

Alapvető algoritmusok

6. előadás

Dr. Pătcas Csaba

Dr. Pătcas Csaba

lításos

Buhorék

Minimumkiválasztás Beszúró

Tartalom

- Összehasonlításos rendezések
 - Buborékrendezés (Bubblesort)
 - Egyszerű felcseréléses rendezés
 - Számlálva szétosztó (válogatásos) rendezés
 - Minimum (maximum) kiválasztásra épülő rendezés (Selection sort)
 - Beszúró rendezés (Insertion sort)
- 2 Lineáris rendezések
 - Leszámláló rendezés (Countsort)
 - Számjegyes rendezés (Radixsort)
- Rekurzió
 - Feladatok

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

/élegatéses

nogatasos inimumkiválasz

inimumkiválászt: Eszúró

ineáris

endezések Countsort

Rekurzió

Feladatok

- Észrevesszük, hogy a sorozat első bejárása után, a legnagyobb elem a helyére kerül, a következő alkalommal a második legnagyobb elem is a helyére kerül és így tovább.
- Tulajdonképpen ez a tulajdonság adja a rendezés nevét, mert a nagy elemek buborékként "szállnak fel" a tömb végére.
- Emiatt nem szükséges mindig a tömb végéig ellenőrizni a felcserélendő elemeket, hanem mindig csökkenthetjük eggyel az értéket ameddig az i ciklusváltozó nő, ezt nn-el jelöljük.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses

Minimumkiválasztá:

Lineáris

Countsort

Radixsort

Buborékrendezés (Bubblesort)

Harmadik változat

```
Ö
```

```
Algoritmika

Dr. Pătcaș
Csaba

Összehason-lításos
rendezések
Buborék
Felcseréléses
Válogatásos
Minimumkiválaszt.
Beszáró
```

ineáris

endezés∈ Countsort

```
4 D > 4 A > 4 B > 4 B > B = 900
```

```
ALGORITMUS Buborékrendezés3(n. a)
  nn = n - 1
  TSMÉTELD.
    rendben = TGAZ
    MINDEN i = 1, nn végezd el:
      HA (a[i] > a[i + 1]) akkor
        Felcserél(a[i], a[i + 1])
        rendben = HAMTS
      VÉGE (Ha)
    VÉGE (Minden)
    nn = nn - 1
  AMEDDIG (rendben)
VÉGE(Algoritmus)
```

Harmadik változat

Példa, bonyolultság

Ø

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses /álogatásos

Minimumkiválasztás Beszúró

.ineáris endezések

ladixsort

Rekurzió

4日 → 4周 → 4 差 → 4 差 → 1 至 9 9 0 0

Példa: [9 2 7 3 5]

Harmadik változat

Példa, bonyolultság

Algoritmika

Dr. Pătcas

Buhorék

Példa: [9 2 7 3 5]

- Legrosszabb eset, ha a legkisebb elem a sorozat végén van, ekkor a bonyolultság: $\Theta(n^2)$
- Az átlag eset szintén négyzetes.
- A legjobb eset, ha a sorozat rendezett, ekkor a bonyolultság: $\Theta(n)$
- Stabil és helyben rendez.

• Innen jön az ötlet, hogy a sorozatot csak az utolsó csere helyéig vizsgáljuk, ezt a k változóban jegyezzük meg.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses Válogatásos

Minimumkiválaszt

leszúró

Lineáris rendezések

ountsort

Rekurzió

Buborékrendezés (Bubblesort)

