Research project : Hartree-Fock calculations in graphene and carbon nanotubes

Robert Benda

December 5, 2015

Contents

1	Density of states calculations		
	1.1	One dimensional lattice	3
	1.2	Two dimensional lattice	4
	1.3	Three dimensional lattice	7
	1.4	Regular lattice in higher dimension	10
		Graphene	
2	Taking into account Hartree-Fock potential		
	2.1	Free electrons in a box	14
	2.2	One dimensional lattice	21
3	Hov	w screening modulates the Hartree-Fock effect previously computed	28

1 Density of states calculations

1.1 One dimensional lattice

Calculs.

$$E_k = E_0 - t_0 - 2t\cos(ka), k \in \left[-\frac{\pi}{a}, \frac{\pi}{a} \right]$$
 (1)

Figure 1: Energy spectrum in a one-dimensional lattice under LCAO approximation

Figure 2: Density of energy states in a one-dimensional lattice under LCAO approximation

Figure 3: Number of energy states in a one-dimensional lattice under LCAO approximation

1.2 Two dimensional lattice

The energy spectrum of electrons in a two dimensional lattice in the tight-binding approximation is:

$$E(k_x, k_y) = E_0 - t_0 - 2t(\cos(k_x a) + \cos(k_y a)) \in [E_0 - t_0 - 4t, E_0 - t_0 + 4t]$$
(2)

where $\vec{k} = \begin{pmatrix} k_x \\ k_y \end{pmatrix}$ is the quasi-momentum of the electron.

Figure 4: Energy spectrum in a square lattice under LCAO approximation

Figure 5: Projection of the energy spectrum of a square lattice in the quasi-momentum space

We suppose Periodic Boundary Conditions, such that $k_x=\frac{2\pi m_1}{Na},\ k_y=\frac{2\pi m_2}{Na}$. The first Brillouin zone is described by $(k_x,k_y)\in[-\frac{\pi}{a},\frac{\pi}{a}]^2$.

The number of electronic possible states whose energy is smaller than or equal to E is:

$$N_{<}^{2D}(E) = \int \int dm_1 dm_2 = \frac{(Na)^2}{(2\pi)^2} \int \int_{\{\vec{k} \in 1.B.Z. | E_{\vec{k}} \le E\}} dk_x dk_y$$
 (3)

$$= \frac{N^2}{(2\pi)^2} \int \int_{\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in [-\pi, \pi[^2|\cos(x) + \cos(y) \ge \alpha(E)] \right\}} dx dy \tag{4}$$

where $\alpha(E) = \frac{E_0 - t_0 - E}{2t} \in [-2, 2]$. This expression of $N^{2D}_{<}(E)$ as the area of a specific region in the square $[-\pi, pi]^2$ of the plane is important. We will use it to compute some expressions in three dimensions.

$$N_{<}^{2D}(E) = \left(\frac{N}{2\pi}\right)^2 \int_{-\pi}^{\pi} \left(\int_{\{z|\cos(z) \ge \alpha(E) - \cos(y)\}} dz\right) dy \tag{5}$$

At that stage, as $\alpha(E) - \cos(y) = \alpha(E + 2t\cos(y))$, we could use for some values of E the expression of the number of states computed in a one dimensional lattice :

$$E + 2tcos(y) \in [E_0 - t_0 - 2t, E_0 - t_0 + 2t] \Rightarrow \int_{\{z \mid cos(z) \ge \alpha(E) - cos(y)\}} dz = \frac{2\pi}{N} N_{<}^{1D} (E + 2tcos(y))$$
 (6)

However it is not mandatory to use to the lower dimension calculations here:

$$N_{<}^{2D}(E) = (\frac{N}{2\pi})^2 \int_{-\pi}^{\pi} (2\pi 1_{\alpha(E)+1 \le \cos(y)} + 2Arccos(\alpha(E) - \cos(y)) 1_{\alpha(E)-1 \le \cos(y) \le \alpha(E)+1}) dy$$
 (7)

$$\alpha(E) \leq 0 \Rightarrow N_{<}^{2D}(E) = (\frac{N}{\pi})^2 [4\pi Arccos(\alpha(E)+1) + 2 * 2 \int_{Arccos(\alpha(E)+1)}^{\pi} Arccos(\alpha(E)-cos(y)) dy] \ \ (8)$$

because $y \longmapsto Arccos(\alpha(E) - cos(y))$ is an even function.

$$\alpha(E) \ge 0 \Rightarrow N_{<}^{2D}(E) = \frac{N^2}{(2\pi)^2} 2 \int_{-Arccos(\alpha(E)-1)}^{Arccos(\alpha(E)-1)} Arccos(\alpha(E) - cos(y)) dy$$
 (9)

Thanks to a change of variable z = cos(y), we finally obtain that:

$$E \ge E_0 - t_0 \Rightarrow \alpha(E) \le 0 \Rightarrow N_{<}^{2D}(E) = \frac{N^2}{\pi^2} (\pi Arccos(\alpha(E) + 1) + \int_{-1}^{\alpha(E) + 1} \frac{Arccos(\alpha(E) - z)}{\sqrt{1 - z^2}} dz)$$
 (10)

$$E \le E_0 - t_0 \Rightarrow \alpha(E) \ge 0 \Rightarrow N_<^{2D}(E) = \frac{N^2}{2\pi^2} \int_{\alpha(E)-1}^1 \frac{Arccos(\alpha(E) - z)}{\sqrt{1 - z^2}} dz \tag{11}$$

Figure 6: Number of energy states in a square lattice under LCAO approximation

We never see the infinite slope of $N_{\leq}^{2D}(E)$ in the neighbouring of $E_0 - t_0$, whatever close we look.

We notice that $N^{2D}_{<}(E)$ has a discontinuity in E_0-t_0 :

$$\lim_{E \longrightarrow (E_0 - t_0)^-} N_{<}^{2D}(E) = \frac{1}{2} \lim_{E \longrightarrow (E_0 - t_0)^+} N_{<}^{2D}(E) = \frac{N^2}{2\pi^2} \int_{-1}^1 \frac{Arccos(-z)}{\sqrt{1 - z^2}} dz \tag{12}$$

as $\alpha(E) \longrightarrow_{E \longrightarrow E_0 - t_0} 0$.

Moreover, the slope of $N_{<}^{2D}(E)$ has a discontinuity at E_0-t_0-4t :

$$\lim_{E \longrightarrow (E_0 - t_0 - 4t)^-} \left(\frac{dN_{<}^{2D}}{dE}\right)(E) = 0 \neq \lim_{E \longrightarrow (E_0 - t_0 - 4t)^+} \left(\frac{dN_{<}^{2D}}{dE}\right)(E) > 0$$
 (13)

Figure 7: Discontinuity of the slope of the number of energy states in a square lattice at the minimal energy $E_0 - t_0 - 4t$

Identically:

$$\lim_{E \longrightarrow (E_0 - t_0 + 4t)^+} \left(\frac{dN_{<}^{2D}}{dE}\right)(E) = 0 \neq \lim_{E \longrightarrow (E_0 - t_0 + 4t)^-} \left(\frac{dN_{<}^{2D}}{dE}\right)(E) > 0$$
 (14)

These discontinuities will be seen directly in the function $E \longmapsto D^{2D}(E)$.

By taking the derivatives of the previous expressions of $N^{2D}_{\leq}(E)$, we derive the density of energy states in a square lattice :

$$E > E_0 - t_0 \Rightarrow D^{2D}(E) = \frac{N^2}{2t\pi^2} \int_{-1}^{\frac{E_0 - t_0 + 2t - E}{2t}} \frac{dz}{\sqrt{(1 - z^2)(1 - (\frac{E_0 - t_0 - 2tz - E}{2t})^2)}}$$
(15)

$$E < E_0 - t_0 \Rightarrow D^{2D}(E) = \frac{N^2}{2t\pi^2} \int_{\frac{E_0 - t_0 - 2t - E}{2t}}^1 \frac{dz}{\sqrt{(1 - z^2)(1 - (\frac{E_0 - t_0 - 2tz - E}{2t})^2)}}$$
(16)

This function is a **Bessel function**. A computation of an equivalent of $D^{2D}(E)$ when $E \longrightarrow E_0 - t_0$ gives the following result:

$$D^{2D}(E_0 - t_0 + \epsilon) =_{\epsilon \to 0} O(\frac{1}{\sqrt{|\epsilon|}})$$
(17)

Thus,

$$N_{<}^{2D}(E_0 - t_0 + \epsilon) =_{\epsilon \to 0^+} N_{<}^{2D}((E_0 - t_0)^-) + K\sqrt{\epsilon}$$
(18)

where K is a constant.

