Правила вычисления предела

Чтобы вычислить $\lim_{x\to a} f(x)$, необходимо.

- 1. Попробовать подставить в функцию, стоящую под знаком предела, x = a. Если функция в этой точке непрерывна, в соответствии формулой $\lim_{x \to a} f(x) = f(a)$ предел равен числу f(a).
- 2. Если точка a не входит в область определения функции, то конечный предел может не существовать, и если абсолютная величина функции неограниченно увеличивается при стремлении переменной к a, то пределом является бесконечность.
- 3. Если в результате подстановки получается неопределенность, то есть выражение вида $\frac{0}{0}, \frac{\infty}{\infty}, \infty \infty, 0 \cdot \infty, 1^{\infty}$, следует раскрыть эту неопределенность, сделав сокращения, или привести получаемое выражение к замечательному пределу или его следствию.

Примеры.

1.
$$\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x^2 - 5x + 6} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 3} \frac{2\left(x - 3\right)\left(x + \frac{1}{2}\right)}{\left(x - 3\right)\left(x - 2\right)} = \lim_{x \to 3} \frac{2\left(x + \frac{1}{2}\right)}{\left(x - 2\right)} = \frac{2\left(3 + \frac{1}{2}\right)}{1} = 7.$$

2.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos 2x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{x^2}{2 \sin^2 x} = \lim_{x \to 0} \left(\frac{1}{2} \cdot \frac{x}{\sin x} \cdot \frac{x}{\sin x} \right) = \frac{1}{2}.$$

Неопределенность $\frac{\infty}{\infty}$ показывает, что в числителе и знаменателе присутствуют бесконечно большие функции. Чтобы избавиться от них следует вынести самую большую величину в числителе и знаменателе за скобки, произвести сокращение, после чего еще раз применить пункт 1 правил.

Примеры.

1.
$$\lim_{x \to \infty} \frac{x^3 + 3x^2 + x - 1}{x^3 - x^2 + 2} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{x^3 \left(1 + \frac{3}{x} + \frac{1}{x^2} - \frac{1}{x^3} \right)}{x^3 \left(1 - \frac{1}{x} + \frac{2}{x^3} \right)} = \lim_{x \to \infty} \frac{\left(1 + \frac{3}{x} + \frac{1}{x^2} - \frac{1}{x^3} \right)}{\left(1 - \frac{1}{x} + \frac{2}{x^3} \right)} = 1.$$

2.
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^3 - x^2 + 2} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{x^2 \left(2 - \frac{1}{x} + \frac{1}{x^2} \right)}{x^3 \left(1 - \frac{1}{x} + \frac{2}{x^3} \right)} = \lim_{x \to \infty} \frac{\left(2 - \frac{1}{x} + \frac{1}{x^2} \right)}{x \left(1 - \frac{1}{x} + \frac{2}{x^3} \right)} = 0.$$

Неопределенности $\infty - \infty$, $0 \cdot \infty$ приводятся вначале к виду $\frac{0}{0}$ или $\frac{\infty}{\infty}$, затем раскрываются одним из перечисленных выше способов.

Примеры.

$$\lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{6}{x^2 - 9} \right) = \left\{ \infty - \infty \right\} = \lim_{x \to 3} \frac{x + 3 - 6}{x^2 - 9} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 3} \frac{\left(x - 3\right)}{\left(x - 3\right)\left(x + 3\right)} = \lim_{x \to 3} \frac{1}{\left(x + 3\right)} = \frac{1}{6}$$

2)
$$\lim_{x \to 0} x \operatorname{ctg} x = \{0 \cdot \infty\} = \lim_{x \to 0} \frac{x}{\operatorname{tg} x} = \left\{\frac{0}{0}\right\} = \lim_{x \to 0} \left(\frac{x}{\sin x} \cos x\right) = 1.$$

Неопределенность вида 1^{∞} раскрывается приведением ко второму замечательному пределу.

Примеры.

1.
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2} \right)^{\frac{1}{\sin^2 x^{-1}}} = \lim_{x \to \infty} \left[\left(1 + \frac{1}{x^2} \right)^{x^2} \right]^{\frac{x^{-2}}{\sin^2 x^{-1}}} = \left[\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^{x^2} \right]^{\frac{1}{\sin^2 x^{-1}}} = e^1 = e^1.$$

$$2. \lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} \left[1 + (\cos x - 1) \right]^{\frac{1}{x^2}} = \left[\lim_{x \to 0} \left[1 + (\cos x - 1) \right]^{\frac{1}{\cos x - 1}} \right]^{\frac{1}{\cos x - 1}} = e^{-\frac{1}{2}}.$$

Эквивалентности

Функции $\alpha(x)$ и $\beta(x)$ называется э*квивалентными бесконечно малыми* при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$.

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\sin x \sim x$, при $x \to 0$
$\lim_{x \to 0} \frac{tg x}{x} = 1$	$tgx \sim x$, при $x \to 0$
$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$	$1 - \cos x \sim \frac{x^2}{2}, \text{при } x \to 0$
$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$	$arcsin x \sim x$, при $x \to 0$
$\lim_{x \to 0} \frac{\arctan x}{x} = 1$	$\operatorname{arctg} x \sim x$, при $x \to 0$
$\lim_{x\to 0}\frac{a^x-1}{x\ln a}=$	$a^x - 1 \sim x lna$, при $x \to 0$
$\lim_{x\to 0}\frac{e^x-1}{x}=1$	$e^x - 1 \sim x$, при $x \to 0$
$\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$	$\ln (1+x) \sim x, \ \text{при } x \to 0$
$\lim_{x \to 0} \frac{\log_a (1+x)}{\frac{x}{\ln a}} = 1$	$log_a (1+x) \sim \frac{x}{lna}$, при $x \to 0$
$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} = 1$	$(1+x)^{\alpha}-1 \sim \alpha x$, при $x \to 0$
$\lim_{x\to 0}\frac{\sqrt[n]{1+x}-1}{\frac{x}{n}}=1$	$\sqrt[n]{1+x}-1 \sim \frac{x}{n}$, при $x \to 0$

Пример. Найдем $\lim_{x\to 0} \frac{\operatorname{tg} 4x}{\ln(1-5x)}$.

Решение.

$$tg4x \sim 4x$$
; $ln(1-5x) \sim -5x$, при $x \to 0$.

Поэтому
$$\lim_{x\to 0} \frac{\operatorname{tg} 4x}{\ln(1-5x)} = \lim_{x\to 0} \frac{4x}{-5x} = -\frac{4}{5} = -0,8$$
.

Пример. Найдем $\lim_{x\to 0} \frac{\operatorname{tg} 2x - \sin 2x}{x^3}$.

Решение.

$$\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3} = \lim_{x \to 0} \frac{\frac{\sin 2x}{\cos 2x} - \sin 2x}{x^3} = \lim_{x \to 0} \frac{\sin 2x (1 - \cos 2x)}{x^3 \cos 2x}$$

$$\sin 2x \sim 2x$$
; $1 - \cos 2x \sim \frac{(2x)^2}{2} = 2x^2$, при $x \to 0$.

Тогда
$$\lim_{x\to 0} \frac{\sin 2x(1-\cos 2x)}{x^3\cos 2x} = \lim_{x\to 0} \frac{2x\cdot 2x^2}{x^3} \lim_{x\to 0} \frac{1}{\cos 2x} = 4$$
.

Пример. Найдем $\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1-3x}}{e^{-4x}-1}$.

Решение. $e^{-4} - 1 \sim -4x$, при $x \to 0$.

