1 Espaces métriques

Définition 1.1. Un espace métrique est un couple (E,d) où E est un ensemble non vide et d est une application, appelée distance ou métrique,

$$\mathcal{D}: E \times E \to \mathbb{R}^+$$

telle que, pour tous $x,y,z\in E$, les propriétés suivantes sont vérifiées :

- 1. **Séparation**: $\mathcal{D}(x,y) = 0 \iff x = y$;
- 2. **Symétrie** : $\mathcal{D}(x,y) = \mathcal{D}(y,x)$;
- 3. Inégalité triangulaire : $\mathcal{D}(x,z) \leq \mathcal{D}(x,y) + \mathcal{D}(y,z)$.

Note: la positivité $\mathcal{D}(x,y) \geq 0$ est une conséquence des autres axiomes ¹

2 Espaces vectoriels normés

Définition 2.1. Soit E un espace vectoriel sur le corps \mathbb{K} (\mathbb{R} ou \mathbb{C}). Une **norme** sur E est une application

$$\|\cdot\|: E \to \mathbb{R}^+$$

telle que, pour tous vecteurs $\mathbf{x}, \mathbf{y} \in E$ et tout $\lambda \in \mathbb{K}$, on a :

- 1. **Séparation**: $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$;
- 2. Homogénéité : $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$;
- 3. Inégalité triangulaire (ou sous-additivité) : $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Un espace vectoriel muni d'une norme est appelé un espace vectoriel normé.

Proposition 2.1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. $\mathcal{D}: E \times E \to \mathbb{R}^+$ définie par

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

est une distance sur E. Ainsi, tout espace vectoriel normé est un espace métrique.

Donnons un exemple. Soit l'espace vectoriel $E = \mathbb{R}^d$. Pour un vecteur $\mathbf{x} = (x_1, \dots, x_d)$, la **norme euclidienne** (ou norme L2) est définie par :

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_{i=1}^d x_i^2}$$

La distance induite par cette norme est la **distance euclidienne**, définie pour deux points \mathbf{x} et \mathbf{y} par :

$$\mathcal{D}_E(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

On vérifie facilement qu'elle satisfait aux axiomes d'une métrique.

^{1.} En effet, $0 = \mathcal{D}(x, x) \leq \mathcal{D}(x, y) + \mathcal{D}(y, x) = 2\mathcal{D}(x, y)$, donc $\mathcal{D}(x, y) \geq 0$.

Mise en pratique computationnelle 3

Dans de nombreuses applications (classification, clustering), on doit résoudre :

$$\arg\min_{i\in\{1,\ldots,k\}} \mathcal{D}_E(x,c_i)$$

où $x \in {}^d$ est un point à classifier et $\{c_1, \ldots, c_k\}$ sont des points. On peut utiliser la distance euclidienne au carré, \mathcal{D}_E^2 car cela permet d'éviter l'opération sqrt. Le résultat est le même dans les deux cas : pour tout $a, b \in {}^+$ avec a < b, on a $a^2 < b^2$, on a :

$$\arg\min_{i\in\{1,\dots,k\}} \mathcal{D}_E(x,c_i) = \arg\min_{i\in\{1,\dots,k\}} \mathcal{D}_E^2(x,c_i)$$

En pratique, pour calculer $\mathcal{D}_E^2(\mathbf{x},\mathbf{y}) = \|\mathbf{x}-\mathbf{y}\|^2$, on utilise l'identité remarquable issue du produit scalaire :

$$\|\mathbf{x} - \mathbf{y}\|^2 = (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$
$$= \mathbf{x} \cdot \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{y}) + \mathbf{y} \cdot \mathbf{y}$$
$$= \|\mathbf{x}\|^2 - 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2$$

En pratique, lorsqu'on fait un clustering ou un algorithme de classification en python, on peut alors calculer une seule fois $\|\mathbf{x}\|^2$ et $\|\mathbf{y}\|^2$ en stockant leurs valeurs, et faire une boucle for qui itère sur $\mathbf{x} \cdot \mathbf{p_i}$