CENG 218 Design and Analysis of Algorithms

Izmir Institute of Technology

Lecture 7: Sorting in linear time

Slides were mostly prepared using the material provided by Prof. Charles E. Leiserson and Prof. Erik Demaine from MIT

How fast can we sort?

- It depends on the model, i.e. what you can do with the elements.
- All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

 E.g., insertion sort (n^2), merge sort ($n \lg n$), quicksort ($n \lg n$).
- Is $O(n \lg n)$ the best we can do with comparison sort model?
 - Decision tree can help us answer this question.

Decision-tree example

Sort $< a_1, a_2, a_3 >$

In general (*n* elements)

- Each internal node is labeled i:j for comparing a_i and a_j
- The left subtree shows subsequent comparisons if $a_i \le a_j$
- The right subtree shows subsequent comparisons if $a_i > a_j$

Decision-tree example

Example: Sort < 9, 4, 6 >

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq ... \leq a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- It serves as graphical representation of algorithms.
- One tree for each input size *n* (not so generic).
- View the algorithm as splitting whenever it compares two elements.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Decision-tree, Insertion Sort, n=4

An uncomplete decision tree to model insertion sort:

Lower bound for decision-tree sorting

Theorem: Any decision tree that can sort *n* elements must have height $\Omega(n \lg n)$.

Proof: The tree must contain $\geq n!$ leaves, since there are n! possible permutations.

A height-h binary tree has $\leq 2^h$ leaves.

Thus, $2^h \ge n!$

```
(lg is mono. increasing)
           h \ge \lg(n!)
          \geq \lg ((n/e)^n)
                                     (Stirling's formula)
              = n (\lg n - \lg e)
Worst-case
running time
              =\Theta(n \lg n)
                                      (lg e is constant)
            h is \Omega(n \lg n).
```

Sorting in linear time

Counting sort: No comparisons between elements.

- Input: A[1 ... n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1 . . k]. Le. Size of C is the maximum number in A.

Counting sort

```
for i \leftarrow 1 to k
        C[i] \leftarrow 0
for j \leftarrow 1 to n
        C[A[j]] \leftarrow C[A[j]] + 1 > C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
        C[i] \leftarrow C[i] + C[i-1] > C[i] = |\{\text{key} \le i\}|
for i \leftarrow n downto 1
        B[C[A[j]]] \leftarrow A[j]
        C[A[j]] \leftarrow C[A[j]] - 1
```

Counting sort example

B:

for
$$i \leftarrow 1$$
 to k

$$C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n

$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$$

for
$$j \leftarrow 1$$
 to n

$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$$

for
$$j \leftarrow 1$$
 to n

$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$$

for
$$j \leftarrow 1$$
 to n

$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$$

$$C: \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$j \leftarrow 1$$
 to n

$$C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$$

$$C: \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$i \leftarrow 2$$
 to k

$$C[i] \leftarrow C[i] + C[i-1] \Rightarrow C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k

$$C[i] \leftarrow C[i] + C[i-1] \Rightarrow C[i] = |\{\text{key} \le i\}|$$

$$C: \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

for
$$i \leftarrow 2$$
 to k

$$C[i] \leftarrow C[i] + C[i-1] \Rightarrow C[i] = |\{\text{key} \le i\}|$$

for
$$j \leftarrow n$$
 downto 1

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

for
$$j \leftarrow n$$
 downto 1

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

for
$$j \leftarrow n$$
 downto 1

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

for
$$j \leftarrow n$$
 downto 1

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

for
$$j \leftarrow n$$
 downto 1

$$B[C[A[j]]] \leftarrow A[j]$$

$$C[A[j]] \leftarrow C[A[j]] - 1$$

Analysis

$$\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ C[i] \leftarrow 0 \end{cases}$$

$$\Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}$$

$$\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \\ C[i] \leftarrow C[i] + C[i-1] \end{cases}$$

$$\begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}$$

$$\Theta(n + k)$$

Running time

- If k = O(n), then counting sort takes $\Theta(n)$ time.
- We have seen that *comparison sorting* takes $\Omega(n \lg n)$ time.
- **Q.** How is this possible?
- **A.** Counting sort is not a *comparison sort*. In fact, not a single comparison between elements occurs!

Note: Counting sort is not a good choice if k >> n.

Stable sorting

Counting sort is a *stable* sort: It preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See details in Appendix)
- Digit-by-digit sort.
- Hollerith's original(bad) idea: sort the most significant digit first. Causing many bins!

• Good idea: Sort on *least-significant digit first* with an auxiliary *stable* sort.

