離散最適化基礎論 第 6 回 マトロイドに対する貪欲アルゴリズム

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2015年11月27日

最終更新: 2015年11月27日 11:23

離散最適化基礎論 (6)

岡本 吉男	k (電通大)	
		/ - \
スケジュー	ル 後半	(予定)

★ 休講 (国内出張)	(12/11)
₿ マトロイドに対する操作	(12/18)
🛭 マトロイドの交わり	(12/25)
★ 冬季休業	(1/1)
Ⅲ マトロイド交わり定理	(1/8)
⋆ 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
№ 最近のトピック	(1/29)
★ 授業等調整日 (予備日)	(2/5)
★ 期末試験	(2/12?)

注意: 予定の変更もありうる

岡本 吉央 (電通大)

離散最適化基礎論 (6)

015年11月27日 3

今日の目標

今日の目標

マトロイドに対する貪欲アルゴリズムの応用を見る

- ▶ 割当問題 (の一種)
- ▶ ジョブ・スケジューリング問題 (の一種)

鍵となる概念:横断マトロイド

岡本 吉央 (電通大)

離散最適化基礎論 (6)

2015年11月27日 !

マトロイドの定義

非空な有限集合 E,有限集合族 $\mathcal{I} \subseteq 2^E$

マトロイドとは?

I が E 上のマトロイド (matroid) であるとは、次の 3 条件を満たすこと

- (I1) $\emptyset \in \mathcal{I}$
- (12) $X \in \mathcal{I}$ かつ $Y \subseteq X$ ならば、 $Y \in \mathcal{I}$
- (I3) $X,Y\in\mathcal{I}$ かつ |X|>|Y| ならば、 ある $e\in X-Y$ が存在して、 $Y\cup\{e\}\in\mathcal{I}$

補品

- ▶ (I1) と (I2) は T が独立集合族であることを意味する
- ▶ (I3) を増加公理 (augmentation property) と呼ぶことがある

用語

▶ \mathcal{I} の要素である集合 $X \in \mathcal{I}$ を、このマトロイドの独立集合と呼ぶ

スケジュール 前半 (予定)

⋆ 休講 (卒研準備発表会)	(10/2)
1 組合せ最適化問題におけるマトロイドの役割	(10/9)
★ 休講 (海外出張)	(10/16)
2 マトロイドの定義と例	(10/23)
3 マトロイドの基と階数関数	(10/30)
4 グラフとマトロイド	(11/6)
5 マトロイドとグラフの全域木	(11/13)
★ 休講 (調布祭)	(11/20)
6 マトロイドに対する貪欲アルゴリズム	(11/27)
7 マトロイドのサーキット	(12/4)

離散最適化基礎論 (6)

注意:予定の変更もありうる

岡本 吉央 (電通大)

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

疑問

どうしてそのような違いが生まれるのか?

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

゚゙ポイント

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

| 図本 吉央 (電通大) | 雑散最適化基礎論 (6)

2015年11月27日 4/57

目次

- マトロイドに対する貪欲アルゴリズム:前回の復習
- ❷ 横断マトロイド
- ❸ 例:割当問題
- ❹ 例:ジョブ・スケジューリング問題
- 6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (6)

2015年11月27日 6/

独立集合族に対する貪欲アルゴリズム

E 上の独立集合族 \mathcal{F} , 重み $w: E \to \mathbb{R}_+$

最大独立集合問題に対する貪欲アルゴリズム

- **I** E の要素 e を w(e) の大きい順に並べる $(w(e_1) \geq w(e_2) \geq \cdots \geq w(e_n)$ であると仮定する)
- $\mathbf{2} \ X \leftarrow \emptyset$
- 3 すべての $i \leftarrow 1, 2, ..., n$ に対して,以下を繰り返し

$$X \leftarrow egin{cases} X \cup \{e_i\} & (X \cup \{e_i\} \in \mathcal{F} \ \mathfrak{O}$$
とき) $X \leftarrow X \cup \{e_i\} \notin \mathcal{F} \ \mathfrak{O}$ とき)

4 X を出力

: 吉央 (電通大) 離散最適化基礎論 (6) 2015 年 11 月 27 日

岡本 吉央 (電通大)

難散最適化基礎論 (6)

2015年11月27日 8/

マトロイドと貪欲アルゴリズム

非空な有限集合 E, E 上の独立集合族 F

マトロイドに対する貪欲アルゴリズムの正当性

F がマトロイド

任意の重み $w: E \to \mathbb{R}_+$ に対して, 貪欲アルゴリズムの出力は 最大独立集合問題の最適解

これによって解ける問題の例

▶ 最小全域木問題 (Kruskal のアルゴリズム = 貪欲アルゴリズム) 今日は他の例を見る

岡本 吉央 (電通大)

