

Eye-tracking and electroencephalogram data analysis using hidden semi-Markov models to identify reading strategies

Brice Olivier^{1,2}, Jean-Baptiste Durand^{1,2,*}, Anne Guérin-Dugué³, Marianne Clausel²

¹Inria Rhône-Alpes, France, ²Laboratoire Jean Kuntzmann, Grenoble, France, ³Gipsa-lab, Grenoble, France, ^{*}jean-baptiste.durand@imag.fr

Study proposal

- Textual information search is an unhomogeneous process in time (Simola, 2008)
- Reading strategies and decision processes are intertwined

Experiment description

- 15 participants, 60 texts per participant
- Presentation of a goal topic, e.g. in French "chasse aux oiseaux" (bird hunting), and a text, extracted from LeMonde, 1999
- Question: is the text related to the topic ?

Figure: Frey, 2013

Le traitement des données est

Measurements of eye positions over time and 30-channel EEG

Data pre-processing

Raw data: For each Participant and each text: coordinates X,Y of fixations at each time t, fixation duration, saccade amplitude.

Data augmentation:

- Word(s) gazed at each fixation (foveal, and parafoveal regions)
- Number of skipped words in one saccade
- Semantic proximity of the words in each text to the target topic (Latent Semantic Analysis + Cosine distance)

Observed process: Readmode: number of skipped words in one saccade, and direction of the saccade $V = \{v_1 : > 1, v_2 : 1, v_3 : 0, v_4 : -1, v_5 : < -1\}$

Model covariates: Fixation duration, saccade amplitude, semantic proximity of the fixated word to the topic

Problems

- Identify reading strategies, obtain a segmentation of scanpaths with meaningful EEG interpretation
- Markov-switching model to catch phase changes
- The sojourn time may not have Geometric distributions (Non-Markovian)

Hidden semi-Markov models (Yu 2010)

Notations:

Figure: Yu, 2010

- The set of observable values $\mathcal{V} = \{v_1, ..., v_K\}$ where $O_t \in \mathcal{V}$ is the state at time t. $O_{1:T}$ is the observed state sequence, $o_{1:T}$ a realization
- The set of hidden states $S = \{1, ..., M\}$ where $S_t \in S$ is the state at time t. $S_{1:T}$ is the hidden state sequence, $s_{1:T}$ a realization
- The state duration $D \in \mathcal{D} = \{1, ..., \infty\}$

Model: Explicit-duration HMM, assuming process starts at t = 1 and ends at T

Initial distribution:

$$\pi_{j}p_{\theta_{j}}(d) \equiv P(S_{1} = j)P(D = d, S_{1:d} = j, S_{d+1} \neq j | S_{1} = j)$$

$$= P(D = d, S_{1:d} = j, S_{d+1} \neq j)$$

• State transition probability from (i, d') to (j, d), $i \neq j$:

$$a_{(i,d')(j,d)} = a_{ij}p_{\theta_j}(d)$$
 $a_{ij} \equiv P(S_{t+1} = j|S_t = i)$
 $p_{\theta_j}(d) \equiv P(D = d, S_{t+1:t+d} = j, S_{t+d+1} \neq j|S_t \neq j)$

Emission probability:

$$b_i(v_k) \equiv P(O_t = v_k | S_t = j)$$

• Parameters of the model: $\lambda = \{a_{(i,d')(j,d)}, b_j(v_k), \pi_j, \theta_j\}$

- Proposal: use a data-driven approach in order to separate these processes
- Have the reading strategy contrasted characteristics in terms of EEGs?

Inference & Learning in HSMM

Inference: Forward-Backward algorithm to maintain tractability in inference problems. (e.g. probabilities such as $P(o_1, ..., o_T | \lambda)$)

Learning: MLE of $\hat{\lambda}$ via the iterative **Expectation-Maximization** algorithm: E-step: decomposition of $E[\ln P(S_{1:T}, O_{1:T}|\lambda)|O_{1:T}, \lambda^{old}]$ and simplification M-step: maximize with respect to λ

Restoration: Estimation of the most likely state sequence, $\hat{s}_{1:T}$, given an observed sequence, $o_1, ..., o_T$, by the MAP principle

$$\hat{s}_{t} = \underset{j}{\text{arg max }} \max_{d} P(S_{t-d} \neq j, S_{t-d+1:t} = j, S_{t+1} \neq j, o_{1:t} | \hat{\lambda})$$

using the Viterbi algorithm.

Application to eye-movement data

- The time index t corresponds to a fixation.
- M = 5 reading strategies estimated by maximizing BIC criterion

HSMM. top bar charts: sojourn time distributions. automaton: transition probabilities. bottom bar charts: emission probabilities.

4 interpretable strategies uncovered and validated according to reading theory and by analyzing covariates (fixation duration, saccade amplitude, semantic proximity of the word fixated to the goal):

 $S = \{0-1: Normal reading, 2: Speed reading, 3: Careful reading, 4: Confirmation\}$

On se souvient du fameux symbole du dollar revu par Andy Warhol. Le pop-artiste américain avait d'un signe simple amalgamé l'art et l'argent pour la plus grande joie de ses collectionneurs.

Issues adressed:

- Text variability: evolution of text relativeness to the topic
- Individual variability: trained vs. careful readers

Perspectives

- Variability in the text and individuals → propose a clustering approach to reduce variability of the model (mixtures of HSMM)
- Couple eye-movement and EEG data into a single HSMM framework handling signal overlap

References

- 1. Frey, A. et al. Decision-making in information seeking on texts: an eye-fixation-related potentials investigation. Frontiers in systems neuroscience 7 (8): 1-22 (2013)
- 2. Natarajan P. et al. Coupled Hidden Semi Markov Models for Activity Recognition. Motion and video computing (2007)
- 3. Simola, J. et al. Using hidden Markov model to uncover processing states from eye movements in information search tasks Cognitive Systems Research 9 (4): 237-251 (2008)
- 4. Yu, S-Z. Hidden semi-Markov models. *Artificial Intelligence* 174 (2): 215-143 (2010)

