ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Insight into the design of a Ti₃C₂ MXene/Ti₄O₇ composite ceramic membrane boosts the electrocatalytic activity for 1,4-dioxane electro-oxidation

Kuanchang He^a, Wei Li^{a,*}, Longxiang Tang^a, Lingyu Chen^a, Gang Wang^b, Qian Liu^a, Xiaodong Xin^a, Cao Yang^a, Zhenbei Wang^c, Sihao Lv^a, Defeng Xing^{d,*}

- ^a Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
- ^b School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- ^c Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- d State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China

ARTICLE INFO

Keywords: Electrochemical advanced oxidation process Ti₃C₂ MXene Ti₄O₇ ceramic membrane Hydroxyl radical Refractory organic compounds

ABSTRACT

Efficient refractory organic compound (ROC) removal through Ti_4O_7 ceramic membrane in electrochemical advanced oxidation processes (EAOPs) requires high electrochemical reactivity and stability. Herein, we report on the synthesis and properties of Ti_3C_2 MXene-doped Ti_4O_7 ceramic membranes ($Ti_3C_2@Ti_4O_7$) using a spark plasma sintering system, after employing density functional theory calculations to design the electrocatalyst. Doping with Ti_3C_2 MXene resulted in interfacial Ti_1O_1 —Ti chemical bond formation, which greatly improved the electronic structure and the generation of hydroxyl radicals ($^{\bullet}OH$). Compared with pristine Ti_4O_7 , the charge-transfer resistance of $Ti_3C_2@Ti_4O_7$ decreased from 59.09 to 4.21 Ω , and the $^{\bullet}OH$ generation rate enhanced 2.3-2.6-fold. $Ti_3C_2@Ti_4O_7$ could effectively remove 1,4-Dioxane from natural groundwater, and the residual 1,4-Dioxane concentration met the requirements for drinking water. Our study provides a proof-of-concept demonstration using Ti_3C_2 MXene to manufacture a doped Ti_4O_7 ceramic membrane for effective ROC removal. The theoretical predictions from this study can inspire novel electrocatalyst designs for EAOPs.

1. Introduction

1,4-Dioxane (1,4-D) has been widely utilized as an industrial stabilizer for chlorinated solvents, posing significant environmental pollution risks and possible carcinogenic risks for humans [1,2]. Contamination of groundwater by 1,4-Dioxane necessitates significant attention owing to its notable mobility and high level of toxicity [3]. Chemical oxidation, that is, advanced oxidation processes (AOPs), can effectively decompose 1,4-D through the produced hydroxyl radicals (*OH) and has attracted increasing attention. However, the costly and inconvenient operation due to the requirement for constant addition of chemicals for *OH generation limits the application of AOPs [4]. Recently, electrochemical advanced oxidation processes (EAOPs) have become popular as promising and efficient techniques to achieve the removal of refractory organic compounds (ROCs); these processes are cost-effective and can be more easily regulated compared with AOPs [5–8]. EAOPs primarily decompose ROCs through two pathways, indirect oxidation via in situ

electrogenerated OH (Eqs. 1 and 2) and direct oxidation of contaminants via direct electron transfer (DET) (Eq. 3) [9,10].

$$H_2O - e^- \rightarrow H^+ + {}^{\bullet}OH \tag{1}$$

Refractory organic compounds
$$+$$
 ${}^{\bullet}OH \rightarrow Products$ (2)

Refractory organic compounds
$$-ne^- \rightarrow Products$$
 (3)

It is worth noting that the anodes play a decisive role in EAOPs, and the ideal anode materials are expected to possess abundant active surface sites for *OH generation, excellent interfacial charge-transfer rates, and high stability [11].

Recent studies reported that porous Magnéli phase Ti_4O_7 ceramic electrodes with adjustable pore sizes, outstanding conductivity comparable to that of metals (~ 1050 S/cm), excellent corrosion resistance, and high oxygen evolution potential (> 2.5 V vs SHE) can be used as promising anodes for the mineralization of organic compounds [12–14]. In

E-mail addresses: liwei@dgut.edu.cn (W. Li), dxing@hit.edu.cn (D. Xing).

^{*} Corresponding authors.

addition, the affordability, good stability, and nontoxicity of Ti₄O₇ electrodes also contribute to their potential to become ideal anode candidate materials compared with other "non-active" materials, including boron-doped diamond (BDD), doped SnO₂, and PbO₂ [15,16]. However, it was found that pure Ti₄O₇ exhibits poor electron mobility and OH yield due to high charge-transfer resistance and the lack of reactive sites, which limits its electrochemical reactivity [7]. Thus, to improve the Ti₄O₇ electrodes for enhanced contaminant oxidation, two approaches could be used: (i) increasing the effective electroactive surface area and the number of reactive sites [17] and (ii) decreasing the charge-transfer resistance. These approaches are important to improve the OH yield on the surface of Ti₄O₇ crystals and the DET process [12]. The doping technology is an effective interface engineering strategy that has been used to achieve these goals. For instance, Xie et al. reported that a significant increase in interfacial electron transfer was achieved by introducing a small amount (0.1 wt%) of carbon materials (carbon black, carbon nanotubes, and graphene) into the Ti_4O_7 electrodes, which was attributed to the oxygen-containing functional groups promoting the moderate oxidation of the carbon groups, which increases the electron mobility [13]. Li et al. reported that Ti₄O₇ electrodes doped with graphene oxide nanoparticles (GONs) could increase the electroactive surface area and the density of reactive sites at the electrode surface, reaching a kinetic decomposition rate for the 1,4-D electro-oxidation similar to that of BDD (1.49 vs $1.79 \times 10^{-2} \text{ min}^{-1}$) due to the strong chemical interaction of the components via GON-O-Ti bonds [11]. While some studies have addressed the two issues to a certain extent, realizing highly efficient, stable, and large-scale Ti₄O₇ electrodes remains challenging due to (i) the lack of selective surface functionalities to establish strong connections for accelerated interfacial charge transfer, (ii) inefficient electron shuttling within the electrocatalysts because of the destruction of π -conjugated systems (e.g., graphene oxide), and (iii) incomplete rational design and regulation of the nanostructures with the reactive sites of the heterogeneous catalysts. Thus, a new type of material has to be developed as the next-generation catalyst for advancing the application of Ti₄O₇ electrodes to the wastewater treatment.

MXenes, a class of two-dimensional (2D) inorganic compounds like metal carbides, nitrides, and carbonitrides, exhibit distinguished properties including (i) numerous hydrophilic functionalities, such as -O and -OH at the surface, which promote strong connections with various electrode substrates [18,19], (ii) outstanding metallic conductivity, which enables super-efficient charge transfer [20], and (iii) exposed terminal metal sites (e.g., Ti), possibly resulting in a much higher electrochemical reactivity than that of carbon materials [21]. These advantageous properties could be harnessed to overcome the above issues. Thus, MXene is a promising material to be employed in EAOPs. Although MXene doping technologies have been reported regarding membrane technologies [22] and photocatalysis [23], to the best of our knowledge, MXene acting as an electrocatalyst doped into Ti₄O₇ electrodes for ROC electro-oxidation has not yet been investigated.

Herein, we first utilized density functional theory (DFT) calculations to explore the potential of MXene as an EAOP electrocatalyst. Based on the theoretical studies, we report an interface engineering strategy to fabricate a highly electrocatalytically active and stable MXene (Ti $_3$ C $_2$)-doped Ti $_4$ O $_7$ electrode (Ti $_3$ C $_2$ @Ti $_4$ O $_7$) to promote the electro-oxidation of 1,4-D. The mechanisms behind this high electrocatalytic activity and stability were studied via both theoretical and experimental methods. In addition, the 1,4-D oxidation performance of pristine Ti $_4$ O $_7$ and Ti $_3$ C $_2$ @Ti $_4$ O $_7$ electrodes was evaluated using simulated samples and natural groundwater spiked with 0.1 mM 1,4-D. This work demonstrates how the MXene doping method can improve the electrocatalytic activity toward the development of an improved Ti $_4$ O $_7$ electrode.

2. Materials and methods

2.1. Chemicals, materials, and natural groundwater sample

Detailed information is provided in Text S1.

2.2. Density functional theory calculations

All DFT calculations were conducted based on the Cambridge Serial Total Energy Package (CASTEP) code [24]. The electron exchange-correlation interactions were described using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional [25]. Considering the long-range interaction at the interface, the Tkatchenko-Scheffler method was used to correct the van der Waals interactions. The (0 0 1) plane of Ti_3C_2 MXene and the (1 -2 0) plane of Ti₄O₇ were adopted as the active facets in this study to build the heterostructures and the slab model [26,27]. The Brillouin zone integration was sampled with the Gamma point-centered mesh due to the large cell (a = b = 12.07 Å, c = 15.76 Å), and the energy cutoff was set to 550 eV for geometry optimization and calculations through a series of tests (Fig. S1a); the energy cutoff for the pristine Ti₄O₇ slab model was also set to 550 eV after the tests (Fig. S1b). The vacuum spacing in the direction perpendicular to the plane of the catalyst was at least 10 Å. During the geometry optimization process, the energy convergence tolerance, maximum force, and maximum displacement were set to 1 imes 10^{-5} eV/atom, 0.05 eV/atom, and 2 \times 10^{-3} Å, respectively. For the electronic properties, a Monkhorst–Pack k-point grid (2 \times 2 \times 1), which is denser compared with that used for the geometry optimization, was used to calculate the density of states (DOS).

An assessment of the interfacial formation energy (E_F) calculated according to Eq. 4 was conducted to verify the thermodynamic stability of the heterostructures [28].

$$E_F = \frac{1}{N_M} (E_{T_1 C_2 \oplus T_4 O_7} - E_{T_1 C_2} - E_{T_1 O_7})$$
(4)

where $E_{Ti_3C_2@Ti_4O_7}$, $E_{Ti_3C_2}$, and $E_{Ti_4O_7}$ represent the total energy of the $Ti_3C_2@Ti_4O_7$ interlayer, Ti_3C_2 MXene monolayer, and Ti_4O_7 substrate, respectively; N_M is the total number of the transition metal atoms in each supercell.

The H_2O adsorption energy (E_{ads}) and the *OH desorption energy (E_{des}) on the surface of pristine Ti_4O_7 and $Ti_3C_2@Ti_4O_7$ were calculated using Eqs. 5 and 6, respectively.

$$E_{ads} = E_{adsorbate+substrate} - E_{adsorbate} - E_{substrate}$$
 (5)

$$E_{des} = E_{adsorbate} + E_{substrate} - E_{adsorbate+substrate}$$
 (6)

where $E_{adsorbate+substrate}$, $E_{adsorbate}$, and $E_{substrate}$ represent the total energy of the adsorbate–substrate material, adsorbate (H₂O or $^{\bullet}$ OH), and substrate (pristine Ti₄O₇ or Ti₃C₂@Ti₄O₇), respectively.

The reaction energy (E_r) for the transformation of the adsorbed OH group on the surface (*OH) into the adsorbed *OH (*OH) was defined according to Eq. 7.

$$E_r = E_{*o\mu} - E_{*\bullet o\mu} \tag{7}$$

where $E_{*_{OH}}$ and $E_{*_{OH}}$ represent the total energy of *OH including the substrate and * $^{\bullet}$ OH including the substrate, respectively. The initial spin of the radical system was set to 1 [29].

The Gibbs free energy (ΔG) calculations were conducted with cutoff kinetic energy of 400 eV, and the *vander Waals* interaction was described using the DFT-D2 method which was proposed by Grimme. The calculations were carried out based on Eq. 8.

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{8}$$

where ΔE , ΔE_{ZPE} , and ΔS represent the total energy difference, the

Fig. 1. DFT calculations of the $Ti_3C_2@Ti_4O_7$ and pristine Ti_4O_7 structures. (a) Geometry configuration of O-terminated $Ti_3C_2@Ti_4O_7$ with an interfacial spacing of 1.81 Å. The pink, gray, and yellow balls represent the O, Ti, and C atoms, respectively. (b) Electron density isosurface of the $Ti_3C_2@Ti_4O_7$ interface; light purple and light blue represent electron accumulation and depletion, respectively. (c, d) Work functions of Ti_3C_2 MXene and Ti_4O_7 ; the blue dashed line and the light green line represent the vacuum energy level and the Fermi level, respectively. (e) DOS and PDOS calculated for $Ti_3C_2@Ti_4O_7$ and pristine Ti_4O_7 ; the pink and light green lines represent the band center (p band + d band) and the Fermi level, respectively. (f, g) Electron density distribution of Ti_4O_7 and pristine Ti_4O_7 structures; light purple and light blue represent electron accumulation and depletion, respectively.

changes of zero-point vibration energy, and entropy energy between reactants and products. The equations displayed below are the calculation steps of H_2O activation on the surfaces of $Ti_3C_2@Ti_4O_7$ and pristine Ti_4O_7 (Eq. 9–12) [30].

$$\Delta G_1$$
: * + H₂O \rightarrow *H₂O (9)

$$\Delta G_2: *H_2O \rightarrow *H + *OH$$
 (10)

$$\Delta G_3$$
: *H + *OH - e⁻ \rightarrow *OH + H⁺ (11)

$$\Delta G_4$$
: *OH \rightarrow * $^{\bullet}$ OH (12)

2.3. Electrode synthesis

The synthesis method of oxygen-rich terminal Ti_3C_2 MXene was proposed by Sun et al. [31] and Ran et al. [32]. Ti_3AlC_2 powder (1 g) was immersed in 49% HF (10 mL) for 36 h at 35 °C under constant stirring to selectively remove all the Al species in Ti_3AlC_2 . The mixture was washed using deionized (DI) water until a transparent supernatant was obtained. Subsequently, the as-synthesized sediment was centrifuged and dried in vacuum at 80 °C overnight. To maximize the number of oxygen terminals of Ti_3C_2 MXene, the dried sediment was annealed in air for 2 h at 200 °C in a muffle furnace to transform the -OH and -F terminations into -O terminations. 100 mg of the O-terminated Ti_3C_2 MXene was taken out of the furnace and mixed with 100 mL of DI water. The mixture was ultrasonicated for 8 h and centrifuged at 13000 rpm to obtain the O-terminated Ti_3C_2 MXene nanosheets in the supernatant, and its concentration was determined to be 0.11 mg/mL.

Then, 1.5 g of the Ti_4O_7 powder with or without 1–5 wt% Ti_3C_2 MXene was added to 100 mL of ethanol, dispersed in an ultrasonic bath for 40 min to obtain a fine powder mixture, and magnetically stirred (IKA RCT basic, Germany) at 800 rpm for 30 min to obtain a suspension. The solvent was removed in vacuum (LabServTM 20, Thermo Fisher

Scientific, USA) at 80 °C for 24 h. Subsequently, the dried materials were transferred to the cylindrical mold (area: $3.14~\rm cm^2$; thickness: $1.5~\rm mm$) of a spark plasma sintering (SPS) system (SPS-212HF, Fuji Electronic Industrial Co., Ltd., Japan) to synthesize ceramic membranes consisting of X% Ti₃C₂@Ti₄O₇ (X% = $1-5~\rm wt\%$) and pristine Ti₄O₇. The details of the sintering process are provided in Text S2. The images of the as-synthesized 2% Ti₃C₂@Ti₄O₇ are shown in Fig. S2, and the X% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ ceramics were polarized at $-2.0~\rm V$ vs SCE for 2 h.

2.4. Physicochemical characterization

X-ray diffraction (XRD) patterns were obtained using a D8-Advance diffractometer (Bruker, Germany) with Cu Ka radiation. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were performed using an FEI Quanta 450 instrument (Thermo Fisher Scientific, USA). A JEM-2100 microscope (JEOL, Japan) was used to conduct transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G2 F30, Thermo Fisher Sci., USA). The surface chemical compositions were analyzed via X-ray photoelectron spectroscopy (XPS) using an ESCA Lab 250Xi instrument (Thermo Fisher Scientific, USA). Raman spectra were acquired using an inVia spectrophotometer (Renishaw, UK). Atomic force microscopy (AFM) was conducted using a Multimode 8 system (Bruker, Germany). The porosimetry distribution of the electrodes was investigated using an Autopore IV mercury porosimeter (Micromeritics, USA). The experimental work function (WF) was measured via ultraviolet photoelectron spectroscopy (UPS) using an X-ray photoelectron spectrometer (Thermo ESCALAB 250XI, USA).

2.5. Electrochemical measurements

Electrochemical characterizations, such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), were conducted using an AutoLab M204 electrochemical workstation (Metrohm, Switzerland). A platinum foil and a saturated calomel electrode (SCE) were employed as the counter electrode and the reference electrode, respectively. EIS was performed in the frequency range between 10 kHz and 0.01 Hz, and the NOVA software was used for data acquisition. The Nyquist curves were fitted using the Zview software. The CV plots were recorded at scan rates varying between 5 and 100 mV/s.

2.6. Experimental procedures

Unless otherwise stated, all electrochemical experiments were conducted in batch mode using a cylindrical reactor with 60 mL of an aqueous 0.1 mM 1.4-D solution containing 100 mM Na₂SO₄ as the electrolyte at an applied current (j) of 20 mA/cm² (Fig. S3). X% Ti₃C₂@Ti₄O₇ or pristine Ti₄O₇ served as the anode, while a cylindrical RuO₂/IrO₂ electrode (area: 3.14 cm²; thickness: 1.3 mm) was used as the cathode, and the anode-cathode spacing was 1.2 cm. Probe tests were conducted to assess the DET process and OH generation. Oxalic acid (OA, 1 mM) was employed to estimate the DET process contribution to contaminant oxidation. Coumarin (COU, 1 mM), p-benzoquinone (p-BO, 3 mM), and terephthalic acid (TA, 1 mM) were selected to evaluate the OH production rates. 1,4-D oxidations were conducted under constant stirring at 800 rpm. Quenching experiments were carried out to scavenge OH using methyl alcohol (MeOH, 10-100 mM) to investigate the contribution of radicals to ROC removal. The effect of the doping amount of Ti₃C₂ MXene on the 1,4-D degradation rate constants was evaluated. The influence of different water matrices on 1,4-D decomposition in the presence of Cl⁻, HCO₃, H₂PO₄, and NO₃ anions in the concentration range of 0.5-10 mM was studied. 1,4-D removal from natural groundwater was conducted to explore the application feasibility of the proposed electrode, and the characteristics of this water source are presented in Table S1. All instrumental analyses are described in Text S3.

3. Results and discussion

3.1. Mechanistic investigation of Ti_3C_2 MXene as an electrocatalyst doped into a Ti_4O_7 electrode

An excellent electrocatalyst should possess a high stability, fast electron transfer, and a strong ability to produce ${}^{\bullet}$ OH. To investigate the feasibility of employing ${\rm Ti}_3{\rm C}_2$ MXene as a highly efficient electrocatalyst doped into a ${\rm Ti}_4{\rm O}_7$ electrode to improve the electrocatalytic activity, mechanistic investigations using DFT calculations have been conducted [33]. In ${\rm Ti}_3{\rm C}_2$ MXene, both O- and OH-terminated configurations endow the material with a strong adsorption ability and an efficient activation of ${\rm H}_2{\rm O}$ [34], which may greatly improve the production of ${}^{\bullet}{\rm OH}$ for ROC removal. Therefore, DFT calculations of ${\rm Ti}_3{\rm C}_2$ @ ${\rm Ti}_4{\rm O}_7$ were conducted based on the models exhibiting hydrophilic functionalities.

