UFRN - Universidade Federal do Rio Grande do Norte

DEE – Departamento de Engenharia Elétrica DCO – Departamento de Comunicações

MSP430 Programação em C

Aula 3 – Módulo de Entrada e Saída

Ministrantes: Danilo de Santana Pena; José Lenival Gomes de França; Leonardo Duarte de Albuquerque.

Conteúdo da Apresentação

- ✓ Introdução;
- Registradores;
- ✓ Interrupção;
- ✓ Resistor Pull-Down/ Pull-Up;
- ✓ Aplicação 1;
- ✓ Aplicação 2;
- ✓ Aplicação 3.

Introdução

- O MSP430 tem periféricos responsáveis pelo gerenciamento das funções da maioria dos pinos dos dispositivo, os PORT Px;
- O x representará o PORT no qual faremos referência (por exemplo, PxIN representa genericamente o registro de input, P1IN representa o registro de input do PORT1);
- A família x2xx implementa o P1 ao P7, cada uma gerenciando até 8 pinos;
- Suas principais características são:
 - I/O programáveis independentemente;
 - Qualquer combinação de entradas e saídas;
 - Pinos com interrupções independentes;
 - Registradores de entrada e saída independentes;
 - Resistores de pullup e pulldown individuais;
 - Pino do oscilador configurável individualmente.

Introdução

Port Px

Diagrama em Blocos do MSP430G2231

Note: Memory sizes, supported peripherals, and ports may differ depending on the device.

Introdução

Modelo:MSP430G2231

Apresentação dos PORTs

Launch Pad development Board:

Cada PORT terá um conjunto de registros de 8 bits;

- Cada registrador tem 8 bits referentes a cada um dos pinos do PORT;
- Cada bit indica o estado do pino referente;
- Os registradores são:
 - PxIN : Registrador de entrada;
 - PxOUT : Registrador de saída;
 - PxDIR : Configura o pino como entrada ou saída;
 - PxREN : Habilita o resistor de pullup ou pulldown;
 - PxSEL e PxSEL2 : Configura o pino como I/O do PORT ou de outro periférico;
 - PxIFG : Indica ocorrência de interrupção;
 - PxIE : Habilita a interrupção do respectivo pino;
 - PxIES : Estabelece se a interrupção ocorrerá na subida ou descida.

Exemplo P1DIR

Exemplo P1IN

0 1 1 1 0 0 1 0 1 P1.7 P1.0 Exemplo P10UT

Configuração dos pinos não-usados

- O User Guide recomenda que os pinos não usados devem ser configurados como I/O, na direção saída (o valor de PxOUT é irrelevante) e desconectado da PCB, para evitar flutuação de tensão na entrada e reduzir o consumo;
- Pode ser usado o resistor de pullup ou pulldown para prevenir flutuação de tensão na entrada.

Valores default para alguns pinos

Port	Register	Short Form	Address	Register Type	Initial State
P1	Input	P1IN	020h	Read only	-
	Output	P1OUT	021h	Read/write	Unchanged
	Direction	P1DIR	022h	Read/write	Reset with PUC
	Interrupt Flag	P1IFG	023h	Read/write	Reset with PUC
	Interrupt Edge Select	P1IES	024h	Read/write	Unchanged
	Interrupt Enable	P1IE	025h	Read/write	Reset with PUC
	Port Select	P1SEL	026h	Read/write	Reset with PUC
	Port Select 2	P1SEL2	041h	Read/write	Reset with PUC
	Resistor Enable	P1REN	027h	Read/write	Reset with PUC
P2	Input	P2IN	028h	Read only	-
	Output	P2OUT	029h	Read/write	Unchanged
	Direction	P2DIR	02Ah	Read/write	Reset with PUC
	Interrupt Flag	P2IFG	02Bh	Read/write	Reset with PUC
	Interrupt Edge Select	P2IES	02Ch	Read/write	Unchanged
	Interrupt Enable	P2IE	02Dh	Read/write	Reset with PUC
	Port Select	P2SEL	02Eh	Read/write	0C0h with PUC
	Port Select 2	P2SEL2	042h	Read/write	Reset with PUC
	Resistor Enable	P2REN	02Fh	Read/write	Reset with PUC

