

MultiDelete for Multimodal Machine Unlearning

Jiali Cheng Hadi Amiri University of Massachusetts Lowell

SETTINGS

提出了第一种针对多模态模型的unlearning 方法

vision-language model
$$f$$

This approach ensures that the model retains its foundational knowledge of individual modalities, which is essential for effective learning of the target task and prevents the unnecessary loss of information.

Modality Decoupling

TODO: phi 和 f 还是 不太明确

$$\mathbb{E}_{(I_i,T_i)\in D_f,(I_p,T_q)_{p\neq q}}\left[\phi(f'(I_i,T_i))-\phi(f(I_p,T_q))\right]=\epsilon,$$

- where f (·) and f ′(·) generate multimodal representations of their inputs,
- φ is a readout function (such as the concatenation operator, applied to a set of representations),
- ∈ is an infinitesimal constant.

Loss No.1

$$\mathcal{L}_{\text{MD}} = \text{Dis}\Big\{ \{ f'(I_i, T_i) | (I_i, T_i) \in D_f \},$$

$$\{ f(I_p, T_q) | (I_p, T_p) \in D_r, (I_q, T_q) \in D_r, p \neq q \} \Big\},$$

Dis(·) can be mean squared error.

Multimodal Knowledge Retention

$$\mathbb{E}_{(I_r,T_r)\in D_r}\left[\phi(f'(I_r,T_r))-\phi(f(I_r,T_r))\right]=\epsilon,$$

$$\mathcal{L}_{MKR} = Dis(f'(I_r, T_r), f(I_r, T_r)), (I_r, T_r) \in D_r.$$

Unimodal Knowledge Retention

$$\mathbb{E}_{(I_i,T_i)\in D_f}\left[\psi\big(f_I'(I_i),f_T'(T_i)\big)-\psi\big(f_I(I_i),f_T(T_i)\big)\right]=\epsilon,$$

$$\mathcal{L}_{\text{UKR}} = \text{Dis}\left(\left\{ \left[f_I'(I_i); f_T'(T_i)\right] | (I_i, T_i) \in D_f \right\}, \left\{ \left[f_I(I_i); f_T(T_i)\right] | (I_i, T_i) \in D_f \right\}\right),$$

上一的ψ对应上二 [;] , 即向量链接

$$\mathcal{L} = \alpha \mathcal{L}_{MD} + \beta \mathcal{L}_{MKR} + \gamma \mathcal{L}_{UKR},$$

Task and Dataset

TASK

Image-Text Retrieval (TR) and (IR) are the tasks of retrieving the top-k relevant texts for a given image query (TR), and vice versa

DATASET

Flickr30K: image+description(s) "Two young guys with shaggy hair look at their hands while hanging out in the yard."

Visual Entailment (VE): an image-text entailment task, To determine whether a given text hypothesis T_i entails, contradicts, or is neutral with respect to a given image premise I_i .

SNLI-VE: Visual Entailment Dataset

- Two woman are holding packages.
- The sisters are hugging goodbye while holding to go packages after just eating lunch.
- The men are fighting outside a deli.

- Entailment
- Neutral

Contradiction

Premise Hypothesis Answer

Task and Dataset

TASK

Natural Language for Visual Reasoning (NLVR) is the binary classification task of predicting whether a given text T_i accurately describes a given pair of images $(I_{i,1}, I_{i,2})$.

Graph-Text Classification: is the task of classifying whether a text indicates a specific (e.g. causal) relationship between two given entities in a subgraph.

DATASET

NLVR2

- Two penguins stand near each other in the picture on the left.
- There are only two penguins in at least one of the images.
- An image features two penguins standing close together.
- There are two penguins in the left image.
- An image contains just two penguins.

PGR: A Silver Standard Corpus of Human Phenotype-Gene Relations

Sentence: A homozygous mutation of **SERPINB6**, a gene encoding an intracellular protease inhibitor, has recently been associated with post-lingual, autosomalrecessive, nonsyndromic **hearing loss** in humans (DFNB91).

• Gene: **SERPINB6**

• Phenotype: hearing loss

• Relation: Known

Baselines

1. Retrain

- 2. Finetune: **Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks** fine-tunes f on D_f with a larger learning rate, similar to catastrophic forgetting
- **3. NegGrad:** optimizes the original loss function of training f on Df but reverses the direction of gradients to unlearn these samples.
- **4. Descent to Delete(DtD)** is a weight scrubbing-based and modality-agnostic approach to unlearning. It assumes that the weights of f are close to the weights of f, trains f for a few more steps while adding Gaussian noise to scrub the weights.
- **5. L-codec**(vision or text): is a weight scrubbing-based approach that approximates the Hessian matrix and performs a Newton update step to scrub the parameters while adding noise to them.
- **6. Erm-Ktp**(vision only): is a retraining-based approach that unlearns data by retraining the model with extra parameters inserted after visual feature maps to entangle correlations between classes.
- 7. **UL**(text only): is an optimization-based approach that unlearns data by maximizing the log likelihood of samples in D_f . This method has been developed for machine unlearning in language models.

