

CD4049UB, CD4050B

SCHS046J-AUGUST 1998-REVISED SEPTEMBER 2016

CD4049UB and CD4050B CMOS Hex Inverting Buffer and Converter

1 Features

- CD4049UB Inverting
- CD4050B Noninverting
- · High Sink Current for Driving 2 TTL Loads
- · High-to-Low Level Logic Conversion
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of 1 μA at 18 V Over Full Package Temperature Range; 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V Parametric Ratings

2 Applications

- CMOS to DTL or TTL Hex Converters
- · CMOS Current Sink or Source Drivers
- CMOS High-to-Low Logic Level Converters

Schematic Diagram of CD4049UB

1 of 6 Identical Units

3 Description

The CD4049UB and CD4050B devices are inverting and noninverting hex buffers, and feature logic-level conversion using only one supply voltage (V_{CC}). The input-signal high level (V_{IH}) can exceed the V_{CC} supply voltage when these devices are used for logic-level conversions. These devices are intended for use as CMOS to DTL or TTL converters and can drive directly two DTL or TTL loads. (V_{CC} = 5 V, V_{OL} \leq 0.4 V, and I_{OL} \geq 3.3 mA.)

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
CD4049UBE, CD4050BE	PDIP (16)	3.90 mm × 19.30 mm
CD4049UBD, CD4050BD	SOIC (16)	9.90 mm × 3.91 mm
CD4049UBDW, CD4050BDW	SOIC (16)	10.30 mm × 7.50 mm
CD4049UBNS, CD4050BNS	SO (16)	19.30 mm × 6.35 mm
CD4049UBPW, CD4050BPW	TSSOP (16)	5.00 mm × 4.40 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Diagram of CD4050B

Copyright © 2016, Texas Instruments Incorporated

1 of 6 Identical Units

Table of Contents

1	Features 1	8.3 Feature Description13
2	Applications 1	8.4 Device Functional Modes14
3	Description 1	9 Application and Implementation 15
4	Revision History2	9.1 Application Information15
5	Pin Configuration and Functions3	9.2 Typical Application15
6	Specifications4	10 Power Supply Recommendations 16
•	6.1 Absolute Maximum Ratings 4	11 Layout 16
	6.2 ESD Ratings	11.1 Layout Guidelines 16
	6.3 Recommended Operating Conditions	11.2 Layout Example 16
	6.4 Thermal Information	12 Device and Documentation Support 17
	6,5 Electrical Characteristics: DC	12.1 Documentation Support
	6,6 Electrical Characteristics: AC9	12.2 Related Links 17
	6.7 Typical Characteristics 10	12.3 Receiving Notification of Documentation Updates 17
7	Parameter Measurement Information 11	12.4 Community Resources
	7.1 Test Circuits 11	12.5 Trademarks 17
8	Detailed Description 13	12.6 Electrostatic Discharge Caution
•	8.1 Overview	12.7 Glossary17
	8.2 Functional Block Diagram	13 Mechanical, Packaging, and Orderable Information17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision I (May 2004) to Revision J

Page

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	1
•	Deleted Ordering Information table; see POA at the end of the data sheet	1
•	Changed Storage temperature minimum value from 65 to –65	4
•	Changed $R_{\theta JA}$ values for the CD4049UB device: D (SOIC) from 73 to 81.6, DW (SOIC) from 57 to 81.6, E (PDIP) from 67 to 49.5, NS (SO) from 64 to 84.3, and PW (TSSOP) from 108 to 108.9	5
•	Changed $R_{\theta JA}$ values for the CD4050B device: D (SOIC) from 73 to 81.6, DW (SOIC) from 57 to 81.2, E (PDIP) from 67 to 49.7, NS (SO) from 64 to 83.8, and PW (TSSOP) from 108 to 108.4	5

5 Pin Configuration and Functions

Pin Functions: CD4049UB

PIN I/O		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
Α	3	I	Input 1
В	5	I	Input 2
С	7	I	Input 3
D	9	I	Input 4
Е	11	I	Input 5
F	14	I	Input 6
G	2	0	Inverting output 1. G = A
Н	4	0	Inverting output 2. H = \overline{B}
I	6	0	Inverting output 3. I = \overline{C}
J	10	0	Inverting output 4. J = \overline{D}
K	12	0	Inverting output 5. K = \overline{E}
L	15	0	Inverting output 6. L = F
NC	13, 16	_	No connection
VCC	1	_	Power pin
VSS	8	_	Negative supply

