

FIGURE 1

ACTGCACCTCGGTTATCGATTGAATTCCCCGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACCGCGTCCGGGCCGGAGCAGCACGCCGCAGGACCTGGAGCTCCGGCTCGTCTCCCG
CAGCGCTACCCGCCATCGCCTGCCGCCGGGGCGCTGGGCTCCTGCCGCTTGCTG
CTGCTGCCGCCGCCGGAGGCCAAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGGACACCGCAAAGAAGAACTTGGCGCGGGAAACA
CGGCTTGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCGAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGTGGCTCAGCTGAAGAGCGAATATCCTGACTTATTGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCAGTGTCTCGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGGCCACTGCAGCGAGATGGAGCAGACA
GGCGACGGGTCTGCCGGTGCACATGGGTACCAGGGCCGCTGTGACTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAACGAGACCCACAGCATTGACAGCCTGTGACGAGTCC
TGCAAGACGTGCTCGGCCCTGACCAACAGAGACTGCCGGAGTGTGAAGTGGCTGGGTGCT
GGACGAGGGCGCTGTGGATGTGGACCGAGTGTGCGGCCAGCCGCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGAAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCAGGGAGCA
CGGACAGTGTGCAGATGTGGACGAGTGCCTACTAGCAGAAAAACCTGTGTGAGGAAAAACG
AAAATGCTACAATACTCCAGGGAGCTACGTCTGTGTGCTGACGGCTTCGAAGAAACG
GAAGATGCCGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGCGAAGACCTGTAATGTGCCGGACTTACCCCTAAATTATTAGAAGGATGTCC
CGTGGAAAATGTGGCCTGAGGATGCCGTCTGCAGTGGACAGCGGGAGAGGCTGC
CTGCTCTCTAACGGTTGATTCTCATTTGCCCTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATATTTGATACAGTTCTTGTAAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAGGGCGGCCGACTCTAGAGTGCACCTGCAGAAGC
TTGCCGCCATGGCCCAACTGTTATTGCAGCTATAATGGTTACAAATAAGCAATAGCA
TCACAAATTCAAAATAAGCATTTCAGCTAGTTGTGGTTGCTCAAAC
ATCAATGTATCTTATCATGTCTGGATCGGGATTAATTCCGCGCAGCACCATGCCCTGAAAT
AACCTCTGAAAGAGGAACCTGGTTAGGTACCTCTGAGGCGAAAGAACCGAGCTGTGGAATG
TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAGCAG
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLLPLLLLPPAPEAAKKPTPCHRGRGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG
NGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCSGLTNRDCGECEVGWLDE
GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPNCKECISGYAREHGQCADVDEC SLAEKT
CVRKNENCYNTPGSYVCVCPDGFETEDACVPPAEEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TGCACCTCGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC
GACCTCGACCCACGCGTCCGCCAGGCCGGAGGCAGCGCCAGCGTCTAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGGCCAGGTTGCGTAGGTGCG
GCACGAGGAGTTTCCCGCAGCGAGGAGGTCTGAGCAGC **ATGGCCCGGAGGAGCGCCTTC**
CCTGCCGCCGCGCTCTGGCTCTGGAGCATCCTCCTGTGCCTGCTGCCACTGCCGGAGGC
CGGGCCGCCGCAGGAGGAGGCCTGTACCTATGGATCGATGCTCACCAAGGAAAGAGTACTCA
TAGGATTGAAGAAGATACTTGATTGTTCAGAGGGAAAATGGCACCTTACACATGAT
TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCTGTCAATATCCATTCCATGAATTTCAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTTCTATGAATTCTGTCTTGCCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGAAACAGTGCCCTACAAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGAAACACCATTCTCAAACACACTCAAATGCTATCT
TCTTAAACATGTCAACAAGCTGAGTCCCAGGGTGCAGAACATGGAGGCTTTGTAAT
GAAAGACGCATCTGCGAGTGTCTGATGGTTCCACGGACCTCACTGTGAGAAAGCCCTTG
TACCCACGATGTATGAATGGTGGACTTGTGACTCCTGGTTCTGCATCTGCCACCTG
GATTCTATGGAGTGAAC TGTGACAAAGCAAACACTGCTCAACCACCTGCTTAATGGAGGGACC
TGTTCTACCCCTGGAAAATGTATTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCTGCGAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGT
CCAAAGGTTACCAAGGGAGACCTCTGTTCAAAGCCTGTCTGCAGCCTGGCTGTGGTCACAT
GGAACCTGCCATGAACCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGCGCCAGCTCAGGCAGC
ACACGCCCTCACTTAAAAGGCCGAGGAGCGGGATCCACCTGAATCCAATTACATCTGG
TGAACTCCGACATCTGAAACGTTTAAGTTACACCAAGTTCATAGCCTTGTAAACCTTCA
TGTGTTGAATGTTCAAATAATGTTCAATTACACTTAAGAATACTGCCCTGAATTTCATTAGCT
TCATTATAAAATCACTGAGCTGATATTACTCTTCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTCTTCTGTTCACTGCTGGACAGATTTATATTATGTCAATTGA
TCAGGTTAAAATTTCAGTGTAGTTGGCAGATATTCTAAAATTACAATGCAATTGTT
GTCTGGGGCAGGGAACATCAGAAAGGTTAAATTGGGAAAAATGCGTAAGTCACAAGAAT
TTGGATGGTCAGTTAATGTTGAAGTTACAGCATTTCAGATTATGTCAGATATTAGAT
GTTGTTACATTTTAAAATTGCTCTTAATTTCAGACTCTAATACAATATATTGACC
TTACCAATTCCAGAGATTCACTGTTAGTTAAAAAAATTACACTGTGGTAGTGGCATT
AAACAATATAATATCTAAACACAATGAAATAGGAATATAATGTATGAACCTTGCAT
TGGCTTGAAGCAATATAATATTGTAACAAAACACAGCTCTTACCTAATAAACATTTAT
ACTGTTGTATGTATAAAATAAAGGTGCTGCTTAGTTTTGGAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAGGGCGGCCGCACTCTAGAGTCGACCTGCAGAAGCTTGGC
GCCATGGCCCAACTTGTATTGCAGCTTATAATG

FIGURE 4

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLALRAEAGPPQEEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNGGFCNERRICECPDGFHGPHEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKIGKSCKCCKSKGYQGDLCSPVVC
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP
PESNYIW
```

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGCGTGGCGTCGGCGGTGCAGAGCCAGGAGGCCAGGAGGCCACC**ATGTGGCGATGTCCACTGGGGCTAC**
TGCTGTTGCTGCCGCTGGCTGGCCACTTGGCTCTGGGTGCCACGAGGGTCGTGGCGCCGG
GAGCTAGCACCGGGCTCGCACCTGCAGGGCATCCGGACGCCGGAGGCCGGTACTGCCAGGA
GCAGGACCTGTGCTGCCGCGCGTGCAGCAGACTGTGCCCTGCCACCTGGCGCCATCT
GTTACTGTGACCTCTTGCAACCGCACGGTCTCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGCGTGCCACCCCCCTTCCCCGATCCAAGGATGTATGCATGGAGGTGCTATCTA
TCCAGTCTTGGAACGTACTGGACAACGTAAACCGTTGCACCTGCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACACAGGCCCTCTGGGCATGACCCTGGATGAGGGCATTGCTACGCCTGGCACCA
TCCGCCCATCTCCTCGGTATGAACATGCATGAAATTATACTAGTGCTGAACCCAGGGAG
GTGCTTCCCACAGCCTCGAGGCCTCTGAGAACGTGGCCAACCTGATTGAGCCTCTGA
CCAAGGCAACTGTGCAGGCTCTGGCCTCTCCACAGCAGCTGTGCATCCGATGTGTCT
CAATCCATTCTCTGGGACACATGACGCCGTGCCTGTCGCCCCAGAACCTGCTGTGAC
ACCCACCAGCAGCAGGGCTGCCCGTGGCGTCTCGATGGTGCCTGGTGGTCCCTGCGTCG
CCGAGGGGTGGTGTCTGACCACTGCTACCCCTCTCGGGCGTGAACGAGACGGAGCTGGCC
CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGGCCAGGCCACTGCC
CACTGCCCAACAGCTATGTTAAACAAATGACATCTACCAAGTCACTCCTGTCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAACGGCCCTGTCAAGCCCTCA
TGGAGGTGCATGAGGACTTCTTCCATACAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATACGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGGAAGGACGCTCAAATACTGGACTGCGCCAACCTGGGCC
CAGCCTGGGGCGAGAGGGCCACTTCCGCATCGTGCAGCGTCAATGAGTGCAGATCGAG
AGCTCGTGTGGCGTCTGGGCCTGGGCAGGGCATGGAGGACATGGGTCACTGAGGCTG
CGGGCACCACGCCGGTCCGGCTGGATCCAGGCTAAGGGCGGGCGGAAGAGGCCCAATG
GGCGGTGACCCAGCCTGCCGACAGAGGCCGGCGCAGGCCGGGCCAGGGCGCTAAT
CCCGCGCGGGTTCCGCTGACGCAGGCCCGCTGGGAGGCCGGCAGGCCAGACTGGCG
GAGCCCCAGACCTCCAGTGGGGACGGGGCAGGGCTGGGAGAGCACAGCTGCAG
ATCCCAAGGCCCTGGGCCCTCAAGACTACCAAGGCAGGACACCTCAAGTCTCCAGC
CCCAATAACCCACCCAAATCCGTATTCTTTTTTTTTAGACAGGGCTTGCTCCG
TTGCCCAAGGTGGAGTGCAGTGCCTCAGGGCTCACTGTAACCTCCGACTCTGGTTCA
AGTGAACCTCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCACACCTGGC
TAATTTGTATTTGTAAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTCGAACT
CCTGGGCTCAAGCGGTCCACCTGCCTCCGCCTCCAAAGTGCTGGATTGCAGGCATGAGCC
ACTGCACCCAGCCCTGTATTCTTATTCTCAGATATTATTTCTTCACTGTTAAAAA
TAAAACCAAAGTATTGATAAAAAAAA

FIGURE 6

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18359, pI: 7.45, NX(S/T): 1
MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQLCCRGRAADD
ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGTYWDNCNR
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEQRLLGHDPG
```

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTTGGCCCTTTCCACAGCAAGCTTNTGCNATCCCGATTGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCCTGCTCCTTNGCCCCAGAACCTGCTGTCTGTACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTCTGCCTGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGCGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGG
TGCATGAGGACTTCTTCTTACAGGGAGGCATCTACAGCCACAGGCCAGTGAGCCTTGGG
AGGCCAGAGAGATAACGCCGGCATGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCTTGCCTGCAGCCAGGCACTGCCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGATGACTGCCTGCAGGTGGAGAATGTCACCCAGCTGGGG
GAGCAGTGCTGGACCCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGGCCATGCCCTGCAGCCGGCTGCCGCCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGACCCGCCAGCTATAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTCCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCCAGTGGAGCCTGTCCGTGGTCCCTGAGGCACATCCTAACGCAAGTCTGACCATGTTGT
CTGCACCCCTGTCCCCCACCCGTACCCCTCCCATGCCCTCTCCAGGACTCCCACCCGGCAGA
TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCTCCAACCCCTCTGCTGCTGTTTC
CATGGCCCAGCATTCTCCACCCTTAACCCCTGTGCTCAGGCACCTCTCCCCCAGGAAGCCTT
CCCTGCCACCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA
GGGGACAGGCACTCAGGAGGGCCCAGTAAAGGGTGAGATGAAGTGGACTGAGTAGAAACTGGA
GGACAAGAGTCGACGTGAGTTCCGTGGAGTCTCCAGAGATGGGCCTGGAGGCCTGGAGGAA
GGGGCCAGGCCTCACATTCGTGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT
AATAAACACCTGTTGGATAAGCAAAAAAA

FIGURE 9

MTHRTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHDPPMALSRTPTRQISSLDT
DPPADGPSNPLCCCFHGPAFSTLNTPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCCATCGCGTCCGAACCTCTCCAGCGATGGGAGCCGCCGCCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGCGCCATGACC
GACCAGCTGAGCAGGCCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTGCAGGTACCGGGCGTCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATGGGAAGCCCAGCGGGAAAGAGCAAAGACTG
CGTGTTCACGGAGATCGTGGAGAACAACTATA CGGCCTTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACGCCGCAGGGCGGCCAGGCTTCCGCAGGCCAGAAC
CAGCGCGAGGCCCACTTCATCAAGGCCCTTACCAAGGCCAGCTGCCCTCCCCAACCACGC
CGAGAAGCAGAAGCAGTTGAGTTGGCTCCGCCCCACCCGCCGACCAAGCGCACAC
GGCGGCCAGCCCTCACGTAGTCTGGGAGGCAGGGGGCAGCAGGCCCTGGCCGCCTCCC
CACCCCTTCCCTTAATCCAAGGACTGGCTGGGTGGCGGGAGGGGAGCCAGATCCCC
GAGGGAGGACCCCTGAGGCCCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCTTCCGGACGGTGGCAGGCCCTGGAGAGGAAC
GAGTGTCAACCTGATCTCAGGCCACCAGCCTCTGCCGCCCTCCAGCCGGCTCCTGAAGCC
CGCTGAAAGGTCA CGCACTGAAGGCCTTG CAGACAACCGTCTGGAGGTGGCTGT CCTCAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTTCCAGCCCCAAACTCCTCCTGGCTAGACTGTA
GGAAGGGACTTTGTTGTTGTTGTTCAAGGAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCACCCCCACTCCCAGCCC
CGGAATAAAACCATTTCCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHKVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAATTCTCCCTGTTGAATTTCGCACATGGAG
GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCACAGAACCCATCCAGT
CATTGATTGCTGTTATTCTTTCTTTCTCCACCATTTGATTTAT
TTCCGTACTTCAGAAATGGGCTACAGACCACAAAGTGGCCCAGCCATGGGCTTTTCCT
GAAGTCTTGGCTTATCATTCCCTGGGCCTACTCACAGGTGTCCAAACTCCTGGCCTGCC
CTAGTGTGTGCCGCTGCGACAGGAACCTTGTCTACTGTAATGAGCGAAGCTGACCTCAGTG
CCTCTGGGATCCCGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC
TGGATTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGTCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTCCAAAGAATGTCAAGAGTTCTCCATTGCAGGAAAAC
AATATTAGACCATTCACGGGCTGCTTGTGCCCAGCTTGAAGCTTGAAGAGCTGCACCT
GGATGACAACCTCCATATCCACAGTGGGGTGGAAAGACGGGCCTCCGGGAGGGCTATTAGCC
TCAAATTGTTGTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTGGCTCCTGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTATATCCGACATGGCCTCCAGAA
TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGAACCTCCTGACCAACAAGGGTATGCCG
AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTCATAATTGTACGTAATTGCTGTCC
CACCCCTCCTCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAGGACAACCAGAT
AAACCACATTCTTGACAGCCTCTCAAATCTCGTAAGCTGGAACGGCTGGATATATCCA
ACAACCAACTGCGGATGCTGACTCAAGGGTTTGATAATCTCTCAACCTGAAGCAGCTC
ACTGCTCGGAATAACCCCTGGTTGTGACTGCAGTATTAAATGGGTACAGAATGGCTCAA
ATATATCCCTTCATCTCTCACACGTGCGGGTTCATGTGCCAACGGTCTGAACAAGTCCGG
GGATGGCGTCAGGGATTAAATGAATCTTGCTCTGTCCCACCACGACCCCCGGCCTG
CCTCTCTCACCCAGCCCCAAGTACAGCTCTCCGACCACCTCAGCCTCCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACACGCCTCCAACCTCCTACCACATCGAAACTTCCCACGATT
CTGACTGGGATGGCAGAGAAAGAGTGACCCCACCTATTCTGAACGGATCCAGCTCTATC
CATTGTTGATGACTTCAAGTCAGCTGGCTCTCTCTCACCCTGATGGCATA
CAAACTCACATGGGTGAAATGGCCACAGTTAGTAGGGGCATCGTTAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACCTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCACTGGATGCTTTAACCTACCGCGCGTAGAAGACACCAATTGTCAGAGGC
CACCAACCATGCCTCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGTATGGGGGCGCGGTGATATT
GTGCTGGTGGCTTGCTCAGCGTCTTGTGGCATATGCACAAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATACAACCGGGCGCGAACAGATGATTATGCGAGGCAGGCACCAAGA
AGGACAACCTCCATCCTGGAGATGACAGAAACCGAGTTTCAGATCGTCTCCTTAATAACGAT
CAACTCCTTAAAGGAGATTTCAGACTGCAGCCATTACACCCAAATGGGGCATTAATTA
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATACGTGACAGCCAGAGGCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGTCACATAAGACACGCAGATTACATTGATAATGTTACACAGATGCAT
TTGTCATTTGAATACTCTGTAATTATACGGTGTACTATATAATGGGATTAAAAAGTG
CTATCTTCTATTCAAGTTAACAGTTGTAACCTTGCTTTAAATCTT

FIGURE 13

MGLQTTKWPISHGAFFLKS~~WLI~~ISLGLYSQVS~~KLLACPSVCRCDRN~~FVYC~~NERSLTSVPLGIP~~
EGVT~~VLYLHNNQINNAGFPAELHNVQS~~VHTVYLYGNQLDEFPMNL~~PKNVRVLHLQENNIQTI~~
SRAALAQLLKLEELHLD~~DNSISTVGVEDGAFREAI~~SLKLLFLSK~~NHLSSVPVGLPVDLQELR~~
VDENRIAVISDMAFQNL~~TSLERLIVDG~~NLLTNKGIAEGTFS~~HLT~~KLKEFSIVRNSLSH~~PPP~~D
LPGTHLIRYLQDNQINHIPLTA~~FSNL~~RKLERLDISNNQLRMLTQGVFDNL~~SNL~~KQLTARNN
PWFCD~~CSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGM~~A~~VRELNM~~LLSCPTTPGLPLFTP
APSTASPTTQP~~PTLSIPNPSRSY~~T~~PPPTTS~~KLPTIPDWDGRERVTPPI~~SERIQLSIHFVND~~
TSIQVSWL~~SLFTVMAYKLTWVKM~~GHS~~LVGGIVQERIVSGEKQHLSLVN~~LEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHAS~~YLNNGSNTASSHEQTSHSMGSP~~FILLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQWKYNRGRR~~KDDYCEAGTKKD~~N~~SILEMTETSFQIVSLNNDQLLKG~~
DFRLQPIYTPNGGINYTDCHI~~PNNMRYCNSSVPD~~LEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACTTGGAGCAAGCGGCGGCCGGAGACAGAGGCAGAGGCAGAAGCTGGGGCTCCGTCTCGCCTCCCACGAGCG
ATCCCCGAGGAGAGCCGCGGCCCTCGCGAGGCCAAGAGGCCACGAGGAAGACCCGGGTGGCTCGGCCCTGCC
TCGCTTCCCAGGCAGGCCGGCTGCAGCCTTGCCCTCTTGCTCGCCTGAAATGGAAAAGATGCTCGCAGGCT
GCTTCTGCTGATCCTCGGACAGATCGTCTCTCCCTGCGAGGCCAGGGAGCGTCAGTGAGGTTCCATCT
CTAGGGCAGACACGCTCGGACCCACCGCAGACGGCCCTCTGGAGAGTTCTGAGAACAAGCAGGGAGACC
TGGTTTCATCATTGACAGCTCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGAGTTCATCGTGGACA
TCTTGCATATTCTGGACATTGGCTCTGATGTCAACCCGAGTGGCCCTGCTCCAATATGGCAGCAGTGTCAAGAATG
AGTTCTCCCTCAAGACCTTCAGAGGAAGTCCGAGGTGGAGCGTGTCAAGGAGATGCCGATCTGTCACGG
GCACCATGACTGGCTGGGACATCCAGTATGCCCTGAAACATCGCATTCTCAGAACAGAGGGGCCGGCCCTGA
GGGAGAATGTGCCACGGGCTATAATGATCGTCAAGATGGGAGACCTCAGGACTCCGTGGCCGAGGTGGCTGA
AGGCACGGGACACGGGATCCTAATCTTGCATTGGTGGCCAGGTAGACCTTAACACCTTGAAGTCCATTG
GGAGTGGAGCCCCATGAGGACCATGTCCTTGAGGAAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC
AGAAGAAGTTGTGACGGGCCACATGTGAGCACCCCTGGAGCATAACTGTGCCACTTCTGCATCAACATCCCTG
GCTCATACGTCAGGTGCAAACAGGCTACATTCTCAACTCGGATCAGACGACTTGAGAATCCAGGATCTGT
GTGOCATGGAGGACCACACTGTGAGCAGCTGTGTGAATGTGCCGGCTCTCGTCTGCCAGTGCTACAGTG
GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGGCTGGACTACTGTGCCCTCAGAAAACACGGATGTGAAC
ATGAGTGTGTAATGCTGATGGCTCTACCTTGCCAGTGGCATGAAGGATTGCTCTTAACCCAGATGAAAAAA
CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCCTCAACATGGAGGAGGCT
ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGCAAAACCTGCAAGCCGAGTGACCAACTGTGAC
AGCAGGACCATGGCTGTGAGCAGCTGTGTGAACACGGAGGATTCCCTGCTGCCAGTGCTCAGAAGGCTCC
TCATCAACGAGGACCTCAAGACCTGCTCCGGTGGATTACTGCCCTGCTGAGTGACCATGGTGTGAATACTCCT
GTGTCACATGGACAGATCTTGCCCTGCTAGTGCTCTGAGGGACACGTGCTCCGAGCGATGGGAAGACGTGTG
CAAATGGACTCTTGCTCTGGGACACGGTGTGAACATTGCTGTGAAGCAGTGAAAGATTGTTGTGT
GCCAGTGTGTTGAAGGTTATATACTCCGTGAAGATGGAAAACCTGCAAGGAAAGATGTCGCAAGCTATAG
ACCATGGCTGTGAACACATTGCTGAAACAGTGACGACTCATACACGTCGAGTGCTTGGAGGGATTCCGGCTCG
CTGAGGATGGGAAACGCTGGCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCAACACATTGTT
ATAATGGGAAATTCTACATCTGCAAATGCTCAGAGGATTGTTCTAGCTGAGGACGGAAGACGGTGAAGAAAT
GCACTGAAGGCCAATTGACCTGGTCTTGCTGATGGATCCAAGAGTCTTGGAGAAGAGAAATTGAGGTG
TGAAGCAGTTGTCACTGGAATTATAGATTCTGACAATTCCCTAAAGCCGCTGAGTGGGCTGCTCCAGT
ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCAACTCAGCCAAAGACATGAAAAAAAGCCGTGGCC
ACATGAAATACTGGGAAAGGCTATGACTGGGCTGCCCTGAAACACATGTTGAGAGAAGTTTACCCAAG
GAGAAGGGGCCAGGCCCTTCCACAAGGTGCCAGACCGAGCCATTGTTGACCGACGGACGGGCTCAGGATG
ACGTCCTGGAGTGGCCAGTAAGGCAAGGCCAATGGTATCACTATGATGCTGTGGGCTAGGAAAGGCCATTG
AGGAGGAACATACAAGAGATTGCCCTGAGGCCACAAACAAGCATCTTCTATGCCAGACTCAGCACAATGG
ATGAGATAAGTAAAAACTCAAGAAAGGCATCTGTAAGCTCTAGAAGACTCGATGGAAGACAGGACTCTCCAG
CAGGGGAACCTGCCAAAAACGGTCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT
CCTGTTCTAATTGCACTGGCAGTGCACACAGATATCTGTTGAGAAGACAATCTTACGGCTACACAAAGCTTT
CCCATTCAACAAACCTTCAGGAAGGCCCTTGGAAGAAAACAGATCAATGCAAATGTGAAACACCTTATAATGT
TCCAGAACCTGCAACAGAAGTAAGAAAATTACACAGCGCTTAGAAGGAAATGACACAGAGAATGGAAGGCC
TGGAAAATGCCCTGAGATAAGGATTAAGAATGCCACACATTGCTAGTCATTGCTACGGATTACAAT
GAACGCAGTGCAGAGGCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGAGTAAACAAATCAGTACTGA
GAAACCTGGTTGCCACAGAACAAAGACAAGAAGTATACTACACTAAGCTATGCAAGGTATTGTAATATACTGTGGACAC
AACTGCTTCTGCCCTCATCCTGCCCTAGTGTGCAATCTCATTGACTATACGATAAAAGTTGCACAGTCTTACTT
CTGTAGAACACTGCCATAGGAAATGCTGTTTTGACTTGGACTTACCTTGATATGTATATGGATGTATG
CATAAAATCATAGGACATATGTAATTGAGGATTTTATACAATATAAAATTCAACACTTCAG

