Demostración detallada de la fórmula de la base recíproca en \mathbb{R}^3

Planteamiento

Sea $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ una base (no necesariamente ortogonal) de \mathbb{R}^3 con orientación derecha (dextrógira). Se define la base recíproca $\{\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3\}$ como el conjunto de vectores que satisface

$$\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j, \quad i, j \in \{1, 2, 3\}.$$

Queremos demostrar que, para permutaciones cíclicas (i, j, k) de (1, 2, 3),

$$\mathbf{e}^{i} = \frac{\mathbf{e}_{j} \times \mathbf{e}_{k}}{\mathbf{e}_{i} \cdot (\mathbf{e}_{j} \times \mathbf{e}_{k})}.$$
 (1)

Preliminares (identidades básicas)

- Producto cruz: $\mathbf{a} \times \mathbf{b}$ es perpendicular $\mathbf{a} \ \mathbf{a} \ \mathbf{y} \ \mathbf{a} \ \mathbf{b}, \ \mathbf{y} \ \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \angle(\mathbf{a}, \mathbf{b}).$
- Triple producto escalar (cíclico):

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}).$$

Geométricamente es el volumen orientado del paralelepípedo formado por $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

■ No degeneración: Como $\{e_1, e_2, e_3\}$ es base,

$$V := \mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3) \neq 0.$$

Si la base es dextrógira, entonces V > 0.

Demostración geométrica paso a paso

Paso 1: existencia (caso i = 1)

Queremos e^1 tal que

$$\mathbf{e}^1 \cdot \mathbf{e}_1 = 1, \qquad \mathbf{e}^1 \cdot \mathbf{e}_2 = 0, \qquad \mathbf{e}^1 \cdot \mathbf{e}_3 = 0.$$

Las dos últimas igualdades dicen que \mathbf{e}^1 es perpendicular al plano span $\{\mathbf{e}_2, \mathbf{e}_3\}$. Un vector perpendicular a ese plano es $\mathbf{e}_2 \times \mathbf{e}_3$. Por tanto, existe $m \in \mathbb{R}$ tal que

$$\mathbf{e}^1 = m(\mathbf{e}_2 \times \mathbf{e}_3). \tag{2}$$

Esta elección ya garantiza $\mathbf{e}^1 \cdot \mathbf{e}_2 = 0$ y $\mathbf{e}^1 \cdot \mathbf{e}_3 = 0$.

Paso 2: normalización

Imponemos $e^1 \cdot e_1 = 1$. Usando (2):

$$1 = \mathbf{e}^1 \cdot \mathbf{e}_1 = m (\mathbf{e}_2 \times \mathbf{e}_3) \cdot \mathbf{e}_1 = m \mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3) = m V.$$

Luego

$$m = \frac{1}{V} = \frac{1}{\mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3)}.$$

Sustituyendo en (2),

$$\boxed{ \mathbf{e}^1 \ = \ \frac{\mathbf{e}_2 \times \mathbf{e}_3}{\mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3)} \ .}$$

Paso 3: verificación explícita

Con $V = \mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3)$:

$$\mathbf{e}^1 \cdot \mathbf{e}_1 = \frac{(\mathbf{e}_2 \times \mathbf{e}_3) \cdot \mathbf{e}_1}{V} = \frac{V}{V} = 1,$$

$$\mathbf{e}^1 \cdot \mathbf{e}_2 \ = \ \frac{(\mathbf{e}_2 \times \mathbf{e}_3) \cdot \mathbf{e}_2}{V} \ = \ 0, \qquad \mathbf{e}^1 \cdot \mathbf{e}_3 \ = \ \frac{(\mathbf{e}_2 \times \mathbf{e}_3) \cdot \mathbf{e}_3}{V} \ = \ 0,$$

pues $\mathbf{e}_2 \times \mathbf{e}_3$ es ortogonal a \mathbf{e}_2 y \mathbf{e}_3 .

Paso 4: casos i = 2 e i = 3

Por simetría cíclica de (1,2,3) y por la propiedad cíclica del triple producto,

$$\mathbf{e}^2 = \frac{\mathbf{e}_3 \times \mathbf{e}_1}{\mathbf{e}_2 \cdot (\mathbf{e}_3 \times \mathbf{e}_1)} = \frac{\mathbf{e}_3 \times \mathbf{e}_1}{V}, \qquad \mathbf{e}^3 = \frac{\mathbf{e}_1 \times \mathbf{e}_2}{\mathbf{e}_3 \cdot (\mathbf{e}_1 \times \mathbf{e}_2)} = \frac{\mathbf{e}_1 \times \mathbf{e}_2}{V}.$$

En ambos casos, el denominador vuelve a ser V por la identidad cíclica. Estas expresiones verifican $\mathbf{e}^2 \cdot \mathbf{e}_2 = 1$, $\mathbf{e}^2 \cdot \mathbf{e}_1 = \mathbf{e}^2 \cdot \mathbf{e}_3 = 0$, y análogamente para \mathbf{e}^3 .

Observación 1. Si la base tuviera orientación izquierda (no dextrógira), V < 0 y las fórmulas anteriores incorporan automáticamente el signo correcto a través de V.

