

ROLE OF MACROPHAGES & LYMPHOCYTES IN RENAL INJURY

By

Mohammed Kamal Nassar

Assistant Lecturer of Nephrology

Mansoura University

PHASES OF KIDNEY DISEASES

- ✖ Injury phase : tissue inflammation
- ✖ Reparative phase: development of fibrosis
- ✖ Regenerative Phase: proliferation of new cells, derived from either resident cells and/or bone marrow-derived (BMD) cells.

MACROPHAGES

- ✖ Diverse and dynamic population of cells
- ✖ Perform a wide range of critical functions
- ✖ Secrete a wide range of inflammatory factors.

ROLE OF MACROPHAGES IN RENAL INJURY

Cardiovascular, Pulmonary and Renal Pathology

By Homing to the Kidney, Activated Macrophages Potently Exacerbate Renal Injury

Ying Wang,* Yiping Wang,* Qi Cai,*
Guoping Zheng,* Vincent W.S. Lee,*
Dong Zheng,* Xiaomei Li,[†] Thian Kui Tan,*
and David C.H. Harris*

From the Centre for Transplantation and Renal Research,
The University of Sydney at Westmead Millennium Institute,
Westmead, Sydney, Australia; and the Department of
Rheumatology and Immunology,[†] Anhui Medical University at
Provincial Hospital, Hefei, Anhui, People's Republic of China*

SCID mice with adriamycin nephrosis, an experimental model of human FSGS were treated intravenously with either resting ($1 * 10^6$ to $5 * 10^6$) or activated ($1 * 10^3$ to $1 * 10^6$) macrophages on day 6 post adriamycin administration, and the effects on kidney injury were examined after 28 days.

Serum creatinine

Urine protein

AN + vehicle

AN + $5 * 10^6$ RMAN + 10^3 AMAN + 10^4 AM

**DOES MACROPHAGES HAVE ANY ROLE
IN RENAL REPAIR ??????????**

Available online at www.sciencedirect.com

BBRC

Biochemical and Biophysical Research Communications 332 (2005) 11–16

www.elsevier.com/locate/ybbrc

Adoptive transfer of macrophages ameliorates renal fibrosis in mice

Masashi Nishida *, Yasuko Okumura, Shin-ichiro Fujimoto, Isao Shiraishi,
Toshiyuki Itoi, Kenji Hamaoka

Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan

Received 12 April 2005

Available online 26 April 2005

Adoptive transfer of bone marrow-derived (BM) macrophages following pharmacological depletion of leukocytes by CPM in a C57BL/6 mice model of unilateral ureteral obstruction (UUO) and examination at 5, 14 days.

MACROPHAGES INFILTRATING TO THE INTERSTITIUM

Control

CPM

CPM + MP

ROLE OF MACROPHAGES IN RENAL REPAIR

MACROPHAGE PHENOTYPE

Macrophage activation states and functions

Macrophage phenotype	Activation state	Stimuli	Phenotypic function	Cytokine and inflammatory profile	Unique surface markers
M1	Classical activation	IFN- γ + LPS, TNF, GM-CSF, TLR/IL-1R ligand	Proinflammatory Th1 response	IL-1, IL-12, IL-15, IL-18, IL-23, TNF- α , IL-6, MCP-1, CCL2, CCL3, CCL4, CCL20/MIP-3 α ROS, NO, iNOS, NOS2	CD86, CD80, MHC class II $^{\text{hi}}$, IL-1R, IL-12 $^{\text{hi}}$, IL-23 $^{\text{hi}}$, IL-10 $^{\text{lo}}$
M2	Alternate activation (M2a polarization)	IL-4 or IL-13	Th2 responses, type II inflammation	Fibronectin, BIG-H3, arginase-1, TNF- α , IL-6, IGF, CCL13/MCP-4, CCL22, CCL18, β 2 integrins	Mannose receptor, scavenger receptor, MHC class II $^{\text{hi}}$, decoy IL-1R11, FIZ1/Ym-1
	Type II activation (M2b polarization)	Immune complex + TLR/IL-1R ligands	Immunoregulation, Th2 activation	IL-10, TNF- α , IL-1, IL-6, IL-12, SPHK1, CCL1	CD86, MHC class II $^{\text{hi}}$, IL-10 $^{\text{hi}}$, IL-12 $^{\text{lo}}$
	Deactivated (M2c polarization)	IL-10, TGF- β , glucocorticoids	Immunosuppression, matrix remodeling, tissue repair	IL-10, IL-1 β , IL-6, TGF- β , ECM proteins, CCL16, CCL18, arginase-1	SLAM (CD150), mannose receptor, MHC class II $^{\text{lo}}$

BIG-H3, fasciclin domain 4 protein; MIP, macrophage inflammatory protein; SLAM, signaling lymphocytic activation molecule; SPHK1, sphingosine kinase 1. Note that *FIZ1* and *Ym1* gene expression is characteristic of the alternative pathway of macrophage activation.

