Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ І СЕМЕСТР

Лекторы: Райгородский Андрей Михайлович

Авторы: Дамир Aчох Проект на Github

Содержание

1	Наивная теория множеств		2
	1.1	Операции над множествами	2
	1.2	Упорядоченные пары и кортежи	3
2 Отображения и соответствия		бражения и соответствия	4
	2 1	Композиция соответствий	1

1 Наивная теория множеств

Определение 1.1. Множество - это совокупность некоторых объектов. Каждый объект входит в множество не более 1 раза, иначе - это мультимножество.

Определение 1.2. $x \in Y$. Объект x является элементом множества Y.

Определение 1.3. $X\subset Y$. Множество X является подмножеством множества Y. $X\subset Y \stackrel{def}{\Leftrightarrow} (a\in X\Rightarrow a\in Y)$

Определение 1.4. Множества X и Y равны, если $(X \subset Y) \land (Y \subset X)$.

Утверждение 1.1. Равенство множеств обладает следующими свойствами:

- 1. Рефлексивность (X = X).
- 2. Транзитивность $((X = Y) \land (Y = Z) \Rightarrow X = Z)$.
- 3. Симметричность $(X = Y \Rightarrow Y = X)$.

Утверждение 1.2. Отношение подмножества обладает следующими свойствами:

- 1. Рефлексивность $(X \subset X)$.
- 2. Транзитивность $((X \subset Y) \land (Y \subset Z) \Rightarrow X \subset Z)$.
- 3. Антисимметричность $((X \subset Y) \land (Y \subset X) \Rightarrow Y = X)$.

1.1 Операции над множествами

- 1. Объединение $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$
- 2. Пересечение $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$
- 3. Разность $A \setminus B = \{x \mid (x \in A) \land (x \notin B)\}$
- 4. Симметрическая разность $A \triangle B = \{x \mid (x \in A) \oplus (x \in B)\}$
- 5. Дополнение $\overline{A} = \{x \mid x \notin A\}$

1.2 Упорядоченные пары и кортежи

Законы де Моргана:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Определение 1.5. Неупорядоченная пара - множество из двух элементов (возможно, одинаковых). Обозначение: $\{a,b\}$.

Определение 1.6. Упорядоченная пара - неупорядоченная пара, в которой зафиксирован первый элемент. Обозначение: (a,b).

Определение 1.7. Упрощенное определение Куратовского: $(a, b) = \{\{a, b\}, a\}$.

Определение 1.8. Полное определение Куратовского: $(a, b) = \{\{a, b\}, \{a\}\}.$

Определение 1.9. Декартово произведение $A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}.$

Определение 1.10. Кортеж длины 0 - это \varnothing . Кортеж длины (n+1) - это $\{a,\{a,t\}\}$, где t - кортеж длины n.

2 Отображения и соответствия

Определение 2.1. Соответствие из A в B - произвольное подмножество $A \times B$. $F \subset A \times B$. Обозначения: $(a,b) \in F$, $b \in F(a)$, $F:A \Rightarrow B$.

Определение 2.2. Отображение - однозначное соответствие. Т.е. $(\forall a \in A)(\exists!b \in B)$. Обозначения: $(a,b) \in F, b = F(a), F : A \to B$.

Определение 2.3. Инъективное соответствие: $(a \neq b) \Rightarrow (F(a) \cap F(b) = \emptyset)$.

Определение 2.4. Инъекция - это инъективное отображение. $(a \neq b) \Rightarrow (F(a) \neq F(b))$.

Определение 2.5. Сюръективное соответствие: $(\forall b \in B)(\exists a \in A) \ b \in F(a)$.

Определение 2.6. Сюръекция - сюръективное отображение. $(\forall b \in B)(\exists a \in A) \ b = F(a)$.

Определение 2.7. Биекция - отображение, являющееся и инъекцией и сюръекцией одновременно (взаимно однозначное соответствие). $((\forall a \in A)(\exists!b \in B) (a,b) \in F) \land ((\forall b \in B)(\exists!a \in A) (a,b) \in F)$.

Определение 2.8. Пусть $S\subset A$. Образ множества S - это $F(S)=\bigcup_{a\in S}F(a)$

Определение 2.9. Пусть $T \subset B$. Прообраз множества T - это $F^{-1}(T) = \{a \mid F(a) \cap T \neq \emptyset\}$

2.1 Композиция соответствий

Определение 2.10. Пусть $F:A \Rightarrow B, G:B \Rightarrow C$. Композиция F и G - это соответствие $G \circ F:A \Rightarrow C$, т.ч. $(x,z) \in G \circ F \Rightarrow (\exists y \in B) \ ((x,y) \in F \land (y,z) \in G)$.

Замечание. Если F и G - отображения, то $G \circ F(x) = G(F(x))$.

Замечание. Композиция соответствий ассоциативна. $H \circ (G \circ F) = (H \circ G) \circ F$.

Определение 2.11. Существует отображение F из множества A в A, т.ч. $(\forall a \in A) \ F(a) = a.$