CSIT113 Problem Solving

Workshop - Week 7 - Solutions

- Consider a "Towers of Hanoi" problem with one extra condition:
 - Each of the disks is coloured randomly either red, green or blue.
- Using the normal rules devise an algorithm to put each colour of disc on its own needle.

• Start: there are 11 disks

• Finish:

- You must still obey all the standard rules:
 - 1. Only one disc may be moved at a time
 - 2. Discs may only be placed on needles
 - 3. A larger disc may never be placed on a smaller disc
- You may assume that you have $H_{k,d}$ and $\langle k,d \rangle$ already defined.
 - $H_{k,d}$ be the sequence of moves required to move the k smallest discs in direction d
 - $\langle k,d \rangle$ represents a single move of disk k in direction d.

Details of small cases

• Let us analyze the notation further:

•
$$H_{1. a} := <1, a>$$
 (1 step)

•
$$H_{2, a} := <1, c>; <2, a>; <1, c>$$
 (3 steps)

•
$$H_{3, a} := <1, a>; <2, c>; <1, a>; <3, a>; <1, a>; <2, c>; <1, a> (7 steps)$$

Linking to the smaller problem (recursion)

• Note the possibility of recursion with the given definitions:

•
$$H_{1, a} = \langle 1, a \rangle$$
 1 step

•
$$H_{2, c} = \langle 1, a \rangle$$
; $\langle 2, c \rangle$; $\langle 1, a \rangle$ 3 steps

•
$$H_{3, a} = \langle 1, a \rangle; \langle 2, c \rangle; \langle 1, a \rangle;$$
 $\langle 3, a \rangle;$ $\langle 1, a \rangle; \langle 2, c \rangle; \langle 1, a \rangle$ 7 steps

• The above can be also written as:

•
$$H_{1,a} = \langle 1, a \rangle$$
 1 step

•
$$H_{2, c} = H_{1, a}$$
; <2, c>; $H_{1, a}$ 2x1 + 1 = 3 steps

•
$$H_{3, a} = H_{2, c}$$
; <3, a>; $H_{2, c}$ 2x3 + 1 = 7 steps

Number of steps

- From previous slide it can be seen that:
 - $H_{1,a}$ takes $2^1 1$ steps
 - $H_{2.a}$ takes $2^2 1$ steps
 -
 - $H_{n,a}$ takes $2^n 1$ steps
- It can also be seen using recursion, that:
 - $H_{n, a}$ takes $(2 \times H_{n-1, c} + 1)$ steps

Solution

• H_{10,C}

• H_{8,C}

• H_{6,A}

• H_{5,A}

• H_{4,A}

• H_{3,C}

• H_{1,A}

Improved Solution

• H_{9,A}

• <10,C>

• H_{8,C}

• <9,A>

• H_{7,C}

• <8,A>

• H_{6,A}

• <7,C>

• H_{5,A}

• <6,C>

• H_{4,A}

• <5,C>

• H_{3,A}

• <4,C>

• <1,A>

