MAT250S25 Proof 2

Kishan S Patel

February 13, 2025

Definition 1 (\mathcal{L}_1 , from the **Big Thereom**TM). A set of vectors is linearly dependent if and only if it is injective

Definition 2 (\mathcal{L}_2 , from the **Big Thereom**^{$^{\text{TM}}$}). A set of vectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly dependent if and only if:

 $\begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_k \end{bmatrix} \vec{b} = \vec{0} \iff \vec{b} = \vec{0}$

Given:

- let \mathbb{R}^n , \mathbb{R}^m be Euclidean spaces.
- let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation with corresponding $n \times m$ matrix A.
- let $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k \in \mathbb{R}^m$ be vectors such that the set of vectors
- $\{T(\vec{x}_1), T(\vec{x}_2), \dots, T(\vec{x}_k)\}$ is linearly independent.

Prove that the set of vectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent.

Proof.

$$\forall X \in M_{n \times m} f_X : \vec{b} \mapsto X \vec{b}$$

$$: \mathbb{R}^m \to \mathbb{R}^n$$

$$\text{let } C = \begin{bmatrix} T(\vec{x}_1) & T(\vec{x}_2) & \cdots & T(\vec{x}_k) \end{bmatrix}$$

$$\text{let } B = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_k \end{bmatrix}$$

$$C = A \circ B$$

$$f_C = T \circ f_B$$

$$\mathcal{L}_1 \implies \forall \vec{a}, \vec{b} : f_C(\vec{a}) = f_C(\vec{b}) \iff \vec{a} = \vec{b}$$

$$\text{let } \vec{b}, \vec{c} \in \mathbb{R}^k$$

$$f_B(\vec{b}) = f_B(\vec{c})$$

$$(T \circ f_B)(\vec{b}) = (T \circ f_B)(\vec{c})$$

$$f_C(\vec{b}) = f_C(\vec{c})$$

$$\vec{b} = \vec{c}$$

$$\therefore f_B \text{ is injective}$$

$$\implies \forall \vec{b}, \vec{c} \in \mathbb{R}^k : B\vec{b} = B\vec{c} \iff \vec{b} = \vec{c}$$

QED

 $\implies \forall \vec{b} \in \mathbb{R}^k : B\vec{b} = \vec{0} \iff \vec{b} = \vec{0}$ $\cdots \land \mathcal{L}_2 \implies \{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\} \text{ is linearly independent.}$