Negyedik változat

```
ALGORITMUS Buborékrendezés4(n. a)
  k = n
  TSMÉTELD
    nn = k - 1
    rendben = TGAZ
    MINDEN i = 1, nn végezd el:
      HA (a[i] > a[i + 1]) akkor
        Felcserél(a[i], a[i + 1])
        rendben = HAMTS
        k = i
      VÉGE (Ha)
    VÉGE (Minden)
  AMEDDIG (rendben)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcas

Buhorék

Beszúró

Negyedik változat

Példa, bonyolultság

Algoritmika

Dr. Pătcas

Buhorék

Beszúró

Rekurzió

Példa magyar néptánccal szemléltetve: https://youtu.be/lyZQPjUT5B4

- Legrosszabb eset $\Theta(n^2)$, átlag eset $\Theta(n^2)$, legjobb eset $\Theta(n)$.
- Helyben rendez, stabil.

Otödik változat (cocktail shaker sort) Ötlet

Algoritmika

Dr. Pătcas

Buhorék

- Elegendő a sorozatot csak az első és az utolsó csere helye között vizsgálni.
- Mivel eddig mindig balról jobbra jártuk be a tömböt, mindig a legnagyobb elemek kerültek a helvükre.
- Ha viszont jobbról balra is bejárnánk, akkor a legkisebb elemek is hamar a helvükre kerülnének.
- A régibal és régijobb változók tárolják az első az utolsó cserék helyét.
- A bal és jobb változókba mentjük ezeknek az újonnan megtalált értékeit.

Koktélrendezés


```
ALGORITMUS Buborékrendezés5(n, a)
  régibal = 1
  régijobb = n - 1
  TSMÉTELD.
    rendben = TGAZ
    jobb = 0
   MINDEN i = régibal, régijobb végezd el:
      HA (a[i] > a[i + 1]) akkor
        Felcserél(a[i], a[i + 1])
        rendben = HAMIS
        jobb = max(jobb, i)
      VÉGE (Ha)
    VÉGE (Minden)
```

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses Válogatásos

valogatasos viinimumkiválas

Beszúró

ineáris

endezések Countsort

Rekurzió

aladatok

Koktélrendezés

HA (NEM rendben) akkor

régijobb = jobb

rendben = IGAZ

bal = n

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses

Válogatásos

Minimumkiválasztás Beszúró

Beszúró

Lineáris rendezések

Countsort Radixsort

Rekurzió

Rekurzió

4□ > 4団 > 4豆 > 4豆 > 豆 り<0</p>

Koktélrendezés


```
MINDEN i = régijobb, régibal, -1 végezd el:
        HA (a[i] > a[i + 1]) akkor
          Felcserél(a[i], a[i + 1])
          rendben = HAMTS
          bal = min(bal, i)
        VÉGE (Ha)
      VÉGE (Minden)
      régibal = bal
    VÉGE (Ha)
  AMEDDIG (rendben)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcas

Buhorék

Meg jegyzés: Tulajdonképpen felesleges a minimum- és maximumszámolás, lehetne egyszerű értékadás is: jobb = i, illetve bal = i. Ekkor hiányozhatna a bal és jobb változók inicializálása is. ◆□▶ ◆周▶ ◆三▶ ◆三 ◆900

Ötödik változat

Példa, bonyolultság

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

/álogatásos

Minimumkiválasztás Beszúró

> neáris ndezések

ountsort adixsort

Rekurzió

Rekurzió Feladatok

Példa: [5 2 3 4 1]

Ötödik változat

Példa, bonyolultság

Példa: [5 2 3 4 1]

• Itt már nem elég a legrosszabb esethez ha a legkisebb elem a sorozat végén van, a sorozat ellenkezően rendezett kell legyen, ekkor a bonyolultság $\Theta(n^2)$ marad.

- Átlag eset $\Theta(n^2)$, legjobb eset $\Theta(n)$.
- Helyben rendez, stabil.
- Általában a buborékrendezés változatai abban az esetben is jól működnek, ha a sorozat "majdnem rendezett".
- Specifikusan a koktélrendezés k-szor járja be a sorozatot, ha minden elem legtöbb k pozicióra van a helyétől.

Algoritmika

Dr. Pătcas

Buhorék

- Hasonlít a buborékrendezéshez
- A különbség, hogy kötelezően elvégzi az összehasonlítást minden indexpárra.
- Ha a sorrend nem megfelelő, ugyanúgy cserél.
- Az első bejárás után helyére kerül a legkisebb elem, majd a második legkisebb és
 így tovább.
- A belső ciklus az aktuális elem utáni pozíciótól indul.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék Felcseréléses

