

Ayudantía 2 Análisis Funcional

1 de septiembre de 2022

**Problema 1.** Considere X e.v.n y  $M \subseteq$  subespacio vectorial cerrado.

- 1. Pruebe que si X es separable entonces X/M también.
- 2. Demuestre que si X/M y M son ambos separables, entonces X es separable.
- 3. Dé un ejemplo donde M y X/M sean separables pero X no lo sea.

**Problema 2.** Sea  $(X, \|\cdot\|_X)$  un e.v.n. y sea  $\sigma: X \to \mathbb{R}$  una función dada. Considere el conjunto

$$D = \{ \ell \in X^* \mid \ell(x) \le \sigma(x), \forall x \in X \}.$$

El objetivo del problema es demostrar que  $\sigma$  es sublineal y continua si y solo si D es convexo, cerrado, no vacio y acotado, y que además satisface

$$\sigma(x) = \sup\{\ell(x) \mid \ell \in D\}, \quad \forall x \in X$$
 (1)

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

Considere lo siguientes pasos:

1. Asuma que  $\sigma$  viene dado por (1) y que D es un subconjunto convexo, cerrado, no vacío y acotado de  $X^*$ . Demuestre que  $\sigma$  es sublineal y continua en X.

Indicación: Demuestre primero que  $\sigma$  es continua en x=0, luego, usando argumentos similares al caso de funcionales lineales, obtenga la continuidad de  $\sigma$  en todo el espacio X.

De aquí en adelante suponer que  $\sigma$  es sublineal y continua en X.

2. Demuestre que D es no vacío y que (1) se verifica.

**Indicación:** Fije  $x_0 \in X \setminus \{0\}$ . Considere el s.e.v.  $X_0 = \langle \{x_0\} \rangle$  y la función  $\ell_0 : X_0 \to \mathbb{R}$  dada por

$$\ell_0(tx_0) = t\sigma(x_0), \quad \forall t \in \mathbb{R}.$$

- 3. Pruebe que D es un subconjunto convexo y cerrado de  $X^*$ .
- 4. Usando la continuidad de  $\sigma$ , pruebe que  $\exists c > 0$  tal que  $|\sigma(x)| \le c$  para todo  $x \in X$  con  $||x||_X \le 1$ . Concluya que D es acotado.

**Problema 3.** Supongamos que  $(Y, \|\cdot\|_Y)$  es un e.v.n. y que  $f: Y \to \mathbb{R}$  es una función continua y convexa, i.e., tal que

$$f(\lambda y_1 + (1 - \lambda)y_2) \le \lambda f(y_1) + (1 - \lambda)f(y_2), \quad \forall y_1, y_2 \in Y, \forall \lambda \in [0, 1].$$

Consideremos ahora otro e.v.n.  $(X, \|\cdot\|_X)$ , un operador  $A \in \mathcal{L}C(X,Y)$  y  $x_0 \in X$ , tales que existe  $\varphi \in X^*$  que verifica

$$f(A(x_0)) + \langle \varphi, x - x_0 \rangle_{X^*, X} \le f(A(x)), \quad \forall x \in X.$$

Pruebe, usando el Teorema de Hahn-Banach Geométrico, que existe  $\ell \in Y^*$  tal que  $\varphi = \ell \circ A$  y que además satisface

$$f(A(x_0)) + \langle \ell, y - A(x_0) \rangle_{Y^* Y} \le f(y), \quad \forall y \in Y.$$

Indicación: Pruebe que los siguientes conjuntos son convexos y disjuntos:

$$A := \left\{ \left( y, z \right) \in Y \times \mathbb{R} \mid f(y) < z \right\} \quad \text{ y } \quad B := \left\{ \left( A(x), f\left( A\left( x_0 \right) + \left\langle \varphi, x - x_0 \right\rangle_{X^*, X} \right) \in Y \times \mathbb{R} \mid x \in X \right\}.$$