Direct Energy Conversion ESL-730

Time: 2 hrs. M.M.: 60 (Part A + Part B)

Note: Answer Section A and Section B on separate sheets

Section B

1. a) Describe a thermoelectric generator with diagram and show that the thermal efficiency of the generator can be written as

$$\eta_{sh} = \frac{P}{Q_s} = \left(\frac{T_1 - T_2}{T_1}\right) G(m)$$

$$G(m) = \frac{m/m + 1}{1 + \frac{k_B T_R}{2} \left(\frac{m+1}{T_1}\right) - \left(\frac{T_1 - T_2}{2T_1}\right) \frac{1}{1 + m}}$$

Where m is the ratio of the load to internal resistance of the thermoelectric generator and other symbols have their usual meanings.

(10)

b) A thermoelectric generator that will operate between 30°C and 500°C is to be constructed of n-p semiconductors with the following properties

Seebeck coefficient n type - 170 μV/°K p type 210 μV/°K

Electrical resistivity n type 14 μ Ω .m p type 18 μ Ω .m

Thermal conductivity n type 1.5 W/m.K p type 1.1 W/m.K

Length of n and p leg 1 cm Cross sectional area of n leg 1 cm²

Calculate maximum thermal efficiency of the thermoelectric generator and area of p leg.

(4)

2. Explain the principle of MHD power generation. How MHD generators are classified? Drive the expressions for the output voltage and current from axially spaced electrodes Hall generator.

(9)

- 3. a) Draw potential diagrams for basic thermionic generator (neglecting space charge effects and for fixed ϕ_c and ϕ_a) in the following two cases:
 - i) $\phi_c > \phi_a + eV_L$
 - ii) $\phi_c < \phi_a + eV_L$

Where ϕ_c and ϕ_a are work functions of cathode and anode respectively and V_L is the voltage developed across the load. Drive expressions for maximum

power for above mentioned eases. Which configuration you recommend for a practical generator. Justify your answer.

(8)

b) Following data are given for a thermionic generator:

Cathode Work function	$\phi_c = 2.7 \text{ eV}$
Cathode Space charge barrier energy	$\phi_{bc} = 0.3 \text{ eV}$
Cathode temperature	$\dot{T}_c = 1900^{\circ} K$
Anode Work function	$\phi_a = 1.5 \text{ eV}$
Anode space charge barrier energy	$\phi_{ba} = 0.5 \text{ eV}$
Anode temperature	$T_a = 1056^{\circ} K$
Universal constant for cathode material	$A = 0.04 \times 10^6 \text{A/m}^2 \cdot \text{k}^2$
Universal constant for anode material	$A = 0.001 \times 10^6 A/m^2.k^2$
Boltzmaniconstant	$= 1.38 \times 10^{-23} \text{J/}^{\circ} \text{k}$
Electron charge	$= 1.6 \times 10^{-19}$ Coulomb

Find the emitter area needed produce 100 We.

(4)

- 4. Suggest whether the following statements are true or false:
 - a) To achieve large power output in MHD generators the applied magnetic flux density must be as large as possible.
 - b) Thermionic generator is a low current, high voltage device.
 - e) The best thermoelectric material has low value of electrical conductivity
 - d) Faraday MHD generator output power decreases as β increases.
 - e) The inter-electrode distance in thermionic generator is kept large
 - f) The best thermoelectric material has high value of thermal conductivity
 - g) To achieve a large output in MHD generators gas must have low conductivity.
 - h) The thermoelectric power is positive for p type material and negative for n type material.
 - i) The thermoelectric generators are best suited for low temperature applications and thermionic generators for high temperature application
 - j) To achieve a large output in MHD generators gas must have a low velocity.

 $(\frac{1}{2} \times 10 = 5)$