LDAを用いたAmazonのレビューデータのデータマイエング

B8EM1016 富田

目次

- 1. 研究テーマ
- 2. 研究の背景
- 3. モデルの説明(LDA)
- **4.** 拡張モデルの説明
- 5. 推定方法
- 6. データセット
- 7. 結果
- 8. 今後の課題
- 9. 参考文献

研究テーマと研究背景

研究テーマ

▶ 研究テーマ

消費者の製品やサービスに対する好みがどのように構成されているかを理解する

▶ 目的と観点:

インターネット上にある膨大なテキストデータから、消費者の製品やサービスに 対する好みを取り出し、マーケティングに活用できるようにする

▶ 短期的な目標:

トピックモデルを用いて、カスタマー・レビューから商品・サービスの評価軸(≒ 好み)を取り出し、それがどう製品のおすすめ度にどう影響を与えているのか調べ る手法を提案する

研究の背景

1 マーケティング

企業の行う製品開発は重要なマーケティング戦略の一つ 新製品開発には**コンジョイント分析** 既出製品にはアンケート調査による**因子分析** 等がある

② 機械学習(自然言語処理)

トピックモデルという文章のトピック(内容)を分布で表すモデル LSA,PSA,LDAなど、基本的なモデルのバリエーションが複数ある

③ マーケティング+機械学習

カスタマーレビューをLDAで分析することは多く行われている

"Sentence-Based Text Analysis for Customer Reviews", Joachim Büschken, Greg M. Allenby (2016)

"Mining Marketing Meaning from Online Chatter", SESHADRI TIRUNILLAI and GERARD J. TELLIS (2014)

"Topic analysis of online reviews for two competitive products using latent Dirichlet allocation", Wenxin Wang(2018)

モデルの説明

トピックモデル ~Latent Dirichlet Allocation~

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of "topics," which are distributions over words, exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.

トピックモデル ~Latent Dirichlet Allocation~

OLatent Dirichlet Allocation

トピックモデルとは、文書集合が与えられたときに、各文書がどのようなトピック(話題)に<mark>ついて書か</mark>れているかを推定するモデル

1LSA2PLSA3LDA

の3つの推定方法が主にある

通常のLDAの計算結果

問題点

- ① 各トピックが何に言及しているかを出現頻度が上位の単語から判断しなければいけないが、どのトピックにも出現する汎用的な単語が上位に来ることで、トピックの解釈が困難になってしまう
- ② 名詞、形容詞などに単語を限定することで解釈しやすくするケースもあるが、 生データの情報はなるべく削りたくない
- ③ ストップワードを設定して、解釈しやすくするケースもあるが、どこまでストップワードを設定するかが恣意的になる

拡張モデルの説明

先行研究の説明

"Sparse Additive Generative Models of Text" (Jacob et al., 2011)

この論文のメインのアイデアは、単語分布をディリクレ分布からexpを用いたものへと変更することで、各単語の出現確率に、単語の頻度、共起性のみならず、他の要因も足すことができるようになる点

このアプローチは主に二つの利点がある:

- 1スパース性を強化して、過学習を防ぐことができる
- 2 二つ以上の生成過程を、スイッチング変数などを導入することなしに結合することができる

先行研究の説明

▶ ドキュメントDにおける単語iの出現確率を以下のように変更する

$$P(w|z_d, m, \eta) = \frac{\exp(m + \eta_{z_d})}{\sum_i \exp(m_i + \eta_{z_{d,i}})}$$

