RECEIVED CENTRAL FAX CENTER

DEC 0 9 2009

PATENT Docket No. H 5265

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: Application of Hackbarth, et al.

Confirmation No.: 2641

Serial No.: 10/796,681

Examiner: William K. Cheung

Filed: March 9, 2004

Art Unit: 1796

Tille: UV-CURING ANTI-FINGERPRINTING COATINGS

DECLARATION UNDER 37 CFR 1,132

Mall Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

I, Holger Endres, declare the following:

- 1. I am an inventor of the above-captioned patent application entitled "UV-Curing Anti-
- 2. I have bêşn a research scientist at Henkel ÁG & Co. KGaA (hereinafter "Henkel") since November 1, 2004 and have worked for 5 years in the arts related to coatings for metal.
- 3 I obtained a engineer (FH) degree in chemistry and paints from Fachhochschule Druck /
- 4. I have reviewed the Official Action dated June 9, 2009 in which the examiner asserts that "applicants' epecification falls to provide any indication to support applicants' argument that '(meth)acrylates' can denote both 'methacrylates and acrylates', see page 11, first paragraph.
- In the above-captioned application, the term "(meth)acrylates" was used to denote both "methacrylates and acrylates" and this would be readily understood by one of skill in the polymer arts at the time the invention was made.
- 6. It is common practice for those of skill in the art to use the term "(meth)acrylates" to denote both "methacrylates and acrylates". For example, a prochure from Rahn AG, a manufacturer of raw materials for polymers uses the heading "Urethane (Meth)acrylates" for a listing that includes urethane acrylate products and urethane methacrylate products, specifically "Genomer 42.15, Aliphatic UA" meaning aliphatic urethane acrylate, and "Genomer 42.05, Aliphatic UMA" meaning aliphatic urethane methacrylate. This brochure also uses "Epoxy (Meth)acrylates" in the same manner. See Rahn AG, "Rahn Energy Curing Product Guide", allached as Exhibit A.

- 7. In the Examples, "acrylates" were used as raw materials to make-up compositions for testing. Acrylate and methacrylate compounds that differ only in the presence or absence of the methyl group are known in the art to have similar properties. One of ordinary skill in the art, reading the specification including the Examples as a whole, would understand that Applicants had invented compositions that include acrylate and/or methacrylate components in the amounts disclosed in the specification and in the Examples.
- 8. I have reviewed U.S. Patent No. 5128391, U.S. Patent 5128387, U.S. Patent 5629385 and U.S. Patent 42050018. I am familiar with these patents as the state of the art. The '391 and '387 patents are directed to the surface protection of beverage cans, especially aluminum cans (Col. 3, lines 31-33). These are short-living goods which usually are not or at least only rarely cleaned after their manufacture. The claimed invention focuses on long-living goods like furniture, household appliances, and the like (Specification, page 1, lines 19-32), which are cleaned very often during their lifespan, so that the scratch resistance of the coating must be very pronounced. Furthermore, fingerprints must be easily removed from such surfaces. At the time the invention was made, there was a significant uninet need for durable coatings that combined fingerprint resistance and scratch resistance. Neither of these problems is considered in the 391 or 387 references.
- 9. Those of ordinary skill in the art would not have been motivated by the Nagasawa reference to add such fillers to the coatings of the '391 or '387 patents. In Nagasawa, pigments are used as thixotropic agents ('018, col. 12, I, 3-5, as quoted by the examiner). This teaches away from the present invention, as thixotropic agents are undestrable since the claimed invention must have a viscosity below 1000 mPas. With the viscosity limitation in mind, one of ordinary skill in the art would not consider to add the thixotropic agents of the '018 reference to the product of the '391 patent, as an undue increase of viscosity would have been expected. Therefore, it requires an inventive step to include those pigments in a required low-viscosity formulation despite their known property of thixotropic agents.
- 10. Attached to this my declaration as Exh. B are Tables 1-4, showing testing of compositions according to the invention. These compositions all contain micronized fillers added as an adjuvant for increasing the surface hardness (WO document, page 7, last sentence of the second section) to thereby improve scratch resistance.
- 11. Micronized fillers, nanoscale SIO₂ (Tables 1 and 2: pyrogenic silicic acid; specific surface area 150 m²/g) on the one hand and nanoscale Al₂O₃ (Table 3: pyrogenic aluminum oxide; specific surface area 100 m²/g) were incorporated in a fine dispersed form into the compositions according to the invention.

