Листок 20

Семинарские задачи

Задача 20.1. Найдите площадь фигуры, ограниченной кривыми

a)
$$y = x^4 - 4x^3 + 4x^2$$
, $y = \cos \pi x - 1$; **6)** $x^3 = x^2 - y^2$.

6)
$$x^3 = x^2 - y^2$$
.

Задача 20.2. Найдите площадь фигуры, ограниченной n-м витком архимедовой спирали

$$r = a\varphi/(2\pi), \quad 2\pi(n-1) \leqslant \varphi \leqslant 2\pi n, \quad n \in \mathbb{N}$$
 и отрезком полярного луча.

Задача 20.3. Найдите объем тела, образованного при вращении вокруг оси Ox фигуры, ограниченной данными кривыми:

a)
$$y^2 = 2px$$
, $y = 0$, $x = a$;

a)
$$y^2 = 2px$$
, $y = 0$, $x = a$; 6) $y = (\ln x)/x$ $(1 \le x \le e)$, $y = 0$, $x = e$.

Теорема 1. Пусть y = y(x) — непрерывно дифференцируемая на отрезке [a; b] функция. Π лощадь S поверхности, образованной при вращении графика этой функции вокруг оси Ox, равна

$$S = 2\pi \int_{a}^{b} |y(x)| \sqrt{1 + y'^{2}(x)} dx.$$

Задача 20.4. Найти площадь поверхности, образованной при вращении дуги кривой

$$y = \sqrt{2x+1}$$
, $0 \leqslant x \leqslant 4$ вокруг оси Ox .

Задача 20.5. Найти площадь поверхности, образованной при вращении эллипса $x^2+4y^2=$ 36 вокруг оси Oy.

Задача 20.6. Найдите длину кривой $x = e^{-t} \cos t$, $y = e^{-t} \sin t$, $z = e^{-t}$, $t \in [0, \infty)$.

Домашние задачи

Задача 20.7 (ДЗ). Найдите площади фигур, ограниченных кривыми (a > 0):

a)
$$x^2 + 4y^2 = 8a^2$$
, $x^2 - 3y^2 = a^2$, $x \ge a > 0$; 6) $y = a \sin x$, $y = a \cos x$, $0 \le x \le 2\pi$.

6)
$$y = a \sin x, \ y = a \cos x, \ 0 \le x \le 2\pi.$$

Задача 20.8 (ДЗ). Найдите длину кривой $x=3t,y=3t^2,z=2t^3$ от точки (0,0,0) до (3, 3, 2).

Задача 20.9 (ДЗ). Найдите объем тела, образованного при вращении вокруг оси Oxфигуры, ограниченной данными кривыми:

a)
$$y = \sqrt{x}e^{-x}$$
, $y = 0$, $x = a$;

a)
$$y = \sqrt{x}e^{-x}$$
, $y = 0$, $x = a$; 6) $y = \sin \sqrt{x}$ $(0 \le x \le \pi^2)$, $y = 0$.

Задача 20.10 (ДЗ). Найдите площадь поверхности, образованной при вращении вокруг оси Ox данной кривой:

a)
$$y = \sqrt{x}$$
, $5/4 \le x \le 21/4$; 6) $y = e^{-x}$, $0 \le x \le a$.

6)
$$y = e^{-x}, \quad 0 \leqslant x \leqslant a.$$

Дополнительные задачи

Задача 20.11 (Доп.). Найдите площадь фигуры, ограниченной кривыми:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $x^2 + y^2 = ab$, $x^2 + y^2 \ge ab$, $a > b$.

Задача 20.12 (Доп.). Докажите, что площадь поверхности сферы радиуса R равна $4\pi R^2$.

Пусть плотность стержня задана функцией $\rho(x)$.

Определение 2. Массой стержня [a,b] с плотностью $\rho(x,y)$ называют величину $M=\int\limits_{-\infty}^{b}\rho(x)dx.$

Определение 3. Центром масс стержня [a,b] с плотностью $\rho(x)$ называют точку C $\overset{a}{\mathtt{c}}$ координатой $x_c = \frac{1}{M} \int_{a}^{b} x \rho(x) dx$.

Задача 20.13 (Доп.). Существует ли стержень (быть может бесконечный) конечной массы без центра масс?

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$
, $\alpha \neq -1$;

$$\bullet \int \frac{dx}{x+a} = \ln|x+a| + C;$$

•
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0$, $a \neq 1$; $\int e^x dx = e^x + C$;

•
$$\int \sin x \, dx = -\cos x + C$$
; $\int \cos x \, dx = \sin x + C$;

•
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C;$$
 $\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C;$ $\int \frac{dx}{\operatorname{sh}^2 x} = -\operatorname{cth} x + C;$

•
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C = -\frac{1}{a} \operatorname{arcctg} \frac{x}{a} + C, \quad a \neq 0;$$

•
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \quad a \neq 0;$$

•
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$
, $|x| < a$, $a \neq 0$;

•
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln|x + \sqrt{x^2 + a^2}| + C, \quad a \neq 0;$$

•
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + C, \quad a \neq 0 \quad (|x| > |a|);$$

•
$$\int \sqrt{x^2 + a^2} dx = \frac{1}{2} \left(x \sqrt{x^2 + a^2} + a^2 \ln(x + \sqrt{x^2 + a^2}) \right) + C;$$

•
$$\int \sqrt{x^2 - a^2} dx = \frac{1}{2} \left(x \sqrt{x^2 - a^2} - a^2 \ln(x + \sqrt{x^2 - a^2}) \right) + C;$$

$$\bullet \int \sqrt{a^2-x^2} dx = \frac{1}{2} \left(x \sqrt{a^2-x^2} + a^2 \arcsin\left(\frac{x}{a}\right) \right) + C; \quad \int \sin^2 x dx = \frac{1}{2} \left(x - \frac{1}{2} \sin(2x) \right) + C;$$

• Интеграл
$$\int_1^\infty \frac{dx}{x^\alpha}$$
 сходится при $\alpha>1$ и расходится при $\alpha\leqslant 1.$

• Интеграл
$$\int_0^1 \frac{dx}{x^{\alpha}}$$
 сходится при $\alpha < 1$ и расходится при $\alpha \geqslant 1$.