Cooperative Coevolutionary Invasive Weed Optimization and its Application to Nash **Equilibrium Search in Electricity Markets**

H. Hajimirsadeghi, A. Ghazanfari, A. Rahimi Kian, C. Lucas Control and Intelligent Processing Center of Excellence University of Tehran, Iran

Philosophy

- Why Weeds?
 - The most robust and troublous plant in agriculture.
 - After thousands of tillage and hand-weeding we still have weeds.
 - After 50 years of herbicides we still have weeds.
- Why Coevolutionary Computing:
 - Task decomposition
 - Parallel computation
 - Simulation of multiagent systems

Cooperative Coevolutionary Algorithm

- General Cooperative Coevolutionray Algorithm
- 1. For population $p_s \in P$, all populations
 - a. Initialize population p_s ;
- 2. For population $p_s \in P$, all populations
 - a. Evaluate population p_s with collaborators;
- 3. For t = 0 until a terminating criterion is met
 - a. For population $p_s \in P$, all populations
 - i. Evolutionary process to make next generation;
 - ii. Evaluate next generation with collaborators;

|4.Next|

Motivation

- IWO improves search capability in Coevolutionary Algorithms
- Coevolutionary framework prepares a suitable basin for parallel computation and simulation of multiagent systems (like markets)

Invasive Weed Optimization Algorithm

Results of CCIWO for Function Optimization

Name	Function	Initial range	Modality
Sphere	$\sum_{i=1}^{n} (x_i^2)$	[-100, 100]	unimodal
Rosenbrock	$\sum_{i=1}^{n} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	[-2.12, 2.12]	unimodal
Rastrigin	$\sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i) + 10)$	[-5.12, 5.12]	multimodal
Ackley	$-20\exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}})-\exp(\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi x_{i}))+20+e$	[-32, 32]	multimodal
Griewank	$1 + \sum_{i=1}^{n} \left(\frac{x_i^2}{4000}\right) - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right)$	[-600, 600]	multimodal

FUNCTION	Mean value		Number of Function Evaluation			
	CCGA	LCGA	CCIWO	CCGA	LCGA	CCIWO
Sphere	1e-08	1e-12	4e-13	600000	600000	326203
Rosenbrock	70	90	0.27	600000	600000	323635
Rastrigin	0.5	0.12	4e-10	600000	600000	324578
Ackley	0.8	8	3e-07	600000	600000	316616
Griewank	0.02	2	2e-12	600000	600000	323789

Transmission-Constrained Electricity Markets

 q_i : bidding strategy for producer i

 $B_1(d_1) = -0.0555d_1^2 + 108.4096d_1$ $B_1(d_1) = -0.0669d_2^2 + 103.8238d_2$ $C_1(q_1) = 0.010526q_1^2 - 2.07807q_1$

 $B_1(d_1) = -0.0637d_3^2 + 108.6709d_3$ $C_1(q_1) = 0.006478q_1^2 + 8.105354q_1$

 $C_1(q_1) = 0.00786q_1^2 + 1.3606q_1$

Nash Equilibrium (NE)

 u_i : strategy for player i π_i : payoff for player i $\{u_1^*,...,u_n^*\}$ is a Nash Equilibrium if:

$\forall i, \forall u_i \qquad \pi_i(u_1^*, ..., u_i^*, u_{i+1}^*, ..., u_n^*) \geq \pi_i(u_1^*, ..., u_i, u_{i+1}^*, ..., u_n^*)$

Results of NE Search with CCIWO

 $\pi_i = \lambda_i^* \ q_i - C_i(q_i)$

where λ_i^* s are the lagrange multipliers of energy balance equality conditions in: $\max_{d} (B_1(d_1) + B_2(d_2) + B_3(d_3))$

S.T. $q_1 - d_1 = 2T_1 - T_3$, $q_2 - d_2 = -T_1 + 2T_3$, $q_3 - d_3 = -T_1 - T_3$, $|T_1| < T_1^{\text{max}}$

