AoPS Quarantine Geometry Olympiad 2020

Day 1

- P1 Let $\triangle ABC$ be a triangle with altitude AD. Let V be a variable point on $\bigcirc(ABC)$ and \overline{VD} intersect $\bigcirc(ABC)$ at U. Let \overline{UM} intersect $\bigcirc(ABC)$ at X where M is the midpoint of \overline{BC} . Let $\overline{AX} \cap \overline{BC} = Y$. Let $\bigcirc(YVM)$ intersect $\bigcirc(ABC)$ at a point Z. Let Z' be the reflection of Z over \overline{OH} . Finally let $\bigcirc(Z'OH)$ intersect $\bigcirc(ABC)$ at $T \neq Z'$. Then prove that \overline{TZ} passes through M.
- **P2** Let $\triangle ABC$ be a triangle with D as a random point on \overline{BC} such that $\overline{BD} < \overline{BM}$ where M is the midpoint of \overline{BC} and let E, F be on sides $\overline{AB}, \overline{AC}$ such that $\overline{EF} \parallel \overline{BC}$. Let D' be the reflection of D across the midpoint of \overline{BC} and define X, Y as the intersections of $\odot(BD'E)$ and $\odot(CDF)$. Then prove that $\odot(AXY)$ passes through a fixed point as D varies other than A.
- P3 Let $\triangle ABC$ be a triangle with circumcenter O. Let M,N be the midpoints of \overline{AB} and \overline{AC} respectively and let T be the projection of O on \overline{MN} . Let D be the projection of A on \overline{BC} . Let \overline{TD} intersect $\odot(BOC)$ at points U and V. Let $\odot(AUV)$ intersect \overline{MN} at points X,Y. Let \overline{AY} intersect $\odot(AMN)$ at R and \overline{AX} intersect $\odot(AMN)$ at S. Then show that $\overline{AO},\overline{RS},\overline{MN}$ are concurrent.

Time: 4 hours and 30 minutes. Each problem is worth 7 points.