FGV EMAp

João Pedro Jerônimo e Arthur Rabello Oliveira

Algebra Linear Numérica

Revisão para A2

Contents

1.	Lecture 16 - Estabilidade da Triangularização de Householder	. 3
	1.1. O Experimento	. 3
	1.2. Teorema	. 4
	1.3. Algoritmo para resolver $Ax = b$. 4
2.	Lecture 17 - Estabilidade da Back Substitution	. 6
	2.1. Teorema da Estabilidade Retroativa (Backward Stability)	. 7
3.	Lecture 24 - Problemas de Autovalores	. 7
	3.1. Definições	. 7
	3.2. Decomposição em Autovalores	. 7
	3.3. Multiplicidades Algébrica e Geométrica	. 8
	3.4. Transformações Similares	. 9
	3.5. Diagonalização	. 9
	3.6. Autovalores e Matrizes Deficientes	. 9
	3.7. Determinante e Traço	. 9
	3.8. Diagonalização Unitária	. 9
	3.9. Forma de Schur	
4.	Lecture 25 - Algoritmos de Autovalores	. 9
	4.1. Ideia da Iteração de Potência	. 9
	4.2. A ideia dos Algoritmos de Autovalores	. 9
	4.3. Forma de Schur e Diagonalização	. 9
	4.4. As 2 fases do Cálculo de Autovalores, Forma de Hessenberg	
5.	Lecture 26 - Redução à forma de Hessenberg	
	5.1. A Redução	
	5.2. Redução à Hessenberg via Householder	
	5.3. Custo Computacional	. 9
	5.4. O Caso Hermitiano	
	5.5. Estabilidade do Algoritmo	
6.	Lecture 27 - Quociente de Rayleigh e Iteração Inversa	
	6.1. Restrição à matrizes reais e simétricas	. 9
	6.2. Quociente de Rayleigh	
	6.3. Iteração de Potência com o Quociente de Rayleigh	
	6.4. Iteração Inversa	
	Lecture 31 - Calculando a SVD	
	7.1. SVD de A via autovalores de A^*A	. 9

Nota: Os **computadores ideais** que mencionaremos, são computadores nos quais o *axioma fundamental* da aritmética de ponto flutuante é satisfeito. Convidamos o leitor a ler sobre isso no resumo anterior (A1), especificamente na **lecture 13**

1. Lecture 16 - Estabilidade da Triangularização de Householder

Nesse capítulo, a gente tem uma visão mais aprofundada da análise de **erro retroativo** (Backwards Stable). Dando uma breve recapitulada, para mostrar que um algoritmo $\tilde{f}: X \to Y$ é **backwards stable**, você tem que mostrar que, ao aplicar \tilde{f} em uma entrada x, o resultado retornado seria o mesmo que aplicar o problema original $f: X \to Y$ em uma entrada levemente perturbada $x + \Delta x$, de forma que $\Delta x = O(\varepsilon_{\text{machine}})$.

1.1. O Experimento

O livro nos mostra um experimento no matlab para demonstrar a estabilidade em ação e alguns conceitos importantes, irei fazer o mesmo experimento, porém, utilizarei código em python e mostrarei meus resultados aqui.

Primeiro de tudo, mostraremos na prática que o algoritmo de **Householder** é **backwards stable**. Vamos criar uma matriz A com a fatoração QR conhecida, então vamos gerar as matrizes Q e R. Aqui, temos que $\varepsilon_{\rm machine} = 2.220446049250313 \times 10^{-16}$:

```
1
     import numpy as np
                                                                                        Python
2
     np.random.seed(0) # Ter sempre os mesmos resultados
3
     # Crio R triangular superior (50 x 50)
     R 1 = np.triu(np.random.random sample(size=(50, 50)))
5
     # Crio a matriz Q a partir de uma matriz aleatória
     Q_1, _ = np.linalg.qr(np.random.random_sample(size=(100, 50)), mode='reduced')
7
     # Crio a minha matriz com fatoração QR conhecida (A = Q_1 R_1)
     A = Q_1 @ R_1
8
9
     # Calculo a fatoração QR de A usando Householer
10
     Q 2, R 2 = householder qr(A)
```