離散最適化基礎論 (6)

岡本 吉央 (電通大)

二部グラフのマッチング

無向グラフ G = (V, E)

グラフのマッチングとは? (復習)

G のマッチングとは、G の辺部分集合 $M \subseteq E$ で、

2 横断マトロイド

3 例:割当問題

目次

離散最適化基礎論 (6)

任意の頂点 $v \in V$ に対して、v に接続する M の辺が 1 つ以下であるもの

● マトロイドに対する貪欲アルゴリズム:前回の復習

▲ 例:ジョブ・スケジューリング問題

二部グラフ

ここで扱うグラフは、無向グラフで、並列辺や自己閉路を持たない

二部グラフとは?

無向グラフG = (V, E)が二部グラフ (bipartite graph) であるとは、 頂点集合 V の分割 $\{A, B\}$ (つまり、 $A \cup B = V, A \cap B = \emptyset$) が存在して、 任意の辺 $e \in E$ に対して、e の一端点がA、他方がB の要素であるもの

 $A = \{1, 2, 3, 4\}, B = \{5, 6, 7, 8, 9\}$

この分割を使って, G=(A,B;E) や G=(A,B,E) と表記することもある

マッチングが飽和する頂点

離散最適化基礎論 (6)

マッチングMの辺の端点は、Mによって飽和される(saturated)という

このマッチングが飽和する頂点は1,2,4,5,7,8で,

(8)

岡本 吉央 (電通大)

横断マトロイド

二部グラフ G = (A, B; E)

横断マトロイド (transversal matroid) とは?

G から得られる A 上の横断マトロイドとは、A 上のマトロイド \mathcal{I} で、

 $X \in \mathcal{I}$

X を飽和する G のマッチングが存在する

によって定義されるもの

- $A = \{1, 2, 3, 4\}$
- ▶ $\{1, 2, 4\} \in \mathcal{I}$

岡本 吉央 (電通大)

他の頂点は飽和されない

離散最適化基礎論 (6)

岡本 吉央 (電通大)

離散最適化基礎論 (6)

横断マトロイド:例

 $A = \{1, 2, 3, 4\}$

台集合を A とする横断マトロイドを考えると、その基族は

 $\mathcal{B} = \{\{1,2,3\},\{1,2,4\},\{1,3,4\}\}$

横断マトロイド:証明 (1)

今からやること

横断マトロイドが確かにマトロイドであることの確認

(I1), (I2) は簡単なので演習問題として、ここでは (I3) を確認する

(I3) マトロイドの増加公理

 $X, Y \in \mathcal{I} \text{ bol} |X| > |Y| \text{ asign}$ ある $e \in X - Y$ が存在して、 $Y \cup \{e\} \in \mathcal{I}$

証明: $X,Y \in \mathcal{I}$ かつ |X| > |Y| であると仮定

- ▶ 横断マトロイドの定義から、X を飽和するマッチング Mと Yを飽和するマッチング N が存在
- ▶ $|X| > |Y| \& \emptyset$, |M| > |N|

横断マトロイド:証明 (2)

ここで, $(M \cup N)$ – $(M \cap N)$ (つまり, $M \in N$ の対称差) を考える

岡本 吉央 (電通大)

離散最適化基礎論 (6)

岡本 吉央 (電通大)

▶ その道を P とする

横断マトロイド:証明 (3)

 $(M \cup N) - (M \cap N)$ を見ると,

離散最適化基礎論 (6)

▶ |M| > |N| なので、必ず、M の辺を両端に持つ道がどこかに存在

G のどの頂点も M の1つ以下の辺と N の1つ以下の辺と接続している

▶ すなわち, $(M \cup N) - (M \cap N)$ の辺をたどると, M の辺と N の辺が必ず交互に現れる ▶ すなわち、たどってできるものは道か閉路である

横断マトロイド:証明 (4)

ここで,新しいマッチング N'を以下のように作る

- ▶ その道 P においては、 M の辺を N' に含め、N の辺は N' に含めない
- ▶ その他の部分では、 N の辺を N' に含め、M の辺は N' に含めない

Pの両端はMの辺なので、N'は確かにマッチングである

岡本 吉央 (電通大)

離散最適化基礎論 (6)

横断マトロイド

二部グラフ G = (A, B; E)

横断マトロイド (transversal matroid) とは?

