

Abstract Algebra

$\mathcal{A}bstract\ \mathcal{A}lgebra$

作者: Peknt

组织:清疏大学

时间: March 24, 2024

版本: 1.1

作者联系方式: QQ2499032096

前言

参考书

- 近世代数引论, 冯克勤, 李尚志, 章璞
- 近世代数 300 题, 冯克勤, 章璞
- 伽罗瓦理论—天才的激情,章璞
- Abstract Algebra, Dummit, Foote

参考资料

- 南开大学徐彬斌抽象代数讲义
- 上海交通大学章璞课程 PPT
- 南开大学凯淼淼抽象代数 note

目录

第1章 群论

1.1 群的概念

定义 1.1 (群)

设G是带有二元运算·的非空集合。如果 (G,\cdot) 具有下述三条性质:

- (G1) 结合律: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$
- (G2) 存在单位元:存在 $e \in G$,使得 $e \cdot a = a \cdot e = a, \forall a \in G$
- (G3) 每个元均有逆元: 对任意 $a \in G$, 存在 $b \in G$, 使得 $a \cdot b = b \cdot a = e$

则称 (G,\cdot) 是一个群 (Group)

 $\dot{\mathbf{L}}$ 开始时,我们用 (G,\cdot) 表示一个群,以后当二元运算不言自明时,我们就简单地称G 是群。如果不引起混乱, 今后我们常将运算符号·省略不写。例如将 $a \cdot b$ 简写成ab

例题 1.1 我们称集合 A 到自身的一个双射为 A 上的一个置换,集合 A 上的所有置换记为 S(A),可知 S(A) 关于 映射的复合构成群。

定义 1.2 (半群和含幺半群)

如果 (G,\cdot) 满足 (G1), 则称 G 是半群 (semigroup)。

如果 (G, \cdot) 满足 (G1) 和 (G2), 则称 G 是含幺半群 (monoid)。

定义 1.3 (阿贝尔群)

设 (G,\cdot) 是群。若 $ab=ba, \forall a,b\in G$,则称 (G,\cdot) 为交换群,又称为阿贝尔群,或 Abel 群。

命题 1.1

- (1) 存在半群 S, S 中有左幺元, 但没有右幺元。
- (2) 若一个半群 S 中既有左幺元,又有右幺元,S 是否一定为含幺半群?

解(1)考虑 $S=\{egin{pmatrix} a & b \ 0 & 0 \end{pmatrix} \mid a,b\in R\}$ 关于矩阵乘法构成的半群,则易见其有无穷多左幺元 $\begin{pmatrix} 1 & c \ 0 & 0 \end{pmatrix}$ 其中 $c\in R$, 而容易验证其没有右幺元。

(2) 设S 有左幺元 e_1 , 右幺元 e_2 , 则有 $e_1 = e_1 \cdot e_2 = e_2$, 从而左右幺元相等, 故有唯一元素为左幺元和右 幺元, 从而为含幺半群。

命题 1.2

- (1) 存在含幺半群 S 及 $a \in S$, a 存在左逆元, 但不存在右逆元。
- (2) 若含幺半群 S 中元素既有左逆元,又有右逆元,则 a 一定是可逆元。

 $\mathbf{M}(1)$ 记 M(N) 为 N 的所有变换组成的含幺半群,其中元素 f 定义为

$$f(n) = n + 1, \forall n \in N$$

考虑 $g_k(n)=egin{cases} n-1,n\geq 1\\ k,n=0 \end{cases}$ 从而对任意 $k\in N$ 有 $g_kf(n)=n$,从而 g_k 为左逆元,故有无穷多左逆元。但是

若存在右逆元 h, 则 f(h(0)) = 0, 即 h(0) + 1 = 0, 即 h(0) = -1, 矛盾, 所以不存在。(2) 设 ba = ac = e, 则 有 b = be = b(ac) = (ba)c = ec = c, 得证

性质[群的简单性质]

(1)G 的单位元是唯一的 (用 e 表示 G 的单位元)

