Exercices d'applications et de réflexions : fonctions exponentielles

PROF: ATMANI NAJIB

2ème BAC Sciences Physiques et Sciences de la Vie et de la Terre (2BAC PC et SVT)

FONCTIONS EXPONENTIELLES

Exercice1: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

1)
$$\exp\left(\frac{x+5}{2x+3}\right) = \exp\left(\frac{1}{x-1}\right)$$
 2) $\exp\left(2x+1\right) \le \exp\left(\frac{6}{x}\right)$

Exercice2: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

$$1) e^{1-x} \times e^{2x} = e$$

$$2) \frac{e^{2-x}}{e^{1+2x}} = e^{x-1}$$

3)
$$e^{2x} - 5e^x + 6 = 0$$

3)
$$e^{2x} - 5e^x + 6 = 0$$
 4) $e^{x^2} \cdot (e^x)^3 = (e^{-x})^5 \cdot e^{-7}$

$$5)e^{2x-3} - (e+1)e^{x-2} + 1 < 0$$

Exercice3 : Déterminer les limites suivantes :

1)
$$\lim_{x \to -\infty} (2x-1)e^x$$
 2) $\lim_{x \to +\infty} \frac{e^x + 3}{x}$ 3) $\lim_{x \to +\infty} \frac{e^x + 3x}{x^3}$

$$2) \lim_{x \to +\infty} \frac{e^x + 3}{x}$$

$$3) \lim_{x \to +\infty} \frac{e^x + 3x}{x^3}$$

4)
$$\lim_{x \to -\infty} \frac{e^x + 1}{e^x + 2}$$
 5) $\lim_{x \to -\infty} e^{-x+1}$ 6) $\lim_{x \to +\infty} e^{-x+1}$

$$5) \lim_{x\to -\infty} e^{-x+1}$$

$$6) \lim_{x\to +\infty} e^{-x+1}$$

7)
$$\lim_{x \to -\infty} e^x + e^{-x}$$

8)
$$\lim e^{\frac{-x+1}{x^3+5}}$$

7)
$$\lim_{x \to -\infty} e^x + e^{-x}$$
 8) $\lim_{x \to +\infty} e^{\frac{-x+1}{x^3+5}}$ 9) $\lim_{x \to +\infty} \frac{e^x - 1}{e^x + 1}$

10)
$$\lim_{x \to +\infty} 2x - e^x$$
 11) $\lim_{x \to +\infty} \frac{e^x - 1}{x^2}$ 12) $\lim_{x \to +\infty} \frac{e^x}{x^2 + 3x}$

$$11) \lim_{x\to +\infty} \frac{e^x - 1}{x^2}$$

$$12) \lim_{x \to +\infty} \frac{e^x}{x^2 + 3x}$$

13)
$$\lim_{x \to +\infty} 3x^3 - e^x$$
 14) $\lim_{x \to +\infty} \frac{e^x + 3x}{x^3}$

15)
$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3}$$
 (on pose : $2x = X$) 16) $\lim_{x \to +\infty} \frac{e^{3x}}{x}$

$$16) \lim_{x \to +\infty} \frac{e^{3x}}{x}$$

17)
$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3 + x + 1}$$
 18) $\lim_{x \to -\infty} (3x - 1)e^x$

$$18) \lim_{x \to -\infty} (3x - 1)e^x$$

19)
$$\lim_{x \to -\infty} (x^5 - 4x^3) e^x$$
 20) $\lim_{x \to 0^-} \frac{1}{x} e^{\frac{1}{x}}$

20)
$$\lim_{x\to 0^-} \frac{1}{x}e^{\frac{1}{x}}$$

21)
$$\lim_{x \to -\infty} (x^3 - 2x)e^{2x}$$
 22) $\lim_{x \to 0} \frac{e^{2x} - 1}{3x}$

22)
$$\lim_{x\to 0} \frac{e^{2x}-1}{3x}$$

23)
$$\lim_{x \to +\infty} x \left(e^{\frac{1}{x}} - 1 \right)$$
 24) $\lim_{x \to 1} \frac{e^{1-x} - 1}{x - 1}$

24)
$$\lim_{x \to 1} \frac{e^{1-x} - 1}{x - 1}$$

25)
$$\lim_{x\to 0} \frac{e^{-x}-1}{x}$$

25)
$$\lim_{x\to 0} \frac{e^{-x}-1}{x}$$
 26) $\lim_{x\to 0} \frac{e^{x+1}-e}{x}$

Exercice4 : Déterminer les dérivées des fonctions

suivantes : 1) $f(x) = e^{\sqrt{2x+1}}$

2)
$$g(x) = e^{-2x^2} - 3e^{3x+1}$$
 3) $h(x) = e^{\frac{x+1}{-x+3}}$

4)
$$f(x) = (e^x - 4)\sqrt{e^x - 1}$$

Exercice5 : Déterminer les primitives des

fonctions suivantes : 1) $f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$

2)
$$g(x) = (e^x)^2$$
 3) $h(x) = \frac{e^{\arctan x}}{1 + x^2}$

Exercice6 : Déterminer une primitive des fonctions suivantes:

