Unidad 5: Variacion de funciones

Situación 1:

La temperatura (en grados centígrados) de un animal sometido a un proceso infeccioso varía en un lapso de 4 horas de acuerdo a la función: $T(t)=30+4t-t^2$, donde T es la temperatura y t el tiempo medido en horas.

- 1. ¿En que momento la temperatura es máxima?
- 2. ¿ En que período de tiempo la temperatura aumenta?
- 3. ¿ En que período de tiempo la temperatura disminuye?

Situación 2:

La concentración en sangre de una droga despues de t horas de haber inyectado una determinada dosis es $c(t) = \frac{t}{20t^2 + 50t + 80}$

- 1. ¿ Cómo varía la concentración de la droga con el paso del tiempo?
- 2. ¿ Para que intervalos de tiempo aumenta?, ¿cuándo disminuye?
- 3. Esbozar el gráfico de la función c(t)

Migración de Peces

Se ha estudiado que ciertos animales (peces, aves, etc) efectúan sus desplazamientos tratando de minimizar su gasto de energía. Cierto tipo de peces migratorios nada a contracorriente. Si v es la velocidad del pez respecto de la corriente y u es la velocidad de la corriente (u < v) entonces la energía (E) necesaria para nadar una distancia (d) está expresada por la relación:

$$E(v) = \frac{Kv^3d}{v - u}$$

con K y u constantes.

- 1. ¿ A que velocidad debe desplazarse el pez para que la energía sea mínima?
- 2. Bosquejar el gráfico de E para v > u

En esta unidad se presentarán conceptos del *Cálculo Diferencial* que, entre otras cosas, permitirán resolver problemas de optimización y estudiar el comportamiento de una función :

- determinar regiones de crecimiento y decrecimiento,
- si tiene máximos o mínimos relativos.
- determinar regiones de concavidad y convexidad.

Algunas definiciones

Funciones crecientes y decrecientes

Sea $f: A \to \mathbb{R}$, sea $I \subset A$ un intervalo. Diremos que:

- ▶ f es creciente en el intervalo I, si $f(x_1) \le f(x_2)$ $\forall x_1 < x_2 \in I$,
- ▶ f es decreciente en el intervalo I, si $f(x_1) \ge f(x_2)$ $\forall x_1 < x_2 \in I$,

Observación:

Una función creciente (o decreciente) en todo su dominio (A), se denomina **monótona**. Por ejemplo, e^x es una función **monótona creciente**, mientras que e^{-x} es una función **monótona decreciente**.

Interpretación Geométrica

Observaciones:

- ► En los intervalos donde las pendientes de las rectas tangentes al gráfico son positivas, la función "crece". Esto es, si $f'(x) > 0 \forall x \in (a, b) \Rightarrow f$ crece en (a, b).
- ► En los intervalos donde las pendientes de las rectas tangentes al gráfico son negativas, la función "decrece". Esto es, si $f'(x) < 0 \forall x \in (a, b) \Rightarrow f$ decrece en (a, b).

Criterio de crecimiento/decrecimiento

Analizando el signo de la derivada primera, f', podemos determinar los intervalos de crecimiento y decrecimiento de una función derivable f usando el siguiente criterio:

Criterio de crecimiento/decrecimiento

Sea f una función derivable en un intervalo (a, b).

- ▶ Si $f'(x) > 0 \ \forall x \in (a, b)$, $\Rightarrow f$ es creciente en (a, b)
- ▶ Si $f'(x) < 0 \ \forall x \in (a,b)$, $\Rightarrow f$ es decreciente en (a,b)

Concavidad y Convexidad

En este curso no daremos una definción formal de funciones cóncavas o convexas. A los efectos prácticos diremos que:

Funciones cóncavas y convexas

Dada f. una función derivable.

- ▶ si f'(x) es **creciente** en el intervalo (a, b), entonces diremos que la función f es **convexa** (o cóncava hacia arriba/cóncava positiva) en el intervalo (a, b),
- si f'(x) es decreciente en el intervalo (a, b), entonces diremos que la función f es cóncava (o cóncava hacia abajo/cóncava negativa) en el intervalo (a, b)

Función convexa

Función cóncava

Concavidad y Convexidad

Supongamos que f es una función dos veces derivable. Vimos que analizando el signo de f' podíamos determinar intervalos de crecimiento y de decrecimiento de la función f. Haciendo un razonamiento similar con el signo de f'' podemos decir que:

Criterios de convexidad/concavidad

Si f una función dos veces derivable en el intervalo (a, b),

- ▶ si $f''(x) > 0 \ \forall x \in (a, b) \Rightarrow f(x)$ es convexa en el intervalo (a, b)
- ▶ si $f''(x) < 0 \ \forall x \in (a,b) \Rightarrow f(x)$ es cóncava en el intervalo (a,b)

Puntos de inflexión

Los puntos en los que una función f pasan de cóncava a convexa (o viceversa) se llaman Puntos de Inflexión

Sea f dos veces derivable en el intervalo (a, b), sea $x_o \in (a, b)$

- ▶ si $f''(x) > 0 \ \forall x \in (a, x_0) \ y$ $f''(x) < 0 \ \forall x \in (x_0, b) \implies f(x)$ tiene un punto de inflexión en $x = x_o$ (pasa de convexa a cóncava)
- ▶ si $f''(x) < 0 \ \forall x \in (a, x_0) \ y$ $f''(x) > 0 \ \forall x \in (x_0, b) \implies f(x)$ tiene un punto de inflexión en $x = x_o$ (pasa de cóncava a convexa)

Valores Extremos de Funciones

Sea $f: A \to \mathbb{R}$ una función, $x_o \in A$. Sea $I \subset A$. Diremos que :

- ► f(x) alcanza en $x = x_o$ un máximo absoluto en $A \Leftrightarrow f(x_o) \ge f(x), \forall x \in A$
- ► f(x) alcanza en $x = x_o$ un mínimo absoluto en $A \Leftrightarrow f(x_o) \le f(x), \forall x \in A$
- ▶ f(x) alcanza en $x = x_o \in I$ un máximo local/relativo en $I \Leftrightarrow f(x_o) \ge f(x), \forall x \in I$
- ▶ f(x) alcanza en $x = x_o \in I$ un mínimo local/relativo en $I \Leftrightarrow f(x_o) \leq f(x), \forall x \in I$

Figura : $f : \mathbb{R} \to \mathbb{R}$ tiene un máximo local en $x = x_0$ y un mínimo local en $x = x_1$. NO tiene máximos ni mínimos absolutos en su dominio.

Analizando el gráfico de la página anterior observamos que:

- ▶ En $x = x_0$ la función f tiene un máximo local.
 - La derivada f'(x) > 0 a la izquierda de $x = x_o$, y f'(x) < 0 a la derecha de $x = x_o$. Además $f'(x_o) = 0$.
 - La función f es creciente a la izquierda de $x = x_o$ y decreciente a la derecha de $x = x_o$.
- ▶ En $x = x_1$ la función f tiene un mínimo local.
 - La derivada f'(x) < 0 a la izquierda de $x = x_1$, y f'(x) > 0 a la derecha de $x = x_1$. Además $f'(x_1) = 0$.
 - La función f es decreciente a la izquierda de $x = x_1$ y creciente a la derecha de $x = x_1$.

Puntos Críticos

Puntos críticos

Sea $f: A \to \mathbb{R}$, sea $x_o \in A$.

Si $f'(x_0) = 0$ o si NO existe $f'(x_0)$ entonces diremos que x_0 es un punto crítico de la función f.

Si A = [a, b] es un intervalo cerrado, entonces diremos que los puntos críticos de la función f son:

- ▶ Los extremos del intervalo, es decir, x = a y x = b
- ▶ Los puntos $x \in (a, b)$ tal que f'(x) = 0 o tales que NO existe f'(x)

Observaciones:

- Si f es una función derivable en un intervalo (a, b) ⊂ Dom(f) y x₀ ∈ (a, b) tal que x₀ es un punto extremo (máximo o mínimo local o absoluto) de f, ⇒ x₀ es un punto crítico de f,
- No todo punto crítico es un extremo (Ej $f(x) = x^3, x_0 = 0$)
- ▶ Para encontrar los máximos y mínimos locales de una función f se buscan los puntos críticos. Para determinar si ese punto crítico es un extremo, o no, se analiza si la función cambia su crecimiento a la izquierda y a la derecha de dicho punto.

