

Programmazione Lineare

ver 3.0.0

Fabrizio Marinelli

fabrizio.marinelli@staff.univpm.it tel. 071 - 2204823

- Richiami di Algebra Lineare
- Introduzione alla Prog. Lineare (PL)
- Ottimizzazione convessa e PL
- Geometria della PL
- Sistemi di eq. Lineari e PL

- Richiami di Algebra Lineare
- Introduzione alla Prog. Lineare (PL)
- Ottimizzazione convessa e PL
- Geometria della PL
- Sistemi di eq. Lineari e PL

Richiami di Algebra Lineare

Vettori

● [Definizione] un vettore $\mathbf{x} \in \mathbb{R}^n$ è una n-pla di numeri reali $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ e rappresenta un punto nello spazio \mathbb{R}^n .

Ogni elemento x_i del vettore è detta componente (o coordinata).

[Esempio]

$$\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

[Definizioni]

- la trasposta di un vettore $\mathbf{x} \in \mathbb{R}^n$ (indicata con \mathbf{x}^T) è il vettore riga $[x_1 \dots x_n]$.
- Il versore \mathbf{e}_i è il vettore $[0,...,1,...0]^T$ in cui la componente *i*-esima è 1

Vettori: operazioni elementari

Somma

$$x + y = z$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z_1 = x_1 + y_1 \\ \vdots \\ z_n = x_n + y_n \end{bmatrix}$$

Prodotto per uno scalare

$$\beta \mathbf{x} = \mathbf{z}$$

$$\beta \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} z_1 = \beta x_1 \\ \vdots \\ z_n = \beta x_n \end{bmatrix}$$

Vettori: operazioni elementari

$$\mathbf{x} = (4,1)$$

 $\mathbf{y} = (1, 2)$
 $\beta = 2$

Combinazioni lineari

Definizione] il vettore $y \in \mathbb{R}^n$ è una combinazione lineare dei k vettori $\mathbf{x}_1, ..., \mathbf{x}_k \in \mathbb{R}^n$ se esistono k valori $\alpha_1, ..., \alpha_k \in \mathbb{R}$ tali che

$$\mathbf{y} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i = \alpha_1 \begin{bmatrix} x_{11} \\ \vdots \\ x_{1n} \end{bmatrix} + \dots + \alpha_k \begin{bmatrix} x_{k1} \\ \vdots \\ x_{kn} \end{bmatrix}$$

Vettori e combinazioni lineari: esempi

[Esempio 1]

Il vettore $\mathbf{y} = (5,4)$ è combinazione lineare dei vettori $\mathbf{x}_1 = (4,1)$ e $\mathbf{x}_2 = (1,2)$? Si tratta di determinare i coefficienti α_1 e α_2 tali che

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} \alpha_1 + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \alpha_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \quad \text{ovvero di risolvere il sistema} \quad \begin{cases} 4\alpha_1 + \alpha_2 = 5 \\ \alpha_1 + 2\alpha_2 = 4 \end{cases}$$

la cui soluzione è: $\alpha_1 = 6/7$ e $\alpha_2 = 11/7$

• [Esempio 2] E il vettore $\mathbf{y} = (-2, -1)$ è combinazione lineare di \mathbf{x}_1 e \mathbf{x}_2 ? Si tratta di determinare i coefficienti α_1 e α_2 tali che

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} \alpha_1 + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \alpha_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix} \quad \text{ovvero di risolvere il sistema} \qquad \begin{cases} 4\alpha_1 + \alpha_2 = -2 \\ \alpha_1 + 2\alpha_2 = -1 \end{cases}$$

la cui soluzione è: $\alpha_1 = -3/7$ e $\alpha_2 = -2/7$

Combinazioni lineari

Spazi lineari

[Definizione] l'insieme $S \subseteq \mathbb{R}^n$ è uno spazio lineare reale (o spazio vettoriale) se è chiuso rispetto alla somma e alla moltiplicazione, cioè se ogni combinazione lineare di suoi elementi resta nell'insieme:

$$(\alpha \mathbf{x} + \beta \mathbf{y}) \in \mathcal{S} \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{S} \ \mathbf{e} \ \forall \alpha, \beta \in \mathbf{R}$$

Osservazione] ogni spazio lineare contiene il vettore nullo.

