

Test report No. : 11253019S-A Page : 1 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SAR TEST REPORT

Test Report No.: 11253019S-A

Applicant : KONICA MINOLTA, INC.

Type of Equipment : SKR 3000

Model No. : P-61

FCC ID : YR7SKR3000P6

Test Standard : FCC 47CFR §2.1093

Test Result : Complied

Highest Reported S	SAR(1g) Value	SAR	Antenna No.		Re	marks	Output pow	er (average)
Tune-up value	(Measured)	type	Amemia No.	Band	Frequency	Mode	Measured	Maximum
0.28 W/kg	0.231 W/kg	Body	Main (chain 0))	DTS	2412 MHz	11b (1Mbps, DSSS)	14.19 dBm	15 dBm
1.32 W/kg	0.891 W/kg	-wom	Main (chain 0))	UNII	5700 MHz	11n(20HT) (MCS0, OFDM)	11.39 dBm	13 dBm
0.29 W/kg	0.240 W/kg	Next-of	Main (chain 0))	DTS	2412 MHz	11b (1Mbps, DSSS)	14.19 dBm	15 dBm
1.31 W/kg	0.885 W/kg	-head	Main (chain 0))	UNII	5700 MHz	11n(20HT) (MCS0, OFDM)	11.39 dBm	13 dBm

- *. Highest reported SAR of this device for body-worn and next-of-head are "1.32 W/kg" and "1.31 W/kg".
- *. Co-location was not considered, because the SLLSR (SAR to peak location separation ratio) was smaller than 0.04.
- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 7. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test: July 25~29, and August 1~4, 2016

Test engineer:

Hiroshi Naka

Engineer, Consumer Technology Division

Approved by: mameria

Toyokazu Imamura

Leader, Consumer Technology Division

Test report No. : 11253019S-A
Page : 2 of 144
Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	11253019S-A	August 22, 2016	n	-

*. By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTOR	RY	2
CONTENTS		
SECTION 1:	Customer information	2
SECTION 2:	Equipment under test (EUT)	3
2.1	Identification of EUT	3
2.2	Product Description (Wireless LAN module, antenna)	3
2.3	Tx output power (typical) specification (antenna port terminal conducted)	4
2.4	Maximum output power which may possible	5
SECTION 3:	Test specification, procedures and results	6
3.1	Test specification.	6
3.2	Exposure limit	
3.3	Procedure and result	
3.4	Test location	
3.5	Confirmation before SAR testing	
3.6	Confirmation after SAR testing.	7
3.7	Test setup of EUT and SAR measurement procedure	
SECTION 4:	Uncertainty assessment (SAR measurement)	9
SECTION 5:	Operation of EUT during SAR testing	
SECTION 6:	Confirmation before testing	
6.1	Assessment for the antenna terminal port conducted power of EUT	11
SECTION 7:		
	SAR Measurement results	
7.1	Liquid measurement	
7.2	SAR measurement results (2.4GHz, Body/Head)	
7.3	SAR measurement results (5GHz band, Body/Head)	
7.4	SAR Measurement Variability	1 /
Contents of app		
APPENDIX 1:	Photographs of test setup	18
Appendix 1-1	Photograph of EUT and antenna position	18
Appendix 1-2	EUT and support equipment.	19
Appendix 1-3	Usage example	19
Appendix 1-4	Photograph of SAR test setup	20
APPENDIX 2:	SAR Measurement data	28
Appendix 2-1	Evaluation procedure	
Appendix 2-2	Measurement data	
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	99
Appendix 3-2 Appendix 3-3	Test system specification	100
Appendix 3-4	Simulated tissues composition and parameter confirmation	101
Appendix 3-4 Appendix 3-5	Daily check results	
Appendix 3-6	Daily check uncertainty	102
Appendix 3-7	Daily check measurement data	102
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	109
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	
Appendix 3-10	Calibration certificate: Dipole (D5GHzV2)	128

Test report No. : 11253019S-A Page : 3 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SECTION 1: Customer information

Company Name	KONICA MINOLTA, Inc.
Address	1, Sakura-machi, Hino-shi, Tokyo, Japan 191-8511
Telephone Number	+81-42-589-8429
Facsimile Number	+81-42-589-8053
Contact Person	Masayoshi Inoue

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type of Equipment	SKR3000
Model Number	P-61
Serial Number	A8CE-S002
Condition of EUT	Engineering prototype (Not for sale; This sample is equivalent to mass-production items)
FCC ID	YR7SKR3000P6
Receipt Date of Sample	June 17, 2016 (*. EUT for the power measurement) *. No modification by the Lab.
receipt Date of Sample	July 23, 2016 (*. EUT for the SAR test.) *. No modification by the Lab.
Country of Mass-production	Japan
Category Identified	Portable device (*. Since EUT may contact and/or very close to a human body and head during Wi-Fi operation, the partial-body
Category Identified	SAR (1g) shall be observed.)
Rating	DC 15 V
SAR Accessory	Any body-worn and head mount accessories were not applied.
Feature of EUT, SAR	Model: P-61 (referred to as the EUT in this report) is a wireless digital radiography system used
tested consideration	in the hospitality environment.

2.2 Product Description (Wireless LAN module, antenna)

Radio type					Transc	ceiver		
Model				S	X-SDI	MAN2		
Frequency band	1	.4GHz band				5GHz	band	
Frequency band		.4GHZ Daliu	-	U-NII-1 (W52)	U-N	II-2A (W53)	U-NII-2C (W56)	U-NII-3 (W58)
			11a,	5180-5240	52	260-5320	5500-5700	5745-5825
Frequency of operation	11b,g,	2412-2462	n(20HT)	(ch.36-48)	(ch.52-64)	(ch.100-140)	(ch.149-165)
(MHz) (*.ch.: channel)	n(20HT)	(ch.1-11)	n(40HT)	5190-5230	52	270-5310	5510-5670	5755, 5795
			11(40111)	(ch.38-46)	(ch.54-62)	(ch.102-134)	(ch.151,159)
Channel spacing (MHz)	5	(11b,g,n(20HT))			20 ((11b,g,n(20HT))	/40 (11n(40HT))	
Bandwidth (MHz)	20	(11b,g,n(20HT))			20 ((11b,g,n(20HT))	/40 (11n(40HT))	
Type of modulation		DSSS: DBPSK,	DQPSK	C, CCK (11b), OFDM:	: BPSK	K, QPSK, 16Q	AM, 64QAM (11g,a,n(20)HT),n(40HT))
	11b	12.5 ±2.5	11a:	10.5 ±2.5	1	0.5 ± 2.5	10.5 ± 2.5	10.0 ±2.5
	110	(ch.1-11,1-11Mbps)	11a.	(ch.36-48, 6-36Mbps)	(ch.52	2-64, 6-36Mbps)	(ch.100-140, 6-24Mbps)	(ch.149-165, 6-24Mbps)
Transmit power (typical,		12.5 ±2.5		10.5 ± 2.5		0.5 ± 2.5	10.5 ±2.5	10.0 ±2.5
maximum channel and data rate)	11g	(ch.4-8, 6-36Mbps)	n(20HT)	(ch.36-48, MCS0-4/8- 12)	(ch.52	-64, MCS0-4/8- 12)		(ch.149-165, MCS0-3/8-11)
and tolerance (as manufacture	n(20HT)	12.5 ±2.5	n(40HT)	10.5 ± 2.5	1	0.5 ± 2.5	10.5 ± 2.5	10.0 ± 2.5
variation)	` ′	(ch.4-8, MCS0-4/8-12)		(ch.46, MCS0-4/8-12)			(ch.110-134, MCS0-3/8-11)	
(dBm) (*.ch.: channel)	*. The v	alue in a table shows	the maxi	imum average power o	n each	single antenna.	3dBm is added for MIMO) power.
							ower which may possible.	
				nducted) refers to Secti				
Power supply	DC 3.3	V, DC 1.8V *.The d	c power	of SX-SDMAN2 is sup	pplied f	from the constar	nt voltage circuit of the ma	in body of the EUT.
Antenna		Main ar	ntenna (chain M			Sub antenna (chai	in 1)

Antenna			Main	ante	nna (chair	10)						Sub a	nteni	ıa (cl	nain 1	1)			
Antenna quantity	2 pcs. (*. Sep 11b,g,a: One							n ante	enna a	nd th	e sub antenna:	appro	x.500	mm))					
	11n(20HT),n(4	(THO	One	select	ed Tx	anter	nna op	eratio	n (M	CS0~	7) / Two Tx and	tenna	opera	tion (1	MCS8	3~13)				
Antenna model	AEP8P-100	0000	(cable	lengtl	n: 174	.0±5.0	mm,	O.D.	1.37 n	nm)	AEP8P-100	001 (cable l	ength:	428.0)±5.0	mm,	O.D.1	.37 m	nm)
Antenna type / connector type		P8P-100000 (cable length: 174.0±5.0 mm, O.D.1.37 mm) AEP8P-100001 (cable length: 428.0±5.0 mm, O.D.1.37 mm) PIFA (Planar Inverted F Antenna) / Connector; PCB side: U.FL, Antenna side: soldered																		
	Frequency(MHz)	2400	2442	2484	2500	5150	5350	5470	5725	5875	Frequency(MHz)	2400	2442	2484	2500	5150	5350	5470	5725	5875
Antenna gain (max.peak) (*.installed into the platform)	Directivity(dBi)	6.18	5.91	6.69	4.31	5.37	6.44	5.31	4.02	6.68	Directivity(dBi)	6.7	6.59	6.65	6.34	6.39	6.07	6.45	5.08	6.56
(*.including cable loss)	Efficiency(%)	11.28	15.39	13.68	16.43	16.20	18.07	16.81	20.66	14.24	Efficiency(%)	11.85	12.26	13.01	12.29	16.09	15.58	13.36	16.32	13.13
	Peak Gain(dBi)	-3.28	-2.22	-1.95	-3.53	-2.58	-0.98	-2.42	-2.81	-1.78	Peak Gain(dBi)	-2.56	-2.53	-2.21	-2.76	-1.54	-200	-2.28	-2.78	-2.25

^{*.} The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No. : 11253019S-A Page : 4 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

2.3 Tx output power (typical) specification (antenna port terminal conducted)

(*. The value in a table shows the power on each single antenna. 3dBm is added for MIMO power.)

														Tar	get P	ower	dBm	(aver	age)										
			11	b					1	lg											11n(2	(TH02							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	12.5	12.5	12.5	12.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
2417	2	12.5	12.5	12.5	12.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
2422	3		12.5				7.5			7.5	7.5	7.5	7.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
2427	4	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	12.5	12.5	12.5	12.5	12.5	_11_	_11_	9.5	12.5	12.5	12.5	12.5	12.5	11	_ 11_	9.5
2432	5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	[11]	12.5	12.5	12.5	12.5	12.5	11	11	9.5	12.5	12.5	12.5	12.5	12.5	11	11	9.5
2437	6	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	12.5	12.5	12.5	12.5	12.5	11	11	9.5	12.5	12.5	12.5	12.5	12.5	-11	11	9.5
2442	7	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	. 11	11	12.5	12.5	12.5	12.5	12.5	11	11	9.5	12.5	12.5	12.5	12.5	12.5	-11	11	9.5
2447	8	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	12.5	12.5	12.5	12.5	12.5	- 11	- 11	9.5	12.5	12.5	12.5	12.5	12.5	11	- 11	9.5
2452	9	12.5	12.5	12.5	12.5	9	9	9	9	9	9	. 9	9	6	6	. 6	6	6	6	6	6	6	6	6	6	6	6	6	6
2457	10	12.5	12.5	12.5	12.5	9	9	9	9	9	9	9	9	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
2462	11	12.5	12.5	12.5	12.5	9	9	9	9	9	9	9	9	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

						,	Targe	t Pow	er [dF	3m] (a	verag	ge)								
		11a										11n(2	OHT)							
[MHz] CH	6 9 12	18 24	36 48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
5180 36	10.5 10.5 10.5	10.5 10.5	10.5 9		10.5	10.5	10.5	10.5	10.5	9	_ 7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5200 40	10.5 10.5 10.5	10.5 10.5	10.5 9	7.5	10.5	10.5	10.5	10.5	10.5	9.	_ 7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5220 44	10.5 10.5 10.5	10.5 10.5		7.5	10.5	10.5	10.5	10.5	10.5		7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5240 48	10.5 10.5 10.5	10.5 10.5	10.5 : 9	7.5	10.5	10.5	10.5	10.5	10.5	9	7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5260 52	10.5 10.5 10.5	10.5 10.5	10.5 9	7.5	10.5	10.5	10.5	10.5	10.5	9	7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5280 56	10.5 10.5 10.5			7.5		10.5		10.5		9	_ 7	6				10.5		9	7	6
5300 60	10.5 10.5 10.5			7.5	10.5	10.5	10.5	10.5	10.5	9]	7	6				10.5			7	6
5320 64	10.5 10.5 10.5			7.5	10.5	10.5	10.5	10.5	10.5	9	7	6	10.5	10.5	10.5	10.5	10.5	9	7	6
5500 100	10.5 10.5 10.5				10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5520 104	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5540 108	10.5 10.5 10.5					10.5				9	7	6				10.5		9	7	6
5560 112	10.5 10.5 10.5					10.5			9.5	9	7	6				10.5	9.5	9	7	6
5580 116					10.5	10.5	10.5	10.5	9.5	9	7	6			10.5		9.5	9	7	6
5600 120	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7_	6
5620 124	10.5 10.5 10.5				10.5	10.5	10.5	10.5	9.5	9 }	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5640 128	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5660 132	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5680 136	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5700 140	10.5 10.5 10.5	10.5 10.5	9.5 8.5	7.5	10.5	10.5	10.5	10.5	9.5	9	7	6	10.5	10.5	10.5	10.5	9.5	9	7	6
5745 149	10 10 10	10 10	9 7.5	6	10	10	10	10	9	7.5	6	4.5	_10	10	10	10	9	7.5	6	4.5
5765 153	10 10 10	10 10	9 7.5	6	10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5
5785 157	10 10 10	10 10	9 7.5	6	10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5
5805 161	10 10 10	10 10	9 7.5	6	10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5
5825 165	10 10 10	10 10	9 7.5	6	10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5

							Tar	get Po	wer [dBm]	(aver	age)					
									11n(4	OHT)							
[MHz]	CH	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
5190	38	_ 7	7	7	_ 7	7	_ 7	7	6	7	7	_ 7	7	7	7	7	_6_
5230	46	10.5	10.5	10.5	10.5	10.5	8.5	7	6	10.5	10.5	10.5	10.5	10.5	8.5	7	6
5270	54	10.5	10.5	10.5	10.5	10.5	8.5	7	6	10.5	10.5	10.5	10.5	10.5	8.5	7	_6_
5310	62	8	8	8	8	8	8	7	6	8	8	8	8	8	8	7	6
5510	102	9.5	9.5	9.5	9.5	9.5	8.5	7	6	9.5	9.5	9.5	9.5	9.5	8.5	7	6
5550	110	10.5	10.5	10.5	10.5	10	8.5	7	6	10.5	10.5	10.5	10.5	10	8.5	7	6
5590	118	10.5	10.5	10.5	10.5	10	8.5	7	6	10.5	10.5	10.5	10.5	10	8.5	7	6
5630	126	10.5	10.5	10.5	10.5	10	8.5	7	6	10.5	10.5	10.5	10.5	10	8.5	7	6
5670	134	10.5	10.5	10.5	10.5	10	8.5	7	6	10.5	10.5	10.5	10.5	10	8.5	7	6
5755	151	_10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5
5795	159	10	10	10	10	9	7.5	6	4.5	10	10	10	10	9	7.5	6	4.5

Test report No. : 11253019S-A Page : 5 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

2.4. Maximum output power which may possible

(*. The value in a table shows the power on each single antenna. 3dBm is added for MIMO power.)

