PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 84/04674

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Int rnati nal Patent Classificati	n 3 :	A1	`) Internati nal Publicati n Number:	WU 84/ 046/4
A61K 9/26		A1	(43) Internati nal Publication Date: 6 Decem	nber 1984 (06.12.84)
(21) International Application Number (22) International Filing Date:	er: PCT/US	•		Published With international search report. With amended claims.	
(31) Priority Application Numbers:		499,2 600,4			
(32) Priority Dates:	31 May 1983 16 April 1984				
(33) Priority Country:		1	us		
(71)(72) Applicant and Inventor: JAN US]; 10 Morningside Court, (US).	IG, Choong-G Short Hills, 1	ook [K NJ 070	R/ 978		
(74) Agent: DEXTER, Roland, A.; Humble, TX 77346 (US).	8319 Laurel Lo	eaf Dri	ve,		·
(81) Designated States: AT (European patent), BR, CF (OAP) tent), CH (European patent), (European patent), DK, FI, GA (OAPI patent), GB (European patent), MR (Opean patent), NO, RO, SE (OAPI patent), SU, TD (OAP) tent), US.	I patent), CG (CM (OAPI pa FR (European opean patent), API patent), (European pa	OAPI itent), I n pater , HU, NL (Eu tent),	pa- DE nt), JP, SN	·	
				V3	

(54) Title: DRY DIRECT COMPRESSION COMPOSITIONS FOR CONTROLLED RELEASE DOSAGE FORMS

(57) Abstract

The selection of: a hydrophobic carbohydrate polymer, e.g. ethyl cellulose; and, generally at least one digestive-difficulty soluble component, i.e., a wax, e.g. carnauba wax, fatty acid material or neutral lipid provides upon dry direct compression a controlled and continuous release matrix for tablets or implants of biologically active agents. Preferred for producing dry direct compressed products is the combination of: a hydrophobic cellulose derivative; a wax, and, a fatty acid material and/or a neutral lipid since it provides upon dry direct compression a controlled and continuous release tablet or implant of improved structurally integrity against externally imposed forces.

INSDOCID - WO __ 8404674A1 1_2

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria AU Australia BB Barbados BE Belgium BG Bulgaria JP Japan RO Romania RP Mauritania MW Malawi MW Malawi NU Netherlands NO Norway RO Romania BR Brazil KP Democratic People's Republic SD Sudan	
AU Australia - GB United Kingdom MW Malawi	
nn n r : Nf. Netherlands	
DE Policion NO Norway	
DL Delgium	
DO DEGLES	
CF Central African Republic of Korea SE Sweden	
CG Congo KR Republic of Korea SN Senegal	
CH Switzerland LI Liechtenstein SU Soviet Union	
CM Cameroon LK Sri Lanka TD Chad	
DE Germany, Federal Republic of LU Luxembourg TG Togo	
DK Denmark MC Monaco US United States of Americ	Ca
FI Finland MG Madagascar	
FR France ML Mali	

10

15

20

25

DRY DIRECT COMPRESSION COMPOSITIONS FOR CONTROLLED RELEASE DOSAGE FORMS

BACKGROUND OF THE INVENTION

This invention relates to compositions and processes for making suitable controlled release dosage compressed forms of biologically active agents such as nutrients, pesticides. drugs, other biocides fragrances. More particularly, it relates to a dry direct compression binder from hydrophobic carbohydrate polymers and to a mixture of a hydrophobic carbohydrate polymer and at least one water insoluble or sparingly solubl component composition as a dry, directly compressibl matrix for controlled release of agents, particularly drugs and nutritional supplements, into the gastr intestinal tract after oral ingestion of said composition or after implantation.

DESCRIPTION OF THE PRIOR ART

There is a recognized need for controlled release dosage forms of biologically active agents for humans and animals having the property of being released within the gastro-intestinal tract over a defined period of time and at a pre-determined rate of release after introduction of the agent into the body, as by oral ingestion of a tablet containing said agent or by implantation.

Various types of controlled release compositions have been developed and/or commercialized and can b classified according to at least the following three categories:

- 30 a. compositions in which granules or tablets containing a biologically active agent are coated with a wat r insoluble material, such as a wax or a synthetic resin (see U.S. 3,062,720);
- b. compositions in which a biologically active agent is dispers d within a melt of water insoluble material (s U.S. 3,147,187) or is mixed with said water insoluble mat rial and a water soluble material (see U.S. 3,577,514);

- 5

10

15

20

25

35

FG1/U384/00807

c mpositions in which a biologically active agent is c. held on an ion- xchange resin.

-2-

are many disadvantages how v r in the preparation of such controll d rel as compositions.

The disadvantages ar related to the fact that virtually all prior art compositions utilize a hydrophobic material to retard dissolution, disintegration or release of the biologically active agent. These hydrophobic oftentimes hydrocarbons materials are lipids, waxes, paraffins derivatives such as and hydrophobic polymers.

To retard the release of the biologically active agent by means of the hydrophobic material, virtually all these prior art compositions use heat or solvent to melt or dissolve the hydrophobic material and thereby achiev effective binding and desired release of the agent. Unfortunately the requisite use of heat or solvent results in related shortcomings, inconveniences and/or excessive costs of production. Attendant with the use of heat is: the risk that the biologically active agent may be harmed since many are unstable to heat; the fact that hot melting equipment is expensive and/or hazardous to operate; and, costly procedures of several additional processing steps.

Similarly, the use of a solvent is undesirable since the formulation can be easily tainted by a solvent residue which is not safe for human or animal ingestion, environmental pollution may attend the solvent removal step, occupational hazard may attend handling of the solvent and the biologically active agent may also be soluble in the solvent resulting in an undesirable dissolved system of release rather than the preferred dispersed controlled release system.

An approach to overcome the problems attendant with the heat or solvent processes would be to use a dry, direct compression process such as is taught in U.S. pat nt 3,279,998 wherein a blend f th activ ag nt and a micro-pulverized lipid, e.g. the fat, fatty acid, wax, etc., is compressed into tablets or in U.S. 3,577,514 wh r in th biologically active agent is

. 5

10

15

20

25

30

35

blended with a mixture f wax, nteric substanc (acid-insoluble r leas agent) and water-soluble or dispersible binder. The requisite micropulverization of the lipid results in compression/adhesion difficulties for the former dry process whereas the latter process does not provide a system for controlled continuous release but rather a delayed release until an alkalin pH is reached.

controlled to Another approach formulations has been to utilize physiologically tolerabl synthetic resins having the property of flowing under high pressures to encapsulate the medicament (see U.S. patent 3.096,248) or to provide a skeletal matrix for tablet integrity during medicament release (see U.S. 3,317,394) or to provide a coating for active agents whereby said coated agents can be injection molded into medicaments in solid form (see U.S. 3,432,592). Unfortunately, this use synthetic resins requires excessive (medicament injurious) temperatures and/or solvents so that these processes suffer the common disadvantages of the earlier discussed prior art approaches.

It is an object of this invention to provide a composition for the controlled release dosage forms of overcomes the which biologically active agents disadvantages of the prior art. More particularly, it, is provide a to invention this o f compression/adhesion-dry compressible binder and more preferably a combination of this dry binder and excipients that collectively cooperate to form a dry, compressible matrix which as the property of the controlled release dosage forms of biologically active solid particles dispersed throughout said matrix and a method of using said combination to obtain a controlled release tablet of useful integrity and desired release rates.

SUMMARY OF INVENTION

In my U.S. Patent Application Serial No. 34,580, filed April 30, 1979 it is taught that the combination of a hydrophobic cellulose derivative, a fatty acid material or a nutral lipid and a wax provides a matrix for particulate biologically active ag nt which can b dry

- 5

10

15

20

25

30

35

QUREAT

compress d to provide a useful tablet having th property f contr lled continuous r l ase of said agent in the gastro-intestinal tract. It provides a composition adapted for controlling releas of biologically active agents c mprising and admixtur of a fatty acid mat rial or a neutral lipid, and preferably both, a wax and at least a binding amount of a hydrophobic cellulos derivative hereinafter defined 8 88 hydrophobic carbohydrate polymer whereby said composition can be directly compressed in a dry state into tablet form having a hardness of 6 to 25 kg as measured on a Pfizer hardness tester.

More specifically, the aforesaid application teaches a controlled release formulation comprising from 0.01 to 95 wt. % of biologically active agent and from 5 to 99.9 wt. % of a controlled and continuous release binder admixture, said wt. % being based on the total weight of formulation and said admixture containing from 2 to 97 parts by weight of a fatty acid material or a neutral lipid and preferably both from 2 to 97 parts by weight of a wax preferably having a melting point between 60°C and 90°C and from 1 to 96 parts by weight of a hydrophobic cellulose derivative, i.e. a hydrophobic carbohydrate polymer. More particularly, the aforesaid application teaches that the described combinations: (a) a fatty acid material, particularly those of the class consisting of fatty acids having from 12 to 28 carbons, fatty monoalcohols having 12 to 28 carbons, fatty amines and amides having 12 to 28 carbons and mixtures thereof (e.g. an optimum mixture of 85 wt. % stearic acid and 15 wt. % palmitic acid) or a neutral lipid, particularly of the class consisting of stearin, palmitin, castorwax, phospholipids, glycolipids, glycerides such as glyceryl monostearate and glyceryl distearate, hydrogenated cottonseed oil, hydrogenated tallow and metal salts of C12 t C28 fatty acids, optimally hydrogenated cottonseed oil, or a mixtur of said fatty acid material and said n utral lipid; (b) a wax pr ferably having a melting point between 60°C and 90°C, particularly of the class consisting of

τ.

