3-D GEOLOGIC MODELING OF FAULTED GEOLOGIC STRUCTURE

Go Yonezawa¹, Shinji Masumoto², Kiyoji Shiono² and Mamoru Shibayama¹

¹ CSEAS, Kyoto University

46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

E-mail: go-yone@cseas.kyoto-u.ac.jp

² Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

ABSTRACT

There is a definite rule of the formative process of geologic structure formed through sedimentation and erosion corresponds with the logical model of geologic structure. Concerning the faulting we define the rule which suggests the surface of fault divides a 3-D geologic unit and the open space into two areas, and the geologic structures of each area can be preserved. Therefore, faulting can be reasonably included into the recursive definition, which leads logical model of geologic structures formed through the sedimentation and the erosion, and the faulted geologic structure can be expressed as recursive definition. In addition, this recursive definition can lead a logical model of geologic structure cut by plural faults. With introducing a logical model of faulted geologic structure, we propose the faulted geologic map can be generated without any changes of the existent processing system based on a logical model of geologic structure.

1. BASIC THEORY

1.1 Logical model of geologic structure

Let an objective 3-D space Ω be a survey area and suppose that the space Ω is divided into two subspaces on surface S. Where S^+ and S^- give subspaces that lie above and below the surface S, respectively. The surface S is contained in subspace S^- , it has the relation of the next way.

$$S^{+} \cup S^{-} = \Omega , \qquad S^{+} \cap S^{-} = \emptyset . \tag{1}$$

The space Ω is composed of n geologic units $(b_1, ..., b_n)$ including open space b_0 (air). Figure 1 shows that the simple geologic structures are expressed as the vertical section. The geologic unit b_1 represent basement rock. When there are sedimentation and erosion, the geologic unit b_2 is formed. Surface S_1 is a geologic boundary surface, and surface S_2 is a topographic surface. The distribution of geologic unit b_1 , b_2 and b_0 are expressed as follow (see Table 1);

$$b_1 = S_1^- \cap S_2^-, \qquad b_2 = S_1^+ \cap S_2^-, \qquad b_0 = S_2^+.$$
 (2)

The distribution of geologic units $b_0, ..., b_n$ are defined by surfaces $S_1, ..., S_p$. The logical relation between the distribution of geologic unit and the surface are termed *a logical*

Figure 1. The simple geologic structures.

Table 1. The value of function g_1 .

b_0		+
	S_1	S_2
b_1	_	_
b_2	+	_

model of geologic structure (Shiono et al., 1994, 1998).

1.2 Geologic function

As the geologic units b_0 , b_1 , ..., b_n are defined by surfaces, they can be expressed in *minset* (Gill, 1976). The *minset* is a minimum subspace that is divided by the surfaces S_1 , ..., S_p in the space Ω . Each minset defined by;

Four *minsets* can be defined by two surfaces S_1 and S_2 as follows;

$$m_{00} = S_1^- \cap S_2^-, \quad m_{01} = S_1^- \cap S_2^+, \quad m_{10} = S_1^+ \cap S_2^-, \quad m_{11} = S_1^+ \cap S_2^+.$$
 (4)

When it was provided the logical model of geologic structure, the distribution of geologic units b_0, \ldots, b_n can be expressed the union of minset is generated by the surfaces S_1, \ldots, S_p . In the case of Figure 2, *minset* can be derived for the geologic units as follows;

$$\begin{cases}
b_0 = (S_1^+ \cup S_1^-) \cap S_2^+ = m_{01} \cup m_{11}, \\
b_1 = m_{00}, \\
b_2 = m_{10}.
\end{cases} (5)$$

There is the relation between the set of minset $M = \{m_{00}, m_{01}, m_{10}, m_{11}\}$ and the set of geologic unit $B = \{b_0, b_1, b_2\}$ as shown below;

$$m_{00} \subset b_1$$
, $m_{01} = b_0$, $m_{10} = b_2$, $m_{11} = b_0$. (6)

When let a function $g_1: M \to B$ corresponds to the geologic units including their *minset*, a value of geologic function g_1 in Figure 1 is expressed in Table 2.

Further, for a point P(x, y, z) in a space Ω , a minset $m_{d1d2...dp}$ can be assigned a value of $d_k = 0$ or $d_k = 1$ depending on whether P(x, y, z) lies S_k^+ or S_k^- , respectively. This correspondence between every point in the space Ω and minset is expressed by a function g_2 : $\Omega \to M$.

Therefore, the function $g: \Omega \to B$ is expressed to compound the function g_1 and function g_2 as follows;

Table 2. The value of function g_1 .

M	$g_1(m)$
m_{00}	b_1
m_{01}	b_{0}
m_{10}	b_2
m_{11}	b_0

$$g(x, y, z) = g_1(g_2(x, y, z)).$$
 (7)

The function g is termed the geologic function (Masumoto et al., 1997), assigns a unique geologic unit to every point in the space Ω .

2. LOGICAL MODEL OF FAULTED GEOLOGIC STRUCTURE

2.1 Geologic structure formed by faulting

Let us consider the effect of the event f after the initial state. At the initial state, a surface S_1 is a boundary surface between the open space b_0 and the geologic unit b_1 . Let b_0' , b_1' and s_1' be the open space, the geologic unit and the surface in foot wall respectively and b_0'' , b_1'' and s_1'' the open space, the geologic unit and the surface in hanging wall respectively.

$$\begin{cases} b_{1}' = S_{1}'^{-} \cap F^{-}, \\ b_{1}'' = S_{1}''^{-} \cap F^{+}, \\ b_{0} = b_{0}' \cup b_{0}'' = (S_{1}'^{+} \cap F^{-}) \cup (S_{1}''^{+} \cap F^{+}). \end{cases}$$

$$(8)$$

Figure 3. Concept of event *f*.

2.2 Recursive definition of logical model of faulted geologic structure

In order to embed the event f, we substitute $b_0, ..., b_{2m}$ for $b_0', ..., b_{m''}$ and $S_1, ..., S_{2p}$ for $S_1', ..., S_{p''}$ and further S_{2p+1} for F. Then the recursive definition can be represented as follows:

(1) The initial state (k = 1),

$$\begin{cases}
b_1^{(1)} = B_1^{(1)}(S_1) = S_1^-, \\
b_0^{(1)} = B_0^{(1)}(S_1) = S_1^+.
\end{cases}$$
(9)

(2) Let $\{b_0^{(k)}, b_1^{(k)}, ..., b_m^{(k)}\}\$ be the geologic structure formed by a sequence of events $(v_1, v_2, ..., v_k)$ like the sedimentation, erosion and faulting. If each geologic unit $b_i^{(k)}$ is expressed by surfaces $S_1, S_2, ..., S_p$;

$$b_i^{(k)} = B_i^{(k)} (S_1, S_2, ..., S_p), \qquad (i = 0, ..., m)$$
 (10)

then the geologic structure is changed by an event v_{k+1} as follows:

If $v_{k+1} = f$,

$$\begin{cases}
b_{i}^{(k+1)} = B_{i}^{(k)}(S_{1}, S_{2}, ..., S_{p}) \cap S_{2p+1}^{-}, & (i = 1, ..., m) \\
b_{m+i}^{(k+1)} = B_{i}^{(k)}(S_{p+1}, S_{p+2}, ..., S_{2p}) \cap S_{2p+1}^{+}, & (i = 1, ..., m) \\
b_{0}^{(k+1)} = \{ B_{0}^{(k)}(S_{1}, S_{2}, ..., S_{p}) \cap S_{2p+1}^{-} \}
\end{cases}$$
(11)

$$\cup \{B_0^{(k)}(S_{p+1}, S_{p+2}, ..., S_{2p}) \cap S_{2p+1}^+\}.$$

3. CASE STUDY

Visual Basic program Geomodel2003 was developed in order to visualize the geologic map (Yonezawa *et al.*, 2004). Example of faulted geologic structure is shown in Figure 4(a) by using Geomodel2003. The surface is given in a form of a grid composed of elevations, which is known as DEM (Digital Elevation Model). The data of the objective surface and the boundary surfaces are given from Table 3. They were generated by Visual Basic program Terramod2001 (Sakamoto *et al.*, 2001).

This geologic structure is formed by $V_6 = (v_1, c, c, f, f, c^*)$. v_1 is the initial state. c is the sedimentation event, c^* is the complex event of erosion and sedimentation event. The logical model of geologic structure is shown in Table 4. Figure 4(b) is the 2-D geologic map. Figures 4(c) – (e) represent the vertical geologic section map.

4. CONCLUSION

The recursive definition of faulted geologic structure is integrated consistently in our previous computer algorithm for 3-D modeling of geologic structure. It is expected that the newly developed theory and algorithm would advance the computer processing of the faulted geologic structure on to the next stage, and there will be more applications of such geologic information in various other fields.

