Identify Reviewers from their Comments

Mengyi Sun

Shang Zhang

Department of Ecology and Evolutionary Biology
University of Michigan, Ann Arbor

mengysun@umich.edu

y Department of Physics University of Michigan, Ann Arbor

zhshang@umich.edu

Abstract

The peer-review process is quintessential for ensuring the validity of scientific research and provides assessment about the importance of scientific publications. By definition, the peerreview process should be critical and rigorous. To guarantee this, it is important to ensure reviewers can express their opinions without the concerns of targeted harassment from the authors. Therefore, in most peer review process, reviewers are anonymous. Yet, reviewer comments unavoidably provide some information about the identities of the reviewers. In our work, we showed that once we can narrow down the reviewers to a reasonable amount of candidates, simple author attribution algorithms trained on the public-available corpus from the candidates allow identifying the reviewers with relatively high accuracy. Our work has important implications for privacy protection during and after the peer-review process.

1 Introduction

The importance of the peer-review process in scientific research can hardly be overemphasized. Peer review mainly serves two functions(Kelly and Adeli, 2014): 1) it assesses the validity and importance of scientific publication; 2) it helps the authors of the publication improve their work. For the well-functioning of peer review, most of the reviewing processes are so-called single-blind peer review processes. Namely, reviewers' identities are anonymous to the authors. This policy serves to protect the reviewers from the potential resentments from the authors so that they can express their comments freely. Most of the journals also do not provide the reviewers' comments to the general public when a paper is published. Nevertheless, since reviewers' comments are important information for the general public to assess the published paper, more and more journals start to publish reviewer comments while holding the identity of reviewers confidential (Polka et al., 2018). Most importantly, to help the authors improve their work and to ensure the fairness of the peer review process, most reviewers' comments would (and should) be provided to the authors even when the reviewed manuscripts are rejected. However, the reviewers' comments unavoidably provide some clues about the identities of the reviewers, such as the research field that the reviewer might come from, their opinion toward certain statements, or the related publications that they are familiar with. These clues might be quite revealing about who the reviewers might be. With the advancement of natural language processing techniques (Argamon et al., 2009), more information, such as gender, age, and even native language can be obtained from the (unmodified) comments. Therefore, it is of interest to ask whether or not the anonymity really holds well during the reviewing process. In order to address this question, we manually collected reviewer comments of 25 prolific reviewers from the journal Biology Direct. We further manually collected their scientific publications from PubMed.We trained two simple models on their scientific publications, and we show that we can achieve relatively high accuracy (40 ~ 50 percent) in predicting the identities of the reviewers from their reviewer comments.

Our work will definitely be of interest for the academic community as a whole, given that the vast majority of the reviewers choose not to reveal their identities during the reviewing process(Bravo et al., 2019). Moreover, our work can provide information for designing algorithms to re-anonymize the reviewer comments, with a focus on re-anonymizing the comments of vulnerable reviewers whose comments disclose too much information about their identities.

(Disclaimer: we hold no position about whether

or not the reviewing process should be fully transparent (in fact, at least one of the authors favor reviewers that signed their names during the reviewing process). However, we believe that any policy should be well informed by its potential outcomes.)

2 Problem Definition and data

Our problem is a closed-set authorship attribution problem (Stamatatos, 2009). Closed-set authorship attribution refers to tasks that require inferring the author of a corpus by selecting from a set of candidate authors. Specifically, our problem can be treated as cross-domain authorship attribution: we predict authors of reviewer comments by a classifier trained on their scientific publications, which are not reviewer comments. In our final dataset, we have 25 candidate authors. We collected their reviewer comments from Biology Direct (https://biologydirect. biomedcentral.com/), an open-access journal with unique publication philosophy. They published both the reviewers' comments and their names. We choose the 25 most prolific authors with at least ten reviewer comments as our candidates. For each candidate, we retrieved the ten longest reviewer comments. We then downloaded their publications from PubMed (https://www.ncbi. nlm.nih.gov/pubmed/) manually. For each candidate, we manually collected those papers that the candidate serves as the correspondent author or first author, prioritizing single-author papers. We divided the reviewer comments into a dev set and a test set (with fix random seed, to make the results across different algorithms comparable). Each set contains five reviewer comments. Our training set is the reviewers' published papers. Because we manually collect the data, the text is quite clean except for some copy-paste errors from pdf files, and misrepresentation of mathematical symbols.

