Problem 1

Let $G:\{0,1\}^n \to \{0,1\}^{2n}$ be a pseudorandom generator. Let $s \overset{\$}{\leftarrow} \{0,1\}^n, r \overset{\$}{\leftarrow} \{0,1\}^{2n}$ and y=G(s). Consider the function $P_{r,y}$ defined by:

- 1. On input $x \in \{0,1\}^n$, check that $G(x) \oplus r = y$.
- 2. If true output 1; otherwise, output 0.

Show for any PPT \mathcal{A} with input (r, y) and output $x \in \{0, 1\}^n$,

$$\Pr \left[P_{r,y}(x) = 1 : x \leftarrow \mathcal{A}(r,y) \right] \le \nu(n).$$

Solution: Consider the following sequence of manipulations:

$$\Pr \big[P_{r,y}(x) = 1 : x \leftarrow \mathcal{A}(r,y), r \leftarrow \{0,1\}^{2n}, y \leftarrow G(s), s \leftarrow \{0,1\}^n \big]$$

$$=\Pr\big[G(x)\oplus r=y:x\leftarrow\mathcal{A}(r,y),r\leftarrow\{0,1\}^{2n},y\leftarrow G(s),s\leftarrow\{0,1\}^n\big]$$

$$= \Pr[G(x) \oplus r = G(s) : x \leftarrow \mathcal{A}(r, G(s)), r \leftarrow \{0, 1\}^{2n}, s \leftarrow \{0, 1\}^n]$$
$$= \Pr[G(x) = r \oplus G(s) : x \leftarrow \mathcal{A}(r, G(s)), r \leftarrow \{0, 1\}^{2n}, s \leftarrow \{0, 1\}^n]$$

$$= \Pr[G(x) = r \oplus G(s) : x \land \mathcal{A}(r, G(s)), r \land \{0, 1\}^{2n}, a \leftarrow \{0, 1\}^{2n}]$$

$$= \Pr[G(x) = r \oplus a : x \leftarrow \mathcal{A}(r, a), r \leftarrow \{0, 1\}^{2n}, a \leftarrow \{0, 1\}^{2n}]$$

$$=\Pr[G(x)=r\oplus a:x\leftarrow\mathcal{A}(r\oplus a,a),r\leftarrow\{0,1\}^{2n},a\leftarrow\{0,1\}^{2n}]$$

$$= \Pr[G(x) = r \oplus a : x \leftarrow \mathcal{A}(r \oplus a, a), r \leftarrow \{0, 1\}^{2n}, a \leftarrow \{0, 1\}^{2n}]$$
$$= \Pr[G(x) = b : x \leftarrow \mathcal{A}(b, a), b \leftarrow \{0, 1\}^{2n}, a \leftarrow \{0, 1\}^{2n}]$$

$$\begin{split} &= \Pr \Big[G(x) = G(d) : x \leftarrow \mathcal{A}(G(d), a), d \overset{\$}{\leftarrow} \{0, 1\}^{2n}, a \overset{\$}{\leftarrow} \{0, 1\}^{2n} \Big] \Pr \Big[b \in G\big(\{0, 1\}^{2n}\big) : b \overset{\$}{\leftarrow} \{0, 1\}^{2n} \Big] \\ &+ 0 \cdot \Pr \Big[b \not\in G\big(\{0, 1\}^{2n}\big) : b \overset{\$}{\leftarrow} \{0, 1\}^{2n} \Big] \end{split}$$

$$\leq \Pr \Big[G(x) = G(d) : x \leftarrow \mathcal{A}(G(d), a), d \overset{\$}{\leftarrow} \{0, 1\}^{2n}, a \overset{\$}{\leftarrow} \{0, 1\}^{2n} \Big]$$

$$=\Pr\Big[G(\mathcal{A}(G(d),a))=G(d):d\xleftarrow{\$}\{0,1\}^{2n},a\xleftarrow{\$}\{0,1\}^{2n}\Big]$$

$$\leq \nu(n),$$

where $\nu(n)$ is a negligible function. Notice we used the fact that that G is a one-way function because it's a pseudorandom generator. Further, we equated $\mathcal{A}(r,a)$ and $\mathcal{A}(r\oplus a,a)$, since the adversary \mathcal{A} can recover r with $(r\oplus a)\oplus a$. Therefore, we have that for any PPT \mathcal{A} with input (r,y) and output $x\in\{0,1\}^n$, we have

$$\Pr \big[P_{r,y}(x) = 1 : x \leftarrow \mathcal{A}(r,y) \big] \leq \nu(n).$$