3. 系统分析实例: 一起燃烧卡路里

- 3.1 数学建模
- 3.2 比例控制器
 - 3.2.1 终值定理

终值定理的定义

终值定理的条件

终值定理的应用举例

- 3.2.2 稳态误差
- 3.3 Matlab / Simulink 仿真

3.1 数学建模

自动控制原理3:一位燃烧卡路里

变量效:

且热量的体重的关系为: 7000 kCal ≈ 1 kg

建立微的格: dm = EN = EI-Ee = EI-Ea-2P (1)

对于BMR的计算选用如下公司:

对于MKMONT J. 2017 10 17 20 17 (S)

将每四份大量的,得到:

 $\frac{dm}{dt} = \frac{E_1 - E_0 - 2(10m + 6.25h - 5a + s)}{7000}$ (3)

额外处量消耗

由于对于一个人来说,可以近的认为 h,a,s都是常数 故会 C= 6.25h-5a+s,

这个系统的传递方程为:

$$G(s) = \frac{1/7000}{s + \alpha/700}$$
 (3.1.6)

系统的极点为 $s=-rac{lpha}{700}<0$,因此这个系统是稳定的。

3.2 比例控制器

3.1 节, 我们通过数学建模, 得到了这个系统的开环形式:

根据 1. 开环系统和闭环系统 / 反馈控制,我们可以通过引入参考值,误差值和扰动,建立出这个系统的闭环形式:

在这个框图中,我们使用了一个比例系数为 K_P 的比例控制器。

$$E(s) = R(s) - M(s)$$
 (3.2.1)

此时系统的输入为:

$$U(s) = K_P E(s) + D(s)$$

= $K_P [R(s) - M(s)] + D(s)$ (3.2.2)

系统的输出为:

$$M(s) = U(s)G(s)$$

$$= (K_P E(s) + D(s))G(s)$$

$$= \{K_P [R(s) - M(s)] + D(s)\}G(s)$$

$$= \{K_P [R(s) - M(s)] + D(s)\}\frac{1/7000}{s + \alpha/700}$$
(3.2.3)

PS: 这里的 M(s) 和3.1节的 X(s) 是等价的,都表示为系统的输出值,只是我和王天威老师的写法不同。

于是:

$$M(s) = \frac{K_P R(s) + D(s)}{7000s + 10\alpha + K_P}$$
(3.2.4)

如果 R(s) 和 D(s) 都是常数,即它们是稳定的,那么系统的输出的稳定性只会由 Eq. (3.2.4)的分母决定。

令特征方程
$$7000s+10lpha+K_P=0$$
 ,得到系统的极点: $s=rac{-10lpha-K_P}{7000}$,令 $s<0$ 得到: $K_P>-10lpha$ ($3.2.5$)

也就是说,要想让这个系统,再加入比例控制器之后是稳定的,设计的控制器的比例系数需要满足 Eq. (3.2.5)。

然而,只靠比例控制,无法消除**稳态误差(Steady State Error)**.

3.2.1 终值定理

终值定理的定义

终值定理(Final Value Theorem)是一种工具,主要用于分析系统在经过长时间后将趋向的最终值。它在控制理论、信号处理和系统动力学中非常有用,可以帮助我们预测系统在稳定状态下的行为。

终值定理应用于拉普拉斯变换,并且**假设系统在时间趋于无穷大时会达到稳定状态**。终值定理的核心内容是,系统的终值可以通过拉普拉斯域中的传递函数来计算。

具体来说,终值定理表示:如果信号 f(t) 的拉普拉斯变换为 F(s) ,则在某些条件下,当时间 $t \to \infty$ 趋于无穷大时,信号的终值可以表示为:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \times F(s)$$
 (3.2.6)

F(s) 是信号 f(t) 的拉普拉斯变换。

终值定理的条件

终值定理适用于系统在时间趋于无穷大时稳定的情况。具体条件包括:

- **系统必须稳定**:如果系统不稳定或存在振荡,终值定理可能不适用。系统的极点必须在拉普拉斯域的左半平面。
- 无多项式增长: 系统在时间域中不能呈现无限增长。

终值定理的应用举例

考虑 动态系统建模与分析 9. 二阶系统的时域响应分析中的实例: 弹簧—阳尼系统。

数学模型为:

$$m\frac{\mathrm{d}x^{2}(t)}{\mathrm{d}t} = F(t) - B\frac{\mathrm{d}x(t)}{\mathrm{d}t} - Kx(t) \qquad (3.2.7)$$

拉普拉斯变换为:

$$G(s) = \frac{X(s)}{U(s)} = \frac{1}{ms^2 + Bs + K}$$
 (3.2.8)

对这个系统施加一个单位冲激响应 $u(t)=\delta(t)$:

根据 Eq. (3.2.6), 这个系统的终值响应为:

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s \times X(s)$$

$$= \lim_{s \to 0} \frac{s}{ms^2 + Bs + K}$$

$$= 0$$
(3.2.10)

同理,如果对这个系统施加一个单位阶跃响应,

$$X(s) = U(s) imes rac{1}{ms^2 + Bs + K} \ = rac{1}{s} imes rac{1}{ms^2 + Bs + K} \ [im_{t o \infty} x(t) = \lim_{s o 0} s imes X(s) \ = \lim_{s o 0} rac{1}{ms^2 + Bs + K} \ = rac{1}{m} (3.2.11 ext{ b}) \ = rac{1}{K}$$

3.2.2 稳态误差

回到一个比例控制系统,设系统的传递函数为: $G(s)=rac{1}{as+1}$,

$$X(s) = U(s)G(s)$$

$$= K_P E(s)G(s)$$

$$= \{K_P [R(s) - X(s)]\}G(s) \qquad (3.2.12 \text{ a})$$

$$= \{K_P [R(s) - X(s)]\} \frac{1}{as + 1}$$

$$X(s) = \frac{K_P R(s)}{as + 1 + K_P} \qquad (3.2.12 \text{ b})$$

系统的极点 $s=-rac{1+K_p}{a}$,当 $K_P>-1$ 时,系统稳定,满足终值定理条件。设系统的参考值 r(t)=c ,则 $R(s)=rac{c}{s}$,代入Eq. (12),这个系统的终值响应为: :

$$\begin{split} \lim_{t \to \infty} x(t) &= \lim_{s \to 0} s \times X(s) \\ &= \lim_{s \to 0} s \times \frac{K_P R(s)}{as + 1 + K_P} \\ &= \lim_{s \to 0} \frac{s K_P \frac{c}{s}}{as + 1 + K_P} \\ &= \lim_{s \to 0} \frac{c K_P}{as + 1 + K_P} \\ &= \frac{K_P}{1 + K_P} c \end{split}$$
 (3.2.13)

也就是说, 当时间趋于无穷大时, 系统稳定, 稳态误差为:

$$e_{ss} = r(t) - \lim_{t \to \infty} x(t) = c - \frac{K_P}{1 + K_P} c = \frac{1}{1 + K_P} c$$
 (3.2.14)

到这里,我们通过计算,知道了为什么只通过P控制器,无法消除稳态误差,除非我们将控制器的比例系数 K_P 设计为无穷大,但这在工程实现上是不现实的,过大的比例系数会引起系统的超调!

3.3 Matlab / Simulink 仿真