• [Definizione] $S \subset V$ è un sottospazio lineare dello spazio lineare V se e solo se S è uno spazio lineare

Indipendenza lineare

Definizione] Un insieme S di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ si dice linearmente indipendente <u>se e solo se</u> l'unico modo per esprimere il vettore nullo come combinazione lineare di $\mathbf{x}_1, ..., \mathbf{x}_m$ è utilizzando coefficienti tutti nulli, cioè

$$\sum_{i=1}^{m} \alpha_i \mathbf{x}_i = \mathbf{0} \qquad \Leftrightarrow \qquad \alpha_i = 0 \quad \forall i$$

Indipendenza lineare

[Osservazioni]

- 1. Un sottoinsieme di un insieme S linearmente indipendente è linearmente indipendente.
- 2. L'insieme $\{\mathbf{0}_n\}$ è linearmente dipendente, quindi
- 3. ogni insieme S contenente $\mathbf{0}_n$ è linearmente dipendente.
- 4. Ogni insieme S costituito da un solo elemento diverso dal vettore nullo è linearmente indipendente.

basi

Sia B una collezione di vettori qualsiasi di \mathbb{R}^n .

- **[Definizione]** L'insieme di tutte le combinazioni lineari di elementi di *B* si dice involucro lineare di *B* oppure sottospazio generato da *B* e si indica con *lin(B)*.
- [Definizione] L'insieme B si dice base di S se i vettori di B sono linearmente indipendenti e se S = lin(B).
- Data una base $B = \{\mathbf{x}_1, ..., \mathbf{x}_m\}$ e un vettore $\mathbf{y} \in S \setminus B$, si definisce rappresentazione di \mathbf{y} rispetto a B il vettore $(\alpha_1, ..., \alpha_m)$ tale che

$$\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i$$

basi

Teorema [Steinitz] Tutte le basi di un dato spazio lineare

S hanno lo stesso numero di elementi.

• [Definizione] il numero di elementi di una base di uno spazio lineare S è detto rango lineare (o dimensione) di S e si indica con rango(S).

Esercizi

- 1. Dimostrare che una qualsiasi retta passante per l'origine è un sottospazio lineare di ${\bf R}^2$
- 2. Dimostrare che ogni coppia di punti che individuano una retta che non passa per l'origine forma una base di R².
- 3. Dimostrare che nessun vettore di una base *B* può essere espresso come combinazione lineare degli altri vettori di *B*.

Matrici

Definizione] una matrice $A \in \mathbb{R}^{m \times n}$ è una tabella di $m \cdot n$ scalari organizzati in m righe e n colonne.

- $(m \times n)$ è la dimensione della matrice.
- se m = n la matrice è detta quadrate di ordine n.
- un vettore è una matrice di dimensione $(m \times 1)$.

Notazione

- \bullet A seconda dei casi una matrice **A** con *m* righe e *n* colonne può essere rappresentata
 - con un suo elemento generico

$$\mathbf{A} = [a_{ij}]$$

con la sua dimensione

$$\mathbf{A}(m \times n)$$

per esteso

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

come collezione di vettori colonna

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \mid & \cdots & | \mathbf{A}_n \end{bmatrix}$$

• come collezione di vettori riga

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{a}_m^{\mathrm{T}} \end{bmatrix}$$

Operazioni su matrici

• Consideriamo due matrici $\mathbf{A}(m \times n)$ e $\mathbf{B}(m \times n)$

Somma:
$$\mathbf{A} + \mathbf{B} = \mathbf{C}$$
 $\begin{bmatrix} c_{ij} = a_{ij} + b_{ij} \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} + \begin{bmatrix} 2 & -1 & 4 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -3 & 7 \\ 4 & 7 & 0 \end{bmatrix}$

• Prodotto per uno scalare: $\beta \mathbf{A} = \mathbf{C}$ $[c_{ij} = \beta a_{ij}]$

$$3 \cdot \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -6 & 9 \\ 9 & 15 & 0 \end{bmatrix}$$

Operazioni su matrici

• Il <u>prodotto</u> tra le matrici $\mathbf{A}(m \times p)$ e $\mathbf{B}(q \times n)$, definito <u>se e</u> solo <u>se</u> p = q, è la matrice $\mathbf{C}(m \times n)$ in cui l'elemento c_{ij} è:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$
 $i = 1, ..., m$ $j = 1, ..., m$

• [Osservazione] Il <u>prodotto scalare</u> di due vettori \mathbf{x} e \mathbf{y} è in effetti un prodotto tra matrici di dimensione $(1 \times m)$ e $(m \times 1)$.

Operazioni su matrici: proprietà del prodotto

■ <u>non</u> è commutativo

in generale $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

in particolare:

- $\mathbf{A} \cdot \mathbf{e}_i = \mathbf{A}_i$ (colonna *i*-esima di \mathbf{A})
- $\mathbf{e}_i^{\mathrm{T}} \mathbf{A} = \mathbf{a}_i \text{ (riga } i\text{-esima di } \mathbf{A}\text{)}$

• è associativo

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

• gode della prop. distributiva destra e sinistra

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$$
 e
 $\mathbf{C} \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{C} \cdot \mathbf{A} + \mathbf{C} \cdot \mathbf{B}$

Matrici particolari: trasposta

• La matrice trasposta \mathbf{A}^{T} di una matrice $\mathbf{A}(m \times n)$ si ottiene scambiando le righe con le colonne (per ogni elemento si ha quindi $a_{ij} \rightarrow a_{ji}$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ -2 & 5 \\ 3 & 0 \end{bmatrix}$$

- \mathbf{A}^{T} ha dimensione $(n \times m)$
- $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
- $(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$

Matrici particolari: nulla

• La matrice nulla $\mathbf{O}(m \times n)$ è quella composta da tutti zero:

$$\mathbf{O}(m \times n) \qquad a_{ij} = 0 \ \forall i, j$$

$$\mathbf{O} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- A + O = A
- A A = O
- $\mathbf{O} \cdot \mathbf{A} = \mathbf{O}$

Matrici quadrate

matrice identità

$$\mathbf{I}(n \times n) \qquad a_{ii} = 1, \, a_{ij} = 0 \,\,\forall i \neq j$$

matrice diagonale

$$\mathbf{A}(n \times n) \qquad a_{ij} = 0 \ \forall i \neq j$$

matrice triangolare sup.

$$\mathbf{A}(n \times n) \ a_{ij} \ge 0 \ \forall i \le j, \ a_{ij} = 0 \ \forall i > j$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{vmatrix} 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 6 \end{vmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 0 & 4 & 6 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

Matrici quadrate

matrice simmetrica

$$\mathbf{A}(n \times n) \quad a_{ij} = a_{ji}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 1 & 4 & 6 & 0 \\ -2 & 6 & -1 & 3 \\ 2 & 0 & 3 & 6 \end{bmatrix}$$

- matrice invertibile: matrice che ammette la sua inversa

 - $(A^{-1})^{-1} = A$
 - $(A^{T})^{-1} = (A^{-1})^{T}$
 - $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$

Definizione] Data una matrice quadrata **A** di *ordine* $n \ge 2$, la matrice quadrata di ordine n - 1 che si ottiene cancellando la k-esima riga e j-esima colonna da **A** si chiama minore \mathbf{A}_{kj} di **A**

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 1 & 4 & 6 & 0 \\ -2 & 6 & -1 & 3 \\ 2 & 0 & 3 & 6 \end{bmatrix}$$

$$\mathbf{A}_{23} = \begin{bmatrix} 5 & 1 & 2 \\ -2 & 6 & 3 \\ 2 & 0 & 3 \end{bmatrix}$$

• Il determinante $det(\mathbf{A})$ di una matrice quadrata $\mathbf{A}(n \times n)$ di ordine $n \ge 1$ è una funzione lineare delle righe di \mathbf{A} a valori reali. La formula generale per calcolare $det(\mathbf{A})$ è

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

■ Il determinante $\det(\mathbf{A})$ di una matrice quadrata $\mathbf{A}(n \times n)$ di ordine $n \ge 1$ è una funzione lineare delle righe di \mathbf{A} a valori reali. La formula generale per calcolare $\det(\mathbf{A})$ è

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj})$$
 per $1 \le k \le n$ fissato

cofattore dell'elemento a_{kj}

[Nota] Il cofattore di a_{kj} è il determinante della matrice che si ottiene sostituendo la k-esima riga di \mathbf{A} con il vettore unitario \mathbf{e}_i

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \quad \text{per } 1 \le k \le n \text{ fissato}$$

Il determinante è definito ricorsivamente.

$$\mathbf{A} = [a_{11}] \qquad \det(\mathbf{A}) = a_{11}$$

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \qquad \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$$

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

Il determinante è definito ricorsivamente.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\det(\mathbf{A}) = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

[casi particolari]

se A è una matrice diagonale o triangolare superiore allora

$$\det(\mathbf{A}) = a_{11} \cdot \ldots \cdot a_{nn}$$

[esercizio] quante operazioni aritmetiche richiede il calcolo del determinante di una matrice di ordine *n*?

Proprietà del determinante

1. per ogni colonna \mathbf{A}_k e $t \in \mathbb{R}$ si ha

$$\det(\mathbf{A}_1 \mid \dots \mid t\mathbf{A}_k \mid \dots \mid \mathbf{A}_n) = t \det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k \mid \dots \mid \mathbf{A}_n)$$

2. per ogni colonna \mathbf{A}_k e $\mathbf{c} \in \mathbb{R}^n$ si ha

$$\det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k + \mathbf{c} \mid \dots \mid \mathbf{A}_n) = \det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k \mid \dots \mid \mathbf{A}_n) + \det(\mathbf{A}_1 \mid \dots \mid \mathbf{c} \mid \dots \mid \mathbf{A}_n)$$

- 3. $det(\mathbf{A}) = -det(\mathbf{A})$ se scambio due colonne di \mathbf{A} tra loro
- 4. $det(\mathbf{A}) = det(\mathbf{A}^{\mathrm{T}})$
- 5. $det(\mathbf{A}) \neq 0$ se e solo se tutti i vettori colonna di \mathbf{A} sono <u>linearmente indipendenti</u>
- **6.** det(I) = 1
- 7. $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$
- 8. $\det(\mathbf{A}^{-1}) = 1 / \det(\mathbf{A})$

• In base alla 4. le proprietà 1., 2., 3. e 5. possono anche essere enunciate per righe.

Rango di una matrice

• [Definizione] $\mathbf{A}(n \times n)$ è detta matrice non singolare se $\det(\mathbf{A}) \neq 0$.

• [Definizione] Il rango di una matrice $\mathbf{A}(m \times n)$, indicato anche con rank(\mathbf{A}), è il massimo ordine tra tutte le sottomatrici non singolari di \mathbf{A} .

[Osservazioni]

- Dalla definizione segue che $rank(A) \le min(m, n)$.
- Se $rank(\mathbf{A}) = min(m, n)$ la matrice \mathbf{A} si dice di rango pieno.
- Una matrice quadrata è di rango pieno se e solo se è non singolare.

