

Expectations

- What will you learn at the end of this class?
 - Basic concepts of Networks, Graphs, and Social Network Analysis (SNA)
 - 2. Systems/Applications that make use of network visualizations
 - 3. Recent Research on Network Visualization
 - 4. How to use a Network Visualization and Analysis tool (Gephi) ~ in class tutorial
 - 5. Bonus: Where do I find data sets to do more cool visualizations?

9/9/19 @denisparra

1. Basic Concepts and Definitions

We live in a connected world

- ... and we need visualization models to represent networks such as:
 - Online Social networks: Facebook, Twitter ~ people connected online
 - Information networks: WWW ~ web pages connected through hyperlinks
 - Computer networks: The internet ~ computers and routers connected through wired/wireless connections
- What is a network? (Easley and Kleinberg, 2011) "a network is any collection of objects in which some pairs of these objects are connected by links".

9/9/19

A bit of history: Graph models

 Around 1735, the mathematician Venn Euler set the foundation for graph theory by creating a model to represent the problem of the "7 bridges of Königsberg"

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg and "Linked" by A-L. Barabasi

A formal definition of Graph

Based on (Easley and Kleinberg, 2011): A
graph is a way of specifying relationships
among a collection of items. A graph
consists of a set of objects, called nodes,
with certain pairs of these objects
connected by links called edges.

The Historic Development of Network Visualization

 The following slides are based on the work of Pfeffer and Freeman (2015)

Pfeffer, Juergen & Freeman, Lin. Methods of Social Network Visualization. Encyclopedia of Complexity and Systems Science, 2nd Edition, Springer Reference.

- They categorize this historic development on three categories:
 - 1. Nodes, Links, Shape, Size
 - 2. Substance-Based Layout
 - 3. Two-Mode Networks

9/9/19

Graphs as Models of Networks

- Based on (Easley and Kleinberg, 2011): "Graphs are useful because they serve as mathematical models of network structures."
- But keep in mind: Graphs are only one way to represent networks (though the most popular)

The Historic Development of Network Visualization

 The following slides are based on the work of Pfeffer and Freeman (2015)

Pfeffer, Juergen & Freeman, Lin. Methods of Social Network Visualization. Encyclopedia of Complexity and Systems Science, 2nd Edition, Springer Reference.

- They categorize this historic development on three categories:
 - 1. Nodes, Links, Shape, Size
 - 2. Substance-Based Layout
 - 3. Two-Mode Networks

9/9/19

Overall View of the Visualizations

Reference:

Pfeffer, Juergen &
Freeman, Lin
(forthcoming). Methods
of Social Network
Visualization.
Encyclopedia of
Complexity and Systems
Science, 2nd Edition,
Springer Reference.

http://www.pfeffer.at/da ta/visposter/

1. Nodes, Links, Shape, Size (1/2)

Macfarlane, 1883

Analysis of Relationships of Consanguinity and Affinity

ORDER II. ORDER IV. ORDER V. 20 21

British marriage prohibition. Males (+), females (o). Earlier generations are placed higher on the page. The lowest point is the prohibited offspring.

Bernfeld, 1922

Vom Gemeinschaftsleben der Jugend

A circle of girl friends. Four figures show different relations. Line thickness represents intensity.

1. Nodes, Links, Shape, Size (2/2)

Moreno, 1934

Who Shall Survive

Class structure, 5th grade. Girls (circles) and boys (triangles). Links show two best friends. Top line defines group border.

Lundberg & Steele, 1938

Social Attraction-Patterns in a Village

Most important friendships in the village. Number is socio-economic status. M31 = "Lady Bountiful".

2. Substance-Based Layout (1/2)

Roethlisberger et al., 1939

Management and the Worker

Observed friendship ties and cliques in a factory. Position reflects the location of their workspace.

Northway, 1940

A Method for Depicting Social Relationships Obtained by Sociometric Testing

Targeted diagram showing scores of acceptability and predominating choices in a social group.

2. Substance-Based Layout (2/2)

Davis et al., 1941

Deep South: A Social Anthropological Study of Caste and Class

Subgroups and their overlaps. Arrangement in terms of both social class and age reveals groups.

