Modelos Lineares

Modelos Linearizados

Modelos não Lineares

Depto de Zoologia 09 de março de 2021

Modelos Lineares

- Variável dependente tem distribuição normal de resíduos e é função direta do modelo linear das variáveis independentes
- Variáveis independentes participam do modelo por meio de combinação linear dos parâmetros estimados
- As variáveis independentes podem ser contínuas ou categóricas (regressão, análise de variância, ou misto)
- O modelo é ajustado por meio do método de mínimos quadrados (podem existir outros). Os resíduos correspondem à variância não explicada pelo modelo
- Os parâmetros são testados com relação às hipóteses por meio de análise de variância

Exemplo de modelo linear

- Os três primeiros modelos são lineares
- Modelo linear significa soma linear dos parâmetros
- As *variáveis p*odem ser multiplicadas, divididas, exponenciadas. Os parâmetros a b c etc não.
- Neste caso só o quarto modelo precisa ser linearizado

Regression Model	Equation
Simple linear	Y = a + bX
Quadratic	$Y = a + bX + bX^2$
Logarithmic	$Y = a + b \log X$
Exponential	$Y = ae^{bx}$
	e = 2.7183

O que é Modelo Linearizado

- Ao fazer o ajuste observa-se que a variável dependente não se distribue de acordo com o modelo linear. Ou seja a distribuição dos resíduos da variável dependente no modelo não é normal (lembram do quadrante de Anscombe?)
- É aplicada uma função linearizante para reprojetar o modelo na escala da variável dependente, e normalizar os resíduos. A função linearizante é selecionada conforme a distribuição da variável dependente.
- Exemplos de funções linearizantes: poisson, binomial, gaussian(identidade), quasipoisson(log)
- Exemplos de variáveis dependentes que tem essas distribuições e usam este tipo de transformação: contagens de amostras (poisson), percentagens e sobrevivencia (binomial)

Modelos lineares mistos

- A variável independente foi amostrada com repetições não totalmente independentes (várias réplicas são relacionadas, por exemplo amostra de frutos de uma espécies inclui repetições da mesma árvore)
- Também chamado de modelo hierárquico

$$y = X\beta + Zu + \epsilon$$

Modelos não lineares: GAM

- GAM modelos aditivos generalizados. Não há premissa do modelo ser uma combinação linear ou linearizada dos parâmetros
- É estimado o ajuste usando métodos não paramétricos
- O modelo tem a fórmula geral. A variável Y tem distribuição da família exponencial e é transformada pela função g (pode ser log ou outra). As funções f podem ser bastante diversas e estimadas não paramétricamente

$$g(\mathbf{E}(Y)) = \beta_0 + f_1(x_1) + f_2(x_2) + \cdots + f_m(x_m).$$

Modelos não lineares: CART

- CART Classification and Regression Trees
- Ao invés de ajustar o modelo contínuo ou discreto, é feita uma partição dos dados e representada na forma de uma árvore. Os pontos de separação na árvore representam os valores da variável dependente que separam melhor a amostra total em subgrupos.

Funções no R para estimar modelos

- modelo linear: lm
- Modelo linear generalizado: glm
- Anova: aov
- Modelo não linear: gam
- Modelos de regressão ou classificação em árvore: tree
- IMPORTANTE: todas estas funções produzem objetos do tipo list em R contendo numerosos outros objetos como vetores que especificam os parâmetros estimados, os resíduos, os valores previstos, entre outros. Estes objetos podem ser inspecionados usando funções como summary, anova, plot, etc

Exemplo: alguns objetos gerados pela função lm

- coefficients: vetor com os parametros estimados
- residuals: vetor com o valor dos resíduos Y para cada X
- fitted.values: vetor com os valores estimados de Y para X
- df.residual: graus de liberdade dos resíduos
- terms, model: dados sobre o modelo usado
- ESTES objetos podem ser visualizados usando funções como summary, View, plot, anova, ou então usados como dados de entrada para análises posteriores

Como Selecionar Modelos

- Podemos testar várias combinações de variáveis independentes para ajustar o modelo.
- Como selecionar o melhor modelo?
- O método mais usado hoje é o AIC (Akaike Information Criteria)
- Cada modelo tem seu índice de Akaike. Selecionamos o modelo com o menor índice ou o melhor ajuste

Como interpretar os resultados dos modelos

- A qualidade do ajuste pode ser medida pelos resíduos (mínimos quadrados)
- A intensidade da associação entre variáveis independentes e dependentes pode ser avaliada pelo valor de cada parâmetro estimado e sua variável correspondente
- A significância do modelo (se é diferente de zero) pode ser avaliada pelo teste de significância de cada parâmetro (hipótese nula é de que o parâmetro é igual a zero, ou seja não há efeito).

Dados e exemplos usados na aula de hoje

- Artigo Abreu et al 2020 (J Appl Ecol) sobre biodiversidade da Serra do Fação com os dados originais e script em R depositado no Dryad. Modelo bayesiano hierárquico.
- Artigo Hoover et al 2020 (Condor) sobre modelos mistos para estimar determinantes de parametros reprodutivos de aves.
- Tutorial sobre GLM GAM E CART do Prof Pat Bartlein da Univ of Oregon: https://pjbartlein.github.io/GeogDataAnalysis/lec15.html