Applications

Alexander S. Kulikov

Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences and University of California, San Diego

Outline

Least Common Multiple

Diophantine Equations: Examples

Diophantine Equations: Theorem

Modular Division

Least Common Multiple

Definition

The least common multiple, lcm(a, b), of integers a and b (both different from zero) is the smallest positive integer that is divisible by both a and b

Least Common Multiple

Definition

The least common multiple, lcm(a, b), of integers a and b (both different from zero) is the smallest positive integer that is divisible by both a and b

Examples

lcm(24, 16) = 48, lcm(9, 17) = 153, lcm(239, 0) — undefined

Least Common Multiple

Definition

The least common multiple, lcm(a, b), of integers a and b (both different from zero) is the smallest positive integer that is divisible by both a and b

Examples

lcm(24, 16) = 48, lcm(9, 17) = 153, lcm(239, 0) — undefined

Convention

We assume that a and b are positive

$$\frac{31}{177} + \frac{29}{118}$$

$$\frac{31}{177} + \frac{29}{118}$$

$$lcm(177, 118) = 354$$

$$\frac{31}{177} + \frac{29}{118}$$

$$lcm(177, 118) = 354 = 2 \cdot 177 = 3 \cdot 118$$

$$\frac{31}{177} + \frac{29}{118}$$

$$lcm(177, 118) = 354 = 2 \cdot 177 = 3 \cdot 118$$

$$\frac{31}{177} + \frac{29}{118}$$

$$\frac{31}{177} + \frac{29}{118}$$

$$lcm(177, 118) = 354 = 2 \cdot 177 = 3 \cdot 118$$

$$\frac{31}{177} + \frac{29}{118} = \frac{31 \cdot 2}{177 \cdot 2} + \frac{29 \cdot 3}{118 \cdot 3}$$

$$\frac{31}{177} + \frac{29}{118}$$

$$lcm(177, 118) = 354 = 2 \cdot 177 = 3 \cdot 118$$

$$\frac{31}{177} + \frac{29}{118} = \frac{31 \cdot 2}{177 \cdot 2} + \frac{29 \cdot 3}{118 \cdot 3} = \frac{149}{354}$$

Naive Algorithm

Clearly, $a \cdot b$ is divisible by a and b. To find the *least* common multiple, simply try all numbers up to $a \cdot b$ and select the smallest one

Naive Algorithm: Code

```
def lcm(a, b):
   assert a > 0 and b > 0

for d in range(1, a * b + 1):
   if d % a == 0 and d % b == 0:
   return d
```

Naive Algorithm: Code

```
def lcm(a, b):
   assert a > 0 and b > 0

for d in range(1, a * b + 1):
   if d % a == 0 and d % b == 0:
    return d
```

```
print(lcm(24, 16))
```

Naive Algorithm: Analysis

• If $lcm(a, b) = a \cdot b$, the algorithm will perform $a \cdot b$ divisions

Naive Algorithm: Analysis

- If $lcm(a, b) = a \cdot b$, the algorithm will perform $a \cdot b$ divisions
- Again, very slow: the call

```
print(lcm(531441, 262144))
```

will take more than one minute

Euclid's algorithm

Can we use efficient Euclid's algorithm to compute the least common multiple, too?

Euclid's algorithm

Can we use efficient Euclid's algorithm to compute the least common multiple, too?

Yes!

 $lcm(a, b) \cdot gcd(a, b) = a \cdot b$

Lemma

If a, b > 0, then lcm(a, b) = ab/gcd(a, b)

Lemma

If a, b > 0, then lcm(a, b) = ab/gcd(a, b)

Proof

• Let $d = \gcd(a, b), a = dp, b = dq$

Lemma

If a, b > 0, then lcm(a, b) = ab/gcd(a, b)

Proof

- Let $d = \gcd(a, b), a = dp, b = dq$
- Then m = ab/d = pb = qa is a multiple of a and b

Lemma

If a, b > 0, then lcm(a, b) = ab/gcd(a, b)

