1 极限与连续性

1.1 点列的极限

Definition 1.1. 度量空间 (S,d) 中的点列 (x_n) 收敛于 p, 当且仅当对于任意 $\epsilon > 0$, 可以找到 N > 0, 使得所有 $n \ge N$ 时有 $d(x_n,p) < \epsilon$. 记作:

$$\lim x_n = p$$
.

也可以写作: 当 $n \to \infty$ 时, $x_n \to p$.

注意 $d_S(x_n, p) < \epsilon$ 等价于 $d_{\mathbb{R}}(d_S(x_n, p), 0) = |d_S(x_n, p) - 0| < \epsilon$, 此处 $d_S(x_n, p) \in \mathbb{R}$. 也就是说 (S, d_S) 中的点列 $x_n \to p$, 等价于其距离 $d_S(x_n, p)$ 在 \mathbb{R} 中 $d_S(x_n p) \to 0$.

1.2 附着点/聚点与点列的联系

考虑度量空间 (M,d) 中的子集 S 和点 p. 如果 p 是 S 的附着点, 意味着每一个邻域 B(p) 都包含 S 中的点. 那么对于每一个正整数 $n=1,2,\ldots$,都能找到 S 中的点 x_n 满足 $d(x_n,p)<1/n$. 当 $n\to\infty$ 时, $1/n\to0$,所以 $d(x_n,p)\to0$,意味着 $x_n\to p$. 这样就找到了 S 中收敛于 p 的点列.

反过来, 如果 S 中存在序列 (x_n) 收敛于 p, 按照定义, 对于任意 $\epsilon > 0$, 取充分大的 n 总有 $d(x_n, p) < \epsilon$. 即任意 $B(p; \epsilon)$ 都包含 S 中的点. 于是 p 为 S 的附着点.

所以有下面的命题:

Proposition 1.1. $p \in S$ 的附着点, 当且仅当 S 中存在收敛到 p 的点列.

同时按照聚点的定义, 也有:

Proposition 1.2. $p \in S$ 的聚点, 当且仅当 $S - \{p\}$ 中存在收敛到 p 的点列.

由于附着点可以分为聚点和孤点两类. 下面分别讨论其性质.

如果 p 是 S 的孤点, S 中一定存在点列 (x_n) 收敛到 p, 记其值域 $T = \{x_1, x_2, \ldots\}$. 按照孤点的定义: 存在 r > 0, B(p;r) 中只有 p 一个 S 中的点. 而序列收敛到 p, 对于任意 $\epsilon > 0$, 都能找到 N > 0, 对 $n \ge N$ 有 $d(x_n, p) < \epsilon$, 即 $x_n \in B(p; \epsilon)$. 那么取 $\epsilon = r$, 意味着所有 $n \ge N$, $x_n = p$. 这说明 T 是一个有限集.

收敛到孤点的序列值域有限, 但反过来, 收敛到 p 的序列 (x_n) 值域有限, 并不代表着 p 为孤点. 因为对于任意 $p \in S$, 都存在常序列 p, p, p, \dots 收敛到 p, 而 p 显然不一定 为孤点.

所以, 如果一个收敛到 p 的序列值域为无穷集, 则 p 不可能为孤点, 于是只可能为聚点.

综上所述: 收敛序列值域无穷 ⇒ 收敛到聚点; 收敛到孤点 ⇒ 收敛序列值域有限.

1.3 函数的极限

考虑两个度量空间 (S, d_S) 和 (T, d_T) , A 为 S 的子集, 设函数 $f: A \to T$ 为函数.

Definition 1.2. 设 p 为 A 的聚点, $b \in T$, 当对于任意 $\epsilon > 0$ 都存在 $\delta > 0$, 使得

则称 f(x) 在 p 处的极限为 b, 记作:

$$\lim_{x \to p} f(x) = b.$$

或记作: $x \to p$, $f(x) \to b$.

从邻域的角度阐述: 无论 $B_T(b;\epsilon)$ 多么小, 总能找到 A 中的去心邻域 $B_S(p;\delta) - \{p\}$, 使得其中 x 被映射到 $B_T(b;\epsilon)$ 中.

另一种阐述方式: 无论 $B_T(b;\epsilon)$ 多么小, 总能找到 A 中的去心邻域 $B_A^0(p;\delta) = B_S(p;\delta) \cap A - \{p\}$, 使得其像 $f(B_A^0(p;\delta)) \subseteq B_T(b;\epsilon)$.

需要注意的条件: 我们要求 $A - \{p\}$ 中有点充分接近 p, 所以 p 一定是定义域 A 的聚点. 如果为孤点的话, p 的去心 δ -邻域 $B(p;\delta) - \{p\}$ 很有可能为空集. 那么将这个集合内的点映射到任何一个 $B(b;\epsilon)$ 邻域都是空真的, 也就是说此时可以称 p 点的极限为任意 b, 显然没有意义.

函数的极限和序列的极限关系如下:

Proposition 1.3. $\lim_{x\to p} f(x) = b$ 当且仅当 $A - \{p\}$ 内每一个收敛于 p 的点列 (x_n) 都有 $\lim_{x\to\infty} f(x_n) = b$.

证明.

正推: 如果 $\lim_{x\to p} f(x) = b$, 对于任意 $\epsilon > 0$, 都能找到 $\delta > 0$, 当 $0 < d(x,p) < \delta$ 时, $d(f(x),b) < \epsilon$. 设 $A - \{p\}$ 有点列 (x_n) 收敛于 p, 可以找到 N, 当 $n \ge N$ 时, $d(x_n,p) < \delta$, 此时有 $d(f(x_n),b) < \epsilon$. 所以序列 $f(x_n) \to b$.

反推: 假设任意收敛于 p 的点列 (x_n) 都有 $f(x_n) \to b$,但 f(x) 不收敛到 b. 说明 存在 $\epsilon > 0$,此时任意 $\delta > 0$, $0 < d(x,p) < \delta$ 内的 x 都有 $d(f(x),b) \ge \epsilon$. 那么取 $\delta = 1,1/2,1/3,\ldots$ 可以得到对应的点列 x_1,x_2,\ldots 此时 $d(f(x_i),b) \ge \epsilon$. 点列 $(x_i)_{i=1}^\infty$ 收敛到 p,但 $d(f(x_i),b) \ge \epsilon$,所以 $f(x_i)$ 不收敛到 b,这就产生了矛盾.

1.4 连续性

Definition 1.3. 设 $f: S \to T$ 为函数, p 为 S 内一点. 称 f 在 p 点连续, 当且仅当 对于任意 $\epsilon > 0$, 都有 $\delta > 0$ 使得当 $d_S(x,p) < \delta$ 时 $d_T(f(x),f(p)) < \epsilon$.

如果 p 为孤点, 很明显 f 在 p 处连续. 当 p 为 S 的聚点, 则当 $x \to p$ 时 $f(x) \to f(p)$.

Proposition 1.4. 设 $f: S \to T$ 为函数, $p \in S$, 则 f 在 p 处连续当且仅当 S 内每一个收敛到 p 的序列 (x_n) 都有 T 中的序列 $(f(x_n))$ 收敛到 f(p), 即:

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

1.5 连续映射

1.5.1 映射

Definition 1.4 (逆象). 函数 $f: S \to T, Y \subseteq T, Y$ 的逆象定义如下:

$$f^{-1}(Y) := \{x \in S \colon f(x) \in Y\}.$$

即定义域中所有映射到 Y 的元素集合.

像和逆像的常用性质:

Proposition 1.5. $f: S \to T$ 为函数

- 1. 若 $A \subseteq B$, $f(A) \subseteq f(B)$, $f^{-1}(A) \subseteq f^{-1}(B)$
- 2. $f(A \cup B) = f(A) \cup f(B), f(A \cap B) \subseteq f(A) \cap f(B)$
- 3. $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

注意, $f(A \cap B) \subseteq f(A) \cap f(B)$, 此处不一定取等. 不妨取两个互斥的集合 $A \cap B = \emptyset$, 此时 $f(A \cap B) = \emptyset$, 而令一侧 $f(A) \cap f(B)$ 可以非空, 只要 f 不是单射.

Proposition 1.6. 对于 $f: S \to T$ 和 f^{-1} . 设 $Y \subseteq T$, 则有 $f(f^{-1}(Y)) \subseteq Y$. 当且仅 当 f 为满射时取得等号.

证明. 按照定义即可. 考虑任意 $y \in f(f^{-1}(Y))$, 一定存在 $x \in f^{-1}(Y)$, y = f(x). 而 $x \in f^{-1}(Y)$ 意味着 $f(x) \in Y$, 所以 $y \in Y$.

Proposition 1.7. 对于 $f: S \to T$ 和 f^{-1} . 设 $X \subseteq S$, 则有 $X \subseteq f^{-1}(f(X))$. 上式 取等当且仅当其对所有 $X \subseteq S$

证明. 对于任意 $x \in X$, $f(x) \in f(X)$. 也就是说 x 映射到 f(X) 中, 也就一定在 $f^{-1}(f(X)) = \{z \in X : f(z) \in f(X)\}$ 中.

另一个有趣的等式可以由此导出:

Proposition 1.8.

- $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y)$
- $f(f^{-1}(f(X))) = f(X)$

证明. 对于第一个等式, 把最内层括号里 $f^{-1}(Y)$ 看成整体, 可以得到

$$f^{-1}(Y) \subseteq f^{-1}(f(f^{-1}(Y)));$$

而对于 $f(f^{-1}(Y))$, 已知 $f(f^{-1}(Y)) \subseteq Y$, 两边应用 f^{-1} , 有

$$f^{-1}(f(f^{-1}(Y))) \subseteq f^{-1}(Y)$$
.

综上所述: $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y)$.

对于第二个等式, 同理.

1.5.2 连续映射

连续映射满足一定性质: 陪域中开集的逆像仍为开集, 闭集的逆像仍为闭集.

Proposition 1.9. 函数 $f: S \to T$ 是函数, 如果 f 在开集 $U \subseteq T$ 上连续, 则其逆像 $f^{-1}(U)$ 也是开集. 如果 f 在闭集 $V \subseteq T$ 上连续, 则其逆像 $f^{-1}(V)$ 也是闭集.

但是正向地看, 定义域里面的开集, 经过连续映射不一定为开集, 反例可以举常值函数. 定义域里的闭集, 经过连续映射不一定为闭集, 反例为 $\arctan(\mathbb{R}) = (-\pi/2, \pi/2)$. 但是对于紧集 (闭且有界), 却能在正向映射时保持紧性.

Proposition 1.10. 如果函数 $f: S \to T$ 在 $X \subseteq S$ 上连续, 且 X 为 S 中的紧集, 则 f(X) 是 T 中的紧集.

证明需要用到 Heine-Borel 定理.

Definition 1.5. 对于欧氏空间中的函数 $f: S \to \mathbb{R}^n$, 称 f 在 S 上有界, 当且仅当存在正数 M, 使得所有 $x \in S$ 都有 $\|\mathbf{f}(x)\| \leq M$.

Theorem 1.1. 设 $\mathbf{f}: S \to \mathbb{R}^n$ 在紧集 $X \subset S$ 上连续, 则 \mathbf{f} 在 X 上有界.

上述定理反应了欧氏空间中函数和紧集的关系: 紧集经过连续映射一定是有界的.