Churn Analytics

Clustering and Classification By Karan Singh

Outline

- Motivation
- Data
- Data Inspection and Treatment
- Exploratory Data Analysis
- Algorithms
- Feature Selection
- Modeling Results
- Model Interpretation & Use
- Churn Analytics Dashboard
- Next Steps

Motivation/Objective

- Customer Churn refers to the rate of customer attrition in a company or the speed at which customer leaves your company or service.
- Churn modeling is an important data science use case across many industries (especially subscription based businesses)
- Model churn and apply to a business situation in the telecom industry
- Learn how to perform clustering and classification
- Identify churn rates by important drivers of Churn

Business/Use case

Reducing customer churn by identifying potential churn candidates beforehand, and take proactive actions to make them stay.

Why is Churn a problem in telecom?

- One of the biggest pains in the telecommunications industry
- Average service provider in a mature market typically spends 15-20% of service revenues on acquisition and retention activities (Tefficient)
- Few new customers in mature markets, service providers must acquire them from their rivals.
- With service providers chasing the same group of out-of-contract customers, the Subscriber Acquisition Cost (SAC) of recruiting new customers is rising.
- Canada's BCE and Telus revealed that it cost almost 50 times less for them to keep an existing customer than to acquire a new one, with retention costs of C\$11.04 and C\$11.74 respectively, while average SAC in Canada weighed in at a whopping C\$521 (2017)

Data

- Obtained from Kaggle: Telco Customer Churn
- 7043 entries, 21 columns (18 categorical, 3 numeric)
- Each row represents a customer, each column contains customer's attributes described on the column Metadata.
 - Customers who left within the last month the column is called Churn
 - Services that each customer has signed up for phone, multiple lines, internet, online security,
 online backup, device protection, tech support, and streaming TV and movies
 - Customer account information how long they've been a customer, contract, payment method,
 paperless billing, monthly charges, and total charges
 - Demographic info about customers gender, age range, and if they have partners and dependents

Data Inspection & Treatme corr['Churn_Yes'].sort_values(ascending=False)

- Missing Values
- Outliers
- Categorical variables were encoded
- Pandas Profiling Report
- Pairplots
- Correlation Matrix

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic

Churn_Yes	1.000000
Contract_Month-to-month	0.405103
OnlineSecurity_No	0.342637
TechSupport_No	0.337281
InternetService_Fiber optic	0.308020
PaymentMethod Electronic check	0.301919
OnlineBackup_No	0.268005
DeviceProtection_No	0.252481
MonthlyCharges	0.193356
PaperlessBilling_Yes	0.191825
StreamingMovies_No	0.130845
StreamingTV_No	0.128916
StreamingTV_Yes	0.063228
StreamingMovies_Yes	0.061382
MultipleLines_Yes	0.040102
gender_Male	-0.008612
MultipleLines_No	-0.032569
DeviceProtection_Yes	-0.066160
OnlineBackup_Yes	-0.082255
InternetService_DSL	-0.124214
Partner_Yes	-0.150448
Dependents_Yes	-0.164221
TechSupport_Yes	-0.164674
OnlineSecurity_Yes	-0.171226
TotalCharges	-0.198324
tenure	-0.352229

Exploratory Data Analysis

Contract

tenure

MonthlyCharges

Algorithms

- KMeans (Clustering Analysis) & Logistic Regression (Classification)
- Predicting churn is a binary classification problem
- Based on evaluation metrics
 - Accuracy score does not work in an imbalanced dataset
 - Compared f1 and roc_auc scores for 4 algorithms: XGBoost (Baseline),
 Random Forest, Decision Tree and Logistic Regression
 - Highest roc_auc and f1 scores for Logistic Regression
- Along with being a robust model, Logistic Regression provides interpretable outcomes too

Clustering

- Clustering is the task of gathering samples into groups of similar samples according to some predefined similarity or dissimilarity measure (such as the Euclidean distance)
- Some common applications of clustering algorithms include:
 - Primarily used for exploratory data analysis and business applications like customer segmentation, product segmentation, market segmentation.
 - Compression, in a data reduction sense
 - Can be used as a preprocessing step for recommender systems
 - o Grouping related web news (e.g. Google News) and web search results
 - Grouping related stock quotes for investment portfolio management
 - Building customer profiles for market analysis
- KMeans (Based on Euclidean distance)

Clustering

- Treated the business problem as an unsupervised business problem (removed Churn column)
- Using PCA: reduced dimensions from 40 to 8 explaining 75% of the cumulative variance
- Using KMeans to fit on the reduced dimensions and to obtain clusters

Engineered Features : Clusters

Classification: Logistic Regression

- Data split into 3 subsets : Train, Validation, Test set
- Model trained on Training set first and evaluated on Validation set
- Final Model trained on Training & Val and evaluated using Test set

print(cl	assif	ication_repo	ort(y_test	y_pred_fi	nal))
		precision	recall	fl-score	support
	0	0.91	0.71	0.79	1035
	1	0.50	0.80	0.61	374
accu	racy			0.73	1409
macro	avg	0.70	0.76	0.70	1409
weighted	avg	0.80	0.73	0.75	1409

Feature Selection

- Started with 42 columns (after dummy encoding)
- Features dropped progressively based on:
 - Correlation Matrix: Features with correlation less than 0.1 with the target variable were dropped
 - Use of wrapper algorithms
 - Logistic Regression, Random Forest, Decision Trees
 - Dropped features with minimal feature importances
 - Final set of features reduced to 10+1(cluster)

Modeling Results

- Top Features
 - Contract Type (Month to Month)
 - Total/Monthly Charges
 - Tenure
 - Internet Service (Fiber Optic)
 - Payment Method (Electronic Cheque)
- Recall score is high but precision is low
 - Determined with high certainty (80%) the actual churners
 - Misclassified many (50%) out of all the predicted churners (many False Positives)
- Trade off between number of features and metrics scores (more features generally imply a higher accuracy score)
- Clustering features (n=2 and n=4) turned out to be of low feature importance

Model Interpretation & Use: Using Lime

Test Case: customerID = '2057-ZBLPD'

y_test['Churn'] = 1

Test Case: customerID = '4396-KLSEH'

 $y_{test}['4396-KLSEH'] = 0$

Churn Dashboard (In Progress)

Churn Risk by Charges & Tenure

Churn Dashboard

Churn Rate by Contract Length

Churn Rate by PaymentMethod

Churn Rate by InternetService

Churn Rate by OnlineSecurity

Churn Rate by TechSupport

Churn Rate by Dependents

Challenges/Next Steps

- Challenges with respect to selecting the right dataset
- Further improve the model accuracy (especially precision scores)
- Use statistical methods for feature selection
- More feature engineering
- Try advanced algorithms
- Improve Dashboard

Thank You