Notebook

June 20, 2025

```
[]: # Import Libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.metrics import (accuracy_score, confusion_matrix,_
      ⇔classification_report,
                                 roc_auc_score, roc_curve, precision_recall_curve)
    from sklearn.preprocessing import StandardScaler, LabelEncoder
[]: # Load and Inspect Data
    df = pd.read_csv("student_depression_dataset.csv")
    print(df.head())
    print(df.info())
    print(df.describe(include='all'))
    print("\nMissing values per column:\n", df.isnull().sum())
       id Gender
                                  City Profession Academic Pressure \
                    Age
    0
        2
             Male 33.0 Visakhapatnam
                                          Student
                                                                 5.0
    1
       8 Female 24.0
                             Bangalore
                                          Student
                                                                 2.0
    2 26
             Male 31.0
                              Srinagar
                                          Student
                                                                 3.0
       30 Female 28.0
                              Varanasi
                                          Student
                                                                 3.0
    3
       32 Female 25.0
                                Jaipur
                                          Student
                                                                 4.0
       Work Pressure CGPA
                            Study Satisfaction | Satisfaction |
                 0.0 8.97
                                                             0.0
    0
                                           2.0
                 0.0 5.90
    1
                                           5.0
                                                             0.0
    2
                 0.0 7.03
                                           5.0
                                                             0.0
                 0.0 5.59
    3
                                           2.0
                                                             0.0
    4
                 0.0 8.13
                                           3.0
                                                             0.0
```

```
Sleep Duration Dietary Habits
                                        Degree \
           '5-6 hours'
0
                              Healthy
                                       B.Pharm
1
           '5-6 hours'
                             Moderate
                                           BSc
2
   'Less than 5 hours'
                                            BA
                              Healthy
           '7-8 hours'
3
                             Moderate
                                           BCA
4
           '5-6 hours'
                             Moderate
                                        M.Tech
 Have you ever had suicidal thoughts ? Work/Study Hours Financial Stress \
                                                      3.0
0
                                    Yes
                                                                        1.0
1
                                     No
                                                      3.0
                                                                        2.0
2
                                                      9.0
                                                                        1.0
                                     No
3
                                                      4.0
                                                                        5.0
                                    Yes
4
                                                      1.0
                                                                        1.0
                                    Yes
 Family History of Mental Illness
                                    Depression
0
                                             1
1
                               Yes
                                             0
2
                               Yes
                                             0
3
                               Yes
                                             1
4
                                No
                                             0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27901 entries, 0 to 27900
Data columns (total 18 columns):
    Column
                                            Non-Null Count Dtype
    _____
                                            -----
 0
                                            27901 non-null int64
     id
 1
    Gender
                                            27901 non-null object
 2
    Age
                                            27901 non-null float64
 3
    City
                                            27901 non-null
                                                            object
 4
    Profession
                                            27901 non-null object
 5
     Academic Pressure
                                            27901 non-null
                                                            float64
 6
    Work Pressure
                                            27901 non-null float64
 7
    CGPA
                                            27901 non-null float64
 8
    Study Satisfaction
                                            27901 non-null float64
 9
     Job Satisfaction
                                            27901 non-null float64
 10 Sleep Duration
                                            27901 non-null object
 11 Dietary Habits
                                            27901 non-null object
 12 Degree
                                            27901 non-null object
 13 Have you ever had suicidal thoughts?
                                            27901 non-null object
 14 Work/Study Hours
                                            27901 non-null float64
 15 Financial Stress
                                            27901 non-null object
 16 Family History of Mental Illness
                                            27901 non-null
                                                            object
 17 Depression
                                            27901 non-null int64
dtypes: float64(7), int64(2), object(9)
memory usage: 3.8+ MB
None
                   id Gender
                                       Age
                                              City Profession \
         27901.000000 27901 27901.000000
                                             27901
                                                        27901
```

