ОКП 43.6214.3222

ДОЗИМЕТР ДРГ-01Т1

Паспорт

m ГБ2.805.002 ПС

3MICT

1. Призначення	5
2. Технічні характеристики	8
3. Комплектність	17
4. Будова і принцип роботи	17
4.1. Структурна схема	17
4.2. Принцип роботи дозиметра	20
4.3. Конструкція дозиметра	32
5. Маркування й пломбування	38
6. Міри безпеки	39
7. Підготовка до роботи	40
8. Порядок роботи	41
9. Загальні вказівки по експлуатації	44
10. Технічне обслуговування	46
10.1. Загальні вказівки	46
10.2. Градуювання дозиметра	47
11. Можливі несправності й способи їхнього усунення	52
11.1. Порядок розбирання	52
11.2. Можливі несправності й способи їхнього виявлення й	
усунення	53
12. Перевірка дозиметра	54
13. Правила зберігання	61
14. Транспортування	62
15. Свідоцтво про приймання	63
16. Гарантійні зобов'язання	64
17. Відомості про рекламації	65
18. Свідоцтво про введення виробу в експлуатацію	66
19. Відомості про результати перевірки інспектуючими	
і перевіряючими особами	67
20. Відомості про ремонт виробів	68
Лодаток Таблиця напруг	69

1. ПРИЗНАЧЕННЯ

- 1.1. Дозиметр ДРГ-01Т1 цифровий широкодіапазонної переносний дозиметр потужності експозиційної дози фотонного випромінювання (далі дозиметр).
- 1.2. Дозиметр призначений для вимірювання потужності експозиційної дози на робочих місцях, у суміжних приміщеннях і на території підприємств, що використовують радіоактивні речовини й інші джерела іонізуючих випромінювань, у санітарно-захисній зоні й зоні спостереження. Крім того, дозиметр може бути використаний для контролю ефективності біологічного захисту, радіаційних упаковок і радіоактивних відходів, а також вимірювання потужності експозиційної дози в період виникнення, протікання й ліквідації наслідків аварійних ситуацій.
- 1.3. Дозиметр застосовується для оперативного групового контролю потужності експозиційної дози працівниками служб радіаційної безпеки, дефектоскопічних лабораторій, санітарно-епідеміологічних станцій і т.д.
- 1.4. Дозиметр відповідає 4 групі ГОСТ 22261-82 і призначений для роботи в умовах:

при температурі навколишнього повітря (від мінус 10 до плюс 40) °C;

при відносній вологості повітря до 90% при +30°C;

при атмосферному тиску(від 84 до 106,7) кПа;

при наявності фонового нейтронного випромінювання;

в умовах забруднення приміщень радіоактивними речовинами;

у приміщеннях з поганою освітленістю й у темряві;

у постійних магнітних полях напруженістю 318,31 А/м (4 э).

2. ТЕХНІЧНІ ХАРАКТЕРИСТИКИ

- 2.1 Дозиметр забезпечує вимірювання потужності експозиційної дози в інтервалі енергій фотонів від 8 до 480 фДж (від 0,050 МеВ до 3,0 МеВ).
- 2.2 Дозиметр забезпечує вимірювання потужності експозиційної дози у двох режимах роботи:

режим - «Пошук»;

режим - «Вимірювання»

- 2.3. Дозиметр у режимі роботи «Вимірювання» забезпечує вимірювання потужності експозиційної дози в діапазоні від 0,010 мР/г до 9,999 Р/г із розбивкою всього діапазону на два піддіапазони:
 - I від 0,010 мР/г до.9,999 мР/г;

II - від 0,010 Р/г до 9,999 Р/г

- 2.4. У режимі роботи «Пошук» дозиметр забезпечує вимірювання потужності експозиційної дози в діапазоні від 0,10 мР/г до 99,99 Р/г із розбивкою всього діапазону на два піддіапазони:
 - I від 0,10 мР/г до 99,99 мР/г
 - II від 0,10 Р/г до 99,99 Р/г
- 2.5 Час вимірювання в режимі роботи "вимірювання" не перевищує 25 с., у режимі «Пошук» 2.5 с.
 - 2.6 Час встановлення робочого режиму не більше 4 с.

- 2.7 Межа основної допустимої похибки вимірювання (для 95% довірчого інтервалу) у будь-якій точці піддіапазону при градуюванні за джерелом ІІ-го розряду цезій-137 у нормальних умовах застосування становить:
 - у режимі роботи "вимірювання" -

