ESTIMATING CAUSAL EFFECTS USING PROXY INTERFERENCE NETWORKS

BAR WEINSTEIN DANIEL NEVO

STATISTICS & OR TEL AVIV UNIVERSITY

IDSAI 2025

Field experiement in 56 middle-schools.

1. Goal: reduce student conflicts through education.

- 1. Goal: reduce student conflicts through education.
- 2. Challenge: students are influenced by their peers.

- 1. Goal: reduce student conflicts through education.
- 2. Challenge: students are influenced by their peers.
- 3. Data: Multiple friendship networks.
 - ► Who do you spend time with?
 - ► Who is your best friend?
 - Measured at pre and post.
 - Self-reported.

- 1. Goal: reduce student conflicts through education.
- 2. Challenge: students are influenced by their peers.
- 3. Data: Multiple friendship networks.
 - ► Who do you spend time with?
 - ► Who is your best friend?
 - ► Measured at pre and post.
 - ► Self-reported.
- Which of the networks, if any, is the true network? which to choose?

- 1. Goal: reduce student conflicts through education.
- 2. Challenge: students are influenced by their peers.
- 3. Data: Multiple friendship networks.
 - ► Who do you spend time with?
 - ► Who is your best friend?
 - ► Measured at pre and post.
 - ► Self-reported.
- Which of the networks, if any, is the true network? which to choose?
- **Objective:** Estimate the intervention effects using the proxy networks.

■ Causal Inference. Effect of treatment on an outcome.

- Causal Inference. Effect of treatment on an outcome.
- Interference. Treatment of one unit affect the outcomes of others.
 - ► Spillovers, peer effects, contagion, etc.

- Causal Inference. Effect of treatment on an outcome.
- Interference. Treatment of one unit affect the outcomes of others.
 - ► Spillovers, peer effects, contagion, etc.
- Treatments spreads through a **network**.
 - ► Nodes: units. Edges: pairwise interactions.

- Causal Inference. Effect of treatment on an outcome.
- Interference. Treatment of one unit affect the outcomes of others.
 - ► Spillovers, peer effects, contagion, etc.
- Treatments spreads through a **network**.
 - Nodes: units. Edges: pairwise interactions.
- Examples:
 - Social networks. Information & behavior spread.
 - Public health. transmisstion of infectious diseases or addictive drugs.
 - ► A/B testing in marketplaces.

■ Randomized experiment in networked population.

- Randomized experiment in networked population.
- Accurately measuring social networks is challenging.

- Randomized experiment in networked population.
- Accurately measuring social networks is challenging.
- We observe only proxy measurements of the true network.
 - Measurements error.
 - ► Multiple sources of data.
 - ► Multilayer networks.
- True network remains latent.

- Randomized experiment in networked population.
- Accurately measuring social networks is challenging.
- We observe only proxy measurements of the true network.
 - ► Measurements error.
 - Multiple sources of data.
 - Multilayer networks.
- True network remains latent.

How can we estimate causal effects using proxy networks?

FORMAL SETUP

- Finite population $i \in \{1, ..., N\}$.
- Treatments: $\mathbf{Z} \in \{0, 1\}^N$.
- Outcomes: $\mathbf{Y} \in \mathbb{R}^N$.
- Covariates/features: X.
- True interference network: $\mathbf{A}^* \in \{0, 1\}^{N \times N}$.
- Proxy networks: $\mathbf{A} = (\mathbf{A}^1, \dots, \mathbf{A}^B)$.

STRUCTURAL CAUSAL MODEL

■ Population-level directed acyclic graph (DAG):

STRUCTURAL CAUSAL MODEL

Population-level directed acyclic graph (DAG):

- Requires probabilistic models:
 - 1. True network. $p(\mathbf{A}^*|\mathbf{X},\theta)$.
 - 2. Proxy networks. $p(\mathbf{A}|\mathbf{A}^*, \mathbf{X}, \gamma)$.
 - 3. Outcomes. $p(Y|Z, A^*, X, \eta)$.

