# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1575

THE EFFECT OF VARIATIONS IN MOMENTS OF INERTIA ON SPIN AND RECOVERY CHARACTERISTICS OF A SINGLE-ENGINE LOW-WING MONOPLANE WITH VARIOUS TAIL ARRANGEMENTS,

INCLUDING A TWIN TAIL

By Anshal I. Neihouse

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

Washington

May 1948

### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

### TECHNICAL NOTE NO. 1575

THE EFFECT OF VARIATIONS IN MOMENTS OF INERTIA ON SPIN AND
RECOVERY CHARACTERISTICS OF A SINGLE-ENGINE LOW-WING

MONOPLANE WITH VARIOUS TAIL ARRANGEMENTS,

INCLUDING A TWIN TAIL

By Anshal I. Neihouse

#### SUMMARY

An investigation has been conducted in the Langley 15-foot free-spinning tunnel on a research model, representative of a present-day trainer or a four-place cabin monoplane, with varied moments of inertia. The tests were made for eight different wing arrangements and four different tail arrangements, including a twin tail. The moments of inertia about the three airplane axes were increased or decreased by a constant percentage and the results were compared. Comparison is also made between these results and those previously presented for conditions with the airplane relative density varied.

The results of variation of moments of inertia indicated that, within the range of the present tests, uniformly decreasing the moments of inertia led to steeper spins, higher angular and vertical velocities, and faster recoveries. Comparison of these results with results of previous tests indicated that adding weight at the center of gravity up to 50 percent of the basic weight led to higher rates of descent and rotation, had little effect upon recoveries when the elevators were up, and generally had a somewhat adverse effect upon recoveries when the elevators were neutral or down. The results also indicated that the twin-tail configuration was a very effective arrangement as regards spin recovery.

### INTRODUCTION

Spin-tunnel experience has indicated that moments of inertia may have significant effects upon the spin and recovery characteristics of an airplane. In order to make available additional results on the effects of moments of inertia, the results of an investigation conducted during 1939 on a low-wing airplane model in the Langley 15-foot free-spinning tunnel are presented in this paper. Eight different wing arrangements and four different tail arrangements, including a twin tail, were investigated. The investigation was an extension of the research conducted with the low-wing airplane model reported in references 1 to 5.

For the investigation referred to herein, moments of inertia about the three airplane axes were increased or decreased by a constant percentage. Such changes would occur on an airplane if items of load were shifted along both the wings and the fuselage. The present results are considered comparable to those previously obtained when the relative density was varied (reference 5). In reference 5, the results presented were for loadings obtained by increasing or decreasing the moments of inertia and at the same time altering the weight correspondingly in order to keep the radii of gyration constant. For the present tests, corresponding moment-of-inertia variations were made but the weight was maintained constant.

The tail arrangements varied from a short rudder above a shallow fuselage to a full-length rudder and raised horizontal tail on a deep fuselage, and also included a twin-tail design. The wing variables were: tip shape, airfoil section, plan form, thickness, and landing flaps.

#### SYMBOLS

| ъ                        | wing span, feet                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| S                        | wing area, square feet                                                                                                                |
| c                        | wing mean chord, inches $\left(\frac{S}{b}\right)$                                                                                    |
| x/c                      | ratio of distance of center of gravity rearward of leading edge of wing mean chord to wing mean chord                                 |
| z/c                      | ratio of distance between center of gravity and thrust line to wing mean chord (positive when center of gravity is below thrust line) |
| m                        | mass of airplane, slugs                                                                                                               |
| ρ                        | air density, slug per cubic foot                                                                                                      |
| μ                        | airplane relative-density parameter $\left(\frac{m}{\rho Sb}\right)$                                                                  |
| IX, IY, IZ               | moments of inertia about X, Y, and Z body axes, respectively, slug-feet2                                                              |
| $k_X$ , $k_Y$ , $k_Z$    | radii of gyration about X, Y, and Z body axes, respectively, feet                                                                     |
| $\frac{I_X - I_Y}{mb^2}$ | inertia yawing-moment parameter                                                                                                       |

| $I_v - I_7$                    |                                                                                                                                 |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $\frac{I_{Y} - I_{Z}}{mb^{2}}$ | inertia rolling-moment parameter                                                                                                |
| $\frac{I_Z - I_X}{mb^2}$       | inertia pitching-moment parameter                                                                                               |
| $\frac{I_Z - I_Y}{I_Z - I_X}$  | inertia rolling-moment and yawing-moment parameter                                                                              |
| α                              | angle between thrust line and vertical (approximately equal to absolute value of angle of attack at plane of symmetry), degrees |
| φ                              | angle between span axis and horizontal, degrees                                                                                 |
| V                              | model rate of descent, feet per second                                                                                          |
| Ω                              | model angular velocity about spin axis, radians per second                                                                      |

#### APPARATUS AND METHODS

The tests were conducted in the Langley 15-foot free-spinning tunnel which has since been superseded by the larger 20-foot free-spinning tunnel. A general description of model construction and testing technique in the Langley 15-foot free-spinning tunnel is given in reference 6. Use of a launching spindle has, however, been replaced by launching the model by hand into the vertically rising air stream. A photograph of a model spinning in the Langley 20-foot free-spinning tunnel is shown as figure 1.

The basic condition of the model for the present investigation was similar to the basic condition referred to in reference 5. The model is considered to represent a  $\frac{1}{15}$ -scale model of a current trainer or a fourplace cabin monoplane. Figure 2 is a two-view drawing of the basic model, and photographs of the basic model are shown as figure 3. The wing and tail surfaces were independently removable and interchangeable to permit testing any combination. The exchange of surfaces could be made without any change in mass distribution. The mass distribution, however, could be independently varied by the relocation of weights.

The various wing configurations used are shown in figure 4 and are designated as follows:

Wing 1 - NACA 23012 section; rectangular plan form; Army tips.

Wing 2 - Same as wing 1 with 20-percent full-span split flaps deflected 60°.

- Wing 3 NACA 23012 section; rectangular plan form; rectangular tips.
- Wing 4 Same as wing 3 with faired tips.
- Wing 5 NACA 0009 section; rectangular plan form; Army tips.
- Wing 6 NACA 6718 section; rectangular plan form; Army tips.
- Wing 7 NACA 23012 section; 5:2 taper ratio; Army tips.
- Wing 8 NACA 23018-09 section (standard Army wing); 2:1 taper ratio; square center; Army tips.

Photographs of the wings are shown as figures 5 and 6. Figures 2 and 3 show the model with the basic wing (wing 1) and tail C installed. This wing is of NACA 23012 section with rectangular plan form and Army tips. In common with the other wings, it has an area of 150 square inches, a span of 30 inches, and no dihedral, twist, or sweepback. The other seven wings have varied dimensional characteristics as indicated in figures 4 and 6.

Each wing was mounted on the model at an angle of incidence equal to the angle of zero lift for the particular section.

The four tail configurations used are designated tails A, B, C, and D and are shown in figures 7 and 8. Tail C had a shallow fuselage with rudder completely above the tail cone. Tail B was derived from tail C by increasing the fuselage depth, raising the stabilizer and the elevators, and installing the original fin and rudder atop the deepened fuselage. Tail A was similar to tail B except for full-length rudder construction and slightly increased elevator cut-out. Tail D has the same areas and tail lengths as tail C. The vertical tail area was redistributed to form two vertical tails of circular plan form, each having half the original area. The dimensional characteristics of the various tail arrangements are given in table I. The tail-damping power factor was computed by the method described in reference 7. The stabilizer was set at zero incidence for each tail. There was no fin offset. A clockwork delay-action mechanism was installed in the model to actuate the controls during recovery tests.

The full-scale dimensional characteristics for this model (assumed 1/15 scale) with any one of the wings shown in figure 4 and with tail C installed would be:

| Mean wing chord, inches                                   | 75     |
|-----------------------------------------------------------|--------|
| Span, feet                                                |        |
| Wing area, square feet                                    |        |
| Aspect ratio                                              |        |
| Distance from quarter-chord point to elevator hinge, feet |        |
| Distance from quarter-chord point to rudder hinge, feet   |        |
| Fin area, square feet                                     |        |
| Rudder area, square feet                                  |        |
| Stabilizer area, square feet                              | . 19.8 |
| Elevator area, square feet                                |        |
| Control travel, degrees                                   |        |
| Rudder                                                    |        |
| Elevator up                                               |        |
| Elevator down                                             | 20     |

The model was ballasted by the installation of proper lead weights to represent an airplane spinning at 6000 feet altitude ( $\rho$  = 0.001988). If the model were arbitrarily assumed to be 1/15 scale, the corresponding characteristics for the basic loading and for the loadings with moments of inertia decreased and increased would be the values given in table II. The moments of inertia were decreased approximately 16 percent of the basic values and increased approximately 24 percent. It was noted for the present investigation that, with the moments of inertia decreased, the actual values of the moments of inertia were about the same as those for the low relative-density condition previously presented in reference 5. With the moments of inertia increased, the increases were approximately 60 percent of the corresponding increases obtained for the high relative-density condition.

### PRECISION

The model test results presented are believed to be the true values given by the model within the following limits:

| α, | degrees  |     |     |    |    |     |     |     |    |     |     |     | ó   |   |  |   |   |   |   |   |   |   |   |  |   | ±l   |
|----|----------|-----|-----|----|----|-----|-----|-----|----|-----|-----|-----|-----|---|--|---|---|---|---|---|---|---|---|--|---|------|
| Φ, | degrees  |     |     |    |    |     |     |     |    |     |     |     |     |   |  |   |   |   |   |   |   |   |   |  |   | ±l   |
|    | percent  |     |     |    |    |     |     |     |    |     |     |     |     |   |  |   |   |   |   |   |   |   |   |  |   |      |
|    | percent  |     |     |    |    |     | •   | •   |    | •   | ٠   | •   | •   |   |  | • | • | • | • | • |   |   |   |  |   | ±2   |
|    | ms for 1 |     |     |    |    |     |     |     |    |     |     |     |     |   |  |   |   |   |   |   |   |   |   |  |   | 7    |
|    | when obt |     |     |    |    |     |     |     |    |     |     |     |     |   |  |   |   |   |   |   |   |   |   |  |   |      |
|    | when obt | tai | ine | ed | by | 7 7 | ris | sue | al | 0.5 | sti | Lma | ate | ) |  | • |   |   |   |   | • | • | • |  | • | ±1/2 |

The preceding limits may have been exceeded for those spins for which it was difficult to control the model in the tunnel because the rate of descent was high or because the spin was wandering or oscillatory.

The accuracy of measuring the weight and mass distribution of the model is believed to be within the following limits:

| Weight, | per  | cent   |      |     |     |     |    | •   |     |    | • |  |  | • | • |  | • | • | • |  | +1 |
|---------|------|--------|------|-----|-----|-----|----|-----|-----|----|---|--|--|---|---|--|---|---|---|--|----|
| Center- | g-lc | gravit | y lo | oca | tio | on, | pe | ero | cer | ıt | C |  |  |   |   |  |   |   |   |  | ±1 |
| Moments | of   | inert  | ia,  | pe  | rce | ent |    |     |     |    |   |  |  |   |   |  |   |   |   |  | ±5 |

The controls were set with an accuracy of ±1°.

Tests made at the basic, or normal, loading were repeat tests, and the results agreed fairly well with corresponding results of reference 5, although the agreement was not always exact as a result of inadvertent slight damages to the model resulting from testing.