$$\pm \left(15 + \frac{0.5x}{\dot{x}}\right)\%;$$

у режимі роботи «Пошук» -

$$\pm \left(30 + \frac{1.0x}{\dot{x}}\right)\%.$$

- де \dot{x} потужність експозиційної дози в одиницях відповідного піддіапазону вимірювання (мР/г або Р/г);
- x одиниця розмірності відповідного піддіапазону (1 мР/г або 1 Р/г). Примітка. Нормальним кліматичним умовам відповідають: температура навколишнього повітря (20 ± 5) °C; відносна вологість повітря (від 30 до 80)%; атмосферний тиск (від 84 до 106,7) кПа.
 - 2.8. Робочі умови застосування, становлять:
- 1) температура навколишнього повітря (від мінус 10 до плюс 40) °С;
- 2) відносна вологість повітря до 90% при +30°C;
- 3) атмосферний тиск (від 84 до 106,7)кПа.
 - 2.9. Граничні умови транспортування становлять:
- 1) температура навколишнього повітря (від мінус 50 до плюс 50) °С;
- 2) відносна вологість повітря 95% при температурі +30°C;
- 3) атмосферний тиск(від 84 до 106,7) кПа;
- 4) транспортна тряска: число ударів у хвилину (80-120), максимальне прискорення 30 м/c^2 , тривалість впливу 1 г.
- 2.10. Додаткова похибка приладу від зміни температури в робочих умовах застосування не перевищує $\pm 3\%$ на 10° C від показів дозиметра в нормальних умовах.
- 2.11. Додаткова похибка приладу від зміни відносної вологості повітря в робочих умовах застосування не перевищує +15% від показів дозиметра в нормальних умовах.
- 2.12. Дозиметр зберігає основну похибку вимірювання в межах норм, зазначених у п.2.7 після кліматичних і механічних впливів у граничних умовах транспортування.
- 2.13. Як детектори випромінювання використані чотири газорозрядних лічильники СБМ-20 і два лічильники СИ 34М (СИ 40Г) з коригувальними свинцевими фільтрами для вирівнювання енергетичної залежності чутливості.
- 2.14. Нормальне робоче положення дозиметра, що відповідає максимальної чутливості напрямок випромінювання перпендикулярний площини розташування детекторів (геометричний центр детекторів позначений на задній кришці дозиметра).
- 2.15. Зміна чутливості дозиметра при постійній потужності дози залежно від енергії реєстрованого випромінювання в діапазоні 0,05 MeB 3,0 MeB при нормальному робочому положенні дозиметра не відрізняється більш ніж на

- ±25% від значення, отриманого від джерела іонізуючого випромінювання радіонукліда цезій-137 (660 кеВ).
- 2.16. Анізотропія чутливості дозиметра при зміні кута падіння потоку випромінювання від 0° до 180° щодо площини розташування детекторів не повинна перевищувати $\pm 80\%$ щодо вимірюваного значення при куті 90° (напрямок максимальної чутливості) у діапазоні енергій реєстрованого випромінювання.
- 2.17. Граничнодопустиме опромінення дозиметра відповідає потужності експозиційної дози 1000 Р/г, при цьому в будь-якому режимі роботи на шкалі цифрового індикатора відображається переповнення (висвічується символ "П"). По закінченні опромінення дозиметр зберігає працездатність.
- 2.18. Як джерело живлення в дозиметрі використовується батарея типу «Корунд».
- 2.19. Джерело живлення при значеннях рівнів потужності дози в межах 75 % максимального значення на будь-якому піддіапазоні вимірювань забезпечує безперервну роботу дозиметра протягом не менш 8 годин, при цьому нестабільність показів не перевищує +10%. При рівнях зовнішнього радіаційного фону, що не перевищує 50 мкР/г, дозиметр допускає безперервну роботу протягом не менш 100 ч.
 - 2.20. Наробіток на відмову дозиметра не менш 5000 годин.
 - 2.21. Призначений термін служби дозиметра не менш 8 років.
 - 2.22. Габаритні розміри дозиметра не перевищують 175х90х55 мм.
 - 2.23. Маса дозиметра (без джерела живлення) не перевищує 0,6 кг.
- 2.24. Вміст дорогоцінних металів: золота 0,015 г; срібла 0,23 г; платини 0,13 г; палладію 0,033 г.
- 2.25. Вміст кольорових металів: алюмінію 0,278 кг; свинцю 0,069 кг; міді 0,007 кг; олова 0,055 кг.
- 2.26. Припустиме й дійсне значення основної похибки вимірювання дозиметра (перевіряється при приймально-здавальних випробуваннях) наведене в табл. І.

Таблица І

Характеристика	Режем работы	Значение погрешн	Поддиапазон измерения	
		допустимое	действи- тельное	
Предел основной	"Измере-	$\pm (15 + \frac{0.5}{2} x)$	10	мР/ч
погрешности из- мерения, %	HNO	±(15+ 2,2 x)	9	P/4
- '	"Поиск"	±(30 + I + 0 x)	13	мР/ч
'		Госповери тел	подпись	./_
		Место клейм	g u 1	

3. КОМПЛЕКТНІСТЬ

- 3.1. У комплект поставки повинні входити:
- 1) дозиметр ДРГ-01Т1 в упакуванні (без джерела живлення) 1 шт;
- 2) паспорт (ГБ2.805.002 ПС) 1 шт;
- 3) батарея типу «Корунд» в упакуванні 1 шт;
- 4) поліетиленові захисні чохли 3 шт.

4. БУДОВА ТА ПРИНЦИП РОБОТИ

- 4.1. Структурна схема дозиметра представлена на рис. 1.
- 4.1.1. У газорозрядних лічильниках СБМ-20, СИ 34М (СИ 40М) під впливом гама квантів генеруються електричні імпульси струму, що надходять на формувач вхідного потоку імпульсів, вхідний каскад якого перетворює імпульси струму в імпульси напруги з амплітудою, необхідної для реєстрації подальшою лічильною схемою. З виходу дільника частоти формувача імпульсного потоку імпульси надходять на чотирьохрозрядний лічильник. Накопичена інформація за час вимірювання на лічильнику надходить на індикатор через дешифратор, що перетворює двійково-десяткову інформацію лічильника в семисегментний позиційний код індикатора.

Рис. 1. Структурна схема.

Час вимірювання визначається частотою регульованого генератора й коефіцієнтом ділення числа імпульсів формувачем часового інтервалу. Зміною (регулюванням) часу вимірювання виробляється масштабування (перетворення) вхідної інформації з детекторів в абсолютну величину вихідного параметра (мР/ Γ , Р/ Γ).

