

Modern Digital System Design

ECE 2372 / Fall 2018 / Lecture 02

Texas Tech University Dr. Tooraj Nikoubin

Logic Gates and Boolean Algebra

Logic Functions

Logical functions can be expressed in several ways:

- * Truth table
- * Logical expressions
- * Graphical form

Boolean Algebra

- Computer hardware using binary circuit greatly simply design
- Binary circuits: To have a conceptual framework to manipulate the circuits algebraically
- George Boole (1813-1864): developed a mathematical structure –To deal with binary operations with just two values.

Basic Gates in Binary Circuit

- Element 0: "FALSE". Element 1: "TRUE".
- '+' operation "OR", '*' operation "AND" and 'operation "NOT".

AND Gate

One "0" value as a input is enough to set the output "0"

OR Gate

One "1" value as a input is enough to set the output "1"

NOT Gate (Inverter)

X	R=X' R= NOT X	
0	1	
1	0	

$$Y = \overline{A} = A$$
'

Logic Gates: NAND, NOR

Logic Gates: XOR, XNOR

A	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	В	A XNOR B
0	0	1
0	1	0
1	0	0
1	1	1

XOR: Exclusive OR XNOR: Exclusive NOR

Boolean Algebra B: 5-tuple

+ and * are binary operators,
'is a unary operator. $Y = \overline{A} = A$ '

- Axiom #1: Closure
 If a and b are Boolean
 (a + b) and (a * b) are Boolean.
- Axiom #2: Cardinality
 if a is Boolean then a' is Boolean
- Axiom #3: Commutative

$$(a + b) = (b + a)$$

 $(a * b) = (b * a)$

• Axiom #4: Associative : If a and b are Boolean

$$(a + b) + c = a + (b + c)$$

 $(a * b) * c = a * (b * c)$

•Axiom #5: Distributive

$$a * (b + c) = (a * b) + (a * c)$$

 $a + (b * c) = (a + b) * (a + c)$

2nd one is Not True for Decimal numbers System

•Axiom #6: Identity Element :

B has identity to + and *

0 is identity element for +: a + 0 = a

1 is identity element for *: a * 1 = a

•Axiom #7: Complement Element

$$a + a' = 1$$

$$a * a' = 0$$

Terminology

Juxtaposition implies * operation:

$$ab = a * b = a.b$$

Operator order of precedence is:

$$a+bc = a+(b*c) \neq (a+b)*c$$

$$ab' = a(b') \neq (a*b)'$$

Named Theorems

Idempotent	a + a = a	a * a = a
Boundedness	a + 1 = 1	a * 0 = 0
Absorption	a + (a*b) = a	a*(a+b) = a
Associative	(a+b)+c=	(a*b)*c=
	a+(b+c)	a*(b*c)

Involution	(a')' = a	
DeMorgan's	(a+b)' = a' * b'	(a*b)'=a' + b'

Logical Expression Simplification

Three basic methods

- * Algebraic manipulation
 - » Use Boolean laws to simplify the expression
- Difficult to use
- Don't know if you have the simplified form
- * Karnaugh map method
 - » Graphical method
 - » Easy to use
- Can be used to simplify logical expressions with a few variables
- * Quine-McCluskey method
 - » Tabular method
 - » Can be automated

Simplification Theorem

• Uniting:

$$XY + XY' = X$$
 $X(Y+Y')=X.1=X$ $(X + Y)(X + Y') = X$ $XX+XY'+YX+YY'=X+X(Y+Y')+0=X$

Absorption:

$$X + XY = X$$
 $X(1+Y)=X.1=X$
 $X(X + Y) = X$ $XX+XY=X+XY=X$

Adsorption

$$(X + Y')Y = XY$$
, $XY' + Y = X + Y$ $XY+YY'=XY+0=XY$

N-bit Boolean Algebra

Single bit to *n-bit* Boolean Algebra

Let
$$a = 1101010$$
, $b = 1011011$

$$a + b = 1101010 + 1011011$$

$$a + b = 1101010 + \frac{1011011}{1111011}$$

$$a * b = 1101010 *$$

$$\frac{1011011}{1001010}$$

$$a' = \frac{1101010'}{0010101}$$

Proof by Truth Table

Consider the distributive theorem:

$$a + (b * c) = (a + b)*(a + c)$$

Is it true for a two bit Boolean Algebra?

