

बल तथा गति के नियम (Force and Laws of Motion)

पिछले अध्याय में हमने एक सरल रेखा में वस्तु की स्थिति, वेग तथा त्वरण के आधार पर वस्तु की गित का वर्णन किया। हमने देखा कि ऐसी गित में कभी एकरूपता होती है तथा कभी नहीं। लेकिन अभी हमने ये चर्चा नहीं की कि गित का कारण क्या होता है। समय के साथ वस्तु की चाल क्यों बदलती है? क्या सभी प्रकार की गितयों का कोई कारण होता है? यदि ऐसा है, तो इस कारण का स्वभाव क्या है? इस अध्याय में हम ऐसी ही सभी जिज्ञासाओं को बुझाएँगे।

सिदयों से गित और इसके कारणों ने वैज्ञानिकों और दार्शनिकों को उलझा रखा था। फ़र्श पर रखी एक गेंद को धीमे से ठोकर लगाने पर वह हमेशा के लिए गितशील नहीं रहती। ऐसी पिरिस्थितियों से यह पता चलता है कि किसी वस्तु की विराम की अवस्था ही उसकी स्वाभाविक अवस्था है। ऐसी मान्यता तब तक बनी रही जब तक कि गैलीलियो और आइजक न्यूटन ने वस्तुओं की गित के बारे में एक पूर्णत: भिन्न संकल्पना प्रस्तुत की।

अपने प्रतिदिन के जीवन में हम देखते हैं कि एक स्थिर वस्तु को गित देने के लिए या गितशील वस्तु को रोकने के लिए हमें कुछ प्रयास करना पड़ता है। सामान्य भाषा में इसके लिए हमें शारीरिक प्रयास करना पड़ता है तथा हम कहते हैं कि किसी वस्तु को गित की अवस्था में लाने के लिए हमें उसे खींचना, धकेलना या ठोकर लगाना पड़ता है। खींचने, धकेलने या ठोकर लगाने की इसी क्रिया पर बल की अवधारणा आधारित है। अब हम बल के विषय में विचार करते हैं। यह क्या है? वास्तव में बल को न तो किसी ने देखा है, न चखा है और न ही महसूस किया है। हालाँकि बल का प्रभाव हम प्राय: देखते या महसूस करते हैं। किसी वस्तु पर बल लगाने पर क्या होता है, यह जानकर हम बल की व्याख्या कर सकते हैं। वस्तु को खींचना, धकेलना या ठोकर लगाना, ये सभी क्रियाएँ वस्तु को गित देने की युक्तियाँ हैं (चित्र 8.1)। हमारे द्वारा किसी तरह का बल लगाने पर ही उनमें गित होती है।

(c) हॉकी स्टिक से गेंद को आगे की ओर ठोकर लगाते हैं।

चित्र 8.1: वस्तुओं को धकेलकर, खींचकर या ठोकर लगाकर उनकी गति की अवस्था को बदला जा सकता है।

पिछली कक्षाओं में अर्जित ज्ञान के आधार पर आप इस बात से परिचित हैं कि किसी वस्तु में वेग का परिमाण बदलने (अर्थात् वस्तु की गति को तेज़ या धीमी करने) के लिए या उसकी गति की दिशा बदलने के लिए बल का प्रयोग होता है। आप यह भी जानते हैं कि किसी बल के प्रयोग द्वारा वस्तु का आकार या आकृति भी बदली जा सकती है (चित्र 8.2)।

चित्र 8.2: (a) बल लगाने पर स्प्रिंग फैलती है।
(b) बल लगाने पर गोलाकार गेंद अंडाकार हो
जाती है।

8.1 संतुलित और असंतुलित बल

चित्र 8.3 में लकड़ी का एक पिंड एक समतल मेज पर रखा है। चित्र में दर्शाए अनुसार, दो धागे X और Y पिंड के विपरीत सिरों से जुड़े हैं। अगर हम किसी बल द्वारा धागे X को खींचते हैं, तो पिंड दाहिनी ओर खिसकना शुरू करता है। उसी प्रकार अगर हम धागे Y को खींचते हैं, तो पिंड बाईं ओर खिसकना शुरू करता है। लेकिन अगर पिंड को दोनों ओर से समान बल द्वारा खींचा जाता है, तो ऐसी दशा में पिंड गित नहीं करता। इस तरह के बलों को संतुलित बल कहते हैं तथा यह गित की अवस्था को परिवर्तित नहीं

करता। अब एक ऐसी अवस्था की कल्पना करें, जिसमें भिन्न परिमाण के दो विपरीत बल पिंड को खींचते हैं। इस अवस्था में, पिंड अधिक बल वाली दिशा में खिसकना शुरू करेगा। इस प्रकार दोनों बल संतुलित नहीं हैं और असंतुलित बल पिंड के खिसकने की दिशा में कार्य करता है। इससे यह पता चलता है कि किसी भी पिंड पर लगने वाला असंतुलित बल उसे गित प्रदान करता है।

चित्र 8.3: लकड़ी के एक पिंड पर लगे दो बल

क्या होता है जब कुछ बच्चे एक बक्से को खुरदरे फ़र्श पर धकेलने की कोशिश करते हैं? यदि वे कम बल के साथ बक्से को धकेलते हैं, तो बक्सा नहीं खिसकता है, क्योंकि घर्षण बल धकेलने की विपरीत दिशा में काम कर रहा है [चित्र 8.4.(a)]। यह घर्षण बल दोनों संपर्क सतहों के बीच में उत्पन्न होता है अर्थात् बक्से के नीचे की सतह तथा फ़र्श की खुरदरी सतह के बीच। यह घर्षण बल, धकेलने में लगे बल को संतुलित करता है और यही कारण है कि बक्सा नहीं खिसकता है। चित्र 8.4(b) में बच्चे बक्से को ज़ोर से धकेलते हैं लेकिन बक्सा फिर भी

चित्र 8.4

98

नहीं खिसकता है। ऐसा इसिलए है क्योंकि घर्षण बल अभी भी धकेलने वाले बल को संतुलित कर रहा है। अगर बच्चे बक्से को ज़्यादा ज़ोर से धकेलते हैं तब धकेलने वाला बल घर्षण बल से अधिक हो जाता है [चित्र 8.4(c)]। यहाँ असंतुलित बल कार्य करता है, इसिलए बक्सा खिसकने लगता है।

