Contents

1	Introduction			5		
	1.1	Motiv	ration	5		
	1.2	Contr	ibutions of the Thesis	5		
2	App	Application Scenarios				
	2.1	Distri	buted Energy Management	7		
		2.1.1	The Unit Commitment Problem	7		
		2.1.2	Complexity of the Problem	7		
		2.1.3	Hierarchies of Autonomous Virtual Power Plants	7		
		2.1.4	Trust To Manage Uncertainty	7		
		2.1.5	Related Work	7		
	2.2	Prefer	rence-based University Tasks	7		
		2.2.1	Exam Appointment Scheduling	7		
		2.2.2	Mentor Matching [Constraints'16]*	7		
		2.2.3	Multi-User Multi-Display Exhibitions [ModRef'15]*	7		
		2.2.4	Related Work	7		
3	Foundations					
	3.1	Self-or	rganization – Designing Systems to Adapt	10		
	3.2	Contr	olling Emergence – The Restore Invariant Approach	10		
	3.3	Classical Constraint Programming for Combinatorial Problems . 10				
	3.4	Over-	Constrainedness in Practical Problems	10		
		3.4.1	Partial Constraint Satisfaction	10		
		3.4.2	Algebraic Structures for Soft Constraints	10		
	3.5	Algori	ithms to Solve Soft Constraint Problems	10		
		3.5.1	Branch-and-Bound Search	10		
		3.5.2	Large-Neighborhood Search	10		
		3.5.3	Optimization in Constraint Programming Solvers	10		
	3.6	Mathe	ematical Programming	10		
		3.6.1	Linear Programming	10		
		3.6.2	Mixed Integer Programming	10		
	3.7	Mode	ling Languages	10		
		3.7.1	MiniZinc and MiniSearch	10		
		372	Ference	10		

2 CONTENTS

4	Soft	Constraints	11
	4.1	Specifying Optimal Behavior – A Soft Corridor	11
	4.2	Qualitative Specification using Constraint Relationships [SGAI'13]*	11
		4.2.1 Syntax	11
		4.2.2 Semantics – Dominance Properties	11
		4.2.3 Evaluation in the Energy Scenario [SEN-MAS'14]*	11
	4.3	Relationship with General Formalisms [ICTAI'14]*	11
		4.3.1 Free Construction of Partial Valuation Structures	11
		4.3.2 Free Construction of C-Semirings	11
	4.4	Mapping Organizations – Combinations of Preference Structures	
		[Wirsing'15]*	11
		4.4.1 Direct Product	11
		4.4.2 Lexicographic Product	11
	4.5	Applications of Constraint Relationships	11
		4.5.1 Distributed Energy Management [SEN-MAS'14]*	11
		4.5.2 Preference-based University Tasks	11
		1.0.2 Treference based emiversity raisms	11
5	Min	iBrass – A Modeling Language for Soft Constraints[Constrai	nts'16]* 13
	5.1	Workflow	13
	5.2	Type Declarations	13
	5.3	Operators	13
	5.4	Consistency Checks and Utilities	13
	5.5	Soft Global Constraints	13
	5.6	PVS-based Generic Search	13
		5.6.1 Branch-and-Bound	13
		5.6.2 Large Neighborhood Search	13
		5.6.3 Adaptive Large Neighborhood Search	13
	5.7	Evaluation	13
		5.7.1 Benchmark Instances	13
		5.7.2 Comparison with toulbar2	13
		5.7.3 Efficiency of Generic Heuristics	13
		5.7.4 Comparing PVS-Types	13
6	Sup	ply Automata for Prosumers [SEN-MAS'14]*, [TCCI'15]*	15
	6.1	Challenges in Unit-Commitment	15
	6.2	Existing Formulations	15
	6.3	Automata-based Specification of Optimization Problems	15
		6.3.1 Syntax	15
		6.3.2 Semantics	15
		6.3.3 Translation to Mixed Integer Programs	15
	6.4	Examples	15
		6.4.1 Modeling Cold and Hot Start-up	15
		6.4.2 Scheduling a Biogas-Plant	15
	6.5	Related Work	15
7	Abs	traction of Collective Behavior [ICAART'14]* [TCCI'15]*	17
	7.1	Obtaining Simple Representations of Production Spaces	17
	7.2	Deriving Efficient Bounds for Future Time Steps	17
	7.3	Calculating Approximate Functions for Collectives	17
		7.3.1 Principle of Sampling Function Points	17

CONTENTS	3
JONIENIS	9

	7.4	7.3.2 Selection Strategies [SASO'15']*		
	1.4	Relationship with Unit-Commitment Algorithms		
		7.4.1 Regio-Central Robust Optimization [SAOS'14]	17	
		7.4.2 Market-Based Robust Optimization [TAAS'15] [SASO'15]	17	
8	Conclusion, Discussion, and Future Challenges			
	8.1 Summary of Research Contributions			
	8.2	Open Research Challenges	19	

