13.00.143	Dec 4 Euler Characteristic $X \in \Delta - \text{complex. Then}$ $X (X) := \sum_{i=1}^{n} (-1)^n \# C_n(X)$
	This definition makes sense (independent of A-cx structure
	$X(X) = Z(-1)^n + Child Bi$
	$= \sum_{i} (-1)^{n} rk \left(H_{n}(X)\right)$
)VV	$rK(H_n(x)) = In : H_n(x) = In \oplus T$
PJ:	$0 \rightarrow C_0(X) \rightarrow \rightarrow C_0(X) \rightarrow 0$
Ć	$)\rightarrow Z_{n}\rightarrow C_{n}\rightarrow B_{n-1}\rightarrow 0$, $0\rightarrow B_{n+1}\rightarrow Z_{n+1}\rightarrow H_{n}\rightarrow 0$
4	
	$= \sum_{n=1}^{\infty} (-1)^n r k (H_n)$
	These numbers detections are clearly homotopy invariants
	$E \times \chi(M_g) = 2 - 2g \qquad \chi(N_g) = 2 - g$

Split exact sequences	
madt majerna-A a X	
A short exact sequence being split is	optimal
A short exact sequence being split is For understanding the components	1
This definition makes some tradectional and	
Defn: 0 > K => C-/H >0 is colif	
Defn: 0 -> & => 6 => G/H >0 is split exact iff JiW: G > H st.	
Exact 100 SIM. G TI S.L.	
10 TOH	
j'splits' D. the sequence.	
EX/Let 1:X -> H be a retraction. We h	ave
EX/Let r:X -> A be a retraction. We he shown rx is surjective. Also, ix is in	ective
	NO 7
$0 \rightarrow H_n(A) \stackrel{\checkmark}{\rightarrow} H_n(X) \stackrel{\P^*}{\rightarrow} H_n(X) \rightarrow 0$	
r* is a splitting. Hn(x)/Hn(A)	1
r* is a splitting.	
(1) 1 + (H) 10 = (5) 2 24 (5) 2 m (1) 2 2 m (1) 2 2	
Thm: TFAE For O> H > G > G/H > C) '
1) The sequence is split exact	
2) 7 9': G/H -> 6 s.t. apa'=Id	
1) The sequence is split exact 2) $\exists q': G/H \rightarrow G$ s.t. $q_{q}'=Id$ 3) $G \cong G \oplus G/H$	
104/min unuell enspropriés comman semi	
A Markey Of	

A STATE OF THE PERSON NAMED IN COLUMN NAMED IN

Pf: We will show 1 ⇒3 ⇒2 3 ⇒ 1,2: is trivial

1=) 3: Let i': 6 > H be the splitting

 $0 \xrightarrow{\text{H}} 1 \xrightarrow{\text{G}} 6 \xrightarrow{\text{H}} 6 \xrightarrow{\text{H}} 0$ $V \xrightarrow{\text{H}} 6 \xrightarrow{\text{H}}$

 ℓ is injective: Suppose $\ell(q) = 0$. Then $q(q) = 0 \Rightarrow q \in \ker(q) = \operatorname{Im}(qi)$

= g = i(a) but i'(g) = i'(i(a)) = a = 0= g = i(0) = 0.

2=>3: Similar - - 9 3 3 3 4 3 4

So if It as above $H_n(X) \cong H_n(A) \oplus H_n(X,A)$ Well develop this w/: Meyer Vieforis
next time.

V=K, L, B, A BB M

	\
0	/
LES: H2(K) > H1(S1) > H,(S1)2 > H,(K) > H0(S1)	
$0 \rightarrow H_2(K) \rightarrow Z \rightarrow Z^2 \rightarrow H_1(K) \rightarrow 0$ $1 \mapsto (2,52) \mapsto H_1(K) \rightarrow Z \rightarrow $	
$0 \leftarrow \frac{1}{(n)} \stackrel{(2.52)}{\Rightarrow} H_1(K) = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$	

Relating notions: Recall

$$T_{(X,X_0)} = \{[X_0: I \to X] \mid \chi(0) = \chi(1) = X\}$$

We can regard X as a singular I-cycle:
This gives a map

L(x,xo) + H₁(X)

Thm: If X is path connected, then

Penstrand

penstrand

[Tr,(X), tr,(X)]. Thus

$$\mathcal{I}_{i}(X)^{ab} \cong H_{i}(X)$$

It takes some work to show ρ is well defined: eg homotopic maps gield homologous 1-cycles

To $\delta \times \delta = \delta_2$ ($\delta \times \delta = \delta_2$ ($\delta \times \delta = \delta \times \delta$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Similarly, surjectivity follows W/ usual tri	ck:
For A-57 A-A	
Let δ_i be paths $x_0 \rightarrow \sigma_i(0)$, then	
8,00,8,8,0,8, Jmom mm	
Finally, $Ker(p) \ge [\pi_1(X), \pi_1(X)]$ since $H_1(X)$ is Abelian.	
$v_z = f_{\text{eker}}(p) = \sigma_z(p) = f$	
$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (-1)^{j} n_{i} dt$	(2) = F
Vo Ciz V	11 1
We can adjoin these I together	so that
Each come adjoining is one +1, one -1	, ,
except of the last is equal to	
Exceptione. The last is equal to	Commutate
Xo Xo	
The factor some work to know p	
tight again significant so theread is it	
2510 to -1 zero fectamond	
- (30° 40) 10° -	1

Max Dec 8 Topological Graducation
 From here, we have found techniques
From here, we have found techniques to say whether or not two spaces are homotopically equivalent. There are many directions to go from here.
are homotopically equivalent. There
are many directions to go storm here.
I) Develop further exciting / refined invariants to detect. o) orn(X)) Cohomology: 0 > (n(X) > > (Co(X) > 0)
6) orn (X)
We can apply Hom (-, Z) to this sequence, effectively dualizing it:
Effectively dualizing (Co
$0 \leftarrow C^{n}(x) \stackrel{\delta_{n}}{\leftarrow} = \stackrel{\delta_{2}}{\leftarrow} C^{1}(x) \stackrel{\delta_{1}}{\leftarrow} 0$
Where $(c(x) = Hom_Z(c(x), ZZ))$
$\mathcal{S}_{\mathcal{E}}(\mathcal{F}) = \mathcal{F}(\mathcal{S}_{\mathcal{E}}(\mathcal{F}))(\sigma) = \mathcal{F}(\mathcal{S}_{\mathcal{E}}(\sigma))$
Taking $H^{i}(X) = \ker(S_{i+1})/Im(S_{i})$ This is called Cohomology. We can give cohomology the Structure of a ring
This is called Cohomology. We can
give cohomology the structure of
a ring

	III Relate concepts
	Hurewicz theorem: $\exists JT_{\kappa}(X) \xrightarrow{h*} H_{\kappa}(X)$ Group Homs, $\& if JT_{\kappa}(X) = \dots = JT_{n-1}(X)$, then h_{κ} is an isomorphism for $2 \le K \le n$, and h_{κ} is the abelianization For $JT_{\kappa}(X)$.
	then hx is an isomorphism
	For $2 \le K \le n$, and h_* is the abelianization for $T_*(X)$
	IV Moduli of topological spaces / homotopy.
^	

