Assumption 2 in the consistency

Chanwoo Lee, July 9, 2020

For notational clarification, here $\bar{f}_{\pi} = \text{sign}(f_{\pi})$ and $f_{\pi} = p(X) - \pi$ where $p(X) = \mathbb{P}(y = 1|X)$. I feel previous Assumption 2 in the theorem is quite strict condition. A ground truth function p(X)that satisfies this condition is a linear combination of step functions. I cannot come up with another general function which holds Assumption 2 true. Because of this reason, I change Assumption 2 to more general case in the theorem and suggest previous assumption as an example.

Agree. Current exposition looks good.

Theorem 0.1. Assume that

- A.1 For some positive sequence such that $s_n \to 0$ as $n \to \infty$, there exists $f_{\pi}^* \in \mathcal{F}_r(M)$ such that $e_V(f_\pi^*, \bar{f}_\pi) \leq s_n$.
- A.2 There exist constant $0 \le \alpha < \infty$, $a_1 > 0$ such that, for any sufficiently small $\delta > 0$.

$$\sup_{\{f \in \mathcal{F}: e_{VT}(f, \bar{f}_{\pi}) \le \delta\}} \|sign(f) - sign(\bar{f}_{\pi})\|_{1} \le a_{1}\delta^{\alpha}.$$

A.3 Considered feature space is uniformly bounded such that there exists $0 < G < \infty$ satisfying $\sqrt{\mathbb{E}\|\boldsymbol{X}\|^2} < G$

Then, for the estimator \hat{p} obtained from our algorithm, there exists a constant a_2 such that

$$\mathbb{P}\left\{\|\hat{p}-p\|_1 \geq \frac{1}{2m} + \frac{a_1}{2}(m+1)\delta_n^{2\alpha}\right\} \leq 15\exp\{-a_2n(\lambda J_\pi^*)^{2-\alpha\wedge 1}\},$$
 Add remark to explain the separate sources of these two terms. Hint: refer to synopsis slides earlier; visualization by slicing along the y-axis.

Proof. We apply Theorem 3 in [1] to our case.

The second condition of the assumption is

$$\sup_{\{f \in \mathcal{F}: e_{V^T}(f, \bar{f}_{\pi}) \le \delta\}} \operatorname{var}\{V(f, \boldsymbol{X}, y) - V(\bar{f}_{\pi}, \boldsymbol{X}, y) \le a_2 \delta^{\beta}\}.$$

Notice that

$$\operatorname{var}\{V^{T}(f, \boldsymbol{X}, y) - V(\bar{f}_{\pi}, \boldsymbol{X}, y)\} \leq \mathbb{E}|V^{T}(f, \boldsymbol{X}, y) - V(\bar{f}_{\pi}, \boldsymbol{X}, y)|^{2}$$

$$\leq T\mathbb{E}|V^{T}(f, \boldsymbol{X}, y) - V(\bar{f}_{\pi}, \boldsymbol{X}, y)|$$

$$= T(\lambda_{1} + \lambda_{2}).$$

where

$$\lambda_1 = \mathbb{E} \left| S(y)(1 - \operatorname{sign}(yf(\boldsymbol{X})) - V(\bar{f}_{\pi}, \boldsymbol{X}, y) \right| = \mathbb{E} |S(y)| |\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})|$$

$$\leq \|\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})\|_{1} \leq a_{1} \delta^{\alpha} \quad \text{from } A.2.$$

and

$$\lambda_2 = \mathbb{E}\left[V^T(f, \boldsymbol{X}, y) - S(y)(1 - \operatorname{sign}(yf(\boldsymbol{X}))\right]$$

$$\leq e_{V^T}(f, \bar{f}_{\pi}) + \mathbb{E}\left\{V(\bar{f}_{\pi}, \boldsymbol{X}, y) - S(y)(1 - \operatorname{sign}(yf(\boldsymbol{X}))\right\}$$

$$\leq 2e_{V^T}(f, \bar{f}_{\pi}) \leq 2\delta$$

Therefore, β in [1] can be replaced by $1 \wedge \alpha$.

Now we check Assumption 3 in [1]. From Lemma 2, we have

$$H_B(\epsilon, \mathcal{F}^V(k)) \le \mathcal{O}\left(r(d_1 + d_2)\log\left(\frac{Gk}{\epsilon}\right)\right).$$

Therefore, we have the following equation from Lemma 3.

$$\phi(\epsilon,k) \approx \int_{\mathcal{O}(L)}^{\mathcal{O}(\sqrt{L})} \sqrt{r(d_1+d_2)\log\left(\frac{kG}{\omega}\right)} d\omega/L \lessapprox \mathcal{O}\left(\sqrt{r(d_1+d_2)}\left(\log\left(\frac{kG}{\sqrt{L}}\right)/L\right)^{1/2}\right),$$

where $L=\min\{\epsilon^2+\lambda(k/2-1)H_\pi^*,1\}$. Solving Assumption 3 in [1] gives us $\epsilon_n^2=\mathcal{O}\left(\frac{\log(n/r(d_1+d_2))+2\log(GM)}{n/r(d_1+d_2)}\right)$ by Lemma 4 when $\epsilon_n^2\geq \lambda GJ_\pi^*$. Plugging each variable into Theorem 3 proves the theorem. Notice that condition of λ is replaced because $\{\epsilon_n^2\geq \lambda GJ_\pi^*\}\subset \{\epsilon_n^2\geq 2\lambda J_\pi^*\}$ when $rG\geq 2$.

provided that
$$\lambda^{-1} \geq \frac{GJ_{\pi}^*}{2\delta_n^2}$$
 where $J_{\pi}^* = \max(J(f_{\pi}^*), 1)$ and $\delta_n = \max\left(\mathcal{O}\left(\frac{\log(n/r(d_1+d_2)) + 2\log(GM)}{n/r(d_1+d_2)}\right), s_n\right)$.

