

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехника и комплексная автоматизация (РК)

КАФЕДРА Системы автоматизированного проектирования (РК6)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:*

«Способы моделирования и создания анимаций для использования на движке Unreal Engine»

Студент РК6-74Б		Шендрик Д.А.
	(Подпись, дата)	И.О. Фамилия
Руководитель курсового проекта		Витюков Ф.А.
	(Подпись, дата)	И.О. Фамилия

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ Заведующий кафедрой РК6
		Заведующий кафедрой I Ко А.П. Карпенко
		«» 2023 г.
	ЗАДАНИЕ	
на выполн	ение курсового про	екта
по дисциплине Модели и мет	годы анализа проектных реше	ний
Студент группы <u>РК6-74Б</u>		
	Даниил Андреевич амилия, имя, отчество)	
Тема курсового проекта: <u>Способы модели</u> <u>Unreal Engine</u>	рования и создания анимаци	й для использования на движке
Направленность КП (учебная, исследовате. Источник тематики (кафедра, предприятие		дственная, др.) <u>учебная</u>
График выполнения НИР: 25% к 5 нед., 50	% к 11 нед., 75% к 14 нед., 100	9% к 16 нед.
Техническое задание: <u>Изучить возможно</u> простые модели для отработки основны <u>Импортировать модели в Unreal Engine 4.2</u> программы для захвата движений, узнать возможности.	их инструментов Blender. С и решить все возникшие при э	оздать рендер обоих моделей. том ошибки. Изучить различные
Оформление курсового проекта: Расчетно-пояснительная записка на 28 лист Перечень графического (иллюстративного) 4 графических листа) материала (чертежи, плакаты	л, слайды и т.п.):
Дата выдачи задания «18» октября 2023 г.		
Руководитель КП		Витюков Ф.А.
	(Подпись, дата)	И.О. Фамилия

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

(Подпись, дата)

<u>Шендрик Д.А.</u> И.О. Фамилия

Студент

РЕФЕРАТ

Работа посвящена области 3D моделирования, а именно создания моделей в программе Blender, перенос их на движок Unreal Engine и применения средств motion capture для анимации. В частности, рассмотрены и применены на практике простые инструменты для моделирования, анимации и создания системы частиц. Также было проведено сравнение и испытание различных программ для motion сартиге, работающих по протоколу VMC. В работе созданы несколько простых 3D моделей для демонстрации возможностей программы Blender и проведен их импорт в Unreal Engine для дальнего использования.

Тип работы: курсовая работа.

Тема работы: Способы моделирования и создания анимаций для использования на движке Unreal Engine.

Объект исследований: средства 3D моделирования и захвата движений для использования в проектах на Unreal Engine.

СОДЕРЖАНИЕ

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ	5
ВВЕДЕНИЕ	6
1. Обзор Blender	8
2. Процесс создания 3D моделей в Blender	10
2.1 Модель "Фабрика"	10
2.2 Модель "Owl-Cat"	14
3. Импорт в Unreal Engine: связь между Blender и UE4	18
4. Средства создания фотореалистичных моделей Metahuman Creator	20
5. Средства motion capture, работающие по протоколу VMC	22
ЗАКЛЮЧЕНИЕ	27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	28

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

UE4 – трёхмерный движок Unreal Engine 4.

Blender — бесплатно распространяемое программное обеспечение для создания трёхмерной компьютерной графики, включающее в себя средства моделирования, скульптинга, анимации, симуляции, рендеринга, постобработки и др.

Полигон — многоугольник, являющийся базовым компонентом 3D-сетки. Основные типы: треугольник (tri), четырёхугольник (quad) и n-gon (5 или более вершин).

High-poly модель – максимально детализированная версия модели. Имеет высокий polycount, в основном используется для дальнейшего запекания текстур.

Low-poly модель — модель, содержащая относительно низкое количество полигонов, при этом сохраняющая основные геометрические свойства объекта.

Ретопология — процесс изменения топологии 3D-сетки модели с целью упрощения/улучшения.

