

Cours base de données

CHAPITRE 4: L'ALGÈBRE RELATIONNELLE

Dr Coulibaly Tiekoura

Année universitaire 2018/2019

PLAN DU COURS

- Introduction
- I. Les opérateurs unaires
 - I.1 La projection
 - I.2 La sélection
- II. Les opérateurs binaires ensemblistes
 - II.1 L'union
 - II.2 L'intersection
 - I.5 La différence
- III. Les opérateurs binaires ou n-aires
 - III.1 Le produit cartésien
 - III.2 La jointure
 - III.3 La division
- Conclusion

INTRODUCTION

- L'objet de l'algèbre relationnelle est de décrire les opérations qu'il est possible d'appliquer sur des relations pour produire de nouvelle relations.
- On peut distinguer 3 familles d'opérateurs relationnelles:
 - Les opérateurs unaires (projection, sélection)
 - Les opérateurs binaires ensemblistes (union, intersection, différence)
 - Les opérateurs binaires ou n-aires (produit cartésien, Jointure, Division)

I. LES OPÉRATEURS UNAIRES

Ils permettent de produire une nouvelle relation à partir d'une autre relation

I. LES OPÉRATEURS UNAIRES 1.1. LA SÉLECTION

- La sélection s'applique à une relation (R) et extrait de cette relation les tuples qui satisfont une condition de sélection (C).
- La condition peut être :
 - La comparaison entre un attribut de la relation et une constante.
 - Un ensemble de condition relié par des opérateurs logiques.

$$\odot$$
 On note : $\sigma(R)$

I. LES OPÉRATEURS UNAIRES I. 1. LA SÉLECTION (EXEMPLE)

Α	В	С
a	b	1
d	a	2
С	b	3
a	b	4
е	е	5

$$\sigma_{B='b'}(R)$$

Α	ВС	
a	b	1
С	b	3
a	b	4

Α	A B	
a	b	1
d	a	2

I. LES OPÉRATEURS UNAIRES I. 2. LA PROJECTION

 La projection s'applique à une relation pour extraire des attributs particuliers.

• On note : Π A1, A2, ..., Ak(R)

 La projection sur A1, A2, ..., Ak élimine tous les autres attributs de la relation et supprime les tuples dupliqués.

I. LES OPÉRATEURS UNAIRES I. 2. LA PROJECTION (EXEMPLE)

R(A,B,C)

Α	В	С
a	b	С
d	a	b
С	b	d
a	b	е
е	е	a

R1(A,B)

Α	В
a	b
d	a
С	b
е	е

$$-R1(A,B) = \prod A, B(R)$$

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES

ces opérateurs permettent de produire une nouvelle relation à partir de deux relations de même degré et de même domaine.

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II. 1. L'UNION

- L'union est une opération portant sur deux relations R1 et R2 ayant le même schéma.
- La relation résultante est constituée des tuples appartenant à chacune des deux relations R1 et R2 sans doublon.

on la note R1 U R2.

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II.1. L'UNION (EXEMPLE)

R

A B
a b
a c
d e

S

T=RUS

A	В
a	b
a	С
a	е
d	е
f	g

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II.2. L'INTERSECTION

- L'intersection est une opération portant sur deux relations R1 et R2 ayant le même schéma.
- La relation résultante est constituée des tuples appartenant auxdeux relations R1 et R2 à la fois.
- \bullet on la note R1 \cap R2.

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II.2. L'INTERSECTION (EXEMPLE)

R

A B
a b
a c

S

A B
a b
a e
d e
f g

 $R \cap S$

A B
a b
d e

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II.3. LA DIFFÉRENCE

- La différence est une opération portant sur deux relations R1 et R2 ayant le même schéma.
- L'expression R1 R2 a alors pour résultat tous les tuples de R1 qui ne sont pas dans R2.
- La différence est le seul opérateur qui permet d'exprimer des requêtes comportant une négation

II. LES OPÉRATEURS BINAIRES ENSEMBLISTES II.3. LA DIFFÉRENCE (EXEMPLE)

R

A B
a b
a c
d e

S

R-S

III. LES OPÉRATEURS BINAIRES OU N-AIRES

Ils permettent de produire une nouvelle relation à partir de deux ou plusieurs autres relations.

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.1. LE PRODUIT CARTÉSIEN

- Le produit cartésien est une opération portant sur deux relations R1 et R2.
- Le résultat d'un produit cartésien est une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R1 et R2.
- On la note R1 × R2.

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.1. LE PRODUIT CARTÉSIEN (EXEMPLE)

R

S

С	D	Е	
a	b	1	
d	a	2	

T = R X S

A	В	C	D	Ε
1	1	a	b	1
1	2	a	b	1
1	3	a	b	1
1	1	d	a	2
1	2	d	a	2
1	3	d	a	2

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.2. LA JOINTURE

- La jointure est une opération portant sur deux relations ou plusieurs.
- La jointure permet de construire une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R1 et R2 qui satisfont l'expression logique E.
- La jointure est notée R1
 E R2.

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.2. LA JOINTURE (EXEMPLE)

R

 A
 B
 C

 a
 b
 c

 d
 b
 c

 b
 b
 f

 c
 a
 d

S

 B
 C
 D

 b
 c
 d

 b
 c
 e

 a
 d
 b

Т

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.3. LA DIVISION

- La division est une opération portant sur deux relations R1 et R2, telles que le schéma de R2 est strictement inclus dans celui de R1
- La division génère une troisième relation regroupant toutes les parties d'occurrences de la relation R1 qui sont associées à toutes les occurrences de la relation R2.
- On la note R1 ÷ R2.

III. LES OPÉRATEURS BINAIRES OU N-AIRES III.3. LA DIVISION (EXEMPLE)

R

В

d e

a c

f e

f h

a d

d c

a e

d d

S

В

,

C

d

Т

Α

a

d

CONCLUSION

- Les opérateurs de l'algèbre relationnelle servent de base à l'élaboration et à l'analyse des interrogations faites sur des données.
- Une bonne maîtrise de l'algèbre relationnelle permet de concevoir n'importe quelle requête avant de la mettre en œuvre à l'aide du langage SQL.