Отчет о выполнении лабораторной работы 1.1.1

Определение системных и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Костылев Влад, Б01-208

22 сентября 2022 г.

Аннотация

В данной работе требуется измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

1 Теоретическая справка

Удельное сопротивление материала проволоки круглого сечения, изготовленной из однородного материала и имеющей всюду одинаковую толщину, может быть определено по формуле:

$$\rho = \frac{R_{np}}{l} \frac{\pi d^2}{4} \tag{1}$$

В лабораторной работе для измерения сопротивления проволоки будем использовать следующую схему:

Для вычисления сопротивления проволоки будем использовать следующую формулу:

$$R_{np} = \frac{U}{I} \tag{2}$$

2 Используемое оборудование

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

	Вольтметр	Миллиамперметр
Система	Магнитоэлектрическая	Электромагнитная
Класс точности	0,5	0,5
Предел измерений x_Π	0,3 B	0,15 A
Число делений шкалы n	150	75
Цена делений x_Π/n	2 мВ/дел	2 мА/дел
Чувствительность n/x_{Π}	500 дел/В	500 дел/А
Абсолютная погрешность Δx_{M}	1,5 мВ	0,75 мА
Внутреннее сопротивление прибора	500 Ом	1 Ом

Таблица 1. Основные характеристики приборов

3 Методика измерений

- 1. Ознакомление с приборами (штангенциркулем и микрометром) и измерение толщины проволоки. При измерении толщины проволоки с помощью штангенциркуля, получаем следующее: $d=0.350\pm0.025$. С помощью микрометра: $d=0.360\pm0.005$
- 2. Собираем электрическую схему
- 3. Пользуясь мостом Уинстона, получаем максимально точные сопротивления проволоки с определенной длиной.

4 Результаты измерений и обработка данных

Используя мост Уинстона, измеряем сопротивление проволоки определенной длины:

L, см	10	20	30	50
R, Ом	1.124	2.287	3.379	5.466

Пользуясь электрической схемой, производим ряд измерений для длины проволоки: l = 10 см, 20 см, 30 см, 50 см и заносим полученные данные в таблицу:

V, мВ	І, мА	V, мВ	І, мА	V, мВ	І, мА	V, мВ	І, мА
71	65.6	132	62.8	196	62.2	316	59.5
76	69.5	140	66.7	220	67.6	360	68.7
81	74.6	160	75.1	250	77.7	480	90.19
86	79.3	180	84.4	280	86.9	540	103.5
95	87.6	200	94.1	310	96.2	620	117.2
92	84.5	170	81.5	250	78.3	416	78.3
100	91.0	210	102.3	280	87.8	460	87.3
113	102.1	250	118.43	310	98.4	540	100.4
123	113.4	280	133.49	380	116.9	620	115.6
134	123.3	302	144.08	480	148.7	1000	190

Таблица 2. Снятая зависимость V(I) для различных длин проволоки

Строим график по точкам и проводим прямую, пользуясь методом наименьших квадратов:

Из графика видно, что тангенс угла наклона и есть сопротивление: $R_{10}=0.913, R_{20}=2.797, R_{30}=3.777, R_{50}=7.798.$

Давайте занулим коэффициент b, получим следующий график:

Давайте посчитаем среднее сопротивление по формуле:

$$R_{cp} = \frac{\sum_{i} R_i}{n} \tag{3}$$

$$R_{cp_{10}} = 1.0949; R_{cp_{20}} = 2.1067; R_{cp_{30}} = 3.2282; R_{cp_{50}} = 5.3200.$$

Найдем среднюю погрешность для $l=10~{\rm cm},\,20~{\rm cm},\,30~{\rm cm},\,50~{\rm cm},$ пользуясь следующей формулой:

$$\sigma_{cp} = \frac{\sqrt{\sum_{i}^{n} (R_i - R_{cp})^2}}{n} \tag{4}$$

$$\sigma_{cp_{10}} = 0.0019; \sigma_{cp_{20}} = 0.0073; \sigma_{cp_{30}} = 0.0126; \sigma_{cp_{50}} = 0.0157.$$

Давайте найдем удельно сопротивление по формуле (1) и погрешность по следующей формуле:

$$\frac{\sigma_p}{\rho} = \sqrt{\left(\frac{\sigma R}{R}\right)^2 + \left(2\frac{\sigma d}{d}\right)^2 + \left(\frac{\sigma l}{l}\right)^2} \tag{5}$$

L, см	$\rho, 10^{-4} \; {\rm Om} c M$	$\sigma_{\rho}, 10^{-6} \text{ Om}$ cm
10	1.03	6
20	1.06	6
30	1.05	6
50	1.02	6

5 Обсуждение результатов

Значения удельного сопротивления нихрома совпадают с табличными. R_{cp} отличаются от наиболее точного измерения (с помощью моста Уинстона) по многим факторам:

- 1. Неточностью программного вычисления
- 2. Взятие бесконечно большого сопротивления у вольтметра
- 3. Округлением значений напряжения и тока при измерениях

При обнулении коэффициента b, мы получаем значения сопротивления наиболее приближенные к физическим законам, нежели чем при построении прямой с помощью метода наименьших квадратов.

6 Заключение

Проведя множество измерений, пользуясь электрической схемой, мы вычислили сопротивления проволоки определенной длины (10 см, 20 см, 30 см, 50 см), максимально приближенные к точному, вычисленными с помощью моста Уинстона.