Proof

- Let $d = \gcd(a, b), a = dp, b = dq$
- Then m = ab/d = pb = qa is a multiple of a and b
- If there was a smaller multiple $\overline{m} < m$, then $\overline{d} = ab/\overline{m} > d$ would be a common divisor: $a/\overline{d} = \overline{m}/b, b/\overline{d} = \overline{m}/a$

Outline

Least Common Multiple

Diophantine Equations: Examples

Diophantine Equations: Theorem

Modular Division

Diophantine Equations

A Diophantine equation is an equation where only integer solutions are allowed

• 1 apple costs 22 pesos

- 1 apple costs 22 pesos
- You only have 3-peso bills

- 1 apple costs 22 pesos
- You only have 3-peso bills
- The cashier only has 5-peso bills

- 1 apple costs 22 pesos
- You only have 3-peso bills
- The cashier only has 5-peso bills
- 3x = 22 + 5y, x, y are non-negative integers

- 1 apple costs 22 pesos
- You only have 3-peso bills
- The cashier only has 5-peso bills
- 3x = 22 + 5y, x, y are non-negative integers

- 1 apple costs 22 pesos
- You only have 3-peso bills
- The cashier only has 5-peso bills
- 3x = 22 + 5y, x, y are non-negative integers

• x lamps, each 4936 ¢

- x lamps, each 4936¢ $100 \le y < 1000$

- x lamps, each 4936¢ $100 \le y < 1000$
- Total: 1000*y* + 728 ¢

- x lamps, each 4936 ¢
- 100 ≤ *y* < 1000
- Total: 1000*y* + 728 ¢
- 4936x = 1000y+728,
 x, y are non-negative integers,
 100 < y < 1000

	RECEIPT
	98 Lamps
Each	\$49.36
Total	\$4837.28

- x lamps, each 4936 ¢
- 100 < y < 1000
- Total: 1000*y* + 728 ¢
- 4936x = 1000y+728,
 x, y are non-negative integers,
 100 < y < 1000

• 187x + 55y = 121, x and y are integers

- 187*x* + 55*y* = 121, *x* and *y* are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$

- 187x + 55y = 121, x and y are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$
 - $187 \cdot (-2) + 55 \cdot 9 = 121$

- 187x + 55y = 121, x and y are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$
 - $187 \cdot (-2) + 55 \cdot 9 = 121$
 - Infinitely many solutions!

- 187x + 55y = 121, x and y are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$
 - $187 \cdot (-2) + 55 \cdot 9 = 121$
 - Infinitely many solutions!
- 187x + 55y = 45, x and y are integers

- 187x + 55y = 121, x and y are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$
 - $187 \cdot (-2) + 55 \cdot 9 = 121$
 - Infinitely many solutions!
- 187x + 55y = 45, x and y are integers
 - No solutions!

- 187x + 55y = 121, x and y are integers
 - $187 \cdot 3 + 55 \cdot (-8) = 121$
 - $187 \cdot (-2) + 55 \cdot 9 = 121$
 - Infinitely many solutions!
- 187x + 55y = 45, x and y are integers
 - No solutions!

When does a Diophantine equation have solutions?

Outline

Least Common Multiple

Diophantine Equations: Examples

Diophantine Equations: Theorem

Modular Division

Solutions of Diophantine Equations

Theorem

Given integers a, b, c (at least one of a and $b \neq 0$), the Diophantine equation

$$ax + by = c$$

has a solution (where x and y are integers) if and only if

$$gcd(a, b) \mid c$$
.

Proof

Let $d = \gcd(a, b)$

Let
$$d = \gcd(a, b)$$

$$\Rightarrow a = dp$$
 and $b = dq$, thus,
 $c = ax + by = d(px + qy)$

Proof

Let
$$d = \gcd(a, b)$$

 $a\bar{x} + b\bar{v} = d$

$$\Rightarrow a = dp$$
 and $b = dq$, thus,

$$c = ax + by = d(px + qy)$$

Let
$$d = \gcd(a, b)$$

$$\Rightarrow a = dp \text{ and } b = dq, \text{ thus,}$$

 $c = ax + by = d(px + qy)$

$$a\bar{x} + b\bar{y} = d$$

If
$$c = td$$
, then $x = t \cdot \bar{x}$, $y = t \cdot \bar{y}$:
 $ax + by = t(a\bar{x} + b\bar{y}) = td = c$

