Отчет по заданию 1

Рассматриваем математическую модель, описывающую изменение концентраций адсорбированных веществ *x* и *y*:

$$\frac{dx}{dt} = k_1 z - k_{-1} x - k_2 z^2 x, \quad \frac{dy}{dt} = k_3 z^2 - k_{-3} y,$$

$$0 \le x \le 1, \quad 0 \le y \le 0.5, \quad 0 \le x + 2y \le 1.$$

Здесь z = 1 - x - 2y - концентрация свободных мест.

1) Сначала проведём однопараметрический анализ по параметру k_{-1} .

Стационарные состояния удовлетворяют системе уравнений:

$$k_1 z - k_{-1} x - k_2 z^2 x = 0,$$

$$k_3 z^2 - k_{-3} y = 0.$$

Решая данную систему относительно x и k_2 , получим:

$$x = -2y + 1 - \frac{\sqrt{k_3^3 k_{-3}^3 y^3}}{k_3^2 k_{-3} y},$$

$$k_{2} = -\frac{k_{1} \cdot \sqrt{k_{3}^{3}k_{-3}^{3}y^{3}} \cdot (2y - 1)}{k_{-3}^{2}y^{2} \cdot (4k_{3}y^{2} - 4k_{3}y + k_{3} - k_{-3}y)} - \frac{k_{3} \cdot (-k_{1}k_{-3}y + 4k_{-1}k_{3}y^{2} - 4k_{-1}k_{3}y + k_{-1}k_{3} - k_{-1}k_{-3}y)}{k_{-3}y \cdot (4k_{3}y^{2} - 4k_{3}y + k_{3} - k_{-3}y)}.$$

Пробегая с некоторым шагом весь диапазон значений переменной y от 0 до 0.5, найдём соответствующие значения переменной x и параметра k_2 . Для исследования устойчивости стационарных решений выпишем элементы матрицы Якоби и вычислим её след и определитель на стационаре:

$$a_{11} = -k_1 - k_{-1} - k_2 z^2 + 2k_2 xz,$$
 $a_{12} = -2k_1 + 4k_2 xz,$ $a_{21} = -2k_3 z,$ $a_{22} = -4k_3 z - k_{-3},$ $\Delta A = a_{11}a_{22} - a_{12}a_{21},$ $S_A = a_{11} + a_{22}.$

Если $\Delta_A > 0$, то стационарное состояние устойчиво и имеет тип узла. Если $\Delta_A < 0$, то стационарное состояние является седлом. Определитель обращается в ноль: $\Delta_A = 0$ в точках седло-узловой бифуркации.

Нарисуем графики зависимости концентраций в стационарном состоянии от параметра k_2 : $x(k_2)$ и $y(k_2)$, отметим точки бифуркации (отмечаются одновременно и на $x(k_2)$, и на $y(k_2)$). Для параметра k_{-1} берутся 5 разных значений: 0.001, 0.005, 0.01, 0.015, 0.02. Значения $k_1=0.12,\ k_3=0.0032,\ k_{-3}=0.001$ других параметров фиксированы.

Рис. 1: $k_{-1} = 0.001$

Рис. 2: $k_{-1} = 0.005$

Рис. 3: $k_{-1} = 0.01$

Рис. 4: $k_{-1} = 0.015$

Рис. 5: $k_{-1} = 0.02$

2) Аналогично проведём однопараметрический анализ по параметру k_{-3} . Для параметра k_{-3} берутся 5 разных значений: 0.0005, 0.001, 0.002, 0.003, 0.004. Значения $k_1=0.12,\ k_3=0.0032,\ k_{-1}=0.01$ других параметров фиксированы.

Рис. 6: $k_{-3} = 0.0005$

Рис. 7: $k_{-3} = 0.001$

Рис. 8: $k_{-3} = 0.002$

Рис. 9: $k_{-3} = 0.003$

Рис. 10: $k_{-3} = 0.004$

3) Теперь проведём двухпараметрический анализ по параметрам k_1, k_2 .

Допишем к системе стационаров уравнение $\Delta_A = 0$, решим полученную систему относительно y, k_1, k_2 . Задавая значения параметров $k_{-1} = 0.01$, $k_3 = 0.0032$, $k_{-3} = 0.001$ по умолчанию, пробегая с некоторым шагом весь диапазон переменной x от 0 до 1, найдём значения переменной y и параметров k_1, k_2 . Получили искомые координаты точек (k_2, k_1) , строим параметрический портрет системы.

Рис. 11: Параметрический портрет системы

Рис. 12: Фазовый портрет, область II

Рис. 13: Автоколебания x(t) и y(t)