Unidade VI:

Árvores 2.3.4

Prof. Max do Val Machado

Instituto de Ciências Exatas e Informática Curso de Ciência da Computação

Introdução

Árvore de pesquisa cujos nós são de três tipos (2-nó, 3-nó ou 4-nó) e as folhas estão situadas no mesmo nível

Propriedade das Árvore 2.3.4

ullet A altura h(n) de uma árvore-2.3.4 $^{ extsf{1}}$ contendo n itens é $\Theta(\lg n)$

 Por questões de simplificação, este material considera que todos os elementos da árvore são distintos

 1 Prova: Temos que $\log_4(n+1) \le h(n) \le \log_2(n+1)$. Além disso, a árvore-2.3.4 que tem menos itens é a que tem só tem 2-nós. Como todas as folhas estão no mesmo nível, o no de itens da árvore é $2^0+2^1+\ldots+2^h=2^{h+1}-1$. Da mesma forma, a árvore-2.3.4 que tem mais itens é a que só tem 4-nós e seu no de itens é $4^0+4^1+\ldots+4^h=4^{h+1}-1$. Deduz-se que, para toda árvore-2.3.4 contendo n itens e de altura h(n), temos a relação $2^{h+1}-1 \le h(n) \le 4^{h+1}-1$, de onde se tira a relação acima.

Pesquisa em Árvores 2.3.4

- Igual ao das árvores binárias
- Funcionamento básico:
 - (1) Verificar se o elemento procurado x está no nó raiz
 - (2) Se estiver, tem-se uma resposta positiva
 - (3) Senão, se x < x1, verificar na subárvore da esquerda
 - (4) Senão, se x < x2, na do meio à esquerda
 - (5) Senão, se $x < x_3$, na do meio à direita
 - (6) Senão, na da direita
 - (7) Se a subárvore for nula, tem-se uma resposta negativa

Análise de Complexidade da Pesquisa

Número de comparações em uma pesquisa com sucesso:

Melhor Caso: Θ(1)

Pior e Caso Médio: Θ(Ig(n))

Inserção

Este material considera a inserção sempre nas folhas

Se a folha tiver 1 ou 2 elementos, insere-se nela

Senão, insere-se um novo nó na árvore e a reorganiza

O processo de reorganização pode ser feito por ascensão ou na descida

 O exemplo a seguir mostra a construção de uma árvore-2.3.4 por inserções sucessivas nas folhas a partir de uma árvore vazia

Insere-se sucessivamente os elementos 4, 35, 10, 13, 3, 30, 15, 12, 7, 40,20, 11 e 6

A inserção do 4 leva à criação de um 2-nó, que se transforma em 3-nó
com a inserção do 35 e, depois, em 4-nó com a do 10

Neste ponto, o nó da raiz não comporta mais elementos e, do ponto de vista da pesquisa, a árvore equivalente à binária abaixo:

Assim, para inserir o quarto elemento, fragmenta-se o nó corrente,
ascendendo seu elemento médio e transformando a árvore em uma binária
que também é uma 2.3.4

 Na árvore corrente, existe lugar nas folhas para acomodar novos elementos, permitindo as inserções do 13, 3 e 30

Árvore-2.3.4 após as inserções do 13, 3 e 30

Como inserir o 15?

- Para inserir o 15, fragmenta-se o nó da seguinte forma:
 - Faz-se a ascensão do elemento médio de F (30) para o pai
 - Fragmenta-se F em dois 2-nós, um com o menor elemento e outro com o maior
 - Como o 15 é menor que o 30, insere-se o 15 no nó que contém o 13

- Para inserir o 15, fragmenta-se o nó da seguinte forma:
 - Faz-se a ascensão do elemento médio de F (30) para o pai
 - Fragmenta-se F em dois 2-nós, um com o menor elemento e outro com o maior

Como o 15 é menor que o 30, insere-se o 15 no nó que contém o 13

A inserção do 12, 7, 40 é fácil

A inserção do 20 leva a uma fragmentação em dois da folha que contém o
12, 13 e 15, com ascensão do 13 para o pai

A inserção de 11 se faz sem problemas

 A inserção de 6 causa a fragmentação da folha (3,4,7) cujo pai contém três elementos. Por sua vez, a ascensão do 4 fragmenta a raiz em dois nós e cria um novo nó raiz para receber o elemento médio 13

 Um efeito colateral da fragmentação ascendente é que ela pode provocar uma cascata de fragmentações

Quando o caminho da inserção na árvore for formado somente por 4-nós,
teremos fragmentações em toda a altura da árvore

 Para evitar a propagação das fragmentações, basta proibir que a árvore tenha dois 4-nós seguidos

Toda inserção causará no máximo uma fragmentação

 Pode-se implementar essa restrição fragmentando os 4-nós na descida (durante a pesquisa do lugar para adicionar o novo elemento)

 A fragmentação na descida é preventiva dado que qualquer 4-nó será fragmentado antes de qualquer inserção

Uma desvantagem são as fragmentações "inúteis"

Exemplo: Seja a árvore-2.3.4 obtida com as inserções sucessivas de 4,
35, 10, 13, 3, 30, 15, 12, 7, 40 e 20:

 Neste ponto, como a inserção de qualquer elemento fragmenta o nó da raiz, de forma pró-ativa, ele é fragmentado

 Neste ponto, como a inserção de qualquer elemento fragmenta o nó da raiz, de forma pró-ativa, ele é fragmentado

Agora, a inserção, por exemplo, do 11 pode ser feita no nó contendo o 12

 Neste ponto, observa-se que a altura da árvore corrente é maior que a obtida pelo método anterior

 Neste ponto, observa-se que a altura da árvore corrente é maior que a obtida pelo método anterior, contudo, inserindo o 6, fragmenta-se o nó (3,4,7) e obtém-se a árvore final do método anterior

- Observa-se que:
 - Esta técnica faz todos os reequilíbrios durante a descida na árvore e a inserção quando se chega em uma folha

Os reequilíbrios na descida são puramente locais

- Observa-se que:
 - Quando se fragmenta um nó e seu pai é um 2-nó, esse vira um 3-nó como no exemplo abaixo:

- Observa-se que:
 - Quando se fragmenta um nó e seu pai é um 3-nó, esse vira um 4-nó como no exemplo abaixo:

Observa-se que:

 O pai de um nó nunca será um 4-nó, pois, nesse caso, ele seria fragmentado anteriormente

 Esse processo não modifica a profundidade das folhas, exceto quando se fragmenta a raiz em que a altura da árvore aumenta em 1 unidade

A inserção conserva as propriedades das árvores-2.3.4

Observa-se que:

 Os dois métodos de inserção sempre operam em um caminho da raiz a uma folha da árvore-2.3.4

• A complexidade para o número de comparações dos dois métodos no pior e no caso médio é $\Theta(\lg n)$

- Vantagens do segundo método de inserção sobre o primeiro:
 - O primeiro precisa de uma pilha para restaurar o equilíbrio da árvore repassando o caminho inverso de pesquisa no caso de fragmentações
 - A árvore do segundo pode ser acessada paralelamente por vários usuários com uma sincronização mínima

 A desvantagem do segundo método é que ele normalmente consome mais espaço de memória porque sua taxa de ocupação dos nós é menor do que no primeiro. Isso também pode aumentar a altura da árvore do segundo