

<u>Course</u> > <u>Unit 1:</u> ... > <u>2 Nulls</u>... > 9. Mor...

9. More practice with subspaces using nullspace and span Worked examples

will have as its second entry 0.

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Identify the subspaces

1/1 point (graded)

Which of the following subsets of \mathbb{R}^2 are subspaces? Check all that apply.

- The set of all vectors $egin{pmatrix} x \ y \end{pmatrix}$ satisfying $x^2+y^2=1$.
- The set of all vectors $egin{pmatrix} x \ y \end{pmatrix}$ satisfying xy=0.
- The set of all vectors $egin{pmatrix} x \ y \end{pmatrix}$ satisfying 2x+3y=0. \checkmark
- None of these.

Solution:

Only the set of vectors $egin{pmatrix} x \ y \end{pmatrix}$ satisfying 2x+3y=0 is a subspace.

Algebraic explanation: Let S be the set. For S to be a vector space, it must satisfy all three conditions in the definition.

- The set of all vectors $inom{x}{y}$ satisfying $x^2+y^2=1$ doesn't even satisfy the first condition, because the zero vector $inom{0}{0}$ is not in S.
- The set of all vectors $inom{x}{y}$ satisfying xy=0 satisfies the first condition: the zero vector is in S. It satisfies the second condition too: If $inom{x}{y}$ is one vector in S (so xy=0) and c is any scalar, then the vector c $inom{x}{y}=b$ satisfies

$$(cx)(cy) = c^2xy = c^2(0) = 0,$$

so
$$c \begin{pmatrix} x \\ y \end{pmatrix}$$
 is in S .

However, it does not satisfy the third condition for **some** pairs of vectors in S: for example, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ are in S, but their sum $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is not in S.

• The set of all vectors $inom{x}{y}$ satisfying 2x+3y=0 is a vector space, as we will now check. First, the zero vector is in S. Second, if $inom{x}{y}$ is any element of S (so 2x+3y=0) and c is any scalar, then multiplying the equation by c gives

$$2(cx) + 3(cy) = 0,$$

which shows that the vector $cinom{x}{y}=inom{cx}{cy}$ is in S. Third, if $inom{x_1}{y_1}$ and $inom{x_2}{y_2}$ are in S (so $2x_1+3y_1=0$ and $2x_2+3y_2=0$), then adding the equations shows that

$$2(x_1+x_2)+3(y_1+y_2)=0,$$

which says that the vector

$$\left(egin{array}{c} x_1 \ y_1 \end{array}
ight) + \left(egin{array}{c} x_2 \ y_2 \end{array}
ight) = \left(egin{array}{c} x_1 + x_2 \ y_1 + y_2 \end{array}
ight)$$

is in $oldsymbol{S}$. Thus $oldsymbol{S}$ is a vector space.

Alternate solution: We could have also solved this example using the fact that the only subspaces of \mathbb{R}^2 are zero, lines through the origin, and all of \mathbb{R}^2 .

Submit

You have used 2 of 5 attempts

1 Answers are displayed within the problem

Identify the subspaces II

1/1 point (graded)

Which of the following are subspaces of \mathbb{R}^2 ? Check all that apply.

$$y=2x+3$$

$$y=2$$

$$x = 0$$

$$y=1/x$$

$$y = -4x$$

$$y = x^2$$

Solution:

Recall that the full list of subspaces of \mathbb{R}^2 is:

- 1. the point $\mathbf{0}$;
- 2. any line passing through the origin.
- 3. the entire plane \mathbb{R}^2 .

The curves y=1/x, $y=-x^2+1$, and $y=x^2$ are not subspaces of \mathbb{R}^2 : both y=1/x and $y=-x^2+1$ fail to contain the origin $\mathbf{0}$, and $y=x^2$ fails to be closed under addition and scalar multiplication.

The lines y=2 and y=2x+3 do not contain the zero vector, so they cannot be subspaces of \mathbb{R}^2 .

The set $\{0\}$ is a subspace of \mathbb{R}^2 by itself.

The lines y = x, x = 0 and y = -4x are all subspaces because they all pass through the origin, and are closed under addition and scalar multiplication:

• The line y=x is the set of vectors $\{ \begin{pmatrix} a \\ a \end{pmatrix}$ where a is real $\}$. Note that ${\bf 0}$ is in this set, $c \begin{pmatrix} a \\ a \end{pmatrix} = \begin{pmatrix} ca \\ ca \end{pmatrix}$ remains in this set, and $\begin{pmatrix} a \\ a \end{pmatrix} + \begin{pmatrix} b \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ a+b \end{pmatrix}$ also remains in the set.

- The line x=0 is the set of vectors $\left\{\begin{pmatrix} 0\\a \end{pmatrix} \text{ where } a \text{ is real} \right\}$. Note that $\mathbf 0$ is in this set, $c\begin{pmatrix} 0\\a \end{pmatrix} = \begin{pmatrix} 0\\ca \end{pmatrix}$ remains in this set, and $\begin{pmatrix} 0\\a \end{pmatrix} + \begin{pmatrix} 0\\b \end{pmatrix} = \begin{pmatrix} 0\\a+b \end{pmatrix}$ also remains in the set.
- The line y=-4x is the set of vectors $\left\{\begin{pmatrix} a\\-4a\end{pmatrix} \text{ where } a \text{ is real}\right\}$. Note that $\mathbf 0$ is in this set, $c\begin{pmatrix} a\\-4a\end{pmatrix}=\begin{pmatrix} ca\\-4ca\end{pmatrix}$ remains in this set, and $\begin{pmatrix} a\\-4a\end{pmatrix}+\begin{pmatrix} b\\-4b\end{pmatrix}=\begin{pmatrix} a+b\\-4(a+b)\end{pmatrix}$ also remains in the set.

Submit

You have used 1 of 5 attempts

- **1** Answers are displayed within the problem
- 9. More practice with subspaces using nullspace and span

Hide Discussion

Topic: Unit 1: Linear Algebra, Part 1 / 9. More practice with subspaces using nullspace and span

Add a Post

Learn About Verified Certificates

© All Rights Reserved