Sistemas Digitales

Tomás Agustín Hernández

1. Introducción a los sistemas de representación

Magnitud

Llamamos magnitud al tamaño de algo, dicho en una medida específica. Es representada a través de un sistema que cumple 3 conceptos fundamentales:

- Finito: Debe haber una cantidad finita de elementos.
- Composicional: El conjunto de elementos atómicos deben ser fáciles de implementar y componer.
- Posicional: La posición de cada dígito determina en qué proporción modifica su valor a la magnitud total del número.

Algunos de los sistemas de representación más utilizados son: binario, octal, decimal y hexadecimal.

Bases

Una base nos indica la cantidad de símbolos que podemos utilizar para poder representar determinada magnitud.

Base	Símbolos disponibles
2 (binario)	0, 1
8 (octal)	0, 1, 2, 3, 4, 5, 6, 7
10 (decimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16 (hexadecimal)	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Tabla 1: Bases más utilizadas

La tabla anterior representa los símbolos disponibles para las bases 2, 8, 10 y 16.

Consideremos por un momento que estamos en binario; ¿sería correcto que 1+1=2? ¡No! Porque 2 no es un símbolo válido en base 2.

Para indicar la base en la que está escrito un número, se coloca la base entre paréntesis en la esquina inferior derecha.

 $1024_{(10)}$: 1024 representado en base 10 (decimal)

Digitos/Bits

Sea $n \in \mathbb{Z}$, cuando decimos que tenemos n bits es lo mismo que decir que tenemos n dígitos.

- 0001: Representa el número 1 en binario, en 4 bits/dígitos.
- 0010: Representa el número 2 en binario, en 4 bits/dígitos.

Teorema de división

Es una manera de poder realizar un cambio de base de un número decimal a otra base. La representación en la otra base es el resto visto desde abajo hacia arriba.

$$a = k * d + r \ con \ 0 \le r < |d|$$

donde:

- = k = cociente
- \bullet d = divisor.
- r = resto de la división de a por d.

Pasaje del número $128_{(10)}$ a $128_{(2)}$ en 8 bits

$$128 = 64 * 2 + 0$$

$$64 = 32 * 2 + 0$$

$$32 = 16 * 2 + 0$$

$$16 = 8 * 2 + 0$$

$$8 = 4 * 2 + 0$$
$$4 = 2 * 2 + 0$$
$$2 = 1 * 2 + 0$$

$$1 = 0 * 2 + 1$$

Luego, $128_{(2)} = 1000\ 0000$

Bit más significativo / menos significativo

El bit más significativo en un número es el que se encuentra a la izquierda, mientras que el menos significativo es el que se encuentra a la derecha.

1000000₍₂₎

Tipos numéricos

Representemos números naturales y enteros a partir de la representación en base 2 (binario)

Sin signo: Representa únicamente números positivos. No se pueden utilizar los símbolos de resta (-) ni tampoco coma (,)

$$1_{(10)} = 01_{(2)}$$
$$128_{(10)} = 10000000_{(2)}$$

Signo + Magnitud: Nos permite representar números negativos en binario. El bit más significativo indica el signo

- 0: número positivo
- 1: número negativo.

$$18_{(10)} = \mathbf{0}0010010_{(2)}$$
$$-18_{(10)} = \mathbf{1}0010010_{(2)}$$

Representar números en S+M suele traer problemas porque el 0 puede representarse de dos maneras

$$+0_{(10)} = \mathbf{0}0000000_{(2)}$$

 $-0_{(10)} = \mathbf{1}0000000_{(2)}$

Para solucionar este problema, las CPU utilizan la notación Complemento a 2 (C_2)

Exceso m: Sea $m \in \mathbb{Z}$, decimos que un número n está con exceso m unidades cuando m > 0

$$n_0 = n + m$$

$$n = 1 \land m = 10 \longrightarrow n_0 = -9$$

Nota: n_0 indica el valor original de n antes de ser excedido m unidades.

Complemento a 2: Los positivos se representan igual.

