

planetmath.org

Math for the people, by the people.

Gabor frame

Canonical name GaborFrame

Date of creation 2013-03-22 17:08:28 Last modified on 2013-03-22 17:08:28 Owner ErlendA (6587) Last modified by ErlendA (6587)

Numerical id 5

Author ErlendA (6587)
Entry type Definition
Classification msc 46C99
Defines Gabor frame

Defines Gabor super-frame

Defines Vector-valued Gabor frame

One may be interested in Gabor frames and its related theory if one looks further into the frame framework. First, denote a lattice by $\Lambda = A\mathbb{Z}^{2d}$, where A is an invertible matrix, and let $\pi(\xi, \phi)f = e^{2\pi i \xi x} f(x - \phi)$

Definition. Let $g \in L^2(\mathbb{R}^d)$ be a nonzero window, and let $\lambda \in \Lambda$, then

$$G(g,\lambda) = \{\pi(\lambda)g : \lambda \in \Lambda\}$$

is a Gabor system. If $G(g,\lambda)$ is a frame, it's called a Gabor frame for $L^2(\mathbb{R}^d)$

Supose now that one wants to look at a more general framework, and work with functions in $L^2(\mathbb{R}^d, \mathbb{C}^n)$. Then the definition above generalises to

Definition. Let $\mathbf{g} \in L^2(\mathbb{R}^d, \mathbb{C}^n)$ be a nonzero window and let $\lambda \in \Lambda$, then

$$G(q, \lambda) = {\pi(\lambda)q : \lambda \in \Lambda}$$

is a Gabor super-frame if the frame inequalities hold, where

$$\pi(\xi,\phi)\mathbf{g} = e^{2\pi i x \cdot \xi} (g_1(x-\phi), g_2(x-\phi), ..., g_n(x-\phi))$$

and for $f, h \in L^2(\mathbb{R}^d, \mathbb{C}^n)$

$$\langle \boldsymbol{f}, \boldsymbol{h} \rangle_{L^2(\mathbb{R}^d, \mathbb{C}^n)} = \sum_{i=1}^n \langle f_i, h_i \rangle_{L^2(\mathbb{R}^d)}$$

References

[1] Karlheinz Grchenig, "Foundations of Time-Frequency Analysis," Birkhhuser (2000)