

UNIT 5 GREEDY ALGORITHMS

Iris Hui-Ru Jiang Spring 2024

Department of Electrical Engineering National Taiwan University

Outline

Content:

- Activity selection (Interval scheduling)
- Elements of the greedy strategy
- Knapsack problem
- Huffman codes
- Task scheduling
- Minimum spanning trees (detailed in graph algorithms)
- Reading:
 - Chapter 15

Greedy Algorithms

- An algorithm is greedy if it builds up a solution in small steps, making the choice that looks best at each step to optimize some underlying criterion
- It's easy to invent greedy algorithms for almost any problem
 - Intuitive and fast
 - Usually not optimal
- It's challenging to prove greedy algorithms succeed in solving a nontrivial problem optimally
 - An exchange argument

Interval Scheduling

Activity selection

The Interval Scheduling Problem

- Given: Set of requests {1, 2, ..., n}, ith request corresponds to an interval with start time s(i) and finish time f(i)
 - interval i: [s(i), f(i)) requests don't overlap optimal
- Goal: Find a compatible subset of requests of maximum size

Greedy Rule (Choice)

- Repeat
 - Use a simple rule to select a first request i_1
 - Once i_1 is selected, reject all requests incompatible with i_1
- Until run out of requests
- Q: How to decide a greedy rule for a good algorithm?
- A:
 - 1. Earliest start time: min s(i)

- 3. Fewest conflicts: $\min_{j=1...n} |\{j: j \text{ is not compatible with } i\}|$
- 4. Earliest finish time: min f(i)

The Greedy Algorithm

- The 4th greedy rule leads to the optimal solution
 - We first accept the request that finishes first
 - Natural idea: Free resource ASAP
- The greedy algorithm:

```
\emptyset: empty set = {}
```

```
Interval-Scheduling(R)
```

// R: undetermined requests; A: accepted requests

- 1. $A = \emptyset$
- 2. **while** (*R* is not empty) **do**
- 3. choose a request $i \in R$ with minimum f(i) // greedy rule
- 4. $A = A + \{i\}$
- 5. $R = R \{i\} X$, where $X = \{j: j \in R \text{ and } j \text{ is not compatible with } i\}$
- 6. return A
- Q: Feasible?
- A: Yes! Line 5
 - A is a compatible set of requests
- Q: Optimal? Efficient?

Implementation

```
Greedy-Activity-Selector(s, f)

// Assume f_1 \le f_2 \le ... \le f_n

1. n = s.length

2. A = \{1\}

3. k = 1

4. for i = 2 to n

5. if s_i \ge f_k

6. A = A \cup \{i\}

7. k = i

8. return A
```

- Time complexity excluding sorting: O(n)
- Theorem: Algorithm Greedy-Activity-Selector produces solutions of maximum size for the activity-selection problem

The Interval Scheduling Algorithm

Optimality Proofs

• Greedy-choice property: Suppose $A \subseteq S$ is an optimal solution. Show that if the first activity in A activity $k \ne 1$, then $B = A - \{k\} \cup \{1\}$ is an optimal solution.

- Optimal substructure: If A is an optimal solution to S, then A' = A - {1} is an optimal solution to S' = {i ∈ S: s_i ≥ f₁}.
 - Exp: $A'=\{3, 5, 8\}, S'=\{3, 4, 5, 7, 8, 9\}$ in the previous slide
 - **Proof by contradiction**: If A' is not an optimal solution to S', we can find a "better" solution A'' (than A'). Then, $A'' \cup \{1\}$ would be a better solution than $A' \cup \{1\} = A$ to S, contradicting to the original claim that A is an optimal solution to S. (Activity 1 is compatible with all the tasks in A''.)

