

1/7/2005

s 46.150.18/RID (P) 4.214.1/RID
13942898 46.150.18/RID
13439 4.214.1/RID
L4 5762 46.150.18/RID (P) 4.214.1/RID

=> s 14 and ether
78010 ETHER
933 ETHERS
78010 ETHER
(ETHER OR ETHERS)

L5 21 L4 AND ETHER

=> d 15 1-21 iall

L5 ANSWER 1 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 719709-67-8 REGISTRY
ED Entered STN: 30 Jul 2004
CN 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, 7-oxabicyclo[4.1.0]hept-3-ylmethyl ester, polymer with α -hydro- ω -hydroxypoly[oxy(oxiranyl-1,2-cyclohexanediyl)] ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1), and 3,3'-[1,4-phenylenebis(methyleneoxyethylene)]bis[3-ethyloxetane] (9CI) (CA INDEX NAME)
MF (C₂₀ H₃₀ O₄) . C₁₄ H₂₀ O₄ . (C₈ H₁₂ O₂)_n (C₈ H₁₂ O₂)_n (C₈ H₁₂ O₂)_n C₆ H₁₄ O₃)_x
CI PMS
PCT Epoxy resin, Manual component, Polyester, Polyether, Polyether formed, Polyether
SR CA
LC STN Files: CA, CAPLUS
DT.CA CAplus document type: Patent
RL.P Roles from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C ₂₀ -C ₆	OC ₂ -C ₆	3-6	C ₆ O	106.32.1	2 in CM
					3
C ₃₀	OC ₃	4	C ₃ O	4.214.1	2 in CM
					2
C ₆	C ₆	6	C ₆	46.150.18	1 in CM
					2

CM 1

CRN 244772-00-7
CMF (C₈ H₁₂ O₂)_n (C₈ H₁₂ O₂)_n (C₈ H₁₂ O₂)_n C₆ H₁₄ O₃
CCI IDS, PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 142627-97-2
CMF C₂₀ H₃₀ O₄

CM 3

CRN 2386-87-0
CMF C14 H20 O4

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 141:113883 CA
 TITLE: Light-transmitting epoxy resin sealing material,
 optical module sealed with the material, and
 manufacture of the optical module
 INVENTOR(S): Hashimoto, Shinji; Kitamura, Kenji; Nemoto, Tomoaki;
 Nakashiba, Toru; Yagyu, Hiroyuki; Kodera, Kohei;
 Ushiyama, Naoki; Matsushima, Tomoaki; Matsushita,
 Yukio; Kasai, Yuki; Kurai, Hiroyuki
 PATENT ASSIGNEE(S): Matsushita Electric Works, Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 26 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C08G059-40
 SECONDARY: C08L063-00; C08L071-02; H01L023-29; H01L023-31
 CLASSIFICATION: 73-11 (Optical, Electron, and Mass Spectroscopy and
 Other Related Properties)
 Section cross-reference(s): 38, 76
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004203943	A2	20040722	JP 2002-371881	20021224
PRIORITY APPLN. INFO.:			JP 2002-371881	20021224

ABSTRACT:

The material contains an epoxy resin, a crosslinking catalyst, and 0.01-1 mass% (based on the total amount) of $C_nH_{2n+1}N[(C_2H_4O)_xH](C_2H_4O)_yH$ ($n = 12-18$; $x + y = 1-10$) and/or $C_nH_{2n+1}C_6H_4O(CH_2CH_2O)_mH$ ($n = 8, 9$; $m = 2-15$). The material is for sealing of a gap between (A) a semiconductor part having the 1st electrode and a light-accepting part and (B) a circuit board having the 2nd electrode, an optical waveguide, and an optical coupler in the optical module, in which the 2 electrodes are connected by a metal bump. The claimed optical module is manufactured by the process involving (a) facing of the light-accepting part and the optical coupler, (b) connecting of the 2 electrodes by a metal bump, and (c)

sealing of the gap between the semiconductor part and the circuit board by the composition. The sealing material contributes to reinforcement of the metal bump and reduction of transmission loss in the optical coupler.

SUPPL. TERM: light transmitting epoxy resin sealant; optical module gap epoxy resin sealant; amine polyoxyalkylene epoxy resin sealant; phenyl ether polyoxyethylene epoxy resin sealant

INDEX TERM: Polymerization catalysts
(cationic; in light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: Electronic device fabrication
(for preparation of optical module; light-transmitting epoxy resin sealing material for)

INDEX TERM: Sealing compositions
Transparent materials
(light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: Epoxy resins, uses

ROLE: TEM (Technical or engineered material use); USES (Uses)
(light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: Optical couplers
Optical waveguides
Printed circuit boards
Semiconductor devices
(light-transmitting epoxy resin sealing material for optical module having)

INDEX TERM: 1337-30-0, Sorbitan laurate

ROLE: MOA (Modifier or additive use); USES (Uses)
(LP 20R; in light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: 56-81-5, Glycerin, uses 63-91-2, Phenylalanine, uses 111-20-6, Sebacic acid, uses 514-10-3, Abietic acid 9016-45-9, Nonion NS 204.5 31017-83-1, Nymeen L 202

ROLE: MOA (Modifier or additive use); USES (Uses)
(in light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: 326795-44-2P 719709-67-8P

ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(light-transmitting epoxy resin sealing material for optical module)

INDEX TERM: 33918-18-2, SA 102 87301-62-0, Adeka Opton CP 66

ROLE: CAT (Catalyst use); USES (Uses)
(polymerization catalysts; in light-transmitting epoxy resin sealing material for optical module)

L5 ANSWER 2 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 705284-25-9 REGISTRY
ED Entered STN: 07 Jul 2004
CN 2-Propenoic acid, 2-methyl-, (1-methylethylidene)bis[4,1-phenyleneoxy(2-hydroxy-3,1-propanediyl)] ester, polymer with 1,4-bis[(ethoxyloxy)methyl]cyclohexane and 3,3'-[1,4-phenylenebis(methyleneoxy)methylene]bis[3-ethyloxetane] (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether-xylylene glycol di(3-ethyl-3-oxetanyl)methyl ether copolymer

MF (C₂₉ H₃₆ O₈ . C₂₀ H₃₀ O₄ . C₁₂ H₂₀ O₂)_x

CI PMS

PCT Polyacrylic, Polyether, Polyether formed, Polyvinyl

SR CA
 LC STN Files: CA, CAPLUS, USPATFULL
 DT.CA CAplus document type: Patent
 RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C6	C6	6	C6	46.150.18	1 in CM
					1 2 in CM
					3
C6	C6	6	C6	46.150.1	1 in CM
					2
C3O	OC3	4	C3O	4.214.1	2 in CM
					1

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 17351-75-6
CMF C12 H20 O2

CM 3

CRN 1565-94-2
CMF C29 H36 O8

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 141:54808 CA
 TITLE: Photopolymerization initiator and visible light photopolymerizable composition
 INVENTOR(S): Suzuki, Takeshi; Kazama, Hideki
 PATENT ASSIGNEE(S): Tokuyama Corporation, Japan; Tokuyama Dental Corporation
 SOURCE: Eur. Pat. Appl., 33 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 INT. PATENT CLASSIF.:
 MAIN: C08F002-50
 SECONDARY: C08G059-00; A61K006-00
 CLASSIFICATION: 35-3 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 63
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1431315	-A2	20040623	EP 2003-258015	20031218
EP 1431315	A3	20041013		
	R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK		
JP 2004196949	A2	20040715	JP 2002-367080	20021218
US 2004186195	A1	20040923	US 2003-737827	20031218
PRIORITY APPLN. INFO.:			JP 2002-367080	20021218

ABSTRACT:

The photopolymn. initiator comprises: (A) a photo acid-generating compound such as diaryliodonium salt (e.g., di-Ph iodonium, bis(p-chlorophenyl)iodonium, etc.), (B) a photo oxidation radical-generating compound such as diarylketone compound, α -diketone compound or ketocoumarin compound, and (C) a fused polycyclic aromatic compound such as 1,4-dimethylnaphthalene, 1-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene or 9,10-diethylanthracene. The photopolymn. initiator makes it possible to efficiently polymerize the cationically polymerizable monomer by the irradiation with visible light and useful for dental cement.

SUPPL. TERM: visible light photopolymerizable compn acid generating photoinitiator; dental cement photopolymerizable oxidn radical generating photoinitiator

INDEX TERM: Dental materials and appliances
(cements; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: Epoxy resins, preparation

ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: Polymerization catalysts
(photopolymn.; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 57-97-6, 7,12-Dimethylbenz[a]anthracene 571-58-4,
1,4-Dimethylnaphthalene 779-02-2, 9-Methylanthracene
781-43-1, 9,10-Dimethylanthracene 1468-95-7,
9-Hydroxymethylanthracene 1498-71-1, 9-Benzylanthracene
1624-32-4, 9,10-Diethylanthracene 2584-79-4,
9-Methoxymethylanthracene 4766-40-9, 4,5-
Dihydrobenz[j]acephenanthrylene 10273-85-5,
9,10-Anthracenedimethanol 23707-65-5, 9-Allylanthracene
24463-19-2, 9-Chloromethylanthracene 63041-77-0,
7-Methylbenzo[a]pyrene 63226-13-1, 3,3'-Bis(7-
diethylaminocoumarinyl) ketone 98178-26-8,
9-(Dimethoxy)methylanthracene

ROLE: CAT (Catalyst use); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 25085-98-7P, 3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate polymer 25085-99-8P, Bisphenol A diglycidyl ether polymer 26426-05-1P, Bisphenol A diglycidyl ether dimethacrylate;triethylene glycol dimethacrylate copolymer 142627-97-2P,
3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane copolymer 142675-43-2P, Bis(3-ethyl-3-oxetanylmethyl) ether polymer 151543-64-5P, 1,4-Cyclohexanedimethyl divinyl ether polymer 167488-42-8P, Bisphenol A diglycidyl ether-1,4-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 167488-43-9P, 3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 191611-67-3P, Bis(3-ethyl-3-oxetanylmethyl) ether-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 691883-53-1P, Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether copolymer 691894-74-3P, Bis(3-ethyl-3-oxetanylmethyl) ether-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-17-9P, Bis(3-ethyl-3-oxetanylmethyl) ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-19-1P, Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether dimethacrylate-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 705284-21-5P, Bisphenol A diglycidyl ether dimethacrylate-3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-23-7P, Bis(3-ethyl-3-oxetanylmethyl ether)-bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-25-9P, Bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl

ether) copolymer
 ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL
 (Biological study); PREP (Preparation); USES (Uses)
 (manufacture of photopolymn. initiator for visible light
 photopolymerizable composition)
 INDEX TERM: 52754-92-4, Diphenyliodonium hexafluoroantimonate
 61358-23-4, Di(4-tert-butylphenyl)iodonium
 hexafluoroantimonate 87709-41-9
 ROLE: CAT (Catalyst use); USES (Uses)
 (photo-acid generator; manufacture of photopolymn. initiator
 for visible light photopolymerizable composition)
 INDEX TERM: 84-65-1, Anthraquinone 90-47-1, Xanthone 134-81-6,
 Dibenzoyl 486-25-9, Fluorenone 492-22-8, Thioxanthone
 2498-66-0, 1,2-Benzoanthraquinone 10373-78-1,
 Camphorquinone
 ROLE: CAT (Catalyst use); USES (Uses)
 (radical generator; manufacture of photopolymn. initiator for
 visible light photopolymerizable composition)

L5 ANSWER 3 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 705284-21-5 REGISTRY
 ED Entered STN: 07 Jul 2004
 CN 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, 7-oxabicyclo[4.1.0]hept-3-
 ylmethyl ester, polymer with (1-methylethylidene)bis[4,1-phenyleneoxy(2-
 hydroxy-3,1-propanediyl)] bis(2-methyl-2-propenoate) and
 3,3'-[1,4-phenylenebis(methyleneoxy)methylene]bis[3-ethyloxetane] (9CI)
 (CA INDEX NAME)
 OTHER NAMES:
 CN Bisphenol A diglycidyl ether dimethacrylate-3,4-epoxycyclohexylmethyl
 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-
 oxetanylmethyl ether) copolymer
 MF (C29 H36 O8 . C20 H30 O4 . C14 H20 O4)x
 CI PMS
 PCT Epoxy resin, Polyacrylic, Polyester, Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL
 DT.CA CAplus document type: Patent
 RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); USES
 (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence	
EA	ES	SZ	RF	RID	Count	
C6	C6	6	C6	46.150.18	1 in CM	
					1 2 in CM	
					3	
C2O-C6	OC2-C6	3-6	C6O	106.32.1	2 in CM	
					2	
C3O	OC3	4	C3O	4.214.1	2 in CM	
					1	

CM 1

CRN 142627-97-2
 CMF C20 H30 O4

CM 2

CRN 2386-87-0
CMF C14 H20 O4

CM 3

CRN 1565-94-2
CMF C29 H36 O8

PAGE 1-A

PAGE 1-B

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 141:54808 CA
 TITLE: Photopolymerization initiator and visible light photopolymerizable composition
 INVENTOR(S): Suzuki, Takeshi; Kazama, Hideki
 PATENT ASSIGNEE(S): Tokuyama Corporation, Japan; Tokuyama Dental Corporation
 SOURCE: Eur. Pat. Appl., 33 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English

INT. PATENT CLASSIF.:

MAIN: C08F002-50

SECONDARY: C08G059-00; A61K006-00

CLASSIFICATION: 35-3 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 63

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1431315	A2	20040623	EP 2003-258015	20031218
EP 1431315	A3	20041013		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK			
JP 2004196949	A2	20040715	JP 2002-367080	20021218
US 2004186195	A1	20040923	US 2003-737827	20031218
			JP 2002-367080	20021218

PRIORITY APPLN. INFO.:

ABSTRACT:

The photopolymer initiator comprises: (A) a photo acid-generating compound such as diaryliodonium salt (e.g., di-Ph iodonium, bis(p-chlorophenyl)iodonium, etc.), (B) a photo oxidation radical-generating compound such as diarylketone compound, α -diketone compound or ketocoumarin compound, and (C) a fused polycyclic aromatic compound such as 1,4-dimethylnaphthalene, 1-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene or 9,10-diethylanthracene. The photopolymer initiator makes it possible to efficiently polymerize the cationically polymerizable monomer by the irradiation with visible light and useful for dental cement.

SUPPL. TERM: visible light photopolymerizable compn acid generating photoinitiator; dental cement photopolymerizable oxidn radical generating photoinitiator

INDEX TERM: Dental materials and appliances
(cements; manufacture of photopolymer initiator for visible light photopolymerizable composition)

INDEX TERM: Epoxy resins, preparation
ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(manufacture of photopolymer initiator for visible light photopolymerizable composition)

INDEX TERM: Polymerization catalysts
(photopolymer.; manufacture of photopolymer initiator for visible light photopolymerizable composition)

INDEX TERM: 57-97-6, 7,12-Dimethylbenz[a]anthracene 571-58-4,
1,4-Dimethylnaphthalene 779-02-2, 9-Methylanthracene
781-43-1, 9,10-Dimethylanthracene 1468-95-7,
9-Hydroxymethylanthracene 1498-71-1, 9-Benzylanthracene
1624-32-4, 9,10-Diethylanthracene 2584-79-4,
9-Methoxymethylanthracene 4766-40-9, 4,5-
Dihydrobenz[j]acephenanthrylene 10273-85-5,
9,10-Anthracenedimethanol 23707-65-5, 9-Allylanthracene
24463-19-2, 9-Chloromethylanthracene 63041-77-0,
7-Methylbenzo[a]pyrene 63226-13-1, 3,3'-Bis(7-
diethylaminocoumarinyl) ketone 98178-26-8,
9-(Dimethoxy)methylanthracene

ROLE: CAT (Catalyst use); USES (Uses)
(manufacture of photopolymer initiator for visible light photopolymerizable composition)

INDEX TERM: 25085-98-7P, 3,4-Epoxycyclohexylmethyl 3',4'-
epoxycyclohexanecarboxylate polymer 25085-99-8P, Bisphenol
A diglycidyl ether polymer 26426-05-1P, Bisphenol A
diglycidyl ether dimethacrylate;triethylene glycol
dimethacrylate copolymer 142627-97-2P,

3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane copolymer
142675-43-2P, Bis(3-ethyl-3-oxetanylmethyl) ether polymer
151543-64-5P, 1,4-Cyclohexanedimethyl divinyl ether polymer
167488-42-8P, Bisphenol A diglycidyl ether-1,4-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer
167488-43-9P, 3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 191611-67-3P, Bis(3-ethyl-3-oxetanylmethyl) ether-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 691883-53-1P, Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether copolymer 691894-74-3P, Bis(3-ethyl-3-oxetanylmethyl) ether-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-17-9P, Bis(3-ethyl-3-oxetanylmethyl) ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-19-1P, Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether dimethacrylate-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 705284-21-5P, Bisphenol A diglycidyl ether dimethacrylate-3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-23-7P, Bis(3-ethyl-3-oxetanylmethyl ether)-bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-25-9P, Bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer

ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM:
52754-92-4, Diphenyliodonium hexafluoroantimonate
61358-23-4, Di(4-tert-butylphenyl)iodonium hexafluoroantimonate 87709-41-9

ROLE: CAT (Catalyst use); USES (Uses)
(photo-acid generator; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM:
84-65-1, Anthraquinone 90-47-1, Xanthone 134-81-6,
Dibenzoyl 486-25-9, Fluorenone 492-22-8, Thioxanthone
2498-66-0, 1,2-Benzoanthraquinone 10373-78-1,
Camphorquinone

ROLE: CAT (Catalyst use); USES (Uses)
(radical generator; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

L5 ANSWER 4 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 705284-17-9 REGISTRY

ED Entered STN: 07 Jul 2004

CN Oxetane, 3,3'-(oxybis(methylene))bis[3-ethyl-, polymer with 3,3'-(1,4-phenylenebis(methyleneoxyethylene))bis[3-ethyloxetane] (9CI)
(CA INDEX NAME)

OTHER NAMES:

CN Bis(3-ethyl-3-oxetanylmethyl) ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer

MF (C₂₀ H₃₀ O₄ . C₁₂ H₂₂ O₃)_x

CI PMS

PCT. Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

DT.CA CAplus document type: Patent

RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C3O	OC3	4	C3O	4.214.1	2 in CM 1 2 in CM 2
C6	C6	6	C6	46.150.18	1 in CM 1

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 18934-00-4
CMF C12 H22 O3

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 141:54808 CA
TITLE: Photopolymerization initiator and visible light photopolymerizable composition
INVENTOR(S): Suzuki, Takeshi; Kazama, Hideki
PATENT ASSIGNEE(S): Tokuyama Corporation, Japan; Tokuyama Dental Corporation
SOURCE: Eur. Pat. Appl., 33 pp.
CODEN: EPXXDW
DOCUMENT TYPE: Patent
LANGUAGE: English
INT. PATENT CLASSIF.:
MAIN: C08F002-50
SECONDARY: C08G059-00; A61K006-00
CLASSIFICATION: 35-3 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 63

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1431315	A2	20040623	EP 2003-258015	20031218
EP 1431315	A3	20041013		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
JP 2004196949	A2	20040715	JP 2002-367080	20021218
US 2004186195	A1	20040923	US 2003-737827	20031218
JP 2002-367080				20021218

PRIORITY APPLN. INFO.:

ABSTRACT:

The photopolymn. initiator comprises: (A) a photo acid-generating compound such as diaryliodonium salt (e.g., di-Ph iodonium, bis(p-chlorophenyl)iodonium, etc.), (B) a photo oxidation radical-generating compound such as diarylketone compound, α -diketone compound or ketocoumarin compound, and (C) a fused polycyclic aromatic compound such as 1,4-dimethylnaphthalene, 1-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene or 9,10-diethylanthracene. The photopolymn. initiator makes it possible to efficiently polymerize the cationically polymerizable monomer by the irradiation with visible light and useful for dental cement.

