Chapter 2 Mathematical Preliminaries

(Solutions/ Hints)

2.1 Prove by giving a suitable example that if $A \cup B = A \cup C$, then it is not necessary that B = C.

Sol. Let
$$A = \{1, 2, 3, 4, 5\}$$

 $B = \{3, 4, 5, 6, 7\}$
 $C = \{1, 2, 4, 5, 6, 7\}$
 $\Rightarrow A \cup B = A \cup C = \{1, 2, 3, 4, 5, 6, 7\}$ but $B \neq C$.

- 2.2 For the given sets A and B, is there a possibility that A B = B A? If yes, when?
- **Sol.** Yes. When A=B.
- 2.3 Write any three partition sets for set $A = \{1, 2, 3, 4, 5, 6\}$.
- **Sol.** {{1, 2}, {3, 4, 5}, {6}}, {{1, 2, 3, 4}, {5, 6}}, {{1, 2, 3}, {4, 5, 6}}.
- 2.4 Prove De Morgan's laws using a Venn diagram.

Sol. One part is being solved. Second part is left for the reader.

- 2.5 For the two finite sets A and B, is it possible that
 - (a) A B = B? If yes, when?
 - (b) A B = A? If yes, when?

Sol. (a) Not possible.

- (b) When $A \cap B = \{\}$.
- 2.6 Let $A = \{a, b, c\}$ then write P(A), the power set of the set A. Sol. $P(A) = \{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$.
- 2.7 Let $A = \{a, b, c\}$ and $B = \{p, q, r\}$, write $A \times B$ and $B \times A$.

Sol.
$$A \times B = \{(a, p), (a, q), (a, r), (b, p), (b, q), (b, r), (c, p), (c, q), (c, r)\}$$

 $B \times A = \{(p, a), (q, a), (r, a), (p, b), (q, b), (r, b), (p, c), (q, c), (r, c)\}$

2.8 Let $A = \{\{a, b\}, \{c, d\}\}\$ then write P(A), the power set of the set A. Sol. $P(A) = \{\{\}, \{\{a, b\}\}, \{\{c, d\}\}\}, \{\{a, b\}, \{c, d\}\}\}$

2.9 Let $A = \{ \{a, b\}, \{c, d\} \}$ then write $A \times A$.

Sol. A \times A= {({a, b}, {a, b}), ({a, b}, {c, d}), ({c, d}, {a, b}), ({c, d}, {c, d})}

2.10 Let $A = \{\{\}\}$ then write P(A), the power set of the set A. Sol. $\{\{\}, \{\{\}\}\}\}$.

2.11 Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A such that aRb iff a + b > 7. Write R. Check if R is reflexive, symmetric, or transitive.

Sol. Not reflexive – No Symmetric- Yes Transitive- No

- 2.12 Let $\{\{a, b, c\}, \{d, e\}\}\$ be a partition set of the set $A = \{a, b, c, d, e\}$. Write the corresponding equivalence relation R.
- **Sol.** $R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (e, d), (e, e)\}$
- 2.13 Let $A = \{1, 2, 3\}$ and $S = A \times A$. Define a relation R on S such that (a, b)R(a', b') if and only if ab = a'b'. Show that R is an equivalence relation.

Sol. Relation R is reflexive, ab= ab.

Relation R is symmetric, ab=ba.

Relation R is transitive, if a b=a'b' and a'b'=a" b" then a b = a" b".

Hence relation R is equivalence.

- 2.14 Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A such that aRb iff $a \le b$. Write R. Show that R is a partial order relation.
- **Sol.** Relation R is reflexive, $a \le a$.

Relation R is transitive, whenever $a \le b$ and $b \le c$ then $a \le c$.

Relation R is antisymmetric, whenever $a \le b$ and $b \le a$ then a=b.

Hence relation R is partial order relation.

- 2.15 Let there be a function $f: N \to N$ such that $f(x) = x^3$. Check f for being injective, surjective, and bijective. In addition, check if f is invertible.
- **Sol.** Injective Yes.

Surjective – No.

Bijective – No.

Invertible – No.

