VECTORES EN EL PLANO Y EL ESPACIO

1.- Vectores en general

La recta L tiene dirección dada por el ángulo lpha

 $A, B \in L \Rightarrow \overline{AB}$ o \overline{BA} tiene dirección y magnitud, se les llama segmento

 \overrightarrow{AB} tiene dirección, magnitud y sentido dado por la flecha, se le llama segmento dirigido.

Definición: Un vector es un segmento dirigido.

Notaciones:

Un vector desde A (origen) hasta B (extremo) se anota \overrightarrow{AB} o $\overrightarrow{AB}=\vec{v}$ o de manera más general, \vec{v} .

Definición

Dos vectores no nulos se dicen que son equivalentes o están relacionados si tienen igual magnitud, dirección y sentido.

El vector \overrightarrow{OP} es equivalente al vector \overrightarrow{AB}

En la siguiente figura

se puede ver que \vec{u} es equivalente a \vec{v} , \vec{w} y \vec{s} dado que los segmentos \overrightarrow{AB} $| | \overrightarrow{CD}$, $\overrightarrow{AB} | | | \overrightarrow{EG}$ y $\overrightarrow{AB} | | | \overrightarrow{FH}$ por tanto tienen igual dirección, además tienen igual magnitud y sentido.

Operaciones con vectores

1.- Suma de vectores: (de dos maneras)

i) La suma es el vector que tiene como origen el origen del primero (\vec{u}) y como el extremo del segmento (\vec{v})

ii) Ley del paralelogramo

Sean \vec{u} y \vec{v} vectores con igual origen

Formamos un paralelogramo con dos vectores equivalentes a los dados \vec{u} y \vec{v} . La suma es la diagonal del paralelogramo con origen en \vec{u} y en \vec{v} .

2.- Multiplicación de un número real por un vector.

Si \vec{u} es un vector y k es un número real entonces $k\vec{u}$ es un vector que tendrá la misma dirección de \vec{u} y el sentido será el mismo de \vec{u} si k>0 y el opuesto al de \vec{u} si k<0.

Observación

El vector $\vec{u} - \vec{v}$ es definido como $\vec{u} + (-\vec{v})$ y su interpretación es:

0 bien

Un sistema estándar de coordenadas en tres dimensiones

Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas P = (x, y, z) o P(x, y, z).

O bien

Ejemplo de representación de puntos en el espacio

Los ejes coordenados determinan tres planos coordenados: $XY, XZ \ e \ YZ$. Estos planos coordenados dividen el espacio en ocho regiones llamados octantes, en el primer octante las tres coordenadas son positivas,

Definición

Un vector en el espacio es cualquier segmento dirigido \vec{v} que tiene su origen en el punto O(0,0,0) y su extremo en el otro P(x,y,z).

Componentes de un vector

Los vectores en el espacio se representan por coordenadas. Se define como sigue:

Si $A=(x_1,y_1,z_1)$ y $B=(x_2,y_2,z_2)$ son puntos del espacio \mathbb{R}^3 entonces

$$\overrightarrow{AB} = B - A = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Como representaremos los vectores centrado en el origen, si P=(a,b,c) y O=(0,0,0) entonces $\overrightarrow{OP}=(a,b,c)=\vec{v}$

Definición

Se define la norma del vector $\vec{v}=(x_1,y_1,z_1)$, el cual se anota $\|\vec{u}\|$ como:

$$\|\vec{u}\| = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

Ejemplo:

Si
$$\vec{u} = (1,1,1) \Rightarrow ||\vec{u}|| = \sqrt{3}$$

Algebra de vectores

I) Sean $\vec{u}=(x_1,y_1,z_1)$ y $\vec{v}=(x_2,y_2,z_2)$ vectores en el espacio \mathbb{R}^3 , entonces:

1.-
$$\vec{u} = \vec{v} \Leftrightarrow x_1 = x_2$$
, $y_1 = y_2$ y $z_1 = z_2$

2.-
$$\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \ y \ \vec{u} - \vec{v} = (x_1 - x_2, y_1 - y_2, z_1 - z_2)$$

$$3.-k\vec{u}=(kx_1,ky_1,kz_1)\operatorname{con} k\in\mathbb{R}$$

II) Sean los vectores $\vec{u}=(x_1,y_1,z_1)$, $\vec{v}=(x_2,y_2,z_2)$ y $\vec{w}=(x_3,y_3,z_3)$ y los números reales k_1,k_2 , entonces se verifican las siguientes propiedades:

$$1.-\vec{u}+\vec{v}=\vec{v}+\vec{u}$$

2.-
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

3.-
$$k_1(k_2\vec{u}) = (k_1k_2)\vec{u} = (k_2k_1)\vec{u} = k_2(k_1\vec{u})$$

$$4.-k_1(\vec{u} + \vec{v}) = k_1\vec{u} + k_1\vec{u}$$

5.-
$$(k_1 + k_2)\vec{u} = k_1\vec{u} + k_2\vec{u}$$

Definición:

Sean \vec{u} , \vec{v} vectores en \mathbb{R}^3 . Se dice que \vec{u} y \vec{v} son paralelos o colineales si

existe $k \in \mathbb{R}$ tal que $\vec{u} = k\vec{v}$.

De ahí si $\vec{u}=(x_1,y_1,z_1)$ y $\vec{v}=(x_2,y_2,z_2)$, entonces $\vec{u}=k\vec{v}$

$$\Leftrightarrow (x_1, y_1, z_1) = k(x_2, y_2, z_2)$$

$$\Leftrightarrow \begin{cases} x_1 = kx_2 \\ y_1 = ky_2 \\ z_1 = kz_2 \end{cases}$$

$$\Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$

Notación: $\vec{u} \parallel \vec{v} \Leftrightarrow \vec{u}$ y \vec{v} paralelos

Ejemplo

Los vectores $\vec{u}=(-2,3,-4)$ y $\vec{v}=(-4,6,-8)$ son paralelos pues:

$$\vec{u} = \frac{1}{2}\vec{v}$$
 o $\vec{v} = 2\vec{u}$ o $\frac{-2}{-4} = \frac{3}{6} = \frac{-4}{-8}$

Definición

Un vector \vec{u} se denomina unitario si $||\vec{u}|| = 1$.

Si \vec{u} es un vector $\|\vec{u}\| > 0$ pero $\|\vec{u}\| \neq 1$ el vector $\vec{v} = \frac{\vec{u}}{\|\vec{u}\|}$ es unitario y tiene la misma dirección que \vec{u} .

Ejemplo 1

 $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ y $\vec{k}=(0,0,1)$ son vectores unitarios canónicos de \mathbb{R}^3 .

Ejemplo 2

Si
$$\vec{u} = (-1,2,4) \Rightarrow ||\vec{u}|| = \sqrt{1+4+16} = \sqrt{21}$$

Luego
$$\vec{v} = \frac{\vec{u}}{\|\vec{u}\|} = \left(-\frac{1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{4}{\sqrt{21}}\right)$$
 y como $\|\vec{v}\| = \sqrt{\frac{1}{21} + \frac{4}{21} + \frac{16}{21}} = \frac{1}{21}$

$$\sqrt{\frac{21}{21}} = 1$$
 entonces \vec{v} es unitario.

Observación

Existen vectores unitarios que tienen la dirección de los ejes coordenados y se denotan por $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ y $\vec{k}=(0,0,1)$.

Nótese que
$$\vec{u}=(x_1,y_1,z_1)=(x_1,0,0)+(0,y_1,0)+(0,0,z_1)$$

$$=x_1(1,0,0)+y_1(0,1,0)+z_1(0,0,1)$$

$$=x_1\vec{\iota}+y_1\vec{\jmath}+z_1\vec{k}$$

Por tanto, todo vector $\vec{u} = (x_1, y_1, z_1)$ en el espacio se puede escribir como combinación de los vectores canónicos unitarios, esto es de la forma:

$$\vec{u} = (x_1, y_1, z_1) = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$

Definición (Producto punto)

Sean $\vec{u}=(x_1,y_1,z_1)$ y $\vec{v}=(x_2,y_2,z_2)$ dos vectores de \mathbb{R}^3 . El producto punto entre dos vectores \vec{u} y \vec{v} denotado por $\vec{u}\cdot\vec{v}$, es un número real que se le define como:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Ejemplo

