Session 3 Genomes, reads, assemblies, and data repositories

Sequencing

Sequencing costs have fallen dramatically over the past couple of decades

- The cost of sequencing varies by organism, lab, method, etc.
- The cost of a human genome is a common metric

Sanger sequencing

Chromatograph

Shotgun sequencing

 Randomly chop up the genome, then perform Sanger sequencing

 Sanger sequencing can only be used for short sequences 100-1000bp long

Overview of some popular sequencing technologies

Helpful comparison: https://www.integra-biosciences.com/united-states/en/blog/article/sanger-sequencing-vs-ngs

Sequencing capacity in the United Sates

Seven years of building NGS capacity in state public health laboratories

www.aphl.org/aboutAPHL/publications/Documents/ID NGSSurveyReport 52015.pdf

https://www.cdc.gov/advanced-molecular-detection/php/training/module-3-6.html

Which specimens to sequence?

- Outbreak Investigations
 - High-risk groups, such as congregate living settings
 - eg, skilled nursing facilities, homeless shelters, correctional facilities
 - Super-spreader events
- Surveillance
 - Laboratory-based, for emerging strains and trends
 - eg, S-gene target failure, VOIs or VOCs
 - Epidemiologically defined, for cases of particular interest
 - eg, reinfection, vaccine breakthrough, travel exposure, severe COVID-19 in children

VOI – Variants of Interest, VOC – Variants of Concern: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html

Technical considerations

- Genome Completeness
 - Is sequencing only the S-gene (spike protein) sufficient?
- Ct (cycle threshold) value
- Laboratory's sequencing capacity

https://www.aphl.org/programs/preparedness/Crisis-Management/Documents/APHL-COVID19-Ct-Values.pdf

https://www.cdc.gov/advanced-molecular-detection/php/training/module-3-6.html

Sequencing capacity

- Some labs have no or minimal in-house wet-lab or dry-lab capacity
- Some labs have wet-lab and dry-lab capacity, however lack high throughput
- Some labs have high throughput wet-lab and dry lab capacities (e.g., sequencing instruments, access to computing environments, experience with genomic epi investigations)

Short-read sequencing by Illumina

DNA extraction

Library prep

MiSeq sequencing

MiSeq® Reagent Kit v2 (500 cycle)

Adapted from StaPH-B Monthly Webinar – August, 2020: https://www.youtube.com/embed/C3YCm3WOY0A?autoplay

Long-read sequencing by PacBio

[Candida] auris

Representative genome: [Candida] auris (assembly Cand_auris_B11221_V1)

Download sequences in FASTA format for genome, transcript, protein

Download genome annotation in GFF, GenBank or tabular format

BLAST against [Candida] auris genome, transcript, protein

All 59 genomes for species:

Browse the list

Download sequence and annotation from RefSeq or GenBank

NEW Try NCBI Datasets - a new way to download genome sequence and annotation we're testing in NCBI Labs

Display Settings: - Overview

Send to: -

Organism Overview; Genome Assembly and Annotation report [59]; Organelle Annotation Report [1]

ID: 38761

[Candida] auris

An emerging multidrug-resistant (MDR) yeast

Lineage: Eukaryota[5270]; Fungi[2289]; Dikarya[2152]; Ascomycota[1687]; Saccharomycotina[463]; Saccharomycetes[463]; Saccharomycetes[463]; Metschnikowiaceae[65]; Clavispora[10]; Clavispora/Candida clade[8]; [Candida] auris[1]

This yeast, is causing invasive healthcare-associated infections with high mortality. Some strains have elevated minimum inhibitory concentrations (MICs) to the three major classes of antifungals, severely limiting treatment options.

Summary

Sequence data: genome assemblies: 59 (See Genome Assembly and Annotation report)

Statistics: median total length (Mb): 12.3603

median rotein count: 5437 median GC%: 45.1249

Publications (limited to 20 most recent records)

- Simultaneous Infection with Enterobacteriaceae and Pseudomonas aeruginosa Harboring Multiple Carbapenemases in a Returning Traveler Colonized with Candida auris. Khan A, et al. Antimicrob Agents Chemother 2020 Jan 27
- 2. Clade II Candida auris possess genomic structural variations related to an ancestral strain. Sekizuka T, et al. PLoS One 2019
- 3. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Muñoz JF, et al. Nat Commun 2018 Dec 17

PacBio RSII

Adapted from StaPH-B Monthly Webinar – August, 2020: https://www.youtube.com/embed/C3YCm3WOY0A?autop