• 10x + 6y = 14

- 10x + 6y = 14
 - Extended Euclid's algorithm: $gcd(10, 6) = 2 = 10 \cdot (-1) + 6 \cdot 2$

- 10x + 6y = 14
 - Extended Euclid's algorithm: $gcd(10, 6) = 2 = 10 \cdot (-1) + 6 \cdot 2$
 - $14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$

- 10x + 6y = 14
 - Extended Euclid's algorithm: $gcd(10, 6) = 2 = 10 \cdot (-1) + 6 \cdot 2$

•
$$14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$$

• x = -7, v = 14

- 10x + 6y = 14
 - Extended Euclid's algorithm: $gcd(10, 6) = 2 = 10 \cdot (-1) + 6 \cdot 2$

•
$$14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$$

•
$$x = -7$$
, $y = 14$

•
$$391x + 299y = -69$$

- 10x + 6y = 14
 - Extended Euclid's algorithm:

$$gcd(10,6) = 2 = 10 \cdot (-1) + 6 \cdot 2$$

- $14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$
- x = -7, y = 14
- 391x + 299y = -69
 - Extended Euclid's Algorithm:
 gcd(391, 299) = 23 = 391 · (-3) + 299 · 4

- 10x + 6y = 14
 - Extended Euclid's algorithm:

$$\gcd(10,6) = 2 = 10 \cdot (-1) + 6 \cdot 2$$

- $14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$
- x = -7, y = 14
- 391x + 299y = -69
 - Extended Euclid's Algorithm:
 gcd(391, 299) = 23 = 391 · (-3) + 299 · 4
 - $g(d(391, 299) = 23 = 391 \cdot (-3) + 299 \cdot 4$
 - $-69 = 391 \cdot (-3) \cdot (-3) + 299 \cdot 4 \cdot (-3)$

- 10x + 6y = 14
 - Extended Euclid's algorithm:

$$\gcd(10,6) = 2 = 10 \cdot (-1) + 6 \cdot 2$$

- $14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$
- x = -7, y = 14
- 391x + 299y = -69
 - Extended Euclid's Algorithm:

$$\gcd(391,299) = 23 = 391 \cdot (-3) + 299 \cdot 4$$

•
$$-69 = 391 \cdot (-3) \cdot (-3) + 299 \cdot 4 \cdot (-3)$$

•
$$x = 9, y = -12$$

- 10x + 6y = 14
 - Extended Euclid's algorithm:

$$gcd(10,6) = 2 = 10 \cdot (-1) + 6 \cdot 2$$

- $14 = 10 \cdot (-1) \cdot 7 + 6 \cdot 2 \cdot 7$
- x = -7, y = 14
- 391x + 299y = -69
 - Extended Euclid's Algorithm:

$$\gcd(391,299)=23=391\cdot(-3)+299\cdot 4$$

•
$$-69 = 391 \cdot (-3) \cdot (-3) + 299 \cdot 4 \cdot (-3)$$

- x = 9, y = -12
- But x = -4, y = 5 is also a solution. How do we find all solutions?

Euclid's Lemma

If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

Euclid's Lemma

If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

Proof

• From Extended Euclid's algorithm (a, n):

Euclid's Lemma

If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

- From Extended Euclid's algorithm (a, n):
- ax + ny = 1

Euclid's Lemma

If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

- From Extended Euclid's algorithm (a, n):
- ax + ny = 1
- axb + nyb = b

Euclid's Lemma

If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

- From Extended Euclid's algorithm (a, n):
- ax + ny = 1
- axb + nyb = b
- From ab = kn, b = axb + nyb = n(xk + yb)

Finding All Solution

Theorem

Let gcd(a, b) = d, a = dp, b = dq. If (x_0, y_0) is a solution of the Diophantine equation ax + by = c.

$$ax_0 + by_0 = c$$
,

then all the solutions have the form

$$a(x_0+tq)+b(y_0-tp)=c,$$

where t is an arbitrary integer.

