March 22, 2021 Tunneling

- Tunneling
 - Secure Shell
 - VPN
- Assignments
 - Project
 - Outline: Due Monday, Mar 29
 - Lab 2
 - Due Monday, Apr 5

Secure Shell

- Encryption
- Authentication
- Use Cases

Known	Unknown	Known	Unknown	Known	Unknown
p = 23		p = 23		p = 23	
<i>g</i> = 5		<i>g</i> = 5		<i>g</i> = 5	
<i>a</i> = 6	b	<i>b</i> = 15	а		a, b
A = 5 ^a mod 23		$B = 5^{b} \mod 23$			
$A = 5^6 \mod 23 = 8$		$B = 5^{15} \mod 23 = 19$			
<i>B</i> = 19		<i>A</i> = 8		<i>A</i> = 8, <i>B</i> = 19	
s = B ^a mod 23		s = A ^b mod 23			
$s = 19^6 \mod 23 = 2$		$s = 8^{15} \mod 23 = 2$			s

- g = public (prime) base, known to Alice, Bob, and Eve. g = 5
- p = public (prime) modulus, known to Alice, Bob, and Eve. p = 23
- a = Alice's private key, known only to Alice. a = 6
- **b** = Bob's private key known only to Bob. **b** = **15**
- A =Alice's public key, known to Alice, Bob, and Eve. $A = g^a \mod p = 8$
- B = Bob's public key, known to Alice, Bob, and Eve. $B = g^b \mod p = 19$

Virtual Private Networks

- PPTP
- OpenVPN
- IPSEC
 - L2TP

Telecommuter VPNs: Client-to-Gateway

Gateway-to-Gateway VPNs

IPsec VPN

- IPsec is another technology which is more deeply integrated in the packets
- IPsec VPN more efficient than SSL VPN
- IPsec must be managed quite deep within the operating system network code
- SSL-based VPN only needs some way to hijack incoming and outgoing traffic; the rest can be down in user-level software.

IPsec

- Host level protection service
 - IP-layer security (below TCP/UDP)
 - De-facto standard for host level security
 - Developed by the IETF (over many years)
- Available in most operating systems/devices
 - E.g., Windows, OS X, Linux, BSD*, ...
- Not a single protocol; IPsec is a protocol suite
 - Implements a wide range of protocols and cryptographic algorithms
- *Selectively* provides
 - Confidentiality, integrity, authenticity, replay protection, DoS protection

IPsec Protocol Suite

Policy/ Key Packet Configuration Processing Management Management (ESP) (SPS) **Security Policy Encapsulating** Manual System **Security Payload** (IKE) (AH) **Internet Key** Authentication Exchange Header

IPsec Architecture

SPD: Security Policy Database; IKE: Internet Key Exchange; SA: Security Association; SAD: Security Association Database.

Internet Key Exchange (IKE)

- Two phase protocol used to establish parameters and keys for session
 - Phase 1: authenticate peers, establish secure channel via Diffie- Hellman key exchange
 - Phase 2: negotiate parameters, establish a security association (SA)
- The SA defines algorithms, keys, and policy used to secure the session for a unidirectional traffic flow
 - Pairing requires two SAs -- one for each direction
 - SAs stored in host's Security Association Database (SAD)
 - Each gateway may define policies for each SA
 - Policies stored in the SAD

IPsec: Packet Handling

Transport Mode

Tunnel Mode

Key Management

- Two options:
 - Manual: use preshared secrets;or
 - Internet Key Exchange (IKE)

IPsec and the IP protocol stack

Security Association (SA)

- An association between a sender and a receiver
 - Consists of a set of security related parameters
 - E.g., sequence number, encryption key
- One way relationship
- Determine IPsec processing for senders
- Determine IPsec decoding for destination
- SAs are not fixed! Generated and customized per traffic flows

Security Parameter Index (SPI)

- A bit string assigned to an SA.
- Carried in AH and ESP headers to enable the receiving system to select the SA under which the packet will be processed.
- 32 bits
 - SPI + Dest IP address + IPsec Protocol
- Uniquely identifies each SA in SA Database (SAD)

SA Database (SAD)

- Holds parameters for each SA
 - Sequence number counter
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode
- Every host or gateway participating in IPsec has their own SA database

Authentication Header (AH)

- Provides authenticity and integrity
 - via HMAC
 - over immutable IP headers and data
- Advantage: the authenticity of data and IP header information is protected
- Disadvantage: the set of immutable IP headers isn't necessarily fixed
- Confidentiality of data is not preserved
- Replay protection via AH sequence numbers
 - note that this replicates some features of TCP

IPsec AH Packet Format

IPv4 AH Packet Format

IPv4 Header	Authentication Header	Higher Level Protocol Data
-------------	-----------------------	-------------------------------

AH Header Format

IPsec Authentication

- **SPI:** (spy) identifies the SA for this packet
 - Type of crypto checksum, how large it is, and how it is computed
 - Really, the policy for the packet
- Authentication data
 - Hash of packet contents include IP header as specified by SPI
 - Treat mutable fields (TTL, header checksum) as zero
 - Keyed MD5 Hash is default

Encapsulating Security Payload

- Confidentiality, authenticity, and integrity
 - via encryption and HMAC
 - over IP payload (data)
- Advantage: encapsulated packet is fully secured
- Use "null" encryption to get authenticity/integrity only
- Note that the TCP/UDP ports are hidden when encrypted
 - good: better security, less is known about traffic
 - bad: impossible for FW to filter/traffic based on port
- Cost: can require many more resources than AH

ESP Packet Format

Modes of Operation

 Transport: the payload is (optionally) encrypted and the non-mutable fields are integrity verified (via MAC)

• **Tunnel**: each packet is completely encapsulated (and optionally encrypted) in an outer IP packet

