7.2

Wir beweisen per Gegenbeweis und nehmen hierzu an, dass L_1 kontextfrei ist.

So lässt sich das Pumping-Lemma anwenden und es gibt eine kontextfreie Grammatik G_1 mit k Variablen und rechter Regelseite der Länge $\leq k$ die L_1 erzeugt. Sei g zudem die Pumping-konstante und $|z| \geq g$, so gilt:

$$\exists uvwxy \in \Sigma^* : z = uvwxy$$

$$\iff \exists jklmn \in \mathbb{N}_{\geq 0} : z = a^j a^k a^l a^m a^n$$

$$\iff \exists jklmn \in \mathbb{N}_{\geq 0} : z = a^{j+k+l+m+n}$$

Da $z \in L_1$ muss (j+k+l+m+n) prim sein. Nach dem Pumping-Lemma muss auch für ein beliebiges i $uv^iwx^iy \in L_1$ sein. Setze i:= (j+l+n), so muss folgendes $z' = uv^{(j+l+n)}wx^{(j+l+n)}y \in L_1$ gelten. Zudem gilt:

$$z' = uv^{(j+l+n)}wx^{(j+l+n)}y$$

$$= a^{j}a^{(j+l+n)\cdot k}a^{l}a^{(j+l+n)\cdot m}a^{n}$$

$$= a^{j+(j+l+n)\cdot k+l+(j+l+n)\cdot m+n}$$

$$= a^{(j+l+n)\cdot (k+m+1)}$$

$$\iff (j+l+n)\cdot (k+m+1) \text{ prim}$$

$$\iff^{1} \text{WSP}$$

1) führt zum Widerspruch, da $vx \neq \epsilon \iff k+m \geq 1$ gilt. Somit ist die Sprache nicht kontextfrei.

7.3

Wir beweisen per Gegenbeweis und nehmen hierzu an, dass L_2 kontextfrei ist. So lässt sich das Pumping-Lemma anwenden und es gibt eine kontextfreie Grammatik G_2 mit k Variablen und rechter Regelseite der Länge $\leq k$ die L_2 erzeugt. Sei n zudem die Pumping-konstante und $|z| \geq n$, so gilt:

$$z := uvwxy$$

$$u := a^{j}$$

$$v := b^{k}$$

$$w := \epsilon$$

$$x := a^{j}$$

$$y := b^{k}$$

$$j \neq k$$

So ist $z \in L_2$, dementsprechend müsste nach dem Pumping-Lemma ebenfalls $z' = uv^i w x^i y \in L_2$ sein, jedoch gilt:

$$z' = uv^{i}wx^{i}y$$
$$= a^{j}b^{k\cdot i}\epsilon a^{j\cdot i}b^{k}$$

Da $k \neq j \Rightarrow (k \cdot i) \neq (j \cdot i)$ ist $z' \notin L_2$, dementsprechend ist die Sprache nicht kontextfrei.

7.4

Sei n die Pumping Lemma Zahl zu L. Jedes Wort $ez \in L$ der Länge $\leq n$ lässt sich zerlegen in uvwxy mit den Eigenschaften 1,2,3 des Punmping Lemmas. Da $L \subset \{a\}^*$ für ein Zeichen a gilt, können diese Eigenschaften einfacher formuliert werden: Es gilt $z = a^m = a^k a^l$, wobei $m \geq n, k+l = m, 1 \leq l \leq n$, und $a^k a^{il} \in L$ für $i \in \mathbb{N}$. Für jedes $z \in L, |z| \geq n$, insgesamt nur endlich viele l-Werte vor, sagen wir $l_1, l_2, ..., l_p$. Sei $q \geq n$ eine Zahl, die vor allen l_i geteilt wird (etwa q = n!); und sei $q' \geq q$ eine geeignet gewählteSZahl, die wir noch später bestimmen. Betrachte die Sprache

$$L' = \{x \in L | |x| \le q\} \cup \{a^r a^i q | q \le r \le q', a^r \in L, i \in N\}$$

Dann ist L' sicherlich regulär, und es ist klar, dass $L' \subset L$ gilt. Wir zeigen wenn q' genügent großist, dann gilt auch $L \subset L'$. Bis zu Wörtern der Länge $\leq q$ stimmen L und L' überein. Sei nun $z = a^r$ in L gibt mit $q \leq r \leq q'$ und $r \equiv m \pmod{q}$.

Damit ist nun alles klar: Wir wählen q' so groß, dass die Wörter in L mit den Längen q,...,q' alle möglichen Reste modulo q bilden, die unter allen Wörtern in L (der Länge $\geq q$) überhaupt auftreten. Da es nur endlich viele solche Reste gibt, gibt es eine solche endliche Zahl q'.