Organização e Arquitetura de Processadores

Organização do MIPS

Construção de uma Organização Pipeline

Projeto do Bloco de Dados e Controle

MIPS Monociclo - Fluxo de Sinais

MIPS Pipeline – Barreiras Temporais

 Para que o pipeline possa ocorrer sincronizado, são inseridas barreiras temporais (registradores)

Busca da instrução SW

Decodificação da instrução SW e busca de registradores

Execução da instrução SW (cálculo do endereço na memória de dados)

Escrita do registrador na memória de dados (instrução SW)

Escrita no banco de registradores (instrução SW)

Busca da instrução LW

Decodificação da instrução LW e busca de registradores

 Execução da instrução LW (cálculo do endereço na memória de dados)

Acesso ao operando na memória de dados (instrução LW)

 Armazenamento do operando no banco de registradores (instrução LW)

Reavaliando a escrita no banco de registradores...

- Cada componente do bloco operativo somente pode ser usado em um único estágio do pipeline
- Será que esta instrução tem algum problema?

 Pensando ...

MIPS Pipeline – Exemplo com Instrução LW Reavaliando a escrita no banco de registradores...

Armazenamento do operando no banco de registradores (instrução LW)

MIPS Pipeline – Nova Organização

Busca da instrução LW

Decodificação da instrução LW e busca de registradores

Execução da instrução LW (cálculo do endereço na memória de dados)

Acesso ao operando na memória de dados (instrução LW)

Armazenamento do operando no banco de registradores (instrução LW)

Escrita e leitura do Banco de registradores

- O segundo e o quinto estágios do pipeline compartilham o mesmo banco de registradores
- Como isto é possível?

Pensando ...

2º estágio do pipeline

5º estágio do pipeline

Portas de entrada e saída são distintas

Escrita e le .

Banco de registradores (Breg) suporta dois endereçamentos simultâneos

 O segundo e o quinto está registradores

Escrita e leitura no Breg em bordas

distintas de relógio

Como isto é possível?

BReg com tempo de acesso de 1ns metade do período de relógio

5º estágio do pipeline

2º estágio do pipeline

Banco de registradores Monofase versus Dupla fase

Executando uma Sequência de Instruções

 Representar a seguinte sequência de instruções usando diagrama de pipeline com múltiplos ciclos de relógio:

```
lw $10, 20($1) sub $11, $2, $3
```

- 1. lw \$1<mark>0, 20(\$1)</mark>
- 2. sub \$11, \$2, \$3

- 1. lw \$10, 20(\$1)
- 2. sub \$11, \$2, \$3

- 1. lw \$1<mark>0, 20(\$1)</mark>
- 2. sub \$11, \$2, \$3

- 1. lw \$1<mark>0, 20(\$1)</mark>
- 2. sub \$11, \$2, \$3

- 1. lw \$1<mark>0, 20(\$1)</mark>
- 2. sub \$11, \$2, \$3

- 1. lw \$1<mark>0, 20(\$1)</mark>
- 2. sub \$11, \$2, \$3

Bloco de Controle

Reagrupando os sinais de controle do MIPS monociclo ...

	Sinais de Controle a serem usados no estágio de execução/cálculo do endereço				Sinais de Controle a serem usados no estágio de acesso à memória			Sinais de Controle a serem usados no estágio de escrita no banco de registradores	
instrução	RegDst	ULAOp1	ULAOp0	ULAFonte	DvC	LerMem	EscMem	EscReg	MemParaReg
Tipo R	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
sw	X	0	0	1	0	0	1	0	X
beq	X	0	1	0	1	0	0	0	X

São essencialmente os mesmos sinais de controle do MIPS monociclo. Todavia, estes sinais precisam ser propagados pelos estágios do pipeline juntamente com a instrução

MIPS Pipeline – Projeto do Bloco de Controle

Busca instrução

Nenhum sinal especial, a não ser os sempre ativos (leitura)

Dec. / Lê Reg.

Nenhum sinal especial, apenas decodificação da instrução

Exec./Calc. End.

RegDest ULAFonte ULAOp

Memória

DvC LerMem EscMem

Esc. Reg.

MemParaReg EscReg