

Linear Regression

Regression is a supervised machine learning problem. Unlike classification, where new datapoints are classified as categorical features, regression problems predict the value of a continuous numeric quantity. Regression could be of multiple types:

- Simple Linear Regression
- Multiple Regression
- Logistic Regression
- Ridge and Lasso Regression

This digital note is part of my machine learning docs; find more at my <u>GitHub</u> <u>profile</u>.

Linear Regression

Simple linear regression models the relationship between two variables. The function is linear because the output can be fit into a straight line. The aim is to find a best-fit line that minimizes the residual error (or squared error) between the actual and predicted datapoints. Statistically, the hypothesis of such a best-fit line could be derived through this linear function:

$$y = mx + b$$

- y is a linear function of x (hypothesis)
- m is the slope of the line (change in the slope concerning change in 1 unit of y)
- b is bias (intercept of graph)

Mathematic Intuition

Mathematically, the values of slope and intercept can be derived with the following formulas:

$$w = rac{n\sum(xy) - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$
 $b = ar{y} - war{x}$

The intercept for simple linear regression with one variable can also be calculated with the least squares method:

$$b = \frac{\sum y - w \sum x}{n}$$

Geometric Intuition

Geometrically, we aim to derive the best-fit line that minimizes residual or squared error.

The

vertical distance from the point to the line is the **error for each point**. The error (loss) can be calculated with the loss function.

Loss Function

Mean Squared Error (MSE) is the loss function of simple linear regression.

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (y_i - (wx_i + b))^2$$

Simple Linear Regression Problem

x (hours studied)	y (marks scored)
1	2
2	4
3	5
4	4
5	5

х	у	x.y	x^2
1	2	2	1
2	4	8	2
3	5	15	9
4	4	16	16
5	5	25	25
SUMMITION	20	66	55

$$y = 0.6x + 2.2$$

Gradient Descent

Gradient descent is an optimizer that derives the optimal value of slope and intercept that minimizes the loss function.

- Start with random values of slope and intercept
- Calculate the gradient of the loss function.
- Update the parameters in the opposite direction of the gradient with the following formula:

$$w := w - lpha \cdot rac{\partial ext{MSE}}{\partial w}$$
 $b := b - lpha \cdot rac{\partial ext{MSE}}{\partial b}$

- Alpha is the learning rate and must be chosen appropriately.
- Gradient Descent guarantees convergence to **global minima**.

•

3D Loss Surface for Gradient Descent