SUPPL. TERM: visible light photopolymerizable compn acid generating photoinitiator; dental cement photopolymerizable oxidn radical generating photoinitiator

INDEX TERM: Dental materials and appliances
(cements; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: Epoxy resins, preparation
ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: Polymerization catalysts
(photopolymn.; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 57-97-6, 7,12-Dimethylbenz[a]anthracene 571-58-4,
1,4-Dimethylnaphthalene 779-02-2, 9-Methylanthracene
781-43-1, 9,10-Dimethylanthracene 1468-95-7,
9-Hydroxymethylanthracene 1498-71-1, 9-Benzylanthracene
1624-32-4, 9,10-Diethylanthracene 2584-79-4,
9-Methoxymethylanthracene 4766-40-9, 4,5-
Dihydrobenz[j]acephenanthrylene 10273-85-5,
9,10-Anthracenedimethanol 23707-65-5, 9-Allylanthracene
24463-19-2, 9-Chloromethylanthracene 63041-77-0,
7-Methylbenzo[a]pyrene 63226-13-1, 3,3'-Bis(7-
diethylaminocoumarinyl) ketone 98178-26-8,
9-(Dimethoxy)methylanthracene

ROLE: CAT (Catalyst use); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 25085-98-7P, 3,4-Epoxyhexylmethyl 3',4'-epoxycyclohexanecarboxylate polymer 25085-99-8P, Bisphenol A diglycidyl ether polymer 26426-05-1P, Bisphenol A diglycidyl ether dimethacrylate;triethylene glycol dimethacrylate copolymer 142627-97-2P,
3,4-Epoxyhexylmethyl 3',4'-epoxycyclohexanecarboxylate-4-ethyl-2,6,7-trioxabicyclo[2.2.2]octane copolymer
142675-43-2P, Bis(3-ethyl-3-oxetanyl methyl) ether polymer
151543-64-5P, 1,4-Cyclohexanedimethyl divinyl ether polymer

167488-42-8P, Bisphenol A diglycidyl ether-1,4-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer
167488-43-9P, 3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 191611-67-3P,
Bis(3-ethyl-3-oxetanylmethyl) ether-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 691883-53-1P, Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether copolymer 691894-74-3P,
Bis(3-ethyl-3-oxetanylmethyl) ether-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-17-9P, Bis(3-ethyl-3-oxetanylmethyl) ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-19-1P,
Bis(3-ethyl-3-oxetanylmethyl) ether-bisphenol A diglycidyl ether dimethacrylate-3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate copolymer 705284-21-5P,
Bisphenol A diglycidyl ether dimethacrylate-3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer 705284-23-7P, Bis(3-ethyl-3-oxetanylmethyl ether)-bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether copolymer 705284-25-9P, Bisphenol A diglycidyl ether dimethacrylate-1,4-cyclohexanedimethyl divinyl ether-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer

ROLE: IMF (Industrial manufacture); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 52754-92-4, Diphenyliodonium hexafluoroantimonate

61358-23-4, Di(4-tert-butylphenyl)iodonium hexafluoroantimonate 87709-41-9

ROLE: CAT (Catalyst use); USES (Uses)
(photo-acid generator; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

INDEX TERM: 84-65-1, Anthraquinone 90-47-1, Xanthone 134-81-6,
Dibenzoyl 486-25-9, Fluorenone 492-22-8, Thioxanthone
2498-66-0, 1,2-Benzoanthraquinone 10373-78-1,
Camphorquinone

ROLE: CAT (Catalyst use); USES (Uses)
(radical generator; manufacture of photopolymn. initiator for visible light photopolymerizable composition)

L5 ANSWER 5 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 623900-81-2 REGISTRY

ED Entered STN: 05 Dec 2003

CN Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-, polymer with 2,2'-[1,4-butanediylbis(oxymethylene)]bis[oxirane], Epo Toho YDPN 638, 2,2'-[methylenebis(4,1-phenyleneoxymethylene)]bis[oxirane] and 3,3'-[1,4-phenylenebis(methyleneoxymethylene)]bis[3-ethyloxetane] (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Bisphenol F diglycidyl ether-1,4-butanediol diglycidyl ether-3-glycidoxypropyltrimethoxysilane-OXT 121-Epo Toho YDPN 638 copolymer

MF (C₂₀ H₃₀ O₄ . C₁₉ H₂₀ O₄ . C₁₀ H₁₈ O₄ . C₉ H₂₀ O₅ Si . Unspecified)x

CI PMS

PCT Epoxy resin, Manual component, Polyether, Polyether formed, Polyether

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Patent

RL.P Roles from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Ring Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C2O	OC2	3	C2O	1.30.1	1 in CM 3 2 in CM 4 2 in CM 5	
C6	C6	6	C6	46.150.18	1 in CM 1 2 in CM 5	
C3O	OC3	4	C3O	4.214.1	2 in CM 1	

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 105478-35-1
CMF Unspecified
CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 3

CRN 2530-83-8
CMF C9 H20 O5 Si

CM 4

CRN 2425-79-8
CMF C10 H18 O4

CM 5

CRN 2095-03-6
CMF C19 H20 O4

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 139:382876 CA
 TITLE: Photocurable resin compositions for moisture-impermeable sealants
 INVENTOR(S): Yamamoto, Yugo; Takamatsu, Yasushi; Sakata, Yoshihiro; Kuwazuka, Toshiaki
 PATENT ASSIGNEE(S): Mitsui Chemicals Inc., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 26 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C09K003-10
 SECONDARY: C08G059-20; C08G065-18; G02F001-1339
 CLASSIFICATION: 42-11 (Coatings, Inks, and Related Products)
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003327951	A2	20031119	JP 2002-135756	20020510
PRIORITY APPLN. INFO.:			JP 2002-135756	20020510

ABSTRACT:
 Title compns., with 25° viscosity (VS) of 0.01-300 Pa-s, contain oxetane ring-containing compds., epoxy group-containing polycyclic compds., and photo cationic polymerization initiators. A composition comprising OXT 121 49, EP 4088S 15, Rhodorsil 2074 3, SH 6040 3, and talc 30 parts showed VS of 5,000 mPa-s and was photocured to form a film with glass adhesion 35 MPa and moisture permeability 6 g/m²-24 h (40°, 90% relative humidity).

SUPPL. TERM: photocurable oxetane polycyclic epoxy compd sealant moisture impermeability; glass adhesion photocurable oxetane polycyclic epoxy compd sealant

INDEX TERM: Phenolic resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (epoxy, novolak; oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

INDEX TERM: Sealing compositions
 (oxetane-, cationic polymerization initiator-, and polycyclic
 epoxy compound-containing photocurable sealants with high
 adhesion and low moisture permeability)

INDEX TERM: Epoxy resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or
 engineered material use); PREP (Preparation); USES (Uses)
 (oxetane-, cationic polymerization initiator-, and polycyclic
 epoxy compound-containing photocurable sealants with high
 adhesion and low moisture permeability)

INDEX TERM: Epoxy resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or
 engineered material use); PREP (Preparation); USES (Uses)
 (phenolic, novolak; oxetane-, cationic polymerization
 initiator-, and polycyclic epoxy compound-containing
 photocurable sealants with high adhesion and low moisture
 permeability)

INDEX TERM: 623900-76-5P, Bisphenol F diglycidyl ether-
 dicyclopentadienediol diglycidyl ether-3-
 glycidoxypolytrimethoxysilane-OXT 121 copolymer
 623900-77-6P 623900-78-7P 623900-79-8P, Bisphenol F
 diglycidyl ether-1,4-butanediol diglycidyl ether-Epo Toho
 YDPN 638 copolymer 623900-80-1P 623900-81-2P, Bisphenol
 F diglycidyl ether-1,4-butanediol diglycidyl
 ether-3-glycidoxypolytrimethoxysilane-OXT 121-Epo Toho
 YDPN 638 copolymer
 ROLE: IMF (Industrial manufacture); TEM (Technical or
 engineered material use); PREP (Preparation); USES (Uses)
 (cured; oxetane-, cationic polymerization initiator-, and
 polycyclic epoxy compound-containing photocurable sealants
 with
 high adhesion and low moisture permeability)

L5 ANSWER 6 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 623900-76-5 REGISTRY
 ED Entered STN: 05 Dec 2003
 CN Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-, polymer with
 2,2'-(methylenebis(4,1-phenyleneoxymethylene))bis[oxirane],
 2,2'-(octahydro-4,7-methano-1H-indene-5,?-diyl)bis(methyleneoxymethylene)
]bis[oxirane] and 3,3'-(1,4-phenylenebis(methyleneoxymethylene))bis[3-
 ethyloxetane] (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Bisphenol F diglycidyl ether-dicyclopentadienediol diglycidyl
 ether-3-glycidoxypolytrimethoxysilane-OXT 121 copolymer
 MF (C20 H30 O4 . C19 H20 O4 . C18 H28 O4 . C9 H20 O5 Si)x
 CI PMS
 PCT Epoxy resin, Polyether, Polyether formed, Polyether
 SR CA
 LC STN Files: CA, CAPLUS
 DT.CA CAplus document type: Patent
 RL.P Roles from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence	Count
EA	ES	SZ	RF	RID		
C2O	OC2	3	C2O	1.30.1	2 in CM	
					2 1 in CM	
					3 2 in CM	
					4	

C6	C6	6	C6	46.150.18	1 in CM
					1 2 in CM
					4
C5-C5-C5	C5-C5-C5	5-5-5	C10	553.3.1	1 in CM
					2
C3O	OC3	4	C3O	4.214.1	2 in CM
					1

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 50985-55-2
CMF C18 H28 O4
CCI IDS

CM 3

CRN 2530-83-8
CMF C9 H20 O5 Si

CM 4

CRN 2095-03-6
CMF C19 H20 O4

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 139:382876 CA
 TITLE: Photocurable resin compositions for moisture-impermeable sealants
 INVENTOR(S): Yamamoto, Yugo; Takamatsu, Yasushi; Sakata, Yoshihiro; Kuwazuka, Toshiaki
 PATENT ASSIGNEE(S): Mitsui Chemicals Inc., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 26 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C09K003-10
 SECONDARY: C08G059-20; C08G065-18; G02F001-1339
 CLASSIFICATION: 42-11 (Coatings, Inks, and Related Products)
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003327951	A2	20031119	JP 2002-135756	20020510
PRIORITY APPLN. INFO.:			JP 2002-135756	20020510

ABSTRACT:
 Title compns., with 25° viscosity (VS) of 0.01-300 Pa-s, contain oxetane ring-containing compds., epoxy group-containing polycyclic compds., and photo cationic polymerization initiators. A composition comprising OXT 121 49, EP 4088S 15, Rhodorsil 2074 3, SH 6040 3, and talc 30 parts showed VS of 5,000 mPa-s and was photocured to form a film with glass adhesion 35 MPa and moisture permeability 6 g/m²-24 h (40°, 90% relative humidity).

SUPPL. TERM: photocurable oxetane polycyclic epoxy compd sealant moisture impermeability; glass adhesion photocurable oxetane polycyclic epoxy compd sealant

INDEX TERM: Phenolic resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (epoxy, novolak; oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

INDEX TERM: Sealing compositions
 (oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

INDEX TERM: Epoxy resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

INDEX TERM: Epoxy resins, uses
 ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (phenolic, novolak; oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

INDEX TERM: 623900-76-5P, Bisphenol F diglycidyl ether-dicyclopentadienediol diglycidyl ether-3-glycidoxypolytrimethoxysilane-OXT 121 copolymer
 623900-77-6P 623900-78-7P 623900-79-8P, Bisphenol F diglycidyl ether-1,4-butanediol diglycidyl ether-Epo Tohto YDPN 638 copolymer 623900-80-1P 623900-81-2P, Bisphenol F diglycidyl ether-1,4-butanediol diglycidyl ether-3-glycidoxypolytrimethoxysilane-OXT 121-Epo Tohto YDPN 638 copolymer
 ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (cured; oxetane-, cationic polymerization initiator-, and polycyclic epoxy compound-containing photocurable sealants with high adhesion and low moisture permeability)

L5 ANSWER 7 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 509107-21-5 REGISTRY
 ED Entered STN: 02 May 2003
 CN 7-Oxabicyclo[4.1.0]heptane, polymer with 3-ethyl-3-(phenoxyethyl)oxetane (9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Cyclohexene oxide-3-ethyl-3-oxetanyl methyl phenyl ether copolymer
 MF (C₁₂ H₁₆ O₂ . C₆ H₁₀ O)x
 CI PMS
 PCT Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS
 DT.CA CAplus document type: Journal
 RL.NP Roles from non-patents: PREP (Preparation)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C ₂ O-C ₆	OC2-C6	3-6	C6O	106.32.1	1 in CM	
					2	
C ₃ O	OC3	4	C3O	4.214.1	1 in CM	
					1	
C ₆	C6	6	C6	46.150.18	1 in CM	
					1	

CM 1

CRN 3897-65-2
 CMF C₁₂ H₁₆ O₂

CM 2

CRN 286-20-4
CMF C6 H10 O

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 138:304641 CA
TITLE: Monitoring photopolymerization reactions with optical pyrometry
AUTHOR(S): Falk, Benjamin; Vallinas, Santiago M.; Crivello, James V.
CORPORATE SOURCE: Department of Chemistry, New York State Center for Polymer Synthesis, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
SOURCE: Journal of Polymer Science, Part A: Polymer Chemistry (2003), 41(4), 579-596
CODEN: JPACEC; ISSN: 0887-624X
PUBLISHER: John Wiley & Sons, Inc.
DOCUMENT TYPE: Journal
LANGUAGE: English
CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)

ABSTRACT:
This article describes the development of optical pyrometry (OP) as a new anal. technique for the continuous monitoring of the progress of both free-radical and cationic photopolymns. The method is rapid, reproducible, and very easy to implement. A temperature profile of a photopolymn. can be obtained. Preliminary studies have shown that the temps. of some polymerizing monomers can easily reach temps. in excess of 250 °C. The effects of the mass and reactivity of the monomer, light intensity, structures, and concns. of the photoinitiators and monomers as well as the presence or absence of oxygen on various free-radical and cationic photopolymns. were examined with this method. Coupling of real-time IR spectroscopy with OP provides a convenient method for simultaneously monitoring both the chemical conversion and the temperature of a photopolymn. This combined technique affords new insights into the effects of temperature-induced autoacceleration on the course of photopolymns.

SUPPL. TERM: photopolymn monitoring optical pyrometry
INDEX TERM: Pyrometry
(optical; monitoring of photopolymn. by optical pyrometry)
INDEX TERM: Polymerization
(photopolymn.; monitoring of photopolymn. by optical pyrometry)
INDEX TERM: 25085-98-7P, 3,4-Epoxycyclohexylmethyl 3',4'-epoxycyclohexanecarboxylate homopolymer 25086-25-3P, 4-Vinylcyclohexene dioxide homopolymer 25702-20-9P, Cyclohexene oxide homopolymer 25721-76-0P, Ethylene glycol dimethacrylate homopolymer 28182-75-4P, Diethylene glycol diacrylate homopolymer 31667-45-5P, Triethylene glycol divinyl ether homopolymer 57592-67-3P, 1,6-Hexanediol diacrylate homopolymer 106980-37-4P, Bisphenol A

diacrylate homopolymer 121225-97-6P, PC 1000
142675-43-2P, Bis(3-Ethyl-3-oxetanymethyl) ether
homopolymer 146247-32-7P 153210-03-8P, 1,6-Hexanediol
divinyl ether homopolymer 167499-43-6P,
3-Ethyl-3-oxetanymethyl phenyl ether homopolymer
509107-21-5P, Cyclohexene oxide-3-Ethyl-3-oxetanymethyl
phenyl ether copolymer

ROLE: SPN (Synthetic preparation); PREP (Preparation)
(monitoring of photopolymn. by optical pyrometry)

REFERENCE COUNT: 61 THERE ARE 61 CITED REFERENCES AVAILABLE FOR THIS RECORD.

REFERENCE(S):

- (1) Akhtar, S; J Org Chem 1990, V55, P4222 CAPLUS
- (2) Anon; Handbook of Chemistry and Physics, 63rd ed 1983, PE-385
- (3) Anseth, K; J Polym Sci Part A: Polym Chem 1994, V32, P139 CAPLUS
- (4) Anseth, K; Macromolecules 1994, V35, P3243 CAPLUS
- (5) Anseth, K; Polymer 1994, V27, P650 CAPLUS
- (6) Brandrup, J; Polymer Handbook 1965, PE-1
- (7) Brandrup, J; Polymer Handbook 1965, PII-370
- (8) Brandrup, J; Polymer Handbook 1965, PIII
- (9) Carre, C; Macromolecules 1989, V22, P791 CAPLUS
- (10) Chang, C; RadTech '92 North America Conference Proceedings 1992, P16 CAPLUS
- (11) Crivello, J; Des Monom Polym 2002, V5, P141 CAPLUS
- (12) Crivello, J; J Polym Sci Part A: Polym Chem 1979, V17, P1059 CAPLUS
- (13) Crivello, J; J Polym Sci Part A: Polym Chem 1989, V27, P3951 CAPLUS
- (14) Crivello, J; J Polym Sci Part A: Polym Chem 1990, V28, P479 CAPLUS
- (15) Crivello, J; J Polym Sci Part A: Polym Chem 1993, V31, P1483 CAPLUS
- (16) Crivello, J; J Polym Sci Part A: Polym Chem 1994, V32, P683 CAPLUS
- (17) Crivello, J; J Polym Sci Part A: Polym Chem 1995, V33, P2463 CAPLUS
- (18) Crivello, J; J Polym Sci Part A: Polym Chem 2002, V40, P2298 CAPLUS
- (19) Crivello, J; J Polym Sci Polym Part A: Polym Chem 2000, V38, P389 CAPLUS
- (20) Crivello, J; J Radiat Curing 1977, V4(3), P2 CAPLUS
- (21) Crivello, J; J Radiat Curing 1983, V10(1), P6 CAPLUS
- (22) Crivello, J; Macromolecules 2000, V33, P833 CAPLUS
- (23) Crivello, J; Macromolecules 2000, V33, P833 CAPLUS
- (24) Crivello, J; Radiation Curing of Polymeric Materials, ACS Symposium Series 417 1989, P398
- (25) Cundall, R; Radiation Curing of Polymers 1987, P172 CAPLUS
- (26) Decker, C; Eur Polym J 1990, V26, P393 CAPLUS
- (27) Decker, C; J Macromol Sci 1996, V33, P173
- (28) Decker, C; J Macromol Sci 1996, V33, P173
- (29) Decker, C; J Polym Sci Part A: Polym Chem 1992, V30, P913 CAPLUS
- (30) Decker, C; Makromol Chem 1990, V191, P963 CAPLUS
- (31) Decker, C; Photopolymerisation Fundamentals and Applications, ACS Symposium Series 673 1997, P63 CAPLUS
- (32) Decker, C; Photopolymerization Fundamentals and Applications, ACS Symposium Series 673 1997, P63 CAPLUS
- (33) Decker, C; Radiation Curing Science and Technology 1992, P154
- (34) Delzenne, G; J Polym Sci Part A: Gen Pap 1964, V2,

P1069 CAPLUS

- (35) Dougherty, J; RadTech '90 North America Conference Proceedings 1990, P402 CAPLUS
- (36) Dougherty, J; Radtech North America '94 Conference Proceedings 1994, V1, P627 CAPLUS
- (37) Hoyle, C; Polym Prepr (Am Chem Soc Div Polym Chem) 2001, V43(2), P697
- (38) Hoyle, C; Radiation Curing Science and Technology 1992, P57 CAPLUS
- (39) Hoyle, C; Radiation Curing of Polymeric Materials; ACS Symposium Series 417 1990, P11
- (40) Hua, Y; J Polym Sci Part A: Polym Chem 2000, V38, P3697 CAPLUS
- (41) Ikeda, M; 1979 CAPLUS
- (42) Jessop, J; RadTech Rep 1998, V12, P27 CAPLUS
- (43) Jonsson, S; RadTech '90 North America Conference Proceedings 1990, P417
- (44) Khan, S; US 5105655 1992 CAPLUS
- (45) Khan, S; RadTech '92 North America YV/EB Conference Expo Conference Proceedings 1992, V2, P770 CAPLUS
- (46) Li, C; 1955
- (47) Lougnot, D; Makromol Chem Macromol Symp 1989, V24, P209 CAPLUS
- (48) Mathur, A; J Spectrosc 2000, V15, P36 CAPLUS
- (49) Moore, J; UV Curing:Science and Technology 1978, P134
- (50) Moorjani, S; Photopolymerization Fundamentals and Applications, ACS Symposium Series 673 1997, P95 CAPLUS
- (51) Nelson, E; J Polym Sci Part A: Polym Chem 1996, V34, P403 CAPLUS
- (52) Nelson, E; J Raman Spectrosc 1996, V27, P137 CAPLUS
- (53) Odian, G; Principles of Polymerization, 3rd ed 1991, P264
- (54) Okamoto, Y; RadTech '92 North America Conference Proceedings 1992, P16
- (55) Rajaraman, S; J Polym Sci Part A: Polym Chem 1999, V37, P4007 CAPLUS
- (56) Ravve, A; Principles of Polymer Chemistry 1995, P84
- (57) Saccoccio, E; US 5306641 1994 CAPLUS
- (58) Sasaki, H; Proceedings RadTech 2000 Technical Conference 2000, P61 CAPLUS
- (59) Tilley, M; RadTech '92 North America Conference Proceedings 1992, P48 CAPLUS
- (60) Wicks, Z; UV Curing:Science and Technology 1978, P78 CAPLUS
- (61) Wolinski, L; RadTech '90 North America Conference Proceedings 1990, P41 CAPLUS