											Ma	ximu	m ou	tput p	ower	which	n may	possil	ble [d]	Bm] (a	vera	ge)							
			1.	lb					11	lg											11n(2	(TH02							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	15	15	15	15	10	10	10	10	10	10	10	10	- 8	- 8	8	- 8	- 8	8	- 8	- 8	- 8	- 8	- 8	- 8	- 8	8	- 8	8
2417	2	15	15	15	15	10	10	10	10	10	10	10	10	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2422	3	15	15	15	15	10	10	10	10	10	10	10	10	8	8	8	8	8	8	8	8	8	8	8	8	8	8	- 8	8
2427	4	15	15	15	15	15	15	15	15	15	15	13.5	13.5	15	15	15	15	15	13.5	13.5	12	15	15	15	15	15	13.5	13.5	12
2432	5	15	15	15	15	15	15	15	15	15	15	13.5	13.5	15	15	15	15	15	13.5	13.5	12	15	15	15	15	15	13.5	13.5	12
2437	6	15	15	15	15	15	15	15	15	15	15	13.5	13.5	15	15	15	15	15	13.5	13.5	12	15	15	15	15	15	13.5	13.5	12
2442	7	15	15	15	15	15	15	15	15	15	15	13.5	13.5	15	15	15	15	15	13.5	13.5	12	15	: 15	15	: 15	15	13.5	13.5	12
2447	8	15	15	15	15	15	15	15	15	15	15	13.5	13.5	15	15	15	15	15	13.5	13.5	12	15	15	15	15	15	13.5	13.5	12
2452	9	15	15	15	15	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
2457	10	15	15	15	15	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
2462	11	15	15	15	15	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5

		Max	imum outp	ut power w	hich may p	ossible [dB	m] (average	e)	
	11a					11n(2	20HT)		
[MHz] CH	6 9 12 18 24	1 36 48 54	MCS0 MCS1	MCS2 MCS3	MCS4 MCS5	MCS6 MCS7	MCS8 MCS9	MCS10 MCS1	MCS12 MCS13 MCS14 MCS15
5180 36	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5200 40	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5220 44	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5240 48	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5260 52	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5280 56	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5300 60	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5320 64	13 13 13 13 13	13 11.5 10	13 13	13 13	13 11.5	9.5 8.5	13 13	13 13	13 11.5 9.5 8.5
5500 100	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5520 104	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5540 108	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5560 112	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5580 116	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5600 120	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5620 124	13 13 13 13 13		13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5640 128	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5660 132	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5680 136	13 13 13 13 13	3 12 11 10	13 13	13 13	12 [11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5700 140	13 13 13 13 13	3 12 11 10	13 13	13 13	12 11.5	9.5 8.5	13 13	13 13	12 11.5 9.5 8.5
5745 149	12.5 12.5 12.5 12.5 12	5 11.5 10 8.5	12.5 12.5	12.5 12.5	11.5 10	8.5 7	12.5 12.5	12.5 12.5	11.5 10 8.5 7
5765 153	12.5 12.5 12.5 12.5 12	5 11.5 10 8.5	12.5 12.5	12.5 12.5	11.5 10	8.5 7	12.5 12.5	12.5 12.5	11.5 10 8.5 7
5785 157	12.5 12.5 12.5 12.5 12	5 11.5 10 8.5	12.5 12.5	12.5 12.5	11.5 10	8.5 7	12.5 12.5	12.5 12.5	11.5 10 8.5 7
5805 161	12.5 12.5 12.5 12.5 12	5 11.5 10 8.5	12.5 12.5	12.5 12.5	11.5 10	8.5 7	12.5 12.5	12.5 12.5	11.5 10 8.5 7
5825 165	12.5 12.5 12.5 12.5 12	5 11.5 10 8.5	12.5 12.5	12.5 12.5	11.5 10	8.5 7	12.5 12.5	12.5 12.5	11.5 10 8.5 7

		Maximum output power which may possible [dBm] (average)															
		11n(40HT)															
[MHz]	CH	MCS0															MCS15
5190	38	9.5	9.5	9.5	9.5	9.5	9.5	9.5	8.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	8.5
5230	46	13	13	13	13	13	11	9.5	8.5	13	13	13	13	13	11	9.5	8.5
5270	54	_13	13	13	13	13	_ 11	9.5	8.5	13	13	13	13	13	11	9.5	8.5
5310	62	10.5	10.5	10.5	10.5	10.5	10.5	9.5	8.5	10.5	10.5	10.5	10.5	10.5	10.5	9.5	8.5
5510	102	_12_	12	12	12	12	11	9.5	8.5	12	12	12	12	12	_11	9.5	8.5
5550	110	13	13	13	13	12.5	11	9.5	8.5	13	13	13	13	12.5	11	9.5	8.5
5590	118	13	13	13	13	12.5	11	9.5	8.5	13	13	13	13	12.5	11	9.5	8.5
5630	126	13	13	13	13	12.5	11	9.5	8.5	13	13	13	13	12.5	11	9.5	8.5
5670	134	13	13	13	13	12.5	11	9.5	8.5	13	13	13	13	12.5	11	9.5	8.5
5755	151	12.5	12.5	12.5	12.5	11.5	10	8.5	7	12.5	12.5	12.5	12.5	11.5	10	8.5	7
5795	159	12.5	12.5	12.5	12.5	11.5	10	8.5	7	12.5	12.5	12.5	12.5	11.5	10	8.5	7

Table of Maximum Tune-up Limit

Mode (802.11x) / Band		Aver	age Power (d	lBm)	
IVIOGE (802.11x)/ Balid	a	b	g	n(20HT)	n(40HT)
WLAN 2.4 GHz band - Ant.Main		15	15	15	
WLAN 2.4 GHz band - Ant.Sub		15	15	15	
WLAN 2.4 GHz band - Ant.Main+Sub				15	
WLAN 5.2 GHz band (W52) - Ant. Main	13			13	13
WLAN 5.2 GHz band (W52) - Ant.Sub	13			13	13
WLAN 5.2 GHz band (W52) - Ant.Main+Sub				13	13
WLAN 5.3 GHz band (W53) - Ant.Main	13			13	13
WLAN 5.3 GHz band (W53) - Ant.Sub	13			13	13
WLAN 5.3 GHz band (W53) - Ant.Main+Sub				13	13
WLAN 5.6 GHz band (W56) - Ant.Main	13			13	13
WLAN 5.6 GHz band (W56) - Ant.Sub	13			13	13
WLAN 5.6 GHz band (W56) - Ant.Main+Sub				13	13
WLAN 5.8 GHz band (W58) - Ant.Main	12.5			12.5	12.5
WLAN 5.8 GHz band (W58) - Ant.Sub	12.5			12.5	12.5
WLAN 5.8 GHz band (W58) - Ant.Main+Sub				12.5	12.5

^{(*.} The value in a table shows the power on each single antenna. 3dBm is added for MIMO power.)

Test report No.: 11253019S-A
Page : 6 of 144
Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SECTION 3: Test specification, procedures and results

3.1 Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures..

KDB 447498 D01 (v06): General RF exposure guidance

KDB 248227 D01 (v02r02): SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters

KDB 865664 D01 (v01r04): SAR measurement 100MHz to 6GHz

IEEE Std. 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques.

3.2 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 Procedures and Results

		(DTS)	Wi-Fi (U		Wi-Fi (U		Wi-Fi (U-			U-NII-3)			
	(2412-24	62MHz)	(5180~5240N	MHz)(W52)	(5260~53201	MHz)(W53)	(5500~5700N	ИНz) (W56)	(5745~58251	MHz) (W58)			
Test Procedure			SAR measur	rement; KDB	447498, KDE	3 248227, KD	B 865664, IEE	E Std.1528					
Category				FCC 4	7CFR §2.109	93 (Portable o	levice)						
Results (SAR(1g))	Com	plied	Com	plied	Com	plied	Com	plied	Complied				
Antenna#	Main(#0)	Sub(#1)	Main(#0)	Sub(#1)	Main(#0)	Sub(#1)	Main(#0)	Sub(#1)	Main(#0)	Sub(#1)			
Liquid type				Body liquid									
D	0.28	0.25	not ap	plied	1.16	0.45	1.32	0.58	0.91	0.31			
Reported SAR value	W/kg	W/kg	(*. ≤1.2 W/kg		W/kg	W/kg	W/kg	W/kg	W/kg	W/kg			
Measured SAR value	value 0.231 0.208		_	_	1.03	0.320	0.891	0.404	0.659	0.245			
	W/kg	W/kg			W/kg	W/kg	W/kg	W/kg	W/kg	W/kg			
Operation mode,	11b(1Mbps),	11b(1Mbps),	_	11		11a(6Mbps),	n20(MCS0),	11a(6Mbps),	n40(MCS0),	11a(6Mbps),			
frequency[MHz]	2412	2412			5260	5260	5700	5700	5755	5745			
Duty cycle [%] (scaled factor)	99.6 (×1.00)	99.6 (×1.00)	-	-	98.5 (×1.02)	98.5 (×1.02)	98.4 (×1.02)	98.5 (×1.02)	96.6 (×1.04)	98.5 (×1.02)			
Output power [dBm]	14.19	14.28			12.57	11.61	11.39	11.50	11.30	11.59			
(max. power, scaled factor)	$(15, \times 1.21)$	$(15, \times 1.18)$	_	_	$(13, \times 1.10)$	$(13, \times 1.38)$	$(13, \times 1.45)$	$(13, \times 1.40)$	$(13, \times 1.32)$	$(13, \times 1.23)$			
Liquid type				H	lead liquid (by Flat phantom)								
D 4 ICAD 1	0.29	0.26	not ap	plied	1.17	0.47	1.31	0.56	1.00	0.37			
Reported SAR value	W/kg	W/kg	(*. ≤1.2 W/kg	for U-NII-2A)	W/kg	W/kg	W/kg	W/kg	W/kg	W/kg			
Measured SAR value	0.240	0.221			1.04	0.334	0.885	0.447	0.813	0.291			
Weasured SAR value	W/kg	W/kg	-	-	W/kg	W/kg	W/kg	W/kg	W/kg	W/kg			
Operation mode,	11b(1Mbps),	11b(1Mbps),			11a(6Mbps),	11a(6Mbps),	n20(MCS0),	n40(MCS0),	11a(6Mbps),	11a(6Mbps),			
frequency[MHz]	2412	2412			5260	5260	5700	5550	5745	5745			
Duty cycle [%] (scaled factor)	99.6 (×1.00)	99.6 (×1.00)	-	-	98.5 (×1.02)	98.5 (×1.02)	98.4 (×1.02)	96.6(×1.04)	98.5 (×1.02)	98.5 (×1.02)			
Output power [dBm]	14.19	14.28			12.57	11.61	11.39	12.22	11.70	11.59			
(max. power, scaled factor)	$(15, \times 1.21)$	$(15, \times 1.18)$	-	-	$(13, \times 1.10)$	$(13, \times 1.38)$	$(13, \times 1.45)$	$(13, \times 1.20)$	$(13, \times 1.20)$	$(13, \times 1.23)$			

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

where; Tune-up factor [-] = $1/(10^{(4)} \text{Cmax})$ (max.power - burst average power), dB"/10)), Duty scaled factor [-] = 100(%) (duty cycle, %)

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

^{*. (}KDB248227 D01 (v02r02), clause 5.3.1) Since highest reported SAR(1g) of W53 band was ≤1.2 W/kg, SAR measurement of W52 band was omitted.

^{*. (}Calculating formula) Corrected SAR to max.power $(W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor)$

Test report No. : 11253019S-A Page : 7 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

3.4 Test Location

No.7 shielded room (2.76m (Width) × 3.76m (Depth) × 2.4m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

3.5 Confirmation before SAR testing

3.5.1 Average power for SAR tests

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The result is shown in Section 6.

*. The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v06))

Step.1 Data rate check (*. The EUT supported the following data rate in each operation mode.)

1	1b	11	lg	11	la			11n(20HT)					11n(40HT)		
Mod	Data	Mod	Data	Mod	Data	MCS	Spatial	Mod									
(DSSS)	rate	(OFDM)	rate	(OFDM)	rate	Index	Stream	(OFDM)									
DBPSK	1 Mbps	BPSK	6 Mbps	BPSK	6 Mbps	MCS0	1	BPSK	MCS8	2	BPSK	MCS0	1	BPSK	MCS8	2	BPSK
DQPSK	2 Mbps	BPSK	9 Mbps	BPSK	9 Mbps	MCS1	1	QPSK	MCS9	2	QPSK	MCS1	1	QPSK	MCS9	2	QPSK
CCK	5.5 Mbps	QPSK	12 Mbps	QPSK	12 Mbps	MCS2	1	QPSK	MCS10	2	QPSK	MCS2	1	QPSK	MCS10	2	QPSK
CCK	11 Mbps	QPSK	18 Mbps	QPSK	18 Mbps	MCS3	1	16QAM	MCS11	2	16QAM	MCS3	1	16QAM	MCS11	2	16QAM
*.Mod: M	odulation	16QAM	24 Mbps	16QAM	24 Mbps	MCS4	1	16QAM	MCS12	2	16QAM	MCS4	1	16QAM	MCS12	2	16QAM
,		16QAM	36 Mbps	16QAM	36 Mbps	MCS5	1	64QAM	MCS13	2	64QAM	MCS5	1	64QAM	MCS13	2	64QAM
		64QAM	48 Mbps	64QAM	48 Mbps	MCS6	1	64QAM	MCS14	2	64QAM	MCS6	1	64QAM	MCS14	2	64QAM
		64QAM	54 Mbps	64QAM	54 Mbps	MCS7	1	64QAM	MCS15	2	64QAM	MCS7	1	64QAM	MCS15	2	64QAM

Step.2 Consideration of SAR test channel

For the SAR test reference, on each operation band, the average output power was measured on the lower/middle/upper and specified channels with the worst data rate condition in step 1 in the above.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] = $\pm 5\%$

Power drift limit (X) [dB] = $10\log(P_drift) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.21dB$

from E-filed relations with power.

S=E×H=E²/ η =P/(4× π ×r²) (η : Space impedance) \rightarrow P=(E²×4× π ×r²)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ±0.21dB.

3.7 Test setup of EUT and SAR measurement procedure

After considering the outline of Flat Panel Sensor, the SAR test was carried out on the following setup conditions.

	Explanation of EUT setup position	Antenna V	Iain (chain 0)	Antenna Sub (chain 1)		
Setup	(*. Refer to Appendix 1 for test setup photographs.)	Separation [mm]	SAR Tested /Reduced	Separatio n [mm]	SAR Tested /Reduced	
Front	The front surface (patient side) of EUT was touched to the Flat phantom.	3.9	Tested (*1)	3.9	Tested (*1)	
Back	The back surface (operator side) of EUT was touched to the Flat phantom.	2.0	Tested (*1)	2.0	Tested (*1)	
Long(L) side (Main)	The long side edge surface (antenna Main side) of EUT was touched to the Flat phantom.	1.7	Tested (*1)	313.7	Reduced (>200 mm)	
Long(L) side (no antenna)	The long side edge surface (no antenna) of EUT was touched to the Flat phantom.	380.3	Reduced (>200 mm)	35.3	Reduced (*1)	
Short(S) side (Sub)	The short side edge surface (antenna Sub side) of EUT was touched to the Flat phantom.	394.3	Reduced (>200 mm)	1.7	Tested (*1)	
Short(S) side (no antenna)	The short side edge surface (no antenna) of EUT was touched to the Flat phantom.	30.7	Reduced (*1)	456.3	Reduced (>200 mm)	

^{*.} Separation: Antenna separation distance. It is the distance from the antenna to the outer surface of EUT form which a human may touch.

(cont'd)

Size of EUT: $460 \text{ (W)} \times 384 \text{ (D)} \times 15 \text{ (thickness) [mm]}$

Test report No.: 11253019S-A Page : 8 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

(cont'd)

*1. KDB 447498 D01 (v06) was taken into consideration to reduce SAR test.

	Consideration of SAR test reduction by the antenna separation distance (100MHz-6GHz, ≤50mm)													
Band,			ım distance	Upper		ximum		Calculation		alone SAR				
Mode Mode	Setup Position	[mm]	[mm] (rounded)	frequency [GHz]	[dBm]	[mW]	[mW] (rounded)	of exclusion: $\leq 3.0 (*2)$		Required? 3, Required)	Remarks			
	Long side (Main), Short side (Sub)	1.7	2 (≤5)	[Oranj			(Iouridad)	10.0	>3.0	Required	-			
WLAN	Back (Main, Sub)	2.0	2(≤5)					10.0	>3.0	Required	-			
2.4GHz	Front (Main, Sub)	3.9	4(≤5)	2.462	15.0	31.62	32	10.0	>3.0	Required	-			
b,g n(20HT)	Short side (no antenna) (Main)	30.7	31					1.6	<3.0	Reduced	-			
11(20111)	Long side (no antenna) (Sub)	35.3	35					1.4	<3.0	Reduced	-			
XX/T AND	Long side (Main), Short side (Sub)	1.7	2 (≤5)					9.2	>3.0	Required	-			
WLAN	Back (Main, Sub)	2.0	2 (≤5)					9.2	>3.0	Required	-			
W52&53 a,n(20HT) n(40HT)	Front (Main, Sub)	3.9	4 (≤5)	5.32	13.0	19.95	20	9.2	>3.0	Required	-			
	Short side (no antenna) (Main)	30.7	31					1.5	<3.0	Reduced	-			
11(10111)	Long side (no antenna) (Sub)	35.3	35					1.3	<3.0	Reduced	-			
WLAN	Long side (Main), Short side (Sub)	1.7	2 (≤5)					9.5	>3.0	Required	-			
WLAN W56	Back (Main, Sub)	2.0	2 (≤5)					9.5	>3.0	Required	-			
a,n(20HT)	Front (Main, Sub)	3.9	4 (≤5)	5.7	13.0	19.95	20	9.5	>3.0	Required	-			
n(40HT)	Short side (no antenna) (Main)	30.7	31					1.5	<3.0	Reduced	-			
11(10111)	Long side (no antenna) (Sub)	35.3	35					1.4	<3.0	Reduced				
XX/T A X I	Long side (Main), Short side (Sub)	1.7	2 (≤5)					8.7	>3.0	Required	-			
WLAN W58	Back (Main, Sub)	2.0	2 (≤5)					8.7	>3.0	Required				
a,n(20HT)	Front (Main, Sub)	3.9	4 (≤5)	5.825	12.5	17.78	18	8.7	>3.0	Required	-			
n(40HT)	Short side (no antenna) (Main)	30.7	31					1.4	<3.0	Reduced	_			
11(10111)	Long side (no antenna) (Sub)	35.3	35					1.2	<3.0	Reduced	-			

^{*2.} Parenthesis 1), Clause 4.3.1, KDB 447498 D01 (v06) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 100MHz-6GHz at test separation distance ≤50mm.

[(max.power of channel, including tune-up tolerance, mW) / (min.test separation distance, mm)] \times [\sqrt{f} (GHz)] \le 3.0 (for SAR(1g)) \cdots formula (1)

Simultaneous transmission evaluation

Parenthesis 2) and 3), Clause 4.3.2, KDB 447498 D01 (v06) gives the following formula to calculate the simultaneous transmission SAR test exclusion limit. (SPLSR: SAR to peak location separation ratio must be ≤ 0.04 for antenna pair.) Calculating formula:

Estimate standalone SAR(1g) = $[(max.power, mW)/(min.test separation distance, mm)] \times [\sqrt{f(GHz)}]/[7.5]$ SPLSR (SAR to Peak Location Separation Ratio) = $\{(SAR_Ant.Main, W/kg) + (SAR_Ant.Sub, W/kg)\}^{1.5}/(Ant.Maim > Ant.Sub distance, mm)\}$

When there is standalone SAR(1g) of antenna Main and antenna Sub within a limit (≤1.6 W/kg) because the antenna separation distance is big enough (>300 mm), SPLSR is smaller than 0.04, so SAR for co-location (volume scan) can be reduced.

Position	Antenna separation	Max. Standalone	SAR(1g) [W/kg]	Σ1g SAR	SPLSR	SPLSR	Volume scan	Remarks
POSITION	distance [mm]	ant.Main.	ant.Sub	$[W/kg] (\le 1.6)$	(Yes/No)	(≤0.04)	(Yes/No)	Remarks
Front (Patient)	≈ 500	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.011	No	=
Long side (Main)	≈390	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.015	No	=
Short side (Sub)	≈310	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.018	No	=

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	On 2.4GHz band, in body liquid, worst SAR search by DSSS mode. Add test for OFDM mode, if it's necessary.
~ Step 2	Repeat test in head liquid (Step 2).
	On 5GHz band, in body liquid, worst SAR search by largest channel bandwidth mode with highest power.
Step 3	(Step 3: W52/53 band, Step 4: W56 band, Step 5: W58 band)
~ Step 8	Repeat test in head liquid. (Step 6: W52/53 band, Step 7: W56 band, Step 8: W58 band)
_	*. Check SAR measurement variability, when if the measured SAR(1g) was ≥ 0.80 W/kg and on a highest measured SAR(1g) condition in 5GHz band.

During SAR test, the radiated power is always monitored by Spectrum Analyzer.

Test report No. : 11253019S-A Page : 9 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SECTION 4: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 13.7%	± 13.6%
Expanded uncertainty (k=2)	± 27.4%	± 27.2%

	Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)				. 8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	oc
2	Axial isotropy Error	±4.7 %	Rectangular	√3	√0.5	√0.5	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy Error	±9.6 %	Rectangular	√3	√0.5	√0.5	±3.9 %	±3.9 %	∞
4	Linearity Error	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response	±2.4 %	Rectangular	√3	1	1	±1.4 %	±1.4 %	∞
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects Error	±4.3%	Rectangular	√3	1	1	±2.5 %	±2.5 %	∞
8	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	∞
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	√3	1	1	0%	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7%	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
В	Test Sample Related								
16	Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
17	Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	145
18	Power scaling	±0%	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
19	Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	$\sqrt{3}$	1	1	±4.3 %	±4.3 %	∞
21	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23	Measurement Liquid Permittivity Error (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
24	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	$\sqrt{3}$	0.78	0.71	±2.4 %	±2.2 %	∞
25	Liquid Permittivity-temp.uncertainty (≤2deg.C.)	±0.9 %	Rectangular	$\sqrt{3}$	0.23	0.26	±0.1 %	±0.1 %	∞
	Combined Standard Uncertainty						±13.7 %	±13.6 %	733
	Expanded Uncertainty (k=2)						±27.4 %	±27.2 %	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

SECTION 5: Operation of EUT during testing

5.1 Operating modes for SAR testing

This EUT has IEEE 802.11b, g, a, n(20HT) and n(40HT)(*.5GHz band only) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

				-			-										
Operation 1	node	b	g	n20	a	n20	n40	a	n20	n40	a	n20	n40	a	n20	n40	
band			DTS		U	-NII-1(W5	52)	U	NII-2A(W	(53)	U-	NII-2C(W	(56)	6) U-NII-3(W			
Tx band [MHz]		2412~246	52	5180-	~5240	5190, 5230 5260~5320 5270, 5310			5500~5700 5510 ~5670		5510 ~5670	5745~5825		5755, 5795			
Bandwidth	[MHz]	20	20	20	20	20	40	20	20	40	20	20	40	20	20	40	
Max.power	[dBm]	15	15	15	13	13	13	13	13	13	13	13	13	12.5	12.5	12.5	
Modulati	ion	DSSS	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	
Data rate [N	/Ibps]	1	6	MCS0	6	MCS0	MCS0	6	MCS0	MCS0	6	MCS0	MCS0	6	MCS0	MCS0	
Frequency	ant#0	*1	Reduced	Reduced	Reduced	Reduced	Reduced	*1	Reduced	*1	*1	*1	*1	*1	Reduced	*1	
tested [MHz]	ant#1	*1	Reduced	Reduced	Reduced	Reduced	Reduced	*1	Reduced	*1	*1	Reduced	*1	*1	Reduced	*1	

Controlled software

Wireless authentication test tool (Gaia proto) ver.1.3.0.2

Setting parameters;

Tx mode: TX99 / Data pattern: PN9 pattern / Short GI: Disable / Packet size: 32 / Antenna: Chain 0: Main, China 1: Sub, Chain both: MIMO *. The value of "Power" cell of software was adjusted so that measurement power might be satisfied within 2dB of the maximum power.

