# 702 Assignment V

## Question 1

First, centered com\_t, pcs\_sd, and mcs\_sd, and changed the scale of pg from 1-2 to 0-1. After that, converted pg to categorical type.

Using bal.tab and love plot, it is noticeable that com\_t, pcs\_sd, i\_race, and i\_educ have high mean difference across physician group 0 and 1 (|mean|>0.1). Thus, it is evident that our covariates are not balanced across the two groups. Besides, treatment group has a sample size of 173 while control group has 105. In order to implement one-to-one matching, the inidicator for treatment and control group are switched such that physician group 2 becomes the control group and group 1 becomes the treatment group. This information is stored in the new indicator variable treatment\_s.



## Question 2

#### $\mathbf{a}$

After fitting a logistic regression with all pre-treatment variables as main effects to obtain propensity score e, we find 48 outliers. In order to ensure proper overlap, we choose to discard all 48 observations.

## b

Using one-to-one, nearest neighbor matching on the estimated propensity scores to match observations from treatment group and control group in order to balance covariates. After checking balance again, we find that most of covariates have mean difference less than 0.1, except i\_educ\_4, com\_t, and pcs\_sd.



 $\mathbf{c}$ 

After calculating p1 - p2 using matched data, we know that the average causal effect is 0.155, with a standard error of 0.065. This means that the difference in the proportion of patients being satisfied in the treatment group (physician group 1) is 15.5% higher than that in the control group (physician group 2). Based the results, our 95% confidence interval for the average causal effect is from 2.8% to 28.2%. This means that we are 95% confident that the true difference of proportion of patients being satisfied in the treatment versus control physician group is between 2.8% and 28.2%. Since this interval does not include 0, we can reject the null hypothesis.

### $\mathbf{d}$

The logistic regression model shows that the coefficient for treatment\_s (the indicator variable for treatment and control group) is 0.92033, meaning that the causal odds ratio of having satisfaction = 1 being in the treatment group is 1.51 times than that of the control group, holding other variables constant.

| term        | estimate    | std.error    | statistic  | p.value   |
|-------------|-------------|--------------|------------|-----------|
| (Intercept) | 34.6183877  | 2694.9219556 | 0.0128458  | 0.9897508 |
| i_age       | 0.0303777   | 0.0392077    | 0.7747902  | 0.4384636 |
| $i\_sex1$   | 0.5023647   | 0.4495348    | 1.1175211  | 0.2637716 |
| $i\_race1$  | 1.0017694   | 2.0666714    | 0.4847261  | 0.6278707 |
| $i\_race2$  | -17.7875295 | 2197.7341520 | -0.0080936 | 0.9935423 |
| $i\_race3$  | 17.1745196  | 1419.0813789 | 0.0121026  | 0.9903438 |
| $i\_race4$  | 0.8837998   | 1.4489968    | 0.6099391  | 0.5419022 |
| $i\_educ3$  | -17.2003418 | 1714.9351911 | -0.0100297 | 0.9919976 |
| $i\_educ4$  | -17.2354969 | 1714.9351803 | -0.0100502 | 0.9919812 |
| $i\_educ5$  | -16.5693680 | 1714.9352874 | -0.0096618 | 0.9922911 |
| $i\_educ6$  | -17.5364056 | 1714.9353398 | -0.0102257 | 0.9918412 |
| $i\_insu2$  | -0.0120868  | 0.9589336    | -0.0126044 | 0.9899434 |
| $i_isu5$    | -0.7302791  | 1.1873891    | -0.6150294 | 0.5385353 |
| i_drug1     | -16.6977494 | 2078.8461117 | -0.0080322 | 0.9935913 |
| $i\_seve2$  | -1.2608783  | 0.9005368    | -1.4001407 | 0.1614712 |

| term            | estimate   | std.error | statistic  | p.value   |
|-----------------|------------|-----------|------------|-----------|
| i_seve3         | -1.9222638 | 0.9276072 | -2.0722822 | 0.0382391 |
| i_seve4         | -2.5887862 | 0.9090381 | -2.8478302 | 0.0044018 |
| $mcs\_sd$       | -0.0351567 | 0.0414978 | -0.8471940 | 0.3968870 |
| $com\_t$        | 0.3227999  | 0.8861178 | 0.3642856  | 0.7156448 |
| $pcs\_sd$       | -0.0750555 | 0.0903656 | -0.8305757 | 0.4062134 |
| distance        | -2.5768066 | 7.2636596 | -0.3547532 | 0.7227745 |
| $treatment\_s1$ | 0.9203286  | 0.4123543 | 2.2318878  | 0.0256224 |