4 CONTENTS

Introduction

- 1.1 Motivation
- 1.2 Contributions of the Thesis

Application Scenarios

- 2.1 Distributed Energy Management
- 2.1.1 The Unit Commitment Problem
- 2.1.2 Complexity of the Problem
- 2.1.3 Hierarchies of Autonomous Virtual Power Plants
- 2.1.4 Trust To Manage Uncertainty
- 2.1.5 Related Work
- 2.2 Preference-based University Tasks
- 2.2.1 Exam Appointment Scheduling
- 2.2.2 Mentor Matching [Constraints'16]*
- 2.2.3 Multi-User Multi-Display Exhibitions [ModRef'15]*
- 2.2.4 Related Work

Foundations

- 3.1 Self-organization Designing Systems to Adapt
- 3.2 Controlling Emergence The Restore Invariant Approach
- 3.3 Classical Constraint Programming for Combinatorial Problems
- 3.4 Over-Constrainedness in Practical Problems
- 3.4.1 Partial Constraint Satisfaction
- 3.4.2 Algebraic Structures for Soft Constraints
- 3.5 Algorithms to Solve Soft Constraint Problems
- 3.5.1 Branch-and-Bound Search
- 3.5.2 Large-Neighborhood Search
- 3.5.3 Optimization in Constraint Programming Solvers
- 3.6 Mathematical Programming
- 3.6.1 Linear Programming
- 3.6.2 Mixed Integer Programming
- 3.7 Modeling Languages
- 3.7.1 MiniZinc and MiniSearch
- 3.7.2 Essence

Soft Constraints

- 4.1 Specifying Optimal Behavior A Soft Corridor
- 4.2 Qualitative Specification using Constraint Relationships [SGAI'13]*
- 4.2.1 Syntax
- 4.2.2 Semantics Dominance Properties
- 4.2.3 Evaluation in the Energy Scenario [SEN-MAS'14]*
- 4.3 Relationship with General Formalisms [IC-TAI'14]*
- 4.3.1 Free Construction of Partial Valuation Structures
- 4.3.2 Free Construction of C-Semirings
- 4.4 Mapping Organizations Combinations of Preference Structures [Wirsing'15]*
- 4.4.1 Direct Product
- 4.4.2 Lexicographic Product
- 4.5 Applications of Constraint Relationships
- 4.5.1 Distributed Energy Management [SEN-MAS'14]*
- 4.5.2 Preference-based University Tasks

MiniBrass – A Modeling Language for Soft Constraints[Constraints'16]*

- 5.1 Workflow
- 5.2 Type Declarations
- 5.3 Operators
- 5.4 Consistency Checks and Utilities
- 5.5 Soft Global Constraints
- 5.6 PVS-based Generic Search
- 5.6.1 Branch-and-Bound
- 5.6.2 Large Neighborhood Search
- 5.6.3 Adaptive Large Neighborhood Search
- 5.7 Evaluation
- 5.7.1 Benchmark Instances
- 5.7.2 Comparison with toulbar2
- 5.7.3 Efficiency of Generic Heuristics
- 5.7.4 Comparing PVS-Types

 $14 CHAPTER\ 5.\ \ MINIBRASS-A\ MODELING\ LANGUAGE\ FOR\ SOFT\ CONSTRAINTS[CONSTRAINTS]$

Supply Automata for Prosumers [SEN-MAS'14]*, [TCCI'15]*

- 6.1 Challenges in Unit-Commitment
- 6.2 Existing Formulations
- 6.3 Automata-based Specification of Optimization Problems
- 6.3.1 Syntax
- 6.3.2 Semantics
- 6.3.3 Translation to Mixed Integer Programs
- 6.4 Examples
- 6.4.1 Modeling Cold and Hot Start-up
- 6.4.2 Scheduling a Biogas-Plant
- 6.5 Related Work

 $16 CHAPTER\ 6.\ SUPPLY\ AUTOMATA\ FOR\ PROSUMERS\ [SEN-MAS'14]*,\ [TCCI'15]*$

Abstraction of Collective Behavior [ICAART'14]* [TCCI'15]*

- 7.1 Obtaining Simple Representations of Production Spaces
- 7.2 Deriving Efficient Bounds for Future Time Steps
- 7.3 Calculating Approximate Functions for Collectives
- 7.3.1 Principle of Sampling Function Points
- 7.3.2 Selection Strategies [SASO'15']*
- 7.4 Relationship with Unit-Commitment Algorithms
- 7.4.1 Regio-Central Robust Optimization [SAOS'14]
- 7.4.2 Market-Based Robust Optimization [TAAS'15] [SASO'15]

 $18 CHAPTER\ 7.\ ABSTRACTION\ OF\ COLLECTIVE\ BEHAVIOR\ [ICAART'14]*\ [TCCI'15]*$

Conclusion, Discussion, and Future Challenges

- 8.1 Summary of Research Contributions
- 8.2 Open Research Challenges