3. Table des transformées de Laplace

	F(p)	$f(t) = \mathscr{L}^{-1}\left\{F(p)\right\}$
1	1	$\delta(t)$
2	$e^{-\tau p}$	$\delta(t- au)$
3	$\frac{1}{p}$	1
4	$\frac{1}{p^2}$	t
5	$ \frac{1}{p} $ $ \frac{1}{p^2} $ $ \frac{1}{p^3} $ $ \frac{1}{p^n} $	$\frac{1}{2}t^2$
6	$\frac{1}{p^n}$	$\frac{\frac{1}{2}t^2}{\frac{1}{(n-1)!}t^{n-1}}$
7	$\frac{1}{p+a}$	e^{-at}
8	$\frac{\overline{p+a}}{1}$ $\overline{(p+a)^2}$	te^{-at}
9	$\frac{1}{(p+a)^3}$ $\frac{1}{(p+a)^n}$	$\frac{1}{2}t^2e^{-at}$
10	$\frac{1}{(p+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
11	$\frac{a}{p(p+a)}$	$1 - e^{-at}$
12	$\frac{a}{p^2(p+a)}$	$\frac{1}{a}\left[at - (1 - e^{-at})\right]$
13	$\frac{p}{(p+a)^2}$	$(1 - at)e^{-at}$
14	$\frac{a^2}{p(p+a)^2}$	$1 - (1 + at)e^{-at}$
15	$\frac{a^2(p+z)}{p(p+a)^2}$	$z - (z + a(z - a)t) e^{-at}$
16	$\frac{b-a}{(p+a)(p+b)}$	$e^{-at} - e^{-bt}$

Tableau D.1. – Table de transformées de Laplace d'après[15]

$$F(p) \qquad f(t) = \mathcal{L}^{-1} \left\{ F(p) \right\}$$

$$17 \qquad \frac{(b-a)p}{(p+a)(p+b)} \qquad -ae^{-at} + be^{-bt}$$

$$18 \qquad \frac{(b-a)(p+z)}{(p+a)(p+b)} \qquad (z-a)e^{-at} - (z-b)e^{-bt}$$

$$19 \qquad \frac{ab}{p(p+a)(p+b)} \qquad 1 + \frac{be^{-at} - ae^{-bt}}{a-b}$$

$$20 \qquad \frac{ab(p+z)}{p(p+a)(p+b)} \qquad z + \frac{b(z-a)e^{-at} - a(z-b)e^{-bt}}{a-b}$$

$$21 \qquad \frac{1}{(p+a)(p+b)(p+c)} \qquad \frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$$

$$22 \qquad \frac{p+z}{(p+a)(p+b)(p+c)} \qquad \frac{(z-a)e^{-at}}{(b-a)(c-a)} + \frac{(z-b)e^{-bt}}{(c-b)(a-b)} + \frac{(z-c)e^{-ct}}{(a-c)(b-c)}$$

$$23 \qquad \frac{\omega}{p^2 + \omega^2} \qquad \sin \omega t$$

$$24 \qquad \frac{p}{p^2 + \omega^2} \qquad \cos \omega t$$

$$25 \qquad \frac{p+z}{p^2 + \omega^2} \qquad \sqrt{\frac{z^2 + \omega^2}{\omega^2}} \sin (\omega t + \phi) \text{ avec } \phi = \arctan \frac{\omega}{z}$$

$$26 \qquad \frac{\omega^2}{(p+a)^2 + \omega^2} \qquad z - \sqrt{\frac{z^2 + \omega^2}{\omega^2}} \cos (\omega t + \phi) \text{ avec } \phi = \arctan \frac{\omega}{z}$$

$$28 \qquad \frac{\omega}{(p+a)^2 + \omega^2} \qquad e^{-at} \cos \omega t$$

$$29 \qquad \frac{p+z}{(p+a)^2 + \omega^2} \qquad e^{-at} \cos \omega t$$

$$30 \qquad \frac{p+z}{(p+a)^2 + \omega^2} \qquad \phi = \arctan \frac{\omega}{z-a}$$

$$31 \qquad \frac{\omega^2}{p^2 + 2\xi\omega p + \omega^2} \text{ avec } \xi < 1$$

$$1 - \frac{1}{\sqrt{1-\xi^2}}e^{-\xi\omega t} \sin \omega \sqrt{1-\xi^2}t + \phi \text{ avec } \phi = \arccos \xi$$

Tableau D.2. – (suite) Table de transformées de Laplace d'après [15]