Task: GPT – Hand in, until 31.08.

- If something is underspecified, just make decision yourself
- Well-documented code
- Submission format
 - Notebook (incl. pdf) or GitHub readme (submit pdf with link to repo) as technical report of what we did
 - Nice narrative and way to navigate code, not scientific paper
 - Include plots (loss, perplexity scores, hyperparameters, etc.)
 - Optional include pseudocode
 - Qualitative analysis nice to have, e.g, add and evaluate generated text in report
 - Can add appendix for additional plots
- Hand in every mile stone, starting from UNIX comments
- Removed in-between milestone of causal-self attention
- Everything together in one file
- Compare the models from each milestone, report perplexity for all
 - Old-school n-gram
 - o Best neural n-gram
 - o GPT

GPT itself

- Hyperparameter tuning: do not need all of them, choose what is most interesting and explain why
 - Number of merges in BPE (not complete gridsearch, isolate top three number of merges in perplexity in n-gram, test those for GPT)
 - Regularisation
 - o How small can we make neural embedding
 - Do not change optimiser
- General remarks
 - Transformer blocks from scratch would be beyond 1.0, not required
 - o Implement causal self-attention yourself, do not use ready-made PyTorch version
 - For computing perplexity: Implementing teacher forcing annealing is necessary for good generation performance, but we <u>don't have to do it for our assignment</u>
- Reminders
 - Skip weight initialisation and optimiser configuration
 - Can use standard PyTorch initialisation → just get transformer parameters and add them when initialising the optimiser
 - Remember to change device selection, currently "cuda", you might want "mps" or "cpu"
 - Configs: make n_embd smaller, don't change betas and weight decay (unless you want to), can change batch size, chunk size, n head, n layer
 - Specify temperature and top-k parameters for generate function
 - Activation function used in MLP: not ReLU as in slides but GELU (might not be in PyTorch yet)