We use table 1 to give one example of the 25 reviewers we collected. And table 2 describes some simple statistics of our dataset.

3 Related Work

There is very little previous research on identifying reviewers from their comments. The only publication (Nanavati, 2011) with regard to identifying reviewers from their comments formulate the question as an in-domain authorship attribution task: they try to predict reviewer identity from

their other reviews with known authorship. This is not a very realistic setting because, in most cases, we do not have access to other reviewer comments of the candidates. Notice that although their results are not directly comparable to ours, they showed that simple algorithms can perform surprisingly well: a naive bayes classifier with a set of tf-idf words as features (which, by the way is not the most appropriate feature in authorship attribution) can reach 75 percent accuracy on conference reviews with ~ 15 candidates. This suggested that it might not be very hard to identify reviewers from their comments and henceforth put serious concern about the confidentiality of the peerreview process. Albeit there are no previous tasks that focus on identifying reviewers using classifiers trained on publicly available scientific publications, authorship attribution (Stamatatos, 2009) is an area with rich NLP research history. So there are a lot of relevant researches, such as predicting author from their citations (Hill and Provost, 2003), cross-domain fan-fiction authorship attribution (Kestemont, 2018), etc. The performance of authorship attribution depends a lot on the specific task, so it is hard to predict what should be the expected baseline performance, and it is generally hard to compare the performance for methodologies from different tasks. However, in previous studies, the vast majority of best author attribution algorithms use support vector machines, and henceforth support vector machine is widely used as a baseline. Therefore, in our task, we use support vector machine as one of the baselines.

4 Methodology

We implemented simple logistic regression in our task. We reasoned that since our data set is small, simple logistic regression might perform better than complicate learning techniques, which is also true for authorship attribution in general (Kestemont, 2018). Our features for classification are the top 500 most frequent words, the top 1000 most frequent 3-grams of English characters and punctuation, and 26 types of part of speech tags in Penn Treebank tagsets(Marcus et al., 1993). The top 500 words and top 1000 3-grams were extracted from all reviewer comments unsupervisedly. Notice we do not explicitly and systematically use dev set for tuning parameters, but we do use dev set to empirically help us narrow down efficient features (in that sense, the dev set is still dev set

Reviewer name	# of reviews	# of single author publications	# of correspondent author publications
Pierre Pontarotti	10	3	7

Table 1: One example of collected data

Simple statistics	
Total number of reviewers	25
Total number of reviews	25×10
Total number of publications	25×10
Average number of words per review	678.08
Average number of words per publication	4518.25

Table 2: Description of the dataset

for us). To prevent overfitting, we use AdamGrad as our optimizer, and we stop the training early—we only trained for ten epochs.

5 Evaluation and Results

We evaluated the overall performance of our algorithms by accuracy. Since the number of the corpus of each author equals to each other in our training set, dev set, and test set, the accuracy will be equal to micro-precision and micro-recall, and henceforth evaluating the accuracy is equivalent to evaluating the micro-f1 score. We have two baseline algorithms: 1) Randomly sample candidates based on their frequency; 2) Support vector machine with a linear kernel using the same set of features we used in our logistic regression. We use 5-fold cross-validation on training corpus (scientific publications) for selecting the best C parameters for support vector machine classification using micro f-score. Because of the evenness of our dataset, random sampling from the authors performed very badly. As expected, the random guess can only guess correctly around 4 percent of the time (table 3). Both the support vector machine baseline and our logistic regression algorithm perform much better (table 3). And the logistic regression can indeed outperform the support vector machine in this case, both for the dev set and the test set. In table 3, we showed the accuracy of different methodologies in both the dev set and test set. Besides the selected features of top 500 words-top 1000 3-grams-26 POS tags as we discussed, we also included the performance of our algorithms using a smaller dimension of selected features (top 50 words-top 50 3-grams-26 POS tags) as a comparison.

