Mechanics

May 20, 2025

1 Basic Elementary Principles

Result 1 (Newton's law)

1. In an inertial reference frame, an object remains at rest or constant velocity unless acted upon by external force.

2.

$$\dot{oldsymbol{p}} = rac{d(moldsymbol{v})}{dt} = oldsymbol{F}^{(e)}$$

3. Action and reaction: $F_{ij} = -F_{ji}$ (Additional condition for strong version: $r_{ij} \times F_{ji} = 0$)

1.1 Single particle

Result 2 (Conservation of Linear Momentum)

If
$$\mathbf{F} = 0$$
, then $\dot{\mathbf{p}} = 0$

Angular momentum of the particle around point O is $L = r \times p$. Torque $N = r \times F$.

$$oldsymbol{N} = rac{d}{dt}(oldsymbol{r} imes moldsymbol{v}) = rac{doldsymbol{L}}{dt} \equiv oldsymbol{\dot{L}}$$

Result 3 (Conservation of Angular Momentum)

If
$$N = 0$$
, then $\dot{L} = 0$

If force field F is conservative ($\oint F \cdot ds = 0$ or $\int_a^b F \cdot ds = T_b - T_a$ is the same for any path between a and b). There exists a potential scalar field V such that

$$\boldsymbol{F} = -\boldsymbol{\nabla}V(\boldsymbol{r})$$

Result 4 (Conservation of Energy)

E = T + V is conserved where T and V are kinetic energy and potential energy respectively

1.2 System of particles

Center of mass:

$$oldsymbol{R} = rac{\sum_i m_i oldsymbol{r}_i}{\sum m_i} = rac{\sum_i m_i oldsymbol{r}_i}{M}$$

Let $F_i^{(e)}$ external force acting on particle *i*-th, and F_{ji} is the force exerted by *j*-th particle on *i*-th particle in the system,

$$m_i rac{d^2(oldsymbol{r_i})}{dt^2} = oldsymbol{\dot{p_i}} = \sum_i oldsymbol{F_{ji}} + oldsymbol{F_i^{(e)}}$$

Summing over all particles, we get

$$\dot{\boldsymbol{p}} = M \frac{d^2 \boldsymbol{R}}{dt^2} = \sum_i \boldsymbol{F}_i^{(e)} \equiv \boldsymbol{F}^{(e)}$$

Result 5 (Conservation of Linear Momentum for a system of particles)

if the total external force $F^{(e)} = 0$, the total linear momentum p is conserved.

The change of total angular momentum:

$$egin{aligned} rac{d}{dt} oldsymbol{L} &= \sum_{i} oldsymbol{r_i} imes \dot{oldsymbol{p_i}}_i = \sum_{i} oldsymbol{r_i} imes oldsymbol{F_{ji}} &= \sum_{j} oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i,j} oldsymbol{r_i} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_i} imes oldsymbol{F_{ji}} + \sum_{i < j} oldsymbol{r_i} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_i} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} imes oldsymbol{F_{ji}} &= oldsymbol{N^{(e)}} + \sum_{i < j} oldsymbol{r_{ij}} oldsymbol{N^{(e)}} &= oldsymbol{N^{(e)}} + olds$$

When the internal force abides strong version of Newton's 3rd law, internal force pair has the same direction as the two particles r_{ij} . Then $r_{ij} \times F_{ji} = 0$. Forces satisfy strong Newton's 3rd law are **central**.

Result 6 (Conservation of Angular Momentum for a system of particles)

 $m{L}$ is constant in time if applied external torque $m{N}^{(e)}=0$ and internal forces are central

Let $r_i = R + r_i'$ where r_i' is the position of ith particle wrt to R instead of O. Similarly, $v_i = v + v_i'$ where $v = \dot{R}$. We can find $R = \frac{\sum_i m_i r_i}{M} = \frac{\sum_i m_i (R + r_i')}{M} = R + \sum_i r_i'$ which means

$$\sum_{i} \boldsymbol{r}_{i}' = 0, \qquad \sum_{i} \dot{\boldsymbol{r}}_{i}' = \sum_{i} \boldsymbol{v}_{i}' = 0$$

•

Result 7 The total angular momentum about *O* is the angular momentum of center of mass + angular momentum of each particle around the center of mass.

$$egin{aligned} oldsymbol{L} &= \sum_i oldsymbol{r_i} ilde{oldsymbol{r}_i} ilde{oldsymbol{p}_i} \\ &= oldsymbol{R} imes M oldsymbol{v} + \sum_i oldsymbol{r}'_i imes oldsymbol{p}'_i + \sum_i oldsymbol{R} imes m_i oldsymbol{v}'_i + \sum_i m_i oldsymbol{r}'_i imes oldsymbol{v} \\ &= oldsymbol{R} imes M oldsymbol{v} + \sum_i oldsymbol{r}'_i imes oldsymbol{p}'_i \end{aligned}$$

In general L depends on choice of O through R except when the center of mass is at rest R = 0.