3.1.1. Geometry optimization of the $Ti_3C_2@Ti_4O_7$ heterostructures

Firstly, we evaluated the feasibility and stability of O- and OH-terminated $Ti_3C_2@Ti_4O_7$. Interestingly, as shown in Fig. 1a, a new chemical Ti-O-Ti bond between the Ti and O atoms of Ti_3C_2 MXene and the Ti atoms of Ti_4O_7 was found in the optimized O-terminated $Ti_3C_2@Ti_4O_7$, implying the possible chemical interaction between Ti_3C_2 MXene and Ti_4O_7 . Furthermore, the energy of both structures converged, and the two structures did not show any obvious deformation; the interlayer distances were 1.81 and 1.76 Å (Fig. 1a and Fig. S4a). The E_F of O-terminated $Ti_3C_2@Ti_4O_7$ was -0.60 eV, which was much lower than that of OH-terminated $Ti_3C_2@Ti_4O_7$ (-0.15 eV) (Table S2). The negative E_F proved that the two configurations were energetically stable and the fabrication of $Ti_3C_2@Ti_4O_7$ was feasible. However, $Ti_3C_2@Ti_4O_7$ was more likely to exist in the form of the O-terminated configuration due to its lower E_F , which was also consistent with a previous study [35]. Thus, the subsequent property calculations were

conducted on O-terminated $Ti_3C_2@Ti_4O_7$. In addition, the slab model of pristine Ti_4O_7 was established and optimized (Fig. S4b).

3.1.2. Electronic properties of the Ti₃C₂@Ti₄O₇ heterostructure

The electron density isosurface of the Ti₃C₂@Ti₄O₇ heterostructure exhibited a distinct electron redistribution surrounding the Ti-O-Ti bonds in the interfacial region (Fig. 1b). Numerous electrons gathered at the bottom of Ti₃C₂ MXene (light purple region), and substantial electron depletion occurred above ${\rm Ti_4O_7}$ (light blue region). This revealed that the Ti₃C₂@Ti₄O₇ heterostructure could significantly tune the interfacial charge transfer behaviors, resulting in an enhanced electronic transmission from Ti₄O₇ to Ti₃C₂ MXene [36]. The WF of the two constituents in the heterostructure was also consistent with this finding because electrons move spontaneously from a material with a lower WF value (WF_{Ti4O7} = 3.41 eV) to another material with a higher WF value $(WF_{Ti3C2\ MXene} = 6.60\ eV)$ (Fig. 1c and d). A Schottky junction would be formed when the two layers are in close contact with each other to accelerate charge transport and reach electronic equilibrium at the Fermi energy level (E_f) [23]. The WF of Ti₃C₂@Ti₄O₇ was 4.77 eV, while the WF of slab model of pristine Ti₄O₇ was 4.67 eV (Fig. S5a and b). Furthermore, the spectra of the total density of states (TDOS) and projected density of states (PDOS) were explored to gain an in-depth understanding of the electronic structure of Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇. It could be seen that the DOS curves resided across the E_f, indicating that the modeled heterojunction exhibited the metallic nature (Fig. 1e) [37]. In addition, the Ti₃C₂@Ti₄O₇ heterostructure possessed a larger Ef (3.53 eV vs 0.40 eV) and higher DOS values at Ef relative to those of pristine Ti₄O₇. The above results suggested again that Ti₃C₂@Ti₄O₇ exhibited fast electron transport and an excellent electrical conductivity [38–40]. The PDOS curves revealed that the Ti 3d and O 2p orbitals mainly contributed to the active electron density of both Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ (Fig. S4c). It was found that the band center of the active electron density (p band and d band) of Ti₃C₂@Ti₄O₇ decreased by 0.18 eV compared with that of pristine Ti₄O₇ (Fig. 1e), demonstrating the effective regulation of the active electron density and the weakened interactions between the adsorbate and the surface, which was beneficial for *OH desorption [41].

3.1.3. Mechanism of *OH generation via the Ti₃C₂@Ti₄O₇ heterostructure To investigate the OH generation ability of Ti₃C₂@Ti₄O₇, the adsorption behaviors of H2O on Ti3C2@Ti4O7 and pristine Ti4O7 were studied. As shown in Fig. 1f and g, the significant electron accumulation above the O atoms of Ti₃C₂ MXene and pristine Ti₄O₇ showed that the electrons were transferred from H₂O to the models. As listed in Table S3, E_{ads} of H_2O on the surface of $Ti_3C_2@Ti_4O_7$ was -0.44 eV, while that of pristine Ti₄O₇ was 0.26 eV, which was close to the value reported previously [42]. This indicated that H₂O adsorption on Ti₃C₂@Ti₄O₇ was energetically more favorable. To form OH, adsorbed H2O dissociates into OH and H, and then the OH group connected to the electrode surface (*OH) via a physical, weak interaction transforms into OH. Thus, to elucidate the conversion process of *OH into *OH from a thermodynamics perspective, E_r was calculated. It was established that the in situ conversion of *OH into *OH was an exothermic reaction on the surfaces of both Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇, as demonstrated by the corresponding E_r values of -0.87 and -0.52 eV, respectively (Table S3). This further indicated that the *OH generation of Ti₃C₂@-Ti₄O₇ was more viable. The spin density also demonstrated the presence of lone-pair electrons in *OH (Fig. S4d and e) [29]. The Gibbs free energies of H₂O activation on the surfaces of Ti₃C₂@Ti₄O₇ and pristine Ti_4O_7 were obtained (Fig. S6). It could be observed that ΔG_2 (1.84 eV) and ΔG_4 (2.57 eV) were much larger than ΔG_1 (-0.11 eV) and ΔG_3 (-1.47 eV) during H₂O activation in pristine Ti₄O₇, indicating that the rate-determining steps for *OH production on pristine Ti₄O₇ surface were the formations of *H + *OH from *H₂O and *OH from *OH. Meanwhile, the ΔG_4 for $Ti_3C_2@Ti_4O_7$ was only 0.47 eV although its ΔG_2 at 1.85 eV was almost identical to ΔG_2 (1.84 eV) in pristine Ti₄O₇. These

Fig. 2. Schematic of the fabrication of oxygen-rich terminal Ti₃C₂ MXene and Ti₃C₂@Ti₄O₇.

Fig. 3. (a, b) SEM images of $2\% \, \text{Ti}_3\text{C}_2@\text{Ti}_4\text{O}_7$. (c) EDS elemental distribution of a). (d–f) Corresponding elemental distributions in c) of Ti, O, and C, respectively. (g) EDS surface scan results. (h) TEM image of $2\% \, \text{Ti}_3\text{C}_2@\text{Ti}_4\text{O}_7$. (i) HRTEM image of $2\% \, \text{Ti}_3\text{C}_2@\text{Ti}_4\text{O}_7$. (j–l) Ti 2p, O 1 s, and C 1 s XPS spectra of $2\% \, \text{Ti}_3\text{C}_2@\text{Ti}_4\text{O}_7$; the raw XPS data were indicated by the orange dots, and the spectra are calibrated to the C 1 s peak at 284.6 eV.

Fig. 4. (a) Nyquist curves of $2\% \, \text{Ti}_3 \text{C}_2 @ \text{Ti}_4 \text{O}_7$ and pristine $\text{Ti}_4 \text{O}_7$; the magnified view of the high-frequency region displays the details of the curves, and the inset in the top-right corner shows the equivalent circuit. (b) Linear relationship of the voltammetric charge and the square root of the scan rate (5–100 mV/s); the inset shows the CV plots of $2\% \, \text{Ti}_3 \text{C}_2 @ \text{Ti}_4 \text{O}_7$ and pristine $\text{Ti}_4 \text{O}_7$ at a scan rate of $30 \, \text{mV/s}$. (c) Accelerated service life testing of $2\% \, \text{Ti}_3 \text{C}_2 @ \text{Ti}_4 \text{O}_7$ and pristine $\text{Ti}_4 \text{O}_7$ in $1 \, \text{M} \, \text{H}_2 \text{SO}_4$ at $1 \, \text{A/cm}^2$. (d–f) Ti 2p, O1s, and C1s XPS spectra of $2\% \, \text{Ti}_3 \text{C}_2 @ \text{Ti}_4 \text{O}_7$ before and after the accelerated service life test; the spectra are calibrated to the C 1 s peak at $284.6 \, \text{eV}$.

results revealed that the introduction of Ti_3C_2 MXene could reduce the ΔG_4 and thus increase the ${}^{\bullet}OH$ production from H_2O . In addition, the decrease of the band center of active electron density of $Ti_3C_2@Ti_4O_7$ may prompt the release of ${}^{\bullet}OH$ into solution because more electrons would be drawn from the O 2p orbital compared with the case of pristine Ti_4O_7 . The deficient electrons in the O 2p orbital implied a weakened adsorption of ${}^{\bullet}OH$ and were therefore beneficial to ${}^{\bullet}OH$ desorption [43]; this was also demonstrated by the E_{des} values of ${}^{\bullet}OH$ in $Ti_3C_2@Ti_4O_7$ (-1.46 eV) and pristine Ti_4O_7 (-0.03 eV). Based on these theoretical predictions, the advantages of the employment of Ti_3C_2 MXene in Ti_4O_7 electrode are demonstrated. It can be expected that O-terminated $Ti_3C_2@Ti_4O_7$ is capable of producing abundant ${}^{\bullet}OH$ and achieving satisfactory ROC removal. Thus, we should adopt a suitable $Ti_3C_2@-Ti_4O_7$ electrode synthesis method to maximize the number of -O terminations.

3.2. Physical characterization of Ti₃C₂@Ti₄O₇

Guided by the above theoretical calculations, Ti_3C_2 MXene nanosheets rich in oxygen terminations were obtained via annealing and strong ultrasonication (Fig. 2a), and X wt% $Ti_3C_2@Ti_4O_7$ was fabricated through the SPS process (Fig. 2b). The high-temperature synthesis process was demonstrated to form various interfacial bonds, which enabled the formation of Ti-O-Ti chemical bonds between Ti_3C_2 MXene and

Ti₄O₇ in our work [11,44]. After doping Ti₄O₇ with 2% O-terminated Ti₃C₂ MXene, it was observed that the multilayered Ti₃C₂ MXene nanosheets with uniformly dispersed nanoparticles on their surfaces were surrounded by Ti₄O₇, which retained its original morphology of pristine Ti_4O_7 (Fig. 3a and b, Fig. S7). This structural feature is beneficial for increasing the number of edges and defects and improving the electrocatalytic reactions [40]. Furthermore, the introduction of multilayered Ti₃C₂ MXene was conducive to modifying the electron delocalization structure, enabling electron transfer at the heterostructure interface [27,45]. EDS mapping demonstrated the successful doping with Ti₃C₂ MXene (Fig. 3c-g). The XRD patterns of 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ were in good agreement with the Ti₄O₇ standard characteristic peaks (JCPDS Card No. 50-0787), indicating that the original Ti₄O₇ crystal structure was retained in 2% Ti₃C₂@Ti₄O₇ (Fig. S8) [46], which was consistent with the SEM analyses. However, the characteristic (0 0 2) peak of Ti_3C_2 MXene ($2\theta = 8.9^{\circ}$) was not observed in the XRD pattern of 2% Ti₃C₂@Ti₄O₇ (Fig. S8) [47]. This might be attributed to the chemical reaction between Ti₃C₂ MXene and Ti₄O₇ during the synthetic process, implying the possible interface effect in 2% Ti₃C₂@-Ti₄O₇ heterostructure [46]. Confirming the SEM and EDS observations, the coexistence of Ti₃C₂ MXene and Ti₄O₇ was visible in the TEM image (Fig. 3 h), which also clearly displayed the layered nanosheets of Ti₃C₂ MXene with an interlayer spacing of ~1.42 nm (inset of Fig. 3 h). Furthermore, according to the HRTEM image (Fig. 3i), Ti₃C₂ MXene was

Fig. 5. (a, c) Degradation of OA and p-BQ for 2% Ti $_3$ C $_2$ @Ti $_4$ O $_7$ and pristine Ti $_4$ O $_7$ ([OA] $_0 = 1$ mM, [p-BQ] $_0 = 3$ mM). (b, d) Degradation of COU and TA for 2% Ti $_3$ C $_2$ @Ti $_4$ O $_7$ and pristine Ti $_4$ O $_7$ ([COU] $_0 = 1$ mM, $[TA]_0 = 1$ mM) and formation of their corresponding products, namely 7-HCOU and 2-HTA, respectively. Reaction conditions of (a–d): j = 20 mA/cm 2 , $[Na_2SO_4] = 100$ mM.

attached to the edge of $\rm Ti_4O_7$ (red dashed line), indicating that the two materials were in close contact with each other, and the theoretical feasibility to construct $\rm Ti_3C_2@Ti_4O_7$ was verified in practice. In addition, the intimate contact between the two materials indicated that the heterojunction was successfully established and that there may be interfacial effects between $\rm Ti_3C_2$ MXene and $\rm Ti_4O_7$. The results of mercury intrusion porosimetry analysis showed that 2% $\rm Ti_3C_2@Ti_4O_7$ possessed a smaller median pore diameter (1.37 $\rm vs~2.14~\mu m$) and calculated porosity (52.01% $\rm vs~57.49\%$) compared with those of pristine $\rm Ti_4O_7$ (Fig. S9). The AFM images of 2% $\rm Ti_3C_2@Ti_4O_7$ showed larger particles compared with those of pristine $\rm Ti_4O_7$ (Fig. S10).

The Raman spectroscopy results revealed that the D-band and the Gband at 1335 and 1580 \mbox{cm}^{-1} in pristine Ti_4O_7 positively shifted to 1347 and 1587 \mbox{cm}^{-1} in 2% $\mbox{Ti}_3\mbox{C}_2\mbox{@Ti}_4\mbox{O}_7,$ and the absorption intensity ratio $I_{\rm D}/I_{\rm G}$ increased from 1.76 to 1.83 (Fig. S11). The shifts in the peak positions and the increased I_D/I_G ratio suggested the occurrence of possible strong interfacial interactions and the presence of more defects [40,48], which was consistent with the SEM analyses. The chemical states of the Ti, C, and O elements in 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ were determined via XPS. The XPS survey spectra are presented in Fig. S12. As shown in Fig. 3j, the two peaks originating from Ti $2p_{3/2}$ and Ti $2p_{1/2}$ at 457.6 and 463.4 eV in pristine Ti₄O₇ positively shifted to 457.9 and 463.6 eV after doping with Ti₃C₂ MXene, respectively. Such positive shifts also occurred in the O 1 s spectra, which were deconvoluted into three peaks for 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ (Fig. 3k). The peaks in the O 1 s spectrum of 2% Ti₃C₂@Ti₄O₇ were ascribed to Ti-O-Ti (529.3 eV), Ti-OH (530.8 eV), and C-OH (532.2 eV), and their counterparts in the O 1 s spectrum of pristine Ti₄O₇ were located at 529.1, 530.7, and 532.1 eV, respectively. These upshifts suggested the occurrence of a chemical coupling interaction between Ti₃C₂ MXene and Ti₄O₇ in the heterostructure [23,49], which was consistent with the newly formed Ti-O-Ti bonds at the interface of the Ti₃C₂@Ti₄O₇ heterostructure (Fig. 1a). The C 1 s spectra of pristine Ti₄O₇ and 2% Ti₃C₂@Ti₄O₇ were fitted by four constituents, namely Ti-C, C-C, C-O, and C-O=O (Fig. 31). These four peaks in 2% Ti₃C₂@Ti₄O₇ were located at 282.2 [46,50], 283.4, 284.5, and 287.0 eV, respectively, while those in pristine Ti₄O₇ were located at higher 282.2, 283.5, 284.8, and 287.6 eV, respectively. The positive shifts in the position of the Ti 2p and O 1 s peaks and the negative shift in the position of the C 1 s peak indicated that the electrons were transferred from Ti₄O₇ to Ti₃C₂ [51], which is in agreement with the predicted electron flow direction. The shifts in binding energy of the distinct peaks provided strong supporting evidence for interfacial connection at Ti₃C₂@Ti₄O₇ heterostructure [52]. Compared with pristine Ti₄O₇, the C-O proportion in 2% Ti₃C₂@Ti₄O₇ increased from 42% to 46%, while the C-C and Ti-C proportions decreased from 49% to 46% and from 4.7% to 2.9%, respectively. These changes possibly resulted from the oxidation reaction during the synthesis of 2% Ti₃C₂@Ti₄O₇ [46], which may be proved by the theoretical interfacial electron distribution. It could be observed that the electrons were transferred from Ti₄O₇ to Ti₃C₂ MXene, indicating that the oxidation of Ti₃C₂ MXene was caused by the combination of Ti₃C₂ MXene and Ti₄O₇, which may also explain the disappearance of the characteristic XRD peak of Ti₃C₂ MXene in the XRD patter of 2% Ti₃C₂@Ti₄O₇ (Fig. 1b and Fig. S8). Additionally, the experimental WF of 2% Ti_3C_2 @ Ti_4O_7 (5.02 eV), pristine Ti_4O_7 (4.82 eV), and Ti_3C_2 MXene (6.42 eV) (Fig. S13), which were consistent with the theoretical results (4.77 eV for Ti_3C_2 @ Ti_4O_7 , 4.67 eV for pristine Ti_4O_7 , and 6.60 eV for Ti_3C_2 MXene) (Fig. S5).

3.3. Electrochemical characterizations, stability, and reactivity of $Ti_3C_2@Ti_4O_7$

3.3.1. Electrochemical characterizations and stability

According to the EIS tests, the ohmic resistance (R_s) values of 2% ${\rm Ti_3C_2@Ti_4O_7}$ and pristine ${\rm Ti_4O_7}$ were close (4.29 vs 4.71 Ω), indicating that the components of EAOP systems (e.g., the electrolyte resistance) provided similar R_s values (Fig. 4a) [12]. 2% ${\rm Ti_3C_2@Ti_4O_7}$ had a smaller charge-transfer resistance (R_{ct}) of 4.21 Ω than pristine ${\rm Ti_4O_7}$ (R_{ct} = 59.09 Ω), which is probably ascribed to the numerous oxygen terminals on the surface introduced by ${\rm Ti_3C_2}$ MXene, which facilitated the increase in the electron transfer rate [53]. The CV plots of 2% ${\rm Ti_3C_2@Ti_4O_7}$ and pristine ${\rm Ti_4O_7}$ were recorded at potential scan rates varying from 5 to 100 mV/s, and the current increased with the increase in the scan rate (Fig. S14). The voltammetric charge (q^*), which is associated with the

specific electroactive sites for charge transfer, as a function of the square root of the scan rate $(v^{1/2})$, was illustrated in Fig. 4b [11]. The slope of the curve of 2% Ti₃C₂@Ti₄O₇ was 8.02, which was greater than that of pristine Ti₄O₇ (3.40) and suggested that 2% Ti₃C₂@Ti₄O₇ possessed a higher number of electrochemical reactive sites on the surface for electro-oxidation [11]. The integral areas of the CV curves of 2% Ti₃C₂@Ti₄O₇ were larger by a factor of 2.89 compared with those of pristine Ti₄O₇ (Fig. 4b inset). These results demonstrated that doping Ti₄O₇ with Ti₃C₂ MXene could increase the electroactive area and improve the electrochemical activity owing to the occurrence of interfacial effects between the two constituents [54]. An accelerated service life test was performed to investigate the stability of the two materials at a constant current density of up to 1 A/cm². 2% Ti₃C₂@Ti₄O₇ exhibited a lifetime of 90.6 h, which was 24% longer than that of pristine Ti_4O_7 (73.1 h) (the actual service lifetime calculations were provided in Text S4). The service lifetime of 2% Ti₃C₂@Ti₄O₇ was 25.9 years and the counterpart of pristine Ti₄O₇ was 20.9 years, implying that the presence of Ti₃C₂ MXene had an excellent stabilizing effect on the electrode (Fig. 4c). The XPS survey spectrum of 2% Ti₃C₂@Ti₄O₇ is presented in Fig. S15. The deconvoluted Ti 2p, O 1 s, and C 1 s XPS spectra show

