

Dynamics of Mapping Class Groups

Georgia Tech

lan Katz, Yandi Wu, Yihan Zhou Advisors: Dan Margalit, Balázs Strenner Georgia Institute of Technology

Background

How efficient is this taffy puller?

n-armed taffy pulling action ↔ homeomorphism of an n-punctured plane

Nielsen-Thurston Classification Theorem \rightarrow to every homeomorphism of a surface we can attach a real number called the stretch factor

Setup: c = curve,

f = homeomorphism,

a = reference arc.

Stretch Factor = growth rate of $i(f^n(c), a)$

Margalit-Strenner-Yurttas: Quadratic time algorithm that computes the stretch factor.

Our Project: Implement the algorithm.

Example

The General Case

Challenge: How can we compute $f^n(c)$ for arbitrary f, n, and c?

Representing curves as measured train tracks:

A basis of train tracks:

Image of a train track under a homeomorphism:

Unzip h(t) to obtain a basis train track:

In progress work: Generalize across all surfaces, homeomorphisms, and curves.