

1.º Teste de Introdução à Arquitetura de Computadores

1.° Semestre 2014/2015

Duração: 60 minutos

IST – LEIC-Taguspark 30 outubro 2014

NOME		NÚMERO	
------	--	--------	--

1. (2 valores) Considere o seguinte circuito. Assumindo que os sinais C, D e S evoluem ao longo do tempo da forma indicada na tabela seguinte, acabe de preencher o resto da tabela (o sombreado é apenas para melhor visualização).

C	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	1	0	1
D	0	0	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	0	1	1	1	0	0	1
S	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
X	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	1	0	0	0	1	1	0	0	1
Y	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
W	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
Z	1	1	1	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	0

- 2. (2+2+2+2 valores) Suponha que pretende somar o número -2326 (primeiro operando, decimal negativo) com o número 59AH (segundo operando, número hexadecimal positivo).
 - a) Primeiro, converta o primeiro operando para hexadecimal com 16 bits, usando a notação de complemento para 2.

b) Some agora os valores em binário com 16 bits, usando a notação de complemento para 2.

	1	1	1	1	0	1	1	0	1	1	1	0	1	0	1	0	1.º operando
ſ	0	0	0	0	0	1	0	1	1	0	0	1	1	0	1	0	2.º operando
ſ	1	1	1	1	1	1	0	0	1	0	0	0	0	1	0	0	Soma

c) Obtenha o valor simétrico do primeiro operando e represente-o em hexadecimal com 16 bits, em notação de complemento para 2.

0	9	1	6	Н
---	---	---	---	---

d) Qual o valor mais positivo (em hexadecimal) que um operando com 16 bits pode tomar, usando a notação de complemento para 2?

3. (2 valores) Quantos bits precisa, no mínimo, para representar 8 M (mega) valores binários diferentes?

23 bits

4. (2+1 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.

a) Na tabela seguinte estão referidos os sinais que a Unidade de Controlo gera para controlar a Unidade de Dados. Preencha esta tabela, especificando para cada sinal qual a sua utilidade e indicação concreta no caso de o PEPE-8 estar a executar a instrução ADD 60H, que em notação RTL quer dizer A ← A + 60H.

Sinal	Objetivo do sinal	Indicação concreta nesta instrução (ou indicação de que não interessa)
Constante	Indica um valor de dados ou um endereço	Valor: 60H
WR	Se estiver ativo, escreve na memória	Inativo
SEL_B	Seleciona a entrada do multiplexer B	Entrada da esquerda
SEL_A	Seleciona a entrada do multiplexer A	Entrada da esquerda
ESCR_A	Se estiver ativo, o registo A memoriza	Ativo
SEL_ALU	Seleciona uma operação da ALU	Soma

b) Qual a capacidade máxima (em bytes) da memória de dados que o PEPE-8 suporta (quantas células diferentes consegue endereçar)?

256 bytes

5. (2+3 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16. Para facilitar, fornece-se a descrição interna das instruções CALL e RET.

CALL Etiqueta	SP ← SP-2
CALL Eliqueta	PC ← Endereço da Etiqueta
RET	$PC \leftarrow M[SP]$ $SP \leftarrow SP+2$
	$SP \leftarrow SP+2$

Endereços PLACE 2000H ; início da zona de dados N EQU 0FH **2000H** X: WORD 0 WORD N **2002H** Y: PLACE 0H ; início da zona de código 0000H MOV SP, 1000H 0002H R0, 0A4F7H MOV R1, 4321H 0004H MOV 0006H MOV R2, X 0008H **CALL** RotY MOV **000AH** [R2], R0 **000CH** fim: **JMP** fim RotX: **000EH PUSH** R2 0010H MOV R2, [R1] **0012H** ciclo: **ROR** R0, 1 ; rotate right R2, 1 ; shift right **0014H** SHR 0016H JNZ ciclo POP 0018H **R2 001AH RET 001CH** RotY: **PUSH** R1 **001EH** R1, Y MOV 0020H **CALL** RotX 0022H POP **R1**

0024H

RET

a) Preencha os endereços de cada instrução (lado esquerdo, preencha apenas as linhas em que tal faça sentido) e os espaços no programa. Considere que todos os MOVs ocupam apenas uma palavra.

b) Acabe de preencher a tabela com informação sobre os acessos de dados à memória feitos pelo programa, de leitura (L) ou escrita (E). Use apenas as linhas que necessitar.

Endereço da instrução que faz o acesso	Endereço acedido	L ou E	Valor lido ou escrito
0008Н	0FFEH	E	000AH
001CH	0FFCH	E	4321H
0020Н	0FFAH	E	0022H
000EH	0FF8H	E	2000H
0010H	2002Н	L	000FH
0018H	0FF8H	L	2000H
001AH	0FFAH	L	0022H
0022Н	0FFCH	L	4321H
0024Н	0FFEH	L	000AH
000AH	2000Н	E	7A4F H