FALCONER'S $\frac{d+1}{2}$ BOUND VIA STEIN-TOMAS RESTRICTION THEOREM

ALEX IOSEVICH

February 13, 2005

ABSTRACT. We use the Stein-Tomas restriction theorem to give an alternate proof of a result due to Falconer which says that if the Hausdorff dimension of a subset of \mathbb{R}^d , $d \geq 2$, is greater than $\frac{d+1}{2}$, then the Lebesgue measure of the set of distances is positive. Using a "conversion mechanism" this implies that if A is a Delone set, then the number of Euclidean distances determined by $A \cap [0,R]^d$ is at least $CR^{2-\frac{2}{d+1}}$.

The purpose of this short expository note is to show that Stein-Tomas restriction theorem yields a proof of a result due to Falconer ([Falc86]) which says that if the Hausdorff dimension of a set is greater than $\frac{d+1}{2}$, then the Lebesgue measure of the set of distances is positive. This result has been improved significantly since then in a series of papers by Bourgain ([Bour94]), Wolff ([W99]), and Erdogan ([Erd04]). The purpose of this note is to give a proof of Falconer's result via the Stein-Tomas restriction theorem. While the proof itself only yields the $\frac{d+1}{2}$, the approach is quite promising and was in fact used by the aforementioned individuals to obtain sharper estimates.

Theorem 0.1. Let $E \subset [0,1]^d$ of Hausdorff dimension $> \frac{d+1}{2}$. Then the Lebesgue measure of $\Delta(E) = \{|x-y| : x, y \in E\}$ is positive, where $|\cdot|$ denotes the standard Euclidean distance.

Proof of Theorem 0.1

We shall make use of the result due to Mattila ([Mat95]; see also [W03] for nice proof and a description of related topics) which says that in order to show that the Lebesgue measure of $\Delta(E)$ is positive, it suffices to prove that there exists a Borel measure μ supported on E such that

(1.1)
$$M(\mu) = \int_{1}^{\infty} \left(\int_{S^{d-1}} |\widehat{\mu}(t\omega)|^{2} d\omega \right)^{2} t^{d-1} dt < \infty.$$

Typeset by $A_{\mathcal{M}}S$ -T_EX

Let $\tau_t f(x) = t^{-d} f(x/t)$. Observe that $\widehat{\tau_t f}(\xi) = \widehat{f}(t\xi)$, and $||\tau_t f||_p = t^{-\frac{d}{p'}} ||f||_p$. Let f be a Schwartz class function such that $\int f(x) dx = 1$ and

(1.2)
$$\int \int |x-y|^{-\alpha} f(x)f(y)dxdy < \infty$$

for $\alpha > \frac{d+1}{2}$. It suffices to prove that $M(f) < \infty$.

Let f_j be defined by the relation $\hat{f}_j(\xi) = \beta(2^{-j}\xi)\hat{f}(\xi)$, where β is the usual Littlewood-Paley cut-off function. By Stein-Tomas restriction theorem (see e.g. [W02] for a proof),

(1.3)
$$\int_{S^{d-1}} |\widehat{f}(t\omega)|^2 d\omega \lesssim ||\tau_t f_j||_p^2 = t^{-\frac{2d}{p'}} ||f_j||_p^2,$$

where $p = \frac{2(d+1)}{d+3}$.

Now, $||f_j||_1 \leq 1$, and $||f_j||_2 \approx 2^{\frac{d-\alpha}{2}j}$. It follows that

$$||f_j||_p \lesssim 2^{\frac{d-\alpha}{p'}j}.$$

It follows that the right hand side of (1.2) is

Let

(1.6)
$$M_{j}(f) = \int_{2^{j}}^{2^{j+1}} \left(\int_{S^{d-1}} |\widehat{f}(t\omega)|^{2} d\omega \right)^{2} t^{d-1} dt.$$

It follows from (1.5) that

$$(1.7) M_j(f) \lesssim 2^{j(d-\alpha)} 2^{-\frac{2\alpha j}{p'}},$$

and the series converges if $\alpha > \frac{d+1}{2}$.

Applications to the Erdos distance problem

Using the "conversion mechanism" from [IL04], [HI05], or by rewriting the argument above in a discrete setting, we can prove the following.

Theorem 2.1. Let A be a Delone set, i.e there exist 0 < c < C such that points of A are c-separated and every cube of side-length C contains at least one point of A. Then

(2.1)
$$\#\Delta(A \cap [0, q]^d) \gtrsim q^{2 - \frac{2}{d+1}}.$$

REFERENCES

[Bour94]	J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), 193-201.
[Erd04]	B. Erdogan, A bilinear Fourier extension theorem and applications to the distance set problem, (preprint) (2004).
[Falc86]	K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1986), 206-212.
[HI05]	S. Hofmann and A. Iosevich, Circular averages and Falconer/Erdos distance conjecture in the plane for random metrics, Proc. Amer. Math. Soc. 133 (2005), 133-143.
[IL04]	A. Iosevich and I. Laba, K-distance, Falconer conjecture, and discrete analogs, Integers (to appear) (2004).
[Mat95]	P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge U. Press (1995).
[W99]	T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices no. 10 (1999), 547–567.
[W03]	T. Wolff, Lecture notes in harmonic analysis, University Lecture Series, American Mathematical Society 29 (2003).