Chapter 4 Orthogonality

Yuri Lavinas Master Student - University of Tsukuba

System and Information Engineering

05/25/2018

Introduction

Why consider orthogonality?

- Gaussian elimination standard algorithm used in numerous applications.
 - May not be sufficient: Most important data X Less important data.
- Less important Linearly dependent.
- Most important close to orthogonal, very linearly. independent.

Example 4.1

▶ Orthogonal columns determine the plane much better.

Let A and B be matrices in the \mathbb{R}^3 :

$$A = \left(\begin{array}{cc} 1 & 1.05 \\ 1 & 1 \\ 1 & 0.95 \end{array}\right),$$

$$B = \begin{pmatrix} 1 & 1/\sqrt{2} \\ 1 & 0 \\ 1 & 1/\sqrt{2} \end{pmatrix}.$$

Figure 4.1

Figure 4.1. Three vectors spanning a plane in \mathbb{R}^3 .

Preposition 4.2

▶ Two vectors v and u are orthogonal if $x^Ty = 0$, $\cos \theta(x,y) = 0$.

Let $q_i, j = 1, 2, ..., n$, be orthogonal, $q_i^T q_j = 0$, $i \neq j$. Then they are linearly independent.

Proof. Assume the vectors are linearly dependent. From preposition 2.2 there exists a q_k such that

$$q_k = \sum_{j \neq k} \alpha_j q.$$

Proof 4.2

Given

$$q_k = \sum_{j \neq k} \alpha_j q_.$$

Multiplying this equation by q_k :

$$q_k^T q_k = \sum_{j \neq k} \alpha_j q_k^T q_j,$$

Since the vectors are orthogonal:

$$q_k^T q_k = \sum_{j \neq k} \alpha_j q_k^T q_j = 0,$$

which is a contradiction (we assumed that they are lineally dependent).

Normalization

Let the set of orthogonal vectors q_j $\mathbf{j}=1,2,\ldots,$ m in \mathbb{R}^M , be normalized:

$$||q_i||_2 = 1.$$

They are called orthonormal and constitute orthonormal basis in \mathbb{R}^M

A square matrix

$$Q = (q_1 \ q_2 \ \cdots \ q_m) \in \mathbb{R}^{M \times M}$$

A matrix Q, whose columns are orthonormal, is called orthogonal matrix.

Orthogonal matrices satisfies important properties.

Preposition 4.3 - **Proof.**

▶ An orthogonal matrix Q satisfies $Q^TQ = I$

$$Q^{T}Q = (q_{1} \ q_{2} \ \cdots \ q_{m})^{T}(q_{1} \ q_{2} \ \cdots \ q_{m}) = \begin{pmatrix} q_{1}^{T} \\ q_{2}^{T} \\ \vdots \\ q_{m}^{T} \end{pmatrix} (q_{1} \ q_{2} \ \cdots \ q_{m})$$

$$\begin{pmatrix} q_1^T q_1 & q_1^T q_2 & \cdots & q_1^T q_m \\ q_2^T q_1 & q_2^T q_2 & \cdots & q_2^T q_m \\ \vdots & \vdots & & \vdots \\ q_m^T q_1 & q_m^T q_2 & \cdots & q_m^T q_m \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$

due to orthogonality.

Proposition 4.4 and 4.5

- ▶ An orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ has rank m, and, since $Q^TQ = I$, its inverse is equal to $Q^{-1} = Q^T$.
- ▶ The rows of an orthogonal matrix are orthogonal, i.e., $QQ^T = I$

Proof.

Proof. Let x be an arbitrary vector. We shall show that $QQ^Tx=x$. Given x there is a uniquely determined vector y, such that Qy=c, since Q^{-1} exists. Then

$$QQ^Tx = QQ^TQy = Qy = x.$$

Since \mathbf{x} is arbitrary, it follows that $QQ^T = I$.

Proposition 4.6

▶ The product of two orthogonal matrices is orthogonal.

Proof. Let Q and P be orthogonal, and put X = PQ. Then

$$X^T X = (PQ)^T PQ = Q^T P^T PQ = Q^T Q = I$$

Any orthonormal basis of a subspace of \mathbb{R}^m can be enlarged to an orthonormal basis of the whole space.

Proposition 4.7

Given a matrix $Q_1 \in \mathbb{R}^{m \times k}$, with orthonormal columns, there exists a matrix $Q_2 \in \mathbb{R}^{m-k}$ such that $Q = (Q_1Q_2)$ is an orthogonal matrix.

This is a standard result in linear algebra.

Proposition 4.8

The Euclidean length of a vector is invariant under an orthogonal transformation Q.

Proof.
$$||Q_x||_2^2 = (QX)^T Q x = x^T Q^T Q x = x^T x = ||x||_2^2$$

Also, the corresponding matrix norm and the Frobenius norm are invariant under orthogonal transformations.

