Codificação de Church

Paradigmas - Aluno: Artur Barichello

A Codificação de Church é uma forma de adicionar operadores e dados ao cálculo lambda, sua forma mais conhecida são os numerais de Church, uma representação dos números naturais utilizando a notação lambda.

Seu nome é dado pelo seu inventor Alonzo Church que foi o primeiro a codificar o cálculo lambda desta forma.

Numerais de Church

São funções que tomam dois parâmetros:

Número	Expressão lambda
0	λ f. λ x. x
1	λ f. λ x. f x
2	λ f. λ x. f (f x)
3	λ f. λ x. f (f (f x))
4	λ f. λ x. f (f (f (f x)))
5	λ f. λ x. f (f (f (f (f x))))
6	λ f. λ x. f (f (f (f (f (f x)))))
7	λ f. λ x. f (f (f (f (f (f (x))))))
8	λ f. λ x. f (f (f (f (f (f (f (x)))))))
9	λ f. λ x. f (f (f (f (f (f (f (f x)))))))
10	λ f. λ x. f (f (f (f (f (f (f (f (f x))))))))

Definição de Soma

soma =
$$\lambda$$
 m. λ n. λ s. λ z. m s (n s z)

Definição de Subtração

```
\mathrm{sub} = \lambdam. \lambdan. (n predecessor) m
```

Exemplo somando 0 e 1:

```
soma 0 1 = (\lambda \text{ m. } \lambda \text{ n. } \lambda \text{ s. } \lambda \text{ z. m s (n s z)}) 0 1
soma 0 1 = (\lambda \text{ n. } \lambda \text{ s. } \lambda \text{ z. } 0 \text{ s (n s z)}) 1
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. } 0 \text{ s (1 s z)})
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. } 0 \text{ s ((}\lambda \text{ f. } \lambda \text{ x. f x)} \text{ s z)}
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. } 0 \text{ s (}\lambda \text{ x. s x)} \text{ z)}
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. } 0 \text{ s (s z)}
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. ((}\lambda \text{ f. } \lambda \text{ x. x)} \text{ s (s z)})
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. ((}\lambda \text{ x. x)} \text{ (s z)})
soma 0 1 = \lambda \text{ s. } \lambda \text{ z. (s z)}
soma 0 1 = \lambda \text{ f. } \lambda \text{ x. (f x)}
```

Exemplo subtraindo 2 e 1:

```
sub 2 1 = (\lambda \text{ m. } \lambda \text{ n. } (\text{n predecessor}) \text{ m}) 2 1

sub 2 1 = (\lambda \text{ n. } (\text{n predecessor}) 2) 1

sub 2 1 = (1 \text{ predecessor}) 2

sub 2 1 = ((\lambda \text{ f. } \lambda \text{ x. f x}) \text{ predecessor}) 2

sub 2 1 = ((\lambda \text{ x. predecessor x}) 2

sub 2 1 = (\text{predecessor 2})

sub 2 1 = 1
```