- \triangleright w:単語, z_d :単語に割り当てられたトピック
- M:バックグラウンド分布, η: それぞれの単語の構成要素

先行研究の説明

 $\eta_{k,v} \sim N(0, \tau_{k,v})$:正規分布

 $\tau_{k,v} \sim \epsilon(\gamma)$:指数分布

 $\varphi_k \propto \exp(\eta_k + M)$:提案された分布

 $\theta_d \sim Dir(\alpha)$:ディリクレ分布

 $z_{d,i}$ ~ $Multi(\theta_d)$:多項分布

 $w_{d,i} \sim Multi\left(\varphi_{z_{d,i}}^{new}\right)$

○推定方法

単語分布を変更したので、ギブスサンプリングができない

→ 変分ベイズ法を使用

変分ベイズ:決定論的な近似アルゴリズム

決定論的→サンプル生成ではなく、数値計算によるアルゴリズム

近似アルゴリズム→計算が容易な分布を求めることを考える

変分法: 関数fを入力とする汎関数L[q(x)]の極値となる関数を求めるための手法

汎関数 $\mathbf{L}[q(x)] = \int f(x,q) \, dx$ の極値を与える \mathbf{q} は、以下のオイラー・ラジュランジュ方程式を解けばよいことが知られている

$$\frac{\partial f(x,q)}{\partial q(x)} = 0$$

求めたい事後分布

$$p(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}|\mathbf{w}_{1:n}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

これを求めるのは難しいので、以下の近似された分布を求める

$$q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) = q(\mathbf{z})q(\boldsymbol{\varphi})q(\boldsymbol{\theta})$$

対数周辺尤度を考えると、イエンセンの不等式により以下のようになる(補足1,2)

$$\log P(w_{1:n}|\alpha,\beta) \ge F[q(\mathbf{z}_{1:n},\boldsymbol{\Phi},\boldsymbol{\theta})]$$

この右辺は変分下限と呼ばれる

$$F[q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})] = \int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log \frac{p(\mathbf{x}_{1:n}, \mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta} | \boldsymbol{\alpha}, \boldsymbol{\beta})}{q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})} d\boldsymbol{\varphi} d\boldsymbol{\theta}$$

•
$$F[q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})] = \int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log \frac{p(\mathbf{w}_{1:n}, \mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta} | \boldsymbol{\alpha}, \boldsymbol{\beta})}{q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})} d\boldsymbol{\varphi} d\boldsymbol{\theta}$$

- = $\int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log p(\mathbf{w}_{1:n}|\mathbf{z}_{1:n}, \boldsymbol{\Phi}) d\boldsymbol{\varphi} d\theta$
- + $\int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log p(\mathbf{z}_{1:n}|\boldsymbol{\theta}) d\boldsymbol{\varphi} d\boldsymbol{\theta}$
- + $\int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log p(\boldsymbol{\theta}|\boldsymbol{\alpha}) d\boldsymbol{\varphi} d\boldsymbol{\theta}$
- + $\int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log p(\boldsymbol{\Phi}|\boldsymbol{\beta}) d\boldsymbol{\varphi} d\theta$
- + $\int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) d\boldsymbol{\varphi} d\boldsymbol{\theta}$

 θ の分布を知りたかったら、 $F[q(\mathbf{z}_{1:n}, \boldsymbol{\phi}, \boldsymbol{\theta})]$ の θ に関係のある項を集めて変分することで

$$q(\theta_d) \propto \prod_{k=1}^K \theta_{d,k}^{E[n_{d,k}] + \alpha_k - 1}$$

を求められる

$$\xi_{d,k}^{\theta} = E[n_{d,k}] + \alpha_k$$

とおくと、θはディリクレ分布と分かっているので

$$q(\theta_d) = \frac{\Gamma(\sum_{k=1}^K \xi_{d,k}^{\theta})}{\prod_{k=1}^K \Gamma(\xi_{d,k}^{\theta})} \prod_{k=1}^K \theta_{d,k}^{\xi_{d,k}^{\theta}-1}$$

と求めることができる

データセット

データセット

- ▶ Amazonから得られたカスタマーレビュー
- **2013/1~2013/12**
- ▶ 今回は「Kindle fire」のレビューに限定
- ▶ 価格:約199\$
- ▶ レビュー数:2067
- ▶ 総単語数:6857
- ▶ 一般的なストップワード以外の全ての品詞
- ,単語を使用
- ▶ トピック数:5
- ▶ MにはTF-IDF,IDF,TFを用いた

