VIII – Réduction des endomorphismes

I. Deux diagonalisations – bête et méchante et plus théorique

1)

$$\begin{vmatrix} X & -3 & -2 \\ 2 & X - 5 & -2 \\ -2 & 3 & X \end{vmatrix} = \begin{vmatrix} X - 2 & 0 & X - 2 \\ 0 & X - 2 & X - 2 \\ -2 & 3 & X \end{vmatrix}$$

$$= (X - 2)^{2} \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -2 & 3 & X \end{vmatrix}$$

$$= (X - 2)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -2 & 3 & X + 2 \end{vmatrix}$$

$$= (X - 2)^{2} \begin{vmatrix} 1 & 1 \\ 3 & X + 2 \end{vmatrix}$$

$$= (X - 2)^{2}(X - 1).$$

Ensuite $A - 2I_3 = \begin{pmatrix} -2 & 3 & 2 \\ -2 & 3 & 2 \\ 2 & -3 & -2 \end{pmatrix}$, dont on observe que le noyau contient

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 et $\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$, qui en constituent une base.

Et $A - I_3 = \begin{pmatrix} - & 3 & 2 \\ -2 & 4 & 2 \\ 2 & -3 & -1 \end{pmatrix}$, dont on observe que le noyau est engendré

$$par \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

Ainsi
$$A = PDP^{-1}$$
 avec $P = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

2) On observe que le noyau est de dimension n-1, et on en trouve facilement n-1 vecteurs formant une famille libre $: (e_i-e_{i+1})_{i\in \llbracket e1,n-1\rrbracket}$. Enfin, $(1,\ldots,1)$ est un vecteur propre pour la valeur propre n. Finalement $J=PDP^{-1}$ avec $D=\operatorname{diag}(0,\ldots,0,n)$ et P=

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ -1 & \ddots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 1 & \vdots \\ 0 & \dots & 0 & -1 & 1 \end{pmatrix}.$$

Ensuite on remarque que $A = \beta J + (\alpha - \beta)I_n = \beta PDP^{-1} + (\alpha - \beta)PI_nP^{-1} = P(\beta D + (\alpha - \beta)I_n)P^{-1}$. Puisque $\beta D + (\alpha - \beta)I_n$ est diagonale, nous avons bien diagonalisé A.

II. Deux applications de la trigonalisation

- a) Dans $\mathcal{M}_n(\mathbb{C})$, A est trigonalisable et lors de cette trigonalisation, les valeurs propres de A apparaissent sur la diagonale. Donc A est semblable à une matrie triangulaire supérieure avec des complexes $\lambda_1, \ldots, \lambda_n$ sur la diagonale. Alors pour tout $k \in \mathbb{N}$, la diagonale de A^k vaut $\lambda_1^k, \ldots, \lambda_n^k$. Si l'un des $\lambda_j \neq 0$, alors cette diagonale n'est jamais nulle, ce qui est contradictoire avec la nilpotence de A. Donc A est bien semblable à une matrice triangulaire strictement supérieure. Et on remarque alors que le polynôme caractéristique de A vaut X^n .
 - **b)** Pour $A \in \mathcal{M}_n(\mathbb{R})$, on a aussi $A \in \mathcal{M}_n(\mathbb{C})$ et le polynôme caractéristique est calculé par la même formule dans les deux cas. Par suite le polynôme caractéristique pour $A \in \mathcal{M}_n(\mathbb{R})$ est scindé et donc à nouveau A est trigonalisable avec des 0 sur la diagonale.
- 2) Il existe une base dans laquelle la matrice M de u est triangulaire supérieure avec les valeurs propres de u, $(\lambda_1, \ldots, \lambda_n)$, sur la digonale. Alors par récurrence et propriété du produit des matrices triangulaires, pour tout $k \in \mathbb{N}$ les coefficients diagonaux de M^k sont les $(\lambda_1^k, \ldots, \lambda_n^k)$. Et ensuite, par linéarité, si $P \in \mathbb{C}[X]$, les coefficients diagonaux de P(M) sont les $(P(\lambda_1), \ldots, P(\lambda_n))$. Ainsi le spectre de P(u) est $\{P(\lambda_1), \ldots, P(\lambda_n)\}$, c'est-à-dire $P(\operatorname{Sp}(u))$.

III. Diagonalisation simultanée

- 1) Pour tout $\lambda \in \mathbb{K}$, u et $\lambda \operatorname{Id}_E v$ commutent, donc u stabilise $\operatorname{Ker}(\lambda \operatorname{id}_E v)$.
- 2) Puisque u est diagonalisable, il admet un polynôme annulateur scindé à racines simples. Nécessairement, si F est un sous-espace propre de v, ce même polynôme annule aussi $u|_{F}$, qui est donc diagonalisable.
- 3) Pour chacun des sous-espaces propres E_i de v on choisit une base \mathscr{B}_i dans laquelle l'endomrphisme enduit par u admet une matrice diagonale. La concaténation de toutes ces bases est une base \mathscr{B} de E car E est égal à la somme directe des sous-espaces propres de v.

Les vecteurs de toutes les \mathcal{B}_i étant des vecteurs propres de v, la matrice de v dans \mathcal{B} est diagonale.

La matrice de u dans \mathscr{B} est diagonale par blocs, le bloc i étant la matrice de $u|_{E_i}$ dans \mathscr{B}_i . Tous ces blocs étant diagonaux par construction, la matrice de u dans \mathscr{B} est donc diagonale également.

IV. Racine carrée d'une matrice

1) On note $M = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Soit $A = (a_{ij})$ une matrice commutant avec M. Soit $i, j \in [1, n]$ tels que $i \neq j$. Le coefficient (i, j) de AM vaut $\lambda_j a_{ij}$, tandis que celui de MA vaut $\lambda_i a_{ij}$. Puisque $\lambda_i \neq \lambda_j$, alors a_{ij} , et A est diagonale.

Réciproquement, on sait que deux matrices diagonales commutent.

- **2)** $\operatorname{Sp}(A) = \{1, 3, -4\}.$
- 3) Il existe une matrice P inversible tel que $A = PDP^{-1}$ avec D = diag(1,3,-4).

Si $M \in \mathcal{M}_n(\mathbb{C})$ est solution de l'équation $M^2 = A$ alors $\left(P^{-1}MP\right)^2 = D$ et donc $P^{-1}MP$ commute avec la matrice D. Or celle-ci est diagonale à coefficient diagonaux distincts donc $P^{-1}MP$ est diagonale de coefficients diagonaux a, b, c vérifiant $a^2 = 1$, $b^2 = 3$ et $c^2 = -4$. La réciproque est immédiate.

Il y a 8 solutions possibles pour (a,b,c) et donc autant de solutions pour M. Les solutions réelles sont a fortiori des solutions complexes or toutes les solutions complexes vérifient $\operatorname{tr} M = a + b + c \in \mathbb{C} \setminus \mathbb{R}$. Il n'existe donc pas de solutions réelles.