Übung zur Linearen Algebra II

A. R.

28. September 2017

Inhaltsverzeichnis

0.0	Übung 0, 01.11.2004	4
0.1	Jbung 1, 08.11.2004	5
0.2	Jbung 1, 08.11.2004	6
0.3	Jbung 2, 15.11.2004	7
0.4	Übung 3, 22.11.2004	9
0.5	Übung 4, 29.11.2004	11
0.6	Jbung 5, 06.12.2004	11
0.7	Übung 6, 13.12.2004	13
0.8	Jbung 7, 17.12.2004	15
0.9	Übung 8, 3.01.2005	15
0.10	Jbung 9, 10.01.2005	15
0.11	Übung 10, 17.01.2005	15
0.12	Übung 11, 17.01.2005	16
0.13	Übung 12, 31.01.2005	18
0.14	Jbung 13, 07.02.2005	18
0.15	Jbung 14, 14.02.2005	18
0.16	Jbung 16, 18.04.2005	19
0.17	Jbung 17, 25.04.2005	22
0.18	Jbung 18, 06.06.2005	24

0.0 Übung 0, 01.11.2004

0.0.1 Aufgabe 2

- a) Über allen Gipfeln ist Ruh Über einem Gifpel ist keine Ruh
- b) Es gibt einen Hund der Möhren frißt Alle Hunde fressen keine Möhren
- c) Es gibt einen Topf auf den alle Deckel passen Für alle Töpfe gibt es einen Deckel der nicht passt
- d) $\forall x \in \mathbb{R} \exists y \in \mathbb{Z} : [y \le x \land (\forall z \in \mathbb{Z} : z \le y)] \Leftrightarrow \exists x \in \mathbb{R} \forall y \in \mathbb{Z} : \neg [y \le x \land (\forall z \in \mathbb{Z} : z \le y)]$ Es gilt: $\neg [A \land B] \Leftrightarrow \neg A \lor \neg B$ $\Rightarrow \exists x \in \mathbb{R} \forall y \in \mathbb{Z} : [y > x \lor (\exists z \in \mathbb{Z} : z > y)]$

0.0.2 Aufgabe 3

$$a,b\in\mathbb{N}$$

$$a\mid b\in\mathbb{N}:\Leftrightarrow \exists c\in\mathbb{N}:a\cdot c=b$$

$$p\in\mathbb{N}\setminus\{1\}:\Leftrightarrow 1\text{ und p sind die einzigen Teiler von p}$$

Satz: Zu jeder natürlichen Zahl $n \neq 1$ gibt es eindeutig bestimmte Primzahlen $p_1, ..., p_k$ und $l_1, ..., l_k \in \mathbb{N}$, so dass $n = p_1^{l_1} \cdot ... \cdot p_k^{l_k}$.

a) Die Anzahl aller Primzahlen ist unendlich Widerspruchsbew.: Ann.: Es gibt nur endl. viele Primzahlen

$$\begin{array}{l} n := p_1 \cdot \ldots \cdot p_k + 1 \\ Satz \Rightarrow P_l \cdot m = n \end{array} \right\} p_l * m = p_1 \cdot \ldots \cdot p_k \\ 1 + 1 \Rightarrow p_L \cdot (m - p_1 \cdot \ldots \cdot p_l \cdot \ldots \cdot p_k) = 1$$

Es gibt also doch unendlich viele Primzahlen

b) Widerspruchsbew.: Ann.: $\sqrt{2} \in \mathbb{Q}$, d.h. $\sqrt{2} = \frac{m}{n}$ mit $m, n \in \mathbb{N}$. Wir dürfen annehmen, das es keine Primzahl gibt, die sowohl m als auch n teil.

$$\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow 2n^2 = m^2$$

$$\Rightarrow 2\tilde{m} = m \Rightarrow 2n^2 = 4\tilde{m}^2 \Rightarrow n^2 = 2 \cdot \tilde{m}^2 \Rightarrow 2 \mid n$$

Also $\sqrt{2} \notin \mathbb{Q}$

0.0.3 Aufgabe 5

z.Z.:
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

Beweis:

$$x \in A \setminus (B \setminus C)$$

$$\Leftrightarrow x \in A, x \notin B \setminus C$$

$$\Leftrightarrow x \in A, \neg (x \in B \setminus C)$$

$$\Leftrightarrow x \in A, \neg (x \in B, x \notin C)$$

$$\Leftrightarrow (x \in A, x \notin B) \lor (x \in A, x \in C)$$

$$\Leftrightarrow x \in A \setminus B \cup (A \cap C)$$

0.1 Übung 1, 08.11.2004

0.1.1 Aufgabe 1

d) M,N Mengen, $f:M\to N$ Abb., $A,B\subset M$ z.Z. $f(A)\setminus f(B)\subset f(A\setminus B)$

Beweis: Für $f(A) \setminus f(B) = \emptyset$ gilt die Behauptung.

Sei daher im folgenden $f(A) \setminus f(B) \neq \emptyset$

Sei
$$y \in f(A) \setminus f(B)$$
 \Leftrightarrow $\exists x \in A : f(x) = y \land \forall x' \neq y$
 \Rightarrow $\exists x \in A \setminus B : f(x) = y$
 \Leftrightarrow $y \in f(A \setminus B)$

Also gilt: $f(A) \setminus f(B) \subset f(A \setminus B)$

0.1.2 Aufgabe 3

b) A endliche Menge, |A| = nGesucht: Eine Abb. von $\mathcal{P}(A)$ nach $\{0,1\}^A$. Wie definieren wir f?

$$\begin{split} f: \mathcal{P}(A) &\to & \{0,1\}^A \\ M &\to & h_M: & A \to \{0,1\} \\ & x \to \left\{ \begin{array}{l} 1, x \in M \\ 0, x \not\in M \end{array} \right. \end{split}$$

$$f^{-1}: \{0,1\} \to \mathcal{P}(A)$$

 $h \to h^{-1}(\{1\})$

Was man "leicht" sieht: $f^{-1} \circ f = id_{f(A)}$ und $f \circ f^{-1} = id_{\{0,1\}^A}$.

0.2 Übung 1, 08.11.2004

0.2.1 Aufgabe 1

b) $A \neq \emptyset$ eine Menge, (G, \circ) eine Gruppe.

z.Z.: $(G^A, *)$ ist Gruppe.

Beweis: $G^A \neq \emptyset$, da $A \neq \emptyset$

(1) * is assoziativ

Sei $x \in A, f, g, h \in G^A$

$$((f*g)*h)(x) = (f*g)(x) \circ h(x) = ((f(x) \circ g(x)) \circ h(x) = f(x) \circ g(x) \circ h(x) = (f*(g*h))(x)$$

Da $x \in A$ bel. gilt (f * g) * h = f * (g * h)

(2) neutrales Element

Wir def. $f:A\to G,\ x\mapsto e.$ Sei $x\in A$ bel., dann gilt:

f(n(x)) = f(x). Also ist n das neutrale Element in G^A .

0.2.2 Aufgabe 3

Im Hinterkopf: $A = \mathbb{N}_0$; \circ ?? + und $(B, *) = (\mathbb{Z}, +)$

a) z.Z.: \sim ist ÄR

Beweis:

- (1) \sim ist reflexiv: $x_1 \circ y_1 = x_1 \circ y_2 \Rightarrow (x_1, y_1) \sim (x_1, y_1)$
- (2) \sim ist symmetrisch da "=" symmetrisch ist
- (3) \sim ist transitiv:

 $(x_1, y_1) \sim (x_2, y_2)$ und $(x_2, y_2) \sim (x_3, y_3)$

Es gilt also: $x_1 \circ y_2 = x_2 \circ y_2$ und $x_2 \circ y_1 = x_3 \circ y_2 \Rightarrow x_1 \circ y_2 \circ x_2 \circ y_3 = x_2 \circ y_1 \circ x_3 \circ y_2 \Rightarrow x_1 \circ y_3 = y_1 \circ x_3$

