振动方程,1

频率, 1

相位, 1

周期, **1**

总能量, 1