ALGORITHM (FUZZY CONTROLLER) DOCUMENTATION GUIDE Provide the required details using the following guide.

Components	Details	Intructions
Inputs	$X = A * theta + B * theta_dot$	Specify all the inputs,
	$Y = C * x + D * x_dot$	including the coefficients
	A=3, B=0.4, C=4.5, D=4;	(constants). Note: This
		assignment requires
		implementing Yamakawa's
		fuzzy controller design.
Fuzzy Rules	X(angle): $NL Y(x)$: $PL out: NM$	Specify the fuzzy rules used
	X(angle): NL $Y(x)$: PS out: NS	in your system.
	X(angle): $NL Y(x)$: $ZE out: NL$	
	X(angle): NL Y(x): NS out: NS	
	X(angle): NL Y(x): NL out: NVL	
	X(angle): NS $Y(x)$: PL out: NS	
	X(angle): NS $Y(x)$: PS out: NM	
	X(angle): NS $Y(x)$: ZE out: NS	
	X(angle): NS $Y(x)$: NS out: NL	
	X(angle): NS $Y(x)$: NL out: NS	
	X(angle): ZE $Y(x)$: PL out: NM	
	X(angle): ZE $Y(x)$: PS out: NS	
	X(angle): ZE Y(x): ZE out: ZE	
	X(angle): ZE Y(x): NS out: NS	
	X(angle): ZE Y(x): NL out: PM	
	X(angle): PS Y(x): PL out: PS	
	X(angle): PS Y(x): PS out: PL	
	X(angle): PS Y(x): ZE out: PS	
	X(angle): PS Y(x): NS out: PM	
	X(angle): PS Y(x): NL out: PS	
	X(angle): PL Y(x): PL out: PVL	
	X(angle): PL Y(x): PS out: PS	
	X(angle): PL Y(x): ZE out: PL	
	X(angle): PL Y(x): NS out: PS	
	X(angle): PL Y(x): NL out: PM	
Fuzzy	NL(X):	Specify the parameters of all
Membership	a = 0, b = 0, c = -30, d = -9	membership functions used
functions	NS(X):	for each of the inputs. (e.g.
Talletions	a = -10, b = -8, c = -3, d = 0	input, type, fuzzy set name,
	ZE(X):	a=?, b=?, c=?, d=?)
	a = -0.5, b = -0, c = 0, d = 0.5	., ., ., ., ., .,
	PS(X):	Use the Fuzzy Sets Viewer
	A = 0, b = 3, c = 8, d = 10	Excel file to generate a
	PL(X):	diagram.
	a = 9, b = 30, c = 0, d = 0	diagraii.
		<u>l</u>

