

 $^{2^{+}}_{\bullet}\mathcal{R}_{\mathsf{S}}^{\perp}\dagger^{\alpha\beta}$

 $^{2}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta\chi}$

 $\frac{a_{.0}}{4} - \frac{k^2 h_{.3}}{48}$

 $^{3}\mathcal{A}_{s}^{\parallel}_{\alpha\beta\chi}$

 $3^{-}\mathcal{A}_{S}^{\parallel} + \alpha \beta \chi$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k \stackrel{0^+}{\cdot} \mathcal{W}_S^{\perp t} + 2 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$\frac{2 k \cdot 1^{-} W_{S}^{\perp h^{\alpha}} + k \cdot 1^{-} W_{S}^{\perp t^{\alpha}} + 6 i \cdot 1^{-} \mathcal{T}^{\perp^{\alpha}} = 0}{2 k \cdot 1^{-} W_{S}^{\perp h^{\alpha}} + 6 i \cdot 1^{-} \mathcal{T}^{\perp^{\alpha}}} = 0$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} w^{\beta \alpha \chi} == 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} w^{\beta \chi \delta}$	3
Total expected gauge generators:		4

Massive spectrum

Square mass: $\begin{vmatrix} 4a \\ -\frac{0}{2} > 0 \end{vmatrix}$
Square mass. $\begin{vmatrix} -\frac{1}{3} \\ \frac{h}{3} \end{vmatrix}$
Spin: 2
Parity: Even

Massless spectrum

Massless particle

Pole residue:	$-\frac{p^2}{a} > 0$
Polarisations:	2

Unitarity conditions

(Demonstrably impossible)