ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

DATA 599 | MIDTERM UPDATE

JUSTINE FILION | NEETHU GOPALAKRISHNA | SAISREE GR | SARA HALL

AGENDA

About Us

2

About Siemens Healthineers 3

Project Details

Our Approach

Results and Roadblocks

NEETHU GOPALAKRISHNA

- B.E. in Computer Science
- Grew up in India.
- Loves to read, cook and dance.

SARA HALL

- BSc in Neuroscience
- Grew up in Calgary
- Loves running and cycling...especially uphill

4

Roadblocks

SAISREE GR

- B.E. in Electronics and Communication.
- Worked as a Senior Systems Engineer
- Loves hot chocolate and singing!

JUSTINE FILION

- BSc in Actuarial Science
- Grew up in northern Quebec
- Loves skiing and painting.

SIEMENS HEALTHINEERS

Medical device company based in Germany

Create devices that help inform clinical decision making

7

Roadblocks

EPOC BLOOD ANALYSIS SYSTEM

About

QUALITY CONTROL PROCESS

AIMS AND OBJECTIVES

DEVELOP MACHINE LEARNING PIPELINES TO CLUSTER READINGS

DETERMINE WHICH METHODS ARE EFFECTIVE AND WHICH ARE NOT FOR IDENTIFYING ANOMALIES IN BIOSENSOR READINGS

DELIVERABLES

- Well commented Python code for everything we have tried
- A final report detailing our attempts

SCHEDULE

OUR DATA

OUR DATA

About

METHODS OVERVIEW

- I. Removed uninformative window
- 2. Standardized the waveform
- 3. Split the waveform into different windows

- I. Principal Component Analysis
- 2. Autoencoder
- 3. Self-Organizing Map
- 4. Feature extraction using TSFRESH

Removed uninformative window

Normalized

Smoothed

Removed uninformative window

Normalized

Smoothed

Removed uninformative window

Normalized

Smoothed

Let T be a time series consisting of n data points: $\{t_0, t_1, \dots t_n\}$

Then

 $T_{norm} = \{(t_i - min(T))/(max(T) - min(T)), for t_i in T\}$

Waveform keeps its shape but the values are scaled from 0 to 1

METHODS — ITERATION 2 Removed uninformative window Normalized Smoothed Smoothed Clustering

Fourier transformations and Power Spectral Density

About Project Description Our Approach Results Roadblocks

Removed uninformative window

About

Normalized

Smoothed

Fourier transformations and Power Spectral Density

Evaluate results Clustering

Wet-up removed

normalized

Smoothed

Moving Average

Savgol

Preprocessing Evaluate results Clustering

Principle Component Analysis (PCA)

About Project Description Our Approach Results Roadblocks

Preprocessing Evaluate results

TSFRESH Predictors

- Phase I: Feature Extraction (~ 770 features)
- Phase 2: Feature Significance Testing (~550 features)
 - Only the features that are significant with respect to classifying the readings are kept.
- Phase 3: PCA for dimension reduction (~ 30 components)
 - 95 % accumulated amount of variance explained

Preprocessing Evaluate results

TSFRESH Predictors

- Phase 4: Clustering the components
 - Create clusters using various algorithms (Gaussian Mixture Model/Agglomerative Clustering)
 - Try to get a cluster with most of the pins and a small amount of total readings
 - Cluster the subcluster that contains most of the pins

Our Approach About **Results**

ROADBLOCKS

SUMMARY

- Project Goal: Group readings into categories to describe ways in which failure occurs as seen in the waveforms
- Our process is iterative:
 - Preprocessing → clustering → evaluation
- First iteration:
 - Standardization (mean 0, stdev 1) → Windows
 - Clustering on separate windows disappointing
- Second iteration:
 - Normalization (scale between 0 and 1) → Smoothing (noise reduction)
 - Clustering on the whole wave (and features from it) still in progress

NEXT STEPS

Look at other methods of feature extraction

2

Look at other clustering algorithms

3

Find metrics to describe readings that fall into clusters together

Compare results from different smoothing and filtering methods

QUESTIONS OR FEEDBACK?

THANK YOU FOR YOUR TIME!

