Linear search methods

 $\label{lem:alexandre} A lexandre \ Gramfort \\$ a lexandre .gramfort @ telecom-paristech .fr

Telecom ParisTech

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Motivation

2 Line search rules

Security interval update

Motivation

- 2 Line search rules
- Security interval update

Why line search?

Descent algorithm reads:

$$x_{k+1} = x_k + t_k d_k, \ t_k \ge 0$$

where d_k is a descent direction ($\exists t_k > 0$ s.t. $f(x_{k+1}) < f(x_k)$). In the case of gradient descent one uses:

$$d_k = -\nabla F(x_k)$$

and if f has a Lipschitz continuous gradient with constant L then one can use $t_k = \frac{1}{L}$.

Problem: L is a global quantity (does not depend on x_k) and can be unknown.

Objective: Derive strategies to estimate "good enough" t_k (optimal step can be really costly in non-quadratic case).

Why line search?

Let

$$\phi(t) = f(x_k + td_k)$$

Objective: find t > 0 such that $\phi(t) \le \phi(0)$

For f is smooth, the optimal step size t^* is caracterized by:

$$\begin{cases} \phi'(t^*) = 0 & \text{(is a minimum)} \\ \phi(t) \ge \phi(t^*) \text{ for } 0 \le t \le t^* & \text{(decreases objective)} \end{cases}$$

ightarrow Show that with $d_k = -\nabla F(x_k)$ and optimal step size

$$d_{k+1}^T d_k = 0.$$

Security interval

Definition (Security interval)

[a, b] is a security interval if one can classify t values as:

- If t < a then t is too small
- If $a \le t \le b$ then t is ok
- If t > b then t is too big

Problem: How to translate these conditions from values of ϕ ?

Problem: How to define *a* and *b*.

Basic algorithm

Start from $[\alpha, \beta]$ with $[a, b] \subset [\alpha, \beta]$, e.g., $\alpha = 0$ and β large (always exists if f is coercive).

- **①** Choose t in $[\alpha, \beta]$
- ② If t is too small then set $\alpha = t$ and go back to 1.
- **3** If t is too big then set $\beta = t$ and go back to 1.
- If t is ok then stop

Problem: How to translate the "too small", "too big" and "ok" from values of ϕ ?

Motivation

2 Line search rules

Security interval update

Armijo's rule

Set $\alpha = 0$ and fix 0 < c < 1.

Definition (Armijo's rule)

- **1** If $\phi(t) > \phi(0) + c\phi'(0)t$, then t is too big
- ② If $\phi(t) \leq \phi(0) + c\phi'(0)t$, then ok

Problem: As $\alpha = 0$, t is never considered too small. So Armijo is not heavily used in practice.

Note: You have function scalar_search_armijo in scipy/optimize/linesearch.py but it does more (cubic interpolation, backtracking).

 \rightarrow Make a drawing

Goldstein's rule

Goldstein is Armijo with an extra inequality. Let $0 < c_1 < c_2 < 1$.

Definition (Goldstein's rule)

- If $\phi(t) < \phi(0) + c_2 \phi'(0)t$, then t is too small
- ② If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is too big
- If $\phi(0) + c_1\phi'(0)t \ge \phi(t) \ge \phi(0) + c_2\phi'(0)t$, then ok
- \rightarrow Make a drawing

Goldstein's rule

 c_2 should be chosen such that t^* in the quadratic case is in the security interval.

In the quadratic case:

$$\phi(t) = \frac{1}{2}at^2 + \phi'(0)t + \phi(0), a > 0$$

and t^* satisfies $\phi'(t^*)=0$, so $t^*=-rac{\phi'(0)}{a}$ and so

$$\phi(t^*) = \frac{\phi'(0)}{2}t^* + \phi(0)$$

which means that one should have $c_2 \ge \frac{1}{2}$.

Common values used in practice are $c_1 = 0.1$ and $c_2 = 0.7$.

Wolfe's rule

Wolfe's rule requires to evaluate $\phi'(t) = d_k^\top \nabla f(x_k + td_k)$. It is in theory more costly but it can be marginal.

Definition (Wolfe's rule)

- If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is too big (like Goldstein)
- ② If $\phi(t) \le \phi(0) + c_1 \phi'(0) t$, and $\phi'(t) < c_2 \phi'(0)$ then t is too small
- If $\phi(t) \leq \phi(0) + c_1 \phi'(0) t$, and $\phi'(t) \geq c_2 \phi'(0)$, then ok

Note: The idea is to guarantee that *t* is not too small by requiring that the gradient is increased enough.

Note: This is implemented in scipy.optimize.line_search.

 \rightarrow Make a drawing

Motivation

2 Line search rules

Security interval update

Reducing security interval

First search for starting interval or first value of t ($\alpha = 0$).

- If t is Ok then stop
- ② If t is too big then set $\beta = t$ and ok.
- **3** If t is too small, then set t to ct with c > 1 and back to 1.

Reducing the interval

Multiple strategies

- **1** Dichotomy. Try $t = (\alpha + \beta)/2$ and then work with $[\alpha, t]$ or $[t, \beta]$
- **2** Polynomial approximation of ϕ , e.g., cubic approximation.

Cubic approximation

Cubic approximation is compatible with Wolfe's method which also needs ϕ' . Take 2 values t_0 and t_1 (for example α and β). Define the third order polynomial p such that:

- $p(t_0) = \phi(t_0)$
- $p(t_1) = \phi(t_1)$
- $p'(t_0) = \phi'(t_0)$
- $p'(t_1) = \phi'(t_1)$

Then propose for t the minimum of the polynomial. If it does not provide a valid t you can fallback to dichotomy.

 \rightarrow Demo on notebook

References

• Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapter 3.