실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

보기: 앞의 기계와 작업자에서 기계 3개는 이 세 종류의 기계에 따른 차이를 알고자 한다고 가정하고, 작업자에 따른 차이를 알기 위해 작업자 중 임의로 2명을 뽑았다고 가정하면 혼합모형이 된다. (기계: 고정효과, 작업자: 임의효과)

따라서 분산분석표는

요인	제곱합	자유도	평균제곱(MS)	F	유의확률
machine	229.333	2	114.666	2.63	0.2753
employee	53.388	1	53.388	1.23	0.3836
m * e	87.111	2	43.555	8.91	0.0042
오차	58.666	12	4.888		
전체	428.500	17			

로 얻어지며,

유의확률을 볼 때 machine의 주효과, employee의 주효과 모두 유의하지 않으며 상호작용 만 유의하다.

기각역을 사용한 검정결과는

- 요인 A: $F_0=2.63 \le F_{2,2;0.05}=19.000$ 이므로 귀무가설 $H_0:\alpha_1=\alpha_2=\dots=\alpha_a=0$ 을 기각하지 못한다.
- 요인 B: $F_0=1.23 \le F_{1,2;0.05}=18.51282$ 이므로 귀무가설 $H_0:\sigma_\beta^2=0$ 을 기각하지 못한다.
- 상호작용: $F_0=8.91>F_{2,12;0.05}=3.8853$ 이므로 귀무가설 $H_0:\sigma^2_{\alpha\beta}=0$ 을 기각한다.

SAS를 사용한 분석

- 임의효과인 요인을 RANDOM 문에 설정 ▷ 각 제곱합의 기댓값 출력됨
- RANDOM 문의 옵션으로 TEST를 사용 ⇒ 수정된 분산분석표 얻음
- RANDOM 문의 기댓값을 사용하여 TEST 문에 H에 분자에 사용할 제곱합, E에는 분모에 사용할 제곱합을 설정하여 수정된 가설검정 얻음.

```
data step은 생략
proc glm data=a; /* twoway3.sas */
class machine employee;
model defects = machine employee machine * employee;
random employee machine*employee /test;
run;
```

MSAB

각 평균제곱합의 기댓값

1	Source	Type III Expected Mean Square
ĺ	machine	Var(Error) + 3 Var(machine+employee) + Q(machine)
j	employee	Var(Error) + 3 Var(machine+employee) + 9 Var(employee)
i	machine*employee	Var(Egor) + 3 Var(machine+employee)

Source	DF	Type III SS	Mean Square	F Value	Pr > F
machine	2	229,333333	114,666667	2,63	0,2753
employee	1	53,388889	53,388889	7.23	0,3836
Error	2	87,111111	43,555556	<i>3/</i>	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
machine*employee	2	87,111111	43,555556	8.91	0.0042
Error: MS(Error)	12	58,666667	4,888889		

두 TEST 문의 결과

The GLM Procedure

Dependent Variable: defects

Tests of Hypotheses Using the Type III MS for machine*employee as an Error Term						
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
machine	2	229,3333333	114,6666667	2,63	0,2753	
employee	1	53,3888889	53,3888889	1,23	0,3836	

이원배치법의 경우 요인이 두 개이므로 주효과에 대한 다중비교를 하거나 상호작용에 의한 다중비교를 하게 된다. 큰 원칙은

- 상호작용이 유의하면 또 효과의 모든 수준 조합에 대한 다중비교를 하고,
- 상호작용이 유의하지 않을 때만 주효과에 대한 다중비교를 한다.


```
SAS 사용보기(Tukey 방법)
앞의 수치보기의 연속

data step 생략
proc glm data=a; /* twoway5.sas */
class machine employee;
model defects = machine employee machine * employee;
random employee machine*employee;
lsmeans machine*employee / adjust=tukey lines;
run;
```

- LSMEAN 문의 옵션에 사용할 다중비교의 이름 설정(LSD, BON, TUKEY 등)
- 이 자료의 경우 주효과가 유의하지 않으므로 상호작용(두 수준조합)에 대한 다중비교 적용

각 수준별 평균값 및 차이에 대한 유의성 검정결과

Least Squares Means Adjustment for Multiple Comparisons: Tukey

machine	employee	defects LSMEAN	LSMEAN Number
1	1	17,3333333	1
1	2	19,6666667	2
2	1	15,3333333	3
2	2	11,0000000	4
3	1	14,0000000	5
3	2	5,6666667	6

Least Squares Means for effect machine*employee Pr > Itl for H0: LSMean(i)=LSMean(j)

Dependent Variable: defects

Dependent valiable, defects						
i/j	1	2	3	4	5	6
1		0,7838	0,8691	0,0389	0.4748	0,0003
2	0,7838		0,2299	0.0045	0.0721	<.0001
3	0,8691	0,2299		0,2299	0.9728	0,0018
4	0,0389	0,0045	0,2299		0,5780	0,0975
5	0,4748	0,0721	0,9728	0,5780		0,0061
6	0,0003	<,0001	0,0018	0,0975	0,0061	

각 수준조합의 평규차에 대한 비교

상호작용의 풀링(pooling)

오차항의 풀링

둘 이상의 주효과가 있는 경우(이원배치, 삼원배치, 다원배치)에는 상호작용을 먼저 검정하고 상호작용이 유의하지 않으면 상호작용의 제곱합 및 자유도를 각각 오차항의 제곱합 및 자유도에 합해 주는 것을 상호작용의 풀링(pooling)이라고 함.

이원배치인 경우 오차항의 풀링

요인	제곱합	자유도	
Α	SSA	a-1	
В	SSB	b-1	
A*B	SSAB	(a-1)(b-1)	1
오차	SSE	ab(n-1)	
전체	SST	abn-1	

요인	제곱합	자유도
Α	SSA	a-1
В	SSB	b-1
오자	SSE'=SSAB+SSE	abn-a-b+1
전체	SST	abn-1

주효과의 검정은 새로 얻은 (SE')에서 $F_0 = \frac{MSA}{MSE'}$ 와 $F_0 = \frac{MSB}{MSE'}$ 로 하며 각각 F 분포의 자유도는 (a-1,abn-a-b+1) 및 (b-1,abn-a-b+1)이다.

상호작용의 풀링(pooling)

상호작용의 풀링은 반드시 해야 하는 것은 아니며, 학자들 사이에서도 풀링의 적용여부에 대한 의견은 다른 경우도 있다. \

다원배치법

- 삼원배치 및 그 이상의 요인이 있는 경우 제곱합의 분해나 자유도의 계산은 이원배치법에 서 사용한 이론이 그대로 적용된다.
- 이론적으로 제곱합의 분해 등을 해보는 것도 의미있지만 실무적으로 계산은 SAS 등 통계 패키지를 사용하게 된다.
- 다원배치는 GLM 프로시저에서

MODEL Y = A B C A*B A*C B*C A*B*C;

와 같이 (이 경우 Y = A|B|C 과 같음) MODEL 문에 모형에서 필요한 요인을 적절하게 구현하고

LSMEANS 이 MEANS 문을 사용하여 평균에 대한 추론을 하고,

임의효과가 있으면 RANDOM 문을 해당 효과(및 파생된 상호작용)에 적용하면 된다.

수고하셨습니다^^