#### TESTS

For each wing and tail combination with each set of values of the moments of inertia, spin tests were made for four control settings:

- (a) Rudder  $30^{\circ}$  with the spin, elevators  $30^{\circ}$  up
- (b) Rudder 30° with the spin, elevators neutral
- (c) Rudder  $30^{\circ}$  with the spin, elevators  $20^{\circ}$  down
- (d) Rudder neutral, elevators neutral

Recovery from (b) and (c) was attempted by reversal of the rudder, recovery from (a) by complete reversal of both controls as well as by reversal of the rudder alone, and recovery from (d) by moving the rudder full against the spin and the elevator full down. Ailerons were not deflected during the investigation.

#### RESULTS AND DISCUSSION

The results of the spin tests of the model are presented in tables III to XI. Tables XII to XIX present a comparison of results obtained with the moments of inertia decreased with the corresponding results previously obtained with the relative density decreased and thus afford a determination of the effect of variation in weight at the center of gravity. All results are presented in terms of model values. Conversion to full-scale values may be obtained by methods described in reference 6.

### Effects of Moment-of-Inertia Variations

Tables III to X indicate that, when the rudder was initially with the spin, the qualitative effects upon the spin and recovery characteristics of variation in the moments of inertia were generally the same for each of the tail and wing arrangements tested. In general, decreasing the moments of inertia led to steeper spins and more rapid recoveries; whereas increasing the moments of inertia led to somewhat flatter spins and slower recoveries. The angular and vertical velocities in the spin increased as the moments of inertia decreased, and vice versa.

Table XI presents the results of tests for decreased, basic, and increased values of moments of inertia when all the controls, including rudder, were neutral. When the twin tail, tail D, was installed, no spin was obtained for any wing arrangement or any moment-of-inertia condition.

As previously indicated, the results presented in reference 5 were for loadings with varied relative densities which were obtained by changing the moments of inertia and at the same time changing the weight to keep the radii of gyration constant. Comparison of the current results with those presented in reference 5 indicates that, for the range of mass variation considered in this investigation, systematic changes in moments of inertia will affect the recovery characteristics in a manner similar to that brought about by changes in relative density involving similar moment-of-inertia variations, particularly when the elevators are up. It thus appears that the changes in moments of inertia associated with a change in relative density are primary factors affecting the spin recovery. In tables XII to XIX, results with moments of inertia decreased are compared with results for relative density decreased for the different wing arrangements. The condition with moments of inertia decreased represents the model with weight in at the center of gravity; whereas the condition with the relative density decreased represents the model with the weight out at the center of gravity. The difference in weight was approximately 25 percent. When the elevators were up, the recovery characteristics for the two loadings were quite similar although the rates of descent and the angular velocities in spins were higher with the weight in. When the elevators were neutral or down, the results were not always consistent, but a small adverse effect upon recovery characteristics appeared to result from adding weight at the center of gravity.

Although no comparison is presented herein, the test results with moments of inertia increased may be compared with corresponding results from reference 5 with the relative density increased. The difference in these two loadings can be considered to represent the effect of added weight at the center of gravity of approximately 50 percent of the basic weight. As previously mentioned, the moment-of-inertia changes were not so great as those made in reference 5, but the general conclusions to be drawn are quite similar to those drawn from the comparison made between decreased moments of inertia and decreased relative density.

### Effects of Tail and Wing Arrangement

Comparison of the results for tails A, B, and C for any moment-ofinertia condition indicated that tail A gave the most rapid recoveries
and tail B gave the steepest spins but slower recoveries; tail C gave the
slowest recoveries. The effects of wing and loading variations were most
apparent for tail C. With the twin tail D installed, spins for any
moment-of-inertia condition were generally as steep as those for tail B,
but recoveries were as good as or better than those for tail A. Tail D,
as previously indicated, was formed by the use of vertical fin and rudder
areas equal to those for tail C, and the improved recovery characteristics
obtained with the twin-tail configuration indicates that it is a very
effective arrangement as regards spin recovery. The difference in results
obtained for tails A, B, C, and D are in agreement with the findings of
reference 8.

For any moment-of-inertia condition, the wings with rectangular and faired tips (wings 3 and 4) gave the steepest spins, the most outward sideslip, and the most rapid recoveries. The rectangular wing with Army tips (wing 1) consistently gave flatter spins and slower recoveries. Even slower recoveries were obtained for the wing with 5:2 taper (wing 7). The wing with NACA 6718 section (wing 6) led to spins in which the inner wing was down a relatively large amount. Flaps deflected 60° (wing 2) generally retarded recovery. The Army standard wing (wing 8) generally gave more satisfactory recovery characteristics than the basic rectangular wing.

The NACA 0009 section (wing 5) led to faster recoveries when the moments of inertia were decreased than did either the 23012 or the 6718 section; whereas, when the moments of inertia were increased, the NACA 6718 section (wing 6) led to the fastest recoveries. These results may be explained on the basis of reference 9, which indicates that

as 
$$\frac{I_X - I_Y}{mb^2}$$
 becomes more negative, downward tilt of the inboard wing

during the spin is favorable, and vice versa. It was noted that when wing 5 was installed on the model, the outboard wing tip (left tip in a right spin) was tilted down; whereas when wing 6 was installed, the inboard tip was down. Also, the relative mass distribution along the

fuselage was decreased  $\left(\frac{I_X-I_Y}{mb^2}\right)$  became less negative when the moments of inertia were decreased, and vice versa.

The effects of tail and wing variables were in general similar to those previously reported in reference 5.

### Effects of Control Setting

Within the range tested, moment-of-inertia variations appeared to have no appreciable effect upon control effectiveness in producing recoveries. Recoveries from spins with the elevator neutral and the rudder with the spin were very similar to those from corresponding spins with the elevators down. Except for the twin-tail, tail D, holding the elevators up resulted in the steepest spins (from which the most rapid recoveries were obtained). For the twin-tail arrangement, elevators up gave somewhat flatter spins than elevators down. The simultaneous reversal of the rudder from rudder with to rudder against the spin and of the elevator from up to down gave better recovery than only rudder reversal for tails B and C (the tails with short rudders) but not for tails A and D.

### CONCLUSIONS

The results of tests made on a research model with varied moments of inertia, and comparison with previous results led to the following conclusions:

- 1. Uniformly decreasing the moments of inertia led to steeper spins, higher angular and vertical velocities, and faster recoveries.
- 2. Adding weight up to 50 percent of the basic weight at the center of gravity led to higher rates of descent and higher angular velocities, had little effect upon recoveries when the elevators were up, and generally had a somewhat adverse effect upon recoveries when the elevators were neutral or down.
- 3. The twin-tail configuration was a very effective arrangement as regards spin recovery.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December 31, 1947

#### REFERENCES

- 1. Seidman, Oscar, and Neihouse, A. I.: Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails. I. Basic Loading Condition. NACA TN No. 608, 1937.
- 2. Seidman, Oscar, and Neihouse, A. I.: Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails. II. Mass Distributed along the Fuselage. NACA TN No. 630, 1937.
- 3. Seidman, Oscar, and Neihouse, A. I.: Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails. III. Mass Distributed along the Wings. NACA TN No. 664, 1938.
- 4. Seidman, Oscar, and Neihouse, A. I.: Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails. IV. Effect of Center-of-Gravity Location. NACA Rep. No. 672, 1939.
- 5. Seidman, Oscar, and Neihouse, A. I.: Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails. V. Effect of Airplane Relative Density. NACA Rep. No. 691, 1940.
- 6. Zimmerman, C. H.: Preliminary Tests in the N.A.C.A. Free-Spinning Wind Tunnel. NACA Rep. No. 557, 1936.
- 7. Neihouse, A. I.: Tail-Design Requirements for Satisfactory Spin Recovery for Personal-Owner-Type Light Airplanes. NACA TN No. 1329, 1947.
- 8. Neihouse, Anshal I., Lichtenstein, Jacob H., and Pepoon, Philip W.: Tail-Design Requirements for Satisfactory Spin Recovery.

  NACA TN No. 1045, 1946.
- 9. Neihouse, A. I.: A Mass-Distribution Criterion for Predicting the Effect of Control Manipulation on the Recovery from a Spin. NACA ARR, Aug. 1942.

TABLE I. - DIMENSIONAL CHARACTERISTICS OF THE VARIOUS TAIL ARRANGEMENTS

| Tail | Vertical<br>tail area<br>(percent wing<br>area) | Fuselage side<br>area (back and<br>below leading<br>edge of stabilizer)<br>(percent wing area) | Vertical tail<br>length (from c/4<br>point of wing to<br>rudder hinge line)<br>(percent wing span) | Horizontal<br>tail area<br>(percent wing area) | Horizontal tail<br>length (from c/4<br>point of wing to<br>elevator hinge line)<br>(percent wing span) | Tail-damping power factor |
|------|-------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|
| A    | 8 (rudder, 5;<br>fin, 3)                        | 3.0                                                                                            | 45                                                                                                 | 14 (elevator, 5.5; stabilizer, 8.5)            | 44                                                                                                     | 136 x 10 <sup>-6</sup>    |
| В    | 6 (rudder, 3; fin, 3)                           | 4.3                                                                                            | 45                                                                                                 | 14 (elevator, 5.5;<br>stabilizer, 8.5)         | 44                                                                                                     | 5                         |
| С    | 6 (rudder, 3; fin, 3)                           | 1.1                                                                                            | 45                                                                                                 | 14 (elevator, 5.5;<br>stabilizer, 8.5)         | 44                                                                                                     | 0                         |
| D    | 6 (rudder, 3; fin, 3)                           | 1.1                                                                                            | 45                                                                                                 | 14 (elevator, 5.5; stabilizer, 8.5)            | 7+7+                                                                                                   | 393                       |

NACA

TABLE II. - FULL-SCALE LOADINGS BASED ON ASSUMPTION OF  $\frac{1}{15}$ -SCALE MODEL

| Item                                                                                         | Loading with<br>moments of<br>inertia decreased | Basic<br>loading        | Loading with moments of inertia increased |
|----------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|-------------------------------------------|
| Weight, lb                                                                                   | 4720                                            | 4720                    | 4720                                      |
| I <sub>X</sub> , slug-ft <sup>2</sup>                                                        | 2310                                            | 2760                    | 3380                                      |
| I <sub>Y</sub> , slug-ft <sup>2</sup>                                                        | 3320                                            | 3970                    | 4915                                      |
| I <sub>Z</sub> , slug-ft <sup>2</sup>                                                        | 5040                                            | 6150                    | 7700                                      |
| $\frac{I_{X} - I_{Y}}{mb^{2}}$                                                               | -49 × 10 <sup>-4</sup>                          | -59 × 10 <sup>-4</sup>  | -75 × 10 <sup>-4</sup>                    |
| $\frac{I_{Y} - I_{Z}}{mb^{2}}$                                                               | -83 × 10 <sup>-4</sup>                          | -105 × 10 <sup>-4</sup> | -135 × 10 <sup>-4</sup>                   |
| $\frac{\mathbf{I}_{\mathbf{Z}} - \mathbf{I}_{\mathbf{X}}}{\mathbf{mb}^2} \dots$              | 132 × 10 <sup>-4</sup>                          | 164 × 10 <sup>-4</sup>  | 210 × 10 <sup>-4</sup>                    |
| $\begin{vmatrix} \underline{I_{Z} - I_{Y}} \\ \underline{I_{Z} - I_{X}} \end{vmatrix} \dots$ | 0.64                                            | 0.64                    | 0.64                                      |
| μ (at 6000 ft)                                                                               | 8.4                                             | 8.4                     | 8.4                                       |
| x/c                                                                                          | 0.25                                            | 0.25                    | 0.25                                      |
| z/c                                                                                          | 0                                               | 0                       | 0                                         |



