Vinogradov の記号

$$f: X \to \mathbb{C}, \quad g: X \to \mathbb{R}_{>0}$$
 (1)

部分集合 $S \subset X$ とする。

$$x \in S$$
 において $f(x) \ll g(x) \iff {}^{\exists}C \geq 0 \text{ s.t. } \forall s \in S, |f(x)| \leq Cg(x)$

定数 C のことを implicit constant または implied constant という。

Landau の記号

$$g: X \to \mathbb{R}_{>0} \tag{2}$$

 $S\subset X$ に対して O(g(x)) \iff 範囲 $x\in S$ において $f(x)\ll g(x)$ と評価されるような項 f(x) の省略

Landau の記号

$$f(x) = O(g(x)) \ (x \to a) \iff \exists C \ge 0 \ s.t. \ \lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| \le C \tag{3}$$

O(g(x)) $(x \to a)$ とは、 $x \to a$ において同じぐらいの速さで収束する関数全体の集合である。

O(g(x)) $(x \to \infty)$ であれば、 $\deg g(x)$ と等しい次数の多項式等の集合であり、O(g(x)) $(x \to 0)$ であれば、次数の低い項が同じ次数の多項式等の集合である。

正しい表記は $f(x) \in O(g(x))$ $(x \to a)$ である。

$$f(x) = o(g(x)) (x \to a) \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$
 (4)

o(g(x)) $(x \to a)$ とは、 $x \to a$ において g(x) より速く 0 に収束する関数全体の集合である。

つまり、上の表記は正しくは $f(x) \in o(g(x))$ $(x \to a)$ となる。

1. (a) 関数 $f: \mathbb{N} \to \mathbb{C}$ と $F: \mathbb{N} \to \mathbb{R}_{\geq 0}$ に対して、 $f(n) \ll F(n)$ $(n \in \mathbb{N})$ が成り立つとき、実数 $x \geq 1$ に対して、次が成り立つことを示せ。

$$\sum_{n \le x} f(n) \ll \sum_{n \le x} F(n) \tag{5}$$

......

 $\sum_{n\leq x}f(n)=\sum_{n=1}^{[x]}f(n)$ であり、 $\sum_{n\leq x}F(n)=\sum_{n=1}^{[x]}F(n)$ である。つまり、有限和である。

 $f(n) \ll F(n) \quad (n \in \mathbb{N})$ が成り立つので、各自然数 k に対して、次を満たす C>0 が存在する。

$$|f(k)| \le CF(k) \tag{6}$$

よって、1から [x] までの和が次の不等式を満たす。

$$\sum_{n=1}^{[x]} |f(n)| \le C \sum_{n=1}^{[x]} F(n) \tag{7}$$

左辺は三角不等式から次の関係がある。

$$\left| \sum_{n=1}^{[x]} f(n) \right| \le \sum_{n=1}^{[x]} |f(n)| \tag{8}$$

よって、

$$\left| \sum_{n=1}^{[x]} f(n) \right| \le C \sum_{n=1}^{[x]} F(n)$$
 (9)

であるので、

$$\sum_{n \le x} f(n) \ll \sum_{n \le x} F(n) \tag{10}$$

である。

(b) 関数 $f_i: \mathbb{N} \to \mathbb{C}$ と $F_i: \mathbb{N} \to \mathbb{R}_{\geq 0}$ (i = 1, ..., K) に対して、条件 $|f_k(n)| \leq 1, f_k(n) \ll F_k(n)$ $(k \in \{1, ..., K\}, n \in \mathbb{N})$ (但し、ここで implicit constant は絶対定数) が成立すれば、次が成り立つことを示せ。

$$\prod_{k=1}^{K} (1 + f_k(n)) = 1 + O_K \left(\sum_{k=1}^{K} F_k(n) \right)$$
 (11)

.....

$$\prod_{k=1}^{K} (1 + f_k(n)) = 1 + \sum_{k=1}^{K} f_k(n) + \sum_{i,j(i \neq j)} f_i(n) f_j(n) + \dots + \prod_{k=1}^{K} f_k(n)$$
 (12)

