Introduction to Operating Systems

OS Goals,

Computer Systems: Batch, Multiprogramming, Timesharing

Computing Environments

Computer Level Hierarchy

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- OS is a resource allocator
 - Manages all resources (CPU, memory, I/O devices)
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Goals

- Convenience
 - for the user
 - for the programmer
- Efficiency
 - Maximize utilization of the machine's resources
 - No idling
- Many other goals conceivable
 - Robustness to errors (Airplanes)
 - Security (Governments)
 - Scalability (Google)

Computer Systems

- Batch systems
- Multiprogrammed systems
- Timesharing systems
- Embedded systems
- Distributed systems

Batch Systems

- Early computers:
 - Input devices: card readers and tape drives
 - Output devices: line printers, tape drives, and card punches
 - No direct interaction between the user and the computer system
 - The major task of the OS was to transfer the control from one job to the next.

Batch System: memory layout

Operating System

User program area

Just one job in memory at any single time!

Characteristics of process execution

- An I/O operation normally takes much more time than a CPU operation
- A process doesn't need to use the CPU while it is doing I/O.
- Each process spends most of its time using I/O devices.
- → Batch Systems: Wasteful! CPU idle when doing I/O.

Multiprogrammed Systems

- Goal: To keep the CPU as busy as possible
- The OS keeps several jobs in memory simultaneously.
 - CPU scheduling
 - OS picks and begins one of the jobs in memory
 - It switches to another job when the current job needs to wait (for an I/O),
 - When a job finishes waiting, it gets the CPU back.
- Positive: Good resource utilization
- Negative: No user interaction

Multiprogrammed System: memory layout

Timesharing Systems

- A logical extension of multiprogramming.
- Also called multitasking
- Its original goal was to enable multiple users to interact with the computer system at the same time.

Timesharing Systems

- Support interactive processes.
 - OS switches very quickly between processes.
 - Interactive processes are given a higher priority.
 - Goal: Short response time
 - → Illusion of interactivity.

Timesharing Systems

- More complex than multiprogrammed systems:
 - More complex CPU scheduling
 - To achieve short response time
 - What if many processes are ready to execute?
 - Memory management
 - What if process A tries to access process B's memory?
 - What if not all processes fit in memory?

Timesharing and multiprogramming

- Most systems today use timesharing.
- Timesharing and multiprogramming are central themes of modern systems

Space-multiplexed Sharing

A resource is divided into two or more distinct units, and then the individual parts are allocated to processes.

Time-multiplexed Sharing

 A process can use the entire resource exclusively for a period of time.

Timesharing

- Space-multiplexing for memory and timemultiplexing for CPU.
- Assume that there are N processes
 - The OS divides the physical memory into N different blocks, and allocates a block to each process.
 - A process that is loaded into its block of memory shares the CPU using time-multiplexed sharing.

Embedded Systems

- A computer is embedded into a complex system.
- Goals of an embedded system:
 - Minimize the amount of memory and CPU cycles
 - Use as little electrical power as possible.
 - Hard Real-time constraint
 - Guarantee a minimum response time

Distributed Systems

- In the mid-1990s, network connectivity became an essential component of a computer system
 - Nearly all modern PCs and workstations are capable of running a web browser
 - OSs such as Windows, Mac OS and UNIX/Linux now include software, such as a TCP/IP stack, that enables a computer to access the Internet.
 - Windows even bundled a web browser as part of the OS (got into trouble!)

Client-Server Systems

A client sends requests to perform an action; a server executes the action and sends back results to the client.

Peer-to-Peer Systems

- In a client-server system, the server could be a bottleneck.
- In a peer-to-peer system, all nodes within the system are considered peers, and each may act as either a client or a server.

Summary

- Operating System Goals
- Computer Systems
 - Batch systems
 - Multiprogrammed systems
 - Timesharing systems
- Resource sharing
 - Space-multiplexed sharing
 - Time-multiplexed sharing
- Computing Environments
 - Embedded
 - Distributed
 - Client-Server
 - Peer-to-Peer