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGRHARTHPOQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAV
KMRHLSTGTMGLAIQYALNIAFSEAE GARPLRENVPRVIMIVTDGRPQDSVAEVAAKARD
TGILIIFAIGVGQVDFTNLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINIPGSYVCRKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNPVPGSFVCQCYSGYA
LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKGPC
EHECVNMEESYYCRCHRGYTLDPNGKTCRSVDHCAQQDHGEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRS DGKTCAKLDSCALGDHGCE
HSCVSSEDSFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHICVNSDDSYTCECLEGFR LA
EDGKRCRRKDVKSTHHGCEHICVNNNGNSYICKCSEG FVLAEDGRRCKCTEGPIDLVFVID
GSKSLGEENFEVVKQFVTGIIDS LTISPKAARVGLLQYSTQVHTEFTLRNFMSAKDMKKAVA
HMKYMGKGSMTGLALKHM FERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEELQEIA SEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDS
PAGELPKTVQQPT ESEPVTINI QDLLSCSNFAVQHRYLFEE DNLLRSTQKL SHSTKPSGSPL
EEKHDQCKCENLIMFQNL ANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,
401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,
781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500,
639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464,
540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAGCGCTCGCTCCCGCGCACGCTCCGCCGCGCAGCCTCG
GCACCTGCAGGTCCGTGCGTCCCGCGCTGGCGCCCTGACTCCGTCCCGGCCAGGGAGGGC
CATGATTCCCTCCCCGGGCCCTGGTGACCAACTTGCTGCCGTTTGTTCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGCCAGCTGCAACTGCACCTGCCGCCAACCGGTGCAAG
GCGGTGGAGGGAGGGAAAGTGGTGTCCAGCGTGGTACACCTGCACGGGAGGGTGTCTTC
ATCCCAGCCATGGGAGGTGCCCTTGATGTGGTCTTCAAACAGAAAGAAAAGGAGGATC
AGGTGTTGTCTACATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCCTGCCGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGAAATCTAGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTCTCCAGCTCCTCATCCTGCCGTCTCAGGGTGTGCCCAT
GTGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCGCTGTCCAATACCA
GTGGGATCGGCAGCTCCATCCTCCAGACTTCTTGACCAGCATTAGATGTCATCCGTG
GGTCTTAAGCCTCACCAACCTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCAC
AATGAGGTGGCACTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGCCCTGGAGCTGC
AGTGGTTGCTGGAGCTGTTGGTACCCCTGGTGGACTGGGTTGCTGGCTGGCTGGTCC
TCTTGTACCACCGCCGGCAAGGCCCTGGAGGAGCCAGCCAATGATATCAAGGAGGATGCC
ATTGCTCCCCGGACCCTGCCCTGGCCCAAGAGCTCAGACACAATCTCAAGAATGGGACCC
TTCCTCTGTCACCTCCGCACGAGCCCTCCGCCACCCATGGCCCTCCCAGGCCCTGGTCAT
TGACCCCCACGCCAGTCTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGCCCAACCTCAACCAATATCCCCCATCCCTGGTGGGTTCTCCTCTGGCTTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCCTGCCAGAGTCAAGCTGGCTCTGGT**TATGATGAC**
CCCACCACTATTGGCTAAAGGATTGGGCTCTCCTCTATAAGGGTACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCCAACCTCTC
TTTACTGTGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGGAGGAGCCTCACCCACCCCTGACTCCTCTTATGAAGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTCACTGAGTCTCCAGGC
CCCCCTGATCTGATCCCCACCCCTATCTAACACCAACCCCTGGCTCCACTCCAGCTCCCTGT
ATTGATATAACCTGTCAGGCTGGCTGGTTAGGTTTACTGGGAGGATAGGAAATCTC
TTATTAACATGAAATATGTGTTTTCAATTGCAAATTAAATAAGATAACATAA
TGTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKP
AVQYQWDRQLPSFQTFFAPALD VIRGSLSLTNLSSSMAGVYVCKAHNEVGT
AQCNVTLEVSTGPGAAVVAGAVVGTILVGLGLLAGLVLLYHRRGKALEEP
PANDIKEDAIA PRTL PWPKSSDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSS
SQALPS PRLPTTDGAHPQPISPIPGGVSSSGLSRMGAVPVMVPAQS
QAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCCTGCGGCCACCGCCA**AT**GAAACGCCTCCGCTCTAGGGTTTTCCACTTGTGAATTGTCCTATACTCAAAATTGACCAAGACACCTGTCTCCAAATGCAAAATGTGAATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAAATTTGTGAAGATGATAATGAATGTGGAAATTAACTCAGTCTGTGGCGAAAATGCTAATTGCACTAACACAGAAGGAAGTTATTATTGTATGTGTACCTGGCTTCAGATCCAGCAGTAACCAAGACAGGTTTACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAATGCCCCATTAGATAATGTCTGTATAGCTGCAAATATTAACTTAACAAAAATCAGATCCATAAAAAGAACCTGTGGCTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTCACCAACAGATATAATTACATATAGAAATATTAGCTGAATCATCTTCAACTTAGGTACAGAACAAACACTATCTCAGCCAAGGACACCCTTCTAACTCAACTCTTACTGAATTGTAACAAACCGTGAATAATTGTCAAAGGGATACATTGTAGTGTGGACAAGTTATCTGTGAATCATAGGAGAACACATCTTACAAAACATGCACACTGTGAACAAAGCTACTTTAAGGATATCCCAGAGCTTCCAAAAGACCACAGAGTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTGATTCATATAACATGAAACATATTCTCCTCATATGAATATGGATGGAGACTACATAAAATATAATTCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTAGAGTATTGGCTCTTGCTTCATCATCTGACAACCTTCTATTGAAACCTCAAACATTATGATAATTCTGAAGAGGAGGAAAGAGTCATATCTCAGTAATTCTCAGTCTCAATGAGCTCAAACCCACCCACATTATGAACCTTACATTACATTAAGTCATCGAAAGGTACAGATAGGTATAGGAGTCTATGTGCATTGGAAATTACTCACCTGATACCATGAATGGCAGCTGGCTTCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGTGTAATCACCTGACACATTGTCAATTGTGATGTCCTCTGGCTTCCATTGGTATTAAAGATTATAATATTCTTACAAGGATCACTCAAATAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTCACCTTCTGGTCTTCAGTGAACATTCAAAGCACCAGGACAACAATTCAAACAAATTCTTGTGCTAGCCTATTCTTCTGCTGAACCTGTTTTCTTGTGGATCAATACAAACTAATAAGCTCTCTGTTCAATCATTGCCGACTGCTACACTACTTCTTTAGCTGCTTTGCATGGATGTGCATTGAAGGCATACATCTTATCTCATTGTTGTGGGTGTCACTACAACAAAGGGATTGGCAAAAGAATTTTATATCTTGGCTATCTAACGCCCAGCGTGGTAGTGGATTTCGGCAGCACTAGGATACAGATATTATGGCACAAACAAAGTATGTTGGCTTAGCACCAGAAAACAACCTTATTGGAGTTTATAGGACAGCATGCCATTCTGTTAATCTCTTGGCTTTGGAGTCATCATACAAAGTTTCTCGTCACACTGCAGGGTTGAAACCAGAAGTTAGTTGCTTGGAGAACATAAGGTCTTGTGCAAGAGGAGCCCTCGCTCTGTTCTCGGCACCACCTGGATCTTGGGTCTCCATGTTGTGCAGCATTGAGCTTACAGCTTACAGCTTACACTTCTTCAACAGTCAGCAATGCTTCCAGGGATGTTCAATTCTTATTCTGTGTTTATCTAGAAAGATTCAAGAAGAATTACAGATTGTTCAAAATGTCCTGTTGTTGGATGTTAAGGTAACATAGAGAATGTTGGATAATTACAACACTGCACAAAATAAAATTCAAAGCTGTGGATGACCAATGTATAAAATGTTGACTCATCAAATTATCCAATTAACTACTAGACAAAAGTATTAAATCAGTTTCTGTTATGCTATAGGAACCTGTAGATAATAAGGTAACATTATGTATCATATAGATAACTATGTTTCTATGAAATAGTTCTGTCAAAATAGTATTGCAAGATATTGAAAGTAATTGGTTCTCAGGAGTGTATCACTGCACCAAGGAAAGATTCTTCTAACACGAGAAGTATGAACTGTCCTGAAGGAAACCACTGGCTTGATATTCTGTGACTCGTGTGGCCTTGAAACTAGTCCCTTACCCCTCGTAATGAGCTCATTACAGAAAGTGGAACATAAGAGAATGAAGGGCAGAATATCAAACAGTAAAAGGAATGATAAGATGTTTTGAATGAACTGTTTCTGTAGACTAGCTGAGAAATTGTTGACATAAAAATAAAAGAATTGAAAGAAACACATTACCTTACCTGGAA

FIGURE 19

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC
GNLTQSCGENANCTNTEGSYYCMCVPGRSSSNQDRFITNDGTVCIENVANCHLDNVCIAA
NINKTLTKIRSIKEPVALLQEVRNSVTDLSPTDIITYIEILAESSLLGYKNNTISAKDTL
SNSTLTFVKTVNNFVQRDTVVWDKLSVNHRRTHTKLMHTVEQATLRISQSFQKTTEFDT
NSTDIALKFFFDSYNMKHIHPHMNMDGYINIFPKRKAAYDSNGNVAVAFLYYKSIGPLLS
SSDNFLLPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSRKVTDRYRSLCAF
WNYSPDTMNGWSSEGCELTYSNETHTSCRNCNLTHFAILMSSGPSIGIKDYNILTRITQLG
IIISLICLAICIFTWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCIIAGL
LHYFFLAAFAWMCIEGIHLYLIVGVIVNKGLHKNFYIFGYLSPA VVGFSAALGYRYYGT
TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA
LALLFLLGTTWIFGVHLVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV
PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,
648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181,
188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154,
155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329,
346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394,
434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATATTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTTCAGTAATTCACTGAGCTCAAACCCACCCAC
ATTATATGAACTTGAAAAAACATTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTGGAAACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTACCTTC
TGGTTCTTCAGTGAAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTGGGGCCGCTGCGCGGTGGGGAGGAGTCCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCTCCTCCCGCAGATCCGAACGGCCTGGCGGGGTCAACCCGGCTGGGA
CAAGAACGCCCGCCTGCCTGCCCGGGGCCGGAGGGGGCTGGGCTGGGCCGGAGGCGG
GGTGTGAGTGGGTGTGCGGGGGGGCGAGGCTTGATGCAATCCCATAAGAAATGCTCGGG
TGTCTGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCGGAG
CCGCCGCGCCGTAGAGCAGGAGCGCTCGTCCAGGATCTAGGCCACGACCATCCAAACCC
GGCACTCACAGCCCCAGCGCATCCGGTCGCCGCCAGCCTCCGCACCCCCATGCCGG
AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGTTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCGTGGCCGGCGCCCCCTCGCCTTCTCGGACGCGGGGCC
CCACGTGCACTACGGCTGGGCGACCCCATCCGCCTGCGCACCTGTACACCTCCGGCCCCC
ACGGGCTCTCCAGCTGCTTCCGCATCCGTGCCGACGGCGTGGACTGCGCGGGGGC
CAGAGCGCGCACAGTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG
CGTGCACAGCGTGCCTGACCTCTGCATGGCGCCGACGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCGAGGAGGAGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAAGCACGCCCTCCGGTCTCCCTGAGCAGTGCAAACAGCGGAGCTGTACAAGAA
CAGAGGCTTCTTCCACTCTCTCATTCCGCATGCTGCCCATGGTCCAGAGGAGCCTG
AGGACCTCAGGGGCCACTTGGAAATCTGACATGTTCTTCGCCCTGGAGACCGACAGCATG
GACCCATTGGGCTTGTCAACGGACTGGAGGGCGTGAGGAGTCCAGCTTGAGAAGTAACT
GAGACCATGCCCGGGCCTCTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGAGC
TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTAGCTTAGGAAGAACATCTAGAA
GTTGTACATATTCAAGAGTTTCCATTGGCAGTGCAGTTCTAGCCAATAGACTTGTCTGAT
CATACATTGTAAGCCTGTAGCTGCCAGCTGCTGCCCTGGCCCCATTCTGCTCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGTCAGTTCTGCTGAATACCTCCATCGATGGGAAC
TCACTTCCTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTCATCACTTC
CCCAGGAGCAGCCAGAACAGACAGGAGTAGTTAATTCAAGAACAGGTGATCCACTCTGTA
AAACAGCAGGTAATTCACTCAACCCATGTGGAATTGATCTATCTACTTCCAGGG
ACCATTGCCCTCCCAAATCCCTCCAGGCCAGAACCTGACTGGAGCAGGCATGGCCCACCGAG
GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC
CTGAGGCCAGTTCTGTCATGGATGCTGCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC
TTCCATCTCCAGGCCACCAGCCCTCTGCCACCTCACATGCCTCCCATGGATTGGGCCT
CCCAGGCCCCCACCTTATGTCAACCTGCACCTCTGTTCAAAAATCAGGAAAAGAAAAGAT
TTGAAGACCCCAAGTCTGTCAATAACTTGCTGTGGAAGCAGGGGGAGACCTAGAAC
CCTTCCCCAGCACTGGTTTCCAACATGATATTATGAGTAATTATTTGATATGTACA
TCTCTTATTTCTTACATTATTATGCCCAAATTATATTATGTATGTAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHLYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE
EIRPDGYNVYRSEKHLPLVSSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD
MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 23

CCCAGAACGTTCAAGGGCCCCCGGCCTCCTGCGCTCCTGCCGCCGGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCGGGAAGATGGCGAGGAGGAGCCACCGCCTCCTGCTG
CTGCTGCGCTACCTGGTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTCTGCCAAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTAGCCTGCAAACCCCAA
AGAAGACTGTTCCAGATTAGAGTGGAAAGAACTGGGTGGAGTGTCTCCTTGCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCG
GATCAAAATGTGACAAGAAGTGATGCCGGAAATATCGTTGTGAAGTTAGTGCCTCATCTG
AGCAAGGCCAAACCTGGAAGAGGATAACAGTCACACTGGAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCCCTTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGAAATCCAGCTCCTGAATACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTGGCTCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAAC
CTGCAATTAAACTGTTCCAAACTGGACACTGGAGAATATTCCGTGAAGCCGCAATT
TGTTGGATATCGCAGGTGTCCTGGAAACGAATGCAAGTAGATGATCTAACATAAGTGGCA
TCATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTCCGTTGTGGCCTGGTGTATGCTAT
GCTCAGAGGAAAGGCTACTTCAAAAGAAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTGAATGTGCAGTGGCTACGCCTGTAATCCCAGCACTTGGAAAGG
CCGGCGGGCGGATCACGAGGTCAGGAGTTCTAGACCAGTCTGGCAATATGGTAAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTGCCCTGCAGTTCCAGCTGC
TTGGGAGACAGGAGAACACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAAATAAATAAATA
AATAAATACTGGTTTACCTGTAGAATTCTTACAATAATAGCTTGATATT

FIGURE 24

MARRSRHRLLLLLRYLVVALGYHKAYGFSAPKQQVVTAVEYQEAILACKTPKKTVSSRLE
WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED
TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKD GIRLLENPRILGSQST
NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVA
LVISVCGLGV CYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKA AAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAACTGCTTTCAAGACGAGGAAGAGGAGGAGAAAGAG
AAAGAAGAGGAAGATGTTGGCAACATTATTTAACATGCTCCACAGCCCGGACCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAAGCATGGATTAAATATTTACTTCTAAATAA
ATGAATTACTCAATCTCCTATGACCACACTACATACACTCCACCTCAAAAAGTACATCAATA
TTATATCATTAAAGGAAATAGTAACCTCTTCTCCAATATGCATGACATTGGACAATG
CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTGTGGTTATGGCATTCA
TTTGACAAATGCAAGCATCTCCTTATCAATCAGCTCTATTGAACTTACTAGCACTGACTG
TGGAATCCTTAAGGGCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCACTGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG
TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTGGTTACACCCAGATCCATTAT
ATGGAAGCCTACAGTGGATTGTAATGATTAGGTCTTTAACCTTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCTCACAGACTAACAAATATTGAAATACTCCACAG
ACTTTCCAGTAAACCTACTGGCCTGGATTATCTCAAAACAATTATCTCAGTCACCAAT
ATTAATGTAAGGAAAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTACTGA
ACTGCCTGAAAATGTCTGCGAACTGAGCAACTACAAGAACTCTATATTAACTACAACT
TGCTTCTACAATTTCACCTGGAGCCTTATTGGCCTACATAATCTCTTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTCCAAATCTAGAGAT
TCTGATGATTGGGAAATCCAATTATCAGAACATCAAAGACATGAACTTTAACCTCTTATCA
ATCTTCGAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACAGATAACGCCTGGTT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCCATGT
TGCTCTCAAAAGTTGTAATCTCAAATTGGATCTAAATAAAACCTATTAAAGA
TACGAAGGGGTGATTAGCAATATGCTACACTAAAAGAGTTGGGATAAATAATATGCCT
GAGCTGATTCCATCGATAGTCTGCTGTGGATAACCTGCCAGATTAAAGAAAATAGAAGC
TACTAACACCCCTAGATTGTCTTACATTCAACCCCAATGCATTTCAGACTCCCCAAGCTGG
AATCACTCATGCTGAACAGCAATGCTCAGTGCCCTGTACCATGGTACCATGGTACCATGAGTCTCTG
CCAAACCTCAAGGAAATCAGCATACACAGTAACCCATCAGGTGTGACTGTGTCATCCGTTG
GATGAACATGAACAAAACCAACATTGATTGATGGAGCCAGATTCACTGTTGCGTGGACC
CACCTGAATTCCAAGGTCAAGATGTTGGCAAGTGCATTTCAGGGACATGATGAAATTGT
CTCCCTCTTATAGCTCCTGAGAGCTTCTTCTAAATCTAAATGTAGAAGCTGGAGCTATGT
TTCCCTTCACTGTAGAGCTACTGCAGAACACAGCCTGAAATCTACTGGATAACACCTTCTG
GTCAAAAACCTTGCCTAATACCCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAAACACTA
GATAAAATGGCGTAACTCCAAAGAAGGGGTTATATACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATGGATCTTCCACAAAGATAACAAATG
GCTCTTGAATATTAAAAGAGATATTCAAGGCCAATTCAAGTTGGTGTCTGGAAAGCA
AGTTCTAAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGTCAAGACTGAAATTCTCA
TGCTGCGCAAAGTGCCTGAATACCATCTGATGTCAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCCACCATCTATCAGAAAACAGAAAAAAA
TGTGTAATGTCACCACCAAGGTTGCACCCCTGATCAAAAGAGTATGAAAAGAATAATAC
CACAAACACTTATGGCCTGTCTGGAGGCCTCTGGGATTATGGTGTGATATGTCTTATCA
GCTGCCTCTCCAGAAATGAACTGATGGTGACACAGCTATGTGAGGAATTACTTACAG
AAACCAACCTTGCATTAGGTGAGCTTATCCTCTGTATAATCTGGGAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAAGCAACTGTTAGGTTACCAACAAATATGTCCT
AAAAACCAAGGAAACCTACTCCAAAATGAAC

FIGURE 26

MKDMLPLRIHVLLGLAITTLVQAVDKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLT
FPARLPANTQILLLQTNNIAKIEYSTDFPVNLTLGDLDSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLLRLHNSNRLOMINSKWFDA
LPNLEILMIGENPIIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL
IKVPHVALQKVNLKFDDLNKNPINRIRRQDFSNMLHLKELGINNMPELISIDS LAVDNLPD
LRKIEATNNPRLSYIHPNNAFFRLPKLESMLNSNALSALYHGTIESLPNLKEISIHSNPIRC
DCVIRWMNMNTNIRFMEPDSLFCVDPPEFQGQNVHQVFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHCRATAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLINGVTPKEGGLYTC
IATNLVGADLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE
YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPP LIN
LWEAGKEKSTS LKV KATV IGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGACTGGCGCAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTAC
CACGCTTGTGGAGTAGATGAGGAATGGGCTCGTGAATTATGCTGACATTCCAGCATGAATCT
GGTAGACCTGTGGTTAACCGTTCCCTCTCATGTGTCTCCTACAAAGTTTGTTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCAAGGGCTGTCTTGTCTCCTCTGGG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAACTGAGAGTTCTAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT
GCCTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAG
TGTGCACAAAATGCCTTCATAAACCTGAAGGCCAGGGCAGAATTGCCAACAAACCCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCAATCATGAGACAGCCCAC
AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCTCAATGCTGC
CAACGACGCTGACCTTGTAAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA
TGTTGGCTGGTCACTATGGTGAATCTCATATGTGGTATATTATGTGAGGCAAATCAGGAG
GATGCCCGAGACACCTCGAATACTTGAAATCCCTGCCAAGCAGGAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGTATAGTGTCCAAACTGACTGTCAATTGAGAAAGAAAGAAA
GTAGTTGCGATTGCACTAGAAATAAGTGGTTACTTCTCCATCCATTGTAAACATTGAA
ACTTGTATTTCAGTTTTGAAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTAAATAATGAAATTATTTTTT
AATTAAAAGCAAATAAAAGCTTAACCTTGAACCAGGGAAAAAAAAAAAAAAACA

FIGURE 28

MNLVDLWLTRSLSMCLLQSFVLMILCFHSASMC PKGCLSSSGGLNVTC SNANLKEIPRDL
PPETVLLYLDNSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLSDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASN HETAHNVICKTSVLDEHAGR PFL
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

ACCGAGCCGAGCGAACGAAGGCAGCCCCGAGATGAGGTGAGCAAGAGGATGCTGGCGGG
GGCGTGAGGAGCATGCCAGCCCCCTCTGGCCTGCTGGCAGCCCATTCTCTGCTGGTGCT
GGGCTCAGTGTGTCAGGCTGGCCACGGCTGCCGCCGCTGCGAGTGCTCCGCCAGG
ACCGCGCTGTGCTGTGCCACCGCAAGTGCTTGCGACTCCCCGAGGGCATCCCCACCGAG
ACGCGCTGCTGGACCTAGGCAAGAACCGCATAAAACGCTCAACCAGGACGAGTTGCCAG
CTTCCCGCACCTGGAGGAGCTGGAGCTCAACGAGAACATCGTAGGCGCTGGAGGCCGG
CCTTCAACAAACCTCTCAACCTCCGGACGCTGGGTCTCCGAGCAACCGCCTGAAGCTCATC
CCGCTAGGCGTCTTCACTGGCCTCAGAACCTGACCAAGCAGGACATCAGCGAGAACAGAT
CGTTATCCTACTGGACTACATGTTCAGGACCTGTACAACCTCAAGTCAGTGAGGTTGGCG
ACAATGACCTCGTCTACATCTCACCGCGCTCAGCGGCCTCAACAGCCTGGAGCAGCTG
ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGGCGCTGCCCACCTGCACGGCCT
CATCGTCTGAGGCTCGGCACCTCAACATCAATGCCATCCGGACTACTCCTTAAGAGGC
TGTACCGACTCAAGGTCTGGAGATCTCCACTGGCCTACTTGGACACCATGACACCCAAC
TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC
CTACCTGGCGTCCGCCACCTAGTCTATCTCGCTTCCTCAACCTCTCCTACAACCCCCATCA
GCACCATTGAGGGCTCCATGTTGATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGCG
GGGCAGCTGGCGTGGTGGAGGCCCTATGCCTTCCGGCCTCAACTACCTGCGCGTCTCAA
TGTCTCTGGCAACCAGCTGACCAACTGGAGGAATCAGTCTTCACTCGTGGCAACCTGG
AGACACTCATCCTGGACTCCAACCGCTGGCGACTGTCGGCTCCTGTGGGTGTTCCGG
CGCCGCTGGCGCTCAACTTCAACCGGAGCAGGCCACGTGCGCACGCCAGTTGTC
GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCAACTACTTCACCTGCCCGCG
CCCGCATCCGGGACCGCAAGGCCAGCAGGTGTTGTGGACGAGGCCACCGGTGAGTT
GTGTGCCGGCGATGGCGACCGGCCCATCCTCTGGCTCTCACCCGAAAGCACCT
GGTCTCAGCCAAGAGCAATGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCT
ACGCCCAAGGTACAGGACAACGGCACGTACCTGTGCATCGCGGCCAACGCCGGCAACGAC
TCCATGCCGCCACCTGCATGTGCGCAGCTACTGCCACTGGCCCCATCAGCCCAACAA
GACCTTCGCTTTCATCTCAACCAGCGGGCGAGGGAGAGGCCAACAGCACCCGCGCACTG
TGCCTTCCCTTCGACATCAAGACCTCATCATGCCACCCATGGCTCATCTCTTTC
CTGGCGTCGCTCTTCTGCCCTGGTGTGCTGTTCTGGAGGCCAGGGCAACAC
AAAGCACAACATCGAGATCGAGTATGTCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCG
ACGCCCAAGGTCAACATGAAGATGATATGAGGCCGGGGCGGGGGCAGGGACCCCCG
GGCGGCCGGCGAGGGGAAGGGGCCTGGTGCACCTGCTCACTCTCCAGTCCTCCACCTC
CTCCCTACCCCTCTACACACGTTCTCTTCTCCCTCCGCCCTCCGCTCCCTGCTGCCCG
CCAGCCCTCACCACCTGCCCTCTTCTACAGGACCTCAGAACGCCAGACCTGGGACCCCA
CCTACACAGGGCATTGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCCAGAGTC
ATAATTCAATAAAAAAGTTACGAACCTTCTCTGTAACCTGGTTCAATAATTATGGATTT
TATGAAAACCTGAAATAATAAAAAAGAGAAAAAAACTAAAAAAAAAAAAAA

FIGURE 30

MQVSKRMLAGGVRSMPSPLLACWQPILLVLGSVLSGSATGCPPCECSAQDRAVLCHRKCF
VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELENENIVSAVEPGAFNNLFNLRTL
GLRSNRKLIPLGVFTGLSNLTKQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVLEISH
WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFNLNSYNPISTIEGSMLHEL
LRLQEIQLVGGQLAVVEPYAFRGLNYLRLVNVSGNQLTTLEESVFHSVGNLETLILDSNPLA
CDCRLLWVFRRRWRLLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLLEVRYAQVQDNGTYL
CIAANAGGNDNSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI
IATTMGFISFLGVVLFCVLFLWSRGKGNTKHNIEIEYVPRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCCACGCGTCCGCACCTCGGCCCGGGCTCCGAAGCGGCTCGGGGGGCCCTTCGGTCAAC
ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGGATTCAAGGCTGCCAGCGCCCAGCC
AGGGAGCCGGCGGGAAAGCGCG**A**TGGGGGCCAGCCGCTCGCTCCTGCTCCTGC
TGTTCGCCTGCTGGCGCCGGCGGGCCAACCTCTCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTCAAGTGCAAGTGAAAGATCA
CGAGGACTCATCCCTGCAATGGTCAACCCTGCTCAGCAGACTCTACTTTGGGAGAAGA
GAGCCCTTCGAGATAATCGAATTCAAGCTGGTACCTCTACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCGTG
GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAACCCATCATCACTGGTT
ATAAACTTCATTACGGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTCTGGGAGCAAG
CCTGCAGCCGGCTCACCTGGAGAAAGGGTGACCAAGAACCTCACGGAGAACCAACCCGCAT
ACAGGAAGATCCAATGGTAAAACCTTCACTGTCAGCAGCTGGTACATTCCAGGTTACCC
GGGAGGATGATGGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC
AGATCCACCTCTCAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGAGGGCAGAAGCTGTTGCTACACTGTGAGGGTCGGCAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCA
AACATGGGCAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGCCT
CCTCCTCCAGCACCTACCACGCCATCATCGTGGGATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTTCCCTGGCCACTACTTGATCCGGCACAAAGGAACCTACGTGACACA
TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG
GGCAGTCAGGAGGGGACGACAAGAAGGAATATTCA**T**AGAGGCGCTGCCACTTCCTGC
GCCCCCAAGGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCCGCTTGTCCCCAGCCCACCCACCCCTGTACAGAAATGTCTGC
TTGGGTGCGGTTTGTACTCGGTTGGAATGGGGAGGGAGGAGGGCGGGGGAGGGAGGG
TTGCCCTCAGCCCTTCCGTGGCTCTGCATTGGTTATTATTATTTGTAACAATCC
CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGGCCCTGGGTGAGAAAAGCAAAAACA
AACAAAAAACAA