 $|f_k(n)| \le 1$ より $f_k(n)$ を複数かけた方がより 0 に近い値となる。

$$0 \le \dots \le |f_k(n)f_i(n)| \le |f_k(n)| \le 1 \tag{13}$$

 $f_k(n) \ll F_k(n)$ より、k = 1, ..., K に対して $C_k > 0$ が存在する。

$$|f_k(n)| \le C_k F_k(n) \tag{14}$$

 $C_M = \max\{C_1, \dots, C_K\}$ とおけば、

$$\left| \sum_{k=1}^{K} f_k(n) \right| \le \sum_{k=1}^{K} |f_k(n)| \le \sum_{k=1}^{K} C_k F_k(n) \le \sum_{k=1}^{K} C_M F_k(n) = C_M \sum_{k=1}^{K} F_k(n)$$
(15)

より、 $\sum_{k=1}^K f_k(n) \ll \sum_{k=1}^K F_k(n)$ であることがわかる。

—要確認—

後ろの項が小さいので次が成り立つ。

$$\sum_{k=1}^{K} f_k(n) + \sum_{i,j(i\neq j)} f_i(n)f_j(n) + \dots + \prod_{k=1}^{K} f_k(n) \ll \sum_{k=1}^{K} F_k(n)$$
 (16)

—要確認—

$$\prod_{k=1}^{K} (1 + f_k(n)) = 1 + O_K \left(\sum_{k=1}^{K} F_k(n) \right)$$
 (17)

2. 集合 X 上の関数 $f,g:X\to\mathbb{R}_{\geq 0}$ に対して関係 \asymp を次のように定義する。

$$F(x) \approx G(x)$$
 $(x \in X) \stackrel{\text{def}}{\iff} F(x) \ll G(x)$ かつ $G(x) \ll F(x)$ $(x \in X)$ (18)

(a) 集合 X 上の関数 $f,g:X\to\mathbb{R}_{\geq 0}$ に対して次が成り立つことを示せ。

$$f(x) + g(x) \asymp \max(f(x), g(x)) \quad (x \in X)$$
(19)

.....

 $f(x) \ge 0, \ g(x) \ge 0 \text{ cbs}.$

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le 2\max(f(x), g(x)) \quad (x \in X)$$
 (20)

よって、 $f(x) + g(x) \ll \max(f(x), g(x))$ である。

$$\left|\max(f(x), g(x))\right| \le f(x) + g(x) \quad (x \in X) \tag{21}$$

よって、 $\max(f(x), g(x)) \ll f(x) + g(x)$ である。

$$f(x) + g(x) \asymp \max(f(x), g(x)) \quad (x \in X)$$
 (22)

(b) 集合 X 上の関数 $f,g:X\to\mathbb{R}_{>0}$ に対して次が成り立つことを示せ。

$$(f(x) + g(x))^{\frac{1}{2}} \approx f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}} \quad (x \in X)$$
(23)

.....

 $f(x) \ge 0, \ g(x) \ge 0 \text{ rads. } \text{ chth } f(x)^{\frac{1}{2}}g(x)^{\frac{1}{2}} \ge 0 \text{ rads.}$

$$\left((f(x) + g(x))^{\frac{1}{2}} \right)^2 = f(x) + g(x) \tag{24}$$

$$\leq f(x) + 2f(x)^{\frac{1}{2}}g(x)^{\frac{1}{2}} + g(x) = \left(f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}}\right)^2$$
 (25)

 $f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}} \ge 0$ であるので 2 乗を外すと次の式が得られる。

$$(f(x) + g(x))^{\frac{1}{2}} \le f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}}$$
(26)

よって、 $(f(x)+g(x))^{\frac{1}{2}} \ll f(x)^{\frac{1}{2}}+g(x)^{\frac{1}{2}}$ である。

相加相乗平均の関係より次の式が得られる。

$$(f(x)g(x))^{\frac{1}{2}} \le \frac{1}{2}(f(x) + g(x)) \tag{27}$$

これを用いて次の不等式が成り立つ。

$$\left(f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}}\right)^2 = f(x) + 2f(x)^{\frac{1}{2}}g(x)^{\frac{1}{2}} + g(x)$$
(28)

$$\leq f(x) + f(x) + g(x) + g(x) = 2(f(x) + g(x)) = \left(2^{\frac{1}{2}}(f(x) + g(x))^{\frac{1}{2}}\right)^{2} \tag{29}$$

この 2 乗を外すことで $f(x)^{\frac{1}{2}}+g(x)^{\frac{1}{2}}\ll (f(x)+g(x))^{\frac{1}{2}}$ である。 これらより次の式が成り立つことがわかる。

$$(f(x) + g(x))^{\frac{1}{2}} \approx f(x)^{\frac{1}{2}} + g(x)^{\frac{1}{2}} \quad (x \in X)$$
(30)

3. 実数 $x \in \mathbb{R}$ に対して、 $\exp(ix) = 1 + O(|x|)$ が成立することを示せ。

.....