- b) Seien $(x_1, y_1) \sim (x_2, y_2)$ und $(x_2, y_2) \sim (x_2, y_2)$ z.Z.: $(x_1 \circ x_2, y_1 \circ y_2) \sim (x'_1 \circ x'_2, y'_1 \circ y'_2)$ (dann wohldefiniert.) $x_1 \circ x_2 \circ y'_1 \circ y'_2 = x'_1 \circ y_1 \circ x'_2 \circ y_2 = x'_1 \circ x'_2 \circ y_1 \circ y_2$
- c) $A \times A_{/\sim} \neq 0$ $[(x_1, y_1)]_{\sim} \times [(x_2, y_2)]_{\sim} = [(x_1 \circ x_2, y_1 \circ y_2)]_{\sim}$
 - (1) * ist assoziativ weil o assoziativ ist
 - (2) $[(e,e)]_{\sim}$ ist das neutrale Element bzgl. *
 - (3) * ist kommutativ Sei $x_1, y_1 \in A$, $[(y_1, x_1)]_{\sim}$ ist invers zu $[(x_1, y_1)]_{\sim}$, denn

$$[(x_1,y_1)]_{\sim} * [(y_1,x_1)]_{\sim} = [(x_1 \circ y_1, x_1 \circ y_1)]_{\sim} = [(e,e)]_{\sim}, \text{ denn } x_1 \circ y_1 \circ e = e \circ x_1 \circ y_1$$

d) $f: A \to B, x \mapsto [(x,e)]_{\sim}$ ist die gesuchte Abb.

0.3 Übung 2, 15.11.2004

0.3.1 Aufgabe 1

 (A, \circ) endliche Gruppe, e neutr. Element; $x \in A$ fest

a) z.Z.: Es gibt ein kleinstes $k \in \mathbb{N}$ mit $x^k = e$. Beweis: $B := \{x, x^2, ..., x^n, x^{n+1}\} \subset A$ mit |A| = n

$$\begin{split} &\Rightarrow |B| \leq n \\ &\Rightarrow \exists i,j \in \{1,...,n+1\} : i < j \quad \text{und} \quad x^i = x^j = x^i \circ x^{j-1} \\ &\Rightarrow x^{j-1} = e \quad \text{und} \quad 1 \leq j-1 \leq n \end{split}$$

Damit ist $M:=\{m\in N|x^m=e\}\neq\emptyset$. Da $(j-i)\in M$ ex. außerdem $k=\min M$.

- b) z.Z.: $B := \{x, x^2, ..., x^n\}$ ist eine Untergruppe von A **Beweis:**
 - $B \neq \emptyset$, da $x \in B$
 - Seien $y, z \in B$. Dann $\exists i, j \in \{1, ..., k\}$ mit $y = x^i$ und $z = x^j$ $y \circ z^{-1} = x^i \circ x^{k-j} = x^{i+k-j} = \begin{cases} x^{k+i-j}, \text{ falls } i \leq j \\ x^{i-j}, \text{ falls } i > j \end{cases}$ In beiden Fällen $y \circ z^{-1} \in B$.
 - Seien $y, z \in B$. Dann $\exists i, j \in \{1, ..., k\}, y = x^i, z = x^j$ $y \circ z = x^i \circ x^j = x^{i+j} = x^{j+i} = z \circ y$

z.Z.: Ann.: |B| < k. Dann $\exists i, j \in \{1, ..., k\}$ mit i < j und $x^i = x^j$ $\Rightarrow x^{j-1} = e \quad \text{und} \quad 1 \le j-1 < k`$ $\Rightarrow |B| = k$

0.3.2 Aufgabe 3

a) z.Z.: Die Menge $\{Ba|a\in A\}$ (mit $Ba=\{b\circ a|b\in B\}$) bildet eine Partition von A.

Beweis: Für alle $a \in A$ gilt $a \in Ba$, da $e \in B$ und somit $e \circ a \in Ba$ ist.

Damit gilt: $Ba \neq \emptyset$ für alle $a \in A$ und $\bigcap_{a \in A} Ba = a$.

Sei $a, a' \in A$ und $Ba \cap Ba' \neq \emptyset$. Dann ex. $Ba \cap Ba'$ und es gibt $b, b' \in B$ mit $x = b \circ a$ und $x = b' \circ a' \Rightarrow a = \underbrace{b^{-1} \circ b'}_{\in B} \circ a'$ und $a' = \underbrace{b'^{-1} \circ b}_{\in B} \in B \circ a$

$$\Rightarrow a \in Ba' \text{ und } a' \in Ba$$

 $\Rightarrow Ba \subset Ba' \Rightarrow Ba = Ba'.$

b) z.Z.: |B| teilt |A|

Beweis:

(1) Wir zeigen: |Ba| = |B| für alle $a \in A$

 $h: B \to Ba, h \mapsto b \circ a$ ist bijektiv denn $h^{-1}: Ba \to B, x \mapsto x \circ a^{-1}$ ist ihre Umkehrabbildung.

 $\Rightarrow |Ba| = |B|$ für alle $a \in A$

(2) z.Z.: $\exists m \in \mathbb{N} : m|B| = |A|$ Wir zeigen aus a), dass $A = \bigcup Ba$

Wir definieren $m := \{Ba | a \in A\}$ (die Anzahl der verschiedenen Nebenklassen) Dann gilt |A| = m|B|.

c) z.Z. $\forall a \in A : a^{|A|} = e$

Beweis: Sei k die Ordnung von a

$$B := \{a, a^2, ..., a^k\}$$

Wir wissen aus Aufgabe 1: B ist Untergruppe von A. Dann ex. wegen b) ein $m \in \mathbb{N}$ mit |A| = mk.

Somit: $a^{|A|} = a^{mk} = a^{k^n} = e^m = e$

d) z.Z.: $|A| \geq Z : |A|$ ist Primzahl $\Leftrightarrow \{e\}$, A sind die einzigen Untergruppen von A

"⇒" Wegen b) gilt für jede Untergrupp B, dass |B|teilt|A|.

"←" Wegen $|A| \ge 2$ gibt es $x \in A \setminus \{e\}$. Also ist die Ordnung k von x echt größer 1.

 $\{e\} \subsetneq \{a, a^k\} = A \text{ (nach Vor.) und } k = |A|$

Falls: |A| keine Primzahl ist, so ex. $m \neq 1 \neq n$ mit |A| = mn = e.

 $\{a^n, a^{2n}, a^{3n}, ..., a^{nm}\}$ ist Untergruppe von A und $1|\{a^n, ..., a^{nm}\}\} = m < k$ ist Widerspruch zur Vor.

Also gilt: |A| ist Primzahl

0.3.3 Aufgabe 2

b)

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 8 & 6 & 2 & 1 \end{pmatrix}$$

$$\Leftrightarrow \tau^{(1,8)} \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 1 & 6 & 2 & 8 \end{pmatrix}$$

$$\Leftrightarrow \tau^{(2,7)} \circ \tau^{(1,8)} \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 5 & 4 & 1 & 6 & 7 & 8 \end{pmatrix}$$
...
$$\Leftrightarrow id = \tau^{(1,2)} \circ \tau^{(1,3)} \circ \tau^{(1,5)} \circ \tau^{(2,7)} \circ \tau$$

$$\Leftrightarrow id = \tau^{(1,2)} \circ \tau^{(1,3)} \circ \tau^{(1,5)} \circ \tau^{(2,7)} \circ \tau^{(1,8)} \circ \pi$$
$$\Leftrightarrow \pi = \tau^{(1,8)} \circ \tau^{(2,7)} \circ \tau^{(1,5)} \circ \tau^{(1,3)} \circ \tau^{(1,2)}$$

0.4 Übung 3, 22.11.2004

0.4.1 Aufgabe 1

a) Sei $f: S_n \to \mathbb{Z}_m$ ein (Gruppen-) Homomorphismus

z.Z.:
$$\forall \pi \in \S_n : f(\pi) + f(\pi) = [0]_{\sim}$$

Beweis: Sei $\tau \in S_n$ eine Transposition. Dann gild $\tau \circ \tau = id$

Also:
$$[0]_{\sim} = f(id) = f(\tau \circ \tau) = f(\tau) + f(\tau)$$

Sei: $\pi \in S_n$ bel.