Válogatásos

Minimumkiválasztá

ineáris

Lineáris rendezések

Countsort Radixsort

Rekurzió

```
X
```

```
ALGORITMUS FelcserélésesRendezés(n, a)
  MINDEN i = 1, n - 1 végezd el:
   MINDEN j = i + 1, n végezd el:
      HA (a[i] > a[j]) akkor
        Felcserél(a[i], a[i])
      VÉGE (Ha)
    VÉGE (Minden)
  VÉGE (Minden)
VÉGE(Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcseréléses

Válogatágos

Válogatásos

Minimumkiválaszta Beszúró

Lineáris

Countsort

Rekurzió

Mennyi a bonyolultság a legjobb esetben?

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcseréléses

Válogatásos

Minimumkiválasztás Beszúró

ineáris

Countsort

Radixsort

Példa, bonyolultság

Algoritmika

Dr. Pătcas

Felcseréléses

Beszúró

Rekurzió

Példa: [2 3 4 1]

- Az algoritmus minden esetben $\frac{n(n-1)}{2}$ összehasonlítást végez, tehát bonyolultsága $\Theta(n^2)$.
- Helyben dolgozik és nem stabil.

Algoritmika

Dr. Pătcas

Válogatásos

- Minden elemet összehasonlítunk a többi elemmel.
- Minden elemre megszámoljuk a k változóban, hogy hány nála kisebb elem van.
- Ezzel tulaidonléppen meghatároztuk mindegyik elem sorszámát a rendezett sorozatban.
- Ha a feladat követelményei szerint az eredeti sorozat kell tartalmazza a rendezett sorozatot, akkor az algoritmus végén szükséges rámásolni az eredeti tömbre a rendezett tömböt


```
ALGORITMUS VálogatásosRendezés(n, a)
  MINDEN i = 1, n végezd el:
    k = 0
    MINDEN j = 1, n végezd el:
      HA (a[i] > a[j]) akkor
        k = k + 1
      VÉGE (Ha)
    VÉGE (Minden)
    rendezett[k + 1] = a[i]
  VÉGE (Minden)
  Másol(n, rendezett, n, a)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcseréléses

Válogatásos

nimumkiválaszt

Beszúró

ineáris endezések

Countsort Radixsort

Algoritmika

Dr. Pătcas

Válogatásos

Helyben rendez-e a számlálva szétosztó rendezés? Indokold a választ! Mondj példát egy olyan sorozatra, amelyre nem működik a bemutatott rendezés!

Példa, bonyolultság

Példa: [1 3 2 5 3]

- Mint látjuk a példából, a bemutatott változat nem működik egyenlő elemek esetén.
- Viszont könnyen módosítható úgy, hogy működjön. Hogyan?
- Minden esetben $\Theta(n^2)$ bonyolultságú.
- Nem dolgozik helyben, memóriabonyolultsága $\Theta(n)$.
- A megfelelő módosítással stabillá válik.

Algoritmika

Dr. Pătcas

Válogatásos

Minimum (maximum) kiválasztásra épülő rendezés (Selection sort)

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcserélése

Válogatásos

Minimumkiválasztás

Beszúró

Lineáris rendezések

Countsort

Radixsort

Rekurzió

ekurzió

• Megkeressük a sorozat legkisebb elemét.

• Ezt az első helyre tesszük úgy, hogy felcseréljük az első helyen található elemmel

 Folytatjuk hasonlóan, de a következő lépésben már a második helytől kezdődően keressük a minimumot.

• Addig folytatjuk, míg a sorozat végére nem érünk.

