Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

Jue Chen

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

ABSTRACT

Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

Jue Chen

The abstract goes here. The abstract goes here.

Table of Contents

I	Introduction										
1 Introduction											
II	Tl	ne standard model and Dark Matter	3								
2	The standard model										
	2.1	Introduction	4								
		2.1.1 Sample subsection	6								
	2.2	Challenges	6								
		2.2.1 Sample subsection	6								
3	The	Dark Matter	7								
	3.1	Two-Higgs-doublet model	7								
	3.2	Simplified model	7								
II	I I	The LHC and ATLAS experiment	8								
4	The LHC										
	4.1	The LHC: Instrument	9								
		4.1.1 Machine layout	9								
		4.1.2 Machine performance	9								
	4.2	The LHC: Operation	10								
		4.2.1 Machine accelerator	10								

5 Th	e ATL	AS experiment	11
5.1	ATLA	S detector system	11
	5.1.1	Inner detector	11
		5.1.1.1 Pixel detector	11
		5.1.1.2 Semiconductor Tracker	12
		5.1.1.3 Transition Radiation Tracker	12
	5.1.2	Calorimeter	12
		5.1.2.1 Liquid Argon Calorimeter	12
		5.1.2.2 Tile Calorimeter	12
	5.1.3	Muon Spectrometer	12
		5.1.3.1 Thin Gap Chambers	13
		5.1.3.2 Resistive Plate Chambers	13
		5.1.3.3 Monitored Drift Tubes	13
		5.1.3.4 Cathode Strip Chambers	13
5.2	Event	reconstruction	13
	5.2.1	Tracks	13
	5.2.2	Electrons	14
	5.2.3	Jets	14
	5.2.4	Missing transverse momentum	14
	5.2.5	Muons	14
5.3	Event	simulation	14
	5.3.1	Event generator	14
	5.3.2	Detector simulation	15

7	Boo	sted X	Tbb tagging	18							
	7.1	Sample	e section	18							
		7.1.1	Sample subsection	18							
		7.1.2	Sample subsubsection	18							
	7.2	Sample	e section	19							
		7.2.1	Sample subsection	19							
8	Signal selection										
	8.1	Sample	e section	20							
		8.1.1	Sample subsection	20							
		8.1.2	Sample subsubsection	20							
	8.2	Sample	e section	21							
		8.2.1	Sample subsection	21							
9	Bac	kgrour	nd estimation	22							
	9.1	Sample	e section	22							
		9.1.1	Sample subsection	22							
		9.1.2	Sample subsubsection	22							
	9.2	Sampl	e section	23							
		9.2.1	Sample subsection	23							
10) Result										
	10.1	Sample	e section	24							
		10.1.1	Sample subsection	24							
		10.1.2	Sample subsubsection	24							
	10.2	Sample	e section	25							
		10.2.1	Sample subsection	25							
\mathbf{V}	Co	onclus	ions	26							
11	Con	clusio	ns	27							

V	I A	Appendices	28						
A	The	e ATLAS detector service work	29						
	A.1	Sample section	29						
		A.1.1 Sample subsection	29						
		A.1.2 Sample subsubsection	30						
	A.2	Sample section	30						
		A.2.1 Sample subsection	30						
В	Ana	alysis supplementary materials	31						
	B.1	$pp o Hbar{b}$	31						
		B.1.1 Sample subsection	31						
		B.1.2 Sample subsubsection	32						
	B.2	$pp o qar{q}bar{b}$	32						
		B.2.1 Sample subsection	32						
\mathbf{V}	II 1	Bibliography	33						
$\mathbf{B}_{\mathbf{i}}$	Bibliography 34								

List of Figures

0 1	Dartialog of	f the Stand	ard Model of	partiala r	hygieg				5
4.1	Particles of	i ine Standa	ard Model of	particle t	mysics .	 	 		\mathbf{o}

List of Tables

Acknowledgments

The acknowledgments go here. The acknowledgments go here.

Dedication text

Part I

Introduction

Introduction

The introduction goes here. The introduction goes here.