Текстура – изображение, накладываемое на поверхность 3D-модели. Может содержать различные свойства поверхности, например: цвет, жёсткость (roughness), смещение (displacement), направление нормалей (normal map), и т.д.

Texture baking (запекание текстур) – процесс переноса деталей поверхности high-poly модели на

Motion capture — метод анимации персонажей и объектов при помощи оцифровки движений реального объекта (прежде всего, человека) и последующего переноса их на трёхмерную модель.

VMC (Virtual Motion Capture Protocol) — это протокол передачи данных о движении аватара для виртуального захвата движения.

ВВЕДЕНИЕ

В современном мире трехмерное моделирование стало неотъемлемой частью индустрии развлечений, виртуальной реальности, дизайна и многих других областей. Создание трехмерных моделей предоставляет уникальные возможности в визуализации и взаимодействии с окружающим миром, а также играет ключевую роль в разработке современных компьютерных игр и виртуальных симуляторов. А с взрывным развитием виртуальных технологий в последнее десятилетие встает необходимость в поиске инновационных решений для создания максимально реалистичных и взаимодействующих анимированных виртуальных персонажей.

Одним из важных инструментов в арсенале 3D-художников и разработчиков является программа Blender. Blender — это мощный, свободно распространяемый инструмент для трехмерного моделирования, анимации и создания визуальных эффектов. Его богатый набор инструментов позволяет создавать сложные модели и эффекты, а открытый исходный код способствует активному распространению и постоянному улучшению функционала.

В контексте визуальной разработки и создания игрового контента, Blender часто используется для моделирования объектов, персонажей и окружения. Однако, чтобы в полной мере раскрыть потенциал этих модели и внедрить их в некоторый проект, необходимо использовать мощные средства разработки, такие как движок Unreal Engine.

Unreal Engine предоставляет разработчикам инструменты для создания интерактивных 3D-приложений, использующих передовые технологии визуализации и физики. Он имеет множество прикладных функций, таких как работа с текстурами и материалами, рендеринг графики, создание и управление объектами в игровом поле, мощный высокоуровневый язык C++ для написания игровой логики и многое другое.

Однако, чтобы персонажи стали по-настоящему живыми, требуется качественная и реалистичная анимация движений. По данному вопросу в исследовании сосредоточено внимание на ключевых инструментах, необходимых для создания и анимации виртуальных персонажей в Unreal Engine, а именно

Меtahuman Creator и программы захвата движений. Этот аспект исследования фокусируется на программном обеспечении, использующем VMC Protocol. Это семейство приложений предоставляет разработчикам средства захвата движений, от лицевой анимации до движений рук и пальцев, что придает виртуальным персонажам естественность и реализм.

Исследование направлено на определение оптимальных комбинаций этих инструментов и программ для достижения выдающегося уровня интерактивности и реализма виртуальных персонажей в Unreal Engine.

1. Oбзор Blender

Вlender предоставляет впечатляющий инструментарий для трехмерного моделирования, анимации и визуализации. Одним из фундаментальных понятий в моделировании Blender является структура модели, состоящая, как и в большинстве программ для 3D моделирования из вершин, ребер и граней. Вершины — это точки в пространстве, ребра — линии, соединяющие вершины, и грани — поверхности, образованные ребрами.

Одним из первых этапов создания любой модели в Blender является выбор базовой формы, которую можно легко изменять с использованием инструментов преобразования. Моделирование в Blender часто начинается с применения таких базовых примитивов, как кубы, сферы или цилиндры, которые затем могут быть изменены и детализированы. Возможности моделирования включают в себя создание сложных геометрических форм, а также настройку поверхностей и текстур для достижения желаемого визуального эффекта.

Одним из ключевых инструментов является "Edit Mode", который позволяет пользователю манипулировать вершинами, гранями и ребрами модели непосредственно. Инструменты перемещения, вращения и масштабирования позволяют точно настраивать форму объекта. Более сложные инструменты экструдирования, выдавливания, создания фасок и разрезов добавляют новые вершины, ребра и грани, делая модель более сложной и настраиваемой. Дополнительно, Blender предоставляет мощные инструменты для создания сложных форм с использованием модификаторов.

