

US ATLAS, US CMS, LIGO, (STAR) Usage and Milestones

Torre Wenaus (BNL)

Open Science Grid Joint Oversight Team Meeting February 20 2007

This Talk

- Brief survey of usage and feedback of principal OSG VOs
- Trying to be complementary (eg avoid repeating milestone content of other talks)
- Given the assigned title, I'm up here more with a 'user' hat than 'OSG management' (applications co-leader)
- Some slides and comments will reflect that
 - Intended to be useful to this group

LIGO Data Grid

LIGO Laboratory: 4 sites Collaboration Tier 2: 2 US sites + 3 EU sites

- ·LSC LIGO Scientific Collaboration
- Not under organizational control of LIGO Laboratory
- •Funding provided through separate grants NSF/EU
- ·Cybersecurity policy allows them to join trust relationship with laboratory via MOUs

LIGO Data Products

LHO	Data Rate (MBvte/s)	1 Yr (TByte)	1 Yr (tapes)	Comp. Ratio	Look-back
Level 0 raw	9.063	272	1800	1.7 on tape	~1 Month*
Level 1 RDS	1.391	42	460	1.2 in files	~most S5*
Level 3 RDS	0.117	3.5	39	1.2 in files	all S5
Level 4 RDS	0.029	0.87	10	1.2 in files	all S5
h(t)	0.266	8.0	88		all S5
SFTs	0.032	0.96	11		all S5
LLO					
Level 0 raw	4.406	133	970	1.5 on tape	~2 Month*
Level 1 RDS	0.750	23	249	1.2 in files	~most S5
Level 3 RDS	0.059	1.8	20	1.2 in files	all S5
Level 4 RDS	0.015	0.45	5	1.2 in files	all S5
h(t)	0.133	4.0	44		all S5
SFTs	0.016	0.48	5		all S5
Totals: Runs	16.3	490	3701	as above	All Science

at CIT

OSG JOT 2/20/07

^{*} Level 0 Raw Data Transferred to Caltech Archive via Tapes. Remaining Level 1,3,4 RDS Data Transferred to Caltech and Tier II via Network.

LIGO Data Distribution

- Reduced data products are distributed over the WAN using the LIGO Data Replicator (LDR), a grid tool built on top of the Globus Toolkit to manage both data and metadata transfers:
 - Metadata uses the Replication Location Server to hold mappings of filenames to paths/URL's at a given cluster location.
 - Parallel data transfers are accomplished using GridFTP.
- Data are re-distributed from CIT to Tier-2 and Tier-3 centers.
- GEO calibrated strain data are also replicated via LDR from Hannover, Germany to Caltech.
- Discussions have started with VIRGO regarding joint data exchange and possible interoperability problems between US and EU grid middleware.

LDG Networking Performance

- LIGO Observatories to Caltech
 - LHO upgraded Esnet connection to GigE
 - Esnet upgraded backbone (SEA/SNV) to OC-192
 - Transferring frame data at 20-30 MByte/s
 - LLO upgraded to GigE connection to LSU
 - LSU connection to I2 is OC-3
 - 5-10 MByte/s
- CIT to Tier-2 centers
 - MIT 7 MByte/s
 - PSU 8 MByte/s
 - UWM 20 MBvte/s

Yearly: LIGO Hanford Observatory

MAX		AVG	CURRENT
IN	56.9 Mb/s (5.7%)	6.59 Mb/s (0.7%)	3.66 Mb/s (0.4%)
OUT	66.4 Mb/s (6.6%)	22.3 Mb/s (2.2%)	2.10 Mb/s (0.2%)

Yearly: LIGO Livingston Observatory

	MAX	AVG	CURRENT
IN	31.6 Mb/s (3.2%)	5.97 Mb/s (0.6%)	4.49 Mb/s (0.4%)
OUT	67.0 Mb/s (6.7%)	19.4 Mb/s (1.9%)	15.6 Mb/s (1.6%)

Second LIGO OSG Milestone

Sustaining 100+ jobs across multiple sites for I week —

OSG JOT 2/20/07

LIGO Lessons Learned

- From writeup of experiences from the first milestone (25 slots utilized for a week (in Jan) running full scale binary inspiral (HIPE) workflow)
 - With multiple running workflows, targeted slot usage was sustained well
 - Saw effects of CMS, CDF competition at UCSD, but sustained target
 - Able to run all HIPE workflows from LIGO workflow planner
 - Pegasus job clustering helps reduce gatekeeper scheduling overhead

CMS Production & Scaling

- CSA06 in '06: 50M events exercising 25% of '08 scale. All goals met
 - T0 prompt reco with conditions DB,T1 skim and re-reco,T2 transfer
 - 207M events, 50k jobs/day
 - Excellent data throughput results (next slides);T0->FNAL demonstrated double the target of I50 MB/s
 - Data transfer challenges continuing this year
 - "Everything worked down to the final analysis plots"
- Currently ~1700 concurrent jobs on OSG (1.5M wall clock hours/mo), steady state, will rise to ~3000 by June
- June: test (over few days) of ~100k jobs/day across CMS; ~50k/day in OSG
- Next service challenge CSA07 in 'July'
 - I month, averaging 4000 jobs on OSG

US CMS Data Throughput

OSG JOT 2/20/07

US CMS Data Throughput

CMS Data Throughput

... done with dCache, so a big success story for dCache

OSG JOT 2/20/07

ATLAS Production & Scaling

- ~50M MC events ATLAS-wide in '06, ~10k CPUs (2-3k/day continuous)
 - Processed down the full chain to AODs (analysis)
- >120TB data, with BNL and CERN the most comprehensive data pools
- OSG (Panda) production fraction: ~28% ('official share' ~19%)
 - Using US ATLAS resources (efficiently); opportunistic OSG usage in 1-2mo
 - Operations workload (exclusive of ATLAS sw issues) << 1 FTE
- OSG production currently averaging ~8000 jobs/day, ~1800 concurrent
 - Will double by the summer, double again in the fall
 - Analysis usage growing but production still heavily dominant
- OSG throughput requirements: ~20k jobs/day spring, 2-3 times that by fall
 - Not expected to tax scalability of the infrastructure
- Also pursuing expansion of the US system (Panda) into LCG (as well as OSG!)

