

# **Clinical Dose Optimization**

Executive Summary Report Q4 2021

**Hospital: Sample** 

**Health System: Sample** 





Dear Patient Radiation Dose Committee,

We are pleased to present you with the Q4 executive summary report for your patient doses. This report presents key insights into your CT & Fluoroscopy dose management program with recommendations on how to improve the performance of your clinical protocols. Within this report, we compare your dose performance to external benchmarks, review patient exams that exceed alert thresholds and track and trend performance of most common protocols.

This report is designed to aid with meeting The Joint Commission requirements PC.01.03.01 A26 and PI.02.01.01 A6 as well as the American Association of Physics in Medicine Practice Guideline 1.a: CT Protocol Management and Review Practice Guideline and patient dose requirements outlined in VHA directive 1129. To fulfill regulatory requirements, this report should be reviewed with input and recommendations from the institution's Patient Radiation Dose Committee.

ProAqCT is honored to be your partner in quality imaging, and we look forward to working with you to deliver safe and optimal personalized imaging. If you have any questions concerning this report, please feel free to contact us at 1-844-ProAqCT (1-844-776-2728) or email us at <a href="mailto:support@proaqct.com">support@proaqct.com</a>.

Sincerely, The ProAqCT Clinical Analytics Team





### Contents

| Executive Summary                                                                                  | 4  |
|----------------------------------------------------------------------------------------------------|----|
| Patient CT Dose Alert Summary                                                                      | 5  |
| Patient CT Dose Alert Trending                                                                     | 6  |
| Top Ten CT Protocols by Volume                                                                     | 7  |
| DLP Dose Distribution, Outliers, and Comparison to External Benchmarks of Top Ten CT Protocols     |    |
| CTDIvol Dose Distribution, Outliers, and Comparison to External Benchmarks of Top Ten CT Protocols | 10 |
| CT Protocols with the Highest & Lowest Radiation Dose Index Relative to National Benchmarks        | 12 |
| Temporal Trending of CT Dose Performance                                                           | 13 |
| Temporal Trending of CT Abdomen Protocols Stratified by Body Habitus                               | 14 |
| CT Dose Performance Comparison for Adult Head & Adult Abdomen by Scanner                           | 15 |
| Fluoroscopy Dose Alerts Summary                                                                    | 16 |
| Reference Air Kerma Fluoroscopy Dose Distribution                                                  | 17 |
| Review of Highest Fluoroscopy Dose Events                                                          | 18 |
| Appendix A: Summary of CT Protocol Mapping                                                         | 19 |
| Appendix B: Glossary                                                                               | 23 |





## Executive Summary

| Summary of CT Dose Distribution and comparison to external Benchmarks for top ten protocols |                                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Finding                                                                                     | Recommended Corrective Action                               |  |  |  |  |  |
| 50% tile dose for the Chest Abdomen Pelvis exceeded the                                     | Auto mA settings should be evaluated. Consider adjusting    |  |  |  |  |  |
| national benchmark                                                                          | the Nosie Index (NI) on the protocol                        |  |  |  |  |  |
| 50% tile dose for the Chest Without Contrast exceeded the                                   | Auto mA settings should be evaluated. Consider adjusting    |  |  |  |  |  |
| national benchmark                                                                          | the Nosie Index (NI) on the protocol                        |  |  |  |  |  |
| 50% tile dose for the Abdomen Pelvis With Contrast                                          | Auto mA settings should be evaluated. Consider adjusting    |  |  |  |  |  |
| exceeded the national benchmark                                                             | the Nosie Index (NI) on the protocol                        |  |  |  |  |  |
| 50% tile dose for the Head Without Contrast exceeded the                                    | Scan Length should be adjusted to only cover base of skull  |  |  |  |  |  |
| national benchmark                                                                          | through the vertex. Consider increasing the slice thickness |  |  |  |  |  |
|                                                                                             | of primary recon to 5 mm                                    |  |  |  |  |  |
| 50% tile dose for the Abdomen Pelvis Without Contrast                                       | Auto mA settings should be evaluated. Consider adjusting    |  |  |  |  |  |
| exceeded the national benchmark                                                             | the Nosie Index (NI) on the protocol                        |  |  |  |  |  |
| 50%tile and 75% tile dose for the Brain Without Contrast                                    | Develop a dedicated CTA protocol                            |  |  |  |  |  |
| exceeded the national benchmark                                                             |                                                             |  |  |  |  |  |
| The Median dose for CT C-Spine WO was more than 50%                                         | It is recommended to double the mAs. This will improve      |  |  |  |  |  |
| below the national benchmark                                                                | image quality while remaining low dose as compared to       |  |  |  |  |  |
|                                                                                             | the national benchmark                                      |  |  |  |  |  |
| Summary of Patient                                                                          | CT Dose Alert Review                                        |  |  |  |  |  |
| 152 Alerts were reported in Q4                                                              | Alert Thresholds for Abdomen protocol should be reviewed    |  |  |  |  |  |
| Body habitus was the most common reason for alerts in Q4                                    | NA                                                          |  |  |  |  |  |
| Summary of Patient                                                                          | FL Dose Alert Review                                        |  |  |  |  |  |
| 22 Alerts were reported in Q4                                                               | Technologists training on beam angulation and skin dose     |  |  |  |  |  |
|                                                                                             | sparing should be completed by next quarter                 |  |  |  |  |  |





### Patient CT Dose Alert Summary



**Table 1: Summary of Alerts Q4** 

| Total Number of Exams  | 2456   |
|------------------------|--------|
| Total Number of Alerts | 152    |
| % of Alerts            | 16.16% |





## Patient CT Dose Alert Trending



**Table 2: Summary of Alerts to date** 

| Total Number of Exams  | 11,924 |
|------------------------|--------|
| Total Number of Alerts | 989    |
| % of Alerts            | 8.29%  |





### Top Ten CT Protocols by Volume





### DLP Dose Distribution, Outliers, and Comparison to External Benchmarks of Top Ten CT Protocols





Table 3: Quartile Analysis and Comparison of Radiation Dose Length Product (DLP) to external benchmarks for Top Ten CT Protocols

| Category                 |       |        | DLP (mGy-cm) |         |         | National<br>Benchmark |                           |                           | cal<br>nmark              | Outliers                  |         |
|--------------------------|-------|--------|--------------|---------|---------|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------|
|                          | Exams | low    | q1           | median  | q3      | high                  | 75 <sup>th</sup><br>%tile | 50 <sup>th</sup><br>%tile | 75 <sup>th</sup><br>%tile | 50 <sup>th</sup><br>%tile |         |
| CAP                      | 390   | 182.00 | 731.41       | 847.59  | 969.21  | 1057.57               | 1372.00                   | 913.00                    | 969.21                    | 847.59                    | 1057.57 |
| Chest<br>WO              | 345   | 300.77 | 356.45       | 387.08  | 408.60  | 452.24                | 575.00                    | 339.00                    | 408.60                    | 387.08                    | 452.24  |
| Abd Pel<br>W             | 285   | 121.26 | 504.65       | 634.83  | 693.74  | 723.54                | 906.00                    | 593.00                    | 693.74                    | 634.83                    | 706.98  |
| Head<br>WO               | 240   | 241.00 | 296.50       | 473.37  | 828.87  | 969.74                | 1051.00                   | 827.00                    | 837.68                    | 497.74                    | 871.29  |
| Abd Pel<br>WO<br>Abd Pel | 225   | 436.00 | 659.30       | 712.95  | 735.94  | 777.16                | 900.00                    | 595.00                    | 735.94                    | 712.95                    | 748.15  |
| Kidney<br>WO             | 210   | 563.60 | 584.40       | 601.31  | 654.42  | 682.90                | 1346.00                   | 916.00                    | 654.42                    | 601.31                    | 682.90  |
| Abd Pel<br>WWO           | 195   | 570.97 | 655.17       | 774.28  | 828.94  | 1046.10               | 1860.00                   | 1143.00                   | 828.94                    | 774.28                    | 1046.10 |
| Brain<br>WO              | 195   | 358.60 | 979.80       | 1006.10 | 1098.00 | 1098.00               | 993.00                    | 854.00                    | 1098.00                   | 1006.10                   | 1098.00 |
| CAP W                    | 165   | 540.05 | 568.32       | 607.50  | 651.38  | 1389.70               | 1413.00                   | 938.00                    | 651.38                    | 607.50                    | 1389.70 |
| C-Spine<br>WO            | 150   | 395.39 | 424.46       | 481.71  | 524.14  | 548.01                | 1648.00                   | 1161.00                   | 524.14                    | 481.71                    | 548.01  |