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 3x}}{e^{-4x} - 1} = \lim_{x \to 0} \frac{\left(\sqrt{1 + 2x} - \sqrt{1 - 3x}\right)\left(\sqrt{1 + 2x} + \sqrt{1 - 3x}\right)}{\left(e^{-4x} - 1\right)\left(\sqrt{1 + 2x} + \sqrt{1 - 3x}\right)} = \lim_{x \to 0} \frac{1 + 2x - 1 + 3x}{-4x\left(\sqrt{1 + 2x} + \sqrt{1 - 3x}\right)} = \lim_{x \to 0} \frac{5x}{-4x\left(\sqrt{1 + 2x} + \sqrt{1 - 3x}\right)} = -\frac{5}{8} = -0,625.$$

Непрерывность функции

Определение 1. Функция f(x) непрерывна в точке a, если предел этой функции при $x \to a$ равен значению функции в предельной точке, то есть $\lim_{x\to a} f(x) = f(a)$.

Применяя второе определение предела функции в точке, получим

Определение 2. Функция
$$f(x)$$
 непрерывна в точке a , если $\forall \varepsilon > 0 \; \exists \, \delta(\varepsilon) > 0 \colon \forall x, \; 0 < |x-a| < \delta(\varepsilon) \Rightarrow \left| f(x) - f(a) \right| < \varepsilon$

Определение 3. Функция y = f(x) непрерывна в точке a, если $\lim_{\Delta x \to 0} \Delta y = 0$, где Δx – приращение аргумента функции ($x = a + \Delta x$), а $\Delta y = f(a + \Delta x) - f(a)$ – приращение функции, соответствующее приращению ее аргумента Δx .

Доказательство следует из первого определения непрерывной функции $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(f\left(a + \Delta x\right) - f\left(a\right) \right) = \lim_{\Delta x \to 0} f\left(a + \Delta x\right) - \lim_{\Delta x \to 0} f\left(a\right) = f\left(a\right) - f\left(a\right) = 0.$ Здесь первый из пределов вычисляется с помощью определения 1, второй – как предел постоянной, поскольку $f\left(a\right)$ не зависит от Δx .

Определение 4. Функция
$$f(x)$$
 непрерывна в точке a , если
$$\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = f(a).$$

Определение 5. Функция f(x) непрерывна в некоторой области, если она непрерывна во всех точках этой области.

Все степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические функции непрерывны в областях существования.

Свойства функций непрерывных в точке

1) Сумма непрерывных функций – есть непрерывная функция. Действительно, из определения 1 непрерывности следует, что если

$$\lim_{x \to a} f(x) = f(a)$$
 и $\lim_{x \to a} g(x) = g(a)$, то
$$\lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a).$$

- 2) Произведение непрерывных функций есть функция непрерывная.
- 3) Частное непрерывных функций функция непрерывная, если знаменатель в предельной точке не равен нулю.

Доказательства второго и третьего свойств также следует из свойств пределов.

4) Пусть функция y = f(x) непрерывна в точке a, пусть функция z = g(y) непрерывна в точке b = f(a). Тогда функция z = h(x) = g(f(x)) непрерывна в точке a.

Очевидно, что

$$\Delta z = h(a + \Delta x) - h(a) = g(f(a + \Delta x)) - g(f(a)) =$$

$$= g(f(a) + f(a + \Delta x) - f(a)) - g(f(a)) = g(b + \Delta y) - g(b).$$

Так как согласно определению 3 непрерывности $\Delta y \to 0$ при $\Delta x \to 0$ и $\Delta z \to 0$ при $\Delta y \to 0$, получим: $\Delta z \to 0$ при $\Delta x \to 0$.

Таким образом, непрерывная функция от непрерывной функции есть функция непрерывная.

Пример. Функция $z = \sin(x^2)$ непрерывна во всех точках числовой оси, так как функция $y = x^2$ непрерывна на R, а функция $z = \sin y$ непрерывна на множестве неотрицательных чисел.

Точки разрыва функции

Точки, в которых нарушается непрерывность функции, называются **точками** разрыва этой функции. Если $x = x_0$ – точка разрыва функции y = f(x), то в ней не выполняется по крайней мере одно из условий первого определения непрерывности функции, а именно:

1. Функция определена в окрестности точки x_0 , но не определена в самой точке x_0 .

