ECE 509 (Spring'25): Homework #3

80 points

Problem 1 (10 points): Let $f \in \mathcal{C}^1_L(\mathbb{R}^n)$ be a continuously differentiable function with L-Lipschitz continuous gradients ∇f . Consider the descent method described by:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)},$$

where $t^{(k)} > 0$ is the step size, and $\Delta x^{(k)}$ is the search direction. Using the quadratic upper bound property of $\mathcal{C}_L^1(\mathbb{R}^n)$ functions:

- 1. Show that any direction $\Delta x^{(k)}$ forming an acute angle with $\nabla f(x^{(k)})$ is a descent direction for an appropriate step size $t^{(k)}$.
- 2. Determine the range of step sizes $t^{(k)}$ that ensures a decrease in the function value, provided the current point is not optimal.

Problem 2 (10 points): Let $f(x) = ||x||_2^4$ be defined on the unit ball $\{x \in \mathbb{R}^n : ||x||_2^2 \le 1\}$. Prove that $\nabla f(x)$ is Lipschitz continuous on this domain and derive the Lipschitz constant L.

Note: If the domain of f were unbounded, $\nabla f(x)$ would not be Lipschitz continuous.

Hint: In your algebraic manipulations, you may need to use the reverse triangle inequality, which states:

$$||x - y|| \ge |||x|| - ||y|||.$$

Problem 3 (60 points): In this problem, you will implement gradient descent using a programming language of your choice, test it on two different quadratic functions, and analyze its behavior under different step sizes. Your implementation should be **well-commented**, and you must submit both your **code and the output results**, including all plots and numerical results. Implement a function for gradient descent with the following requirements:

• Inputs:

- A function computing the gradient of the objective.
- An initialization point $x^{(0)}$.
- A flag specifying whether to use a fixed step size or a variable step size.
- A step size value (for fixed step size).
- A maximum number of iterations.
- A tolerance ϵ for the stopping criterion.
- Stopping Criterion: The method should stop when $\|\nabla f(x^{(k)})\|_2 \leq \epsilon$.
- Other Requirements:
 - Implement only fixed step size in this assignment.
 - If the input requests variable step size, the function should print: "Variable step size is currently not supported." (A future assignment will cover variable step size through line search methods.)
- Output: The function should return the entire sequence of iterates $\{x^{(k)}\}$.

Using your gradient descent implementation, test it on two different quadratic functions that are defined as $f(x) = \frac{1}{2}x^TQx$:

- 1. When $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$:
 - Use fixed step sizes $\alpha = 0.1$ and $\alpha = 0.5$.
- 2. When $Q = \begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix}$:
 - Use fixed step sizes $\alpha = 0.01$ and $\alpha = 0.05$.

For each case and step size, produce the following carefully labeled plots:

- (a) Contour plot of f(x) with iterates: Overlay the gradient descent iterates $\{x^{(k)}\}$ on the contour lines of the quadratic function.
- (b) Function value vs. iterations: Plot $f(x^{(k)})$ as a function of iteration number k.
- (c) Gradient norm vs. iterations: Plot $\|\nabla f(x^{(k)})\|_2$ as a function of iteration number k.

Finally, answer the following questions based on your results:

- 1. How does the choice of step size affect convergence behavior?
- 2. How does changing the matrix Q affect convergence?