(cont'd)

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Test report No.: 11253019S-A : 10 of 144 Page Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

*1. SAR test reduction consideration

802.1	1 Modes	b	g (*4)	n(1Tx) (*4)	n(2Tx)(*4,5)	a (*2)	n(1Tx)	n(2Tx) (*5)	n(1Tx)	n(2Tx) (*5)
Ch. Band	width [MHz]	20	20	20	20	20	20	20	40	40
Lowest da	ta rate [Mbps]	1	6	MCS0	MCS8	6	MCS0	MCS8	MCS0	MCS8
2.4GHz	Ch.	1/6/11	1/6/11	16/11	16/11					
2.40HZ	Max,mW	32/32/32	10/32/14	6/32/7	6/32/7					
Ant.	AT,mW	26/ <mark>23/</mark> 23	7/27/10	5/27/5	4/26/5					
Main	Rp.SAR1g	0.28 / <mark>0.23</mark> /0.22	11b:≤0.8w/kg	11b:≤0.8w/kg	11b:≤0.8w/kg					
Ant.	AT,mW	<mark>27/25</mark> /22	8/29/11	5/28/5	5/28/5					
Sub	Rp.SAR1g	0.25 / <mark>0.19</mark> /0.18	11b:≤0.8w/kg	11b:≤0.8w/kg	11b:≤0.8w/kg					
W52	Ch.					36/40/44/48	36/40/44/48	36/40/44/48	38/46	38/46
W 32	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	9/20	9/20
Ant.	AT,mW					16/16/16/16	16/17/16/16	17/17/16/14	8/17	8/16
Main	Rp.SAR1g							ed (W53:≤1.2w/kg) (*3)		
Ant.	AT,mW					16/16/17/14	16/16/16/13	16/15/15/13	7/16	6/13
Sub	Rp.SAR1g							d(W53:≤1.2w/kg)(*3		
W53	Ch.					52/56/60/64	52/56/60/64	52/56/60/64	54/62	54/62
W 33	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	20/11	20/11
Ant.	AT,mW					18/16/ <mark>16/17</mark>	17/16/16/16	19/17/16/16	<mark>17</mark> /9	18/10
Main	Rp.SAR1g					1.16/1.08/1.07	Reduced (a: <1.2w/kg)	<-standalone SAR	1.08	<-standalone SAF
Ant.	AT,mW					14/15/ <mark>14/15</mark>	14/13/13/15	13/13/13/15	<mark>16</mark> /8	17/7
Sub	Rp.SAR1g					0.45 / <mark>0.36 /0.40</mark>	Reduced (a: <1.2w/kg)	<-standalone SAR	0.28	<-standalone SAF
W56	Ch.					100/116/120/140	100/116/120/140	100/116/120/140	102/110/118/134	102/110/118/13
**50	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	16/20/20/20	16/20/20/20
Ant.	AT,mW					<mark>18</mark> /16/ <mark>19/15</mark>	<mark>17</mark> /17/ <mark>19/14</mark>	14/14/16/14	<mark>12</mark> /19/ <mark>18/16</mark>	11/18/16/14
Main	Rp.SAR1g					0.70 /0.84 / <mark>0.84 /1.25</mark>		<-standalone SAR	0.51 /0.77 / <mark>0.89 /1.21</mark>	<-standalone SAF
Ant.	AT,mW					15/ <mark>14</mark> /14/ <mark>14</mark>	<mark>14</mark> /13/ <mark>14</mark> /14	14/13/14/14	13/17/14/13	13/16/14/13
Sub	Rp.SAR1g					0.56 / <mark>0.49 /0.58</mark>	Reduced (a: <1.2w/kg)	<-standalone SAR	0.41 /0.57 /0.46 /0.45	<-standalone SAR
W58	Ch.					149/157/165	149/157/165	149/157/165	151/159	151/159
	Max,mW					18/18/18	18/18/18	18/18/18	18/18	18/18
Ant.	AT,mW					15/ <mark>14/</mark> 12	15/14/12	13/12/12	1 <mark>3</mark> /13	12/13
Main	Rp.SAR1g					0.89 / <mark>0.83</mark> /0.77	Reduced (a: <1.2w/kg)	<-standalone SAR	0.91 / 0.82	<-standalone SAF
Ant.	AT,mW					14/ <mark>13</mark> /12	14/12/12	14/13/12	13/13	13/13
Sub	Rp.SAR1g					<mark>0.31</mark> / <mark>0.26</mark> /0.30	Reduced a: (<1.2w/kg)	<-standalone SAR	0.29 /0.21	<-standalone SAR

	1 Modes	b	g (*4)		n(2Tx)(*4,5)	nd Reported SAR(1 a (*2)	n(1Tx)	n(2Tx) (*5)	n(1Tx)	n(2Tx) (*5)
Ch. Band	width [MHz]	20	20	20	20	20	20	20	40	40
Lowest da	ta rate [Mbps]	1	6	MCS0	MCS8	6	MCS0	MCS8	MCS0	MCS8
2.4GHz	Ch.	1/6/11	1/6/11	16/11	16/11					
Z.4GHZ	Max,mW	32/32/32	10/32/14	6/32/7	6/32/7					
Ant.	AT,mW	26/ <mark>23</mark> /23	7/27/10	5/27/5	4/26/5					
Main	Rp.SAR1g	0.29 /0.24 /0.23	11b:≤0.8w/kg	11b:≤0.8w/kg	11b:≤0.8w/kg					
Ant.	AT,mW	<mark>27/</mark> 25/22	8/29/11	5/28/5	5/28/5					
Sub	Rp.SAR1g	0.26 / <mark>0.21</mark> /0.21	11b:≤0.8w/kg	11b:≤0.8w/kg	11b:≤0.8w/kg					
W52	Ch.					36/40/44/48	36/40/44/48	36/40/44/48	38/46	38/46
W 32	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	9/20	9/20
Ant.	AT,mW					16/16/16/16	16/17/16/16	17/17/16/14	8/17	8/16
Main	Rp.SAR1g							d(W53:≤1.2w/kg) (*3		
Ant.	AT,mW					16/16/17/14	16/16/16/13	16/15/15/13	7/16	6/13
Sub	Rp.SAR1g							d(W53:≤1.2w/kg) (*3		
W53	Ch.					52/56/60/64	52/56/60/64	52/56/60/64	54/62	54/62
**33	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	20/11	20/11
Ant.	AT,mW					18/16/ <mark>16/17</mark>	17/16/16/16	19/17/16/16	17/9	18/10
Main	Rp.SAR1g					1.17 /1.10 /1.12	Reduced (a: <1.2w/kg)	<-standalone SAR	1.05	<-standalone SAR
Ant.	AT,mW					14/15/ <mark>14/15</mark>	14/13/13/15	13/13/13/15	<mark>16</mark> /8	17/7
Sub	Rp.SAR1g					0.47 / <mark>0.38 /0.41</mark>	Reduced (a: <1.2w/kg)	<-standalone SAR	0.31	<-standalone SAR
W56	Ch.					100/116/120/140	100/116/120/140	100/116/120/140	102/110/118/134	102/110/118/134
	Max,mW					20/20/20/20	20/20/20/20	20/20/20/20	16/20/20/20	16/20/20/20
Ant.	AT,mW					<mark>18</mark> /16/ <mark>19/15</mark>	<mark>17</mark> /17/ <mark>19/14</mark>	14/14/16/14	<mark>12</mark> /19/ <mark>18/16</mark>	11/18/16/14
Main	Rp.SAR1g						0.73 /0.77 / <mark>0.82 /1.31</mark>	<-standalone SAR	0.51 /0.74 / <mark>0.86 /1.18</mark>	<-standalone SAR
Ant.	AT,mW					15/14/ <mark>14/14</mark>	<mark>14</mark> /13/ <mark>14</mark> /14	14/13/14/14	13/17/14/13	13/16/14/13
Sub	Rp.SAR1g					0.49 /0.48 / <mark>0.44 /0.53</mark>	Reduced (a: <1.2w/kg)	<-standalone SAR	0.39 /0.56 /0.45 /0.53	<-standalone SAR
W58	Ch.					149/157/165	149/157/165	149/157/165	151/159	151/159
	Max,mW					18/18/18	18/18/18	18/18/18	18/18	18/18
Ant.	AT,mW					15/ <mark>14/</mark> 12	15/14/12	13/12/12	1 <mark>3</mark> /13	12/13
Main	Rp.SAR1g					1.00 / <mark>0.90</mark> /0.80	Reduced (a: <1.2w/kg)	<-standalone SAR	0.96/0.82	<-standalone SAR
Ant.	AT,mW					<mark>14/<mark>13</mark>/12</mark>	14/12/12	14/13/12	13/13	13/13
Sub	Rp.SAR1g					<mark>0.37</mark> / <mark>0.31</mark> /0.35	Reduced (a: <1.2w/kg)	<-standalone SAR	0.34/0.27	<-standalone SAR

^{*} Ch: Channel, Max: Maximum power in specification, AT: Antenna terminal conducted average power measured, SAR(1g): Reported SAR(1g) [W/kg] with tuned-up
* The SAR testing was applied to lower, middle and upper channels for the worst SAR condition in each operation band.
* (KDB248227 D01 (v02r02)) At same specified maximum output power mode, the largest channel bandwidth, the lower order modulation and lowest data rate configuration was selected. However, lowest order modulation with 20MHz channel bandwidth mode (11a) was shown the higher SAR result. Therefore the inspection of SAR test setup was performed by 11a mode in all 5GHz band.
* 3. (KDB248227 D01 (v02r02)) Since highest reported SAR(1g) of U-NII-2A was ≤1.2 W/kg, SAR measurement of U-NII-1 band was omitted.
* 4. (KDB248227 D01 (v02r02)) On 2.4GHz band, SAR test of OFDM mode was reduced, because the estimate reported SAR of OFDM mode was ≤1.2 W/kg by using the highest reported SAR of DSSS mode.
* 5. (KDB447498 D01(v06)) Since SPLSR (SAR to peak location separation ratio) was enough smaller than 0.04, SAR test of MIMO mode was reduced.

Test report No. : 11253019S-A Page : 11 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SECTION 6: Confirmation before testing

