

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Linear Temporal Logic: Semantics of Formulas

21-11-2017 Sundar B. CS&IS, BITS Pilani 0

Formulas and Interpretation

- The meaning of a formula in Linear Temporal Logic is obtained by
 - evaluating the formula under a given model $M = (S, \rightarrow, L)$
 - in a specific path $\pi = s_1 \rightarrow s_2 \rightarrow ...$
 - where s_i ∈ S for each i>=1

Formulas and Interpretation

- We will start with the known connectives (from propositional logic):
 - Let $M = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow ...$ be a path in M.
 - Then define the <u>satisfaction relation</u> |= as follows:
 - π |= TRUE
 - $\pi \not\models \mathsf{FALSE} \ (\mathsf{or} \ \pi \not\models \bot)$
 - $\pi \mid = p \text{ iff } p \in L(s_1)$
 - $\pi \mid = \neg \phi$ iff $\pi \not\models \phi$
 - $\pi \mid = \phi_1 \land \phi_2$ iff $\pi \mid = \phi_1$ and $\pi \mid = \phi_2$
 - $\pi \mid = \phi_1 \lor \phi_2$ iff $\pi \mid = \phi_1$ or $\pi \mid = \phi_2$
 - $\pi \mid = \phi_1 \longrightarrow \phi_2$ iff $\pi \mid = \phi_2$ whenever $\pi \mid = \phi_1$

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Linear Temporal Logic: Semantics

- Unary Operators and Their Semantics

21-11-2017 Sundar B. CS&IS, BITS Pilani 3

Formulas and Interpretation

Now let us consider some temporal connectives (and formulas):

```
X φ /* read neXt φ */
G φ /* read Global φ or Henceforth φ */
F φ /* read Future φ or Eventually φ */
```

- Semantics of these temporal operators:
 - Let $M = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow ...$ be a path in M.
 - Then define the <u>satisfaction relation</u> |= as follows:

•
$$\pi \mid = X \phi \text{ iff } \pi^2 \mid = \phi$$

•
$$\pi \mid = G \phi$$
 iff for all i>=1 $\pi^i \mid = \phi$

•
$$\pi \mid = F \phi$$
 iff for some $i > = 1 \pi^i \mid = \phi$

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Expressing Formulas in LTL: Examples

Examples

Let π_w be

$$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_6 \rightarrow s_3$$
, ... i.e.

where $\mathbf{s}_3 \rightarrow \mathbf{s}_4 \rightarrow \mathbf{s}_5 \rightarrow \mathbf{s}_6 \rightarrow$ is repeated *ad infinitum*.

Let π_{rr} be

$$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_7 \rightarrow s_7$$

 $\rightarrow s_3$, ... i.e.

where $s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_7 \rightarrow s_7 \rightarrow$ is repeated *ad infinitum*.

Encode the following in LTL:

- •state s_6 will be reached eventually in π_w
- •state s_3 will be reached eventually in π_{rr} irrespective of where you start after s_1

Examples

Encode the following and argue whether they are true or false:

- a) a *read* or *write* will eventually happen (in π_w)
- b) the system will eventually be *idle* and *rotating* (in π^2_{w})
- c) a write will eventually happen (in π_w^2)
- d) the disk will always be rotating (in π_{rr})
- e) the disk will always be rotating (in π^2_{rr})
- f) there will be a <u>sequence of</u> <u>two reads</u> eventually (in π^2_{rr})
- g) there will be a <u>sequence of</u> four <u>reads</u> eventually (in π^2_{rr})

Examples

Encode the following and argue whether they are true or false:

- a) if the head is seeking in the next state then eventually a read will happen (in π^2_{rr})
- b) if the head is seeking in the next state then eventually a read will happen (in π_w^3)
- c) if the head is seeking in the next state

an operation will be pending in the state after that (in π_w^2)