Introduction to Networks

CSC 348-648

Spring 2013

Networks Overview

- Interconnected set of computers
 - The *Internet* being the most popular and successful

- To send a message through the network...
 - Message broken into smaller pieces (packets)
 - A packet contains some data, sender & receiver addresses
 - Sent individually (good luck, safe journey, don't talk to strangers...)
- Like sending a document via the mail, one page per envelope

Types of Connectivity

- There are two basic ways to connect computers
 - Broadcast and point-to-point

1. Broadcast

• Single channel (medium of communication) shared by all Examples? Advantages and disadvantages?

2. Point-to-point

• All machines are directly connected Examples? Advantages and disadvantages?

E. W. Fulp CSC 348-648 Spring 2013 2

More Realistic Connectivity

- The previous two types of networks do not scale
 - Combine broadcast and point-to-point

- This is how most networks operate, message passing
 - An inter-connection of smaller Local Area Networks (LAN)
 - Communication is more complicated
- Need **protocols** for sending and receiving

Protocols

Set of rules governing the exchange of data between two entities
 Why are protocols needed in a broadcast network?

Why are protocols needed in a message passing network?

- Many different protocols are needed to address different questions
 - How do you represent a bit?
 - When can you access a channel?
 - How should bits be grouped to form a message, packet, or frame?
 - How are computers identified?

E. W. Fulp CSC 348-648 Spring 2013 4

OSI

- Open System Interconnection (OSI) model provides organization to the different protocols
 - Model consists of 7 layers
 - Each layer defines a protocol and performs certain tasks
- OSI 7 layers
 - 1. Physical bit transmission
 - Addresses: How do you send/represent a bit?
 - 2. Data link frame transmission
 - Groups bits into frames (more efficient)
 - Addresses: Frame structure? Channel access?

- 3. **Network** routing messages (packet)
 - Addresses: How do you forward a packet?
 Is this layer required for a broadcast network?
- 4. **Transport** end-to-end transmission
 - Addresses: How do you inform the sender to speed-up, slow down, or repeat a data segment?
- 5. **Session** ?
- 6. Presentation data representation
- 7. Application provides network service to users

E. W. Fulp CSC 348-648 Spring 2013 6

 As a message is sent from machine to machine, it traverses the different layers in order

Physical Layer

- Concerned with sending information in the form of electromagnetic signals across a transmission medium
 - Transmission medium includes, copper, fiber, and wireless
- Specifies items such as
 - How do you represent a bit?

 Can you give an example?
 - Encoding/decoding techniques
- Not many (if any) security issues at this layer
 - If you want to learn more, take CSC 343 in the Fall

E. W. Fulp CSC 348-648 Spring 2013 8

Data Link

- Provide reliable and efficient communication between two machines physically connected via a channel
- Data link layer specifies
 - How bits are grouped together into **frames**
 - Line discipline, when can you access (MAC)
 - Error detection (possibly correction)
 - Flow control between two adjacent machines
- Frames typically consist of
 - Start and stop characters indicates beginning and end of frame
 - Data
 - Error correction/detection (parity bit)

- Sequence number
- Address (MAC address) uniquely identifies a machine

- Addresses
 - Every machine should have a unique data link address
 - Also called MAC or hardware address
 - Different from IP address (which is one layer above)
- We have described the format of a frame
 - Need a protocol indicating how/when to transmit frames
 - Medium Access Control (MAC)

E. W. Fulp CSC 348-648 Spring 2013 10

Medium Access Control

- Medium Access Control (MAC)
 - Method for controlling access (transmission rules)
 - Answers the question: Who sends next? What is the protocol to ask a question in a classroom?
- MAC categories
 - Contention no permission to send required Can you give an example?
 - Round-robin send when you have permission Can you give an example?
 - Reservation request before sending

CSMA/CD

- Carrier Sense Multiple Access Collision Detection (CSMA/CD)
 - Contention based MAC
 - Used in Ethernet Local Area Networks (LAN)
 What type of network topology is required?
- Transmission rules
 - 1. Medium idle transmit
 - 2. Medium busy, listen until idle then transmit
 - 3. If collision, transmit jamming signal
 - 4. After jamming, wait random amount of time then go to step 1

Is this how you interact in a classroom? What is its performance?

E. W. Fulp CSC 348-648 Spring 2013 12

IEEE 802 Standards

- IEEE has produced several LAN standards called the 802 series Why are standards needed?
- 802.x standards defines
 - Physical layer and data link layer
 - Examples include 802.3 (Ethernet) and 802.11x (wireless)
- For example 802.3 (Ethernet) defines
 - Cabling type category 5
 - Signal encoding differential manchester
 - Frame structure what the bits represent
 - Line discipline CSMA/CD

Network Devices

Classify the devices based on the OSI layers they implement

- Hub
 - Connects several Ethernet-enabled computers together
 - Each computer connects directly to the hub
 - Hub repeats what is sent on one wire to all other wires What layer(s) is/are implemented by a hub? What is the difference between a hub and a switch?
- Network Interface Card (NIC)
 - Ethernet card is an example
 - Connects a computer to a LAN
 - Sends bits over wire and follows medium protocol What layer(s) is/are implemented by a NIC?

E. W. Fulp CSC 348-648 Spring 2013 14

Network Layer

Concerned with delivering packets from source to destination
 Isn't this the same as the data link layer?

- Messages are forwarded from machine to machine until destination
 - Messages (packets or datagrams) are routed
 - Network layer describes how packets are routed
 - Network layer also provides congestion control
- Transport protocols also have addresses

- Routers implement layers 1, 2, and 3
 - Receive packets and forward to next machine
 - Identifying the *next* is important
 - Routing decisions could be based on metrics, tables, or flooding
- Internet Protocol (IP) is the most prevalent network protocol

E. W. Fulp CSC 348-648 Spring 2013 16

Transport Layer

- Provides reliable transmission of data across the network
 - Concerned with end-to-end transmission of data
 - Items include loss and Quality of Service (QoS)

Is this not a concern of the network layer?

- Example transport layer protocols
 - User Datagram Protocol (UDP)
 - Transmission Control Protocol (TCP)
- Transport protocols also have addresses

Application Layer

- Applications built to use the network
- Examples include
 - http
 - FTP
 - telnet
- Many security exploits are at the application layer
 - Buffer overflows