Membership Inference Attacks in a Maritime Context

Anonymization, Privacy (2021-2022) - Final Project Pierre Onghena

Background

Maritime Transport

https://www.marinetraffic.com

Problem Statement

Example: A spoofed ship that carries out fishing in a restricted area

I'm no tanker but a fishing vessel

https://mpatlas.org/zones/

→ To identify the vessel type, AIS data could be used to develop a classification model

Privacy AIS data

- Automatic Identification System (AIS) is a tracking system to supplement information about each moving vessel
- This data could be exploited for anomaly detection or classification of vessel types
- However, it represents business operations of ports and shipping companies

Data for classification

AIS data

- Past data is available for U.S. coastal waters for calendar years 2009 through September 2021 (https://marinecadastre.gov/ais/)
- It represents a time-series as every ship, with unique identifier MMSI, transmits AIS data every 1 minute

Geolocation of datapoints for day 01/01/2019

Data Dictionary

Following features are selected for classification:

- 1. MMSI (Identifier)
- 2. LAT
- 3. LON
- 4. SOG
- 5. COG
- 6. Heading
- 7. Length
- 8. Width

VesselType

	Name	Description	Example	Units	Resolution	Туре	Size
1	MMSI	Maritime Mobile Service Identity value	477220100			Text	8
2	BaseDateTime	Full UTC date and time	2017-02-01T20:05:07		YYYY-MM-DD:HH-MM-SS	DateTime	
3	LAT	Latitude	42.35137	decimal degrees	xx.xxxxx	Double	8
4	LON	Longitude	-71.04182	decimal degrees	XXX.XXXXX	Double	8
5	SOG	Speed Over Ground	5.9	knots	XXX.X	Float	4
6	COG	Course Over Ground	47.5	degrees	XXX.X	Float	4
7	Heading	True heading angle	45.1	degrees	XXX.X	Float	4
8	VesselName	Name as shown on the station radio license	OOCL Malaysia			Text	32
9	IMO	International Maritime Organization Vessel number	IMO9627980			Text	16
10	CallSign	Call sign as assigned by FCC	VRME7			Text	8
11	VesselType	Vessel type as defined in NAIS specifications	70			Integer	short
12	Status	Navigation status as defined by the COLREGS	3			Integer	short
13	Length	Length of vessel (see NAIS specifications)	71.0	meters	XXX.X	Float	4
14	Width	Width of vessel (see NAIS specifications)	12.0	meters	XXX.X	Float	4
15	Draft	Draft depth of vessel (see NAIS specifications)	3.5	meters	XXX.X	Float	4
16	Cargo	Cargo type (see NAIS specification and codes)	70			Text	4
17	TransceiverClass	Class of AIS transceiver	Α			Text	2

Classification: Vessel Type

- A total of 10 classes be retained to construct an informative probability vector
- The 10 most common vessel types are the following:
 - 1. Fishing
 - 2. Towing
 - 3. Sailing
 - 4. Pleasure craft
 - 5. Pilot vessel
 - 6. Tug
 - 7. Passenger
 - 8. Cargo
 - 9. Tanker
 - 10.Other

Research Method

Architecture: LSTM

- An LSTM is designed to capture relationships on sequence data.
 Therefore, it could monitor the changes in a ship's trajectory
- As neural networks require inputs to have the same shape, a ship trajectory is divided into multiple windows of the same size

Target Model

Training data: 01/01/2019

Test data: 01/01/2021

Approx. half of the ships reoccur in both datasets, but still with different trajectory

- Input size: (window size = 25, features = 7)
- 4 LSTM layers with dropout to support regularization
- Probability distribution for the 10 classes:

Training and Test Accuracy

Training accuracy: 93%

Test accuracy: 70%

→ Overfitting causes the target model to be vulnerable to membership inference

Membership Inference

- To conduct membership inference, an attack model must recognize training examples
- Therefore, to distinguish training from test examples, several shadow models that mimic the target output are created by the attacker
- From the shadow model, it's known which the training and test data are, so we could label them for binary classification of the attack model

Shadow Models

- Similar structure to target model but primarily with less layers and different window size
- Due to time restrictions, only able to train two LSTM shadow models

Training data: 17/04/2018 and 11/05/2017
 Test data: 18/12/2018 and 19/02/2017

Training accuracy: 86% 93% Test accuracy: 82% 62%

→ Much less overfitting for shadow model 1, which exploits only 2 LSTM layers

Shadow model 1

Attack Model

 Binary classification based on the probability vector of the (10 classes + correct class label)

.0,1,2,3,4,5,6,7,8,9,Class,Label
0,0.998586,3.152706e-05,6.668778e-10,1.11297195e-05,1.0989926e-05,1.7170145e-06,6.705457e-07,2.0995101e-05,2.398303e-11,6.436373e-05,0.0,1
1,0.9994924,3.9057642e-05,3.6029206e-09,3.359317e-05,9.34889e-06,1.4630317e-06,3.0384215e-06,0.00031571605,5.458346e-10,0.00010536124,0.0,1
2,0.99948174,1.7052345e-05,1.887342e-09,3.506276e-05,1.0168921e-05,1.7199261e-06,3.4476573e-06,0.00034366574,3.3681197e-10,0.000107281805,0.0,1

- 7 dense layers
- Sigmoid activation to determine whether the example was used during training or not

Experimental Results

Evaluation

- Training data: probability vectors, members / non-members, of both shadow models get concatenated and shuffled
- → Total of 155.000 examples for training attack model
- The attack model will be evaluated on an equal number of members and non-members:
 - 1/2 Training data: 01/01/2019 members
 - 1/2 Test data: 01/01/<u>2021</u> non-members
- \rightarrow Total of (35.000 + 35.000=) 70.000 examples for classification
- The limitation above implies that the accuracy would normally be greater than 50% of random guessing
- Confusion matrix to access the performance

Confusion Matrix

Training accuracy: 63% Test accuracy: 60%

→ Slightly above random guessing of 50%

Precision: 57%

Recall: 80%

→ Low precision, also actual non-members are often interpreted as members

→ High recall, which means that actual members are rarely missed by the model