Példa tánc formában: https://youtu.be/Ns4TPTC8whw

Minimum (maximum) kiválasztásra épülő rendezés (Selection sort)


```
ALGORITMUS MinimumKiválasztásosRendezés(n, a)
  MINDEN i = 1, n - 1 végezd el:
    ind min = i
    MINDEN j = i + 1, n végezd el:
      HA (a[ind_min] > a[j]) akkor
        ind min = i
      VÉGE (Ha)
    VÉGE (Minden)
    Felcserél(a[i], a[ind min])
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

E-1----(1/---

Válogatágos

Valogatasos Minimumkiválasztás

nimumkivalaszt: szúró

ineáris

rendezése Countsort

Radixsort

Minimum (maximum) kiválasztásra épülő rendezés (Selection sort) Példa, bonyolultság

Algoritmika

Dr. Pătcas

Minimumkiválasztás

Példa: [2 8 9 2 1]

- Bonyolultsága minden esetben $\Theta(n^2)$.
- Helyben rendez.
- Amint a fenti példából látszik, nem stabil.

Beszúró rendezés (Insertion sort)

kezünkben

Algoritmika

Dr. Pătcas

 Kezdve a második elemmel mindegvik elemnek megkeressük a helvét az eddig rendezett sorozatban és beszúrjuk oda.

Ahhoz hasonlóan dolgozik, mint ahogy kártvázáskor rendezzük a lapokat a

 A beszúrás miatt az újonnan beszúrt elemtől jobbra eső elemeket egy pozícjóval jobbra kell tolnunk, ezzel csinálunk helyet az új elemnek.

Példa tánc formában: https://youtu.be/ROalU37913U

Beszúró

Beszúró rendezés (Insertion sort)


```
Algoritmika

Dr. Pătcas
```

CSaba

lításos rendezések

Felcserélése

reicsereieses

Válogatásos

nimumkiválaszt

Beszúró

Lineáris

rendezése Countrort

Radixsort

Rekurzió

ekurzio

```
ALGORITMUS BeszúróRendezés(n, a)
  MINDEN j = 2, n végezd el:
    segéd = a[j]
    i = j - 1
    AMÍG ((i > 0) ÉS (a[i] > segéd)) végezd el:
      a[i + 1] = a[i]
      i = i - 1
   VÉGE (Amíg)
   a[i + 1] = segéd
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Beszúró rendezés (Insertion sort)

Példa, bonyolultság

Példa: [7 4 9 5 2]

- A legjobb esetben a tömb rendezett, ekkor a bonyolultság $\Theta(n)$.
- A legrosszabb eset amikor a sorozat fordított sorrendben van, ekkor a bonyulultság $\Theta(n^2)$.
- Átlag esetben szintén négyzetes: $\Theta(n^2)$
- Helyben rendez, stabil.
- Kis *n* értékekre (általában valahol 7 és 50 között) gyorsabb mint a jobb bonyolultsággal rendelkező rendezőalgoritmusok, mint a Gyorsrendezés vagy az Összefésüléses rendezés. Hogyan lehetséges ez?
- Hatékony majdnem rendezett bemenetekre, ha minden elem legtöbb k pozícióra van a végső helyétől, bonyolultsága $\Theta(kn)$.
- Alkalmas ún. online üzemmódban rendezni, ahol egyenként kapjuk meg az elemeket

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcserélése:

Válogatásos

imumkiválasztá:

Beszúró

ineáris

endezések Countsort

ک:---دا

Rekurzió

Feladatok

◆□▶ ◆周▶ ◆三▶ ◆三 ◆900

Buborékrendezés vs Minimumkiválasztásos rendezés vs Beszúró rendezés

- A gyakorlatban a beszúrásos rendezés gyorsabb, mint minimumkiválasztásos rendezés, amely gyorsabb, mint a buborékrendezés.
- Átlagosan a beszúrásos rendezés fele annyi összehasonlítást végez, mint a minimumkiválasztásos.
- Viszont a beszúrásos rendezés lényegesen többször ír a tömbbe a minimumkiválasztásos rendezéshez képest (négyzetes vs lineáris nagyságrend).
- Emiatt azokban az esetekben, amikor az írás lényegesen költségesebb, mint az olvasás, a minimumkiválasztásos rendezés a hatékonyabb.
- A minimumkiválasztásos és a beszúró rendezésnek is számos változata ismert.
- Bizonyos programozási nyelvekbe beépített rendezések több klasszikus rendezési algoritmust kombinálnak, ilyen az STL-ben megtalálható Introsort, vagy a Python-ban implementált Timsort.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

reicsereieses

inimumkiválasztá

Beszúró

ineáris

inearis endezések

Radixsort

Tartalom

- Összehasonlításos rendezések
 - Buborékrendezés (Bubblesort)
 - Egyszerű felcseréléses rendezés
 - Számlálva szétosztó (válogatásos) rendezés
 - Minimum (maximum) kiválasztásra épülő rendezés (Selection sort)
 - Beszúró rendezés (Insertion sort)
- 2 Lineáris rendezések
 - Leszámláló rendezés (Countsort)
 - Számjegyes rendezés (Radixsort)
- Rekurzió
 - Feladatok

