INFO 1998: Introduction to Machine Learning

Lecture 6: Intro to Classifiers

INFO 1998: Introduction to Machine Learning

Agenda

- 1. What is a Classifier?
- 2. K-Nearest Neighbors Classifier
- 3. Fit/Overfitting
- 4. Confusion Matrices

Classifiers are able to help answer questions like...

- "What species is this?"
- "How would consumers rate this restaurant?"
- "Which Hogwarts House do I belong to?"
- "Am I going to pass this class?"

- Classifiers predict the class/category of a set of data points
- This class/category is based off of the target variable we are looking at
- Difference between linear regression and classifiers
 - Linear regression is used to predict the value of a continuous variable
 - Classifiers are used to predict categorical or binary variables

Two categories of classifiers: lazy learners and eager learners

Lazy Learners

- Store the training data and wait until a testing data appear
- Classification is conducted based on the most related data in the stored training data
- Less training time, more time in predicting

Eager Learners

- Construct a classification model based on the given training data before receiving data for classification
- More training time, less time in predicting

K-Nearest Neighbors Classifier

What is the KNN Classifier?

- Lazy learner classifier
- Easy to interpret
- Fast to calculate
- Good for coarse analysis

How Does It Work?

KNN is based off of a simple assumption that the values **nearest** to a data point are **similar** to it

Uses the k (a user specified value) nearest data points to predict the unknown one

How Does It Work? В В Α Α Α В

Define a k value (in this case k = 3)

Define a k value (in this case k = 3)

Pick a point to predict (blue diamond)

Define a k value (in this case k = 3)

Pick a point to predict (blue diamond)

Count the number of closest points

Define a k value (in this case k = 3)

Pick a point to predict (blue diamond)

Count the number of closest points

Increase the radius until the number of points within the radius adds up to 3

3/3

(0/3

Define a k value (in this case k = 3)

Pick a point to predict (blue diamond)

Count the number of closest points

Increase the radius until the number of points within the radius adds up to 3

Predict the blue diamond to be a blue circle!

Demo

Fit/Overfitting

Overfitting

When the model corresponds too closely to training data and then isn't transferable to other data.

Can fix by:

- Splitting data into training and validation sets
- Increasing k

Relationship Between k and Fit

The **k** value you use has a relationship to the fit of the model

A higher k gives a smoother line, but too large of a k and it is the average of all the data

Demo

Confusion Matrix

What is a Confusion Matrix?

Table used to describe the performance of a classifier on a set of binary test data for which the true values are known

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Sensitivity

Called the true positive rate

Tells us how many positives are correctly identified as positives

Optimize for: airport security & initial diagnosis of fatal disease

Sensitivity = True Positive/ (True Positive + False Negative)

Specificity

Called the true negative rate

Tells us how many negatives are correctly identified as negatives

Optimize for: testing for a disease with a risky treatment

Sensitivity = True Negative/ (True Negative + False Positive)

Question

Which is an example of when you would want higher specificity?

- DNA tests for a death penalty case
- Deciding which iPhone to buy
- Airport security

Overall Accuracy

Proportion of correct predictions

Accuracy =

(True Positive + True Negative) / Total

Overall Error Rate

Proportion of incorrect predictions

Error =

(False Positive + False Negative) / Total

Precision

Proportion of correct positive predictions among all positive predictions

Precision = True Positive /
(True Positive + False Positive)

Demo

Coming Up

- Assignment 6: Due at 5:30pm on Oct 30, 2019
- Next Lecture: Applications of Supervised Learning

