Contrôle d'algèbre linéaire N°1

Durée: 1 heure 30 minutes. Barème sur 15 points.

NOM:	_	
	Groupe	
PRENOM:	_	

1. Montrer le théorème suivant en utilisant une méthode par l'absurde. Soit E un ensemble.

$$\forall A, B \subset E, \quad A \subset B \Rightarrow \bar{A} \cup B = E.$$

 $2.5 \mathrm{~pts}$

2. Démontrer par récurrence la proposition suivante :

$$\forall n \in \mathbb{N}^*, \quad \frac{(2n)!}{n! \, n!} \le 2^{2n-1}.$$

3 pts

3. Soit f l'application définie par

$$f: [-1, \to [\longrightarrow \mathbb{R}^2]$$

$$x \longmapsto (x', y') = (\sqrt{x+1} - 1, x - 3).$$

- (a) Calculer $\operatorname{Im} f$ et donner sa représentation graphique (échelle: 2 carrés par unité).
- (b) f est-elle surjective ? Justifier votre réponse.

3 pts

4. Soit f l'application définie par

$$f: A \subset \mathbb{R} \longrightarrow \mathbb{R}^2_+$$

 $x \longmapsto (x', y') = (x^2 - 1, x^2 - 2x).$

(a) Déterminer le plus grand ensemble A pour que f soit une application.

Soit encore g l'application définie par

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x',y') = (x+y,y+1).$

- (b) Définir l'application $g \circ f$.
- (c) $g \circ f$ est-elle injective? Justifier votre réponse.

3.5 pts

5. Soient l'ensemble $E = \{0, 1, 2, \dots, 10\}$, l'ensemble des parties de E, noté $\mathcal{P}(E)$, et l'application f de $\mathcal{P}(E)$ dans E définie par

$$f: \ \mathcal{P}(E) \ \longrightarrow \ E$$

$$A \ \longmapsto \ f(A) = \left\{ \begin{array}{ll} \max(A) & \text{si } A \neq \emptyset \\ 0 & \text{si } A = \emptyset \,, \end{array} \right.$$

où $\max(A)$ est le plus grand élément de A.

- (a) Soit $K = \{\{2, 5, 7\}, \{6, 7, 8\}, \{1, 6, 7\}\}$. Calculer f(K).
- (b) f est-elle surjective ? Justifier votre réponse.
- (c) f est-elle injective ? Justifier votre réponse.
- (d) Calculer $f^{-1}(\{2\})$ et donner le nombre de ses éléments.

Donner le nombre des éléments de $f^{-1}(\{3\})\,.$

Soit $n' \in E$, $n' \ge 1$. Proposer une expression pour le nombre des éléments de $f^{-1}(\{n'\})$ en donnant un argument justificatif (on ne demande pas de démonstration).

3 pts