Whyte, 1943 Street Corner Society

Corner boys and lines of influence.

Positions of boxes indicate relative status.

Sampson, 1968

A Novitiate in a Period of Change

Influence. Position of novices on y-axis shows sum of received positve (solid) and negative (dashed) choices.

3. Two-mode Networks

Hobson, 1884

The Evolution of Modern Capitalism; A Study of Machine Production

Davis et al., 1941

Deep South: A Social Anthropological Study of Caste and Class

Names of Participants of Group I	CODE NUMBERS AND DATES OF SOCIAL EVENTS REPORTED IN Old City Herald													
	(1) 6/27	(2) 3/2	(3) 4/12	(4) 9/26	(5) 2/25	(6) 5/19	(7) 3/15	(8) 9/16	(9) 4/8	(10) 6/10	(11) 2/23	(12) 4/7	(13) 11/21	(14) 8/3
1. Mrs. Evelyn Jefferson	×	×	×	×	×	×		×	×					
2. Ms. Laura Mandeville		×	×		×	×	×	×						
3. Ms. Theresa Anderson		×	×	×	×	×	×	×	×					
4. Ms. Brenda Rogers			×	×	×	×	×	×						
5. Ms. Charlotte McDowd				×	×		×							
6. Ms. Frances Anderson			×	l	×	×		×	l					l
7. Ms. Eleanor Nye					×	×	×	×						
8. Ms. Pearl Oglethorpe						×		×	×			1,000 (11,000)		
9. Ms. Ruth DeSand							×	×	×					
0. Ms. Verne Sanderson								×	×					
1. Ms. Myra Liddell								×	×	×		5.75		
2. Ms. Katherine Rogers								×	×	×		×		×
3. Mrs. Sylvia Avondale							×	×	×	×		×	×	×
4. Mrs. Nora Fayette						×	×		×	×	×	×	×	×
5. Mrs. Helen Lloyd							×	×		×	×	×		
6. Mrs. Dorothy Murchiso									×					
7. Mrs. Olivia Carleton									×		×			
8. Mrs. Flora Price									¥		×			

A group of women in Old City, 1936 – Group I. Women participating at social events. Rows and columns were rearranged to show groups.

Corporation by director data. Interlocking corporate directorates showing the inner ring of South African finance.

The tennis players' social network

Sharapova

Serena

Li Na

Roger

Rafa

Djoker

Soderling

Prof. Parra

John McEnroe @McEnroeTweets

My volley is still good as ever by the way. That's for sure retweet. pic.twitter.com/r2eNAzffk0

View photo

9/9/19

5 hrs

Some Types of Networks

 Hereinafter, I will refer indistinctively to graphs and networks. Here some types:

9/9/19

Analyzing a network: SNA

- How do we analyze a network?
- How do we compare different networks?
- This class is about network visualizations, but some foundational concepts of SNA need to be understood before.
- Let's see ways to describe the network at local and at global level

Source: http://moviegalaxies.com

Measures in SNA

Node-level metrics

- Centrality
 - (In/Out) Degree
 - Betweenness
 - Closeness
 - Eigenvector
- Clustering coefficient

Graph-level metrics

- Size
- Diameter (longest path)
- Average path length
- Average [node metric]
- These are only a few representative measures
- For further understanding of these measures: See the presentation of Giorgos Chelotis in slideshare, from slide 8 http://www.slideshare.net/gcheliotis/social-network-analysis-3273045

9/9/19 @denisparra

Interpretation of measures

	Interpretation in Social Networks
Degree	How many people can this person reach directly?
Betweenness	How likely is this person to be the most direct route between two people in the network?

Source: http://www.slideshare.net/gcheliotis/social-network-analysis-3273045 slide 24

Interpretation of measures

	Interpretation in Social Networks				
Closeness	How fast can this person reach everyone in the network?				
Eigenvector	How well is this person connected to other well-connected people?				

Source: http://www.slideshare.net/gcheliotis/social-network-analysis-3273045 slide 24

Two more concepts...

