Complex Variables MATH463

Mazin Karjikar

Spring 2024

Lecture notes for Amin Gholampour's class taught at the University of Maryland.

Contents

1	Review of Complex Numbers	2
2	Complex Functions	4
3	Limits	5
4	Notion of ∞ for Complex Numbers	6
5	Continuous Functions	6

1 Review of Complex Numbers

Definition.

A complex number $z=x+iy\in\mathbb{C}$ consists of a real part $\operatorname{Re} z=x\in\mathbb{R}$ and an imaginary part $\operatorname{Im} z = y \in \mathbb{R}.$

 \mathbb{C} (the set of complex numbers) is equipped with **addition** and **multiplication**.

Let
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2 \in \mathbb{C}$. Then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$ and

$$z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2) + i(x_1 \cdot y_2 + y_1 \cdot x_2).$$

Example.

Try adding and multiplying two complex numbers. Addition has a simple geometric interpretation.

Definition.

A field is a set F equipped with and closed under two binary operators. The operators must be associative, commutative, and distributive. Each operator must also have an inverse and an identity.

 $(\mathbb{C},+,\cdot)$ forms a **field**. For any $z_1,z_2,z_3\in\mathbb{C}$,

 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ and $(z_1 z_2) z_3 = z_1 (z_2 z_3) \to \mathbf{Associativity}$.

 $z_1 + z_2 = z_2 + z_1$ and $z_1 z_2 = z_2 z_1 \rightarrow$ Commutativity.

 $z_1(z_2+z_3)=z_1z_2+z_1z_3\to \mathbf{Distributivity}.$

 $0 = 0 + 0i \rightarrow Additive Identity.$

 $1 = 1 + 0i \rightarrow Multiplicative Identity.$

 $x+iy\mapsto -x-iy o \mathbf{Additive\ Inverse}.$ $0 \neq x+iy\mapsto \frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2} o \mathbf{Multiplicative\ Inverse}.$

Definition.

The absolute value (or modulus) of a complex number z = x + iy is denoted by $|z| = \sqrt{x^2 + y^2}$. It is a nonnegative real number. It is gemetrically similar to the magnitude.

Definition.

The **complex conjugate** of z = x + iy is $\overline{z} = x - iy$.

Geometric Interpretation: |z| is the distance from z to 0. \overline{z} is obtained by reflecting z over the real axis.

Basic Properties: For $z_1, z_2 \in \mathbb{C}$, $a \in \mathbb{R} > 0$,

 $\overline{(z_1+z_2)} = \overline{z_1} + \overline{z_2} \text{ and } \overline{z_1z_2} = \overline{z_1} \cdot \overline{z_2},$

 $|z_1 z_2| = |z_1| |z_2|$ and $|a z_1| = a |z_1|$,

 $|z_1 + z_2| \le |z_1| + |z_2| \to$ Triangle Inequality. Equality occurs when $0, z_1,$ and z_2 are collinear.

 $z_1\overline{z_1} = \left|z_1\right|^2.$

By the last property, if $z_1 \neq 0$, $z_1^{-1} = \frac{1}{z_1} = \frac{\overline{z_1}}{z_1 \overline{z_1}} = \frac{\overline{z_1}}{|z_1|^2}$.

Example.

$$i^{-1} = \frac{1}{i} = \frac{-i}{1} = -i. \ (4+3i)^{-1} = \frac{(4-3i)}{25}.$$

Polar Form of Complex Numbers:

The **polar form** of a complex number $z = x + iy := |z| (\cos \theta + i \sin \theta)$. This is basically the magnitude/modulus of the complex number multiplied by the direction it faces. Thus we can let r = |z| and $e^{i\theta} = \cos \theta + i \sin \theta$, and we get $z = re^{i\theta}$. Notice if $z \neq 0$, then $\frac{z}{|z|}$ lies on the unit circle.

Definition.

 θ is called the **argument** of complex number $z \neq 0$. If θ is an argument of z, then so is $\theta + 2n\pi$ for any $n \in \mathbb{Z}$.

The **principal argument** of $z \neq 0$ denoted by Arg z is the unique $-\pi < \theta \leq \pi$ that satisfies $z = |z| e^{i\theta}$.

Some Polar Properties:

If $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$. Geometric interpretation: To multiply two complex numbers, multiply their moduli and add their arguments.

If $z = re^{i\theta}$, then for any $n \in \mathbb{Z}$, $z^n = r^n e^{in\theta}$. Note that for negative n, $z^{-1} = \frac{1}{r}e^{-i\theta}$.

If $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$, then $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$.

Example.

 $(1+i)^{18} \mapsto \sqrt{2}^{18} e^{i18\pi/4}$ in polar. Then we want the argument to be the principal argument. $= 2^9 e^{i\pi/2}$. Now we can see $= 2^9 i$.

Roots of Complex Numbers: Any nonzero complex number has exactly n nth roots.

If $z = re^{i\theta}$, then the distinct n^{th} roots of z are $r^{\frac{1}{n}}e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}$ for $k = 0, 1, \dots n - 1$.

Geometric Interpretation: The n^{th} roots of z are located on the circle with center 0 and radius $|z|^{\frac{1}{n}}$ and they divide the circle into n equal parts.

Solutions to Quadratics: Given a quadratic polynomial $az^2 + bz + c$, where $a, b, c \in \mathbb{C}$, define $\Delta = b^2 - 4ac$. If $\Delta \neq 0$, it always has two square roots $\sqrt{\Delta}$ and $-\sqrt{\Delta}$. So the roots of the quadratic are $\frac{-b \pm \sqrt{\Delta}}{2a}$.

