1912343 – Muhammad Adib Akhtar bin Zulkifly

MCTE 4362 Robotic Hardware System

Assignment 3

Autonomous Guided Vehicle (AGV)

&

Autonomous Mobile Robot (AMR)

1- Introduction

- AMR (Autonomous Mobile Robot) and AGV (Automated Guided Vehicle) are both robotic systems used to handle and transport materials in industrial and commercial environments.
- AMRs are mobile robots capable of autonomous navigation and decision making. They use sensors, cameras and other technologies to perceive their surroundings and plan their movements. AMRs are designed to be flexible and adaptable and can be programmed to perform various tasks such as transporting goods, picking and placing goods and inspection.
- In contrast, AGVs are guided vehicles that follow a predetermined path or route. They use sensors and other technologies such as magnetic tape or laser guidance to navigate a specific path. Automated forklifts are typically used for repetitive tasks, such as transporting materials between fixed points in a factory or warehouse.
- Although both AMR and automated forklifts are used for material handling and transportation, they differ in their features and applications. AMRs are more flexible and adaptable and can be used in a variety of settings and applications. Automatic forklifts, on the other hand, are better suited for repetitive work in a static environment. Overall, both AMR and automated forklifts are important tools for improving efficiency and productivity in industrial and commercial environments and are becoming increasingly popular as automation technology advances.

2- History

- AGV
- 1953: Barret Electronics introduced the 1st AGV a tow tractor
- 1959: Kollsman Instrument Corporation developed Transcar AGV
- 1960: A Diecasting company the first company uses AGVs in a commercial application
- 1969: Ernst Dickman developed the 1st laser guided AGVs
- 1973 AGVs are used in automotive industry
- 1998: RMT launches the 1st natural navigation (NoF)

- AMR

- 1984: 1st commercial AMR, HelpMAte introduces by Transition Research Corporation
- 1990: AMR begin to be used in healthcare settings
- 2000s: Advances in sensors and software enable more advanced AMRs
- 2010s: AMR becomes more popular in e-commers and logistic industries
- 2015: 1st autonomous truck for long-distance hauling is introduced by Daimler
- 2018: Amazon introduces autonomous delivery robot, Scout
- 2020: Covid-19 pandemic increases interest in automation, including AGVs and AMRs

3- Application

Field	AGV	AMR
Logistic	Used for transporting	Used for order picking,
	goods or materials within	inventory management and
	facilities or between	transportation tasks in
	facilities	logistics and e-commerce
		settings
Healthcare	Used for transporting	Used for delivery
	material or supplies within	medications, supplies or
	hospitals of other	meals to patient or
	healthcare facilities	transporting lab specimens
Agriculture	Transportation in	Can be used for crop
	agriculture products and	monitoring, harvesting or
	materials such as	transporting materials or
	greenhouse and farm	products

Assembly	Transporting part s or sub-	Used for transporting parts
	assemblies between	or tools to assembly lines
	workstation	to assist assembly task
Hospitality	Can be used to deliver	Can be used for cleaning,
	luggage or other item to	maintenance or room
	guest in hotels or resorts	service tasks in hospitality
		settings

4- Main Components 4.1- Frame design

AGV:

Type	Description	Example
Forkli ft	This type of AGV has a fork-like structure on the front of the vehicle that can lift and transport pallets or other heavy loads.	Counterbalanced AGV Forklift Counterbalanced AGV Forklift
Unit Load	This type of AGV is designed to transport unit loads, such as boxes or totes, from one location to another.	COM MAC SO REF
Tugge r	Tugger-style AGVs are designed to tow or pull other carts or trailers, which can be loaded with materials or products.	

Heavy Load	AGV that are capable to handle large loads for industries such as aviation	
---------------	--	--

AMR

AMK	1	
Type	Description	Example
Box type	This is a simple and common AMR body type. It is typically used indoors where the robot needs to transport useful loads such as goods, parts or tools. The box shape offers plenty of space to store the payload and also allows easy	L'Adilipie
	integration of various	
	sensors and cameras.	
Cylindrical	Usually used in hospitals or restaurants. This body type is used in AMRs that need to move in tight spaces or areas with many obstacles. Thanks to its cylindrical shape, the robot can easily move and avoid obstacles without getting stuck.	

4.2- Drive system

Refer to the ability of the robot to move from 1 location to the next location by any means necessary.

