

Cities

- Stockholm
- Västerås
- Uppsala
- Norrköping
- Gothenburg
- Malmö
- Helsingborge
- Jönköping
- Gävle
- Örebro

Transmission Lines Map

Dispatching Problem Graph

Nodes

10 cities:

a. Stockholm

b. Västerås

c. Uppsala

d. Norrköping

e. Gothenburg

f. Malmö

g. Helsingborge

h. Jönköping

i. Gävle

j. Örebro

13 Power Plants:

Forsmark 1

Forsmark 2

Forsmark 3

Oskarshamn 3

Ringhals 1

Ringhals 3

Ringhals 4

Blaiken

Jädraås

Markbygden Wind Farm

Juktan Pumped-Storage

Porjus Hydroelectric

Harsprånget Hydroelectric

power station

Harrsele Kraftverk station

Messaure

Letsi

Kilforsen

Trängslet Dam

Power Plants Table

Power Plant	Latitude	Longitude	Capacity(MW)	Туре
Forsmark 1	60.405508	18.161366	984	
Forsmark 2	60.403966	18.173425	1120	Nuclear
Forsmark 3	60.402753	18.175163	1167	
Oskarshamn 3	57.416095	16.673137	1400	
Ringhals 1	57.261988	12.111311	865	
Ringhals 3	57.257962	12.106998	1070	
Ringhals 4	57.25665	12.108522	1120	
Blaiken	65.42525	17.332278	250	
Jädraås	60.803278	16.29475	203	Wind
Markbygden Wind Farm	65.416667	20.666667	4000	
Juktan Pumped-Storage Hydroelectric Power Station	64.960185	17.579842	334	
Porjus Hydroelectric Power Station	66.954281	19.796076	480	
Harsprånget Hydroelectric power station	66.885	19.8148	977	
Harrsele Kraftverk Hydroelectric power station	64.0399	19.5529	223	Hydroelectric
Messaure	66.41	20.2	460	
Letsi	66.5045	20.3838	456	
Kilforsen	63.3244	16.4542	415	
Trängslet Dam	61.38	13.73	330	
			Power Sum:	
			15854	

Cities Table

City	Latitude	Longitude	Population	Demand(MW)
Stockholm	59.334591	18.06324	972,647	2917
Västerås	59.611366	16.545025	127,799	383
Uppsala	59.8498	59.8498	376,354	1129
Norrköping	58.588455	16.188313	137,326	411
Gothenburg	57.70887	11.97456	570,000	1710
Malmö	55.5932	13.0214	316,588	949
Helsingborge	56.0424	12.721	108,334	325
Jönköping	57.7713	14.165	93,797	281
Gävle	60.667	17.1666	75,451	226
Örebro	59.2669	15.1965	155,989	467
		Population Sum:	2,934,285	
		Power Plants Production:	15854	
		Summation of demands:	8798	
		Average Power Per Capita:	3,000	

Transmission Lines Table

Line	Nodes	Length(km)	Bundles
1	1 4	842	2
2	2 4	886	2
3	3 4	74	2
4	4 6	282	2
5	5 6	450	2
6	6 10	94	1
7	7 10	220	2
8	10 19	400	2
9	10 14	124	1
10	8 11	546	2
11	9 11	52	1
12	11 12	545	2
13	11 13	95	2
14	11 14	95	1
15	11 15	125	2
16	13 15	119	2

			_
Line	Nodes	Length(km)	Bundles
17	14 15	63	2
18	10 15	100	1
19	15 16	90	2
20	10 18	312	2
21	16 18	210	2
22	16 17	96	2
23	17 18	215	2
24	3 21	165	2
25	4 21	214	2
26	4 18	144	2
27	21 22	1015	2
28	20 21	210	1
29	18 21	235	2
30	18 20	272	2
31	18 20	220	2
32	20 23	878	2

Finding Transmission Lines Lengths

https://www.nhc.noaa.gov/gccalc.shtml

Latitude/Longitude Distance Calculator

Enter latitude and longitude of two points, select the desired units: nautical miles (n mi), statute miles (sm), or kilometers (km) and click **Compute**. Latitudes and longitudes may be entered in any of three different formats, decimal degrees (DD.DD), degrees and decimal minutes (DD:MM.MM) or degrees, minutes, and decimal seconds (DD:MM:SS.SS).