Demostración matricial (más algebraica)

Sea $E \in \mathbb{R}^{3\times 3}$ la matriz cuyas *columnas* son los vectores de la base:

$$E = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}.$$

Para cualquier $x \in \mathbb{R}^3$, su vector de coordenadas en la base es el que resuelve $E \alpha = x$. La condición de base recíproca $\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j$ equivale a decir que las filas de E^{-1} son precisamente los covectores $\{\mathbf{e}^{1\top}, \mathbf{e}^{2\top}, \mathbf{e}^{3\top}\}$; es decir,

$$E^{-1} = \begin{bmatrix} \mathbf{e}^{1\mathsf{T}} \\ \mathbf{e}^{2\mathsf{T}} \\ \mathbf{e}^{3\mathsf{T}} \end{bmatrix}.$$

Como E es invertible, $E^{-T}=(E^{-1})^{\top}$ tiene por *columnas* a los vectores $\{\mathbf{e}^1,\mathbf{e}^2,\mathbf{e}^3\}$:

$$E^{-T} = \begin{bmatrix} \mathbf{e}^1 & \mathbf{e}^2 & \mathbf{e}^3 \end{bmatrix}.$$

Usando adjunta (adjugate),

$$E^{-T} = \frac{1}{\det E} \operatorname{adj}(E)^{T}.$$

Pero para una matriz E con columnas $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ se tiene la identidad clásica

$$\operatorname{adj}(E) = \begin{bmatrix} \mathbf{e}_2 \times \mathbf{e}_3 & \mathbf{e}_3 \times \mathbf{e}_1 & \mathbf{e}_1 \times \mathbf{e}_2 \end{bmatrix},$$

cuyas columnas son precisamente los cofactores vectoriales. Además det $E = \mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3) = V$. Por tanto,

$$E^{-T} = \frac{1}{V} [\mathbf{e}_2 \times \mathbf{e}_3 \quad \mathbf{e}_3 \times \mathbf{e}_1 \quad \mathbf{e}_1 \times \mathbf{e}_2],$$

y leyendo columna a columna,

$$\mathbf{e}^1 = \frac{\mathbf{e}_2 \times \mathbf{e}_3}{V}, \quad \mathbf{e}^2 = \frac{\mathbf{e}_3 \times \mathbf{e}_1}{V}, \quad \mathbf{e}^3 = \frac{\mathbf{e}_1 \times \mathbf{e}_2}{V}$$

que coincide con (1).

Demostración en notación índice (opcional, muy detallada)

Sea $E = [e_{i\alpha}]$ con $i \in \{1, 2, 3\}$ indicando la columna (base) y $\alpha \in \{1, 2, 3\}$ la componente. El símbolo de Levi-Civita $\varepsilon_{\alpha\beta\gamma}$ verifica:

$$(\mathbf{a} \times \mathbf{b})_{\alpha} = \sum_{\beta,\gamma} \varepsilon_{\alpha\beta\gamma} a_{\beta} b_{\gamma}, \quad \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \sum_{\alpha,\beta,\gamma} \varepsilon_{\alpha\beta\gamma} a_{\alpha} b_{\beta} c_{\gamma}.$$

Definiendo

$$V = \sum_{\alpha,\beta,\gamma} \varepsilon_{\alpha\beta\gamma} e_{1\alpha} e_{2\beta} e_{3\gamma}, \qquad (\mathbf{e}^1)_{\alpha} = \frac{1}{V} \sum_{\beta,\gamma} \varepsilon_{\alpha\beta\gamma} e_{2\beta} e_{3\gamma},$$

se obtiene

$$\mathbf{e}^{1} \cdot \mathbf{e}_{1} = \sum_{\alpha} (\mathbf{e}^{1})_{\alpha} e_{1\alpha} = \frac{1}{V} \sum_{\alpha,\beta,\gamma} \varepsilon_{\alpha\beta\gamma} e_{1\alpha} e_{2\beta} e_{3\gamma} = \frac{V}{V} = 1,$$

y, usando $\sum_{\alpha} \varepsilon_{\alpha\beta\gamma} e_{2\beta} e_{3\gamma} e_{2\alpha} = 0$ (porque el determinante con dos columnas iguales es cero),

$$\mathbf{e}^1 \cdot \mathbf{e}_2 = 0, \qquad \mathbf{e}^1 \cdot \mathbf{e}_3 = 0.$$

Los casos i=2,3 son análogos. Por unicidad de la solución del sistema lineal $(\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j)$, esta construcción da la base recíproca.

Comprobaciones y casos límite

- Base ortonormal: Si $\mathbf{e}_i = \hat{\mathbf{e}}_i$ ortonormales y dextrógiros, entonces $\mathbf{e}_1 \cdot (\mathbf{e}_2 \times \mathbf{e}_3) = 1$ y las fórmulas dan $\mathbf{e}^i = \mathbf{e}_i$, como debe ser.
- Escala y orientación: Si se reescala $\mathbf{e}_i \mapsto \lambda_i \mathbf{e}_i$, entonces $V \mapsto \lambda_1 \lambda_2 \lambda_3 V$ y $\mathbf{e}_j \times \mathbf{e}_k \mapsto \lambda_j \lambda_k (\mathbf{e}_j \times \mathbf{e}_k)$; por tanto $\mathbf{e}^i \mapsto \frac{\lambda_j \lambda_k}{\lambda_1 \lambda_2 \lambda_3} \mathbf{e}^i = \frac{1}{\lambda_i} \mathbf{e}^i$, coherente con $\mathbf{e}^i \cdot \mathbf{e}_i = 1$.

Conclusión

Hemos mostrado, con tres enfoques (geométrico, matricial y por índices), que la base recíproca de $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ en \mathbb{R}^3 viene dada por

$$\mathbf{e}^{i} = \frac{\mathbf{e}_{j} \times \mathbf{e}_{k}}{\mathbf{e}_{i} \cdot (\mathbf{e}_{j} \times \mathbf{e}_{k})}, \qquad (i, j, k) \text{ cíclico},$$

y que ésta satisface exactamente $\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j$.