Rate Feasibility in Wireless Networks INFOCOM 2008

Ramakrishna Gummadi, UIUC (speaker)

Kyomin Jung, MIT

Devavrat Shah, MIT

RS Sreenivas, UIUC

Simple abstraction of a wireless network:

Vertices: wireless nodes

Edges: possible communication links

Simple abstraction of a wireless network:

Vertices: wireless nodes

Edges: possible communication links

Assume each link has a unit capacity (without interference)

Simple abstraction of a wireless network:
 Vertices: wireless nodes
 Edges: possible communication links

- Assume each link has a unit capacity (without interference)
- But Interference ⇒ Not all links can be simultaneously active

Simple abstraction of a wireless network:
 Vertices: wireless nodes
 Edges: possible communication links

- Assume each link has a unit capacity (without interference)
- But Interference ⇒ Not all links can be simultaneously active
- A fundamental question: Can a given vector of link demands be satisfied simultaneously?

Rate Feasibility

- $lue{\Lambda}$ set of all Rate Vectors for which there exists a TDMA schedule.
- r the query Rate Vector
- Problem: Does $r \in \Lambda$?

Rate Feasibility

- $lue{\Lambda}$ set of all Rate Vectors for which there exists a TDMA schedule.
- r the query Rate Vector
- Problem: Does $\mathbf{r} \in \Lambda$?
- T the incidence matrix for the set of all subsets of non conflicting links

$$z = min \ \mathbf{1}^T \mathbf{x}$$
 $\mathbf{T} \mathbf{x} = \mathbf{r},$

Then $\mathbf{r} \in \Lambda$ iff $z \leq 1$

Is r "feasible"?

- An answer to whether a given rate vector is feasible depends on the following:
 - 1. Graph structure (the specific problem instance)
 - 2. Interference constraints (the problem model critical for the computational complexity)

Interference

Primary Constraints: Links conflict when they share a node.

Interference

Secondary constraints: Links can conflict even while not sharing a common node.

Links (p_i, p_j) and (p_k, p_l) conflict

Background ...

Primary and Secondary constraints (appropriate for wireless networks): problem is NP-hard [Arikan,'84]

Background ...

- Primary and Secondary constraints (appropriate for wireless networks): problem is NP-hard [Arikan,'84]
- Primary alone: Polynomial scheduling algorithms exist [Hajek, Sasaki '88]

Background ...

- Primary and Secondary constraints (appropriate for wireless networks): problem is NP-hard [Arikan,'84]
- Primary alone: Polynomial scheduling algorithms exist [Hajek, Sasaki '88]
- Question: Are there restricted subclasses of wireless networks that are tractable?

Our Results ...

- Bounded density
 - A randomized approximation algorithm
 - More generally relevant to membership in complex convex sets

Our Results ...

- Bounded density
 - A randomized approximation algorithm
 - More generally relevant to membership in complex convex sets
- Fixed width slab
 - Generalize results on fractional coloring unit disk graphs to a more general class
 - Deterministic, Exact solution.

Adjoint Graph

- Adjoint Graph:
 - Vertices Link midpoints
 - Edges defined by link conflicts (both primary and secondary)
- Communication (Interference) radius $r_C(r_I)$ for wireless nodes \Rightarrow Structure of its adjoint.
- Link Rate-feasibility ≡ Node rate-feasibility in adjoint graph with independent sets.

Bounded density

Let $B(v,R)=|\{u\in V:u\neq v,d(u,v)< R\}|$ Then, G has bounded density D>0, if for all $v\in V$

$$\frac{B(v,R)}{R^2} \le D$$

- Bounded density of wireless graph ⇒ Bounded density of adjoint
- $\blacksquare \exists R > 0$ such that two vertices farther than R in the adjoint have no edge.

Partition the graph into:

- Regions, small enough to be efficiently solved
- Boundaries, thick enough separate them

Partition the graph appropriately.

- Partition the graph appropriately.
- Solve for feasible schedules in each region

- Partition the graph appropriately.
- Solve for feasible schedules in each region
- Merge them to get a global schedule (schedule satisfies everyone except nodes in boundary)

- Partition the graph appropriately.
- Solve for feasible schedules in each region
- Merge them to get a global schedule (schedule satisfies everyone except nodes in boundary)
- Randomize the boundary and compute an average schedule obtained over sufficiently large iterations. (such that its unlikely for a node to fall in the boundary.)