Si
$$\vec{u} = (-1,2,3)$$
 y $\vec{v} = (2,-1,1)$ entonces $\vec{u} \cdot \vec{v} = (-1)(2) + (2)(-1) + (3)(1) = -1$

Propiedades del producto punto

Sean $\vec{u}=(x_1,y_1,z_1)$, $\vec{v}=(x_2,y_2,z_2)$ y $\vec{w}=(x_3,y_3,z_3)$ y k un número real, entonces se verifican las siguientes propiedades:

1.-
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$2.-\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$$

3.-
$$k(\vec{u} \cdot \vec{v}) = (k\vec{u}) \cdot \vec{u} = \vec{u} \cdot (k\vec{v}) = (\vec{u} \cdot \vec{v}) k$$

4.-
$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$
, esto es $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$

5.-
$$\|\vec{u} \cdot \vec{v}\| \le \|\vec{u}\| \|\vec{v}\|$$

6.-
$$\vec{\imath} \cdot \vec{\imath} = \vec{\jmath} \cdot \vec{\jmath} = \vec{k} \cdot \vec{k} = 1$$
 y $\vec{\imath} \cdot \vec{\jmath} = \vec{\jmath} \cdot \vec{k} = \vec{k} \cdot \vec{\imath} = 0$

7.-
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

8.-
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

Ángulos entre vectores

Sean \vec{u} , \vec{v} vectores tal que $\theta \in [0, \pi]$ B

Luego:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta \Rightarrow$$

$$\theta = \arccos\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}\right)$$

Por tanto, θ es el ángulo determinado por los vectores \vec{u} y \vec{v} siempre que $||\vec{u}||$ y $||\vec{v}||$ sean $\neq 0$.

De lo anterior tenemos la siguiente definición.

Definición

Sean \vec{u} y \vec{v} dos vectores de \mathbb{R}^3

Se dice que \vec{u} es perpendicular o ortogonal $(\vec{u} \, \boldsymbol{\sqsubseteq} \, \vec{v})$ sí y sólo si $\vec{u} \cdot \vec{v} = 0$

Ahora si Sean
$$\vec{u}=(x_1,y_1,z_1)$$
 y $\vec{v}=(x_2,y_2,z_2)$
$$\vec{u} \Vdash \overrightarrow{v} \Leftrightarrow x_1x_2+y_1y_2+z_1z_2=0$$

Ejemplo 1

 $\vec{u}=(-2,3,-2)$ es perpendicular a $\vec{v}=(-1,2,4)$ pues

$$\vec{u} \cdot \vec{v} = (-2,3,-2)(-1,2,4) = (-2)(-1) + (3)(2) + (-2)(4) = 2 + 6 - 8$$

= 0

Ejemplo 2

Calcular el ángulo entre los vectores $\vec{u}=(1,1,4)$ y $\vec{v}=(-1,2,2)$.

Solución

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{(1,1,4) \cdot (-1,2,2)}{\sqrt{1^2 + 1^2 + 4^2} \sqrt{(-1)^2 + 2^2 + 2^2}}$$
$$= \frac{-1 + 2 + 8}{\sqrt{18}\sqrt{9}} = \frac{9}{9\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Por tanto,

$$\theta = arc\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ}$$

Ángulos y cosenos directores entre vectores

Sea
$$\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$$

Ángulos directores de \vec{v} son los ángulos α, β y γ que \vec{v} forma con los vectores canónicos $\vec{\iota} = (1,0,0)$, $\vec{j} = (0,1,0)$ y $\vec{k} = (0,0,1)$.

Los cosenos directores de \vec{v} son los cosenos de sus ángulos directores, esto es $\cos \alpha$, $\sin \beta$ y $\cos \gamma$.