Proof

• $a = dp, b = dq, ax_0 + by_0 = c$

Proof

- $a = dp, b = dq, ax_0 + by_0 = c$
- For any integer t,

$$a(x_0 + tq) + b(y_0 - tp)$$

$$= ax_0 + by_0 + t(aq - bp)$$

$$= c + t(dpq - dpq) = c$$

is a solution

Proof (continued)

• Consider 2 solutions: (x_1, y_1) and (x_2, y_2)

- Consider 2 solutions: (x_1, y_1) and (x_2, y_2)
- $a(x_1-x_2)+b(y_1-y_2)=c-c=0$

- Consider 2 solutions: (x_1, y_1) and (x_2, y_2)
- $a(x_1-x_2)+b(y_1-y_2)=c-c=0$
- $p(x_1-x_2)+q(y_1-y_2)=0$

- Consider 2 solutions: (x_1, y_1) and (x_2, y_2)
- $a(x_1-x_2)+b(y_1-y_2)=c-c=0$
- $p(x_1-x_2)+q(y_1-y_2)=0$
- gcd(p, q) = 1

- Consider 2 solutions: (x_1, y_1) and (x_2, y_2)
- $a(x_1-x_2)+b(y_1-y_2)=c-c=0$
- $p(x_1-x_2)+q(y_1-y_2)=0$
- qcd(p, q) = 1
- By Euclid's lemma: $x_1 x_2 = tq$

Proof of Theorem

Proof (continued)

- Consider 2 solutions: (x_1, y_1) and (x_2, y_2)
- $a(x_1-x_2)+b(y_1-y_2)=c-c=0$
- $p(x_1-x_2)+q(y_1-y_2)=0$
- gcd(p, q) = 1
- By Euclid's lemma: $x_1 x_2 = tq$
- Then $y_1 y_2 = -tp$

• 3x + 5y = 22

•
$$x_0 = 9, y_0 = -1$$

 $\times 9 +$

•
$$x_0 = 9, y_0 = -1$$

•
$$a = 3, b = 5, d = 1$$

 $\times 9 +$

1 =

- 3x + 5y = 22
- $x_0 = 9, y_0 = -1$
- a = 3, b = 5, d = 1
- a = dp, b = dq, p = 3, q = 5

- 3x + 5y = 22
- $x_0 = 9, y_0 = -1$
- a = 3, b = 5, d = 1
- a = dp, b = dq, p = 3, q = 5
- All solutions:

$$x = x_0 + tq = 9 + 5t$$

 $y = y_0 - tp = -1 - 3t$

• All solutions:

$$x = x_0 + tq = 9 + 5t$$

 $y = y_0 - tp = -1 - 3t$

• All solutions:

$$x = x_0 + tq = 9 + 5t$$

 $y = y_0 - tp = -1 - 3t$

• If we want $x \ge 0$ and $y \le 0$, then take

$$9 + 5t \ge 0$$

 $-1 - 3t < 0$

• All solutions:

$$x = x_0 + tq = 9 + 5t$$

 $y = y_0 - tp = -1 - 3t$

• If we want $x \ge 0$ and $y \le 0$, then take

$$9 + 5t \ge 0$$

 $-1 - 3t \le 0$

• That is, $t \ge -1/3$, or $t \ge 0$

Outline

Least Common Multiple

Diophantine Equations: Examples

Diophantine Equations: Theorem

X	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

• Given $a \neq 0$ and b, there exists x such that $a \times x \equiv b \pmod{7}$

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

- Given $a \neq 0$ and b, there exists x such that $a \times x \equiv b \pmod{7}$
- x plays the role of modular division x = b/a (mod 7)

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

• $2/5 \equiv 4 \pmod{6}$. Indeed, $4 \times 5 \equiv 2 \pmod{6}$

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- $2/5 \equiv 4 \pmod{6}$. Indeed, $4 \times 5 \equiv 2 \pmod{6}$
- But there is no x s.t. $3 \times x \equiv 1 \pmod{6}$

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- $2/5 \equiv 4 \pmod{6}$. Indeed, $4 \times 5 \equiv 2 \pmod{6}$
- But there is no x s.t. $3 \times x \equiv 1 \pmod{6}$
- We can't divide 1 by 3 modulo 6!