Fig. 6. (a) 1,4-D degradation by 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇ and corresponding rate constants. (b) Plot of $\ln(k_{\rm obs})$ versus $\ln({\rm doping\ amount})$; doping amount (wt%) of Ti₃C₂. Reaction conditions of (a, b): $[1,4\text{-D}]_0 = 0.1\ \text{mM},\ j = 20\ \text{mA/cm}^2$, $[\mathrm{Na_2SO_4}] = 100\ \text{mM}$. (c, d) Effects of the pH and current density on 1,4-D degradation. Reaction conditions of (c, d): $[1,4\text{-D}]_0 = 0.1\ \text{mM}$, $[\mathrm{Na_2SO_4}] = 100\ \text{mM}$. (e-h) Effects of Cl⁻, HCO₃, H₂PO₄, and NO₃ at different concentrations (0.5–10 mM) on 1,4-D degradation. Reaction conditions of (e-h): $[1,4\text{-D}]_0 = 0.1\ \text{mM}$, $j = 20\ \text{mA/cm}^2$, $[\mathrm{Na_2SO_4}] = 100\ \text{mM}$.

noticeable changes before and after the service life test (Fig. 4d-f). The peak intensities in the Ti 2p and O 1 s spectra decreased significantly, especially that corresponding to the Ti-O-Ti bond. Considering the improved electronic properties through the interfacial Ti-O-Ti bond formation, which were both predicted and experimentally verified, the deterioration of the electrode could probably be attributed to the disintegration of the Ti-O-Ti bonds. The increased peak intensity of the C-C bonds after the test may imply the occurrence of a chemical change in the $Ti_3C_2@Ti_4O_7$ heterostructure. Cai et al. found that the material obtained by doping Ag₃PO₄ with Ti₃C₂ MXene could resist corrosion and maintained a high pollutant degradation after eight cycles due to the efficient electron transfer through a Schottky junction [23]. Ti₃C₂ MXene doping of Ti₄O₇ also resulted in the construction of a Schottky junction and the formation of interfacial Ti-O-Ti bonds as demonstrated by the DFT calculations in Sections 3.1.1 and 3.1.2 (Fig. 1c and d); thus, the electron transfer at the interface and the stability of 2% Ti₃C₂@Ti₄O₇ were greatly enhanced.

3.3.2. Electrochemical reactivity

To determine the electrochemical reactivity of 2% $Ti_3C_2@Ti_4O_7$ and pristine Ti_4O_7 , feasible probes, namely OA, COU, TA, and p-BQ, were selected [55]. Prior work proved that OA has a negligible reaction rate with $^{\bullet}$ OH (k_{OA} , $_{\bullet OH} = 1.4 \times 10^6$ M $^{-1}$ s $^{-1}$) [55], and consequently, its degradation can be ascribed to the DET process of the electrodes. The electro-oxidation of 1 mM OA achieved degradations of 50.74% and 22.65% for 2% $Ti_3C_2@Ti_4O_7$ and pristine Ti_4O_7 , respectively (Fig. 5a). The apparent rate constant (k_{app}) of the OA oxidation (k_{OA}) of 2% $Ti_3C_2@Ti_4O_7$ was 7.6×10^{-3} min $^{-1}$, which was 2.62-fold higher than that of Ti_4O_7 (2.9 × 10^{-3} min $^{-1}$) (Fig. S16a) (detailed calculations were provided in Text S5). The higher kinetic rate constant implied that doping with Ti_3C_2 MXene strengthened the DET process, which was consistent with the lower R_{ct} of 2% $Ti_3C_2@Ti_4O_7$ (Fig. 4a).

To investigate the *OH formation ability of 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇, COU, TA, and p-BQ were used as OH probes. The three probes react with ${}^{\bullet}$ OH at high reaction rates ($k_{\text{COU}, \bullet \text{OH}} = 2.0 \times 10^9 \,\text{M}^{-1}$ s^{-1} , $k_{\text{TA}, \bullet \text{OH}} = 3.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, and $k_{p\text{-BQ}, \bullet \text{OH}} = 1.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) and generate detectable products, such as 7-hydroxycoumarin (7-HCOU) and 2-hydroxyterephthalic acid (2-HTA), while the disappearance of p-BQ was recognized as a signature for OH generation due to the lack of indicative products [56,57]. In Fig. 5b and d, within 90 min, the degradation of COU and TA reached 68.40% and 43.31% for 2% Ti₃C₂@Ti₄O₇ and 48.80% and 11.13% for pristine Ti₄O₇, respectively. The $k_{\rm app}$ values of COU ($k_{\rm COU}$) and TA ($k_{\rm TA}$) for 2% Ti₃C₂@Ti₄O₇ were $1.4 \times 10^{-2} \text{ min}^{-1}$ and $6.6 \times 10^{-3} \text{ min}^{-1}$, respectively, and those for pristine Ti_4O_7 were 7.7×10^{-3} min⁻¹ and 1.2×10^{-3} min⁻¹, respectively (Fig. S15b and c; Text S5). Compared with pristine Ti₄O₇, the concentrations of 7-HCOU and 2-HTA produced for 2% Ti₃C₂@Ti₄O₇ were higher by a factor of 2.29 and 2.57, respectively (Fig. 5b and d). In addition, 90.76% and 72.95% of p-BQ, which was used as another OH probe, were removed with 2% Ti₃C₂@Ti₄O₇ and pristine Ti₄O₇, respectively (Fig. 5c). The above results demonstrated that Ti₃C₂ MXene doping was beneficial to increasing the electrochemical reactivity of Ti₄O₇-based composite ceramic membranes, which possibly results from the interface effects between the two materials [54], as well as improving the interfacial charge redistribution of the delocalized electrons, which facilitates electron transfer [27]. Thus, the ROC electro-oxidation ability of 2% Ti₃C₂@Ti₄O₇ was enhanced. Additionally, the OH formation ability of Ti₃C₂ MXene electrode was also determined via OH probes (Text S6 and Fig. S17). Comparing the OH probes degradation results and electrochemical characterizations of 2% Ti₃C₂@Ti₄O₇ with those of pristine Ti₄O₇ and Ti₃C₂ MXene electrode, the superiority of Ti₃C₂ MXene to serve as a dopant in EAOP electrodes was demonstrated. Specifically, LSV, CV curves, and OH probes degradation of 2% Ti₃C₂@Ti₄O₇ showed significant improvements in contrast to those in pristine Ti₄O₇ (Fig. 4b and Fig. S18). However, the extremely low LSV and CV plots, the tiny amount of OH generation, and

the low 1,4-D decomposition $(3.8\pm0.3\%~vs~89.4\%\pm0.2\%$ in 2% $Ti_3C_2@Ti_4O_7$ and $73.3\%\pm1.3\%$ in pristine Ti_4O_7) for Ti_3C_2 MXene electrode revealed its weak current density, low oxygen evolution potential, and deficient surface-active sites in electrochemical process (Fig. S17–19). Such huge discrepancy of LSV, CV curves and 1,4-D degradation between Ti_3C_2 MXene electrode and 2% $Ti_3C_2@Ti_4O_7$ -pristine Ti_4O_7 reflected the critical role of Ti_3C_2 MXene in modifying EAOP electrodes. The improved electron migration and enhanced catalytic performance in 2% $Ti_3C_2@Ti_4O_7$ was attributed to the interface effect at 2% $Ti_3C_2@Ti_4O_7$ heterostructure.

3.4. Electro-oxidation of 1,4-D by Ti₃C₂@Ti₄O₇

3.4.1. Degradation of 1,4-D by Ti₃C₂@Ti₄O₇

At an applied constant current of 20 mA/cm² (working potential = 3.36 V vs Ag/AgCl (Fig. S20)), 2% Ti₃C₂@Ti₄O₇ achieved a 1,4-D degradation efficiency of $89.4\% \pm 0.2\%$ after treatment for 120 min, which corresponded to an improvement of 22% with respect to pristine Ti_4O_7 (73.3% \pm 1.3%) (Fig. S21). The degradation of 1,4-D was in good agreement for both materials with the pseudo-first-order kinetic reaction model when assuming that the *OH concentration was in a quasistationary state [7]. The $k_{\rm app}$ of 1,4-D for 2% Ti₃C₂@Ti₄O₇ ($k_{\rm 2\%}$ Ti₃C₂@Ti₄O₇ = 1.9 × 10⁻² min⁻¹) was 1.9-fold higher than that of pristine Ti₄O₇ ($k_{\rm pristine\ Ti4O7} = 1.0 \times 10^{-2}\ {\rm min}^{-1}$) (Fig. 6a; Text S5). The above results confirmed that 2% Ti₃C₂@Ti₄O₇ possessed faster oxidation kinetics and better performance to eliminate 1,4-D compared with pristine Ti₄O₇. The XPS spectra of used 2% Ti₃C₂@Ti₄O₇ were conducted to investigate the chemical states changes of elements. It could be found that the survey spectra and the vast majority of Ti, C, and O deconvolution results of used 2% Ti₃C₂@Ti₄O₇ were quite similar to those in fresh electrode (Fig. S22 and S23), with a C-OH ratio in C1 s spectrum decreased from 15.1% to 9.2% in 2% Ti₃C₂ @Ti₄O₇ (Fig. S23). Furthermore, CV and EIS curves of used 2% Ti₃C₂@Ti₄O₇ also displayed similar graphs to those of fresh electrode (Fig. S24). These results corresponded well with the stable performances of 2% Ti₃C₂@Ti₄O₇ within their lifespans reflecting in the accelerated service lifetime test.

