

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Базовые компоненты интернет технологий Отчет по лабораторной работе №1

Студент: Макеев В. А. Группа: ИУ5Ц-54Б

Преподаватель: Гапанюк Ю. Е.

Лабораторная работа №1

Задание

Разработать программу для решения биквадратного уравнения.

- 1. Программа должна быть разработана в виде консольного приложения на языке Python.
- 2. Программа осуществляет ввод с клавиатуры коэффициентов A, B, C, вычисляет дискриминант и ДЕЙСТВИТЕЛЬНЫЕ корни уравнения (в зависимости от дискриминанта).
- 3. Коэффициенты A, B, C могут быть заданы в виде параметров командной строки (вариант задания параметров приведен в конце файла с примером кода). Если они не заданы, то вводятся с клавиатуры в соответствии с пунктом 2. Описание работы с параметрами командной строки.
- 4. Если коэффициент A, B, C введен или задан в командной строке некорректно, то необходимо проигнорировать некорректное значение и вводить коэффициент повторно пока коэффициент не будет введен корректно. Корректно заданный коэффициент это коэффициент, значение которого может быть без ошибок преобразовано в действительное число.

Текст программы

```
import sys
import math
def get_coef(index, prompt):
    try:
# Пробуем прочитать коэффициент из командной строки
        coef_str = sys.argv[index]
    except:
# Вводим с клавиатуры
        tester = False
        coef = 0.0
# проверка ввода корректности
        while (tester != True):
            print(prompt)
            coef_str = input()
            try:
                coef = float(coef_str)
                tester = True
            except ValueError:
                tester = False
                print("Некорректный ввод\n")
    return coef
def get_roots(a, b, c):
    result = []
    D = b*b - 4*a*c
    if D == 0.0:
        root = -b / (2.0*a)
        if root >= 0.0:
            x11=math.sqrt(root)
            x21=-1 *math.sqrt(root)
            result.append(x11)
            result.append(x21)
        else:
            result.append('Нет корней')
            result.append('Нет корней')
    elif D > 0.0:
        sqD = math.sqrt(D)
        root1 = (-b + sqD) / (2.0*a)
        root2 = (-b - sqD) / (2.0*a)
        if root1>0 and root2>0:
            x1=math.sqrt(root1)
            x2= -1 * math.sqrt(root1)
            x3=math.sqrt(root2)
            x4= -1 *math.sqrt(root2)
```

```
result.append(x1)
            result.append(x2)
            result.append(x3)
            result.append(x4)
        elif root1 >0 and root2 < 0:</pre>
            x1=math.sqrt(root1)
            x2= -1 *math.sqrt(root1)
            result.append(x1)
            result.append(x2)
            result.append('Нет корней')
            result.append('Нет корней')
        elif root1 <0 and root2 > 0:
            x3=math.sqrt(root2)
            x4=-1 *math.sqrt(root2)
            result.append('Нет корней')
            result.append('Нет корней')
            result.append(x3)
            result.append(x4)
        elif root1 ==0 and root2 > 0:
            x1=math.sqrt(root1)
            x2=math.sqrt(root2)
            x3=-1 *math.sqrt(root2)
            result.append(x1)
            result.append(x2)
            result.append(x3)
        elif root1 >0 and root2 == 0:
            x1=math.sqrt(root1)
            x2=-1 *math.sqrt(root1)
            x3=math.sqrt(root2)
            result.append(x1)
            result.append(x2)
            result.append(x3)
        else:
            result.append('Нет корней')
            result.append('Нет корней')
            result.append('Нет корней')
            result.append('Нет корней')
    return result
def lin(b, c):
    result = []
    root = 0.0
    root = -1 * c / b
    if root > 0:
        root1 = math.sqrt(root)
        root2 = -1 *math.sqrt(root)
        result.append(root1)
        result.append(root2)
    elif root == 0:
        result.append(root)
    return result
```

```
def main():
    a = get_coef(1, 'Введите коэффициент A:')
    b = get_coef(2, 'Введите коэффициент В:')
    c = get_coef(3, 'Введите коэффициент C:')
    roots =[]
    if a == 0.0:
        if c ==0.0:
            if b ==0.0:
                roots = [1,1,1,1,1]
            else:
                roots = [1]
        elif b ==0.0:
            roots = []
        else:
            roots = lin(b, c)
    # Вычисление корней
    else:
        roots = get_roots(a,b,c)
    # Вывод корней
    len_roots = len(roots)
    if len_roots == 0:
        print('Нет корней')
    elif len_roots == 1:
        print('x = 0')
    elif len roots == 2:
        print('Один корень : x1 = {}; x2 = {}'.format(roots[0], roots[1]))
    elif len_roots == 4:
        print('Два корня : x1 = {}; x2 = {}; x3 = {}; x4 = {}'.format(roots[0], r
oots[1], roots[2], roots[3]))
    elif len_roots == 5:
        print('Любое число - x')
# Если сценарий запущен из командной строки
if __name__ == "__main__":
    main()
```

Тест программы

Введите коэффициент А: фыва Некорректный ввод Введите коэффициент А: -12 Введите коэффициент В: 3ке4 Некорректный ввод Введите коэффициент В: 24 Введите коэффициент С: -12 Один корень: х1 = 1.0; х2 = -1.0