Dann existieren Transposition $\tau_1,...,\tau_k\in S_n$ mit $\pi=\tau_1\circ...circ\tau_k$

Also:
$$f(\pi) + f(\pi) + f(\tau_1) + f(\tau_2) + \dots + f(\tau_k) + f(\pi_1) + f(\pi_2) + \dots$$

 $f(\tau_1) + f(\tau_1) + f(\tau_2) + f(\tau_2) + \dots = [0]_{\sim}$

b) Sei f surjektiv. Dann ex. $\pi \in S_n$ mit $f(\pi) = [1]_{\sim}$. Nach a) $[0]_{\sim} = f(\pi) + f(\pi) = [1]_{\sim} + [1]_{\sim} = [2]_{\sim}$.

Also teilt m 2. Somit ist m=2.

0.4.2 Aufgabe 2

a)

Sei
$$n \in \mathbb{N}$$
. 3 teilt $n \Leftrightarrow [n]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow [\sum_{i=0}^n a_i \cdot 10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i \cdot 10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i]_{\sim} \cdot [10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i]_{\sim} \cdot [1]_{\sim}^i = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n a_i = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow 3 \text{ teilt } \sum_{i=0}^n a_i$

b) Analog ($[10]_{\sim} = [-1]_{\sim}$ in \mathbb{Z}_{11})

0.4.3 Aufgabe 3

a) (Hier fehlen noch ein paar Angaben für die Menge der Einsen in den Klammern) Die Charakteristik eines Körpers $\mathbb K$ ist 0, wenn für alle $n \in \mathbb N$ gilt: $\underbrace{1+\ldots+1}_{n\text{-mal}} \neq 0$, 0,1 neutr.

El.

 $(\mathbb{R}, +, \cdot)$ ist ein Körper mit Char 0, also kann 0 nicht die Char von \mathbb{K} sein.

Sei also $m \in \mathbb{N}$, die Char von \mathbb{K} par Wir nehmen: m ist keine Primzahl Wir wissen:

- (i) (m-mal)1 + ... + 1 = 0
- (ii) m ist die kleinste nat. Zahl mit dieser Eigenschaft
- (iii) $\exists k, l \in \mathbb{N} : k > 1, l > 1 \text{ und } m = k \cdot l. \ (k < m, l < m)$

Aus (i) ergibt sich
$$(1 + ... + 1) + (1 + ... + 1) + ... + (1 + ... + 1) = 0$$
 $(l \cdot k$ -mal 1) $\Leftrightarrow (1 + ... + 1) \cdot (1 + ... + 1) = 0$ $(l \cdot 1 \cdot k \cdot 1)$

Wir haben $x=1+\ldots+1\neq 0$ (l-mal) und $y=1+\ldots+1\neq 0$ (k-mal) gefunden mit $x\cdot y=0$. Dies ist ein Widerspruch zur Nullteilerfreiheit von $\mathbb{K}. \Rightarrow$ m muß Primzahl sein.

b) (Hier fehlen noch ein paar Angaben für die Menge der Einsen in den Klammern) Sei p eine Primzahl und p die Char von K. Wir def.:

$$f: \mathbb{F}_p \rightarrow \mathbb{K}, k \mapsto \left\{ \begin{array}{ll} \overline{0} & , k = 0 \\ 1 + \ldots + 1 & , k \in \{1, \ldots, p-1\} \end{array} \right.$$

Sei $k,k'\in\mathbb{F}_p, k+k'=r$ und $k\cdot k'=r'$ mit $r,r'\in\{0,...,p-1\}$

$$f(k) + f(k') = (\overline{1} + \ldots + \overline{1}) + (\overline{1} + \ldots + \overline{1}) = (\overline{1} + \ldots + \overline{1}) + (\overline{1} + \ldots + \overline{1}) = (\overline{1} + \ldots + \overline{1}) = f(r) = f(k + k')$$

Analog $f(k) \cdot f(k') = f(k \cdot k')$

0.4.4 Aufgabe 4

a)

(1)
$$\frac{z_1 - z_2 - 2}{z_1 + z_2 + 3i} = \frac{3}{5}\sqrt{2}; \frac{1}{2}(\frac{z_2}{z_3} + \frac{\overline{z_3}}{z_3}) = \frac{1}{7} + i \cdot 0$$

(2)
$$\overline{z_1 + z_3 \cdot (z_3 - z_2)} = (i3 - 3\sqrt{3}) + i(12 + 9\sqrt{3})$$

b)

(1)
$$z + \overline{z} = z \cdot \overline{z} \Leftrightarrow za = a^2 + b^2 \Leftrightarrow (a-1)^1 + b^2 = 1$$

Kreislinie eines Kreises um (1,0) mit Radius 1.

(2)
$$Re(iz) = -b, 0 < Re(iz) < 1$$

Zeichnung...

(3)
$$|z - z_i| < 3 \Leftrightarrow a^2 + (b - 2)^2 < 9$$
; $3 < |z| \Leftrightarrow 9 < a^2 + b^2$

Der Teil des Kreises um (0,2) mit Radius 3, der nicht im Inneren des Kreises um (0,0) mit Radius 3 liegt.

0.5 Übung 4, 29.11.2004

Can somebody please tell where the heck I've been? Oh, wait, now I remember, good old Bremen

0.6 Übung 5, 06.12.2004

0.6.1 Aufgabe 1

Geg: $A \in \mathbb{R}^{n \times n}$ mit $a_{ij} = 0$, falls $i \geq j$

a) z.Z.:
$$A^n = 0$$

Beweis:
$$A^k = ((a_{ij}^{(k)}))$$
 Beh.: $a_{ij}^{(k)} = 0$, falls $i \ge j - k + 1$ (Vollständige Induktion)

I.A.:
$$A^n=A=((a_{ij}))$$
. Nach Vor.: $a_{ij}=0$ für $i\geq j-1+1$ I.V.: Für $A^k=((a_{ij}))$ gilt $a_{ij}^{(k)}=0$ für $i\geq j-k+1$

I.V.: Für
$$A^k = ((a_{ij}))$$
 gilt $a_{ij}^{(k)} = 0$ für $i \geq j - k + 1$

I.S.: z.Z.
$$A^{k+1} = ((a_{ij}^{(k+1)}))$$
 erfüllt

$$a_{ij}^{(k+1)} = 0$$
 für $i \ge (k+1) + 1 = j - k$

Bew.: Sei
$$i_0, j_0 \in \{1, ..., n\}$$
 mit $i_0 \ge j_0 - k = i_0 \ge (j_0 - 1) + k + 1$

$$A^{k+1} = A^K \cdot A$$
. Also gilt:

$$a_{i_0j_0}^{k+1} = \sum_{l=1}^{n} a_{i_0l} a_{lj_0}$$

$$\underbrace{a_{i_{o}1}^{(k)} \cdot a_{1j_{0}}}_{0 \text{ nach I.V.}} + \ldots + \underbrace{a_{i_{0}j_{0}-1}^{(k)}}_{0 \text{ nach Vor. aus A}} \cdot \underbrace{a_{(j_{0}-1)j_{0}}^{(k)} + a_{i_{0}j_{0}}^{(k)} \cdot a_{i_{0}j_{0}}^{(k)} \cdot \underbrace{a_{j_{0}j_{0}}^{(k)} + \ldots + a_{i_{0}n}^{(k)} \cdot \underbrace{a_{nj_{0}}}_{0}}_{0 \text{ nach Vor. aus A}} = 0$$

Damit gilt für
$$k=n:A^n=((d_{ij}^{(n)}))a_{ij}^{(n)}=0$$
, falls $i\geq\underbrace{j-n+1}_{\text{Gilt für alle}i,j<\{1,\dots,n\}}$. Also gilt: $A^n=0$

- b) Wo ist Teil b?, bzw. was war a?
- c) $P: \mathbb{R} \to \mathbb{R}, t \mapsto t^3$. Dazu gehört dann: $\varphi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, A \mapsto A^3$

P ist injektiv aber
$$A=\begin{pmatrix}0&0&\cdots&1\\\vdots&\ddots&\ddots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&0\end{pmatrix}$$
 erfüllt: $\varphi_n(A)=A^3=0$. Damit ist φ_n nicht injektiv

injektiv.

