CS614: Advanced Compilers

Control-Flow Graphs and IDFAs

Manas Thakur

CSE, IIT Bombay

Things we learnt in the last class

- > Examples of program optimizations
 - ➤ Machine independent
 - ➤ Machine dependent

- ➤ Metrics to measure optimization
 - ➤ Time, memory, code size, energy

- > Optimizations may interact with each other as well as themselves
- > Optimizations are usually enabled by program analysis

Control-Flow Graphs

➤ Nodes represent instructions; edges represent flow of control

Some CFG Terminology

- > pred[n] gives predecessors of n
 - ➤ pred[1]? pred[4]? pred[2]?
- > succ[n] gives successors of n
 - ➤ succ[2]? succ[5]?

- ➤ def(n) gives variables defined by n
 - \rightarrow def(3) = {c}

- ➤ use(n) gives variables used by n
 - \rightarrow use(3) = {b, c}

Let's figure out liveness over CFGs

- ➤ A variable v is live on an edge if there is a directed path from that edge to a use of v that does not go through any def of v.
- ➤ A variable is live-in at a node if it is live on any of the in-edges of that node.
- ➤ A variable is live-out at a node if it is live on any of the out-edges of that node.

> Check:

- \rightarrow a: $\{1->2, 4->5->2\}$
- > b: $\{2->4\}$

Computation of liveness

- > Say live-in of n is in[n], and live-out of n is out[n].
- ➤ We can compute in[n] and out[n] for any n as follows:

```
in[n] = use[n] U (out[n] - def[n])
out[n] = ∀s∈succ[n] U in[s]

Called transfer functions.
```


Liveness as an iterative dataflow analysis

```
for each n
                                                    IDFA
   in[n] = {}; out[n] = {} Initialize
repeat
   for each n
      in'[n] = in[n]; out'[n] = out[n]
                                              Save previous values
      in[n] = use[n] \cup (out[n] - def[n])
                                                   Compute
                                                  new values
      out[n] = \forall s \in succ[n] \cup in[s]
until in'[n] == in[n] and out'[n] == out[n] \forall n
```

Repeat till fixed-point

Liveness analysis example

7th 1st 2nd 3rd 4th 5th 6th in out ininuseout outout outoutac ac ac ac b bc bc bc bc bc ac ac ac ac bc ac ac ac ac ac ac ac

	•		a	=	0		
				↓,			1
	2	b	=	a	+	1	
				\downarrow			
	3	С	=	c	+	b	
				\downarrow			
	4	a	=	b	*	2	
				\			
	5		a	<	N		
_	<u> </u>						
-	nn	. ,	_				

$$in[n] = use[n] U (out[n] - def[n])$$

$$out[n] = \forall s \in succ[n] U in[s]$$

Manas Thakur

Fixed point

In backward order

			1st		2nd		3rd	
	use	def	out	in	out	in	out	in
6	С			c		c		С
5	a		С	ac	ac	ac	ac	ac
4	b	a	ac	bc	ac	bc	ac	bc
3	bc	с	bc	bc	bc	bc	bc	bc
2	a	b	bc	ac	bc	ac	bc	ac
1		a	ac	c	ac	c	ac	С

- ➤ Fixed point in only 3 iterations!
- ➤ The order of processing statements matters for efficiency (not for correctness).

$$in[n] = use[n] U (out[n] - def[n])$$

$$out[n] = \forall s \in succ[n] U in[s]$$

Complexity of our liveness computation algorithm

- ➤ For input program of size N
 - ➤ ≤N nodes in CFG
 - \Rightarrow N variables
 - ⇒ N elements per in/out
 - \Rightarrow O(N) time per set union

```
for each n
    in[n] = {}; out[n] = {}

repeat
    for each n
        in'[n] = in[n]; out'[n] = out[n]
        in[n] = use[n] ∪ (out[n] - def[n])
        out[n] = ∀s∈succ[n] ∪ in[s]

until in'[n] == in[n] and out'[n] == out[n] ∀n
```

- ➤ for loop performs constant number of set operations per node
 - \Rightarrow O(N²) time for for loop
- ➤ Each iteration of for loop can only add to each set (monotonicity)
- ➤ Sizes of all in and out sets sum to $2N^2$, thus bounding the number of iterations of the repeat loop \Rightarrow worst-case complexity of $O(N^4)$
- \blacktriangleright Much less in practice (usually O(N) or O(N²)) if ordered properly.

