北京工业大学 2014-2015 学年第一学期期末 数理统计与随机过程(研)课程试卷

学号	姓名	成绩
----	----	----

注意: 试卷共七道大题, 请写明详细解题过程。数据最后结果保留3位小数。

考试方式: 半开卷, 考试时**只允许看教材**《概率论与数理统计》 浙江大学 盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时**允许使用计算器**。

考试时间 120 分钟。考试日期: 2014年 12月 29日

- 一、(10 分) 某种零件的重量 X (单位: 千克) 服从正态分布 $N(\mu, \sigma^2)_{,}$ 今抽取容量为 16 的样本, 由观测值得: $\bar{x}=4.856, S^2=0.04$. 取显著性水平为 $\alpha=0.05$, 检验
 - (1) $H_0: \mu \le 5$, $H_1: \mu > 5$
 - (2) H_0 : $\sigma^2 = 0.04$, H_1 : $\sigma^2 \neq 0.04$

二、(15分)一批灯泡中取300只作寿命试验,其结果如下:

寿命 t (小时)	<100	[100, 200)	[200, 300)	≥300
灯泡数	121	78	43	58

在显著性水平 $\alpha = 0.05$ 下, 试检验假设

H₀: 灯泡寿命服从指数分布

$$f(x) = \begin{cases} 0.005e^{-0.005t}, & t \ge 0\\ 0, & t < 0. \end{cases}$$

$$\begin{array}{l} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \\ = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \\ = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

三、(15 分) 以 x 和 Y 分别表示人的脚长 (英寸) 与手长 (英寸),以下数据给出了 6 名女子的脚的长度 x 与手的长度 Y 的样本值:

х	9	8. 5	9. 5	10	9. 25	9
Y	6. 5	6. 25	6. 5	7	7	6. 75

- (1) 求 Y 关于 x 的线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2)对回归方程进行显著性检验(取 $\alpha = 0.10$);
- (3) 求b 的置信水平为 0.90 的置信区间。

四、(15分)某家电制造公司准备购进一批5号电池,现有A,B,C三个电池生产企业愿意供货,为比较它们生产的电池质量,从每个企业随机抽取5只电池,经试验测得其寿命(单位:小时)数据如下:

企业		电池寿命				
A	50	50	43	40	39	
В	32	28	30	34	26	
C	45	42	38	48	40	

- (1) 各个企业的电池寿命有无显著性差异? (显著性水平 $\alpha = 0.05$)
- (2) 如果各个企业的电池寿命有显著性差异,求 A、B 企业均值差 $\mu_A \mu_B$ 的置信水平为 95%的置信区间。

五、(15分)设 $\{N(t), t \ge 0\}$ 是强度为 λ 的 Poisson 过程, $\forall s, t > 0$,试求

- (1) E[N(s)N(t)];
- (2) $P{N(t+s) = j | N(s) = i};$
- (3) $P\{N(s) = i \mid N(t+s) = j\}.$

六、(15分)设 $\{X_n, n \ge 0\}$ 为时齐马氏链,状态空间 $I = \{1,2,3\}$,一步转移概率矩阵为

$$P = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} & 0\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\ 0 & \frac{3}{4} & \frac{1}{4} \end{pmatrix}$$

初始分布 $P(X_0 = 1) = P(X_0 = 2) = P(X_0 = 3) = \frac{1}{3}$,

- (1) 求P($X_0 = 1, X_2 = 2, X_3 = 3$)的值;
- (2) 求P($X_2 = 2, X_1 \neq 2 \mid X_0 = 3$)的值;
- (3) 判断 $\{X_n, n \geq 0\}$ 是否为遍历的,请说明理由;若是遍历的,求其平稳分布。

七、(15分)设 $X(t) = \sin \Theta t$, 其中 Θ 服从 (0, 2π) 上的均匀分布。证明 $\{X(t), t=1, 2, \cdots\}$ 为宽平稳序列。