

INVESTIGATION OF PELLET CLAD INTERACTION DURING LOAD FOLLOW OPERATION IN A PRESSURIZED WATER REACTOR USING VERA-CS

BY

DANIEL JOHN O'GRADY

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Nuclear, Plasma, and Radiological Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

Master's Committee:

Professor Prof Uno, Chair Professor Prof Dos, Director of Research Assistant Professor Prof Tres Adjunct Professor Prof Quatro

Abstract

This is a comprehensive study of caffeine consumption by graduate students at the University of Illinois who are in the very final stages of completing their doctoral degrees. A study group of six hundred doctoral students....

To Father and Mother.

Acknowledgments

This project would not have been possible without the support of many people. Many thanks to my adviser, Lawrence T. Strongarm, who read my numerous revisions and helped make some sense of the confusion. Also thanks to my committee members, Reginald Bottoms, Karin Vegas, and Cindy Willy, who offered guidance and support. Thanks to the University of Illinois Graduate College for awarding me a Dissertation Completion Fellowship, providing me with the financial means to complete this project. And finally, thanks to my husband, parents, and numerous friends who endured this long process with me, always offering support and love.

Table of Contents

ist of Tables	vi
ist of Figures	vi
ist of Abbreviations	vii
ist of Symbols	ix
hapter 1 This world	
hapter 2 Conclusions	3
ita	Δ

List of Tables

List of Figures

List of Abbreviations

CA Caffeine Addict.

CD Coffee Drinker.

List of Symbols

- au Time taken to drink one cup of coffee.
- μg Micrograms (of caffeine, generally).

Chapter 1

This world

1.1 Of the Nature of Flatland

I call our world Flatland, not because we call it so, but to make its nature clearer to you, my happy readers, who are privileged to live in Space.

Imagine a vast sheet of paper on which straight Lines, Triangles, Squares, Pentagons, Hexagons, and other figures, instead of remaining fixed in their places, move freely about, on or in the surface, but without the power of rising above or sinking below it, very much like shadows—only hard with luminous edges—and you will then have a pretty correct notion of my country and countrymen. Alas, a few years ago, I should have said "my universe:" but now my mind has been opened to higher views of things.

In such a country, you will perceive at once that it is impossible that there should be anything of what you call a "solid" kind; but I dare say you will suppose that we could at least distinguish by sight the Triangles, Squares, and other figures, moving about as I have described them. On the contrary, we could see nothing of the kind, not at least so as to distinguish one figure from another. Nothing was visible, nor could be visible, to us, except Straight Lines; and the necessity of this I will speedily demonstrate.

Place a penny on the middle of one of your tables in Space; and leaning over it, look down upon it. It will appear a circle.

But now, drawing back to the edge of the table, gradually lower your eye (thus bringing yourself more and more into the condition of the inhabitants of Flatland), and you will find the penny becoming more and more oval to your view, and at last when you have placed your eye exactly on the edge of the table (so that you are, as it were, actually a Flatlander) the penny will then have ceased to appear oval at all, and will have become, so far as you can see, a straight line.

The same thing would happen if you were to treat in the same way a Triangle, or a Square, or any other figure cut out from pasteboard. As soon as you look at it with your eye on the edge of the table, you will find that it ceases to appear to you as a figure, and that it becomes in appearance a straight line. Take for example an equilateral Triangle—who represents with us a Tradesman of the respectable class. Figure 1

represents the Tradesman as you would see him while you were bending over him from above; figures 2 and 3 represent the Tradesman, as you would see him if your eye were close to the level, or all but on the level of the table; and if your eye were quite on the level of the table (and that is how we see him in Flatland) you would see nothing but a straight line.

When I was in Spaceland I heard that your sailors have very similar experiences while they traverse your seas and discern some distant island or coast lying on the horizon. The far-off land may have bays, forelands, angles in and out to any number and extent; yet at a distance you see none of these (unless indeed your sun shines bright upon them revealing the projections and retirements by means of light and shade), nothing but a grey unbroken line upon the water.

Well, that is just what we see when one of our triangular or other acquaintances comes towards us in Flatland. As there is neither sun with us, nor any light of such a kind as to make shadows, we have none of the helps to the sight that you have in Spaceland. If our friend comes closer to us we see his line becomes larger; if he leaves us it becomes smaller; but still he looks like a straight line; be he a Triangle, Square, Pentagon, Hexagon, Circle, what you will—a straight Line he looks and nothing else.

You may perhaps ask how under these disadvantagous circumstances we are able to distinguish our friends from one another: but the answer to this very natural question will be more fitly and easily given when I come to describe the inhabitants of Flatland. For the present let me defer this subject, and say a word or two about the climate and houses in our country.

Chapter 2

Conclusions

We conclude that graduate students like coffee.

Vita

Juan Valdez was born....