

PRIMER PRINCIPIO PARA SISTEMAS ABIERTOS

<u>Bibliografía</u>: Morán, Michel J.; Shapiro, Howard N.; "Fundamentos de Termodinámica Técnica" Cengel, Yunus A.; Boles, Michael A.; "Termodinámica"

UNIDAD 4

PRIMER PRINCIPIO PARA SISTEMAS ABIERTOS

- 4.A. Primer principio de la Termodinámica para sistemas abiertos. Volumen de control. Balance de masa. Ecuación del primer principio para sistemas abiertos en flujo no estable. Flujo estable o estacionario. Balance de masa y energía para sistemas abiertos en flujo estable. Trabajo de circulación, representación gráfica.
- 4.B. Aplicaciones del primer principio para sistemas abiertos. Aplicación del primer principio para sistemas abiertos en flujo estable a procesos en una tobera, en una turbina, en un compresor, en un intercambiador de calor, en una caldera, en un tabique poroso o estrangulación, en un fluido por una tubería.
- **4.C.** Entalpía. Entalpía propiedad termodinámica, entalpía del gas ideal y no ideal. Algunas propiedades de la entalpía. Comparación entre la energía interna y la entalpía.

4.D Transformaciones o Procesos.

LO VEREMOS EN LA PRÓXIMA SEMANA

Parte

Darte II

PRIMER PRINCIPIO PARA SISTEMAS ABIERTOS

Sistema abierto o VOLUMEN DE CONTROL

Intercambia con el medio

✓ Masa

✓ Energía

Bomba

EJEMPLOS:

de eje

Turbina

EJEMPLOS:

Turbina de flujo axial

Compresor axial

EJEMPLOS:

Compresor rotativo de flujo axial

Intercambiador de calor

EJEMPLOS:

Condensador

Intercambiador de calor

Caldera

Caldera

ESQUEMA DE UN SISTEMA ABIERTO O VOLUMEN DE CONTROL

BALANCE DE MASA EN UN VOLUMEN DE CONTROL

BALANCE DE MASA EN UN VOLUMEN DE CONTROL

(Puede cambiar la "forma", pero la masa es constante)

Se toma un sistema de masa fija "m" en 2 instantes: t y t+Δt.

$$m = m_{VC}(t) + m_e = m_{VC}(t+\Delta t) + m_s$$

(se incluye la zona de entrada en "t" y la de salida en "t+Δt")

de modo que se cumple que:

$$m_e + m_{VCi} = m_s + m_{VCf}$$

 $m_{VCf} - m_{VCi} = m_e - m_s$
 $\Delta m_{VC} = m_e - m_s$

Si en el VC hay <u>varias zonas</u> en las que entra o sale masa:

$$\Delta m_{VC} = \sum m_e - \sum m_s$$
BALANCE DE MASA

Siendo $\Delta m_{VC}~$ el cambio de masa contenida en un volumen de control con varias entradas y salidas a lo largo de un intervalo de tiempo

BALANCE DE MASA DEL VC REFERIDO A LA UNIDAD DE TIEMPO:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m_e} - \sum_{s} \dot{m}_s$$

Que se expresa como:

Velocidad de cambio de la masa contenida en el VC

Flujo másico total que entra al VC

Flujo másico total que sale del VC

FLUJO MÁSICO Y FLUJO VOLUMÉTRICO

m in i

 $\dot{V} \begin{tabular}{l}{\bf FLUJO~VOLUM\'ETRICO} \to Volumen~de~un~\\ fluido~que~circula~atravesando~\\ perpendicularmente~por~una~superficie~\\ dada,~en~la~unidad~de~tiempo.\\ \end{tabular}$

Si δ : densidad, sabemos que $\delta = m/V = 1/v \rightarrow m=V/v$

De igual modo,

$$\dot{\mathbf{m}} = \dot{\mathbf{V}} / \mathbf{v}$$

FLUJO MÁSICO EN UNA TUBERÍA

Si un fluido circula por un ducto de sección transversal A, con una velocidad media "c", y su volumen específico "v" es uniforme en toda la sección, resulta:

$$\dot{\mathbf{m}} = \dot{\mathbf{V}} / \mathbf{v} = \mathbf{A} \mathbf{c} / \mathbf{v}$$

- > Si se trata de una tubería circular $A = \pi D^2 / 4$ siendo D: diámetro del tubo.
- Si la velocidad "c" es perpendicular a la sección "A", el flujo se denomina UNIDIMENSIONAL.

Dentro de las tuberías la velocidad no es uniforme, debido a que el fluido se adhiere a la pared. Por eso "c" representa la velocidad media.

Sistema
abierto o
VOLUMEN DE
CONTROL

Intercambia energía con el medio

- como Calor
- comoTrabajo
- con las Masas de

Entrada y salida

Se toma un sistema de <u>masa fija</u> en 2 instantes: $t y t+\Delta t$. Se incluye la zona de entrada en "t" y la de salida en "t+ Δt ", de modo que se cumple que (1° Ppio Sistemas cerrados o de masa fija):

$$E(t+\Delta t) - E(t) = Q - W$$

$$E(t) = E_{VC}(t) + m_e(u_e + \frac{1}{2} c_e^2 + g z_e)$$

$$E(t+\Delta t) = E_{VC}(t+\Delta t) + m_s(u_s+\frac{1}{2}c_s^2 + gz_s)$$

W está compuesto por:

- ≻El que realiza el medio para ingresar m_e
- ≻El que recibe el medio cuando sale m_s
- El que sale del sistema como un eje que gira y por desplazam. de los límites: Ws

$$E(t+\Delta t) - E(t) = Q - W$$

$$E(t) = E_{VC}(t) + me(ue+\frac{1}{2}ce2 + gze)$$

$$E(t+\Delta t) = E_{VC}(t+\Delta t) + ms(us+\frac{1}{2}cs2 + gzs)$$

$$W = Ps ms vs + Ws - Pe me ve$$

$$\begin{split} \mathsf{E}_{VC}(t+\Delta t) + \, \mathsf{m}_s(\mathsf{u}_s + 1/2 \, c_s^2 + \mathsf{g} z_s) - \big[\, \mathsf{E}_{VC}(t) + \, \mathsf{m}_e(\mathsf{u}_e + 1/2 \, c_e^2 + \mathsf{g} z_e) \, \big] = \\ & = \mathsf{Q} - \, \mathsf{W}_s + \mathsf{P}_e \, \mathsf{m}_e \, \mathsf{v}_e - \mathsf{P}_s \, \mathsf{m}_s \, \mathsf{v}_s \\ & = \mathsf{Q} - \, \mathsf{W}_s + \mathsf{P}_e \, \mathsf{m}_e \, \mathsf{v}_e - \mathsf{P}_s \, \mathsf{m}_s \, \mathsf{v}_s \\ & = \mathsf{Q} - \, \mathsf{W}_s + \mathsf{P}_e \, \mathsf{m}_e \, \mathsf{v}_e - \mathsf{P}_s \, \mathsf{m}_s \, \mathsf{v}_s \\ & = \mathsf{Q} - \, \mathsf{W}_s + \mathsf{P}_e \, \mathsf{m}_e \, \mathsf{v}_e - \mathsf{P}_s \, \mathsf{m}_s \, \mathsf{v}_s \\ & = \mathsf{Q} - \, \mathsf{W}_s + \mathsf{P}_e \, \mathsf{v}_e + \mathsf{V}_s \, \mathsf{v}_s \mathsf{v}_s \, \mathsf{v}_s \, \mathsf{v}_s + \mathsf{V}_s \, \mathsf{v}_s \, \mathsf{v}_s \, \mathsf{v}_s + \mathsf{V}_s \, \mathsf{v}_s$$

E = U + Ec + Ep + Ee+ Em + Es ; Si VC es sc y está en reposo \implies E_{VC} = U_{VC} $U_{VC}(t+\Delta t) - U_{VC}(t) = \Delta U_{VC}$

h_e: entalpía de entrada

$$\Delta U_{vc} + m_s (u_s + P_s v_s) + \frac{1}{2} c_s^2 + g z_s) - m_e (u_e + P_e^e v_e + \frac{1}{2} c_e^2 + g z_e) = Q - W_s$$

Expresión del 1° Principio para sistemas abiertos:

$$\Delta U_{vc} + m_s(h_s + \frac{1}{2} c_s^2 + gz_s) - m_e(h_e + \frac{1}{2} c_e^2 + gz_e) = Q - W_s$$

Dividiendo por Δt y tomando límite para $\Delta t \rightarrow 0$

$$\frac{dU}{dt} = \frac{1}{\sqrt{2}} \frac{dt}{dt} + \frac{1}{\sqrt{2$$

VOLUMEN DE CONTROL EN ESTADO ESTACIONARIO:

Luego:
$$\dot{m}_e = \dot{m}_s = \dot{m}$$
 y $(dU/dt)_{vc} = O$

Expresión del balance de masa para sistemas abiertos en estado estacionario:

$$\Delta \mathbf{m} \mathbf{v}_{\mathbf{C}} = \mathbf{m}_{\mathbf{e}} - \mathbf{m}_{\mathbf{s}} = 0$$

Expresión del 1° Principio para sistemas abiertos en estado estacionario:

$$m[(h_s - h_e) + \frac{1}{2} (C_s^2 - C_e^2) + g(Z_s - Z_e)] = Q - W_s$$
 eje que gira

Sólo

por un

Es el que intercambian con el medio los equipos por los que circula masa (Sistemas abiertos), como turbinas, bombas y compresores.

Si son equipos rotativos, en estado estacionario, el trabajo se intercambia a través de un eje que gira (W_c)

- W está | ≻El que realiza el medio para ingresar mှ
- compuesto
 por:

 >El que recibe el medio cuando sale m_s
 >El que sale del sistema como un eje que gira : Ws ó Wc

$$W = P_s m_s v_s + W_c - P_e m_e v_e$$

O sea:
$$W = P_2 V_2 + W_c - P_1 V_1$$

$$W_c = \int P dV + P_1 V_1 - P_2 V_2$$

$$W_c = \int P dV + P_1 V_1 - P_2 V_2 =$$
Area P_1 , 1, 2, $P_2 = -\int V dP$

1 -Ingreso de la unidad de masa del fluido al VC

$$\mathbf{W}_1 = \int_{\mathbf{v}=0}^{\mathbf{v}=\mathbf{v}^1} \mathbf{P}_1 \mathbf{dv} = \mathbf{P}_1 \mathbf{v}_1$$

2 - Expansión en el VC

$$\mathbf{W}_2 = \int_{\mathbf{v}=\mathbf{v}1}^{\mathbf{v}=\mathbf{v}2} \mathbf{P} \mathbf{d}\mathbf{v}$$

1 -Egreso de la unidad de masa del fluido del VC

 P_2

$$\mathbf{W}_3 = \int_{\mathbf{v}=\mathbf{v}_2}^{\mathbf{v}=0} \mathbf{P}_2 \mathbf{dv} = -\mathbf{P}_2 \mathbf{v}_2$$

$$W_c = W_1 + W_2 + W_3 = P_1 v_1 + \int P dv - P_2 v_2 =$$

Area P_1 , 1, 2, $P_2 = -\int v dP$

 $W_c = -\int v dP$

(kJ/kg)

FIN PARTE I

