Left Factoring

Parsing

- How to convert sequence of tokens to parse tree?
- Several methods possible

Hand-Written

- One way: Totally manually
- Typically using a recursive descent parser
- Ex: suppose grammar is:
 - $S \rightarrow stmt-list$
 - stmt-list → stmt SEMI stmt-list | stmt SEMI
 - $stmt \rightarrow cond \mid assign \mid func-call$
 - $func-call \rightarrow ID LPAREN RPAREN$
 - $\mathsf{expr} \to \mathsf{expr}\,\mathsf{ADDOP}\,\mathsf{term}\,|\,\mathsf{term}$
 - $term \rightarrow factor MULOP term \mid factor$
 - $factor \rightarrow NUM \mid ID \mid LPAREN \ expr \ RPAREN$
 - assign \rightarrow ID EQUALS expr
 - cond → IF LPAREN expr RPAREN LBRACE stmt-list RBRACE | IF

LPAREN expr RPAREN LBRACE stmt-list RBRACE ELSE LBRACE

stmt-list RBRACE

Recursive Descent

```
def parse_stmt():
    t = peekToken()
    if t.sym == IF: parse_cond()
    elif t.sym ==ID:
        t2 = peekNextToken()
        if t2 == EQUALS:
            parse_assign()
        else:
            parse_funcCall()
    else:
        error
    t = getToken()
    if t != SEMI:
        error
```

Parse

```
def parse cond():
    t = getToken()
    if t.svm != IF: error
    t = getToken()
    if t.svm != LPAREN: error
    parse expr()
    t = getToken()
    if t.sym != RPAREN: error
    t = getToken()
    if t.sym != LBRACE: error
    parse stmt list()
    t = getToken()
    if t.sym != RBRACE: error
    t = peekToken()
    if t == FLSF:
```

Analysis

- Fairly straightforward to code no advanced ideas
- Very tedious
 - ► *Every* symbol in *every* grammar production requires a piece of code to handle
- Error prone
 - ▶ When handling stmt-list: How do you know when you've come to end?
 - ▶ For this grammar, not too difficult analyze by sight
 - ▶ For more complex grammars: Easy to improperly code it
- Change grammar = change potentially large amount of code

Generated Parser

- Can write code that will automate much of the compilation work
- This requires some compiler theory
- Also imposes some restrictions on grammar design
 - ▶ The trade-off may or may not be worth it

Problem

- If two choices share a common prefix, this complicates things
 - ▶ Observe: assignment vs. func-call
- ▶ The manually written parser had to look at the next+1 token
- But special cases are harder to do in automated approach

Transformation

Assume that we have something like this for "assignment or function call":

```
\mathsf{stmt} \to \mathsf{ID} = \mathsf{expr} \mid \mathsf{ID} \mathsf{ LP} \mathsf{ num} \mathsf{ RP}
```

- Find common prefix
 - ▶ Here, it's "ID"
- ▶ Break up like so: stmt → ID stmt' stmt' → = expr | LP num RP

Transformation

- ▶ In general, common prefix could be more than one symbol
- ▶ func-call \rightarrow ID LP RP | ID LP NUM RP | ID LP NUM COMMA NUM RP
- Factor out longest common prefix: func-call → ID LP func-call' func-call' → RP | NUM RP | NUM COMMA NUM RP
 - ▶ But now we must do factoring again!

Factoring

- Factoring may create λ -productions
- lacktriangledown cond ightarrow IF LP expr RP stmt | IF LP expr RP stmt ELSE stmt
- ► Factored: cond \rightarrow IF LP expr RP stmt cond' cond' $\rightarrow \lambda$ | ELSE stmt

Other Items

- What if other items? Leave alone
- ightharpoonup Example: stmt ightharpoonup ID EQ expr | ID LP RP | WHILE LP expr RP stmt
- ▶ Factored: stmt \rightarrow ID stmt' | WHILE LP expr RP stmtid stmt' stmt' \rightarrow EQ expr | LP RP

General Method

- ► Left factoring: general method: Suppose grammar has productions A $\rightarrow p_1|p_2|...|p_n$
- Find longest prefix common to at least two productions
 - \triangleright Denote this as α
 - If length of α is zero: We've factored A completely
- Create a new unique symbol σ
- ▶ For all productions $A \rightarrow p_i$ where p_i begins with α :
 - ▶ Delete production A $\rightarrow p_i$ from the grammar
 - Add production $\sigma \to p_i \alpha$ to the grammar • " $p_i - \alpha$ " means "remove initial prefix of α from p_i "
- Add production A $\rightarrow \alpha \sigma$ to the grammar
- Repeat above steps until all symbols completely factored.

Left Recursion

- ightharpoonup Problem: we had productions like this: expr ightharpoonup expr ADDOP term
- ► How do we code this?

Obvious Way

```
def parse_expr():
    parse_expr()
    t = getToken()
    if t != ADDOP:
        error
    parse_term()
```

Do you see the problem?

