Sieci Komputerowe - Lista 1

Jakub Kuciński, prowadzący Andrzej Łukaszewski

Wrocław, Marzec 19, 2020

Spis treści

1	Zadanie 1	1
2	Zadanie 2	2
3	Zadanie 3	2
4	Zadanie 4	3
5	Zadanie 5	4
6	Zadanie 6	4
7	Zadanie 7	5
8	Zadanie 8	6
9	Zadanie 9	6
10	Zadanie 10	6

1 Zadanie 1

Kropki w numerze IP rozdzielają bajty danego adresu IP. Adres rozgłoszeniowy jest ostatnim adresem, adres sieci to pierwszy adres, a adresy komputerów to wszystkie pomiędzy nimi. Liczba po / oznacza długość prefiksu sieci (w bitach).

- 10.1.2.3/8 : podany adres to adres komputera, adres sieci 10.0.0.0, adres rozgłoszeniowy 10.255.255.255, adres jakiegoś komputera 10.0.0.1
- \bullet 156.17.0.0/16 : podany adres to adres sieci, adres sieci 156.17.0.0/16, adres rozgłoszeniowy 156.17.255.255, adres jakiegoś komputera 156.17.11.11
- 99.99.99.99/27 = 01100011.01100011.01100011.01100011/27: podany adres to adres komputera, adres sieci 99.99.99.96, adres rozgłoszeniowy 99.99.99.127, adres jakiegoś komputera 99.99.99.100
- 156.17.64.4/30: podany adres to adres sieci, adres sieci 156.17.64.4, adres rozgłoszeniowy 156.17.64.7, adres jakiegoś komputera 156.17.64.5

• 123.123.123.123/32 : jest to sieć z jednym adresem IP (jeden komputer), w tym przypadku adres rozgłoszeniowy, sieci i komputera są podanym adresem IP

2 Zadanie 2

Adres sieci 10.10.0.0/16 z zadania zapisany binarnie: 00001010.00001010.00000000.000000000 i jej maska 11111111.11111111.00000000.00000000. Możemy podzielić tę sieć na pół. Pierwszą połowę przeznaczymy na pierwszą sieć, a drugą podzielimy na kolejno 4 równoliczne rozłączne sieci:

- Adres pierwszej (większej) sieci 00001010.00001010.00000000.000000000, maska - 11111111.11111111.10000000.00000000. Zamieniając na zapis dziesiętny - 10.10.0.0/17
- Adres drugiej sieci 00001010.00001010.10000000.00000000,
 maska 11111111.11111111.111100000.00000000. Zamieniając na zapis dziesiętny 10.10.128.0/19
- \bullet Adres trzeciej sieci 00001010.00001010.10100000.00000000, maska 11111111.11111111.111100000.000000000. Zamieniając na zapis dziesiętny 10.10.160.0/19

Każda z tych podsieci zawiera dwa adresy, które nie mogą być przypisane komputerom - adres sieci i adres rozgłoszeniowy. Skoro mamy 5 podsieci to łącznie 10 adresów nie może zostać wykorzystanych do adresowania komputerów. Natomiast oryginalna sieć 10.10.0.0/16 zawierała już adres rozgłoszeniowy i adres sieci, zatem liczba niemożliwych do przypisania adresów wzrosła o 8.

Jaka jest najmniejsza możliwa sieć? Powiedzmy, że ma prefiks długości k. Nasze 5 podsieci jest rozłącznych i wypełniają całą sieć 10.10.0.0/16, zatem musi istnieć inna podsieć, która ma prefiks takiej samej długości jak k, bo musi ją "uzupełnić" do większej sieci. Razem tworzą sieć o prefiksie długości k-1. Ona z kolei znowu musi być uzupełniona przez inną sieć o prefiksie k-1. Razem tworzą sieć o prefiksie k-2. Znowu uzupełniamy, łączymy i uzupełniamy. Mamy sieć o prefiksie k-4 i wykorzystaliśmy do tego już wszystkie dostępne 5 podsieci, zatem musieliśmy dostać sieć 10.10.0.0/16, czyli k-4=16, stąd k=20. Zatem najmniejsza sieć ma $2^{32-20}-2=4094$ adresów dostępnych dla komputerów.

