Динамическое программирование

Непрерывный рюкзак — вариант задачи, в котором возможно брать любую дробную часть от предмета, при этом удельная стоимость сохраняется.

Сортируем предметы по уменьшению удельного веса и берём поочерёдно столько дорогих, сколько можно унести или сколько есть в наличии до тех пор пока не заполнится рюкзак.

Стоит отметить, что жадный алгоритм не всегда выдаёт оптимальное решение. Например, при разложении натурального числа на сумму квадратов натуральных чисел с наименьшим количеством слагаемых:

$$32 = 25 + 4 + 1 + 1 + 1$$
 (жадно) = $16 + 16$ (оптимально)

Методы поиска глобального минимума

- 1. Метод бисекции (основанный на следствии из I теоремы Больцано-Коши)
 - Делим отрезок на две части и сравниваем центр с 0. Выбираем правую или левую часть и переобозначаем границы. Продолжаем поиск пока не попадем в корень или не приблизимся к нему на заданную точность.
- 2. Метод Ньютона это итерационный численный метод нахождения корня заданной функции с помощью касательной к графику функции.
- 3. Градиент f(x,y,z) заданная функция. Тогда $\nabla f=(\frac{df}{dx},\frac{df}{dy},\frac{df}{dz})$ градиент функции

Градиентный способ — движение в сторону/против направления вектора роста для поиска максимума/минимума функции.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) + f(x)}{\Delta x}$$

$$f(x_0, y_0, z_0)$$

$$\nabla f = (x_0, y_0, z_0) \simeq \left(\frac{f(x_0 + \Delta x, y_0, z_0) - f(x_0, y_0, z_0)}{\Delta x}, \frac{f(x_0, y_0 + \Delta y, z_0) - f(x_0, y_0, z_0)}{\Delta y}, \frac{f(x_0, y_0, z_0 + \Delta z) - f(x_0, y_0, z_0)}{\Delta z}\right)$$

Динамическое программирование

Последовательность Фибоначчи.

Количество вычислений каждого члена выражается через последовательность Фибоначчи. Последовательность растёт со скоростью $O(\varphi^n)$, где φ - золотое сечение. Создадим массив из n+1 элемента, где будут лежать промежуточные значения функции Фибоначчи: $a[n+1] = \{-1, -1, -1, ..., -1\}$

$$f(n): if(a[n] == -1)$$

 $a[n] = f(n-1) + f(n-2);$
return $a[n];$

Получаем линейную скорость работы алгоритма. Это называется обратным

ходом динамического программирования. Но у данного алгоритма есть существенный недостаток - большой проигрыш в памяти. Однако в памяти можно хранить только два последних значения.

Вычислим биномиальный коэффициент $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ Заметим, что если повернуть трекгольник Паскаля на 90° , то получим матрицу, значением каждой клетки которой будет являться сумма значений клетки сверху и слева:

1	1	1	1	1
1	2	3	4	
1	3	6		
1	4			
1				