Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 1 Rappels de théorie de la mesure

Remarque préliminaire : \mathbb{R} sera ici toujours équipé de sa tribu borélienne $\mathscr{B}(\mathbb{R})$.

Exercice 1. Soit (E, \mathcal{T}, μ) un espace mesuré. Montrer que :

(a) Pour tout $A, B \in \mathcal{T}$, on a

$$\mu(A \cup B) \le \mu(A) + \mu(B)$$

et, si on suppose de plus que $\mu(E) < \infty$,

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).$$

(b) Si $A_n \in \mathcal{T}$ et $A_n \subset A_{n+1}$ pour tout $n \geq 1$, alors

$$\lim_{n \to \infty} \mu(A_n) = \mu\Big(\bigcup_{n > 1} A_n\Big).$$

Exercice 2. On veut montrer que toute fonction étagée est mesurable. Soit (E, \mathcal{T}) un espace mesurable et $A \in \mathcal{P}(E)$. Montrer que la fonction caractéristique $\mathbf{1}_A : E \to \mathbb{R}$ est mesurable $\Leftrightarrow A \in \mathcal{T}$. Conclure.

Exercice 3. (a) Montrer que $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$ et calculer sa mesure de Lebesgue.

(b) On considère la fonction $\mathbf{1}_{\mathbb{Q}\cap[0,1]}$. Quelle est son intégrale pour la mesure de Lebesgue ? Que peut-on dire de son intégrale de Riemann ?

Exercice 4. Soit E un ensemble et $a \in E$. La masse de Dirac en a est l'application définie sur $\mathscr{P}(E)$ par

$$\delta_a(A) := \begin{cases} 1 & \text{si } a \in A \\ 0 & \text{sinon.} \end{cases}$$

- (a) Montrer que δ_a est une mesure (on l'appelle aussi la mesure de Dirac).
- (b) Montrer que pour toute fonction $f: E \to \mathbb{R}_+$, on a

$$\int f \, \delta_a = f(a).$$

(c) On équipe $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$ de la mesure μ définie par

$$\mu(A) = \sum_{k=0}^{\infty} \delta_k(A).$$

Montrer que toute fonction $f: \mathbb{N} \to \mathbb{R}_+$ est mesurable et que

$$\int f \, \mathrm{d}\mu = \sum_{k=0}^{\infty} f(k).$$

Exercice 5. Soit (E, \mathcal{T}, μ) un espace mesuré et (E', \mathcal{T}') un espace mesurable. On se donne une application $\varphi : E \to E'$ mesurable.

- (a) Montrer que la mesure image $\varphi_*\mu$ définie par $\varphi_*\mu(A) := \mu(\varphi^{-1}(A))$ pour tout $A \in E'$ est bien une mesure sur (E', \mathcal{T}') .
- (b) Montrer que pour toute fonction mesurable $f: E' \to \mathbb{R}_+$ on a :

$$\int_{E'} f(x) \, \mathrm{d}\varphi_* \mu(x) = \int_E f \circ \varphi(y) \, \mathrm{d}\mu(y).$$

(c) Si $(E, \mathcal{T}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ avec μ la mesure de Lebesgue et $\varphi(x) = x^3$, donner une forme explicite à $\varphi_*\mu$. Même question si (E, \mathcal{T}, μ) est maintenant l'espace mesuré de l'exercice 4(c).

Exercice 6. Soit (E, \mathcal{T}, μ) un espace mesuré et $f: E \to \mathbb{R}_+$ un fonction mesurable. On considère la mesure ν définie par

$$\nu(A) := \int \mathbf{1}_A f \, \mathrm{d}\mu.$$

Montrer que ν est une mesure sur (E, \mathcal{T}, μ) .

Exercice 7*. On considère la relation d'équivalence sur [0,1] donnée par $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. On note [x] la classe d'équivalence associée à $x \in [0,1]$ pour cette relation et \mathscr{C} l'ensemble des classes d'équivalence.

(a) Montrer que les classes d'équivalences forment une partition de [0,1], c'est-à-dire que $[x] \cap [y] \neq \emptyset \Leftrightarrow x \sim y$ et

$$\bigcup_{[x]\in\mathscr{C}} [x] = [0,1].$$

Pour tout $[x] \in \mathcal{C}$, on choisit un élément $p_{[x]} \in [x]$ de façon arbitraire et on considère l'ensemble $V = \{p_{[x]} : [x] \in \mathcal{C}\}$ (le fait que V soit un ensemble bien défini requiert l'Axiome du choix). On note $V + q := \{x + q : x \in V\}$ l'ensemble V translaté par q.

(b) Montrer qu'on a les inclusions d'ensembles

$$[0,1] \subset \bigcup_{q \in [-1,1] \cap \mathbb{Q}} V + q \subset [-1,2].$$

(c) En utilisant la propriété d'invariance par translation de la mesure de Lebesgue μ de \mathbb{R} , c'est-à-dire $\mu(A) = \mu(A+x)$ pour tout $A \in \mathcal{B}(\mathbb{R})$ et tout $x \in \mathbb{R}$, en déduire que $V \notin \mathcal{B}(\mathbb{R})$.