

Reproducible research in computational sciences: A use case for uncertainty quantification using Jupyter notebooks

Mojtaba Barzegari

**Liesbet Geris** 

Department of Mechanical Engineering

### Reproducible Research

- A crucial aspect of open science in recent years
- Core idea: the results of research should be reproducible given the original dataset, code, and software
- In computational sciences: "never believe anything unless you can run it"



## Reproducibility in Computational Sciences

- Transparency increases the outreach
- Traditional way: making the developed models available as open-source codes
- Better approach: publishing the building blocks in a reproducible manner







## Jupyter Comes Into Play

- Providing a full representation of the work (building blocks)
  being enriched by extra descriptions
- Jupyter facilitates reproducibility by increasing transparency, especially for the people who are not deeply into the field
- Bonus: its interactive nature helps converting the reproducible research works into valuable educational materials



#### Use Case: Model Parameters Calibration

A practical implementation of a parameter estimation process



• Showing reproducibility in a unified environment for understanding, building, running, post-processing, and optimizing processes







#### Conclusion

- Importance of reproducibility in computational research works
- The role that Jupyter plays in increasing transparency
- A use case for showing the proof-of-concept

# Thank you for your attention!







