Measure Theory: Exercises (not for credit)

Josephine Evans

October 29, 2021

Question 1. Show that the definition of the integral for a non-negative function is consistent with the defintion of the integral for simple functions. That is to say if $f = \sum_k a_k 1_{A_k}$ is a simple function then

$$\sum_{k} a_k \mu(A_k) = \sup \{ \mu(h) : h \text{ simple}, h \le f \}$$

Answer: To write the answer it is convinient to write $\mu(h)$ for our integral on simple functions defined by $\mu(\sum_{k=1}^n a_k 1_{A_k}) = \sum_k a_k \mu(A_k)$ and $\mu_*(f) = \sup\{\mu(h) : h \text{ simple}, h \leq f\}$. We want to show that μ and μ_* agree on simple functions. As f is a simple function with $f \leq f$ we have that $\mu_*(f) \geq \mu(f)$. We also know that integration with respect to μ is monotone on simple functions so if $h \leq f$ and h simple the $\mu(h) \leq \mu(f)$ so taking supremums over all possible such h gives $\mu_*(f) \leq \mu(f)$. Therefore $\mu_*(f) = \mu(f)$.

Question 2. Let f be an integrable, real valued function on a measure space (E, \mathcal{E}, μ) . Suppose that $\mu(f1_A) = 0$ for every $A \in \mathcal{E}$ show that this implies that f = 0 almost everywhere. Let \mathcal{A} be a π -system generating \mathcal{E} and containing E. Suppose that $\int f1_A\mu(\mathrm{d}x) (= \mu(f1_A)) = 0$ for every $A \in \mathcal{A}$ show that then f = 0 almost everywhere.

Answer: For the first part we know that $f^{-1}([0,\infty)) \in \mathcal{E}$ therefore $\int f 1_{f\geq 0} \mu(\mathrm{d}x) = 0$ since $f 1_{f\geq 0}$ is non-negative the results from lectures imply that $f 1_{f\geq 0} = 0$ almost everywhere. We can argue similarly to see that $f 1_{f<0} = 0$ almost everywhere.

For the second part consider $\mathcal{D} = \{A \in \mathcal{E} : \mu(f1_A) = 0\}$. Then suppose $A, B \in \mathcal{D}$ and $A \subseteq B$ then $\mu(f1_{B\setminus A}) = \mu(f1_B) - \mu(f1_A) = 0$ so $B \setminus A \in \mathcal{D}$. Suppose also that $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ then $|f1_{A_n}| \leq |f|$ and $f1_{A_n} \to f1_A$ where $A = \bigcup_n A_n$. So by dominated convergence $\mu(f1_{A_n}) = \mu(f1_A)$ therefore if the $A_n \in \mathcal{D}$ for every n then $\mu(f1_A) = \lim_n \mu(f1_{A_n}) = 0$, so $A \in \mathcal{D}$. We also have that $A \subseteq \mathcal{D}$ and $E \in \mathcal{A}$ so \mathcal{D} is a d-system and so by Dynkin's lemma it contains $\sigma(\mathcal{A}) = \mathcal{E}$.

Question 3. Find a three sequences of real valued integrable functions, $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, $(h_n)_{n\geq 1}$, all of which converge to 0 almost everywhere and where

- $\lim_{n} \int f_n(x) dx = \infty$
- $\lim_{n} \int g_n(x) dx = 1$
- $\limsup_{n} \int h_n(x) dx = -\liminf_{n} \int h_n(x) dx = 1$.

Answer: We can take $f_n = n^2 1_{[0,1/n)}$ then $\lambda(f_n) = n$ for every n, but $f_n(x)$ converges to 0 everywhere except x = 0.

We can take $g_n = n1_{[0,1/n)}$.

We can take $h_n = (-1)^n n 1_{[0,1/n)}$

Question 4. Let $(f_n)_{n\geq 1}$ be a sequence of real valued measurable functions on (E,\mathcal{E},μ) . Suppose that f_1 is integrable and $f_1(x) \leq f_2(x) \leq f_3(x) \leq \ldots$ for every x and $f_n(x) \to f(x)$. Show that $\lim_n \int f_n(x) \mu(\mathrm{d}x) = \int f(x) \mu(\mathrm{d}x)$.

Answer: So define $g_n = f_n - f_1$ then g is an increasing sequence of non-negative real valued measurable functions and $g_n \to f - f_1$ so by monotone convergence $\mu(g_n) \to \mu(f - f_1)$ therefore $\mu(f_n) \to \mu(f)$ by adding $\mu(f_1)$ which is finite, to each side.

Question 5. In lectures we proved Beppo-Levi as a consequence of the monotone convergence theorem. Show that if we assume the result in Beppo-Levi then we can prove the monotone convergence theorem as a consequence.

Answer: Suppose that f_n is an increasing sequence of non-negative, real vauled, measurable functions. Define $g_n = f_n - f_{n-1}$ for $n \ge 2$ and $g_1 = f_1$, then the g_n are all non-negative and measurable. Then we have that $f_n = \sum_{k=1}^n g_n$ and $f = \sum_{n=1}^\infty g_n$. Then by the conclusion of Beppo-Levi we have $\mu(f) = \mu(\sum_n g_n) = \sum_n \mu(g_n) = \lim_n \sum_{k=1}^n \mu(g_n) = \lim_n \mu(\sum_{k=1}^n g_n) = \lim_n \mu(f_n)$ so the conclusion of the monotone convergence theorem holds.