Course	21CSC101T	Course	OBJECT ORIENTED DESIGN AND PROGRAMMING	Course	С	PROFESSIONAL CORE	L	Τ	Р	С
Code		Name	OBJECT ORIENTED DESIGN AND PROGRAMMING	Category			2	1	0	3

Pre-requisite Nil	Co- requisite Nil		Progressive Nil
Courses	Courses		Courses
Course Offering Department	Computer Science and Engineering	Data Book / Codes / Standards	Nil

Course	Learning Rationale (CLR): The purpose of learning this course is to:						Prog	ram (Outcome	es (PO)				
CLR-1 :	Programs using object-oriented approach and design methodologies for real-time application development		1	2	3	4	5	6	7	8	9	10	11	12
CLR-2:	Method overloading and operator overloading for real-time application development programs		dge		of	SU.					ork		e	
CLR-3:				nalysis	nent	stigations oblems	ge	and	∞ _		Team W		nan	βL
CLR-4:	Exceptional handling and collections for real-time object-oriented programming applications				elopm	estig	l Us	ran				ion	ĕ	aming
CLR-5:	R-5: Model the System using Unified Modelling approach using different diagrams		ing.	⋖	>	ě =	Tool	ginee	ment		∞ =	nicat	Mgt.) Le
			nee	roblem	sign/de utions	nduct	ern	eng etv	ironm tainal	g	ndividual	ın u	ect	Long
Course	Outcomes (CO): At the end of this course, learners will be able to:		Ingin	g	Desi	Son	Mod	The	Envi	Ethic	īģ	Son	Proj.	-ije
CO-1:	Create programs using object-oriented approach and design methodologies		-	2	2	-	2	i -	-	-	-	-	-	3
CO-2:	CO-2: Construct programs using method overloading and operator overloading			2	2	-	2	-	-	-	-	-	-	3
CO-3:	CO-3: Create programs using inline, friend and virtual functions, construct programs using standard templates		-	2	2	-	2	-	-	-	-	-	-	3
CO-4:	CO-4: Construct programs using exceptional handling and collections		-	2	2	-	2	-	-	-	-	-	-	3
CO-5:	Create Models of the system using UML Diagrams		-	2	2	-	2	-	-	-	-	-	-	3

Unit-1: Introduction to OOPS

Object-Oriented Programming - Features of C++ - I/O Operations, Data Types, Variables-Static, Constants-Pointers-Type Conversions – Conditional and looping statements – Arrays - C++ 11 features - Class and Objects, Abstraction and Encapsulation, Access Specifiers, Methods- UML Diagrams Introduction – Use Case Diagram - Class Diagram.

Unit-2: Methods and Polymorphism

9 Hour

Constructors- Types of constructors - Static constructor and Copy constructor -Destructor - Polymorphism: Constructor overloading - Method Overloading Operator Overloading - UML Interaction Diagrams -Sequence Diagram - Collaboration Diagram - Example Diagram

Unit-3: Inheritance

9 Hour

Inheritance – Types -Single and Multiple Inheritance - Multilevel Inheritance - Hierarchical Inheritance - Hybrid Inheritance - Advanced Functions - Inline, Friend- Virtual - Pure Virtual function - Abstract class - UML State Chart Diagram - UML Activity Diagram

Unit-4: Generic Programming

9 Hour

Generic - Templates - Function templates - Class Templates - Exceptional Handling: try and catch - Multilevel exceptional - throw and throws - finally - User defined exceptional - Dynamic Modeling: Package Diagram - UML Component Diagram - UML Deployment Diagram

Unit-5: Standard Template Library

9 Hour

STL: Containers: Sequence and Associative Container - Sequence Container: Vector, List, Deque, Array, Stack - Associative Containers: Map, Multimap - Iterator and Specialized iterator - Functions of iterator - Algorithms: find(), count(), sort() - Algorithms: search(), merge(), for_each(), transform()

	1.Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Object-Oriented Analysis and Design with	ıT,
Learning	Applications, 3rd ed., Addison-Wesley, May 2007	1
Resources	2. Reema Thareja, Object Oriented Programming with C++, 1st ed., Oxford University Press, 2015	٥

3. Sourav Sahay, Object Oriented Programming with C++, 2nd ed., Oxford University Press, 2017

4. Robert Lafore, Object-Oriented Programming in C++, 4th ed., SAMS Publishing, 2008

- 5. Ali Bahrami, Object Oriented Systems Development", McGraw Hill, 2004
- 6. Craig Larmen, Applying UML and Patterns, 3rd ed., Prentice Hall, 2004

			Continuous Lear	6	C				
	Bloom's Level of Thinking		ormative verage of unit test (50%)	Life I	Long Learning CLA-2 – (10%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	-	20%	-	20%	-		
Level 2	Understand	20%	-	20%	-	20%	-		
Level 3	Apply	30%	-	30%	-	30%	-		
Level 4	Analyze	30%	-	30%	-	30%	-		
Level 5	Evaluate	-	-	-	-	-	-		
Level 6	Create	-	-	-	-	-	-		
	Total 100 %		100 %		100 %	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Sagar Sahani, Amadeus Software Labs, Bangalore, hello.sagarsahni@gmail.com	1.Prof. R. Golda Brunet, GCE, Salem, goldabrunet@gcessalem.edu.in	1. Mr.C.Arun, SRMIST
2. Mr. Janmajay Singh, Fuji Xerox R&D, Japan, janmajaysingh14@gmail.com		2. Mrs.C.G.Anupama, SRMIST