EXERCICIS DE CÀLCUL DIFERENCIAL EN DIVERSES VARIABLES Primer quadrimestre del curs 2012-2013

Llista 3: Funcions: diferenciabilitat

- 1. Caculeu les derivades parcials, el gradient i la derivada direccional en la direcció v = (3/4, -4/5)de la funció $f(x,y) = x^2 \sin(xy)$ en $p = (1,\pi)$.
- 2. Estudieu l'existència de les derivades direccionals i la diferenciabilitat en (0,0) de la funció

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

En quins punts de \mathbb{R}^2 és diferenciable la funció f

3. Per a cada $\alpha \in \mathbb{R}$, $\alpha > 0$, sigui $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ la funció definida per

$$f_{\alpha}(x,y) = \begin{cases} \frac{(x^2|y|)^{\alpha}}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) Per a quins valors d' α la funció f_{α} és contínua en l'origen?
- (b) Per a quins valors d' α la funció f_{α} és diferenciable en l'origen?
- 4. Per a cada $\alpha \in \mathbb{R}$ considered la funcions $f_{\alpha}, g_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ definides per

u la funcions
$$f_{\alpha}, g_{\alpha} : \mathbb{R}^{2} \to \mathbb{R}$$
 definides per
$$f_{\alpha}(x,y) = \begin{cases} \frac{x^{2}y}{(x^{2} + y^{2})^{\alpha}}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0), \end{cases}$$
$$g_{\alpha}(x,y) = \begin{cases} \frac{\sin(x^{2}y)}{(x^{2} + y^{2})^{\alpha}}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

$$g_{\alpha}(x,y) = \begin{cases} \frac{\sin(x^2y)}{(x^2 + y^2)^{\alpha}}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Estudieu la continuïtat i diferenciabilitat en l'origen de les funcions f_{α} i g_{α}

- 5. Siguin $f: \mathbb{R}^2 \to \mathbb{R}$ una funció diferenciable i $g: \mathbb{R} \to \mathbb{R}$ derivable. Calculeu les derivades parcials de la funció h en termes de les derivades parcials de f i g en els següents casos.
 - (a) $h(x,y) = (f(y,x))^3$

- (b) $h(x,y) = f(x+y^2, x-y)$

- (a) $h(x,y) = (f(y,x))^3$ (b) $h(x,y) = f(x+y^2, x-y)$ (c) $h(x,y) = \sin(x^2 f(x,y))$ (d) $h(x,y) = f(x^3 y, xy) g(x^2 y^2)$ (e) h(x,y) = f(g(2x+4y), g(3x-5y)) (f) $h(x,y) = (g(f(e^{2x+y}, 1)))^2$
- 6. Siguin $F: \mathbb{R}^3 \to \mathbb{R}^2$ i $G: \mathbb{R}^2 \to \mathbb{R}^2$ les funcions definides per $F(x,y,z) = (x+y^2,x^2+xz)$ i $G(x,y) = (xy,x^2+y)$. Calculeu les matrius jacobianes de F en el punt (1,1,-1), de G en el punt (2,0) i de la composició $G \circ F$ en el punt (1,1,-1).
- 7. Quina és la màxima pendent en el punt (1, 1, 8) d'un edifici que té forma de paraboloïde el·líptic $z = 15 - 4x^2 - 3y^2?$