证 设 $e \rightarrow e'$ 都是 G 的单位元,则 e = ee' = e

(2)G 中任意元 a 的逆元是唯一的 (今后用 a^{-1} 表示 a 的逆元)

证 设 b 和 c 都 是 a 的 逆元,则 c = ec = (ba)c = b(ac) = be = b

(3) 穿脱原理: $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G, 以及 (a^{-1})^{-1} = a, \forall a \in G$

证 由
$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$$
 以及
$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

知 $(ab)^{-1} = b^{-1}a^{-1}$,类似可证 $(a^{-1})^{-1} = a$

(4) 左消去律: 即,由ab=ac可推出b=c。右消去律:即,由ba=ca可推出b=c

证 由 ab = ac 知 $a^{-1}(ab) = a^{-1}(ac)$,由此即得 $(a^{-1}a)b = (a^{-1}a)c$,即 eb = ec,即 b = c。同理,可证右消去律。

定义 1.4 (有限群的群表)

考虑一个有限群 $G = \{a_1, \dots, a_n\}$ 我们将 G 中元素两两相乘的结果列出 ((i, j) 位置上为 $a_i a_i)$

a_1a_1	a_1a_2	 a_1a_n
a_2a_1	a_2a_2	 a_2a_n
$a_n a_1$	$a_n a_2$	 $a_n a_n$

命题 1.3

一个有限群 G 交换当且仅当相应的群表对称

在一个半群 G 中,一个元 $e_l \in G$ 称为 G 的左幺元,如果 $e_l g = g, \forall g \in G$

设半群 G 有左幺元 e_l ,称元 $a \in G$ (相对于 e_l) 有左逆元,如果存在 $a_l^{-1} \in G$ 使得 $a_l^{-1}a = e_l$,将 a_l^{-1} 称为 a 的左逆元

命题 1.4 (群的单边定义)

设G是半群,则G是群当且仅当G有左幺元,且任一元均有左逆元

证明 必要性显然,只需证明充分性。

先证 g 的左逆元有性质 $gg_l^{-1} = e_l$,有

$$\begin{split} gg_l^{-1} &= e_l(gg_l^{-1}) \\ &= ((g_l^{-1})_l^{-1}g_l^{-1})gg_l^{-1} \\ &= (g_l^{-1})_l^{-1}(g_l^{-1}g)g_l^{-1} \\ &= (g_l^{-1})_l^{-1}e_lg_l^{-1} \\ &= (g_l^{-1})_l^{-1}g_l^{-1} \\ &= e_l \end{split}$$

现在证明 e_l 也是 G 的右幺元,从而 e_l 是 G 的单位元。对任一元 g,由 $gg_l^{-1}=e_l$ 知

$$ge_l = g(g_l^{-1}g) = (gg_l^{-1})g = e_lg = g$$

即, e_1 也是G的右幺元。

最后,由性质 $gg_l^{-1}=e_l$ 知 g 的左逆元 g_l^{-1} 也是 g 的逆元。根据定义,G 是群。

命题 1.5

- (1) 上述命题改为右幺元和右逆元也成立。
- (2) 若改为一左一右,则命题不再成立。

命题 1.6 (有限半群成群的充要条件)

设 (G,\cdot) 是有限半群,则 (G,\cdot) 是群当且仅当 (G,\cdot) 满足左消去律和右消去律。

证明 必要性显然,只需证明充分性。

设 (G,\cdot) 是满足左消去律和右消去律的有限半群。取 $a\in G$,考虑 G 的子集 $Ga:=\{ga\mid g\in G\}$,用 |Ga| 表示 Ga 中元素的个数。由右消去律知,|Ga|=|G|。因为 G 是有限集合,所以 Ga=G。于是存在 $e\in G$ 使得 ea=a。

下证 $e \not\in G$ 的左单位元。对任意 $x \in G$,由左消去律知 aG = G,故存在 $y \in G$ 使得 x = ay。于是

$$ex = e(ay) = (ea)y = ay = x$$

则e是G的左单位元

再证任意元 $x \in G$ 均有左逆元,由 Gx = G 知存在 $y \in G$ 使得

$$yx = e$$

即,x有左逆元y

根据群的单边定义, (G,\cdot) 是群。

命题 1.7 (含幺半群生成群)