Figure 8: Density of energy states in a square lattice under LCAO approximation

We can see easily in the expression of $D^{2D}(E)$ that $D^{2D}(E) \longrightarrow +\infty$ when $E \longrightarrow E_0 - t_0$. Indeed both expressions of $D^{2D}(E)$ (for $E \ge E_0 - t_0$ and $E \ge E_0 - t_0$) tend towards:

$$\frac{N^2}{2t\pi^2} \int_{-1}^{1} \frac{dz}{(1-z^2)} = +\infty \tag{19}$$

1.3 Three dimensional lattice

The energy spectrum of electrons in a three dimensional lattice in the tight-binding approximation is:

$$E(k_x, k_y, k_z) = E_0 - t_0 - 2t(\cos(k_x a) + \cos(k_y a) + \cos(k_z a))$$
(20)

We suppose Periodic Boundary Conditions, such that $k_x=\frac{2\pi m_1}{Na},\ k_y=\frac{2\pi m_2}{Na}$ and $k_z=\frac{2\pi m_3}{Na}$. The first Brillouin zone is described by $(k_x,k_y,k_z)\in[-\frac{\pi}{a},\frac{\pi}{a}]^3$.

The number of electronic possible states whose energy is smaller or equal to E is:

$$N_{<}^{3D}(E) = \int \int \int dm_1 dm_2 dm_3 = \frac{(Na)^3}{(2\pi)^3} \int \int \int_{\{\vec{k} \in 1.B.Z. | E_{\vec{k}} \le E\}} dk_x dk_y dk_z$$
 (21)

$$= \left(\frac{N}{2\pi}\right)^3 \int \int \int_{\left\{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in [-\pi, \pi[^3|\cos(x) + \cos(y) + \cos(z) \ge \alpha(E)\}\right\}} dx dy dz \tag{22}$$

where $\alpha(E) = \frac{E_0 - t_0 - E}{2t} \in [-3, 3].$

$$N_{<}^{3D}(E) = (\frac{N}{2\pi})^3 \int_{-\pi}^{\pi} (\int \int_{\cos(y) + \cos(z) \ge \alpha(E) - \cos(x)} dy dz) dx$$
 (23)

Let denote:

$$I_x = \int \int_{\cos(y) + \cos(z) \ge \alpha(E) - \cos(x)} dy dz$$
 (24)

We notice that

$$\alpha(E) - \cos(x) = \frac{E_0 - t_0 - (E + 2t\cos(x))}{2t} = \alpha(E + 2t\cos(x))$$
 (25)

Let's now compute I_x according to the values of E and x:

$$\alpha(E) - \cos(x) \ge 2 \Rightarrow I_x = 0 \tag{26}$$

$$\alpha(E) - \cos(x) \le -2 \Rightarrow I_x = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dy dz = (2\pi)^2$$

$$\tag{27}$$

If $\alpha(E) - cos(x) \in [-2, 2]$, it means that $\alpha(E + 2tcos(x)) \in [-2, 2]$, which implies that E + 2tcos(x) is in the interval $[E_0 - t_0 - 4t, E_0 - t_0 + 4t]$. We can therefore use the computations of the two-dimensional case to get the results in higher dimension! $N^{2D}_{<}(.)$ is indeed defined on the interval $[E_0 - t_0 - 4t, E_0 - t_0 + 4t]$:

$$\alpha(E) - \cos(x) \in [-2, 2] \Rightarrow I_x = \int \int_{\cos(y) + \cos(z) \ge \alpha(E + 2t\cos(x))} dy dz = (\frac{2\pi}{N})^2 N_{<}^{2D} (E + 2t\cos(x))$$
 (28)

To sum up these three distinctions :

$$N_{<}^{3D}(E) = (\frac{N}{2\pi})^3 \left[\int_{-\pi}^{\pi} (2\pi)^2 1_{\cos(x) \ge \alpha(E) + 2} dx + \int_{-\pi}^{\pi} (\frac{2\pi}{N})^2 N_{<}^{2D}(E + 2t\cos(x)) 1_{-2 \le \alpha(E) - \cos(x) \le 2} dx \right]$$
(29)

$$\alpha(E) \ge -1 \Rightarrow \int_{-\pi}^{\pi} 1_{\cos(x) \ge \alpha(E) + 2} dx = 0 \tag{30}$$

$$\alpha(E) \le -1 \Rightarrow \alpha(E) + 2 \in [-1, 1] \Rightarrow \int_{-\pi}^{\pi} 1_{cos(x) \ge cos(Arccos(\alpha(E) + 2))} dx = 2Arccos(\alpha(E) + 2)$$
 (31)

Therefore

$$N_{<}^{3D}(E) = 2\frac{N^3}{2\pi} 1_{\alpha(E) \le -1} Arccos(\alpha(E) + 2) + \frac{N}{2\pi} \int_{-\pi}^{\pi} N_{<}^{2D}(E + 2tcos(x)) 1_{-2 \le \alpha(E) - cos(x) \le 2} dx \qquad (32)$$

Let's precise the second term denoted by T(E):

$$\alpha(E) \in [-1, 1] \Rightarrow \forall x \in [-\pi, \pi], 1_{-2 < \alpha(E) - \cos(x) < 2} = 1$$
 (33)

$$\alpha(E) \leq -1 \Rightarrow \forall x \in [-\pi, \pi], 1_{-2 \leq \alpha(E) - cos(x) \leq 2} = -2 \leq \alpha(E) - cos(x) = 1_{cos(x) \leq cos(Arccos(\alpha(E) + 2))}$$
(34)

$$\alpha(E) \ge 1 \Rightarrow \forall x \in [-\pi, \pi], 1_{-2 \le \alpha(E) - \cos(x) \le 2} = 1_{\alpha(E) \le \cos(x) + 2} = 1_{\cos(\operatorname{Arccos}(\alpha(E) - 2)) \le \cos(x)}$$
(35)

which gives for this second term:

$$\alpha(E) \in [-1, 1] \Rightarrow T(E) = \frac{N}{2\pi} \int_{-\pi}^{\pi} N_{<}^{2D}(E + 2t\cos(x))dx$$
 (36)

$$\alpha(E) \le -1 \Rightarrow T(E) = \frac{N}{2\pi} 2 \int_{Arccos(\alpha(E)+2)}^{\pi} N_{<}^{2D}(E + 2tcos(x)) dx \tag{37}$$

$$\alpha(E) \ge 1 \Rightarrow T(E) = \frac{N}{2\pi} \int_{-Arccos(\alpha(E)-2)}^{Arccos(\alpha(E)-2)} N_{<}^{2D}(E + 2tcos(x))dx \tag{38}$$

To conclude,

$$\alpha(E) \le -1 \Rightarrow N_{<}^{3D}(E) = \frac{N^3}{\pi} Arccos(\alpha(E) + 2) + \frac{N}{\pi} \int_{Arccos(\alpha(E) + 2)}^{\pi} N_{<}^{2D}(E + 2tcos(x)) dx$$
 (39)

$$\alpha(E) \in [-1, 1] \Rightarrow N_{<}^{3D}(E) = \frac{N}{\pi} \int_{0}^{\pi} N_{<}^{2D}(E + 2tcos(x))dx$$
 (40)

$$= \frac{N}{\pi} \left(\int_{0}^{Arccos(\alpha(E))} N_{<}^{2D}(E + 2tcos(x))dx + \int_{Arccos(\alpha(E))}^{\pi} N_{<}^{2D}(E + 2tcos(x))dx \right)$$
(41)

$$\alpha(E) \ge 1 \Rightarrow N_{<}^{3D}(E) = \frac{N}{\pi} \int_{0}^{Arccos(\alpha(E)-2)} N_{<}^{2D}(E + 2tcos(x))dx \tag{42}$$

The order of magnitude of $N^{3D}_{<}(E)$ is N^3 as we have seen that $N^{2D}_{<}(E)$ is proportional to N^2 .

Figure 9: Number of energy states in a three dimensional lattice

It is worth to notice that the slope of $N_{<}^{3D}(E)$ is now continuous at $E_0 - t_0 - 6t$ and $E_0 - t_0 + 6t$, contrary to the two dimensional case.

Figure 10: Continuity of slope of the number of energy states in a three dimensional lattice at the minimal energy $E_0 - t_0 - 6t$

We can derivate these formuli for $E > E_0 - t_0 + 2t$ and $E < E_0 - t_0 - 2t$, and using that

$$N_{<}^{2D}(E_0 - t_0 + 4t) = N^2 (43)$$

and

$$N_{<}^{2D}(E_0 - t_0 - 4t) = 0 (44)$$

we find the following:

 $\forall E \ge E_0 - t_0 + 2t,$

$$D^{3D}(E) = \frac{N}{\pi} \int_{Arccos(\frac{E_0 - t_0 + 4t - E}{2t})}^{\pi} D^{2D}(E + 2tcos(x))dx$$
 (45)

 $\forall E \le E_0 - t_0 - 2t$

$$D^{3D}(E) = \frac{N}{\pi} \int_{0}^{Arccos(\frac{E_0 - t_0 - 4t - E}{2t})} D^{2D}(E + 2tcos(x))dx$$
 (46)

For $E \in]E_0 - t_0 - 2t, E_0 - t_0 + 2t[$, if we take formally the derivative of $\int_0^{Arccos(\alpha(E))^-} N_<^{2D}(E + 2tcos(x))dx$ and $\int_{Arccos(\alpha(E))^+}^{\pi} N_<^{2D}(E + 2tcos(x))dx$, we obtain :

$$D^{3D}(E) = \frac{N}{\pi} \left[\int_0^{Arccos(\frac{E_0 - t_0 - E}{2t})} D^{2D}(E + 2tcos(x))dx + \int_{Arccos(\frac{E_0 - t_0 - E}{2t})}^{\pi} D^{2D}(E + 2tcos(x))dx \right]$$
(47)

$$+\frac{N}{2\pi t} \frac{\lim_{E \to (E_0 - t_0)} N_{<}^{2D}(E) - \lim_{E \to (E_0 - t_0)} N_{<}^{2D}(E)}{\sqrt{1 - \alpha(E)^2}}$$
(48)

The problem is that $N^{2D}_{<}(E+2tcos(x))$ is not continuous at $x=Arccos(\alpha(E))$ because $N^{2D}_{<}(.)$ is not continuous at E_0-t_0 . We cut the integral because D^{2D} goes towards $+\infty$ at E_0-t_0 .