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék Felcseréléses

reicsereieses Válogatásos

Minimumkiválasztá Beszúró

Lineáris rendezések

Radixsort

Rekurzió

Feladatok

Lineáris rendezések

- Az eddig tárgyalt rendezési algoritmusok két elem összehasonlítására alapultak.
- Láttuk, hogy ez $\Omega(n \log n)$ futási időt feltételez.
- Ahhoz, hogy ennél hatékonyabban rendezhessünk, nem az összehasonlítást kell használnunk, hanem a rendezendő sorozat bizonyos tulajdonságait.
- Ezeket a rendezési algoritmusokat csak az adott tulajdonsággal rendelkező sorozatokkal végezhetjük.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses

Vaiogatasos Viinimumkiválasztás

Lineáris rendezések

Countsort

Radixsort

Leszámláló rendezés (Countsort)

Algoritmika

Dr. Pătcas

Countsort

- Akkor alkalmazhatjuk, ha a bemeneti kulcsok mindegyike 1 és k közötti egész szám.
- Használunk egy darab segédtömböt, melynek az i. eleme azt tartja nyilván, hogy hány darab *i*-vel egyenlő elemet találtunk az eredeti tömbben.
- A lineáris feldolgozás után felülírjuk az eredeti tömb elemeit a segédtömb elemeinek értékei alapján.

Leszámláló rendezés (Countsort)


```
Algoritmika
```

Dr. Pătcaș Csaba

Összehasonlításos rendezések

E-1----(14-

Felcseréléses

/álogatásos

Beszúró

ineáris endezések

rendezések

Radixsort

Rekurzió


```
ALGORITMUS LeszámlálóRendezés(n, a, k)
  MINDEN i = 1, k végezd el:
    darab[i] = 0
  VÉGE(Minden)
  MINDEN j = 1, n végezd el:
    darab[a[j]] = darab[a[j]] + 1
  VÉGE(Minden)
```

Leszámláló rendezés (Countsort)

```
Algoritmika
```

Dr. Pătcas

Beszúró

Countsort

```
4□ > 4□ > 4□ > 4□ > 4□ > 900
```

```
q = 0
 MINDEN i = 1, k végezd el:
    MINDEN j = 1, darab[i] végezd el:
      q = q + 1
      a[q] = i
    VÉGE (Minden)
  VÉGE (Minden)
VÉGE(Algoritmus)
```

P'elda = [1 6 1 2 3 2 7 2], k = 10

- Az időbonyolultság minden esetben $\Theta(n+k)$.
- Memóriabonyolultság $\Theta(k)$, tehát nem dolgozik helyben.
- Ebből következik, hogy k nem lehet túl nagy.
- Az algoritmus egyszerűen módosítható úgy, hogy más sorszámozható típusokra (pl. karakterek), vagy [x, y] intervallumban lévő egész számokra is működjön.
- Általánosított változatai a pigeonhole sort és a ládarendezés (bucket sort vagy bin sort).

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses

Válogatásos

finimumkiválasztás eszúró

neáris ndezések

Countsort

Radixsort

Leszámláló rendezés stabilan

- Az előző változatra nem tudjuk a megszokott módon értelmezni, hogy stabil rendezés-e, mivel az egyenlő elemeket nem tároljuk (csak számoljuk).
- Erre egy lehetséges megoldás, hogy a segédtömbben nem csak darabszámot tárolunk, hanem egymás után láncolva az elemeket is.
- Ez tulajdonképpen a pigeonhole sort ötlete, amely stabil.
- Viszont a leszámláló rendezést is módosíthatjuk erre a célra, anélkül, hogy szükség legyen dinamikus helyfoglalásra.
- A b segédtömbbe építjük fel a rendezett sorozatot, a végén ezt visszamásoljuk az a-ba.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