- Total possible number of edges in a network #edges = n * (n -1)/2 (undirected network)
 #edges = n * (n -1) (directed network)
- (Shortest) Path: the shortest sequence of edges to be followed to reach a node B from a node A in a network.

Which is the length of the shortest path between Rafa Nadal and Sharonpova?

Practice the learned concepts...

 Practice the learned concepts comparing these 2 movie networks (characters' interactions):

Source: http://moviegalaxies.com

Forrest Gump (1994)

http://moviegalaxies.com/movies/316-Forrest-Gump

Network metrics:

Size: 94/271

Density: 0.06

Diameter: 4

Clustering coefficient:

0.8

Avg. Path Length: 1.99

Node metrics:

Forrest

Degree: 89

• Betweetnness: 3453.8

Abbie Hoffman

• Degree: 6

Betweenness: 0

9/9/19 @denisparra

Traffic (2000)

Network metrics:

Size: 68

• Density: 0.04

Diameter: 7

Clustering coefficient:

0.55

Avg. Path Length: 3.54

Node metrics:

Robert

• Degree: 24

Betweetnness: 1437.7

Francisco

• Degree: 5

Betweenness: 1031

http://moviegalaxies.com/movies/837-Traffic

^{*} Francisco: is a bridge (structural holes)

Network Components

- (from G. Cheliotis) "many large groups and online communities have a core of densely connected users ... and a much larger periphery"
- Source: http://www.slideshare.net/gcheliotis/social-network-analysis-3273045, page 34

- (from L. Adamic) "if the largest component encompasses a significant fraction of the graph, it is called the giant component"
- Source: https://class.coursera.org/sna-2012-001/class/index , week 1 slides

Remarks and Further topics in SNA

- With the concepts already described, we will attempt to visualize and analyze two networks in the NodeXL & Gephi tutorial.
- Not covered in this class, but worth mentioning other SNA topics:
 - Network growth/formation: Erdős–Rényi, Watts-Strogatz, Barabassi-Albert (preferential attachment)
 - Community Structure: Girvan-Newman,
 Clauset-Moore-Newman (max-modularity), affinity
 propagation, etc.
 - Processes in networks: Diffusion, epidemics, innovation, etc.
 - Network motifs: small subgraphs that are over-represented

2. Applications

Examples of Applications

- These are a few examples of applications that make use of Network Visualizations:
 - Truthy
 - Moviegalaxies
 - Poderopedia
 - TwitterScope
 - LinkedIn Maps
- These ARE NOT tools for generic Visualization and Analysis (we'll see those in the tutorial section)

9/9/19 @denisparra

Truthy

- Information Diffusion research at Indiana U.
- http://truthy.indiana.edu

9/9/19

MovieGalaxies

- Visualize an discuss the characters of movies as networks
- http://moviegalaxies.com

9/9/19

Poderopedia

- Who is who in business and politics in Chile?
- Knight Foundation: Top 10 digital tools for journalists (Feb 4, 2013)

http://www.knightfoundation.org/blogs/knightblog/2013/2/4/new-digital-tools-journalists-10-learn/

TwitterScope

- A visual monitor of tweets in real time. This is an enhanced graph model.
- http://tibesti.research.att.com/twitterscope/

LinkedIn Maps

- Explore your LinkedIn contact network
- http://inmaps.linkedinlabs.com/network

3. Recent Research

Recent Research (~by Feb 2013)

- Can we go Beyond the Graph?
- ManyNets
- HivePlots
- Orion
- GraphPrism
- Motif Simplifications
- GeoSpatial Network Visualization

9/9/19 @denisparra

Social Network Visualization: Can we go Beyond the Graph? (2006)

- Authors support that social network visualization for end users should go beyond the graph-only paradigm
- http://web.media.mit.edu/~fviegas/papers/viegas-cscw04.pdf

ManyNets (2010)

- Analyze and compare multiple networks
- http://www.cs.umd.edu/hcil/manynets/

Hive Plots (2011)

Hive plots—rational approach to visualizing networks

http://www.hiveplot.net/

Orion (2011)

- Different visualizations to present network data
- http://vis.stanford.edu/papers/orion

a) Sorted matrix

b) Node-link diagram

c) Plot of betweenness for two networks

GeoSpatial Network Visualization (2011)

- Interactive Exploration of Geospatial Network Visualization
- http://tillnagel.com/2011/10/interactive-expl oration-of-geospatial-network-visualization/

Fig. 1: A pinch gesture to zoom the map.

