Folgende Tabelle faßt die Ergebnisse von Abschnitt 8.3 übersichtlich zusammen:

f	D_f	f'	$D_{f'}$	f	D_f	f'	$D_{f^{\prime}}$
$x^n, n \in \mathbb{N}$	R	nx^{n-1}	R	arcsin x	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	(-1,1)
$\frac{1}{x^n}, n \in \mathbb{N}$	$\mathbb{R}ackslash\{0\}$	$-\frac{n}{x^{n+1}}$	$\mathbb{R}ackslash\{0\}$	arccos x	[-1,1]	$-\frac{1}{\sqrt{1-x^2}}$	(-1,1)
x°,α∈ℝ	R+	$\alpha \cdot x^{\alpha-1}$	\mathbb{R}^+	arctan x	R	$\frac{1}{1+x^2}$	R
x	R	$\frac{x}{ x } = \frac{ x }{x}$	$\mathbb{R}ackslash\{0\}$	arccot x	R	$-\frac{1}{1+x^2}$	R
sin x	R	cos x	R	sinh x	R	cosh x	R
cos x	R	— sin x	R	cosh x	R	sinh x	R
tan x	A^1)	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	A^1)	tanhx	R	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	R
cotx	B ²)	$-\frac{1}{\sin^2 x} =$ $-(1 + \cot^2 x)$	B ²)	cothx	$\mathbb{R}ackslash\{0\}$	$-\frac{1}{\sinh^2 x} = 1 - \coth^2 x$	ℝ\{0}
e ^x	R	e ^x	R	arsinh x	R	$\frac{1}{\sqrt{x^2+1}}$	R
$a^{\mathbf{x}},$ $a \in \mathbb{R}^+ \setminus \{1\}$	R	$a^x \cdot \ln a$	R	arcosh x	[1,∞)	$\frac{1}{\sqrt{x^2 - 1}}$	$(1,\infty)$
ln x	$\mathbb{R} \setminus \{0\}$	$\frac{1}{x}$	$\mathbb{R} \setminus \{0\}$	artanh x	(-1,1)	$\frac{1}{1-x^2}$	(-1,1)
$\log_a x$ $a \in \mathbb{R}^+ \setminus \{1\}$	R+	$\frac{1}{x \cdot \ln a}$	R+	arcoth x	$(-\infty, -1)$ $\cup (1, \infty)$	$\frac{1}{1-x^2}$	$(-\infty, -1)$ $\cup (1, \infty)$

¹⁾ $A = \left\{ x \mid x \in \mathbb{R} \text{ und } x \neq \frac{2k+1}{2} \pi, k \in \mathbb{Z} \right\}.$ 2) $B = \left\{ x \mid x \in \mathbb{R} \text{ und } x \neq k\pi, k \in \mathbb{Z} \right\}.$