<sup>\*</sup>Values in red indicate a protocol has exceeded an external benchmark

© ProAqCT 2022





### CTDIvol Dose Distribution, Outliers, and Comparison to External Benchmarks of Top Ten CT Protocols







Table 4: Quartile Analysis and Comparison of CTDIvol to External Benchmarks for Top Ten Protocols

|                         |       | CTDIvol (mGy) |       |        |       |       |                           | National<br>Benchmark     |                           | ocal<br>hmark             | Outliers |
|-------------------------|-------|---------------|-------|--------|-------|-------|---------------------------|---------------------------|---------------------------|---------------------------|----------|
|                         | Exams | low           | q1    | median | q3    | high  | 75 <sup>th</sup><br>%tile | 50 <sup>th</sup><br>%tile | 75 <sup>th</sup><br>%tile | 50 <sup>th</sup><br>%tile | Outhors  |
| CAP                     | 390   | 3.69          | 14.12 | 15.34  | 16.46 | 19.71 | 26.00                     | 16.00                     | 16.46                     | 15.34                     | 19       |
| <b>Chest WO</b>         | 345   | 9.72          | 11.03 | 11.54  | 13.49 | 16.87 | 16.00                     | 9.00                      | 13.49                     | 11.54                     | 16       |
| Abd Pel W               | 285   | 3.26          | 10.03 | 12.17  | 13.53 | 13.92 | 17.00                     | 12.00                     | 13.53                     | 12.17                     | 13       |
| Head WO                 | 240   | 21.01         | 22.29 | 38.28  | 50.64 | 56.36 | 59.00                     | 48.00                     | 50.64                     | 38.28                     | 15       |
| Abd Pel<br>WO           | 225   | 9.58          | 12.83 | 14.34  | 14.77 | 15.92 | 18.00                     | 12.00                     | 14.77                     | 14.34                     | 15       |
| Abd Pel<br>Kidney<br>WO | 210   | 11.03         | 11.71 | 12.33  | 13.36 | 14.55 | 29.00                     | 20.00                     | 13.36                     | 12.33                     | 14       |
| Abd Pel<br>WWO          | 195   | 11.10         | 13.30 | 15.79  | 16.92 | 18.34 | 42.00                     | 26.00                     | 16.92                     | 15.79                     | 17       |
| <b>Brain WO</b>         | 195   | 27.70         | 52.50 | 52.50  | 58.00 | 58.00 | 61.00                     | 51.00                     | 58.00                     | 52.50                     | 18       |
| CAP W                   | 165   | 11.08         | 11.74 | 12.66  | 12.85 | 20.00 | 30.00                     | 18.00                     | 12.85                     | 12.66                     | 10       |
| C-Spine<br>WO           | 150   | 18.69         | 20.20 | 23.44  | 25.87 | 27.18 | 75.00                     | 34.00                     | 25.87                     | 23.44                     | 7        |

<sup>\*</sup>Values in red indicate a protocol has exceeded an external benchmark



