Методы повышения обобщающей способности, основанные на различных способах построения ансамблей

Медведев Дмитрий Владимирович

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Выпускная квалификационная работа бакалавра

Научный руководитель — д.ф-м.н., профессор Сенько О. В.

Москва, 2019

Постановка задачи

- Известно, что коллективные методы позволяют увеличивать обобщающую способность, поэтому построение ансамблей становится важным направлением для решения практических задач.
- Необходимо с помощью композиции нескольких более слабых, в смысле качества, алгоритмов, построить один сильный. То есть создать ансамбль.
- Пример: для задачи классификации с помощью специального метода обучить различные решающие деревья и объеденить их в один итоговый алгоритм.

Разложение ошибки ансамбля

$$H(x) = \sum_{i=1}^{T} h_i(x)$$

$$err(H) = \mathbb{E}\left[\int (H(x) - f(x))^2 dx\right] = \mathbb{E}\left[(H - f)^2\right]$$

$$err(H) = \underbrace{\frac{1}{T}\sum_{i=1}^{T} (\mathbb{E}[h_i] - f)^2 + \frac{1}{T} \cdot \underbrace{\frac{1}{T}\sum_{i=1}^{T} \mathbb{E}\left[(h_i - \mathbb{E}[h_i])^2\right] + \underbrace{\frac{1}{T}\sum_{i=1}^{T} \mathbb{E}\left[(h_i - \mathbb{E}[h_i])^2\right] + \underbrace{\frac{1}{T}\sum_{i=1}^{T} \mathbb{E}\left[(h_i - \mathbb{E}[h_i])(h_i - \mathbb{E}[h_i])\right]}_{\overline{covariance}(H)}$$

Разложение ошибки ансамбля

$$err(H) = \overline{err}(H) - \overline{ambi}(H)$$

$$\overline{err}(H) = \mathbb{E}\left[\frac{1}{T}\sum_{i=1}^{T}(h_i - f)^2\right] = \overline{bias}(H)^2 + \overline{variance}(H)$$

$$\overline{ambi}(H) = \mathbb{E}\left[\frac{1}{T}\sum_{i=1}^{T}(h_i - H)^2\right] = \overline{variance}(H) - variance(H) =$$

$$= \overline{variance}(H) - \frac{1}{T}\overline{variance}(H) - \left(1 - \frac{1}{T}\right)\overline{covariance}(H)$$

$$err(H) \rightarrow \min \Leftrightarrow \frac{1}{T}\sum_{i=1}^{T}err(h_i) - \frac{1}{2T^2}\sum_{i=1}^{T}\sum_{j=1}^{T}\mathbb{E}(h_i - h_j)^2 \rightarrow \min$$

Известные методы построения ансамблей

- Бэггинг
- Метод случайных подпространств
- Случайный лес
- Бустинг

Цель работы: разработка и исследование нового метода ансамблей решающих деревьев. Разработанный метод сравнивается с известными моделями основанными на ансамблях деревьев включая: случайный лес и адаптивный бустинг.

Предлагаемый метод: критерий разбиения в узле

$$(\tau, d) = \underset{\tau, d}{\operatorname{argmin}} \left(\frac{|S_{I}|}{|S_{I}| + |S_{r}|} H(S_{I}) + \frac{|S_{r}|}{|S_{I}| + |S_{r}|} H(S_{r}) \right)$$

$$H(S) = -\sum_{k \in K} p_{1} \cdot \ln p_{1} + \left[\lambda \cdot \sum_{k \in K} p_{2} \cdot \ln p_{2} \right]$$

$$p_{1} = \frac{1}{|S|} \sum_{k \in S} \mathbb{I}[y(x) = k] , p_{2} = \frac{1}{|S|} \sum_{k \in S} \hat{p}(k|C^{m-1}, x)$$

Основная идея: строить различные деревья, используя построенный на предыдущем шаге ансамбль, максимизировать его энтропию и минимизировать энтропию реальных откликов.

Предлагаемый метод: обозначения

• T^M — дерево, построенное на M-м шаге. Leaf — множество объектов в листовом узле, в котором находится x_i .

$$\hat{p}(k|T^M,x) = \frac{1}{|Leaf|} \sum_{\hat{x} \in Leaf} \mathbb{I}[y(\hat{x}) = k]$$

• C^M — ансамбль построенный на M-м шаге.

$$\hat{p}(k|C^M, x) = \frac{1}{M} \sum_{m=1}^{M} \hat{p}(k|T^m, x)$$

$$C^{M}(x) = \underset{k \in 1, ..., K}{\operatorname{argmax}} \hat{p}(k|C^{M}, x)$$

ullet λ — коэффициент "влияния" предыдущих деревьев на построение.

Эксперименты: кредитный скоринг

Рис.: Кредитный скоринг: a) точность (accuracy), б) AUC-ROC.

