MTH210 - SUBMISSION_20220929

For $n \in \mathbb{Z}^+$, put $X_n = \{1,2,...,n\}$. Put $V = \{0,1\}$, and finally, put $V_n = \text{Cartesian}$ product of n copies of V, i.e. V_n is the set of all ordered n-tuples with 0-1 entries.

Construct a partial order R on V_n so that $\langle V_n, R \rangle$ is isomorphic to $\langle \mathbb{P}(X_n), \subseteq \rangle$.

Note: You must firstly define the relation R, secondly show that it is a partial order, and thirdly prove the isomorphism.

RUBRIC

List of Common Errors and Marks Deductions:

- 1. Using an undefined symbol.
- 2. Writing an equation in which the LHS and RHS are nt comparable. For example, the LHS is a set, and the RHS is an integer.
- 3. Writing a meaningless or completely illogical statement.

Deduct 0.5 marks for each occurrence of an error of the above type. **However,** the total marks for the submission should remain non-negative.

Marks to be awarded as follows:

Firstly, for the correct and explicit definition of the relation $R \to 1$ mark.

Secondly, for showing that R is a partial ordering on V_n :

- 1. Reflexive property $\rightarrow 0.5$ marks
- **2.** Anti-symmetric property $\rightarrow 0.5$ marks
- 3. Transitive property $\rightarrow 0.5$ marks.

Thirdly, for showing the isomorphism:

- For correctly and explicitly defining the mapping $\psi \to 1$ mark.
- For showing that the mapping ψ is a bijection $\rightarrow 1$ mark
 - (**NB**: This step has 3 components: showing that the two sets involved $P(X_n)$ and V_n have the same cardinality, showing that the mapping is injective, and showing that it is bijective; deduct 0.5 marks for each component not explicitly stated, with the proviso that the marks for this step should be non-negative.)
- For showing that the mapping ψ is order-preserving $\rightarrow 0.5$ marks.

Partial Credit: The answers are short and to the point, so no scope for partial credit. While proving isomorphism, the technically correct way to proceed is to define a mapping and then show that it fulfils the requirements for an isomorphism. However, this time, it would be acceptable if the student's answer describes how to obtain the n-tuple corresponding to a subset of X_n , even if the terms mapping or function are not used.