

Cadernos de Elementos Finitos

IM 381 - FEM Unicamp

Renato Pavanello

Outubro de 2020

Laboratório de Otimização Topológica e Análise Multifísica Departamento de Mecânica Computacional Campinas-SP

Sumário

1	Métodos de Resíduos Ponderados							
	1.1	Notaç	ão e Definições preliminares	2				
	1.2	Tipos	de equações da física matemática	5				
	1.3	1.3 Problema de Valor de Contorno - Definições						
	1.4	Métodos de Resíduos Ponderados						
		1.4.1	Escolha de uma sequência de Funções Admissíveis	12				
		1.4.2	Montagem da Função Resíduo	13				
		1.4.3	Escolha de uma sequência de Funções Ponderadoras	14				
		1.4.4	Montagem de n Resíduos Ponderados	14				
	1.5	Classi	ficação e tipos de Métodos de Resíduos Ponderados	16				
		1.5.1	Método da Colocação Pontual	17				
		1.5.2	Método da Colocação em Subdomínios	19				
		1.5.3	Método dos Momentos	19				
		1.5.4	Método dos Mínimos Quadrados	20				
		1.5.5	Método de Galerkin	21				
	1.6	Aplicações dos Métodos de Resíduos Ponderados						
		1.6.1	Definição do Resíduo e Escolha das Funções Admissíveis	23				
		1.6.2	Funções Ponderadoras - Colocação por Pontos	25				
		1.6.3	Funções Ponderadoras - Método de Galerkin	27				
		1.6.4	Funções Ponderadoras - Método dos Mínimos Quadrados	30				
		1.6.5	Comparação dos Resultados	32				
2	Fori	na frac	a do Métodos de Resíduos Ponderados	34				
	2.1	Proble	ema Unidimensional - Forma Forte	34				
	2.2	Viga e	em balanço - Forma Fraca	37				
	2.3	Forma fraca abstrata						
	2.4	Exemplo: Vibração de uma Barra						
	2.5	Exemp	plo: Placa Fina com Geração interna de Calor	45				

1 Métodos de Resíduos Ponderados

Neste capítulo são abordados problemas de Mecânica do Contínuo governados por equações diferenciais parciais, usando-se diversos Métodos de Resíduos Ponderados. Esta metodologia permite construir uma forma integral para a equação diferencial no domínio do problema. Esse domínio é então discretizado usando-se a técnica de Elementos Finitos.

Inicialmente são apresentadas a nomenclatura e as definições matemáticas usadas, passando-se a uma breve descrição dos tipos de equações diferenciais mais encontradas na Física matemática e, finalmente, mostram-se os diversos Métodos de Resíduos Ponderados, aplicados a problemas modelo.

1.1 Notação e Definições preliminares

Considere o espaço Euclidiano E^3 definido na Figura 1 e um sistema de referência (x,y,z) num domínio $\mathcal{D}\subset E^3$, com contorno \mathcal{C} , onde são definidas funções f(x,y,z), g(x,y,z), w(x,y,z), $\psi(x,y,z)$, u(x,y,z), u(x,y,z), etc , que por simplicidade podem ser denotadas como f, g, w, ψ , u, T, etc.

Figura 1: Representação do Domínio e do Contorno.

Baseando-se nesta notação pode-se colocar as seguintes definições básicas:

<u>Def.</u> 1 Sejam f(x, y, z) e g(x, y, z) funções contínuas por partes em \mathcal{D} , o **produto interno** de f e g é definido como,

$$\langle g, f \rangle = \langle f, g \rangle = \int_{\mathcal{D}} f(x, y, z) \cdot g(x, y, z) d\mathcal{D}$$
 (1)

<u>Def.</u> 2 A norma Euclidiana de uma função f(x, y, z), denotada de $\parallel f(x, y, z) \parallel$ é expressa por:

$$|| f(x,y,z) || = \langle f, f \rangle^{\frac{1}{2}} = (\int_{\mathcal{D}} f^2 d\mathcal{D})^{\frac{1}{2}},$$
 (2)

e como consequência pode-se escrever, $||f|| \ge 0$.

- <u>Def.</u> 3 Uma função é chamada de **semi-positiva definida** se $||f|| \ge 0$ em qualquer domínio \mathcal{D} não vazio onde a função é definida.
- <u>Def.</u> 4 A norma ponderada de uma função f(x, y, z), denotada por $||f||_w$, é dada por:

$$\| f(x,y,z) \|_{w} = \langle f, wf \rangle^{\frac{1}{2}} = (\int_{\mathcal{D}} w(x,y,z) f(x,y,z)^{2} d\mathcal{D})^{\frac{1}{2}}$$
 (3)

onde w(x,y,z) é uma função quadraticamente integrável, real, não negativa, o que implica em:

$$|| f(x, y, z) ||_{w} > 0$$
 (4)

- <u>Def.</u> 5 Uma função f(x, y, z) é normalizável se $\parallel f \parallel_w$ existe, e á não nula em \mathcal{D} .
- <u>Def.</u> 6 Uma função f(x, y, z) é quadraticamente integrável se:

$$\int_{\mathcal{D}} |f|^2 d\mathcal{D} \tag{5}$$

existe no sentido de Lebesgue.

<u>Def.</u> 7 Seja L^2 a classe de funções quadraticamente integráveis. Um conjunto de funções $\{f_1, f_2, f_3, f_n\}$ do L^2 é linearmente independente (LI) se o determinante de Gram de ordem n é não nulo, isto é,

$$|\langle f_{1}, f_{1} \rangle| = \begin{vmatrix} \langle f_{1}, f_{1} \rangle & \langle f_{1}, f_{2} \rangle & \dots & \langle f_{1}, f_{n} \rangle \\ \langle f_{2}, f_{2} \rangle & \dots & \langle f_{2}, f_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ Sim. & \langle f_{n}, f_{n} \rangle \end{vmatrix} \neq 0 \quad (6)$$

Outras notações importantes referem-se a operadores diferenciais da forma $L_{2m}(\)$ e $B_i(\)$. Considere uma função u(x,y,z) diferenciável até ordem 2m no mínimo, o operador $L_{2m}(u(x,y,z))$ denota um conjunto de termos combinados contendo derivadas de u(x,y,z) de ordem 0 até 2m.

Dada esta notação, pode-se expressar de forma genérica o operador de Laplace como se segue:

$$L_2(u) \Rightarrow \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2},$$
 (7)

onde o operador $L_2(\)$ é definido genericamente por:

$$L_{2m}() \Rightarrow \nabla^{2}() = \frac{\partial^{2}()}{\partial x^{2}} + \frac{\partial^{2}()}{\partial y^{2}} + \frac{\partial^{2}()}{\partial z^{2}}.$$
 (8)

Outro operador bastante utilizado é o operador bi-harmônico, que para o caso de um espaço 2D pode ser escrito como:

$$\nabla^2(\nabla^2(\)) = \frac{\partial^4(\)}{\partial x^4} + 2\frac{\partial^4(\)}{\partial x^2\partial y^2} + \frac{\partial^4(\)}{\partial y^4}.\tag{9}$$

<u>Def.</u> 8 Um Operador diferencial $L_{2m}()$ é Linear se forem válidas as seguintes relações:

$$L_{2m}(u+v) = L_{2m}(u) + L_{2m}(v), (10)$$

$$L_{2m}(\alpha u) = \alpha L_{2m}(u), \tag{11}$$

onde α é um escalar.

<u>Def.</u> 9 Um Operador diferencial $L_{2m}(\)$ é dito Quase-linear quando seus termos de ordem 2m são lineares. Por exemplo:

$$L_2(u) = \frac{d^2u}{dt^2} + u + \varepsilon u^3 = \sin(\omega t)$$
 (12)

Observa-se na equação (12) que termos de ordem inferior podem ser não lineares.

<u>Def.</u> 10 Um operador diferencial linear é simétrico em \mathcal{D} , se para qualquer u(x,y,z) e v(x,y,z) não nulas, diferenciáveis 2m vezes e satisfazendo identicamente as condições de contorno homogêneas,

$$\int_{\mathcal{D}} u L_{2m}(v) d\mathcal{D} = \int_{\mathcal{D}} v L_{2m}(u) d\mathcal{D}$$
(13)

Este operedor é também denomidado de Auto-Adjunto.

<u>Def.</u> 11 Um operador diferencial Linear é positivo definido em \mathcal{D} não vazio se:

$$\int_{\mathcal{D}} u L_{2m}(u) d\mathcal{D} > 0 \tag{14}$$

para qualquer u(x, y, z) não nula que satisfaça a forma homogênea das condições de contorno em \mathcal{C} do domínio \mathcal{D} .

Os operadores acima definidos estão relacionados com diversos problemas encontrados na Engenharia, e podem ser classificados de acordo com o proposto na próxima seção.

1.2 Tipos de equações da física matemática.

As equações básicas da física matemática podem ser classificadas da seguinte forma; utilizando exemplos uni e bidimensionais:

I. Equações Hiperbólicas:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{15}$$

Esta equação é usada no estudo de vibrações transversais de uma corda, vibrações longitudinais de uma barra, oscilações elétricas, vibração torcional de eixos, acústica de gases perfeitos etc. Esta equação é conhecida como **Equação da Onda.**

II. Equações Parabólicas:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{16}$$

Esta equação é usada no estudo da transferência de calor, problemas de difusão, difusão de fluidos miscíveis em meios porosos, em problemas de probabilidade,

etc. Esta equação é a **Equação de Fourier ou de transmissão de Calor em regime transiente.**

III. Equações Elípticas:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{17}$$

Neste caso a equação pode representar os problemas de condução de calor estacionário, campos magnéticos, hidrodinâmica, etc. Esta equação é a **Equação de Laplace.** Este tipo de equação está associado a problemas de Valor de Contorno em regime estacionário ou seja, a problemas de equilíbrio.

A classificação acima é baseada no estudo dos Operadores quase-lineares que governam o problema. Assim, seja um sistema geral de operadores quase-lineares dado por:

$$\begin{cases}
 a_1 \frac{\partial u(x,y)}{\partial x} + b_1 \frac{\partial u(x,y)}{\partial y} c_1 \frac{\partial v(x,y)}{\partial x} + d_1 \frac{\partial v(x,y)}{\partial y} &= 0 \\
 a_2 \frac{\partial u(x,y)}{\partial x} + b_2 \frac{\partial u(x,y)}{\partial y} c_2 \frac{\partial v(x,y)}{\partial x} + d_2 \frac{\partial v(x,y)}{\partial y} &= 0 \\
 \frac{\partial u(x,y)}{\partial x} dx + \frac{\partial u(x,y)}{\partial y} dy &= du \\
 \frac{\partial v(x,y)}{\partial x} dx + \frac{\partial v(x,y)}{\partial y} dy &= dv
\end{cases}$$
(18)

onde as constantes $a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2$ são funções de u(x, y) e v(x, y) diferenciáveis em \mathcal{D} e não são diretamente dependentes de x e y.

Escrevendo o sistema acima em uma forma matricial tem-se:

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ dx & dy & 0 & 0 \\ 0 & 0 & dx & dy \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ du \\ dv \end{bmatrix}$$
(19)

ou em forma compacta,

$$[A]\{x\} = \{b\} \tag{20}$$

A análise das soluções do sistema (20) leva ao estudo do determinante da matriz [A] e são considerados os seguintes casos:

• Determinante não nulo

$$|[A]| \neq 0 \tag{21}$$

o sistema possui solução única e o operador é do tipo Elíptico.

