Homework 6

Ryan Coyne

March 8, 2024

Question 1

Consider the group $G = D_8$. You are given that $H = \{e, r^4, s, sr^4\}$ is a subgroup of D_8 .

- a) Either show that H is a normal subgroup of D_8 , or show that it is not a normal subgroup.
- b) List all the left cosets of H.
- 1. Proof

Question 2

Give the composition table for the group $\operatorname{Aut}(\mathbb{Z}_{24})$.

0	$ f_1 $	f_5	f_7	f_{11}	f_{13}	f_{17}	f_{19}	f_{23}
f_1	f_1	f_5	f_7	f_{11}	f_{13}	f_{17}	f_{19}	f_{23}
f_5	f_5	f_1	f_{11}	f_7	f_{17}	f_{13}	f_{23}	f_{19}
f_7	f_7	f_{11}	f_1	f_5	f_{19}	f_{23}	f_{13}	f_{17}
f_{11}	f_{11}	f_7	f_5	f_1	f_{23}	f_{19}	f_{17}	f_{13}
f_{13}	f_{13}	f_{17}	f_{19}	f_{23}	f_1	f_5	f_7	f_{11}
f_{17}	f_{17}	f_{13}	f_{23}	f_{19}	f_5	f_1	f_{11}	f_7
f_{19}	f_{19}	f_{23}	f_{13}	f_{17}	f_7	f_{11}	f_1	f_5
f_{23}	$ f_{23} $	f_{19}	f_{17}	f_{13}	f_{11}	f_7	f_5	f_1