Cours détaillé sur l'UMTS (Universal Mobile Telecommunications System)

Contexte et historique

- Succès du GSM pas garanti initialement.
- Besoin d'une nouvelle génération pour des services data comparables à l'ADSL.
- ITU lance le projet IMT-2000 pour une 3e génération de réseau mobile.
- Le standard UMTS est l'alternative européenne (et partiellement asiatique) à CDMA-2000.

Normalisation: le 3GPP

- Créé pour éviter un standard uniquement européen.
- Fournit des **Releases** (R99, R4, ..., R16).
- UMTS repose sur un réseau d'accès UTRAN (UMTS Terrestrial RAN) et un Core Network.
- Objectif : unification des accès circuit/paquet, support multiservice, évolutivité.

Architecture du réseau UMTS

Équipement 2G	Équipement 3G
BTS	Node B
BSC	RNC
SGSN	3G-SGSN
MSC	3G-MSC

Nouveauté majeure : lien direct entre RNC pour faciliter les handovers.

Interface radio Uu

- Refonte complète par rapport à GSM/GPRS.
- Basée sur CDMA (Code Division Multiple Access).
- 3 niveaux de canaux :
 - Canaux logiques (données/contrôle)
 - Canaux de transport
 - Canaux physiques

Interfaces lu dans UMTS

Interface	Éléments connectés	Type de service	Protocoles utilisés	Fonction principale
lu-CS	RNC ↔ 3G- MSC	Circuit- switched	ATM + AAL2	Transport de la voix / visio
lu-PS	RNC ↔ 3G- SGSN	Packet- switched	IP ou ATM + Frame Relay + GTP-U	Transport des données IP
lub	Node B ↔ RNC	Accès radio	Frame Protocol sur ATM/IP	Connexion station ↔ contrôleur de station
lur	$RNC \leftrightarrow RNC$	Contrôle inter-RNC	Frame Protocol / RNSAP	Handover entre deux RNC (soft HO)

Couche physique

- Codage d'erreur, entrelacement, modulation.
- Supporte soft handover (connexion simultanée à plusieurs cellules).
- Partage optimisé de ressources entre utilisateurs.

Туре	Description
Hard HO	Break-before-make (GSM)
Soft HO	Make-before-break (UMTS)
Macro-diversité	Simultané multi-cellules

Pile protocolaire (plan données)

Couche	Fonction
PHY	Transmission radio
MAC	Partage canal, priorités
RLC	Fiabilisation, segmentation, retransmissions
PDCP	Compression en-têtes (ROHC)
IP	Paquets utilisateurs

Plan de contrôle

- RRC (Radio Resource Control) :
 - Pilote toute la gestion radio.
 - o Gère la qualité de service.
 - o Configure les "bearers" (tuyaux radio).
- Signalisations : GMM (paquet), CM/MM (circuit)

Qualité de service (QoS)

Туре	Exemple	Délai critique
Conversationnel	Voix, visiophonie	Oui
Streaming	Vidéo	Modéré
Interactif	Web	Faible
Background	Mail, fichiers	Non

Interface station <-> RNC

- Transport des données PHY vers MAC avec Frame Protocols (FP).
- Support ATM ou IP:
 - ATM via AAL2 (voix) ou AAL5 (signalisation)
 - IP avec UDP/PPP ou TCP/SCTP selon les flux

Protocole transverse & cross-layer

- Architecture "cross-layer" → Communication directe entre couches non adjacentes.
- Réduit le délai de contrôle (RRC ↔ MAC/PHY).

Multicast et Broadcast (BMC)

- BMC permet la diffusion d'un flux à plusieurs utilisateurs.
- Moins gourmand que l'unicast.
- Peu déployé, remplacé plus tard dans 4G/5G.

★ Conclusion

- UMTS = 3G européenne avec gestion avancée de la QoS et support multiservice.
- Architecture pensée pour être évolutive, centralisée, pilotée via RRC.

•	Base de la transition vers les réseaux HSPA puis LTE (4G).