Paper Review

BEYOND ATTENTION: BREAKING THE LIMITS OF
TRANSFORMER CONTEXT LENGTH WITH RECURRENT MEMORY
()

DON'T DO RAG: WHEN CACHE-AUGMENTED GENERATION IS ALL YOU NEED FOR KNOWLEDGE TASKS

NCCU Computer Science Senior Student 110703007 Jui-Hung Cheng 110703013 Yu-Chih Pan TEAM ONE

Paper Topic

Beyond Attention:
Breaking the Limits of Transformer
Context Length with Recurrent Memory
(AAAI 2025)

Task & Solution

- Task presented
 - Addressing the transformer limitation of handling long sequences due to quadratic computational complexity.
- Proposed Solution
 - Recurrent Memory Transformer (RMT) with token-based memory augmentation.

Why Is It Important?

- Enhance sequences from 128k tokens to 2 million tokens.
- Facilitates long-term dependency tasks in natural language understanding and generation.
- Improves scalability for memory-intensive applications.

Prior Approaches

• Memory-augmented neural networks

(e.g., NTMs, LSTMs, Memory Networks).

- Modified transformers like Transformer-XL,
 Compressive Transformer, and Big Bird.
- Attention mechanism redesigns to reduce computational complexity.

Prior Approaches -- LSTM

MEDIUM: RNN VS LSTM

TEAM ONE

Prior Approac

COMPRESSIVE TRANSFORMERS FOR LONG-RANGE SEQUENCE MODELLING

Limitations of Past Mehods

- Require significant architectural changes.
- => Hard to implement to other existing models
 - Memory scaling is still limited by hardware constraints.

Connection to RMT

- Avoid architectural modifications
- Seamlessly integrate with pre-trained models
- Achieve linear computational scaling
- Solving memory and computational bottlenecks.

Method: Design

- Uses "memory tokens" prepended to input or output sequences.
- Processes long sequences by segmenting inputs and passing memory recurrently.
- Implemented as a plug-and-play wrapper for transformers like BERT and GPT-2.

Recurrent memory mechanism

Curriculum Learning

Optimize RMT by curriculum learning

- Starts with short sequences and progressively increases input length.
- Focuses on stable fine-tuning of pretrained models, eg: BERT, GPT2.

Advantages & Significance

- Simplifies integration with existing pre-trained models and close source LLM.
- Scaling the input lengths without sacrificing computational efficiency.
- Even short sequence model can apply this method and effectively adapted tasks involves longer sequences

TEAM ONE

Experiment & Paper

Exploring the value of long context in the Era of RAG (Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks)

Problem Statement

Why is this experiment important?

- 1. Question Answering Task in specific field.
- 2. The popular of Retrieval Augmented Generation
- 3. Is long context still important for Language Model?

Question Answering

Given 1. one or many question prompt (queries)

2. given or not-given relevant knowledge

Goal: Return the answer of the question

Popular Dataset for QA:

- 1. SQuAD: Stanford Question Answering Dataset
- 2. HotpotQA: 113k wiki-pedia QAs
- 3. TriviaQA: 662k wikipedia and web QAs

The popular of RAG

RAG = Retrieval Augmented Generation

Experiment Parameter

Language Model:

• Llama 3.1 8b-instruct

Retrirval Model:

- BM25 (Sparse Retrieval)
- OpenAI (Dense Retrieval)

RAG Framework:

• Llama-index

Experiment Dataset: 21k 30k 50k

(Fixed Random seed)

Source	Size	# Docs	# Tokens	# QA Pairs
HotPotQA	Small Medium	16 32	21k 43k	1,392 1,056
Tion orga	Large	64	85k	1,344
	Small	3	21k	500
SQuAD	Medium	4	32k	500
	Large	7	50k	500

(DON'T DO RAG)

Experiment Model

Model	av.	2k	4k	8k	16k	32k	64k	96k	125k
o1-preview-2024-09-12	0.763	0.582	0.747	0.772	0.787	0.799	0.831	0.824	0.763
o1-mini-2024-09-12	0.731	0.566	0.728	0.754	0.772	0.777	0.769	0.778	0.704
gpt-4o-2024-05-13	0.709	0.467	0.671	0.721	0.752	0.759	0.769	0.769	0.767
claude-3-5-sonnet-20240620	0.695	0.506	0.684	0.723	0.718	0.748	0.741	0.732	0.706
claude-3-opus-20240229	0.686	0.463	0.652	0.702	0.716	0.725	0.755	0.732	0.741
claude-3-haiku-20240307	0.649	0.466	0.666	0.678	0.705	0.69	0.668	0.663	0.656
qwen2-72b-instruct	0.637	0.469	0.628	0.669	0.672	0.682	0.683	0.648	0.645
gpt-4o-mini-2024-07-18	0.61	0.424	0.587	0.624	0.649	0.662	0.648	0.646	0.643
gpt-4-turbo-2024-04-09	0.588	0.465	0.6	0.634	0.641	0.623	0.623	0.562	0.56
gemini-1.5-pro	0.584	0.368	0.51	0.55	0.58	0.595	0.634	0.636	0.622
claude-3-sonnet-20240229	0.569	0.432	0.587	0.662	0.668	0.631	0.525	0.559	0.485
gpt-4-0125-preview	0.568	0.466	0.614	0.64	0.664	0.622	0.585	0.505	0.452
llama-3.1-405b-instruct	0.55	0.445	0.591	0.615	0.623	0.594	0.587	0.516	0.426
gemini-1.5-flash	0.505	0.349	0.478	0.517	0.538	0.534	0.522	0.52	0.521
llama-3-70b-instruct	0.48	0.365	0.53	0.546	0.555	0.562	0.573	0.583	0.593
mixtral-8x7b-instruct	0.469	0.414	0.518	0.506	0.488	0.417	-	-	-
llama-3.1-70b-instruct	0.45	0.403	0.526	0.527	0.478	0.469	0.444	0.401	0.353
dbrx-instruct	0.447	0.438	0.539	0.528	0.477	0.255	-	-	-
gpt-3.5-turbo	0.44	0.362	0.463	0.486	0.447	-	-	-	-
llama-3.1-8b-instruct	0.411	0.368	0.547	0.536	0.523	0.485	0.383	0.296	0.15

