МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИИСТ

Задание по дисциплине «ВСМ в ИИТ»

Нахождение уравнений регрессии, коэффициента линейной корреляции и интегральной оценки коэффициента корреляции двух случайных величин

Студент гр.8586	Пахомов С.И.
Преподаватель	Орлова Н.В.

Санкт-Петербург

Цель работы:

По результатам измерений двух СВ X и Y построить поле корреляции, определить и построить линейные уравнения регрессии. Определить коэффициент корреляции между результатами измерений двух случайных величин X и Y и дать интервальную оценку коэффициента корреляции.

Исходные данные:

Вероятность	X	Y
P		
	1,18	0,36
	-0,31	0,82
	0,09	1,18
	2,09	1,09
0,87	0,28	-0,38
	0,81	0,06
	1,15	2,06
	2,80	1,69
	2,49	1,43
	0,57	1,57

Pg = 0.935

Обработка результатов:

1. Результат выполнения программы в matlab:

```
Work4.m × +
       X=[1.18 -0.31 0.09 2.09 0.28 0.81 1.15 2.80 2.49 0.57];
       Y=[0.36;0.82;1.18;1.09;-0.38;0.06;2.06;1.69;1.43;1.57];
       N=10;
       mx=mean(X);
       my=mean(Y);
      dx=var(X);
       dy=var(Y);
     mxy=(X*Y/N-mx*my)*N/(N-1);
9 -
      rxy=mxy/(sqrt(dx*dy));
10 -
      if abs(rxy)<=0.2;
           disp ('очень слабая корреляция');
     elseif abs(rxy)<=0.4;
13 -
          disp ('слабая корреляция');
14 -
    elseif abs(rxy)<=0.7;
15 -
           disp ('средняя корреляция');
      elseif abs(rxy)<=0.9;
           disp ('сильная корреляция');
      elseif abs(rxy)<=1;
19 -
           disp ('очень сильная корреляция');
20 -
      end;
```

Рисунок 1 – код программы для оценки корреляции

B command window получено:

```
Command Window

>> Work4
средняя корреляция

fx >>
```

Рисунок 2 – сила корреляции

Полученный коэффициент корреляции:

Workspace:

Name 📤	Value
dx dx	1.0949
dy	0.5976
🔁 h	1x1 Text
mx	1.1150
mxy	0.3375
my	0.9880
N	10
rxy	0.4172
x	1x801 double
X	[1.1800,-0.3100,0.090
₩ x2	1x701 double
₩ x3	1x701 double
∃ y	1x701 double
Y	[0.3600;0.8200;1.1800;
∃ y2	1x801 double
₩ y3	1x801 double

Рисунок 3 – Workspace

Листинг программы:

```
X=[1.18 -0.31 0.09 2.09 0.28 0.81 1.15 2.80 2.49 0.57];
Y=[0.36;0.82;1.18;1.09;-0.38;0.06;2.06;1.69;1.43;1.57];
N=10;
mx=mean(X);
my=mean(Y);
dx=var(X);
dy=var(Y);
mxy=(X*Y/N-mx*my)*N/(N-1);
rxy=mxy/(sqrt(dx*dy));
if abs(rxy) \le 0.2;
    disp ('очень слабая корреляция');
elseif abs(rxy) <= 0.4;</pre>
    disp ('слабая корреляция');
elseif abs(rxy) <= 0.7;</pre>
    disp ('средняя корреляция');
elseif abs(rxy) <= 0.9;</pre>
    disp ('сильная корреляция');
elseif abs(rxy) <=1;</pre>
    disp ('очень сильная корреляция');
x=-1:0.005:3;
y=-0.5:0.005:3;
y3=0*x;
x3=0*y;
y2=my+mxy*(x-mx)/dx;
x2=mx+mxy*(y-my)/dy;
plot(x,y3,'k',x3,y,'k',X,Y,'m*',x,y2,'r',x2,y,'b');
hold on;
plot(mx, my, 'ko', [0, mx], [my, my], 'k--', [mx, mx], [0, my], 'k--');
hold on;
text(mx, -0.2, 'mx');
```

```
hold on; text(-0.2,my,'my'); hold on; h=text(-0.95,0.4,'perpeccus Y no X','FontName','TimesNewRoman','FontSize',9); hold on; text(0.2,2.5,'perpeccus X no Y','FontName','TimesNewRoman','FontSize',9);
```

График:

Рисунок 4 – график регрессии

2. Ручной расчет коэффициента корреляции и оценка силы корреляции:

Определяем выборочные средние:

$$m_{\bar{x}}^{\sim} = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x} = 1,115$$

$$m_{\bar{y}}^{\sim} = \frac{1}{N} \sum_{i=1}^{N} y_i = \bar{y} = 0.988$$

Определяем выборочные дисперсии:

$$D_x^{\sim} = S_x^2 = \left[\frac{\sum_{i=1}^N (x_i - \bar{x})^2}{N - 1} \right] = \frac{9,8541}{9} = 1,0949$$

$$D_{y}^{\sim} = S_{y}^{2} = \left[\frac{\sum_{i=1}^{N} (y_{i} - y)^{2}}{N - 1} \right] = \frac{5,3784}{9} = 0,5976$$

Расчёт выборочного корреляционного момента:

$$\mu_{xy}^{\sim} = \left[\frac{\sum_{i=1}^{N} x_i y_i}{N} - m_x^{\sim} m_y^{\sim} \right] \cdot \frac{N}{N-1} = \left[\frac{14,0537}{10} - 1,10162 \right] \cdot \frac{10}{9} = 0,3375$$

Определим эмпирический коэффициент корреляции:

$$r_{xy}^{\sim} = \frac{\mu_{xy}^{\sim}}{\sqrt{S_x^2 S_y^2}} = \frac{0.3375}{0.8089} = 0.4172$$

Эмпирические уравнения регрессии:

$$Y - \bar{y} = \frac{\mu_{xy}^{\sim}}{\sigma_{x}^{\sim 2}} (X - \bar{x})$$

$$Y = 0.988 + \frac{0.3375}{1.0949}(X - 1.115)$$

$$Y = 0.3082X + 0.6443$$

$$X - \bar{x} = \frac{\mu_{xy}^{\sim}}{\sigma_y^{\sim 2}} (Y - \bar{y})$$

$$X = 1,115 + \frac{0,3375}{0,5976}(Y - 0,988)$$

$$X = 0.5647Y + 0.5570$$

3. Нахождение по $tg\alpha$ и $tg\beta$ по графику:

$$tg\alpha = \frac{\mu_{xy}^{\sim}}{S_x^2} = \frac{0.3375}{1.0949} = 0.3082$$

 $\alpha = 17.13^{\circ}$

$$tg\beta = \frac{\mu_{xy}^{\sim}}{S_y^2} = \frac{0,3375}{0,5976} = 0,5647$$
$$\beta = 29,45^{\circ}$$

Найдём коэффициент корреляции:

$$r^{\sim} = \sqrt{tg\alpha \ tg\beta} = 0.41718$$

4. Проведём расчет доверительного интервала коэффициента корреляции с помощью формулы Фишера:

$$z^{\sim} = \frac{1}{2} \ln \frac{1 + r_{xy}}{1 - r_{xy}} = \frac{1}{2} \ln \frac{1 + 0.4172}{1 - 0.4172} = 0.4443$$

СКО выборочного коэффициента корреляции:

$$\sigma_z = \frac{1}{\sqrt{N-3}} = \frac{1}{\sqrt{10-3}} = 0.378$$

Найдём доверительный интервал (р):

$$z^{\sim} \pm U_{1-\frac{\alpha}{2}} \cdot \sigma_z$$

$$U_{1-\frac{\alpha}{2}} = U_{1-\frac{1-pd}{2}} = U_{1-\frac{1-0.935}{2}} = U_{0.9675} = 1.85$$

$$z^{\sim} \pm 1,85 \cdot 0,378 = z^{\sim} \pm 0,6993$$

Доверительный интервал z^{\sim} :

$$0,444 - 0,6993 \le z \le 0,444 + 0,699$$

 $-0,255 \le z \le 1,143$

С помощью таблиц значений функций Z Фишера:

$$0.25 \le r_{xy} \le 0.81$$

$$0,25 \le 0,4172 \le 0,81$$

Выводы:

В ходе лабораторной работы по результатам измерений двух случайных величин X и Y было построено поле корреляции, были определены и построены линейные уравнения регрессии.

Был найден коэффициент корреляции между результатами измерений двух случайных величин X и Y ($r_{xy}^{\sim}=0.4172$) и коэффициент корреляции найденный с помощью тангенсов $r_{xy}^{\sim}=0.41718$. Значения коэффициентов практически совпали.

Также найден доверительный интервал коэффициента корреляции r_{xy} с помощью формулы Фишера и можно сделать вывод, что значение коэффициента корреляции попало в доверительный интервал.