

Complex Tensor Order Parameter for Smectic Liquid Crystals

MPhys project 2023/24

Jan Kocka supervised by Dr Tyler N Shendruk

Main goals: adapt it for 3D & introduce a more complex free energy form

Liquid crystals - partial order in rod-like molecules

Phases of a substance of rod-like molecules, in order of decreasing phase order[1].

Different LC phases determined by their order/symmetries

Phase	Order	Broken symmetry
Isotropic liquid	No order	None
Nematic	Orientational	Rotational
Smectic	Positional	Translational in one direction
Full crystal	Both	Rotational and translational in all directions

¹J. Paget, "Complex tensors and simple layers: A theory for smectic fluids", PhD thesis (The University of Edinburgh, Apr. 2023).

Liquid crystals – why do we care?

Physicists playground

- Fascinating interplay of order and disorder
- Topological matter, various symmetries at play etc.
- Analogy between smectics and superconductivity[1]

Real-world applications

- Liquid crystal displays
- Organic electronics[2]
- Biological and living matter[2]

¹P. de Gennes, "An analogy between superconductors and smectics A", Solid State Communications 10, 753–756 (1972).

² J. P. F. Lagerwall and G. Scalia, "A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology", Current Applied Physics 12, 1387–1412 (2012).

Bacterial colonies have nematic and smectic order

Example snapshot of a bacteria situation within the group. Colour shows the orientation of each bacterium. Domains of clear nematic and limited smectic order.

Layering is determined by three quantities

Smectic \sim layered

3 quantities (fields)

- Degree of ordering
- Direction of layering this has an additional symmetry
- Spacing of layers

Layering as a density wave

Layering is a wave-like density fluctuation

$$\rho(\underline{r}) = \rho_0 + \rho_1 \cos(\underline{q_0} \cdot \underline{r} + \phi)$$

$$\simeq \rho_0 (1 + \text{Re}(|\psi|e^{i(\underline{q_0} \cdot \underline{r} + \phi)})$$

where

- ullet $|\psi|$ is the wave amplitude degree of layering
- ullet q_0 determines layering direction and spacing
 - Layer normal direction $\underline{N} = \frac{q_0}{q_0}$
 - Layer spacing is $\frac{2\pi}{a_0}$
- ullet Here ϕ is an arbitrary phase
- ρ_0 is the average density and $\rho_1=\rho_0|\psi|\leq \rho_0$

Traditionally we have fixed q_0 and varying ψ

$$\rho(\underline{r}) = \rho_0 (1 + \text{Re}(|\psi|e^{i(\underline{q_0} \cdot \underline{r} + \phi)})$$

- Non-uniform systems need to promote parameters to fields
- Promoting $|\psi|(\underline{r})$ is simple
- $\phi(\underline{r})$ also taken to be a field
- $\psi(\underline{r})=|\psi|(\underline{r})e^{i\phi(\underline{r})}$ is the de Gennes complex order parameter

Two options, both limited

- ullet Keep a constant q_0 only suitable for near equilibrium systems
- ullet Remove $\underline{q_0}$ does not capture the smectic $\underline{N} \leftrightarrow -\underline{N}$ symmetry[1]

¹M. Y. Pevnyi, J. V. Selinger, and T. J. Sluckin, "Modeling smectic layers in confined geometries: Order parameter and defects", Physical Review E 90, 032507 (2014).

E theory – have varying \underline{N} as well

Still use

$$\rho(\underline{r}) = \rho_0 (1 + \text{Re}(|\psi|e^{i(\underline{q_0} \cdot \underline{r} + \phi)})$$

- Keep the $\psi(\underline{r})$ field, and make $\underline{N}(\underline{r}) = \frac{\underline{q}_0(\underline{r})}{q_0}$ a field.
- Leave ρ_0 , q_0 as microscopic constants

Package these as

$$\underline{\underline{E}} = \psi(\underline{N}\underline{N} - \frac{\underline{\delta}}{\underline{d}})$$

where d is the number of dimensions, 2 or 3

E theory – Mesoscopic theory respecting the layering symmetry

$$\underline{\underline{E}} = \psi(\underline{N}\underline{N} - \frac{\underline{\delta}}{\underline{d}})$$