Одновібратор імпульсів виконує подвійну функцію: здійснює спільно зі стробуючим пристроєм корекцію нелінійності лічильної характеристики, викликаної прорахунками («мертвим часом») детекторів і здійснює керування потужністю високовольтного перетворювача напруги для живлення детекторів залежно від їхнього завантаження.

Пристрій команд виробляє імпульси керування основними вузлами дозиметра в різних режимах роботи.

- 4.2. Принцип роботи дозиметра
- 4.2.1. Принципова електрична схема дозиметра представлена на рис. 2.
- 4.2.2. При описі принципу дії окремих функціональних пристроїв у тексті перед позиційним позначенням елемента принципової електричної схеми дозиметра вказується позиційне позначення пристрою, якому належить даний елемент. Наприклад, A2-VT1 позначає транзистор VT1 пристрою A2.

Рис. 2. Схема електрична принципова дозиметра ДРГ-01Т1

4.2.3. Принцип роботи дозиметра полягає в наступному:

Фотонне випромінювання, впливаючи на газорозрядні лічильники, викликає поява в них електричних імпульсів струму, які надходять на вхідний каскад, виконаний на транзисторі A2 - VT1, за схемою із загальною базою. Вхідний каскад перетворює імпульси струму в імпульси напруги, які з колектора A2 - VT1 через контакти перемикача режимів роботи (ВИМІР – ПОШУК) надходять на С вхід дільника частоти A2-ДД2.1.

4.2.4. З виходу дільника вхідна частота з детекторів, перерахована з коефіцієнтом 2, надходить у пристрій індикації А1 для подальшої обробки.

- 4.2.5. Пристрій індикації A1 складається з чотирьох двійково-десяткових лічильників на мікросхемах A1 ДД1, A1 ДД3, A1 ДД5, A1 ДД7, нагромадження інформації в які здійснюється за інтервал часу вимірювання. Для перетворення двійково-десяткового коду лічильників у семисегментний код рідкокристалічного індикатора H 1 (ИЖЦ5-4/8) застосовуються дешифратори A1 ДД2, A1 ДД4, A1 ДД6, A1 ДД8, з внутрішніми регістрами, що дозволяють зберігати вихідну інформацію за попередній цикл вимірювання.
- 4.2.6. Час вимірювання регулюється зміною частоти генератора, виконаного на мікросхемі A2-ДД1. Регулювання частоти на першому піддіапазоні (мР/г) здійснюється резистором A2-R6, на піддіапазоні (Р/г) A2-R8.

З метою коректування нелінійності лічильної характеристики дозиметра, викликаної прорахунками («мертвим часом») детекторів, імпульси з генератора імпульсів надходять на схему формувача часового інтервалу А2 - ДД3 через стробуючий пристрій - одновібратор на мікросхемі А2 - ДД2-2. Пристрій спрацьовує по передньому фронті імпульсу генератора на вході С при наявності високого рівня напруги на вході Д. При низькому рівні сигналу на вході Д, що відповідає моменту спрацьовування одновібратора на мікросхемі А2-ДД6.1, що запускає імпульсами з дільника вхідної частоти на мікросхемі А2-ДД2.1, частина імпульсів генератора буде прорахована, що в остаточному підсумку збільшує час вимірювання. Число прорахованих імпульсів генератора збільшується в міру збільшення завантаження детекторів. Тривалість імпульсу одновібратора на мікросхемі А2-ДД6.1 обрана рівною 0,1 мс, що відповідає значенню часу розділення детекторів.

Імпульси з одновібратора A2-ДД2.2 надходять на двійковий лічильникдільник на мікросхемі A2-ДД3 з коефіцієнтом ділення 2¹⁰ для формування інтервалу часу вимірювання порядку 2,5 с. У режимі «Вимір» вводиться додатковий дільник з коефіцієнтом перерахунку 10 на мікросхемі A2-Д11.5 для створення інтервалу часу вимірювання порядку 25 с.

4.2.7. По задньому фронту імпульсу часового інтервалу тригер А2-ДД6.2 дозволяє запуск лічильника-дільника А2-ДД7, що виробляє послідовність команд керування, що послідовно з'являються на кожному виході мікросхеми А2-ДД8, з періодом зумовленим частотою імпульсів на С вході мікросхеми А2-ДД7 і значеннями сигналів на вхід мікросхеми А2-ДД8. На виводі 2 мікросхеми А2-ДД7 організується команда «Блокування» лічби четирьохрозрядного лічильника, на виводі - 3 — команда «Перезапис» вмісту лічильників у регістри дешифраторів, на виводі 11 - «Скидання лічильників» пристроїв А1 й А2, на виводі 4 — команда «Скидання керування». По закінченні останньої команди схема автоматично переходить на новий цикл вимірювання.

В режимі роботи «Вимір» високий рівень напруги: команда «Скидання лічильників» (мікросхема А2-ДД8.2) блокує лічильники вхідної частоти (А2-ДД2.1) і часового інтервалу (А2-ДД3). Команда «Скидання керування» не генерується.

Повторний запуск у режимі «Вимір» можливий тільки при натисканні кнопки СКИДАННЯ, при цьому позитивний імпульс із диференційної ланки,

- A2-C7, A2-R18 скидає тригер керування (A2-ДД6.2) і з появою низького рівня напруги на входах R мікросхем A2-ДД2 й A2-ДД3 здійснюється запуск всіх схем на новий цикл вимірювання.
- 4.2.8. Для нормального функціонування рідкокристалічного індикатора на спільний електрод індикатора (виводи 1,34) надходять імпульси напруги частотою (порядку 600 Гц) з виходу генератора імпульсів. При відображенні сегментів індикатора (їх засвічені) імпульси напруги керуючої частоти подаються в протифазі щодо спільного електрода.
- 4.2.9. Керування комами індикатора побудовано на мікросхемі А2-ДД4, за допомогою якої здійснюється:

індикація коми IV-го розряду в режимі «Вимір» - (А2-ДД4.1);

індикація коми III-го розряду в режимі «Пошук» - (А2-ДД4.2);

індикація коми І-го розряду (часу вимірювання) - (А2-ДД4.4).

