We'll Name This Presentation Later...

FA542: Financial Econometrics and Time Series Analysis

Andre Sealy Fredrica Malamisura Swapnil Pant

Motivation: Modeling Asset Prices in Tech

- Our analysis primarily focuses on the technology sector
- ► Tech stocks tend to have higher betas
- They're more sensitive to information shocks in the market
- ► We also consider the growth aspect of the market (Macroeconomic Trends, Interest Rates, etc.

Our Sample Universe

Market Comparisons of Technolog	gy Stocks (as of 2/1	l 0/25)		
Company Name (Ticker)	Market Capitalization	Last Price	1D Pct Change	1M Pct Change
Apple Inc. (AAPL)	3.42T	227.65	0.01%	-3.88%
NVIDIA Corp (NVDA)	3.27T	133.57	2.87%	-1.72%
Microsoft Corp (MSFT)	3.06T	412.22	2.87%	-1.61%
Qualcomm Inc. (QCOM)	189.52B	171.36	2.02%	9.16%
Adobe Inc. (ADBE)	196.36B	451.1	4.16%	11.13%
Advanced Micro Device (AMD)	179.03B	110.48	2.71%	-4.79%
Cisco System Inc. (CSCO)	250.16B	62.81	0.87%	6.93%
Intuit Inc. (INTU)	164.27B	586.84	1.38%	-5.87%
Sample Average	123.64B	269.50	2.11%	1.17%

Our Sample Universe

Our Sample Universe

Descriptive Statistics

Company Name (Ticker)	Mean (μ_x)		Skewness $(S(x))$	Kurtosis $(K(x))$	Min	Max
Apple Inc. (AAPL)	0.11	1.97	-0.11	5.96	17.91%	13.90%
NVIDIA Corp (NVDA)	0.16	3.11	0.13	7.69	-30.71%	29.80%
Microsoft Corp (MSFT)	0.07	1.76	0.27	9.17	-14.73%	18.60%
Qualcomm Inc. (QCOM)	0.05	2.17	0.27	9.53	-15.25%	23.20%
Adobe Inc. (ADBE)	0.07	2.16	-0.12	8.66	19.03%	17.71%
Advanced Micro Device (AMD)	0.1	3.66	0.78	12.39	-24.22%	52.29%
Cisco System Inc. (CSCO)	0.03	1.77	0.22	11.56	16.21%	15.95%
Intuit Inc. (INTU)	0.08	1.91	0.25	8.49	14.47%	20.08%

Test for Normality (Jarque-Bera Test)

Test for Normality (Jarque-Bera Test)

Company Name (Ticker)	Skewness $(S(x))$	Kurtosis $(K(x))$	t-statistics (x^2)	p-values
Apple Inc. (AAPL)	-0.11	5.96	6784.85	2.20E-16
NVIDIA Corp (NVDA)	0.13	7.69	12052.68	2.20E-16
Microsoft Corp (MSFT)	0.27	9.17	14325.07	2.20E-16
Qualcomm Inc. (QCOM)	0.27	9.53	14733.69	2.20E-16
Adobe Inc. (ADBE)	-0.12	8.66	16759	2.20E-16
Advanced Micro Device (AMD)	0.78	12.39	11128.07	2.20E-16
Cisco System Inc. (CSCO)	0.22	11.56	28331.08	2.20E-16
Intuit Inc. (INTU)	0.25	8.49	11128.07	2.20E-16

▶ The following shows the Ljung-Box Test for white noise (serial autocorrelation)

	H_0 : $\rho_1 = \cdots =$	$\rho_m =$	0 (White	Noise),	$H_a: \rho_i \neq 0$) (serial	autocorrelation)
--	-----------------------------	------------	----------	---------	----------------------	-----------	------------------

Ljung Box Test for Serial Au	tocorrelat	ion							
Parameters	AMD	ADBE	ADBE	QCOM	QCOM	CSCO	CSCO	INTU	NVDA
	Q(17)	Q(6)	Q(12)	Q(19)	Q(20)	Q(9)	Q(14)	Q(9)	Q(4)
Ljung-Box Test Statistic p-values	19.044	10.404	20.765	29.27	34.939	14.675	20.773	20.678	10.826
	0.326	0.1086	0.05393	0.06185	0.02043	0.1003	0.1076	0.296	0.028

- ► We find that Qualcomm Inc. (QCOM) and NVIDIA Corp (NVDA) have significant lags, suggesting some lag dependence.
- For the remainder of the analysis, we turn our attention on these two assets.

