

planetmath.org

Math for the people, by the people.

Canonical name clubsuit

Date of creation 2013-03-22 12:53:52 Last modified on 2013-03-22 12:53:52

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)
Entry type Definition
Classification msc 03E65
Synonym clubsuit
Related topic Diamond

 $Related\ topic \qquad DiamondIs Equivalent To Clubsuit And Continuum Hypothesis$

Related topic ProofOfDiamondIsEquivalentToClubsuitAndContinuumHypothesis

Related topic CombinatorialPrinciple

 \clubsuit_S is a combinatoric principle weaker than \lozenge_S . It states that, for S stationary in κ , there is a sequence $\langle A_{\alpha} \rangle_{\alpha \in S}$ such that $A_{\alpha} \subseteq \alpha$ and $\sup(A_{\alpha}) = \alpha$ and with the property that for each unbounded subset $T \subseteq \kappa$ there is some $A_{\alpha} \subseteq X$.

Any sequence satisfying \Diamond_S can be adjusted so that $\sup(A_\alpha) = \alpha$, so this is indeed a weakened form of \Diamond_S .

Any such sequence actually contains a stationary set of α such that $A_{\alpha} \subseteq T$ for each T: given any club C and any unbounded T, construct a κ sequence, C^* and T^* , from the elements of each, such that the α -th member of C^* is greater than the α -th member of T^* , which is in turn greater than any earlier member of C^* . Since both sets are unbounded, this construction is possible, and T^* is a subset of T still unbounded in κ . So there is some α such that $A_{\alpha} \subseteq T^*$, and since $\sup(A_{\alpha}) = \alpha$, α is also the limit of a subsequence of C^* and therefore an element of C.