Te-Yi "Dexter" Kan

1348 West 37th Place, Los Angeles, CA 90007

☐ (818) 309-0203 teyikan@usc.edu dexter-kan

Research Interests

Privacy-preserving ML Systems, Edge Computing, Task Scheduling, Resource Management, Vehicular Networking, Intelligent Reflecting Surfaces (IRSs), MIMO Detection.

Education

University of Southern California

Aug. 2022 - Expected May 2027

Ph.D. - Electrical and Computer Engineering with Dr. Konstantinos Psounis, GPA: 3.91/4.00

University of California, Los Angeles

Sep. 2019 - Dec. 2020

M.S. - Electrical and Computer Engineering, GPA: 3.74/4.00

National Taiwan University

Sep. 2014 - Jan. 2019

B.S. - Electrical Engineering, GPA: 3.89/4.30

Publications %

- [1] **Te-Yi Kan**, Konstantinos Psounis, "Low-Latency Private ML inference for Vision Tasks in Distributed Environments", *Privacy Enhancing Technologies (PoPETs)*, 2024, submitted. (PET-24)
- [2] **Te-Yi Kan**, Konstantinos Psounis, "Online distributed offloading of time-sensitive vehicular tasks in edge-cloud systems", *IEEE Transactions on Vehicular Technology*, 2024, submitted. (TVT-24)
- [3] **Te-Yi Kan**, Ronald Y. Chang, Feng-Tsun Chien, "Hybrid Intelligent Reflecting Surface and Classical Relay Assisted Multiuser MISO Systems", *IEEE Transactions on Vehicular Technology*, 2023. (TVT-23)
- [4] Tz-Wei Mo, Ronald Y. Chang, **Te-Yi Kan**, "DeepMCTS: Deep Reinforcement Learning Assisted Monte Carlo Tree Search for MIMO Detection", 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022. (VTC-22) | %
- [5] <u>Te-Yi Kan</u>, Ronald Y. Chang, Feng-Tsun Chien, "Intelligent Reflecting Surfaces and Classical Relays: Coexistence and Co-Design", 2021 IEEE Globecom Workshops (GC Wkshps), 2021.(GC-21).
- [6] **Te-Yi Kan**, Yao Chiang, Hung-Yu Wei, "QoS-aware Mobile Edge Computing System: Multi-server Multi-user Scenario", 2018 IEEE Globecom Workshops (GC Wkshps), 2018. (GC-18) %
- [7] **Te-Yi Kan**, Yao Chiang, Hung-Yu Wei, "QoS-aware Fog Computing System: Load Distribution and Task Offloading", *The 15th IEEE Vehicular Technology Society Asia Pacific Wireless Communications Symposium (IEEE VTS APWCS*), 2018. (APWCS-2018) | %
- [8] <u>Te-Yi Kan</u>, Yao Chiang, Hung-Yu Wei, "Task Offloading and Resource Allocation in Mobile-Edge Computing System", 2018 27th Wireless and Optical Communication Conference (WOCC), 2018. (WOCC-18) | %

Skills

Programming Software & APIs

Python, C/C++, Matlab, R, Java, ŁTFX

OpenStack, Docker, Kubernetes, TensorFlow, PyTorch, scikit-learn, Keras

Research Experience

Research Assistant - Dr. Konstantinos Psounis, USC

Feb. 2023 - Present

Privacy-Preserving ML Systems [**PET-24**]

- · Developed a pipeline that includes a sensitive object detector, scheduler, and obfuscator to protect user privacy while maintaining task utility during ML inference for vision tasks.
- · Leveraged distributed remote servers for privacy-preserved image processing, ensuring a seamless user experience while safeguarding private information.
- Experiment results show that our proposed system achieves approximately 30% utility boost without compromising user privacy and can operate at around 25 fps.

Online distributed offloading of time-sensitive vehicular tasks in edge-cloud systems [TVT-24]

- · Investigated task offloading mechanism in edge-cloud computing systems for time-sensitive ML tasks to support future advanced driving assistance systems and automated driving systems.
- Developed a threshold-based online distributed offloading and resource allocation mechanism (TODORA) to reduce task duration by optimizing task offloading decisions and resource allocation.
- · Verified by simulation, TODORA outperforms the state-of-the-art schemes.

