МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический

университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

 Φ АКУЛЬТЕТ Φ Н

КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Теория вероятности и математическая статистика

Домашняя работа №5

Группа: ФН11-51Б

Вариант №15

Студент: Пунегов Д.Е.

Преподаватель: Облакова Т.В.

Задача №5 Проверка гипотез о параметрах нормального распределения Задание.

По данной выборке из нормально распределенной генеральной совокупности:

- 1) постройте критерий S_2 уровня α и проверьте гипотезу H_0 : $a=a_0$ против односторонней альтернативы H_2 , если σ неизвестно;
- 2) постройте критерий S_3 уровня α и проверьте гипотезу H_{01} : $\sigma = \sigma_0$ против альтернативы H_3 , если α неизвестно;
- 3) постройте оптимальный критерий S_I уровня α и проверьте H_0 против простой альтернативы H_I : $\alpha = \alpha_I$, если $\sigma = \sigma_I$ известно;
- 4) найдите ошибку второго рода $\beta = P(\overline{S_I}|H_I)$ критерия S_I ;
- 5) найдите такие значения a_I , для которых ошибка второго рода критерия S_I не превосходит ε ;
- 6) постройте совмещенные графики гистограммы относительных частот данной выборки и плотностей нормального распределения с параметрами (a_0, σ_1) и (a_1, σ_1)

Bap	α	a_0	<i>H</i> ₂ :	σ_0	H_3 :	H_1 : $a = a_1$	σ_{l}	ε	n
15	0.04	-4	$a < a_0$	2.0	$\sigma > \sigma_0$	$a_1 = -4.5$	2.7	0.15	80

Проверка гипотез о параметрах нормального распределения

0. Подготовка

0.1 Импорт нужных библиотек

```
In [2]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from IPython.display import Markdown as md
   import math
```

0.2 Импорт выборки

```
In [3]: df = pd.read_csv ('lab5_data.csv', sep=';', header=None, decimal=",")
    df = df.astype('float')
    pd.set_option('display.expand_frame_repr', False)

heading_properties = [('font-size', '18px')]
    cell_properties = [('font-size', '14px')]

dfstyle = [dict(selector="th", props=heading_properties), dict(selector="td", props=cell_properties)]

df.style.set_table_styles(dfstyle)

print(df)

    0     1     2     3     4     5     6     7     8     9

0 -12.953 -6.924     -3.899 -5.577 -1.907 -7.126 -2.946 -5.936 -8.230 -7.434

1     1.866 -7.803 -11.133 -4.278 -3.778 -7.213 -4.846 -8.924 -2.306 -4.360
2     -1.266     0.274     -4.223 -4.767 -1.447 -2.341     3.133 -3.707 -6.248 -1.714
3     -5.386 -3.212 -11.145 -6.166 -3.878 -1.743 -4.606 -2.666 -4.795 -2.660
4     -3.798 -2.742 -3.989 -7.833 -5.028 -4.380 -2.598 -7.183 -4.557 -3.034
5     -7.432 -7.505 -3.089 -5.018     0.633 -7.363 -1.919 -6.944 -1.967 -7.336
6     -2.767 -6.135 -3.173 -2.852 -7.748 -1.776 -4.381 -5.021     0.088 -4.151
7     -4.699 -1.634 -4.809     1.433 -2.706 -6.897 -1.722 -4.494 -9.873 -3.988
```

0.3 Крайние члены вариационного ряда и размах выборки

```
In [4]: n = df.shape[0] * df.shape[1]
print('Количество элементов n:', n)
       Количество элементов n: 80
In [5]: df_min = df.to_numpy().min()
md('$X_{{(1)}} = {}$'.format(df_min))
Out [5]: X_{(1)} = -12.953
Out[6]: X_{(n)} = X_{(80)} = 3.133
Out [7]: \omega = X_{(n)} - X_{(1)} = 16.086
```

0.4 Группировка данных

0.4.1 Находим число интервалов

```
In [8]: l = math.trunc(1 + np.log2(n))
print('Количество интервалов l = {}'.format(l))
           Количество интервалов l = 7
```

0.4.2 Находим шаг интервалов

```
In [9]: h = df_diff / l
print('Размер интервалов h = {}'.format(h))
```

