Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Xxx Yyy

Nr albumu: 000000

tytuł

Praca licencjacka na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra Roberta Dąbrowskiego** Pion Zastępcy Kanclerza ds. Informatycznych

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Tu będzie abstract (skrót)

Słowa kluczowe

słowa kluczowe

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.0 Matematyka, Informatyka:
- 11.3 Informatyka

Klasyfikacja tematyczna

Information systems Information systems applications Decision support systems Data analytics

Tytuł pracy w języku angielskim

English title

Spis treści

W	prowadzenie	5
1.	Architektura	7
2.	Technologia	11
3.	Funkcjonalności	13
	3.1. Funkcjonalności dla Studentów	13
	3.1.1. Predykcja ocen	13
	3.1.2. Remomendacja seminariów	13
	3.1.3. Rekomendacja przedmiotów	13
	3.2. Funkcjonalności dla Administracji	
	3.2.1. Predykcja popularności przedmiotów	
Bi	bliografia	15

Wstęp

Celem projektu było stworzenie serwisu internetowego wspierającego studentów w procesie doboru przedmiotów i konstruowania spójnego planu zajęć. Serwis miał za zadanie umożliwić studentom lepsze planowanie ścieżki studiów i kariery zawodowej poprzez proponowanie przedmiotów, które mogą pasować do upodobań konkretnego studenta. Propozycje zostały przydzielone na podstawie dotychczas wybieranych przedmiotów i otrzymywanych z nich ocen. Dodatkowym wymaganiem projektu było oferowanie usług przewidywania dla konkretnych studentów ocen z przedmiotów, których jescze nie ukończyli lub nawet nie podjęli. Ponadto serwis oferuje wsparcie dla uniwersytetu w postaci przewidywania ilości studentów którzy zapiszą się na konkretny przedmiot.

Rozdział 1

Architektura

W architekturze i logice naszego systemu wyróżniamy następujące komponenty:

- Chmura Sercem systemu jest główny serwer wraz z innymi usługami znajdujący się w chmurze internetowej. Znajduje się na niej serwer bazy danych, serwer WWW oraz serwer usług analitycznych.
- RDB Relacyjna baza danych zawierająca statystyczne dane dotyczące zdawalności przedmiotów przez studentów, ich zapełnienia, popularność itd. Stanowi bazę do tworzenia kostek analitycznych.
- Kostka OLAP struktura danych, która pozwala na szybką analizę danych. Przechowuje ona dane w sposób bardziej przypominający wielowymiarowe arkusze kalkulacyj-

ne niż tradycyjną, relacyjną bazę danych. Rozmieszczenie danych w kostkach pokonuje ograniczenia relacyjnych baz danych.

- Analysis Service usługi analityczne dokonujące analizy danych za pomocą algorytmów uczenia maszynowego oraz data mining.
- USOS Api API udostępniane przez system USOS. Nasz system wykorzystuje je w celu zebrania danych zalogowanego użytkownika niezbędnych do zarekomendowania mu tego czego oczekuje.
- Strona WWW interfejs za pomocą którego użytkownik może przesyłać prośby o wykonanie udostępnianych przez system rekomendacji.
- Serwer WWW udostępnia użytkownikom stronę internetową, w naszym systemie pośredniczy między interfejsem użytkownika a bazą danych.

Schemat działania i komunikacji między poszczególnymi komponentami wygląda następująco:

- 1. Na samym początku działania system tworzy relacyjną bazę danych zawierającą dane statystyczne z USOSa.
- 2. Po stworzeniu bazy danych system wykorzystuje usługi Analysis Services w celu stworzenia kostki analitycznej.
- 3. Po utworzeniu kostki system wykorzystuje usługi Analisys Services w celu przeprowadzenia analizy danych na kostce i utworzenia odpowiednich modeli predykcyjnych.
- 4. Po udanym stworzeniu modeli aktywuje się serwer WWW i system staje się dostępny dla użytkowników.
- 5. Użytkownik wchodzi na stronę i wysyła żądanie na serwer WWW.
- 6. Serwer WWW generuje stronę z formularzem zalogowania się.
- 7. Po odebraniu danych logowania, w przypadku sukcesu, serwer pobiera dane użytkownika przez USOS Api i zwraca stronę WWW interfejs użytkownika.
- 8. Serwer WWW po odebraniu prośby o rekomendacje przesyła żądanie do serwera bazy danych o dokonanie predykcji wykorzystując odebrane wcześniej dane użytkownika.
- 9. Serwer WWW odbiera rezultat zapytania i wyświetla go użytkownikowi.