- 2.16 Let there be two functions $f: N \to N$ and $g: N \to N$ such that $f(x) = x^3$ and $g(x) = x^2 + 5$. Find $f \circ g(x)$, $g \circ f(x)$, $f \circ f(x)$, and $g \circ g(x)$.
- **Sol.** $fog(x) = f(g(x)) = f(x^2 + 5) = (x^2 + 5)^3$

$$gof(x)=g(f(x))=g(x^3)=x^6+5$$

$$fof(x)=f(f(x))=f(x^3)=x^9$$

$$gog(x)=g(g(x))=g(x^2+5)=(x^2+5)^2+5$$

2.17 Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Does the relation $R = \{(1, a), (2, a), (3, b), (4, b)\}$ qualify as a function?

Sol. Yes.

2.18 Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Does the relation $R = \{(1, a), (1, b), (3, b), (4, c), (2, c)\}$ qualify as a function?

Sol. No. Argument 1 has two outputs.

2.19 Find the number of sequences of each size that can be framed from a character set of size 6.

Sol. Sequences of size 1=6

Sequences of size 2=30

Sequences of size 3=120

Sequences of size 4= 360

Sequences of size 5=720

Sequences of size 6= 720

- 2.20 How many permutations can be made from the alphabets in the word ASSOCIATION? Sol. 11!/ (2! x 2! x 2! x 2!)
- 2.21 A coin is tossed six times; how many possible sequences of head and tail will be there? Sol. 2⁶

2.22 Show that
$${}^{n+1}C_r = {}^{n}C_{r-1} + {}^{n}C_r$$
.

Sol.
$$^{n+1}C_r = {}^{n}C_{r-1} + {}^{n}C_r$$

Solving RHS
$$\frac{n!}{} + \frac{n!}{}$$

$$\frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{r!(n-r)!}$$

$$\frac{n!}{(r-1)!(n-r)!} \left[\frac{1}{n-r+1} + \frac{1}{r} \right]$$

$$\frac{n!}{(r-1)!(n-r)!} \times \frac{n+1}{r(n-r+1)}$$

$$\frac{n+1!}{r!(n-r+1)!}$$

 $^{n+1}C_r$

2.23 How many distinct sequences of size 4 can be made from the alphabets of the word GEETA? Ans. ${}^{4}C_{4} \times 4! + ({}^{1}C_{1} \times {}^{3}C_{2} \times 4!/2!)$

- 2.24 In how many different ways can 6 cards be drawn from a deck of 52 cards with two red and two black cards?
- Sol. Correction: It has to be 4 cards instead of 6. $^{26}C_2$ X $^{26}C_2$
- 2.25 Prove the following equivalences using truth tables:

(a)
$$p \rightarrow q \equiv (\sim q \rightarrow \sim p)$$

(b)
$$(p \rightarrow q) \land (q \rightarrow r) \equiv p \rightarrow r$$

(c)
$$p \rightarrow q \equiv \neg p \lor q$$

Sol.

a)

aj	9							
	P	Q	p→q	~p	~q	~q~p	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$	
	T	T	T	F	F	T	Т	
	T	F	F	F	T	F	Т	
	F	T	T	T	F	T	T	
	F	F	Т	T	Т	T	Т	

Since $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is tautology, hence $p \rightarrow q \equiv (\sim q \rightarrow \sim p)$

b) Correction: It is not a tautology.

P	Q	R	p→q	q→r	$(p \rightarrow q) \land (q \rightarrow r)$	p→r
F	F	F	Т	Т	T	Т
F	F	T	T	Т	Т	T
F	T	F	T	F	F	T
F	T	T	Т	T	Т	Т
T	F	F	F	T	F	F
T	F	T	F	Т	F	T
Т	T	F	Т	F	F	F
T	Т	Т	Т	Т	Т	T

c)

Р	q	p→q	~p ∨ q	$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$
T	Т	Т	T	Т
Т	F	F	F	T
F	Т	Т	Т	Т
F	F	Т	Т	T

2.26 If
$$p \to q$$
 is true, then explain the truth value of $q \lor \neg p \lor (p \to q)$.
Sol. $q \lor \neg p \lor (p \to q) \equiv q \lor \neg p \lor T \equiv T$

- 2.27 Let p, q, r, s, and t be the following propositions:
 - p: I am very happy.
 - q: I am sad.
 - *r*: It is sunday today.
 - s: I will play cricket.
 - t: I will listen to songs.

Write the English sentences corresponding to the following statements:

- a) $p \rightarrow s$
- b) $\sim r \wedge q$
- c) $(q \wedge r) \rightarrow t$
- d) $(p \lor r) \to s$

Sol. p→s: If I am very happy then I will play cricket.

