$P8106_group2recovery_secondaryanalysis$

Yimin Chen (yc
4195), Yang Yi (yy3307), Qingyue Zhuo (qz2493)

Contents

Import and data manipulation	2
Data visualization	ę
Correlation plot	ę
Feature plot	4
Partition plot	Ę
Model training	7
Logistic regression and its cousins	7
GLM	7
Penalized logistic regression	7
GAM	8
MARS	10
test data performance for Logistic regression and its cousins	12
Discriminant Analysis	18
LDA	13
QDA	14
Naive Bayes (NB)	14
test set performance for Discriminant Analysis	16
classification tree models	17
rpart	17
ctree	18
test set performance for classification tree models	20
Random forests	2 1
Boosting	23

Support Vector Machines	24
test data performance of SVM methods	28
Model comparison	29

Import and data manipulation

```
# Load recovery. RData environment
load("./recovery.Rdata")
dat %>% na.omit()
# dat1 draw a random sample of 2000 participants Uni:3307
set.seed(3307)
dat1 = dat[sample(1:10000, 2000),]
dat1 =
 dat1[, -1] %>%
 mutate(
   recovery time = as.factor(
     case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")
   ),
   gender = as.factor(gender),
   race = as.factor(race),
   smoking = as.factor(smoking),
   hypertension = as.factor(hypertension),
   diabetes = as.factor(diabetes),
   vaccine = as.factor(vaccine),
   severity = as.factor(severity),
   study = as.factor(
      case_when(study == "A" ~ 1, study == "B" ~ 2, study == "C" ~ 3)
   )
# dat2 draw a random sample of 2000 participants Uni:2493
set.seed(2493)
dat2 = dat[sample(1:10000, 2000),]
dat2 =
 dat2[, -1] %>%
 mutate(
   recovery_time = as.factor(
     case_when(recovery_time <= 30 ~ "long", recovery_time > 30 ~ "short")
   ),
   gender = as.factor(gender),
   race = as.factor(race),
   smoking = as.factor(smoking),
   hypertension = as.factor(hypertension),
   diabetes = as.factor(diabetes),
```

```
vaccine = as.factor(vaccine),
   severity = as.factor(severity),
   study = as.factor(
     case_when(study == "A" \sim 1, study == "B" \sim 2, study == "C" \sim 3)
   )
# Merged dataset with unique observation
covid_dat = rbind(dat1, dat2) %>%
 unique()
covid_dat2 = model.matrix(recovery_time ~ ., covid_dat)[, -1]
# Partition dataset into two parts: training data (70%) and test data (30%)
rowTrain = createDataPartition(y = covid_dat$recovery_time, p = 0.7, list = FALSE)
trainData = covid_dat[rowTrain, ]
testData = covid_dat[-rowTrain, ]
ctrl1 = trainControl(method = "repeatedcv", number = 10, repeats = 5)
ctrl2 = trainControl(method = "cv",
                          classProbs = TRUE,
                          summaryFunction = twoClassSummary)
```

Data visualization

Correlation plot

```
corr_dat = covid_dat[rowTrain,] %>%
  dplyr::select('age', 'height', 'weight', 'bmi', 'SBP', 'LDL')
corrplot(cor(corr_dat), method = "circle", type = "full")
```


Feature plot

Partition plot

partimat(recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + weight + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + height + bmi + SBP + LDL, data = covid_dat, subset = rowTrain, recovery_time ~ age + bmi + bmi

Partition Plot

Model training

Logistic regression and its cousins

GLM

Penalized logistic regression

```
tuneGrid = glmnGrid,
                      metric = "ROC",
                      trControl = ctrl2)
model.glmn$bestTune
                      lambda
         alpha
## 1001
             1 0.0003354626
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x))
                                          Mixing Percentage
                              0.3
    0
                                                        0.6
                                                                                  0.9
    0.05
                                                        0.65
                              0.35
                                                                                  0.95
    0.1
                              0.4
                                                        0.7
                                                        0.75
    0.15
                              0.45
    0.2
0.25
                              0.5
                                                        8.0
                              0.55
                                                        0.85
  ROC (Cross-Validation)
      0.70
      0.65
      0.60
```

Regularization Parameter

-4

-2

-6

GAM

0.55

0.50

-8

```
set.seed(2)
model.gam <- train(x = covid_dat2[rowTrain,],</pre>
                    y = covid_dat$recovery_time[rowTrain],
                    method = "gam",
                    metric = "ROC",
```

```
trControl = ctrl2)
model.gam$finalModel
```


MARS

coef(model.mars\$finalModel)

```
## (Intercept) study2 h(28.6-bmi) vaccine1 h(135-SBP) severity1
## -0.32524568 -1.35310824 0.51047027 -0.73109733 -0.03262848 0.80307433
## smoking1 gender1 smoking2 h(LDL-145) h(bmi-23.1)
## 0.43021337 -0.32207625 0.55022116 -0.05342548 0.41456148

vip(model.mars$finalModel)
```



```
##
## Call:
## summary.resamples(object = res)
##
## Models: GLM, GLMNET, GAM, MARS
## Number of resamples: 10
##
## ROC
##
               Min.
                       1st Qu.
                                  Median
                                                      3rd Qu.
                                               Mean
          0.7027786\ 0.7100512\ 0.7240580\ 0.7243182\ 0.7396824\ 0.7482539
## GLM
## GLMNET 0.7010325 0.7091541 0.7199426 0.7230782 0.7374113 0.7488612
                                                                             0
          0.7092686\ 0.7156054\ 0.7316766\ 0.7319728\ 0.7432725\ 0.7592621
## GAM
                                                                            0
## MARS
          0.7131036 0.7220759 0.7309513 0.7309203 0.7385390 0.7542894
                                                                             0
##
## Sens
##
                       1st Qu.
                                  Median
                                                                    Max. NA's
               Min.
                                               Mean
                                                      3rd Qu.
          0.2162162\ 0.2702703\ 0.2789708\ 0.2814698\ 0.3074324\ 0.3378378
## GLM
## GLMNET 0.2027027 0.2466216 0.2837838 0.2693262 0.2969733 0.3243243
                                                                             0
          0.2027027 0.2627730 0.3175676 0.3017031 0.3378378 0.3648649
## GAM
                                                                             0
```

```
## MARS
          0.2297297 0.2837838 0.2924843 0.3044428 0.3344595 0.3783784
##
## Spec
                      1st Qu.
                                 Median
                                                     3rd Qu.
##
               Min.
                                              Mean
                                                                  Max. NA's
          0.8531073 0.9039548 0.9154605 0.9119755 0.9324890 0.9438202
## GLM
                                                                           0
## GLMNET 0.8644068 0.9053672 0.9180791 0.9187425 0.9382022 0.9548023
                                                                           0
## GAM
          0.8644068 0.8884181 0.9124294 0.9018314 0.9157303 0.9269663
                                                                           0
          0.8644068 0.8912429 0.9098584 0.9057862 0.9196106 0.9325843
## MARS
                                                                           0
bwplot(res, metric = "ROC")
```


test data performance for Logistic regression and its cousins

```
glm.pred <- predict(model.glm, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]
glmn.pred <- predict(model.glmn, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]
gam.pred <- predict(model.gam, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]
mars.pred <- predict(model.mars, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]

roc.glm <- roc(covid_dat$recovery_time[-rowTrain], glm.pred)
roc.glm <- roc(covid_dat$recovery_time[-rowTrain], glmn.pred)
roc.gam <- roc(covid_dat$recovery_time[-rowTrain], gam.pred)
roc.mars <- roc(covid_dat$recovery_time[-rowTrain], mars.pred)</pre>
```