L5 ANSWER 8 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 330432-38-7 REGISTRY

ED Entered STN: 06 Apr 2001

CN 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, 7-oxabicyclo[4.1.0]hept-3-ylmethyl ester, polymer with 3,3'-(1,4-phenylenebis(methyleneoxyethylene))bis[3-ethyloxetane], phenylmethyl ester (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Oxetane, 3,3'-(1,4-phenylenebis(methyleneoxyethylene))bis[3-ethyl-, polymer with 7-oxabicyclo[4.1.0]hept-3-ylmethyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate, phenylmethyl ester (9CI)

OTHER NAMES:

CN 7-Oxabicyclo[4.1.0]hept-3-ylmethyl ester-7-oxabicyclo[4.1.0]heptane-3-carboxylic acid-3,3'-(1,4-phenylene-bis(methyleneoxyethylene))bis(3-ethyloxetane) copolymer benzyl ether

MF (C₂₀ H₃₀ O₄ . C₁₄ H₂₀ O₄)_x . x C₇ H₈ O

PCT Epoxy resin, Polyester, Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS
 DT.CA CAplus document type: Patent
 RL.P Roles from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C6	C6	6	C6	46.150.18	1 in CM
					1 1 in CM
					3
C20-C6	OC2-C6	3-6	C6O	106.32.1	2 in CM
					4
C3O	OC3	4	C3O	4.214.1	2 in CM
					3

CM 1

CRN 100-51-6

CMF C7 H8 O

HO—CH₂—Ph

CM 2

CRN 167488-43-9

CMF (C₂₀ H₃₀ O₄ . C₁₄ H₂₀ O₄)_x

CCI PMS

CM 3

CRN 142627-97-2

CMF C₂₀ H₃₀ O₄

CM 4

CRN 2386-87-0

CMF C₁₄ H₂₀ O₄

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 134:238345 CA
TITLE: UV-curable compositions containing oxetanes and cycloaliphatic epoxy compounds and multifunctional hydroxy compounds and their manufacture
INVENTOR(S): Hatton, Kevin Brian
PATENT ASSIGNEE(S): Vantico A.-G., Switz.
SOURCE: PCT Int. Appl., 26 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
INT. PATENT CLASSIF.:
 MAIN: C08G065-18
 SECONDARY: C08G059-24; C08G059-62
CLASSIFICATION: 37-6 (Plastics Manufacture and Processing)
 Section cross-reference(s): 38, 42
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001019895	A1	20010322	WO 2000-EP8748	20000907
W: AU, CA, JP, KR, US, ZA				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
TW 546322	B	20030811	TW 2000-89116197	20000811
CA 2384176	AA	20010322	CA 2000-2384176	20000907
EP 1232198	A1	20020821	EP 2000-960620	20000907
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY				
JP 2003509553	T2	20030311	JP 2001-523670	20000907
AU 771573	B2	20040325	AU 2000-72850	20000907
ZA 2002002149	A	20030311	ZA 2002-2149	20020315
PRIORITY APPLN. INFO.:			GB 1999-21779	19990916
			WO 2000-EP8748	20000907

ABSTRACT:
The composition, useful for adhesives, coatings, laminating and casting resins, molding compns., putties and sealing compds., comprises (a) ≥1 oxetane compound; (b) ≥1 polyfunctional cycloaliph. epoxy compound; (c) ≥1 multifunctional hydroxy compound; and (d) ≥1 curing agent. Thus, 88 parts 3,3-[1,4-phenylene-bis(methyleneoxymethylene)]bis(3-ethyloxetane) was mixed with 7-oxabicyclo[4.1.0]hept-3-ylmethyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate 4, tri(propylene glycol) 4 and CyraCure UVI 6990 1 part to give a clear solution which was test in differential photocalorimeter attached on DSC, showing peak exotherm 16.0 W/g.

SUPPL. TERM: oxetane cycloaliph epoxide multifunctional hydroxy UV curable compn
INDEX TERM: Adhesives
 Coating materials
 Laminated materials
 Potting compositions
 Putty
 Sealing compositions
 (UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. for)
INDEX TERM: Molded plastics, uses
ROLE: TEM (Technical or engineered material use); USES (Uses)

(UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. for)

INDEX TERM: Polyethers, preparation

Polyoxyalkylenes, preparation

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(epoxy-polyester-; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: Polyesters, preparation

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(epoxy-polyether-; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: Polyesters, preparation

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(epoxy-polyoxyalkylene-; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: Crosslinking catalysts

(photochem.; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: Epoxy resins, preparation

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(polyester-polyether-; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: Epoxy resins, preparation

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(polyester-polyoxyalkylene-; UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: 104558-94-3, CyraCure UVI 6974 104558-95-4, CyraCure UVI 6990

ROLE: CAT (Catalyst use); USES (Uses)

(UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

INDEX TERM: 330218-90-1P 330218-91-2P 330218-92-3P 330218-93-4P
330218-94-5P 330218-95-6P 330432-38-7P,
7-Oxabicyclo[4.1.0]hept-3-ylmethyl ester-7-oxabicyclo[4.1.0]heptane-3-carboxylic acid-3,3-[1,4-phenylene-bis(methyleneoxymethylene)]bis(3-ethyloxetane) copolymer benzyl ether

ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(UV-curable compns. containing oxetanes and cycloaliph. epoxy compds. and multifunctional hydroxy compds. and their manufacture)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD.

REFERENCE(S) : (1) Espe Dental Ag; EP 0897710 A 1999 CAPLUS
(2) Fukudome, K; US 5721020 A 1998 CAPLUS
(3) Igarashi, I; US 5674922 A 1997 CAPLUS
(4) Japan Synthetic Rubber Co Ltd; EP 0848292 A 1998 CAPLUS
(5) Jsr Corp; WO 0063272 A 2000 CAPLUS
(6) Kansai Paint Co Ltd; JP 11-152441 A 1999, V1999(11)
CAPLUS
(7) Nippon Kayaku Co Ltd; JP 11-181391 A 1999, V1999(12)
CAPLUS

L5 ANSWER 9 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 325744-20-5 REGISTRY

ED Entered STN: 05 Mar 2001

CN 3-Oxetanemethanol, 3-ethyl-, polymer with 2,2'-[[2-ethyl-2-[(oxiranylmethoxy)methyl]-1,3-propanediyl]bis(oxymethylene)]bis[oxirane] and 3,3'-[1,4-phenylenebis(methyleneoxymethylene)]bis[3-ethyloxetane] (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Oxetane, 3,3'-[1,4-phenylenebis(methyleneoxymethylene)]bis[3-ethyl-, polymer with 3-ethyl-3-oxetanemethanol and 2,2'-[[2-ethyl-2-[(oxiranylmethoxy)methyl]-1,3-propanediyl]bis(oxymethylene)]bis[oxirane] (9CI)

CN Oxirane, 2,2'-[[2-ethyl-2-[(oxiranylmethoxy)methyl]-1,3-propanediyl]bis(oxymethylene)]bis-, polymer with 3-ethyl-3-oxetanemethanol and 3,3'-[1,4-phenylenebis(methyleneoxymethylene)]bis[3-ethyloxetane] (9CI)

OTHER NAMES:

CN 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene-3-ethyl-3-hydroxymethyloxetane-trimethylolpropane triglycidyl ether copolymer

MF (C₂₀ H₃₀ O₄ . C₁₅ H₂₆ O₆ . C₆ H₁₂ O₂)_x

CI PMS

PCT Epoxy resin, Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

DT.CA CAplus document type: Patent

RL.P Roles from patents: PREP (Preparation); PRP (Properties); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C3O	OC3	4	C3O	4.214.1	2 in CM	
					1 1 in CM	
					3	
C2O	OC2	3	C2O	1.30.1	3 in CM	
					2	
C6	C6	6	C6	46.150.18	1 in CM	
					1	

CM 1

CRN 142627-97-2

CMF C20 H30 O4

CM 2

CRN 3454-29-3
CMF C15 H26 O6

CM 3

CRN 3047-32-3
CMF C6 H12 O2

2 REFERENCES IN FILE CA (1907 TO DATE)
2 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 134:267848 CA
 TITLE: Oxetanyl compound-containing photocurable encapsulation compositions for electronics and method for their use
 INVENTOR(S): Takamatsu, Yasushi; Nagata, Katsura; Ota, Masahiro; Mizuta, Yasushi; Kikuta, Yoshio
 PATENT ASSIGNEE(S): Mitsui Chemicals Inc., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 12 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C09K003-10
 SECONDARY: C09K003-10; G02F001-1339
 CLASSIFICATION: 42-11 (Coatings, Inks, and Related Products)

Section cross-reference(s): 76

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001089743	A2	20010403	JP 1999-270177	19990924
PRIORITY APPLN. INFO.:			JP 1999-270177	19990924
ABSTRACT:				
The compns. providing sealed or encapsulated packages with good heat and moisture resistance, comprise (A) oxetane compds., (B) cationic photoinitiators, (C) silane couplers and (D) inorg. ion exchangers and have viscosity at 25° of 0.01-300 Pa·s. Thus, mixing 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene 70 with 3-ethyl-3-hydroxymethyloxetane 19, 4-PhSC6H4S+Ph2SbF6- 3, 3-glycidoxypropyltrimethoxysilane 3 and IXE 500 (bismuth-type ion exchanger) 5 parts gave a title composition				
SUPPL. TERM:	cationic photo curable electronic encapsulation compn oxetane resin			
INDEX TERM:	Crosslinking (cationic, photochem.; oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	Ion exchangers (inorg.; oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	Coupling agents Electronic packaging materials (oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	Epoxy resins, uses ROLE: POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); USES (Uses) (oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	71449-78-0, (4-Thiophenoxyphenyl)diphenylsulfonium hexafluoroantimonate ROLE: CAT (Catalyst use); USES (Uses) (cationic photoinitiators; oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	2530-83-8, 3-Glycidoxypolytrimethoxysilane ROLE: MOA (Modifier or additive use); USES (Uses) (couplers; oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	137087-38-8, IXE 500 171172-60-4, IXE 550 ROLE: MOA (Modifier or additive use); USES (Uses) (inorg. ion exchanger; oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			
INDEX TERM:	210093-34-8, 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene; 3-ethyl-3-hydroxymethyloxetane copolymer 325744-20-5, 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene-3-ethyl-3-hydroxymethyloxetane-trimethylolpropane triglycidyl ether copolymer ROLE: POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); USES (Uses) (oxetanyl compound-containing photocurable encapsulation compns. for electronics and method for use)			

ACCESSION NUMBER: 134:179689 CA
TITLE: Photocurable oxetane-containing polymer compositions for packaging flat panels
INVENTOR(S): Takamatsu, Yasushi; Nagata, Kei; Ota, Masahiro;
Mizuta, Yasushi; Kikuta, Yoshio
PATENT ASSIGNEE(S): Mitsui Chemicals, Inc., Japan
SOURCE: PCT Int. Appl., 34 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
INT. PATENT CLASSIF.:
MAIN: C09K003-10
SECONDARY: C08G065-18; C08G059-40; G02F001-1339
CLASSIFICATION: 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 74
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001012745	A1	20010222	WO 2000-JP5329	20000809
W: CN, IN, KR, US, VN				
RW: DE, GB, IT, NL				
EP 1138739	A1	20011004	EP 2000-951911	20000809
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 2001139933	A2	20010522	JP 2000-249197	20000811
TW 500791	B	20020901	TW 2000-89116320	20000811
US 6586496	B1	20030701	US 2001-787951	20010323
PRIORITY APPLN. INFO.:			JP 1999-228411	19990812
			WO 2000-JP5329	20000809

ABSTRACT:

The composition having viscosity (at 25°) 0.01-300 Pa-s comprises (A) a oxetane ring-containing compound (B) a cationic photopolymn. initiator, (C) a silane coupling agent, and optionally, (D) inorg. filler and (E) epoxy-containing compound. The compns. having low-temperature curability, high adhesion strength and good moisture-impermeability are useful for packaging flat panels such as a liquid-crystal display and an electroluminescent display. Thus, 94 parts 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene was mixed with 4-(phenylthio)phenyldiphenylsulfonium hexafluoroantimonate 3 and γ-glycidoxypropyltrimethoxysilane 3 parts, coated between 2 pieces of glass plate and photocured, showing viscosity 134 mPa-s, adhesion strength 8.7 MPa, moisture permeability 20 at 40°, 90% RH and 180 g/m²-24 h at 80° 95% RH, resp.

SUPPL. TERM: oxetane polymer packaging liq crystal display; epoxy polyoxyalkylene photocurable electroluminescent display moisture impermeability; cationic polymn catalysts oxetane polymer prepns

INDEX TERM: Polymerization catalysts (cationic, photochem.; photocurable oxetane-containing polymer compns. for packaging flat panels)

INDEX TERM: Polyoxyalkylenes, uses

ROLE: DEV (Device component use); IMF (Industrial manufacture); POF (Polymer in formulation); PREP (Preparation); USES (Uses) (epoxy; photocurable oxetane-containing polymer compns. for packaging flat panels)

INDEX TERM: Coupling agents

Electroluminescent devices

Electronic packaging materials

Liquid crystal displays
(photocurable oxetane-containing polymer compns. for
packaging flat panels)

INDEX TERM: Polyoxyalkylenes, uses
ROLE: DEV (Device component use); IMF (Industrial manufacture);
POF (Polymer in formulation); PREP (Preparation); USES
(Uses)
(photocurable oxetane-containing polymer compns. for
packaging flat panels)

INDEX TERM: Epoxy resins, uses
ROLE: DEV (Device component use); IMF (Industrial manufacture);
POF (Polymer in formulation); PREP (Preparation); USES
(Uses)
(polyoxyalkylene-; photocurable oxetane-containing polymer
compns. for packaging flat panels)

INDEX TERM: 71449-78-0
ROLE: CAT (Catalyst use); USES (Uses)
(cationic photopolymn. initiator; photocurable
oxetane-containing polymer compns. for packaging flat panels)

INDEX TERM: 178233-72-2
ROLE: CAT (Catalyst use); USES (Uses)
(coupling agents; photocurable oxetane-containing polymer
compns. for packaging flat panels)

INDEX TERM: 2530-83-8, γ -Glycidoxypropyltrimethoxysilane
ROLE: MOA (Modifier or additive use); USES (Uses)
(coupling agents; photocurable oxetane-containing polymer
compns. for packaging flat panels)

INDEX TERM: 142675-47-6P, 1,4-Bis[(3-ethyl-3-
oxetanylmethoxy)methyl]benzene homopolymer 210093-34-8P
325744-19-2P 325744-20-5P 325744-21-6P
ROLE: DEV (Device component use); IMF (Industrial manufacture);
POF (Polymer in formulation); PREP (Preparation); USES
(Uses)
(photocurable oxetane-containing polymer compns. for
packaging flat panels)

INDEX TERM: 7631-86-9, Silica, uses
ROLE: MOA (Modifier or additive use); USES (Uses)
(photocurable oxetane-containing polymer compns. for
packaging flat panels)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS
RECORD.

REFERENCE(S): (1) Anon; JP 10-168165 A CAPLUS
(2) Anon; US 5981616 A CAPLUS
(3) JSR Corporation; EP 848294 A1 1998 CAPLUS
(4) Nippon Kayaku Co Ltd; JP 10-330717 A 1998 CAPLUS
(5) Nippon Kayaku Co Ltd; JP 11-209599 A 1999 CAPLUS
(6) Sony Chemical Corporation; JP 54-3866 A 1993 CAPLUS
(7) Toagosei Co Ltd; JP 75-3711 A 1995
(8) Toagosei Co Ltd; JP 11-140279 A 1999 CAPLUS

L5 ANSWER 10 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 324034-07-3 REGISTRY
ED Entered STN: 26 Feb 2001
CN Oxetane, 3,3'-(1,4-phenylenebis(methyleneoxymethylene))bis[3-ethyl-,
polymer with 3-(methoxymethyl)-3-methyloxetane and [(2-
phenoxyethoxy)methyl]oxirane (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Oxetane, 3-(methoxymethyl)-3-methyl-, polymer with [(2-
phenoxyethoxy)methyl]oxirane and 3,3'-(1,4-phenylenebis(methyleneoxymethyl
ene))bis[3-ethyloxetane] (9CI)
CN Oxirane, [(2-phenoxyethoxy)methyl]-, polymer with 3-(methoxymethyl)-3-
methyloxetane and 3,3'-(1,4-phenylenebis(methyleneoxymethylene))bis[3-

ethyloxetane] (9CI)

OTHER NAMES:

CN Ethylene glycol glycidyl phenyl ether-3-(methoxymethyl)-3-methyloxetane-XDO copolymer

MF (C₂₀ H₃₀ O₄ . C₁₁ H₁₄ O₃ . C₆ H₁₂ O₂)_x

CI PMS

PCT Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Patent

RLD.P Roles for non-specific derivatives from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring Formula	Identifier	Ring RID	Occurrence
EA	ES	SZ	RF	RID	Count	
C ₂₀	OC2	3	C ₂₀	1.30.1	1 in CM	
					3	
C ₆	C6	6	C ₆	46.150.18	1 in CM	
					1 1 in CM	
					3	
C ₃₀	OC3	4	C ₃₀	4.214.1	2 in CM	
					1 1 in CM	
					2	

CM 1

CRN 142627-97-2

CMF C₂₀ H₃₀ O₄

CM 2

CRN 34493-11-3

CMF C₆ H₁₂ O₂

CM 3

CRN 14435-46-2

CMF C₁₁ H₁₄ O₃

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 134:156304 CA
TITLE: Polymer electrolytes, their manufacture, and electrochemical devices therefrom
INVENTOR(S): Sato, Kazuya; Tai, Seiji; Nishiyama, Shino
PATENT ASSIGNEE(S): Hitachi Chemical Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
INT. PATENT CLASSIF.:
 MAIN: H01B001-06
 SECONDARY: C08G065-18; C08K003-24; C08L071-00; G01N027-406;
 H01B001-12; H01B013-00; H01M008-02; H01M010-30;
 H01M010-40
CLASSIFICATION: 76-2 (Electric Phenomena)
 Section cross-reference(s): 38, 52
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001035250	A2	20010209	JP 1999-205542	19990721
PRIORITY APPLN. INFO.:			JP 1999-205542	19990721

ABSTRACT:

The electrolytes comprise polyethers obtained by reaction of oxetane compds., preferably with epoxy compds. The electrolytes may also contain alkali metal salts. The electrolytes are manufactured by preparation of polyether, by reaction of oxetane compds. in presence of polymerization catalysts, followed by treatment of the polyether with alkali metal salts. Electrochem. devices comprising of thus prepared electrolytes are also claimed.

