Bayesian Updating

Incorporates evidence one piece at a time: If the patient appears at the dental surgery with toothache

$$P(Cavity|Toothache) = P(Cavity) \frac{P(Toothache|Cavity)}{P(Toothache)}$$

When *Catch* is observed we seek to find a way of applying Bayes rule for this single new piece of evidence. First applying the product rule as before gives:

$$P(Cavity|Toothache \land Catch) = \frac{P(Toothache \land Catch \land Cavity)}{P(Toothache \land Catch)} \tag{1}$$

Looking first at the denominator. Again by the product rule:

$$P(Toothache \land Catch) = P(Catch|Toothache)P(Tootache)$$

Looking now at the numerator (also by the product rule and remembering that "\"\" is commutative):

$$P(Toothache \land Catch \land Cavity) = P(Catch | Toothache \land Cavity) P(Toothache \land Cavity)$$

But: $P(Toothache \land Cavity) = P(Cavity|Toothache)P(Toothache)$ [funnily enough this is also by the product rule.]

Substituting back into equation 1 gives:

$$P(Cavity|Toothache \land Catch) = \frac{P(Catch|Toothache \land Cavity)P(Cavity|Toothache)P(Toothache)}{P(Catch|Toothache)P(Toothache)} - \frac{P(Catch|Toothache)P(Toothache)}{P(Catch|Toothache)} - \frac{P(Catch|Toothache)}{P(Catch|Toothache)} - \frac{P(Catch|Toothache)}{P(Catch|Toot$$

In this case we know the equation for PCavity|Toothache) having used it already when Toothache was the only piece of evidence. So the above becomes:

$$P(Cavity|Toothache \land Catch) = P(Cavity) \frac{P(Toothache|Cavity)}{P(Toothache)} \frac{P(Catch|Toothache \land Cavity)}{P(Catch|Toothache)}$$

This equation matches the one in Russel & Norvig. So we have filled in the gaps of their presentatin for Bayesian updating.

Conditional Independence

Conditional independence expresses the relationship that pertains once we know the direct causes of some evidence. For example, once it is Cavity, the presence of a Catch is not going to change the probability that the Cavity is causing the Toothache. Similarly, the presence of a Toothache is not going to change the probability that the Cavity is causing the Catch. This can be written as:

$$P(Catch|Cavity \land Toothache) = P(Catch|Cavity)$$

$$P(Toothache|Cavity \land Catch) = P(Toothache|Cavity)$$

So we can simplify the updating equation as follows:

$$P(Cavity|Toothache \land Catch) = P(Cavity) \frac{P(Toothache|Cavity)}{P(Toothache)} \frac{P(Catch|Cavity)}{P(Catch|Toothache)} \frac{P(Catch|Cavity)}{P(Catch|Toothache)} \frac{P(Catch|Cavity)}{P(Catch|Cavity)} \frac{P(Catch|Cavity)}{P(Catch|Cavity)}$$

The product of the denominators of this equations can be written as: $P(Tootheache \wedge Catch)$ (from the product rule) and can be eliminated by means of normalization as follows: (this bit is not in $R \otimes N$ - they leave it for you to work out).

$$P(Cavity|Toothache \land Catch) = \frac{P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)}{P(Toothache \land Catch)}$$

$$P(Cavity|Toothache \land Catch) = \frac{P(Cavity)P(Toothache | Cavity)P(Catch | Cavity)}{P(Toothache \land Catch)}$$

Remembering that these two equations must sum to 1, we can construct the sum and multiply both sides by $P(Toothache \wedge Catch)$, giving:

 $P\left(Toothache \land Catch\right) = P\left(Cavity\right)P\left(Toothache | Cavity\right)P\left(Catch | Cavity\right) + P\left(Cavity\right)P\left(Toothache | Cavity\right)P\left(Catch | Cavity\right)$

Therefore the final form of the Bayesian updating equation is:

 $P\left(Cavity \middle| Toothache \land Catch\right) = \frac{P\left(Cavity\right)P\left(Toothache \middle| Cavity\right)P\left(Catch \middle| Cavity\right)}{P\left(Cavity\right)P\left(Toothache \middle| Cavity\right)P\left(Catch \middle| Cavity\right) + P\left(Cavity\right)P\left(Toothache \middle| Cavity\right)P\left(Catch \middle| Cavity\right)}$