WO04055182

Publication Title:
No title available
Abstract:
Abstract not available for WO04055182 Data supplied from the esp@cenet database - Worldwide
Courtesy of http://v3.espacenet.com

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 1 July 2004 (01.07.2004)

PCT

(10) International Publication Number WO 2004/055182 A1

(51) International Patent Classification⁷: 15/63

C12N 15/10,

(21) International Application Number:

PCT/AU2003/001697

(22) International Filing Date:

18 December 2003 (18.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2002953381

18 December 2002 (18.12.2002)

(71) Applicant (for all designated States except US): DIAT-ECH PTY LTD [AU/AU]; GPO Box 2434, Brisbane, Queensland 4001 (AU).

(72) Inventors; and

Inventors/Applicants (for US only): IRVING, Robert, Alexander [AU/AU]; 1 Honeysuckle Avenue, Wheelers Hill, Victoria 3150 (AU). HUDSON, Peter, John [AU/AU]; 36 Fuschia Street, Blackburn, Victoria 3130 (AU). MUSTAFA, Huseyin [AU/AU]; 39 Cromwell Street, Glenroy, Victoria 3046 (AU). WARK, Kim [AU/AU]; 8/55 Foam Street, Elwood, Victoria 3184 (AU).

ABREGU, Matias, Ezequiel [AU/AU]; 57 Tarlee Drive, St. Albans, Victoria 3021 (AU).

(74) Agent: FB RICE & CO; 139 Rathdowne Street, Carlton, Victoria 3053 (AU).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: IN VIVO AFFINITY MATURATION SCHEME

(57) Abstract: The present invention relates to the field of evolution of nucleic acids in vivo and provides methods and compositions for introducing diversity into gene products. The present invention allows generation of new sequences that have desirable properties by virtue of high frequency mutation events within a cell. The high frequency mutation of a polynucleotide sequence results in the production of a large population of new sequence variants. Appropriate selection and/or screening permits identification and isolation of mutant forms of the polynucleotide sequence as well as products resulting from expression of the mutant sequences.

1

In vivo affinity maturation scheme

Field of the Invention

The present invention relates to the field of evolution of nucleic acids *in vivo* and provides methods and compositions for introducing diversity into gene products. The present invention allows generation of new sequences that have desirable properties by virtue of high frequency mutation events within a cell. The high frequency mutation of a polynucleotide sequence results in the production of a large population of new sequence variants. Appropriate selection and/or screening permits identification and isolation of mutant forms of the polynucleotide sequence as well as products resulting from expression of the mutant sequences.

Background of the Invention

15

20

25

10

5

In vitro evolution of proteins involves generating diversity by introducing mutations into known gene sequences to produce a library of mutant sequences, translating the sequences to produce a very large number of mutant gene products, which are then selected for the desired properties. Such schemes can be divided into two distinct groups; i) partial in vitro methods in which the mutated target protein is displayed on the surface of the either phage, bacteria or yeast but the mutation step is performed outside the cell and ii) entirely in vitro methods in which the target is displayed as part of a ribosome quaternary complex or polysome and all other steps including mutation are performed in a cell free environment. These processes have the potential for generating proteins with improved diagnostic and therapeutic utilities. Unfortunately, however, the potential of such processes has been limited by deficiencies in methods currently available for mutation, library generation and display of correctly folded proteins.

For example, in the case of partial *in vitro* methods, the DNA must be synthesised *in vitro* or extracted from the cells for mutagenesis. Although various mutagenesis approaches (including error prone PCR, DNA shuffling, chain shuffling and site directed mutagenesis) have been successfully used to generate mutant libraries, some of this diversity is lost due to limitations in subsequent transformation efficiency.

Consequently, the generation of large libraries (e.g. beyond a library size of 10¹⁰) of unique individual genes and their encoded proteins has proven difficult particularly

2

with phage display systems. A further disadvantage is that methods which utilise phage display systems require several sequential steps of mutation, amplification, selection and further mutation. Given that extraction and reintroduction of DNA into the cell is required for these systems, their potential to generate large diversity in the target gene library is further restricted.

5

10

15

20

25

30

35

To circumvent this problem, entirely in vitro methods such as continuous in vitro evolution (CIVE) have been developed and are described, for example, in WO 99/58661. In theory any diversity created through mutagenesis in these systems is not lost. In the case of CIVE, a mutating enzyme is used to introduce nucleic acid base changes into the target sequence. The only factor limiting diversity here is the mutation rate of this enzyme. Reports of mutation rates using other in vitro mutation methods such as error prone PCR, DNA shuffling (sexual PCR), chain shuffling and site directed mutagenesis over selected CDRs which can be used in this scheme vary significantly. Despite using different mechanisms all these approaches operate in an artificial environment in which only defined components required for these processes are present. It is possible there may be additional unknown factors involved, which are not supplied. Furthermore, this cell-free environment lacks the secretory and posttranslational machinery required to produce a correctly folded and processed protein. As a result, this restricts the type of targets which can be "evolved" in these systems and allows incorrectly folded, unmodified mutant proteins which have no functional relevance in a clinical setting to be selected. Bacterial and phage display also have the same associated problems.

In vivo evolution of proteins involves the same steps and principles as previously described for in vitro evolution (i.e. mutation, display, selection and amplification). However, in vivo systems overcome many of the problems associated with the in vitro approaches. One in vivo cyclical procedure that has been reported involves Escherichia coli mutator cells that were used as a vehicle for mutation of recombinant antibody genes. The E.coli mutator cells, MUTD5-FIT which carried a mutated DNAQ gene were used as the source of the S-30 extracts and therefore allowed mutations to be introduced into DNA during replication as a result of proofreading errors. However, mutation rates were low compared to the required rate. For example, to mutate 20 residues with the complete permutation of 20 amino acid requires a library size of 1×10^{26} , an extremely difficult task with currently available phage library display

methodology. Obviously, the disadvantages with using bacteria and phage in terms of transformation efficiencies, and protein folding etc. make this a less desirable scheme.

In view of the above it is clear that the current affinity maturation schemes are somewhat limited in their ability to generate and select functionally superior binders.

Summary of the invention

The present inventors have now developed a novel process for the *in vivo* evolution of gene products. This process generates mutants of target nucleic acid sequences by somatic hypermutation, yielding mutant products capable of undergoing any post-translational modifications that may be required for biological activity. A selection system particular to the properties of the target product is then utilized to identify desirable mutants.

15

25

10

5

Accordingly, in a first aspect, the present invention provides a method for producing and selecting a gene product with desired characteristics, the method comprising

- (i) introducing into a hypermutating cell a target nucleic acid molecule encoding a gene product such that the target nucleic acid molecule is integrated into an immunoglobulin locus of the genome of the hypermutating cell;
 - (ii) culturing the hypermutating cell such that the target nucleic acid molecule undergoes hypermutation during DNA and/or RNA synthesis, giving rise to a population of cells expressing mutant gene products; and
 - (iii) selecting a mutant gene product with desired characteristics.

The term "immunoglobulin locus" refers to a variable region of an antibody molecule or all or a portion of a regulatory nucleotide sequence that controls expression of an antibody molecule. Immunoglobulin loci for heavy chains may include but are not limited to all or a portion of the V, D, J, and switch regions (including intervening sequences called introns) and flanking sequences associated with or adjacent to the particular heavy chain constant region gene expressed by the antibody-producing cell to be transfected and may include regions located within or downstream of the constant region (including introns). Immunoglobulin loci for light chains may include but are

not limited to the V and J regions, their upstream flanking sequences, and intervening sequences (introns), associated with or adjacent to the light chain constant region gene expressed by the antibody-producing cell to be transfected and may include regions located within or downstream of the constant region (including introns). Immunoglobulin loci for heavy chain variable regions may include but are not limited to all or a portion of the V, D, and J regions (including introns) and flanking sequences associated with or adjacent to the particular variable region gene expressed by the antibody-producing cell to be transfected. Immunoglobulin loci for light chain variable regions may include but are not limited to the V and J region (including introns) and flanking sequences associated with or adjacent to the light chain variable region gene expressed by the antibody-producing cell to be transfected.

In the human, the immunoglobulin heavy chain (IgH) locus is located on chromosome 14. In the 5'-3' direction of transcription, the locus comprises a large cluster of variable region genes (V_H), the diversity (D) region genes, followed by the joining (J_H) region genes and the constant (C_H) gene cluster. The size of the locus is estimated to be about from 1,500 to about 2,500 kilobases (kb). During B-cell development, discontinuous gene segments from the germ line IgH locus are juxtaposed by means of a physical rearrangement of the DNA. In order for a functional heavy chain Ig polypeptide to be produced, three discontinuous DNA segments, from the V_H, D, and J_H regions must be joined in a specific sequential fashion; first D to J_H then V_H to DJ_H, generating the functional unit V_HDJ_H. Once a V_HDJ_H has been formed, specific heavy chains are produced following transcription of the Ig locus, utilizing as a template the specific V_HDJ_HC_H unit comprising exons and introns.

There are two loci for immunoglobulin light chains (IgL), the kappa locus on human chromosome 2 and the lambda locus on human chromosome 22. The organization of the IgL loci is similar to that of the IgH locus, except that the D region is not present. Following IgH rearrangement, rearrangement of a light chain locus is similarly accomplished by V_L to J_L joining of the kappa or lambda chain. The sizes of the lambda and kappa loci are each approximately 1000 kb to 2000 kb. Expression of rearranged IgH and an Ig kappa or Ig lambda light chain in a particular B-cell allows for the generation of antibody molecules.

15

30

In a further preferred embodiment of the invention the immunoglobulin locus is a rearranged $V_{\rm H}4$ gene. In a further preferred embodiment, the immunoglobulin locus is a rearranged $V_{\rm H}4$ allele.

- By "hypermutation" we mean a mechanism by which mutagenesis occurs at a rate approaching that naturally occurring in the immunoglobulin variable region, which is preferably in the range of 10^{-4} to 10^{-3} /base pair/generation/cell but more preferably in the range of 5×10^{-5} to 5×10^{-4} /base pair/generation/cell.
- 10 A "hypermutating cell" is a cell or cell line containing hypermutation elements.

By "hypermutation elements" we mean an intronic enhancer (Ei), matrix attachment regions (MAR), and a 3' enhancer. The intronic enhancer may be, for example, E mu or E kappa. The 3' enhancer may be, for example, a 3' kappa enhancer or a 3'H enhancer.

A "matrix attachment region" (MAR) is defined by its ability to bind to the nuclear matrix. Matrix attachment region sequences flank the IgH intronic enhancer.

In one embodiment the hypermutating cell is an immunoglobulin-expressing cell which is capable of expressing at least one immunoglobulin V gene. A V gene may be a variable light chain (V_L) or a variable heavy chain (V_H) gene, and may be produced as part of an entire immunoglobulin molecule. Preferred hypermutating cells for use in the present invention are derived from B-cell lines. Lymphoma cells may be used for the isolation of constitutively hypermutating cell lines for use in the present invention.

In a preferred embodiment of the present invention, following integration into the immunoglobulin locus of the hypermutating cell, the target nucleic acid molecule is located in proximity to one or more endogenous hypermutation elements. Preferably, the immunoglobulin locus is a V_H gene and the target nucleic acid molecule is located in proximity to an endogenous intronic enhancer, and endogenous matrix attachment regions.

The phrase "located in proximity to" means that hypermutation elements are located close enough to the target nucleic acid molecule to effect hypermutation of the target nucleic acid molecule.

6

In an alternative embodiment of the invention, following integration into the immunoglobulin locus of the hypermutating cell, the target nucleic acid molecule is located in proximity to at least one exogenous hypermutation element. For example, the target nucleic acid molecule may be located in proximity to an exogenous intronic enhancer, an exogenous matrix attachment region and/or an exogenous 3' kappa enhancer. Any one or more of these exogenous elements may be integrated into the immunoglobulin locus simultaneously with the target nucleic acid molecule.

A suitable exogenous "intronic enhancer" may be, for example, the *Xbal-EcoRI* fragment described in Grosschedl *et al* (1985) Cell Vol 41:885-897, the intronic enhancer described in Rabbitts *et al* (1983) Nature 306 (5945):806-809, or the intronic enhancer described in Ravetch *et al* (1981) Cell 27 (3 Pt 2): 583-591; or can be one or more sub-fragments thereof determined to have hypermutation activity.

15

5

A suitable exogenous "3' kappa enhancer" is the ScaI-XbaI fragment described in Meyer *et al* (1989) EMBO Journal Vol. 8, no. 7 p. 1959-1964 and can be one or more sub-fragments determined to have hypermutation activity.

Hypermutation-competent fragments of exogenous intronic enhancers or the 3' kappa enhancer can be identified in a number of ways. One way is to perform deletional analysis by constructing hypermutation cassettes containing various enhancer deletion mutants and a reporter gene. The hypermutation efficiency of the enhancer deletion mutant can be assessed by determining the rate of mutation of the reporter gene.

Deletion mutants can be prepared in a variety of ways. Oligonucleotides can be designed containing fragment sequences to be tested. Alternatively, a more random approach is to linearize the expression vector by restriction digest within an enhancer, followed by subsequent exonuclease treatment and religation. Yet another method is to

simply use restriction digests to remove sections of DNA.

30

35

It is preferred that following integration, a 3' enhancer and/or an intronic enhancer are positioned at a location 3' of the target nucleic acid sequence. It is further preferred that the intronic enhancer be located in greater proximity to the target gene than the 3' enhancer. The 5' end of the intronic enhancer is preferably positioned up to 3 kb 3' of the 3' end of the target gene, preferably less than 2 kb, more preferably less than 1 kb, and most preferably immediately adjacent to the target nucleic acid sequence. The

WO 2004/055182

7

PCT/AU2003/001697

intronic enhancer can be positioned greater than 3 kb 3' of the target gene, but this is less preferred. The 3' enhancer is preferably located up to 20 kb and preferably 5-15 kb 3' of the intronic enhancer. The 3' enhancer can be located as close as 1 kb 3' of the intronic enhancer, but this is less preferred. In another embodiment, the 3' enhancer fragment is located 5' relative to the target gene. The intronic enhancer can also be positioned 5' relative to the target gene, although this embodiment is less preferred.

In a further preferred embodiment, the enhancers are present in a genomic orientation. The enhancer sequence present in the genomic immunoglobulin gene is present in a "genomic orientation". If it is flipped in the construct so that it now appears in a 3' to 5' orientation (as opposed to the 5' to 3' orientation in the native genomic configuration), it is present in the "reverse orientation". However, the 3' enhancer can be present in reverse orientation. The enhancer can also be present in reverse orientation, but this is less preferred.

15

10

5

In a further preferred embodiment of the first aspect, following integration of the target nucleic acid molecule into the immunoglobulin locus, the target nucleic acid molecule is operatively linked to a promoter. Preferably, the target nucleic acid molecule is located downstream of the promoter and upstream of an intronic enhancer.

20

The term "promoter" is well-known in the art and encompasses nucleic acid regions ranging in size and complexity from minimal promoters to promoters including upstream elements and enhancers.

25

30

In one preferred embodiment of the invention, the promoter is a naturally occurring promoter that exists within the immunoglobulin locus. In one embodiment, the promoter is an immunoglobulin heavy or light chain promoter. Preferably, the promoter is an immunoglobulin heavy chain promoter of a $V_{\rm H}4$ allele. There is strong conservation between the promoter sequences of the $V_{\rm H}4$ alleles (Figure 1). A wide range of hypermutating cell lines (including RAMOS and BL2 cell lines) carry rearranged $V_{\rm H}4$ alleles.

35

Alternatively, the promoter may be a heterologous or exogenous promoter selected from those which are functional in mammalian cells, although prokaryotic promoters and promoters functional in other eukaryotic cells may be used. The promoter may be derived from promoter sequences of viral or eukaryotic genes. For example, it may be a

promoter derived from the genome of a cell in which expression is to occur. With respect to eukaryotic promoters, they may be promoters that function in a ubiquitous manner (such as promoters of α -actin, β -actin, tubulin) or, alternatively, a tissue-specific manner (such as promoters of the genes for pyruvate kinase). They may also be promoters that respond to specific stimuli, for example promoters that bind steroid hormone receptors. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR) promoter, the rous sarcoma virus (RSV) LTR promoter or the human cytomegalovirus (CMV) IE promoter. In a preferred embodiment, the promoter is an immunoglobulin promoter sequence such as a murine immunoglobulin promoter sequence or a human immunoglobulin heavy chain promoter.

The promoter region of mammalian/human genes can contain several regulatory elements in the DNA sequences, and span several hundred bases or more, it is generally observed that one of these elements, designated 'TATA box" sequence, in eukaryotic promoter regions is usually found approximately 300 bases or more upstream of the translation initiation site (start) sequence, ATG. Rearrangements which bring the V gene promoter into closer proximity to the ATG translation start signal also brings the promoter closer to the enhancer which is 3' and located in the C region. This activates the promoter which indicates that the close proximity to the enhancer may affect the rate at which the DNA in the VH locus is mutated.

The present inventors have found that in a RAMOS RA-1 cell line in which the rearrangement generates a functional VH4-34 allele, the promoter is significantly closer to the translation initiation start site than in other mammalian/human genes (based upon the number of nucleotides between the 3' end of the "TATA box" and the initiation codon of the immunoglobulin leader sequence). This proximity of the promoter to the start codon and the three dimensional structure of the promoter caused significant difficulties in cloning this region from RAMOS RA-1.

Accordingly, in a further preferred embodiment of the invention, following integration of the target nucleic acid molecule into the immunoglobulin locus, the target nucleic acid molecule is located within close proximity to the promoter. Preferably, the initiation codon of the target nucleic acid molecule is located within 500 bp of the 3' end of the promoter, more preferably within 200 bp of the 3' end of the promoter, more

9

preferably within 100 bp of the 3' end of the promoter and more preferably within 20 bp of the 3' end of the promoter.

It may also be advantageous for the promoters to be inducible so that the levels of expression of the heterologous gene can be regulated during the life-time of the cell. Inducible means that the levels of expression obtained using the promoter can be regulated.

In addition, any of these promoters may be modified by the addition of further regulatory sequences, for example enhancer sequences. Chimeric promoters may also be used comprising sequence elements from two or more different promoters described above.

In a further preferred embodiment of the present invention, the target nucleic acid molecule is introduced into the cell by way of an integration vector comprising a sequence homologous to a region of at least 500 bp, more preferably at least 2 kb, more preferably approximately 5 kb upstream of a rearranged V gene and a sequence homologous to a region of at least 500 bp, more preferably at least 2 kb, more preferably approximately 5kb downstream of the same rearranged V gene. Preferably, the sequence homologous to a region downstream of the rearranged V gene comprises an intronic enhancer and matrix attachment regions or portions thereof. It is preferred that the upstream and downstream homologous sequences are at least 500 bp in length, more preferably about 5 kb in length.

A "target nucleic acid molecule" can be any nucleic acid molecule of interest (including DNA and RNA molecules) encoding a gene product where diversification of the gene product is desired.

The "gene product" may be any biologically active molecule of interest. For example, the gene product may be a catalytic molecule such as a ribozyme, a DNAzyme, an LNAzyme or an RNAi/siRNA molecule. Alternatively, the gene product may be an antibody or fragment thereof, an enzyme, a hormone, a receptor, a cell surface molecule, a viral protein, transcription factor or any other biologically active polypeptide.

5

10

15

10

The selected mutant target sequence may be recycled through the methods of the present invention in order to introduce further diversification. Accordingly, in a further preferred embodiment of the first and second aspects, at least steps (ii) and (iii) of the method are repeated.

5

The hypermutating cell may be a mammalian, avian, yeast, fungi, insect or bacterial cell. In a preferred embodiment, the hypermutating cell is a mammalian cell. The mammalian hypermutating cell may be selected from the group consisting of RAMOS, BL2, BL41, BL70 and Nalm.

10

15

20

25

30

35

The method of the present invention may include further steps to increase the rate of mutation of the target nucleic acid sequence. For example, the hypermutating cell may be cultured in the presence of chemical mutagens. Suitable chemical mutagens include, for example, sodium bisulfite, nitrous acid, hydroxylamine, hydrazine or formic acid. Other agents which are analogues of nucleotide or nucleoside precursors include nitrosoguanidine, ribavirin, 5-bromouracil, 2-aminopurine, 5-formyl uridine, isoguanosine, acridine and of N⁴-aminocytidine, N¹-methyl-N⁴-aminocytidine, 3,N⁴ethenocytidine, 3-methylcytidine, 5-hydroxycytidine, N⁴-dimethylcytidine, 5-(2-5-chlorocytidine, 5-bromocytidine, hydroxyethyl)cytidine, N⁴-methyl-N.sup.4aminocytidine, 5-aminocytidine, 5-nitrosocytidine, 5-(hydroxyalkyl)-cytidine, 5-(thioalkyl)-cytidine and cytidine glycol, 5-hydroxyuridine, 3-hydroxyethyluridine, 3methyluridine, O²-methyluridine, O²-ethyluridine, 5-aminouridine, O⁴-methyluridine, O⁴-ethyluridine, O⁴-isobutyluridine, O⁴-alkyluridine, 5-nitrosouridine. 5-(hydroxyalkyl)-uridine, 1.N⁶-ethenoadenosine, and 5-(thioalkyl)-uridine, methyladenosine, and N⁶-methyladenosine, 8-hydroxyguanosine, O⁶-methylguanosine, O⁶-ethylguanosine, O⁶-isopropylguanosine, 3,N²-ethenoguanosine, O⁶-alkylguanosine, 2,N³-ethenoguanosine, 8-oxo-guanosine, and 8-aminoguanosineas well derivatives/analogues thereof. Examples of suitable nucleoside precursors, and synthesis thereof, are described in further detail in USSN 20030119764. Generally, these agents are added to the replication or transcription reaction thereby mutating the sequence. Intercalating agents such as proflavine, acriflavine, quinacrine and the like can also be used.

Random mutagenesis of the target nucleic acid molecule can also be achieved by irradiation with X-rays or ultraviolet light.

11

Antigen stimulation of the hypermutating cells, or exposure of the cells to interleukins (such as IL-2, IL-4 or IL-10) or CD40 ligand or B cell activating factor (BAFF) may also be used to increase the mutation frequency.

In one preferred embodiment, the level or activity of activation-induced cytidine deaminase (AID) within the hypermutating cell is increased. This may be achieved, for example, by increasing expression levels of AID within the hypermutating cells. For example, the hypermutating cells may be transfected with plasmid vectors which encode and express AID.

10

It will be appreciated by those skilled in the art that any process of selecting a mutant product can be used in the methods of the present invention.

In one embodiment, selection can be achieved by binding to a target molecule or by measurement of a biological response affected by the mutant product.

In another example, if the product of interest is an agent that promotes or reduces cell growth or division, the selection process can involve exposing mutant products to a population of cells and monitoring the biological responses of those cells.

20

15

In another example, if the mutant product is a receptor ligand, the process can involve exposing mutant proteins to cells expressing the receptor and monitoring a biological response effected by signalling of the receptor.

In one embodiment, the mutant product is selected by way of an assay performed within the hypermutating cell. For example, if the target nucleotide sequence encodes an enzyme, the assay may simply measure enzymatic activity.

Alternatively, the assay performed within the hypermutating cell may be a proteinfragment complementation assay (PCA). PCAs rely on the complementation of enzyme fragments fused to interacting proteins that reconstitute enzymatic activity once dimerised. Examples of PCA protocols are described in Michnick (2001) Current opinion in structural biology 11:472-477; Wehrman *et al.* (2002). PNAS 99(6):3469-3474; and Galarneau *et al.* (2002). Nature 20:616-622.

12

Suitable enzyme fragments may be derived, for example, from β -lactamase. Studies using the β -lactamase system in both bacteria and mammalian cells have successfully validated it as a suitable reporter system to detect protein-protein interactions inside the cell.

5

The target nucleic acid molecule may therefore encode a fusion protein comprising a binding partner and a β -lactamase fragment. Its binding partner may be introduced into the cell as a fusion protein comprising a complementary β -lactamase fragment. Selection occurs inside the cell with the binding of the target protein to its cognate partner which is detected by β -lactamase activity on a substrate supplied.

If selection assays such as PCAs are used, it is not necessary to display the target polypeptide on the surface of the hypermutating cell. These selection assays are particularly advantageous for targets which are naturally found intracellularly.

15

20

25

30

10

In an alternative embodiment of the present invention, the target nucleic acid molecule is linked to a sequence encoding an anchor domain such that following expression, the mutant gene product is displayed on the surface of the hypermutating cell. Examples of suitable anchor domains include attachment signals from glycosylphosphatidylinositol (GPI) anchored membrane proteins or transmembrane domains of other cell surface proteins.

If the gene product to be displayed is not normally found on the cell surface, it is preferred that the target nucleic acid molecule is also linked to a sequence encoding an N-terminal signal peptide (or a leader peptide). This signal peptide facilitates targeting of the gene product to the plasma membrane.

Following display on the surface of the hypermutating cell, the mutant gene product may be selected by detecting binding of a binding partner to the mutant gene product. This may involve, for example, labelling cells with a detectable marker such as a fluorescent dye and allowing binding to occur between the mutant protein on the cell surface and its binding partner. If the binding partner has been immobilized on a plate, a suitable detection system, such as a fluorimeter, can be used to identify wells containing a mutant of interest.

13

Alternatively, the binding partner may be labelled with a fluorescent tag, and cells expressing a mutant gene product of interest may be sorted using flow cytometric techniques. The binding partner may be selected from the group consisting of an antibody, receptor, hormone, enzyme, cell surface molecule, transcription factor, DNA or RNA molecule.

In another embodiment of the invention, the target gene product is expressed in soluble form.

To prevent repeated mutation after selection, hypermutation may be arrested prior to culturing the selected cells. This can be accomplished in a number of ways, including fusion to a myeloma or repression of an inducible promoter.

5

15

20

25

30

35

In a further preferred embodiment of the invention, the mutant nucleic acid sequence encoding the selected gene product is recovered from the hypermutating cell. This recovery can be achieved by amplification of the mutant nucleic acid sequence in whole or in part by polymerase chain reaction, using oligonucleotides that will anneal to locations outside the region of hypermutation or within the target sequence itself. Alternatively, the mutant nucleic acid sequence may be amplified using RT-PCR. The mutant nucleic acid sequence can then be subcloned for other purposes, such as expression, purification, or characterization.

The conditioned media from the transfected cells can be concentrated if desired and applied to the selection system. Specific binders can be identified directly or indirectly, for example by antibody recognition of either the target gene product itself or an attached tag sequence. The mutant gene products of interest can then be further characterized by a number of protein chemistry techniques such as micro-sequencing.

In a second aspect the present invention provides a gene product produced by a method of the first aspect.

In a third aspect the present invention provides a vector for targeted integration into an immunoglobulin locus of a hypermutating cell, the vector comprising a sequence homologous to a region upstream of a rearranged V gene of the hypermutating cell, a sequence homologous to a region downstream of a rearranged V gene of the hypermutating cell and a site for insertion of a target nucleic acid molecule.

14

In a preferred embodiment of the third aspect, the region upstream of the rearranged VH gene of the hypermutating cell is a region within nucleotides 1 to 5190 of SEQ ID NO:1. Preferably, the region is at least 500 bp, more preferably at least 2 kb, more preferably about 5 kb within nucleotides 1 to 5190 of SEQ ID NO:1. In a further preferred embodiment the region upstream of the rearranged V gene of the hypermutating cell comprises nucleotides 191 to 5190 of SEQ ID NO:1.

In a further preferred embodiment of the third aspect, the region downstream of the rearranged VH gene of the hypermutating cell is a region within nucleotides 5709 to 8699 of SEQ ID NO:1. Preferably, the region is at least 500 bp, more preferably at least 3 kb, 5709 to 8699 of SEQ ID NO:1. In a further preferred embodiment the region downstream of the rearranged VH gene of the hypermutating cell comprises nucleotides 5709 to 8634 of SEQ ID NO:1.

15

20

25

30

35

10

5

In a further preferred embodiment of the third aspect, the vector further comprises a selectable marker. The term "selection marker" or "selectable marker" includes both positive and negative selection markers. A "positive selection marker" is a nucleic acid sequence that allows the survival of cells containing the positive selection marker under growth conditions that kill or prevent growth of cells lacking the marker. An example of a positive selection marker is a nucleic acid sequence which promotes expression of the neomycin resistance gene, or the kanamycin resistance gene. Cells not containing the neomycin resistance gene are selected against by application of G418, whereas cells expressing the neomycin resistance gene are not harmed by G418 (positive selection). A "negative selection marker" is a nucleic acid sequence that kills, prevents growth of or otherwise selects against cells containing the negative selection marker, usually upon application of an appropriate exogenous agent. An example of a negative selection marker is a nucleic acid sequence which promotes expression of the thymidine kinase gene of herpes simplex virus (HSV-TK). Cells expressing HSV-TK are selected against by application of ganciclovir or 1-2'-deoxy-2'fluoro-b-D-arabinofuranosyl-5iodouracil (FIAU); negative selection), whereas cells not expressing the gene are relatively unharmed by ganciclovir or FIAU.

In a further preferred embodiment the vector encodes an anchor molecule suitable for display of the protein encoded by the target nucleic acid molecule.

15

In a further preferred embodiment the vector comprises a target nucleic acid molecule with an epitope tag(s) (for example, two flag tags).

In a further preferred embodiment, the vector for targeted integration comprises a sequence as set out in SEQ ID NO:110.

The present invention provides a novel approach for generating diversity in a gene product (see Figure 2). An important feature of the present invention is that the target nucleic acid molecule is integrated into the immunoglobulin locus of a host cell genome. This integration is achieved by including sequences homologous to regions upstream and downstream of the rearranged V gene in the integration vector. This directed integration ensures that the target nucleic acid molecule is positioned in proximity to elements that effect hypermutation (eg. in proximity to elements such as an intronic enhancer, matrix attachment regions and/or a 3' enhancer) following integration.

The integration process also ensures that only one copy of the target nucleic acid molecule is present in each cell. This facilitates the recovery of mutant target nucleic acid sequences of interest following the selection process by, for example, PCR or RT-PCR. In contrast, methods which involve the introduction of a target nucleic acid on a self replication vector or on a vector which integrates randomly into the host genome are likely to result in multiple mutated copies of target nucleic acid molecule in the host cell. This makes it difficult to determine which sequence encodes the mutant gene product which has been selected for its desired properties.

25

30

35

5

10

15

20

It will be appreciated that the methods of the present invention may be used for a variety of purposes. For example, the methods of the present invention can be used to effect affinity maturation of antibodies. In one aspect, the invention may be applied toward improving the affinity of antibodies from "naive," i.e., non-immune, phage human antibody libraries. Such libraries already exist and yield antibodies to any antigen. However, since they are made from non-immunized individuals, their affinities are low. In another aspect of the invention, the affinity of antibodies that were generated by conventional hybridoma techniques can be improved by applying a high rate mutagenesis system of the invention to the isolated target nucleic acid encoding for the initial low-affinity antibody. These enhanced-affinity antibodies can

16

be utilized as improvements over many antibody-based diagnostics and therapeutics currently available.

The methods of the present invention allow a very large library of peptides and single-chain antibodies to be screened and the polynucleotide sequence encoding the desired peptide(s) or single-chain antibodies to be selected. The pool of polynucleotides can then be isolated and shuffled to recombine combinatorially the amino acid sequence of the selected peptide(s) (or predetermined portions thereof) or single-chain antibodies (or just V_H , V_L , or CDR portions thereof). Using these methods, one can identify a peptide or single-chain antibody as having a desired binding affinity for a molecule and can exploit the process of the invention to converge rapidly to a desired high-affinity peptide or scFv. The peptide or antibody can then be synthesized in bulk by conventional means for any suitable use (e.g., as a therapeutic or diagnostic agent).

The mutagenesis system can also be used to effect receptor or ligand modification. In one aspect, the invention can generate a ligand or receptor with enhanced binding characteristics for its corresponding receptor or ligand. In another aspect, the mutagenesis system can be used to generate an inhibitor of functional receptor-ligand interaction by creating a ligand or receptor that still binds, but does not elicit a functional response. In yet another aspect of the invention, multiple biologically active variants of a target protein can be identified and recovered, thereby providing a means to study structure-function relationships of the protein. Additionally, species diversity can be investigated by comparing results obtained by selections utilizing receptors or other molecules from different species.

25

5

10

A receptor or ligand can be modified such that it can still bind, but does not signal any more. Alternatively, a better signalling ligand can be selected, which would provide a lower effective dosage of a pharmacologically active therapeutic.

The mutagenesis system of the present invention may also be used, for example, on a target such as caspase, an initiation factor target involved in a novel survival mechanism. This involves a cascade of essentially signalling reactions on the route to programmed cell death (apoptosis). Caspase-3 once activated binds to, and cleaves (activates) the 'cell death' proteins (including Id3). *In vivo* mutation and expression of mutated caspases, especially caspase-3, would have an effect on apoptosis. Therefore caspase 3 would be a preferred target molecule. This could be relevant to diagnostics

in cell signal transduction for monitoring and detection of cancer, and with potential therapeutic outcomes.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

A Brief Description of the Figures

10

5

- **Figure 1**: Alignment of human immunoglobulin heavy chain promoters for VH4 alleles. Sequences provided as SEQ ID NO's 2 to 7.
- Figure 2: Schematic representation of a preferred method of the present invention.

15

- **Figure 3:** Schematic representation of the gene targeting region the preferred site for direct insertion of the target nucleic acid into a rearranged V gene.
- Figure 4: Schematic representation of vector 3kb15a-7-4T.

- Figure 5: Schematic representation of vector KW2.
- Figure 6: Schematic representation of vector for targeted integration, KW3.
- 25 **Figure 7**: RAMOS cells stained with CFSE showing successive divisions on each day.
 - Figure 8: Schematic representation of vector pME18SasFP499.
- **Figure 9:** The effect of DNA amount and electroporation parameters on transfection of RAMOS RA-1 cells with pME18SEGFP.
 - **Figure 10**: Comparison of RAMOS RA-1 cells transfected with pME18sEGFP, pME18sasFP499 or mock transfected.

- Figure 11: (A): Quantum Simply Cellular Beads stained with mouse anti-human IgM-Alexa 488. (B) RAMOS cells stained with mouse anti-human IgM-Alexa 488. (C) Quantitation of IgM molecules on the surface of RAMOS RA-1 cells.
- Figure 12: Comparison of IgM expression on RAMOS RA-1 cells of different passage number. (A) RAMOS RA-1 passage 1 (B) RAMOS RA-1 passage 14.
 - Figure 13: IgM expression on RAMOS RA-1 samples from different sources.
- Figure 14: Schematic representation of sequential overlap extension PCR.
 - **Figure 15**: Schematic representation of mammalian expression vector pME18sCD26asfp499.
- Figure 16: Comparison of expression of asFP499 with and without the CD26 anchor in RAMOS RA-1.
 - **Figure 17**: Comparison of expression of asFP499 with and without the CD26 anchor in HEK 293 T.