Formally, we obtain:

$$E \in]E_0 - t_0 - 2t, E_0 - t_0 + 2t[\Rightarrow D^{3D}(E) = \frac{N}{\pi} \int_0^{\pi} D^{2D}(E + 2t\cos(x)) dx + \frac{N}{2\pi t} \frac{\lim_{E \to (E_0 - t_0))^-} N_{<}^{2D}(E)}{\sqrt{1 - \alpha(E)^2}}$$

$$\tag{49}$$

These gives the following trend (this time the density is continuous):

Figure 11: Density of states in a three dimensional lattice

Let's compare this result with the density obtained with a probabilistic method. It consists of computing the energy for some random quasi-momentum spaces values.

Figure 12: Density of states in a three dimensional lattice

1.4 Regular lattice in higher dimension

It is interesting to look at the evolution of the density of states in higher dimensions and infinite dimension. Dimensions account for the number of closest neighbours, therefore increasing the dimension should be a way to describe real crystals better. Infinite dimension appears to give conclusions closer to the real three dimensional world than two-dimensional calculations.

To compute the density of states in dimension d, we could carry out the same trick as in 3D, using the results of D.O.S. calculations in lower dimension d-1. However a probabilistic method like the Monte-Carlo method is much simpler. Let's briefly explain how it works.

The energy spectrum in dimension d is given by :

$$E(k_1, k_2, ..., k_d) = E_0 - t_0 - 2t \sum_{i=1}^{d} \cos(k_i a)$$
(50)

the First Brillouin Zone being $\left[\frac{-\pi}{a}, \frac{\pi}{a}\right]^d$.

We consider random variables $K_1, K_2, ..., K_d$, each uniform over $[-\frac{\pi}{a}, \frac{\pi}{a}]$. We choose a number n of random selections of $(K_1, K_2, ..., K_d) \in [-\frac{\pi}{a}, \frac{\pi}{a}]^d$. Thus the random variable giving the energy, $E(K_1, K_2, ..., K_d)$, is estimated n times.

We also choose the pace of discretization p of the possible interval for the energy, namely $[E_0 - t_0 - 2td, E_0 - t_0 + 2td]$, which is cut into p small intervals.

The distribution of the energy after the n random selections provides histograms telling how many times the random energy estimated was in the interval $[E_0 - t_0 + k\frac{4td}{p}, E_0 - t_0 + (k+1)\frac{4td}{p}]$ for $k \in [0, p-1]$. This histogram is therefore an approximation of the density of states. It would be interesting to be aware of the influence of the two discretizations, represented by n and p, on the precision of the density function computed. Intuitively, n is the most important parameter if p is large enough. (but p does not need to be too big)

Having fixed $E_0 = 13eV$, $t_0 = 0.5eV$, t = 2eV and $a = 10^{-10}m$, we obtain the following results:

Figure 13: Density of states in a four dimensional lattice: n=1000000, p=100

Figure 14: Density of states in a five dimensional lattice: n=1000000, p=100

Figure 15: Density of states in a ten dimensional lattice: n=1000000, p=100

Each density is plotted over the whole possible interval for the energy: $[E_0 - t_0 - 2td, E_0 - t_0 + 2td]$.

The density of states looks increasingly like a gaussian when the dimension d increases. The standard deviation σ appears to increase in absolute value as the dimension increases, but the ratio $\frac{\sigma}{4dt}$ of the deviation to the width of the total interval appears to diminish. Let's try to justify this behaviour when d increases.

First, the mean value of the random variable E is $E_0 - t_0$:

$$<-2t\sum_{\nu=1}^{d}\cos(K_{\nu}a)>=0$$
 (51)

because

$$\int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \cos(k_{\nu}a)dk_{\nu} = 0 \tag{52}$$

and the random variables $K_1, ..., K_d$ are independent.

Then, the standard deviation σ of the distribution of the energy in a d-dimensional lattice is given by

$$\sigma^{2} = \langle E^{2} \rangle - \langle E \rangle^{2} = \langle E^{2} \rangle = 4t^{2} \sum_{\nu=1}^{d} \sum_{\nu'=1}^{d} \frac{1}{\left(\frac{2\pi}{a}\right)^{d}} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \dots \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \cos(k_{\nu}a)\cos(k_{\nu'}a)dk_{1} \dots dk_{d}$$
 (53)

Given that

$$\frac{1}{(\frac{2\pi}{a})^d} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \dots \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \cos(k_{\nu}a)\cos(k_{\nu'}a)dk_1 \dots dk_d = \frac{1}{(\frac{2\pi}{a})^2} \int_{-\frac{\pi}{a}}^{\frac{\pi}{a}} \cos^2(ka)dk = \frac{1}{2}$$
 (54)

if $\nu = \nu'$, and 0 otherwise, we finally find:

$$\sigma = \sqrt{2dt} \tag{55}$$

In fact the hopping in dimension d should be slightly modified in the following way :

$$t = \frac{t}{\sqrt{d}} \tag{56}$$

Otherwise, as the standard variation becomes infinite when $d \to \infty$, infinite energies could become possible which isn't possible. Under this normalization of the hopping:

$$\sigma = \sqrt{2} \tag{57}$$

For any dimension, the distribution of E is symmetric relatively to $E_0 - t_0$.

As $(K_{\nu})_{\nu \in [1,d]}$ is a set of indepedent identically distributed random variables, it is also the case for $(X_{\nu})_{\nu \in [1,d]} = ^{def} (cos(K_{\nu}a))_{\nu \in [1,d]}$. The variance of X_{ν} is $\frac{1}{2}$ and its means 0. Therefore according to the Central Limit Theorem, $\frac{\sum_{\nu=1}^{d} cos(K_{\nu}a)}{d}$ tends to a normally distributed variable when $d \to \infty$. Hence:

$$E_{K_1,...,K_d} \sim_{d\gg 1} -2\sqrt{d} * N(0,1/2)$$
 (58)

1.5 Graphene

$$E_{k_x,k_y}^- = E_0 - t_0 - t\sqrt{3 + 2(2\cos(\frac{3a}{2}k_x)\cos(\frac{\sqrt{3}a}{2}k_y) + \cos(\sqrt{3}ak_y))}$$
 (59)

$$E_{k_x,k_y}^+ = E_0 - t_0 + t\sqrt{3 + 2(2\cos(\frac{3a}{2}k_x)\cos(\frac{\sqrt{3}a}{2}k_y) + \cos(\sqrt{3}ak_y))}$$
 (60)

Figure 16: Energy spectrum of graphene under tight-binding approximation

Figure 17: Projection of the energy spectrum of graphene in the quasi-momentum space

Figure 18: Energy spectrum of graphene binding states under LCAO approximation

Figure 19: Density of states in graphene computed with the Monte-Carlo method

Van Hove singularities at $E_0 - t_0 - t$ and $E_0 - t_0 + t$ (points selles) because of the suddenly growing number of states.

2 Taking into account Hartree-Fock potential

2.1 Free electrons in a box

Let's consider free electrons in a box of length L and volume $V = L^3$. The number of electrons is denoted as N. The N electrons occupy N different quantum numbers α_i , each including both spin and momentum \vec{k}_i :

$$\alpha_i = (\vec{k}_i, \sigma_i) \tag{61}$$

 σ_i is the spin of the i^{th} electron.

The energy spectrum of the electrons when we neglect the interactions between them is:

$$E_{\vec{k}} = \frac{h^2 k^2}{2m} \tag{62}$$

corresponding to the hamiltonian $H = \frac{p^2}{2m}$

Let's denote

$$e^2 = \frac{q_e^2}{4\pi\epsilon_0} = 2.3.10^{-28} SI \tag{63}$$

where q_e is the elementary charge of an electron.

If we consider an homogeneous ion potential $v_0(\vec{r})$, Hartree's potential and $v_0(\vec{r})$ exactly compensate each other:

$$v_0(\vec{r}) + V_{Hartree}(\vec{r}) = \int d\vec{r'} \frac{\rho^+(\vec{r'}) \cdot (-e^2) + \rho^-(\vec{r'}) \cdot e^2}{|\vec{r} - \vec{r'}|} = 0$$
 (64)

The wave function of an electron with quantum number α_n is

$$\psi_{\vec{k_n}}(\vec{r})|\sigma_n\rangle = \frac{1}{\sqrt{V}}e^{i\vec{k_n}\cdot\vec{r}}|\sigma_n\rangle \tag{65}$$

The Fock term applied on $\psi_{\vec{k_n}}(\vec{r})$, knowing the waves functions of the other occupied states, is:

$$(H_{Fock}\psi_{\vec{k_n}})(\vec{r}) = -\sum_{j} \delta_{\sigma_j,\sigma_n} e^2 \int \frac{\psi_{\vec{k_j}}^*(\vec{r'})\psi_{\vec{k_n}}(\vec{r'})}{|\vec{r} - \vec{r'}|} \psi_{\vec{k_j}}(\vec{r})$$
(66)

where the sum on j is a sum **over all occupied states**. This will turn out to be important when we will look at the correction of the energy due to Fock's term for occupied or non-occupied states. This term

comes from Pauli principle and Fermi-Dirac statistics: it favors energetically situations with aligned spins of the electrons, because having the same spin implies that the two electrons won't be too close one to each other (thanks to Pauli principle).

As
$$\forall j$$
, $\psi_{\vec{k_j}}(\vec{r}) = e^{i\vec{k_j}\cdot\vec{r}}$:

$$(H_{Fock}\psi_{\vec{k_n}})(\vec{r}) = -\sum_{j} \delta_{\sigma_j,\sigma_n} e^2 \int \frac{e^{i(\vec{k_n} - \vec{k_j}) \cdot (\vec{r'} - \vec{r})}}{|\vec{r'} - \vec{r}|} \frac{1}{V} \frac{1}{\sqrt{V}} e^{i\vec{k_n} \cdot \vec{r}} d\vec{r'}$$
(67)

$$= -\frac{e^2}{V} \frac{V}{(2\pi)^3} \int_{|\vec{k}| < k_F} \left(\int d\vec{u} \frac{e^{i(\vec{k_n} - \vec{k_j}) \cdot \vec{u}}}{|\vec{u}|} \right) d\vec{k} \psi_{\vec{k_n}}(\vec{r})$$
 (68)

where the integral deals with all vectors \vec{k} which are occupied by one of the electron, which must have, on top of that, the same spin as the n^{th} electron. Switching from the discrete sum over j to the integral over \vec{k} is allowed insofar as the number of occupied states is big enough. (so that the value of \vec{k}_j vectors are very close one to each other) We notice that the self-interaction term doesn't count in the integral as the Lebesgue-measure of a point in three dimensions is 0.

The following term:

$$\int d\vec{u} \frac{e^{i(\vec{k_n} - \vec{k_j}) \cdot \vec{u}}}{|\vec{u}|} \tag{69}$$

turns out to be the Fourier transform of the funtion $\vec{u} \longmapsto \frac{1}{|\vec{u}|}$. Hence :

$$\int d\vec{u} \frac{e^{i(\vec{k_n} - \vec{k_j}) \cdot \vec{u}}}{|\vec{u}|} = \frac{4\pi}{|\vec{k_n} - \vec{k}|^2}$$
(70)

We conclude that

$$(H_{Fock}\psi_{\vec{k_n}})(\vec{r}) = -\frac{4\pi e^2}{(2\pi)^3} \int_{|\vec{k}| < k_F} \frac{d\vec{k}}{|\vec{k_n} - \vec{k}|^2}$$
(71)

The energy of this electron now is:

$$\frac{h^2 k_n^2}{2m} - \frac{4\pi e^2}{(2\pi)^3} \int_{|\vec{k}| < k_F} \frac{d\vec{k}}{|\vec{k_n} - \vec{k}|^2} =^{def} \frac{h^2 k_n^2}{2m} - \Delta(\vec{k_n})$$
 (72)

The integral deals with all \vec{k} vectors such that $|\vec{k}| < k_F$ only if the electronic states are occupied up to the Fermi energy. For instance in the half-filled case, the integral will adress less \vec{k} states $(\vec{k} : |\vec{k}| < \alpha k_F)$ where $\alpha < 1$.

Let's focus on this correction $\Delta(\vec{k})$ to the energy in the free electrons case :

$$\int \int \int_{|\vec{k'}| < k_F} \frac{d\vec{k'}}{|\vec{k} - \vec{k'}|^2} = \int \int \int_{|\vec{v} - \vec{k}| < k_F} \frac{d\vec{v}}{|\vec{v}|^2}$$
 (73)

This integral appears difficult to compute in the general situation where the three components of \vec{k} are different from 0. The expression in spherical coordinates is:

$$\Delta(\vec{k}) = \frac{4\pi e^2}{(2\pi)^3} \int_0^{k_F} \int_0^{\pi} \int_0^{2\pi} \frac{r'^2 sin(\theta')}{k^2 + r'^2 - 2r'[sin(\theta')(k_x cos(\phi') + k_y sin(\phi')) + k_z cos(\theta')]} dr' d\theta' d\phi' \qquad (74)$$

Computation in the simplified case $\vec{k} = k\vec{e_z}$:

In this case, 74 becomes:

$$\Delta(\vec{k}) = \frac{4\pi e^2}{(2\pi)^3} 2\pi \int_0^{k_F} \int_0^{\pi} \int_0^{2\pi} \frac{r'^2 sin(\theta')}{k^2 + r'^2 - 2r'kcos(\theta')} dr' d\theta' d\phi' = \frac{4\pi e^2}{(2\pi)^3} 2\pi \int_0^{k_F} r^2 \left(\int_0^{\pi} \frac{sin(\theta)}{k^2 + r^2 - 2rkcos(\theta)} d\theta \right) dr$$

$$\Delta(\vec{k}) = \frac{4\pi e^2}{(2\pi)^3} \int_0^{k_F} \int_0^{\pi} r^2 \frac{1}{2rk} [ln|k^2 + r^2 - 2rkcos(\theta)|]_0^{\pi} dr' = \frac{4\pi e^2}{(2\pi)^3} \frac{2\pi}{k} \int_0^{k_F} r \ln\left| \frac{k + r}{k - r} \right| dr$$
(76)

Now, we notice that:

$$\frac{d}{dr}((k^2 - r^2)\ln|\frac{k+r}{k-r}|) = -2r\ln|\frac{k+r}{k-r}| + 2k \tag{77}$$

therefore

$$\frac{d}{dr}(-\frac{1}{2}[(k^2 - r^2)\ln|\frac{k+r}{k-r}| - 2kr]) = r\ln|\frac{k+r}{k-r}|$$
 (78)

Using this primitive in 76, we finally find:

$$\Delta(\vec{k}) = \frac{4\pi e^2}{(2\pi)^3} \left(-\frac{\pi}{k} k_F^2 \left(\left(\frac{k}{k_F}\right)^2 - 1\right) \ln\left|\frac{1 + \frac{k}{k_F}}{1 - \frac{k}{k_F}}\right| + 2\pi k_F\right)$$
 (79)

$$\Longrightarrow \Delta(\vec{k}) = \frac{2e^2}{\pi} k_F \left(\frac{1}{2} + \frac{1 - (\frac{k}{k_F})^2}{4\frac{k}{k_F}} ln \left| \frac{1 + \frac{k}{k_F}}{1 - \frac{k}{k_F}} \right| \right) = ^{def} \frac{2e^2}{\pi} k_F G(x)$$
 (80)

where $x = \frac{k}{k_F}$ and

$$G(x) = \frac{1}{2} + \frac{1 - x^2}{4x} \ln \left| \frac{1 + x}{1 - x} \right| \tag{81}$$

Computation using Monte-Carlo techniques:

The computation of the integral $\Delta(\vec{k})$ with a Monte-Carlo method gives the following result:

Figure 20: Correction the energy of free electrons estimated by Hartree-Fock's term for $k_F = 10^8 m^{-1}$, computed with a Monte-Carlo approach: n=1000000

The method consists to use random variables K_1, K_2, K_3 uniform over the intervals $[k_x - k_F, k_x + k_F]$, $[k_y - k_F, k_y + k_F]$ and $[k_z - k_F, k_z + k_F]$ respectively. Thus (K_1, K_2, K_3) is a uniform random variable over the cube centered in \vec{k} and of side length k_F . The volume of this cube is therefore $(2k_F)^3$. Let's denote the integrand $f(\vec{k'}) = \frac{1}{|\vec{k'} - \vec{k}|^2}$ and n the number of such independent random variables $\vec{K}^i = ^{def}(K_1^i, K_2^i, K_3^i)$. Monte-Carlo techniques imply that

$$V_n = \stackrel{def}{=} \frac{1}{n} \sum_{i=1}^n 1_{\vec{K}^i \in B(\vec{k}, k_F)} f(\vec{K}^i) \longrightarrow_{n \to \infty}^{p.s} E(1_{\vec{K} \in B(\vec{k}, k_F)} f(\vec{K}))$$
(82)

where:

$$E(1_{\vec{K}\in B(\vec{k},k_F)}f(\vec{K})) = \frac{1}{(2k_F)^3} \int_{-d}^{d} \int_{-d}^{d} \int_{-d}^{d} 1_{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in B(\vec{k},k_F)} f(x,y,z) dx dy dz$$
 (83)

because the density of the uniform random variable \vec{K} is constant and equal to $\frac{1}{(2k_F)^3}$.

