

Kernel Random Matrices of Large Concentrated Data: The Example of GAN-Generated Images

Mohamed El Amine Seddik 1,2 Mohamed Tamaazousti 1

Romain Couillet ^{2,3}

¹CEA List

²CentraleSupélec

³GIPSA-Lab University of GrenobleAlpes

Abstract

Context:

Study of large kernel matrices for concentrated data.

Motivation:

- GAN data are close to real data [1].
- GAN data are concentrated data by design.

Results:

- Universality of spectral clustering w.r.t. the data distribution.
- Real data behave similar to concentrated vectors.
- **RMT** allows for the **theoretical understanding** of ML methods for **real** data.

Concentrated Vectors

Definition 1. Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $X \in E$ is q-exponentially concentrated if for any 1-Lipschitz real function \mathcal{F} , there exists C, c > 0 s.t.

$$\forall t > 0, \ \mathbb{P}\left\{ |\mathcal{F}(X) - \mathbb{E}\mathcal{F}(X)| \ge t \right\} \le C e^{-c t^q} \xrightarrow{\mathsf{denoted}} X \in \mathcal{O}(e^{-\cdot^q}) \text{ in } (E, \|\cdot\|_E)$$

(P1) $X \sim \mathcal{N}(0, I_p)$ is 2-exponentially concentrated [2].

(P2) If $X \in \mathcal{O}(e^{-\cdot^q})$ and \mathcal{G} is ℓ -Lipschitz, then $\mathcal{G}(X) \in \mathcal{O}(e^{-(\cdot/\ell)^q})$.

Model & Assumptions

Data matrix (distributed in k classes):

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1, \dots, \mathbf{x}_{n_1}, \mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}, \dots, \mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n \\ \in \mathcal{O}(e^{-\cdot q_1}) \end{bmatrix}$$

Model statistics:

(Means)
$$\mathbf{m} = \sum_{\ell=1}^k \frac{n_\ell}{n} \mathbf{m}_\ell$$
, $\bar{\mathbf{m}}_\ell = \mathbf{m} - \mathbf{m}_\ell$
(Covariances) $\mathbf{C} = \sum_{\ell=1}^k \frac{n_\ell}{n} \mathbf{C}_\ell$, $\bar{\mathbf{C}}_\ell = \mathbf{C} - \mathbf{C}_\ell$

(A1) Growth rate assumptions:

As $p \to \infty$,

- 1. Data: $\frac{p}{n} \to c_0 \in (0, \infty), \frac{n_\ell}{n} \to c_\ell \in (0, 1)$
- 2. Means: $\|\bar{\mathbf{m}}_{\ell}\| = \mathcal{O}(1), \ \mathbb{E}\|\mathbf{x}_i\| = \mathcal{O}(\sqrt{p})$
- 3. Covariances: $\|\bar{\mathbf{C}}_{\ell}\| = \mathcal{O}(1)$, $\operatorname{tr} \bar{\mathbf{C}}_{\ell} = \mathcal{O}(\sqrt{p})$, $\operatorname{tr} \bar{\mathbf{C}}_{a} \bar{\mathbf{C}}_{b} = \mathcal{O}(\sqrt{p})$

(A2) Kernel function: Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ three-times continuously differentiable function in $\tau \equiv \frac{2}{p} \operatorname{tr} \mathbf{C}$.

Kernel matrix:

$$\mathbf{K} \equiv \left\{ f\left(\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \right\}_{i,j=1}^n$$

Why Concentrated Vectors?

Representation Network Concentrated Vectors Lipschitz operation

Between and Within Class Vectors are "equidistant" in High-dimension

Proposition 1. Denote $\tau \equiv \frac{2}{p} \operatorname{tr} \mathbf{C}$. Under (A1), with probability $1 - \delta$

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 - \tau \right| \right\} = \mathcal{O}\left(\frac{\log(\frac{n}{\sqrt{\delta}})^{1/q}}{\sqrt{n}} \right)$$

Random Matrix Equivalent for \boldsymbol{K}

Proposition 2. Under (A1) and (A2), Taylor expanding \mathbf{K} entry-wise leads to

$$\mathbf{K} \propto \mathbf{JAJ^{\intercal}}_{\mathsf{Information}} + \underline{f'(\tau)\mathbf{Z}^{\intercal}\mathbf{Z} + *}, \ \mathbf{Z} = (\mathbf{X} - \mathbf{MJ}^{\intercal})/\sqrt{p}$$

- R1 K behaves as a **spiked RMT** model.
- R2 The classification **performance** depends on $f'(\tau)$, $f''(\tau)$, \mathbf{M} , \mathbf{t} and \mathbf{T} .
- R3 No other **informative** statistics \Rightarrow **universality** of spectral clustering.

A is a **low-rank** matrix depending only on $f'(\tau)$, $f''(\tau)$, **M**, **t** and **T**, where

$$\mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_k], \ \mathbf{M} = [\bar{\mathbf{m}}_1, \dots, \bar{\mathbf{m}}_k], \ \mathbf{t} = \left\{\frac{\mathrm{tr}\bar{\mathbf{C}}_\ell}{\sqrt{p}}\right\}_{\ell=1}^k, \ \mathbf{T} = \left\{\frac{\mathrm{tr}\bar{\mathbf{C}}_a\bar{\mathbf{C}}_b}{p}\right\}_{a,b=1}^k$$

Application to GAN-Generated Images

Perspectives

- Prove a CLT under the concentration assumption.
- Generalize to other ML tasks (Classification, Regression)
- Apply to the dynamics of neural networks and GANs.

References

ICASSP'19, Brighton, UK - Contact: mohamedelamine.seddik@cea.fr

^[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, "Generative adversarial nets," in Advances in neural information processing systems, 2014.

^[2] Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Society Providence, RI, 2012.