El bit más significativo indica el signo, facilitando saber si el número es positivo o negativo. Cosas a tener en cuenta

- Rango: $-2^{n-1} hasta 2^{n-1} 1$
- Cantidad de representaciones del cero: Una sola
- Negación: Invierto el número en representación binaria positiva y le sumo uno.
 - \bullet $-2_{(2)} = inv(010) + 1$
 - $-2_{(2)} = 101 + 1$
 - $-2_{(2)} = 110$
- Extender número a más bits: Se rellena a la izquierda con el valor del bit del signo.
- Regla de Desbordamiento: Si se suman dos números con el mismo signo, solo se produce desbordamiento cuando el resultado tiene signo opuesto.

Overflow / Desbordamiento

Hablamos de overflow/desbordamiento cuando

- El número a representar en una base dada, excede la cantidad de bits que tenemos disponibles.
- lacktriangle Si estamos en notación C_2 al sumar dos números cambia el signo.

Acarreo / Carry

Ocurre cuando realizamos una suma de números binarios y el resultado tiene más bits que los números originales que estamos sumando

Suma entre números binarios

Se hace exactamente igual que una suma común y corriente.

Es importante prestar atención a la cantidad de dígitos que nos piden para representarlo, y en caso de estar en C_2 que el signo no cambie.

Hagamos sumas en C_2 (sin límite de bits)

Nota: El color azul indica el carry; El rojo indica qué es lo que produce overflow (cambio de signo).

Hagamos sumas en C_2 (límite de bits: 4)

Nota: Al tener un límite de 4 bits, en las sumas que tenemos carry terminamos teniendo overflow.

Resta entre numeros binarios

La resta entre números binarios debe realizarse en C_2 La idea es que A - B \equiv A + (INV(B) + 1)

Rango de valores representables en n bits

Sean $n, m \in \mathbb{Z}$ decimos que el rango de representación en base n y m bits acepta el rango de valores de: $[-n^m, n^m - 1]$ ¿Es posible representar el 1024 en binario y 4 bits? No.

- $2^4 = 16 \implies [-16, 15]$
- Pero, $1024 \notin [-16, 15]$
- Por lo tanto, 1024 no es representable en 4 bits.

Pasar número binario a decimal

1. Si tenemos el mismo número todo el tiempo podemos usar la serie geométrica

¿Qué número decimal representa el número $11111111111_{(2)}$?

$$\textstyle \sum_{i=0}^{j-1} 1 \cdot n^i = \frac{q^{n+1}-1}{q-1} \ Luego,$$

$$\sum_{i=0}^{9} 1 \cdot 2^{i} = 2^{10} - 1 = 1023$$

2. Si no tenemos el mismo número todo el tiempo podemos multiplicar cada dígito por la base donde el exponente es la posición del bit.

4

$$10_{(2)} = 1 * 2^1 + 0 * 2^0 = 2_{(10)}$$

Extender un número de n bits a m bits

Sea $n, m \in \mathbb{Z}$ donde n es la cantidad de bits inicial y m es la cantidad a la que se quiere extender.

$$n = 3 \land m = 8$$

- Signo + Magnitud y exceso m: Se extiende con 0's luego del signo.
 - En 3 bits, -2 = 110
 - En 8 bits, -2 = 10000010
- ullet Complemento 2 (C_2): Se extiende con el bit más significativo.
 - En 3 bits, -2 = 110

Cambios de base

Sea $n, m \in \mathbb{Z}$ dos bases distintas, para pasar de base n a base m se debe realizar el siguiente proceso

- Pasar el número a base decimal.
- Aplicar el teorema de división utilizando la base deseada.

Encontremos en base 5, el número que corresponde a $17_{(8)}$:

- $17_{(8)} = 1 * 8^1 + 7 * 8^0 = 15_{(10)}$
- Usando ahora el teorema de división
 - 15 = 3 * 5 + 0
 - 3 = 0 * 5 + 3
 - Luego, $30_{(5)}$
- Por lo tanto, $17_{(8)} = 30_{(5)}$

2. Desplazamientos

Utilizamos los desplazamientos para poder mover los bits. Cada casillero representa los bits.

■ Desplazamiento hacia la izquierda: Se desplazan los bits del dato tantas posiciones como se indiquen a la izquierda. $variable \ll cantidad$

Posición	<i>V</i> ₃	V ₂	v_1	<i>v</i> ₀
а	1	0	1	0
<i>c</i> = <i>a</i> ≪ 2	1	0	0	0

 Desplazamiento lógico hacia la derecha: Se aplica desplazando los bits del dato tantas posiciones como se indiquen a la derecha.

 $variable \gg_l cantidad$

Posición	<i>V</i> 3	V ₂	<i>V</i> ₁	<i>v</i> ₀
а	1	0	1	0
$c=a\gg_l 2$	0	0	1	0

■ Desplazamiento aritmético hacia la derecha: Se aplica desplazando los bits del dato tantas posiciones como se indiquen a la derecha, pero copiando el valor del bit más significativo. $variable \gg_a cantidad$

Posición	<i>V</i> ₃	V ₂	v_1	<i>v</i> ₀
а	1	0	1	0
$c = a \gg_a 2$	1	1	1	0

3. Operaciones lógicas

• OR (+): (1, 0), (0, 1), (1, 1) = 1

• AND (*): (1, 1) = 1

■ XOR (\oplus): (1, 0), (0, 1) = 1

4. Circuitos combinatorios

Negación

Sea p una variable proposicional, el opuesto de p lo escribimos como \bar{p} .

$$p = 1 \iff \bar{p} = 0$$

Propiedades para operaciones lógicas

Propiedad	AND	OR
Identidad	1.A = A	0 + A = A
Nulo	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inverso	$A.\overline{A}=0$	$A+\overline{A}=1$
Conmutatividad	A.B = B.A	A+B=B+A
Asociatividad	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Operaciones booleanas

Se resuelven utilizando las propiedades para operaciones lógicas

Verifique si son equivalentes $(X + \bar{Y} = \overline{(\bar{X} * Y)} * Z + X * \bar{Z} + \overline{(Y + Z)})$

 $\blacksquare \ \overline{\bar{X}*Y}*Z + X*\bar{Z} + (\bar{Y}*\bar{Z}) \implies De \ Morgan$

 $\blacksquare \ (X + \bar{Y}) * Z + \underline{X} * \bar{Z} + (\bar{Y} * \bar{Z}) \implies De \ Morgan \ \land \ Distributiva$

 $\quad \blacksquare \ (X+\bar{Y})*Z+\bar{Z}*(X+\bar{Y})$

 $\quad \blacksquare \ (X + \bar{Y}) * 1 \implies Identidad$

 $-(X+\bar{Y})$

Nota: También se pueden probar equivalencias utilizando tablas de verdad

Funciones booleanas

 \blacksquare AND = A * B

OR = A + B

• NOT = \bar{A}

Tablas de verdad

Nos permiten observar todas las salidas para todas las combinaciones de entradas dada una función. Veamos un ejemplo con una función F:

$$Sea\ F = X + \bar{Y}$$

Protip: El símbolo de + indica OR porque 1 + 0 = 1 mientras que el símbolo AND indica * porque 1 * 0 = 0

X	Y	F
1	1	1
1	0	1
0	1	0
0	0	1

Compuertas

Son modelos idealizados de dispositivos electrónicos que realizan operaciones booleanas.

Nombre	Símbolo gráfico	Función algebraica	Tabla verdad
AND	A F	F = A • B or F = AB	AB F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A F	F = A + B	AB F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	$A \longrightarrow \hspace{-3mm} \longrightarrow \hspace{-3mm} F$	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = (\overline{AB})$	AB F 00 1 01 1 10 1 11 0
NOR	A F	$F = (\overline{A + B})$	AB F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B	$F = A \oplus B$	A B A XOR B 0 0 0 0 1 1 1 0 1 1 1 0

Nota: XOR = \oplus Nota: Estas compuertas devuelven una única salida. Imaginemos que tenemos solamente NAND ¿Como podemos conseguir una AND? Aplicando una NAND luego de la otra. Enlace a Electronic HyperPhysics

Compuertas Universales

Nos permiten obtener otros operadores.

