On note $C(r, R) := \{ z \in \mathbb{C} \mid r < |z| < R \}.$

Théorème 0.0.1:

Si $C(r_1, R_1)$ et $C(r_2, R_2)$ sont biholomorphes, alors il existe $\lambda > 0$ tel que $r_2 = \lambda r_1$ et $R_2 = \lambda R_1$.

Quitte à dilater (ce sont des biholomorphismes), on peut supposer $r_1 = r_2 = 1$. Soit $f: C_1 := C(1, R_1) \to C_2 := C(1, R_2)$ un biholomorphisme. Montrons que f est de la forme $z \mapsto Cz^{\pm \log(R_2)/\log(R_1)}$. Posons $\alpha = \log(R_2)/\log(R_1)$ et

$$\forall z \in C_1, \quad u(z) = \log|f(z)| - \alpha \log|z| = \frac{1}{2} [\log(f(z)\overline{f}(z)) - \alpha \log(z\overline{z})]$$

Alors u est harmonique:

$$\begin{array}{rcl} \Delta u & = & 4\bar{\partial}\partial u \\ & = & 2\bar{\partial}\left[\frac{\partial(f\bar{f})}{f\bar{f}} - \alpha\frac{\partial(z\bar{z})}{z\bar{z}}\right] \\ & = & 2\bar{\partial}\left[\frac{\partial f}{f} - \alpha\frac{1}{z}\right] = 0 \end{array}$$

On cherche maintenant à étendre u sur ∂C_1 .

f est un biholomorphisme donc f est propre : si $(z_n)_{n\in\mathbb{N}}\in C_1^{\mathbb{N}}$ tend vers un certain $z\in\partial C_1$, alors toute valeur

d'adhérence de $(f(z_n))_{n\in\mathbb{N}}$ est dans ∂C_2 . Soit $K:=\mathbb{S}(0,\sqrt{R_2})\subset C_2$. Comme f^{-1} est continue, $f^{-1}(K)\subset C_1$ est compact. Donc il existe $\epsilon>0$ tel que $f^{-1}(K) \subset C(1+\epsilon, R_1-\epsilon)$. En particulier, $C(1,1+\epsilon) \cap f^{-1}(K) = \emptyset$ et $C(1,1+\epsilon)$ est connexe. Donc $f(C(1,1+\epsilon))$ est contenu dans $C(1, \sqrt{R_2})$ ou dans $C(\sqrt{R_2}, R_2)$.

Supposons $f(C(1, 1 + \epsilon)) \subset C(1, \sqrt{R_2})$.

Si $(z_n)_{n\in\mathbb{N}}\in C_1^{\mathbb{N}}$ converge vers un certain z de module 1, alors $z_n\in C(1,1+\epsilon)$ à partir d'un certain rang. Donc $f(z_n)\in C(1,\sqrt{R_2})$, et par ce qui précède, $|f(z_n)|\xrightarrow[n\to\infty]{}1$. De même, si $|z|=R_1$, alors $|f(z_n)|\xrightarrow[n\to\infty]{}R_2$. On obtient que $u(z) \xrightarrow[d(z,\partial C_1)\to 0]{} 0$.

On a l'inverse dans le cas où $f(C(1,1+\epsilon)) \subset C(\sqrt{R_2},R_2)$. En changeant f en R_2/f dans la définition de u, on retrouve $u(z) \xrightarrow[d(z,\partial C_1)\to 0]{} 0$.

Finalement, on peut prolonger u par continuité sur \bar{C}_1 .

On peut donc appliquer le principe du maximum, pour obtenir que u atteint ses extrema sur ∂C_1 . Or $u_{|\partial C_1} = 0$ donc u = 0 et f ou R_2/f vaut $z \mapsto z^{\alpha}$.

En particulier, $\partial u = 0$ donc $\frac{f'}{f} = \pm \frac{\alpha}{z}$. En intégrant sur K, on obtient

$$1 = \operatorname{ind}_{f(K)}(0) = \alpha \operatorname{ind}_{K}(0) = \alpha$$

En effet, $\operatorname{ind}_K(0) = 1$ pour la paramétrisation $\gamma : t \in [0,1] \mapsto \sqrt{R_2}e^{2i\pi t}$, de même $1 = \operatorname{ind}_{f(K)}(0)$ pour la paramétrisation $f \circ \gamma$ (f est injective). Donc $\alpha = 1$ et $R_1 = R_2$.

Ref: Rudin, Queffélec Leçons: 203,207,219,223,245