Key to the Sequence Listing

- SEQ ID NO:1 Heavy chain locus of Ramos RA-1 cells.
- SEQ ID NO:2 Sequence of promoter region of a VH4 allele.
- 25 SEQ ID NO:3 Sequence of promoter region of a VH4 allele.
 - SEQ ID NO:4 Sequence of promoter region of a VH4 allele.
 - SEQ ID NO:5 Sequence of promoter region of a VH4 allele.
 - SEQ ID NO:6 Sequence of promoter region of a VH4 allele.
 - SEQ ID NO:7 Consensus sequence of SEQ ID NO's 2 to 6.
- 30 SEQ ID NO:8 Plasmid pME18SasFP499.
 - SEQ ID NO:9 Sequence of enhancer of human immunoglobulin D segment locus.
 - SEQ ID NO:10 Sequence of enhancer of human immunoglobulin heavy locus on chromsome 14.
 - SEQ ID NO:11 Sequence of sheep immunoglobulin heavy chain 5' intronic enhancer.
- 35 SEQ ID NO:12 Sequence of mouse 3' IgH regulatory enhancer.
 - SEQ ID NO:13 Sequence of murine IgH enhancer.

- SEQ ID NO:14 Sequence of mouse 3' kappa enhancer.
- SEQ ID NO:15 Promoter sequence of mouse immunoglobulin VH gene.
- SEQ ID NO:16 Promoter sequence of mouse immunoglobulin V1 gene.
- SEQ ID NO:17 Promoter sequence of mouse immunoglobulin mu heavy chain gene.
- 5 SEQ ID NO:18 Promoter sequence of mouse immunoglobulin VH gene.
 - SEQ ID NO:19 Homo sapiens germline IgH chain (ProV4-39) gene fragment.
 - SEQ ID NO:20 Homo sapiens germline IgH chain (ProV3-30) gene fragment.
 - SEQ ID NO:21 Homo sapiens germline IgH chain (ProV3-9) gene fragment.
 - SEQ ID NO:22 Homo sapiens germline IgH chain (ProV1-18) gene fragment.
- SEQ ID NO:23 GPI signal from human decay-accelerating factor.
 - SEQ ID NO:24 Polynucleotide encoding SEQ ID NO:23.
 - SEQ ID NO:25 GPI signal from porcine membrane dipeptidase.
 - SEQ ID NO:26 Polynucleotide encoding SEQ ID NO:25.
 - SEQ ID NO:27 GPI signal from rat ceruloplasmin.
- 15 SEQ ID NO:28 Polynucleotide encoding SEQ ID NO:27.
 - SEQ ID NO:29 GPI signal from mouse Thy-1.
 - SEQ ID NO:30 Polynucleotide encoding SEQ ID NO:29.
 - SEQ ID NO:31 Transmembrane domain of murine B7-1.
 - SEQ ID NO:32 Polynucleotide encoding SEQ ID NO:31.
- 20 SEQ ID NO:33 Signal sequence of CD59.
 - SEQ ID NO:34 Polynucleotide encoding SEQ ID NO:33.
 - SEQ ID NO's 35 to 86, 88 to 90, 92 to 103, 105, 106, 108 to 120 Oligonucleotide primers.
 - SEQ ID NO:87 Plasmid 3kb15a-7-4T.
- 25 SEQ ID NO:91 Plasmid KW2.
 - SEQ ID NO:104 Plasmid pME18sCD26asFP499.
 - SEQ ID NO:107 Sequence of coding region of AICDA cDNA.
 - SEQ ID NO:110 Plasmid KW3.

30 Detailed Description of the Invention

General Techniques

35

The present invention is performed without undue experimentation using, unless otherwise indicated, conventional techniques of molecular biology, microbiology, virology, recombinant DNA technology, peptide synthesis in solution, solid phase

peptide synthesis, and immunology. Such procedures are described, for example, in the following texts that are incorporated by reference:

20

- Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Second Edition (1989), whole of Vols I, II, and III;
- 2. DNA Cloning: A Practical Approach, Vols. I and II (D. N. Glover, ed., 1985), IRL Press, Oxford, whole of text;
- 3. Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson *et al.*, pp35-81; Sproat *et al.*, pp 83-115; and Wu *et al.*, pp 135-151;
 - 4. Nucleic Acid Hybridization: A Practical Approach (B. D. Hames & S. J. Higgins, eds., 1985) IRL Press, Oxford, whole of text;
 - 5. Animal Cell Culture: Practical Approach, Third Edition (John R.W. Masters, ed., 2000), ISBN 0199637970, whole of text;
- 15 6. Immobilized Cells and Enzymes: A Practical Approach (1986) IRL Press, Oxford, whole of text;
 - 7. Perbal, B., A Practical Guide to Molecular Cloning (1984);

5

- 8. Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.), whole of series;
- 9. J.F. Ramalho Ortigão, "The Chemistry of Peptide Synthesis" *In:* Knowledge database of Access to Virtual Laboratory website (Interactiva, Germany);
 - 10. Sakakibara, D., Teichman, J., Lien, E. Land Fenichel, R.L. (1976). *Biochem. Biophys. Res. Commun.* 73 336-342
 - 11. Merrifield, R.B. (1963). J. Am. Chem. Soc. 85, 2149-2154.
- 25 12. Barany, G. and Merrifield, R.B. (1979) in *The Peptides* (Gross, E. and Meienhofer, J. eds.), vol. 2, pp. 1-284, Academic Press, New York.
 - Wünsch, E., ed. (1974) Synthese von Peptiden in Houben-Weyls Metoden der Organischen Chemie (Müler, E., ed.), vol. 15, 4th edn., Parts 1 and 2, Thieme, Stuttgart.
- 30 14. Bodanszky, M. (1984) Principles of Peptide Synthesis, Springer-Verlag, Heidelberg.

21

- 15. Bodanszky, M. & Bodanszky, A. (1984) The Practice of Peptide Synthesis, Springer-Verlag, Heidelberg.
- 16. Bodanszky, M. (1985) Int. J. Peptide Protein Res. 25, 449-474.

5 <u>Hypermutating cells</u>

In the context of the present invention, the hypermutating cells may be bacterial, yeast, avian, fungal, insect or mammalian cells. Examples of suitable hypermutating cells are described below.

10

15

Bacterial hypermutating strains:

- (i) Epicurian coli mutator strain XL1-Red (triple DNA repair deficient mutD, mutS, mut T) by Stratagene;
- (ii) Escherichia coli mutator strain MutD5 (MutD5-FIT, mutated DNAQ gene) Irving RA, Kortt AA, Hudson PJ (1996). Immunotechnology 2(2) 127-43;
- (iii) Escherichia coli strain FC40. Foster PL (2000) Bioessays 22(12): 1067-74 and Powell SC & Wartwell RM (2001) Mutation Research 473 (2) 219-28;
- (iv) Serogroup B meningococcal strains BF18, BF21 (defect in methyl directed mismatch repair lack DNA adenine methyltransferase (Dam) activity). Bucci *et al.* (1999) Mol Cell 3 (4) 435-45.

20

25

35

Yeast hypermutating strains:

- (i) Saccharomyces cerevisiae strain (mlh1 Δ mutant). Shcherbakova & Kunkel (1999). Molecular and Cellular Biology 19(4) 3177-3183.
- (ii) Saccharomyces cerevisiae strain DAG60 (msh2 mutant). (deficient in mismatch repair system). Drotschmann et al. (1999) Proc. Natl Acad Sci USA 96 2970-2975.

Mammalian hypermutating strains:

- 30 (i) Human B cell lines from Burkitt's lymphoma strains: RAMOS, BL2, BL41, BL70, Nalm-6. Sale & Neuberger (1998) Immunity 9 (6) 859-869.
 - (ii) BL2: Denepouxs et al. (1997) Immunity 6(1) 35-46 and Poltorasky et al. (2001) Proc Natl Acad Sci USA 98 (14) 7976-81
 - (iii) Human pre B cell line strain 18.81. Bachl et al. (2001) Journal Immunology 166 (8) 5051-7.

Intronic Enhancers

Examples of suitable exogenous intronic enhancers for use in the present invention include the following:

- 1) DNA sequence of the human immunoglobulin D segment locus (Rabbitts et al (1983) Nature 306 (5945), 806-809):
- 5' CGGCCCGATGCGGGACTGCGTTTTGACCATCATAAATCAAGTTTATTTT

 TTTAATTAATTGAGCGAAGCTGGAAGCAGATGATGAATTAGAGTCAAGATG
 GCTGCATGGGGGTCTCCGGCACCCACAGCAGGTGGCAGGAAGCAGGTCAC
 CGCGAGAGTCTATTTTAGGAAGCAAAAAAACACAATTGGTAAATTTATCAC
 TTCTGGTTGTGAAGAGGTGGTTTTGCCCAGGCCCAGATCTGAAAGTGCTCT
 ACTGAGCAAAACAACACCTGGACAATTTGCGTTTCTAAAATAAGGCGAGGC

 TGACCGAAACTGAAAAGGCTTTTTTTAACTATCTGAATTTCATTTCCAATCT
 TAGCTTATCAACTGCTAGTTTGTGCAAACAGCATATCAACTTCTAAACTGCA
 TTCATTTTTAAAGTAAGATGTTTAAGAAATTAAACAGTCTTAGGGAGAGTTT
 ATGACTGTATTCAAAAAAGTTTTTTAAATTAGCTTGTTATCCCTTCATGTGTA
 ATTAATCTCAAATACTTTTTCGATACCTCAGAGCATTATTTTCATAATGACT
 GTGTTCACAATCTTTTT 3' (SEQ ID NO:9)
 - 2) Homo sapiens immunoglobulin heavy locus (IGH.1@) on chromosome 14 (Ravetch et al (1981) Cell 27 (3 Pt 2), 583-591):
- 5'GGCCCGATGCGGGACTGCGTTTTGACCATCATAAATCAAGTTTATTTTT
 TAATTAATTGAGCGAAGCTGGAAGCAGATGATGAATTAGAGTCAAGATGG
 CTGCATGGGGGTCTCCGGCACCCACAGCAGGTGGCAGGAAGCAGGTCACC
 GCGAGAGTCTATTTTAGGAAGCAAAAAAACACAATTGGTAAATTTATCACT
 TCTGGTTGTGAAGAGGTGGTTTTGCCCAGGCCCAGATCTGAAAGTGCTCTA

 30 CTGAGCAAAACAACACCTGGACAATTTGCGTTTCTAAAATAAGGCGAGGCT
 GACCGAAACTGAAAAGGCTTTTTTTAACTATCTGAATTTCATTTCCAATCTT
 AGCTTATCAACTGCTAGTTTGTGCAAACAGCATATCAACTTCTAAACTGCAT
 TCATTTTTAAAGTAAGATGTTTAAGAAATTAAACAGTCTTAGGGAGAGTTT
 ATGACTGTATTCAAAAAAGTTTTTTAAATTAGCTTGTTATCCCTTCATGTGAT

 35 AATTAATCTCAAATACTTTTTCGATACCTCAGAGCATTATTTTCATAATGAC
 TGTGTTCACAATCTTTTT 3' (SEQ ID NO:10)

23

- 3) Ovis aries immunoglobulin heavy chain 5' intronic enhancer (Dufour et al (1996) J. Immunol 156:2163-2170):
- 5'CTGCGAATACCGAGACGGGCCTCTCAAAGCCACCCCTGATAGTCTGGAA 5 AATTGAAACTTTAAAAAGAGAGATGTTTAAAGTATTTTAAATTTTTATCATT TAATTAACAACTGCGAATCATGGCTTTGGAGAGTTGAGTAAGAGTTTGGCT GAAAAGTACTAACTAGGTTCCATCGGCCCTCGGCCCCAATTCAGGGCTGTT TTGAGAATAAATTCAGCTTATTTTTTAATGTAATTGGTGGTGCCGAGT TAGTCAAGATGGCCACGGGCCAGACTGACCACCTGCAGCAGGTGGCAGGA 10 AGCATGTCCACTTGAGAGTCTGTTTTTGGAAGCAAGAAAAAACAGTTGGTA AATTTATCGCTTCTGGTTTCCAAAAGGTGGTTTGCGGCTGGTTTTGCCCAGC CCCACAGAACCGAAAGTGTTCCACTGAGCACAACAGCACCTGGCTAATTTG CATTTCTAAAATAAGGCGCAGATGCTGACCGAAACTGGAAGGTTCCTCTTC 15 TAACTATTTGAGTTAACTTCAGCTTTAGCTTATCAACTGCTCACTTATCTTCA TTTTCAAAGTCGATGTTTAAGAAAGCCACCTGTCTCGGGTGCACTGTCTCGG TGCATTGCTGCACTCTCTGATGAGCCGTCCTTCAAGGTGGTTGAGCTGAG 3' (SEQ ID NO:11)
- 20 4) Mouse 3' IgH regulatory enhancers (C alpha3'E and hs3) (Saleque et al (1997) J. Immunol. 158 (10), 4780-4787):

24

5) Murine IgH enhancer (Kadesch et al (1986) Nucleic Acids Res. 14 (20), 8209-15 8221):

3' kappa enhancers

20

- An example of a suitable exogenous 3' kappa enhancer for use in the present invention is as follows.
 - 1) Murine 3' kappa enhancer (Meyer and Neuberger (1989) EMBO J. 8 (7), 1959-1964):
 - 5'AGCTCAAACCAGCTTAGGCTACACAGAGAAACTATCTAAAAAAATAATTA CTAACTACTTAATAGGAGATTGGATGTTAAGATCTGGTCACTAAGAGGCAG AATTGAGATTCGAACCAGTATTTTCTACCTGGTATGTTTTAAATTGCAGTAA

- 5 AAAGTAATGCTACCTTATTGGGAGTGTCCCATGGACCAAGATAGCAACTGT CATAGCTACCGTCACACTGCTTTGATCAAGAAGACCCTTTGAGGAACTGAA AACAGAACCTTAGGCACATCTGTTGCTTTCGCTCCCATCCTCCTAACAGC CTGGGTGGTGCACTCCACACCCTTTCAAGTTTCCAAAGCCTCATACACCTGC TCCCTACCCCAGCACCTGGCCAAGGCTGTATCCAGCACTGGGATGAAAATG
- 10 ATACCCCACCTCCATCTTGTTTGATATTACTCTATCTCAAGCCCCAGGTTAG
 TCCCCAGTCCCAATGCTTTTGCACAGTCAAAACTCAACTTGGAATAATCAGT
 ATCCTTGAAGAGTTCTGATATGGTCACTGGGCCCATATACCATGTAAGACA
 TGTGGAAAAGATGTTTCATGGGGCCCAGACACGTTCTAG 3' (SEQ ID NO:14)

15 <u>Promoter sequences</u>

Examples of suitable exogenous promoter sequences for use in the present invention include:

- 20 1) (Kataoka et al (1982). J Biol. Chem. 257: 2777-285):
 - 5' AAGCAGCCCTCAGGCAGAGGATAAAAGCTCACACTAACTGAGAAGC TCCATCCTCTTCTC 3' (SEQ ID NO:15)
- 25 2) (Clarke et al (1982). Nucleic Acids Res. 10: 7731):
 - 5' AATTAGGCCACCCTCATCACATGAAAACCAGCCCAGAGTGACTCTAG CAGTGGGATCCTG 3' (SEQ ID NO:16)
- 30 3) Grosschedl and Baltimore D., (1985). Cell 41: 885-897):
 - 5' CATGTGCGACTGTGATGATTAATATAGGGATATCCACACCAAACATC ATATGAGCCCTAT 3' (SEQ ID NO:17)
- 35 4) (Schiff et al (1986). J. Exp. Med. 163: 573-587):

26

5' AACATGAGTCTGTGATTATAAATACAGAGATATCCATACCAAACAAC TTATGAGCACTGT 3' (SEQ ID NO:18)

Murine B lymphocyte VH promoters (eg. V1 Ig VH promoter, BCL1 VH promoter) may also be used in the methods of the present invention.

Human Immunoglobulin heavy chain promoters

5

30

35

The following human heavy chain promoters are described in in Haino et al (1994) J. Biol. Chem. 269 (4), 2619-2626:

1) Homo sapiens germline IGH chain (ProV4-39) gene fragment:

2) Homo sapiens germline IGH chain (ProV3-30) gene fragment:

3) Homo sapiens germline IGH chain (ProV3-9) gene fragment:

5'CAGTAGAAATGCTAATAAGAATTAATTGTTTATGAAGTGTAATCACTCTG GGACACAGCCCACTCAGAGGCATCCCTTCCAGAACCCGCTATATAGTAGGA GACATGCAAATAGGGCCCTCCCTCTGCTGATGAAAACCAGCCCAGCCCTGA

27

CCCTGCAGCTCTGGGAGAGGAGCCCCAGCCCTGAGATTCCCAGGTGTT TCCATTCAGTGATCAGCACTGAACACAGAGGACTCACC 3' (SEQ ID NO:21)

4) Homo sapiens germline IGH chain (ProV1-18) gene fragment:

5

10

15

20

25

30

35

5'GATGGGTAGGGGATGCGTGTCCTCTAACAGGATTACGTCTTGAACCCTCA GCTTCTACAATTGTGTCGTCCATGTGTCATGTATTTGCTCTTTCTCATCCTGG GTCAGGAATTGGGCTATTAAATAGCATCCTTCATGAATATGCAAATAACTG AGGTGAATATAGATATCTGTGTGCCCTGAGAGCATCACCCAAAAACCACAC CCCTCCTTGGGAGAATCCCCTAGATCACAGCTCCTCACC 3' (SEQ ID NO:22)

Methods for selection of nucleic acids or proteins/peptides with an altered phenotype

The terms "altered phenotype", "desired activity" and "altered activity" are generally used interchangeably herein.

In particular embodiments of the present invention, the mutated nucleic acid, or gene product encoded thereby, is subjected to an assay for identifying an altered phenotype. Suitable procedures for identifying altered phenotypes include, but are not limited to, those described below.

Protein/peptide display and selection

In one embodiment of the invention, proteins encoded by nucleic acids obtained using the methods of the invention are displayed on the surface of the hypermutating cells.

One well-known peptide display method involves the presentation of a peptide sequence on the surface of a filamentous bacteriophage, typically as a fusion with a bacteriophage coat protein. The bacteriophage library can be incubated with an immobilized, predetermined macromolecule or small molecule (e.g., a receptor) so that bacteriophage particles which present a peptide sequence that binds to the immobilized macromolecule can be differentially partitioned from those that do not present peptide sequences that bind to the predetermined macromolecule. The bacteriophage particles (i.e., library members) which are bound to the immobilized macromolecule are then recovered and replicated to amplify the selected bacteriophage subpopulation for a subsequent round of affinity enrichment and phage replication. After several rounds of

28

affinity enrichment and phage replication, the bacteriophage library members that are thus selected are isolated and the nucleotide sequence encoding the displayed peptide sequence is determined, thereby identifying the sequence(s) of peptides that bind to the predetermined macromolecule (e.g., receptor). Such methods are further described in WO 91/17271, WO 91/18980, WO 91/19818 and WO 93/08278.

WO 93/08278 describes a recombinant DNA method for the display of peptide ligands that involves the production of a library of fusion proteins with each fusion protein composed of a first polypeptide portion, typically comprising a variable sequence, that is available for potential binding to a predetermined macromolecule, and a second polypeptide portion that binds to DNA, such as the DNA vector encoding the individual fusion protein. When transformed host cells are cultured under conditions that allow for expression of the fusion protein, the fusion protein binds to the DNA vector encoding it. Upon lysis of the host cell, the fusion protein/vector DNA complexes can be screened against a predetermined macromolecule in much the same way as bacteriophage particles are screened in the phage-based display system, with the replication and sequencing of the DNA vectors in the selected fusion protein/vector DNA complexes serving as the basis for identification of the selected library peptide sequence(s).

20

25

30

35

15

5

10

The displayed protein/peptide sequences can be of varying lengths, typically from 3-5000 amino acids long or longer, frequently from 5-100 amino acids long, and often from about 8-15 amino acids long. A library can comprise library members having varying lengths of displayed peptide sequence, or may comprise library members having a fixed length of displayed peptide sequence. Portions or all of the displayed peptide sequence(s) can be random, pseudorandom, defined set kernal, fixed, or the like. The display methods include methods for display of single-chain antibodies, such as nascent scFv on polysomes or scFv displayed on phage, which enable large-scale screening of scFv libraries having broad diversity of variable region sequences and binding specificities.

Another method of display is bacterial surface display. The protein of interest is expressed on the bacterial cell surface as a fusion with one of the following proteins, OmpA, LamB, PhoE, FliC, PALD, and EaeA intimin. Alternatively it may be expressed in the periplasm (periplasmic expression with cytometric screening, (PECS))

(Chen et al., 2001). Whilst experiments demonstrate expression on the bacterial cell

5

10

15

20

25

surface, this display system is not operating as well or used as frequently as the yeast surface display. The nature of a prokaryotic system itself may explain why the system is not always preferred. Firstly, bacteria lack the protein folding and post-translational modification machinery required for the presentation of an eukaryotic protein.

Secondly, the protein of interest needs to be expressed in a soluble form. Thirdly, steric interference from the bacterial lipopolysaccharide layer can potentially impede binding to larger macromolecular antigens. Despite being a single cell system (one plasmid to each bacterium), capable of displaying thousands of copies of the protein of interest on the cell surface and being amenable to screening using flow cytometry, this system offers no additional advantages over the yeast surface display system.

A further method of display is yeast surface display. The protein of interest is fused to an alpha agglutinin subunit called Aga2p and expressed on the surface of the yeast cell. This form of display appears to be very successful and offers several advantages over other display systems. These include; correct protein folding and secretion (homologous to that in mammalian cells), display of large numbers of protein on yeast cell surface, single cell system (i.e. each yeast cell contains only one plasmid copy), system is amenable to screening using flow cytometry which offers finer quantitative discrimination between mutants and the dissociation constant (K_D) can be estimated *in situ* in the display format without having to subclone. The major disadvantage of this system is that the library size is restricted due to low transfection efficiency. To date no one has managed to overcome this limitation of the system.

Proteins can be anchored to the surface of mammalian cells via a number of different anchors including, but not limited to, Type I transmembrane domains (TM I), type II transmembrane (TM II) and glycosylphosphatydlinisitol (GPI).

Examples of suitable GPI anchor attachment signals include:

30 (i) GPI signal from human decay-accelerating factor (DAF). Caras IW, Weddell GN, Davits MA, Nussenzweig W, Martin DW. (1987) Science 238(4831):1280-3
Accession No.: AY055758

Peptide sequence: PNKGSTTSGTTRLLSGHTCFTLTGLLGTLVTMGLLT (SEQ ID NO:23)

Nucleotide sequence: 1158-1268

30

CCAAATAAAGGAAGTGGAACCACTTCAGGTACTACCCGTCTTCTATCTGGG CACACGTGTTCACGTTGACAGGTTTGCTTGGGACGCTAGTAACCATGGGC TTGCTGACT (SEQ ID NO:24)

5 (ii) GPI signal from porcine membrane dipeptidase. Hooper NM, Low MG, Turner AJ. (1987) Biochem. J. 244(2):465-9

Accession No.: E04233

Peptide sequence: CRTNYGYSAAPSLHLPPGSLLASLVPLLLLSLP (SEQ ID NO:25)

- Nucleotide sequence: 1248-1346
 TGCCGGACGAATTACGGCTACTCAGCCGCCCCAGCCTCCACCTCCCGCCG
 GGCTCGCTGCCTCCTCCTCGTGCCCCTCCTCCTCAGTCTTCCG (SEQ ID NO:26)
- 15 (iii) GPI signal from rat ceruloplasmin. Patel BN, Dunn RJ & David S. (2000) J. Biol. Chem. 275(6):4305-10

Accession No.: AF202115

Peptide sequence: ASSQSYRMTWNILYTLLISMTTLFQISTKE (SEQ ID NO:27)

Nucleotide sequence: 3161-3252

- 20 GCATCGTCTCAGAGCTACAGGATGACCTGGAACATACTCTATACACTGTTA
 ATCAGCATGACTACTTTATTCCAAATATCTACCAAGGAG (SEQ ID NO:28)
 - (iv) GPI signal from mouse Thy-1. Bernasconi E, Fasel N & Wittek R. (1996) J. Cell Sci. 109(6):1195-201
- 25 Peptide sequence: SSNKSISVYRDKLVKCGGISLLVQNTSWMLLLLLSLSLLQALDFISL (SEQ ID NO:29)

Nucleotide sequence:

- AGCTCCAATAAAAGTATCAGTGTGTATAGAGACAAGCTGGTCAAGTGTGGC

 GGCATAAGCCTGCTGGTTCAGAACACATCCTGGATGCTGCTGCTGCTTT

 CCCTCTCCCTCCAAGCCCTGGACTTCATT (SEQ ID NO:30)
 - (v) Dictyostelium discoideum protein 1I. Stevens BA, White IJ, Hames BD Hooper NM. (2001) Biochimica et Biophysica Acta 1511: 317-329.

- (vi) Plasmodium falciparum merozoite surface protein-1. Burghas PA, Gerold P, Pan W, Schwartz RT, Lingelbach K, Burjard H. (1999) Molecular and Biochemical Parisitology 104:171-183.
- 5 An example of a suitable transmembrane domain for use as an anchor domain in the present invention is:
 - (i) The transmembrane domain of murine B7-1. Chou W., Liao K., Jiang S.Y., Yeh M.Y. and Roffler S.R.(1999) Biotechnol Bioeng. 1999 Oct 20;65(2):160-9.
- 10 Accession No.:AH00465S3

Peptide sequence: PEDPPDSKNTLVLFGAGFGAVITVVVIVVIIKCFCKH (SEQ ID NO:31)

Nucleotide sequence: 171-281:

CCCAGAAGACCCTCCTGATAGCAAGAACACACTTGTGCTCTTTGGGGCAGG

ATTCGGCGCAGTAATAACAGTCGTCGTCATCGTTGTCATCAAATGCTTC

TGTAAGCAC (SEQ ID NO:32)

Other suitable examples include those provided in Table 1.

20 Table 1 : Examples of anchors suitable for surface display:

Anchor type	Molecule name	Accession No.
Transmembrane type I (TM I)	CD1a	X04450 (gi 32495)
	CD68	BC05557(gi 33869409)
Transmembrane type II (TM II)	CD10	Y00811 (gi 29625)
	CD13	X13276 (gi 28677)
	CD26	M74777 (gi 180082)
Glycosylphosphatydlinisitol (GPI)	CD14	X113334 (gi 29740)
	CD24	M58664 (gi 180167)
	CD48	M59904 (gi 180138)
	CDw52	X62466 (gi 29645)
	CD55	M31516 (gi 181467)
	CD59	X16447(gi 29805)
	CD67	X52378 (gi 29918)

Signal peptide sequences

For TM1 and GPI anchors, an N-terminal signal sequence as well as a C-terminal signal sequence is preferably be added to the polypeptide if it is not normally found on the cell surface. For TM2 the signal and anchor sequence are one and the same and are added to the N-terminus of the polypeptide. To achieve adequate levels of surface expression, it may be necessary to mutate the initiation codon of the target gene so that only chimeric proteins consisting of the signal and/or anchor fused to the target protein are produced.

10

5

An example of an appropriate signal sequence is the signal sequence of CD59:

Accession No.:X16447 (gi 180082)

Peptide sequence: MGIQGGSVLFGLLLVLAVFCHSGHS (SEQ ID NO:33)

Nucleotide sequence: 64-138

5'ATGGGAATCCAAGGAGGTCTGTCCTGTTCGGGCTGCTGCTCCTGGC TGTCTTCTGCCATTCAGGTCATAGC 3' (SEQ ID NO:34)

Proteins/peptides encoded by mutant nucleic acids obtained using the methods of the invention can be used in a number of yeast based methods to detect protein-protein interactions. One well known system is the yeast two-hybrid system (Fields and Song 1989) which has been used to identify interacting proteins and to isolate the corresponding encoding genes. In this system, prototrophic selectable markers which allow positive growth selection are used as reporter genes to facilitate identification of protein-protein interactions. Related systems which may be employed include the yeast three-hybrid system (Licitra and Liu 1996) and the yeast reverse two-hybrid system (Vidal et al. 1996). Such procedures are known to those skilled in the art.

Examples

30

35

25

20

Example 1: Defining a region in RAMOS cells for integration of target genes

Methods & Materials

Cell line and cell culture conditions

33

The RAMOS strain RA 1 was obtained from the American Tissue Culture Collection (ATCC-CLR-1596). This strain is IgM positive and expresses the interleukin 4 (IL-4) and CD23 receptors. Cells were maintained in RPMI 1640 medium (Gibco BRL) supplemented with 10% heat inactivated fetal calf serum (FCS) and penicillin (100 U / ml) and streptomycin (100 μg / ml), and incubated at 37 °C with 5% CO₂.

Extraction of DNA from cells

5

10

15

20

35

Cells were harvested and centrifuged at 1500 rpm and resuspended in PBS. DNA was extracted from cells using a Genoprep DNA isolation kit (Scientifix, Australia) according to manufacturer's instructions. Briefly, after removing the supernatant 375 µl of lysis and binding solution was added to cells (5 x 10⁵), together with 20 µl Genoprep DNA magnetic beads. This mixture was vortexed for five seconds then incubated at room temperature for a minimum of ten minutes on a rocker, or rotating wheel. Beads with attached DNA were collected using a magnet, the supernatant was removed and 450 µl of washing solution was added. The mixture was subsequently vortexed for five seconds and the beads were collected as described previously. This washing procedure was repeated twice, with the final wash solution being 70 % ethanol. Beads were resuspended in 450 µl of 70 % ethanol and transferred to a new tube. After removing the supernatant, 450 µl of sterile water was added to the beads and removed immediately. The beads were then resuspended in 200 µl of sterile water and incubated at 70 °C for two minutes to elute the DNA. The beads were collected again using a magnet and the supernatent containing the eluted DNA was transferred to a new tube.

The quantity and quality of isolated DNA was determined by spectrometry and electrophoresis. A culture containing 5×10^5 cells consistently yielded 10 ng / μl of DNA. This DNA migrated as a single band at approximately 23 kbp on a 0.9 % gel indicating that the genomic DNA was intact.

30 Sequencing of the 5' region upstream of the rearranged VH allele

The homologous sequence upstream of the site of integration chosen for the vector corresponds to a \sim 5kb fragment between the VH₇₋₃₅ and VH₄₋₃₄ alleles of the immunoglobulin heavy chain locus of the RAMOS cell line (corresponding to the sequence gi 4512287 nucleotides 54521 – 59517).

5

10

15

20

25

30

WO 2004/055182 PCT/AU2003/001697

RAMOS RA-1 genomic DNA was prepared using the Genoprep DNA isolation kit Platimun PfX DNA polymerase (GibcoBRL, Life (Scientifix, Australia). Technologies) was used to amplify fragments varying from 300bp to 1000 bp from The reaction included 1 X PfX amplification buffer, 50 mM genomic DNA. Magnesium sulfate, 1 X PCR enhancer solution, forward primer (10 pM), reverse primer (10 pM), dNTPs (10 mM each) template DNA (100 ng), platinum PfX DNA polymerase (0.6 U) and sterile water in a final volume of 20 µl. Cycling conditions were as follows; one cycle of 95°C for 5 minutes, 30 cycles of 95°C for seconds, 60°C for 30 seconds, 68°C for one and a half seconds, and one cycle of 72°C for 7 minutes. Annealing temperatures and extension times for some primer sets varied, ranging from 55°C to 65°C and one minute to two and a half minutes respectively. Primers were designed based on the human germline DNA for immunoglobulin heavy-chain variable region, complete sequence gi 4512287 nucleotides 54786 to 59721 (Table 2). A second PCR reaction was performed using 0.5 / 20 µl of the first PCR as a template to gain sufficient DNA for cloning.

PCR products were run on 1.0 % agarose gels and DNA was extracted using Nucleospin Extraction Kit (Nagel-Macherey, Germany) according to manufacturer's instructions. The purified DNA was digested with restriction enzymes EcoR I and Hind III. Digested products were cleaned up and concentrated using phenol extraction followed by ethanol precipitation. These products were ligated into into pBluescript SK + (Stratagene, Texas, USA) and transformed into *Escherichia coli* XL1 Blue electrocompetent bacteria. Minipreps were prepared from 5 ml overnight cultures using QIAprep miniprep spin kit (Qiagen, CA, USA) and sequenced using an ABI 373 DNA sequencer with primers T3 and T7.

Sequences were analysed using BLAST program (NBCI, http://www.ncbi.nlm.nih.gov/BLAST/) and assembled in Clone Manager Suite 7 (Scientific and Educational Software). The assembled sequence is set out as nucleotides 1 to 5190 of SEQ ID NO:1. This sequence shares 99 % similarity with the published sequence gi 4512287 nucleotides 54521–59517.

Cloning of the 5kb fragment upstream of the rearranged VH allele from genomic DNA

Genomic DNA was prepared using Genoprep DNA isolation kit (Scientifix, Australia).

Platinum PfX DNA polymerase (Invitrogen, CA. USA) was used to amplify the 5 kb

fragment from genomic DNA. The reaction included 1 X PfX amplification buffer, 50 mM magnesium sulfate, 1X PCR enhancer solution, forward primer 8771 (5°CCATCGATAATTTAGTTTTCACGGGGCATCTGCAGGGT 3°) 10 pM, reverse primer 8872 (5° GGGGTACCGTTCTTGTGCAGGAGGTCCATGACTCTCAG 3°) 10 pM, dNTPs (10 mM each) template DNA (100 ng), platinum PfX DNA polymerase (0.6 U) and sterile water in a final volume of 20 μl. Cycling conditions were as follows; one cycle of 94 °C for 15 seconds, fifteen cycles of 94°C for 10 seconds, 68°C for 3.5 minutes, 15 cycles of 94°C for 10 seconds, 68°C for 3.5 minutes with and an extra 15 seconds added each cycle, and one cycle of 72°C for 7 minutes. A second PCR reaction was performed using 0.5 / 20.0 μl of the first PCR reaction as a template to gain sufficient DNA for detection using ethidium bromide.

5

10

15

20

PCR products were run on a 0.9 % agarose gel and DNA was extracted using Gel Extraction Kit (Qiagen, CA, USA). Purified DNA was cloned into pPCRScript using the PCR-Script Amp cloning kit (Stratagene, Texas, USA) at the Srf I site. The resulting construct was referred to as 5kbPCRScript 15a-7 (7971 bp). This construct was sequenced using primers in Table 3.