- Can prove using a truth table
- -How many possible combinations of *a*, *b*, and *c* are there?
- Three variables, each with two values

$$-2*2*2 = 2^3 = 8$$

Proof by Truth Table

а	b	С	b*c	a+(b*c)	a+b	a+c	(a+b)*(a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

$$a + (b * c) = (a + b)*(a + c)$$

Proof using Theorems

Use the properties of Boolean Algebra to proof

$$(x+y)(x+x)=x$$

Warning, make sure you use the laws precisely

(x+y)(x+x)	Given
(x+y)x	Idempotent
x(x+y)	Commutative
x	Absorption

Converting to Boolean Equations

Convert the following English statements to a Boolean *a* equation – Q1. a is 1 and b is 1.

Answer: F = a AND b = ab

- Q2. either of a or b is 1.

Answer: F = a OR b = a+b

- Q3. both a and b are not 0.

Answer:

- (a) Option 1: F = NOT(a) AND NOT(b) = a'b'
- (b) Option 2: F = a OR b = a+b

- Q4. a is 1 and b is 0.

Answer: F = a AND NOT(b) = ab'

Complete sets

- * A set of gates is complete
 - » if we can implement any logical function using only the type of gates in the set
 - You can uses as many gates as you want
- * Some example complete sets
 - » {AND, OR, NOT}

Not a minimal complete set

- » {AND, NOT}
- » {OR, NOT}
- » {NAND}
- » {NOR}
- * Minimal complete set
 - A complete set with no redundant elements.

Equation to a Circuit of Logic Gates

Q: Convert the following equation to logic gates: F = a AND NOT(b OR NOT(c))

Some Circuit Drawing Conventions

Duality examples

$$x + 0 = x$$

 $x + x' = 1$
 $A + B'C$
 $A'B' + AB$

NAND & NOR are universal

NAND & NOR are universal

Multi-input gate

Effect of 0 & 1 on logic gates

0 & 1 for OR Logic Gates for AND Logic Gates for XOR Logic Gates for XNOR Logic Gates

Canonical form or Standard Form

- Canonical forms
- -Sum of minterms (SOM)
- -Product of maxterms (POM)
- Standard forms (may use less gates)
- -Sum of products (SOP)
- -Product of sums (POS)

```
F = ab+a' (already sum of products : SOP)
```

F = ab + a'(b+b') (expanding term)

F = ab + a'b + a'b' (it is canonical form : SOM)

Example: 3 - Input Majority Function

Shannon Expansion


```
F(X, Y, Z)= X . F(1,Y,Z) + X'. F(0, Y, Z)
Example:
XY+X'Z+YZ
=X. (1.Y+0.Z+YZ) + X' (0.Y+1.Z+YZ)
=X.(Y+YZ)+X'(Z+YZ)
=X.(Y(1+Z))+X'(Z(1+Y))
= X(Y.1)+X'(Z.1)
```

=XY+X'Z

Consensus Theorem

Principle of Duality

- Dual of a statement S is obtained
 - By interchanging * and +
 - By interchanging 0 and 1
- Dual of (a*1)*(0+a') = 0 is (a+0)+(1*a') = 1

Basic building block:

- » Transistor
- Three connection points
- * Base
- * Emitter
- * Collector
- Transistor can operate
- * Linear mode
 - » Used in amplifiers
- * Switching mode
 - » Used to implement digital circuits

Basic building block:

Level of voltages for Low and High

- Low voltage level: < 0.4V
- High voltage level: > 2.4V
- Positive logic:
 - * Low voltage represents 0
 - * High voltage represents 1
- Negative logic:
 - * High voltage represents 0
 - * Low voltage represents 1
- Propagation delay
 - * Delay from input to output
 - * Typical value: 5-10 ns

Integration levels

- * SSI (small scale integration)
 - » Introduced in late 1960s
 - » 1-10 gates (previous examples)
- * MSI (medium scale integration)
 - » Introduced in late 1960s
 - » 10-100 gates
- * LSI (large scale integration)
 - » Introduced in early 1970s
 - » 100-10,000 gates
- * VLSI (very large scale integration)
 - » Introduced in late 1970s
 - » More than 10,000 gates