# CT Protocols with the Highest & Lowest Radiation Dose Index Relative to National Benchmarks

|                               |       | DLP (  | (mGy-cm)              | CTDI        | vol (mGy) |                       |             |
|-------------------------------|-------|--------|-----------------------|-------------|-----------|-----------------------|-------------|
|                               | Exams | Median | National<br>Benchmark | % Diff      | Median    | National<br>Benchmark | % Diff      |
| Abd Pel WO                    | 225   | 712.95 | 595                   | 19.82%      | 14.34     | 12                    | 19.50%      |
| Brain WO                      | 195   | 1006.1 | 854                   | 17.81%      | 52.5      | 51                    | 2.94%       |
| Chest WO                      | 390   | 387.08 | 339                   | 14.18%      | 11.54     | 9                     | 28.22%      |
| Abd Pel W                     | 285   | 634.83 | 593                   | 7.05%       | 12.17     | 12                    | 1.42%       |
| CAP                           | 390   | 847.59 | 913                   | -7.16%<br>- | 15.34     | 16                    | -4.13%<br>- |
| Abd Pel WWO<br>Abd Pel Kidney | 195   | 774.28 | 1143                  | 32.26%      | 15.79     | 26                    | 39.27%      |
| WO                            | 210   | 601.31 | 916                   | 34.35%      | 12.33     | 20                    | 38.35%      |
| CAP W                         | 165   | 607.5  | 938                   | 35.23%      | 12.66     | 18                    | 29.67%      |
| Head WO                       | 240   | 473.37 | 827                   | 42.76%      | 38.28     | 48                    | 20.25%      |
| C-Spine WO                    | 150   | 481.71 | 1161                  | 58.51%      | 23.44     | 34                    | 31.06%      |

1-844-ProAqCT



© ProAqCT 2022

### Temporal Trending of CT Dose Performance



**Table 5: Temporal Trending of top CT protocols** 

|                                          | Q1   | Q2   | Q3  | Q4    | % change<br>since last<br>Quarter |
|------------------------------------------|------|------|-----|-------|-----------------------------------|
| CHEST ABDOMEN PELVIS WITHOUT IV CONTRAST | 1381 | 1123 | 904 | 845   | 6.53%                             |
| CHEST WITHOUT IV CONTRAST                | 651  | 598  | 411 | 387.1 | 5.82%                             |
| ABDOMEN PELVIS WITH IV CONTRAST          | 863  | 744  | 654 | 634.8 | 2.94%                             |
| HEAD WITHOUT IV CONTRAST                 | 1080 | 910  | 936 | 828.9 | 11.44%                            |
| ABDOMEN PELVIS WITHOUT IV CONTRAST       | 1025 | 916  | 486 | 473.4 | 2.59%                             |





### Temporal Trending of CT Abdomen Protocols Stratified by Body Habitus



**Table 6: Temporal Trending of Top CT Protocols by Body Habitus** 

|                  |            |    |            |        | Q3         |            |            |       |            | Q4     |            |            |
|------------------|------------|----|------------|--------|------------|------------|------------|-------|------------|--------|------------|------------|
| <b>Body Part</b> | Body       | N  | 25th %'ile | Median | 75th %'ile | 90th %'ile | 95th %'ile | Ν     | 25th %'ile | Median | 75th %'ile | 95th %'ile |
|                  | Habitus    |    |            |        |            |            |            |       |            |        |            |            |
| <b>ABDOMEN</b>   | 55-109 kg  | 21 | 743.28     | 978.00 | 1232.28    | 1454.09    | 1526.79    | 13.00 | 750.88     | 988.00 | 1244.88    | 1542.41    |
| PELVIS           |            |    |            |        |            |            |            |       |            |        |            |            |
| ABDOMEN          | 110-150 kg | 14 | 940.88     | 1238.0 | 1559.88    | 1840.66    | 1932.69    | 10.00 | 859.56     | 1131.0 | 1425.06    | 1765.65    |
| PELVIS           |            |    |            | 0      |            |            |            |       |            | 0      |            |            |
| ABDOMEN          | >150 kg    | 24 | 1134.68    | 1493.0 | 1881.18    | 2219.79    | 2330.78    | 29.00 | 1081.48    | 1423.0 | 1792.98    | 2221.50    |
| PELVIS           |            |    |            | 0      |            |            |            |       |            | 0      |            |            |





### CT Dose Performance Comparison for Adult Head & Adult Abdomen by Scanner









## Fluoroscopy Dose Alerts Summary



**Table 7: Fluoroscopy Dose Alerts Q4** 

| Total Number of FL Exams | 894 |
|--------------------------|-----|
| FL Exams 3000- 5000 mGy  | 97  |
| FL Exams >5000 mGy*      | 22  |



1-844-ProAqCT



#### Reference Air Kerma Fluoroscopy Dose Distribution

## Reference Air Kerma (mGy)







#### Review of Highest Fluoroscopy Dose Events

## Exam settings timeline



This is a timeline of each fluoro dose events for the exam with the highest Air Kerma.





