

OVERVIEW

OUTLINE

- Business problem
- Data
- Methods
- Results
- Conclusions

BUSINESS PROBLEM

BUSINESS PROBLEM

Air Quality Data Set

The dataset contains 9358 instances of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an Air Quality Chemical Multisensor Device.

Data were recorded from March 2004 to February 2005.

Metal oxides studied include:

- CO
- Tin oxide
- Non Metanic HydroCarbons
- Benzene
- Titania
- NOx
- Tungsten oxide (nominally NO2 & NOx targeted)
- NO2
- Indium oxide

METHODS

- 1. Data exploration:
 - How do variables change over time?
 - How did the average of each variable change between 2014 and 2015?
- 2. Linear regression model:
 - Iteration process to improve the model by studying multicollinearity and interactions.
 - Model validation using train and testing subset.

RESULTS

Change of variables over time

— NMHCGT

10/03/2004 02/06/2004 24/08/2004 15/11/2004 07/02/2005

10/03/2004 02/06/2004 24/08/2004 15/11/2004 07/02/2005

NO2GT

Date

— PT08S3NOx

2500

RESULTS

Average differences between 2014 and 2015

Variable	Average 2014	Average 2015
CO(GT)	2.036723	2.030975
Tin oxide - PT08.S1(CO)	1061.597046	1041.919893
Non Metanic HydroCarbons - NMHC(GT)	29.435724	1.500000
Benzene - C6H6(GT)	10.338383	7.877303
Titania - PT08.S2(NMHC)	930.068214	815.172230
NOx - NOx(GT)	170.898312	308.375834
tungsten oxide - PT08.S3(NOx)	828.916174	720.461949
NO2 - NO2(GT)	79.611744	137.482198
Tungsten oxide - PT08.S4(NO2)	1502.120956	1074.207388
indium oxide - PT08.S5(O3)	980.447117	990.885180
Temperature - (T)	20.240605	9.494393
Relative humidty (RH) - PT08S5O3	46.753657	49.308055
Absolute humidty (AH)	1.151260	0.704977

RESULTS

Linear Regression Model

Final R-squared = 0.668 (Initial R-squared = 0.653)

Variables that positively impact Temperature

Variable	Coefficient	
C6H6(GT)	11.09684	
NO2(GT)	1.925704	
PT08.S4(NO2)	6.673217	

Variables that negatively impact Temperature

Variable	Coefficient	
CO(GT)	-0.561600	
PT08.S1(CO)	-4.501010	
PT08.S2(NMHC))	-5.678621	
NOx(GT)	-2.7477100	
PT08.S3(NOx)	-3.156382	
PT08.S5(O3)	-5.449668	

CONCLUSIONS

All the metal oxides studied in this model significantly affect T in Positano.

Benzene, NO2 and tungsten oxide (nominally NO2 targeted) positively contribute to T raise

Benzene is the one with the highest positive impact.

CO, tin oxide, Titania (PT08.S2), NOx(GT), indium oxide, and tungsten oxide (nominally 03 targeted) negatively contribute to T

Titania is the one with the highest negative impact.

BUSINESS RECOMMENDATIONS

- 1. Check the Temperature Sensor and repeat the study with newly collected data.
- 2. Investigate why the levels of NOx almost double in 2015.
- 3. In terms of regulation, since
 Benzene is the one that contributes
 the most to Temperature increase,
 we recommend that the new
 regulations aim to reduce the
 emissions of Benzene.

