منخصات مفيدة قبل البكالوريا

الشعب : علوم تجريبية - رياضيات - تقني رياضي

المراجعة النهائية

* قواعد الحساب

الجداءات الشهيرة

الجداءات الشهيرة من الدرجة الثالثة	الجداءات الشهيرة من الدرجة الثانية
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$\left(a+b\right)^2=a^2+2ab+b^2$
$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	$\left(a-b\right)^2=a^2-2ab+b^2$
$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$	$a^2-b^2=(a-b)(a+b)$
$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$	

2 حل المعادلات من الدرجة الثانية

Δ $<$ 0 إذا كان	Δ = 0 إذا كان	$\Delta > 0$ إذا كان	
المعادلة لا تقبل حلول	: المعادلة تقبل حل مضاعف هو $x_0=rac{-b}{2a}$: المعادلة تقبل حلين متمايزين هما $x_2=rac{-b+\sqrt{\Delta}}{2a}$ و $x_1=rac{-b-\sqrt{\Delta}}{2a}$	حلول المعادلة $a x^2 + b x + c = 0$ $a \neq 0$
$a x^2 + b x + c$	$a x^{2} + b x + c = a (x - x_{0})^{2}$	$a x^{2} + b x + c = a(x - x_{1})(x - x_{2})$	تحلیل $a x^2 + b x + c$
-∞ +∞ <u>a</u> إشارة	$\frac{-\infty}{a} \xrightarrow{x_0} +\infty$ إشارة a إشارة a	$ \frac{-\infty}{a} $ $ \frac{x_1}{\theta} $ $ \frac{x_2}{\theta} $ $ \frac{+\infty}{\theta} $ $ \frac{\theta}{\theta} $	إشارة $a x^2 + b x + c$

③ خواص القيمة المطلقة

: إذا كان x و y عددان حقيقيان فإن

$\sqrt{x^2} = x $	$\left -x\right =\left x\right $	$ x \ge 0$		
$ x+y \le x + y $	$y \neq 0$ مع $\left \frac{x}{y} \right = \frac{ x }{ y }$	$ x \times y = x \times y $		
$\left x - a \right = \begin{cases} x - a & ; \ x \ge a \\ -x + a & ; \ x \le a \end{cases}$	$\begin{vmatrix} x+a \end{vmatrix} = \begin{cases} x+a & ; x \ge -a \\ -x-a & ; x \le -a \end{cases}$	$ x = \begin{cases} x & ; x \ge 0 \\ -x & ; x \le 0 \end{cases}$		
	$x \le -a$ إذا كان $x \ge a$ أفإن $x \ge a$ أو	$-a \le x \le a$ إذا كان $a \mid x \mid = a$		

④ قواعد الحصر

. لتكن d ، c ، b ، a أعداد حقيقية موجبة تماماً

خاصية الـ				
قسمة	ضرب	طرح	جمع	
$\frac{a}{d} \le \frac{x}{y} \le \frac{b}{c}$	$a \times c \le x \times y \le b \times d$	$a-d \le x-y \le b-c$	$a+c \le x+y \le b+d$	$a \le x \le b$ $c \le y \le d$

الدائرة المثلثية و حساب المثلثات

: عدد حقیقیx

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1

$$\begin{cases} \cos(x \pm 2k\pi) = \cos x \\ \sin(x \pm 2k\pi) = \sin x \end{cases} \begin{cases} \cos^2 x + \sin^2 = 1 \\ \sin 2x = 2\sin x \cos x \\ \cos 2x = \cos^2 x - \sin^2 x \end{cases} \begin{cases} -1 \le \cos x \le 1 \\ -1 \le \sin x \le 1 \end{cases}$$

