Amendment to the Claims

The claimed invention is:

1. (Currently Amended) A compound of formula (Ia), (Ib), or (Ic):

$$R^1$$
 R^1
 R^6
 R^6
 R^3
 R^3
 R^4
 R^6
 R^6
 R^6
 R^7
 R^6
 R^6
 R^6
 R^6
 R^7
 R^8
 R^8

or a pharmaceutically acceptable salt, prodrug, tautomer, hydrate or solvate thereof, wherein:

R¹ is a group of the formula

wherein R^1 can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy,

 (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, hydroxy, oxo, mercapto, (C_1-C_6) alkylthio, (C_1-C_6) alkoxy, (C_5-C_{10}) aryl or (C_5-C_{10}) heteroaryl, (C_5-C_{10}) aryloxy or (C_5-C_{10}) heteroaryloxy, (C_5-C_{10}) ar (C_1-C_6) alkyl or (C_5-C_{10}) heteroar (C_1-C_6) alkyl,

```
(C_5-C_{10})ar(C_1-C_6)alkoxy or (C_5-C_{10})heteroar(C_1-C_6)alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino(C_1-C_6)alkyl, (C_1-C_6)alkylamino(C_1-C_6)alkyl, (C_1-C_6)alkylamino(C_1-C_6)alkylamino(C_1-C_6)alkylamino, cyano, nitro, carbamoyl, (C_1-C_6)alkylamino, cyano, nitro, carbamoyl, (C_1-C_6)alkylaminocarbonyl, (C_1-C_6)alkoxycarbonyl, (C_1-C_6)alkylaminocarbonyl, (C_5-C_{10})arylcarbonyl, (C_5-C_{10})aryloxycarbonyl, (C_5-C_{10})aryloxycarbonyl, (C_1-C_6)alkylsulfonyl, and (C_5-C_{10})arylsulfonyl;
```

each R^3 is independently selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C_1 - C_6)alkyl HN-, (C_1 - C_6)alkylamino, [(C_1 - C_6)alkyl]₂-amino, (C_1 - C_6)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C_1 - C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-[(((C_1 - C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[(((C_1 - C_6)alkyl)-N]-, (C_1 - C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl]-N]-(C=O)-, [(C_1 - C_6)alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, (C_3 - C_{10})cycloalkyl-NH-(C=O)- and (C_1 - C_6)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, cycloalkyl, alkoxy, phenoxy, amino of R^3 is optionally substituted by at least one substituent independently selected from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, and (C_1-C_6) alkyl HN_- ;

s is an integer from one to five;

and

 $R^6 \text{ is selected from the group consisting of hydrogen, } (C_1\text{-}C_6)\text{alkyl,} \\ (C_2\text{-}C_6)\text{alkenyl,} \quad (C_2\text{-}C_6)\text{alkynyl,} \quad \text{phenyl,} \quad (C_3\text{-}C_{10})\text{cycloalkyl,} \quad (C_1\text{-}C_6)\text{alkyl-}(SO_2)\text{-,} \\ \text{phenyl-}(SO_2)\text{-,} \quad (H_2N\text{-}(SO_2)\text{-,} \quad (C_1\text{-}C_6)\text{alkyl-}NH\text{-}(SO_2)\text{-,} \quad ((C_1\text{-}C_6)\text{alkyl})_2N\text{-}(SO_2)\text{-,} \quad \text{phenyl-}NH\text{-}(SO_2)\text{-,} \quad (C_3\text{-}C_{10})\text{cycloalkyl-}(C=O)\text{-,} \\ \text{(C_1\text{-}C_6)\text{alkyl-}O\text{-}(C=O)\text{-,} \quad (C_3\text{-}C_{10})\text{cycloalkyl-}O\text{-}(C=O)\text{-,} \\ \text{(C_1\text{-}C_6)\text{alkyl-}NH\text{-}(C=O)\text{-,} \quad (C_3\text{-}C_{10})\text{cycloalkyl-}NH\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{alkyl)}_2N\text{-}(C=O)\text{-,} \quad (\text{phenyl})_2N\text{-}(C=O)\text{-,} \quad \text{phenyl-}[((C_1\text{-}C_6)\text{alkyl})\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{alkyl})}\text{-}N\text{-}(C=O)\text{-,} \quad (\text{phenyl})_2N\text{-}(C=O)\text{-,} \quad \text{phenyl-}[((C_1\text{-}C_6)\text{alkyl})\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{alkyl})}\text{-}N\text{-}(C=O)\text{-,} \quad (\text{phenyl})_2N\text{-}(C=O)\text{-,} \quad (\text{phenyl})\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{alkyl})}\text{-}N]\text{-}(C=O)\text{-,} \quad (\text{phenyl})\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{alkyl})}\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text{-}C_6)\text{-}O)\text{-}N]\text{-}(C=O)\text{-,} \\ \text{((C_1\text$

```
and (C_3-C_{10})cycloalkyl-[((C_1-C_6)alkyl)-N]-(C=O)-;
```