0.6.2 Aufgabe 2

Gibbet nicht

0.6.3 Aufgabe 3

a) z.Z.: $P(\pi \circ \sigma) = P(\pi) \cdot P(\sigma)$

Beweis:

$$P(\pi)P(\sigma) = ((P_{ij}))$$

$$= P_{ij} = \delta_{i\pi(1)} \cdot \delta_1 \sigma(j) + \delta_{i\pi(2)} \cdot \delta_2 \sigma(j) + \dots + \delta_{i\pi(n)} \cdot \delta_n \sigma(j)$$

$$= \begin{cases} \exists k \in \{1, \dots, n\} : \delta_{i\pi(k)} = 1 \text{ und } \delta_{k\pi(j)} = 1 \\ \Leftrightarrow \exists k \in \{1, \dots, n\} : \pi(k) = i \text{ und } k = \sigma(j) \\ 1, \Leftrightarrow \exists k \in \{1, \dots, n\} : k = \pi^{-1}(i) \text{ und } k = \sigma(j) \\ \Leftrightarrow \pi^{-1} = \sigma(j) \\ \Leftrightarrow i = \pi(\sigma(j)) \\ 0, \text{sonst} \end{cases}$$

 $= \delta_{i\pi(\sigma(j))}$

Also gilt: $P(\pi \circ \sigma) = P(\pi) \cdot P(\sigma)$

b) z.Z.: $P(\pi^{-1}) = P(\pi)^{\top}$

Beweis: $P(\pi^{-1}) = ((\delta_{i\pi}^{-1}(j)))$

$$\delta \pi^{-1}(j) = \begin{cases} 1, \text{ falls } i = \pi^{-1}(j) \Leftrightarrow \pi(i) = j \\ 0, \text{ sonst} \end{cases}$$

$$P(t)^{\top} = ((\delta_{ij})) \text{ und } P(\pi) = ((a_{ij} = ((\delta_i \pi(j))))$$

$$\delta_{ij} = a_{ji} = \delta_{j\pi(i)}\delta_{\pi(i)j}$$

Also gilt:
$$P(\pi^{-1}) = P(\pi)$$

c)

- (1) z.Z.: $P(\pi) \in GL(n, \mathbb{K})$ für alle $\pi \in S_n$: $E_n = P(id_{\{1,\dots,n\}}) = P(\pi^{-1} \circ \pi) = P(\pi^{-1}) \cdot P(\pi) = P(\pi) \cdot P(\pi^{-1})$
- (2) P ist Gruppenhomomorphismus wege a)
- (3) P injektiv \Leftrightarrow Kern $P = \{id_{\{1,\dots,n\}}\}$

z.Z.:
$$P(\pi) = E_n \Rightarrow \pi = id_{\{1,\dots n\}}$$

Beweis: Sei
$$P(\pi) = E_n = ((\delta_{ij}))$$

 $\Rightarrow \forall i, j \in \{1, ..., n\} : \delta_{i\pi(j)} = \delta_{ij}$
 $\Rightarrow \forall i, j \in \{1, ..., n\} : \pi(j) = j$
 $\Rightarrow \pi = id_{\{1, ..., n\}}$

0.6.4 Aufgabe 4

a) $G = \{A \in GL(4,\mathbb{R}) | A^{\top}JA = J\}$ z.Z.: G ist Gruppe

Beweis: $G \subset GL(4,\mathbb{R})$, d.h. wir können das UGK anwenden.

- (1) $E_4^{\top} J E_4 = J$, als ist $E_4 \in G$ und $G \neq \emptyset$
- (2) Seien $A, B \in G : (A \cdot B^{-1})^{\top} J(AB) = B^{-1 \top} A^{\top} JAB^{-1} = (B^{-1})^{\top} JB^{-1}$. Nach Vors.: $B^{\top} JB = J \Leftrightarrow J = (B^{\top})^{-1} JB^{-1} = (B^{-1})^{\top} JB^{-1} = AB^{-1} \in G$

Damit ist G eine Gruppe

0.7 Übung 6, 13.12.2004

0.7.1 Aufgabe 1

a) Grad $q =: m \quad m = \operatorname{Grad} q = \operatorname{Grad} r_1 > \operatorname{Grad} r_2 > \dots > \operatorname{Grad} r_n > \operatorname{Grad} r_{n+1} > \operatorname{Grad} r_{n+2}$

Falls kein $n \in \mathbb{N}$ ex. mit $k_n = 0$, dann gilt: k_{n+1} ex., Grad $k_{n+1} \geq 0$

Also gibt es m+2 verschiedene Elemente in der Menge $\{0,...,m\}$.

b) Der Eukl.-Algo liefert

$$\begin{aligned}
 r_0 &= s_1 r_1 + r2 \\
 r_1 &= s_2 r_2 + r3 \\
 r_2 &= s_3 r_3 + r4 \\
 & \dots \\
 r_{n-2} &= s_{n-1} r_{n-1} + r_n \\
 r_{n-1} &= s_n r_n + 0
 \end{aligned}$$

Wir zeigen: r_n teilt r_{n-k} für alle k = 0, ..., n

Beweis:

I.A.: r_n teilt $r_n = r_{n-0}$; r_n teilt r_{n-1} wg. der letzten Gleichung

I.V.: r_n teilt $r_{n-(k-1)}$ und r_n teilt r_{n-i}

I.S.: z.Z.: r_n teilt $r_{n-(k-1)}$

Wir wissen: $r_{n-(k+1)} = s_{n-k} \cdot r_{n-k} + r_{n-(k-1)}$

Nach I.V.: $\exists l, m \in \mathbb{K}[x]$ $k_{r-k} = l \cdot r_n$ und $r_{n-(k-1)} = n \cdot r_n$

Damit: $r_{n\cdot(k-1)} = s_{n-k}lr_n + m\cdot kn = (s_{n-k}l + m)r_n$, d.h. r_n teilt $r_{n-(k+1)}$

Also ist r_n ein Teiler von $r_0 = p, r_1 = q$

c) Ist d ein Teiler von p und q, so teilt d auch r_k für alle $k \in \{0,...,n\}$

Inhaltsverzeichnis

Beweis:

IA: d teilt r_0 , d teilt r_1 nach Vor.

IV: d teilt r_{k-1} und d teil r_2

IS: $r_{k-1} = s_k r_k + r_{k+1}$

Nach IV: $\exists l, m \in \mathbb{K}[x] : r_{k-1} = d \text{ und } r_m = md$

Damit $r_{k+1} = (l - s_k m)d$, d teilt also r_{k+1}

Insbesondere teilt d also k

0.7.2 Aufgabe 2

$$\underbrace{(x^4 + 3x^3 + 2x^2 - 3)}_{r_0} = \underbrace{(x^3 - x)}_{r_1} \underbrace{(x + 3)}_{s_1} + \underbrace{(3x^2 + 3x - 3)}_{r_2}$$

$$\underbrace{(x^3 - x)}_{r_1} = \underbrace{(3x^2 + 3x - 3)}_{r_2} \underbrace{(\frac{1}{3}x - \frac{1}{3})}_{s_2} + \underbrace{(x - 1)}_{r_3}$$

$$\underbrace{(3x^2 + 3x - 3)}_{r_2} = \underbrace{(x - 1)}_{r_3} \underbrace{(3x + 6)}_{s_3} + \underbrace{3}_{r_4}$$

$$1 = \frac{1}{3}((s_2 - s_3) + 1)r_0 + (-s_1s_2s_3 - s_1 - s_3)r_1$$

$$d.h.: r = \frac{1}{3}s_2s_3 + 1 = \frac{1}{3}x^2 + \frac{1}{3}x - \frac{1}{3}$$

$$s = -\frac{1}{3}s_1s_2s_3 - \frac{1}{3}s_1 - \frac{1}{3}s_3$$

$$= -\frac{1}{3}x^3 - \frac{4}{3}x^2 - \frac{5}{3}x - 1$$

0.7.3 Aufgabe 3

$$\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
2 & 2 & 1 & 2 & | & 1 \\
2 & 0 & 1 & 1 & | & 1 \\
1 & 2 & 2 & 0 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
0 & -2 & -3 & 2 & | & -3 \\
0 & -4 & -3 & 1 & | & -3 \\
1 & 2 & 2 & 0 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 1 & 1 & 2 & | & 0 \\
0 & 0 & -1 & 6 & | & -3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 0 & -18 & | & 8 \\
0 & 1 & 0 & -7 & | & 3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & -4 & | & 2 \\
0 & 1 & 0 & -7 & | & 3 \\
0 & 0 & 1 & 9 & | & -3 \\
0 & 0 & 0 & 15 & | & -6
\end{pmatrix}$$

0.7.4 Aufgabe 4

 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Wir betrachten: (i) Ax = b (ii) $A^{T}Ax = A^{T}b$

Zu zeigen: (i) lösbar \Rightarrow (ii) lösbar und die Lösungsmengen sind gleich **Beweis:**

(i)
$$\Leftrightarrow \exists x_0 \in \mathbb{R}^n : Ax_0 = b$$

 $\Rightarrow \exists x_0 \in \mathbb{R}^n : (A^\top A) \cdot x_0 = A^\top b \Leftrightarrow \text{(ii) l\"osbar}$

Und: Da x_0 sowohl (i) als auch (ii) löst, reicht es z.z., dass die Lösungsmengen der homogenen LGS'e gleich sind.