In situ electron paramagnetic resonance results clearly showed the characteristic 1:2:2:1 quadruple signal of DMPO-*OH ($\alpha_N=\alpha_H=14.9$ G), which indicated the presence of *OH in the EAOP system [58] (Text S7; Fig. S25). Quenching experiments demonstrated that 36.0% \pm 1.3% of 1,4-D could still be degraded even with three orders of magnitude higher concentrations of the radical scavenger MeOH than that of 1,4-D. These results indicated that the DET process significantly contributed to 1,4-D degradation (Text S8; Fig. S26). Thus, the removal of 1,4-D greatly improved due to the enhanced DET process and increased *OH generation.

The 1,4-D electro-oxidation mediated by ${\rm Ti_3C_2@Ti_4O_7}$ was conducted at different ${\rm Ti_3C_2}$ MXene doping amounts (X% = 1–5 wt%) to optimize the amount of the dopant. Using these X% ${\rm Ti_3C_2@Ti_4O_7}$ electrodes, the ${\rm ln}(k_{\rm app})$ values of 1,4-D degradation were plotted as a function of ${\rm ln}({\rm doping}$ amounts) (Fig. 6b). With increasing doping amounts, the slopes decreased gradually from 0.78 to 0.26, indicating that an increase in the doping amount was beneficial to 1,4-D decomposition, although it was not sufficiently cost-effective.

The influences of other parameters, such as the pH (3, 5, 7, and 9) and current densities (ranging from 10 to 30 mA/cm²) on the decomposition of 1,4-D by $2\% \, \text{Ti}_3\text{C}_2 @ \text{Ti}_4\text{O}_7$ were also explored. A notable pH effect on 1,4-D degradation was observed; complete removal was reached within 60 min at pH = 3, while 1,4-D was still present at a higher pH after 120 min (Fig. 6c). The enhanced 1,4-D degradation in acidic conditions was possibly ascribed to the stronger oxidation reactivity of $^{\bullet}\text{OH}$ than those in neutral or alkaline conditions [59]. In addition to the weaker oxidation ability of $^{\bullet}\text{OH}$ at a higher pH, the decrease in 1,4-D decomposition with increasing pH is also ascribed to insufficient $^{\bullet}\text{OH}$ generation. A higher pH implied a higher OH $^-$ concentration, promoting the transfer of more electrons from OH $^-$ on the anode surface

Fig. 7. (a-d) Effects of Cl $^-$, HCO $_3^-$, H2PO $_4^-$, and NO $_3^-$ at different concentrations (0.5–10 mM) on 1,4-D degradation. Reaction conditions of (e-h): [1,4-D] $_0$ = 0.1 mM, j = 20 mA/cm $_2^2$, [Na₂SO₄] = 100 mM.

and finally facilitating oxygen production according to the oxygen evolution reaction (OER) mechanism (Text S9) [60,61]. The enhanced OER would inevitably compete with the *OH formation reaction, resulting in a decrease in *OH generation. In addition, the 1,4-D removal increased from $75.2\% \pm 2.5$ to $98.9\% \pm 0.6\%$ as the current density increased from 10 to 30 mA/cm² (Fig. 6d). These investigations showed that acidic conditions and high current densities improved 1,4-D degradation, which may increase capital cost and energy consumption.

3.4.2. Degradation performance in different water matrices

To evaluate the feasibility of 1,4-D removal via 2% $Ti_3C_2@Ti_4O_7$ in water matrices containing different ions, the effects of selected anions present at various concentrations, i.e., Cl^- , HCO_3^- , $H_2PO_4^-$, and NO_3^- , on the degradation of 1,4-D were explored. It is noteworthy that different concentrations of Cl^- led to contradicting results for 1,4-D decomposition (Fig. 7a). While a Cl^- concentration in the range of 0.5–3 mM was found to be beneficial for the decomposition of 1,4-D, concentrations in the range of 5–10 mM resulted in a reduced 1,4-D degradation. The enhanced 1,4-D removal at lower Cl^- concentrations can be attributed to the generation of Cl^{\bullet} and Cl^{\bullet} (detailed equations could be found in Text S10) [62,63]. However, the contribution of these reactions to 1,4-D removal declined with increasing Cl^- concentration (Fig. 7a), and

compared with the control experiment, the 1,4-D degradation decreased when Cl $^-$ concentrations was above 3 mM. These results are probably caused by the occupation of the active sites of 2% Ti $_3$ C $_2$ @Ti $_4$ O $_7$ by excessive Cl $^-$, which would be rapidly transformed by $^{\bullet}$ OH into Cl $_2^{\bullet-}$; not only is this radical less reactive than $^{\bullet}$ OH, but this reaction pathway also results in a decrease in $^{\bullet}$ OH concentration (Text S10) [64]. The large amount of Cl $_2^{\bullet-}$ and the reduced amount of $^{\bullet}$ OH resulted in the inhibition of 1,4-D degradation. By contrast, the presence of HCO $_3^-$, H $_2$ PO $_4^-$, or NO $_3^-$ did not show any significant influence on 1,4-D decomposition (Fig. 7b–d).

3.5. Application of 1,4-D removal by Ti₃C₂@Ti₄O₇

To further assess the application feasibility of $2\% \, \text{Ti}_3\text{C}_2@\text{Ti}_4\text{O}_7$ for the removal of 1,4-D, the formation of chlorinated byproducts (using simulated water spiked with 1 mM Cl $^-$) at different current densities, 1,4-D degradation in real groundwater, and normalized electric energy (EE/O, kWh/m 3) per log removal of 1,4-D were investigated (Texts S11 and S12). Cl $^-$ could be oxidized to ClO $_3^-$ and ClO $_4^-$ at the anode surface, and since these inorganic chlorinated byproducts were reported to cause health risks [9], their generation should be monitored. It was found that the production of ClO $_3^-$ and ClO $_4^-$ increased from 24.1 to 203.4 μM

Fig. 8. (a) Cl^- degradation and the generation of chlorinated byproducts at different current densities (5–30 mA/cm²). Reaction conditions: j = 20 mA/cm², $[Na_2SO_4] = 100$ mM. (b) 1,4-D degradation in simulated water and natural groundwater. Reaction conditions: $[1,4-D]_0 = 0.1$ mM, j = 20 mA/cm², $[Na_2SO_4] = 100$ mM.

 (ClO_3^-) and from 14.5 to 179.8 μ M (ClO_4^-) when the applied current was raised from 5 to 30 mA/cm² (Fig. 8a). The increase in ClO₃ and ClO₄ production possibly resulted from the enhanced OH generation at higher current densities, indicating that the application of 2% Ti₃C₂@-Ti₄O₇ for 1,4-D removal required the application of an optimized current to limit the formation of these chlorinated byproducts. Furthermore, we investigated the 1,4-D degradation performance in real groundwater containing 27.7 mg/L Cl⁻. The 1,4-D decomposition performance in both real groundwater and simulated water was excellent, and the residual 1,4-D concentrations were below 4 μM (3.7 μM in simulated water and 2.1 µM in groundwater) (Fig. 8b), which met the requirements for drinking water [11]. In addition, the energy consumption during 1,4-D removal was evaluated. The EE/O for 2% Ti₃C₂@Ti₄O₇ reached 10.3 kWh/m³ throughout the 1,4-D degradation process, while that in pristine Ti₄O₇ was 2.2-fold higher (22.6 kWh/m³). Compared to pristine Ti₄O₇, 2% Ti₃C₂@Ti₄O₇ can be anticipated to be a promising EAOP anode for 1,4-D removal due to its superior removal efficiency and high cost-effectiveness.

4. Conclusions

This study demonstrated through theoretical predictions the feasibility and superiority of Ti₃C₂ MXene to serve as a highly effective electrocatalyst and provided insights into the Ti₃C₂@Ti₄O₇ heterostructure and its OH generation mechanism. The newly formed interfacial Ti-O-Ti bond was considered to be associated with the enhanced chemical stability, electron transfer, and electrochemical reactivity. The OH generation of Ti₃C₂@Ti₄O₇ was greatly improved compared with that of pristine Ti₄O₇ due to the lower reaction energies of H₂O adsorption, OH group transformation, and OH desorption. 2% Ti₃C₂@Ti₄O₇ performed excellently in 1,4-D removal, and the residual 1,4-D concentration in real groundwater met the requirements for drinking water. This work combined theoretical calculations with experiments to demonstrate the feasibility of employing an interface engineering strategy for Ti₄O₇ electrodes by doping them with Ti₃C₂ MXene to achieve an improved EAOP performance. However, improving the mass transfer between ROC and this novel anode in EAOP remains challenging. Due to its advantageous pore size (1.37 μm), 2% Ti₃C₂@-Ti₄O₇ can be anticipated to be used in EAOPs with a flow-through membrane to increase the mass transfer and lower the energy consumption in future research to meet the requirements for practical applications.