Important Note: The distance calculator on this page is provided for informational purposes only. The calculations are approximate in nature and may differ a little from the distances as given in the official forecasts and advisories.

Click here to find your latitude/longitude

Input Location Points Latitude 1 Longitude 1 57.416095 N V 16.673137 E V Latitude 2 Longitude 2 54.45 N V 14.865 E V Distance (rounded to the nearest whole unit) 348 km V Compute Reset

Dispatching Graph

Solution Algorithm

```
In [89]: import mip
                                    from mip import Model, xsum, minimize, BINARY
In [90]: d = \{4:1710, 6:467, 10:383, 11:226, 14:1129, 15:2917, 16:411, 18:281, 20:949, 21:325\}
                                    M = \{1:456, 2:460, 3:3055, 5:223, 7:334, 8:4000, 9:203, 12:250, 13:3271, 17:1400, 19:1457, 22:415, 23:330\}
In [91]: I = [4, 6, 10, 11, 14, 15, 16, 18, 20, 21]
                                     J = [1, 2, 3, 5, 7, 8, 9, 12, 13, 17, 19, 22, 23]
In [92]: c = \{(1,4):842, (2,4):886, (3,4):74, (4,6):282, (5,6):450, (6,10):94, (7,10):220, (10,19):400, (10,14):124, (8,11):546, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (10,14):124, (1
                                                        (9,11):52, (11,12):545, (11,13):95, (11,14):95, (11,15):125, (13,15):119, (14,15):63, (10,15):100, (15,16):90,
                                                        (10,18):312, (16,18):210, (16,17):96, (17,18):215, (3,21):165, (4,21):214, (4,18):144, (21,22):1015, (20,21):210,
                                                        (18,21):235, (18,20):356, (20,23):878}
In [93]: B = \{(1,4):2, (2,4):2, (3,4):2, (4,6):2, (5,6):2, (6,10):1, (7,10):2, (10,19):2, (10,14):1, (8,11):2, (9,11):1, (11,12):2, (10,14):1, (11,12):2, (10,14):1, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12):2, (11,12)
                                                        (11,13):2, (11,14):1, (11,15):2, (13,15):2, (14,15):2, (10,15):1, (15,16):2, (10,18):2, (16,18):2, (16,17):2,
                                                        (17,18):2, (3,21):2, (4,21):2, (4,18):2, (21,22):2, (20,21):1, (18,21):2, (18,20):2, (20,23):2
In [94]: model = mip.Model()
                                    x = \{\}
                                     for i in I:
                                                    for j in J:
                                                                   if ((i,j) in c or (j,i) in c) and not ((i,j) in x or (j,i) in x):
                                                                                   if i > i:
                                                                                                  x[i,i] = model.add var(var type = mip.INTEGER)
                                                                                    else:
                                                                                                  x[i,j] = model.add var(var type = mip.INTEGER)
```

Solution Algorithm Cont.

```
In [95]: for i in I:
             for j in I:
                 if ((i,j) in c or (j,i) in c) and not ((i,j) in x or (j,i) in x):
                         x[j,i] = model.add var(var type = mip.INTEGER)
                         x[i,j] = model.add var(var type = mip.INTEGER)
In [96]: seen = {}
         for i in I:
             constraints = []
             constraints2 = []
             for j in I + J:
                 if (i,j) in x and (j,i) in x:
                     if i < j:
                         print(str(i) + "," + str(j))
                         print("-" + str(j) + "," + str(i))
                         constraints.append(x[i,j])
                         constraints2.append(x[j,i])
                     else:
                         print(str(i) + "," + str(j))
                         print("-" + str(j) + "," + str(i))
                         constraints.append(x[i,j])
                         constraints2.append(x[j,i])
                 elif (i,j) in x:
                     print(str(i) + "," + str(j))
                     constraints.append(x[i,j])
                 elif (j,i) in x:
                     print(str(j) + "," + str(i))
                     constraints.append(x[j,i])
             model.add constr((xsum(constraints) - xsum(constraints2)) >= d[i])
             print("*********")
```

Output

