# Optimization and Numerical Analysis: Nonlinear programming without constraints

Robert Gower



October 9, 2018

#### Table of Contents

**Unconstrained Nonlinear Programming** 

Multivariate Calculus

Local Descent Lemma and Local Optimality

Sufficient and Necessary conditions for local optimality

Convex functions

# The Problem: Nonlinear programming

Minimize a nonlinear differentiable function  $f: x \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$ 

$$x^* = \arg\min_{x \in \mathbb{R}^n} f(x). \tag{1}$$

Warning: This problem is often impossible. First check there exists a minimum. Even linear programming does not always have a maximum! Develop iterative methods  $x^1, \ldots, x^k, \ldots$ , such that

$$\lim_{k\to\infty} x^k = x^*.$$

#### Template method

$$x^{k+1} = x^k + s_k d^k,$$

where  $s_k > 0$  is a step size and  $d^k \in \mathbb{R}^n$  is search direction. Satisfy the descent condition

$$f(x^{k+1}) < f(x^k).$$

#### Local and Global Minima

#### Definition of Local Minima

The point  $x^* \in \mathbb{R}^n$  is a *local minima* of f(x) if there exists r > 0 such that

$$f(x^*) \le f(x), \quad \forall ||x - x^*||_2 < r.$$
 (2)

#### Definition of Global Minima

The point  $x^* \in \mathbb{R}^n$  is a global minima of f(x) if

$$f(x^*) \le f(x), \quad \forall x.$$
 (3)

In general finding global minima impossible. Finding local is good enough.

#### Multivariate Calculus

For a differentiable function  $f: x \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$ , we refer to  $\nabla f(x)$  as the gradient evaluated at x defined by

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}.$$

Note that  $\nabla f(x)$  is a column-vector. For any  $F: x \in \mathbb{R}^n \to F(x) = [f_1(x), \dots, f_n(x)]^\top \in \mathbb{R}^n$  define the *Jacobian matrix* by

$$\nabla F(x) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial f_1(z)}{\partial x_1} & \frac{\partial f_2(z)}{\partial x_1} & \frac{\partial f_3(z)}{\partial x_1} & \dots & \frac{\partial f_n(z)}{\partial x_1} \\ \frac{\partial f_2(z)}{\partial x_1} & \frac{\partial f_2(z)}{\partial x_2} & \frac{\partial f_3(z)}{\partial x_2} & \dots & \frac{\partial f_n(z)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1(z)}{\partial x_n} & \frac{\partial f_2(z)}{\partial x_n} & \frac{\partial f_3(z)}{\partial x_n} & \dots & \frac{\partial f_n(z)}{\partial x_n} \end{bmatrix}$$
$$= \left[ \nabla f_1(x), \nabla f_2(x), \nabla f_3(x), \dots, \nabla f_2(x) \right]$$

#### Multivariate Calculus

The gradient is useful because of 1st order Taylor expansion

$$f(x^{0} + d) = f(x^{0}) + \nabla f(x^{0})^{\top} d + \epsilon(d) \|d\|_{2},$$
(4)

where  $\epsilon(d)$  is a real valued such that

$$\lim_{d \to 0} \epsilon(d) = 0. \tag{5}$$

Example (The  $\epsilon(d)$  function)

If  $f(x) = ||x||_2^2$  or  $f(x) = x^{\top} Ax$  what is  $\epsilon(d)$ ? Name three functions that satisfy (5).

## The Hessian Matrix

If  $f \in C^2$ , we refer to  $\nabla^2 f(x)$  as the Hessian matrix:

$$\nabla^2 f(x) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial^2 f(z)}{\partial x_1 \partial x_1} & \frac{\partial^2 f(z)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(z)}{\partial x_1 \partial x_3} & \cdots & \frac{\partial^2 f(z)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(z)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(z)}{\partial x_2 \partial x_2} & \frac{\partial^2 f(z)}{\partial x_2 \partial x_3} & \cdots & \frac{\partial^2 f(z)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(z)}{\partial x_n \partial x_1} & \frac{\partial^2 f(z)}{\partial x_n \partial x_2} & \frac{\partial^2 f(z)}{\partial x_n \partial x_3} & \cdots & \frac{\partial^2 f(z)}{\partial x_n \partial x_n} \end{bmatrix}$$

If  $f \in C^2$  then

$$\frac{\partial^2 f(z)}{\partial x_i \partial x_i} = \frac{\partial^2 f(z)}{\partial x_i \partial x_i}, \ \forall i, j \in \{1, \dots, n\}, \quad \Leftrightarrow \quad \nabla^2 f(x) = \nabla^2 f(x)^\top.$$

Hessian matrix useful for 2nd order Taylor expansion.

$$f(x^0 + d) = f(x^0) + \nabla f(x^0)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x^0) d + \epsilon(d) \|d\|_2^2.$$
 (6)

#### Example

If  $f(x) = x^3$  or  $f(x) = x^{T}Ax$  what is  $\epsilon(d)$ ?

#### The Product-rule

The vector valued version of the product rule

▶ For any function  $F(x): \mathbb{R}^n \to \mathbb{R}^n$  and matrix  $A \in \mathbb{R}^{n \times n}$  we have

$$\nabla(F(x)^{\top}A) = \nabla F(x)^{\top}A. \tag{7}$$

 $\blacktriangleright$  For any two vector valued functions  $F_1$  and  $F_2$  we have that

$$\nabla(F_1(x)^{\top}F_2(x)) = \nabla F_1(x)F_2(x) + \nabla F_2(x)F_1(x).$$
 (8)

## Example

Let  $f(x) = \frac{1}{2}x^{\top}Ax$ , where  $A \in \mathbb{R}^{n \times n}$  is a symmetric positive definite matrix. Calculate the gradient and the Hessian of f(x).

## The Product-rule

The vector valued version of the product rule

▶ For any function  $F(x): \mathbb{R}^n \to \mathbb{R}^n$  and matrix  $A \in \mathbb{R}^{n \times n}$  we have

$$\nabla(F(x)^{\top}A) = \nabla F(x)^{\top}A. \tag{7}$$

 $\blacktriangleright$  For any two vector valued functions  $F_1$  and  $F_2$  we have that

$$\nabla(F_1(x)^{\top}F_2(x)) = \nabla F_1(x)F_2(x) + \nabla F_2(x)F_1(x).$$
 (8)

## Example

Let  $f(x) = \frac{1}{2}x^{\top}Ax$ , where  $A \in \mathbb{R}^{n \times n}$  is a symmetric positive definite matrix. Calculate the gradient and the Hessian of f(x).

Let 
$$F_1(x) = A^{\top}x$$
 and  $F_2(x) = x$  then  $\nabla f(x) = \frac{1}{2}\nabla(A^{\top}x)x + \frac{1}{2}\nabla(x)A^{\top}x = \frac{1}{2}(A + A^{\top})x$  since  $\nabla(A^{\top}x) = A\nabla(x) = A$ . Differentiating again  $\nabla(\nabla f(x)) = \nabla(Ax) = \nabla(A)x + \nabla(x)A = A$ .