Lecture 3 Image Sampling

COMP6223 Computer Vision (MSc)

How is an image sampled and what does it imply?

Content

- 1. How does the discrete Fourier transform work, and help?
- 2. What can go wrong with sampling?

1D Discrete Fourier transfrom

N points

Continuous Fourier:

$$Fp(\xi) = \int_{-\infty}^{\infty} p(t) e^{-j2\pi\xi t} dt$$

Discrete Fourier calculates frequency from data points

Sampled frequency

$$Fp_{u} = \frac{1}{N} \sum_{i=0}^{N-1} p_{i} e^{-j\frac{2\pi}{N}iu}$$

Sampled points p_i

1D Discrete Inverse Fourier

Continuous inverse Fourier:

$$p(t) = \int_{-\infty}^{\infty} Fp(\xi) e^{j2\pi\xi t} d\xi$$

Sampled points p_i

$$p_i = \sum_{u=0}^{N-1} Fp_u e^{j\frac{2\pi}{N}iu}$$

Sampled frequency

Transform Pair for Sampled Pulse

Signal reconstruction from its transform components

(a) original sampled signal

(b) first coefficient Fp₀

(d) adding Fp₁ and Fp₀

(e) adding Fp₀, Fp₁, Fp₂ and Fp₃

(f) adding all six frequency components

2D Fourier transform

Forward transform:

Two dimensions of space, *x* and *y* **Two** dimensions of frequency, *u* and *v*

$$\mathbf{F}\mathbf{P}_{u,v} = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(ux+vy)}$$
image NxN pixels $\mathbf{P}_{x,y}$

Inverse transform:

$$\mathbf{P}_{x,y} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathbf{F} \mathbf{P}_{u,v} e^{j\left(\frac{2\pi}{N}\right)(ux+vy)}$$

Reconstruction

(k) reconstruction up to 4th

(I) reconstruction up to 9th

(m) reconstruction up to 25^{th}

(n) reconstruction with all

Implementation is via (Fast) FFT

```
while L<cols %iterate until log2(cols)-1 levels have been performed
  for j=1:2*L:cols %do all the points in L/2 batches
    for i=1:L %now do L butterflies
      upp(((j+1)/2)+i-1) = Fp(j+i-1)+Fp(j+L+i-1)*exp(-1j*2*pi*(i-1)/(L*2));
      low(((i+1)/2)+i-1) = Fp(i+i-1)-Fp(i+L+i-1)*exp(-1i*2*pi*(i-1)/(L*2));
    end
  end
  for j=1:2*L:cols %copy the components across, to the right places
    for i=1:T_i
      Fp(j+i-1) = upp(((j+1)/2)+i-1);
      Fp(j+L+i-1) = low(((j+1)/2)+i-1);
                                                    (This is a 1-D FFT)
    end
  end
L=L*2; %and go and do the next level (up)
end
```

Shift invariance

Rotation

(a) original image

(b) rotated image

(c) transform of original image

(d) transform of rotated image

$$\mathbf{FP}_{u,v} = \frac{1}{N^2} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(uy+vx)}$$

Filtering

Fourier gives access to frequency components

(b) low-pass filtered transform

(c) high-pass filtered image

(d) high-pass filtered transform

Applications of 2D FT

- Understanding and analysis
- Speeding up algorithms
- Representation (invariance)
- Coding
- Recognition/ understanding (e.g. texture)

Sampling Signals

Sampling function

Fourier transform Property:

$$\mathcal{F}(x\delta) = \mathcal{F}(x) * \mathcal{F}(\delta)$$
Convolution;
wait until
next next

lecture

In the frequency domain

Spectra repeat

If sampling is just right, spectra just touch

Minimum sampling frequency = 2 × max

(a) Sampling at high frequency

(b) Sampling at the Nyquist frequency

(c) Sampling at low frequency, aliasing the data

Sampling process in the frequency domain

Sampling theory

Nyquist's sampling theorem

In order to be able to reconstruct a signal from its samples we must sample at minimum at twice the maximum frequency in the original signal

E.g.: speech 6kHz, sample at 12 kHz

Video bandwidth (CCIR) is 5MHz

Sampling at 10MHz gave 576×576 images

Guideline: "two pixels for every pixel of interest"

Aliasing in Sampled Imagery

(a) high resolution

(c) low resolution – aliased

Correct and Incorrect Apparent Wheel Motion

(a) Oversampled rotating wheel

(b) Slow rotation

(c) Undersampled rotating wheel

(d) Fast rotation

Figure 4.5 Correct and incorrect apparent wheel motion

Main points so far

- 1) Need to sample at a high enough frequency
- 2) Aliasing corrupts image information
- 3) Discrete Fourier allows analysis and understanding
- 4) Fourier has many properties and advantages but it's complex.

We'll move on to processing images ...

More sampling theories

Compressed sensing

Many signals are sparse...

Regularisation