Part II

The standard model and Dark Matter

The standard model

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

2.1 Introduction

Figure 2.1: Particles of the Standard Model of particle physics

$$L = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(F_{\mu\nu}F^{\mu\nu}) - \frac{1}{2}tr(G_{\mu\nu}G^{\mu\nu}), (Gauge \, terms)$$

$$+ \left(\bar{\nu}_L \quad \bar{e}_L\right)\bar{\sigma}^{\mu}iD_{\mu}\begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R\sigma^{\mu}iD_{\mu}e_R + \bar{\nu}_R\sigma^{\mu}iD_{\mu}\nu_R, (Lepton \, dynamical \, terms)$$

$$- \frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_L \quad \bar{e}_L\right)\phi M^e e_R + \bar{e}_R\bar{M}^e\bar{\phi}\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}\right], (Electron, muon, Tau \, mass \, terms)$$

$$- \frac{\sqrt{2}}{v}\left[\left(-\bar{e}_L \quad \bar{\nu}_L\right)\phi^*M^{\nu}\nu_R + \bar{\nu}_R\bar{M}^{\nu}\phi^T\begin{pmatrix} -e_L \\ \nu_L \end{pmatrix}\right], (Neutrino \, mass \, terms)$$

$$+ \left(\bar{u}_L \quad \bar{d}_L\right)\bar{\sigma}^{\mu}iD_{\mu}\begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R\sigma^{\mu}iD_{\mu}u_R + \bar{d}_R\sigma^{\mu}iD_{\mu}d_R, (quark \, dynamical \, terms)$$

$$- \frac{\sqrt{2}}{v}\left[\left(\bar{u}_L \quad \bar{d}_L\right)\phi M^d d_R + \bar{d}_R\bar{M}^d\bar{\phi}\begin{pmatrix} u_L \\ d_L \end{pmatrix}\right], (Down, strange, bottom \, mass \, terms)$$

$$- \frac{\sqrt{2}}{v}\left[\left(-\bar{d}_L \quad \bar{u}_L\right)\phi^*M^u u_R + \bar{u}_R\bar{M}^u\phi^T\begin{pmatrix} -d_L \\ u_L \end{pmatrix}\right], (Up, charm, top \, mass \, terms)$$

$$+ D_{\mu}\bar{\phi}D^{\mu}\phi - m_h^2[\bar{\phi}\phi - v^2/2]^2/2v^2, (Higgs \, dynamical \, and \, mass \, terms)$$

$$(2.1)$$

The definition of derivative operators in the Eq 2.1 is:

$$D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} = \left[\partial_{\mu} - \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} W_{\mu} \right] \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \tag{2.2}$$

$$D_{\mu}\nu_{R} = \partial_{\mu}\nu_{R}, \quad D_{\mu}e_{R} = [\partial_{\mu} - ig_{1}B_{\mu}]e_{R}$$

$$D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} = \left[\partial_{\mu} + \frac{ig_1}{6} B_{\mu} + \frac{ig_2}{2} W_{\mu} + igG_{\mu} \right] \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$

$$D_{\mu} u_R = \left[\partial_{\mu} + \frac{i2g_1}{3} B_{\mu} + igG_{\mu} \right] u_R, \quad D_{\mu} d_R = \left[\partial_{\mu} - \frac{ig_1}{3} B_{\mu} + igG_{\mu} \right] d_R$$

$$(2.3)$$

$$D_{\mu}\phi = \left[\partial_{\mu} + \frac{ig_1}{2}B_{\mu} + \frac{ig_2}{2}W_{\mu}\right]\phi \tag{2.4}$$

Sample subsection 2.1.1

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text. Sample text sample text sample text. Sample text sample text. Sample text sample text.

2.2Challenges

Sample text sample text sample text. Sample text sample text sample text. sample text sample text. Sample text sample text sample text sample text. Sample text sample text.

2.2.1 Sample subsection

Sample text sample text sample text. Sample text sample text sample text. sample text sample text. Sample text sample text sample text sample text. Sample text sample text.

The Dark Matter

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Berlin et al., 2014]

3.1 Two-Higgs-doublet model

Sample text sample text sample text. Sample text sample text. Sample text sample text.