Long-read sequencing by Oxford Nanopore Technologies

ASM827514v1

Organism name: [Candida] auris (budding yeasts)

Infraspecific name: Strain: B11245

BioSample: SAMN05379621
BioProject: PRJNA328792

Submitter: Centers for Disease Control and Prevention

Date: 2019/09/05

Assembly level: Complete Genome

Genome representation: full

GenBank assembly accession: GCA 008275145.1 (latest)

RefSeq assembly accession: n/a

RefSeg assembly and GenBank assembly identical: n/a

Assembly method: Canu v. 1.5

Genome coverage: 88

Sequencing technology: Oxford_Nanopore

IDs: 4513771 [UID] 13609208 [GenBank]

History (Show revision history)

Global statistics

Total sequence length	12,431,639
Total ungapped length	12,431,639
Total number of chromosomes and plasmids	7

Adapted from StaPH-B Monthly Webinar - August, 2020: https://www.youtube.com/embed/C3YCm3WOY0A?autoplay=1

Recall: the data we get from sequencing

	FASTQ	FASTA
Use case	Raw sequencing reads	Assembled sequences (contigs, scaffolds)
Contain s	Nucleotide sequence and quality scores	Nucleotide sequence only
Format	4-line structure per read	2-line structure per sequence
Used for	Read-level QC, trimming, alignment	Assemblies, reference databases

- After sequencing, we get a FASTQ file
- These FASTQ files can be used as input for our analyses

Assembly

What do we do with these short sequences?

- Since we can't sequence the full genome end-to-end due to technology limitations, we end up with a collection of smaller sequences, called **reads**
- These reads can be used as data for analyses directly, or they can be assembled into contigs or genomes

Assembly

- Multiple short reads can be combined into a longer sequence
- By matching up sections of sequence common across reads, we can link them together
- This is done through genome assembly software like SPAdes

Reference-based assembly

De novo assembly

Contigs and scaffolds

- To make sense of our data, we stitch together overlapping reads into contiguous sequences without gaps, called **contigs**
 - Contigs may represent genes or partial genomes
 - The longer the contig, the better the assembly
- Scaffolds are a collection of contigs ordered and oriented using paired-end reads or long-read sequences with gaps between them
 - Helps reconstruct larger genome structures
 - Connected by estimated gaps
 - More complete, but often missing sequences

```
1: AGCTTAGCTAGGATTCCN----NNNNNNNNNNTGACTGAC
2: -----TGACTGAC
```

Single vs. Paired-end reads

Single vs. Paired-end reads

Single-end reads

- Each fragment is sequenced from one end
- Benefits: low cost and more computationally efficient
- Downsides: more difficult to assemble and lower accuracy, particularly for more complex samples like wastewater

Paired-end reads

- Each fragment is sequenced from both ends, generating 2 reads per fragment
- Benefits: better assembly and more accurate assignment of taxonomy
- Downsides: more expensive and more time consuming

How do we know if our data is any good?

Calculating optimal sample size:

$$Sequencing\ Coverage = \frac{Total\ \#\ bases\ mapped\ to\ a\ region}{Length\ of\ region}$$

e.g. if you sequence 30 billion bases (Gb) of data for a 3 Gb hum

$$Sequencing \ Depth = \frac{(Average \ genome \ size * desired \ coverage)}{Average \ microbial \ abundance}$$

- Two key metrics: coverage and depth
- Coverage is the percentage of the genome sequenced
- Depth is the number of times we have sequenced a specific location of the genome (usually averaged over the entire genome)

FastQC for assessing sequencing read quality

Good vs. Bad. Box Whisker Plots of Per Base Sequence Quality

How do we know we need to trim our sequences?

- The plots generated with FastQC offer a clue!
- The "Adapter Content"
 plot will show several
 lines. If any of these raise
 significantly above 0, it
 indicates trimming is
 needed.

Trimming and removing adapter contamination

- Read trimming is important to improve read quality
- Trimmomatic, while customizable, provides an easy-to-use first pass at read trimming
 - Illuminaclip: specifies the path to adapters, PCR sequences, etc. for trimming. These are included with the tool, but experts may have custom files for this
 - MINLEN: the minimum length of reads which we'll keep, anything trimmed to shorter is removed

Assembly QC with QUAST

- Before moving forward with our assemblies, we need to know if they're any good!
- QUAST generates several useful metrics for assemblies including:
 - Number of contigs greater than 0 bp: ideally, your assembly should have as few pieces as possible
 - Total assembly length: ideally, this should be close to the expected genome size for your target organism
 - N50 of the assembly, the average length of largest contigs accounting for 50% of the genome size: higher numbers are better!