Settings

$$1.|D_f| = 1K, 2K, ..., 5K$$

- 2. α , β , $\gamma = 1$
- 3. The original models f are trained until convergence before being used for deletion experiments.
- 4. For deletion, select the best checkpoint using validation set of each dataset.

vision-language transformers ALBEF

average MI ratio of 1.3

ı University

			I	mage	e-Text				Graph	ı-Text		۱	
Method	II		r30K T	R	SNLI	-VE	NL	$/{f R}^2$	PC	GR	Av	Avg.	
	D_{Test}	D_f	D_{Test}	D_f	$D_{ m Test}$	D_f	$D_{ m Test}$	D_f	$D_{ m Test}$	D_f	D_{Test}	D_f	
RETRAIN	97.8	50.4	93.5	50.4	79.4	50.2	80.3	50.3	67.5	50.2	83.4	50.3	
FINETUNE	96.7	50.4	94.1	50.4	79.1	50.5	80.3	49.8	67.4	49.9	83.5	50.2	
FINETUNE-F	97.1	49.9	94.6	49.9	79.5	49.9	81.2	50.0	67.5	50.1	83.8	49.9	
NegGrad	92.4	50.5	91.7	50.5	77.8	48.6	77.3	50.6	63.4	49.6	$80.\overline{5}$	50.0	
NegGrad-F	93.3	50.2	90.6	50.2	<u>79.6</u>	50.6	80.8	50.0	63.5	49.9	81.5	50.2	
DTD	10.3	51.4	8.9	51.4	45.2	50.1	50.8	49.8	50.0	50.2	33.0	50.5	
D_TD - F	22.5	50.9	20.7	50.9	48.6	49.8	50.9	49.8	53.6	50.2	39.2	50.2	
L-codec	83.5	50.0	78.5	50.0	56.7	49.9	55.3	52.7	57.8	48.8	66.3	50.3	
L-codec-F	87.4	49.4	50.6	48.2	57.4	48.4	56.8	53.1	59.1	46.9	62.2	49.2	
$\operatorname{Erm-}K$ TP	57.4	48.7	56.2	49.0	53.2	48.9	52.9	50.8	N_{i}	$^{\prime}\mathbf{A}$	54.9	49.3	
ERM-KTP-F						N	$\mathrm{J/A}$		•		•		
UL	95.1	50.4	90.3	50.4	75.7	49.8	76.3	50.4	64.8	49.7	80.4	50.2	
UL-F	94.4	50.2	94.1	50.2	79.1	49.7	76.8	50.4	66.1	48.8	82.1	49.8	
MultiDelete	97.1	33.2	94.3	33.2	79.8	35.3	80.8	23.5	68.5	18.6	84.2	28.7	
MultiDelete-F	96.8	34.4	94.1	34.5	79.5	<u>36.3</u>	80.4	26.4	67.7	19.5	83.7	30.2	

- Comparison to Modality-agnostic Approaches:
 - The lower performance of these approaches show that they can't remove learned multimodal dependencies.
- Comparison to Unimodal Approaches:
 - Results show that unimodal unlearning approaches do not effectively translate to multimodal contexts.

		Image-Text							Graph-Text			
Method	Flickr30K IR TR		SNL	LI-VE NLVR ²		PGR		Avg.				
	$D_{ m Test}$	D_f	D_{Test}	D_f	$D_{ m Test}$	D_f	D_{Test}	D_f	D_{Test}	D_f	D_{Test}	D_f
$\mathrm{Erm} extsf{-}K extrm{TP}$	57.4	48.7	56.2	49.0	53.2	48.9	52.9	50.8	N,	/A	54.9	49.3
Erm-Ktp-F						N	\dot{N}/A					
UL	95.1	50.4	90.3	50.4	75.7	49.8	76.3	50.4	64.8	49.7	80.4	50.2
UL-F	94.4	50.2	94.1	50.2	79.1	49.7	76.8	50.4	66.1	48.8	82.1	49.8
MultiDelete	97.1	33.2	94.3	33.2	79.8	35.3	80.8	23.5	68.5	18.6	84.2	28.7
MultiDelete-F	96.8	34.4	94.1	$\underline{34.5}$	79.5	<u>36.3</u>	80.4	26.4	67.7	19.5	83.7	30.2

Comparison to Modality-agnostic Approaches:

 The lower performance of these approaches show that they can't remove learned multimodal dependencies.

