

PATENT
Attorney Docket 2676-6388US

NOTICE OF EXPRESS MAILING

Express Mail Mailing Label Number: EV326919920US

Date of Deposit with USPS: March 29, 2004

Person making Deposit: Christopher Haughton

APPLICATION FOR LETTERS PATENT

for

AN EFFICIENT SYSTEM FOR RNA SILENCING

Inventors:
Anna Depicker
Helena van Houdt

Attorney:
Allen C. Turner
Registration No. 33,041
TRASKBRITT
P.O. Box 2550
Salt Lake City, Utah 84110
(801) 532-1922

TITLE OF THE INVENTION
AN EFFICIENT SYSTEM FOR RNA SILENCING

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of PCT International Patent Application No. PCT/EP/02/11188, filed on October 2, 2002, designating the United States of America, and published, in English, as PCT International Publication No. WO 03/031632 A1 on April 17, 2003, the contents of the entirety of which is incorporated by this reference.

TECHNICAL FIELD

[0002] The invention relates generally to biotechnology, and more particularly to a method for efficient RNA silencing in eucaryotic cells, particularly plant cells. Consequently, the method can be used to reduce the phenotypic expression of an endogenous gene in a plant cell. Furthermore, the method can be applied in a high throughput screening for RNA silencing.

BACKGROUND

[0003] “RNA silencing” is a type of gene regulation based on sequence-specific targeting and degradation of RNA. The term encompasses related pathways found in a broad range of eukaryotic organisms, including fungi, plants, and animals.

[0004] In plants, RNA silencing serves as an antiviral defense and many plant viruses encode suppressors of silencing. Also, it becomes clear that elements of the RNA silencing system are essential for gene regulation in development. The emerging view is that RNA silencing is part of a sophisticated network of interconnected pathways for cellular defense, transposon surveillance, and regulation of development. Based on the sequence specific RNA degradation, RNA silencing has become a powerful tool to manipulate gene expression experimentally. RNA silencing was first discovered in transgenic plants, where it was termed co-suppression or posttranscriptional gene silencing (PTGS). Sequence-specific RNA degradation processes related to PTGS have also been found in ciliates, fungi, and a variety of animals from *Caenorhabditis elegans* to mice (RNA interference).

[0005] A key feature uniting the RNA silencing pathways in different organisms is the importance of double-stranded RNA (dsRNA) as a trigger or an intermediate. The dsRNA is

cleaved into small interfering RNAs (21 to 25 nucleotides) of both polarities, and these are thought to act as guides to direct the RNA degradation machinery to the target RNAs. An intriguing aspect of RNA silencing in plants is that it can be triggered locally and then spread via a mobile silencing signal. In plants, RNA silencing is correlated with methylation of homologous transgene DNA in the nucleus. Other types of epigenetic modifications may be associated with silencing in other organisms.

[0006] It is known from the art that transgenes encoding ds or self-complementary (hairpin) RNAs of endogenous gene sequences are highly effective at directing the cell's degradation mechanism against endogenous (ss) mRNAs, thus giving targeted gene suppression. This discovery has enabled the transgenic enhancement of a plant's defense mechanism against viruses that it is unable to combat unaided. It has also shed light on how antisense and co-suppression might operate: by the inadvertent integration of two copies of the transgenes in an inverted repeat orientation, such that read-through transcription from one gene into the adjacent copy produces RNA with self-complementary sequences.

[0007] RNA silencing is induced in plants by transgenes designed to produce either sense or antisense transcripts. Furthermore, transgenes engineered to produce self-complementary transcripts (dsRNAs) are potent and consistent inducers of RNA silencing. Finally, replication of plant viruses, many of which produce dsRNA replication intermediates, causes a type of RNA silencing called Virus Induced Gene Silencing (VIGS). Whether VIGS, and the different types of transgene-induced RNA silencing in plants result from similar or distinct mechanisms is still a matter of debate. However, recent genetic evidence raises the possibility that the RNA silencing pathway is branched and that the branches converge in the production of dsRNA.

SUMMARY OF THE INVENTION

[0008] Until recently, RNA silencing was viewed primarily as a thorn in the side of plant molecular geneticists, limiting expression of transgenes and interfering with a number of applications that require consistent, high-level transgene expression. With our present understanding of the process, however, it is clear that RNA silencing could have enormous potential for engineering control of gene expression, as well as for the use as a tool in functional genomics. It could be experimentally induced and targeted to a single specific gene or even to a

family of related genes. Likewise, ds RNA-induced TGS may have similar potential to control gene expression. Although methods for RNA silencing have been described in the art (e.g., WO99/53050, WO99/32619, WO99/61632, and W098/53083), a need exists to develop alternative and more efficient tools for RNA silencing.

[0009] In the present invention, we have developed a highly efficient method for RNA silencing that can also be used as a tool for high throughput silencing. The method uses a host that carries already a silenced locus and a second recombinant gene comprising a region that is homologous with the silenced locus. Although it is known that the recombinant gene will be silenced, we have surprisingly found that also target genes, which have no significant homology with the silenced locus but have homology with the recombinant gene, are efficiently silenced.