Criterio de máximo/mínimo y primer derivada

Sea f derivable en el intervalo $(a,b)\subset Dom(f)$, y $x_0\in (a,b)$ tal que $f'(x_0)=0$

$f'(x) < 0$ a la izquierda de x_0	\Rightarrow	x_0 es mínimo local de f
$f'(x) > 0$ a la derecha de x_0		
$f'(x) > 0$ a la izquierda de x_0	\Rightarrow	x_0 es máximo local de f
$f'(x) < 0$ a la derecha de x_0		
$f'(x) > 0$ a la izquierda de x_0	\Rightarrow	x_0 no es máximo
$f'(x) > 0$ a la derecha de x_0		ni mínimo de f
$f'(x) < 0$ a la izquierda de x_0	\Rightarrow	x_0 no es máximo
$f'(x) < 0$ a la derecha de x_0		ni mínimo de f

Sea f una función dos veces derivable en un intervalo $(a,b) \in Dom(f)$, sea $x_o \in (a,b)$ tal que $f'(x_0) = 0$.

Criterio de la derivada segunda

$f'(x_0)=0$	$f''(x_0)>0$	$\Rightarrow x_0$ es mínimo local de f	
$f'(x_0)=0$	$f''(x_0) < 0$	$\Rightarrow x_0$ es máximo local de f	
$f'(x_0)=0$	$f''(x_0)=0$	⇒ no se puede decir nada	

Estudio y gráfico de funciones

Para analizar el comportamiento de una función f, o esbozar su gráfico, debemos estudiar todos los aspectos vistos hasta ahora:

- Determinar el dominio de la función , Dom(f).
- intersecciones con ejes de coordenadas.
- Estudio de puntos de continuidad/discontinuidad/asíntotas.
- De ser posible, comportamiento en el infinito.
- Calcular la primer derivada, f' y determinar su dominio.
- Analizar intervalos de crecimiento y decrecimiento de la función (estudio del signo de f')
- Encontrar puntos críticos y extremos de f, clasificarlos.
- Estudio de concavidad, convexidad, puntos de inflexión (estudio del signo de f'')

Ejemplo

Analizar el comportamiento de la función $f(x) = \frac{16}{x^2+4}$ y hacer un bosquejo de su gráfico.

Pasos a seguir:

- 1) Determinar Dominio: $Dom(f) = \mathbb{R}$
- 2) Intersección eje coordenadas: $f(0) = 4 \Rightarrow$, la intersección con el eje de las ordenadas (eje y) se da en el punto de coordenadas (0, 4). La función f nunca se anula (su numerador es siempre distinto de 0), por lo que no hay intersección con el eje de las abcisas.
- 3)Puntos de discontinuidad/continuidad/asíntotas: La función f es siempre continua, y no tiene asíntotas verticales
- 4)Comportamiento en ∞ :

$$\lim_{x\to-\infty} f(x) = 0$$
, $\lim_{x\to+\infty} f(x) = 0$

5)Cálculo de primer derivada, f':

$$f'(x) = \frac{-32x}{(x^2+4)^2}$$
, $Dom(f') = \mathbb{R}$.

f' es continua en su dominio, y f'(x) = 0 si y sólo si, x = 0. $x_0 = 0$ es un punto crítico de f.

6) Intervalos de crecimiento de f:

$$f'(x) > 0$$
 si $x \in (-\infty, 0) \Rightarrow f$ es creciente en el intervalo $(-\infty, 0)$ $f'(x) < 0$ si $x \in (0, +\infty) \Rightarrow f$ es decreciente en el intervalo $(0, +\infty)$

	$(-\infty,0)$	0	$(0,+\infty)$
signo f'	+	0	-
conclusión	f creciente	pto. crítico	f decreciente

7) Clasificación puntos críticos de f:

Dijimos en 5) que f tiene un punto crítico en $x_0 = 0$. En este caso podemos usar cualquiera de los dos criterios: criterio de la primer derivada, o criterio de la segunda derivada. Según sea la expresión de la función, se elegirá cual de ellos utilizar.

Usando Criterio primer derivada para máximos y mínimos, como f'>0 a la izquierda de $x_0=0$ y f'<0 a la derecha de $x_0=0$, entonces en $x_0=0$ la función f tiene un máximo (que resultará ser absoluto).

Usando Criterio segunda derivada para máximos y mínimos.

Calculamos
$$f''(x) = \frac{32(3x^2-4)}{(x^2+4)^3}$$
.

Como f''(0) < 0, entonces decimos que en $x_0 = 0$ hay un máximo.

8) Estudio concavidad, convexidad, puntos de inflexión

$$f''(x) = \frac{32(3x^2-4)}{(x^2+4)^3}$$
.

Debemos analizar el signo de f'', como el denominador es siempre > 0, solo debemos analizar el comportamiento del numerador.

