

Pattern Recognition (PR)

Prof. Dr.-Ing. Andreas Maier Pattern Recognition Lab (CS 5), Friedrich-Alexander-Universität Erlangen-Nürnberg Winter Term 2020/21

This is a printable version of the slides of the lecture

Pattern Recognition (PR)

Winter term 2020/21 Friedrich-Alexander University of Erlangen-Nuremberg.

These slides are are release under Creative Commons License Attribution CC BY 4.0.

Please feel free to reuse any of the figures and slides, as long as you keep a reference to the source of these slides at https://lme.tf.fau.de/teaching/acknowledging the authors Niemann, Hornegger, Hahn, Steidl, Nöth, Seitz, Rodriguez, Das and Maier.

Erlangen, January 8, 2021 Prof. Dr.-Ing. Andreas Maier

Duality in Optimization

The Primal Problem

• Consider the primal optimization problem:

 $f_0(\mathbf{x})$ minimize

subject to $f_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m$

 $h_i(\mathbf{x}) = 0, \quad i = 1, 2, \dots, p$

with variable $\mathbf{x} \in \mathbb{R}^n$.

• The function $f_0(\mathbf{x})$ is not required to be convex.

The Lagrangian

Lagrangian

The Lagrangian L of the aforementioned problem is defined as

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x})$$

- λ_i is the Lagrange multipliers associated with the *i*-th inequality constraint $f_i(\mathbf{x}) \leq 0$.
- v_i is the Lagrange multiplier associated with the *i*-th equality constraint $h_i(\mathbf{x}) = 0$.
- ullet The vectors $oldsymbol{\lambda}$ and $oldsymbol{
 u}$ are called Lagrange multiplier vectors or simply dual variables.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Langrange Dual Function

Lagrange dual function

The Lagrange dual function is defined as the infimum of the Lagrangian over x

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

Note:

- The Lagrange dual function is a pointwise affine function in the dual variables.
- The Lagrange dual function is concave (even if the original problem is not convex).

Optimal Value and Lower Bound

Lemma

Let p^* be the optimal value of the optimization problem. For any $\lambda \succeq 0$ and any ν the following bound is valid:

$$g(\lambda, v) \leq p^*$$

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Optimal Value and Lower Bound (cont.)

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier

Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Optimal Value and Lower Bound (cont.)

- Neither $f_0(x)$ nor $f_1(x)$ is convex,
- but the dual function $g(\lambda)$ is concave!

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Optimal Value and Lower Bound (cont.)

Let $\tilde{\mathbf{x}}$ be a feasible point of the optimization problem.

If $\lambda \succeq 0$, we have due to the *m* inequality and *p* equality constraints:

$$\sum_{i=1}^m \lambda_i f_i(\tilde{\boldsymbol{x}}) + \sum_{i=1}^p v_i h_i(\tilde{\boldsymbol{x}}) \leq 0 ,$$

Thus we have

$$L(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\tilde{\boldsymbol{x}}) + \sum_{i=1}^m \lambda_i f_i(\tilde{\boldsymbol{x}}) + \sum_{i=1}^p v_i h_i(\tilde{\boldsymbol{x}}) \leq f_0(\tilde{\boldsymbol{x}}).$$

Optimal Value and Lower Bound (cont.)

Using the definition of the dual function we get:

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq L(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_0(\tilde{\boldsymbol{x}})$$

The inequality $g(\lambda, v) \leq f_0(\tilde{x})$ holds for every feasible point \tilde{x} .

Consequently, the dual function $g(\lambda, v)$ is also smaller or equal to the optimal value p^* :

$$g(\lambda, v) \leq p^*$$

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

10

The Lagrange Dual Problem

Problem: how to find the best lower bound for the primal problem

The Lagrange dual problem is given by the optimization problem:

 $g(\boldsymbol{\lambda}, \boldsymbol{
u})$ maximize

 $oldsymbol{\lambda}\succ$ 0 subject to

The Lagrange Dual Problem (cont.)

Optimal duality gap

Let p^* be the optimal value of the primal problem and *d** the optimal value of the Lagrange dual problem.

- The difference $p^* d^*$ is the *optimal duality gap*.
- If $p^* = d^*$, the duality gap is zero. In this case we talk about strong duality.
- If $p^* > d^*$, we have weak duality.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Slater's Condition

Theorem

Given a convex primal optimization problem:

minimize

subject to

 $f_i(\mathbf{x}) \leq 0, \quad i = 1, 2, ..., m$

with f_0, f_1, \ldots, f_m being convex.