Data repositories

De-identified data is often publicly available to download

- CDC and health department websites
 - Dashboards may have "Download data" link under figure
- US Census for population estimates
- USDA for livestock case counts
- Supplementary materials in journal articles
- Data requests for additional data (if available)

Supplementary Table S1—Species of bats submitted for rabies testing in the United States during 2022.

Species (common name)	No. of tested	No. of positive	Percentage of positive	
Order Chiroptera (unspecified)	11,883	490	4.1%	
Eptesicus fuscus (big brown bat)	8,955	351	3.9%	
Tadarida brasiliensis (Mexican free-tailed bat)	734	189	25.7%	
Nycticeius humeralis (evening bat)	427	16	3.7%	
Lasiurus borealis (Eastern red bat)	335	43	12.8%	
Myotis lucifugus (little brown bat)	237	8	3.4%	
Myotis spp. (not further differentiated)	132	15	11.4%	
Lasionycteris noctivagans (silver-haired bat)	128	8	6.3%	
Parastrellus hesperus (canyon bat)	122	11	36 1%	
Myotis californicus (California myotis bat)	Geo	orgia C	DPH COVID-19 Status F	Report
Lasiurus seminolus (seminole bat) Lasiurus cinereus (hoary bat)	o ensure	the most u	updated version of this webpage, please r	efresh vour
Myotis austroriparius (southeastern myotis bat) Map of measles cases in 2024 & 2025 as of May 22, 2025 2025 2026			ortant public health threat, but it is no long es, including influenza and RSV. DPH will co <u>Respiratory Diseases</u> . Additionally, tools to l <u>CRESPIRATORY Viruses</u> and <u>CDC COVID Data</u>	ntinue to po learn more a
0 1.9 10-49 50-99	100-250	250+	ia Department of Public Health (DPH) as of	f 3/27/2024
	The st	Las.	latest: What's new with this report?	
]	de: Understand the data (PDF)	
		b 1	vnload the data (CSV)	
	1	<u>)</u>	rgia Hospital Bed and Patient Census	
	a la company		lospital bed and patient census data is now reported directly to HHS and viewed on the HHS Public Data Hub linked above.	

National Center for Biotechnology Inf (NCBI)

- Part of the International Nucleotide Sequence Database Collaboration (INSDC)
- Includes reads (SRA) and assemblies (GenBank)
- NCBI datasets is a new feature for easier searching:

https://www.ncbi.nlm.nih.gov/datasets/genome/

NCBI SRA

SRA **SRA** ✓ SARS-CoV-2 AND Georgia AND Human Create alert Advanced

Public (71,091) Source

Access

DNA (8,002)

RNA (63,089)

genome (7,192)

Library Layout

paired (68,383)

single (2,708)

Illumina (44,674)

Ion Torrent (14,335)

Oxford Nanopore (44)

PacBio SMRT (12,038)

Platform

Strategy Genome (7,192)

other (63,899)

Data in Cloud

GS (71,091)

S3 (71,091)

File Type

bam (9,508) fastq (8,661)

aligned data (7,543)

Search results Items: 1 to 20 of 71091

Summary - 20 per page -

SARS-CoV-2 reads from human upper respiratory sample

1. 1 ILLUMINA (NextSeq 2000) run: 4.3M spots, 1.3G bases, 119.6Mb downloads Accession: SRX28711787

SARS-CoV-2 reads from human upper respiratory sample

2. 1 ILLUMINA (NextSeq 2000) run: 1.5M spots, 462.4M bases, 43.1Mb download: Accession: SRX28711786

SARS-CoV-2 reads from human upper respiratory sample

3. 1 ILLUMINA (NextSeg 2000) run: 3.6M spots, 1.1G bases, 97.1Mb downloads Accession: SRX28711785

SARS-CoV-2 reads from human upper respiratory sample

4. 1 ILLUMINA (NextSeq 2000) run: 5.7M spots, 1.7G bases, 159Mb downloads Accession: SRX28711784

SARS-CoV-2 reads from human upper respiratory sample

1 ILLUMINA (NextSeg 2000) run: 6M spots, 1.8G bases, 160.9Mb downloads Accession: SRX28711783

SARS-CoV-2 reads from human upper respiratory sample

1 ILLUMINA (NextSeq 2000) run: 5.5M spots, 1.6G bases, 149Mb downloads Accession: SRX28711782

SRA SRA Advanced

SRX28711787: SARS-CoV-2 reads from human upper respiratory sample 1 ILLUMINA (NextSeq 2000) run: 4.3M spots, 1.3G bases, 119.6Mb download