6.1 Assessment for the antenna terminal port conducted power of EUT (Worst data rate, worst channel determination)

0.1		00000																Trainici dei	~~~~		i
		Doto	Powe	r spec.	Ι	Outy cyc	cle	M	Iain anter	nna (chai	n #0) pov	ver	,	Sub anter	na (chair	1#1) pov	ver	MIMO (At	nt.0+1) po	ower	
	Freq.	Data			duty		scaled	Set	Time	Δ	Tune-up		Set	Time	Δ	Tune-up		MIMO MIMO	SUM	Δ	Power
Mode		rate	Typica	l Max.	cycle	factor	factor	pwr.	average	Max.	factor	SAR	pwr.	average	Max.	factor	SAR	target max.	Ave.	Max.	Tune
	DATE:	D. //	1 (4D1	L-10		rama						Tested?					Tested?				
	[MHz]	[Mbps] [dBm]	[dBm]	[%]	[dB]	[-]	[dBm]	[dBm]	[dB]	[-]		[dBm]	[dBm]	[dB]	[-]		[dBm] [dBm]	[dBm]	[dB]	-up?
	2412	1	12.5	15.0	99.6	0.02	$\times 1.00$	13	14.19	-0.81	×1.21	Tested	13	14.28	-0.72	×1.18	Tested				Tuned
11b	2437	1 7	12.5	15.0	99.6	0.02	×1.00	13	13.68	-1.32	×1.36	Tested	13	13.92	-1.08	×1.28	Tested				Tuned
110	2462	1	12.5	15.0	99.6	0.02	×1.00	13	13.59	-1.41	×1.38		13	13.48	-1.52	×1.42	Tested				Tuned
	2402	1		_	_	_						Tested					resteu				
	2412	6	7.5	10.0	97.4	0.11	$\times 1.03$	8	8.60	-1.40	×1.38	-	8	9.19	-0.81	×1.21	-				Tuned Tuned
	2427	6	12.5	15.0	97.4	0.11	×1.03	14	14.60	-0.40	×1.10		14	14.67	-0.33	×1.08	[Tuned
11g	2437	6	12.5	15.0	97.4		×1.03	14	14.30	-0.70	×1.17		14	14.56	-0.44	×1.11	·	i			Tuned
11g																		ł			
	2447	6	12.5	15.0	97.4		×1.03	14	14.33	-0.67	×1.17		14	14.16	-0.84	×1.21	L	ļ.			Tuned
	2462	6	9.0	11.5	97.4	0.11	$\times 1.03$	10	10.01	-1.49	×1.41	-	10	10.22	-1.28	×1.34	-				Tuned
	2412	MCSO	5.5	8.0	96.9	0.14	×1.03	6	6.73	-1.27	×1.34		6	7.13	-0.87						Tunad
1.1								14								×1.22 ×1.12		ł			Tuned Tuned
11n	2427	MCS		15.0	96.9	0.14	×1.03	14	14.59	-0.41	×1.10		14	14.52	-0.48						Tunea
(HT20)	2437	MCS(12.5	15.0	96.9	0.14	$\times 1.03$	14	14.25	-0.75	×1.19		14	14.51	-0.49	×1.12	l :				Tuned
(1Tx)	2447	MCSC	12.5	15.0	96.9	0.14	×1.03	14	14.24	-0.76	×1.19		14	13.98	-1.02	×1.26					Tuned
	2462	MCSO		8.5	96.9	0.14	×1.03	7	6.99	-1.51	×1.42		7	7.24	-1.26	×1.34		i			Tuned
		_		_	_								,					0.5 11.0	0.01	1.00	
	2412	MCS8		8.0	94.3	0.25	×1.06	6	6.46	-1.54	×1.43		6	7.30	-0.70	×1.17	L	8.5 11.0	9.91	-1.09	Tuned
11n	2427	MCS8	12.5	15.0	94.3	0.25	$\times 1.06$	14	14.55	-0.45	×1.11	-	14	14.54	-0.46	×1.11	-	15.5 18.0	17.55	-0.45	Tuned
(HT20)	2437	MCS8	12.5	15.0	94.3	0.25	×1.06	14	14.18	-0.82	×1.21		14	14.42	-0.58	×1.14	[15.5 18.0	17.31	-0.69	Tuned
(2Tx)	2447				94.3		(14		-0.88	(14.02	-0.98	×1.25					
(21A)				15.0			×1.06		14.12		×1.22		14				ļ -		17.08	-0.92	Tuned
	2462	MCS8	6.0	8.5	94.3	0.25	$\times 1.06$	7	6.77	-1.73	×1.49	-	7	7.33	-1.17	×1.31	-	9.0 11.5	10.07	-1.43	Tuned
	5180	6	10.5	13.0	98.5	0.07	$\times 1.02$	12	12.11	-0.89	×1.23	-	12	12.16	-0.84	×1.21	-				Tuned
	5200	6	10.5	13.0	98.5	0.07	×1.02	12	12.00	-1.00	×1.26		12	12.08	-0.92	×1.24	·				Tuned
																^1.Z4	} -				Tuiku
	5220	6	10.5	13.0	98.5	0.07	×1.02	12	12.14	-0.86	×1.22		12	12.20	-0.80	×1.20	ļ -				Tuned
	5240	6	10.5	13.0	98.5	0.07	$\times 1.02$	12	12.03	-0.97	×1.25	-	12	11.33	-1.67	×1.47	-				Tuned
	5260	6	10.5	13.0	98.5	0.07	×1.02	12	12.57	-0.43	×1.10	Tested	13	11.61	-1.39	×1.38	Tested				Tuned
	5280	6	10.5	13.0	98.5	0.07	×1.02		12.12	-0.88	×1.22		13	11.65	-1.35	×1.36		i			Tuned
					70.5			12 12		0.00		- - - - - - - - - - - - -									Tuiku
	5300	6	10.5	13.0	98.5	0.07	×1.02		12.14	-0.86	×1.22	Tested	13	11.54	-1.46	×1.40	Tested	ļ			Tuned
11a	5320	6	10.5	13.0	98.5	0.07	$\times 1.02$	12	12.35	-0.65	×1.16	Tested	13	11.78	-1.22	×1.32	Tested				Tuned
	5500	6	10.5	13.0	98.5	0.07	×1.02	12	12.46	-0.54	×1.13	Tested	12	11.80	-1.20	×1.32	Tested				Tuned
	5580		10.5	13.0	98.5	0.07	×1.02	12	12.06	-0.94	×1.24	Tested	12	11.33	-1.67	×1.47		ì			Tuned
		6						12 12					- 12 -				Tested	ł			Tuned
	5600	6	10.5	13.0	98.5	0.07	$\times 1.02$	12	12.82	-0.18	×1.04	Tested	12	11.55	-1.45	×1.40	L				Tuned
	5700	6	10.5	13.0	98.5	0.07	$\times 1.02$	12	11.82	-1.18	×1.31	Tested	12	11.50	-1.50	×1.41	Tested				Tuned
	5745	6	10.0	12.5	98.5	0.07	×1.02	12	11.70	-0.80	×1.20	Tested	12	11.59	-0.91	×1.23	Tested				Tuned
								12					12 12					ł			Turkd
	5785	6	10.0	12.5	98.5	0.07	×1.02	12	11.47	-1.03	×1.27	Tested		11.01	-1.49	×1.41	Tested	ļ.			Tuned
	5825	6	10.0	12.5	98.5	0.07	$\times 1.02$	12	10.92	-1.58	×1.44	Tested	12	10.76	-1.74	×1.49	Tested				Tuned
	5180	MCS	10.5	13.0	98.4	0.07	×1.02	12	12.09	-0.91	×1.23	-	12	12,12	-0.88	×1.22	_				Tuned
	5200			13.0		0.07	×1.02	12 12		-0.82	×1.21		12	11.94	-1.06	×1.28					
		MCS			98.4			12	12.18		X1.21		12				<u>-</u>	ł			Tuned
	5220	MCS		13.0	98.4	0.07	$\times 1.02$	12	12.13	-0.87	×1.22		12	11.95	-1.05	×1.27	L .				Tuned
	5240	MCS	10.5	13.0	98.4	0.07	×1.02	12	11.91	-1.09	×1.29	-	12	11.30	-1.70	×1.48	-				Tuned
	5260	MCS	10.5	13.0	98.4	0.07	×1.02	12	12.35	-0.65	×1.16	_	13	11.40	-1.60	×1.45	_				Tuned
	5280	MCS		13.0	98.4	0.07	×1.02	12 12	12.06	-0.94	×1.24		13	11.48	-1.52	×1.42		i			Tuned
								12									ļ -	Į.			
11n	5300	MCS		13.0	98.4	0.07	$\times 1.02$	12	11.95	-1.05	×1.27		13	11.28	-1.72	×1.49	L .				Tuned
(HT20)	5320	MCS	10.5	13.0	98.4	0.07	$\times 1.02$	12	12.05	-0.95	×1.24	-	13	11.71	-1.29	×1.35	-				Tuned
(1Tx)	5500	MCS	10.5	13.0	98.4	0.07	×1.02	12	12.21	-0.79	×1.20	Tested	12	11.54	-1.46	×1.40	-				Tuned
()	5580	MCS		13.0	98.4	0.07	×1.02	12	12.18	-0.82	×1.21		12	11.23	-1.77	×1.50	<u> </u>	ľ			
								12-				Tested						ł			Tuned
	5600	MCS	10.5	13.0	98.4	0.07	$\times 1.02$	12	12.68	-0.32	×1.08	Tested	12	11.55	-1.45	×1.40	L .				Tuned
	5700	MCS	10.5	13.0	98.4	0.07	$\times 1.02$	12	11.39	-1.61	×1.45	Tested	12	11.33	-1.67	×1.47	-				Tuned
	5745	MCS		12.5	98.4	0.07	×1.02	12	11.65	-0.85	×1.22		12	11.39	-1.11	×1.29	_				Tuned
				12.5					11.38	-1.12	×1.29		12	10.87				ł			Tunca
	5785	MCS			98.4		×1.02	12							-1.63	×1.46					Tuned
	5825	MCS	10.0	12.5	98.4	0.07	$\times 1.02$	12	10.68	-1.82	×1.52	-	12	10.64	-1.86	×1.53	-				Tuned
	5190	MCS	7.0	9.5	96.6	0.15	×1.04	8	8.93	-0.57	×1.14		9	8.16	-1.34	×1.36	-				Tuned
		MCS		13.0	96.6		×1.04	12	12.28	-0.72	×1.18		13	12.09	-0.91	×1.23	t				Tuned
												- TD 4 1				^1.43	m · ·				
	5270			13.0	96.6		×1.04	12	12.31	-0.69	×1.17	Tested	13	12.10	-0.90	×1.23	Tested				Tuned
11	5310	MCS	0.8	10.5	96.6		×1.04	10	9.32	-1.18	×1.31		11	8.92	-1.58	×1.44	-				Tuned
11n	5510	MCS	9.5	12.0	96.6	0.15	×1.04	11	10.75	-1.25	×1.33	Tested	11	11.07	-0.93	×1.24	Tested				Tuned
(HT40)	5550	MCS		13.0	96.6	0.15	×1.04	12	12.69	-0.31	×1.07	Tested		12.22	-0.78	×1.20	Tested				Tuned
(1Tx)	2220	14100				0.15	^1.04	12			×1.07		12 12								
	5590			13.0	96.6	0.15	×1.04	12	12.62	-0.38	×1.09	Tested		11.33	-1.67	×1.47	Tested				Tuned
	5670	MCS	10.5		96.6		×1.04	12	11.94	-1.06	×1.28	Tested	12	11.13	-1.87	×1.54	Tested				Tuned
1 1	5755	MCS	10.0	12.5	96.6	0.15	×1.04	12	11.30	-1.20	×1.32	Tested	12	11.08	-1.42	×1.39	Tested				Tuned
	5795			12.5	96.6	0.15	×1.04	12	11.28	-1.22	×1.32	Tested	12	11.06	-1.44	×1.39	Tested				Tuned
\vdash		_	_	_								Lested					1 will	10.5	45.5	0.00	
	5180	MCS	10.5	13.0	96.8	0.14	$\times 1.03$	12 12 12	12.35 12.20	-0.65	×1.16		12	11.95 11.73	-1.05 -1.27	×1.27	ļ	13.5 16.0	15.17	-0.83	Tuned
	5200	MCS	10.5	13.0	96.8	0.14	×1.03	12	12.20	-0.80	×1.20	-	12	11.73	-1.27	×1.34	-	13.5 16.0	14.98	-1.02	Tuned
	5220	MCS	10.5	13.0	96.8	0.14	×1.03	12	11.93	-1.07	×1.28		12	11.68	-1.32	×1.36	[13.5 16.0	14.82	-1 18	Tuned
								12									}				
		MCS			96.8		×1.03		11.53	-1.47	×1.40	-	12	11.10	-1.90	×1.55	-	13.5 16.0		-1.67	Tuned
	5260	MCS		13.0	96.8		$\times 1.03$	12	12.77	-0.23	×1.05	l	13	11.21	-1.79	×1.51	L=_	13.5 16.0	15.07	-0.93	Tuned
	5280	MCS			96.8	0.14	×1.03	12	12.32	-0.68	×1.17		13	11.18	-1.82	×1.52		13.5 16.0	14.80	-1.20	Tuned
11		MCS		13.0	96.8	0.14	×1.03	12	12.04	-0.96	×1.25		13	11.16	-1.84	×1.53	t	13.5 16.0		-1.37	Tuned
11n								12-				<u>-</u>					<u>-</u>				
(HT20)	5320			13.0	96.8		$\times 1.03$	12	12.12	-0.88	×1.22	-	13	11.66	-1.34	×1.36	-	13.5 16.0	14.91	-1.09	Tuned
(2Tx)	5500	MCS	10.5	13.0	96.8	0.14	$\times 1.03$	12	11.32	-1.68	×1.47	-	12	11.61	-1.39	×1.38	-	13.5 16.0	14.48	-1.52	Tuned
		MCS		13.0	96.8		×1.03	12	11.47	-1.53	×1.42		12	11.29	-1.71	×1.48	[<u>-</u> :	13.5 16.0		-1.61	Tuned
								12					1-15-								
		MCS					×1.03	12	12.08	-0.92	×1.24		12	11.40	-1.60	×1.45	ļ -	13.5 16.0		-1.24	Tuned
		MCS		13.0	96.8		$\times 1.03$	12	11.33	-1.67	×1.47		12	11.37	-1.63	×1.46	-	13.5 16.0	14.36	-1.64	Tuned
	5745	MCS	10.0	12.5	96.8	0.14	×1.03	12	11.22	-1.28	×1.34	-	12	11.60	-0.90	×1.23	-	13.0 15.5	14.42	-1.08	Tuned
		MCS			96.8		×1.03	12	10.94	-1.56	×1.43		12	11.01	-1.49	×1.41	<u>-</u>	13.0 15.5	13.99	-1.51	Tuned
												<u>-</u>					} - :		12.77		
1	5825	MCS	10.0	12.5	96.8	0.14	$\times 1.03$	12	10.79	-1.71	×1.48		12	10.77	-1.73	×1.49		13.0 15.5	13.79	-1.71	Tuned

Test report No. : 11253019S-A Page : 12 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

		Data	Power	spec.	Γ	Outy cyc	ele	N	Iain anten	na (chai	n #0) pov	ver		Sub anter	ına (chaii	n#1) pow	ver	MIN	ЛО (An	t.0+1) p	ower	<u> </u>
Mode	Freq.	rate	Typical	Max.	duty	factor	scaled	Set	Time	Δ Max.	Tune-up factor	SAR	Set	Time	Δ Mov	Tune-up	SAR	MIMO	MIMO		Δ Max.	Power Tune
	[MHz]	[Mbps]	[dBm]	[dBm]	cycle [%]	[dB]	factor [-]	pwr. [dBm]	average [dBm]	[dB]	[-]	Tested?	pwr. [dBm]	average [dBm]	Max. [dB]	factor [-]	Tested?	target [dBm]	max. [dBm]	Ave. [dBm]	[dB]	-up?
	5190	MCS8	7.0	9.5	94.0	0.27	$\times 1.06$	8	9.27	-0.23	×1.05		8	7.79	-1.71	×1.48	=	10.0	12.5	11.60	-0.90	Tuned
	5230	MCS8	10.5	13.0	94.0	0.27	×1.06	12	12.05	-0.95	×1.24		12	11.06	-1.94	×1.56	-	13.5	16.0	14.59	-1.41	Tuned
	5270	MCS8	10.5	13.0	94.0	0.27	×1.06	13	12.44	-0.56	×1.14		13	11.35	-1.65	×1.46		13.5	16.0	14.94	-1.06	Tuned
11n		MCS8	8.0	10.5	94.0	0.27	$\times 1.06$	10	9.92	-0.58	×1.14	-	10	8.72	-1.78	×1.51	-	11.0	13.5	12.37	-1.13	Tuned
(HT40)	5510	MCS8	9.5	12.0	94.0	0.27	×1.06	11	10.39	-1.61	×1.45	l .	11	11.12	-0.88	×1.22		12.5	15.0	13.78	-1.22	Tuned
(2Tx)	5550	MCS8	10.5	13.0	94.0	0.27	×1.06	12	12.63	-0.37	×1.09	l .	12	12.08	-0.92	×1.24		13.5	16.0	15.37	-0.63	Tuned
(21A)	5590	MCS8	10.5	13.0	94.0	0.27	×1.06	12	12.12	-0.88	×1.22	l <i>:</i>	12	11.34	-1.66	×1.47		13.5	16.0	14.76	-1.24	Tuned
	5670	MCS8	10.5	13.0	94.0	0.27	$\times 1.06$	12	11.42	-1.58	×1.44	-	12	11.12	-1.88	×1.54	-	13.5	16.0	14.28	-1.72	Tuned
	5755	MCS8	10.0	12.5	94.0	0.27	×1.06	12	10.92	-1.58	×1.44	l <i>:</i>	12	11.28	-1.22	×1.32	l .	13.0	15.5	14.11	-1.39	Tuned
	5795	MCS8	10.0	12.5	94.0	0.27	$\times 1.06$	12	11.08	-1.42	×1.39	-	12	10.99	-1.51	×1.42	-	13.0	15.5	14.04	-1.46	Tuned

- *. Freq.: Frequency, Max.: Maximum, Power spec.: Power specification, Set pwr: Setting power for the measurement, Ave.: Average
- *. Calculating formula: Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

Duty cycle: (duty cycle, %) = (Tx on time, ms) / (1 cycle time, ms) × 100; Duty factor; (duty factor; dBm) = 10 × log (100/(duty cycle, %)) Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor: [-] = 100(%) / (duty cycle, %) AMax. (Deviation form maximum power, dB) = (results power (average, dBm)) - (Max.-specification output power (average, dBm))

- ΔMax. (Deviation form maximum power, dB) = (results power (average, dBm)) (Max.-specification output power daverage, dBm)) (Max.-specification output power daverage, dBm)) (Max.-specification output power daverage, dBm))

 Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1 / (10 ^ ("Deviation from max., dB"/10))

 Date measured: July 19 and 20, 2016 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room (25 ±1 deg.C./50 ±10 %RH)
- *. Uncertainty of antenna port conducted test; Power measurement uncertainty above 1GHz for this test was: (\pm) 0.76 dB(Average)/ (\pm) 0.79 dB(Peak)
- *. Uncertainty of antenna port conducted test; Duty cycle and time measurement: (\pm) 0.012 %.
- * Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in following tables.