Комутація ком III й IV розрядів у різних режимах роботи здійснюється перемикачем SA2.3. Індикація часу вимірювання відображається миготінням коми I розряду з періодом 2,5 с.

4.2.10. При переповненні лічильника A1-ДД1 на виводі 10 виникає високий рівень напруги, що викликає гасіння інформації в молодших трьох розрядах індикатора (вхід К дешифраторів). У старшому розряді гаситься тільки сегмент (вивід 32), завдяки чому на табло індикатора висвічується символ «П». Сигнал гасіння сегмента береться з виходу мікросхеми A2-ДД4.3.

Сигнал переповнення з виходу мікросхеми А2-ДД8.4 блокує вхідний лічильник А2-ДД2.1 і дільник А2-ДД3.

Запуск дозиметра можливий тільки після натискання кнопки СКИДАН-НЯ.

- 4.2.11. У режимі роботи «Контроль» на вхід лічильника А2-ДД2.1 надходять імпульси з генератора опорних частот працюючого в цьому положенні на частоті 2⁹ Гц із ланцюжка А2-VД1; А2-R5. Регулюванням амплітуди імпульсу за допомогою резистора А2- R5 домагаються припинення спрацьовування мікросхеми А2-ДД2.1 при мінімальній напрузі джерела живлення 6,5 В (розряд батареї). При нормальній роботі мікросхем дільників частоти А2-ДД2.1 (21) і А2-ДД3 (2¹⁰) і чотирирозрядного лічильника в режимі «Контроль» на шкалі індикатора відображається число 0513±1. Збій у роботі будь-якої мікросхеми, однією з причин якого може бути розряд джерела живлення, приводить до індикації іншого значення або повній відсутності на шкалі індикатора контрольного числа.
- 4.2.12. Перетворювач високої напруги для живлення газорозрядних лічильників виконаний за схемою однотактного генератора зі зворотним зв'язком на транзисторі A3-VT1. При роботі на холостому ходу (фонові рівні випромінювання) власна частота коливань (~3 Гц) визначається ланцюжком A3- R8, A3- C13, а тривалість імпульсу 40 мкс трансформатором A3-T1.
- 4.2.13. У першій ланці схеми помноження включені високовольтні стабілітрони А3-VД1, А3-VД2, що фіксують амплітуди імпульсу з високовольтної обмотки трансформатора на рівні 180 В.
- 4.2.14. При впливі іонізуючого випромінювання вхідні імпульси з дільника А2-ДД2.1 надходять на вхід одновібратора (А2-ДД6.1). Сформовані імпуль-

си одновібратора тривалістю 0,1 мс відкривають транзистор A2-T2 і переводять блокінг-генератор у форсований режим роботи. При цьому зменшується період повторення імпульсів блокінг-генератора за рахунок шунтування резистора A3-R8 ланцюжком A2-R15, A2-VД3 і зростає потужність перетворювача. У такий спосіб здійснюється найбільш економічний режим роботи перетворювача напруги при фонових завантаженнях детекторів.

4.2.15. При натиснутій кнопці СКИДАННЯ перетворювач переходить у форсований, некерований режим роботи на час,

обумовлене натисканням, чим забезпечується початковий запуск перетворювача, що особливо істотно в умовах роботи при більших рівнях потужності дози й граничних значенях кліматичних впливів робочих умов застосування.

- 4.3. Конструкція дозиметра
- 4.3.1. Конструктивно дозиметр виконаний із двох частин: литого корпуса й кришки, з'єднаних між собою трьома гвинтами.
- 4.3.2. Усередині литого корпуса розташовані три плати друкованого монтажу з розміщеними на них деталями електронної схеми:

плата індикації (А1);

плата керування (А2);

плата детекторів (А3).

Плани розташування елементів на платах друкованого монтажу наведені на рис. 3, 4, 5.

ယ္ယ

Рис. 3, 4, 5 План розташування елементів на платах А1, А2, А3.

- 4.3. З. Всі плати механічно скріплюються між собою за допомогою трьох гвинтів й у зборі кріпляться до корпуса дозиметра. Електричні з'єднання між платами виконано об'ємним монтажем, що забезпечує зручність при проведенні ремонтних робіт.
- 4.3.4. Геометричний центр детекторів відзначений перетинанням вертикальної й горизонтальної рисок на кришці дозиметра.
- 4.3.5. Як матеріал коригувальних фільтрів газорозрядних лічильників застосована свинцева фольга, плакована оловом (ГОСТ 18394-73) ДПРХХ П

- 0,09x72x105 мм (3 шари для лічильників СШ-20) і 0,09x20x105 мм (5 шарів для лічильників СИ 34М).
 - 4.3. 6. На лицьову панель корпуса винесені:
 - 1) табло рідкокристалічного індикатора;
- 2) ручка перемикача піддіапазонів вимірювання й включення дозиметра: мР/г-Р/г-выкл;
 - 3) ручка перемикача режимів роботи: ИЗМЕР ПОШУК КОНТР;
 - 4) кнопка скидання показів СКИДАННЯ;
 - 5) кнопка підсвічування шкали індикатора.
- 4.3.7. На бічній поверхні корпуса є паз для доступу до регулювальних гвинтів потенціометрів, що закривається планкою.
- 4.3.8. Батарея джерела живлення розташовується в окремому відсіку, що закривається кришкою.