1)
$$I = \mathbb{R}; f(x) = 2e^{3x} - e^{-x}$$

2)
$$I =]0; +\infty[; f(x) = \frac{e^{2x}}{(e^{2x} - 1)^2}$$

3)
$$I = \mathbb{R}; f(x) = e^x (e^x - 1)^3$$

4)
$$I = [0; \pi]; f(x) = \sin xe^{\cos x}$$

5)
$$f(x) = \frac{e^x - 1}{e^x - x}$$
 $I =]0; +\infty[$

Exercice7: Considérons la fonction f définie par :

$$f(x) = (x-1)e^x$$

- 1)Etudier les variations de f et dresser son tableau de variation.
- 2) Etudier les branches infinies de la courbe Cf au voisinage de $+\infty$
- 3) Etudier la concavité de la courbe Cf
- 4) Construire la courbe C_f .

Exercice8: Considérons la fonction f définie

par:
$$f(x) = x-1+\frac{3}{e^x+1}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

2)Etudier les variations de f et dresser son tableau de variation.

3)montrer que :
$$(\forall x \in \mathbb{R})$$
; $f(x) = x + 2 - \frac{3e^x}{e^x + 1}$

4) Etudier les branches infinies de la courbe *Cf* Et étudier la position de la courbe *Cf* avec les asymptotes obliques

Exercice9: Considérons la fonction f définie par :

$$f(x) = (e^x - 4)\sqrt{e^x - 1}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

2)montrer que :
$$\left(\forall x \in \mathbb{R}_*^+\right) \frac{f(x)}{x} = \frac{e^x - 4}{\sqrt{e^x - 1}} \cdot \frac{e^x - 1}{x}$$

- Etudier la dérivabilité de la fonction f à droite de 0 et interpréter géométriquement le résultat obtenu
- 4) montrer que : $(\forall x \in \mathbb{R}_{*}^{+}) f'(x) = \frac{3e^{x}(e^{x}-2)}{2\sqrt{e^{x}-1}}$
- 5)Etudier les variations de f et dresser son tableau de variation.
- 6) Etudier les branches infinies de la courbe C_f Au voisinage de + ∞
- 7)calculer : $f(2\ln 2)$ et construire la courbe C_f .

Exercice10: Considérons la fonction *f* définie

par :
$$f(x) = \sqrt{e^{-x} - e^{-2x}}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- Etudier la continuité et la dérivabilité de la fonction f à droite de 0 et interpréter géométriquement le résultat obtenu
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) construire la courbe C_f .

Exercice11 : Considérons la fonction f définie

par:
$$f(x) = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- 2)Etudier les variations de f et dresser son tableau de variation.
- 3) montrer que f admet une fonction réciproque définie sur un intervalle J que l'on déterminera
- 4) déterminer : $f^{-1}(x) \forall x \in J$

Exercice12: Considérons la fonction f définie sur

$$\mathbb{R}$$
 par : $f(x) = 1 - \ln(1 + e^{-x})$ et soit (C) la courbe

De f dans un repère orthonormé $(o; \vec{i}, \vec{j})$

1)a)montrer que : $\lim_{x \to +\infty} f(x) = 1$ et interpréter

géométriquement le résultat

b) montrer que : $\lim_{x \to -\infty} f(x) = -\infty$

2)a)vérifier que: $\forall x \in \mathbb{R}$; $f(x) = x + 1 - \ln(1 + e^x)$

b) en déduire la droite (D) d'équation : y = x+1

est une asymptote oblique a la courbe Cf au voisinage de $-\infty$

c) étudier la position de la courbe Cf avec la droite (D)

3)a) montrer que : $\forall x \in \mathbb{R}$; $f'(x) = \frac{1}{1 + e^x}$

- b) Etudier les variations de f et dresser son tableau de variation.
- c) Etudier la concavité de Cf
- d) montrer que la courbe Cf coupe l'axe des abscisses en un point à déterminer
- 4) Construire la courbe C_f dans le repére $(o; \vec{i} \ \vec{j})$
- 5) a)montrer que f admet une fonction réciproque définie sur un intervalle J que l'on déterminera
- b) déterminer : $f^{-1}(x) \ \forall x \in J$

Exercice13:

Partie 1 : Considérons la fonction f définie sur \mathbb{R} +

par:
$$f(x) = (x+2)e^{\frac{-2}{x}}$$
 si $x > 0$ et $f(0) = 0$

- 1) Etudier la continuité et la dérivabilité de la fonction *f* à droite de 0.
- 2) Interpréter géométriquement le résultat obtenu.
- 3) Déterminer la limite en +∞
- 4) Déterminer la fonction dérivée de la fonction *f* puis dresser le tableau de variation de *f*.
- 5) a) Montrer que ($\forall t > 0$) $0 < e^{-t} + t 1 < \frac{t^2}{2}$
- b) En déduire que : $(\forall x > 0)$

$$\frac{-4}{x} \prec f(x) - x \prec \frac{4}{x^2} - \frac{2}{x}$$

- c) Déterminer la nature de la branche infinie de la courbe Cf au voisinage de $+\infty$
- 6) Construire la courbe C_f .

