CS601: Software Development for Scientific Computing

Autumn 2023

Week5: Matrix Computations with Dense Matrices, Library functions

Computational Intensity – Matrix-Matrix Product

- Words moved = $n^3+3n^2 = n^3+O(n^2)$
- Number of arithmetic operations = 2n³ (from slide 35)
- computational intensity q≈2n³/n³ = 2. (computation to communication ratio)
- Can we do better?

Insight - Data reuse

 How many memory accesses needed to compute a row of C, where 4096x4096 are the sizes of matrices.

 How many memory accesses needed to compute a tile of C of size 64x64?

Blocked Matrix Multiply

• For N=4:

$$\begin{bmatrix} Cj \\ = \end{bmatrix} \begin{bmatrix} Cj \\ + \end{bmatrix} \begin{bmatrix} A \\ \end{bmatrix} * \begin{bmatrix} Bj \\ \end{bmatrix} = \begin{bmatrix} Cj \\ \end{bmatrix} \begin{bmatrix} n \\ + \sum \\ k=1 \end{bmatrix} * \begin{bmatrix} A(:,k) \\ \end{bmatrix} = \begin{bmatrix} Bj(k,:) \\ \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

for k=1 to n
$$\begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

.....

for k=1 to n
$$\begin{bmatrix} c_{14} \\ c_{24} \\ c_{34} \\ c_{44} \end{bmatrix} = \begin{bmatrix} c_{14} \\ c_{24} \\ c_{34} \\ c_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{14} \\ b_{24} \\ b_{34} \\ b_{44} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} & C_{1} & C_{2} & C_{3} & C_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

j=1 for k=1 to n
$$\begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

$$k=1 \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} + \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} * [b_{11}]$$
 First row of B_1

$$= \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{11}b_{11} \\ a_{21}b_{11} \\ a_{31}b_{11} \\ a_{41}b_{11} \end{bmatrix}$$

- What is required to be in fast memory
- What is operated upon

Nikhil Hegde

 B_3

 B_4

 b_{24}

 b_{34}

$$k=3 \quad \begin{bmatrix} c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} + \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} a_{23} & a_{24} \\ a_{33} & a_{34} \\ a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

$$k=3 \quad \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} \\ a_{41}b_{11} + a_{42}b_{21} \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{33} \\ a_{43} \end{bmatrix} * [b_{31}]$$

$$= \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \\ c_{41} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} \\ a_{31}b_{11} + a_{32}b_{21} \\ a_{41}b_{11} + a_{42}b_{21} \end{bmatrix} + \begin{bmatrix} a_{13}b_{31} \\ a_{23}b_{31} \\ a_{33}b_{31} \\ a_{33}b_{31} \\ a_{43}b_{31} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{42} & C_{43} & C_{44} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{42} & C_{43} & C_{44} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{42} & C_{43} & C_{44} & C_{44} \end{bmatrix} + \begin{bmatrix} C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} &$$

$$\begin{bmatrix} C_{11} & C_{2} & C_{3} & C_{4} & C_{1} & C_{2} & C_{3} & C_{4} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{42} & C_{43} & C_{44} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

for k=1 to n
$$\begin{bmatrix} c_{12} \\ c_{22} \\ c_{32} \\ c_{42} \end{bmatrix} = \begin{bmatrix} c_{12} \\ c_{22} \\ c_{32} \\ c_{42} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} * \begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \\ b_{42} \end{bmatrix}$$

- And so on..
- At any point, you need C_j, B_j, and one column of A to be in fast memory

Computational Intensity - Blocked Matrix Multiply

```
for j=1 to N

//Read entire Bj into fast memory

//Read entire Cj into fast memory

for k=1 to n

//Read column k of A into fast memory

C(*,j)=C(*,j) + A(*,k)*Bj(k,*)

//Write Cj back to slow memory

Nn² words read: each column of B read once.

//Read column k of A into fast memory column of A read N times

C(*,j)=C(*,j) + A(*,k)*Bj(k,*)

//Write Cj back to slow memory

Number of arithmetic operations = 2n^3

read/write each entry of C to memory once.
```

Blocked Matrix Multiply - General

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1p} \\ A_{21} & A_{22} & \dots & A_{2p} \\ & \vdots & & & \\ A_{q1} & A_{q2} & \dots & A_{qp} \end{bmatrix}$$

$$\begin{bmatrix} B_{11} & B_{12} & \dots & B_{1r} \\ B_{21} & B_{22} & \dots & B_{2r} \\ & & \vdots & & \\ B_{p1} & B_{p2} & \dots & B_{pr} \end{bmatrix}$$

- $A, B, C \in \mathbb{R}^{n \times n}$
- We wish to update C block-by-block: $C_{ij} = C_{ij} + \sum_{k=1}^{p} A_{ik}B_{kj}$
 - Assume that blocks of A, B, and C fit in cache. C_{ij} is roughly n/q by n/r, A_{ij} is roughly n/q by n/p, B_{ij} is roughly n/p by n/r.
 - But how to choose block parameters p, q, r such that assumption holds for a cache of size *M*?
 - i.e. given the constraint that $\frac{n}{a} \times \frac{n}{r} + \frac{n}{a} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

Blocked Matrix Multiply - General

• Maximize $\frac{2n^3}{qrp}$ subject to $\frac{n}{q} \times \frac{n}{r} + \frac{n}{q} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

$$-q_{opt} = p_{opt} = r_{opt} \approx \sqrt{\frac{n^2}{3M}}$$

Assumption: $M \ll 3n^2$ and cache can hold M floating point numbers

- Each block should roughly be a square matrix and occupy one third of the cache size
- Can we design algorithms that are independent of cache size?

Recursive Matrix Multiply

- Cache-oblivious algorithm
 - No matter what the size of the cache is, the algorithm performs at a near-optimal level
- Divide-conquer approach

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- Apply the formula recursively to $A_{11}B_{11}$ etc.
 - Works neat when n is a power of 2.
- What layout format is preferred for this algorithm?
 - Row-major or Col-major? Neither.

Recursive Matrix Multiply

Cache-oblivious Data structure

```
      1
      2
      5
      6
      17
      18
      21
      22

      3
      4
      7
      8
      19
      20
      23
      24

      9
      10
      13
      14
      25
      26
      29
      30

      11
      12
      15
      16
      27
      28
      31
      32

      33
      34
      37
      38
      49
      50
      53
      54

      35
      36
      39
      40
      51
      52
      55
      56

      41
      42
      45
      46
      57
      58
      61
      62

      43
      44
      47
      48
      59
      60
      63
      64
```

- Matrix entries are stored in the order shown
 - E.g. row-major would have 1-8 in the first row, followed by 9-16 in the second and so on.

Recursive Matrix Multiply

Illustration: Cache-oblivious Data structure

Why this is better for recursive divide-conquer algorithm?

Reading a11 gets you nearby elements in memory that are actually needed immediately to compute A11*B11 - better spatial locality. There is also better temporal locality. How?

Efficiency Considerations

- Storage layout
- Data movement overhead
- Cache details (size)
- Parallel functional Units (Vector units)

Data Movement Overhead - Example

- gaxpy (y = y + Ax) vs. Outer product $(A = A + yx^T)$
- What is the data movement overhead? assume a vector of dimension n can be read with one memory read

gaxpy

```
// Read y into fast memory
// Read x into fast memory
for i=1 to n
   //Read column c<sub>i</sub> of A into fast memory
for j=1 to n
   y[j]=y[j]+c<sub>i</sub>x[j]
//Write y into slow memory
```

Outer product

Parallel Functional Units

- IBM's RS/6000 and Fused Multiply Add (FMA)
 - Fuses multiply and an add into one functional unit (c=c+a*b)
 - The functional unit consists of 3 independent subunits
 - Pipelining

 - Suppose the FMA unit takes 3 cycles to complete, how many cycles do you need to execute the above code snippet?
 - With loop unrolled 4 times? Assume n is divisible by 4.

Exercise: Storage Layout Considerations

 Assume column-order storage for A, B, and C. Which implementation scheme for matmul is better? Why?

Summary: unblocked Matrix Multiplication - Loop Orderings and Properties

Loop Order	Inner Loop	Inner Two Loops	Inner Loop Data Access
i j k	dot	Vector x Matrix	A by row, B by column
jki	saxpy	gaxpy	A by column, C by column
kji	saxpy	Outer product	A by column, C by column
jik			
ikj			
kij			

Linear Algebra in Scientific Computing

- Not just matrix multiplication (matmul!)
- Solving system of equations: Ax=b (e.g. using Gaussian Elimination)
- Computing Least Squares: choose x to minimize ||Ax-b||₂
 - Overdetermined or underdetermined; Unconstrained, constrained, or weighted
- Computing Eigenvalues and Eigenvectors of Matrices (Symmetric and Unsymmetric)
 - Standard ($Ax = \lambda x$), Generalized ($Ax = \lambda Bx$)
- Representing Different matrix structures
 - Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...
- Capturing level of detail
 - error bounds, extra-precision, other options

Linear Algebra Software

- Goals: programmer productivity, readability, robustness, portability, machine efficiency
- Examples
 - EISPACK (for computing eigenvalue problems)
 - BLAS
 - LAPACK
 - Many more..
- Contain subroutines / functions that implement high-level mathematical operations described in the previous slide

BLAS – Basic Linear Algebra Subroutines

- Level-1 or BLAS-1 (46 operations, routines operating on vectors mostly)
 - axpy, dot product, rotation, scale, etc.
 - 4 versions each: Single-precision, double-precision, complex, complex-double (z)
 - E.g. saxpy, daxpy, caxpy etc.
 - Do O(n) operations on O(n) data.
- Level-2 or BLAS-2 (25 operations, routines operating on matrix-vectors mostly)
 - E.g. GEMV $(\alpha A.x + \beta y)$, GER (Rank-1 update $A = A + y.x^T$), Triangular solve (y = T.x, T is a triangular matrix) etc.
 - 4 versions each, do O(n²) operations on O(n²) data.

BLAS – Basic Linear Algebra Subroutines

- Level-3 or BLAS-3 (9 basic operations, routines operating on matrix-matrix mostly)
 - GEMM ($C = \alpha A.B + \beta C$),
 - Multiple triangular solve (Y = TX, T is triangular, X is rectangular)
 - Do O(n³) operations on O(n²) data.
- Why categorize as BLAS-1, BLAS-2, BLAS-3?
 - Performance

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html