DSC 255 - MACHINE LEARNING FUNDAMENTALS

MAXIMIZING THE MARGIN OF A LINEAR CLASSIFIER

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Recall: The Perceptron Algorithm

The Perceptron Algorithm

- Initialize w = 0 and b = 0
- Keep cycling through the training data (x, y):
 - ightharpoonup If $y(w \cdot x + b) \le 0$ (i.e., point misclassified):
 - $\cdot w = w + yx$
 - b = b + y

Perceptron: Convergence

If the training data is linearly separable:

- The Perceptron algorithm will find a linear classifier with zero training error
- It will converge within a finite number of steps

Perceptron: Convergence

If the training data is linearly separable:

- The Perceptron algorithm will find a linear classifier with zero training error
- It will converge within a finite number of steps

Perceptron: Convergence

If the training data is linearly separable:

- The Perceptron algorithm will find a linear classifier with zero training error
- It will converge within a finite number of steps

Is there a better, more systematic choice of separator?

The Learning Problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

The Learning Problem

Given: training data
$$(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$$

Find:
$$w \in \mathbb{R}^d$$
 and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equivalently ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximizing the Margin

Given: training data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$ Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximize the **margin** γ .

Maximizing the Margin

Given: training data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$ Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximize the **margin** γ . Can show $\gamma = 1/||w||$.

Maximum-Margin Linear Classifier

• Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} ||w||^2$$

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1 \quad \text{for all } i = 1, 2, ..., n$$

Maximum-Margin Linear Classifier

• Given: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} ||w||^2$$

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1 \quad \text{for all } i = 1, 2, ..., n$$

Convex optimization problem: can find the optimal solution efficiently.

Maximum-Margin Linear Classifier

• Given: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} ||w||^2$$

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1 \quad \text{for all } i = 1, 2, ..., n$$

- Convex optimization problem: can find the optimal solution efficiently.
- This linear classifier is sometimes called the (hard-margin) support vector machine.

Support Vectors

• The solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the **support vectors**: training points exactly on the margin, i.e., $y^{(i)} (w \cdot x^{(i)} + b) = 1$

Small Example: Iris Data Set

Fisher's **iris** data

150 data points from three classes:

- iris setosa
- iris versicolor
- iris virginica

Four measurements: petal width/length, sepal width/length

Small Example: Iris Data Set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

Small Example: Iris Data Set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