Benefits/motivation for \underline{E}

- ullet Incorporates $\underline{N} \leftrightarrow -\underline{N}$ symmetry
- Mesoscopic theory does not directly resolve density
- Numerically convenient one object, it can numerically melt
- \bullet Captures all three quantities degree of order, layer direction and spacing through $|\psi|,~\underline{N}$ and ϕ

Treating $\underline{\underline{E}}$ as our parameter requires constraints on it

$$\underline{\underline{E}} = \psi(\underline{N}\underline{N} - \frac{\underline{\delta}}{\underline{d}})$$

- ullet Treat \underline{E} as general complex tensor
- Need to somehow enforce the form above
- Inspiration from real symmetric tensors leads us to diagonalization
- Require $\underline{\underline{E}}$ be unitarily diagonalizable (<u>normal</u>), <u>symmetric</u> and <u>traceless</u>

Our constraints lead to biaxial \underline{E} in 3D

Normality and tracelessness give in 3D

$$\underline{\underline{E}} = \underline{\underline{U}} \cdot \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 = -\lambda_1 - \lambda_2 \end{pmatrix} \cdot \underline{\underline{U}}^{\dagger}$$

where the λ_i are eigenvalues of $\underline{\underline{E}}$ and $\underline{\underline{U}}$ a unitary matrix

Our constraints lead to biaxial \underline{E} in 3D

Further using symmetry this fully implies

$$\underline{\underline{E}} = \dots = \psi_1(\underline{N}\underline{N} - \frac{\delta}{3}) + \psi_2(\underline{M}\underline{M} - \frac{\delta}{3})$$

where

$$\psi_1 = \lambda_1 - \lambda_3 \qquad \qquad \psi_2 = \lambda_2 - \lambda_3$$

and \underline{N} and \underline{M} are real, mutually orthogonal unit eigenvectors of $\underline{\underline{E}}$ associated to λ_1 and λ_2

Biaxial $\underline{\underline{E}}$ could mean two density waves

$$\underline{\underline{E}} = \dots = \psi_1(\underline{N}\underline{N} - \frac{\underline{\delta}}{\underline{3}}) + \psi_2(\underline{M}\underline{M} - \frac{\underline{\delta}}{\underline{3}})$$

- ullet Symmetry, tracelessness, normality lead to biaxial $\underline{\underline{E}}$
- No simple way to force uniaxiality
- We interpret each term as a density wave
- ullet This may allow $\underline{\underline{E}}$ to model more ordered, columnar phases

Ginzburg-Landau theory – dynamics by minimizing free energy

- Dynamics using Ginzburg-Landau theory
- ullet Need a free energy in terms of $\underline{\underline{E}}$

$$F = \int f(\underline{\underline{E}}, \underline{\nabla} \underline{\underline{E}}, \ldots) \, dV$$

- F must be real!
- ullet Then evolve \underline{E} to minimize F using the functional derivative

$$\frac{\partial \underline{\underline{E}}}{\partial t} = -\mu \frac{\delta F}{\delta \underline{\underline{E}}^*}$$

Plus additional terms from Lagrange multipliers to enforce constraints

The one constant approximation free energy

$$F = \int f_{\text{bulk}} + f_{\text{comp}} + f_{\text{curv}} \, \mathrm{d}V$$

$$f_{\text{bulk}} = A|\underline{\underline{E}}|^2 + \frac{C}{2}|\underline{\underline{E}}|^4$$

$$f_{\text{comp}} = b_1|\underline{\nabla}\,\underline{\underline{E}}|^2$$

$$f_{\text{curv}} = b_2|\nabla^2\underline{\underline{E}}|^2$$

- ullet f_{bulk} is the core free energy, determining the phase
- \bullet $f_{\rm comp}$ corresponds to layer compression energy costs
- ullet f_{curv} corresponds to layer curvature/bending energy costs
- With $|?_{ij...k}|^2 = ?_{ij...k}?^*_{ij...k}$ being the Frobenius norm

