

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the 2.4G WiFi antenna is 2.72dBi.

Report No.: EED32K00249903 Page 92 of 125

Appendix G)	: AC Power Line Conducted Emission
Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the
(62)	horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground

of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted

reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units

measurement.

Limit:

	10.0	10.0					
Fraguency range (MUT)	Limit (dBµV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 93 of 125

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Measurement (dBuV)			Lin (dB			rgin fB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	44.46	41.26	28.06	9.75	54.21	51.01	37.81	65.15	55.15	-14.14	-17.34	Р	
2	0.2540	41.54	38.49	22.45	9.75	51.29	48.24	32.20	61.62	51.62	-13.38	-19.42	Р	
3	4.0020	32.40	29.54	15.14	9.65	42.05	39.19	24.79	56.00	46.00	-16.81	-21.21	Р	
4	8.2739	40.63	37.89	27.21	9.69	50.32	47.58	36.90	60.00	50.00	-12.42	-13.10	Р	
5	15.3220	24.22	21.35	11.23	10.01	34.23	31.36	21.24	60.00	50.00	-28.64	-28.76	Р	
6	20.6900	24.10	21.47	13.43	10.08	34.18	31.55	23.51	60.00	50.00	-28.45	-26.49	Р	

Page 94 of 125

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB		Mai (c	rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1620	44.98	41.32	27.68	9.75	54.73	51.07	37.43	65.36	55.36	-14.29	-17.93	Р	
2	0.2280	30.75	27.84	13.14	9.73	40.48	37.57	22.87	62.52	52.52	-24.95	-29.65	Р	
3	4.2900	30.00	27.66	15.48	9.64	39.64	37.30	25.12	56.00	46.00	-18.70	-20.88	Р	
4	8.1580	41.96	37.48	29.97	9.69	51.65	47.17	39.66	60.00	50.00	-12.83	-10.34	Р	
5	10.1020	33.56	30.21	21.10	9.79	43.35	40.00	30.89	60.00	50.00	-20.00	-19.11	Р	
6	20.4580	25.44	22.14	13.87	10.07	35.51	32.21	23.94	60.00	50.00	-27.79	-26.06	Ρ	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	(6)	(C) "		./	W Remark	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 40U	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(65)
Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the total control of the antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 deg e. The test-receiver systems and the systems and width with Maxim	re as below: In the top of a rotal choic camber. The of the highest race ters away from the pof a variable-he waried from one removalue of the fied enna are set to mission, the EUT to heights from rees to 360 degreem was set to Pear	ating table e table wa diation. he interfere eight anter meter to for ld strength hake the m was arran 1 meter to ees to find	0.8 meters rotated 3 ence-receinna tower. ur meters a. Both horneasurement ged to its value at the maxim	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotate and the rotate and reading.	to a, whice ound to vertica and the able
	f. Place a marker at the of frequency to show com	end of the restrict opliance. Also me	asure any	emissions	s in the restri	
	f. Place a marker at the	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axi	change from table 0.8 eris 1.5 meering in X, Y s positioning the control of the change	emissions or each po om Semi- meter to 1 eter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Aboositioning fo	dulation nambe ove
imit:	f. Place a marker at the effrequency to show combands. Save the spect for lowest and highest Above 1GHz test procedure. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axi	change fr table 0.8 e is 1.5 me e Highest med in X, s s positioning	emissions or each poor each poor semi-meter to 1 eter). channel Y, Z axis poor gwhich is asured wa	Anechoic Ch.5 meter(Aboositioning fo	dulation nambe ove
imit:	f. Place a marker at the end frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure.	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perford found the X axings until all frequence.	change fr table 0.8 e is 1.5 me e Highest med in X, s s positioning	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa	Anechoic Ch.5 meter(Aboositioning for is worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the end frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the EUT in the low in the radiation measure. Transmitting mode, and in the procedure. Frequency	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are perform found the X axi res until all frequality.	change from table 0.8 to e Highest med in X, is positioning encies media (3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa	Anechoic Ch.5 meter(Abecositioning for is worse case complete.	dulation nambe ove
imit:	f. Place a marker at the efrequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedured. Frequency 30MHz-88MHz	end of the restrict apliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axion res until all frequence. Limit (dBµV/r 40.0	change from table 0.8 to e is 1.5 med in X, is positioning encies med m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is horizontal to the EUT in the lowest in the EUT in the lowest interest interest in the EUT in the lowest interest interest interest in the EUT in the lowest interest interest in the EUT in the lowest interest in the EUT in the lowest interest inte	end of the restrict apliance. Also me rum analyzer plot channel are as below: The as below: The is the test site, aber change form 1 meter and table west channel, the ments are performed found the X axion res until all frequences. Limit (dBµV/r 40.0 43.5	change from table 0.8 de is 1.5 med in X, so positioning encies med m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	dulation nambe ove
_imit:	f. Place a marker at the efrequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammand 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedured Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrict appliance. Also me rum analyzer plot channel we as below: We is the test site, aber change form 1 meter and table west channel, the ments are perform 1 found the X axis res until all frequestical Limit (dBµV/r 40.0 43.5 46.0	change from table 0.8 to is 1.5 med in X, is positioning encies med m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cars complete. mark eak Value eak Value	dulation nambe ove

Report No. : EED32K00249903 Page 96 of 125

Test plot as follows:

Antenna 1

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.76	54.76	74.00	19.24	Pass	Н	Peak
2	2412.0463	32.28	13.36	-36.61	86.62	95.65	74.00	-21.65	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.66	54.66	74.00	19.34	Pass	V	Peak
2	2412.0463	32.28	13.36	-36.61	86.87	95.90	74.00	-21.90	Pass	V	Peak

Page 97 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.43	43.43	54.00	10.57	Pass	Н	AV
2	2413.7735	32.28	13.36	-36.61	81.54	90.57	54.00	-36.57	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.49	43.49	54.00	10.51	Pass	V	AV
2	2414.2053	32.28	13.37	-36.61	82.98	92.02	54.00	-38.02	Pass	V	AV

Report No. : EED32K00249903 Page 98 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.1627	32.35	13.47	-36.69	87.26	96.39	74.00	-22.39	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.26	54.22	74.00	19.78	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2458.0250	32.34	13.49	-36.66	87.58	96.75	74.00	-22.75	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	46.49	55.45	74.00	18.55	Pass	V	Peak

Page 99 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2465.0663	32.35	13.46	-36.70	84.79	93.90	54.00	-39.90	Pass	V	AV
2	2483.5000	32.38	13.38	-36.80	34.46	43.42	54.00	10.58	Pass	V	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2459.0413	32.34	13.49	-36.67	85.01	94.17	54.00	-40.17	Pass	V	AV
2	2483.5000	32.38	13.38	-36.80	34.57	43.53	54.00	10.47	Pass	V	AV

Report No. : EED32K00249903 Page 100 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	44.94	53.94	74.00	20.06	Pass	Н	Peak
2	2417.9474	32.29	13.38	-36.61	80.72	89.78	74.00	-15.78	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	44.83	53.83	74.00	20.17	Pass	V	Peak
2	2417.9474	32.29	13.38	-36.61	82.95	92.01	74.00	-18.01	Pass	V	Peak

Page 101 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.44	43.44	54.00	10.56	Pass	Н	AV
2	2418.5232	32.29	13.39	-36.62	70.71	79.77	54.00	-25.77	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.51	43.51	54.00	10.49	Pass	V	AV
2	2418.0914	32.29	13.38	-36.61	72.92	81.98	54.00	-27.98	Pass	V	AV

Report No.: EED32K00249903 Page 102 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2462.0175	32.35	13.47	-36.69	86.24	95.37	74.00	-21.37	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.76	54.72	74.00	19.28	Pass	Н	Peak

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2456.8636	32.34	13.50	-36.66	86.30	95.48	74.00	-21.48	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.74	54.70	74.00	19.30	Pass	٧	Peak

Report No. : EED32K00249903 Page 103 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.1151	32.36	13.45	-36.72	76.00	85.09	54.00	-31.09	Pass	Н	AV
2	2483.5000	32.38	13.38	-36.80	34.45	43.41	54.00	10.59	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.6959	32.36	13.44	-36.72	76.11	85.19	54.00	-31.19	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	34.54	43.50	54.00	10.50	Pass	V	Peak

Page 104 of 125

Pream Ant Cable Level Reading Limit Freq. Margin NO Factor loss [dBµ Result **Polarity** Remark gain [MHz] [dBµV] $[dB\mu V/m]$ [dB] [dB] V/m] [dB] [dB] 2390.0000 32.25 13.37 -36.62 45.52 54.52 74.00 19.48 **Pass** Н Peak 1 2 2415.0688 32.28 13.37 -36.61 75.92 84.96 74.00 -10.96 Pass Н Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.41	54.41	74.00	19.59	Pass	V	Peak
2	2415.0688	32.28	13.37	-36.61	80.68	89.72	74.00	-15.72	Pass	V	Peak

Report No. : EED32K00249903 Page 105 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.53	43.53	54.00	10.47	Pass	Н	AV
2	2418.2353	32.29	13.38	-36.61	68.42	77.48	54.00	-23.48	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.70	43.70	54.00	10.30	Pass	V	AV
2	2418.0914	32.29	13.38	-36.61	70.51	79.57	54.00	-25.57	Pass	V	AV

Report No. : EED32K00249903 Page 106 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2465.1389	32.35	13.46	-36.70	81.71	90.82	74.00	-16.82	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.56	54.52	74.00	19.48	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2465.1389	32.35	13.46	-36.70	84.76	93.87	74.00	-19.87	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.53	54.49	74.00	19.51	Pass	V	Peak

Report No. : EED32K00249903 Page 107 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.3329	32.36	13.45	-36.73	71.94	81.02	54.00	-27.02	Pass	Н	AV
2	2483.5000	32.38	13.38	-36.80	34.58	43.54	54.00	10.46	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.6233	32.36	13.44	-36.72	75.01	84.09	54.00	-30.09	Pass	V	AV
2	2483.5000	32.38	13.38	-36.80	34.71	43.67	54.00	10.33	Pass	V	AV

Report No.: EED32K00249903 Page 108 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.28	54.28	74.00	19.72	Pass	Н	Peak
2	2437.2090	32.31	13.47	-36.62	72.37	81.53	74.00	-7.53	Pass	Н	Peak

			[dB]	[dBµV/m]	[dBµ V/m]	[dBµV]	gain [dB]	loss [dB]	Factor [dB]	[MHz]	NO
1 2390.0000 32.25 13.37 -36.62 46.21 55.21 74.00 18.79 Pass	V Peak	Pass \	18.79	74.00	55.21	46.21	-36.62	13.37	32.25	2390.0000	1
2 2438.4355 32.31 13.48 -36.62 77.79 86.96 74.00 -12.96 Pass	V Peak	Pass \	-12.96	74.00	86.96	77.79	-36.62	13.48	32.31	2438.4355	