E-1----(1/-

Felcseréléses

Vinimumkiválaszta

Beszúró

Lineáris rendezések

Countsort

Radixsort

ekurzió eladatok

Leszámláló rendezés stabilan


```
Algoritmika
```

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Enlosorálás

Válogatásos

/álogatásos

Beszúró

neáris

rendezések

Countsort

Radixsort

Rekurzió

```
ALGORITMUS StabilLeszámlálóRendezés(n, a, k)
  MINDEN i = 1, k végezd el:
    darab[i] = 0
  VÉGE(Minden)
  MINDEN j = 1, n végezd el:
    darab[a[j]] = darab[a[j]] + 1
  VÉGE(Minden)
```

Leszámláló rendezés stabilan

```
M
```

```
MINDEN i = 2, k végezd el:
   darab[i] = darab[i] + darab[i - 1]
VÉGE(Minden)
MINDEN j = n, 1, -1 végezd el:
   b[darab[a[j]]] = a[j]
   darab[a[j]] = darab[a[j]] - 1
VÉGE(Minden)
   a = b
VÉGE(Algoritmus)
```

Megjegyzés: apró módosításokkal a fenti algoritmust lehetséges úgy is implementálni, hogy az utolsó MINDEN ciklusban növekvő sorrendben járjuk be az elemeket és a darab tömb elemeit növeljük.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcseréléses

'álogatásos

linimumkiválasz

ineáris

rendezések

Radixsort

Rekurzió

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcserélés

Válogatásos

finimumkiválasz:

Beszúró

Lineáris

rendezése Countsort

Radixsort

Rekurzió

Példa: [4 1 3 4 3], k = 4

- Az időbonyolultság minden esetben $\Theta(n+k)$ marad.
 - ullet Ennek a változatnak a memóriabonyolultsága $\Theta(n+k)$.

Számjegyes rendezés (Radixsort)

- Feltételezzük, hogy mind az n szám legtöbb d számjegyű lehet.
- Sorban dolgozzuk fel a számjegyeket jobbról balra, a legkevésbé fontos számjeggyel kezdve.
- Először rendezzük a számokat az utolsó számjegyük alapján, úgy, hogy ha csak ezt a számjegyet tekintjük, növekvő sorrendet lássunk.
- Folytatjuk az utolsó előtti számjeggyel és addig folytatjuk, ameddig a számokat mind a *d* számjegy szerint nem rendeztük.
- Fontos, hogy egy adott számjegy szerinti rendezés stabil legyen, hogy ne rontsuk el az addigi munkánkat.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Válogatásos

Minimumkiválasztás Beszúró

Lineáris rendezések

Countsort

Radixsort

ekurzió

Számjegyes rendezés (Radixsort)