Table 3. Data of surfaces (Foot wall and Hanging wall) for $V_6 = (v_1, c, c, f, f, c^*)$.

Foot wall for S	15										
Boundary upper / lower	Surface	Strike and dip of surface	Linear equation of plane	Position							
b 2/b 1	S_1	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 383.5	Foot wall							
b_3/b_2	S_2	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 412.6	Foot wall							
b_0/b_3	S_3	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 428.1	Foot wall							
Fault	S_{7}	N20°E/80°S	0.925 x - 0.337 y + 0.174 z = 118.0	-							
b_5/b_4	S 4	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 371.7	Hanging wall							
<i>b</i> ₆ / <i>b</i> ₅	S 5	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 400.8	Hanging wall							
b_{0}/b_{6}	S_6	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 416.3	Hanging wall							
Hanging wall fo	Hanging wall for S_{15}										
Boundary upper / lower	Surface	Strike and dip of surface	Linear equation of plane	Position							
b 8/b 7	S 8	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 383.5	Foot wall							
<i>b</i> ₉ / <i>b</i> ₈	S 9	N60°W/30°S	-0.250 x - 0.433 y + 0.866 z = 412.6	Foot wall							

 $N60^{\circ}W/30^{\circ}S$

N20°E/80°S N60°W/30°S

N60°W/30°S

N60°W/30°S

 b_0/b_9

Fault

 b_{11}/b_{10}

 b_{12}/b_{11}

 b_{0}/b_{12}

 S_{10}

 S_{14}

 S_{11}

 S_{12}

 S_{13}

-0.250 x - 0.433 y + 0.866 z = 428.1

0.925 x - 0.337 y + 0.174 z = 118.0

-0.250 x - 0.433 y + 0.866 z = 371.7

-0.250 x - 0.433 y + 0.866 z = 400.8

-0.250 x - 0.433 y + 0.866 z = 416.3

Foot wall

Hanging wall

Hanging wall

Hanging wall

Table 4. Tabular form of logical model of geologic structure for $V_6 = (v_1, c, c, f, f, c^*)$.

b_{0}																+
	S_1	S_2	S_3	S_7	S_4	S_5	S_6	S_{15}	S_8	S_9	S_{10}	S_{14}	S_{11}	S_{12}	S_{13}	S_{16}
b_1	-			-				_								-
b_2	+	1		-				_								_
b_3	+	+	_	_				_								_
b_4				+	_			_								_
b_5				+	+	_		_								_
b_6				+	+	+	_	_								_
b_7								+	_			_				_
b_8								+	+	_		_				_
b_9								+	+	+	_	_				_
b_{10}								+				+	_			_
<i>b</i> 11								+				+	+	_		_
b_{12}								+				+	+	+	_	_
<i>b</i> ₁₃	+	+	+	_				_								_
b 13				+	+	+	+	_								_
b 13								+	+	+	+	_				_
<i>b</i> ₁₃								+				+	+	+	+	_

5. REFERENCES

- Gill, A., 1976. *Applied Algebra for the Computer Sciences*. Englewood Cliffs, N. J. : Prentice-Hall.
- Masumoto, S., Shiono, K., Raghavan, V., Sakamoto, M. and Wadatsumi, K., 1997. Geologic information on GIS -Special Characteristics of geologic map information. *Geoinformatics*, Vol 8, 2, 99-106.
- Sakamoto, M., Shiono, K. and Masumoto, S., 2001. Terramod2001: A Software for Gridding and Modeling of Geologic Surface. *Geoinformatics*, Vol 12, 2, 112-113.
- Shiono, K., Masumoto, S. and Sakamoto, M., 1994. On formal expression of spatial distribution of strata using boundary surfaces -C₁ and C₂ type of contact. *Geoinformatics*, 5, 223-232.
- Shiono, K., Masumoto, S. and Sakamoto, M., 1998. Characterization of 3D distribution of sedimentary layers and geomapping algorithm -Logical model of geologic structure. *Geoinformatics*, Vol 9, 3, 121-134.
- Yonezawa, G., Masumoto, S., Nemoto. T., Sakamoto. M. and Shiono, K, 2004. Visualization of Geologic Boundaries Based on Generalized Geologic Function. *Geoinformatics*, Vol 15, 4, 193-206.
- Yonezawa, G., Kajiyama, A., Masumoto, S. and Shiono, K., 2006. Mathematical Formulation of Faulted Geologic Structure: Theoretical Bases for Modeling and Visualization. *Journal of Geosciences Osaka City University*, Vol 49, 2, 11-30.