BROUILLON - SUITES HOMOGRAPHIQUES SANS MYSTICISME

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

1

Table des matières

- 1. Fractions homographiques et matrices
 - . Compositions successives 1
- 3. AFFAIRE À SUIVRE... 1

1. Fractions homographiques et matrices

Soit $F(X) = \frac{aX + b}{cX + d}$ et $G(X) = \frac{pX + q}{rX + s}$ non constantes c'est à dire telles que $ad - bc \neq 0$ et $ps - rq \neq 0$.

Il est immédiat qu'il existe des paramètres α , β , γ et δ tels que $F \circ G(X) = \frac{\alpha X + \beta}{\gamma X + \delta}$. Existet-il un moyen simple de calculer les paramètres de $F \circ G$ en fonction de ceux de F et G?

$$F \circ G(X) = \frac{a(pX+q) + b(rX+s)}{c(pX+q) + d(rX+s)}$$
$$= \frac{(ap+br)X + aq+bD}{(cp+dr)X + cq+ds}$$

En associant $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ à F(X), $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ à G(X) et $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ à $F \circ G(X)$, nous venons de démontrer que $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix}$.

Comme $\forall \lambda \in \mathbb{C}^*$, $\frac{aX+b}{cX+d} = \frac{\lambda aX+\lambda b}{\lambda cX+\lambda d}$, on va considérer l'écriture de F telle que ad-bc=1 et lui associer la matrice $M_F \stackrel{\text{def}}{=} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Par choix det $M_F=1$, de sorte que l'on a un isomorphisme de groupes entre les fonctions homographiques $F(X) = \frac{aX+b}{cX+d}$ avec ad-bc=1 et le groupe $SL(2,\mathbb{C})$ des matrices 2×2 de déterminant 1.

2. AFFAIRE À SUIVRE...

Date:?? Novembre 2020.