जब हम साइकिल चलाते हैं. तो क्या होता है? पैडल चलाना बंद करने पर साइकिल की गति धीमी होने लगती है। ऐसा इसलिए होता है, क्योंकि घर्षण बल गति की दिशा के विपरीत दिशा में कार्य करता है। साइकिल को गति में रखने के लिए हमें फिर से पैडल चलाना पडता है। इस अवस्था में ऐसा प्रतीत होता है कि किसी वस्तु को सतत् गतिशील बनाए रखने के लिए एक असंतुलित बल की आवश्यकता है। तथापि वह बिलकुल गलत है। कोई वस्तु समान वेग के साथ केवल तभी गतिशील रह सकती है, जब उस पर लगने वाला बल (बाह्य तथा घर्षण) संतुलित होते हैं तथा वस्तु पर कोई नेट बाह्य बल कार्य नहीं करता है। अगर किसी वस्तु पर असंतुलित बल लगाया जाता है, तो उसके वेग में परिवर्तन या उसकी दिशा में परिवर्तन होता है। इस प्रकार किसी वस्तु को त्वरित करने के लिए एक असंतलित बल की आवश्यकता होती है और उसकी गति या गति की दिशा में तब तक परिवर्तन होता रहेगा जब तक यह संतुलित बल उस पर कार्य करता रहेगा। तथापि. यह बल हटा लेने पर. वस्त प्राप्त हुए वेग से गतिमान रहेगी।

8.2 गति का प्रथम नियम

वस्तुओं की किसी आनत तल पर गित को देखकर गैलीलियो ने यह निष्कर्ष निकाला कि जब तक कोई बाह्य बल कार्य नहीं करता, वस्तुएँ एक निश्चित गित से चलती हैं। उन्होंने देखा कि काँच की गोली आनत तल पर लुढ़कती है तो उसका वेग बढ़ जाता है [चित्र 8.4(a)]। अगले अध्याय में आप पढ़ेंगे कि गोली असंतुलित गुरुत्वीय बल के कारण नीचे गिरती है

और नीचे पहुँचते-पहुँचते यह एक निश्चित वेग प्राप्त कर लेती है। चित्र 8.5(b) में दर्शाए अनुसार, जब यह काँच की गोली ऊपर की ओर चढती है तब इसका वेग घटता है। चित्र 8.5(c) में दोनों ओर से एक आदर्श घर्षणरहित आनत तल पर एक गोली स्थिर है। गैलीलियो ने तर्क दिया कि जब गोली को बाईं ओर से छोडा जाता है तब यह ढाल पर नीचे की ओर लुढ़केगी तथा दाईं ओर के आनत तल पर उतनी ही ऊँचाई तक जाएगी, जितनी ऊँचाई से उसे छोडा गया था। यदि दोनों ओर के तलों के झुकाव समान हैं तो गोली उतनी ही दूरी चढेगी जितनी दूर तक कि वह लुढकी थी। अगर दाईं ओर के आनत तल के कोण को धीरे-धीरे कम किया जाए तो गोली को मूल ऊँचाई प्राप्त करने के लिए अधिक दुरी तय करनी होगी। अगर इस तल को क्षैतिज कर दिया जाए (अर्थात् ढाल को शून्य कर दिया जाए) तो गोली मूल ऊँचाई प्राप्त करने के लिए क्षैतिज तल पर लगातार चलती ही रहेगी। यहाँ गोली पर लगने वाला असंतुलित बल शून्य है। इस प्रकार यह ज्ञात होता है कि गोली की गति को बदलने के लिए एक असंतुलित बाह्य बल की आवश्यकता होती है लेकिन गोली की गति

चित्र 8.5: (a) किसी काँच की गोली का आनत तल पर नीचे की ओर लुढ़कना; (b) गोली की ऊपर की ओर गति; तथा (c) काँच की गोली की द्वि-आनत तल पर गति

गैलीलियो गैलिली का जन्म 15 फरवरी सन् 1564 में इटली के पीसा शहर में हुआ था। गैलीलियो की बचपन से ही गणित तथा प्राकृतिक दर्शन में रुचि थी। परंतु पिता विनेंजो गैलिली, उन्हें एक चिकित्सक बनाना चाहते

गैलीलियो गैलिली (1564 - 1642)

थे। तदनुसार गैलीलियो ने सन् (1564 - 1642)
1581 में चिकित्सा उपाधि के लिए पीसा
विश्वविद्यालय में नामांकन लिया। इस पाठ्यक्रम
को वे कभी पूरा नहीं कर पाए क्योंकि उनकी
वास्तविक रुचि गणित में थी। सन् 1586 में उन्होंने
अपनी प्रथम वैज्ञानिकी पुस्तक 'द लिटिल बैलेंस'
(ला वैलेंसिटा) लिखी, जिसमें उन्होंने एक तुला
द्वारा पदार्थों के आपेक्षिक घनत्व (अथवा विशिष्ट
गुरुत्व) प्राप्त करने की आर्कोमिडीज़ की विधि
का वर्णन किया। सन् 1589 में उन्होंने अपनी
निबंध श्रेणी 'डी मौट्' में नत समतल के प्रयोग से,
किसी गिरती हुई वस्तु के गिरने की दर कम होने
संबंधी अपने सिद्धांत को प्रस्तुत किया।

सन् 1592 में उन्हें वेनिस गणराज्य के पाडुआ विश्वविद्यालय में गणित के प्रोफेसर पद पर नियुक्त किया गया था। यहाँ भी उन्होंने लगातार गतिज सिद्धांतों पर प्रेक्षण किया। उन्होंने नत समतल तथा लोलक संबंधी अपने अध्ययन द्वारा नियत त्वरण से गतिशील वस्तुओं से संबंधित परिष्कृत नियम प्रतिपादित किया।

गैलीलियो एक कुशल शिल्पकार भी थे। उन्होंने विभिन्न प्रकार के दूरदर्शियों की श्रेणी विकसित की जिनकी प्रकाशिक दक्षता उस समय उपलब्ध दूरदर्शियों से काफी उत्तम थी। सन् 1640 के आस-पास उन्होंने प्रथम लोलक घड़ी की संरचना की। उनके खगोलीय आविष्कारों की एक पुस्तक 'स्टारी मैसेंजर' में गैलीलियो ने चंद्रमा पर पहाड़ों, छोटे-छोटे सितारों से मिलकर बनी आकाशगंगा तथा

बृहस्पित ग्रह के पिरत: चार छोटे पिंडों को घूमते हुए देखने का दावा किया। उन्होंने अपनी पुस्तकों 'डिस्कोर्स ऑन फ्लोटिंग बॉडीज़' तथा 'लेटर्स ऑन दि सन स्पॉट' में सूर्य पर उपस्थित धब्बों के संदर्भ में अपने प्रेक्षणों का रहस्योदघाटन किया।

अपने स्वयं के द्वारा निर्मित दूरदर्शियों के प्रयोग द्वारा शनि तथा शुक्र ग्रह के निरीक्षण से गैलीलियों ने यह तर्क दिया कि सभी ग्रह सूर्य के परित: ही कक्षीय गित करते हैं न कि पृथ्वी के परित: यह विचार उस समय प्रचलित विचारधारा के विपरीत था।