3 Zadanie 3

- 1) $0.0.0.0/0 \rightarrow \text{do routera A}$
- 2) $10.0.0.0/23 \to \text{do routera B}$
- 3) $10.0.2.0/24 \rightarrow do routera B$
- 4) $10.0.3.0/24 \rightarrow do routera B$
- 5) $10.0.1.0/24 \rightarrow do routera C$

- 6) $10.0.0.128/25 \rightarrow \text{do routera B}$
- 7) $10.0.1.8/29 \rightarrow do routera B$
- 8) $10.0.1.16/29 \rightarrow do routera B$
- 9) $10.0.1.24/29 \to \text{do routera B}$

Wiemy, że w tablicy routingu wybierana jest reguła z najdłuższym prefiksem. Jeśli miniemy wpis 5), to możemy wpaść do routera B albo do ogólnego A. Zauważmy, że wtedy możemy zapisać 2), 3) i 4) łącznie jako $10.0.0.0/22 \rightarrow$ do routera B. Widzimy, że wpisy 5)-9) są uszczegółowieniami 10.0.0.0/22 oraz występują w nich tylko routery B i C. Możemy zauważyć, że wpis 6) jest rozłączny z jedynym wpisem z routerem C, czyli 5), więc skoro uszczegóławia $10.0.0.0/22 \rightarrow$ do routera B to możemy go pominąć (bo też prowadzi do B). Wpisy 7)-9) tworzą zwartą część, która uszczegóławia wpis 5). Możemy zatem zastąpić je dwoma wpisami. Mniej szczegółowym $10.0.1.0/27 \rightarrow$ do routera B oraz bardziej szczegółowym $10.0.1.0/29 \rightarrow$ do routera C. W ten sposób otrzymujemy tablicę routingu:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/22 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.1.0/27 \rightarrow do routera B$
- $10.0.1.0/29 \rightarrow do routera C$

4 Zadanie 4

- 1) $0.0.0.0/0 \rightarrow do routera A$
- 2) $10.0.0.0/8 \rightarrow do routera B$
- 3) $10.3.0.0/24 \rightarrow do routera C$
- 4) $10.3.0.32/27 \to \text{do routera B}$
- 5) $10.3.0.64/27 \to \text{do routera B}$
- 6) $10.3.0.96/27 \rightarrow do routera B$

Analogicznie jak w zadaniu 3. Widzimy, że wpisy 3)-6) są uszczegółowieniami 10.0.0.0/8 oraz występują w nich tylko routery B i C. Wpisy 4)-6) tworzą zwartą część, zawartą we wpisie 3). Nieprzysłonięty przez wpisy 4)-6) fragment wpisu 3) można rozbić na dwie części 10.3.0.128/25 oraz 10.3.0.0/27. Nie będą one miały żadnego wspólnego adresu z wpisami 4)-6), a skoro 4)-6) leżą wewnątrz 2) to będzie można je pominąć. W ten sposób otrzymamy:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.128/25 \rightarrow do routera C$
- $10.3.0.0/27 \rightarrow do routera C$

5 Zadanie 5

Teza: uporządkowanie wpisów w tablicy routingu według długości prefiksu od najdłuższego do najkrótszego i wybór pierwszego pasującego jest równoważne braniu najlepszego dopasowania (najdłuższy pasujący prefiks).

Dowód:

Załóżmy nie wprost, że wybór pierwszego pasującego z naszej uporządkowanej tablicy routingu nie jest równoważny braniu najlepszego dopasowania. Weźmy adres ip, dla którego teza nie zachodzi i nazwijmy go Addr. Niech WpisUporz oznacza pierwszy wpis pasujący do Addr w uporządkowanej tablicy oraz WpisNajl oznacza wpis, który jest najlepszym dopasowaniem (najdłuższy prefiks). Ponadto przez PreUporz oznaczmy długość prefiksu WpisUporz oraz przez PreNajl oznaczmy długość prefiksu WpisNajl. Rozważmy przypadki:

- PreUporz > PreNajl
 Długość prefisku WpisNajl jest z założenia największa. Ale założyliśmy, że PreUporz > Pre-Najl. Sprzeczność.
- PreUporz = PreNajl
 Wiemy, że PreNajl to największa długość prefiksu wpisu pasującego do Addr, a skoro PreUporz = PreNajl, to WpisUporz też jest najbardziej pasującym wpisem. Sprzeczność (bo PreUporz miał być nienajlepszy).
- PreUporz < PreNajl
 Wiemy, że WpisNajl znajduje się w tablicy. Zastanówmy się gdzie znajduje sie w tablicy uporządkowanej. Skoro ma dłuższy prefiks to znajduje się przed WpisUporz, ale skoro pasuje do Addr i znajduje się przed WpisUporz, a bierzemy pierwszy pasujący wpis, to powinniśmy wziąć WpisNajl, a nie WpisUporz. Sprzeczność.

