12A: Problem Set 11

Due date: **November 10, 10am**. Deliver completed problem set to the 12A dropbox in room 301, Moses Hall. Reminder: late problem sets do not receive credit.

Also: please put your **section leader's name** and **section meeting time** on the upper right of the first page. This will help us return your problem set promptly.

- 1. Symbolize into FOL.
 - (a) A salesman who greeted every customer was friendly.
 - (b) Every farmer who owns a donkey wearing a saddle pets it.
- 2. Give an FOL semantic derivation for each of these, using the turnstile notation.
 - (a) *Fa*
 - (b) *Gbx*
 - (c) $(Fc \wedge P)$
 - (d) $\exists x F x$
 - (e) $\exists x F b$
 - (f) $\exists x \exists x F x$
 - (g) $\forall x \exists y (x = y)$
 - (h) $\exists y \forall x (x = y)$
- 3. In FOL the notion of **truth at a model** is defined only for closed formulas. But suppose we removed this restriction, and allowed open formulas to be capable of truth and falsity at a model, too. That is, suppose we worked with this definition instead:

Def. For all elosed wffs ϕ , models \mathcal{M} , ϕ is **true relative to** \mathcal{M} (we write this as: ' $\mathcal{M} \models \phi$ ') iff for all variable assignments g for \mathcal{M} , $\mathcal{M} \models_q \phi$. Otherwise ϕ is false relative to \mathcal{M} .

And suppose we give a matching definition of **consistency**:

Def. A set Γ of elosed wffs is **consistent** iff there exists some model \mathcal{M} such that for all $\phi \in \Gamma$, $\mathcal{M} \models \phi$. Otherwise Γ is **inconsistent**.

And suppose our definition **validity** was understood as defined in terms of this more "inclusive" notion of truth at a model:

Def. $\Gamma \vDash \phi$ iff for any model \mathcal{M} , if $\mathcal{M} \vDash \psi$ for all ψ in Γ , then $\mathcal{M} \vDash \phi$.

- (a) Consider the set $\{Gx, \neg Gy\}$. Given the above definitions, is this set consistent? Why or why not? How does this compare to what our official definition of consistency predicts?
- (b) Given these definitions, does Fx entail $(Fa \wedge Fb)$? Why or why not?