

LPS-BIGGER Project Sentiment Analysis

9th March 2017 Víctor Rodríguez and María Navas

Motivating case

Dimensions

Corpus description

	alimen		automo		banca		bebida		deport		retail		telco		
	es	en	es	en	es	en	es	en	es	en	es	en	es	en	tot
amor	88	142	102	156	50	6	268	141	399	150	143	35	40	30	1750
confian	30	24	94	42	56	24	28	21	49	24	41	33	78	96	640
felicid	469	409	255	347	103	34	444	286	471	313	317	131	145	102	3826
insatis	198	240	441	258	711	694	419	315	368	242	464	148	750	772	6020
odio	77	84	116	134	421	424	165	173	161	125	148	76	415	560	3079
satisfa	919	709	674	515	113	88	675	486	566	626	602	321	303	242	6839
temor	9	19	40	18	101	54	36	11	13	3	38	11	37	24	414
tristez	12	35	42	26	41	55	32	13	31	37	32	26	27	53	462
nc2	1521	1021	6236	1207	4468	1173	4467	1158	4671	1105	2065	1510	1437	971	33010
col.well	21	12	165	15	131	14	33	8	39	23	91	14	4	31	601
marketpl	14	161	1006	240	382	734	253	232	358	143	365	328	387	307	4910
per.well	44	1018	625	841	228	859	1579	718	1527	788	761	649	1130	45	10812

Framework

Architecture

Technologies

- REST Services
- Command line
- Graphical User Interface

We have tried/used these libraries

IXAPipes 1.1.1 http://ixa2.si.ehu.es/ixa-pipes/

Freeling 3.0 http://nlp.lsi.upc.edu/freeling/

Stanford CoreNLP 3.7.0 http://stanfordnlp.github.io/CoreNLP/

OpenNLP 1.5.3 http://opennlp.apache.org

Weka 3.6 - http://www.cs.waikato.ac.nz/ml/weka/

Java API for WordNet Searching (JAWS) -http://lyle.smu.edu/~tspell/jaws/index.html

WordNet 3.0 - http://wordnet.princeton.edu/wordnet/license/

Mallet 2.0.7 http://mallet.cs.umass.edu/

Illinois POS 1.7.1 http://cogcomp.cs.illinois.edu/page/software

Fun, but...

- It's multilabel! Not just one correct option.
- Subjectivity: polarity is not easy, emotion is other level...
- The emotion taxonomy is unrealistic (fear towards brands?)
- Unbalanced and bad corpus (not a clear criteria, the "same tweet" has several different classifications...)
- Time constraint (we can't do everything we would want to, limited training, it has to be fast...)
- We have to deliver the code (it has to be easy, explained)
- Havas is very demanding (changes, requests, private corpus but also publications...)
- Twitter messages are not Shakespeare...

Previous efforts

BASELINE

Testing...

Different Machine Learning Algorithms:

- Naïve Bayes
- Linear Regresion...

Different features:

- Lemmas
- Tokens
- Chunks

Resources and software:

- Lexicons (new-built, existing ones)
- NLP tools (Ixa-pipes, Freeling, OpenNLP, CoreNLP)
- Other tools (Weka, SocialMedia, self-implemented)

Other efforts:

- Preprocessing: filters (normalizer, SentenceSplitter)
- POS
- Babelfy...

- Optimal size if the corpus for training (5k~7,5k)
- Comparison to other corpora available (TASS, just for polarity)
- Creation of new sentilexicons:
 - Using TF-IDF for finding sector-dependent emotional words (*fresquita* for beverages).
 - Manual examination (for low-populated emotions)
 - Division in sectors/emotions
- Test of different thresholds.
- Cascade classification (the best of each classifier!).
 Problems:
 - Time restriction.
 - Several posible orders, different for each emotion.

CURRENT RESULTS

ROC

Innovation

NEW IDEAS

Ideas

Where are the missclassified going?

Where are the missclassified going?

- Precision and recall are not enough...
- Remember it's multilabel...

Labeled as...

	amor	felicidad	confianza	satisfaccion	insatisfaccion	tristeza	temor	odio	NC
amor	3	0	0	0	12	1	0	6	22
felicidad	0	2	1	1	9	0	0	4	20
confianza	1	1	1	0	8	0	0	6	16
satisfaccion	3	1	7	212	273	11	9	160	659
insatisfaccion	3	18	10	39	282	2	9	0	201
tristeza	0	0	0	0	3	1	0	2	0
temor	0	0	0	0	2	0	3	1	5
odio	0	2	0	3	5	0	0	29	4

Classified as...

Ideas

- Where are the missclassified going?
- How to evaluate the results?
 - It's not the same to say LOVE instead of SATISFACTION than HATE instead of TRUST...
 - Also, it's multilabel! Maybe you said just LOVE and it was SATISFACTION and LOVE... not a fail, but neither a hit...
 - Proposal (pending approval).

Confussion matrix proposal

- 1	clasificado como es realmente		AMOR			misma polaridad	distinta polaridad		
	AMOR	A	1	tp	В	fn / tp 0.5	С	0	fn
	misma polaridad	D	fp	/ tn	E	1	1		tn
	distinta polaridad		G fp			1	L		

We don't care in this case, so...

A: Si es Amor y lo clasifico como Amor → 1, es un verdadero positivo

B: Si es Amor y lo clasifico como Felicidad \rightarrow es 0,5 verdadero positivo y 0,5 falso negativo C: Si es Amor y lo clasifico como Odio \rightarrow 0, es un falso negativo D: Si es Felicidad y lo clasifico como Amor → es 0,5 verdadero negativo y 0,5 falso positivo E: Si es Felicidad y lo clasifico como algo distinto a Amor → es un verdadero negativo G: Si es Odio y lo clasifico como Amor \rightarrow es un falso positivo

- Where are the missclassified going?
- How to evaluate the results?
 - It's not the same to say LOVE in stead of SATISFACTION than HATE in stead of TRUST...
 - Also it's multilabel! Maybe you said just LOVE and it was SATISFACTION and LOVE... not a fail, but neither a hit...
 - Proposal (pending of aproval).
- Is there any correlation among emotions? Binary, but dependent?

Is there any correlation among emotions? (1)

Graphic examples

Is there any correlation amog emotions? (2)

- Strong correlation among a few emotions.
- A relevant list of probabilities:

```
P(Insatisfacci\'on | Odio) = 0,821

P(Satisfacci\'on | Felicidad) = 0,736

P(Felicidad | Amor) = 0,72
```

P(Amor|Felicidad) = 0,451 P(Insatisfacción|Tristeza) = 0,451 P(Satisfacción|Confianza) = 0,444 P(Satisfacción|Amor) = 0,425 P(Odio|Insatisfacción) = 0,368P(Insatisfacción|Temor) = 0,346

Possible orders for in-cascade classifiers:

Amor → Felicidad → Satisfacción Odio → Insatisfacción

- → Useful for ordering the tests!
- → Useful for deriving results from one clasifier to another!

- Where are the missclassified going?
- How to evaluate the results?
 - It's not the same to say LOVE in stead of SATISFACTION than HATE in stead of TRUST...
 - Also it's multilabel! Maybe you said just LOVE and it was SATISFACTION and LOVE... not a fail, but neither a hit...
 - Proposal (pending of aproval).
- Is there correlation among emotions? Binary, but dependent?
- Pure emotions hypothesis.

Pure emotion hypothesis

- What makes the difference on fine-grained sentiment analysis?
- Where is the line between satisfaction and love?
- Where can we find discriminative leads?
- Let's take for training just "pure" emotions (this is, documents just tagged as one emotion). There must be something relevant...

 So one of our classifiers follows this idea. On its own is obviously not good, but is useful in cascade!

- Where are the missclassified going?
- How to evaluate the results?
 - It's not the same to say LOVE in stead of SATISFACTION than HATE in stead of TRUST...
 - Also it's multilabel! Maybe you said just LOVE and it was SATISFACTION and LOVE... not a fail, but neither a hit...
 - Proposal (pending of aproval).
- Is there correlation among emotions? Binary, but dependent?
- Pure emotions hypothesis.
- It's multilabel!
 - Different emotions, different results...
 - OK, multilabel classifiers are expensive... but why only binary?
 - Different paths for each emotion!

Different paths for each emotion (1)

- Non trivial! Which one? (+dependence!)
 - One of the problems is how to track all the posible configurations and results, in constant change...)

Different paths for each emotion (2)

Different paths for each emotion (3)

Future?

Use the correlations of emotions as classes

Crossed paths depending on results

Conclusions

FUTURE PATHS

Conclusions

- Still to do (and just a few months remaining):
 - English
 - Meaningful Brands...
- Poor results

Results and Future Papers

Commercial results:

- OK for frequent emotions, but trust or sadness...
- Still applicable in an industrial setting?

Academic results:

Already sent:

 Language, Data and Knowledge (LDK): we built our own corpus (Idafen, Víctor, María). http://sabcorpus.linkeddata.es/

Future:

- Natural Language Processing for Social Media Analysis at SPECOM 2017 (Special Session) (6th April)
- IberEVAL COSET (8th May)
- ISWC (15th May) (probably, also workshops).
- TASS Workshop (September)

Future paths

Ideas:

- Semantic paths
 - Use the semantic graph around brands/companies together with Named Entity Recognition
 - Use lexic-syntactic patterns
 - Topic modeling (Library)
- Machine learning paths
 - Hierarchy (first satisfaction/dissatisfaction, then other emotions)
 - Interaction emotions (not independent paths).
 - Better lexicons.
- For English, more resources (Senticnet...)
- Other options?