Модификаторы представляют собой инструменты, которые позволяют применять различные эффекты и изменения к геометрии модели. Например, "Mirror Modifier" отражает часть модели, создавая симметричные объекты; или модификатор "Array", который создает массив тел, которые можно расставлять по направлению кривой, с помощью еще одного модификатора "Curve". Это лишь одни из множества модификаторов, которые предоставляются Blender, каждый из которых обеспечивает уникальные возможности для моделирования.

Кроме того, инструменты скульптинга в Blender предоставляют манипулировать большим количеством вершин модели одновременно, но с разной силой, таким образом получая очень детализированные модели уникальной формы. Этот инструмент дает 3D-художнику цифровой аналог глины, с которой можно легко формировать взаимодействовать.

Одной из ключевых особенностей Blender является его многозадачность. В программе можно создавать не только статичные 3D модели, но и разрабатывать анимации с использованием удобного редактора ключевых кадров. Анимационные инструменты включают в себя возможность управления скелетной архитектурой (риггинг), создание и редактирование кадров анимации, а также применение различных эффектов и переходов.

Одним из сильных аспектов Blender является его открытость и активное сообщество пользователей. Благодаря этому, пользователи имеют доступ к богатой базе бесплатных ресурсов, таких как плагины, текстуры и модели, что существенно упрощает процесс творчества.

Важно отметить, что Blender обладает удивительной гибкостью в решении различных задач. Например, программа поддерживает не только создание статических объектов, но и моделирование поверхностей для последующего 3D печати. Это демонстрирует широкий спектр применений Blender в индустрии дизайна, искусства и технической разработки.

Таким образом, Blender представляет собой мощное и универсальное средство для творчества в трехмерной графике. В дальнейшем, мы рассмотрим, каким образом созданные в Blender 3D модели интегрируются в игровой мир при помощи Unreal Engine.

2. Процесс создания 3D моделей в Blender

В практической части работы были созданы две модели в программе для 3D моделирования Blender. Первая модель — минималистичная фабрика с конвейерной линией, где вырабатывались основные навыки создания моделей, текстурирования, а также создание простых анимаций. Второй моделью является статическая модель мифического пушистого существа, в этой модели использовался скульптинг для создания сложной формы модели и система частиц для создания шерсти.

2.1 Модель "Фабрика"

Создание практически любой модели требует сбора референсов, которые играют ключевую роль в создании реалистичной модели. На основе изученных изображений и концептуальных скетчей формируется общая композиция будущей модели, композиция и способ создания частей проекта.

Для определения общей композиции и размеров конвейерной линии были размещены базовые геометрические примитивы: кубы, цилиндры и сферы. Этот позволяет быстро оценить пропорции будущей модели и начать придавать ей форму. Данный этап моделирования продемонстрирован на рисунке 1.

Рисунок 1 – Размещение примитивов для будущей модели

Следующим этапом — добавление крупных деталей, таких как скругления и вырезы, с помощью модификаторов булевых функций, чтобы создать форму и структуру основных объектов модели. Используя инструменты экструдера, создания скругленных фасок и других, формируются элементы, которые придают модели характер и функциональность.

После создания основной структуры конвейера фокус переносится на добавление более мелких деталей, создающих более сложную и интересную картинку. Трубы, лампы и вентиляторы внедряются с помощью инструментов Blender, учитывая их расположение и функциональность в рамках общего дизайна. Трубы создаются за счет превращения кривых в объемные тела. Лампы – несколько объединенных цилиндров друг над другом. С помощью деформации и массива, получаются лопасти, добавление еще нескольких примитивов создает еще более проработанные модели вентиляторов. Примерно также создается модель движущейся конвейерной линии, только размноженные массивом модели затем располагаются по направлению заданной кривой с помощью модификатора "Curve".