[0010] The present invention deals with an efficient method for RNA silencing in a eucaryotic host. The method makes use of a host that already comprises a silenced locus. Such a silenced locus can for example be generated by methods known in the art. For example the publication of De Buck and Depicker, 2001 and other publications, and also PCT patent publications WO99/53050, WO99/32619, WO99/61632, and W098/53083 describe methods to obtain RNA silencing and for generating a silenced recombinant locus. The ‘target gene’ is here defined as the gene of interest for silencing or to down-regulate its expression. An important aspect of this invention is that the target gene has no significant homology with the silenced locus. No significant homology means that either the overall homology is less than 40, 35, 30, 25% or even less or that no contiguous stretch of at least 23 identical nucleotides are present (Thomas et al., 2001). Homology is typically measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705). Such software matches similar sequences by assigning degrees of homology to various insertions, deletions, substitutions, and other modifications. Silencing of the target gene in the present invention occurs via an intermediate step and hence our method is designated as domino silencing (FIG. 1). In the intermediate step a recombinant gene construct is introduced by transformation into the host comprising the silenced locus. The recombinant gene construct has a region of homology with the silenced locus already present. The region of homology is preferably more than 60, 70, 80, 90, 95 or even more than 99% homologous. The homologous region between the silenced locus and the recombinant gene can be found in the 5' untranslated or 3' untranslated region of

the recombinant gene construct. Furthermore, the recombinant gene construct has a region of minimal 23 nucleotides (Thomas et al., 2001), but preferably longer, that are identical with the target gene, or has a region of overall homology of more than 60, 70, 80, 90, 95 or even more than 99%. A recombinant gene is defined herein as a construct which does not naturally occur in nature. A non-limiting example of a recombinant gene construct is a construct wherein the coding region of a gene is operably linked to a 5' untranslated region and/or to a 3' untranslated region of one or more other genes, alternatively the 5' or 3' untranslated region is an artificial sequence.

[0011] Thus, in one embodiment the invention provides a method for obtaining efficient RNA silencing of a target gene comprising the introduction of a recombinant gene into a host that comprises a silenced locus and an unsilenced target gene whereby the recombinant gene comprises a region that is homologous with the silenced locus and whereby the target gene has homology with the recombinant gene but has no significant homology with the silenced locus.

[0012] In another embodiment, the method is used wherein the host is a plant or plant cell.

[0013] In another embodiment, the method of the invention can be used for high throughput gene silencing. Indeed, a recombinant gene library can be made wherein for example every gene or coding region thereof is combined with (operably linked with) a region of homology with the silenced gene that resides in the silenced locus and the recombinant gene library can be transformed to an eukaryotic host or individual (specific) genes derived from the recombinant gene library can be transformed into an eukaryotic host wherein silencing of specific genes is wanted.

[0014] In yet another embodiment, the invention provides a plant or plant cell that comprises a silenced locus and wherein a silenced target gene is obtained through the introduction of a recombinant gene according to the current method of the invention.

[0015] In yet another embodiment, the RNA silencing of the target gene is obtained in more than 80, 85, 90 or 95% of the transgenic organisms.

[0016] In yet another embodiment, the RNA silencing of the target gene occurs at an efficiency of more than 80, 85, 90 or 95 % as compared to the level of the unsilenced expression of the target gene.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0017] FIG. 1: Schematic outline of homology between a silenced locus X, a recombinant gene Y and a target gene Z.

[0018] FIG. 2: Schematic outline of the T-DNA constructs that are present in silenced locus X₁, recombinant gene Y₁ and target gene Z₁ (T-DNAs of pGVCHS287, pGUSchsS and pXD610 respectively) and of the transcript homology between X₁, Y₁ and Z₁.

[0019] LB and RB: left and right T-DNA border respectively; Pnos: nopaline synthase promoter; hpt: hygromycin phosphotransferase coding sequence; 3'nos: 3'untranslated region of the nopaline synthase gene; P35S; Cauliflower mosaic virus 35S promoter; nptII c.s., neomycin phosphotransferase II coding sequence; 3'chs: 3'untranslated region of the chalcone synthase gene of *Anthirrinum majus*; +1: transcription start; A_n: poly A-tail; gus c.s.: β-glucuronidase coding sequence; Pss: promoter of the small subunit of rubisco; bar: phosphinotricine transferase coding sequence; 3'g7: 3'untranslated region of the *Agrobacterium* octopine T-DNA gene 7; 3'ocs: 3'untranslated region of octopine synthase gene.

[0020] FIG. 3: Schematic outline of the T-DNA construct present in silenced locus X₁ and of the transiently introduced T-DNAs Y₂ (T-DNAs of pGVCHS287 and pPs35SCAT1S3chs, respectively) and of the transcript homology between X₁, Y₂ and Z₂ (the catalase1 endogene). Abbreviations as in FIG. 2

[0021] FIG. 4: Schematic outline of the T-DNA constructs present in silenced locus X₂ and of the transiently introduced T-DNAs Y₂ (T-DNAs of pGUSchsS + pGUSchsAS, and pPs35SCAT1S3chs, respectively) and of the transcript homology between X₂, Y₂ and Z₂ (the catalase1 endogene). Abbreviations as in FIG. 2

[0022] FIG.5: pPs35SCAT1S3chs

DETAILED DESCRIPTION OF THE INVENTION

[0023] A post-transcriptionally silenced inverted repeat transgene locus can trigger silencing of a reporter gene producing non-homologous transcripts.

[0024] We studied the interaction between three transgene loci X₁, Y₁ and Z₁ (FIG. 2. For a detailed description of all loci and constructs, see materials and methods) to address the question whether or not a stepwise homology between loci can lead to silencing.