PxDIR, PxIN e PxOUT

Exemplo P1DIR x

PxDIR, PxIN e PxOUT

- PxDIR: Configura os pinos como entradas ou saídas
 - Cada flag deste registro corresponde a um pino;
 - > 0: O pino correspondente está configurado como entrada;
 - > 1: O pino correspondente está configurado como saída.
- PxIN: Reflete o estado de um pino, para assim podermos ler a entrada do MCU;
- PxOUT: Seta ou reseta um pino. Quando o resistor de pullup/pulldown estão ligados, este registro controla a configuração do resistor:
 - 0: O pino está pulled down;
 - 1: O pino está pulled up.

PxSEL e PxSEL2

Geralmente os pinos são compartilhados por vários módulos. Estes registradores controlam a multiplexação da função dos pinos;

Table 8-1. PxSEL and PxSEL2

PxSEL2	PxSEL	Pin Function		
0	0	I/O function is selected.		
0	1	Primary peripheral module function is selected.		
1	0	Reserved. See device-specific data sheet.		
1	1	Secondary peripheral module function is selecte		

PxSEL e PxSEL2

- PxSELx não seta automaticamente a direção do pino. Assim, além dessa configuração, é necessária a configuração do PxDIR de acordo com a função do periférico que estaremos usando;
- Quando o PxSELx está habilitado para um pino, a interrupção deste pino permanecerá desabilitada;
- Cada pino tem uma circuitaria específica associada, portanto, é sempre bom tentar entender a interface entre

Table 18. Port P1 (P1.0 to P1.2) Pin Functions -- MSP430G2x31

	T		CONTROL BITS / SIGNALS		
PIN NAME (P1.x)	×	FUNCTION	P1DIR.x	P1SEL.x	ADC10AE.x (INCH.y = 1)
P1.0/		P1.x (I/O)	I: 0; O: 1	0	0
TA0CLK/	1	TA0.TACLK	0	1	0
ACLK/	0	ACLK	1	1	0
A0		A0	x	x	1 (y = 0)
P1.1/		P1.x (I/O)	I: 0; O: 1	0	0
TA0.0/	١.	TA0.0	1	1	0
	11	TA0.CCI0A	0	1	0
A1		A1	x	x	1 (y = 1)
P1.2/		P1.x (I/O)	I: 0; O: 1	0	0
TA0.1/	2	TA0.1	1	1	0
	2	TA0.CCI1A	0	1	0
A2/		A2	x	x	1 (y = 2)

Exemplo do circuito associado a P1.0,P1.1 e P1.2

Prática 1 – Vamos fazer juntos?

- LED piscador!
 - Fazer LED piscar utilizando delay timer.

Interrupção

Interrupção

Interrupção em P1 e P2

- Na família F2xxx e G2xxx apenas P1 e P2 tem tratamento de interrupções dos pinos;
- Cada port tem seu próprio vetor de interrupções;
- Cada pino Px.y tem um conjunto de flags PxIE.y, PxIFG.y e PxIES.y individuais para tratar sua interrupção;
- PxIE.y habilita a interrupção em Px.y;
- PxIFG.y indica interrupção em Px.y;
- PxIESx.y seleciona se a interrupção em Px.y ocorrerá numa transição de baixo-pra-alto ou alto-pra-baixo;

Resistor Pull-Down/ Pull-Up

Forma de ligação

Switch with "pull-down" resistor

Switch with "pull-up" resistor

PxSEL

Diagrama em Blocos do MSP430G2231

Note: Memory sizes, supported peripherals, and ports may differ depending on the device.

Prática 2 – Vamos fazer juntos?

- LED piscador com botão!
 - Fazer LED piscar utilizando delay timer acionado a partir de um botão.

Referências

- ▶ SLAS694C February 2010 Revised July 2010;
- ▶ SLAU144H December 2004 Revised April 2011.