

Graded Quiz • 50 min

Congratulations! You passed!

Grade Latest Submission received 80% Grade 80%

To pass 80% or higher

Go to next item

1.	Which of the following are true about hyperparameter search?	1/1 point
	When using random values for the hyperparameters they must be always uniformly distributed.	
	When sampling from a grid, the number of values for each hyperparameter is larger than when using random values.	
	Choosing random values for the hyperparameters is convenient since we might not know in advance which hyperparameters are more important for the problem at hand.	
	Choosing values in a grid for the hyperparameters is better when the number of hyperparameters to tune is high since it provides a more ordered way to search.	
	∠ [≯] Expand	
2.	Every hyperparameter, if set poorly, can have a huge negative impact on training, and so all hyperparameters are about equally important to tune well. True or False?	1/1 point
	○ True	
	False	
	∠ [™] Expand	
3.	Even if enough computational power is available for hyperparameter tuning, it is always better to babysit one model ("Panda" strategy), since this will result in a more custom model. True/False?	1/1 point
	○ True	
	False	
	∠ ⁷ Expand	
	Correct Correct. Although it is possible to create good models using the "Panda" strategy, obtaining better results is more likely using a "caviar" strategy due to the number of tests and the nature of the deep learning process of ideas, code, and experiment.	

4. Knowing that the hyperparameter lpha should be in the range of 0.001 and 1.0. Which of the following is the recommended way to sample a value for lpha?

0 / 1 point

r = 4*np.random.rand() alpha = 10**r r = np.random.rand() alpha = 0.001 + r*0.999 r = -3*np.random.rand() alpha = 10**r r = -5*np.random.rand() alpha = 10**r	
\nearrow Expand \bigcirc Incorrect No. This will pick a random value from a uniform scale, which is not the recommended way to choose α .	
 Finding new values for the hyperparameters, once we have found good ones for a model, should only be done if new hardware or computational power is acquired. True/False? True False 	1/1 point
 ✓ Correct Correct. As the data changes for the model, it might be beneficial to tune some of the hyperparameters again. 	
6. When using batch normalization it is OK to drop the parameter $W^{[l]}$ from the forward propagation since it will be subtracted out when we compute $\tilde{z}^{[l]} = \gamma z_{\mathrm{normalize}}^{[l]} + \beta^{[l]}$. True/False? False	1/1 point
\checkmark Expand \bigcirc Correct Correct. The parameter $W^{[l]}$ doesn't get subtracted during the batch normalization process, although it	
gets re-scaled. 7. When using normalization: $z_{norm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}}$	0/1 point
In case σ is too small, the normalization of $z^{(i)}$ may fail since division by 0 may be produced due to rounding errors. True/False? True False	

parameter pre	normalization formula uses a smoothing parameter ϵ so in $z_{ m norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+\epsilon}}$ use of the	
	vents that the denominator be 0.	
Which of the following	ng statements about γ and eta in Batch Norm are true?	1/1 pc
They set the v	ariance and mean of the linear variable $ar{z}^{[l]}$ of a given layer.	
✓ Correct		
	lobal value of \$\$\gamma \in \Re\$\$ and one global value of \$\$\beta \in \Re\$\$ and these apply to all the hidden units in that layer.	
\$\$\beta\$\$ and random samp	d \$\$\gamma\$\$ are hyperparameters of the algorithm, which we tune via ling.	
•	alues are \$\$\gamma = \sqrt{\sigma^2 + \varepsilon}\$\$, and \$\$\beta =	
	earned using Adam, Gradient descent with momentum, or RMSprop, not just descent.	
✓ Correct		
	//output/CommonHTML/fonts/TeX/Fraktur-Regular/s momentum, or RMSprop, not	
just with gradi	ent descent.	
∠ ⁷ Expand		
⊘ Correct		
Great you get	all the right answers.	
A neural network is t	rained with Batch Norm. At test time, to evaluate the neural network on a new example	
A neural network is t	trained with Batch Norm. At test time, to evaluate the neural network on a new example normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false?	
A neural network is t should perform the i mini-batches seen d	normalization using μ and σ^2 estimated using an exponentially weighted average acro	
A neural network is t should perform the mini-batches seen d	normalization using μ and σ^2 estimated using an exponentially weighted average acro	
A neural network is t should perform the i mini-batches seen d	normalization using μ and σ^2 estimated using an exponentially weighted average acro	
A neural network is t should perform the i mini-batches seen d	normalization using μ and σ^2 estimated using an exponentially weighted average acro	
A neural network is t should perform the i mini-batches seen d False True	normalization using μ and σ^2 estimated using an exponentially weighted average acro	
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is	normalization using μ and σ^2 estimated using an exponentially weighted average acro	55
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting over	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false? is a good practice to estimate the μ and σ^2 to use since at test time we might not be	55
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting over	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false? $ a \ \text{good practice to estimate the } \mu \ \text{and } \sigma^2 \ to use since at test time we might not be real batch of the same size, or it might even be a single example, thus using the \mu and \sigma$	55
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting ove a single sample	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false? $ a \ \text{good practice to estimate the } \mu \ \text{and } \sigma^2 \ to use since at test time we might not be real batch of the same size, or it might even be a single example, thus using the \mu and \sigma$	² of
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting ove a single sampl	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false? $ a \ \text{good practice to estimate the } \mu \ \text{and } \sigma^2 \ \text{to use since at test time we might not be real batch of the same size, or it might even be a single example, thus using the \mu and \sigma e doesn't make sense. a \ \text{doesn't make sense}. $	² of
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting ove a single sampl Which of the followin	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false? So a good practice to estimate the μ and σ^2 to use since at test time we might not be a part of the same size, or it might even be a single example, thus using the μ and σ is e doesn't make sense. The same size is a single example of the same size is a part of the same size is a single example. The same size is a single example of the same size is a single example. The same size is a single example of the same size is a single example of the same size is a single example. The same size is a single example of the same size is a single example of the same size is a single example.	55
A neural network is t should perform the mini-batches seen d False True Correct Correct. This is predicting ove a single sampl Which of the followin	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false?	² of
A neural network is to should perform the mini-batches seen done of the mini-batches seen done o	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false?	² of
A neural network is to should perform the mini-batches seen done of the mini-batches seen done o	normalization using μ and σ^2 estimated using an exponentially weighted average acrouring training. True/false?	² of

⊘ Correct

 $Correct.\ The\ running\ speed\ is\ a\ major\ factor,\ especially\ when\ working\ with\ large\ datasets.$