Counting sort is a good choice

3 2 9

4 5 7

657

839

4 3 6

720

3 5 5

Operation of Radix sort

3 2	9	7	2	0	7	2	0	3	29
4 5	7	3	5	5	3	2	9	3	5 5
6 5	7	4	3	6	4	3	6	4	3 6
8 3	9	4	5	7	8	3	9	4	5 7
4 3	6	6	5	7	3	5	5	6	5 7
7 2	0	3	2	9	4	5	7	7	20
3 5	5	8	3	9	6	5	7	8	3 9
	Ţ							5>	

Correctness of Radix sort

- Assume that the numbers are sorted by their low-order t-1 digits.
- Sort on digit *t*

Correctness of Radix sort

- Assume that the numbers are sorted by their low-order t-1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.

Correctness of Radix sort

- Assume that the numbers are sorted by their low-order t-1 digits.
- Sort on digit t
 - Two numbers that differ in digit *t* are correctly sorted.
 - ➤ Two numbers equal in digit t are put in the same order as the input ⇒ correct order. (requires an auxiliary stable sort, it may be counting sort but there are other options as well)

Analysis of Radix sort

- Assume counting sort is our auxiliary stable sort.
- So, sorting each digit takes $\Theta(n)$ since k is small (takes values between 0 and 9)
- Then, we need to pass through *n* numbers for each digit. (Three passes in the previous example).
- If the number of digits is low, it seems good.
- Let's make a more formal analysis.

Analysis continued

- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits.

Example: 32-bit word

 $r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-28 digits;

or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-2¹⁶ digits.

How many passes should we make?

Analysis continued

- *Recall:* Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to k 1.
- If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time.
- Since there are b/r passes, we have

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

• Choose r to minimize T(n, b): Increasing r means fewer passes, but as $r >> \lg n$, the time grows exponentially.

Analysis continued

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

- We could minimize T(n,b) by differentiating and setting to 0. (A calculus approach)
- But it is more intuitive to use the observation that we don't want $r > \lg n$.
- Choosing $r = \lg n$ implies $T(n,b) = \Theta(bn/\lg n)$.
- Numbers are in 0 to 2^b range. Lets substitute 2^b with n^d . (observe d << b). Then, we have $b = d \lg n \Rightarrow \text{radix sort runs in } \Theta(dn) \text{ time.}$

Analysis result

- Note that $\Theta(dn)$ is the same with $\Theta(bn/\lg n)$ but it is easier to grasp the complexity with $\Theta(dn)$. (This assumes we select the best r and remember $2^b = n^d$).
- Counting sort handles numbers from 0 to n in linear time. Radix sort handles number from 0 to n^d in linear time, which is better.
- As long as $d < \lg n$, radix sort beats *comparison* sorting.

Example comparison with merge sort

Lets say there n many 32-bit numbers (b=32):

Assume	that we select $r \sim \lg n$	(an optimum choice)			
	Radix Sort	Merge Sort (n lgn)			
n=2000	$2^{32}=2000^d d\sim 3 \Theta(3n)$	2000 lg2000 ~ $\Theta(11n)$			
n=256	$2^{32}=256^d d=4 \Theta(4n)$	256 lg256 $\Theta(8n)$			
n=32	$2^{32}=32^d \ d\sim 6 \ \Theta(6n)$	$32 \lg 32 \Theta(5n)$			
n=2000 b=16	$2^{16}=2000^d d\sim 1.5 \Theta(1.5n)$	2000 lg2000 ~Θ(11n)			

Conclusion

In practice, radix sort is fast for large size inputs when numbers are small.

Downside: Unlike quicksort, counting sort is not memory friendly. Radix sort (using counting sort) is usually slower than a well-tuned quicksort in practice.

Chapter 8 of the textbook is on linear time sorting. Please try to solve exercises in 8.1 and 8.2.

Appendix: Punched-card technology

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Herman Hollerith (1860-1929) prototyped punched-card technology.
- His machines, including a "card sorter," allowed the 1890 census total to be reported in 6 weeks.
- He founded the Tabulating Machine Company in 1911, which later merged with other companies to form International Business Machines (IBM).

Appendix: Punched cards

- Punched card = data record.
- Algorithm = machine + human operator.
- An operator inserts a card into the press.
- Pins on the press reach through the punched holes to make electrical contact with cups beneath the card.
- Whenever a particular digit value is punched, the lid of the corresponding sorting bin lifts. The operator deposits the card into the bin and closes the lid.
- When all cards have been processed, the front panel is opened, and the cards are collected in order.
- Check http://www.oz.net/~markhow/writing/holl.htm
- Punch-card creator http://www.facade.com/legacy/punchcard/