5. МАРКУВАННЯ Й ПЛОМБУВАННЯ

- 5.1. На дозиметрі нанесені наступні маркувальні позначення:
- 1) на лицьовій панелі умовна позначка дозиметра і його найменування;
- 2) на шильдику (встановленому в батарейному відсіку): умовна позначка дозиметра, заводський порядковий номер, рік виготовлення.
- 5.2. Дозиметр, прийнятий ОТК і підготовлений до запакування, пломбується мастиковою пломбою в поглиблені для голівки гвинта, що скріплює між собою кришку й корпус дозиметра.
- 5.3. Пакувальна коробка, у яку вкладений дозиметр і комплект поставки заклеюється паперовою стрічкою зі штампом ОТК.

6. МІРИ БЕЗПЕКИ

- 6.1. При огляді й ремонті розкритого приладу необхідно торкатися деталей плати детекторів тільки інструментом з ізольованими ручками, тому що газорозрядні лічильники у включеному стані перебувають під високою напругою (400-440) В.
- 6.2. При перевірці й випробуванні дозиметра із джерелами іонізуючого випромінювання необхідно керуватися «Основними санітарними правилами роботи з радіоактивними речовинами й іншими джерелами іонізуючих випромінювань ОСП-72/87» й «Нормами радіаційної безпеки НРБ-76/87»

7. ПІДГОТОВКА ДО РОБОТИ

- 7.1. До початку роботи з дозиметром вивчити даний паспорт, принцип роботи й призначення органів керування.
- 7.2. Зробити зовнішній огляд. Установити у відсік живлення батарею «Корунд», дотримуючись полярності.
- 7.3. Включити дозиметр, для чого встановити перемикач піддіапазону в одне з положень: мР/г або Р/г, а перемикач режимів роботи в положення КОНТР.
 - 7.4. Здійснити скидання показів натисканням кнопки СКИДАННЯ.

- 7.5. На цифровому табло при правильному функціонуванні лічильних пристроїв дозиметра й придатності джерела живлення повинне відображатися число 0513 ± 1 при натисканні кнопки " 3 ".
 - 7.6. Прилад готовий до роботи.

8. ПОРЯДОК РОБОТИ

- 8.1. Установити перемикач режимів роботи в положення ПОШУК, перемикач піддіапазонів вимірювання в положення мР/г.
 - 8.2. Зробити скидання показів натисканням кнопки СКИДАННЯ.
- 8.3. Визначити напрямок випромінювання за максимальними показами на цифровому табло, орієнтуючи дозиметр у просторі. Відлік показів виконується безпосередньо в одиницях установленого піддіапазону вимірювань.
- 8.4. У режимі роботи «Пошук» зміна інформації на цифровому табло здійснюється автоматично в такт із миготінням коми в молодшому розряді.
- 8.5. Для підвищення точності вимірювання при рівнях потужності дози в межах до 9,999 мР/г або до 9,999 Р/г відповідних піддіапазонів, визначення дійсного значення доцільно робити в положенні ВИМІР перемикача режиму роботи.
- 8.6. У режимі роботи «Вимір» на цифровому табло відображаються нулі у всіх розрядах і мигає кома в молодшому розряді. Відлік показів висвітлюється наприкінці циклу вимірювання в момент припинення миготіння комі молодшого розряду. Покази на цифровому табло зберігаються до моменту натискання кнопки СКИДАННЯ й запуску дозиметра на новий цикл вимірювання.
- 8.7. При рівнях потужності дози, що перевищують граничні значення на кожному піддиапазоні вимірювання, на цифровому табло відображається переповнення висвітлюється символ «П» і відсутнє миготіння коми молодшого розряду.
- 8.8. При відображенні переповнення на піддиапазоні мР/г у режимі роботи «Вимір» перемикач режимів роботи перевести в положення ПОШУК. Якщо в цьому режимі роботи відображається переповнення, необхідно перемикач піддіапазонів перевести в положення Р/г і натисканням кнопки СКИДАННЯ запустити дозиметр.
- 8.9. При експлуатації дозиметра в умовах підвищеної вологості повітря й мінусовій температурі необхідно використати форсований режим роботи перетворювача високої напруги, для чого нажати кнопку СКИДАННЯ й утримувати її протягом усього циклу вимірювання в режимах роботи «Пошук» або «Вимір».

Примітка, тривале натискання кнопки СКИДАННЯ в нормальних умовах застосування приводить до невиправданої витрати енергії джерела живлення.

9. ЗАГАЛЬНІ ВКАЗІВКИ ПО ЕКСПЛУАТАЦІЇ

- 9.1. Робота з дозиметром повинна проводитися в умовах, які не виходять за межі робочих умов експлуатації.
- 9.2. Дозиметр під час перерв у роботі повинен бути виключений щоб уникнути непродуктивної витрати енергії джерела живлення.