• Determinante nulo

$$|[A]| = \det \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ dx & dy & 0 & 0 \\ 0 & 0 & dx & dy \end{bmatrix} = 0$$
 (22)

o que implica que não existe uma solução única para $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ e $\frac{\partial v}{\partial y}$. Neste caso faz-se necessário o estudo do polinômio característico da equação (22) que pode ser escrito da seguinte maneira:

$$\underbrace{(a_1c_2 - a_2c_1)}_{a} dy^2 - \underbrace{(a_1d_2 - a_2d_1 + b_1c_2 - b_2c_1)}_{b} dxdy + \underbrace{(b_1d_2 - b_2d_1)}_{c} dx^2 = 0$$
(23)

que em forma compacta é:

$$a\left(\frac{dy}{dx}\right)^2 - b\frac{dy}{dx} + c = 0\tag{24}$$

admitindo raizes da seguinte forma:

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \tag{25}$$

onde,

$$\Delta = b^2 - 4ac = (a_1d_2 - a_2d_1 + b_1c_2 - b_2c_1)^2 - 4(a_1c_2 - a_2c_1)(b_1d_2 - b_2d_1)$$
(26)

neste caso, tem-se as seguintes condições;

$$\begin{cases} \Delta = 0 & 1 \text{ raiz real - Equação Diferencial Parabólica} \\ \Delta > 0 & 2 \text{ raizes reais - Equação Diferencial Hiperbólica} \\ \Delta < 0 & 2 \text{ raizes complexas - Equação Diferencial Elíptica} \end{cases} \tag{27}$$

Esta classificação engloba grande parte das equações que governam os problemas de Engenharia tratados nestas notas. No próximo item é apresentado um problema padrão de uma equação Elíptica, definindo-se os elementos essenciais para aplicação do Método dos Resíduos Ponderados.

Problema de Valor de Contorno - Definições

Dado um operador Diferencial $L_{2m}()$ válido em \mathcal{D} e outro operador $B_i()$ válido no contorno \mathcal{C} de \mathcal{D} . Determinar a função $\psi(x,y,z)$ que satisfaça as equações:

$$\begin{cases}
L_{2m}(\psi(x,y,z)) &= f(x,y,z) \text{ em } \mathcal{D} \\
B_i(\psi(x,y,z)) &= g_i(x,y,z) \text{ em } \mathcal{C} \quad i = 1, 2, \dots, m
\end{cases}$$
(28)

onde $B_i(\cdot)$ é um operador diferencial de ordem até (2m-1), e as funções f(x,y,z)e $g_i(x,y,z)$ são conhecidas em \mathcal{D} e \mathcal{C} respectivamente. Vários exemplos podem ser dados:

Exemplo 1.1 (Problema Padrão - PP1) Supondo uma equação diferencial de ordem 2, onde 2m = 2 e por consequência 2m - 1 = 1 tem-se:

$$\begin{cases}
L_2(u(x,y)) = f(x,y) & \text{em } \mathcal{D} \\
B_1(u(x,y)) = g_1(x,y) & \text{em } \mathcal{C}
\end{cases}$$
(29)

onde $B_1()$ envolve derivadas de ordem 0 até 1, o que implica que em cada ponto $(x,y) \in \mathcal{C}$ deve haver m=1 condição de contorno imposta. Essa condição pode envolver derivadas de ordem 0 isto é termos em u(x,y), ou ordem 1 com termos em $\frac{\partial u(x,y)}{\partial x}$, $\frac{\partial u(x,y)}{\partial y}$ ou ainda uma combinação dos termos anteriores. Neste contexto definem-se dois tipos de condições de contorno:

- I. Condições de Contorno Essenciais: são aquelas que envolvem as derivadas de ordem 0 até (m-1).
- II. Condições de Contorno Naturais: são aquelas que envolvem derivadas de ordem m até (2m-1) no máximo.

Exemplo 1.2 (**Problema de Transmissão de Calor - Condução**) Este problema de valor de contorno pode ser expresso pela equação de Fourier mais condições de contorno apropriadas, conforme mostrado na Figura 2 e como se segue:

Figura 2: Problema de Transmissão de Calor, Domínio e Contorno.

$$\begin{cases}
\nabla \cdot k \nabla T(x, y) &= f(x, y) & em \mathcal{D} \\
T(x, y) &= T_0(x, y) & em \mathcal{C}_1 \\
k \nabla T(x, y) \cdot \mathbf{n}(x, y) &= q_0(x, y) & em \mathcal{C}_2 \\
k \nabla T(x, y) \cdot \mathbf{n}(x, y) + h(T - T_0) &= 0 & em \mathcal{C}_3
\end{cases}$$
(30)

onde $\mathbf{n}(x,y)$ é um vetor unitário normal ao contorno \mathcal{C}_2 ou \mathcal{C}_3 , $T_0(x,y)$ é a temperatura imposta em \mathcal{C}_1 , $q_0(x,y)$ é o fluxo de calor imposto no contorno \mathcal{C}_2 e $h(T-T_0)$ é o fluxo de calor por convecção em \mathcal{C}_3 . Neste caso o contorno \mathcal{C} foi subdividido em três regiões \mathcal{C}_1 , \mathcal{C}_2 e \mathcal{C}_3 .

Exemplo 1.3 (Flexão de Vigas) Neste caso o problema envolve um operador diferencial de quarta ordem, sendo que as condições de contorno Essenciais envolvem deriva-

das até ordem 1, e as naturais de ordem 2 e 3. O problema é governado pelo seguinte sistema de equações diferenciais, e corresponde ao modelo representado na Figura 3:

Figura 3: Problema de Flexão de Vigas.

$$\begin{cases} EI\frac{d^4v(x)}{dx^4} &= q(x) \to x \in [0, L] \\ v(0) &= 0 \to deslocamento \ restrito \end{cases}$$

$$\begin{cases} v(L) &= 0 \to deslocamento \ restrito \end{cases}$$

$$\frac{dv(0)}{dx} &= 0 \to Deslocamento \ Angular \ restrito \end{cases}$$

$$EI\frac{d^2v(L)}{dx^2} &= 0 \to Momento \ Fletor \ imposto \end{cases}$$

$$(31)$$

A solução de problemas governados por sistema de equações diferenciais, em muitos casos, pode ser feita transformando-se o problema em sua forma integral. Tal procedimento implica no uso de algumas definições matemáticas que são apresentadas na sequência.

<u>Def.12</u> Funções Admissíveis - Funções Teste.

Seja o problema de contorno padrão (PP1):

$$PP1 \begin{cases} L_{2m}(\psi(x,y,z)) = f(x,y,z) & \text{em } \mathcal{D} \\ B_i(\psi(x,y,z)) = g_i(x,y,z) & \text{em } \mathcal{C} & i = 1, 2, \dots, m \end{cases}$$
(32)

Uma função $\psi(x,y,z)$ é Admissível para o problema se satisfizer todas as condições de diferenciabilidade relacionadas com o operador $L_{2m}(\)$ e se $\psi(x,y,z)$

satisfizer identicamente as condições de contorno, $B_i(\psi(x,y,z)) = g_i(x,y,z)$, no contorno C.

Se $\psi(x,y,z)$ satisfizer todas as condições de diferenciabilidade/continuidade relacionadas com o operador $L_{2m}(\)$ e se todas as condições de contorno são satisfeitas, a formulação para o Método dos Resíduos Ponderados é chamada de Forte.

Se $\psi(x,y,z)$ tiver condições de diferenciabilidade/continuidade relaxadas em relação ao operador $L_{2m}(\)$ e se $\psi(x,y,z)$ satisfizer aproximadamente as condições de contorno naturais, a formulação para o Método dos Resíduos Ponderados é chamada de Fraca. Observa-se neste caso que as condições de contorno essenciais devem ser satisfeitas identicamente.

Uma sequência de funções admissíveis $\{\psi_1, \psi_2, \cdots, \psi_M\}$ linearmente independentes em \mathcal{D} é dita completa, se para um problema padrão PP1, onde u(x, y, z) é solução exata vale a seguinte relação:

$$\left(\int_{\mathcal{D}} \left[u(x, y, z) - \sum_{1}^{M} \alpha_{i} \psi(x, y, z) \right]^{2} d\mathcal{D} \le \beta$$
 (33)

para β pequeno, desde que M seja suficientemente grande.

Def.13 Função Resíduo.

dado o problema Padrão PP1

$$PP1 \begin{cases} L_{2m}(u(x,y,z)) &= f(x,y,z) \text{ em } \mathcal{D} \\ B_i(u(x,y,z)) &= g_i(x,y,z) \text{ em } \mathcal{C} \text{ } i = 1, m \end{cases}$$

$$(34)$$

onde u(x, y, z) é solução de PP1.

Supondo uma função admissível $\psi(x,y,z)$ para o problema PP1, definem-se as funções resíduo R(x,y,z) e $R_c(x,y,z)$ como sendo:

$$R(x, y, z) = L_{2m}(\psi(x, y, z)) - f(x, y, z)$$
 em \mathcal{D}
 $R_{c}(x, y, z) = \sum_{i=1}^{m} [B_{i}(\psi(x, y, z)) - g_{i}(x, y, z)]$ em \mathcal{C} (35)

se a formulação for forte $R_c(x,y,z)=0$ em \mathcal{C} , e se $\psi(x,y,z)$ é a solução exata do PP1 então R(x,y,z)=0 em \mathcal{D} .

<u>Def.</u>14 Norma da função Resíduo.

Define-se a norma da função resíduo ||R|| da seguinte maneira:

$$||R|| = \langle R, R \rangle^{\frac{1}{2}} = \left(\int_{\mathcal{D}} R^2(x, y, z) d\mathcal{D} \right)^{\frac{1}{2}}$$
 (36)

Def.15 Resíduo Ponderado.

Define-se Resíduo Ponderado como sendo:

$$\langle R, W_i \rangle = \int_{\mathcal{D}} R(x, y, z) W_i(x, y, z) d\mathcal{D}$$
 (37)

onde $W_i(x, y, z)$ é uma função ponderadora, que não precisa respeitar os requisitos de continuidade em \mathcal{D} .

1.4 Métodos de Resíduos Ponderados

O processo básico do Método dos Resíduos Ponderados é desenvolvido a partir de um problema padrão PP1;

$$PP1 \begin{cases} L_{2m}(u(x,y,z)) = f(x,y,z) & \text{em } \mathcal{D} \\ B_i(u(x,y,z)) = g_i(x,y,z) & \text{em } \mathcal{C} \end{cases}$$
(38)

onde $L_{2m}(\)$ e $B_i(\)$ são operadores conhecidos, f(x,y,z), $g_i(x,y,z)$, \mathcal{D} e \mathcal{C} são dados do problema e u(x,y,z) é a função a ser determinada.

1.4.1 Escolha de uma sequência de Funções Admissíveis

Inicialmente deve-se escolher uma sequência de funções admissíveis para PP1, denotada:

$$\{\varphi_0(x,y,z), \varphi_1(x,y,z), \cdots, \varphi_i(x,y,z), \cdots, \varphi_n(x,y,z)\}$$
(39)

sujeito as seguintes restrições:

- I. $\varphi_j(x,y,z)$ (j=0,n) devem ser contínuas e diferenciáveis atá ordem 2m. As derivadas de ordem 2m devem ser contínuas por partes no mínimo.
- II. $\varphi_0(x, y, z)$ deve satisfazer todas as condições de contorno $B_i(\varphi_0) = g_i i = 1, 2, \dots, m \text{ em } \mathcal{C}$.

