A Quick Glance on Multiple Kernel Learning

Marius Kloft

Multiple Views / Kernels

(Lanckriet, 2004)

How to combine the views?

Weightings.

Computation of Weights?

- State of the art (Bach, 2008)
 - Sparse weights
 - Kernels / views are completely discarded
 - But why discard information?

From Vision to Reality?

- State of the art: sparse method
 - empirically ineffective

(Gehler et al., Noble et al., Shawe-Taylor et al., NIPS 2008, Cortes et al., ICML 2009)

New methodology

established as a standard

(K., 2011,2012,2013; K. et al., 2009a/b, 2010, 2011, 2012, 2013)

Methodology

(K. et al., JMLR 2011)

Computation of weights?

- Model $f_{\boldsymbol{w},\boldsymbol{\theta}}(x) = \langle \boldsymbol{w}, \phi_{k_{\boldsymbol{\theta}}(x)} \rangle$
 - Kernel $k_{\theta} = \theta_1 k_1 + \cdots + \theta_M k_M$
- Mathematical program

$$\inf_{\boldsymbol{w},\boldsymbol{\theta}} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i=1}^{n} L(f_{\boldsymbol{w},\boldsymbol{\theta}}(x_{i}), y_{i})$$
s.t. $\|\boldsymbol{\theta}\|_{\psi} \leq 1$, $\boldsymbol{\theta} \geq 0$

Optimization over weights

Convex problem.

Generalized formulation

- ${\scriptscriptstyle extstyle \hspace{-0.05cm}\text{\tiny \circ}}$ arbitrary loss L
- arbitrary norms $\|\cdot\|_{\psi}$
 - e.g. ℓ_p -norms:

$$\|\boldsymbol{\theta}\|_{p} = \left(\sum_{m=1}^{M} |\theta|^{p}\right)^{\frac{1}{p}}, \ p > 1$$

1-norm leads to sparsity:

Theoretical Analysis

Theoretical foundations

- Active research topic
 - NIPS workshop 2010
- We show:
 - Theorem (Kloft & Blanchard).
 The local Rademacher
 complexity of MKL is bounded by:

Corollaries (Learning Bounds)

- Upper bound with rate $O(Mn^{-1})$
 - best known rate: $O(\sqrt{Mn^{-1}})$ (Cortes et al., ICML 2010)
 - Generally n >> M
 - for $n=100\,000\,,\ M=10\,,$ improvement of two orders of magnitude

$$R_r(H_p) \le \min_{t \in [p,2]} \sqrt{\frac{16}{n} \left\| \left(\sum_{j=1}^{\infty} \min \left(r M^{1-\frac{2}{t^*}}, ceD^2 t^{*2} \lambda_j^{(m)} \right) \right)_{m=1}^M \right\|_{\frac{t^*}{2}}} + \frac{\sqrt{BeDM^{\frac{1}{t^*}}} t^*}{n}$$

(Kloft & Blanchard, NIPS 2011, JMLR 2012)

Optimization

Algorithms

(Kloft et al., JMLR 2011)

- 1. Newton method
- sequential, quadratically constrained programming with level set projections
- 3. block-coordinate descent alg.
 - · Alternate

(Sketch)

- solve (P) w.r.t. w
- solve (P) w.r.t. θ :

$$heta_m^* = rac{\|oldsymbol{w}_m\|^{rac{2}{p+1}}}{\sqrt[p]{\sum_i \|oldsymbol{w}_i\|^{rac{2p}{p+1}}}}$$

Until convergence

(proved)

Implementation

In C++ (SHOGUN Toolbox)

Runtime:

~ 1-2 orders of magnitude faster

analytical

Application Domain: Computer Vision

Visual object recognition

 Aim: annotation of visual media (e.g., images)

aeroplane

bicycle

bird

- Motivation:
 - content-based image retrieval

Application Domain: Computer Vision

Visual object recognition

- Aim: annotation of visual media (e.g., images)
- Motivation:
 - content-based image retrieval

Multiple kernels

- based on
 - Color histograms
 - shapes (gradients)

local features (SIFT words)

spatial features

Application Domain: Computer Vision

Empirical Analysis

- PASCAL VOC'08 challenge data
- Experiments using SHOGUN

Winner: ImageCLEF 2011
Photo Annotation challenge!

Application Domain: Genetics

(K. et al., NIPS 2009, JMLR 2011)

Detection of

transcription start sites:

by means of kernels based on:

- sequence alignments
- distribution of nukleotides
 - · downstream, upstream
- folding properties
 - binding energies and angles

Empirical analysis (SHOGUN)

detection accuracy (AUC):

- higher accuracies than sparse MKL and ARTS
 - ARTS winner of international comparison of 19 models

(Abeel et al., 2009)

Conclusion:

Non-sparse Multiple Kernel Learning

Thank you for your attention.

I will be pleased to answer any additional questions.

References

- Abeel, Van de Peer, Saeys (2009). Toward a gold standard for promoter prediction evaluation.
 Bioinformatics.
- Bach (2008). Consistency of the Group Lasso and Multiple Kernel Learning. Journal of Machine Learning Research (JMLR).
- Kloft, Brefeld, Laskov, and Sonnenburg (2008). Non-sparse Multiple Kernel Learning. NIPS Workshop on Kernel Learning.
- Kloft, Brefeld, Sonnenburg, Laskov, Müller, and Zien (2009). Efficient and Accurate L_p-norm Multiple Kernel Learning. Advances in Neural Information Processing Systems (NIPS 2009).
- Kloft, Rückert, and Bartlett (2010). A Unifying View of Multiple Kernel Learning. ECML.
- Kloft, Blanchard (2011). The Local Rademacher Complexity of Lp-Norm Multiple Kernel Learning.
 Advances in Neural Information Processing Systems (NIPS 2011).
- Kloft, Brefeld, Sonnenburg, and Zien (2011). Lp-Norm Multiple Kernel Learning. Journal of Machine Learning Research (JMLR), 12(Mar):953-997.
- Kloft and Blanchard (2012). On the Convergence Rate of Lp-norm Multiple Kernel Learning. Journal of Machine Learning Research (JMLR), 13(Aug):2465-2502.
- Lanckriet, Cristianini, Bartlett, El Ghaoui, Jordan (2004). Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research (JMLR).