WHAT IS	CLAIMED	IS:
---------	---------	-----

2 1. An invert emulsion drill	ing fluid comprising
-------------------------------	----------------------

3 an oleaginous continuous phase

4 a non-oleaginous discontinuous phase

a surfactant is a fatty acid ester of diglycerol or triglycerol, and

6 a weighting agent.

7

1

The invert emulsion drilling fluid of claim 1 wherein the surfactant is a di-fatty acid ester of diglycerol and wherein fatty acid has the formula RCO₂H in which R is an alkyl or akenyl having 10 to 20 carbon atoms.

11

12 3. The invert emulsion drilling fluid of claim 1 wherein the surfactant is a di-fatty

acid ester of triglycerol and wherein fatty acid has the formula RCO₂H in which R is an

alkyl or akenyl having 10 to 20 carbon atoms.

15

16 4. The drilling fluid of claim 1 wherein the oleaginous fluid is selected from diesel 17 oil, mineral oil, synthetic oil, ester oils, glycerides of fatty acids, aliphatic esters, aliphatic 18 ethers, aliphatic acetals, or other such hydrocarbons and combinations thereof.

19

20

21

- 5. The drilling fluid of claim 1 wherein the non-oleaginous phase is selected from fresh water, sea water, brine, aqueous solutions containing water soluble organic salts,
- water soluble alcohols or water soluble glycols or combinations thereof.

23

24 6. The drilling fluid of claim 1 wherein the weighting agent is a water soluble weighting agent or a water insoluble weighting agent or combinations thereof.

26

7. The drilling fluid of claim 6 wherein the water insoluble weighting agent is selected from barite, calcite, mullite, gallena, manganese oxides, iron oxides, or combinations thereof.

30

1	8.	The drilling fluid of claim 6 wherein the water soluble weighting agent is selected
2	from v	vater soluble salts of zinc, iron, barium, calcium or combinations thereof.
3		
4	9.	The drilling fluid of claim 1 wherein the surfactant is selected from polyglyceryl-2
5	diisost	tearate or polyglyceryl-3 diisostearate.
6		
7	10.	An invert emulsion drilling fluid comprising
8		an oleaginous continuous phase
9		a non-oleaginous discontinuous phase,
10		a biodegradable surfactant including a di-fatty acid ester of diglycerol and wherein
11	fatty a	cid has the formula RCO ₂ H in which R is an alkyl or akenyl having 10 to 20 carbon
12	atoms	, and
13		a weighting agent.
14		
15	11.	The drilling fluid of claim 10 wherein the surfactant is polyglyceryl-2
16	diisos	tearate.
17		
18	12.	An invert emulsion drilling fluid comprising
19		an oleaginous continuous phase
20		a non-oleaginous discontinuous phase,
21		a biodegradable surfactant including a di-fatty acid ester of triglycerol and
22	where	in fatty acid has the formula RCO ₂ H in which R is an alkyl or akenyl having 10 to
23	20 car	bon atoms, and
24		a weighting agent.
25		
26	13.	The drilling fluid of claim 12 wherein the surfactant is polyglyceryl-3
27	diisos	tearate.
28	V,	
29	13.	A method of formulating an invert emulsion drilling fluid, said method
30	compi	rising:

1	mixing an oleaginous fluid, a non-oleaginous fluid, a biodegradable surfactant and
2	a weighting agent, wherein the biodegradable surfactant includes a fatty acid ester of
3	diglycerol or triglycerol in amounts sufficient to form an invert emulsion in which the
4	oleaginous fluid is the continuous phase and the non-oleaginous fluid is the discontinuous
5	phase.
6	<u>,</u> 5
7	The method of claim 13 wherein the a fatty acid ester of diglycerol or triglycerol
8	is a di-fatty acid ester of diglycerol and wherein fatty acid has the formula RCO ₂ H in
9	which R is an alkyl or akenyl having 10 to 20 carbon atoms
10	16
11	15. The method of claim 13 wherein the a fatty acid ester of diglycerol or triglycerol
12	is a di-fatty acid ester of triglycerol and wherein fatty acid has the formula RCO ₂ H in
13	which R is an alkyl or akenyl having 10 to 20 carbon atoms
14	17
15	1/6. The method of claim 13 wherein the oleaginous fluid is selected from diesel oil,
16	mineral oil, synthetic oil, ester oils, glycerides of fatty acids, aliphatic esters, aliphatic
17	ethers, aliphatic acetals, or other such hydrocarbons and combinations thereof.
18	The method of claim 13 wherein the non-oleaginous phase is selected from fresh
19	17. The method of claim 13 wherein the non-oleaginous phase is selected from fresh
20	water, sea water, brine, aqueous solutions containing water soluble organic salts, water
21	soluble alcohols or water soluble glycols or combinations thereof.
22	\ 9
23	1.8. The method of claim 13 wherein the weighting agent is a water soluble weighting
24	agent or a water insoluble weighting agent or combinations thereof.
25) Q
26	The method of claim 18 wherein the water insoluble weighting agent is selected
27	from barite, calcite, mullite, gallena, manganese oxides, iron oxides, or combinations
28	thereof.