Locomotion	Explanation	
Omni-	Multiple smalls wheel	555 8
directional	or roller arrange at multiple angle that allows movement in any direction. Suitable to be used in crowded spaces indoor environment	
Mecanum wheels	Multiple direction movement due to mounting multiple smaller rollers to the rim of the wheel. Suitable to be used in crowded spaces indoor environment.	
Differential Wheels	The robot contains 2 different motor that allows the robot to turn when either one turns the wheel faster than the other one. Suitable to be used on outside and rough environment.	

4.3- Navigation AGV & AMR

Type	Description	Sensor used
Magnetic	This navigation	1- Magnetic tape sensors
Tape	system uses strips	
Guidance	of magnetic tape	2000
	placed on the floor	
	to guide the AGV	
	or AMR along a	Ia V
	specific route. The	
	robot's sensors	
	detect the tape,	
	allowing it to	
	follow the tape	
	and navigate to its	
	destination.	
Laser	Laser control	1- Laser sensor
Guidance	systems use lasers	2- Reflective tape
	to create a map of	
	the environment of	
	the robot, which is	
	used to navigate to	(a)
	the destination.	Guide
	Lasers can detect	lase nicles
	obstacles and	Ve Ve
	adjust the robot's	
	path to avoid	
	collisions.	
LiDAR	LiDAR (Light	1- Lidar Sensor
Navigation	Detection and	
	Ranging)	
	navigation	
	systems use lasers	
	to create a 3D map	
	of the robot's	
	environment,	Laser triangulation
	which is used to	Laser (Hangulator)
	navigate to the	
	destination.	
	LiDAR can detect	
	obstacles and	
	adjust the robot's	
	path to avoid	
	collisions.	

CLAM	CLAM	1
SLAM	SLAM	1- Camera
Navigation	(Simultaneous	2- LiDAR sensor
	Localization and	3- inertial sensor
	Mapping)	4- odometry sensor
	navigation	
	systems use	
	sensors such as	
	cameras, LiDAR	
	or radar to create a	
	map of the robot's	
	environment that	netvia
	is used to navigate	
	to a destination.	
	SLAM systems	
	can also	
	simultaneously	
	locate the robot on	
	a map, allowing it	
	to navigate	
	autonomously.	

4.4- Data Collection & Transmission

Data collected is based on the sensor used on the AGV and AMR and its application.

Example of data obtained:

- 1. Mapping data: The use of sensor such as camera, IMU and LiDAR helps to maps the environment, knowing the exact location and improve the navigation accuracy of the robot.
- 2. Battery level: Keep on track the power level of the robot before charging and battery health to see the efficiency of the battery and if change of battery needed.
- 3. Materials and stick status: The delivery status of the item from 1 workplace to another to inform the warehouse workers the location and estimated time and distance to arrive.
- 4. Maintenance: Collection of robot performance pattern and can predict when to do maintenance when needed if the performance drop

Data transmission can be done through wired and wireless communication of the robot. Wired connection can be obtained by cable attached to the robot and data can be retrieve instantly but it will make the robot coverage distance lesser and less efficient, Wireless connection can be done through connected through warehouse Wi-Fi, Bluetooth, remote control or other wireless protocols.

4.5- Power Source Management

Most common AGV and AMR are batteries powered robots as they provide high efficiency performance and more flexible distance coverage. Choosing a battery depends on the specification of the usage of the robot. A high duty robot needed a higher power source provider.

Type	Description
Battery	Battery-powered AGVs: These AGVs use rechargeable
	batteries as their power source, and they are widely used
	in various industries, including manufacturing,
	warehousing, and distribution.
	Example of battery used: Lead-acid batteries, Lithium-ion
	batteries and Lithium Iron Phosphate (LiFePO4)
Electric	These AGVs use an electric motor as their power source,
	which is connected to a battery or external power source.
Fuel-cell	These AGVs use hydrogen fuel cells as their power
	source, which generate electricity through a chemical
	reaction between hydrogen and oxygen.
Hybrid	These AGVs use a combination of different power
	sources, such as a battery and an internal combustion
	engine or a fuel cell, to provide power.

Another component of power source management is the charging port or fuel refill area for the robot. The robot will automatically go to the area when reaches certain amount of power level to recharge as this will helps to save time and avoid and error when working.