In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.decomposition import PCA
df = pd.read_csv("/Users/parth/Desktop/FeynnLabs/PROJECT_RESEARCH_2/mcdonalds.csv")
```

In [2]:

df.head()

Out[2]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	disgus
0	No	Yes	No	Yes	No	Yes	Yes	No	Yes	No	
1	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	
2	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	
3	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No	No	
4	No	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	
4											•

In [3]:

df.tail()

Out[3]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	dis
1448	No	Yes	No	Yes	Yes	No	No	No	Yes	No	
1449	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Yes	
1450	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	No	
1451	Yes	Yes	No	No	No	Yes	Yes	Yes	No	Yes	
1452	No	Yes	No	Yes	Yes	No	No	No	Yes	No	
4											•

In [4]:

```
df.describe()
```

Out[4]:

Age							
count	1453.000000						
mean	44.604955						
std	14.221178						
min	18.000000						
25%	33.000000						
50%	45.000000						
75%	57.000000						
max	71.000000						

In [5]:

df.isnull().sum()

Out[5]:

yummy	0
convenient	0
spicy	0
fattening	0
greasy	0
fast	0
cheap	0
tasty	0
expensive	0
healthy	0
disgusting	0
Like	0
Age	0
VisitFrequency	0
Gender	0
dtype: int64	

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1453 entries, 0 to 1452
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	yummy	1453 non-null	object
1	convenient	1453 non-null	object
2	spicy	1453 non-null	object
3	fattening	1453 non-null	object
4	greasy	1453 non-null	object
5	fast	1453 non-null	object
6	cheap	1453 non-null	object
7	tasty	1453 non-null	object
8	expensive	1453 non-null	object
9	healthy	1453 non-null	object
10	disgusting	1453 non-null	object
11	Like	1453 non-null	object
12	Age	1453 non-null	int64
13	VisitFrequency	1453 non-null	object
14	Gender	1453 non-null	object
d+vn	$as \cdot int6/(1)$ oh	iect(1/1)	

dtypes: int64(1), object(14)
memory usage: 170.4+ KB

In [7]:

sns.heatmap(df.isnull()) # checking for null values in our dataset

Out[7]:

<AxesSubplot:>


```
In [8]:
```

```
df.columns
```

Out[8]:

In [9]:

```
data=df.iloc[:,1:11]
data.head()
```

Out[9]:

	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	disgusting
0	Yes	No	Yes	No	Yes	Yes	No	Yes	No	No
1	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No
3	Yes	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes
4	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	No

In [10]:

```
# printing max and min age of the customer
print(df['Age'].max())
print(df['Age'].min())
```

71 18

In [11]:

```
# checking the number of male and female who visits the shop
print(df['Gender'].value_counts())
arr = df['Gender'].value_counts()
```

Female 788 Male 665

Name: Gender, dtype: int64

In []:

In [12]:

df['Gender'].value_counts().plot(kind='bar') # here female count is more than male count

Out[12]:

<AxesSubplot:>

In [13]:

checking the count of healthy and non healthy food (here yes represents healthy food)
healthy_nonhealthy=df['healthy'].value_counts()
healthy_nonhealthy

Out[13]:

No 1164 Yes 289

Name: healthy, dtype: int64

In [14]:

```
# Encoding technique
# we had only one numerical feature in our dataset
df.replace({'tasty':{'Yes':1,'No':0}},inplace=True)
df.replace({'expensive':{'Yes':1,'No':0}},inplace=True)
df.replace({'healthy':{'Yes':1,'No':0}},inplace=True)
df.replace({'disgusting':{'Yes':1,'No':0}},inplace=True)
df.replace({'Like':{'I love it!+5':1,'I hate it!-5':2}},inplace=True)
df.replace({'Gender':{'Male':1,'Female':0}},inplace=True)
df.replace({'yummy':{'Yes':1,'No':0}},inplace=True)
df.replace({'convenient':{'Yes':1,'No':0}},inplace=True)
df.replace({'spicy':{'Yes':1,'No':0}},inplace=True)
df.replace({'fattening':{'Yes':1,'No':0}},inplace=True)
df.replace({'greasy':{'Yes':1,'No':0}},inplace=True)
df.replace({'fast':{'Yes':1,'No':0}},inplace=True)
df.replace({'cheap':{'Yes':1,'No':0}},inplace=True)
df.replace({'VisitFrequency':{'Every three months':1,'Never':0,'Once a month':2,'Once a yea
```

In [15]:

