Symulacje komputerowe w fizyce: Fraktale

Jakub Tworzydło

Instytut Fizyki Teoretycznej

29 i 30/11/2022 Pasteura, Warszawa

Geometria fraktali

2 Fraktale naturalne (fizyczne)

Geometria fraktali

Praktale naturalne (fizyczne)

Geometria fraktali

Praktale naturalne (fizyczne)

Geometria fraktali

2 Fraktale naturalne (fizyczne)

Pierwszy przykład

- Weierstrass podał w 1872r przykład "patologicznej" funkcji
- łac. fractus złamany, ułamkowy

Konstrukcja: krzywa Kocha

Uproszczona recepta: obiekt geometryczny konstruowany rekurencyjnie z prostego elementu (Koch 1904).

Wymiar Euklidesowy

- zmniejsz jednostkowy obiekt w stosunku 1/p
- N liczba samo-podobnych obiektów pokrywających oryginał
- obliczamy $N = p^D$ czyli $D = \log N / \log p$

Ułamkowy (uogólniony) wymiar

samo-podobieństwo krzywej Kocha:

dla
$$N=4$$
, $1/p=1/3$ mamy $N=p^D\Rightarrow D=\log 4/\log 3\approx 1.26$

Wymiar samo-podobieństwa

Trójkąt Sierpińskiego ("kanoniczny fraktal" 1915):

$$N = p^D \text{ dla } N = 3, p = 2 \Rightarrow D = \log_2 3 \approx 1.585$$

Więcej przykładów figur samo-podobnych

gabka Mengera

dywan Sierpińskiego (ciasteczka)

fraktal oktaedryczny

drzewo Pitagorasa

Więcej przykładów figur samo-podobnych

gąbka Mengera $\log 20/\log 3 \approx 2.73$

dywan Sierpińskiego (ciasteczka) $\log 8/\log 3 \approx 1.89$

fraktal oktaedryczny $\log 6 / \log 2 \approx 2.58$

drzewo Pitagorasa $\log 2/\log(2/\sqrt{2}) = 2$

Geometria fraktali

2 Fraktale naturalne (fizyczne)

Naturalne samo-podobieństwo

How Long Is the Coast of Britain? B. Mandelbrot Science 1967

Naturalne samo-podobieństwo

How Long Is the Coast of Britain? B. Mandelbrot Science 1967

- użyj linijki długości s
- wykreśl długość L_{tot} w funkcji s w skali log-log
- skoro $L \propto (1/s)^{D_f-1}$ to $\log L \propto -(D_f-1)\log(s)$

Wielka Brytania $D_f = 1.24$, Afryka Południowa $D_f = 1.04$, Norwegia $D_f = 1.52$

Wymiar pudełkowy

Algorytm

- podziel obraz rozmiaru $L \times L$ na $p \times p$ komórek p = 2, 4, 8, ...
- wykonaj pętlę po punktach należących do badanego obiektu: przypisz wartość TRUE komórkom, które zawierają punkt

Fraktal naturalny

Algorytm

- podziel obraz rozmiaru $L \times L$ na $p \times p$ komórek p = 2, 4, 8, ...
- wykonaj pętlę po punktach należących do badanego obiektu: przypisz wartość TRUE komórkom, które zawierają punkt
- oblicz:
 N(p) liczbę wypełnionych komórek
- wtedy $D_f \approx \frac{\log N(p)}{\log p}$ dla $p \gg 1$
- wykreśl N(p) w funkcji p w skali log-log: dopasuj prostą, nachylenie wynosi D_f
- ustal zakres skalowania

Fraktal naturalny

Algorytm

- podziel obraz rozmiaru $L \times L$ na $p \times p$ komórek p = 2, 4, 8, ...
- wykonaj pętlę po punktach należących do badanego obiektu: przypisz wartość TRUE komórkom, które zawierają punkt
- oblicz:
 N(p) liczbę wypełnionych komórek
- wtedy $D_f \approx \frac{\log N(p)}{\log p}$ dla $p \gg 1$
- wykreśl N(p) w funkcji p w skali log-log: dopasuj prostą, nachylenie wynosi D_f
- ustal zakres skalowania

Wskazówki praktyczne: * przynajmniej 2-dekady, * testowanie przy pomocy syntetycznych fraktali (IFS), * rozważ zakres stosowalności górny i dolny

Fraktale naturalne: przykłady

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line." B. Mandelbrot "The Fractal Geometry of Nature", 1982.

