Transístores de Junção Bipolar

(6 aulas)

Antes de realizar o trabalho, já deve saber:

- 1. Como se polariza um transístor;
- 2. Determinar o estado de condução do transístor e o seu comportamento em cada estado;
 - 3. O funcionamento de um transístor como comutador.
 - 4. Porque é utilizada a saturação forte;
 - 5. Como levar o transístor à saturação forte;
 - 6. Identificar as diferenças entre fontes de tensão ideais e reais;
 - 7. Calcular a potência dissipada numa resistência para qualquer tipo de sinal;
 - 8. Calcular o ganho de potência;
 - 9. Identificar as montagens Emissor Comum, Colector Comum e base Comum;
 - 10. Estabilizar o ponto de funcionamento do transístor através de resistência de emissor;
 - 11. Para as configurações Emissor Comum, Colector Comum e Base Comum:
 - calcular o ganho de tensão;
 - saber a relação de fase entre a saída e a entrada;
 - conhecer a influência da resistência de emissor no ganho da montagem.
 - 12. O papel dos condensadores de acoplamento e de derivação.

Depois de realizar o trabalho, deverá:

- 1. Ter verificado experimentalmente os tópicos anteriormente referidos;
- 2. Saber como eliminar a parte negativa de um sinal alternado.
- 3. Compreender o funcionamento do transístor como amplificador

Elementos de estudo:

- 1. J. G. Rocha, Díodos e Transístores Bipolares, Netmove Ed, 2008;
- 2. Sedra and Smith, Microelectronic Circuits, 4th ed. 1998.
- 3. Aulas teóricas de Electrónica I

1ª Aula - Polarização de um transístor

Monte o circuito da figura 1.

- De que tipo é o transístor utilizado?
- Faça as medidas e anote os valores de ${f I}_{{f B}{}_{{f f}}}$

$\mathbf{I}_{\text{C}\text{\prime}} \; \mathbf{V}_{\text{BE}} \; \mathbf{e} \; \mathbf{V}_{\text{CE}}.$

 Que conclui quanto ao estado de condução do transístor?

Figura 1

Substitua a resistência de 10 k Ω por uma de 330 k Ω e repita o procedimento anterior, anotando os novos valores de \mathbf{I}_{B} , \mathbf{I}_{C} , \mathbf{V}_{BE} e \mathbf{V}_{CE} .

- Qual é o estado de condução do transístor?
- Como procederia para levar o transístor ao corte?

O circuito da figura 2 difere do anterior apenas no tipo de transístor utilizado.

Qual é agora o tipo transístor?

- Monte o circuito da figura
- Procedendo de modo idêntico ao das alíneas anteriores, anote os valores de \mathbf{I}_{Br} \mathbf{I}_{Cr} \mathbf{V}_{BE} e \mathbf{V}_{CE} para duas situações distintas. Na primeira, com $R_B{=}10~k\Omega$, como indica a figura. Na segunda substituindo R_B por uma de 330 $k\Omega$.

- Como procederia para levar o transístor ao corte?

Figura 2

2ª aula: Funcionamento do transístor como comutador

Indique o modo de funcionamento dos transístores da figura 3, de modo a que a analogia sugerida seja válida. Registe os valores das grandeza eléctricas mais importantes, designadamente I_C , I_B , V_{CE} e V_{BE} .

Figura 3

Monte o circuito da figura 4.

Note que pode ajustar a corrente no colector do transístor (repare no brilho do LED), controlando a corrente de base por intermédio do potenciómetro. Registe os valores de I_B , V_{BE} , I_C , V_{CE} e $G=I_C/I_B$ correspondentes a diversos pontos de polarização. O valor de I_B deve começar em zero e ir aumentando até ao máximo. Desenhe o gráfico I_B x I_C

Na sequência das medições escreva as conclusões relativas às questões $10 \text{K}\Omega$ seguintes.

- Qual é o valor da corrente de base quando o cursor do potenciómetro está em X ?
- Quando é que o transístor se encontra aproximadamente ao corte?
- Para que valores da corrente de base é que o transístor funciona na zona activa?
- Quando é que o transístor se encontra saturado?

Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas :

- Quando funciona na zona activa, o transístor comporta-se como um dispositivo linear, uma vez que o ganho DC em corrente (G), se mantém praticamente constante.

- Na saturação, a corrente no colector é limitada apenas pela resistência de 220Ω.

3^a aula:

Monte o circuito da figura 5 e aplique à sua entrada uma onda quadrada com 5 V de amplitude e 1 kHz de frequência.

- Visualize os sinais na entrada e na saída do circuito.
- Qual a configuração utilizada na montagem da figura 5?
- Que diferenças observa entre a saída e a entrada?
- Indique **no o gráfico** os modos de funcionamento do transístor.

Aplique à entrada do circuito da figura 5 um sinal sinusoidal com a mesma frequência da onda quadrada referida no ponto anterior e amplitude de 5 V_p .

- Que concluí acerca do modo de funcionamento da montagem?

