Listing of Claims:

Please note the claims remain as follows, noting also that this listing of claims technically replaces all prior versions, and prior listings of claims in the application:

1. (Previously Presented): A compound of formula (I)

or a pharmaceutically acceptable salt thereof, wherein:

-G1 is a radical (II)

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8

wherein -R' is an electron pair or a (C1-C3)-alkyl radical; with the condition that

(i) when -R' is an electron pair, a is a N=C double bond and the fused ring

is the biradical

thus radical (II) is (IIa'), and

$$R_4$$
 R_5
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

(ii) when -R' is a (C1-C3)-alkyl radical, a is a N-C single bond and the fused ring

is the triradical

thus radical (II) is (IIa");

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_{10}
 R_{10}
 R_{11}
 R_{12}

wherein -R₁ to -R₁₂ represent radicals, same or different, selected from the group consisting of H, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkylamino, phenyl, F, Cl, Br, amino, hydroxy, and nitro;

and wherein -B- is a biradical selected from the group consisting of -CONH-, -NR₁₃-, -O-,-(CH₂)_nNH-, -(CH₂)_nO-, and -CO[NHCHR"CO]_mO-; wherein -R₁₃ is selected from the group consisting of H, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy and (C₁-C₄)-alkylamino; -R" are side chains radicals, same or different, corresponding to natural aminoacids; n is an integer from 1 to 3 and m is an integer from 1 to 3;

-L- is a single covalent bond or a covalent linking biradical selected from the following ones:

-(CH2)rNR"(CH2)s-

-(CH2)rNR"'(CH2)sNR""(CH2)t-

wherein -R"" and -R"" are radicals, same or different, selected from the group consisting of H and (C_1-C_3) -alkyl; \underline{r} is an integer from 1 to 3; \underline{s} is an integer from 1 to 3; \underline{t} is an integer from 1 to 3; and

-G₂ is a radical selected from a radical of formula (II), the N-radical of 1,8-naphthalimide, the C4-radical of 2-phenylquinoline, and the C9-radical of acridine.

(Previously Presented): The compound according to claim 1, wherein (II) is the radical (IIa').

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_6
 R_8
 R_8

- (Original): The compound according to claim 2, wherein -B- is selected from the group consisting of -CONH- and -NR₁₃-.
- 4. (Original): The compound according to claim 2, wherein -B- is -CO[NHCHR"CO]_mO- .
- 5. (Original): The compound according to claim 4, wherein m = 2, the leftward -R" is a glicine side chain, and the rightward -R" is an arginine side chain.
- (Previously Presented): The compound according to claim 2, wherein -L- is a single covalent bond.
- 7. (Previously Presented): The compound according to claim 2, wherein -L- is a covalent linking biradical selected from the following ones.

- 8. (Previously Presented): The compound according to claim 7, wherein -L- is the biradical
- -(CH₂)_rNR"'(CH₂)_s-, -R"' is methyl, and both \underline{r} and \underline{s} are 3.
- 9. (Previously Presented): The compound according to claim 7, wherein -L- is the covalent linking biradical -(CH₂)_rNR""(CH₂)_sNR""(CH₂)_r-, both -R" and -R" are methyl; both r and t are 2, and s is 2 or 3.
- 10. (Previously Presented): The compound according to claim 1, wherein (II) is the radical (IIa").

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_{10}
 R_{10}
 R_{10}

- 11. (Previously Presented): The compound according to claim 10, wherein -B- is selected from the group consisiting of -CONH- and -NR₁₃-.
- 12. (Previously Presented): The compound according to claim 10, wherein -B- is $-CO[NHCHR"CO]_mO$ -.
- 13. (Previously Presented): The compound according to claim 12, wherein $\underline{\mathbf{m}} = 2$, the leftward -R" is a glicine side chain, and the rightward -R" is the arginine side chain.
- 14. (Previously Presented): The compound according to claim 10, wherein -R' is methyl.
- 15. (Previously Presented): The compound according to claim 14, wherein -L- is a single covalent bond.
- 16. (Previously Presented): The compound according to claim 14, wherein -L- is a biradical selected from the following ones.

-(CH2)rNR"(CH2)sNR""(CH2)t-

- 17. (Previously Presented): The compound according to claim 16, wherein -L- is the biradical -(CH₂)_xNR'''(CH₂)_s-, R''' is methyl, and both r and s are 3.
- 18. (Previously Presented): The compound according to claim 16, wherein -L- is the biradical -(CH₂)_kNR"(CH₂)_kNR"(CH₂)_t-, both -R" and -R"" are methyl; both r and t are 2, and s is an integer from 2 to 3.