count

unique	NaN	2	NaN	J 52	14	
top	NaN M	ale	NaN	I Kalyan	Student	
freq	NaN 15	547	NaN	I 1570	27870	
mean	70442.149421	NaN :	25.822300) NaN	NaN	
std	40641.175216	NaN	4.905687	7 NaN	NaN	
min	2.000000	NaN	18.000000) NaN	NaN	
25%	35039.000000	NaN :	21.000000) NaN	NaN	
50%	70684.000000	NaN :	25.000000) NaN	NaN	
75%	105818.000000	NaN :	30.000000) NaN	NaN	
max	140699.000000	NaN	59.000000) NaN	NaN	
	Academic Pressure	Work D	ressure		CGPA Study	Satisfaction \
count	27901.000000		.000000	27901.00	v	27901.000000
unique	27901.000000 NaN		NaN	21301.00	NaN	NaN
_	NaN		NaN		NaN	NaN
top freq	NaN		NaN		NaN	NaN
mean	3.141214		.000430	7 65	6104	2.943837
std	1.381465		.043992		0707	1.361148
min	0.000000		.000000	0.00		0.000000
25%	2.000000		.000000		0000	2.000000
50%	3.000000		.000000		0000	3.000000
75%	4.000000		.000000	8.92		4.000000
	5.00000		.000000	10.00		5.000000
max	5.00000	5	.000000	10.00	0000	5.00000
	Job Satisfaction	Sl	-		ary Habits	Degree \
count	27901.000000		27	7901	27901	27901
unique	NaN			5	4	28
top	NaN	'Less t	han 5 hou	ırs'	Unhealthy	'Class 12'
freq	NaN		8	3310	10317	6080
mean	0.000681			NaN	NaN	NaN
std	0.044394			NaN	NaN	NaN
min	0.000000			NaN	NaN	NaN
25%	0.000000			NaN	NaN	NaN
50%	0.000000			NaN	NaN	NaN
75%	0.000000			NaN	NaN	NaN
max	4.000000			NaN	NaN	NaN
	Have you ever had	suicidal	thoughts	s ? Work	/Study Hours	s \
count	·		279		27901.00000	
unique				2	Nal	N
top			Ŋ	les .	Nal	N
freq			176		Nal	
mean				VaN	7.156984	
std				laN	3.707642	
min				JaN	0.00000	
25%				laN	4.00000	
50%				JaN	8.00000	
75%				JaN	10.00000	

max NaN 12.000000

```
Financial Stress Family History of Mental Illness
                                                                 Depression
                   27901
                                                              27901.000000
count
                                                            2
                       6
unique
                                                                         NaN
                     5.0
                                                          No
                                                                         NaN
top
freq
                    6715
                                                       14398
                                                                         NaN
                                                                   0.585499
mean
                     NaN
                                                         NaN
std
                     NaN
                                                         NaN
                                                                   0.492645
                     NaN
                                                         NaN
                                                                   0.000000
min
25%
                     NaN
                                                         NaN
                                                                   0.000000
50%
                     NaN
                                                         NaN
                                                                   1.000000
75%
                                                         NaN
                                                                   1.000000
                     NaN
                     NaN
                                                         NaN
                                                                   1.000000
max
Missing values per column:
 id
                                             0
Gender
                                            0
Age
                                            0
                                            0
City
```

Profession 0 Academic Pressure 0 Work Pressure 0 CGPA 0 Study Satisfaction 0 Job Satisfaction 0 0 Sleep Duration 0 Dietary Habits 0 Degree Have you ever had suicidal thoughts ? 0 0 Work/Study Hours Financial Stress 0 Family History of Mental Illness 0 Depression 0 dtype: int64

```
target/Features Split & Basic Insights

target_col = 'Depression'
target = df[target_col]
features = df.drop([target_col], axis=1)
num_cols = features.select_dtypes(include=[np.number]).columns.tolist()

print("\n===== BASIC INSIGHTS =====")
print(f"Number of students: {df.shape[0]}")
print(f"Number of features: {df.shape[1]}")
print(f"Unique values in target column: {df[target_col].unique()}")
```

```
print("\nTarget value counts:\n", target.value_counts())
    ==== BASIC INSIGHTS =====
    Number of students: 27901
    Number of features: 18
    Unique values in target column: [1 0]
    Target value counts:
     Depression
         16336
         11565
    Name: count, dtype: int64
[5]: # Gender and other categorical breakdowns if present
     if 'Gender' in df.columns:
         print("\n===== Gender Breakdown =====\n", df['Gender'].value_counts())
         plt.figure(figsize=(5,3))
         sns.countplot(x='Gender', data=df, hue=target_col)
         plt.title('Depression by Gender')
         plt.show()
```

