思考题1

1. 设f(x) 是定义在R上的函数,且对 $\forall x_1, x_2 \in R$,都有 $f(x_1 + x_2) = f(x_1)f(x_2)$

若 f'(0)=1, 证明: 对 $\forall x \in \mathbb{R}$, 都有 f'(x)=f(x).

$$f(x) = f(x+0) = f(x)f(0) = 0$$
, $\Rightarrow f'(x) = 0 = f(x)$.

若f(0) = 1,则对∀x ∈ R,有

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x)f(\Delta x) - f(x)}{\Delta x}$$

$$= f(x)\lim_{\Delta x \to 0} \frac{f(\Delta x) - 1}{\Delta x} = f(x)\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= f(x)f'(0) = f(x).$$

2. 设
$$f(x)$$
 在 $x = a$ 可导,且 $f(a) \neq 0$,求 $\lim_{n \to \infty} \left(\frac{f(a + \frac{1}{n})}{f(a)} \right)^n$.

解: :: f(x)在x = a可导,:. f 在x = a 连续,有

$$\lim_{n \to \infty} \left(\frac{f(a + \frac{1}{n})}{f(a)} \right)^n = \lim_{n \to \infty} \left(1 + \left(\frac{f(a + \frac{1}{n}) - f(a)}{f(a)} \right)^{\frac{f(a)}{f(a + \frac{1}{n}) - f(a)}} \right)^{\frac{f(a)}{\frac{1}{n}} - f(a)} = e^{\frac{f'(a)}{f(a)}}.$$

3. 试构造一个函数 f(x), 它在 $(-\infty, +\infty)$ 上处处不可导,

但
$$\lim_{n\to\infty} n\left(f(x+\frac{1}{n})-f(x)\right)$$
 处处存在.

答: Dirichlet函数.

证明: 当 $\alpha > 1$ 时, f'(0) 存在; 当 $\alpha \le 1$ 时, f'(0) 不存在.

提示:
$$\alpha > 1$$
时, $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x^{\alpha - 1} \sin \frac{1}{x} = 0.$

$$\alpha \le 1$$
时, $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x^{1 - \alpha}} \sin \frac{1}{x}$ 不存在(?).

5. 证明: 若 f(x) 在 [a,b] 上连续,且 f(a) = f(b) = K ,

 $f'_{+}(a)f'_{-}(b)>0$,则至少存在一点 $\xi\in(a,b)$,使得 $f(\xi)=K$.

提示: 不妨设 $f'_{+}(a) > 0, f'_{-}(b) > 0$.

由
$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} > 0$$
和极限的保号性, $\exists \delta_{1} > 0$,

对
$$\forall x \in (a, a + \delta_1), \frac{f(x) - f(a)}{x - a} > 0.$$

取
$$x_1 \in (a, a + \delta_1)$$
,则 $\frac{f(x_1) - f(a)}{x_1 - a} > 0$, $\Rightarrow f(x_1) > f(a) = K$.

同理, $\exists x_2 \in (b-\delta_2,b)(\delta_2 > 0)$,使得 $f(x_2) < f(b) = K$.

对g(x) = f(x) - K在区间 $[x_1, x_2]$ 上用零点定理,即得结论成立.

6. 设 f(x) 在 x_0 可导,数列 α_n, β_n 满足:

$$\lim_{n\to\infty}\alpha_n = \lim_{n\to\infty}\beta_n = x_0, \quad \alpha_n < x_0 < \beta_n \ (n \in N^+)$$

证明: $\lim_{n\to\infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f'(x_0).$

证 首先,容易看到

$$\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = \frac{f(\beta_n) - f(x_0) + f(x_0) - f(\alpha_n)}{\beta_n - \alpha_n}$$

$$= \frac{\beta_n - x_0}{\beta_n - \alpha_n} \frac{f(\beta_n) - f(x_0)}{\beta_n - x_0} - \frac{\alpha_n - x_0}{\beta_n - \alpha_n} \frac{f(\alpha_n) - f(x_0)}{\alpha_n - x_0}.$$
(1)

where we are the state of the state of

若记
$$\lambda_n = \frac{\beta_n - x_0}{\beta_n - \alpha_n}$$
, 则 $\frac{x_0 - \alpha_n}{\beta_n - \alpha_n} = 1 - \lambda_n$, 且 $0 < \lambda_n < 1$, $0 < 1 - \lambda_n < 1$, 式(1) 可改写成
$$\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = \lambda_n \frac{f(\beta_n) - f(x_0)}{\beta_n - x_0} + (1 - \lambda_n) \frac{f(\alpha_n) - f(x_0)}{\alpha_n - x_0}.$$

但
$$f'(x_0) = \lambda_s f'(x_0) + (1 - \lambda_s) f'(x_0)$$
,故易知 $\forall \varepsilon > 0$, $\exists N > 0$, $\exists n > N$ 时,

$$\left| \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} - f'(x_0) \right|$$

$$\leq \lambda_n \left| \frac{f(\beta_n) - f(x_0)}{\beta_n - x_0} - f'(x_0) \right| + (1 - \lambda_n) \left| \frac{f(\alpha_n) - f(x_0)}{\alpha_n - x_0} - f'(x_0) \right|$$

$$< \lambda_n \varepsilon + (1 - \lambda_n) \varepsilon = \varepsilon.$$

原极限获证.

