# Cosmic Ray Detection

Athary Ramesh Nair

January 1, 2024

### Table of Content

- DeepCR
- Cosmic CONN
- AttentionUNet
- TransUNet
- DECAM Dataset
- Results and Plots
- Dictionary Learning Results

## DeepCR

- Trained on HST ACS/WFC imaging data of 3 categories
  - extragalactic field
  - globular cluster
  - local group galaxies
- CR Pixels Labelling using ASTRO-DRIZZLE Pipeline
- Sky Augmentation

**Actual :** 
$$n = (f_{star} + f_{sky}) \cdot t_{exp} + n_{CR}$$

**Augmented**: 
$$n_0 = n + \alpha \cdot f_{\text{sky}} \cdot t_{\text{exp}} = f_{\text{sky}} \cdot (1 + \alpha) \cdot t_{\text{exp}} + n_{\text{CR}}$$

Different exposure times using different values of  $\alpha$ 



### Cosmic CONN- DATASET

- Trained on data from LCO (Las Cumbres Observatory) global network of 23 telescopes
- 4500 scientific images :  $4K \times 4K, 3K \times 2K, 2K \times 2K$  images
- BANZAI data reduction pipeline for instrumental signature removal
  - bad-pixel removing
  - bias and dark removal
  - flat-field correction
- Focus on distinguishing CR pixels from astronomical sources
- Near Earth Objects, Satellites contribute to small fraction of false positive labels

### Cosmic CONN - Architecture



UNet based architecture

 Authors claim simple UNet is not able to handle higher dynamic range and extreme spatial variations

## Cosmic CONN - Deep Learning Framework

Median Weighted Loss Function :

$$L(P, Y, M) = -\sum_{i,j} (Y_{ij}log(P_{ij}) + M_{ij}(1 - Y_{ij})log(1 - P_{ij}))$$

where P,Y, M are the predictions, labels and median weighted mask respectively

- Median Mask obtained from transformation on the median of consecutive exposures
  - sky subtraction
  - clipping 1-5  $\sigma$ 's
  - Gaussian Smoothing (5x5 Kernel with  $\sigma=2$ )
  - Unit Normalisation and Clamping with lower bound  $(\alpha)$

### Results



Dice Score vs Epochs for different types of models

| Method                                     | ${\rm Dice\ score}>0.85$ | LCO Precision | Gemini $1{\times}1$ Precision | Gemini 2×2 Precision |
|--------------------------------------------|--------------------------|---------------|-------------------------------|----------------------|
| deepCR (baseline)                          | 2980                     | 89.19%        | 79.59%                        | 84.88%               |
| deepCR + Median-Weighted loss              | 2080                     | 92.98%        | 78.76%                        | 83.08%               |
| $deepCR + 1024^2px$                        | n/a                      | 89.35%        | 82.57%                        | 86.55%               |
| deepCR + GN                                | 1420                     | 90.82%        | 77.07%                        | 89.30%               |
| $deepCR + 1024^2px + GN$                   | 1040                     | 93.17%        | 84.54%                        | 92.09%               |
| Cosmic-CoNN (MW loss $+ 1024^2$ px $+$ GN) | 380                      | 93.40%        | 86.80%                        | 94.37%               |

Number of epochs to achieve Dice Score > 0.85 and Precision at 95 % Recall

### Attention UNet



#### Attention UNet



Attention Gate

### TransUNet - Architecture



TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation - Chen et al.

### TransUNet Architecture

#### ResNet-50 + ViT Encoder

- Base ViT :Input resolution (224,224)
- P = 16, D = 768
- MLP size = 3072
- No. of layers = 12
- No. of heads = 12

#### Cascading Upsampler (CUP) Decoder

- Bilinear Upsampling
- Concatenate features from ResNet encoder



Architecture

#### **Training**

- SGD with learning rate 0.01, momentum 0.9
- Weight decay 1e-4

### Results from Original Paper



Table 1: Comparison on the Synapse multi-organ CT dataset (average dice score % and average hausdorff distance in mm, and dice score % for each organ).

| Fran        | ework         | Ave   | rage  | Aortal     | Callbladder  | Kidney (L) | Kidney (R   | Liver | Paneross  | Splan  | Stomack |
|-------------|---------------|-------|-------|------------|--------------|------------|-------------|-------|-----------|--------|---------|
| Encoder     | Decoder       | DSC ↑ | HD ↓  | 7 KOL LINE | O SALIDARAGE | runny (12) | reality (10 | Liver | i micross | opacen |         |
| V-N         | et [9]        | 68.81 |       | 75.34      | 51.87        | 77.10      | 80.75       | 87.84 | 40.05     | 80.56  | 56.98   |
| DAE         | RR [5]        | 69.77 |       | 74.74      | 53.77        | 72.31      | 73.24       | 94.08 | 54.18     | 89.90  | 45.96   |
| R50         | U-Net [12]    | 74.68 | 36.87 | 84.18      | 62.84        | 79.19      | 71.29       | 93.35 | 48.23     | 84.41  | 73.92   |
| R50         | AttnUNet [13] | 75.57 | 36.97 | 55.92      | 63.91        | 79.20      | 72.71       | 93.56 | 49.37     | 87.19  | 74.95   |
| ViT [4]     | None          | 61.50 | 39.61 | 44.38      | 39.59        | 67.46      | 62.94       | 89.21 | 43.14     | 75.45  | 69.78   |
| ViT [4]     | CUP           | 67.86 | 36.11 | 70.19      | 45.10        | 74.70      | 67.40       | 91.32 | 42.00     | 81.75  | 70.44   |
| R50-ViT [4] | CUP           | 71.29 | 32.87 | 73.73      | 55.13        | 75.80      | 72.20       | 91.51 | 45.99     | 81.99  | 73.95   |
| Tran        | sUNet         | 77.48 | 31.69 | 87.23      | 63.13        | 81.87      | 77.02       | 94.08 | 55.86     | 85.08  | 75.62   |

# Synapse multi-organ segmentation dataset

- ullet 30 abdominal CT scans with 3779 axial clinical CT images of 512 imes 512 pixels
- 18 training cases (2212 axial slices) and 12 cases for validation

# Results from Original Paper (Continued)

| Framework    | Average | RV    | Myo   | LV    |
|--------------|---------|-------|-------|-------|
| R50-U-Net    | 87.55   | 87.10 | 80.63 | 94.92 |
| R50-AttnUNet | 86.75   | 87.58 | 79.20 | 93.47 |
| ViT-CUP      | 81.45   | 81.46 | 70.71 | 92.18 |
| R50-ViT-CUP  | 87.57   | 86.07 | 81.88 | 94.75 |
| TransUNet    | 89.71   | 88.86 | 84.53 | 95.73 |

### Automated cardiac diagnosis challenge

- Segment into left ventricle (LV), right ventricle (RV) and myocardium (MYO)
- 70 training cases (1930 axial slices), 10 cases for validation and 20 for testing

Comparison of Dice Score

#### **Results from Ablation Studies**

- 6.88 % improvement when trained on (512,512) patch at the expense of much larger compute cost
- Consistent improvement in performance while increasing the skip connections [0,1,3]
- Marginal Improvement (0.35 %) while using (8,8) patches

Atharv Ramesh Nair Cosmic Ray Detection January 1, 2024 12 / 22

### DeCAM Dataset

- 56 raw  $4k \times 2k$  images from four photometric bands (g, r, i, z) with 90s exposure time
- Synthetically generated CR Hits
  - CR Identification using Astro-SCRAPPY and replacement using median filter to get uncontaminated image
  - Dark Frame Extraction: obtained when no light is incident on sensor
  - Mask *M* of affected pixels is obtained as follows:

$$M_p = egin{cases} 1 & ext{if } D_p > m_D + 3\sigma_D \ 0 & ext{otherwise} \end{cases}$$

- M is dilated with a  $3 \times 3$  pixel kernel to create the final  $M^{(D)}$  mask. This mask serves as ground truth.
- $\bullet$  Divided into 256 imes 256 crops to facilitate batch training
- Split: Training (90%) Validation (10%)
- Same Data Augmentation (simulating Exposure Time) used in DeepCR

Athary Ramesh Nair Cosmic Ray Detection January 1, 2024

13 / 22

### Hyperparameters

Following is the best TransUNet configuration from all tuning performed **Vision Transformer** 

Patch Size : 16 × 16

Hidden Size: 384

MLP DIM: 768

• No. of heads: 6

No of encoder layers : 6

#### **CNN**

No. of Convolutional Layers : [2,2,2]

• Loss Function :  $0.5(BCE\_Loss + 0.5(1 - Dice\_Score))$ 

Number of Parameters: 16,657,809

### Results

#### Fixed LR at 0.001 for 100 epochs

#### Table: Comparison of different configurations of TransUNet

| Configuration             | No. of parameters | TPR @ 0.01% FPR |
|---------------------------|-------------------|-----------------|
| Default                   | 16,657,809        | 0.972736        |
| Loss = 0.9*BCE + 0.1*Dice | 16,657,809        | 0.970416        |
| Dropout = 0.1             | 16,657,809        | 0.923           |
| Loss = BCE                | 16,657,809        | 0.966           |
| no. of heads $= 3$ ]      | 16,657,809        | 0.9645          |
| Conv layers: [3,3,3]      | 18,125,457        | 0.972775        |

### With Learning Rate Scheduler

| Configuration           | TPR @ 0.01% FPR |
|-------------------------|-----------------|
| ReduceLROnPlateau       | 0.9735          |
| Multi Step LR Scheduler | 0.9729          |

