Task 4: Calculate TF-IDF with MapReduce/Pig/Hive

- 1. Creating a table with the columns required to calculate TF-IDF and putting it into the local.
 - A. hive> create table user_db.grouped_users_posts as select owneruserid as a, body as b, SUM(score) as c from user_db.stackdata_analysis group by owneruserid, body;
 - B. hive> INSERT OVERWRITE LOCAL DIRECTORY '/home/hduser/tfidfdata' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' select owneruserid, body from user_db.stackdata_analysis where owneruserid in (select id from user_db.grouped_users_posts);
- 2. The MapReduce program needs the input file to be separated by space rather than comma. Therefore, replacing the comma with spaces and then moving the file into a folder in the local from HDFS.
 - A. > cd tfidfdata
 - B. $> \text{sed 's/,//g' 000000_0} > \text{inputfile}$
 - C. > hadoop fs -mkdir /mappred
 - D. > hadoop fs -put inputfile /mappred
- 3. Now, the Implementation of TF-IDF in Hadoop using Python will be in three phases using three mappers and three reducers. Using the following commands to run TF-IDF on the cluster.
 - A. > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_01.py /home/hduser/REDUCER_01.py -mapper "python MAPPER_01.py" -reducer "python REDUCER_01.py" -input hdfs://cluster-3299-m/mapinput/inputfile -output hdfs://cluster-3299-m/mappred1
 - B. > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_02.py /home/hduser/REDUCER_02.py -mapper "python MAPPER_02.py" -reducer "python REDUCER_02.py" -input hdfs://cluster-3299-m/mappred1/part-00000 hdfs://cluster-3299-m/mappred1/part-00001 hdfs://cluster-3299-m/mappred1/part-00002 hdfs://cluster-3299-m/mappred1/part-00004 output hdfs://cluster-3299-m/mappred2

- C. > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_03.py /home/hduser/REDUCER_03.py -mapper "python MAPPER_03.py" -reducer "python REDUCER_03.py" -input hdfs://cluster-3299-m/mappred2/part-00000 hdfs://cluster-3299-m/mappred2/part-00001 hdfs://cluster-3299-m/mappred2/part-00002 hdfs://cluster-3299-m/mappred2/part-00004 output hdfs://cluster-3299-m/mappredf
- 4. Using the hadoop fs -getmerge command to merge the output files into a single CSV file (tfidfout.csv). Now, replacing the spaces and saving the file into another CSV file(tfidfout1.csv).
 - > sed -e 's/\s/,/g' tfidfout.csv > tfidfout1.csv
- **5.** Thereafter, creating an external table in HIVE and loading the CSV file into the table.
 - A. hive> create external table if not exists TFIDF_data2 (Term String, Id int, tfidf float) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
 - B. hive> load data local inpath 'tfidfout1.csv' overwrite into table TFIDF_data2;
- 6. Finally, running the following query to calculate the per-user TF-IDF of the top 10 terms for each of the top 10 users.

hive> SELECT *
FROM (
SELECT ROW_NUMBER()
OVER(PARTITION BY Id
ORDER BY tfidf DESC) AS TfidfRank, *
FROM TfIDF_data2) n
WHERE TfidfRank IN (1,2,3,4,5,6,7,8,9,10);

