Critical states of slow pattern in neuronal networks

Longbin Zeng¹ S. Another²

¹Department of Computer Science University of Somewhere

²Department of Theoretical Philosophy University of Elsewhere

Conference on Fabulous Presentations, 2003

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Network Dynamics

- Network response correspond to specific neuronal parameter, including fire rate, degree of irregularity, spatiotemporal patterns in neuronal spike trains and neuronal critical dynamics.
- Explor the influence of simulation size of neuronal network as well as the community stuctural network. 2000, 5000, 10000, ..., 100 million.
- Synapase density and input heterogeneity.(to be confirmed)

Theoretical explanation

Mainly three aspects...

- Explain the mechanism underly the trainsition dynamics.
 - input current variablity analysis.
 - Mean-filed equation and hopf bifuraction
 - The real part of fixed point is decreasing.
- fit the network response with a simple f unction.

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Orinignal model

$$C_j \dot{V}_j = -\sum_{A=L,E,I} g_A^j (V_j - E_A),$$

where
$$\frac{g_{E,I}^l}{g_L^j} = au_j \sum_m \sum_{k \mid t_m^k < t} \int_{-\infty}^t dt' \, a_{ au_{decay}} \left(t - t' \right) \delta(t' - t_m^k)$$
, usually, $a_{ au_{decay}}(t) = e^{-t/ au_{decay}}/ au_{decay}$, but here we use the limit that $au_{decay} o 0$.

- excitatory and inhibitory currents must be fine-tuned to produce an average input below threshold. Specifically, if K and J represent the average number of input connections per neuron and synaptic efficacy, respectively, the difference between excitatory and inhibitory presynaptic inputs must be of the order of 1/KJ.
- input fluctuations should be large enough to drive firing.

We can use the diffusion approximation and approximate the conductances as

$$\frac{g_E}{g_L} = a\tau_L \left[Kr_E + \sqrt{Kr_E} \zeta_E \right],
\frac{g_I}{g_L} = ag\tau_L \left[\gamma Kr_I + \sqrt{\gamma Kr_I} \zeta_I \right]$$
(1)

Using the diffusion approximation, OU process, the CV equation can be reduced to

$$\tau \frac{dV}{dt} = -V + \mu + \sigma(V)\sqrt{\tau}\zeta \tag{2}$$

where

$$\tau^{-1} = \tau_{L}^{-1} + aK (r_{E} + r_{I}g\gamma)$$

$$\mu = \tau \{E_{L}/\tau_{L} + aK [r_{E}E_{E} + r_{I}g\gamma E_{I}]\}$$

$$\sigma^{2}(V) = a^{2}K\tau \left[r_{E}(V - E_{E})^{2} + g^{2}\gamma r_{I}(V - E_{I})^{2}\right]$$
(3)

under the assumption that Ka >> 1, we have

$$au \sim rac{ au_0^{
m cond}}{Ka}, \quad \mu \sim \mu_0^{
m cond}, \quad \sigma \sim \sqrt{a}\sigma_0^{
m cond}$$
 (4)

we can conclude that:

- μ is independent of coupling strength, i.e, the synaptic efficacy a and degree k.
- 2 Increasing a modifies the drift force and the input noise, which increase proportionally to a and \sqrt{a}
- incresing k increases the drift force as ka

In this case, ka >> 1, we called it strong coupling. However, if such assumpaiton not holds (weak coupling), the scaling function (4) is not ture.

