MATH 127 Calculus for the Sciences

Lecture 8

Today's lecture

Last time

Functions involving absolute values:

- How to write them as piecewise defined functions?
- What are transition points?
- What are their derivatives?

Today

Course note coverage Section 2.2

Integral functions:

- Quick review of theory (you should have read about it in course note before today)
- Examples

Quiz 3 is next Wednesday!

Coverage:

- 1. Topics that were on the coverage of Quiz 2 might show up in Quiz 3.
- 2. Left/right Riemann sum approximation, e.g. do the left Riemann sum approximation by splitting interval into 8 pieces.
- 3. Definite integral, e.g. evaluate this definite integral/what does the definite integral of speed represent?
- 4. Indefinite integral, e.g. evaluate this indefinite integral (don't forget +C).
- 5. Initial value problem, e.g. Given y' = ..., and initial condition y(0) = ..., solve for y.
- 6. Piecewise defined function, e.g. express a function by defining it piecewise.
- 7. Absolute value function, e.g. find the derivative of this function that has absolute value signs in it.

Check this out

https://chatgpt.com/share/68cc4e49-c3ac-8006-8f78-be51d3735a7d

I asked AI to generate a powerpoint that illustrates left Riemann sum vs right Riemann sum.

Integral functions

First, regarding integrals, we know

- 1. y = f(x) is a function with variable x.
- 2. $\int f(x)dx$ is a family of functions with variable x, with a constant of integration C.
- 3. $\int_0^1 f(x)dx$ is a number, it has nothing to do with x or C!
- 4. $\int_0^t f(x)dx$ is a function with variable t.

Definition For a number a, and a function f(x), we have

$$g(t) = \int_{a}^{t} f(x)dx$$

is a function with variable t. Such a function is called an integral function.

Example

$$g(t) = \int_2^t 3x^2 dx = \boxed{\boxed{}}_2^t = \boxed{\boxed{}}$$

Why do we need integral functions?

Because sometimes we have crazy functions like

$$f(t) = \int_0^t \frac{\sqrt{\sin(x)}}{x} dx$$

$$g(t) = \int_0^t e^{-x^2} dx$$

that we just don't know how to integrate. But the notion of integral functions still allow us to define and study them.

Derivative of integral functions

Let F(x) be an anti-derivative of f(x) (we might not know how to compute it, but let us denote it abstractly as F(x)). Then

$$g(t) = \int_{a}^{t} f(x)dx = F(x)\Big|_{0}^{t} = F(t) - F(a).$$

Hence

$$g'(t) = F'(t) = \boxed{}$$

Theorem (FTC - Part 1) Suppose f(x) is continuous and $g(t) = \int_{0}^{t} f(x)dx$.

Then

$$g'(t) = f(t).$$

Let r(t) be the rate in mmol/hr at which insulin is produced at time t in hours in a patient.

1. What does the integral function

$$S(x) = \int_0^x r(t)dt$$

represent?

- 2. What is the unit of the function S(x)?
- 3. If $r(t) = e^{-t}$, find the values of S(1), S(3), S(5).
- 4. We want the insulin level of the patient to increase to 2 mmol. How long does it take for this to happen?

Let r(t) be the rate in mmol/hr at which insulin is produced at time t in hours in a patient.

1. What does the integral function

$$S(x) = \int_0^x r(t)dt$$

- (A) The insulin level of the patient at time x.
- (B) The insulin level of the patient at time t.
- (C) The change of insulin level of the patient between time 0 and time x.
- (D) The change of insulin level of the patient between time 0 and time t.
- 2. What is the unit of the function S(x)?
 - (A) mmol/hr
 - (B) mmol²/hr
 - (C) mmol
 - (D) mmol²
 - (E) something else?

Let r(t) be the rate in mmol/hr at which insulin is produced at time t in hours in a patient.

- 3. If $r(t) = e^{-t}$, find the values of S(1), S(3), S(5).
- 4. We want the insulin level of the patient to increase to 2 mmol. How long does it take for this to happen?

00000

Consider the function

$$g(u) = \int_0^u h(v)dv,$$

such that h(0) = 1, h(1) = 3, h(2) = 1, h(3) = 0.5.

- 1. What is g'(u)?
- 2. Suppose g(1) = 0.5. What is the tangent line of g at u = 1?
- 3. Express g(4) as an definite integral of h(v).
- 4. Approximate the integral you wrote down in the previous part, using left Riemann sum approximation with n=4 subdivisions.

Consider the function

$$g(u) = \int_0^u h(v) dv,$$

such that h(0) = 1, h(1) = 3, h(2) = 1, h(3) = 0.5.

1. What is q'(u)?

Answer: g'(u) = by

2. Suppose g(1) = 0.5. What is the tangent line of g at u = 1?

Answer: The tangent line passes through g at point

The slope of the tangent line is

The point-slope form of the tangent line is

$$y = \boxed{(x - \boxed{)} + \boxed{}}$$

Extra exercise Approximate g(1.01) using the tangent line of g(u) at u = 1.

Consider the function

$$g(u) = \int_0^u h(v) dv,$$

such that h(0) = 1, h(1) = 3, h(2) = 1, h(3) = 0.5.

1. Express g(4) as an definite integral of h(v).

Answer:
$$g(4) =$$

2. Approximate the integral you wrote down in the previous part, using left Riemann sum approximation with n=4 subdivisions.