DSA 8020 R Session 2: Multiple Linear Regression I

Whitney

January 16, 2023

Contents

Species diversity on the Galapagos Islands							
First Step: Load the data							
Plot the pairwise scatterplots							
Correlation matrix							
Using $ggpairs$ to combine scatterplot and correlation matrix							
Model 1: Fitting a simple linear regression							
Model 2: Adding <i>Area</i>							
Model 3: Adding $Adjacent$							
Full Model							
Parameter Estimation							
ANOVA							
Monte Carlo Simulation to Study R^2 vs. R^2_{adj}							
Step I							
Step II							
Step III							

Species diversity on the Galapagos Islands

First Step: Load the data

```
#installinstall.packages("faraway")
library(faraway)
data(gala)
head(gala)
```

##		Species	${\tt Endemics}$	Area	${\tt Elevation}$	Nearest	${\tt Scruz}$	Adjacent
##	Baltra	58	23	25.09	346	0.6	0.6	1.84
##	Bartolome	31	21	1.24	109	0.6	26.3	572.33
##	Caldwell	3	3	0.21	114	2.8	58.7	0.78
##	Champion	25	9	0.10	46	1.9	47.4	0.18
##	Coamano	2	1	0.05	77	1.9	1.9	903.82
##	Daphne.Major	18	11	0.34	119	8.0	8.0	1.84

Plot the pairwise scatterplots

Correlation matrix

```
cor(gala[, -2])
```

```
##
              Species
                          Area
                                Elevation
                                            Nearest
                                                         Scruz
## Species
            1.00000000
                      ## Area
            0.61784307
                      1.0000000 0.75373492 -0.11110320 -0.10078493
                      0.7537349 1.00000000 -0.01107698 -0.01543829
## Elevation 0.73848666
           -0.01409407 -0.1111032 -0.01107698 1.00000000
                                                    0.61541036
## Nearest
## Scruz
           -0.17114244 -0.1007849 -0.01543829 0.61541036
                                                    1.00000000
##
  Adjacent
            0.02616635
                      ##
             Adjacent
## Species
            0.02616635
## Area
            0.18003759
## Elevation 0.53645782
## Nearest
          -0.11624788
## Scruz
            0.05166066
## Adjacent
            1.00000000
```

Using ggpairs to combine scatterplot and correlation matrix

```
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
     method from
##
            ggplot2
     +.gg
##
## Attaching package: 'GGally'
## The following object is masked from 'package:faraway':
##
##
       happy
pm <- ggpairs(gala[, -2],</pre>
              lower = list(continuous = wrap("points", alpha = 0.75, colour = "red")))
pm + theme(axis.text = element_text(size = 6))
```


Model 1: Fitting a simple linear regression

Here we use *Elevation* as the predictor as it has the highest correlation with *Species*

```
M1 <- lm(Species ~ Elevation, data = gala)
summary(M1)</pre>
```

```
##
## Call:
## lm(formula = Species ~ Elevation, data = gala)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
## -218.319 -30.721 -14.690
                                 4.634
                                        259.180
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.33511
                          19.20529
                                     0.590
## Elevation
               0.20079
                           0.03465
                                     5.795 3.18e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 78.66 on 28 degrees of freedom
## Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291
## F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06
plot(gala$Elevation, gala$Species, xlab = "Elevation (m)",
     ylab = "The number of plant species", las = 1, pch = 16, col = "blue")
abline(M1)
```


Regression equation:

$$y_{species} = 11.335 + 0.201x_{elevation}$$
.

(Estimated) error standard deviation $\hat{\sigma} = 78.6615407$.

Model 2: Adding Area

```
M2 <- lm(Species ~ Elevation + Area, data = gala)
summary(M2)
##
## Call:
## lm(formula = Species ~ Elevation + Area, data = gala)
##
## Residuals:
##
        Min
                  1Q
                                    ЗQ
                                            Max
                       Median
   -192.619 -33.534
                     -19.199
                                 7.541
                                        261.514
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.10519
                          20.94211
                                     0.817
                                            0.42120
## Elevation
                0.17174
                           0.05317
                                     3.230 0.00325 **
## Area
                0.01880
                           0.02594
                                     0.725 0.47478
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
## Residual standard error: 79.34 on 27 degrees of freedom
## Multiple R-squared: 0.554, Adjusted R-squared: 0.521
## F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05
```


Model 3: Adding Adjacent

```
M3 <- lm(Species ~ Elevation + Area + Adjacent, data = gala)
summary(M3)

##
## Call:
## lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)</pre>
```

```
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                      -8.733
## -124.064 -34.283
                               27.972 195.973
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.71893
                         16.90706 -0.338 0.73789
## Elevation
               0.31498
                          0.05211
                                    6.044 2.2e-06 ***
              -0.02031
                          0.02181 -0.931 0.36034
## Area
## Adjacent
              -0.07528
                          0.01698 -4.434 0.00015 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 61.01 on 26 degrees of freedom
## Multiple R-squared: 0.746, Adjusted R-squared: 0.7167
## F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

Full Model

```
M4 <- lm(Species ~ Elevation + Area + Adjacent + Nearest + Scruz, data = gala)
summary (M4)
##
## Call:
## lm(formula = Species ~ Elevation + Area + Adjacent + Nearest +
      Scruz, data = gala)
##
##
## Residuals:
        Min
                  1Q
                       Median
                                    3Q
                      -7.862
                                33.460 182.584
## -111.679 -34.898
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                    0.369 0.715351
## (Intercept) 7.068221 19.154198
               0.319465
                                    5.953 3.82e-06 ***
## Elevation
                           0.053663
## Area
                           0.022422 -1.068 0.296318
               -0.023938
## Adjacent
              -0.074805
                           0.017700 -4.226 0.000297 ***
## Nearest
               0.009144
                           1.054136
                                    0.009 0.993151
## Scruz
              -0.240524
                           0.215402 -1.117 0.275208
## ---
```

predict(M4)