LCG Service Challenge 4

BNL intake from CERN 200MB/s nominal requirement met

Open Science US ATLAS Data Throughput: T1-T2

LHC Expectations from OSG

- SRM V2.2 (with dCache) deployment/interoperability 6/07
 - Follows and depends on (unrealistic?) WLCG milestone of 4/07
 - Speaking for ATLAS: we have learned the importance of minimizing SRM dependencies (via fallbacks); we can live without this until it comes as a deployed, robust, uniform service
- Submission rate scale-up for experiment production challenges 6/07
 - CMS: ~50,000 OSG jobs/day for June. O(1 Hz) submit rate
 - ATLAS: 'Dress rehearsal' from 'June'. ~20-30k prod jobs/day spring/summer
- Use of opportunistic sites for simulation production
- gLite data mover tools at OSG sites for inter-grid transfers 6/07
 - Until provided by OSG, self-installed by experiments as needed

LHC Expectations (2)

- Information services: the situation confuses me so I won't attempt to describe it to you
 - Practical (and feasible) approach today: gather info yourself, scraping OSG info sources, sites/WNs
- While it is a common (universal?) requirement among the large VOs to have (proxied! ie secure!) outbound connections from worker nodes, supporting this is not universal
 - OSG and the experiments have been working this site by site where it's an issue, usually with success (proxies are established)

Open Science GratLAS Comments wrt Control Metrics

Metrics proposed by ASCR

- User satisfaction
- System availability
- Problem response time
- Support for "capability limited problems at leadership facilities"
- US ATLAS experience to date limited to deployment of OSGwide Panda infrastructure, with test jobs, no ATLAS prod yet
 - But now in use by CHARMM for production(!)
 - Opportunistic US ATLAS production OSG-wide in I-2mo
- Qualitative experience so far is good
 - Deployment/debugging easier than expected; easy to get cycles
 - OSG information services imperfect but helpful
 - Ditto for 'uniformity measures' like standardized environment
 - Problem reporting and response very helpful
 - Response delays were with sites, not OSG Ops, who were

OSG JOT 2/effective mediator

Open Science Expectations wrt Applications Area

- Devoting major attention and resources to building upwards from the middleware foundation into higher level common services, and hardening the foundation on the way up, is a great initiative on the part of OSG
 - A comment not without bias
- Too late for a major alignment of higher level infrastructure (data management, production, analysis systems) but still much potential
 - Drawing on the commonality we do have

Open Science Crid Principal AA/UG Common Activities

For project year I

- SRM/dCache (and later other?) storage systems evaluation, integration, hardening, monitoring
- Workload management following the in-vogue 'just in time' approach and leveraging Condor
- Middleware studies/improvements for reliability
 & scalability (eg OSG CE)
- Real, non-virtual FTE support to VOs for targeted help, support, migration to OSG infrastructure, liaison, extracting feedback (NB also the related Troubleshooting activity)

Observations

- OSG well focused on requirements of primary stakeholders
 - No significant 'pull' away to costly new requirements from other domains (eg fine-grained, data security)
 - With some exceptions, our requirements are often a superset of those of others
- At the same time, OSG is proving itself serious about drawing in and supporting a broader user community
- Both these are greatly aided by OSG being operated as a cohesive project, controlling its resources and asserting its program priorities with participants

My Comments

- Do we (HENP) still have a 'grid problem'?
 - Over-promised, under-delivered
 - But very well resourced
 - And therefore, poor return for the investment
- Yes
- Is OSG part of the problem?

My Comments (2)

- Is OSG part of the problem?
 - No, in my opinion
 - OSG is trying to do its job right, and so far with promising results, in the ways that LCG tried initially to do it right, and failed
 - Where 'its job' is to turn 'the grid' into an effective, efficient science producer

My Comments (3)

- LCG's mantra in early years was 'LCG is not a middleware development project'
 - Rather, LCG would focus on middleware evaluation/feedback/ acceptance, and integration/deployment
 - And, LCG would seek to establish collaboration among the experiments on the higher levels of the infrastructure -distribution production/data management/analysis
- Worthy, well-directed ambitions which didn't happen
- OSG is following this path, though, and so long as it does, stands an excellent chance of succeeding at keeping a 'science customer' focus, mediating middleware project interactions with this focus, undertaking collaborative science-focused higher-level infrastructure projects, and delivering -- at a relatively modest cost -- an effective infrastructure for producing science.

Conclusions

- OSG as a funded project is young
- But not so young that we can't see a direction
 - One that's absorbed lessons from other projects
- For the large customers, and I think evidence suggests for the small as well, the direction looks good so far
- US ATLAS reported in its last agency review that we're on a trajectory to meeting all distributed computing needs of the physics program when datataking arrives
 - This anticipates OSG continuing on its present trajectory of strong alignment with real experiment needs