FIGURE 32

MGAPAASLLLLLFFACCWAPGGANLSQDDSQWPWTSDETVVAGGTVVLCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRSQLVTSTPHELSIISNVALADEGEYTCSIFTMPVRTAKSLV
TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCAAACCCCTTCTCTCCTTCCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG
TTACTTTGTATGAGATCGGGGATGAATTGCTCGCTTAAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTCTTGCCGCTGGAAACGTTACAGGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTACCATTTATTCATGGCAATT
CCTCACTCGACTTTCCCTAATGAGTTCGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTTGCATGAAATCGTCCGGGGCTTTCTGGGCTGCAGCTGGTAAAAGG
CTGCACATCAACAACAAGATCAAGTCTTTCGAAAGCAGACTTTCTGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTATTACGAGATATAGACCCGGGGCCTCCAGG
ACTTGAACAAGCTGGAGGTGCTCATTTAAATGACAATCTCATCAGCACCCCTACCTGCCAAC
GTGTTCCAGTATGTGCCATACCCACCTCGACCTCCGGTAACAGGCTGAAAACGCTGCC
CTATGAGGAGGTCTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCC
GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTGCTTGGAAAAACCGAGTGGATTCTAGTCTCCGGCGCCCCCTG
CCCAAGAAGAGACCTTGCCTGGACCCCTGCCAACTCCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCAGGAACAAACCTTAGCTAAC
GTTTACCTGCCCTGGGGCTGCAGCTGCACCACATCCAGGGTGGTTAAAGATGAAC
TGCAACAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCAAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAGATCCACAGCATCCGAAAATCGACTTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACAAACACTTCAAG
AACCTTTGGACCTCAGGTGGTATACATGGATAGCAATTACCTGGACACGCTGTCCC
GAAATTGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTCAACAACAAACCTG
CTGAGGTCCCTGCCTGTGGACGTGTTCGCTGGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTGCTGGACCAAGTTAACCTCCATCATCC
TAGACCTCCACGGAAACCCCTGGAGTGCTCCTGCACAATTGTGCCCTTCAAGCAGTGGCA
GAACGCTTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTT
TAGAAAGGATTTCATGCTCCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTCGCACAGTAAAACAGCACTGGGTTGGCGGAGACGGGACGCACTCC
AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGTCCGGACTGCTGCTGG
GTTTGTACCTCCGCCCTCACCGTGGGGCATGCTCGTGTATCCTGAGGAACCGAAAGC
GGTCCAAGAGACGAGATGCCAACTCCTCCGCTCCGAGATTAATTCCCTACAGACAGTCTGT
GAECTTCTACTGGCACAATGGCCTTACAACGAGATGGGCCACAGAGTGTATGACTG
TGGCTCTCACTCGCTCAGACTAACGACCCCAACCCCAATAGGGGAGGGCAGAGGGAAAGGCG
ATACATCCTCCCCACCGCAGGCACCCCGGGGCTGGAGGGGCGTGTACCCAAATCCCC
CCATCAGCCTGGATGGGCATAAGTAGATAAAACTGTGAGCTCGCACAACGAAAGGGC
GACCCCTTACTTAGCTCCCTCCTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGCCCCTTGACAGAAAGCCAGCACGACCCCTGCTGGAG
AACTGACAGTGCCTCGCCCTGGCCCCGGGCTGTGGGGTTGGATGCCGGTTCTATAC
ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGCTACGCAAGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACCTTGACTTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVTDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTA
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPG AFLGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRIDPGAFQDLNKLEV LILNDNLISTL PANVQYVPITHLDLRG
NRLKTL PYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQ
GKDILNETTEQDLCPLKNRVDSSL PAPPAQEETFAPGPLPTPFKTNGQEDHATPGSAPNGGT
IPGNWQIKIRPTAAIATGSSRNKPLANSLPCPGGCSDHIPGSGLKMNCNNRNVSSLADLK
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILL DLGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYN A IQLILPGTFNAMPKL RILILNNNLLRSLPVDVFAGVSL
SKLSLHN NYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPKQWAERLGSEVLMSDLKC
ETPVNFFRKDFM LLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLL VFVTS AFTVVGMLV FILRNRKRSKRRDANSSASEINSLQTVCDSSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTGGTCCCCGTACCCGGGCCAGCTGTGTTCTGACCCCAGAATAACTCAGGGC
TGCACCGGGCCTGGCAGCGCTCCGCACACATTTCTGTGCGGCCCTAACGGAAACTGTTGGC
CGCTGGGCCCGGGGGATTCTTGGCAGTTGGGGTCCGTGGAGCGAGGGCGGAGGGG
AAGGGAGGGGGAACCGGGTGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC
AGCTCTGCGTCCTCGAGCGGGACAGATCCAAGTGGGAGCAGCTCTCGTGCCTGGGGCCTCAG
AGAATGAGGCCGGCGTTGCCCTGTGCCTCCTGGCAGGCCTCTGGCCCTGGGGCCTGCTACAGCCTGC
CGGCGAACACCCCACTGCCGACCGTGCTGGCTGGCCTCGGGGGCCTGCTACAGCCTGC
ACCACGCTACCATGAAGCGGCAGCGGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC
AGCACCGTGCCTGGGGCGCCAGCTGCCTGCTGCTCGCCTCTGCGGGCAGGCCAGG
GCCCGGAGGGGGCTCAAAGACCTGCTGTTCTGGTGCACGGAGCGCAGGCGTTCCACT
GCACCCCTGGAGAACGAGCCTTGCAGGGTTCTCCTGGCTGTCCCTCGACCCCGGGCTC
GAAAGCGACACGCTGCAGTGGGTGGAGGAGCCCCAACGCTCCTGCACCGCGGGAGATGCGC
GGTACTCCAGGCCACCGGTGGGTGAGGCCGAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCCAACGGTACCTGTGCAAGTACCAAGTTGAGGTCTGTGCTCGCCCGCCCCGG
GCCGCCTTAACCTGAGCTATCGCGCCCTTCAGCTGCACAGCGCGCTCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGCCTGCGCTGGGACAGCTCCCGATCTCAGTTACTGCA
TCGCGGACGAAATCGGCGCTCGCTGGGACAAACTCTCGGGCGATGTGTTGTCCCTGCC
GGGAGGTACCTCCGTGGCAAATGCGCAGAGCTCCCTAACGCTCTAGACGACTTGGGAGG
CTTTCCTGCGAATGTGCTACGGGCTTCGAGCTGGGAAGGACGGCGCTTTGTGACCA
GTGGGGAGGACAGCCGACCCCTGGGGGACCGGGGTGCCACCAAGGCGCCGCCACT
GCAACCAGCCCCGTGCCGAGAGAACATGGCAATCAGGGTCGACGAGAACGACTGGGAGAGAC
ACCACCTGTCCCTGAACAAGACAATTCAAGTAACATCTATTCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCTACCCCTCAAATGTCCCTCAAGCCGAGTCAAAGGCCACTATCACC
CCATCAGGGAGCGTGATTCCAAGTTAACCTACGACTCCCTGCCACTCCTCAGGCTTT
CGACTCCTCCCTGCCGTGGTCTTCATATTGTGAGCACAGCAGTAGTAGTGTGATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTCACGAAAGCCCTTTCCAGCCA
AGGAAGGAGTCTATGGGCCGCCCTGGAGAGTGTACCTGAGCCGCTGCTTGGGCTC
CAGTCTGCACATTGACAAACAATGGGTGAAAGTCGGGACTGTGATCTGCCAGAG
CAGAGGGTGCCTTGCTGGCGAGTCCCTCTGGCTCTAGTGATGCAT**AGGGAAACAGGGGA**
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGAAACCAAGAGGAACCTAC
TTGTGTAAGTACAATTCTGCAGAAATCCCCCTCCTCTAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAACTGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGTACTGGGGACGGGTAGTGCTGGGAGAGATATTCTATGTTATTGGAGAA
TTTGGAGAAGTGATTGAACCTTCAAGACATTGAAACAAATAGAACACAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTAGGCTAGGAGTAT
ATTGGTTGAAATCCCAGGGAAAAAATAAAAATTAAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWPAGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRSHTLENEPLRGFSWLSSDPGGLE
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCAPRPGA
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVVIFVSTAVVVLVILMTVLGLVKLCFHESPSSQPR
KESMGPPGLES DPEPAALGSSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

CGGACGGCTGGGATTCAAGCAGTGGCTGTGGCTGCCAGAGCAGCTCCTCAGGGAAACTAAG
CGTCGAGTCAGACGGCACCATATCGCCTTAAAAGTGCCTCCGCCCTGCCGGCGCGTATC
CCCCGGCTACCTGGGCCCGCCCGCGCGGTGCGCGTGAAGAGGGAGCGCGCGGGCAGCCGA
GCGCCGGTGTGAGCCAGCGCTGCTGCCAGTGTGAGCGGCCGTGTGAGCGCGTGGGTGCGGA
GGGGCGTGTGCGCGCGCGCGTGGGTGCAAACCCGAGCGTCTACGCTGCCATGA
GGGGCGCGAACGCCTGGCGCCACTCTGCCTGCTGGCTGCCGCCACCCAGCTCTCGCGG
CAGCAGTCCCCAGAGAGACCTGTTTACATGTGGTGGCATTCTTACTGGAGAGTCTGGATT
TATTGGCAGTGAAGGTTTCTGGAGTGTACCCCTCCAAATAGCAAATGTACTTGGAAAATCA
CAGTTCCCAGGAAAAGTAGTCGTTCTCAATTCCGATTCAAGACCTCGAGAGTGACAAC
CTGTGCCGCTATGACTTTGTGGATGTGTACAATGCCATGCCATGGCCAGCGCATTGGCG
CTTCTGTGGCACTTCCGGCTGGAGCCCTGTGTCCAGTGGCAACAAGATGATGGTGCAGA
TGATTCTGATGCCAACACAGCTGGCAATGGCTCATGGCCATGTTCTCCGCTGCTGAACCA
AACGAAAGAGGGATCAGTATTGTGGAGGACTCCTGACAGACCTCCGGCTTTAAAAC
CCCCAACTGGCCAGACGGGATTACCTGCAGGAGTCACCTGTGTGGCACATTGTAGCCC
CAAAGAATCAGTTATAGAATTAAAGTTGAGAAGTTGATGTGGAGCGAGATAACTACTGC
CGATATGATTATGTGGCTGTGTTAATGGCGGGAAAGTCAACGATGCTAGAAGAATTGGAAA
GTATTGTGGTGTAGTCCACCTGCGCCAATTGTGCTGTGAGAGAAATGAACTTCTTATTCA
TTTATCAGACTTAAGTTAAC TGCAAGATGGTTATTGGTCACTACATATTCAAGGCCAAA
AAACTGCCTACAACACAGAACAGCCTGTCACCACCATTCCTGTAACCACGGTTAAA
ACCCACCGTGGCCTTGTGTCACAAAAGTGTAGACGGACGGGACTCTGGAGGGCAATTATT
GTTCAAGTGAATTGTATTAGCCGGACTGTTACACACCACACTCGCGATGGGAGTTG
CACGCCACAGTCTCGATCATCAACATCTACAAAGAGGGAAATTGGCGATT CAGCAGGCC
CAAGAACATGAGTGCCAGGCTGACTGTCGTGCAAGCAGTGCCCTCTCCTCAGAAGAGGTC
TAAATTACATTATTATGGCCAAGTAGGTGAAGATGGCGAGGCAAATCATGCCAACAGC
TTTATCATGATGTTCAAGACCAAGAACATCAGAACGCTCCTGGATGCCCTAAAAAATAAGCAATG
TTAACAGTGAACTGTGTCATTAAAGCTGTATTCTGCCATTGCCCTTGAAAGATCTATGTC
TCTCAGTAGAAAAAAATACTTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG
GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAAGTTCTT
TGCCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCGACTTAGTGCCTGATAGGA
AGCTAAAAGTGTCAAGCGTTGACAGCTTGGAAAGCGTTATTATACATCTGTAAAAGGAT
ATTTAGAATTGAGTTGTGTGAAGATGTCAAAAAAAGATTAGAAGTGCAATATTATAGT
GTTATTTGTTCACCTCAAGCCTTGCCCTGAGGTGTTACAATCTGTCTGCCTTCTA
AATCAATGCTTAATAAAATATTAAAGGAAAAAA

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLDRPSGSFKTPNWPDYPAVGTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGEVNDARRIGKYCGDSPPAPIVSERNELLI
QFLSDLSSLTADGFIGHYIFRPKKLPTTTEQPVTTFPVTTGLKPTVALCQQKCRRTGTLEGN
YCSSDFVLAGTVITTITRDGSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMQVGEDGRGKIMPNSFIMMFTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACCGCGTGGCGGGACCGCGTGGCGGCCACGGCGCCCGGGCTGGGCGGTGCCTTCTT
CCTTCTCCGTGGCTACGAGGGTCCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTGCTCTGGGCCTCAGCCTCTTCACACCTCCAGGACCTATCTGG
CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACCTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCCTGGAGAGAACCATCCGGACAACTTGGAG
GTGGAAACACTGCCTGGGAGGAAGAGAATTGTCAAATACAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTTCGAGTGCCACCGCCTGCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTCACAAAGCAGCAGGAGGCCGGACCTCTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCCTGC
CTTCCCTGTCTGGGAAACAGAGAGGCCCTGCGGTGGCTACGGGCAGTGAGGAGAAGG
GACACGAGGGGGCAGCGGGCACTGTGACTGCCAAGCCGGTACGGGGTGAGGCCTGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACGTGGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTAGACATTGATGAGTGAGGCACAGAGGGAGCCA
GTGGAGCTGACCAATTCTCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGGATGAGTGAGACAGAGGTGTCCGGAGAGA
ACAAGCAGTGTAAAACACCGAGGGCGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTGGCATCATCATCTGTGCACTGGCA
CGCTGGCTGCTAAGGGCAGTTGGTGTACCGCCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTTGTCAAGAGCGCAGTGACCGTGTGGAGGGCTTCATCAAGGGCAGATA
ATCGCGGCCACCACCTGTAGGACCTCCCACCCACGCTGCCCGAGAGCTTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTTGGTTATTTTGAGAGTGAGGTAAAGCACCCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTCTCACCTGGGGGGACTGGCAGGCTTCACAATGTGTGA
ATTTCAAAAGTTTCTTAATGGTGGCTGCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTGCCAGCTGCATGCCAGTTCTGT
TCTGTGTTACCCACATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAGA
AAGGTCTTGGAAAGTTAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQQSSPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLESELVESWWFHKQ
QEAPDLFQWLCSDSLKLCGPAGTFGPGSCLPCPGGTERPCGGYGCCEGEGTRGGSGHCDCQAG
YGGECACGQCGGLGYFEAERNASHLVCACFGPCARCSGPEESNLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAKGDLVFTAIFIGAVAAMTGYWLRSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCCTCCAGGGCA
GCACCATGCCAGCCCCTGTGGCTCTGCTGGGCACTCTGGGTGTTGCCCTGCCAGCCCCGGG
GCCGCCCTGACCGGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTGCAGCTCAAAGAGGT
GCCCACCCCTGGACAGGGCCGACATGGAGGAGCTGGTCATCCCCACCCACGTGAGGGCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGGGAAAGAGGTTCAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCCCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGGTCGG
CATGGAGCAGCGGCTGCCGCCAACAGCGAGCTGGTGAGGCCGTGCTGCCGTCTTCCAGG
AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGGCGGCTGTCCCCGCGCAGGCCGGGCC
CGGGTACCGTCGAGTGGCTGCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCCGGCAGCCGCTGCTGCTACAGGTGTCGGTGCAGAGG
GAGCATCTGGCCCGCTGGCGTCCGGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGC
GCCAGCCGGCTTGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTTGGGACTATGGAG
CTCAGGGCAGCTGTGACCCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGCCGAGAACTGGGTGCTGGAGGCCCGGGCTT
CCTGGCTTATGAGTGTGGCACCTGCCGGCAGCCCCGGAGGCCCTGGCCTTAAGTGGC
CGTTCTGGGCCTCGACAGTCATGCCCTGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGATGGTGCCTCGTGCCTAGGCCAAGGAGGCTCCAGCCATAGGCGCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGGTGCAGGGTACAGGAGAGCTG
GCGATGACTGAAGTGCCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAATTTGCTCTCAGGAATGAGAATCTTGGCCACTGGA
GAGCCCTGCTCAGTTCTCTATTCTATTCACTGCACTATATTCTAACACTTACAT
GTGGAGATACTGTAACCTGAGGGCAGAAAGCCANTGTGTCATTGTTACTGTGTCCTGTCAC
TGGATCTGGCTAAAGTCCTCCACCACACTGGACCTAACAGACCTGGGTTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGAAAACATGAATAAACACACATTATTCT
AAAA

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLRQLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFRREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLVRDDGSNRTSLIDSRLVSHESGWKAFDVTEAVNF
WQQLSRPRQPLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTQPVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

FIGURE 43

GTCTGTTCCCAGGAGTCCTCGCGGCTGTTGTCACTGGCCTGATCGCGATGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTCATATTGGCGATCCTGTTGTGCTCCCTGG
CATTGGGCAGTGTACAGTGCACCTCTGAACCTGAAGTCAGAATTCCCTGAGAATAATCCT
GTGAAGTTGTCTGTGCCACTCGGGCTTTCTTCTCCCCGTGTGGAGTGGAAAGTTGACCA
AGGAGACACCACCAGACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTTGCCAACGGTATCACCTCAAGTCCGTACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCGAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCCTCATCCAAGCCTACAGTTAACATCCCTCCTGCCACCATTGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTTCTGAATAACACACTGGTTCAAAGAT
GGGATAGTGTGCTACGAATCCAAAAGCACCCGTGCCCTCAGCAACTCTCCTATGTCCT
GAATCCCACAAACAGGAGAGCTGGTCTTGATCCCTGTCAAGCTCTGATAACTGGAGAATACA
GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTCAAATGCTGTGCGCATGGAAAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCCGTCTTGTAAACCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAATTCAAACAG
ACCTCGTCATTCTGGTGTGAGCCTGGTCGGCTACCGCCTATCATCTGCATTGCCTTACT
CAGGTGCTACCGACTCTGGCCCTGATGTCTGTAGTTCACAGGATGCCTTATTGTCCT
TACACCCACAGGGCCCCCTACTTCTCGGATGTGTTTAATAATGTCAGCTATGTGCC
ATCCTCCTCATGCCCTCCCTCCCTTACCACTGCTGAGTGGCTGGAACTGTTAAA
GTGTTATTCCCCATTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAGTAGACAGAAAAATGGGGGGTCGCAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTTGAGCTGGTCTGGCTCTTCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGGATTAGAGGCTAGAGCGGCTGAAATGGTTGG
TGATGACACTGGGTCTTCCATCTCTGGGCCACTCTCTCTGTCTTCCATGGAAAGTG
CCACTGGGATCCCTGCCCCTGCTCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTTGTGGAGAGCATAGTAAATTTCAGAGAACTTGAAGCCAAAAG
GATTAAAACCGCTGCTCTAAAGAAAAGAAAATGGAGGCTGGCGCAGTGGCTCACGCC
TAATCCCAGAGGCTGAGGCAGGCAGGATCACCTGAGGTGGAGTTGGGATCAGCCTGACCA
ACATGGAGAAACCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC
CCAGCTGCTCAGGAGCCTGGCAACAAGAGAAAATCCAGCTCAAAAAAAAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPKLSCAYSGFSSPRVEW
KFDQGDTTRILVCYNNKITASYEDRVTFLPTGITFKSVTREDTGYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNI PSSATIGNRAVLTCSEQDGSPPSEYTWFKDGI VMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCCGCTGTGGGGACAGCATGAGCGCGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCGCGAGCCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGGCCCCAGCTCAG
GCTCGTCCCACCCACCAAGTCCAGTGCCGACCAGTGGCTTATGCGTCCCCTCACCTGG
CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCACCGCCCCCTGGCCTCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCA
CCCAGACTGTCCCGACTCCAGCGACGAGCTGGCTGTGGAACCAATGAGATCCTCCCGGAAG
GGGATGCCACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTCACCTCTCAGGAATGCC
ACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTCCCCTGTGCGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGGCCAACTGCCTATGGGTTATTGCAGCTGCTGCCGTGC
TCAGTGCAAGCCTGGTCACGCCACCCCTCCTCCTTGTCCCTGGCTCCGAGGCCAGGAGCGC
CTCCGCCCACTGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGTCAGAACAGAACAGAC
CTCGCTGCCTGAGGACAAGCACTTGCCACCACCGTCACTCAGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGATGCGGATGGTACCCGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGAACCTGCCACAGCCAGAACAGAC
GGGCTGGCCCCAGGCAGCTCCAGGGGGTAGAACGCCCTGTGCTTAAGACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

FIGURE 46

MSGGWMAQVGAWRTGALGLALLLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLD CSDGSDEEECRIEPCTQKGQC PPPGLPCPCTGVSDCSGGDKKL
RNC SRLA CLAGELRCTL SDDCIPLTWRC DGH PDCP DSS DEL GCGTNEILPEGDATTMGPPVT
LES VTS LRN ATT MGPP VT LES VPS VGNAT SSS AGD QSGS PTAY GVIAAAAV LS AS LVT AT LL
LL SWL RAQER LRPL GLLVAM KESLLL SEQ KTS LP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,
224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGCGTCCGGTCTCGCTCGCGCAGCGGCGGCAGCAGAGGTGCCACAGATGCGG
GTTAGACTGGCGGGGGAGGAGGCGGAGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTTATCATGGAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCACACCTCAGTCCCCCAGAGACTCTTG
GCCGTGATCCTGTGGTTTCAGCTGGCGCTGTGCTTCGGCCCTGCACAGCTCACGGCGGGTT
CGATGACCTCAAGTGTGCTGACCCCGCATTCCGAGAATGGCTTCAGGACCCCCAGCG
GAGGGGTTTCTTGAAAGGCTCTGTAGCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG
GGCGCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCTAGGCTGGATCCAAGTGA
TAATTCCATCTGTGCAAGAAGATTGCCGTATCCCTCAAATGAAGATGCTGAGATTATA
ACAAGACATATAGACATGGAGAGAACGTAATCATCACTTGTATGAAGGATTCAAGATCCGG
TACCCGACCTACACAATATGGTTTCAATTATGTCGCGATGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCTGAGACCTCTAGCCTCTTAATGGCTATGTAAACATCTCTGAGC
TCCAGACCTCCTCCCGTGGGACTGTGATCTCCTATCGCTGCTTCCGGATTAAACTT
GATGGGTCTGCGTATCTTGAGTGCCTACAAAACCTTATCTGGCGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCAAGTCTGTCCACTACCTCCAATGGTAGTCACGGAGATTCGTCT
GCCACCCGCGCCTTGTGAGCGTACAACCACGGAACGTGGTGGAGTTTACTGCGATCCT
GGCTACAGCCTCACCAAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTCCCTC
TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTACGGCAACCAGTGTGCTGGTGTGCTCGTCATC
CTGGCCAGGATGTTCCAGCCAAGTTCAAGGCCACTTCCCCCAGGGGCTCCCCGGAG
TTCCAGCAGTGACCTGACTTTGTGGTAGACGGCGTGCCTCATGCTCCGTCTATG
ACGAAGCTGTGAGTGGCGCTTGAGTGCCTTAGGCCCGGGTACATGGCCTCTGTGGCCAG
GGCTGCCCTTACCGTGGACGACCAGAGCCCCCAGCATACCCGGCTCAGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTGAGCTGCTCCAAA
GTCTGTATTCACCTCCAGGTGCCAAGAGAGCACCCACCCGCTCGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCAGGCATCCATCATGCCACTGGGT
GTTGTTCTAAGAAACTGATTGATTAAAAAATTCCAAAGTGTCTGAAGTGTCTCTCAA
ATACATGTTGATCTGTGGAGTTGATTCCCTTCTCTTGAGTAAACAA
AGCTCTGATCTTAAAATTGCTATGCTGATAGAGTGGTAGGGCTGGAAGCTTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTAAAATTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDGFLEQQQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHQCQDGFKLGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICGGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTWKIVAFATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGD'TDGPGESETCDS
VSGSSELLQSLYSPPRCQESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCACCGCGTCCGCTCCGCCTCCCCCCCCGCCTCCCGTGCAGTCGGTCCGTGGCCTAGAGA
TGCTGCTGCCCGGGTTGCAGTTGTCGCACGCCCTGCCGCCAGCCGCTCCACCGCCGT
AGCGCCCGAGTGTGGGGGGCGCACCCGAGTCGGGCCATGAGGCGGGAACCGCGCTACAGG
CCGTGCTGCTGGCGTGCCTGGTGGGCTGCAGGGCGACGGTCGCCTGCTGAGTGCC
TCGGATTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCCTGTTA
TAAAGTCATTACTTCATGATACTTCTGAAGACTGAACCTTGAGGAAGCCAAGAACGCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA
AAGTCATTGAAAACCTCTGCCATCTGATGGTACCTCTGGATTGGCTCAGGAGGCCTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTATGCTTGGACTGATGGCAGCATAT
CACAACTTAGAACCTGGTATGTGGATGAGCCGTCCTGCAGCAGGTCTGCGTGGTCATG
TACCATCAGCCATCGGCACCCGCTGGCATCGAGGCCCTACATGTTCCAGTGGAAATGATGA
CCGGTGCAACATGAAGAACAAATTTCATTGCAAATATTCTGATGAGAAACCAGCAGTCCTT
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAACACAG
GAAGAACATGCCAAAAAAACATTAAAGAAAGTAGAGAACAGCTGCCTGAATCTGGCCTACAT
CCTAATCCCCAGCATTCCCCTCTCCTCCTGTGGTACCAACAGTGTATGTTGGGTTT
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCCTAGCACAAAGAACACACCATC
TGGCCCTCTCCTCACCAAGGAAACAGCCGGACCTAGAGGTCTACAATGTATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGGCAGACCTGAAGAATATTCAATTCCGAGTGTGTT
CGGGAGAAGCCACTCCGATGACATGTCTGTGACTATGACAACATGGCTGTGAACCCATCA
GAAAGTGGTTGTGACTCTGGTGGAGAGTGGATTGTGACCAATGACATTATGA
GTTCTCCCCAGACCAAATGGGAGGAGTAAGGAGTCTGGATGGGTGAAAATGAAATATATG
GTTATTAGGACATATAAAACTGAAACTGACAACAAATGGAAAAGAAATGATAAGCAAAATC
CTCTTATTTCTATAAGGAAAATACACAGAACGGTCTATGAACAAGCTTAGATCAGGTCTGT
GGATGAGCATGTGGTCCCCACGACCTCCTGTGGACCCCCACGTTGGCTGTATCCTTAT
CCCAGCCAGTCATCCAGCTCGACCTTATGAGAACGGTACCTGCCAGGTCTGGCACATAGTA
GAGTCTCAATAATGTCACTTGGTTGTATCTAACCTTAAGGGACAGAGCTTACCTG
GCAGTGATAAAAGATGGGCTGTGGAGCTTGGAAAACCACCTCTGTTCTGCTATACAG
CAGCACATATTATCATAACAGACAGAAAATCCAGAACATCTTCAAAGCCCACATGGTAGCACAG
GTTGGCCTGTGCATGGCAATTCTCATATCTGTTTTCAAAGAATAAAATCAAATAAAGA
GCAGGAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGGTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPETQEEDAKKTFKESREAALNLAYILIPSIPLLLL
VTTVVVCWWICRKRKREQPDPSKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSSEGFTLVSVESGFVTNDIYEFSPDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGCCGGGAGGCACAGCGTCCCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCCGCGGACTTGGGGCGCCCGCTGAGCCCCGGCGCCCGCAGAAGACTTGT
GTTTGCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCACTGGTGT
GTTCAGCATGCGCTTGTGGACCCCAGTGGCGTCTGACCTCGCTGGCGTACTGCCTGCACC
AGCGGCGGGTGGCCCTGGCGAGCTGCAGGAGGCCATGCCAGTGTCCGGTCACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGTGTTGACACGGGGCTGGAGTCCCTCAAGCC
GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATAATTCTCCTTACGACTCT
CAATACCATGAGACCACCCCTGAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGCAT
GCAGCAAATGTTGCCTGGAGAGAGACTGAGGAAGAACTATGTGAAGACATTCCCTTC
TTTCACCAACCTCAACCCACAGGAGGTCTTATTGTTCCACTAACATTTCGGAATCTG
GAGTCCACCCGTTGTTGCTGGCTGGCTTTCCAGTGTCAAGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATTCAAAGTCTGTATCCAACTACCAAAGCTGGAGCCTGA
GGCAGAGAACCAAGAGGCCGGAGGCAGACTGCCTCTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGTGTATAAGTGGACTTCTCATCCTCCT
GGACAACGTGGCTGCCGAGCAGGCACACAACCTCCAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGCTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATTCCCTCACATCCTAGAGAGCAACCTGCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTCTATGGGGCTCATGATG
TGACCTTCATACCGCTTTAATGACCTGGGGATTTTGACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAACCTTACCAAGCACCTGGAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCAACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELOEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRQTAQSLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFHLIES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVQLYYHGKEQVPRGCPDGLCP LDMLNAMS VYTLSPEKYHALCSQTQVM EVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAACTAAATATTGCTGCTGGGGACCTCCTTAGCCT
TAAATTCAGCTCATCACCTCACCTGCCTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTGACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGCAGCTGGGGCCT
CCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGACCGTGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTTGTATGAGCCACCAGCAGAAAAAGAGCAAAGGTCTCATCCA
ATCAGTCAGTTGCACAGGAACAGAAGATACTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAACCCAGAGAGCTCTTCTCCCCA
GTCCCAGAGGGTGTCAAGGCTGGTGACGCCCTGGCATTGCAAGGGACGCGTGGAAAGTGAA
GCACCAAGAACAGTGGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGCCGCAAAGGTGG
TGTGCCGGCAGCTGGATGTGGGAGGGCTGTACTGACTCAAAACGCTGCAACAAGCATGCC
TATGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAACACCCTCA
GGATTGCCCTCTGGCCTTGGGGAAAGAACACACCTGCAACCATGATGAAGACACGTGGTCG
AATGTGAAGATCCCTTGACTTGAGACTAGTAGGAGGAGACAACCTCTGCTCTGGCGACTG
GAGGTGCTGACAAGGGGTATGGGCTCTGTCTGTGATGACAACACTGGGAGAAAAGGAGGA
CCAGGTGGTATGCAAGCAACTGGCTGTGGAAAGTCCCTCTCCCTCAGAGACCGGA
AATGCTATGCCCTGGGGTTGGCCGCATCTGGCTGGATAATGTTCGTTGCTCAGGGAGGAG
CAGTCCCTGGAGCAGTGCCAGCACAGATTTGGGGTTCACGACTGCACCCACCAGGAAGA
TGTGGCTGTCATCTGCTCAGTGTAGGTGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAAGAAGGGAGCATTACTGTCTACATGACTGCATGGATGAACACTGATCT
TCTTCTGCCCTGGACTGGACTTATACTTGGTGCCCTGATTCTCAGGCCTTCAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGGAACACTACATCA
CCACCTTCCTATGTCTCCACATTGCACACAGCAGATTCCAGCCTCCATAATTGTGTGTAT
CAACTACTTAAATACATTCTCACACACACACACACACACACACACACACACACACACATA
CACCAATTGTCCCTGTTCTCTGAAGAACTCTGACAAAATACAGATTTGGTACTGAAAGAGA
TTCTAGAGGAACGGAATTAAAGGATAAATTCTGAATTGGTTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAACCTTATTACAATAATAAGATAGCAC
TATGTGTTCAAA

