1. (a) Let $\epsilon > 0$. Let x and y be real numbers such that $|x-1| < \frac{\epsilon}{2}$ and $|y-2| < \frac{\epsilon}{2}$. Prove that $|x-y| < \epsilon + 1$.

Proof: By expanding the absolute value, we have $|x-1|<\frac{\epsilon}{2}\Longrightarrow -\frac{\epsilon}{2}< x-1<\frac{\epsilon}{2}\Longrightarrow 1-\frac{\epsilon}{2}< x<1+\frac{\epsilon}{2}.$ Similarly, we also have $2-\frac{\epsilon}{2}< y<2+\frac{\epsilon}{2},$ which implies $-2+\frac{\epsilon}{2}>-y>-2-\frac{\epsilon}{2}.$ Then, we can add the two inequalities as follows: $(1-\frac{\epsilon}{2})+(-2-\frac{\epsilon}{2})< x+(-y)<(1+\frac{\epsilon}{2})+(-2+\frac{\epsilon}{2}),$ which simplies to $-\epsilon-1< x-y<\epsilon-1.$ Since $\epsilon+1>\epsilon-1, -\epsilon-1< x-y<\epsilon+1,$ therefore $|x-y|<\epsilon+1.$

(b) Let x be a real number such that $|x| \leq \frac{3}{4}$ and $|x-1| \leq \frac{3}{4}$. Prove that $|x-\frac{1}{2}| \leq \frac{1}{4}$.

Proof: Again by expanding the absolute values, we have $-\frac{3}{4} \le x \le \frac{3}{4}$ and $1 - \frac{3}{4} \le x \le 1 + \frac{3}{4} \implies \frac{1}{4} \le x \le \frac{7}{4}$. By combining the two inequalities and taking the tighter bounds, we have $\frac{1}{4} \le x \le \frac{3}{4}$. Then, we can subtract $\frac{1}{2}$ from the inequality to obtain $-\frac{1}{4} \le x - \frac{1}{2} \le \frac{1}{4}$; therefore $|x - \frac{1}{2}| \le \frac{1}{4}$.

2. Let $S \subseteq \mathbb{R}$ be nonempty and bounded above. Let $T = \{2x + 1 : x \in S\}$. Prove that sup T exists and that

$$\sup T = 2 \cdot \sup S + 1.$$

Proof: Since sup $S \ge x$ for all $x \in S$ by definition of supremum, $2 \cdot \sup S + 1 \ge 2x + 1 \in T$. Therefore $2 \cdot \sup S + 1$ is an upper bound of T, so T is bounded above and sup T exists. Then, since $2 \cdot \sup S + 1$ is an upper bound and sup T exists, we have sup $T \le 2 \cdot \sup S + 1$.

Now suppose $\sup T < 2 \cdot \sup S + 1$; then there must exist an $r \in \mathbb{Q}$ such that $\sup T < r < 2 \cdot \sup S + 1$ since \mathbb{Q} is dense in \mathbb{R} . Then, since $\sup T > 2x + 1$ for all $x \in S$, we also have $2 \cdot \sup S + 1 > r > \sup T > 2x + 1$. By subtracting 1 and dividing by 2, the previous expression gives us $\sup S > \frac{r-1}{2} > x$ for $x \in S$, which implies that $\frac{r-1}{2}$ is an upper bound of S while being strictly less than the supremum of the set. This cannot happen by definition of supremum, therefore $\sup T \nleq 2 \cdot \sup S + 1$.

Combining sup $T \leq 2 \cdot \sup S + 1$ and sup $T \nleq 2 \cdot \sup S + 1$ gives us sup $T = 2 \cdot \sup S + 1$.

3. Let (s_n) and (t_n) be convergent sequences of real numbers. Suppose $\lim s_n = \lim t_n + 1$. Prove there exists N such that $s_n - t_n > \frac{1}{2}$ for all n > N.

Proof: Let $s = \lim s_n$ and $t = \lim t_n$, also let $\frac{1}{4} \ge \epsilon > 0$. By definition of convergence, there exists an N_s such that $n > N_s \implies |s_n - s| < \epsilon \implies s - \epsilon < s_n < s + \epsilon$; similarly, there exists an N_t such that $n > N_t \implies |t_n - t| < \epsilon \implies t - \epsilon < t_n < t + \epsilon$. Then $s - \epsilon - t - \epsilon < s_n - t_n < s + \epsilon - t + \epsilon$ which simplifies to $s - t - 2\epsilon < s_n - t_n < s - t + 2\epsilon$. Since s = t + 1, we have $1 - 2\epsilon < s_n - t_n$ by substitution. Since we selected $\epsilon \le \frac{1}{4}$, $N = \max\{N_s, N_t\}$ will guarantee that $n > N \implies s_n - t_n > \frac{1}{2}$.

4. Let (s_n) be a sequence defined by

$$s_n = \frac{2n^2 + 3}{n(5n - 1)}, n = 1, 2, \dots$$

Prove that (s_n) is convergent and find the value of $\lim s_n$.

Proof:

Proof:

$$\lim s_n = \lim \frac{2n^2 + 3}{n(5n+1)}$$

$$= \lim \frac{2n^2 + 3}{5n^2 + n} \text{ (Expand denominator)}$$

$$= \lim \frac{2 + \frac{3}{n^2}}{5 + \frac{1}{n}} \text{ (Multiply by } \frac{\frac{1}{n^2}}{\frac{1}{n^2}}\text{)}$$

$$= \frac{\lim (2 + \frac{3}{n^2})}{\lim (5 + \frac{1}{n})} \text{ (Lemma 22)}$$

$$= \frac{\lim 2 + \lim \frac{3}{n^2}}{\lim 5 + \lim \frac{1}{n}} \text{ (Sum limit law)}$$

$$= \frac{2 + 3 \cdot \lim \frac{1}{n^2}}{5 + \lim \frac{1}{n}} \text{ (Theorem 19)}$$

$$= \frac{2 + 3 \cdot 0}{5 + 0} \text{ (lim } \frac{1}{n^2} = \lim \frac{1}{n} = 0 \text{ shown in class)}$$

$$= \frac{2}{5}$$
Therefore (s_n) converges to $\frac{2}{5}$.

5. Let (s_n) and (t_n) be sequences of real numbers. Suppose (s_n) diverges to $+\infty$ and that the set

$$\{n \in \mathbb{N} : t_n < s_n\}$$

is finite. Prove that (t_n) diverges to $+\infty$.

Proof: Since (s_n) diverges to $+\infty$, there exists an N_s such that $n > N_s \implies s_n > M$ for M > 0. In addition, since the set $\{n \in \mathbb{N} : t_n < s_n\}$ is finite, there exists an N_0 such that $n > N_0 \implies t_n \ge s_n$. Then we can select $N = \max\{N_s, N_0\}$ and we have $n > N \implies t_n \ge s_n > M$. Therefore $n > N \implies t_n > M$ and (t_n) diverges to $+\infty$ by definition of divergence.