SUPPL. TERM: polyoxyalkylene lithium complex solid electrolyte; polyether electrolyte manuf electrochem device; battery electrolyte
 polyoxyalkylene lithium complex; oxetane polymn solid electrolyte manuf
INDEX TERM: Electric apparatus
 (electrochem., electrolytes; manufacture of polyoxyalkylenes as solid electrolytes for electrochem. devices)
INDEX TERM: Battery electrolytes
 Polymer electrolytes
 (manufacture of polyoxyalkylenes as solid electrolytes for electrochem. devices)
INDEX TERM: Polyoxyalkylenes, uses
ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (manufacture of polyoxyalkylenes as solid electrolytes for electrochem. devices)
INDEX TERM: 7439-93-2DP, Lithium, polyoxyalkylene complexes, uses

28675-37-8DP, Allyl glycidyl ether-oxetane copolymer,
lithium complexes, perchlorate-containing 97041-72-0DP,
lithium complexes, perchlorate-containing 97052-14-7DP,
lithium complexes, perchlorate-containing 324034-02-8DP,
Ethylene glycol glycidyl phenyl ether-oxetane copolymer,
lithium complexes, perchlorate-containing 324034-03-9DP,
Ethylene glycol glycidyl phenyl ether-3-(methoxymethyl)-3-
methyloxetane copolymer, lithium complexes,
perchlorate-containing 324034-04-0DP, lithium complexes,
perchlorate-containing 324034-05-1DP, 2-(Chloromethyl)oxetane-
propylene oxide copolymer, lithium complexes,
perchlorate-containing 324034-06-2DP, 3,3-
Bis(chloromethyl)oxetane-ethylene oxide copolymer, lithium
complexes, perchlorate-containing 324034-07-3DP, Ethylene
glycol glycidyl phenyl ether-3-(methoxymethyl)-3-
methyloxetane-XDO copolymer, lithium complexes,
perchlorate-containing 324034-08-4DP, lithium complexes,
perchlorate-containing

ROLE: IMF (Industrial manufacture); TEM (Technical or
engineered material use); PREP (Preparation); USES (Uses)
(manufacture of polyoxyalkylenes as solid electrolytes for
electrochem. devices)

INDEX TERM: 7791-03-9, Lithium perchlorate 14283-07-9, Lithium
tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate
90076-65-6, Lithium bis(trifluoromethanesulfonyl)imide
ROLE: TEM (Technical or engineered material use); USES (Uses)
(manufacture of polyoxyalkylenes as solid electrolytes for
electrochem. devices)

L5 ANSWER 11 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 226091-85-6 REGISTRY
ED Entered STN: 25 Jun 1999
CN 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, 7-oxabicyclo[4.1.0]hept-3-
ylmethyl ester, polymer with 3-ethyl-3-[(hexyloxy)methyl]oxetane,
3-ethyl-3-oxetanemethanol and 3,3'-[1,4-phenylenebis(methyleneoxymethylene)
]bis[3-ethyloxetane] (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN 3-Oxetanemethanol, 3-ethyl-, polymer with 3-ethyl-3-
[(hexyloxy)methyl]oxetane, 7-oxabicyclo[4.1.0]hept-3-ylmethyl
7-oxabicyclo[4.1.0]heptane-3-carboxylate and 3,3'-[1,4-
phenylenebis(methyleneoxymethylene)]bis[3-ethyloxetane] (9CI)
CN Oxetane, 3,3'-[1,4-phenylenebis(methyleneoxymethylene)]bis[3-ethyl-,
polymer with 3-ethyl-3-[(hexyloxy)methyl]oxetane, 3-ethyl-3-
oxetanemethanol and 7-oxabicyclo[4.1.0]hept-3-ylmethyl
7-oxabicyclo[4.1.0]heptane-3-carboxylate (9CI)
CN Oxetane, 3-ethyl-3-[(hexyloxy)methyl]-, polymer with 3-ethyl-3-
oxetanemethanol, 7-oxabicyclo[4.1.0]hept-3-ylmethyl 7-
oxabicyclo[4.1.0]heptane-3-carboxylate and 3,3'-[1,4-
phenylenebis(methyleneoxymethylene)]bis[3-ethyloxetane] (9CI)

OTHER NAMES:

CN 3,4-Epoxyhexylmethyl 3,4-epoxycyclohexanecarboxylate-3-ethyl-3-
hexyloxymethyloxetane-3-ethyl-3-hydroxymethyloxetan-p-xyllylene
bis(ethyloxetanyl methyl) ether copolymer

MF (C20 H30 O4 . C14 H20 O4 . C12 H24 O2 . C6 H12 O2)x

CI PMS

PCT Epoxy resin, Polyester, Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

DT.CA CAplus document type: Patent

RL.P Roles from patents: PREP (Preparation); PRP (Properties); USES (Uses)

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System	Ring Formula	Identifier RID	Occurrence Count
C2O-C6	O-C2-C6	3-6	C6O	106.32.1	2 in CM	
						4
C3O	O-C3	4	C3O	4.214.1	1 in CM	
						1 2 in CM
						2 1 in CM
						3
C6	C6	6	C6	46.150.18	1 in CM	
						2

CM 1

CRN 226091-84-5
CMF C12 H24 O2

CM 2

CRN 142627-97-2
CMF C20 H30 O4

CM 3

CRN 3047-32-3
CMF C6 H12 O2

CM 4

CRN 2386-87-0
CMF C14 H20 O4

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 131:20326 CA
 TITLE: Ultraviolet ray-curable coating compositions for cans
 INVENTOR(S): Takami, Seiji
 PATENT ASSIGNEE(S): Kansai Paint Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 14 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C09D163-00
 SECONDARY: B05D007-14; C09D005-00; C09D007-12; C08G065-08
 CLASSIFICATION: 42-10 (Coatings, Inks, and Related Products)
 Section cross-reference(s): 55
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11152441	A2	19990608	JP 1997-320665	19971121
US 6166101	A	20001226	US 1998-197415	19981123
PRIORITY APPLN. INFO.:				JP 1997-320665 19971121

ABSTRACT:
 Coating materials contain alicyclic epoxy compds. 10-85, oxetane compds. 5-60, compds. having 1 oxetane ring and OH group 5-60, compds. having ≥2 oxetane rings or an oxetane ring and an epoxy group 5-60, and cationic polymerization catalysts 0.01-20 parts/100 parts above compds. Thus, a coating material for a PET polyester-tin free steel sheet contained 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate 40, 3-ethyl-3-hexyloxymethyloxetane 20, 3-ethyl-3-hydroxymethyloxetane 20, and p-xylylene bis(ethyloxetanyl methyl) ether 20, CyraCure UVI 6990 6, decaglycerin laurate wax 0.5, and a silicone wax 0.2 part.

SUPPL. TERM: UV crosslinking coating can; steel can UV curable coating; cationic polynn catalyst coating can; epoxide oxetane coating UV crosslinking
 INDEX TERM: Polysiloxanes, uses
 ROLE: MOA (Modifier or additive use); USES (Uses)
 (Paintad M, lubricants; UV ray-curable coating compns.
 containing epoxides and oxetanes for cans and cationic polymerization catalysts for)
 INDEX TERM: Cans
 Lubricants
 UV radiation
 (UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)
 INDEX TERM: Epoxides
 ROLE: RCT (Reactant); RACT (Reactant or reagent)
 (UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)
 INDEX TERM: Coating materials

(UV-curable; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: Polymerization catalysts
(cationic; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: Ethers, reactions
ROLE: RCT (Reactant); RACT. (Reactant or reagent)
(cyclic; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: Polymerization catalysts
(photopolymn.; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: Polymerization
(ring-opening; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: 104558-95-4, CyraCure UVI 6990
ROLE: CAT (Catalyst use); USES (Uses)
(CyraCure UVI 6990; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: 226091-85-6P, 3,4-Epoxyhexylmethyl 3,4-epoxycyclohexanecarboxylate-3-ethyl-3-hexyloxymethyloxetane-3-ethyl-3-hydroxymethyloxetan-p-xylylene bis(ethyloxetanyl methyl) ether copolymer
ROLE: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: 25167-42-4P, Glycidyl methacrylate-styrene copolymer
226091-87-8P 226091-89-0P 226091-90-3P 226091-91-4P
226091-92-5P
ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: 12597-69-2, Steel, uses
ROLE: TEM (Technical or engineered material use); USES (Uses)
(UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

INDEX TERM: 125622-15-3, Decaglycerin laurate
ROLE: MOA (Modifier or additive use); USES (Uses)
(lubricants; UV ray-curable coating compns. containing epoxides and oxetanes for cans and cationic polymerization catalysts for)

L5 ANSWER 12 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 183292-65-1 REGISTRY

ED Entered STN: 22 Nov 1996

CN Poly(3-oxetanylidene)methyleneoxy-1,4-phenylenethio-1,4-phenyleneoxymethylene) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl thioether copolymer, sru

CN 3,3-Bis(chloromethyl)oxetane-4,4'-thiodiphenol copolymer sru

CN 3,3-Bis(chloromethyl)oxetane-4,4'-thiodiphenol polymer, sru

MF (C17 H16 O3 S)n

CI PMS
PCT Polyether, Polythioether
SR CA
LC STN Files: CA, CAPLUS
DT.CA CAplus document type: Journal
RL.NP Roles from non-patents: PREP (Preparation); PRP (Properties)

RELATED POLYMERS AVAILABLE WITH POLYLINK

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence
EA	ES	SZ	RF	RID	Count
C3O	OC3	4	C3O	4.214.1	1
C6	C6	6	C6	46.150.18	2

4 REFERENCES IN FILE CA (1907 TO DATE)
4 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 136:325944 CA
TITLE: Synthesis and modification of oxetane based oligomers with 3-ethoxypropylamine by focused microwave irradiation

AUTHOR(S): Baudel, V.; Cazier, F.; Woisel, P.; Surpateanu, G.
CORPORATE SOURCE: MREID, Laboratoire de Synthese Organique et Environnement, Universite du Littoral, Dunkerque, 59140, Fr.

SOURCE: European Polymer Journal (2002), 38(3), 615-618
CODEN: EUPJAG; ISSN: 0014-3057

PUBLISHER: Elsevier Science Ltd.

DOCUMENT TYPE: Journal

LANGUAGE: English

CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)

ABSTRACT:

Synthesis of oligomers was achieved via condensation of several bisphenol sodium salts in water with 3,3-bis(chloromethyl)oxetane in nitrobenzene under phase transfer catalysis with tetrabutylammonium bromide. All proceedings were developed both by classical and under focused microwave irradiation with complete exptl. parameters control. The rigid oxetane chain was then opened partially with 3-ethoxypropylamine in order to generate some specific properties. Higher substitution was obtained by microwave activation in the presence of the zinc chloride which is well known to react as microwave absorber.

SUPPL. TERM: bischloromethyloxetane bisphenol oligomer reaction product ethoxypropylamine; microwave polymn bischloromethyloxetane

INDEX TERM: bisphenol; oxetane based polyether reaction product
ethoxypropylamine
Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(cardo; synthesis and modification of
3,3-bis(chloromethyl)oxetane-bisphenol oligomers with
3-ethoxypropylamine by focused microwave irradiation)

INDEX TERM: Microwave
(irradiation; synthesis and modification of
3,3-bis(chloromethyl)oxetane-bisphenol oligomers with
3-ethoxypropylamine by focused microwave irradiation)

INDEX TERM: Polymerization
(oligomerization; synthesis and modification of
3,3-bis(chloromethyl)oxetane-bisphenol oligomers with
3-ethoxypropylamine by focused microwave irradiation)

INDEX TERM: Polymerization catalysts
(phase-transfer, tetrabutylammonium bromide; synthesis
and modification of 3,3-bis(chloromethyl)oxetane-
bisphenol oligomers with 3-ethoxypropylamine by focused
microwave irradiation)

INDEX TERM: Polythioethers
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(polyether-, cardo, oligomeric; synthesis and
modification of 3,3-bis(chloromethyl)oxetane-bisphenol
oligomers with 3-ethoxypropylamine by focused microwave
irradiation)

INDEX TERM: Cardo polymers
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(polyether-polythioethers, oligomeric; synthesis and
modification of 3,3-bis(chloromethyl)oxetane-bisphenol
oligomers with 3-ethoxypropylamine by focused microwave
irradiation)

INDEX TERM: Cardo polymers
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(polyethers; synthesis and modification of
3,3-bis(chloromethyl)oxetane-bisphenol oligomers with
3-ethoxypropylamine by focused microwave irradiation)

INDEX TERM: Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(polythioether-, cardo, oligomeric; synthesis and
modification of 3,3-bis(chloromethyl)oxetane-bisphenol
oligomers with 3-ethoxypropylamine by focused microwave
irradiation)

INDEX TERM: 1643-19-2, Tetrabutylammonium bromide
ROLE: CAT (Catalyst use); USES (Uses)
(catalyst; synthesis and modification of
3,3-bis(chloromethyl)oxetane-bisphenol oligomers with
3-ethoxypropylamine by focused microwave irradiation)

INDEX TERM: 35463-84-4P, 3,3-Bis(chloromethyl)oxetane-bisphenol A
copolymer 54180-71-1P 156962-78-6P, 3,3-
Bis(chloromethyl)oxetane-4,4'-dihydroxybiphenyl copolymer
156962-79-7P 182920-73-6P, 3,3-Bis(chloromethyl)oxetane-
4,4'-ethylidenebisphenol copolymer 182920-75-8P
182920-82-7P, 3,3-Bis(chloromethyl)oxetane-4,4'-
cyclohexylidenebisphenol copolymer 182920-84-9P
183292-64-0P, 3,3-Bis(chloromethyl)oxetane-4,4'-thiodiphenol
copolymer 183292-65-1P

INDEX TERM: (Preparation)
(polyethers, preparation and structure and properties of)
Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(polyketone-, cardo, preparation and structure and properties
of)
INDEX TERM: Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(polysulfone-, cardo, preparation and structure and properties
of)
INDEX TERM: Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(polythioether-, cardo, preparation and structure and
properties of)
INDEX TERM: Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(thio-, polyether-, cardo, preparation and structure and
properties of)
INDEX TERM: 35463-84-4P, 3,3-Bis(chloromethyl)oxetane-bisphenol A
copolymer 54180-71-1P, 3,3-Bis(chloromethyl)oxetane-
bisphenol A copolymer, sru 156962-78-6P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxybiphenyl
copolymer 156962-79-7P 182920-63-4P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxyazobenzene
copolymer 182920-66-7P 182920-73-6P,
3,3-Bis(chloromethyl)oxetane-1,1-bis(4-hydroxyphenyl)ethane
copolymer 182920-75-8P 182920-77-0P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenylmethane
copolymer 182920-79-2P 182920-82-7P 182920-84-9P
182920-86-1P 182920-89-4P 182920-92-9P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl sulfone
copolymer 182920-95-2P, 3,3-Bis(chloromethyl)oxetane-4,4'-
dihydroxydiphenyl sulfone copolymer, sru 183292-60-6P,
3,3-Bis(chloromethyl)oxetane-1,2-bis(4-hydroxyphenyl)ethane
copolymer 183292-61-7P, 3,3-Bis(chloromethyl)oxetane-1,2-
bis(4-hydroxyphenyl)ethane copolymer, sru 183292-62-8P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl ether
copolymer 183292-63-9P, 3,3-Bis(chloromethyl)oxetane-4,4'-
dihydroxydiphenyl ether copolymer, sru 183292-64-0P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl
thioether copolymer 183292-65-1P, 3,3-
Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl thioether
copolymer, sru 183292-66-2P, 3,3-Bis(chloromethyl)oxetane-
4,4'-dihydroxydiphenyl ketone copolymer 183292-67-3P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl ketone
copolymer, sru 183292-68-4P 183292-69-5P 183292-70-8P
183292-71-9P
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(preparation and structure and properties of)

L5 ANSWER 13 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 183292-63-9 REGISTRY

ED Entered STN: 22 Nov 1996

CN Poly(3-oxetanylidenemethyleneoxy-1,4-phenyleneoxy-1,4-
phenyleneoxymethylene) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl ether copolymer,

sru
 MF (C₁₇ H₁₆ O₄)_n
 CI PMS
 PCT Polyether
 SR CA
 LC STN Files: CA, CAPLUS
 DT.CA CAplus document type: Journal
 RL.NP Roles from non-patents: PREP (Preparation); PROC (Process); PRP (Properties); RACT (Reactant or reagent)

RELATED POLYMERS AVAILABLE WITH POLYLINK

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C ₃ O	OC ₃	4	C ₃ O	4.214.1	1
C ₆	C ₆	6	C ₆	46.150.18	2

4 REFERENCES IN FILE CA (1907 TO DATE)
 4 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 136:310516 CA
 TITLE: Thermal behavior and primary degradation mechanism of some aromatic polyethers with semi-flexible chain
 AUTHOR(S): Creanga, A.; Pokol, G.; Hurduc, N.; Novak, Cs.; Alazaroaie, S.; Hurduc, N.
 CORPORATE SOURCE: Department of Physical and Theoretical Chemistry, A. I. Cuza' University, Iasi, 6600, Rom.
 SOURCE: Journal of Thermal Analysis and Calorimetry (2001), 66(3), 859-868
 CODEN: JTACF7; ISSN: 1418-2874
 PUBLISHER: Kluwer Academic Publishers
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 37-5 (Plastics Manufacture and Processing)

ABSTRACT:
 The present paper describes a thermogravimetric study combined with mass spectrometry of some aromatic polyethers and copolyethers to obtain information on the degradation mechanism. The studied polymers were synthesized starting from 3,3-bis(chloromethyl) oxetane and various bisphenols: 4,4'-dihydroxyazobenzene, 4,4'-dihydroxydiphenyl, bisphenol A and 4,4'-dihydroxydiphenyl ether. The presence of an oxetane spacer in the structure, permitting the opening of the cycle, induces more complications in the characterization procedure. But, due to the possibilities relative to the modification of polymers or crosslinking

reactions, the presence of the oxetane moiety may offer some advantages. Out of all the studied polymers, those containing azobenzene moieties have the lower thermostability. If the chain flexibility is augmented, the degradation mechanism is based on chain transfer reactions. All polymers present higher thermostability in an argon atmospheric Based on mass spectra, a degradation mechanism

sustained with the assumption that the oxetane unit is the most labile was proposed. The opening of the oxetane cycle begins with the most tensioned bond (-C-CH₂-) and generates a crosslinking process, which is more evident if the polymer melts below 200°.

SUPPL. TERM: arom polyether primary degrdn mechanism thermal behavior
INDEX TERM: Polyethers, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(aromatic; thermal behavior and primary degradation mechanism
of aromatic polyethers)
INDEX TERM: Differential thermal analysis
(of aromatic polyethers)
INDEX TERM: Polymer degradation
Polymer degradation kinetics
(thermal; of aromatic polyethers)
INDEX TERM: 1643-19-2, Tetrabutylammonium bromide
ROLE: CAT (Catalyst use); USES (Uses)
(phase transfer catalyst for preparation of aromatic
polyethers)
INDEX TERM: 35463-84-4P, 3,3-Bis(chloromethyl)oxetane-bisphenol A
copolymer 54180-71-1P, 3,3-Bis(chloromethyl)oxetane-
bisphenol A copolymer, sru 156962-78-6P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl
copolymer 156962-79-7P, 3,3-Bis(chloromethyl)oxetane-4,4'-
dihydroxydiphenyl copolymer, sru 163973-99-7P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxyazobenzene
copolymer, sru 182920-63-4P, 3,3-Bis(chloromethyl)oxetane-
4,4'-dihydroxyazobenzene copolymer 183292-62-8P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxydiphenyl ether
copolymer 183292-63-9P, 3,3-Bis(chloromethyl)oxetane-4,4'-
dihydroxydiphenyl ether copolymer, sru 202754-48-1P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxyazobenzene-4,4'-
dihydroxydiphenyl ether copolymer 202754-49-2P,
3,3-Bis(chloromethyl)oxetane-4,4'-dihydroxybiphenyl-4,4'-
dihydroxydiphenyl ether copolymer 322471-10-3P,
3,3-Bis(chloromethyl)oxetane-bisphenol A-4,4'-
dihydroxydiphenyl ether copolymer
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(thermal behavior and primary degradation mechanism of
aromatic polyethers)
REFERENCE COUNT: 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS
RECORD.
REFERENCE(S): (1) Antoun, S; J Polym Sci, Polym Chem Ed 1981, V19, P1901
CAPLUS
(2) Catanescu, O; Die Angew Makromol Chem 1999, V273, P91
CAPLUS
(3) Creanga, A; J Therm Anal Cal, in preparation
(4) Daoudi, A; J Macromol Sci, Pure Appl Chem 1998, VA35,
P151 CAPLUS
(5) Hurduc, N; Eur Polym J 1992, V28, P791 CAPLUS
(6) Hurduc, N; J Thermal Anal 1996, V47, P735 CAPLUS
(7) Hurduc, N; Polym Bull 1992, V28, P639 CAPLUS

(Preparation)
(preparation and structure and properties of)

L5 ANSWER 14 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 182198-91-0 REGISTRY
ED Entered STN: 22 Oct 1996
CN Oxetane, 3-ethyl-3-[(phenylmethoxy)methyl]-, homopolymer (9CI) (CA INDEX NAME)
OTHER NAMES:
CN Poly(3-ethyl-3-hydroxymethyloxetane benzyl ether)
MF (C₁₃ H₁₈ O₂)_x
CI PMS
PCT Polyether, Polyether formed
SR CA
LC STN Files: CA, CAPLUS, USPATFULL
DT.CA CAplus document type: Journal; Patent
RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); PRP (Properties); USES (Uses)
RL.NP Roles from non-patents: PREP (Preparation); PRP (Properties)

RELATED POLYMERS AVAILABLE WITH POLYLINK

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence	Ring RID	Count
EA	ES	SZ	RF	RID			
C ₃ O	OC ₃	4	C ₃ O	4.214.1	1		
C ₆	C ₆	6	C ₆	46.150.18	1		

CM 1

CRN 18933-99-8
CMF C₁₃ H₁₈ O₂

3 REFERENCES IN FILE CA (1907 TO DATE)
3 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 133:282171 CA
TITLE: Photochemically induced cationic photopolymerization of vinyl ethers and oxetanes
AUTHOR(S): Nuyken, O.; Ruile, M.
CORPORATE SOURCE: Lehrstuhl Makromol. Stoffe, Tech. Univ. Munchen, Garching, D-85747, Germany
SOURCE: NATO Science Series, Series E: Applied Sciences (1999), 359(Ionic Polymerizations and Related Processes), 117-142
CODEN: NSSSFC
PUBLISHER: Kluwer Academic Publishers
DOCUMENT TYPE: Journal
LANGUAGE: English

CLASSIFICATION:

35-7 (Chemistry of Synthetic High Polymers)

ABSTRACT:

2,3-Dihydrofuran can be polymerized by means of cationic photoinitiators yielding 100% polymer in less than 120 s at room temperature. The product is colorless, has good film forming properties and does not show any side reaction such as aldehyde formation. Several mono-, bi- and trifunctional oxetanes were synthesized in bulk and in solution cationically. Selected photoinitiators have been applied. It was found that sulfonium salts are very efficient due to good solubility, almost no discoloration of the product and storage stability in the monomer in the absence of light. The conversion was determined by quant. IR-spectroscopy. Conversion between 75% and 85% was found in all cases. The shrinkage during polymerization was much lower than for vinyl monomers. No inhibition by oxygen was observed. Monomer layers thicker than 5.5 mm could be polymerized. The products are transparent and almost colorless. The glass transition temperature of the crosslinked polymers was above 37°C (temperature of the human body).

SUPPL. TERM: photochem cationic polymn vinyl ether oxetane;
polyoxyalkylene prepn ring opening photopolymn oxetane

INDEX TERM: Polymerization catalysts
(cationic, photochem.; photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: Polymerization catalysts
Polymerization kinetics
(cationic, ring-opening; photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: Contraction (mechanical)
Density
Glass transition temperature
(photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: Polyoxyalkylenes, preparation

ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: 74227-35-3, Degacure KI 85B
ROLE: CAT (Catalyst use); USES (Uses)
(Degacure KI 85B; photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: 142675-47-6P 299162-63-3P
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(crosslinked; photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: 109-63-7 30927-77-6 143084-46-2 143084-48-4
ROLE: CAT (Catalyst use); USES (Uses)
(photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: 3047-32-3, 3-Ethyl-3-(hydroxymethyl)oxetane 3897-65-2
18933-99-8, 3-Ethyl-3-hydroxymethyloxetane benzyl ether
144993-36-2 299162-49-5 299162-53-1 299162-56-4
299162-60-0
ROLE: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
(photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

INDEX TERM: 26221-61-4P, 3-Ethyl-3-hydroxymethyloxetane homopolymer
30524-28-8P, 3,4-Dihydro-2H-pyran homopolymer 31093-92-2P
65376-35-4P, 1-Propene, 1-ethoxy-, homopolymer
75454-45-4P, 2,3-Dihydrofuran homopolymer 167499-43-6P

167499-44-7P 182198-91-0P, Poly(3-ethyl-3-hydroxymethyloxetane benzyl ether) 204767-55-5P
299162-50-8P 299162-51-9P 299162-52-0P 299162-54-2P
299162-55-3P 299162-57-5P 299162-59-7P 299162-61-1P
299162-62-2P

ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(photochem. induced cationic photopolymn. of vinyl ethers and oxetanes)

REFERENCE COUNT: 44 THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS RECORD.

REFERENCE(S):

- (1) Anon; Organikum 16. Auflage 1986, P269
- (2) Anon; UV-Curing: Science and Technology 1978
- (3) Arnett, E; J Am Chem Soc 1962, V84, P1684 CAPLUS
- (4) Black, P; Can J Chem 1976, V54, P3325 CAPLUS
- (5) Bohner, R; Dissertation, Munchen 1995
- (6) Botteghi, C; Gazz Chim Ital 1975, V105, P233 CAPLUS
- (7) Bucquoye, M; Macromol Chem 1954, V179, P1681
- (8) Crivello, J; Adv Polym Sci 1984, V62, P1 CAPLUS
- (9) Crivello, J; J Macromol Sci, Chem 1993, VA30, P173 CAPLUS
- (10) Crivello, J; J Macromol Sci, Chem 1993, VA30, P189 CAPLUS
- (11) Crivello, J; J Polym Sci: Part A: Polym Chem 1993, V31, P1473 CAPLUS
- (12) Crivello, J; J Polym Sci: Part A: Polym Chem 1993, V31, P1483 CAPLUS
- (13) Crivello, J; Macromolecules 1977, V10, P1307 CAPLUS
- (14) Crivello, J; Makromol Chem 1983, V184, P463 CAPLUS
- (15) Dektar, J; J Am Chem Soc 1991, V112, P6004
- (16) Dulcere, J; J Org Chem 1993, V58, P5702 CAPLUS
- (17) Eley, D; Trans Faraday Soc 1947, V43, P112 CAPLUS
- (18) Eley, D; Trans Faraday Soc 1949, V45, P425 CAPLUS
- (19) Farthing, A; J Chem Soc 1955, P3648 CAPLUS
- (20) Farthing, A; J Polym Sci 1954, V12, P503 CAPLUS
- (21) Garrat, P; Ind Lachier Betr 1981, V49, P41
- (22) Gaur, H; Makromol Chem 1984, V185, P1795 CAPLUS
- (23) Goethals, E; Adv Polym Sci 1977, V23, P103 CAPLUS
- (24) Hashimoto, K; J Radiat Curing 1981, V8, P4 CAPLUS
- (25) Jakobi, M; J Radiat Curing 1983, V10(4), P16
- (26) Johnen, N; Polym Bull (Berlin) 1993, V30, P279 CAPLUS
- (27) Kigasawa, K; J Heterocycl Chem 1977, V14, P473
- (28) Kops, J; Polym Bull (Berlin) 1981, V4, P505 CAPLUS
- (29) Liu, Y; J Polym Sci, Part A, Polym Chem 1994, V32, P2543 CAPLUS
- (30) Lowe, G; J Chem Soc Perkin Trans 1985, VI, P393
- (31) Miyashita, M; J Org Chem 1977, V42, P3772 CAPLUS
- (32) Murad, E; J Am Chem Soc 1961, V83, P1328
- (33) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
- (34) Penczek, I; Makromol Chem 1963, V67, P203 CAPLUS
- (35) Penczek, S; Comprehensive Polymer Science 1989, V3, P751
- (36) Raether, B; Dissertation, TU Munchen 1996
- (37) Rose, J; J Am Chem Soc 1956, V78, P542
- (38) Rose, J; J Am Chem Soc 1956, V78, P546
- (39) Sasaki, H; J Macromol Sci, Chem 1992, VA29, P915 CAPLUS
- (40) Shankar, S; US 4400541 1983 CAPLUS
- (41) Stork, G; J Am Chem Soc 1983, V105, P3720 CAPLUS
- (42) Ueno, Y; J Am Chem Soc 1982, V104, P5564 CAPLUS
- (43) Voit, B; Dissertation, Bayreuth 1990
- (44) Yagci, Y; J Polym Sci: Part A: Polym Chem 1992, V30, P1987 CAPLUS

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 728790	A1	19960828	EP 1996-101788	19960208
EP 728790	B1	20000503		
R: CH, DE, FR, GB, IT, LI				
DE 19506222	A1	19960829	DE 1995-19506222	19950222
DE 19506222	B4	20041125		
JP 08245783	A2	19960924	JP 1996-33920	19960221
JP 2880446	B2	19990412		

PRIORITY APPLN. INFO.: DE 1995-19506222 19950222

ABSTRACT:

Monomers of specified structure containing oxetane groups are prepared, which give low shrinkage during polymerization and are useful in coatings and as medical and dental materials (no data). Heating equimolar amts. of di-Et carbonate with trimethylolpropane in the presence of KOH at 105-110° for 1 h gave 78% 3-ethyl-3-(hydroxymethyl)oxetane (I). Catalytic photopolymn. of a thin film of I resulted in 7.8% shrinkage; vs. 21.3 for MMA.

SUPPL. TERM: oxetane deriv monomer prep; shrinkage resistant oxetane monomer; trimethylolpropane reaction ethyl carbonate; ethyloxetanemethanol monomer prep; coating oxetane deriv monomer; dental material oxetane deriv monomer; surgical material oxetane deriv monomer

INDEX TERM: Monomers
ROLE: IMF (Industrial manufacture); PREP (Preparation)
(oxetane derivative monomers with low shrinkage in polymerization)

INDEX TERM: Coating materials
Dental materials and appliances
(oxetane derivative polymers with low shrinkage in polymerization)

INDEX TERM: Medical goods
(bone cements, oxetane derivative polymers with low shrinkage in polymerization)

INDEX TERM: 18933-99-8P 142627-97-2P
ROLE: IMF (Industrial manufacture); PREP (Preparation)
(monomers containing oxetane groups)

INDEX TERM: 26221-61-4P 142675-47-6P 182198-91-0P
ROLE: IMF (Industrial manufacture); PREP (Preparation)
(oxetane derivative polymers with low shrinkage in polymerization)

INDEX TERM: 3047-32-3P, 3-Ethyl-3-(hydroxymethyl)oxetane
ROLE: IMF (Industrial manufacture); RCT (Reactant); PREP
(Preparation); RACT (Reactant or reagent)
(preparation and reaction with benzyl halides)

INDEX TERM: 77-99-6, Trimethylolpropane
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(reaction with di-Et carbonate)

INDEX TERM: 100-39-0, Benzyl bromide 623-24-5, 1,4-
Bis(bromomethyl)benzene
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(reaction with ethyloxetanemethanol)

INDEX TERM: 105-58-8, Diethyl carbonate
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(reaction with trimethylolpropane)

L5 ANSWER 15 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 167499-43-6 REGISTRY

ED Entered STN: 12 Sep 1995

CN Oxetane, 3-ethyl-3-(phenoxyethyl)-, homopolymer (9CI) (CA INDEX NAME)

OTHER NAMES:

CN (3-Ethyl-3-oxetanylmethyl) phenyl ether homopolymer
 CN 3-Ethyl-3-(phenoxyethyl)oxetane homopolymer
 MF (C₁₂ H₁₆ O₂)_x
 CI PMS
 PCT Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL
 DT.CA CAplus document type: Journal; Patent
 RL.P Roles from patents: PREP (Preparation); PRP (Properties); USES (Uses)
 RL.NP Roles from non-patents: PREP (Preparation); PRP (Properties)

RELATED POLYMERS AVAILABLE WITH POLYLINK

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence	Ring RID	Count
EA	ES	SZ	RF	RID			
C3O	OC3	4	C3O	4.214.1	1		
C6	C6	6	C6	46.150.18	1		

CM 1

CRN 3897-65-2
CMF C₁₂ H₁₆ O₂

11 REFERENCES IN FILE CA (1907 TO DATE)
 11 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 139:338289 CA
 TITLE: Cationic photopolymerization of 2-phenyloxetanes
 AUTHOR(S): Kato, Hisao; Sasaki, Hiroshi
 CORPORATE SOURCE: Corporate Research Lab, Toagosei Company Ltd., Aichi,
 455-0027, Japan
 SOURCE: ACS Symposium Series (2003), 847 (Photoinitiated
 Polymerization), 285-295
 CODEN: ACSMC8; ISSN: 0097-6156
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 22

ABSTRACT:

In cationic polymerization, the polymerizability of oxetanes are known to be high, while the initiation is rather slow, which can be explained by the high-energy barrier for the first ring opening. Due to the stabilizing effect of benzyl groups, the introduction of a Ph group into the 2-position of the oxetane ring might enhance the stability of intermediate in the initiation. Based on this idea, the reactivity of 2-phenyloxetanes (2-phenyl-3,3-dimethyloxetane (HPO) and 2-(4-methoxyphenyl)-3,3-dimethyloxetane (MPO)) was studied using photo-DSC

SOURCE: Tsukuba, 300-33, Japan
 Polymeric Materials Science and Engineering (1995),
 72, 475-6
 CODEN: PMSEDG; ISSN: 0743-0515
 PUBLISHER: American Chemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 35-3 (Chemistry of Synthetic High Polymers)
 ABSTRACT:
 The cationic photopolymn. of 3-ethyl-3-(phenoxyethyl)oxetane in the presence of diphenyl[4-(phenylthio)phenyl]sulfonium hexafluoroantimonate was investigated. The polymerization mechanism is discussed.
 SUPPL. TERM: ethylphenoxyethylloxetane cationic photopolymn; mechanism
 ethylphenoxyethylloxetane cationic photopolymn
 INDEX TERM: Polyoxyalkylenes, preparation
 ROLE: SPN (Synthetic preparation); PREP (Preparation)
 (preparation by photoinitiated cationic polymerization of ethyl(phenoxyethyl)oxetane)
 INDEX TERM: Polymerization
 (cationic, photochem., mechanism of photoinitiated cationic polymerization of ethyl(phenoxyethyl)oxetane)
 INDEX TERM: 3897-65-2, 3-Ethyl-3-(phenoxyethyl)oxetane
 ROLE: PEP (Physical, engineering or chemical process); RCT
 (Reactant); PROC (Process); RACT (Reactant or reagent)
 (mechanism of photoinitiated cationic polymerization of)
 INDEX TERM: 167499-43-6P, 3-Ethyl-3-(phenoxyethyl)oxetane homopolymer
 ROLE: SPN (Synthetic preparation); PREP (Preparation)
 (preparation by photoinitiated cationic polymerization)

L5 ANSWER 16 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 167488-43-9 REGISTRY
 ED Entered STN: 12 Sep 1995
 CN 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, 7-oxabicyclo[4.1.0]hept-3-ylmethyl ester, polymer with 3,3'-(1,4-phenylenebis(methyleneoxyethylene))bis[3-ethyloxetane] (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Oxetane, 3,3'-(1,4-phenylenebis(methyleneoxyethylene))bis[3-ethyl-, polymer with 7-oxabicyclo[4.1.0]hept-3-ylmethyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate (9CI)
 OTHER NAMES:
 CN 1,4-Bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene-3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate copolymer
 CN 3,4-Epoxyhexylmethyl 3',4'-epoxycyclohexanecarboxylate-xylylene glycol di(3-ethyl-3-oxetanylmethyl ether) copolymer
 MF (C₂₀ H₃₀ O₄ . C₁₄ H₂₀ O₄)_x
 CI PMS, COM
 PCT Epoxy resin, Polyester, Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL
 DT.CA CAplus document type: Conference; Journal; Patent
 RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); PROC (Process); PRP (Properties); USES (Uses)
 RL.NP Roles from non-patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring Formula	Identifier	RID	Occurrence
EA	ES	SZ	RF	RID	Count	
C ₂₀ -C ₆	OC ₂ -C ₆	3-6	C ₆ O	106.32.1	2	in CM

C3O	OC3	4	C3O	4.214.1	2
C6	C6	6	C6	46.150.18	2 in CM 1 1 in CM 1

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 2386-87-0
CMF C14 H20 O4

21 REFERENCES IN FILE CA (1907 TO DATE)
21 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 141:124053 CA
 TITLE: Oxetanes: curing properties in photo-cationic polymerization
 AUTHOR(S): Sasaki, Hiroshi
 CORPORATE SOURCE: Toagosei Co. Ltd., Japan
 SOURCE: Experience the World of UV/EB, RadTech 2000: The Premier UV/EB Conference & Exhibition, Technical Conference Proceedings, Baltimore, MD, United States, Apr. 9-12, 2000 (2000), 61-68. RadTech International North America: Chevy Chase, Md.
 CODEN: 69ETFH
 DOCUMENT TYPE: Conference
 LANGUAGE: English
 CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
 ABSTRACT:
 Novel oxetane monomers are evaluated in photo-cationic curing system. Monomer with p-methoxyphenyl group on the second position of oxetane ring exhibited high reactivity. In the formulation of oxetanes with cycloaliph. diepoxyde monomer, the viscosity of the formulations were reduced, effectively keeping the high surface cure rates of epoxide alone. Difunctional oxetanes exhibited improved solvent resistance.

SUPPL. TERM: photochem cationic polymn oxetane; epoxy resin coating

INDEX TERM: Lenses
(UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: Epoxy resins, uses
ROLE: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(alicyclic; UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: Epoxy resins, uses
ROLE: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(aromatic epoxy resins; UV-curable compns. containing oxethanes,
epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: Polymerization catalysts
(cationic; UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: 242488-27-3P
ROLE: DEV (Device component use); IMF (Industrial manufacture);
PEP (Physical, engineering or chemical process); PREP
(Preparation); PROC (Process); USES (Uses)
(UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: 104558-95-4, UVI 6990
ROLE: CAT (Catalyst use); USES (Uses)
(initiators; UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

INDEX TERM: 167488-43-9P 184877-11-0P 225503-83-3P 225503-84-4P
242129-50-6P
ROLE: DEV (Device component use); IMF (Industrial manufacture);
PEP (Physical, engineering or chemical process); PREP
(Preparation); PROC (Process); USES (Uses)
(lens; UV-curable compns. containing oxethanes, epoxy compds., and cationic polymerization initiators for optical material sheets)

L5 ANSWER 17 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 167488-42-8 REGISTRY

ED Entered STN: 12 Sep 1995

CN Oxetane, 3,3'-(1,4-phenylenebis(methylene))bis[3-ethyl-,
polymer with 2,2'-(1-methylethylidene)bis(4,1-
phenyleneoxymethylene)]bis[oxirane] (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Oxirane, 2,2'-(1-methylethylidene)bis(4,1-phenyleneoxymethylene)]bis-,
polymer with 3,3'-(1,4-phenylenebis(methylene))bis[3-
ethyloxetane] (9CI)

OTHER NAMES:

CN Bisphenol A diglycidyl ether-1,4-xylylene glycol di(3-ethyl-3-
oxetanylmethyl ether) copolymer

MF (C21 H24 O4 . C20 H30 O4)x

CI PMS

PCT Epoxy resin, Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

DT.CA CAplus document type: Patent

RL.P Roles from patents: BIOL (Biological study); PREP (Preparation); PRP

(Properties); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C2O	OC2	3	C2O	1.30.1	2 in CM 2
C6	C6	6	C6	46.150.18	1 in CM 1 2 in CM 2
C3O	OC3	4	C3O	4.214.1	2 in CM 1

CM 1

CRN 142627-97-2
CMF C20 H30 O4

CM 2

CRN 1675-54-3
CMF C21 H24 O46 REFERENCES IN FILE CA (1907 TO DATE)
6 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 142:7357 CA
 TITLE: Active energy curable resin compositions with good curability and low reflectance angle for optical disks
 INVENTOR(S): Makino, Shinji
 PATENT ASSIGNEE(S): Mitsubishi Rayon Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 17 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 INT. PATENT CLASSIF.:
 MAIN: C08G065-04

SECONDARY: G11B007-24
CLASSIFICATION: 37-6 (Plastics Manufacture and Processing)
Section cross-reference(s): 38, 42, 74
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004331872	A2	20041125	JP 2003-131585	20030509
PRIORITY APPLN. INFO.:			JP 2003-131585	20030509

ABSTRACT:

Title compns. comprise (A) compds. having ≥ 2 oxetane rings, (B) compds. having ≥ 2 oxirane rings, (C) cationic photoinitiators, (D) compds. having ≥ 1 (meth)acryloyl group, and (E) radical photoinitiators. Thus, a composition comprising OXT 121 25, YD 8125 bisphenol A diglycidyl ether 25, UVI 6990 photoinitiator 3.0, U 2PH A diacrylate 5.0, and Irgacure 184 1.0 parts was applied on a silver-coated Panlite AD 9000TG optical disk and irradiated with a high pressure mercury lamp to give a test piece with reflectance angle 0.16° initially and 0.06° after durability test, transmittance 91% at 400 nm, 93% at 500 nm, and 93% at 700 nm, good surface hardness and reliability.