# Appendix A: Summary of CT Protocol Mapping

|                                    | Short name assigned by |                                  |
|------------------------------------|------------------------|----------------------------------|
| Study Description at your facility | facility               | Short name to look for in report |
| AbdomenABD_PELVIS_55_to_109KG      |                        |                                  |
| (Adult)                            | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| AbdomenABD_PELVIS_OVER_110KG       |                        |                                  |
| (Adult)                            | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| AbdomenCAP_55_to_109KG (Adult)     | CT CHST ABD/PEL        | CT CHEST ABDOMEN PELVIS          |
| AbdomenCAP_OVER_110KG (Adult)      | CT CHST ABD/PEL        | CT CHEST ABDOMEN PELVIS          |
| AbdomenCTA_ABDOMEN_55_TO_109KG     |                        |                                  |
| (Adult)                            | CT ABD PELVIS ANGIO    | CT ABDOMEN PELVIS ANGIO          |
| AbdomenCTV_ABDOMEN_55_TO_109KG     |                        | CT ABDOMEN PELVIS                |
| (Adult)                            | CT ABD PELVIS VENO     | VENOGRAPHY                       |
|                                    | CT NECK CHST ABD/PEL   | CT NECK CHEST ABDOMEN            |
| AbdomenNCAP_55_to_109KG (Adult)    | WIVCON                 | PELVIS W IVCON                   |
|                                    | CT NECK CHST ABD/PEL   | CT NECK CHEST ABDOMEN            |
| AbdomenNCAP_OVER_110KG (Adult)     | WIVCON                 | PELVIS W IVCON                   |
| AbdomenRENAL_STONE_55_TO_109KG     |                        |                                  |
| (Adult)                            | CT ABD KIDNEY          | CT ABDOMEN PELVIS KIDNEY         |
|                                    | CT ABD PELVIS WO & W   | CT ABDOMEN PELVIS WO THEN        |
| CT ABD AND PELVIS W WO             | IVCON                  | WIVCON                           |
| CT ABD AND PELVIS W WO CO          | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| CT ABD AND PELVIS WO C             | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| CT ABD AND PELVIS WO CONTRAST      | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| CT ABDOMEN AND CTA ABD             | CT ABD PELVIS ANGIO    | CT ABDOMEN PELVIS ANGIO          |
| CT ABDOMEN AND PELVIS              | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| CT ABDOMEN AND PELVIS W CONTR      | CT ABD PELVIS          | CT ABDOMEN PELVIS                |
| CT ABDOMEN W AND WO CO             | CT ABD WO & W IVCON    | CT ABDOMEN WO THEN W IVCON       |





