

Graph Neural Network

Application to Molecule Solubility Prediction

GraphsIntroduction

What is Graphs?

- Graph is an abstract data structure in computer science
- "A set of objects, and the connections between them, are naturally expressed as a graph"

How to Represent Graph Data Structure?

Adjacency List

[[0, 1], [1, 2], [2, 3], [3, 4]]

Adjacency Matrix

	0	1 0 1 0 0	2	3	4
0	0	1	0	0	0
1	1	0	1	0	0
2	0	1	0	1	0
3	0	0	1	0	1
4	0	0	0	1	0

G(V, E)

GraphsGraph Data

What type of data can be represented as Graphs?

Images

Texts

Oliak an an imaga nival ta taggla ita valua, and aan haw tha granh ranzaantatian ahanga

Graph are all around us

Graphs Focus

Our Focus: Graph-level Prediction

Molecular Structure

https://pytorchgeometric.readthedocs.io/en/2.6.1/_modules/torch_geometric/utils/ smiles.html

Overview ESOL

```
# use rdkit to generate molecule features while importing dataset
import rdkit
from torch_geometric.datasets import MoleculeNet
# Load the ESOL dataset
data = MoleculeNet(root='.', name="ESOL")
data
```

Packages:

Dataset: torch_geometric.datasets.MoleculeNet

ESOL is a small dataset consisting of water solubility data for 1128 compounds.

ESOL \rightarrow cn1c=nc2=c1c(=0)n(c(=0)n2c)c \rightarrow from smiles() \rightarrow torch_geometric.data.Data instance

Data.x [['atomic_num', 'chirality', 'degree', 'formal_charge', num_hs', 'num_radical_electrons', 'hybridization', 'is aromatic', 'is in ring']]

Data.y [[solubility]]

Data.edge_att [['bond_type', 'stereo', 'is_conjugated']]

Data.edge_index Adjacency list

Data

A close look to the Dataset

Data.x

```
# Investigating the features

# Shape: [num_nodes, num_node_features]

data[0].x

✓ 0.0s

tensor([[8, 0, 2, 5, 1, 0, 4, 0, 0],
        [6, 0, 4, 5, 2, 0, 4, 0, 0],
        [6, 0, 4, 5, 1, 0, 4, 0, 1],
        [8, 0, 2, 5, 0, 0, 4, 0, 1],
        [6, 0, 4, 5, 1, 0, 4, 0, 1],
        [8, 0, 2, 5, 0, 0, 4, 0, 0],
```

Data['smiles']

Data.edge_index

```
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
molecule = Chem.MolFromSmiles(data[0]["smiles"])
molecule

✓ 0.0s
```


Graph Convolutional Neural NetworkModel

$$\mathbf{X}' = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},$$

$$A = \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{matrix} \qquad X = \begin{bmatrix} 1 & 2 \\ -3 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\Theta = \frac{w_{00}}{w_{10}} \quad \frac{w_{01}}{w_{11}} \quad \frac{w_{02}}{w_{12}} \quad \frac{w_{03}}{w_{13}} \quad \frac{w_{04}}{w_{14}} \quad \frac{w_{05}}{w_{15}}$$

Adjacency Matrix

$$\hat{A} = A + I = \begin{matrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 + 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{matrix}$$

$$= \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}$$

Normalized Degree Matrix

$$\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}$$

$$\widehat{D^{-1/2}} = \begin{array}{ccc} 1/\sqrt{3} & 0 & 0\\ \widehat{D^{-1/2}} = & 0 & 1/\sqrt{3} & 0\\ 0 & 0 & 1/\sqrt{3} \end{array}$$

Projected to Higher Dimensions

$$\mathbf{X}\mathbf{\Theta}$$
 3 × 2 2 × 6 = 3 × 6

```
# GCN layers
self.initial_conv = GCNConv(data.num_features, embedding_size)
self.conv1 = GCNConv(embedding_size, embedding_size)
self.conv2 = GCNConv(embedding_size, embedding_size)
self.conv3 = GCNConv(embedding_size, embedding_size)
# Output layer
self.out = Linear(embedding_size*2, data.y.shape[1]) # output shape 1 = regression
# twice the size for accommodating the global pooling layer
```


Graph Convolutional Neural Network

Forward Propagation

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$\mathbf{X}' = \mathbf{\hat{D}}^{-1/2}\mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}\mathbf{X}\mathbf{\Theta},$$

 $tanh(X'_{3\times 6})$

```
def forward(self, x, edge_index, batch_index):
 # First Conv layer
 hidden = self.initial_conv(x, edge_index)
 hidden = F.tanh(hidden) # activation function
 # Other Conv layers
 hidden = self.conv1(hidden, edge index)
 hidden = F.tanh(hidden)
 hidden = self.conv2(hidden, edge_index)
 hidden = F.tanh(hidden)
 hidden = self.conv3(hidden, edge_index)
 hidden = F.tanh(hidden)
```

```
Global Pooling Layer (stack different aggregations)
hidden = torch.cat([gmp(hidden, batch_index),
                    gap(hidden, batch_index)], dim=1)
# gmp = global max pooling
# gap = gloabl average pooling
# batch_index is used to select the relavent nodes for the pooling operation
# Apply a final (linear) classifier.
out = self.out(hidden)
return out, hidden
```