 $\exp(ix)$ のテイラー展開

$$\exp(ix) = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \dots$$
 (31)

$$\exp(ix) - 1 = \sum_{k=1}^{\infty} \frac{(ix)^k}{k!}$$
(32)

4. 関数 $\Phi:[1,+\infty)\to\mathbb{C}$ と $F:[1,+\infty)\to\mathbb{R}_{>0}$ に対して次の式が成立するとする。

$$\Phi(x) = 1 + O(F(x)) \quad (x \ge 1)$$
(33)

このとき、次を示せ。

(a) もし、 $\lim_{x \to \infty} F(x) = 0$ だったなら、ある $x_0 = x_0(\Phi)$ が存在して次が成立する。

$$\frac{1}{\Phi(x)} = 1 + O(F(x)) \quad (x \ge x_0) \tag{34}$$

.....

(b) もし、 $\frac{1}{\Phi(x)} \ll 1 \ (x \ge 1)$ だったなら次が成立する。

$$\frac{1}{\Phi(x)} = 1 + O(F(x)) \quad (x \ge 1) \tag{35}$$

但し、ここで implicit constant は $\frac{1}{\Phi(x)} \ll 1$ $(x \ge 1)$ の implicit constant に依存する。

.....

5. 実数 $x \ge 1$ に対して、次が成立することを示せ。

$$\sum_{n \le x} \sum_{d|n} (-1)^d = (-\log 2) \cdot x + O(x^{\frac{1}{2}})$$
 (36)

(Hint: hyperbola method を用いる)

.....

6. 数論的関数 $\chi_4: \mathbb{Z} \to \mathbb{R}, \ r: \mathbb{N} \to \mathbb{R}$ を次のように定める。

$$\chi_4(n) = \begin{cases}
+1 & (n \equiv 1 \pmod{4}) \\
0 & (n \equiv 0 \pmod{2}), \quad r(n) = 4 \sum_{d \mid n} \chi_4(d) \\
-1 & (n \equiv 3 \pmod{4})
\end{cases}$$
(37)

このとき、 $x \ge 1$ に対して、次が成り立つことを示せ。

$$\sum_{n \le x} r(n) = \pi x + O(x^{\frac{1}{2}}) \tag{38}$$

(Hint: hyperbola method を用いる)
(補足:実は、 $n\in\mathbb{N}$ に対して、 $r(n)=\#\{(u,v)\in\mathbb{Z}^2\mid u^2+v^2=n\}$ となること
が知られている。格子点の数え上げと上記の結果を比較してみると良い)

ベルヌーイ Bernoulli 多項式

有理数係数多項式の列 $\{B_k(X)\}_{k=0}^\infty$ を初期値 $B_0(X)=1$ および $k\geq 1$ に対して成立する次の漸化式で定める。

$$\frac{1}{k}\frac{d}{dX}B_k(X) = B_{k-1}(X) \quad$$
かつ
$$\int_0^1 B_k(u)du = 0$$
 (39)

この多項式たち $B_k(X)$ のことを $\overset{\circ}{\mathrm{Bernoulli}}$ 多項式という。

また、多項式 $B_k(X)$ の定数項 $B_k = B_k(0)$ のことを $\operatorname{Bernoulli}$ 数と呼ぶ。

Bernoulli 多項式 $B_n(X)$ は Bernoulli 数 B_k を用いて $B_n(X) = \sum_{k=0}^n \binom{n}{k} B_k X^{n-k}$ と定義することもできる。Bernoulli 数 は次のようにも定義できる。

$$\sum_{j=0}^{k} {k+1 \choose j} B_j = k+1 \quad (k=0,1,2,\dots)$$
 (40)

Bernoulli 多項式の例

$$B_0(X) = 1,$$
 $B_1(X) = X - \frac{1}{2}$ (41)

$$B_2(X) = X^2 - X + \frac{1}{6},$$
 $B_3(X) = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$ (42)

$$B_4(X) = X^4 - 2X^3 + X^2 - \frac{1}{30}, \qquad B_5(X) = X^5 - \frac{5}{2}X^4 + \frac{5}{3}X^3 - \frac{1}{6}X$$
 (43)

1. (a) 自然数 $k \ge 0$ に対して、次が成立することを示せ。

$$B_k(X) = (-1)^k B_k(1 - X) \tag{44}$$

.....