Report No. : EED32K00249903 Page 109 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.64	43.64	54.00	10.36	Pass	Н	AV
2	2438.4355	32.31	13.48	-36.62	62.29	71.46	54.00	-17.46	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.79	43.79	54.00	10.21	Pass	V	AV
2	2438.6108	32.31	13.48	-36.62	67.13	76.30	54.00	-22.30	Pass	V	AV

Page 110 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2467.5532	32.35	13.45	-36.71	77.17	86.26	74.00	-12.26	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.64	54.60	74.00	19.40	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2449.8936	32.33	13.53	-36.63	81.07	90.30	74.00	-16.30	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.81	54.77	74.00	19.23	Pass	V	Peak

Page 111 of 125

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2467.1277	32.35	13.45	-36.71	66.45	75.54	54.00	-21.54	Pass	Н	AV
2	2483.5000	32.38	13.38	-36.80	34.41	43.37	54.00	10.63	Pass	Н	AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2468.2979	32.36	13.45	-36.73	69.51	78.59	54.00	-24.59	Pass	V	AV
2	2483.5000	32.38	13.38	-36.80	34.55	43.51	54.00	10.49	Pass	V	AV

Note:

- 1) Through Pre-scan transmitting mode and with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) All modes and antenna are tested, and found the antenna 1 which is worst case, and then only the worst case mode is recorded in the report.

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

-	•	-	-	
	٠.		:	٤.
L	.11	11	ш	L:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	(0.7)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Antenna 1

ľ	Mode:	802.11 b	(11Mbps)	Transmitti	ng					
R	emark:	(QP)	P)							
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	87.8236	8.90	1.08	-32.08	36.48	14.38	40.00	25.62	Pass	Horizontal
2	199.2018	10.82	1.67	-31.94	48.14	28.69	43.50	14.81	Pass	Horizontal
3	290.4001	13.01	2.03	-31.88	44.53	27.69	46.00	18.31	Pass	Horizontal
4	399.6439	15.39	2.38	-31.76	42.15	28.16	46.00	17.84	Pass	Horizontal
5	598.5337	18.97	2.95	-31.98	43.03	32.97	46.00	13.03	Pass	Horizontal
6	718.6437	20.01	3.21	-32.08	38.06	29.20	46.00	16.80	Pass	Horizontal

N N	Mode:	802.11 b	02.11 b(11Mbps) Transmitting							
R	emark:	(QP))		(52)		(823)		(620
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	48.8218	13.20	0.79	-32.12	40.51	22.38	40.00	17.62	Pass	Vertical
2	120.0340	9.19	1.30	-32.06	40.62	19.05	43.50	24.45	Pass	Vertical
3	208.9038	11.13	1.71	-31.94	44.20	25.10	43.50	18.40	Pass	Vertical
4	290.4001	13.01	2.03	-31.88	41.57	24.73	46.00	21.27	Pass	Vertical
5	597.3695	18.95	2.94	-31.97	41.35	31.27	46.00	14.73	Pass	Vertical
6	796.6473	20.86	3.38	-32.01	35.69	27.92	46.00	18.08	Pass	Vertical
		(c)	')		(8)		(8)		(6.77

N	Лode:	802.11 g	2.11 g(6Mbps) Transmitting							
R	emark:	(QP)								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	130.9002	7.65	1.34	-32.02	40.83	17.80	43.50	25.70	Pass	Horizontal
2	179.9920	9.00	1.58	-31.99	41.05	19.64	43.50	23.86	Pass	Horizontal
3	239.9500	11.94	1.84	-31.90	45.01	26.89	46.00	19.11	Pass	Horizontal
4	353.2687	14.37	2.24	-31.86	39.92	24.67	46.00	21.33	Pass	Horizontal
5	545.5611	17.91	2.79	-31.95	33.14	21.89	46.00	24.11	Pass	Horizontal
6	720.0020	20.02	3.22	-32.07	48.06	39.23	46.00	6.77	Pass	Horizontal

Page	114	1 of	125

N	Node:	802.11 g	(6Mbps) Ti	ransmittin	g	100	/15			
R	emark:	(QP)	(QP)					65	")	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	52.5085	12.80	0.82	-32.10	40.45	21.97	40.00	18.03	Pass	Vertical
2	96.5553	10.45	1.14	-32.08	37.36	16.87	43.50	26.63	Pass	Vertical
3	208.9038	11.13	1.71	-31.94	44.29	25.19	43.50	18.31	Pass	Vertical
4	399.6439	15.39	2.38	-31.76	35.75	21.76	46.00	24.24	Pass	Vertical
5	713.5987	19.95	3.19	-32.10	33.97	25.01	46.00	20.99	Pass	Vertical
6	796.4533	20.86	3.38	-32.01	33.54	25.77	46.00	20.23	Pass	Vertical

