

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ЛЕКЦИОННЫЕ МАТЕРИАЛЫ по дисциплине

Цифровые устройства и микропроцессоры

Часть 1 (5 семестр)

Лекция 1

Рекомендуемая литература

Основная

Новожилов О.П. Основы цифровой техники. 2-ое изд., стереотип. / Учебное пособие — М.: ИП РадиоСофт, 2017. — 528 с.

https://library.mirea.ru/books/39872 (в библиотеке в наличии издание предыдущих лет)

Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. — СПб.: БВХ-Петербург, 2010. — 832 с. https://library.mirea.ru/books/42462

Сажнев, А. М. Цифровые устройства и микропроцессоры : учебное пособие для вузов / А. М. Сажнев.— 2-е изд., перераб. и доп.— Москва : Издательство Юрайт, 2020.—139 с.

Дополнительная

Кириченко П.Г. Цифровая электроника для начинающих. — СПб.: БВХ-Петербург, 2019. — $176 \, \mathrm{c}$.

Угрюмюв Е.П. Цифровая схемотехника : учеб. пособие для вузов. — 3-е изд., перераб. и доп. — СПб: БХВ-Петербург, 2010. — 816 c. https://library.mirea.ru/books/39066

Рафиков Р.А. Электронные сигналы и цепи. Цифровые сигналы и устройства : учебное пособие / Р. А. Рафиков. — СПб.: Лань, 2016. — 318 с. https://library.mirea.ru/books/53743

Гольденберг Л.М., Малев В.А., Малько Г.Б. Цифровые устройства и микропроцессорные системы. Задачи и упражнения. Учеб. пособие для вузов. — М.: Радио и связь, 1992 — 256 с. https://library.mirea.ru/books/6824

Деменкова Т. А. Проектирование цифровых устройств [Электронный ресурс]: учебное пособие / Т. А. Деменкова. — М.: РТУ МИРЭА, 2018. — Электрон. опт. диск (ISO) https://library.mirea.ru/share/3070

Богаченков А. Н. Цифровые устройства и микропроцессоры [Электронный ресурс]: методические указания / А. Н. Богаченков. — М.: РТУ МИРЭА, 2020. — Электрон. опт. диск (ISO). URL: https://library.mirea.ru/share/3798

Основные темы лекции

Аналоговые и цифровые сигналы. Логические уровни. Запас помехоустойчивости.

Дискретизация и квантование сигналов. Критерии выбора оптимальных параметров.

Представление чисел в различных системах счисления.

Основные логические операции. Таблицы истинности. Обозначения логических элементов. Логические базисы.

Операции булевой алгебры и их свойства.

Синтез и минимизация логических функций комбинационных устройств.

Аналоговые и цифровые сигналы

По типу сигнала различают устройства: аналоговые, импульсные, цифровые. Для представления цифровых сигналов служат кодовые слова ограниченной разрядности, каждый разряд представляет бит информации — лог. 0 или 1.

Аналоговый гармонический сигнал

Аналоговый сигнал сложной формы (например, звуковой)

Примеры АМ и ЧМ сигналов

Пример сигналов с импульсной модуляцией

Импульсная модуляция: a — периодическая последовательность исходных импульсов; δ — модулирующий сигнал; δ — АИМ; ϵ — ШИМ; δ — ФИМ; ϵ — ЧИМ; ϵ — ИКМ

Все сложные сигналы представляются спектром – частотными составляющими от FMIN до FMAX (обычно FMIN = 0).

Логические уровни

Обычно низкий уровень (вблизи нулевых напряжений) обозначают лог. "0", высокий уровень (близкий к напряжению питания) — лог. "1". В большинстве случаев источником лог. "0" является общий провод (земля), источником лог. "1" — цепь питания.

Правильно работающий источник (передатчик) сигналов должен создавать уровни только внутри зон помехоустойчивости. При приеме уровни сигналов в зоне неопределенности могут интерпретироваться конкретным устройством по-разному в зависимости от его технических характеристик, например, устройство может держать предыдущее состояние и изменять его только при выходе из зоны неопределенности, может иметь порог переключения посередине зоны, может формировать сигнал ошибки и т.п. Максимальный уровень для лог. "1" (на рис.— max₁) обычно ограничен максимально допустимым напряжением, которое можно подавать на вход логического элемента.

Пример воздействия помехи на аналоговый и логический сигналы

Однако при очень сильных помехах логический сигнал восстановить невозможно, в то время как из аналогового еще можно извлечь полезную информацию.

