ML Project

Exploratory Data Analysis & Price Prediction of Laptops dataset (kaggle)

Submission By:

Ansh Avi Khanna

IMT2021038

Laptop Price Prediction

- 1. Original Dataset
- 2. Cleaned Dataset
- 3. Data Analysis
- 4. Data Modeling
- 5. Model Deployment

1. Original Dataset

I have worked on a dataset on laptops (from kaggle). The dataset contains details & specifications of laptops. Considering all the specs entered by the user, the model returns the predicted price (in euros) of the given configuration.

lp.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1303 entries, 0 to 1302
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1303 non-null	int64
1	Company	1303 non-null	object
2	Product	1303 non-null	object
3	TypeName	1303 non-null	object
4	Inches	1303 non-null	float64
5	ScreenResolution	1303 non-null	object
6	Cpu	1303 non-null	object
7	Ram	1303 non-null	object
8	Memory	1303 non-null	object
9	Gpu	1303 non-null	object
10	0pSys	1303 non-null	object
11	Weight	1303 non-null	object
12	Price_euros	1303 non-null	float64

dtypes: float64(2), int64(1), object(10)

memory usage: 132.5+ KB

2. Cleaned Dataset

Explored the cleaned data to add more columns to the dataset for better prediction.

Data	columns (total 26	columns):	
#	Column	Non-Null Count	Dtype
0	Company	1303 non-null	object
1	Product	1303 non-null	string
2	TypeName	1303 non-null	object
3	Inches	1303 non-null	float64
4	ScreenResolution	1303 non-null	object
5	Cpu	1303 non-null	object
6	RAM(GB)	1303 non-null	int32
7	Memory	1303 non-null	object
8	Gpu	1303 non-null	object
9	0pSys	1303 non-null	object
10	Weight(kg)	1303 non-null	float64
11	Price_euros	1303 non-null	float64
12	CPU_Company	1303 non-null	object
13	Weight_Category	1303 non-null	object
14	SSD	1303 non-null	int64
15	HDD	1303 non-null	int64
16	Hybrid	1303 non-null	int64
17	Flash	1303 non-null	int64
18	IPS Display	1303 non-null	int64
19	TouchScreen	1303 non-null	int64
20	ppi	1303 non-null	float64
21	Resolution	1303 non-null	object
22	CPU_brand	1303 non-null	object
23	ClockSpeed(GHz)	1303 non-null	float64
24	GPU_Company	1303 non-null	3
25	0S	1303 non-null	
	63 .64/=\		1 1 1/45 1 1 /41

3. Data Analysis

Used seaborn and matplotlib for data analysis and visualization.

The attached pdf contains all the plots and observations.

4. Data Modeling

Used scikit learn to train and test the dataset. Applied linear regression on the dataset.

Training Data

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4,random_state=2)
```

Applying Linear Regression to the dataset for Price Prediction

```
[130]: from sklearn.compose import ColumnTransformer
       from sklearn.pipeline import Pipeline
       from sklearn.preprocessing import OneHotEncoder
       from sklearn.metrics import r2_score,mean_absolute_error
       from sklearn.linear_model import LinearRegression
[131]: step1 = ColumnTransformer(transformers=[
           ('col_tnf',OneHotEncoder(sparse=False,drop='first',handle_unknown='ignore'),[0,1,2,3,4])
       ],remainder='passthrough')
       step2 = LinearRegression()
       lm = Pipeline([
           ('step1', step1),
           ('step2',step2)
       lm.fit(X_train,Y_train)
       Y_hat = lm.predict(X_test)
       print('R2 score : ',r2_score(Y_test,Y_hat))
       print('MAE : ',mean_absolute_error(Y_test,Y_hat))
       R2 score: 0.8053019186480996
       MAE: 0.20289500270563213
```

5. Model Deployment

Used pickle to export the model.

Used streamlit to deploy the model as a website (local host).

• Command to run website.py : streamlit run <file path>