Лабораторна робота №3 з чисельного аналізу

Півень Денис ОМ-3

Варіант 10

1 Метод Рунге — Кутти 4-го порядку

1.1 Опис методу

Метод Рунге — Кутти 4-го порядку настільки широко розповсюджений, що його часто називають просто методом Рунге — Кутти або RK4.

Розглянемо задачу Коші для системи диференціальних рівнянь довільного порядку, що записується у векторній формі як

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y}), \qquad \mathbf{y}(x_0) = \mathbf{y}_0$$

Тоді значення невідомої функції в точці x_{n+1} обчислюється відносно значення в попередній точці x_n за формулою:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4),$$

 $x_{n+1} = x_n + h$

де h — крок інтегрування, а коефіцієнти k_n розраховуються таким чином:

$$k_1 = \mathbf{f}(x_n, \mathbf{y}_n),$$

$$k_2 = \mathbf{f}\left(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_1\right),$$

$$k_3 = \mathbf{f}\left(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_2\right),$$

$$k_4 = \mathbf{f}(x_n + h, \mathbf{y}_n + h\mathbf{k}_3).$$

Це метод 4-го порядку, тобто похибка на кожному кроці становить $O(h^5)$, а сумарна похибка на кінцевому інтервалі інтегрування є величиною $O(h^4)$.

1.2 Розв'язання

Умова задачі:

Розв'язати рівняння методом Рунге-Кутти 4-го порядку точності на відрізку $x \in [1,2]$, з кроком h=0.1.

$$y' = \sqrt{x}y^2 + 1$$
$$y(1) = 0$$

На кожному кроці знаходимо коефіцієнти k_n , обчислюємо значення функції y_{n+1} у наступній точці x_{n+1} :

n	x{n}	y{n}	k1	k2	k3	k4	y{n+1}
0	1	0	0.1	0.10026	0.10026	0.10105	0.10035
1	1.1	0.10035	0.10106	0.10244	0.10246	0.10451	0.20291
2	1.20000	0.20291	0.10451	0.10728	0.10736	0.11098	0.31037
3	1.30000	0.31037	0.11098	0.11555	0.11575	0.12148	0.42621
4	1.40000	0.42621	0.12149	0.12855	0.12897	0.13775	0.55526
5	1.50000	0.55526	0.13776	0.14850	0.14934	0.16280	0.70463
6	1.60000	0.70463	0.16280	0.17936	0.18105	0.20228	0.88562
7	1.70000	0.88562	0.20226	0.22880	0.23229	0.26767	1.11764
8	1.80000	1.11764	0.26759	0.31301	0.32081	0.38521	1.43771
9	1.90000	1.43771	0.38492	0.47109	0.49097	0.62606	1.92690
10	2.00000	1.92690					

2 Модифікований метод Ейлера

2.1 Опис методу

Нехай дана задача Коші для рівняння першого порядку:

$$\frac{dy}{dx} = f(x, y),$$

$$y_{|_{x=x_0}}=y_0,$$

де функція f визначена на деякії області $D \subset \mathbb{R}^2$. Розв'язок знаходиться в інтервалі $(x_0, b]$. На цьому інтервалі введемо вузли: $x_0 < x_1 < \dots < x_n \leq b$. Наближенний розв'язок у вузлах x_i , який позначимо через y_i , визначається формулою:

$$y_i = y_{i-1} + (x_i - x_{i-1})f(x_{i-1}, y_{i-1}), \quad i = 1, 2, 3, \dots, n.$$

Ці формули зводяться на випадок систем звичайних диференціальних рівнянь.

2.2 Розв'язання

Умова задачі:

Розв'язати з кроком h=0. на відрізку $x\in[0,1]$ задачу Коші для диференціального рівняння другого порядку, звівши його до системи диференціальних рівнянь першого порядку з подальшим застосуванням модифікованого методу Ейлера:

тосуванням модифікованого
$$\begin{cases} y''(1-3x(y')^2)+(y')^3=0\\ y(0)=0\\ y'(0)=-1 \end{cases}$$

Зводимо до системи першого порядку.

$$\begin{cases} z = y' \\ z'(1 - 3xz^2) + z^3 = 0 \\ y(0) = 0 \\ z(0) = -1 \end{cases}$$

Застосовуємо модифікований метод Ейлера до рівняння z'.

n	x{n}	Approximation	f(x,z)	dZ	z{n+1}
0	0	-1	1	0.1	-0.9
1	0.1	-0.9	0.729000	0.0729	-0.827100
2	0.2	-0.827100	0.565814	0.056581	-0.770519
3	0.300000	-0.770519	0.457456	0.045746	-0.724773
4	0.4	-0.724773	0.380720	0.038072	-0.686701
5	0.5	-0.686701	0.323819	0.032382	-0.654319
6	0.6	-0.654319	0.280136	0.028014	-0.626305
7	0.7	-0.626305	0.245674	0.024567	-0.601738
8	0.800000	-0.601738	0.217883	0.021788	-0.579950
9	0.900000	-0.579950	0.195061	0.019506	-0.560444
10	1.000000	-0.560444			

Застосовуємо модифікований метод Ейлера до рівняння у'.

1 0.1 -0.056044 -0.560444 -0.056044 -0.056044 -0.1120 2 0.2 -0.112089 -0.560444 -0.056044 -0.1681 3 0.300000 -0.168133 -0.560444 -0.056044 -0.2241 4 0.4 -0.224178 -0.560444 -0.056044 -0.056044 -0.2802 5 0.5 -0.280222 -0.560444 -0.056044 -0.056044 -0.3362	n		x{n}	Approximation	f(x,y)	dy	y{n+1}
2 0.2 -0.112089 -0.560444 -0.056044 -0.1681 3 0.300000 -0.168133 -0.560444 -0.056044 -0.2241 4 0.4 -0.224178 -0.560444 -0.056044 -0.056044 5 0.5 -0.280222 -0.560444 -0.056044 -0.056044	0		0	0	-0.560444	-0.056044	-0.056044
3 0.300000 -0.168133 -0.560444 -0.056044 -0.2241 4 0.4 -0.224178 -0.560444 -0.056044 -0.2802 5 0.5 -0.280222 -0.560444 -0.056044 -0.3362	1		0.1	-0.056044	-0.560444	-0.056044	-0.112089
4 0.4 -0.224178 -0.560444 -0.056044 -0.2802 5 0.5 -0.280222 -0.560444 -0.056044 -0.3362	2		0.2	-0.112089	-0.560444	-0.056044	-0.168133
5 0.5 -0.280222 -0.560444 -0.056044 -0.3362	3 0.300	0.300	0000	-0.168133	-0.560444	-0.056044	-0.224178
	4		0.4	-0.224178	-0.560444	-0.056044	-0.280222
6 0.6 -0.336266 -0.560444 -0.056044 -0.3923	5		0.5	-0.280222	-0.560444	-0.056044	-0.336266
3000000	6		0.6	-0.336266	-0.560444	-0.056044	-0.392311
7 0.7 -0.392311 -0.560444 -0.056044 -0.4483	7		0.7	-0.392311	-0.560444	-0.056044	-0.448355
8 0.800000 -0.448355 -0.560444 -0.056044 -0.5044	8 0.800	0.800	0000	-0.448355	-0.560444	-0.056044	-0.504400
9 0.900000 -0.504400 -0.560444 -0.056044 -0.5604	9 0.900	0.900	0000	-0.504400	-0.560444	-0.056044	-0.560444
10 1.000000 -0.560444	10 1.000	1.000	0000	-0.560444			