Fig. 5: Second prototype with selected and non selected institutions.

GraphPrism (2012)

- GraphPrism: Compact Visualization of Network Structure, inspired in B-Matrices
- http://vis.stanford.edu/papers/graphprism

Motif Simplification (2012)

- Use of fans and parallel glyphs to improve readibility
- http://hcil2.cs.umd.edu/trs/2012-11/2012-11.pdf

Fig. 3: Three fan motifs (left) and simplified fan glyph versions (right).

Fig. 7: Three 2-parallel motifs (left) and their parallel glyphs (right).

MuxViz: Multilayer Networks (2014)

- Multilayer analysis and visualization of networks
- http://muxviz.net/index.php

4. Using a Network Visualization Tool

(NodeXL & Gephi in a nutshell)

Network Analysis and Visualization Tools

- NodeXL
- Gephi
- Pajek
- ORA (CMU)
- igraph (C++, R)
- UCINet
- NetworkX
- Tulip
- Visone
- Larger list: http://www.gmw.rug.nl/~huisman/sna/software.html

How do I format my network data?

- Depends on your information needs. What do you want to describe?
 - GDF http://guess.wikispot.org/The GUESS.gdf format
 - GEXF http://gexf.net/format/
 - GraphML http://graphml.graphdrawing.org
 - Pajek Net format
 http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.pdf
 - CSV https://gephi.org/users/supported-graph-formats/csv-format/
- For a summary and examples, check <u>https://gephi.org/users/supported-graph-formats/</u>

9/9/19 @denisparra

How do I format my Data?

Gephi tutorial

Instructions:

http://dparra.sitios.ing.uc.cl/classes/infovis-20
 19-2/NetworkViz-tutorial-2019.pdf

Final Remarks

- In this class you learnt:
 - Basic concepts of networks, graphs, and SNA
 - Existent applications that make use of network visualizations
 - Research related to network visualization
 - How to use a network visualization and analysis tool

My final message:

- Graph model is great, but try to move beyond the graph-only visualization.
- Think of ways to create visualizations that help to make sense of the different properties inherent to the network and to its elements (nodes and links). R and Javascript give you enough power to implement.

9/9/19 @denisparra

Where do I find cool NetVis?

http://www.visualcomplexity.com/vc/

Where do I find network datasets?

- Jure Leskovec page http://snap.stanford.edu/data/
- Mark Newman's page http://www-personal.umich.edu/~mejn/netdata/
- Gephi wiki datasets http://wiki.gephi.org/index.php/Datasets
- From CMU's Graphlab http://graphlab.org/downloads/datasets/

9/9/19 @denisparra |

Thanks!

- Questions?
- denisparra@gmail.com or @denisparra
- Check my academic web page

http://web.ing.puc.cl/~dparra/

and my research blog

http://kawinproject.wordpress.com

5. Bonus Slides

Recommended books

- <u>Linked</u> by Albert L. Barabasi
- Networks, Crowds, and Markets by D. Easley and J. Kleinberg (pre-print available free online)

Recommended Online Tutorials

Gephi:

- At ICWSM '11
 http://www.slideshare.net/Cloud/sp1-exploratory
 -network-analysis-with-gephi
- Gephi online tutorial
 http://blog.ouseful.info/2012/11/09/drug-deal-ne
 twork-analysis-with-gephi-tutorial/#
- Lada Adamic 2012 SNA class:
 http://www.youtube.com/watch?v=JgDYV5ArXgw
 &list=PL828B49781EAA17ED

9/9/19 @denisparra

- Do you R?
 - Temporal networks with igraph and R (with 20 lines of code!)

http://markov.uc3m.es/2012/11/temporal-networks-with-igraph-and-r-with-20-lines-of-code/