

Math A Level

Ghifari Rahadian

Partial Fraction
Function and Graph
Sequence and Series

Express the following as a sum of partial fractions.

a.
$$\frac{2x+5}{(x-2)(x+1)}$$

b.
$$\frac{5x^2 + 17x + 15}{(x+2)^2(x+1)}$$

C.
$$\frac{x}{(x^2-x+1)(3x-2)}$$

d.
$$\frac{2x^4 + 3x^2 + 1}{x^2 + 3x + 2}$$

a. Find the composite function $(f \circ g)(x)$ and $(g \circ f)(x)$ if

$$f(x) = \frac{1-x}{1+x}; \ 0 \le x \le 1$$
$$g(x) = 4x(1-x); \ 0 \le x \le 1$$

b. Let $f(x) = x^2 - 3x$. Determine g(x) so that $(f \circ g)(x) = x^2 + x - 2$

c. Find the inverse of the following functions:

$$f(x) = -\frac{9x - 3}{7x + 6}$$
$$g(x) = 3x^5 - 9$$
$$h(x) = \sqrt[3]{9x - 7}$$

a. Sketch the graph of the curve

$$y = \frac{x^2 + 1}{(x - 1)(x - 2)}$$

carefully labeling any turning points and asymptotes.

b. The parabola $x = y^2 + ay + b$ crosses the parabola $y = x^2$ at (1, 1) making right angles. Calculate the values of a and b and sketch both functions on the same plane.

 a. Write out the 6th to 10th terms of the following sequences and describe the sequence using the word convergent or divergent, along with the reason.

$$u_1 = 16 \ and \ u_{n+1} = -\frac{1}{2}U_n$$

b. Write down the general term, and evaluate $1000 + 1331 + 1728 + \cdots + 4913$

c. Use mathematical induction to prove De Moivre's theorem

$$(R(\cos t + i\sin t))^n = R^n(\cos nt + i\sin nt)$$

References

Thomas Calculus Early Transcedentals 12th Edition