Real Analysis I: Continuity

Arjun Vardhan

†

Created: 25th February 2022 Last updated: 3rd April 2022

1 Limits of Functions

- Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y, and p is a limit point of E. Then, $\lim_{x\to p} f(x) = q$ if there exists a point $q \in Y$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x,p) < \delta \implies d_Y(f(x),q) < \epsilon$, where $x \in E$. Restated in terms of \mathbb{R} : Let $f:D\to\mathbb{R}$, where D is a non-empty subset of \mathbb{R} . $\lim_{x\to p} f(x) = q$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $x \in D$, $|x-p| < \delta \implies |f(x)-q| < \epsilon$.
- $\lim_{x\to p} f(x) = q$ if and only if $\lim_{n\to\infty} f(p_n) = q$ for every sequence $\{p_n\}$ in E such that $p_n \neq p$ and $p_n \to p$. Proof: Suppose $\lim_{x\to p} f(x) = q$. Choose an appropriate $\{p_n\}$ in E. Then, there exists $\delta > 0$ such that $d_Y(f(x),q) < \epsilon$ if $x \in E$ and $0 < d_X(x,p) < \delta$. Also there exists N such that $n \geq N$ implies $0 < d_X(p_n,p) < \delta$. Therefore, for $n \geq N$, $d_Y(f(p_n),q) < \epsilon$, and thus $f(p_n) \to q$. Conversely, suppose $\lim_{x\to p} f(x) \neq q$. Then there exists an $\epsilon > 0$ such that for every $\delta > 0$, there exists an $x \in E$ such that $d_Y(f(x),q) \geq \epsilon$ but $0 < d_X(x,p) < \delta$. Let $\delta_n = \frac{1}{n}, n \in \mathbb{N}$. Then the corresponding x_n is a sequence in E which converges to p and $x_n \neq p$, but $f(x_n)$ does not converge to q. \blacksquare
- If f has a limit at p, then this limit is unique. *Proof:*
- 2 Continuous Functions
- 3 Continuity and Compactness
- 4 Continuity and Connectedness
- 5 Discontinuities
- 6 Monotonic Functions
- 7 Infinite Limits and Limits at Infinity