2 Complex Functions

We mainly deal with functions $f: S \subset \mathbb{C} \to \mathbb{C}$. These can be written as ...

$$f(z) = w$$
, or $f(x + iy) = u(x, y) + iv(x, y)$, or $f(re^{i\theta}) = u(r, \theta) + iv(r, \theta)$,

where $u, v : S \subset \mathbb{R}^2 \to \mathbb{R}$ are real functions defined on some domain in \mathbb{R}^2 .

Definition.

Polynomial Functions: $f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots a_0, \ a_i \in \mathbb{C}, \ a_n \neq 0.$

Rational Functions: $f(z) = \frac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomial functions. Domain of $f(z) = \mathbb{C} \setminus \{ \text{ roots of } Q(z) \}$.

Exponential Functions: exp: $\mathbb{C} \to \mathbb{C}$ is defined by sending z = x + iy to $e^x e^{iy} = e^x (\cos y \sin y)$, so $u(x,y) = e^x \cos y$, $v(x,y) = e^x \sin y$.

Absolute Value Function: $f(z) = |z| : \mathbb{C} \to \mathbb{C}$, $f(x+iy) = \sqrt{x^2+y^2}$, so $u(x,y) = \sqrt{x^2+y^2}$, v(x,y) = 0.

Principal Argument Function: $f(z) = \operatorname{Arg}(z) : \mathbb{C} \to \mathbb{C}$. f(x+iy) = ?, where ? depends on x and y. Case x = y = 0, ? = 0. Case x = 0, $y \neq 0$, ? = $\frac{\pi y}{2|y|}$. Case x > 0, ? = $\tan \frac{y}{x}$. Case x < 0, ? = $\pi + \tan^{-1} \frac{y}{x}$. Remember range of Arg is $(-\pi, \pi]$.

Conjugation function: $f(z) = \overline{z} : \mathbb{C} \to \mathbb{C}, \ f(x+iy) = x-iy, \text{ so } u(x,y) = x, \ v(x,y) = -y.$

Note that graphing complex functions is impossible as it requires 4 dimensions! We usually graph with respect to z, and then to w.

Common Functions:

Translations. Let $c = a + bi \in \mathbb{C}$. Then f(z) = z + c.

Rotations. Let $\alpha \in \mathbb{R}$. Then $f(z) = ze^{i\alpha}$. When $\alpha = 0$, it is the identity function. This rotates CCW by α . Also $f(re^{i\theta}) = re^{i(\theta + \alpha)}$.

Reflections. Horizontal axis, $f(z) = \overline{z}$. Vertical axis, $f(z) = -\overline{z}$.

 $f(z)=z^2$. From the polar perspective, we have $f(re^{i\theta})=r^2e^{2i\theta}$, which means f squares the moduli and doubles the arguments. A circle centered at 0 with radius r traversed once gets mapped to a circle centered at 0 with radius r^2 traversed twice.

 $f(z) = e^z = e^x e^{iy}$. The visual effect is difficult to explain. Refer to Needham's "Visual Complex Analysis" for further details.

3 Limits

For a complex function f, we say $\lim_{z\to z_0} f(z) = w_0$ if for any $\epsilon > 0$ there exists $\delta > 0$, such that for any $z \in U$ satisfying $0 < |z - z_0| < \delta$ we have $|f(z) - f(z_0)| < \epsilon$. In English, this means we can get arbitrarily close to w_0 via f(z) as long as z is sufficiently close to z_0 . If no such w_0 exists in the w-plane, we say the limit does not exist.

Theorem.

If f(z) is a polynomial function and z_0 is in the domain of f(z), then $\lim_{z\to z_0} f(z) = f(z_0)$. If it's not in the domain, the limit does not exist.

Theorem.

Suppose f(z), g(z) are two complex functions and $\lim_{z\to z_0} f(z) = w_0$ and $\lim_{z\to z_0} g(z) = w_1$. Then ...

- $\lim_{z\to z_0} (f(z) + g(z)) = w_0 + w_1$
- $\lim_{z\to z_0} (f(z)g(z)) = w_0w_1$
- If $w_1 \neq 0$, then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_0}{w_1}$

Theorem.

Suppose f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$, then $\lim_{z \to z_0} f(z) = w_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$, $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$

4 Notion of ∞ for Complex Numbers

Suppose we mapped the complex plane to a unit sphere via **stereographic projection**. It would be $\{x^2+y^2=1\}\setminus\{0,0,1\}$. We say $z\to\infty$ if the corresponding points on the sphere approach the north pole. There is no notion of $-\infty$, a complex number z approaches ∞ no matter the direction in the complex plane.

Theorem.

Following useful facts are true:

- $z \to \infty \iff |z| \to \infty$
- $\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$
- $\lim_{z\to\infty} f(z) = w_0 \iff \lim_{z\to 0} f(\frac{1}{z}) = w_0$
- $\bullet \ \lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f(\frac{1}{z})} = 0$

5 Continuous Functions

Suppose $f: U \subset \mathbb{C} \to \mathbb{C}$ is a complex function. We say f is continuous at $z_0 \in U$ if $\lim_{z \to z_0} f(z) = f(z_0)$.

Theorem.

Following useful facts are true:

- Sum, product, and quotient (if defined at z_0) of continous functions at z_0 is continous at z_0 .
- If f is continuous at z_0 and g is continuous at $f(z_0)$, then $g \circ f$ is continuous at z_0 .
- If f(z) = u(x, y) + iv(x, y) then f is continuous at $z_0 = x_0 + iy_0 \iff u$ and v are continuous at (x_0, y_0) .
- If f is continuous at z_0 , then so is \overline{f} and |f|.
- If $f:S\subset\mathbb{C}\to\mathbb{C}$ is continuous and S is closed and bounded, then f is bounded, i.e. there exists M>0 s.t. for any $z\in S,$ $|f(z)|\leq M.$