 $\blacksquare \ \mathrm{NAND} = \overline{A \wedge B}$

- NOR = $\overline{A \vee B}$
- XNOR = $\overline{A \oplus B}$ = Si son iguales es V

Compuertas en SystemVerilog

- A AND B (A * B) = (assign O = A & B)
- A OR B (A + B)= assign $A \mid B$
- \blacksquare A XOR B = assign A \wedge B
- NOT A $(\bar{a}) = (\sim A)$

Caja Blanca / Caja Negra en Circuitos

Registro Z (16)

Registro Y (16)

Inviar ADD

Enviar AND

Enviar AND

Enviar IOR

Enviar NOT

Enviar RAL

SALIDAS

(b) Caja Negra. 16 indica los bits de entrada & salida

Nota: Ov indica Overflow

Entradas / Salidas de un circuito

Se representan con flechas. En SystemVerilog se llaman input y output.

```
module ALU #(parameter DATA_WIDTH = 16)
          (input [DATA_WIDTH-1:0] operandoZ,
          input [DATA_WIDTH-1:0] operandoY,
          input [2:0] opcode,
          output [DATA_WIDTH-1:0] salidas,
          output overflow);
end module;
```

Nota: En las ALU no son funcionalmente iguales ni las entradas ni las salidas.

Entradas y salidas: Datos vs Control

- Datos: Indican lo que tratamos de transformar.
 - Entrada: Registro Z y Registro Y.
 - Salida: El resultado de la operación
- Control: Indican como transformamos los datos.
 - Entrada: Enviar ADD, Enviar AND, Enviar XOR, ...
 - Salida: Ov

Mecanismo de Traducción fórmula a circuito

Llamaremos ϕ a una fórmula proposicional cualquiera

- 1. Solo consideramos de la función F, las filas verdaderas.
- lacktriangle 2. Cada fila verdadera tendrá su índice, y en ese índice estarán los valores de cada variable proposicional. Representamos a esa fila verdadera como t_i
- 3. Realizamos la conjunción de todas las variables de ese t_i
- 4. Realizamos la disyunción de todas las conjunciones de t_i

Un ejemplo:

Sea
$$F = X + \bar{Y}$$

X	Y	F
1	1	1
1	0	1
0	1	0
0	0	1

- \blacksquare F es solamente verdadera en la primera, segunda y tercer fila por lo tanto tenemos t_1 t_2 y t_3
- Por cada fila, hacemos la conjunción de los valores
 - $x_1 \wedge x_2$
 - $\bar{x_1} \wedge x_2$
 - $\bar{x_1} \wedge \bar{x_2}$
- \blacksquare Realizamos la disyunción de todos los t_i
 - $(x_1 \wedge x_2) \vee (\bar{x_1} \wedge x_2) \vee (\bar{x_1} \wedge \bar{x_2})$
- ullet El resultado nos da ϕ' que es una suma de productos y nos permite traducir fácilmente a un circuito combinatorio

Carry en circuitos

El carry debe colocarse en los circuitos en la suma porque en caso de no hacerlo, se nos pierden casos.

Si eliminamos el carry se nos pierde el caso 1+1, por lo tanto lo ideal sería que al hacer una suma nos quede así:

Nota: El carry es representado con un AND porque en la tabla de verdad solo da uno cuando A=1 y B=1. Luego, la función Sum es un XOR.

Sumadores

Los sumadores nos sirven para poder realizar operaciones entre bits. Es importante recalcar que llamamos half-adder a un sumador de 1 bit, donde solamente tiene una entrada A de 1 bit y una entrada B de 1 bit. Un sumador de 1 bit requiere:

- Dos entradas A y B de 1 bit
- Una compuerta XOR (para la suma): solo el resultado es 1 o 0
- Una compuerta AND (para el carry): si la suma del XOR es 1+1

Veamos un ejemplo con un sumador completo de 3 entradas: Si para dos entradas necesitabamos un sumador simple,

Nótese que para considerar si es carry al final de toda la suma o no usamos un or porque nos basta con que uno haya arrojado carry.

Inversor

- Si me mandan INV=1 entonces tengo que invertir los bits.
- La manera de hacer esto es utilizando un XOR.

Multiplexor

Está conformado por varias entradas de control y entradas de datos. Existe una única salida.

- lacksquare Entradas de control: se indican de la manera c_n
- ullet Entradas de datos: se indican de la manera e_n

Te ayuda a ahorrar recursos, pero todas las acciones tardan mucho más tiempo porque solo se ejecuta una a la vez. Nos garantiza que la información solo se envía por un único canal.

Para poder calcular la cantidad de entradas de control c_n que necesito para una cantidad m de entradas de datos e_m hago el siguiente cálculo: m < 2^l hasta que me pase por primera vez.

- Entradas de datos: 30.
- Entradas de control: Necesito 5 entradas de control porque 2⁵ es 32.

