Objective:

To demonstrate a basic detection mechanism that flags potentially malicious or deceptive domain names using homoglyph characters, punycode encoding, or mixed Unicode scripts that imitate legitimate domains (e.g., "google.com" instead of "google.com").

Tools & Technologies Used:

Component	Purpose
Python 3.x	Core scripting language
homoglyphs	Detect visually similar Unicode chars
unicodedata	Normalize and analyze Unicode chars
re (regex)	Parsing and cleaning domain inputs
idna (built-in via encode/decode)	Decode punycode/IDN domains

Detection Logic Overview:

Check	Description
Unicode Normalization	Uses NFKC form to clean up Unicode strings
Punycode Detection	Flags domains like xnpple-43d.com
Homoglyph Detection	Converts Unicode variants to ASCII & compares
Mixed Script Analysis	Flags domains mixing Latin + Cyrillic/Greek

How the Script Works:

- 1. User inputs one or more URLs/domains via console.
- 2. Script extracts the base domain, stripping http(s) and paths.
- 3. It performs:
 - Unicode normalization
 - o Homoglyph ASCII replacement
 - o Script analysis (Latin, Cyrillic, etc.)
- 4. Flags the domain if:
 - o It's punycode (xn--)
 - o It uses homoglyphs
 - o It mixes multiple Unicode writing systems
- 5. Displays flagged domains and reasons.

Test Cases:

Input	Flagged?	Reason(s)
https://google.com	Yes	Contains homoglyphs
https://xnpple-	Yes	Punycode + homoglyphs
43d.com		
https://apple.com	Yes	Cyrillic 'a' + Mixed scripts
https://g00gle.com	No	No Unicode homoglyphs (numeric spoof, not
		handled)
https://microsoft.com	No	Clean domain

Demo Output Sample:

```
Homoglyph Script Domain Scanner
Type/paste domain or full URL(s) to scan. Use comma or newline to separate
multiple entries.
Type 'exit' or 'q' to quit.

Enter domain(s) or URL(s): https://google.com
Suspicious domain detected: google.com

Decoded / Normalized: google.com
Reason: Contains homoglyphs

Enter domain(s) or URL(s): https://xn--pple-43d.com
Suspicious domain detected: xn--pple-43d.com
Decoded / Normalized: apple.com
Reason: Punycode-encoded (IDN domain)
Reason: Contains homoglyphs

Enter domain(s) or URL(s): https://microsoft.com
(no alerts)
```

Limitations:

- Doesn't detect numeric lookalikes (e.g., g00gle.com)
- False positives possible for legitimate internationalized domains (IDNs)
- No integration with external threat feeds or domain age info

Next Steps for Enhancement:

- Add support for Levenshtein similarity
- Include IDN allowlist exceptions
- Batch scan from file or clipboard
- Export suspicious results to a CSV/JSON file

Conclusion:

This PoC successfully demonstrates that homoglyph, punycode, and mixed-script-based spoofing attacks can be detected using Unicode analysis — without the need for a hardcoded whitelist.

It's a powerful foundation for building anti-phishing tooling or browser-level detection modules.