Z powyższych przypadków dochodzimy do sprzeczności, a stad teza była prawdziwa.

6 Zadanie 6

Poczatkowy stan tablicy routingu:

	<u> </u>					
	Α	В	С	D	\mathbf{E}	F
do A	-	1				
do B	1	-	1			
do C		1	-		1	1
do D				-	1	
do E			1	1	-	1
do F			1		1	-
do S	1	1				

	A	В	С	D	Ε	F
do A	-	1	2 (via B)			
do B	1	-	1		2 (via C)	2 (via C)
do C	2 (via B)	1	-	2 (via E)	1	1
do D			2 (via E)	-	1	2 (via E)
do E		2 (via C)	1	1	-	1
do F		2 (via C)	1	2 (via E)	1	-
do S	1	1	2 (via B)			

	A	В	С	D	Ε	F
do A	-	1	2 (via B)		3 (via C)	3 (via C)
do B	1	-	1	3 (via E)	2 (via C)	2 (via C)
do C	2 (via B)	1	-	2 (via E)	1	1
do D		3 (via C)	2 (via E)	-	1	2 (via E)
do E	3 (via B)	2 (via C)	1	1	-	1
do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
do S	1	1	2 (via B)		3 (via C)	3 (via C)

	A	В	С	D	Е	F
do A	-	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)
do B	1	-	1	3 (via E)	2 (via C)	2 (via C)
do C	2 (via B)	1	-	2 (via E)	1	1
do D	4 (via B)	3 (via C)	2 (via E)	-	1	2 (via E)
do E	3 (via B)	2 (via C)	1	1	-	1
do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

Jak widać stan stabilny zostanie osiągnięty po $3\ krokach$

7 Zadanie 7

Tablica routingu po dodaniu połączenia między routerami A i D.

	A	В	С	D	Е	F
do A	-	1	2 (via B)	1	3 (via C)	3 (via C)
do B	1	-	1	3 (via E)	2 (via C)	2 (via C)
do C	2 (via B)	1	-	2 (via E)	1	1
do D	1	3 (via C)	2 (via E)	-	1	2 (via E)
do E	3 (via B)	2 (via C)	1	1	-	1
do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
do S	1	1	2 (via B)	4 (via E)	3 (via C)	3 (via C)

Uaktualniona tablica routingu:

	A	В	С	D	Е	F
do A	-	1	2 (via B)	1	2 (via D)	3 (via C)
do B	1	-	1	2 (via A)	2 (via C)	2 (via C)
do C	2 (via B)	1	-	2 (via E)	1	1
do D	1	2 (via A)	2 (via E)	-	1	2 (via E)
do E	2 (via D)	2 (via C)	1	1	-	1
do F	3 (via B)	2 (via C)	1	2 (via E)	1	-
do S	1	1	2 (via B)	2 (via A)	3 (via C)	3 (via C)

8 Zadanie 8

Trasa do E po awarii łącza między D a E (bez straty ogólności przymujemy, że ścieżka z A do E prowadziła przez B a nie C):

ĺ		A	В	С	D
Ì	do E	3 (via B)	2 (via D)	2 (via D)	∞

D wysyła informacje do B i C o swoim sąsiedztwie. Interesuje nas to, że jego ścieżka do E wynosi ∞ . Skoro droga z B i C prowadziła do E przez D to nowe drogi wynoszą teraz ∞ .

	A	В	С	D
do E	3 (via B)	∞	∞	∞

Następnie A wysyła do B zatrutą ścieżkę (bo droga do E prowadzi przez B) oraz informuje C, że ma ścieżkę długości 3 do E. Droga z C do E przez A jest krótsza od ∞ , więc zostaje wpisana do C.