CRediT authorship contribution statement

Kuanchang He: Methodology, Investigation, Data Curation, Formal

analysis, Validation, Writing-Original Draft. Wei Li: Conceptualization, Investigation, Methodology, Formal analysis, Data Curation, Funding acquisition, Writing-Original Draft, Writing-Review&Editing, Supervision. Longxiang Tang: Data Curation, Methodology, Investigation. Lingyu Chen: Data Curation, Formal analysis. Gang Wang: Methodology, Visualization. Qian Liu: Investigation, Data Curation. Xiaodong Xin: Resources, Investigation. Cao Yang: Formal analysis. Zhenbei Wang: Data Curation. Sihao Lv: Supervision. Defeng Xing: Supervision, Resources, Funding acquisition, Writing-Review&Editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This study was supported by National Natural Science Foundation of China [U22A20443, 52000026], Guangdong Basic and Applied Basic Research Foundation [2022A1515140015], Characteristic Innovation Project of Guangdong Universities [2022KTSCX139], and the Interdisciplinary Research Foundation of HIT and National Key Research and Development Program [2022YFA0912503]. The authors are also especially thankful to Ms. Xue Bai for assistance with graphic abstract design.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.123077.

References

- [1] W. Li, S. Patton, J.M. Gleason, S.P. Mezyk, K.P. Ishida, H. Liu, UV photolysis of chloramine and persulfate for 1,4-dioxane removal in reverse-osmosis permeate for potable water reuse, Environ. Sci. Technol. 52 (2018) 6417–6425, https://doi.org/ 10.1021/acs.est.7b06042.
- [2] S. Patton, M. Romano, V. Naddeo, K.P. Ishida, H. Liu, Photolysis of mono- and dichloramines in UV/hydrogen peroxide: Effects on 1,4-dioxane removal and relevance in water reuse, Environ. Sci. Technol. 52 (2018) 11720–11727, https:// doi.org/10.1021/acs.est.8b01023.
- [3] M. Sun, C. Lopez-Velandia, D.R. Knappe, Determination of 1,4-dioxane in the cape fear river watershed by heated purge-and-trap preconcentration and gas chromatography-mass spectrometry, Environ. Sci. Technol. 50 (2016) 2246–2254, https://doi.org/10.1021/acs.est.5b05875.

- [4] B.C. Hodges, E.L. Cates, J.H. Kim, Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials, Nat. Nanotechnol. 13 (2018) 642–650, https://doi.org/10.1038/s41565-018-0216-x.
- [5] B.P. Chaplin, G. Schrader, J. Farrell, Electrochemical destruction of N-nitrosodimethylamine in reverse osmosis concentrates using Boron-doped diamond film electrodes, Environ. Sci. Technol. 44 (2010) 4264–4269, https://doi.org/10.1021/es903872n
- [6] B.P. Chaplin, The prospect of electrochemical technologies advancing worldwide water treatment, Acc. Chem. Res. 52 (2019) 596–604, https://doi.org/10.1021/ acs.accounts.8b00611.
- [7] S.O. Ganiyu, N. Oturan, S. Raffy, M. Cretin, R. Esmilaire, E. van Hullebusch, G. Esposito, M.A. Oturan, Sub-stoichiometric titanium oxide (Ti₄O₇) as a suitable ceramic anode for electrooxidation of organic pollutants: A case study of kinetics, mineralization and toxicity assessment of amoxicillin, Water Res. 106 (2016) 171–182, https://doi.org/10.1016/j.watres.2016.09.056.
- [8] F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B Environ. 202 (2017) 217–261, https://doi.org/ 10.1016/j.apcatb.2016.08.037.
- [9] M.H. Lin, D.M. Bulman, C.K. Remucal, B.P. Chaplin, Chlorinated byproduct formation during the electrochemical advanced oxidation process at Magnéli phase Ti₄O₇ electrodes, Environ. Sci. Technol. 54 (2020) 12673–12683, https://doi.org/ 10.1021/acs.est.0r03916.
- [10] J. Xie, J. Ma, C. Zhang, T.D. Waite, Direct electron transfer (DET) processes in a flow anode system-energy-efficient electrochemical oxidation of phenol, Water Res. 203 (2021), 117547, https://doi.org/10.1016/j.watres.2021.117547.
- [11] W. Li, R. Xiao, J. Xu, H. Lin, K. Yang, W. Li, K. He, L. Tang, J. Chen, Y. Wu, S. Lv, Interface engineering strategy of a Ti₄O₇ ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane, Water Res. 216 (2022), 118287, https://doi.org/10.1016/j.watres.2022.118287.
- [12] H. Lin, R. Xiao, R. Xie, L. Yang, C. Tang, R. Wang, J. Chen, S. Lv, Q. Huang, Defect engineering on a Ti₄O₇ electrode by Ce³⁺ doping for the efficient electrooxidation of perfluorooctanesulfonate, Environ. Sci. Technol. 55 (2021) 2597–2607, https:// doi.org/10.1021/acs.est.0c06881.
- [13] J. Xie, J. Ma, C. Zhang, X. Kong, Z. Wang, T.D. Waite, Effect of the presence of carbon in Ti₄O₇ electrodes on anodic oxidation of contaminants, Environ. Sci. Technol. 54 (2020) 5227–5236, https://doi.org/10.1021/acs.est.9b07398.
- [14] X. Du, M.A. Oturan, M. Zhou, N. Belkessa, P. Su, J. Cai, C. Trellu, E. Mousset, Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications, Appl. Catal. B Environ. 296 (2021), 120332, https://doi.org/ 10.1016/j.apcatb.2021.120332.
- [15] M. El Kateb, C. Trellu, A. Darwich, M. Rivallin, M. Bechelany, S. Nagarajan, S. Lacour, N. Bellakhal, G. Lesage, M. Heran, M. Cretin, Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates, Water Res. 162 (2019) 446–455. https://doi.org/10.1016/j.watres.2019.07.005.
- [16] S.O. Ganiyu, N. Oturan, S. Raffy, G. Esposito, E.D. van Hullebusch, M. Cretin, M. A. Oturan, Use of sub-stoichiometric titanium oxide as a ceramic electrode in anodic oxidation and electrofenton degradation of the beta-blocker propranolol: Degradation kinetics and mineralization pathway, Electrochin. Acta 242 (2017) 344–354, https://doi.org/10.1016/j.electacta.2017.05.047.
- [17] S. Nayak, B.P. Chaplin, Fabrication and characterization of porous, conductive, monolithic Ti₄O₇ electrodes, Electrochim. Acta 263 (2018) 299–310, https://doi. org/10.1016/j.electacta.2018.01.034.
- [18] L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, Y. Wei, J. Caro, H. Wang, Effective ion sieving with Ti₃C₂T_x MXene membranes for production of drinking water from seawater, Nat. Sustain. 3 (2020) 296–302, https://doi.org/10.1038/s41893-020-0474-0.
- [19] S. Wang, Z. Li, G. Wang, Y. Wang, Z. Ling, C. Li, Freestanding Ti₃C₂T_x MXene/prussian blue analogues films with superior ion uptake for efficient capacitive deionization by a dual pseudocapacitance effect, ACS Nano 16 (2022) 1239–1249, https://doi.org/10.1021/acsnano.1c09036.
- [20] Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.Z. Zhang, H.N. Alshareef, MXenes for energy harvesting, Adv. Mater. (2022), e2108560, https://doi.org/10.1002/ adma.202108560.
- [21] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature 516 (2014) 78–81, https://doi.org/10.1038/nature13970.
- [22] Y. Li, J. Ma, T.D. Waite, M.R. Hoffmann, Z. Wang, Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N₂: Mechanisms and implications, Environ. Sci. Technol. 55 (2021) 10695–10703, https://doi.org/10.1021/acs.est.1c00264.
- [23] T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Ag₃PO₄/Ti₃C₂ MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance, Appl. Catal. B Environ. 239 (2018) 545–554, https://doi.org/10.1016/j.apcath.2018.08.053
- [24] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Z. Krist. Cryst. Mater. 220 (2005) 567–570, https://doi.org/10.1524/zkri.220.5.567.65075.
- [25] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett 77 3865
- [26] M. Li, Y.T. Jin, J.F. Yan, Z. Liu, N.X. Feng, W. Han, L.W. Huang, Q.K. Li, K.L. Yeung, S.Q. Zhou, C.H. Mo, Exploration of perfluorooctane sulfonate degradation