[0025] It has been demonstrated previously that the post-transcriptionally silenced *nptII* genes in locus X₁ are capable to in trans silence transiently expressed genes with partial transcript homology to their *nptII* transcripts (Van Houdt et al., 2000 b). We subsequently found that also a stably expressed β-glucuronidase (*gus*) gene (in locus Y₁), with partial transcript homology to the *nptII* transcripts of the silencing inducing locus X₁, becomes efficiently silenced in trans (FIG. 2: X₁ and Y₁ and table 1: X₁Y₁ compared to Y₁). On the contrary, the *nptII* genes of locus X₁ are not able to trigger silencing of the *gus* genes in locus Z₁ which is expected as the genes of both loci produce transcripts without significant homology (FIG. 2). The homology between the two transcripts of X₁ and Y₁ is mainly situated in the 3'untranslated region (250 nucleotides), but also the 5'untranslated sequences show a small region of homology (29 nucleotides). These results demonstrate that the in trans silencing effects are not triggered by promoter homology. When Y₁ and Z₁ loci are combined in so called Y₁Z₁ hybrids both types of *gus* genes, having transcript homology in the *gus* coding sequence of 1809 nucleotides, remain highly expressed as reflected in the normal *gus* activity showing that the RNA silencing mechanism does not become activated (Table 1: Y₁Z₁ compared to Y₁ and Z₁). Surprisingly, upon creation of a stepwise homology between X₁ and Z₁ by introducing locus Y₁, the new observation described here is that also the *gus* expression in locus Z₁ is reduced in X₁Y₁Z₁ plants (Table 1: X₁Y₁Z₁ compared to Y₁Z₁). Thus, creating a stepwise homology between a silenced locus and a target gene by introducing a recombinant gene is sufficient to trigger silencing of the target.

[0026] Silencing inducing transgene loci can trigger silencing of a non-homologous endogene.

[0027] We further assessed the universality and the usefulness in high throughput functional gene analyses of silencing elicited by a stepwise homology in trans, called domino silencing. Therefore, we evaluated whether the expression of the tobacco endogenous catalase1 (*cat1*) genes is reduced in plants carrying a silencing locus (X locus) showing no significant homology with the catalase endogene by introducing a recombinant gene (Y construct). As silencing locus we used either X₁ or X₂ (FIG. 2: locus X₁, FIG. 3: locus X₂), in either case containing the 3' chalcone synthase sequences of *Anthirrinum majus* (3'chs). As transmitter for silencing we constructed a recombinant gene composed of the catalase1 coding sequence and the 3' chs region under control of the 35S promoter (P35S) (residing on T-DNA pPs35SCAT1S3chs,

Figs. 2 and 3: T-DNA in Y₂). The recombinant cat1 3'chs genes (Y₂) were introduced in tobacco leaves bearing locus X₁ (or X₂) via Agrobacterium injection. As a negative control, we introduced a recombinant gene in which the cat1 coding sequence is replaced by the gus coding sequence (pGUSchsS, T-DNA construct as in locus Y₁ FIG. 1). In this case, no stepwise homology is created between the silencing inducing locus and the target catalase endogenes. As a positive control, the recombinant construct Y₂ was also introduced in transgenic tobacco with silenced catalase1 genes by the presence of a catalase1 antisense construct (Cat1AS in Champnongpol et al., 1996). Sixteen days after Agrobacterium injection, the catalase activity was determined in protein extracts of injected leaf tissue and compared with the activity in non-injected wild type (SR1) leaf tissue (Table 2). The results indicate that domino silencing is also applicable to endogenes since the catalase activity is clearly reduced in 6 out of 7 samples, while it remains high in the negative controls. In conclusion, not only an inverted repeat-bearing silencing-inducing transgene locus, but also a silencing-inducing locus in which the two residing chimeric genes give rise to transcripts with complementarity in the 3'UTR (3'chs)(FIG. 3: X₂), is able to trigger domino silencing reducing endogenous catalase expression.

[0028] Table 1: Results of a GUS-activity determination in protein extracts of leaf tissue harvested from tobacco plants containing different combinations of the loci X₁, Y₁ and Z₁ (FIG. 2). The mean values of a number of plants (n) are given.

Genotype	GUS-act. ¹ U GUS/mg TSP	N	GUS-act. Mature ² U GUS/mg TSP	n
X ₁	< ³	1	<	1
Y ₁	368 ± 165 ⁴	9	n.d.	-
Z ₁	126 ± 30	10	48 ± 8	5
X ₁ Y ₁	2 ± 1	4	4 ± 2	4
X ₁ Z ₁	139 ± 35	9	46 ± 14	5
Y ₁ Z ₁	477 ± 101	10	231 ± 106	6
X ₁ Y ₁ Z ₁ ⁵ → Y ₁ Z ₁	195 ± 104	16	315 ± 46	8
→ X ₁ Y ₁ Z ₁	4 ± 3	22	12 ± 4	9

¹ The mean GUS-activity (GUS-act.) was calculated, using n samples and expressed as units (U) GUS per milligram of total soluble protein (TSP).

² The plants were analyzed in two different developmental stages; 4 weeks after sowing and at a mature stage just before onset of flowering.

³ below detection limit (1 U GUS/mg TSP)

⁴ standard deviation

⁵ Growth of X₁Y₁Z₁ plants was performed in conditions that both Y₁Z₁ and X₁Y₁Z₁ plants were able to develop. A PCR screen with X₁-specific primers was performed to discriminate between presence and absence of X₁.

n.d. not determined

[0029] Table 2: Results of a catalase-activity determination in protein extracts of leaf tissue harvested from Agrobacterium injected tobacco leaves.