Logic Chips (SSI)

SSI: small scale integration

1.
$$A_1 \cdot (A_1 + A_2) = A_1$$

2.
$$A_1 \cdot (A_1' + A_2) = A_1 \cdot A_2$$

3.
$$A_1 + (A_1' \cdot A_2) = A_1 + A_2$$

4.
$$A_1 \cdot A_2 + (A_1 \cdot A_2') = A_1$$

5.
$$(A_1 + A_2) \cdot (A_1 + A_2') = A_1$$

0.0=0	$X \cdot X = X$
0.1=0	$X \cdot X' = 0$
1.0=0	$X' \cdot X = 0$
1.1=1	$X' \cdot X' = X'$

0+0=0	X + X = X
0 + 1 = 1	X + X' = 1
1 + 0 = 1	X' + X = 1
1 + 1 = 1	X' + X' = X'

1.
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

 $\overline{\overline{Y}} = Y$

$0 \cdot \mathbf{X} = 0$	0 + X = X
$0 \cdot \mathbf{X}' = 0$	0 +X' =X'
1 . X = X	1 + X = 1
1.X'=X'	1+ X' = 1

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{AC + \overline{BD}} = \overline{AC} \cdot (\overline{BD})$$

Boolean Algebra

Boolean identities			
Name	AND version	OR version	
Identity	$\mathbf{x} \cdot 1 = \mathbf{x}$	$\mathbf{x} + 0 = \mathbf{x}$	
Complement	$\mathbf{x} \cdot \overline{\mathbf{x}} = 0$	$x + \overline{x} = 1$	
Commutative	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	
Distribution	$x \cdot (y+z) = xy+xz$	$\mathbf{x} + (\mathbf{y} \cdot \mathbf{z}) =$	
		(x+y)(x+z)	
Idempotent	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	x + x = x	
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1	

Boolean Algebra (cont'd)

• Boolean identities (cont'd)

Name	AND version	OR version
Involution	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$	
Absorption	$\mathbf{x} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}$	$\mathbf{x} + (\mathbf{x} \cdot \mathbf{y}) = \mathbf{x}$
Associative	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$\mathbf{x} + (\mathbf{y} + \mathbf{z}) =$
		(x+y)+z
de Morgan	$\overline{\mathbf{x}\cdot\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	$\overline{x + y} = \overline{x} \cdot \overline{y}$

Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

1.
$$X + 0 = X$$

1D.
$$X \cdot 1 = X$$

$$2. X + 1 = 1$$

$$2D. X \cdot 0 = 0$$

Idempotent laws:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

Involution law:

4.
$$(X')' = X$$

Laws of complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

Commutative laws:

6.
$$X + Y = Y + X$$

6D.
$$XY = YX$$

Associative laws:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

7D.
$$(XY)Z = X(YZ) = XYZ$$

Distributive laws:

$$8. X(Y+Z) = XY + XZ$$

8D.
$$X + YZ = (X + Y)(X + Z)$$

Simplification theorems:

$$9. XY + XY' = X$$

$$+XY'=X 9D. (X+Y)(X+Y')=X$$

$$10. X + XY = X$$

10.
$$X + XY = X$$

11. $(X + Y')Y = XY$
11. $(X + Y')Y = XY$
11. $(X + Y')Y = XY$

DeMorgan's laws:

12.
$$(X + Y + Z + ...)' = X'Y'Z'...$$

12D.
$$(XYZ...)' = X' + Y' + Z' + ...$$

Duality:

13.
$$(X + Y + Z + ...)^D = XYZ...$$

13D.
$$(XYZ...)^D = X + Y + Z + ...$$

Theorem for multiplying out and factoring:

14.
$$(X + Y)(X' + Z) = XZ + X'Y$$

14D.
$$XY + X'Z = (X + Z)(X' + Y)$$

Consensus theorem:

15.
$$XY + YZ + X'Z = XY + X'Z$$

15D.
$$(X + Y)(Y + Z)(X' + Z)$$

= $(X + Y)(X' + Z)$

Thank You