

Рандомизированная линейная алгебра

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n imes n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способпросто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

Идея алгоритма:

1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.
- 3. Вычислить A(Br) и сравнить полученный вектор с Cr.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.
- 3. Вычислить A(Br) и сравнить полученный вектор с Cr.
- 4. Если $A(Br) \neq Cr$, то точно $AB \neq C$.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.
- 3. Вычислить A(Br) и сравнить полученный вектор с Cr.
- 4. Если $A(Br) \neq Cr$, то точно $AB \neq C$.
- 5. Если A(Br) = Cr, то с вероятностью **не менее** 1 1/2 мы угадали правильно. Для снижения вероятности ошибки до $1/2^k$ повторяем процедуру k раз с разными случайными векторами.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.
- 3. Вычислить A(Br) и сравнить полученный вектор с Cr.
- 4. Если $A(Br) \neq Cr$, то точно $AB \neq C$.
- 5. Если A(Br) = Cr, то с вероятностью **не менее** 1 1/2 мы угадали правильно. Для снижения вероятности ошибки до $1/2^k$ повторяем процедуру k раз с разными случайными векторами.

Пусть нам даны три матрицы $A,B,C\in\mathbb{R}^{n\times n}$, и мы хотим проверить, равенство AB=C. Наивный способ просто перемножить A и B за $\mathcal{O}(n^3)$ операций и сравнить с C.

Алгоритм Фрейвалдса показывает, что это можно сделать гораздо быстрее - за $\mathcal{O}(kn^2)$ операций при вероятности ошибки не более $1/2^k$.

Идея алгоритма:

- 1. Сгенерировать случайный вектор $r \in \mathbb{R}^n$.
- 2. Вычислить произведения Br и Cr.
- 3. Вычислить A(Br) и сравнить полученный вектор с Cr.
- 4. Если $A(Br) \neq Cr$, то точно $AB \neq C$.
- 5. Если A(Br) = Cr, то с вероятностью **не менее** 1 1/2 мы угадали правильно. Для снижения вероятности ошибки до $1/2^k$ повторяем процедуру k раз с разными случайными векторами.

Сложность каждого шага: $\mathcal{O}(n^2)$ (домножение на вектор), поэтому общее время $\mathcal{O}(kn^2)$.

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m \times n}$. Метод Качмарца (Касzmarz) обновляет приближение x_k путём выборки случайной строки i (обычно с вероятностью пропорциональной $\|a_i\|^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m imes n}$. Метод Качмарца (Касzmarz) обновляет приближение x_k путём выборки случайной строки i(обычно с вероятностью пропорциональной $||a_i||^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

Если система совместна, метод сходится к точному решению.

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m imes n}$. Метод Качмарца (Касzmarz) обновляет приближение x_k путём выборки случайной строки i(обычно с вероятностью пропорциональной $||a_i||^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

- Если система совместна, метод сходится к точному решению.
- Если система переопределена или шумна, то можно показать сходимость к решению наилучшего приближения.

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m imes n}$. Метод Качмарца (Kaczmarz) обновляет приближение x_k путём выборки случайной строки i(обычно с вероятностью пропорциональной $||a_i||^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

- Если система совместна, метод сходится к точному решению.
- Если система переопределена или шумна, то можно показать сходимость к решению наилучшего приближения.
- ullet C точки зрения SGD это шаг стохастического градиента для задачи минимизации $\|Ax-b\|^2$.

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m imes n}$. Метод Качмарца (Kaczmarz) обновляет приближение x_k путём выборки случайной строки i(обычно с вероятностью пропорциональной $||a_i||^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

- Если система совместна, метод сходится к точному решению.
- Если система переопределена или шумна, то можно показать сходимость к решению наилучшего приближения.
- ullet C точки зрения SGD это шаг стохастического градиента для задачи минимизации $\|Ax-b\|^2$.

Рассмотрим СЛАУ

$$Ax = b$$
,

где $A \in \mathbb{R}^{m imes n}$. Метод Качмарца (Kaczmarz) обновляет приближение x_k путём выборки случайной строки i(обычно с вероятностью пропорциональной $||a_i||^2$):

$$x_{k+1} = x_k - \frac{a_i^T x_k - b_i}{\|a_i\|^2} a_i.$$

- Если система совместна, метод сходится к точному решению.
- Если система переопределена или шумна, то можно показать сходимость к решению наилучшего приближения.
- ullet С точки зрения SGD это шаг стохастического градиента для задачи минимизации $\|Ax-b\|^2$.