Vázlat

```
Algoritmika
```

Dr. Pătcas

Beszúró

Padiveort

```
ALGORITMUS SzámjegyesRendezés(n, a, d)
  MINDEN szj = 1, d végezd el:
    //Stabil leszámlálással rendezzük az "a" tömböt
    //a szj. legjelentéktelenebb számjegy szerint
    //Természetesen k = 10 lesz
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Számjegyes rendezés (Radixsort)

Példa, bonyolultság

Algoritmika

Dr. Pătcas

Padiveort

Példa: [329, 457, 657, 839, 436, 720, 355], d = 3

- d-szer vizsgáljuk meg a sorozatot, így az időbonyolultság $\Theta(dn)$.
- A memóriabonyolultság $\Theta(n)$.
- A számjegyes rendezést először lyukkártya-rendező berendezéseknél használták.

Tartalom

- Összehasonlításos rendezések
 - Buborékrendezés (Bubblesort)
 - Egyszerű felcseréléses rendezés
 - Számlálva szétosztó (válogatásos) rendezés
 - Minimum (maximum) kiválasztásra épülő rendezés (Selection sort)
 - Beszúró rendezés (Insertion sort)
- 2 Lineáris rendezések
 - Leszámláló rendezés (Countsort)
 - Számjegyes rendezés (Radixsort)
- Rekurzió
 - Feladatok

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék Felcseréléses

Felcseréléses Válogatásos

inimumkiválasztá

Beszúró

ineáris endezések

Countsort

Rekurzió

Mit nevezünk rekurziónak?

- A rekurzió egy programozási stílus, inkább technika, vagy implementálási mód, mint módszer
- A rekurzív programozás, mint fogalom, a matematikai értelmezéshez közel álló módon került közhasználatba.
- Programozásban általában az alprogramok kontextusában használjuk a rekurzió fogalmát, de léteznek rekurzívan definiált adatszerkezetek is.

Definíció

Olyan alprogramokat nevezünk rekurzívnak, amelyek meghívják önmagukat.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcseréléses

Válogatásos

inimumkiválas: :szúró

ineáris endezések

endezese Countsort

Radixsort

Rekurzió

Példák rekurzióra

- Az aranyhal és a három kívánság: a harmadik kívánság az, hogy legyen még három kívánságom.
- Ha a definíción belül felhasználjuk magát a definiálandó fogalmat, rekurzív definícióról beszélünk. Pl. a faktoriális rekurzív definíciója:

$$n! = egin{cases} 1 & n = 0 \ n \cdot (n-1)! & ext{egy\'ebk\'ent} \end{cases}$$

Struth így definiálta a bináris fákat: Egy bináris fa vagy üres, vagy tartalmaz egy csomópontot, amelynek van egy bal meg egy jobb utódja, amelyek szintén bináris fák

Algoritmika

Dr. Pătcas

Rekurzió

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Felcserélése

Válogatásos

Minimumkiválaszt

Beszúró

Lineáris rendezések

Countsort

Rekurzió

aladatok

- Bármely algoritmus megvalósítható iteratívan és rekurzívan is.
- Mindkét technikának a lényege: bizonyos utasítások ismételt végrehajtása.
- Az iteratív algoritmusokban az ismétlést ciklusokkal valósítjuk meg.
- A rekurzív algoritmusokban az ismétlés azáltal valósul meg, hogy az illető alprogram meghívja önmagát.

Algoritmika

Dr. Pătcas

Rekurzió

Mi szól a rekurzív algoritmusok mellett?

Általában tömörebbek és olvashatóbbak, bizonyos algoritmusokat természetesebb íly módon implementálni.

Mi szól a rekurzív algoritmusok ellen?

lgénybe veszik a végrehajtási vermet, a hívások által bevezetett implicit műveletek miatt a futási idejük is nagyobb. Bizonyos esetekben gondatlanságból is exponenciálissá válhat a bonvolultságuk (pl. Fibonacci).

Példa megállási feltétellel


```
ALGORITMUS RekurzívWhile1(i, n)
                                 HA (i > n) akkor
                                  VISSZATÉRÍT \\return; vagy exit;
AMÍG (i <= n) végezd el:
                                 VÉGE (Ha)
  \\utasítások
VÉGE (Amíg)
                                 \\utasítások
                                 RekurzívWhile1(i + 1. n)
```

VÉGE(Algoritmus)

Algoritmika

Dr. Pătcas

Rekurzió

Példa továbblépési feltétellel


```
Dr. Pătcaș
Csaba
```

Algoritmika

Összehasonlításos rendezések

Buborék

Felcserélése

ilogatásos

Minimumkiválaszt Beszúró

Lineáris rendezések

endezése Countsort

Rekurzió

AMÍG (i <= n) végezd el:
 \utasítások
VÉGE(Amíg)</pre>

ALGORITMUS RekurzívWhile2(i, n)
 HA (i <= n) akkor
 \utasítások
 RekurzívWhile2(i + 1, n)
 VÉGE(Ha)
VÉGE(Algoritmus)</pre>

Miért van szükségünk rekurzióra?

- Mert rekurzív gondolkodásmód nélkül bizonyos programozási nyelvekben nem tudunk dolgozni.
- Mert szükségünk van a rekurzív gondolkodásmódra:
 - Az oszd meg és uralkodj (divide et impera) módszerrel megoldható feladatok esetén. Ezeket a gyakorlatban mindig rekurzívan implementáljuk.
 - A dinamikus programozás módszerével megoldható feladatok esetén. Ezeket a gyakorlatban mindig iteratívan implementáljuk.
 - 4 visszalépéses keresés (backtracking) módszerével megoldható feladatok esetén. Ezeket a gyakorlatban nagyon gyakran rekurzívan implementáljuk.
- Mert bizonyos algoritmusokat sokkal egyszerűbb rekurzívan implementálni. Ide tartoznak például a rekurzívan definiálható adatszerkezeteket (pl. gyökeres fák) feldolgozó algoritmusok is és számos más gráfalgoritmus.

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

reicsereleses

Ainimumkiválasztás

ineáris

endezések Countsort

Rekurzió

Közvetlen és közvetett rekurzió

- Akkor beszélünk közvetlen (direkt) rekurzióról, amikor egy alprogram a saját utasításblokkjából hívja meg önmagát, erre láttunk példát az imént.
- Ha egy rekurzív alprogramot egy másik alprogram hív meg, amelyet ugyanakkor az illető alprogram hív (közvetve vagy közvetlenül), akkor közvetett (indirekt) rekurzióról beszélünk. Pl.