Comparison to Unimodal Approaches:

- Results show that unimodal unlearning approaches do not effectively translate to multimodal contexts.
- Updating the knowledge on one of the modalities results in drop on both test set performance and model' s ability in forgetting D_f . Therefore, merely unlearning a single modality is inadequate for comprehensive unlearning in multimodal settings.

Limitations of Scrubbing Methods and Retrain:

- The lower performance of these approaches show that they can't remove learned multimodal dependencies.
- In case of multimodal settings, we argue that scrubbing or noise addition disrupts the original learned dependencies, particularly when model parameters are shared

		Image-Text							Graph	ı-Text		
Method	Flickr30K IR TR		SNL	I-VE NLVR ²		PGR		Avg.				
	$D_{ m Test}$	D_f	D_{Test}	D_f	$D_{ m Test}$	D_f	D_{Test}	D_f	D_{Test}	D_f	D_{Test}	D_f
D_TD	10.3	51.4	8.9	51.4	45.2	50.1	50.8	49.8	50.0	50.2	33.0	50.5
DтD-F	22.5	50.9	20.7	50.9	48.6	49.8	50.9	49.8	53.6	50.2	39.2	50.2
L-codec	83.5	50.0	78.5	50.0	56.7	49.9	55.3	52.7	57.8	48.8	66.3	50.3
L-codec-F	87.4	49.4	50.6	48.2	57.4	48.4	56.8	53.1	59.1	46.9	62.2	49.2
MultiDelete MultiDelete-F	97.1 96.8	33.2 34.4	$\frac{94.3}{94.1}$	33.2 34.5			80.8 80.4	23.5 26.4	<u> </u>	18.6 19.5	84.2 83.7	28.7 30.2

- Limitations of Scrubbing Methods and Retrain:
 - For <u>retrain</u>, These results indicate that matching model parameters does not necessarily mean successful unlearning due to potential distribution discrepancy in model parameters

		Image-Text							Grapl	n-Text		
Method	IF		r30K Tl	R	SNLI	-VE	NLV	${ m /R}^2$	PC	${f GR}$	Avg.	
	$D_{ m Test}$	D_f	D_{Test}	D_f	$D_{ m Test}$	D_f	D_{Test}	D_f	D_{Test}	D_f	D_{Test}	D_f
RETRAIN	97.8	50.4	93.5	50.4	79.4	50.2	80.3	50.3	67.5	50.2	83.4	50.3
MULTIDELETE MULTIDELETE-F	1		$\frac{94.3}{94.1}$						68.5 67.7	18.6 19.5	84.2 83.7	28.7 30.2

Membership Inference Attack

Method	Flickr-TR	Flickr-IR	SNLI-VE	$NLVR^2$	Avg.
RETRAIN	1.10	1.10	1.05	1.07	1.08
FINETUNE	1.03	1.03	1.04	1.08	1.04
\mathbf{F} INE \mathbf{T} UNE- \mathbf{F}	1.06	1.06	1.07	1.09	1.07
Neg G rad	1.11	1.11	1.09	1.06	1.09
NegGrad-F	1.14	1.14	1.10	1.08	1.11
D T D	1.41	1.41	1.60	1.71	1.53
D T D - F	1.40	1.40	1.58	1.66	1.51
L-CODEC	1.21	1.21	1.23	1.23	1.22
L-codec-F	1.22	1.22	1.26	1.26	1.24
\mathbf{E}_{RM-KTP}	1.10	1.10	1.11	1.21	1.13
$\mathrm{E}_{\mathrm{RM-KTP-F}}$		' I	N/A		l
UL	0.97	0.97	$\stackrel{'}{ }$ 1.04	1.07	1.01
UL-F	0.98	0.98	1.10	1.04	1.02
MULTIDELETE	1.27	1.27	1.30	1.25	1.27
MULTIDELETE-F	1.25	1.25	1.26	1.21	1.24

Membership Inference Attack

- MultiDelete outperforms non-scrubbing baselines (FineTune, NegGrad, ErmKtp, UL) by 0.19 absolute points in MI ratio.
- For scrubbing methods (DtD, L-codec) the drop applies to all data including both D_r and D_f . This shows that the unlearning of scrubbing methods is not targeted at a specific subset of data, but the entire data

Method		Image-		Graph-Text	Avg.	
	Flickr-IR	Flickr-TR	SNLI-VE			
Retrain	1.10	1.10	1.05	1.07	1.09	1.08
L-codec L-codec-F	$\begin{vmatrix} 1.21 \\ 1.22 \end{vmatrix}$	$egin{array}{c} 1.21 \ 1.22 \ \end{array}$	$\begin{vmatrix} 1.23 \\ 1.26 \end{vmatrix}$	1.23 1.26	1.07 1.09	1.19 1.21
MULTIDELETE MULTIDELETE-F	$egin{array}{c c} {\bf 1.27} \\ \underline{1.25} \end{array}$	$egin{array}{c} {f 1.27} \ {1.25} \ \end{array}$	1.30 1.26	1.25 1.21	1.24 1.20	1.27 12.4

Ablation study

	NLV	$ m ^2$	PGR			
	$D_{ m Test}$	D_f	$D_{ m Test}$	D_f		
RETRAIN	80.3	50.3	67.5	50.2		
Full model	80.8	23.5	67.8	1 8.6		
- MD - UKR - MKR	80.3 79.2 77.1	50.3 25.8 25.6	67.5 66.3 64.8	49.3 22.6 23.7		

$$\mathcal{L}_{\text{MD}} = \text{Dis}\Big(\big\{f'(I_i, T_i) | (I_i, T_i) \in D_f\big\},$$

$$\big\{f(I_p, T_q) | (I_p, T_p) \in D_r, (I_q, T_q) \in D_r, p \neq q\big\}\Big),$$

$$\mathcal{L}_{\text{MKR}} = \text{Dis}\Big(f'(I_r, T_r), f(I_r, T_r)\Big), (I_r, T_r) \in D_r.$$

$$\mathcal{L}_{\text{UKR}} = \text{Dis}\left(\left\{\left[f_I'(I_i); f_T'(T_i)\right] | (I_i, T_i) \in D_f\right\}, \left\{\left[f_I(I_i); f_T(T_i)\right] | (I_i, T_i) \in D_f\right\}\right),$$

The more substantial impact observed by removing MKR can be attributed to two factors:

- (1) $|D_r| > |D_f|$, leading to a much larger influence for MKR
- (2) downstream tasks tend to rely more heavily on multimodal knowledge than unimodal knowledge, making MKR crucial for maintaining model performance

Utility of Unimodal Knowledge

	FINETUN	ie N	EGGRA	$\mathbf{D}ig \mathbf{D}\mathbf{ au}\mathbf{D}ig \mathbf{L}$	-CODE	$\mathbf{c} \mathbf{U}\mathbf{L} \mathbf{M}$	ULTIDELE	τε w/ο UKR
Acc.	83.2		81.7	43.8	55.2	82.7	83.6	77.9

 g_I : Image classifier, f(I): unimodal embedding(before unlearning)

Hope that

$$g_I(f'(I)) \sim g_I(f(I))$$

The same for texts

Updating All Parameters vs. Fusion Module Only

MultiDelete-F.

- Some how similar to bypassing the optimization for L_{UKR}
- exhibits less fluctuation in performance on D_{Test} during training, but tends to converge more slowly on $D_f \mid D_r$

scrubbing-based methods (DtD, L-codec)

- results in a complete loss previously acquired knowledge, resulting in random performance across all tasks
- Conclusion:
 - robust unimodal knowledge plays a critical role in multimodal tasks
 - 2. the fusion module is more resilient to noise or minor perturbations than the unimodal encoders.

?							
		NLV	$ m ^2 \mid$	PGR			
		D_{Test}	D_f	D_{Test}	D_f		
е,	RETRAIN	80.3	50.3	67.5	50.2		
	Full model	80.8	23.5	67.8	1 8.6		
	- MD - UKR	80.3	50.3 25.8	67.5 66.3	49.3 22.6		
Mui	LTIDELETE-F	80.4	26.4	67.7	19.5		
$\overline{\mathrm{D}}$)	50.8	49.8	50.0	50.2		
DтD)- F	50.9	49.8	53.6	50.2		
L-codec		55.3	52.7	57.8	48.8		
L-cc	DEC-F	56.8	53.1	59.1	46.9		

modality-agnostic approaches

- Little difference
- the strategy chosen for parameter updating has minimal impact on overall performance

Efficiency (training time)

Fig. 2: Training time of unlearning methods.

- Linear growth
- MultiDelete-F only optimizes a small portion of the parameters

Conclusion

Compared to existing unimodal approaches, **MD** can remove the relationships between data modalities.

Compared to existing modality-agnostic approaches,

MKR and UKR maintains the capability of model on multimodal tasks.