Table 2: Primers used for genomic PCR to sequence the 5' region upstream of the rearranged VH allele (VH₄₋₃₄) in RAMOS RA-1

Primer Name	Sequence	Homologous sequence in gi AB019439
8444	5' CCGGAATTCAATTTGAGATTGTGTGTGAGATCTCAGGAG 3' (SEQ ID NO:35)	NT 58890 - 58920
8436	5' CCGGAATTC ATAGACAGCGCAGGTGAGGGACAG GGTCTC 3' (SEQ ID NO:36)	NT 59702 - 59731
8438	5' CCGGAATTCCTG AGA ACTCAG TTCTCTTCCTGTGGCCTC 3' (SEQ ID NO:37)	NT 59281 - 59310
8440	5' CCGGAATTCAATTTGAGATTGTGTGTGAGATCTCAGGAG 3' (SEQ ID NO:38)	NT 58890 - 58920
8441	5' CCCAAGCTTTCCTGTTACAACATCCATGGAGATATTTTG 3' (SEQ ID NO:39)	NT 58420 - 58450
8442	5' CCGGAATTC TGAATTGCAAGAACATACCCTAGGGTGTGC 3' (SEQ ID NO:40)	NT 58500 - 58530

8464	5' CCGGAATTCTAGGGCAAACAGAGGCCAGATGTTTGAGGAG	NT 57720 - 57750
: 	3' (SEQ ID NO:41)	,
8466	5' CCGGAATTCAATTTAACAGCATAAAAACGATCAGTCCAA	NT 57330 - 57360
	3' (SEQ ID NO:42)	
8470	5' CCGGAATTCCGTGTTTCTGGAGCAGGGCATGGCTTTGGG 3'	NT 56550 - 56580
	(SEQ ID NO:43)	
8472	5' CCGGAATTCGTTGGGTTCCCAGTGTAGGTGATGATCCAT 3'	NT 56160 - 56190
	(SEQ ID NO:44)	
8550	5' CCGGAATTCTCCCAGGAAGTGGGTTATTTTAAATAGTA 3'	NT 58951- 58981
	(SEQ ID NO:45)	
8553	5' CCGGAATTCACTATAGTCACCTCAGTTAATTGCATATTC 3'	NT 55770 - 55800
	(SEQ ID NO:46)	
8554	5' CCCAAGCTTGACTTCCTTTAAAAATATCTAAAATAAGTA 3'	NT 55300 - 55330
	(SEQ ID NO:47)	
8555	5' CCGGAATTCGGTTCTCATTACAACATCCAGTTTGATAAA 3'	NT 55380 - 55410
	(SEQ ID NO:48)	
8557	5' CCGGAATTCCTCCAAGAAAAGATCTCATGCATCACCAGG	NT 54990 - 55020
	3' (SEQ ID NO:49)	
8558	5' CCCAAGCTTAATTTAGTTTTCACGGGGCATCTGCAGGGT 3'	NT 54520 - 54550
	(SEQ ID NO:50)	
8606	5' CCCAAGCTTTGCACACCCTAGGGTATGTTCTTGCAATTC 3'	NT 58500 - 58530
	(SEQ ID NO:51)	
8607	5' CCCAAGCTTCCCAAAGCCATGCCCTGCTCCAGAAACACG	NT 56550 - 56580
	3' (SEQ ID NO:52)	
8608	5' CCGGAATTC CCATAATATGTGAATGCGTTATTTAGG GAA	NT 55500 - 55529
	3' (SEQ ID NO:53)	
8687	5' CCCAAGCTTCATGTTCCACGCATTACGTC 3' (SEQ ID NO:54)	NT 54336 - 54355
8689	5' CCCAAGCTTAAGAGTGTTTGGGTTCACCG 3' (SEQ ID	NT 54927 - 54946
	NO:55)	

Table 3 : Primers used for sequencing clones containing the 5 kb region upstream of the rearranged VH allele ($VH_{4.34}$) in RAMOS RA-1

Primer Name	Sequence	Homologous sequence in gi AB019439
8445	5' CCCAAGCTTTTAACTCAGGAGGACTCAATACACCCTGGA 3' (SEQ ID NO:56)	NT 57640-57670
8443	5' CCCAAGCTTAAACAATACCTACAAATTCAGAAGCTCTTT 3' (SEQ ID NO:57)	NT 58030-58060
8471	5' CCCAAGCTT AAGTCTTCTGGTTACACCTTCACCAT TAT 3' (SEQ ID NO:58)	NT 56080-56110
8465	5'CCCAAGCTTACTCTCTCCCTCTGTGACTAGAGCTCTGT 3' (SEQ ID NO:59)	NT 57250-57280
8473	5' CCCAAGCTTTCAGCTTCTACAGTTGTGTCACCCATGTGT 3' (SEQ ID NO:60)	NT 55690-55720
8609	5' CCCAAGCTTTGCAGAGTTCACTGGGTTTCCTAAAGG CAA 3' (SEQ ID NO:61)	NT 55027-55056
8467	5' CCCAAGCTTTCACCACAAAGGAACTTTCATCTCTCTGG 3' (SEQ ID NO:62)	NT 56860-56890
8439	5' CCCAAGCTTTTCACACAGAAATGTTTAGAGGT CAGGCC 3' (SEQ ID NO:63)	NT 58810-58840
8606	5' CCCAAGCTTTGCACACCCTAGGGTATGTTCTTGCAATTC 3' (SEQ ID NO:64)	NT 58500- 58530
8551	5' CCCAAGCTTCCCAAAGCCATGCCCTGCTCCAGAAACACG 3' (SEQ ID NO:65)	NT 56550- 56580
0003	5' CCCAAGCTTATGATGTAACCCTCATTGGCCTCA 3' (SEQ ID NO:66)	NT 54497-54520
0006	5' CCGGAATTCGAGACTCCAAGAAAAGATCTCATG 3' (SEQ ID NO:67)	NT 55001-55024
0007	5' CCCAAGCTTATGTTCTTGCAATTCAGCGGAGGA 3' (SEQ ID NO:68)	NT 58514-58537
8000	5' CCGGAATTCTGTGTGAGATCTCAGGAGAAGGTA 3' (SEQ ID NO:69)	NT 58885-58908

PCR amplification of rearranged VH, D and JH segments from genomic DNA

Genomic DNA was prepared using the Genoprep DNA isolation kit (Scientifix, Australia). Platinum PfX DNA polymerase (Invitrogen, CA, USA) was used to amplify the rearranged VH, D and JH genes from genomic DNA. The PCR reaction included 1X PfX amplification buffer, 50 mM magnesium sulfate, 1X PCR enhancer solution, forward primer (10 pM), reverse primer (10 pM), dNTPs (10 mM each), template (100 ng), platinum PfX DNA polymerase (0.6 U) and sterile water in a final volume of 20 μl. Cycling conditions were as follows; one cycle of 95°C for 5 minutes, 30 cycles of 95°C for 30 seconds, 65°C for 30 seconds, 68°C for 2.5 minutes, and one cycle of 72°C for 7 minutes. Primers used were specific for each of the seven VH family leader sequences together with a previously described consensus JH primer, JOL48, that anneals to all six human JH segments (Table 4). A second PCR reaction was performed using 0.5 / 20 μl of the first PCR as template to gain sufficient DNA for detection using ethidium bromide.

15

20

10

5

PCR products were run on 1.5 % agarose gels and DNA was extracted from bands using Nucleospin Extraction Kit (Nagel-Macherey, Germany) according to manufacturer's instructions. A third PCR was performed on the purified DNA as described above. Products were cloned into pBluescript SK + (Stratagene, Texas, USA) using EcoR I and Hind III sites and sequenced as previously described.

Table 4: Primers for PCR amplification of rearranged VH, D and JH segments from genomic DNA.

Primer Name	Sequence	Specificity
8111	5'CCCAAGCTTATGGACTGGACCTGGAGGATCCTCTTCTTGGTGGCAGCA 3' (SEQ ID NO:113)	VH1 leader
8116	5'CCCAAGCTTATGGACACACTTTGCTCCACGCTCCTGCTGACC ATCCCT 3' (SEQ ID NO:114)	VH2 leader
8112	5'CCCAAGCTTATGGAGTTTGGGCTGAGCTGGGTTTTCCTTGTTGCTATT 3' (SEQ ID NO:115)	VH3 leader
8113	5'CCCAAGCTTATGAAACACCTGTGGTTCTTCCTCCTGCTGGTGGCAGCT 3' (SEQ ID NO:116)	VH4 leader
8118	5'CCCAAGCTTATGGGGTCAACCGCCATCCTCGCCCTCCTCGGCTGTTCTC 3' (SEQ ID NO:117)	VH5 leader
8114	5'CCCAAGCTTATGTCTGTCTCCTTCCTCATCTTCCTGCCCGTGCTGGGCCTC 3' (SEQ ID NO:118)	VH6 leader
8115	5'CCCAAGCTTATGGACTGGACCTGGAGGATCCTCTTCTTGGTGGCAGCAGCA 3' (SEQ ID NO:119)	H7 leader
N8336 (JOL48)	5'CCCAAGCTTCCCCAAGCTTCCCAGGTGCAGCTACAGCAG 3' (SEQ ID NO:120)	Consensus JH

Table 5: Primer sequences used for genomic PCR to sequence the 3 kb region downstream of the rearranged VH allele (VH_{4-34}) in RAMOS RA-1

Primer Name	Sequence	Homologous sequence in NCBI database
8604	5' CCCAAGCTTCGGCCCCGATGCGGGACTGCGTTTTGACCA 3' (SEQ ID NO:70)	Gi 34819 NT 1- 30
8605	5' CCGGAATTCATAACAAGCTAATTTAAAAAACTTTTTGAA 3' (SEQ ID NO:71)	Gi 34819 NT 450 -
8559	5' CCCAAGCTTGCACAGACGGGAGGTACGGTATGGACGTCT 3' (SEQ ID NO:72)	Gi 33100 NT 460-
8562	5' CCGGAATTCAAAAAAATAAACTTGATTTATGAT GGTCAA 3' (SEQ ID NO:73)	Gi 33100 NT 705-
8603	5' CCGGAATTCCGCGGTGACCTGCTTCCTGCCACCTGCTGT 3' (SEQ ID NO:74)	Gi 34819 NT 126-
8692	5' CCGGAATTC AGTTAGTGCAGCCAAGCCCT 3' (SEQ ID NO:75)	Gi 33101 NT 301- 320
8695	5' CCGGAATTCAAAAGGCAAGTGGACTTCGGTGCTTACCTG 3' (SEQ ID NO:76)	Gi 188910 NT 945-
8697	5' CCCAAGCTT CAGCTCAGCTCAGTTCAGCCCT 3' (SEQ ID NO:77)	Gi 188910 NT 4-30
8508	5' CCCAAGCTTATGCGAGGGTCTGGACGGCTGAGGACCCCC 3' (SEQ ID NO:78)	Gi 188910 NT 370- 400
8696	5' CCGGAATTCATGCGGCAAGGGTTGCGGACCGCTGGCTGG 3' (SEQ ID NO:79)	Gi 188910 NT 715-
8694	5' CCGGAATTCGCCCAGCCCAGCCTAGCTCA 3' (SEQ ID NO:80)	Gi 33101 NT 770-
8691	5' CCCAAGCTTTTATCAACTGCTAGTTTGTG 3' (SEQ ID NO:81)	Gi 34819 NT 361- 381
9090	5' CCGGAATTCAGGGCTGAACTGAACTGAGCTGAGCTG 3' (SEQ ID NO:82)	Gi 188910 NT 1-30
9879	5' CGGCTGATATCTGGGAGCCTCTGTGGATTTTCCGA 3' (SEQ ID NO:83)	Gi 33100 NT 1-24
9805	5' AGCCGGATATCGCCCAGCCCAGCCTAGCTCA 3' (SEQ ID NO:84)	Gi 33101 NT 770- 790

15

20

25

30

0002	5' GAAAGTTAAATGGGAGTGACCCAG 3' (SEQ ID NO:85)	GI 29502084 NT
		962860 - 962884
0021	5' GAGTGACCATCGCACCCTTGACAG 3' (SEQ ID NO:86)	Gi 29502084

Identification of rearranged VDJ segment in RAMOS RA-1

The sequenced VH allele for RAMOS RA-1 was identified as VH₄₋₃₄ (DP 63) using V-Base (http://www.mrc-cpe.cam.ac.uk/vbase). A schematic diagram of the gene targeting region is shown in Figure 3 and the genomic sequence is set out in SEQ ID NO:1. The immunoglobulin heavy chain promoter shown in Figure 3 corresponds to nucleotides 4852 - 5190 of SEQ ID NO:1. The leader sequence (including intron 1) shown in Figure 3 corresponds to nucleotides 5191 - 5329 of SEQ ID NO:1. The VDJ segment shown in Figure 3 corresponds to nucleotides 5330 - 5708 of SEQ ID NO:1.

The consensus nucleotide sequence differs from the published VH₄₋₃₄ sequence (V – Base) by six nucleotides only (C_{68} ->G, C_{72} ->T, C_{228} ->G, T_{232} ->C, C_{244} ->T, C_{248} ->A) of which four were coding changes (A_{23} ->G; N_{76} ->K, F_{78} ->L, T_{83} ->N). The sequence was further classified as VH₄₋₃₄ subgroup 2 (Journal of Molecular Biology, 1987, Vol 195, 761-768) using the Kabat database (Kabat et al., 1991, Sequences of proteins of immunological interest, vol 1, 5^{th} edition). The C_{68} -> G mutation in framework 1 and N_{76} -> K mutation in framework 4 were unique to RAMOS RA-1 and occurred in otherwise conserved residues in the other four members of the group (Lee et al. 1987, Journal of Immunology, 142, 4054-4061, Sanz et al. 1988, Clinical Experimental Immunology 71, 508-516).

The nucleotide sequence generated from RAMOS DNA corresponding to the D allele differed significantly from the published alleles in V Base. Although no significant homology was identified, the closest related sequence similarity (and sequence length) was to D_{3-16} (Corbett, S et al, Journal of Molecular Biology, 270, 587-597).

The sequenced JH allele for RAMOS RA-1 was identified as JH6b (Mattila et al. 1995) using V-Base. No nucleotide base changes were detected between the consensus sequence and the published JH_{6b} sequence.

41

Sequencing of the 3' region downstream of the rearranged VH allele

The homologous sequence downstream of the site of integration chosen for the vector corresponds to a \sim 3kb region between the rearranged VJD genes through to the mu enhancer of the human immunoglobulin heavy chain locus of the RAMOS cell line (corresponding to sequence gi 29502084 nucleotides 960091 – 962947).

The region 3' downstream of the rearranged VDJ segment was sequenced using methods previously described. Primers were designed based on published sequences, human immunoglobulin heavy chain enhancer on chromosome 14 (gi 34819), human J6 to enhancer DNA of the immunoglobulin heavy-chain gene (gi 33100), human (AW-Ramos) translocated t(8;14) c-myc oncogene, exon 1 (gi 188910) and human mu switch DNA of the immunoglobulin heavy-chain gene locus (gi 33101)(Table 5).

15 Sequences were analysed using BLAST program (NBCI, http://www.ncbi.nlm.nih.gov/BLAST/) and assembled in Clone Manager Suite 7 (Scientific and Educational Software). The assembled sequence is set out as nucleotides 5709 to 8634 of SEQ ID NO:1. This sequence shares 98 % similarity with the published sequence gi 29502084 nucleotides 960091-962947.

Cloning of the 3kb fragment downstream of the rearranged VH allele from genomic DNA

The 3 kb fragment was amplified from genomic DNA extracted from RAMOS RA-1 cells using Platinum PfX DNA polymerase (Invitrogen, CA, USA). The PCR reaction was the same as previously described except the forward primer 9779 (5' CCGCTCGAGTGGGAGCCTCTGTGGATTTTCCGA 3') (SEQ ID NO:111) and reverse primer 9801 (5' TGACCGGACGTCGCCCAGCCCAGCCTAGCTCA 3') (SEQ ID NO:112) were used and the cycling conditions were as follows; one cycle of 94°C for 15 seconds, fifteen cycles of 94°C for 10 seconds, 68°C for 2 minutes, 15 cycles of 94°C for 10 seconds, 68°C for 2 minutes with and an extra 15 seconds added each cycle, and one cycle of 72°C for 7 minutes. A second PCR reaction was performed using 0.5 / 20.0 µl of the first PCR reaction as a template to gain sufficient DNA for detection using ethidium bromide.

5

10

20

25

42

The 3 kb fragment was cloned into pPCRScript using the PCR-Script Amp cloning kit (Stratagene, Texas, USA) at the Srf I site. The resulting construct was referred to as 3kbPCRScript 10-1-3 (5822 bp). This construct was sequenced using primers in Table 5.

5

30

35

The size and GC rich stretches present in the 5 kb and 3 kb homology regions gave rise to structural regions which caused difficulties in cloning and thereafter problems with stability of the cloned regions.

Example 2: Design and construction of a vector for integration into the rearranged VH allele, VH4-34 in RAMOS RA-1

1) Construction of Vector For Integration

A 3 kb fragment, containing sequence homologous to the region downstream of the 15 rearranged allele VH₄₋₃₄ was amplified from the construct 3kbPCRScript 10-1-3 with the forward primer 9879 (5' CGGCTGATATCTGGGAGCCTCTGTGGATTTTCCGA (5' 9805 primer NO:83) and the reverse 3') (SEO IDAGCCGGATATCGCCCAGCCCAGCCTAGCTCA 3') (SEQ ID NO:84) using Platinum PfX DNA polymerase (Invitrogen, CA. USA). PCR products were purified 20 using OIAquick PCR Purification Kit (QiagenTM) according to manufacturer's instructions then digested with EcoRV and ethanol precipitated. Digested fragments were ligated into construct 5kbPCRScript 15a-7 containing the 5 kb sequence upstream of the rearranged VH allele. The DNA was transformed into Esherichia coli and grown at 37 °C overnight. 25

Bacterial colonies were screened by Southern blotting and probed using ³²P labeled oligonucleotides 8604 (5' CCCAAGCTTCGGCCCCGATGCGGGACTGCGTTTTGACCA 3') (SEQ ID NO:70) to detect the 3 kb fragment and a pool of labeled oligonucleotides 8687 (5' CCCAAGCTTCATGTTCCACGCATTACGTC 3') (SEQ ID NO:54), 8440 (5' CCGGAATTCAATTTGAGATTGTGTGTGTGAGATCTCAGGAG 3') (SEQ ID NO:38) and 8472 (5' CCGGAATTCGTTGGGTTCCCAGTGTAGGTGATGATCCAT 3') (SEQ ID NO:44) to detect the 5 kb fragment. Colonies that were positive for both fragments were subcultured and DNA was extracted using QIAprep Miniprep kit (QiagenTM). Clones were analysed by diagnostic restriction enzymes and PCR for each

43

fragment and sequenced using an ABI 373 DNA sequencer with T7 and T3 primers. This new construct is referred to as 3kb15a-7-4T is 10 826 bp long (Figure 4). The sequence of is shown in SEQ ID NO:87.

2) Transfection of 3kb15a-7-4T into RAMOS and screening for integration

5

10

15

20

25

30

35

Clone 3kb15a-7-4T (5 μ g) is transfected into 3 x 10⁶ RAMOS RA-1 cells using the following protocol; cells are centrifuged to remove spent media then resuspended at 1 x 10⁶ cells / ml in RPMI containing DEAE Dextran (25 μ g / ml). Resuspended cells (1 ml) are transferred into electroporation cuvettes (4 mm gap) and DNA is added. The cuvette containing the cell / DNA mixture is then incubated at 37°C for 10 minutes. Cells are then pulsed twice at 550 V and 25 μ Fd capacitance, using a Gene Pulser (BioRad). Following a 10 minute incubation on ice, the cells are removed from the cuvette and transferred to T_{25} flasks containing 9 ml of RPMI + 15 % FCS. Flasks are incubated at 37°C for at least 24 hours before the efficiency of transfection is assessed. Mock transfected cells are used as controls.

Three days after transfection, cells are stained for surface IgM and sorted by flow cytometry into an IgM positive population and IgM negative population. Prior to this experiment the background level of IgM negative cells is determined.

Genomic DNA is extracted from IgM negative cells using the Genoprep DNA isolation kit (Scientifx, Australia) according the manufacturers' instructions. The DNA is then digested using Xba I enzyme and run on a 0.6 % agarose gel. DNA is transferred onto nitrocellulose membrane using standard methods for Southern blotting and probed with 0041 (5' ^{32}P labeled oligonucleotides GACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGG 3') (SEQ ID (5) 0042 and NO:88) GACCTCCTGCACAAGAACGGTACCGGGCTAGAGCGGCCGCCA 3') (SEQ ID NO:89) that span the junction regions. A probe against the middle of the sequence that would be integrated, 9403 (5' CAGTGCTGCAATGATACCGCGAGAC 3') (SEQ ID NO:90) is also used.

The following patterns of radioactive probe binding to DNA extracted from cells transfected with i) vector only, no radioactive signals ii) the construct containing the 3kb15a-7 4T shows radioactive signals with all three radioactive probes as is expected

5

10

15

20

when the 5kb and 3kb recombination occurs with the chromosomal DNA integrating the middle sequence; the binding of the radioactive 9403 probe shows this iii) DNA from untransfected cells show no binding with the 9403 radioactive probe, iv) the lanes on the agarose gel with the plasmid 3kb15a-7-4T show radioactive signal with all probes. Obtaining this pattern i-iv) is indicative of 3kb15a-7-4T integration into the host cell genome.

Example 3: Design and construction of a vector for integration into the rearranged VH allele, VH₄₋₃₄ in RAMOS RA-1 and mutation of the asFP499 gene

The components of the vector for integration are as follows:

- i) Construct 5 kb in PCRScript 15a-7 is modified by removing the Nae I Xho I fragment which effectively deletes an additional Kpn I site. This new construct is herein referred to as 5kbPCRScript minus Nae I Xho I and is 7608 bp in length.
- ii) The cloned gene for asFP499, which is a fluorescent protein isolated from the sea anemone *Anemonia sulcata*, was obtained from J. Wiedenmann (University of Ulm, Germany) in the plasmid pQE32 (Qiagen, CA. USA). Four sequential PCR reactions were performed to introduce restriction sites Kpn I and Not I at the 5' and 3' ends of the asFP499 gene respectively and two C-terminal flag tags with a Sal I site at the 3' end of the second flag tag. This final product (~770 bp) is subcloned into pPCRscript (Stratagene, Texas, USA) and herein is referred to as targetPCRScriptasFP499-1.
- 25 iii) The gene encoding thymidine kinase is amplified by PCR and restriction sites Hind III and Cla I are introduced at the 5' and 3' end of the gene respectively. This product (1260 bp) is subcloned into pPCRscript (Stratagene, Texas, USA) and herein is referred to as construct TKPCRscript -64.
- 30 iv) pMC1neo Poly A (3800 bp) was obtained from Stratagene (Texas, USA).

These components are assembled in the following order:

Constructs targetPCRScriptasFP499-1 and 5kbPCRScript minus Nae I – Xho I are digested with Kpn I and Sal I and run on 1.0 and 0.9 % agarose gels respectively. The desired products (~7608 bp and ~770 bp) are cut out and DNA extracted using

45

QIAquick gel extraction kit (QiagenTM). The asFP499 gene (\sim 770 bp) is ligated into 5kbPCRScript minus Nae I – Xho I (\sim 7608 bp) to create 5kb-asFP499PCRscript minus Nae I – XhoI (8289 bp).

Constructs TKPCRscript -64 and 5kb-asFP499PCRscript minus Nae I – XhoI are subsequently digested with Cla I and Sal I and run on agarose gels and DNA is extracted as described above. The asFP499-5kb fragment (~5770 bp) is ligated to the TKPCRScript-64 backbone (~ 4737 bp) to generate TK-5kb-asFP499 PCRscript (10464 bp).

10

The TK-5kb-asFP499 cassette (~7558 bp) is digested out of TK-5kb-asFP499 PCRscript with Sal I and Hind III and ligated into pMC1neo Poly A, cleaved with Sal I and Hind III (3837 bp). This new construct is designated KW 1.

Finally, 3kbPCRscript 10-1-3 and KW1 are digested with restriction enzymes Xho I and Aat II and gel purified as described above. The 3kb fragment is ligated into the KW1 backbone (~10868 bp) yielding the final integration vector designated KW2 (13722 bp) (Figure 5). The sequence of integration vector KW2 is set out in SEQ ID NO:91.

20

The asFP499 gene was deleted from vector KW2 to generate vector KW3 (Figure 6). The sequence of integration vector KW3 is set out in SEQ ID NO:110. It will be appreciated that any target nucleic acid molecule of interest can be inserted into this vector for use in the affinity maturation process of the present invention.

25

30

35

Example 4: Optimal culturing conditions for RAMOS RA-1 cells

Optimal growth conditions for RAMOS cells were determined by performing growth curve experiments using different supplements to the medium and different seeding concentrations. RAMOS cells were seeded at 1 x 10⁴, 5 x 10⁴, 1x 10⁵, and 2 x 10⁵ (cells / ml) and cultured as 25 ml cultures in either RPMI medium with 10 % heat inactivated FBS and 1mM sodium pyruvate or RPMI medium with 15 % heat inactivated FBS, 1 mM sodium pyruvate and 50 % conditioned medium. Every 24 hours, 1 ml samples of cells were taken and the number of viable cells was determined using the Vi-Cell Viability Analyser (Beckman Coulter, CA, USA,). The results

46

showed that RAMOS cells had a lag phase of 48 hours regardless of the seeding concentrations. Cultures reach an exponential growth phase at a density of 0.25-0.5 x 10^6 cells / ml RPMI medium with 10 % heat inactivated FBS and 1 mM sodium pyruvate whereas cells growing in RPMI medium with 15 % heat inactivated FBS, 1 mM sodium pyruvate and 50 % conditioned medium did not enter an exponential phase. The optimal seeding rate for RAMOS was 1×10^5 cells / ml.

Mycoplasma infection can affect transfection rates, therefore we tested RAMOS RA-1 monthly. Cells were tested using 4', 6-diamidino-2-phenylindole (DAPI) staining in which all DNA is stained specifically with this very bright dye. If mycoplasma is present small bright specks of dye are seen in the cytoplasm. Cells were fixed onto glass slides and viewed under a 100 X objective with a UV filter system. Cells were negative for mycoplasma over a period of 12 months.

Example 5: RAMOS RA-1 cell division rate

5

10

20

25

30

35

Transfection rates in RAMOS are affected by the viability of cells in culture. To identify the optimal time during the growth cycle to transfect RAMOS cells, we first determined the cell division rate. RAMOS cells were stained with cell-permeant fluorescein-based dye carboxyfluorescein diacetate succinimidyl ester (CFSE) and analysed by flow cytometry based on established techniques in Current Protocols in Cytometry 9.11.2.

Briefly, RAMOS cells in exponential log phase growth were washed and re-suspended in phosphate buffered saline at 5×10^6 cells / ml. A volume of 2 μ l of 5 mM CFSE was added per ml of cells. Cells were incubated for 10 minutes at 37°C after which 5 volumes of ice cold RPMI + 10 % FBS was added. Cells were then incubated on ice for a further 5 minutes and washed three times in culture medium before transferring to flasks and culturing under normal conditions (see example 1). Initially cells were not analysed until 12 hours post staining to allow for the initial fluorescence decay. Thereafter cells were anlaysed by flow cytometry every 24 hours. The CFSE fluorescence was plotted against the number of cells anlaysed (Figure 7). Upon cell division, the dye is equally distributed between daughter cells, allowing the resolution of up to eight cycles of cell division by flow cytometry. In the case of using cultured cells that divide in concert, the resulting fluorescent distribution is halved per cell after

47

each division. Therefore, these results indicate that the cell population was dividing at least once every 24 hours.

Example 6: Optimisation of conditions for transfection of RAMOS RA-1 cells

5

25

30

35

1) Construction of vector for expression of asFP499 in RAMOS RA-1

Primers were designed to add a Xho I site to the 5' end of the asFP499 gene and two flag tags, two stop codons and a Xba I to the 3' end of the gene to allow cloning into 8934 (5' are The primers used 10 pME18s. CCGCTCGAGATGTATCCTTCCATCAAGGAAACC 3') (SEQ ID NO:92), 8935 (5' 8936 (5' TATAATCAGCGGCCGC 3° (SEQ ID NO:93); CTAGTCTAGATTATTATCATCATCATC 3') (SEQ ID NO:94), and 8398 (5' GTTATGTCCTAATTTCGAAGGCACTTGGGAGTA 3') (SEQ ID NO:95). The 15 cloned sequence was confirmed by DNA sequence analysis. The resulting construct, referred to as pME18sasFP499 (3693 bp) (Figure 8) (SEQ ID NO:8) was used for subsequent transfection of RAMOS cells.

20 ii) Transfection of pME18sasFP499 into RAMOS RA-1 cells

A number of different transfection reagents or methods can be used to transfect mammalian cells including Calcium Phosphate coprecipitation, Lipofectamine (Invitrogen), FuGENE6 (Roche, Germany), SuperFect (Qiagen, CA, USA), Effectene (Qiagen, CA, USA), GenePORTER (Gene Therapy Systems, CA, USA) and Metafectene (Biontex, Germany). Electroporation is another method commonly used to transfect mammalian cells. Electroporation can be carried out using different electroporators such as the Gene Pulser (BioRad, CA, USA) or the Electro Square Porator ECM 830 (BTX, Fisher Biotech, Australia) and various voltage and capacitance settings can also be used. Since RAMOS RA-1 cells are of B-lymphoid origin and it is known that lymphoid cells can be difficult to transfect, we optimised transfection of this cell line.

The efficiency of transfection of RAMOS RA-1 cells was monitored by flow cytometric analysis using an EPICS Elite (Beckman Coulter, CA, USA). Samples of transfected cells were stained with 1 μ g / mL Propidium Iodode (PI). The live cell

WO 2004/055182

population (based on forward and side scatter characteristics and PI staining) was gated and the percentage of Fluorescent Protein (FP) positive cells was assessed. FP expression was also assessed by fluorescence microscopy using an Olympus IX70 microscope and Olympus U-RFL-T burner.

5

In order to optimise the transfection process, a number of different transfection parameters were tested including: set voltage, set capacitance, amount of DNA, concentration of DEAE Dextran and analysis time post transfection.

Figures 9 show the results of a representative set of optimisation experiments. The combination of 550 V and 25 μFd resulted in the highest transfection efficiency. No significant effect on the transfection efficiency was observed using 1 μg or 30 μg of pME18sEGFP. The optimum time to analyse FP expression was between 24 and 36 hours post electroporation. DEAE Dextran varying from 25 μg / ml to 1 mg / ml was tested and concentrations between 25 μg / ml and 100 μg / ml were optimal for transfection but concentrations above 500 μg / ml were found to be toxic to the cells (data not shown).

Using the optimum conditions, transfection rates of between 0.5 % and 3.5 % were achieved with the average being approximately 1.0 %.

Figure 10 shows the comparison of RAMOS RA-1 cells transfected with pME18sEGFP, pME18sasFP499 or mock transfected. The level of expression of asFP499 in RAMOS RA-1 was assessed 24 hours post transfection and was found to be approximately 10 fold lower than that of EGFP.

Example 7: Quantitation of the number of IgM molecules on the surface of RAMOS RA-1 cells

30

20

25

It is known in the art that the loss of surface IgM may be used to monitor integration into the rearranged VH allele.

We therefore determined the number of natural IgM molecules on the surface of RAMOS cells. RAMOS cells (50 µl) and Quantum Simply CellularTM beads (Bangs Laboratories, IN, USA) (50 µl) were separately incubated on ice for 1 hour with a

49

saturating amount (2.5 μg) of a mouse anti-human IgM monoclonal antibody (Southern Biotech, AL, USA) conjugated to Alexa Fluor 488TM (Molecular Probes, OR, USA). Cells and beads were then analysed by flow cytometry using an EPICS Elite (Beckman-Coutler). Fluorescence intensity (at 488 nm) was plotted against the number of cells or beads analysed (Figures 11a and 11b). Five distinct populations of beads (labeled B, C, D, E, G) which have defined numbers of anti-mouse IgG binding sites (0, 2000, 20 000, 46 000 and 68 000) were observed (Figure 11a). Figure 11b (H) shows a normal distribution of fluorescence intensity, ranging from 2 to 100, as expected for a population of cells. The mean fluorescence for each of these populations was plotted against the corresponding number of predetermined binding sites to generate a linear line graph (Figure 11c) from which we extrapolated the average number of IgM molecules on RAMOS cells. The mean fluorescence intensity was calculated as 23.5 which corresponded to 1.25 X 10⁶ molecules for RAMOS RA-1.

Example 8: Monitoring cell surface IgM loss on RAMOS RA-1

RAMOS RA-1 cell surface IgM decreases with time in culture. We therefore established the rate of natural loss of surface IgM in order to use this characteristic as a marker for integration. To evaluate the percentage of the population that were IgM positive, RAMOS RA-1 cells were stained for IgM and analysed by flow cytometry.

Briefly, cells were washed and resuspended at 1×10^6 cells / 100 μ l. A sheep polyclonal antibody against human IgM (μ chain specific) FITC conjugated (Chemicon, CA, USA) (10 μ l) was added to cells which were incubated on ice for 1hour. Cells were then washed with 2 ml of cold wash buffer (PBS + 2 % FBS, 0.01 % sodium azide) and resuspended in 500 μ l this buffer with 5 μ l propidium iodide (1mg / ml) (Sigma-Aldrich, Australia). Cells were anlaysed by flow cytometry using an EPICS Elite (Beckman Coulter, CA, USA). Cells were gated on the basis of forward and side scatter and negative propidium iodide. In passage one of RAMOS RA-1 98.39 % of the cell population was positive for surface IgM (Figure 12a) by passage 14, 26.55 % of the cell population was positive (Figure 12b). This loss is attributed to either a high mutation rate or a growth advantage of IgM negative mutants. Therefore, RAMOS RA-1 cells were presorted to remove IgM negative cells and the IgM+ cells quantitated prior to transfection as the IgM loss is used as a measure of integration.

30

5

10

20

5

30

35

To further investigate IgM loss on RAMOS, we quantitated the number of cell surface IgM molecules using the methodology described above. We observed that the average number of cell surface IgM molecules significantly decreased over time. In passage 4, RAMOS RA 1 cells possessed an average 9.0×10^5 molecules of IgM on their surface, however by passage 16 the number of IgM molecules had decreased to 4.1×10^5 molecules (Figure 12). Together these data indicate that the decrease in cell surface IgM is dependent on passage number.

We have also observed and quantitated differences in the rate of IgM loss between RAMOS strains, 'RAMOS RA-1' supplied by American Tissue Culture Collection and 'RAMOS' supplied by European Collection of Cell Culture (ECAC) (Figure 13). Together these data suggest that although IgM loss is a marker for integration reported widely in the literature, we have opted to use an antibiotic marker, such as neomycin as a positive selection marker and thymidine kinase as a negative selection marker for integration in our system.

Example 9: Surface display of asFP499 using the anchor domain of CD26

For cell surface display of the asFP499 gene product on RAMOS cells we used the transmembrane domain of CD26 (Tanaka,T et al., 1992, J. Immunol. 149 (2), 481-486) as an anchor.

Transmembrane domain of CD26

Accession No: M74777 (gi 180082)

This anchor sequence was added to the 3' end of the asFP499 gene, to provide an N-terminal anchor on the protein (CD26asFP499). This was achieved by sequential overlap extension PCR using primers that partially overlapped the existing DNA end and also added new sequence. A representation of this sequential overlap PCR is shown in Figure 14. This method can be used to add sequence to either the 3' or 5' end of a sequence. Primers are listed in Table 6.

15

20

Table 6: Primers used for addition of CD26 anchor sequence to asFP499

Primer	Sequence
9712	5'CGTGCCCGTGGTTCTGCTGAACAAAATGTATCCTTCCATCAAGGAAACCA3' (SEQ ID NO:98)
9713	5' CCGTGCCCGTGGTTCTGCTGAACAAAGTGTATCCTTCCATCAAGGAAACCA3' (SEQ ID NO:99)
9726	5'TGCTGCTGCGCTTGTCACCATCATCACCGTGCCCGTGGTTCTGCTGAACAAA3' (SEQ ID NO:100)
9727	5'GGAAGGTTCTCCTGGGACTGCTGGGTGCTGCGCTTGTCACCATCATCA3' (SEQ ID NO:101)
9728	5'CCGGAATTCATGAAGACACCGTGGAAGGTTCTCCTGGGACTGCTGGG3' (SEQ ID NO:102)
9963	5'GACTAGTTTATTATCATCATCATCTTTATAATCTTTATCATCATC3' (SEQ ID NO:103)

The final PCR product was cloned into pME18s as described previously except that the restriction sites SpeI and EcoRI were used. The cloned sequence was confirmed by DNA sequence analysis. The resulting vector was designated pME18sCD26asFP and is shown in Figure 15. The sequence of pME18sCD26asFP is set out in SEQ ID NO:104.