, <u>z</u>

5

-10

15

20

25

30

35

carnauba wax, sp rmaceti, b swax, candelilla wax, paraffins, optimally carnauba wax; and hydrophobic carbohydrat p lymer, preferably of th class consisting of ethyl cellulose, propyl cellulose, cellulose acetate, cellulose acetate-butyrate, and cellulose acetate-propionate optimally ethyl cellulose; can be used to make controlled continuous release solid dosage forms of biologically active particulate agents by simple dry blending or slugging/granulation and compression (without a need of micropulverization, heat or solvent). percentage of the active and the percentage of the combination in said formulation are readily varied to modify the controlled release rate of the active agent from a few hours to several days. The combination can be used for controlled release solid dosage forms of any particulate agent, preferably particles of less than 20 mesh in size.

In my U.S. Patent Application Serial No. 54,856 filed July 6, 1979 the discovery was reported that the combination of the hydrophobic cellulose derivative (herein a hydrophobic carbohydrate polymer) in admixture with one of the digestive-difficulty soluble controlled release components, i.e. a fatty acid material, neutral lipid or wax, can be dry compressed with a particulate biologically active agent to provide a useful tablet having a hardness of 6 to 25 kg as measured on a Pfizer hardness tester.

It appears that the hydrophobic carbohydrate polymer synergistically cooperates with the digestive-difficulty soluble controlled release component, particularly with the fatty acid, to surprisingly strengthen the tableted combination containing the particulate biologically active material by imparting increased vertical strength and enhanced resistance to delamination from an external force.

The teachings herein now provide a controlled release d sage f rm that can be pr duced by a dry, direct c mpr ssion process that ov rcomes the serious disadvantages of th pri r art including the advers and

-6-

del t ri us impact of solvents and/or h at which teachings result in compressed structures f surprisingly superior physical integrity and resistance to delamination.

DETAILED DESCRIPTION OF THE INVENTION

From th foregoing it must be vident that the invention herein relates to dry compressed products obtained from a directly compressible hydrophobic carbohydrate polymer and more preferably from a combination or an admixture of a hydrophobic carbohydrat polymer and various water insoluble ingredients which provide for controlled continuous release of the biologically active agent in the body when taken by mouth in tablet form or by implantation. The unique property provided by this admixture is one of dry compressibility so that useful tablets or implants can be readily produced in an inexpensive, facile, hazard free and environmentally safe manner.

BIOLOGICALLY ACTIVE AGENTS

The biologically active agents which can be admixed with the excipients to provide the controlled release tablets according to this invention include all substances which when introduced into the body of a human, animal, plants, soil and water is biologically active, usually in a therapeutic sense, nutritional purpose or biocidal effects.

Representative of such biologically active agents are:

- a. vitamins, minerals and other nutritional supplements including all of the water soluble vitamins including Vitamin C, B vitamins and choline, inositol, bioflavinoids, iron, selenium, para amino benzoic acid, iodine, zinc, l-lysine, l-glutamine, l-cysteine, calcium, magnesium, potassium, etc.
- b. ANALGESIC drugs such as acetaminophen, aspirin, codeine, salicylamide propoxyphene, pentazocine HCl, malbuphin HCl, ibuprofen, indomethacin, meperidine HCl, morphine and xaprozin.

ANOREXIC drugs such as amphetamines, phent rmine, phenylpropan lamin and ph nmetrazin.

SUBSTITUTE SHEET

5

10

15

20

25

30

10

15

30

35

ANTHELMINTIC drugs such as pep razine citrate, pyrantel pamoate, thiabendazole, mebendazole, levamisol and their derivatives.

ANTIASTHMA drugs such as terbutaline sulfate, isoetharine, theophylline and sodium glycinate.

ANTIBACTERIAL drugs such as trimethoprim and sulfamethoxazole.

ANTIBIOTIC and ANTIMICROBIAL drugs such as metronidazole, amoxicillin, erythromycin, ampicillin,
penicillin, tetracycline, aminosalicylate, rifampin,
cycloserine, amikacin, cefazolin, cephradin,
cefaclor, cephaloridine, chloramphenicol, clindamycin, demeclocycline, kanamycin, cephaloridin,
cefamandole nafate, cyclacillin, carbenicillin,
vancomycin, cephradine, fluphenazine, hetacillin,
streptomycin, ethambutol, methenamine, gentamicin and
toburamicin.

ANTICEPTIC drugs such as nitrofurantoin and sulfon-amides.

20 ANTICOAGULANT drugs such as warfarin.

ANTICONVULSANT drugs such as clonazepam, nalproic acid, phenytoin, diazepam and primidone.

ANTIDEPRESSANT drugs such as trimipramine maleate, imipramine HCl and imipramine pamoate.

25 ANTIDIABETIC drugs such as chlorpropamide, acetohexamide, tolbytamide and tolazamide.

ANTI-GOUT drugs such as probenecid, sulfinpyrazone and allopurinol.

ANTIFUNGAL drugs such as griseofulvin, flucytosine, nystatin, clotrimazole and miconazole.

ANTIHISTAMINE drugs such as triprolidine HCl, diphenhydramine HCl, chlorpheniramine maleate, brompheniramine maleate and hydroxyzine HCl.

ANTI-INFLAMMATORY drugs such as phenylbutazones, steroids, sulfonamides and salicylates.

ANTIMALARIAL drugs such as chloroquine phosphate, hydroxychloroquine sulfate and pyrimethamine.

ANTIMIGRAINE drugs such as ergotamin tartrate, propranolol HCl, isometh pten and mucate.

ANTIMOTION SICKNESS drugs uch as dimenhydrinate.

ANTINAUSEANT drugs such as hydroxyzine HCl, buclizin HCl, prochlorp razine and promethazine HCl.

ANTINEOPLASTIC drugs such a tamoxifen citrat, mitotan, megestrol acetat, t tolac n, flurouracil, busulfar, chlorambucil, melphalan, amsacrine, streptozocin, anthracyline agents, azacitidine, bleomycide, vinca allkaloids, cytrarabine, hexamethylmelamine, methotrexate, hydroxyaren, chlorotriansene, cisplatin, cyclophosphamide, dacarbazine, dactinomycine, mithramycine, mitomycino, procarbazine, azathioprine, mercaptopurine, thioguanine and nitrosoureas.

COUGH & COLD PREPARATION drugs such as guaifenesin, promethazine HCl, benzonatate, noscapine and dextromethorphan HBr.

DECONGESTANT drugs such as brompheniramine maleate and phenylephrine HCl.

DIURETIC drugs such as thiazides, acetazolamide, furosemide and triamterene.

MUSCLE RELAXANT drugs such as dantrolene sodium, cyclobenzaprine, chlorzoxazone and quinine sulfate.

PARASYMPATHOLYTIC drugs such as oxyphenomium bromide, atropine, hyoscyamine sulfate, glycopyrrolate and

25 propantheline bromide.

SEDATIVE drugs such as barbiturates, meprobamate, promethazine HCl and methaqualone.

TRANQUILIZER drugs such as diazepam, chlorazepat monopotassium, prazepam, chloridiazepoxide HCl and chloralhydrate.

- c. AGRICHEMICALS including herbicides such as 2,4-D and its derivatives, class of nitrobenzen amines, prometone, atrazine, simazine, trifluralin, picloram, lindane, batoxyethanolesters, dimethylamine, diquat silvex, tok, machete, lasso, avenge, prowl and their derivatives.
- d. ALGICIDES such as chlorin compounds, e.g. calcium hypochlorite, and th ir derivatives.

SUBSTITUTE SHEET

5

10

15

20

30

35

20

25

30

35

- e. ANTIFOULING AGENTS such as organotin ompounds and organolead compounds.
- f. FUNGICIDES such as kitazin and their derivatives.
- g. INSECTICIDES such as DDUP, class of phosphoro thioate compounds, aldicarb, hexamethyl phosphoric triamide, malathion, parathion, pyrenium, sumithion, elsan, aldrin and their derivatives.
 - h. MOLLUSCICIDE such as copper bis(tri-n-butyltin) oxide, niclosamide and N-tritylmorpholine.
- 10 i. PHERMONES such as methyleugenol and grandlure.
 - j. PLANT GROWTH REGULATOR such as gibberelline and auxin.
 - k. RODENTICIDES such as decarboximide and their derivatives.
- 15 1. OTHER BIOCIDES
 - m. FERTILIZERS such as urea and other mineral nutrients
 - n. FLAVORS, FRAGRANCES, AND PERFUMES

The kinds of biological agents for this invention are not limited to the names listed herein. Numerous other compounds can be incorporated into the excipients to make controlled release dosage forms according to the teachings herein.

The biologically active particulate solids which preferably should be smaller than 10 mesh (U.S. sieve grade), optimally pass through a 20 mesh screen, ranges broadly in an amount of 0.01 to 95, preferably 0.1 to 90, wt. % of the total formulation compressed into the controlled continuous release tablets. The dry directly compressible hydrophobic carbohydrate polymer binder or the admixture which makes possible the products of the invention provides a matrix for the biologically active particulate agent which ranges in an amount of 5 to 99.99, preferably from 10 to 99.9 wt. % based upon the total weight of said tablets derived from said compressed formulation. The dry dir ctly compressible hydroph bic carbohydrate p lym r or the admixtur can also include as desir d: flow aid mat rials in an amount ranging from 0.5 to 2 wt. %, said flow materials being represented by finely divid d silica and talc; and from 0.5 t 2 wt. %

11 0 0 27 0 30 1 3

.5

10

15

20

25

30

35

-10-

a lubricating material t facilitat tabl t ejection e.g. a metal salt of a fatty acid, pref rably magnesium st arat.