को एकरूप बनाए रखने के लिए किसी नेट बल की आवश्यकता नहीं होती है। वास्तविक अवस्था में शून्य असंतुलित बाह्य बल प्राप्त करना कठिन है। ऐसा गित की विपरीत दिशा में लगने वाले घर्षण बल के कारण होता है। इस प्रकार व्यवहार में गोली कुछ दूर चलने के बाद रुक जाती है। घर्षण के प्रभाव को न्यूनतम करने के लिए चिकनी काँच की गोली तथा चिकने समतल का प्रयोग एवं समतल की सतह पर चिकनाईयुक्त पदार्थ (लुब्रीकेंट) का लेप किया जाता है।

न्यूटन ने बल एवं गित के बारे में गैलीलियों के विचारों को आगे विकसित किया। उन्होंने तीन मौलिक नियमों को प्रस्तुत किया जो किसी वस्तु की गित को विणित करते हैं। इन नियमों को न्यूटन के गित के नियमों के नाम से जाना जाता है। गित का प्रथम नियम इस प्रकार है:

प्रत्येक वस्तु अपनी स्थिर अवस्था या सरल रेखा में एकसमान गति की अवस्था में बनी रहती है जब तक कि उस पर कोई बाहरी बल कार्यरत न हो।

दूसरे शब्दों में, सभी वस्तुएँ अपनी गित की अवस्था में परिवर्तन का विरोध करती हैं। गुणात्मक रूप में किसी वस्तु के विरामावस्था में रहने या समान वेग से गितशील रहने की प्रवृत्ति को जड़त्व कहते हैं। यही कारण है कि गित के पहले नियम को जड़त्व का नियम भी कहते हैं।

किसी मोटर गाडी में यात्रा करते समय होने वाले अनुभवों की व्याख्या जडत्व के नियम द्वारा की जा सकती है। सीट के सापेक्ष हम तब तक विरामावस्था में रहते हैं जब तक कि मोटरगाड़ी को रोकने के लिए ब्रेक न लगाई जाए। ब्रेक लगाए जाने पर गाड़ी के साथ सीट भी विरामावस्था में आ जाती है, परंतु हमारा शरीर जडत्व के कारण गतिज अवस्था में ही बने रहने की प्रवृत्ति रखता है। अचानक ब्रेक लगने पर सीट के आगे लगे पैनल से टकराकर हम घायल भी हो सकते हैं। इस तरह की दुर्घटनाओं से बचने के लिए सुरक्षा बेल्ट का उपयोग किया जाता है। ये सुरक्षा बेल्ट हमारे आगे बढ़ने की गति को धीमा करती है। इसके विपरीत अनुभव हमें तब होता है जब हम मोटर बस में खड़े होते हैं एवं मोटर बस अचानक चल पडती है। इस स्थिति में हम पीछे की ओर झुक जाते हैं। ऐसा इसलिए होता है, क्योंकि मोटर बस के अचानक गति में आ जाने से हमारा पैर जो मोटर बस के फ़र्श के संपर्क में रहता है, गित में आ जाता है। परंतु शरीर का ऊपरी भाग जडत्व के कारण इस गति का विरोध करता है।

जब कोई मोटरकार तीव्र गित के साथ किसी तीक्ष्ण मोड़ पर मुड़ती है तो हम एक ओर झुकने लगते हैं। इसे भी जड़त्व के नियम से समझा जा सकता है। हमारा शरीर अपनी एक सरल रेखीय गित को बनाए रखना चाहता है। जब मोटर कार की दिशा को बदलने के लिए इंजन द्वारा एक असंतुलित बल लगाया जाता है तब हम अपने शरीर के जड़त्व के कारण सीट पर एक ओर झुक जाते हैं।

एक वस्तु तब तक अपनी विरामावस्था में रहेगी जब तक कि उस पर कोई असंतुलित बल नहीं लगा है। इसे निम्न गतिविधि द्वारा प्रदर्शित किया जा सकता है।

क्रियाकलाप ______8.1

 चित्र 8.6 में दर्शाए अनुसार एक ही तरह की कैरम की गोटियों को एक के ऊपर एक रखकर ढेरी बनाएँ। एक अन्य गोटी (या स्ट्राइकर) को अपनी अंगुलियों से तीव्रता से क्षैतिज झटका देकर ढेरी की सबसे नीचे वाली गोटी पर टकराइए। यदि आप गोटी को पर्याप्त तीव्रता से टकराते हैं तो आप देखेंगे कि केवल नीचे वाली गोटी ही शीघ्रता से ढेरी से बाहर आती है। नीचे वाली गोटी के बाहर आ जाने के बाद शेष गोटियाँ अपने जड़त्व के कारण लंबवत् दिशा में नीचे की ओर 'गिर' जाती हैं।

चित्र 8.6: किसी तीव्र गित की कैरम की गोटी (या स्ट्राइकर) से टकरा कर ढेरी के सबसे नीचे वाली गोटी ही ढेरी से बाहर आती है।

क्रियाकलाप 8.2

- काँच के एक खाली गिलास के ऊपर एक कड़े ताश का पत्ता रखें।
- अब चित्र 8.7 में दर्शाए अनुसार पत्ते के ऊपर पाँच रुपये का एक सिक्का रखें। पत्ते को अंगुलियों से तीव्र क्षैतिज झटका दें।
- आप पाएँगे कि पत्ता आगे खिसक जाता है तथा सिक्का अपने जड़त्व के कारण नीचे की ओर गिलास में गिर जाता है। ऐसा इसलिए होता है क्योंकि पत्ते के हटने के बाद भी सिक्का अपनी विरामावस्था को बनाए रखना चाहता है।

चित्र 8.7: अंगुली से ताश के पत्ते को झटका देने पर पत्ते के ऊपर रखा सिक्का नीचे की ओर गिलास में गिर जाता है।

क्रियाकलाप 8.3

 पानी से भरा गिलास किसी ट्रे पर रखिए।
 ट्रे को हाथ से पकड़कर जितनी तेजी से हो सके, घूम जाइए।

बल तथा गति के नियम

 हम देखते हैं कि गिलास लुढ़क जाता है और पानी छलक जाता है, क्यों?

क्या आप अब समझे कि प्लेट में कप को रखने के लिए खाँचा क्यों बना होता है? अचानक झटका लगने की दशा में, प्लेट का खाँचा कप को गिरने से रोकता है।