10 Example 10: Transfection and analysis of CD26asFP499

To demonstrate cell surface display of CD26asFP499, the plasmid pME18sasFP499CD26 was transfected into RAMOS RA-1 and control HEK 293T cells.

RAMOS RA-1 cells were transfected as previously described (Example 6). Transfections in HEK 293T cells, which were 60 % – 90 % confluent, were carried out using FuGENE6 (Roche, Germany) according to the manufacturer's instructions. 5 μ g of DNA was used in each transfection and pME18sasFP499 was used as a positive control.

Efficiency of transfection was assessed by flow cytometry as previously described. Figure 16 shows the flow cytometry data for transfection of RAMOS RA-1 cells with

52

pME18sCD26asFP499. It can be seen that the efficiency of transfection with this vector in this cell line is very low (0.01 % corresponds to 4 positive cells in this case). The data for transfection of HEK 293T cells is shown in Figure 17. In this cell line, the transfection efficiency of pME18sCD26asFP499 is equal to that of pME18sasFP499 and the expression of both vectors is improved in this cell line. The mean fluorescence intensity of pME18sCD26asFP499 was lower than that of pME18sasFP499.

HEK 293 T cells transfected with pME18sCD26asFP499 were analysed by confocal microscopy using a Nikon C1 (Coherent Life Sciences, Australia). The majority of cells showed a diffuse fluorescence at their periphery indicating expression of asFP499CD26 at the cell membrane, whereas bright fluorescence was observed uniformly throughout control cells transfected with pME18sasFP499 (data not shown).

Example 11: Cloning of the coding region of AICDA (AID) gene into pME18s

Activation Induced Cytidine Deaminase (AID), the protein product of the differentiation specific AICDA gene has been shown to be a B-cell-specific factor required and essential for the processes of Class Switch Recombination (CSR) and Somatic Hypermutation (SHM) in B-cells. Its ectopic expression in a number of mammalian cell systems including non B-cell systems has shown the ability of AID protein to induce and/or enhance hypermutation (Martin et. al 2002, Okazaki et. al 2002, Yoshikawa et. al 2002).

Extraction of total mRNA from RAMOS RA-1

5

10

15

20

25

30

35

Cells were harvested and centrifuged at 1500 rpm and resuspended in PBS. Total cellular mRNA was extracted using a GenoPrepTM mRNA isolation kit (Scientifix, Australia) according to the manufacturer's instructions. Briefly, after removing the supernatant, 700 μ l of Lysis and Binding solution was added to cells (1x10⁶). This mixture was combined with 50 μ l (250 μ g) of GenoPrepTM mRNA magnetic beads and incubated at room temperature for 5 minutes. Beads were magnetically collected and washed with 500 μ l of washing solution I. Beads were then washed twice with 500 μ l of washing solution II. mRNA-bead complexes were resuspended in 20 μ l sterile water and then incubated at 65 °C for 2 minutes. Beads were magnetically collected and the mRNA-containing supernatant was transferred to a new tube.

53

The human AICDA (AID) gene was amplified from RAMOS RA-1 total RNA using the Superscript One-step RT-PCR with platinum Taq kit (Invitrogen, CA. USA). The reaction included 1 X reaction mix, forward primer 9645 (5' ATG GACAGCCTCTTGATGAACCGGAGGA 3') (SEQ ID NO:105) 10pM, reverse primer 9646 (5' CAAAGTCCCAAAGTACGAAATGCGT 3') (SEQ ID NO:106) 10pM, template RNA (~150 ng), RT / Taq mix (1.0 μl) and sterile water in a final volume of 50 μl. Cycling conditions were as follows; one cycle of 55°C for 30 minutes, 94°C for 2 minutes, 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 68°C for one minute, and one cycle of 72°C for 7 minutes.

10

15

20

25

5

The RT-PCR product (596 bp) was amplified by PCR using Platinum Pfx polymerase (Invitrogen CA., USA) as previously described. This product was then cloned into pPCRScript using the PCR-Script Amp cloning kit (Stratagene, Texas, USA) at the Srf I site. The coding region of AID was then subcloned into the pME18s using Xho I and 9792 (5' sites with primers Xba restriction CCCTCGAGATGGACAGCCTCTTGATGAACCGGA 3') (SEQ ID NO:108) and 9793 (5' GCTCTAGACAAAGTCCCAAAGTACGAAATGCGT 3') (SEQ NO:109). The PCR reaction and cycling conditions were as described above. These constructs were verified by sequencing as previously described. The DNA sequence of the coding region of the AICDA gene is set out in SEQ ID NO:107.

Example 12: Affinity maturation of an antibody fragment

The gene targeting vector KW2 is modified such that following integration and target nucleic acid expression, a chimeric protein consisting of an antibody fragment fused to an anchor is produced. This is achieved by using standard molecular biology techniques to clone the CD26 anchor sequence into KW2 and then inserting the sequence for the antibody fragment downstream of the CD26 anchor sequence. The resulting vector is called KW3.

30

35

RAMOS RA-1 cells are transfected with the gene targeting vector KW3, using the optimised protocol previously described. The cells are allowed to recover for 48 to 72 hours before G418 at 5 mg/ml and gancyclovir or FIAU are added to the media for 7 to 9 days. This results in the selection of stable transfectants and also allows time for mutation and surface display to occur. The live cell population, which consists of the stable transfectants, is sorted using flow cytometry and allowed to react with the

54

fluorescently labelled binding partner of the displayed antibody fragment. The cells with the highest fluorescence intensity (ie highest binding) are then single cell sorted into 96 well U bottomed plates containing 100 μ l of 50 % conditioned media and 50 % fresh growth media. Single cell sorting is achieved using the Autoclone function of the EPICS Elite (Beckman Coulter, CA, USA).

It is also possible to select the cells with the highest affinity gene products on the cell surface, by capturing cells with immoblised binding partner, and selecting for the highest affinity gene product by competitive elution.

10

15

20

25

5

If necessary, the cells can be cycled through the *in vivo* strategy (Figure 2). The single cells can be expanded to between $1x10^5$ and $1x10^6$ to allow further mutation to occur and then reacted with the labelled binding partner and single cell sorted again. This cycle of single cell sorting/expansion and mutation/re-selection can be carried out until cells displaying the molecule with the desired characteristic, in this case increased binding affinity, have been isolated. The DNA from these cells can be extracted and the mutated gene can be amplified by PCR. Alternatively, the RNA can be extracted and the gene amplified by RT-PCR. The amplified gene can then be inserted into an appropriate expression vector for high-level production of the affinity matured antibody fragment.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

30

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

PCT/AU2003/001697

Claims:

WO 2004/055182

1. A method for producing and selecting a gene product with desired characteristics, the method comprising

5

- (i) introducing into a hypermutating cell a target nucleic acid molecule encoding a gene product such that the target nucleic acid molecule is integrated into an immunoglobulin locus of the genome of the hypermutating cell;
- 10 (ii) culturing the hypermutating cell such that the target nucleic acid molecule undergoes hypermutation during DNA and/or RNA synthesis, giving rise to a population of cells expressing mutant gene products; and
 - (iii) selecting a mutant gene product with desired characteristics.

- 2. A method as claimed in claim 1 wherein the immunoglobulin locus contains a rearranged V gene.
- 3. A method as claimed in claim 1 wherein the immunoglobulin locus contains a rearranged VH gene.
 - 4. A method as claimed in claim 1 wherein the immunoglobulin locus contains the rearranged VH₄₋₃₄ allele.
- 5. A method as claimed in any one of claims 1 to 4 wherein following integration of the target nucleic acid molecule into the immunoglobulin locus, the target nucleic acid molecule is operatively linked to a promoter.
- 6. A method as claimed in claim 5 wherein the promoter is an immunoglobulin heavy or light chain promoter.
 - 7. A method as claimed in claim 5 or claim 6 wherein the promoter is endogenous to the hypermutating cell.
- 8. A method as claimed in claim 5 or claim 6 wherein the promoter is exogenous to the hypermutating cell.

9. A method as claimed in any one of claims 5 to 8 wherein following integration the initiation codon of the target nucleic acid molecule is located within 2 kb of the 3' end of the promoter.

5

- 10. A method as claimed in any one of claims 5 to 8 wherein following integration the initiation codon of the target nucleic acid molecule is located within 500 bp of the 3' end of the promoter.
- 10 11. A method as claimed in any one of claims 5 to 8 wherein following integration the target nucleic acid molecule is located downstream of the promoter and upstream of an intronic enhancer with or without matrix attachment regions and/or 3' enhancer.
- 12. A method as claimed in any one of claims 1 to 9 wherein the target nucleic acid molecule is introduced into the cell by way of an integration vector comprising a sequence homologous to a region of at least 500 bp upstream of a rearranged V allele and a sequence homologous to a region of at least 500 bp downstream of a rearranged V gene.
- 20 13. A method as claimed in any one of claims 1 to 12 wherein steps (ii) and (iii) are repeated.
 - 14. A method as claimed in any one of claims 1 to 13 wherein the method comprises a further step to increase the rate of mutation of the target nucleic acid molecule.

- 15. A method as claimed in claim 14 wherein the further step is to increase the levels of expression of activation-induced cytidine deaminase (AID) within the hypermutating cell.
- 16. A method as claimed in any one of claims 1 to 13 wherein the mutant gene product is selected by way of an assay performed within the hypermutating cell.
 - 17. A method as claimed in claim 16 wherein the assay performed within the hypermutating cell is a protein-fragment complementation assay (PCA).

18. A method as claimed in any one of claims 1 to 17 wherein the target nucleic acid molecule is linked to a sequence encoding an anchor molecule such that following expression, the mutant gene product is displayed on the surface of the hypermutating cell.

5

- 19. A method as claimed in claim 18 wherein the mutant gene product is selected by detecting binding of a binding partner to the mutant gene product.
- 20. A method as claimed in claim 19 wherein the hypermutating cells are labelled with a detectable marker such as a fluorescent dye and the binding partner is immobilized.
 - 21. A method as claimed in claim 19 wherein the binding partner is labelled with a fluorescent tag.

15

- 22. A method as claimed in claim 18 wherein hypermutating cell(s) displaying the mutant gene product bound to the labelled binding partner are sorted using a flow cytometric technique.
- 23. A method as claimed in any one of claims 19 to 22 wherein the binding partner is selected from the group consisting of an antibody, receptor, transcription factor hormone, enzyme, cell surface molecule, DNA or RNA molecule.
- 24. A method as claimed in any one of claims 1 to 23 which further comprises the step of recovering the target nucleic acid molecule encoding the selected mutant gene product.
 - 25. A method as claimed in claim 24 wherein the recovery involves amplification of the polynucleotide by PCR or RT-PCR.

- 26. A method as claimed in any one of claims 1 to 25 wherein the hypermutating cell is a mammalian, yeast, insect or bacterial cell.
- 27. A method as claimed in claim 26 wherein the hypermutating cell is a mammalian cell.

- 28. A method as claimed in claim 27 wherein the mammalian hypermutating cell is selected from the group consisting of RAMOS, BL2, BL41, BL70 and Nalm.
- 29. A gene product produced by a method as claimed in any one of claims 1 to 28.

5

10

15

25

30. A vector for targeted integration into an immunoglobulin locus of a hypermutating cell, the vector comprising a sequence homologous to a region upstream of a rearranged V gene of the hypermutating cell, a sequence homologous to a region downstream of a rearranged V gene of the hypermutating cell and a site for integration of a target nucleic acid molecule.

- 31. A vector as claimed in claim 30 wherein the region upstream of the rearranged VH gene of the hypermutating cell is a region within nucleotides 1 to 5190 of SEQ ID NO:1
- 32. A vector as claimed in claim 31 wherein the region is at least 500 bp within nucleotides 1 to 5190 of SEQ ID NO:1.
- 33. A vector as claimed in claim 31 wherein the region upstream of the rearranged VH gene of the hypermutating cell comprises nucleotides 191 to 5190 of SEQ ID NO:1.
 - 34. A vector as claimed in any one of claims 30 to 33 wherein the region downstream of the rearranged VH gene of the hypermutating cell is a region within nucleotides 5709 to 8699 of SEQ ID NO:1.
 - 35. A vector as claimed in any one of claims 30 to 34 wherein the downstream region is at least 500 bp within nucleotides 5709 to 8699 of SEQ ID NO:1.
- 30 36. A vector as claimed in any one of claims 30 to 35 wherein the vector further comprises a selectable marker.
 - 37. A vector for targeted integration comprising a sequence as set out in nucleotides 1 to 12990 of SEQ ID NO:110.

59

38. A vector as claimed in any one of claims 30 to 37 wherein the vector further comprises a sequence encoding a signal and/or anchor molecule suitable for display of the gene product encoded by the target nucleic acid molecule.

1/22

Alignment of human immunoglobulin heavy chain promoters for VH4 alelles

1 -TRAGIGAAICCIGGIGICTCTGAACICAAGIGAITGITACAITAAGCIGCIGINCCAAICIGIITCCICACCIGGGAAAAGAGGANCCAGGACAIA 1 -TRAGIGAAICCIGGIGIGICICACAIGAITGITACAITAAGCIGCIGITGCAAICTGITITCCICACCTGGGAAAAGAGGAGCAGACAIA 1 ATICCAAAAICIGICITIGAICCAIGAICACACTICICCCAGACCAGCICCITCAGCACAITICC-TACCTGGAAGAAGAGACCACTITG 1 ATICCAAAAICTGICCCIGAICCAAGAICACAGAICTCCCAGAGCAGCAGCAGCACAITICCCTACCTGGAAGAAGAGAACATIGGGCTIG 1 ATICCAAAAICTGICCIGAICCAAGAICACAICTCCAGACCAGCCACCTICAGCACTTTACCTGGAAGAAGAGACCTCTGGGCTIG	AI CCAAAAIC TGICÌCIGAICCAAGAICACACITAICIC CAGAGCAGCI CITCAGCACAITICCITACCIGGAAGAAGAGGACICIGGGCIIG	97 GIGAGITGAGGCCCCAGGAAGAIAACIGAATICICAGAGGGCACAGCAICCICCIC—CCAGGGAGAGICIAAAAGACIGGGGCCICCTCAICCCT 97 GIGAGITGAGGCCCCAGGAAGAIAACIGAATICICAGAGGGCACACCAICCTCCTTGCCAGGGGAGGCCIAAAAGACIGGGGCCICCTCAICCCI 96 GIGAGGGGAGNCCACAGGAAGAACICATCICAGAGGGCACACCAGCACACCTC—CCAGGGTGAGCCCAAAAGACIGGGGCCICCCTCAICCCI 97 GIAAGGGGAGGCCACAGGAAGAACICAGTICICAGAGGCCACACACTCCTCCTCCTCCCCCCCAGGGCCCCCAAAAGACIGGGGCCTCCCTCCTCCCCCCCCCC	GIGAGGGGGCCCCAGGAAGAACIGAGIICICAGAGGGCACAGCCAGC	196 TITCACCIGICCATACAGAGGCACCACCCACTGCAAATC-TCACTIAGGCACCCACAGAAAACCACCACACATITCCTIAAATTCAGGGTCCTGCTCAC 197 TITCACCICTCCATACAGAGGCACCACCCACTGCAAATC-TCACTIAGGCACCCCAAGGGAAACCACCATTTCCTIAAATTCAGGGTCCTGCTCAC 195 TITTACCTATCCATACCAAAGGCACCACCCACAGAAAATTCCTAAATTCAAAATTCAGGTCCACACACA	TITCACCI ICCAIACAAAGGCACCACCACCACGAAAICCICACITAGGCACCCACAGGAAACCACCACATITCCITAAAITCAGGGTCCAGCICAC	295 ATGGGAAATACTTTCTGAGAGTCCTGGACCTCCTGTGCAAGAAC 296 ATGGGAAATACTTTCTGAGAGCTCTGGACCTCCTGTGCAAGAAC 295 ATGGGAAGTGCTTTCTGAGAGTCTTGGACCTCCTGCACAAGAAC 296 ATGGGAAATACTTTCTGAGAGTCTCTGCACAAGAAC 296 ATGGGAAATACTTTCTGAGAGTCTCATGGACTCCTGCACAAGAAC	AIGGGAAAIACTITCIGAGAGICAIGGACCICCIGIGCAAGAAC
124134.SEQ 124135.SEQ 124136.SEQ 124137.SEQ 124138.SEQ	CONSENSUS	124134.SEQ 124135.SEQ 124136.SEQ 124137.SEQ 124138.SEQ	CONSENSUS	124134.SEQ 124135.SEQ 124136.SEQ 124137.SEQ 124138.SEQ	CONSENSUS	L24134.SEQ L24135.SEQ L24136.SEQ L24137.SEQ L24138.SEQ	CONSENSUS

FIGURE 1

FIGURE 2

3/22

Not drawn to scale

10/22

Mock transfected RAMOS (RA1)

pME18sasFP499 (5µg) transfected RAMOS (RA1)

11/22

pME18seGFP (5 μ g) transfected RAMOS (RA1)

12/22

Quantum Simply Cellular Beads stained with 2.5µg mouse anti-human IgM-Alexa 488 per 50µl beads

FIGURE 11A

Ramos cells stained with 2.5µg mouse anti-human IgM-Alexa 488 per 50µl cells

FIGURE 11B

13/22

14/22

RAMOS RA1 p1

FIGURE 12A

15/22

RAMOS RA1 p14

16/22

FIGURE 14

18/22

19/22

pME18sasFP499 (5µg)

FIGURE 16

20/22

pME18sCD26asFP499 ($10\mu g$)

21/22

pME18sasFP499 (5μg)

22/22

$pME18sCD26asFP499\ (10\mu g)$

SEQUENCE LISTING

<110>	Diatech Pty Ltd	Į.				
<120>	In vivo affinit	y maturatio	n scheme			
<130>	501974					
<150>	AU 2002953381					
<151>	2002-12-18					
<160>	120					
<170>	PatentIn version	on 3.1				
<210><211><212><212><213>						
<222>	misc_feature (2697)(2697) n = unknown		·			
	misc_feature (4014)(4014) n = unknown					
<400> gcttca	1 attgt tccacgcatt	acgtctcacc	agtttagtca	atatggatta	aatatgagag	60
tgtgg	caatt cgcaaactct	atctgaggag	gaaaatcgga	taaaaaatgt	tatgaaaaat	120
aaagca	aattt gaagcctctg	acttcagcaa	cttcaccact	aatgaaatga	tgtaaccctc	180
attgg	cctca aatttagttt	tcacggggca	tctgcagggt	tccaaagtga	gaccaggtga	240
attca	atgtg catgcacttc	ccaagtgtcc	acttgtattc	tgtttcttta	cttctgttta	300
cagaa	agtag acacatattc	agtcttagta	ccagtgtagg	gagegettte	catgagatgg	360
atacc	agaaa aaaatggcaa	acatgggatc	cgttaatata	aaaattagcc	acgatgtata	420
tatat	atatg tgtgtgtgtg	tgtgtgtgtg	tgtgtacaca	cgcgcgcgca	tgtgtgagtt	480
gaata	gcaga gttggagtgg	gtttctatcc	acatgtacct	gcacctgcag	gtattctcag	540
gtgcc	ataat caactgtagg	accctaaagg	aaataagagt	ctccctcaa	cccctgaaga	600
gtgtt	tgggt tcaccgtgtg	tccaatgatt	ctgtgcctct	tgagctccag	gaaagggctc	660
cctgg	tgatg catgagatct	tttcttggag	tctctctgca	gagttcactg	ggtttcctaa	720
aggca	attca ctatttcaaa	agatggtgtg	aggagcatgt	ggtgtcccta	aaggagaatt	780
ctgag	ccagg gcacaaccac	tttatactga	gctggataca	ctggtaggaa	tatactctgt	840

cagctcagat	agaaacctcc	ctgcatggtt	ggggctgggc	tgcagggggc	gctccggata	900
cacccagcac	aggctcccgc	cccagagcag	gtgcacagga	ggctggggag	aggttcctcc	960
cagggcctgg	gacttccttt	aaaaatatct	aaaataagta	tttcacaaag	actgctgaag	1020
tttgtataaa	tatctattca	attgtgagca	tttatcaaac	tggatgttgt	aatgagaacc	1080
acttttacaa	tggggatttc	aaactctgct	ggaggtcagg	aagagatcct	ttcttataaa	1140
taaatgcaat	ttttggataa	acacagtcat	tccctaaata	acgcattcac	atattatggt	1200
ctagaaatga	tgcaagttga	ccctgagaca	gtcaaatgtg	gtttcaaagt	gaggtgctgt	1260
ccttgaggag	cttgttctcc	agtgggggaa	gctctgtcaa	cacagagttc	agggatgtgt	1320
aggggacaca	tggcctctaa	caggattacg	gcttgaaccc	tcagcttcta	cagttgtgtc	1380
acccatgtgt	ctgtttctca	tactgggtca	ggaattgggc	tattaaatag	catccttcat	1440
gaatatgcaa	ttaactgagg	tgactatagt	atctctgtac	cctgaaagca	tcacccaaca	1500
acaacatccc	tccttgggag	aatcccctag	agcacagctc	ctcaccatgg	actggacctg	1560
gagcatcctc	ttcttggtgg	cagcagcaac	aggtaagggg	ctecccagte	tcggggttga	1620
ggcagaaacc	aggccactca	agtgaggctt	tacccacccc	tgtgtcctct	ccacaggtac	1680
ctactcccag	gtgcagctgg	tgcagtctgg	ccatgaggtg	aagcagcctg	gggcctcagt	1740
gaaggtctcc	tgcaagtctt	ctggttacac	cttcaccatc	tatggtatga	attgggtatg	1800
atagacccct	ggacagggct	ttgagtggat	gtgatggatc	atcacctaca	ctgggaaccc	1860
aacgtatacc	cacggcttca	caggatggtt	tgtcttctcc	atggacacgt	ctgtcagcac	1920
ggcgtgtctt	cagatcagca	gcctaaaggc	tgaggacacg	gccgagtatt	actgtgcgaa	1980
gtacacagtg	tggaaaccca	catcccgaga	gtttcagaaa	gcctgaggaa	ggaggcagct	2040
gtgctgagct	gaggcagtgg	tacagcagtt	ttctgaactt	ccatagtatc	tcattttgca	2100
ttgagttccg	ctttaatatt	agccaagaat	atgggataga	cgggtgctcc	taagagatcc	2160
ttaacttgcc	cattttgatg	ggttttccca	aagacgtgag	aagccacttt	tttcgcaaag	2220
catcccaaag	ccatgccctg	ctccagaaac	acgtgtatcc	atttcctggt	ctttgattaa	2280
ctgacaaact	ctcatcagcg	cacctgggct	aatttcacat	caggtagaaa	tatgtgcttt	2340
aaagcaaggc	: taacgttgta	atagcaattc	ctgcttaata	accttcagca	ttgttgttgt	2400
gtgctccatc	aactaattac	gttagttcaa	ggttctcaat	gggagtttct	aataaatata	2460
agggatgtat	. agaagttccc	ctaattaaaa	caattgtgaa	gacaacctca	gtgttcaacc	2520
atatttcaac	: ccttcaccac	aaaggaactt	tcatctctcc	tggaagttgg	gttcattttc	2580
aaattagttt	. ttttattta	atatctcaag	attattgtat	gtgactattt	tagcagaaag	2640

		,				
tgaattatgg	gaacttgaac	taaccaactg	aaaatacatt	cagaactaat	taaacangat	2700
gccagaatgt	gattggctcc	aggcatttta	aattcaacag	gttatgtaac	caggctttaa	2760
atttgcacat	cttcgtgtta	ccttcatgac	acagtcaact	cccattatgt	aagaaatggt	2820
gagtgcattc	ccaagggtct	tgcacagtta	taaaaataga	cttgatgagg	tgaggagttg	2880
tttaaattcc	cctctgaaga	agcagcatca	acccaacaaa	ccactctctt	ccctctgtga	2940
ctagagctct	gtcacaggcc	acatggacct	aaatccttga	tggagattac	aggactacgt	3000
aaattggact	gatcgttttt	atgctgttaa	attaataggt	gagtctgcac	tccagcctgg	3060
gcaacagaat	aatcttgtct	gtaaaataca	aaagaaagat	aaattaatag	atactgactt	3120
tgacatttcg	gataataata	ttttcataaa	ccgaatttaa	ttatacccac	attgttacct	3180
acaccttcac	tgaaaagttc	ctagttatgt	tgagttccat	caacactcca	catgttcaaa	3240
tctggacatc	caagagagtc	tagagaataa	aacgcaatga	gggcagtgaa	acttgcgtat	3300
attcagcacc	tcttaactca	ggaggactca	atacaccctg	gaacactctg	cttttctgaa	3360
tggctcacaa	tgactccagc	tcactctcca	acctccgcaa	acatctggcc	tctgtttgcc	3420
ctaagttcac	gctctgctct	tagtctatgt	tctgaagtct	ttgtagaggt	gaaaatgagc	3480
tgtcagatgg	atcttccttc	tcactgcaac	atggaatttg	ctatttcact	taatgaccac	3540
tctttccaca	atggttgatt	tcttttggcc	tgttcattac	tggtgatttt	caagggaatc	3600
tcagttgaat	ctttactgtt	ttgcattttg	tctccatgac	aatgttggga	agtttttctt	3660
ctagcagcat	aacatgatct	agtgacctga	cacatttgca	gcaaacaata	cctacaaatt	3720
cagaagctct	ttggttttct	ttccacgaaa	tataattctt	gctcttctgt	gtatgagcac	3780
atcctagcat	ccctgtacac	acccaggtag	atgtctacac	gccgatgaaa	tattccctgt	3840
aaataaaaaa	agtatctcag	tttctctcaa	tgttcataat	tctcctgagg	gtgaggaagg	3900
tacttctggg	tctgctcaaa	caaatggccc	agagaccacc	tggtaggtag	gtaaggagct	3960
cacctcgctc	tggatattga	gtctgtctct	ttccctctgt	cgtctcatag	aagnccagcc	4020
cacttgttca	gctcctaaga	agagagccca	ggtttatcca	gattatacaa	cacaaccagc	4080
ttctgatgac	tctcctgtta	caacatccat	ggagatattt	tgtgtattat	ataattcacc	4140
aaactaatgt	gaaatgccca	agttgcaata	ctgcacaccc	tagggtatgt	tcttgcaatt	4200
cagcggagga	gaaattcttt	cagagacaga	tggatctgaa	ttggtaaata	tgtgggtacg	4260
aattctgggc	ttgagtgtca	ttgtccagcc	atgtttcaca	ggtgtgacct	gtcagggaag	4320
aaccagagtt	ccttgttctc	tcagagggta	gageteacag	aggtcctctc	tggttcccag	4380
gaaaggtaat	ttcactaatc	ttggtgatga	gactatcctc	cagtgctgat	gtactataga	4440

gttttcatct	gaagctgtca	ctgctatccc	caatgtacat	cttttcacac	agaaatgttt	4500
agaggtcagg	ccatattctc	agggttacac	attgagaagg	atggagatat	attctactac	4560
•	gatctcacac					4620
aggtactatt	taaaaataac	ccacttcctg	ggacaggtag	catccttcta	accatgatgg	4680
atgttctgaa	ctacagtaca	cattgcatgg	atccaggttt	gtctcaattc	actgtgatta	4740
ttacactcag	cagctgtttc	aatatgtctg	aaggggtaaa	tgacaattta	ggtgacctgg	4800
gtgtatggtt	ggtgttatat	gaatctttaa	atgtagaaca	gtattaactg	tattccaaaa	4860
tetgtetttg	atccatgatc	acacttgtct	cccagaccag	ctccttcagc	acatttccta	4920
cctggaagaa	gaggactctg	ggtttggtga	ggggaggcca	caggaagaga	actgagttct	4980
cagagggcac	agccagcata	cacctcccag	ggtgagccca	aaagactggg	gcctccctca	5040
tcccttttta	cctatccata	caaaggcacc	acccacatgc	aaatcctcac	ttaggcaccc	5100
acaggaaatg	actacacatt	tccttaaatt	cagggtccag	ctcacatggg	aagtgctttc	5160
tgagagtcat	ggacctcctg	cacaagaaca	tgaaacacct	gtggttcttc	ctcctcctgg	5220
tggcagctcc	cagatgtgag	tgtctcagga	atgcggatat	gaagatatga	gatgctgcct	5280
ctgatcccag	ggctcactgt	gggtttttct	gttcacaggg	gtcctgtccc	aggtgcagct	5340
acagcagtgg	ggcgcaggac	tgttgaagcc	ttcggagacc	ctgtccctca	cctgcggtgt	5400
ttatggtggg	tccttcagtg	gttactactg	gagctggatc	cgccagcccc	cagggaaggg	5460
gctggagtgg	attggggaaa	tcaatcatag	tggaagcacc	aactacaacc	cgtccctcaa	5520
gagtcgagtc	accatatcag	tagacacgtc	caagaagcag	ctctccctga	agttgagctc	5580
tgtgaacgcc	gcggacacgg	ctgtgtatta	ctgtgcgaga	gttattacta	gggcgagtcc	5640
tggcacagac	gggaggtacg	gtatggacgt	ctggggccaa	gggaccacgg	tcaccgtctc	5700
ctcaggtgag	aatggccact	ctagggcctc	tgttctctgc	tactgcctgt	ggggtttcct	5760
gagcattgca	ggttggtcct	cggggcatgt	tccgagggga	cctgggcgga	ctggccagga	5820
ggggacgggc	actggggtgc	cttgaggato	tgggagcctc	tgtggatttt	ccgatgcctt	5880
tggaaaatgg	gactcaggtt	gggtgcgtct	. gatggagtaa	ctgagcctgg	gggcttgggg	5940
agccacattt	ggacgagatg	cctgaacaaa	ccaggggtct	tagtgatggc	: tgaggaatgt	6000
gtctcaggag	cggtgtctgt	aggactgcaa	ı gatcgctgca	. cagcagcgaa	tcgtgaaata	6060
ttttctttag	g aattatgagg	tgcgctgtgt	gtcaacctgc	: atcttaaatt	ctttattggc	6120
tggaaagaga	actgtcggag	tgggtgaato	cagccaggag	ggacgcgtag	ccccggtctt	6180
gatgagagca	ı gggttggggg	caggggtago	c ccagaaacgg	tggctgccgt	cctgacaggg	6240

gcttagggag	gctccaggac	ctcagtgcct	tgaagctggt	ttccatgaga	aaaggattgt	6300
ttatcttagg	aggcatgctt	actgttaaaa	gacaggatat	gtttgaagtg	gcttctgaga	6360
aaaatggtta	agaaaattat	gacttaaaaa	tgtgagagat	tttcaagtat	attaattttt	6420
ttaactgtcc	aagtatttga	aattcttatc	atttgattaa	cacccatgag	tgatatgtgt	6480
ctggaattga	ggccaaagca	agctcagcta	agaaatacta	gcacagtgct	gtcggccccg	6540
atgcgggact	gcgttttgac	catcataaat	caagtttatt	tttttaatta	attgagcgaa	6600
gctggaagca	gatgatgaat	tagagtcaag	atggctgcat	gggggtctcc	ggcacccaca	6660
gcaggtggca	ggaagcaggt	caccgcgaga	gtctatttta	ggaagcaaaa	aaacacaatt	6720
ggtaaattta	tcacttctgg	ttgtgaagag	gtggttttgc	ccaggcccag	atctgaaagt	6780
gctctactga	gcaaaacaac	acctggacaa	tttgcgtttc	taaaataagg	cgaggctgac	6840
cgaaactgaa	aaggcttttt	ttaactatct	gaatttcatt	tccaatctta	gcttatcaac	6900
tgctagtttg	tgcaaacagc	atatcaactt	ctaaactgca	ttcattttta	aagtaagatg	6960
tttaagaaat	taaacagtct	tagggagagt	ttatgactgt	attcaaaaag	ttttttaaat	7020
tagcttgtta	tcccttcatg	tgataattaa	tctcaaatac	tttttcgata	cctcagagca	7080
ttattttcat	aatgactgtg	ttcacaatct	ttttaggtta	actcgttttc	tctttgtgat	7140
taaggagaaa	cactttgata	ttctgataga	gtggccttca	ttttagtatt	tttcaagacc	7200
acttttcaac	tactcacttt	aggataagtt	ttaggaaaaa	tgtgcatcat	tatcctgaat	7260
tatttcagtt	aagcatgtta	gttggtggca	taagagaaaa	ctcaatcaga	tagtgctgaa	7320
gacaggactg	tggagacacc	ttagaaggac	agattctgtt	ccgaatcacc	gatgcggcgt	7380
cagcaggact	ggcctagcgg	aggctctggg	agggtggctg	ccaggcccgg	cctgggctct	7440
gggtctcccc	ggactaccca	gagctgggat	gcgtggcttc	tgctgccggg	ccgactggct	7500
gctcaggccc	cagcccttgt	taatggactt	ggaggaatga	ttccatgcca	aagctttgca	7560
aggctcgcag	tgaccaggcg	cccgacatgg	taagagacag	gcagccgccg	ctgctgcatt	7620
tgcttctctt	aaaactttgt	atttgacgtc	ttatttccac	tagaagggga	actggtctta	7680
attgcttgat	gaagagcagg	agactcattt	atgtgagtct	tttgagtgac	cattgtctgg	7740
gtcactccca	tttaactttc	cctaaagccc	atttgaagga	gaggtcgcac	gagctgctcc	7800
acaacctctg	aatggggatg	gcatgggtaa	tgatgcttga	gaacatacca	agtcccactg	7860
gcatcgccct	. tgtctaagtc	attgactgta	ggtcatcatc	gcaccettga	aagtagccca	7920
tgccttccaa	agcgatttat	ggtaaatggc	agaattttaa	gtggcaaatt	cagataaaat	7980
gcatttcttg	gttgtttcca	atgatgactg	ttatctagag	ggaatttaaa	. ggcaggggtt	8040

tactgcagac	tcagaaggga	ggggatgctc	cgggaaggtg	gaggctctga	gcatctcaat	8100
accetectet	tggtgcagaa	gatatgctgc	cacttctaga	gcaaggggac	ctgctcattt	8160
ttatcacagc	acaggeteet	aaattcttgg	tctcattctc	aagatgtttt	aatgacttta	8220
aagcagcaaa	gaaatattcc	acccaggtag	tggagggtgg	taatgattgg	taatgctttg	8280
gaaccaaaac	ccaggtggcg	ctggggcagg	actgcaggga	actggggtat	caagtagagg	8340
gagacaaaag	atggaagcca	gcctggctgt	gcaggaaccc	ggcaatgaga	tggctttagc	8400
tgagacaagc	aggtctggtg	ggctgaccat	ttctggccat	gacaactcca	tccagttttc	8460
agaaatggac	tcagatgggc	aaaactgacc	taagttgacc	tagactaaac	aaggccgaac	8520
tgggctgagc	tgagctgaac	tgggctgagt	tgaactgggc	tgagctgagc	tgagctgagc	8580
tgggctaagt	tgcaccaggt	gagctgagtt	gagctgggct	tggctgcatt	aaggtgggct	8640
gagctgggca	gggctgggct	gaattgagct	gggctgggct	gagctaggct	gggctgggc	8699