We also provide a plot of the confusion matrix of test set results of our logistic regression model (fig 1).

6 Discussion

Our simple logistic regression without complicated tuning outperforms both the random sample baseline and the support vector machine baseline. The main reason we think is because of the small scale nature of our dataset, for which simple algorithms generally perform better. Interestingly, we find a positive correlation between the total length of training corpus and the f-score on test-set for each class label (Spearman's rho=0.47, p=0.016), suggesting that one way to boost the performance is to collect more data. Moreover, we do not find a correlation between the fraction of words of the single-author corpus in the training set and the f1scores for each class label. This can be due to: (1) the sample size is small (n=25),(2) the first author or senior author write a large portion of the published scientific corpus. If the second point is true, we can collect a lot of training corpus, especially for prolific scientists. And if the dataset is significantly enlarged, the support vector machine and even deep learning might be more suitable for those tasks. We have to emphasize that our results are preliminary, given the time limit of the course, although the close to 50 percent accuracy (we are surprised by that) is enough for sending a warning signal for the current scientific reviewing system. Nevertheless, to illustrate the issues, we would need to enlarge the dataset to include more candidates (with more training data, of course).

7 Conclusion

Our current results suggested that simple algorithms can be quite accurate in identifying anonymous reviewers, at least if we have a reasonable number of author candidates. In general, as the

Accuracy	dev-set	test-set
Random sample	4.8%	4.8%
SVM (top 50 words-top 50 3-grams-26 POS tags), $C = 0.001$	37.6%	44.8%
SVM (top 500 words-top 1000 3-grams-26 POS tags), C = 0.005		53.6%
LR with AdamGrad (top 50 words-top 50 3-grams-26 POS tags)		36%
LR with AdamGrad (top 500 words-top 1000 3-grams-26 POS tags)		55.2%

Table 3: Results of different methodology and different feature selections

Figure 1: Confusion matrix of the 25 reviewers in test sets with the model LR with AdamGrad (top 500 words-top 1000 3-grams-26 POS tags)

candidate number increases, the attribution becomes less accurate, so whether or not the algorithm will perform well depends on whether or not in the real world we can narrow down the reviewers into a small set of candidates. The precise magnitude of a 'reasonable' number of candidates will be the interest of our future research.

8 Other Things We Tried

At the very beginning we try to write manuscript to automatically download the correspondent text and clean the data. However, given the heterogeneity of text data (which is generally true for NLP tasks), this simply didn't work well. Albeit so, during the process we figure out some efficient coding to at least get the names of the authors, which provide great convenience for our later manually collection, also trigger us to conceive about how to collect data efficiently in NLP task.

9 What You Would Have Done Differently or Next

In the beginning we plan to frame our problem as an authorship attribution problem. However, due to the time limit and the convenience, we cannot achieve that, so we change our project to a small scale authorship attribution task instead. That said, in the future we will definitely incorporate the authorship meta-data into prediction, which can be helpful and are not normally incorporate in pure authorship attribution tasks. Moreover, we are going to figure out some other ways for more efficient and systematic feature selection, which will be important for our future work.

10 Author contributions

Conceptualization: Mengyi Sun. Data curation: Mengyi Sun and Shang Zhang. Training methodology: Shang Zhang and Mengyi Sun. Training code implementation: Shang Zhang. Writing: Mengyi Sun and Shang Zhang.

Acknowledgments

We thank our academic mentors, Prof Jianzhi Zhang and Prof Xiaoming Mao for valuable comments. We also would like to express our gratitude to Prof David Jurgens for his suggestions about our projects. Finally, we would like to thank our colleague Liuxing Shen for providing us precious computational resource.

References

Shlomo Argamon, Moshe Koppel, James W Pennebaker, and Jonathan Schler. 2009. Automatically profiling the author of an anonymous text. *Commun. ACM* 52(2):119–123.

Giangiacomo Bravo, Francisco Grimaldo, Emilia López-Iñesta, Bahar Mehmani, and Flaminio Squazzoni. 2019. The effect of publishing peer review reports on referee behavior in five scholarly journals. *Nature communications* 10(1):322.

