LISTING OF CLAIMS

This listing of claims replaces all prior versions and listings of claims in the application.

 (original) A method of controlling proliferative cells in a subject, comprising administering a therapeutically effective amount of at least one compound having the formula:

$$A^2$$
 A^4
 A^4

wherein

---- is an optional double bond;

 $A^{1} \ and \ A^{2} \ are independently \ H, \ Z_{m}-OR^{6}, oxo, halo, Z_{m}-CN, Z_{m}-NO_{2}, azido, \\ Z_{m}-NR^{6}R^{7}, Z_{m}-COOR^{6}, Z_{m}-CONR^{6}R^{7}, Z_{m}-C(=O)R^{6}, Z_{m}-OC(=O)R^{6}, alkyl, allyl, alkenyl, \\ alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, thiol, thioalkyl, \\ Z_{m}-cycloalkyl \ wherein said cycloalkyl is saturated or partially unsaturated,$

 Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted:

 A^3 and A^4 are independently alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, alkoxy, heteroalkoxy, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, Z_m -Ar, Z_m -O-R 6 , Z_m -SR 6 , Z_m -NR 6 R 7 , Z_m -C(=O)R 6 , Z_m -OC(=O)R 6 , Z_m -C(=O)OR 6 , Z_m -(C=O)NR 6 R 7 , or Z_m -NHC(=O)R 6 , wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkynyl, heteroalkyl, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted and wherein at least one of A^3 or A^4 is at least three atoms in length:

or A^3 and A^4 together with the atoms to which they are both attached form a substituted or unsubstituted saturated or partially unsaturated ring or a substituted or

unsubstituted aromatic ring having at least five atoms, wherein one or more of the atoms is optionally a heteroatom:

 R^6 and R^7 are independently H, Z_m -OR 6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroallyl, heteroalkenyl, heteroalkoxy, Z_m -cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted;

X is $OR^6,$ oxo, heteroalkoxy, O-glucosyl, thiol, thioalkyl, $NR^6R^7,$ halo, CN, NO2, or azido:

Ar is arvl or heteroarvl:

Z is CH2; and

m is an integer between 0 and 10.

2. (currently amended) The method of claim 1, wherein A³ and A⁴ are independently

and

wherein

n is 3, 4, 5, 6, 7, 8, 9, or 10;

 $D_1,\,D_2 \text{ and } D_3 \text{ are independently } H,\,Z_m\text{-}OR^6,\,Z_m\text{-}O\text{-glucosyl, heteroalkoxy,}$ thiol, thioalkyl, $Z_m\text{-}NR^6R^7,\,\text{halo},\,Z_m\text{-}CN,\,Z_m\text{-}NO_2,\,\text{or azido;}$

 D_4 is H, OH, Z_m - OR^6 , O-glucosyl, imino, halo, Z_m -CN, Z_m - NO_2 , azido, Z_m -C(=O)H, Z_m - NG^6 , Z_m - $COOR^6$, Z_m - $CONR^6$, Z_m - COR^6 , Z_m - COR^6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkoxy, thiol, thioalkyl, Z_m -eycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, Z_m -heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m - Ar^1 , wherein said alkyl, allyl, alkenyl, alkynyl,

heteroalkyl, heteroallyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar 1 may be substituted or unsubstituted;

or D_4 and X, or D_4 and D_3 together form a lactone; and m is an integer between 0 and 10.

3. (original) The method of claim 1, wherein A³ and A⁴ are independently

or
$$-\frac{1}{\xi}$$
 CH_3 CO_2H

4. (original) The method of claim 1, wherein the compound is

- (original) The method of claim 1, wherein A³ and A⁴ together form a sixmember ring.
- (original) The method of claim 5, wherein said six-member ring contains at least one carbon-carbon multiple bond.
- 7. (original) The method of claim 5, wherein said six-member ring is aromatic.
- (original) The method of claim 5, wherein said six-member ring contains at least one additional substituent group.
- 9. (original) The method of claim 8, wherein said at least one additional substituent group is selected from the group of H, OR^6 , OR^6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, thiol, thioalkyl, OR^6 , OR^6 , OR^6 , OR^6 , OR^6 , alkyl, allyl, alkenyl, alkynyl, heteroalkyl, hetero

WDE - 062776/000306 - 349676 v1

heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Z_m -Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, Z_m -cycloalkyl, Z_m -heterocycloalkyl, and Z_m -Ar may be substituted or unsubstituted.

