計算方法設計 Bonus 1

原報告 HackMD: https://hackmd.io/@liuutin9/rJ77l1pJkl

Recursive Method

Pseudo Code

```
int SelectKthSmallest(A[], 1, r, kth, numsPerGroup) {
    size, numsOfGroup, excess, pivotInitPosition;
    if (numsPerGroup == 0) {
        pivotInitPosition = RandomizedSelectPivot(1, r);
    else {
        size = r - 1 + 1;
        numsOfGroup = (size) / numsPerGroup;
        excess = (size) % numsPerGroup;
        if (excess != 0) numsOfGroup++;
        if (size <= numsPerGroup) {</pre>
            InsertionSort(A, 1, r);
            pivotInitPosition = 1 + size / 2;
        }
        else {
            for (j = 1; j <= 1 + numsOfGroup - 1; j++) {
                InsertionSortColumn(A, j, r, numsOfGroup);
            pivotInitPosition = SelectKthSmallest(A, 1 + (numsPerGroup / 2) * numsOfGroup,
1 + (numsPerGroup / 2 + 1) * numsOfGroup - 1, (numsOfGroup % 2 ? numsOfGroup / 2 :
numsOfGroup / 2 + 1), numsPerGroup);
        }
    }
    pivotFinalPosition = Partition(A, l, r, pivotInitPosition);
    k = pivotFinalPosition - 1 + 1;
    if (kth == k)
        return pivotFinalPosition;
    else if (kth < k)
        return SelectKthSmallest(A, 1, pivotFinalPosition - 1, kth, numsPerGroup);
    else
        return SelectKthSmallest(A, pivotFinalPosition + 1, r, kth - k, numsPerGroup);
int RandomizedSelectPivot(1, r) {
    return std::rand() % (r - 1 + 1) + 1;
}
int MedianSelectPivot(A[], 1, r, numsPerGroup) {
    size = r - l + 1;
    numsOfGroup = (size) / numsPerGroup;
    excess = (size) % numsPerGroup;
    if (excess != 0) numsOfGroup++;
    if (size < numsPerGroup) {</pre>
        InsertionSort(A, 1, r);
        return 1 + size / 2;
```

```
}
    else {
        for (j = 1; j \le 1 + numsOfGroup - 1; j++) {
            InsertionSortColumn(A, j, r, numsOfGroup);
        return MedianSelectPivot(A, 1 + (numsPerGroup / 2) * numsOfGroup, 1 +
(numsPerGroup / 2 + 1) * numsOfGroup - 1, umsPerGroup);
    }
int Partition(A[], l, r, i) {
    swap(A[r], A[i]);
    pivotPosition = 1;
    for (j = 1; j < r; j++) {
        if (A[j] <= A[r]) swap(A[pivotPosition++], A[j]);</pre>
    swap(A[pivotPosition], A[r]);
    return pivotPosition;
}
void InsertionSortColumn(int A[], int l, int r, int numsOfGroup) {
    size = (r - 1 + 1) / numsOfGroup;
    tmp[size] = {A[1]};
    for (int i = 1; i < size; i++) {
        tmp[i] = A[1 + i * numsOfGroup];
        curr = i;
        while (tmp[curr] < tmp[curr - 1] && curr > 0) {
            swap(tmp[curr], tmp[curr - 1]);
            curr--;
        }
    }
    for (i = 0; i < size; i++) {
        A[l + i * numsOfGroup] = tmp[i];
    }
void InsertionSort(A[], 1, r) {
    for (i = 1 + 1; i <= r; i++) {
        curr = i;
        while (A[curr] < A[curr - 1] && curr > 1) {
            swap(A[curr], A[curr - 1]);
            curr--;
        }
    }
```

Time Complexity Analysis

設有 n 筆資料:

• Group of 3:

 $T(n) = T(ceiling(n / 3)) + \Theta(n) + max \{T(x), T(y)\}$

- T(celing(n / 3)): 尋找 pivot 需要花的時間
- $\Theta(n)$: 做 partition 的時間
- max {T(x), T(y)}: 找左半段或右半段比較久的時間

 $x, y \ge 2(ceiling(ceiling(n / 3) / 2) - 2) \ge n / 3 - 4$

- 每個完整的 group 會有 1 個大於 pivot 的數
- ceiling(ceiling(n / 3) / 2) 表示 pivot 那組和 median 比他大的 group 數量
- -2 表示可能不是完整的 group 的數量

Therefore, $n/3-4 \ge n/4$ if $n \ge 48$. x, y is at least n/4 for large n respectively.