15/22

### Results

Starting LR = 0.001 and reduced by 0.1 every time validation loss was flat

Table: Comparison of Different Architectures

| Configuration | TPR @ 0.01% FPR | TPR @ 0.1% FPR | Dice Score |
|---------------|-----------------|----------------|------------|
| TransUNet     | 0.9762          | 0.9890         | 0.965825   |
| Att-UNet      | 0.9753          | 0.9964         | 0.965606   |
| Cosmic CoNN   | 0.9726          | 0.9964         | 0/96328    |

# Training Plots - Fixed LR = 0.001 (Default)



Validation Loss



Training vs Validation



Training Loss



Dice Score

Atharv Ramesh Nair

# Training Plots Reducing LR manually



Validation Loss



Training vs Validation



Training Loss



Dice Score

Atharv Ramesh Nair

# Dictionary Learning Approach

- Image is divided into  $11 \times 11$  patches
- A sparse representation (256  $\times$  1) y from 11  $\times$  11 (121) patches x using a learned dictionary
- Random Forest Classifier to distinguish between sparse representations y for CR and Non-CR patches

### Learning the Dictionary

$$\hat{y} = \operatorname{argmin} \|x - Dy\|_2^2 \quad \text{s.t.} \quad \|y\|_0 \le K$$

where D is the dictionary Done using Orthogonal Matching Pursuit (OMP) and Approximate K-SVD [Rubinstein et.al. Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit. CS Technion. 40.]

# Orthogonal Matching Pursuit

#### Algorithm 5 Approximate K-SVD

```
    Input: Signal set X, initial dictionary D<sub>0</sub>, target sparsity K, number of iterations k.

 2: Output: Dictionary \mathbf{D} and sparse matrix \mathbf{\Gamma} such that \mathbf{X} \approx \mathbf{D}\mathbf{\Gamma}
 3: Init: Set \mathbf{D} := \mathbf{D}_0
 4: for n = 1 ... k do
         \forall i: \quad \Gamma_i := \operatorname{Argmin}_{\gamma} \|\underline{x}_i - \mathbf{D}\underline{\gamma}\|_2^2 \quad \text{Subject To} \quad \|\underline{\gamma}\|_0 \leq K
          for j = 1 \dots L do
 7: \mathbf{D}_i := \underline{0}
         I := \{indices \ of \ the \ signals \ in \ X \ whose \ representations \ use \ \underline{d}_i \}
 9: g := \Gamma_{i,I}^T
10: \underline{d} := \mathbf{X}_I g - \mathbf{D} \mathbf{\Gamma}_I g
11: d := d/\|d\|_2
12: g := \mathbf{X}_{I}^{T}\underline{d} - (\mathbf{D}\Gamma_{I})^{T}\underline{d}
13: \mathbf{D}_i := \underline{d}
        \Gamma_{j,I} := g^T
14:
          end for
16: end for
```

### Efficient K-SVD

#### Algorithm 5 APPROXIMATE K-SVD

```
    Input: Signal set X, initial dictionary D<sub>0</sub>, target sparsity K, number of iterations k.

 2: Output: Dictionary \mathbf{D} and sparse matrix \mathbf{\Gamma} such that \mathbf{X} \approx \mathbf{D}\mathbf{\Gamma}
 3: Init: Set \mathbf{D} := \mathbf{D}_0
 4: for n = 1 ... k do
         \forall i: \; \Gamma_i := \operatorname{Argmin}_{\gamma} \|\underline{x}_i - \mathbf{D}\underline{\gamma}\|_2^2 \; \text{ Subject To } \|\underline{\gamma}\|_0 \leq K
          for j = 1 \dots L do
 7:
        \mathbf{D}_i := \underline{0}
           I := \{indices \ of \ the \ signals \ in \ X \ whose \ representations \ use \ \underline{d}_i \}
 9: \underline{g} := \Gamma_{i,I}^T
10: \underline{d} := \mathbf{X}_{I}\underline{g} - \mathbf{D}\Gamma_{I}g
11: d := d/\|d\|_2
12: g := \mathbf{X}_{I}^{T}\underline{d} - (\mathbf{D}\Gamma_{I})^{T}\underline{d}
13: \mathbf{D}_i := \underline{d}
         \Gamma_{j,I} := g^T
14:
          end for
16: end for
```

### Results

### **Dictionary Learning**

| Configuration | TPR @ 0.01% FPR | Dice Score |
|---------------|-----------------|------------|
| Att-UNet      | 0.9727          | 0.9800     |
| TransUNet     | 0.96            | 0.972      |

### Without Dictionary Learning

| Configuration | TPR @ 0.01% FPR | Dice Score |
|---------------|-----------------|------------|
| Att-UNet      | 0.971           | 0.979      |
| TransUNet     | 0.965           | 0.972      |