USAGE OF MIXED INTEGER LINEAR PROGRAMMING IN CRYPTANALYSIS OF BLOCK CIPHERS

Halil Ibrahim Kaplan

Istanbul Technical University
Informatics Institute

2025

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- 5 MILP representation of block ciphers
- 6 References

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- MILP representation of block ciphers
- 6 References

Block Ciphers

Block ciphers designed to securely encrypt and decrypt fixed-size blocks of data by transforming plaintext into ciphertext using a symmetric key.

Figure 1: Block Cipher Encrytion and Decryption

Cryptanalysis

The main purpose of cryptanalysis:

- Prove that an algorithm is secure against known attacks in the open literature
- Find better complexities for those attacks and contribute to the security of the algorithm
- Break it! (breaking an algorithm means obtaining the key with a lower complexity than the algorithm claims.)

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- MILP representation of block ciphers
- 6 References

Mixed-Integer Linear Programming (MILP)

Goal: Optimize (maximize or minimize) a linear function.

$$c_1x_1+c_2x_2+\cdots+c_nx_n$$

Constraints:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$
 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_p \in \mathbb{Z}, \quad x_{p+1}, \dots, x_n \ge 0$

- x_i: decision variables
- c_i: objective function weights
- a_{ij}: constraint coefficients
- b_i: limits of constraints

MILP Example: Problem Setup

A company produces two products: **A** and **B**. The goal: **maximize profit** under production limits.

MILP Example: Objective

Maximize profit:

$$Z = 40x + 30y$$

- Profit per unit of A = 40
- Profit per unit of B=30

MILP Example: Constraints

Constraints:

• **Labor:** $2x + y \le 100$

• Machine: $x + 3y \le 90$

• **Demand:** $x \ge 20$

• Non-negativity: $x, y \ge 0$

(100 hours available)

(90 hours available)

(min. 20 units of A)

MILP example

We will use Sagemath and GLPK solver for modeling.

- Maximum profit: 2160
- A: 42
- B: 16

Cryptanalysis and MILP

Table of Contents

- Preliminaries
- 2 MILF
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- MILP representation of block ciphers
- 6 References

Differential Cryptanalysis

Idea: Study how input differences between two plaintexts affect output differences in ciphertexts.

Definition

For two plaintexts P and P':

$$\Delta P = P \oplus P'$$

Differential Cryptanalysis: Probability

- Input difference: ΔX

- Output difference: ΔY

In an ideal cipher: - For *n*-bit input,

$$\Pr[\Delta X o \Delta Y] = \frac{1}{2^n}$$

In practice: - Some input differences lead to output differences with much higher probability.

Differential Characteristics

Halil İbrahim Kaplan MILP IN CRYPTANALYSIS 2025 16 / 39

Differential Cryptanalysis

$\Delta X/\Delta Y$	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	4	4	4	4	0	0	0	0
2	0	4	0	4	0	4	4	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
4	0	0	4	0	0	0	2	2	0	0	0	4	2	2	0	0
5	0	0	4	0	0	0	2	2	0	0	4	0	2	2	0	0
6	0	2	0	2	2	0	0	2	2	0	2	0	0	2	2	0
7	0	2	0	2	2	0	0	2	0	2	0	2	2	0	0	2
8	0	0	0	0	4	4	0	0	0	0	0	0	2	2	2	2
9	0	0	0	0	4	4	0	0	0	0	0	0	2	2	2	2
А	0	0	0	0	0	4	4	0	2	2	2	2	0	0	0	0
В	0	4	0	4	0	0	0	0	0	0	0	0	2	2	2	2
С	0	0	4	0	0	0	2	2	4	0	0	0	0	0	2	2
D	0	0	4	0	0	0	2	2	0	4	0	0	0	0	2	2
E	0	2	0	2	2	0	0	2	0	2	0	2	0	2	2	0
F	0	2	0	2	2	0	0	2	2	0	2	0	2	0	0	2

Table 1: Differential Distribution Table (DDT) of PRINCE algorithm

Steps of Differential Cryptanalysis

- **9 Select Differentials:** Use DDT to find $(\Delta X, \Delta Y)$ pairs with high probability.
- **② Collect Pairs:** Generate many plaintext pairs P, P' with $P \oplus P' = \Delta X$.
- Encrypt: Process these pairs through the cipher.
- **4. Analyze Outputs:** Check if observed ciphertext differences match expected ΔY .
- **Solution Key Recovery:** Use biases to guess round subkeys (esp. in the last rounds).