The combination o f t h invention provides said matrix is ither a dry directly compressible hydrophobic carbohydrate polymer or an admixture containing a hydrophobic carbohydrate and a to three digestive-difficulty components readily produced by dry blending of powders 20 mesh, preferably 30 mesh, from the smaller than fatty acid material and/or the neutral lipid and/or the aforesaid hydrophobic carbohydrate said wax and polymer. The physiologically active particulate and additional excipients as desired are readily dispersed into the blended powders providing the matrix whereby the resultant formulation can be dry and direct compressed on a press under a pressure of 1.5 20, preferably 3 to 9, tons/square inch to produce Under some circumstances it is useful to granulate the resulting tablets and recompress the granules with or without additional excipients to obtain the desired release rate. Tablets obtained from this teaching of the invention have a useful hardness, i.e. 3 to 25 kg as measured on a Pfizer hardness tester, to provide a commercially marketable product.

HYDROPHOBIC CARBOHYDRATE POLYMER

The hydrophobic carbohydrate polymer constitut s from 1 to 100, preferably 3 to 50, optimally 5 to 30, wt. % of said matrix composition and provides said matrix composition with the integrity necessary to realize the binding of the controlled release tablets according to this invention.

Preferred hydrophobic carbohydrate polymers are those of the class of hydrophobic cellulose derivatives in which the R-moiety of the cellulose-R or cellulose-ROH or other R derivative is either an aliphatic acyl group of 2 to 22 carbons or aliphatic alkyl of from 1 to 8 carb ns and chitin.

10

15

20

25

30

35

The most preferred hydrophobic carbohydrate polymers are ethyl c llulose, propyl cellulose, cellulose ac tate, cellulose propionate, cellulose acetate-butyrate, cellulose acetate propionate. The optimum hydrophobic carbohydrate polymer is ethyl cellulose having an ethoxy content of from 43-50%.

DIGESTIVE-DIFFICULTY SOLUBLE COMPONENTS

As indicated above this invention has now taught that the hydrophobic carbohydrate polymer can be either singly used or in combination with a difficulty soluble component, i.e. any one or all of the components which are difficulty soluble in the digestive tract, i.e. wax, fatty acid and neutral lipid, which for purposes of this disclosure have been collectively designated the digestive-difficulty soluble component. Each has the property of slowly dissolving or disintegrating in th digestive tract.

1. WAX

The useful waxes are those which are obtained from plant and animal sources or as a petroleum product. In addition to its uses as a hydrophobic matrix material, the wax in this invention increases the hardness and compactness of the matrix, forming a cohesive hard tablet under the compressive forces of the process of this invention. The useful waxes have a melting point ranging from 50°C to 100°C and constitute from 0 to 99, preferably 5 to 70, optimally 10 to 40 wt. % of said matrix composition. Illustrative of the preferred waxes ar carnauba wax, spermaceti, beeswax, paraffin wax as well as synthetic waxes e.g. polyethylene. The optimum wax is carnauba wax.

2. FATTY ACID MATERIALS

The fatty acid materials preferably along with the neutral lipid constitutes from 0 to 99, preferably 5 to 80, optimally 10 to 70, wt. % of the matrix composition of the invention which provides for controlled release of the active agent.

10

20

25

30

35

Fatty acid materials assist in the control or regulation of the rate at which releas of the active ag nt occurs and are generally charact riz d by having a melting point above 43°C. The fatty acid materials preferably are f the class con isting of: fatty acids having 12 to 28 carbons, e.g. stearic acid, palmitic acid, lauric acid, eleostearic acid, etc.; fatty alcohols having from 16 to 44 carbons, e.g. stearyl alcohol, palmitol, etc.; a fatty amine having 13 to 45 carbons; and, a fatty amide having 11 to 45 carbons. A highly useful commercially available fatty acid material is Hystrene sold by Humko Sheffield (a division of Witco Chemical Co.) of Memphis, Tennessee which is a mixture of 85 wt. % stearic acid and 15 wt. % palmitic acid.

15 3. NEUTRAL LIPID

The neutral lipid which can be used as an alternative to a fatty acid material, but preferably in combination therewith constitutes from 0 to 99, preferably 5 to 80, optimally 10 to 70, wt. % of said matrix admixture of this invention. The neutral lipid cooperates with the fatty acid material in the control of the rate at which release of the agent occurs and is characterized by having a melting point greater than 43°C.

The neutral lipids are preferably of the class consisting of monoglyceride, diglyceride, triglyceride, phosphatides, glycolipids, steroids and neutral metal and organic salts of fatty acids having from 12 to 29 carbons. Representative examples of the preferred neutral lipids include stearin. palmitin, castor wax. lecithin, hydrogenated cottonseed oil, hydrogenated magnesium stearate and calcium and aluminum salts of palmitic and other fatty acids. A highly useful commercially available neutral lipid is hydrogenated cottonseed oil which has been obtained from: Humko Sheffield as Neustrene; Capital City Products as Ditrex or Sterotex; and Durkee as Lubritab.

As earli r noted it is taught herein that an ptimum approach to admixtures which provide for dry and direct compr ssion of controll d rel as dosag tablets

10

30

35

and implants is for the admixtur to comprise the combination of a hydrophobic carbohydrate polym r, a fatty acid material and/or a neutral lipid and a wax t serve as a matrix for the particulate biologically active agent.

Thus, the dry, direct compressed tablets and implants can be achieved by a composition adapted for controlling release of biologically active agents comprising an admixture of from 2 to 97 parts by weight of a fatty acid material or a neutral lipid and preferably both, from 2 to 97 parts by weight of a wax preferably having a melting point between 50°C and 100°C and from 1 to 96 parts by weight of a hydrophobic carbohydrate polymer.

The following examples demonstrate the practic and utility of this invention.

EXAMPLE 1

A controlled release tablet containing ascorbic acid as the biologically active agent was prepared as follows:

67.8 parts by weight of ascorbic acid having a particle size that passed through a 20 mesh screen was blended with 30.8 parts by weight of a mixture of 45.0 weight percent Hystrene, 24.4 weight percent Neustrene (a commercial product of hydrogenated cottonseed oil), 17.8 weight percent carnauba wax, 12.2 wt.% ethyl cellulose and 1.4 wt.% tableting excipients.

The resulting blend was passed through a 20 mesh screen and compression molded at a pressure of 3 to 9 tons per square inch into oval tablets containing 1000 mg of ascorbic acid and having a total weight of about 1530 mg, a thickness of about 7 mm and a hardness of about 14 Kg (measures on Pfizer hardness tester).

The controlled continuous release of tableted formulations obtained in this example is shown by the data of Table I. A number of tablets were subjected to a test in which a single tablet was placed in a beaker containing 100 ml of water maintained at 37°C. After a period of time, the tablet was taken from the water, the prouse ut romatrix of the test tablet was rubb d off until a

SUBSTITUTE SHEET

-

solid c re was 1 ft for drying and th n air dried on a filter paper vernight. th solid core was th n weigh d. The consolidated results are hereinafter set forth in Table I.

5	Time (hours)	TABLE I second released
	1.0	22
	1.5	31
	3.0	41
10	. 3.5	47
	5.0	56
	7.2	67
	10.5	79
	15.0	87
15	18.0	94
	22.0	97

EXAMPLE 2

20

25

30

A controlled release tablet containing multi vitamins and minerals as biologically active agents was prepared as follows:

57.5 parts by weight of the blend of high potency multi vitamins and minerals having a size that passed through a 20 mesh screen was blended with 40 parts by weight of a dry direct compression mixture of 62.9 weight percent Hystrene, 17.4 weight percent Neustrene, 12.6 weight percent carnauba wax and 7.1 weight percent ethyl cellulose.

The resulting blend was passed through a 20 mesh screen and compression molded at a pressure of 3 to 9 tons per square inch into oval tablets having a weight of 1550 mg, a thickness about 6 mm and hardness of 15 kg (measured on Pfizer hardness tester).

90 weight percent of the tablet is disintegrated after 16.5 h urs.

10

15

EXAMPLES 3 - 10

In ach xample, all the identifi d ingredients are sieved on a 20 mesh scr en and blended together into a formulation. The formulation was then compressed on a tablet press to provide the controlled release tablets with the desired release times. The several exmaples with the respective formulations and corresponding time for disint gration of 90 weight percent of the tablet in 100 ml of H₂O held at a constant 37°C are set forth in Table II her inafter set forth.

The data of the several examples show that the disintegration hence the release of these nutrients ar continuous upon time. The release pattern is parabolic i.e. the rate, faster in the beginning and slower at the later times, which is often desirable for quickly achieving the desired blood level with subsequent prophylactic level for a prolonged period.

TABLE 11

*_ ©	1	_		5	&	-10-	œ	∞	8
T ₉₀ *		18	10	91	_	10	_	_	
	Water Swellable Filler	3.4	22.3	t	1.5	15.		21.7	i
	Water Soluble Filler	1	1 .	i	1	1	t	ı	1
	Inorganic Filler	14.1		1	29.2	ı	1	ı	4.5
ormulation	Neust rene	15.3	13.3	14.6	2.8	8.6	18.5	20.1	8.2
Unight Persons of Total Formulation	Hystrene 1	35.8	34.8	23.6	1.46	5.0	9.5	10.3	41.0
phr percent	Carnauba Wax	11.2	9.8	10.6	2.1	7.2	13.5	14.6	6.0
3	Ethyl Cellulose	6.2	5.4	5.9	1.2	4.0	7.5	æ	3.3
	Act ive Agent	14.0	14.4	39.8	61.5	73.5	30.0	24.0	35.6
Biologically Active	Agent	Thiamine	Riboflavín	Calcium Ascorbate	Para Amino Benzoic Acid	Multi-Minerals	Iran as fumar- ate-glucomate- proteinate	Zinc as oxide- gluconate- proteinate	Pyridoxin ICI
Example Number		~	4	, S	9	7	æ	6	9
	ស			10		-	15		

^{1. &}quot;Hystrene is a commercial mixture of 85 wt. 2 stearic acid and 15 wt. 2 painitic acid

20

^{2.} Neustrene is hydrogenated cottonseed oil

^{*} r_{90} is the time required in lours for 90 weight percent disintegration of the tablet

-5

10

25

EXAMPLES 11 - 13

Thre controlled release tabl t compositions containing ascorbic acid as the biologically active agent were prepared as follows:

Ascorbic acid having a particle size that passed through a 20 mesh screen was blended with three different formulas as set forth below.

