

Álgebra Lineal II Escuela Profesional de Matemática Faculdad de Ciencias Universidad Nacional de Ingeniería

Lista 2 de Ejercicios

Tema: La adjunta y subespacios invariantes Ciclo: 2016.1

A lo largo de esta lista, E y F denotarán e.p.i. de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F):=\{A:E\to F\;;\;A\;\text{es lineal}\},\;\mathrm{End}(E):=\mathcal{L}(E,E)$ y un operador $A\in\mathrm{End}(E)\;\mathrm{ser\'a}$ llamado de **normal** si A y A^* conmutan.

- 1. Sea $A \in \mathcal{L}(E, F)$. Probar que
 - (a) Si A es sobreyectiva, entonces AA^* es invertible y $A^*(AA^*)^{-1}$ es una inversa a la derecha de A.
 - (b) Si A es invectiva, entonces A^*A es invertible y $(A^*A)^{-1}A^*$ es una inversa a la izquierda de A.
- 2. Encuentre una inversa a la derecha para la transformación lineal $A: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x + 2y + 3z, 2x y z)$.
- 3. Encuentre una inversa a la izquierda para la transformación lineal $A: \mathbb{R}^2 \to \mathbb{R}^4$, $(x,y) \mapsto (x+2y,2x-y,x+3y,4x+y)$.
- 4. Sea $P: E \to E$ un operador de proyección. Pruebe que también P^* es un operador de proyección y dé un ejemplo en que $P \neq P^*$.
- 5. Considere en $E := \mathcal{M}(n \times n)$ el producto interno definido por

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{(i,j) \in J} a_{ij} b_{ij},$$

donde $J := \{1, ..., n\} \times \{1, ..., n\}$ y $\mathbf{a} = [a_{ij}], \mathbf{b} = [b_{ij}] \in E$. Muestre que el subespacio vectorial A de las matrices antisimétricas es el complemento ortogonal del subespacio S de las matrices simétricas.

6. Considere en $E:=\{f:[-1,1]\to\mathbb{R}\ ;\ f\ \text{es\ continua}\}$ el producto interno definido por

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx,$$

donde $f, g \in E$. Muestre que el subespacio vectorial P de las funciones pares es el complemento ortogonal del subespacio I de las funciones impares.

7. Sean $A, B \in \text{End}(E)$. Pruebe que si A y B conmutan, entonces también A^* y B^* conmutan.

- 8. Sea $\mathbf{a} \in \mathcal{M}(m \times n)$. Demuestre que o el sistema $\mathbf{a}x = b$ tiene soloución cualquiera que sea $b \in \mathcal{M}(m \times 1)$ o el sistema homogéneo transppuesto $\mathbf{a}^{\top}y = 0$ admite una solución no trivial.
- 9. Sea $X \subset E$ no vacío. Pruebe que $X^{\top \top} = \operatorname{span}(X)$.
- 10. Sean $F, G \subset E$ subespacios vectoriales. Demuestre que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ y $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.
- 11. La teoría nos dice que la traza de toda matriz asociada a un endomorfismo es siempre la misma. Considere en $\mathcal{L}(E, F)$ la aplicación definida por

$$\langle A, B \rangle = \operatorname{tr}(A^*B),$$

donde $A, B \in \mathcal{L}(E, F)$. Pruebe que esto define un producto interno en $\mathcal{L}(E, F)$ y que

$$\langle A, B \rangle = \sum_{(i,j) \in J} a_{ij} b_{ij},$$

donde $J := \{1, ..., n\} \times \{1, ..., n\}$ y $\mathbf{a} = [a_{ij}]$ y $\mathbf{b} = [b_{ij}]$ son las matrices de A y B en relación a bases ortonormales de E y F, respectivamente.

- 12. Sea $A : \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + y + z, 3x 2y z, -2x + 3y + 2z)$. Obtenga bases para los siguientes subespacios: $\operatorname{im}(A)$, $\operatorname{ker}(A)$, $\operatorname{im}(A^*)$ y $\operatorname{ker}(A^*)$.
- 13. Sea $A \in \mathcal{L}(E, F)$. Pruebe que
 - (a) $A|_{im(A^*)}$ define un isomorfismo entre $im(A^*)$ e im(A).
 - (b) $A^*|_{im(A)}$ define un isomorfismo entre im(A) e $im(A^*)$.

¿Son estos isomorfismos uno el inverso del otro?

14. Sea $A \in \text{End}(E)$. Pruebe que

$$\sum_{i=1}^{n} |Au_i|^2 = \sum_{i=1}^{n} |A^*u_i|^2,$$

donde $\mathcal{U} := \{u_1, \dots, u_n\}$ es una base ortonormal de E.

- 15. Sean $A, B \in \text{End}(E)$. Demuestre que si A y B conmutan, entonces $\ker(B)$ e im(B) son subespacios invariantes por A.
- 16. Sean $A, B \in \text{End}(E)$ y el polinomio p(x). Pruebe que los subespacios vectoriales $\ker(p(A))$ e $\operatorname{im}(p(A))$ son invariantes por A.
- 17. Sea $A \in \text{End}(E)$. Demuestre que
 - (a) Si F y G son subespacios invariantes por A, entonces $F \cap G y F + G$ también son invariantes por A.
 - (b) Si u y v son autovectores de A y A^* , respectivamente, correspondientes a autovalores que son distintos, entonces $\langle u, v \rangle = 0$.
- 18. Sea $A \in \text{End}(E)$ un operador normal. Demuestre que
 - (a) $\forall v \in E : |Av| = |A^*v|$.
 - (b) todo autovector de A es también autovector de A^* , con el mismo autovalor.

- (c) $\ker(A)^{\perp} = \operatorname{im}(A)$
- 19. Sea $E:=C^{\infty}(\mathbb{R},\mathbb{R})$. Muestre que los subespacios F,G generados por los conjuntos
 - (a) $\{\cos(x), \sin(x)\},\$
 - (b) $\{e^x, xe^x, x^2e^x\},$

respectivamente, son invariantes por el operador derivación $D: E \to E$.

- 20. Sea $A \in \text{End}(E)$ con $\dim(E) = n$. Pruebe que
 - (a) A posee un subespacio invariante de dimensión n-1 o n-2.
 - (b) Si A posee n autovalores distintos, entonces existen exactamente 2^n subespacios de E invariantes por A.
- 21. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (y, 0)$.
 - (a) ¿Cuales son los autovalores de A?
 - (b) ¿Cuales son los autovectores de A?
 - (c) Si

$$\mathbf{a} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

¿existe alguna matriz invertible $\mathbf{b} \in \mathcal{M}(2 \times 2)$ tal que $\mathbf{b}^{-1}\mathbf{ab}$ sea diagonal?

- 22. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (3x + y, 2x + 2y)$.
 - (a) Muestre que A posee autovalores 4 y 1.
 - (b) Halle una base $\mathcal{U} = \{u, v\}$ de \mathbb{R}^2 tal que Au = 4u y Av = v.
 - (c) Si

$$\mathbf{a} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix},$$

halle una matriz invertible $\mathbf{p} \in \mathcal{M}(2 \times 2)$ tal que

$$\mathbf{p}^{-1}\mathbf{a}\mathbf{p} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}.$$