

NOT ESTIMATES ARE CAUSAL

The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients @

Daniel Westreich ™, Sander Greenland Author Notes

American Journal of Epidemiology, Volume 177, Issue 4, 15 February 2013, Pages 292–298,

https://doi.org/10.1093/aje/kws412

Published: 30 January 2013 Article history ▼

PDF ■ Split View

66 Cite

Permissions

Share ▼

Abstract

It is common to present multiple adjusted effect estimates from a single model in a single table. For example, a table might show odds ratios for one or more exposures and also for several confounders from a single logistic regression. This can lead to mistaken interpretations of these estimates. We use causal diagrams to display the sources of the problems. Presentation of exposure and confounder effect estimates from a single model may lead to several interpretative difficulties, inviting confusion of direct-effect estimates with total-effect estimates for covariates in the model. These effect estimates may also be confounded even though the effect estimate for the main exposure is not confounded. Interpretation of these effect estimates is further complicated by heterogeneity (variation, modification) of the exposure effect measure across covariate levels. We offer suggestions to limit potential misunderstandings when multiple effect estimates are presented, including precise distinction between total and direct effect measures from a single model, and use of multiple models tailored to yield total-effect estimates for covariates.

Westreich, D. & Greenland, S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am. J. Epidemiol. 177, 292–298 (2013)

Characteristic	(N = 679)	Placebo (N = 679)	Total (N = 1358)
Age			
Median (IQR) — yr	49 (39-57)	49 (37-56)	49 (38–57)
Distribution — no. (%)			
≤50 yr	359 (52.9)	372 (54.8)	731 (53.8)
>50 yr	320 (47.1)	307 (45.2)	627 (46.2)
Female sex — no. (%)	383 (56.4)	408 (60.1)	791 (58.2)
Race — no. (%)†			
Mixed race	648 (95.4)	645 (95.0)	1293 (95.2)
White	6 (0.9)	6 (0.9)	12 (0.9)
Black	7 (1.0)	5 (0.7)	12 (0.9)
Other	1 (0.1)	0	1 (0.1)
Unknown	17 (2.5)	23 (3.4)	40 (2.9)
Body-mass index — no. (%)			
<30	347 (51.1)	336 (49.5)	683 (50.3)
≥30	332 (48.9)	343 (50.5)	675 (49.7)
Time since onset of symptoms — no. (%)			
0-3 days	302 (44.5)	295 (43.4)	597 (44.0)
4–7 days	377 (55.5)	384 (56.6)	761 (56.0)
Risk factors — no. (%)			
Chronic cardiac disease	14 (2.1)	10 (1.5)	24 (1.8)
Uncontrolled hypertension	55 (8.1)	59 (8.7)	114 (8.4)
Chronic pulmonary disease	18 (2.7)	23 (3.4)	41 (3.0)
Asthma	54 (8.0)	60 (8.8)	114 (8.4)
Chronic kidney disease	2 (0.3)	5 (0.7)	7 (0.5)
Type 1 diabetes mellitus	3 (0.4)	9 (1.3)	12 (0.9)
Type 2 diabetes mellitus	79 (12)	89 (13)	168 (12)
Autoimmune disease	2 (0.3)	2 (0.3)	4 (0.3)
Any other risk factor or coexisting condition	22 (3.2)	19 (2.8)	41 (3.0)

range.

† Race was reported by the patient.

	General Linear Model				Ordinary Least Squares	
Independent variable	df	MS	F	p	β^a	SE
Age	1	44.7	1.8	.175	04	.024
Gender (male)	1	294.7	12.1	.001	.10	.391
Education	1	35.2	1.4	.229	.04	.052
Financial strain	1	687.9	28.3	.000	.14	.206
Volunteer work	1	95.9	3.9	.047	.05	.409
Social support	1	95.6	3.9	.048	.05	.021
Religious participation	1	264.4	10.9	.001	09	.168
Cognitive deficit	1	202.1	8.3	.004	.08	.074
Stressful life events	1	591.3	24.3	.000	13	.082
Health status	1	1145.1	47.1	.000	21	.103
Daily activity limitations	1	1508.2	62.1	.000	24	.045
Vision	3	66.5	2.74	.021	11	.175
Hearing	3	2.2	1.0	.965	04	.169
Vision × Hearing	9	12.1	0.5	.876	.01	.160
Corrected model	26	577.9	23.8	.000		
R ² (adjusted)					.376	
^a Standardized regression	on coe	efficients.				