Biological plausible neuronal network

Consider a balanced E-I network with *N* neurons, in which 80% are excitatory neurons and the others inhibitory ones. Each neuron is equipped with a biological plausible neuronal model, leaky integrate and fire model,

$$C\frac{dV}{dt} = -g_l(V - V_l) + I_{syn} + I_{ext},$$

and the conductance-based synaptical filter

$$egin{aligned} I_{syn}(t) &= \sum_{u} g_{u}S_{u}(t)(V_{rev,u} - V) \ S_{i,u}(t) &= rac{1}{ au_{u}}e^{-t/ au_{u}} * \sum_{n,j \in \partial^{i}} w_{j}\delta\left(t - t_{j}^{n}
ight) \ u &= \{AMPA, NMDA, GABA_{A}, GABA_{B}\}. \end{aligned}$$

Balance condition

Under the given network conditions and default neuron parameters, we need to seek for a group of appropriate parameters (g_u) to make the network self-sustaining in a stable firing state.

we can roughly estimate a gruop of parameter by adopting the first order diffusion approximation.

$$\frac{\textit{V}_{\textit{th}} - \textit{V}_{\textit{reset}}}{\sum_{\textit{u}} \langle \textit{g}_{\textit{u}} \textit{S}_{\textit{u}} (\textit{V}_{\textit{u}} - \textit{V}) \rangle - \langle \textit{g}_{\textit{l}} (\textit{V} - \textit{V}_{\textit{l}}) \rangle} = \frac{1}{\textit{r}_{\textit{equilibrium}}},$$

and then we can dervie that

$$\begin{cases} 1g_{AMPA} + 5g_{NMDA} = 0.022 \\ 1g_{GABA_A} + 18g_{GABA_B} = 0.5 \end{cases}$$

Default Paramters

Symbol	Description	Value
N	Total number of neurons	2000
N_E	Total number of excitatory neurons	1600
N_I	Total number of inhibitory neurons	400
K_{in}	Mean of in-degrees	100
$ au_{\it ref}$	Refractory period	5 <i>ms</i>
tauu	decay time of receptors	(8, 40, 10, 50)
$V_{rev,u}$	reverse voltage	(0,0,-70,-100))

Table: Default values of model parameters used in numerical simulations

Rich dynamics in parameter submainfold

We find rich dynamics in this small balanced E-I network.

- Obvious transition in the fire rate.
- CV is larger than 1, and multi stratification.
- Coherence coefficient reflects the spike coherence.
- Critical dynamics occurs in the stratification line paramete space.

avalanches pehenomena

Mainly due to E-I delay feedback...

Figure: raster plot of slow dynamics

avalanches pehenomena

Figure: avalanches pehenomena

The slope of best fit powerlaw distribution for avalanche size is -1.6 and avalanche duration is -1.8

Characteristic in boundary line

if we dive into the characteristices of the network on the boundary line space

17-16-15-28-4-13-12-11-0.025 0.050 0.075 0.100 0.125 0.150 0.175 gabaA

Figure: ks distance

Figure: slope

robust on size

The corresponding relationship between *coherence coefficient* and *ks distance* is shown in the figure below

degree inluence

we perform experiments and summarize the main findings based on shifted exponential in- degree distributions.

Figure: degree influence

parameter heterogeneity

- the raidus is from 1 to 15
- along the boundary line

Figure: parameter heterogeneity

Criticality in large-scale network

Fit to function $s \cdot tanh(ax + by + c) + t$

- in the small blcok, slop is 1.6
- in the large-scale block, slop is 1.6

Peason correlation coefficient Coefficient

Figure: size=2k

Figure: size=100m

Criticality in large-scale network

Figure: pcc with respect to different sizes

Figure: avalanches distribution

Criticality in large-scale network

Some simulation case from a fixed parameter of critical space.

 The avalanche size increases with the size of the simulation.

Figure: size=10k

Figure: size=100m

Dependence on connection density

grid search on network of 2000 neurons with 300 in-connections. x and y range is [0, 1], each 50 points.

Dependence on connection density

grid search on network of 2000 neurons with 500 in-connections.

As we can see, the plane is much more smooth than its in degree=100 and the one-dimensional linear submanifold disappears.

Dependence on connection density

If all case fit to function $s \cdot tanh(ax + by + c) + t$, we can find that its slope is smaller with the degree increasing.

Outline

- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.