Remark 1. We show that the Assumption 2 is satisfied when there exists $\eta > 0$ such that $|\mathbb{P}(y = 1|X) - \pi| \ge \eta$ almost surely with respect to distribution X. Smooth parameter is $a_1 = \frac{1}{\eta}$ and $\alpha = 1$ in this case.

Proof.

$$\begin{split} e_{V^T}(f,\bar{f}_\pi) &= \mathbb{E}\left[S(y)L(yf(\boldsymbol{X})) \wedge T - S(y)L(y\bar{f}_\pi(\boldsymbol{X}))\right] \\ &\geq \mathbb{E}\left[S(y)(1-\operatorname{sign}(yf(\boldsymbol{X})) - S(y)(1-\operatorname{sign}(y\bar{f}_\pi(\boldsymbol{X})))\right] \\ &= \mathbb{E}\left[yS(y)\left(\operatorname{sign}(\bar{f}_\pi) - \operatorname{sign}(f)\right)\right] \\ &= \mathbb{E}\left[\mathbb{E}(yS(y)|\boldsymbol{X})\left(\operatorname{sign}(\bar{f}_\pi) - \operatorname{sign}(f)\right)\right] \\ &= \mathbb{E}\left[|\mathbb{P}(y=1|\boldsymbol{X}) - \pi||\operatorname{sign}(\bar{f}_\pi) - \operatorname{sign}(f)|\right] \\ &\geq \eta \mathbb{E}|\operatorname{sign}(\bar{f}_\pi) - \operatorname{sign}(\boldsymbol{f})| = \eta||\operatorname{sign}(\bar{f}_\pi) - \operatorname{sign}(f)||_1. \end{split}$$

Technically, this f also depends on pi.

Perhaps use g_pi in place of f? f_pi has been reserved for ground truth function.

The main part of the proof is the following inequality

$$\mathbb{E}\left[\left|f_{\pi}\right| \operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})\right] \ge \eta \mathbb{E}\left[\left|\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})\right|\right]. \tag{1}$$

Therefore, we can replace the condition by

For a given π , there exists $\eta > 0$ such that $\mathbb{E}\left[|f_{\pi}|\mathbb{1}_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}}\right] \geq \eta \mathbb{E}\left[\mathbb{1}_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}}\right]$.

Example 1. When ground truth p(X) is step function such that $p(X) = \sum_{k=1}^{K} c_k \mathbb{1}_{\{X \in A_k\}}$, then $\eta = \min_k \{|c_k - \pi|\}$.

Example 2. Assume that ground truth p(x) = x and x is a random variable from Unif(0,1). If considered function class is a set of linear functions, we show Assumption 2 holds with $\alpha = 1/2, a_1 = 2$.

Proof. We check two terms of Equation (1) in this case. WLOG we assume $f^{-1}(0) \neq \pi$ to consider non-trivial case. Let $f^{-1}(0) = \pi'$. Notice that right side of Equation (1) is

$$\mathbb{E}|\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})| = 2|\pi - \pi'|.$$

The left side of the equation is

$$\mathbb{E}\left[|f_{\pi}||\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})|\right] = \mathbb{E}\left[2|x - \pi|\mathbb{1}_{\{\pi \wedge \pi' < x < \pi \vee \pi'\}}\right] = \int_{\pi \wedge \pi'}^{\pi \vee \pi'} 2|x - \pi|dx = |\pi - \pi'|^2.$$

Therefore, $e_{V^T}(f, \bar{f}_{\pi}) \geq \mathbb{E}\left[|f_{\pi}||\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})|\right] = \frac{1}{4}\left(\mathbb{E}\left[|\operatorname{sign}(f) - \operatorname{sign}(\bar{f}_{\pi})|\right]\right)^2$, which implies $\alpha = 1/2, a_1 = 2$

Remark 2. In Example 1, the order of ground truth function is 0 and we obtain the smooth parameter $\alpha = 1$. In Example 2, the order of ground truth function is 1 and we have the smooth parameter $\alpha = \frac{1}{2}$. We can conjecture that the smooth parameter $\alpha = \frac{1}{\text{order}(f_{\pi})+1}$ because if we consider each term of the condition (1), the left side is calculated as

$$L \stackrel{\text{def}}{=} \mathbb{E}\left[|f_{\pi}| \mathbb{1}_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}}\right] = \int_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}} |f_{\pi}| dF(x)$$

where F(x) is distribution of x. The right side is

Good!

$$R \stackrel{\text{def}}{=} \mathbb{E}\left[\mathbb{1}_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}}\right] = \int_{\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}} 1dF(x)$$

If we consider the simple case where $\{\operatorname{sign}(f) \neq \operatorname{sign}(\bar{f}_{\pi})\}$ is an interval, we can easily see that $L = \mathcal{O}\left((R)^{\operatorname{order}(\bar{f}_{\pi})+1}\right)$ which explains the conjecture. Therefore, Assumption 2 consider features of ground truth probability.

Remark 3. A.1 measures how well our considered function class \mathcal{F}_r approximate the ground truth function. A.2 considers the complexity of ground truth function as in Remark 2. A.3 has to do with calculating the covering number which measures the complexity of considered function class \mathcal{F}_r .

A higher sample complexity (that is, the required n for consistent estimation) is needed when

References

2. the candidate function class is either too small or too large

1. the ground truth function has a high level of complexity.

-> trade off between A.1 (deterministic, approximation error) vs. A.3 (stochastic, statistical error)

[1] Junhui Wang, Xiaotong Shen, and Yufeng Liu. Probability estimation for large-margin classifiers. *Biometrika*, 95(1):149–167, March 2008.