Soluciones

- **P1)** Las opciones a), b) y d) son correctas. En el apartado c), el vector (2,1,1) es no nulo pero n(2,1,1)=0.
- P2) Por definición del producto escalar asociado a una norma,

$$||x + y||^2 + ||x - y||^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

= $\langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle + \langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle = 2||x||^2 + 2||y||^2.$

Si tomamos los vectores x = (1,0) e y = (0,1), entonces $||x||_1 = ||y||_1 = 1$ y $||x+y||_1 = ||x-y||_1 = 2$. Por tanto, $||x+y||^2 + ||x-y||^2 = 8$ pero $2||x||^2 + 2||y||^2 = 4$.

- **P3)** Es falso porque, si tomamos los vectores x = (1,1) e y = (-1,-1), entonces existe $\lambda = -1$ tal que $y = \lambda x$. Sin embargo, ||x + y|| = 0 pero $||x|| + ||y|| = 2\sqrt{2}$.
- **P4)** a) $A = \text{int}(A) \cup \text{fr}(A)$ es falso. Basta elegir $A = (a, b) \subset \mathbb{R}$. Entonces int A = (a, b) y fr $A = \{a, b\}$. Por tanto, int $(A) \cup \text{fr}(A) = [a, b] \neq A$.
 - b) $A \subset A'$ es falso. Si $A = \{a, b\} \subset \mathbb{R}$, entonces $A' = \emptyset$.
 - c) A es abierto si y sólo si $A \cap fr(A) = \emptyset$ es verdadero.

Por un lado, si A es abierto, supongamos que existe $x \in A \cap fr(A)$. Como $x \in A$, entonces existe r > 0 tal que $B(x, r) \subset A$, es decir $B(x, r) \cap A^c = \emptyset$. Pero, como $x \in fr(A(, B(x, r) \cap A^c \neq \emptyset)$, lo que es absurdo.

Recíprocamente, si $A \cap fr(A) = \emptyset$, dado $x \in A$, entonces $x \notin fr(A)$. Por tanto, existe r > 0 tal que $B(x, r) \cap A^c = \emptyset$, de donde $B(x, r) \subset A$. Así pues, A es abierto.

d) A es cerrado si y sólo si $fr(A) \subset A$ es verdadero.

Si A es cerrado, dado $x \in fr(A)$, entonces $x \in \overline{A}$. Como $\overline{A} = A$, entonces $x \in A$. Por otra parte, si $fr(A) \subset A$, entonces $\overline{A} \subset A$, de donde A es cerrado.

- **P5)** Todas las proposiciones son correctas.
 - a) Veamos en primer lugar que, si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.

Para ello, si $x \in \overline{A}$, entonces $B(x,r) \cap A \neq \emptyset$, para todo r > 0. Como $A \subset B$, entonces $B(x,r) \cap B \neq \emptyset$, para todo r > 0, de donde $x \in \overline{B}$.

Así pues, si A es acotado, existe k>0 tal que $A\subset B(0,k)$. Por tanto, $\overline{A}\subset \overline{B}(0,k)$. Como A' es cerrado y A' $\subset \overline{A}$, entonces A' $\subset \overline{B}(0,k)$, de modo que A' es compacto.

- b) Como fr B $\subset \overline{B}$ y B es cerrado, entonces B $= \overline{B}$, con lo que fr B \subset B.
- c) La prueba es similar a la del apartado a).
- d) Por una parte, como $A \subset A \cup B$ y $B \subset A \cup B$, entonces $\overline{A} \subset \overline{A \cup B}$ y $\overline{B} \subset \overline{A \cup B}$. Por tanto, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Por otra parte, si $x \in \overline{A \cup B}$, entonces $B(x,r) \cap (A \cup B) \neq \emptyset$, para todo r > 0, de donde $B(x,r) \cap A \neq \emptyset$ ó $B(x,r) \cap B \neq \emptyset$. Entonces $x \in \overline{A}$ ó $x \in \overline{B}$, es decir $x \in \overline{A} \cup \overline{B}$.

