cs272: Algorithms
Run-time Analysis of SelectionSort

Sel	ectionSort (A[1n])	cost	times
1 f	for i <- 1 to n-1	c_1	n
2	min <- i	c_2	n-1
3	for j <- i+1 to n	c_3	$\sum_{i=1}^{n-1} (i+1)$
4	if A[j] < A[min]	c_4	$\sum_{i=1}^{n-1} i$
5	min <- j	c_5	$\sum_{i=1}^{n-1} i \ t_{i,j}$
6	swap A[i] <> A[min]	c_6	n-1
T. T.			

Notes

• That $t_{i,j} = 1$ when the if-state is true, 0 otherwise.

•
$$c_3 \sum_{i=1}^{n-1} (i+1) = c_3 \sum_{i=1}^{n-1} i + c_3 \sum_{i=1}^{n-1} 1 = c_3 \frac{(n-1)n}{2} + c_3(n-1)$$

•
$$c_4 \sum_{i=1}^{n-1} i = c_4 \frac{(n-1)n}{2}$$

•
$$c_5 \sum_{i=1}^{n-1} it_{i,j} = c_5 \frac{(n-1)n}{2}$$
 when $t_{i,j} = 1$ and 0 otherwise.

Then for the best-case scenario we have that all $t_{i,j} = 0$ so we have

$$T(n) = n^{2} \left(\frac{c_{3}}{2} + \frac{c_{4}}{2}\right) + n\left(c_{1} + c_{2} + c_{6} - \frac{3c_{3}}{2} - \frac{c_{4}}{2}\right) + (-c_{6} - c_{2} - c_{3})$$
$$T(n) = an^{2} + bn + c$$

For the worst-case scenario we have that all $t_{i,j} = 1$ so we have

$$T(n) = n^{2} \left(\frac{c_{3}}{2} + \frac{c_{4}}{2} + \frac{c_{5}}{2} \right) + n \left(c_{1} + c_{2} + c_{6} - \frac{3c_{3}}{2} - \frac{c_{4}}{2} - \frac{c_{5}}{2} \right) + (-c_{6} - c_{2} - c_{3})$$

$$T(n) = an^{2} + bn + c$$

Thus we have that $T(n) = \Theta(n^2)$.