1. Diberikan graf sbb:

- a. Tunjukkan penyimpanan data graf tersebut dengan adjacency matriks dan list
- b. Tuliskan hasil traversal graf secara BFS dan DFS
- 2. Diberikan persoalan Knapsack dengan 5 objek sbb:

Wi	pi	By weight	By profit	By density
2	8			
6	24			
4	20			
5	20			
4	16			

Kapasitas knapsack W = 16

Carilah solusi optimal dengan **algoritma Greedy** (by profit, by weight, by density) jika persoalan diselesaikan dengan

- a. Knapsack 0/1
- b. Fractional Knapsack
- 3. Terdapat n orang (person) yang akan ditugaskan untuk menangani n job (Job Assignment).

	J1	J2	J3	J4	J5
P1	5	3	6	8	4
P2	6	4	2	9	5
Р3	5	8	2	7	4
P4	7	4	9	6	5
P5	5	7	4	6	8

- a. Jika digunakan **algoritma Brute Force** untuk mendapatkan penugasan job (J) untuk setiap orang (P), jelaskan Exhaustive search untuk mencari solusi dengan Brute Force, jika setiap orang mengerjakan hanya satu job ?
- b. Ada berapa kemungkinan penugasan yang harus diperiksa untuk 5 job 5 orang jika memakai Brute Force?
- c. Bagaimana cara Greedy untuk mendapatkan solusi persoalan di atas dengan lebih cepat?

4. Diberikan graf sbb:

Gunakan algoritma Prim untuk menghasilkan minimum spanning tree dari graf tersebut. Tuliskan tahapan yang dilakukan sampai menghasilkan minimum spanning tree.