设抛物线
$$C: y^2 = 2px, A(a,0), B(ab,0),$$
 经过 A 的直线交 $C \in M, N$ 两点,直线 MB, NB 与 C 的另一交点分别为 P, Q ,求 PQ 与 x 轴的交点. 解: 设 $M(\frac{m^2}{2p}, m), N(\frac{n^2}{2p}, n)$ $k_{MN} = \frac{m-n}{\frac{m^2}{2p} - \frac{n^2}{2p}} = \frac{2p}{m+n}$ $l_{MN}: y = \frac{2p}{m+n}(x - \frac{m^2}{2p}) + m = \frac{2p}{m+n}x + \frac{mn}{m+n} = \frac{2px+mn}{m+n}$ l 经过 $(a,0)$ 则 $mn = -2pa$ $K_{MD} = \frac{m}{\frac{m^2}{2p} - ab}$ 则 $MD: y = \frac{1}{\frac{m}{2p} - \frac{ab}{m}}(x - ab),$
$$\begin{cases} y = \frac{1}{\frac{m}{2p} - \frac{ab}{m}}(x - ab), \\ y^2 = 2px \end{cases}$$
 消去 x 得: $(\frac{m}{2p} - \frac{ab}{m})y = \frac{y^2}{2p} - ab \Leftrightarrow y^2 - (m - \frac{2abp}{m})y - 2abp = 0$ 则为程的另一解为 $\frac{-2pab}{m} = \frac{mnb}{m} = nb$ 故 $P(\frac{n^2b^2}{2p}, nb),$ 同理 $Q(\frac{m^2b^2}{2p}, mb)$ 故 $kpQ = \frac{2bp^2(n-m)}{b^2(n^2-m^2)} = \frac{2p}{b(m+n)} = \frac{-mn}{ab(m+n)}$ $l_{PQ}: y = \frac{2p}{b(m+n)}(x - \frac{n^2b}{2p}) + nb$
$$= \frac{2p}{b(m+n)}x - \frac{n^2b}{m+n} + nb$$

$$= \frac{2px - n^2b^2 + n^2b^2 + mnb^2}{b(m+n)}$$

$$= \frac{2p}{b(m+n)}(x - ab^2)$$

$$= \frac{-mn}{ab(m+n)}(x - ab^2)$$

$$= \frac{-mn}{ab(m+n)}(x - ab^2)$$
 $y = 0$ 时 $x = ab^2$, 故 PQ 经过 $(ab^2, 0)$ 若设 $MN: y = k(x - a),$ 则 m, n 满足 $\frac{y^2}{2p} - \frac{y}{k} - a = 0$ 则 $mn = -2pa, m + n = 2pk$ 此时 $l_{MN}: y = \frac{-2pa}{ab^2pa}(x - ab^2) = \frac{-k}{b}(x - ab^2)$

故其方程与抛物线参数 p 无关