Curso 0 Sesión 2

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026

Índice

- Exponenciais e logaritmos
- 2 Funcións trigonométricas
- 3 Límites

Exponenciais e logaritmos

Consideramos a función exponencial e logaritmo neperiano

A función logaritmo neperiano escribirémola indistintamente con $\ln x$ ou $\log x$.

A exponencial e o logaritmo son funcións unha inversa da outra: $\log(e^x) = x$ e $e^{\log y} = y$. Así, por exemplo temos que:

$$e^{0} = 1$$
, $log(1) = 0$,
 $e^{1} = e$, $log(e) = 1$.

Representación gráfica:

$$\exp: \mathbb{R} o (0,+\infty)$$

$$\log(x):(0,+\infty)\to\mathbb{R}$$

Exponenciais e logaritmos

Propiedades básicas da exponencial e o logaritmo:

Exponencial	Logaritmo	
$e^{a+b}=e^a\cdot e^b$	$\log(a \cdot b) = \log a + \log b$	
$e^{-a} = \frac{1}{e^a}$	$\log(\frac{a}{b}) = \log a - \log b$	
$(e^a)^b = e^{ab}$	$\log a^b = b \log a$	

Funcións trigonométricas

Consideramos as funcións:

Estas funcións non son bixectivas nestes dominios de definición, así que para poder considerar as súas inversas debemos restrinxir o seu dominio:

arctan :
$$\mathbb{R} \rightarrow (-\pi/2, \pi/2)$$

 $x \rightsquigarrow \operatorname{arctan} x$

Ollo!: non é o mesmo a función inversa que o inverso do valor dunha función:

$$\arcsin x \neq \frac{1}{\sin x}$$
.

Gráficas das funcións trigonométricas

$$\mathsf{sen}(\mathsf{x}): \mathbb{R} \to [-1,1]$$

$$\cos(x): \mathbb{R} \to [-1,1]$$

$$arcsen(x): [-1,1] \rightarrow [-\pi/2,\pi/2]$$

$$\operatorname{\mathsf{arccos}}({\mathsf{x}}):[-1,1] \to [0,\pi]$$

Gráficas das funcións trigonométricas

$$\mathsf{tan}(x): \mathbb{R} ackslash \left\{ (2k+1) rac{\pi}{2} \, / k \in \mathbb{Z}
ight\} o \mathbb{R}$$

$$\operatorname{arctan}: \mathbb{R} o (-rac{\pi}{2}, rac{\pi}{2})$$

Propiedades das funcións trigonométricas

Identidades trigonométricas básicas:

Identidade fundamental	$\operatorname{sen}^2 x + \cos^2 x = 1$
Seno do ángulo oposto	$\operatorname{sen}(-x) = -\operatorname{sen} x$
Seno da suma	$\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \cos x \operatorname{sen} y$
Seno do ángulo dobre	$\operatorname{sen}(2x) = 2\operatorname{sen} x \cos x$
Coseno do ángulo oposto	$\cos(-x) = \cos x$
Coseno da suma	$\cos(x+y) = \cos x \cos y - \sin x \sin y$
Coseno do ángulo dobre	$\cos(2x) = \cos^2 x - \sin^2 x$

Táboa básica de razóns trigonométricas:

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sen	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Cálculo de límites. Operacións con ceros e infinitos

$\infty \pm k = \infty$	$(+\infty) + (+\infty) = +\infty$	$(+\infty) - (+\infty) = \text{Indeterminado}$	
$\infty \cdot k = \infty (\text{si } k \neq 0)$	$\infty \cdot \infty = \infty$	$0 \cdot \infty = \text{Indeterminado}$	
$\frac{0}{k}=0$	$\frac{0}{\infty} = 0$	$\frac{0}{0} = \text{Indeterminado}$	
$\frac{k}{0} = \infty$	$\frac{k}{\infty} = 0$		
$\frac{\infty}{k} = \infty$	$\frac{\infty}{0} = \infty$	$\frac{\infty}{\infty}$ = Indeterminado	
$0^k = \left\{ \begin{array}{ll} 0 & \text{ si } k > 0 \\ \infty & \text{ si } k < 0 \end{array} \right.$	$0^{+\infty} = 0$	$0^0 = Indeterminado$	
$k^0 = 1$	$k^{+\infty} = \left\{ \begin{array}{ll} \infty & \text{si } k > 1 \\ 0 & \text{si } 0 < k < 1 \end{array} \right.$	1^{∞} = Indeterminado	
	$(+\infty)^{+\infty} = +\infty$	$\infty^0 = ext{Indeterminado}$	

Indeterminación	Método/s proposto/s	
$\frac{k}{0}$	Límites laterales	
0 0	 Factorizar (se é posible) Se hai raíces, multiplicar e dividir por conxugado 	
	∘ l'Hôpital	
$\frac{\infty}{\infty}$	○ Operar	
	∘ l'Hôpital	
$\infty - \infty$	○ Operar	
	 Se hai raíces, multiplicar e dividir por conxugado 	
0^{∞}	Operar	
1∞	Buscar $\lim_{a \mid go \mapsto \infty} \left(1 + \frac{1}{a \mid go}\right)^{a \mid go} = e$ Aplicar: $a^b = e^{\log(a^b)} = e^{b \cdot \log(a)}$	
$0^{\infty}, \ \infty^0, \ 0^0$	Aplicar: $a^b = e^{\log(a^b)} = e^{b \cdot \log(a)}$	

Curso 0 Sesión 2

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026