FIGURE 54

MALLFSLILAICTRPGLASPGVRLVGGHLRCEGRVEVEQKGQWGTVCDDGWDIKDVAVL
RELGCGAASGTPSGILYEPPAEEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCGSRLEVLLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIVL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGAC
CCACCGCGTCCCGGGACCGTGGCGGACCGTGGCGGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTGGCTGCCTGGG
CGTCTTCGGCCTTTCCGGCTGCTGCAGTGGGTGCGCGGGAAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCCACCTCAGGGCTGGCAAAGAATGTGCAAAAGTCTTCTATGCT
GCGGGTGCTAAACTGGTGCTCTGGCCGAATGGTGGGCCCTAGAACAGCTCATCAGAGA
ACTTACCGCTCTCATGCCACCAAGGTGCAGACACACAAGCCTACTTGGTGACCTTCGACC
TCACAGACTCTGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTGGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACACCACAGTGG
TGTGGACAAGAGGGTCATGGAGACAAACTACTTGGCCCAGTTGCTCTAACGAAAGCACTCC
TGCCTCCATGATCAAGAGGAGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCCCTTCGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTGA
CTGTCGCGTGCAGATGAAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCGCGGATGGATCTAGGTATGGAGTTATGGAC
ACCACCCACAGCCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGTGGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTACTGCCTTCCTGGCTGTTATCTCGAA
CTCTGGCTCCTGGCTCTTCAGCCTCATGCCCTCCAGGGCCAGAAAAGAGCGGAAATCC
AAGAACTCCTAGTACTCTGACCAGCCAGGGCAGAGAAGCAGCACTTTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGAGACTTAATGGAGATTGCTCACAAGTGGG
AAAGACTGAAGAACACATCTCGTCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTCCAGGGTGAGGGAAACACTTAAGGAATAATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAGGGCGCGACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGCCAACTTGTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVIITGATSGLGKEAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDGAI
VAAAEEILQCFGYVDIL
VNNAGISYRGTIMDTTVDVDKRVMETNYFGPVALTKALLPSMIKRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLAAVGKKKDVLADLLPSLAVYLRTLAPGLFFSLMASRARKERKSNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

FIGURE 58

MKFLLDILLPLLIIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDVSILVNNAGVV
YTSDFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 59

CCACCGCGTCCGGGACCGTGGCTGACTAGTTCTAGATCGCGAGCGGCCGCCGGCTC
AGGGAGGAGCACCGACTCGGCCGCACCTGAGAGATGGTGGTGCCATGTGGAAGGTGATTG
TTTCGCTGGCTCTGTTGATGCCCTGGCCCTGTGATGGGCTGTTCGCTCCCTATAAGAAGT
GTTTCCATGCCACCTAACGGAGACTCAGGACAGCCATTATTCTCACCCCTACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAATTGAGTTGGTCGGCCCTTCCCAGGACTGAACATGA
AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTGGTT
TTCCCAGCTCAGATAACAGCCAGAACGATGCCAGTAGTTCTCTGGCTACAGGGTGGCCGG
AGGTTCATCCATGTTGGACTCTTGTGGAACATGGGCCTATGTTGTCACAAGTAACATGA
CCTTGCCTGACAGAGACTCCCTGGACCACAAACGCTCTCCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTATACAGTGCACTAATTCAAGTTTCCAGATATTCTGAATATAAAAAATA
ATGACTTTATGTCACTGGGGAGTCTTATGCAGGGAAATATGTGCCAGCATTGCACACCTC
ATCCATTCCCTCAACCCCTGTGAGAGAGGGTGAAGATCAACCTGAACCGAATTGCTATTGGAGA
TGGATATTCTGATCCGAATCAATTATAGGGGCTATGCAGAATTCTGTACCAAATTGGCT
TGTTGGATGAGAACAAAAAGTACTTCCAGAACAGTGCATGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAAATACTGGATAAAACTACTAGATGGCGACTAAC
AAGTGATCCTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTGCCT
GCACCGAACCTGAGGATCAGCTTACTATGAAATTGTCACTCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGAACTATAGTGAAGACTTGCAGAG
AGATACAGTACAGTCAGTTAACCATGGTTAAGTGAATAATTATAAGGTTCTGA
TCTACAATGCCAATGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTGATGGC
ATGGACTGGAAAGGATCCCAGGAATACAAGAACGGAGAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTCCATCAGGTAATTATTC
GAGGTGGAGGACATATTTACCCATGACCAGCCTCTGAGAGCTTGACATGATTAATCGA
TTCATTATGAAAAGGATGGATCCTTATGTTGGA**TAA**ACTACCTTCCAAAAGAGAACAT
CAGAGGTTTCATTGCTGAAAAGAAAATGTAAGGAAACAGAAAATGTCATAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTCATCAATAAAATTATCCTTGAAACAAGTGAGC
TTTGTTTGGGGGAGATGTTACTACAAAATTACATGAGTACATGAGTAAGAATTACA
TTATTAACCTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAAGATGTATAAATGA
AATTAGGGCTTGAATAGGAAGTTTAATTCTCTAAAGAGTAAGTGAAAAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAAGTTGGCATGCCGTGAAGGT
GTTGGAAATATTATGGATAAGAATAGCTCAATTATCCAAATAATGGATGAAGCTATAA
TAGTTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAACATTCTTGAAATA
AAAATATTATATAAAAGTAAAAAAAAAA

FIGURE 60

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPKGDSQPLFLTPYIEAGKIQKGREL
SVPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTSNMTLDRDFPWTTLMSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSILNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEEAFEILDKLLDGDLTSDPSYFQNVTG
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNNQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKVWKIFKSDSEVAGYIRQ
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCCGGCTCCGAATGGCACATGTGGAATCCCAGTCTTGTGGCTACAACAT
TTTCCCTTCCTAACAGTCTAACAGCTGTTAACAGCTAGTGATCAGGGGTTCTTCTT
GCTGGAGAAGAAAGGGCTGAGGGCAGAGCAGGGCACTCTCACTCAGGGTGACCAGCTCCTTG
CCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGAGGGCTGCTAACAGCTTCAAAAAACAGGAGCGACTTCACTGGCTGGGAT
AAGACGTGCCGGTAGGATAGGAAGACTGGTTAGTCCTAACATCAAATTGACTGGCTGGG
TGAACCTAACAGCCTTAACCTCTGGGAGATGAAAACGATGGCTTAAGGGCCAGAAA
TAGAGATGTTGAAAATAAAATTAAAAAGCAAGTATTTATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATCCCTGAACATTCTAACAGAGGGAGAAAGTATGTTAAAATA
GAAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAAACCAGGATGGGACCTGGGTC
AGGCCAGCCTTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCGCCGCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCTGGAGGTGG
ACAGCCGCTGTGGTCTGCTCAGTGGCTGGGTGCTGGCCCCCAGCAGCCGG
ATGCCTCAGTCAGCACCTCACTCTGAGAATCGTACTGGACCTCAACCACCTGACCGT
CCACCAAGGGACGGGGCGTCTATGTGGGGCCATCAACCGGGTCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTCATAACAGACAGGGCAGAAGAGGACAACAAGTCTGTTACCCG
CCCCTCATCGTGCAGCCCTGCAGCGAAGTGTCTACCCCTACCAACAATGTCAACAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGTCTGCA
AGCTGCTGCCGTGGATGACCTCTCATCCTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCCAGTGTCAACAAGACGGGACCATGTACGGGTGATTGTGCGCTCTGAGGGTGAGGA
TGGCAAGCTCTTACCGCACGGCTGTGGATGGGAAGCAGGATTACTTCCGACCTGTCCA
GCCGGAAGCTGCCCGAGACCCCTGAGTCCTCAGCCATGCTGACTATGAGCTACACAGCGAT
TTTGTCTCCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCACTTTGACAT
CTTCTACATCTACGGCTTGCTAGTGGGGCTTGTCTACTTCTCACTGTCCAGCCGAGA
CCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTTACACCTCACGCATCGTGC
CTCTGCAAGGATGACCCCAAGTCCACTCATACGTGTCCCTGCCCTGGCTGCACCCGGC
CGGGGTGGAATACCGCCTCTGCAGGCTGCTACCTGGCCAAGCCTGGGACTCACTGGCC
AGGCCTTCAATATCACCAGCCAGGACATGACTCTGCCCTGTGCGCTTCCATCCAAAGGGCAGAAG
CAGTATCACCACCCGCCGATGACTCTGCCCTGTGCGCTTCCATCCAAAGGGCAGAAG
GCAGATCAAGGAGCGCCTGCAGCCTGCTACCAGGGCGAGGGCAACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGTCCAGTGCACGAAGGCGCTGTCCCCATCGATGATAACTCTGTGGA
CTGGACATCAACCAGCCCTGGAGGCTCAACTCCAGTGGAGGGCTGACCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGCCCTCTACGTTACAACGGCTACAGCGTGGTTTG
TGGGACTAAGAGTGGCAAGCTGAAAAGGTAAGAGTCTATGAGTCAGATGCTCAATGCC
ATTCACCTCCTCAGCAAAGAGTCCCTCTTGGAGGTAGCTATTGGTGGAGATTTAATATAG
GCAACTTATTTCTGGGAACAAAGGTGAAATGGGAGGTAAAGAAGGGTTAATTGTG
ACTTAGCTCTAGCTACTCCTCCAGCCATCAGTCATTGGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCAAACTTAAGAAAAACTTAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 62

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLSSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTvhQGTGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTNNVNKLIIIDYSENRLLAGSL
YQGVCKLLRLDDLFLILVEPSHKKEHYLSSVNKTGTMYGIVRSEGEGDKLFIGTAVDGKQDY
FPTLSSRKLP RDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLAQAFNITSQDDVLFIAIFSKGQKQYHHPPDDSACAFPIRAINLQIKERLQSCYQGEQN
LELNWLLGKDQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGCGCGGCTGAGTGGACTGGAGTGGAAACCGGGTCCCCCGCGTTAGAGAACACGCG**A**TGACCA
CGTGGAGCCTCOGGCGGAGGCCGCCGCACGCTGGACTCTGCTGCTGGTCGTCTGGCTTCCCTGGTGCCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTCTGCGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGGA
ACTTCATGCTGGAGGATTCCACCTTCTGGATCTCGGGGCTCCATCACTATTTCGTGTGCCAGGGAGTACT
GGAGGGACCGCCCTGCTGAAGATGAAGGCCCTGCTGAACACCCTCACCACTATGTTCCGTGGAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTTCTCTGGGAACCTGGACCTGGAGGCCCTCGTCTGTGGCCAGAGATCG
GGCTGTGGGTATTCTGCTCCAGGCCCTACATCTGCTGAGATGGACCTCGGGGCTGCCAGCTGGCTAC
TCCAAGACCCCTGGCATGAGGCTGAGGACAACCTAACAGGGCTCACCGAACAGCTGGACCTTATTGACCACC
TGATGTCCAGGGTGGTGCCTACTCCAGTACAAGCGTGGGGAGCTATCTGGCTGCAGGTGAGAAATGAATATG
GTTCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGACTGGAGGACCGTGGCATTGTGGAACCTGC
TCCTGACTTCAGACAACAAGGATGGGTGAGCAAGGGATTGTCCAGGGAGTCTTGGCCACCATCAACTTGCAGT
CAACACAGAGCTGCAGCTACTGACCACCTTCTCTTCAACGTCCAGGGACTCAGCCAAAGATGGTGTGGAGT
ACTGGACGGGGTGGTTGACTCGTGGGAGGCCCTCACAAATATCTTGGATTCTCTGAGGTTTGAAAACCGTGT
CTGCCATTGTGGACGCCGCTCCATCAACCTCTACATGTTCCACGGAGGCACCAACTTGGCTTCATGAATG
GAGCCATGCACTCCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGCTGACAGAACGGCG
ATTACACGGCCAAGTACATGAAGCTTCGAGACTTCTCGGCTCCATCTCAGGCATCCCTCTCCCTCCCCACCTG
ACCTTCTTCCAAGATGCCGTATGAGCCCTTAACGCCAGTCCTGTACCTGTCTGTGGACGCCCTCAAGTACC
TGGGGAGCCAATCAAGTCTGAAAAGCCATCAACATGGAGAACCTGCCAGTCATGGGGAAATGGACAGTCCT
TCGGGTACATTCTCTATGAGACCAGCATCACCTCGTCTGGCATCCTCAGTGGCCACGTGCATGATGGGGCAGG
TGTTTGTGAACACAGTATCCATAGGATTCTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGAGGATCTGGTGGAGAATCGTGGCGAGTCACATGGGGAGAATTGATGACCAGCGCAAAG
GCTTAATTGGAAATCTCTATCTGAATGATTACCCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA
GCTTCTTCAGAGGTTGGCCTGGACAAATGGNTTCCCTCCAGAAACACCCACATTACCTGCTTCTTCTTGG
GTAGCTTGTCCATCAGCTCACGCCCTGTGACACCTTCTGAAGCTGGAGGGCTGGAGAAAGGGGTTGTATTCA
TCAATGGCCAGAACCTTGGACGTTACTGGAACATTGGACCCAGAACAGCCTTACCTCCAGGTCCCTGGTTGA
GCAGCGGAATCAACCAGGTATCGTTTGAGGAGACGATGGGGCCCTGCATTACAGTTACGGAAACCCCCC
ACCTGGGAGGAACCACTGATGGCTGGCACCCTCTGCTGGTGCAGTGGGAGACTGCCGCC
CTCTTGACCTGAACCTGGCTGCTGGCCACCCCTCAGTCAAAAGCATCTCTTAAAGTAGCAACCTCAGGG
ACTGGGGCTACAGTCTGCCCCCTGCTCAGTCAGTCAAAACCCCTAAGCCTGCAGGGAAAGGTGGATGGCTCTGGGCC
TGGTTTGTGATGGCTTCTCACAGCCCTGCTCTTGTGCGGAGGCTGTGGGCTGTCTAGGGTGGAGC
AGCTAATCAGATGCCAGCCTTGGCCCTCAGAAAAAGTGTGAAACGTGCCCTGCACCGGACGTACAGCCC
TGCAGCATCTGCTGGACTCAGCGTGCTCTTGTGCTGGCTCTGGGAGGCTGGCCACATCCCTCATGGCCCC
TTTATCCCCGAATCCTGGGTGTGTCACAGTGTAGAGGGTGGGAAGGGGTGTCTCACCTGAGCTGACTTGT
CTTCCTTCACAACCTCTGAGCCTCTTGGATTCTGAAGGAACCTGGCGTGAAGAACATGTGACTTCCCC
TCCCTCCCACTCGCTGCTTCCCACAGGGTGACAGGCTGGAGAAACAGAAATCCCTCACCTGCGTCTTCC
CAAGTTAGCAGGTGTCTGGTGTGTCAGTGAGGAGGACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCA
CATCCAGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCC
AGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCCAGGG
GGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCCAGGGAGG
ACAGAACGGCCAGCTCAGTGGCCCCGCTCCCCACCCCCCAGGCCAACAGCAGGGCAGAGCAGCCCTCC
GAAGTGTGTCAGTCCGATTTGAGCCTTGTCTGGGCCCCAGCCAAACACCTGGCTTGGCTACTGCTCTGA
GTTGCAGTAAAGCTATAACCTTGAATCACAA

FIGURE 64

MTTWSLRRR PARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHQLGLQAKGWNFMLEDSTFW
IFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAFVLMA
AEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVIDLYFDHLMMSRVVPLQ
YKRGGPIIAVQVENEYGSYNKDPAYMPYVKKALEDRGIVELLTSNDKDGLSKGIVQGVLAT
INLQSTHELQLLTTFLNVQGTQPKMVMEYWTGFDSWGGPHNILDSSEVLKTVSAIVDAGS
SINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDYTAKYMKLRDFFGSISGIP
LPPPPDLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPINMENLPVNGGNGQSFYIYE
TSITSSGILSGHVHDRGQVFVNTVSIGFLDYKTTKIAVPLIQGYTVLRILVENRGRVNYGEN
IDDQRKGLIGNLYLNDSPLKNFRIYSLDMKKSFFQRFGLDKWXSLPETPTLPAFFLGSLIS
STPCDTFLKLEGWEKVVFINQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGGGAGCTGAGAGGCTCCGGCTAGCTAGGTGTAGGGTGGACGGTCCCAGGACC
CTGGTGAGGGTCTCTACTTGGCCTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAAGG
GGAGCAAAGCCGGCTCGGCCGAGGCCCGAGGACCTCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGTCTGTCGCCGTCTCAGACTAGAGGAGCGCTGAAACGCCATGGCTCC
AAGAAGCTGTCCTGCCTCGTCCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCA
GGCAGACACTCGTCGTTGCTAGGGATAGGGGTATGACCGGTTCTCCTAGACGGGCC
CGTTCGCTATGTGTCGGCAGCCTGCACTACTTCGGGTACCGCGGGTGCTTGGGCCAC
CGGCTTTGAAGATGCGATGGAGCGGCCTCAACGCCATACAGTTATGTCGCCCTGGAAC
CCACGAGCCACAGCCTGGGGTCTATAACTTAATGGCAGCCGGACCTCATGCCCTTCTGA
ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAAGGACCTACATCTGTGCAGAG
TGGGAGATGGGGGTCTCCCATCCTGGTTGCTCGAAAACCTGAAATTCACTTAAGAACCTC
AGATCCAGACTCCTGCGCAGTGGACTCCTGGTTCAAGGTCTGCTGCCAAGATATATC
CATGGCTTATCACAAATGGGGCAACATCATTAGCATTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTTCAGCTACATGAGGCACCTGGCTGGCTCTCGTGCACGTCTAGG
AGAAAAGATCTGCTCTCACACAGATGGGCCTGAAGGACTCAAGTGTGGCTCCCTCCGGG
GAECTATACCACTGTAGATTGGCCAGCTGACAACATGACCAAAATCTTACCCCTGCTT
CGGAAGTATGAACCCCATGGGCATTGGTAAACTCTGAGTACTACACAGGCTGGCTGGATTA
CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAGGACTAGAGAACATGC
TCAAGTTGGGAGCCAGTGTGACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCGATAAGAAGGGACGCTCCCTCGATTACTACCAGCTATGACTATGATGCACC
TATATCTGAAGCAGGGGACCCACACCTAACGCTTTGCTCTCGAGATGTACAGCAAGT
TCCAGGAAGTCCCTTGGGACCTTACCTCCCCGAGCCCCAAGATGATGCTGGACCTGTG
ACTCTGCACCTGGTTGGCATTACTGGCTTCTAGACTTGTGCTTGGCCCCGTGGGCCAT
TCATTCAATCTGCCAATGACCTTGAGGCTGTCAGCAGGACATGGCTCATGTTGTACC
GAACCTATATGACCCATACCATTGGAGCCAACACCATTCTGGGTGCCAATAATGGAGTC
CATGACCGTGCCATGTGATGGTGGATGGGTGTTCCAGGGTGTGGAGCGAAATATGAG
AGACAAACTATTTTGACGGGAAACTGGGTCAAACCTGGATATCTGGTGGAGAACATGG
GGAGGCTCAGCTTGGGTCTAACAGCAGTGACTCAAGGGCCTGTTGAAGCCACCAATTCTG
GGGCAAACAATCCTAACCACTGGATGATGTTCCCTGAAAATTGATAACCTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAATGCCATATCCTCAAGCTCCTCTGGCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTTGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCAAGTCTGGATCAATGGGTTAACCTGGGCCGGTACTGGACAAAGCAGGGCC
ACAACAGACCCCTACGTGCCAAGATTCTGCTGTTCTAGGGAGCCCTAACAAAATTA
CATTGCTGGAACCTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGCACAGGACACATATCAATTCCCTTCAGCTGATAACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGCACTTGAAAGGTAGGCCGGCATGGTGGCTCATGC
CTGTAATCCCAGCACTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGAAACCCCGTCCACTAAAAAATACAAAATTAGCCGGCGTG
ATGGTGGGCACCTCTAATCCCAGCTACTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC
AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA
GACACTCCATCTCAAAAAAAAAAA

FIGURE 66

MAPKKLSCLRSLLLPLSLTLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFALLGEKILLFTTDGPEGLKCGSLRGGLYTTVDFGPADNMTKIF
TLLRKYEPhGPLVNSEYYTGWLWQNHSTRSAVTKGLENMLKLGASVNMYMFHGKTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPGLPLPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQGPQQTLYVPRFLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTCTGCAAGCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTCAGTGC
ACCCACAATATGGCTTACATGTTAAAAAGCTTCTCATCAGTTACATATCCATTATTGTGT
TTATGGCTTATCTGCCCTACACTCTCTCTGTTATTCAAGGATAACCTTGAAGGAATATT
CTTCGAAAAGTCAGAGAAGAGAGCAGTTAGTGCACATTCCAGATGTCAAAACGATT
GCGTCCTTCTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGAGTTAGTGAAGAAATAACTAGGGAAATTAGTTGAACCATGAGTGGACATTG
AAAAACTCAGGCAGCACATTCAACGCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGTGCCCAGTGTGCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAAC
AATTCCAGAAGCTAAATTCTGCTAACAGATTCTCAAATGACTAACCTCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTAGCTTCTCGCGATCACTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCTGCCTGGGTGTATTGCTAAAAAA
CCTTCGAGAGTTGTACTTAATAGGCAATTGAACACTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGGCACCTTAAGATTCTCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTTACAAAGTTAGTCATTATAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACTGGAT
TTAAAGTCAAATAACATTGCAACATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGATAACAAAATTGTTACTATTCCCTCCCTATTACCCATGTCA
AAAACCTGGAGTCACTTATTCTCTAACACAAGCTCGAACCTTACAGTGGCAGTATT
AGTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTCAATGATTCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTTGCATATCACTGGAACAAAGTGGACATTCTGC
CAAACAAATTGTTAAATGCATAAAGTTGAGGACTTGAATCTGGACAGAACTGCATCACC
TCACTCCCAGAGAAAGTTGGTCAGCTCTCCAGCTCACTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGCTGTTG
TGGAGATCACCTTTGCAAATGGATTAAAACTAAGATAATATGACACAGTGTGCAGGAAC
AACTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAATAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGTAGGGTTAAAGTCATTCACTTCAAATCATTGTTTTCTTTGGGG
AAAGGGAAGGAAAATTATAATCACTAATCTGGTTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTGCCTGCTAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMNTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEIIISFQHLKRLTCLKLWHNKIVTISSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDRPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CC CAC CG CG TCC GGC CT TCT CT GG ACT TT GC ATT CC ATT TTT CATT GA CA AA ACT GA CT TTT TATT TCT
TTT TT CC AT CT CT GG CC AG CT GG AT CC TAGG CG CC CT GG AAG AC AT TT GT GT TT AC AC AC TA AGG AT
CT GT GT TT GG GG TT CT TCT CC CT GG AC AT TT GG CATT GC AT TG CT TAG GT GT GT GG GG AG AC AC GT GG
GT CAG TG CT TG CT TG CACT TAT CT GC CT AGG TA CAT CG AAGT CTT TGA CCT CC AT AC AGT GATT AT GC CT GT C
AT CG CT GG GT AT CT GG CC CT TG CT CT GT CAG TG AT GT GT GT CT GT CT GT CT TTA CT TCA AA AT AC AC AA
GC GCT AAA AG CT GCAA AGG AACC TG AAG CT GT GG CT GT AAAA AT CA AC CC AG AC AAG GT GT GG GT GG CC AAG
AAC AG CC AGG CCAA ACC AT TG CC AC GG AG TG CT GT CT GG CC TG CAG TG CT GT GAA AGG AT AT AGA AT GT GT GCC
AG TTT GAT TCC TG CC AC CT TG CT GT TG CG AC AT AA AT GAG GG CT TG AG GT TAG GAA AGG CT CC CT TCT CAAA
GC AG AG CC CT GA AG AC TT CA AT GT CA AT GAG GG CC AC CT GT TT GT GAT GT GC AGG CAC AG AAG GAA AGG CAC AG
CT CCC AT CAG TT CAT GG AAA AT AAT CAG TG CT GG AACC AG CT GT GG AG AT CC CT AC AG AG AG CT TC
CA CT GG GG CA ACC CT TG CAGG AAGG AG TG GT GG AG AG AACC CT AC TG GT GG AAT GT GATA AAC CAGT CA
CAC AG TG CT CT ATT CT CA CAA AT CT ACC C CT TG CT TG CT GG ACT GAC GT TT CC TG AG GT GT CC AG AAA
GCT GAT GT A AC AC AG AG CC TATA AA AG CT GT CG TG CCT TA AGG CT GG CC AG CG CC TT TG CCAA AT GG AG CT TG TA
AGA AGG CT CAT GG CATT GAC CC CT TT AATT CT CT CT GT TT GG CG GAG CT GACA AT GG CG AGG CT GA AGG CA AT
GCA AG CT GC AC AG T CAG T CT AGGG GT GG CA AT AT GG CAG AG ACC CAA AG CC AT GAT CT GCA AT CT CA AT CCC
AGT GAG AACT GCA CCT GG AC AAT AG AAG ACC AG AAAA AC AA AGC AT CAG AATT AT CT TT CT AT GT CAG CTT
GAT CC AG AT GG AAG CT GT GAA AGT GAAA AC AT AA AGT CTT GAC GG AA CCT CC AG CAA TGG C CT TG CT AGGG
CA AGT CT G CAG TAAA AC GACT AT GT CT CT GT ATT TG AAT CAT C AT CC CAG T AC ATT GAC GT TT CAA AT AGT TACT
GA CT CAG CA AG AATT CAA AG AACT GT CT TT GT CT TACT AC TT CT CT CTA AC AT CT CT AT TT CAA ACT GT
GG CG GT TAC CT GG AT AC CT TG GA AGG AT CCT TG CACC AG CCCC AT TA CCAA AG CC GCA T CT TG AG CT GG CT TAT
TGT GT GT GG CAC AT ACA AGT GG AGA AAG ATT ACA AG AATA ACT AA ACT CAA AG AG AT TT CT AG AAT AG AC
AA AC AGT G CAA AT TT GAT TT CT GG C AT CT AT GAT GG CC CT CC ACC AACT CT GG CT GAT GG AC AGT CT GT
GG CG GT GACT CCC AC CT TG AAT CGT C AT CAA ACT CT CT GACT GT CG TG TT GT CT AC AG AAT AT GCA AT TT CT
TAC CG GG GAT TT CT GCT TCT AC AC CT CA ATT TAT G CAG AAA AC AT CA AC ACT AC AT CT TA ACT TG CT CT
GAC AGG AT GAG GT TATT ATA AG CAA AT CCT AC CT AGG GCT TT TA ACT CT AAT GGG AATA ACT TG CAA CT AAAA
GAC CCA ACT TG CAG AG CAA AATT AT CAA AT GT GT GG AATT TT CT GT CC CT TA AT GG AT GT GG TAC AAT CAG A
AAG GT AGA AG AT CAG T CAA ATT ACT TG CAC CA AAT AT CAC CT TT CT G C AT CCT CA ACT TT CT G AAG T GAT C ACC
CG T CAG A A A C A C T C C CAG AT T AT GT G AAG T GT G AAT GG G A C A T A T C A T C A G T G G A G A T A A T A C A T A A C A
GA AG AT GAT GT A AT ACA AA AGT CAA AA G C A C T G G G C A A A T A A C A C C A G C A T G G C T C T T T G A A T C C A A T T C A
TT GAAA AG ACT A T A C T T G A A T C A C C A T A T T A T G T G A T T G A A C C A A C T C T T T G T T C A A G T T A G T C T G C A C
AC CT CAG AT C C A A A T T T G G T G G T T C T T G A T A C C T G T A G A G C C T C T C C C A C C T G A C T T T G C A T C T C C A A C C
TAC GAC CT A AT CA A C A G A G T G G A T G T A G T C G A G A T G A A A C T T G T A A G G T G T A T C C T T A T T T G G A C A C T A T G G G A G A
TT CC AG T T A T G C C T T A A T T C T G A G A A G T A T G G C T C T G T G A T C T G C A G T G T A A G T T T G A T A T G T G A T
AG CAG TG ACC ACC AG T C T C G C T G C A A T C A A G G T T G T G T C C A G A A G C A A A C G A G A C A T T T C T T C A T A T A A T G G
AAA AC AG A T T C C A T C A T G G A C C C A T T C G T C T G A A A A G G G A T C G A A G T G C A A G T G G C A A T T C A G G A T T T C A G C A T
GAA AC AC AT G C G G A A G A A A C T C C A A A C C A G C C T T C A A C A G T G T G C A T C T G T T T C C T T C A T G G T T C T A G C T C G
AAT GT GGT GACT GT AG CG A C A T C A C A G T G A G G C A T T T G T A A A T C A A C G G G C A G A C T A C A A A T A C C A G A A G C T G
CAG A A C T A T T A A C T A A C A G G T C C A A C C T A A G T G A G A C A T G T T C T C C A G G A T G C C A A A G G A A T G C T A C C T C G T
GG C T A C A C A T A T T A T G A A T A A T G A G G A A G G G C C T G A A A G T G A C A C A C A G G C C T G A T G T A A A A A A A A