Assume T(n) > cn.

T(n) > c * ceiling(n / 3) + c * (n / 3 - 4) + an > cn / 3 + cn / 3 - 4c + an = 2cn / 3 - 4c + an = (2c / 3 + a)n - 4c > cn

c < an / (n / 3 + 4) when n > 0. Assume n > 48, then n / (n / 3 + 4) > 2.4 > 2. So, we choose c > 2a.

將 max {T(x), T(y)} 替換成 min {T(x), T(y)} 後的時間複雜度 > cn · 因此找 worst case max {T(x), T(y)} 也會 > cn ·

Time complexity: $T(n) = \omega(n) != O(n)$

• Group of 5:

 $T(n) = T(ceiling(n / 5)) + \Theta(n) + max \{T(x), T(y)\}$

- T(celing(n / 5)): 尋找 pivot 需要花的時間
- **Θ(n)**: 做 partition 的時間
- max {T(x), T(y)}: 找左半段或右半段比較久的時間

 $x, y \ge 3(ceiling(ceiling(n / 5) / 2) - 2) \ge 3n / 10 - 6$

- 每個完整的 group 會有 3 個大於 pivot 的數
- ceiling(ceiling(n / 5) / 2) 表示 pivot 那組和 median 比他大的 group 數量
- -2 表示可能不是完整的 group 的數量

Therefore, x, y \leq n - 3n / 10 + 6 = 7n / 10 + 6. 7n / 10 + 6 \leq 3n / 4 if n \geq 140. x, y is at most 3n / 4 for large n respectively.

Assume $T(n) \le cn$.

 $T(n) \le c * ceiling(n / 5) + c * (7n / 10 + 6) + an \le cn / 5 + c + 7cn / 10 + 6c + an = 9cn / 10 + 7c + an = cn + ((-cn) / 10 + 7c + an) <= cn + ((-cn) / 10 + 7c + an) <= cn / (-cn) / (-cn)$

 $c \ge 10an / (n - 70)$ when n > 70. Assume $n \ge 140$, then $n / (n - 70) \le 2$. So, we choose $c \ge 20a$

Time complexity: T(n) = O(n)

• Group of 7:

 $T(n) = T(ceiling(n / 7)) + \Theta(n) + max \{T(x), T(y)\}$

- T(celing(n / 7)): 尋找 pivot 需要花的時間
- $\Theta(n)$: 做 partition 的時間
- max {T(x), T(y)}: 找左半段或右半段比較久的時間

$x, y \ge 4(ceiling(ceiling(n / 7) / 2) - 2) \ge 2n / 7 - 8$

- 每個完整的 group 會有 4 個大於 pivot 的數
- ceiling(ceiling(n / 7) / 2) 表示 pivot 那組和 median 比他大的 group 數量
- -2 表示可能不是完整的 group 的數量

Therefore, x, y \leq n - 2n / 7 + 8 = 5n / 7 + 8. 5n / 7 + 8 \leq 3n / 4 if n \geq 224. x, y is at most 3n / 4 for large n respectively.

Assume $T(n) \le cn$.

 $T(n) \le c * ceiling(n / 7) + c * (5n / 7 + 8) + an \le cn / 7 + c + 5cn / 7 + 8c + an = 6cn / 7 + 9c + an = cn + ((-cn) / 7 + 9c + an) \le cn$

Therefore, x, y \leq n - 2n / 7 + 8 = 5n / 7 + 8. 5n / 7 + 8 \leq 3n / 4 if n \geq 224. x, y is at most 3n / 4 for large n respectively.

Assume $T(n) \le cn$.

 $T(n) \le c * ceiling(n / 7) + c * (5n / 7 + 8) + an \le cn / 7 + c + 5cn / 7 + 8c + an = 6cn / 7 + 9c + an = cn + ((-cn) / 7 + 9c + an) <= cn$

 $c \ge 7an / (n - 63)$ when n > 63. Assume $n \ge 224$, then n / (n - 63) < 2. So, we choose c > 14a.

Time complexity: T(n) = O(n)

• Group of 9:

 $T(n) = T(ceiling(n / 9)) + \Theta(n) + max \{T(x), T(y)\}$

- T(celing(n / 9)): 尋找 pivot 需要花的時間
- **Θ(n):** 做 partition 的時間
- max {T(x), T(y)}: 找左半段或右半段比較久的時間

$x, y \ge 5(ceiling(ceiling(n / 9) / 2) - 2) \ge 5n / 18 - 10$

- 每個完整的 group 會有 4 個大於 pivot 的數
- ceiling(ceiling(n / 9) / 2) 表示 pivot 那組和 median 比他大的 group 數量
- -2 表示可能不是完整的 group 的數量

Therefore, x, y \leq n - 5n / 18 + 10 = 13n / 18 + 10. 13n / 18 + 10 \leq 3n / 4 if n \geq 360. x, y is at most 3n / 4 for large n respectively.

Assume $T(n) \le cn$.

 $T(n) \le c * ceiling(n / 9) + c * (13n / 18 + 10) + an \le cn / 9 + c + 13cn / 18 + 10c + an = 5cn / 6 + 11c + an = cn + ((-cn) / 6 + 11c + an) \le cn$

 $c \ge 6an / (n - 66)$ when n > 66. Assume $n \ge 360$, then n / (n - 66) < 2. So, we choose c > 12a.

Time complexity: T(n) = O(n)

Test Result

由以下數據可以觀察到,randomized select 平均執行時間複雜度是線性的,當 group size 為 5, 7, 9 時也大致上是線性的,而 group size 為 3 時,時間複雜度隨資料量攀升的速度明顯快於其他四者。

Array size	1 * 10e7	2 * 10e7	3 * 10e7	4 * 10e7	5 * 10e7
Execution times (times)	50	50	50	50	50
Randomized time usage (s)	0.24708	0.43530	0.61172	0.64356	0.87252
Group of 3 time usage (s)	116.637	288.285	596.894	994.205	1234.79
Group of 5 time usage (s)	1.42802	2.44330	3.55082	4.51618	5.38158
Group of 7 time usage (s)	1.08526	2.05162	2.79684	3.40446	4.31722
Group of 9 time usage (s)	1.02906	1.91562	2.6124	3.20722	4.00038
Array size	6 * 10e7	7 * 10e7	8 * 10e7	9 * 10e7	1 * 10e8
Array size Execution times (times)	6 * 10e7 50	7 * 10e7 50	8 * 10e7 50	9 * 10e7 50	1 * 10e8 50
Execution times (times)	50	50	50	50	50
Execution times (times) Randomized time usage (s)	50 1.09072	50 1.24778	50 1.41000	50 1.69284	50 1.72172
Execution times (times) Randomized time usage (s) Group of 3 time usage (s)	50 1.09072 1743.61	50 1.24778 2279.04	50 1.41000 2807.06	50 1.69284 3390.56	50 1.72172 3675.29

Selective Method

Brief

把尋找 median 的 code 包裝成一個 function 後,根據觀察發現,這兩個 recursive function 其實就是一直慢慢跑到最底層就結束,因此可以透過使用 while loop 的方式實作,迴圈結束前更新 partition 的範圍,並在找到值之後直接 break 離開迴圈。

Pseudo Code

```
int SelectKthSmallest(A[], 1, r, kth, numsPerGroup) {
    pivotInitPosition, pivotFinalPosition, k;
    while (true) {
        pivotInitPosition = (numsPerGroup == 0)
            ? RandomizedSelectPivot(1, r)
            : MedianSelectPivot(A, 1, r, numsPerGroup);
        pivotFinalPosition = Partition(A, 1, r, pivotInitPosition);
        k = pivotFinalPosition - 1 + 1;
        if (kth == k) {
            return A[pivotFinalPosition];
        } else if (kth < k) {</pre>
            r = pivotFinalPosition - 1;
        } else {
            l = pivotFinalPosition + 1;
            kth -= k;
        }
    }
int MedianSelectPivot(A[], 1, r, numsPerGroup) {
    size, numsOfGroup, excess;
    while (true) {
        size = r - 1 + 1;
        numsOfGroup = (size) / numsPerGroup;
        excess = (size) % numsPerGroup;
        if (excess != 0) numsOfGroup++;
        if (size < numsPerGroup) {</pre>
            InsertionSort(A, 1, r);
            return 1 + size / 2;
        else {
            for (j = 1; j \le 1 + numsOfGroup - 1; j++) {
                InsertionSortColumn(A, j, r, numsOfGroup);
            }
            r = 1 + (numsPerGroup / 2 + 1) * numsOfGroup - 1;
            1 = 1 + (numsPerGroup / 2) * numsOfGroup;
        }
    }
```