B

Deep Learning - MAI

Convolutional neural networks

THEORY

Spatial Connectivity

- Some data has spatial correlations that can be exploited
 - 1D, 2D, 3D, ...
- Near-by data points are more relevant than far-away.
- Sparsify connectivity to reduce complexity and ease the learning

Weight Sharing

Sparse connectivity is nice, but we want to apply filters everywhere.

Each filter will get convolved all over the image: 2D activations matrix

In static we have sets of neurons sharing weights

In this context, what is a neuron?

Convolution in Action

Kernel size 3x3 (neuron input = 9)

1 0 1 0 1 0 1

Detect 'X'

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

Filter convolution process

Convolved Feature

Activations (pre-func.)

Image Transformations

 Convolving filters transform the image

 Let the model learn the kernels it needs

Convolution Details

Kernel size: Size of the receptive field of convolutional neurons

Stride: Steps size of convolution

Padding: Allows focus on border

- Most common fill: Zeros
- Valid (no padding): Internal only. May skip data. Reduces dimensionality
- Same: Keep dimensionality with stride 1

$$OutputSize = \frac{InputSize - KernelSize + 2 * Padding}{Stride} +$$

Dilated/Atrous Convolutions

Sparsify the kernel

- Increases perceptive field without added complexity
- Loses details, gains context
- Another hyperparam :(
- Used for
 - Down/Upsampling (segmentation)
 - High Resolution inputs

Output Volumes

- Typically, conv filters are full depth (N*N*input_depth)
- Each conv filter (often 3D) convolved generates a 2D plane of data
- Depth provides all the views on a part of the input
- Output volume: New representation of input with different dimensions

Depth-wise Separable Convolutions

Decreasing the complexity and cost of convolution

- 1. Depth-wise convolutions
 - Filters: N*N*1
- 2. Point-wise convolution
 - Filters: 1*1*input_depth

Params: N*N+N

To Pool Or Not To Pool

- Operation: Max or Avg *
- Dimensionality reduction (along x and y only) *
- * Rarely applied full depth
- Parameter free layer
- Hyperparams: Size & Stride *
- Loss in spatial precision / Robust to invariance

Other means to reduce complexity

Depth-wise separable convs, bigger conv. strides

Spatial Pyramid Pooling (SPP)

- Multi-scale Pool (by powers of 2)
- Often used between conv and fc

More alternatives: Atrous spatial PP, Global average pooling, Pyramid pooling module, Adaptive PP

Practical Tips XI

Convolutional

- Small/big filters (**3x3**, 5x5, 7x7)
 - Cheap/Expensive
 - Local/General
 - Bigger/Smaller outputs (stride)
- Kernel Size = input size: fc
- Kernel size = 1x1: Alter depth)

Pooling

2x2, stride 1 is the least invasive

- Kernel size (conv & pool)
- Stride (conv & pool)
- Padding (conv & pool)
 - Num. filters
 - Dilatation rate

The Challenge

ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC'12)

- Image Classification: 1,000 classes
- Training: 1.2M
- Living things + Human-made objects
 - 120 breeds of dogs

Data Augmentation for CNNs

Apply what is safe for each case

- Horizontal/Vertical flips
- Random Crops
- Color Jitter
- Rotation
- ***** .

CNNs Big Bang

AlexNet (2012)

- Breakthrough in ILSVRC
- ❖ 5 convs+pools, ReLU, 2 dense, and dropout
- 62M parameters

On the shoulders of giants

A new Standard for CNNs

VGG 11/13/16/19 (2014)

- Prototype of (conv-pool)*+dense* architecture
- 133-144M parameters
- 3x3 convs only

The Inception Family

GoogLeNet (2014)

- The Inception block
- Let the model decide the kernel size
- Better scale adaptation
- ♦ Bottleneck 1x1 conv to make it feasible

1×1

convolutions

No FC: Global Average Pooling (GAP)

The Skipped Connection

ResNet (2015)

