Review of Mathematical Foundations

Calculus, Set Theory, and Linear Algebra

Objective

Objective

Review basic notations from Calculus & Set Theory

Objective

Review key Linear Algebra concepts and operations

Basic Notations from Calculus (1/3)

- Derivative of f(x) with respect to x
- Partial derivative of a function f(x,y,...) with respect to x
 - Note: the function may be scalar-valued or vector-valued

Basic Notations from Calculus (2/3)

 \Re^d : d-dimensional Euclidean space.

Gradient operator in ℜd: ∇

Basic Notations from Calculus (3/3)

- The integral of f(x) between a and b
- The argmin or argmax notation

Basic Notations from Set Theory (1/2)

A set S is a collection of objects.

– Ø: the empty set (a special set that contains no object)

Some basic relations and operations

- $-x \in A$: An object x is a member of a set A.
- $-A \subseteq B$: Set A is a subset of $B \iff x \in A \Rightarrow x \in B$
- -B ⊂ C: Set B is a proper subset of C.

Basic Notations from Set Theory (2/2)

Some basic relations and operations

- $-A \cup B$: The union of A and B.
- $A \cap B$: The intersection of A and B. (AB in shorthand)
- $-A^c$ or \overline{A} : The complement of A
- -A and B are disjoint if $A \cap B = \emptyset$

Linear Algebra: Basic Notations (1/4)

A *d*-dimensional column vector x and its transpose x^t

n by d matrix M and its d by n transpose M^t

Linear Algebra: Basic Notations (2/4)

- A square matrix M is symmetric if
- Multiplying a vector by a matrix: Mx = y
- Multiplying two matrices M₁ and M₂

Linear Algebra: Basic Notations (3/4)

- The identity matrix I of d by d
- Inner product of two vectors xty
- Outer product of two vectors xy^t

Linear Algebra: Basic Notations (4/4)

The length or Euclidean norm of a vector x, denoted ||x||

Normalized vector, ||x|| = 1

Matrix: Additional Definitions (1/2)

Determinant of a matrix M: denoted |M| or det(M)

- Look at size 2x2
- What about size 3x3 and above?

Trace of a matrix

Matrix: Additional Definitions (2/2)

Matrix inversion M⁻¹

Eigenvectors and eigenvalues of M

Derivatives Involving Matrices (1/3)

If the entries of a matrix M depend on a scalar parameter θ , we have $\frac{\partial M}{\partial \theta} =$

Derivative of a scalar-valued function f(x) of d variables x_i , i=1,...,d, and $x=(x_1, ..., x_d)^t$, or the gradient w.r.t. x is $\nabla f(x) = \frac{\partial f(x)}{\partial x} =$

Derivatives Involving Matrices (2/3)

If f(x) is an *n*-dimensional vector-valued function of *d* variables x_i , i=1,...,d, and $x=(x_1, ..., x_d)^t$, we have the derivative as* $\frac{\partial f(x)}{\partial x} =$

^{*} We could use the Jacobian form too; See "numerator layout" vs "denominator layout" in matrix calculus.

Derivatives Involving Matrices (3/3)

Some useful results:

$$\frac{\partial}{\partial \mathbf{x}}[\mathbf{M}\mathbf{x}] =$$

$$\frac{\partial}{\partial \mathbf{x}}[\mathbf{y}^{\mathsf{t}}\mathbf{x}] =$$

$$\frac{\partial}{\partial \mathbf{x}} [\mathbf{x}^t \mathbf{M} \mathbf{x}] =$$

Review of Mathematical Foundations

Basics in Probability Theory

Objective

Objective

Define Probability Space

Objective

Discuss
Conditional
Probability and
Bayes Rule

Probability Space (1/2)

A probability space is a triplet (Ω, \mathcal{B}, P) that is used to model a process or an experiment with random outcomes.

- The **sample space** Ω is the set of all possible outcomes of an experiment
 - Consider two different experiments
 - (1) Tossing a coin; (2) Tossing a die

Probability Space (2/2)

 \mathcal{B} : a sigma algebra (or Borel field), or informally, a collection of subsets of Ω , subject to some constraints (like containing the empty set, being closed under complements and countable union)

P: a measure called probability defined on \mathcal{B} , that satisfies

- $-P(A) \ge 0$ for all $A \in \mathcal{B}$
- $-P(\Omega)=1$
- If $A_1, A_2, ... \in \mathcal{B}$ are pairwise disjoint then $P(\bigcup A_i) = \sum P(A_i)$ (i.e., $A_i A_k = \emptyset$, $\forall j \neq k$)

Conditional Probability

Let (Ω, \mathcal{B}, P) be a probability space, and let $H \in \mathcal{B}$ with P(H) > 0. For any $B \in \mathcal{B}$, we define P(B|H) = P(BH) / P(H) and call P(B|H) the conditional probability of B, given H.

