

Masterpraktikum - Simulation-Based Autonomous Driving in Crowded City

End to End Learning for Self-Driving Cars

Jiachen Lu Garching bei München 02.03.2024

Problem Statement

• Train a end-to-end learning model -> Car drive itself in the simulator and the real world

Problem Statement

• Train a end-to-end learning model -> Car drive itself in the simulator and the real world

When Training

Problem Statement

- Train a end-to-end learning model -> Car drive itself in the simulator and the real world
- When Testing

Simulator

- UDACITY Simulator
 - Training Mode
 - Manual driving
 - Data acquisition
 - Autonomous Mode
 - Automated driving
 - Model testing
 - Two tracks

Data Acquisition

• At each time step *t*

Images	Steering angle
I_{Center}	$S = S_{Record}$
I_{Left}	$S = S_{Record} + 6.25^{\circ}$
I_{Right}	$S = S_{Record} - 6.25^{\circ}$

Data Acquisition

- Data set from UDACITY
 - Downloaded
 - Small Dataset: 24 thousand
 - Data imbalance:
 - Too much frames at Steering angle = 0°
 - Too less frames at |Steering angle| > 12.5°
- Data set from manual acquisition
 - Xbox Controller

WS 23-24

Dataset: 150 thousand

Data set from UDACITY

Data set from manual acquisition

Argumentation

Data Augmentation

- Data set from manual acquisition
 - Different Track → Influencing factors
 - Lighting, shadows
 - road conditions, road markings

- Data Augmentation
 - Flip

WS 23-24

- Translate
- Brightness
- Random shadow
- Random erasing

Argumentation

Data Augmentation

Data set before Augmentation

- Dataset: 150 thousand
- Steering angle imbalance

Data set after Augmentation

- Dataset: 4.82 million
- Steering angle balance

ResNet Backbone Network

Figure 2. Residual learning: a building block.

ResNet50

- Idea: Directly use the image of the current time step I_t to predict the steering angle S_t
- Methodology:
 - I_t is fed into the **ResNet50 backbone network** to extract image features
 - Then, the additional FC layers will predict the steering angle S_t

ResNet50 + GRU

- Idea: Steering angle S_t should be based on the images from the past seconds, i.e. $I_{t-k:t}$
- Methodology:
 - $I_{t-4:t}$ are fed into the **ResNet50 backbone network** to extract image features
 - Then, these features will be fed to the **GRU module** to predict the steering angle S_t

Training

Environment

- Python 3.8
- Pytorch 1.11.0 + Pytorch-lightning 2.0.2
- GPU: 2 x 3090 24GB

Training Parameter

- Loss: L2 Loss
- Optimizers: Adam
- Learning rate: 0.001
- Batch size: 64
- Epoch: 20

Qualitative Results

All results are based on the ResNet50

Real World Cars

- Real World Cars
 - Similar to the simulator
 - Train ResNet50-based Network
 - Poor generalization

•

Real World Cars

- Real World Cars: Problem
 - More complex decisions
 - More complex environments
 - Sense-Plan-Act

Further Work

Thanks for your listening!