==== Gender Breakdown ===== Gender Male 15547 Female 12354

Name: count, dtype: int64


```
[6]: # Group means for key variables
     print("\n===== Mean values by Depression =====\n")
     print(df.groupby(target_col).mean(numeric_only=True))
    ==== Mean values by Depression =====
                          id
                                    Age Academic Pressure Work Pressure \
    Depression
    0
                70397.561089 27.142412
                                                  2.361608
                                                                 0.000605
                70473.715536 24.887733
                                                  3.693132
                                                                 0.000306
    1
                    CGPA Study Satisfaction Job Satisfaction Work/Study Hours
    Depression
                                                      0.000865
                7.617282
                                    3.215564
                                                                        6.237959
                7.683588
                                    2.751469
                                                      0.000551
    1
                                                                        7.807603
[7]: # Bar plot of average study hours (if present) by depression
     if 'Work/Study Hours' in df.columns:
        plt.figure(figsize=(6,4))
        sns.barplot(x=target_col, y='Work/Study Hours', data=df)
        plt.title('Average Work/Study Hours by Depression')
        plt.show()
```


1 EDA Visualizations

```
[8]: # Visualize target distribution
plt.figure(figsize=(6, 4))
sns.countplot(x=target_col, data=df)
plt.title('Distribution of Depression')
plt.xlabel('Depression')
plt.ylabel('Count')
plt.show()
```



```
[9]: # Histograms for numerical features
for col in num_cols:
    plt.figure(figsize=(6, 3))
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution: {col}')
    plt.show()
```



```
[10]: # Boxplots for outlier inspection
for col in num_cols:
    plt.figure(figsize=(6, 3))
    sns.boxplot(x=df[col])
    plt.title(f'Boxplot: {col}')
    plt.show()
```


Boxplot: Academic Pressure

Boxplot: Work Pressure

Boxplot: Job Satisfaction

Boxplot: Work/Study Hours


```
[11]: # Correlation heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(df[num_cols].corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


2 Data Cleaning & Preprocessing

```
print("\nAfter encoding, features shape:", features.shape)
      print("Sample after encoding:\n", features.head())
     After encoding, features shape: (27901, 17)
     Sample after encoding:
         id Gender
                      Age City Profession Academic Pressure Work Pressure CGPA
     \
         2
                 1 33.0
                                                                          0.0 8.97
     0
                                         12
                                                           5.0
                            51
     1
         8
                 0 24.0
                             5
                                         12
                                                           2.0
                                                                          0.0 5.90
                 1 31.0
                                                                          0.0 7.03
     2
        26
                            44
                                         12
                                                           3.0
     3
       30
                 0 28.0
                            49
                                         12
                                                           3.0
                                                                          0.0 5.59
     4
                 0 25.0
                                         12
                                                                          0.0 8.13
       32
                            18
                                                           4.0
        Study Satisfaction Job Satisfaction Sleep Duration Dietary Habits \
                       2.0
     0
                                          0.0
                       5.0
                                          0.0
                                                            0
                                                                            1
     1
     2
                       5.0
                                          0.0
                                                                            0
     3
                       2.0
                                          0.0
                                                            1
                                                                            1
     4
                       3.0
                                          0.0
                                                            0
                                                                            1
        Degree Have you ever had suicidal thoughts ? Work/Study Hours \
     0
             4
                                                     1
                                                                     3.0
                                                     0
                                                                     3.0
     1
            11
     2
             6
                                                     0
                                                                     9.0
     3
             8
                                                     1
                                                                     4.0
     4
            17
                                                     1
                                                                     1.0
        Financial Stress Family History of Mental Illness
     0
                       0
                                                          0
                                                          1
     1
                       1
     2
                       0
                                                          1
                       4
     3
                                                          1
     4
[13]: # Train/Test Split and Scaling
      scaler = StandardScaler()
      features_scaled = scaler.fit_transform(features)
      X_train, X_test, y_train, y_test = train_test_split(
          features_scaled, target, test_size=0.2, random_state=42, stratify=target
      print("Train class balance:\n", y_train.value_counts())
      print("Test class balance:\n", y_test.value_counts())
```

Train class balance:

```
Depression
1 13068
0 9252
Name: count, dtype: int64
Test class balance:
Depression
1 3268
0 2313
Name: count, dtype: int64
```

3 Modeling & Evaluation

```
[14]: # Logistic Regression
logreg = LogisticRegression(max_iter=1000)
logreg.fit(X_train, y_train)
y_pred_logreg = logreg.predict(X_test)
print("\nLogistic Regression Classification Report:\n",
classification_report(y_test, y_pred_logreg))
```

Logistic Regression Classification Report:

```
precision
                             recall f1-score
                                                 support
           0
                   0.82
                              0.79
                                        0.81
                                                   2313
           1
                   0.86
                              0.88
                                        0.87
                                                   3268
                                        0.84
                                                   5581
    accuracy
   macro avg
                   0.84
                              0.84
                                        0.84
                                                   5581
                                        0.84
weighted avg
                   0.84
                              0.84
                                                   5581
```

```
Decision Tree Best Params: {'max_depth': 5, 'min_samples_split': 2}

Decision Tree Classification Report:

precision recall f1-score support

0 0.80 0.76 0.78 2313
```

```
0.84
                                   0.86
                1
                                             0.85
                                                        3268
                                             0.82
                                                        5581
         accuracy
        macro avg
                         0.82
                                   0.81
                                             0.81
                                                        5581
     weighted avg
                         0.82
                                   0.82
                                             0.82
                                                        5581
[16]: # Random Forest with GridSearchCV
      rf_param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20],

¬'min_samples_split': [2, 5, 10]}
      rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), rf_param_grid,_
      rf_grid.fit(X_train, y_train)
      y_pred_rf = rf_grid.predict(X_test)
      print("\nRandom Forest Best Params:", rf_grid.best_params_)
      print("Random Forest Classification Report:\n", classification_report(y_test,__
       →y_pred_rf))
     Random Forest Best Params: { 'max depth': 20, 'min samples split': 10,
     'n_estimators': 200}
     Random Forest Classification Report:
                                  recall f1-score
                    precision
                                                     support
                0
                         0.82
                                   0.78
                                             0.80
                                                        2313
                1
                         0.85
                                   0.88
                                             0.86
                                                        3268
                                             0.84
                                                        5581
         accuracy
        macro avg
                         0.84
                                   0.83
                                             0.83
                                                        5581
     weighted avg
                         0.84
                                   0.84
                                             0.84
                                                        5581
[17]: # Gradient Boosting
      gb = GradientBoostingClassifier(random_state=42)
      gb.fit(X_train, y_train)
      y_pred_gb = gb.predict(X_test)
      print("\nGradient Boosting Classification Report:\n",__
       →classification_report(y_test, y_pred_gb))
     Gradient Boosting Classification Report:
                    precision
                                  recall f1-score
                                                     support
                0
                         0.83
                                   0.79
                                             0.81
                                                        2313
                1
                         0.86
                                   0.88
                                             0.87
                                                        3268
                                             0.85
                                                        5581
         accuracy
                        0.84
                                   0.84
                                             0.84
                                                        5581
        macro avg
```

weighted avg 0.85 0.85 0.85 5581

```
[18]: # ROC and Precision-Recall Curves
      plt.figure(figsize=(10, 8))
      for model, name in zip([logreg, dt_grid, rf_grid, gb],
                             ['Logistic Regression', 'Decision Tree', 'Random_
       ⇔Forest', 'Gradient Boosting']):
          y_pred_prob = model.predict_proba(X_test)[:, 1]
          fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
          auc = roc_auc_score(y_test, y_pred_prob)
          plt.plot(fpr, tpr, label=f'{name} (AUC = {auc:.2f})')
      plt.plot([0, 1], [0, 1], 'k--')
      plt.xlabel('False Positive Rate'); plt.ylabel('True Positive Rate')
      plt.title('ROC Curve Comparison')
      plt.legend(loc='lower right')
      plt.show()
      plt.figure(figsize=(10, 8))
      for model, name in zip([logreg, dt_grid, rf_grid, gb],
                             ['Logistic Regression', 'Decision Tree', 'Random_
       ⇔Forest', 'Gradient Boosting']):
          y_pred_prob = model.predict_proba(X_test)[:, 1]
          precision, recall, _ = precision_recall_curve(y_test, y_pred_prob)
          plt.plot(recall, precision, label=f'{name}')
      plt.xlabel('Recall'); plt.ylabel('Precision')
      plt.title('Precision-Recall Curve Comparison')
      plt.legend(loc='best')
      plt.show()
```