| CT ABDOMEN W CONTRAST          | CT ABD PELVIS       | CT ABDOMEN PELVIS       |
|--------------------------------|---------------------|-------------------------|
| CT ABDOMEN WO CONTRAST         | CT ABD WO IVCON     | CT ABDOMEN WO IVCON     |
| CT APPENDICITIS                | CT ABD PELVIS       | CT ABDOMEN PELVIS       |
| CT CHEST ABD PELVIS            | CT CHST ABD/PEL     | CT CHEST ABDOMEN PELVIS |
| CT CHEST ABD PELVIS W CONTRAST | CT CHST ABD/PEL     | CT CHEST ABDOMEN PELVIS |
| CT CHEST ABD PELVIS W          | CT CHST ABD/PEL     | CT CHEST ABDOMEN PELVIS |
| CT CHEST ABD PELVIS W AND WO   |                     |                         |
| CONTRAST                       | CT ABD PELVIS       | CT ABDOMEN PELVIS       |
| CT CHEST ABD PELVIS W CONTRAST | CT CHST ABD/PEL     | CT CHEST ABDOMEN PELVIS |
| CT CHEST AND ABDOMEN W         | CT CHST ABD/PEL     | CT CHEST ABDOMEN PELVIS |
| CT CHEST W AND WO CONTRAST     | CT CHST             | CT CHEST                |
| CT CHEST W CONTRAST            | CT CHST             | CT CHEST                |
| CT CHEST WO CONTRAST           | CT CHST             | CT CHEST                |
| CT CHEST WO CONTRAST AND 3D    |                     |                         |
| IMAGES                         | CT CHST             | CT CHEST                |
| CT CRANIOFACIAL COMPLE         | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT CRANIOFACIAL COMPLETE W     |                     |                         |
| CONTRAST                       | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT CRANIOFACIAL LIMITE         | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT CTA ABDOMEN                 | CT ABD PELVIS ANGIO | CT ABDOMEN PELVIS ANGIO |
| CT CTA ABDOMEN PELVIS          | CT ABD PELVIS ANGIO | CT ABDOMEN PELVIS ANGIO |
| CT CTA LOWER EXTREMITY         | CT LE ANGIO BILAT   | CT LE ANGIO             |
| CT FACIAL BONES W AND          | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
|                                | CT HEAD FACL BNS W  |                         |
| CT FACIAL BONES W CONT         | IVCON               | CT HEAD W IVCON         |
| CT FACIAL BONES W CONTRAST     | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT FACIAL BONES WO CON         | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT FACIAL BONES WO CONTRAST    | CT HEAD FACL BNS    | CT HEAD FACIAL BONES    |
| CT HEAD AND CT VENOGRA         | CT HEAD VENO        | CT HEAD VENOGRAPHY      |



| CT HEAD AND ORBIT W CO                     | CT HEAD ORBITS                  | CT HEAD                              |
|--------------------------------------------|---------------------------------|--------------------------------------|
| CT HEAD AND ORBIT WO/W                     | CT HEAD ORBITS                  | CT HEAD                              |
| CT HEAD VENTRICLES                         | CT HEAD BRN                     | CT HEAD BRAIN                        |
| CT HEAD W AND WO CONTR                     | CT HEAD BRN                     | CT HEAD BRAIN                        |
| CT HEAD W AND WO CONTRAST                  | CT HEAD BRN                     | CT HEAD BRAIN                        |
| CT HEAD W CONTRAST                         | CT HEAD BRN                     | CT HEAD BRAIN                        |
| CT HEAD WO                                 | CT HEAD BRN WO IVCON            | CT HEAD BRAIN WO IVCON               |
| CT HEAD WO CONT                            | CT HEAD BRN WO IVCON            | CT HEAD BRAIN WO IVCON               |
| CT HEAD WO CONTRAST                        | CT HEAD BRN                     | CT HEAD BRAIN                        |
| CT HEART CONGENITAL HEART                  |                                 |                                      |
| DISEASE                                    | CT PEDS CHST HEART              | CT CHEST HEART                       |
| CT HIP WO CONTRAST                         | CT PELVIS                       | CT PELVIS                            |
| CT HIP WO CONTRAST AND                     | CT PELVIS                       | CT PELVIS                            |
| CT HIPS WO CONTRAST AND 3D                 |                                 |                                      |
| BILATERAL                                  | CT PELVIS                       | CT PELVIS                            |
| CT LOWER EXTREM W CONT                     | CT LE                           | CT LE                                |
| CT LOWER EXTREM WO CON                     | CT LE                           | CT LE                                |
| CT MASTOID WITH CONTRA                     | CT HEAD MASTOID                 | CT HEAD                              |
| CT NECK CHST ARD DE                        | CT NECK CHST ABD/PEL<br>W IVCON | CT NECK CHEST ABDOMEN PELVIS W IVCON |
| CT NECK CHST ABD PE CT NECK CHST ABD PEL W | CT NECK CHST ABD/PEL            | CT NECK CHEST ABDOMEN                |
| CONTRAST                                   | W IVCON                         | PELVIS W IVCON                       |
| CONTRACT                                   | CT NECK CHST ABD/PEL            | CT NECK CHEST ABDOMEN                |
| CT NECK AND CHEST W CO                     | WIVCON                          | PELVIS W IVCON                       |
| CT NECK AND CTA NECK                       | CT NECK                         | CT NECK                              |
|                                            | CT NECK CHST ABD/PEL            | CT NECK CHEST ABDOMEN                |
| CT NECK BODY W CONTRAS                     | WIVCON                          | PELVIS W IVCON                       |
| CT NECK NEURO W CONTRA                     | CT NECK                         | CT NECK                              |
| CT NECK NEURO W CONTRAST                   | CT NECK                         | CT NECK                              |
| CT NECK NEURO WO CONTRAST                  | CT NECK                         | CT NECK                              |