Ljung Box Test for Serial Au	tocorrelat	ion							
Parameters	AMD	ADBE	ADBE	QCOM	QCOM	csco	csco	INTU	NVDA
raidilleters	Q(17)	Q(6)	Q(12)	Q(19)	Q(20)	Q(9)	Q(14)	Q(9)	Q(4)
Ljung-Box Test Statistic	19.044	10.404	20.765	29.27	34.939	14.675	20.773	20.678	10.826
p-values	0.326	0.1086	0.05393	0.06185	0.02043	0.1003	0.1076	0.296	0.028

Stationarity (Augmented Dickey-Fuller Test)

Log Returns of Nvidia and Qualcomm

Stationarity (Augmented Dickey-Fuller Test)

- ▶ The following shows the Augmented Dickey-Fuller Test for the log returns.
- \blacktriangleright H_0 : $\gamma = 0$ (Unit Root), H_a : $\gamma < 0$ (Stationary)

d Dickey-Fuller Tes	t		
Test Statistics	P-Value	Recommedation	
-16.217	0.01	Test Statistic < critical value of -1.96	
		Sigificance level = 0.05	
		Reject null hypothesis	
		Time Series is Stationary	
-16.254	0.01	Test Statistic < critical value of -1.96	
		Sigificance level = 0.05	
		Reject null hypothesis	
		Time Series is Stationary	
	Test Statistics -16.217	Test Statistics P-Value -16.217 0.01	Test Statistics P-Value Recommedation -16.217 0.01 Test Statistic < critical value of -1.96 Sigificance level = 0.05 Reject null hypothesis Time Series is Stationary -16.254 0.01 Test Statistic < critical value of -1.96 Sigificance level = 0.05 Reject null hypothesis

ACF/PACF Plots for Nvidia Corp

ACF of NVDA Log Returns

OT - 4CE - 4

PACF of NVDA Log Returns

ACF/PACF Plots for Qualcomm Corp

p, q	MA(0)	MA(1)	MA(2)	MA(3)	MA(4)	MA(5)	MA(6)	MA(7)	MA(8)	MA(9)	MA(10)
P, 4	111(0)	(=/	(=)	(-)	(.,	(-)	(-)	(,,	(-)	(0)	(=0)
AR(0)	Х	0	0	0	0	0	0	X	0	0	0
AR(1)	х	0	0	0	0	0	0	X	X	0	0
AR(2)	х	Х	0	0	0	0	0	0	0	0	0
AR(3)	х	Х	Х	0	0	0	0	0	0	0	0
AR(4)	х	Х	х	Х	O	0	0	0	0	O	0
AR(5)	х	0	х	X	0	0	0	0	0	0	0
AR(6)	х	Х	х	х	X	Х	O	0	0	0	0
AR(7)	X	X	X	X	X	X	X	D	0	0	0

AIC Plot for ti	ne Theoret	ical EACF	for Nvidia /	ARIMA Mod	lel						
p, q	MA(0)	MA(1)	MA(2)	MA(3)	MA(4)	MA(5)	MA(6)	MA(7)	MA(8)	MA(9)	MA(10)
AR(0)	-18655	-18658	-18658	-18656	-18654	-18653	-18651	-18651	-18660	-18661	-18660
AR(1)	-18658	-18657	-18656	-18654	-18652	-18651	-18649	-18656	-18659	-18659	-18658
AR(2)	-18658	-18656	-18654	-18652	-18652	-18651	-18649	-18660	-18663	-18658	-18661
AR(3)	-18656	-18654	-18652	-18672	-18650	-18649	-18652	-18666	-18664	-18660	-18665
AR(4)	-18654	-18652	-18650	-18650	-18658	-18647	-18645	-18664	-18656	-18666	-18674
AR(5)	-18652	-18650	-18651	-18661	-18648	-18660	-18660	-18674	-18660	-18669	-18658
AR(6)	-18650	-18648	-18646	-18647	-18646	-18660	-18677	-18675	-18673	-18673	-18678
AR(7)	-18652	-18657	-18662	-18665	-18664	-18666	-18675	-18676	-18676	-18677	-18679

