

Méthodes : Ensembles, applications, relations

Egalité d'ensembles

Pour démontrer que A=B, on démontre que $A\subset B$ et que $B\subset A$.

Applications injectives

Pour démontrer qu'une application $f: E \to F$ est injective, on peut démontrer :

- ullet que pour tout $y \in F$, l'équation y = f(x), d'inconnue $x \in E$, admet au plus une solution:
- que pour tous $x, x' \in E$, l'équation f(x) = f(x') entraine que x = x';

Applications surjectives

Pour démontrer qu'une application $f: E \to F$ est surjective, on démontre que, pour tout $y \in F$, l'équation y = f(x) admet toujours au moins une solution x dans E.

Applications bijectives

Pour démontrer qu'une application $f: E \rightarrow F$ est bijective, on peut

- démontrer qu'elle est injective et surjective;
- démontrer que, pour tout $y \in F$, l'équation y = f(x) admet une unique solution;
- ullet démontrer qu'il existe une application g:F o E telle que $f\circ g=Id_F$ et $g\circ f=Id_E$. Dans ce cas, g est la réciproque de f.

Réciproque

Pour calculer la réciproque d'une application $f: E \to F$ bijective, on résout pour tout y de F l'équation y = f(x), d'inconnue $x \in E$, c'est-à-dire que l'on exprime x en fonction de y.

Relations

Pour démontrer qu'une relation est une relation d'ordre ou une relation d'équivalence, on applique la définition!