Дискретизация и квантование

Дискретизация по времени

Значения сигнала сохраняются в моменты 0, T, 2T, ...

Выбор частоты дискретизации

Терема Котельникова: функцию (сигнал) u(t), имеющую ограниченный спектр частот от 0 до F_{MAX} , можно однозначно восстановить/передать отсчетами, следующими с интервалом $\Delta t \leq \frac{1}{2F_{\text{MAX}}}$ (или частотой $F_{\text{S}} \geq 2F_{\text{MAX}}$).

Другая формулировка: частота следования дискретных отсчетов должна как минимум в 2 раза превышать максимальную частоту сигнала.

Пример выбора низкой частоты дискретизации (эффект наложения спектров):

Квантование по амплитуде

Число уровней квантования = 2^N (N — разрядность двоичного кода). При квантовании, в зависимости от принципа работы аналого-цифрового преобразователя (АЦП), может производиться усечение (выбор уровня, меньшего текущей амплитуды сигнала) или округление (выбор ближайшего уровня). При этом возникает ошибка квантования, приводящая к дополнительному шуму в сигнале.

Выбор квантования:

- 1. Исходя из требуемой точности представления амплитуды.
- 2. Исходя из динамического диапазона сигнала.
- 3. При учете шумов квантования исходя из требуемого отношения сигнал/шум.

Квантование может быть равномерным и с переменным шагом. При неравномерном квантовании относительная ошибка шума квантования практически постоянная при изменении уровня входного сигнала.

Цифровой сигнал — последовательность N-разрядных кодов, представляющих собой приближенные (квантованные) значения сигнала на каждом временном интервале.

Правильное изображение на диаграммах цифрового сигнала:

Представление чисел в различных системах счисления

Число в позиционной системе счисления (или в формате с плавающей точкой/запятой) записывается как последовательность цифр (разрядов), разделенных точкой/запятой:

$$a_n a_{n-1} ... a_0, a_{-1} a_{-2} ... a_{-m}$$

где 0...n — номера (индексы) разрядов целой части, -1...-m — дробной. Десятичное значение числа:

$$a_n p^n + a_{n-1} p^{n-1} + ... + a_0 p^0 + a_{-1} p^{-1} a_{-2} p^{-2} ... a_{-m} p^{-m}$$

где p – основание системы счисления. Пример

> N разряда: $2\ 1\ 0\ -1-2$ Число: $1\ 0\ 1,\ 0\ 1_2\ =\ 1\cdot 2^2\ +\ 0\cdot 2^1\ +\ 1\cdot 2^0\ +\ 0\cdot 2^{-1}\ +\ 1\cdot 2^{-2}$

Системы счисления

Десятичная система			8-	16-	Двоичная система
Без знака	Со знаком, 1 байт	Со знаком, 2 байта	ричная	ричная	двоичная система
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20	0 1 2 3 4 5 6 7 8 9 A B C D E F 10	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1101 1100 1101 1110
126	126	126	176	7E	0111 1110
127	127	127	177	7F	0111 1111
128	-128	128	200	80	1000 0000
129	-127	129	201	81	1000 0001
254	-2	254	376	FE	1111 1110
255	-1	255	377	FF	1111 1111
256		256	400	100	1 0000 0000
257		257	401	101	1 0000 0001
4095		4095	7777	FFF	1111 1111 1111
4096		4096	10000	1000	1 0000 0000 0000
32766 32767 32768 32769		32766 32767 -32768 -32767	77776 77777 100000 100001	7FFE 7FFF 8000 8001	0111 1111 1111 1110 0111 1111 1111 1111
65534		-2	177776	FFFE	1111 1111 1111 1110
65535		-1	177777	FFFF	1111 1111 1111 1111

Примеры перевода:

$$1001$$
 1110 1000 0100 — двоичная $101110_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 46_{10}$ $4BC_{16} = 4 \cdot 16^2 + 11 \cdot 16^1 + 12 \cdot 16^0 = 1212_{10}$

Однобайтовое число (байт):

 Без знака:
 ст.бит
 мл.бит

 D7 D6 D5 D4 D3 D2 D1 D0

Диапазон: 0...255₁₀

Со знаком в дополнительном коде:

знак D6 D5 D4 D3 D2 D1 D0

Диапазон: $-128...127_{10}$ (для вычислений, как правило, используют доп. код)

Число комбинаций – 2^N (N – разрядность двоичного кода).