Genotype injected Plant	Construct introduced via Agrobacterium injection	catalase activity 16 days after injection (60 µg TSP)
WT (SR1)	- (non-injected)	-0.2116 ² 100% ³
X ₁	PGUSchssS	-0.2556 121%
X ₁	Y ₂	-0.0589 27%
X ₁ ⁴	Y ₂	-0.0698 33%
X ₂	PGUSchssS	-0.1782 84%
X ₂	Y ₂	-0.0641 30%
X ₂	Y ₂	-0.0987 47%
X ₂ ⁴	Y ₂	-0.0914 43%
X ₂ ⁴	Y ₂	-0.1996 94%
X ₂ ⁴	Y ₂	-0.0627 30%
Cat1AS	Y ₂	-0.0439 21%

¹ X₁, see FIG. 3; X₂, see FIG. 4.

² The mean of two samples independently measured (-0.2270 and -0.1963).

³ The catalase activity in wild type SR1 tobacco leaves was set to 100%.

⁴ 24 hours after Agrobacterium injection, the plants were placed under high light conditions for 24 hours (1000 µmol / m² s). This treatment is known to stimulate endogenous catalase 1 transcription. As the degree of cat suppression is similar in uninduced as in induced situation, the data indicate that enhanced transcription of the endogenous catalase target is not required to trigger domino silencing.

EXAMPLES

Materials and Methods

Plasmid construction

[0030] pPs35SCAT1S3chs: The T-DNA of this plasmid is schematically shown in FIG. 3:Y₂ and the nucleotide sequence is depicted in SEQ ID NO:1 of the accompanying and incorporated herein SEQUENCE LISTING.

Description of the transgene loci and production of hybrid plants

[0031] Locus X₁ harbors an inverted repeat about the right T-DNA border of construct pGVCHS287, carrying a neomycin phosphotransferase II (*nptII*) gene under the control of the Cauliflower mosaic virus 35S promoter (P35S) and the 3'signalling sequences of the Anthirrinum majus chalcone synthase gene (3'chs). The *nptII* genes are post-transcriptionally silenced and can trigger in trans silencing and methylation of homologous target genes (Van Houdt et al., 2000 a and b and FIG. 2).

[0032] Locus Y₁ contains a single copy of the pGUSchsS T-DNA, containing a gus gene under the control of P35S and 3'chs (in transformant GUSchsS29) and shows normal levels of gus expression (FIG. 2).

[0033] Locus Z₁ contains more than one copy of the pXD610 T-DNA, harboring the gus gene under control of P35S and the 3'untranslated region (UTR) of the nopaline synthase gene (3'nos), (in plant LXD610-2) and shows normal gus expression (De Loose et al., 1995 and FIG. 2).

[0034] Locus X₂ contains a single copy of both the pGUSchsS and pGUSchsAS T-DNA (in transformant GUSchsS+GUSchsAS 11) and triggers silencing in cis of the gus genes, but also in trans of (partially) homologous genes (FIG. 4).

[0035] X₁ and Z₁ hemizygous plants were obtained as hybrid progeny of the crossing of tobacco plants homozygous for locus X₁ (=Holo1; Van Houdt et al., 2000 a and b) and homozygous for locus Z₁ (=LXD610-2/9 De Loose et al., 1995) to wild type SR1 respectively. Y₁ hemizygous plants were obtained by crossing the hemizygous primary tobacco transformant GUSchsS29 to SR1 and selecting for the presence of locus Y₁ in the hybrid progeny. X₁Y₁ and Y₁Z₁ hemizygous plants are the hybrid progeny plants of the cross between Holo1 and GUSchsS29 and between GUSchsS29 and LXD610-2/9 respectively that are selected for the

presence of Y₁. X₁Z₁ hemizygous plants are the hybrid progeny of the cross between Holo1 and LXD610-2/9. X₁Y₁Z₁ hemizygous plants were obtained by crossing X₁Y₁ hemizygous plants to LXD610-2/9; as we only selected for the presence of Y₁ in the hybrid progeny both Y₁Z₁ and X₁Y₁Z₁ hemizygous plants were obtained.

Preparation of Agrobacteria and injection

[0036] The Agrobacteria C58C1Rif^R (pGV2260) (pGUSchsS)Cb^R,PPT^R or C58C1Rif^R(pMP90) (pPs35SCAT1S3chs)Gm^R,PPT^R were mainly grown as described by Kapila et al., 1997 except that the Agrobacteria were resuspended in MMA to a final OD₆₀₀ of 1. Greenhouse grown plants of 10 to 15 cm in height were used. Half of the third top leaf was injected via the lower surface using a 5ml syringe while the leaf remained attached to the plant. The plants were kept in the greenhouse and 16 days after injection three to four discs of 11 mm in diameter were excised from the injected tissue for the preparation of a fresh protein extract to determine the catalase activity.

Enzymatic assays

[0037] Preparation of the protein extracts and GUS-activity measurements were done as previously described (Van Houdt et al., 2000 b). Preparation of the protein extracts for catalase-activity measurement and the spectrophotometric catalase-activity determination was done according to Champnongpol et al., 1996.

References

Van Houdt, H., Kovarik, A., Van Montagu, M., and Depicker, A. (2000 a). Cross-talk between posttranscriptionally silenced neomycin phosphotransferase II transgenes. *FEBS Lett.* 467, 41-46.

Van Houdt, H., Kovarik, A., Van Montagu, M., and Depicker, A. (2000 b) Both sense and antisense RNAs are targets for the sense transgene-induced posttranscriptional silencing mechanism. *Mol. Gen. Genet.* 263, 995-1002.

De Loose, M., Danthinne, X., Van Bockstaele, E., Van Montagu, M. and Depicker, A., (1995) Different 5'leader sequences modulate β -glucuronidase accumulation levels in transgenic *Nicotiana tabacum* plants. *Euphytica* 85, 209-216.