More complex F using projection operators

- Gradients in different directions have different energy costs
- For uniaxial $\underline{\underline{E}}$, special direction is \underline{N}
- Projection operator $\underline{\underline{\Pi}} = \underline{N}\underline{N}$, rest is $\underline{\underline{T}} = \underline{\underline{\delta}} \underline{\underline{\Pi}}$
- Consider $\underline{\nabla} \to a\underline{\underline{\Pi}} \cdot \underline{\nabla} + b\underline{\underline{T}} \cdot \underline{\nabla}$ with a,b being some constants

$$\begin{split} f_{\text{comp}} &\to b_1^\| \Pi_{kl} E_{ij,k} E_{ij,l}^* + b_1^\perp T_{kl} E_{ij,k} E_{ij,l}^* \\ f_{\text{curv}} &\to b_2^\| \Pi_{kl} E_{ij,lk} \Pi_{mn} E_{ij,nm}^* + b_2^\perp T_{kl} E_{ij,lk} T_{mn} E_{ij,nm}^* \\ &\quad + b_2^{\|\perp} (\Pi_{kl} E_{ij,lk} T_{mn} E_{ij,nm}^* + T_{kl} E_{ij,lk} \Pi_{mn} E_{ij,nm}^*) \end{split}$$

The one constant approximation free energy

$$F = \int f_{\text{bulk}} + f_{\text{comp}} + f_{\text{curv}} \, \mathrm{d}V$$

$$f_{\text{bulk}} = A|\underline{\underline{E}}|^2 + \frac{C}{2}|\underline{\underline{E}}|^4$$

$$f_{\text{comp}} = b_1|\underline{\nabla}\,\underline{\underline{E}}|^2$$

$$f_{\text{curv}} = b_2|\nabla^2\underline{\underline{E}}|^2$$

- ullet f_{bulk} is the core free energy, determining the phase
- \bullet $f_{\rm comp}$ corresponds to layer compression energy costs
- ullet $f_{
 m curv}$ corresponds to layer curvature/bending energy costs
- With $|?_{ij...k}|^2 = ?_{ij...k}?^*_{ij...k}$ being the Frobenius norm

- ullet Fixed boundaries force \underline{N} perpendicular to walls from sides
- Periodic boundaries in the third direction
- Systems starts isotropic except a single streak

time 0 (everything in simulation units)

time 5 (everything in simulation units)

time 15 (everything in simulation units)

time 45 (everything in simulation units)

time 195 (everything in simulation units)

Thank you for your attention

$$\begin{split} \frac{\delta F_{\text{bulk}}}{\delta E_{ij}^*} &= \frac{1}{2} (A + C E_{ab} E_{ab}^*) E_{ij} \\ \frac{\delta F_{\text{comp}}}{\delta E_{ij}^*} &= - (b_1^{\parallel} - b_1^{\perp}) (\Pi_{kl,l} E_{ij,k} + \Pi_{kl} E_{ij,kl}) - b_1^{\perp} E_{ij,kk} \\ \frac{\delta F_{\text{curv}}}{\delta E_{ij}^*} &= (b_2^{\parallel} + b_2^{\perp} - 2 b_2^{\parallel \perp}) \Big((\Pi_{kl} \Pi_{po,po} + 2 \Pi_{kl,o} \Pi_{po,p} + \Pi_{kl,po} \Pi_{po}) E_{ij,lk} \\ &\qquad \qquad + 2 (\Pi_{kl,o} \Pi_{po} + \Pi_{kl} \Pi_{po,o}) E_{ij,lkp} + \Pi_{kl} \Pi_{po} E_{ij,lkpo} \Big) \\ &\qquad \qquad + (b_2^{\parallel \perp} - b_2^{\perp}) \Big(\Pi_{po,po} E_{ij,kk} + 2 \Pi_{po,o} E_{ij,kkp} + \Pi_{po} E_{ij,kkpo} \\ &\qquad \qquad + \Pi_{kl,oo} E_{ij,lk} + 2 \Pi_{kl,o} E_{ij,lko} + \Pi_{kl} E_{ij,lkoo} \Big) \\ &\qquad \qquad + b_2^{\perp} E_{ij,kkoo} \end{split}$$

$\psi(\underline{r})$ alone does not respect smectic symmetry

here use
$$ho(\underline{r})=
ho_0(1+{
m Re}(|\psi|e^{i\phi})$$

Example density wave where the red arrows show directions of increasing ϕ . Black corresponds to layers of increased density. Figure from [pevnyiModelingSmecticLayers2014].