- Residual blocks / Skip connections
- Deeper should never be worse
 - Learning the identity is hard
 - Learning to cancel out is easy
- Shallow ensemble of nets
- Train up to 1K layers (do not!) *
- ILSVRC'12 human level

Image

7x7 conv, 64, /2 3x3, pool, /2 3x3 conv. 64 3x3 conv, 64

> 3x3 conv, 64 3x3 conv, 64

3x3 conv. 128 3x3 conv. 128

3x3 conv. 128 3x3 conv. 256. /2

3x3 conv, 256 3x3 conv. 256

3x3 conv, 256

3x3 conv, 512

3x3 conv. 512 3x3 conv. 512

avg pool

fc 1000

Inverted Residuals and Linear Bottlenecks

- Upsample depth
- Depth-wise conv
- Point-wise conv

(a) Residual block

(b) Inverted residual block

- Non-linear mid
- Residual link **
- **Efficient** *

Sponsored by:

The manifold hypothesis

EfficientNet

Should I go deeper, wider or bigger?

- Find a balance between them (they are all related!)
 - Width (neurons per layer)
 - Depth (layers)
 - Resolution (input)
- Choose a size
 - EfficientNetB0-B7

Noisy Student

A semi-supervised training paradigm

- 1. Train model A (teacher) with the labeled data
- 2. Use A to generate pseudo-labels for an unlabeled data set
- 3. Train model B (student) with both labeled and pseudo-labeled data

- Iterate, re-labeling the unlabeled data each time
- Highly regularized (noise!) student to guarantee improvement
- Each student has more capacity than the previous

Visualizing CNNs

The Basics

- NN are representation learning techniques
- CNNs build hierarchically complex features
 - From Gabor filters to dog faces
 - Induced by convolution
 - Tend to focus on the "non obvious for humans"
 - Backgrounds, textures
- The closer to the loss, more classifier (task) and less representation (data)

Ways of Looking at CNNs

- Attribution: Where is the network looking?
 - Grounded. Instance based.
 - Explainability in practice.
- * Feature Visualization: What is the network seeing?
 - Uncontextualized. Maximization based.
 - Diagnosys & Insight
- Exemplification: Which images cause a maximum activation?
 - Samples from a distribution

Attribution

- Finding the importance of pixels
- Layerwise Relevance Propagation (LRP)
 - Backpropagate an output. Find the relevance of each neuron
 - Weighted by CNN parameters

true: slightly dirty

score relevance: -2.47

Feature Visualization

Optimizing the input to maximize the output

A neuron

A channel

A layer (DeepDream)

High level

Exemplification

- Finding images within a dataset maximizing outputs
 - Subjective
 - Partial
 - Stochastic

Playing with CNNs

Encoder-Decoder CNNs

- Pixel-wise classification task (image reconstruction loss)
- Bottlenecking makes it cheaper

Automatic Image Colorization

Another pixel-wise classification application

Transposed Convolution Deconvolution

- Reverse effect of regular convolution (upsample)
- Learnt interpolation
- Applications
 - Segmentation
 - GANs
 - Super-Resolution
 - Conv. Autoencoders

Input Kernel Output

0 1 0 1 0 0 + 0 1 0 0 + 0 2 + 0 3 = 0 4 6 2 4 12 9

20

Faster Segmentation

- Pixel-wise classification (bounding box)
 - Can be done with a "regular" CNN
- R-CNN: Propose crops (SVM). Extract features (CNN). Classify crops (SVM).
- Fast R-CNN: Extract features. Propose crops. Classify/Bounding Box (CNN) *
- Faster R-CNN: Propose crops through a specific sub-net (RPN)
 - YOLO v? (no regions, faster, less accurate)
 - Divide into grid. Predict class and bounding box for each cell.