```
[19]: # 9. Feature Importance (Random Forest)

importance = rf_grid.best_estimator_.feature_importances_
indices = np.argsort(importance)[::-1]

plt.figure(figsize=(12, 8))

sns.barplot(x=importance[indices], y=features.columns[indices])

plt.title('Feature Importance from Random Forest Model')

plt.xlabel('Importance Score')

plt.ylabel('Features')

plt.show()
```



```
[20]: # 10. Confusion Matrices
     def plot_cm(cm, classes, title):
         plt.figure(figsize=(4,4))
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False,
                     xticklabels=classes, yticklabels=classes)
         plt.title(title)
         plt.xlabel('Predicted')
         plt.ylabel('True')
         plt.show()
     models = [logreg, dt_grid, rf_grid, gb]
     model_names = ['Logistic Regression', 'Decision Tree', 'Random Forest',
       preds = [y_pred_logreg, y_pred_dt, y_pred_rf, y_pred_gb]
     for name, model, pred in zip(model_names, models, preds):
         cm = confusion_matrix(y_test, pred)
         plot_cm(cm, classes=['No Depression', 'Depression'], title=f'{name}_
       ⇔Confusion Matrix')
```



```
[21]: # 11. Accuracy Summary
      print("\n===== FINAL MODEL COMPARISON (ACCURACY) =====")
      for name, pred in zip(model_names, preds):
          print(f"{name}: {accuracy_score(y_test, pred):.3f}")
     ==== FINAL MODEL COMPARISON (ACCURACY) =====
     Logistic Regression: 0.843
     Decision Tree: 0.820
     Random Forest: 0.838
     Gradient Boosting: 0.846
 []: # Reconstructing the dataframe
      X_train, X_test, y_train, y_test = train_test_split(
          features, target, test_size=0.2, random_state=42, stratify=target
      # Standardize (made sure to keep as DataFrame)
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      X_train_scaled = pd.DataFrame(scaler.fit_transform(X_train), columns=features.
       ⇔columns, index=X_train.index)
      X_test_scaled = pd.DataFrame(scaler.transform(X_test), columns=features.
       ⇔columns, index=X_test.index)
      # Ensuring X_test_scaled is a DataFrame
      # shap_values is a list of two arrays: one for each class
      print(type(shap_values))
      print(len(shap_values))
      print(shap_values[0].shape)
      print(shap_values[1].shape)
     <class 'numpy.ndarray'>
     5581
     (17, 2)
     (17, 2)
[31]: # 12. SHAP Explainability (Random Forest)
      import shap
      explainer = shap.TreeExplainer(rf_grid.best_estimator_)
      shap_values = explainer.shap_values(X_test_scaled)
      # If 3D array, take positive class only
      if len(shap_values.shape) == 3 and shap_values.shape[2] == 2:
          shap_values_pos = shap_values[:, :, 1]
```


4 Statistical Tests

```
[34]: from scipy.stats import ttest_ind, chi2_contingency

[35]: # T-test: compare mean 'Work/Study Hours' for Depressed vs Not if 'Work/Study Hours' in df.columns: group0 = df[df['Depression'] == 0]['Work/Study Hours'] group1 = df[df['Depression'] == 1]['Work/Study Hours'] t_stat, p_val = ttest_ind(group0, group1, nan_policy='omit') print(f"\nT-test for Work/Study Hours (Depressed vs Not): t={t_stat:.3f},_u \[
\times p={p_val:.4f}") \[
if p_val < 0.05: print('Result: Significant difference.') else: print('Result: No significant difference.')
```

T-test for Work/Study Hours (Depressed vs Not): t=-35.620, p=0.0000 Result: Significant difference.

```
[36]: # Chi-square: Gender vs Depression
if 'Gender' in df.columns:
    contingency = pd.crosstab(df['Gender'], df['Depression'])
```

```
chi2, p, _, _ = chi2_contingency(contingency)
print(f"\nChi-square for Gender vs Depression: chi2={chi2:.2f}, p={p:.4f}")
if p < 0.05:
    print('Result: Significant association.')
else:
    print('Result: No significant association.')</pre>
```

Chi-square for Gender vs Depression: chi2=0.08, p=0.7737 Result: No significant association.

5 Model Export

```
[37]: # 14. Automated EDA Profiling Report (HTML)
      # pip install ydata-profiling
      from ydata_profiling import ProfileReport
      profile = ProfileReport(df, title='Student Depression Dataset Profiling⊔
       →Report', explorative=True)
      profile.to_file('student_depression_eda_report.html')
      print('Automated EDA report saved as student_depression_eda_report.html')
     <IPython.core.display.HTML object>
     Summarize dataset:
                          0%1
                                       | 0/5 [00:00<?, ?it/s]
               | 18/18 [00:00<00:00, 76.86it/s]
     100%|
     Generate report structure:
                                               | 0/1 [00:00<?, ?it/s]
                                  0%|
                                 | 0/1 [00:00<?, ?it/s]
     Render HTML:
                    0%1
     Export report to file:
                              0%1
                                           | 0/1 [00:00<?, ?it/s]
     Automated EDA report saved as student_depression_eda_report.html
[38]: import joblib
      joblib.dump(rf_grid.best_estimator_, 'student_depression_rf_model.joblib')
      print('Random Forest model saved as student_depression_rf_model.joblib')
     Random Forest model saved as student depression rf model.joblib
 []: # 16. Data Dictionary & Group Summary
      # Converts known numeric-looking columns to float
      for col in ['Financial Stress']:
          if col in df.columns:
              df[col] = pd.to_numeric(df[col], errors='coerce')
      # Numeric summary by Depression group
```

```
numeric_cols = df.select_dtypes(include=[np.number]).columns
group_summary = df.groupby(target_col)[numeric_cols].agg(['mean', 'std', _
 print('\nSummary stats by Depression:\n', group_summary)
group_summary.to_csv('depression_group_summary.csv')
print('Group summary saved as depression group summary.csv')
# Data dictionary
print('\nDATA DICTIONARY:')
for col in df.columns:
    print(f"{col}: {df[col].dtype}, unique: {df[col].nunique()}, sample:
 →{df[col].unique()[:3]}")
# Showing value counts for categoricals by group
cat_cols = df.select_dtypes(include='object').columns
for col in cat_cols:
    print(f"\nValue counts of '{col}' by {target_col}:")
    print(df.groupby(target_col)[col].value_counts())
Summary stats by Depression:
                      id
                                                     Age
                   mean
                                  std count
                                                   mean
                                                              std count
Depression
0
           70397.561089 40556.248313 11565 27.142412 4.943370 11565
1
           70473.715536 40702.402805 16336 24.887733 4.658028 16336
          Academic Pressure
                                             Work Pressure
                                  std count
                       mean
                                                      mean
Depression
0
                   2.361608 1.252937 11565
                                                  0.000605
1
                   3.693132 1.188834 16336
                                                  0.000306
          Job Satisfaction Work/Study Hours
                     count
                                       mean
                                                       count
Depression
0
                     11565
                                   6.237959
                                             3.860943
                                                       11565
1
                     16336
                                   7.807603 3.450328
                                                       16336
          Financial Stress
                                            Depression
                      mean
                                 std count
                                                  mean std count
Depression
0
                  2.518724 1.346952 11563
                                                   0.0 0.0 11565
1
                  3.579553 1.333337 16335
                                                   1.0 0.0 16336
[2 rows x 30 columns]
```

Group summary saved as depression_group_summary.csv