TF-IDF

- ▶ TF-IDF とは文書集合における単語の重要性を表す指標
- **TF**: $\frac{n_j}{n}$, n_j : テキスト集合における単語jの出現頻度 n: テキスト集合における全単語数
- ▶ $\mathbf{IDF:}\log\left(\frac{N}{df_i}\right)$, N: テキストの総数, df_j : 単語 j を含むレビューの数
- $\blacktriangleright \quad \mathsf{TF\text{-}IDF} = \frac{n_j}{n} \times \log\left(\frac{N}{df_j}\right)$

TF

IDF

TF - IDF

Index	Prob			
use	0.0158324			
guitar	0.0147568			
sound	0.0112174			
one	0.0106613			
string	0.0103552			
like	0.0093356			
great	0.00889587			
good	0.00824059			
pedal	0.00794744			
work	0.00784829			
get	0.00739778			
well	0.00697314			
play	0.00637606			
pick	0.00544271			
атр	0.00542978			
price	0.0052638			
would	0.00514956			
realli	0.00483485			
need	0.00473786			
look	0.00443824			

	•
Index	Prob
kingdom	9.54306
mcdonald	9.54306
mbrace	9.54306
mc404	9.54306
mc7201b	9.54306
mcapo10	9.54306
mccarti	9.54306
mccoy	9.54306
mcquad	9.54306
mayor	9.54306
mcyntir	9.54306
md100	9.54306
md421	9.54306
mdf	9.54306
mdr7506	9.54306
me501	9.54306
mb	9.54306
maverick	9.54306
meaningless	9.54306
matchless	9.54306

Index	Prob
guitar	0.20311
use	0.201539
string	0.18545
sound	0.176257
pedal	0.165213
one	0.158309
like	0.14154
great	0.132445
good	0.128072
amp	0.123207
get	0.122456
work	0.122375
pick	0.115291
play	0.115049
well	0.112951
would	0.0953805
price	0.093343
realli	0.0911697
need	0.08862
cabl	0.0885133

TF-IDFの計算結果 ~上位20単語~

推定結果

TF-IDFを用いた計算結果 ~上位20単語~

トピック1

トピック2

トピック3

トピック4

トピック5

Index	Word	Index	Word	Prob	Index	Word	Index	Word	Index	Word	Prob
5564	snappi	3461	kindl	0.000188343	3461	kindl	4242	okay :	3461	kindl	0.000189022
4858	radio	2438	fire	0.000178419	2438	fire	5204	safari	2438	fire	0.00017895
5025	rememb	522	amazon	0.00017426	6439	use	618	appstor :	522	amazon	0.00017253
595	арр	6439	use	0.000173852	522	amazon	1893	disppoint :	6439	use	0.000171646
516	amaz	2911	hd	0.000169868	2911	hd	2288	extend	2911	hd	0.000170964
4421	passag	595	арр	0.000169058	595	арр	2940	heaver :	1788	devic	0.000168891
812	batman	1788	devic	0.000168259	1788	devic	874	benefit	595	арр	0.000168073
1408	commend	4894	read	0.000165985	4255	one	6339	unfair :	4255	one	0.000166407
15	100x	5954	tablet	0.000165747	4894	read	6597	watchespn :	4894	read	0.000165725
1009	bounc	974	book	0.000165722	5954	tablet	5786	straightforwa… 4	5954	tablet	0.000164964
4086	newberri	4255	one	0.000165128	3605	like	2669	geniu :	974	book	0.000164891
3805	medal	3605	like	0.000164932	974	book	3641	log :	2680	get	0.000164642
5110	revisit	2794	great	0.000164094	2680	get	6368	unlik :	3605	like	0.000164518
804	basic	2680	get	0.000162997	5275	screen	4546	pixel :	2794	great	0.000162873
6260	turn	5275	screen	0.000162553	2794	great	5002	rel :	3679	love	0.000162833
5725	star	3679	love	0.000160894	3679	love	2289	extendedli :	6768	would	0.000161766
2889	harri	3322	ipad	0.000160341	6768	would	1733	deliber :	5275	screen	0.000161766
4636	potter	6572	want	0.000160162	3322	ipad	2594	frivol :	3322	ipad	0.000160858
2482	flexibl	6768	would	0.000159733	6743	work	6557	wad :	6572	want	0.00015974
5124	ride	502	also	0.000159072	6572	want	5190	run2	6743	work	0.000159438

IDFを用いた計算結果 ~上位20単語~

トピック1

トピック2

トピック3

トピック4

トピック5

Index	Word	Prob								
3461	kindl	0.000189175								
2438	fire	0.000179061								
6439	use	0.00017387								
522	amazon	0.000172357								
2911	hd	0.000170767								
595	арр	0.000168849								
1788	devic	0.000167931								
4255	one	4255	one	4255	one	4255	one	974	book	0.000166085
4894	read	974	book	974	book	974	book	4894	read	0.000165958
3605	like	4894	read	3605	like	4894	read	4255	one	0.000165747
974	book	3605	like	4894	read	3605	like	3605	like	0.000165413
5954	tablet	0.000164969								
2680	get	0.000163718								
2794	great	2794	great	5275	screen	2794	great	2794	great	0.000162747
5275	screen	5275	screen	2794	great	5275	screen	5275	screen	0.000162637
3679	love	0.000162389								
6768	would	6768	would	6768	would	6768	would	3322	ipad	0.000161113
3322	ipad	3322	ipad	3322	ipad	3322	ipad	6768	would	0.000160811
6572	want	0.000159519								
6743	work	0.0001594								

TFを用いた計算結果 ~上位20単語~

トピック1

トピック2

トピック3

トピック4

トピック5

Index	Word
3461	kindl
2438	fire
6439	use
2911	hd
522	amazon
974	book
595	арр
5954	tablet
1788	devic
2794	great
4894	read
4255	one
2680	get
5275	screen
3605	like
3679	love
3322	ipad
3980	movi
6768	would
6595	watch

Index	Word
3145	importantli
1765	describ
4941	recommend
2501	focus
4708	primer
5712	sr
1960	dp
751	b006gwo5wk
51	1349632797
752	b008j7eu9i
6848	zoho
5713	sr_1_1
4818	qid
4602	polari
4236	oh_details_o0
3442	keyword
2942	heavi
1691	deal
1612	cross
6727	woman

Index	Word			
2134	enhanc			
5790	strap			
5962	tad			
5229	trip			
5342	unfinish			
2171	er			
5166	total			
559	angl			
1953	downright			
4772	proprietari			
5602	way			
1418	compani			
5266	tv			
3944	mongolia			
353	accesscon			
3851	metropolitan			
1534	coolest			
455	agree4			
3793	mcd			
1424	passwords8			

Index	Word
2752	gorilla
5291	sd
3743	mani
181	32
927	blend
4828	qualm
3175	includ
3625	litt1
5616	sophist
1660	dad
1696	debat
4911	rear
5841	subscript
1431	complaint
1430	complain
6703	wireless
2431	finger
4432	patient
4813	put
5839	submit

Index	Word	Prob
1026	brand	0.692705
409	adob	0.307295
3461	kindl	3.3999e-13
2438	fire	3.22201e-13
6439	use	3.12712e-13
522	amazon	3.09238e-13
2911	hd	3.07036e-13
595	арр	3.03542e-13
1788	devic	3.01215e-13
4255	one	2.97736e-13
974	book	2.97193e-13
4894	read	2.96898e-13
3605	like	2.96747e-13
5954	tablet	2.965e-13
2680	get	2.95005e-13
2794	great	2.92714e-13
5275	screen	2.92592e-13
3679	love	2.9111e-13
6768	would	2.89242e-13
3322	ipad	2.89023e-13

通常のLDAの計算結果

今後の課題

- ▶ ①トピックの解釈に関して、元のレビューを見ながら考察
- ▶ ②トピック分布を使ってレーティングに回帰
- ▶ ③通常のLDAと回帰の精度を比較
- ▶ ④他のカテゴリーの製品にも使用してみる
- ▶ ⑤Mに関して他にも使用できるものがないか考える(コーパスの単語頻度等)