Здесь и далее красный: предлагаемый алгоритм, зелёный: случайный лес, синий: AdaBoost, голубой: алгоритм + случайный лес.

Эксперименты: систолическое давление

Рис.: Систолическое давление: а) точность (accuracy), б) AUC-ROC

Эксперименты: классификация силуэта машины

Рис.: Классификация силуэта машины. Точность (accuracy)

Эксперименты: таблицы результатов

Метод	Accuracy	Max accuracy	AUC	Max AUC
RF	0.763	0.766	0.788	0.788
AdaBoost	0.759	0.766	0.780	0.781
Algorithm	0.768	0.770	0.789	0.790
Algorithm + RF	0.764	0.767	0.790	0.791
Algorithm + AdaBoost	0.766	0.769	0.789	0.790

Таблица: Кредитный скоринг

Метод	Accuracy Max accuracy		AUC	Max AUC
RF	0.888	0.943	0.891	0.958
ADA	0.876	0.934	0.892	0.943
Algorithm	0.878	0.951	0.880	0.951
Algorithm + RF	0.894	0.945	0.896	0.958
Algorithm + ADA	0.876	0.954	0.886	0.954

Таблица: Систолическое давление, задача 1

Эксперименты: таблицы результатов

Метод	Accuracy	Max accuracy
RF	0.738	0.742
AdaBoost	0.744	0.749
Algorithm	0.760	0.762
Algorithm + RF	0.750	0.751
Algorithm + AdaBoost	0.759	0.762

Таблица: Классификация силуэта машины

Положения, выносимые на защиту

На защиту выносится:

- Новый метод построения различных решающих деревьев и объеденения их в ансамбль.
- Экспериментальное сравнение предложенного метода с известными аналогичными подходами.

Предлагаемый метод: обозначения

- y(x) реальная метка, соответствующая объекту x в выборке.
- К число классов в задаче классификации.
- Node множество объектов в текущем узле, для которого идёт поиск признака и порога по нему.
- T^M дерево, построенное на M-м шаге. Leaf множество объектов в листовом узле, в котором находится x_i . $\hat{p}(k|T^M,x)=\frac{1}{|Leaf|}\sum\limits_{\hat{x}\in Leaf}\mathbb{I}[y(\hat{x})=k].$
- C^M ансамбль построенный на M-м шаге.

$$\hat{p}(k|C^{M},x) = \frac{1}{M} \sum_{m=1}^{M} \hat{p}(k|T^{m},x)$$

$$C^{M}(x) = \underset{k \in 1, \dots, K}{\operatorname{argmax}} \hat{p}(k|C^{M},x)$$

ullet λ — коэффициент "влияния" предыдущих деревьев на построение.

Предлагаемый метод: критерий разбиения в узле

$$\begin{cases} S_{l} = \{x \in Node | x^{d} <= \tau\} \\ S_{r} = \{x \in Node | x^{d} > \tau\} \\ F(\tau, d) = \frac{|S_{l}|}{|S_{l}| + |S_{r}|} H(S_{l}) + \frac{|S_{r}|}{|S_{l}| + |S_{r}|} H(S_{r}) \\ (\tau, d) = \underset{\tau, d}{\operatorname{argmin}} (F(\tau, d)) \end{cases}$$

$$\begin{cases} p(k|S, Y) = \frac{1}{|S|} \sum_{x \in S} \mathbb{I}[y(x) = k] \\ p(k|S, C^{m-1}) = \frac{1}{|S|} \sum_{x \in S} \hat{p}(k|C^{m-1}, x) \\ H(S) = -\sum_{k \in K} p(k|S, Y) \cdot \ln p(k|S, Y) + \\ + \lambda \cdot \sum_{k \in K} p(k|S, C^{m-1}) \cdot \ln p(k|S, C^{m-1}) \end{cases}$$

Основная идея: строить различные деревья, используя построенный на предыдущем шаге ансамбль, максимизировать его энтропию и минимизировать энтропию реальных откликов.

Дополнительная информация

Используемые в эксперементах данные: University of

California, Irvine) Machine Learning Repository

Энтропия: $-\sum p \log p$

FPR:
$$a(x, thr) = sign(f(x) - thr), FPR = \frac{\sum_{i=1}^{N} [a(x_i, thr) = +1][y_i = -1]}{\sum_{i=1}^{N} [y_i = -1]}$$

TPR:
$$TPR = \frac{\sum_{i=1}^{N} [a(x_i, thr) = +1][y_i = +1]}{\sum_{i=1}^{N} [y_i = +1]}$$

ROC:(0,0) Соответсвует наибольшему thr: a всегда выдаёт отрицательный результат

Дополнительная информация

Задача	Train	Test	Количество	Количество
	volume	volume	признаков	классов
Кредитный	1000	_	24	2
скоринг				
Классификация	846	_	18	4
силуэта				
машины				
Систолическое	718	458	116	2
давление				

Таблица: Информация о выборках