设S是含幺半群,记U(S)为S中可逆元全体,则U(S)构成群。

1.2 子群与陪集

定义 1.5 (子群)

设 (G,\cdot) 是群,H 是 G 的非空子集。如果·也是 H 的二元运算,并且 (H,\cdot) 也是一个群,则称 H 为群 G 的子群 (subgroup),记为 $H \leq G$ 。此外,若 $H \neq G$,则称 H 为 G 的真子群,记为 H < G

显然, $G \le G$, $\{e\} \le G$, 它们叫做 G 的平凡子群。

注 我们可以由子群定义得到,若 H 为 G 的一个子群,K 为 H 的一个子群,则 K 为 G 的一个子群。若 H 和 K 为 G 的子群,且 $K \subset H$,则 K 为 H 的子群。

命题 1.8

设 $H \leq G$,则 H 的单位元与 G 的单位元相同,H 的元在 H 中的逆元与它在 G 中的逆元相同。

例题 1.2 记 $n \in \mathbb{N}^*$,我们考虑 \mathbb{R} 上的 n 阶可逆方阵的集合 $GL(n,\mathbb{R})$,该集合关于矩阵乘法构成群,我们一般称为**一般线性群 (General Linear Group)**。该群及其子群是李理论的研究对象的一部分。以下是 $GL(n,\mathbb{R})$ 的一些子群:

1. 特殊线性群 (Special Linear Group):

$$SL(n,\mathbb{R}) := \{ A \in GLn, \mathbb{R} \mid \det A = 1 \}$$

2. 正交变换群 (Orthogonal Group):

$$O(n) := \{ A \in GL(n, \mathbb{R}) \mid AA^T = I_n \}$$

3. 不定正交变换群 (Indefine Orthogonal Group): 设 $p,q \in \mathbb{N}^*$, 满足 p+q=n, 记

$$I_{p,q} = \begin{bmatrix} I_p & \\ & -I_q \end{bmatrix}$$

我们记

$$O(p,q) := \{ A \in GL(n,\mathbb{R}) \mid AI_{p,q}A^T = I_{p,q} \}$$

4. 辛变换群 (Symplectic Group): 设 n=2k 为偶数

$$Sp(2k) := \left\{ A \in GL(n, \mathbb{R}) \mid A \begin{bmatrix} O_k & I_k \\ -I_k & O_k \end{bmatrix} A^T = \begin{bmatrix} O_k & I_k \\ -I_k & O_k \end{bmatrix} \right\}$$

从定义我们可以看出,后面的几个群都是保持 \mathbb{R}^n 上某些双线性型的矩阵构成的群。这些双线性型通常与几何结构相关,对应的保持这些双线性型的群代表了此类几何结构局部的对称性,例如

O(n)	欧氏几何	
O(n-1,1)	双曲几何	
O(n-2,2)	Anti-de Sitter 几何	
O(p,q)	伪黎曼几何	
- (F,-1)	77000000000000000000000000000000000000	

定义 1.6

设G为一个群, 我们称以下G的子集为G的中心:

$$Z(G) := \{ a \in G \mid \forall b \in G, ab = ba \}$$

命题 1.9

设G为一个群,则Z(G)为G的一个子群。

定理 1.1 (子群的判定法则)