TABLE III.-SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING 1 INSTALLED



Turns for recovery

### TABLE IV.- SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING 2 INSTALLED

| table gi                                                    | ven at bottom of<br>ments of inertia                                        | page                                                                      |                | Momen t                                                                                                                                                        | s of inertia                                                               |                                                                                               |
|-------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Decreased                                                   | Basic                                                                       | Increased                                                                 |                | Decreased                                                                                                                                                      | Basic                                                                      | Increased                                                                                     |
| 49.2 2.7D 36.8 11.9 2, $2\frac{1}{4}$                       | 51.9 2.7D<br>36.4 10.8<br>2\frac{1}{4}, 2\frac{1}{2}<br>a 3, a 3\frac{1}{4} | 57.32.4D<br>35.910.0<br>24, 3                                             | Elevator<br>Up | (d)                                                                                                                                                            | Tail B  44.7 3.6D  39.6 9.5  b2, b4  a2, a214                              | 46.2 3.0D<br>38.2 8.4<br>>4, b <sub>∞</sub><br>c <sub>4</sub> , 4 <sup>3</sup> / <sub>4</sub> |
| 54.8 1.4D<br>33.6 14.0                                      | 58.4 0.9D<br>33.6 12.5<br>4\frac{1}{2}, 4\frac{3}{4}                        | 61.6 2.0D  33.6 11.5  > $6\frac{1}{2}$ , 8                                | Neutral        | 52.4 0.4D<br>34.1 13.4<br>14, 14                                                                                                                               | 54.2 1.60<br>34.6 12.1<br>bo <sub>∞</sub>                                  | 56.8 1.0D<br>34.6 10.6<br>bc <sub>∞</sub>                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$      | 57.2 1.9D<br>33.6 12.6<br>4\frac{1}{4}, 4\frac{1}{2}                        | 60.2 4.5D<br>33.6 11.7<br>b <sub>9</sub> , 10 <sup>1</sup> / <sub>4</sub> | Down           | 51.0 0.8D<br>34.1 13.4<br>b <sub>3</sub> 1/2, 4                                                                                                                | 54.3 1.2D<br>34.1 12.4<br>bo                                               | 55.7 0.8D<br>34.1 11.1<br>bc $\infty$                                                         |
|                                                             | Tail C                                                                      |                                                                           | Elevator       |                                                                                                                                                                | Tail D                                                                     | <b>&gt;</b> —                                                                                 |
| 49.8 2.5D 38.6 11.5 b                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       | 54.9 2.6D<br>37.7 9.2<br>bc bc $\infty$<br>abc abc<br>$\infty$ , $\infty$ | Up             | $\begin{array}{c cccc} 49.3 & 2.4D \\ \hline 36.4 & 12.3 \\ \hline 2\frac{7}{4}, & 2\frac{7}{4} \\ \hline ^{a}2\frac{1}{4}, & ^{a}2\frac{1}{4} \\ \end{array}$ | 54.2 1.9D<br>35.9 11.3<br>3, 3<br>a <sub>3</sub> , a <sub>3</sub>          | 57.7 2.2D<br>35.4 10.5<br>$3\frac{1}{2}$ , $3\frac{1}{2}$<br>$3\frac{1}{2}$ , $3\frac{1}{4}$  |
| 50.5 2.3D<br>35.4 13.4<br>be e<br>& &                       | (e)   76.4   1.9U   55.1   1.8D   26.8   17.4   33.6   12.3   be            | (e) 60.1 2.3p 76.5 1.0p 34.6 11.3 27.2 16.0 b be                          | Neutral        | 47.6 1.9D<br>35.4 13.8<br>$2\frac{1}{4}$ , $2\frac{1}{4}$                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                      | 57.0 2.1D<br>34.1 11.3<br>4, 4                                                                |
| 52.3 0.7D<br>34.6 13.8<br>b <sub>15</sub> , b <sub>25</sub> | (e) 76.3 1.40 57.3 1.60 26.8 18.0 33.2 12.7 bc                              | (e)   58.7   0.5D   78.9   0.4U   33.6   11.7   26.4   16.5   b           | Down           | No spin                                                                                                                                                        | 34.6 12.7<br>3 <sup>1</sup> / <sub>4</sub> , 3 <sup>1</sup> / <sub>2</sub> | 55.8 2.0D<br>34.1 11.6<br>41/2, 41/4                                                          |
| Visual ob                                                   | is steep and osc                                                            | ecover.                                                                   | nd elevator    | Model value U inner win D inner win                                                                                                                            | ng up (de                                                                  | g) (deg)                                                                                      |

# TABLE V.- SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING 3 INSTALLED

|                                                                                                                                                                |                                                               | Mamonta of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | namet a                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Moments of inertia  Decreased Basic                                                                                                                            | Increased                                                     | Moments of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| Dasie                                                                                                                                                          | Increased                                                     | Decreased Das                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Increased                                                                |
|                                                                                                                                                                |                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |
| Tail A                                                                                                                                                         |                                                               | Tail B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |
|                                                                                                                                                                | Elevator                                                      | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c)                                                                      |
| 29.5 1.10 31.0 0.10                                                                                                                                            | 51.0 2.0D                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| 54.6 12.1 52.3 11.0                                                                                                                                            | 40.0 9.1 Up                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| a <sub>1</sub> 3                                                                                                                                               | 14                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |
| ab <sub>1</sub> b <sub>1</sub> b <sub>2</sub>                                                                                                                  | b b                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| $\begin{bmatrix} ab_1 \\ \overline{2} \end{bmatrix}$ $\begin{bmatrix} b_1 \\ \overline{2} \end{bmatrix}$ , $\begin{bmatrix} b_1 \\ \overline{2} \end{bmatrix}$ | b <sub>1</sub> , b <sub>1</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
|                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
|                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| 51.41.70                                                                                                                                                       | 57.9 0.20                                                     | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.30 43.6 0.40                                                           |
| No spin 36.811.8                                                                                                                                               | 35.0 10.9 Neutral                                             | No spin 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.4 40.9 10.5                                                           |
| $1\frac{1}{2}$ , $1\frac{3}{4}$                                                                                                                                | 2 <del>1</del> / <sub>4</sub> , 2 <del>1</del> / <sub>4</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\frac{1}{4}, 2\frac{1}{4}$                                             |
|                                                                                                                                                                | 4 4                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 4 4                                                                    |
|                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| 49.7 2.40                                                                                                                                                      | 56.3 1.30                                                     | 711 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30 44.2 0.60                                                           |
| No spin 36.4 12.1                                                                                                                                              | 75 0 33 0                                                     | No spin 44.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
|                                                                                                                                                                | DOWII                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| $1\frac{1}{2}, 1\frac{1}{2}$                                                                                                                                   | $2\frac{1}{2}$ , * $2\frac{1}{2}$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\frac{1}{4}, 2\frac{1}{4}$                                             |
|                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
|                                                                                                                                                                |                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA A                                                                     |
|                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| Tail C                                                                                                                                                         | -                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                        |
| (0)                                                                                                                                                            | (c) Elevator                                                  | (c) (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c)                                                                      |
| 33.0 5.30                                                                                                                                                      | 33.0 3.3n                                                     | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7D                                                                     |
| 54.6 11.8                                                                                                                                                      | 61.5 9.0 Up                                                   | 61.8 59.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.8                                                                     |
| $\frac{1}{2}$ , $\frac{1}{2}$                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| 2' 2                                                                                                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| b <sub>1</sub> b <sub>1</sub>                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| b <sub>1</sub> b <sub>1</sub> b <sub>2</sub>                                                                                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| b1 b1 2                                                                                                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
|                                                                                                                                                                | 75 30 85                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| 34.7 1.70 32.9 0.2D                                                                                                                                            | 35.2 0.8D                                                     | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |
| 34.7 1.70 32.9 0.2D<br>47.8 13.6 51.4 12.6                                                                                                                     | 52.3 11.0 Neutral                                             | 50.0 14.3 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |
| 34.7 1.70 32.9 0.2D<br>47.8 13.6 51.4 12.6                                                                                                                     | 50 7 77 0                                                     | 50.0 14.3 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.6 54.6 11.6                                                           |
| 34.7 1.70 32.9 0.2D<br>47.8 13.6 51.4 12.6                                                                                                                     | 52.3 11.0 Neutral                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.6 54.6 11.6                                                           |
| 34.7 1.70 32.9 0.2D<br>47.8 13.6 51.4 12.6                                                                                                                     | 52.3 11.0 Neutral                                             | 50.0 14.3 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.6 54.6 11.6                                                           |
| 34.7 1.70 32.9 0.2D<br>47.8 13.6 51.4 12.6                                                                                                                     | 52.3 11.0 Neutral                                             | 50.0 14.3 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.6 11.6                                                                |
| 34.7 1.70<br>47.8 13.6<br>1 32.9 0.20<br>51.4 12.6<br>3<br>4                                                                                                   | 52.3 11.0 Neutral                                             | 50.0 14.3 56.8 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.2 5.4U                                                                |
| 34.7 1.70 32.9 0.20<br>47.8 13.6 51.4 12.6 3<br>1 38.5 4.10 37.7 1.50 44.6 14.3 45.4 13.1                                                                      | 52.3 11.0 Neutral  3 4  45.1 1.10  38.6 11.1 Down             | 50.0 14.3 56.8 1 2 30.2 45.9 14.6 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.2 5.4U<br>50.0 13.1                                                   |
| 34.7 1.70 32.9 0.20<br>47.8 13.6 51.4 12.6 3<br>1 38.5 4.10 37.7 1.50 44.6 14.3 45.4 13.1                                                                      | 52.3 11.0 Neutral  3 4  45.1 1.10                             | 50.0 14.3 56.8 1 2 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.6 54.6 11.6 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                     |
| 34.7 1.70<br>47.8 13.6<br>1 32.9 0.20<br>51.4 12.6<br>3 4<br>38.5 4.10<br>44.6 14.3<br>1 37.7 1.50<br>45.4 13.1<br>1 1½                                        | 52.3 11.0 Neutral  45.1 1.10  38.6 11.1 Down  24, 31/2        | 50.0 14.3 56.8 1 1 2 30.2 47.8 1 1 4 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12.6 54.6 11.6 3 4 29.2 5.4U 50.0 13.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 34.7 1.70 32.9 0.2D 47.8 13.6 1 37.7 1.50 44.6 14.3 1 1 1 2 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 .                                                              | 52.3 11.0 Neutral  45.1 1.10  38.6 11.1 Down  24, 31/2        | 50.0 14.3 56.8 1 2 30.2 47.8 1 1 47.8 1 1 4 47.8 U inner wing u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.6 54.6 11.6 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   |
| 34.7 1.70<br>47.8 13.6<br>1 32.9 0.20<br>51.4 12.6<br>3 4<br>38.5 4.10<br>44.6 14.3<br>1 37.7 1.50<br>45.4 13.1<br>1 1½                                        | 52.3 11.0 Neutral  45.1 1.10  38.6 11.1 Down  24, 31/2        | 50.0 14.3 56.8 1 1 2 30.2 47.8 1 1 4 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 4 7 .8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12.6 54.6 11.6 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   |
| 34.7 1.70 32.9 0.2D 47.8 13.6 1 37.7 1.50 44.6 14.3 1 1 1 2 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 .                                                              | 52.3 11.0 Neutral  45.1 1.10  38.6 11.1 Down  24, 31/2        | 50.0 14.3 56.8 1 2 30.2 47.8 1 1 47.8 1 1 4 47.8 U inner wing u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.6 54.6 11.6 3<br>34 29.2 5.40 13.5 50.0 13.1 1 1 1 1 4 2 (deg) (deg)  |

