Sessional-II Solution

Q1: a.

(i) Solution: R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.

(ii) Solution:

- It is not symmetric since (1, 2) is present but (2, 1) is not present. OR no bidirectional edges in digraph.
- It is transitive since $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in R$.
- It is antisymmetric since (a, b) ∈ R and (b, a) ∈ R, then a = b, for all a, b ∈ R. (No bidirectional edges in digraph)
- It is not asymmetric since (a, a) ∈ R or it is not irreflexive. (Loops are present in digraph).

(iii) Solution:

For an equivalence relation, relation must be reflexive, symmetric, and transitive.

- It is reflexive since $(a, a) \in R$ for all $a \in S$. (all nodes have a loop)
- It is not symmetric since (1, 2) is present but (2, 1) is not present. OR no bidirectional edges in digraph.
- It is transitive since $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in R$. Hence, its not an equivalence relation.

(iv) Solution:

For a partial order relation, relation must be reflexive, antisymmetric, and transitive.

- It is reflexive since $(a, a) \in R$ for all $a \in S$. (all nodes have a loop)
- It is antisymmetric since $(a, b) \in R$ and $(b, a) \in R$, then a = b, for all $a, b \in R$. (No bidirectional edges in digraph)
- It is transitive since (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ R.
 Hence, it's a partial order relation.

b. (i) Solution:

- Given the third term $a_3=324$ and the sixth term $a_6=96$, use the formula for the n-th term of a geometric sequence: $a_n=a_1\cdot r^{(n-1)}$
- Set up the equations: $a_3 = a_1 \cdot r^2$ and $a_6 = a_1 \cdot r^5$
- $rac{3}{2}$ Find the common ratio r by dividing the two equations: $rac{a_6}{a_3}=r^3=rac{96}{324}=rac{2}{3}$

(b)

Use the common ratio $r=\frac{2}{3}$ and the third term $a_3=324$ to find the first term $a_1\colon a_1=\frac{a_3}{r^2}=\frac{324}{{2\choose 3}^2}=729$

(ii) Solution: $a_1 = 11 \ a_2 = 27, \ a_3 = 59 \ and \ a_4 = 123.$

(iii) Solution:

Proof. Suppose mn is odd. Since the product of an even number with any other integer is even, it must be the case that both m and n are odd. Thus m=2k+1 and n=2j+1 for some $k,j\in\mathbb{Z}$. It follows that m+n=2k+1+2j+1=2(k+j+1) and since $k+j+1\in\mathbb{Z}$, we have that m+n is even.

(iv) Solution:

If x is an even integer, then x^2 - 6x + 5 is odd. [Contrapositive of the given Proposition

Then x = 2a for some $a \in \mathbb{Z}$, by definition of an even integer.

So
$$x^2-6x+5=(2a)^2-6(2a)+5=4a^2-12a+5=4a^2-12a+4+1=2(2a^2-6a+2)+1$$
.

Therefore we have $x^2 - 6x + 5 = 2b + 1$, where $b = 2a^2 - 6a + 2 \in \mathbb{Z}$.

Consequently $x^2 - 6x + 5$ is odd, by definition of an odd number.

Q2: a. (i) Solution:

F:
$$V(G1) \rightarrow V(G2)$$
 defined by $f(a) = d$, $f(b) = c$, $f(c) = e$, $f(d) = b$, $f(e) = a$.

F:
$$V(G1) \rightarrow V(G2)$$
 defined by $f(a) = c$, $f(b) = d$, $f(c) = b$, $f(d) = e$, $f(e) = a$.

Yes, It's a planar graph. By using Euler formula, r = e - v + 2 = 6 - 5 + 2 = 3.

(iii) Solution:

It's not a bipartite Graph.

As b and e are adjacent vertices with same color.

(iv) Solution:

- (a) Since vertex a and b have an odd degree and all other vertices have an even degree so Euler path exists. Euler path: a, b, c, d, a, e, c, f, b.
- (b) Euler Circuit exists since all vertices have an even degree. Euler Circuit: a, b, c, e, b, d, a.

b. (i) Solution

Minimum Cost = 31

Prim's sequence of Edges is: A-C, C-D, D-B, F-C, A-E, G-E

(ii) Solution:

N	D(B)	D(C)	D(D)	D(E)	D(F)	D(G)
Α	∞	<mark>4,A</mark>	∞	6,A	8,A	∞
AC	7,C		<mark>5,C</mark>	6,A	8,A	∞
ACD	7,C			<mark>6,A</mark>	8,A	∞
ACDE	<mark>7,C</mark>				8,A	19,E
ACDEB					<mark>8,A</mark>	19,E
ACDEBF						19,E
ACDEBFG						

(iii) Solution: