БЛОК "ЧИСЛОВЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА"

1. Рациональные и иррациональные числа. Бесконечные десятичные дроби.

def

Рациональные: $q \in Q \Leftrightarrow \exists z \in Z, \exists n \in N : q = z/n$ (несократимая дробь)

def

Иррациональные: i ∈ I ⇔ ∀z ∈ Z, ∀n ∈ N : i ≠ z/n (i - непериодическая десятичная дробь!)

def

Бесконечная десятичная дробь есть число, представляемое в виде $\pm \sum_{k=0}^{\infty} a_k \cdot 10^{-k}$

записать это можно как $\pm a_0$, $a_1 a_2$..., причем a - десятичная цифра

2. Стабилизация последовательности.

def

 $\{x_n\}$ - стабилизируется к $C \Leftrightarrow \exists n_0 \ \forall n > n_0 : x_n = C$ (обозначается двумя стрелочками к C)

<u>def</u>

для целых чисел: последовательность целых чисел a_n стабилизируется к числу a, если начиная c некоторого номера все члены последовательности равны этому числу.

<u>def</u>

для вещественных чисел: пусть дана неотрицательная последовательность $a_n = a_{0n}$, $a_{1n}a_{2n}$... Она стабилизируется $a=a_{0}$, $a_{1n}a_{2}$... если a_{0n} стабилизируется к a_{0} , a_{1n} стабилизируется к a_{1} и т.д. То есть каждый разряд члена последовательности стабилизируется к соответствующему разряду числа, к которому стабилизируется вся последовательность.

N.B.: если последовательность монотонна и ограничена сверху, то она стабилизируется.

3. Основные свойства действительных чисел(1-5)

<u>Свойства порядка</u> (∀а, b, c ∈ R):

- \bullet (a < b) xor (a > b) xor (a = b)
- \bullet a < b, \exists c \in R : a < c < b
- (a < b) and $(b < c) \Rightarrow (a < c)$ (транзитивность)

<u>Свойства операции сложения и вычитания</u> (∀a, b, c ∈ R):

- \bullet a + b = b + а (коммутативность)
- \bullet (a + b) + c = a + (b + c) (ассоциативность)
- \bullet a + 0 = а (существует единственный 0 нейтральный элемент для сложения)
- \bullet a + (-a) = 0
- ♦ a b = a + (-b)

 \bullet a < b \Rightarrow (a + c) < (b + c)

<u>Свойства умножения и деления</u> ($\forall a, b, c \in R$):

- $a \cdot b = b \cdot a$ (коммутативность)
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность)
- ♦ $\exists 1!$: a · 1 = a (1 нейтральный элемент для умножения)
- \bullet a · 0=0
- \bullet -a = (-1) · a
- $a \cdot (1/a) = 1 (a \neq 0)$
- ◆ (a+b) · c = a · c + b · c (дистрибутивность)
- \bullet a < b \Rightarrow \forall c > 0: (a · c) < (b · c)

Свойство Архимеда:

 $\forall a \in R \exists n \in \mathbb{N} : a < n$

Свойство непрерывности:

Пусть заданы два непустых множества

А⊂R и В⊂R, причем для любых двух чисел $a \in A$ и $b \in B$ выполняется неравенство $a \le b$. Тогда существует число $\xi \in R$, такое, что для всех чисел $a \in A$ и $b \in B$ справедливо соотношение $a \le \xi \le b$

(доказывается леммой о вложенных сегментах)

4. Лемма о вложенных сегментах.

Th

У последовательности вложенных сегментов, длина которых стремится к нулю, существует единственное число C, которое принадлежит всем сегментам.

$$\delta_n = [a_n : b_n], \quad \delta_{n+1} \subset \delta_n, \quad |b_n - a_n| \to 0 \iff |b_n - a_n| < \varepsilon, \quad \exists ! \ c \in \delta_n \ \forall n.$$

Доказательство:

- По-условию: $[a_n; b_n] \subset [a; b]$, $[a_{n+1}; b_{n+1}] \subset [a_n; b_n] \Rightarrow a_{n+1} \in [a_n; b_n]$
- $a_{n+1}\geqslant a_n$, $\forall n\Rightarrow \{a_n\}$ монотонно возрастает $a_n\leqslant a_{n+1}\leqslant b_n$, $\forall n\Rightarrow \{a_n\}$ ограничена сверху Значит, $\{a_n\}$ стабилизируется к С. Аналогично можно сказать и про $\{b_n\}$.
- Имеем: \forall n: $a_n \leqslant C \leqslant b_n$. Существование C доказано!
- Предположим, что \exists C' < C, то есть ε = C C' > 0. По определению $|b_n a_n| < \varepsilon$, тогда [C'; C] \subset [a_n ; b_n] \Rightarrow

$$a_n\leqslant C'\Rightarrow -a_n\geqslant -C'\Rightarrow C-C'\leqslant C-a_n$$
 $C\leqslant b_n\Rightarrow C-a_n\leqslant b_n-a_n$ Поэтому, $\epsilon=C-C'< C-a_n\leqslant b_n-a_n<\epsilon$ - неверно

5. Ограниченные множества. Точная верхняя и точная нижняя грани множества. Теорема о существовании точной верхней грани.

<u>d</u>ef

Числовое множество X называется ограниченным сверху, если существует число M такое, что $x \le M$ для всякого элемента x из множества X. $\exists M \ \forall x \in X : x \le M$

def

Числовое множество X называется ограниченным снизу, если существует число m такое, что $x \ge m$ для всякого элемента x из множества X . $\exists m \ \forall x \in X : x \ge m$

def

Числовое множество X называется ограниченным, если оно ограничено сверху и снизу. \exists M, m \forall x \in X : m \leq x \leq M

NB: Пустое множество будем считать ограниченным по определению

Th

Числовое множество X ограничено тогда и только тогда, когда существует число C такое, что для всех элементов x из этого множества выполняется неравенство $|x| \le C$

def

Точная верхняя грань (sup{x_n}) - наименьшее из всех чисел, ограничивающих множество сверху.

sup - "supremum"

def

Точная нижняя грань (inf $\{x_n\}$) - наибольшее из всех чисел, ограничивающих множество снизу.

inf - "infimum"

Th

Непустое мн-во X - ограничено сверху ⇒ ∃supX

Доказательство:

- Пусть Y множество всех чисел, ограничивающих X, тогда $\forall x \in X, \forall y \in Y : x \leqslant y$
- В силу непрерывности действительных чисел:

```
\forall x \in X, \forall y \in Y, \exists \alpha \in R: x \leq \alpha \leq y
```

 $\forall x \in X : x \leqslant \alpha \Rightarrow \alpha$ ограничивает множество X сверху

 $\forall y \in Y : \alpha \leqslant y \Rightarrow \alpha$ - наименьшее из всех чисел, ограничивающих X

• Значит, по определению, $\alpha = \sup X$. Теорема доказана.

<u>БЛОК "ПОСЛЕДОВАТЕЛЬНОСТЬ И ЕЕ СВОЙСТВА.</u> ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ"

6. Числовая последовательность. Предел. Необходимое условие сходимости. Утверждение об ограниченности сходящейся последовательности.

<u>def</u>

Числовая последовательность - $\{x_n\}$ числовая последовательность, если каждому $n \in N$ ставится во взаимно однозначное соответствие, согласно определенному правилу, число x_n .

<u>def</u>

Предел - $x_n \to a \Leftrightarrow \forall \epsilon > 0$, $\exists N(\epsilon) \forall n > N : |x_n - a| < \epsilon$

Словами: Число а - предел последовательности, если ее значения отличаются от а сколь угодно мало, начиная с некоторого индекса

def

 ${x_n}$ - сходящаяся \Leftrightarrow ${x_n}$ имеет конечный предел.

Необходимое условие сходимости:

{x_n} должна быть ограниченной!

Необходимое и достаточное условие сходимости:

 $\{x_n\}$ должна быть монотонной и ограниченной (см. п.10) + критерий Коши

<u>Th:</u>

Если последовательность {x_n} сходится, то она ограничена

Доказательство:

Так как
$$\{x_n\} \to a$$
, то $\forall \epsilon > 0$, $\exists N(\epsilon) \ \forall n > N: |x_n - a| < \epsilon$. Пусть $\epsilon = 1$, тогда $|x_n - a| < 1 \Rightarrow |x_n| - |a| < |x_n - a| < 1 \Rightarrow |x_n| < |a| + 1 \Rightarrow \exists M = \max(|x_1|, |x_2|, \dots, |x_n|, |a| + 1) \Rightarrow x_n$ - ограничена

7. Теорема о сохранении знака сходящейся последовательности. Предельный переход в неравенствах. Теорема о трех последовательностях.

<u>Th</u>

Сохранение знака: $\{a_n\} \to a$, $a>0 \ (a<0) \Rightarrow \exists n_0 \ \forall n>n_0$: $a_n>0 \ (a_n<0)$

Доказательство:

Возьмем $\epsilon=a/2>0$, тогда по определению предела: $\forall \epsilon>0$, $\exists N(\epsilon)\ \forall n>N: |a_n$ - $a|<\epsilon\Rightarrow |a_n$ - a|<a/2 0<a - $a/2<a_n<a+a/2 \Rightarrow a_n>0$.

<u>Th</u>

Предельный переход: $\{a_n\} \rightarrow a$, $\{b_n\} \rightarrow b$, $\exists N \ \forall n > N : a_n < b_n \Rightarrow a \leqslant b$

Доказательство:

- Предположим обратное: a > b
- По определению предела:

$$\forall \epsilon > 0$$

$$\exists N_1(\epsilon) \ \forall n_1 > N_1 : |a_{n1} - a| < \epsilon$$
$$\exists N_2(\epsilon) \ \forall n_2 > N_2 : |b_{n2} - b| < \epsilon$$

 $n = \max(n_1, n_2).$

Возьмём ε = (a - b)/2.

- $-\varepsilon < a_n a < \varepsilon \Rightarrow a \varepsilon < a_n < a + \varepsilon \Rightarrow a (a b)/2 < a_n < a + (a b)/2 \Rightarrow (a + b)/2 < a_n < (3a b)/2$
- $-\epsilon < b_n b < \epsilon \Rightarrow b \epsilon < b_n < b + \epsilon \Rightarrow b (a b)/2 < b_n < b + (a b)/2 \Rightarrow$ (3b - a)/2 < b_n < (a + b)/2
- $a_n > (a+b)/2 > b_n \Rightarrow a_n > b_n$, что противоречит условию $(a_n < b_n) \Rightarrow$ Наше предположение неверно \Rightarrow a \leqslant b.

<u>Th</u>

O трех последовательностях: $x_n \leqslant y_n \leqslant z_n$, $\{x_n\} \to a \neq \infty$, $\{z_n\} \to a \Rightarrow \{y_n\} \to a$

Доказательство:

- По определению предела: $\forall \epsilon > 0$
 - $\exists N_x(\varepsilon) \ \forall n > N_x : |x_n a| < \varepsilon$
 - $\exists N_z(\varepsilon) \ \forall n > N_z : |z_n a| < \varepsilon$

Из условия: $\exists n_0 \ \forall n > n_0 : x_n \leqslant y_n \leqslant z_n$

- Возьмем $N = \max(N_x, N_z, n_0)$, тогда для $\forall n > N$ имеем:
 - $|\mathbf{x}_{n} \mathbf{a}| < \varepsilon(1)$
 - $|z_n a| < \varepsilon(2)$
 - $x_n \leqslant y_n \leqslant z_n$ (3)
- Поиграем с неравенствами:
 - $(1) \Rightarrow a \varepsilon < x_n$
 - $(2) \Rightarrow z_n < a + \varepsilon$

Учитывая (3): a - ϵ < $x_n \leqslant y_n \leqslant z_n < a + \epsilon \Rightarrow a$ - ϵ < $y_n < a + \epsilon \Rightarrow |y_n$ - $a| < \epsilon$ То есть $\{y_n\} \to a$.

8. Арифметические действия с пределами последовательностей.

Доказательства по Фихтенгольцу:

Данные доказательства опираются на второе определение предела последовательности по Фихтенгольцу: постоянное число a есть предел x_n , если разность между ними есть бесконечно малая величина.

Пусть $lim\ x_n=a,\ lim\ y_n=b,\$ тогда x_n и y_n можно представить как $x_n=a+\alpha_n,y_n=b+\beta_n,$ где α_n и β_n - бесконечно малые.

$$\lim (x_n \pm y_n) = a \pm b$$

- $x_n \pm y_n = (a \pm b) + (\alpha_n \pm \beta_n)$
- α_n и β_n б.м. \Rightarrow $(\alpha_n \pm \beta_n)$ б.м. $\Rightarrow lim(x_n \pm y_n) = a \pm b$.

$$lim(x_n \cdot y_n) = ab$$

- $x_n y_n = (a + \alpha_n)(b + \beta_n) = ab + (a\beta_n + \alpha_n b + \alpha_n \beta_n)$
- $(a\beta_n + \alpha_n b + \alpha_n \beta_n) 6.M. \Rightarrow \lim (x_n \cdot y_n) = ab.$

$$lim (x_n / y_n) = a / b$$

•
$$\frac{x_n}{y_n} = \frac{a + \alpha_n}{b + \beta_n} = \frac{a}{b} + \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{a}{b} + \frac{b\alpha_n - a\beta_n}{b(b + \beta_n)}$$

•
$$\alpha_n \bowtie \beta_n$$
 - б.м. $\Rightarrow \frac{b\alpha_n - a\beta_n}{b(b+\beta_n)}$ - б.м. $\Rightarrow lim(x_n/y_n) = a/b$

9. Бесконечно малые и бесконечно большие величины. Теорема о сумме бесконечно малых. Теорема о произведении ограниченной и бесконечно малой величины.

<u>def</u>

$$\alpha$$
 - б.м $\Leftrightarrow \forall \epsilon > 0 : \alpha < \epsilon$

def

$$\beta$$
 - 6.6 $\Leftrightarrow \forall \epsilon > 0 : \beta > \epsilon$

<u>def</u>

Если х - б.м., то 1/х - б.б

<u>Th</u>

Алгебраическая сумма беск. мал. величин есть беск. мал. величина

Доказательство:

Пусть
$$S=x_1+x_2+x_3+...+x_n$$
, n - конечное число $\forall \epsilon>0 \ |x_1|<\epsilon/n$, $|x_2|<\epsilon/n$, ..., $|x_n|<\epsilon/n$ $T=|x_1|+|x_2|+|x_3|+...+|x_n|< n*\epsilon/n=\epsilon$ $S\leqslant T<\epsilon\Rightarrow S\to 0$

N.В: Когда речь идет о беск. мал. величине, то ее знак нам не важен

Th

Произведение беск. мал. величины и ограниченной величины есть беск. мал. величина

Доказательство:

х - б.м.

у - огранич. ⇒
$$\exists$$
 M > 0 |y| < M \forall ϵ > 0 |x| < ϵ /M

$$|x * y| = |x| * |y| < \epsilon/M * M = \epsilon$$

$$x * y \leq |x * y| < \varepsilon \Rightarrow x * y \rightarrow 0$$

Следствия:

- Если беск. мал. величину умножить на число, то получится беск. мал. величина
- Произведение двух беск. мал. величин есть беск. мал. величина
- Произведение конечного числа беск. мал. величин есть беск. мал. величина (обобщение предыдущего следствия)
- Любая целая положительная степень беск. мал. величины есть беск. мал. величина

Сравнение бесконечно малых величин:

Пусть $\alpha \to 0$ и $\beta \to 0$. Обозначим за A следующее: $\frac{\alpha}{\beta} \longrightarrow A$. Если:

- A = 1, то $\alpha \sim \beta$ (являются эквивалентными бесконечно малыми)
- $A \neq 0$, то α и β одного порядка малости
- $\alpha/(\beta^k) \to A \neq 0$, то α порядка малости k относительно β

- A = 0, то α является бесконечно малой более высокого порядка чем β
- $A = \infty$, то α является бесконечно малой более низкого порядка чем β

10. Теорема о существовании предела у монотонно возрастающей последовательности.

Th

 $\{a_n\}$ монотонно возрастает и $\{a_n\}$ - ограничена сверху $\Rightarrow \exists lim_{n \to \infty}(a_n) = \sup\{a_n\}$

Доказательство:

- Имеем: $a_{n+1} > a_n$, так как $\{a_n\}$ ограничена, то $\exists \sup\{a_n\} = a$, что значит: $\forall n$: $a_n \leqslant a$, также $\forall \epsilon > 0$, $\exists N(\epsilon) \ \forall n > N$: $a_n > a$ ϵ
- $\begin{array}{l} \bullet \quad a \text{-} \epsilon < a_n < a \\ a \text{-} \epsilon < a_n < a + \epsilon \Rightarrow a \text{-} \epsilon < a_n < a + \epsilon \Rightarrow |a_n \text{-} a| < \epsilon \Rightarrow a_n \rightarrow a \end{array}$

11. Число е

См. Конспект, который нам скидывали или другой адекватный источник.

12. Приближенное вычисление числа е

См. Конспект, который нам скидывали или другой адекватный источник.

13. Критерий сходимости Коши.

Th

 $\{a_n\}$ - сходящаяся $\Leftrightarrow \forall \epsilon > 0$, $\exists N(\epsilon) \ \forall n > N$, $\forall m > N \ |a_n - a_m| < \epsilon$

Доказательство:

- 1. Необходимость (стрелка вправо)
 - Пусть $a_n \to a$, тогда $\forall \epsilon > 0$: $\exists N_1(\epsilon/2) \ \forall n > N_1 : |a_n a| < \epsilon/2$ $\exists N_2(\epsilon/2) \ \forall m > N_2 : |a_m a| < \epsilon/2$
 - $|a_n a| < \epsilon/2$, $|a_m a| < \epsilon/2$, $|(a_n a) + (a a_m)| = |a_n a_m|$ $|(a_n - a) + (a - a_m)| \le |a_n - a| + |a - a_m| < \epsilon/2 + \epsilon/2 = \epsilon$
- 2. Достаточность (стрелка влево) через подпоследовательности
 - Пусть $\epsilon=1$, $\exists N(\epsilon)$, n>N, $m>N:|a_n-a_m|<1$
 - Зафиксируем а_m, пусть а_m = a₀

$$|a_n - a_0| < 1$$

$$|a_n| - |a_0| \le |a_n - a_0| < 1 \Rightarrow |a_n| - |a_0| < 1$$

$$|a_n| < 1 + |a_0| \Rightarrow n > N$$
: $\{a_n\}$ - ограничена

Значит, по теореме Больцано-Вейерштрасса, можно выделить подпоследовательность {ank}, сходящуюся к конечному числу а.

• Докажем, что к а будет сходится вся последовательность. Пока что имеем: $\forall \epsilon > 0$, $\exists N(\epsilon) \ \forall n > N$, $\forall m > N$: $|a_n - a_m| < \epsilon$ Вместо a_m возьмем член сходящейся подпоследовательности a_{nk} и заменим ϵ на $\epsilon/2$.

 $|a_n - a_{nk}| < \epsilon/2 \ (n > N(\epsilon/2), n_k > N(\epsilon/2)).$

Зафиксируем n, тогда $|a_n$ - $a_{nk}| < \epsilon/2$ - неравенство содержащее посл-ть $\{a_{nk}\}$, у которой хоть и исключено конечное число членов с $n_k \leqslant N(\epsilon/2)$, но предел остался прежним.

При
$$k \to \infty \; |a_n$$
 - $a_{nk}| < \epsilon/2 \sim |a_n$ - $a| \leqslant \epsilon/2 < \epsilon \Rightarrow a_n \to a.$

14. Подпоследовательность. Частичные пределы. Лемма Б.-В.

<u>def</u>

Подпоследовательность пос-ти $\{x_n\}$ - это последовательность $\{x_{nk}\}$, полученная удалением из $\{x_n\}$ ряда ее членов <u>без изменения порядка</u> следования членов.