Better Segmentation

- Mask R-CNN
 - Faster R-CNN for object detection
 - FCN for instance segmentation (pixel classification)
- Xception
 - Depth-wise separable Convs (inverted order & w/o non-linearity)
 - Skip connections
 - Atrous SPP

Style Transfer

- What do the correlation of activations intra-layer tell us?
 - What if we force it on another image?
- Gram matrix represents the style
 - Channel-wise (cXc)
 - Several mid layers
- Activations represents the content
 - One mid layer

- Optimize the **input** to minimize 2 losses
- Use a pre-trained net frozen
- Improved and extended

Image Generation

- StyleGAN2 + pix2pixHD
 - Pixel-wise generative models
- Flow-edge Guided Video Completion
- https://colab.research.google.com/drive/1 KznIbRyNdiNBrrVbD7uolccdf9rngVUE?us p=sharing

Handwritten Generation

- https://github.com/sjvasquez/handwriting -synthesis
- https://arxiv.org/abs/1308.0850
- https://www.calligrapher.ai/

- [1] http://vordenker.de/ggphilosophy/mcculloch_a-logical-calculus.pdf
- [2]http://www-public.tem-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Rosenblatt58.pdf
- [3] http://www.dtic.mil/dtic/tr/fulltext/u2/236965.pdf
- [4] https://en.wikipedia.org/wiki/Perceptrons_(book)
- [5] http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
- [6] https://en.wikipedia.org/wiki/Perceptrons_(book)
- [7] Werbos et al. "Beyond regression:" new tools for prediction and analysis in the behavioral sciences." Ph. D. dissertation, Harvard University (1974).
- [8] Rummelhart et al. "Learning Internal Representations by Error Propagation". MIT Press (1986).

- [9]https://towardsdatascience.com/effect-of-gradient-descent-optimizers-on-neural-net-training-d44678d27060
- [10] https://arxiv.org/abs/1711.05101
- [11] https://bbabenko.github.io/weight-decay/
- [12] https://towardsdatascience.com/weight-decay-l2-regularization-90a9e17713cd
- [13] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual networks behave like ensembles of relatively shallow networks." Advances in neural information processing systems. 2016.
- [14] https://thegradient.pub/semantic-segmentation/
- [15] https://arxiv.org/pdf/1603.08511
- [16]
- https://pdfs.semanticscholar.org/5c6a/0a8d993edf86846ac7c6be335fba244a59f8.pdf

- [17] https://arxiv.org/pdf/1606.00915.pdf
- [18] https://arxiv.org/pdf/1610.02357.pdf
- [19]

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_St

- yle_Transfer_CVPR_2016_paper.pdf
- [20] https://arxiv.org/abs/1603.08155
- [21] https://arxiv.org/abs/1603.03417
- [22] https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
- [23] https://arxiv.org/pdf/1903.07291.pdf
- [24] http://nvidia-research-mingyuliu.com/gaugan
- [25] Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture;
- increasing shape bias improves accuracy and robustness." arXiv preprint arXiv:1811.12231 (2018).

- [26] Beery, Sara, Grant Van Horn, and Pietro Perona. "Recognition in terra incognita."
- Proceedings of the European Conference on Computer Vision (ECCV). 2018.
- [27] https://distill.pub/2017/feature-visualization/
- [28] https://distill.pub/2018/building-blocks/
- [29] Montavon, Grégoire, et al. "Layer-wise relevance propagation: an overview."
- Explainable AI: interpreting, explaining and visualizing deep learning. Springer, Cham, 2019, 193-209.

[30]

https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57dlab5337ce

[31] Hebb, D.O. (1949), The organization of behavior, New York: Wiley

- [32] Dauphin, Yann N., et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization." Advances in neural information processing systems. 2014.
- [33] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- [34] Viazovetskyi, Yuri, Vladimir Ivashkin, and Evgeny Kashin. 'StyleGAN2 Distillation for Feed-Forward Image Manipulation'. 7 March 2020. http://arxiv.org/abs/2003.03581.
- [35] https://medium.com/@jonathan_hui/gan-stylegan-stylegan2-479bdf256299
- [36] https://www.justinpinkney.com/making-toonify/
- [37] http://chengao.vision/FGVC/files/FGVC.pdf
- [38] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks."
- Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[39] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es

