Algoritmi e Strutture Dati a.a. 2009/10

Compito del 14/9/2010

Cognon	ne: Nome:
Matrico	ıla: E-mail:
	Parte I (30 minuti; ogni esercizio vale 2 punti)
1.	Determinare il numero di nodi interni in un albero d-ario completo in funzione dell'altezza h e dimostrare per induzione la correttezza della risposta.
2.	Si diano le definizioni di O , Ω e Θ e si stabilisca, utilizzando le definizioni date, se $3n^2 + 7n = \Theta(n^2)$.
3.	Si definisca la relazione di "riducibilità polinomiale" tra problemi (\leq_P) e si stabilisca se valgono le seguenti proprietà: a) riflessiva, b) simmetrica, c) transitiva (giustificando tecnicamente le risposte).

Algoritmi e Strutture Dati

a.a. 2009/10

Compito del 14/9/2010

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. Dato un albero binario *T*, definire una funzione **efficiente** in C che restituisca una copia *T'* di *T*, che contenga anche, in ogni nodo, il numero di nodi del sottoalbero di cui è radice (radice inclusa).

Discutere la complessità della soluzione trovata.

Il tipo dell'albero *T* è:

```
typedef struct node{
   int key;
   struct node * left;
   struct node * right;
} * Node;
```

Modificare in modo adeguato il tipo dell'albero *T* per ottenere il tipo dell'albero *T*'.

- 2. Progettare un algoritmo che, ricevuto in input un intero k e un array a, **non ordinato**, di n elementi **distinti**, restituisca il k-esimo elemento più piccolo di a. La soluzione **deve** essere di costo in tempo $O(n \log k)$ e utilizza uno heap di k elementi.
- 3. Si scriva l'algoritmo di Bellman-Ford, si dimostri la sua correttezza, si fornisca la sua complessità computazionale e si simuli accuratamente la sua esecuzione sul seguente grafo (uitlizzando il vertice *a* come sorgente):

4. Si scriva l'algoritmo di Dijkstra, si dimostri la sua correttezza e si fornisca la sua complessità computazionale. Si supponga inoltre di cambiare l'istruzione while Q ≠ Ø dell'algoritmo, con la seguente: while |Q| > 1. Questa variazione fa eseguire il ciclo |V|- 1 volte invece di |V|. L'algoritmo proposto è corretto? (Giustificare "tecnicamente" la risposta).