Linear Regression

Miaoyuan (Rachel) Lang April 23, 2018

Contents

1 Idea 1
2 Least square - Minimizing RSS 1
3 H is the orthogonal projection onto col{X} 1
4 Problem - High dimensions 1

1 Idea

For machine learning purposes, we think of regression as a very simple way to approximate E(Y|X). And we don't need to believe that the linear model assumptions are true.

$$\hat{\mu}(x) = x^T \hat{\beta}$$

Usually, we estimate $\hat{\beta}$ using least square.

2 Least square - Minimizing RSS

RSS (Residual Sum of Squares):

$$RSS(\beta) = ||Y - \hat{Y}||_2^2$$
$$\hat{\beta} = (X^T X)^{-1} X^T Y$$
$$\hat{Y} = X(X^T X)^{-1} X^T Y = HY$$

3 H is the orthogonal projection onto col{X}

Proof:

- 1. H is an orthogonal projection.
 - H is symmetric $(H = H^T)$: $(X(X^TX)^{-1}X^T)^T = X(X^TX)^{-1}X^T$. H is idempotent $(H^2 = H)$: $[X(X^TX)^{-1}X^T][X(X^TX)^{-1}X^T] = X(X^TX)^{-1}X^T$.
- 2. H leaves anything in col(X) alone and kills anything orthogonal to col(X). Suppose $y \in col(X)$, y = Xa, $Hy = X(X^TX)^{-1}X^T(Xa) = Xa = y$.

Suppose
$$y \perp col(X)$$
, $Hy = X(X^TX)^{-1}X^Ty = 0$.

4 Problem - High dimensions

Suppose the linear model is correct, as dimension increases, the prediction error increases (superlinearly, especially when dimension is bigger than the number of observations (No inverse).

References