Please check the examination details belo	w before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu	mber
Pearson Edexcel Interr	national Advanced Level
A Level C	louds 出品
Time: 1 hour 30 minutes	Paper reference WMA12/01
Mathematics	NO.
International Advanced Su Pure Mathematics P2	bsidiary/Advanced Level
You must have: Mathematical Formulae and Statistical	Tables (Yellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \sqrt{x+2}$, $x \ge -2$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 6

The table below shows corresponding values of x and y for $y = \sqrt{x+2}$

x	-2	0	2	4	6
y	0	1.4142	2		2.8284

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule, with all of the values of *y* in the completed table, to find an approximate value for the area of *R*, giving your answer to 3 decimal places.

(3)

Use your answer to part (b) to find approximate values of

(c) (i)
$$\int_{-2}^{6} \frac{\sqrt{x+2}}{2} \, dx$$

(ii)
$$\int_{-2}^{6} (2 + \sqrt{x+2}) dx$$

(4)

2.	$f(x) = x^4 - x^3 + 3x^2 + ax + b$	
	where a and b are constants.	
	When $f(x)$ is divided by $(x - 1)$ the remainder is 4	
	When $f(x)$ is divided by $(x + 2)$ the remainder is 22	
	Find the value of a and the value of b.	
		(5)

3.

Figure 2

Figure 2 shows a sketch of the circle C with equation

$$x^2 + y^2 - 6x + 9y + 18 = 0$$

(a) Find (i) the coordinates of the centre of C

(ii) the exact value of the radius of C

(3)

Line l is parallel to the y-axis and intersects C at points P and Q.

Given that length PQ is 5

(b) find two distinct equations for *l*.

(4)

(Total for Question 3 is 7 marks)

4. (a) Find the first 4 terms, in ascending powers of x, in the binomial expansion of

$$\left(1 + \frac{x}{4}\right)^{12}$$

giving each coefficient in its simplest form.

(3)

(b) Find the term independent of x in the expansion of

$$\left(\frac{x^2+8}{x^5}\right)\left(1+\frac{x}{4}\right)^{12}$$

1	2	١	
ι	J	,	

I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
l	

5. (i) Use the laws of logarithms to solve the equation	
$3\log_8 2 + \log_8 (7 - x) = 2 + \log_8 x$	(5)
(ii) Using algebra, find, in terms of logarithms, the exact value of y for which	
$3^{2y} + 3^{y+1} = 10$	(5)

6. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(i) Solve, for
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$\tan^2\left(2x + \frac{\pi}{4}\right) = 3\tag{5}$$

(ii) Solve, for $0 < \theta < 360^{\circ}$

$$(2\sin\theta - \cos\theta)^2 = 1$$

giving your answers, as appropriate, to one decimal place.

(5)

14

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = \frac{4}{3}x^3 - 11x^2 + kx$$
 where k is a constant

The point M is the maximum turning point of C and is shown in Figure 3.

Given that the x coordinate of M is 2

(a) show that k = 28

(3)

(b) Determine the range of values of x for which y is increasing.

(2)

The line l passes through M and is parallel to the x-axis.

The region R, shown shaded in Figure 3, is bounded by the curve C, the line l and the y-axis.

(c) Find, by algebraic integration, the exact area of R.

(5)

8. A sequence is defined by

$$u_1 = k$$
, where k is a constant

$$u_{n+1} = 4u_n - 3, \ n \geqslant 1$$

(a) Find u_2 and u_3 in terms of k, simplifying your answers as appropriate.

(3)

Given
$$\sum_{n=1}^{3} u_n = 18$$

(b) find *k*.

(3)

9. (i)) Use algebra to prove that for all real values of x	
	$(x-4)^2 \geqslant 2x-9$	(3)
<i>(</i> ::	N. Character Alex Alex Callering at the control of the control	(3)
(11	i) Show that the following statement is untrue.	
	$2^{n} + 1$ is a prime number for all values of $n, n \in \mathbb{N}$	(1)
		(1)

10. (1) It can had hive gears. Given tha	10. (i)	A car ha	s five gears.	Given that
--	----------------	----------	---------------	------------

- the maximum speed of the car in first gear is 22 km h⁻¹
- the maximum speed in each successive gear forms a geometric sequence
- the maximum speed of the car in fifth gear is 130 km h⁻¹

find the maximum speed of the car in second gear, giving your answer, in km h⁻¹, to one decimal place.

(4)

(ii) The first two terms of an arithmetic sequence are 208 and 207.2

Given that S_n is the sum to n terms,

(a) find the maximum value of S_n

(4)

(b) Hence or otherwise state the smallest value of N such that $S_{N} < 0$

(1)

7	
Z	С
_	•