Ejercicio 10: Sean $A = \{x : x = 4k + 2 \land k \in \mathbb{Z}\}$ y $B = \{x : x = 2h \land h \in \mathbb{Z}\}$ conjuntos:

(a) Probar que $A \subseteq B$.

Para ver que $A \subseteq B$ tomemos un elemento cualquiera de A y probemos que es un elemento de B.

Sea $x \in A$ entonces x se puede escribir como x = 4k + 2 para algún número $k \in \mathbb{Z}$.

Luego, $x = 4k + 2 = 2 \cdot 2k + 2 = 2 \cdot (2k + 1) = 2 \cdot h$, siendo h = 2k + 1. Aquí hemos usado la propiedad distributiva del producto en la suma de números enteros en la tercera igualdad.

Observemos que $h \in \mathbb{Z}$ porque $k \in \mathbb{Z}$ y por ser producto y suma de números enteros (es decir, el producto y la suma de números enteros son operaciones cerradas en \mathbb{Z}).

Con lo que tenemos que $x = 2 \cdot h$, $h \in \mathbb{Z}$, entonces $x \in B$.

Como x es un elemento cualquiera de A y probamos que x pertenece a B, queda demostrado que $A \subseteq B$.

(b) ¿A y B son el mismo conjunto? Justifique su respuesta.

Ver que A = B es lo mismo que ver que $A \subseteq B$ y $B \subseteq A$. La primera inclusión la probamos en el inciso anterior, valdrá la segunda inclusión?

Sea $8 = 2 \cdot 4 \in B$ pero $8 \notin A$ pues si $8 \in A$ entonces 8 = 4k + 2 para algún $k \in \mathbb{Z}$.

Si despejamos k tenemos que $8-2=4k \Rightarrow \frac{6}{4}=\frac{3}{2}=k$, absurdo pues $k \in \mathbb{Z}$.

Luego $B \not\subset A \Rightarrow A \neq B$.

Notemos que si escribimos A y B por extensión, mostrando algunos de sus elementos pues son infinitos, vamos a ver que hay otros enteros, además del 8 que pertenecen a B y no pertenecen a A.

Recordemos que el conjunto B es el conjunto de los múltiplos enteros de 2, es decir, los números enteros pares. En cambio, en el conjunto A encontramos a los enteros que son suma de un múltiplo de 4 y 2. Es decir, los elementos del conjunto A son los enteros impares multiplicados por 2 (esto lo vemos en la demostración de la parte (a)) que son múltiplos de 2, pero NO todos los múltiplos de 2 (por esto $A \subseteq B$, pero $A \ne B$).