Sabemos que, por conta de erros de aproximação, a matriz A que temos no código não é **exatamente** igual a que obteríamos se tivéssemos fazendo Q_1R_1 na mão, mas é preciso o suficiente. Podemos ver aqui que elas são diferentes:

```
CÓDIGO

11 print(np.linalg.norm(Q_1 - Q_2))
12 print(np.linalg.norm(R_1 - R_2))
```

```
SAÍDA

1 7.58392995752057e-8

2 8.75766271246312e-9
```

Perceba que é um erro muito grande, não é tão próximo de 0 quanto eu gostaria, se eu printasse as matrizes Q_2 e R_2 eu veria que, as entradas que deveriam ser 0, tem erro de magnitude $\approx 10^{17}$. Bem, se ambas tem um erro tão grande, então o resultado da multiplicação delas em comparação com A também vai ser grande, correto?

```
SAÍDA
1 3.8022328832723555e-14
```

Veja que, mesmo minhas matrizes Q_2 e R_2 tendo erros bem grandes com relação às matrizes Q_1 e R_2 , conseguimos uma aproximação de A bem precisa com ambas. Vamos agora dar um destaque nessa acurácia de Q_2R_2 :

```
CÓDIGO

1 delta_Q_1 = np.random.random_sample(size=Q_1.shape)
2 delta_R_1 = np.random.random_sample(size=R_1.shape)
3 Q_3 = Q_1 + delta_Q_1 * 1e-4
4 R_3 = R_1 + delta_R_1 * 1e-4
5 print(np.linalg.norm(A - Q_3 @ R_3))
```

```
SAÍDA
1 0.05197521348918455
```

Perceba o quão grande é esse erro, é **enorme**, então: Q_2 não é melhor que Q_3 , R_2 não é melhor que R_3 , mas Q_2R_2 é muito mais preciso do que Q_3R_3

1.2. Teorema

Vamos ver que, de fato, o algoritmo de **Householder** é **backwards stable** para toda e qualquer matriz A. Fazendo a análise de backwards stable, nosso resultado precisa ter esse formato aqui:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{1}$$

com $\|\delta A\|$ / $\|A\| = O(\varepsilon_{\text{machine}})$. Ou seja, calcular a QR de A pelo algoritmo é o mesmo que calcular a QR de $A+\delta A$ da forma matemática. Mas aqui temos uns adendos.

A matriz \tilde{R} é como imaginamos, a matriz triangular superior obtida pelo algoritmo, onde as entradas abaixo de 0 podem não ser exatamente 0, mas **muito próximas**.

Porém, \tilde{Q} não é aproximadamente ortogonal, ela é perfeitamente ortogonal, mas por quê? Pois no algoritmo de Householder, não calculamos essa matriz diretamente, ela fica "implícita" nos cálculos, logo, podemos assumir que ela é perfeitamente ortogonal, já que o computador não a calcula, ou seja, não há erros de arredondamento. Vale lembrar também que \tilde{Q} é definido por:

$$\tilde{Q} = \tilde{Q}_1 \tilde{Q}_2 ... \tilde{Q}_n \tag{2}$$

De forma que \tilde{Q} é perfeitamente unitária e cada matriz \tilde{Q}_j é definida como o refletor de householder no vetor de floating point $\tilde{v_k}$ (Olha a página 73 do livro pra você relembrar direitinho o que é esse vetor $\tilde{v_k}$ no algoritmo). Lembrando que \tilde{Q} é perfeitamente ortogonal, já que eu não calculo ela no computador diretamente, se eu o fizesse, então ela não seria perfeitamente ortogonal, teriam pequenos erros.