Projection operators – back to $\underline{\underline{E}}$

- ullet Need a form for $\underline{\underline{\Pi}}$ in terms of $\underline{\underline{E}}$
- ullet Have 2 forms which work for uniaxial $\underline{\underline{E}}$

$$\begin{split} &\underline{\underline{\Pi}} = \sqrt{\frac{d-1}{d\underline{\underline{E}}:\underline{\underline{E}}}}\underline{\underline{E}} + \underline{\underline{\underline{\delta}}} \\ &\underline{\underline{\Pi}} = \frac{d-1}{d-2} \bigg(\underline{\underline{\underline{E}}:\underline{\underline{E}}^*} - \underline{\underline{\underline{\delta}}} \\ &\underline{\underline{U}}:\underline{\underline{E}}:\underline{\underline{E}}^* - \underline{\underline{\delta}} \end{split}$$

- First is significantly easier to work with currently used
- Lead to seemingly different functional derivatives why?
- First form only has $\underline{\underline{E}}$, how about $\underline{\underline{E}} \to \underline{\underline{E}}^*$?
- How well do they work for biaxial $\underline{\underline{E}}$?

Dynamics of $\underline{\underline{E}}$

- \bullet Want $\frac{\partial E_{ij}}{\partial t}=-\mu\frac{\delta F}{\delta E_{ij}^*}$ Model A like, $\underline{\underline{E}}$ is not conserved
- But need constraints!
- Find extrema of G instead

$$G = \int f(\underline{\underline{E}}, \underline{\nabla}\underline{\underline{E}}, \dots) + \lambda_s g_s(\underline{\underline{E}}) + \lambda_t g_t(\underline{\underline{E}}) + \lambda_n g_n(\underline{\underline{E}}) \, dV$$

ullet Choose suitable gs and treat λ s as variables

Lagrange multipliers

• Choose real, non-negative $g_{?}(\underline{\underline{E}})$ that reflect the constraints:

$$g_s = |E_{ij} - E_{ji}|^2$$

$$g_t = |E_{ii}|^2$$

$$g_n = |[\underline{\underline{E}}, \underline{\underline{E}}^*]|^2 = |E_{ik}E_{kj}^* - E_{ik}^*E_{kj}|^2$$

- ullet Two options for λs soft constraints or approximate analytic form
- \bullet $\underline{\underline{E}}$ is normal iff $[\underline{\underline{E}},\underline{\underline{E}}^*]=0$

Gradients of $\underline{\underline{\mathbb{I}}}$

 \bullet Results using the square root version of $\underline{\underline{\mathbb{I}}}$

$$\begin{split} \Pi_{kl} &= \frac{sE_{kl}}{\sqrt{E_{ab}E_{ab}}} + \frac{\delta_{kl}}{d} \\ \Pi_{kl,m} &= \frac{s}{\sqrt{E_{ab}E_{ab}}} \left(E_{kl,m} - \frac{E_{kl}E_{cd}E_{cd,m}}{E_{ab}E_{ab}} \right) \\ \Pi_{kl,mn} &= \frac{s}{\sqrt{E_{ab}E_{ab}}} \left(E_{kl,mn} - \frac{E_{kl,n}E_{cd}E_{cd,m} + E_{kl,m}E_{cd}E_{cd,n} + E_{kl}(E_{cd,n}E_{cd,m} + E_{cd}E_{cd,mn})}{E_{ab}E_{ab}} + 3 \frac{E_{kl}E_{cd}E_{cd,m}E_{ef}E_{ef,n}}{(E_{ab}E_{ab})^2} \right) \end{split}$$

Physical quantities

- ullet Taking b_1 to be the order of magnitude of b_1^{\parallel} and b_1^{\perp}
- Similarly for b_2

$$|\psi|_{eq} = \sqrt{\frac{3}{2}*\frac{-A}{C}} \quad \text{The ideal smectic phase value, dimensionless}$$

$$\varepsilon = \sqrt{\frac{b_1}{|A|}} \quad \text{Lamellar in-plane coherence length, } L$$

$$\lambda = \sqrt{\frac{b_2}{b_1}} \quad \text{Penetration depth, } L$$

$$\kappa = \frac{\lambda}{\varepsilon} = \sqrt{\frac{b_2|A|}{b_1^2}} \quad \text{Ginzburg parameter, dimensionless}$$