See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231465150

Visible light driven generation of chlorine and bromine. Photooxidation of chloride and bromide in aqueous solution at illuminated n-type semiconducting molybdenum diselenide and m...

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · SEPTEMBER 1980

Impact Factor: 12.11 · DOI: 10.1021/ja00542a063

CITATIONS

24

READS

135

3 AUTHORS:

Clifford P. Kubiak

University of California, San Diego

249 PUBLICATIONS 8,681 CITATIONS

SEE PROFILE

Lynn Schneemeyer

Montclair State University

303 PUBLICATIONS **15,648** CITATIONS

SEE PROFILE

Mark S. Wrighton

Washington University in St. Louis

441 PUBLICATIONS 21,014 CITATIONS

SEE PROFILE

Sparapani for skilful experimental help.

Marina Attinà, Fulvio Cacace,* Pierluigi Giacomello University of Rome, 00100 Rome, Italy

Maurizio Speranza

Istituto di Chimica Nucleare del C.N.R. 00016 Monterotondo Stazione, Rome, Italy Received March 12, 1980

Visible Light Driven Generation of Chlorine and Bromine. Photooxidation of Chloride and Bromide in Aqueous Solution at Illuminated n-Type Semiconducting Molybdenum Diselenide and Molybdenum Disulfide Electrodes

Sir

We report the sustained, visible light driven oxidation of Br⁻ and Cl⁻ according to eq 1 and 2 in aqueous solutions with the use of n-type semiconducting MoY_2 (Y = S, Se) photoanode-based

$$2Cl^{-}(aq) \xrightarrow{-2e^{-}} Cl_{2}(g) [E^{\circ}(Cl_{2}/Cl^{-}) = +1.11 \text{ V vs. SCE}]$$
 (1)

$$2Br^{-}(aq) \xrightarrow{-2e^{-}} Br_2(aq) [E^{\circ}(Br_2/Br^{-}) = +0.86 \text{ V vs. SCE}]$$
(2

cells. On the basis of results from previous studies, the oxidizing power of the photogenerated holes at the MoY_2 /liquid interface is great enough [more positive than $E^{\circ}(Cl_2/Cl^{-})$] to effect Cl_2 or Br_2 generation in aqueous solution. However, in aqueous solutions, photoanodic corrosion of the electrodes is the dominant process in the presence of Br^{-} or Cl^{-} , while photooxidation of I^{-} to I_3^{-} has been shown to be quite efficient at MoY_2 photoanodes in aqueous media. His investigation of the oxidation of aqueous Cl^{-} and Br^{-} was prompted by the findings in this laboratory that Cl^{-} , Br^{-} , or I^{-} could be photooxidized in nonaqueous (CH_3CN) solution without deterioration of the MoY_2 photoanode. We thus sought conditions where the oxidation of Cl^{-} or Br^{-} could be achieved in aqueous solutions, starting with the notion that the solvent (H_2O) could play both the role of (i) kinetic competitor with X^{-} for the photogenerated oxidizing equivalents and (ii) partially determining the energetics for the photocorrosion process. $^{8-10}$

Our strategy for oxidation of Cl⁻ or Br⁻ in aqueous solution has been to employ super high concentrations of these ions by using aqueous electrolyte solutions of LiCl (15 M) or LiBr (12 M). The rationale is twofold: (i) the effective activity of X⁻ can be much higher than the concentration (the Cl⁻ activity of 15 M LiCl is

Figure 1. Steady-state photocurrent-voltage curves for n-type MoS₂ (left frames) and n-type MoSe₂ (right frames) photoanode-based cells. Illumination was at 632.8 nm under the conditions indicated.

 \sim 480 M and the Br⁻ activity of 12 M LiBr is \sim 560 M¹¹) to provide the kinetic advantage for productive photooxidation of X⁻, and (ii) the activity of H₂O can be reduced significantly by the high ionic strength¹¹ to reduce the efficiency for photocorrosion.

Visible light irradiation of the single-crystal, n-type MoY_2 anode of an electrochemical cell employing aqueous 15 M LiCl or 12 M LiBr (pH \approx 6) results in the anodic processes represented by eq 1 or 2, respectively. Light of higher energy than the band gap, \sim 1.1 eV, is effective. Unique Quantitative measurements have been made by using 514.5- or 632.8-nm light from an Ar ion or He–Ne laser, respectively. The cathode process is either the reduction of X_2 to $2X^-$ and/or the reduction of H_2O to form H_2 , depending on the amount of X_2 present.