```
DATA DICTIONARY:
id: int64, unique: 27901, sample: [ 2 8 26]
Gender: object, unique: 2, sample: ['Male' 'Female']
Age: float64, unique: 34, sample: [33. 24. 31.]
City: object, unique: 52, sample: ['Visakhapatnam' 'Bangalore' 'Srinagar']
Profession: object, unique: 14, sample: ['Student' "'Civil Engineer'"
'Architect'l
Academic Pressure: float64, unique: 6, sample: [5. 2. 3.]
Work Pressure: float64, unique: 3, sample: [0. 5. 2.]
CGPA: float64, unique: 332, sample: [8.97 5.9 7.03]
Study Satisfaction: float64, unique: 6, sample: [2. 5. 3.]
Job Satisfaction: float64, unique: 5, sample: [0. 3. 4.]
Sleep Duration: object, unique: 5, sample: ["'5-6 hours'" "'Less than 5 hours'"
"'7-8 hours'"]
Dietary Habits: object, unique: 4, sample: ['Healthy' 'Moderate' 'Unhealthy']
Degree: object, unique: 28, sample: ['B.Pharm' 'BSc' 'BA']
Have you ever had suicidal thoughts ?: object, unique: 2, sample: ['Yes' 'No']
Work/Study Hours: float64, unique: 13, sample: [3. 9. 4.]
Financial Stress: float64, unique: 5, sample: [1. 2. 5.]
Family History of Mental Illness: object, unique: 2, sample: ['No' 'Yes']
Depression: int64, unique: 2, sample: [1 0]
Value counts of 'Gender' by Depression:
Depression Gender
0
            Male
                      6432
            Female
                      5133
1
            Male
                      9115
            Female
                      7221
Name: count, dtype: int64
Value counts of 'City' by Depression:
Depression City
0
            Kalyan
                           636
            Srinagar
                           609
            Vasai-Virar
                           551
            Lucknow
                           514
                           509
            Agra
1
            M.Com
                             1
            Mihir
                             1
                             1
            Mira
            Nalini
                             1
            Vaanva
                             1
Name: count, Length: 84, dtype: int64
```

Value counts of 'Profession' by Depression:

Depression Profession

0	Student	11562
	'Digital Marketer'	1
	Architect	1
	Teacher	1
1	Student	16308
	Architect	7
	Teacher	5
	'Content Writer'	2
	'Digital Marketer'	2
	Chef	2
	Doctor	2
	Pharmacist	2
	'Civil Engineer'	1
	'Educational Consultant'	1
	'UX/UI Designer'	1
	Entrepreneur	1
	Lawyer	1
	Manager	1

Name: count, dtype: int64

Value counts of 'Sleep Duration' by Depression:

Depression Sleep Duration '7-8 hours' 0 2975 'More than 8 hours' 2966 'Less than 5 hours' 2949 '5-6 hours' 2666 Others 9 'Less than 5 hours' 5361 1 '7-8 hours' 4371 '5-6 hours' 3517 'More than 8 hours' 3078 Others 9

Name: count, dtype: int64

Value counts of 'Dietary Habits' by Depression:

Depression Dietary Habits Moderate 0 4363 Healthy 4178 Unhealthy 3020 Others 4 Unhealthy 7297 1 Moderate 5558 Healthy 3473 Others 8

Name: count, dtype: int64

Value counts of 'Degree' by Depression:

Depression Degree

0	'Class 12'	1777
	B.Ed	846
	B.Com	653
	BCA	614
	B.Arch	607
	MSc	511
	M.Tech	501
	B.Tech	497
	MCA	
		485
	ВНМ	416
	M.Ed	406
	B.Pharm	382
	BSc	365
	M.Com	344
	LLB	315
	MBBS	292
	BBA	289
	BA	279
	BE	279
	MD	
		274
	M.Pharm	268
	MBA	259
	MA	254
	PhD	236
	LLM	223
	MHM	92
	ME	87
	Others	14
1	'Class 12'	4303
-	B.Ed	1021
	B.Arch	871
	B.Com	853
	BCA	819
	MSc	679
	B.Tech	655
	MCA	559
	BSc	523
	M.Tech	521
	BHM	509
	B.Pharm	428
	M.Ed	415
	BBA	407
	MBBS	404
	M.Com	390
	LLB	356
	BE	334
	BA	321
	M.Pharm	314

MBA	303
MD	298
MA	290
PhD	286
LLM	259
MHM	99
ME	98
Others	21

Name: count, dtype: int64

Value counts of 'Have you ever had suicidal thoughts?' by Depression:

Depression Have you ever had suicidal thoughts ?

0	No	7866
	Yes	3699
1	Yes	13957
	No	2379

Name: count, dtype: int64

Value counts of 'Family History of Mental Illness' by Depression:

Depression Family History of Mental Illness

0	No	6335
	Yes	5230
1	Yes	8273
	No	8063

Name: count, dtype: int64

This notebook was converted with convert.ploomber.io