Announcement HWZ due Sunday@11:59 pm via Gradescope

Codomain = range {beB} f(a)=b for some a EA}

f is bijective if it is injective and surjective

Ex:
$$f: A \rightarrow B$$
 $A = \{a,b,c\}$ $B = \{x,y,z\}$
 $f(a) = x$, $f(b) = z$, $f(c) = x$

f is not injective since f(a) = f(c) but $a \neq c$ f is not surjective since $y \notin f(A)$

9 is injective since if g(x) = g(y), then x+1 = y+1, so x = y.

9 is surjective since if $Z \in \mathbb{R}$, then g(Z-1)=(Z-1)+1=Z

Surjective means range = Codomain $f: A \rightarrow B$ Always have range \subseteq Codomain $f: A \rightarrow B$ WTS: every elt. of codomain is in the range i.e. for every beB, be f(A) i.e. b=f(a) for some $a \in A$

Thus, g is bivective

The book has more information about injectivity for increasing/ decreasing functions

Bijections have inverse functions $f:A \rightarrow B$ bijection $f'(c) \geq not$ quite $f'':B \rightarrow A$ (also a bijection) $f'':B \rightarrow A$ (also a bijection) $f'':B \rightarrow A$ (also a bijection)

f'' undoes f'': if f(a)=b, then f''(1)=aWe call a function with an inverse invertible

set of pos. real nums.

a)
$$f: \mathbb{R}_+ \to \mathbb{R}_+$$
 $f(x) = x^2$ is invertible $\omega / f'(x) = \sqrt{x}$ ρ pos. sqrt.

b)
$$A = \{a,b,c\}$$
 f: $A \rightarrow A$
 $f(a) = b$, $f(b) = c$, $f(c) = a$
is invertible ω /
 $f^{-1}(b) = a$, $f^{-1}(c) = b$, $f^{-1}(a) = c$

Composition: apply functions in sequence

Then gof: A -> C is given by

$$g \cdot f(a) = g(f(a))$$

$$E_{x}: f: \mathbb{Z} \to \mathbb{Z} \qquad g: \mathbb{Z} \to \mathbb{N}$$

$$f(x) = x + 1 \qquad g(x) = \lambda^2$$

$$g \circ f : \mathbb{Z} \to \mathbb{N}$$
 fog is not defined since $(g \circ f)(x) = (x+1)^2$ domain(f) \neq codomain(g)

§3.1 Algorithms

Def: An algorithm is a finite sequence of precise steps

Properties:

- · Input
- · Output
- · Definiteness: Steps are precisely-defined
- · Correctness: Always gives the right answer
- · Finiteness: Finite # steps for any input
- · Effectiveness: You can actually do each step
- · Generality: Works for all possible inputs

Ex: Making change

Idea: We have a value of n "cents" and we want to make change using coins of values $c_1, c_2, c_3, ..., c_r$

Greedy Change-Making Algorithm: pos. int.

procedure change (C1, C2, ..., Cn: Values of coins,
where c1>c2>---> Cn; n: pos. int.)

a:=5
means set a=5

d:=0 (di is the num. coins of value ci)

While n > Ci
d:=di+1 (adds a coin of value i)

n:= n-C; (Ci less value remaining)

return di, dz, ..., dr

This is an example of an optimization problem

Optimization problem: maximize/minimize some parameter e.g. Give change using the fewest rum. of coins possible

Greedy algorithm: Try to solve the optimization problem by making the 'best' choice at each step

^{*}doesn't always give the optimal solution*