证法2:
$$f(x) \dot{f}(x) \dot{f}(x)$$

:原式成立.

思考题2

1. 设
$$m$$
 为正整数,定义 $f(x) = \begin{cases} x^m \sin \frac{1}{x}, x \neq 0, \\ 0, x = 0. \end{cases}$

- (1) m 为何值时, f(x) 在 $x_0 = 0$ 可导;
- (2) m 为何值时, f'(x) 在 $x_0 = 0$ 连续.

解: (1)
$$\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}x^{m-1}\sin\frac{1}{x},$$

易知当m>1时,上述极限为0,当m≤1时,极限不存在.

所以当m > 1时,f(x)在 $x_0 = 0$ 可导,且f'(0) = 0.

当m≤1时,f(x)在 x_0 = 0不可导.

(2) 当
$$m > 1$$
时, $f'(0) = 0$. $x \neq 0$ 时,有

$$f'(x) = \left(x^{m} \sin \frac{1}{x}\right)' = mx^{m-1} \sin \frac{1}{x} + x^{m} \cos(\frac{1}{x})(-\frac{1}{x^{2}})$$
$$= mx^{m-1} \sin \frac{1}{x} - x^{m-2} \cos(\frac{1}{x})$$

当m > 2时,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} mx^{m-1} \sin \frac{1}{x} - x^{m-2} \cos(\frac{1}{x}) = 0 = f'(0),$$

这时,f'(x)在x = 0连续.

这时,f'(x)在x = 0不连续.

2. 设 f(x) 是定义在 R 上的函数,且 $\forall x, y \in R$ 都有 $f(x+y) = e^x f(y) + e^y f(x).$

若 f'(0) = e , 求 f(x) .

3. 设 f(0) = 0, f'(0) 存在且有限,令

$$x_n = f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2}) \quad (n \in N^+),$$

试求 $\lim_{n\to\infty} x_n$,并利用以上结果计算:

$$(1) \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2}; \qquad (2) \lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{i}{n^2};$$

$$(3) \lim_{n\to\infty} \left(1+\frac{1}{n^2}\right) \left(1+\frac{2}{n^2}\right) \cdots \left(1+\frac{n}{n^2}\right).$$

答案: $(1)\frac{1}{2}$; $(2)\frac{1}{2}$; $(3)\sqrt{e}$.

证: 由于
$$\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = a$$
,所以 $\forall \varepsilon > 0, \exists \delta > 0$,当 $0 < x < \delta$ 时有 $\left| \frac{f(x)}{x} - a \right| < \varepsilon$,即 $|f(x) - ax| < x\varepsilon$. 取 $N_1 = \left[\frac{1}{\delta} \right] + 1$,当 $n > N_1$ 时有

$$\left| f\left(\frac{1}{n^{2}}\right) + f\left(\frac{2}{n^{2}}\right) + \dots + f\left(\frac{n}{n^{2}}\right) - \frac{a}{2} \right|$$

$$< \left| f\left(\frac{1}{n^{2}}\right) - \frac{a}{n^{2}} \right| + \dots + \left| f\left(\frac{n}{n^{2}}\right) - \frac{na}{n^{2}} \right| + \left| \frac{n(n+1)a}{2n^{2}} - \frac{a}{2} \right|$$

$$\leq \left(\frac{1}{n^{2}} + \dots + \frac{n}{n^{2}} \right) \varepsilon + \left| \frac{n(n+1)a}{2n^{2}} - \frac{a}{2} \right| = \frac{n(n+1)}{2n^{2}} \varepsilon + \left| \frac{n(n+1)a}{2n^{2}} - \frac{a}{2} \right| .$$
(1)

由于
$$\lim_{n\to\infty}\frac{n(n+1)}{2n^2}=\frac{1}{2}$$
,对上述 $\varepsilon>0$,存在 N_2 ,当 $n>N_2$ 时有

$$\left|\frac{n(n+1)}{2n^2} < 1, \left|\frac{n(n+1)a}{2n^2} - \frac{a}{2}\right| < |a|\varepsilon.$$

取 $N = \max\{N_1, N_2\}$,则当 n > N 时,由 (1) 式知

$$\left| f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \dots + f\left(\frac{n}{n^2}\right) - \frac{a}{2} \right| < (1 + |a|)\varepsilon.$$

$$\lim_{n \to \infty} x_n = \frac{a}{2} = \frac{f'(0)}{2}.$$

4.证明:不存在定义在R上的可导函数f(x),

满足
$$f(f(x)) = -x^3 + x^2 + 1.$$

证: 如果这样的 f 存在,我们来求 f 。f 的不动点,即满足 f 。f(x) = x 的 x. 由假设 $x = -x^3 + x^2 + 1$,得 x = 1,这表明 f 。f 有唯一的不动点 x = 1. 现设 $f(1) = \alpha$,那么 $f(f(1)) = f(\alpha) = 1$,因而 $f(f(\alpha)) = f(1) = \alpha$,这说明 α 也是 f 。f 的不动点,因而 $\alpha = 1$,即 f(1) = 1. 在等式

$$f(f(x)) = -x^{3} + x^{2} + 1$$
的两边求导,得 $f'(f(x))f'(x) = -3x^{2} + 2x$,令 $x = 1$,即得
$$(f'(1))^{2} = -1,$$

这是不可能的.