Ćwiczenia z ANALIZY NUMERYCZNEJ

Lista nr 10

13 grudnia 2023 r.

Zajęcia 19 grudnia 2023 r. Zaliczenie listy **od 5 pkt.**

L10.1. I punkt Niech danę będą parami różne punkty $\mathcal{X} := \{x_0, x_1, \dots, x_N\}$ i funkcja p o własności p(x) > 0 dla $x \in \mathcal{X}$. Udowodnij, że wzór

$$||f|| := \sqrt{\sum_{k=0}^{N} p(x_k) f(x_k)^2}$$

określa normę na zbiorze dyskretnym \mathcal{X} .

L10.2. I punkt Wyznacz funkcję postaci y(x) = (x-1)(2023x+a) - 2024x najlepiej dopasowaną w sensie aproksymacji średniokwadratowej do danych

L10.3. $\fbox{1}$ punkt Dla jakiej stałej a wyrażenie

$$\sum_{k=0}^{r} \frac{e^{2x_k}}{2 + \sin(2023x)} \left[y_k - a \left(\ln(2022x_k^4 + 3) + 4x_k^5 \right) \right]^2$$

przyjmuje najmniejszą możliwą wartość?

L10.4. 1 punkt Wiadomo, że napięcie powierzchniowe cieczy S jest funkcją liniową temperatury T:

$$S = aT + b$$
.

Dla konkretnej cieczy wykonano pomiary S w pewnych temperaturach, otrzymując następujące wyniki:

Wyznacz prawdopodobne wartości stałych a i b.

L10.5. 1 punkt Pomiary (t_k, C_k) $(0 \le k \le N; t_k, C_k > 0)$ pewnej zależnej od czasu wielkości fizycznej C sugerują, że wyraża się ona wzorem

$$C(t) = 5 + \frac{\sin(1977t^4) + 2}{A\cos(2t - 1) + Be^{1 - 2t} + 2023t^2 + 3}.$$

Stosując aproksymację średniokwadratową, wyznacz prawdopodobne wartości stałych A i B.

- **L10.6.** I punkt Punkty (x_k, y_k) (k = 0, 1, ..., r) otrzymano jako wyniki pomiarów. Po ich zaznaczeniu na papierze z siatką półlogarytmiczną¹ okazało się, że leżą one prawie na linii prostej, co sugeruje, iż $y \approx e^{ax+b}$. Zaproponuj prosty sposób wyznaczenia prawdopodobnych wartości parametrów a i b.
- **L10.7.** 1 punkt Poziom wody w Morzu Północnym zależy głównie od tzw. $plywu~M_2$ o okresie ok. 2π i równaniu

$$H(t) = h_0 + a_1 \sin \frac{2\pi t}{12} + a_2 \cos \frac{2\pi t}{12}$$
 (t mierzone w godzinach).

Zrobiono następujące pomiary:

Wykorzystaj aproksymację średniokwadratową do wyznaczenia prawdopodobnych wartości stałych h_0 , a_1 , a_2 .

L10.8. 2 punkty Niech dane będą: $x_0 < x_1 < \ldots < x_N, y_k \in \mathbb{R} \ (0 \le k \le N)$ oraz wielomian $w_n^*(x) := \sum_{k=0}^n A_k^* x^k$, gdzie n < N. Podaj **jawną postać** układu równań, który muszą spełniać współczynniki $A_0^*, A_1^*, \ldots, A_n^*$, aby zachodziło

$$||f - w_n^*||_2 = \min_{w_n \in \Pi_n} ||f - w_n||_2,$$

gdzie f jest taką funkcją, że $f(x_k) = y_k$ dla $k = 0, 1, \dots, N$, natomiast

$$||g||_2 := \sqrt{\sum_{k=0}^{N} (g(x_k))^2}.$$

L10.9. 1 punkt Niech dane będą parami różne liczby x_0, x_1, \ldots, x_N . Niech $y_0, y_1, \ldots, y_N \in \mathbb{R}$. Jakim wzorem wyraża się wielomian $w_N^* \in \Pi_N$, dla którego

$$||f - w_N^*||_2 = \min_{w_N \in \Pi_N} ||f - w_N||_2$$

 $(f \text{ oraz } || \cdot ||_2 \text{ mają znaczenie, jak w zadaniu poprzednim})?$

(-) Paweł Woźny

¹https://en.wikipedia.org/wiki/Semi-log_plot