- 12. Determination of the surface quality of the coating after rotary treatment of a coated substrate according to the invention with steel wool for a defined coating weight and predetermined speed of rotation (see Table 4), as compared with verifying the scratch resistance with a hardness test piece (see Table 2) of the description, is a method accepted by customers to qualitatively determine scratch and abrasion resistance, and is routinely conducted for quality control.
- 13. As shown in Table 4, the coating materials containing these fillers, even though dispersed (B1-B10), compared with these which are free of the latter, form hardened coatings on brushed stairless steel with increased scratch and abrasion resistance, which additionally are dirt-repellent in the long term. Coating materials, for which the content of these fillers increased moderately (B3-B6 and B7-B10), as a hardened coating, also delivered increased surface hardness.
- 14. It was also unexpectedly found empirically that the presence of modified di- or tri-alkoxysilanes additionally had a positive effect on the surface hardness, when coatings were formed from coating materials containing these fillers.

I further declare that all statements made herein of my own knowledge are true and that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are purishable by fine or imprisonment, or both, under Section 1001 of Title 18 of United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued therefrom.

Holger Engres

Dezembur 08, 2003

EXHIBIT A To Holger Endres Declaration

RAHN Energy Curing

Your partner for excellence

Product guide

б

Contents

Products	Page
Reactive Oiluents	6-7
Epoxy (Meth)Acrylates	8-9
Pólyester/Polyether Acrylates	8-9
Ure thene (Meth)Acrylates	10-11
Öligösimlings	12-13
Co-Resins	12–13
Specialities	14-15
Additives	14-15
Photoinitiators & Synergists	16-17
Polymeric Photoinillators	18-19

This guide includes our most successfully used and commercially fully supported products. If your requirements cannot be met with any of these products, please configet us directly to help you find a solution.

Identification Code 151 number: Product Group M22 PP ¥ GENÖMER 1122 ¥ PPTTA 2nd number: Frinctionality 3rd and 4th number: Product reference = 2-Ethylhexyl-Acrylate - TMP(EO):TA EHA ETM ΗÖ = HDDA TM - TMPTA * TPGDA = GPTA Ask for other available dautions Product Data Color A = APHA Color G = Gardner 2 Lifefarill = Primary Irijialian Index (scale 0+6) ⇒ Primary tritation Index (QECD scale 0-4). Literemie Value = Literature Classification in accordance with the current = Instent EC directives and the CEFIC builde to the - Harmful classification and labeling of Acrylates = Dangerous for the Environment = SNUR ⇒ DSL := European Inventories (EINECS. EC ELINCS, NLP, Polymar) D N = NDSL w Toxic Substances Control Act (USA) TSCA = Canadlan Environmental NN .= NOSL Notilied CEPA U . Under Investigation Protection Act LVE = Low Volume Examplion (< 1MT) - Usted → Not listed ++ = moderate ++++ = excellent +++ = Goog