<211> 338 <212> DNA

<210> 2

<213> Home sapiens

<220>

<221> misc_feature <222> (54)..(54)

 $\langle 223 \rangle$ n = unknown

<220>

<221> misc_feature <222> (86)..(86)

 $\langle 223 \rangle$ n = unknown

<400> 2

taagtgaatc ctggtgtgtc tgaactcaag tgattgttac attaagctgc tgtnccaatc 60

tgtttcctca cctgggaaaa gagganccag gacatagtga gttgaggccc caggaagata 120

actgaattct cagagggcac agccagcatc ctcctcccag ggagagtcta aaagactggg 180

gcctccctca tccctttca cctgtccata cagaggcacc acccacatgc aaatctcact 240

taggcaccca cagaaaacca ccacacattt ccttaaattc agggtcctgc tcacatggga 300

aatactttct gagagtcctg gacctcctgt gcaagaac 338

<210> 3 <211> 339 <212> DNA

<213> Homo sapiens

<400> 3

taagtgaatc ctggtgtgtc tgaactcaca tgattgttac attaagctgc tgttgcaatc

60

tgtttcctca cctgggaaaa	gaggagccag	gacatagtga	gttgaggccc	caggaagata	120
actgaattct cagagggcac	aaccagcatc	ctccttgcca	gggagagcct	aaaagactgg	180
ggcctccctc atcccttttc	acctctccat	acagaggcac	cacccacatg	caaatctcac	240
ttaggcaccc aagggaaacc	atcacacatt	tccttaaatt	cagggtcctg	ctcacatggg	300
aaatactttc tgagagctct	ggacctcctg	tgcaagaac			339
<210> 4 <211> 338 <212> DNA <213> Homo sapiens <220>		·			
<221> misc_feature <222> (106)(106) <223> n = unknown					
<400> 4 attccaaaat ctgtctttga	tccatgatca	cacttgtctc	ccagaccagc	tccttcagca	60
catttcctac ctggaagaag	aggactctgg	gtttggtgag	gggagnccac	aggaagagaa	120
ctgagttctc agagggcaca	gccagcatac	acctcccagg	gtgagcccaa	aagactgggg	180
cctccctcat ccctttttac	ctatccatac	aaaggcacca	cccacatgca	aatcctcact	240
taggcaccca caggaaatga	ctacacattt	ccttaaattc	agggtccagc	tcacatggga	300
agtgctttct gagagtcatg	gacctcctgc	acaagaac			338
<210> 5 <211> 339 <212> DNA <213> Homo sapiens		·			
<400> 5 attccaaaat ctgtccctga	tccaagatca	cactgatctc	ccagagcagc	atcttcagca	60
catttcccta cctggaagaa	gaggactatg	ggcttggtaa	ggggaggcca	caggaagaga	120
actgagttct cagagggcac	agccagcttc	ctactcccag	ggcaagccca	aaagactggg	180
geeteeetee teeetttea	cctgtccata	caaagtcacc	gcccacatgc	aaatcctcac	240
ttaggcacct acaggaaacc	agcacacatt	tccttaaatt	tgggatccag	ctcacatggg	300
aaatactttc tgagactcat	gggcctcctg	cacaagaac			339

<210> 6 <211> 338 <212> DNA <213> Homo sapiens

<222> (16)	e_feature (16) unknown		٠			
<400> 6 atcccaaaat	ctgtcnttga	tccaggatca	cactcatctc	tcagaccagc	tccttcagca	60
catctcttta	cctggaagaa	gaggactctg	ggcttggaga	ggggagcccc	caagaagaga	120
actgagttct	caaagggcac	agccagcatt	ctcctcccag	ggtgagctca	aaagactggc	180
gcctctctca	tcccttttca	ctgctccgta	caaacgcacc	acccccatgc	aaatcctcac	240
ttaggcgccc	acaggaagcc	accacacatt	tccttaaatt	caggtccaac	tcataaggga	300
aatgctttct	gagagtcatg	gatctcatgt	gcaagaaa			338
<210> 7 <211> 334 <212> DNA <213> Art <220>	ificial Seq	ıence	·			
<223> Con	sensus sequ r VH4 allel		man immunogi	lobulin heav	vy chain promo	oter
<400> 7	tgtctctgat	ccaagatcac	acttatctcc	agagcagctc	ttcagcacat	60
	ggaagaagag					120
	agggcacagc				,	180
	ttttcacctt					240
	aaaccaccac					300
	gtcatggacc				333	334
cccccgage	. gccacggaoo	20009290	9440			
<210> 8 <211> 369 <212> DNA <213> Art		uence				
<220>			•			
<223> Pla	smid pME18S	asfp499				
<400> 8 aagcttggct	gtggaatgtg	tgtcagttag	ggtgtggaaa	gtccccaggc	tccccagcag	60
gcagaagtat	gcaaagcato	catctcaatt	. agtcagcaac	catagtcccg	cccctaactc	120
cgcccatccc	c gcccctaact	ccgcccagtt	ccgcccattc	teegeeceat	ggctgactaa	180
+++++++	- ++		, ceteggeete	tgagctattc	: cagaagtagt	240

gaggaggctt	ttttggaggc	ctaggctttt	gcaaaaagct	cctcgatcga	ggggctcgca	300
tctctccttc	acgcgcccgc	cgccctacct	gaggccgcca	tccacgccgg	ttgagtcgcg	360
ttctgccgcc	tcccgcctgt	ggtgcctcct	gaactgcgtc	cgccgtctag	gtaagtttaa	420
agctcaggtc	gagaccgggc	ctttgtccgg	cgctcccttg	gagcctacct	agactcagcc	480
ggctctccac	gctttgcctg	accctgcttg	ctcaactcta	cgtctttgtt	tcgttttctg	540
ttctgcgccg	ttacagatcc	aagctctgaa	aaaccagaaa	gttaactggt	aagtttagtc	600
tttttgtctt	ttatttcagg	tcccggatcc	ggtggtggtg	caaatcaaag	aactgctcct	660
cagtggatgt	tgcctttact	tctaggcctg	tacggaagtg	ttacttctgc	tctaaaagct	720
gcgctcgaga	tgtatccttc	catcaaggaa	accatgcgcg	ttcagctttc	tatggagggt	780
agtgttaact	accacgcctt	caagtgcact	ggaaaaggag	agggaaaacc	atacgaaggc	840
acccaaagcc	tgaatattac	aataactgaa	ggaggtcctc	tgccatttgc	ttttgacatt	900
ctgtcacacg	cctttcagta	tggcatcaag	gtcttcgcca	agtaccccaa	agaaattcct	960
gacttcttta	agcagtctct	acctggtggt	ttttcttggg	aaagagtaag	cacctatgaa	1020
gatggaggag	tgctttcagc	tacccaagaa	acaagtttgc	agggtgattg	catcatctgc	1080
aaagttaaag	tccttggcac	caattttccc	gcaaacggtc	cagtgatgca	aaagaagacc	1140
tgtggatggg	agccatcaac	tgaaacagtc	atcccacgag	atggtggact	tctgcttcgc	1200
gatacccccg	cacttatgct	ggctgacgga	ggtcatcttt	cttgcttcat	ggaaacaact	1260
tacaagtcga	agaaagaggt	aaagcttcca	gaacttcact	ttcatcattt	gcgtatggaa	1320
aagctgaaca	taagtgacga	ttggaagacc	gttgagcagc	acgagtctgt	ggtggctagc	1380
tactcccaag	tgccttcgaa	attaggacat	aacgcggccg	ctgattataa	agatgatgat	1440
gataaagatt	ataaagatga	tgatgataaa	gattataaag	atgatgatga	taaagattat	1500
aaagatgatg	atgataaata	ataaactagt	ctagagaaaa	aacctcccac	acctccccct	1560
gaacctgaaa	cataaaatga	atgcaattgt	tgttgttaac	ttgtttattg	cagcttataa	1620
tggttacaaa	taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	1680
ttctagttgt	ggtttgtcca	aactcatcaa	tgtatcttat	catgtctgga	tccccgggta	1740
ccgagctcga	attaattcct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcgt	1800
teggetgegg	cgagcggtat	cagctcactc	aaaggcggta	atacggttat	ccacagaatc	1860
aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	1920
aaaggccgcg	ttgctggcgt	ttttccatag	gctccgcccc	cctgacgagc	atcacaaaaa	1980
tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	2040

ccctggaagc	tccctcgtgc	gctctcctgt	tccgaccctg	ccgcttaccg	gatacctgtc	2100
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcatagc	tcacgctgta	ggtatctcag	2160
ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	2220
ccgctgcgcc	ttatccggta	actatcgtct	tgagtccaac	ccggtaagac	acgacttatc	2280
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	2340
agagttcttg	aagtggtggc	ctaactacgg	ctacactaga	agaacagtat	ttggtatctg	2400
cgctctgctg	aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	2460
aaccaccgct	ggtagcggtg	gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	2520
aggatctcaa	gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	2580
ctcacgttaa	gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatcctttt	2640
aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	2700
ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	2760
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	2820
cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	2880
ccagccagcc	ggaagggccg	agcgcagaag	tggtcctgca	actttatccg	cctccatcca	2940
gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	3000
cgttgttgcc	attgctacag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	3060
cagctccggt	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	3120
ggttagctcc	ttcggtcctc	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact	3180
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgcttttc	3240
tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	3300
ctcttgcccg	gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	3360
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	3420
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatctttta	ctttcaccag	3480
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	3540
acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	3600
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	3660
tccgcgcaca	tttccccgaa	aagtgccacc	tgc			3693

<210> 9 <211> 581 <212> DNA

<213> Homo sapiens

		•				
<400> 9 cggccccgat	gcgggactgc	gttttgacca	tcataaatca	agtttattt	tttaattaat	60
tgagcgaagc	tggaagcaga	tgatgaatta	gagtcaagat	ggctgcatgg	gggtctccgg	120
cacccacagc	aggtggcagg	aagcaggtca	ccgcgagagt	ctattttagg	aagcaaaaaa	180
acacaattgg	taaatttatc	acttctggtt	gtgaagaggt	ggttttgccc	aggcccagat	240
ctgaaagtgc	tctactgagc	aaaacaacac	ctggacaatt	tgcgtttcta	aaataaggcg	300
aggetgaceg	aaactgaaaa	ggctttttt	aactatctga	atttcatttc	caatcttagc	360
ttatcaactg	ctagtttgtg	caaacagcat	atcaacttct	aaactgcatt	catttttaaa	420
gtaagatgtt	taagaaatta	aacagtctta	gggagagttt	atgactgtat	tcaaaaagtt	480
ttttaaatta	gcttgttatc	ccttcatgtg	taattaatct	caaatacttt	ttcgatacct	540
cagagcatta	ttttcataat	gactgtgttc	acaatctttt	t		581
	o sapiens					
<400> 10 cggccccgat	gcgggactgc	gttttgacca	tcataaatca	agtttattt	tttaattaat	60
tgagcgaagc	tggaagcaga	tgatgaatta	gagtcaagat	ggctgcatgg	gggtctccgg	120
cacccacagc	aggtggcagg	aagcaggtca	ccgcgagagt	ctattttagg	aagcaaaaaa	180
acacaattgg	taaatttatc	acttctggtt	gtgaagaggt	ggttttgccc	aggcccagat	240
ctgaaagtgc	tctactgagc	aaaacaacac	ctggacaatt	tgcgtttcta	aaataaggcg	300
aggctgaccg	aaactgaaaa	ggctttttt	aactatctga	atttcatttc	caatcttagc	360
ttatcaactg	ctagtttgtg	caaacagcat	atcaacttct	aaactgcatt	catttttaaa	420
gtaagatgtt	taagaaatta	aacagtctta	gggagagttt	atgactgtat	tcaaaaagtt	480
ttttaaatta	gcttgttatc	ccttcatgtg	ataattaatc	tcaaatactt	tttcgatacc	540
tcagagcatt	attttcataa	tgactgtgtt	cacaatcttt	tt		582
<210> 11 <211> 666 <212> DNA <213> Ovi						
<400> 11 ctgcgaatac			. acaccata	tagtgtggaa	aattgaaact	60
	cgagacgggg	CCCCCcaaag	ccacccciga	. cagcecggaa	. aaccgaaacc	
ttaaaaagag					aactgcgaat	120

cctcggcccc aattcagggc	tgttttgaga	ataataaatt	cagcttattt	ttttaatgta	240
attggtggtg ccgagttagt	caagatggcc	acgggccaga	ctgaccacct	gcagcaggtg	300
gcaggaagca tgtccacttg	agagtctgtt	tttggaagca	agaaaaaaca	gttggtaaat	360
ttatcgcttc tggtttccaa	aaggtggttt	gcggctggtt	ttgcccagcc	ccacagaacc	420
gaaagtgttc cactgagcac	aacagcacct	ggctaatttg	catttctaaa	ataaggcgca	480
gatgctgacc gaaactggaa	ggttcctctt	ctaactattt	gagttaactt	cagctttagc	540
ttatcaactg ctcacttatc	ttcattttca	aagtcgatgt	ttaagaaagc	cacctgtctc	600
gggtgcactg tctcggtgca	ttgctgcact	ctctgatgag	ccgtccttca	aggtggttga	660
gctgag					666
<210> 12 <211> 1067 <212> DNA <213> Mus musculus <400> 12					
ctagatactg agttctggtt	ctaataactg	gctcctgtac	tgatggatgg	gtcctgacta	60
gtcattgggc cctgatcctc	aacattgact	tcaaaacctg	aactctagcc	ccatgcctca	120
ttcacattag gatgatccct	acaggggatt	cctgcagaag	attccagaat	ccccacaaca	180
ctgttcacac actgggctgc	aactgggaca	gtgacccttt	tgactcatag	gacttgccag	240
gcacagaggc acagaatgga	. gacaaagcaa	gcccaggacc	ctggagatgg	agcctctggt	300
ggggtctaca gatgtggggt	. cagcatcgta	gggaggtttg	cagggcaggt	gtggggcagg	360
gcagaggtag tcatgcttat	agatactatt	tttctctcct	ctggagcctc	ctttgtctat	420
cacctgctgt cctgggatct	ctatctgggg	tcaacaatgt	ttgcagtaca	ggtgtggggg	480
tagggcaggg atgctcacat	tagcaacttg	tttttctctc	ttctgaagtc	tctgttgtct	540
atcacctgct gaaacattca	aagcagctct	cagctgaggg	cagctgagtc	atcctgagcc	600
tgtctcagca caggtgccc	c aaaccagagc	tactgttctg	agaatcacat	cacactggac	660
caggccaggt gggcctggg	a catggatgag	gggtgggagc	caggggagcc	tgccaggggc	720
tgaggaggcc ccaaccccca	a ctacccaagg	ccatccacac	ctgtgcctta	gtgaggccat	780
gttctgtccc aatgagaaca	a agtccaatta	. agattaagta	tggtcttccc	aggactatcc	840
agagctaagg ggtgtcagc	c agggacaacc	: cagaccagcc	tgaggtcagc	: cagcatcacc	900
caaggccaca cagctattc	ggctagagga	ctagatagct	agctcatcga	ggccctggag	960
atgcagaatg gaagagttt	a tccctgccag	acagggctca	tcagaaaggo	: aggtatctca	1020
ctacacatga cctccctga	a tatttcccag	g agtccagttg	gttctag		1067

<210> 13

<210> 13 <211> 221 <212> DNA	
<213> Mus musculus	
<400> 13 agtcaagatg gccgatcaga accagaacac ctgcagcagc tggcaggaag caggtcatgt	60
ggcaaggcta tttggggaag ggaaaataaa accactaggt aaacttgtag ctgtggtttg	120
aagaagtggt tttgaaacac tctgtccagc cccaccaaac cgaaagtcca ggctgagcaa	180
aacaccacct gggtaatttg catttctaaa ataagttgag g	221
<210> 14 <211> 808 <212> DNA <213> Mus musculus	
<400> 14 ageteaaace agettagget acacagagaa actatetaaa aaataattae taaetaetta	60
ataggagatt ggatgttaag atctggtcac taagaggcag aattgagatt cgaaccagta	120
ttttctacct ggtatgtttt aaattgcagt aaggatctaa gtgtagatat ataataataa	180
gattctattg atctctgcaa caacagagag tgttagattt gtttggaaaa aaatattatc	240
agccaacatc ttctaccatt tcagtatage acagagtacc cacccatate tccccaccca	300
tcccccatac cagactggtt attgattttc atggtgactg gcctgagaag attaaaaaaa	360
gtaatgctac cttattggga gtgtcccatg gaccaagata gcaactgtca tagctaccgt	420
cacactgctt tgatcaagaa gaccctttga ggaactgaaa acagaacctt aggcacatct	480
gttgctttcg ctcccatcct cctccaacag cctgggtggt gcactccaca ccctttcaag	540
tttccaaagc ctcatacacc tgctccctac cccagcacct ggccaaggct gtatccagca	600
ctgggatgaa aatgataccc cacctccatc ttgtttgata ttactctatc tcaagcccca	660
ggttagtccc cagtcccaat gcttttgcac agtcaaaact caacttggaa taatcagtat	720
ccttgaagag ttctgatatg gtcactgggc ccatatacca tgtaagacat gtggaaaaga	780
tgtttcatgg ggcccagaca cgttctag	808
<210> 15 <211> 60 <212> DNA <213> Mus musculus <400> 15	
aagcagccct caggcagagg ataaaagctc acactaactg agaagctcca tcctcttctc	60

14/59 <210> 16 <211> 60

<212> DNA <213> Mus musculus <400> 16 aattaggcca ccctcatcac atgaaaacca gcccagagtg actctagcag tgggatcctg 60 <210> 17 <211> 60 <212> DNA <213> Mus musculus <400> 17 60 catgtgcgac tgtgatgatt aatataggga tatccacacc aaacatcata tgagccctat <210> 18 <211> 60 <212> DNA <213> Mus musculus <400> 18 aacatgagtc tgtgattata aatacagaga tatccatacc aaacaactta tgagcactgt 60 <210> 19 <211> 338 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (16)..(16) $\langle 223 \rangle$ n = unknown <400> 19 60 atcccaaaat ctgtcnttga tccaggatca cactcatctc tcagaccagc tccttcagca 120 catctcttta cctggaagaa gaggactctg ggcttggaga ggggagcccc caagaagaga 180 actgagttct caaagggcac agccagcatt ctcctcccag ggtgagctca aaagactggc 240 geetetetea tecetttea etgeteegta caaacgeace acceecatge aaateeteae 300 ttaggcgccc acaggaagcc accacacatt tccttaaatt caggtccaac tcataaggga 338 aatgctttct gagagtcatg gatctcatgt gcaagaaa <210> 20 <211> 255 <212> DNA <213> Homo sapiens <400> 20 60

agatataact atattttcct gaatgatgga attactacca gtctccccca ggacacttca tetgecetga geceageete teeteagatg teceaceeag agettgetat atagtggggg

15/59	
acatgcaaat agggccctcc ctctactgat gaaaaccagc ccagccctga ccctgcagct	180
ctgggagagg agcccagcac tagaagtcgg cggtgtttcc attcggtgat cagcactgaa	240
cacagaggac tcacc	255
<210> 21 <211> 238 <212> DNA <213> Homo sapiens	
<400> 21 cagtagaaat gctaataaga attaattgtt tatgaagtgt aatcactctg ggacacagcc	60
cactcagagg catccettce agaacceget atatagtagg agacatgeaa atagggeeet	120
ccctctgctg atgaaaacca gcccagccct gaccctgcag ctctgggaga ggagccccag	180
ccctgagatt cccaggtgtt tccattcagt gatcagcact gaacacagag gactcacc	238
<210> 22 <211> 244 <212> DNA <213> Homo sapiens	
<400> 22 gatgggtagg ggatgcgtgt cctctaacag gattacgtct tgaaccctca gcttctacaa	60
ttgtgtcgtc catgtgtcat gtatttgctc tttctcatcc tgggtcagga attgggctat	120
	180
taaatagcat ccttcatgaa tatgcaaata actgaggtga atatagatat ctgtgtgccc	240
tgagagcatc acccaaaaac cacaccctc cttgggagaa tcccctagat cacagctcct	244
cacc	244
<210> 23 <211> 36 <212> PRT <213> Homo sapiens	
<400> 23	
Pro Asn Lys Gly Ser Thr Thr Ser Gly Thr Thr Arg Leu Leu Ser Gly 1 10 15	
His Thr Cys Phe Thr Leu Thr Gly Leu-Leu Gly Thr Leu Val Thr Met 20 25 30	
Gly Leu Leu Thr 35	
<210> 24 <211> 111 <212> DNA	

<213> Homo sapiens

10/39	
<400> 24	60
ccaaataaag gaagtggaac cacttcaggt actacccgtc ttctatctgg gcacacgtgt	00
ttcacgttga caggtttgct tgggacgcta gtaaccatgg gcttgctgac t	111
<210> 25 <211> 33 <212> PRT <213> Sus scrofa <400> 25	
Cys Arg Thr Asn Tyr Gly Tyr Ser Ala Ala Pro Ser Leu His Leu Pro 1 10 15	
Pro Gly Ser Leu Leu Ala Ser Leu Val Pro Leu Leu Leu Ser Leu 20 25 30	
Pro	
<210> 26 <211> 99 <212> DNA <213> Sus scrofa	
<400> 26 tgccggacga attacggcta ctcagccgcc cccagcctcc acctcccgcc gggctcgctg	60
ctggeeteee tegtgeeeet eeteeteete agtetteeg	99
<210> 27 <211> 30 <212> PRT <213> Rattus rattus	
<400> 27	
Ala Ser Ser Gln Ser Tyr Arg Met Thr Trp Asn Ile Leu Tyr Thr Leu 1 5 10 15	
Leu Ile Ser Met Thr Thr Leu Phe Gln Ile Ser Thr Lys Glu 20 25 30	
<210> 28 <211> 90 <212> DNA <213> Rattus rattus	
<400> 28 gcatcgtctc agagctacag gatgacctgg aacatactct atacactgtt aatcagcatg	60
actactttat tccaaatatc taccaaggag	90

<210> 29 <211> 47 <212> PRT <213> Mus musculus <400> 29 Ser Ser Asn Lys Ser Ile Ser Val Tyr Arg Asp Lys Leu Val Lys Cys Gly Gly Ile Ser Leu Leu Val Gln Asn Thr Ser Trp Met Leu Leu 20 Leu Leu Ser Leu Ser Leu Leu Gln Ala Leu Asp Phe Ile Ser Leu 40 <210> 30 <211> 135 <212> DNA <213> Mus musculus <400> 30 60 agctccaata aaagtatcag tgtgtataga gacaagctgg tcaagtgtgg cggcataagc ctgctggttc agaacacatc ctggatgctg ctgctgctgc tttccctctc cctcccaa 120 135 gccctggact tcatt <210> 31 <211> 37 <212> PRT <213> Mus musculus <400> 31 Pro Glu Asp Pro Pro Asp Ser Lys Asn Thr Leu Val Leu Phe Gly Ala 5 15 10 Gly Phe Gly Ala Val Ile Thr Val Val Val Ile Val Val Ile Ile Lys 20 25 Cys Phe Cys Lys His 35 <210> 32 111 <211> <212> DNA <213> Mus musculus <400> 32 60 ccagaagacc ctcctgatag caagaacaca cttgtgctct ttgggggcagg attcggcgca 111 gtaataacag tcgtcgtcat cgttgtcatc atcaaatgct tctgtaagca c

<210> 33 <211> 25 <212> PRT <213> Homo sapiens <400> 33 Met Gly Ile Gln Gly Gly Ser Val Leu Phe Gly Leu Leu Leu Val Leu 10 Ala Val Phe Cys His Ser Gly His Ser 20 <210> 34 <211> 75 <212> DNA <213> Homo sapiens <400> 34 atgggaatcc aaggagggtc tgtcctgttc gggctgctgc tcgtcctggc tgtcttctgc 60 75 cattcaggtc atagc <210> 35 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 35 39 ccggaattca atttgagatt gtgtgtgaga tctcaggag <210> 36 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 36 39 ccggaattca tagacagcgc aggtgaggga cagggtctc <210> 37 <211> 39 <212> DNA <213> Artificial Sequence <220>

<223> Oligonucleotide primer

<400> ccggaat	37 ttcc tgagaactca gttctcttcc tgtggcctc	39
<210> <211> <212> <213>	39	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	38 ttca atttgagatt gtgtgtgaga tctcaggag	39
<210> <211> <212> <213>	DNA -	
<220>		
<223>	Oligonucleotide primer	
<400> cccaag	39 cttt cctgttacaa catccatgga gatattttg	39
<210> <211> <212> <213>	39 DNA	
<223>	Oligonucleotide primer	
<400> ccggaa	40 attct gaattgcaag aacataccct agggtgtgc	39
<210> <211> <212> <213>	40 DNA	
<223>	Oligonucleotide primer	
<400>		40
<210> <211> <212> <213>	39	

<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	42 ttca atttaacagc ataaaaacga tcagtccaa	39
<210> <211> <212> <213>	39	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	43 ttcc gtgtttctgg agcagggcat ggctttggg	39
	39	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	44 uttcg ttgggttccc agtgtaggtg atgatccat	39
<210><211><211><212><213>	39 DNA	
	Oligonucleotide primer	
<400>		
	attct cccaggaagt gggttatttt taaatagta	39
<210> <211> <212> <213>	39 DNA	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	46 attca ctatagtcac ctcagttaat tgcatattc	39

<210> <211> <212> <213>	39	
<220>		
<223>	Oligonucleotide primer	
<400> cccaag	47 cttg acttccttta aaaatatcta aaataagta	39
	39	
<220>		
	Oligonucleotide primer	
<400> ccggaa	48 lttcg gttctcatta caacatccag tttgataaa	39
<210> <211> <212> <213>	39	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	49 attec tecaagaaaa gateteatge ateaeeagg	39
<210><211><211><212><213>	39 DNA	
<220>		
<223>	Oligonucleotide primer	
<400> cccaa	50 getta atttagtttt caeggggeat etgeagggt	39
<210> <211> <212> <213>	39 DNA	
<220>		
<223>	Oligonucleotide primer	

<400> cccaag	51 cttt gcacacccta gggtatgttc ttgcaattc	39
<210> <211> <212> <213>	39	
<220>		
<223>	Oligonucleotide primer	
<400> cccaag	52 cttc ccaaagccat gccctgctcc agaaacacg	39
	39	
<220>	Oliganual estida primar	
<223> <400> ccggaa		39
<210><211><212><212><213>	29	
<223>	Oligonucleotide primer	
<400> cccaaç	54 gette atgtteeaeg cattaegte	29
<210> <211> <212> <213>	29 DNA	
<220>		
<223>	Oligonucleotide primer ·	
<400> cccaa	55 gotta agagtgtttg ggttcaccg	29
<210> <211> <212> <213>	39	

<220> <223> Oligonucleotide primer <400> 56 39 cccaagcttt taactcagga ggactcaata caccctgga <210> 57 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 57 39 cccaagctta aacaatacct acaaattcag aagctcttt <210> 58 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 58 38 cccaagctta agtcttctgg ttacaccttc accattat <210> 59 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 59 39 cccaagetta etetetteee tetgtgacta gagetetgt <210> 60 39 <211> <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 60 39 cccaagcttt cagcttctac agttgtgtca cccatgtgt

<223> Oligonucleotide primer

<210> 61 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 61 cccaagcttt gcagagttca ctgggtttcc taaaggcaa 39 <210> 62 <211> 39 DNA <212> <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 62 cccaagettt caccacaaag gaactttcat ctctcctgg 39 <210> 63 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 63 cccaagcttt ttcacacaga aatgtttaga ggtcaggcc 39 <210> 64 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 64 cccaagcttt gcacacccta gggtatgttc ttgcaattc 39 <210> 65 <211> 39 <212> DNA <213> Artificial Sequence <220>

	WO 2004/055182	25/59	PCT/AU2003/001697
		23137	
<400> cccaage	65 etto ccaaagecat geeetgetee agaaac	acg	39
<210> <211> <212> <213>	33		
<220>			
<223>	Oligonucleotide primer		
<400> cccaag	66 ctta tgatgtaacc ctcattggcc tca		33
<210> <211> <212> <213>	33 DNA		
<220>			
<223>	Oligonucleotide primer		
<400> ccggaa	67 ttcg agactccaag aaaagatctc atg		33
<210> <211> <212> <213>	33		
<220>			
<223>	Oligonucleotide primer		
<400> cccaa	68 getta tgttettgea atteagegga gga		33
<210> <211> <212> <213>	33	,	
<220>			
<223>	Oligonucleotide primer		
<400> ccgga	69 attct gtgtgagatc tcaggagaag gta		33

26/59

<220>	
<223> Oligonucleotide primer	
<400> 70 cccaagcttc ggccccgatg cgggactgcg ttttgacca	39
<210> 71 <211> 39 <212> DNA <213> Artificial Sequence	
<220>	•
<223> Oligonucleotide primer	
<400> 71 ccggaattca taacaagcta atttaaaaaa ctttttgaa	39
<210> 72 <211> 39 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 72 cccaagettg cacagaeggg aggtaeggta tggaegtet	39
<210> 73 <211> 39 <212> DNA <213> Artificial Sequence <220>	
<223> Oligonucleotide primer	
<400> 73 ccggaattca aaaaaataaa cttgatttat gatggtcaa	39
<210> 74 <211> 39 <212> DNA <213> Artificial Sequence	
<223> Oligonucleotide primer	
<400> 74	
ccggaattcc gcggtgacct gcttcctgcc acctgctgt	39

27/59

<210> <211> <212> <213>		
<220>		
<223>	Oligonucleotide primer .	
<400> ccggaa	75 ttca gttagtgcag ccaagccct	29
<210> <211> <212> <213>	DNA	
<220>		
<223>	Oligonucleotide primer	
<400> ccggaa	76 ttca aaaggcaagt ggacttcggt gcttacctg	39
<210> <211> <212> <213>	36 DNA	
<220>	•	
<223>	Oligonucleotide primer	
<400> cccaag	77 gette ageteagete agtteagtte ageeet	36
<210><211><211><212><213>		
<223>	Oligonucleotide primer	
<400> cccaac	78 getta tgegagggte tggaeggetg aggaeeeee	39
<210> <211> <212> <213>	39 DNA	
<220>		
<223>	Oligonucleotide primer	

28/59

<400> ccggaat	79 ttca tgcggcaagg gttgcggacc gctggctgg	39
<210> <211> <212> <213>	29 DNA	
<220>		
<223>	Oligonucleotide primer	
<400>	80 ttcg cccagcccag cctagctca	29
<210><211><211><212><213>	29 DNA	
<220>	ALGERGEGE POJECTO	
<223>	Oligonucleotide primer	
<400> cccaag	81 rettt tatcaactge tagtttgtg	29
<210> <211> <212> <213>	36 DNA	
<223>	Oligonucleotide primer	
<400> ccggaa	82 attca gggctgaact gaactgagct gagctg	36
<210> <211> <212> <213>	35	
<223>	Oligonucleotide primer	
<400>	83 gatat ctgggagcct ctgtggattt teega	35
<210> <211> <212> <213>	31	

<220>							
<223>	Olig	onucleotide	primer				
<400> agccgga	84 ıtat	cgcccagccc	agcctagctc	a			31
<210> <211> <212> <213>		ficial Sequ	ence				
<220>							
<223>	Olig	onucleotide	primer				
<400> gaaagtt	85 Laaa	tgggagtgac	ccag				24
<210> <211> <212> <213>	24 DNA	ficial Sequ	ence				
<220>							
<223>	Olig	onucleotide	e primer	•			
<400> gagtga	86 ccat	cgcacccttg	acag				24
<210><211><211><212><213>		e6 ficial Sequ	ience				
<220>							
<223>	Plas	smid 3kb15a-	-7-4T				
<400> ctaaat	87 tgta	agcgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	aaatcagctc	60
attttt	taac	caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	aatagaccga	120
gatagg	gttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	180
caacgt	caaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	aaccatcacc	240
ctaatc	aagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	300
cccccg	attt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	360
agcgaa	agga	gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	420
cacacc	cgcc	gcgcttaatg	cgccgctaca	gggcgcgtcc	cattcgccat	tcaggctgcg	480