8.3 जडत्व तथा द्रव्यमान

अभी तक दिए सभी उदाहरणों और गतिविधियों से ज्ञात होता है कि प्रत्येक वस्त अपनी गति की अवस्था में परिर्वतन का विरोध करती है। चाहे वह विरामावस्था में हो या गतिशील, वह अपनी मूल अवस्था को बनाए रखना चाहती है। वस्तु का यह गुण उसका जड़त्व कहलाता है। क्या सभी वस्तुओं का जडत्व समान होता है? हम जानते हैं कि पुस्तकों से भरे बक्से को धक्का देने की अपेक्षा खाली बक्से को धक्का देना आसान होता है। उसी प्रकार हम एक फुटबॉल को किक लगाते हैं तो वह दूर चली जाती है जबकि अगर हम उतने ही बल से किसी उतने ही बड़े पत्थर पर किक लगाएँ. तो हो सकता है कि वह खिसके भी नहीं। हो सकता है कि ऐसा करते समय हमें ही चोट लग जाए। क्रियाकलाप 8.2 में हम पाँच रुपये के सिक्के के स्थान पर यदि कम द्रव्यमान के सिक्के का प्रयोग करते हैं तो हम पाते हैं कि उसी क्रिया को करने में हमें कम बल की आवश्यकता होती है। एक ठेलागाडी को चलाने के लिए जितने बल की आवश्यकता होती है, उतना बल यदि किसी रेलगाडी पर लगाया जाए तो उसकी गति में न के बराबर परिवर्तन होगा क्योंकि ठेलागाड़ी की तुलना में रेलगाडी अपनी गति में कम परिवर्तन चाहती है। इस प्रकार हम कह सकते हैं कि रेलगाडी का जडत्व ठेलागाडी से अधिक है। इससे स्पष्ट है कि भारी वस्तुओं का जडत्व अधिक होता है। मात्रात्मक रूप से, किसी वस्तु का जडत्व उसके द्रव्यमान से मापा जाता है। अत: हम जडत्व और द्रव्यमान को निम्न रूप में परिभाषित कर सकते हैं:

किसी भी वस्तु का जड़त्व उसका वह प्राकृतिक गुण है, जो उसकी विराम या गति की अवस्था में परिवर्तन का विरोध करता है। इस प्रकार किसी वस्तु का द्रव्यमान उसके जड़त्व की माप है।

गिश्न

- निम्न में किसका जड़त्व अधिक है: (a) एक रबर की गेंद एवं उसी आकार का पत्थर,
 (b) एक साइकिल एवं एक रेलगाड़ी,
 (c) पाँच रुपये का एक सिक्का एवं एक रुपये का सिक्का।
- 2. नीचे दिए गए उदाहरण में गेंद का वेग कितनी बार बदलता है, जानने का प्रयास करें: "फुटबॉल का एक खिलाड़ी गेंद पर किक लगाकर गेंद को अपनी टीम के दूसरे खिलाड़ी के पास पहुँचाता है। दूसरा खिलाड़ी उस गेंद को किक लगाकर गोल की ओर पहुँचाने का प्रयास करता है। विपक्षी टीम का गोलकीपर गेंद को पकड़ता है और अपनी टीम के खिलाड़ी की ओर किक लगाता है।" इसके साथ ही उस कारक की भी पहचान करें जो प्रत्येक अवस्था में बल प्रदान करता है।
- किसी पेड़ की शाखा को तीव्रता से हिलाने पर कुछ पत्तियाँ झड जाती हैं। क्यों?
- 4. जब कोई गतिशील बस अचानक रुकती हैं तो आप आगे की ओर झुक जाते हैं और जब विरामावस्था से गतिशील होती है तो पीछे की ओर हो जाते हैं. क्यों?

8.4 गति का द्वितीय नियम

गित का प्रथम नियम यह बताता है कि जब कोई असंतुलित बाह्य बल किसी वस्तु पर कार्य करता है तो उसके वेग में परिवर्तन होता है अर्थात् वस्तु त्वरण प्राप्त करती है। अब हम देखेंगे कि किसी वस्तु का त्वरण उस पर लगाए गए बल पर कैसे निर्भर होता है तथा उस बल को हम कैसे मापते हैं। आइए कुछ दैनिक अनुभवों का अध्ययन करें। टेबल-टेनिस खेलने के दौरान यदि गेंद किसी खिलाड़ी के शरीर से टकराती है, तो वह घायल नहीं होता। गित से आती हुई क्रिकेट की गेंद किसी दर्शक को लगने के बाद

102

उसे घायल कर सकती है। सड़क के किनारे खड़े किसी ट्रक से कोई दुर्घटना नहीं होती। परंतु $5~\mathrm{m~s^{-1}}$ जैसी कम गति से चलते हुए ट्रक से टक्कर, रास्ते में खडे किसी व्यक्ति की मृत्यू का कारण बन सकती है। एक छोटे द्रव्यमान की वस्तु जैसे गोली को अगर बंदुक से तीव्र वेग से छोडा जाए तो वह भी किसी व्यक्ति की मत्य का कारण बन सकती है। इससे पता चलता है कि वस्तु के द्वारा उत्पन्न प्रभाव वस्तु के द्रव्यमान एवं वेग पर निर्भर करता है। इसी प्रकार यदि किसी वस्तु को त्वरित किया जाता है, तो अधिक वेग प्राप्त करने के लिए अधिक बल की आवश्यकता होती है। दूसरे शब्दों में, हम कह सकते हैं कि वस्त के द्रव्यमान एवं वेग से संबंधित एक महत्वपूर्ण राशि होती है। संवेग नामक इस राशि को न्यूटन ने प्रस्तुत किया था। किसी वस्तु का संवेग p उसके द्रव्यमान m और वेग v के गुणनफल से परिभाषित किया जाता है। p = mv

संवेग में परिमाण और दिशा दोनों होते हैं। इसकी दिशा वही होती है, जो वेग v की होती है। संवेग का SI मात्रक किलोग्राम-मीटर/सेकंड (kg m s⁻¹)होता है। चूँकि किसी असंतुलित बल के प्रयोग से उस वस्तु के वेग में परिर्वतन होता है, इसलिए यह कहा जा सकता है कि बल ही संवेग को भी परिवर्तित करता है।

एक ऐसी अवस्था के बारे में विचार करें जिसमें खराब बैट्री वाली एक कार को सीधी सड़क पर 1 m s⁻¹ की गित प्रदान करने के लिए धक्का दिया जाता है, जो कि उसके इंजन को स्टार्ट करने के लिए पर्याप्त है। यदि एक या दो व्यक्ति इसे अचानक धक्का देते हैं तो भी यह स्टार्ट नहीं होती। लेकिन कुछ समय तक लगातार धक्का देने से कार उस गित पर आ जाती है। इससे स्पष्ट है कि कार के संवेग में परिवर्तन केवल बल के परिमाण से नहीं होता है, बल्कि उस समय से है जितने समय तक उस पर बल लगाया जाता है। इससे यह भी निष्कर्ष निकाला जा सकता है कि वस्तु के संवेग में परिवर्तन लाने में लगने वाला बल उसकी उस समय दर पर निर्भर करता है, जिसमें कि संवेग में परिवर्तन होता है।

गित का द्वितीय नियम यह बताता है कि किसी वस्तु के संवेग में परिवर्तन की दर उस पर लगने वाले असंतुलित बल की दिशा में बल के समानुपातिक होती है।

8.4.1 गति के द्वितीय नियम की गणितीय गणना

माना कि m द्रव्यमान की कोई वस्तु u प्रारंभिक वेग से सीधी रेखा में चल रही है। t समय तक एक निश्चित बल F लगाने पर उस वस्तु का वेग v हो जाता है। तब इसका प्रारंभिक और अंतिम संवेग क्रमशः, $p_{v}=mu$ और $p_{v}=mv$ होंगे।