19. (Previously Presented): The compound according to claim 1, which is selected from the group consisting of:

N-[3-[[3-[(9-acridinecarbonyl)amino]propyl]methylamino]propyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (Ia);

N,N'-(4-methyl-4-azaheptamethylene)-di-(10H-indolo[3,2-b]quinoline-11,11'-carboxamide) (Ib);

N-[3-[3-[[2-(1,3-dioxo-(2,3-dihydro)-1H-benzo[de]isoquinolinyl]propyl] methylamino[propyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (Ic);

N-[3-[[3-[(2-phenyl-4-quinolinecarbonyl)amino]propyl]methylamino]propyl]- 10H-indolo[3,2-b]quinoline-11-carboxamide (Id);

N,N'-(3,7-dimethyl-3,7-diazanonamethylene)-di-(10H-indolo[3,2-b]quinoline-11,11'-carboxamide) (Ie);

N-[(9-acridinecarbonyl)-3,7,10-triaza-3,7-dimethyldecyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (If);

N,N'-(3,6-dimethyl-3,6-diazaoctamethylene)-di-(10H-indolo[3,2-b]quinoline-11-11'-carboxamide (Ig);

 $\label{eq:new_new_new_new} N-[(9-acridine carbonyl)-3,6-dimethyl-3,6-diaza octamethylene]-10H-indolo[3,2-b]quinoline-11-carboxamide (Ih);$

N-[[1,3-dioxo-(2,3-dihydro)-1H-benzo[de]isoquinolyl]-3,6-dimethyl-3,6-diazaoctamethylene]-10H-indolo[3,2-b]quinoline-11-carboxamide (Ii);

N-[[1,3-dioxo-(2,3-dihydro)-1H-benzo[de]isoquinolyl]-3,7,10-triaza-3,7-dimethyldecyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (Ij);

N,N'-(4-methyl-4-azaheptamethylene)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-carboxamide) (Im);

N,N'-(4-methyl-4-azaheptamethylen)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-amine (Iq);

N,N'-(3,7-dimethyl-3,7-diazanonamethylene)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-carboxamide) (Iy);

N,N'-(3,6-dimethyl-3,6-diazaoctamethylene)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-carboxamide) (Iz);

(3,7-diazanonamethylene)-di-(10H-indolo[3,2-b]quinoline-11,11'-carboxamide (Iaa);

N,N'-(3,7-dimethyl-3,7-diazanonamethylene)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-amine (Iab); and

N,N'-(3,6-dimethyl-3,6-diazaoctamethylene)-di-(5-methyl-5H-indolo[3,2-b]quinoline-11,11'-amine (Iac).

20. (Previously Presented): A method for the treatment of cancer which comprises administering to a subject a therapeutically effective amount of a compound of formula (I)

or a pharmaceutically acceptable salt thereof, wherein:

-G1 is a radical (II)

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_3

wherein -R' is an electron pair or a (C1-C3)-alkyl radical; with the condition that

(i) when -R' is an electron pair, a is a N=C double bond and the fused ring

is the biradical

thus radical (II) is (IIa'), and

$$R_4$$
 R_5
 R_8
 R_8
 R_8
 R_8
 R_8

(ii) when -R' is a (C1-C3)-alkyl radical, a is a N-C single bond and the fused ring

is the triradical

thus radical (II) is (IIa");

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_{10}
 R_{10}
 R_{10}
 R_{10}

wherein -R₁ to -R₁₂ represent radicals, same or different, selected from the group consisting of H, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkylamino, phenyl, F, Cl, Br, amino, hydroxy, and nitro;

and wherein -B- is a biradical selected from the group consisting of -CONH-, -NR₁₃-, -O-, -(CH₂)_nNH-, -(CH₂)_nO-, and -CO[NHCHR"CO]_mO-; wherein -R₁₃ is selected from the group consisting of H, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy and (C₁-C₄)-alkylamino; -R" are side chains radicals, same or different, corresponding to natural aminoacids; n is an integer from 1 to 3 and m is an integer from 1 to 3;

-L- is a single covalent bond or a covalent linking biradical selected from the following ones;

-(CH2)rNR"(CH2)sNR""(CH2)t-

wherein -R"' and -R"' are radicals, same or different, selected from the group consisting of H and (C₁-C₃)-alkyl; r is an integer from 1 to 3; s is an integer from 1 to 3; t is an integer from 1 to 3; and

 $-G_2$ is a radical selected from a radical of formula (II), the N-radical of 1,8-naphthalimide, the C4-radical of 2-phenylquinoline, and the C9-radical of acridine.

- 21. (Currently Amended): A pharmaceutical composition comprising a therapeutically effective amount of the compound as defined in claim 1, together with appropriate amounts of pharmaceutical excipients or carriers.
- 22. (Previously Presented): A method of manufacturing a composition of matter comprising formula (I) and one of the following processes:

Process I:

$$\begin{array}{c} R_4 \\ R_2 \\ R_3 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ \end{array}$$

when biradical -B- in - G_1 is -CONH- and - G_2 is not an N-radical of 1,8-naphtalimide; and

wherein GP represents an amino protective group and wherein formula (IV) is a monoprotected bis-amine; or

Process II:

when biradical -B- in - G_1 is -CONH- and - G_2 is 1,8-naphtalimide; and wherein GP represents an amino protective group and wherein formula (IV) is a monoprotected bis-amine; or

Process III:

$$\begin{array}{c} R_4 \\ R_2 \\ R_3 \\ CI \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ R_3 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_4 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_5 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_5 \\ \end{array} \begin{array}{c} R_4 \\ R_4 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_4 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R_5 \\ R_5 \\ R_5 \\ R_5 \\ \end{array} \begin{array}{c} R_5 \\ R$$

when biradical -B- is a biradical selected from a group of: -NR₁₃-, -O-, - $(CH_2)_nNH$, and - $(CH_2)_nO$ -; and wherein GP represents an amino protective group.