Main Properties

(w.h.p.) Given $\epsilon > 0$:

(1) If $\mathbf{r} \in \Lambda$, algorithm outputs a TDMA schedule $\hat{T} = (\alpha_k, I_k)_{k \leq M}$ (with M = poly(n)), such that:

$$(1 - \epsilon)\mathbf{r} \le \sum_{k} \alpha_k I_k,$$

(2) If $(1 - \epsilon)\mathbf{r} \notin \Lambda$, it declares NOT FEASIBLE.

■ Complexity is $O\left(\frac{n\log n2^{O\left(\frac{R^2D}{\epsilon^2}\right)}}{\epsilon}\right) \approx O(n\log n)$.

Fixed width slab

Assume wireless nodes are restricted in one coordinate. (e.g. Y- dimension bounded, while X can range all over: IVHS)

Adjoint Structure

- Represent the vertex corresponding to the link between \mathbf{p}_i , \mathbf{p}_j as $(\mathbf{p}_i, \mathbf{p}_j)$. Then:
 - 1. There cannot be an edge between vertices $(\mathbf{p}_i, \mathbf{p}_j)$ and $(\mathbf{p}_k, \mathbf{p}_l)$ if $\|(\mathbf{p}_i, \mathbf{p}_j) (\mathbf{p}_k, \mathbf{p}_l)\|_2 \ge r_c + r_i$
 - 2. There will be an edge between vertices $(\mathbf{p}_i, \mathbf{p}_j)$ and $(\mathbf{p}_k, \mathbf{p}_l)$ if $\|(\mathbf{p}_i, \mathbf{p}_j) (\mathbf{p}_k, \mathbf{p}_l)\|_2 < r_i r_c$

Useful Results

■ Let *M* be the incidence matrix for the set of all independent sets of a graph *G*. Fractional coloring on *G* is to solve:

$$z = min \ \mathbf{1}^T \mathbf{x}$$
 $\mathbf{M} \mathbf{x} \geq \mathbf{1}$ $\mathbf{x} \geq \mathbf{0}$

Fractional coloring problem on a Unit Disk Graph has polynomial solution if nodes are within a fixed width slab. [Matsui 02]

Contrast with Rate Feasibility

Fractional coloring algorithms solve a Node based rate feasibility problem with equal rates.

Contrast with Rate Feasibility

- Fractional coloring algorithms solve a Node based rate feasibility problem with equal rates.
- Wireless adjoints do not have unit disk graph structure.

Key Observations

1. The results for unit disk graphs can be extended to a more general class called (d_{min}, d_{max}) graphs, which includes our wireless adjoints.

Key Observations

- 1. The results for unit disk graphs can be extended to a more general class called (d_{min}, d_{max}) graphs, which includes our wireless adjoints.
- 2. The *equal rates* in fractional coloring can be generalized to *arbitrary rates*.

(d_{min}, d_{max}) - graphs

G(P) = (P, E) induced by point set $P \subseteq \{(x, y) \in \mathbb{R}^2\}$ satisfies the following properties:

1. Property P1:

$$\forall \mathbf{p}_1, \mathbf{p}_2 \in P, \|\mathbf{p}_1 - \mathbf{p}_2\| \ge d_{max} \Rightarrow (\mathbf{p}_1, \mathbf{p}_2) \notin E$$

- 2. Property P2: $\|\mathbf{p}_1 \mathbf{p}_2\| < d_{min} \Rightarrow (\mathbf{p}_1, \mathbf{p}_2) \in E$
 - If $d_{min} = d_{max}$, we get Unit Disk Graphs.
 - Note: Between d_{min} and d_{max} we have no restriction.

(d_{min}, d_{max}) - graphs

■ Theorem: Matsui's algorithm can be generalized to (d_{min}, d_{max}) graphs.

Proof idea: The properties P1 and P2, though implicitly buried together in the specification of the unit disk graphs, are actually only needed separately.

Rate Feasibility on Fixed Width Slabs

- Wireless adjoints are $(r_I r_C, r_I + r_C)$ graphs.
- Apply the Fractional Coloring algorithm, generalized to arbitrary rates.
- Works in polynomial time, due to our generalization from unit disk graphs to (d_{min}, d_{max}) graphs.

Conclusion and Future interests

- Have shown two relevant subclasses where rate feasibility is tractable for wireless networks, even though the general problem is NP-hard.
- Negatives: These are quite centralized descriptions of the algorithms.
- Potential interest for practicality: Finding even lower complexity distributed versions.
- Integrate Rate Feasibility checking seamlessly into cross layer design.

Thank you for your attention!

...Questions?