$$Y=1-X$$
 とすると、 $\frac{dY}{dX}=-1$ となる。

$$\frac{1}{k}\frac{d}{dX}(-1)^k B_k(1-X) = \frac{(-1)^{k-1}}{k}\frac{d}{dX}\frac{dX}{dY}B_k(Y)$$
 (45)

$$= (-1)^{k-1} \frac{1}{k} \frac{d}{dY} B_k(Y) \tag{46}$$

$$= (-1)^{k-1} B_{k-1}(Y) \tag{47}$$

$$= (-1)^{k-1} B_{k-1} (1 - X) \tag{48}$$

v=1-u とすれば $\frac{d}{du}v=-1$ である。

$$\int_0^1 (-1)^k B_k (1-u) du = (-1)^{k-1} \int_0^1 B_k (1-u) \frac{dv}{du} du \tag{49}$$

$$=(-1)^{k-1} \int_0^1 B_k(v) dv = 0$$
 (50)

以上により、 $(-1)^k B_k (1-X)$ は Bernoulli 多項式である。

(b) 奇数 $k \ge 3$ に対して、 $B_k = 0$ を示せ。

 $n \in \mathbb{N} \$ とする。

上の結果より次の式が得られる。

$$B_{2n-1}(X) = -B_{2n-1}(1-X), \quad B_{2n}(X) = B_{2n}(1-X)$$
 (51)

これより、 $B_{2n-1}(X) + B_{2n-1}(1-X) = 0$ である。

 $B_{2n-1}(X) = \sum_{i=0}^{2n-1} a_i X^i$ とする。この時、 $B_{2n-1}(X)$ の定数項は a_0 で、 $B_{2n-1}(1-X)$ は $\sum_{i=0}^{2n-1} a_i$ である。

2. (a) 自然数 $k \ge 1$ に対して次が成立することを示せ。

$$B_k(X) = \sum_{j=0}^k X^j B_{k-j}$$
 (52)

.....

(b) 最初の 5 つの Bernoulli 多項式の $B_i(X)$ $(i=0,\ldots,4)$ を求めよ。

.....

3. 実数 $x \ge 1$ と自然数 $K \ge 1$ に対して、

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + \sum_{k=1}^{K} (-1)^k \frac{B_k(\{x\})}{k} x^{-k} + (-1)^K \int_x^{\infty} B_K(\{u\}) u^{-(K+1)} du$$
(53)

したがって

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + \sum_{k=1}^{K} (-1)^k \frac{B_k(\{x\})}{k} x^{-k} + O(x^{-(K+1)})$$
 (54)

	が成立することを示せ。			
4.	$a,b\in\mathbb{R},\ a\leq b,\ K\in\mathbb{N},\ C^K$ -級関数 $f:[a,b] o\mathbb{C}$ とする。この時、 $\mathbf{Euler\text{-}Maclaurin}$ 和公式が成り立つことを示せ。	次の		
	$\sum_{a < n \le b} f(n) = \int_{a}^{b} f(u) du + \sum_{k=1}^{K} (-1)^{k} \left[\frac{B_{k}(\{u\})}{k!} f^{(k-1)}(u) \right]_{a}^{b}$	(55)		
	$-\frac{(-1)^K}{K!} \int_a^b B_K(\{u\}) f^{(K)}(u) du$			
5.				
	$N! = \left(\frac{N}{e}\right)^N \sqrt{N}e^{c_0 + O(\frac{1}{N})}$	(56)		
	これは Gamma 関数の Stirling の公式の特殊な場合になっている。			
	(HINT: Euler-Maclaurin 和公式を利用する。)			
6.	次の積分 I_n について考える。			
	$I_n = \int_0^\pi (\sin x)^n dx$	(57)		
	(a) $I_0=\pi$ および $I_1=2$ を示せ。			
	(b) 整数 $n \ge 0$ に対して次の式を示せ。			
	$I_{n+2} = \frac{n+1}{n+2} \cdot I_n$	(58)		
	(c)次の極限を計算せよ。 $\lim_{n \to \infty} \frac{I_n}{I_{n+1}}$	(59)		

(d)	上記 3 つの結果から次の	Wallis の公式を示せ。	
		$\frac{2}{\pi} = \prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2} \right)$	(60)
			· · · · · · · · · · · · · · · · · · ·
(e)	$e-c_0=\sqrt{2\pi}$ を示せ。		