Sei x_1 eine Lösung von Ax = 0, d.h. es gilt $Ax_1 = 0 \Rightarrow A^{\top}x_1 = A^{\top} \cdot 0 = 0$ Also ist x_1 Lösung von $A^{\top}Ax = 0$

Sei x_2 eine Lösung von $\underbrace{A^{\top}Ax = 0}_{(*)}$, d.h. $A^{\top}Ax_2 = 0$

$$Ax = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = y \ (*) \ \Rightarrow \ x^\top A^\top A x = x^\top = 0$$

$$\Leftrightarrow \qquad (Ax)^\top (Ax) = 0 \Leftrightarrow y^\top y = 0 \Leftrightarrow y_1^2 + \dots + y_n^2 = 0$$

$$\Leftrightarrow \qquad y_1 = y_2 = \dots = 0$$

$$\Leftrightarrow \qquad y = 0$$

$$\Leftrightarrow \qquad Ax_2 = 0$$

Also ist x_2 Lösung von $Ax = 0 \Rightarrow$ Lösungsmengen gleich

- 0.8 Übung 7, 17.12.2004
- 0.9 Übung 8, 3.01.2005
- 0.10 Übung 9, 10.01.2005
- 0.11 Übung 10, 17.01.2005

0.11.1 Aufgabe 1

a) Sei $x = (x_1, ..., x_n)^{\top} \in \mathbb{R}^n$. Dann ist $\phi(x) = Ax = (a_1, ..., a_n) \cdot (x_1, ..., x_n)^{\top} = x_1 \cdot a_1 + ... + x_n \cdot a_n$. Also ist Bild $\phi = \{\phi(x) | x \in \mathbb{R}^n\} = \{x_1 \cdot a_1 + ... + x_n \cdot a_n | x_1, ..., x_n \in \mathbb{R}\} = [a_1, ..., a_n]$.

b)
$$A = \begin{pmatrix} 1 & 2 & -1 & -1 & 0 \\ -2 & 1 & -2 & -2 & -3 \\ 8 & 1 & 4 & 4 & 7 \\ 7 & 4 & 1 & 1 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0\frac{3}{5} & \frac{3}{5} & 0 \\ 0 & 1 & -\frac{4}{5} & -\frac{4}{5} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Aus der NF lesen wir ab:

$$\left\{ \begin{pmatrix} 3\\-4\\-5\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\-4\\0\\-5\\0 \end{pmatrix} \right\} \text{ ist Basis von Kern} \phi \Rightarrow \dim \mathrm{Kern} \phi = 2$$

Teil a)
$$\Rightarrow$$
 { $\begin{pmatrix} 1 \\ -2 \\ 5 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -3 \\ 7 \\ 5 \end{pmatrix}$ } ist Basis von Bild $\phi \Rightarrow$ dim Bild $\phi = 3$

0.11.2 Aufgabe 2

- a) Nach Tutorium: Die Spalten von $A \cdot B$ sind genau $[a_1, ..., a_n] \Rightarrow Rg(AB) \leq Rg(A)$. Andererseits: $B \cdot x = 0 \Rightarrow A \cdot B \cdot x = 0 \Rightarrow p - Rg(A \cdot B) \geq p - RgB \Leftrightarrow RgA \cdot RgB \leq RgB$.
- b) Sei $B = (b_1|...|b_n)$ und U der Lösungsraum von $A \cdot x = 0$. $A \cdot B = 0 \Rightarrow b_1, ..., b_n$ sind Lösungen von $A \cdot x = 0 \Rightarrow b_1, ..., b_n \in U \Rightarrow \dim [b_1, ..., b_n] = RgB \leq \dim U$. Die Dimension des Lösungsraums erfüllt dim $U = n - Rg(A) \Rightarrow Rg(B) \leq n - Rg(A) \Rightarrow Beh$.

0.12 Übung 11, 17.01.2005

0.12.1 Aufgabe 1

a) Seien

$$\begin{cases} \{x_1,...,x_r\} \text{ eine Basis von } U_1 \cap U_2 \\ \{x_1,...,x_r,x_{r+1},...,x_k\} \text{ eine Basis von } u_2 \\ \{x_1,...,x_r,x_{r+1}',...,x_k'\} \text{ eine Basis von } U_2 \\ \{x_1,...,x_r,x_{r+1},...,x_k,x_{r+1}',...,x_k'\} \text{ eine Basis von } U_1 + U_2 \end{cases}$$

Dann ist durch

$$\{x_{1},...,x_{r},x_{r+1},...,x_{k},x_{r+1}^{'}+x_{r+1},...,x_{k}^{'}+x_{k}\}$$

und

$$\{x_1,...,x_r,x_{r+1}^{'},...,x_k^{'},x_{r+1}+x_{r+1}^{'},...,x_k+x_k^{'}\}$$

eine Basis von $U_1 + U_2$ gegeben.

Dann gilt: $U_1 \oplus \tilde{W} = U_1 + U_2 = U_2 \oplus \tilde{W}$.

Nun ergänzen wir eine der Basen von $U_1 + U_2$ durch Hinzufügen von $y_1, ..., y_2$ zu einer Basis von V und setzen

$$W := [x_{r+1} + x'_{r+1}, ..., x_k + x'_k]$$

Dann erfüllt W die Behauptung.

b) Gilt dim $U_1 \leq$ dim U_2 , so ex. ein Vektorraum U mit der Eigenschaft dim $(U_1 \oplus U) =$ dim U_2 . Nach a) ex. nun ein UVR W_2 mit $V = (U_1 \oplus U) \oplus W_2 = U_2 \oplus W_2$. Setzen wir nun $W_1 := U \oplus W_2$ so folgt die Beh.

0.12.2 Aufgabe 2

Zunächst bestimmen wir vereinfachte Baesn von U_1 und U_2

$$\begin{pmatrix} 3 & 1 & 4 & 0 \\ 2 & 2 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 & 3 & 1 \\ 0 & 2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Also ist
$$\left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$$
 eine Basis von U_1 und $\left\{ \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \right\}$ eine Basis von U_2 .

Schreiben wir die Basisvektoren in die Spalten einer Matrix und wenden den Gauß-Algorithmus an, so erhalten wir:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Die ersten drei Spalten sind l.u., d.h.

$$\left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \right\}$$

ist eine Basis von $U_1 + U_2$ und dim $(U_1 + U_2) = 3$.

Aus der dritten Zeile lesen wir ab:

$$a_1 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \in U_1 \Leftrightarrow a_1 - a_2 = 0 \Leftrightarrow a_1 = a_2$$

Also ist
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
 eine Basis von $U_1 \cap U_2$ und $\dim(U_1 \cap U_2) = 1$.

0.12.3 Aufgabe 3

a) Ist dim $U_1 = \infty$ für ein $i = \{1, ..., k\}$, so steht auf der rechten Seite unendlich und die Gleichung gilt..

Andernfalls betrachten wir Basen B_i von U_i für i=1,...,k. Der Vektor $x\in U_1+...+U_k$ lässt sich als Linearkombination von Vektorn aus $B_1\cup...\cup B_k$ schreiben, also ist $B_1\cup...\cup B_k$ ein Erzeugendensystem.

$$\Rightarrow \dim(U_1 + ... + U_k) \le |B_1 \cup ... \cup B_k| \le |B_1| + ... + |B_k| = \dim U_1 + ... + \dim U_k$$

Für i = 1, ..., k sein B_i eine Basis von U_i .

b) *RA*:

Jedes $x \in U_1 + ... + U_k$ hat eine eindeutige Darstellung $x = u_1 + ... + u_k$ mit $u_i \in U_i$ für i = 1, ..., k.