14 A

Products

Urethane (Meth)Acrylates

Product		luct	Data (Ty	plea	al Valuos)				HS & Hegis	Iratio)B		ii Cr
	Description	Functionality		Acid Value (ms: KOHA)	Viscosity JmPa.s at 25 °C (cps:at 77 °F)	18 (°C) √ 19 (°A)	Skin Intertion	DSCL (Symbol):	OSCU (Risk-Pineses)	EC.Status	Š	CEPA-Status	
GENOMER 4188/EHA	Áliphatic LA	1		Б.	[20 000	-10/3		, 18i	36/37/38-45	L	1 L.		1
DENOMER \$206	Aliphallo UMA	. 2		Ž	.9 000	· :	<u> </u>	ix	36/38	1		N.	
DENOMER + 4216	Áliphalío ÚA	2	7	3	20 000 Kenditern	-24/-11	· · 0.1º	lied	;	i L		8 >	
GENOMER 4 4517.	Áromalic (IA	2	16	3	100 00Q	-\$5/-31	· •	Xi	36A3ê	i.b	<u> </u>	6 2	-
GENOMER* 4256	Aliphetic UMA	, Ž	aG	4)15 0 <u>00</u>	يہين : ن	7	fréé	<u> </u>	L.	. L.	'NX	
QENDMEH . 456a\WSS.	Aliphatic UA	2	1.6	š	55 OOO	19/5	: . ÷	X	36/37/36	ı.	<u>. </u>	u, i	
OPUOMER, YSOX	Alighatic UMA	2	200 A	ż	9000		· · · ·	Îree		L	Ļ		
OEKOWED, 1993	jżockauntare	8	80 A	;ï	10 000 (80°C/140°F)	40 / 104	<u> </u>	χi	36/38	Ĺ	i,	oli i	
GENOMEU 4315	Aliphelic UA	3	1 G		ga 000	31 / AB	0.14	free	-	L	·	B .	
OENOMERT 4919	Aliphatic UA	. 3	16	1	Fe ggo	4/39	0.30	Îree.	- · · · · · · · · · · · · · · · · · · ·			D .	
ŒŊQWEU• 345Ω	Állpháiúi UA.	4	is	Ď	4500	337.91		Xi .	39	l:			
DENOMER* ABBO/PP.	Aliphatic UA	6	2 G	<u> </u>	11 000	30/86		· XJ ;	36/39	<u>~</u> Ь.	J.		
oenomen+ (422	Aramatla LIA	* 6	2 G	<u>. </u>	30 000	48/120	- · · ·	. xì	<u> </u>	L.		b i	1.
URETHANE ACAYLAYE 36, 283/W	Aliphaile UA Disperaton	źί	-	i	30	487.716	0,39	(ree	- 	E .	<u>، او ا</u> او او ا	NN .	
URETHANE ACRYLATE 60-12%	Aliphatio UA hydroxy functional	á	10	, ;	60,000	33761	<u> </u>	X.		il.	ا ا ا		

Ava this divisors: GENOMER . 4 (BEN) 172 GENOMER - 4716/14/22

1) In 60% Tolvens

Products

Epoxy (Meth)Acrylates

hadast Adio Adio Adio Adio Adio Adio Adio Adio	Product	Data	Typic	a1 Va	lues)	Į.		H	S & Itegist	ration	- 2.2
	Description	Functionality	Color	Acid Velue Ing KOHyai	Viscosity (mPa.s.at.25.°C) (cps at 77 °F)	Torans.	Skio Infarion	ОЅССКУумься	DSCL (Risk-Pyrrises)	ECStarts.	CEPA-Status
OFNOMEH. 5382	Al phello Epoxy Acrylate.	2	2 G	7	≦ E 1100		· ·	X	36/3B	: • *	D
OENOMER 2263	Mod. Epoxy Acrylate	2	įĠ	,,	30,000	0/(32		, XI	36/38-43	1	0
denomer 2266	Mod, Epoxy Acrylala	2	ŻĆ	1	45 000.	36/85	0.094	×	36/38	L	Ď.
ČENOMEH ŽŽBS	Mod. Epoxy Acylate	j: 2	2 G	4	25 000	40 / 104	0.0 ²	·Xi	36/36	L 1	. 0
genomen 1261	Ероху Аступіца	2	1.Ġ	4	4 000 4 000 4 0000	427 1.17.	0.00	kee	· -	L	0,
GENOMEN, SSEC	Mod. Epoxy Aciylsie	2	2 G	4	(%), C(140.L)	47/117.	<u>.</u>	, ×	26/38:	LL	į,
EPOXY MEYHACHYLAYE B7-953	Epoxy Mathacryle(e	. 2	-2 G	-	À 660 (60°C/140°F)	467 (198)	· · ·	free	٠ ٢ ٢	<u>ר</u> ו	b.