where alkyl, alkenyl, alkynyl, phenyl, benzyl, cycloalkyl, alkoxy, phenoxy, amino of R^6 is optionally substituted with at least one moiety independently selected from the group consisting of halo, (C_1-C_6) alkyl,

 (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, phenyl, benzyl, (C_5-C_{10}) heterocyclic, (C_5-C_{10}) heteroaryl, (C_1-C_6) alkyl-SO₂-, formyl, NC-,

 (C_1-C_6) alkyl-(C=O)-, (C_3C_{10}) cycloalkyl-(C=O)-, phenyl-(C=O)-,

(C₅-C₁₀)heterocyclic (C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, HO-(C=O)-,

 (C_1-C_6) alkyl-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-,

 (C_5-C_{10}) heterocyclic-O-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-,

(C₃-C₁₀)cycloalkyl-NH-(C=O)-, phenyl-NH-(C=O)-,

(C₅-C₁₀)heterocyclic NH-(C-O), (C₅-C₁₀)heteroaryl-NH-(C-O),

 $((C_1-C_6)alkyl)_2-N-(C=O)-$, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, hydroxy,

 (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, (C_3-C_{10}) cycloalkyl-O-, phenoxy,

 (C_5-C_{10}) heterocyclic-O-, (C_5-C_{10}) heteroaryl-O-, (C_1-C_6) alkyl-(C=O)-O-,

 (C_3-C_{10}) cycloalkyl-(C=O)-O-, phenyl-(C=O)-O-, (C_5-C_{10}) heterocyclic-(C=O)-O-,

 (C_5-C_{10}) heteroaryl-(C=O)-O-, O₂N-, amino, (C_1-C_6) alkylamino,

 $((C_1-C_6)alkyl)_2$ -amino, formamidyl, $(C_1-C_6)alkyl-(C=O)-NH-$,

(C₃-C₁₀)cycloalkyl-(C=O)-NH-, phenyl-(C=O)-NH-,

(C₅-C₁₀)heterocyclic (C=O) NH-, (C₅-C₁₀)heteroaryl (C=O) NH-,

 $(C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-$, phenyl- $(C=O)-[(C_1-C_6)alkyl-N]-$,

(C₁-C₆)alkyl-SO₂NH-, (C₃-C₁₀)cycloalkyl-SO₂NH-, phenyl-SO₂NH-,

(C₅-C₁₀)heterocyclic SO₂NH- and (C₅-C₁₀)heteroaryl-SO₂NH-;

wherein the phenyl moiety of a R^6 substituent is optionally further substituted with at least one radical independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, perfluoro (C_1-C_6) alkyl and perfluoro (C_1-C_6) alkoxy.

- 2. (Previously Cancelled)
- 3. (Previously Cancelled)
- 4. (Previously Cancelled)
- 5. (Previously Cancelled)
- 6. (Previously Cancelled)

- 7. (Previously Cancelled)
- 8. (Previously Cancelled)
- 9. (Original) A compound of claim 1, wherein s is one to two; R^3 is hydrogen or (C_1 - C_6)alkyl; and R^6 is H, (C_1 - C_6)alkyl, or (C_3 - C_{10})cycloalkyl.
- 10. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 11. (Cancelled)
- 12. (Cancelled)
- 13. (Previously Presented) A compound 6-[5-(6-methyl-pyridin-2-yl)-2H-[1,2,3] triazol-4-yl]-quinazoline or a pharmaceutically acceptable salt thereof.
- 14. (Previously Presented) A pharmaceutical composition comprising 6-[5-(6-methyl-pyridin-2-yl)-2H-[1,2,3] triazol-4-yl]-quinazoline or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.