

TECNICATURA SUPERIOR EN Innovación con Tecnologías 4.0

Desarrollo Proyecto Práctica Profesionalizante I

Enunciado

En el marco de la materia "Práctica Profesionalizante I" de la carrera de Técnico Superior de Innovación en Tecnologías 4.0, se llevarán a cabo una serie de entregas iniciales que tienen como objetivo guiar el desarrollo estructurado de un proyecto cuatrimestral centrado en tecnologías IoT. Estas entregas permitirán a los estudiantes definir y planificar su proyecto, revisar conceptos básicos, formar equipos de trabajo, y realizar un análisis detallado de los requerimientos técnicos y funcionales.

Estas pautas de entrega permiten que los estudiantes avancen de manera estructurada en los primeros pasos de su proyecto, asegurando que cada fase se complete con la profundidad y precisión necesarias.

Además, el proceso fomenta habilidades clave como la planificación, la organización del trabajo en equipo, y la aplicación de conceptos teóricos a problemas reales.

Cada entregable se diseñó para construir progresivamente hacia la implementación exitosa del proyecto, preparando a los estudiantes para los desafíos tecnológicos y organizativos que enfrentarán en el desarrollo de soluciones innovadoras en Tecnologías 4.0.

Fase de Prueba y Validación

Para la fase de **"Pruebas y Validación"** en la materia "Práctica Profesionalizante I" de la carrera de Técnico Superior de Innovación en Tecnologías 4.0, es crucial implementar actividades y estrategias de enseñanza que aseguren que los estudiantes no sólo comprendan cómo realizar pruebas, sino que también sepan cómo interpretar los resultados y optimizar el sistema en función de ellos.

1. Pruebas Unitarias y de Integración

Realización de pruebas en cada uno de los componentes del sistema (hardware, software, comunicación) para asegurar su correcto funcionamiento

Actividad: Laboratorio de Pruebas Unitarias

Descripción: Se realizarán pruebas unitarias en cada componente del sistema (sensores, actuadores, microcontroladores, y software) para asegurar que funcionan correctamente de manera independiente. Se documentan los resultados de las pruebas y se realizan ajustes según sea necesario.

Estrategia: Aprendizaje Basado en la Práctica

Se fomenta el aprendizaje práctico en donde se enfrentan a pruebas técnicas reales. Esta actividad refuerza la importancia de probar cada componente de manera aislada antes de integrarlo al sistema completo.

• Competencias Clave Desarrolladas

Resolución de Problemas, Aprendizaje Continuo, Análisis Sistémico

Pruebas de integración entre dispositivos loT y la plataforma en la nube

Actividad: Simulación de Pruebas de Integración

Descripción: Se integran los diferentes componentes del sistema loT y se ejecutan pruebas de integración para verificar que todos los elementos del sistema (dispositivos IoT y la plataforma en la nube) se comunican correctamente. Se utilizan herramientas de monitoreo para identificar posibles problemas en la integración.

Estrategia: Enseñanza a través de la Simulación

Se simulan escenarios de pruebas de integración, en donde se debe asegurar la correcta interacción entre los dispositivos IoT y la nube.

Uso de herramientas de simulación y monitoreo para identificar y resolver problemas de integración.

Competencias Clave Desarrolladas

Integración de Sistemas, Redes y Comunicación, Pensamiento Crítico

2. Optimización y Solución de Problemas

Identificación y resolución de problemas técnicos surgidos durante las pruebas

Actividad: Sesiones de Debugging y Solución de Problemas

Descripción: Después de realizar las pruebas, se identifican y documentan problemas técnicos en el sistema.

Se organizan sesiones de debugging donde se aplican técnicas para resolver estos problemas, optimizando tanto el hardware como el software involucrado.

Estrategia: Método de Aprendizaje por Resolución de Problemas (PBL)

Se resuelven problemas técnicos reales, mejorando su capacidad de identificar fallos y aplicar soluciones eficaces. Se promueve el pensamiento crítico y la colaboración para encontrar soluciones.

Competencias Clave Desarrolladas

Resolución de Problemas, Adaptabilidad, Innovación

Optimización del sistema para mejorar el rendimiento y la eficiencia

Actividad: Workshop de Optimización de Sistemas IoT

Descripción: Se analiza el rendimiento actual del sistema y se proponen estrategias para optimizar su funcionamiento.

Esto puede incluir la optimización del consumo energético, mejora de la velocidad de comunicación, y refinamiento del procesamiento de datos en la nube.

Estrategia: Enseñanza Basada en la Optimización Continua

Los estudiantes aprenden a refinar sus soluciones, aplicando conocimientos de eficiencia energética y optimización de software. Se les anima a buscar mejoras constantes, reflejando la realidad del desarrollo tecnológico.

Competencias Clave Desarrolladas

Innovación, Análisis de Datos, Gestión de Proyectos

3. Pruebas de Seguridad

Evaluación de la seguridad del sistema IoT, incluyendo pruebas de autenticación, cifrado de datos y protección contra ataques

• Actividad: Simulacro de Pruebas de Seguridad

Descripción: Se "despliegan" las estrategias de seguridad y se realizan "pruebas" de seguridad en su sistema IoT, evaluando la efectividad de las medidas de seguridad implementadas.

Esto incluye la validación de procesos de autenticación, cifrado de datos, y protección contra ataques comunes como DDoS o ataques de intermediarios (MITM).

Estrategia: Aprendizaje por Medio de Simulaciones y Evaluaciones Prácticas

Se simulan ataques y se evalúa la respuesta del sistema, proporcionando una experiencia realista en la defensa de sistemas IoT.

Se promueve el pensamiento crítico y la capacidad de respuesta ante vulnerabilidades de seguridad.

Competencias Clave Desarrolladas

Seguridad en IoT, Pensamiento Crítico, Adaptabilidad

Resumen de Competencias Clave Desarrolladas en Esta Fase

- Técnicas: Programación y Desarrollo de Software, Seguridad en IoT, Análisis de Datos
- Habilidades: Resolución de Problemas, Innovación, Pensamiento Crítico, Gestión de Proyectos
- Capacidades: Integración de Sistemas, Análisis Sistémico, Adaptabilidad, Aprendizaje Continuo

Formato del Trabajo

• Portada:

- > Título del trabajo.
- > Nombre del estudiante.
- > Asignatura y profesor.
- > Fecha de entrega.

Índice:

> Enumeración de secciones y subsecciones con número de página.

• Anexos (si es necesario):

- ➤ Diagramas.
- Documentación adicional.

Entrega y Evaluación

- Fecha de entrega: hasta el día 10 de Octubre a las 23:59 hs.
- Formato de entrega: Documento PDF y presentación oral en videos (si aplica).
- Criterios de evaluación:
 - > Relevancia y claridad de la problemática presentada.
 - > Coherencia en la justificación del proyecto.
 - > Definición clara de los objetivos del proyecto.
 - Claridad en la asignación y justificación de roles.
 - > Coherencia en la elección de la metodología de trabajo.
 - > Eficiencia y viabilidad del plan de trabajo en equipo.

Este trabajo práctico busca que los estudiantes desarrollen habilidades técnicas y analíticas en el campo del IoT, aplicando conocimientos teóricos a una situación real y evaluando la efectividad y las implicaciones de las tecnologías utilizadas.

