TRABAJO PRÁCTICO 2 - EJERCICIO 6

$$f: D \to \mathbb{R} : f(x,y) = \frac{\sqrt{4 - x^2 - y^2}}{\ln(x^2 + y^2 - 1)}$$

Para que un punto $(x,y) \in \mathbb{R}^2$ pertenezca al dominio de f, debe cumplir:

- 1. $4 x^2 y^2 \ge 0$ para poder calcular la raíz cuadrada;
- 2. $x^2 + y^2 1 > 0$ para poder evaluar el logaritmo;
- 3. $\ln(x^2 + y^2 1) \neq 0$ para poder evaluar el cociente.

Así:

- 1. $4 x^2 y^2 \ge 0$, es decir, $4 \ge x^2 + y^2$;
- 2. $x^2+y^2-1>0$, es decir, $x^2+y^2>1$; y juntando estas dos desigualdades tenemos: $1< x^2+y^2\leq 4$; hasta acá estamos hablando de los puntos (x,y) en una cierta corona circular: $1< x^2+y^2\leq 4$.
- 3. $\ln(x^2 + y^2 1) \neq 0$ implica $x^2 + y^2 1 \neq 1$, es decir, $x^2 + y^2 \neq 2$.

Los puntos (x,y) de \mathbb{R}^2 que reúnen las tres condiciones son

$$D = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 4 \text{ y } x^2 + y^2 \ne 2\}.$$