III. $\varphi_j(x, y, z)$ deve satisfazer todas as condições de contorno homogêneas associadas $B_i(\varphi_j(x, y, z)) = 0$ com $i = 1, 2, \dots, m$ e $j = 1, 2, \dots, n$.

Por construção uma função admissível $\varphi(x,y,z)$ pode ser expressa por:

$$\varphi(x, y, z) = \varphi_0(x, y, z) + \sum_{i=1}^{n} \alpha_i \varphi_i(x, y, z)$$
(40)

que no caso de operadores $B_i()$ lineares é uma função admissível, pois resulta de uma combinação linear de funções admissíveis.

1.4.2 Montagem da Função Resíduo

A função resíduo pode ser montada substituindo a função admissível (40) na equação diferencial de PP1, obtendo-se:

$$R(x, y, z) = L_{2m}(\varphi(x, y, z)) - f(x, y, z) \text{ em } \mathcal{D}$$
(41)

isto é,

$$R(x,y,z) = L_{2m}(\varphi_0 + \sum_{j=1}^{n} \alpha_j \varphi_j) - f(x,y,z)$$
(42)

onde para o caso de operadores lineares pode ser escrito da seguinte forma:

$$R(x,y,z) = L_{2m}(\varphi_0) + L_{2m}(\sum_{j=1}^{n} \alpha_j \varphi_j) - f \text{ em } \mathcal{D}$$

$$\tag{43}$$

Substituindo a função admissível nas equações impostas no contorno obtém-se a função resíduo no contorno C,

$$R_c(x, y, z) = \sum_{i=1}^{m} (B_i(\varphi) - g_i) \text{ em } \mathcal{C}$$
(44)

isto é,

$$R_c(x, y, z) = \sum_{i=1}^{m} (B_i(\varphi_0 + \sum_{j=1}^{n} \alpha_j \varphi_j) - g_i)$$
 (45)

Como geralmente o operador do contorno é linear, então:

$$R_c(x, y, z) = \sum_{i=1}^{m} (B_i(\varphi_0) + \sum_{i=1}^{m} [B_i(\sum_{j=1}^{n} \alpha_j \varphi_j) - g_i]$$
 (46)

o que conduz à:

$$R_c(x, y, z) = \{\underbrace{\sum_{i=1}^{m} (B_i(\varphi_0) - g_i)}_{=0} + \underbrace{\sum_{i=1}^{m} B_i(\sum_{j=1}^{n} \alpha_j \varphi_j)}_{=0} = 0$$
 (47)

As igualdades acima são verdadeiras pois $\varphi_0(x,y,z)$ satisfaz as condições de contorno e $\varphi_j(x,y,z)$ satisfaz as condições de contorno homogêneas associadas, como foi definido.

1.4.3 Escolha de uma sequência de Funções Ponderadoras

Determina-se um conjunto de funções ponderadoras LI,

$$\{W_1(x,y,z), W_2(x,y,z), \cdots, W_n(x,y,z)\}\$$
 (48)

onde $W_i(x, y, z)$ deve ser quadraticamente integrável em \mathcal{D} .

1.4.4 Montagem de n Resíduos Ponderados

Pode-se então, para cada função Ponderadora montar-se uma equação integral para o Resíduo Ponderado no domínio e no contorno:

$$< R(x, y, z), W_i(x, y, z) > = \int_{\mathcal{D}} R(x, y, z) W_i(x, y, z) d\mathcal{D} = 0 \quad i = 1, n$$
 (49)

e

$$< R_c(x, y, z), W_i(x, y, z) > = \int_{\mathcal{C}} R_c(x, y, z) W_i(x, y, z) d\mathcal{C} = 0 \quad i = 1, n ,$$
 (50)

para o caso onde o resíduo R_c não é nulo.

No caso do problema PP1 tem-se:

$$\langle R, W_i \rangle = \int_{\mathcal{D}} [L_{2m}(\varphi_0 + \sum_{j=1}^n \alpha_j \varphi_j) - f] W_i d\mathcal{D} = 0 \ i = 1, n$$
 (51)

que pode ser escrito como:

$$\langle R, W_i \rangle = \underbrace{\int_{\mathcal{D}} L_{2m}(\varphi_0 + \sum_{j=1}^n \alpha_j \varphi_j) W_i d\mathcal{D}}_{F_i(\alpha_i)} - \underbrace{\int_{\mathcal{D}} W_i f d\mathcal{D}}_{b_i} = 0$$
 (52)

o que corresponde a escrever o seguinte sistema de equações:

$$\begin{cases}
F_1(\alpha_1, \alpha_2, \cdots, \alpha_n) \\
F_2(\alpha_1, \alpha_2, \cdots, \alpha_n) \\
\vdots \\
F_n(\alpha_1, \alpha_2, \cdots, \alpha_n)
\end{cases} = \begin{cases}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{cases}$$
(53)

resolvendo-se o sistema (53) obtém-se os valores de α_i , e por conseguinte uma solução aproximada para o problema PP1 do tipo ,

$$\varphi(x,y,z) = \varphi_0(x,y,z) + \sum_{j=1}^n \alpha_j \varphi_j(x,y,z) , \qquad (54)$$

sendo que a função resíduo R(x,y,z) e sua norma ||R|| , fornecem indicadores da precisão da solução aproximada obtida.

Nota 1.1 Para o caso de operadores Lineares, tem-se:

$$\langle R, W_i \rangle = \int_{\mathcal{D}} L_{2m}(\varphi_0 + \sum_{j=1}^n \alpha_j \varphi_j) W_i d\mathcal{D} - \int_{\mathcal{D}} W_i f d\mathcal{D} = 0$$
 (55)

isto é:

$$\langle R, W_i \rangle = \int_{\mathcal{D}} L_{2m} (\sum_{j=1}^n \alpha_j \varphi_j) W_i d\mathcal{D} + \int_{\mathcal{D}} L_{2m} (\varphi_0) W_i d\mathcal{D} - \int_{\mathcal{D}} W_i f d\mathcal{D} = 0$$
 (56)

que pode ser escrito como sendo:

$$\begin{cases}
\sum \alpha_{i} \int L_{2m}(\varphi_{i}W_{1})d\mathcal{D} &= -\underbrace{\int (L_{2m}(\varphi_{0}) - f)W_{1}d\mathcal{D}}_{b_{1}} \\
\sum \alpha_{i} \int L_{2m}(\varphi_{i}W_{2})d\mathcal{D} &= -\underbrace{\int (L_{2m}(\varphi_{0}) - f)W_{2}d\mathcal{D}}_{b_{2}} \\
\vdots &\vdots \\
\sum \alpha_{i} \int L_{2m}(\varphi_{i}W_{n})d\mathcal{D} &= -\underbrace{\int (L_{2m}(\varphi_{0}) - f)W_{n}d\mathcal{D}}_{b_{n}}
\end{cases} (57)$$

que em forma matricial é dado por:

$$[A]\{\alpha\} = \{b\} \tag{58}$$

onde,

$$a_{i,j} = \int L_{2m}(\varphi_j) W_i d\mathcal{D} \tag{59}$$

$$a_{i,j} = \int L_{2m}(\varphi_j) W_i d\mathcal{D}$$

$$b_i = \int L_{2m}(\varphi_0 - f) W_i d\mathcal{D}$$
(60)

se o operador é não-linear, normalmente o sistema de equações algébricas resultante é também não-linear,

$$[A(\alpha_1, \alpha_2, \cdots, \alpha_n)]\{\alpha\} = \{b\}$$
(61)

O procedimento padrão para o método dos resíduos ponderados é definido pelo critério de escolha das funções de ponderação.

1.5 Classificação e tipos de Métodos de Resíduos Ponderados

Considerem-se os resíduos, R(x, y, z) e $R_c(x, y, z)$ definidos em (47) e (48).

Se R=0 e $R_c\neq 0$ em pontos de \mathcal{C} tem-se os chamados métodos de contorno tais como: Elementos de Contorno, Integrais de Contorno, Método das Singularidades, Métodos dos Painéis, e Métodos de Resíduos Ponderados.

Se por outro lado, $R \neq 0$ em pontos de \mathcal{D} e $R_c = 0$ tem-se os métodos interiores, tais como: Método dos Elementos Finitos, Método de Diferenças Finitas, e Métodos de Resíduos Ponderados.

Finalmente existem também os métodos mistos onde, $R \neq 0$ e $R_c \neq 0$ dos quais pode-se citar: Elementos Finitos, Métodos de Resíduos Ponderados e Método de Diferenças Finitas.

Diversos Métodos de Resíduos Ponderados são gerados a partir de escolha adotada para as funções de Ponderação W_i . Dentre outros pode-se citar os métodos de colocação, método de Galerkin, método de mínimos quadrados, etc. Nos próximos itens são apresentados alguns dos métodos mais usuais.

1.5.1 Método da Colocação Pontual

Dado um problema PP1 padrão, escolhe-se um conjunto de pontos $x_i = \xi_i$ com $i = 1, 2, \dots, n$ do domínio $\mathcal{D} = [a, b]$, e impõe-se que a função resíduo R(x) seja nula nos n pontos ξ_i , conforma mostrado na Figura 4, o que resulta em :

Figura 4: Função Resíduo calculada pelo Método da Colocação Pontual.

$$R(\xi_i) = 0 \quad i = 1, 2, \dots, n$$
 (62)

ou seja para uma família de funções admissíveis definida por:

$$\varphi(x) = \varphi_0(x) + \sum_{j=1}^n \alpha_j \varphi_j(x) , \qquad (63)$$

tem-se o seguinte sistema de n equações e n incógnitas α_i :

$$\begin{cases}
R(\xi_{1}) = L_{2m}(\varphi_{0}(\xi_{1}) + \sum_{j=1}^{n} \alpha_{j}\varphi_{j}(\xi_{1}) - f(\xi_{1})) = 0 \\
R(\xi_{2}) = L_{2m}(\varphi_{0}(\xi_{2}) + \sum_{j=1}^{n} \alpha_{j}\varphi_{j}(\xi_{2}) - f(\xi_{2})) = 0 \\
\vdots \\
R(\xi_{n}) = L_{2m}(\varphi_{0}(\xi_{n}) + \sum_{j=1}^{n} \alpha_{j}\varphi_{j}(\xi_{n}) - f(\xi_{n})) = 0
\end{cases}$$
(64)

Nota 1.2 O Método da colocação pontual é um Método de Resíduo Ponderado, onde a função ponderadora é o Delta de Dirac. Assim, seja $\delta(x - \xi_i)$ a representação do Delta de Dirac é dada por:

$$\begin{cases} \delta(x - \xi_i) = 0 & x \neq \xi_i \\ \delta(x - \xi_i) = \infty & x = \xi_i \end{cases}$$
 (65)

A representação gráfica que pode ser dada conforme a Figura 5 , e por definição da função $\delta(x-\xi_i)$ tem-se:

Figura 5: Função Delta de Dirac.

$$\int_{\xi_i - \varepsilon}^{\xi_i + \varepsilon} \delta(x - \xi_i) dx = 1 \tag{66}$$

Isto é, se $W_i(x) = \delta(x - \xi_i)$ para $i = 1, \dots, n$, o Resíduo Ponderado pode ser calculado por:

$$< R(x), W_i(x) > = < R(x), \delta(x - \xi_i) > = \int_a^b R(x)\delta(x - \xi_i)dx = R(\xi_i) = 0$$
 (67)

1.5.2 Método da Colocação em Subdomínios

Neste método divide-se o domínio $\mathcal{D} = [a, b]$ em n subdomínios dados por:

$$\begin{cases}
\mathcal{D}_1 = [a, x_1] \\
\mathcal{D}_2 = [x_1, x_2] \\
\vdots \\
\mathcal{D}_n = [x_{n-1}, b]
\end{cases} (68)$$

A função ponderadora $W_i(x)=1$ para cada subdomínio \mathcal{D}_i e nula para os demais o que conduz ao seguinte sistema de equações:

$$\begin{cases}
< R(x), W_1(x) > = \int_a^{x_1} R(x) dx = 0 \\
< R(x), W_2(x) > = \int_{x_1}^{x_2} R(x) dx = 0 \\
\vdots \\
< R(x), W_n(x) > = \int_{x_{n-1}}^b R(x) dx = 0
\end{cases}$$
(69)

A partir deste sistema de equações pode-se determinar as incógnitas α_i das funções de aproximação obtendo-se uma solução aproximada para o problema.