# TABLE VI.— SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING $\mbox{\tt $\downarrow$}$ INSTALLED

| table gi<br><u>Mo</u>                                  | ven at bottom of ments of inertia                                                         | page                                                                                                                 |             | Mome      | nts of inertia                                   |                                                   |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------------------------------------|---------------------------------------------------|
| Decreased                                              | Basic                                                                                     | Increased                                                                                                            |             | Decreased | Basic                                            | Increased                                         |
| 31.6 0.40 52.3 11.8 2 a 1 2                            | 45.61.0D<br>40.010.1<br>1, 1 <sup>1</sup> / <sub>4</sub><br>a <sub>3</sub> a <sub>1</sub> | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                               | Elevator    | (b)       | Tail B (b)                                       | (b)                                               |
| No spin                                                | 55.1 2.6U<br>34.1 12.2<br>2, 2                                                            | 59.9 0.4U<br>35.0 11.0<br>$2\frac{7}{4}$ , $2\frac{7}{4}$                                                            | Neutral     | No spin   | 34.1 0<br>47.8 12.6                              | 46.2 0<br>40.9 10.6<br>2\frac{1}{4}, 2\frac{1}{2} |
| No spin                                                | 54.7 2.1U<br>34.1 12.4<br>1 <sup>3</sup> / <sub>4</sub> , 2                               | 58.9 1.00 35.0 11.2 $2\frac{1}{2}$ , $2\frac{3}{4}$                                                                  | Down        | No spin   | 37.2 4.3U<br>43.2 13.1<br>1 1 1 1                | 47.1 0.7U<br>40.0 10.6<br>2, 2                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Tail C  5  26.6 2.0D  61.5 11.0                                                           | 27.6 3.3D<br>61.5 9.0<br>c <sub>1</sub> , c <sub>1</sub><br>ac <sub>1</sub> , ac <sub>1</sub><br>ar, ac <sub>1</sub> | Elevator    | No data   | Tail D No data                                   | No data                                           |
| 29.6 12.1U<br>56.8 14.0                                | 27.4 2.6U<br>52.3 13.1<br>3, 4                                                            | 28.0 1.5U<br>61.5 11.0<br>03<br>4                                                                                    | Neutral     | No data   | 26.4 8.90<br>54.6 12.8<br>3<br>4                 | No data                                           |
| No spin                                                | 32.0 5.2U<br>49.6 13.6                                                                    | $\begin{array}{c cccc} 46.3 & 0.30 \\ 38.6 & 11.1 \\ \hline & 2\frac{1}{2}, & 3\frac{1}{4} \end{array}$              | Down        | No data   | 31.7 7.90 47.8 13.6 $1\frac{1}{4}, 1\frac{1}{2}$ | No data                                           |
| aRecovery b<br>bThe spin i<br>cVisual obs              | y reversal of bo<br>s steep and osci<br>ervation.                                         | th rudder an<br>llatory.                                                                                             | d elevator. | U inne    | alues r wing up r wing down                      | g) (deg)                                          |

| cc<br>(deg) | (deg)     |
|-------------|-----------|
| V<br>(fps)  | (rad/sec) |
| Turns :     |           |

### TABLE VII.-SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING 5 INSTALLED

|                                                                                                                         | ts of inertia                                                             |                                                                                                                      |           | Moment                                 | s of ir                | ertia                                         |                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|
| ecreased                                                                                                                | Basic                                                                     | Increased                                                                                                            |           | Decre ased                             | Bas                    | 110                                           | Increased                                                                               |
| 16.5 0.9D<br>11.4 11.2<br>1, 1 <sup>1</sup> / <sub>8</sub>                                                              | 50.7 0<br>40.0 9.9<br>1, 1\frac{1}{4}<br>1\frac{1}{4}, \frac{1}{4}        | 55.2 0.6E<br>39.6 9.2<br>1½, 1½<br>a1¾, a1¾                                                                          | Elevator  | (c)                                    | Tail (c)               | В                                             | 45.7 4.<br>43.2 8.<br>1\frac{1}{4}, 2\frac{1}{4}                                        |
| 1, 1<br>52.7 2.7U<br>55.4 13.2<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                         | 14, 14<br>58.4 1.20<br>35.0 12.2<br>2½, 2¾                                | 60.2 0.8D<br>34.1 11.2<br>3, 3 <sup>1</sup> / <sub>4</sub>                                                           | N         | 41.1 4.0U<br>40.9 13.3                 | -                      | 2.0U<br>11.6<br>3 <sup>1</sup> / <sub>4</sub> | 53.1 0. 37.2 10 5½, 11                                                                  |
| 52.3 3.6U<br>54.6 14.0<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                                 | 55.1 1.30 34.1 12.6 $2\frac{1}{2}$ , $2\frac{1}{2}$                       | 59.6 p.1D 34.1 11.4 $3\frac{1}{4}$ , $3\frac{1}{4}$                                                                  | Down      | 43.1 3.6U<br>39.1 13.8<br>1, b1        | -                      | 1.80                                          | 54.6 0.7<br>36.4 10.<br>6, 8                                                            |
|                                                                                                                         | Tail C                                                                    |                                                                                                                      | Elevator  | S                                      | -Tail                  | w.                                            |                                                                                         |
| 1.9D<br>10.5<br>12<br>101<br>14, a1                                                                                     | 41.4 2.4D<br>46.8 9.5<br>blit, lite<br>a3 a3<br>4, a4                     | $\begin{array}{c ccccc} 45.9 & 3.9D \\ 42.2 & 8.4 \\ & 2, 2 \\ \hline & 1\frac{1}{2}, & 1\frac{1}{2} \\ \end{array}$ | Up        | 30.9 2.1D<br>55.0 12.6<br>12<br>a12    |                        |                                               | 54.0 1.00 38.2 9.6 $1\frac{7}{4}$ , $1\frac{7}{4}$ $\frac{1}{4}$ , $\frac{1}{4}$        |
| $ \begin{array}{c cccc} 7.5 & 1.80 \\ 3.5 & 0 \\ 0.4 & 12.7 \\ 6.8 & 12.6 \\ 2\frac{1}{2}, & 3\frac{1}{2} \end{array} $ | 56.1 1.00<br>35.9 12.1<br>8½, b9                                          | 57.6 0.4D<br>35.9 10.8<br>be e                                                                                       | Neutral   | 32.3 0.3U<br>50.4 14.3                 | 28.6<br>52.3<br>1/2, 1 | - 1                                           | 51.4 0.40 37.2 10.9 $2\frac{1}{4}$ , $2\frac{1}{2}$                                     |
| 3.0 3.0U<br>5.9 3.1U<br>5.9 13.4<br>0.4 13.6                                                                            | 56.7 1.0U<br>35.4 12.6<br>bg, bg                                          | 57.0 0.4D<br>35.4 11.2<br>e                                                                                          | Down      | 36.3 4.10<br>45.9 15.7                 |                        | 2.30<br>13.6                                  | 51.2 0.10<br>36.4 11.2<br>2 <sup>3</sup> / <sub>4</sub> , 2 <sup>3</sup> / <sub>4</sub> |
| $3, 3\frac{1}{2}$                                                                                                       |                                                                           |                                                                                                                      | elevetor  |                                        |                        | oc                                            | ø                                                                                       |
| decovery by<br>isual obserthe spin is<br>two types of                                                                   | reversal of bot<br>vation.<br>steep and oscil<br>spin.<br>del would not n | llatory.                                                                                                             | elevator. | Model values U inner wing D inner wing | up<br>down             | (deg)<br>V<br>(fps)                           | (deg)                                                                                   |

### TABLE VIII. - SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING 6 INSTALLED

| table g                                                     | iven at bottom of                                                                                |                                                                                   |                                                                                     |                                                         | key to                                                                                           |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Mor<br>Decreased                                            | Basic                                                                                            | Increased                                                                         | Decreased.                                                                          | nts of inertia Basic                                    | Increased                                                                                        |
| 45.6 5.30<br>41.4 12.1<br>b1, 14<br>a a a                   | Tail A 47.8 5.4D 40.0 10.6 b1, 1 1 a a 1, 1                                                      | 53.7 3.7D  38.2 9.7 $1\frac{1}{2}$ , $1\frac{1}{2}$ $\frac{1}{4}$ , $\frac{2}{1}$ |                                                                                     | Tail B (0)                                              | (c)                                                                                              |
| 49.4 1.60<br>38.2 13.8<br>1 <sup>2</sup> / <sub>4</sub>     | $ 53.02.70 $ $ 35.4   12.4 $ $ 2\frac{1}{4}, 2\frac{1}{4} $                                      | 55.7 2.6D<br>35.0 11.1 Neutra<br>$2\frac{1}{4}$ , $2\frac{1}{4}$                  | 45.1 6.4D<br>38.6 13.3<br>2, 2                                                      | 47.1 4.3D<br>38.6 12.1<br>2½, b 3                       | 51.4 3.6D<br>36.2 10.5<br>334, 414                                                               |
| 49.7 2.1D 37.7 14.4 $1\frac{1}{2}$ , $1\frac{1}{2}$         | $\begin{array}{c} 53.6 & 2.7D \\ 35.9 & 12.7 \\ \hline 2\frac{1}{4}, & 2\frac{1}{4} \end{array}$ | 57.2 2.3D  35.4 11.3 Down $2\frac{1}{2}$ , $2\frac{1}{2}$                         | $ \begin{array}{c} 44.6 \\ 3.0D \\ 37.7 \\ 1\frac{1}{2}, 2\frac{1}{4} \end{array} $ | 47.0 2.7D<br>37.7 12.5<br>21/2, 44/4                    | $\begin{array}{c} 49.5 & 4.0D \\ 37.2 & 11.2 \\ \hline 3\frac{1}{2}, & 3\frac{3}{4} \end{array}$ |
| (c)                                                         | Tail <sup>0</sup>                                                                                | (c) Elevat                                                                        | (e)<br>49.0 7.7D<br>40.9 12.6<br>1\frac{1}{4}<br>ab 1\frac{1}{4}, a 1\frac{1}{2}    | Tail D                                                  | 47.7 6.1D<br>40.9 9.8<br>1 <sup>1</sup> / <sub>4</sub>                                           |
| 44.2 6.15<br>39.1 13.6<br>4, 5½                             | 44.7 6.0D<br>40.4 12.1                                                                           | 47.2 4.8D<br>40.4 10.6 Neutre                                                     | (e)<br>45.87.7D<br>37.713.9<br>$1\frac{1}{2}, {}^{5}1\frac{1}{2}$                   | 45.2 10.0D<br>38.2 12.9<br>b1\frac{3}{4}, b1\frac{3}{4} | $\begin{array}{c} 44.8 & 5.70 \\ 40.9 & 11.1 \\ 1\frac{1}{2}, & 1\frac{3}{4} \end{array}$        |
| 46.05.8D<br>39.114.3<br>2, 2 <sup>3</sup> / <sub>4</sub>    | 46.24.3D<br>39.112.9<br>9                                                                        | 50.5 3.1D<br>36.2 11.3 Down<br>b, bd<br>>5, \infty                                |                                                                                     |                                                         | 44.5 9.3D<br>40.9 11.9<br>1½, 2                                                                  |
| bVisual obs<br>CThe spin i<br>d \infty means<br>eVery oscil | s steep and osci<br>model would not                                                              | llatory.<br>recover.                                                              | U inner wi<br>D inner wi                                                            | ing down (fps                                           | s for                                                                                            |

Very oscillatory.