Shawndra Hill and Foster Provost. 2003. The myth of the double-blind review?: author identification using only citations. *Acm Sigkdd Explorations Newsletter* 5(2):179–184.

Jacalyn Tara Sadeghieh Kelly and Khosrow Adeli. 2014. Peer review in scientific publications: benefits, critiques, and a survival guide.

Mike et al Kestemont. 2018. Overview of the author identification task at pan-2018: cross-domain authorship attribution and style change detection. In *CLEF 2012 Labs and Workshop, Notebook Papers*. Citeseer.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of english: The penn treebank.

Mihir et al Nanavati. 2011. Herbert west-deanonymizer. In *HotSec*. Citeseer.

Jessica K Polka, Robert Kiley, Boyana Konforti, Bodo Stern, and Ronald D Vale. 2018. Publish peer reviews.

Efstathios Stamatatos. 2009. A survey of modern authorship attribution methods. *Journal of the American Society for information Science and Technology* 60(3):538–556.

A Supplemental Material

A.1 Top 500 words selected from reviews data

the ,

is that) (be not this are for Ι The it as with by have on authors would ? or from an ١, , , but more can which one some In This genes these evolution paper at. their could

should

other all

proteins

do

of to

and

in

а

	_
if	results
they	species
been	work
there	new
also	even
gene	its
It	2
manuscript	et
might	here
was	selection
such	life
about	case
has	much
than	hypothesis
we	DNA
very	;
tree	eukaryotes
between	However
analysis	genomes
only	genome
different	sequence
may	you
two	because
what	study
data	first
were	into
model	sequences
interesting	my
think	-
does	possible
important	For
any	A
many	why
will	well
present	both
evolutionary	like
[example
]	several
origin	using
	bacteria
protein	number
most	al
no	discussion
how	RNA
1	complex
see	eukaryotic
's	e.g
used	cells
same	If
SO	bacterial

based useful evidence What ancestor system conserved point three out being whether specific seems since domains scenario problem level particular then use Figure domain genetic phylogenetic explain still where rather general cell provide too way us author single when amino make functional clear least time page Koonin models methods just presented found likely set organisms major part those biological Archaea family function good There me fact code question including early within cellular better given related them information main really membrane am viruses view transfer need find trees role 4 our few common HGT analyses suggest less idea distribution similar

without replication lineages before mutations binding archaea They current especially comments approach . . . state form seem although

each
evolved
section
up
known
archaeal
show
either
quite
enzymes
instance
LUCA

structure cases he understand

comment

proposed

process involved modern

article know another sites points introns already literature

further
difficult
issue

multiple
One
history
novel
functions
families
while
method
made
context
shown
n't

prokaryotes discussed viral thus high host

expression consider considered against available

As biology sense possibility

residues

large systems indeed perhaps group i.e argument conclusions

text
world
terms
transition
opinion
say
nucleus
your
true
human

structural

had

Is

probably

did	itself
second	detailed
described	translation
theory	identified
9	version
similarity	mitochondria
last	genomic
support	provides
root	Please
his	instead
positive	interest
ancestral	&
type	explanation
issues	among
therefore	makes
mean	claim
loss	test
features	take
due	who
order	conclusion
over	originated
small	rates
ancient	vertical
prokaryotic	We
acids	Pol
mentioned	community
TOL	7
clearly	natural
result	nature
molecular	published
structures	certainly
S	types
interactions	On
paragraph	studies
after	simple
experimental	concept
various	far
How	examples
highly	relevant
yet	mitochondrial
recent	prediction
search	processes
now	through
reference	principle
6	agree
change	mutation
presence	under
help	best
however	long
review	hypotheses
But	done
0	

additional	pro
provided	ter
though	ere
correct	res
often	nce
understanding	ons
papers	her
appears	gen
Comment	his
following	for
argue	con
course	thi
groups	ate
shows	not
short	ver
observed	tho
believe	are
alternative	tic
distinct	ted
actually	oul
significant	uld
title	all
propose	ica
knowledge	ene
needed	cti
real	ive
homology	com
simply	est
!	act
predicted	enc
key	ome
future	The
kind	pre
acid	ect
position	ote
homologous	int
addition	ith
reason	men
	tin
A.2 Top 1000 3-grams of English characters	ese
and punctuation selected from reviews	tra
data	sti
t h a	eri
the	per
ion	nal
tio	ain
ing	ide
and	ase
ent	wit log
hat tha	
ati	eve
all	

ar	Y	tat
nte	е	spe
ho	r	use
is	t	mpl
st	r	igh
cal	l	sis
er	3	ren
in	3	pos
ore	e	lar
ut:	i	ses
es	3	dis
VO.	1	omp
ble	e	ies
la	t e e e e e e e e e e e e e e e e e e e	som
an	t e e e e e e e e e e e e e e e e e e e	red
ot]	n	anc
era	a	ial
it	i	ine
rea	a	tan
or	5	olu
st	a	nde
au	ī.	ein
ti	V	lut
ra	t e e e e e e e e e e e e e e e e e e e	but
or	t e e e e e e e e e e e e e e e e e e e	sed
rai	n	nes
utl	n	ell
ur	е	ste
ct	е	ity
sei	n	olo
de	r	que
ch	a	wou
he	5	man
ave	е	sio
ce	S	tur
ple	е	can
nt	i	ree
ha		ind
11	Y	rec
ra	1	hou
pe	C	imp
pa	r	mor
ro	t	ari
SS	i	sho
one	е	inc
eve	0	ona
fe		fic
ria	a	cri
te	S	ula
roi	n	equ
ea	r	exp

nts	ich
fro	ffe
din	app
lea	end
abl	mod
een	ele
han	nom
ifi	bio
ans	cle
ode	nta
por	rel
cat	uen
out	es,
eci	nat
eas	dif
ten	oti
ght	min
pla	uch
tei	eth
ely	orm
mat	arc
ous	dat
ana	any
kar	mes
hin	des
nsi	tly
lin	tor
age	lic
eno	ara
ont	iff
und	ape
sit	ges
scr	les
ryo	rti
rch	esi
met	lit
ori	rre
ult	how
wor	ali
sin	clu
tre	gin
whi	ose
art	ntr
bac	ost
es.	OSS
cou	aly
yot	del
hic	cie
ite	eti
den	onc
0.770	nl:

ove

pli

ven	tte
see	nst
omm	ery
ead	tru
cul	rac
als	tem
ini	tri
abo	unc
rip	on.
ani	ncl
vel	sse
ser	rta
mpo	ism
rop	bet
mai	hae
rob	eme
ina	ike
nin	nse
lec	rin
eco	hei
ndi	eir
ues	mic
Thi	lys
pap	rou
rig	imi
cel	euk
rib	sid
ami	isc
whe	rit
tro	eta
uct	ref
seq	arg
nct	lik
usi	hen
uka	ime
ved	er,
ame	
ata	rge wer
tai	has
ipt	oge
ond	atu sib
rep vid	
	ong
evi ill	net
ili	our
	rst
sel m:1	erm
mil	ela
ass	fun
nar	eal
hey	lso

erv	che
rio	cur
oma	ink
phy	usc
fin	tim
ext	pti
igi	hyl
ugh	xpl
cen	lis
on,	mol
ign	ert
sim	vir
	tif
ly,	
ctu	oin
ual	ogi
oug	ibl
nly	gan
tal	eed
suc	esp
ork	was
cor	mig
oun	ogy
ner	onl
ust	owe
pot	bas
ens	nit
ned	mos
iol	pen
ron	las
etw	mme
rov	iou
dom	cas
anu	eat
ysi	ila
its	arl
two	mer
ruc	mit
bou	rma
ien	esu
ern	may
tab	RNA
osi	cla
sto	ded
nis	lig
bee	rly
ile	mon
cus	ete
ire	now
nus	mal
ful	bil
ast	olv