संवेग में परिवर्तन की दर $\infty \frac{m \times (v-u)}{t}$

या लगाया गया बल, $F \propto \frac{m \times (v-u)}{t}$

$$F = \frac{km \times (v - u)}{t} \tag{8.2}$$

$$= kma \tag{8.3}$$

यहाँ $a \propto = [(v-u)/t]$ वेग में परिवर्तन की दर अर्थात् त्वरण है। k एक आनुपातिकता स्थिरांक है। द्रव्यमान और त्वरण के SI मात्रक क्रमशः kg और $m s^{-2}$ हैं। हम बल का मात्रक इस प्रकार लेते हैं कि स्थिरांक k का मान एक हो जाता है। इस इकाई बल को उस मात्रा के रूप में परिभाषित करते हैं, 1 kg द्रव्यमान वाली किसी वस्तु में 1 m s^{-2} का त्वरण उत्पन्न करती है, अर्थात् $1 \text{ इकाई बल} = k(1 \text{ g}) \times (1 \text{ m s}^{-2})$ । इस प्रकार k का मान एक हो जाता है। समीकरण (8.3) से.

$$F = ma (8.4)$$

बल का मात्रक kg m s⁻² है, इसे न्यूटन (आइजक न्यूटन के नाम पर) भी कहते हैं, जिसे N द्वारा प्रदर्शित किया जाता है। गित के द्वितीय नियम से हमें किसी वस्तु पर लगने वाले बल को मापने की विधि मिलती है। बल को उस वस्तु में उत्पन्न त्वरण तथा वस्तु के द्रव्यमान के गुणनफल से प्राप्त किया जाता है।

गति के द्वितीय नियम का प्रयोग हम अपने दैनिक जीवन में प्राय: देखते हैं। क्या आपने क्रिकेट मैच के दौरान मैदान में क्षेत्ररक्षक को तेज गति से आ रही गेंद को लपकते समय हाथ को पीछे की ओर खींचते देखा है? इस प्रकार से क्षेत्ररक्षक गेंद के वेग को शून्य करने में अधिक समय लगाता है। इस प्रकार गेंद में संवेग परिवर्तन की दर कम हो जाती है। इस कारण तेज गति से आ रही गेंद का प्रभाव हाथ पर कम पडता है। अगर गेंद को अचानक रोका जाता है तो तीव्र गति से आ रही गेंद का वेग बहुत कम समय में शून्य होता है अर्थात् गेंद के संवेग में परिवर्तन की दर अधिक होगी, इसलिए कैच लपकने में अधिक बल लगाना होगा जिससे हो सकता है कि खिलाड़ी की हथेली में चोट लग जाए। ऊँची कूद वाले मैदान में, खिलाड़ियों को कुशन या बालू पर कुदना होता है। ऐसा खिलाडियों के छलाँग लगाने के बाद गिरने के समय को बढाने के लिए किया जाता है। इस स्थिति में संवेग में परिवर्तन की दर कम होती है। सोचो कि कैसे कराटे का एक खिलाडी एक ही झटके में बर्फ़ की एक सिल्ली को तोड देता है!

चित्र 8.8: क्रिकेट के खेल में कैच लपकने के लिए क्षेत्ररक्षक गेंद के साथ अपने हाथों को धीरे-धीरे पीछे की ओर खींचता है।

गित के द्वितीय नियम के गणितीय सूत्र [समीकरण (8.4)] के उपयोग से गित के प्रथम नियम को गणितीय रूप से प्राप्त किया जा सकता है। समीकरण (8.4) से, F = ma

या
$$F = \frac{m(v-u)}{t}$$

$$(8.5)$$
या
$$Ft = mv - mu$$

अर्थात् जब F = 0, तो किसी भी समय t पर, v = u इसका अर्थ यह है कि वस्तु समान वेग u से चलती रहेगी। यदि u शून्य है तो v भी शून्य होगा अर्थात् वस्तु विरामावस्था में ही रहेगी।

उदाहरण 8.1 एक 5 kg द्रव्यमान वाली वस्तु पर 2 s के लिए एक नियत बल कार्यरत होता है। यह वस्तु के वेग को 3 m/s से बढ़ा कर 7 m/s कर देता है। लगाए गए बल को मात्रा ज्ञात करें। यदि इस बल को 5 s के लिए आरोपित किया जाए, तो वस्तु का अंतिम वेग क्या होगा?

हल:

हमें ज्ञात है: $u = 3 \text{ m s}^{-1}$ और $v = 7 \text{ m s}^{-1}$, t = 2 s और m = 5 kg

समीकरण (8.5) से
$$F = \frac{m(v-u)}{t}$$

मान रखने पर

 $F = 5 \text{ kg} (7 \text{ m s}^{-1} - 3 \text{ m s}^{-1})/2 \text{ s} = 10 \text{ N}$ अब अगर 5 s (t = 5 s) तक बल लगाया जाता है तो समीकरण (8.5) को पुन: लिखकर अंतिम वेग प्राप्त किया जा सकता है

$$v = u + \frac{Ft}{m}$$

u, F, m और t का मान रखने पर अंतिम वेग $v = 13 \text{ m s}^{-1}$

उदाहरण 8.2 किसमें अधिक बल की आवश्यकता होगी: 2 kg द्रव्यमान वाली किसी वस्तु को 5 m s^{-2} की दर से त्वरित करने में या 4 kg द्रव्यमान वाली वस्तु को 2 m s^{-2} की दर से त्वरित करने में?

104

विज्ञान

हल:

समीकरण (8.4) से, F = ma यहाँ $m_1 = 2$ kg; $a_1 = 5$ m s⁻² तथा $m_2 = 4$ kg; $a_2 = 2$ m s⁻². इस प्रकार.

 $F_{_{I}} = m_{_{I}}a_{_{I}} = 2 \text{ kg} \times 5 \text{ m s}^{-2} = 10 \text{ N};$ तथा $F_{_{2}} = m_{_{2}}a_{_{2}} = 4 \text{ kg} \times 2 \text{ m s}^{-2} = 8 \text{ N}$ $\Rightarrow F_{_{I}} > F_{_{2}}$

अत: 2 kg द्रव्यमान की वस्तु को 5 m s^{-2} की दर से त्वरित करने में अधिक बल की आवश्यकता होगी।

उदाहरण 8.3 एक कार 108 km/h की गित से चल रही है और ब्रेक लगाने के बाद यह रुकने में 4 s का समय लेती है। कार पर ब्रेक लगाए जाने के बाद लगने वाले बल की गणना करें। कार का यात्रियों सहित कुल द्रव्यमान 1000 kg है।

हल:

कार का प्रारंभिक वेग

u = 108 km/h

 $= 108 \times 1000 \text{ m/}(60 \times 60 \text{ s})$

 $= 30 \text{ m s}^{-1}$

तथा कार का अंतिम वेग, $v = 0 \text{ m s}^{-1}$

कार का कुल द्रव्यमान = 1000 kg तथा कार को रोकने में लगा समय t = 4 s तथा समीकरण (8.5) से ब्रेक लगाने वाले बल F का परिमाण m(v - u)/t है।

मान रखने पर.

 $F = 1000 \text{ kg} \times (0 - 30) \text{ m s}^{-1}/4 \text{ s}$

 $= -7500 \text{ kg m s}^{-2}$ या -7500 N

ऋणात्मक चिह्न दर्शाता है कि ब्रेक के द्वारा लगाया गया बल गाड़ी की गति के विपरीत दिशा में आरोपित है। उदाहरण $8.4\ 5\ N$ का एक बल किसी द्रव्यमान m_1 को $10\ {
m m\ s^{-2}}$ का त्वरण देता है तथा द्रव्यमान m_2 को $20\ {
m m\ s^{-2}}$ का त्वरण देता है। अगर दोनों द्रव्यमानों को एक साथ मिला दिया जाए, तो इस बल के द्वारा क्या त्वरण उत्पन्न होगा?

हल:

समीकरण (8.4) से $m_{_{I}}$ = $F/a_{_{I}}$; तथा

 $m_2 = F/a_2$

यहाँ $a_1 = 10 \text{ m s}^{-2}$;

a₂ = 20 m s⁻² तथा F = 5 N

इस प्रकार, $m_{_{I}}$ = 5 N/10 m s⁻² = 0.50 kg; तथा

 $m_2 = 5 \text{ N}/20 \text{ m s}^{-2} = 0.25 \text{ kg}$ जब दोनों द्रव्यमानों को एक साथ मिलाया जाता है.

पूरा द्रव्यमान m = 0.50 kg + 0.25 kg = 0.75 kg

अब पूरे द्रव्यमान m पर 5 N बल द्वारा उत्पन्न किया गया त्वरण.

 $a = F/m = 5 \text{ N}/0.75 \text{ kg} = 6.67 \text{ m s}^{-2}$

उदाहरण 8.5 एक लंबी मेज पर सीधी रेखा में जा रही 20 g द्रव्यमान की गेंद का वेग-समय ग्राफ़ चित्र 8.9 में दिया गया है। गेंद को विरामावस्था में लाने के लिए मेज द्वारा कितना बल लगेगा?

चित्र 8.9

बल तथा गति के नियम

हल:

गेंद का प्रारंभिक वेग 20 cm s⁻¹ है। मेज़ के द्वारा गेंद पर घर्षण बल लगने के कारण गेंद का वेग 10 s में शून्य हो जाता है। चूँकि वेग-समय ग्राफ़ एक सीधी रेखा है इससे स्पष्ट है कि गेंद एक नियत त्वरित बल के साथ चलती है।

त्वरण,
$$a = \frac{v - u}{t}$$

$$= (0 \text{ cm s}^{-1} - 20 \text{ cm s}^{-1})/10 \text{ s}$$

$$= -2 \text{ cm s}^{-2} = -0.02 \text{ m s}^{-2}$$
गेंद पर लगा घर्षण बल,
$$F = ma = (20/1000) \text{ kg} \times (-0.02 \text{ m s}^{-2})$$

$$= -0.0004 \text{ N}$$
ऋणात्मक चिह्न दर्शाता है कि गेंद की गति की दिशा के विपरीत मेज़ द्वारा घर्षण बल आरोपित किया जाता है।

8.5 गति का तृतीय नियम

पहले दोनों गति के नियमों से हमें ज्ञात होता है कि कोई प्रयुक्त बल वस्तु की गति की अवस्था में परिवर्तन लाता है तथा इनसे हमें बल को मापने की विधि भी प्राप्त होती है। गति के तीसरे नियम के अनुसार, जब एक वस्तु दूसरी वस्तु पर बल लगाती है तब दूसरी वस्तु द्वारा भी पहली वस्तु पर तात्क्षणिक बल लगाया जाता है। ये दोनों बल परिमाण में सदैव समान लेकिन दिशा में विपरीत होते हैं। इसका तात्पर्य यह है कि बल सदैव युगल रूप में होते हैं। ये बल कभी एक वस्तु पर कार्य नहीं करते बल्कि दो अलग-अलग वस्तुओं पर कार्य करते हैं। फुटबॉल के खेल में प्राय: हम गेंद को तेज़ गति से किक मारने के क्रम में विपक्षी टीम के खिलाड़ी से टकरा जाते हैं। इस क्रम में दोनों खिलाड़ी एक-दूसरे पर बल लगाते हैं, अतएव दोनों ही खिलाडी चोटिल होते हैं। दूसरे शब्दों में, किसी एकल बल का अस्तित्व नहीं होता

बल्कि ये सदैव युगल रूप में होते हैं। इन दोनों विरोधी बलों को क्रिया तथा प्रतिक्रिया बल कहा जाता है।

माना कि दो स्प्रिंग तुलाएँ एक-दूसरे से जुड़ी हैं, जैसा कि चित्र 8.10 में दर्शाया गया है। तुला B का स्थिर सिरा दीवार से जुड़ा है। जब तुला A के मुक्त सिरे पर बल लगाया जाता है तब हम पाते हैं कि दोनों तुलाएँ एक ही मान दर्शाती हैं। अर्थात् तुला A द्वारा तुला B पर प्रयुक्त बल तुला B के द्वारा तुला A पर लगाए गए बल के परिमाण में समान है परंतु इन दोनों बलों की दिशाएँ परस्पर विपरीत हैं। इन दोनों बलों में से कोई एक बल क्रिया और दूसरा बल प्रतिक्रिया कहलाता है। अत: गित के तृतीय नियम को इस प्रकार भी व्यक्त किया जाता है: किसी भी क्रिया के लिए ठीक उसके समान किंतु विपरीत दिशा में प्रतिक्रिया होती है। यद्यपि यह अवश्य याद रखना चाहिए कि क्रिया और प्रतिक्रिया बल सदैव दो अलग-अलग वस्तुओं पर एक साथ कार्य करते हैं।

चित्र 8.10: क्रिया तथा प्रतिक्रिया बल समान तथा विपरीत होते हैं।

माना कि आप विश्राम की अवस्था में हैं और सड़क पर चलना प्रारंभ करते हैं। द्वितीय नियम के अनुसार इसके लिए एक बल की आवश्यकता होती है, जो आपके शरीर में त्वरण उत्पन्न करता है। यह कौन-सा बल है? क्या यह पेशीय बल है जो आप सड़क पर लगाते हैं? क्या यह बल हम उसी दिशा में लगाते हैं जिस दिशा में हम आगे बढ़ते हैं? नहीं, हम नीचे पृथ्वी की सतह को अपने पैरों से पीछे धकेलते हैं। सड़क भी आपके पैर पर उतना ही बल विपरीत दिशा में लगाती है जिसके प्रभाव से आप आगे बढते हैं।

