CALCULUS 1

Version: 2024.2.0

Objective: This is the first course in calculus and analytic geometry. It covers basic notions of functions given in Cartesian coordinate system as well as in Polar coordinate system including techniques of curve sketching, basic techniques of differentiation and integration with variety applications, and partial derivatives and applications in the domain of functions of several variables.

Contents: Limits and continuity. Derivatives and differentials of functions of single variable and multi-variables, integrals of functions of single variable.

1. GENERAL INFORMATION

Course title: Calculus 1
Course ID: MI1111E
Course Units: 4(3-2-0-8)

Lecture: 45 hoursSeminars: 30 hours

Previous module: Prerequisites: -

Companion module: None

2. DESCRIPTION

An introduction to the basic ideas and techniques of differential and integral calculus. Topics include differentiation and integration of functions of one variable, differentiation of functions of several variables, partial derivatives, Lagrange's multipliers.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
[1]	[2]	[3]
M1	Master the basic knowledge of calculus 1 and apply in practice to solve related exercises	
M1.1	Master the basic concepts of analysis 1 such as: limit of sequences, limit of functions, continuous functions, higher order derivatives and differentials, extremals of single- variable functions and multi-variable functions; antiderivative and integral of single-variable functions	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U
M2.2	Identify some practical problems that can be solved by using tools of calculus	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

- [1] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2023). *Toán học cao cấp tập 2: Giải tích*. NXB Giáo dục.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2023). *Bài tập Toán học cao cấp tập 2: Giải tích*. NXB Giáo dục.

References

- [1] Trần Bình (1998). Giải tích I: Phép tính vi phân và tích phân của hàm một biến. NXB Khoa học và kỹ thuật, Hà Nội.
- [2] Trần Bình (2005). Giải tích II và III: Phép tính vi phân và tích phân của hàm nhiều biến. NXB Khoa học và kỹ thuật, Hà Nội.
- [3] Đoàn Công Định, Trịnh Ngọc Hải, Phạm Thị Hoài, Trần Ngọc Thăng, Nguyễn Thị Toàn (2021). *Bài giảng Giải tích 1*. NXB Bách Khoa Hà Nội.
- [4] James Stewart (2016). Calculus: Concepts and Contexts, eighth edition. Thomson, Brooks/Cole Publishing Company

5. ASSESSMENT

Components	Evaluation method	Description	Assessed expected outcomes	Proportion
[1]	[2]	[3]	[4]	[5]
A1. The process mark				50%
A1.1. Attendance and performance *	Attendance and performance in class		M2.3	10%
A1.2. Continuous assessment	Continuous assessment test	Online multiple choice tests	M1.1, M1.2	10%
A1.3. Midterm	Midterm exam	Multiple	M1.1,	30%

exam	Content: From the 1st week to the 7th week	choice and constructed response test	M1.2, M2.1, M2.2, M2.3	
A2. Final exam	Final exam	Essay	M1.1, M1.2, M2.1, M2.2, M2.3	50%

^{*} Attendance and performance in class are evaluated according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Differentiation of functions of single variable 1.1. Introduction 1.2. Functions: definition, basic notions, composite functions, inverse functions 1.3. Essential functions: inverse trigonometric functions; hyperbolic functions; the concept of elementary functions 1.4. Number sequences: definition, basic notions. Limits law: squeeze theorem; monotone convergence theorem; Cauchy's criterion	M1.1 M1.2 M2.1 M2.3	Lecturer: - Self- introduce - Introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to the content and progress of the subject	A1.1, A1.2, A1.3, A2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
2	1.5. Limit of functions: two equivalent definitions; algebraic limit theorems and properties. Limits of composite functions; one-sided limits; limits at infinity; infinite limits 1.6. Infinites and infinitesimals; comparison of infinites and infinitesimals; theorems 1.7. Continuity; one-sided continuity; uniform continuity and properties. Points of discontinuity: definition and classification. Piecewise continuity		Lecturer: - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson	A1.1, A1.2, A1.3, A2
3	1.8. Derivatives and differentials - Basic concepts - One-sided derivatives, relationship between derivative and one-sided derivatives, relationship between differentiability and continuity - Derivatives of composite functions. Derivatives of inverse functions - Differentials: definition, geometric interpretation, approximation by differentials. Relationship between functions having derivatives and differentiable. Differentials of composite functions and invariance property of first order differentials		- Master the basic concepts and apply to solve exercises as well as some practical models connected with the subject	A1.1, A1.2, A1.3, A2
4	 Higher order derivatives and differentials 1.9. Mean value theorems and applications Fermat's, Rolle's, Lagrange's and Cauchy's theorems 			A1.1, A1.2, A1.3, A2
5	 Taylor and Maclaurin expansions L'Hospital's rules for eliminating indeterminate forms, application of finite expansion in finding limits Monotone functions and properties Convex functions Local extrema: Local minimum, local maximum Newton's method 			A1.1, A1.2, A1.3, A2
6	1.10. Curves sketching - Functions $y=f(x)$	M1.1 M1.2		A1.1, A1.2, A1.3,