							VCAT I				
	N	/lode:	802.11n	(HT20)(6.5l	Mbps) Tra	nsmitting					
	Re	emark:	(QP)								
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	1	63.1806	10.77	0.91	-32.04	33.64	13.28	40.00	26.72	Pass	Horizontal
	2	120.0340	9.19	1.30	-32.06	38.65	17.08	43.50	26.42	Pass	Horizontal
	3	179.9920	9.00	1.58	-31.99	43.45	22.04	43.50	21.46	Pass	Horizontal
Ī	4	239.9500	11.94	1.84	-31.90	43.32	25.20	46.00	20.80	Pass	Horizontal
Ī	5	479.9760	16.68	2.61	-31.90	33.14	20.53	46.00	25.47	Pass	Horizontal
	6	718.0616	20.00	3.21	-32.08	51.12	42.25	46.00	3.75	Pass	Horizontal

ode:	802.11 n	2.11 n(HT20)(6.5Mbps) Transmitting										
mark:	(QP)	\		130		150						
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity			
49.2098	13.20	0.79	-32.12	41.53	23.40	40.00	16.60	Pass	Vertical			
71.9124	8.64	0.97	-32.05	38.19	15.75	40.00	24.25	Pass	Vertical			
208.9038	11.13	1.71	-31.94	41.13	22.03	43.50	21.47	Pass	Vertical			
360.0600	14.52	2.27	-31.84	36.31	21.26	46.00	24.74	Pass	Vertical			
559.5319	18.19	2.82	-31.98	32.68	21.71	46.00	24.29	Pass	Vertical			
687.5975	19.70	3.14	-32.06	34.32	25.10	46.00	20.90	Pass	Vertical			
	Freq. [MHz] 49.2098 71.9124 208.9038 360.0600 559.5319	mark: (QP) Freq. [MHz] Ant Factor [dB] 49.2098 13.20 71.9124 8.64 208.9038 11.13 360.0600 14.52 559.5319 18.19	Freq. [MHz] Ant Factor [dB] Cable loss [dB] 49.2098 13.20 0.79 71.9124 8.64 0.97 208.9038 11.13 1.71 360.0600 14.52 2.27 559.5319 18.19 2.82	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 49.2098 13.20 0.79 -32.12 71.9124 8.64 0.97 -32.05 208.9038 11.13 1.71 -31.94 360.0600 14.52 2.27 -31.84 559.5319 18.19 2.82 -31.98	Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dBμV] Reading [dBμV] 49.2098 13.20 0.79 -32.12 41.53 71.9124 8.64 0.97 -32.05 38.19 208.9038 11.13 1.71 -31.94 41.13 360.0600 14.52 2.27 -31.84 36.31 559.5319 18.19 2.82 -31.98 32.68	mark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dBμV] Reading [dBμV/m] Level [dBμV/m] 49.2098 13.20 0.79 -32.12 41.53 23.40 71.9124 8.64 0.97 -32.05 38.19 15.75 208.9038 11.13 1.71 -31.94 41.13 22.03 360.0600 14.52 2.27 -31.84 36.31 21.26 559.5319 18.19 2.82 -31.98 32.68 21.71	mark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 49.2098 13.20 0.79 -32.12 41.53 23.40 40.00 71.9124 8.64 0.97 -32.05 38.19 15.75 40.00 208.9038 11.13 1.71 -31.94 41.13 22.03 43.50 360.0600 14.52 2.27 -31.84 36.31 21.26 46.00 559.5319 18.19 2.82 -31.98 32.68 21.71 46.00	mark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] 49.2098 13.20 0.79 -32.12 41.53 23.40 40.00 16.60 71.9124 8.64 0.97 -32.05 38.19 15.75 40.00 24.25 208.9038 11.13 1.71 -31.94 41.13 22.03 43.50 21.47 360.0600 14.52 2.27 -31.84 36.31 21.26 46.00 24.74 559.5319 18.19 2.82 -31.98 32.68 21.71 46.00 24.29	mark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV/m] Level [dBμV/m] Limit [dBμV/m] Magin [dB] Result [dBμV/m] 49.2098 13.20 0.79 -32.12 41.53 23.40 40.00 16.60 Pass 71.9124 8.64 0.97 -32.05 38.19 15.75 40.00 24.25 Pass 208.9038 11.13 1.71 -31.94 41.13 22.03 43.50 21.47 Pass 360.0600 14.52 2.27 -31.84 36.31 21.26 46.00 24.74 Pass 559.5319 18.19 2.82 -31.98 32.68 21.71 46.00 24.29 Pass			

