Heritability of Human Structural Connectomes

Jaewon Chung

(he/him) - NeuroData lab Johns Hopkins University - Biomedical Engineering

⊠ j1c@jhu.edu

(Github)

gj1c (Twitter)

What is heritability?

- Variations in phenotype caused by variations in genotype.
- Potentially discover relationships between diseases and genetics.

Are the patterns of brain connectivity heritable?

Brain connectivity as connectomes

(aka networks or graphs)

- Vertex: region of the brain
- Edges: connectivity measure between a pair of vertices
- Structural connectomes: estimated # of neuronal fibers
- Undirected: neurons have no direction

How do we get structural connectomes?

Quick detour to causal land

Directed acyclic graphs

- Representation of causal relationships of variables
 - From domain knowledge

Confounding

- Common cause for both exposure and outcome
 - Exposure: alcohol consumption
 - Outcome: lung cancer
- Causes sprious association!
- Solution: "condition" confounding

Toy example

- Smoking = $\mathcal{N}(5,1)$
- Alcohol = Smoking + $\mathcal{N}(0,1)$
- Lung Cancer = Smoking + $\mathcal{N}(0,1)$
- n = 100

	Indep. Test	Conditional Indep. Test
Null Hypothesis	Alcohol⊥Lung cancer	Alcohol⊥Lung cancer Smoking
Alternate Hypothesis	Alcohol ⊥Lung cancer	Alcohol ⊭Lung cancer Smoking
Correlation (r)	pprox 0.66	pprox 0.006
p-value	pprox 0	pprox 1

Backdoor paths

- Non-causal path from exposure to outcome
- Flow backwards out of exposure (arrow pointing towards exposure)
- Confounders create backdoor paths
- Path is blocked if a variable in the path is conditioned on.

Examples

- Four possible paths
- Condition sets:
 - $\circ ~\{Z\}$
 - $\circ \ \{Z,E\}$
 - $\circ \ \{Z,A\}$
 - $\circ \ \{Z,E,A\}$

Backdoor criterion

Causal effect exists between exposure (X) and outcome (Y) if:

- 1. No backdoor paths from X to Y exist
- 2. Measured covariates Z block all backdoor paths from X and Y

Mediation

- Lies on the causal path between exposure and outcome
 - Exposure: grades
 - Outcome: happiness
 - Mediator: self-esteem
- Total effect: effect from both exposure and mediators
- Direct effect: effect only from exposure

Toy example

- Grades = $\mathcal{N}(5,1)$
- Self-esteem = Grades + $\mathcal{N}(0,1)$
- Happiness = Grades + Self-esteem + $\mathcal{N}(0,1)$
- n = 100

	Indep. Test	Conditional Indep. Test
Null Hypothesis	Grades_Happiness	Grades⊥Happiness Self-esteem
Alternate Hypothesis	Grades <u></u> ⊬Happiness	Grades ⊭ Happiness Self-esteem
Correlation (r)	pprox 0.89	pprox 0.63
p-value	pprox 0	pprox 0

Heritability as causal problem

Do genomes affect connectomes?

Our hypothesis:

```
H_0: F({\sf Connectome}|{\sf Genome}) = F({\sf Connectome})
H_A: F({\sf Connectome}|{\sf Genome}) 
eq F({\sf Connectome})
```

Alternatively:

```
H_0: F(	ext{Connectome}, 	ext{Genome}) = F(	ext{Connectome})F(	ext{Genome})
H_A: F(	ext{Connectome}, 	ext{Genome}) 
eq F(	ext{Connectome})F(	ext{Genome})
```

- Known as independence testing
- Test statistic: distance correlation (dcorr)
- Implication if false: there exists an associational heritability.

Distance correlation

- Measures dependence between two *multivariate* quantities.
 - For example: connectomes, genomes.
- Can detect nonlinear associations.
- Measures correlation between pairwise distances.

Do genomes affect connectomes given covariates?

