

Reinforcement Learning: uczenie maszynowe metodą kija i marchewki

Błażej Osiński

Bydgoszcz, 22.05.2019

Czym jest reinforcement learning?

Definicje

- Agent działa w środowisku
- Otrzymuje nagrody (lub kary)
- Zadanie:
 Nauczyć się strategii (polityki),
 która maksymalizuje sumę nagród

RL vs Supervised Learning

- Uczenie z nadzorem odpowiada na każde zadanie niezależnie
- RL podejmuje szereg decyzji, które mają wpływ na przyszłe zadania

RL vs Deep Learning

- Zwykle Deep Learning odnosi się do uczenia z nadzorem...
- ... ale RL z powodzeniem wykorzystuje sieci neuronowe (także głębokie)

Sukcesy RL

RL w jednym zdaniu: © Ilya Sutskever

- Podejmij (trochę) losowe akcje
- Jeżeli wynik jest lepszy, niż się spodziewałeś, podejmuj takie akcje częściej

Dota 2 vs Starcraft 2

)-

Dota 2 vs Starcraft 2

OpenAI Five

Competitive: 7,215-42 (99.4% winrate, 15,019 total players)

RL można użyć do

- Robotyki
- Samochodów autonomicznych
- Obrotu akcjami
- Projektowania sieci neuronowych
- Dowolnego zadania optymalizacyjnego?!

Wyzwania RL

- Projektowanie funkcji nagrody
- Uwaga filozoficzna:
 Ludzie nie otrzymują nagrody bezpośrednio ze środowiska, sami oceniają sytuację

Wyzwania RL

Ilość wymaganych danych

8 mln klatek
 40h gry
 by zostać mistrzem Ponga

Model Based Reinforcement Learning for Atari

Łukasz Kaiser^{* 1} Mohammad Babaeizadeh^{* 2 3} Piotr Miłoś^{* 4 5} Błażej Osiński^{* 4 5 3} Roy H Campbell² Konrad Czechowski⁴ Dumitru Erhan¹ Chelsea Finn¹ Piotr Kozakowski⁴ Sergey Levine¹ Ryan Sepassi¹ George Tucker¹ Henryk Michalewski^{4 5}

- Website
- Arxiv
- Source code tensor2tensor
- Google Al Blogpost
- Presented at BayLearn 2018

Model-based RL

World Model - examples

predicted ground truth difference predicted ground truth difference

Modelowanie gier Atari jest skomplikowane!

- Liczenie do 21
- Piłeczka jest bardzo mała
- Gry wykazują pewną stochastyczność, np. po stracie punktu piłka znika, nie wiadomo kiedy się pojawi
- Model musi nauczyć się symulować Al wbudowane w grę Atari

To działa!

Błędy modelu

Kangaroo przykład dziwnej strategii

Samochody autonomiczne

Samochody autonomiczne

- Projekt we współpracy z jednym z głównych producentów samochodów
- Badamy możliwość wykorzystania RL do prowadzenia samochodów autonomicznych
- Problemy?

Samochody autonomiczne

Problemy?

 Dane ze świata rzeczywistego mogą być bardzo drogie!

Sim-to-real

- Wykorzystujemy symulator Carla oparty o Unreal Engine do zbierania doświadczenia z jazdy
- Dzięki silnemu zrównolegleniu i przyśpieszeniu symulatora zbieramy nawet rok doświadczeń dziennie
- Największy w Polsce superkomputer: Prometheus, Cyfronet, AGH

sim-to-real

- Symulator nie odwzorowuje rzeczywistości w sposób doskonały, musimy stosować metody takie jak "domain randomization", żeby polityki przekładały się na świat rzeczywisty
- Wielokrotnie testowaliśmy już nasze modele na prawdziwym samochodzie, dostarczonym przez naszego partnera

sim-to-real

Przykłady "domain randomization": zmiana pogody

Image source: https://arxiv.org/pdf/1711.03938.pd

Ewolucja procesu biznesowego

Przykład: retencja klienta

Metoda 1

Ewolucja procesu biznesowego

Metoda 2

Ewolucja procesu biznesowego

Metoda 3

Jutro jest dziś

Applied Reinforcement Learning @ Facebook

Figure 1. Real RL model A/B Test Results. The RL model (test) outperforms the non-RL model (control) on the push notification optimization task described in section 10.1. The x-axis shows the progression of the metric being optimized by day. Note, the performance of the RL model starts out neutral vs. the control, but quickly exceeds as it re-trains daily on data generated by itself.

Dziękuję za uwagę!

deepsense.ai