

Neural Circuits for Fast Poisson Compressed Sensing the in the Olfactory Bulb

As reviewed by Chaebeom Sheen

Paper from NeurIPS 2023

Date: February 7th, 2025

cauchybs@snu.ac.kr

1. Introduction

1. Introduction

@ SNU CN

- Vision and audition are the most studied sensory modalities in neuroscience. Encoding for these modalities can be derived from *orientation* or *frequency*, which map directly onto neural representations.
- The neural encoding of olfaction is less understood.
- The authors propose a Poisson Compressed Sensing Model to understand the neural encoding of olfaction in the mammalian olfactory bulb (primarily mouse and human).
 - Why Compressed Sensing?: With only a few hundred different types of olfactory receptors, humans can distinguish between millions of different odors.

• Strengths:

- a. The PCS model *maps directly* onto the circuits of the bulb, without requiring an axis-aligned coding which is biologically implausible.
- b. The PCS model allows fast, accurate inference by considering the geometry of the olfactory bulb.

1. Anatomy of the Olfactory Bulb

- An important distinction between Poisson compressed sensing and earlier models is that earlier, Gaussian models assumed axis-aligned coding (where one granular neuron is responsible for one odorant), which is biologically implausible.
- The goal of the PCS model is Bayesian inference of the odorant concentration $\mathbf{c} \in \mathbb{R}^{n_{\text{odor}}}$ given a single spike train in the oral epithelium $\mathbf{s} \in \mathbb{R}^{n_{\text{OSN}}}$.
- It is assumed that the mean activity of the OSN is given by a linear-affine function,

$$\mathbf{s} | \mathbf{c} \sim \mathrm{Poisson}(\mathbf{r} + \mathbf{A}\mathbf{c}) \ \mathbf{c} \sim \mathrm{Gamma}(oldsymbol{lpha}, oldsymbol{\lambda})$$

• Given this likelihood and prior, the MAP (maximum a posteriori) estimate of the concentration is given by gradient ascent as

$$\dot{\mathbf{c}}(t) =
abla_c \left[\log p(\mathbf{s}|\mathbf{c}) p(\mathbf{c})
ight] + oldsymbol{\eta}(t)$$

• Where $\eta(t)$ is n_{odor} -dimensional white noise with zero mean and $\mathbb{E}[\eta_j(t)\eta_{j'}(t')] = 2\delta_{jj'}\delta(t-t')$.

• Based on our prior and likelihood, computing the gradient of the log posterior is straightforward

$$egin{aligned}
abla_{\mathbf{c}} \log p(\mathbf{s}|\mathbf{c}) &= \mathbf{A}^T \left(rac{\mathbf{s}}{\mathbf{r} + \mathbf{A}\mathbf{c}} - 1
ight) \
abla_{\mathbf{c}} \log p(\mathbf{c}) &= rac{oldsymbol{lpha} - 1}{\mathbf{c}} - oldsymbol{\lambda} \end{aligned}$$

- However, in this setup there is one-to-one mapping between nurons and odorants. Assume a population n_q of neurons which map to \mathbf{c} through a matrix $\Gamma \in \mathbb{R}^{n_{\text{odor}} \times n_g}$ so that $\mathbf{c} = \Gamma \mathbf{g}$.
- A classic result in stochastic gradient MCMC tells us that given $\Gamma\Gamma^T$ is positive definite and τ_g is the time constant of the neurons, the following dynamics will converge to a MAP.

$$au_g \dot{\mathbf{g}}(t) = \Gamma^T
abla_{\mathbf{g}} \log p(\mathbf{g}|\mathbf{s}) + oldsymbol{\xi}(t)$$

• Inputting the above we have

$$au_g \dot{\mathbf{g}}(t) = (A\Gamma)^T \left(rac{\mathbf{s}}{\mathbf{r} + \mathbf{A}\Gamma\mathbf{g}} - 1
ight) + \Gamma^T \left(rac{oldsymbol{lpha} - 1}{\Gamma\mathbf{g}} - oldsymbol{\lambda}
ight) + oldsymbol{\xi}(t)$$