Размер интервалов h = 2.29799999999996

0.4.3 Построение интервалов

Для построения гистограммы нам понадобится сначала столбец средних точек на каждом интервале:

```
In [10]: intervals = [(round(df_min + i * h, 3), round(df_min + (i + 1) * h, 3)) for i in range(l)] intervals
In [11]: histogram = pd.DataFrame()
  interval_rows = ['[{}, {})'.format(val[0], val[1]) for val in intervals]
  interval_rows[l - 1] = '[{}, {}]'.format(intervals[l - 1][0], intervals[l - 1][1])
  histogram['Интервалы'] = interval_rows
  histogram['Середины интервалов'] = [(val[0] + val[1]) / 2 for val in intervals]
                  histogram
```

Out[11]:

	Интервалы	Середины интервалов
0	[-12.953, -10.655)	-11.804
1	[-10.655, -8.357)	-9.506
2	[-8.357, -6.059)	-7.208
3	[-6.059, -3.761)	-4.910
4	[-3.761, -1.463)	-2.612
5	[-1.463, 0.835)	-0.314
6	[0.835, 3.133]	1.984

Ну а дальше нужно посчитать количество точек, которые входят в каждый из интервалов:

Out[12]:

	Интервалы	Середины интервалов	Количество точек
0	[-12.953, -10.655)	-11.804	3
1	[-10.655, -8.357)	-9.506	2
2	[-8.357, -6.059)	-7.208	18
3	[-6.059, -3.761)	-4.910	26
4	[-3.761, -1.463)	-2.612	23
5	[-1.463, 0.835)	-0.314	5
6	[0.835, 3.133]	1.984	3

Убедимся, что все точки вошли в интервалы:

```
In [13]: print('Количество точек: {}'.format(histogram['Количество точек'].sum()))
```

Количество точек: 80

Посчитаем относительные частоты:

```
In [14]: histogram['Относительная частота'] = histogram['Количество точек'] / n histogram
```

Out[14]:

	Интервалы	Середины интервалов	Количество точек	Относительная частота
0	[-12.953, -10.655)	-11.804	3	0.0375
1	[-10.655, -8.357)	-9.506	2	0.0250
2	[-8.357, -6.059)	-7.208	18	0.2250
3	[-6.059, -3.761)	-4.910	26	0.3250
4	[-3.761, -1.463)	-2.612	23	0.2875
5	[-1.463, 0.835)	-0.314	5	0.0625
6	[0.835, 3.133]	1.984	3	0.0375

0.4.4 Построение гистограммы относительных частот

```
In [15]: import seaborn as sns
    sns.set_theme()
    plt_figure(figsize=(10,6))
    x = histogram 'Cepeдины интервалов']
    y = [i / h for i in histogram 'OTHOCUTEЛЬНАЯ VACTOTA']]
    plt_bar(x, y, width=h)
    plt.show()

0.14

0.12

0.10

0.08

0.00

0.00

0.00

0.00

0.00
```

0.4.5 Выборочные характеристики

Выборочное среднее

Out[16]: Выборочное среднее <u>X</u> = -4.428

Выборочная дисперсия

0.5 Константы

```
In [18]: alpha = 0.04

a_0 = -4

sigma_0 = 2

a_1 = -4.5

sigma_1 = 2.7

eps = 0.15

n = 80
```

1. Постройте критерий S_2 уровня α и проверьте гипотезу H_0 : a=-4 против односторонней альтернативы H_2 , если σ неизвестно

Построим критерий S_2 уровня а и проверим гипотезу $H_0:$ а = -4 против левосторонней альтернативы $H_2: a < -4$ если σ неизвестно

Критическое множество для среднего при альтернативе H_2 : $a < a_0$ имеет вид:

$$S_2 = \{\overline{x} < C_2\}$$

Рассмотрим статистику:

$$\frac{\overline{x} - a_0}{\sqrt{s^2}} \sqrt{n} \sim t(n - 1)$$

Тогда по определению ошибки 1 рода а = $P(S_2|H_0)$:

$$\alpha = P(\overline{x} < C_2 | a = a_0) = P\left(\frac{\overline{x} - a_0}{\sqrt{s^2}} \sqrt{n} < \frac{\overline{C_2} - a_0}{\sqrt{s^2}} \sqrt{n}\right) = F_{t(n-1)}\left(\frac{\overline{C_2} - a_0}{\sqrt{s^2}} \sqrt{n}\right) \to \frac{C_2 - a_0}{\sqrt{s^2}} = t_\alpha(n-1)$$