Page 115 of 125

Report No.	.: EED32K00249903	3
------------	-------------------	---

Mode:	802.11 n	(HT40)(6.5	Mbps) Tra	ansmitting	(41)		(3	6)	
Remark:	(QP)		7		(0,)				
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
49.9860	13.20	0.80	-32.12	31.03	12.91	40.00	27.09	Pass	Horizontal
179.9920	9.00	1.58	-31.99	41.03	19.62	43.50	23.88	Pass	Horizontal
238.0096	11.89	1.83	-31.90	43.75	25.57	46.00	20.43	Pass	Horizontal
360.0600	14.52	2.27	-31.84	34.15	19.10	46.00	26.90	Pass	Horizontal
556.4273	18.13	2.81	-31.98	32.42	21.38	46.00	24.62	Pass	Horizontal
721.9424	20.04	3.24	-32.08	50.96	42.16	46.00	3.84	Pass	Horizontal
	Freq. [MHz] 49.9860 179.9920 238.0096 360.0600 556.4273	Remark: (QP) Freq. [MHz] Ant Factor [dB] 49.9860 13.20 179.9920 9.00 238.0096 11.89 360.0600 14.52 556.4273 18.13	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] 49.9860 13.20 0.80 179.9920 9.00 1.58 238.0096 11.89 1.83 360.0600 14.52 2.27 556.4273 18.13 2.81	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] 49.9860 13.20 0.80 -32.12 179.9920 9.00 1.58 -31.99 238.0096 11.89 1.83 -31.90 360.0600 14.52 2.27 -31.84 556.4273 18.13 2.81 -31.98	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dBµV] 49.9860 13.20 0.80 -32.12 31.03 179.9920 9.00 1.58 -31.99 41.03 238.0096 11.89 1.83 -31.90 43.75 360.0600 14.52 2.27 -31.84 34.15 556.4273 18.13 2.81 -31.98 32.42	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV] Level [dBµV/m] 49.9860 13.20 0.80 -32.12 31.03 12.91 179.9920 9.00 1.58 -31.99 41.03 19.62 238.0096 11.89 1.83 -31.90 43.75 25.57 360.0600 14.52 2.27 -31.84 34.15 19.10 556.4273 18.13 2.81 -31.98 32.42 21.38	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 49.9860 13.20 0.80 -32.12 31.03 12.91 40.00 179.9920 9.00 1.58 -31.99 41.03 19.62 43.50 238.0096 11.89 1.83 -31.90 43.75 25.57 46.00 360.0600 14.52 2.27 -31.84 34.15 19.10 46.00 556.4273 18.13 2.81 -31.98 32.42 21.38 46.00	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Magin [dB] 49.9860 13.20 0.80 -32.12 31.03 12.91 40.00 27.09 179.9920 9.00 1.58 -31.99 41.03 19.62 43.50 23.88 238.0096 11.89 1.83 -31.90 43.75 25.57 46.00 20.43 360.0600 14.52 2.27 -31.84 34.15 19.10 46.00 26.90 556.4273 18.13 2.81 -31.98 32.42 21.38 46.00 24.62	Remark: (QP) Freq. [MHz] Ant Factor [dB] Cable loss [dB] Pream gain [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Magin [dB] Result 49.9860 13.20 0.80 -32.12 31.03 12.91 40.00 27.09 Pass 179.9920 9.00 1.58 -31.99 41.03 19.62 43.50 23.88 Pass 238.0096 11.89 1.83 -31.90 43.75 25.57 46.00 20.43 Pass 360.0600 14.52 2.27 -31.84 34.15 19.10 46.00 26.90 Pass 556.4273 18.13 2.81 -31.98 32.42 21.38 46.00 24.62 Pass

	Mode:	802.11 r	(HT40)(6.5	Mbps) Tra	ansmitting					
F	Remark:	(QP)								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	52.5085	12.80	0.82	-32.10	42.22	23.74	40.00	16.26	Pass	Vertical
2	143.9008	7.34	1.41	-32.00	38.80	15.55	43.50	27.95	Pass	Vertical
3	208.9038	11.13	1.71	-31.94	42.43	23.33	43.50	20.17	Pass	Vertical
4	360.0600	14.52	2.27	-31.84	35.89	20.84	46.00	25.16	Pass	Vertical
5	598.1456	18.96	2.95	-31.98	30.80	20.73	46.00	25.27	Pass	Vertical
6	720.0020	20.02	3.22	-32.07	33.85	25.02	46.00	20.98	Pass	Vertical

Report No. : EED32K00249903 Page 116 of 125

Transmitter Emission above 1GHz Antenna 1

	Mode:	802.11b(Transmit)	Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1369.2739	28.27	2.85	-37.26	48.54	42.40	74.00	31.60	Pass	Н	Peak
2	3000.9751	33.20	4.93	-36.71	45.72	47.14	74.00	26.86	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	55.03	58.03	74.00	15.97	Pass	Н	Peak
4	4824.0000	34.50	4.61	-36.11	44.76	47.76	54.00	6.24	Pass	Н	AV
5	5900.9151	35.64	5.06	-36.23	43.74	48.21	74.00	25.79	Pass	Н	Peak
6	7236.0000	36.34	5.79	-36.44	42.56	48.25	74.00	25.75	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	43.37	50.83	74.00	23.17	Pass	Н	Peak
8	1397.6795	28.30	2.90	-37.21	53.20	47.19	74.00	26.81	Pass	V	Peak
9	3419.2919	33.37	4.51	-36.62	45.10	46.36	74.00	27.64	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	47.76	50.76	74.00	23.24	Pass	V	Peak
11	6031.5782	35.81	5.26	-36.28	43.52	48.31	74.00	25.69	Pass	V	Peak
12	7236.0000	36.34	5.79	-36.44	42.15	47.84	74.00	26.16	Pass	V	Peak
13	9648.0000	37.66	6.72	-36.92	42.68	50.14	74.00	23.86	Pass	V	Peak

	Mode:	802.11b(Transmit	•)	Channel:				2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1596.9194	29.04	3.07	-42.90	54.58	43.79	74.00	30.21	Pass	Н	Peak
2	3790.8041	33.63	4.37	-41.22	48.31	45.09	74.00	28.91	Pass	Н	Peak
3	4874.0000	34.50	4.78	-40.61	50.13	48.80	74.00	25.20	Pass	Н	Peak
4	6498.6499	35.90	5.47	-41.19	49.68	49.86	74.00	24.14	Pass	Н	Peak
5	7311.0000	36.41	5.85	-40.93	49.14	50.47	74.00	23.53	Pass	Н	Peak
6	9748.0000	37.70	6.77	-40.63	46.56	50.40	74.00	23.60	Pass	Н	Peak
7	1397.6795	28.30	2.90	-42.69	55.62	44.13	74.00	29.87	Pass	V	Peak
8	3420.2670	33.37	4.51	-41.87	49.93	45.94	74.00	28.06	Pass	V	Peak
9	4874.0000	34.50	4.78	-40.61	49.74	48.41	74.00	25.59	Pass	V	Peak
10	6498.6499	35.90	5.47	-41.19	49.43	49.61	74.00	24.39	Pass	V	Peak
11	7311.0000	36.41	5.85	-40.93	48.64	49.97	74.00	24.03	Pass	V	Peak
12	9748.0000	37.70	6.77	-40.63	46.13	49.97	74.00	24.03	Pass	V	Peak

