Math 302 I.4

Raiden van Bronkhorst

2 March 2020

If a, b, and n are natural numbers with $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for every natural number k.

Proof. Base case. when k = 0, the statement is $a^0 \equiv b^0 = 1 \equiv 1 \pmod{n}$ which is true by Theorem 4.2 (Reflexive property of congruence).

Now suppose $a^k \equiv b^k \pmod{n}$ for some natural number $k \geq 0$. Since we know $a \equiv b \pmod{n}$, by Theorem 4.6¹ we know $a^k a \equiv b^k b = a^{k+1} \equiv b^{k+1} \pmod{n}$. Therefore $a^k \equiv b^k \pmod{n}$ for every natural number k.

¹If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.