ECE275 Midterm 1 Spring 2025

Instructor: Vikas Dhiman (vikas.dhiman@maine.edu)

February 24, 2025

Student Name: Student Email:

1 Instructions

- Time allowed is 50 minutes.
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- The examination is closed-book. One 8×11 in two-sided cheatsheet is allowed.
- Non-programmable calculators are permitted.
- The maximum number of marks is 50, as indicated; the midterm examination amounts 10% toward the final grade.
- Please use a pen or heavy pencil to ensure legibility. Colored pens/pencils are recommended for K-map grouping.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 1. Use the following 4-variable K-map for F (A, B, C, D), and find a minimal SOP expression for F (5 marks)

CD A	B_{00}	01	11	10
00	0	0	0	1
01	1	1	1	1
11	0	0	0	1
10	0	0	0	1

Problem 2. Use Boolean algebra to find a simplified SOP expression for Y (5 marks)

Problem 3. Draw the ANSI diagram for the following function, using only NAND gates. Repeat using only NOR gates: $F = \bar{A}B\bar{C} + \underline{B}D + \underline{A}C + \bar{B}C\bar{D}$. (15 marks)

NAND - NAND

Product of Sums

Problem 4. Consider a circuit to multiply two two-bit unsigned numbers. Denote the two bits of first number as A_1A_0 (forming the number N_A) and the two bits of second number as B_1B_0 (forming the number N_B). The circuit will find the product $N_A * N_B$. The result will be a 4-bit number $D_3D_2D_1D_0$.

- 1. Start with filling out the following truth table (5 example rows are provided) (10 marks).
- 2. Use K-maps to find minimal Product of sum form for D_0 (10 marks).
- 3. Draw an ANSI network for D_0 using NOR gates only (5 marks).

	_						
A_1	A_0	B_1	B_0	$\mid D_3 \mid$	D_2	D_1	D_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1	1	0	0	1

This page is left blank for Prob 4.