Roll No:

MTH517/517A: Time Series Analysis Quiz #2; Full Marks-20

(1) Consider the following bi-variate time series process $Z_t = (X_t, Y_t)^T$, where

$$X_t = 0.5 \varepsilon_t + 0.5$$
$$Y_t = 0.5 \varepsilon_{t-1} + 0.5 \varepsilon_{t-2}$$

 $\varepsilon_t \sim WN(0, \sigma^2)$.

- (a) Find $Cov(Z_t, Z_{t+2})$.
- (b) Verify whether Z_t is covariance stationary or not.
- (c) Find k, if any, such that $Cov(Z_t, Z_{t+h})$ is a null matrix $\forall |h| \ge k$.
- (d) Show that Z_t can be written as $Z_t = \mu + \Theta_1 \eta_t + \Theta_2 \eta_{t-1}$; $\eta_t = (\varepsilon_t, \varepsilon_{t-1})$ and μ , Θ_1 , Θ_2 are non-random vector and matrices of appropriate orders.
- (e) Using (d) above, or otherwise, verify whether Z_t is a vector MA process.
- (2) Consider the 2-variate Vector ARMA(1,1) process $X_t = \underline{\varepsilon}_t \frac{1}{4} X_{t-1} + \underline{\varepsilon}_{t-1}$; $\underline{\varepsilon}_t \sim VWN(\underline{0}, \Sigma)$, $\Sigma > 0$. Prove or disprove
 - (a) $\{X_i\}$ is covariance stationary, (b) $\{X_i\}$ is invertible, (c) $\{X_i\}$ is causal.

(a)
$$\{X_i\}$$
 is covariance stationary, (b) $\{X_i\}$ is involution, (c) $\{Y_i\}$

(a) $\{X_i\}$ is covariance stationary, (b) $\{X_i\}$ is involution, (c) $\{Y_i\}$

(b) $\{X_i\}$ is covariance stationary, (c) $\{X_i\}$ is involution, (c) $\{Y_i\}$

(c) $\{X_i\}$ is covariance stationary, (d) $\{X_i\}$ is involution, (e) $\{X_i\}$ is involution, (f) $\{X_i\}$ is involution, (e) $\{X_i\}$ is involution, (f) $\{X_i\}$ in $\{X_i\}$ is involution, (f) $\{X_i\}$ in $\{X_i\}$ is involution, (f) $\{X_i\}$ in $\{X_$