Longest QwQ Subsequence

Time Limit: 2 Second Memory Limit: 256 MB

Given an array $A = a_1, \ldots, a_n$ of n elements that contains k distinct integers $(k \le n)$ and two permutations pl, pr of 1 to k, a QwQ sequence of (A, pl, pr) is defined as below:

- Let w be an array of length k such that w is the set of distinct integers of array A sorted in ascending order. (Hint: You can obtain this using std::unique in C++.)
- Let Q_l be an array of length k such that $Q_l[i] = \text{first}(w_{pl_i})$, where first(x) denotes the index of the first occurrence of x in the array A.
- Let Q_r be an array of length k such that $Q_r[i] = \text{last}(w_{pr_i})$, where last(x) denotes the index of the last occurrence of x in the array A.
- A QwQ sequence of the array A is a common subsequence of Q_l and Q_r .

Given the array A and the permutations pl and pr, find the longest QwQ subsequence of (A, pl, pr).

Input

The first line of input contains two integers n and k $(1 \le k \le n \le 2 \times 10^5)$ - number of elements in the array and number of distinct elements in the array.

The second line contains n integers a_1, \ldots, a_n $(1 \le a_i \le 10^9)$ - elements of the array. It is guaranteed that the number of distinct elements in the array is equal to k.

The third line contains k integers pl_1, \ldots, pl_k $(1 \le pl_i \le k)$. It is guaranteed that pl is a permutation of 1 to k

The last line contains k integers $pr_1, \ldots, pr_k \ (1 \le pr_i \le k)$. It is guaranteed that pr is a permutation of 1 to k

Output

Output a single integer denoting the length of the longest QwQ subsequence of (A, pl, pr).

Sample Inputs

2

5	4					
3	2	2	1	4		
2	1	4	3			
4	3	1	2			

Note

In the sample input,

• w = [1, 2, 3, 4]

- $Q_l = [2, 4, 5, 1]$
- $Q_r = [5, 1, 4, 3]$

The longest common subsequence of Q_l and Q_r is [5,1].