1.5.3 Método dos Momentos

Este método foi proposto por Yamada,1947, e consiste em se considerar o domínio completo, e como funções de ponderação uma família de funções do seguinte tipo:

$$\begin{cases}
W_1 = 1 \\
W_2 = x \\
W_3 = x^2 \\
W_4 = x^3 \\
\vdots
\end{cases}$$
(70)

sendo que o Resíduo é calculado da forma padrão:

$$\langle R(x), W_i(x) \rangle = \int_a^b R(x)W_i(x)dx = 0$$
 (71)

1.5.4 Método dos Mínimos Quadrados

Este método foi desenvolvido por Gauss,1795 e Legendre,1806 e consiste em adotar como funções de ponderação a variação do Resíduo com respeito aos parâmetros da aproximação, ou seja:

$$W_i(x) = \frac{\partial R(\alpha_i)}{\partial \alpha_i} , \qquad (72)$$

o que corresponde a escrever,

$$\langle R(x), W_i(x) \rangle = \int_a^b R(x, \alpha_1, \alpha_2 ... \alpha_n) \frac{\partial R(x, \alpha_1, \alpha_2 ... \alpha_n)}{\partial \alpha_i} dx = 0$$
 (73)

Nesse caso a norma do resíduo R(x) é mínima para a solução admissível $\varphi(x)$ obtida, o que permite escrever:

$$Minimizar_{\alpha_1,\alpha_2...\alpha_n} ||R(\alpha_1,\alpha_2...\alpha_n)||^2$$
(74)

onde,

$$||R(\alpha_1, \alpha_2...\alpha_n)||^2 = \int_a^b R^2(\alpha_1, \alpha_2...\alpha_n) dx$$
 (75)

e a partir da condição de mínimo tem-se:

$$\frac{\partial \|R\|^2}{\partial \alpha_i} = \int_a^b \frac{\partial R^2}{\partial \alpha_i} dx = 0 \tag{76}$$

resolvendo-se o sistema acima chega-se a:

$$\int_{a}^{b} \frac{\partial R^{2}}{\partial \alpha_{i}} dx = \int_{a}^{b} 2R \underbrace{\frac{\partial R}{\partial \alpha_{i}}}_{W_{i}(x)} dx = 0$$
(77)

que é a própria definição do método dos mínimos quadrados.

1.5.5 Método de Galerkin

O método de Galerkin,1915 é um dos mais utilizados no contexto de aproximações de Elementos Finitos. Dado um problema padrão PP1 considera-se a função admissível $\varphi(x)$,

$$\varphi(x) = \varphi_0(x) + \sum_{j=1}^{n} \alpha_j \varphi_j(x)$$
(78)

e a função resíduo é obtida de,

$$R(x) = L_{2m}(\varphi_0 + \sum_{i=1}^{n} \alpha_i \varphi_i(x)) - f$$
(79)

adota-se $W_i(x) = \varphi_i(x)$ isto é as funções ponderadoras são as funções admissíveis, o que implica em especificar o processo do método de Galerkin como sendo:

$$\langle R(x), W_i(x) \rangle = \langle R(x), \varphi_i(x) \rangle = \int_a^b L_{2m} [\varphi_0(x) \sum_{j=1}^n \alpha_j \varphi_j(x)] \varphi_i(x) dx +$$

$$\int_a^b -f \varphi_i(x) dx \quad i=1,2,\cdots, n$$
(80)

1.6 Aplicações dos Métodos de Resíduos Ponderados

Apresenta-se na sequência, um exemplo de Vibrações Livres de uma barra engastadalivre conforme mostrado na Figura 6. A barra é constituída de material considerado linear Elástico cujo Módulo de Elasticidade é E, e a massa específica é ρ .

O problema, em sua forma diferencial, para os movimentos longitudinais livres da barra (PB1) pode ser escrito da seguinte maneira:

Figura 6: Modelo de Barra Engastada-Livre

$$PB1 \begin{cases} \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{a^2} \frac{\partial^2 u(x,t)}{\partial t^2} = 0 & x \in [0,1] \\ \text{sujeito a:} \\ u(0) = 0 \\ \frac{\partial u}{\partial x}(1) = 0 \end{cases}$$
(81)

onde $a=\sqrt{\frac{E}{\rho}}$. Observa-se que as condições de contorno restringem as soluções do problema aos modos de vibração simétricos. A solução da Homogenea do problema PB1, é do tipo:

$$u(x,t) = \bar{u}(x)e^{i\omega t} \tag{82}$$

o que implica que,

$$\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial^2 \bar{u}(x)}{\partial x^2} e^{i\omega t}$$
 (83)

$$\frac{\partial^2 u(x,t)}{\partial t^2} = -\omega^2 \bar{u}(x)e^{i\omega t} \tag{84}$$

e substituindo (83) e (84) no problema PB1, tem-se:

$$PB1 \begin{cases} \frac{\partial^2 \bar{u}(x)}{\partial x^2} + \lambda \bar{u}(x) = 0 & x \in [0, 1] \\ \text{sujeito a:} \\ \bar{u}(0) = 0 \\ \frac{\partial \bar{u}}{\partial x}(1) = 0 \end{cases}$$
(85)

onde $\lambda=(\frac{\omega}{a})^2$. Nesta forma o problema PB1 admite solução analítica que é dada por pares de soluções como se segue:

$$\bar{u}_i(x) = A \sin\left(\frac{i\pi x}{2L}\right)
\omega_i = \left(\frac{i\pi}{2L}\right) a$$

$$i = 1, 3, 5, \dots$$
(86)

O problema PB1 admite também soluções aproximadas. Usando o procedimento padrão do método dos Resíduos Ponderados pode-se obter diferentes soluções para PB1.

1.6.1 Definição do Resíduo e Escolha das Funções Admissíveis

A escolha das funções admissíveis $\varphi(x)$, como na equação (40) e de acordo com a definição Def. 12, é baseada nos seguintes critérios:

- As funções φ_i devem satisfazer as condições de contorno homogêneas associadas.
- φ_0 deve satisfazer as condições de contorno não homogêneas.

No caso de PB1 só existem condições de contorno Homogêneas, logo $\varphi_0(x) = 0$ e as funções admissíveis são escritas da seguinte maneira:

$$\varphi(x) = \sum_{i=1}^{n} \alpha_i \varphi_i(x) \tag{87}$$

Várias famílias de Funções são candidatas ao problema PB1, e a sua definição depende do sistema de coordenadas adotado. Usando-se o sistema de coordenadas definido na Figura 6 tem-se:

$$\varphi(x) = \alpha_1 \varphi_1(x) + \alpha_2 \varphi_2(x) \tag{88}$$

onde:

$$\varphi_1(x) = x(1 - \frac{x}{2})$$

$$\varphi_2(x) = x(1 - x)^2$$
(89)

e as derivadas destas funções são:

$$\frac{\partial \varphi_1(x)}{\partial x} = (1 - x)$$

$$\frac{\partial^2 \varphi_1(x)}{\partial x^2} = -1$$

$$\frac{\partial \varphi_2(x)}{\partial x} = (3x^2 - 4x + 1)$$

$$\frac{\partial^2 \varphi_2(x)}{\partial x^2} = (6x - 4)$$
(90)

que satisfazem as condições de contorno homogêneas de PB1. Caso o sistema de coordenadas seja adotado no sentido contrário, partindo-se da extremidade livre da barra, as funções admissíveis podem ser definidas da seguinte maneira:

$$\varphi_1(x) = (x^2 - x^3)$$

$$\varphi_2(x) = (x^3 - x^4)$$
(91)

e as derivadas destas funções são:

$$\frac{\partial \varphi_1(x)}{\partial x} = 2x - 3x^2$$

$$\frac{\partial^2 \varphi_1(x)}{\partial x^2} = 2 - 6x$$

$$\frac{\partial \varphi_2(x)}{\partial x} = 3x^2 - 4x^3$$

$$\frac{\partial^2 \varphi_2(x)}{\partial x^2} = 6x - 12x^2$$
(92)

Nota 1.3 Nesse caso necessita-se de polinômios com ordem superior em relação ao sistema de coordenadas proposto anteriormente.

Definidas as funções admissíveis pode-se calcular as parcelas do Resíduo. Para o sistema de coordenadas definido na Figura 6 e escritas em (89) tem-se:

$$R_1(x) = \alpha_1 \left(\frac{\partial^2 \varphi_1(x)}{\partial x^2} + \left(\frac{\omega}{a}\right)^2 \varphi_1(x)\right) \tag{93}$$

e tendo em vista (90) chega-se a:

$$R_1(x) = \alpha_1(-1 + (\frac{\omega}{a})^2(x - \frac{x^2}{2})),$$
 (94)

e o resíduo $R_2(x)$ devido a $\alpha_2 \varphi_2(x)$ é:

$$R_2(x) = \alpha_2 \left(\frac{\partial^2 \varphi_2(x)}{\partial x^2} + \left(\frac{\omega}{a}\right)^2 \varphi_2(x)\right) \tag{95}$$

e tendo em vista (90) chega-se a:

$$R_2(x) = \alpha_2((6x - 4) + (\frac{\omega}{a})^2 x(1 - x^2)), \qquad (96)$$

Sendo o Resíduo total dado por:

$$R(x) = R_1(x) + R_2(x) (97)$$

1.6.2 Funções Ponderadoras - Colocação por Pontos.

Usando o método da Colocação Pontual, onde $W_i(x) = \delta(x - \xi_i)$, obtém-se:

• Considerando um ponto de colocação $\xi_1 = \frac{1}{2}$, e a função $\varphi_1(x)$,

$$R_1(\xi_1) = R_1(\frac{1}{2}) = \alpha_1(-1 + \frac{\omega^2}{a}(\frac{1}{2} - \frac{1}{8})) = 0$$
 (98)

o que implica em:

$$\alpha_1(-1 + (\frac{\omega}{a})^2(\frac{3}{8})) = 0 \Rightarrow (\frac{\omega}{a})^2 = \frac{8}{3} \Rightarrow \omega_1 = 1.6333a$$
 (99)

A solução exata deste problema é dada por $\omega_{exato}=1.571a$ o que implica em um erro de aproximadamente 4%. O Modo de vibração correpondente ao autovalor ω_1 pode ser calculado voltando-se em (88), o que permite escrever os modo como sendo $\varphi(x)=\alpha_1(x-\frac{x^2}{2})$ que é representado conforme mostrado na Figura 7. Nesse caso o modo é definido independentemente da constante α_1

Figura 7: Primeiro Modo vibração de uma Barra Engastada-Livre

• Considerando um ponto de colocação $\xi_1 = 1$, e a função $\varphi_1(x)$,

$$R_1(\xi_1) = R_1(1) = \alpha_1(-1 + (\frac{\omega}{a})^2(1 - \frac{1}{2})) = 0$$
 (100)

o que implica em:

$$-1 + \left(\frac{\omega}{a}\right)^2 \frac{1}{2} = 0 \Rightarrow \left(\frac{\omega}{a}\right)^2 = 2 \Rightarrow \omega_1 = 1.414a \tag{101}$$

O erro é neste caso de aproximadamente 10%. O Modo de vibração correspondente ao autovalor ω_1 pode ser calculado voltando-se em (88). Nota-se neste caso que a precisão obtida nos resultados é função do ponto de colocação escolhido.

