MTH 309Y

Recall:

1) If A is an $m \times n$ matrix then the function

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^m$$

defined by $T_A(v) = Av$ is called the matrix transformation associated to A.

2) A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

(ii)
$$T(u + v) = T(u) + T(v)$$

(ii)
$$T(cv) = cT(v)$$

3) Every matrix transformation is a linear transformation.

4) Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation:

$$T(\mathbf{v}) = A\mathbf{v}$$

where

$$A = [T(e_1) T(e_2) \dots T(e_n)]$$

The matrix A is called the standard matrix of T.

Composition of linear transformations

Question:

Is there a matrix C such that
$$SoR(v) = Cv$$
 (or equivalently: $Cv = B(Av)$)?

Theorem

If $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ are linear transformation then the composition

$$T \circ S \colon \mathbb{R}^n \to \mathbb{R}^k$$

is also a linear transformation.

Proof: We need to check

1)
$$T \circ S(u+v) = T(S(u+v)) = T(S(u) + S(v))$$

Since S is linear

$$= T(S(u)) + T(S(v))$$

Since T is linear

$$= T \circ S(u) + T \circ S(v)$$

2) Similar

Upshot. The function $T \circ S$ is represented by some matrix C:

$$T \circ S(\mathbf{v}) = C\mathbf{v}$$

Question. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations, and let

- B is the standard matrix of S
- A is the standard matrix of T

What if the standard matrix of $T \circ S \colon \mathbb{R}^n \to \mathbb{R}^k$?

We have:

$$C = \begin{bmatrix} ToS(e_1) & ToS(e_2) & ... & ToS(e_n) \end{bmatrix}$$

$$= \begin{bmatrix} T(S(e_1)) & T(S(e_2)) & ... & T(S(e_n)) \end{bmatrix}$$

$$= \begin{bmatrix} A(Be_1) & A(Be_2) & ... & A(Be_n) \end{bmatrix}$$

We get:

Where Vi, V2,..., Vn - columns of B.

Definition

Let

- A be an $k \times m$ matrix
- $B = [v_1 \ v_2 \ \dots \ v_n]$ be an $m \times n$ matrix

Then $A \cdot B$ is an $k \times n$ matrix given by

$$A \cdot B = \begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix}$$

Note: If
$$S: \mathbb{R}^n \to \mathbb{R}^m$$
, $T: \mathbb{R}^m \to \mathbb{R}^n$ are linear transformations $B =$ the standard matrix of S $A =$ the standard matrix of T then AB is the standard matrix of $T \circ S(v) = (AB)v$

Note. The product $A \cdot B$ is defined only if

(number of columns of A) = (number of rows of B)

Example.