8

```
import numpy as np
import matplotlib.pyplot as plt

import pandas as pd
import seaborn as sns

%matplotlib inline

boston_dataset = pd.read_csv("/content/BostonHousing.csv")
```

boston_dataset.head()

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	lstat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

boston_dataset.isnull().sum()

crim 0 0 indus 0 chas 0 0 nox rm 0 age 0 dis 0 tax ptratio 0 0 lstat 0 0 medv dtype: int64

correlation_matrix = boston_dataset.corr().round(2)
annot = True to print the values inside the square
sns.heatmap(data=correlation_matrix, annot=True)

```
<Axes: >
                                                                                                        - 1.0
      crim
                            -0.06 0.42 -0.22 0.35 -0.38 0.63
                                                                      0.29 -0.39
                                                                                         -0.39
                 -0.2 0.41
                      -0.53
                            -0.04 -0.52
                                                                                  -0.41
           -0.2
                  1
                                         0.31
                                              -0.57
                                                    0.66
                                                           -0.31 -0.31 -0.39 0.18
                                                                                         0.36
      Z
                                                                                                        - 0.8
                -0.53
                        1
                            0.06 0.76
                                        -0.39
                                              0.64
                                                    -0.71
                                                           0.6 0.72
                                                                      0.38
                                                                             -0.36
                                                                                    0.6
                                                                                         -0.48
plt.figure(figsize=(20, 5))
features = ['lstat', 'rm']
target = boston_dataset['medv']
for i, col in enumerate(features):
   plt.subplot(1, len(features) , i+1)
   x = boston_dataset[col]
   y = target
   plt.scatter(x, y, marker='o')
   plt.title(col)
   plt.xlabel(col)
   plt.ylabel('medv')
       20
       10
```

```
X = pd.DataFrame(np.c\_[boston\_dataset['lstat'], boston\_dataset['rm']], columns = ['lstat','rm'])
Y = boston_dataset['medv']
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state=5)
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)
     (404, 2)
     (102, 2)
     (404,)
     (102,)
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import statsmodels.api as sm
lin_model = LinearRegression()
lin_model.fit(X_train, Y_train)
     ▼ LinearRegression
     LinearRegression()
model = sm.OLS(Y_train, X_train).fit()
print(model.summary())
```

OLS Regression Results

Dep. Variable	:	n	nedv	R-squ	uared (uncente		0.947			
Model:			OLS	Adj.	R-squared (un		0.947			
Method:		Least Squa	ares	F-sta	atistic:		3581.			
Date:	ri, 21 Apr 2	2023	Prob	(F-statistic)	6.67e-257					
Time:	04:07	7:20	Log-I	_ikelihood:	-1272.2					
No. Observati	ons:		404	AIC:			2548.			
Df Residuals:		402	BIC:			2556.				
Df Model:										
Covariance Type: nonrobust										
	coef	std err		t	P> t	[0.025	0.975]			
7										
					0.000					
rm	4.9699	0.081	61	.521	0.000	4.811	5.129			
Omnibus:			894		in-Watson:		2.063			
Prob(Omnibus): 0.0				Jarqı	ue-Bera (JB):		389.671			
Skew:	1.	370	Prob(JB):			2.42e-85				
Kurtosis:	6.	954	Cond. No.			4.70				

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.