 (Chart of the duty cycle for each operation mode refers to the EMC test report: 11253018S-A and 11253018S-B)

	(Char	t of the	duty cy	cle for o	each c	peration	on mo	de refe	rs to the	EMC	test re	eport:	112530	18S-A	and 11	25301	8S-B.)		
						Data	rate vs	Time a	iverage p	ower	(add di	uty fac	tor) (dB	m)					
		11	b				11g	3			11n	(HT20)(1Tx)			11n	(HT20)(2Tx)	
		2437N	ИHz			- 2	2437N	1Hz			- 2	2437N	1Hz			- 2	2437M	Hz	
D/R	D/C	Typ /Set	Main	Sub	D/R	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub
1	99.6	12.5 /13	13.68	13.92	6	97.4	12.5 /14	14.30	14.56	0	96.9	12.5 /14	14.25	14.51	0	94.3	12.5 /14	14.18	14.42
2	99.2	12.5 /13	13.62	13.86	9	96.2	12.5 /14	14.10	14.54	1	94.2	12.5 /14	14.12	14.49	1	89.3	12.5 /14	14.11	14.41
5.5	98.0	12.5 /13	13.67	13.91	12	95.0	12.5 /14	14.21	14.55	2	91.6	12.5 /14	14.11	14.45	2	85.4	12.5 /14	14.13	14.41
11	96.3	12.5 /13	13.67	13.91	18	92.6	12.5 /14	14.18	14.54	3	89.2	12.5 /14	14.23	14.49	3	82.0	12.5 /14	14.14	14.38
					24	90.5	12.5 /14	14.29	14.51	4	85.6	12.5 /14	14.24	14.46	4	76.5	12.5 /14	14.17	14.41
					36	86.7	12.5 /14	14.29	14.51	5	81.8	11.0 /12	12.60	12.76	5	72.6	11.0 /12	12.60	12.86
					48	83.0	11.0 /12	12.67	12.81	6	80.4	11.0 /12	12.56	12.81	6	70.7	11.0 /12	12.53	12.87
					56	81.7	11.0 /12	12.56	12.76	7	79.0	9.5 /10	10.79	10.99	7	69.9	9.5 /10	10.51	11.07
		11:	a			11n	(HT20))(1Tx)			11n	(HT40))(1Tx)			11n	(HT20)	(2Tx)	
		FFOON	/II I				FFOON	/II I				EEEON	/II I				SECON A	T I	

			11a	a			11n	(HT20)(1Tx)			11n((HT40)(1Tx)			11n(HT20	(2Tx)			11n	(HT40	0)(2Tx)	
			5500N	ЛHz				5500N	1Hz			4	5550N	1Hz			5	5500M	Hz				5550N	ЛHz	
D	RΓ	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub	MCS	D/C	Typ /Set	Main	Sub
(5 9	98.5	10.5 /12	12.46	11.80	0	98.4	10.5 /12	12.21	11.54	0	96.6	10.5 /12	12.69	12.22	8	96.8	10.5 /12	11.32	11.61	8	94.0	10.5 /12	12.63	12.08
9	9	97.8	10.5 /12	12.07	11.58	1	96.8	10.5 /12	12.10	11.48	1	93.5	10.5 /12	12.56	12.00	9	94.0	10.5 /12	11.23	11.50	9	89.4	10.5 /12	11.95	12.04
1	2 9	97.0	10.5 /12	12.03	11.52	2	95.2	10.5 /12	12.06	11.49	2	91.2	10.5 /12	12.37	12.06	10	91.6	10.5 /12	11.28	11.59	10	85.5	10.5 /12	12.06	12.05
1	8 9	95.4	10.5 /12	12.08	11.60	3	93.6	10.5 /12	12.20	11.50	3	88.6	10.5 /12	12.42	11.80	11	89.4	10.5 /12	11.24	11.58	11	83.2	10.5 /12	11.96	11.93
2	4 9	94.4	10.5 /12	12.11	11.68	4	91.4	9.5 /11	11.50	11.09	4	85.2	10.0 /11	11.58	10.98	12	86.4	9.5 /11	10.79	10.89	12	78.0	10.0 /11	10.82	10.92
3	6 9	1.6	9.5 /10	10.63	10.13	5	88.8	9.0 /10	10.78	9.84	5	82.8	8.5 /10	10.58	10.06	13	83.1	9.0 /10	9.82	10.12	13	75.4	8.5 /10	10.21	10.09
4	8 8	39.0	8.5 /9	9.88	9.09	6	88.2	7.0 /8	8.65	8.15	6	81.1	7.0 /8	8.89	8.33	14	81.4	7.0 /8	8.15	8.35	14	74.4	7.0 /8	8.50	8.40
5	6 8	38.2	7.5 /8	8.53	8.13	7	87.3	6.0 /7	7.38	7.55	7	79.8	6.0 /7	7.78	7.38	15	80.7	6.0 /7	7.43	7.46	15	73.3	6.0	7.73	7.41

^{*.} D/R: Data Rate, D/C: Duty Cycle (%), Typ: Typical average power, Set: Power setting value on the control software, Main: Main antenna, Sub: Sub antenna...

Test report No. : 11253019S-A Page : 13 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

SECTION 7: SAR Measurement results

Measurement date: July 25~29 and August 1~4, 2016 Measurement by: Hiroshi Naka

7.1 Liquid measurement

Towast					Liq	uid paraı						ASAR Co	efficients(*b)	
Target Frequency	Liquid	P	Permittivi				Conductiv		1	Temp.	Depth	ΔSAR	Correction	Date measured
[MHz]	type	Target	Meas		Limit	Target	Meas		Limit	[deg.C.]		(1g) [%]	required?	Date measured
. ,		_	Meas.	Δεr [%]	Limit	Target		Δσ [%]	Limit	[ucg.C.]	[IIIIII]	(15)[/0]	requireu.	
2412		39.27	38.38	-2.3	-5%≤	1.766	1.816	+2.8	0%≤			+1.90	not required.	
2437	Head	39.22	38.27	-2.4	ET-meas.	1.788	1.839	+2.8	σ-meas.	23.8	153	+1.91	not required.	July 25, 2016, before SAR test
2462		39.18	38.15	-2.7	≤0%	1.813	1.870	+3.1	≤+5%			+2.09	not required.	
2412		52.75	51.04	-3.2	-5%≤	1.914	1.927	+0.7	0%≤			+1.08	not required.	
2437	Body	52.72	50.96	-3.3	ET-meas.	1.938	1.949	+0.6	σ-meas.	22.5	153	+1.04	not required.	July 26, 2016, before SAR test
2462		52.68	50.79	-3.6	≤0%	1.967	1.986	+1.0	≤+5%			+1.26	not required.	
5500		48.61	47.06	-3.2		5.650	5.767	+2.1				+0.55	not required.	
5510		48.59	46.98	-3.3		5.661	5.800	+2.5				+0.56	not required.	
5550		48.54	47.03	-3.1	50/ -	5.708	5.872	+2.9	00/ 4			+0.50	not required.	July 27~28, 2016, before SAR test
5580	D-4.	48.50	46.99	-3.1	-5%≤	5.743	5.857	+2.0	0%≤	22.7	150	+0.53	not required.	(It was within 24 hours from measurement on
5590	Body	48.49	47.03	-3.0	ET-meas. ≤ 0%	5.755	5.907	+2.6	σ-meas. ≤+5%	23.7	152	+0.48	not required.	July 27 and same liquid temperature, so measured parameters of July 27 were used
5600		48.47	46.98	-3.1	≤0%	5.766	5.904	+2.4	≥+370			+0.51	not required.	continuously.)
5670	i	48.38	46.79	-3.3		5.848	6.027	+3.1				+0.51	not required.	
5700		48.34	46.86	-3.1		5.883	6.035	+2.6				+0.49	not required.	
5745		48.27	46.59	-3.5		5.936	6.077	+2.4				+0.59	not required.	
5755		48.26	46.54	-3.6	-5%≤	5.947	6.133	+3.1	0%≤			+0.57	not required.	
5785	Body	48.22	46.51	-3.5	ET-meas.	5.982	6.122	+2.3	σ-meas.	23.7	152	+0.60	not required.	July 28, 2016, before SAR test
5795	Doug	48.21	46.61	-3.3	≤0%	5.994	6.172	+3.0	≤+5%	20.7	102	+0.53	not required.	
5825	ŀ	48.17	46.62	-3.2		6.029	6.201	+2.9				+0.51	not required.	
5260		48.93	47.28	-3.4		5.369	5.416	+0.9				+0.65	not required.	
5270	ŀ	48.92	47.29	-3.3	-5%≤	5.381	5.461	+1.5	0%≤			+0.62	not required.	
5300	Body	48.88	47.27	-3.3	ET-meas.	5.416	5.532	+2.1	σ-meas.	23.7	152	+0.59	not required.	July 29, 2016, before SAR test
5310	Bouy	48.87	47.25	-3.3	≤0%	5.428	5.515	+1.6	≤+5%	23.7	132	+0.61	not required.	valy 25, 2010, 001010 St 111 1050
5320		48.85	47.23	-3.3		5.439	5.506	+1.2				+0.63	not required.	
5260		35.92	36.07	+0.4		4.717	4.501	-4.6				+0.05	not required.	
5270		35.91	36.05	+0.4	-5%≤	4.727	4.504	-4.7	-5%≤			+0.06	not required.	August 1~2, 2016, before SAR test
5300	Head	35.87	35.90	+0.1	ET-meas.	4.758	4.544	-4.5	σ-meas.	22.8	153	+0.13	not required.	(It was within 24 hours from measurement on August 1 and same liquid temperature, so
5310	Ticaca	35.86	35.91	+0.2	≤+5%	4.768	4.553	-4.5	≤+5%	22.0	133	+0.10	not required.	measured parameters of August 1 were used
5320		35.85	35.93	+0.2	5/0	4.778	4.568	-4.4				+0.10	not required.	continuously.)
5500		35.64	35.74	+0.3		4.963	4.740	-4.5				+0.13	not required.	
5510		35.63	35.62	+0.1		4.973	4.768	-4.1				+0.18	not required.	
5550		35.59	35.59	0		5.014	4.802	-4.2				+0.18	not required.	August 2 2 2016 hafara SAR tast
5580		35.55	35.62	+0.2	-5%≤	5.045	4.830	-4.3	-5%≤			+0.15	not required.	August 2~3, 2016, before SAR test (It was within 24 hours from measurement on
5590	Head	35.54	35.53	0	ET-meas.	5.055	4.849	-4.3	O-meas.	22.8	153	+0.13	not required.	August 2 and same liquid temperature, so
5600		35.53	35.67	+0.4	≤+5%	5.065	4.832	-4.6	≤+5%			+0.12		measured parameters of August 2 were used continuously.)
5670	-	35.45	35.52	+0.4		5.137	4.832	-4.0 -4.3				+0.12	not required. not required.	Communications,
5700		35.43	35.35	+0.2		5.168	4.916	-4.3 -4.1				+0.15	not required.	
5745		35.36	35.44	+0.2		5.214	5.020	-3.7						
5755		35.35	35.44	+0.2	50/ /	5.224	5.020	-3.7	50/ -			+0.12	not required.	
5785	Поод	35.32		0	-5%≤	5.255	5.018	-3.9 -4.5	-5%≤	22.9	149	+0.17	not required.	August 4 2016 Instrum CAD 4
5795	Head		35.32 35.32	+0.1	ET-meas. $\leq +5\%$				σ-meas. ≤+5%	22.9	149		not required.	August 4, 2016, before SAR test
		35.31			≥±3%	5.265	5.038	-4.3	△ ⊤J/0			+0.18	not required.	
5825		35.27	35.30	+0.1		5.296	5.084	-4.0				+0.16	not required.	

^{*}a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r04), the dielectric parameters suggested for head and body tissue simulating liquid are given at 2000, 2450, 3000 and 5800MHz. (*The parameters of the head liquid are the same value as IEC 62209-2.) Parameters for the frequencies between 2000, 2000, 5000 MHz were obtained using linear extrapolation.