Polyester/Polyether Acrylates

Product	Produ	ct Data (Typ	Ical Val	(29)				IIS 8	Reg	istr	ation	
		Functionality Eolor	Acid Value (mg KÖH/g)	Viscostry (mPa.s.at 25 °Cl: (qqs:at 77 °F)	TB: ₹CG ≠ Tg ₹E)	Skin, Imtertien	DSCL (Symbol)	DSC. Pisk-Phrasesk	ECStique:	- 14	CEPASimus	
DENOMEN' 3384	Polyether Acrylate	3 16	y ve		1	· · · · · · · · · · · · · · · · · · ·	:		-L	[ŊŊ	ĺ
OENOMER P. 8419.	Polyether Acrylate	: 4 . 60	4 Ø5	4 600	47/1	à.ös	free	, ,	نا:	L		
oendmen+ 4167	Polyether Acrylete.	4 40	A 0.5	eoo	30/86	ō.ô°	free		L	L	Ny	
GENOWEU1:3651	Pelyester Acrylate	.B 10 (3 B	11000	25/94		χ'n	43	L	Ļ	7/7	
POLYESTER ACRYLATE 03-949	Polyester Acrylale	3 .30	8	20 000	28/82	• -	XI	36/38-43	L	l,	•	

EXHIBIT B To Holger Endres Declaration

EXHIBIT B

Table 1 Proportions in percent of the different components of the compositions according to the invention containing nanoscopic SiO₂

		•	Test n	umber				
		(corresponding to the laboratory						
			logb	ook)				
	Raw material	VB1	VB2	B1	B2			
		(75/2)	(75/3)	(75/1)	(75/4)			
a¹)	Aliphatic hexafunctional	34.4	32.4	31.4	31.5			
	urethane acrylate							
	. MW 1000							
a²)	Aromatic epoxy	37.4	35.3	34.2	34.3			
	diacrylate							
	MW 460							
b)	Isobornyl acrylate	21.3	20.0	19.4	19.5			
c)	Acid triacrylate	1.8	1.7	1.6	1.6			
	(acid index 150)							
d¹)	Acid monoacrylate	-	2.9	2.9	2.8			
d ²)	Photoinitiator	5.1	4.7	4.7	4.6			
q ₃)	Pyrogenic silicic acid		_	2.9	2.8			
e)	Acrylate-modified di- or	•	3.0	2.9	2.9			
	tri-alkoxy silane							

EXHIBIT B

Table 2 Proportions in percent of the different components of the compositions according to the invention containing nanoscopic SiO₂

Raw	Test number						
material	(corresponding to the laboratory logbook)						
as in	B3 (82/1)	B4 (82/2)	B5 (82/3)	B6 (82/4)			
Table 1							
a¹)	32.1	31.5	30.9	29.6			
a ²)	34.9	34.3	33.7	32.2			
b)	19.8	19.5	19.1	18.3			
c)	. 1.7	1.7	1.6	1.6			
d¹)	2.8	2.8	2.7	2.6			
d ^z)	4.7	4.6	4.5	4.4			
q ₃)	0.9	2.8	4.5	8.7			
e)	2.9	2.9	2.8	2.7			

Table 3 Proportions in percent of the different components of the compositions according to the invention containing nanoscopic Al_2O_3

_	· ·	•	•				
Raw	Tested number						
material	(corresponding to the Laboratory Logbook)						
as in	B7 (86/1)	B8 (86/2)	B9 (86/3)	B10 (86/4)			
Table 1*	•						
a')	32.3	32.1	31.6	31.0			
a ²)	35.1	35.0	34.5	33.8			
b)	19.9	19.8	19.5	19.2			
c)	1.7	1.7	1.7	1.6			
d¹)	2.9	2.9	2.8	2.8			
d ²)	4.8	4.8	4.7	4.6			
d ³)*	0.4	0.9	2.3	4.2			
e)	2.9	2.9	2.8	2.8			

^{*} pyrogenic aluminum oxide

EXHIBIT B

Table 4 Influence of micronized fillers on the scratch resistance of the hardened coating agent on brushed steel

Test number	Hardness test pencil 318	Abrasion resistance on a scale
	(Erichsen)	from 1-10*
		(5 = brushed steel)
VB1	-	
VB2	L _	
B1	+	
B2	+	
В3	-	
B4	+	·
B5	+	
B6 ,	++	
B7		3
B8		1-2
B9		1
B10		1

^{*} Optical assessment of abrasion caused by saponified steel wool, which for a supporting weight of 1.2 kg rotates at 66 rpm for 1 min on the coated steel surface:

- 1. not visible
- 2 hardly visible
- 3 visible/hardly scratched
- 4 well visible/scratched
- 5 very visible/strongly scratched (corresponds to the abrasion behavior of brushed steel)