Rank-74499 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1378128461

General information

Number of lines	7
Number of points	89
Number of singular points	2
Number of Eckardt points	1
Number of double points	5
Number of single points	46
Number of points off lines	36
Number of Hesse planes	0
Number of axes	0
Type of points on lines	97
Type of lines on points	$4, 3, 2^5, 1^{46}, 0^{36}$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{137} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{137} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{664}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{97}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{769}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{721} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{721} = \mathbf{Pl}(0, 1, 1, 0, 0, 1)_{672}$$

Rank of lines: (0, 64, 137, 9, 4673, 4744, 721)

Rank of points on Klein quadric: (0, 2, 664, 97, 769, 1, 672)

Eckardt Points

The surface has 1 Eckardt points: $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0).$

Double Points

The surface has 5 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_4$$

$$P_{146} = (0, 1, 1, 1) = \ell_3 \cap \ell_4$$

$$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_6$$

 $P_{138} = (0, 0, 1, 1) = \ell_4 \cap \ell_5$

Single Points

The surface has 46 single points: The single points on the surface are:

 $\begin{array}{llll} 0: \ P_3 = (0,0,0,1) \ \mbox{lies on line} \ \ell_5 & 13: \\ 1: \ P_6 = (2,1,0,0) \ \mbox{lies on line} \ \ell_0 & 14: \\ 2: \ P_7 = (3,1,0,0) \ \mbox{lies on line} \ \ell_0 & 15: \\ 3: \ P_8 = (4,1,0,0) \ \mbox{lies on line} \ \ell_0 & 16: \\ 4: \ P_9 = (5,1,0,0) \ \mbox{lies on line} \ \ell_0 & 17: \\ 5: \ P_{10} = (6,1,0,0) \ \mbox{lies on line} \ \ell_0 & 18: \\ 6: \ P_{11} = (7,1,0,0) \ \mbox{lies on line} \ \ell_0 & 19: \\ 7: \ P_{12} = (1,0,1,0) \ \mbox{lies on line} \ \ell_1 & 20: \\ 8: \ P_{13} = (2,0,1,0) \ \mbox{lies on line} \ \ell_1 & 21: \\ 9: \ P_{14} = (3,0,1,0) \ \mbox{lies on line} \ \ell_1 & 22: \\ 10: \ P_{15} = (4,0,1,0) \ \mbox{lies on line} \ \ell_1 & 23: \\ 11: \ P_{16} = (5,0,1,0) \ \mbox{lies on line} \ \ell_1 & 24: \\ 12: \ P_{17} = (6,0,1,0) \ \mbox{lies on line} \ \ell_1 & 25: \\ \end{array}$

13: $P_{18} = (7,0,1,0)$ lies on line ℓ_1 14: $P_{20} = (1,1,1,0)$ lies on line ℓ_2 15: $P_{29} = (2,2,1,0)$ lies on line ℓ_2 16: $P_{38} = (3,3,1,0)$ lies on line ℓ_2 17: $P_{47} = (4,4,1,0)$ lies on line ℓ_2 18: $P_{56} = (5,5,1,0)$ lies on line ℓ_2 19: $P_{65} = (6,6,1,0)$ lies on line ℓ_2 20: $P_{74} = (7,7,1,0)$ lies on line ℓ_2 21: $P_{83} = (1,1,0,1)$ lies on line ℓ_3 22: $P_{147} = (2,1,1,1)$ lies on line ℓ_3 23: $P_{148} = (3,1,1,1)$ lies on line ℓ_3 24: $P_{149} = (4,1,1,1)$ lies on line ℓ_3 25: $P_{150} = (5,1,1,1)$ lies on line ℓ_3

```
26: P_{151} = (6, 1, 1, 1) lies on line \ell_3
                                                                     37: P_{274} = (1, 1, 3, 1) lies on line \ell_6
27: P_{152} = (7, 1, 1, 1) lies on line \ell_3
                                                                     38: P_{329} = (0,0,4,1) lies on line \ell_5
28: P_{153} = (0, 2, 1, 1) lies on line \ell_4
                                                                     39: P_{338} = (1, 1, 4, 1) lies on line \ell_6
29: P_{161} = (0, 3, 1, 1) lies on line \ell_4
                                                                     40: P_{393} = (0,0,5,1) lies on line \ell_5
30: P_{169} = (0, 4, 1, 1) lies on line \ell_4
                                                                     41: P_{402} = (1, 1, 5, 1) lies on line \ell_6
31: P_{177} = (0, 5, 1, 1) lies on line \ell_4
                                                                     42: P_{457} = (0,0,6,1) lies on line \ell_5
32: P_{185} = (0, 6, 1, 1) lies on line \ell_4
                                                                     43: P_{466} = (1, 1, 6, 1) lies on line \ell_6
33: P_{193} = (0, 7, 1, 1) lies on line \ell_4
                                                                     44: P_{521} = (0,0,7,1) lies on line \ell_5
34: P_{201} = (0,0,2,1) lies on line \ell_5
                                                                     45: P_{530} = (1, 1, 7, 1) lies on line \ell_6
35 : P_{210} = (1, 1, 2, 1) lies on line \ell_6
36: P_{265} = (0,0,3,1) lies on line \ell_5
```