^{2000-3000, 3000-5800}MHz were obtained using linear interpolation. Above 5800MHz were obtained using linear extrapolation. *b. Calculating formula: $\Delta SAR(1g) = C \text{er} \times \Delta \text{er} + C \sigma \times \Delta \sigma, C \text{er} = 7.854 \text{E} + 2.84 \text{E} + 9.402 \text{E} - 3.84 \text{E} - 2.84 \text$

Test report No. : 11253019S-A Page : 14 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

7.2 SAR measurement results (2.4GHz band, Body/Head)

[Measured and Reported (Scaled) SAR results]

			S	SAR meas	urem	ent re	esults					R	<mark>leporte</mark>	d SAR	[W/kg]		
	Freq.	Data		EUT setu	ıp			R [W/kg		SAR		cycle		put av		SAR	
Mode	[MHz]	rate	Antenna *.SAR	Position	Gap	Bty.	Max. val	ASAR		plot#in Appendix	Duty	ection Duty	pow Meas.	er corr Max.	Tune-up	Corrected (Scaled)	
	(Channel)	[Mbps]	measured.		[mm]	ID	Meas.	[%]	corrected	2-2	Duty [%]	scaled	[dBm].			(*b)	Remarks
Step 1:	2.4GHz B	and (Bo	ody)														
	2412(1)			L.side	0	-	0.231	+1.08	n/a (*a)	<u>Plot 1-1</u>	99.6	×1.00	14.19	15.0	×1.21	0.280	main-worst,body,2.4GHz
	2437(6)		Main(0)	-main	0	-	0.172	+1.04	n/a (*a)	Plot 1-3	99.6	×1.00	13.68		×1.36	0.234	
	2462(11)			-11141111	0	-	0.158	+1.26	n/a (*a)	Plot 1-4	99.6	×1.00	13.59	15.0	×1.38	0.218	-
	2412(1)			S.side	0	-	0.208	+1.08	n/a (*a)	Plot 1-2	99.6	×1.00	14.28	15.0	×1.18	0.245	sub-worst,body,2.4GHz
11b	2437(6)	1	Sub(1)	-sub	0	-	0.145	+1.04	n/a (*a)	Plot 1-5	99.6	×1.00	13.92		×1.28	0.186	-
110	2462(11)	1			0	-	0.125	+1.26	n/a (*a)	Plot 1-6	99.6	×1.00	13.48	15.0	×1.42	0.178	-
			Main(0)		0	-	0.038	+1.08	n/a (*a)	Plot 1-7	99.6	×1.00	14.19	15.0	×1.21	0.046	-
	2412(1)		Sub(1)	(Patient)	0	-	0.024	+1.08	n/a (*a)	Plot 1-8	99.6	×1.00	14.28	15.0	×1.18	0.028	-
	2412(1)		Main(0)	Back	0	-	0.041	+1.08	n/a (*a)	Plot 1-9	99.6	×1.00	14.19		×1.21	0.050	-
			Sub(1)	Dack	0	-	0.037	+1.08	n/a (*a)	Plot 1-10	99.6	×1.00	14.28	15.0	×1.18	0.044	-
Step 2:	2.4GHz B	and (H	ead)														
	2412(1)			L.side	0	-	0.240	+1.90	n/a (*a)	<u>Plot 2-1</u>	99.6	×1.00	14.19		×1.21	0.290	main-worst,head,2.4GHz
	2437(6)		Main(0)	-main	0	-	0.178	+1.91	n/a (*a)	Plot 2-3	99.6	×1.00	13.68		×1.36	0.242	-
	2462(11)			1111111	0	-	0.163	+2.09	n/a (*a)	Plot 2-4	99.6	×1.00	13.59	15.0	×1.38	0.225	-
	2412(1)			S.side	0	-	0.221	+1.90	n/a (*a)	<u>Plot 2-2</u>	99.6	×1.00	14.28	15.0	×1.18	0.261	sub-worst,head,2.4GHz
11b	2437(6)	1	Sub(1)	-sub	0	-	0.167	+1.91	n/a (*a)	Plot 2-5	99.6	×1.00	13.92	15.0	×1.28	0.214	-
110	2462(11)	1			0	-	0.149	+2.09	n/a (*a)	Plot 2-6	99.6	×1.00	13.48		×1.42	0.212	-
			Main(0)		0	-	0.032	+1.90	n/a (*a)	Plot 2-7	99.6	×1.00	14.19	15.0	×1.21	0.039	-
	2412(1)		Sub(1)	(Patient)	0	-	0.018	+1.90	n/a (*a)	Plot 2-8	99.6	×1.00	14.28	15.0	×1.18	0.021	-
	2712(1)		Main(0)	Back	0	-	0.026	+1.90	n/a (*a)	Plot 2-9	99.6	×1.00	14.19		×1.21	0.031	-
			Sub(1)	Dack	0	-	0.017	+1.90	n/a (*a)	Plot 2-10	99.6	×1.00	14.28	15.0	×1.18	0.020	-

*. SAR test of OFDM mode was reduced, because the estimate reported SAR of OFDM mode was ≤ 1.2 W/kg by using the highest reported SAR of DSSS mode.

OFDM	Maxii	num tune-ı	ıp tolerar	nce limit	OFDM scaled	DSS	S reported	SAR(1g) val	ue	Estimated SA			Standalone	SAR
mode	D	SSS	OF	FDM	factor [-]	Ant.M	ain	Ant.S	Sub	OFDM	[W/kg]	limit	SAR test	type
mode	[dBm]	[mW] (a)	[dBm]	[mW](b)	$(b)/(a) \times 100$	Setup	[W/kg]	Setup	[W/kg]	Ant.Main	Ant.Sub	[W/kg]	require?	type
11g	15.0	31.62	15.0	31.62	1.00	Side-main	0.280	Side-sub	0.245	0.280	0.245	≤1.2	No	Body
n(20HT)	15.0	31.62	15.0	31.62	1.00	Side-main	0.280	Side-sub	0.245	0.280	0.245	≤1.2	No	Douy
11g	15.0	31.62	15.0	31.62	1.00	Side-main	0.290	Side-sub	0.261	0.290	0.261	≤1.2	No	Head
n (20HT)	15.0	31.62	15.0	31.62	1.00	Side-main	0.290	Side-sub	0.261	0.290	0.261	≤1.2	No	Heau

Notes:

*. Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Max.: Maximum; Meas.: Measured value; n/a: not applied.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Body	2412, 2437, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7.16	±12.0%
Head	2412, 2437, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7.22	±12.0%

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

*a. Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR correction.

Calculating formula: ΔSAR corrected SAR (W/kg) = (Meas. SAR (W/kg)) × (100 - (ΔSAR(%)) / 100

*b. Calculating formula: Reported SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled) × (Tune-up factor)

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %)Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10^{\%})$ ("Deviation from max., dB" / 10))

 $(Clause\ 5.2, 2.4GHz\ SAR\ Procedures\ for\ 2.4GHz\ band\ DSSS\ and\ OFDM, in\ KDB248227\ D01\ (v02r02))$

5.2.1 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 5.2.2 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 11253019S-A Page : 15 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

7.3 SAR measurement results (5GHz band, Body/Head)

[Measured and Reported (Scaled) SAR results]

			S	AR meas	urem	ent re	esults					ŀ	Reporte	d SAF	R [W/kg]		
	Е			EUT setu				R [W/kg	į į	SAR	Duty	cycle		put av		SAR	
Mode	Freq.	Data	Antenna			D4	Max. val	ue of mu	lti-peak	plot#in		ection		er cort		Corrected	
Mode	[MHz] (Channel)	rate [Mbps]	*.SAR	Position	Gap [mm]		Meas.	ΔSAR	ΔSAR	Appendix	Duty	Duty	Meas.	Max.	Tune-up	(Scaled)	Remarks
	` ′		measured.		[]	ш	wicas.	[%]	corrected	2-2	[%]	scaled	[dBm].	[dBm]	factor	(*b)	ixcinai ks
Step 3:	W52/53 Ba	and (Bo	• /				0.020	0.60	1.05.3	T	066	4.04	1001	12.0		0.025	T
			Main(0)		0	-	0.030	+0.62	n/a (*a)	Plot 3-3	96.6	×1.04	12.31		×1.17	0.037	-
	5270(54)		Sub(1)	(Patient)	0	-	0.0044 0.081	+0.62	n/a (*a) n/a (*a)	Plot 3-4 Plot 3-5	96.6 96.6	×1.04	12.10 12.31	13.0	×1.23 ×1.17	0.006	-
11			Main(0) Sub(1)	Back	0	-	0.001	+0.62	n/a (*a)	Plot 3-6	96.6	×1.04	12.31	13.0	×1.17	0.033	-
11n (40HT)	5270(54)	MCS0		L.side	0	-	0.891	+0.62	n/a (*a)	Plot 3-7	96.6	×1.04	12.10	13.0	×1.17	1.084	
	5310(62)		Main(0)	-main	0	-	Reduced	+0.61	n/a (*a)	-	96.6	×1.04	9.32	10.5	×1.31	n/a	*. lower power
	5270(54)		CL(1)	S.side	0	-	0.219	+0.62	n/a (*a)	Plot 3-8	96.6	×1.04	12.10	13.0	×1.23	0.280	-
	5310(62)		Sub(1)	-sub	0	-	Reduced	+0.51	n/a (*a)	-	96.6	×1.04	8.92	10.5	×1.44	n/a	*. lower power
	5260(52)			L.side	0	-	1.03	+0.65	n/a (*a)	<u>Plot 3-1</u>	98.5	×1.02	12.57	13.0	×1.10	1.156	main-worst,body,w52/53
	5300(60)		Main(0)	-main	0	-	0.865	+0.59	n/a (*a)	Plot 3-9	98.5	×1.02	12.14		×1.22	1.076	-
11a	5320(64)	6			0	-	0.907	+0.63	n/a (*a)	Plot 3-10	98.5	×1.02	12.35	13.0	×1.16	1.073	-
	5260(52)		C1-(1)	S.side	0	-	0.320 0.251	+0.65	n/a (*a)	Plot 3-2	98.5 98.5	×1.02	11.61	13.0	×1.38 ×1.40	0.450	sub-worst,body,w52/53
	5300(60) 5320(64)		Sub(1)	-sub	0	-	0.251	+0.63	n/a (*a) n/a (*a)	Plot 3-11 Plot 3-12	98.5	×1.02	11.78	13.0	×1.40	0.358	-
Sten 4.	W56 Band	(Rody))		J		0.277	10.03	11 a (a)	11013-12	70.5	^1.02	11.70	13.0	^1.J4	0.705	
Sup 7.	1100 Danu	Louy	Main(0)	Front	0	-	0.00818	+0.50	n/a (*a)	Plot 4-3	96.6	×1.04	12.69	13.0	×1.07	0.009	-
	5550(110)		Sub(1)	(Patient)	0	-	0.020	+0.50	n/a (*a)	Plot 4-4	96.6	×1.04	12.22	13.0	×1.20	0.025	-
	5550(110)		Main(0)	Back	0	-	0.049	+0.50	n/a (*a)	Plot 4-5	96.6	×1.04	12.69	13.0	×1.07	0.055	-
			Sub(1)	Dack	0	-	0.061	+0.50	n/a (*a)	Plot 4-6	96.6	×1.04	12.22	13.0	×1.20	0.076	-
	5550(110)				0	-	0.695	+0.50	n/a (*a)	Plot 4-7	96.6	×1.04	12.69	13.0	×1.07	0.773	-
11n	5590(118)	MCS0	Main(0)	L.side	0	-	0.782	+0.48	n/a (*a)	Plot 4-8	96.6	×1.04	12.62	13.0	×1.09	0.886	-
(40HT)	5670(134) 5510(102)		. /	-main	0	-	0.912 0.367	+0.51	n/a (*a)	Plot 4-9	96.6 96.6	×1.04	11.94 10.75	13.0	×1.28	1,214 0.508	-
	5550(110)				0	-	0.367	+0.50	n/a (*a) n/a (*a)	Plot 4-10 Plot 4-11	96.6	×1.04	12.22	13.0	×1.33 ×1.20	0.567	-
	5590(118)			S.side	0	-	0.302	+0.48	n/a (*a)	Plot 4-12	96.6	×1.04	11.33	13.0	×1.47	0.367	-
	5670(134)		Sub(1)	-sub	0	-	0.283	+0.51	n/a (*a)	Plot 4-13	96.6	×1.04	11.13	13.0	×1.54	0.453	_
	5510(102)				0	-	0.319	+0.56	n/a (*a)	Plot 4-14	96.6	×1.04	11.07	12.0	×1.24	0.411	-
	5600(120)				0	-	0.792	+0.51	n/a (*a)	Plot 4-15	98.5	×1.02	12.82	13.0	×1.04	0.840	-
	5500(100)		Main(0)	L.side	0	-	0.610	+0.55	n/a (*a)	Plot 4-16	98.5	×1.02	12.46	13.0	×1.13	0.703	-
	5700(140)		wiani(0)	-main	0	-	0.935	+0.49	n/a (*a)	Plot 4-17	98.5	×1.02	11.82	13.0	×1.18	1.249	-
11a	5580(116)	6			0	-	0.667	+0.53	n/a (*a)	Plot 4-18	98.5	×1.02	12.06	13.0	×1.24	0.844	-
	5500(100)		6.1.00	S.side	0	-	0.413	+0.55	n/a (*a)	Plot 4-19	98.5	×1.02	11.80	13.0	×1.32	0.556	-
	5580(116)		Sub(1)	-sub	0	-	0.324	+0.53	n/a (*a)	Plot 4-20	98.5	×1.02	11.33	13.0	×1.47	0.486	
	5700(140) 5600(120)				0		0.404 0.771	+0.49	n/a (*a) n/a (*a)	Plot 4-21	98.5 98.4	×1.02	11.50 12.68	13.0	×1.41 ×1.08	0.581 0.849	ant#1-worst,body,w56
11n	5500(100)			L.side	0	-	0.634	+0.55	n/a (*a)	Plot 4-22	98.4	×1.02	12.00	13.0	×1.20	0.776	-
	5700(140)	MCS0	Main(0)	-main	0	-	0.891	+0.49	n/a (*a)	Plot 4-1	98.4	×1.02	11.39	13.0	×1.45	1.318	ant#0-worst,body,w56
	5580(116)				0	-	0.663	+0.53	n/a (*a)	Plot 4-23	98.4	×1.02	12.18	13.0	×1.21	0.818	-
Step 5:	W58 Band	(Body)														
			Main(0)		0	-	0.0131	+0.57	n/a (*a)	Plot 5-3			11.30		×1.32	0.018	-
	5755(151)			(Patient)		-	0.00558	+0.57	n/a (*a)	Plot 5-4			11.08			0.008	-
	()		Main(0)	Back	0	-	0.047	+0.57	n/a (*a)	Plot 5-5	96.6	×1.04		12.0	×1.32	0.065	-
11n (40HT)	5755(151)	MCS0	Sub(1)		0	-	0.024	+0.57	n/a (*a)	Plot 5-6	96.6	×1.04	11.08	12.0	×1.39	0.035	
(40111)	5755(151) 5795(159)		Main(0)	L.side -main	0	-	0.659 0.595	+0.57	n/a (*a) n/a (*a)	Plot 5-1 Plot 5-7	96.6 96.6	×1.04 ×1.04	11.30 11.28	12.0 12.0	×1.32 ×1.32	0.905 0.817	ant#0-worst,body,w58
	5755(151)			S.side	0	-	0.393	+0.57	n/a (*a)	Plot 5-8	96.6	×1.04		12.0	×1.32	0.293	_
	5795(159)		Sub(1)	-sub	0	-	0.148	+0.53	n/a (*a)	Plot 5-9	96.6	×1.04	11.06	12.0	×1.39	0.214	-
	5745(149)				0	-	0.730	+0.59	n/a (*a)	Plot 5-10	98.5	×1.02	11.70	12.0	×1.20	0.894	-
	5785(157)		Main(0)	L.side -main	0	-	0.640	+0.60	n/a (*a)	Plot 5-11	98.5	×1.02	11.47	12.0	×1.27	0.829	
11a	5825(165)	6		-11181111	0	-	0.525	+0.51	n/a (*a)	Plot 5-12	98.5	×1.02	10.92	12.0	×1.44	0.771	-
114	5745(149)	U		S.side	0	-	0.246	+0.59	n/a (*a)	<u>Plot 5-2</u>	98.5	×1.02			×1.23	0.309	ant#1-worst,body,w58
	5785(157)		Sub(1)	-sub	0	-	0.183	+0.60	n/a (*a)	Plot 5-13	98.5	×1.02		12.0	×1.41	0.263	-
	5825(165)				0	-	0.197	+0.51	n/a (*a)	Plot 5-14	98.5	×1.02	10.76	12.0	×1.49	0.299	- (aont'd)