| oc<br>(deg) | (deg)     |
|-------------|-----------|
| V<br>(fps)  | (rad/sec) |

### TABLE IX.— SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH WING $\gamma$ INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to

| Decreased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Basic                                                                                               | Increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents of inertia                                                                                                                                                                                                   | - Impary                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dable                                                                                               | Increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Decreased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Basic                                                                                                                                                                                                             | Increased                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tail A                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tail B                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | Elevator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
| 53.0 0.7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.7 0                                                                                              | 56.2 0.8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.2 2.50                                                                                                                                                                                                         | 49.7 1.0D                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                      |
| 39.1 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.2 10.7                                                                                           | 38.6 9.8 Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.2 9.8                                                                                                                                                                                                          | 41.4 8.5                                                                                                                                                                                                                                                                                               |
| a <sub>1</sub> <sup>1</sup> / <sub>2</sub> , 1 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 1 1 1 1                                                                                     | 2, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | 4, 5 <del>2</del>                                                                                                                                                                                                                                                                                      |
| b1\frac{1}{2}, b1\frac{1}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b13, b21                                                                                            | b23, b3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | $b_3, b_{4\frac{1}{2}}$                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
| 59.3 0.1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.8 0.20                                                                                           | 62.7 0.3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.6 1.3U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.5 1.30                                                                                                                                                                                                         | 55.4 0.4D                                                                                                                                                                                                                                                                                              |
| 34.1 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.1 12.6                                                                                           | 35.4 11.3 Neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.4 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.4 11.8                                                                                                                                                                                                         | 38.6 10.5                                                                                                                                                                                                                                                                                              |
| $3\frac{1}{2}$ , $3\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3\frac{1}{2}, 3\frac{1}{2}$                                                                        | 3= , 3= .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6\frac{1}{2}, 7\frac{3}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ac ac                                                                                                                                                                                                             | ac co                                                                                                                                                                                                                                                                                                  |
| 72. 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15, 15                                                                                              | 2, 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20, ∞                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
| 8.2 0.4U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59.0 0.9D                                                                                           | 62.9 0.9D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.6 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.70.2D                                                                                                                                                                                                          | 55.2 0.3D                                                                                                                                                                                                                                                                                              |
| 34.1 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.1 13.0                                                                                           | 35.0 11.7 Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.0 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.912.3                                                                                                                                                                                                          | 35.9 11.0                                                                                                                                                                                                                                                                                              |
| 23, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3\frac{1}{2}, 3\frac{1}{2}$                                                                        | $\frac{a_{11}}{2}, \frac{41}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   | ac 0                                                                                                                                                                                                                                                                                                   |
| <u>ст, э</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ١٥٥ ١٥٥                                                                                             | 45, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5\frac{1}{4}$ , $6\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a10, a11                                                                                                                                                                                                          | $\infty$                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NACA                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + Tail C                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TO47 D - 4-                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | Elevator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tail D                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |
| 9.0 1.1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.4 1.20                                                                                           | Elevator<br>53.5 0.8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.6 1.3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.3 0.50                                                                                                                                                                                                         | 54.8 2.4D                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | 53.5 0.8D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.3 0.50                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |
| 9.6 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.4 10.2                                                                                           | 53.5 0.8D<br>39.6 9.2 Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.2 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.3 0.5D<br>38.6 10.9                                                                                                                                                                                            | 38.2 9.9                                                                                                                                                                                                                                                                                               |
| 9.6 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10, 10                                                                                              | 53.5 0.6D<br>39.6 9.2 Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.2 10.8<br>1, 1 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.3 0.5D<br>38.6 10.9<br>1 2, 2 1                                                                                                                                                                                | 38.2 9.9<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                              |
| 9.6 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10, 10                                                                                              | 53.5 0.8D<br>39.6 9.2 Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.2 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.3 0.5D<br>38.6 10.9<br>1 2, 2 1                                                                                                                                                                                | 38.2 9.9<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                              |
| 9.6 11.5<br>4 <sup>1</sup> / <sub>4</sub> , 4 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10, 10<br>b, be                                                                                     | 53.5 0.6D<br>39.6 9.2<br>0p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.2 10.8<br>1, 1 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.3 0.5D<br>38.6 10.9<br>1 <sup>1</sup> / <sub>2</sub> , 2 <sup>1</sup> / <sub>4</sub>                                                                                                                           | 38.2 9.9<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                              |
| 9.6 11.5<br>41, 41/2<br>21, b4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , be <sub>3</sub>                                             | 53.5 0.6D<br>39.6 9.2<br>0p<br>0p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>2</sup> / <sub>4</sub> , b <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.3 0.5D<br>38.6 10.9<br>1½, 2¼<br>b <sub>2</sub> , ab <sub>2</sub> ½                                                                                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                 |
| 9.6 11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11 | 10, 10                                                                                              | 53.5 0.6D<br>39.6 9.2<br>0p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>2</sup> / <sub>4</sub> , b <sub>2</sub> 33.9 2.5D                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.3 0.5D<br>38.6 10.9<br>1 2, 2 1                                                                                                                                                                                | 38.2 9.9<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                              |
| 9.6 11.5<br>11.4, 11.2<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11   | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , be <sub>3</sub>                                             | 53.5 0.6D<br>39.6 9.2 Up<br>0.6 0.5 0.0D<br>35.0 11.5 Neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>2</sup> / <sub>4</sub> , b <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.3 0.5D<br>38.6 10.9<br>1½, 2¼<br>b <sub>2</sub> , ab <sub>2</sub> ½                                                                                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                 |
| 9.6 11.5<br>11.7<br>11.7<br>11.7<br>12.7<br>13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , be 59.4 1.0D                                                | 53.5 0.6D<br>39.6 9.2 Up<br>\( \infty \), \( \alpha \), \( \alpha \) \( \alpha \), \( \alp | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>3</sup> / <sub>4</sub> , b <sub>2</sub> 33.9 2.5D  48.6 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b <sub>2</sub> , ab <sub>2</sub> $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3                                                                             | 38.2 9.9<br>1 <sup>2</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub><br>b <sub>2</sub> <sup>1</sup> / <sub>2</sub> , b <sub>2</sub> <sup>3</sup> / <sub>4</sub><br>54.1 0.40<br>35.9 11.1                                                                                                         |
| 11.5<br>41/4, 41/2<br>121/4, 54<br>6.0 0.2D<br>5.4 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , b <sub>c</sub><br>59.4 1.0D<br>34.6 12.9                    | 53.5 0.6D<br>39.6 9.2 Up<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>2</sup> / <sub>4</sub> , b <sub>2</sub> 33.9 2.5D                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>$b_2$ , $ab_2\frac{1}{2}$                                                                                                                            | 38.2 9.9<br>1 <sup>2</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub><br>b <sub>2</sub> <sup>1</sup> / <sub>2</sub> , b <sub>2</sub> <sup>3</sup> / <sub>4</sub><br>54.1 0.40                                                                                                                      |
| 39.6 11.5<br>11.5<br>11.4<br>11.4<br>12.2<br>13.6<br>13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , b <sub>c</sub><br>59.4 1.0D<br>34.6 12.9                    | 53.5 0.6D<br>39.6 9.2 Up<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>3</sup> / <sub>4</sub> , b <sub>2</sub> 33.9 2.5D  48.6 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b <sub>2</sub> , ab <sub>2</sub> $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |
| 9.6 11.5<br>\(\frac{1}{4}\), \(\frac{1}{4}\), \(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{4}\), \(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}\), \(\frac{1}{4}\), \(\frac{1}{4}\), \(\frac{1}{4}\),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , b <sub>c</sub><br>59.4 1.0D<br>34.6 12.9                    | 53.5 0.6D<br>39.6 9.2 Up<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1, 1 <sup>1</sup> / <sub>4</sub> b <sub>1</sub> <sup>3</sup> / <sub>4</sub> , b <sub>2</sub> 33.9 2.5D  48.6 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b <sub>2</sub> , ab <sub>2</sub> $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |
| 9.6 11.5<br>11.5<br>11.4<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11.5<br>11 | 40.4 10.2 10, 10 b <sub>3</sub> , bc c c c c c c c c c c c c c c c c c c                            | 53.5 0.6D<br>39.6 9.2 Up<br>\( \infty \), a \( \infty \) ab \( \infty \) ab \( \infty \) 60.5 1.0D 35.0 11.5 Neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1, 1\frac{1}{4}<br>b1\frac{3}{4}, b2<br>33.9 2.5D<br>48.6 14.8<br>1\frac{1}{4}, 1\frac{1}{4}                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b2, ab2 $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3<br>$2\frac{1}{2}$ , $2\frac{1}{2}$                                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |
| 39.6 11.5<br>11.5<br>11.4<br>11.4<br>12.2<br>12.4<br>13.6<br>13.6<br>17.8 0.3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.4 10.2<br>10, 10<br>b <sub>3</sub> , b <sub>c</sub><br>59.4 1.0D<br>34.6 12.9<br>ac<br>61.3 1.0D | 53.5 0.6D<br>39.6 9.2 Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1, 1\frac{1}{4}<br>b 1 \frac{1}{4}, b 2<br>33.9 2.5D<br>48.6 14.8<br>1\frac{1}{4}, 1\frac{1}{4}                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b <sub>2</sub> , ab <sub>2</sub> $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3<br>$2\frac{1}{2}$ , $2\frac{1}{2}$                                          | $\begin{array}{c} 38.2 & 9.9 \\ 1\frac{7}{4}, & 1\frac{7}{4} \\ b^{2}\frac{1}{2}, & b^{2}\frac{7}{4} \\ \end{array}$ $\begin{array}{c} 54.1 & 0.40 \\ 35.9 & 11.1 \\ 2\frac{1}{2}, & 3 \\ \end{array}$ $\begin{array}{c} 53.9 & 1.30 \\ 35.9 & 11.5 \\ \end{array}$                                    |
| 39.6 11.5<br>\(\frac{1}{4\psi}, \frac{1}{4\psi}, \frac{1}{4\psi} \) 22\psi, \(\frac{1}{4}\psi, \frac{1}{4} \) 36.0 0.2D 35.4 13.6  37.8 0.3D 35.0 14.3 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.4 10.2 10, 10 b <sub>3</sub> , b <sub>0</sub> co             | 53.5 0.6D 39.6 9.2  \( \infty \), \( \alpha \), \( \alpha \)  \( \alpha \), \( \alpha \), \( \alpha \)  60.5 1.0D 35.0 11.5  \( \alpha \), \( \alpha \)  63.2 1.6D 34.1 12.0  \( \alpha \), \( \alpha \)  ac c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 1\frac{1}{4}<br>b1\frac{3}{4}, b2<br>33.9 2.5D<br>48.6 14.8<br>1\frac{1}{4}, 1\frac{1}{4}                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b2, ab2 $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3<br>$2\frac{1}{2}$ , $2\frac{1}{2}$<br>42.8 1.20<br>45.9 14.3<br>$1\frac{1}{2}$ , 2                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |
| 22\frac{1}{4}, \( \bar{1}\) 4  56.0 0.2D  55.4 13.6  67.8 0.3D  55.0 14.3  8  Claude observed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4 10.2 10, 10 bg, bc 59.4 1.0D 34.6 12.9 ac 61.3 1.0D 34.1 13.2 ac correction.                   | 53.5 0.6D 39.6 9.2  Dp  Down  60.5 1.0D 35.0 11.5  ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.2   10.8   1, 1\frac{1}{4}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>b2, ab2 $\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3<br>$2\frac{1}{2}$ , $2\frac{1}{2}$<br>42.8 1.20<br>45.9 14.3<br>$1\frac{1}{2}$ , 2                   | 38.2 9.9<br>1 <sup>3</sup> / <sub>4</sub> , 1 <sup>3</sup> / <sub>4</sub><br>b <sub>2</sub> 1/ <sub>2</sub> , b <sub>2</sub> 3/ <sub>4</sub><br>54.1 0.4D<br>35.9 11.1<br>2 <sup>1</sup> / <sub>2</sub> , 3<br>53.9 1.3D<br>35.9 11.5<br>2 <sup>1</sup> / <sub>2</sub> , 3 <sup>3</sup> / <sub>4</sub> |
| 7.5 0.3D<br>5.0 14.3<br>a  isual obse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.4 10.2 10, 10 b <sub>3</sub> , bc 59.4 1.0D 34.6 12.9 ac 61.3 1.0D 34.1 13.2 ac crystion.        | 53.5 0.6D 39.6 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1, 1\frac{1}{4}  1, 1\frac{1}{4} | 51.3 0.5D<br>38.6 10.9<br>$1\frac{1}{2}$ , $2\frac{1}{4}$<br>$\frac{1}{2}$ , $2\frac{1}{2}$<br>49.7 1.00<br>37.7 12.3<br>$2\frac{1}{2}$ , $2\frac{1}{2}$<br>42.8 1.20<br>45.9 14.3<br>$1\frac{1}{2}$ , 2<br>(deg) | $38.2 	 9.9$ $1\frac{3}{4}, 1\frac{3}{4}$ $b_2\frac{1}{2}, b_2\frac{3}{4}$ $54.1 	 0.4D$ $35.9 	 11.1$ $2\frac{1}{2}, 3$ $35.9 	 1.3D$ $35.9 	 11.5$ $3\frac{1}{2}, 3\frac{3}{4}$                                                                                                                      |

| ø     |    |
|-------|----|
| deg)  |    |
| Ad/se | 0) |
| ad/   | se |

Turns for recovery

### TABLE X.- SPIN AND RECOVERY CHARACTERISTICS OF A RESEARCH MODEL WITH $\ensuremath{\mathsf{WING}}$ g $\ensuremath{\mathsf{INSTALLED}}$

| at botto                                                                                                                  | _                                                                                                               |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           | ments of inertia                                                                                                |                                                                                                                         |                                                                                                 | s of iner                                    | tia                                                                                                                   |
| Decreased                                                                                                                 | Basic                                                                                                           | Increased                                                                                                               | Decreased                                                                                       | Basic                                        | Increased                                                                                                             |
|                                                                                                                           | /   \                                                                                                           |                                                                                                                         |                                                                                                 |                                              | /   \                                                                                                                 |
|                                                                                                                           | (T-42 A                                                                                                         |                                                                                                                         |                                                                                                 | (=                                           |                                                                                                                       |
|                                                                                                                           | Tail A                                                                                                          |                                                                                                                         |                                                                                                 | Tail B                                       |                                                                                                                       |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           |                                                                                                                 | Elevator                                                                                                                | (c)                                                                                             | (c)                                          | (c)                                                                                                                   |
| 43.5 0.5D                                                                                                                 | 51.2 1.2D                                                                                                       | 52.8 1.6D                                                                                                               |                                                                                                 |                                              |                                                                                                                       |
| 1111 20 22 0                                                                                                              | 40.9 10.2                                                                                                       | 70 6 0 11                                                                                                               |                                                                                                 |                                              |                                                                                                                       |
| 44.10 11.0                                                                                                                |                                                                                                                 | 39.6 9.4 Up                                                                                                             |                                                                                                 |                                              |                                                                                                                       |
| 1                                                                                                                         | 11/4, 11/4                                                                                                      | $1\frac{1}{4}$ , $1\frac{1}{4}$                                                                                         |                                                                                                 |                                              |                                                                                                                       |
| 81                                                                                                                        |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
| a <sub>1</sub>                                                                                                            | $a_{1\frac{1}{4}}, a_{1\frac{1}{4}}$                                                                            | al <u>1</u> , a2                                                                                                        |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           |                                                                                                                 |                                                                                                                         | (c)                                                                                             |                                              |                                                                                                                       |
| FF 1 0 711                                                                                                                | 55.7 O.2D                                                                                                       | 60.5 0.50                                                                                                               | 46.2 2.20                                                                                       | 116 5 3                                      | 30 50 0 5 1/2                                                                                                         |
| 55.1 0.70                                                                                                                 | 22.1 0.20                                                                                                       | 60.5 0.50                                                                                                               | 40.2 2.20                                                                                       | 46.5 1.                                      | 1D 52.2 0.4D                                                                                                          |
| 35.9 13.6                                                                                                                 | 36.4 12.1                                                                                                       | 36.4 11.2 Neutral                                                                                                       | 40.4 13.1                                                                                       | 38.6 11                                      | 39.1 10.3                                                                                                             |
|                                                                                                                           | $2\frac{1}{2}$ , $2\frac{1}{2}$                                                                                 |                                                                                                                         |                                                                                                 | -                                            |                                                                                                                       |
| $2\frac{1}{4}$ , $2\frac{1}{4}$                                                                                           | 25, 25                                                                                                          | $2\frac{3}{4}$ , 3                                                                                                      |                                                                                                 | 34, 32                                       | 41/2, 43/4                                                                                                            |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
| 52.9 2.10                                                                                                                 | 54.4 0.40                                                                                                       | 60.5 0.5D                                                                                                               | 47.7 2.70                                                                                       | 45.3 2.0                                     | D 50.0 0.3U                                                                                                           |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 | -                                            |                                                                                                                       |
| 35.9 14.2                                                                                                                 | 36.4 12.5                                                                                                       | 36.4 11.5 Down                                                                                                          | 40.0 13.1                                                                                       | 38.2 12.                                     | 1 38.6 10.8                                                                                                           |
| $2\frac{1}{4}$ , $2\frac{1}{4}$                                                                                           | $2\frac{1}{2}, 2\frac{1}{2}$                                                                                    | b3\frac{1}{4}, 3\frac{1}{4}                                                                                             | 2, 21/4                                                                                         | $3\frac{1}{4}, 3\frac{1}{2}$                 | 5 51                                                                                                                  |
| 4, 4                                                                                                                      | 5, 5                                                                                                            | 24, 24                                                                                                                  | 2, 24                                                                                           | ρ <u>π</u> , ρ <u>δ</u>                      | 5, 5 <del>1</del>                                                                                                     |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           | 45                                                                                                              |                                                                                                                         |                                                                                                 | NACA                                         | مممر                                                                                                                  |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           |                                                                                                                 |                                                                                                                         |                                                                                                 |                                              |                                                                                                                       |
|                                                                                                                           | Tall C                                                                                                          |                                                                                                                         |                                                                                                 |                                              | - 0                                                                                                                   |
|                                                                                                                           | Tail C                                                                                                          |                                                                                                                         |                                                                                                 | Tail D                                       |                                                                                                                       |
| (c)                                                                                                                       | Tail C                                                                                                          | Elevator                                                                                                                |                                                                                                 | Tail D                                       | 1                                                                                                                     |
| (c)                                                                                                                       |                                                                                                                 | Elevator                                                                                                                | 29.9 6.3D                                                                                       |                                              |                                                                                                                       |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D                                                                                                               | 29.9 6.3D                                                                                       | 47.3 5.8                                     | 49.3 1.7D                                                                                                             |
| (c)                                                                                                                       |                                                                                                                 |                                                                                                                         | 29.9 6.3D<br>52.3 12.6                                                                          |                                              | 49.3 1.7D                                                                                                             |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D                                                                                                               |                                                                                                 | 47.3 5.8<br>47.8 10.                         | 49.3 1.7D<br>40.9 9.5                                                                                                 |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D<br>49.6 8.5 Up                                                                                                | 52.3 12.6                                                                                       | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D<br>49.6 8.5                                                                                                   | 52.3 12.6                                                                                       | 47.3 5.8<br>47.8 10.                         | 49.3 1.7D<br>40.9 9.5                                                                                                 |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D<br>49.6 8.5 Up                                                                                                | 52.3 12.6                                                                                       | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| (c)                                                                                                                       |                                                                                                                 | 40.4 3.9D<br>49.6 8.5 Up                                                                                                | 52.3 12.6                                                                                       | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
|                                                                                                                           | (6)                                                                                                             | 40.4 3.9D<br>49.6 8.5 Up                                                                                                | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U                                                                                                                 | 52.3 0.30                                                                                                       | 40.4 3.9D<br>49.6 8.5 Up                                                                                                | 52.3 12.6<br>1  all 2                                                                           | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U<br>37.7 13.4                                                                                                    | 52.3 0.3U<br>37.7 12.2                                                                                          | 40.4 3.9D<br>49.6 8.5 Up<br>1 a <sub>1</sub><br>55.3 1.0D<br>37.2 10.9 Neutral                                          | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U<br>37.7 13.4                                                                                                    | 52.3 0.3U<br>37.7 12.2                                                                                          | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral                                                      | 52.3 12.6<br>1  all 2                                                                           | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U                                                                                                                 | 52.3 0.30                                                                                                       | 40.4 3.9D<br>49.6 8.5 Up<br>1 a <sub>1</sub><br>55.3 1.0D<br>37.2 10.9 Neutral                                          | 52.3 12.6<br>1  all 2                                                                           | 47.3 5.8<br>47.8 10.                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U<br>37.7 13.4                                                                                                    | 52.3 0.3U<br>37.7 12.2                                                                                          | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral                                                      | 52.3 12.6<br>1  all 2  (c)  52.3                                                                | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4<br>3 <sup>1</sup> / <sub>4</sub> , 4                                                               | 52.3 0.3U<br>37.7 12.2<br>bg, b12                                                                               | 40.4 3.9D<br>49.6 8.5 Up  1  a1  55.3 1.0D  37.2 10.9  b d 20, &                                                        | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4                                                                                                    | 52.3 0.3U<br>37.7 12.2                                                                                          | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1  55.3 1.0D  37.2 10.9 Neutral                                                          | 52.3 12.6<br>1  all 2  (c)  52.3                                                                | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4<br>314, 4                                                                                          | 52.3 0.3U<br>37.7 12.2<br>bg, b12                                                                               | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral<br>20, 20                                            | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4<br>3 <sup>1</sup> / <sub>4</sub> , 4<br>51.1 1.9U<br>37.2 14.2                                     | 52.3 0.30<br>37.7 12.2<br>bg, b <sub>12</sub><br>54.4 0.50<br>36.8 12.7                                         | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral<br>20, &                                             | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4<br>314, 4                                                                                          | 52.3 0.3U<br>37.7 12.2<br>bg, b12                                                                               | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral<br>20, 20                                            | 52.3 12.6<br>1                                                                                  | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                 |
| 48.2 1.6U<br>37.7 13.4<br>31/4, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5                                                       | 52.3 0.30<br>37.7 12.2<br>bg, b12<br>54.4 0.50<br>36.8 12.7<br>14½, b1g                                         | 40.4 3.9D<br>49.6 8.5 Up<br>1 a1<br>55.3 1.0D<br>37.2 10.9 Neutral<br>20, 20<br>56.8 1.0D<br>36.8 11.4 Down             | (c)<br>52.3 12.6<br>1                                                                           | 47.3 5.8<br>47.8 10.<br>34<br>a12            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                |
| 48.2 1.6U<br>37.7 13.4<br>31, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5                                                         | 52.3 0.3U<br>37.7 12.2<br>bg, b12<br>54.4 0.5U<br>36.8 12.7<br>14½, b1g                                         | 40.4 3.9D<br>49.6 8.5 Up<br>1 a <sub>1</sub> 55.3 1.0D  37.2 10.9 Neutral  b d 20, 20  56.8 1.0D  36.8 11.4 Down        | 52.3 12.6  1  a <sub>1</sub> /2  (c)  52.3  (c)  33.3 1.0D  52.3 15.0  Model values             | 47.3 5.8<br>47.8 10.<br>34<br>81<br>2<br>(e) | 49.3 1.7D<br>40.9 9.5<br>1½, 1½<br>a <sub>2</sub> , a <sub>2</sub><br>32.1 5.5D<br>38.6 10.9<br>2¼, 2½<br>(c)<br>5.7D |
| 48.2 1.6U<br>37.7 13.4<br>3\frac{1}{4}, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5<br>ARecovery by<br>Pylisual obsectine spin is | 52.3 0.3U<br>37.7 12.2<br>bg, b12<br>54.4 0.5U<br>36.8 12.7<br>14\frac{1}{2}, b1g<br>reversal of bo<br>restion. | 40.4 3.9D<br>49.6 8.5 Up  1  55.3 1.0D  37.2 10.9 Neutral  20,   56.8 1.0D  36.8 11.4 Down  bd  th rudder and elevator. | 52.3 12.6  1  a <sub>1</sub> 2  (c)  52.3  (c)  33.3 1.0D  52.3 15.0  Model values U inner wing | 47.3 5.8 47.8 10. 34 412 (c)                 | 49.3 1.7D<br>40.9 9.5<br>1½, 1½<br>a2, a2<br>32.1 5.5D<br>38.6 10.9<br>2¼, 2½<br>(c) 5.7D                             |
| 48.2 1.6U<br>37.7 13.4<br>3\frac{1}{4}, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5<br>ARecovery by<br>Pylisual obsectine spin is | 52.3 0.3U<br>37.7 12.2<br>bg, b12<br>54.4 0.5U<br>36.8 12.7<br>14½, b1g                                         | 40.4 3.9D<br>49.6 8.5 Up  1  55.3 1.0D  37.2 10.9 Neutral  20,   56.8 1.0D  36.8 11.4 Down  bd  th rudder and elevator. | 52.3 12.6  1  a <sub>1</sub> /2  (c)  52.3  (c)  33.3 1.0D  52.3 15.0  Model values             | 47.3 5.8 47.8 10. 34 a1 2 (c) (c)            | 49.3 1.7D<br>40.9 9.5<br>1½, 1½<br>a <sub>2</sub> , a <sub>2</sub><br>32.1 5.5D<br>38.6 10.9<br>2¼, 2½<br>(c)<br>5.7D |
| 48.2 1.6U<br>37.7 13.4<br>3\frac{1}{4}, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5<br>ARecovery by<br>Pylisual obsectine spin is | 52.3 0.3U<br>37.7 12.2<br>bg, b12<br>54.4 0.5U<br>36.8 12.7<br>14\frac{1}{2}, b1g<br>reversal of bo<br>restion. | 40.4 3.9D<br>49.6 8.5 Up  1  55.3 1.0D  37.2 10.9 Neutral  20,   56.8 1.0D  36.8 11.4 Down  bd  th rudder and elevator. | 52.3 12.6  1  a <sub>1</sub> 2  (c)  52.3  (c)  33.3 1.0D  52.3 15.0  Model values U inner wing | 47.3 5.8 47.8 10. 34 a1 2 (c) (c)            | 49.3 1.7D<br>40.9 9.5<br>1½, 1½<br>a2, a2<br>32.1 5.5D<br>38.6 10.9<br>2¼, 2½<br>(c) 5.7D                             |
| 48.2 1.6U<br>37.7 13.4<br>3\frac{1}{4}, 4<br>51.1 1.9U<br>37.2 14.2<br>5, 5<br>ARecovery by<br>Pylisual obsectine spin is | 52.3 0.3U<br>37.7 12.2<br>bg, b12<br>54.4 0.5U<br>36.8 12.7<br>14\frac{1}{2}, b1g<br>reversal of bo<br>restion. | 40.4 3.9D<br>49.6 8.5 Up  1  55.3 1.0D  37.2 10.9 Neutral  20,   56.8 1.0D  36.8 11.4 Down  bd  th rudder and elevator. | 52.3 12.6  1  a <sub>1</sub> 2  (c)  52.3  (c)  33.3 1.0D  52.3 15.0  Model values U inner wing | 47.3 5.8 47.8 10. 34 a1 2 (c)                | 49.3 1.7D<br>40.9 9.5<br>1½, 1½<br>a <sub>2</sub> , a <sub>2</sub><br>32.1 5.5D<br>38.6 10.9<br>2¼, 2½<br>(c)<br>5.7D |

TABLE XI.- SPIN CHARACTERISTICS OF A RESEARCH MODEL WITH ALL CONTROLS NEUTRAL

Turns for recovery measured when rudder is moved to full against the spin and the elevator is moved to full down; key to table given at bottom of page

|       | Moments of inertia                                                                                 | Moments of inertia                                                                                                                        | Moments of inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|-------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       | Decreased Basic Incr                                                                               | eased Decreased Basic Increased                                                                                                           | Decreased Basic Increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|       | Tail A                                                                                             | Tail B                                                                                                                                    | Tall 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ail D |
| ing 1 | No apin 39.6 12.1 35.6 12.1 35.6                                                                   | 38.6 13.1 38.6 11.8 37.7 10.4                                                                                                             | 50.6 0.2D 55.0 1.3D 61.5 0.6D 35.0 12.1 8, 12 a co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d)   |
| ing 2 | No spin 35.1 1.50 56.8 35.4 73, 4 73,                                                              |                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a)   |
| ing 3 | No spin No spin No s                                                                               | spin No spin No spin No spin                                                                                                              | No spin No spin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a)   |
| ng 4  | No spin No spin No s                                                                               | No spin No spin No spin                                                                                                                   | No apin No apin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (đ.)  |
| g 5   | No spin No spin 35.2 l 2\frac{1}{2},                                                               | 0.6 No spin 39.1 11.6 37.7 10.4                                                                                                           | No spin 36.4 12.0 35.9 11.0 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d.)  |
| ag 6  | No spin No spin No s                                                                               | pin No spin 35.6 12.1 40.6 10.5 14.7 3. 42                                                                                                | 45.8 7.8D 44.7 8.8D 46.1 6.7D 39.1 13.4 40.5 12.1 40.5 10.5 3, 12 a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d.)  |
| ng 7  | 50.6 0.4U 52.2 1  No spin 38.2 12.2 38.6 1  3\frac{1}{4}, 3\frac{1}{4} 3\frac{1}{4},               | 0.8 35.9 13.1 37.2 11.8 37.7 10.6                                                                                                         | 54.0 0.10 58.0 0.7D 62.7 0.9D 35.9 13.7 35.5 12.8 a \infty a \inft | (d)   |
| g 8   | No spin No spin No s                                                                               | pin No spin $\begin{vmatrix} 45.5 & 2.00 & 49.9 & 0.40 \\ 39.1 & 11.2 & 40.0 & 10.4 \\ 2\frac{3}{4}, & 3 & 6, 6\frac{1}{2} \end{vmatrix}$ | No spin 53.9 0.1D 54.7 0.8D 37.7 12.3 37.3 11.1 6, 8 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)   |
|       | a co means model would not not the types of spin.  Givery steep spin.  No spin for any moment-of-i | NACA MOD U                                                                                                                                | cel values (deg) (deg) (deg) inner wing down (fps) (rad/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |

### TABLE XII. - EFFECT OF WEIGHT VARIATION AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS; WING 1 INSTALLED

Data for weight in at center of gravity obtained from current tests with moments of inertia decreased; data for weight <u>out</u> at center of gravity obtained from reference 5 with relative density decreased. Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity Weight at center of gravity Weight at center of gravity In In Out Out In Tail B Tail A Tail C 49.5 2.6D 44.7 3.7D 44.4 50.2 1.8D 42.3 6.3D 5.30 45.2 4.8D Elevator Elevator 40.9 11.5 32.8 10.6 43.2 10.7 37.7 9.9 42.3 10.8 36.8 9.7 up up 24, 32 궠 2 2 2 2 2 12 1章, 1章 a<sub>1,</sub> a<sub>1</sub> 1,

| 53.2 0.60                                                                  | 52.6 1.0D                                                                                              | 49.7 0.3U          | 47.1 0.5D                  | 52.8 0.30     | 55.3 1.5D                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------|----------------------------|---------------|-------------------------------------------|
| 36.4 13.6<br>2 <sup>1</sup> / <sub>4</sub> , 2 <sup>1</sup> / <sub>4</sub> | $ \begin{array}{c c} 29.7 & 12.3 \\ \hline 1\frac{1}{2}, & 1\frac{3}{4} \end{array} $ Elevator neutral | 38.2 13.1<br>3½, 4 | 32.7 12.2 Elevator neutral | 35.0 13.1 c ~ | 28.7 12.7 $5\frac{1}{2}$ , $6\frac{1}{2}$ |

NACA

| 53.1 1.30 | 52.8 0.1D               | 50.3 0.70  | 44.5 1.40               | 53.0 1.70 | 56.4 0.8D |
|-----------|-------------------------|------------|-------------------------|-----------|-----------|
| 35.9 14.0 | 29.2 12.6 Elevator down | 36.8 13.1  | 33.2 13.1 Elevator down | 35.0 13.7 | 28.2 13.4 |
| 24, 3     | b <sub>1</sub> 1/2, 1/4 | 31/4, 31/4 | 1                       | b b 7, 9  | 6         |

ARecovery by reversal of both rudder and elevator. Model values by isual estimate. U inner win

c means model did not recover.

| ec<br>(deg) | ø<br>(deg) |
|-------------|------------|
| (fps)       | (rad/sec)  |
| Turns       |            |

# TABLE XIII. - EFFECT OF WEIGHT VARIATION AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS; WING 2 INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity

Weight at center of gravity Weight at center of gravity

In Out In Out



|                  |                      |        | 1                  | ,              |
|------------------|----------------------|--------|--------------------|----------------|
| 19.2             | 2.7D                 | 49.3   | 2.90               |                |
| 36.8             | 11.9                 | 30.7   | 10.8               | Elevator<br>up |
| 2,               | 21/4                 | 1      | 14                 |                |
| a <sub>1</sub> 3 | , a <sub>1</sub> 3/4 | a 11/2 | , a <sub>1</sub> 3 |                |

| Tail  | В   |          |
|-------|-----|----------|
| (p) { | (c) |          |
|       |     | Elevator |
|       |     |          |

| in   |           | out           |              |
|------|-----------|---------------|--------------|
|      | -Tail     | (e)           |              |
| 49.8 | 2.5D      | 73.3          | 3.0D<br>4.1D |
| 38.6 | 11.5      | 23.3          | 16.0         |
| d oo | , oo      | df af         | 0, 25        |
| af 1 | 8 3<br>2# | af11<br>a11/2 |              |

| 54.8 | 1.4D |    |      |                     |
|------|------|----|------|---------------------|
| 33.6 | 14.0 | No | spin | Elevator<br>neutral |
| 3,   | 3    |    |      |                     |

| 52.4 | 0.4D |    |      |          |
|------|------|----|------|----------|
| 34.1 | 13.4 | No | spin | Elevator |
| 41/4 | , 43 |    |      |          |

|           | (e)                    |
|-----------|------------------------|
| 50.5 2.3D | 71.5 2.9D<br>54.1 2.0D |
| 35.4 13.4 | 22.4 16.2<br>27.8 12.4 |
| f o d oo  | df 42, 5               |



| 51.6 | 0             |    |      |                  |
|------|---------------|----|------|------------------|
| 33.2 | 14.2          | No | spin | Elevator<br>down |
| 21/2 | $\frac{1}{2}$ |    |      |                  |

| 51.0                | 0.8D |    |      |                  |
|---------------------|------|----|------|------------------|
| 34.1                | 13.4 | No | spin | Elevator<br>down |
| e <sub>3</sub> 1/2, | 4    |    |      |                  |

| 52.3 | 0.7D |    |      |
|------|------|----|------|
| 34.6 | 13.8 | No | spin |

aRecovery by reversal of both rudder and elevator. The spin is steep and oscillatory. Goes into a spiral glide.