Teorema 1.2.1 (Householder's Backwards Stability): Deixe que a fatoração QR de $A \in \mathbb{C}^{m \times n}$ seja dada por A = QR e seja computada pelo algoritmo de **Householder**, o resultado dessa computação são as matrizes \tilde{Q} e \tilde{R} definidas anterioremente. Então temos:

$$\tilde{Q}\tilde{R} = A + \delta A \tag{3}$$

Tal que:

$$\frac{\|\delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{4}$$

para algum $\delta A \in \mathbb{C}^{m \times n}$

1.3. Algoritmo para resolver Ax = b

Vimos que o algoritmo de householder é backwards stable, show! Porém, sabemos que não costumamos fazer essas fatorações só por fazer né, a gente faz pra resolver um sistema Ax=b, ou outros tipos de problemas. Certo, mas, se fizermos um algoritmo que resolve Ax=b usando a fatoração QR obtida com householder, a gente precisa que Q e R sejam precisos? Ou só precisamos que QR seja preciso? O bom é que precisamos apenas que QR seja precisa! Vamos mostrar isso para a resolução de sistemas $m\times m$ não singulares.

```
1 function ResolverSistema(A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^{m \times 1}) {
2 | QR = \text{Householder}(A)
3 | y = Q^*b
4 | x = R^{-1}y
5 | return x
6 }
```

Esse algoritmo é **backwards stable**, e é bem passo-a-passo já que cada passo dentro do algoritmo é **backwards stable**.

Teorema 1.3.1: O Algoritmo 1 para solucionar Ax = b é backwards stable, satisfazendo

$$(A + \Delta A)\tilde{x} = b \tag{5}$$

com

$$\frac{\|\Delta A\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{6}$$

para algum $\Delta A \in \mathbb{C}^{m \times n}$

Demonstração: Quando computamos \tilde{Q}^*b , por conta de erros de aproximação, não obtemos um vetor y, e sim \tilde{y} . É possível mostrar (Não faremos) que esse vetor \tilde{y} satisfaz:

$$\left(\tilde{Q} + \delta Q\right)\tilde{y} = b \tag{7}$$

satisfazendo $\frac{\|\delta Q\|}{\|\tilde{Q}\|} = O(\varepsilon_{\mathrm{machine}})$

Ou seja, só pra esclarecer, aqui (nesse passo de y) a gente ta tratando o problema f de calcular Q^*b , ou seja $f(Q)=Q^*b$, então usamos um algoritmo comum $\tilde{f}(Q)=Q^*b$ (Não matematicamente, mas usando as operações de um computador), daí reescrevemos isso como $\tilde{f}(Q)=(Q+\delta Q)^*b$, por isso podemos reescrever como a equação que falamos anteriormente.

No último passo, a gente usa **back substitution** pra resolver o sistema $x = R^{-1}y$ e esse algoritmo é **backwards stable** (Isso vamos provar na próxima lecture). Então temos que:

$$(\tilde{R} + \delta R)\tilde{x} = \tilde{y} \tag{8}$$

satisfazendo $\frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\mathrm{machine}})$

Agora podemos ir pro algoritmo em si, temos um problema f(A): Resolver Ax=b, daí usamos $\tilde{f}(A)$: Usando householder, resolve Ax=b. Então, se o algoritmo nos dá as matrizes perturbadas que citei anteriormente $(Q+\delta Q$ e $R+\delta R)$, ao substituir isso por A, eu tenho que ter um resultado $A+\Delta A$ com $\frac{\|\Delta A\|}{\|A\|}=O(\varepsilon_{\mathrm{machine}})$, vamos ver:

$$b = (\tilde{Q} + \delta Q)(\tilde{R} + \delta R)\tilde{x} \tag{9}$$

$$b = \left(A + \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R)\right)\tilde{x}$$
(10)

$$b = (A + \Delta A)\tilde{x} \Leftrightarrow \Delta A = \delta A + \tilde{Q}(\delta R) + (\delta Q)\tilde{R} + (\delta Q)(\delta R) \tag{11}$$

Como ΔA é a soma de 4 termos, temos que mostrar que cada um desses termos é pequeno com relação a A (Ou seja, mostrar que $\frac{\|X\|}{\|A\|} = O(\varepsilon_{\text{machine}})$ onde X é um dos 4 termos de ΔA).

