Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

Кафедра КБ-1 «Защита информации»

Дисциплина: «Технические средства контроля эффективности мер защиты информации»

Отчет по практической работе № 6

Тема: Методика контроля эффективности мер защиты информации от утечки по каналу ПЭМИН

Вариант 1

Выполнили:

Студенты 3 курса, группы БББО-05-20 Балабанов Дмитрий Беспалов Константин Любимова Елизавета Ченакина Дария Шельпук Михаил

Проверил:

Жиряков В.Д.

Ход работы

Дано: Линия, проходящая непосредственно в месте размещения СВТ, играет роль случайной антенны. Линия выходит за пределы КЗ.

Требуется рассчитать:

- напряженность поля информативного сигнала на границе КЗ
- ОСШ на границе КЗ
- напряжение ПЭМИН, наводимое в случайной антенне
- напряжение ПЭМИН в линии на границе КЗ

Величина	Значение
Частота информативного сигнала, F [МГц]	4,9
Калибровочный коэффициент антенны, K_A [1/м]	1,78
Калибровочный коэффициент пробника	14,1
Нормированное отношение сигнал/шум, q_{H}	0,3
Удаление изм. антенны от корпуса ТС, <i>R</i> [м]	0,7
Минимальное удаление границы КЗ от корпуса ТС, R_i [м]	15
Спектр. плотность норм. шума для стационарных TCP [мк $B/м \times \kappa \Gamma \mu^{0,5}$]	0,025
Спектр. плотность норм. шума для возимых TCP [мкВ/м×к Γ ц 0,5]	0,025
Спектр. плотность норм. шума для носимых TCP [мкВ/м×к Γ ц 0,5]	0,025
Коэффициент затухания электромагнитного поля, K_3	6391,49
Напряжение сигнал+шум рядом с СВТ, U_{C+III} [дБмкВ]	10
Напряжение шума рядом с СВТ, $U_{I\!I\!I}$ [дБмкВ]	-5

Расчёты:

Шаг 1. Расчёт частоты информативного сигнала:

$$F = H * L * F_{\text{кадр}} * \frac{1,36}{2} = 400 * 300 * 60 * \frac{1,36}{2} = 4,9 \text{ МГц}$$

Шаг 2. Калибровочный коэффициент антенны находится по графику:

$$K_{\rm A}[1/_{\rm M}] = 10^{\frac{K_{\rm A}[{\rm AB}]}{20}} = 10^{\frac{5}{20}} = 1,78$$

Шаг 3. Измерение напряженности поля информативного сигнала:

$$\begin{split} U_{\text{C}i}[\text{дБмкB}] &= 10 \lg \left(10^{\frac{U_{\text{C}+\text{III}}[\text{дБмкB}]}{10}} - 10^{\frac{U_{\text{III}}[\text{дБмкB}]}{10}} \right) = 10 \lg \left(10^{\frac{10}{10}} - 10^{\frac{-5}{10}} \right) \\ &= 10 \lg \left(10 - \frac{1}{\sqrt{10}} \right) = 9,86 \text{ дБмкB} \end{split}$$

$$E_{\rm C}[{\rm дБмкB/m}] = U_{\rm C}[{\rm дБмкB}] + K_{\rm A}[{\rm дБ/m}] = 9,86 + 5 = 14,86 \,{\rm дБмкB/m}$$

$$E_{\rm C}[{\rm мкB/m}] = 10^{\frac{14,86}{20}} = 5,534$$

Шаг 4. Расчет ослабления сигнала на трассе распространения от СВТ до границы КЗ:

$$\lambda[M] = \frac{300}{F[M\Gamma_{II}]} = \frac{300}{4.9} = 61,22$$

Поскольку $R < \lambda/2\pi$ и $\lambda/2\pi < D < 6\lambda$, K_3 рассчитывается по формуле:

$$K_3 = \frac{\lambda D^2}{2\pi R^3} = \frac{61,22 * 15^2}{2 * 3,14 * 0,7^3} = 6391,49$$

Шаг 5. Расчет напряженности поля информативного сигнала на границе КЗ:

$$E_{\text{cK3}}[\text{MKB/M}] = \frac{E_{\text{c}}[\text{MKB/M}]}{\text{K}_3} = \frac{5,534}{6391,49} = 8,66 * 10^{-4} \text{ MKB/M}$$

Шаг 6. Определение спектральной плотности нормированного шума для стационарных, возимых и носимых TCP по графику:

Шаг 7. Определение нормированного уровня напряженности поля помех:

$$E_{{\rm ш}.nj}[{
m M}{
m K}{
m B}/{
m M}]pprox E_{{
m ш}.Nj}\left[rac{{
m M}{
m K}{
m B}}{{
m M}st}{
m K}\Gamma{
m u}^{0,5}
ight]st\Delta{
m F}^{0,5}[{
m K}\Gamma{
m u}]=0.02st5000pprox100{
m m}{
m K}{
m B}/{
m M}$$

Шаг 8. Расчет ОСШ на границе КЗ:

$$q = \frac{E_{\text{cK3}}[\text{MKB/M}]}{E_{\text{III}.nj}[\text{MKB/M}]} = \frac{8,66 * 10^{-4} \text{ MKB/M}}{100 \text{ MKB/M}} = 8,6 * 10^{-6}$$

Шаг 9. Оценка действующей длины линии h_{∂} , как случайной антенны, на основной тактовой частоте:

Шаг 10. Измерение напряжения ПЭМИН в линии возле СВТ:

$$U_1$$
[мкВ] = $h_{\rm д}$ [м] * $E_{\rm c}$ [мкВ/м] = 1,05 м * 5,534 мкВ/м = 5,81 мкВ
$$U_1$$
[дБмкВ] = $20 \lg U_1$ [мкВ] = $20 \lg (5,81) = 15,28$ дБмкВ

Шаг 11. Измерение затухания в сети питания на основной такт. частоте:

$$\alpha \approx 0,45$$
 дБ/м

Шаг 12. Измерение напряжения ПЭМИН в линии на границе КЗ:

$$U_2[\mathrm{дБмкB}] = U_1[\mathrm{дБмкB}] - \alpha[\mathrm{дБ/m}] * l[\mathrm{m}] = 15,28 - 0,45 * 15$$

$$= 8,53 \; \mathrm{дБмкB}$$

$$U_2[\mathrm{mkB}] = 10^{\frac{U_2[\mathrm{дБмкB}]}{20}} = 10^{\frac{8,53 \; \mathrm{дБмкB}}{20}} = 2,67 \; \mathrm{mkB}$$

На границе контролируемой зоны напряжённость поля информативного сигнала составляет $8,66*10^{-4}$ мкВ/м. Отношение «сигнал/шум» на границе контролируемой зоны равно $8,6*10^{-6}$, что меньше 0,3.

Напряжение побочных электромагнитных наводок составляет:

- возле CBT: 5,81 мкВ
- на границе КЗ: 2,67 мкВ