UNIVERSITE CADDI AYYAD FACULTE DES SCIENCES SEMLALIA INFORMATIQUE LPI

INTELLIGENCE ARTIFICIELLE

Considérez la carte suivante. Le but est de trouver le chemin le plus court de A vers I.

Le coût de chaque connexion est indiqué. Deux heuristiques h_1 et h_2 sont données comme suit :

Noeud	A	В	С	D	Е	F	G	Н	I
h_1	10	5	5	10	10	3	3	3	0
h_2	10	2	8	11	9	6	3	4	0
h^*	12	5	7	12	10	6	3	4	0
h_3	10	5	8	11	10	6	3	4	0

1. Est-ce que h_1 et h_2 sont admissibles? Justifiez.

On calcule d'abord h^* , le vrai côut (donné dans le tableau). On vérifie qu'on a toujours $h_1(n) \le h^*(n)$ pour tout n mais $h_2(C) > h^*(C)$, donc h_1 admissible mais pas h_2

2. Est-ce que h_1 domine h_2 ou h_2 domine h_1 ? Justifiez.

Ni l'un ni l'autre. D'après le cours, on ne peut parler de domination que si les deux heuristiques sont adminissibles. Ou alors, on a $h_1(B) > h_2(B)$ et $h_2(C) > h_1(C)$.

- 3. Est-ce que $h_3 = \max(h_1, h_2)$ est admissible ? Non. $h_3(C) > h^*(C)$
- 4. Appliquez la recherche gloutonne en utilisant h_2 .

On peut donner un arbre ou la liste des noeuds. Ici:

Et on s'arrête avec I et le chemin A,C,B,I

5. Appliquez la recherche A* en utilisant h_1 . Donnez la suite des noeuds développés. On indique pour chaque noeud sa valeur f = g + h:

```
(A,10=0+10)
(C,10=5+5)(D,15=5+10)
(F,10=5+2+3)(H,11=5+3+3)(B,13=5+3+5)(D,15)(A,20=5+5+10)(D,21=5+6+10)
(H,11)(G,13=5+2+3+3)(B,13)(C,14=5+2+2+5)(B,15=5+2+3+5)(D,15)(A,20)(D,21)
(I,12=5+3+4)(G,13)(B,13)(C,14)(B,15)(D,15)(C,16=5+3+3+5)(A,20)(D,21)
```

Et on s'arrête avec I et le chemin A,C,H,I.

6. Appliquez la recherche A* en utilisant h₂. Donnez la suite des noeuds développés.
On pourrait dire qu'on ne peut pas faire A* puisque h₂ n'est pas admissible (car A* est définie avec des heuristiques adminissible), ou alors on donne:

```
 \begin{array}{l} (\texttt{A}, \texttt{10=0+10}) \\ (\texttt{C}, \texttt{13=5+8}) \, (\texttt{D}, \texttt{16=5+11}) \\ (\texttt{B}, \texttt{10=5+3+2}) \, (\texttt{H}, \texttt{12=5+3+4}) \, , (\texttt{F}, \texttt{13=5+2+6}) \, (\texttt{D}, \texttt{16}) \, (\texttt{A}, \texttt{20=5+5+10}) \, (\texttt{D}, \texttt{22=5+6+11}) \\ (\texttt{H}, \texttt{12}) \, , (\texttt{I}, \texttt{13=5+3+5+0}) \, (\texttt{F}, \texttt{13}) \, (\texttt{G}, \texttt{15=5+3+4+3}) \, (\texttt{D}, \texttt{16}) \, (\texttt{F}, \texttt{17=5+3+3+6}) \, (\texttt{C}, \texttt{19=5+3+3+8}) \, (\texttt{A}, \texttt{20}) \, (\texttt{E}, \texttt{22=5+3+5+9}) \\ (\texttt{I}, \texttt{12=5+3+4}) \, , (\texttt{I}, \texttt{13}) \, (\texttt{F}, \texttt{13}) \, (\texttt{G}, \texttt{15}) \, (\texttt{C}, \texttt{16=5+3+3+5}) \, (\texttt{D}, \texttt{16}) \, (\texttt{F}, \texttt{17}) \, (\texttt{C}, \texttt{19}) \, (\texttt{A}, \texttt{20}) \, (\texttt{E}, \texttt{22}) \, (\texttt{D}, \texttt{22}) \\ \end{array}
```

Et on s'arrête avec I et le chemin A,C,H,I.

7. Appliquez la recherche A* en utilisant h₃. Donnez la suite des noeuds développés.
On pourrait dire qu'on ne peut pas faire A* puisque h₃ n'est pas admissible (car A* est définie avec des heuristiques adminissible), ou alors on donne:

```
(A,10=0+10)
(C,13=5+8)(D,16=5+11)
(H,12=5+3+4)(F,13=5+2+6)(B,13=5+3+5)(D,16)(A,20=5+5+10)(D,21=5+6+10)
(I,12=5+3+4+0)(F,13)(B,13)(D,16)(C,19=5+3+3+8)(A,20)(D,21)
```

Et on s'arrête avec I et le chemin A,C,H,I.

- 8. Montrez que pour deux heuristiques admissibles h_1 et h_2 , $h_3 = max(h_1, h_2)$ est admissible. h_1 et h_2 admissible implique pour tout noeud n $h_1(n) \le h^*(n)$ et $h_2(n) \le h^*(n)$. Donc pour tout noeud n on a $max(h_1(n), h_2(n)) \le h^*(n)$ donc $max(h_1, h_2)$ est admissible.
- Si vous avez le choix entre trois heuristiques admissibles h₁, h₂ et h₃ = max(h₁, h₂) laquelle choisissez-vous?
 Justifiez brièvement.

 h_3 puisque elle estime le mieux la vraie distance h^* .