Wang & Harris, *J Am Soc Nephrol* 22: 21–27, 2011.

MACROPHAGE STRATEGIES FOR TREATING RENAL DISEASE

Method	Animal Model
A. Macrophage As Target	
antimacrophage sera	Anti-GBM disease (rabbit)
ED7 antibody	AN (rat)
anti- <i>c-fms</i>	UUO (rat); diabetic nephropathy (db/db mouse)
liposomal clodronate	Anti-GBM disease
CD11b-DTR	Crescentic glomerulonephritis (mouse)
anti-CX3CR1	Crescentic glomerulonephritis (WKY rat)
anti-CCL2	Anti-GBM disease (rat and WKY rat); crescentic nephritis (mouse); anti-thy 1.1 nephritis (mouse)
CCL2 and CCL5 DNA vaccine	AN (rat)
modified CCL2 DNA vaccine	AN (rat)
anti-CCL5	Anti-thy 1.1 nephritis (mouse); nephrotoxic nephritis (mouse); immune-complex nephritis (mouse)
anti-ICAM-1, anti-CD18	Nephrotoxic nephritis (WKY rat)
NF- κ B decoy ODN	Crescentic glomerulonephritis (rat)
ICAM-1 ODN	Renal ischaemia-reperfusion injury (rat)
CCL2 spiegelmers	Alport nephropathy (mouse)
B. Macrophage As Tool	
alternatively activated macrophages (M2a)	AN (mouse) STZ-induced DN (BALB/c and eNOS ^{-/-} mouse)
alternatively activated macrophages (M2c)	AN (mouse)
IL-1ra transfected macrophages	Anti-GBM disease (rat); UUO (rat)
IL-4 transfected macrophages	Nephrotoxic nephritis (rat)
IL-10 transfected macrophages	Nephrotoxic nephritis (rat)
macrophages transduced with I κ B	Nephrotoxic nephritis (rat)

AN, adriamycin nephropathy; DN, diabetic nephropathy; UUO, unilateral ureteral obstruction; WKY, Wistar-Kyoto.

MACROPHAGES AS A TARGET

MACROPHAGES AS A TOOL

1. Wound-healing (IL-4/IL-13 Stimulated) (M2a)

Macrophages In Adriamycin Nephropathy

Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease

Y Wang¹, YP Wang¹, G Zheng¹, VWS Lee¹, L Ouyang¹, DHH Chang¹, D Mahajan¹, J Coombs¹, YM Wang², SI Alexander² and DCH Harris¹

¹*Centre for Transplantation and Renal Research, The University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia and ²Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia*

Macrophages were isolated from the spleens of BALB/c mice and stimulated with lipopolysaccharide to induce M1 macrophages or with interleukin-4 (IL-4) and IL-13 to induce M2a macrophages. These macrophages were then infused into SCID mice with adriamycin nephropathy and examined after 2,3,4 weeks.

AN + Vehicle**AN + M0****AN + M1****AN + M2**

PAS

Trichrome

■ AN+vehicle ■ AN+M0 ■ AN+M1 ■ AN+M2

TRACKING OF TRANSFUSED MACROPHAGES

?????????????????

TRACKING OF TRANSFUSED MACROPHAGES IN VIVO (DAY 28)

a

STABILITY OF TRANSFUSED MACROPHAGES

???????????????

STABILITY OF TRANSFUSED MACROPHAGES IN VIVO AT DAY 28

2. Regulatory (IL-10/TGF- β stimulated) (M2c) Macrophages In Adriamycin Nephropathy

IL-10/TGF- β -Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis

Qi Cao,* Yiping Wang,* Dong Zheng,* Yan Sun,* Ya Wang,* Vincent W.S. Lee,* Guoping Zheng,* Thian Kui Tan,* Jon Ince,* Stephen I. Alexander,[†] and David C.H. Harris*

*Centre for Transplantation and Renal Research, University of Sydney, Westmead Millennium Institute, Sydney, New South Wales, Australia; and [†]Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia

REGULATORY EFFECT OF M_{2c} MACROPHAGES

EFFECT OF M2c MACROPHAGES ON ENDOGENOUS INFLAMMATORY CELLS

Parameter	AN+Vehicle	AN+M0	AN+IL-10/ TGF- β M2
CD4 ⁺ T cells	72.3 \pm 13.6	70.3 \pm 15.7	25.3 \pm 7.2 ^a
CD8 ⁺ T cells	36.3 \pm 5.5	38.1 \pm 4.7	17.6 \pm 5.6 ^a
Macrophages	64.3 \pm 10.8	66.4 \pm 10.1	42.9 \pm 8.4 ^a

Data are means \pm SEM of cells per $\times 400$ field.