Kapila, J., De Rycke, R., Van Montagu, M. and Angenon, G. (1997) An *Agrobacterium*-mediated transient gene expression system for intact leaves. *Plant Science* 122, 101-108.

Champnongpol, S., Willekens, H., Langebartels, C., Van Montagu, M., Inzé, D., and Van Camp, W. (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. *Plant J.* 10(3), 491-503.

Thomas, C. L., Jones, L., Baulcombe, D.C. and Maule, A.J. (2001) Size constraints for targetting post-transcriptional gene silencing and for RNA-directed methylation in *Nicotiana benthamiana* using potato virus X vector. *Plant J.* 25(4), 417-425.

De Buck, S. and Depicker, A. (2001) Disruption of their palindromic arrangement leads to selective loss of DNA methylation in inversely repeated gus transgenes in *Arabidopsis*. *Mol. Gen. Genom.* 265, 1060-1068.

SEQUENCE LISTING

<110> VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW

<120> An efficient system for RNA silencing

<130> ADP/Dom/V097

<150> EP01203760.2

<151> 2001-10-05

<160> 1

<170> PatentIn version 3.1

<210> 1

<211> 10635

<212> DNA

<213> Artificial Sequence

<220>

<223> pPs35SCAT1S3chs

<400> 1	60
agattcgaag ctcggtcccg tgggtgttct gtcgtctcggttgtacaacgaaatccattcc	60
cattccgcgc tcaagatggc ttcccctcgaggatcatca gggctaaatc aatcttagccg	120
acttgtccgg tgaaatgggc tgcactccaa cagaaacaat caaacaaaca tacacagcga	180
cttattcaca cgcgacaaat tacaacggta tatattcctgc cagtactcgccgtcgaata	240
acttcgtata atgtatgcta tacgaagtta tgaattcgctcttatcata gatgtcgctata	300
taaacctatt cagcacaata tattgtttc attttaatat tgtacatata agtagtaggg	360
tacaatcagt aaattgaacg gagaatatta ttcataaaaa tacgatagta acgggtgata	420
tattcattag aatgaaccga aaccggcggt aaggatctga gctacacatg ctcagggttt	480
ttacaacgtt cacaacagaa ttgaaagcaa atatcatgctatcataggcg tctcgcatat	540
ctcattaaag cagctggaag atttgatgta tcctcatcg atctcggtga cggcaggac	600
cggacggggc ggtaccggca ggctgaagtc cagctgccag aaacccacgt catgccagtt	660
cccggtcttg aagccggccg cccgcagcat gccgcggggg gcataatccga gcccctcg	720

catgcgcacg	ctcggtcgt	tggcagccc	gatgacagcg	accacgctct	tgaaggccctg	780
tgccctcagg	gacttcagca	ggtgggtgta	gagcgtggag	cccagtcccg	tccgctggtg	840
gcggggggag	acgtacacgg	tcgactcggc	cgtccagtcg	taggcgttgc	gtgccttcca	900
ggggcccccg	taggcgtatgc	cggcgaccc	gccgtccacc	tcggcgacga	gccagggata	960
gcgcgtcccg	agacggacga	ggtcgtccgt	ccactcctgc	ggtcgtccgt	gctcggtagc	1020
gaagttgacc	gtgcttgtct	cgatgtatgt	gttgacgtat	gtgcagaccc	ccggcatgtc	1080
cgcctcggtg	gcacggcgga	tgtcgcccg	gcgtcggtct	gggctcatgg	tagatctgtt	1140
taaacgttaa	cggattgaga	gtgaatatga	gactctaatt	ggataccgag	ggaaatttat	1200
ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	accttaggcg	1260
acttttgaac	gwgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	actccagaaa	1320
cccgccggctg	agtggctcct	tcaatcggt	cggttctgtc	agttccaaac	gtaaaacggc	1380
ttgtcccgcg	tcatcgccgg	gggtcataac	gtgactccct	taattctccg	ctcatgatca	1440
agctacctca	gcaggatccg	gcgcgccatg	gtcgataaga	aaaggcaatt	tgtatgttt	1500
aattcataac	atctccctca	tgacttaaaa	aacttgcaaa	agatttataat	agaaataactt	1560
aaatattttg	actaaaaaaaaa	aaaaaaaaaa	aacacacaca	taaaccaaca	aataacataaa	1620
attattttta	tatagccttt	atttcaatga	tcacaacgaa	acaatacaag	tacaaagcgt	1680
tacaagagag	aatcgccaa	tatagctcac	atgcagcaca	catcacaata	ataggttaacc	1740
atgtccactt	ttttattacg	gaaataagaa	aataacccaa	ccccgttacc	cgggttcata	1800
tgcttggtct	cacattaagc	ctagaagcta	gctttgacc	cagagattt	tcagcctgag	1860
accagtatga	gatccaaatg	ctgcggatct	cataagtat	acgaggatca	gacaaggct	1920
ccacccacccg	acgaataaaag	cgttcttgcc	tgtctgggt	gaatgagcgg	taccttctc	1980
ctgggtgctt	gaaattgttc	tcttctgaa	tgacacactt	ctcgcttgc	ccagtgcaca	2040
ttgtagaagg	aataggatac	ttctcagcat	ggcgaacagg	atcatacctt	gaaggaaat	2100
agtcgatctc	ctcatccctg	tgcataaaat	tcatggagcc	atcgatgtga	ttgttgcgtat	2160
gagcgcattt	tggagcatta	gcaggttagt	gcaaataat	tggtccaagt	cgataccct	2220
gggtatcaga	gtaggagaaa	atacgagtt	gaagcatctt	atcatctgag	taataaacc	2280
ctggaacaac	aatagaaggg	cagaaagcta	gctgctcatt	ctcattagag	aagttatcaa	2340
tgttcttgcgtt	cagaactaat	cttccacccg	gctgcaaagg	caagatatcc	tctggccaag	2400