WO 2004/055182 PCT/AU2003/001697 30/59

caactgttgg	gaagggcgat	cggtgcgggc	ctcttcgcta	ttacgccagc	tggcgaaagg	540
gggatgtgct	gcaaggcgat	taagttgggt	aacgccaggg	ttttcccagt	cacgacgttg	600
taaaacgacg	gccagtgagc	gcgcgtaata	cgactcacta	tagggcgaat	tgggtaccgg	660
gcccccctc	gaggtcgacg	gtatcgataa	gcttgatatc	tgggagcctc	tgtggatttt	720
ccgatgcctt	tggaaaatgg	gactcaggtt	gggtgcgtct	gatggagtaa	ctgagcctgg	780
gggcttgggg	agccacattt	ggacgagatg	cctgaacaaa	ccaggggtct	tagtgatggc	840
tgaggaatgt	gtctcaggag	cggtgtctgt	aggactgcaa	gatcgctgca	cagcagcgaa	900
tcgtgaaata	ttttctttag	aattatgagg	tgcgctgtgt	gtcaacctgc	atcttaaatt	960
ctttattggc	tggaaagaga	actgtcggag	tgggtgaatc	cagccaggag	ggacgcgtag	1020
ccccggtctt	gatgagagca	gggttggggg	caggggtagc	ccagaaacgg	tggctgccgt	1080
cctgacaggg	gcttagggag	gctccaggac	ctcagtgcct	tgaagctggt	ttccatgaga	1140
aaaggattgt	ttatcttagg	aggcatgctt	actgttaaaa	gacaggatat	gtttgaagtg	1200
gcttctgaga	aaaatggtta	agaaaattat	gacttaaaaa	tgtgagagat	tttcaagtat	1260
attaatttt	ttaactgtcc	aagtatttga	aattcttatc	atttgattaa	cacccatgag	1320
tgatatgtgt	ctggaattga	ggccaaagca	agctcagcta	agaaatacta	gcacagtgct	1380
gtcggccccg	atgcgggact	. gcgttttgac	catcataaat	caagtttatt	tttttaatta	1440
attgagcgaa	. gctggaagca	gatgatgaat	. tagagtcaag	atggctgcat	gggggtctcc	1500
ggcacccaca	gcaggtggca	ı ggaagcaggt	: caccgcgaga	gtctatttta	ggaagcaaaa	1560
aaacacaatt	ggtaaattta	tcacttctgg	, ttgtgaagag	gtggttttgc	ccaggcccag	1620
atctgaaagt	gctctactga	a gcaaaacaac	acctggacaa	tttgcgtttc	: taaaataagg	1680
cgaggctgad	c cgaaactgaa	a aaggcttttt	ttaactatct	gaatttcatt	tccaatctta	1740
gcttatcaad	tgctagttt	g tgcaaacago	atatcaactt	ctaaactgc	ttcattttta	1800
aagtaagat	g tttaagaaat	taaacagtct	tagggagagt	ttatgactg	attcaaaaag	1860
ttttttaaat	tagcttgtta	a tecetteate	g tgataattaa	a tctcaaata	tttttcgata	1920
cctcagage	a ttattttca	t aatgactgt	g ttcacaatct	ttttaggtt:	a actcgttttc	1980
tctttgtga	t taaggagaa	a cactttgat:	a ttctgataga	a gtggccttc	a ttttagtatt	2040
tttcaagac	c acttttcaa	c tactcactt	t aggataagti	t ttaggaaaa	a tgtgcatcat	2100
tatcctgaa	t tatttcagt	t aagcatgtt	a gttggtggc	a taagagaaa	a ctcaatcaga	2160
tagtgctga	a gacaggact	g tggagacac	c ttagaagga	c agattctgt	t ccgaatcacc	2220
gatgcggcg	t cagcaggac	t ggcctagcg	g aggctctgg	g agggtggct	g ccaggcccgg	2280

cctgggctct	gggtctcccc	ggactaccca	gagctgggat	gcgtggcttc	tgctgccggg	2340
ccgactggct	gctcaggccc	cagcccttgt	taatggactt	ggaggaatga	ttccatgcca	2400
aagctttgca	aggctcgcag	tgaccaggcg	cccgacatgg	taagagacag	gcagccgccg	2460
ctgctgcatt	tgcttctctt	aaaactttgt	atttgacgtc	ttatttccac	tagaagggga	2520
actggtctta	attgcttgat	gaagagcagg	agactcattt	atgtgagtct	tttgagtgac	2580
cattgtctgg	gtcactccca	tttaactttc	cctaaagccc	atttgaagga	gaggtcgcac	2640
gagctgctcc	acaacctctg	aatggggatg	gcatgggtaa	tgatgcttga	gaacatacca	2700
agtcccactg	gcatcgccct	tgtctaagtc	attgactgta	ggtcatcatc	gcacccttga	2760
aagtagccca	tgccttccaa	agcgatttat	ggtaaatggc	agaattttaa	gtggcaaatt	2820
cagataaaat	gcatttcttg	gttgtttcca	atgatgactg	ttatctagag	ggaatttaaa	2880
ggcaggggtt	tactgcagac	tcagaaggga	ggggatgctc	cgggaaggtg	gaggctctga	2940
gcatctcaat	accetectet	tggtgcagaa	gatatgctgc	cacttctaga	gcaaggggac	3000
ctgctcattt	ttatcacagc	acaggeteet	aaattcttgg	tctcattctc	aagatgtttt	3060
aatgacttta	aagcagcaaa	gaaatattcc	acccaggtag	tggagggtgg	taatgattgg	3120
taatgctttg	gaaccaaaac	ccaggtggcg	ctggggcagg	actgcaggga	actggggtat	3180
caagtagagg	gagacaaaag	atggaagcca	gcctggctgt	gcaggaaccc	ggcaatgaga	3240
tggctttagc	tgagacaagc	aggtctggtg	ggctgaccat	ttctggccat	gacaactcca	3300
tccagttttc	agaaatggac	tcagatgggc	aaaactgacc	taagttgacc	tagactaaac	3360
aaggccgaac	tgggctgagc	tgagctgaac	tgggctgagt	tgaactgggc	tgagctgagc	3420
tgagctgagc	tgggctaagt	tgcaccaggt	gagctgagtt	gagctgggct	tggctgcatt	3480
aaggtgggct	gagctgggca	gggctgggct	gaattgagct	gggctgggct	gagctaggct	3540
gggctgggcg	atatcgaatt	cctgcagccc	gggggatccg	cccccatcga	taatttagtt	3600
ttcacggggc	atctgcaggg	ttccaaagtg	agaccaggtg	aattcaatgt	gcatgcactt	3660
cccaagtgtc	cacttgtatt	ctgtttcttt	acttctgttt	acagaaagta	gacacatatt	3720
cagtcttagt	accagtgtag	ggagcgcttt	ccatgagatg	gataccagaa	aaaaatggca	3780
aaçatgggat	ccgttaatat	aaaaattagc	cacgatgtat	atatatatat	gtgtgtgtgt	3840
gtgtgtgtgt	gtgtgtacac	acgcgcgcgc	atgtgtgagt	tgaatagcag	agttggagtg	3900
ggtttctatc	cacatgtacc	tgcacctgca	ggtattctca	ggtgccataa	tcaactgtag	3960
gaccctaaag	gaaataagag	tetecectea	acccctgaag	agtgtttggg	ttcaccgtgt	4020
gtccaatgat	tetgtgeete	ttgagctcca	ggaaagggct	ccctggtgat	gcatgagatc	4080

ttttcttgga	gtctctctgc	agagttcact	gggtttccta	aaggcaattc	actatttcaa	4140
aagatggtgt	gaggagcatg	tggtgtccct	aaaggagaat	tctgagccag	ggcacaacca	4200
ctttatactg	agctggatac	actggtagga	atatactctg	tcagctcaga	tagaaacctc	4260
cctgcatggt	tggggctggg	ctgcaggggg	cgctccggat	acacccagca	caggctcccg	4320
ccccagagca	ggtgcacagg	aggctgggga	gaggttcctc	ccagggcctg	ggacttcctt	4380
taaaaatatc	taaaataagt	atttcacaaa	gactgctgaa	gtttgtataa	atatctattc	4440
aattgtgagc	atttatcaaa	ctggatgttg	taatgagaac	cacttttaca	atggggattt	4500
caaactctgc	tggaggtcag	gaagagatcc	tttcttataa	ataaatgcaa	tttttggata	4560
aacacagtca	ttccctaaat	aacgcattca	catattatgg	tctagaaatg	atgcaagttg	4620
accctgagac	agtcaaatgt	ggtttcaaag	tgaggtgctg	tccttgagga	gcttgttctc	4680
cagtggggga	agctctgtca	acacagagtt	cagggatgtg	taggggacac	atggcctcta	4740
acaggattac	ggcttgaacc	ctcagcttct	acagttgtgt	cacccatgtg	tctgtttctc	4800
atactgggtc	aggaattggg	ctattaaata	gcatccttca	tgaatatgca	attaactgag	4860
gtgactatag	tatctccgtt	ccctgagagc	ctcacccaac	aaccacaccc	ctcctctgga	4920
gaagccccta	gatcacagct	cctcaccatg	gactggacct	gaaggatcct	cttcttgatg	4980
gcagcagcaa	caggtaaggg	gctccccagt	ctcagggctg	aggaagaaac	caggccagtc	5040
atgtgagact	tcacccactc	ttgtgtccac	tccacaggtg	cccactccct	gcagctggtg	5100
cagtctgggc	ctgaggtgaa	gaagcctggg	gcctcagtga	aggtctccta	taagtcttct	5160
ggttacacct	tcaccatcta	tggtatgaat	tgggtatgat	agacccctgg	acagggcttt	5220
gagtggatgt	gatggatcat	cacctacact	gggaacccaa	cgtataccca	cggcttcaca	5280
ggatggtttg	tcttctccat	ggacacgtct	gtcagcacgg	cgtgtcttca	gatcagcagc	5340
ctaaaggctg	aggacacggc	cgagtattac	tgtgcgaagt	acacagtgtg	gaaacccaca	5400
tcccgagagt	ttcagaaagc	ctgaggaagg	aggcagctgt	gctgagctga	ggcagtggta	5460
cagcagtttt	ctgaacttcc	atagtatctc	attttgcatt	gagttccgct	ttaatattag	5520
ccaagaatat	gggatagacg	ggtgctccta	agagatcctt	aacttgccca	ttttgatggg	5580
ttttcccaaa	gacgtgagaa	gccactttt	tcgcaaagca	tcccaaagcc	atgccctgct	5640
ccagaaacac	gtgtatccat	ttcctggtct	ttgattaact	gacaaactct	catcagcgca	5700
cctgggctaa	tttcacatca	. ggtagaaata	. tgtgctttaa	agcaaggcta	acgttgtaat	5760
agcaattcct	gcttaataac	cttcagcatt	gttgttgtgt	gctccatcaa	ctaattacgt	5820
tagttcaagg	g ttctcaatgg	gagtttctaa	taaatataag	ggatgtatag	aagttcccct	5880

aattaaaaca a	attgtgaaga	caacctcagt	gttcaaccat	atttcaaccc	ttcaccacaa	5940
aggaactttc	atctctcctg	gaagttgggt	tcattttcaa	attagttttt	ttattttaat	6000
atctcaagat	tattgtatgt	gactatttta	gcagaaagtg	aattatggga	acttgaacta	6060
accaactgaa	aatacattca	gaactaatta	aacaagatgc	cagaatgtga	ttggctccag	6120
gcattttaaa	ttcaacaggt	tatgtaacca	ggctttaaat	ttgcacatct	tcgtgttacc	6180
ttcatgacac	agtcaactcc	cattatgtaa	gaaatggtga	gtgcattccc	aagggtcttg	6240
cacagttata	aaaatagact	tgatgaggtg	aggagttgtt	taaattcccc	tctgaagaag	6300
cagcatcaac	ccaacaaacc	actctcttcc	ctctgtgact	agagctctgt	cacaggccac	6360
atggacctaa	atccttgatg	gagattacag	gactacgtaa	attggactga	tcgtttttat	6420
gctgttaaat	taataggtga	gtctgcactc	cagcctgggc	aacagaataa	tcttgtctgt	6480
aaaatacaaa	agaaagataa	attaatagat	actgactttg	acatttcgga	taataatatt	6540
ttcataaacc	gaatttaatt	atacccacat	tgttacctac	accttcactg	aaaagttcct	6600
agttatgttg	agttccatca	acactccaca	tgttcaaatc	tggacatcca	agagagtcta	6660
gagaataaaa	cgcaatgagg	gcagtgaaac	ttgcgtatat	tcagcacctc	ttaactcagg	6720
aggactcaat	acaccctgga	acactctgct	tttctgaatg	gctcacaatg	actccagctc	6780
actctccaac	ctcctcaaac	atctggcctc	tgtttgccct	aagttcacgc	tctgctctta	6840
gtctatgttc	tgaagtcttt	gtagaggtga	aaatgagctg	tcagatggat	cttccttctc	6900
actgcaacat	ggaatttgct	atttcactta	atgaccactc	tttccacaat	ggttgatttc	6960
ttttggcctg	ttcattactg	gtgattttca	agggaatctc	agttgaatct	ttactgtttt	7020
gcattttgtc	tccatgacaa	tgttgggaag	tttttcttct	agcagcataa	catgatctag	7080
tgacctgaca	catttgcagc	aaacaatacc	tacaaattca	gaagctcttt	ggttttcttt	7140
ccacgaaata	taattcttgc	tcttctgtgt	atgagcacat	cctagcatcc	ctgtacacac	7200
ccaggtagat	gtaaacacgc	cgatgaaata	ttccctgtaa	ataaaaaaag	tatctcagtt	7260
tctctcaatg	ttcataattc	tcctgagggt	gaggaaggta	cttctgggtc	: tgctcaaaca	7320
aatggcccag	agaccacctg	gtaggtaggt	aaggagctca	cctcgctctc	gatattgagt	7380
ctgtctcttt	ccctctgtcg	r tctcatagaa	. ggccagccca	cttgttcago	tcctaagaag	7440
agagcccagg	tttatccaga	ttatacaaca	caaccagctt	ctgatgacto	tcctgttaca	7500
acatccatgg	agatattttg	, tgtattatat	aattcaccaa	actaatgtga	a aatgcccaag	7560
ttgcaatact	gcacacccta	gggtatgttc	: ttgcaattca	gcggaggaga	a aattctttca	7620
gagacagatg	gatctgaatt	ggtaaatatg	, tgggtacgaa	ttctgggtt1	gagtgtcatt	7680

gtccagccat	gtttcacagg	tgtgacctgt	cagggaagaa	ccagagttcc	ttgttctctc	7740
agagggtaga	gctcacagag	gtcctctctg	gttcccagga	aaggtaattt	cactaatctt	7800
ggtgatgaga	ctatcctcca	gtgctgatgt	actatagagt	tttcatctga	agctgtcact	7860
gctatcccca	atgtacatct	tttcacacag	aaatgtttag	aggtcaggcc	atattctcag	7920
ggttacacat	tgagaaggat	ggagatatat	tctactacct	tctcctgaga	tctcacacac	7980
aatctcaaat	ttcaaaaggt	ctcagaaggg	cagctctcag	gtactattta	aaaataaccc	8040
acttcctggg	acaggtagca	tccttctaac	catgatggat	gttctgaact	acagtacaca	8100
ttgcatggat	ccaggtttgt	ctcaattcac	tgtgattatt	acactcagca	gctgtttcaa	8160
tatgtctgaa	ggggtaaatg	acaatttagg	tgacctgggt	gtatggttgg	tgttatatga	8220
atctttaaat	gtagaacagt	attaactgta	ttccaaaatc	tgtctttgat	ccatgatcac	8280
acttgtctcc	cagaccagct	ccttcagcac	atttcctacc	tggaagaaga	ggactctggg	8340
tttggtgagg	ggaggccaca	ggaagagaac	tgagttctca	gagggcacag	ccagcataca	8400
cctcccaggg	tgagcccaaa	agactggggc	ctccctcatc	cctttttacc	tatccataca	8460
aaggcaccac	ccacatgcaa	atcctcactt	aggcacccac	aggaaatgac	tacacatttc	8520
cttaaattca	gggtccagct	cacatgggaa	gtgctttctg	agagtcatgg	acctcctgca	8580
caagaacggt	accgggctag	agcggccgcc	accgcggtgg	agctccagct	tttgttccct	8640
ttagtgaggg	ttaattgcgc	gcttggcgta	atcatggtca	tagctgtttc	ctgtgtgaaa	8700
ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	gtaaagcctg	8760
gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	8820
gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	8880
tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	8940
gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	9000
ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	9060
ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	acaaaaatcg	9120
acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	9180
tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	9240
ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	atctcagttc	9300
ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	agcccgaccg	9360
ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	9420
actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	9480

gttcttgaag tggtggccta	actacggcta	cactagaagg	acagtatttg	gtatctgcgc	9540
tctgctgaag ccagttacct	teggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	9600
caccgctggt agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	9660
atctcaagaa gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	9720
acgttaaggg attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	9780
ttaaaaatga agttttaaat	caatctaaag	tatatatgag	taaacttggt	ctgacagtta	9840
ccaatgetta atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	9900
tgcctgactc cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	ctggccccag	9960
tgctgcaatg ataccgcgag	acccacgctc	accggctcca	gatttatcag	caataaacca	10020
gccagccgga agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	10080
tattaattgt tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	10140
tgttgccatt gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	10200
ctccggttcc caacgatcaa	ggcgagttac	atgatecece	atgttgtgca	aaaaagcggt	10260
tagctccttc ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	10320
ggttatggca gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	10380
gactggtgag tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	10440
ttgcccggcg tcaatacggg	ataataccgc	gccacatagc	agaactttaa	aagtgctcat	10500
cattggaaaa cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	10560
ttcgatgtaa cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	10620
ttctgggtga gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	10680
gaaatgttga atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	10740
ttgtctcatg agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	10800
gcgcacattt ccccgaaaag	tgccac				10826

<210> 88 <211> 42 <212> DNA

<220>

<223> Oligonucleotide Primer

<400> 88

gacggtatcg ataagcttga tatcgaattc ctgcagcccg gg

<213> Artificial Sequence

<210> 89 <211> 42 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 89 gacctcctgc acaagaacgg taccgggcta gagcggccgc ca	42
<210> 90 <211> 25 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 90 cagtgctgca atgataccgc gagac	25
<210> 91 <211> 13722 <212> DNA <213> Artificial Sequence	
<220>	
<223> Plasmid KW2	
<400> 91 cagtgtggtt ttgcaagagg aagcaaaaag cetetecaee caggeetgga atgtttecae	60
ccaatgtcga gcagtgtggt tttgcaagag gaagcaaaaa gcctctccac ccaggcctgg	120
aatgtttcca cccaatgtcg agcaaacccc gcccagcgtc ttgtcattgg cgaattcgaa	180
cacgcagatg cagtcggggc ggcgcggtcc caggtccact tcgcatatta aggtgacgcg	240
tgtggcctcg aacaccgagc gaccctgcag ccaatatggg atcggccatt gaacaagatg	300
gattgcacgc aggttctccg gccgcttggg tggagaggct attcggctat gactgggcac	360
aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag gggcgcccgg	420
ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc	480
ggctatcgtg gctggccacg acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg	540
aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc ctgtcatctc	600
accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg ctgcatacgc	660
ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta	720

ctcggatgga	agccggtctt	gtcgatcagg	atgatctgga	cgaagagcat	caggggctcg	780
cgccagccga	actgttcgcc	aggctcaagg	cgcgcatgcc	cgacggcgag	gatctcgtcg	840
tgacccatgg	cgatgcctgc	ttgccgaata	tcatggtgga	aaatggccgc	ttttctggat	900
tcatcgactg	tggccggctg	ggtgtggcgg	accgctatca	ggacatagcg	ttggctaccc	960
gtgatattgc	tgaagagctt	ggcggcgaat	gggctgaccg	cttcctcgtg	ctttacggta	1020
tegeegetee	cgattcgcag	cgcatcgcct	tctatcgcct	tcttgacgag	ttcttctgag	1080
gggatcggca	ataaaaagac	agaataaaac	gcacgggtgt	tgggtcgttt	gttcggatcc	1140
gtcgacttta	tcatcatcat	ctttataatc	tttatcatca	tcatctttat	aatcgttatg	1200
tcctaatttc	gaaggcactt	gggagtagct	agccaccaca	gactcgtgct	gctcaacggt	1260
cttccaatcg	tcacttatgt	tcagcttttc	catacgcaaa	tgatgaaagt	gaagttctgg	1320
aagctttacc	tctttcttcg	acttgtaagt	tgtttccatg	aagcaagaaa	gatgacctcc	1380
gtcagccagc	ataagtgcgg	gggtatcgcg	aagcagaagt	ccaccatctc	gtgggatgac	1440
tgtttcagtt	gatggctccc	atccacaggt	cttcttttgc	atcactggac	cgtttgcggg	1500
aaaattggtg	ccaaggactt	taactttgca	gatgatgcaa	tcaccctgca	aacttgtttc	1560
ttgggtagct	gaaagcactc	ctccatcttc	ataggtgctt	actctttccc	aagaaaaacc	1620
accaggtaga	gactgcttaa	agaagtcagg	aatttctttg	gggtacttgg	cgaagacctt	1680
gatgccatac	tgaaaggcgt	gtgacagaat	gtcaaaagca	aatggcagag	gacctccttc	1740
agttattgta	atattcaggc	tttgggtgcc	ttcgtatggt	tttccctctc	cttttccagt	1800
gcacttgaag	gcgtggtagt	taacactacc	ctccatagaa	agctgaacgc	gcatggtttc	1860
cttgatggaa	ggatacatgg	taccatgact	ctcagaaagc	acttcccatg	tgagctggac	1920
cctgaattta	aggaaatgtg	tagtcatttc	ctgtgggtgc	ctaagtgagg	atttgcatgt	1980
gggtggtgcc	tttgtatgga	taggtaaaaa	gggatgaggg	aggccccagt	cttttgggct	2040
caccctggga	ggtgtatgct	ggctgtgccc	tctgagaact	cagttctctt	cctgtggcct	2100
ccctcacca	aacccagagt	cctcttcttc	caggtaggaa	atgtgctgaa	ggagctggtc	2160
tgggagacaa	gtgtgatcat	ggatcaaaga	cagattttgg	aatacagtta	atactgttct	2220
acatttaaag	attcatataa	caccaaccat	acacccaggt	cacctaaatt	gtcatttacc	2280
ccttcagaca	tattgaaaca	gctgctgagt	gtaataatca	cagtgaattg	agacaaacct	2340
ggatccatgc	aatgtgtact	gtagttcaga	acatccatca	tggttagaag	gatgctacct	2400
gtcccaggaa	gtgggttatt	tttaaatagt	acctgagagc	tgcccttctg	agaccttttg	2460
aaatttgaga	ttgtgtgtga	gatctcagga	gaaggtagta	gaatatatct	ccatccttct	2520

caatgtgtaa	ccctgagaat	atggcctgac	ctctaaacat	ttctgtgtga	aaagatgtac	2580
attggggata	gcagtgacag	cttcagatga	aaactctata	gtacatcagc	actggaggat	2640
agtctcatca	ccaagattag	tgaaattacc	tttcctggga	accagagagg	acctctgtga	2700
gctctaccct	ctgagagaac	aaggaactct	ggttcttccc	tgacaggtca	cacctgtgaa	2760
acatggctgg	acaatgacac	tcaaacccag	aattcgtacc	cacatattta	ccaattcaga	2820
tccatctgtc	tctgaaagaa	tttctcctcc	gctgaattgc	aagaacatac	cctagggtgt	2880
gcagtattgc	aacttgggca	tttcacatta	gtttggtgaa	ttatataata	cacaaaatat	2940
ctccatggat	gttgtaacag	gagagtcatc	agaagctggt	tgtgttgtat	aatctggata	3000
aacctgggct	ctcttcttag	gagctgaaca	agtgggctgg	ccttctatga	gacgacagag	3060
ggaaagagac	agactcaata	tccagagcga	ggtgagctcc	ttacctacct	accaggtggt	3120
ctctgggcca	tttgtttgag	cagacccaga	agtaccttcc	tcaccctcag	gagaattatg	3180
aacattgaga	gaaactgaga	tactttttt	atttacaggg	aatatttcat	cggcgtgttt	3240
acatctacct	gggtgtgtac	agggatgcta	ggatgtgctc	atacacagaa	gagcaagaat	3300
tatatttcgt	ggaaagaaaa	ccaaagagct	tctgaatttg	taggtattgt	ttgctgcaaa	3360
tgtgtcaggt	cactagatca	tgttatgctg	ctagaagaaa	aacttcccaa	cattgtcatg	3420
gagacaaaat	gcaaaacagt	aaagattcaa	ctgagattcc	cttgaaaatc	accagtaatg	3480
aacaggccaa	aagaaatcaa	ccattgtgga	aagagtggtc	attaagtgaa	atagcaaatt	3540
ccatgttgca	gtgagaagga	agatccatct	gacagctcat	tttcacctct	acaaagactt	3600
cagaacatag	actaagagca	gagcgtgaac	ttagggcaaa	cagaggccag	atgtttgagg	3660
aggttggaga	gtgagctgga	gtcattgtga	gccattcaga	aaagcagagt	gttccagggt	3720
gtattgagtc	ctcctgagtt	aagaggtgct	gaatatacgc	aagtttcact	gccctcattg	3780
cgttttattc	tctagactct	cttggatgtc	cagatttgaa	catgtggagt	gttgatggaa	3840
ctcaacataa	ctaggaactt	ttcagtgaag	gtgtaggtaa	caatgtgggt	ataattaaat	3900
teggtttatg	aaaatattat	tatccgaaat	gtcaaagtca	gtatctatta	atttatcttt	. 3960
cttttgtatt	ttacagacaa	gattattctg	ttgcccaggc	tggagtgcag	actcacctat	4020
taatttaaca	gcataaaaac	gatcagtcca	atttacgtag	tcctgtaatc	tccatcaagg	4080
atttaggtcc	atgtggcctg	tgacagagct	ctagtcacag	agggaagaga	gtggtttgtt	4140
gggttgatgc	tgcttcttca	gaggggaatt	taaacaactc	ctcacctcat	caagtctatt	4200
tttataactg	tgcaagaccc	ttgggaatgc	actcaccatt	tcttacataa	tgggagttga	4260
ctgtgtcatg	aaggtaacac	gaagatgtgc	aaatttaaag	cctggttaca	taacctgttg	4320