ĺ		A	В	С	D
l	do E	3 (via B)	∞	4 (via A)	∞

C wysyła do A zatrutą ścieżkę oraz informuje D, że ma ścieżkę do E przez A. D uaktualnia swoją ścieżkę do E.

	A	В	\mathbf{C}	D
do E	3 (via B)	∞	4 (via A)	5 (via C)

Teraz D wysyła informacje do B, że ma ścieżkę do E przez C. B uaktualnia swoją ścieżkę do E.

	A	В	C	D
do E	3 (via B)	6 (via D)	4 (via A)	5 (via C)

Otrzymaliśmy cykl (A,B,D,C).

9 Zadanie 9

10 Zadanie 10

Powiedzmy, że mamy pewną sieć do której należą połączone routery A i B z drogą od A do B. Zauważmy, że jeśli w wyniku wysłania komunikatu przez pewien początkowy router, do routera A dotrze $2^{\Omega(n)}$ komunikatów, to przesłanie ich wszystkich do B zajmie nam $2^{\Omega(n)}$ kroków (bo możemy wysłać tylko jeden komunikat naraz). Czyli rozesłanie tej informacji po całej sieci zajmie przynajmniej $2^{\Omega(n)}$ kroków. Skonstruujmy taką sieć. Lista kroków konstrukcji:

 $S \leftarrow zbiór routerów należacych do sieci$

 $\mathbf{k} \leftarrow 0$ Dopóki $i \leq n$:

- $k \leftarrow k+1$
- Utwórz router o numerze k
- \bullet Dla każdego j \in S dodaj połączenie z j do k
- Dodaj k do S

Skonstruowana sieć ma tą własność, że dla j-tego routera wszystkie połączenia wychodzące z j do k spełniają własność $k \in [j+1,n]$. Z kolei wszystkie połączenia wchodzące z k do j spełaniają własność $k \in [1,j-1]$. Pierwsze komunikaty zostają wysłane przez router 1. Oznaczmy przez S_k wynik algorytmu po k-tej iteracji. Zauważmy, że liczba komunikatów f_1 dla S_1 , która dojdzie do routera 1 wynosi 0. Liczba komunikatów f_2 dla S_2 oraz 2 wynosi 1. Dla S_3 liczba komunikatów które dostanie 3 jest równa liczbie komunikatów, które dochodzą do 1 oraz 2 (zostaną przekazane dalej do 3) plus komunikat od 1, czyli $f_3 = 1 + f_1 + f_2$. Dalej dostaniemy $f_4 = 1 + f_1 + f_2 + f_3$, ... Możemy stąd wyznaczyć wzór $f_n = 1 + \sum_{i=0}^{n-1} f_i$. Przekształćmy wzór: $f_n = 1 + \sum_{i=0}^{n-1} f_i = 1 + \sum_{i=0}^{n-2} f_i + f_{n-1} = (1 + \sum_{i=0}^{n-2} f_i) + f_{n-1} = f_{n-1} + f_{n-1} = 2 \cdot f_{n-1}$. Zauważając, że $f_2 = 1$ dostajemy $f_n = 2^{n-2}$. Czyli do n-tego routera trafia w naszej sieci 2^{n-2} ko-

 $f_n = 1 + \sum_{i=0}^{n-1} f_i = 1 + \sum_{i=0}^{n-2} f_i + f_{n-1} = (1 + \sum_{i=0}^{n-2} f_i) + f_{n-1} = f_{n-1} + f_{n-1} = 2 \cdot f_{n-1}$. Zauważając, że $f_2 = 1$ dostajemy $f_n = 2^{n-2}$. Czyli do n-tego routera trafia w naszej sieci 2^{n-2} komunikatów. Potrzebujemy jednego oddzielnego routera, do którego nasz n-ty router będzie przesyłał te komunikaty, więc zabierając zmniejszająć liczbę routerów w S o 1 dostajemy 2^{n-3} komunikatów dochodzących do n-tego routera. Przesłanie tych komunikatów do tego oddzielnego wyróżnionego zajmie 2^{n-3} . Wysyłanie tych komunikatów zacznie się, gdy dostaniemy pierwszy komunikat od routera 1 i będzie trwało to aż do wysłania ostatniego z kolejki. Oczywiście ta operacja będzie wykonywała się najdłużej ze wszystkich routerów, stąd przesłanie informacji zakończy się po czasie $2^{\Omega(n)}$.