A NOVEL DATA REPRESENTATION BASED ON

DISSIMILARITY INCREMENTS

Instituto de Telecomunicações Instituto Superior Técnico, Universidade de Lisboa, Portugal {haidos, afred}@lx.it.pt

Set of objects X

Motivation

- Typically, objects are represented by a set of features, which should characterize the objects and be relevant to discriminate among the classes.
- Problem: difficult to obtain a complete description of objects:
 - forces an overlap of the classes
 - > leads to an inefficient learning process.

- Solution: Use a dissimilarity representation, which is based on comparisons between pairs of objects:
 - Solves the problem of class overlap, since only identical objects have a dissimilarity of zero.

Dissimilarity representation

- $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ set of objects
- $R = \{e_1, ..., e_r\}$ set of representative or prototype objects, such that $R \subseteq X$
- Each object \mathbf{x}_i is described by a r-dimensional dissimilarity vector

 $D(\mathbf{x}_i, \mathbf{R}) = [d(\mathbf{x}_i, \mathbf{e}_1) \dots d(\mathbf{x}_i, \mathbf{e}_r)]$ where $d(\cdot, \cdot)$ is a dissimilarity measure

- $\triangleright D(\mathbf{x}_i, \mathbf{R})$ is a row of the $n \times r$ dissimilarity matrix D, the **dissimilarity space**
- Define a vector space Y by Y = D, where the i-th object is represented by the dissimilarity vector of the D_{ij} values.

Set of representative or prototype objects R

vector representing the *i*-th object

PROPOSAL: A novel dissimilarity representation of data, based on a second-order dissimilarity measure.

Second-order dissimilarity measure: the dissimilarity increments

Given some dissimilarity measure, $d(\cdot,\cdot)$, between patterns,

 $(\mathbf{x}_i, \mathbf{x}_i, \mathbf{x}_k)$ – triplet of nearest neighbor

- \mathbf{x}_i is the nearest neighbor of \mathbf{x}_i
- \mathbf{x}_k is the nearest neighbor of \mathbf{x}_i (different from \mathbf{x}_i)

Assume that

R = X, meaning

The **dissimilarity increments** between neighboring patterns is defined as

$$d_{inc}(\mathbf{x}_i, \mathbf{x}_i, \mathbf{x}_k) = |d(\mathbf{x}_i, \mathbf{x}_i) - d(\mathbf{x}_i, \mathbf{x}_k)|$$

Dissimilarity increments space

- $\mathbf{R} = \{\mathbf{e}_1, ..., \mathbf{e}_r\}$ set of prototype objects, with \mathbf{e}_i an edge between a prototype \mathbf{m}_j and its nearest neighbor $\mathbf{x}_{\mathbf{m}_i} = NN(\mathbf{m}_j)$
- $d(\mathbf{e}_j) = d(\mathbf{m}_j, \mathbf{x}_{\mathbf{m}_i})$ weight of edge \mathbf{e}_j
- Distance between any object \mathbf{x}_i and the representative object \mathbf{e}_i is $d(\mathbf{x}_i, \mathbf{e}_j) = \min \left\{ d(\mathbf{x}_i, \mathbf{m}_j), d(\mathbf{x}_i, \mathbf{x}_{\mathbf{m}_i}) \right\}$

The (i, j)-th element of the Dinc space is defined as $D(\mathbf{x}_i, \mathbf{e}_i) = |d(\mathbf{x}_i, \mathbf{e}_i) - d(\mathbf{e}_i)|$

Characterization

- > Dissimilarity spaces have higher discriminant power of features in separating the classes.
- > Dissimilarity spaces have less overlap between the classes, which may facilitate the learner to separate the samples of different classes.
- > Even if the classes are more separable, they are nonlinearly separable by 1-NN classifier.

Euclidean dissimilarity space

Each element, D_{ij} , of the dissimilarity matrix D, is the Euclidean distance between i-th and j-th objects.

> **Datasets:** 36 real-world datasets from the UCI Machine Learning repository **Evaluation:** Error rates of median-link, when the true number of clusters is known

that all objects of X are used as prototypes. Experimental

results

- 8 datasets for Euclidean space
- Best on average 4.0% than Dinc space
- 18 datasets for Dinc space
 - Best on average 7.1% than Euclidean space

- 28 datasets for Dinc space
- Best on average 13.6% than Feature space
- 6 datasets for Feature space
 - Best on average 2.2% than Dinc space

- 25 datasets for Euclidean space
- Best on average 11.8% than Feature space
- 9 datasets for Feature space
- Best on average 2.6% than Euclidean space