参考文献

- ► [1] "Sparse Additive Generative Models of Text", 2011, ICML'11 Proceedings of the 28th International Conference on Machine Learning, Pages 1041-1048
- ▶ [2]「トピックモデルによる統計的潜在意味解析」奥村・佐藤
- ▶ [3]「自然言語処理概論」黒橋禎夫・柴田智秀
- ▶ [4]「トピックモデルを用いた商品の評判要因分析に関する検討」月岡・他

補足 1

$$|\log P(w_{len}|d,Y) = \log \int_{z_{len}} P(w_{len},z_{len},\eta,\theta,T|d,Y) d\eta d\theta dT$$

$$= |\log \int_{z_{len}} \mathcal{L}(z,\eta,\theta,T) \frac{P(w_{len},z_{len},\eta,\theta,T|d,Y)}{\mathcal{L}(z,\eta,\theta,T)} d\eta d\theta dT$$

$$= \int_{z_{len}} \mathcal{L}(z,\eta,\theta,T) \log \frac{P(w,z,\eta,\theta,T|d,Y)}{\mathcal{L}(z,\eta,\theta,T)} d\eta d\theta dT$$

$$= \int_{z_{len}} \mathcal{L}(z,\eta,\theta,T) \log \frac{P(w,z,\eta,\theta,T|d,Y)}{\mathcal{L}(z,\eta,\theta,T)} d\eta d\theta dT$$

$$= \int_{z_{len}} \mathcal{L}(z,\eta,\theta,T) \log \frac{P(w,z,\eta,\theta,T|d,Y)}{\mathcal{L}(z,\eta,\theta,T)} d\eta d\theta dT$$

補足 2

- $\log p(\mathbf{w}_{1:n}|\boldsymbol{\alpha},\boldsymbol{\beta}) = F[q(\mathbf{z}_{1:n},\boldsymbol{\Phi},\boldsymbol{\theta})] + KL(q(\mathbf{z}_{1:n},\boldsymbol{\Phi},\boldsymbol{\theta})|p(\mathbf{z}_{1:n},\boldsymbol{\Phi},\boldsymbol{\theta}|\mathbf{w}_{1:n},\boldsymbol{\alpha},\boldsymbol{\beta}))$
- ・ここで
- $F[q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})] = \int \sum_{\mathbf{z}_{1:n}} q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log \frac{p(\mathbf{x}_{1:n}, \mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta} | \alpha, \beta)}{q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})} d\boldsymbol{\varphi} d\boldsymbol{\theta}$
- $KL(q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) | p(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\pi} | \mathbf{w}_{1:n}, \boldsymbol{\alpha}, \boldsymbol{\beta})) = \int q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta}) \log \frac{q(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta})}{p(\mathbf{z}_{1:n}, \boldsymbol{\Phi}, \boldsymbol{\theta} | \mathbf{w}_{1:n}, \boldsymbol{\alpha}, \boldsymbol{\beta})}$
- KLはカルバックライブラー情報量で、統計モデルqとpの近さを表し、0以上の値をとる。
- p=qのとき、KL=0となる。

まとめ

の
$$\theta_{1}$$
, Z_{n}^{d} は 黄通の LDA τ 同じ

の ϕ_{n} が 変更

の $\beta_{k,i} = \frac{exp(\eta_{k,i} + m_{i})}{\sum exp(\eta_{k,i} + m_{i})}$

の $\eta_{k,i}$ $\sim N(0. J_{k,i})$

の $J_{k,i}$ $\sim E(\gamma)$ (指数分)

の 类役性 と促えない から 変分がイス"

变分下院

$$| \log \left\{ P(w|d,r) \right\} \ge F \left[2(2,\eta,\theta,J) \right]$$

$$F \left[2(2,\eta,\theta,J) \right] = \sum_{d=1}^{M} \left\langle \log P(\theta_d|d) \right\rangle + \sum_{d=1}^{M} \sum_{n=1}^{M} \left\langle \log P(w_n^d|m,\eta_{2d}) \right\rangle + \sum_{d=1}^{M} \sum_{n=1}^{M} \left\langle \log P(\eta_d|0,J_d) \right\rangle + \sum_{d=1}^{M} \left\langle \log P(\eta_d|0,J_d) \right$$