群 G 的非空子集 H 是 G 的子群当且仅当若 $a,b \in H$ 、则 $ab^{-1} \in H$

 \odot

证明 只要证明充分性。

因为 H 非空, 故可取到 $h \in H$, 由题设有 $e = hh^{-1} \in H$ 。

设 $a \in H$, 则由题设 $a^{-1} = ea^{-1} \in H$

设 $a, b \in H$, 上面已经证明 $b^{-1} \in H$, 则 $ab = a(b^{-1})^{-1} \in H$

命题 1.10

记 $\{H_{\alpha}\}_{\alpha\in I}$ 为G中任意一族子群(I)为指标集合(I),则

$$\bigcap_{\alpha \in I} H_{\alpha}$$

为 G 的子群。

证明 记

$$H = \bigcap_{\alpha \in I} H_{\alpha}$$

由于对任意 α , H_{α} 为子群 , 因此有 $e\in H_{\alpha}$ 对任意 α 成立。因此 , 由 H 的定义有 $e\in H$, H 非空。进一步任取 $a,b\in H$, 对任意 α , 有

$$a, b \in H_{\alpha}$$

因为 H_{α} 是 G 的子群, 所以 $ab^{-1} \in H_{\alpha}$, 所以 $ab^{-1} \in H$, 由子群判定法则知 H 是 G 的一个子群。

例题 1.3 考虑整数 \mathbb{Z} 的子群。记 $k \in \mathbb{N}^*, m_1, m_2, \cdots, m_k$ 为 k 个两两不同的正整数,则有

$$m_1\mathbb{Z} \cap m_2\mathbb{Z} \cap \cdots \cap m_k\mathbb{Z} = lcm(m_1, m_2, \cdots, m_k)\mathbb{Z}$$

如果我们取无穷多个两两不同的整数,则有

$$\bigcap_{k\in\mathbb{N}} m_k \mathbb{Z} = \{0\}$$

命题 1.11

两个子群的并集不一定是子群。

设G为群,A,B为G的子群, $a \in G$,今后记

$$aA = \{ax \mid x \in A\}, Aa = \{xa \mid x \in A\}$$

 $A^{-1} = \{a^{-1} \mid a \in A\}, AB = \{ab \mid a \in A, b \in B\}$

容易验证子集的乘积和逆也有性质:

- 1. 结合律: (AB)C = A(BC)
- 2. 穿脱原理: $(AB)^{-1} = B^{-1}A^{-1}$, 特别地有 $(A^{-1})^{-1} = A$

如果 $H \leq G$, 则有 $H^{-1} = H$, HH = H

则子群的判定定理可以重新表述为:

群 G 的非空子集 H 是 G 的子群当且仅当 $HH^{-1} \subset H$,当且仅当 $HH^{-1} = H$

定理 1.2 (两个子群的乘积称为子群的充要条件)

设 (G,\cdot) 是群, $A \leq G, B \leq G$,则 $AB \leq G$ 当且仅当AB = BA

证明 必要性: 设 AB < G, 则 $AB = (AB)^{-1} = B^{-1}A^{-1} = BA$

充分性:设AB = BA,则

$$(AB)(AB)^{-1} = (AB)(B^{-1}A^{-1}) = (AB)(BA) = A(BB)A$$

= $ABA = BAA = BA$
= AB

则有 AB < G

定义 1.7 (元素的阶)

设群 G 以及 $a \in G$,考虑子群 $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$,则考虑该子群的阶,并将其称为 a 的阶。

定义 1.8 (生成子群、有限生成群)

设 S 是群 G 中的一个非空子集,令 $S^{-1} = \{a^{-1} \mid a \in S\}$,记

$$\langle S \rangle = \{x_1 \cdots x_m \mid m \in \mathbb{N}, x_1, \cdots, x_m \in S \cup S^{-1}\}\$$

不难看到S为子群,称为S生成的子群。若存在S使得< S >= G,则称S为G的一个生成组,如果G有一个生成组,则称G为有限生成群。

命题 1.12 (生成子群的等价刻画)

群G中非空子集S生成的子群< S >是G中包含S的子群的交,也是G中包含S的最小子群。

证明 因为 $S \subset H \leq G$,所以 $S \cup S^{-1} \subset H$,所以 $< S > \subset \bigcap_{S \subset H \leq G} H$ 。又有 $< S > \leq G$,所以 $\bigcap_{S \subset H \leq G} H \subset < S >$,所以两者相等。

第2章 环论

第3章 模论

第4章 域论

第5章 Galois 理论