- This dynamic system contains divisive non-linearities, which are difficult to simulate.
- To linearize the system, we introduce two new populations of neurons \mathbf{p} of size n_{OSN} and \mathbf{b} of size n_{odor} which have as their fixed points $\frac{\mathbf{s}}{\mathbf{r} + \mathbf{A} \mathbf{\Gamma} \mathbf{g}}$ and $\frac{\boldsymbol{\alpha} 1}{\mathbf{\Gamma} \mathbf{g}}$ respectively.
- The dynamics of **p** and **b** are given by

$$au_p \dot{\mathbf{p}}(t) = \mathbf{s} - (\mathbf{r} + \mathbf{A} \Gamma \mathbf{g}) \odot \mathbf{p}$$
 $au_b \dot{\mathbf{b}}(t) = oldsymbol{lpha} - 1 - oldsymbol{\Gamma} \mathbf{g} \odot \mathbf{b}$

• where \odot is element-wise multiplication. In the steady state regime where $\tau_p, \tau_b \downarrow 0$, the dynamics of \mathbf{g} are given by the initial equation.

• Putting all of this together, the dynamics of the system are given by

$$egin{aligned} \mathbf{c} &= \Gamma \mathbf{g} \ & au_p \dot{\mathbf{p}}(t) = \mathbf{s} - (\mathbf{r} + \mathbf{A} \Gamma \mathbf{g}) \odot \mathbf{p} \ & au_b \dot{\mathbf{b}}(t) = oldsymbol{lpha} - 1 - oldsymbol{\Gamma} \mathbf{g} \odot \mathbf{b} \ & au_g \dot{\mathbf{g}}(t) = (A\Gamma)^T (p-1) + \Gamma^T (\mathbf{b} - oldsymbol{\lambda}) + oldsymbol{\xi}(t) \end{aligned}$$

- where $\boldsymbol{\xi}(t)$ is n_g -dimensional white noise with zero mean and $\mathbb{E}[\boldsymbol{\xi}_j(t)\boldsymbol{\xi}_{j'}(t')] = 2\tau_g\delta_{jj'}\delta(t-t')$.
- The converge to that MAP is relegated to the appendix, and will not be discussed here.
- The authors show that **p**, which encodes the divisive difference between prediction and observation, are **projection neurons** (mitral cells), **g**, which encodes the MAP, are **granular neurons**, and **b**, which encodes the prior, is **cortical feedback** from the brain.
- Meanwhile \mathbf{A} encodes the sensitivity of the OSN to the odorant, while $\mathbf{A}\mathbf{\Gamma}$ encodes the synaptic weights of the mitral and granule-cells, coupled by dendrodendritic synapses.

- A can be selected using Calcium imaging.
- The choice of Γ is more difficult, as our model contains simplifications.
- For fast inference, the authors realize that the firing rates of each mitral cell should be independent of the firing of other mitral cells, thus we choose Γ so that $\Gamma\Gamma^T = aA^TA$ with $a \in \mathbb{R}_+$ some constant. This is called **geometry-aware code**, as it respects the geometry of mitral firing.
- Code which does not satisfy this condition is called **naively-distributed**. As a control, the authors select Γ so that $\Gamma\Gamma^T = k\mathbf{I}$.
- This is further compared with **one-to-one** coding where $\Gamma = \mathbf{I}$ with $n_g = n_{\text{odor}}$.

3. Results

3. Results: PMC shows state-dependent inhibition

3. Results: Quick and accurate inference is possible

3. Results: Dynamic Inference in a noisy world is possible

4. Conclusion

4. Conclusion

- The authors demonstrate a Poisson Compressed Sensing model for the olfactory bulb which is both biologically plausible and computationally efficient.
 - The model is based on a Bayesian inference of the MAP of the odorant concentration given a spike train in the olfactory epithelium.
 - The MAP is found by Langevin dynamics approximating gradient ascent in the granular neurons.
 - The model respects the anatomy of olfactory bulb, in terms of the dendrodendritic coupling of mitral and granule neurons as well as the synapses in the glomerulus.
 - Geometry-aware coding is shown to be more efficient than one-to-one coding, and shows Bayesian inference in biological time scales (200ms).

• Significance

- The new model naturally respects the microanatomy of the olfactory bulb.
- The authors demonstrate distributed coding can lead to faster inference than axis-aligned coding.

• Limitations

 \circ Synaptic plasticity is not considered, and the way in which **A** and **A** Γ are learned remains unclear.