Therefore

$$\int \int \int_{\vec{k'} \in B(\vec{k}, k_F)} f(\vec{k'}) = \int \int \int_{\vec{k'} \in B(\vec{k}, k_F)} \frac{1}{|\vec{k'} - \vec{k}|^2} = (2k_F)^3 lim_{n \to \infty} V_n$$
 (84)

The results we obtain are shown above in the plot 2.1. The plot of the energy corrected by Hartree-Fock's term and estimated thanks to a Monte-Carlo approach is smoother for $k > k_F$ than for $k < k_F$. Indeed when \vec{k} becomes greater than k_F in norm, there isn't singularity anymore in the integral, as $|\vec{k'} - \vec{k}| > 0$ for every $\vec{k'} \in B(\vec{k}, k_F)$.

Let's now compare these results with the exact expression of this triple integral, found by Ashcroft and Mermin :

$$\Delta(\vec{k}) = \frac{2e^2}{\pi} k_F G(\frac{k}{k_F}) \tag{85}$$

where G(.) is the following function:

$$G(x) = \frac{1}{2} + \frac{1 - x^2}{4x} \ln\left|\frac{1 + x}{1 - x}\right| \tag{86}$$

The graph of the function $k \longmapsto G(\frac{k}{k_F})$ is given below $(k_F \text{ being fixed at } 10^8 m^{-1})$:

Figure 21: Function G

As G(.) takes its values in [0,1], the correction to the energy of free electrons will be noticed if e^2k_F and $\frac{h^2k^2}{2m}$ have the same order of magnitude (let's say 1 eV for instance). We find that:

$$e^2 k_F \sim \frac{h^2 k_F^2}{2m} \Longleftrightarrow k_F \sim 10^8 m^{-1} \tag{87}$$

We will therefore choose a Fermi vector of norm close to $10^8 \ m^{-1}$ to plot the energies. This is associated with a Fermi velocity of $10^4 \ m/s$ approximately.

Let's plot on a same graph the energy of free independent electrons and the energy computed when taking int account Fock's term, namely :

$$E_{corrige}(k) = \frac{h^2 k^2}{2m} - \frac{q_e^2}{2\pi^2 \epsilon_0} k_F G(\frac{k}{k_F})$$
 (88)

Figure 22: Correction of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^8 \ m^{-1}$

When k_F increases, the correction is slighter:

Figure 23: Correction of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^9 \ m^{-1}$

On the contrary when k_F decreases, the variation of the energy of free independent electrons becomes negligible in comparison with the variation of the Hartree-Fock energy.

Figure 24: Correction of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^7 \ m^{-1}$

The behaviour at $k = k_F$ seems peculiar, let's zoom in on it :

Figure 25: Correction of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^8 \ m^{-1}$, for k close to k_F

The derivative of the energy computed with Hartree-Fock's method is infinite at $k = k_F$. It tends logarithmically towards ∞ : when we zoom ten times more on the neighboourhood of k_F , the maximal value increases only twofold, which is typical of a logarithmic divergence:

Figure 26: Derivative of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^8 \ m^{-1}$

Therefore the Fermi velocity is infinite at $k = k_F$, which is not physical. This will be corrected by taking screening into account.

The two-fold derivative of this energy is also discontinuous, which is seen by the concavity which suddenly changes at $k = k_F$ (convex for $k < k_F$ and concave for $k > k_F$).

Using that G(0) = 1 and $G(1) = \frac{1}{2}$, we find that :

$$E_{corrige}(k=0) = -\frac{q_e^2}{2\pi^2 \epsilon_0} k_F = {}^{def} A$$
 (89)

and

$$E_{corrige}(k=k_F) = \frac{h^2 k_F^2}{2m} - \frac{q_e^2}{4\pi^2 \epsilon_0} k_F = \frac{h^2 k_F^2}{2m} - \frac{A}{2}$$
(90)

The band width, namely the difference between the highest and the lowest energy of occupied states is in the filled case :

$$E_{corrige}(k_F) - E_{corrige}(0) = \frac{h^2 k_F^2}{2m} + \frac{q_e^2}{4\pi^2 \epsilon_0} k_F > \frac{h^2 k_F^2}{2m} = E_{ind.electrons}(k_F) - E_{ind.electrons}(0)$$
 (91)

We have Bandwidth(Hartree-Fock)=Bandwidth(independent electrons) + $\frac{A}{2}$.

Therefore the Hartree-Fock's term makes the band-width increase compared with independent electrons, which is seen below :

Figure 27: Correction of the energy (J) of free electrons by taking into account Hartree-Fock's term for $k_F = 10^8 \ m^{-1}$

Some limit computations give:

$$G(\frac{k}{k_F}) - \frac{1}{2} \sim_{k \to k_F} - \frac{2}{k_F} (k_F - k) \ln(|k_F - k|)$$
(92)

Besides, computing the derivative of G(.) and then the equivalent gives the following:

$$G'(x) \sim -\frac{1}{2}\ln(1-x) \Rightarrow \left(\frac{d\Delta}{dk}\right)(k) \sim_{k \to k_F} -\frac{q_e^2}{4\pi^2 \epsilon_0} \ln|k_F - k| \to \infty$$
(93)

We recognize the logarithmic divergence we had guessed by zooming on the peak of the derivative of $\Delta(k)$. Such divergence aren't easy to see in plots.

AS we have previously seen, at a fixed k, the correction is bigger when k_F decreases (remaining greater than k):

Figure 28: Hartree-Fock energy at $k = k_0$ fixed and variable k_F

Remark How do we calculate the Fermi energy? The number of electrons in the system sets the Fermi vector $\vec{k_F}$. It is unchanged for the same system of electrons where we now consider Hartree-Fock's term. Indeed there are the same number of electrons and the same possible values for the quasi-momentum \vec{k} , quantized because of Periodic Boundary Conditions. The energy levels are filled by increasing energy, and the energy is an increasing funtion of $k = ||\vec{k}||$. The Fermi level has then the same quasi-momentum $\vec{k_F}$ but a different energy level.

The biggest energy of an occupied electronic state previously was $\frac{h^2 k_F^2}{2m}$, and is now:

$$max_{\vec{k'}occupied}(\frac{h^2k'^2}{2m} - \frac{4\pi e^2}{(2\pi)^3} \int_{|\vec{k}| < k'} \frac{d\vec{k}}{|\vec{k'} - \vec{k}|^2}) = \frac{h^2k_F^2}{2m} - \frac{4\pi e^2}{(2\pi)^3} \int_{|\vec{k}| < k_F} \frac{d\vec{k}}{|\vec{k_F} - \vec{k}|^2}$$
(94)

2.2 One dimensional lattice

Let k_n be a **possible** quantum state of an electron in this system of N equally spaced atoms. We will make the distinction if the state is occupied or not.

We denote the atomic orbital functions as $\psi_n(.)$. The energy spectrum computed within the tight-binding approximation is

$$E_k = E_0 - t_0 - 2t\cos(ka) (95)$$

where $k = \frac{2\pi m}{Na}$, $m \in \mathbb{Z}$.

$$(H_{Fock}\psi_{\vec{k_n}})(\vec{r}) = -\sum_{i} \delta_{\sigma_j,\sigma_n} e^2 \int d\vec{r} \frac{\psi_{\vec{k_j}}^*(\vec{r'})\psi_{\vec{k_n}}(\vec{r'})}{|\vec{r} - \vec{r'}|} \psi_{\vec{k_j}}(\vec{r})$$
(96)

where the sum on j is a sum over all occupied states.

$$\forall j, \psi_{k_j}(r) = \frac{1}{\sqrt{N}} \sum_{n} e^{ik_j n a} \psi_n(r) \tag{97}$$

Hence:

$$\psi_{k_j}^*(r')\psi_{k_n}(r') = \frac{1}{N} \sum_n e^{i(k_n - k_j)na} |\psi_n(r')|^2$$
(98)

because $\psi_{n_1}^*(r')\psi_{n_2}(r')=0$ if $n_1\neq n_2$ as we suppose that atomic orbitals don't overlap.

$$(H_{Fock}\psi_{k_n})(r) = -\sum_{j} \delta_{\sigma_j,\sigma_n} \left[\frac{e^2}{N} \sum_{m=1}^{N} \left(\int d\vec{r'} \frac{|\psi_m(r')|^2}{|\vec{r} - \vec{r'}|} \right) e^{i(k_n - k_j)ma} \right] \psi_{k_j}(r)$$
(99)

Let denote:

$$\theta_{n,j}(r) = \frac{e^2}{N} \sum_{m=1}^{N} \left(\int d\vec{r'} \frac{|\psi_m(r')|^2}{|\vec{r} - \vec{r'}|} \right) e^{i(k_n - k_j)ma}$$
(100)

so that:

$$(H_{Fock}\psi_{k_n})(r) = -\sum_{j} \delta_{\sigma_j,\sigma_n} \theta_{n,j}(r) \psi_{k_j}(r)$$
(101)