- $\sim r \land q$: It is not Sunday and I am sad.
- $(q \land r) \rightarrow t$: If I am not sad and it is Sunday today then I will listen to songs.
- $(p \lor r) \rightarrow s$: If I am very happy or it is Sunday today then I will play cricket.
 - 2.28 Write the converse and contrapositive for the following statements.
 - (a) If tomorrow is a holiday then I will go to picnic.
 - (b) If it is exam tomorrow then I will study the whole night.

Sol. a) Converse: If I go to picnic then tomorrow is a holiday.

Contrapositive: If I don't go to picnic then tomorrow is not a holiday.

b) Converse: If I study the whole night then it is exam tomorrow.

Contrapositive: If I don't study the whole night then it is not exam tomorrow.

2.29 Prove by mathematical induction:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = n^2(n+1)^2/4$$
 for $n \ge 1$.

Sol. Basis Step

$$1^3 = 1^2(1+1)^2/4 = 4/4 = 1$$

LHS=RHS

Hence the equation is true for n=1.

Induction Step

Let the statement be true for n=k. Thus we have

$$1^3+2^3+3^3+\dots+k^3=k^2(k+1)^2/4$$

Now, for $n=k+1$ we must have $1^3+2^3+3^3+\dots+k^3+(k+1)^3=k^2(k+1)^2/4+(k+1)^3$

$$= (k+1)^2 [k^2/4 + (k+1)]$$

$$= (k+1)^2 [k^2/4 + (k+1)]$$

$$= (k+1)^{2} [k^{2} + 4(k+1)]/4$$

= $(k+1)^{2} (k+2)^{2}/4$

$$= (k+1)^2 (k+2)^{-1} = (k+1)^2 /4$$

Hence the statement is true for n=k+1.

Hence the statement $1^3 + 2^3 + 3^3 + \dots + n^3 = n^2(n+1)^2/4$ is true.

2.30 Prove by mathematical induction:

$$1 + r + r^2 + r^3 + \dots + r^n = (r^n - 1)/(r - 1).$$

Sol. Basis Step

At n=1

$$1+r = (r^2-1)/(r-1)=r+1$$

LHS=RHS

Hence the equation is true for n=1.

Induction Step

Let the statement be true for n=k. Thus we have

$$1+r+r^2+r^3+\cdots+r^k=(r^{k+1}-1)/(r-1)$$

Now, for n=k+1 we must have

1+
$$r+r^2+r^3+\cdots-r^{k+1}$$
 | $r^{k+1}=(r^{k+1}-1)/(r-1)+r^{k+1}$
= $(r^{k+1}-1+r^{k+2}-r^{k+1})/(r-1)$
= $(r^{k+2}-1)/(r-1)$
= $(r^{k+1+1}-1)/(r-1)$

Hence the statement is true for n=k+1.

Hence the statement $1+r+r^2+r^3+\cdots+r^n=(r^{n+1}-1)/(r-1)$ is true.

2.31 Prove that n^2 is odd if and only if n is odd.

Sol. Let n be odd. Let n=2k+1 for some k. $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \rightarrow \text{odd number}$. If n is odd then n^2 is odd.

Let n^2 be odd then $n^2=2k+1$ for some k.

Let us assume n to be even and let n=2p

 $n^2 = (2p)^2 = 4p^2 \rightarrow \text{even number}$

If n is even then n^2 has to be even. Hence our assumption is wrong. n can not be even. If n has to be odd.

If n² is odd then n is odd

2.32 Prove that the sum of five consecutive numbers is divisible by 5.

Sol. Let 5 consecutive numbers be k, k+1, k+2, k+3, k+4.

Since sum is multiple of 5, it is divisible by 5.

2.33 Let A and B be two sets. Prove that A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Sol. If A=B then

Every element of A is contained in B that is $A \subseteq B$ and

Every element of B is contained in A that is $B \subseteq A$.

if $A \subset B$ and $B \subset A$ then

Every element of A is contained in B and

Every element of B is contained in A.

Hence A and B are same. Therefore, A=B.

Since both conditions imply each other therefore if and only if implication of two statements is proved

2.34 Prove that n^2 is even if and only if n is even.

Sol. On same lines as in case of Sol 2.31 given above.

2.35 When is $A \times B = B \times A$ possible?

Sol. When A=B.