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	- Curves defined by parametric	M2.1		A2
	equations	M2.2		
	- Curves given in polar coordinates	M2.3		
7	Chapter 2: Integration of functions	M1.1		A1.1,
	of single variable	M1.2		A1.2,
	2.1. Antiderivatives	M2.1		A1.3,
	- Basic concepts	M2.3		A2
	- Integration of rational functions			
8	- Trigonometric integrals; Integration	M1.1		A1.1,
	of irrational functions. Simple	M1.2		A1.2,
	examples of Euler substitutions	M2.1		A2
	2.2. Definite Integrals	M2.2		
	- Definition, geometric and mechanical interpretations	M2.3		
9		M1.1	_	A 1 1
9	- Criteria for integrability. Properties of definite integrals	M1.1 M1.2	Lecturer:	A1.1, A1.2,
	- Differentiation with respect to	M1.2 M2.1	- Lecture,	A2
	endpoints, Newton-Leibniz formula	M2.3	exchange	112
	- Techniques of Integration	IVI2.3	questions and answers with	
	2.3. Improper Integrals		students during	
	- Improper integrals of type 1:		the lecture	
	definitions, geometric interpretation,		Student:	
	notions of convergence, divergence,		- Read in	
	the value of improper integrals		advance the	
10	- Improper integrals of type 1:		next lesson	A1.1,
	improper integrals of nonnegative functions, comparison theorems,		- Master the	A1.2,
	absolute convergence, conditional		basic concepts and apply to	A2
	convergence		solve exercises	
	- Improper integrals of type 2:		as well as some	
	definitions, geometric interpretation,		practical	
	notions of convergence, divergence,		models connected with	
	the value of improper integrals, improper integrals of nonnegative		the subject	
	functions, comparison theorems,		ane subject	
	absolute convergence, conditional			
	convergence			
	2.4. Applications of definite integrals			
	- Integration summation diagram and differentiation diagram			
11	- Areas of plane regions, solids of	M1.1		A1.1,
	revolution; volume of solids, arc	M1.2		A1.2,
	length	M2.1		A2

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
		M2.2		
		M2.3		
12	Chapter 3: Functions of Several	M1.1		A1.1,
	Variables	M1.2		A1.2,
	3.1 Basic concepts	M2.1		A2
	- Domain, distance, neighborhood, boundary, closed and open sets, bounded sets	M2.3		
	- Definition of functions of multivariable, geometric interpretation, domain of definition, range			
	- Pointwise limit of functions of multivariable, algebraic limit theorems			
	- Continuity: definition, operations, properties, uniform continuity			
13	3.2. Partial derivatives and total differentials			A1.1, A1.2,
	- Partial derivatives: definition, rules for calculation			A2
	- Total differential: definition, relationship between functions having partial derivatives and differentiable functions, approximation by differentials			
	- Implicit functions: definition, existence theorems and methods for implicit differentiation			
14	- Higher partial derivatives and differentials: definition, Schwarz' theorem on equality of mixed partials, non-invariance property of higher differentials	M1.1 M1.2 M2.1 M2.2		A1.1, A1.2, A2
	- Taylor expansion	M2.3		
	3.3. Extrema of functions of multivariables			
	- Definition			
	- Rules for finding extrema			
15	- Constrained extrema			A1.1,
	- Maxima and minima			A1.2, A2
16	Review	v session		•

ty of Mathematics and Informatics

7. RULES OF THE MODULE