アルゴリズムとデータ構造①

~難しい問題への対処~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

難しい問題: でも、実用上、解かないといけないときはある...

- 非常に難しい問題: NP完全・困難
 - おそらく多項式時間アルゴリズムが存在しない
 - 例:巡回セールスマン問題
 - 最短のハミルトン閉路をみつける
- しかし、多くの実用上重要な問題がこのクラスに属する
- どうしても解かなければならないときがある

難しい問題への対処法: 計算量や性能の保証はないが実用上有効な方法

- NP困難の時点で「理論的に」効率の良い解法は望めない
- いくつかの「実用上は」有用な方法がある:
 - 分枝限定法
 - 局所探索

• • •

→ 一方、近似アルゴリズム:最適解の保証はないが、 最適解からどの程度悪いかという保証がある

分枝限定法

分枝限定法:

場合分けと探索の打ち切りによって効率よく最適解を探索

- 分枝:問題を場合分けによって複数の部分問題にする
 - 部分問題の解のうち最良のものが元の問題の最適解
 - 場合分けは木構造によって表現できる
- ■限定:元々の問題よりも解きやすい緩和問題を解き、 これ以上場合分けしても見込みのない探索を打ち切る
 - 緩和問題:簡単に解けて、元の問題の解を大まかに見積れる
 - 打ち切り:緩和問題の解と暫定的な最適解を比較して、以降の場合分けを打ち切る

巡回セールスマン問題: NP困難な最小化問題

- 辺 $(v_i, v_j) \in E$ に非負のコスト $c(v_i, v_j) \ge 0$ がついたグラフ
- 最小のコストのハミルトン閉路を求めるNP困難問題
- 最小化問題としての定式化:

開発している。
$$\Sigma_{(v_i,v_j)}$$
を使うかどうか $\Sigma_{(v_i,v_j)}$ を使うかどうか $\Sigma_{(i,j)\in E}$ $\Sigma_{(i,j)\in E}$ $C(v_i,v_j)$ $x_{i,j}$

s.t.
$$x_{i,j} \in \{0,1\}$$
 $\{x_{i,j} | x_{i,j} = 1\}$ がハミルトン閉路をなす

- $x_{i,j} \in \{0,1\}$ は辺(i,j)を閉路に含むかどうかを指定

巡回セールスマン問題の緩和問題: 閉路の条件をなくせば貪欲法で解ける

ハミルトン閉路の条件を外す:

minimize
$$\{x_{i,j}\}_{(i,j)\in E}$$
 $\sum_{(i,j)\in E} c(v_i,v_j)x_{i,j}$ 単にN本の辺を選ぶという条件 s.t. $x_{i,j}\in\{0,1\}$, $\sum_{(i,j)\in E} x_{i,j}=N(=$ 頂点数)

 $\boldsymbol{\omega}(i,j) \in \mathcal{L}^{*}(i,j) \in \mathcal{L}^{*}(i,j)$

貪欲法:最も効果の高いものから順に解に加える

- 辺をコストの小さい順にN本を採用する
- 得られる解がハミルトン閉路とは限らない(通常違う)
- 緩和した問題の解空間はもとの問題の解空間を含む

分枝操作:

緩和解のサイクルを切ることで場合分けを行う

- 得られた解が閉路でない場合は、どこかにサイクルがある
- サイクルが生成されないように条件を加える
 - サイクル上の辺のうちひとつを使えないようにする
 - サイクル長がLであれば、L通りの可能性がある
- L = 3 で e_1, e_2, e_3 の3辺からなるサイクルがあるとすると:
 - 1. $e_1 = 0$ とした問題
 - 2. $e_1 = 1, e_2 = 0$ とした問題
 - 3. $e_1 = 1, e_2 = 1, e_3 = 0$ とした問題

場合分け

分枝操作と暫定解: 場合分けを進めて探索を行い、暫定解をみつける

- 分枝の候補のうちひとつを選び、その緩和問題を解き:
- 1. 部分問題の最適解(ハミルトン閉路)でなかった場合
 - その解にサイクルがある場合は、さらに分枝操作
- 2. 得られた場合 or 解がない場合: その先の探索は打切り
- 暫定解:現在までの最適解
 - 分枝による探索は深さ優先で、一旦解を得ることを優先
 - ひとまず暫定解を得たら、以降はこれを基準に考える (暫定解のコストをTとする)

限定操作(枝刈り): 暫定解より悪い緩和解は、それ以降の探索を打ち切る

- 深さ優先探索:部分問題の最適解が見つかったら、 ひとつ前の分枝の次の場合分けに向かう
- 限定操作:緩和問題の解のコストが暫定解のコスト*T* 以上であった場合、そこから先の探索を打ち切る
 - 理由:緩和問題のコストは常に真のコスト以下なので 今後その解から探索を進めても改善は望めない

分枝限定法の別の例: ナップサック問題

- ナップサックに詰められる品物の価値の合計は最大いくつ?
 - -N個の品物:i番目の品物の重さ w_i 、価値は q_i
 - 合計Mまでの重さの品物が詰められるナップサックがある
- 定式化: $\max_{\{x_i\}_i} \sum_i q_i x_i \text{ s.t.} \sum_i w_i x_i \leq M, x_i \in \{0,1\}$
- 分枝操作: $x_i \in \{0,1\}$ のいくつかを固定
- 緩和:連続化 x_i ∈ [0,1] により解の上界を与える
 - -連続緩和した問題は簡単(q_i/w_i が大きい方から詰めるだけ)

枝刈りの例

枝刈りの有効利用の例: データマイニングにおける頻出パターン発見

- 解の性質を用いた探索の打ち切り(枝刈り)は しばしば用いられるテクニック
- データマイニング: 膨大なデータから有用な知見を発見
 - マーケットバスケット分析: データマイニングの応用のひとつ 購買データを分析してマーケティングの知見を発見
- 頻出パターンマイニング:同時に購入される傾向のある 商品の集合を発見する
 - 例:「ビールとオムツ」、店内の商品配置、オンラインショッピング サイトの「おすすめ」

マーケットバスケット分析の例: 購買データからの頻出パターン発見

■ 購買データ (レシート)

客	購入した商品
1	ごはん、味噌汁、とんかつ
2	ごはん、味噌汁、とんかつ
3	ごはん、スープ、ハンバーグ
4	パン、スープ、ハンバーグ
5	パン、牛乳、とんかつ

■ 2回以上現れる商品の組合せをみつける

- 1つ:{ごはん} {パン} {スープ} {味噌汁} {とんかつ} {ハンバーグ}

-2つ: {ごはん, 味噌汁} {味噌汁, とんかつ} {ごはん, とんかつ}{スープ, ハンバーグ}

- 3つ: {ごはん, 味噌汁, とんかつ}

頻出パターン発見における課題: アイテムの組合せが多く、すべてのチェックは困難

- ■問題: *K*回以上現れるアイテムの組合せを全て見つけよ
- ■アイテムがN種あるとすると、2^N個の組合せをチェックする必要がある
 - 素朴にすべてをチェックするのは現実的ではない
- 全てをチェックすることなく、条件を満たす組合せをもれなく発見したい

頻出パターン発見の基本方針と観察: 小さい集合からチェック、見込みのない組合せを見切る

- 基本方針:組合せの数を徐々に増やしていく
 - アイテム1つ、アイテム2つの組合せ、アイテム3つの組合せ、...
- 重要な観察:
 - 出現回数がK回未満のアイテムの組を含むアイテムの組の出現数はK回未満
 - これを使って探索を打ち切ることができる

局所探索法

局所探索: 現在の解を少し修正してよりよい解に移動する

- 現在の解 x の近傍を定義し、 その中で現在よりもよい解 x' に移動する
- 離散最適化問題では、現在の解xの近傍が自明ではない ため、適切な近傍集合N(x)を定義する必要がある
 - 例:解がkビット列であれば、 いずれかを反転したもの(k通り)の集合を近傍とする

局所探索の方法: 山登り法、アニーリング、...

- 現在の解 x から近傍のうちのひとつ $x' \in N(x)$ に移動する
- 山登り法:近傍 N(x) のうち、もっともよい解を x' として採用
 - 局所解に陥る可能性が高い
- アニーリング (焼きなまし) : 局所解を避けるための方法
 - 近傍 $N(\mathbf{x})$ のうち、解をひとつ \mathbf{x}' 取り出す
 - 解が改善するなら x' を採用する
 - 解が悪くなる変更も、ある確率($e^{\frac{f(\mathbf{x}')-f(\mathbf{x})}{T}}$)で採用
 - Tは「温度」パラメータ;下げると解が悪化する変更を採用しない

近傍の定義: 巡回セールスマン問題の場合

- ■現在の解(ハミルトン閉路)の辺2つを交差させて 別の解をつくる
 - -現在のハミルトン閉路 \mathbf{x} に属するふたつの辺 $(v_i, v_j), (v_k, v_l)$ を考える
 - $-(v_i,v_j)$, (v_k,v_l) のかわりに (v_i,v_k) , (v_j,v_l) を辺にする
 - すべての近傍(辺の交差)のうち、もっともコストが小さいものに移動する
- たとえば分枝限定法でひとつ解が得られたときに使う