Tutorial

This package is used for estimating viral transmission bottleneck sizes using different methods.

1. Install package and download test dataset

First step, install the package "ViralBottleneck" and download dataset in test_dataset folder

2. Create transmission object

Second step, the transmission object need to be created before bottleneck size estimation. To create transmission object, the working directory need to meet two requirements: transmission pairs table and sample files used for estimation. This package would extract sample files according to the transmission pairs table the users input.

The example of the transmission pairs table is below (in test_dataset folder in package)

donor	recipient		
donor_3000	50_0_All_r1		
$donor_3000$	$50_3_All_r1$		
$donor_3000$	$50_6_All_r1$		
$donor_3000$	50_9 _All_r1		
donor_3000	50_12_All_r1		

Note: Do not put the "-" in name of sample.

After making sure the sample files all exist according to the transmission pairs, start to create transmission object. example code:

```
Sim_trans = read.table("Example_TansmissionPairs.csv",header = TRUE,sep = ",")
Sim_ob = CreateTransmissionObject(Sim_trans)
```

2.1 Subset transmission object

The transmission object could be used as list.

```
#Get first 3 transmission object
Sim_ob_subset = Sim_ob[1:2]
```

3. Summary transmission object

After creating transmission object, the Summary_ob function would provide the information of shared sites (the sites belong to shared sites should be sequenced both in donor and recipient.) for users. Example code:

```
Summary_Sim = Summary_ob(Sim_ob)
```

The result:

Donors Recipients		number.of.shared.sites		
donor_3000	50 0 All r1	13158		
donor 3000	50_0_All_r1	13158		
donor 3000	50_5_All_r1	13158		
donor_3000	50 9 All r1	13158		
donor_3000		13158		

4. Transmission bottleneck size estimation

Finally, start to calculate transmission bottleneck size using transmission object.

4.1 Output of Bottleneck_size_Calculation function

Take calculation using Beta-binomial method approximate version as an example:

Output like:

donor	recipient	$transmission_bottleneck_size$	CI_low	CI_high
donor_3000	50_0_All_r1	70	64	70
$donor_3000$	$50_3_All_r1$	45	30	64
$donor_3000$	$50_6_All_r1$	28	20	39
$donor_3000$	$50_9_All_r1$	34	23	47
donor_3000	50_12_All_r1	47	31	67

4.2 Specify transmission pairs during estimation

This package provide a chance that if user need to specify some transmission pairs for estimation

```
subset_transmission_pairs = read.table("H1N1_transmission_pairs_specify.csv",header = TRUE,sep = ",")
```

4.3 Calculation

Bottleneck_size_Calculation could create plot of likelihood curve for each transmission pairs in working directory. However, this argument just used for the methods using maximum likelihoods estimation, including KL method (Emmett et al., 2015), Presence-Absence method (Sacristán et al., 2011),

Binomial method (Leonard et al., 2017), Beta_binomial_Approximate method (Leonard et al., 2017) and Beta_binomial_Exact method (Leonard et al., 2017). Using show_table and plot options could help to save output and obtain the plots of likelihood curve for each transmission pairs. (Note: if you want to access the original publication for each methods, you could click the *Publication link* after each methods)

The program would create individual folder for each transmission pair to store the plot. Example code for creating plot:

The plot of likelihood curve for one transmission pairs (donor_3000-50_3_All_r1) is below:

4.4 Log file

Bottleneck_size_Calculation could create log file containing number of variant used in calculation and number of variant filtered before calculation in working directory.

Example code:

```
BB_App_output_log =
    Bottleneck_size_Calculation(
    transmission_ob = Sim_ob,
    method = "Beta_binomial_Approximate",
    error_calling = 0,
    variant_calling = 0.03,
    Nbmin = 1,
    Nbmax = 200,
    donor_depth_threshold = 0,
    recipient_depth_threshold = 0,
    log= TRUE
)
```

Output of log argument:

donor	recipient	donor_used	donor_unused	recipient_used	recipient_unused
donor_3000	50_0_All_r1	193	12965	193	12965
$donor_3000$	$50_3_All_r1$	193	12965	193	12965
$donor_3000$	$50_6_All_r1$	193	12965	193	12965
$donor_3000$	50_9 _All_r1	193	12965	193	12965
donor_3000	$50_12_All_r1$	193	12965	193	12965

4.5 Methods comparison

Given that one major purpose of the package is to compare calculation of bottleneck sizes across methods on the same data set, it would be nice to illustrate this. For example, compare all methods (except Wright-Fisher, see below) on a single pair, Sim_ob[1]:

```
all_methods <-
   c("KL", "Presence-Absence", "Binomial", "Beta_binomial_Approximate", "Beta_binomial_Exact")

compare_methods <-
   t(sapply(all_methods, function(m){
    Bottleneck_size_Calculation(Sim_ob[1], method = m)
   }))

compare_methods</pre>
```