altitaaaat goctgaggc altocatate tiggcatett titaattig totgaatgta titttoagtig gitagiteaa gitocoataa tidacettig gitaagiteaa gitocoataa tidacettiga gaaceeaact laaceeaacta altocatigaa atattaaaat aaaaaacata altigaaaat gaaceeaact tocaggaggg algaaagite cittigtiggig aagggitgaa alatiggitga acactgaggi tigtettoaa atagaagite titaatacaa gitagetiga gocacaacaa acaatgciga aggitattaa geaggaattig ciattacaac gitagectig cittaaagaca acaatgciga aggitattaa geaggaattig ciattacaac gitagectig gadeettig gaaceeaaca acaatgciga aaggitatea acgiggitate gaaceeaaca acaatgciga aaggitatea gaaceeaaca acaatgciga aaggitatea gaaceeaaca acaatgciga aaggitatea gaaceeaaca acaatgciga aaggitatea acgigtitett ggagaaggaa titaaggaac caataticta cetgagggaa acgigtitett ggagaagaacaa acaatgciga aaatggaaca acaatgciga gaacaaacaca aatgggcaag titaaggaac caaaaaacaca aatggagaaa titaaggaaca caaaaacacacacacacaa aatgggcaaa ticaaagaacaa aagaaaacacacacaa aatgggcaaa ticaaagaacaa acaaacacaca aaggigggaa ticaaacacaca gaacacacaca aatggagaaca acaaacacacacacacacacacacacacaca								
atatottgag atattaaaat aaaaaaacta atttgaaaat gaacccaact tocaggagag atgaagagtte ctttgtggtg aagggttgaa atatggttga acactgaggt tgtcttcaca attgttttaa ttaggggaac ttotatacat cocttatatt tattagaace toccattgag aaccttgaac taacgtaatt agttgatgga gcaccaaca acaatgctga aggttattaa gcaggaattg ctattacac gttagccttg ctttaaagca catatttcta cotgatgga aattagccca ggtgcgctga tgagagtttg toagttaatc aaagaccagg aaatggatac acgtgtttct ggagagaggg atggctttgg gatgctttgc gaaaaaagtg gcttctcacg tctttgggaa aacccatcaa aatgggcaag ttaaggatct cttaggagca cocgtctatc ccatattctt ggctaatatt aaagcggaac toaatgcaaa atggatact atggaagttc aagaacactgg gatgtgggtt tocacactg tgacttcgg aaaacactgg gatgtgggtt tocacactgt gtacttcgca cagtaatact aggctgtg aaaacccatc ggtggggtt tocacactgt gtacttcgca cagtaatact oggocgtgtc ctcagccttt aggctgtgg ttcacactgt gtacttcgca cagtaatact oggocgtgtc ctcagccttt aggctgctga totgaagaca cgccgtgctg acagacgtgt ccatggagaa gacaaaccat cotgtgaaga ggtcagggt ctatcatacc caattcatac catggagaa gaaggtgtaa coagaagact tataggagac ctcactgag gccccaggct tottcacctc aggcccagac tgcacagact gacaggaggt ggcacctgg gaggggaaca aagagtgggt gaaggtctaa coagaagact tataggagac ctcactgag gccccaggct tottcacctc aggcccagac tgcacagac tggtttottc ctcaggccctg gaggggacac aagagtgggt gaagtctcac atgactggc tggtttottc ctcaggccctg gaggggacac aagagtgggt gaagtctcac atgactggc tggtttottc ctcaggccctg gagtggacac aagagtgggt totaggggct totacagggg aggggttgg ttgttggggt aggctctcag ggagcgggagaa tactatagc acctagata atgacaaca gagggtggg tggtgggacc accatgggga ggagctgga totaggggct totacagaga aggggtggg tggtggggt gacacaact gtagaagct accaatcc tggagaaca gacacatgg tgacacaact gtagaagct agggttcaag ccgtaatcct gttagagaca gcccctaaa atggaacac agggtgacac agggttcaag ccgtaatcct gttagagaca gcccctaaa atggaacacac tggagaacaa gcccctacac tggagaacaa gcccctacac tggagaacaa gcccctacac tggagaacaa accaatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gttagaacaa accaatggg tgacacaacac tgaacacct gttagaagac ccccaattcc tgacacact ggagaacaa accaattga accgacact taccataccc tgaaccctg ttattaggg aatgcctcaagaggtt ttatcaaaa aattgcatt atttataaaa aaggacctct	,	aatttaaaat	gcctggagcc	aatcacattc	tggcatcttg	tttaattagt	tctgaatgta	4380
atgaaagttc ctttgtgggg aagggttgaa atatggttga acactgaggt tgtcttcaca attgtttaa ttaggggaac ttctatacac cccttatatt tattagaaac tcccattgag aaccttgaac taacgtaatt agttgatgga gcacacaaca acaatgctga aggttattaa gcaggaattg ctattacaac gttagccttg ctttaaagca catatttcta cctgatgga aattagcca ggtgcgctga tgagagtttg tcagttaatc aaagaccagg aaatggatac acgtgtttct ggagcagggc atggctttgg gatgctttgc gaaaaaagtg gcttctcacg tctttgggaa aacccatcaa aatgggcaag ttaaggatct cttaggagca cccgtctatc ccatattctt ggctaatatt aaaggggaac tcaatgcaaa atgagatact atggaagttc aaactctcgg gatgtgggt tccacactg gtacttcga cagaatact atggaagttc aaactctcgg gatgtgggt tccacactg gtacttcgaa cagaatact cggccgtgtc ctcagcctt aggctgggt tccacactg gtacttcgaa cagaaaaccat cctgtgaagc gtggggtata cgttgggtt ccagtgtag tgatgaaaaccat cctgtgaagc gtggggtata cgttgggtt ccagtgtag tgatgatcaa tcacatccac tcaaagccct gtcaggggt ctatcatacc caattcatac catagatggt gaaggctgaa ccagaagact tataggagaa ctcactgag gcccaaggct tctcacctc aggcctgaagctgaagactacaacacacacacacacacac	,	ttttcagttg	gttagttcaa	gttcccataa	ttcactttct	gctaaaatag	tcacatacaa	4440
accttgaac taacgtaatt agttgatgga gcacacaaca acaatgctga aggttattaa gcaggaattg ctattacaac gttagccttg ctttaaagca catatttcta cctgatgga aattagccca ggtgcgctga tgagagtttg tcagtaatc aaagaccagg aaatggatac acgtgtttct ggagcagggc atggctttgg gatgctttgg gaaaaaaagtg gcttctcacg tctttgggaa aacccatcaa aatgggcaag ttaaggatct cttagggac cccgttatc ccatattctt ggctaatatt aaagcggaac tcaatgcaaa atgaggaac cccgtctatc ccatattctt ggctaatatt aaagcggaac tcaatgcaaa atgaggaac cccgtctatc aagaacacgg gatgtgggtt tccacacgg gatgtgggtt tccacacgg ctcattccacg aaactccagg gatgtgggtt tccacacgt gtacttcga cagtaatact cggccgtgc aaaaaccat cctgtgaagc cgtgggtata cgttgggtt ccaggagaa gacaaaccat cctgtgaagc cgtgggtata cgttgggtt ccaggtggg tgatgatgaca cagacgtgg tgatgatcaa cagacgtga caagacgtg taagaggtgaa ccagacgtg gaaggtggaa ccagacgtg gaaggtggaa ccagacgtg gaaggtggaa ccagacgtg gaaggtggaa caagacgtg tatagaagac cttcacacac caatccaca tcaaagccct gtccaggggt ctatcatacc caattcatac caatagatggt gaaggtgaa ccagacgac tgacacagac gaaggagga gacacatgg gacacaggg gacacagggg gacacaggggg gacacaggggg gacacagggggggg		taatcttgag	atattaaaat	aaaaaacta	atttgaaaat	gaacccaact	tccaggagag	4500
accettgaac taacgtaatt agttgatgga gcacacaca acaatgctga aggttattaa gcaggaattg ctattacaac gttagcettg ctttaaagca catattcta cetgatgga aattagcaca ggtgcgctga tgagagtttg tcagttaatc aaagaccagg aaatgggtac acgggtttct ggagagggg atggctttgg gatgctttgc gaaaaaagtg gcttctcacg tctttgggaa aacceatcaa aatgggcaag ttaaggatct cttagggaac cccgtctatc ccatattctt ggctaatatt aaagcggaac tcaatgcaaa atgagatact atggaagttc agaaaactgc tgtaccactg cctcagctca gcacagtgc ctcctcccc aggctttctg aaactctcgg gatgtgggtt tccacactgt gtacttcga cagtaatact cggccgtgtc ctcagcctt aggctggata cctgaagaac acgcggtgt acagacgtgt ccataggaaa gacaaaccat cctgtgaagc cgtgggtata cgttgggtt ccaatgagaa cagacgtgt tcacacggg gaaggtgtaa ccatggaaga ctcacatcaca	,	atgaaagttc	ctttgtggtg	aagggttgaa	atatggttga	acactgaggt	tgtcttcaca	4560
geaggaattg ctattacaac gttageettg ctitaaagea catatteta cetgatgga aattageeca ggtgegetga tgagagtttg teagtaate aaagaecagg aaatggatac aeggtttet ggageaggge atggetttgg gatgetttge gaaaaaagtg getteteecg tetttgggaa aacceateaa aatgggaaag ttaaggatet ettaggagaa eccepteate ecatattett ggetaatatt aaageggaac teaatgeaaa atgagataet atggaagtte aagaaaactge tgtaceactg ecteacetg gtacteega eagaaaactge gatgtgggtt teeaacactg gtacteega eagaaaaccat ectggaagac etgaggata eggetggtge etaacacaca ectggaagac eggegggte ecaaggegg etaacacaca ectggaagac eggegggte etaacacaca ectggaagac eggegggte etaacacaca ectgagagac eggegggt etaacacaca ecaatecac eaaageect gteeaagggg etaacacagg egeaaggtgg eaagggggg etaacacaca etgaagagac eggaggggg etaacacagggggggggggggggggggggggggggggggg		attgttttaa	ttaggggaac	ttctatacat	cccttatatt	tattagaaac	tcccattgag	4620
aattagccca ggtgcgctga tgagagtttg tcagttaatc aaagaccagg aaattggatac acgtgtttct ggagcagggc atggctttgg gatgctttgc gaaaaaagtg gcttctcacg tctttgggaa aacccatcaa aatgggcaag ttaaggatct cttagggaca cccgtctatc ccatattctt ggctaatatt aaagcggaac tcaatgcaaa atgagatact atggaagttc agaaaaactgc tgtaccactg cctcagctca gcacagctgc ctccttcctc aggctttctg aaacctctcgg gatgtgggtt tccacactgt gtacttcgca cagtaatact cggccgtgtc ctcagccttt aggctggtt tccacactgt gtacttcgca cagtaatact cggccgtgtc ctcagccttt aggctggat ctgaagaca cgccgtgctg acaggacgtgt ccatggagaa gacaaaccat cctgtgaagc cgtgggtata cgttgggttc ccaattcatac catagatggt gaaggtgtaa ccagaagact tataggagac ctcactgag gccccaagct tcttcacctc aggcccagac tgcaccagc gcagggggggggg		aaccttgaac	taacgtaatt	agttgatgga	gcacacaaca	acaatgctga	aggttattaa	4680
acgtgtttct ggagcagggc atggctttgg gatgctttgc gaaaaaagtg gcttctaccg tctttgggaa aacccatcaa aatgggcaag ttaaggatct cttaggagca cccgtctatc ccatattctt ggctaatatt aaagcggaac tcaatgcaaa atgagatact atggaagttc agaaaactgc tgtaccactg cctcagctca gcacagctgc ctccttcctc aggctttctg aaactctcgg gatgtgggtt tccacactgt gtacttcgca cagtaatact cggccgtgtc ctcagccttt aggctgctga tctgaagaca cgccgtgctg acagacgtgt ccatggagaa gacaaaccat cctgtgaagc cgtgggtata cgttgggttc ccagtgtagg tgatgatcca tcacatccac tcaaagccct gtccagggt ctatcatacc caattcatac catagatggt gaaggtgtaa ccagaagact tataggagac cttcactgag gccccaggct tcttcacctc aggcccagac tgcaccagct gcagggagtg ggcacctgtg gagtggaca aagagtgggt gaagtctcac atgactgac tctcacgac tcaggagatg ggcacctgtg gagtggacac aagagtgggt gaagtctcac atgactggc tctccaggag tctatcacc tcagggcc tctccaggag tggtgtgg tcagggagagagagagagagagat tccaagggct tctccaggag aggggtggg ttgttgggtg aggctctcag ggaacggagaga tactatagtc acctcagtta attgcatatt catgaaggat gctattaat agcccaattc ctgacccagt atgagaacaa gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gtagagaaca gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gtagagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgcccaac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgcccaact ttaccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgcccaaggt ttatccaaa aattgcatt attataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaa tggttctcat tacaacatcc agtttgataa attgccaaa ttgaaacaa ttgaaatca attgaataa tattataaaa acttcagcag tcttttgtgaa atacttatt		gcaggaattg	ctattacaac	gttagccttg	ctttaaagca	catatttcta	cctgatgtga	4740
tetttggaa aacecatcaa aatgggcaag ttaaggatet ettaggagca eccegtetate ceatattett ggetaatatt aaageggaac teaatgcaaa atgagataet atggaagtte agaaaactge tgtaccactg ecteagetea geacagetge etcetteete aggetteetg aaactetegg gatgtgggtt tecacactgt gtacttegea eagtataet eggeegtgte etcageettt aggetgetga tetgaagaca egeegtgetg acagaegtgt ecatggagaa gacaaaccat ectgtgaage egtgggtata egttegggtte ecagtgtagg tgatgateea teacacteeae teaaageeet gteeaggggt etateataee eaatteatae eatagatggt gaaggtgtaa ecagaagaet tataggagae ettecatgag geeceagget tetteacete aggeecagae tgeaceaget geaggagtg ggeacetgtg gagtggacae aaggatgggt gaagteeae atgaetgge tggttette eteageeetg agaetggga geecettaee tetagggget teeteagagg aggggtgtgg tegatggaet teeteagggget teeteagggga teetaggggagggg		aattagccca	ggtgcgctga	tgagagtttg	tcagttaatc	aaagaccagg	aaatggatac	4800
ceatattett ggetaatatt aaageggaac teaatgeaaa atgagataet atggaagtte agaaaactge tgtaceactg ceteagetea geacagetge etectteete aggettetgg aaactetegg gatgtgggtt teeaacaetgt gtacttegga cagtaataet eggeegtgte eteageettt aggetgetga tetgaagaea eggeegtgetg acagaegtgt teaaagaea gacaaaccat eetgtgaage egtgggtata eggtgggtte etaeataee eaatteatae eaatgatggt gaaggtgtaa eeagaegtgt etaeacaeae teaaageeet gteeaggggt etaeataee eaatteatae eaatgatggt gaaggetgaa eeagaegtgt acagaegggt gaaggetgag gaaggetgaa eeagaeggtgt gaaggaggg ggeaeetggg gagtggaaca aagagtgggt gaagteeae atgaetgge tggtteette eteageeetg gagtggaaca aagagtgggt gaagteetae atgaetgge tggtteette eteageeetg gagtggaaca aagagtgggt teataagggget teeteagggga gagggtgtgg ttgttggga aggeteteag gagaeeggaga taetatagte aceteagta attgeatatt eatgaaggat getattaat ageeeaatte etgaeeegg atgagaaca gaeaeatgg tgaeaeaaet gtagaagetg agggtteaag eegtaateet gttagaggee atgtgteee taeaeaaee gtagaagetg agggtteaag eegtaeteeg gttagaagae atgeteeeg ateeteeag gaeagaeet eaetttga eegtaateet gttagaggae ateeteeag geeaeaete taeaeaeee tgaaeetetg gttagaegg eegtaeteeag gaeageaeet eaetttgaa eegtaeteeg gttagaagetg ateeteeag gaeageaeet eaetttgaa eegtaeteeg gttagaaeea geteeteaag gaeageaeet eaetttgaa eegtaeteeg ttattaaggg aatgaetgtg ttatteeaaa aattgeattt attataaga aaggatetet teetgaeete eagaegaggt tggaaateet tgaaaateee attgtaaaaa aattgeattt attataaga aaggatetet teetgaeete eagaegaggt tgaaateee attgtaaaag tggtteteat taeaacatee agtttgataa attgeeteaa attgeataa attgeatea aetteeta atteetae agtttgataa attgeeteaa attgeateaa aetteeteag tetttgtgaa ateettatt		acgtgtttct	ggagcagggc	atggctttgg	gatgctttgc	gaaaaaagtg	gcttctcacg	4860
agaaaactgc tgtaccactg cctcagctca gcacagctgc ctcctcctc aggctttctg aaactctcgg gatgtgggtt tccacactgt gtacttcgca cagtaatact cggccgtgtc ctcagccttt aggctgctga tctgaagaca cgccgtgctg acagacgtgt ccatggagaa gacaaaccat cctgtgaagc cgtgggtata cgttgggttc ccatggaggg tgatgatcca tcacatccac tcaaagccct gtccaggggt ctatcatacc caattcatac catagatggt gaaggtgtaa ccagaagact tataggagac cttcactgag gccccaggct tcttcacctc aggcccagac tgcaccagct gcagggagtg ggcacctgtg gagtggacac aagagtgggt gaagtctcac atgactggcc tggtttctc ctcagccctg agactgggga gccccttacc tgttgctgct gccatcaaga agaggatcct tcaggtccag tccatggtga ggagctgtga tctaggggct tctccagagg aggggtggg ttgttgggg aggctctcag ggaacggaga tactatagtc acctcagtta attgcatatt catgaaggat gctatttaat agcccaattc ctgacccagt atgagaaca gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gttagaggcc atgtgtcccc tacacaccc tgaactctgt gttgacagag cttccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgtg tttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		tctttgggaa	aacccatcaa	aatgggcaag	ttaaggatct	cttaggagca	cccgtctatc	4920
aaactotegg gatgtggtt tecacactgt gtacttegea eagtaatact eggeegtgte etcageettt aggetgetga tetgaagaca egeegtgetg acagacgtgt ecatggagaa gacaaaccat ectgtgaage egtgggtata egttegggtte eagtggtagg tgatgateea teacateeae teaaageeet gteeaggggt etateatace eaatteatac eatagatggt gaaggtgtaa ecagaagaet tataggagae etteaetgag geeecagget tetteaeete aggeecagae tgeaceaget geagggatg ggeacetgtg gagtggaaca aagagtgggt gaagteeae atgactggee tggttette eteaggeetg agaetgggga geeeettace tgttgetget geeateaaga agaggateet teagggeeg teetagggga geeeettace tggttgetget geeateaaga agaggateet teagggeag geeeettace teagggggt teetagggga gegaggggga teetagggga teetagggga teetagggga teetagggga teetagggga teetagggga geacetgagaga taetatagte aceteagta attgeatatt eatgaaggat getattaat ageeeaatte etgaceeagt atgagaacaa gacacatggg tgacacaact gtagaagetg agggtteaag eegtaateet gttagaggee atgtgteee taeacaatee tgaacetetg gttgacagag etteeeecagagaacaa geteeteaag gacageacet eaetttgaa eeaetttga etgeteteag gteaaettg ttattaggg aatgactgtg ttatteaaa aattgeattt attataaga aaggatetet teetgaeete eageagagtt tgaaateee atgtgaaaaa tggtteteat taeaacatee agtttgataa atgeteaaa ttgaaatagat tgaaateee attgtaaaaa tggtteteat taeaacatee agtttgataa atgeteaaa ttgaaaaaa ttgaaaaaa ttgaaaaaaaa tegttgaaaaaaaaaa		ccatattctt	ggctaatatt	aaagcggaac	tcaatgcaaa	atgagatact	atggaagttc	4980
ctcagcettt aggetgetga tetgaagaca egeegtgetg acagaegtgt ecatggagaa gacaaaccat cotgtgaage egtgggtata egttgggtte ecagtgtagg tgatgateca teacatecae teaaageect gtceaggggt etateatace eaatteatae eatgatggt gaaggtgtaa ecagaagaet tataggagae etteaetgag geeceagget tetteaecte aggeeceagae tgeaecaget geagggagtg ggeaectgtg gagtggaeae aagagtgggt gaagteteae atgaetggee tggtttette eteageectg gagetggga geecettaee tgttgetget geeateaaga agaggateet teaggteeag teeatgggag ggaaectgggag ggaaetgggag tettagggge tetteaegggag tggttgga tettagggge tetteaggggag taetataagte aceteaggta atggatggg ttggttggat gageteteag ggaaeggaga taetatagte aceteagtta attgeatatt eatgaaggat getattaat ageecaatte etgaeecag atgagaaeaa geteeteaag gacaeacee tgaaetetg gttgaeagag etgeteeag gtagaaeaa geteeteaag gacaeatee tgaaetetg gttgaeagag etgeteeag gteaeettga attgeteee taeaeateee tgaaetetg gttgaeagag etgeteeag gteaeettga attgeteeag gacagaeae taetataggg ttaatteaa aatgeeteaa aatgaetgtg ttaateeaa aattgeattt attaaaga aaggatetet teetgaeete eageagagtt tgaaaateee atggaaaaaa gegteeteat taeaaaatee agttgataaa atgeeteaaa ttgaaateee agttgataaa atgeeteaaa ttgaaateee agttgataaa atgeeteaaa ttgaaateee agtttgataaa atgeeteaaa ttgaaateee atgaaaaaa aceteagag teetttgaaa ataettattt		agaaaactgc	tgtaccactg	cctcagctca	gcacagctgc	ctccttcctc	aggctttctg	5040
gacaaaccat cctgtgaagc cgtgggtata cgttgggttc ccagtgtagg tgatgatcca tcacatccac tcaaagccct gtccaggggt ctatcatacc caattcatac catagatggt gaaggtgtaa ccagaagact tataggagac cttcactgag gccccaggct tcttcacctc aggcccagac tgcaccagct gcaggagtg ggcacctgtg gagtggacac aagagtgggt gaagtctcac atgactggc tggttcttc ctcaggcctg agactggga gccccttacc tgttgctgct gccatcaaga agaggatcct tcaggtccag tccatggtga ggagctgtga tctaggggct tctcaggggc tccaggggt tggttggacca tccatggtga ggagctgtga tctaggggct tctccagagg aggggtgtgg ttgttgggt aggctctcag ggaaccggaga tactatagtc acctcagtta attgcatatt catgaaggat gctatttaat agcccaattc ctgacccagt atgagaaca gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gttagaggcc atgttcccc tacacatccc tgaactctgt gttgacagag cttccccacc tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga catgctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgtg tttatccaaa aattgcattt attataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttatt		aaactctcgg	gatgtgggtt	tccacactgt	gtacttcgca	cagtaatact	cggccgtgtc	5100
tcacatccac tcaaagccct gtccaggggt ctatcatacc caattcatac catagatggt gaaggtgtaa ccagaagact tataggagac cttcactgag gccccaggct tcttcacctc aggcccagac tgcaccagct gcagggagtg ggcacctgtg gagtggacac aagagtgggt gaagtctcac atgactggcc tggtttcttc ctcaggccctg agactgggga gccccttacc tgttgctgct gccatcaaga agaggatcct tcaggtccag tccatggtga ggagctgtga tctaggggct tctccagagg aggggtgtgg ttgttgggtg aggctctcag ggaacggaga tactatagtc acctcagtta attgcatatt catgaaggat gctatttaat agcccaattc ctgacccagt atgagaacaa gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gtagagacaa gctcctcaag gacacatccc tgaactctgt gttgacagag cttccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtcccaca tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcaag gtcaacttgc atcatttcta gaccataata tgtgaatgcg ttatttaggg aatgactgtg tttatccaaa aattgcattt attataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttatt		ctcagccttt	aggetgetga	tctgaagaca	cgccgtgctg	acagacgtgt	ccatggagaa	5160
gaaggtgtaa ccagaagact tataggagac cttcactgag gccccaggct tcttcacctc aggcccagac tgcaccagct gcaggagtg ggcacctgtg gagtggacac aagagtgggt gaagtctcac atgactggcc tggtttcttc ctcagccctg agactgggga gccccttacc tgttgctgct gccatcaaga agaggatcct tcaggtccag tccatggtga ggagctgtga tctaggggct tctccagagg aggggtgtgg ttgttgggtg aggctctcag ggaacggaga tactatagtc acctcagtta attgcatatt catgaaggat gctatttaat agcccaattc ctgacccagt atgagaaca gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gttagaggcc atgtgtcccc tacacatccc tgaacctcgt gttgacagag cttcccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtcccag gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgtg tttatccaaa aattgcatt attataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcaca ttgaataga atttatacaa acttcagcag tctttgtgaa atacttatt		gacaaaccat	cctgtgaagc	cgtgggtata	cgttgggttc	ccagtgtagg	tgatgatcca	5220
aggeccagac tgcaccaget gcaggagtg ggcacctgtg gagtggacac aagagtgggt gaagteteac atgactggce tggtttette etcagecetg agactggga geccettace tgttgetget gecateaaga agaggateet teaggtecag tecatggtga ggagetgtga tetagggget tetecagggget tetecagggga aggggtgtgg ttgttgggtg aggeteteag ggaaccggaga tactatagte aceteagtta attgcatatt catgaaggat getattaat ageccaatte etgacccagt atgagaaca gacacatggg tgacacaact gtagaagctg agggtteaag eegtaateet gttagaggee atgtgteeee tacacateee tgaactetgt gttgacagag ettececeag gtcaactag gacageacet cactttgaa ecgtacteag gtcaacttga acetetaga gacacattga etgateteag gtcaacttga etgateteag gtcaacttga attateaga aatgactgt ttatecaaa aattgcattt attataaga aaggatetet teetgacete eagcagagtt tgaaateee attgtaaaag tggtteteat tacaacatee agtttgataa atgeteacaa ttgaatagat attatacaa acetecaggag tetttggaa atacttattt		tcacatccac	tcaaagccct	gtccaggggt	ctatcatacc	caattcatac	catagatggt	5280
gaagteteae atgactggee tggtttette eteageeetg agactggga geeeettace tgttgetget geeateaaga agaggateet teagggteeag tecatggtga ggagetgtga tetagggget teteeagagg aggggtgtgg ttgttgggtg aggeteteag ggaacggaga taetatagte aceteagtta attgeatatt catgaaggat getatttaat ageeeaatte etgaeeeag atgagaaeaa gacacatggg tgaeaaeaet gtagaagetg agggtteaag eegtaateet gttagaggee atgtgteeee taeaeateee tgaaeetetg gttgaeagag etteeeeae tggagaaeaa geteeteaag gacageaeet eaetttgaaa eeaeatttga etgeteteagg gteaaettge ateatteeta gaeeataata tgtgaatgeg ttattaggg aatgaeetgt ttateeaaa aattgeattt atttataaga aaggatetet teetgaeete eageagagtt tgaaateee attgaaaag tggtteteat taeaaeatee agtttgataa atgeteaeaa ttgaatagat atttataeaa aetteageag tetttgtgaa ataettattt		gaaggtgtaa	ccagaagact	tataggagac	cttcactgag	gccccaggct	tcttcacctc	5340
tgttgctgct gccatcaaga agaggatect tcaggtccag tccatggtga ggagctgtga tctaggggct tctccagagg aggggtgtgg ttgttgggtg aggctctcag ggaacggaga tactatagtc acctcagtta attgcatatt catgaaggat gctatttaat agcccaattc ctgacccagt atgagaaaca gacacatggg tgacacaact gtagaagctg agggttcaagg ccgtaatcct gttagaggcc atgtgtcccc tacacatccc tgaactctgt gttgacagag cttccccaca tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgt ttatccaaa aattgcatt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		aggcccagac	tgcaccagct	gcagggagtg	ggcacctgtg	gagtggacac	aagagtgggt	5400
totaggget totecagag agggtgtgg ttgttgggtg aggeteteag ggaacggaga tactatagte accteagtta attgcatatt catgaaggat getatttaat ageceaatte etgacecagt atgagaaaca gacacatggg tgacacaact gtagaagetg agggtteaag ecgtaateet gttagaggee atgtgteece tacacateee tgaactetgt gttgacagag ettececaca tggagaacaa geteeteaag gacageacet eactttgaaa ecacatttga etgteteagg gteaacttge ateatteta gaceataata tgtgaatgeg ttatttaggg aatgactgt tttateeaaa aattgeattt atttataaga aaggatetet teetgacete eageagagtt tgaaateee attgtaaaag tggtteteat tacaacatee agtttgataa atgeteacaa ttgaatagat atttatacaa actteageag tetttgtgaa atacttattt		gaagtctcac	atgactggcc	tggtttcttc	ctcagccctg	agactgggga	gccccttacc	5460
tactatagte accteagtta attgeatatt catgaaggat getatttaat ageceaatte etgacecagt atgagaaca gacacatggg tgacacaact gtagaagetg agggtteaag eegtaateet gttagaggee atgtgteee tacacateee tgaactetgt gttgacagag etteeee tggagaacaa geteeteaag gacageacet eactttgaa ecacatttga etgteteagg gteaacttge ateatteta gaceataata tgtgaatgeg ttattaggg aatgactgt ttateeaaa aattgeattt atttataaga aaggatetet teetgacete eageagagtt tgaaateece attgtaaaag tggtteteat tacaacatee agtttgataa atgeteacaa ttgaatagat atttatacaa actteageag tetttgtgaa atacttattt		tgttgctgct	gccatcaaga	agaggatcct	tcaggtccag	tccatggtga	ggagctgtga	5520
ctgacccagt atgagaaca gacacatggg tgacacaact gtagaagctg agggttcaag ccgtaatcct gttagaggcc atgtgtcccc tacacatccc tgaactctgt gttgacagag cttccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgt ttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatcccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		tctaggggct	tctccagagg	aggggtgtgg	ttgttgggtg	aggctctcag	ggaacggaga	5580
ccgtaatcct gttagaggcc atgtgtcccc tacacatccc tgaactctgt gttgacagag cttccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgt tttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatcccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		tactatagtc	acctcagtta	attgcatatt	catgaaggat	gctatttaat	agcccaattc	5640
cttccccac tggagaacaa gctcctcaag gacagcacct cactttgaaa ccacatttga ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttatttaggg aatgactgtg tttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatcccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		ctgacccagt	atgagaaaca	gacacatggg	tgacacaact	gtagaagctg	agggttcaag	5700
ctgtctcagg gtcaacttgc atcattcta gaccataata tgtgaatgcg ttattaggg aatgactgtg tttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatcccc attgtaaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		ccgtaatcct	gttagaggcc	atgtgtcccc	tacacatccc	tgaactctgt	gttgacagag	5760
aatgactgtg tttatccaaa aattgcattt atttataaga aaggatctct tcctgacctc cagcagagtt tgaaatcccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		cttcccccac	tggagaacaa	gctcctcaag	gacagcacct	cactttgaaa	ccacatttga	5820
cagcagagtt tgaaatcccc attgtaaaag tggttctcat tacaacatcc agtttgataa atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		ctgtctcagg	gtcaacttgc	atcatttcta	gaccataata	tgtgaatgcg	ttatttaggg	5880
atgctcacaa ttgaatagat atttatacaa acttcagcag tctttgtgaa atacttattt		aatgactgtg	tttatccaaa	aattgcattt	atttataaga	aaggatctct	tcctgacctc	5940
		cagcagagtt	tgaaatcccc	attgtaaaag	tggttctcat	tacaacatcc	agtttgataa	6000
tagatatttt taaaggaagt cccaggccct gggaggaacc tctccccagc ctcctgtgca		atgctcacaa	ttgaatagat	atttatacaa	acttcagcag	tctttgtgaa	atacttattt	6060
		tagatatttt	taaaggaagt	cccaggccct	gggaggaacc	tctccccagc	ctcctgtgca	6120

cctgctctgg	ggcgggagcc	tgtgctgggt	gtatccggag	cgccccctgc	agcccagccc	6180
caaccatgca	gggaggtttc	tatctgagct	gacagagtat	attcctacca	gtgtatccag	6240
ctcagtataa	agtggttgtg	ccctggctca	gaattctcct	ttagggacac	cacatgctcc	6300
tcacaccatc	ttttgaaata	gtgaattgcc	tttaggaaac	ccagtgaact	ctgcagagag	6360
actccaagaa	aagatctcat	gcatcaccag	ggagcccttt	cctggagctc	aagaggcaca	6420
gaatcattgg	acacacggtg	aacccaaaca	ctcttcaggg	gttgagggga	gactcttatt	6480
tcctttaggg	tcctacagtt	gattatggca	cctgagaata	cctgcaggtg	caggtacatg	6540
tggatagaaa	cccactccaa	ctctgctatt	caactcacac	atgcgcgcgc	gtgtgtacac	6600
acacacacac	acacacacac	acatatatat	atatacatcg	tggctaattt	ttatattaac	6660
ggatcccatg	tttgccattt	ttttctggta	tccatctcat	ggaaagcgct	ccctacactg	6720
gtactaagac	tgaatatgtg	tctactttct	gtaaacagaa	gtaaagaaac	agaatacaag	6780
tggacacttg	ggaagtgcat	gcacattgaa	ttcacctggt	ctcactttgg	aaccctgcag	6840
atgccccgtg	aaaactaaat	tatcgattgc	cagccctggg	accgaacccc	gcgtttatga	6900
acaaacgacc	caacacccgt	gcgttttatt	ctgtctttt	attgccgtca	tagcgcgggt	6960
tccttccggt	attgtctcct	tccgtgtttc	agttagcctc	ccccatctcc	cgggcaaacg	7020
tgcgcgccag	gtcgcagatc	gtcggtatgg	agcctggggt	ggtgacgtgg	gtctggacca	7080
tcccggaggt	aagttgcagc	agggcgtccc	ggtagccggc	gggcgattgg	tcgtaatcca	7140
ggataaagac	: gtgcatggga	cggaggcgtt	tggccaagac	gtccaaggcc	caggcaaaca	7200
cgttatacag	gtcgccgttg	ggggccagca	. actcgggggc	ccgaaacagg	gtaaataacg	7260
tgtccccgat	atggggtcgt	gggcccgcgt	tgctctgggg	ctcggcaccc	tggggcggca	7320
cggccgtccc	cgaaagctgt	ccccaatcct	. cccgccacga	cccgccgccc	tgcagatacc	7380
gcaccgtatt	ggcaagcagc	ccgtaaacgc	ggcgaatcgc	ggccagcata	gccaggtcaa	7440
gccgctcgc	ggggcgctgg	cgtttggcca	ggcggtcgat	gtgtctgtcc	: tccggaaggg	7500
ccccaaca	gatgtttgtg	ccgggcaagg	, tcggcgggat	. gagggccacg	g aacgccagca	7560
cggcctggg	g ggtcatgctg	cccataaggt	atcgcgcggc	: cgggtagcad	aggagggcgg	7620
cgatgggat	g geggtegaag	ı atgagggtga	aggccggggg	g cggggcatgt	gageteccag	7680
cctcccccc	c gatatgagga	ı gccagaacg	g cgtcggtcac	ggcataagg	atgcccattg	7740
ttatctggg	c gcttgtcatt	accaccgcc	g cgtccccggc	c cgatatctca	a ccctggtcga	7800
ggcggtgtt	g tgtggtgtag	g atgttegega	a ttgtctcgga	a agcccccago	c acctgccagt	7860
aagtcatcg	g ctcgggtacc	g tagacgata	t cgtcgcgcga	a acccagggc	c accagcagtt	7920

gcgtggtggt	ggttttcccc	atcccgtgag	gaccgtctat	ataaacccgc	agtagcgtgg	7980
gcattttctg	ctccaggcgg	acttccgtgg	cttcttgctg	ccggcgaggg	cgcaacgccg	8040
tacgtcggtt	gctatggccg	cgagaacgcg	cageetggte	gaacgcagac	gcgtgttgat	8100
ggcaggggta	cgaagccata	cgcgcttcta	caaggcgctt	gccgaagagg	tgcgggagtt	8160
tcacgccacc	aagatctgcg	gcacgctgtt	gacgctgtta	agcgggtcgc	tgcaggtcga	8220
aaggcccgga	gatgaggaag	aggagaacag	cgcggcagac	gtgcgctttt	gaagcgtgca	8280
gaatgccggg	cctccggagg	accttcgggc	gcccgccccg	cccctgagcc	cgcccctgag	8340
cccgcccccg	gacccacccc	ttcccagcct	ctgagcccag	aaagcgaagg	agcaaagctg	8400
ctattggccg	ctgccccaaa	ggcctacccg	cttccattgc	tcagcggtgc	tgtccatctg	8460
cacgagacta	gtgagacgtg	ctacttccat	ttgtcacgtc	ctgcacgacg	cgagctgcgg	8520
ggcggggggg	aacttcctga	ctaggggagg	agtagaaggt	ggcgcgaagg	ggccaccaaa	8580
gaacggagcc	ggttggcgcc	taccggtgga	tgtggaatgt	gtgcgaggcc	agaggccact	8640
tgtgtagcgc	caagtgccca	gcggggctgc	taaagcgcat	gctccagact	gcaagcttgg	8700
cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	tccgctcaca	attccacaca	8760
acatacgagc	cggaagcata	aagtgtaaag	cctggggtgc	ctaatgagtg	aggtaactca	8820
cattaattgc	gttgcgctca	ctgcccgctt	tccagtcggg	aaacctgtcg	tgccagctgc	8880
attaatgaat	cggccaacgc	gcggggagag	gcggtttgcg	tattggcgct	cttccgcttc	8940
ctcgctcact	gactcgctgc	gctcggtcgt	tcggctgcgg	cgagcggtat	cagctcactc	9000
aaaggcggta	atacggttat	ccacagaatc	aggggataac	gcaggaaaga	acatgtgagc	9060
aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	9120
gctccgcccc	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	9180
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctcctgt	9240
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	9300
ttctcaatgc	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	9360
ctgtgtgcac	gaaccccccg	ttcagcccga	ccgctgcgcc	ttatccggta	actatcgtct	9420
tgagtccaac	ccggtaagac	acgacttatc	gccactggca	gcagccactg	gtaacaggat	9480
tagcagagcg	aggtatgtag	geggtgetae	agagttcttg	aagtggtggc	ctaactacgg	9540
ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa	9600
aagagttggt	agctcttgat	. ccggcaaaca	aaccaccgct	ggtagcggtg	gtttttttgt	9660
ttgcaagcag	cagattacgo	: gcagaaaaaa	aggatctcaa	gaagatcctt	tgatcttttc	9720

tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagatt	9780
atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	9840
aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	9900
ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	ctccccgtcg	tgtagataac	9960
tacgatacgg	gagggcttac	catctggccc	cagtgctgca	atgataccgc	gagacccacg	10020
ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	10080
tggtcctgca	actttatccg	cctccatcca	gtctattaat	tgttgccggg	aagctagagt	10140
aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttgcc	attgctacag	gcatcgtggt	10200
gtcacgctcg	tcgtttggta	tggcttcatt	cagctccggt	tcccaacgat	caaggcgagt	10260
tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	ttcggtcctc	cgatcgttgt	10320
cagaagtaag	ttggccgcag	tgttatcact	catggttatg	gcagcactgc	ataattctct	10380
tactgtcatg	ccatccgtaa	gatgcttttc	tgtgactggt	gagtactcaa	ccaagtcatt	10440
ctgagaatag	tgtatgcggc	gaccgagttg	ctcttgcccg	gcgtcaatac	gggataatac	10500
cgcgccacat	agcagaactt	taaaagtgct	catcattgga	aaacgttctt	cggggcgaaa	10560
actctcaagg	atcttaccgc	tgttgagatc	cagttcgatg	taacccactc	gtgcàcccaa	10620
ctgatcttca	gcatctttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	10680
aaatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	tactcttcct	10740
ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatatttga	10800
atgtatttag	aaaaataaac	aaataggggt	tccgcgcaca	tttccccgaa	aagtgccacc	10860
tgacgtcgcc	cagcccagcc	tagctcagcc	cagcccagct	caattcagcc	cagccctgcc	10920
cagctcagcc	caccttaatg	cagccaagcc	cagctcaact	cagctcacct	ggtgcaactt	10980
agcccagctc	agctcagctc	agctcagccc	agttcaactc	agcccagttc	agctcagctc	11040
agcccagttc	ggccttgttt	agtctaggtc	aacttaggtc	agttttgccc	atctgagtcc	11100
atttctgaaa	actggatgga	gttgtcatgg	ccagaaatgg	tcagcccacc	agacctgctt	11160
gtctcagcta	aagccatctc	attgccgggt	tcctgcacag	ccaggctggc	ttccatcttt	11220
tgtctccctc	tacttgatac	cccagttccc	tgcagtcctg	ccccagcgcc	acctgggttt	11280
tggttccaaa	gcattaccaa	tcattaccac	cctccactac	ctgggtggaa	tatttctttg	11340
ctgctttaaa	gtcattaaaa	catcttgaga	atgagaccaa	gaatttagga	gcctgtgctg	11400
tgataaaaat	gagcaggtcc	ccttgctcta	gaagtggcag	catatcttct	gcaccaagag	11460
gagggtattg	agatgctcag	agcctccacc	ttcccggagc	atcccctccc	ttctgagtct	11520

gcagtaaacc	cctgccttta	aattccctct	agataacagt	catcattgga	aacaaccaag	11580
aaatgcattt	tatctgaatt	tgccacttaa	aattctgcca	tttaccataa	atcgctttgg	11640
aaggcatggg	ctactttcaa	gggtgcgatg	atgacctaca	gtcaatgact	tagacaaggg	11700
cgatgccagt	gggacttggt	atgttctcaa	gcatcattac	ccatgccatc	cccattcaga	11760
ggttgtggag	cagctcgtgc	gacctctcct	tcaaatgggc	tttagggaaa	gttaaatggg	11820
agtgacccag	acaatggtca	ctcaaaagac	tcacataaat	gagtctcctg	ctcttcatca	11880
agcaattaag	accagttccc	cttctagtgg	aaataagacg	tcaaatacaa	agttttaaga	11940
gaagcaaatg	cagcagcggc	ggctgcctgt	ctcttaccat	gtcgggcgcc	tggtcactgc	12000
gagccttgca	aagctttggc	atggaatcat	tcctccaagt	ccattaacaa	gggctggggc	12060
ctgagcagcc	agtcggcccg	gcagcagaag	ccacgcatcc	cagctctggg	tagtccgggg	12120
agacccagag	cccaggccgg	gcctggcagc	caccctccca	gagecteege	taggccagtc	12180
ctgctgacgc	cgcatcggtg	attcggaaca	gaatctgtcc	ttctaaggtg	tctccacagt	12240
cctgtcttca	gcactatctg	attgagtttt	ctcttatgcc	accaactaac	atgcttaact	12300
gaaataattc	aggataatga	tgcacatttt	tcctaaaact	tatcctaaag	tgagtagttg	12360
aaaagtggtc	ttgaaaaata	ctaaaatgaa	ggccactcta	tcagaatatc	aaagtgtttc	12420
tccttaatca	caaagagaaa	acgagttaac	ctaaaaagat	tgtgaacaca	gtcattatga	12480
aaataatgct	ctgaggtatc	gaaaaagtat	ttgagattaa	ttatcacatg	aagggataac	12540
aagctaattt	aaaaaacttt	ttgaatacag	tcataaactc	tccctaagac	tgtttaattt	12600
cttaaacatc	ttactttaaa	aatgaatgca	gtttagaagt	tgatatgctg	tttgcacaaa	12660
ctagcagttg	ataagctaag	attggaaatg	aaattcagat	agttaaaaaa	agccttttca	12720
gtttcggtca	gcctcgcctt	attttagaaa	cgcaaattgt	ccaggtgttg	ttttgctcag	12780
tagagcactt	tcagatctgg	gcctgggcaa	aaccacctct	tcacaaccag	aagtgataaa	12840
tttaccaatt	gtgtttttt	gcttcctaaa	atagactctc	gcggtgacct	gcttcctgcc	12900
acctgctgtg	ggtgccggag	acccccatgc	agccatcttg	actctaattc	atcatctgct	12960
tccagcttcg	ctcaattaat	taaaaaaata	aacttgattt	atgatggtca	aaacgcagtc	13020
ccgcatcggg	gccgacagca	ctgtgctagt	atttcttagc	tgagcttgct	ttggcctcaa	13080
ttccagacac	atatcactca	tgggtgttaa	tcaaatgata	agaatttcaa	atacttggac	13140
agttaaaaaa	attaatatac	ttgaaaatct	ctcacatttt	taagtcataa	ttttcttaac	13200
catttttctc	agaagccact	tcaaacatat	cctgtctttt	aacagtaagc	atgcctccta	13260
agataaacaa	tccttttctc	atggaaacca	gcttcaaggc	actgaggtcc	tggagcctcc	13320

ctaagc	ccct gtcaggacgg cagccaccgt ttctgg	ggcta cccctgcccc	caaccctgct	13380
ctcatc	aaga ccggggctac gcgtccctcc tggct	ggatt cacccactcc	gacagttctc	13440
tttcca	gcca ataaagaatt taagatgcag gttgad	cacac agcgcacctc	ataattctaa	13500
agaaaa	tatt tcacgattcg ctgctgtgca gcgate	cttgc agtcctacag	acaccgctcc	13560
tgagac	acat tecteageea teactaagae eeetge	gtttg ttcaggcatc	tcgtccaaat	13620
gtggct	cccc aageccccag getcagttae tecate	cagac gcacccaacc	tgagtcccat	13680
tttcca	aagg catcggaaaa tccacagagg ctccc	actcg ag		13722
<210><211><211><212><213><223><223><223><223	Oligonucleotide primer 92 gaga tgtatccttc catcaaggaa acc 93 69 DNA			33
<223>	Oligonucleotide primer			
<400>	93			
	attat tatttatcat catcatcttt ataat	cttta tcatcatcat	ctttataatc	60
agcggc	eege .			69
<210> <211> <212> <213>	31 DNA			
<223>	Oligonucleotide primer			
<400> ctagto	94 ctaga ttattattta tcatcatcat c			31
<210> <211>				

<211> 33 <212> DNA <213> Artificial Sequence

<220> <223> Oligonucleotide primer <400> 95 33 gttatgtcct aatttcgaag gcacttggga gta <210> 96 <211> 30 <212> PRT <213> Homo sapiens <400> 96 Met Lys Thr Pro Trp Lys Val Leu Leu Gly Leu Leu Gly Ala Ala Ala 10 Leu Val Thr Ile Ile Thr Val Pro Val Val Leu Leu Asn Lys 25 <210> 97 <211> 90 <212> DNA <213> Homo sapiens <400> 97 atgaagacac cgtggaaggt tctcctggga ctgctgggtg ctgctgcgct tgtcaccatc 60 90 atcaccqtqc ccgtggttct gctgaacaaa <210> 98 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer 50 cgtgcccgtg gttctgctga acaaaatgta tccttccatc aaggaaacca <210> 99 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 99 51 ccgtgcccgt ggttctgctg aacaaagtgt atccttccat caaggaaacc a

VO 2004/055182 FC 1/2 46/59

	•	
<210>	100	
<211>	52	
<212>		
	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer	
	•	
<400>	100	
tgctgc	tgcg cttgtcacca tcatcaccgt gcccgtggtt ctgctgaaca aa	52
<210>	101	
<211>	51 .	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer	
<400>		51
ggaagg	ttct cctgggactg ctgggtgctg ctgcgcttgt caccatcatc a	ЭТ
<210>	102	
<211>	47	
<211>		
<213>		
/213/	Altilitat bequence	
<220>		
12207		
<223>	Oligonucleotide primer	
	<u>.</u>	
<400>	102	
ccggaa	ttca tgaagacacc gtggaaggtt ctcctgggac tgctggg	47
	·	
<210>	103	
<211>	49	
<212>		
<213>	Artificial Sequence	
<220>		
1000		
<223>	Oligonucleotide primer	
<100×	103	
<400>		49
yactag	sttta ttatttatca tcatcatctt tataatcttt atcatcatc	
<210>	104	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Plasmid pME18sCD26asfp499	

<400> 104						
	gtggaatgtg	tgtcagttag	ggtgtggaaa	gtccccaggc	teeceageag	60
gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	catagtcccg	cccctaactc	120
cgcccatccc	gcccctaact	ccgcccagtt	ccgcccattc	tccgccccat	ggctgactaa	180
tttttttat	ttatgcagag	gccgaggccg	cctcggcctc	tgagctattc	cagaagtagt	240
gaggaggctt	ttttggaggc	ctaggctttt	gcaaaaagct	cctcgatcga	ggggctcgca	300
tctctccttc	acgcgcccgc	cgccctacct	gaggccgcca	tccacgccgg	ttgagtcgcg	360
ttctgccgcc	tcccgcctgt	ggtgcctcct	gaactgcgtc	cgccgtctag	gtaagtttaa	420
agctcaggtc	gagaccgggc	ctttgtccgg	cgctcccttg	gagcctacct	agactcagcc	480
ggctctccac	gctttgcctg	accetgettg	ctcaactcta	cgtctttgtt	tcgttttctg	540
ttctgcgccg	ttacagatcc	aagctctgaa	aaaccagaaa	gttaactggt	aagtttagtc	600
tttttgtctt	ttatttcagg	tcccggatcc	ggtggtggtg	caaatcaaag	aactgctcct	660
cagtggatgt	tgcctttact	tctaggcctg	tacggaagtg	ttacttctgc	tctaaaagct	720
gcggaattca	tgaagacacc	gtggaaggtt	ctcctgggac	tgctgggtgc	tgctgcgctt	780
gtcaccatca	tcaccgtgcc	cgtggttctg	ctgaacaaaa	tgtatccttc	catcaaggaa	840
accatgcgcg	ttcagctttc	tatggagggt	agtgttaact	accacgcctt	caagtgcact	900
ggaaaaggag	agggaaaacc	atacgaaggc	acccaaagcc	tgaatattac	aataactgaa	960
ggaggtcctc	tgccatttgc	ttttgacatt	ctgtcacacg	cctttcagta	tggcatcaag	1020
gtcttcgcca	agtaccccaa	agaaattcct	gacttcttta	agcagtctct	acctggtggt	1080
ttttcttggg	aaagagtaag	cacctatgaa	gatggaggag	tgctttcagc	tacccaagaa	1140
acaagtttgc	agggtgattg	catcatctgc	aaagttaaag	tccttggcac	caattttccc	1200
gcaaacggtc	cagtgatgca	aaagaagacc	tgtggatggg	agccatcaac	tgaaacagtc	1260
atcccacgag	atggtggact	tctgcttcgc	gatacccccg	cacttatgct	ggctgacgga	1320
ggtcatcttt	cttgcttcat	ggaaacaact	tacaagtcga	agaaagaggt	aaagcttcca	1380
gaacttcact	ttcatcattt	gcgtatggaa	aagctgaaca	taagtgacga	ttggaagacc	1440
gttgagcagc	acgagtctgt	ggtggctagc	tactcccaag	tgccttcgaa	attaggacat	1500
aacgcggccg	ctgattataa	agatgatgat	gataaagatt	ataaagatga	tgatgataaa	1560
taataaacta	gtctagagaa	aaaacctccc	acacctcccc	ctgaacctga	aacataaaat	1620
gaatgcaatt	gttgttgtta	acttgtttat	tgcagcttat	aatggttaca	aataaagcaa	1680
tagcatcaca	aatttcacaa	ataaagcatt	tttttcactg	cattctagtt	gtggtttgtc	1740
caaactcatc	: aatgtatctt	atcatgtctg	gatccccggg	taccgagctc	gaattaattc	1800

ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	ggcgagcggt	1860
atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	1920
gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	1980
gtttttccat	aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	2040
gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	2100
gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	tcccttcggg	2160
aagcgtggcg	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	2220
ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	2280
taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	cagcagccac	2340
tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	2400
gcctaactac	ggctacacta	gaagaacagt	atttggtatc	tgcgctctgc	tgaagccagt	2460
taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	2520
tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	2580
tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	2640
ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	2700
taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	2760
tgaggcacct	atctcagcga	tctgtctatt	tcgttcatcc	atagttgcct	gactccccgt	2820
cgtgtagata	actacgatac	gggagggctt	accatctggc	cccagtgctg	caatgatacc	2880
gcgagaccca	cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	2940
cgagcgcaga	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	3000
ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	3060
aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagctccg	gttcccaacg	3120
atcaaggcga	gttacatgat	cccccatgtt	gtgcaaaaaa	gcggttagct	ccttcggtcc	3180
teegategtt	gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	3240
gcataattct	cttactgtca	tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	3300
aaccaagtca	ttctgagaat	agtgtatgcg	gcgaccgagt	tgctcttgcc	cggcgtcaat	3360
acgggataat	accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	3420
ttcggggcga	. aaactctcaa	ggatettace	gctgttgaga	tccagttcga	tgtaacccac	3480
tegtgeacce	: aactgatctt	. cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	3540
aacaggaagg	r caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	3600

catactette etttteaat attattgaag catttateag ggttattgte teatgage	gg 3660
atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttcccc	eg 3720
aaaagtgcca cctgc	3735
<210> 105 <211> 28 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 105 atggacagec tettgatgaa eeggagga	28
<210> 106 <211> 25 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 106 caaagtccca aagtacgaaa tgcgt	25
<210> 107 <211> 596 <212> DNA <213> Homo sapiens	
<400> 107	60
atggacagec tettgatgaa eeggaggaag tttetttace aatteaaaaa tgteegete	
gctaagggtc ggcgtgagac ctacctgtgc tacgtagtga agaggcgtga cagtgctac	
tccttttcac tggactttgg ttatcttcgc aataagaacg gctgccacgt ggaattgc	
ttcctccgct acatctcgga ctgggaccta gaccctggcc gctgctaccg cgtcacctg	gg 240
ttcacctcct ggagcccctg ctacgactgt gcccgacatg tggccgactt tctgcgag	gg 300
aaccccaacc teagtetgag gatetteace gegegeetet aettetgtga ggaeegeaa	ag 360
gctgagcccg aggggctgcg gcggctgcac cgcgccgggg tgcaaatagc catcatgac	cc 420
ttcaaagatt atttttactg ctggaatact tttgtagaaa accatgaaag aactttcaa	aa 480
gcctgggaag ggctgcatga aaattcagtt cgtctctcca gacagcttcg gcgcatcct	tt 540
ttgcccctgt atgaggttga tgacttacga gacgcatttc gtactttggg actttg	596

<210> <211> <212> <213>	108 33 DNA Artif	ficial Seque	nce				
<220>		-					
<223>	Oligo	onucleotide	primer				
<400> ccctcga	108 agat q	ggacageete t	tgatgaacc ç	Jga			33
<210> <211> <212> <213>	109 33 DNA Arti:	ficial Seque	ence		·		
<220>							
<223>	Olig	onucleotide	primer				
<400> gctcta	109 gaca	aagtcccaaa (gtacgaaatg (cgt			33
<210> <211> <212> <213>	110 1299 DNA Arti	0 ficial Seque	ence				
<220>							
<223>	Plas	mid KW3					
<400> gtcgad	110 cggta	ccatgactct	cagaaagcac	ttcccatgtg	agctggaccc	tgaatttaag	60
gaaato	gtgta	gtcatttcct	gtgggtgcct	aagtgaggat	ttgcatgtgg	gtggtgcctt	120
tgtato	ggata	ggtaaaaagg	gatgagggag	gccccagtct	tttgggctca	ccctgggagg	180
tgtat	gctgg	ctgtgccctc	tgagaactca	gttctcttcc	tgtggcctcc	cctcaccaaa	240
cccaga	agtcc	tcttcttcca	ggtaggaaat	gtgctgaagg	agctggtctg	ggagacaagt	300
gtgato	catgg	atcaaagaca	gattttggaa	tacagttaat	actgttctac	atttaaagat	360
tcata	taaca	ccaaccatac	acccaggtca	cctaaattgt	catttacccc	ttcagacata	420
ttgaa	acagc	tgctgagtgt	aataatcaca	gtgaattgag	acaaacctgg	atccatgcaa	480
tgtgt	actgt	agttcagaac	atccatcatg	gttagaagga	tgctacctgt	cccaggaagt	540
gggtt	atttt	taaatagtac	ctgagagctg	cccttctgag	accttttgaa	atttgagatt	600
		tctcaggaga		-			660
		ggcctgacct					720

WO 2004/055182 PCT/AU2003/001697 51/59

agtgacagct	tcagatgaaa	actctatagt	acatcagcac	tggaggatag	tctcatcacc	780
aagattagtg	aaattacctt	tcctgggaac	cagagaggac	ctctgtgagc	tctaccctct	840
gagagaacaa	ggaactctgg	ttcttccctg	acaggtcaca	cctgtgaaac	atggctggac	900
aatgacactc	aaacccagaa	ttcgtaccca	catatttacc	aattcagatc	catctgtctc	960
tgaaagaatt	tctcctccgc	tgaattgcaa	gaacataccc	tagggtgtgc	agtattgcaa	1020
cttgggcatt	tcacattagt	ttggtgaatt	atataataca	caaaatatct	ccatggatgt	1080
tgtaacagga	gagtcatcag	aagctggttg	tgttgtataa	tctggataaa	cctgggctct	1140
cttcttagga	gctgaacaag	tgggctggcc	ttctatgaga	cgacagaggg	aaagagacag	1200
actcaatatc	cagagcgagg	tgagctcctt	acctacctac	caggtggtct	ctgggccatt	1260
tgtttgagca	gacccagaag	taccttcctc	accctcagga	gaattatgaa	cattgagaga	1320
aactgagata	cttttttat	ttacagggaa	tatttcatcg	gcgtgtttac	atctacctgg	1380
gtgtgtacag	ggatgctagg	atgtgctcat	acacagaaga	gcaagaatta	tatttcgtgg	1440
aaagaaaacc	aaagagcttc	tgaatttgta	ggtattgttt	gctgcaaatg	tgtcaggtca	1500
ctagatcatg	ttatgctgct	agaagaaaaa	cttcccaaca	ttgtcatgga	gacaaaatgc	1560
aaaacagtaa	agattcaact	gagattccct	tgaaaatcac	cagtaatgaa	caggccaaaa	1620
gaaatcaacc	attgtggaaa	gagtggtcat	taagtgaaat	agcaaattcc	atgttgcagt	1680
gagaaggaag	atccatctga	cagctcattt	tcacctctac	aaagacttca	gaacatagac	1740
taagagcaga	gcgtgaactt	agggcaaaca	gaggccagat	gtttgaggag	gttggagagt	1800
gagctggagt	cattgtgagc	cattcagaaa	agcagagtgt	tccagggtgt	attgagtcct	1860
cctgagttaa	gaggtgctga	atatacgcaa	gtttcactgc	cctcattgcg	ttttattctc	1920
tagactctct	tggatgtcca	gatttgaaca	tgtggagtgt	tgatggaact	caacataact	1980
aggaactttt	cagtgaaggt	gtaggtaaca	atgtgggtat	aattaaattc	ggtttatgaa	2040
aatattatta	tccgaaatgt	caaagtcagt	atctattaat	ttatctttct	tttgtatttt	2100
acagacaaga	ttattctgtt	gcccaggctg	gagtgcagac	tcacctatta	atttaacagc	2160
ataaaaacga	tcagtccaat	ttacgtagtc	ctgtaatctc	catcaaggat	ttaggtccat	2220
gtggcctgtg	acagagetet	agtcacagag	ggaagagagt	ggtttgttgg	gttgatgctg	2280
cttcttcaga	ggggaattta	aacaactcct	cacctcatca	agtctatttt	tataactgtg	2340
caagaccctt	gggaatgcac	tcaccatttc	ttacataatg	ggagttgact	gtgtcatgaa	2400
ggtaacacga	agatgtgcaa	atttaaagcc	tggttacata	acctgttgaa	tttaaaatgc	2460
ctggagccaa	tcacattctg	gcatcttgtt	taattagttc	tgaatgtatt	ttcagttggt	2520

tagttcaagt	tcccataatt	cactttctgc	taaaatagtc	acatacaata	atcttgagat	2580
attaaaataa	aaaaactaat	ttgaaaatga	acccaacttc	caggagagat	gaaagttcct	2640
ttgtggtgaa	gggttgaaat	atggttgaac	actgaggttg	tcttcacaat	tgttttaatt	2700
aggggaactt	ctatacatcc	cttatattta	ttagaaactc	ccattgagaa	ccttgaacta	2760
acgtaattag	ttgatggagc	acacaacaac	aatgctgaag	gttattaagc	aggaattgct	2820
attacaacgt	tagccttgct	ttaaagcaca	tatttctacc	tgatgtgaaa	ttagcccagg	2880
tgcgctgatg	agagtttgtc	agttaatcaa	agaccaggaa	atggatacac	gtgtttctgg	2940
agcagggcat	ggctttggga	tgctttgcga	aaaaagtggc	ttctcacgtc	tttgggaaaa	3000
cccatcaaaa	tgggcaagtt	aaggatctct	taggagcacc	cgtctatccc	atattcttgg	3060
ctaatattaa	agcggaactc	aatgcaaaat	gagatactat	ggaagttcag	aaaactgctg	3120
taccactgcc	tcagctcagc	acagctgcct	ccttcctcag	gctttctgaa	actctcggga	3180
tgtgggtttc	cacactgtgt	acttcgcaca	gtaatactcg	gccgtgtcct	cagcctttag	3240
gctgctgatc	tgaagacacg	ccgtgctgac	agacgtgtcc	atggagaaga	caaaccatcc	3300
tgtgaagccg	tgggtatacg	ttgggttccc	agtgtaggtg	atgatccatc	acatccactc	3360
aaagccctgt	ccaggggtct	atcataccca	attcatacca	tagatggtga	aggtgtaacc	3420
agaagactta	taggagacct	tcactgaggc	cccaggcttc	ttcacctcag	gcccagactg	3480
caccagctgc	agggagtggg	cacctgtgga	gtggacacaa	gagtgggtga	agtctcacat	3540
gactggcctg	gtttcttcct	cagccctgag	actggggagc	cccttacctg	ttgctgctgc	3600
catcaagaag	aggatccttc	aggtccagtc	catggtgagg	agctgtgatc	taggggcttc	3660
tccagaggag	gggtgtggtt	gttgggtgag	gctctcaggg	aacggagata	ctatagtcac	3720
ctcagttaat	tgcatattca	tgaaggatgc	tatttaatag	cccaattcct	gacccagtat	3780
gagaaacaga	cacatgggtg	acacaactgt	agaagctgag	ggttcaagcc	gtaatcctgt	3840
tagaggccat	gtgtccccta	cacatccctg	aactctgtgt	tgacagagct	tcccccactg	3900
gagaacaagc	tcctcaagga	cagcacctca	ctttgaaacc	acatttgact	gtctcagggt	3960
caacttgcat	catttctaga	ccataatatg	tgaatgcgtt	atttagggaa	tgactgtgtt	4020
tatccaaaaa	ttgcatttat	ttataagaaa	ggatctcttc	ctgacctcca	gcagagtttg	4080
aaatccccat	tgtaaaagtg	gttctcatta	caacatccag	tttgataaat	gctcacaatt	4140
gaatagatat	ttatacaaac	ttcagcagtc	tttgtgaaat	acttattta	gatattttta	4200
aaggaagtcc	caggccctgg	gaggaacctc	tccccagcct	cctgtgcacc	tgctctgggg	4260
cgggagcctg	tgctgggtgt	atccggagcg	cccctgcag	cccagcccca	accatgcagg	4320

WO 2004/055182 PCT/AU2003/001697 53/59

gaggtttcta	tctgagctga	cagagtatat	tcctaccagt	gtatccagct	cagtataaag	4380
tggttgtgcc	ctggctcaga	attctccttt	agggacacca	catgctcctc	acaccatctt	4440
ttgaaatagt	gaattgcctt	taggaaaccc	agtgaactct	gcagagagac	tccaagaaaa	4500
gatctcatgc	atcaccaggg	agccctttcc	tggagctcaa	gaggcacaga	atcattggac	4560
acacggtgaa	cccaaacact	cttcaggggt	tgaggggaga	ctcttatttc	ctttagggtc	4620
ctacagttga	ttatggcacc	tgagaatacc	tgcaggtgca	ggtacatgtg	gatagaaacc	4680
cactccaact	ctgctattca	actcacacat	gcgcgcgcgt	gtgtacacac	acacacac	4740
acacacacac	atatatatat	atacatcgtg	gctaattttt	atattaacgg	atcccatgtt	4800
tgccattttt	ttctggtatc	catctcatgg	aaagcgctcc	ctacactggt	actaagactg	4860
aatatgtgtc	tactttctgt	aaacagaagt	aaagaaacag	aatacaagtg	gacacttggg	4920
aagtgcatgc	acattgaatt	cacctggtct	cactttggaa	ccctgcagat	gccccgtgaa	4980
aactaaatta	tcgattgcca	gccctgggac	cgaaccccgc	gtttatgaac	aaacgaccca	5040
acacccgtgc	gttttattct	gtctttttat	tgccgtcata	gcgcgggttc	cttccggtat	5100
tgtctccttc	cgtgtttcag	ttagcctccc	ccatctcccg	ggcaaacgtg	cgcgccaggt	5160
cgcagatcgt	cggtatggag	cctggggtgg	tgacgtgggt	ctggaccatc	ccggaggtaa	5220
gttgcagcag	ggcgtcccgg	tagccggcgg	gcgattggtc	gtaatccagg	ataaagacgt	5280
gcatgggacg	gaggcgtttg	gccaagacgt	ccaaggccca	ggcaaacacg	ttatacaggt	5340
cgccgttggg	ggccagcaac	tcgggggccc	gaaacagggt	aaataacgtg	tccccgatat	5400
ggggtcgtgg	gcccgcgttg	ctctggggct	cggcaccctg	gggcggcacg	gccgtccccg	5460
aaagctgtcc	ccaatcctcc	cgccacgacc	cgccgccctg	cagataccgc	accgtattgg	5520
caagcagccc	gtaaacgcgg	cgaatcgcgg	ccagcatagc	caggtcaagc	cgctcgccgg	5580
ggcgctggcg	tttggccagg	cggtcgatgt	gtctgtcctc	cggaagggcc	cccaacacga	5640
tgtttgtgcc	gggcaaggtc	ggcgggatga	gggccacgaa	cgccagcacg	gcctgggggg	5700
tcatgctgcc	cataaggtat	cgcgcggccg	ggtagcacag	gagggcggcg	atgggatggc	5760
ggtcgaagat	gagggtgagg	gccgggggcg	gggcatgtga	gctcccagcc	tccccccga	5820
tatgaggagc	cagaacggcg	tcggtcacgg	cataaggcat	gcccattgtt	atctgggcgc	5880
ttgtcattac	caccgccgcg	tccccggccg	atatctcacc	ctggtcgagg	cggtgttgtg	5940
tggtgtagat	gttcgcgatt	gtctcggaag	ccccagcac	ctgccagtaa	gtcatcggct	6000
cgggtacgta	gacgatatcg	tcgcgcgaac	ccagggccac	cagcagttgc	gtggtggtgg	6060
ttttccccat	cccgtgagga	ccgtctatat	aaacccgcag	tagcgtgggc	attttctgct	6120

ccaggcggac	ttccgtggct	tcttgctgcc	ggcgagggcg	caacgccgta	cgtcggttgc	6180
tatggccgcg	agaacgcgca	gcctggtcga	acgcagacgc	gtgttgatgg	caggggtacg	6240
aagccatacg	cgcttctaca	aggcgcttgc	cgaagaggtg	cgggagtttc	acgccaccaa	6300
gatctgcggc	acgctgttga	cgctgttaag	cgggtcgctg	caggtcgaaa	ggcccggaga	6360
tgaggaagag	gagaacagcg	cggcagacgt	gcgcttttga	agcgtgcaga	atgccgggcc	6420
tccggaggac	cttcgggcgc	ccgccccgcc	cctgagcccg	cccctgagcc	cgcccccgga	6480
cccacccctt	cccagcctct	gagcccagaa	agcgaaggag	caaagctgct	attggccgct	6540
gccccaaagg	cctacccgct	tccattgctc	agcggtgctg	tccatctgca	cgagactagt	6600
gagacgtgct	acttccattt	gtcacgtcct	gcacgacgcg	agctgcgggg	cgggggggaa	6660
cttcctgact	aggggaggag	tagaaggtgg	cgcgaagggg	ccaccaaaga	acggagccgg	6720
ttggcgccta	ccggtggatg	tggaatgtgt	gcgaggccag	aggccacttg	tgtagcgcca	6780
agtgcccagc	ggggctgcta	aagcgcatgc	tccagactgc	aagcttggcg	taatcatggt	6840
catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	tccacacaac	atacgagccg	6900
gaagcataaa	gtgtaaagcc	tggggtgcct	aatgagtgag	gtaactcaca	ttaattgcgt	6960
tgcgctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	taatgaatcg	7020
gccaacgcgc	ggggagaggc	ggtttgcgta	ttggcgctct	teegetteet	cgctcactga	7080
ctcgctgcgc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	7140
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	7200
aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeeee	7260
tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	7320
aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	7380
gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	7440
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	7500
accccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	7560
ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	7620
gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	7680
gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	7740
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	7800
gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	7860
cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	7920

WO 2004/055182 PCT/AU2003/001697 55/59

cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	7980
gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	8040
tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	8100
gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	8160
agatttatça	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	8220
tttatccgcc	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	8280
agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	8340
gtttggtatg	gcttcattca	gctccggttc	ccaacgatca	aggcgagtta	catgatcccc	8400
catgttgtgc	aaaaaagcgg	ttagctcctt	cggtcctccg	atcgttgtca	gaagtaagtt	8460
ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	8520
atccgtaaga	tgcttttctg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	8580
tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	8640
cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	8700
cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	8760
atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	8820
aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	8880
ttgaagcatt	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	8940
aaataaacaa	ataggggttc	cġcgcacatt	tccccgaaaa	gtgccacctg	acgtcgccca	9000
gcccagccta	gctcagccca	gcccagctca	attcagccca	gccctgccca	gctcagccca	9060
ccttaatgca	gccaagccca	gctcaactca	gctcacctgg	tgcaacttag	cccagctcag	9120
ctcagctcag	ctcagcccag	ttcaactcag	cccagttcag	ctcagctcag	cccagttcgg	9180
ccttgtttag	tctaggtcaa	cttaggtcag	ttttgcccat	ctgagtccat	ttctgaaaac	9240
tggatggagt	tgtcatggcc	agaaatggtc	agcccaccag	acctgcttgt	ctcagctaaa	9300
gccatctcat	tgccgggttc	ctgcacagcc	aggctggctt	ccatcttttg	tctccctcta	9360
cttgataccc	cagttccctg	cagtcctgcc	ccagcgccac	ctgggttttg	gttccaaagc	9420
attaccaatc	attaccaccc	tccactacct	gggtggaata	tttctttgct	gctttaaagt	9480
cattaaaaca	tcttgagaat	gagaccaaga	atttaggagc	ctgtgctgtg	ataaaaatga	9540
gcaggtcccc	ttgctctaga	agtggcagca	tatcttctgc	accaagagga	gggtattgag	9600
atgctcagag	cctccacctt	cccggagcat	cccctccctt	ctgagtctgc	agtaaacccc	9660
tgcctttaaa	ttccctctag	ataacagtca	tcattggaaa	caaccaagaa	atgcatttta	9720

tctgaatttg	ccacttaaaa	ttctgccatt	taccataaat	cgctttggaa	ggcatgggct	9780
actttcaagg	gtgcgatgat	gacctacagt	caatgactta	gacaagggcg	atgccagtgg	9840
gacttggtat	gttctcaagc	atcattaccc	atgccatccc	cattcagagg	ttgtggagca	9900
gctcgtgcga	cctctccttc	aaatgggctt	tagggaaagt	taaatgggag	tgacccagac	9960
aatggtcact	caaaagactc	acataaatga	gtctcctgct	cttcatcaag	caattaagac	10020
cagttcccct	tctagtggaa	ataagacgtc	aaatacaaag	ttttaagaga	agcaaatgca	10080
gcagcggcgg	ctgcctgtct	cttaccatgt	cgggcgcctg	gtcactgcga	gccttgcaaa	10140
gctttggcat	ggaatcattc	ctccaagtcc	attaacaagg	gctggggcct	gagcagccag	10200
tcggcccggc	agcagaagcc	acgcatccca	gctctgggta	gtccggggag	acccagagcc	10260
caggccgggc	ctggcagcca	ccctcccaga	gcctccgcta	ggccagtcct	gctgacgccg	10320
catcggtgat	tcggaacaga	atctgtcctt	ctaaggtgtc	tccacagtcc	tgtcttcagc	10380
actatctgat	tgagttttct	cttatgccac	caactaacat	gcttaactga	aataattcag	10440
gataatgatg	cacattttc	ctaaaactta	tcctaaagtg	agtagttgaa	aagtggtctt	10500
gaaaaatact	aaaatgaagg	ccactctatc	agaatatcaa	agtgtttctc	cttaatcaca	10560
aagagaaaac	gagttaacct	aaaaagattg	tgaacacagt	cattatgaaa	ataatgctct	10620
gaggtatcga	aaaagtattt	gagattaatt	atcacatgaa	gggataacaa	gctaatttaa	10680
aaaacttttt	gaatacagtc	ataaactctc	cctaagactg	tttaatttct	taaacatctt	10740
actttaaaaa	tgaatgcagt	ttagaagttg	atatgctgtt	tgcacaaact	agcagttgat	10800
aagctaagat	tggaaatgaa	attcagatag	ttaaaaaaag	ccttttcagt	ttcggtcagc	10860
ctcgccttat	tttagaaacg	caaattgtcc	aggtgttgtt	ttgctcagta	gagcactttc	10920
agatctgggc	ctgggcaaaa	ccacctcttc	acaaccagaa	gtgataaatt	taccaattgt	10980
gtttttttgc	ttcctaaaat	agactctcgc	ggtgacctgc	ttcctgccac	ctgctgtggg	11040
tgccggagac	ccccatgcag	ccatcttgac	tctaattcat	catctgcttc	cagetteget	11100
caattaatta	aaaaaataaa	cttgatttat	gatggtcaaa	acgcagtccc	gcatcggggc	11160
cgacagcact	gtgctagtat	ttcttagctg	agcttgcttt	ggcctcaatt	ccagacacat	11220
atcactcatg	ggtgttaatc	aaatgataag	aatttcaaat	acttggacag	ttaaaaaaaat	11280
taatatactt	gaaaatctct	cacatttta	agtcataatt	ttcttaacca	tttttctcag	11340
aagccacttc	aaacatatcc	tgtcttttaa	cagtaagcat	gcctcctaag	ataaacaatc	11400
cttttctcat	ggaaaccagc	ttcaaggcac	tgaggtcctg	gagcctccct	aagcccctgt	11460
caggacggca	gccaccgttt	ctgggctacc	cctgcccca	accctgctct	catcaagacc	11520

ggggctacgc	gtccctcctg	gctggattca	cccactccga	cagttctctt	tccagccaat	11580
aaagaattta	agatgcaggt	tgacacacag	cgcacctcat	aattctaaag	aaaatatttc	11640
acgattcgct	gctgtgcagc	gatcttgcag	tcctacagac	accgctcctg	agacacattc	11700
ctcagccatc	actaagaccc	ctggtttgtt	caggcatctc	gtccaaatgt	ggctccccaa	11760
gcccccaggc	tcagttactc	catcagacgc	acccaacctg	agtcccattt	tccaaaggca	11820
tcggaaaatc	cacagaggct	cccactcgag	cagtgtggtt	ttgcaagagg	aagcaaaaag	11880
cctctccacc	caggcctgga	atgtttccac	ccaatgtcga	gcagtgtggt	tttgcaagag	11940
gaagcaaaaa	gcctctccac	ccaggcctgg	aatgtttcca	cccaatgtcg	agcaaacccc	12000
gcccagcgtc	ttgtcattgg	cgaattcgaa	cacgcagatg	cagtcggggc	ggcgcggtcc	12060
caggtccact	tcgcatatta	aggtgacgcg	tgtggcctcg	aacaccgagc	gaccctgcag	12120
ccaatatggg	atcggccatt	gaacaagatg	gattgcacgc	aggttctccg	gccgcttggg	12180
tggagaggct	attcggctat	gactgggcac	aacagacaat	cggctgctct	gatgccgccg	12240
tgttccggct	gtcagcgcag	gggcgcccgg	ttctttttgt	caagaccgac	ctgtccggtg	12300
ccctgaatga	actgcaggac	gaggcagcgc	ggctatcgtg	gctggccacg	acgggcgttc	12360
cttgcgcagc	tgtgctcgac	gttgtcactg	aagcgggaag	ggactggctg	ctattgggcg	12420
aagtgccggg	gcaggatctc	ctgtcatctc	accttgctcc	tgccgagaaa	gtatccatca	12480
tggctgatgc	aatgcggcgg	ctgcatacgc	ttgatccggc	tacctgccca	ttcgaccacc	12540
aagcgaaaca	tegcategag	cgagcacgta	ctcggatgga	agccggtctt	gtcgatcagg	12600
atgatctgga	cgaagagcat	caggggctcg	cgccagccga	actgttcgcc	aggctcaagg	12660
cgcgcatgcc	cgacggcgag	gatctcgtcg	tgacccatgg	cgatgcctgc	ttgccgaata	12720
tcatggtgga	aaatggccgc	ttttctggat	tcatcgactg	tggccggctg	ggtgtggcgg	12780
accgctatca	ggacatagcg	ttggctaccc	gtgatattgc	tgaagagctt	ggcggcgaat	12840
gggctgaccg	cttcctcgtg	ctttacggta	tagaagataa	cgattcgcag	cgcatcgcct	12900
tctatcgcct	tcttgacgag	ttcttctgag	gggatcggca	ataaaaagac	agaataaaac	12960
gcacgggtgt	tgggtcgttt	gttcggatcc				12990

<210> 111

<211> 33 <212> DNA <213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 111

ccgctcgagt gggagcctct gtggattttc cga

<210> <211> <212> <213>	DNA	
<220> <223>	Oligonucleotide primer	
<400> tgaccg	112 gacg tcgcccagcc cagcctagct ca	32
<210> <211> <212> <213>	48 DNA	
<220> <223>	Oligonucleotide primer	
<400> cccaag	113 ctta tggactggac ctggaggatc ctcttcttgg tggcagca	48
<210> <211> <212> <213>	51 DNA	
<220> <223>	Oligonucleotide primer	
<400> cccaag	114 ctta tggacacact ttgctccacg ctcctgctgc tgaccatccc t	51
<210> <211> <212> <213>	DNA	
<220> <223>	Oligonucleotide primer	
<400> cccaag	115 ctta tggagtttgg gctgagctgg gttttccttg ttgctatt	48
<210> <211> <212> <213>	DNA	
<220> <223>	Oligonucleotide primer	
<400> cccaag	116 ctta tgaaacacct gtggttcttc ctcctgctgg tggcagct	48

<210> 117 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 117 cccaagetta tggggtcaac cgccatectc gccctcctcc tggctgttct c 51 <210> 118 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 118 cccaagetta tgtctgtctc cttcctcatc ttcctgcccg tgctgggcct c 51 <210> 119 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 119 cccaagctta tggactggac ctggaggatc ctcttcttgg tggcagcagc a 51 <210> 120 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 120

39

cccaagette cccaagette ccaggtgeag ctacageag

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU2003/001697

Α.	CLASSIFICATION OF SUBJECT MATTER					
Int. Cl. 7:	C12N 15/10, 15/63					
According to	International Patent Classification (IPC) or to both n	ational classification and IPC				
В.	FIELDS SEARCHED	·				
SEE ELECT	mentation searched (classification system followed by class RONIC DATABASE BOX BELOW					
SEE ELECT	n searched other than minimum documentation to the extendr CRONIC DATABASE BOX BELOW		ed 			
Medline, CA	lectronic data base consulted during the international search (name of data base and, where practicable, search terms used) Medline, CA, WPIDS: affinity maturation, somatic hypermutation, genetic vectors, ramos, bl2, bl41, bl70, nalm, vh, ypermutat?, cultur?, Ig, immunoglobulin, sequence ID 1.					
C.	C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appro	opriate, of the relevant passages	Relevant to claim No.			
A US-A-5885827 (Wabl, et al) 23 March 1999			30-37			
A YELAMOS, J et al (1995) "Targeting of non-Ig sequences in place of the V segment by somatic hypermutation" <i>Nature</i> , 376:225-229.			1-29			
A MARTIN, A. and SCHARFF, M. D. (2002) "Somatic hypermutation of the AID transgene in B and non-B cells" <i>Proceedings of the National Academy of Sciences USA</i> , 99(19):12304-12308.						
X F	Further documents are listed in the continuation	of Box C See patent family anne	x			
"A" docum which relevan "E" earlier	is not considered to be of particular and or application or patent but published on or "X" doe international filing date con	er document published after the international filing dat d not in conflict with the application but cited to under theory underlying the invention cument of particular relevance; the claimed invention of asidered novel or cannot be considered to involve an i	stand the principle cannot be			
when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious a person skilled in the art document member of the same patent family			nt is combined			
"P" docum						
	ual completion of the international search	Date of mailing of the international search report - 9 FEB 2004				
	ling address of the ISA/AU	Authorized officer				
PO BOX 200, E-mail address	N PATENT OFFICE WODEN ACT 2606, AUSTRALIA : pct@ipaustralia.gov.au (02) 6285 3929	PHILIPPA WYRDEMAN Telephone No: (02) 6283 2554				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU2003/001697

C (Continua	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	IRVING, R. A. et al (1996) "Affinity maturation of recombinant antibodies using <i>E. coli</i> mutator cells" <i>Immunotechnology</i> , 2:127-143.	1-29					
	·						