2.1 Indicar la región de funcionamiento de los transistores MOSFET de los siguientes circuitos:

- A) $V_{GS} = 0V \rightarrow V_{GS} < V_T \rightarrow corte$
- **B)** Como $V_G = V_D \rightarrow V_{GS} = V_{DS} \rightarrow V_{DS} > V_{GS} V_T \rightarrow$ saturación siempre **C)** $V_G = V_D \rightarrow V_{GS} = V_{DS} \rightarrow$ se cumple siempre que $V_{DS} < V_{GS} + V_T$, con $V_{DS} < 0$, $V_{GS} < 0$ (es un PMOS). Por tanto la zona es saturación
- **D)** $V_{GS} = 5V$. Suponemos saturación: $I_{DS} = 0.5(5-3)^2 = 2mA \rightarrow V_{DS} = 5-(2x2) = 1V$. Comprobamos saturación: V_{DS} > V_{GS} - V_T: 1V > 5 - 3 → no lo cumple → zona óhmica o lineal

3.5 Dado el circuito de la figura:

Transistor:

Sat: $I_{DS} = K (V_{GS} - V_T)^2$

Óhmica: $I_{DS} = 2K (V_{GS} - V_T)V_{DS}$

$$V_T = 2 V$$

 $K = 1 \text{ mA/V}^2$

- [A] Calcula la tensión en el punto A
- [B] Calcule el punto de trabajo Q (V_{GS}, I_{DS}, V_{DS})
- [C] Recalcule el valor de la resistencia R4 para situar el punto de trabajo del circuito del apartado A en el límite entre saturación y zona óhmica
 - A) Como $I_G = 0$, divisor resistivo: $V_A = 10V \times 4k / (6k+4k) = 4V$ B) $V_G = V_D$, pues no hay corriente en R3. $V_G = 10 (4 / (6 + 4)) = 4V$. $V_S = 0V$. $V_{GS} = 4V$. Suponemos saturación: $I_D = (4 - 2)^2 = 4$ mA. En la malla DS: $V_D = 10 - I_D = 6$ V Comprobemos la saturación: V_{DS} > V_{GS} - V_T = 6 > 4 - 2 → correcto
 - C) Límite con zona óhmica: $V_{DS} = V_{GS} V_T$: $V_{DS} = 4 2 = 2V$. En la malla de salida: $10 = I_D R4 + V_{DS}$

R4 = (10 - 2) / 4 = 2K. Se ha empleado la I_D de saturación porque estamos en el límite de las 2 zonas.

5.6 Sabiendo que la tensión de entrada (V_{IN}) es de 10 V para ambos transistores, indique cuál de las siguientes afirmaciones es **CIERTA** con respecto a la tensión de salida (V_{OUT}).

Nota: En zona óhmica utilice la expresión $I_{DS} = 2K(V_{GS} - V_T) V_{DS}$, y en zona de saturación $I_{DS} = K(V_{GS} - V_T)^2$.

- [A] Ambos transistores están cortados, por lo que $V_{OUT} \approx 0.025V$ (por corrientes de fuga).
- [B] Ambos transistores conducen, por lo que V_{OUT} ≈ 0.025 V.
- [C] En este circuito, los transistores forman una AND cableada por lo que V_{OUT} ≈ 10 V (un "1" lógico).
- [D] No es aconsejable realizar la conexión indicada, el valor de la salida queda indeterminado.

