The Inode Table

- Physical Disk capacity in our example (64 blocks of 4KB each) $4 \times 64 = 256 \text{ KB}$
- Logical capacity (8 blocks are reserved for the inode table) $4 \times 56 = 224$ KB (the actual data storage space)
- Maximum number of inodes (each inode is 256 bytes) (5 * 4 * 1024) / 256 = 80 inodes (i.e max number of files)
- Size of the inode bitmap (I bit per inode) 1×80 inodes = 80 bits (out of 32K bits)
- Size of the data bitmap (I bit per storage block)
 I bit x 56 blocks = 56 bits (out of 32K bits, max data storage I 28 MB)

Decoding inodes

What disk sector to read to retrieve inode 32?

- I. Calculate the offset (each inode is 256 bytes) $32 \times 256 = 8{,}192$
- 2. Add the start of the address of the inode table (12K) $8,192 + 12 \times 1,024 = 20,480$ (20 KB)
- 3. Find the corresponding disk sector (each sector is 512 bytes) $(20 \times 1,024) / 512 = 40$