Основы проектирования аппаратных ускорителей систем искусственного интеллекта

Лекция 2 - Введение

Лекция 2

План лекции

- Уровни абстракции при проектировании цифровых СБИС. Математические модели, используемые для описания различных уровней абстракции цифровой СБИС. Комбинационные и последовательные схемы.
- Упрощенный маршрут проектирования современных цифровых СБИС.
- Меры качества разработки цифровых СБИС.

Уровни абстракции при проектировании цифровых СБИС

Лекция 2

Уровни абстракции при проектировании цифровых СБИС

Системный уровень

Системный уровень

- Моделирование системы взаимодействующих процессов/сигналов
- Подходы к моделированию:
 - взаимодействие систем/компонент системы
 - система команд (instruction set simulation)
 - микроархитектура
 - использование языков описания аппаратуры (Verilog, SystemVerilog, SystemC)

Поведенческий уровень


```
`timescale 1ns / 1ps
module FullAdder (
    input a,
    input b,
    input cin,
    output s,
    output cout );

assign {cout,s} = a + b + cin;
```

Поведенческий уровень

- Моделирование поведения/функционирования процесса/сигнала
- Подходы к моделированию:
 - использование языков описания аппаратуры (Verilog, VHDL)
 - register-transfer level (RTL)
 - использование автоматов и других математических моделей

Логический (схемный) уровень


```
`timescale 1ns / 1ps
module FullAdder (
     input a,
     input b,
     input cin,
     output s,
     output cout );
    // wires (from ands to or)
     wire w1, w2, w3;
    // carry-out circuitry
     and( w1, a, b);
     and( w2, a, cin );
     and( w3, b, cin );
     or( cout, w1, w2, w3 );
    // sum
     xor( s, a, b, cin );
```

endmodule

Логический (схемный) уровень

- Моделирование структуры и основных элементов блока, реализующего заданный процесс/сигнал
- Подходы к моделированию:
 - использование языков описания аппаратуры (Verilog, VHDL)
 - netlist, gate-level design
 - математические модели схем
 - схемы из функциональных элементов (СФЭ) и их обобщения
 - And-Inverter Graphs (AIG)
 - Binary Decision Diagrams (BDD)
 - и др.

Транзисторный уровень

Транзисторный уровень

- Моделирование структуры основных логических элементов интегральной схемы
- Определение/оценка основных физических характеристик логических элементов (размер, задержка, энергопотребление и др.)
- Подходы к моделированию:
 - использование различных транзисторных моделей схем
 - имитационной моделирование
 - SPICE моделирование

Уровень топологии

Уровень топологии

- Моделирование топологии (структуры и геометрии всех слоев) проектируемого устройства
- Основные задачи:
 - Design Rule Check (DRC)
 - Layout vs Schematics (LVS)
 - Оптимизация топологии и повышение выхода годных
 - Optical Proximity Correction(OPC)
 - Double/Triple patterning

Пример: DEO-Nano

Структура DEO-Nano

Структура DEO-Nano

Структура DEO-Nano

Топология ПЛИС Altera Cyclone IV

Структура логических элементов Altera Cyclone IV

Стандартный режим работы логического элемента Altera Cyclone IV

Арифметический режим логического элемента Altera Cyclone IV

Структура логических массивов Altera Cyclone IV

Упрощенный маршрут проектирования цифровых СБИС

Лекция 2

Упрощенный маршрут проектирования

DRC LVS ERC

Маршрут проектирования на базе ПЛИС

Пример: счетчик четности


```
module parity_check(in, out, clock, reset);

input wire [3:0] in;
input wire clock, reset;

output reg out;

always @ (posedge clock or negedge reset)
if (~reset)
    out <= 1'b0;
else
    out <= ^in;
endmodule</pre>
```

Счетчик четности – логическое проектирование

Счётчик четности – привязка к библиотеке

Счетчик четности – физическое проектирование

Меры качества разработки цифровой интегральной схемы

Лекция 2

Метрики проектирования

- Как оценить «качество» проектируемой интегральной схемы?
 - Цена
 - Надежность
 - Скорость/производительность(задержка, частота работы)
 - Энергопотребление