^aP < 0.01 versus AN+M0.

M2c SUPPRESSES M1 *IN VITRO* AND ENDOGENOUS RENAL MACROPHAGES *IN VIVO*

M2c MACROPHAGES INDUCES Tregs IN VITRO & IN VIVO

TRACKING OF TRANSFUSED MACROPHAGES

?????????????????

SELECTIVE TRACKING OF TRANSFUSED M2c (28 days)

STABILITY OF TRANSFUSED MACROPHAGES

???????????

MAINTENANCE OF ANTI-INFLAMMATORY PHENOTYPES *IN VIVO* OF TRANSFUSED M2c

3. Wound-healing (M2a) Macrophages in Diabetic Nephropathy

Regulatory macrophages protect against renal injury in murine streptozotocin-induced diabetes

The University of Sydney

Westmead Millennium Institute
for Medical Research

D Zheng, YP Wang, VWS Lee, Q Cao, G Zheng, Y Sun, Y Wang, SI Alexander¹ and DCH Harris

Centre for Transplant and Renal Research, The University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia and ¹Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia.

Macrophages were separated from splenocytes of BALB/c mice and cultured with IL-4 and IL-13. Mice underwent adoptive transfer with 1×10^6 M2/per mouse, followed by tail injection with two doses of STZ (75mg/kg and 150mg/kg). Blood glucose levels were monitored daily. Mice were sacrificed at the 10th week after STZ injection. Renal function and histopathological injury were assessed.

Normal

DM + M2

DM alone

M2a MACROPHAGES AMELIORATES RENAL FIBROSIS.

IN VIVO TRACKING OF TRANSFERRED MACROPHAGES 10 WEEKS

Kidney

Pancreas

Spleen

CAN M2a AMELIORATE RENAL INJURY IN ESTABLISHED DIABETIC NEPHROPATHY

?????????????????

M2a

vs

M2c

**BMD
VS
SPLENIC MACROPHAGES**

OBSTACLES FOR USE IN HUMAN

- Adequate purity and sufficient numbers of macrophages from humans for adoptive transfer.
- Dose, timing and frequency of use of regulatory cells.
- Immunosuppression: malignancy & infection.
- Stability and possibility of phenotypic switch.
- Lack of human studies.
- The effect of M2 macrophages in advanced disease is unproven.

LYMPHOCYTES

- ✖ T lymphocytes: cause direct destruction of virus invaded cells and mutant cells (Cell mediated immunity)
- ✖ B lymphocytes: secrete antibodies that indirectly lead to the destruction of foreign material (Humoral immunity)

ORIGIN OF T AND B LYMPHOCYTES

- 1** Class I MHC molecules are found on surface of all cells.
- 2** They are recognized only by cytotoxic (CD8+) T cells.
- 3** CD8 coreceptor links the two cells together.
- 4** Linked in this way, cytotoxic T cells can destroy body cells if invaded by foreign (viral) antigen.

(a) Class I MHC self-antigens

- 1** Class II MHC molecules are found on the surface of immune cells with which helper T cells interact: dendritic cells, macrophages, and B cells.
- 2** They are recognized only by helper (CD4+) T cells.
- 3** CD4 coreceptor links the two cells together.
- 4** To be activated, helper T cells must bind with a class II MHC-bearing APC (dendritic cell or macrophage). To activate B cells, helper T cell must bind with a class II MHC-bearing B cell with displayed foreign antigen.

(b) Class II MHC self-antigens

PIVOTAL ROLE OF HELPER T CELL

ROLE OF LYMPHOCYTES IN ISCHEMIC AKI (IRI)

-
- ✖ T cells were not expected to participate in the initial renal injury based on traditional ideas about the immunological functions of T cells.