Discriminant Analysis

LDA

\mathbf{QDA}

Naive Bayes (NB)


```
res <- resamples(list(LDA = model.lda, QDA = model.qda, NB = model.nb))
summary(res)</pre>
```

```
##
## Call:
  summary.resamples(object = res)
##
## Models: LDA, QDA, NB
## Number of resamples: 10
##
## ROC
                   1st Qu.
                              Median
                                                  3rd Qu.
            Min.
                                           Mean
## LDA 0.6982994 0.7092113 0.7204289 0.7236334 0.7385363 0.7509869
                                                                        0
  QDA 0.6825470 0.6870515 0.7021897 0.7067165 0.7212097 0.7436988
                                                                        0
## NB 0.6882730 0.7120171 0.7177622 0.7186405 0.7223240 0.7519739
##
## Sens
##
            Min.
                    1st Qu.
                                Median
                                              Mean
                                                      3rd Qu.
## LDA 0.1891892 0.26013514 0.27702703 0.26525361 0.29489078 0.31081081
## QDA 0.5270270 0.55743243 0.60135135 0.59546464 0.63175676 0.67567568
                                                                             0
      0.0000000 0.01351351 0.01351351 0.01488338 0.02369493 0.02702703
##
## Spec
##
            Min.
                   1st Qu.
                              Median
                                                  3rd Qu.
                                           Mean
                                                               Max. NA's
## LDA 0.8587571 0.8997175 0.9239351 0.9170507 0.9324890 0.9606742
```

test set performance for Discriminant Analysis

classification tree models

rpart

rpart.plot(model.rpart\$finalModel)


```
stopCluster(cl)
registerDoSEQ()
```

ctree

plot(model.ctree\$finalModel)


```
stopCluster(cl)
registerDoSEQ()
```

test set performance for classification tree models

```
resamp_tree <- resamples(list(rpart = model.rpart,</pre>
                          ctree = model.ctree))
summary(resamp_tree)
##
## summary.resamples(object = resamp_tree)
##
## Models: rpart, ctree
## Number of resamples: 10
##
## ROC
##
              Min.
                      1st Qu.
                                 Median
                                              Mean
                                                     3rd Qu.
## rpart 0.6570851 0.6730605 0.6885818 0.6892499 0.6958410 0.7433196
## ctree 0.6718201 0.6806484 0.6832281 0.6925873 0.7081043 0.7224385
##
## Sens
##
                      1st Qu.
                                                     3rd Qu.
                                                                   Max. NA's
              Min.
                                 Median
                                              Mean
```

Random forests

plot(model.ctree\$finalModel)


```
stopCluster(cl)
registerDoSEQ()
```

Boosting

```
num_cores <- detectCores()</pre>
cl <- makePSOCKcluster(num_cores)</pre>
registerDoParallel(cl)
gbmA\_grid = expand.grid(n.trees = c(100, 250, 500, 1000, 2000, 3000),
                        interaction.depth = 1:6,
                        shrinkage = c(0.002, 0.005, 0.008),
                        n.minobsinnode = 1)
set.seed(2)
gbmA.fit = train(recovery_time ~ . ,
                covid_dat[rowTrain,],
                tuneGrid = gbmA_grid,
                trControl = ctrl2,
                method = "gbm",
                distribution = "adaboost",
                metric = "ROC",
                verbose = FALSE)
```

gbmA.fit\$bestTune

```
## n.trees interaction.depth shrinkage n.minobsinnode ## 41 2000 1 0.005 1
```

```
ggplot(gbmA.fit, highlight = TRUE)
```



```
stopCluster(cl)
registerDoSEQ()
```

Support Vector Machines


```
model.svml$bestTune
```

```
## cost
## 23 0.4699627
```

model.svml\$finalModel

```
##
## Call:
## svm.default(x = as.matrix(x), y = y, kernel = "linear", cost = param$cost,
## probability = classProbs)
```

```
##
##
## Parameters:
##
     SVM-Type: C-classification
## SVM-Kernel: linear
          cost: 0.4699627
##
## Number of Support Vectors: 1706
#test error
linear_test_preds = predict(model.svml, newdata = covid_dat[-rowTrain, ])
confusionMatrix(data = linear_test_preds,
                reference = covid_dat$recovery_time[-rowTrain])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction long short
##
       long
                0
        short 316
                   759
##
##
##
                  Accuracy: 0.706
                    95% CI : (0.6778, 0.7331)
##
##
      No Information Rate: 0.706
##
       P-Value [Acc > NIR] : 0.5152
##
##
                     Kappa: 0
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.000
##
               Specificity: 1.000
##
           Pos Pred Value :
                               {\tt NaN}
##
            Neg Pred Value: 0.706
##
                Prevalence: 0.294
##
            Detection Rate: 0.000
##
     Detection Prevalence: 0.000
##
         Balanced Accuracy: 0.500
##
##
          'Positive' Class : long
##
# Support Vector Machine Classification (SVML)
pred_svml_test = predict(model.svml, newdata=covid_dat[-rowTrain,], type="raw")
test_svml_error = mean(pred_svml_test != covid_dat$recovery_time[-rowTrain])
test_svml_error
## [1] 0.2939535
stopCluster(cl)
registerDoSEQ()
```

```
num_cores <- detectCores()</pre>
cl <- makePSOCKcluster(num_cores)</pre>
registerDoParallel(cl)
svmr.grid <- expand.grid(C = exp(seq(-4,4,len=20)),</pre>
                          sigma = exp(seq(-4,0,len=10)))
#radial kernel
set.seed(2)
model.svmr <- train(recovery_time ~ .,</pre>
                   data = covid_dat[rowTrain, ],
                   method = "svmRadialSigma",
                   preProcess = c("center", "scale"),
                   tuneGrid = svmr.grid,
                   trControl = ctrl2)
myCol<- rainbow(20)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
               superpose.line = list(col = myCol))
ggplot(model.svmr, highlight = TRUE, par.settings = myPar)
```



```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction long short
##
        long
                77
##
        short 239
                     692
##
                  Accuracy: 0.7153
##
##
                    95% CI: (0.6873, 0.7422)
##
       No Information Rate: 0.706
##
       P-Value [Acc > NIR] : 0.2633
##
##
                     Kappa: 0.1847
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.24367
##
               Specificity: 0.91173
##
            Pos Pred Value: 0.53472
            Neg Pred Value: 0.74329
##
##
                Prevalence: 0.29395
##
            Detection Rate: 0.07163
##
      Detection Prevalence: 0.13395
##
         Balanced Accuracy: 0.57770
##
##
          'Positive' Class : long
##
# Support Vector Machine Regression (SVMR)
pred_svmr_test = predict(model.svmr, newdata=covid_dat[-rowTrain,], type="raw")
test_svmr_error = mean(pred_svmr_test != covid_dat$recovery_time[-rowTrain])
test_svmr_error
## [1] 0.2846512
stopCluster(cl)
registerDoSEQ()
```