```
##
        Baltra
                  Bartolome
                                Caldwell
                                             Champion
                                                           Coamano Daphne.Major
## 116.7259460
                 -7.2731544
                              29.3306594
                                            10.3642660 -36.3839155
                                                                     43.0877052
## Daphne.Minor
                     Darwin
                                    Eden
                                               Enderby
                                                          Espanola
                                                                     Fernandina
##
                 -9.0189919
                              28.3142017
                                           30.7859425
                                                        47.6564865
                                                                     96.9895982
     33.9196678
##
      Gardner1
                   Gardner2
                               Genovesa
                                               Isabela
                                                          Marchena
                                                                         Onslow
                                                                      4.0372328
##
     -4.0332759
                 64.6337956
                              -0.4971756 386.4035578
                                                        88.6945404
                              Las.Plazas
                                               Rabida SanCristobal SanSalvador
##
         Pinta
                     Pinzon
                              35.0758066
                                           75.5531221 206.9518779 277.6763183
##
  215.6794862 150.4753750
      SantaCruz
                    SantaFe
                              SantaMaria
                                              Seymour
                                                           Tortuga
                                                                           Wolf
   261.4164131
                 85.3764857 195.6166286
                                            49.8050946
                                                        52.9357316
                                                                     26.7005735
```

confint(M4)

```
##
                     2.5 %
                               97.5 %
## (Intercept) -32.4641006 46.60054205
## Elevation
               0.2087102 0.43021935
## Area
                -0.0702158 0.02233912
## Adjacent
               -0.1113362 -0.03827344
## Nearest
               -2.1664857 2.18477363
## Scruz
                -0.6850926 0.20404416
require(ellipse)
plot(ellipse(M4, c(3, 4), level = 0.95^2), type = "l", las = 1)
points(coef(M4)[3], coef(M4)[4], pch = 19)
abline(v = confint(M4)[3,], lty = 2)
abline(h = confint(M4)[4,], lty = 2)
```


Parameter Estimation

Elevation

0.319464761

```
X <- model.matrix(M4)
y <- gala$Species
# regression parameters
(beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y)

## [,1]
## (Intercept) 7.068220709</pre>
```

```
## Area
               -0.023938338
## Adjacent
               -0.074804832
               0.009143961
## Nearest
## Scruz
               -0.240524230
beta_hat_faster <- solve(crossprod(X), crossprod(X, y))</pre>
# fitted values
(y_hat \leftarrow X %*% solve(t(X) %*% X) %*% t(X) %*% y)
##
                       [,1]
## Baltra
                116.7259460
## Bartolome
                -7.2731544
## Caldwell
                 29.3306594
## Champion
                 10.3642660
## Coamano
                -36.3839155
## Daphne.Major 43.0877052
## Daphne.Minor 33.9196678
## Darwin
                 -9.0189919
## Eden
                 28.3142017
## Enderby
                 30.7859425
## Espanola
                 47.6564865
## Fernandina
                 96.9895982
## Gardner1
                 -4.0332759
## Gardner2
                 64.6337956
                -0.4971756
## Genovesa
## Isabela
                386.4035578
## Marchena
                88.6945404
## Onslow
                  4.0372328
## Pinta
                215.6794862
## Pinzon
                150.4753750
## Las.Plazas
                35.0758066
## Rabida
                75.5531221
## SanCristobal 206.9518779
## SanSalvador 277.6763183
## SantaCruz 261.4164131
## SantaFe
               85.3764857
## SantaMaria 195.6166286
## Seymour
                49.8050946
## Tortuga
                52.9357316
## Wolf
                 26.7005735
ANOVA
anova(M4)
## Analysis of Variance Table
## Response: Species
             Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Elevation 1 207828 207828 55.8981 1.023e-07 ***
```

3307 0.8895 0.3550197

Area

1

3307

```
## Adjacent
             1 73171
                         73171 19.6804 0.0001742 ***
## Nearest
                  2909
                          2909 0.7823 0.3852165
              1
## Scruz
                  4636
                          4636
                               1.2469 0.2752082
                89231
## Residuals 24
                          3718
                 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Monte Carlo Simulation to Study R^2 vs. R_{adj}^2

Step I

Simulating a large number of independent replications from the true linear regression model $Y = 5 + 2x_1 + \varepsilon$, where each having the same predictor values but (slightly) different responses (due to random error $\varepsilon \sim N(0, \sigma^2)$).

```
set.seed(123)
N = 500; n = 30; sigma = 1
x1 <- replicate(N, rnorm(n))
x2 <- replicate(N, rnorm(n))
y <- apply(x1, 2, function(x) 5 + 2 * x + rnorm(n, 0, sigma))</pre>
```

Step II

Fitting model 1: $Y = \beta_0 + \beta_1 x_1 + \varepsilon^1$ (true model) and model 2: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2$, respectively for each simulating data set and calculating their R^2 and R^2_{adi} .

```
R.sq <- array(dim = c(N, 4))
for (i in 1:N){
    m1 <- lm(y[, i] ~ x1[, i])
    R.sq[i, 1] = summary(m1)$r.squared
    R.sq[i, 2] = summary(m1)$adj.r.squared
    m2 <- lm(y[, i] ~ x1[, i] + x2[, i])
    R.sq[i, 3] = summary(m2)$r.squared
    R.sq[i, 4] = summary(m2)$adj.r.squared
}</pre>
```

Step III

Summarizing the result. First, let's compare model 1 and model 2 via \mathbb{R}^2 .

Next, let's compare model 1 and model 2 via R_{adj}^2 .