Each of the resulting blends were passed through a 20 mesh screen and compression molded at a pressure of 3.1 tons per square inch into round convex tablets containing 350 mg of ascorbic acid and having a total weight of about 700 mg.

The blends in parts by weight are as follows:

15		Ex. 11 Blend	Ex. 12 Blend	Ex. 13 Blend
	ascorbic acid	49.26	49.26	49.26
	Hystrene ¹	49.26	-	34.48
	Ethoce12	-	49.26	14.78
20	Magnesium stearate	0.98	0.98	0.98
	Aerosil 200 ³	0.49	0.49	0.49

- 1. Hystrene is a fatty acid mixture of 85 wt. % estearic acid and 15 wt. % palmitic acid sold by Humko Sheffield (a division of Witco Chemicals)
- Ethocel is ethoxylated cellulose commercially available from Dow Chemical Company of Midland, Michigan.
- Aerosil 200 is a fumed silica sold by DeGussa,
 Inc. of Teterboro, New Jersey.

30 EXAMPLE 14

The tablets resulting from each blend of Examples 11, 12 and 13 had the following properties:

	•	_
_	1	_
_	٠	~-

	h Properties		Ex. 11 Blend	Ex. 12 Blend	Ex. 13 Blend
	2 Color		Ivory White	Greenish White	White
ស	3 AVR. WI. MIS.	:0	720 ± 0.07	704 ± 0.05	/04 ± 0.03
	5 breaking pattern w 6 jected to opposed 7 horizontal force a 8 tablet sides	5. Breaking pattern when sub- 6. jected to opposed lateral 7. horizontal force against 8. tablet sides	delaminated hori- zontally in direc- tion of force	crushed with vertical brenks	crushed with vertical brea
10	9 Number of tablets 10 zontally broken (d 11 out of a total of	ablets hort- oken (delaminated) stal of 20 tablets	14	0	₹
15	12 Horizontal force 13, Yor breaking tabl 14 Prizer Hardness P 15 of 20 tablets)	Norizontal force required for breaking tablets – Prizer Nardness kg (avg. of 20 tablets)	8.2 ± 0.7	16.2 ± 1.1	10.4 ± 0.9
20	16 Pfizer hardness 17 force is exerted 18 onto the convex 19° tablet (avg. 10	16 Pfizer hardness kg when 17 force is exerted vertically 18 _{sonto} the convex face of the 19° tablet (avg. 10 tablets)	11.2 ± 1.0	13.9 ± 1.1	11.0 + 0.11

10

15

20

25

30

35

The blends of Example 12 and 13, i.e. the blends f inv ntion showed excellent hardness and was clearly superior in enhanced resistance to delamination forces.

The enhanced resistance to delamination makes possible ejection of the tablet from the tableting die cavity with reduced breaking of tablets arising from the delamination forces imposed on the tablet during ejection from the uneven walls of the cavity.

As will be seen from the Table III of Example 15, the composition of the invention provides useful controlled release of dosage forms of biologically activ particulates.

EXAMPLE 15

The controlled continuous release of tableted formulations obtained from the blends of Examples 11-13 are shown by the data of Table III. Four tablets of each blend were subjected to a test in which a single tablet was placed in a breaker containing 100 ml of distilled water maintained at 37°C. After a period of time, the release medium was analyzed for the amount of ascorbic acid release from the tablets by the USP methods as published in the United States Pharmacopeia (20th Revision) Official from July 1, 1980 on page 55 of USP.

The percent of ascorbic acid released was calculated based upon the total quantity of ascorbic acid per tablet. Duplicate or triplicate release tests were performed and the average values were calculated. Also the porous outer matrix of the tablets was rubbed off until a solid core was left for drying and then air dried on a filter paper overnight. The solid core was then weighed. The consolidated results are hereinafter set forth in Table III as percent released.

The core method somewhat underestimating the amount ascorbic acid released is probably due to incomplete rubbing (figures in parenthesis).

-20 -

Since the matrix controll d rel ase can be xpress d according to th authors of a well-kn wn textb k (Controll d R leas of Biologically active Agents, Edited by A.C. Tanquary & R. E. Lacey, Plenum Press, New York 1974) by the foll wing equation:

% released = $k(t)^{1/2}$

where k is a constant and t represents time in hours.

When the % released is plotted against the square root of the time, a straight line is obtained. Its slope is a good measure of release rates and experimental reproducibility of release rates. The time for 50% release ($t_{50\%}$) is also shown in the Table III by $t_{50\%} = \frac{50\%}{4}$.

From Table III, fatty acids are the prolonged release rate controlling substance and the hydrophobic carbohydrate polymer, e.g. ethylcellulose, is poor for that purpose. However, ethylcellulose is an excellent dry direct compression tableting binder for controlled slow release tablets and as shown in hardness data and breaking pattern (Example 14), the presence of ethyl cellulose in dry-direct compression compositions does improve markedly the Tablet integrity by reducing delamination during the tablet compression, henceforth, the commercial controlled release tablet production.

The data of Example 15 shows that the slow dissolution, hence the release of biologically active particulates are, continuous upon time for a release admixture according to this invention while providing tablets of excellent strength and enhanced resistance to delamination.

Two blends comparable to the blends of Examples 11 and 13 were formulated except that carnauba wax was substituted for the Hystrene with the result that the modified blend of Example 13 according to this invention exhibited enhanced resistance to delamination from an xternal force. This was evidenced by tabl ts of the modifi d blend of Example 13 exhibiting an average

5

10

15

20

35

10

15

20

25

30

35

breaking forc of 11.3 kilograms (kg) whereas the tablets of th m dified blend of Example 11 exhibited an average breaking force of 9.7 kg.

In the foregoing the components providing the matrix blend have been admixed in the dry blending stage. However, it is possible to provide one or more of the matrix blend components as a coating on the biologically active material and/or an excipient in the practice of this invention, e.g. introduce the ethyl cellulose as a coating on either or both into the dry mix blending step.

carbohydrate polymer hydrophobic described herein is exemplified in preferred form by cellulose polymers wherein the hydroxyl or charged groups of the molecule are modified, i.e. derivatized, into hydrophobic groups by alkylation, acylation or similar Other suitable (for the purposes of this processes. invention) carbohydrate polymeric substances which can be similarly derivatized to provide the essential hydrophobic property are starch, dextran, gums, inulin. mucopolysaccharides and chitin. In some applications the latter carbohydrate polymeric substances are themselves sufficiently hydrophobic to be used without further derivatization, e.g. chitin in its natural state possesses acetamido moieties which usefully modifies its cellulosic properties for use in matrix blends according to this invention.

During the investigation of excipients which can be introduced into the formulation of the invention, it has been discovered that then presence of 0.01 to 10, preferably 0.01 to 5, optimally 0.05 to 3, wt. % of hydrophobic fumed silica (a silica falling within the class of finely divided silica), said wt. % based on the total tablet weight, can surprisingly prolong the release rates by 20 to 40 percent as measured by t 100% (time to rel ase 100% of the biologically active agents). prolongation can ff ctively reduc d th am unt of admixtur n cessary for dry dir ct compr ssible matrix to rates thus reducing the volume obtain d sired releas giv n dosage of tablet required fr a (size)

SUBSTITUTE SHEET

20 1 A

1 100

. . . .

....

77

. 3

* C*/ C204/0080 (

biologically active material and/or increasing the amount of biologically active material per unit volume of the tablet.

HYDROPHOBIC FUMED SILICA

hydrophobic fumed silicas are well known 5 commercially available materials, e.g. Aerosil R-972 sold by Degussa, Inc. of Teterboro, N.J., Cabosil® N70-TS sold by Cabot Corp. of Tuscola, Illinois, Tullanox® 500 sold by Tulco, Inc., (all of which are preferred for use herein), 10 of the general class of amorphous precipitated silicas but of the pyrogenic (fumed) type which provides according to Kirk-Othmer's Encyclopedia of Chemical Technology (Third Edition) Vol.20 at pages 768 and 778-779 an ultimate particle size, nm of 1-100 and an aggregate particle size, Am of 2-3. The hydrophobicity of the fumed silica is 15 achieved by replacement of the hydroxyl groups of the surface with OR5 or OOR5 wherein the R5 moiety is 1 to 5 carbon aliphatic alkyl or aliphatic acyl groups. The most preferred hydrophobic silica is the methylated fumed silica. Hydrophobic silicas are discussed in Kirk-Othmer's 20 Encyclopedia of Chemical Technology (Third Edition) Vol. 7 at pages 440-441.

Examples of blends containing hydrophobic fumed silica according to this invention are set forth in Examples 16 through 19 which follow.

	·	Ex.16 Blend wt.%	Ex.17 Blend wt.%	Ex.18 Blend wt.%	Ex.19 Blend wt.%
	Ascorbic Acid	50.0	50.0	60.0	60.0
	Hystrene ¹	32.0	32.0	25.3	25.3
30	Ethocel ²	16.0	16.0	12.7	12.7
	CAB-O-Sil ⁴ N7OTS	1.0	-	1.0	• -
	Aerosil 200 ³	-	1.0	•	1.0
	Magnesium Stearate +	श +.0 ₹	1.0	1.0	e 150

^{1.} As describ d for Exs. 11, 12, 13 35 2. As d scrib d for Exs. 11, 12, 13

^{4.} Cab-O-sil®N7OTS is a hydrophobic fumed silica sold by Cabot Corp ration, Tuscola, Illin is.

As d scrib d for Exs. 11, 12, 13
 As d s ribed for Exs. 11, 12, 13

TABLE 111 % ASCORBIC ACID RELEASED VS. TIME

						-23:	
	Av.	18+0.0	28+0.0	35.5±2.1	42.5+0.7	17.9+0.5	7.8
EX. 13 BI.END	Test //	18	26	34	43	-	
<u> </u>	Test 11	18(14)	26(19)	37(30)	42(37)		
END	Av.	24.5+2.1	33+2.8	53+4.2	62.5±2.1		4.0
EX. 12 BLEND	Test #2	26	35	20	19		
	Test //	23(23)	31 (28)	56(45)	64(61)	25.0+1.3	
	<u>w</u> .	14+0.0	21.3+2.5	26.3+1.5	34.3±1.2	14.1+0.8	12.5
END	Test #3	14	24	28	35		
EX. 11 BLEND	Test #2	14	61	26	33		
	Test #1	14 (15)	21.0(19)	25 (27)	35 (33)		
	Time (hrs)	-	2	4	9	k1	t 502 ²
	•	•					10

wherein k is derived from slope of equation 2 released = k (t) $\binom{4_2}{2}$ time in hours for 50% release.

FC1/US84/00807

-24-

Example 20

The tablets of Exs. 16 through 19 blends were made ac ording to the procedures of Examples 11 through 13 and the rafter measured for weight, thickness and hardness prior to evaluation of the release rates. The properties are shown in Table IV.

Tables IV

Physical Data of Tablets from blends of Exs. 16 through 19.

10	Property (av.cf 20 tabs.)	Ex.16 Blend	Ex.17 Blend	Ex.18 Blend	Ex.19 Blend		
	Weight (gr.)	0.703 <u>+</u> 0.008	0.702+0.009	0.685 <u>+</u> 0.009	0.704±0.008		
	Thickness (ins.)	0.284+0.002	0.281+0.002	0.272+0.001	0.274+0.003		
	Hardness (kg.)	4.3 +0.8	6.3 +1.7	3.7 +0.6	4.8 +0.5		

The release test data of the following Table V were obtained by analysis of the medium for ascorbic acid content. At each indicated time interval the release medium was replaced by fresh release medium and subjected to the analysis for Vitamin C content. Each of the release mediums were held at a constant 37°C while exposed to the immersed tablet. Ascorbic acid release was analyzed by the USP XX methods. Release rates of tablets (av. of 4 to 6 tests) obtained from each of the blends of Exs. 16 through Ex. 19 are shown in Table V.

Table V

Total % Ascorbic Acid Released vs. Time

	-	IUCEL 4 AS	COLUIC ACIO.	1010000 13	
	TIME (HRS)	Ex.16 Blend	Ex.17 Blend	Ex.18 Blend	Ex.19 Blend
	1 .	17.6 <u>+</u> 0.9	20.4+1.0	27.1+0.4	29.2+0.4
30	2	24.6+1.1	28.6+1.4	38.2+0.7	44.7+1.3
	4	35.6 <u>+</u> 1.2	39.8+1.9	53.9+2.1	65.9+1.6
	6	45.9+2.6	49.3+1.4	68.7±3.5	75.0 <u>+</u> 1.5
• . •	8	50.1+2.0	55.8+1.3	78.6+2.9	84.8+1.5
•	k	17.8+0.5	20.1+0.3	27.4+0.5	30.9+1.4
35	t100z	31.6+2.5	hrs 24.8+1.1 hr	:s 13.3+0.7 h	rs 10.5+1.3 hrs

 $t 1002 - \left(\frac{1002}{k}\right)^2$

BUREAU OMPI WIFO WIFO PERNATIONAL

10

15

20

25

30

35

5.

-1

200

20 m

2 2 4

÷ 20

RUREAL

ينظي الراء

4

j.

Th data of Tabl V shows that the presence of only 1% of the Cab-o-sil® N70TS hydrophobic fumed silica increased the $t_{100\%}$ by 27% (the 6.8 hr. increase in the tablet of Ex. 17 compared with the tablet of the blend of Ex. 16 and similarly the 2.8 hr. increase in Ex. 19 over Ex. 18) for the tablets containing both 50 and 60 weight percent of ascorbic acid when it is added to the dry directly compressible mixture of this invention.

This dramatic increase in slowing release rates by a small amount is very important in perfecting controlled release tablets especially the tablet size.

In accordance with this invention, the presence of a small amount of hydrophobic fumed silica can be an effective dry controlled release agent when used in conjunction with other hydrophobic materials as taught herein.

The discovery of the remarkable utility of the presence of the hydrophobic fumed silica is applicable to other known controlled release processes such as those approaches earlier discussed in this application and the dry direct compression process using a micropulverized lipid, e.g. as described in U.S. Patent 3,279,998 to produce tablets since its presence in said tablet in the amounts described herein will reduce the tendency of the tablet to desintegrate in water environments markedly reducing the dissolution rate. The 0.05 to 3 weight percent of hydrophobic fumed silica dispersed throughout the tablet as by blending the silica into the formulation prior to tableting provides lipid excipient controlled release tablets having better control of release, slower release if desired and improved physical integrity in equeous environments such as found in the digestive tract. EXAMPLE 21

The present dry direct compression process and comp sitions are applied to pharmaceuticals to make compressed controlled r leas dosage forms. The formula is shown in th following Tabl VI. These blends of dry

blend c mp sitions ar directly compr ssed in standard rotary tabl t press as before. The resultant directly compr ss d controll d release pharmaceutical tablets are subjected to release for the three hours in water having a pH of 3.0 and there after the pH was adjusted to 7.0 with the water temperature held constant at 37°C. The amounds of the drug released were measured by Perkin Elmer Lamda 3A doublebeam UV Spectrophotometer. The results are shown in the following Table VII. k and t100% (time for 100% release) were calculated according to the equation set forth in Ex. 15.

SUBSTITUTE SHEET

5

10

TABLE VI Weight 2 of Various Pharmaceutical Controlled Release Tablets

• •				27					101/0304/00001					
Magnestun	Stearate	1.1	9.0	0.8	0.7	0.7	0.5	7.0	6.0	9.0	0.7	6.0	1.0	
Syloid	3		8.											
Aerosil	200	0.2	0.2	0.2	0.1	0.2			0.1	0.1	0.3	0.2	0.1	
Ethyl	Cellulose	5.0	6.11	13.3	10.2	11.3	28.4	29.9	7.5	5.4	13.4	14.3	12.8	
Carnanta	Wax	- .	0.01	10.4	5.8	1.1			5.2	4.7	11.7	9.9	5.4	
	llystrene	6.3	49.2	45.2	32.0	33.5	9.5		22.3	25.8	43.4	51.5	23.4	
	britex	12.4	13.6	14.2	7.9	10.5			7.0	6.3	15.9	13.4	7.3	
Aerosíl	R-97.2		0.6	0.8	. 1.4	1:1			0.9	0.8	0.6	0.0	0.5	
	Act Ive	65.9	12.1	15.2	42.0	35.1	9.19	69.7	56.0	56.3	14.1	8.9	49.0	
•		Caffeine	Procainamide	Phenylpropanol Amine HCl	Quinidine Sulfate	Tetracycline	Acetoaminophen	Aspirin	Theophy I i ine	Sulfathlazole	Dextromethorphan H Br	Fluorouracil	Nitroglycerine (12 lactose)	
	2				10	٠.			15				20	

-2 8Table VII
% of Drug Released From Controlled
Release Tablets of Table VI

5	Drugs	1	2	Time 3	(hr) 4	5	6	<u>k</u>	t 100% (hrs)
	Caffeine (3)	12.8	22.7	28.2	35.8	42.9	48.6	17.2+2.7	34.0
	Procainamide (2)	10.9	15.3	18.2	20.2			10.7±0.4	87.3
10	Phenylpropanol Amine HCl (3)	17.1	29.1	40.0	49.6			21.6±3.4	21.4
	Quinide Sulfate (3)	5.7	9.5	12.5	15.2	17.3	19.4	7.3 <u>+</u> 0.9	187
	Tetracycline (2)	5.7	7.1	7.9	8.5	8.9	9.2	4.6 <u>+</u> 0.7	472
	Acetoaminophen(2)	5.9	11.1	16.1	22.1	25.3		8.9	126
	Aspirin (2)	2.1	4.2	6.2	8.4			3.3 <u>+</u> 0.9	920
15	Theophylline (2)	3.6	6.6	8.7	11.0			4.7 <u>+</u> 0.8	452
	Sulfathiazole (2)	0.9	1.5	2.1	2.5	2.3	3.2	1.2 <u>+</u> 0.2	6944
	Dextromethorphan HBr (3)	5.4	9.2	12.3	15.1	17.3	20.1	7.1 <u>+</u> 1.0	198
20	Fluorouracil (3)	0.7	1.1	1.4	1.6	1.9	2.1	0.3±0.1	15625 (651 days)
	Nitroglycerine (1% lactose)(2)	4.1	7.7	10.6	13.7	16.4	13.9	6.3	252

Number in () next to drugs indicates number of release tests on each type.

20

25

30

35

EXAMPLE 22

As an xample for an algicide controlled rel ase tablet form, calcium hypochlorite tablets were prepared according to the present invention as follows.