```
#lets print our dataset again
df.head() # returns the top 5 rows of the datset
```

Out[15]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	disgus
0	0	1	0	1	0	1	1	0	1	0	
1	1	1	0	1	1	1	1	1	1	0	
2	0	1	1	1	1	1	0	1	1	1	
3	1	1	0	1	1	1	1	1	0	0	
4	0	1	0	1	1	1	1	0	0	1	
4											•

In [16]:

```
# Checking the correlation of the dataset
correlation=df.corr()
f,ax=plt.subplots(figsize=(20,10))
sns.heatmap(correlation,annot=True)
```

Out[16]:

<AxesSubplot:>

K-Means

In [17]:

```
# kmeans algorithm
# elbow method (how many clusters u should have)
# elbow method graph ( for selecting the no of clusters )
from sklearn.cluster import KMeans
scores=[]
range_values=range(1,20)
for i in range_values:
    kmean = KMeans(n_clusters=i)
    kmean.fit(df)
    scores.append(kmean.inertia_)

plt.plot(scores,'bx-')
```

C:\Users\HP\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: User Warning: KMeans is known to have a memory leak on Windows with MKL, when the re are less chunks than available threads. You can avoid it by setting the e nvironment variable OMP_NUM_THREADS=6.

warnings.warn(

Out[17]:

[<matplotlib.lines.Line2D at 0x1771f7787c0>]

In [18]:

```
from sklearn.cluster import KMeans
kmeans = KMeans(3)
kmeans.fit(df)
label=kmeans.labels_
```

In [19]:

```
kmeans.cluster_centers_.shape
```

Out[19]:

(3, 15)

In [20]:

```
cluster_centers=pd.DataFrame(data=kmeans.cluster_centers_,columns=[df.columns]) # creati
cluster_centers
```

Out[20]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive
0	0.424132	0.890311	0.140768	0.819013	0.425960	0.914077	0.628885	0.561243	0.294333
1	0.751121	0.926009	0.051570	0.914798	0.692825	0.912556	0.625561	0.771300	0.365471
2	0.513043	0.910870	0.078261	0.878261	0.484783	0.871739	0.536957	0.619565	0.426087
4									•

In [21]:

```
# so now we have 3 group of customer
label.shape # label will be assigned to our dataset(0-3)
(1453,)
# how the labels are assigned
L=kmeans.fit_predict(df) # use scaled data here
L
```

Out[21]:

array([1, 2, 1, ..., 1, 2, 0])

In [22]:

```
# here we are going to add the label to the original data(that is grouping(0-7))
final_data=pd.concat([df,pd.DataFrame({"cluster":label})],axis=1)
final_data
```

Out[22]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	dis
0	0	1	0	1	0	1	1	0	1	0	
1	1	1	0	1	1	1	1	1	1	0	
2	0	1	1	1	1	1	0	1	1	1	
3	1	1	0	1	1	1	1	1	0	0	
4	0	1	0	1	1	1	1	0	0	1	
1448	0	1	0	1	1	0	0	0	1	0	
1449	1	1	0	1	0	0	1	1	0	1	
1450	1	1	0	1	0	1	0	1	1	0	
1451	1	1	0	0	0	1	1	1	0	1	
1452	0	1	0	1	1	0	0	0	1	0	

1453 rows × 16 columns

In [23]:

```
# checkig the count of customer in each cluster
final_data['cluster'].value_counts()
```

Out[23]:

0 547

460446

Name: cluster, dtype: int64

In [24]:

```
# principal component analysis ( this is used to reduce the dimentionality)
# dimentionality reduction
pca=PCA(n_components=2)
principal_comp=pca.fit_transform(final_data)
pca_dataframe=pd.DataFrame(data=principal_comp,columns=['pca1','pca2'])
pca_dataframe
```

Out[24]:

	pca1	pca2
0	-16.536175	3.872855
1	-6.352080	-0.866155
2	-17.435612	-0.085852
3	-24.268771	-3.902616
4	-4.351941	-0.817373
1448	-2.330602	-0.791649
1449	8.704878	-1.256194
1450	-7.375731	-2.066779
1451	3.667746	-2.667732
1452	14.470179	4.832753

1453 rows × 2 columns

In [25]:

```
pca_df=pd.concat([pca_dataframe,pd.DataFrame({'cluster':label})],axis=1)
pca_df

#ploting the scatterplot for the pca_df data(3 different clusters)

plt.figure(figsize=(10,10))
pca_df_plot=sns.scatterplot(x='pca1',y='pca2',hue="cluster",data=pca_df,palette=['red','gre plt.show()
```


In [26]:

final_data

Out[26]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	dis
0	0	1	0	1	0	1	1	0	1	0	
1	1	1	0	1	1	1	1	1	1	0	
2	0	1	1	1	1	1	0	1	1	1	
3	1	1	0	1	1	1	1	1	0	0	
4	0	1	0	1	1	1	1	0	0	1	
1448	0	1	0	1	1	0	0	0	1	0	
1449	1	1	0	1	0	0	1	1	0	1	
1450	1	1	0	1	0	1	0	1	1	0	
1451	1	1	0	0	0	1	1	1	0	1	
1452	0	1	0	1	1	0	0	0	1	0	

1453 rows × 16 columns

localhost:8889/notebooks/LINEARR REGRESSION/Study_Task_1.ipynb#

In [27]:

```
km = KMeans(n_clusters=5).fit(final_data)

cluster_map = pd.DataFrame()
cluster_map['final_data_index'] = final_data.index.values
cluster_map['cluster'] = km.labels_

#Once the final_dataFrame is available is quite easy to filter, For example, to filter all
cluster_map[cluster_map.cluster == 3]
```

Out[27]:

	final_data_index	cluster
0	0	3
2	2	3
3	3	3
12	12	3
14	14	3
1397	1397	3
1409	1409	3
1418	1418	3
1437	1437	3
1439	1439	3

226 rows × 2 columns

In [28]:

```
df['categories'] = kmeans.labels_
```

In [29]:

df

Out[29]:

	yummy	convenient	spicy	fattening	greasy	fast	cheap	tasty	expensive	healthy	dis
0	0	1	0	1	0	1	1	0	1	0	
1	1	1	0	1	1	1	1	1	1	0	
2	0	1	1	1	1	1	0	1	1	1	
3	1	1	0	1	1	1	1	1	0	0	
4	0	1	0	1	1	1	1	0	0	1	
1448	0	1	0	1	1	0	0	0	1	0	
1449	1	1	0	1	0	0	1	1	0	1	
1450	1	1	0	1	0	1	0	1	1	0	
1451	1	1	0	0	0	1	1	1	0	1	
1452	0	1	0	1	1	0	0	0	1	0	

1453 rows × 16 columns

In [30]:

```
segmenter_list_females = [len(df[(df['Gender']==0) & (df['categories']==0)]),len(df[(df['Gender']==0) & (df['categories']==0)]),len(df[(df['Gender']==1) & (df['categories']==0)]),len(df['Gender']==1) & (df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']==0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories']=0)]),len(df['categories'
```

•

In [31]:

```
plt.bar(categories, segmenter_list_females, color='green')
plt.bar(categories, segmenter_list_males, bottom=segmenter_list_females, color='red')
plt.show()
```