Copyright © 1998–2016, Texas Instruments Incorporated

Pin Functions: CD4050B

Р	IN	I/O	DESCRIPTION					
NAME	NO.	1/0	DESCRIPTION					
Α	3	Ι	Input 1					
В	5	I	Input 2					
С	7	I	Input 3					
D	9	I	Input 4					
E	11	I	Input 5					
F	14	I	Input 6					
G	2	0	Inverting output 1. G = A					
Н	4	0	Inverting output 2. H = B					
ı	6	0	Inverting output 3. I = C					
J	10	0	Inverting output 4. J = D					
K	12	0	Inverting output 5. K = E					
L	15	0	Inverting output 6. L = F					
NC	13, 16	_	No connection					
VCC	1	_	Power pin					
VSS	8	_	Negative supply					

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage	VCC to VSS	-0.5	20	V
DC input current, I _{IK}	Any one input		±10	mA
Lead temperature (soldering, 10 s)	SOIC, lead tips only		265	°C
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		– 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	, v

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	3	18	V
T _A	Operating temperature	– 55	125	°C

Product Folder Links: CD4049UB CD4050B

6.4 Thermal Information

				CD4049UB					CD4050B			
THERMAL METRIC ⁽¹⁾		D (SOIC)	DW (SOIC)	E (PDIP)	NS (SO)	PW (TSSOP)	D (SOIC)	DW (SOIC)	E (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	81.6	81.6	49.5	84.3	108.9	81.6	81.2	49.7	83.8	108.4	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	41.5	44.5	36.8	43	43.7	41.5	44.1	37	42.5	43.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	39	46.3	29.4	44.6	54	39	45.9	29.6	44.1	53.5	°C/W
Ψυτ	Junction-to-top characterization parameter	10.7	16.5	21.7	12.8	4.6	10.7	16.1	21.9	12.5	4.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	38.7	45.8	29.3	44.3	53.4	38.7	45.4	29.5	43.8	52.9	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: DC

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
			T _A = -55 °C			1	
			T _A = -40 °C			1	
		$V_{IN} = 0 \text{ or } 5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = 25 °C		0.02	1	
			T _A = 85 °C			30	
			T _A = 125 °C			30	
			T _A = -55 °C			2	
			T _A = -40 °C			2	
		V _{IN} = 0 or 10 V, V _{CC} = 10 V	T _A = 25 °C		0.02	2	۵
			T _A = 85 °C			60	
I _{DD} (Max)	Quiescent device current		T _A = 125 °C			60	
IDD(IVIAX)	Quiescent device current		T _A = -55 °C			4	μA
			T _A = -40 °C			4	
		V _{IN} = 0 or 15 V, V _{CC} = 4 V	T _A = 25 °C		0.02	4	
			T _A = 85 °C			120	
			T _A = 125 °C			120	
			T _A = -55 °C			20	
			T _A = -40 °C			20	
		V _{IN} = 0 or 20 V, V _{CC} = 20 V	T _A = 25 °C		0.04	20	
			T _A = 85 °C			600	
			T _A = 125 °C			600	