Para calcular los cosenos directores utilizaremos:

$$\cos \alpha = \frac{\vec{v} \cdot \vec{\iota}}{\|\vec{v}\| \|\vec{\iota}\|} = \frac{(x, y, z)(1, 0, 0)}{\|\vec{v}\|(1)} = \frac{x}{\|\vec{v}\|}$$

Similarmente se tienen que

$$\cos \beta = \frac{\vec{v} \cdot \vec{j}}{\|\vec{v}\| \|\vec{j}\|} = \frac{(x, y, z)(0, 1, 0)}{\|\vec{v}\|(1)} = \frac{y}{\|\vec{v}\|}$$

$$\cos \gamma = \frac{\vec{v} \cdot \vec{k}}{\|\vec{v}\| \|\vec{k}\|} = \frac{(x, y, z)(0, 0, 1)}{\|\vec{v}\|(1)} = \frac{z}{\|\vec{v}\|}$$

Observe que:

$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = \left(\frac{x}{\|\vec{v}\|}\right)^{2} + \left(\frac{y}{\|\vec{v}\|}\right)^{2} + \left(\frac{z}{\|\vec{v}\|}\right)^{2}$$

$$= \frac{x^{2}}{\|\vec{v}\|^{2}} + \frac{y^{2}}{\|\vec{v}\|^{2}} + \frac{z^{2}}{\|\vec{v}\|^{2}}$$

$$= \frac{x^{2} + y^{2} + z^{2}}{\|\vec{v}\|^{2}}$$

$$= \frac{x^{2} + y^{2} + z^{2}}{x^{2} + y^{2} + z^{2}} = 1$$

Por lo tanto

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Proyección de un vector:

Se define la proyección de un vector \vec{v} sobre \vec{u} el cual se anota $proy_{\vec{u}}$ \vec{v} como un producto punto dado por

$$proy_{\vec{u}}\vec{v} = \left(\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$$

De la definición se deduce que $proy_{\overrightarrow{u}} \ \overrightarrow{v} \parallel \overrightarrow{u}$

Ejemplo

Determinar el vector proyección de $\vec{v}=(2,3,4)$ sobre $\vec{u}=(1,-1,0)$.

Solución

$$proy_{\vec{u}}\vec{v} = \frac{(2,3,4) \cdot (1,-1,0)}{(1,-1,0) \cdot (1,-1,0)} (1,-1,0)$$
$$= \left(\frac{2-3+0}{1+1+0}\right) (1,-1,0)$$
$$= -\frac{1}{2}(1,-1,0)$$
$$= \left(-\frac{1}{2},\frac{1}{2},0\right) = -\frac{1}{2}\vec{u}$$

Producto Vectorial

El producto vectorial o producto cruz entre vectores \vec{u} y \vec{v} denotados por

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

donde $\vec{u} = (x_1, y_1, z_1)$ y $\vec{v} = (x_2, y_2, z_2)$.

El vector \vec{u} x \vec{v} tiene la particularidad de ser perpendicular al plano P que contiene a \vec{u} y \vec{v} y por consiguiente perpendicular a los vectores \vec{u} y \vec{v} .

La dirección viene dada por la regla del tornillo de rosca, que al girar de \vec{u} hacia \vec{v} , el mismo avanza en la dirección de \vec{u} x \vec{v}

dirección opuesta de \vec{u} x \vec{v}

Ejemplo

Sean $\vec{u}=(2,-1,6)$ y $\vec{v}=(-3,5,1)$. Encuentre \vec{u} x \vec{v} .

Solución

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 6 \\ -3 & 5 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & 6 \\ 5 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 6 \\ -3 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & -1 \\ -3 & 5 \end{vmatrix} \vec{k}$$

$$= (-1 - 30)\vec{i} - (2 + 18)\vec{j} + (10 - 3)\vec{k}$$

$$= -31\vec{i} - 20\vec{j} + 7\vec{k}$$

Observe que:

$$\vec{u} \cdot (\vec{u} \times \vec{v}) = (2, -1, 6) \cdot (-31, -20 + 7) = -62 + 20 + 42 = 0$$

 $\vec{u} \vdash \vec{u} \times \vec{v}$

$$\vec{v} \cdot (\vec{u} \times \vec{v}) = (-3,5,1) \cdot (-31,-20+7) = 93 - 100 + 7 = 0$$

$$\vec{v} \vdash \vec{u} \times \vec{v}$$

Propiedades

Sean los vectores \vec{u} , \vec{v} y \vec{w} y el número real k entonces se verifican las siguientes propiedades:

$$1.-\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$$

$$2.-\vec{u}\times\vec{u}=0$$

3.-
$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$

$$4.-k(\vec{u} \times \vec{v}) = (k\vec{u}) \times \vec{v} = \vec{u} \times (k\vec{v})$$