Sieci rzeczne, fiordy

Góry: linie poziomic

Fraktale fizyczne: przykłady

Proces błądzenia przypadkowego w funkcji czasu (ruch Brawnowski): $D_f = 2 - \frac{1}{2}$

Polimer: błądzenie przypadkowe w 2D bez samoprzecięć $D_f \approx 1.55$

Fraktale fizyczne: przykłady

Diffusion limitted aggregation (DLA) (dyfuzyjnie ograniczona agregacja) $\rightarrow ...$ $D_t = 1.7$

Obrazy Lichtenberga: rozgałęzienia elektrycznego wyładowania $D_f = 2.5$ takie jak 3D DLA

Geometria fraktali

2 Fraktale naturalne (fizyczne)

Samopodobieństwo: efekt Droste (1904)

Ogólniejszy generator fraktali

Diagram przedstawiający konstrukcję Iterated Function System (IFS) dla dwu funkcji afinicznych

trzy iteracje i... figura graniczna.

IFS dla trójkąta Sierpińskiego

Trzy przekształcenia (wielokrotne kopiowanie): skalowanie $\alpha = 1/2$ i przesunięcia

... trójkąt Sierpińskiego zbiorem niezmienniczym.

Ogólne sformułowanie IFS

- zbiór przekształceń zwężających $\{f_i: X \to X | i = 1, \dots, n\}$
- obraz zbioru A dany operatorem Hutchinsona $\mathcal{H}(A) = \bigcup_{i=1}^{n} f_i(A)$
- Tw. Hutchinsona: istnieje zbiór niezmienniczy $\mathcal S$ taki, że $\mathcal S=\mathcal H(\mathcal S)$
- oraz $S = \lim_{m \to \infty} \mathcal{H}^m(A)$ dla zwartego A
- Tw. wymiar D jest dany przez rozwiązanie r-nia: $\sum_i \alpha_i^D = 1$ (dla czynników zwężających α_i)

Ogólne sformułowanie IFS

- zbiór przekształceń zwężających $\{f_i: X \to X | i = 1, \dots, n\}$
- obraz zbioru A dany operatorem Hutchinsona $\mathcal{H}(A) = \bigcup_{i=1}^{n} f_i(A)$
- Tw. Hutchinsona: istnieje zbiór niezmienniczy $\mathcal S$ taki, że $\mathcal S=\mathcal H(\mathcal S)$
- oraz $S = \lim_{m \to \infty} \mathcal{H}^m(A)$ dla zwartego A
- Tw. wymiar D jest dany przez rozwiązanie r-nia: $\sum_i \alpha_i^D = 1$ (dla czynników zwężających α_i)

IFS dla trójkąta Sierpińskiego:

$$\sum_{i} \alpha_{i}^{D} = 3(1/2)^{D} = 1$$
, co daje znane $D = \log(\frac{1}{3})/\log(\frac{1}{2}) = \log_{2} 3$

Ogólne sformułowanie IFS

- zbiór przekształceń zwężających $\{f_i: X \to X | i = 1, \dots, n\}$
- obraz zbioru *A* dany operatorem Hutchinsona $\mathcal{H}(A) = \bigcup_{i=1}^{n} f_i(A)$
- Tw. Hutchinsona: istnieje zbiór niezmienniczy $\mathcal S$ taki, że $\mathcal S=\mathcal H(\mathcal S)$
- oraz $S = \lim_{m \to \infty} \mathcal{H}^m(A)$ dla zwartego A
- Tw. wymiar D jest dany przez rozwiązanie r-nia: $\sum_i \alpha_i^D = 1$ (dla czynników zwężających α_i)

IFS dla trójkąta Sierpińskiego:

$$\sum_{i} \alpha_{i}^{D} = 3(1/2)^{D} = 1$$
, co daje znane $D = \log(\frac{1}{3})/\log(\frac{1}{2}) = \log_{2} 3$

metoda ruletki:

weź dowolny punkt startowy, wykonuj przekształcenie i-te z prawdopodobieństwem p_i , zaznacz trajektorię