10. (original) The method of claim 1, wherein the compound is

$$A^2$$
 A^1
 A^1
 A^1
 A^2
 A^3

wherein R1 is

 $R^2, R^3, R^4 \text{ and } R^5 \text{ are independently } H, Z_m\text{-}OR^6, \text{ alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkoxy, } Z_m\text{-}NR^6R^7, Z_m\text{-}COOR^6, \\ Z_m\text{-}CONR^6R^7, Z_m\text{-}C(=O)R^6, Z_m\text{-}OC(=O)R^6, Z_m\text{-}cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, } Z_m\text{-}heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or $Z_m\text{-}Ar$, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, $Z_m\text{-}cycloalkyl, $Z_n\text{-}heterocycloalkyl, and $Z_m\text{-}Ar$ may be substituted or unsubstituted,}$

WDE - 062776/000306 - 349676 v1 5

or R^3 and R^4 together with the atoms to which they are both attached form a saturated or partially unsaturated ring, wherein said saturated ring or partially unsaturated ring may be substituted or unsubstituted: and

 $Y^1, Y^2, \text{ and } Y^3 \text{ are independently H, } Z_m\text{-}OR^6, \text{ alkyl, allyl, alkenyl, alkynyl,} \\ \text{heteroalkyl, heteroalkenyl, heteroalkynyl, heteroalkoxy, } Z_m\text{-}NR^6R^7, Z_m\text{-}COOR^6, \\ Z_m\text{-}CONR^6R^7, Z_m\text{-}C(=O)R^6, Z_m\text{-}OC(=O)R^6, Z_m\text{-}cycloalkyl wherein said cycloalkyl is saturated or partially unsaturated, } Z_m\text{-}heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or } Z_m\text{-}Ar, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, all } Z_n\text{-}heterocycloalkyl, and } Z_m\text{-}Ar may be substituted or unsubstituted.}$

- 11. (original) The method of claim 10, wherein R¹ is a substituted or unsubstituted natural or unnatural amino acid.
- 12. (original) The method of claim 11, wherein R¹ is alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.
- 13. (original) The method of claim 11, wherein R¹ is 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, cirtulline, homocysteine, homoserine, ornithine and methionine sulfone.
- 14. (original) The method of claim 10, wherein the compound is

6

WDE - 062776/000306 - 349676 -4

15. (original) The method of claim 14, wherein said compound is

16. (original) The method of claim 10, wherein said compound is

$$A^2$$
 A^1
 A^1
 A^2
 A^1
 A^2

17. (original) The method of claim 16, wherein said compound is

- 18. (original) The method of claim 1, wherein said subject has cancer.
- 19. (original) The method of claim 1, wherein said cancer is ovarian cancer.
- 20. (original) The method of claim 1, wherein said cancer is breast cancer.
- 21. (original) The method of claim 1, wherein said cancer is lung cancer.
- 22. (original) The method of claim 1, wherein said cancer is lymphoma.
- 23. (original) The method of claim 1, wherein said method of treatment further comprises at least one of an hourly administration, a daily administration, a weekly administration, or a monthly administration of said at least one composition.
- 24. (original) The method of claim 1, wherein said administration comprises oral administration of said at least one composition.
- 25. (original) The method of claim 1, wherein said administration comprises injection of said at least one composition.
- 26. (original) The method of claim 1, wherein said administration comprises intravenous administration of said at least one composition.
- 27. (original) The method of claim 1, wherein said subject is an animal.
- 28. (original) The method of claim 1, wherein said subject is a human.
- 29. (original) A method for controlling proliferative cells in a subject, comprising supplying to said subject at least one compound of the formula:

30. (original) A method for controlling proliferative cells in a subject, comprising supplying to said subject a compound of the formula:

8

WDE - 062776/000306 - 349676 v1

31. (original) A method for controlling proliferative cells in a subject, comprising supplying to said subject a compound of the formula:

32. (original) A method for conducting a clinical trial comprising supplying to a subject at least one compound of the formula:

wherein said composition contains at least one additional carbon-carbon multiple bond; and

9

WDE - 062776/000306 - 349676 v1

wherein one or both of R1 and R2 define a structure selected from the group consisting of (a) at least one substituent selected from the group of hydrogen, alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkynyl, alkoxy, heteroalkoxy and (b) a second ring structure of at least five atoms.

33. (currently amended) The method of claim 1, wherein A4 is $(CH_2)_n COD_4$

n is 3, 4, 5, 6, 7, 8, 9, or 10; and

D4 is H, OH, Zm-OR6, O-glucosyl, imino, halo, Zm-CN, Zm-NO2, azido, Zm-C(=O)H, Zm-NR6R7, Zm-COOR6, Zm-CONR6R7, Zm-C(=O)R6, Zm-OC(=O)R6, alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkynyl, heteroalkynyl, heteroalkynyl, heteroalkynyl, heteroalkynyl unsaturated, Zm-heterocycloalkyl wherein said heterocycloalkyl is saturated or partially unsaturated, or Zm-Ar1, wherein said alkyl, allyl, alkenyl, alkynyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, heteroalkyl, zm-heterocycloalkyl, and Zm-Ar1 may be substituted or unsubstituted.

34. (original) A method of controlling proliferative cells in a subject, comprising administering a therapeutically effective amount of at least one compound having the formula:

WDE - 062776/000306 - 349676 v1 10

- 35. (original) The method of claim 34, wherein R¹ is alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.
- 36. (original) The method of claim 34, wherein R¹ is 4-hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, cirtulline, homocysteine, homoserine, ornithine and methionine sulfone.
- 37. (original) A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.

38. (original) A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.

 (original) A pharmaceutical composition for controlling proliferative cells in a subject, comprising a therapeutically effective amount of a compound having the formula:

and a pharmaceutically acceptable carrier.