Выразим C_2 :

```
In [19]: from scipy.stats import t  C_2 = a_0 + t.ppf(alpha, n-1) * np.sqrt(s_2) / np.sqrt(n) \\  md('$$C_2 = a_0 + \\frac{\{t_{\{(\alpha)\}}(n-1)\}}{\{(\alpha)\}} * s = {\}$$'.format(round(C_2, 5))) }  Out[19]:  C_2 = a_0 + \frac{t_a(n-1)}{\sqrt{n}} * s = -4.57922  The [20] and [4] | Continuous approximation of the continuous a
```

In [20]: $md('''Cледовательно, гипотеза <math>H_0:$ \$a = -4 принимается, потому что \$\overline{{x}} = {}\$ не принадлежит критическому множеству \$S_2\$ = {{\$\overline{{x}}} < {}\$\$}'''.format(round(x_mean, 5), round(C_2, 5))} Out[20]: Следовательно, гипотеза $H_0:$ a = -4 принимается, потому что $\overline{x} = -4.42759$ не принадлежит критическому множеству $S_2 = {\{}$

Out [20]: Следовательно, гипотеза H_0 : a = -4 принимается, потому что $\overline{x} = -4.42759$ не принадлежит критическому множеству $S_2 = \{\overline{x} < -4.57922\}$

2. Постройте критерий S_3 уровня ${\mathfrak a}$ и проверьте гипотезу H_01 : ${\mathfrak a}$ =2 против альтернативы H_3 , если а неизвестно

Критическое множество для среднего квадратичного отклонения при альтернативе $H_3:\sigma>2$ имеет вид:

$$S_3 = \{s^2 > C_3\}$$

Рассмотрим статистику:

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

Тогда по определению ошибки 1 рода а = $P(S_3|H_1)$:

$$\alpha = P(s^2 > C_3 | \sigma = \sigma_0) = P\left(\frac{(n-1)s^2}{\sigma_0^2} > \frac{(n-1)C_3}{\sigma_0^2}\right) = 1 - \chi_{(n-1)}^2 \left(\frac{(n-1)s^2}{\sigma_0^2}\right) \rightarrow \frac{(n-1)C_3}{\sigma_0^2} = \chi_{1-\alpha}^2 (n-1)$$

Выразим C_3 :

- In [30]: md('''Следовательно, гипотеза $H_3:\sigma = 2.7$ отклоняется, потому что $\sigma = \{\}$ принадлежит критическому множеству $S_3 = \{\{s^2 > \{\}\}\}'''$ format(round(S_2, S_3), round(S_3, S_3))
- Out [30]: Следовательно, гипотеза $H_3: \sigma=2.7$ отклоняется, потому что $s^2=8.53317$ принадлежит критическому множеству $S_3=\{s^2>5.18074\}$

3. Постройте оптимальный критерий S_1 уровня α и проверьте H_0 против простой альтернативы H_1 :a=-4.5, если σ =2.7 известно

Воспользуемся критерием Неймана - Пирсона:

$$\begin{split} S_1 &= \left\{ \frac{L(X_1 \dots X_n, a_1)}{L(X_1 \dots X_n, a_0)} > C_4 \right\} \\ &\qquad L(X_1 \dots X_n, a) = \prod_{k=1}^n \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-(X_k - a)^2}{2\sigma_1^2}} \\ &\qquad \frac{L(X_1 \dots X_n, a_1)}{L(X_1 \dots X_n, a_0)} &= e^{\left(\sum\limits_{k=1}^n \frac{-(X_k - a_0)^2}{2\sigma_1^2}\right) + \left(\sum\limits_{k=1}^n \frac{-(X_k - a_0)^2}{2\sigma_1^2}\right)} = e^{\frac{1}{2\sigma_1^2} \left(\sum\limits_{k=1}^n 2X_k a_1 - \sum\limits_{k=1}^n 2X_k a_0 - na_1^2 + na_0^2\right)} > C_4 \end{split}$$

Получаем, что:

$$\begin{split} \sum_{k=1}^{n} 2X_k a_1 - \sum_{k=1}^{n} 2X_k a_0 - na_1^2 + na_0^2 > 2ln(C_4)\sigma_1^2 \\ 2(a_1 - a_0) \sum_{k=1}^{n} X_k > 2ln(C_4)\sigma_1^2 + na_1^2 - na_0^2 \\ \\ \sum_{k=1}^{n} X_k > \frac{ln(C_4)\sigma_1^2}{a_1 - a_0} + \frac{n(a_1 + a_0)}{2} \\ \\ \overline{x} > \frac{ln(C_4)\sigma_1^2}{n(a_1 - a_0)} + \frac{(a_1 + a_0)}{2} = C_5 \end{split}$$

