

Voronoi Diagram

Divide-And-Conquer

- Avoiding Rescans

Junhui DENG

deng@tsinghua.edu.cn

Monotonicity

Furthermore,

❖ Each time we flip a cell,
we add an edge to the un-flipped cell

- since each cell is itself convex, we know that ...
- ❖ Consecutive edges added to

 a same cell of the L/R sub-diagram

 always make an R/L turn

Amortization

❖ By keeping track of

the last (failure) position,

we needn't to start each scan

from the right beginning

❖As a result,

all the intersection tests with a cell

can be done in a total time

of O(n)

Complexity

- ❖ Up to now, we know that
 - The upper tangent can be computed in o(n + m) time;
 - cells will be clipped by the contour in o(n + m) time; and
 - we spend o(n + m) time to flip all cells
- ❖ As a whole,
 - two sub-diagrams can be merged in o(n + m) time, and
 - the divide-and-conquer algorithm computes the VD in $|o(n\log n)|$ time