⁽²⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics: DC (continued)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
			T _A = -55 °C			3.3	
			T _A = -40 °C			3.1	
		$V_{OUT} = 0.4 \text{ V}, V_{IN} = 0 \text{ or } 5 \text{ V}, V_{CC} = 4.5 \text{ V}$	T _A = 25 °C	2.6	5.2		
			T _A = 85 °C			2.1	
			T _A = 125 °C			1.8	
I _{OL} (Min) Output low (sink) current			T _A = -55 °C			4	
		T _A = -40 °C			3.8		
	$V_{OUT} = 0.4 \text{ V}, V_{IN} = 0 \text{ or } 5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = 25 °C	3.2	6.4			
			T _A = 85 °C			2.9	
I (Min)	Output low (ainly) aurrent		T _A = 125 °C			2.4	m A
I _{OL} (IVIIII)	Output low (SINK) current		T _A = -55 °C			10	mA
			T _A = -40 °C			9.6	
		$V_{OUT} = 0.5 \text{ V}, V_{IN} = 0 \text{ or } 10 \text{ V}, V_{CC} = 10 \text{ V}$	T _A = 25 °C	8	16		
			T _A = 85 °C			6.6	
			T _A = 125 °C			5.6	
			T _A = -55 °C			26	
			T _A = -40 °C			25	
		V _{OUT} = 1.5 V, V _{IN} = 0 or 15 V, V _{CC} = 15 V	T _A = 25 °C	24	48		
			T _A = 85 °C			20	
			T _A = 125 °C			18	
			T _A = -55 °C			-0.81	
		$V_{OUT} = 4.6 \text{ V}, V_{IN} = 0 \text{ or } 5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = -40 °C			-0.73	
			T _A = 25 °C	-0.65	-1.2		
			T _A = 85 °C			-0.58	
			T _A = 125 °C			-0.48	
			T _A = -55 °C			-2.6	
			T _A = -40 °C			-2.4	
		$V_{OUT} = 2.5 \text{ V}, V_{IN} = 0 \text{ or } 5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = 25 °C	-2.1	-3.9		
			T _A = 85 °C			-1.9	
I (Min)	Output high (source) ourrent		T _A = 125 °C			-1.55	m۸
I _{OH} (Min)	Output high (source) current		T _A = -55 °C			-2	mA
			T _A = -40 °C			-1.8	
		V _{OUT} = 9.5 V, V _{IN} = 0 or 10 V, V _{CC} = 10 V	T _A = 25 °C	-1.65	– 3		
			T _A = 85 °C			-1.35	
			T _A = 125 °C			-1.18	
			T _A = -55 °C			-5.2	
			T _A = -40 °C			-4.8	
		$V_{OUT} = 1.3 \text{ V}, V_{IN} = 0 \text{ or } 15 \text{ V}, V_{CC} = 15 \text{ V}$	T _A = 25 °C	-4.3	- 8		
			T _A = 85 °C			-3.5	
			T _A = 125 °C			-3.1	

Submit Documentation Feedback

Copyright © 1998–2016, Texas Instruments Incorporated

Electrical Characteristics: DC (continued)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
			T _A = -55 °C			0.05	
			T _A = -40 °C			0.05	
	√ _{OL} (Max) Out voltage low level	V _{IN} = 0 or 5 V, V _{CC} = 5 V	T _A = 25 °C		0	0.05	
			T _A = 85 °C			0.05	
			T _A = 125 °C			0.05	
			T _A = -55 °C			0.05	
			T _A = -40 °C			0.05	
V _{OL} (Max) Out voltage low level	V _{IN} = 0 or 10 V, V _{CC} = 10 V	T _A = 25 °C		0	0.05	V	
			T _A = 85 °C			0.05	
			T _A = 125 °C			0.05	
	O _L (Max) Out voltage low level O _H (Min) Output voltage high level		T _A = -55 °C			0.05	
			T _A = -40 °C			0.05	
		V _{IN} = 0 or 15 V, V _{CC} = 15 V	T _A = 25 °C		0	0.05	
			T _A = 85 °C			0.05	
			T _A = 125 °C			0.05	
			T _A = -55 °C			4.95	
			T _A = -40 °C			4.95	
		V _{IN} = 0 or 5 V, V _{CC} = 5 V	T _A = 25 °C	4.95	5		
			T _A = 85 °C			4.95	
			T _A = 125 °C			4.95	
			T _A = -55 °C			9.95	
			T _A = -40 °C			9.95	
V _{OH} (Min)	Output voltage high level	V _{IN} = 0 or 10 V, V _{CC} = 10 V	T _A = 25 °C	9.95	10		V
			T _A = 85 °C			9.95	
			T _A = 125 °C			9.95	
			T _A = -55 °C			14.95	
			T _A = -40 °C			14.95	
		V _{IN} = 0 or 15 V, V _{CC} = 15 V	T _A = 25 °C	14.95	15		
			T _A = 85 °C			14.95	
			T _A = 125 °C			14.95	
		V _{OUT} = 4.5 V, V _{CC} = 5 V, Full temperature	e range			1	
	Input low voltage (CD4049UB)	V _{OUT} = 9 V, V _{CC} = 10 V, Full temperature	range			2	
V _{IL} (Max)	(==:3:00=)	V _{OUT} = 13.5 V, V _{CC} = 15 V, Full temperate	ure range			2.5	V
vIL(IVIAX)		V _{OUT} = 0.5 V, V _{CC} = 5 V, Full temperature	e range			1.5	V
	Input low voltage (CD4050B)	V _{OUT} = 1 V, V _{CC} = 10 V, Full temperature	range			3	
	(/	V _{OUT} = 1.5 V, V _{CC} = 15 V, Full temperature	re range			4	

Electrical Characteristics: DC (continued)

	PARAMETER	TEST CONDITIONS		MIN	TYP MAX	UNIT
			T _A = -55 °C		4	
V _{IH} (Min)			T _A = -40 °C		4	
		$V_{OUT} = 0.5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = 25 °C	4		
			T _A = 85 °C		4	
			T _A = 125 °C		4	
			T _A = -55 °C		8	V
			T _A = -40 °C		8	
	Input high voltage (CD4049UB)	V _{OUT} = 1 V, V _{CC} = 10 V	T _A = 25 °C	8		
	(00404300)		T _A = 85 °C		8	
			T _A = 125 °C		8	
			T _A = -55 °C		12.5	
			T _A = -40 °C		12.5	
		$V_{OUT} = 1.5 \text{ V}, V_{CC} = 15 \text{ V}$	T _A = 25 °C	12.5		
			T _A = 85 °C		12.5	
			T _A = 125 °C		12.5	
			T _A = -55 °C		3.5	
			T _A = -40 °C		3.5	
	Input high voltage (CD4050B)	$V_{OUT} = 4.5 \text{ V}, V_{CC} = 5 \text{ V}$	T _A = 25 °C	3.5		
			T _A = 85 °C		3.5	
			T _A = 125 °C		3.5	
			T _A = –55 °C		7	
			T _A = -40 °C		7	
V_{IH}		V _{OUT} = 9 V, V _{CC} = 10 V	T _A = 25 °C	7		V
			T _A = 85 °C		7	
			T _A = 125 °C		7	
			T _A = -55 °C		11	
			T _A = -40 °C		11	
		$V_{OUT} = 13.5 \text{ V}, V_{CC} = 15 \text{ V}$	T _A = 25 °C	11		
			T _A = 85 °C		11	
			T _A = 125 °C		11	
I _{IN} (Max)	Input current		T _A = -55 °C		±0.1	
			T _A = -40 °C		±0.1	
		V _{IN} = 0 or 18 V, V _{CC} = 18 V	T _A = 25 °C		±10 ⁻⁵ ±0.1	μΑ
			T _A = 85 °C		±1	
			T _A = 125 °C		±1	

6.6 Electrical Characteristics: AC

 T_A = 25°C, Input t_r and t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{РLН}	Propagation delay time Low to high (CD4049UB)	V _{IN} = 5 V, V _{CC} = 5 V		60	120	ns
		V _{IN} = 10 V, V _{CC} = 10 V		32	65	
		V _{IN} = 10 V, V _{CC} = 5 V		45	90	
		V _{IN} = 15 V, V _{CC} = 15 V		25	50	
		V _{IN} = 15 V, V _{CC} = 5 V		45	90	
		V _{IN} = 5 V, V _{CC} = 5 V		70	140	ns
		V _{IN} = 10 V, V _{CC} = 10 V		40	80	
	Propagation delay time Low to high (CD4050B)	V _{IN} = 10 V, V _{CC} = 5 V		45	90	
	Low to High (CD4030B)	V _{IN} = 15 V, V _{CC} = 15 V		30	60	
		V _{IN} = 15 V, V _{CC} = 5 V		40	80	
	Propagation delay time High to low (CD4049UB)	V _{IN} = 5 V, V _{CC} = 5 V		32	65	ns
		V _{IN} = 10 V, V _{CC} = 10 V		20	40	
		V _{IN} = 10 V, V _{CC} = 5 V		15	30	
		V _{IN} = 15 V, V _{CC} = 15 V		15	30	
		V _{IN} = 15 V, V _{CC} = 5 V		10	20	
t _{PHL}	Propagation delay time High to low (CD4050B)	V _{IN} = 5 V, V _{CC} = 5 V		55	110	ns
		V _{IN} = 10 V, V _{CC} = 10 V		22	55	
		V _{IN} = 10 V, V _{CC} = 5 V		50	100	
		V _{IN} = 15 V, V _{CC} = 15 V		15	30	
		V _{IN} = 15 V, V _{CC} = 5 V		50	100	
	Transition time Low to high	V _{IN} = 5 V, V _{CC} = 5 V		80	160	ns
t_{TLH}		V _{IN} = 10 V, V _{CC} = 10 V		40	80	
		V _{IN} = 15 V, V _{CC} = 15 V		30	60	
t _{THL}	Transition time High to low	V _{IN} = 5 V, V _{CC} = 5 V		30	60	ns
		V _{IN} = 10 V, V _{CC} = 10 V		20	40	
		V _{IN} = 15 V, V _{CC} = 15 V		15	30	
_	Input capacitance (CD4049UB)			15	22.5	pF
C _{IN}	Input capacitance (CD4050B)			5	7.5	pF

988–2016, Texas Instruments Incorporated Submit Documentation r

TEXAS INSTRUMENTS

6.7 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

7.1 Test Circuits

Figure 10. Quiescent Device Current Test Circuit

Figure 11. Input Voltage Test Circuit

Test Circuits (continued)

Measure inputs sequentially, to both VCC and VSS connect all unused inputs to either VCC or VSS.