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 117 of 125

	Mode:	802.11b(Transmit)	Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1396.0792	28.30	2.89	-42.68	54.85	43.36	74.00	30.64	Pass	Н	Peak
2	2966.3933	33.15	4.45	-42.14	50.42	45.88	74.00	28.12	Pass	Н	Peak
3	4924.0000	34.50	4.85	-40.56	46.65	45.44	74.00	28.56	Pass	Н	Peak
4	6564.9565	35.93	5.40	-41.19	48.71	48.85	74.00	25.15	Pass	Н	Peak
5	7386.0000	36.49	5.85	-40.87	47.22	48.69	74.00	25.31	Pass	Н	Peak
6	9848.0000	37.74	6.83	-40.54	45.03	49.06	74.00	24.94	Pass	Н	Peak
7	1724.9450	29.88	3.21	-36.82	48.23	44.50	74.00	29.50	Pass	V	Peak
8	3573.3573	33.46	4.39	-36.50	45.31	46.66	74.00	27.34	Pass	V	Peak
9	4824.0000	34.50	4.61	-36.11	50.45	53.45	74.00	20.55	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	42.10	45.10	54.00	8.90	Pass	V	AV
11	5528.4278	35.05	5.16	-36.09	44.36	48.48	74.00	25.52	Pass	V	Peak
12	7236.0000	36.34	5.79	-36.44	42.68	48.37	74.00	25.63	Pass	V	Peak
13	9648.0000	37.66	6.72	-36.92	43.13	50.59	74.00	23.41	Pass	V	Peak

	Mode:	802.11g(Transmit			Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1724.9450	29.88	3.21	-36.82	48.23	44.50	74.00	29.50	Pass	Н	Peak
2	3573.3573	33.46	4.39	-36.50	45.31	46.66	74.00	27.34	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	50.45	53.45	74.00	20.55	Pass	Н	Peak
4	4824.0000	34.50	4.61	-36.11	42.10	45.10	54.00	8.90	Pass	Н	AV
5	5528.4278	35.05	5.16	-36.09	44.36	48.48	74.00	25.52	Pass	Н	Peak
6	7236.0000	36.34	5.79	-36.44	42.68	48.37	74.00	25.63	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	43.13	50.59	74.00	23.41	Pass	Н	Peak
8	1393.6787	28.29	2.89	-37.21	54.14	48.11	74.00	25.89	Pass	V	Peak
9	3195.9946	33.28	4.64	-36.71	46.17	47.38	74.00	26.62	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	45.33	48.33	74.00	25.67	Pass	V	Peak
11	6299.7300	35.86	5.46	-36.23	43.65	48.74	74.00	25.26	Pass	V	Peak
12	7236.0000	36.34	5.79	-36.44	42.54	48.23	74.00	25.77	Pass	V	Peak
13	9648.0000	37.66	6.72	-36.92	42.21	49.67	74.00	24.33	Pass	V	Peak

Page 118 of 125

				200		1,000	77%		100		
	Mode:	802.11g(Transmit			Channel:				2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1799.3599	30.38	3.32	-36.81	51.49	48.38	74.00	25.62	Pass	Н	Peak
2	3186.2436	33.27	4.63	-36.76	46.55	47.69	74.00	26.31	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	50.49	53.68	74.00	20.32	Pass	Н	Peak
4	4874.0000	34.50	4.78	-36.09	43.35	46.54	54.00	7.46	Pass	Н	AV
5	5634.7135	35.22	5.01	-36.06	43.74	47.91	74.00	26.09	Pass	Н	Peak
6	7311.0000	36.41	5.85	-36.31	41.23	47.18	74.00	26.82	Pass	Н	Peak
7	9748.0000	37.70	6.77	-36.79	42.74	50.42	74.00	23.58	Pass	Н	Peak
8	1597.7195	29.04	3.07	-36.99	53.39	48.51	74.00	25.49	Pass	V	Peak
9	3197.9448	33.28	4.65	-36.71	47.67	48.89	74.00	25.11	Pass	V	Peak
10	4874.0000	34.50	4.78	-36.09	45.20	48.39	74.00	25.61	Pass	V	Peak
11	5987.6988	35.78	5.34	-36.28	44.13	48.97	74.00	25.03	Pass	V	Peak
12	7311.0000	36.41	5.85	-36.31	41.93	47.88	74.00	26.12	Pass	V	Peak
13	9748.0000	37.70	6.77	-36.79	42.04	49.72	74.00	24.28	Pass	V	Peak