Таким образом получим критическое множество:

$$S_1 = \{\overline{x} > C_5\}$$

Рассмотрим статистику:

$$\frac{\overline{x} - a_0}{\sigma_1} \sqrt{n} \sim N(0, 1)$$

Тогда по определению ошибки 1 рода а = $P(S_1 | H_0)$:

$$\alpha = P(\overline{x} < C_5 | a = a_0) = P\left(\frac{\overline{x} - a_0}{\sigma_1} \sqrt{n} < \frac{C_5 - a_0}{\sigma_1} \sqrt{n}\right) = \Phi\left(\frac{C_5 - a_0}{\sigma_1} \sqrt{n}\right) \to \frac{C_5 - a_0}{\sigma_1} \sqrt{n} = u_\alpha$$

Выразим C_5 :

In [24]:
$$md('''Cледовательно, гипотеза $H_0:a = -4$ $ принимается, потому что $\operatorname{voverline}\{x\} = \{\}$ $ не принадлежит критическому множеству $S_1 = \{\{\text{voverline}\{x\}\} > \{\}\}\}'''.format(round(x_mean, 5), round(C_5, 5)))$$$

Out [24]: Следовательно, гипотеза $H_0: a=-4$ принимается, потому что $\overline{x}=-4.42759$ не принадлежит критическому множеству $S_1=\{\overline{x}>-4.52848\}$

4. Найдите ошибку второго рода $eta = P(\overline{S_1} \mid H_1)$ критерия S_1

Найдём ошибку второго рода $eta=P(\overline{S_1}|H_1)$ критерия $S_1=\{\overline{x}<-4.579\}$. Согласно определению ошибки второго рода:

5. Найдите такие значения a_1 , для которых ошибка второго рода критерия S_1 не превосходит ϵ

Оптимальное значение a_1 , при котором ошибка второго рода не превышает arepsilon , можно вычислить по формуле:

$$\beta = P(x_{mean} > C_5) | a = a_1') = P(\frac{x_{mean} - a_1'}{\sigma_1} \sqrt{n}) > \frac{C_5 - a_1'}{\sigma_1} \sqrt{n}) = 1 - \Phi(\frac{C_5 - a_1'}{\sigma_1} \sqrt{n}) = \epsilon$$

$$\frac{C_5 - a_1'}{\sigma_1} \sqrt{n} = u_{1-\epsilon}$$

6. Постройте совмещенные графики гистограммы относительных частот данной выборки и плотностей нормального распределения с параметрами (a_0,σ_1) и (a_1,σ_1) .

Совмещённые графики:

```
In [29]:
    import seaborn as sns
    sns.set_theme()
    plt.figure(figsize=(10,6))
    x = histogram['Середины интервалов']
    y = [i / h for i in histogram['Относительная частота']]
    plt.bar(x, y, width=h)

x_arr = np.arange(-20, 20, 0.0001)
    plt.plot(x_arr, norm.pdf(x_arr, a_0, sigma_1), label='F(a0, sigma1^2)')
    plt.plot(x_arr, norm.pdf(x_arr, a_1, sigma_1), label='F(a1, sigma1^2)', linestyle = 'do plt.legend()
    plt.show()
```


7. Выводы

В процессе выполнения задания мы освоили этапы первоначальной обработки статистических данных и изучили основные понятия, связанные с этой темой.

Мы научились по заданной выборке составлять интервальный вариационный ряд, который является результатом группировки данных, а также вычислять выборочное среднее и среднее квадратичное отклонение выборки. На следующем этапе был разобран способ построения гистограммы относительных частот.

Затем, были посчитаны критические множества для среднего и среднего квадратичного отклонения, а также проверены 3 гипотезы с разными альтернативами. Была найдена ошибка второго рода для критерия S_1 и такое значение параметра a, при котором ошибка второго рода критерия S_1 не превосходит ε .

Также были построены совмещенные графики гистограммы относительных частот x и плотностей нормального распределения $N(a_0,\sigma_1)$ и $N(a_1,\sigma_1)$. По графику видно, что кривая плотности нормального закона для альтернативы H_1:a=-4.5 лучше ложится на гистограмму, чем в случае основной гипотезы H_0:a=-4, что можно объяснить высокой вероятностью ошибки второго рода.