CMOS 10V LEVEL TO DTL/TTL 5V LEVEL V_{CC} = 5V COS/MOS OUTPUT TO DTL/TTL CD4049 **INPUTS** $10V = V_{IH}$ $0 = V_{OL}$ VSS Pin

Figure 12. Input Current Test Circuit

Figure 13. Logic Level Conversion Application

 C_{L} includes fixture capacitance. Figure 14. Dynamic Power Dissipation Test Circuits

8 Detailed Description

8.1 Overview

The CD4049UB device is an inverting hex buffer; the CD4050B device is a noninverting hex buffer. These devices do logic-level conversions and have a high sink current that can drive two TTL loads. These devices also have low input current of 1 μ A across the full temperature range at 18 V.

The CD4049UB and CD4050B devices are designated as replacements for CD4009UB and CD4010B devices, respectively. Because the CD4049UB and CD4050B require only one power supply, they are preferred over the CD4009UB and CD4010B and should be used in place of the CD4009UB and CD4010B in all inverter, current driver, or logic-level conversion applications. In these applications the CD4049UB and CD4050B are pin compatible with the CD4009UB and CD4010B respectively, and can be substituted for these devices in existing as well as in new designs. Pin 16 (NC) is not connected internally on the CD4049UB or CD4050B, therefore, connection to this terminal is of no consequence to circuit operation. TI recommends the CD4069UB hex inverter is recommended for applications not requiring high sink-current or voltage conversion.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

CD4049UB and CD4050B have standardized symmetrical output characteristics and a wide operating voltage from 3 V to 18 V with quiescent current tested at 20 V. These devices have transition times of t_{TLH} = 40 ns and t_{THL} = 20 ns (typical) at 10 V. The operating temperature is from –55°C to 125°C.

8.4 Device Functional Modes

Table 1 shows the functional modes for CD4049UB. Table 2 shows the functional modes for CD4050B.

Table 1. Function Table for CD4049UB

INPUT A, B, C, D, E, F	OUTPUT G, H, I, J, K, L		
Н	L		
L	Н		

Table 2, Function Table for CD4050B

INPUT A, B, C, D, E, F	OUTPUT G, H, I, J, K, L		
Н	Н		
L	L		

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The CD4049UB and CD4050B devices have low input currents of 1 µA at 18 V over full package-temperature range and 100 nA at 18 V, 25°C. These devices have a wide operating voltage from 3 V to 18 V and used in high-voltage applications.

9.2 Typical Application

Figure 15. CD4049UB Application

9.2.1 Design Requirements

The CD4049UB device is the industry's highest logic inverter operating at 18 V under recommended conditions. These devices have high sink current capabilities.

9.2.2 Detailed Design Procedure

Copyright © 1998-2016, Texas Instruments Incorporated

The recommended input conditions for Figure 15 includes rise time and fall time specifications (see Δt/ΔV in Recommended Operating Conditions) and specified high and low levels (see VIH and VIL in Recommended Operating Conditions). Inputs are not overvoltage tolerant and must be below V_{CC} level because of the presence of input clamp diodes to VCC.

The recommended output condition for the CD4049UB application includes specific load currents. Load currents must be limited so as to not exceed the total power (continuous current through VCC or GND) for the device. These limits are in the Absolute Maximum Ratings. Outputs must not be pulled above V_{CC}.

TEXAS INSTRUMENTS

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating in Recommended Operating Conditions.

Each VCC pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1-µF capacitor. If there are multiple VCC pins, then TI recommends a 0.01-µF or 0.022-µF capacitor for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs must never float.

In many cases, digital logic device functions or parts of these functions are unused (for example, when only two inputs of a triple-input and gate are used, or only 3 of the 4 buffer gates are used). Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. This rule must be observed under all circumstances specified in the next paragraph.

All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. See *Implications of Slow or Floating CMOS Inputs* for more information on the effects of floating inputs. The logic level must apply to any particular unused input depending on the function of the device. Generally, they are tied to GND or VCC (whichever is convenient).

11.2 Layout Example

Figure 18. Layout Diagram

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
CD4049UB	Click here	Click here	Click here	Click here	Click here
CD4050B	Click here	Click here	Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.