. 5		wt. %
	Calcium Hypochlorite	74.3
	Dritex	9.3
	Hystrene	4.7
	Carnauba Wax	6.8
10	Ethylcellulose	3.7
	Aerosil 200	0.1
	Magnesium Stearate	1.0
	-	100%

Release rates were measured by immersing the tablet into room temperature water for 10 minutes and dried for 20 minutes and repeated this process 10 times as if the tablet was soaked with water only during the swimming pool filtering periods. The result shows an average 1% of the active component release each tim. This rate will permit 100 times soaking of the tablet for each 10 minute period or 100 days for 10 minutes soaking each day.

Products of the Invention

Tablets formed by the new dry direct compression process are very different from the tablets formed by known processes using solvents, heat or plastic polymers. The tablets of the invention can be distinguished from the products of known processes by the following criteria:

- Detectability of chemical compounds not supposed to be present in the finished product, such as heat degraded compounds or solvent residues;
- Physical structure differences;
- Release rate profile differences;
- 4. Identification of components.

The known processes set forth in U.S. Patents #3,317,394, #3,432,592, #3,344,029, #4,167,558, #3,402,240, #3,062,720, #3,577,514, #3,147,187, #3,965,256

LC1

and #3,362,880 r sult in products which are fully distinguishabl by the abov criteria from the tablets of the invention.

-30 -

Many commercial defects and shortcomings as controlled rel ase tablets are very apparent in the tablets resultant from the very complicated prior art processes. The tablets of the inventive dry direct compression process overcome those defects and shortcomings with a simple, easy and extremely low cost process. The aforesaid defects and shortcomings are amplified hereafter.

1. Detectability of hazardous chemical Previous processes using heat to make controlled release tablets deactivate the biologically active components resulting in reduced potency of the active and cause chemical reactions, oftentimes of a totally unknown nature. Many biologically active compounds are highly sensitive to the exposure of the heat required to melt or glassify hydrophobic lipids and polymeric material used as controlled release medium (see U.S. Patents #3,147,187, #3,432,592, #3,317,394, #3,344,029 and #3,965,256).

Not only is the instability of the biologically active compounds a shortcoming but also the degraded or deactivated or chemically newly formed compounds is potentially hazardous to human and animal health, to plant life and the environment. The present dry direct compression process hardly has any chance to form such potentially hazardous compounds and does not produce tablets of reduced potency.

The amounts of impurities in the tablets of the present process is only limited to the amounts of impurities present in raw material according to the supplier's specifications often by the certificates of analysis after dilution factors. For example, if ascorbic acid has 0.01% impurity and if the ascorbic acid content is 50% of the tablet weight then total percent of impurity for the tablet b comes 0.005%. The amounts of impurities in raw material drugs and f od additives are limited by

5

10

15

20

25

30

35

-5

10

15

20

25

30

35

USP or Food Chemicals Codex specifications. Ranges of purity by assay are 99.0%-100.0% (some example: acetaminophen, 100.4%, procainamide HCl, 99.3%, ascorbic acid, 99.5%, lobeline sulfate, 100.3%, l-glutamine, 99.9%, pyridoxine HCl, 99.8%, etc.).

The reduced potency and the presence of the newly formed compounds are easily detected by common analytical procedures using UV, IR, GLC, GC, HPLC, NMR and other residue analysis methods.

Heat degradation of the biologically active components can occur during the solvent removal step for the processes using solvents (see U.S. Patents #3,362,880, #3,147,187, #4,167,558 and #3,344,029).

Especially the degradation of the biologically active components is more pronounced in the presence of water at elevated temperatures (see U.S. Patents #3,362,880, #3,965,256, #3,062,720, #3,402,240). The presence of moisture in the tablet from processes using water accelerates the degradation of many active components in finished product.

Thus a comparison of stability data will also distinguish the product of present process.

Another undesirable chemical component present in the tablets of the prior processes are solvent residues. The product of the present dry direct process is free of solvent residues.

Again the amounts of solvent residues are only limited to those of raw material before compression after volume/weight dilution factors. Most raw material certificates of analysis state loss after drying as the amount of volatile compounds (organic solvents or water) (see Table VIII for representative compounds).

Products from the known processes using solvents have solvent residues no matter how effective the solvent removal process. The solvent residues can be easily detect d by standard analytical techniques.

PC1/US84/UU8U7

32

When th solvent contents and types are analyzed for the finished tablets, the dry directly compressed tablets show only amounts of those inherited from raw material as shown in Table VIII.

5

Table VIII

Typical Solvent/Moisture or volatile matter contents of active and matrix components according to manufacturer's specifications used for this invention.

		Loss on Drying	Moisture
10	Hystrene	No solvent residue	<0.01%
	Carnauba Wax	No solvent residue	<0.5%
	Dritex	<0.1%	
	Ethylcellulose	<0.5%	<2.0%
	Aerosil R-972		<0.5%
15	Aerosil 200		<1.5%
•	Cabosil N70-TS	<1.0%	
	Pyridoxine HCl	Negligible	
	Choline Bitartrate	<0.21%	
	Niacinamide	Negligible	
20	Inositol	<0.03%	
	Acetaminophen	<0.07%	
	Procainamide HCl	<0.3%	
	Phenylpropanolamine HCl	<0.5%	
	Lobeline Sulfate	<0.1%	

10

15

20

On the other hand, tablets of prior arts using solvents show higher amounts of those solvent residues in addition to the types and amounts inherited from raw material. Those prior teachings using solvents include U.S. Patents #3,344,029, #3,062,720, #3,147,187, #3,965,256 and #3,362,880. There are potential hazards to health and environment of the residual solvent. Many solvents used in the prior art such as dichlorethylen (U.S. Patent #3,147,187), benzene (U.S. Patent 3,317,394), carbon tetrachloride (U.S. Patent 3,344,029), and methylene chloride are known to cause cancer in animals and humans. U.S. Patent #3,344,029 uses methyl alcohol which is highly toxic.

2. Physical Structure Difference. Because the heat or solvent process involve physicochemically liquid states, products resulting from the prior process using such have physical structures of tablets very different from the product made by the present dry direct process which only involves solid states. These physical structure differences can be examined mainly under three different aspects.

Heat fusion and s lvent s lution f lipid or hydrophobic polymeric material both r sult in a more hom g neous liquid state. Cooling or solvent removal forms mass interlink d agglomerated skeletal structure with crystal or solid state structures changed from the original dry particle structures before the treatment.

First, interlinked skeletal structures are evident after the active components are leached out. The empty honeycomb of fused or glued binders and lipid or polymer material have much stronger structures than those of the present dry direct process with identical wt. % compositions. The product of the present process easily crumbles to the particle size of the precompression state. This is particularly the case for hydrophobic carbohydrate polymers. Change in crystal structures or morphology after heat/solvent process are easily detected by x-ray diffraction and electron microscopy. Especially the extent of crystallinity in polymers are reduced due to the presence of solvent residues with their plasticizing effect (see U.S. patents #3,362,880 and #3,344,029).

The easier crumbling and disintegration of the excipients are more desirable for the environment. Tablets which are unbreakable or difficult to crumble and retain the structure after leaching as by passage through the gut will give doubt to consumers of the incomplete release of the biologically active agents when viewed in the stool by Such are the products of U.S. Patents the user. #3,317,394, #3,147,187, #3,344,029 #3,432,592. #3,062,720. This physical structure difference is also easily examined by a polarizing microscopic technique. Th thin cross sections of the tablets provided by the dry direct process of the invention shows clear cut boundaries between particles and crystals of composition components with the size and shapes the same or closely similar (allowing compression shrinkage hydrophobic carb hydrate polym rs) to the sizes and shapes of th precompression state. Th se products using h at/solvent giv fus d tog ther or glued togeth r structur s markedly differ nt from the pretreatment state.

.5

10

15

20

25

30

35

10

15

20

25

30

35

M re amorphous and l ss crystallin states are also detected by a polarizing microscope with far less clear boundary between excipients. The particl after treatment usually depends on sieve sizes of the granulation processes used for prior art processes. A less clear boundary between the active and controlled release materials and change of particle size, crystal forms of the biologically active component are also observed due to melting and solubilization of the active by heat or solvent common to solubilize both the active and controlled release material. Ethanol and water are typically such solvents which are used to dissolve both active and controlled release materials. For example aspirin has solubility of 1g/100cc in H_20 and 1g/5cc in ethanol. The prior art process using ethanol to dissolve ethylcellulose will dissolve also aspirin and after drying Shape and size of the alter the crystal structures. aspirin become different from those of pretreatment state. X-ray diffraction, electron and polarizing microscopes detect the changes resulting from the solvent process (see #3,965,256, #4,167,558, #3,402,240, Patents #3,362,880, #3,317,394, #3,432,592, #3.062.7820. #3,344,029 and #3,147,187).

Co-melting by heat and co-solubilization by solvents of the active and the controlled release material also changes crystal structure of the controlled releas material by formation of a solid solution or a eutectic mixture. X-ray diffraction, electron microscope, polarizing microscope and thermal analysis techniques easily detect such changes. On the contrary the present dry direct process preserves the physical characteristics of the active and controlled release material intact and native to precompression state when observed by thes techniques.

Electron and polarizing microscopic examinations of the tablet from the present dry direct process show even distribution of the active and lipid and hydrophobic carbohydrate polymor components in the matrix structure. Tablets of the prior art process using heat and solvent

SUBSTITUTE SHEET

show that greater conc ntration of the controlled r lease material ar und th activ compon nt to be coated. examination of the products f: U.S. Patents #3,965.256 and #3,317,394 will show that the lipid material coats the active component; and, U.S. Patents #4,167,558. #3,062,720, #3,362,880, #3,344,029 and #3,147,187 show that hydrophobic polymer coated the active agent forming completed or partially encapsulated forms. Such coating by lipid or hydrophobic polymers is not present in th tablet of the present process. Where the prior art process has two steps of first encapsulating the active and then dry mixing with other filler or lipid material, then by using differential solvents which dissolve only material, second step one can isolate active-encapsulating material combination and examine it by microscope or IR and thermal analysis technique. The tablets of the present process do not have such partially or completed encapsulated structure and with the above differential dissolving method the active agents and the hydrophobic material become physically separated.