	Mode:	802.11g(Transmit			Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1798.1596	30.37	3.32	-36.81	50.26	47.14	74.00	26.86	Pass	Н	Peak
2	3100.4350	33.24	4.72	-36.81	45.39	46.54	74.00	27.46	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	47.66	50.84	74.00	23.16	Pass	Н	Peak
4	6033.5284	35.81	5.25	-36.27	43.08	47.87	74.00	26.13	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	41.11	47.11	74.00	26.89	Pass	Н	Peak
6	9848.0000	37.74	6.83	-36.93	42.19	49.83	74.00	24.17	Pass	Н	Peak
7	1596.5193	29.04	3.07	-37.00	52.22	47.33	74.00	26.67	Pass	Н	Peak
8	3191.1191	33.28	4.64	-36.75	46.30	47.47	74.00	26.53	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	43.07	46.25	74.00	27.75	Pass	V	Peak
10	6119.3369	35.82	5.26	-36.28	43.54	48.34	74.00	25.66	Pass	V	Peak
11	7386.0000	36.49	5.85	-36.34	41.76	47.76	74.00	26.24	Pass	V	Peak
12	9848.0000	37.74	6.83	-36.93	43.73	51.37	74.00	22.63	Pass	V	Peak

Page	119	of 125
------	-----	--------

	Mode:	802.11n((HT20)(6	.5Mbps)	Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1795.3591	30.35	3.31	-36.81	51.32	48.17	74.00	25.83	Pass	Н	Peak
2	3437.8188	33.38	4.46	-36.59	45.88	47.13	74.00	26.87	Pass	Н	Peak
3	4824.0000	34.50	4.61	-36.11	50.04	53.04	74.00	20.96	Pass	Н	Peak
4	4824.0000	34.50	4.61	-36.11	34.51	37.51	54.00	16.49	Pass	Н	AV
5	6800.9301	36.02	5.65	-36.12	43.69	49.24	74.00	24.76	Pass	Н	Peak
6	7236.0000	36.34	5.79	-36.44	41.57	47.26	74.00	26.74	Pass	Н	Peak
7	9648.0000	37.66	6.72	-36.92	43.25	50.71	74.00	23.29	Pass	Н	Peak
8	1593.3187	29.02	3.06	-36.99	53.13	48.22	74.00	25.78	Pass	V	Peak
9	3192.0942	33.28	4.64	-36.74	47.14	48.32	74.00	25.68	Pass	V	Peak
10	4824.0000	34.50	4.61	-36.11	45.81	48.81	74.00	25.19	Pass	V	Peak
11	6326.0576	35.87	5.46	-36.18	43.80	48.95	74.00	25.05	Pass	V	Peak
12	7236.0000	36.34	5.79	-36.44	42.08	47.77	74.00	26.23	Pass	V	Peak
13	9648.0000	37.66	6.72	-36.92	42.15	49.61	74.00	24.39	Pass	V	Peak

	Mode:	802.11n	(HT20)(6	.5Mbps)	Channel:				2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1793.3587	30.34	3.31	-36.81	50.46	47.30	74.00	26.70	Pass	Н	Peak
2	2843.5687	32.95	4.23	-36.92	47.87	48.13	74.00	25.87	Pass	Н	Peak
3	4874.0000	34.50	4.78	-36.09	50.60	53.79	74.00	20.21	Pass	Н	Peak
4	4874.0000	34.50	4.78	-36.09	46.77	49.96	54.00	4.04	Pass	Н	AV
5	6311.4311	35.86	5.46	-36.20	44.16	49.28	74.00	24.72	Pass	Н	Peak
6	7311.0000	36.41	5.85	-36.31	41.30	47.25	74.00	26.75	Pass	Н	Peak
7	9748.0000	37.70	6.77	-36.79	42.32	50.00	74.00	24.00	Pass	Н	Peak
8	1596.1192	29.03	3.07	-36.99	54.55	49.66	74.00	24.34	Pass	V	Peak
9	3091.6592	33.24	4.74	-36.83	46.47	47.62	74.00	26.38	Pass	V	Peak
10	4874.0000	34.50	4.78	-36.09	44.79	47.98	74.00	26.02	Pass	V	Peak
11	6252.9253	35.85	5.36	-36.29	44.03	48.95	74.00	25.05	Pass	V	Peak
12	7311.0000	36.41	5.85	-36.31	42.01	47.96	74.00	26.04	Pass	V	Peak
13	9748.0000	37.70	6.77	-36.79	41.77	49.45	74.00	24.55	Pass	V	Peak

				100		100	17%		200		
	Mode:	802.11n((HT20)(6	.5Mbps)	Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1796.9594	30.36	3.31	-36.80	49.29	46.16	74.00	27.84	Pass	Н	Peak
2	3019.5020	33.21	4.89	-36.78	45.63	46.95	74.00	27.05	Pass	Н	Peak
3	4924.0000	34.50	4.85	-36.17	47.79	50.97	74.00	23.03	Pass	Н	Peak
4	6137.8638	35.83	5.25	-36.22	42.60	47.46	74.00	26.54	Pass	Н	Peak
5	7386.0000	36.49	5.85	-36.34	39.63	45.63	74.00	28.37	Pass	Н	Peak
6	9848.0000	37.74	6.83	-36.93	40.32	47.96	74.00	26.04	Pass	Н	Peak
7	1596.1192	29.03	3.07	-36.99	52.11	47.22	74.00	26.78	Pass	V	Peak
8	3540.2040	33.43	4.45	-36.47	45.88	47.29	74.00	26.71	Pass	V	Peak
9	4924.0000	34.50	4.85	-36.17	44.00	47.18	74.00	26.82	Pass	V	Peak
10	5836.5587	35.54	5.05	-36.01	44.09	48.67	74.00	25.33	Pass	V	Peak
11	7386.0000	36.49	5.85	-36.34	40.96	46.96	74.00	27.04	Pass	V	Peak
12	9848.0000	37.74	6.83	-36.93	41.79	49.43	74.00	24.57	Pass	V	Peak

