Exercice

On rappelle l'interface des piles, munies de 4 primitives :

Commande	Description
creer_pile()	Renvoie une nouvelle pile vide.
<pre>empiler(pile, element)</pre>	Rajoute element au sommet de pile .
depiler(pile)	Renvoie l'élément se trouvant au sommet de pile , qui ne doit
	pas être vide, et l'enlève.
est_vide(pile)	Renvoie un booléen indiquant si pile est vide ou non.

Question 1:

 $\begin{array}{c|c}
7 \\
2 \\
-4 \\
3
\end{array}$

Donner la suite des instructions permettant de définir la pile p représentée par :

Question 2:

On considère le code suivant :

```
def mystere(pile):
   pile2 = creer_pile()
   while not est_vide(pile):
      s = depiler(pile)
      if s > 0:
        empiler(pile2, s)
   return pile2
```

Dessinez les états successifs de la variable pile2 avec l'appel mystere(p) où p est la pile de la question 1.

Question 3:

Commentaires pour l'examinateur :

En cas de difficultés du candidat, le questionnement pendant l'entretien peut s'orienter sur la connaissance d'une autre structure linéaire, son interface, la différence entre FIFO/LIFO, afin de valoriser certaines connaissances...