p, q	MA(0)	MA(1)	MA(2)	MA(3)	MA(4)	MA(5)	MA(6)	MA(7)	MA(8)	MA(9)	MA(10
AR(0)	x	o	0	0	0	0	Х	Х	X	0	0
R(1)	x	О	0	0	0	0	0	0	х	0	О
AR(2)	х	О	0	0	0	0	0	0	Х	0	0
AR(3)	x	х	0	0	0	0	0	0	х	0	0
AR(4)	x	X	Х	0	0	0	0	0	0	0	0
AR(5)	x	X	X	0	х	0	0	0	0	0	0
AR(6)	X	X	X	X	Х	0	0	0	0	0	0
AR(7)	X	X	0	X	X	Х	X	0	0	0	0

p, q	MA(0)	MA(1)	MA(2)	MA(3)	MA(4)	MA(5)	MA(6)	MA(7)	MA(8)	MA(9)	MA(10)
AR(0)	-21936	-21959	-21957	-21955	-21954	-21952	-21951	-21953	-21953	-21957	-21956
AR(1)	-21959	-21957	-21955	-21953	-21952	-21950	-21955	-21954	-21953	-21956	-21954
AR(2)	-21957	-21955	-21953	-21951	-21950	-21948	-21966	-21952	-21952	-21956	-21952
AR(3)	-21955	-21953	-21951	-21950	-21950	-21965	-21948	-21963	-21960	-21954	-21952
AR(4)	-21954	-21952	-21950	-21949	-21970	-21948	-21963	-21975	-21962	-21953	-21968
AR(5)	-21952	-21950	-21948	-21963	-21976	-21965	-21977	-21975	-21961	-21970	-21972
AR(6)	-21952	-21957	-21966	-21950	-21969	-21977	-21976	-21975	-21967	-21976	-21974
AR(7)	-21954	-21956	-21954	-21963	-21977	-21975	-21975	-21981	-21977	-21977	-21971

ARIMA Models (Nvidia)

▶ The following outlines the models generated from our selection criteria.

AR(1):
$$r_t = 0.0012 - 0.0371r_{t-1} + \epsilon_t$$

AR(2):
$$r_t = 0.0012 - 0.0365r_{t-1} + 0.0146r_{t-2} + \epsilon_t$$

MA(1):
$$r_t = 0.0012 - 0.0360\epsilon_{t-1} + \epsilon_t$$

ARMA(1,1):
$$r_t = 0.0012 - 0.230r_{t-1} + 0.1928\epsilon_{t-1} + \epsilon_t$$

ARMA(1, 2):
$$r_t = 0.0012 - 0.0179r_{t-1} - 0.0187\epsilon_{t-1} + 0.0161\epsilon_{t-2} + \epsilon_t$$

ARIMA Models (Qualcomm)

▶ The following outlines the models generated from our selection criteria.

AR(1):
$$r_t = 3e - 04 - 0.0740r_{t-1} + \epsilon_t$$

AR(2):
$$r_t = 3e - 04 - 0.0743r_{t-1} - 0.0049r_{t-2} + \epsilon_t$$

MA(1):
$$r_t = 3e - 04 - 0.0743\epsilon_{t-1} + \epsilon_t$$

MA(2):
$$r_t = 3e - 04 - 0.0744\epsilon_{t-1} - 0.0003\epsilon_{t-2} + \epsilon_t$$

ARMA(1, 1):
$$r_t = 3e - 04 - 0.0374r_{t-1} - 0.0371\epsilon_{t-1} + \epsilon_t$$

Forecast

Forecast of Nvidia ARIMA(1,1,2) for T+10

