통계분석

Statistical Analysis

Probability

Quantification (a measure) of likelihood that some event will occur

How can we assign a number to the likelihood that some event will occur?

Basics of Probability

Experiment : Repeatable process that give well defined outcomes

ex. tossing a dice

ex. tossing two coins

Basics of Probability

Experiment : Repeatable process that give well defined outcomes

ex. tossing a dice

ex. tossing two coins

Sample space : A set of all possible outcomes, S

ex. all possible numbers from tossing a dice, {1,2,3,4,5,6}

ex. all possible outcomes from tossing two coins, {HH, HT, TH, TT}

Basics of Probability

Experiment: Repeatable process that give well defined outcomes

ex. tossing a dice

ex. tossing two coins

Sample space : A set of all possible outcomes, S

ex. all possible numbers from tossing a dice, {1,2,3,4,5,6}

ex. all possible outcomes from tossing two coins, {HH, HT, TH, TT}

Event: A subset of the sample space

ex. all cases where the number of heads is at least one

{HH, HT, TH, TT}

The event A has occurred when the outcome of the experiment is in a subset A.

Set Theory: Venn Diagram

Set Theory: Venn Diagram

Set Theory Relations between Events

For sets A and B, which are subsets of the sample space S,

\boldsymbol{A}		B
	_	

All elements of A are included in B

$$A \cap B$$

Intersection = a set of elements included in both A and B

$$A \cup B$$

Union = a set of elements included in A or B

 A^c

Complement = a set of elements not included in A

$$A - B$$

Difference = a set of elements included in A, but not in B

$$A = \phi$$

Null (empty) set = a set of no elements

Set Theory

Relations between Events

$$A - B = A \cap B^c$$

Set Theory Relations between Events

de Morgan's Law

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Mutually exclusive (or disjoint) events

$$A \cap B = \phi$$

Probability as a function

 $A = \{\text{cases when two coins are heads}\} = \{\text{HH}\}$ P(A) = 0.25

B = {cases when the number of tails is only one} = {HT, TH} P(B) = 0.50

C = {cases when at least one coin shows head} = {HH, HT, TH} P(C) = 0.75

Probability as a function

Events P (Probability)

A
$$\rightarrow$$
 P(A) = 0.25

B
$$\rightarrow$$
 P(B) = 0.50

$$C \longrightarrow P(C) = 0.75$$

(sub)sets numbers

Probability: Basic Rules

1.
$$P(A) \ge 0$$
 for $A \subset S$

2.
$$P(S) = 1$$

3. For mutually exclusive subsets $A_i, i=1,\cdots,n$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$

$$A_i \cap A_j = \phi \ \text{ for any } i \neq j$$

Probability: Basic Rules

- 1. $P(A) \ge 0$ for $A \subset S$
- 2. P(S) = 1
- 3. For mutually exclusive subsets $A_i, i = 1, \dots, n$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

In fact, other properties of probability can be derived from these three rules.