Design: IDT xGen SARS-CoV-2 multiplex amplicon sequencing protocol Submitted by: Emory University School of Medicine

Study: Respiratory viruses from clinical specimens Genome sequencing and

PRJNA1144955 • SRP532954 • All experiments • All runs show Abstract

Sample:

Full +

SAMN48398077 • SRS24977744 • All experiments • All runs Organism: Severe acute respiratory syndrome coronavirus 2

Library:

Name: GA-EHC-8291K L1 Instrument: NextSeq 2000 Strategy: AMPLICON Source: VIRAL RNA Selection: PCR Lavout: PAIRED

Runs: 1 run, 4.3M spots, 1.3G bases, 119.6Mb

1.3G 119.6Mb	2025-05-0
	1.3G 119.6Mb

ID: 38543131

Sequence Read Archive

Search

Run Browser

Run Browser > SRR33476520

Metadata

Experiment

Run Browser

Analysis

Search and browse data for a single run

SARS-CoV-2 reads from human upper respiratory sample (SRR33476520)

♣ FASTA/FASTQ download

Library Name SRX28711787 GA-EHC-8291K L1 AMPLICON VIRAL RNA **PAIRED** BLAST

NCBI GenBank

BACTERIAL AND VIRAL BIOINFORMATICS RESOURCE CENTER

Welcome to the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), a comprehensive resource for bacterial and viral infectious disease research. BV-BRC provides integrated data, advanced bioinformatics tools, and workflows to support the scientific community in understanding and combating infectious diseases. Explore our **Quick Start Guide** to learn more about the platform's features and capabilities. For questions or assistance, please don't hesitate to **contact us**.

SEARCH All Data Types Find a gene, genome, microarray, etc

ROWSE BACTERIA ARCHAEA VIRUSES EUKARYOTIC HOSTS

ANALYZE DATA IN BV-BRC

Upload and analyze your data in the private workspace. Register or Login to get started.

QUICK START

SEARCH	ANALYZE	MANAGE DATA	BATCH ACCESS
Taxa	Assembly	Access Private Workspace	Command-Line Interface
Genomes	Annotation	Save Search Results	Data API
Proteins	BLAST	Upload Data	FTP
Specialty Genes	MSA	Access Analysis Jobs	
All Searches	All Tools & Services	Share and Publish	

TUTORIALS

REFERENCE GUIDES

Genome List View

GENOMES: TAXON LINEAGE IDS IS 2697049 AND HOST GROUP IS Human AND STATE PROVINCE IS Georgia AND COLLECTION_YEAR >= 2025 (25 Genomes)

Overview Genomes Sequences AMR Phenotypes Features Proteins Specialty Genes Pathways Subsystems ADV Search								_	
DOWNLOAD KEYWORDS ADV Search	Overview	Genomes	Sequences	AMR Phenotypes	Features	Proteins	Specialty Genes	Pathways	Subsystems
DOWNLOAD KEYWORDS ADV Search	.				4				
	OOWNLOAD	KEYWORDS			ADV Search				

	Genome Name	Strain	GenBank Accessions	Size	CDS	Collection Year	Isolation Country	Host Common ⊙ Name
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV258000	29687	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV258238	29691	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV258239	29600	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-USAFSAM-	PV259206	29750	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-QDX3:	PV242407	29721	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-QDX3:	PV242441	29718	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-USAFSAM-	PV246336	29750	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV215969	29676	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV215962	29687	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV216116	29686	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV216168	29637	23	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV169043	29441	20	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV147429	29694	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC113	PV147428	29690	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/GA-CDC-LC112	PV084221	29690	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/IVY-G25X94E5/2	PV040875	29655	19	2025	USA	Human
~	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/IVY-G25X94E2/	PV040874	29610	19	2025	USA	Human
~]	Severe acute respiratory syndrome corona	SARS-CoV-2/human/USA/IVY-G25X94K5/:	PV040877	29655	19	2025	USA	Human

GISAID has several databases, with different features for each

- EpiFlu
- EpiCoV
- EpiRSV
- EpiPox

Important note: In the GISAID EpiFlu™ Database Access Agreement, you have accepted certain terms and conditions for viewing and using data regarding influenza viruses. To the extent the Database contains data relating to non-influenza viruses, the viewing and use of these data is subject to the same terms and conditions, and by viewing or using such data you agree to be bound by the terms of the GISAID EpiFlu™ Database Access Agreement in respect of such data in the same manner as if they were data relating to influenza viruses.