- Project Work #1 - Small Modular Reactor, Natural Circulation mode

Natural Circulation SMR		
Reactor Thermal Power	300 MWth	W
Tcore in	292 degC	Tin
enthalpy-in	1300 kJ/kg	hin
density-in	727.6 kg/m^3	ρin
Tcore out	329 degC	Tout
enthalpy-out	1520 kJ/kg	hout
density-out	643.5 kg/m^3	ρout
Primary pressure	155 bar	Pc
# Fuel assemblies	121	Nfa
Fuel assembly (fuel rods)	(17 x 17)	
Fuel rod diam.	9.5 mm	Dfr
Fuel rod pitch	12.67 mm	Pfr
Fuel rod length	3 m	Lfr
Once-Through Steam Generator		
SG Tube outer diam.	10 mm	OD
SG Tube inner diam.	8.5 mm	ID
SG Tube pitch	15 mm	Psg
SG pressure	65 bar	Ps
Tsat (@65 bar)	280.82 degC	Tsg
Tube thermal conductivity	30 W/m K	Ksg
RPV inner diam.	3.75 m	
Barrel outer diam.	2.75 m	
Global heat transfer coeff.	5100 W/m ² K	α
Form pressure loss coeff.		
Core support plate	4	K1
Core upper plate	4	K2
SG area - inlet	3.5	К3
SG area - outlet	3.5	K4
Fuel rod, SG tube roughness	4x10 ⁻⁶ m	e
Fluid viscosity	8.284x10 ⁻⁵ kg/m s	μ

NTRODUCTION TO NUCLEAR ENGINEERING

- Project Work #1 - Small Modular Reactor, Natural Circulation mode

Thermal power transferred to SG: $W_{SG} = \alpha S \Delta T$

Number of SG tubes Nt (approx.): Nt = 80% x Annular area / SG tube lattice area

(SG tube lattice area = $Pitch^2$)

SG heat transfer surface S:

$$S = L \pi D Nt$$

Primary-Secondary Temp. jump ΔT : (logaritmic average)

$$\Delta T = \frac{(T_{out} - T_{sg}) - (T_{in} - T_{sg})}{In [(T_{out} - T_{sg}) / (T_{in} - T_{sg})]}$$

3

- Project Work #1 - Small Modular Reactor, Natural Circulation mode

Reactor core flow rate Γ : $W = \Gamma (h_{out} - h_{in})$

Fluid velocity v: $\Gamma = \rho \ v \ \Omega_{total}$

Local pressure drops: $\Delta Pc = K \rho v^2/2$

Distributed pressure drops: $\Delta Pf = L \ 2 f \ \Gamma^2 / (\rho \ D_{eq} \ \Omega^2)$

Friction factor: $f = [3.8 log_{10} (10/Re + 0.2 e/D_{eq})]^{-2}$

Reynolds number: Re = $\rho \ v \ D_{eq} / \mu$

Equivalent hydraulic diameter: $D_{eq} = 4 \Omega / \Pi$

Fluid cross section area Ω (see figure), Wetted perimeter $\Pi = \pi D$

Square lattice for Fuel rods and SG Tube bundle

Ω

- Project Work #1 - Small Modular Reactor, Natural Circulation mode

DUCTION TO NUCLEAR ENGINEERING

- First goal: code a steady-state model for the Small Modular Reactor, to dimensioning:
 - the tube-bundle average length of the Steam Generator modules
 - the clearance between the Core and the Steam Generators, to sustain the Natural Circulation mode
- Second goal: code a model able to perform parametric analysis of the SMR configuration, by changing:
 - core thermal power
 - secondary pressure
 - steam generator tube pitch or tube outer diameter
- Third goal: design (and if possible start coding) a dynamic model for the SMR, able to simulate operational transients for the Steam Generators (Feedwater Temperature and Feedwater Flowrate stepwise variations, assuming constant core power no neutronic feedbacks)

- 1. What is the final **goal**?
- 2. What are the **requirements**?
- 3. What are the most important physical (thermal-hydraulics) phenomena?
- 4. What are the **boundary conditions**?
- 5. What are the appropriate assumptions?

- 6. What is a suitable **modelling** strategy?
- 7. What are the **tools** / the **data** we need?
- 8. What is a suitable **solving system** / solving **procedure**?
- 9. What are suitable **tests** to prove we are progressing in the right way?