Generalized Theory of Intermediate Structures Between Vector Spaces and Fields

Pu Justin Scarfy Yang

September 5, 2024

Abstract

This paper introduces a generalized theory for intermediate mathematical structures between vector spaces and fields using new notations and parameters. We define a new class of structures parameterized by ordinals of cardinality greater than the continuum $\mathfrak c$ and prove that the cardinality of the set of these structures exceeds $\mathfrak c$. We provide precise definitions, theorems, and rigorous proofs from first principles.

1 Introduction

The theory explores a new class of mathematical structures that exist between vector spaces and fields. By employing parameters with cardinalities larger than the continuum \mathfrak{c} , we investigate whether these new structures surpass the known continuum in cardinality. This approach builds on previous research and introduces novel notations and definitions.

2 Definitions and Notations

2.1 New Notation

Define the notation for intermediate structures as:

$$\mathbb{Z}_{\alpha,\beta,\gamma}(F)$$

where:

- F is a field.
- α , β , and γ are ordinals from a set with cardinality greater than \mathfrak{c} , specifically, ordinals in the range $[0,\Lambda)$, where Λ is a large cardinal.

2.2 Parameters

Definition 1. Let Λ be a large cardinal. Define \mathcal{P}_{Λ} as the set of ordinals $\alpha, \beta, \gamma \in [0, \Lambda)$. These ordinals will be used to parameterize new intermediate structures between vector spaces and fields.

3 Generalized Structures

3.1 Construction of Intermediate Structures

Definition 2. An intermediate structure $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ is defined as a mathematical object that lies between a vector space V(F) and a field F. Specifically, the structure $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ is parameterized by the ordinals α , β , and γ , and exhibits properties that depend on these parameters.

3.2 Example Structures

Example 1. Consider a vector space V(F) over a field F. We can construct an intermediate structure $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ where:

- α affects the dimension of V(F).
- β influences the algebraic operations within V(F).
- γ defines new field extensions or modifications to F.

For instance, if α , β , and γ are chosen such that they represent complex ordinal sequences, the resulting structure $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ might include novel algebraic properties or field extensions that are not present in the traditional framework of vector spaces and fields.

4 Cardinality of the New Structures

4.1 Theorem: Cardinality of Structures

Theorem 1. The set of all intermediate structures $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ where α,β,γ range over ordinals in $[0,\Lambda)$ has cardinality at least κ , where κ is a cardinal number greater than \mathfrak{c} .

Proof. Consider the set of all possible choices for α , β , and γ . Since Λ is a large cardinal, the set $[0,\Lambda)$ has cardinality Λ , which is greater than \mathfrak{c} . Therefore, the set of all tuples (α,β,γ) in $[0,\Lambda)\times[0,\Lambda)\times[0,\Lambda)$ has cardinality $\Lambda^3=\Lambda$, given that Λ is a large cardinal.

Thus, the set of intermediate structures $\mathbb{Z}_{\alpha,\beta,\gamma}(F)$ has cardinality Λ , which is greater than \mathfrak{c} .

5 Conclusion

We have introduced new notations and parameters to describe a class of intermediate structures between vector spaces and fields. By employing large cardinals and ordinal parameters, we have shown that it is possible to construct a set of such structures with cardinality greater than the continuum \mathfrak{c} . This extends our understanding of the hierarchy and diversity of mathematical structures in this context.

References

- [1] Dummit, D.S., Foote, R.M., Abstract Algebra, 3rd edition, Wiley, 2004.
- [2] Lang, S., *Linear Algebra*, Undergraduate Texts in Mathematics, Springer, 1987.
- [3] Stoll, R.R., Set Theory and Logic, Dover Publications, 1979.
- [4] Jacobson, N., Basic Algebra I, 2nd edition, W.H. Freeman, 1985.
- [5] Bourbaki, N., Elements of Mathematics: Algebra I, Springer, 1989.
- [6] Bundy, A., Jamnik, M., and Green, I., *TheoryMine: a Web Service to Discover New Mathematical Theorems*, Journal of Symbolic Computation, Volume 74, Pages 3-23, 2016.
- [7] Kunen, K., Set Theory: An Introduction to Independence Proofs, North-Holland, 1980.
- [8] Jech, T., Set Theory: The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, 2003.