and since $\varphi(u,v)=1$, we get

$$\lambda = -\overline{\lambda}$$
 for all $\lambda \in K$.

For $\lambda = 1$, we get 1 = -1, which means that K has characteristic 2. But then

$$\lambda = -\overline{\lambda} = \overline{\lambda}$$
 for all $\lambda \in K$,

so the automorphism $\lambda \mapsto \overline{\lambda}$ is the identity.

The definition of the linear maps l_{φ} and r_{φ} requires a small twist due to the automorphism $\lambda \mapsto \overline{\lambda}$.

Definition 29.9. Given a vector space E over a field K with an involutive automorphism $\lambda \mapsto \overline{\lambda}$, we define the K-vector space \overline{E} as E with its abelian group structure, but with scalar multiplication given by

$$(\lambda, u) \mapsto \overline{\lambda}u.$$

Given two K-vector spaces E and F, a semilinear map $f: E \to F$ is a function, such that for all $u, v \in E$, for all $\lambda \in K$, we have

$$f(u+v) = f(u) + f(v)$$

$$f(\lambda u) = \overline{\lambda} f(u).$$

Because $\overline{\overline{\lambda}} = \lambda$, observe that a function $f : E \to F$ is semilinear iff it is a linear map $f : \overline{E} \to F$. The K-vector spaces E and \overline{E} are isomorphic, since any basis $(e_i)_{i \in I}$ of E is also a basis of \overline{E} .

The maps l_{φ} and r_{φ} are defined as follows:

For every $u \in E$, let $l_{\varphi}(u)$ be the linear form in F^* defined so that

$$l_{\varphi}(u)(y) = \overline{\varphi(u,y)}$$
 for all $y \in F$,

and for every $v \in F$, let $r_{\varphi}(v)$ be the linear form in E^* defined so that

$$r_{\varphi}(v)(x) = \varphi(x, v)$$
 for all $x \in E$.

The reader should check that because we used $\overline{\varphi(u,y)}$ in the definition of $l_{\varphi}(u)(y)$, the function $l_{\varphi}(u)$ is indeed a linear form in F^* . It is also easy to check that l_{φ} is a linear map $l_{\varphi} \colon \overline{E} \to F^*$, and that r_{φ} is a linear map $r_{\varphi} \colon \overline{F} \to E^*$ (equivalently, $l_{\varphi} \colon E \to F^*$ and $r_{\varphi} \colon F \to E^*$ are semilinear).

The notion of a nondegenerate sesquilinear form is identical to the notion for bilinear forms. For the convenience of the reader, we repeat the definition.

Definition 29.10. A sesquilinear map $\varphi \colon E \times F \to K$ is said to be *nondegenerate* iff the following conditions hold: