Kelompok 23:

• Nerisa Afiani (5025221064)

• Nadya Saraswati Putri (5025221246)

Aryasatya Wiryawan (5025221256)

TUGAS PERTEMUAN 2 KOMPUTASI NUMERIK

1. Dengan metode Grafik, dapatkan akar-akar persamaan:

a.
$$e^x - x - 2 = 0$$

b.
$$10^x = 100 - 2x$$

c. $-0.874x^2 + 1.75x + 2.627$

d. $-2,1+6,21x-3,9x^2+0,667x^3$

e. (1-0.6x)/x

 $f. \quad 9,36-21,963x+16,2965x^2-3,70377x^3$

- 2. Sekarang lengkapi jawaban no.1 di atas dengan metode Tabulasi.
 - a. $e^x x 2 = 0$

x1:

x	f(x)	х	f(x)	x	f(x)
-1	-0,632120559	-1,8	-0,034701112	-1,84	-0,001182574
-1,1	-0,567128916	-1,81	-0,026345863	-1,841	-0,000341312
-1,2	-0,498805788	-1,82	-0,017974249	-1,842	0,000500109
-1,3	-0,427468207	-1,83	-0,009586432	-1,843	0,001341688
-1,4	-0,353403036	-1,84	-0,001182574	-1,844	0,002183425
-1,5	-0,27686984	-1,85	0,007237166	-1,845	0,003025321
-1,6	-0,198103482	-1,86	0,01567263	-1,846	0,003867375
-1,7	-0,117316476	-1,87	0,024123662	-1,847	0,004709586
-1,8	-0,034701112	-1,88	0,032590106	-1,848	0,005551955
-1,9	0,049568619	-1,89	0,041071809	-1,849	0,006394482
-2	0,135335283	-1,9	0,049568619	-1,85	0,007237166

x2:

X	f(x)	x	f(x)	х	f(x)
1	-0,281718172	1,1	-0,095833976	1,14	-0,013231635
1,1	-0,095833976	1,11	-0,075641606	1,141	-0,011103303
1,2	0,120116923	1,12	-0,055145797	1,142	-0,00897184
1,3	0,369296668	1,13	-0,0343435	1,143	-0,006837245
1,4	0,655199967	1,14	-0,013231635	1,144	-0,004699514
1,5	0,98168907	1,15	0,00819291	1,145	-0,002558643
1,6	1,353032424	1,16	0,029933276	1,146	-0,00041463
1,7	1,773947392	1,17	0,051992639	1,147	0,001732529
1,8	2,249647464	1,18	0,074374203	1,148	0,003882836
1,9	2,785894442	1,19	0,097081207	1,149	0,006036295
2	3,389056099	1,2	0,120116923	1,15	0,00819291

b. $10^x = 100 - 2x$

x1:

X	f(x)	x	f(x)	x	f(x)
1	88	1,9	16,76717653	1,98	0,540741398
1,1	85,21074588	1,91	14,89694838	1,981	0,318592871
1,2	81,75106808	1,92	12,98362289	1,982	0,095936848
1,3	77,44737685	1,93	11,02619618	1,983	-0,127227838
1,4	72,08113568	1,94	9,023641004	1,984	-0,350902362
1,5	65,3772234	1,95	6,974906187	1,985	-0,575087899
1,6	56,98928294	1,96	4,878916064	1,986	-0,799785626
1,7	46,48127664	1,97	2,73456992	1,987	-1,024996725
1,8	33,30426555	1,98	0,540741398	1,988	-1,250722378
1,9	16,76717653	1,99	-1,703722096	1,989	-1,476963772
2	-4	2	-4	1,99	-1,703722096

c. $-0.874x^2 + 1.75x + 2.627$

x1:

X	f(x)	x	f(x)	x	f(x)
-0,5	1,5335	-1	0,003	-1	0,003
-0,6	1,26236	-1,01	-0,0320674	-1,011	-0,035583754
-0,7	0,97374	-1,02	-0,0673096	-1,012	-0,039101856
-0,8	0,66764	-1,03	-0,1027266	-1,013	-0,042621706
-0,9	0,34406	-1,04	-0,1383184	-1,014	-0,046143304
-1	0,003	-1,05	-0,174085	-1,015	-0,04966665
-1,1	-0,35554	-1,06	-0,2100264	-1,016	-0,053191744
-1,2	-0,73156	-1,07	-0,2461426	-1,017	-0,056718586
-1,3	-1,12506	-1,08	-0,2824336	-1,018	-0,060247176
-1,4	-1,53604	-1,09	-0,3188994	-1,019	-0,063777514
-1,5	-1,9645	-1,1	-0,35554	-1,02	-0,0673096

x2:

x	f(x)	х	f(x)	x	f(x)
2,5	1,5395	3	0,011	3	0,011
2,6	1,26876	3,01	-0,0240274	3,001	0,007505126
2,7	0,98054	3,02	-0,0592296	3,002	0,004008504
2,8	0,67484	3,03	-0,0946066	3,003	0,000510134
2,9	0,35166	3,04	-0,1301584	3,004	-0,002989984
3	0,011	3,05	-0,165885	3,005	-0,00649185
3,1	-0,34714	3,06	-0,2017864	3,006	-0,009995464
3,2	-0,72276	3,07	-0,2378626	3,007	-0,013500826
3,3	-1,11586	3,08	-0,2741136	3,008	-0,017007936
3,4	-1,52644	3,09	-0,3105394	3,009	-0,020516794
3,5	-1 , 9545	3,1	-0,34714	3,01	-0,0240274

d. $-2,1+6,21x-3,9x^2+0,667x^3$

x1:

X	f(x)	x	f(x)	х	f(x)
0,1	-1,517333	0,4	-0,197312	0,46	-0,003716888
0,2	-1,008664	0,41	-0,163519693	0,461	-0,000674455
0,3	-0,569991	0,42	-0,130343304	0,462	0,002362022
0,4	-0,197312	0,43	-0,097778831	0,463	0,005392549
0,5	0,113375	0,44	-0,065822272	0,464	0,008417128
0,6	0,366072	0,45	-0,034469625	0,465	0,011435765
0,7	0,564781	0,46	-0,003716888	0,466	0,014448462
0,8	0,713504	0,47	0,026439941	0,467	0,017455225
0,9	0,816243	0,48	0,056004864	0,468	0,020456056
1	0,877	0,49	0,084981883	0,469	0,02345096
		0,5	0,113375	0,47	0,026439941

x2:

X	f(x)	X	f(x)	X	f(x)
3	-0,561	3,3	-0,108021	3,34	-0,013217432
3,1	-0,457403	3,31	-0,085141103	3,341	-0,010734292
3,2	-0,307744	3,32	-0,061716544	3,342	-0,008245582
3,3	-0,108021	3,33	-0,037743321	3,343	-0,005751297
3,4	0,145768	3,34	-0,013217432	3,344	-0,003251433
3,5	0,457625	3,35	0,011865125	3,345	-0,000745987
3,6	0,831552	3,36	0,037508352	3,346	0,001765046
3,7	1,271551	3,37	0,063716251	3,347	0,00428167
3,8	1,781624	3,38	0,090492824	3,348	0,006803888
3,9	2,365773	3,39	0,117842073	3,349	0,009331705
4	3,028	3,4	0,145768	3,35	0,011865125

e. (1-0.6x)/x

x1:

X		f(x)	х	f(x)	x	f(x)
	1	0,4	1,6	0,025	1,66	0,002409639
	1,1	0,309090909	1,61	0,021118012	1,661	0,00204696
	1,2	0,233333333	1,62	0,017283951	1,662	0,001684717
	1,3	0,169230769	1,63	0,013496933	1,663	0,00132291
	1,4	0,114285714	1,64	0,009756098	1,664	0,000961538
	1,5	0,066666667	1,65	0,006060606	1,665	0,000600601
	1,6	0,025	1,66	0,002409639	1,666	0,000240096
	1,7	-0,011764706	1,67	-0,001197605	1,667	-0,000119976
	1,8	-0,04444444	1,68	-0,004761905	1,668	-0,000479616
	1,9	-0,073684211	1,69	-0,008284024	1,669	-0,000838826
	2	-0,1	1,7	-0,011764706	1,67	-0,001197605

f. $9,36-21,963x+16,2965x^2-3,70377x^3$

x1:

X	f(x)	X	f(x)	X	f(x)
0,5	1,98965375	0,9	0,09341667	0,99	-0,004934677
0,6	1,24892568	0,91	0,077747987	0,991	-0,00551551
0,7	0,70079189	0,92	0,063316346	0,992	-0,006085772
0,8	0,32302976	0,93	0,050099524	0,993	-0,006645485
0,9	0,09341667	0,94	0,038075298	0,994	-0,007194673
1	-0,01027	0,95	0,027221446	0,995	-0,007733357
1,1	-0,01025287	0,96	0,017515745	0,996	-0,00826156
1,2	0,07124544	0,97	0,008935973	0,997	-0,008779303
1,3	0,21200231	0,98	0,001459906	0,998	-0,00928661
1,4	0,38979512	0,99	-0,004934677	0,999	-0,009783501
1,5	0,58240125	0,1	7,32296123	0,1	7,32296123

x2:

X	f(x)	x	f(x)	x	f(x)
0,5	1,98965375	1,1	-0,01025287	1,11	-0,005403019
0,6	1,24892568	1,11	-0,005403019	1,111	-0,004874075
0,7	0,70079189	1,12	0,000239421	1,112	-0,004337227
0,8	0,32302976	1,13	0,006652228	1,113	-0,003792498
0,9	0,09341667	1,14	0,013813179	1,114	-0,003239909
1	-0,01027	1,15	0,021700051	1,115	-0,002679483
1,1	-0,01025287	1,16	0,030290622	1,116	-0,002111243
1,2	0,07124544	1,17	0,039562669	1,117	-0,00153521
1,3	0,21200231	1,18	0,049493969	1,118	-0,000951407
1,4	0,38979512	1,19	0,060062301	1,119	-0,000359856
1,5	0,58240125	1,2	0,07124544	1,12	0,000239421

x3:

x	f(x)	x	f(x)	x	f(x)
2	0,98984	2,2	0,47871704	2,29	0,046672461
2,1	0,80465103	2,21	0,437527094	2,291	0,041069459
2,2	0,47871704	2,22	0,394685249	2,291	0,041069459
2,3	-0,01018459	2,23	0,350169282	2,293	0,029808474
2,4	-0,68427648	2,24	0,303956972	2,294	0,024150447
2,5	-1,56578125	2,25	0,256026094	2,295	0,018474035
2,6	-2,67692152	2,26	0,206354426	2,296	0,012779214
2,7	-4,03991991	2,27	0,154919747	2,297	0,007065964
2,8	-5,67699904	2,28	0,101699833	2,298	0,001334261
2,9	-7,61038153	2,29	0,046672461	2,299	-0,004415916
3	-9,86229	2,3	-0,01018459	2,3	-0,01018459

3. Dengan metode Bolzano, dapatkan akar-akar persamaan:

a.
$$x^3 - 3x + 1 = 0$$
 (x0=1,5; s/d 3D)

Jawab:

Dengan syarat akurasi hingga 3 digit

$$x0 = 1.5 = a$$

Asumsikan b = 2 sehingga interval awal [1.5,2]

 $f(a).f(b) = -0.125 \times 3$ (minus) sehingga f(a).f(b) < 0 maka setidaknya satu akar berada di antara a dan b.

$$c = (a+b)/2$$
,

jika f(a).f(c) > 0 maka nilai a = c pada iterasi berikutnya

jika f(a).f(c) < 0 maka nilai b = c pada iterasi berikutnya

Iterasi 1

Akar antara 1.5 dan 2

$$c = (1.5+2)/2 = 1.75$$

$$f(c)=f(1.75)=1.753-3\cdot1.75+1=1.1094>0$$

maka pada iterasi berikutnya b = c(pada iterasi 1) = 1.75

n	а	f(a)	ь	f(b)	$c = \frac{a+b}{2}$	f(c)	Update
1	1.5	-0.125	2	3	1.75	1.1094	b = c
2	1.5	-0.125	1.75	1.1094	1.625	0.416	b = c
3	1.5	-0.125	1.625	0.416	1.5625	0.1272	b = c
4	1.5	-0.125	1.5625	0.1272	1.5312	-0.0034	a = c
5	1.5312	-0.0034	1.5625	0.1272	1.5469	0.0608	b = c
6	1.5312	-0.0034	1.5469	0.0608	1.5391	0.0284	b = c
7	1.5312	-0.0034	1.5391	0.0284	1.5352	0.0124	b = c
8	1.5312	-0.0034	1.5352	0.0124	1.5332	0.0045	b = c
9	1.5312	-0.0034	1.5332	0.0045	1.5322	0.0006	b = c
10	1.5312	-0.0034	1.5322	0.0006	1.5317	-0.0014	a = c
11	1.5317	-0.0014	1.5322	0.0006	1.532	-0.0004	a = c

Perkiraan akar persamaan $x^3-3x+1=0$ menggunakan metode Bolzano adalah 1.532 (Setelah 11 iterasi) sesuai ketentuan 3 digit akhir

b.
$$\cos x = 3x$$
 (x0=0,3; s/d 5D)

Jawab:

Dengan syarat akurasi hingga 5 digit

$$\cos x = 3x$$

$$\cos x - 3x = 0$$

$$x0 = 0.3 = a$$

Asumsikan b = 1 sehingga interval awal [0.3,1]

f(a).f(b) = 0.05534 x -2.4597 (minus) sehingga f(a).f(b) < 0 maka setidaknya satu akar berada di antara a dan b.

$$c = (a+b)/2$$

jika f(a).f(c) > 0 maka nilai a = c pada iterasi berikutnya

jika f(a).f(c) < 0 maka nilai b = c pada iterasi berikutnya

Iterasi 1

Akar antara 0.3 dan 1

$$c = (0.3+1)/2 = 0.65$$

$$f(c)=f(0.65)=\cos(0.65)-3\cdot0.65=-1.15392<0$$

$$f(a) = 0.05534$$

maka f(a).f(c) < 0maka pada iterasi berikutnya b = 0.65

n	а	f(a)	b	f(b)	$c=\frac{a+b}{2}$	f(c)	Update
1	0.3	0.05534	1	-2.4597	0.65	-1.15392	b = c
2	0.3	0.05534	0.65	-1.15392	0.475	-0.53571	b = c
3	0.3	0.05534	0.475	-0.53571	0.3875	-0.23664	b = c
4	0.3	0.05534	0.3875	-0.23664	0.34375	-0.08975	b = c
5	0.3	0.05534	0.34375	-0.08975	0.32188	-0.01698	b = c
6	0.3	0.05534	0.32188	-0.01698	0.31094	0.01923	a = c
7	0.31094	0.01923	0.32188	-0.01698	0.31641	0.00114	a = c
8	0.31641	0.00114	0.32188	-0.01698	0.31914	-0.00792	b = c
9	0.31641	0.00114	0.31914	-0.00792	0.31777	-0.00339	b = c
10	0.31641	0.00114	0.31777	-0.00339	0.31709	-0.00112	b = c
11	0.31641	0.00114	0.31709	-0.00112	0.31675	0.00001	a = c
12	0.31675	0.00001	0.31709	-0.00112	0.31692	-0.00056	b = c
13	0.31675	0.00001	0.31692	-0.00056	0.31683	-0.00027	b = c
14	0.31675	0.00001	0.31683	-0.00027	0.31679	-0.00013	b = c
15	0.31675	0.00001	0.31679	-0.00013	0.31677	-0.00006	b = c
16	0.31675	0.00001	0.31677	-0.00006	0.31676	-0.00003	b = c
17	0.31675	0.00001	0.31676	-0.00003	0.31675	0	b = c
18	0.31675	0.00001	0.31675	0	0.31675	0	a = c

Perkiraan akar persamaan $\cos x = 3x$ menggunakan metode Bolzano adalah 0.31675 (Setelah 18 iterasi) sesuai ketentuan 5 digit akhir

c.
$$10^x = 100 - 2x$$
 (x0=2; s/d 4D)

Jawab:

Dengan syarat akurasi hingga 4 digit

$$10^x = 100 - 2x$$

$$2x + 10^x - 100 = 0$$

$$x0 = 2 = a$$

Asumsikan b = 3 sehingga interval awal [2,3]

 $f(a).f(b) = 4 \times 906$ (positif) sehingga f(a).f(b) > 0 maka tidak ada solusi karena interval yang salah. Jika interval tidak dimulai dari x0 = 2 akan tetapi dimulai dari x0 = 1 maka terdapat solusi

x	0	1	2
f(x)	-99	-88	4

pada interval [1,2] Disini pada f(1) dan f(2) terjadi perubahan tanda sehingga setidaknya satu akar berada di antara f(1) dan f(2).

n	а	f(a)	ь	f(b)	$c = \frac{a+b}{2}$	f(c)	Update
1	1	-88	2	4	1.5	-65.3772	a = c
2	1.5	-65.3772	2	4	1.75	-40.2659	a = c
3	1.75	-40.2659	2	4	1.875	-21.2606	a = c
4	1.875	-21.2606	2	4	1.9375	-9.5286	a = c
5	1.9375	-9.5286	2	4	1.9688	-3.0053	a = c
6	1.9688	-3.0053	2	4	1.9844	0.4349	b = c
7	1.9688	-3.0053	1.9844	0.4349	1.9766	-1.3005	a = c
8	1.9766	-1.3005	1.9844	0.4349	1.9805	-0.4367	a = c
9	1.9805	-0.4367	1.9844	0.4349	1.9824	-0.0019	a = c
10	1.9824	-0.0019	1.9844	0.4349	1.9834	0.2163	b = c
11	1.9824	-0.0019	1.9834	0.2163	1.9829	0.1072	b = c
12	1.9824	-0.0019	1.9829	0.1072	1.9827	0.0526	b = c
13	1.9824	-0.0019	1.9827	0.0526	1.9825	0.0254	b = c
14	1.9824	-0.0019	1.9825	0.0254	1.9825	0.0118	b = c
15	1.9824	-0.0019	1.9825	0.0118	1.9825	0.005	b = c
16	1.9824	-0.0019	1.9825	0.005	1.9824	0.0016	b = c
17	1.9824	-0.0019	1.9824	0.0016	1.9824	-0.0001	a = c
18	1.9824	-0.0001	1.9824	0.0016	1.9824	0.0007	b = c
19	1.9824	-0.0001	1.9824	0.0007	1.9824	0.0003	b = c
20	1.9824	-0.0001	1.9824	0.0003	1.9824	0.0001	b = c
21	1.9824	-0.0001	1.9824	0.0001	1.9824	0	a = c

Perkiraan akar persamaan $10^x = 100 - 2x$ menggunakan metode Bolzano adalah 1.9824 (Setelah 21 iterasi) sesuai ketentuan 4 digit akhir

d.
$$\ln x = 1 + 1/x^2$$
 (x0=3; s/d 4D)

$$\ln x = 1 + 1/x^2$$

$$\ln x = (x^2 + 1) / x^2$$

$$\therefore \ln(x) - \frac{x^2 + 1}{x^2} = 0$$

Dengan syarat akurasi hingga 4 digit

$$x0 = 3 = a$$

Asumsikan b = 4 sehingga interval awal [3,4]

 $f(a).f(b) = -0.0125 \times 0.3238$ (minus) sehingga f(a).f(b) < 0 maka setidaknya satu akar berada di antara a dan b.

$$c = (a+b)/2$$
,

jika f(a).f(c) > 0 maka nilai a = c pada iterasi berikutnya

jika f(a).f(c) < 0 maka nilai b = c pada iterasi berikutnya

Iterasi 1

Akar antara 3 dan 4

$$c = (3+4)/2 = 3.5$$

$$f(c) = f(3.5) = \ln(3.5) - \frac{3.5^2 + 1}{3.5^2} = 0.1711 > 0$$

$$f(a) = -0.0125$$

$$\max f(a).f(c) < 0$$

maka pada iterasi berikutnya b = c = 3.5

n	а	f(a)	Ь	f(b)	$c = \frac{a+b}{2}$	f(c)	Update
1	3	-0.0125	4	0.3238	3.5	0.1711	b = c
2	3	-0.0125	3.5	0.1711	3.25	0.084	b = c
3	3	-0.0125	3.25	0.084	3.125	0.037	b = c
4	3	-0.0125	3.125	0.037	3.0625	0.0126	b = c
5	3	-0.0125	3.0625	0.0126	3.0312	0.0001	b = c
6	3	-0.0125	3.0312	0.0001	3.0156	-0.0062	a = c
7	3.0156	-0.0062	3.0312	0.0001	3.0234	-0.003	a = c
8	3.0234	-0.003	3.0312	0.0001	3.0273	-0.0014	a = c
9	3.0273	-0.0014	3.0312	0.0001	3.0293	-0.0006	a = c
10	3.0293	-0.0006	3.0312	0.0001	3.0303	-0.0002	a = c
11	3.0303	-0.0002	3.0312	0.0001	3.0308	0	a = c
12	3.0308	0	3.0312	0.0001	3.031	0	b = c

Perkiraan akar persamaan $\ln x = 1 + 1/x^2$ menggunakan metode Bolzano adalah 3.031 (Setelah 21 iterasi) sesuai ketentuan 4 digit akhir

e.
$$e^x - \ln x = 20$$
 (x0=3; s/d 5D)

$$e^x - \ln x = 20$$

$$e^x - \ln x - 20 = 0$$

Dengan syarat akurasi hingga 4 digit

$$x0 = 3 = a$$

Asumsikan b = 4 sehingga interval awal [3,4]

 $f(a).f(b) = -1.01308 \times 33.21186 = (minus)$ sehingga f(a).f(b) < 0 maka setidaknya satu akar berada di antara a dan b.

$$c = (a+b)/2$$
,

jika f(a).f(c) > 0 maka nilai a = c pada iterasi berikutnya

jika f(a).f(c) < 0 maka nilai b = c pada iterasi berikutnya

Iterasi 1

Akar antara 3 dan 4

$$c = (3+4)/2 = 3.5$$

$$f(c)$$
=: $f(3.5) = e^{3.5} - \ln(3.5) - 20 = 11.86269 > 0$

$$f(a) = -1.01308$$

$$\max f(a).f(c) < 0$$

maka pada iterasi berikutnya b = c = 3.5

n	а	f(a)	b	f(b)	$c=\frac{a+b}{2}$	f(c)	Update
1	3	-1.01308	4	33.21186	3.5	11.86269	b = c
2	3	-1.01308	3.5	11.86269	3.25	4.61168	b = c
3	3	-1.01308	3.25	4.61168	3.125	1.62046	b = c
4	3	-1.01308	3.125	1.62046	3.0625	0.26171	b = c
5	3	-1.01308	3.0625	0.26171	3.03125	-0.38585	a = c
6	3.03125	-0.38585	3.0625	0.26171	3.04688	-0.06465	a = c
7	3.04688	-0.06465	3.0625	0.26171	3.05469	0.09788	b = c
8	3.04688	-0.06465	3.05469	0.09788	3.05078	0.01645	b = c
9	3.04688	-0.06465	3.05078	0.01645	3.04883	-0.02414	a = c
10	3.04883	-0.02414	3.05078	0.01645	3.0498	-0.00386	a = c
11	3.0498	-0.00386	3.05078	0.01645	3.05029	0.00629	b = c
12	3.0498	-0.00386	3.05029	0.00629	3.05005	0.00122	b = c
13	3.0498	-0.00386	3.05005	0.00122	3.04993	-0.00132	a = c
14	3.04993	-0.00132	3.05005	0.00122	3.04999	-0.00005	a = c
15	3.04999	-0.00005	3.05005	0.00122	3.05002	0.00058	b = c
16	3.04999	-0.00005	3.05002	0.00058	3.05	0.00027	b = c
17	3.04999	-0.00005	3.05	0.00027	3.05	0.00011	b = c
18	3.04999	-0.00005	3.05	0.00011	3.04999	0.00003	b = c
19	3.04999	-0.00005	3.04999	0.00003	3.04999	-0.00001	a = c
20	3.04999	-0.00001	3.04999	0.00003	3.04999	0.00001	b = c
21	3.04999	-0.00001	3.04999	0.00001	3.04999	0	a = c

Perkiraan akar persamaan $e^x - \ln x = 20$ menggunakan metode Bolzano adalah 3.04999 (Setelah 21 iterasi) sesuai ketentuan 5 digit akhir

f.
$$10^x - 1$$
 (x0=0; s/d 4D)

Dengan syarat akurasi hingga 4 digit

$$x0 = 0 = a$$

Asumsikan b = 1 sehingga interval awal [0,1]

 $f(a).f(b) = 0 \times 1 = 0$ sehingga f(a).f(b) = 0 maka akar persamaan $10^x - 1 = 0$ adalah 0.

4. Dengan metode Regula Falsi, dapatkan akar-akar persamaan:

a.
$$\sin x = 5x - 2$$
 (x0=0,4; s/d 4D)
 $\sin(x)-5x+2=0$

Dengan syarat akurasi hingga 4 digit

Iterasi 1

$$x0 = 0.4$$

asumsikan x1 = 1

maka didapatkan

$$x_2 = 0.4 - 0.3894 \cdot \frac{1 - 0.4}{-2.1585 - 0.3894}$$

$$x_2 = 0.4917$$

$$f(x_2) = f(0.4917) = \sin(0.4917) - 5 \cdot 0.4917 + 2 = 0.0136 > 0$$

f(x0)*f(x2) > 0 sehingga iterasi berikutnya x0 = x2 dari iterasi sebelumnya yaitu iterasi 1

ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	x_2	$f(x_2)$	Update
1	0.4	0.3894	1	-2.1585	0.4917	0.0136	$x_0 = x_2$
2	0.4917	0.0136	1	-2.1585	0.4949	0.0005	$x_0 = x_2$
3	0.4949	0.0005	1	-2.1585	0.495	0	$x_0 = x_2$

Pada iterasi ketiga f(x2) = 0 sehingga perkiraan akar persamaan Sin x = 5x - 2 menggunakan metode Regula Falsi adalah 0.495 (Setelah 3 iterasi)

b.
$$e^x = 2x + 21$$
 (x0=3; s/d 4D)

Dengan syarat akurasi hingga 4 digit

Iterasi 1

x0 = 3

asumsi x1 = 4

maka didapatkan:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 3 - (-6.9145) \cdot \frac{4 - 3}{25.5982 - (-6.9145)}$$

$$x_2 = 3.2127$$

$$f(x_2) = f(3.2127) = e^{3.2127} - 2 \cdot 3.2127 - 21 = -2.58 < 0$$

f(x0)*f(x2) > 0 sehingga iterasi berikutnya x0 = x2 dari iterasi sebelumnya yaitu iterasi 1 ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	x ₂	$f(x_2)$	Update
1	3	-6.9145	4	25.5982	3.2127	-2.58	$x_0 = x_2$
2	3.2127	-2.58	4	25.5982	3.2848	-0.867	$x_0 = x_2$
3	3.2848	-0.867	4	25.5982	3.3082	-0.2808	$x_0 = x_2$
4	3.3082	-0.2808	4	25.5982	3.3157	-0.0898	$x_0 = x_2$
5	3.3157	-0.0898	4	25.5982	3.3181	-0.0286	$x_0 = x_2$
6	3.3181	-0.0286	4	25.5982	3.3189	-0.0091	$x_0 = x_2$
7	3.3189	-0.0091	4	25.5982	3.3191	-0.0029	$x_0 = x_2$
8	3.3191	-0.0029	4	25.5982	3.3192	-0.0009	$x_0 = x_2$
9	3.3192	-0.0009	4	25.5982	3.3192	-0.0003	$x_0 = x_2$
10	3.3192	-0.0003	4	25.5982	3.3192	0	$x_0 = x_2$
11	3.3192	0	4	25.5982	3.3192	0	$x_0 = x_2$

Pada iterasi ke-11 f(x2) = 0 sehingga perkiraan akar persamaan $e^x = 2x + 2$ menggunakan metode Regula Falsi adalah 3.3192 (Setelah 11 iterasi)

c.
$$\cos x = 3x$$
 (x0=0,3; s/d 5D)

$$\cos(x)-3x=0$$

Dengan syarat akurasi hingga 5 digit

Iterasi 1

$$x0 = 0.3$$

asumsi x1 = 1

maka didapatkan:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 0.3 - 0.05534 \cdot \frac{1 - 0.3}{-2.4597 - 0.05534}$$

$$x_2 = 0.3154$$

$$f(x_2) = f(0.3154) = \cos(0.3154) - 3 \cdot 0.3154 = 0.00447 > 0$$

f(x0)*f(x2) > 0 sehingga iterasi berikutnya x0 = x2 dari iterasi sebelumnya yaitu iterasi 1 ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	x_2	$f(x_2)$	Update
1	0.3	0.05534	1	-2.4597	0.3154	0.00447	$x_0 = x_2$
2	0.3154	0.00447	1	-2.4597	0.31664	0.00036	$x_0 = x_2$
3	0.31664	0.00036	1	-2.4597	0.31674	0.00003	$x_0 = x_2$
4	0.31674	0.00003	1	-2.4597	0.31675	0	$x_0 = x_2$

Pada iterasi ke-3 f(x2) = 0 sehingga perkiraan akar persamaan Cos x = 3x menggunakan metode Regula Falsi adalah 3.1675 (Setelah 3 iterasi)

d.
$$\ln x = 1 + 1/x^2$$
 (x0=3; s/d 4D)

$$\therefore \ln(x) - \frac{x^2 + 1}{x^2} = 0$$

Dengan syarat akurasi hingga 4 digit

Iterasi 1

$$x0 = 3$$

asumsi x1 = 4

maka didapatkan:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 3 - (-0.0125) \cdot \frac{4 - 3}{0.3238 - (-0.0125)}$$

$$x_2 = 3.0372$$

$$f(x_2) = f(3.0372) = \ln(3.0372) - \frac{3.0372^2 + 1}{3.0372^2} = 0.0025 > 0$$

f(x0)*f(x2) < 0 sehingga iterasi berikutnya x1 = x2 dari iterasi sebelumnya yaitu iterasi 1 ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	x_1	$f(x_1)$	<i>x</i> ₂	$f(x_2)$	Update
1	3	-0.0125	4	0.3238	3.0372	0.0025	$x_1 = x_2$
2	3	-0.0125	3.0372	0.0025	3.0309	0	$x_1 = x_2$

Pada iterasi ke-2 f(x2) = 0 sehingga perkiraan akar persamaan $\ln x = 1 + 1/x^2$ menggunakan metode Regula Falsi adalah 3.0309 (Setelah 2 iterasi)

e.
$$x^x = 10$$
 (x0=2,5; s/d 4D)

Dengan syarat akurasi hingga 4 digit

Iterasi 1

$$x0 = 2.5$$

asumsi x1 = 3

maka didapatkan:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 2.5 - (-0.1179) \cdot \frac{3 - 2.5}{17 - (-0.1179)}$$

$$x_2 = 2.5034$$

$$f(x_2) = f(2.5034) = 2.5034^{2.5034} - 10 = -0.0524 < 0$$

f(x0)*f(x2) > 0 sehingga iterasi berikutnya x0 = x2 (dari iterasi sebelumnya yaitu iterasi 1)

ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	x_1	$f(x_1)$	x_2	$f(x_2)$	Update
1	2.5	-0.1179	3	17	2.5034	-0.0524	$x_0 = x_2$
2	2.5034	-0.0524	3	17	2.505	-0.0233	$x_0 = x_2$
3	2.505	-0.0233	3	17	2.5056	-0.0103	$x_0 = x_2$
4	2.5056	-0.0103	3	17	2.5059	-0.0046	$x_0 = x_2$
5	2.5059	-0.0046	3	17	2.5061	-0.002	$x_0 = x_2$
6	2.5061	-0.002	3	17	2.5061	-0.0009	$x_0 = x_2$
7	2.5061	-0.0009	3	17	2.5062	-0.0004	$x_0 = x_2$
8	2.5062	-0.0004	3	17	2.5062	-0.0002	$x_0 = x_2$
9	2.5062	-0.0002	3	17	2.5062	0	$x_0 = x_2$
10	2.5062	0	3	17	2.5062	0	$x_0 = x_2$

Pada iterasi ke-10 f(x2) = 0 sehingga perkiraan akar persamaan $x^x = 10$ menggunakan metode Regula Falsi adalah 2.5062 (Setelah 10 iterasi)

f.
$$x^3 - 100$$
 (x0=4; s/d 3D)

Dengan syarat akurasi hingga 3 digit

Iterasi 1

$$x0 = 4$$

asumsi x1 = 5

maka didapatkan:

$$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_2 = 4 - (-36) \cdot \frac{5 - 4}{25 - (-36)}$$

$$x_2 = 4.59$$

$$f(x_2) = f(4.59) = 4.59^3 - 100 = -3.287 < 0$$

f(x0)*f(x2) > 0 sehingga iterasi berikutnya x0 = x2 dari iterasi sebelumnya yaitu iterasi 1 ulangi sampai f(x2) = 0

n	x_0	$f(x_0)$	x_1	$f(x_1)$	<i>x</i> ₂	$f(x_2)$	Update
1	4	-36	5	25	4.59	-3.287	$x_0 = x_2$
2	4.59	-3.287	5	25	4.638	-0.245	$x_0 = x_2$
3	4.638	-0.245	5	25	4.641	-0.018	$x_0 = x_2$
4	4.641	-0.018	5	25	4.642	-0.001	$x_0 = x_2$
5	4.642	-0.001	5	25	4.642	0	$x_0 = x_2$

Pada iterasi ke-5 f(x2) = 0 sehingga perkiraan akar persamaan $x^3 - 100$ menggunakan metode Regula Falsi adalah 4.642 (Setelah 5 iterasi)

5. Buatlah suatu analisa mengenai metode yang memiliki tingkat akurasi & presisi yang paling tinggi dalam menyelesaikan persamaan berikut:

$$f(x) = (1 - 0.6x) / x$$

perhitungan dibuat sampai 3 iterasi dengan x0 = 2.

Jawaban:

• Metode Grafik

• Metode Tabulasi

X	f(x)	х	f(x)	x	f(x)
1	0,4	1,6	0,025	1,66	0,002409639
1,1	0,309090909	1,61	0,021118012	1,661	0,00204696
1,2	0,233333333	1,62	0,017283951	1,662	0,001684717
1,3	0,169230769	1,63	0,013496933	1,663	0,00132291
1,4	0,114285714	1,64	0,009756098	1,664	0,000961538
1,5	0,066666667	1,65	0,006060606	1,665	0,000600601
1,6	0,025	1,66	0,002409639	1,666	0,000240096
1,7	-0,011764706	1,67	-0,001197605	1,667	-0,000119976
1,8	-0,044444444	1,68	-0,004761905	1,668	-0,000479616
1,9	-0,073684211	1,69	-0,008284024	1,669	-0,000838826
2	-0,1	1,7	-0,011764706	1,67	-0,001197605

Metode Bolzano

$$x_0 = 2$$
; $x_1 = 3$

$$f(x_0) = f(2) = \frac{1 - 0.6 \times 2}{2} = \frac{1 - 1.2}{2} = -0.1$$

$$f(x_1) = f(3) = \frac{1 - 0.6 \times 3}{3} = \frac{1 - 1.8}{3} = -0.27$$

$$x_t = x_1 - \frac{x_0 + x_1}{2} = \frac{2+3}{2} = 2.5$$

$$f(x_t) = f(2.5) = \frac{1 - 0.5 \times 2.5}{2.5} = \frac{1 - 1.5}{2.5} = -0.2$$

Iterasi	x_0	x_1	x_t	$f(x_0)$	$f(x_1)$	$f(x_t)$
1	2	3	2.5	-0.1	-0.27	-0.2
2	2	2.5	2.25	-0.1	-0.2	-0.16
3	2.25	2.5	2.38	-0.16	-0.2	-0.18

• Metode Regula Falsi

$$x_0 = 2$$
; $x_1 = 3$

$$f(x_0) = f(2) = \frac{1 - 0.6 \times 2}{2} = \frac{1 - 1.2}{2} = -0.1$$

$$f(x_1) = f(3) = \frac{1 - 0.6 \times 3}{3} = \frac{1 - 1.8}{3} = -0.27$$

$$x_t = x_1 - \frac{f(x_1) \times (x_1 - x_0)}{f(x_1) - f(x_0)}$$

$$x_t = 3 - \frac{-0.27 \times (3 - 2)}{-0.27 - (-0.1)}$$

$$x_t \approx 2.26$$

$$f(x_t) = \frac{1 - 0.5 \times 2.26}{2.26} \approx -0.03$$

Iterasi	x_0	x_1	x_t	$f(x_0)$	$f(x_1)$	$f(x_t)$
1	2	3	2.26	-0.1	-0.27	-0.03
2	2.26	3	2.26	-0.1	-0.27	-0.03
3	2.26	3	2.26	-0.1	-0.27	-0.03

Analisa : Dalam menyelesaikan persamaan yang menggunakan empat metode: Metode Grafik, Metode Tabulasi, Metode Bolzano, dan Metode Regula Falsi. Dapat diambil kesimpulan bahwa, Metode Bolzano memiliki tingkat akurasi dan presisi yang lebih tinggi dalam menyelesaikan persamaan yang diberikan.