Two facts are significant. First, the photoanodes are durable when X_2 is being generated. Second, photooxidation occurs at MoY₂ potentials up to ~0.5 V more negative than $E^{\circ}(X_2/X^{-})$, showing that light can contribute up to ~0.5 V toward the energy needed to produce X_2 . Steady-state photocurrent-voltage curves for MY₂ photoanodes in X_2/LiX aqueous solutions are given in Figure 1. Under these conditions, the dark Pt cathode process is X_2 to $2X^{-}$ reduction, and there is no net chemical change in the cell. Data from such curves are summarized in Table I. When the MoY₂ potential is more negative than the electrochemical

⁽¹⁾ Tributsch, H.; Bennett, J. C. J. Electroanal. Chem. Interfacial Electrochem. 1977, 81, 97.

⁽²⁾ Tributsch, H. Ber. Bunsenges. Phys. Chem. 1977, 81, 361; Z. Naturforsch., A 1977, 32A, 972; Ber. Bunsenges. Phys. Chem. 1978, 82, 169; J. Electrochem. Soc. 1978, 125, 1086.

⁽³⁾ Menezes, S.; DiSalvo, F. J.; Miller, B. J. Electrochem. Soc. 1980, 127, 1751.

⁽⁴⁾ Gobrecht, J.; Tributsch, H.; Gerischer, H. J. Electrochem. Soc. 1978, 125, 2085.

⁽⁵⁾ Schneemeyer, L. F.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 6496.

⁽⁶⁾ Schneemeyer, L. F.; Wrighton, M. S.; Stacy, A.; Sienko, M. J. Appl. Phys. Lett. 1980, 36, 701.

⁽⁷⁾ Schneemeyer, L. F.; Wrighton, M. S. J. Am. Chem. Soc., in press. (8) Bard, A. J.; Wrighton, M. S. J. Electrochem. Soc. 1977, 124, 1706.

⁽⁹⁾ Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 1977, 82, 133.

⁽¹⁰⁾ Kautek, W.; Gerischer, H. Ber. Bunsenges. Phys. Chem. 1980, 84, 645.

⁽¹¹⁾ Harned, H. S.; Owen, B. B. "The Physical Chemistry of Electrolytic Solutions", 3rd ed.; A.C.S. Monograph Series, Reinhold: New York, 1958.

⁽¹²⁾ Electrodes were prepared by using materials and procedures previously described. 5-7 LiCl and LiBr solutions were prepared by adding distilled H₂O to the solid to achieve a concentration of 15 M LiCl and 12 M LiBr. Small amounts of insoluble materials were filtered to achieve optical clarity. Solutions for steady-state photocurrent-voltage curves were prepared by adding Cl₂ or Br₂ to the LiCl or LiBr, respectively, and were stoppered to prevent escape of the X₂ from the electrochemical cell. All data are for 298 K. Samples of photogenerated gas (Cl₂) or authentic Cl₂ were added to a 9 mM IrCl(CO)(PPh₃)₂ (from Pressure Chemical Co.) CHCl₃ solution under Ar via a gas-tight Hamilton syringe with Teflon fittings. Infrared spectra of IrCl(CO)(PPh₃)₂ and IrCl₃(CO)(PPh₃)₂ were obtained by using a Perkin-Elmer Model 180 spectrometer. Br₂ was monitored spectrophotometrically with a Cary 17 UV-vis-near-IR spectrophotometer.

^{(13) (}a) Wilson, J. A.; Yoffe, A. D. Adv. Phys. 1979, 18, 193. (b) Goldberg, A. M.; Beal, A. R.; Levy, F. A.; Davis, E. . Philos. Mag. 1975, 32, 367.

⁽¹⁴⁾ Kautek, W.; Gerischer, H.; Tributsch, H. J. Electrochem. Soc. 1980, 128.

Table I. Output Characteristics for n-Type MoS₂- and MoSe₂-Based Photoelectrochemical Cells

electrolyte	photo- anode	input, mW/	$\Phi_{e}{}^{b}$	max power output, mW/cm ²	$\max_{\mathbf{v}} \mathbf{v}$ (V at $\eta_{\mathbf{max}}$) c	$\eta_{ ext{max}}~\%^d$	fill factor ^e
${ m H_2O,15~M~LiCl,0.04~M~Cl_2}$ ($E_{ m redox} = 1.03~{ m V~vs.~SCE}$)	MoSe ₂	28 85 ^f	0.51 0.35	0.87 2.4	400 (190) 480 (230)	3.1 2.9	0.30 0.34
	MoS_2	160 27 98 ^f	0.50 0.29 0.34	5.6 0.2 1.0	530 (230) 400 (110) 450 (110)	3.5 0.7 1.1	0.26 0.29 0.34
H_2O , 12 M LiBr, 0.05 M Br ₂ ($E_{redox} = 0.69 \text{ V vs. SCE}$)	MoSe ₂	270 7.3 29	0.28 0.60 0.61	4.2 0.51 2.1	520 (170) 410 (280) 480 (300)	1.6 7.0 7.5	0.28 0.60 0.61
	MoS ₂	88^f 160 7.2	0.61 0.62 0.69	6.9 12 0.45	530 (320) 570 (320) 460 (240)	7.9 7.8 6.2	0.61 0.62 0.69
		28 87 ^f 160	0.68 0.69 0.70	2.1 6.1 11	520 (300) 570 (280) 600 (280)	7.4 7.0 7.2	0.68 0.69 0.70

^a Input power is the 632.8-nm line from a Coherent Radiation He-Ne laser. ^b Quantum yield for electron flow at E_{redox} ; this corresponds to the short-circuit quantum yield taken as the number of electrons passed per incident photon. C Maximum voltage is the open-circuit photo-potential, and the number in parentheses is the output voltage at the maximum power point. C Efficiency for the conversion of 632.8-nm light to electricity. e Fill factor is a measure of the rectangularity of the current-voltage curves (Figure 1) and is defined as the max power/ (max V × short-circuit photocurrent).

potential of the solution, light is converted to electricity when there is photocurrent. Efficiencies¹⁵ for the conversion of 632.8-nm light to electricity are given in Table I. The approximately 7% efficiencies for X = Br are among the highest ever reported from this laboratory⁵⁻⁷ under any conditions for the MY₂ photoanodes. ¹⁶ The large difference in efficiency for Cl⁻ and Br⁻ photooxidation at MoS₂ may reflect a strong interaction with the Br⁻. The efficiencies show no significant dependence on input light intensity over the range used. It is noteworthy that the light intensity from the AMI solar spectrum is only $\sim 100 \text{ mW/cm}^2$ and that the Cl₂/Cl⁻ and Br₂/Br⁻ couples are more transparent than the I₃⁻/I⁻ couple that has previously been used in durable photoelectrochemical cells for conversion of visible light to electricity. 4,6,7,16c,17-19

The durability of the photoanodes is first suggested by noting that there is no obvious surface corrosion after photoelectrolytic oxidation of X^- , with or without added X_2 . When the LiX concentration is only 0.1 M, the rapid surface photocorrosion is obvious on the time scale of doing experiments such as those represented in Figure 1 and Table I. Current efficiency for Cl₂ generation from 15 M LiCl was measured for the MoY₂ photoanodes by collecting the Cl₂ gas (up to 15 mL) above the photoanode by using an inverted graduated pipette. The Cl₂ was found to be the gaseous product by smell, color, and reaction with CHCl₃ solutions of IrCl(CO)(PPh₃)₂ as compared with an authentic sample of Cl₂ gas. The reaction of Cl₂ with IrCl(CO)-(PPh₃)₂ proceeds according to eq 3 and can be used to quantitate

Cl₂ + IrCl(CO)(PPh₃)₂
$$\xrightarrow{298 \text{ K}}$$
 IrCl₃(CO)(PPh₃)₂ (3)
[$\nu_{CO} = 1967 \text{ cm}^{-1}$] $\xrightarrow{CHCl_3}$ [$\nu_{CO} = 2075 \text{ cm}^{-1}$]
($\epsilon 1150 \text{ M}^{-1}/\text{cm}^{-1}$) ($\epsilon 655 \text{ M}^{-1}\text{cm}^{-1}$)

Cl₂ with molecular specificity by using the infrared spectrum in the CO stretching region.²⁰ For both MoS₂ and MoSe₂, we find

(20) Vaska, L. Acc. Chem. Res. 1968, 1, 335.