• Considerando dois pontos de colocação $\xi_1 = \frac{1}{2}$ e $\xi_2 = 1$, o resíduo total será:

$$R(x) = R_1(x) + R_2(x) = \alpha_1(-1 + (\frac{\omega}{a})^2(x - \frac{x^2}{2})) + \alpha_2(6x - 4 + (\frac{\omega}{a})^2x((1 - x)^2))$$
(102)

nesse caso tem-se duas constantes α_1 e α_2 a serem determinadas a partir de duas equações definidas para os dois pontos de colocação ξ_1 e ξ_2 . Ou seja, a partir de (102) tem-se:

$$\begin{cases}
R(\xi_1) = R(\frac{1}{2}) = \alpha_1(-1 + \frac{3}{8}(\frac{\omega}{a})^2) + \alpha_2(-1 + \frac{1}{8}(\frac{\omega}{a})^2) = 0 \\
R(\xi_2) = R(1) = \alpha_1(-1 + \frac{1}{2}(\frac{\omega}{a})^2) + \alpha_2(6 - 4 + (\frac{\omega}{a})^2 1.(1 - 1)) = 0
\end{cases} (103)$$

o que em forma matricial corresponde a:

$$\begin{bmatrix} (-1 + \frac{3}{8}\lambda) & (-1 + \frac{1}{8}\lambda) \\ (-1 + \frac{1}{2}\lambda) & 2 \end{bmatrix} \begin{Bmatrix} \alpha_1 \\ \alpha_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$
 (104)

onde $\lambda = (\frac{\omega}{a})^2$. O sistema de equações lineares homogêneas tem solução não trivial se o determinante da matriz do sistema (104) for igual a zero, o que conduz a:

$$2(-1 + \frac{3}{8}\lambda) - (-1 + \frac{1}{8}\lambda)(-1 + \frac{1}{2}\lambda) = 0$$
 (105)

$$\frac{\lambda^2}{16} - \frac{11}{8}\lambda + 3 = 0 \tag{106}$$

que admite duas soluções:

$$\lambda = 11 \pm \frac{1}{2}\sqrt{22^2 - 192} = \begin{cases} \lambda_1 = 2.456 \Rightarrow \omega_1 = 1.567a \\ \lambda_2 = 19.544 \Rightarrow \omega_2 = 4.421a \end{cases}$$
 (107)

Nesse caso o erro em ω_1 é de 0.25% e o erro em ω_2 é de 6.2% sendo a solução exata $\omega_2 = 4.712a$. A determinação dos modos é feita substituindo-se os valores

de λ_i da equação (107) no sistema (104). Por exemplo para o primeiro modo $\lambda = 2.456$ tem-se:

o que permite escrever,

$$\alpha_2 = -.114\alpha_1 \tag{109}$$

e assim determinar o primeiro modo próprio de vibração:

$$\varphi^{1}(x) = \alpha_{1}\varphi_{1}(x) + \alpha_{2}\varphi_{2}(x) =$$

$$= \alpha_{1}\varphi_{1}(x) - 0.114\alpha_{1}\varphi_{2}(x) =$$

$$= \alpha_{1}(x - \frac{x^{2}}{2} - 0.114x(1 - x)^{2}) =$$

$$= \alpha_{1}(0.866x - 0.272x^{2} - 0.114x^{3})$$
(110)

O modo calculado é um polinômio do terceiro grau e satisfaz as condições de contorno do problema PB1. A determinação do segundo modo é feita de maneira análoga, usando-se o autovalor λ_2 . A forma genérica dos três primeiros modos pode ser vista na Figura 8.

1.6.3 Funções Ponderadoras - Método de Galerkin.

No Método de Galerkin, escolhem-se as funções Ponderadoras idênticas as funções Teste ou Admissíveis, isto é $W_i = \varphi_i$, o que permite escrever para o problema PB1 tendo em vista somente a primeira função estudada anteriormente,

$$< R(x), W_i(x) > = < R(x), \varphi_1(x) > = \int_0^1 \alpha_1 [-1 + (\frac{\omega}{a})^2 (x - \frac{x^2}{2})](x - \frac{x^2}{2}) dx = 0$$
(111)

A expressão (111) pode ser resolvida determinando-se o valor de ω . Chamando-se $\lambda = (\frac{\omega}{a})^2$ tem-se:

Figura 8: Modos de vibração do Problema PB1

$$\langle R(x), \varphi_1(x) \rangle = \alpha_1 \int_0^1 [-1 + \lambda(x - \frac{x^2}{2})](x - \frac{x^2}{2}) dx = 0$$

$$\alpha_1 \int_0^1 [-x + \frac{x^2}{2} + \lambda(x - \frac{x^2}{2})^2 dx = 0$$

$$\alpha_1 \{\frac{2}{15}\lambda - \frac{1}{3}\} = 0$$

$$\lambda = 2.5$$

$$(112)$$

Tal resultado conduz a $\omega_1=1.581a$ cujo erro em relação a solução exata é de 0.64%. O modo próprio correspondente a ω_1 é $\varphi(x)$ ajustado:

$$\varphi(x) = \alpha_1 \varphi_1 = \alpha_1 \left(x - \frac{x^2}{2}\right) \tag{113}$$

Nota 1.4 Dispõe-se até o momento de quatro soluções do problema PB1, que podem ser comparadas entre si. Verifique a precisão de cada uma delas e verifique também que tipo de soluções são encontradas para os modos.

Usando-se o mesmo método, Galerkin, faz-se o cálculo considerando duas funções admissíveis. São usadas:

$$\begin{cases}
\varphi_1(x) = (x - \frac{x^2}{2}) \\
\varphi_2(x) = (x - \frac{x^3}{3})
\end{cases}$$
(114)

cujas derivadas são dadas por:

$$\begin{cases}
\frac{\partial \varphi_1(x)}{\partial x} = (1 - x) \\
\frac{\partial^2 \varphi_1(x)}{\partial x^2} = (-1) \\
\frac{\partial \varphi_2(x)}{\partial x} = (1 - x^2) \\
\frac{\partial^2 \varphi_2(x)}{\partial x^2} = (-2x)
\end{cases}$$
(115)

Pode-se ver em (114) e (115) que as condições de derivabilidade impostas e as condições de contorno de PB1 são satisfeitas.

A partir destas funções o resíduo do problema é:

$$R(x) = \alpha_1 \left[-1 + \lambda \left(x - \frac{x^2}{2} \right) \right] + \alpha_2 \left[-2x + \lambda \left(x - \frac{x^3}{3} \right) \right]$$
 (116)

onde $\lambda = (\frac{\omega}{a})^2$. Nesse caso o resíduo ponderado envolve duas parcelas:

$$< R(x), \varphi_1 > = \int_0^1 \{\alpha_1 \underbrace{\left[-1 + \lambda(x - \frac{x^2}{2})\right]}_{c_{11}} + \alpha_2 \underbrace{\left[-2x + \lambda(x - \frac{x^3}{3})\right]}_{c_{12}}\}(x - \frac{x^2}{2})dx = 0$$

$$\langle R(x), \varphi_2 \rangle = \int_0^1 \{\alpha_1 \underbrace{\left[-1 + \lambda(x - \frac{x^2}{2})\right]}_{c_{21}} + \alpha_2 \underbrace{\left[-2x + \lambda(x - \frac{x^3}{3})\right]}_{c_{22}}\}_{(117)} + \alpha_2 \underbrace{\left[-2x + \lambda(x - \frac{x^3}{3})\right]}_{c_{22}} + \alpha_2 \underbrace{\left[-2x + \lambda(x - \frac{x^3}{3})\right]}$$

sendo que cada termo de (117) é calculado como se segue:

$$c_{11} = \int_0^1 \{ [-1 + \lambda(x - \frac{x^2}{2})](x - \frac{x^2}{2}) dx = [\frac{1}{3} + \frac{2}{15}\lambda]$$

$$c_{12} = \int_0^1 \{ [-2x + \lambda(x - \frac{x^3}{3})](x - \frac{x^2}{2}) dx = [-\frac{5}{12} + 0.16944\lambda]$$

$$c_{21} = \int_0^1 \{ [-1 + \lambda(x - \frac{x^2}{2})](x - \frac{x^3}{3}) dx = [-\frac{5}{12} + 0.16944\lambda]$$

$$c_{22} = \int_0^1 \{ [-2x + \lambda(x - \frac{x^3}{3})](x - \frac{x^3}{3}) dx = [-0.53333 + 0.21587\lambda]$$

$$(118)$$

o que pode ser escrito em forma matricial, resultando em um sistema simétrico:

$$\begin{bmatrix} \left(\frac{1}{3} + \frac{2}{15}\lambda\right) & \left(-\frac{5}{12} + 0.16944\lambda\right) \\ \left(-\frac{5}{12} + 0.16944\lambda\right) & \left(-0.53333 + 0.21587\lambda\right) \end{bmatrix} \cdot \begin{Bmatrix} \alpha_1 \\ \alpha_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$
 (119)

A solução não trivial do (119) conduz aos resultados mostrados na Tabela 1.

Tabela 1: Frequências da Barra - Galerkin

Modo	λ	ω	erro %
1	2.46806	1.571 a	0
2	23.5609	4.854 a	3

Os modos de vibração são determinados substituindo-se os valores de λ_i da tabela 1 na equação (119), o que fornece para o primeiro modo:

$$\left(\frac{1}{3} + \frac{2}{15} \times 2.4681\right)\alpha_1 + \left(-\frac{5}{12} + 0.16944 \times 2.4681\right)\alpha_2 = 0 \tag{120}$$

o que leva a:

$$\frac{\alpha_2}{\alpha_1} = -2.763\tag{121}$$

e o modo 1 pode ser definido por:

$$\varphi^{1}(x) = \alpha_{1}\varphi_{1} - 2.763\alpha_{1}\varphi_{2}$$

$$\varphi^{1}(x) = \alpha_{1}\left[\left(x - \frac{x^{2}}{2}\right) - 2.763\left(x - \frac{x^{3}}{3}\right)\right]$$

$$\varphi^{1}(x) = \alpha_{1}\left[-1.763x - \frac{x^{2}}{2} + 0.9211\frac{x^{3}}{3}\right]$$
(122)

Para o segundo modo o procedimento é análogo, usando o valor λ_2 .

1.6.4 Funções Ponderadoras - Método dos Mínimos Quadrados.

O Método dos Mínimos Quadrados consiste em usar a derivada do Resíduo como função ponderadora,

$$W_i(x) = \frac{\partial R(x)}{\partial \alpha_i} \tag{123}$$

Esse procedimento se aplicado para apenas uma função admissível, corresponde a:

$$\varphi(x) = \alpha_1 \varphi_1(x) = \alpha_1 \left(x - \frac{x^2}{2}\right)$$
 Função admissível
$$R(x) = R_1(x) = \alpha_1 \left[-1 + \left(x - \frac{x^2}{2}\right)\lambda\right]$$
 Resíduo (124)

$$W_1(x)=rac{\partial R(x)}{\partial lpha_1}=[-1+(x-rac{x^2}{2})\lambda]$$
 Função Ponderadora

Seguindo o procedimento padrão do Método dos Resíduos Ponderados, tem-se a expressão desenvolvida abaixo:

$$\langle R(x), W_1(x) \rangle = \int_0^1 \alpha_1 [-1 + (x - \frac{x^2}{2})\lambda][-1 + (x - \frac{x^2}{2})\lambda]dx = 0$$
 (125)

o que leva a:

$$\alpha_1 \int_0^1 [-1 + (2x - x^2)\lambda + (x^2 + \frac{x^4}{4} - x^3)\lambda^2] dx = 0$$

$$\alpha_1 [\lambda^2 - 5\lambda + 7.5] = 0$$
(126)

Quando n=1 nota-se da equação (126) que o mínimo de $||R(x)||^2$ só depende de λ sendo independente de α_1 . Tal procedimento implica em determinar λ a partir da seguinte expressão:

$$\frac{\partial}{\partial \lambda} [\lambda^2 - 5\lambda + 7.5] = 0 \tag{127}$$

O que nos leva a $\lambda = 2.5$ e por conseguinte $\omega_1 = 1.581a$. Observa-se neste caso que o resultado obtido é idêntico ao obtido com o método de Galerkin com uma função. A fim de verificar o que ocorre para o caso de mais de uma função admissível, adotou-se as mesmas funções do exemplo anterior, definidas em (114) calculando-se o resíduo conforme (116), e as funções de ponderação são dadas por:

$$W_1 = \frac{\partial R(x)}{\partial \alpha_1} = \left(-1 + \lambda \left(x - \frac{x^2}{2}\right)\right)$$

$$W_2 = \frac{\partial R(x)}{\partial \alpha_2} = \left(-2x + \lambda \left(x - \frac{x^3}{3}\right)\right)$$
(128)

novamente usando-se o procedimento padrão do Método dos Resíduos Ponderados calcula-se:

$$\langle R(x), \frac{\partial R(x)}{\partial \alpha_1} \rangle = \int_0^1 \{\alpha_1(-1 + \lambda(x - \frac{x^2}{2})) + \alpha_2(-2x + \lambda(x - \frac{x^3}{3}))\}(-1 + \lambda(x - \frac{x^2}{2}))dx = 0$$

$$\langle R(x), \frac{\partial R(x)}{\partial \alpha_2} \rangle = \int_0^1 \{\alpha_1(-1 + \lambda(x - \frac{x^2}{2})) + \alpha_2(-2x + \lambda(x - \frac{x^3}{3}))\}(-2x + \lambda(x - \frac{x^3}{3}))dx = 0$$

$$(129)$$

o que leva ao seguinte sistema de equações:

$$\alpha_1(1 - 0.66667\lambda + 0.13333\lambda^2) + \alpha_2(1 - 0.83333\lambda + 0.16944\lambda^2) = 0$$

$$\alpha_1(1 - 0.83333\lambda + 0.16944\lambda^2) + \alpha_2(1.3333 - 1.06666\lambda + 0.215873\lambda^2) = 0$$
(130)

derivando-se as expressões (130) com respeito a λ , tem-se um sistema matricial também simétrico,

$$\begin{bmatrix} (-.66667 + 0.26666\lambda) & (-0.83333 + 0.33888\lambda) \\ (-0.83333 + 0.33888\lambda) & (-1.0666 + 0.43174603\lambda) \end{bmatrix} \cdot \begin{Bmatrix} \alpha_1 \\ \alpha_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ (131) \end{Bmatrix}$$

cuja solução não trivial implica na solução de uma equação característica, que conduz a raizes idênticas às mostradas na Tabela 1.

1.6.5 Comparação dos Resultados

Para o problema PB1, foram realizadas nos itens anteriores algumas estimativas para as primeiras frequências naturais e modos de vibração usando-se diferentes métodos de Resíduos Ponderados. Com objetivo de se ter uma visão geral destas estimativas, apresenta-se na Tabela 2 um resumo dos resultados encontrados.

	Modo 1	erro %	Modo 2	erro %
ω - Exato	1.571 a		4.712 a	
ω - Colocação 1 Ponto	1.414 a	10	_	
ω - Colocação 2 Pontos	1.567 a	0.25	4.421 a	6.2
ω - Galerkin 1 Função	1.581 a	0.64		
ω - Galerkin 2 Funções	1.571 a	0.0	4.854 a	3.0
ω - Mínimos Quad. 1 Função	1.581 a	0.64	_	
ω - Mínimos Quad. 2 Funções	1.571 a	0.0	4.854 a	3.0

Tabela 2: Frequências da Barra Engastada-Livre

Em todos os casos pode-se notar que o uso de bases polinomiais mais "ricas"leva a resultados normalmente mais precisos, assim como o uso de um número maior de pontos para o caso do método de colocação conduz a erros menores. Nota-se também , que o método dos mínimos quadrados não pode ser aplicado de acordo com o procedimento

padrão, no entanto, resulta em aproximações idênticas às aproximações do método de Galerkin. Outro ponto importante, refere-se a simetria dos dois últimos métodos, caracteristica que pode ser explorada quando da programação destes procedimentos.

2 Forma fraca do Métodos de Resíduos Ponderados

Tendo em vista a dificuldade de se escolher as funções admissíveis que satisfaçam as condições de contorno, principalmente as condições Naturais, e as condições de continuidade exigidas pelo operador diferencial, usam-se frequentemente artifícios matemáticos que permitem reduzir os requisitos sobre estas funções.

Apresenta-se inicialmente um exemplo onde se evidenciam as dificuldades da escolha das funções admissíveis, motivando desta forma a transformação do problema para a sua forma fraca. Após, aprsenta-se a forma fraca e discute-se suas aplicações.

2.1 Problema Unidimensional - Forma Forte

Trata-se de um exemplo simples, viga em flexão conforme ilustrado na Figura 9, engastada livre, sujeita ao carregamento de um momento fletor concentrado na extremidade livre. O material é linear elástico, E é o módulo de elasticidade e I é o momento de inércia de área da secção transversal.

Figura 9: Viga em balanço.

A forma diferencial deste problema pode ser dada por:

$$EI\frac{d^4v(x)}{dx^4} = 0$$
sujeito a:
$$v(0) = 0$$

$$\frac{dv(0)}{dx} = 0$$

$$\frac{d^2v(L)}{dx^2} = \frac{M_0}{EI}$$

$$\frac{d^3v(L)}{dx^3} = 0$$

$$(132)$$

A solução exata em deslocamento na extremidade L é dada por:

$$v(L) = \frac{M_0 L^2}{2EI} \tag{133}$$

sendo que o deslocamento v(x) exato da viga, é um polinômio do segundo grau.

Procuram-se soluções aproximadas para o problema, usando-se o método dos resíduos ponderados. Busca-se inicialmente funções admissíveis da forma:

$$\varphi(x) = \varphi_0(x) + \sum_{i=1}^{n} \alpha_i \varphi_i(x)$$
(134)

onde $\varphi_0(x)$ deve satisfazer todas as condições de contorno de 132, e $\varphi_i(x)$ deve satisfazer todas as condições de contorno homogêneas associadas à 132. Estas funções polinomiais devem no mínimo ser do quaro grau, para que a contribuição da função apareça no resíduo associada a 132. Nota-se a priori que a ordem necessária é muito maior do que a ordem do polinômio solução, que nesse caso é quadrático.

Observa-se também, que para que exista derivada quarta não nula a derivada terceira deve ser um polinômio, no mínimo linear. Para facilitar a construção das funções admissíveis $\varphi_i(x)$ parte-se de sua derivada segunda,

$$\frac{d^2\varphi_1(x)}{dx^2} = \left(1 - \frac{x}{L}\right)^2 = 1 - \frac{2x}{L} + \frac{x^2}{L^2} \tag{135}$$

que verifica as condições de contorno homogêneas associadas, de segunda e terceira ordem,

$$\frac{d^2\varphi_1(L)}{dx^2} = 0$$

$$\frac{d^3\varphi_1(L)}{dx^3} = 0$$
(136)

Por derivação pode-se determinar os termos de ordem mais elevada,

$$\frac{d^3\varphi_1(x)}{dx^3} = -2\left(\frac{1}{L} - \frac{x}{L^2}\right)$$

$$\frac{d^4\varphi_1(x)}{dx^4} = \frac{2}{L^2}$$
(137)

e por integração os termos de ordem mais baixa,

$$\frac{d\varphi_1(x)}{dx} = \left(x - \frac{x^2}{L} + \frac{x^3}{3L^2}\right)
\varphi_1(x) = \left(\frac{x^2}{2} - \frac{x^3}{3L} + \frac{x^4}{12L^2}\right)$$
(138)

sendo fácil observar que as condições de Dirichlet ou essenciais de 132 são satisfeitas por $\varphi_1(x)$ definida em 138.

Por outro lado, a função $\varphi_0(x)$ deve satisfazer todas as condições de contorno impostas, e como ela aparece na expressão do resíduo, deve ser no mínimo de quarta ordem. De maneira análoga a anterior pode-se construir a função $\varphi_0(x)$ a partir de sua forma na derivada terceira, da seguinte maneira:

$$\frac{d^4 \varphi_0(x)}{dx^4} = -\frac{M_0}{EIL^2}$$

$$\frac{d^3 \varphi_0(x)}{dx^3} = \frac{M_0}{EI} \left(\frac{1}{L} - \frac{x}{L^2}\right)$$

$$\frac{d^2 \varphi_0(x)}{dx^2} = \frac{M_0}{EI} \left(\frac{1}{2} + \frac{x}{L} - \frac{x^2}{2L^2}\right)$$
(139)

sendo a constante de integração $\frac{1}{2}$ ajustada à partir da condição de contorno

$$\frac{d\varphi_0(x)}{dx} = \frac{M_0}{EI} \left(\frac{x}{2} + \frac{x^2}{2L} - \frac{x^3}{6L^2} \right)
\varphi_0(x) = \frac{M_0}{EI} \left(\frac{x^2}{4} + \frac{x^3}{6L} - \frac{x^4}{24L^2} \right)$$
(140)

sendo possível verificar que (139) satisfaz todas as condições decontorno de (132).

