

000

Sistemas de Información Geográfica y Tablero de Datos Covid-19

Julio, 2020

Dr. Oscar Sánchez SiordiaInvestigador CentroGEO / GeoIntosanchez@centrogeo.edu.mx

Mtro. Pablo López Ramírez Investigador CentroGEO / GeoInt pablo.lopez@centrogeo.edu.mx Karime González Zuccolotto
Investigador CentroGEO / Geoln

Investigador CentroGEO / GeoInt karime.gonzalez@centrogeo.edu.mx

Asociación espacial

¿Qué tan agrupada está globalmente una variable en el espacio?

I de Moran

$$W = \begin{pmatrix} 0 & w_{12} & \dots & w_{1N} \\ w_{21} & \ddots & w_{ij} & \vdots \\ \vdots & w_{ji} & 0 & \vdots \\ w_{N1} & \dots & \dots & 0 \end{pmatrix}$$

$$I = rac{N}{W} rac{\sum_i \sum_j w_{ij} (x_i - ar{x}) (x_j - ar{x})}{\sum_i (x_i - ar{x})^2}$$

Asociación espacial

- La cantidad de casos confirmados parece agruparse en el espacio
- Podemos cuantificar la agrupación utilizando la I de Moran:

I de Moran: 0.43

p: 0.001

 El valor es muy alto. Globalmente, el 43% de la varianza se puede explicar por los valores de los vecinos

Asociación espacial

 Las defunciones también exhiben estructura espacial

I de Moran: 0.29

p: 0.001

- La autocorrelación sigue siendo alta, pero menos.
- Diferentes condiciones en los municipios (no exclusivamente contagio)

Asociación espacial en el tiempo

La estructura espacial cambia con el tiempo

Al principio tiene una estructura dispersa (diferentes focos de contagio)

¿Tiende a homogeneizarse?

Indicadores de asociación local

El concepto de autocorrelación también se puede extender a la escala local para encontrar conglomerados

$$I_i = rac{Z_i}{m_2} \sum_j W_{ij} Z_j$$

$$m_2 = rac{\sum_i Z_i^2}{N}$$

LISA: Indicador local de asociación espacial

Clusters de LISA

- HH Valores altos de tasa de confirmados en vecindades de valores altos. Hotspots
- LL Valores bajos de la tasa en vecindades con valores bajos. Cold **Spots**
- **HL** Valores altos en vecindades con valores bajos
- **LH** Valores bajos en vecindades con valores altos

Clusters de LISA

Conglomerados espaciales para la tasa de defunciones

- HH Valores altos de tasa de confirmados en vecindades de valores altos. Hotspots
- LL Valores bajos de la tasa en vecindades con valores bajos. Cold Spots
- HL Valores altos en vecindades con valores bajos
- LH Valores bajos en vecindades con valores altos

Relación local con el índice de vulnerabilidad

En lugar de medir la autocorrelación, podemos estimar la relación con el retraso espacial de una segunda variable

$$I_B = \frac{\sum_i (\sum_j w_{ij} y_j \times x_i)}{\sum_i x_i^2}$$

Relación local con el índice de vulnerabilidad

- HH Valores altos de tasa de confirmados en vecindades de valores altos de vulnerabilidad
- LL Valores bajos de la tasa en vecindades con valores bajos de vulnerabilidad
- HL Valores altos en vecindades con valores bajos de vulnerabilidad
- LH Valores bajos en vecindades con valores altos de vulnerabilidad

Evolución espacio-temporal: Markov Espacial

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ 0 & p_{22} & p_{23} & p_{24} & p_{25} \\ 0 & 0 & p_{33} & p_{34} & p_{35} \\ 0 & 0 & 0 & p_{44} & p_{45} \end{bmatrix} \text{ where } p_{ij} \ge 0 \text{ and } \sum_{j} p_{ij} = 1$$

- Podemos estudiar la evolución para cada municipio como una cadena de Markov
- Para K estados discretos, la transición entre ellos depende del estado anterior
- Una forma de extender al caso espacial es modelar la transición entre estados (cuantiles de casos confirmados) condicionada al estado de los municipios vecinos

Evolución espacio-temporal: Markov Espacial

Matrices de probabilidad condicionadas al estado de los municipios vecinos

Evolución espacio-temporal: LISA Markov

En lugar de cuantizar por cuantiles, podemos usar los clusters de LISA y obtener la matriz de transición

Gracias

El código del análisis lo pueden consultar en:

https://github.com/CentroGeo/covid-spatial-analysis

Sistemas de Información Geográfica y Tablero de Datos Covid-19

Gracias por su atención