If there exists an $\mathbf{x} \in \text{relint } \left\{ \mathscr{D} = \cap_{i=0}^m \text{dom}(f_i) \right\}$ with

$$f_i(\mathbf{x}) < 0, \quad i = 1, \ldots, m$$

$$Ax = b$$

then strong duality holds.

Refinement of Slater's Condition

Theorem

Given a convex primal optimization problem.

If the first k constraint functions f_1, \ldots, f_k are *affine*, and if there exists an $\mathbf{x} \in \text{relint } \mathcal{D} \text{ with }$

$$f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, k$$
 (affine constraints)
 $f_i(\mathbf{x}) < 0, \quad i = k + 1, \dots, m$ (convex constraints)

$$f_i(x) < 0, \quad i = k+1, \dots, m$$
 (co

then strong duality holds.

Note: the refined Slater's condition reduces to feasibility when the constraints are all linear equalities and inequalities, and dom (f_0) is open.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Karush-Kuhn-Tucker Optimality Conditions

Let \mathbf{x}^* be a primal and (λ^*, ν^*) dual optimal points with zero duality gap.

For the primal optimal point x^* , the gradient with respect to x of $L(x, \lambda^*, \nu^*)$ is 0:

$$\nabla L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \nabla f_0(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\boldsymbol{x}^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(\boldsymbol{x}^*) = 0$$

Karush-Kuhn-Tucker Optimality Conditions

The following four conditions are called KKT conditions:

- 1. Primal constraints:
 - $f_i(\mathbf{x}) \leq 0$, i = 1, 2, ..., m• $h_i(\mathbf{x}) = 0$, i = 1, 2, ..., p
- 2. Dual constraints: $\lambda \succeq 0$
- 3. Complementary slackness: $\lambda_i f_i(\mathbf{x}) = 0$
- 4. Gradient of the Lagrangian *L* is zero:

$$\nabla L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \nabla f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i \nabla f_i(\boldsymbol{x}) + \sum_{i=1}^\rho v_i \nabla h_i(\boldsymbol{x}) = 0$$

If strong duality holds and if \mathbf{x}^* and $(\lambda^*, \mathbf{\nu}^*)$ are optimal points, then the KKT conditions hold.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

Karush-Kuhn-Tucker Optimality Conditions

Complementary slackness: $\lambda_i^* \cdot f_i(\mathbf{x}^*) = 0$

$$f_{0}(\mathbf{x}^{*}) = g(\lambda^{*}, \boldsymbol{\nu}^{*})$$

$$= \inf_{\mathbf{x}} \left(f_{0}(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(\mathbf{x}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(\mathbf{x}) \right)$$

$$\stackrel{=}{\leq} f_{0}(\mathbf{x}^{*}) + \underbrace{\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(\mathbf{x}^{*})}_{=0} + \underbrace{\sum_{i=1}^{p} \nu_{i}^{*} h_{i}(\mathbf{x}^{*})}_{=0}$$

$$\stackrel{=}{\leq} f_{0}(\mathbf{x}^{*})$$

Karush-Kuhn-Tucker Optimality Conditions (cont.)

Conclusions (Boyd 2004, Sec. 5.5.3)

- For any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions.
- For any *convex* optimization problem with differentiable objective and and constraint functions, any points that satisfy the KKT conditions are primal and dual optimal, and have zero duality gap.
- If a *convex* optimization problem with differentiable objective and constraint functions satisfies Slater's condition, then the KKT conditions provide necessary and sufficient conditions for optimality.

© 2005-2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

18

Lessons Learned

- Formalization of the primal problem using the Lagrangian
- Lagrange dual function
- Duality gap
- Karush-Kuhn-Tucker optimality conditions

Next Time in Pattern Recogni

Further Readings

- S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004. http://www.stanford.edu/~boyd/cvxbook/
- Jorge Nocedal, Stephen Wright: Numerical Optimization, Springer, New York, 1999.

Comprehensive Questions

- What is the Lagrangian of a constrained objective function?
- What is the Lagrange dual function?
- What is the duality gap?
- What are the Karush-Kuhn-Tucker optimality conditions?

© 2005–2020 Hornegger, Hahn, Steidl, Nöth, Maier | Pattern Recognition Lab | Lecture Pattern Recognition

Winter Term 2020/21

22