Relations

Klaus Draeger

Lecture 4: More Relations

- There are several special kinds of relations.
 - Functions of various kinds (partial/total, injective, surjective)
 - Equivalence relations represent ways in which elements of a set are similar
 - Partial orders according to which a set can be sorted
- These let us make relational specifications more expressive.

Functions

- A function f:A--> B maps each element x:A to the associated function value f(x):B
- Mathematically, f is a set of pairs (x,y) where each x:A occurs exactly once
 i.e. a restricted kind of relation
- Example: square : NAT1 --> NAT1, square = {(1,1), (2,4), (3,9), ...}
- In this case the pairs are often also written like $2 \mapsto 4$ (this is where the **maplet** notation $x \mid -> y$ comes from)

Partial Functions

- The functions we have described are total,
 i.e. they assign a value to every x:A
- In many cases we have to deal with partial functions
 - Example: Some functions are undefined in special cases (division by 0, minimum of an empty set, ...)
 - Example: We can model sequences/arrays like 2,3,5,7,11
 as finite maps from NAT1 to (in this case) NAT1: {1|->2, 2|->3, 3|->5, 4|->7, 5|->11}
 where numbers above 5 are not mapped to anything
- The set of partial functions is written A+->B
- Note that this includes the total functions:
 Unmapped elements are allowed, not mandatory

Example diagrams

This relation is not a function:

This is a partial function:

• And this is a **total** function: $_{N}^{R4}$

Function Classes

- Additional properties that functions f : A->B can have are:
 - Injectivity: no function value occurs more than once
 i.e. for every y:B there is at most one x:A with f(x)=y
 - Surjectivity: all possible function values occur
 i.e. for every y:B there is at least one x:A with f(x)=y
 - Bijectivity: combines injectivity and surjectivity,
 i.e. for every y:B there is exactly one x:A with f(x)=y
- The corresponding function classes are represented by
 - placing an additional ">" before the arrow for injectivity
 - placing an additional ">" after the arrow for surjectivity
 - both for bijectivity
- Example:
 - A >+-> B is the set of injective partial functions from A to B
 - A -->> B is the set of surjective total functions from A to B

Notation Overview

Some examples

- The function f(x)=2*x is
 - total: every natural number can be doubled
 - injective: doubling different numbers gives different results (remember that these are mathematical integers, not e.g. 32-bit ones which can wrap around)
 - not surjective: e.g. we can never get f(x)=1
- The function f(x)=x/2 is
 - total: we can always halve (and round down if needed)
 - **not injective**: rounding means that e.g. f(2)=f(3)=1
 - surjective: for every y, f(2*y)=y
- The function min(S) is
 - not total: gives no result for empty S
 - not injective: min({1}) = min({1,2,3}) = 1
 - surjective: for every y, min({y}) = y

Function Domains and Ranges

- Like for any relation, a function has
 - a domain: dom(f) is the set of all x for which f contains a pair (x,y)
 - a range: ran(f) is the set of all y for which f contains a pair (x,y)
- They are generally subsets of the function's source and target sets
- Then a function f is
 - total if dom(f) is the entire source set
 - surjective if ran(f) is the entire target set

And we can always interpret f as a total surjective function dom(f)-->>ran(f)

Relational algebra and functions

- Since functions are relations, we can do things like
 - Take their **inverse** f \sim
 - This will usually not be a function
 - e.g. if f(x) = x/2, then $f \sim$ has both (1,2) and (1,3)
 - But it is a function if f is injective
 - Compose them, i.e. compute f;g
 - This will always be a function
 - If both f and g are total/injective/surjective then so is f;g
 - Not "exactly if": e.g. f;g may be total even if g is not
 - Use the identity which is always a total bijective function

Composition example

Consider this example:

- Here f;g is
 - total since both f and g are
 - injective even though g is not
 - surjective even though f is not
- If we remove the pair (d,7) from g, the composite is still total even though g is not

Modifying Functions

- The **override** operator can also be applied to functions
- It works the same way as for general relations:
- In f<+g,
 - For all x in dom(g) the function values are those in g
 - For all other x the values in f (if any) are used
- Note that g<+f will differ (Can you tell why?)

Override example

Birthday example

```
SETS
 FAMILY = { Alice, Bob, Cindy }
VARTABLES
 age
TNVARTANT
  age : FAMILY --> NAT1
TNTTTALTSATION
  age := {Alice|->21, Bob|->22, Cindy|->23}
OPERATIONS
  birthday(fm) =
  PRE
    fm : FAMILY
  THEN
   age := age <+ \{ fm | -> (age(fm) + 1) \}
  END
```

Birthday example

- The main update in the family example is age := age <+ { fm|-> (age(fm) + 1)}
- and the starting state i given by age := {Alice|->21, Bob|->22, Cindy|->23}
- Executing birthday(Cindy) leads to the new state:

```
age := age <+ { Cindy |-> (age(Cindy) + 1)}

= age <+ { Cindy |-> (23 + 1)}

= {Alice|->21, Bob|->22, Cindy|->23} <+ {Cindy|->24}

= {Alice|->21, Bob|->22, Cindy|->24}
```

Exercise: Relations and Functions

Which of the following **relations** are **functions**? Of those that are functions, which are **total**, which are **injective**, and which are **surjective**?

owner : CAR <-> PERSON

child : PERSON <-> PERSON

child~ : PERSON <-> PERSON

mother : PERSON <-> PERSON

birthday : PERSON <-> DATE

PassportNo : PERSON <-> NAT1

Equivalence Relations

- An equivalence relation splits a set into subsets of elements that are alike in some sense.
- The usual definition is that R: X<->X is an equivalence relation if
 - It is reflexive:
 Each element is equivalent to itself, i.e. (x,x):R
 - It is symmetric: If (x,y):R then (y,x):R
 - It is transitive:If (x,y) and (y,z) are in R then so is (x,z)
- Equivalence relations are usually written ∼, and the above axioms written as: for all x,y,z:
 - \bullet $X \sim X$
 - $x \sim y \Rightarrow y \sim x$
 - $x \sim y, y \sim z \Rightarrow x \sim z$

Uses of Equivalence Relations

- Equivalences are used to group data
- Some containers (like Sets) use equivalences to judge which values are "essentially equal"
- One common way of obtaining an equivalence is:
 - Start with the set of values A
 - Single out the relevant characteristic
 given by a (total) function f : A-->B
 - Define x~y exactly if f(x)=f(y)
 i.e. they agree with respect to the chosen characteristic
- For example,
 - For some event, people may be grouped by age bracket
 - Tasks could be "equally urgent" if they have the same time stamp

Partial Orders

- A partial order allows a set to be (partially) sorted.
- The usual definition is that R: X<->X is a partial order if
 - It is reflexive:
 Each element is less-or-equal to itself, i.e. (x,x):R
 - It is anti-symmetric:If (x,y):R and (y,x):R then x=y
 - It is transitive:If (x,y) and (y,z) are in R then so is (x,z)
- Partial orders are usually written ≤, and the above axioms written as: for all x,y,z:

 - $x \le y \& y \le x \Rightarrow x = y$
 - $x \le y, y \le z \Rightarrow x \le z$

Uses of Equivalence Relations

- Any data that may have to be sorted needs a suitable order
- This often has to satisfy additional properties
- Numbers already come with the standard order pre-defined
- Can define others, for example
 - For numbers: x≤y if x divides y (coarser than standard order, e.g. 2 and 3 incomparable)
 - For pairs, triples, sequences, . . . :lexicographic order, e.g. (1,3,2,5,7) < (1,3,3,1,8)
 - Using a function f:A-->B and an existing order on B:
 Define x≤y exactly if f(x)≤f(y)

Pulbacks

- Both for equivalences and orders we have seen examples of this construction:
 - Given
 - Some structure on a set B
 - A (total) function f:A-->B
 - Define the same kind of structure on A by "pulling it back" along f

- This can be done for many kinds of structures
- Can be expressed in relational algebra:
 - If R is (e.g.) a partial order in B, and f:A-->B
 - Then f; R; f∼ is the pullback (of R along f) on A.

Expressing Relationship Types

- Sometimes you may need to specify that (e.g.) R is a partial order on A
- Remember the definition:
 - Reflexivity: For all x, (x,x):R
 - Anti-symmetry:
 For all x and y, if (x,y) and (y,x) are in R then x=y
 - Transitivity:
 For all x, y, z if (x,y) and (y,x) are in R then so is (x,z)

These can be expressed in relational algebra as well:

- Reflexivity: id(A) <: R
- Anti-symmetry: $(R / R \sim) = id(A)$
- (Transitivity:) (R; R) <: R

Expressing Relationship Types

- Sometimes you may need to specify that (e.g.) R is a partial order on A
- Remember the definition:
 - Reflexivity: For all x, (x,x):R
 - Anti-symmetry:
 For all x and y, if (x,y) and (y,x) are in R then x=y
 - Transitivity:
 For all x, y, z if (x,y) and (y,x) are in R then so is (x,z)

These can be expressed in relational algebra as well:

- Reflexivity: id(A) <: R
- Anti-symmetry: (R / R∼) = id(A)
- (Transitivity:) (R; R) <: R

The DEFINITIONS Clause

- Shorthands for longer definitions are often helpful
- This is where the DEFINITIONS clause comes in
- Example:

- Then pre-conditions or invariants can contain e.g. partialOrder(myOrder, NAT)
- This also comes in handy when using logic next week's topic