- 9.3. В умовах робіт, при яких можливе радіоактивне забруднення поверхні дозиметра, а також при несприятливих погодних умовах (опади, пил), необхідно використати захисний поліетиленовий чохол.
- 9.4. У випадку потрапляння радіоактивної вологи й пилу на корпус дозиметра видалення їх повинне виконуватися тканиною, змоченої етиловим спиртом.
- 9.5. В умовах робіт у приміщеннях з поганою освітленістю й у темряві для підсвічування шкали цифрового індикатора варто користуватися кнопкою "-". Тривале натискання кнопки підсвічування приводить до непродуктивної витрати енергії джерела живлення.
- 9.6. Запасні джерела живлення виготовлювачем дозиметра не поставляються. Заміна джерела живлення виконується споживачем у наступній послідовності:
- 1) відкрити кришку відсіку джерела живлення, відкрутивши гвинт M2,5x8;
 - 2) вийняти колодку живлення з відсіку на довжину проводів;
- 3) притримуючи колодку живлення, від'єднати джерело живлення й з'єднати між собою відповідні контакти нового джерела живлення й колодки;
 - 4) помістити колодку живлення у відсік;
- 5) закрити кришку відсіку джерела живлення, закрутивши гвинт M2,5x8. Примітка. У відсіку живлення можлива установка акумуляторної батареї 7Д-0, 115-У1.1.

10. ТЕХНІЧНЕ ОБСЛУГОВУВАННЯ

- 10.1. Загальні вказівки
- 10.1.1. Технічне обслуговування дозиметра виконується з метою підтримки його постійної готовності до використання, забезпечення максимального терміну служби й полягає в проведенні профілактичних робіт і періодичній перевірці працездатності приладу.
 - 10.1.2. Профілактичні роботи включають у себе:

зовнішній огляд;

видалення слідів пилу й бруду миючими засобами;

огляд стану джерела живлення.

- 10.1.3. Заміна газорозрядних лічильників, ремонтні й градуювальні роботи повинні виконуватися фахівцями ремонтних служб, що ознайомилися з даним паспортом і допущені до роботи з радіоактивними джерелами при градуювальних роботах.
 - 10.2. Градуювання дозиметра
- 10.2.1. Градуювання дозиметра виконується на дозиметричних перевірочних установках (ГОСТ 25935-83) після проведення ремонтних робіт, заміни газорозрядних лічильників.
- 10.2.2. Градуювання дозиметра виконується з використанням зразкових II розряду джерел випромінювання радіонукліда цезій-137 при значеннях установлюваної потужності експозиційної дози:

на I піддіапазоні- 20,0 мР/год; на II піддіапазоні- 20,0 Р/год.

- 10.2.3. Зняти планку, що закриває отвір для доступу до регулювальних потенціометрів, для чого відкрутити три гвинти кріплення кришки дозиметра. Після зняття планки зробити кріплення кришки дозиметра й підготувати дозиметр до роботи, відповідно до розділу 7.
- 10.2.4. Установити прилад у фіксоване положення в поле випромінювання перевірочної дозиметричної установки таким чином, щоб геометричний центр вимірювального об'єму детекторів дозиметра розташовувався на центральній осі пучка випромінювання.
- 10.2.5. Установити перемикач режиму роботи в положення ПОШУК, перемикач піддіапазонів у положення мР/г і нажати кнопку СКИДАННЯ.
- 10.2.6. Зняти послідовно не менш десяти показів і визначити середнє значення, що повинне перебувати в межах (19,75-20,25) мР/ Γ .
- 10.2.7. Зробити при необхідності установку необхідного значення показів на даному піддіапазоні вимірювання потенціометром A2-R6 (лівий потенціометр зверху).
- 10.2.8. Установити перемикач режиму роботи в положення ВИМІР., зробити скидання показів натисканням кнопки СКИДАННЯ. На цифровому табло повинне відображатися переповнення (символ «П»).
- 10.2.9. Установити значення потужності експозиційної дози 20 Р/г, перемикач режиму роботи в положення ПОШУК, а перемикач піддіапазонів у положення Р/г і натиснути на кнопку СКИДАННЯ.
- 10.2.10. Зняти послідовно не менш десяти показів і визначити середнє значення, що повинне перебувати в межах (19,75-20,25) Р/г.
- 10.2.11. Зробити при необхідності установку необхідного значення показів на даному піддіапазоні вимірювання потенціометром A2-R8 (правий потенціометр зверху).
- 10.2.12. Установити перемикач режиму роботи в положення ВИМІР., зробити скидання показів натисканням кнопки СКИДАННЯ. На цифровому табло повинне відображатися переповнення (символ «П»).
- 10.2.13. Установити потужність експозиційної дози в межах (5-10) мР/г і визначити час вимірювання в режимі роботи «ВИМІР.» на двох піддіапазонах, для чого одночасно з натисканням кнопки СКИДАННЯ запустити секундомір. По закінченні циклу вимірювання в момент появи інформації на цифровому табло, зупинити секундомір і зробити відлік часу, що не повинне перевищувати 25с. Якщо час вимірювання перевищує зазначене вище значення, це свідчить про непрацездатність одного або декількох лічильників СБМ-20 на піддіапазоні мР/г або одного лічильника СИ 34М (СИ 40М) на піддіапазоні Р/г під час градуювання. У цьому випадку необхідно відшукати несправний лічильник або поганий контакт у його ланцюзі, замінити або усунути несправність і зробити повторне градуювання.
- 10.2.14. Установити планку, що закриває отвір для доступу до регулювальних потенціометрів й опломбувати голівку гвинта кріплення кришки дозиметра.