Например, функция $y = \frac{1}{x-2}$ не определена в точке $x_0 = 2$.

2. Функция определена в точке x_0 и ее окрестности, но не существует предела f(x) при $x \to x_0$.

Например, функция

$$f(x) = \begin{cases} x - 1, \text{ если } -1 \le x < 2, \\ 2 - x, \text{ если } 2 \le x \le 5, \end{cases}$$

определена в точке $x_0=2$ (f(2)=0), однако в точке $x_0=2$ имеет разрыв, т.к. эта функция не имеет предела при $x\to 2$:

$$\lim_{x \to 2-0} f(x) = 1, \text{ a } \lim_{x \to 2+0} f(x) = 0.$$

3. Функция определена в точке x_0 и ее окрестности, существует $\lim_{x \to x_0} f(x)$, но этот предел не равен значению функции в точке $x_0 \colon \lim_{x \to x_0} f(x) \neq f(x_0)$.

Например, функция

$$g(x) = \begin{cases} \frac{\sin x}{x}, \text{ если } x \neq 0, \\ 2, \text{ если } x = 0. \end{cases}$$

3десь $x_0 = 0$ — точка разрыва:

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1,$$
a $g(x_0) = g(0) = 2.$

Все точки разрыва функции разделяются на точки разрыва разделяются на точки разрыва первого и второго рода. Точки разрыва \mathcal{X}_0 называется **точкой** разрыва первого рода функции y = f(x), Если в этой точке существуют

конечные пределы функции слева и справа (односторонние пределы), т.е. $\lim_{x\to x_0-0} f(x) = A_1 \text{ и } \lim_{x\to x_0+0} f(x) = A_2 \text{.}$ При этом:

- а) если $A_{\!\scriptscriptstyle \rm I} = A_{\!\scriptscriptstyle 2}$, то точка $x_{\!\scriptscriptstyle 0}$ называется точкой устранимого разрыва;
- б) если $A_1 \neq A_2$, то точка x_0 называется точкой конечного разрыва.

Величину $|A_{\!_{1}}-A_{\!_{2}}|$ называют **скачком функции** в точке разрыва первого рода.

Точка разрыва x_0 называется **точкой разрыва второго рода** функции y = f(x), если по крайней мере один из односторонних пределов (слева или справа) не существует или равен бесконечности.

1. Обратимся к функциям, рассмотренным выше.

$$y = \frac{1}{x-2}$$
, $x_0 = 2$ — точка разрыва второго рода.

2. Для функции

$$f(x) = \begin{cases} x - 1, \text{ если } -1 \le x < 2, \\ 2 - x, \text{ если } 2 \le x \le 5, \end{cases}$$

 $x_0 = 2\,$ является точкой разрыва первого рода, скачок функции равен $|1-0| = 1\,$.

3. Для функции

$$g(x) = \begin{cases} \frac{\sin x}{x}, \text{ если } x \neq 0, \\ 2, \text{ если } x = 0. \end{cases}$$

 $x_0 = 0$ является точкой устранимого разрыва первого рода. Положив g(x) = 1 (вместо g(x) = 2) при x = 0, разрыв устранится, функция станет непрерывной.

Пример. Дана функция $f(x) = \frac{|x-3|}{x-3}$. Найти точки разрыва, выяснить их тип.

Решение.

Функция f(x) определена и непрерывна на всей числовой оси, кроме точки x=3

. Очевидно,
$$f(x) = \begin{cases} 1 \text{ при } x > 3, \\ -1 \text{ при } x < 3. \end{cases}$$
 Следовательно, $\lim_{x \to 3+0} f(x) = 1,$ а

 $\lim_{x\to 3-0} f(x) = -1$. Поэтому в точке x=3 функция имеет разрыв первого рода. Скачок функции в этой точке равен 1-(-1)=2.

