Probabilité d'un événement dénombrable

Exemple #4

Probabilité d'un événement dénombrable

• Soit $A \in \mathcal{A}$ un événement dénombrable. Si la tribu contient tous les singletons $\{\omega\} \subset A$, alors on a

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$$

• En particulier, si Ω est dénombrable (ou fini), la probabilité est entièrement déterminée par la probabilité des singletons. Leur somme totale doit faire 1.

$$\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \mathbb{P}(\Omega) = 1$$

Propriétés

Soient $A, B \subset \Omega$ deux événements.

1.
$$\mathbb{P}(\Omega) = 1$$
, $\mathbb{P}(\emptyset) = 0$

$$2. \ \mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$$

3. Si
$$A \subset B$$
, alors $\mathbb{P}(A) \leq \mathbb{P}(B)$

4.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$