Partie 2:

Considérons la fonction f_n définie sur \mathbb{R}^+ par :

$$f_n(x) = (x+2n)e^{\frac{-2}{x}}$$
 si $x > 0$ et $f_n(0) = 0$ où $n \in \mathbb{N}^*$

- 1) a) Etudier la continuité et la dérivabilité de la fonction f_n à droite de 0.
- b) Déterminer la limite en +∞
- c) Déterminer la fonction dérivée de la fonction $\,f_{\scriptscriptstyle n}\,$

puis dresser le tableau de variation de f_n .

2) Montrer que l'équation $f_n(x) = \frac{2}{n}$

admet une solution unique α_n dans]0, + ∞ [

3)a) Montrer que $(\forall x > 0)$

$$f_{n+1}(x) - \frac{2}{n+1} > f_n(x) - \frac{2}{n}$$

- b) En déduire la monotonie de $(\alpha_n)_n$
- c) Montrer que la suite $(\alpha_n)_n$ est convergente et

que
$$\lim_{n\to+\infty} (\alpha_n)_n = 0$$

Exercice14: Résoudre les équations et inéquations suivantes dans $\mathbb R$:

1)
$$5^x = 15$$
 2) $3^{2x} \ge 5^{1-x}$ 3) $7^{x+1} - 7^{-x} < 6$

Exercice15: Résoudre les équations et inéquations suivantes dans $\mathbb R$:

1)
$$2^{x+1} = 8^x$$
 2) $3^x = 12$ 3) $5 \times 2^x + 2^{x+1} - 336 = 0$

4)
$$100^x + 40 = 14 \times 10^x$$

5)
$$2^{x-1} > 4^x$$
 5) $(0,5)^{2x} \ge (0,5)^{x+1}$

Exercice16: Déterminer les primitives de la

fonction suivante : $f(x) = 3^{x-2}$

Exercice17: Soit La fonction f définie par :

$$f(x) = 4^x - 2^{x+1}$$
 1) déterminer D_f

- 2) calculer les limites aux bornes de $D_{\scriptscriptstyle f}$
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) Etudier les branches infinies de la courbe Cf
- 5) construire la courbe C_f dans un repére $(o; \vec{i} \ \vec{j})$

Exercice 18: Soit La fonction f définie sur \mathbb{R}^+ par : $f: \mathbb{R}^+ \to \mathbb{R}$

$$x \rightarrow x^x$$
, si $x \neq 0$ et $f(0) = 0$

- 1)Etudier la continuité de la fonction f à droite de 0.
- 2)Etudier la dérivabilité de la fonction f à droite de 0.
- 3)Etudier les variations de f et dresser son tableau de variation.

4)Déterminer la nature de la branche infinie de la courbe Cf au voisinage de $+\infty$.

5)Tracer la courbe Cf.

6) Résoudre dans \mathbb{R} , l'équation f(x) = x

7)Soit la suite $(u_n)_n$ définie par : $u_0 = \frac{1}{e}$

et $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n)).$

a)Montrer que : $(\forall n \in \mathbb{N})(u_n \leq 1)$

b)Etudier la monotonie de la suite $(u_n)_n$; puis en déduire qu'elle convergente.

c) Déterminer la limite de la suite $(u_n)_n$

Exercice 19 : Soit $n \in \mathbb{N}*$; considérons la fonction f_n définie sur [1, $+\infty$ [par :

$$f_n(x) = \frac{1}{n!} \frac{(\ln x)^n}{x^2}$$
 si $x > 0$ et $f_n(0) = 0$

et (C_n) sa courbe représentative dans un repère orthonormé $\mathcal{R}(0, i^{\vec{\cdot}}, j^{\vec{\cdot}})$.

1. Donner le tableau de variation de f_1 .

2. Déterminer l'équation de la tangente (T_1) à la courbe (C_1) en point d'abscisse 1.

3. Construire la courbe (C_1) et la tangente (T_1) dans le repère $\mathcal{R}(O, i\vec{\cdot}, j\vec{\cdot})$.

4. Dresser le tableau de variation de la fonction f_n .

5. a) Etudier sur l'intervalle [1, +∞[le signe de :

 $f_2(x) - f_1(x)$

b) En déduire les positions relatives des deux courbes (C_1) et (C_2) ; puis construire (C_2)

6. Considérons la suite $\left(u_{_{n}}
ight)_{_{n\geq1}}$ où $u_{_{n}}$ est la valeur

maximale de la fonction f_n .

a) Vérifier que $(\forall n \in \mathbb{N}*)$: $u_n = \frac{1}{n!} \left(\frac{n}{2e}\right)^n$

b) Pour $x \in]1, +\infty[$; calculer $\frac{f_{n+1}(x)}{f_n(x)}$

c) Montrer que : $(\forall n \in \mathbb{N}*)$ $(u_{n+1} = \frac{1}{2} f_n(e^{\frac{n+1}{2}}))$

d) En déduire que : $(\forall n \in \mathbb{N}*) (u_n \leq \frac{1}{e} \frac{1}{2^n})$

Et en déduire $\lim_{n\to+\infty} u_n$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