Left Recursion

- Simple removal: Suppose we have production
 - $A \rightarrow A \sigma \mid \pi$
 - σ and π = any sequence of one or more symbols
- Change it to:

$$A \rightarrow \pi A'$$

$$A' \rightarrow \sigma A' \mid \lambda$$

▶ It can be proven that new rules are equivalent to the old rules

Example

- ▶ Rule: $expr \rightarrow expr ADDOP term \mid term$
- New rules: $\exp r \rightarrow \text{term expr'}$ $\exp r' \rightarrow \text{ADDOP term expr'} \mid \lambda$

Multiple Rules

- If several left recursive rules: Best seen with an example: expr → expr PLUS term | expr MINUS term | term
- ▶ Change to: expr \rightarrow term expr' expr' \rightarrow PLUS term expr' | MINUS term expr' | λ

General Form

- ▶ Given: A → A σ_1 | A σ_2 | ... | A σ_n | π_1 | π_2 | ... | π_m
- Transform to:

$$\begin{array}{l} \mathbf{A} \rightarrow \pi_1 \ \mathbf{A'} \ | \ \pi_2 \ \mathbf{A'} \ | \ \dots \ | \ \pi_m \ \mathbf{A'} \\ \mathbf{A'} \rightarrow \sigma_1 \ \mathbf{A'} \ | \ \sigma_2 \ \mathbf{A'} \ | \ \dots \ | \ \sigma_n \ \mathbf{A'} \ | \ \lambda \end{array}$$

Full Example

- ▶ Consider arithmetic expression grammar: expr \rightarrow expr ADDOP term | expr SUBOP term | term term \rightarrow term MULOP factor | term DIVOP factor | factor factor \rightarrow ID | NUM | LP expr RP
- Rewrite: Do in class

λ productions

- Some automated parse techniques don't work well with λ productions
- We can transform any grammar with λ productions to equivalent one without
 - Except if grammar accepts λ
 - We can handle this as special case if needed

Idea

- First, compute all *nullable* symbols
- What's a nullable symbol?
 - \blacktriangleright One that goes (directly or indirectly) to λ

Nullable

Example

Consider:

$$S \rightarrow A \mid B \mid A A$$

$$A \rightarrow x \mid y \mid \lambda$$

$$B \rightarrow A w \mid z$$

Compute nullable = { A,S }

Example

Grammar:

► Nullable: {S,A,C}

S
$$\rightarrow$$
 A B | A C z | x C y | x y | A x S y | C C A \rightarrow x | y S | λ B \rightarrow A w | z C \rightarrow λ

Removing

- Now: To remove λ productions
- Scan grammar. Remove all λ productions
- Drop any nonterminals that now have no productions
 - Delete them from any rhs that had them

Example

- Consider previous grammar
- Remove λ productions

$$S \rightarrow A \ B \ | \ A \ C \ z \ | \ x \ C \ y \ | \ x \ y \ | \ A \ x \ S \ y$$

$$A \rightarrow x \mid y S$$

$$B \to A \ w \mid z$$

$$\mathsf{C} \to$$

Example

Remove symbols with no productions left (here, "C")

$$S \rightarrow A B \mid A z \mid x y \mid x y \mid A x S y$$

$$A \rightarrow x \mid y S$$

$$B \rightarrow A w \mid z$$

- Notice we have a duplicated rhs (in S)
 - ▶ We'll deal with this later

Next

- Consider each production
- Compute all combinations of that production with and without its nullable symbols
- ► Example: $S \rightarrow A \times S y$ (Suppose S and A are both nullable)
 - ► AxSy
 - ► xSy
 - A x y
 - x y
- How can we do this programmatically?

Option

- Suppose we are considering production P
- First, determine how many nullable symbols there are. Call this n.
- ▶ We will have 2ⁿ combinations
 - ▶ If n == 0: No need to do anything with P

Nullable

- Cycle a counter c from $0...2^n 1$ inclusive
- ▶ If bit i of c is 1: Retain nullable symbol i. Else, discard it

Example

- ▶ Suppose we have $S \rightarrow A \times S y$
- ► Two nullable symbols, so c=0,1,2,3
- ► c=0: Retain neither nullable: x y
- ► c=1: Retain first nullable: A x y
- ► c=2: Retain second nullable: x S y
- ► c=3: Retain first and second nullables: A x S y
- How can we code this?

Code

Scan production, noting wherever we have nullable symbol:

```
#nullable indices
#key = position in production P
#value = which nullable it is (1,2,3,...)
ni = {}
ncount=0
for i in range(len(P)):
    if P[i] is nullable:
        ni[i]=ncount
        ncount += 1
n = len(ni.keys())
```

Code

Next, cycle the counter:

```
newProductions=[]
for ctr in range( 1 << ncount ):
    P'=[]
    for j in range(len(P)):
        if i in ni:
            if ctr & (1<<ni[j]):
                P'.append(P[i])
        else:
            P'.append(P[i])
    newProductions.append(P')
nonterminals[lhs] = newProductions
```

- P' represents one new production
- We'll generate 2^n such productions

Assignment

- Write code to compute and return the nullable set for a grammar.
- Your code must work with the <u>test harness</u>
- ► If you're having trouble getting started, here's a stub implementation that, while incorrect, at least compiles: ComputeNullable.cs

Sources

- Aho, Lam, Sethi, Ullman. Compilers: Principles, Techniques, & Tools (2nd ed). Addison-Wesley Publishing.
- ▶ K. Louden. Compiler Construction: Principles and Practice. PWS Publishing.

Created using MEX.

Main font: Gentium Book Basic, by Victor Gaultney. See http://software.sil.org/gentium/ Monospace font: Source Code Pro, by Paul D. Hunt. See https://fonts.google.com/specimen/Source+Code+Pro and http://sourceforge.net/adobe Icons by Ulisse Perusin, Steven Garrity, Lapo Calamandrei, Ryan Collier, Rodney Dawes, Andreas Nilsson, Tuomas Kuosmanen, Garrett LeSage, and Jakub Steiner. See http://tango-project.org