The single points on the surface are:

Points on surface but on no line

The surface has 36 points not on any line: The points on the surface but not on lines are:

$0: P_{94} = (4, 2, 0, 1)$	$19: P_{382} = (5, 6, 4, 1)$
$1: P_{103} = (5, 3, 0, 1)$	$20: P_{386} = (1,7,4,1)$
$2: P_{113} = (7, 4, 0, 1)$	$21: P_{412} = (3, 2, 5, 1)$
$3: P_{120} = (6, 5, 0, 1)$	$22: P_{418} = (1, 3, 5, 1)$
$4: P_{125} = (3, 6, 0, 1)$	$23: P_{428} = (3,4,5,1)$
$5: P_{132} = (2,7,0,1)$	$24: P_{440} = (7, 5, 5, 1)$
$6: P_{224} = (7, 2, 2, 1)$	$25: P_{448} = (7,6,5,1)$
$7: P_{232} = (7, 3, 2, 1)$	$26: P_{483} = (2, 3, 6, 1)$
$8: P_{234} = (1, 4, 2, 1)$	$27: P_{494} = (5, 4, 6, 1)$
$9: P_{244} = (3, 5, 2, 1)$	$28: P_{498} = (1, 5, 6, 1)$
$10: P_{260} = (3,7,2,1)$	$29: P_{507} = (2, 6, 6, 1)$
$11: P_{287} = (6, 2, 3, 1)$	$30: P_{518} = (5,7,6,1)$
$12: P_{293} = (4, 3, 3, 1)$	$31: P_{538} = (1, 2, 7, 1)$
13: $P_{309} = (4, 5, 3, 1)$	$32: P_{551} = (6, 3, 7, 1)$
$14: P_{314} = (1, 6, 3, 1)$	$33: P_{559} = (6,4,7,1)$
$15: P_{327} = (6,7,3,1)$	$34: P_{573} = (4,6,7,1)$
$16: P_{350} = (5, 2, 4, 1)$	$35: P_{581} = (4,7,7,1)$
$17: P_{363} = (2, 4, 4, 1)$,
$18: P_{371} = (2, 5, 4, 1)$	

Line Intersection Graph

	0	1	2	3	4	5	6
$\overline{0}$	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
$ \begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	1	1	0	0	0	1	1
3	1	1	0	0	1	0	1
4	1	0	0	1	0	1	0
5	0	1	1	0	1	0	1
6	0	1	1	1	0	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_0	P_1

Line 1	intersects
--------	------------

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_0	P_2	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_5	P_2	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6
in point	P_0	P_0	P_{146}	P_4

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_5
in point	P_1	P_{146}	P_{138}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_6
in point	P_2	P_2	P_{138}	P_2

${\bf Line~6~intersects}$

 $0: P_0 = (1,0,0,0)$

26: $P_{83} = (1, 1, 0, 1)$

 $27: P_{94} = (4, 2, 0, 1)$ $28: P_{103} = (5, 3, 0, 1)$ $29: P_{113} = (7, 4, 0, 1)$

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_2	P_4	P_2

 $60: P_{327} = (6,7,3,1)$

 $86: P_{559} = (6, 4, 7, 1)$ $87: P_{573} = (4, 6, 7, 1)$ $88: P_{581} = (4, 7, 7, 1)$

The surface has 89 points: The points on the surface are:

	120 () / / /	02.
$1: P_1 = (0, 1, 0, 0)$	$31: P_{125} = (3, 6, 0, 1)$	$61: P_{329} = (0,0,4,1)$
$2: P_2 = (0,0,1,0)$	$32: P_{132} = (2,7,0,1)$	$62: P_{338} = (1, 1, 4, 1)$
$3: P_3 = (0,0,0,1)$	$33: P_{138} = (0,0,1,1)$	$63: P_{350} = (5, 2, 4, 1)$
$4: P_4 = (1, 1, 1, 1)$	$34: P_{146} = (0, 1, 1, 1)$	$64: P_{363} = (2, 4, 4, 1)$
$5: P_5 = (1, 1, 0, 0)$	$35: P_{147} = (2, 1, 1, 1)$	$65: P_{371} = (2, 5, 4, 1)$
$6: P_6 = (2, 1, 0, 0)$	$36: P_{148} = (3, 1, 1, 1)$	$66: P_{382} = (5, 6, 4, 1)$
$7: P_7 = (3, 1, 0, 0)$	$37: P_{149} = (4, 1, 1, 1)$	$67: P_{386} = (1, 7, 4, 1)$
$8: P_8 = (4, 1, 0, 0)$	$38: P_{150} = (5, 1, 1, 1)$	$68: P_{393} = (0, 0, 5, 1)$
$9: P_9 = (5, 1, 0, 0)$	$39: P_{151} = (6, 1, 1, 1)$	$69: P_{402} = (1, 1, 5, 1)$
$10: P_{10} = (6, 1, 0, 0)$	$40: P_{152} = (7, 1, 1, 1)$	$70: P_{412} = (3, 2, 5, 1)$
$11: P_{11} = (7, 1, 0, 0)$	$41: P_{153} = (0, 2, 1, 1)$	$71: P_{418} = (1, 3, 5, 1)$
$12: P_{12} = (1, 0, 1, 0)$	$42: P_{161} = (0, 3, 1, 1)$	$72: P_{428} = (3, 4, 5, 1)$
$13: P_{13} = (2,0,1,0)$	$43: P_{169} = (0, 4, 1, 1)$	$73: P_{440} = (7, 5, 5, 1)$
$14: P_{14} = (3, 0, 1, 0)$	$44: P_{177} = (0, 5, 1, 1)$	$74: P_{448} = (7, 6, 5, 1)$
$15: P_{15} = (4, 0, 1, 0)$	$45: P_{185} = (0, 6, 1, 1)$	$75: P_{457} = (0,0,6,1)$
$16: P_{16} = (5, 0, 1, 0)$	$46: P_{193} = (0, 7, 1, 1)$	$76: P_{466} = (1, 1, 6, 1)$
$17: P_{17} = (6, 0, 1, 0)$	$47: P_{201} = (0, 0, 2, 1)$	$77: P_{483} = (2, 3, 6, 1)$
$18: P_{18} = (7, 0, 1, 0)$	$48: P_{210} = (1, 1, 2, 1)$	$78: P_{494} = (5, 4, 6, 1)$
$19: P_{20} = (1, 1, 1, 0)$	$49: P_{224} = (7, 2, 2, 1)$	$P_{498} = (1, 5, 6, 1)$
$20: P_{29} = (2, 2, 1, 0)$	$50: P_{232} = (7, 3, 2, 1)$	$80: P_{507} = (2, 6, 6, 1)$
$21: P_{38} = (3, 3, 1, 0)$	$51: P_{234} = (1, 4, 2, 1)$	$81: P_{518} = (5, 7, 6, 1)$
$22: P_{47} = (4, 4, 1, 0)$	$52: P_{244} = (3, 5, 2, 1)$	$82: P_{521} = (0, 0, 7, 1)$
$23: P_{56} = (5, 5, 1, 0)$	$53: P_{260} = (3, 7, 2, 1)$	$83: P_{530} = (1, 1, 7, 1)$
$24: P_{65} = (6, 6, 1, 0)$	$54: P_{265} = (0, 0, 3, 1)$	$84: P_{538} = (1, 2, 7, 1)$
$25: P_{74} = (7, 7, 1, 0)$	$55: P_{274} = (1, 1, 3, 1)$	$85: P_{551} = (6, 3, 7, 1)$
20. 214 (1,1,1,0)	55 1 2/4 (1,1,0,1)	00 1 201 (0,0,1,1)

56: $P_{287} = (6, 2, 3, 1)$ 57: $P_{293} = (4, 3, 3, 1)$

 $58: P_{309} = (4, 5, 3, 1)$ $59: P_{314} = (1, 6, 3, 1)$

 $30: P_{120} = (6, 5, 0, 1)$