Want to test:

```
H_0: F({\tt Conn.}, {\tt Genome}|{\tt Covariates}) = F({\tt Conn.}|{\tt Covariates})F({\tt Genome}|{\tt Covariates}) H_A: F({\tt Conn.}, {\tt Genome}|{\tt Covariates}) \neq F({\tt Conn.}|{\tt Covariates})F({\tt Genome}|{\tt Covariates})
```

- Known as conditional independence test
- Test statistic: Conditional distance correlation (cdcorr)
- Implication if false: there exists causal dependence of connectomes on genomes.

Conditional distance correlation

• Augment distance correlation procedure with third distance matrix.

How do we compare genomes?

- Neuroimaging twin studies do not sequence genomes.
- Coefficient of kinship (ϕ_{ij})
 - Probabilities of finding a particular gene at a particular location.
- $d(Genome_i, Genome_j) = 1 2\phi_{ij}$.

Relationship	ϕ_{ij}	$1-2\phi_{ij}$
Monozygotic	$\frac{1}{2}$	0
Dizygotic	$\frac{1}{4}$	$\frac{1}{2}$
Non-twin siblings	$\frac{1}{4}$	$\frac{1}{2}$
Unrelated	0	1

How do we compare connectomes?

- Random dot product graph (RDPG)
 - \circ Each vertex (region of interest) has a low d dimensional latent vector (position).
 - \circ Estimate latent position matrix X via adjacency spectral embedding.

• $\mathsf{d}(\mathsf{Connectome}_k, \mathsf{Connectome}_l) = ||X^{(k)} - X^{(l)}R||_F$

Neuroanatomy, Age (mediators)

- Literature show:
 - o neuroanatomy (e.g. brain volume) is highly heritable.
 - age affects genomes and potentially connectomes
- $d(Covariates_i, Covariates_j) = ||Covariates_i Covariates_j||_F$

Human Connectome Project

- Brain scans from identical (monozygotic), fraternal (dizygotic), non-twin siblings.
- Regions defined using Glasser parcellation (180 regions).

Zygosit y	Monozygoti c	Dizygotic	Non-twin siblings
N	322	212	490
Sex	196 F, 126 M	125 F, 87 M	237 F, 253 M
Age (mean)	29.6 (3.3)	28.9 (3.4)	28.3 (3.9)
Age (range)	22-36	22-36	22-37

Associational Test for Connectomic Heritability

• $H_0: F(ext{Connectome}, ext{Genome}) = F(ext{Connectome})F(ext{Genome})$ $H_A: F(ext{Connectome}, ext{Genome})
eq F(ext{Connectome})F(ext{Genome})$

Sex	All	Females	Males
p-value	$<1 imes10^{-5}$	$< 1 imes 10^{-3}$	$<1 imes10^{-2}$

Associational Test for Neuroanatomy

• $H_0: F({\sf Neuroanatomy}, {\sf Genome}) = F({\sf Neuroanatomy})F({\sf Genome})$

 $H_A: F({\sf Neuroanatomy}, {\sf Genome})
eq F({\sf Neuroanatomy})F({\sf Genome})$

Sex	All	Females	Males
p-value	$< 1 imes 10^{-3}$	$<1 imes10^{-2}$	$<1 imes10^{-2}$

Causal Test for Connectomic Heritability

```
• H_0: F({\tt Conn.}, {\tt Genome}|{\tt Covariates}) = F({\tt Conn.}|{\tt Covariates})F({\tt Genome}|{\tt Covariates}) H_A: F({\tt Conn.}, {\tt Genome}|{\tt Covariates}) \neq F({\tt Conn.}|{\tt Covariates})F({\tt Genome}|{\tt Covariates}) )
```

Sex	All	Females	Males
p-value	$< 1 imes 10^{-2}$	$< 1 imes 10^{-2}$	$< 1 imes 10^{-2}$

Summary

- Present a causal model for heritability of connectomes.
- Leveraged recent advances:
 - i. Statistical models for networks, allowing meaningful comparison of connectomes.
 - ii. Distance and conditional distance correlation as test statistic for causal analysis 1 .
- Connectomes are dependent on genome, suggesting heritability.

¹ Bridgeford, Eric W., et al. "Batch Effects are Causal Effects: Applications in Human Connectomics." (2021).