Real Analysis Assignment 4

Joel Savitz

October 13, 2020

Problem 1:

Claim 1.
$$\lim x_n = a > 0 \implies \lim \sqrt{x_n} = \sqrt{a}$$

Proof. Assume that $\lim x_n = 0 > 0$. We have by the definition of $\lim x_n = a$ that $\forall \epsilon \in \mathbb{R} : \epsilon > 0, \exists N_\epsilon \in \mathbb{N} : \forall n > N_\epsilon, |x_n - a| < \epsilon$. Let $\epsilon > 0$. Then, there exists an $N_{\sqrt{a}\epsilon}$ such that $\forall n \in \mathbb{N} : n > N_{\sqrt{a}\epsilon}, |x_n - a| < \epsilon \sqrt{a}$. Thus, $\frac{|x_n - a|}{\sqrt{a}} < \epsilon$. Since $\sqrt{x_n} > 0$, we have $\frac{|x_n - a|}{\sqrt{x_n} + \sqrt{a}} < \frac{|x_n - a|}{\sqrt{a}}$. Then, since $\forall x > 0$ we have |x| = x, and since $\forall a, b \in \mathbb{R}, |a| |b| = |ab|$, we see that $\frac{|x_n - a|}{\sqrt{x_n} + \sqrt{a}} = |\frac{x_n - a}{\sqrt{x_n} + \sqrt{a}}|$, and since $\forall a, b \in \mathbb{R}, a - b = \frac{a^2 - b^2}{a + b}$, we have $|\frac{x_n - a}{\sqrt{x_n} + \sqrt{a}}| = |\sqrt{x_n} - \sqrt{a}|$. Finally, since $|\sqrt{x_n} - \sqrt{a}| < \frac{|x_n - a|}{\sqrt{a}}| < \epsilon$, we have by transitivity that $|\sqrt{x_n} - \sqrt{a}| < \epsilon$. Thus we have demonstrated that for $K_\epsilon = N_{\sqrt{a}\epsilon}, \forall \epsilon \in \mathbb{R} : \epsilon > 0, \exists K_\epsilon \in \mathbb{N} : \forall n \in \mathbb{N} : n > K_\epsilon, |\sqrt{x_n} - \sqrt{a}| < \epsilon$, which is exactly the definition that $\lim \sqrt{x_n} = \sqrt{a}$. Therefore, we have the implication $\lim x_n = a > 0 \implies \lim \sqrt{x_n} = \sqrt{a}$

Problem 2:

Claim 2. $\lim x_n = 2 \implies \lim \frac{1}{x_n} = \frac{1}{2}$.

Proof. Assume $\lim x_n=2$. We have by the definition of $\lim x_n=2$ that $\forall \epsilon \in \mathbb{R}: \epsilon > 0, \exists N_\epsilon \in \mathbb{N}: \forall n > N_\epsilon, |x_n-2| < \epsilon$. Let $\epsilon=1$. Then, $\exists N_1 \in \mathbb{N}: \forall n \in \mathbb{N}: n < N_1, |x_n-2| < 1$. By the reverse triangle inequality, $||x_n|-|2|| < |x_n-2| < 1$, but $||x_n|-|2||=|2-|x_n||$, and by transitivity $|2-|x_n||<1 \iff -1<2-|x_n|<1 \implies 1<|x_n|$. Also note that $1<|x_n|\implies 1>\frac{1}{|x_n|}$. Let $\epsilon>0$ and let $K_\epsilon=\max(\{N_1,N_{2\epsilon}\})$. Then, $|\frac{1}{x_n}-\frac{1}{2}|=\frac{|x_n-2|}{2|x_n|}$, and since $K_\epsilon\geq N_1$, we have for all $n>K_\epsilon$ that $\frac{|x_n-2|}{2|x_n|}<\frac{|x_n-2|}{2}$, and since $K_\epsilon\geq N_{2\epsilon}$, we have for all $n>K_\epsilon$ that $\frac{|x_n-2|}{2}<\frac{2\epsilon}{2}=\epsilon$, and by transitivity $|\frac{1}{x_n}-\frac{1}{2}|<\frac{|x_n-2|}{2}<\epsilon$. Thus we have demonstrated that for $K_\epsilon=\max(\{N_{2\epsilon},N_1\})$, $\forall \epsilon\in\mathbb{R}:\epsilon>0, \exists K_\epsilon\in\mathbb{N}:\forall n\in\mathbb{N}:n>K_\epsilon, |\frac{1}{x_n}-\frac{1}{2}|<\epsilon$. which is exactly the definition that $\lim\frac{1}{x_n}=\frac{1}{2}$. Therefore, we have the implication $\lim x_n=2\implies\lim\frac{1}{x_n}=\frac{1}{2}$. \square

Problem 3:

Claim 3. $\lim x_n = -1 \implies \lim |5x_n + 3| = 2$

Proof. Assume that $\lim x_n = -1$. We have by the definition of $\lim x_n = -1$ that $\forall \epsilon \in \mathbb{R} : \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} : \forall n > N_{\epsilon}, |x_n+1| < \epsilon$. Then, there exists an $N_{\frac{\epsilon}{5}}$ such that $\forall n \in \mathbb{N} : n > N_{\frac{\epsilon}{5}}, |x_n+1| < \frac{\epsilon}{5}$. Thus, $|5x_n+5|+|-2|-|2|=|5x_n+5|=|5||x_n+1|=|5|x_n+1|<\epsilon$. By the triangle inequality, $|5x_n+5+(-2)|-|2| \le |5x_n+5|+|-2|-|2| < \epsilon$, and by the reverse triangle inequality, $||5x_n+3|-2|=||5x_n+3|-|2|| \le |5x_n+5+(-2)|-|2|$, so by transitivity, $||5x_n+3|-2|<\epsilon$. Thus we have demonstrated that for $K_{\epsilon}=N_{\frac{\epsilon}{5}}, \forall \epsilon \in \mathbb{R} : \epsilon > 0, \exists K_{\epsilon} \in \mathbb{N} : \forall n \in \mathbb{N} : n > K_{\epsilon}, ||5x_n+3|-2|<\epsilon$, which is exactly the definition that $\lim |5x_n+3|=2$. Therefore, we have the implication that $\lim x_n=-1 \implies \lim |5x_n+3|=2$.

It is not the case that $\lim |5x_n+3|=2 \implies \lim x_n=-1$. As a counterexample, consider the sequence $x_n=\frac{-1}{5}$. Then, $\lim |5x_n+3|=\lim |5\cdot\frac{-1}{5}+3|=\lim |-1+3|=\lim |2|=\lim 2=2$.