Cada entrada de control tiene un índice que podemos decirle individuo, por ejemplo, si tengo 2^l entradas tengo 32 posibles combinaciones.

■ Si tengo 00010 significa que la persona que está hablando la persona 2.

En los Multiplexores existen difurcaciones, que cuando llegamos a una de ellas se nos desvía el camino enviándonos a una compuerta. Si en algún momento se llega a un valor 0, entonces decimos que el camino ya finalizó.

Nótese que el multiplexor elige un camino u otro según OP; OP toma los valores de 00, 01, 10 y 11. En base a qué se envía como entrada de control el multiplexor decide qué entrada habilitar para dar la salida. En este caso, OP: 1 0 (marcado en rojo) corresponde a la opción de realizar A AND B bit a bit

Timing

En un circuito combinatorio el tiempo que tarda la salida en estabilizarse depende de la cantidad de capas de compuertas (latencia). Para enfrentar el problema usamos secuenciales.

Latchs

Utilizan realimentación, es decir, la salida de una compuerta como entrada de otra.

Latch RS

Tiene dos entradas: S (Set) y R (Reset), y dos salidas, Q y \bar{Q} y consiste en dos puertas NOR conectadas por realimentación El circuito es consistente permanece estable \iff S = R = 0. Tabla de verdad del Latch

S	R	Q	\overline{Q}
1	0	1	0
0	1	0	1
0	0	Q*	$\overline{Q}*^{1}$
1	1	0	0

Funciona como un memorizador

- \blacksquare Cuando S está prendido entonces Q = 1.
- Cuando Q está prendido entonces $\bar{Q} = 1$.
- Si ninguno está prendido recuerda el estado anterior.
- ullet Si ambos están prendidos, Q=0 y $\bar{Q}=0$. Este caso no debería estar permitido porque la salida es inconsistente.

Para recordar el estado anterior usamos la notación de: Q* y $\bar{Q}*$

Importante: El valor de las salidas depende de la implementación del latch. Por lo tanto, un Latch con NAND no sería lo mismo que un Latch con NOR.

Latch JK

Acepta todas las combinaciones posibles de las entradas.

- \blacksquare Cuando J está prendido entonces Q = 1.
- \blacksquare Cuando K está prendido entonces $\bar{Q}=1.$
- Si ninguno está prendido recuerda el estado anterior.
- Si ambos están prendidos, niega el estado anterior (¡necesita que haya un estado anterior!)

Cuando J y K son 1, la función realizada se denomina función de conmutación, la salida se invierte. El circuito oscila (estado inestable)

Latch D

Es un almacén para un bit de datos. La salida del Latch D es siempre igual al valor más reciente aplicado a la entrada y por lo tanto la recuerda y la produce.

Tiene una entrada de datos y una de control.

Este circuito es estable en todos los estados pero los tiempos no se pueden predecir porque dependen de D y puede causar carreras si existe un lazo en el circuito externo

- Cuando D está apagado y C está prendido, se memoriza C.
- Si ambos están prendidos, se memoriza D.
- En cualquier otro caso, devuelve el valor memorizado.

Control de transición de estados: Clock

El clock que necesitamos utilizar es el 3ro. ¿Por qué? Porque nos interesa solamente memorizar o guardar los estados de los valores cuando el clock está en el pico.

No necesitamos estar constantemente escuchando cambios con el clock, sino que nos interesa solo en la subida. Para solucionar este problema, podemos utilizar un detector de pulso.

Es importante notar, que el detector de pulso dará 1 (el pico) en algunos casos porque la compuerta NOT tiene un pequeño delay para poder negar la entrada. A continuación se muestra un ejemplo de esto.

La línea punteada indica el tiempo que tardó la entrada en ser negada. En ese momento es donde se nos ejecutan los picos que nosotros necesitamos.

Si mandamos input = 1, el primer momento queda 1 AND 1 y el AND es verdadero, pero luego de un momento queda 1 AND 0 y ahora la señal vuelve a estar baja. Si fuese 1 AND 1 todo el tiempo tendríamos un clock constante y no necesitamos eso.

Todas las compuertas tienen delay porque al estar compuestas de silicio, tardan un poco en entrar en calor.

Flip-Flop JK

Está armado en base a Latch JK + Clock.