ed.	org
oes	amp
sul	mpa
ole	bra
sig	thr
ake	erg
dic	ang
scu	ane
low	ems
wha	уро
hem	ail
rev	att
iat	stu
ept	cer
ach	rga
lie	epe
rth	pha
qui	hos
cia	lai
ici	val
nge	mbi
kin	ory
pri	ade
cod	tud
lan	ord
sub	ivi
wee	rve
aea	ict
twe	poi
ntl	ize
ath	fac
tia	gic
lve	vin
duc	eli
ssu	omi
uss	emb
har	igu
lus	ura
lem	gre
lle	div
ns.	oba
led	icu
uni	oni
yst	sam
opo	vie
exa	kno
edi	ovi
hyp	way
iss	uta
omo	iew
aus	own

lud	wev
fam	det
hod	mul
ima	sur
eem	pon
ise	old
reg	gra
ard	ppe
ngl	sug
ino	urr
los	ced
ife	ugg
bin	cif
rie	non
ece	lev
sys	ber
dit	oph
add	ume
irs	ris
ylo	gur
mis	orr
ed,	fir
nci	pat
ace	xpe
inf	fie
bec	het
wil	yme
esc	Fig
gge	cep
doe	al.
ily	rgu
lif	och
dep	mbe
ack	rim
ope	lts
asi	ucl
lex	pol
son	ffi
cau	eca
you	exi
sup	don
mea	hil
bse	rol
gro	ean
xam	sts
How	inv
ied	
	num
ena	ish
rem	typ
ras	nuc
roc	nda

acc	nto
lti	uit
set	tua
chi	rus
new	epl
lon	rod
bly	ipl
hig	hom
re,	lac
ano	els
ibu	ice
mem	bli
ram	ian
nco	nea
mak	ndo
var	lls
nfo	cid
odu	mbr
efe	spo
ret	opi
pea	oup
ype	muc
cho	gni
fol	sms
ric	ns,
ppr	ito
ema	umb
alo	hro
efi	win
tit	ts.
upp	ics
ppo	ves
nee	gue
oll	kel
oce	nsf
udi	ecu
dri	abi
hap	rai
wel	udy
mar	
	sum
sec	adi
efo	fec
DNA	cro
tel	vat
ccu	oso
ann	alt
110	bst
sce	aci
obl	rsi
mut	tie
For	llu

too	til
sym	ega
hol	req
hel	cin
van	nth
oli	top
se,	rse
nds	aps
rte	ndr
nor	hre
med	nec
nno	def
agr	rag
phi	toc
err	qua
rok	•g.
ubs	elo
isi	ero
iru	ibi
ude	obs
dea	aso
eag	nme
sfe	ng.
iso	alu
bot	tex
emp	ddi
zym	e.g
let	why
le,	ood
ech	ubl
occ	on-
oka	col
tar	jus
giv	exc
efu	eff
vio	pic
nic	hon
gai	due
erf	ier
syn	itt
sea	siv
oon	ng,
cit	ota
xis	pin
roa	ute
200	tis
ett	nvi
sev	ira
sue	ita
ify	onf
er.	lab

dee	100
nd,	urt
cre	zat
uce	gly
ods	enz
odo	onv
sol	unt
ymb	she
ce,	liz
yin	get
lul	lth
apt	re.
nvo	war
xte	hed
is,	cyt
len	gou
riv	riz
idu	uri
car	iza
odi	ajo
tag	jor
zed	fte
rmi	eva
fit	lue
rva	mun
ogo	edu
eng	ppl
ibe	uir
mpr	iga
mmo	ynt
oac	es)
egi	bel
obi	rna
roo	cts
tle	avi
tec	nif
abs	mmu
ora	ale
nt.	bab
pub	tas
fou	sco
heo	rde
cto	icr
ios	epr
shi	sci
nzy	nt,
put	arr
eac	nve
fil	oot
tid	gle
	lim
eor	TTIII

ros	RBS
ssa	VBD
rpr	IN
Коо	FW
nov	RP
tak	JJR
emi	JJS
aga	PDT
cce	MD
erl	VB
ctl	WRB
bes	NNP
ibo	EX
dev	NNS
adv	SYM
sma	CC
mot	CD
rap	POS
oly	
vis	
dge	
nam	

A.3 POS tag list from Penn Treebank

```
LS
TO
VBN
, ,
WP
UH
VBG
JJ
VBZ
--
VBP
NN
DT
PRP
WP$
NNPS
PRP$
WDT
(
)
```

\$ RB RBR