Тема 18 Държавен изпит

специалност Приложна математика

Диференциална форма на теоремата на Кун и Такер

Анотация

Диференциална форма на теоремата на Кун и Такер Разглеждаме задачата

$$(P) \begin{vmatrix} \min f(x) \\ g_i(x) \le 0, & i = 1, 2, ..., m \\ < c_i, x >= d_i, & l = 1, ..., s \\ x_j \ge 0, & j \in J \subseteq \{1, ..., m\} \end{vmatrix}$$

с функция на Лагранж

$$\Lambda(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{l=1}^{s} v_l(ic_l,x > -d_l),$$

+ $\dot{\iota}^m$ imes R^s , $X = \{ x \, \epsilon \, R^n \lor \forall j \, \epsilon \, J \colon x_j \ge 0 \}$ Която е дефинирана в $D = X \times R_\iota$

Дефиниция: (Условие на Слейтър за (Р))

Казваме, че за (P) е изпълнено условието на *Слейтър*, ако същесвува точка X_0 , удовлетворяваща всички условия на задачата, такава че за всички і, за които g_i не е афинна следва, че $g_i(x_0)$ <0 (неравенството е изпълнено строго).

Теорема 1. (Теорема на Кун и Такър за (Р) – общ случай)

Нека функциите $f, \{g_i\}_{i=1}^m$ са изпъкнали в X . Нека е изпълнено условието на Слейтър. Тогава ако $X^{\dot{c}}$ е решение на задачата (Р), то съществуват вектори $+\dot{c}^m, v^{\dot{c}} \epsilon R^s$, такива че ($X^{\dot{c}}, \lambda^{\dot{c}}, v^{\dot{c}}$) е седлова точка за Λ , т.е.

$$+\dot{c}^{m} \times R^{s}: \Lambda(x^{i}, \lambda, v) \stackrel{(1)}{\leq} \Lambda(x^{i}, \lambda^{i}, v^{i}) \stackrel{(2)}{\leq} \Lambda(x, \lambda^{i}, v^{i})$$

$$\forall (x, \lambda, v) \in X \times R_{i}$$

Твърдение (характеризация на изпълналите функции)

Нека $Y \subset \mathbb{R}^n$ е непразно, изпъкнало и отворено множество и $f: Y \to \mathbb{R}$ е диференцируема във всяка точка от Y. Тогава следните са еквивалентни: $(1) f e \, u \! s \! n \! b \! s \! b \! c$

$$(2)f(y) \ge f(x) + i f'(x)$$
, $y - x i$, за всеки x , $y \in Y$

Тема 18

Теорема 2. (Диференциална форма на теоремата на Кун и Такър)

Нека функциите $f, \{g_i\}_{i=1}^m$ са изпъкнали в X. Нека е изпълнено условието на Слейтър. Нека X е точка и $f, \{g_i\}_{i=1}^m$ са диференцируеми в нея. Тогава необходимо и досатъчно условие тази точка X да е решение на задачата е:

"Съществува вектор $\stackrel{+ \dot{\iota}^m}{\lambda \epsilon R_{\dot{\iota}}}$ и вектор $^{v \epsilon R^s}$, за които са верни следните 8 условия:

$$(x1)\frac{\partial \Lambda}{\partial x_i} = 0, j \notin J$$

$$(x2)\frac{\partial \Lambda}{\partial x_{i}} \ge 0, j\epsilon J$$

$$(x3)x_i \ge 0, j \in J$$

$$(x4)x_j\frac{\partial \Lambda}{\partial x_j} = 0, j\epsilon J$$

$$(\lambda 1) \frac{\partial \Lambda}{\partial \lambda_j} \le 0, j = 1,..., m$$

$$(\lambda 2)\lambda_i \geq 0, j=1,...,m$$

$$(\lambda 3) \lambda_j \frac{\partial \Lambda}{\partial \lambda_i} = 0, j = 1,..., m$$

$$(v1)\frac{\partial \Lambda}{\partial v_l} = 0, s = 1,...,s$$
 "

Доказателство:

(=>)Нека X^{i} е решение на задачата. От общата теорема на Кун и Такър следва, че съществуват вектор $\lambda^{i}_{i} \in R_{i}^{m}$ и вектор $v^{i}_{i} \in R^{s}$, за които (X^{i}_{i} , λ^{i}_{i} , v^{i}_{i} е седлова за Λ , те.

