1. Sea la función lógica:

 $f(a,b,c,d) = \overline{a} c + a b d + a \overline{b} \overline{d}$

Implementar esta función utilizando únicamente multiplexores 4 a 1. No existen indiferencias en la función.

77	H		DO	S			MU		4:	1										
Neces	st au	2	\	X		las	ent	rada)	NG	esto	cen	J/I	Sard	0	\	or y	\	2NI) .
		Las			/ea	de	Δ,	de	122		10	υX	Scr	(te (6	(a	N	He	
					5	7	vf-er	· M			مح	ZQ	N	رما			7			

2. Construir a partir de puertas lógicas un codificador 4 a 2 cuyas entradas sean activas a nivel bajo. Diseñarlo con prioridad, de acuerdo con la siguiente tabla donde los valores x indican que se cumple lo mismo para todas las combinaciones que tengan tanto un 0 como un 1 en la posición en que está la x:

i_0 i_1 i_2 i_3	a b
0 1 1 1	0 0
x 0 1 1	0 1
x x 0 1	1 0
x x x 0	1 1

$$f(a,b,c,d) = \overline{a} c + a b d + a \overline{b} \overline{d}$$

Implementar esta función utilizando únicamente decodificadores 2 a 4 y puertas OR. No existen indiferencias en la función. Utilizar decodificadores con una entrada de activación activa en alta.

4. Construir un Sistema que acepte como entradas tres números de cuatro bits codificados en binario puro y proporcione como salida el número mayor. a1 a0 111002

$$f(a, b, c, d) = \sum m(0, 2, 4, 5, 6, 11, 12, 14)$$

Implementar esta función utilizando únicamente un multiplexor 8 a 1 y un inversor.																				
0	b	C	d																	
٥	0	0	0	1											d					
0	0	0	1	Ô											J		MUX			
0	0	1	0	1											6		8:1		1	
٥	0	1	1	0											J					
0	1	0	0	1	b										J					
0	1	0	1	1	,										0					
	1		Ó	1											d					
	1		1	0											T					
	0	0	0	0	1															
1	٥	0	1	0												0	b	<u></u>		
1	0	1	V	1	0															
1		(1																
1	1	0	1		4															
1	1	1	0			•														
1	1	1	1	0																

6. Diseñar con dispositivos MSI (decodificadores, codificadores, multiplexores o demultiplexores) y sin utilizar puertas lógicas un dispositivo que reciba como entrada números comprendidos entre el $0\ \mathrm{y}$ el $15\ \mathrm{en}$ formato binario puro y genere una salida que puede tomar 3 valores: igual a 1 si la entrada está comprendida entre el 0 y el 5, igual a 2 si la entrada está entre el 6 y el 10, e igual a 3 si la entrada está entre el 11 y el 15.