- properties and mechanism via electron-transfer dominated radical process, Water Res. 215 (2022), 118259, https://doi.org/10.1016/j.watres.2022.118259.
- [27] L. Liu, Q. Zhao, R. Liu, L. Zhu, Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti₃C₂ MXene, Appl. Catal. B Environ. 252 (2019) 198–204, https://doi.org/10.1016/j. apcatb.2019.04.026.
- [28] R. Zhang, X. Huang, D. Wang, T.K.A. Hoang, Y. Yang, X. Duan, P. Chen, L.-C. Qin, G. Wen, Single-phase mixed transition metal carbonate encapsulated by graphene: Facile synthesis and improved lithium storage properties, Adv. Funct. Mater. 28 (2018) 1705817, https://doi.org/10.1002/adfm.201705817.
- [29] J. Zhou, D. Li, W. Zhao, B. Jing, Z. Ao, T. An, First-principles evaluation of volatile organic compounds degradation in Z-scheme photocatalytic systems: MXene and graphitic-CN heterostructures, ACS Appl. Mater. Inter. 13 (2021) 23843–23852, https://doi.org/10.1021/acsami.1c05617.
- [30] B. Zhang, Y. Chang, Y. Wu, Z. Fan, P. Zhai, C. Wang, J. Gao, L. Sun, J. Hou, Regulating *OCHO intermediate as rate-determining step of defective oxynitride nanosheets enabling robust CO₂ electroreduction, Adv. Energy Mater. 12 (2022) 2200321, https://doi.org/10.1002/aenm.202200321.
- [31] Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dall'Agnese, G. Chen, X.-F. Wang, g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A 6 (2018) 9124–9131, https://doi.org/10.1039/c8ta02706d.
- [32] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti₃C₂ MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017) 13907, https://doi.org/10.1038/ ncomms13907
- [33] S. Garcia-Segura, X. Qu, P.J.J. Alvarez, B.P. Chaplin, W. Chen, J.C. Crittenden, Y. Feng, G. Gao, Z. He, C.-H. Hou, X. Hu, G. Jiang, J.-H. Kim, J. Li, Q. Li, J. Ma, J. Ma, A.B. Nienhauser, J. Niu, B. Pan, X. Quan, F. Ronzani, D. Villagran, T. D. Waite, W.S. Walker, C. Wang, M.S. Wong, P. Westerhoff, Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater a perspective, Environ. Sci. Nano 7 (2020) 2178–2194, https://doi.org/10.1039/d0en00194e.
- [34] A. Liu, X. Liang, X. Ren, W. Guan, M. Gao, Y. Yang, Q. Yang, L. Gao, Y. Li, T. Ma, Recent progress in MXene-based materials: Potential high-performance electrocatalysts, Adv. Funct. Mater. 30 (2020) 2003437, https://doi.org/10.1002/ adfm/202003437
- [35] J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Interfacial engineering of Bi₂S₂/Ti₃C₂T_x MXene based on work function for rapid photo-excited bacteria-killing, Nat. Commun. 12 (2021) 1224, https://doi.org/10.1038/s41467-021-21435-6.
- [36] X. Wu, Y. Wang, Z.-S. Wu, Design principle of electrocatalysts for the electrooxidation of organics, Chem 8 (2022) 1–36, https://doi.org/10.1016/j. chempr.2022.07.010.
- [37] L. Tao, D. Dastan, W. Wang, P. Poldorn, X. Meng, M. Wu, H. Zhao, H. Zhang, L. Li, B. An, Metal-decorated InN monolayer senses N₂ against CO₂, ACS Appl. Mater. Interfaces 15 (2023) 12534–12544, https://doi.org/10.1021/acsami.2c21463.
- [38] Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Lattice-strain engineering of homogeneous NiS_{0.5}Se_{0.5} core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting, Adv. Mater. 32 (2020), e2000231, https://doi.org/10.1002/adma.202000231.
- [39] Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production, Nano Energy 56 (2019) 411–419, https://doi.org/10.1016/j.nanoen.2018.11.034.
 [40] Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Co-constructing
- [40] Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Co-constructing interfaces of multiheterostructure on MXene (Ti₃C₂T_x)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media, Adv. Funct. Mater. 31 (2021) 2102576, https://doi.org/10.1002/adfm.202102576.
 [41] Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu,
- [41] Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Tailoring the d-band centers enables Co_4N nanosheets to be highly active for hydrogen evolution catalysis, Angew. Chem. Int Ed. Engl. 130 (2018) 5170–5174, https://doi.org/10.1002/ange.201801834.
- [42] L. Li, Y. Wang, Q. Huang, First-principles study of the degradation of perfluorooctanesulfonate and perfluorobutanesulfonate on a Magnéli Phase Ti₄O₇ anode, ACS ES&T Water 1 (2021) 1737–1744, https://doi.org/10.1021/ acsestwater.1c00086.
- [43] D. He, X. Song, W. Li, C. Tang, J. Liu, Z. Ke, C. Jiang, X. Xiao, Active electron density modulation of Co₃O₄-based catalysts enhances their oxygen evolution performance, Angew. Chem. Int. Ed. Engl. 59 (2020) 6929–6935, https://doi.org/ 10.1002/anie.202001681.
- [44] L. Ma, L.-J. Yu, J. Liu, Y.-Q. Su, S. Li, X. Zang, T. Meng, S. Zhang, J. Song, J. Wang, X. Zhao, Z. Cui, N. Wang, Y. Zhao, Construction of Ti₄O₇/TiN/carbon microdisk sulfur host with strong polar N–Ti–O bond for ultralong life lithium–sulfur battery, Energy Storage Mater. 44 (2022) 180–189, https://doi.org/10.1016/j.energ. 2021.09.024
- [45] Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Defect engineering on electrode materials for rechargeable batteries, Adv. Mater. 32 (2020), e1905923, https://doi.org/10.1002/adma.201905923.
- [46] B. Wang, M. Wang, F. Liu, Q. Zhang, S. Yao, X. Liu, F. Huang, Ti₃C₂: An ideal co-catalyst? Angew. Chem. Int. Ed. Engl. 59 (2020) 1914–1918, https://doi.org/ 10.1002/anje.201913095
- [47] H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe, Y. Wu, A. Shaygan Nia, S. Yang, X. Feng, Ambient-stable two-dimensional titanium carbide (MXene) enabled by

- lodine etching, Angew. Chem. Int. Ed. Engl. 60 (2021) 8689–8693, https://doi.org/10.1002/anie.202015627.
- [48] C. Yang, Y. Tang, Y. Tian, Y. Luo, M. Faraz Ud Din, X. Yin, W. Que, Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance, Adv. Energy Mater. 8 (2018) 1802087, https://doi.org/10.1002/aenm.201802087.
- [49] K.B. Ibrahim, W.-N. Su, M.-C. Tsai, S.A. Chala, A.W. Kahsay, M.-H. Yeh, H.-M. Chen, A.D. Duma, H. Dai, B.-J. Hwang, Robust and conductive Magnéli Phase Ti₄O₇ decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst, Nano Energy 47 (2018) 309–315, https://doi.org/10.1016/j.nanoen.2018.03.017.
- [50] X. Han, L. An, Y. Hu, Y. Li, C. Hou, H. Wang, Q. Zhang, Ti₃C₂ MXene-derived carbon-doped TiO₂ coupled with g-C₃N₄ as the visible-light photocatalysts for photocatalytic H₂ generation, Appl. Catal. B Environ. 265 (2020), https://doi.org/10.1016/j.apcatb.2019.118539.
- [51] G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Interfacial engineering of MoO₂-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation, Adv. Mater. 32 (2020), e2000455, https:// doi.org/10.1002/adma.202000455.
- [52] Y.-Y. Yang, X.-G. Zhang, C.-G. Niu, H.-P. Feng, P.-Z. Qin, H. Guo, C. Liang, L. Zhang, H.-Y. Liu, L. Li, Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation, Appl. Catal. B Environ. 264 (2020), 118465, https://doi.org/10.1016/j.apcatb.2019.118465.
- [53] R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang, Z. Zhang, L. Yin, Janus-structured Co-Ti₃C₂ MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation, Adv. Funct. Mater. 30 (2020) 2000637, https://doi.org/10.1002/adfm.202000637.
- [54] Y. Wei, D. Wu, C. Yong, Z. Wang, P. Zhong, J. Qiu, J. Fan, J. Sun, Y. Lei, X. Wu, Robust and highly conductive Ti₄O₇/MXene nanocomposites as high-performance and long cyclic stability oxygen reduction electrocatalysts, Appl. Surf. Sci. 607 (2023), 154929, https://doi.org/10.1016/j.apsusc.2022.154929.
- [55] P. Gayen, C. Chen, J.T. Abiade, B.P. Chaplin, Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO₂-Ti_nO_{2n-1} electrocatalytic reactive electrochemical membranes, Environ. Sci. Technol. 52 (2018) 12675–12684, https://doi.org/10.1021/acs.est.8b04103.

- [56] M. Passananti, F. Temussi, M.R. Iesce, G. Mailhot, M. Brigante, The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters, Water Res. 47 (2013) 5422–5430, https://doi.org/ 10.1016/j.watres.2013.06.024.
- [57] Y. Jing, B.P. Chaplin, Mechanistic study of the validity of using hydroxyl radical probes to characterize electrochemical advanced oxidation processes, Environ. Sci. Technol. 51 (2017) 2355–2365, https://doi.org/10.1021/acs.est.6b05513.
- [58] L. Jin, S. You, N. Ren, B. Ding, Y. Liu, Mo vacancy-mediated activation of peroxymonosulfate for ultrafast micropollutant removal using an electrified MXene filter functionalized with Fe single atoms, Environ. Sci. Technol. 56 (2022) 11750–11759, https://doi.org/10.1021/acs.est.2c03904.
- [59] J. Cai, M. Zhou, Y. Pan, X. Du, X. Lu, Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO₂ nanotubes anode, Appl. Catal. B Environ. 257 (2019), 117902, https://doi.org/10.1016/j.apcatb.2019.117902.
- [60] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337–365, https://doi.org/10.1039/c6cs00328a.
- [61] H. Li, W. Yang, L. Ma, G. Liu, Y. Yu, J. Cao, R. Zhu, W. Chen, Z. Yu, H. Long, K. Zhou, Q. Wei, 3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics, Chem. Eng. J. 426 (2021), 131479, https://doi.org/10.1016/j.cej.2021.131479.
- [62] B. Jiang, Y. Tian, Z. Zhang, Z. Yin, L. Feng, Y. Liu, L. Zhang, Degradation behaviors of Isopropylphenazone and Aminopyrine and their genetic toxicity variations during UV/chloramine treatment, Water Res. 170 (2020), 115339, https://doi.org/ 10.1016/j.watres.2019.115339.
- [63] S. Patton, W. Li, K.D. Couch, S.P. Mezyk, K.P. Ishida, H. Liu, Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal: New insights into potable water reuse, Environ. Sci. Technol. Lett. 4 (2017) 26–30, https://doi. org/10.1021/acs.estlett.6b00444.
- [64] L. Wang, J. Lu, L. Li, Y. Wang, Q. Huang, Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti₄O₇ and boron doped diamond anodes, Water Res. 170 (2020), 115254, https://doi.org/10.1016/j. watres.2019.115254.