Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Cálculo Numérico Computacional

Prof^{a.} Larissa A. de Freitas

Relatório 4 - Diferenciação e Integração Numérica

1) O trabalho realizado por uma força F(x) cujo ângulo entre a direção do movimento e a força é dado por $\theta(x)$, pode ser obtido pela seguinte fórmula:

$$W = \int_{x_0}^{x_n} F(x) \cos(\theta(x)) dx$$

Em que x_0 e x_n são as posições inicial e final, respectivamente.

Calcule a melhor aproximação ao trabalho realizado, W, ao puxar um bloco da posição 0 até à posição 30 sabendo que a força aplicada e o ângulo usado são dados na tabela seguinte.

Х	0	2,5	5	15	20	25	30
F(x)	0	7	9	14	10,5	12	5
θ(x)	0,5	0,9	1,4	0,9	1,3	1,48	1,5

Observação: Verificam-se 3 grupos de espaçamentos distintos.

- a) Aplicar o Método de 1/3 de Simpson Repetido no Grupo 1, o qual possui 2 subintervalos, h = 2,5.
- b) Aplicar o Método do Trapézio Repetido no Grupo 2, o qual possui 1 subintervalo, h = 10.
- c) Aplicar o Método do 3/8 Simpson Repetido no Grupo 3, o qual possui 3 subintervalos, h = 5.
- 2) Para os problemas de valor inicial

A)
$$y' = x^2 + y^2$$

 $y(0) = 0$

B)
$$y' = x + y$$

 $y(0) = 1$

- a) Calcule y(0,5) para o problema A e y(0,2) para o problema B usando o Método de Euler. Considere h = 0,1 e h = 0,05.
- b) Compare os resultados obtidos na letra do problema A e B com h = 0.1 e h = 0.05.