11. МОЖЛИВІ НЕСПРАВНОСТІ Й СПОСОБИ ЇХНЬОГО УСУНЕННЯ

- 11.1. Порядок розбирання
- 11.1.1. При необхідності заміни газорозрядних лічильників і при ремонті необхідно:
 - 1) переконатися, що дозиметр виключений;
 - 2) відкрутити три гвинти кріплення кришки до корпуса дозиметра;
 - 3) при знятій кришці зробити заміну лічильників;
- 4) при установці нових газорозрядних лічильників необхідно встановити на них (на клей БФ-4) свинцеві фільтри, зняті із замінених лічильників, попередньо видаливши залишки клею з фільтрів. Після установки фільтрів всю поверхню лічильників (крім вивидів) покрити двома шарами лаку УР-231 або ФЛ;
- 5) при потребі заміни деталей зробити розбирання дозиметра, для чого відкрутити три гвинти кріплення плат друкованого монтажу до корпуса й вийняти плати. У розібраному виді забезпечений легкий доступ до будь-якого елемента електричної схеми при ремонті й настроюванні.
 - 11.2. Можливі несправності й способи їхнього виявлення й усунення
- 11.2.1. Особам, що приступають до ремонту, необхідно ознайомитися із принципом дії й роботою дозиметра, а також із призначенням і роботою окремих вузлів. При відшуканні несправностей рекомендується перевіряти працездатність окремих елементів схеми, користуючись таблицею напруг (див. додаток).
- 11.2.2. При вимірах необхідно користуватися щупом із загостреним наконечником після проведення вимірів плати повинні бути піддані додатковому захисту від вологи.
- 11.2.3. У таблиці 2 наведені найбільш характерні несправності, імовірні причини й способи їхнього усунення.

Таблиця 2.

Найменування несправ-	Ймовірна причина	Спосіб усунення
ності, зовнішній прояв і		
додаткові ознаки		
1. У режимі "Контр" чи-	Несправна батарея	Замінити батарею.
сло на індикаторі відріз-	"Корунд".	
няється від значення	Несправні мікросхе-	Замінити мікросхеми і дета-
0513 ± 1	ми А2-ДД2, А2-ДД3,	лі.
	елементи А2-VД1,	
	A2-R5.	
2. При вимірі на І-шому	Несправні лічильники	Замінити лічильники, усуну-
піддіапазоні в режимі	СБМ-20 або поганий	ти поганий контакт.
"Пошук" відсутні покази	контакт у їхньому ла-	
	нцюзі.	
	Несправний перетво-	Електростатичним вольтмет-
	рювач високої напру-	ром типу С-50/6 перевірити

	ги.	наявність високої напруги
		400-420 B.
		Перевірити режим роботи
		транзистора А3-VT1 і при
		необхідності замінити.
	Несправний вхідний	Перевірити режим роботи
	транзистор	транзистора A2-VT1 і при
		необхідності замінити.
3. При включенні	Несправний генера-	Замінити мікросхему А2-
приладу на індикаторі	тор опорних частот.	ДД1.
немає показів (відсутнє	Повністю розряджене	Замінити джерело живлення.
світіння шкали)	джерело живлення.	
4. При вимірах в умовах	Саморозряд газороз-	Замінити несправний лічиль-
природного гамма-фону	рядних лічильників	ник.
прилад показує перепо-	СБМ-20 або СИ 34М	
внення	(СИ 40М).	

12. ПОВІРКА ДОЗИМЕТРА

12.1. Повірці підлягають всі нові, зремонтовані й такі, що перебувають в експлуатації дозиметри.

Періодична повірка дозиметра повинна проводитися не рідше одного разу в рік територіальними органами метрологічної; служби Держстандарту.

- 12.2. При повірці здійснюється:
- 1) зовнішній огляд;
- 2) апробування;
- 3) визначення основної похибки.
- 12.3. При проведенні зовнішнього огляду повинне бути встановлене:
- 1) відповідність комплектності дозиметра, що повіряється;
- 2) наявність експлуатаційної документації (паспорт);
- 3) наявність маркування на дозиметрі;
- 4) відсутність забруднень, дефектів, механічних ушкоджень, що впливають на роботу дозиметра.
- 12.4. При апробуванні дозиметра перевіряється дія органів керування й справність джерела живлення. Апробування здійснюється за методикою розділу 7 даного паспорта.
- 12.5. Визначення основної похибки вимірювання проводиться в повній відповідності з МИ1788 87 на перевірочних дозиметричних установках за ГОСТ 8.087-81.
- 12.6. На кожному піддіапазоні вимірювання залежно від обраного режиму роботи дозиметра встановлюються наступні положення повірочних точок для, яких, від джерел ІІ-го розряду радіонукліда цезій-137, потужність експозиційної дози становить:

```
в режимі «Вимір» - 3,0 мР/г, 7,5 мР/г. 3,0 Р/г, 7,5 Р/г; у режимі «Пошук» - 75 мР/г,
```

Перевірку встановленого значення потужності експозиційної дози виконують по МИ1788-87.

- 12.7. У режимі роботи «Пошук» послідовно зняти не менш п'яти показів, а в режимі «Вимір» не менш трьох показів. Допускається заміняти режим роботи «Вимір» режимом роботи «Пошук» зі збільшенням числа вимірів до 30.
 - 12.8. Визначити основну похибку вимірювання у відсотках по формулі:

$$\Delta_0 = 1.1 \sqrt{\Theta_0^2 + \Delta n p^2} \%$$
, де

 Θ_0 - похибка зразкового засобу вимірювання;

$$\Delta np = \max \left| \frac{Xi \max - X\partial}{X\partial} \right| \cdot 100$$

Ximax- покази приладу, максимально віддалені від дійсного значення фізичної величини при вимірах перевіряє прибором, у двох точках піддіапазону;

- $X\partial$ дійсне значення потужності експозиційної дози, визначене як середнє арифметичне значення результату вимірів, виконаних зразковим приладом.
- 12.9. Позитивні результати перевірки повинні оформлятися внесенням відповідного запису в паспорт дозиметра, засвідченого в порядку, установленому підприємством і клеймом Держповерителя в порядку, установленому Держстандартом.
- 12.10. При негативних результатах повірки, дозиметри забороняються до застосування, у паспорт вноситься запис про непридатність дозиметра й видається повідомлення за встановленою формою.