$$+\dot{c}^{m} \times R^{s}: \Lambda(x^{i}, \lambda, v) \stackrel{(1)}{\leq} \Lambda(x^{i}, \lambda^{i}, v^{i}) \stackrel{(2)}{\leq} \Lambda(x, \lambda^{i}, v^{i})$$

$$\forall (x, \lambda, v) \in X \times R_{i}$$

От (2) следва, че в $X, \Lambda(x, \lambda^i, v^i)$ има минимум(в частност локален екстремум) в т. X^{i} . Но понеже Λ е фиференцируема, то веднага следва, че $\Lambda_{x_{j}}(x,\lambda^{i},v^{i})=0$. за всички x, от което следват (x1),(x2),(x4). (x3) следва от самия факт, че сме в X. От (1) пък следва, че λ^i, v^i е глобален максимум на $\Lambda(x^i, \lambda, v)$ в R.

Понеже Λ е диференцируема, то следва, че $\Lambda_{\lambda_j}(x,\lambda^i,v^i) = \Lambda_{v_s}(x,\lambda^i,v^i) = 0$ λ_j и v_s . От тук веднага следват ($\lambda 1 - 3 \, \iota$ и (v1) .

(<=) Нека за точка x^{i} съществуват векторите λ^{i} , v^{i} , за които са изпълнени условията $(x_1-4), (\lambda_1-3i) u (v_1)$.

Ще докажем първо (2): Понеже функцията $\Lambda(x,\lambda^i,v^i)$ е изпъкнала по х. Тогава имаме $\Lambda(x,\lambda^i,v^i) \ge \Lambda(x^i,\lambda^i,v^i) + i L_x(x^i,\lambda^i,v^i), x-x^i >$ неравенството $L_{\mathbf{x}}^{'}(\mathbf{x}^{i}, \boldsymbol{\lambda}^{i}, \mathbf{v}^{i})$ е градиента на Λ в $(\mathbf{x}^{i}, \boldsymbol{\lambda}^{i}, \mathbf{v}^{i})$.

От (x3) знаем, че x^{i} е от X .От (x1) и (x4) следва, че x^{i} x^{i} , x^{i} , x^{i} x^{i} =0. От (x2) и (х3) следва, че $< L_x^i(x^i,\lambda^i,v^i),x>\geq 0$ за $x \in X$. Следователно $\forall x \in X : \Lambda(x, \lambda^{i}, v^{i}) \geq \Lambda(x^{i}, \lambda^{i}, v^{i}) + i L_{x}(x^{i}, \lambda^{i}, v^{i}), x \geq \Lambda(x^{i}, \lambda^{i}, v^{i}).$ с което доказахме (2).

Имаме, че функцията $\Lambda(x^i,\lambda,v)$ е линейна по λ,v в $+\dot{\iota}^m \times R^s$. Следователно там е в сила представянето $\Lambda(x^{i},\lambda,v)=\Lambda(x^{i},\lambda^{i},v^{i})+\dot{\iota}L_{\lambda}^{'},\lambda-\lambda^{i}>+\dot{\iota}L_{v}^{'},v-v^{i}>\dot{\iota}$ От (v1) следва, че $\overset{\iota}{\iota}L_{v}^{'}, v-v^{\dot{\iota}}>\overset{\iota}{\iota}=0$. От $(\lambda 3)$ следва, че $\overset{\iota}{\iota}L_{\lambda}^{'}, \lambda^{\dot{\iota}}\geq 0$. От $(\lambda 1)$, $(\lambda 2)$ следва, че $\dot{\iota} L_{\lambda}$, $\lambda > \dot{\iota}$ ≤ 0 . Следователно $+\dot{\iota}^{m} \times R^{s}: \Lambda(x^{i},\lambda,v) \leq \Lambda(x^{i},\lambda,v) - \dot{\iota}L'_{\lambda},\lambda - \lambda^{i} \geq \Lambda(x^{i},\lambda^{i},v^{i}),$ $\forall \lambda, \nu \in R$

Тема 18

С което доказахме и (1).

Литература:

[1] Записки по МО2, спец. ПМ, Н. Златева.

Темата е разработена от Велико Дончев, уч. 2011/2012 г.