<u>def</u>

Если $\{x_{nk}\}$ - подпоследовательность последовательности $\{x_n\}$ и существует $\lim_{k\to\infty}(x_{nk})=A$ (конечный или бесконечный), то A будем называть частичным пределом последовательности $\{x_n\}$

<u>Th</u>

Для любой ограниченной последовательности можно выделить сходящуюся подпоследовательность ($\forall \{x_n\} \ \exists \{x_{nk}\} : x_{nk} \to a)$

Доказательство:

- $\{x_n\}$ ограниченная числовая последовательность. Из ограниченности последовательности следует, что все её члены лежат на некотором отрезке числовой прямой, который обозначим $[a_0, b_0]$.
- Разделим данный отрезок пополам на два равных отрезка. Т.к. изначальный отрезок имел бесконечное кол-во элементов, то по крайней мере один из получившихся отрезков также содержит бесконечное число членов последовательности. Обозначим его как $[a_1, b_1]$.
- Повторим данную процедуру с отрезком: разделим его на два равных отрезка и выберем из них тот, на котором лежит бесконечное число членов последовательности. Обозначим его как отрезок $[a_2, b_2]$.
- Продолжая данный процесс получим последовательность вложенных отрезков, в которой каждый последующий является половиной предыдущего и содержит бесконечное число членов последовательности $\{x_n\}$. При этом длины отрезков стремятся к 0.
- В силу леммы о вложенных отрезках, существует единственная точка ξ , принадлежащая всем отрезкам: $a_m \leq \xi \leq b_m, m = 0,1,2...$
- По построению на каждом отрезке $[a_m,b_m]$ лежит бесконечное число членов последовательности. Выберем последовательность $x_{k_m} \in [a_m,b_m]$, тогда данная последовательность так же будет сходиться к точке ξ .Это следует из того, что расстояние от x_{k_m} до ξ не превосходит длины содержащего их отрезка $[a_m,b_m]$.

15. Верхний и нижний предел. Критерий существования предела <u>def</u>

Частичный предел последовательности - предел ее подпоследовательности.

def

Верхний предел (lim sup*) последовательности - наибольший частичный. Свойство:

 $\limsup (x_n + y_n) \leq \limsup (x_n) + \limsup (y_n)$

def

Нижний предел ($\lim\inf^*$) последовательности - наименьший частичный. Свойство:

 $\lim \inf (x_n + y_n) \geqslant \lim \inf (x_n) + \lim \inf (y_n)$

Th

Критерий сходимости: $\lim_{n\to\infty}(a_n)=a \Leftrightarrow \exists \liminf (a_n)=a$, $\exists \limsup (a_n)=a$ Доказательство:

- Докажем от обратного.
- Пусть нам известно, что $\liminf(a_n) = \limsup(a_n) = a$, тогда докажем, что $\lim_{n \to \infty} (a_n) = a$.
- Пусть дано $\xi>0$, тогда $\exists N_1(\xi)$, $n>N_1$: $\inf a_k>a-\xi$, при $k\geq n$.
- $\exists N_2(\xi)$, $n > N_2$: $\sup a_k < a + \xi$, при $k \ge n$.
- Возьмем N = $\max(N_1, N_2)$, N_2 и N_1 натуральные числа. Тогда: $a - \xi < a_n < a + \xi \Rightarrow |a_n - a| < \xi$ - определение предела.

*это обозначения из иностранной литературы, в отечественной верхний и нижний пределы обозначаются как пределы с чертой вверху или внизу соответственно, на коллоквиуме лучше использовать последний вариант.

N.B.: не путать верхний и нижний пределы с супремумом и инфинумом!

16. Предельная точка множества. Теорема Б.-В.

Утверждение о предельной точке ограниченного множества $\underline{\mathrm{def}}$

 x_0 - предельная точка множества E (озф), если в любой её окрестности существует бесконечное число точек множества E.

Th

Множество E - ограниченное, бесконечное, тогда $\exists x_0 \in E$, x_0 - предельная точка

Утверждение о предельной точке ограниченного множества:

 x_0 - предельная точка множества E, E - бесконечное ограниченное множество, тогда $\exists \{x_n\}$; $\lim_{n\to\infty} (x_n\,) = x_0$

Доказательство:

- $\exists x_1 \neq x_0, x_2 \neq x_0, x_3 \neq x_0, ..., \exists \{x_n\}$
- Множество E ограниченное \Leftrightarrow ∃M, m \in E , m \leqslant x \leqslant M \Rightarrow \Rightarrow \forall x_n: m \leqslant x_n \leqslant M \forall n \in N, $\{$ x_n $\}$ ограниченная последовательность \Rightarrow \Rightarrow (по т. Больцано-Вейерштрассе) \exists x_{nk} \rightarrow a
- Докажем, что а предельная точка:

 $\forall \epsilon > 0$ $\exists N(\epsilon) \ \forall n > N \Rightarrow |x_{nk} - a| < \epsilon$; $a - \epsilon < x_{nk} < a + \epsilon \Rightarrow$ по определению а предельная

БЛОК "ФУНКЦИЯ И ЕЕ СВОЙСТВА. ПРЕДЕЛ ФУНКЦИИ"

17. Функция. Предел функции (3 определения). Эквивалентность определений. Критерий существования предела

def

Функция - соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу первого множества соответствует один и только один элемент второго множества.

def 1

 $\lim_{x\to x0}(f(x))=A\Leftrightarrow \forall\epsilon>0$, $\exists\delta(\epsilon)$: $\forall x\in E$: $0<|x-x_0|<\delta\Rightarrow |f(x)-A|<\epsilon$ (Определение по Коши)

def 2

 $\lim_{x\to x0}(f(x))=A\Leftrightarrow \forall U_\epsilon(A)\;\exists U_\delta(x_0)\colon \forall x\in U_\delta(x_0)\cap E\Rightarrow f(x)\in U_\epsilon(A)$ (Тоже определение по Коши)

НЕ забываем проставлять в нужных местах (где от x_0) на U выколотую точку!

def 3

 $\lim_{x\to x_0} (f(x)) = A \Leftrightarrow \forall \{x_n\}_{n=1} \circ \in E, x_n \neq x_0$, сходящейся к x_0 , последовательность $\{f(x_n)\}$ сходится к A (Определение по Гейне)

<u>Доказательство эквивалентности определений предела функции по Коши и по Гейне:</u>

Соотношение $\lim_{E\ni x\to a}f(x)=A$ имеет место тогда и только тогда, когда для любой последовательности $\{x_n\}$ точек $x_n\in E\setminus a$, сходящейся к a, последовательность $\{f(x_n)\}$ сходится к A.

То, что $\lim_{E\ni x\to a}f(x)=A\Rightarrow \lim_{n\to\infty}f(x_n)=A$, сразу следует из определений.

"Стрелка вправо": Действительно, если $\lim_{E\ni x\to a} f(x) = A$, то для любой окрестности V(A) точки A найдется проколотая окрестность $U_E(a)$ точки a в E такая, что для $x\in U_E(a)$ имеем $f(x)\in V(A)$. Если последовательность $\{x_n\}$ точек множества $E\setminus a$ сходится $E\setminus a$ сходится $E\setminus a$ сходится $E\setminus a$ основании определения предела последовательности получаем, что $\lim_{n\to\infty} f(x_n) = A$.

"Стрелка влево": Пойдем от противного. Если A не является пределом f(x) при $E\ni x\to a$, то найдется окрестность V(A) такая, что при любом $n\in N$ в $\frac{1}{n}$ — окрестноститочки а найдется точка $x_n\in E\setminus a$ такая, что $f(x_n)\notin V(A)$. Но это означает, что последовательность $\{f(x_n)\}$ не сходится к A, хотя последовательность $\{x_n\}$ стремится к a. Получили противоречие, тем самым доказали обратное.

Там, где в доказательстве фигурирует U НЕ забываем писать выколотую точку над U!

def (предел слева)

$$\lim_{x\to x_0-0} (f(x)) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon), \forall x \in E \ x \in (x_0-\delta, x_0) : |f(x) - A| < \varepsilon$$

def (предел справа)

$$\lim_{x\to x_0+0} (f(x)) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon), \forall x \in E \ x \in (x_0, x_0+\delta) : |f(x) - A| < \varepsilon$$

<u>Th</u> (критерий существования предела функции)

 $\lim_{x\to x_0} (f(x)) = A \Leftrightarrow \exists \lim_{x\to x_0-0} (f(x)) = A \text{ and } \exists \lim_{x\to x_0+0} (f(x)) = A$

Доказательство:

- 1. Необходимость (просто берем разные половинки окрестности из определения предела в точке \mathbf{x}_0
- 2. Достаточность. $\lim_{x\to x0-0} (f(x)) = \lim_{x\to x0+0} (f(x)) = A \Rightarrow \exists \lim_{x\to x0} (f(x)) = A$
 - $\forall \epsilon > 0$, $\exists \delta_1(\epsilon)$, $\forall x \in E$, $x \in (x_0 \delta_1, x_0)$ $\forall \epsilon > 0$, $\exists \delta_2(\epsilon)$, $\forall x \in E$, $x \in (x_0, x_0 + \delta_2)$
 - Пусть $\delta = \min(\delta_1, \delta_2)$, тогда $\forall \epsilon > 0$, $\exists \delta(\epsilon) \colon \forall x \in E \colon 0 < |x x_0| < \delta \Rightarrow |f(x) A| < \epsilon$ То есть $\lim_{x \to x_0} (f(x)) = A$

18. Арифметические действия с пределами.

Пусть функции f(x) и g(x) имеют в точке а пределы В и С соответственно, тогда справедливы следующие выражения:

- $\bullet \quad \lim_{x \to a} (f(x) \pm g(x)) = B \pm C$
- $\lim_{x \to a} (f(x) \cdot g(x)) = B \cdot C$
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{B}{C}$ (Оговаривается, что $C \neq 0$)

Доказательство:

Пусть $\{x_n\}$ - произвольная сходящаяся к a последовательность значений аргумента, все элементы которой отличны от a. В силу определения предела по Гейне последовательности значений функций $\{f(x_n)\}$ и $\{g(x_n)\}$ сходятся к значениям В и С соответственно. Справедливы следующие суждения:

 $\{f(x_n) \pm g(x_n)\} \to B \pm C$ (сумма и разность сходящихся последовательностей) $\{f(x_n) \cdot g(x_n)\} \to B \cdot C$ (произведение сходящихся последовательностей) $\{\frac{f(x_n)}{g(x_n)}\} \to \frac{B}{C}$ (отношение сходящихся последовательностей, $C \neq 0$)

Причем полученные последовательности также являются сходящимися. Воспользуемся определением предела функции по Гейне. Вышесказанное означает, что функции $f(x) \pm g(x)$; $f(x) \cdot g(x)$; $\frac{f(x)}{g(x)}$ имеют в точке a пределы, равные $B \pm C$; $B \cdot C$; $\frac{B}{C}$ соответственно.

19. Теорема о предельном переходе в неравенствах. Теорема о сохранении знака.

Th

Предельный переход: если функции f(x) и g(x) определены в проколотой окрестности точки x_0 , причем для любого x из этой окрестности $f(x) \le g(x)$, $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$, то $a \le b$.

Доказательство:

Противное:
$$A > B$$
. $\forall \varepsilon : 0 < \varepsilon < 0,5 |A - B| \ \exists \delta = \delta_\varepsilon : \forall x \in U_\delta \binom{0}{a} \Rightarrow$ $g(x) < B + \varepsilon < A - \varepsilon < f(x), \ \forall x \in \overset{0}{U_\delta}(a) \Rightarrow g(x) < f(x)$ противоречие с 1)

Th

О сохранении знака: пусть f(x) непрерывна в точке x_0 и $f(x_0) > 0$ ($f(x_0) < 0$), тогда существует такая окрестность точки x_0 , на которой функция имеет положительное (отрицательное) значение.

Доказательство:

Воспользуемся определением непрерывности функции в точке по Коши. Согласно этому определению имеется такая функция $\delta=\delta(\varepsilon)$, что для любого $\varepsilon>0$,

$$|f(x)-f(x_0)| при $|x-x_0|<\delta(arepsilon).$$$

Положим $arepsilon = |f(x_0)|/2$. Тогда при $|x-x_0| < \delta(|f(x_0)|/2)$ имеем:

(1)
$$|f(x)-f(x_0)|<|f(x_0)|/2$$
.

Пусть $f(x_0) > 0$. Раскроем в (1) знак модуля и преобразуем неравенства:

$$-f(x_0)/2 < f(x) - f(x_0) < f(x_0)/2;$$

$$f(x_0) - f(x_0)/2 < f(x) < f(x_0) + f(x_0)/2;$$

$$f(x_0)/2 < f(x) < 3f(x_0)/2.$$

Итак, мы нашли окрестность $|x-x_0|<\delta(f(x_0)/2)$, на которой функция ограничена снизу положительным числом:

$$f(x) > f(x_0)/2 > 0.$$

Поэтому на этой окрестности функция имеет положительное значение:

$$f(x) > 0$$
.

Для случая $f(x_0) > 0$ теорема доказана.

Теперь рассмотрим случай $f(x_0) < 0$. Также раскрываем в (1) знак модуля и преобразуем неравенства:

$$-|f(x_0)|/2 < f(x) - f(x_0) < |f(x_0)|/2;$$

$$-|f(x_0)|/2 < f(x) + |f(x_0)| < |f(x_0)|/2$$
;

$$-|f(x_0)|/2 - |f(x_0)| < f(x) < |f(x_0)|/2 - |f(x_0)|;$$

$$-3|f(x_0)|/2 < f(x) < -|f(x_0)|/2.$$

Тем самым мы нашли окрестность $|x-x_0|<\delta(-f(x_0)/2)$, на которой функция ограничена сверху отрицательным числом:

$$f(x) < -|f(x_0)|/2 < 0.$$

Поэтому на этой окрестности f(x) < 0.

Теорема доказана.

20. Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \sin x \sim x.$$

- Пусть ∠МОА = х (радиан).
- MA = $\sin(x)$. Длина OB = 1. Длина CB = $\operatorname{tg}(x).S_{\Delta MOB} < S_{cekmopa\ MOB} < S_{\Delta COB}$.
- Найдем площади по определению.

$$S_{\Delta MOB} = \frac{1}{2} \cdot OB \cdot MA = \frac{\sin x}{2}$$

$$S_{CEKMOPA\ MOB} = \pi \cdot \frac{x}{2\pi} = \frac{x}{2}$$

$$S_{\Delta COB} = \frac{1}{2} \cdot OB \cdot CB = \frac{tg\ x}{2}$$

- Далее преобразуем тройное неравенство. $\frac{\sin x}{2} < \frac{x}{2} < \frac{tg \, x}{2} \text{ умножим все на } 2/\sin(x) > 0$ $I < \frac{x}{\sin x} < \frac{I}{\cos x} \sim \cos x < \frac{\sin x}{x} < I.$
- $\lim_{x \to 0+} \cos x = 1$; $\lim_{x \to 0+} 1 = 1$. Тогда по теореме о пределе промежуточной функции $\lim_{x \to 0+} \frac{\sin x}{x} = 1$. Функция $\frac{\sin x}{x}$ четная $\Rightarrow \lim_{x \to 0-} \frac{\sin x}{x} = 1$.

21. Предел монотонной функции

Определим предельные точки множества $E: s = \sup(E), i = \inf(E)$ (допустимо i или $s = \pm \infty$), E - область определения f(x)

Th

Критерий существования предела монотонной функции: для того чтобы неубывающая на множестве E функция $f: E \to R$ имела предел при $x \to s$, $x \in E$, необходимо и достаточно, чтобы она была ограниограничена сверху, а для того чтобы она имела предел при $x \to i$, $x \in E$, необходимо и достаточно, чтобы она была ограничена снизу.

22. Критерий Б-К для предела функции.

<u>Th</u>

Для того, чтобы функция y = f(x) имела в точке а конечный предел необходимо и достаточно, чтобы она удовлетворяет в точке а <u>условию Коши</u>: Если для любого $\varepsilon > 0$ найдется отвечающее ему $\delta > 0$ такое, что $\forall x', x'' : 0 <$

 $|x'-a|<\delta$, $0<|x''-a|<\delta$, то справедливо $|f(x')-f(x'')|<\varepsilon$.

Доказательство:

1. Необходимость:

Пусть существует конечный предел $\lim_{x\to a} f(x) = b$. Зафиксируем произвольное число $\varepsilon > 0$. В силу определения предела функции по Коши имеем: $\forall \frac{\varepsilon}{2} > 0 \; \exists \delta > 0 \colon \forall x', x'' : \; 0 < |x' - a| < \delta, 0 < |x'' - a| < \delta \;$ для соответствующих значений функции справедливы неравенства $|f(x') - b| < \frac{\varepsilon}{2}$ и $|f(x'') - b| < \frac{\varepsilon}{2}$. Воспользуемся свойствами модуля и поработаем с неравенствами: $|f(x') - f(x'')| = |(f(x') - b) + (b - f(x''))| \leq |(f(x') - b) + (b - f(x''))|$

 $|b| + |(b - f(x''))| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, а это означает, что функция y = f(x) удовлетворяет в точке а условию Коши.

2. Достаточность:

Пусть $\{x_n\}$ - произвольная последовательность значений аргумента, сходящаяся к а и состоящая из чисел отличных от а $(x_n \neq a)$. В силу определения предела по Гейне достаточно показать, что $\{f(x_n)\}$ сходится к некоторому b и что это число b одно и то же для всех сходящихся к а последовательностей $\{x_n\}$ при условии, что $x_n \neq a$.

- 1) Сперва докажем, что для каждой сходящейся к а последовательности $\{x_n\}$ значений аргумента, отличных от а, соответствующая последовательность $\{f(x_n)\}$ к некоторому пределу. Фиксируем произвольное $\varepsilon>0$ и по нему, согласно условию Коши отвечающее ему число $\delta>0$. В силу сходимости последовательности $\{x_n\}$ к a и в силу $x_n\neq a$ для $\delta>0$ $\exists N:0<|x_n-a|<\delta$ при $n\geq N$. Можно утверждать, что $\forall p\in\{1,2,\ldots\}$ выполнено $0<|x_{n+p}-a|<\delta$. Получаем, что по условию Коши и из $0<|x_n-a|<\delta$ и $0<|x_{n+p}-a|<\delta$ вытекает, что при $n\geq N$, $\forall p\in\{1,2,\ldots\}$ $|f(x_{n+p})-f(x_x)|<\varepsilon$, что означает фундаментальность последовательности $\{f(x_n)\}$. В силу критерия Коши сходимости числовой последовательности $\{f(x_n)\}$ сходится к некоторому числу b.
- 2) Теперь покажем, что для любых двух последовательностей $\{x_n\}$ и $\{x_{n}'\}$, все элементы которых отличны от а, соответствующие последовательности $\{f(x_n)\}$ и $\{f(x_n')\}$ сходятся к одному и тому же пределу. Предположим, что $\{f(x_n)\}$ и $\{f(x_n')\}$ сходятся к b и b' соответственно. Рассмотрим новую последовательность значений аргумента $x_1, x_1', x_2, x_2', x_3, x_3', \dots, x_n, x_n', \dots$, сходящуюся к а и состоящую из чисел, отличных от а. В силу доказанного выше, последовательность значений функции $f(x_1), f(x_1'), f(x_2), f(x_2'), ..., f(x_n), f(x_n'), ...$ обязана сходится к некоторому пределу b''. Но любая подпоследовательность этой последовательности обязана сходится к тому же самому b''. Тогда подпоследовательность из элементов на четных местах и элементов на нечетных местах $f(x_1), f(x_1'), f(x_2), f(x_2'), ..., f(x_n), f(x_n'), ...$ сходятся к b''. Значит b = b' = b''.

БЛОК "НЕПРЕРЫВНОСТЬ ФУНКЦИИ"

23. Непрерывность функции. Арифметические операции. Примеры.

def

Функция непрерывна в предельной точке x_0 , если она определена в некоторой окрестности $U(x_0)$ и если существует предел $\lim_{x\to x_0} f(x) = f(x_0)$.

def

$$f(x)$$
 непрерывна в точке $x_0 \Leftrightarrow \forall \{x_n\}, x \in X$, $n \in N \mid \lim_{n \to \infty} x_n = x_0 : \lim_{n \to \infty} f(x_n) = f(x_0)$

Th

Если f(x) и g(x) определены на одном и том же промежутке X и обе функции непрерывны в точке x_0 , то в ней же непрерывны:

$$f(x) \pm g(x)$$

$$f(x) \cdot g(x)$$

$$\frac{f(x)}{g(x)}$$

Примеры:

- 1) Целая и дробная рациональные функции
- 2) Показательная функция
- 3) Логарифмическая функция
- 4) Гиперболические фенкции
- 5) Тригонометрические функции
- 6) Обратные тригонометрические функции

24. Критерий непрерывности монотонной функции. Точки разрыва.

<u>def</u>

Монотонная функция $f: E \to R$, заданная на отрезке E = [a,b], непрерывна на нем тогда и только тогда, когда множество ее значений само является отрезком с концами f(a) и f(b).

При этом: $f(a) \le f(b)$, если f - неубывающая функция $f(a) \ge f(b)$, если f - невозрастающая функция.

<u>def</u>

Если функция $f: E \to R$ не является непрерывной в некоторой точке а множества E, то эта точка называется точкой разрыва функции. Это можно написать в кванторах так: $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in E: |x-a| < \delta \ \text{и} \ |f(x) - f(a)| > \varepsilon \ (a \in E \text{ - точка разрыва})$

25. Свойства непрерывных функций на сегменте [a;b].

Th

Если функция непрерывна на отрезке [a; b], то она ограничена на этом отрезке. **Доказательство**:

<u>Th</u>

Если функция f(x) непрерывна на отрезке [a; b] и $f(a) \cdot f(b) < 0$ (эти значения разных знаков), то внутри отрезка [a; b] найдется такая точка d, что f(d) = 0 Доказательство:

 $\frac{https://1cov-edu.ru/mat-analiz/nepreryvnost-funktsii/na-otrezke/teorema-boltsano-koshi/\#proof1$

26. Теорема Б-В о достижении sup и inf.

Th

Непрерывная на отрезке [a,b] функция f достигает на нем своих нижней и верхней граней. Или, что тоже самое, достигает на отрезке своего минимума и максимума.

То есть существуют такие точки $x_1, x_2 \in [a,b]$, так что для любого $x \in [a,b]$, выполняются неравенства: $f(x_1) \le f(x_2)$.

NB: Различие между максимумом (минимумом) и верхней (нижней) гранью заключается в следующем: максимум (минимум) принадлежит множеству значений функции, а верхняя (нижняя) грань может не принадлежать этому множеству.

Доказательство для максимума (верхней грани):

- Пусть $M = \sup_{x \in [a,b]} f(x)$ верхняя грань. Нам нужно показать, что M = f(c), $c \in [a,b]$
- По определению верхней грани:

$$\forall x \in [a,b] : f(x) \le M.$$
 $\forall \varepsilon > 0, \exists x_{\varepsilon} \in [a,b] : f(x_{\varepsilon}) > M - \varepsilon$

- Пусть $\epsilon=1/n$, тогда $\exists x_n \in [a,b]: M-\epsilon < f(x_n) \leq M$. Вычтем из всех частей M и умножим на $-1:0 \leq M-f(x_n) < 1/n$ Таким образом, мы выделили последовательность аргументов $\{x_n\}$ и последовательность значений $\{f(x_n)\}$ такие, что: $a \leq x_n \leq b$ и $0 \leq M-f(x_n) < 1/n$
- Преобразуем данной выражение : $|M f(x_n)| < 1/n < 1/N < \epsilon$ Заметим, что $\forall \epsilon > 0$, $\forall n > 1/\epsilon$: $|M f(x_n)| < \epsilon$ Значит, по определению предела последовательности, $\lim_{n \to \infty} f(x_n) = M$
- По теореме Вейерштрасса, $\exists \{x_{nk}\}: \underset{k \to \infty}{lim} x_{nk} = c$

Так как
$$a \le x_{nk} \le b$$
, то $a \le c \le b$

- $\{f(x_n)\} \rightarrow M \Rightarrow \{f(x_{nk})\} \rightarrow M$
- Если k → ∞, то x_{nk} → $c \in [a,b]$ ⇒ $f(x_{nk})$ → f(c) (в силу определения непрерывности по Гейне)
- Сходящаяся последовательность имеет единственный предел, поэтому M = f(c). Теорема для максимума (верхней грани) доказана. (для нижней грани доказательство аналогичное)

27. Теорема о непрерывности обратной функции.

def

Пусть дана функция $f: X \to Y$, при этом $\forall x_1, x_2 \in X : f(x_1) \neq f(x_2)$, тогда каждому элементу из У можно поставить в соответствие единственный элемент из X. Это

"обратное" соответствие определяет функцию $f^{-1}: Y \to X$, которая называется обратной к функции f.

Th

Пусть функция f строго возрастает (убывает) и непрерывна на области определения D(f), являющейся промежутком. Тогда обратное соответствие f^{-1} является функцией возрастающей (убывающей) и непрерывной в своей области определения $D(f^{-1}) = E(f)$, которая также является промежутком

28. Равномерная непрерывность. Теорема Кантора.

def

Функция $f:E\to R$ называется равномерно непрерывной на множестве $E\subset R$, если

 $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in E$ таких, что $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$ Полезно понимать следующие факты:

- 1) Если функция равномерно непрерывна на множестве, то она непрерывна в любой его точке (Просто подставляем в определение $x_1 = x, x_2 = a$ и видим, что определение непрерывности функции $f: E \to R$ в точке $a \in E$ удовлетворено)
- 2) Непрерывность функции НЕ влечет ее равномерную непрерывность в общем случае (пример $f(x) = x^2$ непрерывная на R, но не является равномерно непрерывной на R, R множество действительных чисел)

Th

Функция, непрерывная на отрезке, равномерно непрерывна на этом отрезке **Доказательство**:

Предположим противное, что f(x) непрерывна на отрезке [a, b], но НЕ является равномерно непрерывной на нем. Тогда для некоторого $\varepsilon>0$ и для любого сколь угодно малого $\delta>0$ найдутся две точки x_1 и x_2 из [a, b] такие, что $|x_1-x_2|<\delta$, но $|f(x_1)-f(x_2)|\geq \varepsilon$.

Выберем бесконечно малую последовательность положительных чисел $\delta_n=\frac{1}{n}, n\in N$. Можно утверждать, что для указанного $\varepsilon>0$ и для любого номера n найдутся две точки x_n' и x_n'' отрезка [a,b] такие, что $|x_n'-x_2|<\frac{1}{n}$, но $|f(x_n')-f(x_n'')|\geq \varepsilon(*)$.

Так как последовательность $\{x_n'\}$ состоит из точек отрезка [a, b], то она ограничена и по теореме Больцано-Вейерштрасса из нее можно выделить сходящуюся подпоследовательность $\{x_{k_n}'\}$. Предел ξ указанной подпоследовательности будет также принадлежать отрезку [a, b] по следствию из теоремы (NB). В силу неравенства (*) последовательность $\{x_{k_n}''\}$ будет сходится к той же самой ξ .

Поскольку f(x) непрерывна в каждой точке отрезка [a,b], она непрерывна и точке ξ . (Если ξ совпадает c а или b, то будем понимать под непрерывностью одностороннюю непрерывность.) Но тогда в силу определения непрерывности по Гейне, обе подпоследовательности соответствующих значений функции $\{f(x'_{k_n})\}$ и $\{f(x''_{k_n})\}$ обязаны сходится к $f(\xi)$, т. е. разность указанных подпоследовательностей $\{f(x'_{k_n})\}$ обязана быть бесконечно малой. Это противоречит неравенству (*) для всех номеров k_n . Полученное противоречие доказывает, что наше предположение неверно!

NB:

Теорема: Если все элементы сходящейся последовательности $\{x_n\}$, начиная с некоторого номера, удовлетворяют неравенству $x_n \ge b$ ($x_n \le b$), то и предел A этой последовательности удовлетворяет неравенству $A \ge b$ ($A \le b$).

Следствие из теоремы: Если все элементы сходящейся последовательности $\{x_n\}$ находятся на [a,b], то и предел A этой последовательности лежит на отрезке [a,b].

Заметки.

1. Доказательство:

В одну сторону:

Пусть множество X - ограничено. Пусть $C = \max(|m|, |M|)$. По свойствам модуля имеем следующие неравенства: $x \le M \le |M| \le C$ и $x \ge m \ge -|m| \ge -C => -C \le x \le C => |x| \le C$.

В обратную сторону:

Имеем выполнение неравенства $|x| \le C = > -C \le x \le C$. Если взять M = C и m = -C, то множество X ограничено по определению.

2. Односторонняя непрерывность. Классификация разрывов.

 $\operatorname{def} f(x)$ непрерывна слева в точке $x0 \Leftrightarrow \exists f(x0-0) = \lim_{x \to x_0} f(x) = f(x0)$

def f(x) непрерывна справа в точке x0 \Leftrightarrow $\exists f(x0+0) = \lim_{x \to x_0} f(x) = f(x0)$

 $\operatorname{def} x0$ - точка устранимого разрыва $\Leftrightarrow \exists \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \neq f(x0)$

Разрыв можно "устранить" если определить значение функции в x0 def x0 - точка разрыва первого рода, если $\exists \lim_{x \to x_0 - 0} f(x) \neq \lim_{x \to x_0 - 0} f(x)$

Применим термин "скачок", значения f(x0+0) - f(x0+0) - конечное число. def x0 - точка разрыва второго рода, если хотя бы один из односторонних пределов при $x \longrightarrow x0$ не существует или бесконечен

3. Суперпозиция непрерывной функции.

Th Пусть функция $\varphi(y)$ определена в промежутке Y, а функция f(x) - в промежутке X, причем значения f(x) не выходят за пределы Y, когда X изменяется в X. Если f(x) непрерывна в точке X0 из X1, а Y2, непрерывна соответствующей точке X3 е X4, то функция X6, непрерывна в точке X6 Доказательство:

Зададим произвольное число $\varepsilon>0$. Так как $\,\varphi(y)\,$ непрерывна при y=y0, то по ε найдется такое $\sigma>0$, что из $|y-y_0|<\sigma\Rightarrow |\varphi(y)-\varphi(y_0)|<\varepsilon$

С другой стороны, ввиду непрерывности f(x) при x = x0 по σ найдется такое $\delta > 0$, что из $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |f(x) - y_0| < \sigma$.

По самому выбора числа σ отсюда следует, что $|\varphi(f(x)) - \varphi(y_0)| = |\varphi(f(x)) - \varphi(f(x_0))| < \varepsilon$

Это на языке кванторов и доказывает непрерывность $\varphi(f(x))$ в точке x0.

4. Альтернативное доказательство арифметических свойств пределов Помним: $(\forall \epsilon_1 > 0, \exists N_x(\epsilon_1) \ \forall n > N_x \colon |x_n - a| < \epsilon_1), \ (\forall \epsilon_2 > 0, \exists N_y(\epsilon_2) \ \forall n > N_y \colon |y_n - b| < \epsilon_2)$

(1)
$$\lim (x_n \pm y_n) = a \pm b$$

- Найдем N(ϵ): $\forall \epsilon > 0$, $\forall n > N$: $|x_n \pm y_n (a \pm b)| < \epsilon$ $|x_n \pm y_n (a \pm b)| = |x_n a \pm (y_n b)| \leqslant |x_n a| + |y_n b| < \epsilon_1 + \epsilon_2$
- Пусть $\varepsilon_1 = \varepsilon_2 = \varepsilon/2$
- $N(\epsilon) = \max(N_x(\epsilon/2), N_y(\epsilon/2) \Rightarrow \forall n > N(\epsilon) : |x_n \pm y_n (a \pm b)| < \epsilon$ Значит, по определению $\{x_n \pm y_n\} \to a \pm b$. Доказано.
- (2) $\lim (x_n \cdot y_n) = a \cdot b$
 - Найдем N(ϵ): $\forall \epsilon > 0$, $\forall n > N$: $|x_n \cdot y_n a \cdot b| < \epsilon$ $|x_n \cdot y_n a \cdot b| = |x_n \cdot y_n ay_n + ay_n a \cdot b| = |(x_n a) \cdot y_n + (y_n b) \cdot a| \leqslant |(x_n a)| \cdot |y_n| + |(y_n b)| \cdot |a|$
 - $\{y_n\} \rightarrow b \Rightarrow \exists M_y \ \forall n: y_n \leqslant M_y \ (y_n \ \text{ограничена, т.к. имеет предел})$ Получаем: $|x_n \cdot y_n a \cdot b| \leqslant |(x_n a)| \cdot |y_n| + |(y_n b)| \cdot |a| < \epsilon_1 M_y + \epsilon_1 |a|$
 - Пусть $\varepsilon_1 = \varepsilon/(2M_y)$, $\varepsilon_1 = \varepsilon/(2|a|)$, $N(\varepsilon) = \max(N_x(\varepsilon/(2M_y)), N_x(\varepsilon/(2|a|))$ тогда $\forall n > N : |x_n \cdot y_n a \cdot b| < \varepsilon$, то есть $\{x_n \cdot y_n\} \rightarrow a \cdot b$. Доказано.
- (3) $\lim (x_n / y_n) = a / b$

// доказательство этого интересного факта мы оставляем читателю

- (4) $\lim(C \cdot x_n) = C \cdot a$
 - Пусть \forall n $y_n = C \Rightarrow \lim y_n = C$ (из определения предела)
 - $\lim (y_n \cdot x_n) = \lim y_n \cdot \lim x_n = C \cdot \lim x_n = C \cdot a$. Доказано.
- (5) $\lim |x_n| = |a|$
 - $||A| |B|| \le |A B| +$ определение предела = Доказано.\