ttttgtcac atcaagtgga tcaaaatcaa atctgtcttc atgatctgga tccatagtcc	2460
ccgggcagtg ggcgatttga tttaaatctc tagaatagta aattgtaatg ttgtttgttgc	2520
tttgtttgt tgtggtaatt gttgtaaaaa tacggatcg cctgcagtc tctccaaatg	2580
aatgaactt ccttatatacg aggaagggtc ttgcgaagga tagtggatt gtgcgtcatc	2640
ccttacgtca gtggagatat cacatcaatc cacttgctt gaagacgtgg ttgaaacgtc	2700
ttcttttcc acgatgctcc tcgtgggtgg gggccatct ttgggaccac tgccggcaga	2760
ggcatcttga acgatagcct ttcctttatc gcaatgatgg cattttaggg tgccaccc	2820
cttttctact gtcctttga tgaagtgaca gatacgctgg caatggaatc cgaggaggtt	2880
tcccgatatt accctttgtt gaaaagtctc aatagccctt tggtcttctg agactgtatc	2940
tttgatatttcc ttggagttaga cgagagtgtc gtgcctccacc atgttgacga agattttctt	3000
cttgcatttgc agtcgtaaaaa gactctgtat gaaactgttcg ccagtctca cggcgagttc	3060
tgttagatcc tcgatctgaa ttttgactc catggcctt gattcagtag gaactacttt	3120
cttagagact ccaatctcta ttacttgccct tggtttatga agcaagcctt gaatcgtcca	3180
tactggaata gtacttctga tcttgagaaa tatatcttc tctgtgttct tgcgtcgtt	3240
agtcctgaat cttttgactg catctttaac cttctggga aggtatttga tctcctggag	3300
attattactc gggtagatcg tcttgatgag acctgcccg taggcctctc taaccatctg	3360
tgggtcagca ttctttctga aattgaagag gctaatttc tcattatcgg tggtaacat	3420
ggtatcgta ccttctccgt cgaactttct tccttagatcg tagagataga gaaagtcgtc	3480
catggtgatc tccggggcaa aggagatctc tagagtcgag atttaatcc taaatcctgc	3540
aggaagctta ccggataaac ttctgtatagc atacattata cgaagttatc catggagcca	3600
tttacaatttgc aatataatcc gcccggctg ccgcggca cccgggtggag cttgcgttgc	3660
ggtttctacg cagaactgag ccggtaggc agataatttc cattgagaac tgagccatgt	3720
gcaccttccc cccaaacacgg tgagcgacgg ggcaacggag tgatccacat gggactttta	3780
aacatcatcc gtcggatggc gttgcgagag aagcagtcga tccgtgagat cagccgacgc	3840
accgggcagg cgccaaacac gatcgcaaaatcg tatttgcgtc caggtacaat cgagccgacgc	3900
ttcacggta cggaaacgacc aagcaagcta gcttagtaaa gccctcgcta gattttatgc	3960
cggatgttgc gattacttcg ccaactatttgcgataacaag aaaaagccag ctttcgttgc	4020
tatataatcc aatttgcgttgc gggcttatttgcgttgc aaaaataataa aagcagacttgc	4080

gacctgatag tttggctgtg agcaattatg tgcttagtgc atctaacgct	tgagttaagc	4140
cgcgccgcga agcggcgctcg gcttgaacga attgttagac attatttgc	c gactaccc	4200
gtgatctcg ctttcacgta gtggacaaat tcttccaact gatctgcgcg	cgaggccaag	4260
cgtatcttctt ctgttccaag ataaggctgt cttagttcaa gtagacggg	ctgatactgg	4320
gccggcaggc gctccattgc ccagtcggca gcgacatcct tcggcgcgat	tttgcgggtt	4380
actgcgcgt accaaatgcg ggacaacgta agcactacat ttgcgtcatc	gccagcccag	4440
tcgggcggcg agttccatag cgttaagggtt tcatttagcg cctcaaata	tag atcctgttca	4500
ggaaccggat caaagagttc ctccgcccgt ggacctacca aggcaacgct	atgttcttctt	4560
gcttttgtca gcaagatagc cagatcaatg tcgatcgtgg ctggctcgaa	gatacctgca	4620
agaatgtcat tgcgcgtccca ttctccaaat tgcagttcgc gcttagctgg	ataacgccac	4680
ggaatgatgt cgtcgtgcac aacaatggtg acttctacag cgccggagaat	ctcgctctct	4740
ccaggggaag ccgaagtttc caaaaaggctg ttgatcaaag ctgcgcgcgt	tgtttcatca	4800
agccttacgg tcaccgtaac cagcaaatac atatcactgt gtggcttcag	gccgcac	4860
actgcggagc cgtacaaatg tacggccagc aacgtcggtt cgagatggcg	ctcgatgacg	4920
ccaaactaccc ctgatagttg agtcgatact tcggcgatca ccgc	ttccct catgatgttt	4980
aactttgttt tagggcgact gccctgctgc gtaacatcgt tgctgctcca	taacatcaaa	5040
catcgaccca cggcgtaacg cgcttgctgc ttggatgccc gaggcataga	ctgtacccca	5100
aaaaaaacagt cataacaagc catgaaaacc gccactgcgc cgttaccacc	gctgcgttcg	5160
gtcaaggttc tggaccagtt gcgtgagcgc atacgctact tgcattacag	cttacgaacc	5220
gaacaggctt atgtccactg gttcgtgcc ttcatccgtt tccacggtgt	gcgtcacccg	5280
gcaaccttgg gcagcagcga agtcgaggca tttctgtcct ggctggcgaa	cgagcgcaag	5340
gtttcggtct ccacgcacg tcaggcattg gcggccttgc tttcttcta	cggaagtgc	5400
tgtgcacgga tctgccttgg cttaggaga tcggaagacc tcggccgtcc	ggcgcttgc	5460
cggtgtgtct gaccccgat gaagtggttc gcatcctcgg ttttctggaa	ggcgagcatc	5520
gtttgttcgc ccagcttctg tatggAACGG gcatgcggat cagtgggtt	ttgcaactgc	5580
gggtcaagga tctggatttc gatcacggca cgatcatcgt gcgggagg	gc aaggctcca	5640
aggatcgggc cttgatgtta cccgagagct tggcacccag cctgcgcgag	caggatcga	5700
tccaacccct ccgctgctat agtgcagtcg gcttctgcacg ttcagtgcag	ccgttctctg	5760

