Consider the set $V = \mathbb{R}$ with non-standard addition $\forall (x, y \in V) : x + y = x + y - 3$, non-standard scalar multiplication $\forall (x \in V, c \in \mathbb{R}) : \tilde{c} = c(x - 3) + 3$ and non-standard neutral element $\tilde{0} = 3$.

Let $x \in V, y \in V, z \in V, a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$.

1. Commutative Law:

$$x + y = x + y - 3$$
 Definition of $\tilde{+}$ (1)
 $= y + x - 3$ $V = \mathbb{R}$ and Commutative Law for \mathbb{R} (2)
 $= y + x$ Definition of $\tilde{+}$ (3)

2. Associative Law:

$$(x\tilde{+}y)\tilde{+}z = (x+y-3)+z-3$$
 Definition of $\tilde{+}$ (4)
 $= x + (y-3+z)-3$ Associative Law for \mathbb{R} (5)
 $= x + (y+z-3)-3$ Commutative Law for \mathbb{R} (6)
 $= x\tilde{+}(y\tilde{+}z)$ Definition of $\tilde{+}$ (7)

3. Consider $x + \tilde{0}$:

$$x + \tilde{0} = (x + \tilde{0} - 3)$$
 Definition of $\tilde{+}$ (8)
 $= x + 3 - 3$ Definition of $\tilde{0}$ (9)
 $= x + 0$ Existence of an Additive Inverse for \mathbb{R} (10)
 $= x$ Existence of an Additive Identity for \mathbb{R} (11)

4.

Theorem 0.1. There exists an inverse element for all x in V.

Proof. Consider y = 3 - x. Since $x \in V, V = \mathbb{R}, y \in V$.

Consider now s = x + y:

$$s = x + y - 3$$
 Definition of $\tilde{+}$ (1)
 $= x + 3 - x - 3$ Definition of y (2)
 $= x - x + 3 - 3$ Commutative Law for \mathbb{R} (3)
 $= 0 + 0$ Existence of an Additive Inverse for \mathbb{R} (4)
 $= 0$ Existence of an Additive Identity for \mathbb{R} (5)
 $\Rightarrow y$ is the inverse element of x (6)

5. Consider $1\tilde{\cdot}x$:

$$1\tilde{x} = 1(x-3) + 3$$
 Definition of \tilde{x} (7)
 $= (x-3)1 + 3$ Commutative Law for \mathbb{R} (8)
 $= x - 3 + 3$ Existence of a Multiplicative Identity (9)
for \mathbb{R} (10)

= x + 0 Existence of an Additive Inverse for \mathbb{R} (11)

= x Existence of an Additive Identity for \mathbb{R} (12)

6.

$$(a \cdot b)\tilde{\cdot}x = (a \cdot b)(x - 3) + 3$$
 Definition of $\tilde{\cdot}$ (13)

$$= a(b(x-3)) + 3$$
 Associative Law for \mathbb{R} (14)

(15)

(27)

Since $\tilde{0} = 3$, $a(b\tilde{\cdot}(x-3)) \in V$ and $b\tilde{\cdot}(x-3) \in V$ by Definition of $\tilde{\cdot}$, as well as by definition of $\tilde{0}$ and Existence of an Additive Identity for V it follows that $b\tilde{\cdot}(x-3) + \tilde{0} = b\tilde{\cdot}(x-3)$ and $a(b(x-3)) + 3 = a(b(x-3)) + \tilde{0} = a(b(x-3))$, then $a(b(x-3)) + 3 = a(b(x-3)) + \tilde{0} = a(b(x-3)) + \tilde{0} = a(b(x-3)) + \tilde{0} = a(b(x-3))$, as required.

7. Consider $\tilde{a \cdot x}$ and $\tilde{a \cdot y}$.

$$\tilde{a} \cdot x = a(x-3) + 3$$
 Definition of $\tilde{\cdot}$ (16)

$$a\tilde{y} = a(y-3) + 3$$
 Definition of \tilde{z} (17)

$$\Rightarrow \tilde{a} \cdot x + \tilde{a} \cdot y = a(x-3) + 3 + a(y-3) + 3 \tag{18}$$

$$= a(x+y-3-3)+3+3 \qquad \text{Commutative Law for } \mathbb{R}$$
 (19)

and Distributive Law for
$$\mathbb{R}$$
 (20)

$$= a(x+y-3-\tilde{0}) + 3 + \tilde{0} \qquad \text{Definition of } \tilde{0}$$
 (21)

$$= a(x + y - 3 - \tilde{0}) + 3$$
 Existence of an Additive Identity for V (22)

$$= a(x+y-3) + 3 \qquad \text{Lemma :: } -\tilde{0} = \tilde{0}, \text{ since}$$
 (23)

$$(-1)\tilde{\cdot}\tilde{0} = \tilde{0} = -\tilde{0}$$
 and (24)

Existence of an Additive Identity for
$$V$$
 (25)

$$= a\tilde{\cdot}(x+y)$$
 Definition of $\tilde{\cdot}$ (26)

Definition of $\tilde{\cdot}$

8. Consider $(a+b)\tilde{\cdot}x$.

 $(a+b)^{\tilde{\cdot}}x = (a+b)(x-3) + 3$

$$= a(x-3) + b(x-3) + 3$$
 Distributive Lawfor \mathbb{R} (28)

$$= \tilde{0} + a(x-3) + b(x-3) + 3$$
 Existence of an Additive Identity for V (29)

$$= a(x-3) + \tilde{0} + b(x-3) + 3$$
 Commutative Law for V (30)

$$= a(x-3) + 3 + b(x-3) + 3$$
 Definition of $\tilde{0}$ (31)

$$= a\tilde{x}x + b\tilde{x}x$$
 Definition of \tilde{x} (32)

Thus, V is a vector space.