5.-
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0$$

$$\vec{l} \times \vec{j} = \vec{k}; \vec{j} \times \vec{k} = \vec{l}; \vec{k} \times \vec{l} = \vec{j}$$

6.-
$$\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|v\|^2 - (\vec{u} \cdot \vec{v})^2$$

8.-
$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \operatorname{sen} \theta$$
 ; $0 \le \theta \le \pi$

$$sen \theta = \frac{h}{\|\vec{v}\|}$$

$$h = sen \theta \|\vec{v}\|$$

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| h$$

= base por altura= área del paralelogramo

Esta fórmula señala que la longitud del vector $\vec{u} \times \vec{v}$ representa el área de un paralelogramo de lados $\vec{u} \ \ \ \ \vec{v}$, y permite calcular el área de un triángulo.

9.- Si \vec{u} y \vec{v} no son vectores nulos y \vec{u} x $\vec{v} = 0$ los vectores son paralelos.

Producto mixto

Dados los vectores \vec{u} , \vec{v} y \vec{w} , si se combinan las operaciones del producto punto con el producto vectorial, se tiene el producto mixto que es un número dado por

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

donde
$$\vec{u} = (x_1, y_1, z_1)$$
, $\vec{v} = (x_2, y_2, z_2)$ y $\vec{w} = (x_3, y_3, z_3)$

Observación

El producto mixto en valor absoluto representa geométricamente el volumen de un paralelepípedo que tiene como aristas los vectores \vec{u} , \vec{v} y \vec{w}

$$V_P$$
=(área de la base)(altura) = $Ah = ||\vec{v} \times \vec{w}|| (||\vec{u}|| |\cos \theta|)$

Sea $\vec{s} = \vec{v} \times \vec{w}$ entonces

$$V_P == \|\vec{s}\| \cdot (\|\vec{u}\| |\cos \theta|) \cdots (1)$$

Por otro lado

$$|\vec{u} \cdot \vec{s}| = ||\vec{u}|| ||\vec{s}|| \cos \theta \cdots (2)$$

Comparando (1) con (2)

$$V_P = |\vec{u} \cdot \vec{s}| = |\vec{u} \cdot (\vec{v} \times \vec{w})|$$

Ejemplo

Calcular el volumen del paralelepipedo que tiene como aristas adyacentes los vectores $\vec{u}=(7,8,0)$, $\vec{v}=(1,2,3)$ y $\vec{w}=(4,5,6)$.

Solución

$$V_p = |\vec{u} \cdot (\vec{v} \times \vec{w})| = \begin{vmatrix} 7 & 8 & 0 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 7 \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} - 8 \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}$$
$$= |7(-3) - 8(-6)| = 27$$

Definición

Tres vectores se dicen coplanares o coplanarios si pertenecen a un mismo plano.

Propiedades del producto mixto

I) $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$ si uno de los vectores es nulo, o si dos de los vectores son paralelos o si los tres son coplanares.

Ejemplo

II) El producto mixto obedece a un orden circular de los vectores, esto es.

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \vec{v} \cdot (\vec{w} \times \vec{u}) = \vec{w} \cdot (\vec{u} \times \vec{v})$$

III) El producto mixto cambia de signo cuando se cambia de posición de dos vectores consecutivos:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = -(\vec{v} \cdot (u \times \vec{w}))$$

$$|V\rangle \qquad \vec{u} \cdot (\vec{v} \times (\vec{w} + \vec{r})) = \vec{u} \cdot (\vec{v} \times \vec{w}) + \vec{u} \cdot (\vec{v} \times \vec{r})$$

$$\vec{u} \cdot (\vec{v} \times m \vec{w}) = \vec{u} \cdot (m\vec{v} \times \vec{w}) = m\vec{u} \cdot (\vec{v} \times \vec{w}) = m(\vec{u} \cdot (\vec{v} \times \vec{w}))$$