aaaacgacat	gtcgacacaag	tcctaagtta	cgcgacaggc	tgccgccctg	ccctttcct	5820
ggcgcccc	tgtcgctgt	tttagtcga	taaagtagaa	tacttgcac	tagaacggg	5880
gacattacgc	catgaacaag	agcgccgccc	ctggcctgct	gggctatgcc	cgcgtcagca	5940
ccgacgacca	ggacttgacc	aaccaacggg	ccgaactgca	cgcggccggc	tgcaccaagc	6000
tgtttccga	gaagatcacc	ggcaccaggc	gcaaccgccc	ggagctggcc	aggatgcttg	6060
accacccatcg	ccctggcgac	gttgtgacag	tgaccaggct	agaccgcctg	gcccgcagca	6120
cccgcgacct	actggacatt	gccgagcgc	tccaggaggc	cggcgcgggc	ctgcgtagcc	6180
tggcagagcc	gtggggccgac	accaccacgc	cggccggccc	catggtgttg	accgtgttcg	6240
ccggcattgc	cgagttcgag	cgttccctaa	tcatcgaccg	cacccggagc	gggcgcgagg	6300
ccgccaaggc	ccgaggcgtg	aagttggcc	cccgcctac	cctcaccggc	gcacagatcg	6360
cgcacgccc	cgagctgatc	gaccaggaag	gccgcaccgt	gaaagaggcg	gctgcactgc	6420
ttggcgtgca	tcgctcgacc	ctgtaccgc	cacttgagcg	cagcgaggaa	gtgacgccc	6480
ccgaggccag	gcggcgcgg	gccttccgt	aggacgcatt	gaccgaggcc	gacgcctgg	6540
cggccgccc	aatgaacgc	caagaggaac	aagcatgaaa	ccgcaccagg	acggccagga	6600
cgaaccgttt	ttcattaccg	aagagatcga	ggcggagatg	atcgccggcc	ggtacgttt	6660
cgagccgccc	gcbcacgtct	caaccgtgc	gctgcattgaa	atcctggcc	gttgtctga	6720
tgccaagctg	gcggcctggc	cggccagctt	ggccgctgaa	gaaaccgagc	gccgcgtct	6780
aaaaaggtga	tgtgtatgg	agtaaaacag	cttgcgtcat	gcggtcgtg	cgtatatgt	6840
gcgtatgat	aataaaca	tacgcaaggg	gaacgcatt	aggatcg	tgtacttaac	6900
cagaaaggcg	ggtcaggcaa	gacgaccatc	gcaacccatc	tagccgcgc	cctgcaactc	6960
gccggggcc	atgttctgtt	agtcgattcc	gatccccagg	gcagtgc	cgattggcg	7020
gccgtgcggg	aagatcaacc	gctaaccgtt	gtcggcatcg	accgcccac	gattgaccgc	7080
gacgtgaagg	ccatcgcccg	gcgcgacttc	gtatgtatcg	acggagcgcc	ccaggcggcg	7140
gacttggctg	tgtccgcgat	caaggcagcc	gacttcgtgc	tgattccgt	gcagccaagc	7200
ccttacgaca	tatggccac	cgccgacctg	gtggagctgg	ttaagcagcg	cattgagg	7260
acggatggaa	ggctacaagc	gccccttgc	gtgtcgccgg	cgatcaaagg	cacgcgcac	7320
ggcggtgagg	ttgcccaggc	gctggccggg	tacgagctgc	ccattctga	gtcccgtatc	7380
acgcagcgcc	tgagctaccc	aggcactgcc	gccgcggca	caaccgttct	tgaatcaga	7440

cccgagggcg acgctgccc	7500
cgaggtccag gcgctggcc	
ctgaaattaa atcaaaactc	
atttgagttt atgaggtaaa gagaaaatga	7560
gcaaaagcac aaacacgcta	
agtgccggcc	
gtccgagcgc acgcagcagc	7620
aaggctgcaa cgttggccag	
cctggcagac acgccagcca	
tgaagcgggt caacttcag ttgccggcg	7680
aggatcacac caagctgaag	
atgtacgcgg	
tacgccaagg caagaccatt accgagctgc	7740
tatctgaata catcgccag	
ctaccagagt	
aatgagcaa atgaataat	7800
gagtagatga attttagcgg	
ctaaaggagg cggcatggaa	
aatcaagaac aaccaggcac	7860
cgacgcccgt	
gaatgcccc	
tgtgtggagg aacgggcgg	
tggccaggcg taagcggctg	7920
ggttgtctgc	
cggccctgca atggcactgg	
aacccccaaag	
cccgaggaat cggcgtgacg	7980
gtcgcaaacc	
atccggcccc	
gtacaaatcg	
gcgcggcgct	
gggtgatgac	8040
ctggtgaga agttgaaggc	
cgcgcaggcc	
gcccagcggc	
aacgcatcga	
ggcagaagca	8100
cgcggcggt	
aatcgtggca	
agcggccgct	
gatcgaatcc	
gcaaagaatc	
ccggcaaccg	8160
ccggcagccg	
gtgcgcccgt	
gattaggaag	
ccgcccagg	
gcgacgagca	
accagatttt	8220
ttcggtccga	
tgctctatga	
cgtgggcacc	
cgcgataagtc	
gcagcatcat	
ggacgtggcc	8280
gtttccgtc	
tgtcgaagcg	
tgaccgacga	
gctggcgagg	
tgatccgcta	
cgagttcca	8340
gacgggcacg	
tagaggtttc	
cgcaggccg	
gccggcatgg	
ccagtgtgt	
ggattacgac	8400
ctggtaactga	
tggcggtttc	
ccatctaacc	
aatccatga	
accgataacc	
ggaagggaag	8460
ggagacaagc	
ccggcccggt	
gttccgtcca	
cacgttgcgg	
acgtactcaa	
gttctgccgg	8520
cgagccgatg	
gcggaaagca	
gaaagacgac	
ctggtagaaa	
cctgcattcg	
gttaaacacc	8580
acgcacgtt	
ccatgcagcg	
tacgaagaag	
gccaagaacg	
gccgcctgg	
gacggtatcc	8640
gagggtgaag	
ccttgattag	
ccgctacaag	
atcgtaaaga	
gcgaaaccgg	
gcggccggag	8700
tacatcgaga	
tcgagctagc	
tgattggatg	
taccgcgaga	
tcacagaagg	
caagaaccgg	8760
gacgtgctga	
cggttcaccc	
cgattacttt	
ttgatcgatc	
ccggcatcg	
ccgtttctc	8820
taccgcctgg	
cacgcccgc	
cgcaggcaag	
gcagaagcca	
gatgggtgtt	
caagacgatc	8880
tacgaacgca	
gtggcagcgc	
cggagagttc	
aagaagttct	
gtttcaccgt	
gchgcaagctg	8940
atcgggtcaa	
atgacctgcc	
ggagtagcgt	
ttgaaggagg	
aggcggggca	
ggctggcccg	9000
atccttagtca	
tgcgctaccg	
caacctgatc	
gagggcgaag	
catccgcccgg	
ttcctaattgt	9060
acggagcaga	
tgcttagggca	
aattgcccta	
gcagggaaaa	
aaggtcgaaa	
aggtctcttt	9120
cctgtggata	
gcacgtacat	
tggaaaccca	
aagccgtaca	
ttggaaaccg	

gaaccgtac attggaaacc caaagccgt a cattggaaac cggtcacaca tgtaagtgac	9180
tgatataaaa gagaaaaaaag gcgattttc cgcctaaaac tctttaaaac ttattaaaac	9240
tcttaaaacc cgcctggcct gtgcataact gtctggccag cgacagccg aagagctgca	9300
aaaagcgcc acccttcggt cgctgcgctc cctacgcccc gccgcttcgc gtccgcstat	9360
cgcggccgct ggccgctcaa aaatggctgg cctacggcca ggcaatctac cagggcgcgg	9420
acaagcccgccg ccgtcgccac tcgaccgcgg gcgcacat caaggcaccc tgccctcgcc	9480
gttccggta tgacggtgaa aacctctgac acatgcagct cccggagacg gtacagctt	9540
gtctgtaa gcgatgccggg agcagacaag cccgtcaggg cgctcagcg ggtgttggcg	9600
gggtgcgggg cgccatg acccagtcac gtacgatag cggagtgtat actggcttaa	9660
ctatgcggca tcagagcaga ttgtactgag agtgcaccat atgcggtgtg aaataccgca	9720
cagatgcgt a aggaaaaat accgcatacg gcgccttcc gcttcctcgc tcactgactc	9780
gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cgtaatacg	9840
gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa	9900
ggccaggaac cgtaaaaagg ccgcgttgct ggcgttttc cataggctcc gccccctga	9960
cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag	10020
ataccaggcg tttccccctg gaagctccct cgtgcgtct cctgtccga ccctgcccgt	10080
taccggatac ctgtccgcct ttctcccttc ggaaagcgtg gcgccttctc atagctcagc	10140
ctgttaggtat ctcagttcgg tgttaggtcgt tcgctccaag ctggctgtg tgcacgaacc	10200
ccccgttcag cccgaccgct gcgccttac cggtaactat cgtcttgagt ccaaccgg	10260
aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta	10320
tgttaggcgt gctacagagt tcttgaagtg gtggctaac tacggctaca ctagaaggac	10380
agtatttggat atctgcgtc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc	10440
ttgatccggc aaacaaacca ccgctggtag cggtggttt tttgttgca agcagcagat	10500
tacgcgcaga aaaaaaggat ctcaagaaga tccggaaaac gcaagcgcaa agagaaagca	10560
ggtagcttgc agtggctta catggcgata gctagactgg gcggtttat ggacagcaag	10620
cgaaccggaa ttgcc	10635