If the state k_n is indeed occupied, the state labelled by the index n is reached in the sum over j. We thus distinguish two terms in the previous expression: the self-interaction (for j = n) term and the rest:

$$-\frac{e^2}{N} \int d\vec{r'} \frac{(\sum_{m=1}^{N} |\psi_m(r')|^2)}{|\vec{r} - \vec{r'}|} \psi_{k_n}(r) - \sum_{i,j \neq n} \delta_{\sigma_j,\sigma_n} \left[\frac{e^2}{N} \sum_{m=1}^{N} \left(\int d\vec{r'} \frac{|\psi_m(r')|^2}{|\vec{r} - \vec{r'}|}\right) e^{i(k_n - k_j)ma}\right] \psi_{k_j}(r)$$
(102)

$$(H_{auto-interaction}^{Fock}\psi_{k_n})(r) = -\frac{e^2}{N} \int d\vec{r'} \frac{(\sum_{m=1}^{N} |\psi_m(r')|^2)}{|\vec{r} - \vec{r'}|} \psi_{k_n}(r)$$
(103)

On the other side, we must express Hartree's potential

$$(V_{Hartree}\psi_{k_n})(r) = e^2 \int d\vec{r'} \frac{\rho(r')}{|r-r'|} \psi_{k_n}(r)$$
(104)

where $\rho(.)$ is the electronic density:

$$\rho(r') = \sum_{j,jocc.}^{N} |\psi_{k_j}(r')|^2 \tag{105}$$

The equation 2.2 implies that

$$\forall j, |\psi_{k_j}(r')|^2 = \frac{1}{N} \sum_{m=1}^N |\psi_m(r')|^2$$
 (106)

which is the same for all occupied electronic states.

We deduce that

$$\rho(r') = \frac{N^{occ}}{N} \sum_{m=1}^{N} |\psi_m(r')|^2$$
 (107)

with N^{occ} the number of occupied states. (number of electrons in the system) We thus have :

$$(V_{Hartree}\psi_{k_n})(r) = e^2 \frac{N^{occ}}{N} \int d\vec{r'} \frac{(\sum_{m=1}^N |\psi_m(r')|^2)}{|\vec{r} - \vec{r'}|} \psi_{k_n}(r)$$
(108)

We must not forget that this expression includes a self-interaction term if k_n is an occupied state (as $|\psi_{k_n}(r')|^2$ appears in the expression of $\rho(r')$ in this case):

$$(V_{self-interaction}^{Hartree} \psi_{k_n})(r) = e^2 \int d\vec{r'} \frac{|\psi_{k_n}(r')|^2}{|r - r'|} \psi_{k_n}(r)$$
(109)

$$= -e^2 \delta_{\sigma_n, \sigma_n} \int d\vec{r'} \frac{\psi_{k_n}^*(r') \psi_{k_n}(r')}{|r - r'|} \psi_{k_n}(r)$$
 (110)

$$= -\frac{e^2}{N} \int d\vec{r'} \frac{\left(\sum_{m=1}^{N} |\psi_m(r')|^2\right)}{|\vec{r} - \vec{r'}|} \psi_{k_n}(r)$$
 (111)

$$= -(H_{self-interaction}^{Fock} \psi_{k_n})(r) \tag{112}$$

if k_n is an occupied state.

We have proved that the Fock term allows to get rid of the self-interaction problem:

$$(V_{self-interaction}^{Hartree} + H_{self-interaction}^{Fock})\psi_{k_n}(r) = 0$$
(113)

If k_n is not an occupied state, the self-interaction terms both in Hartree's potential and in Fock's term don't exist. The equation 2.2 implies that $\psi_{k_n}(r)$ remains an eigen vector of $H_{self-interaction}^{Fock} + V_{Hartree}$

$$(H_{self-interaction}^{Fock} + V_{Hartree})\psi_{k_n}(r) = e^2 \frac{N^{occ} - 1}{N} \int d\vec{r'} \frac{(\sum_{m=1}^{N} |\psi_m(r')|^2)}{|\vec{r} - \vec{r'}|} \psi_{k_n}(r)$$
(114)

Among the four components of the Hartree-Fock term : $H^{Fock}_{self-interaction},\,H^{Fock}_{without-self-interaction},\,V^{Hartree}_{self-interaction},\,V^{Hartree}_{without-self-interaction},\,\text{only two remain}:$

$$H_{without-self-interaction}^{Fock} + V_{without-self-interaction}^{Hartree}$$
(115)

At the first order, the variation of the energy of the electronic state k_n state due to Fock's term is

$$\Delta(E_{k_n})_{Fock} = \langle \psi_{k_n} | H_{without-self-interaction}^{Fock} | \psi_{k_n} \rangle$$
 (116)

$$= \int \psi_{k_n}^*(r) (H_{w.s.i.}^{Fock} \psi_{k_n})(r) d\vec{r} = -\sum_{j=1, j \neq n, jocc.}^N \delta_{\sigma_j, \sigma_n} \int \psi_{k_n}^*(r) \theta_{n,j}(r) \psi_{k_j}(r) d\vec{r}$$
(117)

thanks to 2.2.

Let's compute $\int \psi_{k_n}^*(r)\theta_{n,j}(r)\psi_{k_j}(r)d\vec{r}$:

$$\int \psi_{k_n}^*(r)\theta_{n,j}(r)\psi_{k_j}(r)d\vec{r} = \frac{1}{N} \sum_{l=1}^N e^{i(k_j - k_n)la} \int d\vec{r} |\psi_l(r)|^2 \theta_{n,j}(r)$$
(118)

thanks to the non-overlapping assumption $(\psi_{l_1}^*(r)\psi_{l_2}(r)=0 \text{ if } l_1\neq l_2)$. Therefore, using the expression

$$\int \psi_{k_n}^*(r)\theta_{n,j}(r)\psi_{k_j}(r)d\vec{r} = \frac{e^2}{N^2} \sum_{l=1}^N \sum_{m=1}^N \left[\int d\vec{r} |\psi_l(\vec{r})|^2 \left(\int d\vec{r'} \frac{|\psi_m(\vec{r'})|^2}{|r-r'|} \right) \right] e^{i(k_n-k_j)(m-l)a}$$
(119)

We conclude that for a one dimensional lattice (seen in a three-dimensional space):

$$\Delta(E_{k_n})_{Fock} = -\sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} \frac{e^2}{N^2} \sum_{l=1}^{N} \sum_{m=1}^{N} \left[\int d\vec{r} |\psi_l(\vec{r})|^2 \left(\int d\vec{r'} \frac{|\psi_m(\vec{r'})|^2}{|r - r'|} \right) \right] e^{i(k_n - k_j)(m - l)a}$$
(120)

The knowledge of the orbital functions $\psi_l(.)$ appears necessary to estimate this correction to the energy.

We also have to consider the variation of the energy of the electronic state k_n state **due to Hartree's** term and the self-interaction Fock term (if there is one, namely if k_n is an occupied state):

$$\Delta(E_{k_n})_{Hartree} = {}^{def} < \psi_{k_n} | H_{s.i.}^{Fock} + V^{Hartree} | \psi_{k_n} > = < \psi_{k_n} | V_{w.s.i.}^{Hartree} | \psi_{k_n} >$$

$$(121)$$

$$\Rightarrow \Delta(E_{k_n})_{Hartree} = \int d\vec{r} \psi_{k_n}^*(\vec{r}) (e^2 \frac{N^{occ} - \delta_{k_n}^{occ}}{N} \int d\vec{r'} \frac{\sum_{m=1}^N |\psi_m(\vec{r'})|^2}{|\vec{r} - \vec{r'}|}) \psi_{k_n}(\vec{r})$$
(122)

Therefore, using 106, if k_n is not an occupied state :

$$\Delta(E_{k_n})_{Hartree} = e^2 \frac{N^{occ}}{N^2} \sum_{l=1}^{N} \sum_{m=1}^{N} \left[\int d\vec{r} |\psi_l(\vec{r})|^2 \int d\vec{r'} \frac{(|\psi_m(\vec{r'})|^2)}{|\vec{r} - \vec{r'}|} \right]$$
(123)

On the contrary, if k_n is an occupied state

$$\Delta(E_{k_n})_{Hartree} = e^2 \frac{N^{occ} - 1}{N^2} \sum_{l=1}^{N} \sum_{m=1}^{N} \left[\int d\vec{r} |\psi_l(\vec{r})|^2 \int d\vec{r'} \frac{(|\psi_m(\vec{r'})|^2)}{|\vec{r} - \vec{r'}|} \right]$$
(124)

To sum it all, the total correction to the energy at the first order (treating Hartree-Fock's terms as perturbations):

$$\Delta(E_{k_n}) = \Delta(E_{k_n})_{Hartree} + \Delta(E_{k_n})_{Fock}$$
(125)

namely:

$$e^{2} \frac{N^{occ} - \delta_{k_{n}}^{occ}}{N^{2}} \sum_{l=1}^{N} \sum_{m=1}^{N} \left[\int d\vec{r} |\psi_{l}(\vec{r})|^{2} \int d\vec{r'} \frac{(|\psi_{m}(r')|^{2})}{|\vec{r} - \vec{r'}|} \right] - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_{j}, \sigma_{n}} \frac{e^{2}}{N^{2}} \sum_{l=1}^{N} \sum_{m=1}^{N} \left[\int d\vec{r} |\psi_{l}(\vec{r})|^{2} \left(\int d\vec{r'} \frac{|\psi_{m}(\vec{r'})|^{2}}{|r - r'|} \right) \right] e^{i(k_{n} - k_{j})(m-l)a}$$

$$(126)$$

where $e^2 = \frac{q_e^2}{4\pi\epsilon_0}$ and $\delta_{k_n}^{occ} = 1$ if k_n is indeed occupied, and equals 0 otherwise. Therefore the correction to the energy due to Hartree's potential and Fock's term is different for free and occupied states.

Both terms coming from Hartree's term and from Fock's term have the same order of magnitude. Indeed for both, $\frac{e^2}{N^2}$ is a prefactor. The first term has a prefactor of order N^{occ} , the number of occupied states, but the second term coming from Fock's term calculations involves a sum over the occupied states labeled by j, and there are N^{occ} such non-zero terms at least if most spins of other electrons are in the same direction as the spin of the n^{th} electron.

We also notice that the double integral involving the atomic orbital wave functions $\psi_m(.)$ and $\psi_l(.)$ appears in both term. An another expression of the energy correction would be:

$$\frac{e^2}{N^2} \sum_{l=1}^{N} \sum_{m=1}^{N} \left(\int d\vec{r} |\psi_l(\vec{r})|^2 \int d\vec{r'} \frac{(|\psi_m(\vec{r'})|^2)}{|\vec{r} - \vec{r'}|} \right) (N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)(m - l)a})$$
(127)

Let's adopt the following notation :

$$I_{l,m} = \int d\vec{r} \int d\vec{r'} \frac{|\psi_m(\vec{r'})|^2 |\psi_l(\vec{r})|^2}{|\vec{r} - \vec{r'}|}$$
(128)

and

$$\Theta_{l,m}^{1D} = (N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)(m - l)a})$$
(129)

We notice the symetry of the roles played by l and $m: I_{l,m} = I_{m,l}$.

The equation 127 can be rewritten as:

$$\Delta(E_{k_n}) = \frac{e^2}{N^2} \sum_{l=1}^{N} \sum_{m=1}^{N} I_{l,m} \Theta_{l,m}^{1D}$$
(130)

A little calculation, using that $k_n = \frac{2\pi}{Na} p_n$ (p_n being an integer) for a one-dimensionnal lattice, gives the following:

$$l = m \Rightarrow \Theta_{l,m}^{1D} = 0 \tag{131}$$

if all occupied states have the same spin as the n^{th} electron. It remains true even if the number of occupied states is very small.

If $l \neq m$ and all the N possible states are occupied by electrons having the same spin as the n^{th} electron:

$$\Theta_{l,m}^{1D} = N^{occ} - \delta_{k_n}^{occ} + 1 \approx N \tag{132}$$

because

$$\sum_{j=1,jocc.}^{N} e^{i\frac{2\pi}{N}(n-j)(m-l)} = e^{i\frac{2\pi}{N}n(m-l)} \sum_{j=1,jocc.}^{N} (e^{i\frac{2\pi}{N}(l-m))})^{j} = 0$$
(133)

in this specific case.

Invariance by translation

We can simplify the expression 130 using the periodic boundary conditions. Let l_0 be an integer in [1, N]. Let's prove that

$$\sum_{m=1}^{N} I_{l_0,m} \Theta_{l_0,m}^{1D} \tag{134}$$

does not depend on the integer l_0 .

$$I_{l_0+1,m} = \int d\vec{r} \int d\vec{r'} \frac{|\psi_m(\vec{r'})|^2 |\psi_{l_0+1}(\vec{r})|^2}{|\vec{r} - \vec{r'}|} = \int d\vec{r} \int d\vec{r'} \frac{|\chi(\vec{r'} - ma\vec{e_x})|^2 |\chi(\vec{r} - (l_0 + 1)a\vec{e_x})|^2}{|\vec{r} - \vec{r'}|}$$
(135)

where $\chi(.)$ is the atomic orbital of the site at the origin of the lattice.

Thanks to the new variable $\vec{u} = \vec{r} - a\vec{e_x}$:

$$I_{l_0+1,m} = \int d\vec{u} \int d\vec{r'} \frac{|\chi(\vec{r'} - ma\vec{e_x})|^2 |\chi(\vec{u} - l_0 a\vec{e_x})|^2}{|\vec{u} - (\vec{r'} - a\vec{e_x})|}$$
(136)

and $\vec{v} = \vec{r'} - a\vec{e_x}$:

$$I_{l_0+1,m} = \int d\vec{u} \int d\vec{v} \frac{|\chi(\vec{v} - (m-1)a\vec{e_x})|^2 |\chi(\vec{u} - l_0a\vec{e_x})|^2}{|\vec{u} - \vec{v}|} = \int d\vec{u} \int d\vec{v} \frac{|\psi_{m-1}(\vec{v})|^2 |\psi_{l_0}(\vec{u})|^2}{|\vec{u} - \vec{v}|}$$
(137)

We have proven that

$$I_{l_0+1,m} = I_{l_0,m-1} (138)$$

Moreover

$$\Theta_{l_0+1,m}^{1D} = \left(N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j,\sigma_n} e^{i(k_n - k_j)(m - l_0 - 1)a}\right) = \Theta_{l_0,m-1}^{1D}$$
(139)

Therefore:

$$\sum_{m=1}^{N} I_{l_0+1,m} \Theta_{l_0+1,m}^{1D} = \sum_{m=1}^{N} I_{l_0,m-1} \Theta_{l_0,m-1}^{1D}$$
(140)

The Periodic Boundary Conditions give :

$$I_{l_0,0} = \int d\vec{r} \int d\vec{r'} \frac{|\psi_0(\vec{r'})|^2 |\psi_{l_0}(\vec{r})|^2}{|\vec{r} - \vec{r'}|} = \int d\vec{r} \int d\vec{r'} \frac{|\psi_N(\vec{r'})|^2 |\psi_{l_0}(\vec{r})|^2}{|\vec{r} - \vec{r'}|} = I_{l_0,N}$$
(141)

because the N^{th} atom of the lattice also is the atom labelled by 0 in the PBC approximation.

$$\Theta_{l_0,N}^{1D} = (N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)(N - l_0)a}) == (N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{-i(k_n - k_j)l_0a})$$
(142)

because $(k_n - k_j)Na = \frac{2\pi(p_n - p_j)}{Na}Na = 2\pi(p_n - p_j)$ where p_n and p_j are integers.

In the end, 140 becomes:

$$\sum_{m=1}^{N} I_{l_0+1,m} \Theta_{l_0+1,m}^{1D} = \sum_{m=1}^{N} I_{l_0,m} \Theta_{l_0,m}^{1D}$$
(143)

Therefore

$$\Delta(E_{k_n}) = \frac{e^2}{N} \sum_{m=1}^{N} I_{l_0,m} \Theta_{l_0,m}^{1D}$$
(144)

for any l_0 .

To compute $\Delta(E_{k_n})$, we use Monte-Carlo methods.

Stochastics methods:

My first idea was to find a simple way to compute the integrals $I_{l,m}$, as we need them to estimate the global correction to the energy. I used Monte-Carlo methods. Nevertheless, because of the divergence of the integrand at some points, the convergence speed wasn't good enough. M. Ferrero then told me about **Metropolis algorithm**.

We write the correction due to Hartree-Fock's term in the following way:

$$\Delta(E_{k_n}) = e^2 \sum_{m=1}^{N} \int d\vec{r} \int d\vec{r'} \frac{(N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)ma})}{|\vec{r} - \vec{r'}|} \frac{|\psi_0(\vec{r})|^2 |\psi_m(\vec{r'})|^2}{N}$$
(145)

Let denote

$$\pi(m, \vec{r}, \vec{r'}) = \frac{|\psi_0(\vec{r})|^2 |\psi_m(\vec{r'})|^2}{N} > 0$$
(146)

and

$$F(m, \vec{r}, \vec{r'}) = \frac{\Theta_{0,m}^{1D}}{|\vec{r} - \vec{r'}|} = \frac{(N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)ma})}{|\vec{r} - \vec{r'}|}$$
(147)

We notice that $\pi(.)$ is a density of probability:

$$\int \int d\vec{r} d\vec{r'} \sum_{m} \pi(m, \vec{r}, \vec{r'}) = 1 \tag{148}$$

Indeed, $\psi_m(.)$ is an atomic orbital and is therefore normalised:

$$\int d\vec{r'} |\psi_m(\vec{r'})|^2 = 1 \tag{149}$$

We want to compute

$$\frac{\Delta(E_{k_n})}{e^2} = \sum_{m} \int \int d\vec{r} d\vec{r'} F(m, \vec{r}, \vec{r'}) \pi(m, \vec{r}, \vec{r'})$$
 (150)

We use the **ergodic theorem**: if $(X_n)_{n\geq 0}$ is a recurrent, irreductible and positive Markov chain; $\pi(.)$ being its unique invariant probability measure:

$$\frac{1}{M} \sum_{i=1}^{M} F(X_i) \longrightarrow_{M \longrightarrow \infty} E_{\pi}(F) = \sum_{m} \int \int d\vec{r} d\vec{r'} F(m, \vec{r}, \vec{r'}) \pi(m, \vec{r}, \vec{r'})$$
(151)

Let's give a hint to understand this theorem. When computing the means of the values of F(.) over the Markov chain, we are somehow counting the number of points of the Markov chain close to x (given by the density $\pi(x) = \lim_{n \to +\infty} P(X_n = x)$), and multiplying it by the value of F there: $\pi(x)F(x)$. Then we sum over the contributions x. The closest the distribution of the points of the Markov chain is to the density $\pi(.)$, the better the approximation of the integral with the mean value is.

We see that the points x that will count the most to compute the integral are those with higher values of $\pi(x)$ (where the points of the Markov chain concentrate the more). In our case $\pi(m, \vec{r}, \vec{r'})$ is maximal for $\vec{r'}$ close to $ma\vec{e_x}$. Therefore the Markov chain will have with high probability a lot of points in the neighbouring of such values of $\vec{r'}$. This algorithm thus enables to focus on the points where the integrand becomes very big or even diverges. Such regions are much better explored than with a classic Monte-Carlo algorithm, where the random variables X_i are uniform over the whole space of integration.

Our goal is therfore to generate a Markov chain whose invariant probability measure is π , and the means of the values of F(.) along the trajectory will give us an approximation of the correction to the energy.

Construction of the Markov chain:

Let $W_{x\longrightarrow y}$ be the probability of transition from x to y:

$$W_{x \longrightarrow y} = P(X_{n+1} = y | X_n = x) \tag{152}$$

if $y \neq x$.

If $x = y : W_{x \longrightarrow x} = 1 - \sum_{y \neq x} W_{x \longrightarrow y}$

We decompose $W_{x \longrightarrow y}$ as:

$$W_{x \longrightarrow y} = T_{x \longrightarrow y} A_{x \longrightarrow y} \tag{153}$$

where $A_{x\longrightarrow y}$ is the acceptation rate and $T_{x\longrightarrow y}$ the transition rate.

The transition matrix $T_{x\longrightarrow y}$ over the space of possible states E has to be irreductible and to satisfy:

$$\forall (x,y) \in E^2, T_{x \longrightarrow y} > 0 \Rightarrow T_{y \longrightarrow x} > 0 \tag{154}$$

As an acceptation rate, we can use:

$$A_{x \longrightarrow y} = h\left(\frac{\pi(y)T_{y \longrightarrow x}}{\pi(x)T_{x \longrightarrow y}}\right) \tag{155}$$

where $h:]0; +\infty[\longrightarrow]0, 1]$ is increasing and such that $h(u) = uh(\frac{1}{u})$. For instance, h(u) = inf(1, u) or $h(u) = \frac{u}{1+u}$ are possible functions. We choose h(u) = inf(1, u) in the following calculations. We also take a symetric transition rate: $T_{y\longrightarrow x} = T_{x\longrightarrow y}$, to simplify the previous expression.

The algorithm is the following:

Given X_n , we first choose Y according to the transition law $T_{X_n \longrightarrow Y}$.

We then choose a uniform random number U_{n+1} in [0,1]:

If $U_{n+1} < A_{X_n \longrightarrow Y}$, then $X_{n+1} = Y$.

Otherwise: $X_{n+1} = X_n$.

The state Y is accepted with probability $A_{X_n \longrightarrow Y}$, hence the name of "acceptation rate".

The theorem of Metropolis implies that the transition matrix $W_{x\longrightarrow y}$ is irreductible and reversible for the measure π :

$$\forall (x,y) \in E^2, \pi(y)W_{y \longrightarrow x} = \pi(x)W_{x \longrightarrow y} \tag{156}$$

Therefore $\pi(.)$ is its unique invariant measure.

As a transition rate, I choose:

$$T_{x \longrightarrow y} = P(X_{n+1} = y = (m', \vec{r_1}, \vec{r_1}) | X_n = x = (m, \vec{r}, \vec{r'}))$$
 (157)

such that:

- given $m=X_n[1]$, $l'=X_{n+1}[1]$ equals m+1 with probability $\frac{1}{2}$ and m-1 with probability $\frac{1}{2}$ given \vec{r} , $\vec{r_1}$ is choosen uniformly in a cube centered in \vec{r} and of tunable side length θ .

 given $\vec{r'}$, $\vec{r'_1}$ is choosen uniformly in a cube centered in $\vec{r'}$ and of tunable side length θ .

Thus we have $T_{x \longrightarrow y} = T_{y \longrightarrow x}$

For a one-dimensional lattice, the equation 145 can be rewritten in the following way, if we take gaussian functions as localised orbitals $(\psi_l(r) = \chi(r - la))$ where $\chi(.)$ is the wave function of an atomic

$$e^{2}K\sum_{m=1}^{N}\int\int\frac{(N^{occ}-\delta_{k_{n}}^{occ}-\sum_{j=1,j\neq n,jocc.}^{N}\delta_{\sigma_{j},\sigma_{n}}e^{i(k_{n}-k_{j})ma})}{\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}}\frac{e^{-2(\frac{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}{\delta^{2}})}e^{-2(\frac{(x_{2}-ma)^{2}+y_{2}^{2}+z_{2}^{2}}{\delta^{2}})}}{N}d\vec{r_{1}}d\vec{r_{2}}$$

$$(158)$$

where K is a constant coming from the integration on the angular part of the atomic orbital wave function. So far we take a constant angular function to simplify the calculations.

Other type of functions, like lorentzians, are possible and also satisfy the non-overlapping assumption we used. After changing the origins of the two space integrations:

$$\frac{\Delta(E_{k_n})}{e^2} = a^5 K \sum_{m=1}^{N} \int \int \frac{(N^{occ} - \delta_{k_n}^{occ} - \sum_{j=1, j \neq n, jocc.}^{N} \delta_{\sigma_j, \sigma_n} e^{i(k_n - k_j)ma})}{\sqrt{(x_1 - x_2 - m)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}} \frac{e^{-2(\frac{x_1^2 + y_1^2 + z_1^2}{(\frac{\delta}{a})^2})} e^{-2(\frac{x_2^2 + y_2^2 + z_2^2}{(\frac{\delta}{a})^2})}}{N} d\vec{r_1} d\vec{r_2}$$
(159)

where K is a constant with the good dimension (as e^2 is an energy times a length, the product Ka^5 is the inverse of a length.

In a two-dimensional lattice, we have a similar expression for $\frac{\Delta(E_{(k_n)_x,(k_n)_y})}{e^2}$:

$$a^{5}K\sum_{l_{1},p_{1}}\sum_{l_{2},p_{2}}\int\int\frac{(N^{occ}-\delta_{k_{n}}^{occ}-\sum_{j=1,j\neq n,jocc.}^{N}\delta_{\sigma_{j},\sigma_{n}}e^{i(\vec{k_{n}}-\vec{k_{j}})(R_{l_{1},p_{1}}-R_{l_{2},p_{2}})}}{\sqrt{(x_{1}-x_{2}+l_{2}-l_{1})^{2}+(y_{1}-y_{2}+p_{2}-p_{1})^{2}+(z_{1}-z_{2})^{2}}}\frac{e^{-2(\frac{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}{(\frac{\delta}{a})^{2}})}e^{-2(\frac{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}{(\frac{\delta}{a})^{2}})}}N^{4}}{N^{4}}d\vec{r_{1}}d\vec{r_{2}}d\vec{r_{1}}d\vec{r_{2}}d\vec{r_{1}}d\vec{r_{2}}d\vec{r_{1}}d\vec{r_{2}}d\vec{r_{2}}d\vec{r_{1}}d\vec{r_{2}}d\vec$$

Figure 29: Correction to the energy computed with Metropolis algorithm (arbitrary units) in one dimension, for N=20 and 1000000 points in the Markov chain

My Python program works to estimate the corrections both in 1D and 2D. However we must occupare the length of the energy band we obtain with **the coupling** t between two neighbouring atoms... This coupling also depends on which type of localised atomic orbital we choose...

$$t = \langle \psi_l | V_{l+1} | \psi_{l+1} \rangle = \sum_{i=1, i \neq l}^{N} \langle \psi_l | V_{at}(\vec{r} - \vec{R}_i) | \psi_{l+1} \rangle$$
(161)

Other problem : even with 1000000 random selections (1000000 points in the Markov chain), the estimation of the integral doesn't seem to converge... How to know the number of random selections to do? $\rm D$

Symetry of translation l/m?

3 How screening modulates the Hartree-Fock effect previously computed