G から得られる A 上の横断マトロイドとは、A 上のマトロイド I で、

 $X \in \mathcal{I}$

X を飽和する G のマッチングが存在する

によって定義されるもの

今おこなったこと

▶ 横断マトロイドが確かにマトロイドであることの確認 (証明)

今からおこなうこと

▶ 横断マトロイドが貪欲アルゴリズムとの関連で現れる様子の観察

岡本 吉央 (電通大)

離散最適化基礎論 (6)

離散最適化基礎論 (6)

割当問題 (の一種): 状況 (1)

次のような状況を考える

- ▶ 仕事: J₁, J₂, ..., J_n (n 個)
 - ▶ 仕事 J_i を遂行した際に得られる利益 p_i (非負実数)
- 雇用者: $W_1, W_2, \ldots, W_m (m \land)$
 - ightharpoons 雇用者 W_j が遂行できる仕事の集合 F_j

横断マトロイド:証明 (5)

N' が飽和する A の頂点は何であるか,見てみる

- ▶ 構成法から、Nが飽和する頂点はN'も飽和する
- ▶ N' N の辺は M の辺であるので, N'-N の端点は N が飽和していない頂点である
- ► |N'| = |N| + 1 なので, そのような頂点は、Aの中にちょうど1つある
- ightharpoonup それを e とすれば, $Y \cup \{e\}$ が N' によって飽和される頂点の集合
- \therefore ある $e \in X Y$ が存在して, $Y \cup \{e\} \in \mathcal{I}$ となる

岡本 吉央 (電通大)

離散最適化基礎論 (6)

目次

- マトロイドに対する貪欲アルゴリズム:前回の復習
- △ 横断マトロイド
- 3 例:割当問題
- 6 今日のまとめ

岡本 吉央 (電通大)

割当問題 (の一種): 状況 (2)

次のような状況を考える (続き)

- ▶ どの仕事も一人の雇用者で遂行でき、遂行に1時間かかる
- ▶ 一人の雇用者は2つの仕事を同時に遂行できない

割当問題 (の一種):問題

問題

1時間で得られる利益が最大になるように仕事を遂行できるよう, 雇用者に仕事を割り当てるにはどうすればよいか?

岡本 吉央 (電通大)

離散最適化基礎論 (6)

割当問題:仕事の割当 ↔ マッチング

離散最適化基礎論 (6)

割当問題:マッチングと得られる利益(2)

得られる利益 = 7 + 9 + 10 + 13 = 39

最適な割当

岡本 吉央 (電通大)

離散最適化基礎論 (6)

割当問題:二部グラフの構成

割当問題:マッチングと得られる利益(1)

得られる利益 = 3 + 7 + 9 + 13 = 32

離散最適化基礎論 (6)

割当問題 → 横断マトロイドの最大独立集合問題

この割当問題は「マトロイドの最大独立集合問題」

- ▶ 台集合 A = {J₁,...,J_n} (仕事の集合)
- ▶ 考えるマトロイド: A 上の横断マトロイド
 - ▶ 二部グラフ (A, B; E)

 - ► $B = \{W_1, \dots, W_m\}$ (雇用者の集合) ► $\{J_i, W_j\} \in E \Leftrightarrow J_i \in F_j$ (W_j が遂行できる仕事の集合)
- ▶ 要素 J_i ∈ A の重み = p_i

岡本 吉央 (電通大)

離散最適化基礎論 (6)

割当問題: 貪欲アルゴリズムの動き (2)

割当問題: 貪欲アルゴリズムの動き (3)

(W_4) J_2 J_3 $p_3 = 7$ $p_5 = 10$ $p_1 = 3$ $p_2 = 4$ $p_4 = 9$ $p_6 = 13$

割当問題:貪欲アルゴリズムの動き (4)

岡本 吉央 (電通大)

離散最適化基礎論 (6)

岡本 吉央 (電通大) 離散最適化基礎論 (6)

割当問題:貪欲アルゴリズムの動き (5)

割当問題:貪欲アルゴリズムの動き(6)

貪欲アルゴリズムによって得られた最適解

目次

● マトロイドに対する貪欲アルゴリズム:前回の復習

❷ 横断マトロイド

③ 例:割当問題

❹ 例:ジョブ・スケジューリング問題

6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (6)

ジョブ・スケジューリング問題 (の一種):状況

次のような状況を考える

1台の機械でいくつものジョブを処理する

▶ ジョブ *J*₁, *J*₂, . . . , *J*_n (n 個)

▶ どのジョブの処理時間も同じ (1時間とする)

 J_1

 J_2

 J_3

 J_4

 J_5

 J_6

岡本 吉央 (電通大)

離散最適化基礎論 (6)

岡本 吉央 (電通大)

離散最適化基礎論 (6)

ジョブ・スケジューリング問題 (の一種): 状況

次のような状況を考える

各ジョブ J_i は次の値を持つ

- ▶ 納期 d; (完了期限)
- ▶ コスト c_i

納期までに完了しなかったジョブに対してコストを払う

 J_1

ジョブ・スケジューリング問題 (の一種):問題

問題

払うコストを最小にするようなジョブ処理順は何か?

