Réduction II

20 janvier 2019

1 Diagonalisations, cycles

1.1 Endo de L(E)

Soit E un R-espace vectoriel et p un projecteur de E. On définit l'endomorphisme f de L(E) par $f(u) = \frac{1}{2}(p \circ u + u \circ p)$. Quels sont les éléments propres de f? f est-il diagonalisable?

1.2

Soit $(m,n) \in \mathbb{N}^2$. Soit B un polynôme scindé à racines simples de $\mathbb{C}_{m+1}[X]$, et $A \in \mathbb{C}[X]$. Etudier le caractère diagonalisable de l'endomorphisme de $\mathbb{C}_m[X]$ qui à P associe le quoi de la division euclidienne de AP par B. Que se passe-t-il si B possède une racine double?

1.3 Cartan

Soit A une sous-algèbre unitaire de $M_n(\mathbb{C})$ dont tous les éléments nilpotents sont nul. Montrer que tout élément de A est diagonalisable, puis que commutative. (Si e est idempotent et $a \in A$, ea - eae est nilpotent donc nul donc ea = eae = ae).

1.4

Soit A une matrice diagonale de $M_n(\mathbb{C})$. Donner une CNS pour que A soit semblable à une matrice de $M_n(\mathbb{Q})$. Que se passe-t-il si l'on remplace \mathbb{Q} par \mathbb{Z} ?

2 Topologie

2.1

Trouver les matrices $M \in SL_2(\mathbf{R})$ telles que la suite M^k soit bornée.

2.2

Soit $\|\|$ une norme d'opérateur sur $M_n(\mathbb{C})$. Soit G un sous-groupe de $GL_n(\mathbb{C})$ contenu dans la boule ouverte $B(I_n, \sqrt{2})$. Montrer que $G = \{I_n\}$.

2.3

Soit $G \subset SL_2(\mathbb{C})$ un sous-groupe. On note $I(G) = P \in \mathbb{C}[X_{i,j}] | \forall A \in G, P(A) = 0$ et $\hat{G} = \{B \in M_n\mathbb{C} | \forall P \in I(G), P(B) = 0\}$. Montrer que \hat{G} est un sous-groupe de $SL_n(\mathbb{C})$.