Insbesondere sind also die Vektoren in $B_1 \cup ... \cup B_k$ l.u.

$$\Rightarrow \dim(U_1 + ... + U_k) \ge \dim U_1 + ... + \dim U_k \stackrel{a)}{\Rightarrow} \text{Beh. } LA:$$

Nach a) kann Gleichheit nur dann gelten, wenn $B_1 \cup ... \cup B_k$ eine Basis von $U_1 + ... + U_k$ ist und $B_i \cap b_j = \emptyset$ für $i \neq j$ ist. Bezüglich der Basis ist jedes $x \in U_1 + ... + u_k$ eindeutig als Linearkombination darstellbar. Also ist auch die Darstellung $x = u_1 + ... + u_k$ mit $u_i \in U_i$ (i = 1, ..., k) eindeutig.

c)
$$V=R^2, U_1=[inom{1}{0}], U_2=[inom{0}{1}], U_3=[inom{1}{1}]$$
 erfüllen alle Forderungen.

- 0.13 Übung 12, 31.01.2005
- 0.14 Übung 13, 07.02.2005
- 0.15 Übung 14, 14.02.2005
- 0.15.1 Aufgabe 3

a)

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ & -1 & 2 & 0 & 2 \\ -1 & 1 & 0 & 2 \\ -1 & 1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_2 + x_4 \\ -x_1 + 2x_2 + 2x_4 \\ -x_1 + x_2 + 2x_4 \\ -x_1 + x_2 - x_3 + 2x_4 \end{pmatrix}$$

$$y_1 - y_2 + y_3 - y_4 = x_2 + x_4 + x_1 - 2x_2 - 2x_4 - x_1 + x_2 + 2x_4 + x_1 - x_2 + x_3 - 2x_4 = x_1 - x_2 + x_3 - x_4$$

b)

- (i) 1-1+0-0=0
- (ii) 0+1-1+0=0
- (iii) 0-0+1-1=0

c)

- (i) dim U=3
- (ii) W ϕ -invariant bedeutet $\phi(W) \in W$

$$\Rightarrow \dim W = 1$$

Wir suchen also
$$x \in V$$
 mit: $\phi(x) = ax$ für ein $a \in \mathbb{K}$
a) $\Rightarrow \underbrace{x_1 - x_2 + x_3 - x_4}_{=0} = y_1 - y_2 + y_3 - y_4 = a\underbrace{(x_1 - x_2 + x_3 - x_4)}_{=0} \Rightarrow a = 1$

Also muß gelten: $\phi(x) = x$

$$A_{\phi} \cdot \hat{x} = \hat{x} \Leftrightarrow (A_{\phi} - E_n)\hat{x} = 0$$

Löse LGS:

$$\begin{pmatrix} -1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 2 \\ -1 & 1 & -1 & 2 \\ -1 & 1 & -2 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

also:
$$\hat{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, also $x = U_1$.

Widerspruch zu $U \oplus [x] = V$.

0.15.2 Aufgabe 4

- a) Es gilt: Bild $(\psi \circ \phi) \subset$ Bild ψ $\psi \circ \phi$ surjektiv \Leftrightarrow Bild $\psi \circ \phi = W \Rightarrow$ Bild $(\psi \circ \phi) =$ Bild $\psi \Rightarrow$ Beh.
- b) Ann.: Bild $\phi \cap \text{Kern } \psi \neq \{0\}$ $\Rightarrow \exists x \in U, x \neq 0_U : \phi(x) \in \text{Kern } \psi, \phi(x) \neq O_V.$ $\Rightarrow \exists x \in U, x \neq 0 : \psi(\phi(x)) = 0_W$ $\Rightarrow \text{Kern}(\psi \circ \phi) \neq \{0_W\}$

 $\Rightarrow \operatorname{Kern}(\psi \circ \phi) \neq \{0_W\}$ $\psi \circ \phi \text{ nicht injektiv.}$

Also gilt: Bild $\phi \oplus \text{Kern } \psi$ ist direkt.

z.Z.: Bild $\phi \oplus$ Kern $\psi = V$ Sei $v \in V$. Dann ex. $u \in U$ mit $(\psi \circ \phi)(u) = \psi(v)$.

Sei $v_1 := v - \phi(u)$ und $v_2 := \phi(u)$. Dann gilt:

(i)
$$\psi(v_1) = \psi(v - \phi(u)) = \psi(v) - (\psi \circ \phi)(u) = 0 \Rightarrow v_1 \in \text{Kern } \phi$$

(ii)
$$v_2 = \phi(u) \in \text{Bild } \phi$$

(iii)
$$v = v_1 + v_2$$

 $\Rightarrow v \in \text{Bild } \phi \oplus \text{Kern } \psi.$

0.16 Übung 16, 18.04.2005

0.16.1 Aufgabe 1

a)
$$det(A - XE_4) = \begin{vmatrix} 2 - x & 2 & 1 & -1 \\ 3 & 3 - x & 1 & 1 \\ 3 & 4 & -x & 1 \\ -3 & -2 & -1 & -x \end{vmatrix} = \begin{vmatrix} 2 - x & 2 & 1 & -1 \\ 3 & 3 - x & 1 & 1 \\ 3 & 4 & -x & 1 \\ -1 - x & 0 & 0 & -1 - x \end{vmatrix}$$

$$\begin{vmatrix} 3-x & 2 & 1 & -1 \\ 2 & 3-x & 1 & 1 \\ 2 & 4 & -x & 1 \\ 0 & 0 & 0 & -1-x \end{vmatrix} = (-1-x) \cdot \begin{vmatrix} 3-x & 2 & 1 \\ 2 & 3-x & 1 \\ 2 & 4 & -x \end{vmatrix}$$

$$= (-1-x) \cdot \begin{vmatrix} 3-x & 2 & 1 \\ -1+x & 1-x & 0 \\ 2 & 4 & -x \end{vmatrix} = (-1-x) \cdot \begin{vmatrix} 5-x & 2 & 1 \\ 0 & 1-x & 0 \\ 0 & 4 & -x \end{vmatrix}$$

$$= (-1-x)(1-x) \cdot \begin{vmatrix} 5-x & 1 \\ 6 & -x \end{vmatrix} = (-1-x)(1-x) \cdot \begin{vmatrix} 6-x & 1 \\ 6-x & -x \end{vmatrix}$$

$$= (-1-x)(1-x) \cdot \begin{vmatrix} 0-x & 1 \\ 0 & 1-x \end{vmatrix} = (-1-x)^2(1-x)(6-x)$$

Eigenraum zum EW $-1: 0 \neq x \in \mathbb{R}^4$ ist EV zum EW $-1 \Leftrightarrow$

$$Ax = -x$$

$$\Leftrightarrow Ax + x = 0$$

$$\Leftrightarrow (A + E_4)x = 0$$

$$\Leftrightarrow 0 \neq x \in \text{Kern}(A) + E_4$$

$$\begin{pmatrix} 3 & 2 & 1 & -1 \\ 3 & 4 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ -3 & -2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ d.h. } E_{-1} = \begin{bmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix}$$

ebenso:
$$E_1 = \begin{bmatrix} -3 \\ 2 \\ 2 \\ -3 \end{bmatrix}$$
], $E_6 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$].

b) Offensichtlich
$$B = \begin{bmatrix} 1 \\ 0 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ 2 \\ -3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 ist Basis von \mathbb{R}^4 .

Definieren wir eine lineare Abbildung $\Phi: \mathbb{R}^4 \to \mathbb{R}^4$ durch $\Phi: \mathbb{R}^4 \to \mathbb{R}^4, x \mapsto Ax$ so ist die Abbildung von Φ bzgl. der Std.-Basis.