```
ALGORITMUS Első()
Második()
VÉGE(Algoritmus)

ALGORITMUS Második()
Első()
VÉGE(Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Válogatágos

⁄linimumkiválaszt

eszúró

ineáris. endezések

Countsort

Rekurzió

A megállási feltétel szükségessége

- Minden alprogramhíváskor a verembe kerülnek a híváskontextushoz tartozó adatok: az utasítás címe ahová vissza kell térni (CS: IP regiszterpár), a paraméterek és a lokális változók.
- Mivel a verem mérete véges, bizonyos számú hívás után bekövetkezhet a túlcsordulás. Ekkor a program Stack overflow hibaüzenettel leáll.
- Ennek gyakran oka a végtelen rekurzió, amikor az alprogramok rekurzív hívássorozata nem áll le soha.
- Ezt feltétlenül el kell kerülnünk a megfelelő megállási feltételek és/vagy továbblépési feltételek megállapításával és bevezetésével.
- Az újrahívások számát a rekurzió mélységének nevezzük.
- A túlcsordulás másik oka lehet, hogy a programozási környezetben a verem mérete túl kicsire van állítva

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

Válogatásos

finimumkiválasztá:

Lineáris rendezések

endezese Countsort

Rekurzió

Gyakorlati tanácsok a rekurzív gondolkodásmód kialakításához

Amikor rekurzív algoritmust kell terveznünk, próbáljunk válaszolni a következő kérdésekre:

- Mik a paraméterek? Milyen értékek jellemeznek egy részfeladatot, állapotot? Mi az, ami változik egyik hívásról a másikra?
- Mi a megállási feltétel? Melyik az a legkisebb részfeladat, amit már meg tudunk oldani újabb hívás nélkül?
- Mi lesz a kezdeti hívás, aminek eredményeképpen megkapjuk a megoldást? Milyen paraméterek jellemzik a kezdeti feladatot?
- Mik a rekurzív összefüggések? Hogyan függnek egymástól a részfeladatok?
- Milyen lokális változókra van szükségünk az előző pontok megvalósításához?

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Felcserélése

Válogatásos

inimumkiválasztás

Lineáris

endezések ^{Countsort}

Rekurzió

aladatal

Szavak sorrendjének megfordítása

Feladat

Olvassunk be szavakat a billentyűzetről, ameddig egy üres szó nem kerül beolvasásra. Ezután, írassuk ki a beolvasott szavakat fordított sorrendben, tömb használata nélkül!

- Paraméterek?
- Megállási feltétel?
- Kezdeti hívás?
- Rekurzív hívások?
- Lokális változók?

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborek Eolesoválás

Felcserélése

Válogatásos Minimumkiválaszta

ineáris

Lineáris rondozácol

Countsort

Rekurzió

Szavak sorrendjének megfordítása

Az alábbi megoldás didaktikai célt szolgál, ezért nem tartja be a beolvasás és kiíratás alprogramokba való leválasztását a megoldás többi részéről.

```
ALGORITMUS Fordít()
BE: szó
HA (szó NEM üres) akkor
Fordít()
VÉGE(Ha)
KI: szó
VÉGE(Algoritmus)
```

Gyakorlati tanács: Használjuk a programozási környezet hibakeresési eszközeit a rekurzív algoritmusok működésének megértéséhez!

Algoritmika

Dr. Pătcaș Csaba

Összehasonlításos rendezések

Buborék

reicsereieses

nogatasos inimumkiválasz

szúró

Lineáris

Countsort

Pokurzió