SUPPL. TERM: active energy curable resin curability reflectance angle optical disk; oxetane epoxy copolymer acrylic polymer protective coating optical disk

INDEX TERM: Coating materials
Optical disks
(active energy curable resin compns. with good curability and low reflectance angle for optical disks)

INDEX TERM: 167488-42-8P, OXT 121-YD 8125 copolymer
ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(blend with acrylic polymer; active energy curable resin compns. with good curability and low reflectance angle for optical disks)

INDEX TERM: 115647-57-9P
ROLE: IMF (Industrial manufacture); POF (Polymer in formulation); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(blend with epoxy resin; active energy curable resin compns. with good curability and low reflectance angle for optical disks)

INDEX TERM: 24936-68-3, Panlite AD 9000TG, uses
ROLE: TEM (Technical or engineered material use); USES (Uses)
(substrate; active energy curable resin compns. with good curability and low reflectance angle for optical disks)

REFERENCE 2

ACCESSION NUMBER: 141:55334 CA
TITLE: Radiation-curable resin compositions, optical sheets from them, and their manufacture
INVENTOR(S): Makino, Shinji
PATENT ASSIGNEE(S): Mitsubishi Rayon Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
INT. PATENT CLASSIF.:
MAIN: C08G065-18
SECONDARY: C08G059-02; C08J005-18; G02B001-04; G02B005-04;

SECONDARY: C08G059-20; C08G059-40; C08G065-22
CLASSIFICATION: 37-6 (Plastics Manufacture and Processing)
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 07053711	A2	19950228	JP 1993-223820	19930817
PRIORITY APPLN. INFO.:			JP 1993-223820	19930817

GRAPHIC IMAGE:

ABSTRACT:

Title compns. comprise (A) compds. having ≥ 2 oxetane rings in a mol., (B) compds. having ≥ 1 oxirane ring in a mol., and (C) cationic photopolymn. initiators. Thus, compound I 75, bisphenol A diglycidyl ether 25, and diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate 2.5 parts were mixed to give a composition [viscosity 148 cP (at 25°)], which was coated on a steel plate, cured by UV irradiation, and gave pencil hardness H and good adhesion property and curability.

SUPPL. TERM: oxetane compd curable compn; oxirane compd curable compn
INDEX TERM: Polymerization catalysts
(cationic, photochem., active energy ray-curable compns.
for cured products with good adhesion to base materials)
INDEX TERM: 71449-78-0
ROLE: CAT (Catalyst use); USES (Uses)
(cationic photopolymn. initiator; active energy
ray-curable compns. for cured products with good adhesion
to base materials)
INDEX TERM: 167488-42-8P 167488-43-9P 167488-44-0P 167488-45-1P
ROLE: IMF (Industrial manufacture); PRP (Properties); TEM
(Technical or engineered material use); PREP (Preparation);
USES (Uses)
(cured product; active energy ray-curable compns. for
cured products with good adhesion to base materials)

L5 ANSWER 18 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 46129-77-5 REGISTRY

ED Entered STN: 16 Nov 1984

CN Oxetane, 2-(phenoxyethyl)- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 2-Oxetanemethyl phenyl ether

FS 3D CONCORD

MF C10 H12 O2

CI COM

LC STN Files: BEILSTEIN*, CA, CAPLUS, CASREACT

(*File contains numerically searchable property data)

DT.CA CAplus document type: Journal

RL.NP Roles from non-patents: PREP (Preparation)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence
EA	ES	SZ	RF	RID	Count
C3O	OC3	4	C3O	4.214.1	1
C6	C6	6	C6	46.150.18	1

Calculated Properties (CALC)

PROPERTY (CODE)	VALUE	CONDITION	NOTE
Bioconc. Factor (BCF)	8.29	pH 1	((1) ACD
Bioconc. Factor (BCF)	8.29	pH 4	((1) ACD
Bioconc. Factor (BCF)	8.29	pH 7	((1) ACD
Bioconc. Factor (BCF)	8.29	pH 8	((1) ACD
Bioconc. Factor (BCF)	8.29	pH 10	((1) ACD
Boiling Point (BP)	254.6 +/- 13.0 deg C	760.0 Torr	((1) ACD
Enthalpy of Vap. (HVAP)	47.21 +/- 3.0 kJ/mol		((1) ACD
Flash Point (FP)	102.1 +/- 34.9 deg C		((1) ACD
Freely Rotatable Bonds (FRB)	3		((1) ACD
H acceptors (HAC)	2		((1) ACD
H donors (HD)	0		((1) ACD
Koc (KOC)	158	pH 1	((1) ACD
Koc (KOC)	158	pH 4	((1) ACD
Koc (KOC)	158	pH 7	((1) ACD
Koc (KOC)	158	pH 8	((1) ACD
Koc (KOC)	158	pH 10	((1) ACD
logD (LOGD)	1.51	pH 1	((1) ACD
logD (LOGD)	1.51	pH 4	((1) ACD
logD (LOGD)	1.51	pH 7	((1) ACD
logD (LOGD)	1.51	pH 8	((1) ACD
logD (LOGD)	1.51	pH 10	((1) ACD
logP (LOGP)	1.511 +/- 0.248		((1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 1	((1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 4	((1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 7	((1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 8	((1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 10	((1) ACD
Molecular Weight (MW)	164.20		((1) ACD
Vapor Pressure (VP)	0.0274064 Torr	25.0 deg C	((1) ACD

(1) Calculated using Advanced Chemistry Development (ACD/Labs) Software
 Solaris V4.76 ((C) 1994-2005 ACD/Labs)

See HELP PROPERTIES for information about property data sources in REGISTRY.

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

ACCESSION NUMBER: 109:92675 CA
TITLE: Synthesis of simple oxetanes carrying reactive
2-substituents
AUTHOR(S): Fitton, Alan O.; Hill, John; Jane, David E.; Millar,
Ross
CORPORATE SOURCE: Dep. Chem. Appl. Chem., Univ. Salford, Salford, M5
4WT, UK
SOURCE: Synthesis (1987), (12), 1140-2
CODEN: SYNTBF; ISSN: 0039-7881
DOCUMENT TYPE: Journal
LANGUAGE: English
CLASSIFICATION: 27-5 (Heterocyclic Compounds (One Hetero Atom))
GRAPHIC IMAGE:

ABSTRACT:

Oxiranes I [R1 = CH₂OCHMeOEt, CH₂OCH₂CH:CH₂, CH₂OPh, CH₂CH₂CH:CH₂, CH(OEt)₂] were treated with Me₂S+(O)C-H₂ [from Me₂S+(O)Me I- and Me₃COK] to give the resp. oxetanes II. II (R1 = CH₂OCHMeOEt) was hydrolyzed to II (R1 = CH₂OH), and the tosylate of the latter and 4-ClC₆H₄SH gave II (R1 = CH₂SC₆H₄Cl-4).

SUPPL. TERM: oxiranemethanol ether; insertion oxiranemethanol ether
oxosulfonium methylide; homologation oxiranemethanol ether
oxosulfonium methylide; ring enlargement oxirane
INDEX TERM: Insertion reaction
(of oxiranemethanol ethers with dimethyloxosulfonium
methylide)
INDEX TERM: Ring enlargement
(of oxiranes, oxetanes by)
INDEX TERM: 109-92-2, Ethyl vinyl ether
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(etherification by, of oxiranemethanol)
INDEX TERM: 556-52-5, Oxiranemethanol
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(etherification of, by vinyl alkyl ether)
INDEX TERM: 106-92-3, Allyl oxiranemethyl ether 122-60-1,
Oxiranemethyl phenyl ether 10353-53-4
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(insertion reaction of, with dimethyloxosulfonium
methylide)
INDEX TERM: 1774-47-6, Trimethyloxosulfonium iodide
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(insertion reaction of, with oxiranemethanol ethers)
INDEX TERM: 115785-61-0P
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP
(Preparation); RACT (Reactant or reagent)
(preparation and cyclocondensation reaction of)
INDEX TERM: 4416-85-7P 13269-77-7P, Oxiranecarboxaldehyde diethyl
acetal
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP
(Preparation); RACT (Reactant or reagent)
(preparation and insertion reaction of, with
dimethyloxosulfonium methylide)
INDEX TERM: 115845-51-7P
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP

(Preparation); RACT (Reactant or reagent)
(preparation and substitution reaction of, with benzenethiol derivative)

INDEX TERM: 46129-77-5P, 2-Oxetanemethyl phenyl ether 61266-70-4P,
2-Oxetanemethanol 115845-47-1P 115845-48-2P, Allyl
2-oxetanemethyl ether 115845-49-3P 115845-50-6P,
2-Oxetanecarboxaldehyde diethyl acetal 115845-52-8P
115845-53-9P 115845-54-0P 115845-55-1P 115845-56-2P
115845-57-3P

ROLE: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

INDEX TERM: 106-54-7, 4-Chlorobenzenethiol
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(substitution reaction of, with oxetanemethyl tosylate)

INDEX TERM: 10487-05-5, 2,3-Dihydroxypropanal diethyl acetal
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(O-tosylation of)

L5 ANSWER 19 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN

RN 30899-38-8 REGISTRY

ED Entered STN: 16 Nov 1984

CN Poly(oxy-1,2-ethanediyl), α -[4-(1,1-dimethylethyl)benzoyl]- ω -[(3-ethyl-3-oxetanyl)methoxy]-(9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Benzoic acid, p-tert-butyl-, monoester with polyethylene glycol (3-ethyl-3-oxetanyl)methyl ether (8CI)

CN Glycols, polyethylene, mono(p-tert-butylbenzoate), (3-ethyl-3-oxetanyl)methyl ether (8CI)

MF (C₂H₄O)_n C₁₇H₂₄O₃

CI PMS

PCT Polyether

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Patent

RL.P Roles from patents: USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Identifier	Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C3O	OC3	4	C3O	4.214.1	1	
C6	C6	6	C6	46.150.18	1	

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 73:131924 CA

TITLE: Polyether polyol carboxylates
INVENTOR(S): Rudolph, Hans; Langmann, Werner
PATENT ASSIGNEE(S): Farbenfabriken Bayer A.-G.
SOURCE: Ger. Offen., 12 pp.
CODEN: GWXXBX
DOCUMENT TYPE: Patent
LANGUAGE: German
INT. PATENT CLASSIF.: C08G; B01F
CLASSIFICATION: 39 (Textiles)
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 1911328	A	19701001	DE 1969-1911328	19690306
PRIORITY APPLN. INFO.:			DE 1969-1911328	19690306

GRAPHIC IMAGE: For diagram(s), see printed CA Issue.

ABSTRACT:

The title compds., useful as emulsifiers and dispersing agents (especially for dyes), were prepared by reaction of oxyethylenated [with ethylene oxide (I)] polymers of II, where R = Me or Et (III), with oleic acid (IV), lauric acid, or p-tert-BuC₆H₄CO₂H. Thus, 140 parts polymerized III, reacted with 6 moles I per OH group, 56.4 parts IV, and 350 parts xylene were refluxed and H₂O and xylene distilled to give 192 parts ester (V) of 10 acid number. The dye C.I. 12100 (0.5 g) and 1 g V gave a stable aqueous dispersion.

SUPPL. TERM: polyether polyol carboxylates emulsifiers; polyol polyether carboxylates emulsifiers; carboxylates polyether polyol emulsifiers; emulsifiers polyether polyol carboxylates; dyes dispersing agents; dispersing agents dyes; esters polyether polyols
INDEX TERM: Dyes
(emulsifying agents for, oxyethylated oxetane derivs. as)
INDEX TERM: Dispersing agents
Emulsifying agents
(oxyethylated oxetane derivs., for dyes)
INDEX TERM: 30899-37-7 30899-38-8 31116-03-7 31724-01-3
ROLE: USES (Uses)
(emulsifying agents, for dyes)

L5 ANSWER 20 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 18933-99-8 REGISTRY
ED Entered STN: 16 Nov 1984
CN Oxetane, 3-ethyl-3-[(phenylmethoxy)methyl]- (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Oxetane, 3-[(benzyloxy)methyl]-3-ethyl- (8CI)
OTHER NAMES:
CN 3-(Benzylloxymethyl)-3-ethyloxetane
CN 3-Ethyl-3-hydroxymethyloxetane benzyl ether
CN [(3-Ethyl-3-oxetanylmethoxy)methyl]benzene
FS 3D CONCORD
MF C13 H18 O2
CI COM
LC STN Files: CA, CAPLUS, CASREACT, USPATFULL
DT.CA CAplus document type: Journal; Patent
RL.P Roles from patents: PREP (Preparation); PRP (Properties); RACT (Reactant or reagent); USES (Uses)
RL.NP Roles from non-patents: PREP (Preparation); PROC (Process); PRP (Properties); RACT (Reactant or reagent)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring Formula	Identifier RID	Occurrence Count
EA	ES	SZ	RF	RID	Count
C3O	OC3	4	C3O	4.214.1	1
C6	C6	6	C6	46.150.18	1

Calculated Properties (CALC)

PROPERTY (CODE)	VALUE	CONDITION	NOTE
Bioconc. Factor (BCF)	55.1	pH 1	(1) ACD
Bioconc. Factor (BCF)	55.1	pH 4	(1) ACD
Bioconc. Factor (BCF)	55.1	pH 7	(1) ACD
Bioconc. Factor (BCF)	55.1	pH 8	(1) ACD
Bioconc. Factor (BCF)	55.1	pH 10	(1) ACD
Boiling Point (BP)	280.4 +/- 13.0 deg C	760.0 Torr	(1) ACD
Enthalpy of Vap. (HVAP)	49.83 +/- 3.0 kJ/mol		(1) ACD
Flash Point (FP)	101.8 +/- 34.9 deg C		(1) ACD
H acceptors (HAC)	2		(1) ACD
H donors (HD)	0		(1) ACD
Koc (KOC)	614	pH 1	(1) ACD
Koc (KOC)	614	pH 4	(1) ACD
Koc (KOC)	614	pH 7	(1) ACD
Koc (KOC)	614	pH 8	(1) ACD
Koc (KOC)	614	pH 10	(1) ACD
logD (LOGD)	2.59	pH 1	(1) ACD
logD (LOGD)	2.59	pH 4	(1) ACD
logD (LOGD)	2.59	pH 7	(1) ACD
logD (LOGD)	2.59	pH 8	(1) ACD
logD (LOGD)	2.59	pH 10	(1) ACD
logP (LOGP)	2.594 +/- 0.293		(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 1	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 4	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 7	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 8	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 10	(1) ACD
Molecular Weight (MW)	206.28		(1) ACD
Vapor Pressure (VP)	0.00645304 Torr	25.0 deg C	(1) ACD

(1) Calculated using Advanced Chemistry Development (ACD/Labs) Software
Solaris V4.67 ((C) 1994-2005 ACD/Labs)

See HELP PROPERTIES for information about property data sources in REGISTRY.

18 REFERENCES IN FILE CA (1907 TO DATE)

18 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD.

- (1) Anon; PATENT ABSTRACTS OF JAPAN 1996, V096(010)
- (2) Ciba Geigy Ag; EP 0732625 A CAPLUS
- (3) Crivello, J; WO 9630182 A CAPLUS
- (4) Ici Plc; EP 0535828 A CAPLUS
- (5) Nuyken, O; MACROMOLECULAR SYMPOSIA 1996, V107, P125 CAPLUS
- (6) Toagosei Co Ltd; JP 08143806 A 1996 CAPLUS

L5 ANSWER 21 OF 21 REGISTRY COPYRIGHT 2005 ACS on STN
RN 3897-65-2 REGISTRY
ED Entered STN: 16 Nov 1984
CN Oxetane, 3-ethyl-3-(phenoxyethyl)- (8CI, 9CI) (CA INDEX NAME)
OTHER NAMES:
CN (3-Ethyl-3-oxetanyl methyl) phenyl ether
CN 3-Ethyl-3-(phenoxyethyl)oxetane
CN Aron Oxetane OXT 211
CN OXT 211
CN POX
CN POX (oxetane)
FS 3D CONCORD
MF C12 H16 O2
CI COM
LC STN Files: BEILSTEIN*, CA, CAOLD, CAPLUS, CASREACT, USPATFULL
(*File contains numerically searchable property data)
DT.CA CAplus document type: Journal; Patent
RL.P Roles from patents: PREP (Preparation); PRP (Properties); RACT
(Reactant or reagent); USES (Uses)
RLD.P Roles for non-specific derivatives from patents: PREP (Preparation);
PROC (Process); PRP (Properties); USES (Uses)
RL.NP Roles from non-patents: PROC (Process); PRP (Properties); RACT
(Reactant or reagent); USES (Uses); NORL (No role in record)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID	Occurrence
EA	ES	SZ	RF	RID	Count	
C3O	OC3	4	C3O	4.214.1	1	
C6	C6	6	C6	46.150.18	1	

Calculated Properties (CALC)

PROPERTY (CODE)	VALUE	CONDITION	NOTE
Bioconc. Factor (BCF)	51.3	pH 1	(1) ACD
Bioconc. Factor (BCF)	51.3	pH 4	(1) ACD
Bioconc. Factor (BCF)	51.3	pH 7	(1) ACD

Bioconc. Factor (BCF)	51.3	pH 8	(1) ACD
Bioconc. Factor (BCF)	51.3	pH 10	(1) ACD
Boiling Point (BP)	274.7+/-13.0 deg C	760.0 Torr	(1) ACD
Enthalpy of Vap. (HVAP)	49.25+/-3.0 kJ/mol		(1) ACD
Flash Point (FP)	103.8+/-34.9 deg C		(1) ACD
Freely Rotatable Bonds (FRB)	4		(1) ACD
H acceptors (HAC)	2		(1) ACD
H donors (HD)	0		(1) ACD
Koc (KOC)	583	pH 1	(1) ACD
Koc (KOC)	583	pH 4	(1) ACD
Koc (KOC)	583	pH 7	(1) ACD
Koc (KOC)	583	pH 8	(1) ACD
Koc (KOC)	583	pH 10	(1) ACD
logD (LOGD)	2.55	pH 1	(1) ACD
logD (LOGD)	2.55	pH 4	(1) ACD
logD (LOGD)	2.55	pH 7	(1) ACD
logD (LOGD)	2.55	pH 8	(1) ACD
logD (LOGD)	2.55	pH 10	(1) ACD
logP (LOGP)	2.553+/-0.263		(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 1	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 4	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 7	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 8	(1) ACD
Molar Solubility (SLB.MOL)	<0.01 mol/L	pH 10	(1) ACD
Molecular Weight (MW)	192.25		(1) ACD
Vapor Pressure (VP)	0.00890949 Torr	25.0 deg C	(1) ACD

(1) Calculated using Advanced Chemistry Development (ACD/Labs) Software
Solaris V4.76 ((C) 1994-2005 ACD/Labs)

See HELP PROPERTIES for information about property data sources in REGISTRY.

