Adiar

Binary Decision Diagrams in External Memory

Steffan Christ Sølvsten, Jaco van de Pol, Anna Blume Jakobsen, and Mathias Weller Berg Thomasen TACAS 2022

Minimal running time for the Queens problems.

Cache-misses for the Queens problems.

(a) $(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$

Priority Queue:
$$Q_{count}$$
:
$$[((0,0) \xrightarrow{\top} (1,0), 1) , ((0,0) \xrightarrow{\rightarrow} (2,0), 1) ,$$

]

See (1,0		Sum 0		sult 0
]	Priority ((0,0) [—] ((0,0) [—]		1)	,

Seek	Sum	Result
(1,0)	1	0

Priority Queue:
$$Q_{count}$$
:

$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Seek		Sum	Result
(2,0)		0	0
ı	Priority	Queue:	Q_{count} :

Priority Queue:
$$Q_{count}$$
:
$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Priority Queue:
$$Q_{count}$$
:

$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Seek	Sum	Result
(2,0)	2	0
Pri	ority Queue: (Q _{count} :
((1,	$0) \xrightarrow{\perp} (3,0),$ $0) \xrightarrow{\top} (3,1),$ $0) \xrightarrow{\top} (3,1),$	2) , 1) , 2)]

Seek	Sum	R	esul
(3,0)	0		0
Prio	ority Queue: (Qcount:	
	$0) \xrightarrow{\perp} (3,0),$ $0) \xrightarrow{\top} (3,1),$	2) 1)	,
((2.	$0) \xrightarrow{\top} (3,1).$	2)	1

Seek		Sum	Result
(3,0)		0	0
[Priority	Queue:	Q_{count} :

Adiar

I/O-efficient Decision Diagrams

github.com/ssoelvsten/adiar

Minimal running time for the Queens problems.

Minimal running time for the Queens problems.

Minimal running time for the Queens problems.

Minimal running time for the Queens problems.

Algorithm	Time (s)
$f\leftrightarrow g\equiv \top$	0.38

Checking the (EPFL Benchmark) voter circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Algorithm	Time (s)
$f \leftrightarrow g \equiv \top$	0.38
$O(N \log N)$	0.058

Checking the (EPFL Benchmark) *voter* circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Algorithm	Time (s)		
$f\leftrightarrow g\equiv \top$	0.38		
$O(N \log N)$	0.058		
O(N)	0.006		

Checking the (EPFL Benchmark) voter circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