El Latch JK funcionará igual pero solo memorizará el valor sii el clock está en el flanco de subida.

- Cuando J es 1 y el clock está prendido, se guarda el valor de J.
- Cuando K es 1 y el clock está prendido, se guarda el valor de K.
- Cuando el clock está apagado devuelve el valor de J/K guardado en el último pulso al clock.

- Cuando el clock está apagado y J, K = 1 se niega el resultado guardado en el último pulso al clock.
- En cualquier otro caso, sucede el ítem anterior.

Flip-Flop D

Está armado en base a Latch D + Clock.

El Latch D funcionará igual pero solo memorizará el valor sii el clock está en el flanco de subida.

- Cuando el clock es 1, guarda el valor de D en ese instante.
- Cuando el clock está apagado, devuelve el valor de D guardado en el último pulso al clock. En criollo: Guarda el valor de D hasta que haya otro flanco de subida (ciclo) y guarde uno nuevo.

Nota: 1 ↑ indica que solo es se evalúa cuando está en el flanco de subida.

Registros

Para poder escribir registros necesitamos una entrada de control Enable que nos permitirá decirle al Flip-Flop cuando nosotros queremos permitir que nos cambie el valor / escriba la memoria.

Este flag de Enable deberá ir en un AND con el Clock, entonces si Enable = 1 y el Clock está en 1, entonces se le permite al Flip Flop guardar el valor de la operación realizada.

Recuerdo: El Flip Flop D solo almacena 1 bit. Si necesitaramos almacenar n bits (registro de n bits) necesitaríamos n Flip Flop D y UN solo Enable/Clock.

Componentes de Tres Estados

Apagado, Encendido y Desconectado. Al estado Desconectado le decimos que es de Alta Impedancia y se simboliza Hi-Z

Bus

Nos va a servir para poder conectar varios componentes. Es una vía de n bits que van a estar conectando todos los componentes de nuestra arquitectura.

Cada dispositivo sería cualquier operación, por ejemplo cada dispositivo podría ser un Flip-Flop D.

Ej.: Si $Dispositivo_0$ tendría el número 2 escrito en 4 bits (0010) y el $Dispositivo_1$ tendría el número 4 escrito en 4 bits (0100) entonces el bus tendría el valor de 6. Esto es un problema, porque básicamente se está haciendo una especie de conjunción de todas las cosas y no siempre vamos a querer que se haga de esa forma. Aquí aparece un concepto importante llamado Recurso Compartido.

Llamamos **recurso compartido** cuando tenemos más de un componente/dispositivo conectado en un mismo bus y necesitamos decidir quién usa cada componente.

Para prender uno de los dispositivos y no los demás, bastaría con poner en 1 el dispositivo que quiero mientras que los demás en 0.

Reset

Coloca en 0 el componente. Comúnmente, el reset es asincrónico.

Write Enable y Enable Out

Son dos instrucciones. No pueden pasar ambas a la vez. O escribimos, o leemos. Cada vez que hacemos el cambio de estado de Enable Out o Write Enable, en algún momento deberán volver al estado anterior.

Esquema de interconexión de n registros

Ahora nos queda realizar el esquema

Utilizo 3 Flip-Flop D con la posibilidad de escribir cuando el clock está activo y un botón de reset Se añade un EnableOut para que se muestre el dato almacenado con lo armado en el paso 1

¿Como podríamos copiar el dato de R1 a R0?

- \blacksquare Utilizo Enable Out en R1 Enable
Out-1 \leftarrow 1
- \blacksquare Habilito Write Enable en R0 - Write Enable-
0 $\leftarrow 1$
- Espero que el Clock esté funcionando en R0
- \blacksquare Deshabilito Write Enable en R0 - Write Enable-
0 $\leftarrow 0$
- \blacksquare Deshabilito Enable Out en R1 Enable
Out-1 $\leftarrow 0$

De esta manera podemos pasar datos entre registros.

5. Máquinas de estado

Los circuitos secuenciales pueden ser pensados formalmente como una Máquina de Estados Finitos o FSM. Una máquina de estados queda definida por:

- Una lista de estados.
- Un estado inicial.
- Una lista de funciones que disparan las transiciones en función de las entradas.

Diagramas de estado

Nos indican el comportamiento de los circuitos secuenciales en base al estado y como van avanzando

Nota: $x^{'}$ indica la variable negada.