FIGURE 70

MELVRRLMPLTLLLILSCLAEALTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLQVC SKNDYVPVFESSSTLT
FQIVTDSARIQRTVFVFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDLAIYDGPSTNSGLIGQVCGRVPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIIITFSASSTSEVITRQKQLQIIVKCEMGHNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTSDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVSRSKRDIISSYWKTDSSIIGPIRLKRDRSASGNQFHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCTGCGCCG
GGACATGCGGCCCCAGGAGCTCCCAGGCTCGCGTTCCCGTTGCTGCTGTTGCTGC
TGCTGCGCCGCCGCGTGCCTGCCACAGGCCACGCCCTCGACCCCCACTGGGAGTCC
CTGGACGCCGCCAGCTGCCCGTGGTTGACCAAGGCCAGTCGGTAGCGAGTGGTTCTGGTGGATTGGAAAAGGAAA
AGATACCGAAGTATGTGAAATTATGAAAGATAATTACCCCTAGTTCAAATATGAAGAT
TTTGGACCACATTACAGCAAATTTTAATGCCAACAGTGGCAGATATTTCAAGGC
CTCTGGTGC_{AA}AATACATTGCTTAACCTCCAAACATCATGAAGGCTTACCTGTGGGGT
CAGAATATTGCGGAACTGGAATGCCATAGATGAGGGGCCAAGAGGGACATTGTCAAGGAA
CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTGGACTGTACTATTCCCTTTGA
ATGGTTTCA_{TCG}CTTCC_{CT}TGAGGATGAATCAGTCATTCCATAAGCGGCAATTCCAG
TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACA_{ACT}TACAGCCTGAGGTTCTGTGG
TCGGATGGTGACGGAGGAGCACCGGATCAAA_{ACT}TGGAACAGCACAGGCTTCTGGCCTGGTT
ATATAATGAAAGCCCAGTCGGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTTCTACCTGCAGTGATCGTTATAACCCAGGACATCTTGC_{CA}
CATAAATGGAAA_{ACT}GCAATAGACAA_{ACT}GTCCTGGGCTATAGGAGGGAA_{AGCT}GG
AA_{AT}CTGACTATCTACAATTGAAGAATTGGTGAAGCAACTTG_{TA}GAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCA_{TT}CTGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGCTGGCTAAAGTCATGGAGAAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGT_CACCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGTCTATGCCATT_{TT}CTTAA_{AT}GGCCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAGCTATTCTGGGGCAACAGAGGTGAA_{ACT}ACTGGGCCATGGACAGCCACTTA_{ACT}GT
GATTCTTGAGCAAA_{AT}GGCATTATGGT_{AG}ACTGCCACAGCTAACCATTCAGATGC
CGTGTAA_{AT}GGGCTGGCTCTAGCC_{TA}ACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGTCTAAGGCTAGGA_{ACT}TACAGGTGTCTATAATTG_{TAG}GCACATGGAGA
AAGCAATGTA_{AA}ACTGGATAAGAAAATTATTGGCAGTTCA_GCCCTTCC_{TT}CCACTA
AATT_{TT}CTTAA_{ATT}ACCCATGTAACC_{TT}TA_{CT}CTCCAGTGCACTTG_{CC}ATTAAAGTC
TCTTCACATTGATTGTTCCATGTGTGACTCAGAGGTGAGAATT_{TT}TCACATTATAGTAG
CAAGGAATTGGTGGTATTATG_{AC}CGA_{CT}GTGAA_{ACT}GAAAATT_{TT}TATGTTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAA_{AT}GCATTGCTAGTCAT
TTTTTTTG_{GC}CAACATCATAGAGTGTATT_{AC}AA_{AT}C_{CT}AGATGGCATAGCCTACTACA
CACCTAATGTGTATGGTATAGACTGTTGCTC_{CT}AGGCTACAGACATATACAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAA_{AA}ACTGTAAA_{AA}ATGGTGCACCTGTATAGGGCACTTAC_{CA}CGAATGGAG
CTTACAGGACTGGAAGTTGCTCGGGTGAGTCAGTGAGTGAATGTGAAGGCCTAGGACATTA
TTGAACACTGCCAGACGTTATAA_{AA}ACTGTATGCTTAGGCTACACTACATTATAA_{AAAAAA}
GTTTTCTTCTCAATTATAA_{AA}ACATAAGTGTACTGTA_{ACT}TTACAAACGTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTAGCTAAACATAACTCATTGTGCAA
ATGTA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIFIHWG
VFSVPSFGSEWFWWYWKKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRGFLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNYYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIPTLDGTISVVFEERLRQVGWLKVNGEAIYETYT
WRSQNNDTVTPDVWYTSPKPEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWLALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGGGCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTTCCATCTGGACCACAGGGCTCTGGCCAAGGCTCTTGCAGCAGAAGAGCT
TTCCATCCAGGTGTATGCAGAATTATGGGATCACCCCTGTGAGCAAAAGGCAGACCAGC
AGCTGAATTACAGAAGCTAAGGAGGCCTGTAGGGCTGCTGGACTAAGTTGGCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAAACTTGCAGCTATGGCTGGGTTGGAGA
TGGATTCTGTGGTCATCTTAGGATTAGCCCCAACCCCAAGTGTGGAAAAATGGGTTGGGTG
TCCTGATTGAAAGGTTCAGTGAGCCGACAGTTGCAGCCTATTGTTACAACATCTGAT
ACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATAATTCAACACTCA
AACTGCAACACAAACACAAGAAATTATTGTCAAGTACAGTACACTCGGTGGCATCCCCTT
ACTCTACAATACCTGCCCTACTACTACTCCTCTGCTCCAGCTTCAACTCTATTCCACGG
AGAAAAAAATTGATTGTGTACAGAAGTTTATGAAACTAGCACCAGTCTACAGAAAC
TGAACCATTGTTGAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTCTCCTCTTGGTGTGCAGCTGGTCTGGATTTC
TATGTCAAAAGGTATGTGAAGGCCCTCCCTTTACAAACAAGAATCAGCAGAAGGAATGAT
CGAAACCAAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAATGAGGAATCAAAGA
AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCATGCC
GCTGAAGTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCTAGCTGGGAAATCAAAGGGCAAAGAACCAAAGAACAGTCCACCC
GGTTCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAC
CCTTCTCCTATTGTAACCCTGCTGGATCCTATCCTCCTACCTCCAAGCTTCCCACGGCC
TTCTAGCCTGGCTATGTCTTAATAATATCCCACGGAGAACAGGAGTTGCAAAGTGCAA
GGACCTAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGG
TGGTTGAAAGCCAAGGAGTCAGGACTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGAC
CCTTCTCAGCTCTGAAAGAGAACACGTATCCCACCTGACATGCTCTGAGGCCGGTA
AGAGAAAAGAACATGGCAGAAAAGTTAGCCCCTGAAAGCCATGGAGATTCTCATAAC
ACCTAATCTCTGTAAGCTAAAGAACAGGCTGAGGATACGACAGTACACT
GTCAGCAGGGACTGTAACACAGACAGGGCAAAGTGTCTCTGAACACATTGAGTTGGA
ATCACTGTTAGAACACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTCT
AGGAAATATACTTTACAAGTAACAAAATAAAACTCTTATAAATTCTATTCT
GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTGTTAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATATGTCAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATTATTCTCTAAAAATTGCACTAGTAGAACGCTATCTGGGAAGCTATTCT
GTTTGATATTCTAGCTTACTTCCAAACTAATTCTATTCT
ATTCAATTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACATACCTAAGAAC
TACATTGTTACCTCTATATACCAAAGCACATTAAAAGGCCATTAACAAATGTATCACTA
GCCCTCCTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAACCTT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR
LLGLSLAGKDQVETALKASFETCSYGVGDGFVVISRISPNSPKCGKNGVGVLIWKPVSQF
AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP
APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVIALLFF
GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKTDKNPEESKSP
SKTTVRCLAEAV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTTGGCACCTCTAATTGCTCTCGTATTGGTGCACGACTTCACGATGG
CTCGCCCAACCTTACTACCTCTGTCGGCCCTGCTCTGCTGCCCTACTCGTGAGGAA
ACTGCCGCCGCTCTGCCACGGTCTGCCACCCAACCGGAAGACGGTAACCGTGTGACTTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCCATTGTGATGAGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAGGCAACATTTCATGTTAGTAAAGTGGCAACACAAT
TCTTTCTTCCGCTGGATATTGCATGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTGGATTGTGGAGTTCTTGCAA
TTGGTCTAATGACTGCCAATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTTGGGAGGTGGATGTTGGACGCTACTGATGTTAGTACGGGTAC
AAACTGAGCACATCACCCCTACCAAGCAACTCCCTACCCCTGATCCTGTTCCAAGGTGGCAA
GGAGGCAATGCGGCGGCCACAGATTGACAAGAAAGGACGGCTGTCTCATGGACCTCTG
AGGAGAATGTGATCCGAGAATTAACTTAAATGAGCTATACCAGCGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTCAACCCCCACCACAGTGTCA
TGGGAAAACAAGAAGGATAATAAGATCCTACTTGGCAGTGCTTCTCCTGTCAATT
CCAGGCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGGATTGTCAG
GCACCCCTACAGGAAGGCCTGCCATGCTGTGGCAACTGTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGAAATGGTTCCCTCCAAGCTGGTCAGTGTGTTACTGCTTATC
AGCTATTGACACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCTCTTAG
TTGACCTGCACAGCTGGTTAGACCTAGATTAAACCTAAGGTAAGATGCTGGGTATAGAA
CGCTAAAGAATTTCACCCCAAGGACTCTGCTTCTTAAGCCCTCTGGCTTATGGTC
TTCATTAAAAGTATAAGCCTAACTTGTGCTAGTCCTAAGGAGAACCTTAACCACAAAG
TTTTATCATGAAGACAATATTGAACAAACCCCTATTTGTGGGATTGAGAAGGGGTGAA
TAGAGGCTTGAGACTTCCCTTGTGTGGTAGGACTGGAGGAGAAATCCCCTGGACTTCAC
TAACCCCTCTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPLCHGLPTQREDGNPCDFD
WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL
MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC
TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE
ENVIREFNLNELYQRAKKLSKAGDNIPEEQPVASTPTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

GGACAGCTCGGGCCCCGAGAGCTCTAGCCGTGAGGAGCTGCCCTGGGACGTTGCCCTG
GGGCCAGCCTGGCCGGTCACCCTGGCATGAGGAGATGGCCTGTCCTGGTCCA
TTGCTCCTGCTGCCGGCTCCTACGGACTGCCCTCTACAACGGCTCTACTACTCCAACAG
CGCCAACGACCAGAACCTAGGCAACGGTATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG
TGGTGGAGACACCGAGGAGACCCCTGTTCACCTACCAAGGGCCAGTGTGATCCTGCCCTGC
CGCTACCGCTACGAGCCGGCCCTGGTCTCCC CGGGCGTGTGCGTCAAATGGTGAAGCT
GTCGGAGAACGGGGCCCCAGAGAACGGACGTGCTGGTGCCATGGGCTGAGGCACCGCTCCT
TTGGGACTACCAAGGCCCGTGCACCTGCGGCAGGACAAAGAGCATGACGTCTCGCTGGAG
ATCCAGGATCTCGGCTGGAGGACTATGGCGTTACCGCTGTGAGGTATTGACGGCTGGA
GGATGAAAGCGGTCTGGTGAGCTGGAGCTGCGGGGTGGTCTTCCCTAACAGTCCCCA
ACGGCGCTACCAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCCGTG
GTGGCCTCCTTGAGCAGCTTCCGGCCTGGAGGAGGGCCTGGACTGGTGCAACGCCGG
CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCGGCAGCCCTGCCGTGGC
CAGGCCTGGCACCTGGCGTGCAGCTACGGCCCCGCCACCGCCGCTGCACCGCTATGAT
GTATTCTGCTCGCTACTGCCCTCAAGGGCGGGTGTACTACCTGGAGCACCCGTGAGAAGCT
GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATGCCAAGGTGGGAC
AGCTCTTGCGCCTGGAAGTCCATGCCCTGGACCGCTGCGACGCTGGCTGGCTGGCAGAT
GGCAGCGTCCGCTACCCGTGGTTACCCGCATCTAACTGTGGGCCCCAGAGCCTGGG
CCGAAGCTTGGCTTCCCCGACCGCAGAGCCGCTGTACGGTGTACTGCTACCGCCAGC
AC**T**AGGGACCTGGGCCCTCCCGCCATTCCCTACTGGCTGTGTATTGAGTGGTT
CGTTTCCCTGTGGGTTGGAGCCATTAACTGTTTATACTTCTCAATTAAATTCT
TTAACATTTTACTATTTTGAAAGCAAACAGAACCCATGCCCTCCCTGCTCCTG
GATGCCCACTCCAGGAATCATGCTTGCCTCCCTGGGCCATTGCGGTTTGAGGCTCTG
GAGGGTCCCCGCCATCCAGGCTGGCTCCCTCCCTTAAGGAGGTTGGTGCAGAGTGGC
GGTGGCCTGTCTAGAATGCCGCCGGAGTCCGGCATGGTGGGCACAGTCTCCCTGCC
CAGCCTGGGGAAGAAGAGGGCCTGGGGCCTCCGGAGCTGGCTTGGCCTCTGCC
CACCTCTACTCTGTGAAGCCGCTGACCCAGTCTGCCACTGAGGGCTAGGGCTGGAA
GCCAGTTCTAGGCTCAGGCAGAACATCTGAGGGAAGGAAGAAACTCCCTCCCCGTTCC
TCCCTCTCGGTCCAAAGAACATCTGTTGTCATTGTTCTCCTGTTCCCTGTGTGG
GGAGGGGCCCTCAGGTGTGTACTTGGACAATAATGGTGCTATGACTGCCCTCCGCAA
AAA
AAA

FIGURE 78

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVEELRGVVFPYQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEELDWNCAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVPVHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

GGAGAGCGGAGCGAAGCTGGATAACAGGGGACCG**TGAT**GATGTGGCACCATCAGTTCTGCTGC
TTCTGTTGCTACTGAGGCACGGGCCAGGGGAAGCCATCCCCAGACGCAGGCCCTCATGGC
CAGGGGAGGGTGCACCAGGCAGCCCCCTGAGCGACGCTCCCCATGATGACGCCAACGGAA
CTTCCAGTACGACCATGAGGCTTCCTGGACGGGAAGTGGCCAAGGAATTGACCAACTCA
CCCCAGAGGAAAGCCAGGCCGTCTGGGCGGATCGTGGACCGCATGGACCGCGCGGGGAC
GGCGACGGCTGGGTGTCGCTGCCGAGCTCGCGGTGGATCGGCACACGCAGCAGCGCA
CATACGGGACTCGGTGAGCGCCGCTGGGACACGTACGACACGGACCGCGACGGCGTGTGG
GTTGGGAGGAGCTGCGAACGCCACCTATGCCACTACGCACCGCTGGATCGAACAGGAA
GTGGAGGATGCAGAGACCTACAAAAAGATGCTGGCTGGACGAGCGCGTTCGGGTGGC
CGACCAGGATGGGACTCGATGCCACTCGAGAGGAGCTGACAGCCTCCTGCACCCCGAGG
AGTTCCCTCACATGCCGACATCGTATTGCTGAAACCCCTGGAGGACCTGGACAGAAACAAA
GATGGCTATGCCAGGTGGAGGAGTACATCGCGATCTGTACTCAGCCGAGCCTGGGAGGA
GGAGCCGGCGTGGGTGCAGACGGAGAGGCAGCAGTCCGGACTTCCGGATCTGAACAAGG
ATGGGCACCTGGATGGGAGTGAGGTGGCCACTGGGTGCTGCCCTGCCAGGACCAGCCC
CTGGTGGAAGCCAACCAACCTGCTGCACGAGAGCGACACGGACAAGGATGGCGCTGAGCAA
AGCGGAAATCCTGGTAATTGGAACATGTTGTGGCAGTCAGGCCACCAACTATGGCGAGG
ACCTGACCCGGCACCAACGATGAGCTG**TGAG**CACCGCGCACCTGCCACAGCCTCAGAGGCCCG
CACAAATGACCGGAGGAGGGGCCGTGGTCTGGCTGCCCTCCCTGTCCAGGCCCGCAGGAG
GCAGATGCAGTCCCAGGCATCCTCCTGCCCTGGCTCTCAGGGACCCCTGGTCGGCTTC
TGTCCCTGTACACCCCCAACCCAGGGAGGGCTGTCATAGTCCCAGAGGATAAGCAATAC
CTATTCTGACTGAGTCTCCCAGCCCAGACCCAGGGACCCCTGGCCCAAGCTCAGCTCTAA
GAACCGCCCCAACCCCTCCAGCTCCAAATCTGAGCCTCCACACATAGACTGAAACTCCCCT
GGCCCCAGCCCTCTCCTGCCTGGCCTGGACACCTCCTCTGCCAGGAGGAATAA
AAGCCAGCGCCGGGACCTTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSDAGPHQGRVHQAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVIAETLEDLDRNKGYVQVEEYIADLYSAEPGEEPAWVQTERQQ
FRDFRDLNKGHDGSEVGHVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGGCCTTGCCTCCGCACTCGGGCGCAGCCGGTGGATCTCGAGCAGGTGCGGAGCCCCGG
GCGGGGGCGCGGGTGCAGGGATCCCTGACGCCTCTGCCCTGTTCTTGTCGCTCCCAG
CCTGTCGTCGTTGGCCCCCGCTCCCGCGGTGCGGGGTTGCACACCGATCCTG
GGCTCGCTCGATTTGCCGCCAGGCGCTCCAGACCTAGAGGGCGCTGCCCTGGAGCAG
CGGGTCGTCGTTGCCCTCTGCCGCCGGGATCCGAAGGGTGCGGGGCTCT
GAGGAGGTGACGCCGGGCCTCCGCACCCTGCCATTCTCCCTCTCCCAG
GTGTGAGCAGCCTATCAGTACCAATGTCCGCAGCCTGGATCCCGCTCTGCCCTGGTGTG
TGTCTGCTGCTGCCGGGCCGCGGGCAGCGAGGGAGCCGCTCCATTGCTATCACATG
TTTACCAAGGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCAGGGGCTGCC
CTCTGAGGAATTCTCTGTATGGGAACATAGTATATGCTCTGTATCAGCATATGTGGG
GCTGCTGTCACAGGGAGTAATCAGCAAATCAGGGGACCTGTACGAGTCTATAGCCTACC
TGGTCGAGAAAATATTCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTTCTTCACAGTAACTAAAGCAGGAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAACAGACTAAAGAAAACACCCGAGAAGAAAATGG
CAATAAGATTGAAAGCAGACATTGCATTCTGATTGATGGAAGCTTAATATTGGCAGC
GCCGATTTAATTACAGAAGAATTGTTGGAAAAGTGGCTCTAATGTTGGAAATTGAAACA
GAAGGACCACATGTGGCCTTCAAGCCAGTGAACATCCAAATAGAATTACTGAA
AAACTTACATCAGCCAAAGATGTTGTCATAAAGGAAGTAGGTTCAGAGGGGTA
ATTCCAATACAGGAAAAGCCTTGAAGCATACTGCTCAGAAATTCTCACGGTAGATGCTGGA
GTAAGAAAAGGGATCCCAAAGTGGTGGTATTATTGATGGTGGCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCCAGAGAGTTGGTGTCAATGTATTATAGTTCTGTTG
AGCCTATCCCTGAAGAACCTGGGATGGTCAGGATGTCACATTGTTGACAAGGCTGCTGT
CGGAATAATGGCTTCTTCTTACACATGCCAACTGGTTGGCACCACAAAATACGTAA
GCCTCTGGTACAGAACAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT
CAGTGAACATTGCTTCTAATTGATGGCTCCAGCAGTGTGGAGATAGCAATTCCGCTC
ATGCTGAATTGTTCCAACATAGCCAAGACTTTGAAATCTGGACATTGGTGCAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCAGTTCACTGACTATAGCACCA
AAGAGAATGTCTTAGCTGTCACTAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT
GATGCCATTCTTCACTGTTAGAAATGTGTTGGCCCTATAAGGGAGAGCCCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTTGGTGTGGCTGGCACCTGGATGACCTG
AAAGATATGGCTCTAAACCGAAGGAGTCTCACGCTTCTCACAGAGAGTTCACAGGATT
AGAACCAATTGTTCTGATGTCACTAGAGGCATTGTTAGAGATTCTTAGAATCCCAGCAAAT
AATGGAACATTGACAACAGAAAGAAAAGTACAAGGGATCCAGTGTGAAATTGTATT
CTCATAATACTGAAATGCTTCACTAGCATACTAGAATCAGATACAAACTATTAAGTATGTCAAC
AGCCATTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCCTGTTACAATTACAGTGT
ACTTGTAAAAACACTGCTGAGGCTTCATAATCATGGCTTCAAGAAACTCAGGAAAGAGGA
GATAATGTGGATTAAAACCTTAAGAGTTCAACCAGCCTACTAAATGTACAGATATGCAA
TTCCATAGCTCAATAAGAACATCTGATACTTAGACCAAAAAAA

FIGURE 82

MSAAWIPALGLGVCLLLPGPAGSEAAPIAITCFTRGLDIRKEKADVLCPGGCPLLEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIQQRNFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCGCCTCCGCACCGCGGCCACCGCGCCGCTCCGCATCTGCACCCGAGCCC
GGCggcctccggggagcgagcagatccagtcggccgcagcgcaactcggtccagtcg
GGGCGGGCTGCGGGCGCAGAGCGGATGCAGCGGCTGGGCCACCTGCTGCCTGC
TGCTGGCGGGCGGTCCCCACGGCCCCCGCGCTCGACGGCGACCTCGGCTCAGTC
AAGCCGGCCGGCTCTCAGTACCCGAGGAGGCCACCTCAATGAGATGTTCCGCGA
GGTTGAGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGGGTGGAAAGAGATGGAGG
CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACCTACCTCCCAGCTAT
ACAATGAGACCAACACAGACAGAAGGTTGAAATAATACCACATGTGCACCGAGAAAT
TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGGAGACGAAGAAGGAGAAGGAGCCACGAGTCATCATCGACGAGGACTGTGGGCCAGC
ATGTACTGCCAGTTGCCAGCTTCCAGTACACCTGCCAGCCATGCCGGGCCAGAGGATGCT
CTGCACCCGGGACAGTGAGTGCTGTGGAGACCAGCTGTGTCTGGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTTCCAGAGAGGCCCTGCTGTTCCCTGTGTGCACACCCCTGCCCGTGGAGGGAG
GCTTGCCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTGGACCGATGCCCTGTGCCAGTGGCCTCCTCTGCCAGCCCCACAGCCACAGCCTG
GTGTATGTGCAAGCCGACCTCGTGGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTGGCAGCTTATGGAGGAGGTGCCAGGAGCTGG
AGGACCTGGAGAGGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGCTGCCGCGCT
GCACTGCTGGGAGGGAGAGATTTAGATCTGGACCAAGGCTGTGGTAGATGTGCAATAGAA
ATAGCTAATTATTCCCCAGGTGTGCTTAGGCGTGGCTGACCAGGCTTCTTCTACA
TCTTCTTCCCAGTAAGTTCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTGTCAGC
TCCCCCAGGCTGTTCTCCAGGCTTCACAGTCTGGCTGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTACCAGTGGCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGAAACAATGTGG
AGTCTCCCTCTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGCAAACATCAA
CCTGGAAAAATGCAACAAATGAATTTCACGCAGTTCTTCCATGGCATAGGTAAGCTG
TGCCTTCAGCTGTTGCAAGATGAAATGTTCTGTTACCCCTGCATTACATGTGTTATTCTAC
AGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCTCAGCACAGCCTGGGGAGGGGTCAATTGTTCTCCTCGTCATCAGGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCAT
CTGGTTGTGACTCTAACGCTCAGTGCTCTCCACTACCCACACCAGCCTGGTGCCACCAA
AAGTGTCCCCAAAAGGAAGGAGAATGGGATTTCCTGAGGCATGCACATCTGGAATTAAG
GTCAAACTAATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGCAGCGTCTTCTAATGAAGACAATGATATTGACACTGTCCCTTTGGCAGT
TGCATTAGTAACTTGAAGGTATGACTGAGCGTAGCATACAGGTTAACCTGCAGAAACA
GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTGCAAATCAGTACAGCAAC
TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGAAACATGGTT
GTAATATGCGACTGCAACACTGAACTCTACGCCACTCCACAAATGATGTTTCAGGTGTCA
TGGACTGTTGCCACCATGTATTCAAGAGTTCTAAAGTTAAAGTTGCAACATGATTGTA
TAAGCATGCTTCTTGAGTTAAATTATGTATAAACATAAGTGCATTAGAAATCAAGC
ATAAAACTTCAACTGCAAAAAAAAAAAAAAA