Рисунок 2 – Модель с полной детализацией без текстур и материалов

Далее были добавлены более сложные объекты, например роботы и "лайки". Эти модели были созданы практически вручную, передвижением вершин или групп вершин, чтобы добиться определенной формы. Результат моделирования изображен на рисунке 2.

Следующий этап работы текстурирование и присвоение материалов. С использованием текстур и шейдеров создаются детали, придающие модели фотореалистичность. Также регулируются освещение и тени для достижения желаемого визуального эффекта.

Большинству тел достаточно присвоить цвет и определенные свойства материалов. Однако некоторым требуется учен UV разверток. Blender позволяет очень удобно создавать и изменять данные развертки, выбирая грани прямо на модели, что делает этот процесс очень удобным, так как сразу виден результат.

Помимо присвоения всем телам своих материалов в модель были добавлены источники света и камера. Результат работы на рисунке 3.

Рисунок 3 – Модель "Фабрика" с текстурами и настроенными источниками света

После завершения моделирования конвейерной линии в Blender следующей этап - создание анимации движения. Blender предоставляет широкий

спектр инструментов для анимации, и в данном случае, создается анимация передвижения блоков вдоль конвейера.

Настройка движения включает определение скорости, направления и взаимодействия объектов между собой. Каждому объекту можно задать положение в определенный момент времени - ключевой кадр (keyframe). Другой способ создать анимацию — задать кривую, по которой будет двигаться объект. В практическом задании были использованы оба способа: движение по кривой для ленты и основных объектов на ней и ключевые кадры для выпадающего "дизлайка", робота и света. Механизмы анимации в Blender позволяют создавать плавные и реалистичные движения, что существенно улучшает визуальный аспект разрабатываемой сцены. После завершения этапа анимации получается динамичный и интересный объект, пригодный для интеграции в игровой мир или рекламный ролик.

Рисунок 4 – Результат рендеринга готовой модели на движке Cycles

После успешного завершения процесса моделирования и анимации наступает этап рендеринга. Blender предлагает несколько встроенных движков рендеринга, таких как Cycles и Eevee, обеспечивающих высококачественные графические результаты.

Движок Cycles предоставляет фотореалистичные изображения, основанные на трассировке лучей, что делает его идеальным выбором для создания высококачественных визуальных эффектов. С другой стороны, Eevee обеспечивает быстрый превью и интерактивный рендеринг, что ускоряет процесс разработки.

Для создания одного кадра и короткой анимации был выбран движок Cycles с добавлением небольшого количества эффектов, например эффект Glare для увеличения свечения ламп. Результат рендеринга на движке Cycles представлен на рисунке 4.

Этап рендеринга в Blender завершает процесс создания 3D модели фабрики, предоставляя готовый контент для интеграции в Unreal Engine.

2.2 Модель "Owl-Cat"

Как и в предыдущей моделе, первый шаг в создании уникальной модели, мы провели сбор референсов и осуществили начальное моделирование, определяя общую форму существа. Далее, для детализации и добавления выразительности, была применена техника скульптинга.

Для увеличения плотности сетки и обеспечения большей детализации, мы использовали инструменты сабдивизии Blender. Этот метод позволяет увеличить количество полигонов и более точно отобразить форму существа, что необходимо для последующего скульптинга.

Следующий этап включал в себя процесс скульптинга, где мы добавляли дополнительные детали, такие как когти, клюв, и выражение мордочки. С инструментами сглаживания и формирования деталей, Blender предоставил удобное и гибкое пространство для художественного творчества. Регулируя уровни детализации, мы добивались нужного баланса между реализмом и эстетикой существа.

Таким образом, процесс скульптинга в Blender стал ключевым этапом в создании уникальной модели полукота-полусовы, придавая ей индивидуальность и характер.

Для перехода от высоко детализированной High-poly модели к оптимизированной Low-poly версии, мы применили метод Texture baking, обеспечивая сохранение общей формы существа при снижении количества полигонов.

Сначала создавалась копия High-poly модели, содержащая все детали и высокое количество полигонов. Далее, с использованием модификаторов, таких как Decimate, количество полигонов в копии модели уменьшалось, сохраняя при этом основные формы и пропорции. Этот этап требует баланса между оптимизацией и сохранением ключевых деталей.

Рисунок 5 – Переход от High-poly модели к Low-poly с "запеченной" картой нормалей

Следующим шагом было создание карты нормалей. Мы запекли детали высоко полигональной модели на текстуру, а затем применили эту карту к Low-poly модели. Это создало впечатление высокой детализации, необходимой для качественного отображения на экране, но с уменьшенным числом полигонов, что оптимизировало производительность модели в реальном времени.

Процесс оптимизации от High-poly к Low-poly в Blender предоставил нам эффективный инструмент для создания высококачественных моделей с минимальной нагрузкой на систему, что особенно важно в контексте разработки игр и виртуальной реальности.

Для добавления реалистичной шерсти к модели полукота-полусовы в Blender, мы воспользовались встроенной системой частиц, предоставляющей широкий спектр возможностей для создания объемных и естественных текстур.

В первую очередь, создали систему частиц на Low-poly модели, выбрав "Hair" в качестве типа частиц. Это позволяет создавать объемные волосы, реагирующие на окружающее освещение и движение существа.

Рисунок 6 – Полученное изображение в программе Blender

Система частиц в Blender предоставляет множество параметров для настройки волос. Регулируя длину, плотность, толщину и кручение, мы добивались естественного и разнообразного внешнего вида шерсти. Экспериментировали с цветом, чтобы соответствовать общей цветовой гамме существа.

Для создания более реалистичного вида шерсти, применили текстуры к частицам. Это позволило добавить волосам различные оттенки и учесть различия в цвете и яркости по всей поверхности.

Система частиц в Blender также предоставляет инструменты для управления направлением и распределением волос. Мы настраивали их, чтобы следовать естественной линии роста волос на существе и создавать желаемую текстурную форму.

Использование системы частиц в Blender позволяет создавать реалистичные визуальные эффекты, такие как шерсть, и при этом обеспечивает высокую степень контроля и настраиваемости. Это является важным шагом в процессе придания модели большей визуальной глубины и живости.

Далее к готовой модели добавляется небольшое количество объектов окружения и свет. После начинается процесс рендеринга, чтобы получить качественное изображение (Рисунок 6).

3. Импорт в Unreal Engine: связь между Blender и UE4

После завершения создания и настройки модели в Blender, следующим шагом является ее импорт в Unreal Engine (UE4). Этот этап является критическим в процессе интеграции созданных объектов в разрабатываемую игру.

Для эффективного и беспроблемного обмена данными между Blender и Unreal Engine мы использовали формат файла FBX. FBX — это открытый формат Autodesk, который поддерживается большинством 3D приложений, что обеспечивает совместимость и переносимость моделей между разными платформами.

При импорте в Unreal Engine, некоторые аспекты модели могут потребовать дополнительной настройки для правильного отображения в игровом мире. Проблемы могут включать в себя неправильное применение материалов, смещение текстур, или несоответствие масштаба, а также неправильное отображение анимаций. В процессе разработки были внесены соответствующие изменения в модели, чтобы обеспечить их правильную интерпретацию в Unreal Engine.

Один из основных аспектов, требующих внимания, — это коррекция масштаба модели. Для этого при сохранении модели в Blender нужно выполнять действие "Apply all transforms", чтобы обеспечить правильное восприятие размеров объектов в игровой сцене. Подобное же применяется и к модификаторам модели, они должны быть применены к модели до ее экспорта.

Еще одним важным аспектом является настройка материалов. В некоторых случаях, особенно при использовании сложных шейдеров в Blender, требуется перенастройка материалов в Unreal Engine для достижения согласованного визуального эффекта. Другие материалы могут просто теряться, и их приходится переприсваивать.

Еще одной важной проблемой является то, что констрейнты (constraints) применяемы в Blender для анимации движения по кривой и системы частиц, не могут быть напрямую переданы в Unreal Engine. В этом случае необходим переделать эти части моделей: в анимацях движения нужно сделать

дополнительные keyframe'ы для анимации в моделе "Фабрик" (рисунок 7); для системы частиц второй модели - частицы волос преобразуются в меш и затем в тела, которые корректно (но не так визуально эстетично) отображаются в Unreal Engine (рисунок 8).

Рисунок 7 – Модель "Фабрика" в Blender (слева) и в UE4 (справа)

Рисунок 8 – Модель "OwlCat" в Blender (слева) и в UE4 (справа)

4. Средства создания фотореалистичных моделей Metahuman Creator

Метаhuman Creator, разработанный Еріс Games, представляет собой выдающийся инструмент для создания высококачественных персонажей с фотореалистичной внешностью. Используя этот инструмент, разработчики могут быстро и эффективно создавать уникальные модели персонажей, настраивая их внешний вид в соответствии с проектными потребностями. Гибкие параметры Метаhuman Creator позволяют легко настраивать черты лица, волосы, одежду и другие детали, предоставляя богатый выбор для кастомизации персонажей.

Среди ключевых преимуществ инструмента стоит выделить простоту использования и удивительную детализацию создаваемых персонажей. За считанные минуты можно создать уникального персонажа с высоким уровнем реализма, что делает Metahuman Creator идеальным выбором для различных виртуальных проектов.

Рисунок 9 – Созданный с помощью Metahuman Creator фотореалистичный

В рамках исследования было проведено изучение возможностей браузерного редактора и создана уникальная модель Metahuman'а (рисунок 9). Дополнительно был проведен тестирование плагина Quixel Bridge в рамках Unreal Engine, который позволяет интегрировать объекты из библиотеки и созданных

персонажей Metahuman непосредственно в проект без необходимости скачивания и распаковки архивов.

Однако, создание виртуальных персонажей — это только первый шаг. Существенная часть реализма и выразительности виртуальных персонажей достигается через анимацию движений. В этом контексте, область Motion Capture становится ключевым аспектом. Даже самая красочная и реалистичная модель может показаться недостоверной без убедительной анимации.

5. Средства motion capture, работающие по протоколу VMC

Процесс захвата движений (Motion Capture) становится ключевым элементом при создании реалистичных анимаций виртуальных персонажей.

Virtual Motion Capture (VMCProcotol, OSC/VMC Protocol) — это протокол передачи данных о движении аватара для виртуального захвата движения, созданный японскими разработчиками. С его помощью можно легко перемещать своего аватара, используя простую в использовании библиотеку, не реализуя обработку устройств VR. Также есть возможность отправлять и получать движения в различных приложениях и из них. Схема работы протокола представлена на рисунке 10, взятом с официального сайта разработчиков [9].

Рисунок 10 – Схема работы протокола VMC

Марионетка (Marionette) — занимается получением движения и отрисовкой его на экране (обязателен). Работает сервер для Performer, обычно использует порт 39539. Например: EVMC4U, VMC4UE.

Исполнитель (Performer) – выполняет процесс считывания и переработки движения. Отправляет все "кости" и дополнительную информацию Марионетке. (обязателен). Работает клиентом для Марионетки, но работает сервером для Ассистента, который является необязательной частью схемы. Например: Virtual Motion Capture, Waidayo, VSeeFace, MocapForAll, TDPT.

Ассистент (Assistant) – отправляет Исполнителю некоторые "кости", сетку лица и т.д. (необязателен). Он работает как клиент для Performer. Например: Waidayo, Sknuckle, Simple Motion Tracker, Uni-studio.

VMC – это простая реализация с использованием Open Sound Control и VRM, которая может взаимодействовать с различными средами, такими как Windows, Mac, Linux и iOS, во внутренней или локальной сети компьютера.

На сайте разработчика[9] представлен список программ, которые поддерживают протокол и могут отправлять и принимать данные. Основываясь на этом списке, были выбраны несколько программ для исследования: Virtual Motion Capture, TDPT, LuppetX, XR Animation.

