2EI5 Lab 5
Yichen Lu L01
400247938
luy191
March 25th 2021

Task1

Channel 2	
3.838 V	
3.838 V	
2 mV	

Network analyzer

Gain:39

Corner frequencies:1.44KHz

For 5mv ampltude

The magnitude = 26mv

Phase of gain = 16

For 20 mv amplitude

The result shows how a common emitter amplifier works.

I can calculate the value of gain and the phase.

Task 2

Network analyzer

Gain:50

Corner frequencies: 1.28KHz

For 20mv amplitude

Magnitude = 40mv

Phase of gain = 20

For 30mv amplitude

For 2V amplitude

As we can see, the larger the amplitude are getting, the larger the distortion of output waveform will get.

In conclusion, we are supposed to keep the amplitude to be small in order to make the signal to be amplified with small distortion.