-31-

29

	21
1	20. The method of claim 18 wherein the water soluble weighting agent is selected
2	from water soluble salts of zinc, iron, barium, calcium or combinations thereof.
3	2,2
4	21. A method of drilling a subterranean hole with an invert emulsion drilling fluid
5	said method comprising:
6	mixing an oleaginous fluid, a non-oleaginous fluid, a biodegradable surfactant
7	and a weighting agent to form an invert emulsion, wherein the biodegradable surfactan
8	includes a fatty acid ester of diglycerol or triglycerol in amounts sufficient to form a
9	invert emulsion in which the oleaginous fluid is the continuous phase and the non
10	oleaginous fluid is the discontinuous phase, and
11	drilling said subterranean hole using said invert emulsion as the drilling fluid.
12	۹ ک
13	The method of claim 20 wherein the a fatty acid ester of diglycerol or triglycero
14	is a di-fatty acid ester of diglycerol and wherein fatty acid has the formula RCO ₂ H is
15	which R is an alkyl or akenyl having 10 to 20 carbon atoms.
16	1 Ý
17	23. The method of claim 20 wherein the a fatty acid ester of diglycerol or triglycero
18	is a di-fatty acid ester of triglycerol and wherein fatty acid has the formula RCO ₂ H i
19	which R is an alkyl or akenyl having 10 to 20 carbon atoms.
20	7.6
21	The method of claim 20 wherein the oleaginous fluid is selected from diesel oil,
22	mineral oil, synthetic oil, ester oils, glycerides of fatty acids, aliphatic esters, aliphatic
23	ethers, aliphatic acetals, or other such hydrocarbons and combinations thereof.
24	26
25	The method of claim 20 wherein the non-oleaginous phase is selected from fresh
26	water, sea water, brine, aqueous solutions containing water soluble organic salts, water
27	soluble alcohols or water soluble glycols or combinations thereof.
28	9 1
29	The method of claim 20 wherein the weighting agent is a water soluble weighting

agent or a water insoluble weighting agent or combinations thereof.

The method of claim 20 wherein the weighting agent is a water soluble weighting

30

1	
2	The method of claim 26 wherein the water insoluble weighting agent is selected
3	from barite, calcite, mullite, gallena, manganese oxides, iron oxides, or combinations
4	thereof.
5	29
6	28. The method of claim 26 wherein the water soluble weighting agent is selected
7	from water soluble salts of zinc, iron, barium, calcium or combinations thereof.
8	20
9	29. A method of drilling a subterranean well with an invert emulsion drilling fluid,
10	said method comprising:
11	mixing an oleaginous fluid, a non-oleaginous fluid, a biodegradable surfactant,
12	and a weighting agent to form an invert emulsion, wherein the biodegradable surfactant
13	includes a fatty acid ester of diglycerol, wherein the fatty acid has the formula RCO ₂ H in
14	which R is an alkyl or akenyl having 10 to 20 carbon atoms and wherein the
15	biodegradable surfactant is in amounts sufficient to form an invert emulsion in which the
16	oleaginous fluid is the continuous phase and the non-oleaginous fluid is the discontinuous
17	phase,
18	circulating said invert emulsion within said subterranean well and
19	drilling said subterranean well using said invert emulsion as the drilling fluid.
20	7 \
21	30. The method of claim 29 wherein the fatty acid ester of diglycerol is a di fatty acid
22	ester.
23	37
24	31. The method of claim 30 wherein the fatty acid ester of diglycerol is polyglyceryl-
25	2 diisostearate.
26	
27	32. A method of drilling a subterranean well with an invert emulsion drilling fluid
28	said method comprising:
29	mixing an oleaginous fluid, a non-oleaginous fluid, a biodegradable surfactant
30	and a weighting agent to form an invert emulsion, wherein the biodegradable surfactan

1	includes a fatty acid ester of triglycerol, wherein the fatty acid has the formula RCO ₂ H is
2	which R is an alkyl or akenyl having 10 to 20 carbon atoms and wherein the
3	biodegradable surfactant is in amounts sufficient to form an invert emulsion in which the
4	oleaginous fluid is the continuous phase and the non-oleaginous fluid is the discontinuous
5	phase,
6	circulating said invert emulsion within said subterranean well and
7	drilling said subterranean well using said invert emulsion as the drilling fluid.
8	34
9	33. The method of claim 32 wherein the fatty acid ester of triglycerol is a di-fatty acid
10	ester.
11	35.
12	34. The method of claim 32 wherein the fatty acid ester of triglycerol is polyglycery
13	3 diisostearate.
14	
15	