d on means model would not recovery.

eTwo types of spin. fvisual observation.

| Mo | del val | Lues |      |  |
|----|---------|------|------|--|
| U  | inner   | wing | up   |  |
| D  | inner   | wing | down |  |

|            | Ø<br>(deg) |
|------------|------------|
| V<br>(fps) | (rps)      |
| Turns      | for        |

recovery

# TABLE XIV. - EFFECT OF WEIGHT VARIATION AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS; WING 3 INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity

Weight at center of gravity

Weight at center of gravity



|         | 36.9 1.70                                     |                     |         |        |                     | 34.7 1.70 | 37.0 0.30                                         |
|---------|-----------------------------------------------|---------------------|---------|--------|---------------------|-----------|---------------------------------------------------|
| No spin | 38.8 12.6<br>1, 1 <sup>1</sup> / <sub>4</sub> | Elevator<br>neutral | No spin | No spi | Elevator<br>neutral | 47.8 13.6 | $  37.8   12.3 $ $  1\frac{1}{2}, 1\frac{1}{2}  $ |

NACA

|    |      |    |      |                  |    |      |    |      |                  | 38.5 | 4.1U | 38. | 2 3.60 |
|----|------|----|------|------------------|----|------|----|------|------------------|------|------|-----|--------|
| No | spin | No | spin | Elevator<br>down | No | spin | No | spin | Elevator<br>down | 44.6 | 14.3 | 36. | 8 13.1 |
|    |      |    |      |                  |    |      |    |      |                  | 1    |      | 1,  | 14     |

aVisual estimate.

Recovery by both rudder and elevator reversal. The spin is steep and oscillatory.

|       | ø<br>(deg) |
|-------|------------|
| (fps) | (rps)      |
| Turns |            |

# TABLE XV.- EFFECT OF WEIGHT VARIATIONS AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS; WING $\psi$ INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity

Weight at center of gravity

Weight at center of gravity



|         | 38.4 0.60           |                     |         |         |                     | 29.6 12.10 | 36.2 0.6U                               |
|---------|---------------------|---------------------|---------|---------|---------------------|------------|-----------------------------------------|
| No spin | 38.6 12.4<br>b1, b1 | Elevator<br>neutral | No spin | No spin | Elevator<br>neutral | 56.8 14.0  | 38.3 12.3<br>1\frac{1}{4}, 1\frac{1}{4} |

NACA

|    |      |    |      |                  |    |      |    |      |                  |    |      | (a)  |      |
|----|------|----|------|------------------|----|------|----|------|------------------|----|------|------|------|
| No | spin | No | spin | Elevator<br>down | No | spin | No | spin | Elevator<br>down | No | spin | 37.8 | 13.1 |
|    |      |    |      |                  |    |      |    |      |                  |    |      |      |      |

<sup>a</sup>Recovery by reversal of both rudder and elevator. bVisual observation.

The spin is steep and oscillatory.

dData not obtained.

| (deg) |
|-------|
| (rps) |
| for   |
|       |

TABLE XVI.- EFFECT OF WEIGHT VARIATIONS AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS, WING 5 INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity Weight at center of gravity Weight at center of gravity Out In Out In Out In Tail B Tail A Tail C (c) (c) 36.5 1.90 31.5 2.8D 46.5 0.9D 41.0 0.4D Elevator Elevator 47.8 44.1 10.1 10.5 41.4 11.2 10.6 39.1 up <u>1</u>, 1 1,1片 ab<sub>1</sub> ab<sub>1</sub> a<sub>1</sub>,





| (4)                                                      | (0)                            |
|----------------------------------------------------------|--------------------------------|
| 53.0 3.00<br>45.9 3.10<br>35.9 3.4<br>40.4 13.6<br>3, 3½ | 34.8 3.10<br>39.6 13.7<br>1, 1 |

aRecovery by reversal of both rudder and elevator. by isual observation.

<sup>c</sup>The spin is steep and oscillatory.

d<sub>Two</sub> types of spin.

| ∞<br>(deg) | ø (deg) |
|------------|---------|
| (fps)      | (rps)   |
| Turns      |         |

## TABLE XVII. - EFFECT OF WEIGHT VARIATIONS AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS, WING 6 INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity Weight at center of gravity Weight at center of gravity In Out In Out In Out Tail A Tail B Tail C (c) (c) (c) (c) 45.6 5.3D 42.9 8.0D Elevator up Elevator 41.4 12.1 36.3 10.9 a<sub>1</sub>, 1 1 4 냐, 追 ab<sub>3</sub> b34, 1, 1

|           |                                 | 1                   |           | (c)       | 1                   |           |                              |
|-----------|---------------------------------|---------------------|-----------|-----------|---------------------|-----------|------------------------------|
| 49.4 1.8D | 47.0 3.6D                       |                     | 45.1 6.4D |           |                     | 44.2 6.1D | 46.5 4.9D                    |
| 38.2 13.8 | 31.4 12.8                       | Elevator<br>neutral | 38.6 13.3 | 34.1 12.6 | Elevator<br>neutral | 39.1 13.6 | 35.4 12.1                    |
| 14        | $1\frac{1}{2}$ , $1\frac{1}{2}$ |                     | 2, 2      | 2, 21/2   |                     | 4, 51/2   | $2\frac{1}{2}, 2\frac{1}{2}$ |
|           |                                 |                     |           |           | J                   |           |                              |

NACA

| 49.7 2.1D                       | 45.0 3.4D                       |          | 44.6 3.0D | 41.4 6.2D |          | 46.0 5.8D | 46.5 5.8D                       |
|---------------------------------|---------------------------------|----------|-----------|-----------|----------|-----------|---------------------------------|
| 37.7 14.4                       | 32.4 13.3                       | Elevator | 37.7 13.9 | 33.2 13.0 | Elevator | 39.1 14.3 | 33.3 13.4                       |
| $1\frac{1}{2}$ , $1\frac{1}{2}$ | $1\frac{1}{2}$ , $1\frac{1}{2}$ |          | 1 2, 2 4  | 1, 1      |          | 2, 24     | $1\frac{1}{2}$ , $3\frac{1}{2}$ |

avisual observation.

bRecovery by reversal of both rudder and elevator.

The spin is steep and oscillatory.

| ∝<br>(deg)      | (deg) |
|-----------------|-------|
| V<br>(fps)      | (rps) |
| Turns<br>recove |       |

TABLE XVIII.- EFFECT OF WEIGHT VARIATIONS AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS, WING 7 INSTALLED

Spin data presented for ailerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity

Weight at center of gravity

Weight at center of gravity



| 59.3 0.1D<br>34.1 14.0<br>3\frac{1}{2}, 3\frac{3}{4} | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Elevator<br>neutral | 54.6 1.30 35.4 12.8 $6\frac{1}{2}$ , $7\frac{3}{4}$ | Eleva <b>tor</b><br>neutral | 56.0 0.2D<br>35.4 13.6 | 58.7 0.6D<br>28.7 13.3<br>a <sub>13</sub> , a <sub>15</sub> |
|------------------------------------------------------|--------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------|------------------------|-------------------------------------------------------------|
|                                                      |                                                        |                     |                                                     |                             | NA                     | CA                                                          |

| 58.2 O.40 | 53.1 1.40                    |                  | 53.6             | 1.30 | 46.9  | 2.60 |          | 57.8     | 0.3D | 57.1     | 0.40 |
|-----------|------------------------------|------------------|------------------|------|-------|------|----------|----------|------|----------|------|
| 34.1 14.3 | 28.7 13.0                    | Elevator<br>down | 35.0             | 13.2 | 31.8  | 13.0 | Elevator | 35.0     | 14.3 | 28.7     | 13.7 |
| 24, 3     | $2\frac{1}{2}, 2\frac{3}{4}$ |                  | 5 <del>1</del> , | 61/2 | 21/4, | 21/2 |          | <b>a</b> | 0    | a<br>11, | 112  |

AVisual observation.

The spin is steep and oscillatory.

| ∝<br>(deg) | (deg) |
|------------|-------|
| V<br>(fps) | (rps) |
| Turns      |       |

bRecovery by reversal of both rudder and elevator.

# TABLE XIX. - EFFECT OF WEIGHT VARIATIONS AT CENTER OF GRAVITY OF A RESEARCH MODEL UPON THE SPIN AND RECOVERY CHARACTERISTICS, WING 8 INSTALLED

Spin data presented for allerons neutral, rudder with the spin; turns for recovery measured when rudder alone is reversed fully and rapidly, except as noted; key to table given at bottom of page

Weight at center of gravity

Weight at center of gravity Weight at center of gravity



| 55.1 0.70                                             | 48.7 1.30                  | (b)<br>46.2 2.2U | (b)                 | 48.2 1.6U                                      | 50.7 0.20                                                                  |
|-------------------------------------------------------|----------------------------|------------------|---------------------|------------------------------------------------|----------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 30.5 12.3 Elevator neutral | 40.4 13.1        | Elevator<br>neutral | 37.7 13.4<br>3 <sup>1</sup> / <sub>4</sub> , 4 | 31.0 12.5<br>3 <sup>1</sup> / <sub>4</sub> , 3 <sup>3</sup> / <sub>4</sub> |
|                                                       |                            |                  |                     | NAC                                            | A                                                                          |

| 52.9 2.10  | 45.1 2.0                   | 47.7 2.70 |              | 51.1 1.90 | 48.9 1.9U         |
|------------|----------------------------|-----------|--------------|-----------|-------------------|
| 35.9 14.2  | 31.8 13.0 Elevator down    | 40.0 13.1 | No spin down | 37.2 14.2 | 31.0 12.9         |
| 21/4, 21/4 | 1\frac{3}{4}, 1\frac{3}{4} | 2, 24     |              | 5, 5      | $3, 3\frac{1}{4}$ |

aRecovery by reversal of both rudder and elevator. The spin is steep and oscillatory.

| Mo | del va | lues |      |
|----|--------|------|------|
| U  | inner  | wing | up   |
| D  | inner  | wing | down |

| ∝<br>(deg) | (deg)            |  |  |
|------------|------------------|--|--|
| V<br>(fps) | (rps)            |  |  |
|            | urns for ecovery |  |  |





Figure 1.- A model spinning in the Langley 20-foot free-spinning tunnel.







Figure 2.- Low-wing monoplane model with detachable tail and wing.





Figure 3.- Low-wing monoplane model.







Figure 4.- Diagrams showing plan forms and frontal views of wing models.



Wings 1 and 2 Wing 5 Wing 7

Wings 3 and 4  $\,$ 

Wing 6

Wing 8

NACA

Figure 5.- Wing models used in tests.





Figure 6.- Interchangeable wings of low-wing monoplane model.







Figure 7.- Tails used on low-wing monoplane.





Figure 8.- Interchangeable tails of low-wing monoplane model.