- **P6)** Los conjuntos A y B no son abiertos pero sí lo son los conjuntos C y D. En concreto, int $A = \text{int } B = \emptyset$.
- **P7)** a) $\lim_{(x,y)\to(0,0)} y \sec \frac{1}{xy} = 0$ porque se trata del producto de una función acotada por una función cuyo límite es cero.
 - b) $\lim_{\substack{(x,y)\to(2,\infty)}} y \, \text{sen} \, \frac{1}{xy} = \lim_{\substack{(x,y)\to(2,\infty)}} \frac{1}{x} xy \, \text{sen} \, \frac{1}{xy} = \frac{1}{2} \text{ debido a la equivalencia de infinitésimos } f(x) \sim \text{sen} \, f(x) \, \text{cuando} \, f(x) \to 0.$
 - c) $\lim_{(x,y)\to(0,0)} (1+xy)^{\frac{1}{x+y}} = \lim_{(x,y)\to(0,0)} (1+xy)^{\frac{1}{xy}\frac{xy}{x+y}} = e^{\lim_{(x,y)\to(0,0)} \frac{xy}{x+y}}.$

Este límite no existe porque

$$\lim_{\substack{(x,y)\to(0,0)\\y=x^2-x}} \frac{xy}{x+y} = \lim_{x\to 0} \frac{x(x^2-x)}{x^2} = -1$$

pero los límites laterales son cero.

- d) Como no existe $\lim_{(x,y)\to(0,\infty)} xy$, tampoco existe $\lim_{(x,y)\to(0,\infty)} (1+xy)^{\frac{1}{x+y}}$.
- e) Descomponemos el límite como

$$\begin{split} \lim_{(x,y)\to(0,0)} \frac{2|x|^3 - |y|^2}{|x| + |y|} &= \lim_{(x,y)\to(0,0)} \left(\frac{2|x|^3}{|x| + |y|} - \frac{|y|^2}{|x| + |y|} \right) \\ &= \lim_{(x,y)\to(0,0)} \left(2|x|^2 \cdot \frac{|x|}{|x| + |y|} - |y| \cdot \frac{|y|}{|x| + |y|} \right). \end{split}$$

Como
$$0 \leqslant \frac{|x|}{|x| + |y|} \leqslant \frac{|x| + |y|}{|x| + |y|} = 1$$
, entonces $\lim_{(x,y) \to (0,0)} 2|x|^2 \cdot \frac{|x|}{|x| + |y|} = 0$.

Análogamente, como $0 \leqslant \frac{|y|}{|x|+|y|} \leqslant \frac{|x|+|y|}{|x|+|y|} = 1$, entonces $\lim_{(x,y)\to(0,0)} |y| \cdot \frac{|x|}{|x|+|y|} = 0$.

f) Descomponemos el límite como

$$\begin{split} \lim_{(x,y)\to(0,0)} \frac{2|x|^3 - |y|^2}{|x| + |y|} &= \lim_{(x,y)\to(0,0)} \left(\frac{2|x|^3}{|x| + |y|} - \frac{|y|^2}{|x| + |y|} \right) \\ &= \lim_{(x,y)\to(0,0)} \left(2|x|^2 \cdot \frac{|x|}{|x| + |y|} - |y| \cdot \frac{|y|}{|x| + |y|} \right). \end{split}$$

Como
$$0 \leqslant \frac{|x|}{|x| + |y|} \leqslant \frac{|x| + |y|}{|x| + |y|} = 1$$
, entonces $\lim_{(x,y) \to (0,0)} 2|x|^2 \cdot \frac{|x|}{|x| + |y|} = 0$.

Análogamente, como $0 \leqslant \frac{|y|}{|x|+|y|} \leqslant \frac{|x|+|y|}{|x|+|y|} = 1$, entonces $\lim_{(x,y)\to(0,0)} |y| \cdot \frac{|x|}{|x|+|y|} = 0$.