Скорость сходимости:

$$\mathbb{E}[\|x_{k+1} - x^*\|^2] \le \left(1 - \frac{1}{\kappa_F^2(A)}\right) \mathbb{E}[\|x_k - x^*\|^2],$$

где
$$\kappa_F(A) = \frac{\|A\|_F}{\sigma_{\min}(A)}.$$

Хотим приблизить произведение AB, где $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)},$$

Хотим приблизить произведение AB, где $A\in\mathbb{R}^{m imes p}$, $B\in\mathbb{R}^{p imes n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)},$$

где $A^{(i_t)}$ - i_t -й столбец A, а $B_{(i_t)}$ - i_t -я строка B, а p_{i_t} - вероятность выбора i_t -го столбца/строки. Обычно p_i пропорциональны $||A^{(i)}|| ||B_{(i)}||$ (или другой норме).

Хотим приблизить произведение AB, где $A\in\mathbb{R}^{m imes p}$, $B\in\mathbb{R}^{p imes n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)},$$

где $A^{(i_t)}$ - i_t -й столбец A, а $B_{(i_t)}$ - i_t -я строка B, а p_{i_t} - вероятность выбора i_t -го столбца/строки. Обычно p_i пропорциональны $||A^{(i)}|| ||B_{(i)}||$ (или другой норме).

Идея:

1. По нормам столбцов A (и строк B) выбираем k столбцов-строк.

Хотим приблизить произведение AB, где $A\in\mathbb{R}^{m imes p}$, $B\in\mathbb{R}^{p imes n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)}, \label{eq:absolute}$$

где $A^{(i_t)}$ - i_t -й столбец A, а $B_{(i_t)}$ - i_t -я строка B, а p_{i_t} - вероятность выбора i_t -го столбца/строки. Обычно p_i пропорциональны $||A^{(i)}|| ||B_{(i)}||$ (или другой норме).

Идея:

- 1. По нормам столбцов A (и строк B) выбираем k столбцов-строк.
- 2. Усреднённая сумма полученных ранга-k матриц приближает всё произведение.

Хотим приблизить произведение AB, где $A\in\mathbb{R}^{m imes p}$, $B\in\mathbb{R}^{p imes n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)}, \label{eq:absolute}$$

где $A^{(i_t)}$ - i_t -й столбец A, а $B_{(i_t)}$ - i_t -я строка B, а p_{i_t} - вероятность выбора i_t -го столбца/строки. Обычно p_i пропорциональны $||A^{(i)}|| ||B_{(i)}||$ (или другой норме).

Идея:

- 1. По нормам столбцов A (и строк B) выбираем k столбцов-строк.
- 2. Усреднённая сумма полученных ранга-k матриц приближает всё произведение.

Хотим приблизить произведение AB, где $A\in\mathbb{R}^{m imes p}$, $B\in\mathbb{R}^{p imes n}$. Стоимость точного умножения: $\mathcal{O}(mnp)$. Рандомизированный подход даёт приближение:

$$AB \approx \sum_{t=1}^k \frac{1}{k \, p_{i_t}} \, A^{(i_t)} \, B_{(i_t)},$$

где $A^{(i_t)}$ - i_t -й столбец A, а $B_{(i_t)}$ - i_t -я строка B, а p_{i_t} - вероятность выбора i_t -го столбца/строки. Обычно p_i пропорциональны $||A^{(i)}|| ||B_{(i)}||$ (или другой норме).

Идея:

- 1. По нормам столбцов A (и строк B) выбираем k столбцов-строк.
- 2. Усреднённая сумма полученных ранга-k матриц приближает всё произведение.

Сложность: $\mathcal{O}(mnk)$, если $k \ll p$, экономим по сравнению с $\mathcal{O}(mnp)$.

Оценка следа матрицы методом Хатчинсона 1

Пусть $X \in \mathbb{R}^{d \times d}$ и $v \in \mathbb{R}^d$ - случайный вектор такой, что $\mathbb{E}[vv^T] = I$. Тогда,

$${
m Tr}(X)={\Bbb E}[v^TXv]=rac{1}{V}\sum_{i=1}^V v_i^TXv_i$$

Рис. 1: Source

 $^{^1\}text{A}$ stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Intrinsic dimension (intdim):

Для симметричной положительно определённой матрицы A вводится понятие

$$\operatorname{intdim}(A) = \frac{\operatorname{Tr}(A)}{\|A\|_F}.$$

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Intrinsic dimension (intdim):

Для симметричной положительно определённой матрицы A вводится понятие

$$\operatorname{intdim}(A) = \frac{\operatorname{Tr}(A)}{\|A\|_F}.$$

Минимальное значение равно 1.

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Intrinsic dimension (intdim):

Для симметричной положительно определённой матрицы A вводится понятие

$$\operatorname{intdim}(A) = \frac{\operatorname{Tr}(A)}{\|A\|_F}.$$

- Минимальное значение равно 1.
- Максимальное при всех сингулярных (или собственных) значениях равных, тогда $\operatorname{intdim}(A)$ может достичь $\sqrt{\operatorname{rank}(A)}$.

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Intrinsic dimension (intdim):

Для симметричной положительно определённой матрицы A вводится понятие

$$\operatorname{intdim}(A) = \frac{\operatorname{Tr}(A)}{\|A\|_F}.$$

- Минимальное значение равно 1.
- Максимальное при всех сингулярных (или собственных) значениях равных, тогда $\operatorname{intdim}(A)$ может достичь $\sqrt{\operatorname{rank}(A)}$.

Метод Жирара:

- Предшественник метода Хатчинсона, где вектор w берём из $\mathcal{N}(0,I)$ (гауссовский).
- Дисперсия получается немного больше, чем у Хатчинсона (у хатчинсона минимальная дисперсия).

Intrinsic dimension (intdim):

Для симметричной положительно определённой матрицы A вводится понятие

$$\operatorname{intdim}(A) = \frac{\operatorname{Tr}(A)}{\|A\|_F}.$$

- Минимальное значение равно 1.
- Максимальное при всех сингулярных (или собственных) значениях равных, тогда $\operatorname{intdim}(A)$ может достичь $\sqrt{\operatorname{rank}(A)}$.

С помощью этой величины можно оценивать вероятность больших отклонений случайной оценки следа.

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T$$
.

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\}).$

Рандомизированный подход (Halko et al., 2011):

1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T$$
.

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\}).$

Рандомизированный подход (Halko et al., 2011):

- 1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.
- 2. Считаем $Y=A\cdot G$ и делаем QR-разложение Y=QR.

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T$$
.

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\})$.

Рандомизированный подход (Halko et al., 2011):

- 1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.
- 2. Считаем $Y = A \cdot G$ и делаем QR-разложение Y = QR.
- 3. Утверждается, что $QQ^TA \approx A$ при хорошей выборке и k+p надёжно покрывают ведущие сингулярные компоненты.

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T.$$

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\})$.

Рандомизированный подход (Halko et al., 2011):

- 1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.
- 2. Считаем $Y = A \cdot G$ и делаем QR-разложение Y = QR.
- 3. Утверждается, что $QQ^TA \approx A$ при хорошей выборке и k+p надёжно покрывают ведущие сингулярные компоненты.
- 4. Строим $B = Q^T A$, у которого размер $(k+p) \times n$.

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T.$$

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\})$.

Рандомизированный подход (Halko et al., 2011):

- 1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.
- 2. Считаем $Y = A \cdot G$ и делаем QR-разложение Y = QR.
- 3. Утверждается, что $QQ^TA \approx A$ при хорошей выборке и k+p надёжно покрывают ведущие сингулярные компоненты.
- 4. Строим $B = Q^T A$, у которого размер $(k + p) \times n$.
- 5. Вычисляем точное SVD для $B = \hat{U} \hat{\Sigma} \hat{V}^T$

Напомним, что SVD матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^T.$$

Для больших m и n полное вычисление SVD занимает $\mathcal{O}(\min\{mn^2, m^2n\})$.

Рандомизированный подход (Halko et al., 2011):

- 1. Выбираем $G \in \mathbb{R}^{n \times (k+p)}$ со случайными элементами.
- 2. Считаем $Y = A \cdot G$ и делаем QR-разложение Y = QR.
- 3. Утверждается, что $QQ^TA \approx A$ при хорошей выборке и k+p надёжно покрывают ведущие сингулярные компоненты.
- 4. Строим $B = Q^T A$, у которого размер $(k + p) \times n$.
- 5. Вычисляем точное SVD для $B = \hat{U}\hat{\Sigma}\hat{V}^T$.
- 6. Тогда $U = Q\hat{U}$, и получаем искомое разложение (приближённое).

