Ansys Mechanical Beyond the Basics

Module 06 Workshop: Expanded Results and Validation

Release 2021 R2



Use this guide to work on the Journal Bearing model.



- Open Archive: "Shaft\_Bearings\_WS06\_Start.wbpz"
- In order to save some time, the project has already been solved for the Stainless Steel housing material option.
- Open Mechanical for the Stainless Steel material option, Analysis System B.







- Review Total Deformation and Equivalent Stress results for Time 3.0
- Animate results. Change the displacement scale factor as desired.



• **Review** results for each body, entering them into a table like the one below:

| A                | A                                                          | В     | С               | D   | Е                      | F   |
|------------------|------------------------------------------------------------|-------|-----------------|-----|------------------------|-----|
| 1                |                                                            |       | Stainless Steel |     | Unfilled Polycarbonate |     |
| 2                | Results                                                    | Units | Min             | Max | Min                    | Max |
| 3                | Total Deformation - 3. s                                   | mm    |                 |     |                        |     |
| 4                | Equivalent (von-Mises) Stress - 3. s                       | Мра   |                 |     |                        |     |
| 5                | Equivalent (von-Mises) Stress - Multiple - 3. s (housings) | MPa   |                 |     |                        |     |
| 6                | Equivalent (von-Mises) Stress - Multiple - 3. s (bearings) | MPa   |                 |     |                        |     |
| 7                | Equivalent (von-Mises) Stress - Component4\Shaft - 3. s    | MPa   |                 |     |                        |     |
| 8                | Total Deformation - Component4\Shaft - 3. s                | mm    |                 |     |                        |     |
| 9                | (UX**2+UZ**2)**0.5 - 3s                                    | mm    |                 |     |                        |     |
| 10               | (UX**2+UZ**2)**0.5 - 3 s                                   | mm    |                 |     |                        |     |
| 11               |                                                            |       |                 |     |                        |     |
| 12               | Misalignment calculation                                   |       |                 |     |                        |     |
| (see next slide) |                                                            |       |                 |     |                        |     |



### Calculate misalignment:

- Q: Is the displacement vector in the same direction for both sides of the shaft? A: Yes, and this is
  different from the results observed in Module 08.
- Q: How can we calculate the misalignment in this case? A: Subtract one vector from the other
- **Return** to the **Workbench** project page and Update Project in order to solve Analysis System C.

  File View Tools Units Extensions Jobs Help

Project

Import... 🐗 Reconnect 🗗 Refresh Project 🥖 Update Project

- Open Mechanical for the Polycarbonate material option, Analysis System C
- Review the results and finish filling in the results table. Compare misalignment with the first solution and draw conclusions. Focus in particular on the stress in the shaft.

- Review both Averaged and Unaveraged stress results. What are your thoughts about the validity of the results?
- What would you recommend? (The Averaged and Unaveraged results are slightly different. If you observe local regions of high stresses in the results, check to see if they are near a boundary condition—in these locations, the results values should not be trusted. If the high stresses are not near a boundary condition, consider a mesh convergence study to achieve higher accuracy in those regions.)







- Bolt postprocessing:
  - Graphically review the constraint equations near the bolts



- Bolt postprocessing:
  - Retrieve clamping force for each bolt: drag and drop Bolt Pretension Loads onto the Solution branch
  - Consider what's happening in each bolt. Which bolt has the highest load?





- Bolt postprocessing:
  - Review stresses (Direct, Min Combined, and Max Combined) in beam bodies using the Beam Tool
  - What are your conclusions? (Max Combined stress is high at certain locations, beyond yield stress)







- Contacts postprocessing:
  - Insert a Contact Tool to review Frictionless contact results between Housing bodies and Ground bodies
  - Review Status, Gap, and Pressure
  - Do the housings lift between the bolts?











- Contacts postprocessing:
  - Review contact results on the Rings to Bearings contact regions
  - Is Frictional contact a good choice? Or should this contact pair be made linear?

### Conclude:

Can Unfilled Polycarbonate replace Stainless Steel for the Housings?

Recall that the misalignment values must not be different by more than 5 % between simulations for both Stainless Steel and Polycarbonate materials.

Equivalent Stress must not be greater than the yield strength for each material.



Save Project for use later if desired.





# **Ansys**