11 - Differentiating the Residual Neural Network

Numerical Methods for Deep Learning

March 19, 2018

Residual Network as a Path Planning Problem

$$\dot{\mathbf{Y}}(t) = \sigma(\mathbf{K}(t)\mathbf{Y}(t) + b(t)) \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

The goal is to plan a path such that the transformed features, $\mathbf{Y}(T)$, can be linearly separated.

input features, $\mathbf{Y}(0)$

Residual Network as a Path Planning Problem

$$\dot{\mathbf{Y}}(t) = \sigma(\mathbf{K}(t)\mathbf{Y}(t) + b(t)) \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

The goal is to plan a path such that the transformed features, $\mathbf{Y}(T)$, can be linearly separated.

Residual Network - Forward Propagation

Idea: Obtain forward propagation by discretizing the ODE

$$\dot{\mathbf{Y}} = \sigma(\mathbf{KY} + b) \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

Residual Network - Forward Propagation

Idea: Obtain forward propagation by discretizing the ODE

$$\dot{\mathbf{Y}} = \sigma(\mathbf{KY} + b) \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

Example: Use forward Euler method

$$\mathbf{Y}_{j+1} = \mathbf{Y}_j + h\sigma(\mathbf{K}_j\mathbf{Y}_j + b_j)$$

Here: \mathbf{Y}_j is called the *state*, $_j,b_j$ are *controls*, and h>0 is time step size

Residual Network - Forward Propagation

Idea: Obtain forward propagation by discretizing the ODE

$$\dot{\mathbf{Y}} = \sigma(\mathbf{KY} + b) \quad \mathbf{Y}(0) = \mathbf{Y}_0$$

Example: Use forward Euler method

$$\mathbf{Y}_{j+1} = \mathbf{Y}_j + h\sigma(\mathbf{K}_j\mathbf{Y}_j + b_j)$$

Here: \mathbf{Y}_j is called the *state*, $_j,b_j$ are *controls*, and h>0 is time step size

More general forward propagation

$$\mathbf{Y}_{j+1} = \mathbf{P}_j \mathbf{Y}_j + h \sigma(\mathbf{K}_j \mathbf{Y}_j + b_j)$$

Allows for changing resolution and width.

Residual Network - Classification Problem

Classification with final state by solving

$$\min_{\boldsymbol{W},\boldsymbol{K}_{0,\dots,N-1},b_{0,\dots,N-1}} E\left(\boldsymbol{Y}_{N}(\boldsymbol{K}_{0,\dots,N-1},b_{0,\dots,N-1})\boldsymbol{W},\boldsymbol{C}^{\mathrm{obs}}\right)$$

Residual Network - Classification Problem

Classification with final state by solving

$$\min_{\boldsymbol{W},\boldsymbol{K}_{0,\dots,N-1},b_{0,\dots,N-1}} E\left(\boldsymbol{Y}_{N}(\boldsymbol{K}_{0,\dots,N-1},b_{0,\dots,N-1})\boldsymbol{W},\boldsymbol{C}^{\mathrm{obs}}\right)$$

Need to differentiate

- ► E w.r.t W (linear classifier ~ Lecture 3)
- \triangleright S w.r.t \mathbf{Y}_N (single layer \sim Lecture 8)
- ▶ \mathbf{Y}_N w.r.t control variables $(\mathbf{K}_{0,...,N-1}, b_{0,...,N-1})$

Residual Network - Classification Problem

Classification with final state by solving

$$\min_{\mathbf{W},\mathbf{K}_0,\dots,N-1,b_0,\dots,N-1} E\left(\mathbf{Y}_N(\mathbf{K}_{0,\dots,N-1},b_{0,\dots,N-1})\mathbf{W},\mathbf{C}^{\mathrm{obs}}\right)$$