- δA : Pela própria definição que o algoritmo de householder é backwards stable nós sabemos que δA satisfaz a condição de $O(\varepsilon_{\mathrm{machine}})$
- $(\delta Q)\tilde{R}$:

$$\frac{\|(\delta Q)\tilde{R}\|}{\|A\|} \le \|(\delta Q)\| \ \frac{\|\tilde{R}\|}{\|A\|} \tag{12}$$

Perceba que

$$\frac{\|\tilde{R}\|}{\|A\|} \le \frac{\|\tilde{Q}^*(A+\delta A)\|}{\|A\|} \le \|\tilde{Q}^*\| \frac{\|A+\delta A\|}{\|A\|}$$
(13)

Lembra que, quando trabalhamos com $O(\varepsilon_{\rm machine})$, a gente ta trabalhando com um limite implícito que, no caso, aqui é $\varepsilon_{\rm machine} \to 0$. Ou seja, se temos que $\varepsilon_{\rm machine} \to 0$, o erro de arredondamento diminui cada vez mais, certo? Então $\delta A \to 0$ ou seja:

$$\frac{\|\tilde{R}\|}{\|A\|} = O(1) \tag{14}$$

O que nos indica que

$$\|\delta Q\| \frac{\|\tilde{R}\|}{\|A\|} = O(\varepsilon_{\text{machine}}) \tag{15}$$

• $\tilde{Q}(\delta R)$: Provamos de uma forma similar

$$\frac{\|\tilde{Q}(\delta R)\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|A\|} = \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} \frac{\|\tilde{R}\|}{\|A\|} \le \|\tilde{Q}\| \frac{\|\delta R\|}{\|\tilde{R}\|} = O(\varepsilon_{\text{machine}})$$

$$\tag{16}$$

• $(\delta Q)(\delta R)$: Por último:

$$\frac{\|(\delta Q)(\delta R)\|}{\|A\|} \le \|\delta Q\| \frac{\|\delta R\|}{\|A\|} = O(\varepsilon_{\text{machine}}^2)$$
(17)

Ou seja, todos os termos de ΔA são da ordem $O(\varepsilon_{\rm machine})$, ou seja, provamos que resolver Ax=b usando householder é um algoritmo **backwards stable**. Se a gente junta alguns teoremas e temos que:

Teorema 1.3.2: A solução \tilde{x} computada pelo algoritmo satisfaz:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = O(\kappa(A)\varepsilon_{\text{machine}}) \tag{18}$$

2. Lecture 17 - Estabilidade da Back Substitution

Só para esclarecer, o termo back substitution se refere ao algoritmo de resolver um sistema triangular superior

$$\begin{pmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & r_{mm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$(19)$$

E é aquele esquema, a gente vai resolvendo de baixo para cima, o que resulta nesse algoritmo (A gente escreve como uma sequência de fórmulas por conveniência, mas é o mesmo que escrever um loop):

```
 \begin{array}{ll} \text{1 } \textbf{function} \ \text{BackSubstitution} (R \in \mathbb{C}^{m \times m}, b \in \mathbb{C}^{m \times 1}) \, \{ \\ 2 & | x_m = b_m/r_{mm} \\ 3 & | x_{m-1} = \left(b_{m-1} - x_m r_{m-1,m}\right)/r_{m-1,m-1} \\ 4 & | x_{m-2} = \left(b_{m-2} - x_{m-1} r_{m-2,m-1} - x_m r_{m-2,m}\right)/r_{m-2,m-2} \\ 5 & | \vdots \\ 6 & | x_j = \left(b_j - \sum_{k=j+1}^m x_k r_{jk}\right)/r_{jj} \\ 7 & \} \end{array}
```