- $f''(x) = 0 \Leftrightarrow x = -\sqrt{4/3} \text{ ó } x = \sqrt{4/3}$
- ► $f''(x) > 0 \Leftrightarrow (3x^2 4) > 0 \Leftrightarrow x > \sqrt{4/3}$ ó $x < -\sqrt{4/3}$ Es decir, f''(x) > 0 (f es convexa) en $(-\infty, -\sqrt{4/3}) \cup (\sqrt{4/3}, +\infty)$
- ► $f''(x) < 0 \Leftrightarrow (3x^2 4) < 0 \Leftrightarrow -\sqrt{4/3} < x < \sqrt{4/3}$ Es decir, f''(x) < 0 (f es cóncava) en $(-\sqrt{4/3}, \sqrt{4/3})$

Análisis f"

	$(-\infty, -\sqrt{4/3})$	$-\sqrt{4/3}$	$(-\sqrt{4/3},\sqrt{4/3})$	$\sqrt{4/3}$	$(\sqrt{4/3},+\infty)$
signo f''	+	0	_	0	+
conclusión	f convexa	pto. inflexión	f cóncava	pto. inflexión	f convexa

Con información obtenida en los puntos 1) a 8), podemos hacer un bosquejo del gráfico de la función:

Ejercicios

1. Analizar el comportamiento y hacer un bosquejo del gráfico de las siguientes funciones:

1.1
$$f(x) = 4x^3 - 15x^2 + 12x + 1$$

1.2 $f(x) = 1 - x^{2/3}$

2. Resolver situaciones 2 y 3 planteadas al inicio de esta unidad.

Regla de L'Hopital

La Regla de L'Hopital nos permite calcular límites indeterminados en los siguientes casos:

Regla de L'Hopital para indeterminaciones del tipo 0/0

Sea x_o un número real, sean f(x) y g(x) dos funciones derivables en algún intervalo (a,b) tal que $x_o \in (a,b)$ y tales que $\lim_{x\to x_o} f(x) = \lim_{x\to x_o} g(x) = 0$ (Notar que $\lim_{x\to x_o} \frac{f(x)}{g(x)}$ es una indeterminación).

Entonces se tiene que

$$lim_{x \to x_0} \frac{f(x)}{g(x)} = lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

siempre que ese límite exista

Ejemplo

Calcular
$$\lim_{x\to 2} \frac{x^4-2x^3+x-2}{x^2-4}$$

Tanto el numerador como el denominador de esa función se anulan en $x_o=2$, por lo que podemos aplicar la regla de L'Hopital para calcular ese límite.

Se tiene que:

$$\lim_{x \to 2} \frac{x^4 - 2x^3 + x - 2}{x^2 - 4} = \lim_{x \to 2} \frac{4x^3 - 6x^2 + 1}{2x} = \frac{9}{4}$$

La regla de L'Hopital también es válida para calcular límites indeterminados del tipo ∞/∞

Regla L'Hopital para indeterminaciones del tipo ∞/∞

Sean f, g funciones derivables.

Si $\lim_{x\to x_o} |f(x)| = \lim_{x\to x_o} |g(x)| = \infty$ y existe $\lim_{x\to x_o} \frac{f'(x)}{g'(x)}$, entonces

$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = \lim_{x \to x_o} \frac{f'(x)}{g'(x)}$$

▶ Si $\lim_{x\to\infty} |f(x)| = \lim_{x\to\infty} |g(x)| = \infty$ y existe $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$, entonces

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Ejemplo

Calcular
$$\lim_{x\to+\infty} \frac{x^2+1}{e^x}$$

Es una indeterminación del tipo ∞/∞ , aplicaremos la regla de L'Hopital dos veces y:

$$lim_{x\rightarrow +\infty} \tfrac{x^2+1}{e^x} = lim_{x\rightarrow +\infty} \tfrac{2x}{e^x} = lim_{x\rightarrow +\infty} \tfrac{2}{e^x} = 0$$

Observación

Usando operaciones algebraicas, muchas veces pueden transformase las indeterminaciones del tipo $\infty-\infty$, $0\cdot\infty$, $1^\infty,\infty^0$, 0^0 en indeterminaciones del tipo 0/0 o ∞/∞ y pueden calcularse los límites involucrados utilizando L'Hopital.

Bibliografía

- ▶ Ambas et al. *Matemática Teórica*. CBC UBA. Ed. 2010
- Spivak, M. Calculo Infinitesimal, Ed. Reverte, 1999
- Rabuffetti, H. Introducción al Análisis Matemático (Cálculo 1),
 Ed. El Ateneo, Bs As, 1981.