

Novel Polyimide Battery Separator Imbibed with Room-Temperature Ionic Liquids

Dr. Rocco Viggiano (NASA GRC)

Dr. Baochau Nguyen (OAI)

Dr. James Wu (NASA GRC)

Dr. Liming Dai (CWRU)

Dr. Mary Ann Meador (NASA GRC)

Multifunctional Energy Storage to Improve Efficiency

Enable hybrid electric propulsion for commercial aircraft by coupling loadbearing structure with energy storage

Challenges

Producing a structure capable of bearing weight and resisting forces associated with flight

Risks

Current Li-Ion battery technology utilizes flammable components

Goals

Develop a separator/electrolyte system which possesses sufficient ionic conductivity with nonflammability

Hybrid electric aircraft with multifunctional storage could reduce emissions by 80% and fuel consumption by 60%

Polyolefin Separators used in Li-Ion Batteries

Separator/Properties	Celgard 2730	Celgard 2400	Celgard 2325	Asahi Hipore	Tonen Setela
Structure	Single Layer	Single Layer	Trilayer	Single Layer	Single Layer
Composition	PE	PP	PP/PE/PP	PE	PE
Thickness (µm)	20	25	25	25	25
Porosity (%)	43	40	42	40	41
Melt Temp. (°C)	135	165	135/165	138	137

- Polyethylene and polypropylene are among the most flammable polymers
- Limited number of electrolytes wet the polyolefins

Electrolytes Currently Used in Li-Ion Batteries

- Current Li-ion technology uses combinations of carbonates as the electrolyte
- The ionic conductivity of polyolefin separators imbibed with carbonates is ~10⁻² – 10⁻³ S/cm
- However, the carbonates are highly flammable

Separator Requirements for Li-Ion Batteries

Separator Requirements

- Electronic insulator
- Minimal electrolyte resistance
- Mechanical and dimensional stability
- Sufficient mechanical strength to allow manufacture
- Chemical resistance to degradation by electrolyte
- Readily wetted by electrolyte
- Porosity of at least 40%
- Uniform in thickness
- Thermal stability
- Shut-off temperature

Photo courtesy Cnet.com

Comparison of Commercial Separator and PI Aerogel

Celgard© PE Separator

Polyimide Aerogel

What are Aerogels?

Aerogels are a class of porous solids which exhibit many extreme properties which originate from a nanoporous skeletal architecture

- Highly porous solids made by drying a wet gel without shrinking
- Pore sizes extremely small (typically 10-40 nm)—makes for very good insulation
- 2-4 times better insulator than fiberglass under ambient pressure, 10-15 times better in light vacuum
- Invented in 1930's by Prof. Samuel Kistler

Silica Aerogel Monoliths

Development of Polyimide Aerogels

- Over 50 combinations of diamines and dianhydrides in the polymer backbone have been characterized
- Multiple cross-linkers have been investigated
- Properties dependent on backbone chemistry

Typical properties

- High porosity (>85%)
- Pore size 10-40 nm
- Open-cell fibrillar architecture
- High thermal stability
- Char-forming, non-flammable
- Tunable hydrophobicity
- Tunable mechanical properties
- Can be cast into flexible thin films

General Polyimide Reaction Scheme

Down Selection to ODA-BPDA-N3300A

- Many polyimide backbone chemistries were synthesized and characterized
- Several factors were considered in down selection: film forming, mechanical strength, porosity
- ODA-BPDA-N3300A formed thin, mechanically robust films, with porosities of 93%

Higher Ionic Conductivities for Films that have not been Dried

With 1-methyl-1-propylpyrrolidinium TFSI, conductivity is half when film is dried first

Physical Characteristics of ODA-BPDA-N3300A PI

Properties of Ionic Liquids

1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

Courtesy U.S. Department of Energy

- Room temperature ionic liquids (RTILs) consist of an asymmetric organic cation and a bulky anion with delocalized charge
- RTILs are nonvolatile and nonflammable
- Wide range of viscosities
- Highly polar
- **Tunable miscibility**
- Highly thermally stable imidizolium cation stable above 300 °C
- Most RTILs do not wet polyolefins

Screening Study of RT Ionic Liquids

1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

1-ethyl-3-methylimidazolium tetraborate

1,3-diethylimidazolium bis(trifluoromethylsulfonyl)imide

$$N$$
 $(CF_3SO_2)_2N$

1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

1-(2-methoxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

diethylmethylammonium trifluoromethanesulfonate

butyltrimethylammonium bis(trifluoromethylsulfonyl)imide

$$\oplus$$
N (CF₃SO₂)₂N⁻

N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethylsulfonyl)imide

$$\oplus$$
N (CF₃SO₂)₂N⁻

1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide

$$\bigvee_{\Theta} (CF_3SO_2)_2N$$

1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide

Viscosity Influenced but Did not Determine Conductivity

- All ILs use TFSI as the anion, except one which uses BF₄.
- Viscosity has an effect on conductivity, but not the only important factor
- Several ILs showed electrochemical instabilities or compatibility issues with anode/cathode

Down Selection to Three ILs

- The ammonium compounds eroded the current collectors
- 2-methoxyethyl imidizolium and 1-allyl imidizolium are unstable electrochemically
 - 1-ethyl-3-ethyl imidizolium BF₄ yellowed and degraded in the presence of the carbon cathode
- The propyl imidizolium possessed a low conductivity

- The 2 pyrrolidinium compounds displayed the highest degree of electrochemical stability
- EMIM TFSI showed the highest conductivity of the stable compounds
- The diethylimidizolium compound was more expensive and less conductive than EMIM TFSI 0

Ionic Conductivity Increases with High Porosity and Low Viscosity

- The porosity of the separator had a large influence on the ionic conductivity
- ODA-BPDA-N3300A produced the highest porosity samples
- Viscosity influenced conductivity when the porosity was the same

PI/EMIM TFSI Gel Separator Cycled for 14

Hours

EMIM TFSI is stable in the presence of the aluminum cathode and copper anode - no visible discoloration or reaction

PI/EMIM Gel Separator is Nonflammable Under **Direct Contact with Flame**

Conclusions and Future Work

- A separator based on a porous polyimide gel imbibed with an ionic liquid has been demonstrated
- Ionic conductivity increased as a function of increasing porosity and decreasing ionic conductivity
- The separator was stable in the presence of the copper anode or aluminum cathode over 14 hours cycling
- The separator was not flammable under direct exposure to flame

Acknowledgements

- Dr. Mary Ann Meador
- Dr. Baochau Nguyen
- Dr. Heidi Guo
- Dr. James Wu
- Dr. Liming Dai
- Stephanie Vivod
- Dan Scheiman
- Linda McCorkle
- Dr. Vadim Lvovich
- LMN Branch

Empirical modeling produces response surfaces

Variables

- X₁ = Total % Polymer (7%, 8.5%, 10%)
- $X_2 = n$ -Value (20, 30, 40)
- X_3 = Mole % Diamine (0%, 25%, 50%)

Multiple Linear Regression Analysis

Response

$$= C + C_2 X_1 + C_3 X_2 + C_4 X_3 + C_5 X_1^2 + C_6 X_2^2 + C_7 X_3^2 + C_8 X_1 X_2 + C_9 X_1 X_3 + C_{10} X_2 X_3$$

Analysis of Variation (ANOVA Table)

- **Backward Stepwise Regression Analysis**
- Statistically insignificant terms are removed from model sequentially until only significant terms remain (p < 0.1)

Typical Battery Configurations

(a) button cell; (b) stack lead-acid; (c) spiral wound cylindrical lithium-ion; (d) spiral wound prismatic lithium-ion