FSM - Moore

La salida depende solo del estado actual.

- La salida siempre cambia un clock después que se dispara la condición de transición.
- No produce glitches a la salida.
- La cantidad de estados para reproducir cierto comportamiento puede ser más grande que con otro tipo de FSM.

FSM - Mealy

La salida depende del estado actual y las entradas.

- La salida pueda cambiar dentro del mismo clock en que se dispara la condición de transición.
- Produce glitches a la salida.
- La cantidad de estados para reproducir cierto comportamiento es más chica que en Moore.

Lógica de próximo estado

Implementar una FSM en base a un registro de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador. Usando flip-flops D y compuertas básicas a elección.

Nos piden además que el componente a desarrollar cuente con una entrada de Reset.

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	1	0	0
0	0	1	0
1	0	1	1
1	1	0	0

¿Qué valores deberían tener D_1 y D_0 para obtener los valores deseados en el tiempo t+1, es decir, $Q_1(t+1)$ y $Q_0(t+1)$ Usamos un flip-flop D, para que en vez de usar asignaciones dependa del estado anterior.

$$egin{aligned} D_0 &= (Q_1.ar{Q}_0) \ D_1 &= (ar{Q}_1.ar{Q}_0) + (Q_1.ar{Q}_0) \ &= (ar{Q}_1 + Q_1).ar{Q}_0 \ &= 1.ar{Q}_0 \ &= ar{Q}_0 \end{aligned}$$

Lógica de salida

Consiste en hacer foco en como se deben vincular los estados porque muchas veces no nos es suficiente inferir comportamiento solo con la salida. Veamos un claro ejemplo donde tenemos que hacer uso de la lógica de salida porque debemos conocer el estado para poder conocer el siguiente valor. 00, 01, 11, y 10 son salidas.

Para poder decidir esto, usamos etiquetas de estado.

Renombremos a los estados con nombres únicos, por ejemplo:

Nota: S_n n es el estado y el valor asignado es la codificación.

TODO: Preguntar como hizo para calcular la suma de productos en base a los estados.

Arquitectura

Observación: Nosotros vamos a manejarnos con 32 registros y data de 4 bytes.

¿Qué constituye una arquitectura?

- El conjunto de instrucciones
- El conjunto de registros
- La forma de acceder a la memoria

Observación: Utilizaremos la arquitectura Risc V como programa de Assembler en la materia.

Observación 2: El lenguaje ensamblador depende de cada arquitectura. Cuando un lenguaje es compilado, traduce a la arquitectura de tu equipo.

Pasaje de lenguaje de alto nivel a bajo nivel

Para esto se necesitan programas de compilado, ensamblado y enlazado.

- El código de alto nivel es traducido por el compilador para pasar a código de bajo nivel.
- El código de bajo nivel es traducido por el ensamblador y se convierte en un código objeto (archivos .o).
- El código objeto es traducido por un enlazador y termina siendo binario ejecutable.

Operaciones en Risc V

Reciben el nombre de mnemónico e indica el tipo de operación que queremos realizar. Las operaciones reciben: **operandos de fuente** y un **operando destino**

$$a = b + c \equiv add \ a, \ b, \ c$$

El operando destino a sería el primer parámetro del mnemónico add, mientras que los operandos fuente serían b y c.

Instrucciones atómicas y compuestas

Es exactamente lo mismo que en lógica. Las operaciones se separan y deben indicarse claramente como se realizan. Las instrucciones atómicas son aquellas que nos devuelven un valor irreducible, mientras que las instrucciones compuestas nos devuelven algo reducible.

Calculemos: a = b + c - d

- \bullet add t, b, c # t=b+c
- $sub\ a$, t, d # a=t-d

Comentarios en Risc V

Usamos # para comenzar una línea de comentarios.

Registros en Risc V - Register File

Cuenta con 32 registros que son implementados como un arreglo de memoria estática de 32 bits con varios puertos. Los registros pueden nombrarse por su índice, desde x0 a x31 o según su uso habitual.

- El registro zero (x0) almacena siempre el valor 0, y no puede ser escrito.
- Los registros s0 a s11 y los t0 a t6 se utilizan para almacenar variables.
- ra y de a0 a a7 tienen usos relacionados a llamadas de función.

