



# Ethernet@Automotive webinar series

Moving Forward: Tool Supported Development for Automotive Ethernet in Time Sensitive Networks



# Agenda

| Introduction                                         | 3  |
|------------------------------------------------------|----|
| Recap: Physical layers, network topology & protocols |    |
| TSN / AVB in a nutshell                              | 3  |
| Analysis, simulation & media processing concept      | 14 |
| In Practice: Tool demonstration                      | 27 |
| Summary and outlook                                  | 29 |



# Application area





# Agenda

|   | Introduction                                         | 3   |
|---|------------------------------------------------------|-----|
| • | Recap: Physical layers, network topology & protocols | _ 5 |
|   | TSN / AVB in a nutshell                              | 8   |
|   | Analysis, simulation & media processing concept      | 14  |
|   | In Practice: Tool demonstration                      | 27  |
|   | Summary and outlook                                  | 29  |
|   |                                                      |     |



### **Network Characteristics**

### CAN (FD)

- Bus
- ▶ Broadcast

#### FlexRay

- Active Star
- ▶ Broadcast

#### Ethernet

- Fully switched network (point-to-point)
- Unicast
- ► Multicast and broadcast









## AVB/TSN: Audio Video Bridging / Time Sensitive Networking

Audio/Video Time Sync



- Application area:
  - > Time synchronous data transmission
  - Assured worst case latency for data transmission
  - > Priority controlled data transmission
- Needs Ethernet Frames or VLAN Frames:
  - Various Ethernet Types: e.g. 0x88F7 (gPTP)
- Standards surrounding AVB:
  - > **IEEE 802.1AS**: Timing and synchronization
  - > IEEE 802.1Qav/Qat: Forwarding and queuing, stream reservation (QoS)
  - > IEEE 1722: Audio/Video Transport Protocol



# Agenda

|   | Introduction                                         | 3   |
|---|------------------------------------------------------|-----|
|   | Recap: Physical layers, network topology & protocols | - 5 |
| • | TSN / AVB in a nutshell                              | 8   |
|   | Analysis, simulation & media processing concept      | 14  |
|   | In Practice: Tool demonstration                      | 27  |
|   | Summary and outlook                                  | 29  |
|   |                                                      |     |



## Basic Message Layout



- ▶ TPID Tag Protocol Identifier; fix value of 0x8100 (Ethertype for VLAN)
- ▶ TCI Tag Control Identifier
  - > PCP Priority Code Point (large value represents high priority)
  - > CFI Canonical Format Indicator
  - VID VLAN Identifier



## Audio Video Bridging - AVB

### Transport of audio and video streams

- Through standard Ethernet network technology
- With simple cabling
- ▶ Fast and in real-time
- Well synchronized with a global time and prioritized compared to other streams and/or frames





## Why AVB?

#### Significant increase of Audio/Video applications

- Camera devices (rear view, front view, side view)
  - Virtual surround view, accident avoidance, pre-crash preparation
- Infotainment

#### Significant increase for control data as well

- Fast backbone needed
- Consideration of time-data relation required

#### Guarantees for Quality of Service (QoS) required

- ▶ Fast-Ethernet (Full-Duplex)
  - No message priority consideration
  - Latency not defined
- vs. AVB (Full-Duplex with Bandwidth Reservation)
  - ▶ Time synchronization
  - Bandwidth reservation
  - Worst-case latency presetting



## Best Master Clock Algorithm (BMCA)

### **Time-Synchronization Spanning Tree**

The result of all BMCA measures is the "Time-Synchronization Spanning Tree" with

- well defined port roles
- well defined priority
- well defined position



Source: IEEE 802.1AS



## Audio Video Transport Protocol (AVTP)

- AVTP delivers the data stream from one Endpoint to another by carrying:
  - Stream and control data
  - Sequence number
  - Presentation time
  - Validation flags
  - Sub-protocols
  - Sub-protocol data
- Support of several A/V formats
- Presentation time synchronizes Talker and Listener



# Agenda

|   | Introduction                                         | 3  |
|---|------------------------------------------------------|----|
|   | Recap: Physical layers, network topology & protocols | 5  |
|   | TSN / AVB in a nutshell                              | 3  |
| • | Analysis, simulation & media processing concept      | 14 |
|   | In Practice: Tool demonstration                      | 27 |
|   | Summary and outlook                                  | 29 |
|   |                                                      |    |



#### **Trace Window**





#### **AVB IL**

- Simulation of Stream Talker
  - Provides media data
    - Direct access to media source files (audio, video\*) to simplify streaming
  - Protocol handling (e.g. gPTP, AVTP, ...)
  - AVTP
    - > Support various media protocol formats (AAF, CVF, ...)
    - Clock Reference Format
  - Quality of Service
    - > Support Forwarding and Queueing of Time Sensitive Streams (FQTSS)
- Simulation of Stream Listener
  - Counterpart to talker
    - > Enable communication (e.g. when SRP is used)
  - Protocol handling (gPTP, AVTP)
  - Register to stream(s)
    - > Easy access to media data and protocol information



#### **AVB IL**

- Simulation of Clock Master
  - Best Master Clock Selection Algorithm (BMCA)
  - ▶ Support IEEE 802.1AS
    - > Clock synchronization for phase and frequency
  - ▶ gPTP
    - > Precise gPTP time due to interface hardware time stamps
    - > gPTP is equal to CANoe simulation time
- Simulation of Clock Slave
  - Precise gPTP time due to interface hardware time stamps
- Stream Reservation Protocol\*

<sup>\*</sup> Not used in automotive profile (defined by AVnu Alliance)



### **AVBIL**





#### **AVB IL**





## AVB IL – Time Synchronization



Ethernet Interface VN5610

TV Receiver



## AVB IL – AVTP Timing



- ▶ Max. Transit Time Class A Network < 2 ms</p>
- ▶ Max. Transit Time Class B Network < 50 ms

#### ——IEEE Definition



## AVB IL – AVTP Audio Packetization (FQTSS)





## Audio / Video

#### Media Stream Control for Panels





#### Ethernet Interface VN5610



- ▶ 2 x RJ45 for IEEE802.3 (100BASE-TX and 1000BASE-T) physical layer
- ▶ 1 x D-Sub9 for 2 Channel BroadR-Reach
- ▶ 1 x USB2.0 (connection to PC)
- 2 x Binder (Hw-Sync + ext. Power)
- D-Sub9 for 2 Channel CAN/CAN-FD
- ▶ 1 x RJ45 (reserved)



#### Ethernet Interface VN5640



- New member of the Ethernet interface family
  - Supported starting CANalyzer / CANoe 9.0 SP3
  - ▶ 16 Ethernet channels for efficient network access (12 x BR; 4 X IEEE)
  - ► TAP and switch capabilities
  - One I/O port for DoIP activation line trigger
  - Seamless integration into tool chain
  - Two high speed CAN/CAN-FD channels
  - ▶ USB3.0 (connection to PC)



### Expected AVTP timing with hardware supported transmission



- Repetition rate ±20µs
- ► Guaranteed repetition rate ±50µs



# Agenda

| Introduction                                         | 3  |
|------------------------------------------------------|----|
| Recap: Physical layers, network topology & protocols |    |
| TSN / AVB in a nutshell                              | 3  |
| Analysis, simulation & media processing concept      | 14 |
| In Practice: Tool demonstration                      | 27 |
| Summary and outlook                                  | 29 |









# Agenda

| • | Summary and outlook                                  | 29  |
|---|------------------------------------------------------|-----|
|   | In Practice: Tool demonstration                      | 27  |
|   | Analysis, simulation & media processing concept      | 14  |
|   | TSN / AVB in a nutshell                              | \ 8 |
|   | Recap: Physical layers, network topology & protocols | 5   |
|   | Introduction                                         | 3   |



## Summary

- AVB / TSN provides mechanisms for the synchronization of network participants for reliable, low-latency media transmission.
- "Lip-sync" is achieved



A common time base is shared amongst all network components





## Summary

A well defined protocol set is described to fulfil the requirements

|   | Service<br>Control/Discovery                                     | Diagnostics and<br>Flash Update | Measurement and<br>Calibration | Audio/Video<br>Time Sync | Smart Charging                 |
|---|------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------|--------------------------------|
| 7 |                                                                  |                                 |                                |                          |                                |
| 6 | SOME/IP                                                          | DoIP                            | ХСР                            |                          |                                |
| 5 |                                                                  |                                 |                                | AVB / TSN                | <b>ISO 15118</b><br>Part 1 + 2 |
| 4 | TCP/UDP                                                          |                                 |                                |                          |                                |
| 3 | IPv4/IPv6                                                        |                                 |                                |                          |                                |
| 2 | IEEE Ethernet MAC + VLAN                                         |                                 |                                |                          | ISO 15118                      |
| 1 | Ethernet PHY (IEEE 100Base-T1, IEEE 100Base-TX, IEEE 1000Base-T) |                                 |                                |                          | Part 3                         |

Mature **PC tools & hardware** for analysis & simulation purposes are available





## CANoe/CANalyzer.Ethernet

- CANoe/CANalyzer Demo including Ethernet:
  - Measuring, analyzing, simulation, testing of Ethernet and IP based communication
  - Free demo version:

www.vector.com/vi downloadcenter de.html

Products: CANoe, Categories: Demos



CANoe/CANalyzer.Ethernet



For more information about Vector and our products please visit

www.vector.com

Author:
Pfeifer, Patrick
Vector Informatik GmbH