Multiplicative Inverse

• A multiplicative inverse of $a \mod n$ is \bar{a} s.t.

$$a \times \bar{a} \equiv 1 \pmod{n}$$

Multiplicative Inverse

• A multiplicative inverse of $a \mod n$ is \bar{a} s.t.

$$a \times \bar{a} \equiv 1 \pmod{n}$$

• If a has a multiplicative inverse \bar{a} , then one can divide by a:

$$b/a \equiv b \times \bar{a} \pmod{n}$$

Multiplicative Inverse

• A multiplicative inverse of $a \mod n$ is \bar{a} s.t.

$$a \times \bar{a} \equiv 1 \pmod{n}$$

• If a has a multiplicative inverse \bar{a} , then one can divide by a:

$$b/a \equiv b \times \bar{a} \pmod{n}$$

Indeed, for every b,

$$b/a \times a \equiv b \times \bar{a} \times a \equiv b \pmod{n}$$

Uniqueness of Inverses

Lemma

If a has a multiplicative inverse, then it is unique

Uniqueness of Inverses

Lemma

If a has a multiplicative inverse, then it is unique

Proof

If x and y are multiplicative inverses of a, then

$$x = x \times (a \times y) = (x \times a) \times y = y$$

Existence of Inverses

Theorem

a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1

Existence of Inverses

Theorem

a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1

Proof

• $ax \equiv 1 \pmod{n}$ iff ax + kn = 1

Existence of Inverses

Theorem

a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1

Proof

- $ax \equiv 1 \pmod{n}$ iff ax + kn = 1
- For fixed a and n, this Diophantine equation has a solution (x) iff $gcd(a, n) \mid 1$

• If gcd(a, n) = 1 then one can divide by a modulo n

- If gcd(a, n) = 1 then one can divide by a modulo n
- Given a, b, n, we want to find $x \equiv b/a$ (mod n):

- If gcd(a, n) = 1 then one can divide by a modulo n
- Given a, b, n, we want to find $x \equiv b/a$ (mod n):
 - First, use Extended Euclid's algorithm to find s and t: nt + as = 1

- If gcd(a, n) = 1 then one can divide by a modulo n
- Given a, b, n, we want to find $x \equiv b/a$ (mod n):
 - First, use Extended Euclid's algorithm to find s and t: nt + as = 1
 - s is the multiplicative inverse of a modulo n

- If gcd(a, n) = 1 then one can divide by a modulo n
- Given a, b, n, we want to find $x \equiv b/a$ (mod n):
 - First, use Extended Euclid's algorithm to find s and t: nt + as = 1
 - s is the multiplicative inverse of a modulo n
 - Now $x \equiv b/a \equiv b \times s \pmod{n}$

• gcd(9,2) = 1, so we can compute

 $7/2 \pmod{9}$

• gcd(9, 2) = 1, so we can compute

$$7/2 \pmod{9}$$

• Extended Euclid's algorithm gives us

$$9 \times 1 + 2 \times (-4) = 1$$

• gcd(9,2) = 1, so we can compute

$$7/2 \pmod{9}$$

Extended Euclid's algorithm gives us

$$9 \times 1 + 2 \times (-4) = 1$$

• $-4 \equiv 5 \pmod{9}$ is the inverse of 2 mod 9

• gcd(9,2) = 1, so we can compute

$$7/2 \pmod{9}$$

Extended Euclid's algorithm gives us

$$9 \times 1 + 2 \times (-4) = 1$$

- $-4 \equiv 5 \pmod{9}$ is the inverse of 2 mod 9
- $7/2 \equiv 7 \times 5 \equiv 8 \pmod{9}$

• gcd(9,2) = 1, so we can compute

$$7/2 \pmod{9}$$

Extended Euclid's algorithm gives us

$$9 \times 1 + 2 \times (-4) = 1$$

- $-4 \equiv 5 \pmod{9}$ is the inverse of 2 mod 9
- $7/2 \equiv 7 \times 5 \equiv 8 \pmod{9}$
- Indeed, $8 \times 2 \equiv 7 \pmod{9}$