Ramsey-type constructions for arrangements of segments

Jan Kynčl

Charles University, Prague

Arrangement of segments:

set of straight-line segments in general position in the plane

Problem: What is the largest number r(k) such that there exists an arrangement of r(k) segments with at most k pairwise crossing and at most k pairwise disjoint segments?

Known results:

$$r(k) \leq k^5$$
 [Larman et al., 1994]

$$r(k) \ge k^{\log 5/\log 2} > k^{2.3219}$$
 [Larman et al., 1994]

$$r(k) \geq k^{\log 27/\log 4} > k^{2.3774}$$
 [Károlyi et al., 1996]

Our improvement:

$$r(k) > k^{\log 169/\log 8} > k^{2.4669}$$

(for infinitely many values of k)

Upper bound k^5

[Larman, Matoušek, Pach, Törőcsik, 1994]

Dilworth's Theorem: A poset with $m \cdot n$ elements has a chain of size m or an anti-chain of size n

Previous constructions for the lower bound

[Larman, Matoušek, Pach, Törőcsik, 1994]

[Károlyi, Pach, Tóth, 1996]

27 segments, at most 4 pairwise crossing or pairwise disjoint

Lemma: Every convex arrangement can be flattened.

Limitations of convex arrangements

Theorem [Kostochka, 1988]

A circle graph G with $\alpha(G) \leq k$ and $\omega(G) \leq k$ has at most $(1+o(1)) \cdot k^2 \log k$ vertices.

 \Rightarrow large convex arrangements can not give better lower bound for r(k).

Our construction

A (k, l)-arrangement = arrangement of segments with at most k pairwise crossing and at most l pairwise disjoint segments

base: an (8, 8)-arrangement of 169 segments composed of

- a (2, 4)-arrangement of 13 segments and
- a (4, 2)-arrangement of 13 segments
- Ramsey theorem for graphs: 13 is best possible
- Upper bound for convex case [Černý, 2008]:

convex (2, 4)-arrangement: at most 12 segments

convex (4, 2)-arrangement: at most 11 segments

A (2, 4)-arrangement

intersection graph: $\mathbf{Cay}(\mathbb{Z}_{13}; 1, 5)$

- has no clique of size 3 and no independent set of size 5

A (2, 4)-arrangement

intersection graph: $\mathbf{Cay}(\mathbb{Z}_{13}; 1, 5)$

- has no clique of size 3 and no independent set of size 5

A partially flattened (2, 4)-arrangement

A flattened (2, 4)-arrangement

	l			l
	left $oldsymbol{x}$	left $oldsymbol{y}$	right $oldsymbol{x}$	right $oldsymbol{y}$
1	$-\varepsilon$	0	1-2arepsilon	$2arepsilon^2 + 2arepsilon^6$
2	$arepsilon^2$	$arepsilon - arepsilon^3$	$1-\varepsilon^2$	$arepsilon^3$
3	0	$arepsilon^4 + arepsilon^6$	1	$arepsilon^3 + 3arepsilon^4$
4	0	$arepsilon^4 - arepsilon^6$	1-2arepsilon	$2arepsilon^2-arepsilon^6$
5	$-\varepsilon+\varepsilon^2$	0	$1-2arepsilon^2$	$2arepsilon^3-2arepsilon^4$
6	-arepsilon	$2\varepsilon^6$	1-arepsilon	$2\varepsilon^6$
7	0	$arepsilon^6$	1	$arepsilon^3 + 2arepsilon^4$
8	0	$oldsymbol{arepsilon}$	$1+arepsilon^3$	0
9	0	$oldsymbol{arepsilon}$	$1-2arepsilon^2$	$2arepsilon^3-arepsilon^4$
10	$-arepsilon^2+3arepsilon^3$	$3arepsilon^6$	1-2arepsilon	$2arepsilon^2+arepsilon^6$
11	$-arepsilon^2$	$arepsilon^6$	$1-2arepsilon^2$	$2arepsilon^3 - 3arepsilon^4$
12	0	$arepsilon^4$	1	0
13	-arepsilon	0	1+arepsilon	0

A partially flattened (4, 2)-arrangement

A flattened (4, 2)-arrangement

	left $oldsymbol{x}$	left $oldsymbol{y}$	right $oldsymbol{x}$	right $oldsymbol{y}$
1	ε	$arepsilon^2 - arepsilon^3 + arepsilon^4 - 2arepsilon^5$	$1+arepsilon^2$	$-arepsilon^4 + arepsilon^6$
2	0	$arepsilon^2 + 3arepsilon^5$	$1-\varepsilon^3$	$arepsilon^7$
3	0	$arepsilon^2 + 4arepsilon^5$	1+arepsilon	$-arepsilon^3$
4	0	$2arepsilon^3$	$1+3arepsilon^4$	$-arepsilon^8$
5	$\varepsilon - \varepsilon^2 + \varepsilon^3$	$arepsilon^2 - arepsilon^3 + arepsilon^4 - arepsilon^8$	1+arepsilon	$-arepsilon^4$
6	0	$arepsilon^2 + arepsilon^5$	1+arepsilon	$-arepsilon^3$
7	0	$arepsilon^2 + 5arepsilon^5$	$1+3arepsilon^4$	$-3arepsilon^7$
8	$arepsilon - arepsilon^2 + arepsilon^3 + arepsilon^4 + 2arepsilon^5$	$arepsilon^2 - arepsilon^3 + arepsilon^4 + arepsilon^5 + arepsilon^6$	$1+arepsilon-arepsilon^4$	$-arepsilon^3$
9	0	$arepsilon^2$	1+arepsilon	$-arepsilon^4$
10	0	0	$1+5arepsilon^3$	0
11	0	$arepsilon^2 + 2arepsilon^5$	$1+3arepsilon^4-2arepsilon^5$	$arepsilon^8$
12	$arepsilon - arepsilon^3$	$arepsilon^3 - arepsilon^4$	1+arepsilon	$-arepsilon^4$
13	0	0	1	ε

Can every arrangement be flattened?

NO

(not even topologically)

Theorem There exists a non-flattenable arrangement of segments such that all segments cross a common line (so it can be flattened topologically).

core:

a grid of supporting segments

Open problems

- ullet better upper and lower bound for r(k)
- upper bound for pseudosegments
- upper bound for curves (string graphs)