3) Release Rate Profile Difference. The tablets of the present dry direct process are a true matrix system where the active component particles are evenly and truly dispersed between dry direct composition components without solubilizing into each other. On the other hand, tablets of the prior art processes due to h at fusion/solvent solubilization between the active and the controlled release material contain solid solutions and eutectic mixtures as explained before.

The release profiles of the biologically active components in biological fluid medium, i.e. water or gastric juice, are different since the products of the invention provide a dispersed system whereas the products of the prior art products provide a partially or completely dissolved system as illustrated by R. W. Baker and H. K. L nsdal in p. 40.1 Controlled Release Symposium 1974 publish d by the University of Akron, Akron, Ohio.

SUBSTITUTE SHEET

5

10

15

20

25

30

-37-

For a dispersed system the release profile can be present d as

$$M_t = A(2D_s C_s Co)^{\frac{1}{2}t^{\frac{1}{2}}} = k_1 t^{\frac{1}{2}}$$
 -(1)

$$M_{t} = A(2D C_{s}Co)^{\frac{1}{2}t^{\frac{1}{2}}} = k_{1}t^{\frac{1}{2}}$$
 -(1)
 $t_{100Z} = \frac{1^{2}Co}{8DC_{s}} = k_{2}$; a finite number -(2)

For a dissolved system the release profile can be 5 presented as

$$M_t = M_{100\%} (1 - \frac{8}{\pi^2} e^{(-\frac{\pi^2 Dt}{1^2})})$$
 -(3)

$$= M_{100\%}(1 - k_3 e^{-k_4 t})$$

$$t_{100Z} \longrightarrow Infinite$$
 -(4)

Where k1, k2, k3 and k4 are constants and 10

Mt = amount release at time t

A = Surface area

 $C_{\mathbf{S}}$ = Solubility in the dispersed medium

 C_0 = The initial concentration in the device

1 = thickness of the device

D = diffusion constant

ting = Time for 100% release or exhaustion

time

M₁₀₀ = 100% content of the active

20 By examining the release profiles, tablets using above mentioned prior art processes give extremely long tings at a very low ineffective level as Mr follows an exponential rate (see equations 3 & 4)(dragging on) wher as the tablets of the present process give clear cut end points 25 (see equations 1 & 2). Illustrative diagrams of these tw systems for release profile are included in the above Baker and Lonsdale's publication. Those products of the prior art which form solid solutions are described in U.S. Patents #3,317,394, #3,432,592, #3,344,029, #4,167,558, #3,402,240,

SUBSTITUTE SHEET

#3,062,720, #3,147,187, #3,965,256 and #3,362,880.

30

-38-

4. Identification of Contr lled Releas Components. Tablets of prior art processes ar also distinguished from tablet of pr s nt process and compositions by identification of controlled release material. Patents #3,317,394 and #3,432,592 use thermoplastic or injection moldable polymeric material. Many prior art processes such as in U.S. #3.147.187. #3,976,256 and #3,302,880 use water swellable hydroxycellulose or hydrocolloid polymers as binders. U.S. Patent #4.167.558 uses a hydrocolloid as buoyant material. All these water swellable polymers can be identified by a standard analytical method. U.S. Patent #3.402.240 uses glucose, a simple sugar as a binder. The present process does not use such polymers or glucose as binder or buoyant material. U.S. Patent #3,279,998 uses dry direct compression process with only micropulverized lipid material without any hydrophobic carbohydrate polymer.

The directly compressed tablets of U.S. Patent 20 #3.577.514 using an enteric substance are easily distinguished from the tablets of the present process. The former does not release the biologically active component in the acid pH and release only in the medium of alkaline pH. The present process tablet releases th active continuously regardless of pH conditions. 25 former therefore can not be used as controlled release The present new process of dir ct compression with dry blend controlled release compositions without heat and solvent procedures produces very 30 different controlled release tablets from those obtain d from published processes. The product of the present process should be able to be easily distinguished in the market places from those of the prior art processes. Analytical tools and methods for differentiation are UV, Solid State 35 Fourier Transform IR, NMR, Spectrosc pics, X-ray diffracti n, light, el ctron and polarized microscopy, mass spectroscopy, thermal analysis, gas chr matography, high pressure liquid chromatography, other residue analysis m thods and releas test methods.

SUBSTITUTE SHEET

ž

5

10

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

1

2

3

4

5

3

WHAT IS CLAIMED IS:

- 1. A dry, direct compressed product containing controlled release dosage forms of therapeutically active particulate agents produced without heat or solvents by the steps comprising: (a) dry blending blend particles, all of which have particle sizes smaller than 20 mesh, consisting essentially of from 0.01 to 95 weight parts of biologically active particulate solids with from 5 to 99.99 weight parts of a matrix blend combination consisting essentially of from 1 to 96 parts by weight of a hydrophobic carbohydrate polymer of the class of ethyl cellulose, propyl cellulose, cellulose acetate, cellulose propionate, cellulose acetatebutryate and cellulose acetate-propionate and from 4 to 99 parts E, weight of a digestive-difficulty soluble component of the class consisting of a wax of the class consisting of carnauba wax, spermceti, beeswax, candelilla wax, esparto and paraffins; a fatty acid material of the class consisting of fatty acids having from 12 to $\,\sim\,$ 28 carbon atoms, fatty monoalchols having 12 to 28 carbon atoms, fatty amines and amides having from 12 to 28 carbon atoms; a neutral lipid of the class consisting of stearin, palmitin, castorwax, phospholipids, glycolipids, glycerides, hydrogenated cottonseed oil, hydrogenated cottonseed oil, hydrogenated tallow and metal and organic salts of C_{11} - C_{28} fatty acids; and, mixtures thereof; (b) compressing said blended solids and blend under a pressure of 1.5 to 20 tons per square inch; and (c) thereafter, recovering said compressed product having a hardness of 4 to 25 kg and excellent resistance to delamination when subjected to an external longitudinal force.
- 2. A dry, direct compressed product according to claim 1 wherein said hydrophobic polymer is ethyl cellulose present in from 5 to 30 weight parts and the balance of said combination being selected from carnauba wax, hydrogenated cottonseed oil, a fatty acid having from 12 to 28 carbons or mixtures thereof.

- 3. A matrix composition according to claim 1 wh rein: said hydrophobic cellulose polymer is ethyl cellulose present in from 3 to 50 parts by weight; said wax is carnauba wax present in from 5 to 70 parts by weight; said fatty acid material is a mixture of stearic acid and palmitic acid; said neutral lipid is hydrogenated cottonseed oil; and, said fatty acid material or said neutral lipid or both is present in from 5 to 80 parts by weight.
- 4. A product according to claim 1 wherein said compressing is followed by the further steps (c) of granulating said tablets and blending them with additional excipients and (d) finally, compressing said blend into tablets with desired release rates.
- 5. A product according to claim 1 wherein said mixture of said digestive-difficulty soluble component comprises from 2 to 97 parts by weight of said wax and from 2 to 97 parts by weight of said fatty acid material, of said neutral lipid and of mixtures thereof.
- 6. A product according to claim 1 wherein: said polymer is present in from 5 to 30 parts by weight; said wax is present in from 10 to 40 parts by weight; said fatty acid material is present in from 10 to 70 parts by weight; and, said neutral lipid is present in from 10 to 70 parts by weight.

- 7. A product according to claim 1 wherein said blended particles of step (a) additionally contains from 0.01 to 10 weight parts of hydrophobic fumed silica whereby the dissolution release rate is reduced.
- 1 8. A product according to claim 7 wherein said 2 silica amounts to from 0.05 to 3 weight parts.
- 9. A method for reducing the controlled release rate of tablets containing both a biologically active agent and a lipid controlled release excipient comprising the step of dispersing from 0.05 to 3 weight percent of hydrophobic fumed silica throughout said tablet.
- 10. A dry, direct compression tablet comprising 1 at least one particulate biologically active agent evenly 2 dispersed within a controlled release excipient binder 3 matrix characterized in that the tablet has a hardness of 4 3 to 25 kilograms and the absence of: a derivative of 5 said agent resulting from its degradation by heat and/or 6 solvent; solvent residue; interlinked excipient skeletal 7 structures; and, solid solutions and eutectic mixtures of 8 9 the tablet components.
- 11. The tablet of claim 10 wherein said binder
 2 matrix contains as an essential ingredient a hydrophobic
 3 carbohydrate polymer.
- 1 12. The tablet of claim 11 wherein said agent is from 0.01 to 95 wt. % and said matrix is from 99.99 to 5 wt. % of said tablet and said matrix contains from 1 to 100 wt. % of said polymer and up to 99 wt. % of a difficulty soluble component.

2

3

4

14. A method of preparing a controlled r l ase 1 tabl t comprising th st ps of: (a) dry bl nding a desired 2 f biologically activ particulate agent int 3 excipient binder having as an essential ingredient a 4 hydrophobic carbohydrate polymer, said blend having a 5 particle size smaller than 10 mesh; and (b) compressing said 6 blend into tablets of from 3 to 25 kg hardness as measured 7 on a Pfizer hardness tester. 8

15. A method according to Claim 14 wherein said compressing is followed by the further steps (c) of granulating said tablets and blending them with additional excipients and (d) finally, compressing said blend into tablets with desired release rates.

16. The method according to Claim 14 wherein said desired level ranged from 0.01 to 95 wt. %, said binder comprising at least one difficulty soluble component and said polymer is ethyl cellulose and present in about 10 to 30 wt. %, said wt. % based on the total weight of said blend.