Algoritmo 2: Algoritmo de Back Substitution

2.1. Teorema da Estabilidade Retroativa (Backward Stability)

A gente viu no último tópico (Estabilidade de Householder) que a **back substitution** era um dos passos para chegar no resultado final, porém, nós apenas assumimos que ela era **backward stable**, mas a gente **não** provou isso! Porém, antes de provarmos isso, vamos estabelecer que as subtrações serão feitas da esquerda para a direita (Sim, isso pode influenciar). Mas, como o livro não explica muito bem o porquê de isso influenciar, vou dar uma breve explicação e exemplificação:

Quando realizamos uma sequência de subtrações pela **direita**, caso os números sejam muito próximos, pode ocorrer o chamado **cancelamento catastrófico**, que é a perca de muitos dígitos significativos, veja um exemplo:


```
SAÍDA
1 -1.0
```

O que parece correto! Mas veja o que acontece se invertermos a ordem e executarmos a-(b-c)

Veja que houve um problema no arredondamento! Então os sistemas, por convenção, utilizam o esquema de subtrações pela esquerda.

Voltando ao algoritmo de **back substitution**, temos o seguinte teorema:

Teorema 2.1.1: Deixe o Algoritmo 2 ser aplicado a um problema de Rx = b com R triangular superior.

3. Lecture 24 - Problemas de Autovalores

Esse capítulo nada mais é do que uma revisão de resultados da A2 de álgebra linear.

3.1. Definições

Dada uma matriz $A \in \mathbb{C}^{m \times n}$, pela decomposição SVD $A = U\Sigma V^*$ sabemos que A é uma transformação que **estica** e **rotaciona** vetores. Por isso, estamos interessados em subespaços de \mathbb{C}^m nos quais a matriz age como uma multiplicação escalar, ou seja, estamos interessados nos $x \in \mathbb{C}^n$ que são somente esticados pela matriz. Como $Ax \in \mathbb{C}^m$ e $\lambda x \in \mathbb{C}^n$, concluimos que m = n: A matriz **deve ser quadrada**. Afinal, não faz sentido se λx e Ax estiverem em conjuntos distintos. Com isso, prosseguimos com a definição:

Definição 3.1.1: (Autovalores e Autovetores) Dada $A \in \mathbb{C}^{m \times m}$, um *autovetor* de A é $x \in \mathbb{C}^m \setminus \{0\}$ que satisfaz:

$$Ax = \lambda x \tag{20}$$

 $\lambda \in \mathbb{C}$ é dito *autovalor* associado a x.

3.2. Decomposição em Autovalores

Uma **decomposição em autovalores** de uma matriz $A \in \mathbb{C}^{m \times n}$ é uma fatoração:

$$A = X\Lambda X^{-1} \tag{21}$$

Onde Λ é diagonal e $\det(X) \neq 0$.

Isso é equivalente a:

Da eq. (22) e da Definição 3.1.1, decorre que $Ax_i = \lambda_i x_i$, então a i-ésima coluna de X é um autovetor de A e λ_i é o autovalor associado (a x_i).

A decomposição apresentada pode representar uma mudança de base: Considere Ax = b e $A = X\Lambda X^{-1}$, então:

$$Ax = b \Leftrightarrow X\Lambda X^{-1}x = b \Leftrightarrow \Lambda(X^{-1}x) = X^{-1}b \tag{23}$$

Então para calcular Ax, podemos expandir x como combinação das colunas de X e aplicar Λ . Como Λ é diagonal, o resultado ainda vai ser uma combinação das colunas de X.

3.3. Multiplicidades Algébrica e Geométrica

Como mencionado anteriormente, definimos os conjuntos nos quais a matriz atua como multiplicação escalar:

Definição 3.3.1: (Autoespaço) Dada $A \in \mathbb{C}^{m \times n}, \lambda \in \mathbb{C}$, o definimos $S_{\lambda} \in \mathbb{C}^m$ como sendo o **autoespaço** gerado por todos os $v_{\in}\mathbb{C}^m$ tais que $Av = \lambda v$

Interpretaremos $\dim(S_{\lambda})$ como a maior quantidade de autovetores L.I associados a um único λ , e chamaremos isso de multiplicidade geométrica de λ . Então temos:

Definição 3.3.2: (Multiplicidade Geométrica) A multiplicidade geométrica de λ é dim (S_{λ})

Note que da eq. (20):

$$Ax = \lambda x \Leftrightarrow Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I)x = 0 \tag{24}$$

Mas como $x \neq 0$ e $x \in N(A - \lambda I)$, $(A - \lambda I)$ não é injetiva. Logo não é inversível:

$$\det(A - \lambda I) = 0 \tag{25}$$

A eq. (25) se chama polinômio característico de A e é um polinômio de grau m em λ . Pelo teorema fundamental da Álgebra, se $\lambda_1,...,\lambda_n$ são raízes de eq. (25), então podemos escrever isso como:

$$p(\varphi) = (\varphi - \lambda_1)(\varphi - \lambda_2)...(\varphi - \lambda_n)$$
(26)

Com isso, prosseguimos com:

Definição 3.3.3: (Multiplicidade Algébrica) A multiplicidade algébrica de λ é a multiplicidade de λ como raiz do polinômio característico de A

- 3.4. Transformações Similares
- 3.5. Diagonalização
- 3.6. Autovalores e Matrizes Deficientes
- 3.7. Determinante e Traço
- 3.8. Diagonalização Unitária
- 3.9. Forma de Schur
- 4. Lecture 25 Algoritmos de Autovalores
- 4.1. Ideia da Iteração de Potência
- 4.2. A ideia dos Algoritmos de Autovalores

Escrever pqq tem q ser iterativo. (pag 192 trefethen)

- 4.3. Forma de Schur e Diagonalização
- 4.4. As 2 fases do Cálculo de Autovalores, Forma de Hessenberg
- 5. Lecture 26 Redução à forma de Hessenberg
- 5.1. A Redução
- 5.2. Redução à Hessenberg via Householder
- 5.3. Custo Computacional
- 5.4. O Caso Hermitiano
- 5.5. Estabilidade do Algoritmo
- 6. Lecture 27 Quociente de Rayleigh e Iteração Inversa
- 6.1. Restrição à matrizes reais e simétricas
- 6.2. Quociente de Rayleigh
- 6.3. Iteração de Potência com o Quociente de Rayleigh
- 6.4. Iteração Inversa
- 7. Lecture 31 Calculando a SVD
- 7.1. SVD de A via autovalores de A^*A

Calcular a SVD de A usando que $A^*A = V\Sigma^*\Sigma V$ igual a um sagui disléxico não é a melhor ideia, pois reduzimos o problema de SVD a um problema de autovalores, que é sensível à perturbações.

Um algoritmo estável para calcular a SVD de A, usa a matriz

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \tag{27}$$

Se $A=U\Sigma V^*$ é uma SVD de A, então $AV=\Sigma U$ e $A^*U=\Sigma^*V=\Sigma V$, portanto

$$\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \tag{28}$$

Ou:

$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} = \begin{pmatrix} V & V \\ U & -U \end{pmatrix} \cdot \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \cdot \begin{pmatrix} V & V \\ U & -U \end{pmatrix}^{-1}$$
 (29)

É uma decomposição em autovalores de H, e fica claro que os autovalores de H são os valores singulares de A, em módulo.

Agora note que ao calcular os autovalores de H, pagamos $\kappa(A)$, e não $\kappa^2(A)$, Pois

$$\kappa(H) = \|H\|_2 \cdot \left\|H^{-1}\right\|_2 = \frac{\sigma_1(H)}{\sigma_m(H)} = \frac{\sigma_1(A)}{\sigma_m(A)} = \kappa(A). \tag{30}$$