test data performance of SVM methods

Model comparison

```
res <- resamples(list(GLM = model.glm, GLMNET = model.glmn, GAM = model.gam, MARS = model.mars, CTREE =
trainROC <- bwplot(res, metric = "ROC")</pre>
summary(res)
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS, CTREE, RPART, LDA, QDA, NB, SVML, SVMR, rf, boost
## Number of resamples: 10
##
## ROC
##
               Min.
                       1st Qu.
                                  Median
                                              Mean
                                                      3rd Qu.
                                                                   Max. NA's
          0.7027786 \ 0.7100512 \ 0.7240580 \ 0.7243182 \ 0.7396824 \ 0.7482539
## GLMNET 0.7010325 0.7091541 0.7199426 0.7230782 0.7374113 0.7488612
                                                                            0
## GAM
          0.7092686 0.7156054 0.7316766 0.7319728 0.7432725 0.7592621
          0.7131036\ 0.7220759\ 0.7309513\ 0.7309203\ 0.7385390\ 0.7542894
## MARS
                                                                            0
## CTREE 0.6718201 0.6806484 0.6832281 0.6925873 0.7081043 0.7224385
                                                                            0
## RPART 0.6570851 0.6730605 0.6885818 0.6892499 0.6958410 0.7433196
                                                                            0
## LDA
          0.6982994 0.7092113 0.7204289 0.7236334 0.7385363 0.7509869
                                                                            0
          0.6825470 0.6870515 0.7021897 0.7067165 0.7212097 0.7436988
## QDA
                                                                            0
```

```
0.6882730 0.7120171 0.7177622 0.7186405 0.7223240 0.7519739
## NB
                                                                         0
## SVML
          0.6968239 0.6982173 0.7103583 0.7159424 0.7324267 0.7462041
                                                                         0
## SVMR
          0.6404795 0.6755612 0.7070927 0.6985938 0.7242925 0.7435469
                                                                         0
          0.6778134 0.7049664 0.7109249 0.7116040 0.7190717 0.7382326
                                                                         0
## rf
##
         0.7059856 0.7230493 0.7286227 0.7287726 0.7343145 0.7471151
                                                                         0
##
## Sens
                                                         3rd Qu.
##
                Min.
                        1st Qu.
                                    Median
                                                 Mean
## GLM
          0.21621622 0.27027027 0.27897075 0.28146983 0.30743243 0.33783784
## GLMNET 0.20270270 0.24662162 0.28378378 0.26932618 0.29697334 0.32432432
                                                                               0
## GAM
          0.20270270 0.26277305 0.31756757 0.30170307 0.33783784 0.36486486
                                                                               0
          0.22972973\ 0.28378378\ 0.29248427\ 0.30444280\ 0.33445946\ 0.37837838
## MARS
                                                                               0
## CTREE 0.16216216 0.17905405 0.19594595 0.22882266 0.28378378 0.32876712
                                                                               0
## RPART 0.20270270 0.24324324 0.25000000 0.24764902 0.25939467 0.28378378
                                                                               0
## LDA
          0.18918919 0.26013514 0.27702703 0.26525361 0.29489078 0.31081081
                                                                               0
## QDA
          0.52702703 \ 0.55743243 \ 0.60135135 \ 0.59546464 \ 0.63175676 \ 0.67567568
                                                                               0
## NB
          0.00000000\ 0.01351351\ 0.01351351\ 0.01488338\ 0.02369493\ 0.02702703
                                                                               0
## SVML
          0
## SVMR
          0.17567568 0.19451129 0.20945946 0.21917808 0.24324324 0.27027027
                                                                               0
          0
## boost
         0.09459459 0.15202703 0.16327286 0.16373565 0.17567568 0.21621622
                                                                               Λ
##
## Spec
                      1st Qu.
##
              Min.
                                Median
                                             Mean
                                                    3rd Qu.
## GLM
          0.8531073 0.9039548 0.9154605 0.9119755 0.9324890 0.9438202
## GLMNET 0.8644068 0.9053672 0.9180791 0.9187425 0.9382022 0.9548023
## GAM
          0.8644068 0.8884181 0.9124294 0.9018314 0.9157303 0.9269663
                                                                         0
          0.8644068 0.8912429 0.9098584 0.9057862 0.9196106 0.9325843
                                                                         0
## MARS
                                                                         0
## CTREE 0.8474576 0.8997175 0.9152542 0.9103314 0.9255618 0.9604520
## RPART 0.8644068 0.8956151 0.9180791 0.9125627 0.9268631 0.9548023
                                                                         0
## LDA
          0.8587571 0.8997175 0.9239351 0.9170507 0.9324890 0.9606742
                                                                         0
## QDA
          0.6440678 0.7090395 0.7211325 0.7185298 0.7299562 0.7683616
                                                                         0
          0.9887006 0.9957627 1.0000000 0.9977401 1.0000000 1.0000000
## NB
                                                                         0
          1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                         0
## SVML
## SVMR
          0.8870056 0.9124294 0.9378531 0.9288929 0.9423284 0.9606742
                                                                         0
          1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
                                                                         0
## rf
## boost 0.9378531 0.9519774 0.9605631 0.9582492 0.9662445 0.9719101
# Prediction on test set
glm.pred <- predict(model.glm, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
glmn.pred <- predict(model.glmn, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
gam.pred <- predict(model.gam, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
mars.pred <- predict(model.mars, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
ctree.pred <- predict(model.ctree, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
rpart.pred <- predict(model.rpart, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
lda.pred <- predict(model.lda, newdata =covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
qda.pred <- predict(model.qda, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]
nb.pred <- predict(model.nb, newdata = covid_dat2[-rowTrain,], type = "prob")[,2]</pre>
svml.pred <- predict(model.svml, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
svmr.pred <- predict(model.svmr, newdata = covid_dat[-rowTrain,], type = "prob")[,2]</pre>
#roc
roc.glm <- roc(covid_dat$recovery_time[-rowTrain], glm.pred)</pre>
```

```
roc.glmn <- roc(covid_dat$recovery_time[-rowTrain], glmn.pred)</pre>
roc.gam <- roc(covid_dat$recovery_time[-rowTrain], gam.pred)</pre>
roc.mars <- roc(covid_dat$recovery_time[-rowTrain], mars.pred)</pre>
roc.ctree <- roc(covid_dat$recovery_time[-rowTrain], ctree.pred)</pre>
roc.rpart <- roc(covid_dat$recovery_time[-rowTrain], rpart.pred)</pre>
roc.lda <- roc(covid dat$recovery time[-rowTrain], lda.pred)</pre>
roc.qda <- roc(covid_dat$recovery_time[-rowTrain], qda.pred)</pre>
roc.nb <- roc(covid_dat$recovery_time[-rowTrain], nb.pred)</pre>
roc.svml <- roc(covid_dat$recovery_time[-rowTrain], svml.pred)</pre>
roc.svmr <- roc(covid_dat$recovery_time[-rowTrain], svmr.pred)</pre>
auc <- c(roc.glm$auc[1], roc.glmn$auc[1],</pre>
         roc.gam$auc[1], roc.mars$auc[1],
         roc.lda$auc[1],roc.qda$auc[1], roc.nb$auc[1],
         roc.ctree$auc[1], roc.rpart$auc[1],
         roc.svml$auc[1], roc.svmr$auc[1]
plot(roc.glm, legacy.axes = TRUE)
plot(roc.glmn, col = 2, add = TRUE)
plot(roc.gam, col = 3, add = TRUE)
plot(roc.mars, col = 4, add = TRUE)
plot(roc.lda, col = 5, add = TRUE)
plot(roc.qda, col = 6, add = TRUE)
plot(roc.nb, col = 7, add = TRUE)
plot(roc.ctree, col = 8, add = TRUE)
plot(roc.rpart, col = 9, add = TRUE)
plot(roc.svml, col = 10, add = TRUE)
plot(roc.svmr, col = 11, add = TRUE)
modelNames <- c("glm", "glm", "gam", "mars", "lda", "qda", "nb", "ctree", "rpart", "svm (linear kernel)", "s
legend("bottomright", legend = paste0(modelNames, ": ", round(auc,3)),
       col = 1:11, lwd = 2)
```


interpretation for final mars model model.mars\$finalModel

```
## GLM (family binomial, link logit):
   nulldev
             df
                       dev
                             df
                                  devratio
                                                AIC iters converged
   3043.84 2511
                   2649.02 2501
                                      0.13
##
                                               2671
##
## Earth selected 11 of 17 terms, and 9 of 18 predictors (nprune=11)
## Termination condition: RSq changed by less than 0.001 at 17 terms
## Importance: study2, bmi, vaccine1, SBP, severity1, smoking1, gender1, ...
## Number of terms at each degree of interaction: 1 10 (additive model)
## Earth GCV 0.1815234
                          RSS 448.3946
                                          GRSq 0.1264802
                                                             RSq 0.1403399
```

summary(model.mars\$finalModel)

```
## severity1
               0.80307433
## study2
               -1.35310824
## h(bmi-23.1) 0.41456148
## h(28.6-bmi) 0.51047027
## h(135-SBP)
              -0.03262848
## h(LDL-145) -0.05342548
## GLM (family binomial, link logit):
   nulldev
            df
                       dev
                             df
                                  devratio
                                               AIC iters converged
  3043.84 2511
##
                   2649.02 2501
                                      0.13
                                              2671
##
## Earth selected 11 of 17 terms, and 9 of 18 predictors (nprune=11)
## Termination condition: RSq changed by less than 0.001 at 17 terms
## Importance: study2, bmi, vaccine1, SBP, severity1, smoking1, gender1, ...
## Number of terms at each degree of interaction: 1 10 (additive model)
## Earth GCV 0.1815234
                         RSS 448.3946
                                          GRSq 0.1264802
                                                            RSq 0.1403399
```

model.mars\$bestTune

```
## nprune degree
## 10 11 1
```

plot(model.mars)

coef(model.mars\$finalModel)

```
## (Intercept) study2 h(28.6-bmi) vaccine1 h(135-SBP) severity1
## -0.32524568 -1.35310824 0.51047027 -0.73109733 -0.03262848 0.80307433
## smoking1 gender1 smoking2 h(LDL-145) h(bmi-23.1)
## 0.43021337 -0.32207625 0.55022116 -0.05342548 0.41456148
```

vip(model.mars\$finalModel) + ggtitle("vip for MARS")

vip for MARS

