Точка велосипедистов и косточка

Утверждение 1 (Косточка). В трапеции ABCD боковая сторона BC перпендикулярна основаниям. Тогда середина стороны AD равноудалена от вершин B и C

- 1. Даны две окружности, пересекающиеся в точках A и B. Тогда на плоскости найдется точка K с таким свойством: если провести через точку A произвольную прямую, пересекающую окружности вторично в точках P_1 и P_2 , то K будет равноудалена от середин хорд AP_1 и AP_2 .
- **2.** Даны две окружности, пересекающиеся в точках A и B. Тогда на плоскости найдется точка с таким свойством: если провести через точку A произвольную прямую, пересекающую окружности вторично в точках P_1 и P_2 , то эта точка будет равноудалена от P_1 и P_2 .
- **3 (IMO 1979).** Даны две окружности, пересекающиеся в точках A и B. Два велосипедиста едут по этим окружностям (каждый по своей) с постоянными скоростями и в одном направлении (либо оба по часовой стрелке, либо оба против). Они одновременно выезжают из точки B, делают один оборот и одновременно возвращаются в B. Тогда найдется неподвижная точка, которая все время равноудалена от велосипедистов.

Определение 1. Пусть две окружности имеют центры O_1 , O_2 и пересекаются в точках A и B. Тогда точку из предыдущей задачи относительно B будем называть V.

Упражнение 1. Докажите, что угол ABV прямой и что четырёхугольник O_1O_2BV вписанный.

- **4.** Сформулируйте и докажите теорему о двух велосипедистах для случая, когда велосипедисты двигаются по окружностям в разных направлениях.
- **5 (Ещё одна теорема о бабочке).** Через точку A, не лежащую на окружности, проведены две прямые, пересекающие эту окружность, одна в точках P_1 , P_2 , другая в точках Q_1 , Q_2 . Произвольная прямая, проходящая через A, пересекает окружность в точках M_1 , M_2 , а описанные окружности треугольников AP_1Q_1 и AP_2Q_2 в точках N_1 и N_2 соответственно. Тогда $M_1N_1=M_2N_2$.
- **6 (IMO 1985).** Дан треугольник ABC и окружность с центром в точке 0, проходящая через вершины B и C и повторно пересекающая прямые AB и AC в точках P и Q соответственно. Описанные окружности треугольников APQ и ACB имеют ровно две общие точки A и M. Тогда угол $\angle OMA$ прямой.
- 7. Пусть V точка двух велосипедистов данной пары окружностей. Если провести инверсию относительно любой окружности с центром V , то V останется точкой двух велосипедистов и для образов окружностей.