LYMPHOCYTES ROLE IN EARLY & LATE RENAL INJURY

The Role of the B7 Costimulatory Pathway in Experimental Cold Ischemia/Reperfusion Injury

Moriatsu Takada,* Anil Chandraker,† Kari C. Nadeau,§ Mohamed H. Sayegh,‡ and Nicholas L. Tilney*

*Surgical Research Laboratory and Department of Surgery, and †Renal Division, Department of Medicine, Brigham and Women's Hospital; and §Department of Pediatrics, Children's Hospital Medical Center, Harvard Medical School, Boston, Massachusetts 02115

M.H. Sayegh and N.L. Tilney are co-senior authors.

Address correspondence to Dr. Mohamed H. Sayegh, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115. Phone: 617-732-5259; FAX: 617-732-5254; E-mail: sayegh@bustoff.bwh.harvard.edu

Received for publication 13 March 1997 and accepted in revised form 28 May 1997.

J. Clin. Invest.

© The American Society for Clinical Investigation, Inc.
0021-9738/97/09/1199/05 \$2.00

Volume 100, Number 5, September 1997, 1199–1203
<http://www.jci.org>

Blockade of T cell CD28-B7 costimulation with CTLA4Ig Ig both on the day of renal IRI and during the first week after IRI in uninephrectomized rats

T OR B LYMPHOCYTES IN RENAL INJURY

?????????????????

Tandems still bright after a **3-day fix?**

[Learn More](#)

This information is current as
of November 25, 2012.

Phenotypic and Functional Characterization of Kidney-Infiltrating Lymphocytes in Renal Ischemia Reperfusion Injury

Dolores B. Ascon, Sergio Lopez-Briones, Manchang Liu,
Miguel Ascon, Vladimir Savransky, Robert B. Colvin, Mark
J. Soloski and Hamid Rabb

J Immunol 2006; 177:3380-3387;
<http://www.jimmunol.org/content/177/5/3380>

Male C57BL/6J wild-type were bluntly dissected and a microvascular clamp was placed on each renal pedicle for 30 min and compared with Sham operated animals.

CD4 OR CD8 T LYMPHOCYTES

?????????????

Identification of the CD4⁺ T cell as a major pathogenic factor in ischemic acute renal failure

Melissa J. Burne,¹ Frank Daniels,¹ Asmaa El Ghandour,¹ Shamila Mauiyyedi,² Robert B. Colvin,² Michael P. O'Donnell,¹ and Hamid Rabb¹

¹Division of Nephrology, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, USA

²Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Address correspondence to: Hamid Rabb, Johns Hopkins School of Medicine, Ross Building, Room 970, 720 Rutland Avenue, Baltimore, Maryland 21205, USA. Phone: (410) 502-1555; Fax: (410) 614-5129; E-mail: hrabbl@jhmi.edu.

Received for publication December 27, 2000, and accepted in revised form September 17, 2001.

The Journal of Clinical Investigation | November 2001 | Volume 108 | Number 9

They compared IRI in C57BL/6 wild-type, *nu/nu* mice & *nu/nu* mice were adoptively transferred with wild-type T cells.

- ✖ CD4 T-cell has 2 subsets:

- Th1 phenotype: pathogenic
- Th2 phenotype: protective

**DOES LYMPHOCYTES HAVE ANY ROLE IN
RENAL REPAIR ????????**

Regulatory T Cells Suppress Innate Immunity in Kidney Ischemia-Reperfusion Injury

Gilbert R. Kinsey, Rahul Sharma, Liping Huang, Li Li, Amy L. Vergis, Hong Ye, Shyr-Te Ju, and Mark D. Okusa

Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia

J Am Soc Nephrol 20: 1744–1753, 2009. doi: 10.1681/ASN.2008111160

Partial depletion of Tregs with an anti-CD25 mAb before IRI. Adoptive transfer of lymph node cells from wild-type mice or FoxP3-deficient Scurfy mice into T cell- and B cell- deficient RAG-1 knockout mice to generate mice with and without FoxP3 Tregs, respectively.

CD25 MAB (PC61) ADMINISTRATION REDUCES Tregs & POTENTIATES IRI

A

F

A

B IRI - IgG

C. IRI – PC61

PARTIAL Treg DEPLETION ENHANCES LEUKOCYTE ACCUMULATION AFTER IR.

Treg REPLETION INHIBITS KIDNEY IRI

A

CONCLUSION

- ✖ Macrophages and distinct T-cell subsets are capable of anti-inflammatory as well as proinflammatory functions.
- ✖ Wound-healing macrophages (M2a) , regulatory macrophages (M2c) and regulatory T cells (Tregs) are remarkably potent at reducing renal injury in a number of different renal disease models.
- ✖ Understanding the biology of macrophages and lymphocytes and their ability to repair renal tissue will enable the future discovery of therapies for kidney diseases.

Thank you