FIGURE 84

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEAAAAKASSEVNLANLPPSYHNETNTDKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRQMLCTRSECCG
DQLCVWGHCTKMATRGSGNTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVVRQELEDLERSLTEEMALGEPAAAAALLGGEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

AAGGAGGCTGGGAGGAAAGAGGTAAAGAAAGGTTAGAGAACCTACCTCACATCTCTGGGCTCAGAAGGACTCTG
AAGATAACAATAATTTCAGCCCATCCACTCTCCTTCCCAAACACACATGTGCATGTACACACACACATACA
CACACATACACCTTCCCTCTTCACTGAAGACTCACAGTCACTCACTCTGTGAGCAGGTATAGAAAAGGACAC
TAAAGCCTTAAGGACAGGCTGGCATTACCTCTGCAGCTCTTGGTTGAGTCAAAAAACATGGGAGGG
CCAGGCACGGTACTCACACCTGAATCCCAGCATTTGGAGACCGAGGTGAGCAGATCACTTGAGGTCAAGGAG
TTCGAGACCAGCCTGCCAACATGGAGAAACCCCCATCTCTACTAAAAATACAAAAATTAGCCAGGAGTGGTGGC
AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCCAGGAGAACGTTGAATCCAGGAGGCGAGGATGCAGT
CAGCTGAGTGCACCGCTGCACTCCAGCCTGGGTGACAGAACGAGACTCTGTCTCAAACAAACAAACACGGAGGA
GGGGTAGATACTGCTTCTCTGCAACCTCTTAACTCTGCATCCTCTTCCAGGGCTGCCCTGATGGGCGCTG
GCAATGACTGAGCAGGCCAGCCCCAGAGGAACAAGGAAGAGAACGGATATTGAGGAGGGCAAGAAGTGA
GCCCCCGGTGAGGAGGGTGGTCTGGGCCCTGGCAGGGTTGCTGACCCCTACCCCTGCAAAACACA
AAGAGCAGGACTCCAGACTCTCTTGTGAATGGTCCCCTGCCCTGAGCCTCCACATGAGGCTTCTCGTGG
ACTCTGCTAGCTTGGGTGGCTGGTGCCTGCACTGTGCCACTGTGCCGTGGTACCTGCACTGTTCC
GTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCGCTGCTTACCGCAGGCTACCAACTGTGGACTGCAATGA
CCTATTCTGACGGCAGTCCCCCGGCACTCCCCGAGGCACACAGACCCCTGCTCTGCAGAGCAACAGCATTGT
CCGTGTGGACCAGAGTGAGCTGGTCACTGGCCAATCTCACAGAGCTGGACCTGTC
CAGCCTGAGGAGACTGTGATTCCATGCCCTGCCAGCTGCTGAGCCTGACCTAGAGGAGAAC
GGAGGACCACAGCTTGCAAGGCTGGCAGCCTACAGGAACCTATCTCAACCACACCAGCTTACCGCATCGC
CCCCAGGGCTTTCTGGCTCAGCAACTTGCTGGCTGACCTCAACTCCAACCTCTGAGGGCATTGACAG
CCGCTGGTTGAAATGCTGCCAACTGGAGATACTCATGATTGGCGCAACAAGGTAGATGCCATCTGGACAT
GAACCTCCGGCCCTGGCAACCTGCGTAGCCTGGTCTAGCAGGCACTGAACCTGCCGGAGATCTCGACTATGC
CCTGGAGGGCTGCAAAGCTGGAGAGCCTCTCTATGACAACACCAGCTGGCCGGGTGCCAGGCGGGCACT
GGAACAGGTGCCGGGCTCAAGTCCCTAGACCTCAACAAGAACCCGCTCCAGCAGGGTAGGGCCGGGGACTTGC
CAACATGCTGCACCTTAAGGAGCTGGACTGAACAAACATGGAGGAGCTGGTCTCATCGACAAGTTGCC
GAACCTCCCCGAGCTGACCAAGCTGGACATCACCAATAACCCACGGCTGCTTACCCACCCCCGGCCTTCCA
CCACCTGCCCAAGATGGAGAACCTCATGCTCAACAAACACGCTCTCAGTGCCTGCCACAGCAGGGTGGAGTC
CCTGCCCAACCTGCAGGAGGTAGGTCTCCACGGCAACCCCATCGCTGTGACTGTGTCATCCGCTGGGCAATGC
CACGGGACCCGTGTCCGCTTACCGAGCCCAATCCACCCCTGTGTGCGGAGCCTCCGGACCTCCAGCGCTCCC
GGTCCTGAGGTGCCCTTCGGAGATGACGGACCACTGTTGCCCTCATCTCCCCACGAAGCTCCCCAAG
CCTCCAGGTAGCCAGTGGAGAGAGCATGGTGTGCAATTGCCGGCACTGGCGAACCCGAACCGAGATCTACTG
GGTCACTCCAGCTGGGCTTCGACTGACACCTGCCATGCAGGCAAGGAGTACCGGGTGTACCCGAGGGGACCC
GGAGCTGGAGGGTACAGCAGAACAGGGCAGGGCTATACACCTGTGTGCCCAGAACCTGGTGGGGCTGACAC
TAAGACGGTTAGTGTGGTTGTGGCCGTCTCCTCCAGCCAGGCAAGGACAGGGGCTGGAGCTCCG
GGTGCAGGAGACCACCCCTATCACATCCTGCTATCTGGTCACCCACCCAAACACAGTGTCCACCAACCTCAC
CTGGTCCAGTGCCTCCCTCCGGGCCAGGGGCCACAGCTCTGGCCGCTGCCTGGGAACCCACAGCTA
CAACATTACCGCCTCCCTCAGGCCACGGAGTACTGGCCTGCCATGCAAGTGGCTTGTGATGCCACACCCA
GTTGGCTGTATGGGCCAGGACCAAAGAGGCCACTCTTGCACAGAGCCTTAGGGATGTCCTGGCTCAT
TGCCATCCTGGCTCTCGCTGTCCCTCTCTGGCACTGGCTAGCGGCCACCTTGGCACAGGCAACCCAGGAA
GGGTGGTGGGAGGGCCCTCTCCAGCTGGCTTCTGGGCTGGAGTGCCTTCTGTCCGGTTGT
GTCTGCTCCCTCGTCCTGCCCTGGAAATCCAGGGAGGAACCTGCCCAGATCTCAGAAGGGAGACACTGTTGCC
ACCATTGTCTCAAATTCT**TGAAGCTCAGCCTGTTCTCAGCAGTAGAGAACATCACTAGGACTACTTTTAC**
AAA
AGAGAACAGTCTGGGCCAGATGCCCTGCCAGGAAAGGGACATGGACCCACGTGCTTGAGGGCTGGCAGCTGGC
CAAGACAGATGGGCTTTGTGGCCCTGGGGGTGCTCTGGCAGGCTTGAAGGAAGTTGCCCTTACCTCCTAGGGTCA
CCTCTGCTGCCATTCTGAGGAACATCTCAAGGAACAGGGAGACTTGGCTAGAGCCTCTGCCTCCCATCT
CTCTCTGCCAGGGCTCTGGCCTGGCTTGGCTTACCTGTGTCCTCCGGCTGCAACCCCTTCTCTTC
TCTTCTCTGTACAGTCTCAGTTGCTTGTGCTCTGGCAAGGGCTGAAGGAGGCCACTCCATCTCAC
CTCGGGGGCTGCCCTCAATGTGGAGGTGACCCAGCCAGATCTGAAGGAACATTGGAGAGGGATGCCAGGAA
CGCCTCATCTCAGCAGCCTGGCTGGCATTCCGAAGCTGACTTTCTATAGGCAATTGTACCTTGTGGAGAA
ATGTGTACACCTCCCCAACCCGATTCACTCTTCTCTGTAAAAATAAAATAACAATAAAA
AAAA

FIGURE 86

MRLLVAPLLLAWVAGATAATPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARCDFHALPQLLSLHL
EENQLTRLEDHSFAGLASLQELYLNHNQLYRIAPRAFSGLSNLLRLHLSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMDNFRPLANLRSVLVLAGMNLREISDYALEGLQSLSFYDNQ
LARVPRRALEQVPGLKFLDLNKNPLQRVGPGDFANMLHLKELGLNNMEELVSIDKFALVNLP
ELTKLDITNNPRLSFIHPRAFHLPQMETLMLNNNALSHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEIYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGADTKTVVVGRALLQPGRDEQGLELRVQETHPYHILLSWTPNNTVSTNLTW
SSASSLRGQQGATALARLPRGTHSYNITRLLQATEYWACLOVAFADAHTQLACWARTKEATS
CHRALGDRPGLIAILALAVLLAAGLAHLGTQPRKGVGGRPLPPAWAFWGWSAPSVRVV
SAPIVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGCCAAGGCCGCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGAGGGGACATTGTGTACCGCCT
CTACATGCGGCAGACCATCATCAAGGTGATCAAGTTCATCTCATCATCTGCTACACCGTCTACTACGTGCACAA
CATCAAGTTCGACCGTGGACTGCACCGTGGACATGTGAGAGCCTGACGGGCTACCGCACCTACCGCTGTGCCACCC
CCTGGGCCACACTCTTCAGATCCTGGCGCTCTTCTACATCAGCCTAGTCATCTTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCTTCTCATGCTGCACCTCATGACCAATAACGACCCGCTCTACTCCAA
GCGCTTCGCCGCTTCTCTGCGAGGTGAGTGAGAACAGCTGCGGCAGCTGAACCTCAACAACAGTAGTGGACGCT
GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTCATGCTCAGTGGCAT
CCCTGACACTGTGTTGACTGGTGGAGCTGGAGGTCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCCCGCC
CAGCATTGCCAGCTCACGGGCCTCAAGGAGCTGAGCTTACACACAGCGGCCAAGATGAGTCAGCGCCTGCGCT
GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTACCGACATCAAGGAGATCCCCTGTTGAGCTA
TAGCCTGAAGACACTGGAGGAGCTGACCTGACGGGCAACTGAGCGGGAGAACACCGCTACATCGTCACTGA
CGGGCTGCGGGAGCTCAAACGCCCTCAAGGTGCTGCGGCTCAAGAGCAACCTAACGAAAGCTGCCACAGGTGGTCAC
AGATGTGGCGTGCACCTGCGAGACTGTCCATCAACAAATGAGGGCAGCAAGCTCATCGTCTTCAACAGCCTCAA
GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCACTCCATCTTCAGCCT
CCACAAACCTGCAAGGAGATTGACCTCAAGGACAACACCTCAAGACCATCGAGGAGATCATCAGCTTCCAGCACCT
GCACCGCCTCACCTGCCCTAACGCTTAAAGCTGTTACAACCACATGCCCTACATCCCCATCCAGATCGGCAACCTCACCA
CCTGGAGCGCCTTACCTGAACCGCAACAAGATCGAGAAGATCCCCACCCAGCTCTTCTACTGCCGCAAGCTGCG
CTACCTGGACCTCAGCCACAAACCTGACCTTCTCCCTGCCGACATCGGCCCTCTGCGAGAACCTCCAGAACCT
AGCCATCACGGCAACCGGATCGAGACGCTCCCTCCGGAGCTTCCAGTGCAGGAGCTGACGAGATCGAGCTGCGGGG
GGGCAACAACGTGCTGCAGTCAGTGCCTCCAGGGTGGCGAGCTGACCAACCTGACGAGATCGAGCTGCGGG
CAACCGGCTGGAGTGCCTGCCGTGGAGCTGGCGAGTGCCCAGTGCTCAAGCGCAGCGGCTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCTGAGCGAG
GCCGGGCCAGCACAGCAAGCAGCAGGACCGCTGCCAGTCTCAGGCCCCGAGGGCAGGCCAGTCTCTCCAG
AACTCCGGACAGCCAGGACAGCCTCGGGCTGGCAGGGAGCCTGGGGCGTTGTGAGTCAGGCCAGAGCGAGA
GGACAGTATCTGTTGGGCTGGCCCTTTCTCCCTCTGAGACTCACGTCCCCCAGGGCAAGTGTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGATAATCAGGGCTCCTCCCTGGAGGCCAGCTCTGCCCTGGGCTGAG
CTGCCACCAGAGGCTCTGGGACCCCTACTTTAGTTCTGGTATTATTCTCCATCTCCACCTCCTCATCC
AGATAACTTATACATTCCCAAGAAAGTTCAGGCCAGATGGAAGGTGTTCAAGGAAAGGTGGCTGCCCTTTCCCC
TTGTCTTATTAGCGATGCCGCCGGCATTTAACACCCACCTGGACTTCAGCAGAGTGGTCCGGGGCAACCCAG
CCATGGGACGGTCACCCAGCAGTGCGGGCTGGCTCTGCGGTGCCACGGAGAGCAGGCCCTCCAGCTGGA
AAGGCAGGCCCTGGAGCTTGCTCTCAGTTTGTGGCAGTTAGTTTTGTGTTTTTTTAATCAAA
AAACAATTTTTAAAGCTTGAAGGGATGGTTGGGTTATTAAAAGAAAAAAACTTAAAAAAA
AAAAGACACTAACGGCCAGTGAGTTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAGCAGCCAGACGT
TGAACGTGTTCTTCCCTGGGCCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTGACCTGGTCCAGGAGTT
CTATTGTTCTGGGAGGGAGGTTTTGTGTTGGGTTTTGGTGTCTTGTGTTCTTCTCC
ATGTGTCTTGGCAGGCACTATTCTGTGGCTGTCGGCCAGAGGAATGTTCTGGAGCTGCCAAGGAGGGAGGAG
ACTCGGGTTGGCTAATCCCCGATGAACGGTGCCTCATTGCCACCTCCCTCTGCGCTGCCCTGCCCTCTCCA
CGCACAGTGTAAAGGAGCCAAGAGGAGCCACTTCGCCAGACTTGTGTTCCCCACCTCCCTGGGCATGGGTGTG
CCAGTGCCACCGCTGGCTCCGCTGCTTCCATCAGCCCTGTCGCCACCTGGCTTCAAGAGCAGACACTTA
GAGGCTGGTGGGAATGGGAGGTGCGCCCTGGAGGGCAGGCAGGGTGGTCCAAGCCGGTTCCCTGGCG
CTGGAGTGACACAGCCCAGTCGGCACCTGGTGGCTGGAGGCCAACCTGCTTGTGTTAGATCACTCGGGTCCCCACCTT
AGAAGGGTCCCCGCCCTAGATCAATCACGTGGACACTAAGGCACGTTTAGAGTCCTTGTCTTAATGATTATGT
CCATCCGTCTGTCGGTCCATTGTGTTCTGCGTGTCAATTGGATATAATCCTCAGAAATAATGCACACTAG
CCTCTGACAACCATGAAGCAAAAATCGTTACATGTGGGTCTGAACCTGTAGACTCGGTACAGTATCAAATAAA
ATCTATAACAGAAAAAAAAAAAAAA

FIGURE 88

MRQTIIKVIKFILIIICYTVYYVHNIKFVDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQLNLNNEWTLDKLQRQLTKNAQDKLELHLFMLSGLPDTVFDLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHGNNVLQSLPSRVGELTNLTOIE
LRGNRLECLPVELGECPPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCCTCTCCC GT
CCCGCGGTGGTTGCTGCTGCCGTGCTGGCCTGAACGCAGGAGCTGTCAATTGACT
GGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCC TACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGC GGTCTAGCACTGGATTGGAAACTTGAGGAATTGGC
CCCTTGACAGTGATCTAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCCGTGGGCACTGGGTTCA GTTATGTGAATGGTAGTGTCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGAACCTCTCAGTTGCCACAAAG
AATTCCAGACAGTTCCATTCTACATTTCTCAGAGTCCTATGGAGGAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTATAAGGCCATT CAGCGAGGGACC ATCAAGTGCAACTTGCGGGGGT
TGCCTTGGGTGATT CCTGGATCTCCCCTGTTGATT CGGTGCTCTCCTGGGGACCTTACCTGT
ACAGCATGTCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCAAGGTTGCAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAAC TTCTATAACATCTTA ACTAAAAGCACTCCCA
CGTCTACAATGGAGTCGAGTCTAGAATT CACACAGAGCCACCTAGTTGTCTTGT CAGCGC
CACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAA
GCTCAAATTATT CCTGAGGATCAATCCTGGGAGGCCAGGCTACCAACGTCTTGTGAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATA ACCATGGTCAGGAGGCCTG
GGTGGAAACTGAAGTGGCAGAACTGCCTAAATT CAGTCAGCTGAAGTGGAAAGGCCCTGT
ACAGTGACCC TAAATCTTGGAAACATCTGCTTTGTCAAGTCCTACAAGAACCTTGCTTT
TACTGGATTCTGAAAGCTGGTCAATGGTTCTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGTACTCAGCAAGAATAGGATGGATGGGCTGGAGATGAGCTGGTTGGCCT
TGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGCGCATTCTCCCTGTATCT
AACTGGGGCTGTGATCAAGAAGGTTCTGACCAAGCTCTGCAGAGGATAAAATCATTGTCTCT
GGAGGCAATTGGAAATTATTCTGCTTCTTAAAAAAACCTAAGATTTTAAAAAATTGAT
TTGTTTGATCAAAATAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVSLSWGPYLYSMSLLEDKGGLAEVSKVAEQVLNAVNKGLYRE
ATELGKAEMIIIEQNTDGVNFYNILTKSTPTSTMESLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWRKLKWPELPKFSQLWKALYSDPKSLETSAFKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGCGGGAGAGGAGGCCATGGCGCGCGCGGGCGCTGCTGCTGGCGCTGCTGGCT
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCCGTATCAGGACCATGCGGCCGA
CGGGTCATCACGTGCGCATCGTGGGTGGAGAGGACGCCGACTGGGCGTTGGCGTGGCA
GGGGAGCCTGCGCTGTGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGCGCACTGCTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATG
GTCCAGTTGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGAATTCACCTATGACATTG
CCTTGGTGAAGCTGCTGCACCTGTCACCTACACTAAACACATCCAGCCCCTGTCTCCAG
GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCACTGCCATCTCCCCACACCCCTCCAGGAAGGACTTCAGGTGCCATATAACA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGCCAACGCCAACGGGGAGGATGCCCTGCTCGGTGACTCAGGTGGACCCCTT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGAGTGGCTGTG
GTCGGCCAATCGGCCGGTGTACACCAATATGCCACCACTTGAGTGGATCCAGAAG
CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTCCCTCT
TCTCTGGCTCTCCACTCCTGGGCCGGTCTGAGCCTACCTGAGCCCAGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTTCTCTGTCTTGGTAATAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAA

FIGURE 92

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSSLHRWALTAACFETYSSDLSDPSGMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCACCGCGTCCGGACGCGTGGGAAGGGCAGAATGGGACTCCAAGCCTGCCTCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCGGAGCCGACCAGCGAGGACGC
TGCCCCCAGGCTGGGTGTCCTGGCCGTGCGGACCCCTGAGGAAGAGCTGAGTCTCACCTT
GCCCTGAGACAGCAGAAATGTGAAAAGACTCTCGAGCTGGTGCAGGCTGTGCGGATCCCAG
CTCTCCTCAATAACGAAAATACCTGACCCCTAGAGAAATGTGGCTGATCTGGTGAGGCCATCCC
CACTGACCCCTCCACACGGTGCAAAATGGCTCTGGCAGCCGGAGCCCAGAAGTGCCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTGCTCCC
TGGGGCTGAGTTCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGAAGGTCCCCAC
ATCCCTACCAGCTTCCACAGGCCCTGGCCCCCATGTGGACTTTGTGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGGTAACCCCCCTGTGATCCGTAAGCGATAACAACCTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCCCTGGAGCAGTATTCCATGAC
TCAGACCTGGCTCAGTTCATGCGCTCTCGGTGGCAACTTGCACATCAGGCATCAGTAGC
CCGTGTGGTTGGACAAACAGGGCCGGGCCGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT
ACCTGATGAGTGTGGTGCACATCTCACCTGGGCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGCCCTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCGCTACATCCAGCGGTCA
ACACTGAGCTCATGAAGGCTGCCCTGGGCTCACCCTGCTCTGCCTCAGGTGACAGT
GGGGCCGGGTGGTCTGCTCTGGAAGACACCAGTTCCGCCCTACCTTCCCTGCCCTCCAG
CCCCTATGTCACCACAGTGGGAGGCACATCCTCCAGGAACCTTCCATCACAAATGAAA
TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCACGGCCTTCATACCAGGAG
GAAGCTGTAACGAAGTCTGAGCTCTAGCCCCACCTGCCACCATCCAGTTACTTCAATGC
CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTCTGATGGCTACTGGTGGTCAGCAACA
GAGTGCCCATTCATGGGTGTCCGGAACCTCGGCCCTACTCCAGTGTGTTGGGGATCCTA
TCCTGATCATGAGCACAGGATCCTTAGTGGCCGCCCCCTCTGGCTTCTCAACCCAAG
GCTCTACCAGCAGCATGGGCAGGTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTC
TGGATGAAAGAGGTAGAGGGCCAGGGTTCTGCTCTGGCTGGGATCTGTAACAGGC
TGGGGAACACCAACTTCCAGCTTGCTGAAGACTCTACTCAACCCCTGACCCCTTCTATC
AGGAGAGATGGCTGTCCCCTGCCCTGAAGCTGGCAGTTCACTGCCTTATTCTGCCCTGTTG
GAAGCCCTGCTGAACCCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCGTAAA
TGCTGTGAGCTTGACTTCAACCCCTACCATGCTCCATCATACTCAGGTCTCCCTACT
CCTGCCCTAGATTCTCAATAAGATGCTGTAACTAGCATTTTGAAATGCCCTCTCCCTCCGC
ATCTCATTTCTCTTCAATCAGGCTTCCAAAGGGTTGTATAACAGACTCTGTGCACTA
TTTCACTTGATATTCACTCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTACTCT
TTCCTACCCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTGCTTATG
GCCTTCCATCATAGTGCCCACCTCCCTCTACTTAGCTTCAAGGTCTTAACCTCTTG
ACTACTCTTGCTTCCCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTTCATTGC
TCCATTGAGATTGGCTCTCAGTTACTCATTGCCCCGGAAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTTCTATCCAATAATGATTGATAACCTCAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRTLPPGVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVALVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLPGAEFHYYVGGPTETHVVRSPHPYQLPQALAPHVDFVGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGRHEGQEPFLQWLML
LSNESALPHVHTVSYGDDEDSLSAYIQRVNTELMKAARGLTLLFASGDGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESDLDEEVEGQGFCSGPFWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GCCGCGCGCTCTCTCCGGCCCCACACCTGTCTGAGCGCGCAGCGAGCCGCGGCCGGC
GGGCTGCTCGCGCGAACAGTGCTCGGCATGGCAGGGATTCCAGGGCTCCTCTTCTC
TTCTTCTGCTCTGTGCTGTTGGCAAGTGAGCCCTACAGTGCCCCCTGGAAACCCACTTG
GCCTGCATAACCGCCTCCCTGTCGCTTGCCCCAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCTCATGTGGACCCAGTGTCTAAGGGAAC
CCACTGCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGGCCAAAC
ACCGAGACTCAGGGCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAGGACTTCCTGCTCAACTACCCCTTCTCAACATCAGTGAAGTT
ATCCACGGGCTGCACCGCACCCGGTGGCAGAGAAGCATGTCTCACAGCTGCCACTGCA
TACACGATGAAAAACCTATGTGAAAGGAACCCAGAAGCTCGAGTGGCTCCTAAAGCCC
AAGTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCGAGCAGATGAA
ATTCAGTGGATCCGGGTGAAACGCACCCATGTGCCAAGGGTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCTGGAACTCAAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGGTGAGCCCTCTGCTAAGCAGCTGCCAGGGGCCAGGGTCTGGGTCTAT
TGGTTATGACAATGACCGACCAGGAATTGGTGTATCGCTCTGTGACGTCAAAGACGAGA
CCTATGACTTGCCTACCAAGCAATGCGATGCCAGCCAGGGGCCAGGGTCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAAGTGGAGCGAAAAATTATTGGCATTTCAGG
GCACCAAGTGGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAAATCACTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGGTCCCTCTGGCAGCAATTAGGGCTTCATGTTCTATTAGGAGAGGCC
AAATTGTTTTGTCAATTGGCGTGCACACGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTTACCTATTCTTACAATTGCAAGATGACTGGCTTACTATTGAAAATG
GTTTGTGTATCATATCATATCATTAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAAACTGATTGGGGCAATGAGGAATATTGACAATTAGTTAATCTTCACGTTTG
CAAACTTGATTTATTCATCTGAACCTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAAAAAAAAAAA

FIGURE 96

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLQSTLNLA
KPDFGAEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRD
SGSSGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTA
AHCIHDGKTYVK
TQKLRVGFLKPKFKDGGRGANDSTS
SAMPEQMKFQWIRVKRTHVPKGWI
KGANDIGMDYDYA
LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDV
KDETYDLYQQCD
AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNV
AVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATCGCCCTGGTCTCTCGAGCCTGCTGCCGTCCCCCCCCACAGCCATGGTGGTTT
CTGGAGCGCCCCAGCCCTGGGTGGGGCTGTCTCGCACCTCACCTCCCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATCGGCCAGGATAACCTGTTCCCCAGCCTGTGGGAAGCCCCA
GCAGCTGAACCGGGTTGTGGCGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACCAC TGCGCAGGTTCTTGCTCACCA GCGCTGGGTGATC
ACTGCTGCCACTGTTCAAGGACAACCTGAACAAACCACACCTGTTCTTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCCTGGCTCTGGTCCCAGAAGGTGGGTGTTGCCCTGGGTGGAGC
CCCACCCCTGTGATT CCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT
CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTTCCCTTGC
CCCACCCCTCAGACCCCTGCAGAACGCTGAAGGTTCTATCATCGACTCGGAAGTCTGCAGCCAT
CTGTACTGGCGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGCGCGCTACTT
GGAGGGGGAGCGGGATGCTGTCTGGCGACTCCGGGGCCCCCTCATGTGCCAGGTGGACG
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGGTCTACATCAGCCTCTTGCGCACCGCTCTGGGTGGAGAACGATCGTCAAGGGGTGCA
GCTCCCGGGCGCGCTCAGGGGGTGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGCCG
CCGCGCGCTCCTAGGGCGCAGCGGACCGGGCTCGGATCTGAAAGGCGCCAGATCCACA
TCTGGATCTGGATCTGCGCGGCCCTCGGCGGTTCCCCCGCCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCTGCGGAAGGAAACCCCTCCCCGACCCGCCGAC
GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCGCCAACGGCCTCATGTCCCCGCCAAC
GACTTCCGGCCCCGCCCCCGAGCGCTTTGTGTATATAATGTTAATGATTTTAT
AGGTATTTGTAACCCCTGCCACATATCTTATTATTCTCCAATTCAATAATTATTATT
CTCCAAAAAAA

FIGURE 98

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAHCFKDNLNKPYLFSVLLGAWQLGNPGSRSQKVGVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICL PDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWEKIVQGVQLRGRAQGGGALRAP SQG
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGGCCACCATGCACGGCTCTGCAGTTCTGATGCTTCTGCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGCCCGTTGGAGCCCTCACAGATGAGGAGAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGA
GATGGGACGAGGAGCTGGCCGCTTCGCCAAGGCCTACGCACGGCAGTGCCTGTGGGCCAC
AACAAAGGAGCGCGGGCGCCGCGCGAGAAATCTGTTGCCATCACAGACGAGGGCATGGACGT
GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACTCAGGCCGCCACCT
GCAGCCCAGGCCAGATGTGCGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGAGGATC
GGCTGTGGTCCCACCTCTGTGAGAAGCTCCAGGGTGTGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAACGTGAAGGGAAACGCCCTACCAGGAGGGACTC
CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTGCCCTACCTGGTAAC TGAGGCCCATCCTTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGGTACTCCTTCCCTAGCAACGGGATTCCGGCTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCGCCTGCTGTGAAACCCAGGCC
CCAACCTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTGCGTAAC
AACTGAGGTCCCTCATTGGCAGCTCACAGCCTGCCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTTCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCTGACAGGGCAAG
GGAACCTCCTACCCATGCCAGGAGGAGGCTGAGGCTGAGGCTGAGTTGCCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGGCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGAGTCGCTGCCAGGTGCAGAGGCCCTGACA
AGCCTAGCGTTGTGTCAGGGCTGAACCTGGCCCTGGTCACTGTGTTGGCCCTCTGGGA
CTACTGCTCCTGCCTCCTCTGGTGTGGCTGGAATCTCTTGAATGGATACCACTCAAAGGG
TGAAGAGGTAGCTGTCCTCTGTCACTTCCCCACCCCTGTCCCCAGCCCTAAACAAGATA
CTTCTTGGTTAAGGCCCTCGGAAGGGAAAGGCTACGGGCATGTGCCTCATCACACCATCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCTCCTGCCCTCCCTCCTGAGTCCTGGGGTGGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCTGCCACACAGCATGTGCCTCTCCCTGAGTGCCTG
TGTAGCTGGGATGGGATTCCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTTC
TTTGAATGGGGAGGCAGGGACGGAGGAAGGAAAGTAACCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

FIGURE 100

MHGSCSFLMLLLPLLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE
LAAFAKAYARQCVGHNKERGRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGETPCSQC
PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAHSPLSLDEEPVTFPKS
THVPIPKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAAELPPSSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLLPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTAACGTAGGCTTTCATTGGAGCCCCCAACAGAACCGTCATTCTCCAAGTTATGGTGGACGT
ACTCTGTTCTCCCTGCTTGCTTTCACATTAGCAGACCGACTAAGTCACAACAGATTATCTTCAT
CAAGGCAAGTCCATGAGCCACCTCAAAGCCTCGAGAAAGTGAACAAACAAATGAATTGGAGACCATTCC
AAATCTGGGACCAAGTCTGGCAAATATTACACTCTCTCCTGGCTGAAACAGGATTGTGAAATACCTCCCTGA
ACATCTGAAAGAGTTCACTGCCCTGAAACTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATT
TCCAGCCCTACAGCTAAATATCTGTATCTCACAGCAACCGACTCACATCAATGGAACCTGGTATTGGACAA
TTTGGCCAACACACTCCTGTGAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAGATGTTAAACT
GCCCAACTGCAACATCTGAATTGAACCGAAACAAGATTAAGATGGACTGACATTCCAAGGCCCTGG
TGCTCTGAACTCTGAAATGCAAAGAAATGGAGTAACGAAACTTATGGATGGACTTTTGGGGCTGAGCAA
CATGGAAATTTCAGCTGGACATAACACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGCTGATGCT
GCAGGAACCTCATCTCAGCCAAATGCCATCACAGGATCAGCCCTGATGCCCTGGAGTTCTGCCAGAAGCTCAG
TGAGCTGGACCTAATTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCTGGCTAAGCTTACTAAATAC
ACTGCACATTGGAAACAACAGAGTCAGCTACATTGCTGATTGCTCTCCGGGGCTTCCAGTTAAAGACTTT
GGATCTGAAAGACAATGAAATTCTGGACTATTGAAGACATGAATGGCTTCTGGAGTTGACAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAGCTTCACTGGTTGGATGATTGGAGCA
TCTAGACCTGAGTGAACCGCAATCATGCTTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAATT
GCATTAAATACATCAAGCCTTTGTGCATTGCCAGCTAAATGGCTCCACAGTGGTGGCGAAAACAACCTT
TCAGAGCTTGTAAATGCCAGTTGTGCCTCAGCTGCTAAAGGAAGAACGATTGGCTGTTAGGCCAGA
TGGCTTGTGTGATGATTCCCAAACCCAGATCACGGTTAGCCAGGAAACACAGTCGGCAATAAAAGGTT
CAATTGAGTTCATCTGCTCAGCTGCCAGCAGCTGATCCCAATGACTTTGCTTGGAAAAAAAGACAATGA
ACTACTGCATGATGCTGAAATGAAATTATGCACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAC
CATCCTCGGCTGCGGAGGTGAAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCAATCACTTGGTC
ATCCTACTCTGCAAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCAACAGACCCCCATGGATCTCACC
CCGAGCTGGGGCCATGGCACGCTTGGAGTGTGCTGTGGGACCCAGCCCCCAGATAGCCTGGCAGAAGGA
TGGGGCACAGACTTCCAGCTGCACGGAGAGACGATGCATGTGATGCCAGGTGAGTGTCTTATCGT
GGATGTGAAAGATAGAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTCAGCAAATGC
AACTCTGACTGTCTAGAAACACCATCATTTTGCGGCCACTGTTGGACCGAACGTGTAACCAAGGGAGAAACAGC
CGTCCTACAGTCATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGGGT
AACCGAGAGGCACTTTTGCAAGGCAATCAGCTCTGATTATTGTGGACTCAGATGTGATGCCAGGTGAG
ATACACATGTGAGATGCTAACACCCCTGGCACTGAGAGGAAACCTGGCCTCAGTGTGATCCCCACTCCAAC
CTGCGACTCCCCCTCAGATGACAGCCCCATGTTAGACGATGACGGATGGGCACTGTGGTGTGATCATAGC
CGTGGTTGCTGTGGTGGCACGTCACTCGTGTGGTGTGATCATATACACACAAGGGGAGGAATGAAGA
TTGCAGCATTACCAACACAGATGAGACCAACTGCCAGCAGATATTCTAGTTATGTGATCTCAGGGAACGTT
AGCTGACAGGCAGGATGGGTACGTGCTTCAGAAAGTGGAGGCCACCCAGTTGTCACATCTCAGGTGCTGG
ATTTTCTTACACACATGACAGTAGTGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGGAGCTGC
CACAGATCTGTTCTTGTCCGTTTGGGATCCACAGGCCCTATGTATTGAAAGGGAAATGTGATGGCTCAGA
TCCTTTGAAACATATCATACAGGTTGCACTGCTGACCCAAAGAACAGTTTATGGACCACTATGAGCCCAGTT
CATAAAGAAAAGGAGTGCACCCATGTTCTCATCCTTCAGAAGAACCTGCGAACGGAGCTCAGTAATATATC
GTGGCTTCACATGTGAGGAAGCTACTTAACACTAGTTACTCTCACAAATGAAGGACCTGGAATGAAAATCTGT
TCTAAACAAGTCTCTTGTGAAAGCTCATTCTCCAGACTTGGACTCTGGGTGAGGAAATGGCTCAGAG
AAGGCCCTTATTGAAAGCTCATTCTCCAGACTTGGACTCTGGGTGAGGAAAGATGGGAAAGAAAGGAC
AGATTTCAGGAAGAAAATCACATTGTACCTTAAACAGACTTTAGAAAACAGACTCCAAATTTCAGTC
TTATGACTTGGACACATAGACTGAATGAGACCAAAGGAAAAGCTTAACATACTACCTCAAGTGAACCTTATT
AAAGAGAGAGAAATCTTATGTTTAAATGGAGTTATGAATTAAAAGGATAAAAATGCTTTATTATACAGAT
GAACCAAAATTACAAAAAGTTATGAAAATTGAGTTACTGGGAATGATGCTCATATAAGAACACCTTTAAACTA
TTTTTTAACTTGTGTTATGCAAAAAGTATCTACGTAATTAAATGATATAAAATCATGATTATTGATGTT
TTATAATGCCAGATTCTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCACTT
TTAAATAGAAGTTACTCATTATATTGACATTATTTAATAAAATGTGTCACATTGAA

FIGURE 102

MVDVLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQLSQLREVKLNNNELETIPNLGPVSAN
ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNRIASIPPKMFKLPQLQHLELRNKIKNVGLTFQGLGALKSLKM
QRNGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAIRISPDAWE
FCQKLSELDLTFNHLRSRLLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLSSLKTLDDLKNNE
ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQ
MKKLIQQLHLNTSSLLCDCQLKWLPOWVAENNQSFVNASCAPQLLKGRSIFAVSPDFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKDNELLHDAEMENYAHLRQAQG
GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA
MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCAQN
SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKNWTKDDSPVVTER
HFFAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLLDDG
WATVGVIIIAVVCCVVGTSLVVVVIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTTLAD
RQDGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLCFLCPFLGSTGP
MYLKGNVYGSDPFETYHTGCPDPRTVLMHYEPSYIKKKECYPCHPSEESCRFSNISW
PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA
YSSFGQPSDCQPRAFYLAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQS
YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTGGTGGTGGCTTGGGTGCCTGCAAAATG
AAGGATGCAGGACGCAGCTTCTCCTGGAACCGAACGCAATGGATAAACTGATTGTGCAAGAGAGAAGAAC
GAAGCTTTCTTGTGAGCCCTGGATCTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTTAGACCCCGGGGGTGGTGTCTGACATAAATAATCTTAAAGCAGCTGTTCCCTCC
CCACCCCCAAAAAAAGGATGATTGAAAGAACGAGGATTCAAAGAAAAAGTATGTTCATTTCTC
TATAAAGGAGAAAGTGAACGCCAAGGGAGATATTGGAATGAAAAGTTGGGGCTTTTAGTAAAGTAAGAACT
GGTGTGGTGGTGTCTTCTTGAATTCCCACAAAGAGGAGAGGAAATTAAATAACATCTGCAAAGAAA
TTTCAGAGAAGAAAAGTGAACCGCAGATTGAGGCATTGATTGGGGAGAGAAACACAGCAGAGCACAGTTGGA
TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCACTGGATTCTCTTCTTCAACCTCCATTTTTAAAT
TTTTATTCCCTTTGGTATCAAGATCATGCCTTCTCTTCTTCAACACCCTGGATTCCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACACTGTTGAATTCCAGAACGGACAAACACAGATAAATTGAAATGTTGAAACAAGAT
GACCTTACATCCACAGCAGATAATGATAGGTCTAGGTTAACAGGGCCCTATTGACCCCTGCTTGCTGGTCT
GCTGGCTCTCAACTCTTGTGGTGGCTGGTCTGGTGGCTCAGACACTGCCCTCTGTGCTCTGGAGCAA
CCAGTTCAAGGTGATTGTTGGAAAAACCTCGTGGAGGTTCCGGATGGCATCTCCACCAACACAGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCACTTGAGGACTTGGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCAATTGAAATTGGGGCTTCAATGGTCTGGGAACCTCAACACTCTGGA
ACTCTTGACAATCGTCTACTACCATCCGAATGGAGCTTTGTATCTGTCTAAACTGAAGGAGCTCTGGTT
GCGAAACAACCCATTGAAAGCATCCCTCTTACAGAATTCCCTTGCCTGGACTAGACTTAGG
GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCTTGAAGGTCTGCCAACCTGAGGATTGAAACCTTGC
CATGTGCAACCTCGGGAAATCCCTAACCTCACACCGCTCATAAAACATAGATGAGCTGGATCTTCTGGGAATCA
TTTATCTGCCATCAGGCCTGGCTCTTCCAGGGTTGATGCACCTTCAAAACTGTGGATGATACTGCTCCAGAT
TCAAGTGAACGGAATGCCCTTGACAACCTCAGTCACTAGTGGAGATCAACCTGGCACACAATACTAAC
ATTACTGCCTCATGACCTCTCACTCCCTTGACATCATCTAGAGCGGATACATTACATACAACCCCTGGAACTG
TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCTCGAACACAGCTTGTGCCCCGGTG
TAACACTCCTCCAACTCAAAGGGGAGGTACATGGAGAGCTGACCAGAAATTACTCACATGCTATGCTCCGGT
GATTGGAGCCCCCTGCAGACCTCAATGTCAGTAAGGCATGGCAGCTGAGCTGAAATGTCGGGCTCCACATC
CCTGACATCTGTATCTGGATTACTCCTAACATGGAACACTCATGACACATGGGGCTACAAAGTGGATAGCTGT
GCTCAGTGTGGTACGTTAAATTTCACAAATGTAACGTGCAAGATAAGGCATGTACACATGTTGAGTAA
TTCCGGTGGGAATACTACTGCTTCAGGCACCCCTGAATGTGTTACTGAGCAAGGACTACTCCTTCTTACTTTTCA
AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACACAGATAACAATGTCGGGCTCCACTCC
AGTGGTCGACTGGAGACCAATGTGACCACTCTCTCACACCACAGAGCACAAGGTCGACAGAGAAAAACCTT
CACCATCCCAGTGAATGATATAAACAGTGGGATCCCAGGAATTGATGAGGTCTGACAGACTACCAAAATCATCAT
TGGGTGTTTGTGGCCATCACACTCATGGCTGAGTGTGGTCTTACAAAGATGAGGAAGCAGCACCA
TCGGCAAAACCATCACGCCAACAAAGGACTGTGAAATTATTAATGTGGATGAGATTACGGGAGACACACC
CATGGAAAGGCCACCTGCCATGCCTGCTATCGAGCATGAGGCACCTAAATCACTATAACTCATACAAATCTCCCTT
CAACCACACAACACAGTTAACACAATAATTCAATACACAGTTCACTGAGTGAACCGTTATTGATCCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATCTAAACACTGAGTTACAAAAACAAACAAATCAAAAAAA
GACAGTTATTAAAAATGACACAAATGACTGGGCTAAATCTACTGTTCAAAAGTGTCTTACAAAAACAA
AAAAGAAAAGAATTATTATTAAAAATTCTATTGTGATCTAAAGCAGACAAAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIICKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFNDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNADFNLQSLVEINLAHNNLTLLPHDLFTPPLHHLERIHLHHNPWCNC
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNTEGMAAE
LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVNSVGN
TTASATLNVTAATTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWE
TTNVTTSLTPQSTRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN
HHAPTRTVEIINV
DDEITGDTPMESHLPM
PAIEHEHLHYNSYKSPFNHTT
TVNTINSIHSS
VHEPLLIR
MNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAACTCTGTCAGTTGCAGTTGGCAGTTCTTCCGTTCCCTGCTGTTGGGGCA
TGAAAGGGCTTCGCCGCCGGAGTAAAAGAAGGAATTGACCAGGGCAGCGCAGGGAGGAGCGCAGCGACCGC
GAGGGCGGGCGTGCACCCCTCGGCTGAAAGTTGTGCCGGGCCCCGAGCGCGCCGCGCTGGAGCTTCGGTAGA
GACCTAGGCCGCTGGACCGCGATGAGCGCAGCGCAGCCTCCGTGCGCGCCGCGGGTTGGGCTGCTGCTGTG
GCGGTGCTGGGGCGCTGGCGCTGGACAGCGCGGGTCCGAGCAGCGCGGGACTCGGGAGCCCTCTGGGTAGCGCC
GAGCGCCCATGCCCACTACCTGCCCTGCCCTGGGGACCTGCTGGACTGCACTGTAAGCGGCTAGCGCTT
CCCCAGCCACTCCCGTCTGGGTGCGCTGGACTTAAGTCACAACAGATTATCTTCATCAAGGCAAGTTCC
ATGAGCCACCTCAAAGCCTCGAGAAGTGAAGACTGAACACAATGAATTGGAGAACATTCCAATCTGGGACCA
GTCTGGCAAATTACACTTCTCTTGGCTGAAACAGGATTGTGAAACTACCTCTGAACATCTGAAAGAG
TTTCAGTCCCTGAAACTTGGACCTTAGCAGCAACAAATTTAGAGCTCAAACAGCATTCCAGCATTCCAGC
CTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTGACAATTGGCCAACACA
CTCCTGTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAAGATGTTAAACTGCCCAACTGCAA
CATCTGAATTGAAACGAAACAAGATTAAAGTAGATGGACTGACATTCAACAGGCTTGGTGTCTGAAGTCT
CTGAAAATGCAAGAAATGGAGTAACGAAACTTATGGATGGAGCTTTTGGGGCTGAGCAACATGAAATTG
CAGCTGGACCATAACACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGTGATGCTGAGGAACATT
CTCAGCCAAATGCCATCAACAGGATCAGCCCTGATGCCCTGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA
ACTTTCAATCACTTCAAGGTTAGATGATTCAAGCTTCTGGCTAAGCTTACTAAATACTGCACATTGGG
AACAAACAGAGTCAGCTACATTGCTGATTGTGCCCTCCGGGGCTTCCAGTTAAAGACTTGGATCTGAAGAAC
AATGAAATTCTGGACTATTGAAGACATGAATGGTCTTCTCTGGGCTTGACAACACTGAGGCGACTGATACTC
CAAGGAAATCGGATCCGTTCTATTACTAAAAAGCCTTCACTGGTTGGATGCAATTGGAGCATCTAGACCTGAGT
GACAACGCAATCATGCTTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAATTGCAATTAAATACA
TCAAGCCTTTGTGCAATTGCCAGCTAAATGGCTCCCACAGTGGGGCGGAAACAAACTTCAAGAGCTTGT
AATGCCAGTTGCCATTCTCAGCTGCTAAAGGAAGAACGATTGGCTGTTAGCCAGATGGCTTGT
GATGATTTCACAAACCCAGATCACGGTTCAGGCCAGAAACACAGTCGGCAATAAAGGTTCCAATTGAGTT
ATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCAATGACTTTGCTGGAAAAAGACAATGAACTACTGC
GCTGAAATGGAAAATTATGCAACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAACCATCTTGGCTG
CGCAGGGTGGAAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCCAATCAGTGTGTTCATCCTACTCTG
AAAGCCAAGCTTACAGTAATATGCTTCCCTATTCCAAAGACCCCCATGGATCTCAGGAGCTGGGGCC
ATGGCACGCTGGAGGTGTGCTGCTGGGGCACCCAGCCCCCAGATGCGTGGAGAAGGATGGGGCACAGAC
TTCCCAGCTGACGGAGAGACGATGATGTCAGTGTGATGCCAGGGATGACGTGTTCTTATCGTGGATGT
GAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAAGGAGTATTGCAAAATGCAACTCTGACTG
CTAGAAACACCATCATTTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAACAGCCGCTTACAGTGC
ATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACCTGGACCAAAGATGATGAGCCATTGGTGGTAACCGAGAGGC
TTTTTGCAAGCAGGAATCAGCTCTGATTATTGGAACCTCAGATGTCAGTGCTGGAAATACACATGTGAG
ATGCTAACACCTTGGCACTGAGAGAGGAAACGTCAGGCCACTCCAAACCTGCACTCCCCT
CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGCTGATCATAGCCGTGGTTGCTGT
GTGGGGCACGTCACTCGTGTGGGTGATCATATAACCACACAAGCGGAGGAATGAAGATTGCAAGCATTAC
AACACAGATGAGACCAACTTGCACAGATATTCTAGTTATTGTCATCTCAGGAAACGTTAGCTGACAGGAG
GATGGGTACGTTGCTTCAAGAAAGTGAAGGCCACCCAGTTGTCACATCTCAGGTGCTGGATTTCCTTACCA
CAACATGACAGTAGTGGCACCTGCCATTGACAATAGCAGTGAAGCTGATGTGAGCTGCCACAGATCTGTT
CTTGTGCGTTGGGATCCCACAGGCCCTATGTTAGGGAAATGTGTATGGCTCAGATCTTGGAAACA
TATCATACAGGTTGCACTCCTGACCCAGAAACAGTTTAATGGACCACTATGAGCCAGTTACATAAAGAAAAG
GAGTGTACCCATGTTCTCATCCTCAGAAGAACTCTGCAACGGAGGCTTCAGTAATATATCGTGGCTTCACAT
GTGAGGAAGCTTAACACTAGTTACTCTCACAAATGAAGGACCTGGAAATGAAAATCTGTCATAAACAGTCC
TCTTGTGTTTAATGGAGTTATGAAATTAAAAGGATAAAATGCTTATTATACAGATGAAACCAAAATTAC
AAAAAGTTATGAAATTTTATACTGGGAATGATGCTCATATAAGAATACCTTTAAACTATTTTAACTTT
TTTATGCAAAAAGTATCTACGTTAAATTAAATGATATAATCATGATTATTTATGTTATTTATAATGCCAGA
TTTCTTTATGGAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTGACCAATTAAATAGAAGTT
ACTTCATTATATTTGCACATTATTTAAATAATGTGCAATTGAAAAA

FIGURE 106

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPSGVAEERPCPTTCRCLGDILLDCSR
KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQSLREVKLNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY
FDNLANTLLVLKLNRNRISSAIPPKMFKLPQLQHLELNRNKIKNVGGLTFQGLGALKSLKMQR
NGVTKLMDGAFWGLSNMELQLDHNNLTEITKGWLGYGLLMLQELHLSQNAINRISPDAWEFC
QKLSELDLTFTNHLRSRLLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLGSSLKTLKLNNEIS
WTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK
KLQQLHLNTSSLCDQLKWLPOWVAENNFQSFVNASCAPHQPLLKGRSIFAVSPDGVCDDF
PKPQITVQPETQSAIKGSNLNFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPPAQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA
GSISANATLTVLETPSFLRPLLDRVTKGETAVLQCIAGGSPPPKNWTKDDSPLVVTERHF
FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGERGNVRSLVIPTPTCDSPQMTAPSLLDDGWA
TVGVVIIAVVCCVVGTSLVVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRO
DGYVSSESQSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY
LKGNVYGSDFPFETYHTGSPDPRTVLMHYEPSYIKKKECYPCHPSEESCRSFSNISWPS
HVRKLLNTSYSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLNEYRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519,
688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378,
383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735,
799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022,
1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,
513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGCGGAGAGCGCCCAAGCTTGAATGGAAGGAGCCCAGGCCGGAGCGCAGCTGAGAC
TGGGGGAGCGCGTTGGCCCTGTGGGCGCCGCTCGGCGCCGGGCGCAGCAGGGAAAGGGAGCTGTGGTCTGCC
CTGCTCCACGAGGCAGCCACTGGTGTGAACCGGGAGAGGCCCTGGGTGTCCTCCCTATCCCTCCTTATATA
GAAACCTTCCACACTGGGAAGGGAGCCGGCAGGGCAGGGCTCATGGTGAAGCAAGGAGGCCGGCTGATCTGCAG
GCGCACAGCATTGGAGTTACAGATTTACAGATAACCAATGGAAGGCAGGGAGGCAGAACACAGCCTGCCTGGT
TCCATCAGCCCTGGGCCAGGCAGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCCAGAGCCGGGTGCTGC
TGCTCCTGCTGCTGCTGCCACAGCTGCACTGGGACCTGTGCTTGCCGTAGGGCCCCAGGATTGGCGAA
GTGGCGCCACAGCCTGAGCCCCGAAGAGAACGAATTGCGGGAGGAGGAGGCCGGTGTGACTGAGCCCTGAGG
AGCCCGGGCTGGCCAGCCGGTCAAGCTGCCCGAGACTGTGCTCTGGCCAGGAGGGCGTGTGACTGTG
GCGGTATTGACCTGCGTGAAGTCCCGGGGACCTGCTGAGCACCCAACCACCTATCTCTGAGAACAAACCAGC
TGGAAAAGATCTACCCCTGAGGAGCTCTCCCGCTGCACTGGAGACACTGAACCTGCAAAAACACCGCCTGA
CTTCCCAGGGCTCCAGAGAAGGCGTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAAACAGC
TGACCTTGGCACCCGCTTCTGCCAAACGCCCTGATCAGTGTGACTTGTGCTGCCAACATATCTACCAAGATCT
ATGGGCTCACCTTGGCCAAGGCAAACCTTGAGGTCTGTGTACCTGACAAAACAAAGCTGGCAGACGCCGGG
TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCAGGCTCTCATCTGTCCAGCAACTTCTGCGCACGTGC
CCAAGCACCTGCCCTGCCGTACAAGCTGCAACCTCAAGAACAAACAGCTGGAGAAGATCCCCCGGGGCT
TCAGCGAGCTGAGCAGCTGCGAGCTATACTGAGAACAAACTACCTGACTGAGCAGGGCCTGGACAACGAGA
CCTTCTGGAAGCTCTCAGCCTGGAGTACCTGGATCTGTCCAGCAACAAACCTGTCCTGGGCTCCAGCTGGGCTG
CGCGCAGCCTGGTGTGCTGCACTTGAGAAGAACGCCATCCGGAGCGTGGACCGGAATGTGCTGACCCCCATCC
GCAGCCTGGAGTACCTGCTGCTGCACAGCAACCAGCTGCCGGAGCAGGGCATCCACCCACTGGCCTTCCAGGGC
TCAAGCGGTTGCACACGGTGCACCTGACAACAAACGCGTGGAGCGCGTGCCTGGCTGCCAGTGGCTGCC
GCACCCCTCATGATCCTGCACAACCAGATCACAGCATTGGCGGAAGACTTGGCACCACCTACTTCTGGAGG
AGCTCAACCTCACTACAACCGCATCACCGCCACAGGTGACCGCAGCCTCGCAAGCTGCGCTGCTGC
GCTCGCTGGACCTGTCGGGCAACGGCTGCAACGCTGCCACCTGGGTCCTCGAAATGTCATGTGCTGAAGG
TCAAGCGCAATGAGCTGGCTGCCCTGGCACAGGAGGGCGTGGCGGGCATGGCTCAGTGTGAGCTGTACCTCA
CCAGCAACCGACTGCCAGCCGAGCCCTGGGCCCCCTGCTGGTGGACCTCGCCCATCTGAGCTGCTGGACA
TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGGCTCCCGAGTCACITGAGTACCTGTCAGAACACA
AGATTAGTGCCTGGCCGCAATGCTCCGACTCCGACAGCAGCCAACTCAAGGGGATCTTCAGGTTAACAGC
TGGCTGTGGCTCGTGGTGGACAGTGCCTCCGGAGGCTGAAGGCACCTGCAAGGTCTGGACATTGAAGGCAACT
TAGAGTTGGTGAACATTCCAAGGACCGTGGCCGCTTGGGAAGGAAAGGAGGAGGAGGAAGAGGAGGAGGAGG
AGGAAGAGGAAACAAGATAGTGACAAGGTGATGAGATGTGACCTAGGTGATGGACGCCGACTCTTCTGC
AGCACACGCCGTGCTGAGCCCCCACTCTGCCGTGTCACACAGACACACCCAGCTGCACACATGAGGCA
TCCCATGACACGGGCTGACACAGTCTCATATCCCCACCCCTCCACGGCGTGTCCCACGGCCAGACACATGC
ACACACATCACACCCCTCAAACACCCAGCTCAGCCACACACAACTACCCCTCAAACACCACAGTCTGTACAC
CCCCACTACCGCTGCCACGCCCTCTGAATCATGCAGGGAAAGGTCTGCCCTGGCACACACAGGCACCA
TTCCTCCCCCTGTCGACATGTGATGCTGATGCAACACACCACACACACATGCACAAGTCATGTGCGAA
CAGCCCTCAAAGCCTATGCCACAGACAGCTTGGCCAGCCAGAATCAGGCACTAGCAGCTGCCGTGCC
GTCCATCTGTCGCTCCGTTCCCTGGAGAAGACACAAGGTATCCATGCTGTGGCCAGGTGCCACCCCT
GGAACTCACAAAGCTGGCTTATTCCCTTCCATGGGACAGGAGCCTCAGGACTGCTGGCCTGGCC
TGGCCACCCCTGCTCCTCCAGGTGCTGGCAGTCACTCTGTAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGCACTTTCCAATGGGAAGGCCAGTGGAGGCAGGATGGAGAGGCCCTGGGTGCTGCTGGGCTTGGGG
CAGGAGTGAAGCAGAGGTGATGGGCTGGCTGAGCCAGGGAGGAAGGACCCAGCTGCACCTAGGAGACACCTT
GTTCTCAGGCCGTGGGGGAAGTTCGGGTGCCATTATTCTTATTCTTAAGGAAAAAAATGATAAAAT
CTCAAAGCTGATTTCTTGTATAGAAAAACTAATATAAAAGCATTATCCCTATCCCTGAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPLVLSPEEPGPAAVSCPDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKAFLTNLNLYLANNK
LTLPAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLIILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLPDRVTLMILHNQITGIGREDFATTYF
LEELNLSYNRITSPOVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKGIIFRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

FIGURE 110

MDFLLALVLVSSLYLQAAAEDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCOPVCQP
RCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCVDVDECATGRASCPRFQRC
VNTFGSYICKCHKGFDLMLYIGGKYQCHDIDECSLGQYQCSSFARCVNRGSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHPKGNGTILKDTGNNNWIPDVGSTWWPPKTPYIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTTPERPTTGLTTIAPAASTPPGGITVDN
RVQTDPQKPRGDVFSQLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAQQQLTVSAAKAPGG
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHSGLQVFVRKHGAHGAALWGRNGGHGWQTOI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTTCACAACTTCCCTTGCACAGGGTCTGCTCGGGGCTGA
AGGTGACAGTGCCATCACACACTGTCCATGGCGTCAGAGGTCAAGGCCCTACCTACCCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTGAGAGACCCA
ACAATGCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTCTGACTTGAATACC
AACACAAGTTCAACCATGATGCCACCCAAATGCATCTGCTTATCAACCCACTGCAGTTCCCT
GATGAAGGCAATTACATCGTAAGGTCAACATTCAAGGAAATGGAACACTATCTGCCAGTCA
GAAGATAACAAGTCACGGTTGATGATCCTGTACAAAGCCAGTGGTGCAGATTCATCCTCCCT
CTGGGGCTGTGGAGTATGTGGGAACATGACCCCTGACATGCCATGTGGAAGGGGGCACTCGG
CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTTC
TCCCCAAAACAATACCCCTCATATTGCTCCAGTAACCAAGGAAGACATTGGAATTACAGCT
GCCTGGTGAGGAACCCCTGTCAGTGAATGGAAAGTGAATCATATTGCCATCATATTAT
GGACCTTATGGACTTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATCATTAAGCATGGGCCTCGCTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGTGCTTACAACACATAAC
CGGCAGGCAAGATGAAACTCATTCACAGTTATCATCACTCCGTAGGACTGGAGAAGCTTG
CACAGAAAGGAAAATCATTGTCACCTTAGCAAGTATACTGGAATATCACTATTGATT
ATATCCATGTGTCTTCTCTTCTATGGAAAAAATATCAACCTACAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAACAGAACATCAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTTCGGAATATATGAATTGTTGCTTCCAGATGTTCTGGTGTCCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTATGGGCAAGATTGCACAGTACAGT
GTATGAAGTTATTCAAGCACATCCCTGCCAGCAGCAAGACCATTCAAGTTGAACTTCATGG
GCTAAACAGTACATTGAGTGAAAATTCTGAAGAACATTAAAGGAAAACAGTGGAAAAGT
ATATTAAATCTGGAATCACTGAAGAACCAGGACCAACACCTCTACTCATTATTCTTACA
TGCAGAACAGGATTATGCAAATTGAACTGCAGGTTTCAGCATATAACAAATGTCTT
GTGCAACAGAAAACATGTTGGGAAATATTCCCTCAGTGGAGAGTCGTTCTCATGCTGACGG
GGAGAACGAAAGTGACAGGGTTCTCATAAGTTGTATGAAATATCTACAAACCTCA
ATTAGTTCTACTCTACACTTCACTATCATCAACACTGAGACTATCCTGCTCACCTACAAA
TGTGGAAACTTACATTGTTCGATTTCAGCAGACTTGTGTTATTAAATTGTTATTAGTG
TTAAGAATGCTAAATTATGTTCAATTATTCCAAATTCTATCTTGTATTTGACAA
CAAAGTAATAAGGATGGTTGTACAAAACAAACTATGCCCTCTTTTTCAATCACC
AGTAGTATTGAGAAGACTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATTGTTA
TTTTTTCAAGGAAAGATGGATTCAAATAATTCTGTTTGCTTAAAAAAA

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSPHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGLTLSASQ
KIQVTVDPPVTKPVVQIHPPSGAVEYVGNMTLTCHEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEIDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIOQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGGC~~GAAATGGCGCCCTCCGGGAGTCTTCAGTTCCCTGGCAGTCCTGGTGTGTT~~
GCTTG~~GGGTGCTCCCTGGACGCACGGCGGCCGGAGCAACGTTCCGTCATCACGGACGAGA~~
ACTGGAGAGAA~~CTGCTGGAAGGAGACTGGATGATAGAATTATGCCCCGTTGCCCCTGCT~~
TGTCAA~~AAATCTCAACCAGGAATGGGAAAGTTGCTGAATGGGAGAAGATCTTGAGGTTAA~~
TATTG~~CAGAAGTAGATGTACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC~~
TTC~~CTACTATTATCATTGTAAGATGGTGAATTAGGCCTATCAGGGCCAAGGACTAAG~~
AAGGACT~~TCAAACTTATAAGTGATAAAGAGTGGAAAGAGTATTGAGCCGTTCATCATG~~
GTTTGGT~~CCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTCTTCAGCTATCTATGTGGA~~
TCAGGAC~~GTCATAACTACTTATTGAAGACCTTGGATTGCCAGTGTGGGATCATATACT~~
GTTTG~~CCTTAGCAACTCTGTTCCGGACTGTTATTAGGACTCTGTATGATATTGTG~~
AGATTG~~CCTTGTCCCTCAAAAAGGCCAGACCCACAGCCATACCCATACCCCTCAAAAAAAT~~
TATTATC~~AGAATCTGCACAACCTTGAAAAAGTGGAGGAGGAACAAGAGGCCGATGAAGAA~~
GATG~~TTCAAGAAGAAGCTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAATGC~~
CAT~~AAGACAACGCTCTGGGCCATCATTGGCACAGATAAACCTAGTTAAATT~~
TTATCT~~TAATATTATGATTTGATAAAACAGAAGATTGATCATTGTTGGTTGAAGTG~~
AACTGT~~GACTTTTGAAATATTGCAAGGTTCACTGATGTTGATTAAGAGTCTA~~
CATT~~CAGAACATAAAAGCACTAGGTATACAAGTTGAAATATGATTAAGCACAGTATGATG~~
GTT~~AAATAGTTCTTAATTGAAAAACGTGCCAGCAATAAGATTATGTATATTGT~~
TTAATA~~AAACCTATTCAAGTCTGAGTTGAAAATTACATTCCCAAGTATTGATT~~
TGAGG~~TATTAGAAGATTATTAGAGAAAATATTCTCATTTGATATAATTCTCTG~~
TT~~TCAGTGTGAAAAAGAAGATATTCCCATAATGGGAAGTTGCCATTGTCTCAAG~~
AAATGT~~GTTTCAGTGCACATTCTGGTCTTTAGAGGTATATTCCAAATTCTCTG~~
ATTTT~~AGGTATGCAACTAAACACTACCTACATTAAATTACAGTTCTACACA~~
TGG~~TAATACAGGATATGCTACTGATTAGGAAGTTTAAGTTCATGGTATTCTTGATTC~~
CAAC~~AAAGTTGATTCTCTGTATTCTTACTTACTATGGGTACATTTTATT~~
CAA~~ATTGGATGATAATTCTGGAAACATTTTATGTTAGTAAACAGTATTGTTGTT~~
GTT~~CAAACGTTGAAAGTTACTGAGAGATCCATCAAATTGAACAATCTGTTGTAATT~~
TTGCC~~ACTTTTCAGATTTACATCATTCTGCTGAACCTCAACTGAAATTGTTTTT~~
TTCT~~TTGGATGTAAGGTGAACATTCTGATTGTTCTGATGTGAAAAAGCCTGGTA~~
TTT~~TACATTGAAAATTCAAAGAAGCTTAATATAAAAGTTGCATTCTACTCAGGAAAAG~~
CAT~~CTTCTGTATATGCTTAAATGTATTGTCCTCATATACAGAAAGTTCTTAATTGAT~~
TT~~TACAGTCTGTAATGCTGATGTTAAAATAACATTATATTGTTAAAGACAA~~
ACT~~TCAATTATCCTGTTCTGACTGGTAATATTGTTGAGGATTCACAGGTAAA~~
GTC~~CAGTAGGATGGAACATTAGTGTATTGACTCCTTAAAGAGCTAGAATACATAGTTT~~
CAC~~CTTAAAGAAGGGGAAATCATAAATACAATGAATCAACTGACCATTACGTAGTAC~~
AATT~~TCTGTAATGTCCTCTTCTAGGCTCTGTTGCTGTGAATCCATTAGATTACAG~~
TAT~~CGTAATATACAAGTTCTTAAAGCCCTCCTTCTAGAATTAAAATATTGTACCA~~
AAAG~~AGTTGGATGTAACTTGTGATGCCTAGAAAAATATCCTAACGACAAAATAAC~~
TT~~CTAACCACTTCATTAAGCTGAAAAAAAAAAAAAA~~

FIGURE 114

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMI
EFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCTT
CTGTGTGCCAGAAACCGCAAGCAGTGTGCTAACCCAGTGGGACAGGCAGGATTGGAAGAGCAGGG
AAGTCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACCTGAAACTCTGGGTGTCTGC
ATTGCTGATGGCCTGGTTGGTGTCTGAGCTGTGTCAGGGCAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGAGTCTGTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGCCAACAAAATGGAAGCCTTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCTGTGAATGCCCTACAAACTGG
TGAAGCGGCTAACACACAGACTGGCCTGCGCTGGAGGACCTTGTCTGCAGGACTCAGCTGCA
GGTTTTATGCCAACCTCTGTGCGAGCGGAGTTCTCCCCACTGATGAGGACGAGATAGG
AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGGAACCTCCAGGAACCAAGTACCAAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCCGCTCGGCCTACAATGAAGGGACTATTATCATACGGTGTGGATGGAGCAGGTGCT
AAAGCAGCTTGATGCCGGGAGGAGGCCACCAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGTCTTCCAGTTGGGTGATCTGCACCGTGCCTGGAGGCTCACCCGCCCTGCTC
TCCCTGACCAAGCCACGAGCTGGAGGAATCTCGGTACTTGAGCAGTTATTGGA
GGAAGAGAGAGAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA
TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTCTGCGTGGG
GAGGGTGTCAAACGTACACCCGTAGACAGAAGAGGCTTCTGTAGGTACCAACATGGCAA
CAGGGCCCCACAGCTGCTATTGCCCTTCAAAGAGGAGGAGCTGGACAGCCGCACA
TCGTCAAGGTACTACGATGTCATGTGATGAGGAAATCGAGAGGATCAAGGAGATCGAAAAA
CCTAAACTTGCACGAGCCACCGTCTGTGATCCCAAGACAGGAGTCTCAGTCGCCAGCTA
CCGGGTTCCAAAGCTCTGGCTAGAGGAAGATGATGACCCCTGTTGTGGCCGAGTAAATC
GTCGGATGCAGCATATCACAGGGTTAACAGTAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCGCACTCGACTTCTCTAGGCGACCTTTGACAGCGG
CCTAAAACAGAGGGAAATAGGTTAGCGACGTTCTTAACACATGAGTGTAGAACAGCTG
GTGGTGCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGTG
TTCTGGTACAACCTCTGGAGCGGGGAAGGTGACTACCGAACAGACATGCTGCCTGCC
TGTGCTTGTGGCTGCAAGTGGGTCTCCAATAAGTGGTCCATGAACGAGGACAGGAGTTCT
TGAGACCTTGTGGATCAACAGAAGTTGACTTGACATCCTTCTGCTCTCCCTCTGGTC
CTTCAGCCCATGTCAACGTGACAGACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGAGGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTTCCATTCAAGCCTGTGCCATCCCTGGCCCAAGGCTAGGATCA
AAAGTGGCTGAGCAGAGTTAGCTGTCTAGCGCTAGCAAGGTGCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCAAGTGAACCAAGTTCTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAAAATGTCCCTACCAGAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV
LWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGDLHRAELTRRLLSLDPSHERAGGNLR
YFEQLLEEEEREKTLTNQTEAELATPEGIYERPVDYLPERDVYESLCRGEGVKLTPRQKRLF
CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMSDEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDPVVARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFSGEVDYR
RRPFDDSGLKTEGNRLATFLNYMSDVEAGGATVFPDLGAIWPKKGTAVFWYNLLRSGEGDYR
TRHAACPVLVGCKWVSNKFHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTTCCTCTTTAGTGAAGACAGACCATAATCCAGTGTGAGTGAAATTGATTGT
TTCATTTATTACCGTTTGGCTGGGGTTAGTCCGACACCTTCACAGTGAAGAGCAGGCCAGAAGGAGTTGTGA
AGACAGGACAATCTTCTGGGGATGCTGGCTTGAAGCCAGCAGGGCTTGCTCTGTCTTGGCCTCATGACCC
CAGGTTCTCTGGTTAAACTGAAAGCCTACTACTGGCTGGCCATCAATCATTGATCCTTGAGGCTGTGCC
CCTGGGGCACCCACCTGGCAGGGCTACCAACCATGCAGTGCAGCTCCCTGTTGGCTCTGCTGCCAGCGCTTC
CCCTCATCTTAGGGCTCTCTGGGGTGCAGCCTGAGCCTCTGCGGGTTCTGGATCCAGGGGAGGGAGAAG
ATCCCTGTGTCGAGGCTGAGGGAGCCACAGAACATCCAGATTGAGAGCTGGCTAGACCAAAGTG
ATGAAGACTTCAAACCCGGATTGTCCTACTACAGGGACCCAAACAAGCCTACAAGAAGGTGCTCAGGACTC
GGTACATCCAGACAGAGCTGGCTCCTGGCTGAGCGGTTGCTGCTGACCTCCGAGCTACACTGTCCA
CTTGGCCGTGGCTGTGAACCGTACGGTGGCCATCACTCCCTCGGTTACTCTACTTCACGGCAGGGGG
CCCAGGCTCCAGCAGGGATGCGAGTGGTGTCTATGGGATGAGCGGGCCCTGGCTATGTCAGAGACCCCTGC
GCCACCTTCACACACACTTGGGCCGACTACGACTGGTCTTACATCATGCGAGATGACACATATGTCAGGCC
CCGGCCTGGCAGCCCTGCTGGCCACCTCAGCATCAACCAAGACCTGACTTACGGCCGGAGAGGATTGATTG
GCGCAGCGAGCAGGCCGGTACTGTCATGGGGCTTGCTACCTGTTGTCACGGAGTCTCCTGCTCGCTGC
GGCACATCTGGATGGCTGCCGAGGAGACATTCTAGTGGCCCTGACGAGTGGCTGGACGCTGCTCATTG
ACTCTCTGGCGTCTGGCTGTCACAGCACCAGGGCAGCAGTATGCTCATTTGAACTGGCCAAAATAGGG
ACCCCTGAGAAGGAAGGGAGCTGGCTTCCCTGAGTGCCITGCCGTGACCCCTGCTCCGAAGGTACCCCTATGT
ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGGGCTTAAGTGAATAGAACAACTGCAGGCTCAGA
TCCGGAACCTGACCGTGTGACCCCCGAAGGGAGGCAGGGCTGAGCTGGCCGGTTGGCTCCCTGCTCATTCA
CACACACACTCTGCTTTGAGGTGCTGGCTGGACTACTTCACAGACGACACACCTCTCCTGTGCAAGATGGGG
CTCCAAGTGCCACTACAGGGGCTAGCAGGGCGACGTGGGTGATGCCGTGGAGACTGCCCTGGAGCAGCTCA
ATCGCGCTATCAGCCCCCTGCCCTGCGCTTCAAGCAGCAGCTCAACGGCTATCGCGCTTCGACCCAGCAC
GGGCATGGAGTACACCCCTGGACCTGCTGTTGAAATGTGTGACACAGCGTGGCACCGGGGGCCCTGGCTCGA
GGGTCAGCCTGCTGCCACTGAGCCGGGTGAAATCCTACCTATGCCCTATGTCACTGAGGCCACCCAGTGC
AGCTGGTGTGCCACTCTGGTGGCTGAAGCTGCTGCAAGCCGGCTTCCCTGAGGCGTTGCAAGCCATGTCC
TGGAGCCACGAGAACATGCTACCCCTGTTGCTACGGGCCACGAGAACGGTGGCCGTGGAGCTCCAG
ACCCATTCTGGGGTGAAGGCTGCAGCAGCGAGTTAGAGCGACGGTACCCCTGGGACGAGGCTGGCTGGCTCG
CTGTGCGAGCAGGCCCTTCCAGGTGCGACTCATGGACGTGGTCTGAAGAAGCACCCTGTTGACACTCTCT
TCTTCTTACCCCGTGGCAAGGCCCTGGGGCGAAGTCTCAACCGCTGTCGATGAATGCCATCTGGCT
GGCAGGCCCTTCCAGTCATTTCCAGGAGTCAATCTGCCCTGTCACCACAGAGATCACCCCCAGGGCCCC
CGGGGGCTGCCCTGACCCCCCTCCCTGGCTGACCCCTCCGGGGGCTCTATAGGGGGAGATTG
ACCGGCAGGCTCTGCCGGAGGCTGCTTACAACGCTGACTACCTGGCGGCCAGGCCGGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGAGGAGGAAGCCCTGGAGGGGCTGGAGGGTATGGATGTTTCTCCGGTTCTCAGGGCTCC
ACCTCTTCGGCCGTAGAGCCAGGGCTGGTGAGAACAGTTCTCCCTGCGAGACTGCAGCCCACGGCTCAGTGAAG
AACTCTACCAACCGCTGCCCTCAGCAACCTGGAGGGCTAGGGGGCCGTGCCAGCTGGCTATGGCTCTTTG
AGCAGGAGCAGGCCAATAGCACTTAGCCCGCCTGGGGCCCTAACCTCATTACCTTCTGTCTGCCAGCC
CCAGGAAGGGCAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGATTTTAAATATGAAAATGTTATTAA
ACATGTCTCTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYYRDPNPKVLRTRYIQTTELGSERLLVAVLTSRATLSTLAVAVNRTV
AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHTHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLRPHLDGCRG
DILSARPDEWLGRCLIDS LGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPLQGASRADVGALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTLDLLCEVTQRGHRRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPLL
VAEAAAAPAFLEFAANVLEPREHALLTLLVYGPREGGRGAPDPFLGVKAAAELERRYPG
TRLAWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTTVWTRPGPEVLRNRCRMAISGWQAFFP
VHFQEFPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEALEGLEVMDFVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRQLAMALFEQEQQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGCACGTGAGAGGAAACCGTGCACGGCTGCCTTCCTGTCCCCAAGCC
GTTCTAGACGCCGGAAAAATGCTTCTGAAAGCAGCTCCTTTGAAGGGTGTATGCTTGG
AACATTTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGCATGGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTCAGTATACTGTATTATCCTGTAAAACC
CAAAGATGTGAGTCTTGGGCTGCAGTAAAGGAGACTGGACAAACACTGTGACAAAGCAG
AGTTCTCAGTTCTGAAAATGTTAAAGTGTGAGTCATTAATATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACAAC
GTTCTCCTGCACGCCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGCAAGAAAATGCAGAAGATGCTGATGGA
AAAGATGTATTTAATACCAAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTGTTAGATATGGCTGTTACTTTAATGGACTGACTCCAA
ATCAGATGCATGTGATGTATGGGTATACCGCCTTAGGGCATTGGCATATTTCAAT
GATGCATTGGTTCTTACCTCAAATGGTCTGACAATGACTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTGTCATTATTGTAGTAGTAACATACATCCAA
TACAGCTGTATGTTCTTTCTTAATTTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTTTCTTAAAACACATGAACATTGAAATG
TGTTGGAAAGAAGTGTGTTAAGAATAATAATTGCAAATAACTATTAAATAATTAT
GTGATAAATTCTAAATTATGAACATTAGAAATCTGTGGGGCACATATTTGCTGATTGGTT
AAAAAAATTAAACAGGTCTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAAACCTTGTGTTCCCTTACTCTAATACTGATTATGTTCT
AAGCCTCCCCAAGTCCAATGGATTGCCTCTCAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAGTGTAAAAAT

FIGURE 120

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKFESINMDTNMDWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIENLKYFLLKKDPSQPFYLGHТИKSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

FIGURE 122

MNSSKSSETQCTERGCSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELCYNYGSGSVKNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPPNNIATLEDCATMRDSS
NPRQNWNDVTCFLNYFRICEMVGINPLNKGS

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCCCGCTGCCGCTGGCCCCCTCAGCAACCTCGACATGGCGCTGAGGCGGCCACCGCGAC
TCCGGCTCGCGCTCGCTGACTTCTTCCTGCTGCTGCTTTCAAGGGCTGCTGATAAGGGCTGTAAATC
TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTGAAAGTGTGAACTGTCTGCATCATTACGGATTGCG
AGACAAGTGACCCAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACCACATATGTGTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGTCTGCAAGAAATACTGGGAAGACATCCCTGAAGATCTGAATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGTGCTGAAATGACCGAAGGAATTGATGAGATTGTGATCGAGTTAA
CTGTGCAAGTGAAGCCAGTGACCCCTGCTGTAGAGTGCCGAAGGCTGTACCACTAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGAGTGAGGGCACCCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCAACTGCCACGGATT
CCAGAGCCAATCCCAGATTTCGAATTCTCTTCACTTAAACTCTGAAACAGGCACTTGTGTTCACTGCTG
TTCAACAGGACGACTCTGGGAGACTACTGCAATTGCGGAATTATTGGGGGGTCTGGTGTCTGTACTGCCCTGA
AGATGGAAGTCTATGACCTGAACATTGGCGGAATTATTGGGGGGTCTGGTGTCTGTACTGCCCTGA
TCACGGTGGGATCTGCTGTGCAACAGCTGGTACTTCATCAACAATAACAGGATGGAGAAAGTTACAAGA
ACCCAGGGAAACCAAGATGGAGTTAACATACCCGACTGACGAGGAGGGCACTTCAGACACAAGTCATCGTTG
TGATCTGAGACCCCGGGTGTGGCTGAGAGCGCACAGAGCGCACGTGCACATACCTCTGCTAGAAAACCTGTCAA
GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGACACTCATTCAGAAAGCTTTCTGTTTGGCAAAGTTGACCA
CTACTCTTACTCTAACAGCCACATGAATAGAAGAATTTCCTCAAGATGGACCCGGTAAATAACCAACAA
GGAAGCGAAACTGGGTGCGTTACTGAGTTGGGTTCTTAATCTGTTCTGGCCTGATTCCGCATGAGTATTAGG
GTGATCTAAAGAGTTGCTCACTGAAACGCCGTGCTGGGGCTGTGAAGCCAGCATGTTCAACCCTGGTGT
CAGCAGCCACGACAGCACCATGTGAGATGGCGAGGTGGCTGGACAGCACCAGCAGCGCATCCGGGGAAACCCA
GAAAAGGCTTCTTACACAGCAGCCTACTTCATCGGCCACAGACACCACCGCAGTTCTTAAAGGCTCTG
TGATCGGTGTTGCACTGTCATTGTGGAGAAGCTTTGGATCAGCATTTGTAAGAACACAAAATCAGGAAG
GTAATTGGTGTGGAAGAGGGATCTGGCTGAGGAACCTGCTTGTCAAACAGGGTGTCAAGGATTAAGGAAA
ACCTTCGTCTTAGGCTAACTGAAATGGTACTGAAATATGCTTTCTATGGGTCTGTTATTAAACCAAAATT
TACATCTAAATTGGTCAAGGATGTATTGATTATTGAAAGAAATTCTATTAAACTGTAATATATTGT
CATACAATGTTAAATAACCTATTGTTAAAAAGTTCAACTTAAGGTTAGAAGTCCAAGCTACTAGTGTAAAT
TGGAAAATATCAATAATTAAAGATTTTACCAAGGAATCCTCTCATGGAAGTTACTGTGATGTTCTTTCT
CACACAAGTTTAGCCTTTTCACAAGGAACCTACACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATTCAGTTAACGAAATGTTGAAATCAGTTGCTCTTCAAAAGAAACCTCTCAGGTTAGCTTGAAC
GCCTCTCCTGAGATGACTAGGAACAGTCTGTACCCAGAGGCCACCCAGAAGGCCCTCAGATGTACACACAGATG
CCAGTCAGCTCTGGGGTGCAGGCCAGGCCCCCCCTCTAGCTCAGTTGCTCTGCTCTGCCAGGAGGCCCT
GCCATCCTGGGGCTGGCAGTGGCTGTGCTCCAGTGGCTTACTCACGTGGCCCTTGCTCATCCAGCACAGC
TCTCAGGGGGCAGTCAGGGACACTGGTCTTCCAGTGTAGCGTCCCAGCTTGGCTCTGTAAACAGACCTCT
TTTGTTATGGATGGCTACAAAATAGGGCCCCAATGCTATTGTTTTTAAGTTGTTAAATTGTT
AAGATTGCTAAGGCCAAAGGAATTGCGAAATCAAGTCTGTCAGTACAATAACATTAAAAGAAAATGGAT
CCCACTGTTCTCTTGCACAGAGAACCCAGACGCCACAGGCTCTGCGCATTCAAAACAAACCATGAT
GGAGTGGCGGCCAGTCCAGCCTTTAAAGAACGTCAGGTGGAGCAGCCAGGTGAAAGGCTGGGGAGGAAAG
TGAAACGCCCTGAATCAAAGCAGTTCTAATTGACTTTAAATTTCATCCGGGGAGACACTGCTCCATT
TGTGGGGGACATTAGCAACATCACTCAGAACGCTGTGTTCTCAAGAGCAGGTGTCTCAGCCTCACATGCCCT
GCCGTGCTGGACTCAGGACTGAAGTGTGTAAGGAAGGAGCTGCTGAGAAGGACCACTCCACTGTGTGCCCTGGA
GAATGGCTCTCACTACTCACCTGTCTTCAGCTCCAGTGTCTTGGGTTTTTAACTTTGACAGCTTTTT
AATTGCATACATGAGACTGTGTTGACTTTTTAGTTATGTGAAACACTTGCCGAGGCCCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTAGTGTCCCTGGTGTCTGCATGGCATCCTGGATGCTTAGCATGCAAGTTC
CCTCCATCATTGCCACCTTGTAGAGAGGGATGGCTCCCCACCCCTAGCGTTGGGATTACGCTCCAGCCTCCT
TCTTGGTTGTCTAGTGATAGGGTAGCCTTATTGCCCTCTTCTTAACTCCCTAAACCTCTACACTAGTGCCTA
TGGGAACCAGGTCTGAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGGAAGTAGCTGCTATAACTGAGACTAGA
CGGAAAAGGAATACTCGTGTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT
GCCCTTGGATGGATGGTGTGCTGACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624
><subunit 1 of 1, 310 aa, 1 stop
><MW: 35020, pI: 7.90, NX(S/T): 3
MALRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD
PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLSKIWNVRRDSALYRCEVVARNDRK
EIDEIVIELTVQVKPVTPVCRVPKAHPVGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA
NPRFRNSSFHLNSETGTLVFTAHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG
VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRKSSFVI
```

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267