

FIT2004 Algorithms and data structures S1 2023

<u>Dashboard</u> / My units / <u>FIT2004_S1_2023</u> / <u>Assessments</u> / <u>Quiz (Weight 10%)</u>

Question 1

Not yet answered

Marked out of 2.00

For constants b and c, consider the recurrence relation given by:

```
• T(n) = b, if n=1
```

•
$$T(n) = 25 * T(n/5) + c * n^3$$
, if n>1

Which of the following statements is true?

```
• a. T(n) = Θ(n^3)
```

$$\bigcirc$$
 b. $T(n) = \Theta(n^3 * \log n)$

$$\bigcirc$$
 c. $T(n) = \Theta(n^2)$

$$\bigcirc$$
 d. T(n) = $\Theta(n^2 * \log n * \log n)$

$$\bigcirc$$
 e. $T(n) = \Theta(n^2 * \log n)$

Clear my choice

Question 2

Not yet answered

Marked out of 2.00

Consider the following algorithm, which returns the largest positive integer that divides two positive integers a, b.

```
myfunc(a, b):
    x = a
    y = b
    while (x != 0 && y != 0):
        ### Loop Invariant ###
    if (x > y):
        x = x % y
    else:
        y = y % x
    return max(x, y)
```

What is an appropriate loop invariant for this algorithm at the point specified?

- a. The largest positive integer that divides both a,b is equal to the largest positive integer that divides both x, y
- \circ b. The largest positive integer that divides both a,b is equal to the largest positive integer that divides both x % y, y
- O c. The largest positive integer that divides both a,b is equal to the largest positive integer that divides both x, y % x
- \circ d. The largest positive integer that divides both a,b is equal to the largest positive integer that divides both x y, y

Clear my choice

Marked out of 2.00
Which of the following sorting algorithms runs in linear time when executed on an already sorted array (assuming that it is an array of integers)?
□ a. Heapsort
□ b. Selection Sort
☑ c. Insertion Sort
□ d. Merge Sort
Question 4 Not yet answered Marked out of 2.00
Marked out of 2.00
For a sequence of n integers in range [-2 n-2], which sorting algorithm can take a linear time to sort this sequence
☑ a. Counting Sort
☐ b. None of the answers
□ c. Radix Sort
☐ d. Quick Sort
Question 5
Not yet answered
Marked out of 2.00
Which of the following statements are true regarding Karatsuba's multiplication algorithm?
☑ a. Its time complexity is O(n^{log_2 3}).
☐ b. It uses 4 recursions to optimally solve sub-problems.
☑ c. It uses 3 recursions to solve optimally sub-problems.
☐ d. Its time complexity is O(n^2).
■ Ed Discussion
Jump to \$

Question $\bf 3$

Not yet answered

Lecture 1 - Introduction ▶