Intelligent Reflecting Surface (IRS) [TVT-23, GC-21]

- · Proposed a coexistence system that a multiuser downlink MISO communication is assisted by a coexisting full-duplex IRS and half-duplex decode-and-forward relay.
- Designed an alternating optimization based algorithm to maximize the sum-rate of all the users by jointly optimizing the active beamforming at the base station, the active beamforming at the relay, and the passive beamforming at the IRS.
- · Validated the superiority of the proposed coexistence system by simulations and provided insightful discussion about the tradeoffs in the design of joint beamforming.

Multiple-input multiple-output (MIMO) Detection [VTC-22]

- · Devised a novel deep reinforcement learning (DRL)-enhanced method, which incorporates DRL into Monte Carlo tree search (MCTS), to improve MIMO detection.
- · Verified by simulations that our DRL-based scheme achieves significant performance and complexity advantages over the original MCTS detection algorithm under varying channel conditions.

Undergraduate Researcher - Dr. Hung-Yu Wei, NTU

Sep. 2016 - Aug. 2018

Multi-access Edge Computing (MEC) Systems [GC-18, APWCS-18, WOCC-18]

- · Investigated task offloading in MEC system and developed Quality of Service (QoS)-aware MEC systems for both single-server and multi-server scenarios to reduce execution latency of mobile applications.
- · Introduced a two-stage algorithm for QoS maximization by optimizing task offloading, resource allocation, and load distribution.
- · Numerically examined the superior performance of the proposed algorithm over several benchmarks.

Work Experience

Member, Academia Sinica-MediaTek Collaborative Project

Oct. 2021 - May 2022

- · Proposed and collaborated with MediaTek research team on the project, "AI-Enabled Hybrid Reconfigurable Intelligent Surface (RIS) and Relay Systems for 6G Communications."
- Designed a hybrid RIS/relay system where RISs and traditional relays coexist to enhance system performance in terms of energy efficiency and sum-rate.
- · Analyzed the characteristics of hybrid RIS/relay systems at mmWave and THz hands.

Summer Intern, Foxconn Technology Group

Jun. 2017 - Aug. 2017

Foxconn's Advanced Communication Academy (FACA), 5G team

- · Implemented a commercial MEC infrastructure within a 15-person team to enable lifecycle management of MEC services.
- · Design a hybrid fog/cloud platform for facial detection and video streaming.
- · Contributed to building a face-based access control and attendance system powered by MEC via OpenStack.

Selective Projects

Operating System Implementation

Spring 2024

- · Completed Brown University's kernel assignment project to build a simple operating system called Weenix.
- Implemented essential elements for an operating systems, including but not limited to process, thread, scheduler, virtual file system, and virtual memory.

Reinforcement Learning (RL)-Based Mechanism for Loss Reduction during the COVID-19 Outbreak

Spring2020

- · Developed RL-based algorithms to provide appropriate business strategies for the food and beverage industry.
- · Simulated the proposed RL-based algorithms to verify the superiority of our proposed methods in comparison to baselines.

Generative Adversarial Imitation Learning (GAIL)

Spring 2020

- · Implemented an imitation learning algorithm that can be scaled up to large and high-dimensional environments with Python.
- · Evaluated the imitation algorithm in the OpenAI environment such as Pendulum and Cartpole and showed that the proposed GAIL algorithm outperforms the common baseline, Behavior Cloning.

Image Generation Methods for Cataract Surgery

Winter 2020

- · Applied two deep learning-based frameworks, U-Net and U-Net+WGAN, to segment the images of eye structures.
- Evaluated the two frameworks with respect to three metrics, pixel accuracy, mean IoU, and F1 score, and also compared the results with our self-labeled data.

Functionally Reduced And-Inverter Graph (FRAIG)

Fall 2016

- · Implemented a special circuit representation, FRAIG (Functionally Reduced And-Inverter Graph), with C from a circuit description file and designed a data structure to identify functionally equivalent candidate pairs in the circuit.
- · Performed hash, Boolean logic simulations, and Boolean Satisfiability (SAT) solver to detect equivalence in a circuit.