Standardized regression coefficients.

The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients @

Daniel Westreich ™, Sander Greenland Author Notes

American Journal of Epidemiology, Volume 177, Issue 4, 15 February 2013, Pages 292–298,

https://doi.org/10.1093/aje/kws412

Published: 30 January 2013 Article history ▼

PDF ■ Split View

66 Cite

Permissions

Share ▼

Abstract

It is common to present multiple adjusted effect estimates from a single model in a single table. For example, a table might show odds ratios for one or more exposures and also for several confounders from a single logistic regression. This can lead to mistaken interpretations of these estimates. We use causal diagrams to display the sources of the problems. Presentation of exposure and confounder effect estimates from a single model may lead to several interpretative difficulties, inviting confusion of direct-effect estimates with total-effect estimates for covariates in the model. These effect estimates may also be confounded even though the effect estimate for the main exposure is not confounded. Interpretation of these effect estimates is further complicated by heterogeneity (variation, modification) of the exposure effect measure across covariate levels. We offer suggestions to limit potential misunderstandings when multiple effect estimates are presented, including precise distinction between total and direct effect measures from a single model, and use of multiple models tailored to yield total-effect estimates for covariates.

NOT ALL ESTIMATES ARE CAUSAL

The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients @

American Journal of Epidemiology, Volume 177, Issue 4, 15 February 2013, Pages 292–298, https://doi.org/10.1093/aje/kws412

Published: 30 January 2013 Article history ▼

■ Split View 66 Cite Permissions < Share ▼

Abstract

It is common to present multiple adjusted effect estimates from a single model in a single table. For example, a table might show odds ratios for one or more exposures and also for several confounders from a single logistic regression. This can lead to mistaken interpretations of these estimates. We use causal diagrams to display the sources of the problems. Presentation of exposure and confounder effect estimates from a single model may lead to several interpretative difficulties, inviting confusion of direct-effect estimates with total-effect estimates for covariates in the model. These effect estimates may also be confounded even though the effect estimate for the main exposure is not confounded. Interpretation of these effect estimates is further complicated by heterogeneity (variation, modification) of the exposure effect measure across covariate levels. We offer suggestions to limit potential misunderstandings when multiple effect estimates are presented, including precise distinction between total and direct effect measures from a single model, and use of multiple models tailored to yield total-effect estimates for covariates.

	General Linear Model			odel	Ordinary Least Squares	
Independent variable	df	MS	F	p	β^a	SÈ
Age	1	44.7	1.8	.175	04	.024
Gender (male)	1	294.7	12.1	.001	.10	.391
Education	1	35.2	1.4	.229	.04	.052
Financial strain	1	687.9	28.3	.000	.14	.206
Volunteer work	1	95.9	3.9	.047	.05	.409
Social support	1	95.6	3.9	.048	.05	.021
Religious participation	1	264.4	10.9	.001	09	.168
Cognitive deficit	1	202.1	8.3	.004	.08	.074
Stressful life events	1	591.3	24.3	.000	13	.082
Health status	1	1145.1	47.1	.000	21	.103
Daily activity limitations	1	1508.2	62.1	.000	24	.045
Vision	3	66.5	2.74	.021	11	.175
Hearing	3	2.2	1.0	.965	04	.169
Vision × Hearing	9	12.1	0.5	.876	.01	.160
Corrected model	26	577.9	23.8	.000		
R ² (adjusted)		.376				

^aStandardized regression coefficients.

HIV AND STROKE