Elements of the Greedy Strategy

- When to apply greedy algorithms?
 - Greedy-choice property: A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
 - Dynamic programming needs to check the solutions to subproblems
 - Exchange argument
 - Optimal substructure: An optimal solution to the problem contains within its optimal solutions to subproblems
 - E.g., if A is an optimal solution to S, then $A' = A \{1\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_1\}$
 - Proof by contradiction
- Greedy *heuristics* do not always produce optimal solutions

Knapsack Problem

Greedy algorithms vs. dynamic programming

Greedy vs. Dynamic Programming

- Common: optimal substructure
- Difference: greedy-choice property
- One subproblem for greedy vs. several subproblems for DP
- Top down for greedy vs. bottom up for DP
- Beneath every greedy algorithm, there is always a more cumbersome DP solution

Knapsack Problem

- **Knapsack Problem:** Given n items, with ith item worth v_i dollars and weighing w_i pounds, a thief wants to take as valuable a load as possible, but can carry at most W pounds in his knapsack
- 0-1 knapsack problem: Each item is either taken or not
- fractional knapsack problem: Can take fraction of items
- **Ex:** $\mathbf{v} = (60, 100, 120), \mathbf{w} = (10, 20, 30), W = 50$

Greedy or DP?

- Both problems exhibit the optimal substructure property
 - 0-1: If optimal solution includes item j, the remaining load must be the most valuable load weighing at most W-w_j (Fractional: DIY)
- Fractional version can be optimally solved by greedy algorithm, taking items in order of greatest value per pound
 - Does not work for the 0-1 version
- 0-1 knapsack problem can be solved in O(nW) time by DP
 - Q: Polynomial time?

Item 1 has greatest value per pound

For 0-1 version, any solution with item 1 is not optimal!

Greedy alg. is optimal for fractional version

Huffman Codes

Coding

- Is used for data compression, instruction-set encoding, etc.
- Binary character code: character is represented by a unique binary string
 - Fixed-length code (block code): 3 bits for 6 characters a: 000, b: 001, ..., f: 101 ⇒ $ace \leftrightarrow 000 \ 010 \ 100$
 - Variable-length code: frequent characters ⇒ short codeword; infrequent characters ⇒ long codeword

							cost /
	a	b	C	d	е	f	100 characters
Frequency	45	13	12	16	9	5	
Fixed-length codeword	000	001	010	011	100	101	300
Variable-length codeword	0	101	100	111	1101	1100	224

Binary Tree vs. Prefix Code

- Prefix code: No code is a prefix of some other code
 - Unique representation

prefix code {1, 01, 000, 001}-> binary tree

18

Unit 5

Optimal Prefix Code Design

- Coding Cost of T: $B(T) = \sum_{c \in C} c \cdot freq \cdot d_T(c)$
 - c: character in the alphabet C
 - c.freq: frequency of c
 - $-d_{\tau}(c)$: depth of c's leaf (length of the codeword of c)
- Code design: Given c_1 . freq, c_2 . freq, ..., c_n . freq, construct a binary tree with n leaves such that B(T) is minimized
 - Idea: more frequently used characters use shorter depth

Fixed-length cost = $3 \times 100 = 300$

Optimal code \Rightarrow *full* binary tree, where every nonleaf node has two children

Variable-length cost = 224

Huffman's Procedure

Pair two nodes with the least costs (lowest frequencies) at each step

Huffman's Algorithm

```
Huffman(C)

// C: input characters; Q: min-priority queue

1. n = |C|

2. Q = C

3. for i = 1 to n - 1

4. Allocate a new node z

5. z.left = x = \text{Extract-Min}(Q)

6. z.right = y = \text{Extract-Min}(Q)

7. z.freq = x.freq + y.freq

8. Insert(Q, z)

9. return Extract-Min(Q) //return the root of the tree
```

- Time complexity: $O(n \lg n)$
 - Build-Min-Heap needs O(n) for binary min heap
 - Extract-Min(Q) needs O(lg n) by a heap operation
 - Requires initially $O(n \lg n)$ time to build a binary heap

Huffman's Algorithm: Greedy Choice

- Greedy choice: Let x and y be two characters with the lowest frequencies. ∃ an optimal prefix code for C where x and y have the same length and differ only in the last bit
 - x and y appear as sibling leaves of maximum depth in the new tree

$$\overline{c \in C} \qquad \overline{c \in C}$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x))$$

$$\geq 0,$$
Unit 5

Huffman's Algorithm: Optimal Substructure

• Optimal substructure: $C' = C - \{x, y\} \cup \{z\}$. z.freq = x.freq + y.freq of min frequency. Let T' represent an optimal prefix code over C'. Tree T obtained from T' represents an optimal prefix code for C

$$B(T) = B(T') + x.freq + y.freq$$

 $(d_T(x) = d_T(y) = d_{T'}(z) + 1)$

Proof by contradiction!!

Suppose T is not optimal, \exists optimal T'' such that B(T'') < B(T) B(T''') = B(T'') - x.freq - y.freq < B(T) - x.freq - y.freq $= B(T') \rightarrow \leftarrow$

Huffman's Algorithm: Optimality

• Lemma (optimal substructure): If T' is optimal for $C' = C - \{x, y\} \cup \{z\}$, then T is optimal for C. T'

- Proof by induction
 - Base case: |C| = 2, trivial.
 - Inductive hypothesis: Huffman's algorithm is optimal for any |C| < n
 - Inductive step:
 - Consider the case of |C| = n. We construct T' on C' where |C'| = n-1.
 - By inductive hypothesis, *T'* is optimal for *C'*. By the lemma above, *T* is then optimal for *C*.

Task Scheduling

Tasks with deadlines and penalties

Task Scheduling

- The task scheduling problem: Schedule unit-time tasks with deadlines and penalties s.t. the total penalty for missed deadlines is minimized
 - $S = \{1, 2, ..., n\}$ of *n* unit-time tasks
 - _ **Deadlines** d_1 , d_2 , ..., d_n for tasks, 1 ≤ d_i ≤ n
 - **Penalties** $w_1, w_2, ..., w_n$: w_i is incurred if task *i* misses deadline
- Canonical form of schedule: Early tasks precede the late tasks; early tasks are in order of monotonically increasing deadlines
- Set A of tasks is independent if ∃ a schedule with no late tasks
- $N_t(A)$: number of tasks in A with deadlines t or earlier, t = 1, ..., n
- Three equivalent statements for any set of tasks A
 - 1. A is independent
 - 2. $N_t(A) \le t$, t = 1, 2, ..., n
 - 3. If the tasks in *A* are scheduled in order of nondecreasing deadlines, then no task is late

Greedy Algorithm: Task Scheduling

The optimal greedy scheduling algorithm:

- 1. Sort penalties in nonincreasing order
- 2. Find tasks of independent sets: no late task in the sets.
- 3. Schedule tasks in a maximum independent set in order of nondecreasing deadlines
- 4. Schedule other tasks (missing deadlines) at the end arbitrarily

			$N_1(A) = 0 <= 1$					
	1	2	3	4	5	6	7	$N_2(A) = 1 \le 2$
	4				1			$N_3(A) = 2 \le 3$
d _i	4	$\stackrel{2}{\frown}$		3	_	4	6	$N_4(A) = 4 <= 4$
\mathbf{w}_{i}	(70)	(60)	(50)	40	30	20	(10)	$N_5(A) = 4 <= 5$
C	optimal s	$N_6(A) = 5 \le 6$						
	penalty:	$N_{t}(A) \ll t$						

Summary: Greedy Analysis Strategies

- An algorithm is greedy if it builds up a solution in small steps, making the choice that looks best at each step to optimize some underlying criterion
- It's challenging to prove greedy algorithms succeed in solving a nontrivial problem optimally
- Greedy choice property: Prove by an exchange argument: Gradually transform an optimal solution to the one found by the greedy algorithm without hurting its quality
- Optimal substructure: Prove by contradiction: An optimal solution to the problem contains within its optimal solution to the subproblem

Summary: Algorithmic Paradigms

- Brute-force (Exhaustive search): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion
 - Always maintain one subproblem
- Divide-and-conquer: Break up a problem into subproblems, solve each subproblem independently, and combine solution to sub-problems to form solution to original problem
 - Subproblems have equal size
- Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems
 - The first step of DP: define the subproblem!