컴퓨터 공학 기초 실험 2

Assignment 5. Latch & flip-flop design with/without reset/set

1. D Latch

이번 실습에서는 이전에 값을 유지하고 있는 저장 소자 역할을 하는 latch 와 flip-flop을 설계하고, 더불어 reset 과 set 기능을 구현한다. 또한, 구현한 flip-flop을 사용하여 N-bits register를 구현하는 방법에 대하여 살펴보도록 한다

Description

- ✓ Dlatch 는 clock 이 enable 상태를 유지하는 동안 입력 D 값의 변화를 출력한다.
- ✓ 다음은 D latch 의 symbol 과 truth table 이다.

Figure 1 - D latch 의 symbol

CLK	Q
0	이전 Q
1	D

Table 1- D latch 의 truth table

Structural Description

Figure 2 . D-latch Schematic

2. D Flip-Flop

Description

- ✓ D flip-flop 은 clock 의 rising edge 나 falling edge 에서만 D 값으로 출력이 바뀌게 된다. 다른 경우에는 D 값이 바뀌더라도 이전 Q 값을 그대로 유지한다. 해당 실습에서는 clock 의 rising edge 를 사용한다.
- ✓ 다음은 D flip-flop의 symbol과 truth table이다.

	-
Figure 3 - D flip-flop 의 symbol	

CLK	Q			
1	D			
in other case	이전 Q			

Table 2 - D flip-flop 의 truth table

> Structural Description

Figure 4 . D-latch Schematic

3. Comparison of D Latch and D Flip-Flop

▶ 다음 그림을 통해 D latch 와 D flip-flop 의 차이를 알 수 있다.

Figure 5 - Waveform of D Latch and D Flip-Flop

4. Resettable D Flip-Flop

Description

- ✓ Resettable D flip-flop 은 D flip-flop 에 reset 기능이 추가된 D flip-flop 이다. 실습에서 구현하는 resettable D flip-flop 은 active low 에 동작한다. Active low 에 동작한다는 reset 의 값이 0일 때, reset 기능을 수행한다는 의미이다.
- ✓ 다음은 Asynchronous resettable D flip-flop의 symbol과 truth table이다.

Figure 6 - Resettable D FF 의 symbol

Input		Output		
R	D	CLK	Q	
0	Х	X	0	
1	0	1	0	
1	1	1	1	
1	Х	↓ or 0 or 1	이전 Q	

Table 3 - Resettable D FF 의 truth table

5. Set/Resettable D Flip-Flop

Description

- ✓ Set/Resettable D flip-flop 은 D flip-flop 에 reset 과 set 기능이 추가된 D flip-flop 이다. 실습에서 구현할 set/resettable D flip-flop 에서 set 과 reset 은 active low 에 동작하며, reset 신호가 set 신호보다 우선순위를 가지고 있다. 즉, reset 과 set 둘 다 모두 0 이면, reset 이 우선순위를 가져 D flip-flop 의 결과는 0 이 된다.
- ✓ 다음은 Asynchronous set/resettable D flip-flop 의 symbol 과 truth table 이다.

Figure 7 - Set/resettable D FF 의 symbol

Input		Output				
R	S	D	CLK	Q		
0	Х	Х	Х	0		
1	0	X X		Х	Х	1
1	1	0	1	0		
1	1	1	1	1		
1	1	Х	↓ or 0 or 1	이전 Q		

Table 4 - Set/resettable D FF □ truth table

6. Verilog 구현

D Latch

✓ Implementation

앞서 설명한 D latch 의 schematic 은 다음 그림과 같다.

Figure 8 - D latch 의 schematic

_dlatch 라는 이름으로 project 와 top module 을 만들고, D latch 를 구현 후 검증하여 본다.

• Top module 의 이름을 dlatch 로 할 경우, verilog 에서 사전에 정의된 primitive 이기 때문에 사용할 수 없다.

D Flip-Flop

✓ Implementation

앞서 설명한 D flip-flop 은 D latch 2 개를 이용하여 구조적으로 구현할 수 있다. 다음 그림은 D flip-flop 의 schematic 이다.

Figure 9 - D flip-flop 의 schematic

_dff 라는 이름으로 project 와 top module 을 만들고, D flip-flop 을 구현 후 검증한다.

Enabled D Flip-Flop

✓ Implementation

Enabled D FF 는 D FF 앞에 multiplexer 를 추가하여 입력 data 를 사용할 지를 결정한다. 다음 그림은 enabled D FF 의 schematic 이다.

Figure 10 - Enabled D flip-flop □ schematic

_dff_en 라는 이름으로 project와 top module을 만들고, enable D FF를 구현 후 검증한다.

> Resettable D Flip-Flop

✓ Implementation

Resettable D FF 는 D FF 앞에 and gate 를 추가하여 입력 data 를 초기화할 지를 결정한다. 다음 그림은 resettable D FF 의 schematic 이다.

Figure 11 - Resettable D flip-flop □ schematic

_dff_r 라는 이름으로 project 와 top module 을 만들고, resettable D FF 를 구현 후 검증한다.

> Synchronous Set/Resettable D Flip-Flop

✓ Implementation

해당 실습에서는 reset 과 set 기능을 가지는 D flip-flop을 구현하여 본다. 여기서 active low 의 의미는 reset 이나 set 이 각각 0 이 되었을 때, reset 또는 set 의 기능을 함을 의미하며, synchronous는 clock에 동기화가 맞춰지는 것을 의미한다. 이를 구조적으로 구현하기 위하여 앞서 구현한 D flip-flop 과 and, or, not gate 를 이용한다. 다음 그림은 이에 대한 schematic 이다.