Após haver sintetizado as funções admissíveis pode-se então montar o resíduo que é dado por:

$$R(x) = EI \frac{d^4 \varphi(x)}{dx^4} \tag{141}$$

o que para o caso de $\varphi(x) = \varphi_0 + \alpha_1 \varphi_1$ conduz a:

$$R(x) = \left(-\frac{M_0}{EIL^2} + \alpha_1 \frac{2}{L^2}\right) EI \tag{142}$$

e aplicando o método de Galerkin, onde escolhem-se as funções de ponderação como sendo $W_1 = \varphi_1$, pode-se computar o valor do resíduo ponderado como sendo:

$$\int_{0}^{L} EI\left(-\frac{M_0}{EIL^2} + \alpha_1 \frac{2}{L^2}\right) \left(\frac{x^2}{2} - \frac{x^3}{3L} + \frac{x^4}{12L^2}\right) dx = 0$$
 (143)

o que leva a:

$$-\frac{M_0}{EIL^2} + \alpha_1 \frac{2}{L^2} = 0 ag{144}$$

permitindo avaliar a constante $\alpha_1 = \frac{M_0}{2EI}$. Nota-se neste caso que os requisitos sobre as funções admissíveis são tão fortes, que os polinômios ajustados tomam a seguinte forma:

$$\varphi(x) = \frac{M_0}{EI} \left(\frac{x^2}{4} + \frac{x^3}{6L} - \frac{x^4}{24L^2}\right) + \frac{M_0}{2EI} \left(\frac{x^2}{2} - \frac{x^3}{3L} + \frac{x^4}{12L^2}\right) \tag{145}$$

o que após algumas simplificações toma a forma:

$$\varphi(x) = \frac{M_0}{2EI}x^2\tag{146}$$

que fornece solução exata em x=L. Observa-se que foram usadas funções de base de quarta ordem, para construir uma solução que é quadrática. Com o objetivo de se relaxar as condições da formulação, usa-se a forma Fraca do problema.

2.2 Viga em balanço - Forma Fraca

Na forma fraca, as funções admissíveis devem satisfazer as seguintes condições:

- $\varphi_0(x)$ deve satisfazer todas as condições de contorno essenciais existentes;
- $\varphi_i(x)$ devem satisfazer todas as condições de contorno essenciais homogêneas associadas.
- $\varphi_0(x)$ e $\varphi_i(x)$ devem ser diferenciáveis até ordem m paro o caso da equação diferencial ter ordem 2m.

Observa-se que para o caso da viga (132), as funções devem ser diferenciáveis até ordem 2. Para o caso do problema (132), passar para a forma fraca implica em escrever a forma de resíduos ponderados:

$$\langle R(x), W_i(x) \rangle = \int_0^L EI \frac{d^4 \varphi(x)}{dx^4} W_i(x) dx = 0$$
 (147)

e aplicar-se uma integração por partes (Teorema de Green), que permite escrever:

$$\int_{0}^{L} EI \frac{d^{4}\varphi(x)}{dx^{4}} W_{i}(x) dx =$$

$$EIW_{i}(x) \frac{d^{3}\varphi(x)}{dx^{3}} \Big|_{0}^{L} - \int_{0}^{L} EI \frac{d^{3}\varphi(x)}{dx^{3}} \frac{dW(x)}{dx} dx = 0$$
(148)

Integrando-se por partes novamente a parcela integral da equação (148), chega-se a seguinte expressão:

$$\int_{0}^{L} EI \frac{d^{4}\varphi(x)}{dx^{4}} W_{i}(x) dx =
EIW_{i}(x) \frac{d^{3}\varphi(x)}{dx^{3}} \Big|_{0}^{L} - EI \frac{dW(x)}{dx} \frac{d^{2}\varphi(x)}{dx^{2}} \Big|_{0}^{L} +
\int_{0}^{L} EI \frac{d^{2}\varphi(x)}{dx^{2}} \frac{d^{2}W(x)}{dx^{2}} dx = 0$$
(149)

que pode ser avaliado no contorno, resultando em:

$$\int_{0}^{L} EI \frac{d^{4} \varphi(x)}{dx^{4}} W_{i}(x) dx =
EI(W_{i}(L) \frac{d^{3} \varphi(L)}{dx^{3}} - W_{i}(0) \frac{d^{3} \varphi(0)}{dx^{3}}) - EI(\frac{dW(L)}{dx} \frac{d^{2} \varphi(L)}{dx^{2}} - \frac{dW(0)}{dx} \frac{d^{2} \varphi(0)}{dx^{2}}) +$$

$$\int_{0}^{L} EI \frac{d^{2} \varphi(x)}{dx^{2}} \frac{d^{2} W(x)}{dx^{2}} dx = 0$$
(150)

Assim, o Resíduo Ponderado na sua forma fraca apresenta as seguintes características que torna a aplicação do MRP mais conveniente:

- A ordem do polinômio das funções admissíveis reduziu-se de 4 para 2, já que a derivada de maior ordem é 2.
- As condições de contorno naturais (não essenciais) aparecem explicitamente no Resíduo Ponderado modificado, não precisando mais serem consideradas na formação de $\varphi_0(x)$ e $\varphi_i(x)$.
- Facilita a aplicação do Método dos Elementos Finitos.

Aplicando a formulação fraca ao exemplo de flexão de viga em balanço (132), temse:

• A função admissível tem a seguinte forma:

$$\varphi(x) = \varphi_0(x) + \alpha_1 \varphi_1(x) \tag{151}$$

e considerando que todas condições de contorno essenciais já são homogêneas, e que $\varphi_0(x)$ não deve mais satisfazer as condições de contorno Naturais, tem-se que $\varphi_0(x)=0$, e em consequência:

$$\varphi(x) = \alpha_1 \varphi_1(x) \tag{152}$$

onde pode-se adotar a seguinte função e suas respectivas derivadas:

$$\varphi_1(x) = x^2$$

$$\frac{d\varphi_1(x)}{dx} = 2x$$

$$\frac{d^2\varphi_1(x)}{dx^2} = 2$$
(153)

sendo que ambas satisfazem as condições de contorno essenciais do problema (132), isto é:

$$\varphi_1(0) = 0$$

$$\frac{d\varphi_1(0)}{dx} = 0$$
(154)

• O Resíduo Ponderado na Forma de Galerkin é dado por $W(x)=\varphi_1(x)$:

$$\int_{0}^{L} EI \frac{d^{2}\varphi(x)}{dx^{2}} \frac{d^{2}\varphi_{1}(x)}{dx^{2}} dx =$$

$$EI(\varphi_{1}(0) \frac{d^{3}\varphi(0)}{dx^{3}} - \varphi_{1}(L) \frac{d^{3}\varphi(L)}{dx^{3}}) + EI(\frac{d\varphi_{1}(L)}{dx} \frac{d^{2}\varphi(L)}{dx^{2}} - \frac{d\varphi_{1}(0)}{dx} \frac{d^{2}\varphi(0)}{dx^{2}})$$
(155)

e considerando as condições de contorno de (132), e as funções adotadas, tem-se:

$$EI\int_{0}^{L} 2\alpha_{1}2dx = EI\frac{M_{0}}{EI}2L \tag{156}$$

logo, determina-se $\alpha_1 = \frac{M_0}{2EI}$ e a solução do problema é dada por:

$$\varphi(x) = \frac{M_0}{2EI}x^2 \tag{157}$$

que satisfaz a solução exata do problema para x=L e na ordem do polinômio, tendo-se adotado funções admissíveis de ordem mais baixa simplificando consideravelmente a resolução.

2.3 Forma fraca abstrata

O exemplo anterior mostrou a conveniência de se escrever o problema na sua forma fraca. Na sequência apresenta-se de forma abstrata e geral, como pode ser aplicada a operação de Integração por partes à forma forte de problema. Parte-se do problema padrão PP1, dado por:

$$PP1 \begin{cases} L_{2m}(u) = f & \text{em } \mathcal{D} \\ B_i(u) = g_i & \text{em } \mathcal{C} \quad i = 1, 2, \dots, m \end{cases}$$
 (158)

e a metodologia geral para aplicação do MRP é:

A Escolha das funções admissíveis.

A função admissível é escolhida como uma sequência da seguinte maneira:

$$\varphi(x) = \varphi_0(x) + \sum_{i=1}^{N} \alpha_i \varphi_i(x)$$
(159)

onde φ_0 deve satisfazer todas as condições de contorno essenciais do problema e as funções φ_i devem satisfazer todas as condições de contorno essenciais homogêneas associadas. Estas funções devem ser integráveis quadraticamente, assim

como todas as suas derivadas até ordem m (obviamente não podem ter derivadas identicamente nulas até ordem m). As condições de contorno Naturais serão impostas diretamente na equação do Resíduo Ponderado na sua forma fraca.

B Cálculo da função resíduo.

A função resíduo representa o erro introduzido no problema quando se adotam soluções aproximadas φ , e pode ser dado por:

$$R(x, y, z) = L_{2m}(\varphi) - f \text{ em } \mathcal{D}$$
 (160)

de uma forma geral, a função φ é definida de forma analítica sem considerar as definições de (159).

C Cálculo da função ponderadora.

As funções ponderadoras $W_i(x, y, z)$ devem satisfazer as condições de contorno essenciais homogêneas associadas, e da mesma forma que para $\varphi_i(x, y, z)$ devem ter derivadas até ordem m contínuas em \mathcal{D} , sendo no mínimo contínuas por partes.

D Montagem da forma fraca geral de Resíduos Ponderados.

Na formulação fraca as condições impostas sobre as funções admissíveis são relaxadas. Por outro lado as condições para as funções ponderadoras tornam-se mais restritas mas no mesmo nível aos das funções admissíveis.

Na formulação Fraca o produto interno do Resíduo Ponderado $\langle R, W_i \rangle = \int_{\mathcal{D}} RW_i d\mathcal{D}$ é modificado usando-se os teoremas da divergência, Gauss ou Stokes conforme o tipo da equação diferencial. O Resíduo Ponderado se escreve de forma geral por:

$$R(x,y,z) = \int_{\mathcal{D}} (L_{2m}(\varphi) - f) W_i d\mathcal{D} = \int_{\mathcal{D}} (L_{2m}(\varphi) W_i d\mathcal{D} - \int_{\mathcal{D}} f W_i d\mathcal{D} = 0$$
(161)

sendo que ao termo referente ao operador diferencial L_{2m} de (161), aplica-se o teorema de Green(ou da Divergência) procurando-se abaixar a ordem 2m que aparece em L_{2m} e em contra partida aumentar a ordem da derivada de W_i (que no Resíduo Ponderado na forma forte tem ordem 0) resultando em:

$$R(x,y,z) = \int_{\mathcal{D}} (L_{2m}(\varphi)) W_i d\mathcal{D} = \int_{\mathcal{D}} D(\varphi) E(W_i) d\mathcal{D} + \int_{\mathcal{C}} F(\varphi, W_i) d\mathcal{C}$$
 (162)

onde $L_{2m}()$ é um operador diferencial de ordem 2m, D() um operador diferencial de ordem (2m-1), E() um operador diferencial de ordem 1 e F() um operador diferencial definido no contorno \mathcal{C} .

Se a ordem do operador D() não estiver balanceada com a ordem do operador E() (isto é, se a maior derivada de D() não for igual a maior derivada em E()), aplica-se de novo o teorema da Divergência (ou outro mais apropriado) ao primeiro termo do lado direito de (162), resultando em:

$$\int_{\mathcal{D}} D(\varphi)E(W_i)d\mathcal{D} = \int_{\mathcal{D}} G(\varphi)H(W_i)d\mathcal{D} + \int_{\mathcal{C}} J(\varphi, W_i)d\mathcal{C}$$
 (163)

de modo que o operador de G() e H() tenham a mesma ordem. Nesse caso a maior ordem das derivadas de φ e de W_i que aparecem na expressão do resíduo ponderado modificado é igual. Quando G() e H() tiverem ordem M o processo é encerrado.

Nota 2.1 (**Teorema da Divergência**) O teorema da Divergência é um caso particular do teorema de Green e pode ser definido da seguinte maneira:

seja $\mathbf{u}(x,y,z)$ um campo vetorial agindo num domínio \mathcal{D} de volume V_0 e superfície de contorno \mathcal{C} , cujo vetor $\mathbf{n}(x,y,z)$ unitário indica a direção normal exterior de \mathcal{C} , dados por:

$$\mathbf{u}(x, y, z) = u_1(x, y, z)\mathbf{i} + u_2(x, y, z)\mathbf{j} + u_3(x, y, z)\mathbf{k}$$
(164)

$$\boldsymbol{n}(x,y,z) = n_1 \boldsymbol{i} + n_2 \boldsymbol{j} + n_3 \boldsymbol{k} \tag{165}$$

o teorema da Divergência pode ser escrito da seguinte forma:

$$\int_{\mathcal{D}} \nabla \cdot \boldsymbol{u}(x, y, z) d\mathcal{D} = \int_{\mathcal{C}} \boldsymbol{u}(x, y, z) \cdot \boldsymbol{n}(x, y, z) dS$$
 (166)

e desenvolvendo-se a notação compacta tem-se;

$$\int_{\mathcal{D}} \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z}\right) d\mathcal{D} = \int_{\mathcal{C}} (u_1 n_1 + u_2 n_2 + u_3 n_3) dS \tag{167}$$

conforme o que foi aplicado na integração por partes acima.

Nota 2.2 (Teorema de Green) Seja $\mathbf{u}(x,y,z)$ e $\mathbf{v}(x,y,z)$ duas funções escalares definidas em \mathcal{D} com contorno \mathcal{C} , onde $\mathbf{n}(x,y,z)$ é o vetor unitário em cada ponto do contorno \mathcal{C} , o teorema de Green pode ser enunciado como se segue:

$$\int_{\mathcal{D}} \boldsymbol{u} \nabla^2 \boldsymbol{v} d\mathcal{D} + \int_{\mathcal{D}} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{v} d\mathcal{D} = \int_{\mathcal{C}} \boldsymbol{u} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{n}} dS = \int_{\mathcal{C}} \boldsymbol{u} \nabla \boldsymbol{v} \cdot \boldsymbol{n} dS$$
 (168)

 $com \ u(x,y,z) \ e \ v(x,y,z)$ diferenciáveis, com derivadas contínuas, sendo que v(x,y,z) deve ser diferenciável duas vezes com derivadas segundas contínuas.

Pode-se também enunciar o teorema de Green conforme a expressão abaixo:

$$\int_{\mathcal{D}} (\boldsymbol{u} \nabla^2 \boldsymbol{v} - \boldsymbol{v} \nabla^2 \boldsymbol{u}) d\mathcal{D} = \int_{\mathcal{C}} (\boldsymbol{u} \nabla \boldsymbol{v} - \boldsymbol{v} \nabla \boldsymbol{u}) \cdot \boldsymbol{n} dS = \int_{\mathcal{C}} (\boldsymbol{u} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{n}} - \boldsymbol{v} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}}) dS \quad (169)$$

onde $\mathbf{u}(x,y,z)$ e $\mathbf{v}(x,y,z)$ devem ser diferenciáveis duas vezes com derivadas segundas contínuas.

2.4 Exemplo: Vibração de uma Barra

Co o intuito de ilustrar o uso do Método dos Resíduos Ponderados na sua forma fraca, aplica-se o método ao problema de vibração de uma barra, Neste caso tem-se:

$$PB1 \begin{cases} \frac{\partial^2 u(x)}{\partial x^2} + \lambda u(x) = 0 \\ \text{sujeito a:} \\ u(0) = 0 \\ \frac{\partial u(1)}{\partial x} = 0 \end{cases}$$
 (170)

sendo $\lambda=(\frac{\omega}{a})^2$ e $a=\sqrt{\frac{E}{\rho}}.$ O modelo físico está ilustrado no Figura 10.

Figura 10: Vibração longitudinal. Barra engastada-livre.

Neste caso a solução exata é dada por:

As frequênca naturais dadas por:
$$\begin{cases} As \text{ frequênca naturais dadas por:} \\ \omega_i = (\frac{i\pi}{2L})a \quad i = 1, 3, 5, \cdots \\ e \text{ os modos próprios:} \\ u^{(i)}(x) = A_i \sin \frac{i\pi x}{2L} \end{cases}$$
 (171)

A aplicação do método é feita em etapas, e segue o procedimento padrão, conforme abaixo enunciado.

A Funções Adimissíveis

Neste problema, $\varphi_0(x)$ não é necessária pois todas as condições de contorno essenciais são nulas. Adicionalmente, as funções $\varphi_i(x)$ devem satisfazer as condições de contorno essenciais homogêneas associadas.

$$\varphi(x) = \alpha_1 \varphi_1(x) + \alpha_2 \varphi_2(x) \tag{172}$$

Considerando que $\varphi_i(x)$ são polinômios, então é requerido que o mesmos tenham ordem no mínimo 1, que é a metade da ordem do operador do problema(2m=2). Assim as funções escolhidas são:

$$\begin{cases}
\varphi_1(x) = x \\
\frac{\partial \varphi_1}{\partial x}(x) = 1
\end{cases}$$
(173)

$$\begin{cases}
\varphi_2(x) = x^2 \\
\frac{\partial \varphi_2}{\partial x}(x) = 2x
\end{cases}$$
(174)

O que permite escrever a função resíduo como segue abaixo:

$$\varphi(x) = \alpha_1 x + \alpha_2 x^2$$

$$\frac{\partial \varphi}{\partial x}(x) = \alpha_1 + 2x\alpha_2$$
(175)

B Função Resíduo.

O cálculo da Função Resíduo é dada por:

$$R(x) = \frac{\partial^2 \varphi}{\partial x^2}(x) + \lambda \varphi(x) \tag{176}$$

C Aplicando Galerkin, tem-se:

$$\begin{cases}
W_1(x) = \varphi_1(x) = x \\
W_2(x) = \varphi_2(x) = x^2
\end{cases}$$
(177)

Forma fraca Aqui o método se diferencia do que aplicamos no capítulo anterior. portante, escreve-se inicialmente o resíduo:

$$\langle R(x), \varphi_i(x) \rangle = \int_0^1 (R(x), \varphi_i(x)) dx = \int_0^1 (\frac{\partial^2 \varphi}{\partial x^2}(x) + \lambda \varphi(x)) \varphi_i(x) dx = 0$$
 (178) ou seja,

$$\int_0^1 \frac{\partial^2 \varphi}{\partial x^2} \varphi_i(x) dx + \int_0^1 \lambda \varphi(x) \varphi_i(x) dx = 0$$
 (179)

Integrando por partes o primeiro termo da equação 178 tem-se:

$$\int_0^1 \frac{\partial^2 \varphi}{\partial x^2} \varphi_i(x) dx = -\int_0^1 \frac{\partial \varphi}{\partial x} (x) \frac{\partial \varphi_i}{\partial x} dx + \frac{\partial \varphi}{\partial x} (x) \varphi_i(x) \Big|_0^1$$
 (180)

Substituindo os valores no termo que é avaliado no contorno, tem-se:

$$\underbrace{\frac{\partial \varphi}{\partial x}(1)}_{=0 \text{ condicão de contorno}} \varphi_i(1) - \underbrace{\frac{\partial \varphi}{\partial x}(0)}_{=0} \underbrace{\varphi_i(0)}_{=0} = 0$$
(181)

Assim, a expressão do resíduo pode ser escrito por:

$$\langle R(x), \varphi_i(x) \rangle = \int_0^1 \lambda \varphi(x) \varphi_i(x) dx - \int_0^1 \frac{\partial \varphi}{\partial x} (x) \frac{\partial \varphi_i}{\partial x} dx = 0$$
 (182)

Substituindo os valores, tem-se:

$$\begin{cases}
< R(x), \varphi_1(x) >= \int_0^1 \lambda(\alpha_1 x + \alpha_2 x^2) x dx - \int_0^1 (\alpha_1 + 2x\alpha_2) 1 dx = 0 \\
< R(x), \varphi_2(x) >= \int_0^1 \lambda(\alpha_1 x + \alpha_2 x^2) x^2 dx - \int_0^1 (\alpha_1 + 2x\alpha_2) 2x dx = 0
\end{cases}$$
(183)

efetuando as operações da primeira equação 183 chega-se a:

$$\begin{cases}
\int_0^1 \lambda(\alpha_1 x^2 + \alpha_2 x^3) dx - \int_0^1 (\alpha_1 + 2x\alpha_2) dx = 0 \\
\lambda(\alpha_1 \frac{x^3}{3} + \alpha_2 \frac{x^4}{4})|_0^1 - (\alpha_1 x + x^2 \alpha_2)|_0^1 = 0 \\
\lambda\left[\frac{\alpha_1}{3} + \frac{\alpha_2}{4}\right] - \left[\alpha_1 + \alpha_2\right] = 0
\end{cases} (184)$$

analogamente para a segunda equação de 183 chega-se a:

$$\begin{cases}
\int_{0}^{1} \lambda(\alpha_{1}x^{3} + \alpha_{2}x^{4})dx - \int_{0}^{1} 2(\alpha_{1}x + 2x^{2}\alpha_{2})dx = 0 \\
\lambda(\alpha_{1}\frac{x^{4}}{4} + \alpha_{2}\frac{x^{5}}{5})|_{0}^{1} - 2(\alpha_{1}\frac{x^{2}}{2} + \frac{2x^{3}}{3}\alpha_{2})|_{0}^{1} = 0 \\
\lambda\left[\frac{\alpha_{1}}{4} + \frac{\alpha_{2}}{5}\right] - \left[\alpha_{1} + \frac{4}{3}\alpha_{2}\right] = 0
\end{cases} (185)$$

Organizando matricialmente, tem-se:

$$\begin{bmatrix}
(-1 + \frac{\lambda}{3}) & (-1 + \frac{\lambda}{4}) \\
(-1 + \frac{\lambda}{4}) & (-\frac{4}{3} + \frac{\lambda}{5})
\end{bmatrix}
\begin{cases}
(\alpha_1) \\
(\alpha_2)
\end{cases} =
\begin{cases}
0 \\
0
\end{cases}$$
(186)

A solução não trivial leva ao determinante da matriz do sistema 186 a ser nulo, logo:

$$(-1 + \frac{\lambda}{3})(-\frac{4}{3} + \frac{\lambda}{5}) - (-1 + \frac{\lambda}{4})^2 = 0$$
 (187)

o que gera as seguintes soluções:

$$\begin{cases} \lambda_1 = 2,486 \Rightarrow \omega_1 = 1,577a \Rightarrow erro = 0,4\% \\ \lambda_2 = 32,18 \Rightarrow \omega_1 = 5,673a \Rightarrow erro = 20\% \end{cases}$$

2.5 Exemplo: Placa Fina com Geração interna de Calor

Referências

Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2002). *Concepts and applications of finite element analysis*. John Wiley & Sons, Inc., 4 edition.

J.S., P. (1985). Theory of Matrix Structural Analyses. Dover Publications, New York.

Popov, E. P. (1998). Engineering Mechanics of Solids. Prentice-Hall International.

Touzot, G. and Dhatt, G. (1984). *The Finite Element Method Displayed*. John Willey and Sons.