	Mode:	802.11n((13.5Mb)			Channel:				2422		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2704.7409	32.73	4.12	-36.72	48.74	48.87	74.00	25.13	Pass	Н	Peak
2	4844.0000	34.50	4.67	-36.07	47.87	50.97	74.00	23.03	Pass	Н	Peak
3	5562.5563	35.10	5.14	-36.06	43.61	47.79	74.00	26.21	Pass	Н	Peak
4	6459.6460	35.89	5.51	-36.25	44.43	49.58	74.00	24.42	Pass	Н	Peak
5	7266.0000	36.37	5.80	-36.37	41.97	47.77	74.00	26.23	Pass	Н	Peak
6	9688.0000	37.68	6.62	-36.75	42.92	50.47	74.00	23.53	Pass	Н	Peak
7	1596.9194	29.04	3.07	-36.99	52.19	47.31	74.00	26.69	Pass	Н	Peak
8	2593.5187	32.55	4.10	-36.63	50.13	50.15	74.00	23.85	Pass	V	Peak
9	4844.0000	34.50	4.67	-36.07	46.44	49.54	74.00	24.46	Pass	V	Peak
10	6458.6709	35.89	5.51	-36.25	43.33	48.48	74.00	25.52	Pass	V	Peak
11	7266.0000	36.37	5.80	-36.37	40.79	46.59	74.00	27.41	Pass	V	Peak
12	9688.0000	37.68	6.62	-36.75	42.86	50.41	74.00	23.59	Pass	V	Peak

				0~	J. 1270				200			
			802.11n(HT40) (13.5Mbps)		Channel:				2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1187.6375	28.09	2.67	-37.68	49.65	42.73	74.00	31.27	Pass	Н	Peak	
2	2919.1838	33.07	4.39	-36.69	47.45	48.22	74.00	25.78	Pass	Н	Peak	
3	4874.0000	34.50	4.78	-36.09	50.36	53.55	74.00	20.45	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-36.09	35.71	38.90	54.00	15.10	Pass	Н	AV	
5	6412.8413	35.88	5.36	-36.31	43.93	48.86	74.00	25.14	Pass	Н	Peak	
6	7311.0000	36.41	5.85	-36.31	41.26	47.21	74.00	26.79	Pass	Н	Peak	
7	9748.0000	37.70	6.77	-36.79	42.06	49.74	74.00	24.26	Pass	V	Peak	
8	1394.0788	28.29	2.89	-37.21	51.81	45.78	74.00	28.22	Pass	V	Peak	
9	3220.3720	33.29	4.57	-36.75	46.58	47.69	74.00	26.31	Pass	V	Peak	
10	4874.0000	34.50	4.78	-36.09	44.29	47.48	74.00	26.52	Pass	V	Peak	
11	5641.5392	35.23	4.99	-36.04	43.71	47.89	74.00	26.11	Pass	V	Peak	
12	7311.0000	36.41	5.85	-36.31	40.36	46.31	74.00	27.69	Pass	V	Peak	
13	9748.0000	37.70	6.77	-36.79	41.72	49.40	74.00	24.60	Pass	V	Peak	

Mode:		802.11n(HT40) (13.5Mbps)			Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2014.2028	31.72	3.50	-36.75	47.48	45.95	74.00	28.05	Pass	Н	Peak
2	3209.6460	33.28	4.61	-36.71	46.51	47.69	74.00	26.31	Pass	Н	Peak
3	4904.0000	34.50	4.87	-36.12	50.32	53.57	74.00	20.43	Pass	Н	Peak
4	4904.0000	34.50	4.88	-36.13	39.46	42.71	54.00	11.29	Pass	Н	AV
5	6328.9829	35.87	5.46	-36.18	42.72	47.87	74.00	26.13	Pass	Н	Peak
6	7356.0000	36.46	5.85	-36.57	40.05	45.79	74.00	28.21	Pass	Н	Peak
7	9808.0000	37.72	6.59	-36.89	41.45	48.87	74.00	25.13	Pass	Н	Peak
8	1397.6795	28.30	2.90	-37.21	50.31	44.30	74.00	29.70	Pass	V	Peak
9	3190.1440	33.28	4.63	-36.74	47.42	48.59	74.00	25.41	Pass	V	Peak
10	4904.0000	34.50	4.87	-36.12	45.68	48.93	74.00	25.07	Pass	V	Peak
11	6462.5713	35.89	5.51	-36.25	43.34	48.49	74.00	25.51	Pass	V	Peak
12	7356.0000	36.46	5.85	-36.57	39.42	45.16	74.00	28.84	Pass	V	Peak
13	9808.0000	37.72	6.59	-36.89	41.36	48.78	74.00	25.22	Pass	V	Peak

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

³⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

⁴⁾ All modes and antenna are tested, and found the antenna 1 which is worst case, and then only the worst case mode is recorded in the report.

PHOTOGRAPHS OF TEST SETUP

Test model No.: WCT1BR2701T

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Close-up)

E 1105

Report No. : EED32K00249903 Page 125 of 125

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32K00249901 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