- 1. Static. $\mathbb{E}[Y_i|do(\mathbf{Z}=\mathbf{z}),\mathbf{X},\mathbf{A}^*]$.
 - ► Treating all (z = 1) vs none (z = 0).

- 1. Static. $\mathbb{E}[Y_i|do(\mathbf{Z}=\mathbf{z}),\mathbf{X},\mathbf{A}^*]$.
 - ► Treating all (z = 1) vs none (z = 0).
- 2. **Dynamic.** $\mathbb{E}[Y_i|do(\mathbf{Z}=h(\mathbf{X},\mathbf{A}^*)),\mathbf{X},\mathbf{A}^*].$
 - ► Treating units with specific features, e.g., above certain age.

- 1. Static. $\mathbb{E}[Y_i|do(\mathbf{Z}=\mathbf{z}),\mathbf{X},\mathbf{A}^*]$.
 - ► Treating all (z = 1) vs none (z = 0).
- 2. **Dynamic.** $\mathbb{E}[Y_i|do(\mathbf{Z}=h(\mathbf{X},\mathbf{A}^*)),\mathbf{X},\mathbf{A}^*].$
 - ► Treating units with specific features, e.g., above certain age.
- 3. Stochastic. $\mathbb{E}_{\pi_{\alpha}(\mathbf{Z})}\mathbb{E}[Y_i|do(\mathbf{Z}),\mathbf{X},\mathbf{A}^*].$
 - ► Randomly treating α_1 vs α_0 percent of units.

■ Data: $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent: \mathbf{A}^* and models' parameters (η, γ, θ) .

- Data: $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent: \mathbf{A}^* and models' parameters (η, γ, θ) .
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta)$$
$$\times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma)$$
$$\times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

- Data: $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent: \mathbf{A}^* and models' parameters (η, γ, θ) .
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta)$$

$$\times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma)$$

$$\times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

■ Mixed space. Discrete (\mathbf{A}^*) have $O(N^2)$ terms!

- Data: $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent: \mathbf{A}^* and models' parameters (η, γ, θ) .
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta)$$
$$\times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma)$$
$$\times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

- Mixed space. Discrete (\mathbf{A}^*) have $O(N^2)$ terms!
- Propose two sampling schemes:
 - 1. Modularization. "break" the posterior into smaller, more manageable parts.
 - 2. Gibbs sampling. Sample discrete with Local Informed Proposals.

SIMULATIONS

 \blacksquare N = 500 units. True network is measured with error. Outcomes from MRF.

SIMULATIONS

 \blacksquare N = 500 units. True network is measured with error. Outcomes from MRF.

Figure 1: MAPE (\downarrow) of stochastic estimand.

SIMULATIONS

 \blacksquare N = 500 units. True network is measured with error. Outcomes from MRF.

Figure 1: MAPE (\downarrow) of stochastic estimand.

Figure 2: MAE (\leftarrow) of network statistics.

DATA ANALYSIS - PALUCK ET AL. (2016)

- Outcome is indicator of anti-conflict behavior.
- Stochastic estimand.
- Four available networks.
 - ▶ Use one as "Observed" true network.
 - ► Analysis using different combination of the four proxy networks.

DATA ANALYSIS - PALUCK ET AL. (2016)

KEY TAKEAWAYS

■ Network interference is common ⇒ implications for many A/B tests.

KEY TAKEAWAYS

- Network interference is common ⇒ implications for many A/B tests.
- Correctly measuring social relations is often impossible.
- Can estimate causal effects using proxy networks.

KEY TAKEAWAYS

- Network interference is common ⇒ implications for many A/B tests.
- Correctly measuring social relations is often impossible.
- Can estimate causal effects using proxy networks.
- Bayesian framework for inference. Computation is challenging.

THANK YOU!

APPENDIX

More math details.