(cont'd)

Test report No. : 11253019S-A Page : 16 of 144 Issued date : August 22, 2016

FCC ID : YR7SKR3000P6

7.3 SAR measurement results (5GHz band, Body/Head)

(cont'd)

[Measured and Reported (Scaled) SAR results] (cont'd)

			S	SAR meas	urem	ent re	esults					F	Reporte	d SAF	R [W/kg]		
	E			EUT setu				R [W/kg	<u>z</u>]	SAR	Duty	cvcle		put av		SAR	
Mode	Freq. [MHz]	Data rate	Antenna			D4	Max. val	ue of mu	lti-peak	plot#in	corre	ection	pow	er corr	rection	Corrected	
Mode	(Channel)	[Mbpc]	*.SAR	Position	Gap [mm]		Meas.	ΔSAR	ΔSAR	Appendix 2-2	Duty	Duty	Meas.	Max.	Tune-up	(Scaled)	Remarks
	, ,		measured.		[]	ш	wicas.	[%]	corrected	Z-Z	[%]	scaled	[dBm].	[dBm]	factor	(*b)	IXIIIai KS
Step 6:	W52/53 Ba	and (He			0		0.050	.006	/ (ds.)	Tay of a	06.6	1.04	10.01	12.0		0.051	T.
			Main(0)		0	-	0.058	+0.06	n/a (*a)	Plot 6-3	96.6	×1.04	12.31	13.0	×1.17	0.071	-
	5270(54)		Sub(1) Main(0)	(Patient)	0	-	0.011 0.084	+0.06	n/a (*a) n/a (*a)	Plot 6-4 Plot 6-5	96.6 96.6	×1.04	12.10	13.0	×1.23 ×1.17	0.014 0.102	-
11			Sub(1)	Back	0	-	0.034	+0.06	n/a (*a)	Plot 6-6	96.6	×1.04	12.31	13.0	×1.17	0.102	
11n (40HT)	5270(54)	MCS0		L.side	0	-	0.863	+0.06	n/a (*a)	Plot 6-7	96.6	×1.04	12.31	13.0	×1.17	1.050	
	5310(62)		Main(0)	-main	0	-	Reduced	+0.10	n/a (*a)	-	96.6	×1.04	9.32	10.5	×1.31	n/a	*. lower power
	5270(54)		CL(1)	S.side	0	-	0.243	+0.06	n/a (*a)	Plot 6-8	96.6	×1.04	12.10	13.0	×1.23	0.311	-
	5310(62)		Sub(1)	-sub	0	-	Reduced	+0.10	n/a (*a)	-	96.6	×1.04	8.92	10.5	×1.44	n/a	*. lower power
	5260(52)			L.side	0	-	1.04	+0.05	n/a (*a)	<u>Plot 6-1</u>	98.5	×1.02	12.57	13.0	×1.10	1.167	main-worst,head,w52/53
	5300(60)		Main(0)	-main	0	-	0.884	+0.13	n/a (*a)	Plot 6-9	98.5	×1.02	12.14		×1.22	1.100	-
11a	5320(64)	6			0	-	0.949	+0.10	n/a (*a)	Plot 6-10	98.5	×1.02	12.35	13.0	×1.16	1.123	
	5260(52)		Sub(1)	S.side	0	-	0.334	+0.05	n/a (*a)	Plot 6-2	98.5 98.5	×1.02	11.61	13.0	×1.38 ×1.40	0.470	sub-worst,head,w52/53
	5300(60) 5320(64)		Sub(1)	-sub	0	-	0.209	+0.13	n/a (*a) n/a (*a)	Plot 6-11 Plot 6-12	98.5	×1.02		13.0	×1.40	0.384	-
Sten 7	W56 Band	(Head)	l	J		0.007	10.10	18 a (a)	11010-12	70.0	A1.02	11./0	13.0	^1.J <u>L</u>	0.715	
жр /.	, , So Dane	· (IIIII	Main(0)	Front	0	-	0.028	+0.18	n/a (*a)	Plot 7-3	96.6	×1.04	12.69	13.0	×1.07	0.031	-
	5550(110)		Sub(1)	(Patient)	0	-	0.033	+0.18	n/a (*a)	Plot 7-4	96.6	×1.04	12.22	13.0	×1.20	0.041	-
	5550(110)		Main(0)	Back	0	-	0.054	+0.18	n/a (*a)	Plot 7-5	96.6	×1.04	12.69	13.0	×1.07	0.060	-
			Sub(1)	Dack	0	-	0.077	+0.18	n/a (*a)	Plot 7-6	96.6	×1.04	12.22	13.0	×1.20	0.096	-
	5550(110)				0	-	0.662	+0.18	n/a (*a)	Plot 7-7	96.6	×1.04	12.69	13.0	×1.07	0.737	-
11n	5590(118)	MCS0	Main(0)	L.side	0	-	0.754	+0.18	n/a (*a)	Plot 7-8	96.6	×1.04	12.62	13.0	×1.09	0.855	-
(40HT)	5670(134)		()	-main	0	-	0.885 0.368	+0.15	n/a (*a)	Plot 7-9	96.6 96.6	×1.04	11.94 10.75	13.0	×1.28	1.178 0.509	-
	5510(102) 5550(110)				0	-	0.308	+0.18	n/a (*a) n/a (*a)	Plot 7-10 Plot 7-2	96.6	×1.04	12.22	13.0	×1.33 ×1.20	0.509	sub-worst,head,w56
	5590(118)			S.side	0	-	0.447	+0.18	n/a (*a)	Plot 7-11	96.6	×1.04	11.33	13.0	×1.47	0.445	Sub-woist,ficau,wbo
	5670(134)		Sub(1)	-sub	0	-	0.329	+0.15	n/a (*a)	Plot 7-12	96.6	×1.04	11.13	13.0	×1.54	0.527	-
	5510(102)				0	-	0.300	+0.18	n/a (*a)	Plot 7-13	96.6	×1.04	11.07	12.0	×1.24	0.387	-
	5600(120)				0	-	0.777	+0.12	n/a (*a)	Plot 7-14	98.5	×1.02	12.82	13.0	×1.04	0.824	-
	5500(100)		Main(0)	L.side	0	-	0.625	+0.13	n/a (*a)	Plot 7-15	98.5	×1.02	12.46	13.0	×1.13	0.720	-
	5700(140)		(U)	-main	0	-	0.919	+0.22	n/a (*a)	Plot 7-16	98.5	×1.02	11.82	13.0	×1.31	1.228	-
11a	5580(116)	6			0	-	0.641	+0.15	n/a (*a)	Plot 7-17	98.5	×1.02	12.06	13.0	×1.24	0.811	-
	5500(100)		6.1.00	S.side	0	-	0.362	+0.13	n/a (*a)	Plot 7-18	98.5	×1.02	11.80	13.0	×1.32	0.487	-
	5580(116) 5700(140)		Sub(1)	-sub	0	-	0.320	+0.15	n/a (*a) n/a (*a)	Plot 7-19 Plot 7-20	98.5 98.5	×1.02	11.33	13.0	×1.47 ×1.41	0.480 0.531	-
	5600(120)				0	-	0.746	+0.22	n/a (*a)	Plot 7-20	98.4	×1.02	12.68	13.0	×1.41	0.822	
11n	5500(120)			L.side	0	-	0.599	+0.12	n/a (*a)	Plot 7-21	98.4	×1.02	12.21	13.0	×1.08	0.733	-
(20HT)	5700(140)	MCS0	Main(0)	-main	0	-	0.885	+0.22	n/a (*a)	Plot 7-1	98.4	×1.02	11.39	13.0	×1.45	1.309	main-worst,head,w56
	5580(116)				0	-	0.623	+0.15	n/a (*a)	Plot 7-23	98.4	×1.02	12.18	13.0	×1.21	0.769	
Step 8:	W58 Band	l (Head)														
			Main(0)		0	-	0.026	+0.17	n/a (*a)	Plot 8-3	96.6		11.30		×1.32	0.036	-
	5755(151)			(Patient)		-	0.012	+0.17		Plot 8-4					×1.39	0.017	-
	(- 7		Main(0)	Back	0	-	0.056	+0.17	n/a (*a)	Plot 8-5	96.6	×1.04		12.0	×1.32	0.077	-
11n (40HT)	5755(151)	MCS0	Sub(1)	Leida	0	-	0.021 0.702	+0.17	n/a (*a) n/a (*a)	Plot 8-6 Plot 8-7	96.6 96.6	×1.04 ×1.04	11.08	12.0	×1.39 ×1.32	0.030	-
(-10111)	5795(151)		Main(0)	L.side -main	0	-	0.702	+0.17	n/a (*a)	Plot 8-7 Plot 8-8	96.6		11.30	12.0	×1.32	0.964	
	5755(151)			S.side	0	-	0.029	+0.17	n/a (*a)	Plot 8-9	96.6	×1.04		12.0	×1.32	0.344	_
	5795(151)		Sub(1)	-sub	0	-	0.184	+0.18	n/a (*a)	Plot 8-10	96.6	×1.04	11.06	12.0	×1.39	0.266	-
	5745(149)				0	-	0.813	+0.12	n/a (*a)	Plot 8-1	98.5	×1.02	11.70	12.0	×1.20	0.995	main-worst,head,w58
	5785(157)		Main(0)	L.side -main	0	-	0.692	+0.20	n/a (*a)	Plot 8-11	98.5		11.47	12.0	×1.27	0.896	
11a	5825(165)	6		-1114111	0	•	0.542	+0.16	n/a (*a)	Plot 8-12	98.5	×1.02	10.92	12.0	×1.44	0.796	-
11a	5745(149)	U		S.side	0	1	0.291	+0.12	n/a (*a)	<u>Plot 8-2</u>	98.5	×1.02		12.0	×1.23	0.365	sub-worst,head,w58
	5785(157)		Sub(1)	-sub	0	-	0.214	+0.20	n/a (*a)	Plot 8-13	98.5	×1.02		12.0	×1.41	0.308	-
	5825(165)				0	-	0.227	+0.16	n/a (*a)	Plot 8-14	98.5	×1.02	10.76	12.0	×1.49	0.345	-

Test report No.: 11253019S-A Page : 17 of 144 **Issued date** : August 22, 2016

FCC ID : YR7SKR3000P6

7.3 SAR measurement results (5GHz band, Body/Head) (cont'd)

Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Max.: Maximum; Meas.: Measured value; n/a: not applied.

Calibration frequency of the SAR measurement probe (and used conversion factors)

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Body	5260, 5270, 5300, 5320 MHz	5250 MHz	within ±110 MHz of calibration frequency	4.37	±13.1 %
	5500, 5510, 5550, 5580, 5590, 5600, 5670, 5700 MHz	5600 MHz	within ±110 MHz of calibration frequency	3.65	±13.1 %
	5745, 5755, 5785, 5795, 5825 MHz	5750 MHz	within ±110 MHz of calibration frequency	3.96	±13.1 %
Head	5260, 5270, 5300, 5320 MHz	5250 MHz	within ±110 MHz of calibration frequency	4.94	±13.1 %
	5500, 5510, 5550, 5580, 5590, 5600, 5670, 5700 MHz	5600 MHz	within ±110 MHz of calibration frequency	4.33	±13.1 %
	5745, 5755, 5785, 5795, 5825 MHz	5800 MHz	within ±110 MHz of calibration frequency	4.30	±13.1 %

The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

 Δ SAR corrected SAR (W/kg) = (Meas. SAR (W/kg)) × (100 - (Δ SAR(%)) / 100 Calculating formula:

Calculating formula: Reported SAR (W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor) Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)

Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10^{\circ}("Deviation from max., dB"/10))$

(Clause 5: SAR TEST PROCEDURE for 5GHz OFDM band, in KDB248227 D01 (v02r02))

- 5.1.1 Initial Test Position SAR Test Reduction Procedure
- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combination within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg. SAR is measured for these $\underline{\text{test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR is ≤ 1.2 W/kg or all required channels are the reported sAR i$ tested.

7.4 SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 (v01r04) SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	Frequency [MHz]	Data rate	EUT setup		Measured SAR(1g)		Largest to		SAR plot#
			Antenna	Position	Original [W/kg]	Repeated [W/kg]	Smallest SAR Ratio		in Appendix 2-2
11a	5260 (52ch)	6Mbps	Main	Long side- main	1.03 (body liquid)	0.996		* Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.	Plot 9-1
11a	5260 (52ch)	6Mbps	Main	Long side- main	1.04 (head liquid)	1.04		*. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.	Plot 9-2

Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction.