Lab 6 - Resampling

Table of Contents

Testing resampling of a sin at (5/2)fs	1
Testing resampling of a sin at 2fs	
Testing resampling of a sin at (2/3)fs	2
Testing resampling of a sin at (1/2)fs	
Testing resampling of 'seashell' at (3/2)fs	
Festing resampling of 'seashell' at (3/4s)fs	
Print program	
Thic program	,

Testing resampling of a sin at (5/2)fs

```
x = \sin(2 * pi * (0:32) / 8);
test_resamp(x, 2.5);
```


Testing resampling of a sin at 2fs

test_resamp(x, 2);

Testing resampling of a sin at (2/3)fs

 $test_resamp(x, 0.666667);$

Testing resampling of a sin at (1/2)fs

```
test_resamp(x, 0.5);
```

% Make sure that you have the file 'seashell.wav' in your directory
[x, fs] = audioread('seashell.wav');

Testing resampling of 'seashell' at (3/2)fs

test_resamp(x, 1.5, 5000, 5050);

Testing resampling of 'seashell' at (3/4s)fs

test_resamp(x, 0.75, 5000, 5050);

Print program

```
disp(' ')
disp('--- resamp.m -----')
type('resamp')
--- resamp.m ------
function y = resamp(x, r)
% RESAMP Resample an input sequence x by a factor of r
   to produce an output sequence y by a combination
   of upsampling and downsampling.
   For example, y = resamp(x, 1.5);
   will upsample x by 3 and downsample by 2.
% normalized frequency from 0-1 corresponds to 0 --> pi
% n = round(1+20/fn);
% order increases as fn decreases
% h = firl(n, fn, kaiser(n, 5));
[L,M] = rat(r);
Lx = length(x);
x_{up} = zeros(1,Lx*L);
x_{up}(1:L:end) = x; %upsample
```

Published with MATLAB® R2018b