Логические операции

Логические функции одной переменной:

Для двух переменных существует теоретически 16 функций. Наиболее часто используются следующие три::

Функция	Математич. запись	Таблица истинности	Логический элемент
Логическое умножение, коньюнкция, операция "И"	$y = x_1 \land x_2$ $y = x_1 \& x_2$ $y = x_1 \& x_2$	$\begin{array}{c cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{bmatrix} x_1 & & & \\ x_2 & & & \\ & & & \end{bmatrix}$
Логическое сложение, дизьюнкция, операция "ИЛИ"	$y = x_1 \lor x_2$	$\begin{array}{c cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{bmatrix} x_1 & \dots & 1 \\ x_2 & \dots & 1 \end{bmatrix} - y$
Неравнозначность, сложение по модулю 2, операция "исключающее ИЛИ"	$y = x_1 \oplus x_2$ или $y = x_1 \forall x_2$	$\begin{array}{c cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	$\begin{bmatrix} x_1 & \dots & \vdots \\ x_2 & \dots & \vdots \end{bmatrix} y$

Логические базисы

Операции булевой алгебры

Аксиомы алгебры логики

$$x = x$$

$$x + 0 = x$$

$$x + 1 = 1$$

$$x + x = x$$

$$x + x = 0$$

$$x + x = 1$$

$$x + x = 0$$

$$x + x = 1$$

Законы алгебры логики

$x_1 + x_2 = x_2 + x_1 x_1 \cdot x_2 = x_2 \cdot x_1$	Коммутативный (переместительный)
$(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$ $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$	Ассоциативный (сочетательный)
$ x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3 x_1 + x_2 \cdot x_3 = (x_1 + x_2) \cdot (x_1 + x_3) $	Дистрибутивный (распределительный)
$\overline{\frac{x_1 + x_2}{x_1 \cdot x_2}} = \overline{x_1} \cdot \overline{x_2}$ $\overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$	Двойственности (правило де Моргана)
$ x_1 + x_1 \cdot x_2 = x_1 x_1 \cdot (x_1 + x_2) = x_1 $	Правило поглощения
	Правило склеивания

Синтез и минимизация логических функций комбинационных устройств

Комбинационное устройство
$$y_1$$
 y_2 y_3 y_4 y_5 y_6 y

В комбинационных устройствах выходные сигналы $y_1...y_k$ однозначно определяются комбинацией входных $x_1...x_n$.

Пример таблицы с 3-мя входными и двумя выходными сигналами:

Номер набора	x2	x1	х0	y2	y1	Минтермы для у2	Макстермы для у1
0	0	0	0	1	1	$\overline{x2} \overline{x1} \overline{x0}$	
1	0	0	1	0	0		$x2+x1+\overline{x0}$
2	0	1	0	0	1		
3	0	1	1	1	0	$\overline{x2}$ x1 x0	$x2 + \overline{x1} + \overline{x0}$
4	1	0	0	0	1		
5	1	0	1	0	1		
6	1	1	0	1	1	$x2 x1 \overline{x0}$	
7	1	1	1	0	0		$\overline{x2} + \overline{x1} + \overline{x0}$

Для текущего набора выходная лог. "1" получается логическим произведением входных переменных в прямом или инверсном виде, такая формула называется **минтермом**. Выходной лог. "0" получается логическим суммированием входных — формула называется **макстерном**.

Совершенная дизъюнктивная нормальная форма (СДНФ): логическая сумма минтермов, для которых выходной сигнал равен 1:

$$y2 = \overline{x2} \overline{x1} \overline{x0} + \overline{x2} x1 x0 + x2 x1 \overline{x0}$$

Совершенная конъюнктивная нормальная форма (СКНФ): логическое произведение макстермов, для которых выходной сигнал равен 0:

$$y1 = (x2 + x1 + x0) (x2 + x1 + x0) (x2 + x1 + x0)$$

Структурные формулы в виде СДНФ и СКНФ как правило приводят к избыточному количеству логических элементов, поэтому проводят минимизацию логического выражения:

- с помощью карт Карно, диаграмм Вейча;
- методов Квайна, Мак-Класки, Петрика и др.

В настоящее время ручные методы минимизации неактуальны, так как сильно развиты машинные (например, в процессе проектирования ПЛИС).

Для неполностью определенных функций их доопределяют обычно произвольно, либо анализируют несколько вариантов.