Tutoraggio Analisi 1 2024-2025

Mara Barucco

Ottobre 2024

Quarto Incontro: esercitiamoci sui limiti di successioni

Test di Riscaldamento

Domanda 1. Quanto vale $\lim_{n\to\infty} (\sqrt{7})^n - 2^n$?

Domanda 2. Quanto vale $\lim_{n\to\infty} 2^n + 6^n - 8^n$?

- (A) $\sqrt{7} 2$
- (B) 0
- (C) $+\infty$
- (D) -∞
- (E) Nessuna delle precedenti

- (A) Non esiste il limite
- (B) 0
- (C) +∞
- (D) -∞
- (E) Nessuna delle precedenti

Domanda 3. Quanto vale $\lim_{n\to\infty} (n!)^4 \cdot \left(1 - 2\cos\frac{1}{n!} + \cos^2\frac{1}{n!}\right)$?

- (A) 0
- (B) 1/2
- (C) 1/4
- (D) +∞
- (E) Nessuna delle precedenti

Domanda 4. Quanto vale $\lim_{n\to\infty} \sqrt[n]{4^n+7}$?

- (A) 1
- (B) $\sqrt{11}$
- (C) $\sqrt{7}$
- (D) +∞
- (E) Nessuna delle precedenti

Domanda 5. Quanto vale $\lim_{n\to\infty} \frac{1-e^{\frac{3}{2n^n}}}{\frac{1}{n^n}}$?

- (A) -3/2
- (B) -2/3
- (C) 3/2
- (D) 2/3
- (E) Nessuna delle precedenti

Domanda 6. Quanto vale $\lim_{n\to\infty} (n!)^{\alpha} \cdot \log\left(1 + \frac{7}{n!}\right)$?

- (A) Per $\alpha \le 1$ converge e quando $\alpha = 1$ vale 1
- (B) Per $\alpha \le 1$ converge e quando $\alpha = 1$ vale 7
- (C) Per $\alpha \le 0$ converge e quando $\alpha = 0$ vale 1
- (D) Per $\alpha \ge 1$ converge e quando $\alpha = 1$ vale 1
- (E) Per $\alpha \ge 1$ converge e quando $\alpha = 1$ vale 7

Esercizio 1. Calcola i limiti delle seguenti successioni

1.
$$\pi^n - 3^n$$

2.
$$2^n + 6^n - 8^n$$

3.
$$\frac{2^{n+1}-4^{n-1}}{3^n}$$

$$4. \ \frac{2^{n+1}-4^{n-1}}{3^n+3}$$

$$5. \ n^2(\cos^3\frac{1}{n} - \cos\frac{1}{n})$$

6.
$$\frac{3\sin^2(\frac{4}{n})}{1-\cos\frac{3}{n}}$$

7.
$$(n!)^6 \cdot (1 - 3\cos\frac{1}{n!} + 3\cos^2\frac{1}{n!} - \cos^3\frac{1}{n!})$$

$$8. \left(\frac{n^n+3}{n^n+4}\right)^{(n^n)}$$

$$9. \left(\frac{n!-5}{n!+1}\right)^{2\cdot (n!)}$$

10.
$$\frac{1-e^{\frac{5}{2n}}}{\sin{\frac{3}{4n}}}$$

11.
$$\sin^2 \frac{9}{n} (1 - \cos \frac{3}{n}) \cdot n^4$$

12.
$$\frac{n(e^{\sqrt[n]{n}-1}-1)}{3\log n}$$

Esercizio 2. Discuti i limiti delle seguenti successioni al variare del parametro α

1.
$$n^8 \sin \frac{1}{n^\alpha}$$

2.
$$\frac{\log(1 + \frac{1}{n^{\alpha}}) \left((n+2)! - n! \right)}{n! + \cos^2(n^2)} \quad (\cos \alpha > 0)$$

3.
$$n^{\alpha} \cdot \sin^3 \frac{1}{n} \cdot \left(1 - \cos \frac{2}{n}\right)^2$$

4.
$$\left(\cos\frac{1}{n}\right)^{(n^{\alpha})}$$

5.
$$n^{\alpha} \cdot (\sqrt{n+1} - \sqrt{n})$$

Proprietà:

Se esiste il limite del rapporto tra due termini successivi $\frac{a_{n+1}}{a_n}$ e vale ℓ allora il limite della radice n-esima di a_n è uguale ad ℓ .

Esercizio 3. Calcola i limiti delle seguenti successioni

- 1. $\sqrt[n]{n(n-1)}$
- 2. $\sqrt[n]{n^2(2n+1)}$
- 3. $\sqrt[n]{2^n+1}$
- 4. $\sqrt[n]{3^n+5}$
- $5. \sqrt[n]{\sin\frac{7}{n}}$
- 6. $\sqrt[n]{n!}$
- 7. $\frac{n}{\sqrt[n]{n!}}$
- 8. $\sqrt[n]{2^{n+(-1)^n}}$