Sujet d'étude

Arccosinus complexe

Pour tout nombre complexe z, on définit le cosinus de z par

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}.$$

Avant de définir une fonction «Arccosinus complexe», revenons sur la construction de la fonction arccos usuelle. Nous avons d'abord trouvé un intervalle sur lequel cos est injective (à savoir $[0, \pi]$) puis déterminé l'image de cet intervalle par cos (à savoir [-1, 1]). Ainsi, la fonction cos réalise ujne bijection de $[0, \pi]$ sur [-1, 1] et on peut définir sa réciproque, notée arccos. Remarquons que le choix de $[0, \pi]$ était arbitraire : on aurait pu choisir $[-\pi, 0]$ ou $[0, \pi/2]$, etc.

Soit Φ la fonction $\mathbb{C} \to \mathbb{C}$, $z \mapsto \cos(z)$. Étant donnée une fonction f de \mathbb{C} dans \mathbb{C} et une partie A de \mathbb{C} , on note f_A la fonction

$$\begin{array}{cccc} f_A: & A & \to & f(A) \ . \\ & z & \mapsto & f(z) \end{array}.$$

Définir une (ou des) fonction «Arccosinus complexe» revient donc à déterminer des parties A de \mathbb{C} , non vides et telles que la fonction Φ_A soit bijective. On dira d'une telle partie A qu'elle est convenable.

On remarquera que A est convenable si, et seulement si

$$\forall (z, z') \in A^2, \cos(z) = \cos(z') \implies z = z'.$$

Partie A Préliminaires

A1. Montrer

$$\forall (x, y) \in \mathbb{R}^2, \cos(x + iy) = \cos(x) \operatorname{ch}(y) - i \sin(x) \operatorname{sh}(y).$$

- **A2.** Les parties de \mathbb{C} suivantes sont-elles convenables : \mathbb{C} ? \mathbb{R} ? $\{z_0\}$ avec $z_0 \in \mathbb{C}$?
- A3. Montrer

$$\forall x \in [-1, 1], \arccos(x) + \arccos(-x) = \pi.$$

- **A4.** Soit la fonction $S: \mathbb{C} \to \mathbb{C}, z \mapsto -z$ et A une partie convenable de \mathbb{C} . Montrer que S(A) est convenable.
- **A5.** Soit la fonction $T: \mathbb{C} \to \mathbb{C}, z \mapsto z + 2\pi$ et A une partie convenable de \mathbb{C} . Montrer que T(A) est convenable.
- **A6.** Soit A et A' deux parties convenables de C. Montrer que si $\Phi(A) \cap \Phi(A') = \emptyset$, alors $A \cup A'$ est convenable.

Partie B Exemples de parties convenables

Étant donnée une partie B de \mathbb{R} , l'ensemble

$$\{z \in \mathbb{C} \mid \Re e(z) \in B \text{ et } \Im \mathfrak{m}(z) = 0\}$$

sera noté également B.

B1. Soit $A_1 =]0, \pi[$. Déterminer $\Phi(A_1)$, montrer que A_1 est convenable et déterminer $\Phi_{A_1}^{-1}$.

- **B2.** Soit $A_2 = \{ z \in \mathbb{C} \mid \Re \mathfrak{e}(z) = 0 \text{ et } \Im \mathfrak{m}(z) \geq 0 \}$. Déterminer $\Phi(A_2)$, montrer que A_2 est convenable et déterminer $\Phi_{A_2}^{-1}$.
- **B3.** Soit $A_3 = \{ z \in \mathbb{C} \mid \Re e(z) = \pi \text{ et } \operatorname{Im}(z) \leq 0 \}$. Déterminer $\Phi(A_3)$, montrer que A_3 est convenable et déterminer $\Phi_{A_3}^{-1}$.
- **B4.** Soit $A_4 = A_1 \cup A_2 \cup A_3$. Montrer que A_4 est convenable. Déterminer $\Phi(A_4)$ et $\Phi_{A_4}^{-1}$.

Partie C Résolution de l'équation cos(z) = a

Soit $a \in \mathbb{C}$ tel que $\mathfrak{Tm}(a) \neq 0$.

C1. Soit $\varrho \in]0, +\infty[$ et $\theta \in \mathbb{R}$. Résoudre l'équation d'inconnue $z \in \mathbb{C}$

$$e^{iz} = \rho e^{i\theta}. (1)$$

- **C2.** Soit $z \in \mathbb{C}$. Montrer que $\cos(z) = a$ si, et seulement si e^{iz} est solution d'une équation de degré 2 que l'on notera (1).
- C3. Montrer que l'équation (1) admet deux racines distinctes Z_1 et Z_2 non nulles et que

$$\left|Z_{2}\right|=\frac{1}{\left|Z_{1}\right|} \qquad \qquad \text{et } \arg(Z_{2})\equiv\arg(Z_{1})\left[2\pi\right] \qquad \qquad \text{et } Z_{1}+Z_{2}\not\in\mathbb{R}.$$

- **C4.** En déduire qu'il existe un unique $\theta_a \in]0, \pi[$ et un unique $\varrho_a \in]0, 1[\cup]1, +\infty[$ tel que $\varrho_a e^{i\theta_a}$ et $\frac{1}{\varrho_a} e^{-i\theta_a}$ soient solutions de (1).
- **C5.** Soit $A_5 = \{ z \in \mathbb{C} \mid \Re e(z) \in]0, \pi[et \Im m(z) \neq 0 \}$. Montrer que A_5 contient exactement une solution de l'équation $\cos(z) = a$, que l'on notera $\Psi(a)$. Exprimer $\Psi(a)$ en fonction de ϱ_a et θ_a
- **C6.** En déduire qu'il existe un unique $\theta_a \in]0, \pi[$ et un unique $\varrho_a \in]0, 1[\cup]1, +\infty[$ tel que $\varrho_a e^{i\theta_a}$ et $\frac{1}{\varrho_a} e^{-i\theta_a}$ soient solutions de (1).
- C7. Soit $A_5 = \{ z \in \mathbb{C} \mid \Re e(z) \in]0, \pi[et \Im m(z) \neq 0 \}$. Montrer que A_5 contient exactement une solution de l'équation $\cos(z) = a$, que l'on notera $\Psi(a)$. Exprimer $\Psi(a)$ en fonction de ϱ_a et θ_a
- **C8.** Calculer $\Psi(i)$.
- **C9.** Soit $b \in \mathbb{C}$ tel que $\mathfrak{Tm}(b) \neq 0$. Exprimer $\Psi(-b)$ en fonction de $\Psi(b)$.

Partie D Une partie convenable maximale

- **D1.** Montrer que si $z \in A_5$, alors $\mathfrak{Tm}(\cos(z)) \neq 0$. En déduire que A_5 est convenable.
- **D2.** Soit $A_6 = A_4 \cup A_5$. Représenter l'ensemble des points du plan dont l'affixe est dans A_6 . Montrer que $\Phi(A_6) = \mathbb{C}$, puis que A_6 est convenable.
- **D3.** On notera désormais Γ la réciproque de Φ_{A_6} (Γ est une fonction Arccosinus complexe «intéressante»). Déterminer $\Gamma(z)$ pour tout $z \in \mathbb{C}$.
- D4. Montrer

$$\forall a \in \mathbb{C}, \Gamma(z) + \Gamma(-z) = \pi.$$

- **D5.** Montrer que A_6 est une partie convenable maximale, c'est-à-dire qu'aucune partie de $\mathbb C$ contenant A_6 et différente de A_6 n'est convenable.
- **D6.** Donner d'autres exemples de parties convenables maximales.