SOLUCIÓN:

 R_{ON1} = R_{ON2} = 1 / (2 * 0.5 (10-2)) = 0.125K. La tensión de salida corresponderá a un divisor resistivo con 25K en la rama superior y (0.125K / 0.125K) en la rama inferior: V_{OUT} = 10V * (0.0625K / (0.0625 + 25) = 0.025V

- 5.7 Dado el interruptor de la figura, con una señal de control Vi que es una onda cuadrada variando entre 0 y V_{DD}, se pregunta lo siguiente:
 - [A] Considerando el transistor como una resistencia variable controlada por voltaje, calcular su resistencia cuando está cerrado para que el valor de la tensión en sus extremos sea 0.01 V.
 - [B] Si la V_T del transistor es de 2 V, encontrar el valor de K del transistor. Para ello considerar que en la zona óhmica (o también denominada zona lineal) el valor de la corriente I_{DS} puede aproximarse por la siguiente expresión:

$$I_{SD} \approx K [2 (V_{GS}+V_T) V_{DS}].$$

SOLUCIÓN:

Cuando Vi = $10V \rightarrow V_{GS} = 0V \rightarrow PMOS \text{ cortado } \rightarrow Vo = 0V$

A) Cuando Vi = 0V \rightarrow V_{GS} = -10V < -V_T \rightarrow PMOS = R(on) Considerando el divisor resistivo formado por R_(on) y R_L, Vo = 10V (R_L / R_L + R_(on)) = 9.99V De ahí despejamos R_(on) = 0.0001k

B)
$$R_{(on)} \approx \left| 1 / (2K(V_{GS} + V_T)) \right| = \left| 1 / (2K(-10 + 2)) \right| = 0.91 \rightarrow K = \left| 1 / (2 * R_{(on)}(-10 + 2)) \right| = 1 / (2 * 0.0001 * 8) = 625 \text{mA/V}^2$$

Ojo con las tensiones del PMOS, son negativas y hay que tomar el valor absoluto en la expresión de $R_{(\text{on})}$.

5.8 Diseñar un inversor NMOS con resistencia de pull-up R_D que cumpla los siguientes requisitos:

- Potencia estática consumida en estado de salida bajo = 0.10 mW
- $V_{OI} = 0.5 \text{ V}$
- $\bullet \qquad V_{OH} = V_{DD} = 5 \ V$
- Transistor: V_T = 1 V

Calcular R_D y la K del transistor.

En el nivel bajo de salida, tenemos el divisor resistivo formado por RD y R_(on). $P = I_{DS} * V_{DD} = I_{DS} x 5 \rightarrow I_{DS} = 0.1 \text{mW} / 5 \text{V} = 0.02 \text{ mA}$ es el consumo a nivel bajo $I_{DS} = V_{DD} / (R_{(on)} + R_D) \rightarrow R_{(on)} + R_D = 5 \text{V} / 0.02 \text{mA} = 250 \text{K}$ $V_{OL} = V_{DD} (R_{(on)} / R_D + R_{(on)}) \rightarrow R_{(on)} = V_{OL} (R_D + R_{(on)}) / V_{DD}$ $R_{(on)} = 0.5 * 250 \text{K} / 5 = 25 \text{K} \rightarrow R_D = 250 - 25 = 225 \text{K}$ K del transistor = $(2 * R_{(on)}(V_I - V_I)) - 1 = (2 * 25 * (5 - 1)) - 1 = 5 \mu \text{A/V}^2$

PROBLEMA:

6.4 A la vista del circuito con transistor de la figura y la gráfica adjunta con la recta de carga, se pide:

Ecuación en zona saturación: $I_D=K (V_{GS}-V_T)^2$ Ecuación en zona óhmica: $I_D=K [2(V_{GS}-V_T)V_{DS}-V_{DS}^2]$ Ecuación en zona ohmica simplificada: $I_D=2K (V_{GS}-V_T) V_{DS}$

1.- **(1p.)** Obtenga e indique el valor de los parámetros V_T y K del MOSFET, a la vista de los datos suministrados en el enunciado y la gráfica adjunta.

A la vista de la gráfica, es evidente que $V_T=3V$ (la tensión límite que corresponde al corte del Mosfet) Tras ello, tomando cualquier curva, por ejemplo la que corresponde a $V_{GS}=7V$, se tendrá: $I_{DS}=1.6mA=K(7V-3V)^2$, de donde despejamos : $K=1.6mA/(4V)^2=0.1mA/V^2$

2.- (1.5p.) ¿Cuál es el valor de la resistencia R_D del circuito? Justifique la respuesta. (Sugerencia: utilice la recta de carga)

Como se puede observar en la gráfica, el valor de la corriente de cortocircuito del MOSFET (La que corresponde con V_{DS}=0V es de 2.5mA, por lo que de la ecuación de la recta de carga se puede calcular R_D:

 $10V=R_D I_D + V_{DS}$ de donde: $R_D = 10V/2.5mA = 4kOhm$.

3.- (3p.) Obténgase analíticamente el valor de la corriente de drenador I_D para una Vent = 6.5V e indique sobre la gráfica el punto de trabajo. ¿En qué zona de trabajo se encuentra el transistor? Justifique la respuesta e indique los valores del punto de trabajo (I_{DQ} , V_{DSQ} y V_{GSQ})

Para V_{GS} =6.5V, se observa en la gráfica que el punto de trabajo se situará aproximadamente en la zona de saturación, por lo que podremos emplear la siguiente ecuación para obtener I_D : I_D = $K \left(V_{GS}$ - $V_T\right)^2 = 0.1 \left(6.5$ - $3\right)^2$ =1.225mA

Por lo que solo nos queda emplear la recta de carga para calcular V_{DS}: $10V=R_D I_D + V_{DS} = 4k \times 1.225mA + V_{DS}$, de donde despejando, se obtiene:

 $V_{DS} = 10 - 4 \times 1.225 = 10-4.9 = 5.1V$ Dado que $V_{DS} > V_{GS} - V_T$: 5.1V > 6.5-3=3.5V se confirma que trabaja en **saturación**.

4.- (3p.) Indique los valores límite de la tensión de entrada Vent que hacen que el transistor de la figura trabaje en conmutación (Vent(corte) y Vent(ohmica)). Justifique la respuesta.

V_{ent(corte)} es igual a VT, evidentemente: V_{ent(corte)} = 3V

Para calcular V_{ent(ohmica)} vamos a suponer que estamos en saturación y llegamos al límite de la zona ohmica:

 $I_D = K (V_{GS}-V_T)^2 = 0.1(V_{ent(ohm)} -3)^2$ 10V=4k x $I_D + V_{DS}$ Ecuación 1: saturación:

Ecuación 2 : recta de carga: Ecuación 3: condición límite sat-ohm: V_{DS}=V_{ent(ohm)}-3

Sustituyendo 3 en 1: $I_D = K (V_{GS}-V_T)^2 = 0.1(V_{DS})^2$ y sustituyendo ahora en 2: tendremos una ecuación de segundo grado:

 $0.4 \text{ V}_{DS}^2 + \text{V}_{DS} - 10 = 0$ con 2 soluciones. La única solución válida es $\text{V}_{DS} = 3.903 \text{V}$, que nos lleva a: $V_{ent(ohm)} = 3.903 + 3 = 6.9 \text{ V}$

5.- (1.5p.) Para una tensión de entrada Vent de 10V y suponiendo funcionamiento en zona óhmica simplificada, ¿Cuál sería el valor de la resistencia equivalente del MOSFET R_(ON) ? Justifique la respuesta.

En zona óhmica simplificada se tiene: $I_D=2K (V_{GS}-V_T) V_{DS}$ $R_{(ON)} = 1 / (2 \times K \times (V_{GS} - V_T)) = 1 / (2 \times 0.1 \times (10 - 3)) = 1 / 1.4 = 0.714 \text{ kOhm} = 714 \text{ Ohm}$

RESUMEN DE RESPUESTAS:

RESONIEN DE RESI GESTAS.		
1	V_{T}	3 (V)
	К	0.1 (mA/V^2)
2	R_D	4 (kOhm)
3	ZONA:	SATURACION .
	I _{DQ}	1.225 (mA)
	V_{DSQ}	5.1 (V)
	V_{GSQ}	6.5 (V)
4	Vent _(CORTE)	3 (V)
	Vent _(OHMICA)	6.9 (V)
5	R _(ON)	714 (Ohm)