EE-381 Robotics-1 UG ELECTIVE

Lecture 1

Dr. Hafsa Iqbal

Department of Electrical Engineering,

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology,

Pakistan

Student Introduction

- Introduce Yourself
 - Name
 - Belongingness
 - Motivation behind opting for this course

Class Norms

- Attendance timings
- Cell phone ringing
- Respect peer, faculty and staff through actions and speech
- Should not disturb your fellows
- Assignment submissions
- We will follow the SEECS policy on plagiarism

Course Material

Enrollment Code: **983675410**

- Textbook
 - Robot Dynamics and Control

by M. W. Spong, Seth Hutchinson, and M. Vidyasagar

Robot Modeling and Control

by M. W. Spong and S. Hutchinson

Course Assesment

Assessments/CLOs	CLO	CLO	CLO	CLO
	1	2	3	4
Quizzes : $5-20\%$ of the theory part	✓	✓		
Assignments: $5-10\%$ of the theory part	√	✓		
Mid Exam: $25 - 40$ % of the theory part	✓	✓		
End Semester Exam: $35 - 50\%$ of theory part	✓	√	Y OF	$SCIE_{N_C}$
Project: 5 – 10%		1	1	✓
Labs: 25% of the course		NAL	√	\

Course Material

- Reference book:
 - Robotics, Vision and Control by Peter Corke.
 - Introduction to Robotics, Mechanics and Control by John J. Craig.
 - Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents series) by Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza.
 - Learning ROS for Robotics Programming by Aaron Martinez, Enrique Fernández.
- Slides

Course Objective

Line follower

Industrial Arm Robot

- Robot Structure
- Robot Modeling
- Robot Actuators
 and Driving Systems
- Sensors
- Kinematic (Forward and Inverse)
- Robot Control
- Robot Programming
- Applications

Course Outcome

- Student will be able to:
 - Select a particular type of robot based on the requirement; solve problems in forward and inverse kinematics
 - Select a suitable drive system; select a suitable vision system
 - Select a suitable robot cell layout for various needs
 - Choose the right problem-solving technique

Lecture Agenda

- Introduction to Robotics
- Robot accessories
- Classification of Robots
- Robot coordinates
- Robot Programming

Introduction to Robotics

What is a Robot???

Robot

As defined by Robotics Industries Association (RIA)

A **re-programmable**, **multifunctional manipulator** designed to move materials, parts, tools or specialized devices through variable programmed motion for a variety of tasks

As defined by ISO 8373 (Robots and Robotic devices)

An <u>automatically controlled</u>, re-programmable, multipurpose manipulator programmable in three or more axes, which may be either fixed in place or <u>mobile</u> for use in industrial automation applications.

Applications of Robots

Wheeled Robot

Autonomous Vehicles

Applications of Robots

Manipulator

Legged Robot

Applications of Robots

Autonomous underwater vehicle

Autonomous Aerial vehicle

This Robotic Design can Climb Up and Down the Stairs!!

Swarm Drones

Cleaning Robot

Drone Umbrella

Construction Robots

BeachBot

Drone

Low-cost robot that can cook

The Octo-Bouncer: Advanced Bouncing Patterns

Bot can drive on walls using propeller thrust

Robo-ant-tics!

Self-assembling of Aerial Robots

Clockwork MiNiCURE Robot

Intelligent parking chair

When Nissan made self parking AI office chairs just for their own offices

Loitering drones

Toy drone

Autonomous tool-carrier Orio

Industrial Automation

Robots will take over the World?

• **1920** Czech author Karel Capek wrote a story called Rossum's Universal and introduced the word "Rabota" (Czech word, meaning worker/servitude)

• 1948 George Devol design the first programmable robot; automate the welding and metal working.

• 1956 Josseph Engel berger, a Columbian University physics student, buys the rights to Devol's robot and funds the Unimation Company

 1957 launch of first artificial satellite Sputnik 1

• 1960 industrial robots created and

Robotic Industries Association officially defines the robot

• 1961 the Unimate robot is installed in a Trenton, New Jersey plant of General Motors (to tend a die casting machine) https://www.youtube.com/watch?v=hxsWeVtb-JQ

- 1962 George Devol and Josseph Engel berger start a first Robotic industry named as Unimation and develop industrial Robots
- 1963 the first robot vision system is developed

• 1971 the Stanford Arm is developed at Stanford University

 1973 the first robot programming language (WAVE) is developed at Stanford

• **1974** Cineinnati Milacron introduces the T3 robot with computer control

• 1975 Unimation Inc. registers its first financial profit

 1976 the Remote Center Compliance (RCC) device for part insertion in assembly is developed at Draper Labs in Boston

- Two famous Robots
 - **1978** PUMA
 - **1979** SCARA

PUMA:

— PUMA: the Programmable Universal Machine for Assembly, introduced by Unimation

1979 — SCARA (Selective Compliant Articulated Robot **SCARA**: for Assembly) robot design is introduced in Japan

Figure 5. SCARA - Selective Compliance Assembly Robot Arm.

Jobs! € (P) 00 (E

• 1981 – the first direct-drive robot is developed at Carnegie-Mellon University

• 2000's - Military applications — Robotic assistants for dangerous environments and reconnaissance (military observation of a region to locate an enemy), NASA, AUVs etc.

2000's – Intuitive Surgical introduces the Da Vinci

surgical robot

• 2000's - IRobot introduces the first autonomous vacuum

-"Roomba".

Robots

Amazon warehouse
 https://www.youtube.com/watch?v=TUx-ljgB-5Q

Industrial robots
 https://www.youtube.com/watch?v=KBLEPlznHWY

Arc welding robot
 https://www.youtube.com/watch?v=5HphVrleXIQ

Worm robot
 https://www.youtube.com/watch?v=ilbT2QcPGvo

Hexapod robot
 https://www.youtube.com/watch?v=Mfjn79oiMoQ

CyberDog

https://www.youtube.com/watch?v=BoqYob_vSgo https://www.youtube.com/watch?v=4oSavAHfodq

Three laws by Asimov -1942

1. A robot may not injure a human being, or, through inaction, allow a human to be harmed

2. A robot must obey orders given by human except when that conflicts with the First Law.

 A robot must protect its own existence unless that conflicts with the First or Second laws

Robotics

It is a multidisciplinary field, comprises of knowledge from the field of

- Mechanical Engineering concerned with manipulator/mobile robot design, kinematics, dynamics, compliance and actuation.
- Electrical Engineering- concerned with robot actuation, electronic interfacing to computers and sensors and control algorithms
- Computer Science- concerned with robot programming, planning and intelligent behavior.

Robot Accessories

- Manipulator: Main body of the robot & consists of links, joints and structural elements.
- End Effector: part that generally handles objects, makes connection to other machines, or performs the required tasks.

Robot Accessories

Robot Accessories: Wrist

- Wrist: refers to joints in kinematic chain between arm and hand
- 3 DOF degree of freedom
 - Roll: involves rotating the wrist about the arm axis (about x-axis)
 - Yaw: left-right rotation of wrist (about z-axis)
 - Pitch: up-down rotation of wrist (about y-axis)
- End effector is mounted on wrist

Structure of spherical wrist

yaw#:~:text=Imagine%20three%20lines%20running%20through,vertical%20axis%20is%20called%20yaw.

Robot Accessories

- Actuators: (muscles of the manipulator) Servomotors, stepper motors, pneumatic, hydraulic cylinder etc.
- **Sensors:** collect information about the internal state of the robot or to communicate with the outside environment: vision system, touch and tactile sensors etc.
- Controller: controls the motions of the actuator and coordinates these motion with the sensory feedback information.

End Effector: Hand (not part of anatomy)

Representation of Robot

 Robot Manipulators are composed of links connected by joints into a kinematic chain.

```
z_i \rightarrowaxis of rotation d_i and \theta_i \rightarrow joint variables i \rightarrow are the number of links
```

Joints are of two types

- Rotary (Revolute)
- Linear (Prismatic)

Robotic Joints

Prismatic Joint: allows a linear relative motion between two links.

Represented with P

Robotic Joints

Revolute Joint: is like a hinge and allows relative rotation between two links

Represented with R

Work Envelop

A robot's **work envelop** is its range of movement. It is the shape created when a manipulator reaches forward, backward, up and down. These distances are determined by the length of a robot's arm and the design of its axes.

Robot Classification

Robot manipulators classified based on

- Power source
 - Electrically
 - Hydraulically →Liquid Pressure
 - Pneumatic→Gas/Pressure powered
- Application area
 - Assembly robots
 - Non-assembly robots

Robot Classification

- Control systems
 - Open loop control system
 - Closed loop control system
- Method of control
 - Servo robots
 - Point-to-point robot system
 - Continuous-path robot system
 - Non-servo robots
- Geometry (coordinate system) (based on first three joint of arm)
 - Articulate (RRR)
 - Spherical (RRP)
 - SCARA (RRP)
 - Cylindrical (RPP)
 - Cartesian (PPP)

Control Systems

- Open loop control system
 - Control is given to the individual axis
 - No feedback is obtained
 - Used for loading/unloading applications

Control Systems

- Closed loop control system
 - Control is given to the individual axis
 - Feedback is obtained through sensors
 - Corrective signals are sent by control unit

Method of Control

Servo control robot:

- Hydraulic and electric robots. Users closed loop control system
- Information of position and velocity is monitored and feedback to control system

Non-servo control robot:

- Pneumatic robots, limited sequence robots, pick and place robots
- Uses <u>open loop control system</u>
- Controlled by setting mechanical stops or limit switched to establish end points to travel of end joints

Servo Robots

- Point-to-point robot system (straight cut)
 - Only the end points are programmed, the path used to connect the end point are computed by the controller
 - User can control velocity and may permit linear or piece-wise linear motion
 - Feedback control is used during motion to ascertain that individual joint have achieved desired location
- Applications: palletizing,

machine loading https://www.youtube.com/watch?v=QfbdVboVNUM

Targe

PTP (Point to Point) system

X axis

Servo Robots

• Continuous path robot system: the entire path of the end effector can be controlled

- For-example:
 - Robot end effector can be taught to follow a straight line between two points
 - Follow a contour in case of welding seam
- Velocity/acceleration of the end effector can be controlled
- Applications: spray painting, polishing, grinding, arc welding

