Aplikace jazyka R v biomedicíně

Úvod do jazyka R

Lubomír Štěpánek^{1, 2}

Oddělení biomedicínské statistiky & výpočetní techniky Ústav biofyziky a informatiky
lékařská fakulta
Univerzita Karlova v Praze

²Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze

(2017) Lubomír Štěpánek, CC BY-NC-ND 3.0 (CZ)

Dílo lze dále svobodně šířit, ovšem s uvedením původního autora a s uvedením původní licence. Dílo není možné šířit komerčně ani s ním jakkoliv jinak nakládat pro účely komerčního zisku. Dílo nesmí být jakkoliv upravováno. Autor neručí za správnost informací uvedených kdekoliv v předložené práci, přesto vynaložil nezanedbatelné úsilí, aby byla uvedená fakta správná a aktuální, a práci sepsal podle svého nejlepšího vědomí a svých "nejlepších" znalostí problematiky.

Obsah

Lineární model

Lineární regrese

Literatura

- testuje nulovou hypotézu $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ o statisticky nevýznamném rozdílu ve středních hodnotách k výběrů
- předpokládá normalitu výběrů
- hodnota $p < \alpha$ vede k zamítnutí nulové hypotézy H_0 na hladině významnosti α

diagnostika

```
shapiro.test(
    my_data[my_data$lek == "A", "mira"]

shapiro.test(
    my_data[my_data$lek == "B", "mira"]

number of the state of the state
```

výsledek testu

```
1 | xtable(summary(aov(mira ~ lek, my_data)))
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
lek	2	955.94	477.97	66.14	< 0.0001
Residuals	87	628.70	7.23		

- testuje několik nulových hypotéz typu $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ o statisticky nevýznamném rozdílu ve středních hodnotách mezi khodnotami některého faktoru
- předpokládá normalitu všech (pod)výběrů
- hodnota $p < \alpha$ vede k zamítnutí nulové hypotézy H_0 na hladině významnosti α
- v R opět funkce aov()

vytvořme si vhodný dataset

```
set.seed(1); my_data <- data.frame(</pre>
      "sTK" = c(rnorm(20, 130, 5), rnorm(20, 133, 5),
                 rnorm(20, 160, 10), rnorm(20, 140,
                    10)).
      "faze" = c(rep("před", 20), rep("po", 20),
5
                  rep("před", 20), rep("po", 20)),
6
      "skupina" = c(rep("kontrola", 40),
                     rep("intervence", 40))
8
9
   my_data$faze <- factor(</pre>
10
     my_data$faze, levels = c("před", "po")
11
12
   my_data$skupina <- factor(</pre>
13
     my_data$skupina,
14
      levels = c("kontrola", "intervence")
15
```


výsledek testu

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
faze	1	1506.08	1506.08	16.97	0.0001
skupina	1	7025.65	7025.65	79.17	< 0.0001
Residuals	77	6832.81	88.74		

zaveď me interakci

```
1 | xtable(summary(aov(sTK ~ faze*skupina, my_data)))
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
faze	1	1506.08	1506.08	27.93	< 0.0001
skupina	1	7025.65	7025.65	130.28	< 0.0001
faze:skupina	1	2734.44	2734.44	50.71	< 0.0001
Residuals	76	4098.38	53.93		

velikosti efektů

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	136.7990	1.8242	74.99	< 0.0001
faze = po	-8.6778	2.1064	-4.12	0.0001
skupina = intervence	18.7425	2.1064	8.90	< 0.0001

velikosti efektů u interakcí

```
1 || xtable(summary(lm(sTK ~ faze*skupina, my_data)))
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	130.9526	1.6420	79.75	< 0.0001
faze = po	3.0150	2.3222	1.30	0.1981
skupina = int.	30.4353	2.3222	13.11	< 0.0001
faze = po : skup. = int.	-23.3856	3,2841	-7.12	< 0.0001

Lineární regrese

- obdobná syntaxe lineárnímu modelu
- v R pomocí funkce lm()
- odhad parametrů metodou nejmenších čtverců, proto očekáváno splnění tzv. slabé sady předpokladů

Lineární regrese

v R diagnostka pomocí plot(lm())

Lineární regrese

Lineární regrese

```
1 | xtable(
2 | summary(lm(log(brain) ~ log(body), Animals))
3 |)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.5549	0.4131	6.18	0.0000
log(body)	0.4960	0.0782	6.35	0.0000

- diagnostika modelu
 - rezidua vs. vyrovnané hodnoty
 - Q-Q diagram
 - odmocniny z reziduí vs. vyrovnané hodnoty
 - rezidua vs. pákové body (Cookova distance)

```
1 || plot(lm(log(brain) ~ log(body), Animals))
```

Literatura

- ZVÁRA, Karel. *Základy statistiky v prostředí R.* Praha, Česká republika: Karolinum, 2013. ISBN 978-80-246-2245-3.
 - WICKHAM, Hadley. *Advanced R*. Boca Raton, FL: CRC Press, 2015. ISBN 978-1466586963.

Děkuji za pozornost!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz