Supervised Learning CapstoneLoan Risk Assessment

By Sebastian Rosado

1 Introduction

Motivation, Data Details

- What variables are the most predictive of a client's difficulty to pay back their loans?
- Banking the unbanked
 - Machine learning + finance
- Real data
 - Direct application
 - Challenging
- Interesting, unconventional variables
 - Apartment sizes, social circle creditworthiness

Description of the Data

- Home Credit → non-bank financial institution
 - Applicants with little / no credit history
- Two merged DataFrames (one-to-one)
 - Clients with active Home Credit loans
 - 2. All previous loans for those clients
- 236,630 rows, 194 columns
- Target: Payment Difficulties (1/0)

Data Exploration & Cleaning

Educational Achievement

Gender

Description of CODE_GENDER: 3 Gender of the client Name: Description, dtype: object

Organization Type

Description of ORGANIZATION_TYPE: 40
Name: Description, dtype: object

Type of organization where client works

Organization Type

Continuous & Discrete

Feature Engineering

Created Features

- Third Degree Polynomial Transformations:
 - 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH',
 'bureau_DAYS_CREDIT_mean'
- Financial Variables
 - Annuity payment as % of income (kept)
 - Credit payments as % of income
 - Credit overdue as % of total credit
- PCA
 - Tried four, kept one (['AMT_INCOME_TOTAL', 'AMT_ANNUITY', 'AMT_CREDIT', 'AMT_GOODS_PRICE'])

4 Modeling & Tuning Process

Modeling Process

	SMOTE-Balancing	Imbalanced Original
Random Forest	Υ	Υ
Logistic Regression	Υ	Υ
XGBoost	Υ	Υ
Dimen Reduced XGBoost	Υ	N
Dimen Reduced RF	Υ	N

5 — Results

Metric Comparison - Recall

	SMOTE-Balancing	Imbalanced Original
Random Forest	87.75%	0.0%
Logistic Regression	54.41%	0.01%
XGBoost	92.86%	0.17%
Dimen Reduced RF	84.62%	N
Dimen Reduced XGBoost	90.2%	N

Conclusions

Key Takeaways and Lessons Learnt

Key Takeaways

- Most Important Variables:
 - Completed Higher Ed. (26.37%)
 - Owns phone (7.95%)
 - Applied on Sunday (5.88%)
 - Active external loans (5.64%)
 - Owns a car (5.51%)
- Best Model (judging efficiency vs. score)
 - Dimen. Reduced XGBoost

Lessons Learned

- SMOTE increases recall, though sometimes at the expense of accuracy
- Averaging feature importances reduces blind spots (don't trust a single algorithm)
 - This can be used for efficient dimensionality reduction
- Visualization functions have a high ROI
- Good data science is a marathon, not a race

Room for Improvement

- Precision-recall curves
- More feature engineering
- Add other models (e.g. SVM & KNN)

7 — Thank You

Data Source

 https://www.kaggle.com/c/home-credit-defaultrisk