Econometrics

TA Session 5

Lucia Sauer

2025-10-22

Overview

- Visual Inspection of Heteroskedasticity
- Testing for Heteroskedasticity: Breusch-Pagan Test
- Classical vs. Robust Standard Errors
- Bootstrapped Standard Errors in Stata
- Clustered Data and Cluster-Robust Standard Errors

Non-spherical disturbances

The spherical disturbances includes two assumptions on the behavior of the disturbances:

- 1. Homoskedasticity $var(\epsilon_i|X) = \sigma^2$
- 2. Uncorrelatedness $cov(\epsilon_i,\epsilon_j|X)=0, \forall i\neq j$

Now, we will consider the possibility of abandoning one of these assumptions, and see how the estimation and inference procedures change.

1. Heteroskedasticity

Let's start by relaxing the homoskedasticity assumption:

$$var(\epsilon_i|X) = \sigma_i^2$$

The variance-covariance matrix of the disturbances is now:

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & 0 & \cdots & 0 \\ 0 & 0 & \sigma_3^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

1.1 Visual Inspection of Heteroskedasticity

$$price_i = \beta_1 + \beta_2 area_i + \beta_3 rooms_i + \epsilon_i$$

clear all
bcuse hprice3, clear
regress price area rooms
rvpplot area

2. Testing for Heteroskedasticity

Breusch-Pagan Test for the presence of heteroskedasticity:

BP Steps

- 1. Estimate the original model and obtain the SSE
- 2. Set auxiliary regression:

$$\hat{\epsilon}_i^2 = \alpha_1 + \alpha_2 area_i + \alpha_3 rooms_i + v_i$$

3. Then perform the test:

$$H_0: \alpha_2 = \alpha_3 = 0 \quad (homosked a sticity)$$

$$H_1: \text{at least one } \alpha_i \neq 0 \quad (heterosked a sticity)$$

using the statistic:

• Finite sample version:

$$F = \frac{RSSE - SSE/2}{SSE/321 - 3} \underset{H_0}{\sim} F_{2,321-3}$$

• Asymptotic version:

$$n\tilde{R}^2 \overset{a}{\underset{H_0}{\sim}} \chi^2(2)$$

Classical SE

reg price rooms area

Question

- How does the behavior of OLS estimator change under non-spherical disturbances?
- Which properties of the estimator remain and which ones are lost?

Robust SE

How to correctly estimate the model under the presence of heteroskedasticity?

reg price rooms area, vce(robust)

Question

Elements that change and why?

Bootstrapped SE

Illustration of how the Boostraping works.

bootstrap, reps(500) seed(123): regress price rooms area

Comparing confidence intervals across SE types

Same coefficient estimate for area, but wider confidence intervals under robust and bootstrap SEs.

3. Clustered data

- A second reason to relax the **non-spherical disturbances** assumption arises when observations are **clustered**.
- Within each **neighborhood**, house prices may move together.

Disturbance structure

Within each neighborhood, residuals can move together:

$$cov(\epsilon_i,\epsilon_j|X) = \begin{cases} \neq 0, & \text{if } i=j \text{(same neighborhood)} \\ 0, & \text{if } i\neq j \text{(different neighborhoods)} \end{cases}$$

Hence, the covariance matrix of disturbances has a **block-diagonal** form:

$$\Sigma = \begin{bmatrix} \Sigma_1 & 0 & 0 & \cdots & 0 \\ 0 & \Sigma_2 & 0 & \cdots & 0 \\ 0 & 0 & \Sigma_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Sigma_G \end{bmatrix}$$

Each block Σ_j captures the correlation of errors within neighborhood j.

Cluster robust SE

The disturbances are correlated within clusters but uncorrelated across clusters:

reg price rooms area, vce(cluster nbh)