

CFRM 410: Probability and Statistics for Computational Finance

Week 10 Hypothesis Testing

Jake Price

Instructor, Computational Finance and Risk Management
University of Washington
Slides originally produced by Kjell Konis

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

▶ The scientific process can be summarized by the following steps

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- ▶ In statistical terms

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- In statistical terms
 - 1. Propose a hypothesis (i.e., make a statement about θ)

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- In statistical terms
 - 1. Propose a hypothesis (i.e., make a statement about θ)
 - Must be possible to contradict the statement using the data

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- In statistical terms
 - 1. Propose a hypothesis (i.e., make a statement about θ)
 - Must be possible to contradict the statement using the data
 - 2. Perform random experiment, collect data

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- In statistical terms
 - 1. Propose a hypothesis (i.e., make a statement about θ)
 - Must be possible to contradict the statement using the data
 - 2. Perform random experiment, collect data
 - 3. Reject/don't reject hypothesis by comparing the observed data with the prediction of the statistical model given the hypothesis

- ▶ The scientific process can be summarized by the following steps
 - 1. Propose a hypothesis that can be tested/rejected
 - 2. Conduct the experiment
 - 3. Compare outcome with prediction given the hypothesis
 - 4. Do not reject hypothesis **OR** reject and/or modify hypothesis
- In statistical terms
 - 1. Propose a hypothesis (i.e., make a statement about θ)
 - Must be possible to contradict the statement using the data
 - 2. Perform random experiment, collect data
 - Reject/don't reject hypothesis by comparing the observed data with the prediction of the statistical model given the hypothesis
 - ▶ Is the scale significant?

► Given a statistical model, want to decide between two competing theories

- Given a statistical model, want to decide between two competing theories
- ► Pair of hypotheses called

 H_0 : the *null* hypothesis

 H_1 : the *alternative* hypothesis

- Given a statistical model, want to decide between two competing theories
- Pair of hypotheses called

 H_0 : the *null* hypothesis

 H_1 : the *alternative* hypothesis

lacktriangle The hypotheses are statements about the parameter heta

- Given a statistical model, want to decide between two competing theories
- Pair of hypotheses called

 H_0 : the *null* hypothesis

 H_1 : the *alternative* hypothesis

- lacktriangle The hypotheses are statements about the parameter heta
 - ▶ $H_0 \& H_1$ must account for all possible values of θ

- Given a statistical model, want to decide between two competing theories
- Pair of hypotheses called

 H_0 : the *null* hypothesis

 H_1 : the *alternative* hypothesis

- lacktriangle The hypotheses are statements about the parameter heta
 - ▶ $H_0 \& H_1$ must account for all possible values of θ
- **Example** In a population with mean μ , form hypotheses about the mean as follows

$$\left\{
\begin{array}{l}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{array}
\right\}$$
two-sided test

- Given a statistical model, want to decide between two competing theories
- Pair of hypotheses called

 H_0 : the *null* hypothesis H_1 : the *alternative* hypothesis

- ightharpoonup The hypotheses are statements about the parameter heta
 - ▶ $H_0 \& H_1$ must account for all possible values of θ
- **Example** In a population with mean μ , form hypotheses about the mean as follows

$$\underbrace{\left\{ \begin{array}{l} H_0 \ : \ \mu = \mu_0 \\ H_1 \ : \ \mu \neq \mu_0 \end{array} \right\}}_{\text{two-sided test}} \quad \text{or} \quad \left\{ \begin{array}{l} H_0 \ : \ \mu \leq \mu_0 \\ H_1 \ : \ \mu > \mu_0 \end{array} \right\}$$

- Given a statistical model, want to decide between two competing theories
- Pair of hypotheses called

 H_0 : the *null* hypothesis

 H_1 : the *alternative* hypothesis

- lacktriangle The hypotheses are statements about the parameter heta
 - ▶ $H_0 \& H_1$ must account for all possible values of θ
- **Example** In a population with mean μ , form hypotheses about the mean as follows

$$\underbrace{\left\{\begin{array}{c} H_0 \ : \ \mu = \mu_0 \\ H_1 \ : \ \mu \neq \mu_0 \end{array}\right\}}_{\text{two-sided test}} \quad \text{or} \quad \underbrace{\left\{\begin{array}{c} H_0 \ : \ \mu \leq \mu_0 \\ H_1 \ : \ \mu > \mu_0 \end{array}\right\}}_{\text{one-sided tests}} \quad \text{or} \quad \underbrace{\left\{\begin{array}{c} H_0 \ : \ \mu \leq \mu_0 \\ H_1 \ : \ \mu < \mu_0 \end{array}\right\}}_{\text{one-sided tests}}$$

▶ How to choose between the two hypotheses?

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n\stackrel{iid}{\sim} F$$

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

F is the true population distribution

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?
- ▶ Let $T = T(X_1, ..., X_n)$ be a statistic that

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?
- ▶ Let $T = T(X_1, ..., X_n)$ be a statistic that
 - under the null hypothesis H_0 , typically takes *small* values

- ▶ How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?
- ▶ Let $T = T(X_1, ..., X_n)$ be a statistic that
 - under the null hypothesis H_0 , typically takes *small* values
 - ightharpoonup large values of the statistic provide evidence against H_0

- How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?
- ▶ Let $T = T(X_1, ..., X_n)$ be a statistic that
 - under the null hypothesis H_0 , typically takes *small* values
 - ightharpoonup large values of the statistic provide evidence against H_0
- Decision rule
 - Reject H_0 in favor of the alternative H_1 if the observed value t of T is big *enough* (exceeds a critical value)

- How to choose between the two hypotheses?
 - ▶ Take a random sample $X_1, ..., X_n$ from the population

$$X_1,\ldots,X_n \stackrel{iid}{\sim} F$$

- F is the true population distribution
- How to use this sample to make the decision?
- ▶ Let $T = T(X_1, ..., X_n)$ be a statistic that
 - under the null hypothesis H_0 , typically takes *small* values
 - ightharpoonup large values of the statistic provide evidence against H_0
- Decision rule
 - Reject H_0 in favor of the alternative H_1 if the observed value t of T is big *enough* (exceeds a critical value)
 - ▶ Do not reject H_0 if the observed value t of T is typical under H_0

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

▶ Let $X_1, \dots, X_n \stackrel{\it iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0⇒ T typically takes values close to 0

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0⇒ T typically takes values close to 0
- ▶ Values of T far from 0 are considered *extreme*; occur with low probability if H_0 is true

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0⇒ T typically takes values close to 0
- ▶ Values of T far from 0 are considered extreme; occur with low probability if H₀ is true
- ▶ Reject H_0 (in favor of H_1) when |T| is big enough

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0⇒ T typically takes values close to 0
- ▶ Values of T far from 0 are considered extreme; occur with low probability if H₀ is true
- Reject H_0 (in favor of H_1) when |T| is big enough Symmetric reject if $|T| > t^*$ where t^* is the critical value

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ If H_0 is true, then $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0⇒ T typically takes values close to 0
- ▶ Values of T far from 0 are considered extreme; occur with low probability if H₀ is true
- ▶ Reject H_0 (in favor of H_1) when |T| is big enough

 Symmetric reject if $|T| > t^*$ where t^* is the critical value

 Non-symmetric reject if H_0 if $T < t_*$ or $T > t^*$

▶ Let $X_1, \dots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$ \Longrightarrow Interpret $H_0: \mu \leq \mu_0$ as $\mu = \mu_0$

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$ \Longrightarrow Interpret $H_0: \mu \le \mu_0$ as $\mu = \mu_0$
- ▶ Under H_0 , $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$ \Longrightarrow Interpret $H_0: \mu \le \mu_0$ as $\mu = \mu_0$
- ▶ Under H_0 , $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0 \implies Under H_0 , T typically takes values close to 0

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$ \Longrightarrow Interpret $H_0: \mu \le \mu_0$ as $\mu = \mu_0$
- ▶ Under H_0 , $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0 \implies Under H_0 , T typically takes values close to 0
- ▶ One-sided tests: values of T far from 0 are considered extreme only when in the direction of the alternative hypothesis H_1

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ► Consider the competing hypotheses

$$\left\{ \begin{array}{l} H_0 : \mu \leq \mu_0 \\ H_1 : \mu > \mu_0 \end{array} \right\}$$

- ▶ Test statistic: Student's t statistic, $T = \frac{\bar{X} \mu_0}{S / \sqrt{n}}$
- ▶ Will not reject H_0 if the observed value of the test statistic $t \in H_0$ \Longrightarrow Interpret $H_0: \mu \le \mu_0$ as $\mu = \mu_0$
- ▶ Under H_0 , $T \stackrel{H_0}{\sim} t_{n-1}$ and E(T) = 0 \implies Under H_0 , T typically takes values close to 0
- ▶ One-sided tests: values of T far from 0 are considered extreme only when in the direction of the alternative hypothesis H_1
- ▶ Reject H_0 (in favor of H_1) if $T > t^*$ where t^* is the critical value

▶ How to choose the critical value(s)?

- ▶ How to choose the critical value(s)?
 - ▶ What are good definitions for big enough and small enough?

- ▶ How to choose the critical value(s)?
 - ▶ What are good definitions for big enough and small enough?
 - ▶ At what size does a quantity become significant?

- ▶ How to choose the critical value(s)?
 - What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- ► Two types of errors

- How to choose the critical value(s)?
 - ▶ What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- ► Two types of errors

Too conservative reject H_0 only for very extreme values of T

- How to choose the critical value(s)?
 - What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- Two types of errors

Too conservative reject H_0 only for very extreme values of T Too aggressive reject H_0 even for typical values of T

- ▶ How to choose the critical value(s)?
 - What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- Two types of errors

Too conservative reject H_0 only for very extreme values of T Too aggressive reject H_0 even for typical values of T

Decision \ Truth	H_0	H_1
Do not reject H_0		Type II Error
Reject H ₀	Type I Error	

- How to choose the critical value(s)?
 - What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- Two types of errors

Too conservative reject H_0 only for very extreme values of T Too aggressive reject H_0 even for typical values of T

Decision \ Truth	H_0	H_1
Do not reject H_0		Type II Error
Reject H ₀	Type I Error	

Natural asymmetry between the two hypotheses ⇒ type I error worse than type II

- How to choose the critical value(s)?
 - What are good definitions for big enough and small enough?
 - At what size does a quantity become significant?
- Two types of errors

Too conservative reject H_0 only for very extreme values of T Too aggressive reject H_0 even for typical values of T

Decision \ Truth	H_0	H_1
Do not reject H_0		Type II Error
Reject H ₀	Type I Error	

- ▶ Natural asymmetry between the two hypotheses ⇒ type I error worse than type II
 - ► For example, an email SPAM filter

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

▶ Want decision rule that limits the probability of a type I error

$$\mathsf{P}\big[\mathsf{Reject}\; \mathit{H}_0 \mid \mathit{H}_0 \; \mathsf{is} \; \mathsf{true}\big] \leq \alpha$$

▶ Want decision rule that limits the probability of a type I error

$$\mathsf{P}\big[\mathsf{Reject}\; H_0 \mid H_0 \; \mathsf{is} \; \mathsf{true}\big] \leq \alpha$$

ightharpoonup lpha is a small (e.g., lpha= 0.05) probability

▶ Want decision rule that limits the probability of a type I error

$$\mathsf{P}\big[\mathsf{Reject}\; H_0 \mid H_0 \; \mathsf{is} \; \mathsf{true}\big] \leq \alpha$$

- α is a *small* (e.g., $\alpha = 0.05$) probability
- lacktriangledown α is called the *significance level* of the test

▶ Want decision rule that limits the probability of a type I error

$$\mathsf{P}\big[\mathsf{Reject}\; H_0 \mid H_0 \; \mathsf{is} \; \mathsf{true}\big] \leq \alpha$$

- lacktriangledown lpha is a small (e.g., lpha= 0.05) probability
- $ightharpoonup \alpha$ is called the *significance level* of the test
- Choose the critical value(s) to match probability of type I error

$$P[T \text{ extreme} \mid H_0] = P[Reject \ H_0 \mid H_0]$$

▶ Want decision rule that limits the probability of a type I error

$$\mathsf{P}\big[\mathsf{Reject}\; H_0 \mid H_0 \; \mathsf{is} \; \mathsf{true}\big] \leq \alpha$$

- ightharpoonup lpha is a small (e.g., lpha = 0.05) probability
- $ightharpoonup \alpha$ is called the *significance level* of the test
- Choose the critical value(s) to match probability of type I error

$$P[T \text{ extreme } | H_0] = P[Reject H_0 | H_0]$$

In other words, choose the critical value so that

$$P[T \text{ more extreme than critical value(s)} \mid H_0 \text{ is true}] = \alpha$$

Rejection Regions for One and Two Sided Tests

Rejection Regions for One and Two Sided Tests

▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ▶ Consider the competing hypotheses: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- $lackbox{\ }$ Consider the competing hypotheses: H_0 : $\mu=\mu_0$ and H_1 : $\mu\neq\mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- $lackbox{ Consider the competing hypotheses: } H_0: \mu=\mu_0 \text{ and } H_1: \mu
 eq \mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- lacktriangle Consider the competing hypotheses: H_0 : $\mu=\mu_0$ and H_1 : $\mu\neq\mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

$$P[Reject H_0 \mid H_0 \text{ is true }] = \alpha$$

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ▶ Consider the competing hypotheses: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

P [Reject
$$H_0 \mid H_0$$
 is true] = α
 \Rightarrow P [$|T| > t^*| H_0$ is true] = α

Example: Finding the Critical Values

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ▶ Consider the competing hypotheses: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

$$\begin{split} \mathsf{P}\left[\mathsf{Reject}\; H_0 \mid H_0 \; \mathsf{is} \; \mathsf{true}\;\right] &= \; \alpha \\ \Rightarrow \mathsf{P}\left[\; |T| > t^* | \; H_0 \; \mathsf{is} \; \mathsf{true}\;\right] &= \; \alpha \\ \Rightarrow \mathsf{P}\left[T < t_* \; \mathsf{or} \; T > t^* \mid H_0 \; \mathsf{is} \; \mathsf{true}\;\right] &= \; \alpha \end{split}$$

Example: Finding the Critical Values

- ▶ Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ▶ Consider the competing hypotheses: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

P [Reject
$$H_0 \mid H_0$$
 is true] = α
 \Rightarrow P [$\mid T \mid > t^* \mid H_0$ is true] = α
 \Rightarrow P [$T < t_*$ or $T > t^* \mid H_0$ is true] = α
 $\Rightarrow t_* = t_{\alpha/2}$ & $t^* = t_{1-\alpha/2}$

Example: Finding the Critical Values

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ be a random sample
- ▶ Consider the competing hypotheses: H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$
- ▶ Reject H_0 if $|T| = \left| \frac{\bar{X} \mu_0}{S/\sqrt{n}} \right|$ is big enough, i.e., if $|T| > t^*$
- ▶ What is the critical value with respect to the significance level?

P [Reject
$$H_0 \mid H_0$$
 is true] = α
 \Rightarrow P [$\mid T \mid > t^* \mid H_0$ is true] = α
 \Rightarrow P [$T < t_*$ or $T > t^* \mid H_0$ is true] = α
 $\Rightarrow t_* = t_{\alpha/2}$ & $t^* = t_{1-\alpha/2}$

• t_{γ} is the γ quantile of the t_{n-1} distribution

- ► Given
 - 1. a pair of complementary hypotheses $\{\textit{H}_0,\textit{H}_1\}$

- ▶ Given
 - 1. a pair of complementary hypotheses $\{\textit{H}_0,\textit{H}_1\}$
 - 2. a test statistic T

- ▶ Given
 - 1. a pair of complementary hypotheses $\{H_0, H_1\}$
 - 2. a test statistic T
 - 3. a significance level α

- Given
 - 1. a pair of complementary hypotheses $\{H_0, H_1\}$
 - 2. a test statistic T
 - 3. a significance level α
- ▶ Reject the null hypothesis H_0 in favor of the alternative hypothesis H_1 at significance level α if T is more extreme than the critical value(s) computed from the significance level α

- Given
 - 1. a pair of complementary hypotheses $\{H_0, H_1\}$
 - 2. a test statistic T
 - 3. a significance level α
- ▶ Reject the null hypothesis H_0 in favor of the alternative hypothesis H_1 at significance level α if T is more extreme than the critical value(s) computed from the significance level α
- ▶ **Example** (Two-sided test for a normal population) Reject the null hypothesis $H_0: \mu = \mu_0$ in favor of the alternative hypothesis $H_1: \mu \neq \mu_0$ at significance level α if the observed value t of T satisfies $t \geq t_{1-\alpha/2}$ or $t \leq t_{\alpha/2}$

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*
- ▶ The *p* value is the probability that the test statistic *T* takes a value equal to or more extreme than its observed value *t*

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*
- ▶ The *p* value is the probability that the test statistic *T* takes a value equal to or more extreme than its observed value *t*
- ▶ Observe T = t
 - ▶ Two-sided test: $p = P[|T| \ge t | H_0]$

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*
- ▶ The *p* value is the probability that the test statistic *T* takes a value equal to or more extreme than its observed value *t*
- ▶ Observe T = t
 - ▶ Two-sided test: $p = P[|T| \ge t | H_0]$
 - ▶ One-sided test: $p = P[T \ge t | H_0]$

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*
- ▶ The *p* value is the probability that the test statistic *T* takes a value equal to or more extreme than its observed value *t*
- ▶ Observe T = t
 - ▶ Two-sided test: $p = P[|T| \ge t | H_0]$
 - ▶ One-sided test: $p = P[T \ge t | H_0]$
- Small values of p provide evidence against the null hypothesis H₀
 (i.e., outcome is unlikely under the null hypothesis)

- ▶ Instead of computing critical values for a given significance level α , might ask what is the highest significance level where H_0 would be rejected?
- ▶ This level is called the observed *p value*
- ▶ The *p* value is the probability that the test statistic *T* takes a value equal to or more extreme than its observed value *t*
- ▶ Observe T = t
 - ▶ Two-sided test: $p = P[|T| \ge t | H_0]$
 - ▶ One-sided test: $p = P[T \ge t \mid H_0]$
- ► Small values of *p* provide evidence against the null hypothesis *H*₀ (i.e., outcome is unlikely under the null hypothesis)
- ▶ Still have to decide what values of *p* are *small enough*

► How to decide whether to reject the null hypothesis *H*₀ using the observed *p* value?

- ► How to decide whether to reject the null hypothesis *H*₀ using the observed *p* value?
- ▶ Interpret the *p* value on the same scale as the significance level

- ► How to decide whether to reject the null hypothesis H₀ using the observed p value?
- ▶ Interpret the *p* value on the same scale as the significance level
- Let α be the maximum allowable probability of type I error

P [Reject
$$H_0 \mid H_0$$
 is true] $\leq \alpha$
 $p \leq \alpha$

```
(for example: \alpha = 0.05 or \alpha = 0.01)
```

- ▶ How to decide whether to reject the null hypothesis H₀ using the observed p value?
- ▶ Interpret the *p* value on the same scale as the significance level
- lackbox Let lpha be the maximum allowable probability of type I error

P [Reject
$$H_0 \mid H_0$$
 is true] $\leq \alpha$
 $p \leq \alpha$

(for example:
$$\alpha = 0.05$$
 or $\alpha = 0.01$)

▶ The decision rule becomes: reject H_0 if $p \le \alpha$

- ▶ How to decide whether to reject the null hypothesis H₀ using the observed p value?
- ▶ Interpret the *p* value on the same scale as the significance level
- Let α be the maximum allowable probability of type I error

P [Reject
$$H_0 \mid H_0$$
 is true] $\leq \alpha$
 $p \leq \alpha$

```
(for example: \alpha = 0.05 or \alpha = 0.01)
```

- ▶ The decision rule becomes: reject H_0 if $p \le \alpha$
- lacktriangle The probability of type I error using this rule is exactly lpha

- ▶ How to decide whether to reject the null hypothesis H₀ using the observed p value?
- ▶ Interpret the *p* value on the same scale as the significance level
- Let α be the maximum allowable probability of type I error

P [Reject
$$H_0 \mid H_0$$
 is true] $\leq \alpha$
 $p \leq \alpha$

```
(for example: \alpha = 0.05 or \alpha = 0.01)
```

- ▶ The decision rule becomes: reject H_0 if $p \le \alpha$
- lacktriangle The probability of type I error using this rule is exactly lpha
- As a decision rule, equivalent to the critical value(s) decision rule

ightharpoonup A null hypothesis H_0 to test against an alternative hypothesis H_1

- \blacktriangleright A null hypothesis H_0 to test against an alternative hypothesis H_1
- ▶ A test statistic T chosen so that extreme values of T (in the direction of H_1) suggest that H_0 is false

- \blacktriangleright A null hypothesis H_0 to test against an alternative hypothesis H_1
- ▶ A test statistic T chosen so that extreme values of T (in the direction of H_1) suggest that H_0 is false
- ▶ The observed value of the test statistic is T = t

- \blacktriangleright A null hypothesis H_0 to test against an alternative hypothesis H_1
- ▶ A test statistic T chosen so that extreme values of T (in the direction of H_1) suggest that H_0 is false
- ▶ The observed value of the test statistic is T = t
- A significance level α specifying the maximum probability of type I error (rejecting H₀ when H₀ is true)

- \blacktriangleright A null hypothesis H_0 to test against an alternative hypothesis H_1
- ▶ A test statistic T chosen so that extreme values of T (in the direction of H_1) suggest that H_0 is false
- ▶ The observed value of the test statistic is T = t
- A significance level α specifying the maximum probability of type I error (rejecting H₀ when H₀ is true)
- A decision rule:
 - Critical value(s) Reject the null hypothesis H_0 in favor of the alternative hypothesis H_1 when T is more extreme. Critical value(s) chosen with respect to significance level α

- ▶ A null hypothesis H₀ to test against an alternative hypothesis H₁
- ▶ A test statistic T chosen so that extreme values of T (in the direction of H_1) suggest that H_0 is false
- ▶ The observed value of the test statistic is T = t
- A significance level α specifying the maximum probability of type I error (rejecting H₀ when H₀ is true)
- A decision rule:
 - Critical value(s) Reject the null hypothesis H_0 in favor of the alternative hypothesis H_1 when T is more extreme. Critical value(s) chosen with respect to significance level α
 - p value The probability of observing a value of T as extreme or more extreme than t under the null hypothesis H_0 . Reject the null hypothesis H_0 in favor of the alternative hypothesis H_1 when $p \leq \alpha$

The Test Statistic T

▶ Test statistic: free to choose any function subject to the qualitative constraint that it is *extreme* when H_0 is false

The Test Statistic T

- ▶ Test statistic: free to choose any function subject to the qualitative constraint that it is *extreme* when H_0 is false
- ▶ The choice of T depends on the alternative hypothesis H_1 , whatever we imagine possible if H_0 is false

The Test Statistic T

- ► Test statistic: free to choose any function subject to the qualitative constraint that it is *extreme* when *H*₀ is false
- ▶ The choice of T depends on the alternative hypothesis H_1 , whatever we imagine possible if H_0 is false
- ▶ The more precise H_1 can be stated, the more important it is to choose an appropriate test statistic T

Assumptions:

Let $r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$ denote the continuously compounded return on an asset

Assumptions:

- ▶ Let $r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$ denote the continuously compounded return on an asset
- ▶ $E(r_t) = \mu$ and $Var(r_t) = \sigma^2$ for all t

Assumptions:

- Let $r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$ denote the continuously compounded return on an asset
- ▶ $E(r_t) = \mu$ and $Var(r_t) = \sigma^2$ for all t
- ▶ Normality of returns: $r_t \sim \mathcal{N}(\mu, \sigma^2)$ for all t

Assumptions:

- Let $r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$ denote the continuously compounded return on an asset
- ▶ $E(r_t) = \mu$ and $Var(r_t) = \sigma^2$ for all t
- ▶ Normality of returns: $r_t \sim \mathcal{N}(\mu, \sigma^2)$ for all t
- No serial correlation: $Cov(r_s, r_t) = 0$ for $t \neq s$ $\implies R_s$ and R_t are independent

Sampling from Normal Populations

One Sample *t*-test The hypotheses are statements about the mean of a single normal population

Sampling from Normal Populations

- One Sample *t*-test The hypotheses are statements about the mean of a single normal population
 - Paired *t*-test A one sample *t*-test for the difference between two random variables
 - Requires that X_i must somehow correspond to Y_i

Sampling from Normal Populations

- One Sample *t*-test The hypotheses are statements about the mean of a single normal population
 - Paired *t*-test A one sample *t*-test for the difference between two random variables
 - ightharpoonup Requires that X_i must somehow correspond to Y_i

Two Sample *t*-test The hypotheses are statements about the means of two separate normal populations, many variations:

- ▶ Variance known: $\sigma_1^2 = \sigma_2^2$ or $\sigma_1^2 \neq \sigma_2^2$
- ▶ Equal variance (unknown): $\sigma_1^2 = \sigma_2^2$ estimated by pooled S^2
- ▶ Different variances (unknown): σ_1^2 estimated by S_1^2 and σ_2^2 estimated by S_2^2

Outline

Test Statistics

Testing a Hypothesis

Significance

p-Values

R Lab

> library(quantmod)

- > library(quantmod)
- > getSymbols("^RUT") #Russell 2000
- > getSymbols("IWL") #Russell Top 200

```
> library(quantmod)
```

```
> getSymbols("^RUT") #Russell 2000
```

> getSymbols("IWL") #Russell Top 200

> library(quantmod)

```
> getSymbols("^RUT") #Russell 2000
> getSymbols("IWL") #Russell Top 200
```

	RUT.Open	RUT.High	RUT.Low	RUT.Close	RUT.Adjusted
2007-01-03	788.31	796.62	779.31	787.42	787.42
2007-01-04	786.42	791.83	779.70	789.95	789.95
2007-01-05	787.70	787.70	774.55	775.87	775.87
2007-01-08	776.20	778.83	769.27	776.99	776.99
2007-01-09	777.10	778.74	768.69	778.33	778.33
2007-01-10	775.78	779.45	773.14	778.87	778.87

> library(quantmod)

```
> getSymbols("^RUT") #Russell 2000
> getSymbols("IWL") #Russell Top 200
```

	RUT.Open	RUT.High	RUT.Low	RUT.Close	RUT.Adjusted
2007-01-03	788.31	796.62	779.31	787.42	787.42
2007-01-04	786.42	791.83	779.70	789.95	789.95
2007-01-05	787.70	787.70	774.55	775.87	775.87
2007-01-08	776.20	778.83	769.27	776.99	776.99
2007-01-09	777.10	778.74	768.69	778.33	778.33
2007-01-10	775.78	779.45	773.14	778.87	778.87

- > R2000 <- monthlyReturn(RUT["2013"]\$RUT.Adjusted)
- > RT200 <- monthlyReturn(IWL["2013"]\$IWL.Adjusted)

```
> library(quantmod)
```

```
> getSymbols("^RUT") #Russell 2000
> getSymbols("IWL") #Russell Top 200
```

```
RUT.Open RUT.High RUT.Low RUT.Close RUT.Adjusted
          788.31 796.62
                        779.31
2007-01-03
                                 787.42
                                            787.42
2007-01-04 786.42 791.83 779.70
                                 789.95
                                            789.95
2007-01-05 787.70 787.70 774.55 775.87
                                            775.87
2007-01-08 776.20 778.83 769.27
                                 776.99
                                            776.99
                                 778.33
2007-01-09 777.10 778.74 768.69
                                            778.33
2007-01-10
          775.78 779.45 773.14
                                 778.87
                                            778.87
```

- > R2000 <- monthlyReturn(RUT["2013"]\$RUT.Adjusted)
- > RT200 <- monthlyReturn(IWL["2013"]\$IWL.Adjusted)
- > plot(density(R2000))
- > lines(density(RT200), lty = 2)

- > plot(density(R2000, bw = 0.015))
- > lines(density(RT200, bw = 0.0175), lty = 2)

- > plot(density(R2000, bw = 0.015))
- > lines(density(RT200, bw = 0.0175), lty = 2)

▶ Plain English: Are small cap returns larger than large cap returns?

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?

- Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)

- Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)
- [1] 0.5970462

- ▶ Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)
- [1] 0.5970462
- > qt(0.95, df = 11)

- Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)
- [1] 0.5970462
- > qt(0.95, df = 11)
- [1] 1.795885

- Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)
- [1] 0.5970462
- > qt(0.95, df = 11)
- [1] 1.795885
- > 1 pt(0.5970462, df = 11)

- Plain English: Are small cap returns larger than large cap returns?
- Statistics: Is the mean (μ_s) of the small cap returns distribution greater than the mean (μ_l) of the large cap returns distribution?
- ▶ Hypothesis Test: H_0 : $\mu_s \le \mu_l$ vs. H_1 : $\mu_s > \mu_l$?
- ▶ Paired Test: H_0 : $\delta_{\mu} = \mu_s \mu_l \le 0$ vs. H_1 : $\delta_{\mu} = \mu_s \mu_l > 0$?
- > d <- drop(coredata(R2000 RT200))</pre>
- > S2 <- var(d)
- > mean(d) / sqrt(S2 / 12)
- [1] 0.5970462
- > qt(0.95, df = 11)
- [1] 1.795885
- > 1 pt(0.5970462, df = 11)
- [1] 0.281282

```
> t.test(R2000, RT200, alternative = "greater", paired = TRUE)
```

```
> t.test(R2000, RT200, alternative = "greater", paired = TRUE)
Paired t-test
data: R2000 and RT200
t = 0.597, df = 11, p-value = 0.2813
alternative hypothesis: true difference in means is
                        greater than 0
95 percent confidence interval:
 -0.006060183
                       Tnf
sample estimates:
mean of the differences
            0.003018096
```


COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON

Department of Applied Mathematics

http://computational-finance.uw.edu