Need to differentiate

- ► E w.r.t W (linear classifier ~ Lecture 3)
- \triangleright S w.r.t \mathbf{Y}_N (single layer \sim Lecture 8)
- $ightharpoonup \mathbf{Y}_N$ w.r.t control variables $(\mathbf{K}_{0,\dots,N-1},b_{0,\dots,N-1})$

Having these, apply chain rule to get, e.g.,

$$\nabla_{\mathbf{K}_{j}}E = \left(\nabla_{\mathbf{K}_{j}}\mathbf{Y}_{N}\right)^{\top}\nabla_{\mathbf{Y}_{N}}E$$

Idea: Differentiate the forward propagation (forward Euler). Let $0 \le i \le N$ be fixed. Note that

$$\nabla_{\mathbf{K}_i} \mathbf{Y}_j = 0$$
, for $j \leq i$.

Idea: Differentiate the forward propagation (forward Euler). Let $0 \le i \le N$ be fixed. Note that

$$\nabla_{\mathbf{K}_i} \mathbf{Y}_j = 0$$
, for $j \leq i$.

Next, note that

$$abla_{\mathbf{K}_i} \mathbf{Y}_{i+1} = h \mathrm{diag}(\sigma'(\mathbf{K}_i \mathbf{Y}_i + b_i))(\mathbf{Y}_j^{\top} \otimes \mathbf{I})$$

Idea: Differentiate the forward propagation (forward Euler). Let $0 \le i \le N$ be fixed. Note that

$$\nabla_{\mathbf{K}_i} \mathbf{Y}_j = 0$$
, for $j \leq i$.

Next, note that

$$abla_{\mathbf{K}_i} \mathbf{Y}_{i+1} = h \mathrm{diag}(\sigma'(\mathbf{K}_i \mathbf{Y}_i + b_i))(\mathbf{Y}_j^{\top} \otimes \mathbf{I})$$

Continuing like this, gives for the final state:

$$\nabla_{\mathbf{K}_{i}}\mathbf{Y}_{N} = \mathbf{P}_{N-1}\nabla_{\mathbf{K}_{j}}\mathbf{Y}_{N-1} + h\mathrm{diag}(\sigma'(\cdots))\left((\mathbf{I}\otimes\mathbf{K}_{N-1})\nabla_{\mathbf{K}_{j}}\mathbf{Y}_{N-1}\right)$$

Idea: Differentiate the forward propagation (forward Euler). Let $0 \le i \le N$ be fixed. Note that

$$\nabla_{\mathbf{K}_i} \mathbf{Y}_j = 0$$
, for $j \leq i$.

Next, note that

$$abla_{\mathbf{K}_i} \mathbf{Y}_{i+1} = h \mathrm{diag}(\sigma'(\mathbf{K}_i \mathbf{Y}_i + b_i))(\mathbf{Y}_j^{\top} \otimes \mathbf{I})$$

Continuing like this, gives for the final state:

$$\nabla_{\mathbf{K}_{i}}\mathbf{Y}_{N} = \mathbf{P}_{N-1}\nabla_{\mathbf{K}_{j}}\mathbf{Y}_{N-1} + h \operatorname{diag}(\sigma'(\cdots))\left((\mathbf{I} \otimes \mathbf{K}_{N-1})\nabla_{\mathbf{K}_{i}}\mathbf{Y}_{N-1}\right)$$

Next: Write this as a block triangular linear system.

Block triangular linear system for the gradients

$$\begin{pmatrix} \mathbf{I} & & & \\ -\mathbf{T}_{i+1} & \mathbf{I} & & & \\ & \ddots & \ddots & & \\ & & -\mathbf{T}_{N-1} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \nabla_{\mathbf{K}_i} \mathbf{Y}_{i+1} \\ & \\ \nabla_{\mathbf{K}_i} \mathbf{Y}_N \end{pmatrix} = \begin{pmatrix} \mathbf{R}_i \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{T}_j = \mathbf{P}_j + h \mathrm{diag}(f'(\mathbf{K}_j \mathbf{Y}_j + b_j))(\mathbf{I} \otimes \mathbf{K}_j)$$

and

$$\mathbf{R}_i = h \mathrm{diag}(f'(\mathbf{K}_i \mathbf{Y}_i + b_i))(\mathbf{Y}_i^\top \otimes \mathbf{I}).$$

Block triangular linear system for the gradients

$$\underbrace{\begin{pmatrix} \mathbf{I} & & & \\ -\mathbf{T}_{i+1} & \mathbf{I} & & \\ & \ddots & \ddots & \\ & & -\mathbf{T}_{N-1} & \mathbf{I} \end{pmatrix}}_{=\mathbf{T}} \underbrace{\begin{pmatrix} \nabla_{\mathbf{K}_i} \mathbf{Y}_{i+1} \\ & \\ \nabla_{\mathbf{K}_i} \mathbf{Y}_N \end{pmatrix}}_{=\nabla_{\mathbf{K}_i} \mathbf{Y}} = \underbrace{\begin{pmatrix} \mathbf{R}_i \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{=\mathbf{R}}$$

To compute matrix-vector product $(\nabla_{\mathbf{K}_i} \mathbf{Y}_N) \mathbf{v}$

- ► Multiply **Rv**
- ightharpoonup Solve (forward propagate) $\mathbf{T} \nabla_{\mathbf{K}_i} \mathbf{Y}_N = \mathbf{R} \mathbf{v}$
- Extract the last time step

The sensitivity equation

Symbolically

$$abla_{\mathsf{K}_i} \mathsf{Y}_{\mathsf{N}} = \mathsf{Q} \mathsf{T}^{-1} \mathsf{R}$$

where

$$\mathbf{Q} = [0, \dots, \mathbf{I}].$$

The transpose

$$\left(\nabla_{\mathbf{K}_i}\mathbf{Y}_{N}\right)^{\top} = \mathbf{R}^{\top}\mathbf{T}^{-T}\mathbf{Q}^{\top}$$

The Sensitivity Equation

$$(\nabla_{\mathbf{K}_i} \mathbf{Y}_N)^\top = \mathbf{R}^\top \mathbf{T}^{-T} \mathbf{Q}^\top$$

$$(\mathbf{R}_{i}^{\top} \quad \mathbf{0} \quad \dots \quad \mathbf{0}) \begin{pmatrix} \mathbf{I} & -\mathbf{T}_{i+1}^{\top} & & & \\ & \mathbf{I} & -\mathbf{T}_{i+2}^{\top} & & & \\ & & \ddots & \ddots & \\ & & & \mathbf{I} & -\mathbf{T}_{N} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{0} \\ \vdots \\ \mathbf{I} \end{pmatrix}$$

To multiply by the transpose

- Initialize with last step
- solve backward in time
- Extract the first step and multiply by $(\nabla_{\mathbf{K}_i} f_j)^{\top}$

ç

More about the sensitivity equation

To compute $(\nabla_{\mathbf{K}_i} \mathbf{Y}_N)^{\top}$ for all i's note that the same quantities are recomputed. Can be evaluated in $\mathcal{O}(N)$

For gradient based method the transpose is sufficient

Newton based methods require both forward sensitivities and adjoint.

Testing Derivatives

Task 1: Programming the derivative test as usual

Task 2: Programming the adjoint - the adjoint test

Code a - Computes $(\nabla_{\mathbf{K}_i} \mathbf{Y}_N) \mathbf{v}$

Code b - Computes $(\nabla_{\mathbf{K}_i} \mathbf{Y}_N)^{\top} \mathbf{u}$

Testing - for random \mathbf{u}, \mathbf{v}

$$\mathbf{u}^{\top}\left((\nabla_{\mathbf{K}_i}\mathbf{Y}_N)\mathbf{v}\right)=\mathbf{v}^{\top}\left((\nabla_{\mathbf{K}_i}\mathbf{Y}_N)^{\top}\mathbf{u}\right)$$