Figure 12 - Set/resettable D flip-flop □ schematic

_dff_rs 라는 이름으로 project 와 top module 을 만들고, set/resettable D FF 를 구현 후 검증한다.

> Register

✓ Description

N-bits register 는 N 개의 flip-flop 을 한 줄로 늘어놓음으로써 구현한다. 다음 그림은 32 bits register 의 symbol 을 나타낸다.

Figure 13 - 32bits register 의 symbol

✓ Implementation

다음 그림은 32 bits register 의 schematic 이다.

Figure 14 - 32bit register □ schematic

(32-bit register 를 구현 시 D FF 를 32 개 instantiation 하여도 되고, 8-bit register 를 구현 후 이를 4 개 instantiation 하여 32-bit register 를 구현하여도 무관하다. 하지만, 이번 실습에서는 8-bit register 를 instance 사용하는 것을 기준으로 한다.)

- Async/Sync Set/Resettable D Flip-Flop
 - ✓ 앞선 flip-flop(또는 register)의 구현은 structural implementation 을 하였다. 이번에는 behavioral implementation 을 통하여 asynchronous/synchronous 의 차이를 확인하는 것이 목적이다.
 - ✓ Implementation of Synchronous Set/Resettable D Flip-Flop 다음 그림은 synchronous set/resettable D FF 의 code 이다.

Figure 15 - Implementation of synchronous set/resettable D FF

✓ Implementation of Asynchronous Set/Resettable D Flip-Flop 다음 그림은 asynchronous set/resettable D FF 의 code 이다.

Figure 16- Implementation of asynchronous set/resettable D FF

페이지 12 / 14

✓ Implementation of Top Module 다음 그림은 앞선 두 module 을 instance 한 top module 이다.

Figure 17 - Implementation of top module

✓ Top module 에 대한 testbench 를 작성하여 두 개의 차이점을 확인하여 본다.

```
(Hint : set_n 과 reset_n 이 모두 active low 에 동작한다.)
```

7. Report

레포트는 공지사항에 올린 보고서 양식에 맞추어 작성하고, 다음의 사항에 대하여서도 추가적으로 작성한다.

- D latch, D flip-flop, enabled D flip-flop, resettable D flip-flop, set/resettable D flip-flop, 32 bits register, async/sync set/resettable D flip-flop 에 대하여 구현하고 검증한다.
 - ✓ RTL viewer 는 포함한다.
- ▶ 원리(배경지식)에 nand gate 4 개를 이용하여 D latch 을 구현하는 방법에 대하여 조사하고 설명한다.
- ▶ 원리(배경지식)에 실습에서 구현한 enabled D flip-flop 이 아닌 다른 방법으로 enabled D flip-flop 을 구현하는 방법에 대하여 조사하고 설명한다.
- ➤ 고찰 및 결론에 D FF with active-low synchronous reset and set 과 D FF with active-low asynchronous reset and set 의 차이를 설명하여라.

▶ 채점기준

세부사항		점수	최상	상	중	하	최하
	Source code 가 잘 작성 되었는가?	10	10	8	5	3	0
소스코드	(Structural design 으로 작성되었는가?)	10					
	주석을 적절히 달았는가?	20	20	15	10	5	0
	(반드시 영어로 주석 작성)	20	20				
설계검증 · (보고서) ·	보고서를 성실히 작성하였는가?	30	30	20	10	5	0
	(보고서 형식에 맞추어 작성)	30					
	합성결과를 설명하였는가?	10	10	8	5	3	0
	검증을 제대로 수행하였는가?	20	30	20	10	5	0
	(모든 입력 조합, waveform 설명)	30					
총점		100					

8. Submission

- ▶ 제출기한
 - 자세한 제출기한은 KLAS 와 일정을 참고
- ▶ 과제 업로드
 - ✓ Source code 와 report 를 같이 ZIP 파일로 압축하여 KLAS(종합정보서비스) 과제 제출에 해당 과제 upload
 - ✓ 업로드 파일명은 (요일#)_(학번)_Assignment_#.zip
 - 요일번호
 - 실습 미수강은 0
 - 월요일 0, 1, 2 교시 1
 - 화요일 0, 1, 2 교시 2
 - 수요일 0, 1, 2 교시 3
 - Ex) 월요일 반 수강, 2019110609, Assignment 1 제출 시

<mark>1_2019110609_Assignment_01.zip 으로 제출</mark>

- ✓ Report 명은 (요일#) _(학번) _Assignment_#.pdf
 - 요일 번호는 위의 업로드 파일명과 동일하게 진행
- ✓ Ex) 수요일 반 수강, 2019110609, Assignment 1 제출 시
 3 2019110609 Assignment 01.pdf 으로 제출
- ✓ Report 는 PDF 로 변환해 제출 (미수행시 감점)
- ▶ Source code 압축 시 db, incremental_db, simulation 폴더는 삭제 (미수행시 감점)
- Source code 압축 시 ~.bak 파일 삭제 (미수행시 감점)
- ▶ 제출할 프로젝트
 - ✓ 해당 실습은 프로젝트 폴더가 아닌 **Verilog file 만을 하나의 폴더에 모아서 제출**한다. 제출할 file list 는 다음과 같다. 그 외에 필요하다고 생각되는 파일을 추가하여도 된다.
 - ✓ Module file gates.v, mx2.v, _dlatch.v, _dff.v, _dff_en.v, _dff_r.v, _dff_rs.v, _register8.v, _register32.v, _dff_rs_sync.v, _dff_rs_async.v, _dff_rs_sync.v
 - ✓ Testbench file tb_dlatch.v, tb_dff.v, tb_dff_en.v, tb_dff_r.v, tb_dff_rs.v, tb_register32.v, tb_dff_rs_sync_async.v