5. Sea $\mathbb{R}_n[t]$ el conjunto de los polinomios de grado menor o igual que n con coeficientes en \mathbb{R} . Consideremos para $p \in \mathbb{R}_n[t]$ las normas

$$||p||_{\infty} = \max_{0 \le t \le 1} |p(t)|$$
 y $||p||_1 = \int_0^1 |p(t)| dt$.

- (a) ¿Son $(\mathbb{R}_n[t], \|\cdot\|_{\infty})$ y $(\mathbb{R}_n[t], \|\cdot\|_1)$ espacios de Banach? ¿Por qué?
- (b) Justificar por qué ambas normas resultan equivalentes en $\mathbb{R}_n[t]$ para todo $n \in \mathbb{N}$.
- (c) Si $\mathbb{R}[t]$ denota el conjunto de todos los polinomios con coeficientes en \mathbb{R} , probar que ahí las normas $\|\cdot\|_{\infty}$ y $\|\cdot\|_{1}$ no son equivalentes. ¿Hay alguna contradicción con el ítem anterior, que afirma que las normas son equivalentes para polinomios de grado hasta n para todo $n \in \mathbb{N}$?
- - (c) Si $\mathbb{R}[t]$ denota el conjunto de todos los polinomios con coeficientes en \mathbb{R} , probar que ahí las normas $\|\cdot\|_{\infty}$ y $\|\cdot\|_{1}$ no son equivalentes. ¿Hay alguna contradicción con el ítem anterior, que afirma que las normas son equivalentes para polinomios de grado hasta n para todo $n \in \mathbb{N}$?

Themes que prober que hands la chim es infinite la las ditancas dijan de ses laurale tes

