Topología. Prueba de Evaluación Continua Curso 2018-19. 5 de diciembre de 2018

Sea

$$\mathfrak{B} = \{(a,b) \subset \mathbb{R} \mid a < b\} \cup \{(a,b) - K \subset \mathbb{R} \mid a < b\}$$

donde

$$K = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\}$$

- 1. Pruebe que $\mathfrak B$ es base para una topología T en el conjunto $\mathbb R$ de los números reales.
- 2. ¿Es K abierto en (\mathbb{R}, T) ? ¿Es K cerrado en (\mathbb{R}, T) ?
- 3. ¿Existen abiertos U y V en T tales que $0 \in U$, $K \subset V$ y $U \cap V = \emptyset$?

Solución:

1. Para demostrar que \mathfrak{B} es una base para una topología T en el conjunto \mathbb{R} de los números reales debemos probar dos cosas:

$$a) \ \underset{B \in \mathfrak{B}}{\cup} B = \mathbb{R}.$$

Basta con ver que cada $x \in \mathbb{R}$ está contenido en un elemento de \mathfrak{B} . Y eso es obvio puesto que, por ejemplo, $x \in (x-1,x+1)$.

b) Si $B, B' \in \mathfrak{B}$ y $x \in B \cap B'$, entonces $\exists B'' \in \mathfrak{B}$ tal que $x \in B'' \subset B \cap B'$. Sea $x \in B \cap B'$. Si B = (a, b) y B' = (c, d) entonces

$$x \in B \cap B' = (\max\{a, c\}, \min\{b, d\}) \in \mathfrak{B},$$

y si
$$B = (a, b) - K$$
 y/o $B' = (c, d) - K$ entonces

$$x \in B \cap B' = (\max\{a, c\}, \min\{b, d\}) - K \in \mathfrak{B}.$$

2. El conjunto K no es un abierto en (\mathbb{R}, T) puesto que K no contiene a ningún elemento de la base \mathfrak{B} . Esto último es consecuencia de que K es numerable y cualquier $B \in \mathfrak{B}$ es no numerable.

K sí que es cerrado en (\mathbb{R}, T) puesto que su complementario $\mathbb{R} - K$ es abierto. Esto último es consecuencia de que $\mathbb{R} - K$ se puede obtener como unión de elementos de \mathfrak{B} . Por ejemplo:

$$\mathbb{R} - K = \bigcup_{x \in \mathbb{R}} ((x - 1, x + 1) - K).$$

3. Sean $U, V \in T$ tales que $0 \in U$ y $K \subset V$. Veremos que $U \cap V \neq \emptyset$.

Como $0 \in U$ y U es abierto, entonces existe un $B \in \mathfrak{B}$ tal que $0 \in B \subset U$. Tenemos dos posibilidades:

(i) B = (a, b) con a < 0 < b.

Entonces B contiene puntos de K y, por tanto, $U \cap V \supset B \cap K \neq \emptyset$.

(ii) B = (a, b) - K con a < 0 < b.

Sea $n \in \mathbb{Z}^+$ tal que $\frac{1}{n} < b$. Como $\frac{1}{n} \in V$ y V es abierto, entonces existe un $B' \in \mathfrak{B}$ tal que $\frac{1}{n} \in B' \subset V$. Como $\frac{1}{n} \in K$ entonces B' = (c, d) con $c < \frac{1}{n} < d$. Y concluimos que

$$U \cap V \supset B \cap B' = (\max\{a, c\}, \min\{b, d\}) - K \neq \emptyset.$$