

Chapitre IV – La fonction exponentielle

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES	
I - Le nombre e	1
II - La fonction exponentielle 1. Définition 2. Relations algébriques 3. Représentation graphique	2 2 3 3
III - Étude de la fonction1. Dérivée	5 5 5 5

I - Le nombre e

Le **nombre d'Euler** e (également appelé constante de Neper) est une constante mathématique dont une valeur approchée est :

À RETENIR 💡

 $e \approx 2,71828$

Cependant, une définition plus exacte de e existe :

À RETENIR 💡

On définit la suite $(e_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ par $e_n=\left(1+\frac{1}{n}\right)^n$. Alors la limite de la suite $(e_n)_{n\in\mathbb{N}}$ en $+\infty$ est e.

À LIRE 👀

Grâce à cette définition, il est plus facile de construire un algorithme pour approximer e.

II - La fonction exponentielle

1. Définition

La fonction exponentielle notée e^x (ou parfois $\exp(x)$) pour tout x réel est l'unique fonction f définie sur $\mathbb R$ remplissant les critères suivants :

À RETENIR 💡

- f est dérivable sur $\mathbb R$ et f'=f
- $f > 0 \operatorname{sur} \mathbb{R}$
- f(0) = 1

L'existence de cette fonction est admise, il faut cependant en démontrer l'unicité.

Soit une autre fonction g vérifiant les mêmes propriétés que notre fonction f. On pose pour tout $x \in \mathbb{R}$, $h(x) = \frac{f(x)}{g(x)}$.

Comme g ne s'annule pas et que h est un quotient de fractions dérivables ne s'annulant pas sur \mathbb{R} , h est dérivable sur \mathbb{R} .

D'où pour tout $x \in \mathbb{R}$, $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} = 0$ (car f = f' et g = g').

On a donc h constante sur \mathbb{R} et la valeur de h est $h(0) = \frac{f(0)}{g(0)} = 1$.

Pour tout $x \in \mathbb{R}$, $h(x) = 1 \iff \frac{f(x)}{g(x)} = 1 \iff f(x) = g(x)$. Donc g = f.

À LIRE 00

Comme la fonction exponentielle est composée d'un réel ($e \approx 2,718$) et d'un exposant réel (x), les opérations sur les exposants sont disponibles, comme par exemple pour $x, y \in \mathbb{R}$:

$$-e^{x+y}=e^x\times e^y$$

$$-e^{x+y} = e^x \times e^y$$

$$-e^{x-y} = \frac{e^x}{e^y}$$

$$-e^{-x} = \frac{1}{e^x}$$

$$-(e^x)^y = e^{x \times y}$$

$$-e^{-x} = \frac{1}{e^x}$$

$$-(e^x)^y = e^{x \times y}$$

Et bien entendu, $e^0 = 1$.

2. Relations algébriques

La fonction exponentielle a plusieurs propriétés algébriques qu'il faut connaître. Ainsi, pour tous réels x et y:

A RETENIR •
$$-e^{x} = e^{y} \iff x = y$$
$$-e^{x} < e^{y} \iff x < y$$

3. Représentation graphique

Voici une représentation graphique de la fonction exponentielle (courbe bleue) et de sa tangente au point d'abscisse 0 :

On voit plusieurs propriétés données précédemment : $e^0=1$, $e\approx 2,718$, etc... Mais également d'autres propriétés que verrons par la suite comme le fait que la fonction soit **strictement positive** sur \mathbb{R} . À noter que la **tangente** à sa courbe représentative en x=0 est y=x+1.

À LIRE 99

Il peut être utile de savoir représenter une courbe d'une fonction du type $x\mapsto e^{kx}$ avec $k\in\mathbb{R}$:

- L'image de 0 par ces fonctions est toujours 1.
- Plus k est grand, plus la croissance est forte et rapide.
- Si k est négatif, la courbe est symétrique à celle de $x\mapsto e^{-kx}$ par rapport à l'axe des ordonnées.

III - Étude de la fonction

1. Dérivée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

À RETENIR ¶

$$(e^{u(x)})'=u'(x)e^{u(x)}$$

Ainsi, si pour tout $x \in I$ on a u(x) = x:

À RETENIR

$$(e^x)'=e^x$$

Cette propriété a été donnée dans la section "Définition".

2. Variations

Avec la dérivée donnée précédemment, il est désormais possible d'obtenir les variations de la fonction exponentielle :

х	$-\infty$	$+\infty$
$(e^x)'$	-	H
e^{x}	0	+∞

On remarque sur le tableau de variation que la fonction exponentielle est strictement positive et croissante sur \mathbb{R} .

3. La suite $(e^{na})_{n\in\mathbb{N}}$

Soit $a \in \mathbb{R}$:

À RETENIR 🖁

La suite $(e^{na})_{n\in\mathbb{N}}$ est une suite géométrique de raison a et de premier terme 1.

DÉMONSTRATION 🧠

On pose pour tout $n \in \mathbb{N}$, $u_n = e^{na}$. Calculons $u_{n+1} : u_{n+1} = e^{(n+1)a} = e^{na} \times e^a = u_n \times e^a$. Et $u_0 = e^0 = 1$.