

- 1. Consider a p-n junction with comparable n and p doping.
 - (a) Draw the band diagram schematically when the junction is in reverse bias. Show the quasi-fermi levels clearly. Draw the profiles of the electric field and potential in comparison with their equilibrium profiles (i.e. on the same figure).
 - **(b)** Assuming this to be silicon, with uniform n and p side doping of 10^{15} and $5x10^{15}$ cm⁻³ respectively, calculate the depletion widths and potential drops on either side of the junction in equilibrium, and, for a reverse bias of 1V.
- Consider an n+/p/n+ structure shown below. It is made of a semiconductor material with relative permittivity κ_s and bandgap E_g . The thickness of the p-region is L. Assume that the doping in the n+ region (N_d) is non-degenerate but much larger than the doping in the p-region (N_d) , both being uniform. All questions pertain to the equilibrium situation.
 - (a) For warm-up, show that for a single long n+/p junction, the potential drop is almost wholly in the p region. Thus, we assume that the depletion width W is in the p region.
 - (b) Now, draw the electric field profiles and comparative band-diagrams for the n+/p/n+ structure when (i) L > 2W and (ii) L < 2W.
 - (c) As you can tell, electrons see a potential barrier between the n+ regions plot the barrier height schematically as a function of L covering both regimes (i) and (ii).

Consider a long semiconductor homo-junction that is n^{++} on one side and p^{++} on the other, with fully-ionized doping concentration N_d and N_a respectively. The doping on both sides is high enough that the Fermi-level is inside the corresponding band. The intrinsic carrier concentration is $n_i = \sqrt{N_C N_V} \exp\left(-E_g/2k_BT\right)$, where the symbols have their usual meaning. Please feel free to make *reasonable* approximations.

- (a) First, some background. Show that the equilibrium electron concentration in a bulk homogeneous n^{++} semiconductor may be written as $n_0 \simeq \alpha_n (E_F E_C)^{\frac{3}{2}}$ where α_n is a material parameter. [The hole concentration in a bulk homogeneous p^{++} semiconductor may, similarly, be expressed as $p_0 \simeq \alpha_p (E_V E_F)^{\frac{3}{2}}$.]
- **(b)** Draw, schematically, the equilibrium band-diagram for this device.
- (c) Derive an expression for the equilibrium built-in potential.
- (d) Write down an expression for the forward-bias current in this device, along with the justification thereof.

Let us try to derive the p-n diode I-V relation using a different method. Consider the electron current density from left to right $J_{n,L\to R}(V)$ and that from right to left $J_{n,R\to L}(V)$ in the diode illustrated below (drawing a band-diagram might help).

- (a) Taking the difference between them, I get: $J_n(V) = J_{n0} \left[e^{qV/k_BT} 1 \right]$. How? Explain with detailed reasoning. Why is it that drift/diffusion considerations seem to have no role now?
- (a) Derive J_{n0} in terms of device parameters (doping, lifetime, mobility etc.) with reasoning.