51 REFERENCES IN FILE CA (1907 TO DATE)
17 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
51 REFERENCES IN FILE CAPLUS (1907 TO DATE)
1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1

ACCESSION NUMBER: 142:40234 CA
 TITLE: Active ray curable ink-jet ink composition, image forming method using the same, ink-jet recording apparatus, and triarylsulfonium salt compound
 INVENTOR(S): Takabayashi, Toshiyuki; Miura, Norio; Nishizeki, Masato; Okubo, Kimihiko
 PATENT ASSIGNEE(S): Konica Minolta Medical & Graphic, Inc., Japan
 SOURCE: U.S. Pat. Appl. Publ., 55 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 INT. PATENT CLASSIF.:
 MAIN: C07C319-02
 SECONDARY: C07D035-02
 US PATENT CLASSIF.: 106031270
 CLASSIFICATION: 42-12 (Coatings, Inks, and Related Products)
 Section cross-reference(s): 27
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
US 2004244641	A1	20041209	US 2004-826059	20040415

PRIORITY APPLN. INFO.:

JP 2003-116933 20030422

JP 2003-196367 20030714

JP 2003-354742 20031015

ABSTRACT:

An active ray curable ink-jet ink composition comprising a photo-induced acid generating agent containing an onium salt which does not generate benzene under active ray radiation, and a photopolymerizable compound containing a compound having an oxetane ring in the mol. Thus, an ink-jet ink composition comprising different color containing PB 822 dispersant, pigment, Celloxide 2021P, Acpress 11M acid amplifier, OP 85R nonionic surfactant, Megafac F 178K surfactant, γ -caprolactone, UVI 6992 photo acid generator, and triarylsulfonium salt was used to print on an oriented polypropylene film, which was irradiated to give a test piece with good print quality and no color mix.

SUPPL. TERM: epoxy resin oxetane deriv photopolymerizable compn inkjet ink; triarylsulfonium salt epoxy resin oxetane deriv photopolymerizable inkjet ink

INDEX TERM: Onium compounds

ROLE: TEM (Technical or engineered material use); USES (Uses) (iodonium; photopolymerizable ink-jet ink composition

containing

oxirane or oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Inks

(jet-printing; photopolymerizable ink-jet ink composition containing oxirane or oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Fatty acids, uses

ROLE: TEM (Technical or engineered material use); USES (Uses) (linseed-oil, epoxidized, Me esters; photopolymerizable ink-jet ink composition containing oxirane or oxetane derivs.

and

triarylsulfonium salt compound)

INDEX TERM: Surfactants

(nonionic; active ray curable ink-jet composition, image forming method using the same, ink-jet recording apparatus, and triarylsulfonium salt compound)

INDEX TERM: Epoxy resins, uses

ROLE: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (photopolymerizable ink-jet ink composition containing

oxirane or

oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Sulfonium compounds

ROLE: TEM (Technical or engineered material use); USES (Uses) (photopolymerizable ink-jet ink composition containing

oxirane or

oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Polymerization

(photopolym.; photopolymerizable ink-jet ink composition containing oxirane or oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Fatty acids, uses

ROLE: TEM (Technical or engineered material use); USES (Uses) (rape-oil, epoxidized, octyl esters, ADEKACIZER D-55; photopolymerizable ink-jet ink composition containing oxirane

or

oxetane derivs. and triarylsulfonium salt compound)

INDEX TERM: Fatty acids, uses

ROLE: TEM (Technical or engineered material use); USES (Uses) (soya, epoxidized, Me esters; photopolymerizable ink-jet

INDEX TERM: printers)

INDEX TERM: Fatty acids, uses

ROLE: TEM (Technical or engineered material use); USES (Uses) (rape-oil, epoxidized, octyl esters, ADK Cizer D 55, ink containing; actinic ray-curable ink compns. containing

photoacid generators for jet-printing method and printers)

INDEX TERM: 3897-65-2, OXT 211 18934-00-4, OXT 221 25085-98-7, Celloxide 2021P 29829-07-0, Celloxide 2000 74267-45-1 157410-97-4, Sansocizer E-PO 727985-64-0 741292-42-2 745041-12-7

ROLE: TEM (Technical or engineered material use); USES (Uses) (ink containing; actinic ray-curable ink compns. containing photoacid generators for jet-printing method and printers)

INDEX TERM: 104558-95-4, UVI 6990 205944-57-6, SP 152 745055-09-8, Chivacure 9842

ROLE: CAT (Catalyst use); USES (Uses) (photoacid generator; actinic ray-curable ink compns. containing photoacid generators for jet-printing method and printers)

INDEX TERM: 745041-08-1 745041-09-2 745041-10-5 745041-11-6

ROLE: CAT (Catalyst use); USES (Uses) (sulfonic acid generator; actinic ray-curable ink compns. containing photoacid generators for jet-printing method and printers)

\Rightarrow

1/7/2005

ANSWER 1 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN
RN 455333-00-3 REGISTRY
ED Entered STN: 26 Sep 2002
CN 2-Propenoic acid, 2-methyl-, (3-ethyl-3-oxetanyl)methyl ester, polymer with 3-(2,5,8,11,14,17,20,23,26,29-decaoxatriacont-1-yl)-3-ethyloxetane and α -(1-oxo-2-propenyl)- ω -methoxypoly(oxy-1,2-ethanediyl) (9CI) (CA INDEX NAME)
MF (C₂₅ H₅₀ O₁₁) . C₁₀ H₁₆ O₃ . (C₂ H₄ O)_n C₄ H₆ O₂)_x
CI PMS
PCT Polyacrylic, Polyether, Polyether formed
SR CA
LC STN Files: CA, CAPLUS
DT.CA CAplus document type: Patent
RLD.P Roles for non-specific derivatives from patents: PREP (Preparation); USES (Uses)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C ₃ O	OC ₃	4	C ₃ O	4.214.1	1 in CM
					1 in CM
					2

CM 1

CRN 439659-52-6
CMF C₂₅ H₅₀ O₁₁

PAGE 1-A

PAGE 1-B

CM 2

CRN 37674-57-0
CMF C₁₀ H₁₆ O₃

CM 3

CRN 32171-39-4
CMF (C₂ H₄ O)_n C₄ H₆ O₂
CCI PMS

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:225156 CA
TITLE: Oxetane-containing acrylic polymer solid electrolytes and their manufacture
INVENTOR(S): Miwa, Yoshiyuki
PATENT ASSIGNEE(S): Ube Industries, Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
INT. PATENT CLASSIF.:
MAIN: H01B001-06
SECONDARY: C08F220-28; C08F290-06; C08F299-02; C08G065-22;
C08K003-00; C08L071-00; H01B001-12; H01B013-00;
H01G009-035; H01G009-032; H01M006-18; H01M006-22;
H01M010-40
CLASSIFICATION: 76-2 (Electric Phenomena)
Section cross-reference(s): 38
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002260441	A2	20020913	JP 2001-61155	20010306
PRIORITY APPLN. INFO.:			JP 2001-61155	20010306

GRAPHIC IMAGE:

ABSTRACT:
The electrolyte contains electrolyte salt and catalytic ring-opening polymerization product of I (R¹⁻² = (branched) C₁₋₁₂ alkyl, H; R³⁻⁴ = (branched) C₁₋₁₂ alkyl;

a, b = 10-600; m1, m2 = 1-6; n1, n2 = 1-20). Markush structures for preferable oxetane comonomers are also given. The electrolytes have excellent film-forming property, flexibility, and high strength. The electrolytes are suitable for use in electrochem. devices.

SUPPL. TERM: oxetane contg acrylic polyoxyalkylene solid electrolyte;
ring opening polymn oxetane acrylic polyoxyalkylene
electrolyte; flexible acrylic polyoxyalkylene solid
electrolyte

INDEX TERM: Polyoxyalkylenes, uses
ROLE: IMF (Industrial manufacture); TEM (Technical or
engineered material use); PREP (Preparation); USES (Uses)
(acrylic; manufacture of flexible acrylic polyoxyalkylene
solid electrolyte films by ring-opening polymerization of
oxetane side chains)

INDEX TERM: Polymer electrolytes
(manufacture of flexible acrylic polyoxyalkylene solid
electrolyte films by ring-opening polymerization of oxetane
side
chains)

INDEX TERM: 3047-32-3P, 3-Ethyl-3-hydroxymethyloxetane 37674-57-0P,
3-Methacryloxymethyl-3-ethyloxetane
ROLE: IMF (Industrial manufacture); RCT (Reactant); PREP
(Preparation); RACT (Reactant or reagent)
(manufacture of flexible acrylic polyoxyalkylene solid
electrolyte films by ring-opening polymerization of oxetane
side
chains)

INDEX TERM: 7439-93-2DP, Lithium, acrylic polyoxyalkylene complex,
hexafluorophosphate-containing 455332-98-6DP, lithium complex,
hexafluorophosphate-containing 455332-99-7DP, lithium complex,
hexafluorophosphate-containing 455333-00-3DP, lithium complex,
hexafluorophosphate-containing 455333-01-4DP, lithium complex,
hexafluorophosphate-containing
ROLE: IMF (Industrial manufacture); TEM (Technical or
engineered material use); PREP (Preparation); USES (Uses)
(manufacture of flexible acrylic polyoxyalkylene solid
electrolyte films by ring-opening polymerization of oxetane
side
chains)

INDEX TERM: 77-99-6, Trimethylolpropane 80-62-6, Methyl methacrylate
105-58-8, Diethyl carbonate
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(manufacture of flexible acrylic polyoxyalkylene solid
electrolyte films by ring-opening polymerization of oxetane
side
chains)

L2 ANSWER 2 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN
RN 439659-57-1 REGISTRY
ED Entered STN: 21 Jul 2002
CN Oxetane, 3,3'-(2,5,8,11,14-pentaoxapentadecane-1,15-diyl)bis[3-ethyl-,
polymer with 3-(2,5,8,11,14,17,20,23,26,29-decaoxatriacont-1-yl)-3-
ethyloxetane (9CI) (CA INDEX NAME)
MF (C25 H50 O11 . C20 H38 O7)x
CI PMS
PCT Polyether, Polyether formed
SR CA
LC STN Files: CA, CAPLUS
DT.CA CAplus document type: Journal
RLD.NP Roles for non-specific derivatives from non-patents: PREP
(Preparation); PRP (Properties)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C3O	OC3	4	C3O	4.214.1	1 in CM
					1 2 in CM
					2

CM 1

CRN 439659-52-6
CMF C25 H50 O11

PAGE 1-A

PAGE 1-B

CM 2

CRN 369404-93-3
CMF C20 H38 O7

PAGE 1-A

PAGE 1-B

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi, 755-8633, Japan
SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
CODEN: EECTFA; ISSN: 1344-3542
PUBLISHER: Electrochemical Society of Japan
DOCUMENT TYPE: Journal
LANGUAGE: English
CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
Section cross-reference(s): 36, 76

ABSTRACT:
Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3\text{-ethyl-}3\text{-methylene oxetane}$, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1 $\times 10^{-6}$ (TrMOE/DDOE mole ratio = 3.0) and 1.0 $\times 10^{-4}$ S·cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening poly(mn) polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium tetrafluoroborate complex cond; ionic cond electrolyte polyether oxetane lithium salt; oligoethylene oxide side chain oxetane polyether glass transition temp

INDEX TERM: Polymerization
Polymerization catalysts
(cationic, ring-opening; preparation and ionic conductivity vs. temperature
of oxetane-polyether electrolytes by ring opening
polymerization
with lithium salts as catalysts and counterion source)

INDEX TERM: Polyoxyalkylenes, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(oxetane-derived; preparation and ionic conductivity vs. temperature of
oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: Glass transition temperature
Ionic conductivity
Polymer electrolytes
(preparation and ionic conductivity vs. temperature of
oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 383364-44-1P, (3-Ethyl-3-oxetanyl)-2,5,8,11-tetraoxadodecane

439659-52-6P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29-decaoxatriacontane
439659-53-7P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38-
tridecaoxanonatriacontane
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP
(Preparation); RACT (Reactant or reagent)
(monomer; preparation and ionic conductivity vs. temperature
of
oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)
INDEX TERM: 14283-07-9 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
132843-44-8, Lithium bis(pentafluoroethylsulfonyl)imide
ROLE: CAT (Catalyst use); PRP (Properties); USES (Uses)
(polymerization catalyst and electrolyte; preparation and
ionic conductivity
vs. temperature of oxetane-polyether electrolytes by ring
opening polymerization with lithium salts as catalysts and
counterion source)
INDEX TERM: 7439-93-2DP, Lithium, complexes with poly(oxetane-ether)s
383364-45-2DP, lithium complexes 439659-54-8DP, lithium
complexes 439659-55-9DP, lithium complexes
439659-56-0DP, lithium complexes 439659-57-1DP, lithium
complexes
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether
electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)
INDEX TERM: 112-35-6, Triethylene glycol monomethyl ether 3047-32-3,
3-Ethyl-3-hydroxymethyloxetane 5702-16-9, Dodecaethylene
glycol monomethyl ether 6048-68-6, Nonaethylene glycol
monomethyl ether
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether
electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)
REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS
RECORD.
REFERENCE(S): (1) Abraham, K; Electrochim Acta 1993, V38, P1233 CAPLUS
(2) Berthier, C; Solid State Ionics 1983, V11, P91 CAPLUS
(3) Bruce, P; J Chem Soc, Faraday Trans 1993, V89, P3187
CAPLUS
(4) Chiang, C; Solid State Ionics 1983, V9 & 10, P1121
(5) Chovino, C; J Polym Sci, Polym Chem 1997, V35, P2719
CAPLUS
(6) Fenton, D; Polymer 1973, V14, P589 CAPLUS
(7) Harris, S; Macromolecules 1986, V19, P978
(8) Herogues, V; Macromolecules 1997, V30, P4791
(9) Killis, A; Macromol Chem Rapid Comm 1980, V1, P595
CAPLUS
(10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
(11) Miwa, Y; Polym J, in press
(12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
(13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
(14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
(15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
(16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
(17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281
CAPLUS

(18) Watanabe, M; Polym J 1986, V11, P909
 (19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
 (20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

L2 ANSWER 3 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN
 RN 439659-56-0 REGISTRY
 ED Entered STN: 21 Jul 2002
 CN Oxetane, 3,3'-(2,5,8,11-tetraoxadodecane-1,12-diyl)bis[3-ethyl-, polymer with 3-(2,5,8,11,14,17,20,23,26,29-decaoxatriacont-1-yl)-3-ethyloxetane (9CI) (CA INDEX NAME)
 MF (C₂₅ H₅₀ O₁₁ . C₁₈ H₃₄ O₆)_x
 CI PMS
 PCT Polyether, Polyether formed
 SR CA
 LC STN Files: CA, CAPLUS
 DT.CA CAplus document type: Journal
 RLD.NP Roles for non-specific derivatives from non-patents: PREP (Preparation); PRP (Properties)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	RID Occurrence
EA	ES	SZ	RF	RID	Count
C ₃₀	O C ₃	4	C ₃₀	4.214.1	1 in CM
					1 2 in CM
					2

CM 1

CRN 439659-52-6
 CMF C₂₅ H₅₀ O₁₁

PAGE 1-A

PAGE 1-B

CM 2

CRN 369404-92-2
 CMF C₁₈ H₃₄ O₆

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
 TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
 AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
 CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi,
 755-8633, Japan
 SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
 CODEN: EECTFA; ISSN: 1344-3542
 PUBLISHER: Electrochemical Society of Japan
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 36, 76

ABSTRACT:
 Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3$ -ethyl-3-methylene oxetane, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1
 $\times 10^{-6}$ (TrMOE/DDOE mole ratio = 3.0) and 1.0 $\times 10^{-4}$ S·cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening polymn polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium tetrafluoroborate complex cond; ionic cond electrolyte polyether oxetane lithium salt; oligoethylene oxide side chain oxetane polyether glass transition temp

INDEX TERM: Polymerization
 Polymerization catalysts
 (cationic, ring-opening; preparation and ionic conductivity vs. temperature
 of oxetane-polyether electrolytes by ring opening polymerization
 with lithium salts as catalysts and counterion source)

INDEX TERM: Polyoxyalkylenes, preparation
 ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
 (oxetane-derived; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization

(10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
 (11) Miwa, Y; Polym J, in press
 (12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
 (13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
 (14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
 (15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
 (16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
 (17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281
 CAPLUS
 (18) Watanabe, M; Polym J 1986, V11, P909
 (19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
 (20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

L2 ANSWER 4 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN

RN 439659-55-9 REGISTRY

ED Entered STN: 21 Jul 2002

CN Oxetane, 3,3'-[oxybis(2,1-ethanediylloxymethylene)]bis[3-ethyl-, polymer with 3-ethyl-3-(2,5,8,11,14,17,20,23,26,29,32,35,38-tridecaoxanonatriacont-1-yl)oxetane (9CI) (CA INDEX NAME)

MF (C₃₁ H₆₂ O₁₄ . C₁₆ H₃₀ O₅)_x

CI PMS

PCT Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Journal

RLD.NP Roles for non-specific derivatives from non-patents: PREP
 (Preparation); PRP (Properties)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System Formula	Ring Identifier	Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C3O	OC3	4	C3O	4.214.1	1 in CM	
					1 2 in CM	
					2	

CM 1

CRN 439659-53-7

CMF C₃₁ H₆₂ O₁₄

PAGE 1-A

PAGE 1-B

CM 2

CRN 303109-63-9
CMF C16 H30 05

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi,
755-8633, Japan
SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
PUBLISHER: Electrochemical Society of Japan
DOCUMENT TYPE: Journal
LANGUAGE: English
CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
Section across reference(s): 26, 76

ABSTRACT:

ABSTRACT. Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3$ -ethyl-3-methylene oxetane, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1 $\times 10^{-6}$ (TrMOE/DDOE mole ratio = 3.0) and 1.0 $\times 10^{-4}$ S·cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening polymn polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium

INDEX TERM: tetrafluoroborate complex cond; ionic cond electrolyte
polyether oxetane lithium salt; oligoethylene oxide side
chain oxetane polyether glass transition temp

Polymerization
Polymerization catalysts
(cationic, ring-opening; preparation and ionic conductivity
vs. temperature
of oxetane-polyether electrolytes by ring opening
with lithium salts as catalysts and counterion source)

INDEX TERM: Polyoxyalkylenes, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(oxetane-derived; preparation and ionic conductivity vs.
temperature of
oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)

INDEX TERM: Glass transition temperature
Ionic conductivity
Polymer electrolytes
(preparation and ionic conductivity vs. temperature of
oxetane-polyether electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

INDEX TERM: 383364-44-1P, (3-Ethyl-3-oxetanyl)-2,5,8,11-tetraoxadodecane
439659-52-6P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29-decaoxatriacontane
439659-53-7P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38-
tridecaoxanonatriacontane
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP
(Preparation); RACT (Reactant or reagent)
(monomer; preparation and ionic conductivity vs. temperature
of
oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)

INDEX TERM: 14283-07-9 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
132843-44-8, Lithium bis(pentafluoroethylsulfonyl)imide
ROLE: CAT (Catalyst use); PRP (Properties); USES (Uses)
(polymerization catalyst and electrolyte; preparation and
ionic conductivity
vs. temperature of oxetane-polyether electrolytes by ring
opening polymerization with lithium salts as catalysts and
counterion source)

INDEX TERM: 7439-93-2DP, Lithium, complexes with poly(oxetane-ether)s
383364-45-2DP, lithium complexes 439659-54-8DP, lithium
complexes 439659-55-9DP, lithium complexes
439659-56-0DP, lithium complexes 439659-57-1DP, lithium
complexes
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

INDEX TERM: 112-35-6, Triethylene glycol monomethyl ether 3047-32-3,
3-Ethyl-3-hydroxymethyloxetane 5702-16-9, Dodecaethylene
glycol monomethyl ether 6048-68-6, Nonaethylene glycol
monomethyl ether
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether

electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD.