Least fixed points

- There is often more than one solution for a given dataflow problem.
 - ➤ Any solution to dataflow equations is a conservative approximation.
- ➤ Conservatively assuming a variable is live does not break the program:
 - ➤ Just means more registers may be needed.
- ➤ Assuming a variable is dead when really live will break things.

- ➤ Many possible solutions; but we want the smallest: the least fixed point.
- ➤ The iterative algorithm computes this least fixed point.

Recall our IDFA algorithm

```
for each n
                                                    IDFA
   in[n] = {}; out[n] = {}
                                Initialize
repeat
   for each n
      in'[n] = in[n]; out'[n] = out[n]
                                              Save previous values
      in[n] = use[n] \cup (out[n] - def[n])
                                                   Compute
                                                  new values
      out[n] = \forall s \in succ[n] \cup in[s]
until in'[n] == in[n] and out'[n] == out[n] ∀n
                                  Repeat till fixed-point
```

➤ Do we need to process all the nodes in each iteration?

Worklist-based Implementation of IDFA

➤ Initialize a worklist of statements

- ➤ Forward analysis:
 - ➤ Prefer to start with the entry node
 - ➤ If OUT(n) changes, then add succ(n) to the worklist
- ➤ Backward analysis:
 - ➤ Prefer to start with the exit node
 - ➤ If IN(n) changes, then add pred(n) to the worklist

➤ In both the cases, iterate till fixed point.

Writing an IDFA (Cont.)

- ➤ Confluence (at control-flow merges):
 - > union
 - **>** intersection

- ➤ Requirement for termination:
 - ➤ finiteness of the set of possible dataflow values
 - ➤ unidirectional growth/shrinkage, called *monotonicity*
 - > for the dataflow values at each statement

Liveness analysis revisited

- ➤ Direction:
 - ➤ Backward
- ➤ Confluence operation:
 - ➤ Union

- ➤ Flow functions:
 - \rightarrow out[n] = \forall s \in succ[n] \cup in[s]
 - \rightarrow in[n] = use[n] \cup (out[n] def[n])

Common subexpressions revisited

➤ Idea: If a program computes the same value multiple times, reuse the value.

```
a = b + c;
c = b + c;
d = b + c;
d = b + c;
t = b + c;
a = t;
c = t;
c = t;
d = b + c;
```

- > Subexpressions can be reused until operands are redefined.
- ➤ Say given a node n, the expressions computed at n are denoted as gen(n) and the ones killed (operands redefined) at n are denoted as kill(n).

Computing common subexpressions as an IDFA

- ➤ Direction:
 - > Forward
- ➤ Confluence operation:
 - ➤ Intersection

- ➤ Flow functions:
 - \succ in[n] = \forall p∈pred[n] \cap out[p]
 - \rightarrow out[n] = gen[n] \cup (in[n] kill[n])

Are we efficient enough?

- ➤ When can IDFAs take a lot of time?
- ➤ Which operations could be expensive?
 - ➤ Confluence
 - ➤ Comparison (equality check)
- ➤ Compilers may have to perform several IDFAs.

➤ How can we make an IDFA more efficient (perhaps with some loss of precision)?

Basic Blocks

Using basic blocks

Each instruction as a node

Basic Blocks (Cont.)

➤ Idea:

- ➤ Once execution enters a basic block, all statements are executed in sequence.
- ➤ Single-entry, single-exit region

> Details:

- > Starts with a label
- ➤ Ends with one or more branches
- ➤ Edges may be labeled with predicates
 - ➤ True/false
 - Exceptions
- > Key: Improve efficiency, with reasonable precision.

Using basic blocks

Have you got a compiler's eyes yet?

$$S_1$$
: $y = 1$;
 S_2 : $y = 2$;
 S_3 : $x = y$;

➤ What's the advantage if the above program is rewritten as follows?

$$S_1$$
: y1 = 1;
 S_2 : y2 = 2;
 S_3 : x = y2;

Next Class Static Single Assignment (SSA) Form

➤ Def-use becomes explicit; analysis can become faster.