Differential Cryptanalysis

Figure 3: Differential Cryptanalysis

Related-key Differential Cryptanalysis

Adds differentials also to key sechedule.

Figure 4: Related-key Differential Cryptanalysis

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- MILP representation of block ciphers
- 6 References

ITUbee Block Cipher

Figure 5: ITUbee round structure

ITUbee Block Cipher

L Function

$$L(a,b,c,d,e) = (e \oplus a \oplus b, \ a \oplus b \oplus c, \ b \oplus c \oplus d, \ c \oplus d \oplus e, \ d \oplus e \oplus a)$$

F function

$$F(X) = S(L(S(X)))$$

$$S(a \parallel b \parallel c \parallel d \parallel e) = s[a] \parallel s[b] \parallel s[c] \parallel s[d] \parallel s[e]$$

ITUbee Block Cipher

Key Schedule

• 80-bit key is split into two 40-bit halves:

$$K = K_L \parallel K_R$$

- Odd rounds use K_R
- Even rounds use K_L
- No dedicated key schedule

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- 5 MILP representation of block ciphers
- 6 References

MILP Modelling of XOR Operation

Following [2], let x_{in1} and x_{in2} be the input differences, and x_{out} be the output difference of the XOR. The branch number is 2.

We introduce a binary variable d:

•
$$d = 0$$
 if $x_{in1} = x_{in2} = x_{out} = 0$

• d = 1 otherwise

The XOR is modelled with:

$$x_{in1} + x_{in2} + x_{out} \ge 2d$$

$$d \ge x_{in1}$$

$$d \ge x_{in2}$$

$$d > x_{out}$$

MILP Modelling of Linear Transformation

Similarly, for a linear transformation with:

- Inputs: $x_{in1}, x_{in2}, \dots, x_{inM}$
- Outputs: $x_{out1}, x_{out2}, \dots, x_{outM}$

Let B be the branch number and d the dummy variable (as in XOR modelling).

The model is:

$$x_{in1} + \cdots + x_{inM} + x_{out1} + \cdots + x_{outM} \ge B \cdot d$$

and

$$d \geq x_{in_i}, \quad d \geq x_{out_i} \quad \forall i, j$$

MILP Representation of S-boxes

Goal: minimize the number of **active S-boxes** to find the best differential trails.

Key idea:

- Active input $(\neq 0) \Rightarrow$ active output
- Passive input (=0) \Rightarrow passive output

We only track **activity** with a binary variable — no internal structure is modelled.

H-representation

$$L(a,b,c)=(a\oplus b,a\oplus c,b\oplus c)$$
 where a,b.c are 2 bit values

H-representation example

Input Differences	Output Differences
0 0 0	0 0 0
0 0 1	0 1 1
0 1 0	101
0 1 1	1 1 0
0 1 1	111
100	1 1 0
101	101
101	111
1 1 0	0 1 1
•••	
111	101
111	1 1 0
111	111