Esercizi

1. Verificare le proprietà 1-8 dei determinanti con i seguenti dati

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 & 4 \\ 3 & 5 & 2 & 1 \\ 2 & -2 & 6 & 0 \\ 4 & 3 & -3 & 2 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & -1 & 4 & 1 \\ -3 & 1 & 0 & 2 \\ 1 & 3 & -2 & 0 \\ -2 & 0 & -1 & 3 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ -1 \\ 2 \end{bmatrix} \quad t = 4$$

- 2. Dimostrare la proprietà 8 dei determinanti.
- 3. Sia \mathbf{A}' la matrice ottenuta da $\mathbf{A}(n \times n)$ sommando ad una riga $\mathbf{a}_j^{\mathrm{T}}$ una combinazione lineare delle righe di \mathbf{A} .

Dimostrare che $det(\mathbf{A}) = det(\mathbf{A'})$

Trasformazioni lineari e matrici

• [Definizione] Siano V e W due spazi lineari. Una trasformazione $T: V \to W$ è lineare se conserva l'addizione e la moltiplicazione per scalari

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}) \qquad a, b \in \mathbb{R}, \quad \mathbf{x}, \mathbf{y} \in V, \quad T(\mathbf{x}), T(\mathbf{y}) \in W$$

$$T\left(\sum_{i=1}^{n} a_{i}\mathbf{x}_{i}\right) = \sum_{i=1}^{n} a_{i}T(\mathbf{x}_{i}) \qquad a_{i} \in \mathbb{R}, \quad \mathbf{x}_{i} \in V, \quad T(\mathbf{x}_{i}) \in W$$

● [Proposizione] Ogni trasformazione lineare $T:V \to W$ con $V \subseteq \mathbb{R}^n$ e $W \subseteq \mathbb{R}^m$ è rappresentabile da una matrice A con m righe e n colonne detta matrice associata a T

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Trasformazioni lineari e matrici

Infatti se $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$ è la base canonica di V, allora $\mathbf{x} \in V$ può essere scritto come

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

Se $\{\mathbf{w}_1, ..., \mathbf{w}_m\}$ è una base di W e $a_{1i}, ..., a_{mi}$ la rappresentazione di $T(\mathbf{e}_i) \in W$, si può scrivere

$$T(\mathbf{e}_i) = \sum_{j=1}^m a_{ji} \mathbf{w}_j$$

$$T(\mathbf{x}) = T\left(\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}\right) = \sum_{i=1}^{n} x_{i} T(\mathbf{e}_{i}) = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{m} a_{ji} \mathbf{w}_{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ji} \mathbf{w}_{j} x_{i}$$

Una matrice **A** che ha *n* colonne, una per ogni *m*-pla $(a_{1i},...,a_{mi})$ che definisce $T(\mathbf{e}_i)$, è una matrice che descrive la trasformazione lineare

Trasformazioni lineari e matrici

• Quindi, se T è una trasformazione lineare da \mathbb{R}^n in \mathbb{R}^m si ha

$$y = T(x)$$
 con $x \in \mathbb{R}^n$ e $y \in \mathbb{R}^m$
o equivalentemente
 $y = Ax$ con $A(m \times n)$

• In particolare, se T è una trasformazione lineare da \mathbb{R}^n in \mathbb{R} si ha

$$T(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x} = y$$
 con $\mathbf{c} \in \mathbb{R}^n$

Trasformazioni lineari e determinanti: esempi

Una trasformazione lineare in generale modifica le aree. Il fattore di scala della trasformazione è il determinante della trasformazione

$$det\left(\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}\right) = 6$$

Trasformazioni lineari e determinanti: esempi

Una trasformazione lineare in generale modifica le aree. Il fattore di scala della trasformazione è il determinante della trasformazione

$$det\left(\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}\right) = 6$$

Trasformazioni lineari e determinanti: esempi

Se il determinante è 0, perdo una o più dimensioni e l'area collassa in un segmento o in punto e di conseguenza si annulla.

[domanda] Qual è il significato geometrico di un determinante negativo?

determinante: interpretazione geometrica

$$det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - cb$$

