Structure and parameter identification of the dynamical model of auxetic foam

December 17, 2019

Experimental data is described in the earlier provided by the University of Bristol. This report summarises the settings used for model identification and presents preliminary results of model structure identification

1 Structure identification

The following model structure is assumed. The output of the NARX model y(t) is the measured load. The input vector is composed as

$$\boldsymbol{x}(t) = \{x_i(t)\}_{i=1}^d = \begin{bmatrix} \{y(t-k)\}_{k=1}^{n_y} & \{u(t-k+n_y)\}_{k=n_y+1}^{n_y+n_u} \end{bmatrix}^\top, \tag{1}$$

where n_u is the length of the input lag and n_y is the length of the output lag in discrete time, and where $d = n_u + n_y$. In this case, the identification is performed under the following assumptions:

- the output lag $n_y = 4$.
- the input signal has a lag of length $n_u = 4$.

The resultant input vector of the NARX model then takes the following form:

$$\boldsymbol{x}(t) = \begin{bmatrix} u(t-n_u) & \dots & y(t-1) & u(t-n_u) & \dots & u(t-1) \end{bmatrix}^{\top}.$$
 (2)

The unknown model is approximated with a sum of polynomial basis functions up to second degree $(\lambda = 3)$, rendering the following structure

$$\mathbf{y}(t) = \theta^0 + \sum_{i=1}^d \theta_i x_i(t) + \sum_{i=1}^d \sum_{j=1}^d \theta_{i,j} x_i(t) x_j(t) + e(t).$$
 (3)

The number and order of significant terms are identified within the EFOR-CMSS algorithm based on the data from 9 datasets for each foam specimen. Figure 1 illustrates the relationship between the number of model terms and the selected criterion of significance, AAMDL.

Figure 1: Evolution of AAMDL with the respect to the number of terms for sample size 4000. The optimal number of terms is highlighted (•).

2 Structure identification

The results of internal parameter estimation via the EFOR-CMSS method for sample size of 4000 points for each type of cut are presented in Tables 1-3.

Table 1: Estimated parameters for the square cut dataset.

Step	Terms	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	$\mathrm{AERR}(\%)$
1	y(t-1)	1.32	0.55	0.53	0.5	0.49	0.51	1.41	0.6	0.61	1.13	0.41	0.3	55.442
2	u(t-1)	0.4	0.46	0.46	0.46	0.45	0.43	0.38	0.46	0.45	0.45	0.55	0.55	29.045
3	y(t-2)	-0.91	-0.6	-0.58	-0.65	-0.6	-0.61	-1.14	-0.76	-0.76	-0.93	-0.67	-0.63	10.766
4	c	3.61	1.45	-2.33	7.8	3.71	0.3	3.32	0.92	-2.52	7.01	13.54	2.6	1.086
5	u(t-3)	0.08	0.27	0.27	0.36	0.34	0.33	0.13	0.33	0.33	0.18	0.38	0.4	1.05
6	y(t-4)	-0.02	-0.46	-0.48	-0.62	-0.59	-0.58	-0.1	-0.51	-0.52	-0.17	-0.52	-0.58	0.153
7	u(t-2)	-0.15	0.25	0.25	0.28	0.28	0.26	-0.15	0.25	0.24	-0.11	0.32	0.37	0.521
8	y(t-3)	0.25	0.42	0.44	0.55	0.51	0.52	0.46	0.53	0.54	0.42	0.39	0.4	0.438
9	u(t-4)	-0.01	0.01	0.01	0.02	0.04	0.04	-0.04	0.02	0.02	-0.07	0.01	0.02	0.023

Table 2: Estimated parameters for the Y cut dataset.

Step	Terms	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Y11	Y12	$\mathrm{AERR}(\%)$
1	y(t-1)	0.81	0.44	0.42	1.22	0.71	0.73	0.75	0.78	0.81	1.13	0.41	0.3	56.577
2	u(t-1)	0.48	0.53	0.52	0.39	0.45	0.44	0.37	0.36	0.35	0.45	0.55	0.55	27.235
3	y(t-2)	-0.89	-0.77	-0.77	-1.19	-0.93	-0.91	-0.78	-0.82	-0.83	-0.93	-0.67	-0.63	9.86
4	c	14.56	7.37	-1.59	6.12	4.03	1.09	-1.2	-0.77	-0.2	7.01	13.54	2.6	1.592
5	u(t-3)	0.32	0.43	0.43	0.28	0.37	0.35	0.27	0.27	0.26	0.18	0.38	0.4	1.499
6	y(t-4)	-0.44	-0.64	-0.66	-0.39	-0.6	-0.59	-0.58	-0.59	-0.57	-0.17	-0.52	-0.58	0.23
7	y(t-3)	0.55	0.54	0.56	0.77	0.72	0.7	0.7	0.74	0.74	0.42	0.39	0.4	0.891
8	u(t-2)	0.13	0.33	0.34	-0.05	0.18	0.17	0.18	0.17	0.15	-0.11	0.32	0.37	0.708
9	u(t-4)	-0.04	0.02	0.03	-0.08	0.01	0.02	0.02	0.02	0.01	-0.07	0.01	0.02	0.017

Table 3: Estimated parameters for the Z cut dataset.

Step	Terms	Z1	Z2	Z3	Z4	Z_5	Z 6	Z7	$\mathbb{Z}8$	Z9	Z10	Z11	Z12	$\mathrm{AERR}(\%)$
1	y(t-1)	0.46	0.44	0.48	0.64	0.54	0.58	0.52	0.48	0.5	1.13	0.41	0.3	46.961
2	u(t-1)	0.54	0.54	0.53	0.5	0.5	0.49	0.48	0.48	0.47	0.45	0.55	0.55	33.438
3	y(t-2)	-0.82	-0.79	-0.8	-0.84	-0.76	-0.78	-0.68	-0.64	-0.66	-0.93	-0.67	-0.63	11.325
4	u(t-3)	0.44	0.43	0.41	0.36	0.36	0.35	0.38	0.38	0.37	0.18	0.38	0.4	2.312
5	c	-4.23	-3.73	-2.3	2.04	-0.36	-1.09	2.3	0.41	-0.28	7.01	13.54	2.6	2.061
6	y(t-4)	-0.64	-0.63	-0.61	-0.51	-0.56	-0.54	-0.58	-0.59	-0.58	-0.17	-0.52	-0.58	0.338
7	y(t-3)	0.55	0.54	0.55	0.53	0.53	0.53	0.51	0.5	0.52	0.42	0.39	0.4	0.867
8	u(t-2)	0.31	0.31	0.28	0.2	0.26	0.23	0.23	0.24	0.23	-0.11	0.32	0.37	1.009
9	u(t-4)	0.02	0.02	0.02	0	0.01	0.01	0.03	0.04	0.04	-0.07	0.01	0.02	0.029