

Ayudantía 4 - Lógica Proposicional y de Predicados

6 de septiembre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

1. Meme del día

Me: When all unicorns learn to fly, I'll kill a man

(∀x f(x)) → Q(y) matrixe a un hambre

Regular people: Logicians:

todos los unicarnios

Este meme tiene dos instrucciones:

- 1. Explicar el meme.
- 2. Explicar por qué no es válido en lógica de predicados.

2. Satisfacibilidad y consecuencia lógica

Un conjunto de fórmulas proposicionales Σ es redundante si existe una fórmula $\alpha \in \Sigma$ tal que $\Sigma \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto Σ , es consecuencia lógica del conjunto resultante.

1. Demuestre que si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ y $\alpha \equiv \beta$, entonces Σ es redundante.

Decimos que Σ es redundante de a pares si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ tales que $\{\alpha\} \models \beta$. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

- 2. Si Σ es redundante de a pares, entonces es redundante
- 3. Si Σ es redundante, entonces es redundate de a pares

3. Resolución

- 1. Sea el conjunto de fórmulas $\Sigma = \{p \lor q \lor s, p \lor \neg q, \neg (p \lor q) \lor s\}$. Aplique resolución para demostrar que $\Sigma \models (r \to s)$.
- 2. Demuestre por resolución que $(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$.

4. Lógica de predicados

Considere el símbolo de predicado binario = que en toda interpretación se interpreta como igualdad de elementos. Además, considere el símbolo de predicado ternario S. Determine si las siguientes fórmulas son satisfacibles y demuestre su respuesta.

- 1. $\varphi_1 := \forall x \forall y \neg (x = y)$
- 2. $\varphi_2 := \forall x \exists y \exists z [\neg(x=y) \land (x=z \lor y=z)]$
- 3. $\varphi_3(x) := \forall y (S(x, y, y) \land S(x, x, y))$

2. Satisfacibilidad y consecuencia lógica

Un conjunto de fórmulas proposicionales Σ es redundante si existe una fórmula $\alpha \in \Sigma$ tal que $\Sigma \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto Σ , es consecuencia lógica del conjunto resultante.

1. Demuestre que si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ y $\alpha \equiv \beta$, entonces Σ es redundante.

Decimos que Σ es redundante de a pares si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ tales que $\{\alpha\} \models \beta$. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

- 2. Si Σ es redundante de a pares, entonces es redundante
- 3. Si Σ es redundante, entonces es redundate de a pares

P: existen $\alpha, \beta \in \Sigma$, tq $\alpha \neq \beta$, $\alpha \equiv \beta$ Q: Σ es redundante PD: $P \Rightarrow Q$ Supongamos P. Dimos trovienos Q.

Consideremos $\Sigma' = \Sigma \setminus \{\alpha\}$. Se hiene que $\beta \in \Sigma'$ Ademá's, toda valuación σ tal que $\sigma(\Sigma') = 1$ compleque $\sigma(\beta) = 1$. Como $\beta = \alpha$, $\sigma(\alpha)$. Con ello $\Sigma' \neq \alpha$ Concluímos que Σ es redundante.

2. Si Σ es redundante de a pares, entonces es redundante Q

PD: $P \Rightarrow Q$ Considerences $E' = E \setminus \{\beta\}$. Se hiene que $P \in E'$.

Admais, tada volvación $P = \{\alpha\} =$

3. Si Σ es redundante, entonces es redundate de a pares

Buscames Etal que a E E ta El Ea 3 to a y sin rembouga 7 7 a, p c E ta East p.

 $\Sigma = \{p, 7p, 9\}$ $\{p, 7p\} \neq 9$

1 $(\{p\} \models \neg p\}$ \times 2. $\{\neg p\} \models p$ \times 3. $\{p\} \models q$ \times $(p) = 1, <math>\Gamma(q) = 0$ 4. $\{q\} \models p$ \times amalog \in 5. $\{\neg p\} \models q$ \times amalog \in 6. $\{q\} \models \neg p$ \times amalog \in 6. $\{q\} \models \neg p$ \times amalog \in

Corclimes que E es redendante pero no redendante de a pon es.

3. Resolución

- 1. Sea el conjunto de fórmulas $\Sigma = \{p \lor q \lor s, p \lor \neg q, \neg (p \lor q) \lor s\}$. Aplique resolución para demostrar que $\Sigma \models (r \to s)$.
- 2. Demuestre por resolución que $(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$.

Teorema: EFP (>> E UZ743 os inconsistante

Aphicamos resolución

E = 4. 17

2. Demuestre por resolución que $(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$.

1. $\{Y\} \models Y. \hookrightarrow \{Y, \neg Y\}$ es inconsistente. 74 = 7(p,q) = 7p17g

 $\Psi = \left(p v \rightarrow p v q \right) \wedge \left(\gamma r v p \right) \wedge \left(p \right) \wedge \left(r v q \right) \wedge \left(\gamma r v q \right)$ $= (rvp) \wedge p \wedge (rvq) \wedge (\neg rvq)$

Sea E = { -rup, p, rug, rrug, rpvrq}

Par resolución, E es inconsistente, y: {4} \= 4. L

4. Lógica de predicados

Considere el símbolo de predicado binario = que en toda interpretación se interpreta como igualdad de elementos. Además, considere el símbolo de predicado ternario S. Determine si las siguientes fórmulas son satisfacibles y demuestre su respuesta.

1.
$$\varphi_1 := \forall x \forall y \neg (x = y)$$

2.
$$\varphi_2 := \forall x \exists y \exists z [\neg(x=y) \land (x=z \lor y=z)]$$

3.
$$\varphi_3(x) := \forall y (S(x, y, y) \land S(x, x, y))$$

$$T(Jom) = N$$

$$T(Jom) = \{1\}$$

1.
$$\varphi_1 := \forall x \forall y \neg (x = y)$$

No es sat parque les daminios tienen que sur no varies, y para todo a E I (dom), a = a.

2.
$$\varphi_2 := \forall x \exists y \exists z [\neg(x=y) \land (x=z \lor y=z)]$$

$$I(Jom) = N \qquad I \neq \varphi_2$$

3.
$$\varphi_3(x) := \forall y (S(x, y, y) \land S(x, x, y))$$

$$I(dom) = \{1\}$$
, $\overline{I}(5) = S(x, y, z) \leftarrow x = y = 7$
 T_{omemos} $(y, y) = \{1\}$ $(x, y, y) = \{1, 1, y\}$
Clarements el único valor que pouse temar y

us y=1: 43(1) su comple trivialmente.