106

यह जानना आवश्यक है कि यद्यपि क्रिया और प्रतिक्रिया बल मान में हमेशा समान होते हैं फिर भी ये बल एकसमान परिमाण के त्वरण उत्पन्न नहीं कर सकते। ऐसा इसलिए है क्योंकि प्रत्येक बल अलग-अलग द्रव्यमान की वस्तुओं पर कार्य करते हैं।

बंदूक से गोली छोड़ने की अवस्था में, बंदूक द्वारा गोली पर आगे की ओर एक बल निरूपित होता है। गोली भी बंदूक पर एकसमान परंतु विपरीत दिशा में बल लगाती है। इससे बंदूक पीछे की ओर प्रतिक्षेपित होती है (चित्र 8.11)। चूँिक बंदूक का द्रव्यमान गोली के द्रव्यमान से बहुत अधिक होता है, इसलिए बंदूक का त्वरण गोली के त्वरण से काफी कम होता है। एक नाविक द्वारा नाव से आगे की ओर कूदने की स्थिति में भी, गित के तीसरे नियम को प्रदर्शित किया जा सकता है। नाविक आगे की ओर कूदता है तो नाव पर लगने वाला प्रतिक्रिया बल नाव को पीछे की ओर धकेलता है (चित्र 8.12)।

चित्र 8.11: गोली पर लगने वाला त्वरित बल तथा बंदूक का

चित्र 8.12: नाविक के आगे की ओर कूदने की स्थिति में नाव पीछे की ओर गति करती है।

दो बच्चों को पिहए वाली गाड़ी पर खड़ा होने को कहें जैसा कि चित्र 8.13 में दर्शाया गया है। उन्हें बालू से भरा थैला या कोई भारी वस्तु दे दें।

अब उन्हें थैले को लपकते हुए खेलने को कहें। क्या बालू के थैले को फेंकने के कारण उसमें से प्रत्येक तात्क्षणिक बल का अनुभव करते हैं? आप गाड़ी के पहिए पर कोई सफेद रेखा खींच दें, ताकि जब वे दोनों बच्चे थैले को फेंके तो गाड़ी की गित का अवलोकन किया जा सके।

चित्र 8.13

अब दो बच्चों को किसी एक गाड़ी पर खड़ा कर दें तथा एक अन्य बच्चे को दूसरी गाड़ी पर। आप यहाँ गति के द्वितीय नियम को देख सकते हैं, क्योंकि इस अवस्था में यह बल अलग-अलग त्वरण उत्पन्न करेगा।

इस क्रिया में दिखाई गई गाड़ी 50 cm × 100 cm आकार के 12 mm या 18 mm मोटे प्लाइबोर्ड में दो जोड़े पहिए लगाकर बनाई जा सकती है। स्केटबोर्ड प्रभावी नहीं होगा क्योंकि इसका सीधी रेखा में गित करना कठिन है।

आपने

क्या

सीखा

- गित का प्रथम नियम: वस्तु अपनी विरामावस्था अथवा सरल रेखा पर एक समान गित की अवस्था में तब तक बनी रहती है, जब तक उस पर कोई असंतुलित बल कार्य न करे।
- वस्तुओं द्वारा अपनी गित की अवस्था में पिरवर्तन का प्रितिरोध करने की प्रवृत्ति को जड्त्व कहते हैं।
- किसी वस्तु का द्रव्यमान उसके जड़त्व की माप है। इसका SI मात्रक किलोग्राम (kg) है।
- घर्षण बल सदैव वस्तु की गित का प्रतिरोध करता है।
- गित का द्वितीय नियम: किसी वस्तु के संवेग परिवर्तन की दर वस्तु पर आरोपित असंतुलित बल के समानुपाती एवं बल की दिशा में होती है।
- बल का SI मात्रक $kg m s^{-2} है। इसे न्यूटन के नाम से भी जाना जाता है तथा प्रतीक N द्वारा व्यक्त किया जाता है। 1 न्यूटन का बल किसी 1 <math>kg$ द्रव्यमान की वस्तु में 1 $m s^{-2}$ का त्वरण उत्पन्न करता है।
- वस्तु का संवेग, उसके द्रव्यमान एवं वेग का गुणनफल होता है तथा इसकी दिशा वही होती है, जो वस्तु के वेग की होती है। इसका SI मात्रक kg m s⁻¹ होता है।
- गित का तृतीय नियम: प्रत्येक क्रिया के समान एवं विपरीत प्रतिक्रिया होती है।
 ये दो विभिन्न वस्तुओं पर कार्य करती हैं।

अभ्यास

- 1. कोई वस्तु शून्य बाह्य असंतुलित बल अनुभव करती है। क्या किसी भी वस्तु के लिए अशून्य वेग से गति करना संभव है? यदि हाँ, तो वस्तु के वेग के परिमाण एवं दिशा पर लगने वाली शर्तों का उल्लेख करें। यदि नहीं, तो कारण स्पष्ट करें।
- 2. जब किसी छड़ी से एक दरी (कार्पेट) को पीटा जाता है, तो धूल के कण बाहर आ जाते हैं। स्पष्ट करें।
- 3. बस की छत पर रखे सामान को रस्सी से क्यों बाँधा जाता है?
- 4. किसी बल्लेबाज द्वारा क्रिकेट की गेंद को मारने पर गेंद ज़मीन पर लुढ़कती है। कुछ दूरी चलने के पश्चात् गेंद रुक जाती है। गेंद रुकने के लिए धीमी होती है, क्योंकि

108 विज्ञान

- (a) बल्लेबाज ने गेंद को पर्याप्त प्रयास से हिट नहीं किया है।
- (b) वेग गेंद पर लगाए गए बल के समानुपाती है।
- (c) गेंद पर गित की दिशा के विपरीत एक बल कार्य कर रहा है।
- (d) गेंद पर कोई असंतुलित बल कार्यरत नहीं है, अत: गेंद विरामावस्था में आने के लिए प्रयासरत है।

(सही विकल्प का चयन करें)