REFERENCE(S):

- (1) Abraham, K; Electrochim Acta 1993, V38, P1233 CAPLUS
- (2) Berthier, C; Solid State Ionics 1983, V11, P91 CAPLUS
- (3) Bruce, P; J Chem Soc, Faraday Trans 1993, V89, P3187 CAPLUS
- (4) Chiang, C; Solid State Ionics 1983, V9 & 10, P1121
- (5) Chovino, C; J Polym Sci, Polym Chem 1997, V35, P2719 CAPLUS
- (6) Fenton, D; Polymer 1973, V14, P589 CAPLUS
- (7) Harris, S; Macromolecules 1986, V19, P978
- (8) Herogues, V; Macromolecules 1997, V30, P4791
- (9) Killis, A; Macromol Chem Rapid Comm 1980, V1, P595 CAPLUS
- (10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
- (11) Miwa, Y; Polym J, in press
- (12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
- (13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
- (14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
- (15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
- (16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
- (17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281 CAPLUS
- (18) Watanabe, M; Polym J 1986, V11, P909
- (19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
- (20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

L2 ANSWER 5 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN

RN 439659-54-8 REGISTRY

ED Entered STN: 21 Jul 2002

CN Oxetane, 3,3'-[oxybis(2,1-ethanediylloxymethylene)]bis[3-ethyl-, polymer with 3-(2,5,8,11,14,17,20,23,26,29-decaoxatriacont-1-yl)-3-ethyloxetane (9CI) (CA INDEX NAME)

MF (C25 H50 O11 . C16 H30 O5)x

CI PMS

PCT Polyether, Polyether formed

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Journal

RLD.NP Roles for non-specific derivatives from non-patents: PREP
(Preparation); PRP (Properties)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System	Ring Formula	Identifier	Occurrence	
EA	ES	SZ	RF		RID	Count	
C3O	OC3	4	C3O	4.214.1	1 in CM		
					1 2 in CM		
					2		

CM 1

CRN 439659-52-6

CMF C25 H50 O11

CM 2

CRN 303109-63-9
CMF C16 H30 O5

- 1 REFERENCES IN FILE CA (1907 TO DATE)
- 1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
- 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
 TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
 AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
 CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi,
 755-8633, Japan
 SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
 CODEN: EECTFA; ISSN: 1344-3542
 PUBLISHER: Electrochemical Society of Japan
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 36, 76

ABSTRACT:

Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3$ -ethyl-3-methylene oxetane, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the

complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1 x 10⁻⁶ (TrMOE/DDOE mole ratio = 3.0) and 1.0 x 10⁻⁴ S·cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening polymn polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium tetrafluoroborate complex cond; ionic cond electrolyte polyether oxetane lithium salt; oligoethylene oxide side chain oxetane polyether glass transition temp

INDEX TERM: Polymerization
Polymerization catalysts
(cationic, ring-opening; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: Polyoxyalkylenes, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(oxetane-derived; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: Glass transition temperature
Ionic conductivity
Polymer electrolytes
(preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 383364-44-1P, (3-Ethyl-3-oxetanyl)-2,5,8,11-tetraoxadodecane
439659-52-6P, (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29-decaoxatriacontane
439659-53-7P, (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29,32,35,38-tridecaoxanonatriacontane
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(monomer; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 14283-07-9 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
132843-44-8, Lithium bis(pentafluoroethylsulfonyl)imide
ROLE: CAT (Catalyst use); PRP (Properties); USES (Uses)
(polymerization catalyst and electrolyte; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 7439-93-2DP, Lithium, complexes with poly(oxetane-ether)s
383364-45-2DP, lithium complexes 439659-54-8DP, lithium complexes 439659-55-9DP, lithium complexes 439659-56-0DP, lithium complexes 439659-57-1DP, lithium complexes
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: as catalysts and counterion source)
 112-35-6, Triethylene glycol monomethyl ether 3047-32-3,
 3-Ethyl-3-hydroxymethyloxetane 5702-16-9, Dodecaethylene
 glycol monomethyl ether 6048-68-6, Nonaethylene glycol
 monomethyl ether
 ROLE: RCT (Reactant); RACT (Reactant or reagent)
 (preparation and ionic conductivity vs. temperature of
 oxetane-polyether
 electrolytes by ring opening polymerization with lithium salts
 as catalysts and counterion source)

REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS
 RECORD.

REFERENCE(S):

- (1) Abraham, K; Electrochim Acta 1993, V38, P1233 CAPLUS
- (2) Berthier, C; Solid State Ionics 1983, V11, P91 CAPLUS
- (3) Bruce, P; J Chem Soc, Faraday Trans 1993, V89, P3187
CAPLUS.
- (4) Chiang, C; Solid State Ionics 1983, V9 & 10, P1121
- (5) Chovino, C; J Polym Sci, Polym Chem 1997, V35, P2719
CAPLUS
- (6) Fenton, D; Polymer 1973, V14, P589 CAPLUS
- (7) Harris, S; Macromolecules 1986, V19, P978
- (8) Herogues, V; Macromolecules 1997, V30, P4791
- (9) Killis, A; Macromol Chem Rapid Comm 1980, V1, P595
CAPLUS
- (10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
- (11) Miwa, Y; Polym J, in press
- (12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
- (13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
- (14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
- (15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
- (16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
- (17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281
CAPLUS
- (18) Watanabe, M; Polym J 1986, V11, P909
- (19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
- (20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

L2 ANSWER 6 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN

RN 439659-53-7 REGISTRY

ED Entered STN: 21 Jul 2002

CN Oxetane, 3-ethyl-3-(2,5,8,11,14,17,20,23,26,29,32,35,38-
tridecaoxanonatriacont-1-yl)- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29,32,35,38-
tridecaoxanonatriacontane

FS 3D CONCORD

MF C31 H62 O14

CI COM

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Journal

RL.NP Roles from non-patents: PREP (Preparation); RACT (Reactant or reagent)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring System	Ring Formula	Identifier	Occurrence	Count	RID
EA	ES	SZ	RF	RID				

=====+=====+=====+=====+=====+=====+=====+=====+=====

C3O | OC3 | 4 | C3O | 4.214.1 | 1

MeO—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—

—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—CH₂—O—CH₂—

Calculated Properties (CALC)

PROPERTY (CODE)	VALUE	CONDITION	NOTE
Bioconc. Factor (BCF)	1	pH 1	(1) ACD
Bioconc. Factor (BCF)	1	pH 4	(1) ACD
Bioconc. Factor (BCF)	1	pH 7	(1) ACD
Bioconc. Factor (BCF)	1	pH 8	(1) ACD
Bioconc. Factor (BCF)	1	pH 10	(1) ACD
Boiling Point (BP)	644.9+-50.0 deg C	760.0 Torr	(1) ACD
Enthalpy of Vap. (HVAP)	91.67+-3.0 kJ/mol		(1) ACD
Flash Point (FP)	227.7+-54.0 deg C		(1) ACD
Freely Rotatable Bonds (FRB)	39		(1) ACD
H acceptors (HAC)	14		(1) ACD
H donors (HD)	0		(1) ACD
Koc (KOC)	1	pH 1	(1) ACD
Koc (KOC)	1	pH 4	(1) ACD
Koc (KOC)	1	pH 7	(1) ACD
Koc (KOC)	1	pH 8	(1) ACD
Koc (KOC)	1	pH 10	(1) ACD
logD (LOGD)	-3.74	pH 1	(1) ACD
logD (LOGD)	-3.74	pH 4	(1) ACD
logD (LOGD)	-3.74	pH 7	(1) ACD
logD (LOGD)	-3.74	pH 8	(1) ACD
logD (LOGD)	-3.74	pH 10	(1) ACD
logP (LOGP)	-3.743+-0.867		(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 1	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 4	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 7	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 8	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 10	(1) ACD

Molecular Weight (MW)	1658.82	(1) ACD
Vapor Pressure (VP)	18.22E-16 Torr	25.0 deg C (1) ACD

(1) Calculated using Advanced Chemistry Development (ACD/Labs) Software
Solaris V4.76 ((C) 1994-2005 ACD/Labs)

See HELP PROPERTIES for information about property data sources in REGISTRY.

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi,
755-8633, Japan
SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
CODEN: EECTFA; ISSN: 1344-3542
PUBLISHER: Electrochemical Society of Japan
DOCUMENT TYPE: Journal
LANGUAGE: English
CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
Section cross-reference(s): 36, 76

ABSTRACT:
Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3\text{-ethyl-}3\text{-methylene oxetane}$, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1
 $\times 10^{-6}$ (TrMOE/DDOE mole ratio = 3.0) and 1.0×10^{-4} S·cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening polymn polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium tetrafluoroborate complex cond; ionic cond electrolyte polyether oxetane lithium salt; oligoethylene oxide side chain oxetane polyether glass transition temp
INDEX TERM: Polymerization
Polymerization catalysts
(cationic, ring-opening; preparation and ionic conductivity vs. temperature
of oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)
INDEX TERM: Polyoxyalkylenes, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(oxetane-derived; preparation and ionic conductivity vs. temperature of

oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)

INDEX TERM: Glass transition temperature

Ionic conductivity

Polymer electrolytes
(preparation and ionic conductivity vs. temperature of
oxetane-polyether

electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

INDEX TERM: 383364-44-1P, (3-Ethyl-3-oxetanyl)-2,5,8,11-tetraoxadodecane
439659-52-6P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29-decaoxatriacontane
439659-53-7P, (3-Ethyl-3-oxetanyl)-
2,5,8,11,14,17,20,23,26,29,32,35,38-
tridecaoxanonatriacontane

ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP
(Preparation); RACT (Reactant or reagent)
(monomer; preparation and ionic conductivity vs. temperature
of
oxetane-polyether electrolytes by ring opening polymerization
with lithium salts as catalysts and counterion source)

INDEX TERM: 14283-07-9 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
132843-44-8, Lithium bis(pentafluoroethylsulfonyl)imide

ROLE: CAT (Catalyst use); PRP (Properties); USES (Uses)
(polymerization catalyst and electrolyte; preparation and
ionic conductivity
vs. temperature of oxetane-polyether electrolytes by ring
opening polymerization with lithium salts as catalysts and
counterion source)

INDEX TERM: 7439-93-2DP, Lithium, complexes with poly(oxetane-ether)s
383364-45-2DP, lithium complexes 439659-54-8DP, lithium
complexes 439659-55-9DP, lithium complexes
439659-56-0DP, lithium complexes 439659-57-1DP, lithium
complexes

ROLE: PRP (Properties); SPN (Synthetic preparation); PREP
(Preparation)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether
electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

INDEX TERM: 112-35-6, Triethylene glycol monomethyl ether 3047-32-3,
3-Ethyl-3-hydroxymethyloxetane 5702-16-9, Dodecaethylene
glycol monomethyl ether 6048-68-6, Nonaethylene glycol
monomethyl ether

ROLE: RCT (Reactant); RACT (Reactant or reagent)
(preparation and ionic conductivity vs. temperature of
oxetane-polyether
electrolytes by ring opening polymerization with lithium salts
as catalysts and counterion source)

REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS
RECORD.

REFERENCE(S): (1) Abraham, K; Electrochim Acta 1993, V38, P1233 CAPLUS
(2) Berthier, C; Solid State Ionics 1983, V11, P91 CAPLUS
(3) Bruce, P; J Chem Soc, Faraday Trans 1993, V89, P3187
CAPIUS
(4) Chiang, C; Solid State Ionics 1983, V9 & 10, P1121
(5) Chovino, C; J Polym Sci, Polym Chem 1997, V35, P2719
CAPIUS
(6) Fenton, D; Polymer 1973, V14, P589 CAPLUS
(7) Harris, S; Macromolecules 1986, V19, P978
(8) Herogues, V; Macromolecules 1997, V30, P4791
(9) Killis, A; Macromol Chem Rapid Comm 1980, V1, P595

CAPLUS

- (10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
- (11) Miwa, Y; Polym J, in press
- (12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
- (13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
- (14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
- (15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
- (16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
- (17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281 CAPLUS
- (18) Watanabe, M; Polym J 1986, V11, P909
- (19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
- (20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

L2 ANSWER 7 OF 7 REGISTRY COPYRIGHT 2005 ACS on STN

RN 439659-52-6 REGISTRY

ED Entered STN: 21 Jul 2002

CN Oxetane, 3-(2,5,8,11,14,17,20,23,26,29-decaoxatriacont-1-yl)-3-ethyl-
(9CI) (CA INDEX NAME)

OTHER NAMES:

CN (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29-decaoxatriacontane

FS 3D CONCORD

MF C25 H50 O11

CI COM

SR CA

LC STN Files: CA, CAPLUS

DT.CA CAplus document type: Journal

RL.NP Roles from non-patents: PREP (Preparation); RACT (Reactant or reagent)

Ring System Data

Elemental Analysis	Elemental Sequence	Size of the Rings	Ring Formula	Identifier	Occurrence	RID
EA	ES	SZ	RF	RID	Count	
C3O	OC3	4	C3O	4.214.1	1	

PAGE 1-A

PAGE 1-B

Calculated Properties (CALC)

PROPERTY (CODE)	VALUE	CONDITION	NOTE
Bioconc. Factor (BCF)	1	pH 1	(1) ACD
Bioconc. Factor (BCF)	1	pH 4	(1) ACD
Bioconc. Factor (BCF)	1	pH 7	(1) ACD
Bioconc. Factor (BCF)	1	pH 8	(1) ACD
Bioconc. Factor (BCF)	1	pH 10	(1) ACD
Boiling Point (BP)	553.7+/-45.0 deg C	760.0 Torr	(1) ACD
Enthalpy of Vap. (HVAP)	80.34+/-3.0 kJ/mol		(1) ACD
Flash Point (FP)	204.1+/-51.5 deg C		(1) ACD
Freely Rotatable Bonds (FRB)	30		(1) ACD
H acceptors (HAC)	11		(1) ACD
H donors (HD)	0		(1) ACD
Koc (KOC)	1	pH 1	(1) ACD
Koc (KOC)	1	pH 4	(1) ACD
Koc (KOC)	1	pH 7	(1) ACD
Koc (KOC)	1	pH 8	(1) ACD
Koc (KOC)	1	pH 10	(1) ACD
logD (LOGD)	-2.67	pH 1	(1) ACD
logD (LOGD)	-2.67	pH 4	(1) ACD
logD (LOGD)	-2.67	pH 7	(1) ACD
logD (LOGD)	-2.67	pH 8	(1) ACD
logD (LOGD)	-2.67	pH 10	(1) ACD
logP (LOGP)	-2.669+/-0.800		(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 1	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 4	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 7	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 8	(1) ACD
Molar Solubility (SLB.MOL)	>=0.01 - <0.1 mol/L	pH 10	(1) ACD
Molecular Weight (MW)	526.66		(1) ACD
Vapor Pressure (VP)	9.82E-12 Torr	25.0 deg C	(1) ACD

(1) Calculated using Advanced Chemistry Development (ACD/Labs) Software
 Solaris V4.76 ((C) 1994-2005 ACD/Labs)

See HELP PROPERTIES for information about property data sources in REGISTRY.

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1

ACCESSION NUMBER: 137:63573 CA
 TITLE: Novel polymer electrolytes based on mono- and bis-oxetane monomers with oligo(ethylene oxide) units
 AUTHOR(S): Miwa, Yoshiyuki; Tsutsumi, Hiromori; Oishi, Tsutomu
 CORPORATE SOURCE: Ube Laboratory, Ube Ind. Ltd., Ube, Yamaguchi,
 755-8633, Japan
 SOURCE: Electrochemistry (Tokyo, Japan) (2002), 70(4), 264-269
 CODEN: EECTFA; ISSN: 1344-3542
 PUBLISHER: Electrochemical Society of Japan
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 CLASSIFICATION: 35-7 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 36, 76

ABSTRACT:
 Polymer electrolytes were prepared by cationic ring-opening polymerization of bis-oxetane ($R-O-(CH_2CH_2O)_m-R$, $R = 3\text{-ethyl-3-methylene oxetane}$, DDOE ($m = 2$), TrDOE ($m = 3$), TeDOE ($m = 4$)) and mono-oxetane ($R-O-(CH_2CH_2O)_n-CH_3$, TrMOE ($n = 3$), NoMOE ($n = 9$), DoMOE ($n = 12$)) with lithium salt catalyst. The polyethers were characterized by differential scanning calorimetry (DSC) and alternating impedance spectroscopy. The poly(oxetane)-based electrolytes have crosslinked

networks with oligo(ethylene oxide) and 2-ethyltrimethylene oxide main chains and methoxy-oligo(ethylene oxide) side chains. The polymer electrolytes prepared with LiBF₄ have high ionic conductivity, compared to that of polymers prepared with LiPF₆ or LiN(C₂F₅SO₂)₂. The conductivity of the poly(oxetane)-LiBF₄ complexes depended on the mono-oxetane content and the length of oligo(ethylene oxide) in the mono- and bis-oxetanes. The oligo(ethylene oxide) side chains in the complexes act as efficient plasticizing agents, particularly NoMOE and DoMOE. Maximum conductivity of the polymer electrolytes with LiBF₄([Li]/[O] = 0.045) was 9.1

$\times 10^{-6}$ (TrMOE/DDOE mole ratio = 3.0) and 1.0×10^{-4} S-cm⁻¹ (NoMOE/DDOE = 1.72 and DoMOE/DDOE = 1.29).

SUPPL. TERM: oxetane ring opening polymn polyether prepn lithium salt catalyst; electrolyte polyether oxetane lithium tetrafluoroborate complex cond; ionic cond electrolyte polyether oxetane lithium salt; oligoethylene oxide side chain oxetane polyether glass transition temp

INDEX TERM: Polymerization
Polymerization catalysts
(cationic, ring-opening; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening with lithium salts as catalysts and counterion source)

INDEX TERM: Polyoxyalkylenes, preparation
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(oxetane-derived; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: Glass transition temperature
Ionic conductivity
Polymer electrolytes
(preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 383364-44-1P, (3-Ethyl-3-oxetanyl)-2,5,8,11-tetraoxadodecane
439659-52-6P, (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29-decaoxatriacontane
439659-53-7P, (3-Ethyl-3-oxetanyl)-2,5,8,11,14,17,20,23,26,29,32,35,38-tridecaoxanonatriacontane
ROLE: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(monomer; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 14283-07-9 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
132843-44-8, Lithium bis(pentafluoroethylsulfonyl)imide
ROLE: CAT (Catalyst use); PRP (Properties); USES (Uses)
(polymerization catalyst and electrolyte; preparation and ionic conductivity vs. temperature of oxetane-polyether electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)

INDEX TERM: 7439-93-2DP, Lithium, complexes with poly(oxetane-ether)s
383364-45-2DP, lithium complexes 439659-54-8DP, lithium complexes 439659-55-9DP, lithium complexes 439659-56-0DP, lithium complexes 439659-57-1DP, lithium

complexes
ROLE: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
(preparation and ionic conductivity vs. temperature of oxetane-polyether
electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)
INDEX TERM: 112-35-6, Triethylene glycol monomethyl ether 3047-32-3, 3-Ethyl-3-hydroxymethyloxetane 5702-16-9, Dodecaethylene glycol monomethyl ether 6048-68-6, Nonaethylene glycol monomethyl ether
ROLE: RCT (Reactant); RACT (Reactant or reagent)
(preparation and ionic conductivity vs. temperature of oxetane-polyether
electrolytes by ring opening polymerization with lithium salts as catalysts and counterion source)
REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD.
REFERENCE(S):
(1) Abraham, K; Electrochim Acta 1993, V38, P1233 CAPLUS
(2) Berthier, C; Solid State Ionics 1983, V11, P91 CAPLUS
(3) Bruce, P; J Chem Soc, Faraday Trans 1993, V89, P3187 CAPLUS
(4) Chiang, C; Solid State Ionics 1983, V9 & 10, P1121
(5) Chovino, C; J Polym Sci, Polym Chem 1997, V35, P2719 CAPLUS
(6) Fenton, D; Polymer 1973, V14, P589 CAPLUS
(7) Harris, S; Macromolecules 1986, V19, P978
(8) Herogues, V; Macromolecules 1997, V30, P4791
(9) Killis, A; Macromol Chem Rapid Comm 1980, V1, P595 CAPLUS
(10) Miwa, Y; Polym J 2001, V33, P568 CAPLUS
(11) Miwa, Y; Polym J, in press
(12) Nishimoto, A; Macromolecules 1999, V32, P1541 CAPLUS
(13) Papke, B; J Electrochem Soc 1982, V129, P1434 CAPLUS
(14) Papke, B; J Electrochem Soc 1982, V129, P1694 CAPLUS
(15) Pattison, D; J Am Chem Soc 1957, V79, P3455 CAPLUS
(16) Ratner, M; Chem Rev 1988, V88, P109 CAPLUS
(17) Schoenenberger, C; Electrochim Acta 1995, V40, P2281 CAPLUS
(18) Watanabe, M; Polym J 1986, V11, P909
(19) Williams, M; J Am Chem Soc 1955, V77, P3701 CAPLUS
(20) Wright, P; Br Polym J 1975, V7, P319 CAPLUS

=>