Proposition 4.9

Let $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ be orthogonal. Then for any $A \in \in \mathbb{R}^{m \times n}$,

$$||UAV||_2 = ||A||_2$$

 $||UAV||_F = ||A||_F$

Proof. The first equality is proved using Proposition 4.8. For the second, the proof needs the following alternative expression, $||A||_F^2 = tr(A^TA)$, for the Frobenius normal and the identity tr(BC) = tr(CB).

Elementary Orthogonal Matrices

- ▶ Use elementary orthogonal matrices to reduce matrices to compact form.
- ▶ We will transform a matrix $A \in \mathbb{R}^{m \times n}, m > n$, to triangular form.

Plane rotations

A 2x2 plane rotation matrix

$$G = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}, c^2 + s^2 = 1$$

is orthogonal.

▶ Multiplying G by a vector x rotates the vector in clockwise direction by a angle θ , where $c = cos(\theta)$.

Usage

▶ A plane rotation can be used to zero the second element of a vector x by choosing $c=x1/\sqrt{x_1^2+x_2^2}$ and $s=x2/\sqrt{x_1^2+x_2^2}$.

$$\frac{1}{\sqrt{x_1^2 + x_2^2}} \begin{pmatrix} x_1 & x_2 \\ -x_2 & x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \sqrt{x_1^2 + x_2^2} \\ 0 \end{pmatrix}$$

It is possible to manipulate vectors and matrices of arbitrary dimension by embedding two-dimensional rotation in a larger matrix.

Example 4.10

We can choose c and s, in

$$G = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & c & 0 & s \\ 1 & 0 & 1 & 0 \\ 1 & -s & 0 & c \end{array}\right)$$

so that the 4th element of the vector $x \in \mathbb{R}^4$ by rotating the plane (2,4).

Code 4.10

The MATLAB script follows:

```
 \begin{array}{c} x = [1;2;3;4]; \\ sq = sqrt(x(2)^2 + x(4)^2); \\ c = x(2)/sq; \ s = x(4)/sq; \\ G = [1\ 0\ 0\ 0;\ 0\ c\ 0\ s;\ 0\ 0\ 1\ 0;\ 0\ -s\ 0\ c]; \\ y = G\ *\ x \\ \mbox{given the result:} \\ y = 1.0000 \\ 4.4721 \\ 3.0000 \\ 0 \end{array}
```

Transform an arbitrary vector

Using a sequence of of planes rotations, is possible to transform any vector to a multiple of a unit vector.

Given a $x \in \mathbb{R}^4$, we transform in to ke_1 . First, by a rotation G_3 in the plane (3,4) the last element became zero:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & s \\ 0 & 0 & c_1 & s_1 \\ 0 & 0 & -s_1 & c_1 \end{pmatrix} \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ * \\ 0 \end{pmatrix}.$$

Next rotation

A rotation G_2 in the plane (2,3) the element in position 3 became zero:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_2 & s_2 & 0 \\ 0 & -s_2 & c_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \times \\ \times \\ \times \\ 0 \end{pmatrix} = \begin{pmatrix} \times \\ * \\ 0 \\ 0 \end{pmatrix}.$$

Final rotation

And finally, for the second element

$$G = \begin{pmatrix} c_3 & s_3 & 0 & 0 \\ -s_3 & c_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \times \\ \times \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} K \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Summary

- According to proposition 4.8 the Euclidean length is preserved, and therefore we know that $k = ||x||_2$.
- Since the product of orthogonal matrices is orthogonal (Proposition 5.6) the matrix $P = G_1G_2G_3$ is orthogonal, and the overall results is $Px = ke_1$.
- ▶ Rotations are very flexible and can be used efficiently for problems with a sparsity structure, e.g., band matrices.
- ► For dense matrices they require more flops than Householder transformations (section 4.3).

Example 4.12

- ▶ In the last MATLAB example, a 2 x 2 matrix was explicit embedded in a matrix of larger dimension. This is a waste of operations, since the execution of the code does not consider that only two rows are changed.
- ► The whole matrix multiplication is performed $2n^3$ flops, for a matrix of dimension n.
- ► The following MATLAB code illustrates an alternative approach to save operations (and storage).

Code 4.12

The MATLAB script follows:

```
\begin{split} \text{function } [c,\,s] &= \text{rot}(x,\,y); \\ sq &= \text{sqrt}(x^2 + y^2); \\ c &= x/\text{sq}; \, \text{s} = y/\text{sq}; \end{split} \begin{aligned} \text{function } X &= \text{approt}(c,\,s,\,i,\,,j,\,X); \\ X([i,\,j],:) &= [c\,s;\,-s\,c]^*X([i,j],:); \end{aligned}
```

Code 4.12

Continuing:

```
x[1;2;3;4]; for i=3:-1:1   [c,s] = rot(x(i),x(i+1)); end; x = 5.4772   0   0   0
```

▶ After the reduction the first component of x is equal to $||x||_2$.

Table of Contents

Orthogonality Introduction Section 4.1 Section 4.2