

Southern Sweetlips: extra slides

Mark Bravington, CSIRO: June 2021

O&A www.csiro.a

Dealing with length in age-based CKMR

Age-based pop dyn much simpler than joint-L-A

but length drives fec and sel

Ideal: known L & A for each adult

Need to back- (POP) and fwd- (HSP) project L for *ERRO*

Dealing with length in age-based CKMR

Age-based pop dyn much simpler than joint-L-A

but length drives fec and sel

Ideal: known L & A for each adult

Need to back- (POP) and fwd- (HSP) project L for *ERRO*

My suggestion: "on average, you stick to your quantile"

- extra easy If CV(L@A) is constant: indiv Linf, indiv vonB
- not hard anyway

For HSP calcs: average (fec^2) is **not** (average fec)^2

- instead, pick 5 (or 10) quantiles within L@A, project from each

Dealing with length in age-based CKMR

Age-based pop dyn much simpler than joint-L-A

but length drives fec and sel

Ideal: known L & A for each adult

Need to back- (POP) and fwd- (HSP) project L for *ERRO*

My suggestion: "on average, you stick to your quantile"

- extra easy If CV(L@A) is constant: indiv Linf, indiv vonB
- not hard anyway

For HSP calcs: average (fec^2) is **not** (average fec)^2

- instead, pick 5 (or 10) quantiles within L@A, project from each

If sel-within-age strong enough to affect Z-within-age... yuk!

Tedia #1: the plus-group

Assume no growth & equal Z from A₊-1 onwards

Problem: back-projecting age/size for POP comps...

Can't ignore plus-group for TRO

If age known perfectly, could exclude plus-group adults...

... but not if imperfect age, or only length

Tedia #1: the plus-group

Assume no growth & equal Z from A₊-1 onwards

Problem: back-projecting age/size for POP comps...

Can't ignore plus-group for TRO

If age known perfectly, could exclude plus-group adults...

... but not if imperfect age, or only length

My preferred solution:

`. Keep track of
$$\overline{\mathsf{A}}_+$$
 via $\bar{A}_{+,t+1} = \frac{N_{+t} (\bar{A}_{+,t}+1) + N_{A_+-1,t} A_+}{N_+ + N_{A_+-1,t}}$

- 2. Assume geometric distro of age within plus-group, matching \overline{A}_{+}
- 3. Back-project from (~5) quantiles of that distro

HSPs & POPs: filling the holes

These two populations have *same* TRO... 100 offspring each per year POP rates given adult size:

 $\sim 1/100$ for smallest; $\sim 8/100$ for mid-size;

... but *very different* HSP rates!

On RHS, #HSP => "average adult must be largeish"

... thx2 *quadratic* fec term in HSPs

Nequiv again

All POP probs are basically of this form:

```
A-specific stuff
-----* (time-gap stuff)
TRO of J-likes
```

and HSP probs are like weighted POP probs

Nequiv again

All POP probs are basically of this form:

and HSP probs are like weighted POP probs

Units of TRO are up to us!

So, after allowing for time-gap stuff the observed rate for that AJ-category tells us:

numerical abundance Nequiv of parents of all J-likes, if all parents A-like

HSPs: Nequiv of J-like's parents if all were average parents;

NB average *parent* ≠ average *adult* except in "mammals"