SUBSTITUTE SHEET

2

3

4.5

6

7 8

1

2

3

4

5

1

2

3

4

5

6

AMENDED CLAIMS

[received by the International Bureau on 10 October 1984 (10.10.84) original claims 1 to 16 unchanged; claims 17 to 33 added]

- 13. The tablet of claim 12 wherein said 2 comp n nt is a fatty acid, a neutral lipid, a wax or 3 mixtures thereof.
 - 14. A method of preparing a controlled releas tablet comprising the steps of: (a) dry blending a desired level of biologically active particulate agent into an excipient binder having as an essential ingredient a hydrophobic carbohydrate polymer, said blend having a particle size smaller than 10 mesh; and (b) compressing said blend into tablets of from 3 to 25 kg hardness as measured on a Pfizer hardness tester.
 - 15. A method according to Claim 14 wherein said compressing is followed by the further steps (c) f granulating said tablets and blending them with additional excipients and (d) finally, compressing said blend into tablets with desired release rates.
 - 16. The method according to Claim 14 wherein said desired level ranged from 0.01 to 95 wt. %, said binder comprising at least one difficulty solubl component and said polymer is ethyl cellulose and present in about 10 to 30 wt. %, said wt. % based on the total weight of said blend.
- 17. A dry direct compression tablet comprising 2 at least one particulate biologically active agent dis-3 persed throughout a matrix of hydrophobic carbohydrate 4 polymer, said polymer constituting from 5 to 99.99 wt. % 5 of said tablet.
- 1 l8. A tablet according to Claim 17 wherein said matrix consists essentially of ethyl cellulose.
- 19. A tablet according to Claim 17 wherein said 2 matrix additionally contains from 0.01 to 10 weight parts 3 of hydrophobic fumed silica.

- 20. A method comprising (a) dry blending particles, 1 2 all of which have particle sizes smaller than 20 mesh, con-3 sisting essentially of from 0.01 to 95 weight parts of bio-4 logically active particulate solids with from 5 to 99.99 5 weight parts of a matrix blend combination consisting 6 essentially of from 1 to 96 parts by weight of a hydrophobic carbohydrate polymer of the class of ethyl cellulose, propyl cellulose, cellulose acetate, cellulose propionate, 9 celluloseacetate-butyrate and cellulose acetate-propionate and from 4 to 99 parts by weight of a digestive-difficulty soluble component of the class consisting of a wax of the class con-11 sisting of carnauba wax, spermaceti, beeswax, candelilla wax, 12 esparto and paraffins; a fatty acid material of the class con-13 sisting of fatty acids having from 12 to 28 carbons, fatty mono-14 alcohols having 12 to 28 carbons, fatty amines and amides having 15 12 to 28 carbons; a neutral lipid of the class consisting of stearin, palmitin, castorwax, phospholipids, glycolipids, gly-17 cerides, hydrogenated cottonseed oil, hydrogenated tallow and 18 metal salts of C_{11} - C_{28} fatty acids and mixtures thereof; (b) compressing said blended solids and blend under a pressure of 20 21 1.5 to 20 tons per square inch; and (c) thereafter, recovering said compressed product having a hardness of 4 to 25 kg and excellent resistance to delamination when subjected to an 23 24 external longitudinal force.
 - 21. A method according to Claim 20 wherein said

 hydrophobic carbohydrate polymer is ethyl cellulose present

 in from 5 to 30 weight parts and the balance of said combination being selected from carnauba wax, hydrogenated cotton
 seed oil, a fatty acid having from 12 to 28 carbons or mixtures

 thereof.
 - 22. A method according to Claim 20 wherein said hydro-2 phobic cellulose polymer is ethyl cellulose present

- 3 in from 3 to 50 parts by weight; said wax is carnauba wax
- 4 present in from 5 to 70 parts by weight; said fatty acid
- 5 material is a mixture of stearic acid and palmitic acid;
- 6 siad neutral lipid is hydrogenated cottnseed oil; and, said fatty
- 7 acid material or said neutral lipid or both is present in from
- 8 5 to 80 parts by weight.
- 1 23. A method according to Claim 20 wherein said
- 2 compressing is followed by the further steps (c) of granu-
- 3 lating said tablets and blending them with additional incipients
- 4 and (d) finally, compressing said blend into tablets with
- 5 desired release rates.
- 1 24. A method according to Claim 20 wherein said mix-
- 2 ture of said digestive-difficultly soluble component comprises
- 3 from 2 to 97 parts by weight of said wax and from 2 to 97
- 4 parts by weight of said fatty acid material, of said neutral
- 5 lipid and of mixtures thereof.
- 25. A method according to Claim 20 wherein said polymer
- 2 is present in from 5 to 30 parts by weight; said wax is
- 3 present in from 10 to 70 parts by weight; and, said neutral
- 4 lipid is present in from 10 to 70 parts by weight.
- 1 26. A method according to Claim 20 wherein said
- 2 blended particles of step (a) additionally contains from
- 3 0.01 to 10 weight parts of hydrophobic fumed silica whereby
- 4 the dissolution release rate is reduced.
- 27. A method according to Claim 26 wherein said
- 2 silica amounts to from 0.05 to 3 weight parts.
- 1 28. A method comprising the steps of dispersing at
- 2 least one particulate biologically active agent evenly

	• •
3	throughout a hydrophobic carbohydrate polymer, compressing
4	said agent and polymer under a pressure of 1.5 to 20 tons
5 ·	per square inch and thereafter recovering a compressed
6	product having a hardness of 3 to 35 kg.
1	29. A method according to Claim 28 wherein said
2	agent is from 0.01 to 95 wt. % and said matrix is from
3	99.99 to 5 wt. % of said tablet and said matrix contains
4	from 1 to 100 wt. % of said polymer and up to 99 wt. % of
5	a difficulty soluble component.
1	30. A method according to Claim 29 wherein said
2	component is a fatty acid, a neutral lipid, a wax of mis-
3	tures thereof.
1	31. The method of preparing controlled release
2	tablets according to compositions in Claim 17 by dry blending
3	and dry direct compression.
1	32. The method of preparing controlled release
2	tablets according to compositions in Claim 13 by dry blending
3	and dry direct compression.
1	33. The method of preparing controlled release
2	tablets according to compositions in Claim 19 by dry
3	blending and dry direct compression.
_	eronatup ente et attece compleasion.

BNSDOCID: <WO ___8404674A1_I_>

INTERNATIONAL SEARCH REPORT

International Application No PCT/US84/00807

1. CLASSIFICATI N OF SUBJECT MATTER (If several classification symbols apply, indicate all) *						
According to International Patent Classification (IPC) or to boun National Classification and IPC 3 A61K 9/26						
AU.	-n 7/ C	U				
II. FIELD	S SEARCH	IED				
		Minimum Docume	entation Searched 4			
Classificat	on System		Classification Symbols			
U.S. 424/19, 424/22, 424		424/19, 424/22, 424	1/35, 424/38, 424/35	57		
Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched 5						
III. DOCL	MENTS C	ONSIDERED TO BE RELEVANT 14	· · · · · · · · · · · · · · · · · · ·			
Category •		on of Document, 16 with Indication, where app	propriate, of the relevant passages 17	Relevant to Claim No. 18		
A	US,	A, 3,062,720, publis 1962, Costello	shed 6 November	l to 16		
A	US,	A, 3,096,248, publis Rudzki	shed 2 July 1963	1 to 16		
A	US,	A, 3,115,441, publis 1963, Hermelin	shed 24 December	1 to 16		
A	US,	A, 3,147,187, publis 1964, Playfair	hed 1 September	1 to 16		
A	US,	A, 3,279,998, publis 1966, Raff et al.	hed 18 October	1 to 16		
A	.US,	A, 3,317,394, publis Fryklof et al.	hed 2 May 1967	1::to 16		
A	US,	A, 3,336,200, publis Krause et al.	hed 15 August 1967	1 to 16		
A	US,	A, 3,344,029, publis 1967, Berger	hed 26 September	1 to 16		
* Special	categories	of cited documents: 19	"T" later document published after th	e International filing date		
"A" document defining the general state of the art which is not or priority date and not in conflict with the application but						
"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention						
filing date "L" document which may throw doubts on priority claim(s) or "L" document which may throw doubts on priority claim(s) or						
whice citate	h is cited to ion or other	establish the publication date of another special reason (as specified)	"Y" document of particular relevance cannot be considered to involve a	n inventive step when the		
"O" document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such documents, such combination being obvious to a person skilled						
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family						
IV. CERTIFICATION						
Date of the Actual Completion of the International Search ² Date of Mailing of this International Search Report ²						
13 August 1984 14 AUG 1984						
International Searching Authority 1 Signature of Authorized Officer 20 Shep K. Pose						
ISA/US Shep K. Rose						

Category *	JMENTS C NSIDERED T BE RELEVANT (CONTINUED FR M THE SEC NO SHEE	T)
	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim N
A	US, A, 3,362,880, published 9 January 1968 Jeffries	1 to 16
х	US, A, 3,400,197, published 3 September 1968, Lippmann	7,8,9.
A	US, A, 3,402,240, published 17 September 1968, Cain et al.	1 to 16
A	US, A, 3,432,592, published 11 March 1969 Speiser	l to 16
A	US, A, 3,577,514, published 4 May 1971 Robinson	l to 16
A	US, A, 3,950,508, published 13 April 1976 Mony et al.	1 to 16
A	US, A, 3,965,256, published 22 June 1976 Leslie	1 to 16
A	US, A, 4,167,558, published ll September 1979, Sheth et al.	1 to 16
•		
	*	
-		,
	·	

Form PCT/ISA/210 (extra sheet) (October 1981)