 \int_1 J_2 J_3 J_4 納期 d; 3 2 1 1 コスト c_i 10 9

コスト = 9+6+4=19

 J_6

ジョブ・スケジューリング問題 (の一種):別のジョブ処理順

払うコストを最小にするようなジョブ処理順は何か?

コスト = 9 + 4 = 13

岡本 吉央 (電通大)

離散最適化基礎論 (6)

2015年11月27日 41/57

離散最適化基礎論 (6)

 \Leftrightarrow

コスト和 = 19 岡本 吉央 (電通大)

遅延しなかったジョブの

3 6

 d_1 d_4 d_3

遅延したジョブの

コスト和 = 13

コスト和 = 25

 d_2

 $| J_1 | J_4 | J_3 | J_6 | J_2 | J_5$

遅延しなかったジョブの

コスト和最大化

6 4

 J_3

3

ジョブ・スケジューリング問題:遅延しない時間帯に割り当てる

離散最適化基礎論 (6)

ジョブ・スケジューリング問題:割当とコスト (1)

ジョブ・スケジューリング問題:目的の見直し

遅延したジョブの

納期 d_i 1

コスト c_i 10 9

コスト和最小化

遅延しなかったジョブの

 d_1 d_4 d_3

遅延したジョブの

コスト和 = 19

 d_2

割り当てられたジョブのコスト和 = 19

岡本 吉央 (電通大)

ジョブ・スケジューリング問題:割当とコスト (2)

割り当てられたジョブのコスト和 = 25

岡本 吉央 (雷诵大)

ジョブ・スケジューリング問題 → 横断マトロイドの最大独立集合問題

このスケジューリング問題は「マトロイドの最大独立集合問題」

- ト 台集合 $A = \{J_1, \ldots, J_n\}$ (ジョブの集合)
- ▶ 考えるマトロイド: A上の横断マトロイド
 - ▶ 二部グラフ (A, B; E)
 - ► B = {1,2,...,n} (時間帯の集合)
 - $\{J_i, j\} \in E \Leftrightarrow j \leq d_i$
- ▶ 要素 $J_i \in A$ の重み = c_i

岡本 吉央 (電通大)

離散最適化基礎論 (6)

ジョブ・スケジューリング問題: 貪欲アルゴリズムの動き (1)

ジョブ・スケジューリング問題: 貪欲アルゴリズムの動き (2)

ジョブ・スケジューリング問題: 貪欲アルゴリズムの動き (3)

$c_1 = 10$ $c_2 = 9$ $c_3 = 7$ $c_4 = 6$ $c_5 = 4$ $c_6 = 2$ J_5 $\int J_6$ J_4 J_1 J_2 *J*₃ 4 5 3

ジョブ・スケジューリング問題:貪欲アルゴリズムの動き (4)

岡本 吉央 (電通大)

離散最適化基礎論 (6)

 $c_1 = 10$ $c_2 = 9$ $c_3 = 7$ $c_4 = 6$ $c_5 = 4$ $c_6 = 2$

*J*₄

*J*₃

ジョブ・スケジューリング問題: 貪欲アルゴリズムの動き (5)

 J_2

 J_6

岡本 吉央 (電通大)

離散最適化基礎論 (6)

ジョブ・スケジューリング問題: 貪欲アルゴリズムの動き (6)

貪欲アルゴリズムによって得られた最適解

離散最適化基礎論 (6)

離散最適化基礎論 (6)

ジョブ・スケジューリング問題:得られた最適処理順

岡本 吉央 (電通大)

離散最適化基礎論 (6)

目次

● マトロイドに対する貪欲アルゴリズム:前回の復習

❷ 横断マトロイド

❸ 例:割当問題

△ 例:ジョブ・スケジューリング問題

6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (6)

今回のまとめ

今日の目標

マトロイドに対する貪欲アルゴリズムの応用を見る

- ▶ 割当問題 (の一種)
- ▶ ジョブ・スケジューリング問題 (の一種)

鍵となる概念:横断マトロイド

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK