数学分析习题: 第 11 周

梅加强

http://math.nju.edu.cn/~meijq

2007.5

说明: 只有习题是必须写在作业本上上交的, 思考题做好后可以交给我, 但必须是严格独立完成的.

习题:

- 1. 设 f 为多元函数, 证明如果 u, v 为单位向量, 且 u = -v, 则 $\frac{\partial f}{\partial u} = -\frac{\partial f}{\partial v}$.
- 2. 计算偏导数:
 - (1) $f(x,y) = x + y + \sqrt{x^2 + y^2}$, $\Re f'_x(3,4), f'_y(0,1)$,
 - (2) $f(x, y, z) = (\cos x / \sin y)e^z$, 求 $(\pi, \frac{\pi}{2}, \log 3)$ 处的一阶偏导数,
 - (3) $f(x,y) = \sin(x^2y)$, 求 (1,1) 处的偏导数.
- 3. 求下列函数的一阶偏导数:

(1)
$$z = xy + \frac{x}{y}$$
, (2) $z = \tan \frac{x^2}{y}$, (3) $z = \cos(x^2 + y^2)$,

(4)
$$z = \log(x + \frac{y}{x^2})$$
, (5) $z = x^2 y^{3/2}$, (6) $z = x^y$,

(7)
$$z = \arctan \frac{y}{x}$$
, (8) $z = e^{xy+yz+zx}$, (9) $z = \log(x_1 + x_2 + \dots + x_n)$.

- 4. 求下列函数的一阶和二阶偏导数:
 - (1) x^2y^3 , (2) $\log xy$,

(3) $\arcsin(x_1^2 + \dots + x_n^2)$,

- (4) e^{x^y} , (5) $\tan(\arctan x + \arctan y)$, (6) $e^{x^2 + xyz}$.
- 5. 设 z = f(xy), 证明 $x \frac{\partial z}{\partial x} = y \frac{\partial z}{\partial y}$.
- 6. 设 $u = e^x \cos y$, $v = e^x \sin y$, 证明

$$u_x' = v_y', \quad u_y' = -v_x'.$$

7. 记 $\Delta = \frac{\rho^2}{\ell x^2} + \frac{\rho^2}{\ell y^2}$, 称为平面 \mathbb{R}^2 上的 Laplace 算子, 证明上题中的 u,v 满足方程

$$\Delta u = u''_{xx} + u''_{yy} = 0, \quad \Delta v = v''_{xx} + v''_{yy} = 0.$$

$$\Delta r^{-1} = 0,$$

其中, Δ 为 \mathbb{R}^3 中的 Laplace 算子, $\Delta u = u''_{xx} + u''_{yy} + u''_{zz}.$

- 9. 求下列曲线在指定点的切线和法面方程:
 - (1) $\sigma(t) = (a\cos t \sin t, b\sin^2 t, c\cos t), \ t = \frac{\pi}{4},$
 - (2) $\sigma(t) = (t, t^2, t^3), t = t_0.$
- 10. 求下列曲面在指定点的切面和法线:
 - (1) $\Sigma(u,v) = (u, a\cos v, a\sin v), (u,v) = (u_0, v_0),$
 - (2) $z = x^2 + y^2$, (x, y, z) = (1, 2, 5),
 - (3) $\Sigma(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u), (u, v) = (u_0, v_0).$

思考题:

- 1. 设 f(x,y) 分别对于变量 x,y 为连续函数, 证明, 如果 f 对于其中一个变量是单调函数, 则 f 为二元连续函数.
- 2. 证明, 在本节定理 2(求导次序交换性) 中, 只要两个混合导数 f''_{xy} 和 f''_{yx} 之一在 (x_0,y_0) 连续, 定理结论同样成立.