The Math Behind Neural Networks

David Brandfonbrener

Berkeley College Commonplace Society

December 5, 2017

Overview

Background

Connection to research

Table of Contents

Background

Connection to research

Model

- X inputs, Y outputs
- $f_N: X \to Y$
- $f_N(\vec{x}) = f_3(f_2(f_1(\vec{x})))$

Model (cont.)

• $f_i: \mathbb{R}^d \to \mathbb{R}^k$

Model (cont.)

- $f_i: \mathbb{R}^d \to \mathbb{R}^k$ $W_i \in \mathbb{R}^{d \times k}$

Model (cont.)

- $f_i: \mathbb{R}^d \to \mathbb{R}^k$
- $W_i \in \mathbb{R}^{d \times k}$
- \bullet σ activation function
- $f_i(\vec{x}) = \sigma(W_i \cdot \vec{x})$

Loss Function

- X, Y dataset containing x_i, y_i
- W set of all W;
- $L(W) = \sum_{i} (y_i f_N(x_i))^2$

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Table of Contents

Background

Connection to research

Terminology

- Depth: number of layers
- Width: Number of units (neurons) per layer

Approximation Results

Universal Approximation

Any function can be approximated to arbitrary precision by a neural network with one hidden layer (depth 2).

Approximation Results

Universal Approximation

Any function can be approximated to arbitrary precision by a neural network with one hidden layer (depth 2).

Exponential Depth Efficiency

There exists a deep network (width 2, depth k) that cannot be well approximated by a shallow network with width 2^k

Approximation Questions

- How do width and depth impact approximation capabilities?
- Is a deeper network necessarily more powerful?

Thank You!

