HW 5 1.5.1,2,3,8,10

1.5.1. Let $a, b \in \mathbb{R}$ and a < b. Consider the open interval (a, b). The sequence $(a + \frac{b-a}{n}) \in (a, b)$. Let $\epsilon > 0$. Choose $N = \frac{(m-n)(b-a)}{\epsilon}$ such that m, n > N. Then,

$$|a + \frac{b-a}{m} - a - \frac{b-a}{n}| = |\frac{m(b-a) - n(b-a)}{mn}| = |\frac{(m-n)(b-a)}{mn}| < |\frac{(m-n)(b-a)}{N}| = \epsilon.$$

So the sequence is Cauchy. However as $n \to \infty$, $(a + \frac{b-a}{n}) \to a \notin (a,b)$. So (a,b) is not complete.

Now let (x_n) be a Cauchy sequence on [a,b]. Then for every $\epsilon > 0$, there exists N such that for n,m > N, $|x_n - x_m| < \epsilon$. Since \mathbb{R} is complete, we know that (x_n) converges. Let's say $x_n \to x$ as $n \to \infty$. So there exists $\epsilon^* > 0$ such that for some N, $|x_n - x| < \epsilon^*$ for n > N. By way of contradiction, assume that $x \notin [a,b]$. Since [a,b] is closed, we know that $B(x,\epsilon^*) \notin [a,b]$ (i.e., $[a,b]^c$ is open). However $x_n \in [a,b]$ and $x_n \in B(x,\epsilon^*)$. This is a contradiction. So $x \in [a,b]$. Hence (x_n) converges in [a,b]. So [a,b] is complete.

- **1.5.2.** Let X be the space of all ordered n-tuples $x=(x_1,...,x_n)$ for real numbers and $d(x,y)=\max_j|x_j-y_j|$ where $y=(y_i)$. Let (x_k) be a Cauchy sequence in X. Then for $\epsilon>0$, there exists N with m,k>N such that $d(x_k,x_m)=\max_j|x_{k_j}-x_{m_j}|<\epsilon$. Since this is true, $d(x_{k_i},x_{m_i})<\epsilon$ where x_{k_i} is the i^{th} entry of the k^{th} tuple. Since each entry is from $\mathbb R$ and $\mathbb R$ is complete, then for $\frac{\epsilon}{n}>0$, there exists N such that when i>N, $|x_{k_i}-x_i^*|<\frac{\epsilon}{n}$. Let $x^*=(x_1^*,...,x_n^*)$. Then $d(x_k,x^*)=\max_j|x_{k_j}-x_j^*|<\epsilon$. Since x^* is an ordered n-tuple of real numbers, $x^*\in X$. So (x_k) converges.
- **1.5.3.** Let $M \subset l^{\infty}$ be the subspace consisting of all sequences $x = (x_i)$ with at most finitely many nonzero terms. Consider the sequence of sequences $(x_n) = (1 + \frac{1}{n}, ..., 1 + \frac{1}{n}, 0, 0, ...)$ where the first n entries are $1 + \frac{1}{n}$. Thus, for $\epsilon > 0$, there exists $N = \frac{1}{\epsilon}$ such that when m > n > N,

$$d((x_n), (x_m)) = \sup_{i} |(x_{n_i} - x_{m-i})| = |\frac{1}{n}| < \frac{1}{N} = \epsilon$$

. So (x_n) is Cauchy. However each entry is made up of entries in \mathbb{R} which is complete. So $1 + \frac{1}{n}$ converges. Namely, as $n \to \infty$, $1 + \frac{1}{n} \to 1$. So as $n \to \infty$, $(x_n) \to (1, 1, ...)$. This is not a sequence with finitely many nonzero terms, in fact it has infinite. Thus, (x_n) converges to a sequence not in M, so it does not converge. So M is not complete.

- **1.5.8.** Consider $Y \subset C[a,b]$ the space of all $x \in C[a,b]$ where x(a) = x(b). Let (x_n) be a Cauchy sequence in Y. Then for $\epsilon > 0$, there exists N such that when m, n > N, $d(x_n, x_m) = \max_{t \in [a,b]} |x_n(t) x_m(t)| < \epsilon$. Since C[a,b] is complete, we know that (x_n) converges to x. Thus, for $\epsilon^* > 0$, there exist M such that when n > M, $d(x_n, x) = \max_t |x_n(t) x(t)| < \epsilon^*$. Thus, $|x_n(a) x(a)| < \epsilon^*$ and $|x_n(b) x(b)| < \epsilon^*$. Since $x_n(a) = x_n(b)$, we know that $|x_n(b) x(a)| < \epsilon^*$ and $|x_n(a) x(b)| < \epsilon^*$. So $|x(b) x(a)| \le |x(b) x_n(a)| + |x_n(a) x_n(a)| < \epsilon^* + \epsilon^* = 2\epsilon^*$. Thus, $x \in Y$. So $x \in Y$ is complete.
- **1.5.10.** Consider the discrete metric space X=(X,d). Let (x_n) be a Cauchy sequence. Then for $\epsilon>0$, there exist N such that for m,n>N, $d(x_n,x_m)<\epsilon$. So $d(x_n,x_m)=0$. Let $x=x_m$. Then $d(x_n,x)=0<\epsilon$. So (x_n) converges. Since $x_m\in(x_n)$, $x_m\in X$. So X is complete.