 $\mathbf{e}$ 

#### e. b

Using one-to-five, nearest-neighbor matching, we also find imbalance of covariates given that i\_educ 4, com\_t, pcs\_sd with mean differences larger than 0.1



#### e.c

After calculating p1 - p2 using one-to-five, with-replacement matched data, we know that the average causal effect is 0.166, with a standard error of 0.064. This means that the difference in proportion of patients being satisfied in the treatment group (physician group 1) is 16.6% higher than that in the control group (physician group 2). Based the results, our 95% confidence interval for the average causal effect is from 2.9% to 28%. This means that we are 95% confident that the true difference of proportion of patients being satisfied in the treatment versus control physician group is between 2.9% and 28%. Since this interval does not include 0, we can reject the null hypothesis. Although there is slight difference in number, the conclusion of average causal effect drawn from this data is the same with that from the one-to-one, with-replacement data.

### $\mathbf{e.d}$

The logistic regression model on one-to-five, with-replacement matched data shows that the coefficient for treatment\_s (the indicator variable for treatment and control group) is 0.8779, meaning that the causal

odds ratio of having satisfaction = 1 being in the treatment group (physician group 1) is 1.405 times higher than that of the control group (physician group 2), holding other variables constant.

Compared to the 1.51 causal odds ratio obtained from the one-to-one, without-replacement data, the new matched data offers a smaller causal effect estimate.

| term            | estimate    | std.error    | statistic  | p.value   |
|-----------------|-------------|--------------|------------|-----------|
| (Intercept)     | 16.9810593  | 1679.1407981 | 0.0101129  | 0.9919312 |
| i_age           | 0.0240186   | 0.0324859    | 0.7393537  | 0.4596923 |
| $i\_sex1$       | 0.0300828   | 0.4252662    | 0.0707389  | 0.9436056 |
| $i\_race1$      | 1.5161378   | 1.7599506    | 0.8614661  | 0.3889814 |
| $i\_race2$      | -18.1346144 | 2219.4625288 | -0.0081707 | 0.9934808 |
| $i\_race3$      | 18.6325661  | 1528.9926991 | 0.0121862  | 0.9902771 |
| $i\_race4$      | 1.4278900   | 1.3172864    | 1.0839632  | 0.2783811 |
| $i\_educ3$      | -16.9140674 | 1679.1390416 | -0.0100731 | 0.9919630 |
| $i\_educ4$      | -16.6052251 | 1679.1389684 | -0.0098891 | 0.9921097 |
| $i\_educ5$      | -16.3139251 | 1679.1390365 | -0.0097156 | 0.9922482 |
| $i\_educ6$      | -17.5665966 | 1679.1390651 | -0.0104617 | 0.9916529 |
| $i\_insu2$      | -0.3070045  | 0.7811750    | -0.3930035 | 0.6943169 |
| $i\_insu5$      | -0.0374103  | 1.0790215    | -0.0346706 | 0.9723424 |
| i_drug1         | 0.8249999   | 2.0430432    | 0.4038093  | 0.6863529 |
| $i\_seve2$      | -0.4831266  | 0.7183536    | -0.6725472 | 0.5012354 |
| $i\_seve3$      | -0.8917323  | 0.7102169    | -1.2555775 | 0.2092692 |
| $i\_seve4$      | -1.5918513  | 0.8079931    | -1.9701299 | 0.0488235 |
| $mcs\_sd$       | -0.0188206  | 0.0333276    | -0.5647149 | 0.5722677 |
| $com\_t$        | 0.6314667   | 0.7147815    | 0.8834402  | 0.3769985 |
| $pcs\_sd$       | -0.1029844  | 0.0742555    | -1.3868936 | 0.1654742 |
| distance        | -4.7118236  | 6.0224393    | -0.7823779 | 0.4339925 |
| $treatment\_s1$ | 0.8779076   | 0.4008318    | 2.1902148  | 0.0285087 |

# Question 3

Between using one-to-one, without-replacement or one-to-many, with-replacement method for estimating causal effects, I feel more comfortable using the former. This is because that allowing one-to-many and replacement will inevitably lead to an over-representation of certain control-group observations, since given their attributes they can be matched to different treatment observations. Comparing calculating average causal effect using mean of proportion and logistic regression, I prefer the latter given that it provides an estimate while controlling for other covariates.