# Recall:

- ullet A basis of a vector space V is a set of vectors  $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$  such that
  - 1) Span( $\mathbf{b}_1, \ldots, \mathbf{b}_n$ ) = V
  - 2) The set  $\{b_1, \ldots, b_n\}$  is linearly independent.

• For  $v \in V$  let  $c_1, \ldots, c_n$  be the unique numbers such that

$$c_1\mathbf{b}_1 + \ldots + c_n\mathbf{b}_n = \mathbf{v}$$

The vector

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

is called the *coordinate vector of* v *relative to the basis*  $\mathcal{B}$ .



Let  $\mathcal{B}$  be a basis of a vector space V. If  $\mathbf{v}_1, \dots \mathbf{v}_p, \mathbf{w} \in V$  then:

- 1) Solutions of the equation  $x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$  are the same as solutions of the equation  $x_1[\mathbf{v}_1]_{\mathcal{B}} + \ldots + x_p[\mathbf{v}_p]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ .
- 2) The set of vectors  $\{v_1, \dots v_p\}$  is linearly independent if and only if the set  $\{[v_1]_{\mathcal{B}}, \dots, [v_p]_{\mathcal{B}}\}$  is linearly independent.
- 3) Span $(\mathbf{v}_1,\ldots,\mathbf{v}_p)=V$  if any only if Span $([\mathbf{v}_1]_{\mathcal{B}},\ldots,[\mathbf{v}_p]_{\mathcal{B}})=\mathbb{R}^n$ .
- 4)  $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$  is a basis of V if and only if  $\{[\mathbf{v}_1]_{\mathcal{B}}, \dots, [\mathbf{v}_p]_{\mathcal{B}}\}$  is a basis of  $\mathbb{R}^n$ .

**Example.** Recall that  $\mathbb{P}_2$  is the vector space of polynomials of degree  $\leq 2$ . Consider the following polynomials in  $\mathbb{P}_2$ :

$$p_1(t) = 1 + 2t + t^2$$

$$p_2(t) = 3 + t + 2t^2$$

$$p_3(t) = 1 - 8t - t^2$$

Check if the set  $\{p_1, p_2, p_3\}$  is linearly independent.

Recall: In  $\mathbb{R}_2$  we have the standard basis  $\Sigma = \{1, t, t^2\}$  We have:

$$[P_1]_{\varepsilon} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad [P_2]_{\varepsilon} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \qquad [P_3]_{\varepsilon} = \begin{bmatrix} 1 \\ -8 \\ -1 \end{bmatrix}$$

It suffices to check if the set {[p,]=, [p,]=, [p,]=} is linearly independent.

# augmented matrix:

[1 3 1] NOW red. [1 0 -5]

[2 1 -8] 
$$\longrightarrow$$
 [0 1 2]

1 no leading one,

so the set

[ $p_1$ ]<sub>E</sub>, [ $p_2$ ]<sub>E</sub>, [ $p_3$ ]<sub>E</sub>

is linearly dependent

This shous that the set { Pi, Pi, Pi, Po} is linearly dependent.

Let  $\{v_1, \ldots, v_p\}$  be vectors in  $\mathbb{R}^n$ . The set  $\{v_1, \ldots, v_p\}$  is a basis of  $\mathbb{R}^n$  if and only if the matrix

$$A = [\mathbf{v}_1 \dots \mathbf{v}_p]$$

has a pivot position in every row and in every column (i.e. if A is an invertible matrix).

Proof: By definition, lv,,..., vpt is a basis of IR" if and only if

- i) the set { v<sub>1</sub>,..., v<sub>p</sub>} is linearly independent (i.e. [v<sub>1</sub>... v<sub>p</sub>] has a pivot position in every column)
- 2) Span (v,, vp) = TRh (i.e. [v, ... vp] has a leading one in every row).

Example: 
$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
,  $v_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ ,  $v_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ 

$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{\text{red}}$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
Span  $(v_1, v_2, v_3) = \mathbb{R}^2$ 
but  $\{v_1, v_2, v_3\}$  is not linearly independent.
Thus  $\{v_1, v_2, v_3\}$  is not a basis of  $\mathbb{R}^2$ .

# Corollary

Every basis of  $\mathbb{R}^n$  consists of n vectors.

Let V be a vector space. If V has a basis consisting of n vectors then every basis of V consists of n vectors.

Proof: Let  $B = \{b_1, b_2, ..., b_n\}$ ,  $D = \{d_1, d_2, ..., d_m\}$  be two bases of V.

We have:

- i) For each ve V, the coordinate vector [v], is a vector in TR.
- 2) Since {d<sub>1</sub>,d<sub>2</sub>,...,d<sub>m</sub>} is a basis of V, the set {[d<sub>1</sub>]<sub>B</sub>, [d<sub>2</sub>]<sub>B</sub>,..., [d<sub>m</sub>]<sub>B</sub>} is a basis of 1R<sup>n</sup>.

Since every basis of TR" consists of n vectors, we obtain m=n.

## **Definition**

A vector space has dimension n if V has a basis consisting of n vectors. Then we write dim V = n.

# Example.

i) In The take the standard basis:

Since this basis consists of n vectors, we obtain dim TR"=n.

2) Recall:  $\mathbb{P}^n$ = the vector space of polynomials of degree  $\leq n$ . The standard basis of  $\mathbb{P}_n$ :

Since & consists of n+1 vectors, we obtain: dim Pn = n+1.

Let V be a vector space such that dim V = n, and let  $\mathbf{v}_1, \dots \mathbf{v}_p \in V$ .

- 1) If  $\operatorname{Span}(\mathbf{v}_1,\ldots,\mathbf{v}_p)=V$  then  $p\geq n$ .
- 2) If  $\{v_1, \ldots, v_p\}$  is a linearly independent set then  $p \leq n$ .

Proof: It is enough to check this for V=TR?

- i) If  $v_1,...,v_p$  are vectors in  $\mathbb{R}^n$  and p < n then the matrix  $[v_1 ... v_p]$  can't have a pivot position in every row, so Span  $(v_1,...,v_p) \neq \mathbb{R}^n$ .
- 2) If v<sub>1</sub>,..., v<sub>p</sub> are vectors in R<sup>n</sup> and p>n then the matrix [v<sub>1</sub> ... v<sub>p</sub>] can't have a pivot position in every column, so the set {v<sub>1</sub>,..., v<sub>p</sub>} is not linearly independent.

# Corollary

Let V be a vector space such that  $\dim V = n$ . If W be a subspace of V then  $\dim W \le n$ . Moreover, if  $\dim W = n$  then W = V.

Proof: If dim W = m then W has a basis consisting of m vectors: Since the set  $\{w_1, ..., w_m\}$  is a linearly independent set in V, by the Theorem above we obtain:

Next, assume that dim  $W = n = \dim V$  and that  $\{w_1, ..., w_n\}$  is a basis of W. If  $W \neq V$ , we can find a vector ve V, such that  $V \notin W$ . Then  $\{w_1, ..., w_n\}$  is a linearly independent set consisting of n+1 vectors of V. By the above theorem this is impossible.

#### Note.

- 1) One can show that every vector space has a basis.
- 2) Some vector spaces have bases consisting of infinitely many vectors. If V is such vector space then we write dim  $V = \infty$ .

## Example.

- i) <u>Recall</u>:  $P = \{ the vector space of all polynomials \}$   $= \{ a_0 + a_1 t + ... + a_n t^n \mid a_i \in \mathbb{R}, n > 0 \}$ 
  - The set  $\mathcal{E} = \{1, t, t^2, ...\}$  is a basis of  $\mathbb{P}$ . Since  $\mathcal{E}$  consists of infinitely many vectors, we get that  $\dim \mathbb{P} = \infty$
- 2) Recall:  $C^{\infty}(\mathbb{R}) = \{\text{the vector space of all functions } f: \mathbb{R} \to \mathbb{R} \}$ Since  $\mathbb{R}$  is a subspace of  $C^{\infty}(\mathbb{R})$  and dim  $\mathbb{R}^{2} = \infty$ , we get that dim  $C^{\infty}(\mathbb{R}) = \infty$ It is not possible to write explicitly a basis of  $C^{\infty}(\mathbb{R})$ .