The Cell Processor Computer Vision Project

Amos Tibaldi

December 4, 2007

CellCV Project - Table of Contents

- 1. The Cell Broadband Engine Processor
 - PowerPC Processor Element
 - Synergistic Processor Elements
 - Memory Flow Controller
- 2. The Cell Processor Computer Vision Project
 - Project Detail
 - Requirements
 - Software Components
- 3. Conclusions

The Cell Broadband Engine Processor Overview

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

- The CBEA extends the 64-bit PowerPC Architecture
- The PPE contains a 64-bit dual-thread PowerPC Architecture RISC core
- The eight SPE are single-instruction, multiple-data processor elements, with their own Local Storage
- The Element Interconnect Bus connects PPE and SPES and consists of four 16byte-wide data rings

PPE - PowerPC Processor Element

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

Conclusions

General-purpose, dual-threaded 64-bit RISC processor conforming to the PowerPC Architecture, version 2.02

- Vector/SIMD multimedia extension instructions
- Vector/SIMD Multimedia Extension C/C++ Language Intrinsics
- Specialized for running 32-bit and 64-bit operating systems

SPE - Synergistic Processor Elements

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

Conclusions

SIMD istruction set

- Each SPE is a 128-bit RISC processor
- specialized (optimized) for data-rich, compute-intensive SIMD and scalar applications

Synergistic Processor Unit

The Cell Processor Computer Vision Project

Amos Tihaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

- 256 KB Local Store with unified instructions and data
- independent processor element with its own program counter
- SPU fills the Local Storage with DMA transfers from its MFC
- SPU fetches and executes instructions from its LS

Memory Flow Controller

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

- Each SPU has its own MFC
- SPE communicates with main memory, PPE and other SPEs through its channels
- Channels are message-passing interfaces
- Mailboxes and Signalling
- MFC Commands and Command Queues

The Project

Project Amos Tibaldi

The Cell Processor Computer Vision

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

Conclusions

- C/C++ computer vision project
- parallel elaboration of image sequences, either acquired in real time by some dedicated hardware or by reading disk files
- thought for the STI Cell Processor

•

Project Architecture

The Cell Processor Computer Vision Project

Amos Tibaldi

- The PPE splits the input images in vertical bands
- Each subimage is then mapped onto the SPE Synergistic Processing Elements' embedded SRAM through opportune MFC Memory Flow Controller commands
- Each SPE analyzes with computer vision algorithms its own subimage
- The SPEs work in parallel on the subimages and return to the PPE a list of bounding boxes (regions of interest)
- The processed output subimages modified by the SPEs are mapped back to the main memory
- Subimages are joined into a single output image by the PPE
- The PPE collects also the list of boxes and tracks over time their output image location evolution

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

The speedup

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

Conclusions

• For each Cell core there are eight physical SPEs

- for compute-intensive computer vision algorithms, a speedup is obtained
- The so achieved parallelism can reduce sensibly the total time of an image elaboration
- statistical measure of the speedup

CellCV Project Requirements

- A computer mounting the Cell Processor (i.e. Sony PlayStation3)
- An installed Linux distribution (i.e. YellowDog 5.0 for PS3)
- Cell SDK at least 2.0

The Cell Processor Computer Vision Project

Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

CellCV Components

- The Cell Processor Computer Vision Project
 - Amos Tibaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

- The subimage module for splitting and joining images
- The main loop module
- The profiler module for statistical timing observations
- The libpng wrapper module
- The ImageAcquisition module
- The GlutWindow class
- The SPU CV algorithm module

CellCV Project Conclusions

The Cell Processor Computer Vision Project

Amos Tihaldi

The Cell Broadband Engine Processor

> PowerPC Processor Element

Synergistic Processor Elements

Memory Flow Controller

The Cell Processor Computer Vision Project

Project Detail

Requirements

Software Components

- The Cell Architecture grew from a challenge posed by Sony and Toshiba and IBM
- Power-efficient and cost-effective high-performance processing for a wide range of applications
- Innovative solution whose design was based on the analysis
 of a broad range of workloads in areas such as cryptography,
 graphics transform and lighting, physics, fast-Fourier transforms (FFT), matrix operations, and scientific workloads
- CBEA is ideal for compute-intensive computer vision algorithms