Homework #7

Problem 1 Let $d: \mathbb{N} \to \mathbb{N}$, where d(n) is the number of positive divisors of n.

- 1. Is the function d an injection? Justify your answer.
- 2. Is the function d a surjection? Justify your answer.

Answer.

- 1. d is not an injection because d(2) = d(3) = 2.
- 2. Let d: N→N, where d(n) is the number of positive divisors of n. We will prove that d is a surjection. Let x be an element of the codomain N. We can use induction to show that d(2^{k-1}) = k for every natural number k. Let P(k) be the statement d(2^{k-1}) = k. First we will show the base case, P(1). That is d(2⁰) = d(1). The only positive divisor is 1, thus d(1) = 1. Next we will prove the inductive step. We will assume P(k) and prove P(k + 1). P(k) is true, meaning that d(2^{k-1}) = k. Now let's multiply the preimage by 2. d(2*2^{k-1}) = d(2^k). Notice that 2^{k-1} already has divisors 1 and 2 when k > 1, so when we multiply 2^{k-1} by 2, the product has only 1 new divisor, itself, which is 2^k. Therefore d(2^k) = k + 1 and we have proved P(k) is true. From this we can see that the image of 2^{k-1} under d is k. Thus d is a surjective function.

Problem 2 Let $s : \mathbb{N} \to \mathbb{N}$, where s(n) is the sum of all positive divisors of n.

- 1. Is the function s an injection? Justify your answer.
- 2. Is the function s a surjection? Justify your answer.

Answer.

- 1. s is not an injection because s(6) = s(11) = 12.
- 2. s is not a surjection because there does not exist $n \in \mathbb{N}$ such that s(n) = 2. If we think about it, for each $k \in \mathbb{N}$, $k < k + 1 \le s(k)$. Now if we check the first two natural numbers, s(1) = 1 and s(2) = 3. Then there cannot be s(n) = 2 as 1 and 3 are the first and second minimum in the range of s.

Problem 3 Let $A = \{(m,n) \mid m,n \in \mathbb{Z}, n \neq 0\}$. Define $f: A \to \mathbb{Q}$ by $f(m,n) = \frac{m+n}{n}$.

- 1. Is the function f an injection? Justify your answer.
- 2. Is the function f a surjection? Justify your answer.

Answer.

- 1. f is not an injection because $f(1,9) = s(2,18) = \frac{10}{9} = \frac{20}{18}$.
- 2. Let $A=\{(m,n)\mid m,n\in\mathbb{Z},n\neq 0\}$. Define $f:A\to\mathbb{Q}$ by $f(m,n)=\frac{m+n}{n}$. We will prove that f is a surjection. Let $x\in\mathbb{Q}$. By the definition of rational numbers $x=\frac{a}{b}$ with $a,b\in\mathbb{Z}$ and $b\neq 0$. $f(a-b,b)=\frac{a}{b}$. Thus f is a surjection.

Problem 4 Prove that if $f:A\to B$ is a bijection, then $f^{-1}:B\to A$ is also a bijection.

Answer. TODO.