Table S3: LLM answer correctness up to 125k tokens. Same data as Fig. 1.

Experiment Design -- RAG

Retrieval Model

- BM25 (sparse)
- OpenAI (dense)

Retrieval Chunks Num

- Top-k = 1
- Top-k = 3
- Top-k = 5
- Top-k = 10

```
PROMPT = F"""
  <|BEGIN_OF_TEXT|>
  <|START_HEADER_ID|>SYSTEM<|END_HEADER_ID|>
  YOU ARE AN ASSISTANT FOR GIVING SHORT
ANSWERS BASED ON GIVEN CONTEXT.<|EOT_ID|>
  <|START_HEADER_ID|>USER<|END_HEADER_ID|>
  CONTEXT INFORMATION IS BELLOW.
  {KNOWLEDGE}
  {ANSWER_INSTRUCTION}
  QUESTION:
  {QUESTION}
  <|EOT_ID|>
```

<|START_HEADER_ID|>ASSISTANT<|END_HEADER_ID|>

Experiment Design -- CAG

CAG

- Cache Augmented Generation
- using kvcache to accelerate LLM generation

Method:

- store the kvcache of knowledge with pytorch function
- read the past kvcache instead of recomputing it everytime.

Structure of RAG and CAG

Results -- Performance

METRIC: BERT SCORE

Table 2: Experimental Results

Size	System	Top-k	HotPotQA BERT-Score	SQuAD BERT-Score
Small	Sparse RAG	1	0.0673	0.7469
		3	0.0673	0.7999
		5	0.7549	0.8022
		10	0.7461	0.8191
	Dense RAG	1	0.7079	0.6445
		3	0.7509	0.7304
		5	0.7414	0.7583
		10	0.7516	0.8035
	CAG (Ours)		0.7759	0.8265

(DON'T DO RAG)

	1	0.6652	0.7036
Sparga DAC	3	0.7619	0.7471
sparse KAG	5	0.7616	0.7467
10	10	0.7238	0.7420
Danie DAC	1	0.7135	0.6188
	3	0.7464	0.6869
Delise RAG	10 0 G (Ours) 0	0.7278	0.7047
	10	0.7451	0.7350
CAG (Ours)		0.7696	0.7512
	1	0.6567	0.7135
Sparga DAC	3	0.7424	0.7510
Sparse KAG	5	0.7495	0.7543
	10	0.7358	0.7548
Dense RAG	1	0.6969	0.6057
	3	0.7426	0.6908
	5	0.7300	0.7169
	10	0.7398	0.7499
CAG (Ours)		0.7527	0.7640
	Sparse RAG Dense RAG	Sparse RAG 3 5 10 Dense RAG 3 5 10 CAG (Ours) 1 3 5 10 1 Dense RAG 3 5 10 Dense RAG 5 10 1	Sparse RAG 3 0.7619 5 0.7616 10 0.7238 1 0.7135 3 0.7464 5 0.7278 10 0.7451 CAG (Ours) 0.7696 Sparse RAG 3 0.7424 5 0.7495 10 10 0.7358 Dense RAG 3 0.7426 5 0.7300 10 10 0.7398

Results -- Acceleration

Table 3: Comparison of Generation Time						
Dataset	Size	System	Generation Time (s)			
HotpotQA	Small	CAG	0.85292			
		w/o CAG	9.24734			
	Medium	CAG	1.66132			
		w/o CAG	28.81642			
	Large	CAG	2.32667			
		w/o CAG	94.34917			
SQuAD	Small	CAG	1.06509			
		w/o CAG	10.29533			
	Medium	CAG	1.73114			
		w/o CAG	13.35784			
	Large	CAG	2.40577			
		w/o CAG	31.08368			

(DON'T DO RAG)

Experiment Paper

Don't Do RAG:

When Cache-Augmented Generation is All You Need for Knowledge Tasks (Jui-Hung, Cheng. NCCU)

> [https://arxiv.org/pdf/2412.15605] [Youtube]

Citation

- 1. <u>Beyond Attention: Breaking the Limits of Transformer Context</u>

 <u>Length with Recurrent Memory</u>
- 2. <u>Don't Do RAG: When Cache-Augmented Generation is All You Need</u> for Knowledge Tasks
- 3. Long Context RAG Performance of Large Language Models
- 4. <u>Medium:Building a Neural Network Zoo From Scratch: The Long Short-Term Memory Network</u>
- 5. COMPRESSIVE TRANSFORMERS FOR LONG-RANGE SEQUENCE MODELLING