that the photocurrent efficiency is >90% without correcting for Cl₂ that is lost by dissolving in the electrolyte solution. The current densities for which these current efficiencies were determined were $\sim 10 \text{ mA/cm}^2 \text{ for MoS}_2 \text{ and } \sim 45 \text{ mA/cm}^2 \text{ for MoS}_2.$ These photocurrent densities were sustained for periods exceeding 50 h without obvious damage to the photoanode. In the ~ 45 mA/cm² MoSe₂ case, greater than 150 mol of Cl₂ were generated per mol of MoSe₂ without deterioration of the photoanode. Longer term tests of durability are now in progress. Experiments similar to those for Cl⁻ oxidation have been performed for Br⁻ oxidation. However, Br₂ remains in solution, and current efficiency was determined spectrophotometrically as compared to authentic Br₂ in 12 M LiBr. The initial current efficiency for n-type MoS₂ (10 mA/cm^2) was >95% and for n-type $MoSe_2$ (70 mA/cm^2) was >90%. Again, photocurrent can be sustained, and many turnovers based on the original number of moles of crystal can be obtained. It is particularly noteworthy that we find durability at electrode potentials significantly positive of the onset of photoanodic decomposition in 0.1–1.0 M supporting electrolyte (e.g., KCl, LiCl, LiBr, and NaClO₄).

The durability of MoS₂ and MoSe₂ photoanodes in aqueous 15 M LiCl or 12 M LiBr is the main finding. Generation of Cl₂ is the energetically most difficult oxidation process ever sustained in aqueous solution at a nonoxide photoanode. The durability is likely due to the super high X⁻ activity and the lower activity of H₂O that participates in the photocorrosion. Support for this conclusion comes from the fact that the onset for photoanodic corrosion moves more positive as the concentration of an "innocent" electrolyte LiNO3 is increased; for example, at 0.1 M LiNO₃, the photoanodic current onset is at $\sim +0.2$ V vs. SCE for MoS_2 while it is at ~+0.5 V vs. SCE at 10 M LiNO₃. In 10 M LiNO₃, the photocurrent efficiency at +0.7 V vs. SCE for 0.1 M Br⁻ oxidation (~30%) at illuminated MoS₂ is significantly higher than that for 0.1 M LiBr alone (\sim 0% efficiency).²¹ These data show an important role for both Li⁺ concentration and high X⁻ concentration. Further details will be reported in the full paper.²²

Acknowledgment. We thank the Office of Naval Research for partial support of this research. We also acknowledge support

⁽¹⁵⁾ When no X_2 is present, the evolution of H_2 occurs at the dark Pt cathode. Thus, the net chemistry is $X^- + H_2O \rightarrow {}^1/_2X_2 + {}^1/_2H_2 + OH^-$, when no X_2 is present at the cathode. Since the cathodic evolution of H_2 is a pH-dependent process, efficiencies are generally best given with reference to the half-cell reaction driven at the photoelectrode.

⁽¹⁶⁾ Efficiencies for photoelectrochemical cells employing layered semi-conductors such as MoS₂, MoSe₂, and WSe₂ have been shown to depend on the electrode materials: (a) Ahmed, S. M.; Gerischer, H. Electrochim. Acta 1979, 24, 705. (b) Kautek, W.; Gerischer, H.; Tributsch, H. Ber. Bunsenges. Phys. Chem. 1979, 83, 1000. (c) Lewerenz, H. J.; Heller, A.; DiSalvo, F. J. J. Am. Chem. Soc. 1980, 102, 1877

⁽¹⁷⁾ Fan, F.-R. F.; White, H. S.; Wheeler, B.; Bard, A. J. J. Electrochem. Soc. 1980, 127, 518.

⁽¹⁸⁾ Nakatani, K.; Matsudaira, S.; Tsubomura, H. J. Electrochem. Soc. 1978, 125, 406.

⁽¹⁹⁾ Fan, F.-R. F.; Bard, A. J. J. Am. Chem. Soc. 1980, 102, 3677.

⁽²¹⁾ The current efficiency for photooxidation of 0.1 M Br in aqueous 10 M LiNO3 is much higher at more negative potentials, since the efficiency of the photocorrosion declines at the more negative potentials. The durability and current efficiency of MoS₂ and MoSe₂ in 12 M LiBr and 15 M LiCl were determined at +0.7-0.8 V and +1.1-1.2 V vs. SCE, respectively.

⁽²²⁾ We note related work showing that MoSe₂ is a durable photoanode in aqueous solutions containing high concentrations of HBr: Ang, P. G. P.; Sammells, A. F. Third International Conference on Photochemical Conversion and Storage of Solar Energy, Book of Abstracts, Solar Energy Research Institute, Golden, CO 80401, p 473.

from the M.I.T. Cabot Solar Energy Fund and GTE Laboratories, Inc. M.S.W. acknowledges support as a Dreyfus Teacher-Scholar grant recipient, 1975-1980.

Clifford P. Kubiak, Lynn F. Schneemeyer Mark S. Wrighton*

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received July 28, 1980

A General Preparative Method for α -Lithioethers and Its Application to a Concise, Practical Synthesis of Brevicomin

Sir:

Until recently, α -lithioethers were nearly always prepared by deprotonation of an α -carbon atom of an ether which has a special anion-stabilizing feature. Examples of the latter are substituents such as carbonyl, 1 cyano, 2 phenylthio, 3 or most commonly carbon-carbon unsaturation; 4 in addition, sp2 hybridization of the ether carbon atom allows ready deprotonation by alkyllithiums even when anion-stabilizing substituents are absent.⁵ Schöllkopf,⁶ and later Peterson, 7 showed that α -lithiomethyl methyl ether can be prepared from α -stannylmethyl methyl ether precursors by exchange with an alkyllithium, and Still⁸ has demonstrated how this principal can be applied to the preparation of α -lithioethers of types 1 and 2, species which do not possess special anion-stabilizing features.

We now report that a variety of types of unstabilized and stabilized α -lithioethers can be rapidly prepared in tetrahydrofuran at -63 or -78 °C from α -(phenylthio)ethers by reductive lithiation

(i) Damon, R. E.; Schlessinger, R. H. Tetrahedron Lett. 1975, 4551. Neef, G.; Eder, U. Ibid. 1977, 2825. Huet, F.; Pellet, M.; Conia, J. M. Synthesis 1979, 33

Synthesis 1979, 33.

(2) Deuchert, K.; Hertenstein, U.; Hünig, S. Synthesis 1973, 777.

(3) Trost, B. M.; Miller, C. H. J. Am. Chem. Soc. 1975, 97, 7182.

(4) (a) Schöllkopf, U. Angew. Chem., Int. Ed. Engl. 1970, 9, 763, and references cited therein. Felkin, H.; Tambutê, A. Tetrahedron Lett. 1969, 821. Baldwin, J. E.; DeBernardis, J.; Patrick, J. E. Ibid. 1970, 353. Rautenstrauch, V. J. Chem. Soc., Chem. Commun. 1970, 4. (b) Leroux, Y.; Mantione, R. Tetrahedron Lett. 1971, 591. (c) Evans, D. A.; Andrews, G. C.; Buckwalter, B. J. Am. Chem. Soc. 1974, 96, 5560. (d) Hartmann, J.; Stähle, M.; Schlosser, M. Synthesis 1974, 888. Still, W. C. Tetrahedron Lett. 1976, 2115. Still, W. C.; Macdonald, T. L. J. Org. Chem. 1976, 41, 3620. Garst, J. F.; Smith, C. D. J. Am. Chem. Soc. 1976, 98, 1526. Felkin, H.; Frajerman, C. Tetrahedron Lett. 1977, 3485. Briere, R.; Chêcrest, C.; Felkin, H.; Frajerman, C. Ibid. 1977, 3489. Meyers, A. I.; Campbell, A. L. Ibid. 1979, 4155. Meyers, A. I.; Campbell, A. L.; Abatjoglou, A. G.; Eliel, E. L. 1979, 4155. Meyers, A. I.; Campbell, A. L.; Abatjoglou, A. G.; Eliel, E. L. *Ibid.* 1979, 4159. Kozikowski, A. P.; Isobe, K. *Ibid.* 1979, 833. (e) Still, W. C.; Macdonald, T. L. J. Am. Chem. Soc. 1974, 96, 5561. (f) Oppolzer, W.; Snowden, R. L. Tetrahedron Lett. 1976, 4187.

(5) Gilman, H.; Bebb, R. L. J. Am. Chem. Soc. 1939, 61, 109. Ramanathan, N.; Levine, R. J. Org. Chem. 1962, 27, 1216. Hoff, S.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1968, 87, 916, 1179. Mantione, R.; Leroux, Y. Tetrahedron Lett. 1971, 593. Schölkopf, U.; Hänssle, P. Justus Liebigs Ann. Chem. 1972, 763, 208. Schlosser, M.; Schaub, B.; Spahic, B.; Sleiter, G. Helv. Chim. Acta 1973, 56, 2166. Baldwin, J. E.; Höfle, G. A.; Lever, O. W., Jr. J. Am. Chem. Soc. 1974, 96, 7125. Riobé, O.; Lebouc, A.; Delaunay, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1977, 284, 281.

A.; Delaunay, J. C. R. Heba. Seances Acad. Sci., Ser. C 1977, 284, 281. Boeckman, R. K., Jr.; Bruza, K. J. Tetrahedron Lett. 1977, 4187.

(6) Footnote 8, p 133, of Schöllkopf, U. In "Methoden der Organischen Chemie", (Houben-Weyl) 4th ed.; Müller, E., Ed. Georg Thieme Verlag: Stuttgart, 1970; Part 1, Vol. 13, p 87.

(7) Peterson, D. J. Organomet. Chem. Rev., Sect. A 1972, 7, 295.

(8) (a) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481. (b) Still, W. C.; Mitra, A. Ibid. 1978, 100, 1927. Still, W. C.; Sreekumar, C. Ibid. 1980, 1027. 1201. See also: Seebach, D.; Meyer, N. Angew Chem., Int. Ed. Engl. 1976,

with lithium 1-(dimethylamino)naphthalenide (LDMAN)9 or lithium naphthalenide (LN). What makes this method one of considerable generality is the ready availability of various types of α -(phenylthio)ether substrates or their vinylogues as demonstrated by eq 1-7.

$$n-C_4H_9SPh$$
 $\frac{NCS}{ref 13}$ $n-C_3H_7CHSPh$ $\frac{MeOH}{1h, 25 °C}$ $n-C_3H_7CHSPh$ (1)

Me₂C(OMe)₂
$$\frac{PhSH (1equiv)}{BF_5 \cdot OEt_2, -45 \cdot °C}$$
 Me₂C(OMe)SPh (2)
ref 14 4 (61%)

8 (100%) (mixture of E and Z)

(10) Cohen, T.; Matz, J. R. 179th National Meeting of the American Chemical Society, Houston, TX, March 1980; Abstr. ORGN 125. Cohen,

T.; Matz, J. R. Synth. Commun. 1980, 10, 311.
(11) (a) Cohen, T.; Daniewski, W. M.; Weisenfeld, R. B. Tetrahedron Lett. 1978, 4665. (b) Cohen, T.; Weisenfeld, R. B. J. Org. Chem. 1979, 44, 3601. Cohen, T.; Gapinski, R. E.; Hutchins, R. Ibid. 1979, 44, 3599. (c)

Screttas, C. G.; Micha-Screttas, M. Ibid. 1979, 44, 713; Ibid. 1978, 43, 1064. (12) Bank, S.; Platz, M. Tetrahedron Lett. 1973, 2097

(13) Tuleen, D. L.; Stevens, T. B. J. Org. Chem. 1969, 34, 31.

(14) Nakatsubo, F.; Cocuzza, A. J.; Keeley, D. E.; Kishi, Y. J. Am. Chem.

Soc. 1977, 99, 4835.
(15) (a) Parham, W. E.; DeLaitech, D. M. J. Am. Chem. Soc. 1954, 76, 4962. (b) Seebach, D.; Meyer, N.; Beck, A. K. Justus Liebigs Ann. Chem.

(16) The Diels-Alder addition of phenyl vinyl sulfide to acrolein has been reported: Smith, C. W.; Norton, D. G.; Ballard, S. A. J. Am. Chem. Soc. 1951, 73, 5267.

(17) This yield is based on recovered phenyl vinyl sulfide. In a single reaction, about 35% of phenyl vinyl sulfide is converted to adduct, and much of the methyl vinyl ketone is converted to dimer

(18) Trost, B. M.; Keeley, D. E.; Arndt, H. C.; Rigby, J. H.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1977, 99, 3080. (19) Cohen, T.; Gapinski, R. E. Tetrahedron Lett. 1978, 4319.

(20) Kuwajima, I.; Kato, M.; Sato, T. J. Chem. Soc., Chem. Commun.

(21) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99, 5009.

⁽⁹⁾ We have recently introduced this reagent for the preparation of certain sulfur-stabilized anions by reductive lithiation of the appropriate bis(phenylthio)acetals. While this reagent must be prepared and used below -45 C. it has a major advantage with respect to lithium naphthalenide, which has also been used to prepare such anions,11 in that the byproduct, 1-(dimethylamino)naphthalene, can be easily separated from the desired product by acid extraction. 10 Certain reductions have been performed previously by Bank and Platz¹² by using the sodium analogue