Rozdział 2

Technologia

Wersja testowa

Technologie wykorzystywane w naszym systemie:

- Microsoft Azure Azure jest komercyjną platformą obsługiwaną przez Microsoft. Udostępnia ona usługi związane z chmurą internetową (tzw cloud-computing). W naszym systemie znajduje sie na niej serwer WWW a także serwer bazy danych.
- Microsoft SQL Server 2014 Komercyjny serwer bazodanowy udostępniany przez Microsoft. Znajduje się w nim relacyjna baza danych zawierająca dane niezbędne do stworzenia modelu analitycznego.
- SQL Server Analysis Services usługi analityczne udostępniane przez SQL Server. W naszym systemie tworzą kostkę OLAP-ową usprawniającą analizę danych, którą potem wykonują.
- USOS Api API udostępniane przez system USOS. Nasz system wykorzystuje go w celu zebrania danych zalogowanego użytkownika niezbędnych do rekomendacji.
- ASP.NET technologia, za pomocą której tworzymy webowy interfejs użytkownika. W celu uzyskania możliwie dużej przenośności została zaprojektowana w metodologii RWD (Responsive Web Design).

Rozdział 3

Funkcjonalności

Przy wejciu na stronę systemu użytkownik zostaje poproszony o wybranie opcji logowania : "Logowanie dla Studentów" bądź "Logowanie dla Pracowników". Poniższe podrozdziały opisują funkcjonalności zależne od wybranej opcji.

3.1. Funkcjonalności dla Studentów

W tym podrozdziale znajduje się opis funkcjonalności dostępnych dla użytkownika po wybraniu przy logowaniu do systemu opcji "Logowanie dla Studentów".

3.1.1. Predykcja ocen

Student wybiera w systemie opcję predykcji ocen. Następnie wybiera z odpowiedniego menu przedmiot z którego oczekuje predykcji. System na podstawie danych studenta pobranych za pomocą USOS API przy logowaniu dokonuje odpowiedniej predykcji i zwraca ją studentowi w widocznym polu zatytułowanym "Przewidywana ocena".

3.1.2. Remomendacja seminariów

Po wybraniu opcji rekomendacji seminariów student staje przed wyborem dwóch opcji : wybierz najlepsze bądź pokaż ranking. W obu wypadkach system korzysta z pobranego za pomocą USOSApi programu studiów studenta. Jeżeli student ma więcej niż 1 aktywny kierunek studiow, system prosi go o wybór programu, dla którego predykcja seminariów go interesuje. W zależności od wybranej opcji student otrzymuje jedno seminarium które wg systemu najbardziej pasuje do studenta badź też ranking seminariów od najbardziej pasującego do najmniej wg predykcji systemu.

3.1.3. Rekomendacja przedmiotów

Po wybraniu opcji rekomendacji przedmiotów student otrzymuje wybór kilku opcji. Może wybrać opcje "dobierz przedmioty do seminarium", "dobierz przedmioty do zainteresowań" bądź "znajdź najłatwiejsze". W przypadku wyboru pierwszej z nich, student jest proszony o wybór interesującego go seminarium. Na tej podstawie system zwraca listę 5 przedmiotów których student nie zdawał, które są wg systemu najbardziej powiązane z wybranym seminarium. W przypadku wyboru drugiej opcji, student otrzymuje listę 5 przedmiotów powiązanych z jego programem studiów, które najbardziej do niego pasują na podstawie zaliczanych przez niego przedmiotów i wyników z nich otrzymanych. W przypadku wyboru trzeciej opcji, system

zwraca 5 przedmiotów powiązanych z programem studiów, które według predykcji student ma największą szansę zdać na dobrą ocenę.

3.2. Funkcjonalności dla Administracji

Poniższy podrozdział opisuje funkcjonalność dostępną po zalogowaniu przez opcję "Logowanie dla Pracowników".

3.2.1. Predykcja popularności przedmiotów

Po wybraniu opcji przewidywania popularności przedmiotów pracownik z menu może wybrać przedmiot, a następnie osobę prowadzącą i semestr akademicki. Na podstawie tych danych system zwraca przewidywaną liczbę osób zapisanych na przedmiot w polu zatytułowanym "przewidywana liczba uczestników".

Bibliografia

[MDX] Professional Microsoft SQL Server 2012 Analysis Services with MDX and DAX, Sivakumar Harinath, Ronald Pihlgren, Denny Guang-Yeu Lee, John Sirmon, Robert M. Bruckner, October 2012

[SSAS] Expert Cube Development with SSAS Multidimensional Models, Chris Webb, Alberto Ferrari, Marco Russo, February 2014

[SQL2014] Professional Microsoft SQL Server 2014 Integration Services, Brian Knight, Devin Knight, Jessica M. Moss, Mike Davis, Chris Rock, June 2014

[technet] http://technet.microsoft.com/en-us/sqlserver/cc510300.aspx

[ASP.NET] http://www.asp.net/mvc