| CT ORBIT POST FOSSA    | CT HEAD ORBITS     | CT HEAD                   |
|------------------------|--------------------|---------------------------|
| CT ORBITS WO CONTRAST  | CT HEAD ORBITS     | CT HEAD                   |
|                        | CT HEAD ORBITS W   |                           |
| CT Orbits W Cont       | IVCON              | CT HEAD ORBITS W IVCON    |
| CT PELVIS W CONTRAST   | CT PELVIS W IVCON  | CT PELVIS W IVCON         |
| CT PELVIS WO CONTRAST  | CT PELVIS WO IVCON | CT PELVIS WO IVCON        |
| CT SINUS W/WO CONTRAST | CT HEAD SINUSES    | CT HEAD PARANASAL SINUSES |
| CT SINUS WITH CONTRAST | CT HEAD SINUSES    | CT HEAD PARANASAL SINUSES |
| CT SINUSES             | CT HEAD SINUSES    | CT HEAD PARANASAL SINUSES |
| CT SPINE CERV BODY WO  | CT C SPINE         | CT C SPINE                |



#### Appendix B: Glossary

"ACR" stands for the American College of Radiology

"AD" stands for achievable dose and is represented by the mean of a dose distribution

"reference Air Kerma" measured in mGy Is the number of photons emitted from the fluoroscopy x-ray tube at the reference point.

"Automatic exposure control" means a device that automatically controls one or more technique factors in order to obtain at a preselected location or locations a required quantity of radiation (see "Phototimer").

"Beam axis" (see "Central axis of the beam")

"Central axis of the beam" means the line passing through the source of the beam and the center of the plane formed by the edge of the first beam-limiting device. "Charged particle beam" (see "Beam").

"Coefficient of variation" means the ratio of the standard deviation to the mean value of a population of observations. "Collimator" means a device or mechanism by which the x-ray beam is restricted in size (see "Beam-limiting device").

"Computed tomography" or "CT" means the production of a tomogram by the acquisition and computer processing of x-ray transmission data.

"DAP" Dose area product typically measured in mGy-cm2 is the radiation emitted in a radiation field.

"DRL" stands for dose reference level. This is the 75th percentile of a dose distribution

"DIR" stands for the Dose Index Registry





"Computed tomography dose index" or "CTDI" means the integral of the dose profile along a line perpendicular to the tomographic plane divided by the product of the nominal tomographic section thickness and the number of tomograms produced in a single scan.

"Isocenter" means a fixed point in space located at the center of the smallest sphere through which the central axis of the useful beam passes at any beam orientation.

"Scan" means the complete process of collecting x-ray transmission data for the production of a tomogram. Data can be collected simultaneously during a single scan for the production of one or more tomograms.

"Scan increment" means the amount of relative displacement of the patient support device with respect to the CT xray system between successive scans measured along the direction of such displacement.

"Scatter radiation" means radiation that, during passage through matter, has been deviated in direction.

"SSDE" stands for Size Specific Dose Equvilant-measured in mGy, is a method of estimating CT radiation dose that takes a patient's size into account.

"Technique factors" means the electrical potential (kilovolts), current (milliamperes), exposure time parameters (seconds or pulses) or a combination thereof, selectable at the control panel of an x-ray system (see "Control panel").

"Tomogram" means the depiction of the x-ray attenuation properties of a section through the body. "Tomographic plane" means that geometric plane that is identified as corresponding to the output tomogram. "Tomographic section" means the volume of an object whose x-ray attenuation properties are imaged in a tomogram.