Esame di Algebra e Geometria del 15/1/2019

Si risolvano i seguenti esercizi, <u>motivando tutti i passaggi e scrivendo le definizioni</u> che si ritengono opportune:

- [.../4] 1. Siano $X = \{a, b, c\}$ e $Y = \{1, 2, 3, 4\}$.
 - (a) Quante funzioni iniettive ci sono tra $X \in Y$? Y!/1
 - (b) Quanti sottoinsiemi di 3 elementi ha l'insieme $X \times Y$?
- [.../3] 2. Si scriva la definizione di relazione d'equivalenza, di classe d'equivalenza e di insieme quoziente.
- [.../4] 3. Provare per induzione che, per $n \ge 1$:

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

[.../4] 4. Sull'insieme $X = \{a, b, c\}$ si consideri l'operazione * determinata dalla seguente tabella:

Dire se esiste un elemento neutro e quali elementi sono invertibili.

Si consideri la funzione $f: X \to \mathbb{Z}_3$ tale che $f(a) = [0]_3$, $f(b) = [1]_3$ e $f(c) = [2]_3$. Si dica se f è un omomorfismo tra (X, *) e (\mathbb{Z}_3, \cdot) .

[.../4] 5. Si calcoli l'inversa della matrice

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

e si calcoli il prodotto righe per colonne $A^{-1} \cdot A^{T}$ (con A^{-1} si indica l'inversa di A e con A^{T} si indica la trasposta di A).

- [.../4] 6. Si consideri l'insieme $V = \{(3x, 2x) \mid x \in \mathbb{R}\}$. Si dimostri che V è un sottospazio vettoriale di \mathbb{R}^2 , si trovi una sua base e si dia una rappresentazione nel piano cartesiano di V. Si consideri la funzione $f: (x, y) \in \mathbb{R}^2 \to (2x, x+y) \in \mathbb{R}^2$, si dimostri che è un'applicazione lineare e si rappresenti graficamente f(V) (cioè l'immagine di V tramite f).
- [.../5] 7. Si consideri l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita da

$$f(x, y, z) = (x + z, 2y + z, 3z)$$
.

Trovare la dimensione di Im f e Ker f. Trovare inoltre gli autovalori di f, la loro molteplicità algebrica e geometrica e gli autospazi relativi agli autovalori. Dire se esiste una base di \mathbb{R}^3 formata da autovettori di f.