13. ПРАВИЛА ЗБЕРІГАННЯ

- 13.1. Прилад повинен зберігатися без джерела живлення в герметичному поліетиленовому мішку при температурі навколишнього повітря (від 1 до 40) °C і відносної вологості повітря до 80%.
- 13.2. Зберігання без упакування варто робити при температурі навколишнього повітря (від 10 до 35) °C і відносній вологості повітря до 80% при температурі +25°C.
- 13.3. У приміщеннях для зберігання не повинно бути пилу, пар кислот і лугів, агресивних газів й інших шкідливих домішок, що викликають корозію.

14. ТРАНСПОРТУВАННЯ

- 14.1. Поставка приладів виконується в картонному ящику, що має внутрішню прокладку з поролону або картону.
- 14.2. Прилад допускає транспортування в умовах, що не перевищують граничних значень температури й вологості (від мінус 50 до плюс 50) °C і відносної вологості (95 + 3)% при температурі (30+2)°C.
- 14.3. Допускається транспортування приладу в закритому транспорті будь-якого виду в пакувальній тарі.

15. СВИЛЕТЕЛЬСТВО О ПРИЕМКЕ

Дозиметр ДРГ-ОІТІ заводской номер <u>2056</u> соответствует техническим условиям mГБ2.805.001 ТУ, поверен и приз-

М.П. Дата выпуска 12. // 912 Представитель ОТК завода

Лесто клейма Госповеритель
Госповерителя
Подпись

В Дата поверки 15.11.91т

16. ГАРАНТІЙНІ ЗОБОВ'ЯЗАННЯ

- 16.1. Гарантійний строк експлуатації дозиметра встановлюється 18 місяців від дня введення дозиметра в експлуатацію або після закінчення гарантійного строку зберігання.
- 16.2. Гарантійний строк зберігання 6 місяців від дня приймання представником ОТК.
 - 16.3. Термін служби 8 років.
- 16.4. Безоплатний ремонт або заміна дозиметра протягом гарантійного строку експлуатації виконується підприємством-виготовлювачем за умови дотримання споживачем правил експлуатації, транспортування, зберігання й схоронності пломби.
- 16.5. У випадку усунення несправностей у виробі (по рекламації) гарантійний строк експлуатації продовжується на час, протягом якого дозиметр не використовувся через виявлені несправності.
- 16.6. Тривалість установлених гарантійних строків не поширюється на джерело живлення. Претензії до джерела живлення (батарея типу «Корунд») пред'являються до його підприємства-виготовлювача.

17. ВІДОМОСТІ ПРО РЕКЛАМАЦІЇ

17.1. У випадку відмови в роботі дозиметра до закінчення гарантійного строку необхідно дозиметр разом з паспортом і технічно обґрунтованим актом направити на адресу підприємства-виготовлювача: 196243, Ленінград, Московський проспект, буд.66. Експлуатаційно-гарантійний відділ ЦНПО «Ленінець».

18. СВІДЧЕННЯ ПРО УВЕДЕННЯ ВИРОБУ В ЕКСПЛУАТАЦІЮ

Дозиметр ДРГ-ОІТІ mГБ2.805.002 введен в эксплуатацию

дата	ввода	\mathbf{B}	эксплуатацию	

М.П.

Подпись и фамилия лица, ответственного за эксплуатацию изделия

19. ВІДОМОСТІ ПРО РЕЗУЛЬТАТИ ПЕРЕВІРКИ ІНСПЕКТУЮЧИМИ І ПЕРЕВІРЯЮЧИМИ ОСОБАМИ

Дата	Вид огляду чи	Результати	Посада, фамі-	Примітки
	ремонту	огляду чи по-	лія і підпис	
		вірки	повірителя	

20. Дані щодо ремонту виробів

скла-	ачі в	Дат	a	кону- клів, оти до пій, ка-		икону- пій, ка- пій, ка- пій, ка- пій, ка- пій, ка-		Посада, фа підпис відпис особ	повідальної оби	
Назва та позначення скла- дової частини виробу	Підстави для передачі в ремонт	надійшло в ремонт	вийшло з ремонту	Назва органа, що викону- вав ремонт	Кількість годин (циклів, кілометрів, змін) роботи до ремонту	кілометрів, змін) роботи до ремонту Вид ремонту (середній, капітальний ін.) Назва ремонтних робіт		виконавець ремонту	приймач ремонту	

ДОДАТОК ТАБЛИЦЯ НАПРУГ

- 1. Всі напруги зазначені для номінального значення напруг живлення 8,5 В.
- 2. Значення напруг виміряні цифровим вольтметром типу В7-22А відносно мінуса джерела живлення.
 - 3. Допустиме відхилення напруги від зазначеного $\pm 15\%$.
- 4. Для мікросхем серії 176, 561 вихідні напруги логічного нуля не більше 0,3 В, логічної одиниці не менш 7,8 В.

Виводи	Значення напруг, В.					
транзисторів	A2 – VT 1	A3 - VTI				
Е	0,6	0	0			
Б	1,2	0	0,25			
К	0,68	8,5	8,5			

Виріб ДРГ-01Т1. Паспорт. Замовлення №. 1394.