The Total Probability Rule

```
Let (\Omega, \mathcal{B}, P) be a probability space, and let \{H_j\} be pairwise disjoint events in \mathcal{B} (i.e., H_jH_k=\mathcal{O}, \forall j\neq k) and \bigcup_{j=1,...,\infty}H_j=\Omega. Suppose P(H_j)>0, \forall j, then P(B)=\sum_{j=1,...,\infty}P(H_j)P(B/H_j)
```

-Such $\{H_j\}$ is called a partition of Ω .

The Bayes Rule

Let (Ω, \mathcal{B}, P) be a probability space, and let $\{H_j\}$ be pairwise disjoint events in \mathcal{B} with $\bigcup_{j=1,...,\infty} H_j = \Omega$, and $P(H_j) > 0$, $\forall j$. We have, $\forall B \in \mathcal{B}$ and P(B) > 0,

$$P(H_{j}|P(B|H_{j})) = \frac{P(H_{j})P(B|H_{j})}{\sum_{i=1,...,\infty} P(H_{i})P(B|H_{i})}, \quad \forall j$$

Independence of Events

Let (Ω, \mathcal{B}, P) be a probability space, $\forall A, B \in \mathcal{B}$, we say A and B are independent if P(AB) = P(A)P(B).

Review of Mathematical Foundations

Random Variables and Common Distributions

Objective

Objective

Review random variables & their distributions

Discrete Random Variables

Let x be a discrete random variable that can take any of the m different values in the set $V=\{v_1, v_2, ..., v_m\}$ with respective probabilities $\{p_1, p_2, ..., p_m\}$, i.e., $p_i=Prob[x=v_i]$.

$$-p_i \ge 0$$
, $\sum_{j=1,\ldots,m} p_j = 1$

Probability Mass Function P(x) is used to represent the set of probabilities $\{p_1, p_2, ..., p_m\}$

$$-P(x) \ge 0$$
, $\sum_{x \text{ in } \vee} P(x) = 1$

Expected Value (Means) & Variance

The expected value (mean) of x, E[x], often denoted μ

$$\mu = E[x] = \sum_{x \text{ in } \vee} xP(x)$$

The expected value of a function f(x), E[f(x)],

$$\mathsf{E}[f(\mathsf{x})] = \sum_{x \text{ in } \lor} f(x) P(x)$$

E[] is linear when viewed as an operator.

$$\mathsf{E}[\alpha f(\mathsf{x}) + \beta g(\mathsf{x})] =$$

The variance of x, Var[x], often denoted σ^2

$$\sigma^2 = Var(x) = E[(x-\mu)^2] = \sum_{x \text{ in } V} (x-\mu)^2 P(x)$$

Joint Distributions

Consider a pair of discrete random variables, x and y, taking values in $V=\{v_1, v_2, ..., v_m\}$ and $W=\{w_1, w_2, ..., w_n\}$ respectively.

- -(x, y) to take a pair of values (v_i, w_j) with probability p_{ij}
- -Or, we consider the **joint probability mass function** P(x, y)

Marginal Distributions

Knowing P(x, y), can we figure out $P_x(x)$ or $P_y(y)$?

→ The concept of marginal distribution for *x* and *y* respectively.

Statistical Independence

Random variables x and y are said to be statistically independent if and only if $P(x, y) = P_x(x) P_y(y)$

Covariance

Cov(x, y), often denoted σ_{xy}

Covariance matrix Σ , $\Sigma = E[(x - \mu)(x - \mu)^t]$

Conditional Density

$$P(x|y) =$$

Similarly, we may write the Bayes Rule in terms of densities.

How about continuous random variables?

- Instead of P(x), we have the probability density function (PDF) p(x)
- Some properties of p(x):
- The cumulative distribution function (CDF) *F(x)*:

Continuous Random Variables

Mean, variance, etc., are similarly defined, via integrals.

Joint PDF p(x,y) of two variables

- Marginal PDFs for x and y
- If $x \sim p_x(x)$ and $y \sim p_y(y)$ are independent p(x,y) =

Continuous Random Variables

Conditional PDF p(x|y)

Bayes rule for PDF:

Review of Mathematical Foundations

Common Densities

Objective

Objective

Discuss common densities useful for machine learning application

Common Distributions

Uniform Distribution

Normal (Gaussian) Distribution

The Uniform Distribution, U(a, b)

1-D example, with PDF

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & o.w. \end{cases}$$

The Uniform Distribution, U(a, b)

What is the CDF of p(x)?

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & o.w. \end{cases}$$

The Normal Distribution, $N(\mu, \sigma^2)$

1-D example, with PDF

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Normal Distribution, $N(\mu, \sigma^2)$

1-D example, with PDF

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

What is the mean and variance?

Standardized Normal Distribution

1-D example, with PDF

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

What is the CDF?

The error function

$$\operatorname{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-x^2} dx$$

CDF for General Normal Distribution

What is the CDF for $N(\mu, \sigma^2)$?

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multivariate Normal Distribution

d-dimensional vector x is said to be of multivariate normal distribution if its PDF is of the form

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

Visualization of a 2-d example

Whitening Transformation

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

Given some data x distributed according to the above density, we may apply some transformation to x, so that the covariance matrix of the transformed data is diagonal.

– The transformation can be formed by the eigenvectors of $\boldsymbol{\Sigma}$