- 5. एक ट्रक विरामावस्था से किसी पहाड़ी से नीचे की ओर नियत त्वरण से लुढ़कना शुरू करता है। यह 20 s में 400 m की दूरी तय करता है। इसका त्वरण ज्ञात करें। अगर इसका द्रव्यमान 7 टन है तो इस पर लगने वाले बल की गणना करें। (1 टन = 1000 kg)।
- 6. 1 kg द्रव्यमान के एक पत्थर को 20 m s^{-1} के वेग से झील की जमी हुई सतह पर फेंका जाता है। पत्थर 50 m की दूरी तय करने के बाद रुक जाता है। पत्थर और बर्फ़ के बीच लगने वाले घर्षण बल की गणना करें।
- 7. एक 8000 kg द्रव्यमान का रेल इंजन प्रति 2000 kg द्रव्यमान वाले पाँच डिब्बों को सीधी पटरी पर खींचता है। यदि इंजन 40000 N का बल आरोपित करता है तथा यदि पटरी 5000 N का घर्षण बल लगाती है, तो ज्ञात करें:
 - (a) नेट त्वरण बल तथा
 - (b) रेल का त्वरण
- 8. एक गाड़ी का द्रव्यमान 1500 kg है। यदि गाड़ी को 1.7 m s⁻² के ऋणात्मक त्वरण (अवमंदन) के साथ विरामावस्था में लाना है, तो गाड़ी तथा सड़क के बीच लगने वाला बल कितना होगा?
- 9. किसी m द्रव्यमान की वस्तु जिसका वेग v है का संवेग क्या होगा? (a) $(mv)^2$ (b) mv^2 (c) $(\frac{1}{2})$ mv^2 (d) mv (उपरोक्त में से सही विकल्प चुनें।)
- 10. हम एक लकड़ी के बक्से को 200 N बल लगाकर उसे नियत वेग से फ़र्श पर धकेलते हैं। बक्से पर लगने वाला घर्षण बल क्या होगा?
- 11. गित के तृतीय नियम के अनुसार जब हम किसी वस्तु को धक्का देते हैं, तो वस्तु उतने ही बल के साथ हमें भी विपरीत दिशा में धक्का देती है। यदि वह वस्तु एक ट्रक है जो सड़क के किनारे खड़ा है; संभवत: हमारे द्वारा बल आरोपित करने पर भी गितशील नहीं हो पाएगा। एक विद्यार्थी इसे सही साबित करते हुए कहता है कि दोनों बल विपरीत एवं बराबर हैं जो एक-दूसरे को

बल तथा गति के नियम

- निरस्त कर देते हैं। इस तर्क पर अपने विचार दें और बताएँ कि ट्रक गतिशील क्यों नहीं हो पाता?
- 12. 200 g द्रव्यमान की एक हॉकी की गेंद 10 m s^{-1} से गित कर रही है। यह एक हॉकी स्टिक से इस प्रकार टकराती है कि यह 5 m s^{-1} के वेग से अपने प्रारंभिक मार्ग पर वापस लौटती है। हॉकी स्टिक द्वारा आरोपित बल द्वारा हॉकी की गेंद में आये संवेग परिवर्तन के परिमाप का परिकलन कीजिए।
- 13. 10 g द्रव्यमान की एक गोली सीधी रेखा में 150 m s⁻¹ के वेग से चलकर एक लकड़ी के गुटके से टकराती है और 0.03 s के बाद रुक जाती है। गोली लकड़ी को कितनी दूरी तक भेदेगी? लकड़ी के गुटके द्वारा गोली पर लगाए गए बल के परिमाण की गणना करें।
- 14. एक वस्तु जिसका द्रव्यमान 1 kg है, 10 m s⁻¹ के वेग से एक सीधी रेखा में चलते हुए विरामावस्था में रखे 5 kg द्रव्यमान के एक लकड़ी के गुटके से टकराती है। उसके बाद दोनों साथ-साथ उसी सीधी रेखा में गित करते हैं। संघट्ट के पहले तथा बाद के कुल संवेगों की गणना करें। आपस में जुड़े हुए संयोजन के वेग की भी गणना करें।
- 15. 100 kg द्रव्यमान की एक वस्तु का वेग समान त्वरण से चलते हुए 6 s में 5 m s^{-1} से 8 m s^{-1} हो जाता है। वस्तु के पहले और बाद के संवेगों की गणना करें। उस बल के परिमाण की गणना करें जो उस वस्तु पर आरोपित है।
- 16. अख़्तर, किरण और राहुल किसी राजमार्ग पर बहुत तीव्र गित से चलती हुई कार में सवार हैं, अचानक उड़ता हुआ कोई कीड़ा, गाड़ी के सामने के शीशे से आ टकराया और वह शीशे से चिपक गया। अख़्तर और किरण इस स्थिति पर विवाद करते हैं। किरण का मानना है कि कीड़े के संवेग परिवर्तन का पिरमाण कार के संवेग परिवर्तन के पिरमाण की अपेक्षा बहुत अधिक है। (क्योंकि कीड़े के वेग में परिवर्तन का मान कार के वेग में परिवर्तन के मान से बहुत अधिक है।) अख़्तर ने कहा कि चूँकि कार का वेग बहुत अधिक था अत: कार ने कीड़े पर बहुत अधिक बल लगाया जिसके कारण कीड़े की मौत हो गई। राहुल ने एक नया तर्क देते हुए कहा कि कार तथा कीड़ा दोनों पर समान बल लगा और दोनों के संवेग में बराबर परिवर्तन हुआ। इन विचारों पर अपनी प्रतिक्रिया दें।
- 17. एक 10 kg द्रव्यमान की घंटी 80 cm की ऊँचाई से फ़र्श पर गिरी। इस अवस्था में घंटी द्वारा फ़र्श पर स्थानांतरित संवेग के मान की गणना करें। परिकलन में सरलता हेतु नीचे की ओर दिष्ट त्वरण का मान 10 m s⁻² लें।

अतिरिक्त अभ्यास

A1. एक वस्तु की गति की अवस्था में दूरी समय सारणी निम्नवत् है:

ामय (सेकंड)	दूरी (मीटर)
0	0
1	1
2	8
3	27
4	64
5	125
6	216
7	343

- (a) त्वरण के बारे में आप क्या निष्कर्ष निकाल सकते हैं? क्या यह नियत है? बढ़ रहा है? घट रहा है? या शून्य है?
- (b) आप वस्तु पर लगने वाले बल के बारे में क्या निष्कर्ष निकाल सकते हैं?
- A2. 1200 kg द्रव्यमान की कार को एक समतल सड़क पर दो व्यक्ति समान वेग से धक्का देते हैं। उसी कार को तीन व्यक्तियों द्वारा धक्का देकर 0.2 m s^{-2} का त्वरण उत्पन्न किया जाता है। कितने बल के साथ प्रत्येक व्यक्ति कार को धकेल पाते हैं। (मान लें कि सभी व्यक्ति समान पेशीय बल के साथ कार को धक्का देते हैं।)
- A3. $500 \, \mathrm{g}$ द्रव्यमान के एक हथौड़े द्वारा $50 \, \mathrm{m \ s^{-1}}$ वेग से एक कील पर प्रहार किया जाता है। कील द्वारा हथौड़े को बहुत कम समय $0.01 \, \mathrm{s}$ में ही रोक दिया जाता है। कील के द्वारा हथौड़े पर लगाए गए बल का परिकलन करें।
- A4. एक 1200 kg द्रव्यमान की मोटरकार 90 km/h की वेग से एक सरल रेखा के अनुदिश चल रही है। उसका वेग बाहरी असंतुलित बल लगने के कारण 4 s में घटकर 18 km/h हो जाता है। त्वरण और संवेग में परिवर्तन का परिकलन करें। लगने वाले बल के परिमाण का भी परिकलन करें।