SUMMARY STABILITY REPORT FOR TRI 50c

TRI 50c is a boronic acid of the following structure:

(R,S,R)-TRI 50c Cbz-(R)-Phe-(S)-Pro-(R)-Mpg-B(OH)₂

Table 1 : Appearance

Stability Condition	Time point			
	Initial	1 month	3 month	
-20°C	С		White	
25°C/60%RH		White	Brown	
30°C/70%RH	White	White Yellow/Brown		
40°C/75%RH	40°C/75%RH		Dark Brown	

Figure 7.1 Appearance of TRI50c-00 at 30°C/70% r.h. and 40°C/75% r.h. after 1 month

Table 2: Degradation Profile

Temperature		-20°C	-20°C	25°C	25°C	30°C	30°C	40°C	40°C
Time [month]	0	1	3	1	3	1	3	1	3
% content in	97.18	96.74	99.11	83.17	58.83	67.79	44.39	62.53	43.15
sample (HPLC)									

SUMMARY STABILITY REPORT FOR TRI 50c SODIUM SALT

	T = 0	T = 1	T = 1	T = 1	T = 3	T = 3	T = 3
		-20°C	25°C/75%	40°C/75%	-20°C	25°C/60%	40°C/75%
			r.h.	r.h.		r.h.	r.h.
Color	White	White	White	White	White	White	Brown
% content	101.5	102.6	98.9	88.4	102.5	95.3	48.6
in sample							