31	0
x0 / zero	Alambrado a cero
x1 / ra	Dirección de retorno
x2 / sp	Stack pointer
x3 / gp	Global pointer
x4 / tp	Thread pointer
x5 / t0	Temporal
x6 / t1	Temporal
x7 / t2	Temporal
x8 / s0 / fp	Saved register, frame pointer
x9 / s1	Saved register
x10 / a0	Argumento de función, valor de retorno
x11 / a1	Argumento de función, valor de retorno
x12 / a2	Argumento de función
x13 / a3	Argumento de función
x14 / a4	Argumento de función
x15 / a5	Argumento de función
x16 / a6	Argumento de función
x17 / a7	Argumento de función
x18 / s2	Saved register
x19 / s3	Saved register
x20 / s4	Saved register
x21 / s5	Saved register
x22 / s6	Saved register
x23 / s7	Saved register
x24 / s8	Saved register
x25 / s9	Saved register
x26 / s10	Saved register
x27 / s11	Saved register
x28 / t3	Temporal
x29 / t4	Temporal
x30 / t5	Temporal
x31 / t6	Temporal
32	
31	0

El registro PC es el Program Counter y lleva el registro de lo que se está ejecutando en un momento dado. Hagamos el cálculo que habiamos hecho antes (a = b + c - d) pero con las variables en los registros.

- # s0 = a, s1 = b
- # s2 = c, s3 = d, t0 = t
- \bullet add t0, s1, s2 # t=b+c
- \blacksquare sub s0, t0, s3 # a=t-d

Nota: los valores que toman las operaciones no pueden ser de 32 bits porque la operación en sí ya ocupa 5 bits. Preguntar: ¿Cómo es que s0 tiene efectivamente a **a**, s1 tiene a **b**?

Valores inmediatos

Son valores constantes que se utilizan como operandos. Se encuentran disponibles en la misma instrucción y no hace falta recuperar su valor a partir de un registro o desde la memoria.

El valor puede escribirse en decimal, hexadecimal (prefijo 0x) o binario (prefijo 0b).

Los valores inmediatos son de 12 bits y se extiende con el bit de signo a 32 bits antes de operar.

- # s0 = a, s1 = b
- $addi \ s0, \ s0, \ 4 \# a = a + 4$
- \bullet addi s1, s0, -12 # b= a 12

En este caso, el 4 y el -12 son extendidos a 32 bits para poder operar.

Asignación

Se hace zero + lo que queremos asignar. Consideremos que s0 = i

 \bullet addi s0, zero, 4 # i = 4

Valores inmediatos de 32 bits

С	Symple HUY Especiais RISC V
int a = 0×ABCDE123;	lui s2, 0xABCDE #s2=0xABCDE000 addi s2, s2, 0x123 #s2=0xABCDE123

Como los valores inmediatos son de 12 bits y se los extiende respetando el signo a 32 bits cuando realizamos una operación, cargar una constante de 32 bits requiere que hagamos dos operaciones. Primero cargamos los veinte bits más altos con la instrucción lui(load upper inmediate) y luego los 12 bits más bajos con un addi como veníamos haciendo.

¿La idea sería pasar de derecha a izquierda, o pasar lo de la izquierda a la derecha?

¿Por qué los bits más altos son considerados ABCDE?

¿Cual es la regla para decir cuales son altos o bajos? (en este contexto manual) Lo que no entiendo es, los bits mas altos están seleccionados a mano (ABCDE) y los más bajos también (123) pero no podrían ser los más altos ABCD y los más bajos E123?

С	RISC V
int a = 0xFEEDA987;	lui s2, 0xFEEDB #s2=0xFEEDB000 addi s2, s2, -1657 #s2=0xFEEDA987

Si la parte baja se expresa como un número negativo (bit más alto en 1), al extender el signo va a cargar con unos la parte alta. Por eso tenemos que tener esto en cuenta. La parte alta con todos unos equivale a un menos uno en complemento a dos, por lo cual, para compensar el efecto de la extensión del signo en la suma, se incrementa en uno la parte alta que vamos a cargar. En el ejemplo hacemos lui s2, 0xFEEDB en lugar de lui s2, 0xFEEDA.

Cuando dice que la parte baja se expresa como un número negativo ¿está tratando de decir que el valor inmediato de la suma es -1657?