Logic and proofs

- Reading assignment:
 - Ch1: 1.1, 1.3, 1.4, 1.5, 1.7, 1.8.
 - Ch2: 2.1, Russel's paradox (p.133, exercise 50), 2.2.

Propositional logic

- Propositions: "sentences", which are either true or false

Logic operations: Let P and Q be two propositions.

- AND (\wedge): (P \wedge Q) is true if both P and Q are true.
- OR (\lor) : $(P\lor Q)$ is true if any of P and Q is true.
- NOT (\neg) : $\neg P$ is true if P is false.

Logic operations

- Implication (\Longrightarrow) : $P\Longrightarrow Q$ is true if P is false or $(P\land Q)$ is true.
 - If P is true, then Q is true. (若 P 則 Q)
 - Q is the necessary condition of P. (Q 為 P 的必要條件)
 - P is the sufficient condition of Q. (P 為 Q 的充分條件)
- Equivalence (\iff) : $P \iff Q$ is true if both $(P \implies Q)$ and $(Q \implies P)$ are true.
 - P if and only if Q (P iff Q, P 若且唯若 Q)
 - P is equivalent to Q (P 和 Q 等價)
 - Q is the necessary and sufficient condition of P (Q 為 P 的充分必要條件)

Predicate logic

- Predicate (述語): a sentence that contains a variable.
 - The truth value varies depending on the the variables.
 - e.g. x < 10.
- Quantifier
 - universal quantifier $(\forall \rightarrow \text{ for all})$
 - existential quantifier $(\exists \rightarrow \text{there exists some})$
 - compare: $\forall x \in \mathbb{N} \ (x < 10) \leftrightarrow \exists x \in \mathbb{N} \ (x < 10)$

<u>Proposition</u>. Let n be an integer. If n is an odd number, then n^2 is also odd.

Proof:

- Since *n* is odd, there exists an integer *k* such that n = 2k + 1.
- Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$, which is an odd number.

<u>Proposition</u>. Let n be an integer. If n^2 is an odd number, then n is also odd.

Proof:

Truth table

Р	Q	$P \Longrightarrow Q$	$\neg Q \implies \neg P$		$\neg P \lor Q$
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т

<u>Proposition</u>. Let n be an integer. If n^2 is an odd number, then n is also odd.

Proof: (by contraposition)

- We prove "If n is even, then n^2 is even."
- Since n is even, there exists an integer k such that n=2k.
- Then, $n^2 = (2k)^2 = 4k^2$, which is even.

Proof strategies (to prove $P \implies Q$)

- Direct proof
- Proof by contraposition $(\neg Q \implies \neg P)$

- Proof by contradiction (反證法)
 - To prove that a statement R is true, first assume that $\neg R$ is true.
 - We look for a statement L such that
 - $(\neg R \land ...) \implies L$ is true, and $(\neg R \land ...) \implies \neg L$ is true. premise premise
 - This implies that the premise is false, and the only statement that can be false is $\neg R$.

Proposition. $\sqrt{2}$ is irrational.

Proof: (by contradiction)

- Suppose to the contrary that $\sqrt{2}$ is rational.
 - Namely, $\sqrt{2} = \frac{a}{b}$ for some positive integers a and b, with $b \neq 0$.
 - We may assume that gcd(a, b) = 1.
- It follows that $a^2 = 2b^2$.
 - Thus, a is even. There exists an integer c such that a=2c.
- Since $a^2 = 2b^2$, we have $4c^2 = 2b^2$. So b is even.
- Since both a and b are even, we have $gcd(a,b) \ge 2$, which contradicts that gcd(a,b) = 1.

<u>Proposition</u>. Show that there exists irrational numbers x and y such that x^y is rational.

Proof:

- Let $x = y = \sqrt{2}$.
- If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have the requested numbers.
- Otherwise, let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$. Then $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2$.

<u>Set</u>

- the 1st paper is given by Cantor at 1874. (the beginning of set theory)
- Set representation:
 - roster method (listing all elements in the set): e.g., {a, b, c, d, e}
 - set comprehension: $S = \{x \mid x \text{ has property } P\}$
 - S is the set of all elements x such that x has property P.
 - e.g., $S = \{x \in \mathbb{N} \mid 0 < x < 5\}$

- Set serves as the primitive concept of most fields (in mathematics).
 - Gottlob Frege 1900s
 - Bertrand Russell
 - Russell's paradox: Let $S = \{X \mid X \text{ is a set and } X \notin X\}.$
 - Question: Is $S \in S$ or $S \notin S$?