Bzgl. B hat
$$\Phi$$
 die Abb. $A_{\Phi} = \begin{pmatrix} 1 & 1 & -3 & -1 \\ 0 & -1 & 2 & 1 \\ -3 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \end{pmatrix}$ dann gilt: $A_{\Phi} = S^{-1}AS$

Nebenrechnung:

$$\Phi \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}, \Phi \widehat{\begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \end{pmatrix}} = A_{\Phi} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 & \frac{1}{3} & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ dann gilt: } A_{\Phi} = S^{-1}AS$$

c) c ist EW von A mit EV $x \neq 0 \Leftrightarrow Ax = cx \Leftrightarrow (A - cE)x = 0$

0.16.2 Aufgabe 2

Seien $A, B \in \mathbb{K}^{n \times n}$ mit $AB - E_n$ regulär.

Ann.: $BA - E_n$ nicht regulär.

$$\Rightarrow \exists x \in \mathbb{K}^n, x \neq 0 : (BA - E_n)x = 0$$

$$\Leftrightarrow \exists 0 \neq x \in \mathbb{K}^n : BAx = x$$

$$\Leftrightarrow \exists 0 \neq x \in \mathbb{K}^n : (AB)Ax = Ax$$

 $Ax \neq 0$, sonst: $x = B(AX) = B \times 0 = 0$

Damit gilt $(AB - E_n)(Ax) = 0$. Also ist $AB - E_n$ nicht regulär. Insgesamt $BA - E_n$ ist regulär.

0.16.3 Übungsaufgabe 2

Es sei (G, \circ) eine Gruppe mit neutralem Element e. Weiter sei $M = x \in G | x \circ x = e$.

a) Zeigen Sie: ist G kommutativ so ist M eine Untergruppe von G.

G: Gruppe: G Menge und $\circ: G \times G \to G$ mit folgendenen Eigeschaften:

(i)
$$a \circ (b \circ c) = (a \circ b) \circ c, a, b \in G$$

(ii)
$$\exists e \in G : \forall a \in G : a \circ e = a = e \circ a$$

(iii)
$$\forall a \in G \exists a^{-1} \in G : a \circ a^{-1} = e = a^{-1} \circ a$$

G heisst abelsch falls zusätzlich gilt:

(i) (iv)
$$\forall a, b \in Ga \circ b = b \circ a$$

Sei $M \subset G$: M heisst Untergruppe von G, falls:

 (M, \circ) eine Gruppe ist

Untergruppenkriterium:

$$\begin{array}{ll} M\subset G \text{ ist Untergruppe} &\Leftrightarrow & \text{(i)} & M\neq\emptyset\\ & & \text{(ii)} & x,y\in M:x^{-1}\circ y\in M\\ &\Leftrightarrow & \text{(i)} & M\neq\emptyset\\ & & \text{(ii)} & x,y\in M:x\circ y\in M\\ & & \text{(iii)} & x\in M:x^{-1}\in M \end{array}$$

Beweis: Zu zeigen:

(1) $M \neq \emptyset$, gilt da, $e \circ e = e$ ist, ist $e \in M$

$$\forall x \in M : x^{-1} \in M, \text{ denn } x \in M \quad \Leftrightarrow x \circ x = e$$

$$\Leftrightarrow (x^{-1} \circ x) \circ = x^{-1} \circ e$$

$$\Leftrightarrow x = x^{-1}$$

$$\Leftrightarrow x^{-1} \circ x \circ x^{-1} \circ x^{-1} = e$$

$$\Leftrightarrow e = x^{-1} \circ x^{-1} \in M$$

(3) $\forall x, y \in M : x \circ y \in M$, denn:

$$(x \circ y) \circ (x \circ y) = (x \circ x) \circ (x \circ \cdot) = e \circ e = e$$

Also ist M eine Untergruppe von G.

b) Sei $n \geq 3$ und $G = S_n$, dann ist M keine Untergruppe von G

$$S_n := \pi 1, ..., n \rightarrow 1, ..., n : \pi bijektiv$$

Verkettung von Abbildungen:

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 3 & 2 & 1 & 4 & \dots & n \end{pmatrix} \in M$$

$$\tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 2 & 1 & 3 & 4 & \dots & n \end{pmatrix} \in M$$

 $(\tau_1 \circ \tau_2) \circ (\tau_1 \circ \tau_2) = 3$, also $\neq 1$, d.h. $\tau_1 \circ \tau_2 \notin m$. Also M keine Untergruppe.

0.17 Übung 17, 25.04.2005

0.17.1 Aufgabe 1

a) $\Phi: V \to V$ End., Φ ist diag., V ist n-dim $\mathbb{R} - VR$.

z.z.: Es existiert $\Psi: V \to V$ End., mit $\Psi^3 = \Psi \circ \Psi \circ \Psi = \Phi$.

Beweis: Φ ist diagonalisierbar, d.h. es existiert eine Abbilduntsmatrix von Φ der Form

$$A_{\Phi} = \begin{pmatrix} c_1 & & 0 \\ & \ddots & \\ 0 & & c_n \end{pmatrix}$$

Definieren wir $A_{\Psi} := \begin{pmatrix} \sqrt[3]{c_1} & 0 \\ & \ddots & \\ 0 & & \sqrt[3]{c_n} \end{pmatrix}$, so gilt: $A_{\Psi} \circ A_{\Psi} \circ A_{\Psi} = A_{\Phi}$.

Nach Vorlesung existiert genau ein lineare Abbildung $\Psi: V \to V$ mit A_{Ψ} und es gilt: $\Psi^3 = \Phi$.

b) Man rechnet nach: $c_1 = -8$ und $c_2 = 8$ sind die Ew. von A.

Der Eigenraum zum Eigenwert
$$c_1 = -8$$
 ist $E_{-8} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

Der Eigenraum zum Eigenwert $c_1 = 8$ ist $E_8 = \begin{bmatrix} 2 \\ -5 \\ 0 \end{bmatrix} \begin{pmatrix} 4 \\ 0 \\ 5 \end{bmatrix}$.

Dann gilt(vgl. Aufgabe 1, Blatt 1):

$$\underbrace{\begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -8 \end{pmatrix}}_{B^3} = \underbrace{\begin{pmatrix} 2 & 4 & 1 \\ -5 & 0 & 2 \\ 0 & -5 & -1 \end{pmatrix}}_{S} \cdot A \cdot \underbrace{\begin{pmatrix} 2 & 4 & 1 \\ -5 & 0 & 2 \\ 0 & -5 & -1 \end{pmatrix}}_{S}$$

$$\Leftrightarrow \underbrace{\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}}_{\tilde{B}} = S^{-1}AS \Leftrightarrow S\tilde{B}S^{-1} = A \Leftrightarrow (S\tilde{B}S^{-1})(S\tilde{B}S^{-1})(S\tilde{B}S^{-1}) = A$$

wählen wir:

$$B := S\tilde{B}S^{-1} = \begin{pmatrix} -2 & -\frac{8}{5} & -\frac{16}{5} \\ -8 & -\frac{6}{5} & -\frac{32}{5} \\ 4 & \frac{8}{5} & \frac{26}{5} \end{pmatrix}, \text{ so gilt: } B^3 = A$$

0.17.2 Aufgabe 2

 $A \in \mathbb{R}^{n \times n}$ mit Rang A = 1. v sei eine Spalte von A mit $v \neq 0$

a) z.Z.: $\exists w \in \mathbb{R}^n \text{ mit } A = vw^{\top} \text{ und } w \text{ ist eindeutig bestimmt. Da } v \neq 0 \text{ ist, ex. } a_1, ..., a_n \in \mathbb{R} \text{ mit } A = (a_1v|...|a_nv)$

Wenn wir
$$w = \begin{pmatrix} a_1 v_1 ... | a_n v_1 \\ \vdots \\ a_n \end{pmatrix}$$
 setzen, so gilt $A = v w^{\top}$.

Sei
$$\tilde{w} = \begin{pmatrix} \tilde{a_1} \\ \vdots \\ \tilde{a_n} \end{pmatrix} \in \mathbb{R}^n$$
 mit $A = v \cdot \tilde{w}^{\top}$. Für $i = 1, ..., n$ gilt: $a_1 v = \tilde{a_1} v \overset{v=0}{\Rightarrow} a_i = \tilde{a_i}$ für $i = 1, ..., n$.

b) $A = ((a_{ij}))$, dann ist $\operatorname{Spur}(A) = \sum_{i=1}^{n} a_{ij}$. In unserem Fall: $\operatorname{Spur}(A) = \sum_{i=1}^{n} a_i v_i$, wobei $v = (v_1, ..., v_n)^{\top}$.

z.Z.:
$$Av = Spur(A)v$$

Beweis:

$$Av = (v \cdot w^{\top}) = v \underbrace{(w^{\top}v)}_{\in \mathbb{R}} = (w^{\top}v) \cdot v = \operatorname{Spur}(A)v$$

Weil $v \neq 0$ ist also Spur A EW von A.

0.18 Übung 18, 06.06.2005

0.18.1 Aufgabe 1

a)
$$\langle A, B \rangle = Spur(A^{\top}B) \stackrel{(*)}{=} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji}b_{ji}$$
 (**)

•
$$Spur(((c_{ij}))) = \sum_{i=1}^{n} c_{ii}$$

•
$$A^{\top}B = ((c_{ij}))$$
, dann gilt $c_{ii} = \sum_{j=1}^{n} a_{ji}b_{ji}$ wobei $A = ((a_{ij}))$ und $B = ((b_{ij}))$ sein soll.

Aus (**) ergibt sich die Symmetrie von $<\cdot,\cdot>$ ebenso wie die Linearität im ersten Argument direkt.

Für
$$\langle A, A \rangle \stackrel{(**)}{=} \sum_{i=1}^n \sum_{j=1}^n a_{ji}^2 \ge 0$$
 und

$$\begin{array}{ll} =0\Leftrightarrow & a_{ji}^2=0 \quad \text{, für alle } i,j\in\{1,n\}\\ \Leftrightarrow & a_{ji}=0 \quad \text{, für alle } i,j\in\{1,n\}\\ \Leftrightarrow & A=0 \end{array}$$

b)

$$||Ax||^2 = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} x_j\right)^2 \stackrel{\text{CSU}}{\leq} \sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2 \cdot \left(\sum_{i=1}^n x_i^2\right) = < A, A > \cdot ||x||^2$$
j-te Komp. des Vektors Ax

$$\stackrel{\mathrm{Def}}{=} ||A||^2||x||^2 \Rightarrow ||Ax|| \leq ||A|| \cdot ||x||$$

0.18.2 Aufgabe 2

Seien $||\cdot||_1$ und $||\cdot||_2$ die durch $<\cdot,\cdot>_1$ bzw. $<\cdot,\cdot>_2$ induzierten Normen. Weiter seien $x,y\in V$ mit $||x||_1=||y||_1$.

Beweis:

Dann gilt:
$$\langle x + y, x - y \rangle_1 = \langle x, x \rangle_1 + \langle y, x \rangle_1 - \langle x, y \rangle_1 - \langle y, y \rangle_1 = ||x||_1^2 - ||y||_1^2 = 0$$

Daraus folgt: $0 = \langle x + y, x - y \rangle_2 = ||x||_2^2 - ||y||_2^2$, also $||x||_2 - ||y||_2$

Sei $x_0 \in V$ mit $||x_0||_1 = 1$ und $x \in V$

$$||x||_1 = ||x||_1 \cdot ||x_0||_1 = || \quad ||x_1||_1 \cdot x_0 \quad ||_1 \Rightarrow ||x||_2 = || \quad ||x||_1 \cdot x_0 \quad ||_2 = ||x||_1 \cdot \underbrace{||x_0||_2}_{=c}$$

Nun gilt aber auch für $x, y \in V$:

$$< x, y>_2 \stackrel{\text{Vorl.}}{=} \frac{1}{4}(||x+y||_2^2 - ||x-y||_2^2) = \frac{1}{4} \cdot (c'||x+y||_1^2 - c'||x-y||_1^2) = c' < x, y>_1$$

0.18.3 Übungsaufgabe 1

Es seien G, G' Gruppen und $\Phi: G \to G'$ und $\Psi: G \to G'$ Gruppenhomomorphismen. Zeigen Sie:

Ist $H \subsetneq G$ eine (echte) Untergruppe von G und gilt:

$$\Phi(a) = \Psi(a)$$
 für alle $a \in G \setminus H$

so ist $\Phi = \Psi$. Beweis: Sei $a \in G \setminus H, b \in H$.

Is $a \circ b \in G \setminus H$? Ja, denn:

Also gilt: $\Phi(a \circ b) \stackrel{\text{Vor}}{=} \Psi(a \circ b) = \Psi(a) \circ' \Psi(b)$

Insgesamt:

$$\Psi(a) \circ' \Phi(b) = \Psi(a) \circ' \Psi(b)$$

$$\Rightarrow \Psi(a)^{-1} \circ \Psi(a) \circ \Phi(b) = \Psi(a)^{-1} \circ \Psi(b) \Leftrightarrow \Phi(b) = \Psi(b)$$

Also gilt: $\Phi = \Psi$

0.18.4 Übungsaufgabe 2

Geben Sie alle Gruppenhomomorphismen von $(\mathbb{Z}_6,+)$ nach $(\mathbb{Z}_7,+)$ an.

$$\mathbb{Z}_m := \{ [z]_{\sim} : z \in \mathbb{Z} \}$$

$$\forall z_1, z_2 \in \mathbb{Z} : z_1 \sim z_2 \Leftrightarrow z_1 - z_2 = k \cdot m \text{ für ein } k \in \mathbb{Z}$$

 $[z_1]_{\sim} + [z_2]_{\sim} := [z_1 + z_2]_{\sim} \quad (+ \text{ ist wohldefiniert})$

Sei $z_1' \in [z_1]_{\sim}$ und $z_2' \in [z_2] \sim$, $z_1' = z_1 + k \cdot m$ und $z_2' = z_2 + l \cdot m$

$$|z_1' + z_2'|_{\sim} = [z_1 + km + z_2 + lm]_{\sim} = [z_1 + z_2 + (k+l) \cdot m]_{\sim} = [z_1 + z_2]_{\sim}$$

Für alle $m \in \mathbb{N}$ ist \mathbb{Z}_m eine Gruppe

$$\mathbb{Z}_6 := \{ [z]_6 : z \in \mathbb{Z} \} \text{ und } \mathbb{Z}_7 := \{ [z]_7 : z \in \mathbb{Z} \}$$

Für alle $m \in \mathbb{N}$ gilt: $(\mathbb{Z}_m, +)$ ist zyklisch.

$$[k]_m = \underbrace{[1]_m + \ldots + [1]_m}_{k-mal}$$

D.h.: Für jede Gruppe G' gilt: $\Phi: \mathbb{Z}_m \to G'$ ist eindeutig durch $\Phi(1)$ festgelegt.

$$\Phi([0]_m) = e_{G'}$$

Sei $\Phi: \mathbb{Z}_6 \to \mathbb{Z}_6$ Gruppenhomomorphismus

Dann muss gelten: $\Phi([0]_6) = [0]_7$ (Eigenschaften eines Grp.-hom)

$$[3]_6 + [3]_6 = [6]_6 = [0]_6$$
, d.h. $[3]_6$ ist selbst
invers

$$\Psi(x^{-1} = \Psi(x)^{-1}, \text{ d.h. } x = x^{-1}, \text{ so ist } \Psi(x)^{-1} = \Psi(x)$$

also: selbstinverse Elemente werden auf selbstinverse Elemente abgebildet.

Also gilt: $\Phi([3]_{\sim}) = [0]_{\sim}$

$$\Phi([1]_6) = [k]_7$$
 für ein $k \in \{0, ..., 6\}$

$$\Phi([3]_6) = \Phi([1]_6 + [1]_6 + [1]_6) = \Phi([1]_6) + \Phi([1]_6) + \Phi([1]_6) = [k]_7 + [k]_7 + [k]_7 = [3k]_7 = [3]_7 \cdot [k]_7 = [0]_7$$

$$\stackrel{\mathbb{Z}_7 \text{ ist K\"{o}rper}}{\Rightarrow} k = 0, \text{ also } \Phi([1]_6) = [0]_7$$

Also ist: $\Phi: \mathbb{Z}_6 \to \mathbb{Z}_7, [k]_6 \mapsto [0]_7$. Es gibt also nur einen Grp.-homo. von \mathbb{Z}_6 nach \mathbb{Z}_7 .