3.2 Simplified model

Part III

The LHC and ATLAS experiment

The LHC

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

4.1 The LHC: Instrument

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.1.1 Machine layout

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.1.2 Machine performance

4.2 The LHC: Operation

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.2.1 Machine accelerator

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.2.2 Machine beam

The ATLAS experiment

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

5.1 ATLAS detector system

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.1 Inner detector

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.1.1 Pixel detector

5.1.1.2 Semiconductor Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.1.3 Transition Radiation Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2 Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2.1 Liquid Argon Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2.2 Tile Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3 Muon Spectrometer

5.1.3.1 Thin Gap Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3.2 Resistive Plate Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3.3 Monitored Drift Tubes

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3.4 Cathode Strip Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2 Event reconstruction

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

5.2.1 Tracks

5.2.2 Electrons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.3 Jets

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.4 Missing transverse momentum

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.5 Muons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.3 Event simulation

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.3.1 Event generator

5.3.2 Detector simulation

Part IV

Dark Matter search in the Higgs Boson associated $b\bar{b}$ decay

Introduction

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

Boosted Xbb tagging

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

7.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

7.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

7.1.2 Sample subsubsection

7.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

7.2.1 Sample subsection

Signal selection

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

8.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

8.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

8.1.2 Sample subsubsection

8.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

8.2.1 Sample subsection

Background estimation

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

9.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.1.2 Sample subsubsection

9.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.2.1 Sample subsection

Result

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

10.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

10.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

10.1.2 Sample subsubsection

10.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

10.2.1 Sample subsection

$\mathbf{Part} \ \mathbf{V}$

Conclusions

Conclusions

The general conclusions go here. The general conclusions go here.

Part VI

Appendices

Appendix A

The ATLAS detector service work

Sample text sample text sample text. Sample text sampl

A.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.1.1 Sample subsection

A.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.2.1 Sample subsection

Appendix B

Analysis supplementary materials

Sample text sample text sample text. Sample text sampl

B.1 $pp \rightarrow Hb\bar{b}$

Sample text sample text sample text. Sample text sample text. Sample text sample text.

B.1.1 Sample subsection

B.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

B.2
$$pp \rightarrow q\bar{q}b\bar{b}$$

Sample text sample text sample text. Sample text sample text. Sample text sample text.

B.2.1 Sample subsection

Part VII

Bibliography

BIBLIOGRAPHY 34

Bibliography

[Alves et al., 2012] Daniele Alves, Nima Arkani-Hamed, Sanjay Arora, Yang Bai, Matthew Baumgart, Joshua Berger, Matthew Buckley, Bart Butler, Spencer Chang, Hsin-Chia Cheng, Clifford Cheung, R Sekhar Chivukula, Won Sang Cho, Randy Cotta, Mariarosaria D'Alfonso, Sonia El Hedri, Rouven Essig, Jared A Evans, Liam Fitzpatrick, Patrick Fox, Roberto Franceschini, Ayres Freitas, James S Gainer, Yuri Gershtein, Richard Gray, Thomas Gregoire, Ben Gripaios, Jack Gunion, Tao Han, Andy Haas, Per Hansson, JoAnne Hewett, Dmitry Hits, Jay Hubisz, Eder Izaguirre, Jared Kaplan, Emanuel Katz, Can Kilic, Hyung-Do Kim, Ryuichiro Kitano, Sue Ann Koay, Pyungwon Ko, David Krohn, Eric Kuflik, Ian Lewis, Mariangela Lisanti, Tao Liu, Zhen Liu, Ran Lu, Markus Luty, Patrick Meade, David Morrissey, Stephen Mrenna, Mihoko Nojiri, Takemichi Okui, Sanjay Padhi, Michele Papucci, Michael Park, Myeonghun Park, Maxim Perelstein, Michael Peskin, Daniel Phalen, Keith Rehermann, Vikram Rentala, Tuhin Roy, Joshua T Ruderman, Veronica Sanz, Martin Schmaltz, Stephen Schnetzer, Philip Schuster, Pedro Schwaller, Matthew D Schwartz, Ariel Schwartzman, Jing Shao, Jessie Shelton, David Shih, Jing Shu, Daniel Silverstein, Elizabeth Simmons, Sunil Somalwar, Michael Spannowsky, Christian Spethmann, Matthew Strassler, Shufang Su. Tim Tait, Brooks Thomas, Scott Thomas, Natalia Toro, Tomer Volansky, Jay Wacker, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, and Kathryn Zurek and. Simplified models for LHC new physics searches. Journal of Physics G: Nuclear and Particle Physics, 39(10):105005, sep 2012.

[Berlin et al., 2014] Asher Berlin, Tongyan Lin, and Lian-Tao Wang. Mono-higgs detection of dark matter at the lhc. Journal of High Energy Physics, 2014(6):78, Jun 2014.