

Model-free Prediction: Monte-Carlo

Christopher Mutschler

Overview

Monte Carlo and TD Methods

Assumptions

We know that the model of the world can be described by an MDP:

$$(S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$$

- We know the (discrete) state and action spaces, i.e., S and A.
- We can interact with the world (with some policy π).
- We receive experience samples from the environment in the form

$$(S_t, A_t, R_t, S_{t+1}) = (s, a, r, s').$$

Monte Carlo and TD Methods

- Idea:
 - Use the samples to <u>estimate</u> the true V- and Q-value functions for the policy π :

$$V^{\pi}(s)$$

 $Q^{\pi}(s,a)$

• Use value function estimations for model-free prediction:

$$V(s) \approx V^{\pi}(s)$$

 $Q(s,a) \approx Q^{\pi}(s,a).$

- Two policy evaluation approaches:
 - Monte Carlo (MC) Learning
 - Temporal Difference (TD) Learning
 - variants in between, i.e., $TD(\lambda)$

Monte Carlo and TD Methods

- Idea:
 - Use the samples to <u>estimate</u> the true V- and Q-value functions for the policy π

Given Policy

Randomly select state and follow policy &

Compute discounted return for each state

Average the values on each state

https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511

- MC Policy Evaluation
 - MC methods learn from episodes of experience under policy π :

$$S_t, a_t, r_t, S_{t+1}, \dots, S_{T-1}, a_{T-1}, r_{T-1}, S_T \sim \pi$$

- To evaluate a state $s \in S$ we keep track of the rewards received from that state onwards.
- First-Visit Monte-Carlo Policy Evaluation:
 - First time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$,
 - Increment total return $S(s) \leftarrow S(s) + G_t$,
 - Value is estimated by mean return: V(s) = S(s)/N(s)
 - Our estimation V(s) will come close to $V^{\pi}(s)$ as $N(s) \to \infty$. (considering the law of large numbers)

- MC Policy Evaluation
 - MC methods learn from episodes of experience under policy π :

$$S_t, a_t, r_t, S_{t+1}, \dots, S_{T-1}, a_{T-1}, r_{T-1}, S_T \sim \pi$$

- To evaluate a state $s \in S$ we keep track of the rewards received from that state onwards.
- Every-Visit Monte-Carlo Policy Evaluation:
 - Every time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$,
 - Increment total return $S(s) \leftarrow S(s) + G_t$,
 - Value is estimated by mean return: V(s) = S(s)/N(s)
 - Our estimation V(s) will come close to $V^{\pi}(s)$ as $N(s) \to \infty$. (considering the law of large numbers)

MC Policy Evaluation

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Input: a policy \pi to be evaluated
Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S}
Returns(s) \leftarrow an empty list, for all s \in \mathcal{S}

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
G \leftarrow 0

Loop for each step of episode, t = T-1, T-2, \ldots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Example: Blackjack. MDP:

- States:
 - Current sum (12-21) [₱ models an automatic twist if sum of cards < 12]
 - Dealer's showing card (ace-10)
 - Do I have a usable ace (yes or no)
- Actions:
 - Stick: stop receiving cards (and terminate)
 - Twist: take another card (no replacement)
- Rewards:
 - Stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
 - Twist:
 - -1 if sum of cards > 21 (and terminate), 0 otherwise

source: shutterstock.com

Example: Blackjack

- π : stick if sum of cards \geq 20 (i.e., 20 or 21), otherwise twist.
- No discounting.
- Cards are dealt with replacement (i.e., counting cards does not help)

Backup Diagrams compared to DP:

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

- MC Policy Evaluation
- **Incremental Mean**: the mean $\mu_1, \mu_2, ...$ of a sequence $x_1, x_2, ...$ can be computed incrementally:

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1) \mu_{k-1})$$

$$= \frac{1}{k} (x_k + k u_{k-1} - u_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

- MC Policy Evaluation
- **Incremental Monte-Carlo Updates**

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} (x_{k} + (k-1) \mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$

- Update *V*(*s*) incrementally after each episode.
- For each state s with actual return G:

$$N(s) \leftarrow N(s) + 1$$
 (just increment visit counter)
$$V(s) \leftarrow V(s) + \frac{1}{N(s)} \left(G - V(s)\right) \text{ (update a bit \rightarrow reduce error)}$$

 In non-stationary problems, it can be useful to track a running mean, i.e., forget old episodes:

$$V(s) \leftarrow V(s) + \alpha (G - V(s)).$$

 $NewEstimate \leftarrow OldEstimate + StepSize [Target - OldEstimate]$