Result 8 The total kinetic energy of the system is

$$T = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} (\boldsymbol{v} + \boldsymbol{v}_{i}') (\boldsymbol{v} + \boldsymbol{v}_{i}') = \frac{1}{2} M v^{2} + \sum_{i} \frac{1}{2} m_{i} (v_{i}')^{2}$$

The ith particle has trajectory $r_i(t)$ from time a to b. Then the work is the change in kinetic energy.

$$W_i = \int_a^b \mathbf{F}_i \cdot d\mathbf{r}_i = \int_a^b \frac{d(m_i v_i)}{dt} \cdot \frac{d\mathbf{r}_i}{dt} dt = \int_a^b m_i \dot{\mathbf{v}}_i \cdot \mathbf{v}_i dt = \int_a^b d(\frac{1}{2} m_i v_i^2) = T_i(b) - T_i(a)$$

Also we can write

$$W_i = \int_a^b \boldsymbol{F_i} \cdot d\boldsymbol{r_i} = \int_a^b \boldsymbol{F_i^{(e)}} \cdot d\boldsymbol{r_i} + \sum_i \int_a^b \boldsymbol{F_{ji}} \cdot d\boldsymbol{r_i}$$

If the external force $\boldsymbol{F}_i^{(e)}$ is conservative, then $\boldsymbol{F}_i^{(e)} = -\boldsymbol{\nabla} V_i$

$$\int_{a}^{b} \boldsymbol{F}_{i}^{(e)} \cdot d\boldsymbol{r}_{i} = -\int_{a}^{b} \boldsymbol{\nabla} V_{i} \cdot d\boldsymbol{r}_{i} = -\int_{a}^{b} \frac{\partial V_{i}}{\partial x_{i}} dx_{i} + \frac{\partial V_{i}}{\partial y_{i}} dy_{i} + \frac{\partial V_{i}}{\partial z_{i}} dz_{i} = -\int_{a}^{b} dV_{i} = -V_{i}|_{a}^{b}$$

If the action/reaction forces are conservative and central, $V_{ji}(|\mathbf{r_i} - \mathbf{r_j}|)$ only depends on distance between ith and jth particle, hence it is symmetric $V_{ji} = V_{ij}$. Also

$$\boldsymbol{F}_{ji} = -\boldsymbol{\nabla}_i V_{ij} = -\boldsymbol{F}_{ij} = \boldsymbol{\nabla}_j V_{ji} = \boldsymbol{\nabla}_j V_{ij}$$

We can find the gradients of V_{ij} with respect to $r_{ij} = r_i - r_j$,

$$\mathbf{\nabla}_{i}V_{ij} = \frac{\partial V_{ij}}{\partial \boldsymbol{r_{i}}} = \frac{\partial V_{ij}}{\partial \boldsymbol{r_{ij}}} \frac{\partial \boldsymbol{r_{ij}}}{\partial \boldsymbol{r_{i}}} = \frac{\partial V_{ij}}{\partial \boldsymbol{r_{ij}}} = \mathbf{\nabla}_{ij}V_{ij} = -\mathbf{\nabla}_{j}V_{ij}$$

The work done by internal forces can be written in sums of pairs of potentials between ith and jth particle.

$$\sum_{i,j} \int_{a}^{b} \mathbf{F}_{ji} \cdot d\mathbf{r}_{i} = -\sum_{i,j} \int_{a}^{b} \nabla_{j} V_{ji} \cdot d\mathbf{r}_{i}$$

$$= -\sum_{i < j} \int_{a}^{b} \nabla_{j} V_{ji} \cdot d\mathbf{r}_{i} + \nabla_{i} V_{ij} \cdot d\mathbf{r}_{j}$$

$$= -\sum_{i < j} \int_{a}^{b} \nabla_{j} V_{ij} \cdot d\mathbf{r}_{i} - \nabla_{j} V_{ij} \cdot d\mathbf{r}_{j}$$

$$= -\sum_{i < j} \int_{a}^{b} \nabla_{j} V_{ij} d(\mathbf{r}_{i} - \mathbf{r}_{j})$$

$$= -\sum_{i < j} \int_{a}^{b} \nabla_{j} V_{ij} d(\mathbf{r}_{ij})$$

$$= \sum_{i < j} \int_{a}^{b} \nabla_{ij} V_{ij} d(\mathbf{r}_{ij}) \qquad \text{(note that } \nabla_{ij} V_{ij} = -\nabla_{j} V_{ij})$$

$$= \frac{1}{2} \sum_{i,j} \int_{a}^{b} \nabla_{ij} V_{ij} d(\mathbf{r}_{ij})$$

$$= \frac{1}{2} \sum_{i,j} \int_{a}^{b} \nabla_{ij} V_{ij} d(\mathbf{r}_{ij})$$

$$= \frac{1}{2} \sum_{i,j} V_{ij} \Big|_{a}^{b}$$

Result 9 Total potential energy V when external and internal forces are conservative and internal forces also central is:

$$V = \sum_{i} V_i + \frac{1}{2} \sum_{i,j} V_{ij}$$

Such that total energy T + V is conserved

On a rigid body, $|\mathbf{r}_{ij}|$ is constant between any two points. Then $0 = d(\mathbf{r}_{ij}^2) = d(\mathbf{r}_{ij} \cdot \mathbf{r}_{ij}) = 2\mathbf{r}_{ij} \cdot d(\mathbf{r}_{ij})$. Therefore $d(\mathbf{r}_{ij})$ is perpendicular to \mathbf{r}_{ij} which means the work done by internal force $\mathbf{F}_{ji} \cdot d(\mathbf{r}_{ij}) = 0$