Table 2: Input and Output Differences of L function

H-representation example

No.	Inequality
1	$(0,0,-1,0,0,0)x+1\geq 0$
2	$(0,-1,0,0,0,0)x+1\geq 0$
3	$(-1,0,0,0,0,0)x+1\geq 0$
4	$(0,0,0,-1,0,0)x+1\geq 0$
5	$(0,0,0,0,-1,0)x+1\geq 0$
6	$(0,0,0,0,0,-1)x+1\geq 0$
7	$(0,-1,1,0,0,1)x+0\geq 0$
8	$(0,0,0,-1,1,1)x+0\geq 0$
18	$(-1,1,0,1,0,0)x+0\geq 0$
19	$(1,-1,-1,1,1,-1)x+1 \ge 0$
20	$(1,-1,0,1,0,0)x+0\geq 0$
21	$(-1,1,-1,1,-1,1)x+1 \ge 0$
22	$(-1,-1,1,-1,1)x+1\geq 0$

Table 3: H-representation of L function

Differential cryptanalysis model with MILP

Figure 6: ITUbee MILP differential cryptanalysis sketch

- Number of Constrains: 18169
- Number of Variables: 85
- Minimum number of active s-box: 16.0
- Best probability for s-box: 2^{-6}

0

Differential cryptanalysis model with MILP

Stage	Binary Index	Characteristic						
1. round	R1	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
input	R0	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						
1. round	R1a	{0: 1.0, 1: 0.0, 2: 0.0, 3: 1.0, 4: 1.0}						
middle values	R1b	{0: 0.0, 1: 1.0, 2: 1.0, 3: 0.0, 4: 1.0}						
	R1c	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
2. round	R2	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
input	R1	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
2. round	R2a	{0: 1.0, 1: 0.0, 2: 0.0, 3: 1.0, 4: 1.0}						
middle values	R2b	{0: 0.0, 1: 1.0, 2: 1.0, 3: 0.0, 4: 1.0}						
	R2c	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
3. round	R3	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						
input	R2	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
3. round	R3a	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						
middle values	R3b	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						
	R3c	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						
4. round	R4	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}						
input	R3	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}						

Table 4: Best 3 round differential characteristic of ITUbee algorithm

Figure 7: ITUbee MILP Related-Key Differential Cryptanalysis Sketch

Stage	Binary Index	Characteristic
Key	KL	{0: 0.0, 1: 1.0, 2: 0.0, 3: 1.0, 4: 0.0}
	KR	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
1. round	R1	{0: 0.0, 1: 1.0, 2: 0.0, 3: 1.0, 4: 0.0}
input	R0	{0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}
1. round	R2	{0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}
middle values	R3-3a-3b-3c-3d	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
2. round	R4	{0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}
input	R3	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
2. round	R4a	{0: 0.0, 1: 1.0, 2: 0.0, 3: 1.0, 4: 0.0}
middle values	R4b-4c-4d	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
7. round	R9	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
input	R8	{0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}
7. round middle values	R9a-9b-9c-9d	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
8. round	R10	{0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0}
input	R9	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
8. round	R10a	{0: 0.0, 1: 1.0, 2: 0.0, 3: 1.0, 4: 0.0}
middle values	R10b-10c-10d	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
9. round	R11	{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
input	R10	(0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0)

Table 5: Best 8 round related-key differential characteristic of ITUbee_algorithm

36 / 39

Our contribution

Stage	Differential	Linear	Related-key Differential
[1]	3 round	3 round	10 round
Our Result	3 round	3 round	8 round

Table 6: Result Comparison

Table of Contents

- Preliminaries
- 2 MILP
- 3 Differential Cryptanalysis
- 4 ITUbee Block Cipher
- MILP representation of block ciphers
- 6 References

References

- [1] Ferhat Karakoç, Hüseyin Demirci, and A Emre Harmancı. "ITUbee: a software oriented lightweight block cipher". In: Lightweight Cryptography for Security and Privacy: Second International Workshop, LightSec 2013, Gebze, Turkey, May 6-7, 2013, Revised Selected Papers 2. Springer. 2013, pp. 16–27.
- [2] Nicky Mouha et al. "Differential and linear cryptanalysis using mixed-integer linear programming". In: Information Security and Cryptology: 7th International Conference, Inscrypt 2011, Beijing, China, November 30–December 3, 2011. Revised Selected Papers 7. Springer. 2012, pp. 57–76.