В дополнение были взяты программы, также предназначенных для считывания и передачи движений, но не обозначенные в списке, среди них: WebCam Motion Capture, VSeeFace и StrongTrack. Выбор последних программ основывался на публикацию Федора Андреевича Витюкова [7], которая предоставляет ценный обзор этих программных инструментов для захвата движений. В данной же работе упор был сделан на возможность поддержки передачи данных по протоколу VMC и доступности программ рядовому пользователю.

WebCam Motion Capture — это приложение предоставляет отличную возможность захвата движений лица и пальцев рук, используя встроенные вебкамеры. Важным преимуществом является его интуитивно-понятный интерфейс и эффективность в захвате нюансов лицевой анимации. Также программа может повторять движения с записанного видео и с трансляции камеры. Однако, для полной интеграции с VMC протоколом, требуется полная версия приложения, доступная за символическую плату в 2 доллара.

VSeeFace — приложение, ориентированное на создание реалистичных лицевых анимаций и предоставляет богатый набор инструментов для этой цели. VSeeFace легко захватывает экспрессии лица, придавая виртуальным персонажам выразительность и естественность. Для анимации рук потребуется Leap Motion устройство, что может стать ограничением в использовании в некоторых случаях.

StrongTrack не совместим с VMC протоколом. Для его интеграции в UE необходимы сторонние протоколы, поэтому в дальнейшем данное приложение не рассматривается.

Virtual Motion Capture (VMC Protocol) — приложение, разработанное создателями одноименного протокола, предоставляет гибкую платформу для считывания движений. Однако основной упор там делается на VR и для считывания движения нужны соответствующие девайсы, что добавляет сложность и стоимость, но в то же время предоставляет более точные и широкие возможности считывания движений.

Рисунок 11 – Считывание движений с видео в программе XR Animation

TDPT (Two Dimensional Pose Tracker) — приложение специализируется на считывании движений всего тела. Однако оно не включает в себя функциональность для считывания пальцев и мимики лица. TDPT может быть идеальным выбором для общих планов, где не требуется детализированное воспроизведение движений лица. Но для исследуемых задач данное приложение не подходит.

LuppetX — приложение LuppetX предоставляет короткий бесплатный период использования и специализируется на считывании мимики лица, для считывания движений рук потребуются дополнительные устройства.

XR Animation — среди опробованных программ XR Animation выделяется как наиболее функциональное. Это приложение может считывать движения всего тела, включая пальцы и мимику, прямо с камеры. Его способность точно воспроизводить движения делает его эффективным инструментом для создания реалистичной анимации. Данное приложение больше заточено под использование для стримеров, но может считывать движения и с заранее записанного видео (рисунок 11). Программа может в режиме реального времени передавать движения по VMC протоколу.

Таблица 1 – Сравнение различных программ для захвата движений

Название	Считывание	Считывание	Поддержка	Цена
программы	мимики	пальцев рук	VMC protocol	
WebCam Motion Capture	Хорошее	Хорошее	+/-	2\$ для полного доступа
VSeeFace	Хорошее	Требуется доп. оборудование	+	Полностью бесплатна
StrongTrack	Хорошее	Приемлемо	-	Полностью бесплатна
Virtual Motion Capture	Heoбходимо VR оборудование	Необходимо VR оборудование	+	Полностью бесплатна
TDPT	нет	нет	+	Полностью бесплатна
LuppetX	Посредственно	Требуется доп. оборудование	+	Free Trial на час
XR Animation	Хорошее	Хорошее	+	Полностью бесплатна

Для наглядности, результаты сравнения 8-ми программ представлены в виде таблицы 1. Из данной таблицы можно видеть, что для дальнейшего использования программы захвата движения в связке с Unreal Engine, и с учетом того, что программа должна быть бесплатной и обладать возможностью считывать как мимики лица, так и движения пальцев рук; подходящей можно считать лишь одну программу – XR Animation. В дальнейшем развитии работы планируется применять именно эту программу.

Все программы тестировались на компьютере (PC) с использованием камеры смартфона на Android через DroidCam. Это обеспечивает удобство использования и мобильность, делая процесс считывания движений более гибким и доступным.