Use o gerador de sinais para obter uma onda quadrada e lique-o directamente a uma resistência de 100Ω (figura 6).

- Note que a amplitude do sinal de tensão aos terminais da resistência já não é 5Vp. Porquê? Qual é o novo valor?

Monte o circuito da figura 7.

Note que a resistência de 100Ω está ligada em série com o emissor do transístor e que o sinal do gerador é aplicado à base.

- Qual é a configuração utilizada na montagem da figura 7?
- Que diferenças observa entre as formas de onda na entrada (base) e na saída (emissor)?
- Qual é a intensidade da corrente na resistência quando o transístor conduz?
- Qual é a potência dissipada na resistência? E no transístor?
- Relativamente à montagem anterior, qual é o ganho em potência?

4ª Aula: Controlo da estabilidade do ponto de funcionamento

Monte o circuito da figura 8 e ajuste o potenciómetro de modo a que V_{CE} seja aproximadamente de 5V.

Espere que os valores de V_{CE} e I_{C} estabilizem e registe-os.

- Substitua o transístor utilizado por outro com a mesma referência (2N2222). Meça de novo e registe os valores de V_{CE} e I_{C} .

Figura 8

- Que conclui quanto à estabilidade do ponto de funcionamento?
- Coloque um dedo sobre a caixa do transístor e mantenha-o assim durante algum tempo, ao mesmo tempo que observa o que se passa com o valor de V_{CE} Que conclui quanto à estabilidade do ponto de funcionamento?

Coloque entre o emissor e a massa uma resistência de $1k\Omega$ (figura 9).

- Por meio do potenciómetro, faça de novo V_{CE} aproximadamente igual a 5 V. Espere que os valores de V_{C} e I_{C} estabilizem e registe-os.
- Substitua o transístor pelo que utilizou em primeiro lugar, meça de novo e registe os novos valores de V_{C} e I_{C} .

Compare o dois circuitos (com e sem resistência de emissor) em termos de estabilidade do ponto de funcionamento.

5ª aula: Funcionamento do transístor como amplificador

Ajuste o potenciómetro da montagem da figura 1, até que V_{CE} seja aproximadamente de 5V.

- Registe os valores da tensão no colector $V_{\text{\scriptsize C}}$ e na base $V_{\text{\scriptsize B}}$
- Aplique à base do transístor, através dum condensador de $1\mu F$, um sinal sinusoidal com $0.2V_{pp}$ e 1kHz (figura 11).

Registe as formas de onda à entrada e à saída do circuito.

- Qual é a relação entre a fase da saída e da entrada?
- Quais são os valores médios das tensões no colector e na base, V_C e V_B?

Varie a amplitude do sinal aplicado à entrada (0.2V, 0.5V, 1V e 2.5V). Com o osciloscópio em AC, meça a amplitude de saída pico-a-pico Vo(Vpp) e calcule o ganho em tensão (v_0/v_i) para os valores de v_i anteriores.

Registe as formas de onda à entrada e à saída quando $v_i = 2.5$ Vpp. Indique sobre o gráfico, as situações em que o transístor está no corte e na saturação.

Substitua R_{e} por uma resistência de 470 Ω , e faça de novo $V_{CE} \approx 5V$.

- Proceda do mesmo modo que no ponto anterior, preenchendo uma tabela correspondente à mesma sequência de valores de entrada. A tabela terá as colunas V_i , V_o e $G=V_o/V_i$
- Que nota de novo, relativamente à montagem anterior?
- Que pode concluir acerca do ganho do circuito?

6a aula:

Na montagem da figura 12 **ajuste a entrada até ter 0,2Vpp**. Coloque em série com a saída um condensador de 0.1µF (figura 13).

- Que nota de novo no funcionamento do circuito?

Nota: o osciloscópio deve estar em DC.

Transfira a saída do circuito do colector para
o emissor (figura 14). Que nota de novo, relativamente à configuração anterior?

- Variando a amplitude do sinal colocado à entrada entre 0,2V e 2,5V, calcule a variação do ganho em tensão da montagem da figura 14, construindo uma tabela de resultados.
- Que conclui quanto ao ganho em tensão da montagem?

Substitua a resistência de $1k\Omega$ por outra de 470Ω **e repita o procedimento anterior**, preenchendo nova tabela de resultados. Convém utilizar a mesma sequência de valores de Vi(Vpp).

O que conclui quanto ao modo como é possível variar o ganho em tensão da montagem da figura 14?

6a aula:

Ligue agora o gerador de sinais ao emissor através de um condensador. A tensão de saída do circuito pode medir-se no colector (figura 15).

- Desenhe o modelo equivalente para pequenos sinais do circuito (use o modelo em T do transístor).
- Calcule o ganho da montagem.
- Verifique experimentalmente o ganho da montagem e compare com o obtido anteriormente.
- Coloque uma resistência de 1 $k\Omega$ entre v_{i} e o condensador. Que observa?
- Calcule novamente o ganho da montagem. Que concluí?