Исследование непрерывности функции в точке.

Пример.

Проверить непрерывность функции
$$y = \begin{cases} x+4, & x \le -1 \\ x^2+2, & -1 < x \le 1. \\ 2x, & x > 1 \end{cases}$$

Поскольку функции x+4, x^2+2 и 2x непрерывны в областях их задания, достаточно рассмотреть функцию y в точках стыковки этих функций. Итак, для

$$x = -1$$
 имеем $\lim_{x \to -1 \to 0} y = \lim_{x \to -1} (x+4) = 3$, $\lim_{x \to -1 + 0} y = \lim_{x \to -1} (x^2+2) = 3$, $y(-1) = -1 + 4 = 3$.

Функция в этой точке непрерывна согласно определению 4.

Для
$$x=1$$
 имеем $\lim_{x\to 1-0} y = \lim_{x\to 1} (x^2+2) = 3$, $\lim_{x\to 1+0} y = \lim_{x\to 1} 2x = 2$, $y(1)=1^2+2=3$.

Условие непрерывности в точке x = 1 не выполняется.

Следовательно, функция y непрерывна на всей числовой оси за исключением точки x = 1, где она имеет конечный разрыв со скачком (-1).

Непрерывность функции на отрезке

Определение. Функция y = f(x) называется *непрерывной на отрезке* [a,b], если она непрерывна во всех внутренних точках этого отрезка, а на концах отрезка, т.е. в точках a и b, непрерывна, соответственно, справа и слева.

Теорема. Если функция f(x) непрерывна на отрезке [a,b], то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Эта теорема утверждает, что

$$\exists x_1 \in [a,b]: \forall x \in [a,b] \Rightarrow f(x_1) \ge f(x).$$

$$\exists x_2 \in [a,b]: \forall x \in [a,b] \Rightarrow f(x_2) \leq f(x).$$

Если нарушается условие непрерывности функции на отрезке, то утверждение теоремы может быть неверным. Например, если функция $y = x^2$ определена только на интервале (0;1), то она не достигает на этом интервале наибольшего значения. Она принимает значения, сколь угодно близкие к 1, однако в интервале (0;1) нет точки, в которой функция равнялась бы 1 (точка x = 1 не принадлежит интервалу). Эта функция не принимает и наименьшего значения в интервале (0;1), так как точка x = 0 также не принадлежит интервалу.

Следствие. Если функция f(x) непрерывна на отрезке [a,b] то она ограничена на этом трезке.

Доказательство. Обозначим через M и m соответственно наибольшее и наименьшее значения функции f(x) на отрезке [a,b]. Тогда из теоремы следует

$$\forall x \in [a,b] \implies m \le f(x) \le M$$
,

что и означает ограниченность функции на этом отрезке

Теорема. Если функция y = f(x) непрерывна на отрезке [a,b] и на его концах принимает значения разных знаков, то внутри этого отрезка найдется по крайней мере одна точка, в которой функция равна нулю.

Геометрический смысл теоремы заключается в следующем: если точки графика функции y = f(x) A и B, соответствующие концам отрезка [a,b], лежат по разные стороны от оси Ox, то этот график хотя бы в одной точке отрезка пересекает ось Ox. Действительно, соединяя точки A и B линией и не отрывая ручку от листа бумаги, нельзя не пересечь ось Ox.

Теорема . (**Теорема о промежуточных значениях**). Пусть функция y = f(x) непрерывна на отрезке [a,b]. Тогда для любого числа C, заключенного между f(a) и f(b), найдется внутри этого отрезка хотя бы одна точка c такая, что f(c) = C.

В заключение приведем без доказательства теорему о непрерывности обратной функции.

Теорема. Если функция y = f(x) непрерывна на отрезке [a, b] и возрастает (или убывает) на этом отрезке, то обратная функция $x = f^{-1}(y)$ на соответствующем отрезке оси Oy существует и является непрерывной возрастающей (убывающей) функцией.