Отдельно стоит выделить появившиеся, недавно НО активно развивающиеся технологии искусственного интеллекта и машинного обучения в данной области. Например, MediaPipe4U[10] предоставляет набор библиотек и инструментов для быстрого применения методов искусственного интеллекта и машинного обучения в проекте Unreal Engine. Данный инструмент позволяет захватывать движения лица и всего тела прямо с камеры смартфона и передать их сразу в проект Unreal Engine. Помимо захвата движений данный инструмент может распознавать текст, преобразовывать речь и многое другое. Все функции работают как в режиме реального времени, так и в автономном режиме, с низкой задержкой и достаточно просты в использовании.

ЗАКЛЮЧЕНИЕ

В процессе данной работы был исследован многогранный инструментарий Blender в контексте создания 3D-моделей. Обзор возможностей Blender раскрывает его важную роль как мощного инструмента для дизайнеров и разработчиков, предоставляя широкий набор инструментов для моделирования, текстурирования, и анимации.

Был проведен общий обзор 3D-моделирования в Blender и в практической части были созданы две уникальные модели: конвейерная линия и мифическое существо: полукот-полусова.

Работа с Blender выявила его многослойные возможности: от базового моделирования до тонкой настройки анимаций и визуальных эффектов.

Для дальнейшего использования модели был проведен ее перенос в Unreal Engine, который представил свои уникальные вызовы. Несмотря на технологические преимущества FBX-формата, модели не всегда переносятся без проблем. Это потребовало дополнительной работы и творческого решения проблем для обеспечения корректного отображения и воспроизведения анимаций и моделей в Unreal Engine.

Иным вариантом создания фотореалистичных моделей был рассмотрен инструмент Metahuman Creator, генерирующий высококачественные модели, но лишь примерно похожих людей.

Для придания моделям реалистичных движений были рассмотрены методы motion capture и сравнены несколько программ, объединенных методом VMC, который способен передать движения напрямую в Unreal Engine.

Объединяя усилия Blender, программ для захвата движения и Unreal Engine, можно создать не только модели, но и визуализацию, готовую к интеграции в игровую или иную среду. Этот путь подчеркнул не только важность технических навыков, но и творческого мышления в процессе создания виртуальных миров. Все эти этапы в совокупности формируют полноценный цикл разработки - от идеи и моделирования до добавления его в реальный проект.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Unreal Engine 4 Documentation [Электронный ресурс] // Unreal Engine Documentation. URL: https://docs.unrealengine.com/. (Дата обращения: 27.11.2023)
- 2. Обучающий курс "Фабрика" [Электронный ресурс] // YouTube. URL: https://www.youtube.com/playlist?list=PLn6DikVGbeEiJFNb2_wfV2zg4BDm8xvs Q. (Дата обращения: 16.11.2023)
- Обучающий курс "Енот" [Электронный ресурс] // YouTube. URL: https://www.youtube.com/playlist?list=PLn6DikVGbeEgMvn_JJyX1Rnrt3Wlj0rvk. (Дата обращения: 22.11.2023)
- 6. Modeling Blender Manual [Электронный ресурс] // Blender Manual. URL: https://docs.blender.org/manual/en/latest/modeling/index.html. (Дата обращения: 14.11.2023)
- 7. Сравнение систем захвата движения для создания анимированных персонажей в Unreal Engine: научная публикация (не опубликованная) / Витюков Ф.А., Эвоян Э.Б. Москва, 2023. 2 с.
- 8. Public asset library [Электронный ресурс] // Poly Heaven. URL: https://polyhaven.com/. (Дата обращения: 22.11.2023)
- 9. Official VMC Protocol webpage [Электронный ресурс] // VMC Protocol specification. URL: https://protocol.vmc.info/english.html. (Дата обращения: 12.12.2023)
- 10. Плагин Unreal Engine для использования методов искусственного интеллекта в проектах Unreal Engine [Электронный ресурс] // Github. URL: https://github.com/endink/Mediapipe4u-plugin/. (Дата обращения: 22.12.2023)