Отчет о выполнении лабораторной работы 3.4.1 + 3.4.2

Диа- и парамагнетики. Закон Кюри-Вейсса

Костылев Влад, Б01-208

15 декабря 2023 г.

Аннотация

Цель работы:

- 3.4.1: измерение магнитной восприимчивости диа- и парамагнитного образцов.
- 3.4.2: Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются:

- 3.4.1: электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.
- 3.4.2: Катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическая справка

3.4.1

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. Одним из классических методов таких измерений является т.н. метод Гюи. В нём используется длинный тонкий стержень, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец – вне зазора, где величиной магнитного поля можно пренебречь. В этом случае закон изменения поля – от максимального до нулевого – будет несущественен.

Найдём выражение для силы, действующей со стороны магнитного поля на помещённый в зазор электромагнита цилиндрический стержень. Пусть площадь его сечения равна S, его магнитная проницаемость – μ , поле в зазоре – B_0 , а глубина, на которую стержень помещён в зазор, – x. Так как ток I через электромагнит остаётся постоянным, то сила, действующая на стержень со стороны магнитного поля, равна производной магнитной энергии системы по координате, взятой с противоположным знаком:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_I,$$

где $W_M(x)$ – магнитная энергия системы при I = const (то есть при $B_0 = \text{const}$) в зависимости от глубины погружения стержня x.

Объёмную плотность магнитной энергии можно найти по формуле:

$$W_M = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$

где интеграл берётся по всему пространству.

Найдём теперь распределение магнитного поля в цилиндре. Рассмотрим сначала бесконечный стержень с проницаемостью μ , помещённый в перпендикулярное ему однородное поле $B_0 = \mu_0 H_0$, и найдём поле $B_{\rm cr}$ внутри него. В силу малости магнитной восприимчивости исследуемых образцов можно воспользоваться непрерывностью касательной компоненты H и считать, что внутри стержня $H_{\rm cr} = H_0$, потому $B_{\rm cr} = \mu B_0$. Тогда систему из стержня в зазоре электромагнита можно условно разбить на три части – вне электромагнита (I), в погружённой части стержня (II) и в электромагните вдали от стержня (III). В области I поле мало ($B_1 \approx 0$), поэтому его вкладом в энергию можно пренебречь. В области II поле приближённо равно $B_2 \approx \mu B_0$, а в области III – $B_3 \approx B_0$.

При смещении цилиндра вглубь электромагнита на dx область II увеличивается в объёме на $dV_2 = S dx$, а область III уменьшается на $dV_3 = -S dx$. Распределение поля в пограничных участках между областями при этом почти не меняется. Тогда изменение магнитной энергии при таком смещении равно:

$$dW_M(dx) \approx \frac{B_2^2}{2\mu\mu_0} S dx - \frac{B_2^2}{2\mu_0} S dx = (\mu - 1) \frac{B_0^2}{2\mu_0} S dx.$$

Следовательно, искомая сила равна:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} S.$$

Знак силы зависит от знака восприимчивости $\chi = \mu - 1$: парамагнетики ($\chi > 0$) втягиваются в зазор электромагнита, а диамагнетики ($\chi < 0$) выталкиваются из него. Таким образом, измерив силу, действующую на образец в магнитном поле B_0 , можно рассчитать его магнитную восприимчивость.

Экспериментальная установка

Схема установки показана на рисунке. Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр его полюсов существенно превосходит ширину зазора, поэтому поле в его средней части достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного тока.

Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре и силой тока I в обмотках) производится при помощи милливеберметра. При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца

оказывается в зазоре электромагнита, а другой – вне его, где индукцией магнитного поля можно пренебречь. При помощи аналитических весов определяется перегрузка $\Delta P = F$ – сила, действующая на образец со стороны магнитного поля.

Погрешности приборов: милливеберметра – половина цены деления шкалы, т.е. $\Delta \Phi = 0.05 \text{ мВб}$, электрических приборов – амперметра и весов – 0.5% + 2 ед. мл. разряда.

3.4.2

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотическим образом. Однако при $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p — температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (1) недостаточна точна.

Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. ??. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтирован в виде отдельного блока.

Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0)\propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C – ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

2 Используемое оборудование

В работе используются:

- 3.4.1: электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.
- 3.4.2: Катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

3 Результаты измерений и обработка данных

3.4.1

Откалибруем электромагнит:

В, мТл	30,9	114,7	274,9	433,6	659,8	835	949,3	1058,7
I, A	0	0,1	0,25	0,4	0,61	0,81	0,95	1,17

Приступим к подсчету сил, действующих на определенные образцы, Медь:

dm, мг	-34	-28	-21	-17	-13	-10	-6	-1
I, A	1,17	1,01	0,85	0,75	0,64	0,56	0,42	0,2
В, мТл	1058,7	1029,374	871,099	772,177	663,3628	584,2252	445,7344	228,106
В^2, (мТл)^2	1120846	1059611	758813,5	596257,3	440050,2	341319,1	198679,2	52032,35
dP, MH	-333,54	-274,68	-206,01	-166,77	-127,53	-98,1	-58,86	-9,81

Алюминий:

dm, мг	71	61	48	39	29	22	13	3
I, A	1,17	1,01	0,85	0,75	0,64	0,56	0,42	0,2
В, мТл	1058,7	1029,374	871,099	772,177	663,3628	584,2252	445,7344	228,106
В^2, (мТл)^2	1120846	1059611	758813,5	596257,3	440050,2	341319,1	198679,2	52032,35
dP, mH	696,51	598,41	470,88	382,59	284,49	215,82	127,53	29,43

Вольфрам:

	dm, мг	243	205	162	128	97	74	43	12
	I, A	1,17	1,01	0,85	0,75	0,64	0,56	0,42	0,2
	В, мТл	1058,7	1029,374	871,099	772,177	663,3628	584,2252	445,7344	228,106
В	^2, (мТл)^2	1120846	1059611	758813,5	596257,3	440050,2	341319,1	198679,2	52032,35
	dP, mH	2383,83	2011,05	1589,22	1255,68	951,57	725,94	421,83	117,72

Графит:

dm, мг	-25	-3	27	40	50	53	52	29
I, A	1,17	1,01	0,85	0,75	0,64	0,56	0,42	0,2
В, мТл	1058,7	1029,374	871,099	772,177	663,3628	584,2252	445,7344	228,106
В^2, (мТл)^2	1120846	1059611	758813,5	596257,3	440050,2	341319,1	198679,2	52032,35
dP, MH	-245,25	-29,43	264,87	392,4	490,5	519,93	510,12	284,49

По коэффициентам наклона рассчитаем магнитную восприимчивость образцов по следующей формуле:

$$\chi = \frac{8\mu_0 k}{\pi D^2}$$

Тогда все рассчитаем:

$$\chi_{Cu} = -(6, 51 \pm 0, 20) \cdot 10^{-6}$$

$$\chi_{Al} = (2, 14 \pm 0, 12) \cdot 10^{-5}$$

$$\chi_{W} = (5, 22 \pm 0, 44) \cdot 10^{-5}$$

$$\chi_{Gr} = (5, 71 \pm 0, 47) \cdot 10^{-4}$$

Табличные значения магнитной восприимчивости:

$$\chi_{Cu} = -6, 4 \cdot 10^{-6}$$

$$\chi_{Al} = 2, 2 \cdot 10^{-5}$$

$$\chi_{W} = 5, 5 \cdot 10^{-5}$$

$$\chi_{Gr} = 6, 1 \cdot 10^{-4}$$

3.4.2

Выпишем параметры установки:

$$\tau_0 = (6,909 \pm 0,001)\mu c, \quad \kappa = 24^{\circ} C/\text{MB}$$

Температура масла в пробирке считается формулой

$$T = T_0 + \kappa \Delta U$$

Т_0, гр. Ц	14,34	16,05	18,13	20,02	22,08	24,02	26,02	28,07	30,08	32,07	34,08	36,07	38,02	40,03
Т, гр. Ц	14,2128	15,486	17,9956	19,516	21,576	23,54	25,5376	27,59	29,924	31,65	33,9264	35,806	37,756	39,766
tau, мкс	7,914	7,877	7,743	7,652	7,433	7,254	7,151	7,092	7,057	7,043	7,026	7,017	7,01	7,003
dU, MB	-0,0053	-0,0235	-0,0056	-0,021	-0,021	-0,02	-0,0201	-0,02	-0,0065	-0,0175	-0,0064	-0,011	-0,011	-0,011
tau^2 - tau_0	1 4,89712	14,31285	12,21977	10,81882	7,515208	4,886235	3,40252	2,562183	2,066968	1,869568	1,630395	1,504008	1,405819	1,307728
1/(tau^2 - tau_0	0, 067127	0,069867	0,081835	0,092431	0,133064	0,204657	0,2939	0,390292	0,4838	0,534883	0,613348299	0,66489	0,711329	0,764685

Качественно из первого графика определим температуру Кюри:

$$\Theta_K \approx 20,5^{\circ}C$$

Из графика получаем парамагнитную точку Кюри гадолиния:

$$\Theta_p = (17, 08 \pm 0, 93)^{\circ} C$$

Табличное значение:

$$\Theta_p = 16,85^{\circ}C$$

4 Заключение

В заключение можно сказать, что в данной лабораторной работе мы научились измерению магнитной восприимчивости диа- и парамагнитного образцов, а также изучению температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.