Lineare Algebra 2, Tutorium 8 2.6.2021 Warm-Up
Richtig oder Falsch?

1. Jeder faktorielle Ring ist ein Hauptidealring.

1. Jeder faktorielle Ring ist ein Hauptidealring.

1. Falls Rein Hauptidealring ist, ist auch R[x] ein Hauptidealring X $T = \{f\}$ 3. In jedem Hauptidealring hat jedes Element $0 \neq x \in R$ eine eindeutige Primzerlegung. Integritets -ptereich R foltoriell (migne factorization domain ullet 3. In jedem Hauptidealring hat jedes Element $0
eq x \in R$ eine eindeutige Primzerlegung. ullet4. Der Ring $\mathbb{R}[x]/(x^2+1)$ ist ein Körper. 5. Der Ring $\mathbb{F}_2[x]/(x^2+1)$ ist ein Körper. (UFD)) John John Laborard J Jedes & R løst sich (bis auf Multiphibation mit Elementer aus RX = Jack invertiertar 3) _ xchreiten Einleistenals $x = x_1 \cdots x_r$ wit $x_i = Princhemente.$ gruppe Prinfahtov kelagy a ER lieist prince (=> \text{Vr.sER: a \(\text{rS} => a \) r vou R Site: R NFD => (x ER irred. Korpes i.A. St des falsch 2 K[x,y] = K[x][y] Beispiele: PID (PID (NED PID) UFD > PID Falit: R UFD => R[x] UFD Fackx: ax=4

Falls
$$f^{\sim}1 \Leftrightarrow faek^{\times}: f=a \Rightarrow (f) = k(xy)$$
 $f^{\sim}(f^{\circ}p) = p$

(All $g: f \in \mathbb{R}^{k} \iff (r) = R$)

and $hidespreads,$

da $1 \in (x_{1}y) = (f)$

forad $0 \in (f)$

All $f \in (x_{1}y) = (f)$

forad $f \in (f)$

forad $f \in (f)$

forad $f \in (f)$
 $f \in (f)$

douplexe Kingaphon:
$$(x-i)$$
 | $f = f$
 $x+i$:

 $\Rightarrow x^2+1$ | $f = f \in (x^2+1)$

in π_0 : $(x+y)^0 = x^0+y^0$

their Koppes: $x^2+1 = x^2+1^2 = (x+1)^2$
 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. there π_0 :

 $(x+1)$ | $= x^{n+1} = 0$. therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$. Therefore π_0 :

 $(x+1)^0 = x^{n+1} = 0$.

 $(x+1)^$

$$a := \sum_{i=1}^{n} a_i t_i u_i^2 = 2$$

$$a := \sum_{i$$

g hat heine redlen Kullstellen (gr 1 auf R) Aufgabe 4 Zeige, dass $x^4+1\in \mathbb{Z}[x]$ irreduzibel ist. راً => 9 hat heinen Linearfabtor. Talks g redusisel ist, so $g = (ax^2 + bx + c)(dx^2 + ex + g)$ x4-1 $(ad) \times^4 + \times^5 (\cdots) +$ + X2 (af + be + cd) + + x (bf + ce) + cf 2×= ₹±13 $ad=1 \Rightarrow a=d=\pm 1$ $cf = 1 \Rightarrow c = f = \pm 1$ $0 = bf + ce = \pm 1 (b+e) \Rightarrow b = -e$ 0 = af + be + cd = 2af + be = ±2 - e2 $= 2 e^2 = \pm 2$ V2 € Q 3 Z Ameluja zu CRT Induhhous voices .: JaEZ: a = r; mod I; i = 1, ..., n-1, sjiviere a. (Wit litter gene $a \equiv r_n \mod T_n$) Betradite I := I, n...n In-1 $J_2 := I_n$ Nach IV (für n=2) Fre Z: r = a wod J1

r = rn mod Jz

fixier r.

Jetz+ gilt r= a mod J, $J_1 = \pm_{n} \cdots n \pm_{n-1} \leq \pm_{j} \quad \forall_{j \in \{1, \dots\}}$ $r - a \in J_1 \subseteq J_j$ $\Rightarrow r - a \in J_j \implies r \equiv a \mod J_j \quad \forall j.$ Gleidsing: r=rn mod Jz = In