Название организации

« »	2016 г
	_ ФИО зав. кафедрой
зав. кафедрой	
Диссертация дог	пущена к защите

ДИССЕРТАЦИЯ на соискание ученой степени МАГИСТРА

Тема: Тема диссертации

Направление:	111111	– Назван	ие направл	пения
Магистерская програм	ма: 111111	– Назван	ие програм	ИМЫ
Выполнил студент гр.	1111/1			ФИО автора
Научный руководитель) ,			
д. фм. н., ст. н. с.				_ ФИО руководителя
Рецензент,				
д. фм. н., в. н. с.				ФИО рецензента
Консультант по вопрос	ам			
охраны труда,				
К. т. н., доц.				_ ФИО консультанта

Оглавление

Введение	3
Глава 1. Название главы	4
1.1. Название секции	4
1.1.1. Название подсекции	5
Заключение	7
Список литературы	8
Приложение А. Заголовок приложения	C

Введение

Глава 1

Название главы

1.1. Название секции

Внутритекстовая формула $\frac{1}{\epsilon^*} = \frac{1}{\epsilon_\infty} - \frac{1}{\epsilon_0}$. Внутритекстовая формула в стиле выделенной $\frac{1}{\epsilon_\infty}$. Ссылки на литературу [1????-8]. Ссылка на формулу (1.1)

$$\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} = 4\pi \int \frac{d^3q}{(2\pi)^3} \frac{e^{i\mathbf{q}(\mathbf{r}_1 - \mathbf{r}_2)}}{q^2}.$$
 (1.1)

Ссылка на рис. 1.1

Рис. 1.1. Подпись к рисунку.

Если разность энергий электронно-дырочных уровней $E_2 - E_1$ близка к энергии продольного оптического фонона $\hbar\Omega_{\rm LO}$, то в разложении волновых функций полного гамильтониана можно ограничиться нулевым приближением для всех состояний, за исключением близких по значению $^{\rm Puc.}$ к E_2 . Волновые функции последних представляют собой следующие комбинации вырожденных состояний $^{\rm LO}$.

Рис. 1.2. Рисунок «в оборку».

Ссылка на таблицу 1.1.

Ссылка на внутренний рисунок (рис. 1.7, a).

 $^{^{1}}$ Текст сноски

Таблица 1.1. Пример таблицы

	$\lambda \cdot 10^{-11}$, дин \cdot см ⁻²	$\mu \cdot 10^{-11}$, дин \cdot см ⁻²	ρ , $\Gamma \cdot cm^{-3}$
InP	3.82	1.69	4.14
SiO_2	1.57	3.11	2.2

Рис. 1.3. Рисунок с отдельным названием

Рис. 1.4. Рисунок с отдельным названием

Рис. 1.5. Рисунок с отдельным названием

Рис. 1.6. Рисунки с единым названием

Рис. 1.7. Рисунки с единым названием и подчиненной нумерацией: (a) ссылка 1, (b) ссылка 2, (b) ссылка 3.

1.1.1. Название подсекции

Текст подсекции

Название под-подсекции

Текст под-подсекции

Название параграфа. Текст параграфа

Название подпараграфа. Текст подпараграфа

Нумеруемый список:

- 1. Первый уровень вложенности.
 - а. Второй уровень вложенности.
 - і. Третий уровень вложенности.

Демонстрация полностью настраиваемых окружений типа «теорема».

Лемма 1.1 (Шура): Квадратная матрица, коммутирующая со всеми матрицами неприводимого представления, кратна единичной.

Теорема 1.1: Гомоморфный образ группы изоморфен фактор-группе по ядру гомоморфизма.

Примечание 1.1: Текст примечания.

Заключение

Список литературы

- 1. Yoffe A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems // Adv. Phys. 1993. Vol. 42. P. 173–266.
- Эфрос Ал. Л., Эфрос А. Л. Межзонное поглощение света в полупроводниковом шаре // Физика и техника полупроводников. 1982. Т. 16, № 7. С. 1209–1214.
- 3. Ансельм А. И. Введение в теорию полупроводников. Москва: Наука, 1978.
- 4. Segall B. // Proceedings of IXth Conference on the Physics of Semiconductors, Moscow, 1968 / Ed. by S. M. Ryvkin. Leningrad: Nauka, 1968. P. 425.
- 5. Spectroscopy and Excitation Dynamics of Condensed Molecular Systems // Ed. by V. M. Agranovich, R. M. Hochstrasser. Modern Problems in Condensed Matter Sciences. Amsterdam: North-Holland, 1983. ISBN: 0444863133.
- 6. InP Basic Parameters at 300 K // Electronic archive New Semiconductor Materials. Characteristics and Properties / Ioffe Physico-Technical Institute. St. Petersburg, 2001. URL: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/basic.html (дата обращения: 01.11.2009).
- 7. Мищенко Е. Ж. Неупругое рассеяние света в системе взаимодействующих электронов и фононов: Кандидатская диссертация / ИТФ им. Л. Д. Ландау. 1996.
- 8. Скворцов М. А. Флуктуационные и интерференционные эффекты в мезоскопических системах: Докторская диссертация / ИТФ им. Л. Д. Ландау. 2008.

Приложение А

Заголовок приложения