ECE 105 Quiz 2B

Individual (10 marks): A constant horizontal force F is applied to a block of mass $m_2 = 3kg$, which is in contact with another block of mass $m_1 = 5 kg$. As block m_2 moves horizontally to the right with $a_2 = 0.5 \text{ m/s}^2$. Block m_1 moves vertically up. If all contact surfaces are frictionless, find the magnitude of the force F.

Group work:

- 6. As the 2 objects are moving, how many normal forces are acting on object m₁?
 - a. None Normal forces do not act on frictionless surfaces.
 - b. 3 one from the floor, one from the wall and one from the contact surface with m₂;
 - c. 1 from the wall;
 - d. 2 one from the wall and one from the contact surface with m₂; X
- 7. What is the direction of the normal force exerted by object m₁ on object m₂?
 - a. Parallel to the ground:
 - b. Perpendicular to the ground;
 - c. Pointing downward and Inclined at angle θ with respect to the vertical axis (perpendicular to ground); X
 - d. Pointing upward and Inclined at angle θ with respect to the vertical axis (perpendicular to ground);
- 8. What is the magnitude of the normal force exerted by m₁ on m₂?
 - a. $(F m_2 a_2) / \cos(\theta)$
 - b. $(F m_2a_2) / \sin(\theta) X$
 - c. ½ m₁g
 - d. m₁g
- 9. Is the displacement Δy of m_1 related to the displacement Δx of m_2 and how?
 - a. $\Delta y = \Delta x \tan(\theta) X$
 - b. $\Delta x = \Delta y \tan(\theta)$
 - c. $\Delta x = \Delta y$
 - d. They are not related the objects move independently of each other.
- 10. Is the acceleration a₁ related to the acceleration a₂ and how?
 - a. $a_1 = a_2$
 - b. $a_1 = 2a_2$
 - c. $a_1 = a_2 \tan(\theta) X$
 - d. $a_2 = a_1 \tan(\theta)$